Bloominton Industrial Park

BEAM RAIL TESTS AASHO SPEC. No. 3.2.6 LOAD

JI LOIT IC	AHONS	
ACME PANEL 12" Wide (Min.)	10 GA.	12 GÀ.
x 3"Deep (Min.)	(.1345)	(.1095)
CROSS SECTION AREA (Square Inches)	2.35	1.91
SECTION MODULUS (In.3)	1.602	1.304
TENSILE STRENGTH —THRU SPLICE	89,000	73,000
WEIGHT FOR 12'6" SPAN PANEL (LBS.)	107.8	87.6

ACME "U"POSTS \$ x 3\$ POST BOLT SLOT THE BOLT HOLES AND POST BOLT SLOT ON THE UNDERLYING END OF THE BEAM PANEL ARE ELONGATED SEC A-A DIA ROHD. POST BOLT. 6 - 2 x I" RD. HD. SPLICE BOLT TYPICAL ROADEDGE SPLICE DETAILS **INSTALLATION** -12 - APPROX. --- DIRECTION OF TRAFFIC ACME BEAM GUARD **SPECIFICATIONS** DIRECTION OF TRAFFIC -BUFFER END-PLAN SECTION B-B 4"x6"-12LB.WF POSTS TYPICAL TRAFFIC SEPARATOR INSTALLATION 10°[-15.3 LB x 1-3 LONG -27

Outstanding

ACME Beam **Guard**

Features

BUFFER END

The ACME BUFFER END for both traffic separator and road edge guard cushions impact to provide maximum

Picture Story Typical acme Beam Guard Installations

Channelizing of traffic is the effect on overpasses and underpasses with this typical ACME installation on heavily traveled Rt. 5s near Herkimer, N. Y.

Gas stations, parking lots, dams, power installations, as well as highways can be delineated with ACME Beam Guards.

High strength safety on a sharp S Curve accomplished with an ACME installation.

Safety is assured on this dangerous Hi-speed curve with ACME Beam Guard.

High visibility and protection is the result of an ACME installation at toll booths and interchanges.

Rugged and desthetic beauty by use of wood posts and ACME smooth flowing functional design.

Rugged steel construction for maximum safety gives highway users that extra sense of security in day or night driving.

ACME Beam Guard versatility is demonstrated on this bridge opening to insure against a common danger area.

Mile after mile of smooth flowing ACME contours can be found on the New York State Thruway, the world's longest super highway.

ACME Beam Guard

• "ACME", a name representing quality in highway construction materials, with over a quarter of a century of experience in development and testing of highway guards, is a name to be depended on.

Leading consulting engineers, State highway officials and technical personnel, have come to depend on "ACME" engineering know-how in the highway guard field. Acme Highway products can be found on the great thruways and expressways of our country.

For further information, write or contact our main office at Buffalo, N. Y.

Mfd. by ACME HIGHWAY PRODUCTS CORPORATION 33 Chandler St., Buffalo 7, N.Y.

Also Manufacturers of:

LONGITUDINAL JOINT SUPPORTS • TRANSVERSE CONTRACTION JOINT SUPPORTS

CABLE GUARD OFFSET SPRING BRACKETS AND FITTINGS

TRANSVERSE EXPANSION JOINT SUPPORTS

Form No. A355

Problem

When the accident reports are tabulated, it's the head-on collision which does the most damage. Turnpike statistics show that more accident deaths are due to this condition than any other cause.

The killer type of accident can be eliminated from your road system. Dangerous curves can be made accident-free with economy while being re-designed for safety.

The death- free week-end can be closer to reality with a minimum of expenditure.

Solution

ACME's answer is the Traffic Separator or Center Mall Barrier Guard. Composed of rugged H section posts plus a "back-to-back" arrangement of ACME Beam Guard panels, a virtually impenetrable barrier is the result.

Rounded "BUFFER END" and smooth contour panels prevent catching or spearing of vehicles and they are re-directed back into their proper lane of traffic.

ACME Beam Guards form a rugged traffic separator that cannot be mounted.

- Only 12" in width from face to face, traffic separators should be considered on anything less than a 20 ft. mall.
- No spearing or impaling of vehicles with the Exclusive ACME BUFFER END.
- Deep center panel corrugation and streamlined button head bolts eliminate the possibility of catching or hooking vehicles.
- Top and bottom of panel edges are purposely sloped away from traffic to minimize danger of a plate cutting edge.

ACME Beam Guard

The Whimate in Highway-

- O SAFETY and PROTECTION
- o durable strength
- o streamlined beauty
- O LOW COST Erection & Maintenance

OUR PHONE NUMBER 5157

CALL US FOR YOUR DRAINAGE REQUIREMENTS

LOGANSPORT METAL CULVERT CO.
220 HANNA STREET LOGANSPORT, INDIANA

FORMED BOTTOM **DRAINAGE STRUCTURES** NORMAL **FORMED** DIAMETER (Sa. Ft.) (Sq. Ft.) DIAMETER' 15" 16 Ga. 1.227 END AREA 1.1 16 Ga. 1.767 16 Ga. 25" x 16" 2.4 2.2 14 Ga. 3.142 4.909 12 Ga. 7.068 12 Ga. 9.621 12 Ga. 12.566 16.000 19.635 17.6

LOGANSPORT METAL CULVERT CO. LOGANSPORT, INDIANA

LOGANSPORT METAL CULVERT COMPANY — LOGANSPORT, INDIANA — TELEPHONE 5157

FULL CIRCLE DRAINAGE TABLE

This chart is based on Talbot's formula for determining correct culvert sizes for the area to be drained.

Diameter of Culvert in Inches	Area of Waterway Opening in Sq. Ft.	Acres of Mountainous Country	Acres of Rolling Country	Acres of Level Country	
12	.785	3/4	3	6	
15	1.227	1	6	11	
18	1.767	2	9	18	
24	3.142	5	20	39	
30	4.909	8	36	71	
36	7.068	14	59	116	•
42	9.621	20	89	175	٠
48	12.566	29	126	. 250	
54	16.000	40	174	345	
60	19.635	53	229	453	
66	23.760	68	295	584	
72	28.274	86	373	737	
78	33.183	107	461	912	
84	38.484	130	562	1111	

This table shows the number of smaller diameter culverts equal in water carrying capacity to that of one culvert of larger size. It is based on culverts laid on the same slope.

EXAMPLE—One 24" diameter culvert is equivalent to five 12" culverts or two 18" culverts in water carrying capacity.

Dia. in Inches	12"	15"	18"	21"	24″	30"	36"	42"	48"	54"
12"	1									
15"	1.7	1							•	
18"	2.5	1.5	1							
21"	3.6	2.2	1.4	1						
24"	5	3	2	1.4	1					
30"	8	5	3	2.3	1.7	1		•		
36"	12	8	5	3.5	2.5	1.5	1			
42"	18	11	7	5	3.6	2.2	1.4	1		
48"	24	15	10	7	. 5	3	1.9	1.4	1	
54"	32	19	13	9	6.5	4	2.6	1.8	1.3	1
60"	41	25	16	11	8	5	3.3	2.3	1.7	1.3
66"	51	29	20	14	10	6	4`	2.8	2	1.6
72"	63	37	25	17	12	7.5	5	3.5	2.5	1.9
84"	90	53	35	25	18	. 11	7	· 5	3,6	2.8

TONCAN DRAINAGE PRODUCTS

TONCAN IRON CORRUGATED METAL PIPE

A Standard Drainage Structure for 35 Years. Made of rust-resisting Toncan Copper Molybdenum Iron with 2 oz. zinc coating. • Fabrication complies with standard specifications. • Supplied in diameters from 6 to 84 inches, in any length, in multiples of 2 ft., and in 16 to 8 gauge depending on diameter of pipe. • Complete stock including fittings — connecting bands, tees, ells, crosses — available at various shipping points.

TONCAN IRON PERFORATED METAL PIPE

A Drainage Product Which is Quickly and Easily Installed and Assures Efficient Underdrainage with no Maintenance Cost.

• Made of same base metal as corrugated pipe and is perforated before galvanizing.

• Fabrication complies with standard specifications.

• Supplied in diameters from 6 to 30 inches, in any length, in multiples of 2 ft. and in 16 or 14 gauge depending on diameter of pipe.

• Complete stock including fittings available from various shipping points.

TONCAN IRON SUBDRAINAGE PIPE

A New Type of Pipe Designed for Stabilizing Soils Through Subdrainage. Made of same base metal as corrugated pipe. Helically corrugated and perforated before galvanizing by hot dip process. Supplied in 6 inch diameter. Available in any length up to and including 24 ft., in 18 or 16 gauge. Available in either perforated or non-perforated type. Complete stock including fittings available from various shipping points or from Canton, Ohio.

TONCAN IRON SECTIONAL PLATE PIPE

Suitable For Large Drainage Structures. • Same base metal as corrugated pipe. • Corrugations measure 6 inches from crest to crest, 2 inches in depth. Longitudinal seams in line and circumferential seams staggered when assembled. • Special bolts furnished. • Diameters of 6 inch intervals from 60 to 180 inches, in any length in multiples of 2 ft. • Gauges of 7, 5, 3, 1, or any combination. • Plain, skewed or sloped ends. • Erection plans furnished. • Shipment from Canton, Ohio.

TONCAN IRON SECTIONAL PLATE ARCHES

Provide for Durable and Attractive Small Bridges at Low Cost.

• Made of same base metal as sectional plate pipe with same method of fabrication employed.

• Available in wide range of spans and rises fabricated to meet field conditions.

• Available in any length, in multiples of 2 ft., in 7, 5, 3 or 1 gauge or in any combination of these gauges.

• Plain, skewed or sloped ends.

• Complete erection plans furnished.

• Delivery from Canton, Ohio.

TYTON AUTOMATIC GATES

A Scientifically Designed Gate which Permits Flow of Water in Only One Direction. • Designed to fit corrugated metal pipe or may be attached to concrete, stone or other types of headwalls. • Available in 8 to 36 inch diameters for shipment from stock and in larger diameters on order.

Complete information and prices on any of the above products may be obtained from our Toncan representative.

LOGANSPORT METAL CULVERT CO.

LOGANSPORT, INDIANA

PHONE: 5157

Engineering Dafa

REPUBLIC SECTIONAL PLATE

PIPE PIPE-ARGN ARGNES

TONCAN

REPUBL C

Sectional Plate Drainage Products

Now made with new two-inch corrugations, Republic Sectional Plate Pipe, Pipe-Arch, and Arches are stronger than ever before. A greater range of sizes is offered; wider spans are possible in pipe-arch and arches; and pipe diameters are now offered in increments of even feet. Lengths of all sectional plate structure may be planned in multiples of two feet. These are big advantages in estimating and specifying drainage structures.

Once the diameter of the pipe, or the rise and span of the pipe-arch or arch, the length and correct gage to support the load, have been determined, it is necessary to write only a single specification for materials. No elaborate foundation tests need be conducted to calculate the strength of walls and other supporting members. And a single order covers all required materials — plates, bolts, nuts, washers, as well as angles and channels used in arch construction.

In addition, the well known economy features of corrugated sectional plate structures assume greater importance in these days of higher costs all around. Unskilled laborers erect Republic Sectional Plate structures because they are easier to transport, handle and assemble with simple tools. Excavation costs are less, since the structures can be assembled on the bank and rolled into place, or erected right in the stream bed. Costly headwalls, foundations, and shoring are seldom necessary.

Initial costs of Republic Sectional Plate are low. Records show that overall cost per year is amazingly small, with practically no maintenance required. The high rust-resistance of Toncan Iron, combined with the heavy protective three-ounce

galvanized coating applied AFTER FABRICATION assure many, many years of trouble-free service.

SECTIONAL PLATE PIPE

Dollar for dollar, full round sectional plate pipe usually provides the most economical drainage structure. Installation takes less time, cost of abutments and piers is eliminated, and less equipment is required. Pipe with sloped or skewed ends with carefully laid rip-rap presents a pleasing appearance. Pipe is preferable when there is doubt as to the bearing value of the foundation, but in cases where extremely soft and unstable conditions make it necessary, timber or gravel mats should be used.

Full-round sectional pipe is now available in diameters from five to 15 feet in increments of six inches. Lengths from six feet minimum in increments of two feet. See tables and drawings on Pages 1, 3, 4, and 5.

Four men can usually carry the heaviest plate if straw hooks are used to facilitate handling.

Typical Plate Assembly Plan for Republic Sectional Plate Pipe with Plain Ends

Typical Plate Assembly Plan for Republic Sectional Plate Pipe with Sloped Ends

When Sectional Plate Pipe has ends sloped to conform to fill, and stone rip-rap is used, a neat job results at low cost.

SECTIONAL PLATE PIPE

Typical Plate Assembly Plan for Republic Sectional Plate Pipe with Skewed Ends

Sectional Plate Pipe and Pipe-Arch are almost 100% salvageable. This one will be used at a new socation, effecting a considerable saving of money.

SECTIONAL PLATE PIPE-ARCH

Offering all of the advantages of full-round pipe, Republic Sectional Plate Pipe-Arch has proved its efficiency for locations where headroom is limited, and is the perfect answer to the problem of handling a large volume of water with rapid run-off, to avoid ponding. Pipe-Arch is installed in the same manner as full round sectional plate pipe. It requires no expensive foundation, and the preparation of the site is easy. Excavation is simpler and less costly, and it is usually unnecessary to divert stream.

As with other Republic Sectional Plate drainage structures, Pipe-Arch is assembled with nuts, bolts, and washers that have been especially designed for the purpose. The combination bolt head and washer lits the valley of the corrugation, providing full bearing, and making tightening of the nut easy. Separate washers to fit the crest of the corrugation provide a full bearing surface for the nut, and prevent abrasion of the galvanizing.

Pipe-Arch is now available in spans from approximately six to 17 feet, with rises from 4 ft. 7 inches to 10 ft. one inch. Lengths from minimum six feet in increments of two feet. See tables and drawings on Pages 5, 6, and 7.

SECTIONAL PLATE ARCHES

Arch structures are usually specified when there is insufficient head room clearance to install full-round pipe of adequate drainage area, where appearance is a major consideration, or where maximum opening is needed near the flow line. Arches are widely used to replace obsolete structures, and may be adapted to bridges of fairly large size over wide streams by using two or more arch openings (see picture on Page 8).

Arches are now available in spans from five to 28 feet in increments of even feet, with rises from 1 ft. 8½ inches to 14 ft. 5½ inches. Each span has a range of rises available to meet varied field conditions. Lengths from minimum six feet in increments of two feet. See tables and drawings on Pages 8, 9, 10, 11, and 12.

TONCAN IRON

Toncan Iron is the result of continuous and progressive improvement. It is an alloy iron with the highest rust-resistance of any ferrous metal in its price class.

To highly refined open hearth iron with its established ability to combat corrosion, Republic Steel metallurgists first added copper, producing a marked increase in rust-resistance. The search for improvement did not stop, however. Research showed that the addition of molybdenum to the iron-copper alloy had two effects. First, and very important, it doubled the amount of copper that could be successfully added.

Second, it refined the grain structure of the metal and increased the effectiveness of the copper. This addition also increased ductility and toughness.

Today, Toncan Iron contains a minimum of 0.40% copper, twice the amount used in copper-bearing irons and steels, plus 0.05% molybdenum.

Pipe-Arch used to build small bridge replacing old dilapidated wooden structure. Forms have just been removed from concrete headwalls. Stone found on the site is often used.

Strutting Sectional Plate Pipe

When Sectional Plate Pipe is to be strutted three percent out of round, the following procedure should be followed:

All timbers used are to be sound, of the sizes, and so spaced, as indicated in the table at top of Page 4. The struts and top and bottom sills are to be of hard wood. Compression caps should be soft wood, preferably straight grained fir, as they must give as the fill is made.

Two 50-ton jacks are adequate, although a third may be used. These rest on timber bearing blocks on each side of the bottom sill. Heavy metal plates should be used between tops of the jacks and the jacking timbers, also between timbers and top sill. See sketch. Top and bottom sills shall have joints staggered a minimum distance of three feet, and each section shall be continuous across at least two struts.

STANDAF	RD SIZES
REPUBLIC SECTIO	NAL PLATE PIPE
Nominal Diameter,	Area and N Number
NOMINAL DIAMFTER	

NOMINAL DI	AMETER	WATERWAY	м
(Ft.—In.)	(In.)	AREA	N
5′-0″ 5′-6″	60" 66"	20 24	20 22
		1 - 1	
6'-0" 6'-6"	72"	28	24
* *	78"	33	26
7′-0″	84"	38	28
7′-6″	90″	44	30
8′-0″	96"	50	32
8′-6″	102"	. 57	34
9′-0″	108"	- 64	36
9′-6″	114"	71	38
10′-0″	120″	79	40
10'-6"	126"	87	42
11′-0″	132"	95	44
11′-6″	138"	104	46
12'-0"	144"	113	48
12′-6″	150"	123	50
13′-0″	156"	133	52
13'-6"	162"	. 143	54
14′-0″	168"	154	56
14'-6"	174"	165	. 58
15'-0"	180"	177	60

To begin strutting, place one jack directly behind the proposed location of first strut, and the other behind that of second strut. Apply pressure uniformly until vertical axis of pipe has been elongated enough to place first strut and compression cap. Pressure is then released on jack and it is moved to location of third strut. Second strut is then placed and jack moved to location of fourth strut. Process is repeated until entire pipe is completed.

Jacks should be placed so operators can watch each other. Care must be used in plumbing jacks and timbers before applying pressure, and during work any tendency to get out of plumb must be checked by using knee brace, or re-setting jack and timber, the latter being advisable.

Strutting shall be carried uniformly from end to end of pipe, except that pipes having sloped ends or headwalls require no elongation at those locations. Struts should usually be left in place until fill is compacted. If any unusual distortions are noticed due to severe concentrated loads, or should the pipe show any tendency to "roof" over the upper sill, the struts should be removed at once.

•	LEAST END			٠.						0	IAMET	ER OF	PIPE I	N INC	IES								
HEIGHT	DIMENSION OF SILL®, CAP®		50	7	'2	. 8	4	,	76	10	8	12	20	13	2	14	14	1.5	56	16	8	18	30
OF COVER	AND STRUT®	ļ								LE	NGTH	OF STR	UTS IN	INCH	500								
IN	4 INCH	4	9%	6:	2%	7	41/2	8	6%	9	9¼	11	11/2	124	1	13	6%	14	8¾	16	1		
FEET	6 INCH	4	3¾	50	51/8	6	81/2	8	0%	-	3¼	10		111		1:3			2¾	15.	5	16	7½
	8 INCH	<u> </u>		50	01/4	6	21/2	7	4%	8:	7%	9	9½	11:	2	12		13	6¾	149	9	16	1%
		Size in Inches	Spac- ing in Feet	Size in Inches	Spa ing Fee																		
5		4x4	6.0	4x4	4.5	4x4 4x6	3.5 6.0	4x4 4x6	3.0 5.0	4xó óxó	4.5 6.0	4x6 6x6	4. 6.										
10		4x4	6.0	4x4	6.0	4x4	6.0	4x4	6.0	4x4 4x6	4.5 6.0	4x4 4x6	4.0 5.5	4x4 4x6	3.5 5.0	4x6 6x6	4.5 6.0	4x6 6x6	4.0 6.0	4x6 6x6	3.5 5.5	óxó óx8	5. 6.
15		4x4	6.0	4x4	6.0	4x4	5.5	4x4 4x6	4.5 6.0	4x4 4x6	3.5 5.5	4x6 6x6	4.5 6.0	4x6 6x6	4.0 6.0	4x6 6x6	3.5 5.5	4x6 6x6	3.0 5.0	óxó óx8	4.5 6.0	óxó óx8	4. 5.
20	•	4x4	6.0	4x4 4x6	5.5 6.0	4x4 4x6	4.5 6.0	4x4 4x6	3.5 5.5	4x6 6x6	4.5 6.0	4×6 6×6	4.0 5.5	4x6 6x6	3.5 5.0	6x6 6x8	4.5 6.0	óxó óx8	4.0 5.5	óxó óx8	3.5 5.0	6x8 8x8	4. 6.
30		4x4 4x6	4.5 6.0	4x4 4x6	3.5 5.5	4x4 4x6	3.0 4.5	4x6 6x6	4.0 6.0	4x6 6x6	3.0 5.0	óxó óx8	4.5 6.0	6x6 6x8	4.0 5.5	óxó óx8	3.5 5.0	6x8 8x8	4.5 6.0	6x8 8x8	4.0 5.0	6x8 8x8	3. 5.
40		4x4 4x6	3.5 5.0	4x6 6x6	4.0 6.0	4x6 6x6	3.5 5.0	óxó óx8	4.5 6.0	óxó óx8	4.0 5.5	óxó óx8	3.5 4.5	óxó óx8	3.0 4.0	6x8 8x8	4.0 5.0	6x8 8x8	3.5 4.5	6x8 8x8	3.0 4.5	6x8 8x8	3. 4.
50		4x4 4x6	3.0 4.0	4x6 6x6	3.5 5.0	óxó óx8	4.0 5.5	óxó óx8	3.5 5.0	óxó óx8	3.0 4.5	6x8 8x8	4.0 5.5	6x8 8x8	3.5 4.5	8x8	3.0 4.5	8×8	4.0	8×8	3.5	8×8	3.
60		4x6 6x6	3.5 5.5	óxó óx8	4.0 5.5	6x6 6x8	3.5 4.5	6x8 8x8	4.5 5.5	6x8 8x8	4.0 5.0	6x8 8x8	3.0 4.5	6x8 8x8	3.0 4.0	8x8	3.5	8×8	3.5	8x8	3.0		
70		óxó óx8	4.5 6.0	óxó. óx8	3.5 5.0	6x8 8x8	4.0 5.5	6x8 8x8	3.5 5.0	6x8 8x8	3.0 4.5	8×8	4.0	8×8	3.5	8x8	3.0	8x8	3.0				
80		óxó óx8	4.0 5.0	6x8 8x8	4.0 5.5	6x8 8x8	3.5 5.0	6x8 8x8	3.0 4.5	8×8	4.0	8x8	3.5	8×8	3.0								
100		óxó óx8	3.0 4.0	6x8 8x8	3.5 4.5	8×8	4.0	8×8	3.5	8×8	3.0												

^{*} Transverse Cap & Sill should be placed with least dimension vertical.

MINIMUM GAGES FOR TOP AND SIDE PLATES* REPUBLIC SECTIONAL PLATE PIPE FIELD STRUTTED PIPE H-20 LIVE LOAD

DIAM.	•						HEIGHT	OF COVER	IN FEET						
INCHES	1-5	6-10	11-15	16-20	21-25	26-30	31-35	36-40	41-45	46-50	51-55	56-60	61-70	71-80	81-100
60	12	12	12	12	12	12	12	12	12	12	12	10	10	8	7
66	12	12	12	12	12	12	12	12	12	12	10	10	10	8.	7
72 ·	12	12	12	12	12	12	12	12	12	10	10	10	·8	7	5
78.	12	12	12	12	12	12	12	12	10	10	10	10	8	7	· 3
84	12	12	12	12	12	12	12	10	10 .	10	10	8	8	5	3
90	12	12	12	12	12	12	10	10	10	10	8	8	7	3	1
96	12	12	12	12	12.	10	10	10	10	.10	8	7	7	3	1
102	12	12	. 12	10	10	10	10	10	10	8	7	7	5	3	
108	12	12	12	10	10	. 10	10	10	8	8	7	7	5	ŧ,	
114	12	12	12	10	10	10	10	8	. 8	7	7	5	3	1	
120	12	12	12	10	10	10	8	8	7	7	5	3	3		
126	10	12	10	10	10	. 8	8	8	7	5	3	3 .	1		
132	10	10	10	10	8	8	8	7	7	5	3	3	1 .		
138	10	10	.10	10	8	8	8	7	5	5	3	1			
144	10	10	10	10	8	8	7	7	. 5	3	1	1			
150	10	10	10	8	8	7	7	5	3	3	1				
156	10	10	10	8	8	7	. 7	5	3	1 1					
162	8	10	8	8	8	7	7	5	3	1					
168	8	10	8	8	7	7	7	3	1						•
174	8	8	8	8	7		7	3	1						
180	8	8	8	8	7.	7	5	. 3							
	١. ١	-													

NOTE: This table based on four $\frac{3}{4}$ " diameter SAE 1040 H. T. steel bolts per foot of longitudinal seam.

^{**} Length of Struts based on 3% elongation or L=D+3%-3 times the least dimension of the strutting material. All timber dimensions are assumed as exact rather than nominal.

^{*} Bottom plates of heavier gage may be used to resist greater wear.

MINIMUM GAGES FOR TOP AND SIDE PLATES*

REPUBLIC SECTIONAL PLATE PIPE
UNSTRUTTED PIPE H-20 LIVE LOAD

DIAM.							HEIGHT	OF COVER	IN FEET						
INCHES	1.5	6-10	11-15	16-20	21-25	26-30	31-35	36-40	41-45	46-50	51-55	56-60	61-70	71-80	81-100
60 66 72 78	12 12 12 12	12 12 12 12	12 12 12 12	12 12 12 10	12 12 12 10	12 12 10 10	12 10 10 8	10 10 10 8	10 10 8 7	10 8 8 7	8 8 8 7	8 7 7	8 7 7 7	7 7 5 5	7 5 3
.84 90 96 102	12 12 10 10	12 12 12 12	12 10 10 10	10 10 8 8	10 8 8 8	8 8 7 7	8 7 7 7	8 7 7 7	7 · 7 5 5	7 7 5 5	7 5 5 5	7 5 5 5	5 5 3	3 3 1	
108 114 120 126	10 10 10 10	10 10 10 10	10 10 8 8	8 8 7 7	7 7 7	7 7 5 5	7 5 5 5	5 5 5 3	5 5 3 3	5 3 3	3 3 1	3 3 1	1		
132 138 144 150	8 8 7 7	10 8 8 8	8 7 7 7	7. 7 5 5	7 5 5 5	5 5 5 3	5 3 3 3	3 3 3	3 1 1	1					
156 ⁻ 162 168 174	7 7 5 5	8 7 7 7	7 7 5 5	5 5 5 3	5 3 3	3	1			-					
180	5	5	5	3										, .	

[:] NOTE: This table based on four $rac{3}{4}"$ diameter SAE 1040 H. T. steel bolts per foot of longitudinal seam.

SECTIONAL PLATE PIPE-ARCH

Typical Plate Assembly Plan for Republic Sectional Plate Pipe-Arch with Skewed Ends

Typical Plate Assembly Plan for Republic Sectional Plate Pipe-Arch with Sloped Ends

^{*} Bottom plates of heavier gage may be used to resist greater wear.

