Scilab Code for Signals and Systems by Alan V. Oppenheim, Alan V. Willsky, S.Hamid Nawab¹

Created by
Prof. R. Senthilkumar
Institute of Road and Transport Technology
rsenthil_signalprocess@in.com

Cross-Checked by Prof. Saravanan Vijayakumaran, IIT Bombay sarva@ee.iitb.ac.in

18 November 2010

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro.This text book companion and Scilab codes written in it can be downloaded from the website http://scilab.in

Book Details

Author: Alan V. Oppenheim, Alan V. Willsky, S.Hamid Nawab

Title: Signals and Systems

Publisher: Prentice-Hall India

Edition: Second

Year: 1992

Place: New Delhi

ISBN: 978-81-203-1246-3

Contents

Lis	st of Scilab Code	4
1	Signals and Systems 1.1 Scilab Codes	11 11
2	Linear Time Invariant Systems 2.1 Scilab Codes	26 26
3	Fourier Series Repreentation of Periodic Signals 3.1 Scilab Codes	54 54
4	The Continuous Time Fourier Transform 4.1 Scilab Codes	90 90
5	The Discreet Time Fourier Transform 5.1 Scilab Codes	117 117
6	Time and Frequency Characterization of Signals and Systems 6.1 Scilab Codes	138 138
7	Sampling 7.1 Scilab Codes	148 148
9	The Laplace Transform 9.1 Scilab Codes	155 155
	The Z-Transform 10.1 Scilab Codes	1 7 1

11	11 Linear Feedback Systems																181											
	11.1	Scilab	Codes																									181

List of Scilab Code

1.1	Example 1.1.sce	11
1.2	Example 1.2.sce	12
1.3	Example 1.3.sce	13
1.4	Example 1.4.sce	14
1.5	Example 1.5.sce	14
1.6	Example 1.6.sce	15
1.12	Example 1.12.sce	16
1.13	Example 1.13.sce	17
1.13b	Example 1.13b.sce	18
1.14	Example 1.14.sce	18
1.15	Example 1.15.sce	20
1.16	Example 1.16.sce	21
1.17	Example 1.17.sce	22
1.18	Example 1.18.sce	23
1.20	Example 1.20.sce	24
2.1	Example 2.1.sce	26
2.3	Example 2.3.sce	29
2.4	Example 2.4.sce	33
2.5	Example 2.5.sce	37
2.6	Example 2.6.sce	41
2.7	Example 2.7.sce	45
2.8	Example 2.8.sce	49
3.2	Example 3.2.sce	54
3.3	Example 3.3.sce	60
3.4	Example 3.4.sce	61
3.5	Example 3.5.sce	63
3.6	Example 3.6.sce	66
3 7	Example 37 sce	68

3.8	Example 3.8.sce	71
3.10	Example 3.10.sce	74
3.11	Example 3.11.sce	76
3.12	Example 3.12.sce	80
3.13	Example 3.13.sce	82
3.14	Example 3.14.sce	85
3.15	Example 3.15.sce	87
4.1	Example 4.1.sce	90
4.2	Example 4.2.sce	93
4.4	Example 4.4.sce	95
4.5	Example 4.5.sce	97
4.6	Example 4.6.sce	99
4.7	Example 4.7.sce	101
4.8	Example 4.8.sce	104
4.9	Example 4.9.sce	106
4.12	Example 4.12.sce	108
4.18	Example 4.18.sce	110
4.23	Example 4.23.sce	112
4.22	Impulse response of LTI system	114
5.1	Example 5.1.sce	117
5.2	Example 5.2.sce	121
5.3	Example 5.3.sce	123
5.5	Example 5.5.sce	125
5.6	Example 5.6.sce	127
5.7	Example 5.7.sce	129
5.9	Example 5.9.sce	131
5.12	Example 5.12.sce	133
5.15	Example 5.15.sce	135
6.1	Example 6.1.sce	138
6.3	Example 6.3.sce	143
6.4	Example 6.4.sce	145
6.5	Example 6.5.sce	146
7.1	Example 7.1.sce	148
7.2	Example 7.2.sce	149
7.3	Example 7.3.sce	150
7.4	Example 7.4.sce	151
7.5	Example 7.5.sce	151
9.1	Example 1 sce	155

9.2	Example 9.2.sce				 			 		 	155
9.3	Example 9.3.sce				 			 		 	155
9.4	Example 9.4.sce				 			 		 	156
9.5	Example 9.5.sce				 			 		 	156
9.6	Example 9.6.sce				 			 		 	156
9.7	Example 9.7.sce				 			 		 	157
9.8	Example 9.8.sce				 			 		 	157
9.9	Example 9.9.sce				 			 		 	158
9.10	Example 9.10.sce				 			 		 	159
9.11	Example 9.11.sce				 			 		 	159
9.12	Example 9.12.sce				 			 		 	159
9.13	Example 9.13.sce										
9.14	Example 9.14.sce				 			 		 	163
9.15	Example 9.15.sce										
9.16	Example 9.16.sce										
9.17	Example 9.17.sce				 			 		 	165
9.18	Example 9.18.sce										
9.19	Example 9.19.sce										
9.20	Example 9.20.sce										
9.21	Example 9.21.sce										
9.25	Example 9.25.sce										
9.31	Example 9.31.sce										
9.33	Example 9.33.sce										
9.34	Example 9.34.sce										
9.35	Example 9.35.sce										
9.36	Example 9.36.sce										
9.37	Example 9.37.sce										
9.38	Example 9.38.sce										
10.1	Example10.1.sce										
10.2	Example10.2.sce										
10.3	Example10.3.sce										
10.4	Example10.4.sce										
10.5	Example10.5.sce										
10.6	Example 10.6.sce										
10.7	Example 10.7.sce										
10.9	Example 10.9.sce										
10.10	-										
	Example 10.11 sce	-	•	•	 	-	-	 •			175

10.12	Example 10.12.sce	175
10.13	Example 10.13.sce	175
10.18	Example 10.18.sce	176
10.19	Example 10.19.sce	176
10.23	Example 10.23.sce	177
10.25	Example 10.25.sce	177
10.33	Example 10.33.sce	178
10.34	Example 10.34.sce	178
10.36	Example 10.36.sce	179
10.37	Example 10.37.sce	180
11.1	Example11.1.sce	181
11.2	Example11.2.sce	182
11.3	Example11.3.sce	183
11.5Bc	Example 11.5 Bode.sce	184
11.5N ₂	y Excision ple 11.5 Ny quist.sce	185
11.6	Example11.6.sce	187
11.7	Example11.7.sce	188
11.8	Example 11.8.sce	188
11.9	Example11.9.sce	189
11.9	Root locus analysis of Linear feedback systems	192

List of Figures

1.1	Results of Exa 1.5	15
1.2	Results of Exa 1.14	20
2.1	Results of Exa 2.1	27
2.2	Results of Exa 2.1	28
2.3	Results of Exa 2.1	29
2.4		31
2.5	Results of Exa 2.3	32
2.6		33
2.7		35
2.8	Results of Exa 2.4	36
2.9		37
2.10		39
2.11		10
		11
		43
		14
		45
		17
		18
		19
		51
		52
		53
3.1	Results of Exa 3.2	57
3.2		58
3.3		59
3.4		30

3.5	Results of Exa 3.4	63
3.6	Results of Exa 3.5	65
3.7	Results of Exa 3.5	66
3.8	Results of Exa 3.6	68
3.9	Results of Exa 3.7	70
3.10	Results of Exa 3.7	71
3.11	Results of Exa 3.8	74
3.12	Results of Exa 3.10	76
3.13	Results of Exa 3.11	79
3.14	Results of Exa 3.11	80
3.15	Results of Exa 3.12	82
3.16	Results of Exa 3.13	85
3.17	Results of Exa 3.14	87
3.18	Results of Exa 3.15	89
4.1	Results of Exa 4.1	92
4.2	Results of Exa 4.1	93
4.3	Results of Exa 4.2	95
4.4	Results of Exa 4.4	97
4.5	Results of Exa 4.5	99
4.6	Results of Exa 4.6	101
4.7	Results of Exa 4.7	103
4.8	Results of Exa 4.7	104
4.9	Results of Exa 4.8	106
4.10	Results of Exa 4.9	108
4.11	Results of Exa 4.12	110
4.12	Results of Exa 4.18	112
4.13	Results of Exa 4.23	113
4.14	Results of Exa 4.22	115
4.15	Results of Exa 4.22	116
5.1	Results of Exa 5.1	120
5.2	Results of Exa 5.1	121
5.3	Results of Exa 5.2	123
5.4	Results of Exa 5.3	125
5.5	Results of Exa 5.5	127
5.6	Results of Exa 5.6	129
5.7	Results of Exa 5.7	131

5.8	Results	of	Exa	5.9															133
5.9	Results	of	Exa	5.13	2 .														135
5.10	Results	of	Exa	5.1	5.	•	•			•						•	•	•	137
6.1	Results																		141
6.2	Results	of	Exa	6.1															142
6.3	Results	of	Exa	6.1															143
6.4	Results	of	Exa	6.3															145
6.5	Results	of	Exa	6.4															146
6.6	Results	of	Exa	6.5															147
7.1	Results	of	Exa	7.1															149
7.2	Results	of	Exa	7.5															154
9.1	Results	of	Exa	9.8															158
9.2	Results	of	Exa	9.1	3.														161
9.3	Results	of	Exa	9.13	3.														162
9.4	Results																		163
11.1	Results	of	Exa	11.	1.														182
11.2	Results	of	Exa	11.	2 .														183
	Results																		184
	Results																		185
	Results																		186
	Results																		187
	Results																		189
	Results																		191
	Results																		192
	Results																		193

Chapter 1

Signals and Systems

1.1 Scilab Codes

Example 1.1 Time Shifting

```
1 //Example 1.1: Time Shifting
2 //SIGNALS & SYSTEMS, Second Edition
3 //V.OPPENHEIM, S.WILLSKY, S.HAMID NAMWAB
4 //PHI, 2008 Edition
5 // Page 10
6 clear all;
7 clc;
8 close;
9 t = 0:1/100:1;
10 for i = 1:length(t)
11
     x(i) = 1;
12 end
13 for i = length(t)+1:2*length(t)
14
     x(i) = 1-t(i-length(t));
15 end
16 t1 = 0:1/100:2;
17 	 t2 = -1:1/100:1;
18 / t3 = 0:1/100:4/3;
19 //t4 = 0:1/length(t3):1;
20 / \text{Mid} = \text{ceil} (length (t3) / 2);
```

```
21 // \text{for i} = 1: \text{Mid}
22 // x3(i) = 1 ;
23 //end
24 // for i = Mid+1: length (t3)
25 // x3(i) = 1-t4(i-Mid);
26 //end
27 figure
28 \ a = gca();
29 plot2d(t1,x(1:$-1))
30 a.thickness=2;
31 xtitle('The signal x(t)')
32 figure
33 a = gca();
34 \text{ plot2d}(t2,x(1:\$-1))
35 a.thickness=2;
36 a.y_location = "middle";
37 xtitle ('The signal x(t+1)')
38 figure
39 \ a = gca();
40 plot2d(t2,x($:-1:2))
41 a.thickness=2;
42 a.y_location = "middle";
43 xtitle ('The signal x(-t+1)')
```

Example 1.2 Time Scaling

```
//Example 1.2:Time Scaling
//SIGNALS & SYSTEMS, Second Edition
//V.OPPENHEIM, S.WILLSKY, S.HAMID NAMWAB
//PHI, 2008 Edition
//Page 11
clear all;
clc;
clc;
close;
t3 = 0:1/100:4/3;
t4 = 0:1/length(t3):1;
Mid =ceil(length(t3)/2);
for i = 1:Mid
```

