Elaborado por: Ing. José Miguel Barboza Retana

Práctica #5. Series complejas.

- Resuelva los siguientes problemas utilizando series complejas y los conceptos sobre singularidades:
 - 1) Encuentre la representación de la serie de potencias de la función $f(z) = \frac{1}{z-i}$ en las regiones:
 - a) |z| < 1
 - b) |z| > 1
 - c) $|z-1-i| < \sqrt{2}$
 - 2) Utilizando división polinomial desarrolle una serie de potencias para la función $f(z) = \frac{1}{z^2+1}$ en el disco |z| < 1 y utilizando ese desarrollo obtenga la serie para las siguientes funciones en la misma región de convergencia:
 - 3) Encuentre los primeros 4 términos distintos de cero de las expansiones en serie de Taylor de las siguientes funciones alrededor de los puntos indicados y determine, en cada caso, el radio de convergencia:

 - a) $\frac{1}{1+z}$ para $z_0 = 1$ b) $\frac{1}{z(z-j4)}$ para $z_0 = j2$
 - c) $\frac{1}{z^2}$ para $z_0 = 1 + j$
 - 4) Sin encontrar explícitamente cada expansión en serie de Taylor, encuentre el radio de convergencia de la función $f(z) = \frac{1}{z^4 - 1}$ alrededor de los puntos:
 - a) z = 0
 - b) z = 1 + i
 - c) z = 2 + j2.

Por qué no existe la expansión de la serie de Taylor de la función alrededor del punto z = j?

- 5) Determine la expansión en serie de Laurent de la función $f(z) = z^3 e^{\frac{1}{z}}$ alrededor de:
 - a) z = 0
 - b) z = a, cualquier número complejo distinto de cero.
- 6) Determine la expansión en serie de Laurent de $f(z) = \frac{1}{z(z-1)^2}$ alrededor de:
 - a) z = 0
 - b) z = 1

Especifique que la región de validez para cada una de ellas.

- 7) Determine la expansión en serie de Laurent de $f(z) = z^2 \sin\left(\frac{1}{z}\right)$ alrededor de los puntos:
 - a) z = 0
 - b) $z = \infty$
 - c) z = a, cualquier número complejo finito y distinto de cero. (Para este último caso, no calcule los coeficientes de forma explícita)
- 8) Desarrolle $f(z) = \frac{z}{(z-1)(2-z)}$ en una expansión en serie de Laurent válida para:
 - a) |z| < 1
 - b) 1 < |z| < 2
 - c) |z| > 2
 - d) |z-1| > 1
 - e) 0 < |z 2| < 1
- 9) Encuentre la serie de Laurent para $f(z) = \frac{z}{(z-1)(z+2)}$ si esta se centra alrededor del punto $z_0 = 0$, para la región de convergencia 1 < |z| < 2
- 10) Para la función $f(z) = \frac{z}{(z-1)(z+2)}$ indique cuántas regiones de convergencia son posibles para la serie de Laurent centrada en $z_0 = 1 + j$. Encuentre la serie para cada una de esas regiones.

11) La función de variable compleja f(z) tiene, entre otros, los siguientes desarrollos en serie de Laurent:

1)
$$f(z) = \sum_{k=2}^{\infty} \frac{1}{2^k} (z+3)^k$$

3)
$$f(z) = \sum_{k=-4}^{\infty} 2^k (z - 1 - j)^k$$

2)
$$f(z) = \sum_{k=-1}^{\infty} \frac{(-j)^{k+1}}{k(z-1)^k}$$

4)
$$f(z) = \sum_{k=2}^{\infty} 5^{-k} (z+j)^k$$

donde para todas las series se han utilizado regiones de convergencia que contienen como punto límite al punto dónde ellas se centran.

- a) Indique dónde al menos deben encontrarse polos, ceros (ambos con su respectivo orden) puntos regulares y singularidades esenciales.
- b) Indique el valor de los residuos de f(z) en los cuatro puntos donde se centran las series anteriores.
- 12) Encuentre las singularidades y los ceros de las siguientes funciones de variable compleja:

a)
$$\frac{1}{z^4 - z^2(1+j) + j}$$

c)
$$\frac{\sin(z-1)}{z^4-z^2(1+i)+i}$$

b)
$$\frac{z-1}{z^4-z^2(1+j)+j}$$

d)
$$\frac{z-1}{[z^4-z^2(1+j)+j]^3}$$

13) Determine la localización y clasificación de las singularidades y los ceros de las funciones. Especifique también cualquier cero que pueda existir.

a)
$$\frac{\cos z}{z^2}$$

f)
$$\frac{z-1}{z^2+1}$$

b)
$$\frac{1}{(z+j)^2(z-j)}$$

g)
$$\frac{z+j}{(z+2)^2(z-3)}$$

c)
$$\frac{z}{z^4-1}$$

h)
$$\frac{1}{z^2(z^2-4z+5)}$$

d)
$$\frac{\sin z}{z^2 + \pi}$$

e)
$$e^{\frac{z}{1-z}}$$

- 14) Desarrolle cada una de las siguientes funciones en serie de Laurent alrededor de z =
 - 0. Indique el tipo de singularidad en caso de existir alguna.

a)
$$\frac{1-\cos z}{z}$$

b)
$$\frac{e^{z^2}}{z^3}$$

- 15) Determine los residuos de la función $f(z) = \frac{1}{1+z^4}$ en cada uno de sus polos en el plano finito z.
- 16) Determine los residuos de las siguientes funciones en los puntos indicados:

a)
$$\frac{e^z}{(1+z^2)^2}$$
 en $z = j$

b)
$$\left(\frac{\sin z}{z^2}\right)^3$$
 en $z = 0$

c)
$$\frac{z^4}{(z+1)^3}$$
 en $z = -1$

17) Determine los residuos de las siguientes funciones en cada uno de sus polos finitos, a menos que se indique lo contrario:

a)
$$\frac{2z+1}{z^2-z-2}$$

b)
$$\frac{1}{z^2(1-z)}$$

c)
$$\frac{3z^2+2}{(z-1)(z^2+9)}$$

d)
$$\frac{z^3 - z^2 + z - 1}{z^3 + 4z}$$

e)
$$\frac{z^6+4z^4+z^3+1}{(z-1)^5}$$

f)
$$\left(\frac{z+1}{z-1}\right)^2$$

g)
$$\frac{\cos z}{z}$$
 solo en $z = 0$

h)
$$\frac{z}{\sin z}$$
 solo en $z = \pi$

i)
$$\frac{1}{(z^2+1)^2}$$
 solo en $z=j$