REPUBLIC SECTIONAL PLATE PIPE - ARCH

TABLE OF MINIMUM GAGES FOR

H-15 AND H-20 LIVE LOAD

			<u> </u>					Н	-15	LIVE	LO	AD.											H-	20 I	IVE	LO	AD.					
Span	Rise	Area					F	leig	nt of	Cov	er i	n Fee	et .									Н	eigh	t of	Cov	er in	ı Fee	t				
		Sq. Ft.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
6'- 1"	4'- 7"	22	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
6'- 4"	4'- 9"	24	12	12	12	12	12	12	12	12	12	12	12	12	12	12	10	12	12	12	12	12	12	12	12	12	12	12	12	12	12	10
6'- 9"	4'-11"	26	10	12	12	12	12	12	12	12	12	12	12	12	12	10	10	10	12	12	12	12			12		12	12	12	12	10	10
7'- 0"	5'- 1"	28	10	12	12	12	12	12	12	12	12	12	12	12	12,	10	10	10	12	12	12	12	12	12	12	12	12	12	12	12	10	10
7'- 3"	5'- 3"	31	10	12	12	12	12	12	12	12	12	12	12	12	10	10	10	10	10	12	12	12	12	12	12	12	12	12	12	10	10	10
7′- 8"	5'- 5"	· 33	10	10	12	12	12	12	12	12	12	12	12	10	10	10	10	10	10	10	12	12		12	12	. –	12	12	10	10	10	10
7′-11"	5′- 7"	35	10	10	12	12	12	12	12	12	12	12	12	10	10	10	10	10	10	10	12	12			12		12	12	10	10	10	10
8'- 2"	5'- 9"	38	10	10	10	12	12	12	12	12	12	12	10	10	10	10	10	10	10	10	10	12	12	12	12	12	12	10	10	10	10	10
8'- 7"	5'-11"	40	10	10	10	10	12	12	12	12	12	10	10	10	10	10	8	10	10	10	10	10	10	10	10	10	10	10	10	10	10	8
8'-10"	6'- 1"	43	10	10	10	10	12	12	12	10	10	10	10	10	10	8	8	10	10	10	10	10	10	10	10	10	10	10	10	10	8	8
9'- 4"	6'- 3"	46	8	10	10	10	10	10	10	1Ò	10	10	10	10	8	8	8	8	10	10	10	10	10	10	10	10	10	10	10	8	8	8
9'- 6''	6'- 5"	49	8	10	10	10	10	10	10	10	10	10	10	8	8	8	7	8	8	10	10	10	10	10	10	10	10	10	8	8	8	7
9'- 9"	6'- 7"	52	8	10	10	10	10	10	10	10	10	10	10	8	8	8	7	8	8	10	10	10	10	10	10	10	10	10	8	8	8	7
10′- 3"	6'- 9"	55	8	10	10	10	10	10	10	10	10	10	8	8	8.	7	7	8	8	10	10	10	10	10	10	10	10	8	8	8	7	7
10'- 8"	6'-11"	58	8	8	10	10	10	10	10	10	10	10	8	8	8	7	7	8	8	8	10	10	10	10	10	10	10	8	8	8	7	7
10′-11″	7'- 1"	61	8	8	10	10	10	10	10	10	10	8	8	8.	7	7	5	8	8	8	10	10	10	10	10	10	8	8	8	7	7	5
11'- 5"	7′- 3″	64	8	8	10	10	10	10	10	10	8	8	8	8	7	5	5	. 7	8	8	8	10	10	10	10	8	8	8	8	7	5	5
11′- 7"	7'- 5"	67	8	8	10	10	10	10	10	8	8	8	8	7	5	5	5	7	8	8	8	8	10	10	8	8	8	8	7	5	5	5
11′-10″	7'- 7"	71	8	8	10	10	10	10	10	8	8	8	8	7	5	5	3	7	8	8	8	8	8	8	8	8	8	8	7	5	5	3
12'- 4"	7'- 9"	74	8	8	8	10	10	10	10	8	8	8	8	7	5	5	3	7	7	8	8	8	8	8	8	8	8	7	7	5	5	3
12'- 6"	7′-11"	78	7	8	8	10	10	10	8	8	8	8	8	7	5	5	3	7	7	8	8	8	8	8	8	. 8	8	7	7	5	5	3
12'- 8"	8′- 1″	81	7	8	8	8	10	10	8	8	8	8	8	7	5	5	3	5	7	8	8	8	8	8	8	8	8	7	7	5	5	3
12′-10"	8'- 4"	85	7	8	8	8	10	10	8	8	8	7	7	5	5	3	1	5	. 7	8	8	8	8	8	8	8	7	7	5	5 3	3	1
13'- 5"	8'- 5"	89	7.	7	8	8	8	8	8	8	7	7	5	5	3	3	_1_	5	5	7	7	8	8	8	8	7.	7_	5	5			
13′-11″	8'- 7"	93	5	7	8	8	8	8	8	7	7	5	5	3	3	1	1	5	5	7	7	8	8	8	7	7	5	5	3	3	1	1
14'- 1"	8'- 9"	97	5	7	. 8	8	8	8	8	7	7	5	5	3	3	1	1	5	5	7	7	8	8	8	7	7	5	5	3	. 3	1	1
14'- 3"	8'-11"	101	5	7	7	8	8	8	8	7	7	5	5	3	3	1	1	3	5	5	7	7	7	7	7. 7	7 5	5 3	5	3	3	_'	1
14'-10"	9'- 1"	105	5	5	7	7	8	8	7	7	5	3	3	1			_	3		5	7		Ľ					3				
15'- 4"	9'- 3"	109	5	5	5	7	7	7	7	7	5	3	3	1	_	_	_	3	5	5	7	7 `	7	7	7	5	3	3	1	-	-	_
15'- 6"	9'- 5"	113	3	5	5	7	7	7	7	5	3	3	1	1	_	_	-	1	3	5	5	7	7	7	5	3	3	!	1	_	_	_
15'- 8"	9'- 7"	118	3	5	5	7	7	7	7	5	3	3	!	1	_	_	_	1	3	5	5	7	7	7 7	5 5	3	3	1	1	-	-	_
15′-10″	9'-10"	122	3	5	5	7	7	7	7	5	3	3	1	1	_	_		1	3	5	. 5	7	7				3.	1	'		_	
16'- 5"	9'-11"	126	1	3	5	5	5	5	5	3	3	1	1	_	_	-	_	-	1	3	3	5	5	5	3	. 3	1	1	_	_	_	_
16'- 7"	10'- 1"	131	1	3	3	5 .	. 5	5	5	3	3	1	1	_	_	_		-	1	3	3	5	5	5	3	1	1	1		_		_

SIZES AND LAYOUT DETAILS REPUBLIC SECTIONAL PLATE PIPE - ARCH

		Area		REQUIRED N				INSIDE PLA	TE RADIUS**
Span	Rise	Sq. Ft.	Тор	Bottom	Total*	В	. С	Rı	. R2
6'- 1"	4'- 7"	. 22	11	5.	22	21.0"	37.1"	36.7"	76.4"
6'- 4"	4'- 9"	24	. 12	5	23	20.5"	40.1"	38.1"	98.9''
6'- 9"	4′-11″	26	12	. 6	24	22.0"	45.3"	41.0"	83.5"
7′- 0″	5′- 1″	28	13	6	25 ·	21.4"	48.2"	42.3"	104.5"
7′- 3″	5'- 3"	31	14	6	26	20.8"	51.0"	43.5"	136.5"
7′- 8″	5′- 5′′	33	14	. 7 ,	27	22.4"	56.4"	46.5"	109.9"
7′-11″	5′- 7"	35	15	7	28	21.7"	59.2"	47.7"	138.4"
8'- 2"	5′- 9′′	38	16	7	29	20.9"	61.7".	48.9 "	183.1"
8'- 7"	5′-11″	40	16	8	30	22.7"	67.4"	51.9"	141.3"
8′-10"	6'- 1"	43	17	8	31	21.8"	70.0"	53.0"	179.2"
9'- 4"	6'- 3"	. 46	: 1 <i>7</i>	. 9	32	23.8"	75.7"	56.2"	144.9"
9'- 6" ,	6'- 5"	- 49	18	9	33	22.9"	78.3"	57.2"	178.2"
9'- 9"	6'- 7"	52	19	9	34	21.9"	80.6"	58.3"	228.0"
10'- 3"	6'- 9"	55	,19	10	35	23.9"	86.6"	61.5"	178.9"
10'- 8"	6′-11″	58	19	11	36	26.2"	. 92.5"	64.9"	153.2"
10′-11″	7′- 1″	61	20	11	37	25.1"	95.0"	65.8"	180.8"
11'- 5"	7′- 3"	64	. 20	12	38	27.4"	100.9"	69.4"	157.8"
11′- 7"	7'- 5''	. 67	21 .	12	39	26.3"	103.4"	70.2"	183.4"
11′-10″	7′- 7"	71	22	12	40	25.2"	105.7"	71.1"	217.0"
12'- 4"	7′- 9″	74	. 22	13	41	27.5"	111.8"	74.7"	186.5"
12'- 6"	7'-11"	78	23	13	42	26.3"	114.2"	75.5"	217.4"
12'- 8''	8′- 1″	81	24	13	43	25.2"	116.4"	76.3"	258.4"
12′-10″	8'- 4"	85	25	13	44	24.0"	118.4"	77.2′′	315.2"
13'- 5"	8′- 5″	89	25	14	45	26.3"	124.9"	80.7"	255.7"
13'-11"	8′- 7″	93	25	15	46	28.9"	131.1"	84.4"	220.8"
14'- 1"	8'- 9"	97	26	15	47	27.6"	133.3"	85.1"	254.8"
14'- 3"	8′-1,1″	101	27	15	48	26.3"	135.4"	85.9"	298.7"
14'-10"	9′- 1″	105	-27	16	49	28.9"	141.9"	89.5"	254.9"
15'- 4"	9'- 3"	109	27	17	50	31.6"	148.1"	93.4"	226.5"
15'- 6"	9'- 5"	113	28	17	51	30.2"	150.4"	94.0"	255.9"
15'- 8"	9'- 7"	118	29	17	52	28.8"	152.5"	94.7"	292.5"
15′-10"	9′-10″	· 122	30	17	53	27.4"	154.5"	95.4"	339.1"
16'- 5"	9′-11″	126	30	18	54	30.1"	161.0"	99.2"	291.6"
16'- 7"	10′- 1″	131	31	18	55	28.7"	163.1"	99.8"	333.8"

^{*}Includes 6N for two N3 corner plates.

^{**}All corner plates are curved to 18" inside radius.

All dimensions are measured from inside crests. Tolerances must be allowed for specification purposes.

SECTIONAL PLATE ARCHES

				S [·]	TANDA	RD SIZ	ZES				
Span (F1.)	Rise (Ft. & In.)	Opening (Sq. Ft.)	N	R/S	Radius (Inches)	Span (Ft.)	Rise (Ft. & In.)	Opening (Sq. Ft.)	N	R/S	Radius (inches)
5'	2'- 7¼"	10	10	H.C.	30"	10′	5'- 2¼"	41	20	H.C.	60"
5'	2'- 2¾"	8	9	0.445	30¼″	10'	4'- 91/2"	37	19	0.480	60"
					-	10'	4'- 41/1"	33	18	0.439	60%"
6'	3'- 1½"	15	12	H.C.	36"	10'	3'-11¼"	29	17	0.395	61%"
6'	2'- 3¾"	10	10	0.385	37¼"	10'	3'- 5¾"	25	16	0.348	64"
6'	1′-10″	8	9	0.305	40¼"	10'	2'-111/1"	21	15	0.296	68½"
-				 		10'	2'- 4¼"	16	14	0.238	77%"
7'	3'- 7¾"	20	14	. н.с.	42"	11'	5'- 8½"	50	22	H.C.	66"
7'	2'-10"	15	12	0.405	43"	111	5'- 3¾"	45	21	0.483	66"
7'	1'-10"	9	10	0.262	51"	11'	4'-10%"	41	20	0.445	661/1"
				ļ		11'	4'- 51/2"	37	19	0.406	671/1"
8'	4'- 2"	26	16	l н.с. l	48"	11'	4'- 0"	32	18	0.364	691/1"
8'	3'- 9¼"	23	15	0,471	48"	11'	3'- 6"	28	17	0.319	73"
8'	3' -41/4"	20	14	0.419	48¾"	11'	2′-11½″	23	16	0.269	79¼"
8'	2'- 41/4"	14	12	0.299	541/1"			 			
						12'	6'- 21/1"	59	24	H.C.	72"
9'	4'- 8"	33	18	H.C.	54"	12'	5′- 5″	50	22	0.451	721/2"
è,	4'- 31/4"	30	17	0.476	54"·	12'	4'- 61/1"	40	20	0.378	75"
9,	3'-10'4"	26	16	0.430	54%"	12'	4'- 0½"	35	19	0.330	77%"
ر. ا	3'- 5"	23	15	0.381	56%"	12'	3′- 6¼″	30	18	0.294	821/1"
9'	2'-11½"	19	14	0.327	59"	13'	6'- 8¾"	69	26	H.C.	78"
9'	1'- 8½"	ii	12	0.191	81"	13'	5'-11"	59	24	0.456	78½"

STANDARD SIZES

Span (Ft.)	Rise (Ft. & In.)	Opening (Sq. Ft.)	N	R/S	Radius (Inches)	Span (Ft.)	Rise (Ff. & In.)	Opening (Sq. Ft.)	H	R/S	Radiu (Inche
13'	5'- 0¾"	49	22	0.389	80%"	22'	10'- 6¼"	181	42	0.480	1321/4
13'	4'- 0¾"	38	20	0.314	86%"	22'	9'- 8¼"	163	40	0.442	133"
13'	2′-10½″	26	18	0.221	105½"	22′	8'-10'/''	145	38	0.403	135%
			 		 	22'	7'-11"	127	36	0.360	139%
14'	7'- 3"	80	28	H.C.	84"	22'	6'-10%"	109	34	0.313	146%
14'	6'- 5¼"	69	26	0.460	84½"	22'	6'- 4"	99	33	0.288	152%
14'	5'- 7"	58	24	0.399	86%"					0.200	132/7
14'	4'- 7½"	47	22	0.330	911/2"	224					
14'	3'- 5%"	34	20	0.330	105¼"	23'	11′-10½"	216	46	H.C.	138"
1**	J - J/4] 34	1	0.247	103/4	23'	11'- 5¾"	207	45	0.499	138"-
					1	23'	11'- 0%"	198	44	0.482	138¼
15'	7'- 9"	92	30	H.C.	90"	23′	10'- 8"	189	43	0.464	138%
15'	7'- 4¼"	86	29	0.491	90"	23′	10'- 3"	180	42	0.446	139"
15'	6'-111/3"	80	28	0.464	90¼"	23′	9'- 41/3"	161	40	0.408	141"
15'	6'- 1¼"	69	26	0.407	92"	23'	8'- 51/1"	143	38	0.368	144%′
15'	5'- 2"	56	24	0.344	96%"	23′	7′-11½"	133	37	0.346	147%
15'	4'- 1"	43	22,	0.272	107¼"	23′	7'- 5¼"	123	36	0.324	1511/4
16'	8'- 3"	106	32	H.C.	96"	24'	12'- 41/4"	236	48	H.C.	144"
16'	7′-10½"	99	31	0.493	96"	24'	11′-11¾"	226	47	0.4996	144"-
16'	7'- 5¾"	92	30	0.467	96¼"	24'	11'- 7 "	216	46	0.483	144%
16'	7'- 0¾"	86	29	0.441	96¾"	24'	11'- 2"	207	45	0.466	144%
16'	6'- 71/1"	80	28	0.414	97¾"	24'	10'- 9''	197	44	0.449	145"
16'	5'- 81/4"	67	26	0.356	101%"	24'	10'- 4"	188	43	0.431	145%
16'	4'- 7¾"	53	24	0.330	110%"	24'	9'-10%"	178	42	0.412	146%
	- //				1	24'	8'-11%"	159	· 40	0.374	150%
						24'	7'-11%"	139	38	0.333	156"
17'	8'- 91/1"	119	34	H.C.	102"	24'	6'-10%"	117	36	0.288	166%"
17'	8'- 4¾"	112	33	0.494	102"			, , ,		0.200	
17'	7'-11%"	105	32	0.470	102¼"						
17'	7'- 6%"	98	31	0.446	102¾"	25'	12'-10%"	255	50	H.C.	150"
17'	7'- 1¾"	91	30	0.420	103¾"	25'	12'- 6"	245	49	H.C.	150"+
17'	6'- 8¼"	85	29	0.394	105"	25'	12'- 11/4"	236	48	0.484	150%"
17'	6'- 2¾"	78	28	0.366	107"	25'	11'- 8¼"	226	47	0.468	150%"
17'	5'- 21/2"	63	26	0.307	1141/2"	25'	11'- 3¼"	· 216	46	0.451	150%"
		 	 		 	25'	10′-10¼″	206	45	0.434	151½"
18'	9'- 31/1"	133	36	H.C.	-108"	25'	10'- 5"	196	44	0.417	1521/2"
18'	8'- 6"	118	34	0.473	108¼"	25'	9'-11½"	186	43	0.399	153%"
18'	8'- 1"	111	33	0.450	108¾"	25'	9'- 6"	175	42	0.380	155%"
18'	7'- 8"	104	32	0.426	109½"	25'	9'- 0¼"	165	41	0.361	158"
18'	7'- 21/2"	97	31	0.401	110%"	25'	8'- 61/4"	155	40	0.341	161"
18'	6'- 9"	90	30	0.376	112½"	25'	7'- 5½"	133	38	0.299	170%"
18'	6'- 3¼"	82	29	0.349	115¼"					ļ	
18'	5'- 9"	74	28	0.349	119"	26'	13'- 5"	276	52	H.C.	156"
, ,	3.7	/ "	10	0.320	'''	26'	13'- 0¼"	266	51	H.C.	156"
					1	26'	12'- 71/4"	256	50	0.485	156"
19'	9'- 9¾"	149	38	H.C.	114"		11'- 9%"			1	156%
19'	9'- 0¼"	133	36	0.475	114¼"	26'	11'- 4½"	235 225	48 47	0.454 0.437	157½
19'	8'- 2"	118	34	0.431	115½"	26'	10'-11¼"			0.437	1581/2
19'	7'- 8¾"	110	33	0.407	1161/2"	26'	10'-11%"	214	46	1	1
19'	7'- 3¼"	102	32	0.383	118"	26'		204	45	0.404	159%
19'	6'- 91/2"	95	31	0.358	120%"	26'	10'- 0½" 9'- 6¾"	193	44 .	0.386	161%
19'	6'- 31/1"	87	30	0.332	123%"	26'	9'- 6¼''' 8'- 0½'''	182	43	0.368	163½' 174½'
19'	5'- 9¼"	78 ·	29	0.304	128½"	26'	5 - U/2"	149	40	0.309	1/4/2
20'	10'- 4"	164	40	H.C.	120"	27'	13'-11"	298	54	н.с.	162"
20'	9'- 61/4"	148	38	0.477	1201/4"	27'	13'- 61/2"	287	53	H.C.	162"-
20'	8'- 8¼"	132	36	0.435	121¼"	27'	13'- 1½"	276	52	0.486	162"-
20'	7'- 9¾"	116	34	0.391	123%"	27'	12'- 3¾"	255	50	0.456	162%
20'	7'- 4"	108	33	0.367	125%"	27'	11'- 51/3"	233	48	0.424	164"
20'	6'-10"	. 99	32	0.342	128¾"	27′	11'- 0"	222	47	0.408	165%
20'	6'- 4"	91	31	0.316	133"	27' 27'	10'- 1" 9'- 1¼"	200 178	45 43	0.374 0.337	169" 174¾'
							7 - 1/4			3.557	., 7/4
21'	10'-10"	180	42	H.C.	126"	28'	14'- 51/2"	320	56	H.C.	168"
21'	10'- 01/2"	164	40	0.479	126¼"	28'	14'- 0'/4"	309	55 .	H.C.	168"4
21'	9'- 21/2"	147	38	0.439	127%"	28'	13'- 7%"	298	54	0.487	168"4
21'	·8′- 3‴	130	36	0.397	129%"	28'	12'-10"	276	52	0.458	168%"
21'	7'- 4½"	113	34	0.352	134"	28'	11'-11%"	253	50	0.428	170"
21′	6′-10⅓"	104	33	0.328	137%"	28'	11'-11%"	233	48	0.426	1721/2"
		L	 				10'- 7%"	219	47	0.379	174%"
22'	11'- 4¼"	198	,,	م ا	132"	28'	9'- 7¾"	196		0.374	179%"
22'			44	H.C.		28'			45		188%"
44 I	10′-11½"	189	- 43	0.498	132"+	28'	8'- 7"	172	43	0.307	100/1

TYPES OF ABUTMENT CONNECTIONS For Sectional Plate Arches

MINIMUM GAGES - REPUBLIC SECTIONAL PLATE ARCHES

				H-10	Live.	Load							H-15	Live	Load				H-20 Live Load								
Span Feet				Heigh	t of	Cover							Heigh	t of	Cover							Heigh	t of	Cover			
	2′	3'	4'	5'	6'	7'	8′	9'	10'	2'	3′	4'	5'	6'	7'	8′	9'	10'	2′	3′	4'	5′	6'	7′	8′	9'	10
5	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	ī
6	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	1
7	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	1
88	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	1
9	12	12	12	12	12	12	12	12	12	12	12	1,2	12	12	12	12	12	12	12	12	12	12	12	12	12	12	1
10	12	12	12		12	12		12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	1
11	12	12	12	12	12	12	12	12	10	12	.12	12	12	12	12	12	10	10	10	12	12	12	12	12	12	10	1
12	12	12	12	12	12	12	12	10	10	10	12	12	12	12	12	10	10	10	10	10	12	12	12	12	10	10	1
13	12	12	12	12	12	12	12	10	10	10	10	12	12	12	12	10	10	10	8	8	10	12	12	12	10	10	
14	10	12	12	12	12	12	12	10	10	8	10	10	12	12	10	10	8	8	8	8	10	10	12	10	10	8	
15	10	10	12	12	12	12	10	10	10	8	8	8	10	10	10	8	7	7	7	7	8	10	10	10	8	7	
16	10	10	10	12	12	12	10	8	8	7	8	. 8	10	10	8	7	7	7	5	7	8	8	10	8	7	7	
17	10	10	10	10	12	10	10	8	8	7	8	8	8	10	8	7	5	5	5	5	7	8	8	.7	5	5	
18	10	10	10	10	10	10	8	7	7	5	7	8	8	10	8	7	5	3	3	5	7	7	8	7	5	5	
19	10	10	10	10	10	8	7	5	5	5	5	8	7	8	7	5	3]	3	1	3	5	5	8	5	5	3	
20	10	10	10	10	10	8	5	5	3	3	5	7	7	8	5	3	3	1	1	1	3	5	7	5	3	1	
21	8	10	10	10	10	7	. 5	3	1	1	3	5	5	7	3	3	1			1	3	3	5	3	3	1	Ĭ
22	7	8	8	8	8	5	3	1	1	1	3	3	3	5	3	1				'	1	3	5	3	1		
23	5	7	7	7	7	3	1	1			1	3	1	3	1							1	3	1			
24	3	5	5	7	7	5	- 3	1.				1	1	3	1								1				
25	1	3	3	5	5	3	1				٠.		1	1				i									
26	1	1	1	3	3	1										- 1											
27			1	1	- 1	1											'		· [
28				1	- 1										ļ								i				

These pictures show steps in the repair of a not too old but failed rigid structure. A Republic Sectional Plate Arch, Type B, 20 feet long, with a 164-inch span and a 73-inch rise, five-plate, threegage, was erected right in the stream bed and pulled under the old bridge. It was then grouted into place and the road surface refinished.

SPECIAL BOLTS FOR USE WITH SECTIONAL PLATE PRODUCTS

Details of Standard Sectional Plate Bolt and Washer

Standard Hook Bolt for Sectional Plates

Republic Sectional Plate Pipe is assembled beside stream

which will be diverted through pipe when fill is made.

The job is made easy and less expensive by this procedure.

DETAILS OF REPUBLIC SECTIONAL PLATES

Width	Length		REQUIRED 3/" x 1/4" BOLTS NUTS & WASHERS							
		1	3	5	GAGE HUMBER	8	10	12	Number	Pounds
N 7	8'	723 .	644	565	486				38	20.0
N 7	6'	548	488 '	428	368				30	15.8
N 6	8,	626	558	489	421	387	318	250	37	19.5
N 6	6'	475	423	371	319	293	241	189	29	15.3
N 5	8,	530	472	414	356	327	269	211	36	18.9
N 5	6'	402	358	314	270	248	204	160	28	14.7
N 4	8'	434	386	339	291	268	220	173	35	18.4
N 4	6'	329	293	257	221	203	167	131	27	. 14.2
N 3	8'	338	301	264	227	208	172	135	34	17.9
N 3	6'	256	228	200	172	158	130	102	26	13.7

^{*} Includes 4 bolts, 1%" long for holes at corners of plates in 1, 3, 5, and 7 gage.

STRUCTURE LENGTHS

TYPICAL 6' AND 8' PLATE COMBINATIONS REQUIRED FOR VARIOUS LENGTHS OF SECTIONAL PLATE STRUCTURES

Alternate rows are of different combinations to stagger circumferential seams

Length Feet	6' Plates	8' Plates	Length Feet	6' Plates	8' Plates
6′	1	0	64'	0	8
8′	0	1	66'	. 3	6
10'			68′	2	7
12'	2	0 .	70'	1	8
14′	1 1.	1 .	72'	o _	9
16′	0	2	74'	3	7
18′	3	0	76′	. 2	· 8
20′	2	1	. 78'	1	9
22'	1 1	2 :	80′	0 .	10
24'	` · o	3	82'	3	8
26′	3	1 .	84'	2	9 10
28'	. 2	2 .	86'	. 1	10
30′	1	3	88'	0	11
32′	0	4	90'	3	. 9
34′	3	2	92'	2	10
36′	2	3	94'	. 1	11
38′	1	4	96'	0	12
40'	0	5	98'	3	10
42'	3	3	100′	2	11,
44'	2 .	4	102′	1	12
46′	1 1	· 5	104'	0	13
48'	0	6	106'	3	11
50′	3	4	108′	. 2	12
52'	2	. 5	110′	. 1	13
54'	1	6	112'	0	- 14
56′	0	, 7 ·	114'	3	12
58′	3	, 5	116′	2	13
60′	2	6	118′	1	14
62'	1 1	7	120′	0.	15

TYPICAL PLATE ARRANGEMENTS

Diameters, Spans, and Rises, as well as costs and weights of Plate Structures, are a function of the circumferential size as represented by the $Total\ N$.

Plate Width Combinations to provide the specified total N will usually be furnished in accordance with the following table.

Total	135	, and 7	Gage P	lates	8 10	and 12	7 Gane	Plates	Total	1135	and 7	Gage PI	ates	8 10	and 1	2 Gage	Plates
N	N7	N6	NS	N3	N6	N5	N4	N3	N N	N7	N6	NS	N3	N6	N5	N4	N3
3				1			1	1 ·	34	4 2	1	4		4 5	2	1	
5 6		1	1		1	1			35	5 2	1	3		5	1 7		
7 8	1		1	1		1	1	1	36	3	6	3		6	6		\Box
9		1		1	1	1	1	1	. 37	1 3	5 1	2		2 4	5	ź	 -
10	1		2	1	1	2	1	ļ	38	2	4	2		3	4		
11		1	1	2	1	1	2	1	39	3	3			5	3	2	\vdash
12	1	2	1		2 .		3		40	4	2	1		5	2	1	
13	1	ו	2	1	1	1	2	1	41	5	1	1		6	8		-
14	2	1	1	1	1	1 2	1	1	42	6		4	 	7	7		\vdash
15		2	3	1	1	3 1	1		43	1	<u>7</u> 6	ļ <u></u>		3	6 5		
16	1	1	2	1	1 2	2	1		44	3 2	5	2		4	3	1	<u> </u>
17	1	2	1 2		2	1	3	,		3	3	1		5	2	1	
18	1	3	1		3	2	2		45	3 4	4 2	1		5 6	3	1	<u> </u>
19	2	2	1		1	3	1 2		46	4 5	3	1		6 7	2	1	
20	2	1 4			2	4	2		47	5 6	2	ו		7 2	1 7		
21 .	3	1	3		1 2	3	1		48	6	1 2	3		8 3	6		
22	1	2	3 2		2 3	2	1		49	7	7			4 5	5 3	1	
23	1	1 3	2		3	1	3		50	2 4	6 2	2		5 6	4 2	1	
24	2	4	2		4	4	1		51	3 4	5 2	1		6 7	3	1	
25	2	1 3	1		1	5 3	1		52	4 5	4 2	1		7	2	1	
26	2 3	2	1		1 2	4 2	1		53	5	3	1		8	1 7		
27	3 1	1	4		2 3	3 1	1		54	6 7	2	1		9	6		
28	4	1	3		3 4	2	1		55	7	1 8			5	5 3	,	
. 29	2	4	1 3		4	1 5	1		56	8 2	7			6 7	4 2	1	
30	1	5 3	,		5	6			57	3 5	6 2	2	,	7	3	1	ļ ·
31	1 3	4	2		1 2	5 3	1		58	4 6	5 1	2		8 9	2	1	<u> </u>
32	2 3	3	1		2 3.	4 2	1		59	5 6	4 2	1		9 4	1 7	·	
33	3 4	2	1		3 4	3	1		60	6 7	3	1		10	6		

DETERMINATION OF WATERWAY OPENING

TALBOT'S FORMULA

AREA OF WATERWAY (SQ. FT.) = C (DRAINAGE AREA IN ACRES) 3
1 SQ. MILE = 640 ACRES 1 ACRE = 43,560 SQ. FEET

UKAINA	GE AREA		AREA OF	WATERWAY (SQU	ARE FEET)	
Acres	Sq. Mi.	C == 1.0	C = 0.7	C = 0.5	C = 0.3	C = 0.2
200	0.31	53.2	37.2	26.6	15.9	10.7
220	0.34	57.1	40.0	28.5	17.1	11.4
240	0.38	⁴ 61.0	42.7	30.5	18.3	12.2
260	0.41	64.7	45.3	32.4	19.4	12.9
280	0.44	68.1	47.7	34.1	20.4	13.6
300	0.47	72.1	50.4	36,1	21.6	14.4
320	0.50	75.7	53.0	37.9	22.7	15.1
340	0.53	79.2	55.4	39.6	23.8	15.8
360	0.56	82.6	57.8	41.3	24.8	16.5
380	0.59	86.1	60.3	43.2	25.8	17.2
400	0.62	89.4	62.6	44.7	26.8	17.9
450	0.70	97.7	68.4	48.9	29.3	19.5
500	0.78	105.7	74.0	52.9	31.7	21.1
550	0.86	113.6	79.6	56.8	34.1	22.7
600	0.94	121.2	84.9	60.6	36.4	24.2
640	1.00	127.2	89.1	63.6	38.2	25.4
768	1.20	145.9	102.0	73.0	43.8	29.2
896	1.40	163.8	114.6	81.9	49.2	32.8
1024	1.60	181.1	127.2	90.6	54.6	36.2
1152	1.80	197.7	138.4	98.9	59.3	39.6
1280	2.00	214.0	149.8	107.0	64.2	42.8
1408	2.20	229.9	160.9	114.9	69.0	46.0
1536	2.40	245.4	171.8	122.7	73.6	49.1
1664	2.60	260.5	182.4	130.3	78.2	52.1
1792	2.80	275.4	192.8	137.7	82.6	55.1
1920	3.00	290.0	203.0	145.0	87.0	58.0
2240	3.50	325.6	227.9	162.8	97.7	65.1
2560	4.00	359.9	252.0	179.9	108.0	71.9
2880	4.50	393.1	275.2	196.6	117.9	78.6
3200	5.00	425.5	297.9	212.8	127.7	85.1
3520	5.50	457.0	319.9	228.5	137.1	91.4
3840	6.0	487.8	341.5	243.9	146.3	97.5
4160	6.5	518.0	362.6	259.0	155.4	103.6
4480	7.0	547.6	383	274	164	110
4800	7.5	576.7	404	288	173	115
5120	8.0	605.3	424	303 317	182 190	121 127
5440	8.5	633.5	443	31/	190	132
5760	9.0	661.2	463 482	331	207	132
6080 6400	9.5 10.0	688.5 715.6	500	358	207	138
7680	12.0	820.4	574	410	246	164
9600	15.0	969.8	679	485	291	194
7000	13.0	1 707.0	0/9	400	471	174

For area of waterway required when using other values of "C," multiply value of "C" to be used by figures shown in Column C = 1.0.