Example 1.3 Time Scaling and Time Shifting

```
1 //Example 1.3: Time Scaling and Time Shifting
2 //SIGNALS & SYSTEMS, Second Edition
3 //V.OPPENHEIM, S.WILLSKY, S.HAMID NAMWAB
4 //PHI, 2008 Edition
5 // Page 11
6 clear all;
7 clc;
8 close;
9 t3 = 0:1/100:4/3;
10 t4 = 0:1/length(t3):1;
11 Mid = ceil(length(t3)/2);
12 for i = 1:Mid
     x3(i) = 1;
13
14 end
15 for i = Mid+1:length(t3)
     x3(i) = 1-t4(i-Mid);
16
17 \text{ end}
18 	 t5 = -2/3:1/100:2/3;
19 figure
20 \quad a = gca();
21 plot2d(t5,x3)
22 a.thickness=2;
23 a.y_location = "middle";
24 xtitle ('Time Scaling and Time Shifting x((3t/2)+1)')
```

Example 1.4 Combinationation two periodic signals Aperiodic signal

```
1 //Example 1.4: Combinationation two periodic signals
2 // Aperiodic signal
3 / \text{Page } 12
4 clear all;
5 clc;
6 close;
7 \text{ F=1}; //\text{Frequency} = 1 \text{ Hz}
8 t1 = 0:-1/100:-2*\%pi;
9 x1 = \cos(F*t1);
10 t2 = 0:1/100:2*\%pi;
11 \quad x2 = \sin(F*t2);
12 a=gca();
13 plot(t2,x2);
14 plot(t1,x1);
15 a.y_location = "middle";
16 a.x_location = "middle";
17 xtitle ('The signal x(t) = cost for t < 0 and sint
      for t > 0: Aperiodic Signal')
```

Example 1.5 sum of two complex exponentials as a single sinusoid

14 **xtitle**('Full wave rectified sinusoid', 'time t',' Magnitude');

Figure 1.1: Results of Exa 1.5

Example 1.6 Determining the fundamental period of composite discrete time signal

```
1 //Example 1.6: Determine the fundamental period of
      composite
2 // discrete time signal
3 //x[n] = exp(j(2*%pi/3)n)+exp(j(3*%pi/4)n)
4 clear all;
```

```
5 clc;
6 close;
7 Omega1 = 2*%pi/3; //Angular frequency signal 1
8 Omega2 = 3*%pi/4; //Angular frequency signal 2
9 N1 = (2*\%pi)/Omega1; // Peirod of signal 1
10 N2 = (2*\%pi)/Omega2; //Period of signal 2
11 //To find rational period of signal 1
12 \quad for \quad m1 = 1:100
     period = N1*m1;
13
      if (modulo(period,1) == 0)
14
        period1 = period;
15
        integer_value = m1
16
17
        break;
18
      end
19 end
20 //To find rational period of signal 2
21 \quad for \quad m2 = 1:100
22
     period = N2*m2;
     if (modulo(period,1) == 0)
23
24
        period2 = period;
25
        integer_value = m2
26
        break;
27
     end
28 end
29 disp(period1)
30 disp(period2)
31 //To determine the fundamental period N
32 N = period1*period2
```

Example 1.12 Classification of system: Causality property

```
6 clc;
7 \times = [2,4,6,8,10,0,0,0,1]; //Assign some value to
      input
8 n = -length(x)/2: length(x)/2;
9 \text{ count = } 0;
10 mid = ceil(length(x)/2);
11 y = zeros(1, length(x));
12 y(mid+1:\$) = x(\$:-1:mid+1);
13 \text{ for } n = -1:-1:-mid
     y(n+1+mid) = x(-n);
15 end
16 for i = 1:length(x)
17
     if (y(i) == x(i))
18
       count = count+1;
19
     end
20 end
21 if (count == length(x))
22
       disp('The given system is a causal system')
23 else
24
       disp('Since it depends on future input value')
25
       disp('The given system is a non-causal system')
26 \text{ end}
```

Example 1.13 Determination of stablility of a given system

```
13
     disp('Eventhough input is bounded output is
        unbounded')
     disp('The given system is unstable');
14
     disp('S = ');
15
16
     S
17
    else
     disp('The given system is stable');
18
     disp('The value of S = ');
19
20
     S
21 end
```

Example 1.13b Determination of stability of a given system

```
1 //Example 1.13(b): Determination of stability of a
      given system
2 // Page 50
3 //given system y(t) = exp(x(t))
4 clear;
5 clc;
6 Maximum_Limit = 10;
7 S = 0;
8 for t = 0:Maximum_Limit-1
     x(t+1) = -2^t;
                              //Input some bounded value
     S = S + \exp(x(t+1));
10
11
  end
12 if (S > Maximum_Limit)
     disp('Eventhough input is bounded output is
13
        unbounded')
14
     disp('The given system is unstable');
     disp('S = ');
15
     S
16
17
    else
     disp('The given system is stable');
18
     disp(S);
19
20 \, \text{end}
```

Example 1.14 Classification of a system: Time Invariance Property

```
1 //Example 1.14: classification of a system: Time
      Invariance Property
2 //Page 51
3 //To check whether the given system is a Time
      variant (or) Time In-variant
4 // The given discrete signal is y(t) = \sin(x(t))
5 clear;
6 \text{ clc};
7 to = 2; //Assume the amount of time shift =2
8 T = 10; //Length of given signal
9 \text{ for } t = 1:T
10
     x(t) = (2*\%pi/T)*t;
11
     y(t) = \sin(x(t));
12 end
13 //First shift the input signal only
14 Input_shift = sin(x(T-to));
15 Output_shift = y(T-to);
16 if(Input_shift == Output_shift)
     disp('The given discrete system is a Time In-
17
        variant system');
18 else
     disp ('The given discrete system is a Time Variant
19
        system ');
20 \text{ end}
```


Figure 1.2: Results of Exa 1.14

Example 1.15 Classification of a System: Time Invariance Property

```
9 \text{ for } n = 1:L
     x(n) = n;
10
     y(n) = n*x(n);
11
12 end
13 //First shift the input signal only
14 Input_shift = x(L-no);
15 Output_shift = y(L-no);
16 if(Input_shift == Output_shift)
     disp ('The given discrete system is a Time In-
17
        variant system');
18 else
     disp('The given discrete system is a Time Variant
19
        system ');
20 end
```

Example 1.16 Classification of system: Time Invariance Property

```
1 //Example 1.16: Classification of system: Time
      Invariance Property
2 //Page 52
3 //To check whether the given system is a Time
      variant (or) Time In-variant
4 // The given discrete signal is y(t) = x(2t)
5 clear;
6 clc;
7 to = 2; //Assume the amount of time shift
8 T = 10; //Length of given
                               signal
9 \times = [1,2,3,4,5,6,7,8,9,10];
10 y = zeros(1, length(x));
11 for t = 1: length(x)/2
12
       y(t) = x(2*t);
13 end
14 //First shift the input signal only
15 Input_shift = x(T-to);
16 Output_shift = y(T-to);
17 if (Input_shift == Output_shift)
     disp('The given discrete system is a Time In-
        variant system');
```

Example 1.17 Classification of system:Linearity Property

```
1 //Example 1.17: Classification of system: Linearity
      Property
2 //Page 54
3 //To check whether the given discrete system is a
      Linear System (or) Non-Linear System
4 //Given discrete system y(t) = t * x(t)
5 clear;
6 clc;
7 \times 1 = [1,1,1,1];
8 \times 2 = [2,2,2,2];
9 \ a = 1;
10 \ b = 1;
11 for t = 1:length(x1)
     x3(t) = a*x1(t)+b*x2(t);
12
13 end
14 \text{ for } t = 1:length(x1)
     y1(t) = t*x1(t);
15
     y2(t) = t*x2(t);
16
17
     y3(t) = t*x3(t);
18 end
19 for t = 1:length(y1)
20
     z(t) = a*y1(t)+b*y2(t);
21 end
22 \text{ count = 0};
23 for n =1:length(y1)
     if(y3(t) == z(t))
24
25
       count = count + 1;
26
     end
27 end
28 if (count == length(y3))
```

```
29
      disp('Since It satisfies the superposition
         principle')
      disp('The given system is a Linear system')
30
31
32
      Z
33
     else
       disp('Since It does not satisfyy the
34
          superposition principle')
       disp('The given system is a Non-Linear system')
35
36
  end
```

Example 1.18 Classification of a system:Linearity Property

```
1 //Example 1.18: Classification of a system: Linearity
       Property
2 //Page 54
3 //To check whether the given discrete system is a
      Linear System (or) Non-Linear System
4 //Given discrete system y(t) = (x(t)^2)
5 clear;
6 clc;
7 \times 1 = [1,1,1,1];
8 \times 2 = [2,2,2,2];
9 \ a = 1;
10 b = 1;
11 for t = 1:length(x1)
12
     x3(t) = a*x1(t)+b*x2(t);
13 end
14 for t = 1:length(x1)
     y1(t) = (x1(t)^2);
15
     y2(t) = (x2(t)^2);
16
     y3(t) = (x3(t)^2);
17
18 end
19 for t = 1:length(y1)
     z(t) = a*y1(t)+b*y2(t);
20
21 end
22 \text{ count = 0};
23 for n =1:length(y1)
```

```
24
     if(y3(t) == z(t))
25
       count = count+1;
26
     end
27 end
28 if(count == length(y3))
      disp('Since It satisifies the superposition
29
         principle')
      disp('The given system is a Linear system')
30
31
      yЗ
32
      z
33
     else
       disp('Since It does not satisfy the
34
          superposition principle')
       disp('The given system is a Non-Linear system')
35
36 \text{ end}
```

Example 1.20 Classification of a system:Linearity Property

```
1 //Example 1.20: Classification of a system: Linearity
       Property
2 //Page 55
3 //To check whether the given discrete system is a
      Linear System (or) Non-Linear System
4 //Given discrete system y[n] = 2*x[n]+3
5 clear;
6 clc;
7 \times 1 = [1,1,1,1];
8 \times 2 = [2,2,2,2];
9 \ a = 1;
10 \ b = 1;
11 for n = 1:length(x1)
     x3(n) = a*x1(n)+b*x2(n);
12
13 end
14 for n = 1:length(x1)
     y1(n) = 2*x1(n)+3;
15
     y2(n) = 2*x2(n)+3;
16
17
     y3(n) = 2*x3(n)+3;
18 \, end
```

```
19 for n = 1:length(y1)
     z(n) = a*y1(n)+b*y2(n);
20
21 end
22 \text{ count = 0};
23 for n =1:length(y1)
     if(y3(n) == z(n))
24
       count = count+1;
25
26
     end
27 \text{ end}
28 if (count == length(y3))
      disp('Since It satisifies the superposition
29
         principle')
30
      disp('The given system is a Linear system')
31
      уЗ
32
      Z
33
     else
       disp('Since It does not satisfy the
34
          superposition principle')
       disp('The given system is a Non-Linear system')
35
36 \, \text{end}
```

