1: function Semi-Neighborhood-Join (indoor index T_O , indoor index T_O , parameter k) result set R; candidate object set C; 2: ⇒ Global variables **for** each of T_Q 's leaf nodes Q **do** 3: > Phase 1: filtering if $Q_{\cdot count}$ equals to 0 then 4: 5: Add Q to C; **for** each partition Q^P in C **do** 6: 7: $(R_1^o, R_1^p) \leftarrow \mathsf{kSeedsSelection}(Q^P, k);$ kbound $\leftarrow max_{O \in R_1^o}\{|Q^P, O|_I.TLU\};$ 8: ⊳ Lemma 5 $(R_2^o, R_2^p) \leftarrow \text{RangeSearch}(Q^P, \text{kbound})$ 9: $+ Q^{P}_{.r_{max}}, T_{O});$ 10: Dijkstra(R_2^p); \triangleright Phase 2: subgraph 11: **for** each object Q in partition Q^P **do** 12: $C_O \leftarrow \emptyset$ $\triangleright C_O$ is a set for candidate objects in O 13: $R_O \leftarrow \emptyset \quad \triangleright R_O = kNN(Q)$ **for** each object O in R_2^o **do** \triangleright Phase 3: pruning 14: 15: $[O.l, O.u] \leftarrow [|Q, O|_{minI}, |Q, O|_{maxI}]; \triangleright \text{Table 2}$ 16: Find object O_k which has the k-th shortest O.u; 17: for each $O \in R_2^o$ do **if** $O.u < O_k.l$ **then** $R_O = R_O \cup \{O\}$ 18: 19: else 20: if $O.l \leq O_k.u$ then $C_O = C_O \cup \{O\}$ **for** each $O \in C_O$ **do** \triangleright Phase 4: refinement 21: Calculate $|Q, O|_{\tau}$; 22: Sort objects in C_O by $|Q, O|_I$ in ascending order 23: and add top $k - |R_O|$ objects to R_O ; 24: $R \leftarrow R \cup \{Q, O\}_{O \in R_O}$ 25: return R;