With the Talbot Formula the following values for "C" may be used in sections where a maximum twenty-four-hour rainfall of 4" might be expected to occur on an average of once in every fifteen years.

- C=1.0, for rocky ground with steep and abrupt slopes.
- C = 0.7, for rough, hilly land of moderate slopes.
- C = 0.5, for wide uneven valley.
- C = 0.3, for rolling agricultural country with the valley three or four times longer than it is wide.
- C = 0.2, for level country not affected by snow accumulation or flood action.

The factor "C" may be increased or decreased proportionately depending upon topography and rainfall.

Call Your Toncan* Man

He'll be glad to explain how
Toncan Drainage Products can
save you real money on every job
because they are easily installed,
economical in many ways. They
eliminate headaches from start to
finish — from drawing board to
erection on the site. They're easy
to specify, easy to order, and
mighty easy on the budget. Get
in touch with your Toncan Man
today!

*Toncan is the registered trade mark of Republic Steel Corporation

LOGANSPORT METAL CULVERT CO.

LOGANSPORT, INDIANA

PHONE: 5157

LOGANSPORT METAL CULVERT CO.

220 Hanna Street

LOGANSPORT, INDIANA

PRICE - DELIVERED

CORRUGATED METAL PIPE

-	DIA.		GAUGE IRON OR KONIK	C14	GAUGE IRON OR KONIK	12 STEEL	GAUGE IRON OR KONIK		SAUGE IRON OR		AUGE IRON OR	-	1
					NONIX	SIECE	NONIK	STEEL	KONIK	STEEL	KONIK		DI A.
	∄8'' 3'a.v.	1.37*	1.44*										8"
	10"	1.58*	1.66*	1.95	2.05								10"
	· 12"	1.80*	1.89*	2.19	2.30	3.06	3.21				•		12"
	15"	2.14*	2.25*	2.63	2.76	3.65	3.83						15"
	18"	2.49*	2.61*	3.06	3.21	4.26	4.47						18"
	21"	2.83*	2.97*	3.49	3.66	4.86	5.10	6.25	6.56				21" ;
•	24"	3.27	3.43	4.03*	4.23*	5.60	5.88	7.19	7.55				24"
	30"			4.91*	5.16*	6.80	7.14	8.75	9.19	10.46	10.98	•	30"
•	36''			5.90	6.20	8.05*	8.45*	10.42	10.94	12.44	13.06		36"
	42"			7.00	7.35	9.62*	10.10*	12.33	12.95	14.68	15.41	•	42"
	48"					11.03*	11.58*	14.11	14.82	16.78	17.62	•	48"
	54"					13.26*	13.92*	16.82	17.66	19.97	20.97	٠.	54"
	60''					14.83	15.57	19.02*	19.97*	22.48	23.60		60"
	66"							20.66*	21.69*	24.68	25.91		66"
ָ עַ	72''							22.66*	23.79*	26.93	28.28	•	72"
	78"		V					24.99	26.24	29.58*	31.06*		7.8''
	84"		•					_ , , , ,		32.54*	34.17*	4	70" 84"
	90"		٠,		/					36.97	38.82		90''\
	96"			,			1			40.97	43.02		96"

*Indicates State Specification gages.

CONNECTING BANDS:

7" and 12" wide; same as one foot of pipe.

24" wide - same as two feet of pipe.

Gage and grade of pipe ordered determines price of band.

PERFORATED PIPE: Add 1/2¢ per inch of nominal diameter for plain galvanized. Add 1¢ per inch of nominal diameter for coated and/or paved.

DOUBLE BITUMINOUS COATED: Add to plain pipe price 2¢ per inch of nominal diameter.

PAVED AND HALF COATED: Add 3¢ per inch of nominal diameter.

PAVED AND COATED: Add 4c per inch of nominal diameter.

PIPE-ARCH: Add 7% to pipe, complete with all extras.

STRUTTING EXTRA: Add 15% to price of plain pipe for wire strutting. Add 25% for strutting with rods and angles.

LOGANSPORT ME L CULVERT COMPANY 220 Hanna Street LOGANSPORT, INDIANA

CORRUGATED METAL PIPE ARCH

Prices per Foot - Delivered

				vanized			Dou	ble Bi	tuminou	s Coate	d		Paved	and Co	ated	
Dia.	$\underline{\mathbf{P.A.}}$	16 Ga.	14 Ga	. 12 Ga	. 10 Ga	. 8 Ga.	16 Ga.	14 Ga	. 12 Ga	. 10 Ga	. 8 Ga.	16 Ga.				. 8 Ga.
15 18	18x11 22x13	2.29* 2.66*	2.81 3.27	3.91 4.56	. . .		-	3.13 3.66	4.21 4.95			2.93* 3.44*	3.45 4.05	4.55 5.34		
21 24	25x16 29x18	3.03* 3.50	3.73 4.31*	5.20 5.99	6.69 7.69		3.48* 4.01	4.18 4.83*	5.65 6.50	7.14 8.20		3.93* 4.52	3.63 5.34*	4.10 7.01	7.59 8. 71	. ·
30 36	36x22 43x27		5.25* 6.31		9.36 11.15	11.19 13.31		5.90* 7.08		10.00 11.92	11.83 14.08	·		8.56 10.15*	10.64 12.69	12.47 14.75
42 48	50x31 58x36		7.49	10.29* 11.80*		15.71 17.95	· -			14.09 16.13		-		12.09 * 13.86 *		17.51 20.01
54 60	65x40 72x44		• .	14.19* 15.87			<u></u>			19.16 21.64*		··		16.51* 18.43	20.32 22.92*	23.69 26.61

^{*} Indicates Standard Gage

Double Bituminous Coated: Plain pipe price plus 2¢ per inch of nominal diameter, plus 7%.

Paved and Coated: Plain

Plain pipe price plus 4¢ per inch of nominal diameter, plus 7%.

LOGANSPORT METAL CULVERT CO.

220 Hanna Street LOGANSPORT, INDIANA

SELLING PRICES PER LINEAL FOOT OF STRUCTURE - Unassembled REPUBLIC SECTIONAL PLATE PIPE ARCH-Unassembled and not Erected- F.O.B. Destination

		* ** **** **		_				including	Bolts
Span	Height	N	12 Ga.	10 Ga.	8 Ga.	7 Ga.	5 Ga.	3 Ga.	1 Ga.
6'1"	4 ^{.0} 7"	22	23.20	26.83	30.46	32.19	36.74	40.70	43.42
614"	4 9"	23	23.93	27.70	31.53	33.34	38.02	42.14	44.98
619"	411"	: 24	24.66	28.61	32.57	34.46	39.28	43.59	46.35
7 'Ó"	5 11"	.:.25	25.39	29.50	33.62	35.57	40.55	45 .03	47.71
7 1311	5 13"	26	27.56	31.85	36.16	38.22	43.60	48.33	51.68
7 '8"	5 * 5 * · ·	27	28.29	32.75	37.23	39.27	44.89	49.77	52.93
7 ° 11"	5 8 7 11	≟28	29.03	33.64	38.27	40.49	46.14	51.21	54.30
8'2"	5 19 11	29	29.73	34.49	39.26	41.52	47.37	52.56	55.97
817"	5°11"	30	31.90	36.84	41.82	44.19	50.42	55.86	59.63
01100	. 1 . n		20.62				:		
8 10"		31	32.63	37.76	42.87	45.32	51.71	57.30	61.19
9 4"	6 8 3 **	32	33.38	38.64	43.93	46.45	52.98	58.75	62.56
9 '6"	6 5 7 7	33	34.10	39.53	44.98	47.57	54.23	60.17	63.92
91911	6 7 7 **	34	34.83	40.41	46.02	48.69	55.51	61.61	65.29
.0 ! 3"	6º9"	35	35.56	41.31	47.09	49.83	56.79	63.05	66.84
.0 ' 8"	6 11"	36	36.27	42.14	48.07	50.84	57.99	64.40	68.31
0 11"	7 8 1 88	37	37.00	43.04	49.14	51.99	59.27	65.84	69.87
1 5"	7 ' 3"	38	37.74	43.96	50.19	53.13	60.56	67.29	71.4 2
.1°7"	7 8 5 "	39	39.88	46.27	52.67	55.69	63.53	70.49	75. 2 1
1 10"	7 8 7 00	40	40.61	47.15	53.71	56.81	64.81	71.94	76.57
2 4"	7	41	41.34	48.03	54.76	57.92	66.08	73.48	77.93
.2 8 6"	7 11 **	42	42.07	48.92	55.80	59.04	67.33	74.80	79.30
.2º8"	8 1 1 **	43	42.81	49.83	56.89	60.22	68.65	76.26	81.05
2 10"	8 4 4 **	44	43.54	50.70	57.92	61.30	69.89	77.69	82.23
3'5"	8°5"	45	45.69	53.06	60.47	63.95	72.94	80.99	85.90
3 11"	8 7 7 11	46 ·	46.42	53.94	61.52	65.08	74.20	82.43	87.27
4 1 1 1	81911	47	47.17	54.85	62.57	66.23	75.49	83.87	88.32
4 8 3"	8 11"	48	47.90	55.75	63.64	67.36	76.77	85.31	90.38
.4 ⁸ 10 "	911"	49	48.61	56.61	64.64	68.42	78.00	86.66	92.04
5 4"	9 1 3 11	50	49.35	57.51	65.79	69.55	79.28	88.12	93.60
5'6"	9 5"	51	51.48	59.80	68.15	72.08	82.24	91.31	97.17
.5 ⁸ 8 11 .	9 17"	52	52.22	60.71	69.24	73.25	83.55	92.77	98.93
5 ' 10"		53	52.95	61.60	70.29	74.37	84.82	94.19	100.30
615"	9 11 "	54	53.68	62.50	71.33	75.49	86.09	95.64	101.66
617"	10 11"	55	54.41	63.36	72.37	76.63	87.33	97.06	102.84
.6 ' / ''	10.1.	23	54.41	63.36	12.31	/6.63	87.33	97.06	102.8

Š

LOGANSPORT, METAL CULVERT CO.

220 Hanna Street LOGANSPORT, INDIANA

SELLING PRICES REPUBLIC SECTIONAL PLATE PIPE Unassembled and Not Erected F.O.B. Destination

<u> </u>								•
Pipe Dia. Inches	•	12.0	. 10 .	0 -			 	
THURS		12 Ga.	10 Ga.	8 Ga.	7 Ga.	5 Ga.	3 Ga.	1 Ga
60		\$ 20.27 \$	23.53	\$ 26.78	\$ 28.30	\$ 32.35	\$ 35.88	\$ 38.50
66		21.75	25.31	28.89	30.55	34.88	38:75	41.23
7 2		23.22	27.11	31.02	32.84	37.45	41.65	44.35
. 78 [.]		24.68	28.88	33.11	35.08	39.97	44.52	47.07
84		26.15	30.69	35.25	37.37	42.55	47.40	50.19
90		30.43	35.31	40.19	42.47	48.52	53.82	57.74
96		31.88	37.08	42.28	44.70	51.04	56.70	60.47
102		33.36	38.87	44.41	47.00	53.61	59.58	63.58
108		34.80	40.61	46.47	49.18	56.11	62.43	65.92
114		36.27	42.42	48.61	51.48	58.68	65.33	69.04
120		37.76	44.22	50.73	53.75	61.26	68.22	72.15
126.		39.23	46.02	52.87	56.05	63.83	71 .11	75.27
132		43.49	50.64	57.82	61.15	69.80	77.52	82 [83
138		44.93	52.37	59.86	63.33	72.28	80:38	85 17
144	•	46.44	54.22	62.03	65.67	74.90	83.28	88.68
150		47.88.	55.96′	64.09	67.86	77.38	86.15	91.02
156			57.80	66.26	70.20	80.00	89.05	94.52
162		50.82	59.57	68.36	72.45	82.52	91.92	97.25
168			61.36	70.49	74.74	85.10	94.81	100.36
174		56.58	65.98	75.44	79.83	91.06	101.23	107.93
180	•	58.00	.67.69	77.45	81.96	93.51	104.07	109.88
		SELLING PRIC	ES SECT	ONAL PLAT	TE CATTLEP	ASSES		
Span	Height	12 Ga.	10 Ga.	8 Ga.	7 Ga.	5 Ga.	3 Ga.	1 Ga
5 ° 10 **	646"	27.56	31.87	36.18	38.25	43.62	48.33	51.57
5 10"	7 7 7 **	31.19	35.99	40.83	43.14	49.20	54.50	57.9 <u>7</u>
- -	• •			70°03	₹° ₽₹	77.EU	, J-, JU	3107:

TOGANSPORT METAL CULVERT CO.

220 Hanna Street LOGANSPORT, INDIANA

SELLING PRICES REPUBLIC SECTIONAL PLATE PIPE, ARCHES, PIPE-ARCHES, ACCESSORIES AND EXTRAS

ACCESSORIES

Extra Bolts and Nuts: Concave Washers Length	3/4 Diameter, Galv Cost Each
- 1 ኒ "	\$ 0.23
1½"	0.24
1 3/4"	0.25
2"	0.26
3"	0.29
3/4" Nuts only	0.10

Hook Bolts:

3/4" or 11" Galvanized hook bolts complete with one (1) concave washer and two (2) hex nuts \$ 1.13 ea.

EXTRAS

Skewed and/or Beveled Ends:

See separate price sheet

Extra Bolt Holes:

No extra charge will be made for 6 and 8 holes per foot of seam. Extra holes in any plate, which because of size or location, cannot be punched in the regular corrugating and punching operation, will be furnished at \$0.45 per hole. (Hole not to exceed 7/8" diameter.) Extra bolts will be charged as shown above.

Extra Holes for Hook Bolts:

Extra holes for hook bolts - \$0.55 each.

Extra for Asphalt Coating:

Add 20% to price of structure.

Standard Galvanized Unbalanced Channels when Required:

\$2.03

Heavier Invert:

Add price per "N" foot for gage required for bottom plates.

LOGANSPORT METAL CULVERT CO.

220 Hanna Street

LOGANSPORT, INDIANA

PRICES CORRUGATED METAL BRIDGE PLANK Selling Prices F.O.B. nearest rail point.

State

Price per Square Foot Including Punching

		12 Gage			10 Gage			7 Gage	
	1300 Sq.Ft. or Less	1300 to 6400 Sq.Ft.	0ver 6400 Sq.Ft.	1300 Sq.Ft. or Less	1300 to 5000 Sq. Ft .	Over 5000 Sq. Ft.	1300 Sq.Ft. or less	1300 to 3740 Sq. Ft.	Cver 3740 Sq.Ft.
Indiana	\$1.07	1.02	0.94	1.36	1.29	1.20	1.84	1.75	1.62

Bridge Plank is given one coat of highly weatherproof red shop primer after fabrication. Detailed paint specifications will be furnished on request.

Material: ASTM-245-48T, Grade C.

Area for Pricing Purposes: Compute the area by using the covering width in multiples of one foot and the covering length of multiples of two feet. Where the actual width is not an even multiple of one foot, use the next greater multiple of one foot. Where the actual length is not an even multiple of two feet, use the next greater multiple of two feet.

- Example 1. Dimensions of Bridge Floor, 19'3" wide by 30'-3" long.

 Area for pricing purposes, 20' wide x 52' long 1040 sq. ft.
 - 2. Dimensions of Bridge Floor, 18'-0" wide by 54'-0" long Area for pricing purposes, 18' wide by 54' long 972 sq. ft.

EXTRAS AND ACCESSORIES

For skewed planks	\$ 2.86 per cut
10 gage end dams welded to plate	2.20 per end
10 gage end dams, loose, 24" long	0.41 each
10 gage end dams, loose, 144" long	2.41 each

TERMS: Direct sales to political units are 30 days net. Contractors, jobbers and general purchasers $\frac{1}{2}$ of 1%, for cash in 10 days, 30 days net.

LOGANSPORT METAL CULVERT CO.

220 Hanna Street LOGANSPORT, INDIANA

BEAM TYPE GUARDRAIL Delivered Prices, F.O.B. Cars, Nearest Railroad Point

State

Price per Lineal Foot of Net Laying Length

12 1300° or Less	Gage	- 7.71 lbs per ft. Over 1300° Less than 5200°	5200' or More
1.27		1.20	1.15
ł			

10 Cag	e - 9.84 lbs. pe	r ft.
1300	Over 1300	4100
or	Less than	or
Less	4100 '	more
,	***	
1.50	1.45	1.35
	•	

Indiana

STANDARD EXTRAS, ACCESSORIES AND TERMS

End	٠	W	ir	ıg	S	:	

With necessary bolts, 10 gage	, 19.5 lbs .	 	\$ 4.40 each
The following and the first of	-		Y

Intermediate Holes:

With the necessary	post bolt,	nut and	i washer				4				0.92 each
·····	• •	•		٠. ٠	• •	• •		•	• •	•	Olym Cuch

Extra Bolts:

	DOLES.	,										
	x 1½"	Galvanized	Machine	Bolt	and	Nut .			£	0.15	each	
	x 2"	Galvanized	Machine	Bolt	and	Nut				0.16	each	
	x 5"	Galvanized	Machine	Bolt	and	Nut		•		0.24	each	
	x 8"	Galvanized	Machine	Bolt	and	Nut				0.29	each	
	x 10½"	Galvanized	Machine	Bolt	and	Nut				0.30	each	
5/8"	ж 14"	Galvanized	Machine	Bolt	and	Nut				0.40	each	
				٠		•				•	4	
5/8"	Galvanized	Cut Washer					•			0.05	each	

Curving:

(Minimum radius 20') \$0.40 per foot of net laying length.

Paint:

Both guardrail and end wings are given one coat of highly weatherproof, red shop primer. Detailed paint specifications can be secured upon request.

Shipments from Stock:

Add 5% to above prices on all shipments from stock at plant.

Terms:

Direct sales to governmental and political units are net 30 days. Contractors, jobbers and general purchasers 1/2 of 1% for cash in 10 days, 30 days net.

Specifications for RETAINING WALL at 8th Stean d College Ave. Bloomington, Indiana.

INTENTIONS

The site of the work comtemplated by these specifications is located at 8th Street and College Avenue in the City of Bloomington, Indiana and upon the premises of the Palmer Realty Company and occupied by the A and P Grocery Compan y. It is the intent of these specifications to provide for the furnishing of all labor, equipment and materials hereinafter specified, and for the performan ce of all work required to co nstruct a concrete retaining wall and properly grade an alley, all as shown on the plans accompanying these specifications. Also, included in this work is the removal and disposal of the existing stone wall located on the site of the proposed concrete wall. These specifications shall be used in comnection with and be co nsidered a part of all detailed specifications and the specifications shall be considered a part of the contract or obligations.

The work "OWNER" as used in these specifications shall be understood as referring to the Palmer Reaty Company.

The work "ENGINEER" as used in these specifications shall be understood as referring to John T. Stapleton.

The work "CONTRACTOR" as used in these specifications shall be understood as referring to the person, firm or corporation who shall enter into an agreement to execute and perform the work, or any part thereof, as herein specified and comtemplated.

In case the plan s and specifications are deficient in any part or not olearly expressed, bidders desiring to submit propositions shall apply to the Engineer for information before submitting thier propositions. Bidders shall examined for themselves the location of the proposed work, and exercise their own judgement as to the nature and amount of work to be don ealf it is found that an ything has been omitted or mis-stated, which is necessary, for the proper performance and completion of the work ,or any part of the work comtemplated herein, inaccordance with the spirit of the plans and specifications, the contractor will be required to execute and perform the same as though fully and correctly stated, and the manifement corrections of an yerror or ommission shall n ot be deemed as addition to, alteration of, or deviation from the work herein comtemplated and contracted for.

STAKING OUT WORK

The work to be don e under this contract will be staked out by the Engineer. The Contractor shall give the Engineer twanty-four (24) hours notice before requiring stakes to be set on any portion of the work. He should also give notice to all authorized superintendents of all utuilities that will affected by his operations. The Contractor must satisfy himself before starting the work as to the meaning and correctness of all stakes and marks. The Contractor will be held respondsible for the preservation of all such stakes and marks in their proper position.

<u>ASSISTANCE</u> The Contractor is to furnish the Engineer with reasonable assistance which he may require at any time, to help in driving stakes or in laying out the work. He shall also furnish the Engineer with all required assistance to facilitate thoroughk inspection or culling over or removing of the work performed or for any other purpose in the discharge of the Engineer's work and for which services no additional allowance will be made.

INCOMPETENT OR DISORDERLY PERSONS.

The Contractor shall dismiss from the work at any time, any superintendent, workmen or other persons employed by the Contractor who shall refuse or neglect to obey the instructions of the Engineer in anything relating to the work or who shall perform his work in any manner contrary the specifications or directions of the Engineer.

UNFAVORABLE CONDITIONS

When in the epinoin of the Engineer the weather may be such that it is deemed advisable to discontinue the work, the Contractor shall cease operations according to the instructions of the Engineer and shall not assume operations until notified by the Engineer to do so. If in the opinoin of the Engineer the work and operations are not being carried according to where contract and these plans and specifications, he may order all work stopped immediately, and all work and operations carried on after such "Stop Order" will be subject to removal.

MATERIALS

All materials furnished shall be of the best quality of the respective kinds named in the contract and all materials used are subject to examination and approval by the Engineer with power to reject.

PROTECTION TO PROPERTY

Materials delivered to the work shall be neatly, safely and compactly placed in such manner as to cause the least inconvenience and damage to the property owners and the general public and not be within fifteen (15) feet of any fire hydrant. Injury to lawns, shade trees, sidewalks, streets and other improvements must be may good by the Contractor.

EXTRAS

No. extras of any kind will be allowed on this work.

FOREMEN

The Contractor shall at all times have some competent foremen or authorized superintendent on the work to whom notices, ordered and instruction s may be given.

DEBRIS

On completion of the work the Contractor must remove from the line of work and premises all surplus materials and all debris of every kind and description and he must restore to their former condition all sidewalks, crosswalks, tree plots, streets, pavements, curbs, fences and any other public and private property which may have become disturbed or damaged by reason of his work.

CONSTRUCTION AND OLD MATERIALS

The Contractor will be required to remove at his own expense any and all obstructions, filth or refuse of any kind that may be encountered in the line of his work and which may be required to be taken out in order to construct the new work; also any rubbish, refuse or materials produced by such work.

INDEMNITY

The Contractor shall keep and hold the "Owner" free and harmless from the payment of an y and all damages, expenses, royalties, patent fees, and any sum of money whatever, by reasons of the work and operations.

ASSIGNMENT CONTRACT

The Contractor shall not assign or transfer the contract or any part thereof except upon approval of the Owner.

EARTH EXCAVATION

Earth, clay, rock or whatever materials may be enco untered shall be excavated to such depth and demensions as will accommodate the work as shown upon the plans. Whatever filling is necessary to support any part of the structure shall be done in such manner that no settlement can possibly occur, by especially compacting the filling materials or by such manner or other means deemed necessary by the Engineer at the time the work is done.

The Contractor shall make provisions for properly handling all water en countered in the excavation.

The excavation shall include the loosening, loading, and disposing of all materials, wet or dry, necessary to be removed for the purpose of the construction.

Exeavtion materials in excess of that n eeded for backfilling to within twelve (12) inches of the top of the wall and the regrading of the alley, shall be disposed of by the Contractor and must re removed from the site.

Space excavated without authority beneath all structures, shall be refilled with concrete by the Co ntractor at his own expense.

BACKFILLING

All lumber, rubbish and braces shall be carefully removed from behind the walls unless ordered left in place by the Engineer. Unless otherwise specified all trenches or excavation shall then be backfilled to such grade that will conform with the regarding of the alley east of the wall. Backfilling shall be done as completely as possible in such a manner as to prevent after settlement. The time alapsed before back-filling begins shall be subject to the approval of the Engineer.

CONCRETE

Concrete shall consist of a mixture of cement, fine and course aggregate and water as hereinafter specified.

Proportion s

Concrete shall be proportioned as follows:

I sack cemen t
2 cubic feet: sand.
3 2 cubic feet: course aggrege

If plant mix is used it shall be 3500 pound concrete.

All aggregate shall be subject to the approval of the Engineer. Course aggregate shall be either crushed stone or gravel well graded between the limits of one quarter (1) and one and one quarter (1) inch with the diameterical axis as nearly as possible the same length, with all dust and other particles less than one quarter (1) inch removed. Fine aggregate shall consist of clean sharp sand free from clay, loam, silt or vegetable matters and must pass the 24 hour Colorimetric Test. No concrete mix aggregate will be alknowed on this work.

WATER

Water for mortar and concrete shall be free from oil, acid, strong alkalis or evgetable matter. It will be supplied by and at the expense of the Contractor.

MIXING

Concrete shall be machine mixed. The concrete mixer shall be designed to take one complete batch of material (using whole bags of cement) and to mix that batch thoroughly before any portion of it is withdrawn or any portion of the succeeding batch is introduced. The mixer shall be equipped with a loading skip and a tank so design ed that when once set it will automatically supply to the mixer the amount of water so determined.

The aggregate for each batch shall be measured by means of cubic box markings on the wheel barrows and each batch shall be mixed at least one minute after all ingredients imcluding water, have been discharged into the mixer. The speed of the mixer drum shall be approximately 19 revoltions per minute. The water content of the mix will be determined by the Engineer.

TRANPORTATION AND PLACING CONCRETE

After mixing the concrete shall be transported rapidly to the place of deposit. It shall be carried up level along the whole length of the section under construction, and shall be so placed as to avoid rehandling which the forms. It shall be spaded, rammed or vibrated into place and shall be thoroughly compacted around drain pipes or other shapes built into the work.

No concrete shall be placed in water.

JOINTS

Joints will be placed as directed by the Engineer. All joints shall be water tight.

SECTIONS

The Contractor shall so plan his work, so as to placed this work in sections and upon starting to placed concrete in a section he must continued placing concrete in that section until the same is completed, and in no case must concrete set more than thirty (30) minuted before additional concrete is placed on the same.

CONCRETE SURFACES

The concrete shall have a semi-smooth surface. Special care shall be taken to place the concrete solidly against the forms so as to leave no voids, that all concrete is solid, compact and water tight, and that all surfaces are smooth and free from all indentations and projections. All surfaces shall be free from voids, exposed stones, or other imperfections. If such imperfections are found upon removeing the forms, such faults, if minor, shall be corrected at the Contractor's expense by filling with mortar or as otherwise directed.

No plastering of any co norete surface shall be done unless expressly permitted by the Engin eer, and if so permitted, shall be done in strict accordance with the direction of the Engineer. No payment will be made for plastering done to correct it defective work.

If the surface of the concrete is bulged, uneven, or shows honeycombing or form marks which in the opinoin cannot be repaired satisfactorily, the entire section shall be remo ved and replaced under the direction of the Engineer, and at the expense of the Contractor.

WATER TIGHTNESS

The Contractor is required to make the entire structure water tight. All cracks and imperfections developing at any point in the work shall be thomoughly repaired in a manner satisfactory to the Engineer.

Concrete shall be made with a minimum amount of water consistent with proper workability. Said water content will be determined by the Engineer. Concrete shall be placed in a position that will prevent segregation or the formation of voids.

WAT ER PROOFING

The back of the retaining wall in contact with earth shall be water proofed with tar pitch or asphalt and applied to a thickness of one-eight $(1/8^n)$ inch when the surface of the concrete is clean and perfectly dry.

CURING

All exposed surfaces of concrete shall be protected from premature drying by being covered with burlap which shall be kept constantly moist by sprinkling with water. The damp burlap shall be placed as soon as the concrete is hard enough not to be marred by the process and sprinkling must be continue for a period of not less than seven (7) days and in case the the Engineer requires it, for a longer period of time. As an alternate to this process a curing compound may be used, the brand, subject to the approval of the Engineer.