Chapter 2

Linear Time Invariant Systems

2.1 Scilab Codes

Example 2.1 Linear Convolution Sum

```
1 //Example 2.1: Linear Convolution Sum
2 / \text{page } 80
3 clear all;
4 close;
5 clc;
6 h = [0,0,1,1,1,0,0];
7 \text{ N1} = -2:4;
8 x = [0,0,0.5,2,0,0,0];
9 N2 = -2:4;
10 y = convol(x,h);
11 for i = 1:length(y)
     if (y(i) <= 0.0001)
       y(i)=0;
13
14
     end
15 end
16 N = -4:8;
17 figure
18 a=gca();
19 plot2d3('gnn',N1,h)
20 xtitle('Impulse Response', 'n', 'h[n]');
```

```
21 a.thickness = 2;
22 figure
23 a=gca();
24 plot2d3('gnn',N2,x)
25 xtitle('Input Response','n','x[n]');
26 a.thickness = 2;
27 figure
28 a=gca();
29 plot2d3('gnn',N,y)
30 xtitle('Output Response','n','y[n]');
31 a.thickness = 2;
```


Figure 2.1: Results of Exa 2.1

Figure 2.2: Results of Exa 2.1

Figure 2.3: Results of Exa 2.1

Example 2.3 Convolution Sum:Convolution of x[n] and Unit Impulse response h[n]

```
//Example 2.3:Convolution Sum:Convolution of x[n]
and
//Unit Impulse response h[n]
clear;
close;
clc;
Max_Limit = 10;
h = ones(1, Max_Limit);
N1 = 0:Max_Limit-1;
```

```
9 Alpha = 0.5; //alpha < 1
10 for n = 1:Max_Limit
     x(n) = (Alpha^(n-1))*1;
11
12 end
13 \text{ N2} = 0:\text{Max\_Limit-1};
14 y = convol(x,h);
15 N = 0:2*Max_Limit-2;
16 figure
17 a=gca();
18 plot2d3('gnn',N1,h)
19 xtitle('Impulse Response Fig 2.5.(b)', 'n', 'h[n]');
20 a.thickness = 2;
21 figure
22 a=gca();
23 plot2d3('gnn',N2,x)
24 xtitle('Input Response Fig 2.5.(a)', 'n', 'x[n]');
25 a.thickness = 2;
26 figure
27 \ a = gca();
28 plot2d3('gnn', N(1: Max_Limit), y(1: Max_Limit),5)
29 xtitle('Output Response Fig 2.7', 'n', 'y[n]');
30 a.thickness = 2;
```


Figure 2.4: Results of Exa 2.3

Figure 2.5: Results of Exa 2.3

Figure 2.6: Results of Exa 2.3

Example 2.4 Convolution Sum of finite duration sequences

```
10 \text{ end}
11 N2 =0:length(h)-1;
12 y = convol(x,h);
13 N = 0:length(x)+length(h)-2;
14 figure
15 a=gca();
16 plot2d3('gnn', N2,h)
17 xtitle('Impulse Response', 'n', 'h[n]');
18 a.thickness = 2;
19 figure
20 a=gca();
21 plot2d3('gnn',N1,x)
22 xtitle('Input Response', 'n', 'x[n]');
23 a.thickness = 2;
24 figure
25 \ a=gca();
26 plot2d3('gnn',N,y)
27 xtitle('Output Response', 'n', 'y[n]');
28 a.thickness = 2;
```


Figure 2.7: Results of Exa 2.4

Figure 2.8: Results of Exa 2.4

Figure 2.9: Results of Exa 2.4

Example 2.5 Convolution Sum of input sequence $x[n] = (2^n).u[-n]andh[n] = u[n]$

```
9 for n = 1:Max_Limit
     x1(n) = (2^{(-(n-1))})*1;
10
11 end
12 x = x1(\$:-1:1);
13 N1 = -length(x) + 1:0;
14 y = convol(x,h);
15 N = -length(x) + 1 : length(h) - 1;
16 figure
17 a=gca();
18 plot2d3('gnn', N2, h)
19 xtitle('Impulse Response', 'n', 'h[n]');
20 a.thickness = 2;
21 figure
22 a=gca();
23 a.y_location = "origin";
24 plot2d3('gnn',N1,x)
25 xtitle('Input Response Fig 2.11(a)', 'n', 'x[n]');
26 a.thickness = 2;
27 figure
28 a=gca();
29 a.y_location = "origin";
30 plot2d3('gnn',N,y)
31 xtitle('Output Response Fig 2.11(b)', 'n', 'y[n]');
32 a.thickness = 2;
```


Figure 2.10: Results of Exa $2.5\,$

Figure 2.11: Results of Exa 2.5

Figure 2.12: Results of Exa 2.5

Example 2.6 onvolution Integral of input $x(t) = (e^-at).u(t)andh(t) = u(t)$

```
10 for t = 1:Max_Limit
     x(t) = exp(-a*(t-1));
11
12 end
13 N1 = 0: length(x) - 1;
14 y = convol(x,h)-1;
15 \mathbb{N} = 0: length(x) + length(h) - 2;
16 figure
17 a=gca();
18 plot2d(N2,h)
19 xtitle('Impulse Response', 't', 'h(t)');
20 a.thickness = 2;
21 figure
22 a=gca();
23 plot2d(N1,x)
24 xtitle('Input Response', 't', 'x(t)');
25 a.thickness = 2;
26 figure
27 a=gca();
28 plot2d(N(1:Max_Limit),y(1:Max_Limit))
29 xtitle('Output Response', 't', 'y(t)');
30 a.thickness = 2;
```


Figure 2.13: Results of Exa 2.6

Figure 2.14: Results of Exa 2.6

Figure 2.15: Results of Exa 2.6

Example 2.7 Convolution Integral of fintie duration signals

```
//Example 2.7: Convolution Integral of fintie
    duration signals
//page99
clear;
close;
clc;
T = 10;
x = ones(1,T); //Input Response
for t = 1:2*T
    h(t) = t-1; //Impulse Response
```

```
10 \, \text{end}
11 N1 = 0:length(x)-1;
12 N2 = 0: length(h) -1;
13 y = convol(x,h);
14 N = 0:length(x)+length(h)-2;
15 figure
16 a=gca();
17 a.x_location="origin";
18 plot2d(N2,h)
19 xtitle('Impulse Response', 't', 'h(t)');
20 a.thickness = 2;
21 figure
22 a=gca();
23 \text{ plot2d}(N1,x)
24 xtitle('Input Response', 't', 'x(t)');
25 a.thickness = 2;
26 figure
27 a=gca();
28 \text{ plot2d}(N,y)
29 xtitle('Output Response', 't', 'y(t)');
30 a.thickness = 2;
```


Figure 2.16: Results of Exa 2.7

Figure 2.17: Results of Exa 2.7

Figure 2.18: Results of Exa 2.7

Example 2.8 Convolution Integral of input $x(t) = (e^2t).u(-t)andh(t) = u(t-3)$

```
9 t = -9:0;
10 x = exp(a*t);
11 //x = x1(\$:-1:1)
12 N2 = 0: length(h) -1;
13 \text{ N1} = -length(x) + 1:0;
14 \text{ t1} = -6:3;
15 y1 = (1/a)*exp(a*(t1-3));
16 y2 = (1/a)*ones(1,Max_Limit);
17 y = [y1 y2]
18 N = -length(h)+1:length(x)-1;
19 figure
20 a=gca();
21 a.x_location="origin";
22 a.y_location="origin";
23 plot2d(-Max_Limit+1:0,h($:-1:1))
24 xtitle('Impulse Response', 't', 'h(t-T)');
25 a.thickness = 2;
26 figure
27 \ a = gca();
28 a.y_location = "origin";
29 plot2d(t,x)
30 xtitle('Input Response', 't', 'x(t)');
31 a.thickness = 2;
32 figure
33 \ a = gca();
34 a.y_location = "origin";
35 a.x_location = "origin";
36 \text{ a.data\_bounds} = [-10,0;13,1];
37 plot2d(-Max_Limit+4:Max_Limit+3,y)
38 xtitle('Output Response', 't', 'y(t)');
39 a.thickness = 2;
```


Figure 2.19: Results of Exa $2.8\,$

Figure 2.20: Results of Exa $2.8\,$

Figure 2.21: Results of Exa 2.8

Chapter 3

Fourier Series Repreentation of Periodic Signals

3.1 Scilab Codes

Example 3.2 CTFS of a periodic signal x(t)Expression of continuous time signal

```
1 //Example 3.2:CTFS of a periodic signal x(t)
2 //Expression of continuous time signal
3 //using continuous time fourier series
4 clear;
5 close;
6 clc;
7 t = -3:0.01:3;
8 //t1 = -\%pi*4: (\%pi*4) /100: \%pi*4;
9 //t2 = -\%pi*6: (\%pi*6) / 100: \%pi*6;
10 \text{ xot} = \text{ones}(1, \text{length}(t));
11 x1t = (1/2)*cos(\%pi*2*t);
12 \text{ xot}_x1t = \text{xot}_x1t;
13 x2t = cos(\%pi*4*t);
14 \text{ xot}_x1t_x2t = \text{xot}_x1t_x2t;
15 x3t = (2/3)*cos(\%pi*6*t);
16 	ext{ xt} = 	ext{xot} + 	ext{x1t} + 	ext{x2t} + 	ext{x3t};
17 //
```

```
18 figure
19 a = gca();
20 a.y_location = "origin";
21 a.x_location = "origin";
22 a.data_bounds=[-4,0;2 4];
23 plot(t,xot)
24 ylabel('t')
25 title('xot =1')
26 //
27 figure
28 subplot (2,1,1)
29 \ a = gca();
30 a.y_location = "origin";
31 a.x_location = "origin";
32 \text{ a.data\_bounds} = [-4, -3; 2 \ 4];
33 plot(t,x1t)
34 ylabel('t')
35 title('x1(t) =1/2*\cos(2*pi*t)')
36 subplot (2,1,2)
37 \ a = gca();
38 a.y_location = "origin";
39 a.x_location = "origin";
40 a.data_bounds=[-4,0;2,4];
41 plot(t,xot_x1t)
42 ylabel('t')
43 title ('xo(t)+x1(t)')
44 //
45 figure
46 subplot (2,1,1)
47 \ a = gca();
48 a.y_location = "origin";
49 a.x_location = "origin";
50 \text{ a.data\_bounds} = [-4, -2; 4 2];
51 plot(t,x2t)
52 ylabel('t')
53 title('x2(t) = \cos(4*pi*t)')
54 subplot (2,1,2)
55 a = gca();
```

```
56 a.y_location = "origin";
57 a.x_location = "origin";
58 \text{ a.data_bounds} = [-4,0;4 4];
59 plot(t,xot_x1t_x2t)
60 ylabel('t')
61 title('xo(t)+x1(t)+x2(t)')
62 //
63 figure
64 subplot (2,1,1)
65 \ a = gca();
66 a.y_location = "origin";
67 a.x_location = "origin";
68 a.data_bounds=[-4,-3;4 3];
69 plot(t,x3t)
70 ylabel('t')
71 title('x1(t) = 2/3*\cos(6*pi*t)')
72 subplot (2,1,2)
73 \ a = gca();
74 a.y_location = "origin";
75 a.x_location = "origin";
76 a.data_bounds=[-4, -3; 4 \ 3];
77 plot(t,xt)
78 ylabel('t')
79 title('x(t)=xo(t)+x1(t)+x2(t)+x3(t)')
```


