Problem 1: Electronics Assembly Scheduling with Machine Routing Constraint (MILP vs Heuristic)

Context – Electronics Assembly Line

In a production facility for electronic devices, 5 specialized machines (M1 to M5) are used to assemble components. Each component (job) must be processed by 3 operations, which can be done on any of the machines.

However, one specific component, **Job J5**, must always be processed by **both Machine 1** and Machine 2 (in any order) during its processing cycle.

There is a setup time (transfer time) required when moving a component between two machines.

Objective

Determine a schedule that:

- Assigns 3 operations to each job,
- Includes machines M1 and M2 for J5,
- Avoids machine overlaps,
- Minimizes the makespan,
- Includes transfer times between machines.

Processing Times (in minutes)

Job	M1	M2	M3	M4	M5
J1	10	11	9	12	8
J2	11	9	10	11	9
J3	12	13	11	10	11
J4	9	10	12	11	10
J5	10	11	8	9	7

Transfer Times Between Machines (in minutes)

From\To	M1	M2	М3	M4	M5
M1	_	1	2	3	2
M2	1	_	2	2	2
M3	2	2	_	2	1
M4	3	2	2	_	1
M5	2	2	1	1	_

Tasks

- (a) Formulate a MILP model to solve the problem with the routing constraint on J5 and considering transfer times.
- (b) Propose a heuristic method (e.g., greedy or local search) and implement it.
- (c) Compare the performance (makespan and computation time) between the MILP and the heuristic approach.