No new work shall be laid during a rainstorm, freshly laid concrete shall be protected by canvas during storms to prevent the water from coming in contact with it.

FORMS

The Contractor shall provide suitable water tight forms with smooth surfaces of ample strength and rigidly braced. The form shall conform to the shape, lines and dimen sions of the concrete as called for on the plans. The bracing shall be entirely adequate to prevent deviations from the correct line. No forms shall be used which are not clean and of proper shape and strength and in every way suitable. Deformed, broken or defective forms shall be removed from the work. Before placing concrete, the forms shall be coated with form grease, or other suitable substance approved by the Engineer, to prevent adherence of concrete. All forms and form lumber once used shall be thoroughly cleaned and recoated before being used again. All corn ers of finished concrete (at bulkheads) shall be chamfored.

All wooden forms shall be built of clean sound lumber, reasonably free from knots, dressed on one side and neatly fit. Tongue and grooved materials shall be used on all exposed surface faces of the wall covered by these specifications. All form surfaces shall be watertight, securely fastened by nails, or form pins, screws or boths to the rib or support. **This farmex planex what is known white.

REMOVING FORMS

Forms shall not be disturbed until authorized by the Engineer.

DRAINAGE AND WEEP HOLE

DERinage or weep hole shall be constructed in the manner and at the points indicated upon the plans.

Over the upper eand of all weep holes shall be place a sufficient quanity of clean crushed stone (not less than one inch nor more than three inch size). Provision shall likewise be made for keeping the stone from falling into the pipe.

The Building Official and the F. H. A.

By DAVID J. WITMER*
Chief Architectural Supervisor
Southern California District
Federal Housing Administration

BUILDING officials and the Federal Housing Administration are committed to upholding adequate building standards. Both are interested in improving housing standards and they seek, in their respective fields of service, to encourage further improvements in housing standards. In this they can be and are being mutually cooperative.

The city building inspector is a law enforcing officer. He can require compliance with the law or stop the work. The Federal Housing Administration is not vested with authority to stop work which does not comply with city or state laws, or FHA housing standards. It can and does, however, refuse to accept for insured loans, those properties which fail to comply. Because of this fact it has, and may grasp more firmly, the opportunity to set standards of housing somewhat higher than the minimum acceptable for building laws.

One of the main objectives of the National Housing Act is the improvement in housing standards and conditions. The Act is entitled, "An Act to encourage improvement in Housing Standards and Conditions, to provide a system of Mutual Mortgage Insurance, and for other purposes." Title I provides an expansion of credit for the purpose of modernizing, repairing and improving existing buildings, and leaves the determination of the nature and quality of the improvement to the borrower.

Title II authorizes a system of Mutual Mortgage Insurance and thereby an expansion of credit for financing the acquisition and construction of residential properties. The only reference to Housing Standards in Title II is complete and inclusive. Title II stipulates that each project covered by a mortgage accepted for insurance must be economically sound. The Act authorizes and directs the administrator of the Act to make such rules and regulations as may be necessary.

Stability and durability of structure are fundamentals of economic soundness, as are healthful and sanitary living conditions. Livability, desirability and appeal of residential properties are as fundamental to economic soundness and as necessary in the improvement of housing standards as structural and health provisions are to a building code. The maintenance and security of a property for residential purposes, and the protection of the neighborhood in which such property is located as a desirable residential community, are essential to economic soundness.

Recognition by cities and counties, of the necessity of protecting residential neighbor, hoods for residential purposes, is becoming more and more manifest through the establishment of zoning and setback ordinances. Recognition of other fundamentals of economic soundness and social security and welfare, over and above the sole considerations of structural safety and health, are bound to come and will be increasingly evident.

At present the Federal Housing Administration, under authority of the National Housing Act, is the one agency which is testing and considering all the phases of economic soundness pertinent to residential properties.

In order to consider intelligently and measure with reasonable accuracy the economic soundness of residential properties, and the fundamentals composing economic soundness, it was necessary to set up a definition of these fundamentals and then a practicable measure or minimum standard for each fundamental. The Federal Housing Administration accomplished this in Circular No. 2, Property Standards.

Some of these standards are set forth very definitely. Others are left to the interpretation and application of the District Office of the Federal Housing Administration in conformity

(Continued on Page 20)

^{*} Presented before the 13th Annual Meeting of the Pacific Coast Building Officials Conference, Pasadena, Calif., October 8-12, 1935.

SHIPPING DATA (PAGE 4)

(Summary of Data Received at Press Time)

	Weight (Lbs.)	Width	Length	Height	Make and Model Weight (Lbs.) Widt	n Length	Height
C106		9'4"	24'4"	6'5"	D2-50" and 2A 9,920 7'9"	12'5"	4′10″
C108		10'4"	27'4"	7′8″	Caterpillar (Railway Shipping)		
TS300	49 500	11′5″ 11′6¾″	30′7″ 34′10 ½″	8′5″ 9′4″	D8 and 8S40,910 10'8"	27'0"	7'6"
			34 10 / 2"	9'4"	D8 and 8A41,860 10'8"	27'0"	7'6"
LaPlant-Cheate (Rai	lway Shipping	g)			D7 and 7S30,280 10'4"	21'0"	6'8"
C22	3,050	5'11"	12'0"	3'11"	D7 and 7A31,480 10'4"	27'0"	6'8"
C24		5′11″	16'0"	3'11"	D6-60" and 6S20,725 8'3"	17'0"	6'4"
C-42		7′8¾″	17′1½″	5′8¼″	D6-60" and 6A21.150 9'6"	18'0"	$6'\overline{4}''$
C44		7′8¾″		5′8¼″	D6-74" and 6S21,495 9'6"	18'0"	6'4''
C106		9'4"	24'4"	6′5″	D6-74" and 6A (45)21,790 8'3"	27'0"	6'4"
C108		10'4"	27'4"	7′8″	D4-44" and 4S13,165 7'3"	12′0″	5'1"
C114		11'5"	30′7″	8′5″	D4-60" and 4S13,500 8'3"	12′0″	5′1″
TS300	43,500	11′6¾″	34′10½″	9'4"	D4-44" and 4A	14'2"	5′1″
Le Tourneau (Highwe	ov or Railway	Shipping)			D4-60" and 4A14,200 8'8"	14'6"	5'1"
B Tournapull		11'7"	37'6"	11'3"	D2-40" and 2S 8,740 5'8"	10′1″	4'10"
C Tournapull		11'4"	31'0"	9'3"	D2-50" and 2S 8,980 6'8"	10'1"	4'10"
Super C Tournapu	11 32 500	10'2"	32'2"	11'2"	D2-40" and 2A 9,660 6'1"	12'1"	4'10"
Model D	7,000	7'2"	21'0"	7'6"	D2-50" and 2A 9,920 7'9"	12′5″	4′10″
Model M		8′1″	23'4"	8'7"	Heil (Highway or Railway Shipping)		
Model LS		9'10"	29'7"	9'11"		4.0.0	a.m.u
Model LP		10'2"	32'2"	10'11"	CE-18-BW28,070 10'0"	16'0"	6'7"
Model FP		11'6 % "	34'7"	10'9"	HB-14W20,175 9'6"	14'11"	6'1 ¾ '
Model W		11'6"	39'0"	11'10"	HB-6016,506 7'6"	13'0"	5′5″
	•	•			HB-9536,110 10'%	' 16'3"	7'4"
Wooldridge (Highway			71/4	10410/11	Isaacson (Highway or Railway Shipping)		
TC-S1445,200	(43) 11'5		7½"	10′1%″	HD718.920 7'4"	12'7"	5′6 1°6″
BBM10,800	(43) 8'3		314"(44)	8′0″	D842,200 11'2"	19'2"	9'3 1/2"
BB-8515,800) (43) 9′9) (43) 9′9″		3"(44)	9′10″ 9′0″	D621,855 7'11		6'3 1/4"
BBU17,900		30°0 17" 900	8 (*44)	10'0"	FD36,520 9'8"	16'71/2"	9'3"
TCR24,100 TCN26,000	(43) $11'5$	72 34 6	5"(44) 4%"(44)	10'5"	DG, DGH17,140 6'9"	13'10"	5′5″
TCN26,000 TCH32,000	(43) $11'6$		3"(44)	10'5"	TD1830,420 8'6"	16'7"	9'4"
*				10 11	TD1421,475 8'0"	13′9″	6'1% $''$
	WITH BULL		TTACHED		Wooldridge (Highway or Railway Shippin	a) .	
Baker (Highway or R						7'1 %"(43)	9'5 1/2"
19B		11'1"	19'6"	$7'3\frac{13}{16}"$	BD729,130(43) 10'1¾"	6'2 1/2" (43)	8'7 ¾"
424A	17,815	8′5″	12′6 ½ ″	7′10½″	BD-6W21,030(43) 9'6"	4'11 4" (43)	8'1 ¼"
Caterpillar (Highway	Shipping)					8'3 % "(43)	8'3 % "
D4-44" and 4S		7'3"	12'0"	5'1"	BHD-1433,660 (43) 8'7 %"	5'3 1/2" (43)	9'6"
D4-44" and 4A	13.865	7'3"	14'2"	5′1″		4'4"(43)	9'1"
D2-40" and 2S	8.740	5′8″	10'1"	4'10"	BHD-7W17.010(43) 8'4\\\2"	2'7%"(43)	7'6"
D2-50" and 2S	8.980	6′8″	10'1"	4'10"	BTD-18W27,250(43) 10'1%"	4'9 34" (43)	8'4 1/2"
wall wy	9,660	6'1"	12'1"	4'10"		2'11 % " (43)	8'2 3/4"

Shipping Data Notes

Loaded in units on cars or trucks.
 20 tons/hour.
 Adjustable. Set to maximum width.
 Vibratory hand screed.
 Specified width plus 1'0".
 Does not include feed and delivery conveyors which weigh 4,800 lbs.
 Poes not include power unit

4,800 lbs.

(7) Does not include power unit.

(8) Railway shipping data vary too much to specify.

(9) Height without cab—8'0".

(10) Height without cab—7'8".

(11) Height without cab—7'6\%".

(12) Height without cab—7'6\".

(13) Height without cab—7'3\%".

(14) Height without cab—8'8".

(15) Add 675 lbs. for machine equipped with diesel engine.

(16) Add 250 lbs for leaning front wheels. Add 620 lbs. (16) Add 250 lbs. for leaning front wheels. Add 620 lbs. for

(17) Height to top of vertical exhaust pipe.

(18) Height without cab.

(19) Add 200 lbs. for machine equipped with diesel engine.
(20) Boom length—15'0".
(21) Boom length—16'3½".
(22) Boom length—16'10".

(23) Boom length-30'0".

(24) 18" shoes. (25) 30' boom not assembled.

(24) 18" shoes.
(25) 30' boom not assembled.
(26) Bucket not included.
(27) Without front end attachments.
(28) 24" shoes.
(29) 16" shoes.
(30) 21" shoes.
(31) 30" shoes.
(32) 28" shoes.
(33) Increase 2,000 lbs. for diesel engine. Increase 2,000 lbs. for 33" shoes.
(34) 11'9" for 33" shoes.
(35) Angle of boom with horizontal—40°.
(36) For 20" shoes overall width is 8'2".
(37) Add 230 lbs. for machine equipped with diesel enginc.
(38) Add 165 lbs. for machine equipped with diesel engine.
(39) Add 510 lbs. for machine equipped with UD-9 diesel engine; add 825 lbs. for UD-14 diesel engine.
(40) With 16" drive roll.
(41) Dual rear wheels.
(42) Single rear wheels.
(43) Without power control unit.
(44) Length can be reduced 20% by removing the front truck and hitch.
(45) Blade not attached.
Information not available Feb. 1, 1948

(45) Blade not attached.

. Information not available Feb. 1, 1948.

SURFACE AREAS OF VARIOUS WIDTHS OF ROADWAY PER 100 FEET AND PER MILE

Especially Prepared for Powers' Road and Street Catalog

	Area	\mathbf{A} rea		\mathbf{Area}	Area
Width,	Sq. Yds.	Sq. Yds.	Width,	Sq. Yds.	Sq. Yds.
Feet	Per 100 Ft.	Per Mile	Feet	Per 100 Ft.	Per Mile
8	89	4,693	28	311 .	16,427
9	100	5,280	30	333	17,600
10	111	5,867	32	356	18,773
11	122	6,453	33	367	19,360
12	133	7,040	36	400	21,120
14	156	8,213	40	444	23,467
16	178	9,387	44	489	25,813
18	200	10,560	45	500	26,400
20	222	11,733	48	533	28,160
22	244	12,907	50	556	29,333
24	267	14,080	54	600	31,680
26	289	15,253	55	611	32,267
27	300	15,840	60	667	35,200

SOIL AND GRADING DATA

Shrinkage and Settlement Allowable Soil Pressures Slopes and Angles of Repose Weights of Materials

From a Bucyrus-Erie Booklet-"Profit"

The expansion due to excavation is usually 15 to 20% of the volume, but in extreme cases may be as much as 40%. In placing the material in the embankment it is compressed by the weight of the embankment itself or by the action of wheels and treads, when haulage equipment is employed. The loss of porosity and losses in transportation reduce the original volume in time.

APPBOXIMATE SHRINKAGE PERCENTAGES

PERCENT	WOL	200		
Gravel				
Gravel and Sand			9%	
Clay and Clayey E	arth	1	.10%	
Loam and Light Sa	ndv	Earth	1.12%	
Loose Vegetable Su				
- -				
ALLOWABLE SOI	L PI	RESS	URES	
			Lbs.	
		_	Per	
		s Per		
		. Ft.		
	Min.	Max	. Max.	
Quicksand; Alluvia				
Soil	. 0.5		13.9	
Soft Clay	i, 4	2	26.9	
Wet Clay; Soft We	t			
Sand	. 1	2 3	26.9	
Moderately Dry Sand	12	3	41.7	
Clay and Sand in		_		
Alternate Layers	. 2	3	41.7	
Firm & Dry Loam	_	_		
or Clay		5.	69.5	-
Compact Coarse Sand		6	83.5	
Coarse Gravel	. 5	8	110.1	
Gravel and Sand				
Well Cemented	. 6	10	139.0	
Good Hard Pan or	_			
Shale	. 6	10	139.0	
Hard Native		0.7	340.0	
Bedrock	. 15	25	348.0	
SLOPES AND A	NC	IFG	OF	
REPOSE OF LO				
				, .
			gle of	•
Kind of Earth R	80G9	e Ro	epose	

WEIGHTS OF MATERIALS

WEIGHIS OF		LEKIA	
	Lbs.	Lbs.	Kgs.
Material	Per	Per	Per
	Cu.	Cu,	Cu.
	Ft.	Ϋ́d.	
Clay		* u.	2,111.
Dry Excavated.	.00.	9426	1440
Wet Excavated	110	2400	
Wet Excavated		2910	1760
Clay & Gravel, Dry	.100	2700	1600
Coal-			
Anthrac., Broke	n 57	1540	915
Bitum., Broken	. 52	1400	830
Earth-			000
Dry, Loose	76	0050	****
Day Dooles	. 10	20:0	1217
Dry, Packed	. 95	2560	1520
Mud, Loose	.108	2920	1730
Mud. Packed	.115	3100	1840
Moist, Loose	. 78	2.100	1245
Moist, Packed .	. 96	2590	1535
Granite—			
Block	.175	4720	2800
Broken	90	2590	1535
- Gravel-		2000	1000
Screen 1/4" to 2	อด	2430	1440
Gypsum—			
Rock, Crushed	.100	2700	1600
Iron Ore—			
Hermatite-			
In Bank	.180	4850	2880
Loose		4320	2560
Magnetic		4850	2880
Limonite	125	3650	2165
Lime			
	. 04	1730	1025
., Limestone-			
Block		4450	2640
Broken	. 95	2560	1520
Masonry-Debris.	. 90	2480	1440
Sand-		-100	
Dry	00	0100	1000
		2160	1280
Damp		2840	1683
Wet		8240	1920
Sandstone-Broke	n 82	2220	1318
Shale-Broken	. 92	2480	1470
Snow-			23.0
Freshly Fallen,	۰	010	128
Freshly Fallen,		216	
Frozen Ice	. 06	1510	895
Trap Rock-			
Broken	.107	2900	1720
-			

COMPACTION OF LOOSE MATERIALS UNDER ROLLING

The compaction of stone or gravel under rolling varies greatly according to weight of roller, size and grading of the material, percentage of voids, and character of subgrade. On one series of tests percentages of reduction in thickness were recorded as follows:

1½ in. to 3 in. limestone under 5.8 ton tandem roller.. 11%
1½ in. to 3 in. limestone under 3.3 ton tandem roller.. 2%
1 in. to 2 in. limestone under 5.8 ton tandem roller.. 14%
1 in. to 2 in. limestone under 3.3 ton tandem roller.. 8%

In some cases reductions of 30 per cent or more have been observed.

FILLER FOR CRUSHED STONE MACADAM BOTTOM COURSE

Approximate Amounts Required, Using 0.35 Cu. Yd. Filler Per Cu. Yd. of Rolled Base

Width Macadam	R 3-In.	olled Depth of 4-In.	of Bottom Co 5-In.	ourse 6-In.
Ft.	Cubic	Yards Filler	Per 100 Ft.	of Road
10	3.9 4.5 4.9	4.3 5.1 6.0 6.4 6.9	5.4 6.5 7.5 8.0 8.6	6.5 7.8 9.1 9.7
18. 20. 22.	5.9 6.4	7.8 8.6 9.4	9.7. 10.8 11.8	11.8 12.8 14.3

WASTE, LOSS AND OVERRUN OF CONCRETE

Where weighed or measured aggregates are delivered directly to the mixer there should be no waste or loss. Where there is intermediate storing or handling the losses commonly range from 2 per cent to 5 per cent.

Irregularities in subgrade surface require the placing of some concrete in addition to that included within the exact design limits of the slab. The overrun due to this cause ordinarily amounts to from 2 per cent to 4 per cent of the total concrete required, but on a poorly prepared subgrade may be as high as 8 per cent.

BROKEN STONE

Pounds Per Cubic Yard

From Bituminous Construction Handbook published by Barber-Greene Co., Aurora, Ill.

Kind	Sp. Gr.	Spread Loose 45% Voids	Compacted 30% Voids
Trap	2.8	2590	3300
	2.9	2680	3420
	3.0	2770	3540
	3.1	2870	3650
Granite	2.6	2400	3060
	2.7	2500	3180
	2.8	2590	3300
Limestone	2.6	2400	3060
	2.7	2500	3180
	2.8	2590	3300
Sandstone	2.4	2220	2830
	2.5	2310	2940
	2.6	2400	3060
	2.7	2500	3180

Sand and Clay. 1.88 to 1 Clay, Dry1.75 to 1

Clay, Damp and
Plastic 3 to 1
Gravel 1.38 to 1
Gravel and Clay 1.88 to 1

Gravel, Sand and Clay1.33 to

Soil, Dry 1.5 to 1
Soil, Wet 1.88 to 1
Soft Rotten Rock .1.38 to 1
Hard Rotten Rock .1 to 1

30°

87°

37°

379

APPROXIMATE WEIGHTS OF AGGREGATE PER CUBIC YARD LOOSE MEASURE

The unit weight of any of the aggregates here listed will vary according to mineral composition, size and grading, such variation running roughly within a range of 20 per cent. A further substantial variation is due to moisture, which commonly amounts to between 5 and 10 per cent of the weight of the dry material, but may in the extreme case of completely soaked sand amount to 25 per cent. This table is for ordinary materials about midway in the weight range, in a thoroughly loose condition, and containing such moisture as is commonly found in commercial products.

**	Pounds-	Pounds
*	Per	Per
	Cu. Yd.	Cu. Yd.
	Slag 2,000	Crushed trap rock. 2,600
	Crushed limestone 2,400	Pea gravel 2,650
	Crushed granite . 2,400	Sand 2,800
	Crushed gravel 2,550	Bank-run gravel 3,000

TONS OF STONE PER MILE REQUIRED FOR VARIOUS FINISHED DEPTHS AND WIDTHS

(Based on Stone Weighing 2,650 Pounds Per Cubic Yard)

From Report of Commissioner of Public Roads of New Jersey

		_	• • •				
Widt	h, 8 Ft.	— 9	Ft.— .		Ft.—	11	Ft.—
Deptl	h Tons	Depth_	Tons	Depth	Tons	Depth	Tons
4	875	4	984	4	1,093	4	1,203
6	1,312	6	1,476	,.6	1,640	6	1.804
8	1,750	8	1,968	8	2.187	8	2,406
10	2,187	10	2,460	10	2,734	10	3,008
12	2,625	12	2,952	12	3,281	12	3,609
Widt	h, 12 Ft.	-13	Ft.—	—14	Ft.—	15	Ft.—
Dept		Depth	Tons	Depth	Tons	Depth	Tons
4	1,312	4	1,421	4	1,531	4	1,640
6	1.969	6	2,132	6	2,296	6	2,460
.8	2,625	8	2,843	8.	3,062	8	3,281
10	3,281	10	3,554	10	3,828	10	4,101
12	3,937	12,	4,265	12	4,593	12	4,921
Widt	h, 16 Ft.	17	Ft.—	—18	Ft.—	-19	Ft.—
Dept	h Tons	Depth	Tons	Depth	Tons	Depth	Tons
4	1,750	4	1,859	4	1,968	4	2,078
6 8	2,625	6	2,789	-6	2,953	6	3,117
8	3,500	8	3,718	8	3,937	. 8	4,156
10	4,375	10	4,648	10	4,921	.10	5,195
12	5,250	12	5,578	12	5,906	12	6,234
Widt	h, 20 Ft.						
Dept	h' Tons						
4	2,187	•			1010.		
6	$\cdot 3,281$.:			
8	4,375				•		
10	5,468						
12	6,562						

MORTAR SAND

The following is a common specification for sand. Sand for mortar shall be uniformly graded from fine to coarse within the following limits:

	Per cent
Passing No. 8 sieve	100
Passing No. 50 sieve	15-40
Passing No. 100 sieve	0-10
(Weight removed by decantation not more than 5 per	