Figure 3.1: Results of Exa 3.2

Figure 3.2: Results of Exa 3.2

Figure 3.3: Results of Exa 3.2

Figure 3.4: Results of Exa 3.2

Example 3.3 Continuous Time Fourier Series Coefficients of a periodic signal x(t) = sin(Wot)

```
9 \text{ xt} = \sin(\text{Wo*t});
10 \text{ for } k = 0:5
     C(k+1,:) = exp(-sqrt(-1)*Wo*t.*k);
11
      a(k+1) = xt*C(k+1,:)'/length(t);
12
13
     if(abs(a(k+1)) <= 0.01)
14
        a(k+1)=0;
15
      end
16 \, \text{end}
17 a =a';
18 ak = [-a,a(2:\$)];
   Example 3.4 CTFS coefficients of a periodic signal x(t) = 1 + sin(Wot) + sin(Wot)
   2cos(Wot) + cos(2Wot + pi/4)
1 //Example3.4:CTFS coefficients of a periodic signal
2 //x(t) = 1 + \sin(Wot) + 2\cos(Wot) + \cos(2Wot + \%pi/4)
3 clear;
4 close;
5 clc;
6 t = 0:0.01:1;
7 T = 1;
8 Wo = 2*\%pi/T;
9 xt = ones(1,length(t))+sin(Wo*t)+2*cos(Wo*t)+cos(2*Wo*t)
      *t + \%pi/4);
10 \text{ for } k = 0:5
11
     C(k+1,:) = exp(-sqrt(-1)*Wo*t.*k);
12
      a(k+1) = xt*C(k+1,:)'/length(t);
     if (abs(a(k+1)) <= 0.1)</pre>
13
14
        a(k+1)=0;
15
      end
16 \text{ end}
17 a =a';
18 \quad a\_conj = conj(a);
19 ak = [a_conj(\$:-1:1),a(2:\$)];
20 \text{ Mag_ak} = abs(ak);
21 for i = 1:length(a)
22
      Phase_ak(i) = atan(imag(ak(i))/(real(ak(i))
         +0.0001));
```

```
23 end
24 Phase_ak = Phase_ak,
25 Phase_ak = [Phase_ak(1:$) -Phase_ak($-1:-1:1)];
26 figure
27 subplot (2,1,1)
28 \ a = gca();
29 a.y_location = "origin";
30 a.x_location = "origin";
31 plot2d3('gnn',[-k:k],Mag_ak,5)
32 poly1 = a.children(1).children(1);
33 poly1.thickness = 3;
34 title('abs(ak)')
35 xlabel('
     k ')
36 subplot (2,1,2)
37 \ a = gca();
38 a.y_location = "origin";
39 a.x_location = "origin";
40 plot2d3('gnn',[-k:k],Phase_ak,5)
41 poly1 = a.children(1).children(1);
42 poly1.thickness = 3;
43 title('<(ak)')
44 xlabel('
     k')
```


Figure 3.5: Results of Exa 3.4

Example 3.5 CTFS coefficients of a periodic signal x(t) = 1, |t| < T1, and 0, T1 < |t| < T/2

```
10 xt = ones(1,length(t));
11 //
12 \text{ for } k = 0:5
13 C(k+1,:) = \exp(-\operatorname{sqrt}(-1) * Wo * t. * k);
14
     a(k+1) = xt*C(k+1,:)'/length(t);
15
    if(abs(a(k+1)) <= 0.1)
       a(k+1)=0;
16
17
     end
18 end
19 a =a';
20 \quad a\_conj = real(a(:))-sqrt(-1)*imag(a(:));
21 ak = [a_conj(\$:-1:1)',a(2:\$)];
22 k = 0:5;
23 k = [-k(\$:-1:1),k(2:\$)];
24 Spectrum_ak = (1/2)*real(ak);
25 / /
26 figure
27 \ a = gca();
28 a.y_location = "origin";
29 a.x_location = "origin";
30 a.data_bounds=[-2,0;2,2];
31 plot2d(t,xt,5)
32 poly1 = a.children(1).children(1);
33 poly1.thickness = 3;
34 title('x(t)')
35 xlabel('
      t ')
36 //
37 figure
38 \ a = gca();
39 a.y_location = "origin";
40 a.x_location = "origin";
41 plot2d3 ('gnn',k,Spectrum_ak,5)
42 poly1 = a.children(1).children(1);
43 poly1.thickness = 3;
44 title('abs(ak)')
45 xlabel('
```


Figure 3.6: Results of Exa 3.5

Figure 3.7: Results of Exa 3.5

Example 3.6 Time Shift Property of CTFS

```
1 //Example3.6: Time Shift Property of CTFS
2 clear;
3 close;
4 clc;
5 T = 4;
6 T1 = T/2;
7 t = 0:T1/100:T1;
8 Wo = 2*%pi/T;
9 gt = (1/2)*ones(1,length(t));
10 a(1)=0; //k=0, ak =0
```

```
11 d(1) = 0;
12 \text{ for } k = 1:5
     a(k+1) = (sin(\%pi*k/2)/(k*\%pi));
13
     if (abs(a(k+1)) <=0.01)</pre>
14
15
       a(k+1)=0;
16
     end
      d(k+1) = a(k+1)*exp(-sqrt(-1)*k*%pi/2);
17
18 end
19 k = 0:5
20 disp('Fourier Series Coefficients of Square Wave')
21 a
22 disp('Fourier Series Coefficients of g(t)=x(t-1)-0.5
23 d
24 //
25 figure
26 \ a = gca();
27 a.y_location = "origin";
28 a.x_location = "origin";
29 a.data_bounds=[-1,-2;1,4];
30 plot2d([-t($:-1:1),t(1:$)],[-gt,gt],5)
31 poly1 = a.children(1).children(1);
32 poly1.thickness = 3;
33 title('g(t)')
34 xlabel('
      t ')
```


Figure 3.8: Results of Exa 3.6

Example 3.7 Derivative Property of CTFS

```
1 //Example3.7: Derivative Property of CTFS
2 clear;
3 clc;
4 close;
5 T = 4;
6 T1 = T/2;
7 t = 0:T1/100:T1;
8 xt = [t($:-1:1) t]/T1;
9 gt = (1/2)*ones(1,length(t));
10 e(1) = 1/2; //k = 0, e0 = 1/2
```

```
11 for k = 1:5
     a(k+1) = (sin(\%pi*k/2)/(k*\%pi));
     if(abs(a(k+1)) <= 0.01)
13
14
       a(k+1)=0;
15
     end
16
     d(k+1) = a(k+1) * exp(-sqrt(-1) * k * %pi/2);
17
     e(k+1) = 2*d(k+1)/(sqrt(-1)*k*%pi);
18 end
19 k = 0:5
20 disp('Fourier Series Coefficients of Square Wave')
21 a
22 disp('Fourier Series Coefficients of g(t)=x(t-1)-0.5
      ')
23 d
24 disp ('Fourier Series Coefficients of Triangular Wave
25 e
26 // Plotting the time shifted square waveform
27 figure
28 \ a = gca();
29 a.y_location = "origin";
30 a.x_location = "origin";
31 a.data_bounds=[-1,-2;1,2];
32 plot2d([-t($:-1:1),t(1:$)],[-gt,gt],5)
33 poly1 = a.children(1).children(1);
34 poly1.thickness = 3;
35 title('g(t)')
36 xlabel('
      t ')
37 // Plotting the Triangular waveform
38 figure
39 \ a = gca();
40 a.y_location = "origin";
41 a.x_location = "origin";
42 a.data_bounds=[-1,0;1,2];
43 plot2d([-t($:-1:1),t(1:$)],xt,5)
44 poly1 = a.children(1).children(1);
```

```
45 poly1.thickness = 3;
46 title('x(t)')
47 xlabel('t')
```


Figure 3.9: Results of Exa 3.7

Figure 3.10: Results of Exa 3.7

Example 3.8 Fourier Series Representation of Periodic Impulse Train

```
//Example3.8: Fourier Series Representation of
    Periodic Impulse Train

clear;
clc;
close;
T = 4;
T1 = T/4;
t = [-T,0,T];
xt = [1,1,1]; //Generation of Periodic train of Impulses
```

```
9 	 t1 = -T1:T1/100:T1;
10 gt = ones(1,length(t1));//Generation of periodic
      square wave
11 t2 = [-T1,0,T1];
12 qt = [1,0,-1]; // Derivative of periodic square wave
13 Wo = 2*\%pi/T;
14 ak = 1/T;
15 b(1) = 0;
16 c(1) = 2*T1/T;
17 \text{ for } k = 1:5
     b(k+1) = ak*(exp(sqrt(-1)*k*Wo*T1)-exp(-sqrt(-1)*k
18
        *Wo*T1));
     if(abs(b(k+1)) <= 0.1)
19
20
       b(k+1) = 0;
21
     end
22
     c(k+1) = b(k+1)/(sqrt(-1)*k*Wo);
    if(abs(c(k+1)) <= 0.1)
23
24
       c(k+1) = 0;
25
     end
26 end
27 k = 0:5
28 disp('Fourier Series Coefficients of periodic Square
       Wave')
29 disp(b)
30 disp ('Fourier Series Coefficients of derivative of
      periodic square wave')
31 disp(c)
32 // Plotting the periodic train of impulses
33 figure
34 subplot (3,1,1)
35 \ a = gca();
36 a.y_location = "origin";
37 a.x_location = "origin";
38 \text{ a.data\_bounds} = [-6,0;6,2];
39 plot2d3('gnn',t,xt,5)
40 poly1 = a.children(1).children(1);
41 poly1.thickness = 3;
42 title('x(t)')
```

```
43 // Plotting the periodic square waveform
44 subplot (3,1,2)
45 \ a = gca();
46 a.y_location = "origin";
47 a.x_location = "origin";
48 a.data_bounds=[-6,0;6,2];
49 plot2d(t1,gt,5)
50 poly1 = a.children(1).children(1);
51 poly1.thickness = 3;
52 plot2d(T+t1,gt,5)
53 poly1 = a.children(1).children(1);
54 poly1.thickness = 3;
55 plot2d(-T+t1,gt,5)
56 poly1 = a.children(1).children(1);
57 poly1.thickness = 3;
58 title('g(t)')
59 // Plotting the periodic square waveform
60 subplot (3,1,3)
61 \quad a = gca();
62 a.y_location = "origin";
63 a.x_location = "origin";
64 \text{ a.data\_bounds} = [-6, -2; 6, 2];
65 poly1 = a.children(1).children(1);
66 poly1.thickness = 3;
67 plot2d3('gnn',t2,qt,5)
68 poly1 = a.children(1).children(1);
69 poly1.thickness = 3;
70 plot2d3('gnn',T+t2,qt,5)
71 poly1 = a.children(1).children(1);
72 \text{ poly1.thickness} = 3;
73 plot2d3('gnn',-T+t2,qt,5)
74 poly1 = a.children(1).children(1);
75 \text{ poly1.thickness} = 3;
76 title('q(t)')
```


Figure 3.11: Results of Exa 3.8

Example 3.10 DTFS of x(n) = sin(Won)

```
1 //Example3.10:DTFS of x[n] =sin(Won)
2 clear;
3 close;
4 clc;
5 n = 0:0.01:5;
6 N = 5;
7 Wo = 2*%pi/N;
8 xn = sin(Wo*n);
9 for k =0:N-2
10 C(k+1,:) = exp(-sqrt(-1)*Wo*n.*k);
```

```
11
     a(k+1) = xn*C(k+1,:)'/length(n);
     if (abs(a(k+1)) <=0.01)</pre>
12
       a(k+1)=0;
13
14
     end
15 end
16 a =a'
17 \quad a = conj = conj(a);
18 ak = [a_{conj}(\$:-1:1),a(2:\$)]
19 k = -(N-2):(N-2);
20 //
21 figure
22 \ a = gca();
23 a.y_location = "origin";
24 a.x_location = "origin";
25 a.data_bounds=[-8,-1;8,1];
26 poly1 = a.children(1).children(1);
27 poly1.thickness = 3;
28 plot2d3('gnn',k,-imag(ak),5)
29 poly1 = a.children(1).children(1);
30 poly1.thickness = 3;
31 plot2d3('gnn', N+k, -imag(ak), 5)
32 poly1 = a.children(1).children(1);
33 poly1.thickness = 3;
34 plot2d3('gnn',-(N+k),-imag(ak($:-1:1)),5)
35 poly1 = a.children(1).children(1);
36 poly1.thickness = 3;
37 title('ak')
```


