Civilian Unemployment Rate

ECON 5337 Fall 2018

Contents

- Series Overview.
- Deterministic Variables.
- Stationary Test.
- Seasonality/ Deterministic Trends/ Stochastic Variation.
- SARIMA Model.
- Different Models Estimation.
- Diagnostic Checks.
- The Forecast.
- Alternative Models.
- The Forecast For The Entire Series.
- · Questions.

Series Overview

- The unemployment rate represents the number of unemployed as a percentage of the labor force.
- Labor force data are restricted to people 16 years of age and older, who currently reside in 1 of the 50 states or the District of Columbia, who do not reside in institutions (e.g., penal and mental facilities, homes for the aged), and who are not on active duty in the Armed Forces.
- Observation goes from January 1972 to October 2018.
- Predicting the unemployment rate is one of the most important applications for economists and policymakers.

Deterministic Variables

The variables we will be using are

- 1) Civilian Unemployment Rate
- 2) Industrial Production Index
- 3) Federal Fund Rate
- 4) Consumer Price Index

Stationary Test

```
u=ts(temp[,2],start=c(1972,1),frequency=12)
uhold=ts(temp[,2],start = c(1972,1),end = c(2018,6), frequency = 12)
```

Plot

plot(uhold)

Should we take natural log of our restricted data?

Stationary Test

Should we difference our restricted data?

```
summary(ur.df(uhold,type="drift",lags=30,selectlags="AIC"))
```

```
Value of test-statistic is: -3.635 6.6252

Critical values for test statistics:

1pct 5pct 10pct

tau2 -3.43 -2.86 -2.57

phi1 6.43 4.59 3.78
```

Seasonality/ Deterministic Trends/ Stochastic Variation

model=Arima(uhold,order=c(1,0,0))
acf(model\$residuals,39)

SARIMA MODEL

SARIMA MODEL

INITIAL GUESS

```
iniguess= Arima(uhold,order=c(1,0,1),seaspnal=c(3,0,0), include.drift = TRUE) iniguess
```

```
# sigma^2 estimated as 0.04951: log likelihood=38.33
# AIC=-60.67 AICc=-60.41 BIC=-26.07
```


SARIMA Model

acf(iniguess\$residuals,60)

Different Models Estimation

Series guess2\$residuals

Guess2 = (3,0,2),(2,0,0)

Different Models Estimation

Series guess3\$residuals

Guess3 = (3,0,1),(1,0,0)

Different Models Evaluation

Series guess4\$residuals

Guess4 = (2,0,1),(2,0,0)

Model selection

Models	AIC	BIC
1 <- (1,0,3),(1,0,0)	17.69	52.28
2 <- (3,0,2),(2,0,0)	-37.56	5.68
3 <- (3,0,1),(1,0,0)	-16.23	18.36
4 <- (2,0,1),(2,0,0)	-95.3	-60.71
5 <- (2,0,1),(3,0,0)	-122.44	-83.52

Selected Model ACF

Series guess5\$residuals

Guess5 = (2,0,1),(3,0,0)

'Box-Pierce' Test

X-squared = 105.39, df = 60, p-value = 0.000268

The Forecast

Time period	Actual values	Forecasted values
Jul 2018	4.1	4.316843
Aug 2018	3.9	4.205042
Sep 2018	3.6	3.974287
Oct 2018	3.5	3.899733

Plot of Forecasted values

VAR model

- Vector Auto regression model
- $Yt = a + A1Yt-1 + A2Yt-2 + ... + ApYt-p + \varepsilon$
- Yt = (y1t, y2t, ..., ynt)': an (nx1) vector of time series variables
- a: an (nx1) vector of intercepts
- Ai (i=1, 2, ..., p): (nxn) coefficient matrices
- εt: an (nx1) vector of unobservable (white noise)

fppt.con

Variables

- Inflation: Discourages firms to invest,
 Inflation booms cause recessions
- Industrial production: Production requires workforce, negatively correlated
- Federal funds rate: High borrowing rates slows down/reduces economic activity relatively.
- bi-directional causality

Modelling

- Co-integrated: No elements data is not cointegrated
- ca.jo(full, type="eigen", K=2, ecdet="none", spec="longrun")
- values of test statistic and critical values of test:

```
test 10pct 5pct 1pct
r <= 1 | 20.24 18.90 21.07 25.75
r = 0 | 31.51 24.78 27.14 32.14
```

No error term required in the model(VECM)

cbind(ue_hold, ip_hold, cpi_hold, ffr_hold)

Data transformation

	Unemployme nt	СРІ	IPI	Fed rate
Unit root	rejected	Exists	Exists	Exists
differenced	No	First order	First order	First order
Seasonal/Non Seasonal		Non seasonal	Non seasonal	Non seasonal

VARselect(x,lag.max = 20,type = 'const')

SARIMA vs VAR

	Jul	Aug	Sep	Oct
Actual	4.1	3.9	3.6	3.5
SARIMA	4.31	4.20	3.97	3.89
VAR	4.29	4.19	3.93	3.74

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
VAR	-2.66E-01	0.271484	0.265943	-7.11706	7.117063	0.328213	-0.14863	1.372753
SARIMA	32398	0.331652	0.323984	-8.73228	8.732281	0.39967	0.2430	1.7279

Out of sample Forecast

Long Term Perspective

The Forecast For The Entire Series

For Oct 2018,3.5

Forecast	Nov	Dec
SARIMA	3.40	3.47
VAR	3.75	3.83

VAR model is better suited because we have bidirectional causality in data, so it is better to include unemployment factor in other variables and other variables in unemployment.

We expect unemployment to increase as Fed started increasing interest rates. Unemployment being a lagging indicator and we are yet to see the effects.