QUANTITIES OF ROAD METAL OR AGGRE-GATE PER 100 FEET AND PER MILE FOR VARIOUS WIDTHS AND THICKNESSES

Loose Measure

	9 Feet	Wide	10 Fee	t Wide	12 Fee	∵ Wide
Thick-	Cu. Yd.	Cu. Yd.	Cu. Yd.	Cu. Yd.	Cu. Yd.	Cu. Yd.
ness in inches	per	per mile	per 100 ft.	per mile	per 100 fţ.	per mile
1	2.8	147	3.1	163	3.7	196
2	5.6	293	6.2	326	7.4	391
$2\frac{1}{2}$	6.9	367	7.7	407	9.3	489
3 4	$\begin{array}{c} 8.3 \\ 11.1 \end{array}$	440 587	$\begin{array}{c} 9.3 \\ 12.3 \end{array}$	489 652	11.1 14.8	586 782
5	13.9	733	15.4	814	18.5	978.
6	16.7	880	18.5	977	22.2	1,173
7		1,027	21.6	1,140	25.9	1,369
8 9		$1,173 \\ 1,320$	$24.7 \\ 27.8$	1,303 1,466	29 . 6 33.3	1,564. 1,760
10		1,467	30.9	1,630	37.0	1,956
-	16 Fee	t Wide	18 Fee	t Wide	20 Fee	1 Wide
Thick-	Cu. Yd.	Cu. Yd.	Cu. Yd.	Cu. Yd.	Cu. Yd.	Cu. Yd.
ness	per	per	per	per	per	per
in inches		mile	100 ft.	mile	100 ft.	mile
$1 \ldots 2 \ldots$	4.9 9.9	$\frac{261}{522}$	5.6 _. 11.1	293 586	$\substack{6.2\\12.3}$	326 652
$2\frac{1}{2}$		652	13.9	733	15.4	815
$3\ldots$	14.8	782	16.7	880	18.5	978
4	19.7	1,043	22.2	1,173	24.7	1,304 1,630
5 6	$\begin{array}{c} 24.7 \\ 29.6 \end{array}$	$1,304 \\ 1,564$	$\begin{array}{c} 27.8 \\ 33.3 \end{array}$	$1,466 \\ 1,759$	$\begin{array}{c} 30.9 \\ 37.0 \end{array}$	1,956
7		1,825	38.9	2,053	43.2	2,281
8	39.5	2,086	44.4	2,346	49.4	2,607
9 10	44.4 49.3	2,347 2,607	50.0 55.5	$2,639 \\ 2,932$	55.6 61.7	2,933 3,259
		4 337: 1-	0473			
	22 Fee	t wide	· Z4 Fee	t Wide	25 Fee	t Wide
Thick-		Cu. Yd.		Cu. Yd.		
ness	Cu. Yd. per	Cu. Yd.	Cu. Yd.	Cu. Yd.	Cu. Yd.	Cu. Yd.
ness in inches	Cu. Yd. per 100 ft.	Cu. Yd. per mile	Cu. Yd. per 100 ft.	Cu. Yd. per mile	Cu. Yd. per 100 ft.	Cu. Yd. per mile
ness in inches	Cu. Yd. per 100 ft. 6.8	Cu. Yd. per mile 359	Cu. Yd. per 100 ft. 7.4	Cu. Yd. per mile 391	Cu. Yd. per 100 ft. 7.7	Cu. Yd. per mile 407
ness in inches 1	Cu. Yd. per 100 ft.	Cu. Yd. per mile	Cu. Yd. per 100 ft.	Cu. Yd. per mile	Cu. Yd. per 100 ft. 7.7 15.4 19.3	Cu. Yd. per mile
ness in inches 1 2 2½ 3	Cu. Yd. per 100 ft. 6.8 13.6 17.0 20.4	Cu. Yd. per mile 359 717 896 1,076	Cu. Yd. per 100 ft. 7.4 14.8 18.5 22.2	Cu. Yd. per mile 391 782 978 1,173	Cu. Yd. per 100 ft. 7.7 15.4 19.3 23.1	Cu. Yd. per mile 407 815 1,019 1,222
$\begin{array}{c} \text{ness} \\ \text{in inches} \\ 1, \dots, \\ 2, \dots, \\ 2\frac{1}{2}, \dots, \\ 3, \dots, \\ 4, \dots \end{array}$	Cu. Yd. per 100 ft. 6.8 13.6 17.0 20.4 27.2	Cu. Yd. per mile 359 717 896 1,076 1,434	Cu. Yd. per 100 ft. 7.4 14.8 18.5 22.2 29.6	Cu. Yd. per mile 391 782 978 1,173 1,564	Cu. Yd. per 100 ft. 7.7 15.4 19.3 23.1 30.9	Cu. Yd. per mile 407 815 1,019 1,222 1,630
ness in inches 1 2 2½ 3 4	Cu. Yd. per 100 ft. 6.8 13.6 17.0 20.4 27.2 34.0	Cu. Yd. per mile 359 717 896 1,076 1,434 1,793	Cu. Yd. per 100 ft. 7.4 14.8 18.5 22.2 29.6 37.0	Cu. Yd. per mile 391 782 978 1,173 1,564 1,955	Cu. Yd. per 100 ft. 7.7 15.4 19.3 23.1 30.9 38.6	Cu. Yd. per mile 407 815 1,019 1,222 1,630 2,037
$\begin{array}{c} \text{ness} \\ \text{in inches} \\ 1, \dots, \\ 2, \dots, \\ 2\frac{1}{2}, \dots, \\ 3, \dots, \\ 4, \dots \end{array}$	Cu. Yd. per 100 ft. 6.8 13.6 17.0 20.4 27.2 34.0	Cu. Yd. per mile 359 717 896 1,076 1,434	Cu. Yd. per 100 ft. 7.4 14.8 18.5 22.2 29.6	Cu. Yd. per mile 391 782 978 1,173 1,564 1,955 2,347 2,738	Cu. Yd. per 100 ft. 7.7 15.4 19.3 23.1 30.9 38.6 46.3 54.0	Cu. Yd. per mile 407 815 1,019 1,222 1,630 2,037 2,444 2,860
ness in inches 1 2 3 4 5 6 7 8	Cu. Yd. per 100 ft. 6.8 13.6 17.0 20.4 27.2 34.0 40.7 47.5 54.3	Cu. Yd. per mile 359 717 896 1,076 1,434 1,793 2,151 2,510 2,868	Cu. Yd. per 100 ft. 7.4 14.8 18.5 22.2 29.6 37.0 44.4 51.8 59.3	Cu. Yd. per mile 391 782 978 1,173 1,564 1,955 2,347 2,738 3,129	Cu. Yd. per 100 ft. 7.7 15.4 19.3 23.1 30.9 38.6 46.3 54.0 61.7	Cu. Yd. per mile 407 815 1,019 1,222 1,630 2,037 2,444 2,860 3,259
ness in inches 121½3 45 67 89	Cu. Yd. per 100 ft. 6.8 13.6 17.0 20.4 27.2 34.0 40.7 47.5 54.3	Cu. Yd. per mile 359 717 896 1,076 1,434 1,793 2,151 2,510	Cu. Yd. per 100 ft. 7.4 14.8 18.5 22.2 29.6 37.0 44.4 51.8	Cu. Yd. per mile 391 782 978 1,173 1,564 1,955 2,347 2,738	Cu. Yd. per 100 ft. 7.7 15.4 19.3 23.1 30.9 38.6 46.3 54.0	Cu. Yd. per mile 407 815 1,019 1,222 1,630 2,037 2,444 2,860
ness in inches 1 2 3 4 5 6 7 8	Cu. Yd. per 100 ft. 6.8 13.6 17.0 20.4 27.2 34.0 40.7 47.5 54.3 61.1 67.9	Cu. Yd. per mile 359 717 896 1,076 1,434 1,793 2,151 2,510 2,868 3,227	Cu. Yd. per 100 ft. 7.4 14.8 18.5 22.2 29.6 37.0 44.4 51.8 59.3 66.6 74.1	Cu. Yd. per mile 391 782 978 1,173 1,564 1,955 2,347 2,738 3,129 3,520	Cu. Yd. per 100 ft. 7.7 15.4 19.3 23.1 30.9 38.6 46.3 54.0 61.7 69.4 77.1	Cu. Yd. per mile 407 815 1,019 1,222 1,630 2,037 2,444 2,860 3,259 3,667
ness in inches 1	Cu. Yd. per 100 ft. 6.8 13.6 17.0 20.4 40.7 47.5 54.3 61.1 67.9	Cu. Yd. per mile 359 717 896 1,076 1,434 1,793 2,151 2,510 2,868 3,227 3,585 t Wide	Cu. Yd. per 100 ft. 7.4 14.8 18.5 22.2 29.6 37.0 44.4 51.8 59.3 66.6 74.1	Cu. Yd. per mile 391 782 978 1,173 1,564 1,955 2,347 2,738 3,129 3,520 3,911 et Wide	Cu. Yd. per 100 ft. 7.7 15.4 19.3 23.1 30.9 38.6 46.3 54.0 61.7 69.4 77.1	Cu. Yd. per mile 407 815 1,019 1,222 1,630 2,037 2,444 2,860 3,259 3,667 4,074
ness in inches 12½345678910	Cu. Yd. per 100 ft. 6.8 13.6 17.0 20.4 27.2 34.0 40.7 47.5 54.3 61.1 67.9 26 Fee Cu. Yd. per	Cu. Yd. per mile 359 717 896 1,076 1,434 1,793 2,151 2,510 2,868 3,227 3,585 t Wide Cu. Yd. per	Cu. Yd. per 100 ft. 7.4 14.8 18.5 22.2 29.6 37.0 44.4 51.8 59.3 66.6 74.1 30 Fee Cu. Yd. per	Cu. Yd. per mile 391 782 978 1,173 1,564 1,956 2,347 2,738 3,129 3,520 3,911 at Wide Cu. Yd. per	Cu. Yd. per 100 ft. 7.7 15.4 19.3 23.1 30.9 38.6 46.3 54.0 61.7 69.4 77.1 33 Fee Cu. Yd. per	Cu. Yd. per mile 407 815 1,019 1,222 1,630 2,037 2,444 2,860 3,259 3,667 4,074 et Wide Cu. Yd. per
ness in inches 1 2 2 3 4 5 6 7 8 9 10 Thickness in inches	Cu. Yd. per 100 ft. 6.8 13.6 17.0 20.4 27.2 34.0 40.7 47.5 54.3 61.1 67.9 26 Fee Cu. Yd. per 100 ft.	Cu. Yd. per mile 359 717 896 1,076 1,434 1,793 2,151 2,510 2,868 3,227 3,585 t Wide Cu. Yd. per mile	Cu. Yd. per 100 ft. 7.4 14.8 18.5 22.2 29.6 37.0 44.4 51.8 59.3 66.6 74.1 30 Fee Cu. Yd. per 100 ft.	Cu. Yd. per mile 391 782 978 1,173 1,564 1,955 2,347 2,738 3,129 3,520 3,911 bt Wide Cu. Yd. per mile	Cu. Yd. per 100 ft. 7.7 15.4 19.3 23.1 30.9 38.6 46.3 54.0 61.7 69.4 77.1 33 Fee Cu. Yd. per 100 ft.	Cu. Yd. per mile 407 815 1,019 1,222 1,630 2,037 2,444 2,860 3,259 3,667 4,074 t Wide Cu. Yd. per mile
ness in inches 1 21½ 3 4 5 8 9 10 Thickness in inches 1	Cu. Yd. per 100 ft. 6.8 13.6 17.0 20.4 27.2 34.0 40.7 47.5 54.3 61.1 67.9 26 Fee Cu. Yd. per	Cu. Yd. per mile 359 717 896 1,076 1,434 1,793 2,151 2,510 2,868 3,227 3,585 t Wide Cu. Yd. per	Cu. Yd. per 100 ft. 7.4 14.8 18.5 22.2 29.6 37.0 44.4 51.8 59.3 66.6 74.1 30 Fee Cu. Yd. per 100 ft. 9.3 18.5	Cu. Yd. per mile 391 782 978 1,173 1,564 1,956 2,347 2,738 3,129 3,520 3,911 at Wide Cu. Yd. per	Cu. Yd. per 100 ft. 7.7 15.4 19.3 23.1 30.9 38.6 46.3 54.0 61.7 69.4 77.1 33 Fee Cu. Yd. per	Cu. Yd. per mile 407 815 1,019 1,222 1,630 2,037 2,444 2,860 3,259 3,667 4,074 et Wide Cu. Yd. per mile 538 1,075
ness in inches 1 21½ 3 4 5 6 7 8 9 10 Thick- ness in inches in inches 2 2½	Cu. Yd. per 100 ft. 6.8 13.6 17.0 20.4 27.2 34.0 40.7 47.5 54.3 61.1 67.9 26 Fee Cu. Yd. per 100 ft. 8.0 20.1	Cu. Yd. per mile 359 717 896 1,076 1,434 1,793 2,151 2,510 2,868 3,227 3,585 t Wide Cu. Yd. per mile 424 847 1,059	Cu. Yd. per 100 ft. 7.4 14.8 18.5 22.2 29.6 37.0 44.4 51.8 59.3 66.6 74.1 30 Fee Cu. Yd. per 100 ft. 9.3 18.5 23.1	Cu. Yd. per mile 391 782 978 1,173 1,564 1,955 2,347 2,738 3,129 3,520 3,911 et Wide Cu. Yd. per mile 489 978 1,222	Cu. Yd. per 100 ft. 7.7 15.4 19.3 23.1 30.9 38.6 46.3 54.0 61.7 69.4 77.1 33 Fee Cu. Yd. per 100 ft. 10.2 20.4 25.5	Cu. Yd. per mile 407 815 1,019 1,222 1,630 2,037 2,444 2,860 3,259 3,667 4,074 et Wide Cu. Yd. per mile 538 1,075 1,344
ness in inches 12½3 45 67 78 9 Thickness in inches 12½3 2.½3	Cu. Yd. per 100 ft. 6.8 13.6 17.0 20.4 27.2 34.0 40.7 47.5 54.3 61.1 67.9 26 Fee Cu. Yd. per 100 ft. 8.0 16.0 20.1 24.1	Cu. Yd. per mile 359 717 896 1,076 1,434 1,793 2,151 2,510 2,868 3,227 3,585 t Wide Cu. Yd. per mile 424 847 1,059 1,271	Cu. Yd. per 100 ft. 7.4 14.8 18.5 22.2 29.6 37.0 44.4 51.8 59.3 66.6 74.1 30 Fee Cu. Yd. per 100 ft. 9.3 18.5 23.1 27.8	Cu. Yd. per mile 391 782 978 1,173 1,564 1,956 2,347 2,738 3,129 3,520 3,911 et Wide Cu. Yd. per mile 489 978 1,222 1,466	Cu. Yd. per 100 ft. 7.7 15.4 19.3 23.1 30.9 38.6 46.3 54.0 61.7 69.4 77.1 33 Fee Cu. Yd. per 100 ft. 10.2 20.4 25.5 30.5	Cu. Yd. per mile 407 815 1,019 1,222 1,630 2,037 2,444 2,860 3,259 3,667 4,074 Et Wide Cu. Yd. per mile 538 1,075 1,344 1,613
ness in inches 12½345678910	Cu. Yd. per 100 ft. 6.8 13.6 17.0 20.4 27.2 34.0 40.7 47.5 54.3 61.1 67.9 26 Fee Cu. Yd. per 100 ft. 8.0 16.0 20.1 32.1	Cu. Yd. per mile 359 717 896 1,076 1,434 1,793 2,151 2,510 2,868 3,227 3,585 t Wide Cu. Yd. per mile 424 847 1,059 1,271 1,695	Cu. Yd. per 100 ft. 7.4 14.8 18.5 22.2 29.6 37.0 44.4 51.8 59.3 66.6 74.1 30 Fee Cu. Yd. per 100 ft. 9.3 18.5 23.1 27.8 37.0	Cu. Yd. per mile 391 782 978 1,173 1,564 1,955 2,347 2,738 3,129 3,520 3,911 bt Wide Cu. Yd. per mile 489 978 1,222 1,466 1,956	Cu. Yd. per 100 ft. 7.7 15.4 19.3 23.1 30.9 38.6 46.3 54.0 61.7 69.4 77.1 33 Fee Cu. Yd. per 100 ft. 10.2 20.4 25.5 30.5 40.7	Cu. Yd. per mile 407 815 1,019 1,222 1,630 2,037 2,444 2,860 3,259 3,667 4,074 Et Wide Cu. Yd. per mile 538 1,075 1,344 1,613 2,150
ness in inches 12½3 45 67 78 9 Thickness in inches 12½3 2.½3	Cu. Yd. per 100 ft. 6.8 13.6 17.0 20.4 27.2 34.0 40.7 47.5 54.3 61.1 67.9 26 Fee Cu. Yd. per 100 ft. 8.0 16.0 20.1 24.1	Cu. Yd. per mile 359 717 896 1,076 1,434 1,793 2,151 2,510 2,868 3,227 3,585 t Wide Cu. Yd. per mile 424 847 1,059 1,271 1,695 2,119 2,542	Cu. Yd. per 100 ft. 7.4 14.8 18.5 22.2 29.6 37.0 44.4 51.8 59.3 66.6 74.1 30 Fee Cu. Yd. per 100 ft. 9.3 18.5 23.1 27.8	Cu. Yd. per mile 391 782 978 1,173 1,564 1,955 2,347 2,738 3,129 3,520 3,911 et Wide Cu. Yd. per mile 489 978 1,222 1,466 1,956 2,444 2,933	Cu. Yd. per 100 ft. 7.7 15.4 19.3 23.1 30.9 38.6 46.3 54.0 61.7 69.4 77.1 33 Fee Cu. Yd. per 100 ft. 10.2 20.4 25.5 30.5 40.7 50.9 61.1	Cu. Yd. per mile 407 815 1,019 1,222 1,630 2,037 2,444 2,860 3,259 3,667 4,074 et Wide Cu. Yd. per mile 538 1,075 1,344 1,613 2,150 2,688 3,225
ness in inches 1 21½ 3 4 5 6 7 8 9 10 Thick- ness in inches 1 2½ 3 4 5 6 7	Cu. Yd. per 100 ft. 6.8 13.6 17.0 20.4 27.2 34.0 40.7 47.5 54.3 61.1 67.9 26 Fee Cu. Yd. per 100 ft. 8.0 16.0 20.1 24.1 32.1 40.1 56.2	Cu. Yd. per mile 359 717 896 1,076 1,434 1,793 2,151 2,510 2,868 3,227 3,585 t Wide Cu. Yd. per mile 424 847 1,059 1,271 1,695 2,119 2,542 2,983	Cu. Yd. per 100 ft. 7.4 14.8 18.5 22.2 29.6 37.0 44.4 51.8 59.3 66.6 74.1 30 Fee Cu. Yd. per 100 ft. 9.3 18.5 23.1 27.8 37.0 46.3 55.6 64.8	Cu. Yd. per mile 391 782 978 1,173 1,564 1,955 2,347 2,738 3,520 3,911 et Wide Cu. Yd. per mile 489 978 1,222 1,466 1,956 2,444 2,933 3,422	Cu. Yd. per 100 ft. 7.7 15.4 19.3 23.1 30.9 38.6 46.3 54.0 61.7 69.4 77.1 33 Fee Cu. Yd. per 100 ft. 10.2 20.4 25.5 30.5 40.7 50.9 61.1 71.3	Cu. Yd. per mile 407 815 1,019 1,222 1,630 2,037 2,444 2,860 3,259 3,667 4,074 tt Wide Cu. Yd. per mile 538 1,075 1,344 1,613 2,150 2,688 3,225 3,765
ness in inches 12½3 45 67 89 10	Cu. Yd. per 100 ft. 6.8 13.6 17.0 20.4 27.2 34.0 40.7 47.5 54.3 61.1 67.9 26 Fee Cu. Yd. per 100 ft. 8.0 16.0 20.1 24.1 32.1 40.1 56.2 64.2	Cu. Yd. per mile 359 717 896 1,076 1,434 1,793 2,151 2,510 2,868 3,227 3,585 t Wide Cu. Yd. per mile 424 847 1,059 1,271 1,695 2,119 2,542 2,983 3,390	Cu. Yd. per 100 ft. 7.4 14.8 18.5 22.2 29.6 37.0 44.4 51.8 59.3 66.6 74.1 30 Fee Cu. Yd. per 100 ft. 9.3 18.5 23.1 27.8 37.0 46.3 55.6 64.8 74.1	Cu. Yd. per mile 391 782 978 1,173 1,564 1,956 2,347 2,738 3,129 3,520 3,911 t Wide Cu. Yd. per mile 489 978 1,222 1,466 1,956 2,444 2,933 3,422 3,911	Cu. Yd. per 100 ft. 7.7 15.4 19.3 23.1 30.9 38.6 46.3 54.0 61.7 69.4 77.1 33 Fee Cu. Yd. per 100 ft. 10.2 20.4 25.5 30.5 40.7 50.9 61.1 71.3 81.4	Cu. Yd. per mile 407 815 1,019 1,222 1,630 2,037 2,444 2,860 3,259 3,667 4,074 Et Wide Cu. Yd. per mile 538 1,075 1,344 1,613 2,150 2,688 3,225 3,765 4,300
ness in inches 1 21½ 3 4 5 6 7 8 9 10 Thick- ness in inches 1 2½ 3 4 5 6 7	Cu. Yd. per 100 ft. 6.8 13.6 17.0 20.4 27.2 34.0 40.7 47.5 54.3 61.1 67.9 26 Fee Cu. Yd. per 100 ft. 8.0 16.0 20.1 24.1 32.1 40.1 56.2	Cu. Yd. per mile 359 717 896 1,076 1,434 1,793 2,151 2,510 2,868 3,227 3,585 t Wide Cu. Yd. per mile 424 847 1,059 1,271 1,695 2,119 2,542 2,983	Cu. Yd. per 100 ft. 7.4 14.8 18.5 22.2 29.6 37.0 44.4 51.8 59.3 66.6 74.1 30 Fee Cu. Yd. per 100 ft. 9.3 18.5 23.1 27.8 37.0 46.3 55.6 64.8	Cu. Yd. per mile 391 782 978 1,173 1,564 1,955 2,347 2,738 3,520 3,911 et Wide Cu. Yd. per mile 489 978 1,222 1,466 1,956 2,444 2,933 3,422	Cu. Yd. per 100 ft. 7.7 15.4 19.3 23.1 30.9 38.6 46.3 54.0 61.7 69.4 77.1 33 Fee Cu. Yd. per 100 ft. 10.2 20.4 25.5 30.5 40.7 50.9 61.1 71.3	Cu. Yd. per mile 407 815 1,019 1,222 1,630 2,037 2,444 2,860 3,259 3,667 4,074 tt Wide Cu. Yd. per mile 538 1,075 1,344 1,613 2,150 2,688 3,225 3,765

APPROXIMATE QUANTITIES OF FREE WATER CARRIED BY AVERAGE AGGREGATES

•		
Very wet sand	3/4	to 1 gal. per cu. ft.
Moderately wet sand		
Moist sand	¼	gal. per cu. ft.
Moist gravel or crushed rock	1/4	gal. per cu. ft.

The coarser the aggregate, the less free water it will

TONS OF AGGREGATE PER MILE REQUIRED TO BUILD WATER-BOUND MACADAM

Table prepared by The Barrett Company, 40 Rector St., New York, N. Y.

Width,	Weight of Aggregate pounds per	4-in.]	Depth—		Fons of A	Aggregate- 8-in. I	Denth	—10 in.	Depth-
Ft. 8	Cu. Yd.	Coarse	Filler	Coarse	Filler	Coarse	Filler	Coarse	Filler
	2,000	648	216	874	324	1,296	432	1,620	540
	2,400	778	260	1,166	387	1,555	520	1,847	648
	2,600	842	281	1,265	421	1,685	562	2,110	704
9	2,000	730	243	1,100	365	1,455	487	1,820	608
	2,400	875	292	1,310	437	1,750	584	2,185	730
	2,600	947	316	1,420	475	1,792	632	2,370	790
10	2,000	810	269	1,215	405	1,620	540	2,020	672
	2,400	970	323	1,458	485	1,840	648	2,430	810
	2,600	1,053	350	1,580	525	2,180	700	2,630	875
11	2,000	890	297	1,336	445	1,810	596	2,220	740
	2,400	1,070	356	1,610	534	2,140	712	2,670	890
	2,600	1,148	384	1,740	576	2,340	770	2,885	960
14	2,000	1,135	377	1,660	566	2,270	756	2,830	944
	2,400	1,360	453	2,040	680	2,720	906	3,400	1,134
	2,600	1,470	489	2,200	734	2,930	980	3,670	1,225

CUBIC YARDS OF LOOSE GRAVEL REQUIRED TO MAKE ONE MILE OF ROAD OF VARIOUS THICKNESSES AFTER CONSOLIDATION

From a Report of the Commissioner of Public Works of New Jersey

Width	Thickness of Road After Consolidation, Inches								
	6	7	8	9	10	11	12		
Feet 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	880 1,027 1,173 1,320 1,467 1,613 1,760 1,907 2,054 2,200 2,346 2,493 2,640 2,787 2,933	1,027 1,198 1,369 1,540 1,711 1,882 2,053 2,224 2,396 2,567 2,738 2,909 3,080 3,250 3,422	1,173 1,369 1,564 1,760 1,956 2,151 2,346 2,542 2,738 2,933 3,128 3,128 3,324 3,520 3,716 3,911	1,320 1,540 1,760 1,980 2,200 2,420 2,640 2,860 3,080 3,520 3,740 3,960 4,180 4,400	1,467 1,711 1,956 2,200 2,444 2,689 2,933 3,178 3,422 3,667 3,912 4,156 4,409 4,644 4,688	1,613 1,882 2,151 2,420 2,630 2,958 3,227 3,496 3,764 4,033 4,302 4,571 1,840 5,109 5,378	1,760 2,054 2,346 2,640 2,934 3,226 3,520 3,814 4,107 4,400 4,692 4,986 5,280 5,574 5,866		

ENGINEERING CONSTANTS

MISCELLANEOUS

1.8° Fahrenheit = 1° Centigrade.

14.696 Pounds per Square Inch = atmospheric pressure. 13.144 Cubic Feet = volume 1 lb. air at 62° F. and 14.7

pounds per square inch. 1,728 Cubic Inches = 1 cubic foot.

1948

5,280 Feet = 1 mile.

Doubling the diameter of pipe or hose increases its capacity approximately four times.

Diameter of Circle: Multiply circumference by 0.31831. Circumference of Circle: Multiply diameter by 3.1416. Area of Circle: Multiply square of diameter by 0.7854.

POWER.

1 HP = 33,000 foot pounds per minute. 1 HP= 746 watts. 1 HP = 2,543 B. T. U. per hour. 1 Kw.-Hr. = 3,415 B. T. U.

1 Kw. = 1.341 HP.

WATER

1 U. S. Gallon.= 231 cubic inches.
1 U. S. Gallon = 8½ pounds at 62° F.
1 Cubic Foot = 7.48 U. S. gallons.
1 Cubic Foot = 62.5 pounds at 62° F.
2,309 Feet Water = 1 pound per square inch.
1 British Imperial Gallon = 1.2003 U. S. gallons.

Sand for Bituminous Mixtures

The following is a common specification for sand. When tested by means of laboratory sieves the sand shall conform to the following requirements:

Per Cent
Total passing No. 4 sieve 100
Total passing No. 10 sieve 95-100
Passing No. 10 sieve, retained on No. 40 sieve 18-50
Passing No. 40 sieve, retained on No. 80 sieve 30-60
Passing No. 80 sieve, retained on No. 200 sieve15*- 40
Total passing No. 200 sieve 0-5

^{*}For bituminous concrete, the minimum required shall be 12 per cent.

SETTLEMENT OF AGGREGATE DUE TO HAULING

	Settlement	After a Haul of
	½ Mile or	75 Miles or
	More in	More in
Size of Stone	Wagons	Cars.
%-in. screenings	12.1%	
%-in. screenings	. 11.8%	10.6%
2 to 3/4-in	9.2%	
3 to 2-in	8.2%	7.0%

COSTS PER MILE OF ROAD AT VARIOUS PRICES PER SQUARE YARD

From a Report of the Commissioner of Public Roads of New Jersey

			Jer.	seu			
	Total						
	Area		Pric	e in Cen	ts Per S	a. Yd.—	
Width		s. 25	30	35	40	45	50
8	4,693	\$1,173	\$1,408	\$1,642	\$1,877	\$2,112	\$2,346
10	5,867	1,466	1,760	2,053	2,346	2,640	2,933
12	7,040	1,760	2,112	2,464	2,816	3,168	3,520
14	8,213	2,053	2,464	2,874	3,285	3,696	4,106
16	9,386	2,346	2,816	3,285	3,754	4,224	4,693
18	10,560	2,640	3,168		4,224	4,752	5,280
	Total	•	•	•	•	,	-,
	Area		Duia	ain Can	ta Dan C	. 37.1	
Width		s. 55	60	e m Cen	ts Per S		00
	Sq. Yds			65	70	75	80
8	4,693	\$2,581	\$2,816	\$3,050	\$3,285	\$3,520	\$3,754
10	5,867	3,227	3,520	3,813	4,107	4,400	4,693
12	7,040	3,872	4,224	4,576	4,928	5,280	5,632
14	8,213	4,517	4,928	5,338	5,749	6,160	6,570
16	9,386	5,162	5,632	6,101	6,570	7.040	7,509
18	10,560	5,808	6,336	6,864	7,392	7,920	8,448
	Total		•	•	•		•
		Deiss	: O4	. D O	37.1.		
*****	Area	Price		s Per Sq.			
Width	Sq. Yds		90	95	100		
8	4,693	\$3,989	\$4,224	\$4,458	\$4,693		
10	5,867	4,987	5,280	5,573	5,867		
12	7,040	5,984	6,336	6,688	7,040		
14	8,213	6,981	7,392	7,802	8,213		
16	9,386	7,978	8,448	8,917	9,386		
18	10 560	8 976	9 504	10 032	10 560		

DISTANCE IN LINEAR FEET WHICH A GIVEN TRUCK LOAD OF AGGREGATE WILL SPREAD FOR VARIOUS LOOSE DEPTHS ON VARIOUS WIDTHS OF ROAD

From Koppers Tarmac Handbook, published by Tar and Chemical Division, Koppers Company, Pittsburgh, Pa.

Width of	Loose Depth			CI	UBIC YARD	S PER LOA	\D		
Road. Feet	Spread. Inches	1	11/2	2	21/2	3	3 1/2	4	5
		Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet
6	1 2	54.0 27.0 18.0	81.0 40.5 27.0	108.0 54.0 36.0	135.0 67.5 45.0	162.0 81.0 54.0	189.0 94.5 63.0	216.0 108.0 72.0	270.0 135.0 90.0
	4 5 6	13.5 10.8 9.0	20.3 16.2 13.5	27.0 21.6 18.0	33.8 27.0 22.5	40.5 32.4 27.0	47.3 37.8 31.5	54.0 43.2 36.0	67.5 54.0 45.0
8	1 2	40.5 20.3 13.5	60.8 30.4 20.3	81.0 40.5 27.0	101.3 50.6 33.8	121.5 60.8 40.5	141.8 70.9 47.3	162.0 81.0 54.0	202.5 101.3 67.5
	4 5 6	10.1 8.1 6.8	15.2 12.1 10.1	20.3 16.2 13.5	25.3 4 20.3 16.9	30.4 24.3 20.3	35.4 28.4 23.6	40.5 32.4 27.0	50.6 40.5 33.8
9	1 2	36:0 18.0 12.0	54.0 27.0 18.0	72.0 36.0 24.0	90.0 45.0 30.0	108.0 54.0 36.0	· 126.0 63.0 42.0	144.0 72.0 48.0	180.0 90.0 60.0
	4 5 6	9.0 7.2 6.0	13.5 10.8 9.0	18.0 14.4- 12:0	22.5 18.0 15.0	27.0 21.6 18.0	31.5 25.2 21.0	36.0 28.8 24.0	45.0 36.0 30.0
10	1 2	32.4 16.2	48.6 24.3	64.8 32.4	81.0 40.5 27.0	97.2 48.6	113.4 56.7	129.6 64.8 43.2	162.0 81.0
	3 4 5 6	10.8 8.1 6.5 5.4	16.2 12.2 9.7 8.1	21.6 16.2 13.0 10.8	27.0 20.3 16.2 13.5	32.4 24.3 19.4 16.2	37.8 28.4 22.7 18.9	32.4 25.9 21.6	54.0 40.5 32.4 27,0

U. S. STANDARD SIEVE SERIES

Standard Specifications of the U. S. Bureau of Standards and the American Society for Testing Materials

Bureáu of Standards	Spec Sieve C	ified Opening	Spec Wire Di			Tolerances Permitted	
Sieve	English	Milli-	English	Milli-	Average	Wire Diameter	Maximum
Number	Inch	meters	Inch	meters	Opening		Opening
4567	.187	4.76	.050	1.27	+-3%	-15% to +30%	10%
	.157	4.00	.044	1.12	+-3%	-15% to +30%	10%
	.132	3.36	.040	1.02	+-3%	-15% to +30%	10%
	.111	2.83	.036	.92	+-3%	-15% to +30%	10%
# 8	.0937	2.38	.0331	.84	+-3%	-15% to +30%	10%
# 10	.0787	2.00	.0299	.76	+-3%	-15% to +30%	10%
# 12	.0661	1.68	.0272	.69	+-3%	-15% to +30%	10%
# 14	.0555	1.41	.0240	.61	+-3%	-15% to +30%	10%
# 16	.0469	1.19	.0213	.54	+-3%	-15% to +30%	10%
# 18	.0394	1.00	.0189	.48	+-3%	-15% to +30%	10%
# 20	.0331	.84	.0165	.42	+-5%	-15% to +30%	25%
# 25	.0280	.71	.0146	.37	+-5%	-15% to +30%	25%
# 30	.0232	.59	.0130	.33	+-5%	-15% to +30%	25%
# 35	.0197	.50	.0114	.29	+-5%	-15% to +30%	25%
# 40	.0165	.42	.0098	.25	+-5%	-15% to +30%	25%
# 45	.0138	.35	.0087	.22	+-5%	-15% to +30%	25%
; 50	.0117	.297	.0074	.188	+6%	-15% to +85%	40%
; 60	.0098	.250	.0084	.162	+6%	-15% to +35%	40%
; 70	.0083	.210	.0055	.140	+6%	-15% to +35%	40%
; 80	.0070	.177	.0047	.119	+6%	-15% to +35%	40%
#100	.0059	.149	.0040	.102	+6%	-15% to +35%	40%
#120	.0049	.125	.0034	.086	+6%	-15% to +35%	40%
#140	.0041	.105	.0029	.074	+8%	-15% to +35%	60%
#170	.0035	.088	.0025	.063	+8%	-15% to +35%	60%
#200	.0029	.074	.0021	.053	+8%	-15% to +35%	60%
#230	.0024	.062	.0018	.046	+8%	-15% to +35%	90%
#270	.0021	.053	.0016	.041	+8%	-15% to +35%	90%
#325	.0017	.044	.0014	.036	+8%	-15% to +35%	90%

COARSE AGGREGATE STANDARD SIZES

Simplified Practice Recommendation R163-39

Size No.	Nominal Size Square	Size Percentage by Weight quare enings											
	Openings	3"	2½"	2"	1½"	1"	84"	1/2"	3/8"	No.	No.	No. 16	No. 100
2	21/2"-11/2"	100	90–100	35–70	0–15	-	0–5						e e
3	2"-1"		100	90-100	35-70	0-15		0–5					
5	1''-3/8''				100	90-100	40-75	15-35	0-15	0–5	-		
68	¾"-No. 8					100	90–100		30-65	5-25	0-5		
79	½′′-No. 8						100	90-100	40-75	5-25	0~5		
8	%″−No. 8							100	85–100	10-30	0-10		
9	No. 4-No. 16								100	85–100	10–40	0-10	
10	No. 4-0					}			100	85 100			10-30
								•				1	