Figure 3.12: Results of Exa 3.10

```
Example 3.11 DTFS of x(n) = 1 + \sin(2 * pi/N) * n + 3 * \cos(2 * pi/N) * n + \cos((4 * pi/N) * n + pi/2)

1    //Example3.11:DTFS of
2    //x[n] = 1 + \sin(2 * \%pi/N) n + 3\cos(2 * \%pi/N) n + \cos[(4 * \%pi/N) n + \%pi/2]

3    clear;
4    close;
5    clc;
6    N = 10;
7    n = 0:0.01:N;
8    Wo = 2 * \%pi/N;
```

```
9 xn = ones(1, length(n)) + sin(Wo*n) + 3*cos(Wo*n) + cos(2*Wo
      *n+%pi/2);
10 for k = 0: N-2
     C(k+1,:) = \exp(-sqrt(-1)*Wo*n.*k);
11
12
     a(k+1) = xn*C(k+1,:)'/length(n);
13
     if(abs(a(k+1)) <= 0.1)
       a(k+1)=0;
14
15
     end
16 end
17 a =a';
18 \quad a\_conj = conj(a);
19 ak = [a_{conj}(\$:-1:1),a(2:\$)];
20 \text{ Mag_ak} = abs(ak);
21 for i = 1:length(a)
     Phase_ak(i) = atan(imag(ak(i))/(real(ak(i))
22
        +0.0001));
23 end
24 Phase_ak = Phase_ak'
25 Phase_ak = [Phase_ak(1:\$-1) - Phase_ak(\$:-1:1)];
26 k = -(N-2):(N-2);
27 //
28 figure
29 subplot (2,1,1)
30 \ a = gca();
31 a.y_location = "origin";
32 a.x_location = "origin";
33 plot2d3('gnn',k,real(ak),5)
34 poly1 = a.children(1).children(1);
35 poly1.thickness = 3;
36 title('Real part of(ak)')
37 xlabel('
      k ')
38 subplot (2,1,2)
39 \ a = gca();
40 a.y_location = "origin";
41 a.x_location = "origin";
42 plot2d3('gnn',k,imag(ak),5)
```

```
43 poly1 = a.children(1).children(1);
44 poly1.thickness = 3;
45 title('imaginary part of(ak)')
46 xlabel('
     k')
47 //
48 figure
49 subplot(2,1,1)
50 a = gca();
51 a.y_location = "origin";
52 a.x_location = "origin";
53 plot2d3('gnn',k,Mag_ak,5)
54 poly1 = a.children(1).children(1);
55 poly1.thickness = 3;
56 title('abs(ak)')
57 xlabel('
     k ')
58 subplot (2,1,2)
59 a = gca();
60 a.y_location = "origin";
61 a.x_location = "origin";
62 plot2d3 ('gnn',k,Phase_ak,5)
63 poly1 = a.children(1).children(1);
64 poly1.thickness = 3;
65 title('<(ak)')
66 xlabel('
     k')
```


Figure 3.13: Results of Exa $3.11\,$

Figure 3.14: Results of Exa 3.11

Example 3.12 DTFS coefficients of periodic square wave

```
10 a(1) = (2*N1+1)/N;
11 for k =1:2*N1
     a(k+1) = sin((2*\%pi*k*(N1+0.5))/N)/sin(\%pi*k/N);
12
     a(k+1) = a(k+1)/N;
13
14
    if(abs(a(k+1)) <= 0.1)
15
       a(k+1) = 0;
16
     end
17 end
18 a =a';
19 a_conj = conj(a);
20 ak = [a_conj($:-1:1),a(2:$)];
21 k = -2*N1:2*N1;
22 //
23 figure
24 \ a = gca();
25 a.y_location = "origin";
26 a.x_location = "origin";
27 plot2d3('gnn',k,real(ak),5)
28 poly1 = a.children(1).children(1);
29 poly1.thickness = 3;
30 title('Real part of(ak)')
31 xlabel('
     k')
```


Figure 3.15: Results of Exa 3.12

Example 3.13 TFS:Expression of periodic sequence using

```
1 //Example3.13:DTFS
2 //Expression of periodic sequence using
3 //the summation two different sequence
4 clear;
5 close;
6 clc;
7 N = 5;
8 n = 0:N-1;
9 x1 = [1,1,0,0,1];
10 x1 = [x1($:-1:1) x1(2:$)]; // Square Wave x1[n]
```

```
11 x2 = [1,1,1,1,1];
12 x^2 = [x^2(\$:-1:1) \ x^2(2:\$)]; //DC \text{ sequence of } x^2[n]
13 x = x1+x2; //sum of x1[n] & x2[n]
14 //Zeroth DTFS coefficient of dc sequence
15 c(1) = 1;
16 //Zeroth DTFS coefficient of square waveform
17 b(1) = 3/5;
18 //Zeroth DTFS coefficient of sum of x1[n] & x2[n]
19 a(1) = b(1)+c(1);
20 //
21 \text{ Wo} = 2*\%\text{pi/N};
22 \text{ for } k = 1:N-1
23
     a(k+1) = \sin((3*\%pi*k)/N)/\sin(\%pi*k/N);
24
     a(k+1) = a(k+1)/N;
25
    if(abs(a(k+1)) <= 0.1)
26
       a(k+1) = 0;
27
     end
28 end
29 a =a';
30 \quad a\_conj = conj(a);
31 ak = [a_conj(\$:-1:1),a(2:\$)];
32 k = -(N-1):(N-1);
33 n = -(N-1):(N-1);
34 //
35 figure
36 subplot (3,1,1)
37 \ a = gca();
38 a.y_location = "origin";
39 a.x_location = "origin";
40 plot2d3('gnn',n,x,5)
41 poly1 = a.children(1).children(1);
42 poly1.thickness = 3;
43 title('x[n]')
44 xlabel('
      n ')
45 subplot (3,1,2)
46 \ a = gca();
```

```
47 a.y_location = "origin";
48 a.x_location = "origin";
49 plot2d3('gnn',n,x1,5)
50 poly1 = a.children(1).children(1);
51 poly1.thickness = 3;
52 title('x1[n]')
53 xlabel('
     n ')
54 subplot(3,1,3)
55 a = gca();
56 a.y_location = "origin";
57 a.x_location = "origin";
58 plot2d3('gnn',n,x2,5)
59 poly1 = a.children(1).children(1);
60 poly1.thickness = 3;
61 title('x2[n]')
62 xlabel('
     n ')
```


Figure 3.16: Results of Exa 3.13

Example 3.14 DTFS: Finding x[n] using parseval's relation of DTFS

```
1 //Example3.14:DTFS
2 //Finding x[n] using parseval's relation of DTFS
3 clear;
4 close;
5 clc;
6 N = 6;
7 n = 0:N-1;
8 a(1) = 1/3;
9 a(2)=0;
10 a(4)=0;
```

```
11 a(5)=0;
12 a1 = (1/6)*((-1)^n);
13 \times = 0;
14 \text{ for } k = 0:N-2
15 if(k==2)
16
       x = x+a1;
17
    else
18
       x = x+a(k+1);
19
     end
20 \text{ end}
21 x = [x(\$:-1:1),x(2:\$)];
22 \quad n = -(N-1):(N-1);
23 //
24 figure
25 \ a = gca();
26 a.y_location = "origin";
27 a.x_location = "origin";
28 plot2d3('gnn',n,x,5)
29 poly1 = a.children(1).children(1);
30 poly1.thickness = 3;
31 title('x[n]')
32 xlabel('
      n ')
```


Figure 3.17: Results of Exa 3.14

Example 3.15 DTFS:Periodic Convolution Property

```
1  //Example3.15:DTFS: Periodic Convolution Property
2  clear;
3  clc;
4  close;
5  x = [1,1,0,0,0,0,1];
6  X = fft(x);
7  W = X.*X;
8  w = ifft(W);
9  w = abs(w);
10  for i =1:length(x)
```

```
if (abs(w(i)) <= 0.1)</pre>
11
        w(i) = 0;
12
13
      end
14 end
15 w = [w(\$:-1:1) w(2:\$)];
16 N = length(x);
17 figure
18 a = gca();
19 a.y_location = "origin";
20 a.x_location = "origin";
21 plot2d3('gnn',[-(N-1):0,1:N-1],w,5)
22 poly1 = a.children(1).children(1);
23 poly1.thickness = 3;
24 title('w[n]')
25 xlabel('
      n ')
```


Figure 3.18: Results of Exa $3.15\,$

Chapter 4

The Continuous Time Fourier Transform

4.1 Scilab Codes

Example 4.1 Continuous Time Fourier Transform of a Continuous Time Signal x(t) = exp(-A * t)u(t), t > 0

```
1 //Example 4.1: Continuous Time Fourier Transform of a
2 //Continuous Time Signal x(t) = \exp(-A*t)u(t), t>0
3 clear;
4 clc;
5 close;
6 // Analog Signal
7 A =1; //Amplitude
8 \text{ Dt} = 0.005;
9 t = 0:Dt:10;
10 xt = exp(-A*t);
11 //
12 // Continuous-time Fourier Transform
13 \text{ Wmax} = 2*\%pi*1;
                           //Analog Frequency = 1Hz
14 \text{ K} = 4;
15 k = 0:(K/1000):K;
16 W = k*Wmax/K;
17 XW = xt* exp(-sqrt(-1)*t'*W) * Dt;
```

```
18 \text{ XW}_{\text{Mag}} = abs(XW);
19 W = [-mtlb_fliplr(W), W(2:1001)]; // Omega from -
     Wmax to Wmax
20 XW_Mag = [mtlb_fliplr(XW_Mag), XW_Mag(2:1001)];
21 [XW_Phase,db] = phasemag(XW);
22 XW_Phase = [-mtlb_fliplr(XW_Phase), XW_Phase(2:1001)
     ];
23 // Plotting Continuous Time Signal
24 figure
25 \quad a = gca();
26 a.y_location = "origin";
27 plot(t,xt);
28 xlabel('t in sec.');
29 ylabel('x(t)')
30 title ('Continuous Time Signal')
31 figure
32 // Plotting Magnitude Response of CTS
33 subplot (2,1,1);
34 \ a = gca();
35 a.y_location = "origin";
36 plot(W, XW_Mag);
37 xlabel ('Frequency in Radians/Seconds--> W');
38 ylabel('abs(X(jW))')
39 title ('Magnitude Response (CTFT)')
40 // Plotting Phase Reponse of CTS
41 subplot(2,1,2);
42 \ a = gca();
43 a.y_location = "origin";
44 a.x_location = "origin";
45 plot(W, XW_Phase * %pi/180);
46 xlabel('
                                       Frequency in
      Radians/Seconds---> W');
47 ylabel('
                                                         < X
      (jW)')
48 title ('Phase Response (CTFT) in Radians')
```


Figure 4.1: Results of Exa 4.1

Figure 4.2: Results of Exa 4.1

Example 4.2 Continuous Time Fourier Transform of a Continuous Time Signal x(t) = exp(-A * abs(t))

```
//Example 4.2:Continuous Time Fourier Transform of a
//Continuous Time Signal x(t)= exp(-A*abs(t))

clear;
clc;
close;
// Analog Signal
A =1; //Amplitude
Dt = 0.005;
t = -4.5:Dt:4.5;
```

```
10 xt = exp(-A*abs(t));
11 //
12 // Continuous-time Fourier Transform
13 Wmax = 2*\%pi*1;
                           //Analog Frequency = 1Hz
14 K = 4;
15 k = 0:(K/1000):K;
16 W = k*Wmax/K;
17 XW = xt* exp(-sqrt(-1)*t'*W) * Dt;
18 \times XW = real(XW);
19 W = [-mtlb_fliplr(W), W(2:1001)]; // Omega from -
      Wmax to Wmax
20 XW = [mtlb_fliplr(XW), XW(2:1001)];
21 subplot(1,1,1)
22 subplot(2,1,1);
23 \ a = gca();
24 a.y_location = "origin";
25 plot(t,xt);
26 xlabel('t in sec.');
27 ylabel('x(t)')
28 title ('Continuous Time Signal')
29 subplot(2,1,2);
30 \ a = gca();
31 a.y_location = "origin";
32 plot(W, XW);
33 xlabel('Frequency in Radians/Seconds W');
34 \text{ ylabel}('X(jW)')
35 title ('Continuous-time Fourier Transform')
```


Figure 4.3: Results of Exa 4.2

Example 4.4 Continuous Time Fourier Transform and Frequency Response of a Square Waveform x(t) = A, from - T1toT1

```
1 //Example 4.4
2 // Continuous Time Fourier Transform
3 //and Frequency Response of a Square Waveform
4 // x(t)= A, from -T1 to T1
5 clear;
6 clc;
7 close;
8 // CTS Signal
9 A =1; //Amplitude
```

```
10 \text{ Dt} = 0.005;
11 T1 = 4; //\text{Time in seconds}
12 t = -T1/2:Dt:T1/2;
13 for i = 1:length(t)
14
     xt(i) = A;
15 end
16 //
17 // Continuous-time Fourier Transform
18 \text{ Wmax} = 2*\%pi*1;
                              //Analog Frequency = 1Hz
19 K = 4;
20 k = 0:(K/1000):K;
21 W = k*Wmax/K;
22 \text{ xt} = \text{xt};
23 XW = xt* exp(-sqrt(-1)*t'*W) * Dt;
24 \text{ XW}_{\text{Mag}} = \text{real}(\text{XW});
25 W = [-mtlb_fliplr(W), W(2:1001)]; // Omega from -
      Wmax to Wmax
26 \text{ XW}_{\text{Mag}} = [\text{mtlb}_{\text{fliplr}}(\text{XW}_{\text{Mag}}), \text{XW}_{\text{Mag}}(2:1001)];
27 //
28 subplot(2,1,1);
29 \ a = gca();
30 a.data_bounds=[-4,0;4,2];
31 a.y_location = "origin";
32 plot(t,xt);
33 xlabel('t in msec.');
34 title ('Continuous Time Signal x(t)')
35 subplot(2,1,2);
36 \ a = gca();
37 a.y_location = "origin";
38 plot(W, XW_Mag);
39 xlabel('Frequency in Radians/Seconds');
40 title ('Continuous-time Fourier Transform
                                                      X(jW)')
```


Figure 4.4: Results of Exa 4.4

Example 4.5 Inverse Continuous Time Fourier Transform X(jW)=1, from -T1 to T1

```
1 //Example 4.5
2 // Inverse Continuous Time Fourier Transform
3 // X(jW)= 1, from -T1 to T1
4 clear;
5 clc;
6 close;
7 // CTFT
8 A =1; //Amplitude
9 Dw = 0.005;
```

```
10 W1 = 4; //\text{Time in seconds}
11 \quad w = -W1/2:Dw:W1/2;
12 for i = 1:length(w)
13
     XW(i) = A;
14 end
15 \text{ XW} = \text{XW};
16 //
17 //Inverse Continuous-time Fourier Transform
18 t = -\%pi:\%pi/length(w):\%pi;
19 xt = (1/(2*\%pi))*XW * exp(sqrt(-1)*w'*t)*Dw;
20 \text{ xt} = \text{real}(\text{xt});
21 figure
22 \ a = gca();
23 a.y_location = "origin";
24 a.x_location = "origin";
25 plot(t,xt);
26 xlabel('
                                                         t time
      in Seconds');
27 title ('Inverse Continuous Time Fourier Transform x(t
      ) ')
```


Figure 4.5: Results of Exa 4.5

 $\mathbf{Example}$ 4.6 Continuous Time Fourier Transform of Symmetric periodic Square waveform

```
1 //Example 4.6
2 // Continuous Time Fourier Transform of Symmetric
3 // periodic Square waveform
4 clear;
5 clc;
6 close;
7 // CTFT
8 T1 = 2;
9 T = 4*T1;
```

```
10 Wo = 2*\%pi/T;
11 W = -\%pi:Wo:\%pi;
12 delta = ones(1,length(W));
13 XW(1) = (2*\%pi*Wo*T1/\%pi);
14 mid_value = ceil(length(W)/2);
15 for k = 2:mid_value
16
     XW(k) = (2*\%pi*sin((k-1)*Wo*T1)/(\%pi*(k-1)));
17 end
18 figure
19 \ a = gca();
20 a.y_location = "origin";
21 a.x_location = "origin";
22 plot2d3('gnn', W(mid_value:$), XW, 2);
23 poly1 = a.children(1).children(1);
24 \text{ poly1.thickness} = 3;
25 plot2d3('gnn', W(1:mid_value-1), XW($:-1:2),2);
26 poly1 = a.children(1).children(1);
27 poly1.thickness = 3;
28 xlabel ('W in radians/Seconds');
29 title ('Continuous Time Fourier Transform of Periodic
       Square Wave')
```


Figure 4.6: Results of Exa 4.6

Example 4.7 Continuous Time Fourier Transforms of Sinusoidal waveforms (a)sin(Wot) (b)cos(Wot)

```
1 //Example 4.7
2 // Continuous Time Fourier Transforms of
3 // Sinusoidal waveforms (a)sin(Wot) (b)cos(Wot)
4 clear;
5 clc;
6 close;
7 // CTFT
8 T1 = 2;
9 T = 4*T1;
```

```
10 Wo = 2*\%pi/T;
11 W = [-Wo, 0, Wo];
12 ak = (2*\%pi*Wo*T1/\%pi)/sqrt(-1);
13 XW = [-ak, 0, ak];
14 \text{ ak1} = (2*\%pi*Wo*T1/\%pi);
15 XW1 = [ak1,0,ak1];
16 //
17 figure
18 \ a = gca();
19 a.y_location = "origin";
20 a.x_location = "origin";
21 plot2d3('gnn',W,imag(XW),2);
22 poly1 = a.children(1).children(1);
23 poly1.thickness = 3;
24 xlabel('
     W');
25 title('CTFT of sin(Wot)')
26 //
27 figure
28 \ a = gca();
29 a.y_location = "origin";
30 a.x_location = "origin";
31 plot2d3 ('gnn', W, XW1, 2);
32 poly1 = a.children(1).children(1);
33 poly1.thickness = 3;
34 xlabel('
     W');
35 title('CTFT of cos(Wot)')
```


Figure 4.7: Results of Exa 4.7

Figure 4.8: Results of Exa 4.7

Example 4.8 Continuous Time Fourier Transform of Periodic Impulse Train

```
1 //Example 4.8
2 // Continuous Time Fourier Transforms of
3 // Periodic Impulse Train
4 clear;
5 clc;
6 close;
7 // CTFT
8 T = -4:4;;
9 T1 = 1; //Sampling Interval
10 xt = ones(1,length(T));
```

```
11 ak = 1/T1;
12 XW = 2*%pi*ak*ones(1,length(T));
13 Wo = 2*\%pi/T1;
14 W = Wo*T;
15 figure
16 subplot(2,1,1)
17 \ a = gca();
18 a.y_location = "origin";
19 a.x_location = "origin";
20 plot2d3('gnn',T,xt,2);
21 poly1 = a.children(1).children(1);
22 poly1.thickness = 3;
23 xlabel('
      t ');
24 title('Periodic Impulse Train')
25 subplot(2,1,2)
26 \ a = gca();
27 a.y_location = "origin";
28 a.x_location = "origin";
29 plot2d3('gnn',W,XW,2);
30 poly1 = a.children(1).children(1);
31 poly1.thickness = 3;
32 xlabel('
      t');
33 title('CTFT of Periodic Impulse Train')
```


Figure 4.9: Results of Exa 4.8

Example 4.9 Continuous Time Fourier Transform Properties: Linearity and Time Shift Property

```
9 	 x1 = ones(1, length(t1));
10 x2 = ones(1, length(t2));
11 t3 = t1+2.5;
12 	 t4 = t2+2.5;
13 \times 1 = (1/2) \times 1;
14 x = [x2(1:floor(length(x2)/3)),x1+x2(ceil(length(x2)))]
      /3): -floor(length(x2)/3)), x2((-ceil(length(x2)))
      /3))+2:$)];
15 subplot (3,1,1)
16 \ a = gca();
17 a.x_location = "origin";
18 a.y_location = "origin";
19 plot(t1,x1)
20 xtitle('x1(t)')
21 subplot (3,1,2)
22 \ a = gca();
23 a.x_location = "origin";
24 a.y_location = "origin";
25 plot(t2,x2)
26 xtitle('x2(t)')
27 subplot(3,1,3)
28 \ a = gca();
29 a.x_location = "origin";
30 a.y_location = "origin";
31 plot(t4,x)
32 xtitle('x(t)')
```


Figure 4.10: Results of Exa 4.9

Example 4.12 Continuous Time Fourier Transform: Derivative property

```
1 //Example 4.12:Continuous Time Fourier Transform:
2 //Derivative property
3 clear;
4 clc;
5 close;
6 // CTFT
7 t = -1:0.1:1;
8 x1 = ones(1,length(t));
9 x2 = [-1,zeros(1,length(t)-2),-1];
10 x = t;
```

```
11 // differentiation of x can be expressed as
12 //summation of x1 and x2
13 subplot(3,1,1)
14 \ a = gca();
15 a.x_location = "origin";
16 a.y_location = "origin";
17 plot(t,x1)
18 xtitle('x1(t)')
19 subplot(3,1,2)
20 \ a = gca();
21 a.x_location = "origin";
22 a.y_location = "origin";
23 plot2d3('gnn',t,x2)
24 xtitle('x2(t)')
25 subplot(3,1,3)
26 \ a = gca();
27 a.x_location = "origin";
28 a.y_location = "origin";
29 plot(t,x)
30 \text{ xtitle}('x(t)')
```


Figure 4.11: Results of Exa 4.12

Example 4.18 Frequency Response of Ideal Low pass Filter X(jW)=1, from -T1 to T1

```
//Example 4.18:Frequency Response of Ideal Low pass
Filter
// X(jW)= 1, from -T1 to T1
clear;
clc;
close;
Wc = 10; //1 rad/sec
W = -Wc:0.1:Wc; //Passband of filter
HWO = 1; //Magnitude of Filter
```

```
9 HW = HWO*ones(1,length(W));
10 //Inverse Continuous-time Fourier Transform
11 t = -%pi:%pi/length(W):%pi;
12 \, \text{Dw} = 0.1;
13 ht =(1/(2*\%pi))*HW *exp(sqrt(-1)*W'*t)*Dw;
14 ht = real(ht);
15 figure
16 subplot (2,1,1)
17 \ a = gca();
18 a.y_location = "origin";
19 a.x_location = "origin";
20 plot(W, HW);
21 xtitle ('Frequency Response of Filter H(jW)')
22 subplot (2,1,2)
23 \ a = gca();
24 a.y_location = "origin";
25 a.x_location = "origin";
26 plot(t,ht);
27 xtitle('Impulse Response of Filter h(t)')
```