Typical Uses of Above Sizes

Uses			;	Size N	umbe	r		
	2	3	5	68	79	8	9	10
Water-bound Macadam—Coarse Aggregate	x	x			. •			x
Drag Levelling Course				x				
Surface Treatment						x	x	
Seal Coat.		-		х	x	x		
Re-Tread—Mix		·	x			x	x	
Penetration Macadam—Coarse Aggregate	-	x			x	x		
Cold Patch				x				

SHIPPING DATA (PAGE 2)

(Summary of Data Received at Press Time)

Make and Model W	eight (Lbs.)	Width	Length	Height	Make and Model	Weight (Lbs.		Length	Height
Trojan Patrol Model PM-10-48 (Equipp with enclosed					%-yd. (27) (28) %-yd. (27) (31) 1½-yd. (27) (28)	081,850	11'0" 1 10'10" 1	.5′2″ .5′6″ .7′8″	11'0" 11'0" 13'0"
cab)10			18'0" 8	′8″ 、	1½-yd. (27) (31))85,650	11'4" 1	.8'6"	13'0"
Galion (Highway or Ra			0" 510	1/ // /10\	Lima (Highway Shi				
116-D23,2 102-D21,7				½" (18) ½" (18)	Type 34	39,100 to 43,500	8′7″	14'6" (27)	10'5"
201-D 17,9	900 7'5'	" ⁻ 25'	2" 6'8	" (18)	Type 604	78,000	10'6"	18'7" (27)	12′3″
102-G 8,1	.50 6'0'	' 17'	8" 6'6	" (18)		to 85,350			
Riddell (Highway or Ro	ailway Ship	ping)			Type 802	to 162,500		0'10" (27)) 11.9
Warco Grader D-76 Warco Grader		7′11″ 7′11″	26′6″ 25′6½″	9′10″ 9′10″	Type 1201	191,000 to 216,000	13'1"	24'6" (27)	12′11″
VD-900			25 0 72	9 10	Lima (Railway Ship	poina)			
	POWER SH				Type 34		8'7"	14'6" (27)	10′5″
Austin-Western (High)	way Shippir	ng) Ngana	16'3 1/2" (20	1) 9/5"	Trung CO4	to 44,300		10/7// (07)	101911
Badger Shovel2 Badger Trench Hoe	23,300(19) 8′0″	16'3 1/2" (2)	1) 9′5″	Type 604	to 86,350		18′7″ (27)) 12 5
Badger Skimmer2	24,580 (19)) 8′0″	16'3 1/2" (2	2) 9'5"	Type 802	134,000	10'2" 2	0'10" (27)) 11′9″
Badger Crane	21.470(19) 8'0"	16'3 ½ " (2: 16'3 ½ " (2:		Type 1201	to 164,000	10'6"	24'6" (27)	12:11"
Badger Clamshell2	23,100(19)) 8′0″	16'3 1/2" (2	3) 9'5"	TADE 1701	to 218,000	10 0	-= U (21,	, 15 11
Badger Pile Driver2	24,700 (19)	8′0″	16'3 1/2" (2		Marion (Railway Sh				
Austin-Western (Railw					362 Shovel (32)		11'4" (34) 34	′5″ (35) 2	2′5″ (35`
Badger Shovel2	3,275 (19)	8'0"	16'3 ½" (20		33-M Shovel			10" (35) 1	
Badger Trench Hoe 2 Badger Skimmer2	3,800(19) 5 080/19)	8'0" 8'0"	16'3½" (22 16'3½" (22		Michigan (Highway	/ Shipping)			
Badger Crane2	1,970(19)	8'0"	16'3 1/2" (23	3) 9′5″	Model T-6-K				
Radger Dragline2	2.850(19)	8'0"	16'3 ½" (23 16'3 ½" (23	3) 9′5″ 3) 9′5″	As a Shovel			27′7″ 16′1″	9′11″ 11′6″
Badger Clamshell2 Badger Pile Driver2	5,200(19)	8'0"	16'3 ½" (23		As a Hoe As a Crane		7'11"	32'5"	10'4"
Bucyrus-Erie (Highway					As a Clam	21,775	7'11"	33′9″	10'4"
10-B %-yd. Shovel		7′8″	23′0″	9'9"	As a Dragline: Model TMDT-16	21,800	7′11″	33′2″	10'4"
15-B ½-yd. Shovel		7′11 ½	" 27′0"	10'0"	As a Shovel		7′11″	32'4"	10'6"
22-B ¾-yd. Shovel	41,000	9'4" 10'6"	31′0″ 40′0″	10′2″ 11′10 ½ ″	As a Hoe		7'11"	29'0"	12′10″
38-B 1½-yd. Shovel 54-B 2½-yd. Shovel	159.000	11'9"	47'0"	12'7"	As a Crane As a Clam		7′11″ 7′11″	36′10″ 38′2″	10'6" 10'6"
Bucyrus-Erie (Railway					As a Dragline			36'2"	10'6"
10-B [·] %-yd. Shovel		7′8″	23'0"	9'9"	Model TLDT-20 As a Crane	94 595	7′11″	37'0"	10'6"
15-B ½-yd. Shovel	27,000	$7'11\frac{1}{2}$	" 27'0"	10'0"	As a Clam			38'4"	10'6"
22-B ¼-yd. Shovel	42,000	9'4" 10'6"	31′0″ 40′0″	10′2″ 11′10½″	As a Dragline			36'4"	10'6"
38-B 1½-yd. Shovel 54-B 2½-yd. Shovel	161.000	10'6"	47'0."	12'7"	Model C-16 (29) As a Shovel	25 000	7′10″ (36	32'4"	9'0"
Hanson (Highway Ship					As a Hoe	25,000	7′10″ (36		11'4"
Model 31 Crawler %					As a Crane	23,175	7′10″ (36		9′0″ 9′0″
As a Shovel		8′0″	34'0"	9'0"	As a Clam As a Dragline	23,425	7′10″ (36 7′10″ (36		9'0"
As a Crane	22,150	8′0″ 8′0″	38′0″ 28′0″	9′0″ 10′0″	J	•	(55	,	• •
As a Trench Hoe Model 41 Crawler ½	25,000 -yd.				Michigan (Railway Model T-6-K	onipping)			
As a Shovel	27,500	8'2"	37′0″ 43′0″	9'9" 9'9"	As a Shovel			32'0"	9'6"
As a Crane As a Trench Hoe	26,000 27.000	8′2″ 8′2″	31'0"	10'9"	As a Hoe		7′11½″	33'7"	11'6"
		· -	0 _ 0		As a Crane As a Clam			39'1" 39'1"	9′6″ 9′6″
Hanson (Railway Shipp Model 31 Crawler %					As a Dragline			39'1"	9'6"
As a Shovel		8′0″	34'0"	9'0"	Model TMDT-16			401411	10,00
As a Crane	24,000	8'0"	38'0"	9′0″	As a Shovel As a Hoe	•••••	7'11" 7'11"	42′4″ 39′0″	10'6" 12'10"
As a Trench Hoe	24,000	8′0″	28'0"	10'0"	As a Crane		7′11″	44'0"	10'6"
Model 41 Crawler ½ As a Shovel		8'2"	37'0"	9'9"	As a Clam		7'11"	44'0"	10'6"
As a Crane	27,000	8'2"	43'0"	9′9″	As a Dragline Model TLDT-20		TII"	44′0″	10'6"
As a Trench Hoe	27,500	8'2"	31'0"	10′9″	As a Crane			44'0"	10'6"
Insley (Highway Shippi				4 0 4 5 **	As a Clam			44'0"	10'6"
K12 ½-yd. Shovel (24) 26,000	8'2"	26'0"	10'0"	As a Dragline Model C-16 (29)		T11"	44′0″	10′6″
K-12 Dragline (24)		8'2"	41'0"	10'0"	As a Shovel		7′10″ (36)	29'6"	9'0"
Insley (Railway Shippir	ng)		00.0	4 0.0	As a Hoe		7'10" (36)	29'8"	12'10"
K12 ½ -yd. Shovel (24) 26,000	8′2″ 8′2″	26'0" 12'6" (25	10'0"	As a Crane As a Clam			36′10″ 36′10″	9′0″ 9′0″
K12 Dragline (24) (26			12.0(20	7100	As a Dragline			36'10"	9'0"
Koehring (Highway or			11/5"	10/0"	Wayne (Highway S		, ,		
½-yd. (27) (28) ½-yd. (27) (29)	24,450 23 170	9′0″ 8′0″	11′5″ 11′5″	10′2″ 10′2″	Shovel		058 8'0"	30′0″	9'9'
⁷² -yu. (21) (23) 34-yd. (27) (30)	37,250	9'7"	15'2"	11'0"	Trench Hoe			28'0"	
¾-yd. (27) (30)	37,250	9'7"	15'2"	11,0,,	Trench Hoe	27,0	วยบ 8′0″	28′0″	9

1948

SHIPPING DATA (PAGE 3) (Summary of Data Received at Press Time)

Make and Model	Weight (Lbs.)	Width	Length	Height	Make and Model	Weight (Lbs.)	Width	Length	Height
Clamshell (26) Crane			41′9″ 41′9″	9′9 " 9′9"	HR-10 HR-12		6′2″ 6′2″	18′0″ 18′0″	6′3¼″ 6′3¼″
Dragline (26)			41'9"	9′9″		•		100	0 0 74
Wayne (Railway Ship	pina)		•		Tampo (Highway 6-8 Ton 3 Whee		5′10″	15'0"	4′9 ½″
Shovel	27,05		32'0"	9'9"	8-10 Ton 3 Whe	el16,000	6'8"	16'0"	6'3"
Trench Hoe			32′0″ 41′9″	9′9″ 9′9″	10-12 Ton 3 Wh	eel20,000	6′8″	16'0"	6'4"
Crane	27.08	8 8′0″	41'9"	9'9"		SCRAPE	RS		
Dragline (26)	27,18	9 8'0"		9′9″	American Tractor			_	
	ROAD ROL	LERS			H-51 H-52		7'2" 7'2"	20′0″ 20′0″	5′10″ 5′10″
Austin-Western (Hig		-			H-61		7'10"	20'2"	6'0"
5-8 Ton Tandem	11,950 (37	') 5′1%"	14'6"	7'21/4"	H-62	6,650	7'10"	20'2"	6′0″
8-10½ Ton Tandem.	16,800 (37	5'1%"	14'6"	7'21/4"	H-71 H-72		9′6″ 9′6″	20′5″ 20′5″	6′2″ 6′2″
6 Ton Cadet7 Ton Cadet			14′11½″ 14′11¼″	6′ ½″ 6′ ½″	H-81	9,400	9'6"	20'9"	6'4"
8 Ton Cadet	16,358 (38	3) 5'5¾"	14'11 % "	6'1 1/2"	H-101	11,000	9'6"	21'1"	6′8″
10 Ton Autocrat 12 Ton Autocrat	20,765(39	0) 7′1¼"	18′1%″ 18′1%″	6′5″ 6′5″	Bucyrus-Erie (Hig				
			10 1 78	0 0	S-46 S-68		7'9"	21'11" 24'0" -	7'5"
Austin-Western (Rai			1 4 0 0		S-91		8′11″ 9′11″	26'6"	8′0½″ 8′11″
5-8 Ton Tandem 8-10½ Ton Tandem.			14′6″ 14′6″	7′2¼″ 7′2¼″	S-113	18,950	10'9"	29'3"	9′9″
6 Ton Cadet	12	,605 (38)	14'1112"	6′ ½″	S-152 B-170	23,500 26,950	11′8″ 12′3″	31′3″ 34′3″	10'6" 10'11"
7 Ton Cadet			14'11 ¼ " 14'11 ¾ "	6' ½" 6'1½"	B-250	37,500	12'6"	41'2"	12'6"
8 Ton Cadet 10 Ton Autocrat	21	,165(39)	18'13%"	6'5''	G-38	5,200	8'4 ¾ "	13'2 ¼ "	4'4 1/4 "
12 Ton Autocrat			18′1 % "	6'5"	G-58	•	9'11"	13′8″	4′10″
Buffalo-Springfield (1	Highway or Ra	ilway Ship	ping)		Bucyrus-Erie (Rai		7/0//	01/11//	n, r,
KT-5	3,160	3'8"	8'5"	5'6"	S-46 S-68		7′9″ 8′11″	21′11″ 24′0″	7′5″ 8′0 ½ ″
KT-6KT-7	4,125	3′8″ 4′½″	8′5″ 10′4″	5′6″ 5′6″	S-91	15,250	9'11"	26'6"	8′11 ″
KT-16B	11,650	5′5 ½″	14'6 1/2"	7'11/2"	S-113 S-152	19,200	10'9"	29'3" al Knockd	9′9″
KT-17B		5'5 ½"	14'6 1/2"	7'1 1/2"	B-170	27,450		al Knockdo	
KT-18B KT-24B	16.885	5′5 ½″ 5′9 ½″	14'6 ½" 16'3"	7′1 ½ ″ 7′9 ½ ″	B-250	38,000		al Knockd	
KT-25B	20,000	5′9 ½″	16'3"	7′9 ½″	G-38 G-58		8′4 ¾ ″ 9′11″	13′2¼″ 13′8″	4'4 ¼ " 4'10"
VT-48 KX-25		6′4″ 5′9 ½″	20′7″ 21′8″	8′9 % " 7′9 ½ "	Caterpillar (Railw	·	0 - 1	*O C	110
VM-18	10,000	5′3″	15'9 % "	5'6"	No. 80		11'6"	35'6"	9'7"
VM-19	12,000	5'3"	15'9 34"	5′6″	No. 70	18,800	10'0"	31'2"	8'5"
VM-21 VM-24		5′7″ 5′7″	16′0″ 16′0″	5′8 ½″ 5′8 ½″	No. 60 No. 10		8′9″ 10′0″	27′8″ 25′4″	7′9″ 8′10″
VM-31	21,765	6'4 % "	18'6 1/2"	6′5 ½″		•	100	404	0 10
VM-32	24,405	6′4%″ ′8%″(40)	18'6 1/2"	6′5 ½ " 5′9″	Gar Wood (Highy		11/1	0.1/ //	401/ "
		, ,		บอ	Model 23 Model 25			0 ¼ "	4′0½″ 5′2″
C. H. & E. Mfg. Co.				4'9"	Model 508	10,220 8'10"	18'1	1"	8'10"
3 Ton Tandem	5,000	3′9″	8'4"	4.9.	Model 511 Model 517				9'8" 8 '10"
Galion (Highway or R		_	4 20.04	0.044.0	Model 524		" 27'6	6" (41)	9'7"
12 Ton Chief		6′4″ 6′4″	17′3″ 17′3″	6′8 ½ ″ 6′8 ½ ″	Model 528	29,420 11'5 1/2		l1" (42) 3" (41)	9:7"
8 Ton Warrior	16,000	5′10″	16'0"	6'7"	Model 525	20,420 110/2		1''(42)	9 1
7 Ton Warrior 6 Ton Warrior	14,000 12,000	5′10″ 5′10″	16′0″ 15′11″	6′7″ 6′4½″	Gar Wood (Railw	ay Shipping)			
10_Ton_Tandem	20,000	5′8 ½″	15'10"	7'11"	Model 23	. 3,190 7'6"		10 ¼ "	4'0 ½"
8 Ton Tandem		5′8 ½″ 5′5 ¼″	15'10"	7'11"	Model 25)¼″ 1″	5′2″ 8′10″
5 Ton Tandem 3 Ton Tandem		5′5 ½ ″ 4′3″	14′3″ 10′5 ¾ ″	7′3 ½″ 6′2″	Model 508 Model 511	.14,625 9'11"	23′		9′8″
Portable Roller		4'3"	10'5 ¾"	6'2"	Model 517	.23,150 11′5 1 ⁄2	26	8"	8'10"
Huber (Highway or R		-			Model 524	$.28,675 ext{ } 11'5 \frac{1}{2}$		6" (41) l1" (42)	9'7"
5 Ton 3 Wheel		5'7"	13'11"	5'2"	Model 528	.29,495 11'5 1/2	28′ 28′ 28′ 28′ 28′ 28′ 28′ 28′ 28′ 28′	6"(41)	9'7"
6 Ton 3 Wheel 8 Ton 3 Wheel		5′7″ 5′11″	13′11″ 14′6″	5′2″ 5′10″				11" (42)	
10 Ton 3 Wheel	20,392	6′5″	18'3"	6'2"	Heil (Highway or			0.445.5	0.0
3-4 Ton Tandem 5-8 Ton Tandem		4′0″ 5′3″	10′8″ 14′5″	5′7″ 7′1″	OC-6 OC-9		8′0″ 9′4″	24′10″ 28′7 ½″	6′3″ 6′6″
8-12 Ton Tandem		5'6"	16'7"	8'10"	OC-11	15,500 (43)	10'4"	28'7 1/2"	6′8″
Littleford (Highway o		opina)			OC-16	21,500(43)	11'0"	33'9"	8'0"
Portable		5′0″	7′9″	5'3"	OC-25	•	12'0"	38′9 ½″	9′2½″
Riddell (Highway or	,				LaPlant-Choate (-	40.00	0,11
HR-6		5′8″	14'4 ½"	5′3 ¾ ″	C22 C24	2,855 2,795	5′11″ 5′11″	12′0″ 16′0″	3′11″ 3′11″
HR-7	14,250	5′8″	14'4 1/2"	5'3 34"	C42	6,840	7′8 ¾ ″	17′1 ½″	5′8 ¼ "
HR-8	16,300	5′10″	16'4"	5′3 ¾ "	C44	6,930	7′8 ¾ ″	22′7″	5′8¼″

TANK CAPACITIES IN GALLONS

Number of Gallons Contained in Full Cylindrical Tanks of Various Sizes

Courtesy of Pioneer Engineering Works, Minneapolis, Minn.

Diam.					LENG	TH OR	DEP	TH IN	FEET				
Feet	5	6	. 7	8	9	10	11	12	13	14 .	15	16	17
1½ 2 2½ 3 3½ 4	66 117 184 264 360 470	79 141 220 317 432 564	164 257 370 504 658	188 294 423 576 752	212 330 476 648 846	235 367 529 720 940	404 582 792 1034	635 864	687 936 1222	1008 1316			1598
5 6 7 8 9	734 1058 1439 1880 2379 2938	881 1269 1727 2256 2855 3525	1028 1481 2015 2632 3331 4113	1175 1692 2303 3008 3807 4700	1322 1904 2591 3384 4283 5288	1469 2115 2879 3760 4759 5875	1616 2327 3167 4136 5235 6463	1763 2538 3455 4512 5711 7050	2750 3742	2056 2961 4030 5264 6662 8225	3173	3384 4606	2497 3596 4894 6392 8090 9988
11 12 13 14 15	3555 4230 4964 5758 6610	4265 5076 5957 6909 7931	4976 5922 6950 8061 9253	5687 6768 7943 9212 10575	6398 7614 8936 10364 11897	7109 8460 9929 11515 13219	7820 9306 10922 12667 14541	8531 10152 11915 13818 15863	9242 10998 12908 14970 17185	9953 11844 13901 16121 18507	10664 12690 14894 17273 19828	15886 18424	12085 14383 16879 19576 22472

TANK GAUGINGS

Table for Determining the Amount of Liquid in Partly Filled Horizontal Cylindrical Tanks

Especially prepared for Powers' Road and Street Catalog

Pct.	Pct.	Pct.	Pct.	Pct.	Pct.	Pct.	Pct.
of	of	of	of	of	of	of	of
Depth	Capacity	Depth	Capacity	Depth	Capacity	Depth	Capacity
Filled	Filled	Filled	Filled		Filled	Filled	Filled
1	0.20	26	20.73	51	51.27	76	81.50
-· 2	0.50	27	21.86	52	52.55	77	82.60
3	0.90	28	23.00	53	53.81	78	83.68
4	1.34	29	24.07	54	55.08	79	84.74
5	1.87	30	25.31	55	56.34	80	85.77
6	2.45	31	26.48	56	57.60	81	86.77
7	3.07	32	27.66	57	58.86	82	87.76
8	3.74	33	28.84	58	60.11	83	88.73
9	4.45	34	30.03	59	61.36	84	89.68
10	5.20	35	31.19	60	62.61	85	90.60
11	5.98	36	32.44	61	63.86	86	91.50
12	6.80	37	33.66	62	65.10	87	92.36
13	7.64	38	34.90	63	66.34	88	93.20
14	8.50	39	36.14	64	67.56	89	94.02
15	9.40	40	37.39	65	68.81	90	94.80
16	10.32	4.1	38.64	66	69.97	91	95.55
17	11.27	42	39.89	67	71.16	92	96.26
18	12.24	43	41.14	68	72.34	93	96.93
19	13.23	44	42.40	69	73.52	94	97.55'
20	14.23	45	43.66	70	74.69	95	98.13
- 21	15.26	46	44.92	71	75.93	96	98.66
22	16.32	47	46.19	72	77.00	97	99.10
23	17.40	48	47.45	73	78.14	98	99.50
24	18.50	49	48.73	74	79.27	9 9	99.80
25	19,61	50	50.00	75	80.39	100	100.00

SPECIFIC GRAVITY CONVERTED INTO POUNDS PER GALLON

From "Bituvia," a Pocket Book of Reilly Tar and Chemical Corp., Indianapolis, Ind.

Specific Gravity 60°/60° F.	Lbs. Per Gal.	Specific Gravity 60°/60° F.	Lbs. Per Gal.
F. 1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050 1.055 1.060 1.065 1.070 1.075 1.080 1.085 1.090 1.095 1.100	Gal. 8.328 8.370 8.412 8.453 8.495 8.536 8.578 8.620 8.761 8.703 8.745 8.786 8.828 8.870 8.911 8.953 8.995 9.036 9.073 9.119 9.161 9.203	F. 1.155 1.160 1.165 1.170 1.175 1.180 1.185 1.190 1.205 1.210 1.215 1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255 1.260	Gal. 9.619 9.661 9.702 9.744 9.786 9.827 9.869 9.911 9.952 9.994 10.036 10.077 10.119 10.160 10.202 10.244 10.285 10.327 10.369 10.410 10.452 10.494
1.110 1.115 1.120 1.125	9.244 9.286 9.328 9.369	1.265 1.270 1.275 1.280	10.535 10.577 10.619 10.660
1.125 1.130 1.135 1.140	9.369 9.411 9.453 9.494	1.280 1.285 1.290 1.295	10.660 10.702 10.743 10.785
1.145 1.150	9.536 9.5 78	1.300	10.827

GALLONS OF BITUMINOUS MATERIAL REQUIRED PER MILE FOR VARIOUS WIDTHS OF ROAD AT VARIOUS RATES OF APPLICATION

From Koppers Tarmac Handbook, published by Tar and Chemical Division, Koppers Co., Pittsburgh, Pa.

Width	Sģ. Yards					RAT	ES OF .	APPLICA	ATION ((Gallons l	Per Squa	re Yard)				
of Road	per Mile	1/10	15/100	1/5	1/4	3/10	1/3	35/100	4/10	45/100	1/2	6/10	2/3	7/10	3/4	8/10
Roau	MINE	.10	. 15	.20	. 25	.30	. 333	.35	. 40	.45	.50	. 60	. 667	. 70	75	80
6′	3520.0	352	528	704	880	1056	1173	1232	1408	1584	1760	2112	2347	2464	2640	2816
7′	4106.6	411	616	821	1027	1232	1369	1437	1643	1848	2053	2464	2738	2875	3080	3285
8′	4693.3	469	704	939	1173	1408	1564	1643	1877	2112	2347	2816	3129	3285	3520	3755
9′	5280.0	528	792	1056	1320	1584	1760	1848	2112	2376	2640	3168	3520	3696	3960	4224
10′	5866.6	587	880	1173	1467	1760	1956	2053	2347	2640	2933	3520	3911	4107	4400	4693
11'	6453.3	645	968	1291	1613	1936	2151	2259	2581	2904	3227	3872	4302	4517	4840	5163
12′	7040.0	704	1056	1408	1760	2112	2347	2464	2816	3168	3520	4224	4693	4928	5280	5632
14'	8213.3	821	1232.	1643	2053	2464	2738	2875	3285	3696	4107	4928	5476	5749	6160	6571
16′	938616	939	1408	1877	2347	2816	3129	3285	3755	4224	4694	5632	6258	6571	7040	7509
18′	10560.0	1056	1584	2112	2640	3168	3520	3696	4224	4752	5280	6336	7040	7392	7920	8448
20′	11733.3	1173	1760	2347	2933	3520	3911	4107	4693	5280	5867	7040	7822	8213	8800	9387
22′	12906.6	1291	1936	2581	3227	3872	4302	4517	5163	5808	6453	7744	8604	9035	96 80	10325

Width	C- Vd-			-	RA	ATES O	F APPL	CATIO	N (Gallo	ns Per Sc	quare Ya	rd)			
of Road	Sq. Yards per Mile	9/10	11	1-1/10	1-1/5	1-1/4	1-3/10	1-4/10	1-1/2	1-3/4	2	2-1/4	2-1/2	2-3/4	3
11044	, mic	. 90	1 00	1 10	1 20	1 25	1.30	1.40	1.5	1 75	2.0	2.25	2.5	2.75	3.0
6′	3520.0	3168	3520	3870	4224	4400	4576	4928	5280	6160	7040	7920	8800	9680	10560
7′	4106.6	3696	4107	4517	4928	5133	5339	5749	6160	7187	8213	9240	10267	11293	12320
8′	4693 3	4224	4693	5163	5632	5867	6101	6571	7040	8213	9387	10560	11733	12907	14080
9′	5280 0	4752	5280	5808	6336	6600	6864	7392	7920	9240	10560	11880	13200	14520	15840
10′	5866.6	5280	5867	6453	7040	7333	7627	8213	8800	10267	11733	13200	14667	16133	17600
11′	6453 3	5808	6453	7099	7744	8067	8389	9035	96 80	11293	12907	14520	16133	17747	19360
12'	7040 0	6336	7040	7744	8448	8800	9152	9856	10560	12320	14080	15840	17600	19360	21120
14'	8213.3	7392	8213	9035	9856	10267	10677	11499	12320	14373	16427	18480	20533	22587	24640
16'	9386 6	8448	9387	10325	11264	11733	12203	13141	14080	16427	18773	21121	23467	25813	28160
18′	10560 0	9504	10560	11616	12672	13200	13728	14784	15840	18480	21120	23760	26400	29040	31680
20'	11733 3	10560	11733	12907	14080	14667	15253	16427	17600	20533	23467	26400	29333	32266	35200
22'	12906 6	11616	12907	14197	15488`	16133	16,779	18069	19360	22587	25813	29040	32267	35493	38720
											<u> </u>				

WEIGHT OF ASPHALT-FELT JOINTS

The best known types of asphalt-felt expansion joints have approximately the following weights per 100 linear feet.

			Thicknes	s					Thickness	s	
Width.	¼ In.	% In.	½ In.	¾ In.	1 In	Width.	¼ In.	% In.	½ In.	¾ In.	1 In.
In.	Lb.	Lb.	Lb.	Lb.	Lb.	In.	Lb.	Lb.	Lb.	Lb.	Lb.
3	36	51	68	105	142	9	106	153	202	315	426
3½	42	59	· 79	122	165	10	118	170	225	350	474
4	47	68	90	140	189	11	130	187	248	385	533
5	59	85	112	175	237	12	142	204	270	420	570
<u>6</u>	71	102	135	210	284	Crating and packi	ing for si	hiomant a	dda abaut	•	
2	83	119	1 <i>57</i>	245	332	weights.	ing tot si	inpinent a	uus about	20% to ti	ie above
. 8	- 95	136	180	280	379	weights.		ì			

DESIGN OF STRUCTURAL CONCRETE MIXES

Concrete Information No. ST 56
Courtesy of the Portland Cement Association

A SIMPLE PROCEDURE for designing concrete mixes is given in "Proposed Recommended Practice for the Design of Concrete Mixes", Journal of the American Concrete Institute, November, 1943. Tables I through IV below have been taken from that report. Table V has been adapted from Table 5 of the report. The procedure involves the following steps:

STEP 1. Select water-cement ratio* necessary to produce concrete having required durability and specified strength. See Table I for recommended values for various types of construction and exposure conditions. Water-cement ratio for specified strength should be determined by test. When this is not practicable, values may be selected from Table II. The lower of the values selected from Tables I and II or determined by test should be used.

STEP 2. Select a suitable consistency. Use the lowest slump compatible with proper placing. Recommended values are given in Table III.