Figure 4.12: Results of Exa 4.18

Example 4.23 Multiplication Property of CTFT

```
1 //Figure 4.23: Multiplication Property of CTFT
2 clear;
3 clc;
4 close;
5 W1 = -1:0.1:1;
6 W2 = -2:0.1:2;
7 W = -3:0.1:3;
8 //Fourier Transform of sinc function is square wave
9 XW1 = (1/%pi)*ones(1,length(W1)); //CTFT of x1(t)
10 XW2 = (1/(2*%pi))*ones(1,length(W2));//CTFT of x2(t)
```

```
11 XW = (1/2)*convol(XW1,XW2);//CTFT of x(t)=x1(t)*x2(t
    )
12 //X(jw) = linear convolution of X1(jw)and X2(jw)
13 figure
14 a = gca();
15 a.y_location = "origin";
16 a.x_location = "origin";
17 plot(W,XW);
18 xlabel('Frequency in Radians/Seconds---> W');
19 title('Multiplication Property X(jW)')
```


Figure 4.13: Results of Exa 4.23

```
Example 4.22 // Figure 4.22
2 // Plotting Continuous Time Fourier Transform of
3 //Impulse Response h(t) = \exp(-A*t)u(t), t>0
4 clear;
5 clc;
6 close;
7 // Analog Signal
8 \quad A = 1;
            //Amplitude
9 \text{ Dt} = 0.005;
10 t = 0:Dt:10;
11 ht = exp(-A*t);
12 // Continuous-time Fourier Transform
13 \text{ Wmax} = 2*\%pi*1;
                            //Analog Frequency = 1Hz
14 \text{ K} = 4;
15 k = 0:(K/1000):K;
16 W = k*Wmax/K;
17 HW = ht* exp(-sqrt(-1)*t'*W) * Dt;
18 \text{ HW}_{Mag} = abs(HW);
19 W = [-mtlb_fliplr(W), W(2:1001)]; // Omega from -
     Wmax to Wmax
20 HW_Mag = [mtlb_fliplr(HW_Mag), HW_Mag(2:1001)];
21 // Plotting Continuous Time Signal
22 figure
23 \ a = gca();
24 a.y_location = "origin";
25 plot(t,ht);
26 xlabel('t in sec.');
27 title('Impulse Response h(t)')
28 figure
29 // Plotting Magnitude Response of CTS
30 \ a = gca();
31 a.y_location = "origin";
32 plot(W,HW_Mag);
33 xlabel ('Frequency in Radians/Seconds ---> W');
34 title ('Frequency Response H(jW)')
```


Figure 4.14: Results of Exa $4.22\,$

Figure 4.15: Results of Exa 4.22

Chapter 5

The Discreet Time Fourier Transform

5.1 Scilab Codes

Example 5.1 Discrete Time Fourier Transform of discrete sequence $x[n] = (a^n).u[n], a > 0$ and a < 0

```
1 //Example 5.1: Discrete Time Fourier Transform of
      discrete sequence
2 //x[n] = (a^n).u[n], a>0 and a<0
3 clear;
4 clc;
5 close;
6 // DTS Signal
7 \text{ a1} = 0.5;
8 \ a2 = -0.5;
9 \text{ max\_limit} = 10;
10 \text{ for } n = 0:\max_{\text{limit}} -1
11
     x1(n+1) = (a1^n);
12
     x2(n+1) = (a2^n);
13 end
14 n = 0:max_limit-1;
15 // Discrete-time Fourier Transform
16 Wmax = 2*\%pi;
```

```
17 K = 4;
18 k = 0:(K/1000):K;
19 W = k*Wmax/K;
20 x1 = x1;
21 	 x2 = x2;
22 \text{ XW1} = x1* \exp(-sqrt(-1)*n'*W);
23 XW2 = x2* exp(-sqrt(-1)*n'*W);
24 \text{ XW1}_{\text{Mag}} = abs(XW1);
25 \text{ XW2}_{\text{Mag}} = abs(XW2);
26 \text{ W} = [-\text{mtlb\_fliplr(W)}, \text{W(2:1001)}]; // \text{Omega from} -
      Wmax to Wmax
27 XW1_Mag = [mtlb_fliplr(XW1_Mag), XW1_Mag(2:1001)];
28 XW2\_Mag = [mtlb\_fliplr(XW2\_Mag), XW2\_Mag(2:1001)];
29 [XW1_Phase,db] = phasemag(XW1);
30 [XW2_Phase,db] = phasemag(XW2);
31 XW1_Phase = [-mtlb_fliplr(XW1_Phase),XW1_Phase
      (2:1001)];
32 XW2_Phase = [-mtlb_fliplr(XW2_Phase), XW2_Phase
      (2:1001)];
33 //plot for a>0
34 figure
35 subplot(3,1,1);
36 plot2d3('gnn',n,x1);
37 xtitle('Discrete Time Sequence x[n] for a>0')
38 subplot (3,1,2);
39 \ a = gca();
40 a.y_location = "origin";
41 a.x_location = "origin";
42 plot2d(W,XW1_Mag);
43 title ('Magnitude Response abs(X(jW))')
44 subplot(3,1,3);
45 \ a = gca();
46 a.y_location = "origin";
47 a.x_location = "origin";
48 plot2d(W,XW1_Phase);
49 title ('Phase Response \langle (X(jW))' \rangle
50 //plot for a<0
51 figure
```

```
52 subplot(3,1,1);
53 plot2d3('gnn',n,x2);
54 xtitle('Discrete Time Sequence x[n] for a>0')
55 subplot(3,1,2);
56 a = gca();
57 a.y_location = "origin";
58 a.x_location = "origin";
59 plot2d(W,XW2_Mag);
60 title('Magnitude Response abs(X(jW))')
61 subplot(3,1,3);
62 a = gca();
63 a.y_location = "origin";
64 a.x_location = "origin";
65 plot2d(W,XW2_Phase);
66 title('Phase Response <(X(jW))')</pre>
```


Figure 5.1: Results of Exa 5.1

Figure 5.2: Results of Exa 5.1

Example 5.2 Discrete Time Fourier Transform of $x[n] = (a^a b s(n)) a > 0 and a < 0$

```
//Example 5.2: Discrete Time Fourier Transform of
//x[n]= (a^abs(n)) a>0 and a<0
clear;
clc;
close;
// DTS Signal
a = 0.5;
max_limit = 10;
n = -max_limit+1: max_limit-1;</pre>
```

```
10 x = a^abs(n);
11 // Discrete-time Fourier Transform
12 Wmax = 2*\%pi;
13 \text{ K} = 4;
14 k = 0: (K/1000):K;
15 W = k*Wmax/K;
16 XW = x* exp(-sqrt(-1)*n'*W);
17 XW_Mag = real(XW);
18 W = [-mtlb_fliplr(W), W(2:1001)]; // Omega from -
     Wmax to Wmax
19 XW_Mag = [mtlb_fliplr(XW_Mag), XW_Mag(2:1001)];
20 //plot for abs(a)<1
21 figure
22 subplot(2,1,1);
23 \ a = gca();
24 a.y_location = "origin";
25 a.x_location = "origin";
26 plot2d3('gnn',n,x);
27 xtitle('Discrete Time Sequence x[n] for a>0')
28 subplot(2,1,2);
29 \ a = gca();
30 a.y_location = "origin";
31 a.x_location = "origin";
32 plot2d(W,XW_Mag);
33 title('Discrete Time Fourier Transform X(exp(jW))')
```


Figure 5.3: Results of Exa 5.2

Example 5.3 Discrete Time Fourier Transform of $x[n] = 1, abs(n) \le N1$

```
1 //Example 5.3: Discrete Time Fourier Transform of
2 //x[n]= 1 , abs(n)<=N1
3 clear;
4 clc;
5 close;
6 // DTS Signal
7 N1 = 2;
8 n = -N1:N1;
9 x = ones(1,length(n));
10 // Discrete-time Fourier Transform</pre>
```

```
11 Wmax = 2*\%pi;
12 K = 4;
13 k = 0:(K/1000):K;
14 W = k*Wmax/K;
15 XW = x* exp(-sqrt(-1)*n'*W);
16 \text{ XW}_{\text{Mag}} = \text{real}(\text{XW});
17 W = [-mtlb_fliplr(W), W(2:1001)]; // Omega from -
      Wmax to Wmax
18 XW_Mag = [mtlb_fliplr(XW_Mag), XW_Mag(2:1001)];
19 //plot for abs(a)<1
20 figure
21 subplot(2,1,1);
22 \ a = gca();
23 a.y_location = "origin";
24 a.x_location = "origin";
25 plot2d3('gnn',n,x);
26 xtitle ('Discrete Time Sequence x[n]')
27 subplot(2,1,2);
28 \ a = gca();
29 a.y_location = "origin";
30 a.x_location = "origin";
31 plot2d(W,XW_Mag);
32 title('Discrete Time Fourier Transform X(\exp(jW))')
```


Figure 5.4: Results of Exa 5.3

Example 5.5 Discrete Time Fourier Transform: x[n] = cos(nWo)

```
1  //Example5.5: Discrete Time Fourier Transform:x[n]=
        cos(nWo)
2  clear;
3  clc;
4  close;
5  N = 5;
6  Wo = 2*%pi/N;
7  W = [-Wo,0,Wo];
8  XW = [%pi,0,%pi];
9  //
```


Figure 5.5: Results of Exa 5.5

Example 5.6 Discrete Time Fourier Transform of Periodic Impulse Train

```
1 //Example5.6: Discrete Time Fourier Transform of
2 // Periodic Impulse Train
3 clear;
4 clc;
5 close;
6 N = 5;
7 N1 = -3*N:3*N;
8 xn = [zeros(1,N-1),1];
9 x = [1 xn xn xn xn xn xn];
10 ak = 1/N;
```

```
11 XW = 2*\%pi*ak*ones(1,2*N);
12 Wo = 2*\%pi/N;
13 n = -N:N-1;
14 W = Wo*n;
15 figure
16 subplot(2,1,1)
17 \ a = gca();
18 a.y_location = "origin";
19 a.x_location = "origin";
20 plot2d3('gnn',N1,x,2);
21 poly1 = a.children(1).children(1);
22 poly1.thickness = 3;
23 xlabel('
     n');
24 title('Periodic Impulse Train')
25 subplot (2,1,2)
26 \ a = gca();
27 a.y_location = "origin";
28 a.x_location = "origin";
29 plot2d3('gnn',W,XW,2);
30 poly1 = a.children(1).children(1);
31 poly1.thickness = 3;
32 xlabel('
     W');
33 title('DTFT of Periodic Impulse Train')
34 disp(Wo)
```


Figure 5.6: Results of Exa 5.6

Example 5.7 Frequency Shifting Property of DTFT:Frequency Response of Ideal Low pass Filter and HPF

```
//Example 5.7: Frequency Shifting Property of DTFT:
    Frequency Response of Ideal Low pass Filter and
    HPF

clear;
clc;
close;
Wc = 1;    //1 rad/sec
W = -Wc:0.1:Wc;    //Passband of filter
HO = 1;    //Magnitude of Filter
```

```
8 HlpW = H0*ones(1,length(W));
9 Whp1 = W+\%pi;
10 Whp2 = -W-\%pi;
11 figure
12 subplot (2,1,1)
13 \ a = gca();
14 a.y_location = "origin";
15 a.x_location = "origin";
16 a.data_bounds=[-%pi,0;%pi,2];
17 plot2d(W,HlpW);
18 xtitle('Frequency Response of LPF H(exp(jW))')
19 subplot (2,1,2)
20 \ a = gca();
21 a.y_location = "origin";
22 a.x_location = "origin";
23 a.data_bounds=[-2*%pi,0;2*%pi,2];
24 plot2d(Whp1, HlpW);
25 plot2d(Whp2, HlpW);
26 xtitle('Frequency Response of HPF H(\exp(jW))')
```