STEP 3. Determine maximum size of aggregate. Maximum size should be as large as practicable and

EXAMPLE. An example will serve to illustrate the procedure outlined above. Assume that a thin (8-in.) plain concrete wall is to be built, where climatic conditions are severe, a minimum strength of 3,000 p.s.i. is to be provided, stone sand of medium grading having 3 per cent moisture and gravel having $\frac{1}{2}$ per cent moisture are to be used. Vibrators will be used. Table I indicates that not more than 61/2 gal. of water per sack of cement should be used for the exposure conditions. Table II indicates that not more than 71/4 gal. of water per sack of cement should be used to produce the necessary strength. The 61/2-gal. mix therefore will be selected. Table III indicates that 2- to 5-in. slump can be used, say 3 in., with hand-placing and this can be reduced by one-third, say to 2 in., for vibration. Table IV indicates that coarse aggregate can be graded to 1½ in. From Table V it is found that for $6\frac{1}{2}$ gal. per sack of cement, about 34 gal. of water and 3,300 lb. of aggregate per cu.yd. of concrete will be used, with natural sand and gravel of these gradings and for a 3-in. slump. The fine aggregate is given as 37 per cent of the total but this percentage must be increased by 3, to 40 per cent because stone sand is to be used. The cement factor will be 34/6.5 = 5.23 sacks per cu.yd. For 2-in. slump, the water should be reduced by 3 per cent or about 1 gal. and for stone sand, the water should be increased by 15 lb. or 1.8 gal., making a net increase of 0.8 gal., to 34.8 gal. The cement required would then be 34.8/6.5 = 5.35 sacks per cu.yd. of concrete. Since the water is increased by 0.8 gal. and the cement is increased by 5.35 -5.23 = 0.12 sack, the amount of aggregate should be reduced correspondingly. The following rules may be applied for making this adjustment:

For each gallon increase or decrease in water content, subtract or add 22 lb. of aggregate. For each sack increase or decrease in cement, subtract or add 80 lb. of aggregate.

Adjustment in above example will be: $3,300 - [(22 \times 0.8) + (80 \times 0.12)] = 3,300 - 27 = 3,273$ ib. surface-dry aggregate

available but should not exceed two-thirds minimum clear distance between reinforcement. Recommended limits are given in Table IV.

STEP 4. Select the trial mix from Table V. Quantities in Table V are based on saturated, surface-dry aggregates. Correction must be made for surface moisture carried by the aggregates. Use the selected mix for the first batch or two but add only enough water to give the desired slump.

STEP 5. Make adjustments in succeeding batches. If amount of water used in Step 4 is more than for the water-cement ratio, decrease the amounts of aggregate added to the batch, and if it is less, increase the amounts of aggregate. It may be desirable also to increase or decrease the percentage of sand slightly to secure the most suitable mix for conditions prevailing on the job. An undersanded mix is indicated by harshness, difficulty in placing, and by stone pockets and honeycomb in the hardened concrete. An oversanded mix is indicated by an excess of mortar.

Then:

Weight of dry fine aggregate $= 3,273 \times 0.40 = 1,309$ lb. Weight of dry coarse aggregate $= 3,273 \times 0.60 = 1,964$ lb. Weight of damp fine aggregate $= 1,309 \times 1.03 = 1,348$ lb. Weight of damp coarse aggregate $= 1,964 \times 1.005 = 1,974$ lb. Moisture in aggregate = (1,348 - 1,309) + (1,974 - 1,964) = 49 lb. Water to be added to 1-cu.yd. batch = 34.8 - 49/8.33 = 28.9 gal. Then trial field quantities = 1,348 lb. damp sand, 1,974 lb. damp gravel, 28.9 gal. added water, and 5.35 sacks cement per cu.yd. of concrete.

If it is found, upon trying this mix, that more or less water is necessary for the required slump, adjustment can be made by decreasing or increasing the amount of aggregate, applying the above rules. Thus, suppose that 26.1 gal. added to above quantities of cement and damp aggregate gives desired slump. Then, adding moisture in aggregate, total water will be 26.1 + 49/8.33 = 32.0 gal. or 34.8 - 32.0 = 2.8 gal. less than estimated for above batch. The yield of concrete will be 27 - 2.8/7.5 = 26.68 cu.ft. and water content will be $(27/26.63) \times 32 = 32.4$ gal. per cu.yd. The corrected cement factor will be 32.4/6.5 = 5.0 sacks per cu.yd. Since water has been decreased 34.8 - 32.4 = 2.4 gal. and cement decreased 5.35 - 5.00 = 0.35 sack, the aggregate can be increased by $(22 \times 2.4) + (80 \times 0.35) = 81$ lb., and total dry aggregate will be 3.273 + 81 = 3.354 lb. Correction should be made also for moisture as outlined above. In this example:

Weight of dry fine aggregate $= 3,354 \times 0.40 = 1,342$ lb. Weight of dry coarse aggregate $= 3,354 \times 0.60 = 2,012$ lb. Weight of damp fine aggregate $= 1,342 \times 1.03 = 1,382$ lb. Weight of damp coarse aggregate $= 2,012 \times 1.005 = 2,022$ lb. Moisture in aggregate = (1,382-1,342)+(2,022-2,012)=50 lb. Water to be added to 1-cu.yd. batch = 32.4-50/8.33=26.4 gal. Then adjusted field quantities = 1,382 lb. damp sand, 2,022 lb. damp gravel, 26.4 gal. added water, and 5.0 sacks cement per cu.yd. of concrete.

NOTE: Table V, above example, and discussion are based on aggregates having specific gravity of 2.65. Most sands, gravels and crushed rocks vary so little from this average value as to introduce little error in the trial mix proportions. The adjustment in mix outlined above will correct such errors.

[◆]In Canada a sack of cement weighs 87½ lb. compared to 94 lb. in United States, and the Imperial gallon is equivalent to 1.2 U. S. gallons. To convert water-cement ratios given herein to Canadian units, multiply by 0.78. Thus 5 gal. per sack becomes 3.9 Imperial gallons per Canadian sack of cement.

TABLE I. NET WATER-CEMENT RATIOS FOR VARIOUS TYPES OF CONSTRUCTION AND EXPOSURE CONDITIONS*

			erature, ra	derate clima in, and lon t freezing a	freezing s	pells or	Mild climate, rain or semiarid; rarely snow or frost				
	Type or location of structure		ections, er sack	Moderate sections, gal. per sack		Heavy and mass sections.	Thin sections, gal. per sack		Moderate sections, gal. per sack		Heavy and mass
		Reinf.	Plain	Reinf.	Plain	gai. per sack	Reinf.	Plain	Reinf.	Plain	sections, gal. per sack
F	At the water line in hydraulic or waterfront structures or portions of such structures where complete saturation or intermittent saturation is possible, but not where the structure is continuously submerged: In sea water In fresh water	5 51⁄3	51/ ₆	51/3 6	6 6½	6 61/ <u>4</u>	5 51⁄2	51 <u>/</u> 2	5½ 6	6 . 61/2	6 61/2
	Portions of hydraulic or waterfront structures some distance from the water line, but subject to frequent wetting: By sea water	51/2 6	6 61/2	6 61/3	6.	6" 6½	51 <u>/</u> 2	61/s 7	61/2 7	7 71/2	7 71%
C	Ordinary exposed structures, buildings and portions of bridges not coming under above groups	6	614	61/2	7.	7	6	.7	7	73%	734
	o. Complete continuous submergence: In sea water In fresh water	6 61⁄3	614 7	6½ 7	7 71/2	7 71/2	6 61⁄2	63 % 7	61 <u>4</u>	7 73 <u>6</u>	7 7½
E	. Concrete deposited through water	**	**	51/2	51/2	51/2	**	**	51/2	51/6	53%
F	Pavement slabs directly on ground: Wearing slabs	5½ 6½	6 7	* **	**	**	6 [°]	61 <u>4</u> 73 <u>4</u>	**	**	**

and the water-cement ratio should be selected on the basis of the strength and workability requirements.

• These sections not practicable for the purpose indicated.

TABLE II. COMPRESSIVE STRENGTH FOR VARIOUS WATER-CEMENT RATIOS*

Net wat	er-cement ratio	Probable strength		
By weight	Gal. per sack cement	at 28 days, p.s.i.		
0.44	5	5,000		
0.49	51/2	4,500		
0.53	6	4,000		
0.58	61/6	3,600		
0.62	7	3,200		
0.67	736	2,800		
0.71	8	2,500		
0.75	81/2	2,000		

^{*}Adapted from Table 2 of the 1940 Joint Committee "Report on Recommended Practice and Standard Specifications for Concrete and Reinforced Concrete".

MIX PROPORTIONS BY VOLUME

Sand as used on the job almost invariably contains moisture which causes considerable bulking in volume. The amount of bulking varies with the amount of moisture and the grading of the sand. The weight of 1 cu.ft. of dry sand may vary from 100 to 115 lb. or more. The weight of dry sand in 1 cu.ft. of damp sand may vary from below 70 lb. up to the weight of 1 cu.ft. of dry sand. Thus, there is a possible variation of over 50 per cent in the amount of dry sand in 1 cu.ft. of damp sand, depending on the grading, moisture content and specific gravity. This explains why it is impossible to give accurate estimates of trial mixes by volume. Measurement of aggregates by weight is the general practice and should be required on all important work.

On small jobs, Table V can be used as a basis for estimating trial mixes by volume by making two simple tests. With a container of known capacity (a 1-cu.ft. box can be used) determine the weight per cu.ft of the sand and coarse aggregate separately, measured damp and loose. Having selected a suggested mix by weight from Table V, correct

TABLE III. RECOMMENDED SLUMPS FOR VARIOUS TYPES OF CONSTRUCTION*

Type of construction	Slump, in.**				
- Type of consulation	Maximum	Minimum			
Reinforced foundation walls and footings, and thin plain walls. Plain footings, caissons, and substructure walls. Slabs, beams, and reinforced walls. Building columns. Pavements. Heavy mass construction.	6	2 1 3 3 2 1			

Adapted from Table 4 of the 1940 Joint Committee "Report on Recommended Practice and Standard Specifications for Concrete and Reinforced Concrete".
 When high-frequency vibrators are used, the values given should be reduced about one-third.

TABLE IV. MAXIMUM SIZE OF AGGREGATE RECOM-MENDED FOR VARIOUS TYPES OF CONSTRUCTION

Minimum	Maximum size of aggregate*, in in., for:							
dimension of section, in.	Reinforced walls, beams and columns	Unreinforced walls	Heavily reinforced slabs	Lightly rein- forced or unreinforced slabs				
2½ to 5 6 to 11	1/2 to 1/4	116	% to 1	% to 13/2 13/2 to 3				
12 to 29 30 or more	11/4 to 3	3 6	1 1/2 to 3 1 1/2 to 3	3 3 to 6				

^{*}Based on square screen openings.

these weights for the moisture present. Then divide the corrected total weight of each aggregate by the corresponding weight per cu.ft., which will give the cu.ft. of each aggregate. The procedure is illustrated by the following example.

by the following example.

From Table V, a mix of 205 lb. sand and 365 lb. gravel per sack of cement is suggested for 6 gal. of mixing water, 3-in. slump, 1½-in. gravel, and sand of medium grading. If the sand contains 4 per cent moisture and the gravel 1 per cent, the corrected weights will be 1.04 × 205 = 213 lb. sand and 1.01

^{*}Adapted from Table 1 of the 1940 Joint Committee "Report on Recommended Practice and Standard Specifications for Concrete and Reinforced Concrete".

 \times 365 = 369 lb. gravel. Assume for this illustration that the sand is found to weigh 90 lb. per cu.ft. and the gravel 100 lb. per cu.ft., damp, loose. Then 213/90 = 2.4 cu.ft. sand and 369/100 = 3.7 cu.ft. gravel would be the trial mix proportions by volume.

FUNDAMENTALS OF CONCRETE MAKING

The procedure for design of concrete mixes discussed above is based on observing certain fundamental principles of making concrete. They include:

- 1. Suitable materials.
- 2. Accurate measurement of materials.
- 3. Thorough mixing.
- 4. A workable mix.
- 5. Proper placing.
- Adequate curing.

Use Good Materials. Sand, gravel, crushed stone or other aggregates for concrete work must be clean and free from clay, loam and dirt. Usually washed and screened materials assure best results. Mixing water should be clean enough to drink, unless tests or previous experience show it to be suitable.

Coarse materials give more economical results than finer materials. This is because each particle must be thoroughly coated by cement paste and less paste is required for a given volume of coarse particles than for the same volume of small particles. Best results are secured with graded aggregates, that is, aggregates containing particles ranging from fine to coarse, with the coarse predominating. Sufficient fine particles are necessary, however, to give workability and smooth surfaces. Generally, the sand should contain from 10 to 30 per cent of particles passing a 50-mesh sieve, but for thin walls and where it is required to produce smooth surfaces a minimum of 15 per cent is desirable.

Materials should be kept in separate piles. Cement should be kept in a dry place as in a building or on a raised platform and covered with tarpaulins.

Measure Materials Accurately. Each of the ingredients should be accurately measured. Portland cement is furnished in sacks weighing 94 lb., considered as 1 cu.ft. Fractional bags should not be used unless they are weighed for each batch. Weight measurement of aggregates gives by far the best results and should be required on all important work. Measurement by volume is permitted only on small jobs in which case a 1-cu.ft. box or other container of known volume may be used. Usually the proper amount of sand is measured by the box into one wheelbarrow and the proper amount of coarse aggregate into another, marking the level to which each is filled. The wheelbarrows are then filled to these levels for each batch, dispensing with the box.

Water can be measured by buckets or by the tank on the mixer if it has an accurate measuring device. The capacity of a bucket can be determined by filling it with water from a quart measure, placing a mark on the inside of the bucket to indicate the proper amount (1 qt. = $\frac{1}{4}$ gal.). If a measuring device on the mixer is used, find out how much water is measured at each setting on the dial. This is done by discharging the water measured at each dial setting into buckets of known capacity.

Mix Thoroughly. Mix concrete thoroughly and until the color is uniform and there is a uniform distribution of the materials. Do not overload mixers or operate them at speeds higher than recommended by the manufacturer. Continue mixing for at least 1 minute after all materials are in the mixer. Longer mixing gives more uniform results.

Use a Workable Mixture. Should the proportions of sand and coarse aggregate selected give a mixture which is not workable, they should be adjusted to produce a mixture suitable for the job but without exceeding the selected amount of mixing water. The concrete should be a plastic mass which holds together during handling and placing. Very stiff mixes can be used when concrete is placed by vibration. Mixtures which permit water to rise to the surface or permit mortar to separate from coarse material should be avoided. Lack of fine particles in sand is sometimes responsible for water separation and must be corrected by supplying additional fines.

Place Concrete Carefully. Handle and place concrete carefully to prevent the materials from separating. In general it should not be allowed to drop freely into place more than 3 or 4 ft. Place it in the forms where it is to stay, and in horizontal layers, usually not over 1 to 2 ft. thick. Do not allow the concrete to flow over long distances in the forms as this causes the materials to separate. Spade each layer to settle the concrete, release air, remove stone pockets and provide smooth surfaces along the forms.

Do not trowel or float concrete excessively while it is soft. Such working of the surface brings water and fine material to the top, which upon hardening has a tendency to check and crack. Best results are secured by allowing the concrete to stand until it is quite stiff before finishing.

Cure New Concrete. The chemical reactions between cement and water require time. Under favorable conditions of moisture and temperature these reactions continue indefinitely. Thus strength, hardness, watertightness, durability and other desirable qualities continue to improve under the right conditions.

For continued improvement concrete must be kept moist. When the water used in mixing is lost by evaporation, the chemical reactions cease. Concrete should be protected from early drying by leaving forms in place, covering exposed surfaces with wet sand, burlap or other materials and by sprinkling. This wet "curing" should be started as soon as possible without marring the surfaces and should be continued as long as possible—at least 5 days when normal portland cement is used and 2 days when high early strength portland cement or concrete is used.

Favorable temperature is the second requirement for continued improvement. The reactions between cement and water are more rapid at high than at low temperatures. Near freezing, the reactions almost cease. Concrete moist-cured at 70 deg. F. for a week may have twice the strength of similar concrete cured at 50 deg. F. In mildly cold weather, the water may be heated to raise the temperature of the concrete to 70 deg. F. In freezing weather, the water and aggregates should be heated so that the temperature of the mixed concrete is between 70 and 80 deg. F. It should then be kept above 70 deg. for 3 days or above 50 deg. for 5 days for normal portland cement concrete, and above 70 deg. for 2 days or 50 deg. for 3 days when high early strength portland cement or concrete is used. Salt or other chemicals should not be used to lower the freezing point of concrete.

TABLE V. SUGGESTED TRIAL MIXES FOR CONCRETE OF MEDIUM CONSISTENCY (3-in. Slump*)

		V. 3		IG ROL			RSE	GGRE		CKEIE	li						GGREG		
Max. size of	Water, gal. per	Sand,	1	k cement	1		u.yd. of			Yield, cu.ft.	Sand,	ı	cement				concrete		Yield,
coarse agg., in.	sack cement	per cent of total	sand, Ib.	gravel, lb.	wai	ter gal.	cement, sacks	sand, lb.	gravel, lb.	conc. per sack cement	per cent of total	sand, lb.	stone, lb.	wa lb.	ter gal.	cement, sacks	sand, 1b.	stone, lb.	cu.ft. conc. per sack cement
							With F	ine San	d-Fine	ness Mo	dulus	2.20-2.	60†						
3/4 1 11/2 2	5 5 5	41 36 32 29	170 155 150 150	245 275 320 360	310 300 280 270	37 36 34 32	7.4 7.2 6.8 · 6.4	1260 1115 1020 960	1800. 1980 2180 2300	3.65 3.75 3.97 4.22	46 41 37 34	170 155 155 155	200 225 260 295	335 325 305 295	40 39 37 35	8.0 7.8 7.4 7.0	1360 1210 1150 1085	1600 1755 1925 2065	3.38 3.46 3.65 3.86
1 1 13/2 2	51/4 51/4 51/4 51/4	42 37 33 30	195 180 170 170	270 305 350 400	310 300 280 270	37 36 34 32	6.7 6.5 6.2 5.8	1310 1170 1055 985	1810 1985 2170 2320	4.03 4.15 4.36 4.66	47 42 38 35	195 180 175 175	220 250 290 325	335 325 305 295	40 39 37 35	7.3 7.1 6.7 6.4	1420 1280 1170 1120	1605 1775 1945 2080	3.70 3.80 4.03 4.22
34 1 11/2 2	6 6 6	43 38 34 31	220 205 195 195	290 330 380 435	310 300 280 270	37 36 34 32	6.2 6.0 5.7 5.3	1360 1230 1110 1035	1800 1980 2165 2300	4.36 4.50 4.74 5.10	48 43 39 36	220 205 200 200	235 270 310 355	335 325 305 295	40 39 37 35	6.7 6.5 6.2 5.8	1475 1330 1240 1160	1575 1755 1920 2060	4.03 4.15 4.36 4.66
3/4 1 11/2 2	614 614 614 614	44 39 35 32	245 230 225 220	315 360 415 470	310 300 280 270	37 36 34 32	5.7 5.5 5.2 4.9	1400 1265 1170 1080	1795 1980 2160 2300	4.74 4.91 5.19 5.51	49 44 40 37	245 230 225 225	255 290 335 380	335 325 305 295	40 39 37 35	6.2 6.0 5.7 5.4	1520 1380 1280 1215	1580 1740 1910 2050	4.36 4.50 4.74 5.00
3/4 1 13/2 2	7 7 7 7	45 40 36 33	275 255 245 245	335 385 435 495	310 300 280 270	37 - 36 34 32	5.3 5.1 4.9 4.6	1460 1300 1200 1125	1775 1965 2130 2275	5.10 5.30 5.51 5.87	50 45 41 38	275 255 250 250	275 310 360 410	335 325 305 295	40 39 37 35	5.7 5.6 5.3 5.0	1570 1430 1325	1570 1735 1910	4.74 4.82 5.10
3% 1 13% 2	714 714 714 714 714	46 41 37 34	305 280 275 270	360 405 470 525	310 300 280 270	37 36 34 32	4.9 4.8 4.5 4.3	1495 1345 1240	1765 1945 2115	5.51 5.63 6.00 6.28	51 46 42	305 280 280	290 330 385	335 325 305 295	40 39 37 35	5.3 5.2 4.9	1250 1615 1460 1370	2050 1540 1715 1890	5.40 5.10 5.19 5.51
34 1 134 2	8 .8 .8	47 42 38 35	335 310 300 300	380 430 490 560	310 300 280 270	37 36 34 32	4.6 4.5 4.3 4.0	1160 1540 1395 1290 1200	2260 1750 1935 2105 2240	5.87 6.00 6.28 6.75	39 52 47 43 40	275 330 310 305	430 305 350 405	335 325 305	40 39 37	4.7 5.0 4.9 4.6	1290 1650 1520 1405	2020 1525 1715 1865	5.75 5.40 5.51 5.87
	• 1	1 33 1	300	300	270		!			neness N		305 s 2.60-	455 2.90†	295	35	4.4	1340	2000	6.14
3/4 1 13/2 2	5 5 5 5	43 38 34 31	180 165 160 160	235 270 310 350	310 300 280 270	37 36 34 32	7.4 7.2 6.8 6.4	1330 1190 1090 1025	1740 1945 2110 2240	3.65 3.75 3.97 4.22	48 43 39 36	175 165 160 160	190 220 250 290	335 325 305 295	40 39 37 35	8.0 7.8 7.4 7.0	1400 1290 1185 1120	1520 1715 1850 2030	3.38 3.46 3.65 3.86
34 1 11/2 2	51/2 51/2 51/2 51/2	44 39 35 32	205 190 180 180	260 300 340 390	310 300 280 270	37 36 34 32	6.7 6.5 6.2 5.8	1370 1235 1115 1045	1740 1950 2115 2260	4.03 4.15 4.36 4.66	49 44 40 37	200 190 185 185	210 240 280 315	335 325 305 295	40 39 37 35	7.3 7.1 6.7 6.4	1460 1350 1240 1185	1535 1705 1875 2015	3.70 3.80 4.03 4.22
34 1 134 2	6 6 6	45 40 36 33	230 215 205 210	280 320 365 425	310 300 280 270	37 36 34 32	6.2 6.0 5.7 5.3	1425 1290 1170 1110	1735 1920 2080 2250	4.36 4.50 4.74 5.10	50 45 41 38	230 215 210 210	230 260 300 345	335 325 305 295	40 39 37 35	·6.7 6.5 6.2	1540 1400 1300 1220	1540 1690 1860 2000	4.03 4.15 4.36 4.66
1 1 11/2 2	614 614 614	46 41 37 34	260 240 235 235	305 350 400 455	310 300 280 270	37 36 34 32	5.7 5.5 5.2 4.9	1480 1320 1220 1150	1740 1925 2080 2230	4.74 4.91 5.19 5.51	51 46 42 39	255 240 235 235	245 280 325 370	335 325 305 295	40 39 37 35	6.2 6.0 5.7 5.4	1580 1440 1340 1270	1520 1680 1850 2000	4.36 4.50 4.74 5.00
1 1 1 2 2	7 7 7 7	47 42 38 35	285 270 260 260	325 370 420 480	310 300 280 270	37 36 34 32	5.3 5.1 4.9 4.6	1510 1375 1275 1195	1725 1890 2060 2210	5.10 5.30 5.51 5.87	52 47 43 40	285 265 260 265	265 300 350 395	335 325 305 295	40 39 37 35	5.7 5.6 5.3 5.0	1625 1480 1380 1325	1510 1680 1855 1975	4.74 4.82 5.10 5.40
34 1 114 2	71/3 71/3 71/3 71/3	48 43 39 36	320 295 290 285	350 370 455 510	310 300 280 270	37 36 34 32	4.9 4.8 4.5 4.3	1570 1415 1305 1225	1715 1875 2050 2190	5.51 5.63 6.00 6.28	53 48 44 41	315 · 295 295 290	280 320 370 415	335 325 305 295	40 39 37 35	5.3 5.2 4.9 4.7	1670 1535 1445 1360	1485 1665 1810 1950	5.10 5.19 5.51 5.75
1 1 11/2 2	8 8 8	49 44 40 37	350 325 315 320	365 415 470 540	310 300 280 270	37 36 . 34 32	4.6 4.5 4.3 4.0	1610 1465 1355 1280	1680 1870 2020 2160	5.87 6.00 6.28 6.75	54 49 45 42	345 320 320 320	290 335 395 440	335 325 305 295	40 39 37 35	5.0 4.9 4.6 4.4	1725 1570 1470 1410	1450 1640 1820 1935	5.40 5.51 5.87 6.14
a/ 1	5 I	45	195	230	310	W 37				eness M				224	1 40	1 00	1400	1400	1 222
111/2	5 5 5	45 40 36 33	185 175 170 170	260 300 340	300 280 270	36 34 32	7.4 7.2 6.8 6.4	1370 1260 1155 1090	1700 1870 2040 2175	3.65 3.75 3.97 4,22	50 45 41 38	185 170 170 170	185 210 245 280	335 325 305 295	40 39 37 35	8.0 7.8 7.4 7.0	1480 1325 1260 1190	1480 1640 1810 1960	3.38 3.46 3.65 3.86
13/2	514 514 514	46 41 37 34	215 200 190 195	250 285 330 375	310 300 280 270	37 36 34 32	6.7 6.5 6.2 5.8	1440 1300 1180 1130	1675 1855 2045 2175	4.03 4.15 4.36 4.66	51 46 42 39	210 195 195 195	200 230 270 305	335 325 305 295	40 39 37 35	7.3 7.1 6.7 6.4	1535 1385 1310 1250	1460 1635 1810 1950	3.70 3.80 4.03 4.22
11/2	6 6 6	47 42 38 35	240 225 220 220	270 310 355 410	310 300 280 270	37 36 34 32	6.2 6.0 5.7 5.3	1490 1350 1250 1165	1675 1860 2020 2170	4.36 4.50 4.74 5.10	52 47 43 40	235 225 220 220	220 250 290 335	335 325 305 295	40 39 37 35	6.7 6.5 6.2 5.8	1575 1460 1360 1280	1475 1625 1800 1940	4.03 4.15 4.36 4.66
1 13/2 2	614 614 614	48 43 39 36	270 255 250 250	290 335 390 440	310 300 280 270	37 36 34 32	5.7 5.5 5.2 4.9	1540 1400 1300 1225	1650 1840 2030 2160	4.74 4.91 5.19 5.51	53 48 44 41	265 250 245 250	235 270 315 355	335 325 305 295	40 39 37 35	6.2 6.0 5.7 5.4	1640 1500 1400 1350	1460 1620 1795 1920	4.36 4.50 4.74 5.00
1 11/6 2	7 7 7 7.	49 44 40 37	300 280 270 270	310 360 405 465	310 300 280 270	37 36 34 32	5.3 5.1 4.9 4.6	1590 1430 1320 1240	1640 1835 1985 2140	5.10 5.30 5.51 5.87	54 49 45 42	295 275 275 280	250 290 335 380	335 325 305 295	40 39 37 35	5.7 5.6 5.3 5.0	1680 1540 1455 1400	1425 1625 1775 1900	4.74 4.82 5.10 5 40
1 11/2 2	7½ 7½ 7½ 7½	50 45 41 38	335 310 305 300	335 375 440 495	310 300 280 270	37 36 34 32	4.9 4.8 4.5 4.3	1640 1490 1375 1290	1640 1800 1980 2130	5.51 5.63 6.00 6.28	55 50 46 43	330 305 310 305	270 305 360 400	335 325 305 295	40 39 37 35	5.3 5.2 4.9 4.7	1750 1585 1520 1430	1430 1585 1765 1880	5.10 5.19 5.51 5.75
1 1132 2	8 8 8	51 46 42 39	365 340 330 335	350 400 455 525	310 300 280 270	37 36 34 32	4.6 4.5 4.3 4.0	1680 1530 1420 1340	1610 1800 1960 2100	5.87 6.00 6.28 6.75	56 51 47 44	355 335 335 335 335	280 320 380 425	335 325 305 295	40 39 37 35	5.0 4.9 4.6 4.4	1775 1640 1540 1475	1400 1570 1750 1870	5.40 5.51 5.87 6.14

^{*}Increase or decrease water content 3 per cent for each increase or decrease of 1 in. in slump. For stone sand; increase percentage of sand by about 3 and water content by about 15 lb. per cu.yd. of concrete.

†Fineness modulus of an aggregate is the sum of the percentages given by the sleve

analysis, divided by 100. The sleve analysis is expressed as percentages of the material by volume or weight re ained on the following sieves from the Tyler standard series: 100, 48, 28, 14, 8, 4, 3/4-in., 3/4-in. and 11/2-in. Majority of natural sands used for concrete have needum grading.

CONVERSION FACTORS

(Continued)

Multiply Pounds of water	By 0.01602	. Cubic inches	Multiply Squaré kilometers " "	247.1 0.76x10 ⁶ 1.196x10 ⁶	. Square feet
Pounds/cubic foot	0.01602 16.02 5.787×10-4	Grams/cubic cm. Kgs./cubic meter Lbs./cubic inch	Square meters	1.196	. Square yards
Pounds/foot Pounds/inch		Kgs./meter Grams/cm.	Square miles	27.88×10 ⁶	
Pounds/sq. foot		Feet of water	Square yards	9 0.8361 2.066x10-4	. Square meters
Pounds/sq. inch	2.036 0.06804	Feet of waterInches of mercuryAtmospheresKgs./sq. meter		2240 1.12000	. Tons (short)
Quires	•		Tons (metric)	2205	
Reams			Tons (short)	2000 907.18486	
Square centimeters	0.1550 1.076×10-8	Square inches Square feet	Tons of water/24 hrs		
Square feet	144 0.09290 2.296x10- ⁵	Square inches Square meters Acres	Watts	0.7376 1.341x10-8	. Foot-pounds/sec
Square inches	6.452	Square centimeters	Yards	0.9144	. Meters

TEMPERATURE CONVERSION TABLE CENTIGRADE AND FAHRENHEIT

From the "Barrett Road Book," published by The Barrett Company

C°	F°	C°	F°	C°	F°	C.	F°	C°	F°	C°	F°	C°	F°	C°	F°
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 31 31 31 31 31 31 31 31 31 31 31	32 33.8 35.6 37.4 39.2 41 42.8 44.6 48.2 50 51.6 55.4 57.2 59 60.8 62.6 64.4 66.2 68.8 71.6 73.4 75.2 77.8 80.6 82.4 86.8 87.8 89.6 891.4	45 46 47 48 49 51 53 55 55 57 58 59 60 61 62 63 64 66 67 77 77 77 77 77 77 77 77	113 114.8 116.6 118.4 122.2 122 123.8 125.6 127.4 129.2 131 132.8 134.6 136.4 138.2 140 141.8 143.6 145.4 147.2 149 150.8 152.6 154.4 156.2 158 159.8 161.6 163.4 165.2 167.4 167.4 172.4	91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125	195.8 197.6 199.4 201.2 203.8 204.8 206.6 208.4 210.2 212 213.8 215.6 217.4 219.2 221.8 224.6 226.4 228.2 230.2 231.8 233.6 235.4 237.2 240.8 244.4 246.2 248 244.4 246.2 248 249.8 251.6 255.4 255.2	137 138 139 140 141 142 143 144 145 146 147 148 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	278.6 280.4 282.2 284 285.8 287.6 289.4 291.2 293. 294.8 296.6 298. 302. 303.8 305.6 307.4 309.2 311.8 314.6 316.4 318.2 321.8 323.6 327.2 329.8 332.6 334.4 336.2 338.8	183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 200 201 202 203 204 204 207 208 209 210 211 212 213 214 215	361.4 363.2 365.8 366.8 370.4 372.2 374 377.6 379.4 381.2 383.8 386.6 388.4 390.2 392.8 395.6 397.4 399.2 400 401.8 404.6 406.4 411.8 417.2 419.8	217 218 218.3 219 220 221 222 223 224 225 226 227 228 229 230 231 232 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246.1 248	422.6 424.4 425 426.2 429.8 431.6 433.4 435.2 437 438.8 440.6 447.8 447.8 451.4 453.2 456.8 450.4 451.4 453.2 456.8 462.2 464.8 467.6 469.4 471.2 473.8 476.6 478.4	248.9 249.250 251.252.253 254.255 256.257.258 259.260 261.262.263 264.265 267.268 269.270 271.272.273 274.275 276.277 278.279 280.281 282.282	480 480.2 482.8 485.6 487.4 489.2 491.8 494.6 496.4 498.2 501.8 503.6 505.4 507.2 519.8 512.6 523.4 523.4 525.7 528.8 530.6 534.2 536.8 537.8 539.6	282,22 283 284 285 286 287 288 289 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 306 310 311 312 313 314 315	540.4 541.4 543.2 546.8 548.6 550.4 550.4 550.4 550.4 550.4 550.4 550.4 550.4 550.4 560.4 570.4 577.4 57
34 35 36 37 38 39 40 41 42 43 44	93.2 95 96.8 98.6 100.4 105.8 107.6 109.4 111.2	80 81 82 83 84 85 86 87 88 89	176 177.8 179.6 181.4 183.2 185 186.8 188.6 190.4 192.2	126 127 128 129 130 131 132 133 134 135 136	258.8 260.6 262.4 264.2 266. 267.8 269.6 271.4 273.2 275 276.8	172 173 174 175 176 177 178 179 180 181	341.6 343.4 345.2 347 348.8 350.6 352.4 354.2 356.2 357.8 359.6			-	1.8 C. plo		ded by 1	.8.	·

CONVERSION FACTORS*

Courtesy of Water and Sewage Works

The word gallon, used in any conversion factor, designates the U. S. gallon. Likewise, the word ton designates a short ton, 2,000 pounds.

The figures 10^{-1} , 10^{-2} , 10^{-3} , etc., denote 0.1, 0.01, 0.001, etc., respectively.

The figures 10^{1} , 10^{2} , 10^{3} , etc., denote 10, 100, 1000, etc.. respectively.

"Parts Per Million," (designated as p.p.m.), is always by weight. As used in the sanitary field, p.p.m. represents the number of pounds of dry solids contained in one million pounds of water. In this field, one part per million may be expressed as 8.345 pounds of dry solids to one million U. S. gallons of water.

8.345 pounds of dry solids	to one million U. S. gallons of wa	iter
Multiply	By To Obtain	
Acres	43,560Square feet 4047Square meters	
	43,560	
Acre-feet	325,851 Gallons	
Atmospheres	33.90 Feet of water	
14 '	76.0	
Barrels cement	376 Pounds-cement	
Bags or sacks-cement	94Pounds— "	
British Thermal Units	777.5 Foot-lbs.	
3	777.5 Foot-lbs. 3.927x10-4 Horse-power-hrs. 2.928x10-4 Kilowatt-hrs.	
"	0.2520Kilogram-calories 107.5Kilogram-meters	;
B.T.U./min.	12.96	
** **	0.01757Kilowatts	
Centimeters	0.3937 Inches	
Centimeters of mercury	0.01316Atmospheres 0.4461Feet of water	
	27.85	
Centimeters/second	1.969 Feet/min.	
	0.03281Feet/sec. 0.6Meters/min,	
Cubic centimeters3	3.531x10-5Cubic feet	
	5,102x10-2Cubic Inches	
** ** ******	10-6Cubic meters 10-8Liters	
Cubic feet	7.48052 Gallons	
: :: ::::::::::::::::::::::::::::::::::	1728	
	28.32 Liters 2.832x104 Cubic cms.	
" "	0.02832Cubic meters	
Cubic feet/second	0.646317Million gals./day 448.831Gallons/min.	
	1.639x10-5Cubic feet	
	16.39	
Cubic meters	35.31 Cubic feet	
	264.2 Gallons	
Cubic yards	27	
	0.7646Cubic meters 202.0Gallons	
***************************************	764.6Liters 27.34375Grains	
***************************************	0.0625 Ounces	
Fathoms	1.771845 Grams 6 Feet	
Feet	30.48Centimeters	
**	0.3048 Meters	
Feet of water	0.8826 Inches of mercury 0.4335 Lbs./sq. inch	
16 16 14	62.43 Lbs./sq. ft. 0.02950 Atmospheres 304.8 Kgs./sq. meter	
	•	
	30.48Centimeters/sec. 18.29Meters/min.	
Foot-nounds 1	286v10-8 British thermal un	its
5.	.050x10-7	
	.766x10-1 Kilowatt-hrs.	

una Sewaye Works	•	
Multiply	Ву	To Obtain
Foot-pounds/min	.3.030x10-5	. Horse-power
Gallons	0.1337 231	Cubic feet. Cubic inches
	. 3785 .3.785x10-8	Cubic inches Cubic centimeters Cubic meters
44	3.785	. Liters
Gallons, Imperial U. S	1.200095	U. S. gallons
	**	. Pounds of water
Gallons water		
44 46	.2.228×10-3 0.06308	. Liters/sec.
		- · ·
Grains (troy)		Grains (avoir.)
		Parts/million
Grains/U.S. gal	142.86	. Lbs./million gal.
_		. Parts/million
Grams	0.03527	Ounces
••••••	980.7	. Dynes
Grams/liter	8.345	. Grains/gal. . Pounds/1000 gals.
41 44	1000	. Parts/million
Hectares	2.471	. Acres
Horse-power	42.44	.B.T. Units/min. .Foot-lbs./sec.
	0.7457	. Kilowatts
Horse-power (boiler)	33,479	.B.T.U./hr. .Kilowatts
Inches		. Centimeters
Inches of mercury	1.133 0.4912	. Feet of water . Lbs./sq. inch
4 44 44	0.03342 345.3	. Atmospheres . Kgs./sq. meter
Inches of water		. Inches of mercury
4 4 4		.Lbs./sq. inch
Kilograms		
Kilograms-calories/min	51.43 0.09351	Foot-pounds/sec. Horse-power
• • •	0.06972	. Kilowatts
Kgs./sq. meter	1.422x10- ⁸	. Feet of water . Lbs./sq. inch
Kilometers		
		. Feet/sec.
Kilometers/hr		. Centimeters/sec.
Kilowatts	737.6	.B.T. Units/min. Foot-lbs./sec.
44	1.341	. Horse-power . Kgcalories/min.
Liters	0.2642 61.02	
"	61.02	. Cubic inches . Cubic feet
Meters	3.281	
***************************************	39.37 1.094	Inches Yards
Miles	5280 1.609	Feet Kilometers
Miles/min		Feet/sec.
* *	1.609	Kilometers/min.
Milligrams/liter		Parts/million
Million gals./day Miner's inches		Cubic ft./sec. Cubic ft./min.
Ounces	28.349527	Grams
44	437.5	
Ounces (fluid)	1.805	Cubic inches
Parts/million		Cubic cm. Lbs./million gal.
" " "	0.0584	Grains/U. S. gal.
Pounds	0.07016	Grains/Imp. gal. Ounces
**	7000	Grains
***************************************		Pounds (troy)

HOW TO FIND THE LENGTH OF A BELT

Courtesy of Pioneer Engineering Company Minneapolis, Minnesota

1. Add the diameter of the 2 pulleys together. 2. Multiply this sum by 1.57.

Add twice the distance between the centers of shafts. This will give the exact length of the belt if the pulleys are of the same size. If there is considerable difference in the sizes of the 2 pulleys, the additional length of belt required can be figured as follows:

Subtract the diameter of the smaller pulley from the diameter of the larger pulley.

5. Multiply the remainder by itself.6. Divide this product by 4 times the distance between the centers of shafts.

The result added to the figure obtained before will give the exact length of belt required.

EXAMPLE:

What length of belt will be required to pass over 2 pulleys one of 2' diameter and the other 5' diameter-the distance between shaft centers being 20'?

5 ft. dia. large pulley +2 ft. dia. small pulley

7 ft. sum of diameters

 \times 1.57 (constant)

10.99 ft.

+ 40.00 (twice distance between centers)

50.99 length of belt or 51 ft. 5 ft. dia. large pulley

4. 2 ft. dia. small pulley

ft. difference of diameters 5. × 3 (Multiplied by itself)

6. ÷80 (divided by 4 times distance between shaft

11.25 50.99 length of belt

51.10 ft. length of belt or 51 ft. 1 1/5 in.

DETERMINING YARDAGE ON REELS OR DRUMS

Although the formula was designed for computing the length of cable, etc., of various diameters, which a reel or drum of given dimensions will accommodate, the method is equally valuable for determining footage remaining on a reel or drum, for inventory purposes or other reasons. In such instances the depth (A) is the depth (in inches) of rope, cable, wire, etc., remaining on the drum or reel.

Example: Assume a reel having a 5 in. core (B) and a width of 10 in. (C). The material is 1/4 in. in diameter and its depth on the core is 2 in. (A).

 $(B + A) \times A \times C = X$ $(5 + 2) \times 2 \times 10 = 140$

Now refer to table of factors for the "K" value for $\frac{1}{2}$ in. materials, such being 4.16 ... The footage is $140 \times 4.16 = 582$ ft. or, if $\frac{1}{2}$ in. material $140 \times 1.05 = 147$ ft.

If it is desired to determine the length of rope, wire, rubber hose, copper tubing, packing, caulking yarn, etc., wound on a drum or recl, the accompanying formula will prove very helpful.

The sketch, with formula and factors, appeared in Wire Rope Cat. No. 20 of the Hazard Wire Rope Div. of American Chain and Cable Co. Inc.

PULLEY DIAMETERS OF POWER UNITS, CRUSHERS AND SCREENS

Courtesy of Pioneer Engineering Company Minneapolis, Minnesota

When you want to find the correct size of pulley for the power unit, use the following-

FIRST: You must have the following information:	
	EXAMPLE
1. R. P. M. of Crusher	250
2. Diameter of Crusher flywheel	50"
3. R. P. M. of motor	950
SECOND: Method:	
1. Multiply the R. P. M. of the crusher	250
2. By the diameter of the flywheel	50"

12500 3. Divide the answer by the R. P. M. of the 950

The answer is the diameter of the motor pulley in inches The same formula can be used to determine the size of the pulley to be used on a screen-

1. Multiply the R. P. M. of the motor	975 8″
3. Divide by the speed of the screen	7800
Diameter of the screen pulley	30"

FORMULA:- $L = (A + B) \times A \times C \times K$

L = Length of rope in feet.

Depth of flange in inches. In computing capacity of reels "A" is reduced 1½" to 2" to provide for a clear-

B = Diameter of drum in inches.

C = Width of drum in inches.

K = Constant which is given below for a given size of rope.

Rope Dia.	Value of "K"	Rope Dia.	Value of "K"
1/32	266.24	3/8	.342
1/16	66.56	1	.262
3/12	29.76	11/2	.207
1/8	16.64	11/4	.167
1/32 1/16 3/32 1/8 5/32	10.76	1 1/8 1 1/4 1 3/8	.138
3/16	7.44	1 1/2 1 5/8 1 3/4 1 7/8	.116
1/4	4.16	15%	.099
5/6	2.67	134	.085
3/x	1.86	1%	.074
5/16 3/8 7/16	1.37	2 3	.066
1/2	1.05	21/8	.058
9 16 5 8 3 4	.828	21/4	.052
5/8	.672	23/8	1046
3/4	.465	21/2	.042

AREAS OF CIRCLES—SQUARES—SQUARE ROOTS

(Also Fractions to Decimal Equivalent.)

		_	Also Fractions	to Decim	at Æquiva						
No. ·N	Area Circle		Area Cir			Are	ea Circle	N.		A	rea Circle
Frac- Dec-	(N = N)	No. N N²	√N Diam		N²	\sqrt{N}	(N = Diam.)	No. N	N²	\sqrt{N}	(N = Diam.)
tion imal N² 1/16 .0625 .0039 /k .125 .0156 3/16 .1875 .0352 /k .25 .0625 5/16 .3125 .0977 /k .375 .1406 7/16 .4375 .1914 /k .50 .2500 9/16 .5625 .3164 /k .625 .3906 11/16 .6875 .4727 /k .875 .5625 13/16 .8125 .6602 /k .875 .7656 11/16 .9375 .8789 1	.4330 .0276 .5000 .0491 .5590 .0767 .6124 .1105 .6614 .1503 .7071 .1964 .7500 .2485 .7906 .3068 .8297 .3712 .8660 .4418 .9014 .5185 .9354 .6013	N N° 10 100 11 121 12 144 13 169 14 196 15 225 16 256 17 289 18 324 19 361 20 400 21 441 22 484 23 529 24 576 25 625 26 676 27 729 28 784 29 841 30 900 31 961 32 1024 33 1089 34 1156 35 1225 36 1296 37 1369 38 1444 39 1521 40 1600 41 1681 42 1764 43 1849 44 1936 45 2025 46 2116 47 2209 48 2304 49 2401 50 2500 51 2601 52 2704 53 3025 56 3136 57 3249 58 3364 59 3481 60 3600 61 3721 62 3844 63 3969 64 4096 65 4225 66 4256 67 4489 68 4624 69 4761 70 4900 71 5041 72 5184 73 5329 74 5476 75 5625	3.162 78. 3.317 95. 3.464 113. 3.606 132. 3.742 153. 3.873 176. 4.000 201. 4.123 227. 4.243 244. 4.359 283. 4.472 314. 4.583 346. 4.690 380. 4.796 415. 5.000 490. 5.099 530. 5.196 572. 5.292 515. 5.385 660. 5.477 706. 5.568 754. 5.657 804. 5.754 855. 5.831 907. 5.916 962. 6.000 1017. 6.083 1075. 6.164 134. 6.245 1256. 6.403 1320. 6.481 1352. 6.633 1520. 6.782 1661. 6.856 6.784 6.928 1809. 6.782 1661. 6.856 6.784 6.928 1809. 6.782 1661. 6.856 1734. 7.210 2226. 7.211 2123. 7.280 2290. 7.416 2375. 7.483 2463. 7.500 2551. 7.616 2642. 7.810 2290. 7.416 2375. 7.483 2463. 7.500 2551. 7.616 2642. 7.810 2220. 7.874 3019. 7.937 3117 8.000 3217.	764	5776 5929 6084 6241 6400 6561 6724 6889 7056 7225 7396 7569 7744 7921 8100 8281 8464 8836 9025 9216 9409 9604 9801 10000 10201 10404 11069 11236 11449 11664 11881 12100 12321 12544 12769 13225 13456 13689 13924 14161 14400 14641 14884 15129 15376 15625 15876 16384	8.718 8.775 8.832 8.888 8.944 9.000 9.055 9.110 9.165 9.220 9.274 9.327 9.381 9.434 9.487 9.539 9.592 9.644 9.695 9.747 9.798 9.849 9.950 10.00 10.05 10.15 10.20 10.25 10.30 10.34 10.44 10.58 10.68 10.72 10.82 10.95 11.09 11.10	4536.5 4656.6 4778.4 4901.7 5026.5 5153.0 5281.0 5410.6 5541.8 5674.5 5808.8 5944.7 6082.1 6221.1 6361.7 6503.9 6647.6 6792.9 6939.8 7088.2 7238.2 7238.2 7238.2 7238.2 7238.2 7238.2 7238.2 7389.8 7543.0 7697.7 7854.0 8011.9 8171.3 8332.3 8494.9 9659.0 8824.7 8992.0 9160.9 9331.3 9503.3 9676.9 9852.0 10029 10207 10387 10568 10751 10936 11499 11690 11882 12076 112272 12469 11690 11882 12076 11272 12469 11690 11882 12076 11272 12469 11690 11882 12776 12772 12469 11690 11882 12776 12772 12469 11690 11882 12776 12772 12469 11690 11882 12776 12772 12469 11690 11882 12776 12772 12469 11690 11882 12776 12772 12469 11690 11882 12776 12772 12469 11690 11882 12576 12772 12469 11690 11882 12576 12772 12469 11690 11882 12576 12772 12469 11690 11882 12576 12772 12469 13478 13685 13685 13685 13685 13773 13478 13685 13685 13773 13478 13685 13685 13773 13478 13685 13773 13478 13685 13685 13773 13478 13685 13685 13773 13478 13685 13685 13773 13774 14741 14957 14957 1495	142 143 144 145 146 147 148 149 150 151 152 153 154 155 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 180 181 182 183 184 185 186 187 199 190 191 192 193 194 195 196 197 198 199 200	20164 20449 20736 21025 21316 21609 21904 22201 22500 22801 23104 23409 23716 24025 243409 24964 25281 25600 25921 26244 26569 27225 27556 27889 28224 28561 28900 29241 2928 30276 31329 30276 31328 3128 31	11.92 12.00 12.04 12.08 12.12 12.22 12.25 12.29 12.33 12.37 12.41 12.45 12.49 12.53 12.61 12.65 12.69 12.73 12.81 12.85 12.88 12.92 12.30 13.04 13.04 13.08 13.15 13.19 13.23 13.27 13.30 13.34 13.35 13.45 14.45	15837 16061 16286 16583 16742 16972 17203 17437 17671 17908 18146 18385 18627 18869 19113 19359 19607 19856 20106 20358 20613 20867 21124 21382 21642 21904 22168 22432 22698 22966 23235 2350 23779 24053 2

FLOWING WATER RATES AND EQUIVALENTS

Second Feet, Miners Inches, Acre Feet, Gallons per Minute, Cubic Meters per Minute, etc.

From Handbook of Culvert and Drainage Practice of Armco Culvert Manufacturers Association, Middletown, Ohio

C.F.S. = cubic feet per second, or second feet

G.P.M. = gallons per minute

1 C.F.S. = 60 cu. ft. per min.

= 86,400 cu. ft. per 24 hrs.

= 448.83 U. S. gals. per min.

= 646,317 U. S. gals. per 24 hrs.

= 1.9835 acre-foot per 24 hrs. (usually taken as 2)

= 1 acre-inch per hour (approximate)

= .028317 cu. meters per second

=2446.59 cu. meters per day

= 50 miners inches, Idaho, Kan., Neb., New Mex., N. Dak., S. Dak.

= 40 miners inches, Ariz., Calif., Mont. and Oregon

= 38.4 miners inches, Colorado

= 36 miners inches, British Columbia

1 inch depth per hour = 645.33 C.F.S. per sq. mi.

1 inch depth per day = 26.889 C.F.S. per sq. mi.

1 acre-inch per hour = 1.0083 C.F.S. (usually taken as unity)

1 U.S.G.P.M. = 1440 U. S. gals. per 24 hrs.

= 0.00442 acre-feet per 24 hrs.

= 0.0891 miners inches, Ariz., Calif.

1 million U. S. gal. per day = 1.5472 C.F.S.

= 3.07 acre-feet

= 2.629 cu. meters per min.

WATER PRESSURES AND HEADS

Static heads in feet and corresponding pressures of water in pounds per square inch at 62° F.

HORSEPOWER REQUIRED TO RAISE WATER

Theoretical H.P. = $\frac{\text{G.P.M.} \times \text{Head in Feet}}{3960}$

					HE	AD IN	FEI	ΞT					
Ft.	10	15	20	25	30	35	40	45	50	60	75	90	1
10 15 20 25 30	.03 .04 .05 .06	.06 .08	.08	. 13	.11 .15	. 09 . 13 . 18 . 22 . 26	.10 .15 .20 .25	.17	. 32	.15 .23 .30 .38 .45	.19 .28 .38 .47 .57	. 45	
35 40 45 50 60	.09 .10 .11 .13 .15	. 15	.20	. 22 . 25 . 28 . 32 . 38	26 .30 34 .38 .46	.31 .35 .40 .44	.35 .40 .45 .50	.40 .45 .51 .57	.50 .57 .63	.53 .61 .68 .76	.66 .76 .85 .95	.80 .91 1.02 1.14 1.36	1 1 1
75 90 100 125 150	.19 23 .25 .32 .38	.28 .34 .38 .47	.38 .45 .50 .63 .76	.47 .57 63 .79 .95	.57 .68 .76 .97	.66 .80 .88 1.10 1.32	.76 .91 1.01 1.26 1.52	85 1.02 1.14 1.42 1.70	1.26	1.14 1.36 1.51 1.89 2.27	1.42 1.70 1.89 1.37 2.84	1.70 2.04 2.27 2.84 3.41	1 2 2 3 3
175 200 250 300 350	. 44 .50 .63 .76 .88	.66 .76 .95 1.14 1.33	.88 1 01 1.26 1.51 1.77	1.10 1.26 1.58 1.90 2.21	1.32 1.52 1.90 2.27 2.65	1.54 1.77 2.20 2.65 3.09	1.78 2.02 2.52 3.03 3.54	1.99 2.27 2.84 3.41 3.98	2.21 2.52 3.16 3.79 4.42	2.65 3 03 3.79 4.54 5.30	3.31 3.79 4.73 5.68 6.62	3.98 4.54 5.68 6.82 7.95	4 5 6 7 8
400 500 550 600 650	1.01 1.26 1.39 1.52 1.64	1.52 1.90 2.08 2.28 2.47	2.02 2.52 2.78 3.03 3.28	2.52 3.16 3.47 3.79 4.10	3.03 3.78 4.17 4.55 4.93	3.53 4.42 4.86 5.30 5.75	4.04 5.05 5.56 6.06 6.56	4.55 5.69 6.26 6.82 7.39	5.05 6.31 6.94 7.58 8.21	9.09	10.42 11.36	9.09 11.36 12.50 13.64 14.77	12 13 15
700 750 800 850 900	1.77 1.89 2.02 2.15 2.27	2.65 2.85 3.04 3.23 3.42	3.54 3.79 4.04 4.29 4.54	4.42 4.74 5.05 5.37 5.68	5.30 5.68 6.06 6.44 6.82	6.19 6 63 7.07 7.51 7.95	7.07 7 58 8.08 8.58 9.09	9.67	8.84 9.47 10.10 10.73 11:36	11.36 12.12 12.87	14.20 15.15 16.10	19.32	18 20 21
950 1000 2000 3000 4000	2.40 2.52 5.05 7.57 10.10	11.37	15, 151	12.63 18.94	15.15 22.72	8.84 17.67 26.51	10.10¦ 20.20 30.30	11.36 22.72 34.09	11.99 12.63 25.25 37.88 59.50	15 15 30.30 45.45	18.94 37.87 56.81	22.73 45.45 68 18	25 50 75

NOTE:-to get the BRAKE HORSEPOWER required by the pump use the following formula:-

Brake Horsepower = $\frac{G, P. M. x \text{ Head in Feet}}{3960 \text{ x Effy. of the pump}}$

HORSEPOWER, KILOWATTS, B.T.U., ETC.

1 kilowatt = 1,000 watts.

kilowatt = 1.34 H.P.

1 kilowatt = 44,257 foot-pounds per minute. 1 kilowatt = 56.87 British thermal units (B.t.u.) per

minute.

horse power = 746 watts. 1 horse power = 33,000 foot-pounds per minute.

1 horse power = 42.41 British thermal units (B.t.u.) per minute.

1 British thermal unit (B.t.u.) = 778 foot-pounds.
1 British thermal unit (B.t.u.) = 0.2930 watt-hour.
1 Kilogram-meter = 7.233 foot-pounds.

Foot-pound = 0.1383 kilogram-meter.

1 Metric horse power = 0.986 horse power.

1 Horse power = 1.014 metric horse power.

MAN POWER AND HORSE POWER

The standard "horsepower" of 550 foot-pounds per second was intended by its originator to represent the power a horse could exert through an 8-hour day. Apparently the horses used in the tests from which the unit was established

were above average strength, for it is now commonly considered that the average work horse can not do better than about 400 foot-pounds per second through an 8-hour day. However, in English speaking countries, the term "horse-power" always means 550 foot-pounds per second (= 33,000 foot-pounds per minute. There are variations in certain other countries.

"Manpower" has no exact mathematical, rating. In fact, it is decidedly indefinite, due to the tremendous variations in personal physical strength, the difficulty of establishing any reasonable average, and also because the number of foot-pounds per second which a man can exert varies greatly with the kind of work. It has been stated that a man rowing a boat can work at a rate of 4,000 foot-pounds per minute, while the same man turning a handle can do only 2,600 foot-pounds per minute. It has also been said that for a very brief interval a man can perform at a rate of one horsepower (33,000 foot-pounds per minute), but this seems doubtful.

A recently published table of man power is as follows:

Very short period, one minute or less	% H.P.
Short period, 5 to 10 minutes	1/5 H.P.
Short day, 8 hours	
Long day, 10 hours	1/15 H.P.

LAND MEASURE

A Quarter Section of 160 Acres Divided to Show Relationship of Rods, Chains and Feet

A rod is 161/2 feet.

A chain is 66 feet or 4 rods.

A mile is 320 rods, 80 chains or 5,280 ft.

A square rod is 2721/4 square feet.

An acre contains 43,560 square feet.

An acre contains 160 square rods.

An acre is about 2083/4 feet square.

80 rods	10 chains	330 ft. 5 acres 5 chains	5 acres 20 rods	
80 acres	660 feet	40 acr	res 🥹	
	4 0 a	.cres	80 rods	
20 chains	1,320 feet			

LEAKS COST MONEY AND WASTE VALUABLE COMPRESSOR CAPACITY

Courtesy of Ingersoll-Rand

Nothing impresses the average person so much as money, and the column showing the direct money loss should cause many a heretofore unnoticed leak to be repaired.

	A	IR*	STE	AM**	WATER		
Size of Open- ing	No. of cu. ft. wasted per month 100 lbs. pressure	Total cost of waste per month at 6c per 1000 cu. ft.	No. of lbs. wasted per month 100 lbs. pressure	Total cost of waste per month at 60c per 1000 lbs.	No. of gals. wasted per month 40 lbs. pressure	Total cost of waste per month at 13½c per 1000 gals.	
- 8″	6,671,890	\$400.31	460,000	\$276.00	692,400	\$108.00	
14."	2,920,840	175 25	203,000	121.80	307,700	48.00	
1/8"	740,210	44 41	50,500	30.30	76,900	12.00	
1/16"	182,272	10.94	12,750	7.65	19,200	3.00	
1/6"	45,508	2.73	3,175	1.91	4,700	9.80	

*Based on nozzle coefficient of .65. †Based on nozzle coefficient of .60. **Based on nozzle coefficient of .97

1948