Figure 5.7: Results of Exa 5.7

Example 5.9 Time Expansion Property of DTFT

```
1 //Example 5.9:Time Expansion Property of DTFT
2 clear;
3 close;
4 clc;
5 n = -1:11;
6 x = [0,1,2,1,2,1,2,1,2,1,2,0,0];
7 y = [1,1,1,1,1];
8 y_2_n = zeros(1,2*length(y)+1);
9 y_2_n(1:2:2*length(y)) = y;
10 y_2_n = [0 y_2_n 0];
```

```
11 y_2_n_1 = [0, y_2_n(1:\$-1)];
12 x_r = y_2_n + 2 * y_2_n_1;
13 y = [0, y, zeros(1,7)];
14 figure
15 subplot (4,1,1)
16 plot2d3('gnn',n,y)
17 title('y[n]')
18 subplot (4,1,2)
19 plot2d3('gnn',n,y_2_n)
20 title('y(2)[n]')
21 subplot (4,1,3)
22 plot2d3('gnn',n,y_2_n_1)
23 title('y(2)[n-1]')
24 subplot (4,1,4)
25 plot2d3('gnn',n,x)
26 title('x[n]=y(2)[n]+2*y(2)[n-1]')
```


Figure 5.8: Results of Exa 5.9

Example 5.12 IDTFT:Impulse Response of Ideal Low pass Filter

```
//Example 5.12:IDTFT:Impulse Response of Ideal Low
    pass Filter

clear;
clc;
close;
Wc = 1; //1 rad/sec
W = -Wc:0.1:Wc; //Passband of filter
HO = 1; //Magnitude of Filter
HlpW = H0*ones(1,length(W));
//Inverse Discrete—time Fourier Transform
```

```
10 t = -2*\%pi:2*\%pi/length(W):2*\%pi;
11 ht =(1/(2*\%pi))*HlpW *exp(sqrt(-1)*W'*t);
12 \text{ ht} = \text{real}(\text{ht});
13 figure
14 subplot (2,1,1)
15 \ a = gca();
16 a.y_location = "origin";
17 a.x_location = "origin";
18 a.data_bounds=[-%pi,0;%pi,2];
19 plot2d(W, HlpW, 2);
20 poly1 = a.children(1).children(1);
21 poly1.thickness = 3;
22 xtitle ('Frequency Response of LPF H(exp(jW))')
23 subplot (2,1,2)
24 \ a = gca();
25 a.y_location = "origin";
26 a.x_location = "origin";
27 a.data_bounds=[-2*%pi,-1;2*%pi,2];
28 plot2d3('gnn',t,ht);
29 poly1 = a.children(1).children(1);
30 poly1.thickness = 3;
31 xtitle('Impulse Response of LPF h(t)')
```


Figure 5.9: Results of Exa 5.12

Example 5.15 Multiplication Property of DTFT

```
1 //Example5.15: Multiplication Property of DTFT
2 clear;
3 clc;
4 close;
5 n = 1:100;
6 x2 = [3/4, sin(0.75*%pi*n)./(%pi*n)];
7 x1 = [1/2, sin(0.5*%pi*n)./(%pi*n)];
8 x = x1.*x2;
9 Wmax = %pi;
10 K = 1;
```

```
11 k = 0:(K/1000):K;
12 W = k*Wmax/K;
13 \quad n = 0:100;
14 \text{ XW1} = x1* \exp(-sqrt(-1)*n'*W);
15 XW2 = x2* exp(-sqrt(-1)*n'*W);
16 XW = x* exp(-sqrt(-1)*n'*W);
17 XW1_Mag = real(XW1);
18 XW2\_Mag = real(XW2);
19 XW_Mag = real(XW);
20 W = [-mtlb_fliplr(W), W(2:$)]; // Omega from -Wmax
      to Wmax
21 XW1_Mag = [mtlb_fliplr(XW1_Mag), XW1_Mag(2:\$)];
22 XW2_Mag = [mtlb_fliplr(XW2_Mag), XW2_Mag(2:$)];
23 XW_Mag = [mtlb_fliplr(XW_Mag), XW_Mag(2:$)];
24 figure
25 subplot(3,1,1)
26 \quad a = gca();
27 a.y_location = "origin";
28 a.x_location = "origin";
29 plot(W, XW1_Mag);
30 title('DTFT X1(\exp(jW))');
31 subplot (3,1,2)
32 \ a = gca();
33 a.y_location = "origin";
34 a.x_location = "origin";
35 plot(W, XW2_Mag);
36 title('DTFT X2(\exp(jW))');
37 subplot (3,1,3)
38 \ a = gca();
39 a.y_location = "origin";
40 a.x_location = "origin";
41 plot(W, XW_Mag);
42 title('Multiplication Property of DTFT');
```


Figure 5.10: Results of Exa $5.15\,$

Chapter 6

Time and Frequency Characterization of Signals and Systems

6.1 Scilab Codes

Example 6.1 Phase Response and Group Delay

```
1 //Example6.1: Phase Response and Group Delay
 2 clear;
3 clc;
4 close;
5 f1 = 50;
6 	 f2 = 150;
7 f3 = 300;
8 \text{ w1} = 315;
9 \text{ tuo1} = 0.066;
10 \text{ w2} = 943;
11 \text{ tuo2} = 0.033;
12 \text{ w3} = 1888;
13 \text{ tuo3} = 0.058;
14 	 f = 0:0.1:400;
15 \ W = 2*\%pi*f;
16 for i =1:length(f)
```

```
17
    num1(i) = (1+(sqrt(-1)*f(i)/f1)^2-2*sqrt(-1)*tuo1*(
       f(i)/f1));
    den1(i) = (1+(sqrt(-1)*f(i)/f1)^2+2*sqrt(-1)*tuo1*(
18
       f(i)/f1));
19
    H1W(i) = num1(i)/den1(i);
20
    num2(i) = (1+(sqrt(-1)*f(i)/f2)^2-2*sqrt(-1)*tuo2*(
       f(i)/f2));
    den2(i) = (1+(sqrt(-1)*f(i)/f2)^2+2*sqrt(-1)*tuo2*(
21
       f(i)/f2));
22
    H2W(i) = num2(i)/den2(i);
    num3(i) = (1+(sqrt(-1)*f(i)/f3)^2-2*sqrt(-1)*tuo3*(
23
       f(i)/f3));
24
    den3(i) = (1+(sqrt(-1)*f(i)/f3)^2+2*sqrt(-1)*tuo3*(
       f(i)/f3));
25
    H3W(i) = num3(i)/den3(i);
26
    H_W(i) = H1W(i)*H2W(i);
    HW(i) = H_W(i)*H3W(i);
27
     phase1(i) = -2*atan((2*tuo1*(f(i)/f1))/(1.001-(f(i)/f1)))
28
        )/f1)<sup>2</sup>));
     phase2(i) = -2*atan((2*tuo2*(f(i)/f2))/(1.001-(f(i)/f2)))
29
        )/f2)^2));
     phase3(i) = -2*atan((2*tuo3*(f(i)/f3))/(1.001-(f(i)/f3)))
30
        )/f3)<sup>2</sup>));
31
     phase_total(i) = phase1(i)+phase2(i)+phase3(i);
32
    if(f(i) <=50)</pre>
33
       W_{phase1}(i) = -2*atan((2*tuo1*(f(i)/f1)))
          /(1.001-(f(i)/f1)^2));
34
       W_{phase2(i)} = -2*_{atan}((2*_{tuo2*(f(i)/f2)})
          /(1.001-(f(i)/f2)^2);
       W_{phase3(i)} = -2*atan((2*tuo3*(f(i)/f3)))
35
          /(1.001-(f(i)/f3)^2);
36
       group_delay(i) = -phase_total(i)*0.1/%pi;
           delta_f = 0.1
37
    elseif(f(i) >= 50 \& f(i) <= 150)
       W_{phase1}(i) = -2*\%pi - 2*atan((2*tuo1*(f(i)/f1)))
38
          /(1.001-(f(i)/f1)^2);
       W_{phase2(i)} = -2*atan((2*tuo2*(f(i)/f2)))/(1.001-(
39
          f(i)/f2)^2));
```

```
40
       W_{phase3}(i) = -2*atan((2*tuo3*(f(i)/f3))/(1.001-(
          f(i)/f3)^2));
       group_delay(i) = -phase_total(i)*0.1/(2*%pi);
41
42
    elseif(f(i) >= 150 \& f(i) <= 300)
43
       W_{phase1(i)} = -2*atan((2*tuo1*(f(i)/f1)))/(1.001-(
          f(i)/f1)^2));
       W_{phase2}(i) = -4*\%pi-2*atan((2*tuo2*(f(i)/f2))
44
          /(1.001-(f(i)/f2)^2);
       W_{phase3(i)} = -2*atan((2*tuo3*(f(i)/f3)))/(1.001-(
45
          f(i)/f3)^2));
       group_delay(i) = -phase_total(i)*0.1/(4*%pi);
46
    elseif(f(i)>300 & f(i)<=400)
47
48
       W_{phase1(i)} = -2*atan((2*tuo1*(f(i)/f1)))/(1.001-(
          f(i)/f1)^2));
       W_{phase2(i)} = -2*_{atan}((2*_{tuo2}*(f(i)/f2)))/(1.001-(
49
          f(i)/f2)^2));
       W_{phase3}(i) = -6*\%pi-2*atan((2*tuo3*(f(i)/f3))
50
          /(1.001-(f(i)/f3)^2));
       group_delay(i) = -phase_total(i)*0.1/(4*%pi);
51
52
    end
    if(f(i) == 300.1)
53
      W_phase_total(i) = 2*%pi+W_phase1(i)+W_phase2(i)+
54
         W_phase3(i);
55
    else
      W_phase_total(i) = W_phase1(i)+W_phase2(i)+
56
         W_phase3(i);
57
    end
58 end
59 figure
60 plot2d(f,phase_total,2)
61 xtitle ('Principal phase', 'Frequency (Hz)', 'Phase (rad)
      ');
62 figure
63 plot2d(f, W_phase_total, 2)
64 xtitle ('unwrapped phase', 'Frequency (Hz)', 'Phase (rad)
      <sup>'</sup>);
65 figure
66 plot2d(f,abs(group_delay),2)
```

```
67 xtitle('group delay', 'Frequency(Hz)', 'Group Delay(sec)');
```


Figure 6.1: Results of Exa 6.1

Figure 6.2: Results of Exa 6.1

Figure 6.3: Results of Exa 6.1

Example 6.3 Analog Lowpass IIR filter design Cutoff frequency Fc = 500Hz Passband ripple 1-0.05 and stopband ripple = 0.05

```
1 //Example6.3: Analog Lowpass IIR filter design
2 //Cutoff frequency Fc = 500Hz
3 //Passband ripple 1-0.05 and stopband ripple = 0.05
4 clear;
5 close;
6 clc;
7 hs_butt = analpf(5, 'butt', [0.05, 0.05], 500);
8 hs_ellip = analpf(5, 'ellip', [0.05, 0.05], 500);
9 fr=0:.1:2000;
```

```
10 hf_butt=freq(hs_butt(2),hs_butt(3),%i*fr);
11 hm_butt = abs(hf_butt);
12 hf_ellip=freq(hs_ellip(2),hs_ellip(3),%i*fr);
13 hm_ellip = abs(hf_ellip);
14 // Plotting Magnitude Response of Analog IIR Filters
15 \ a = gca();
16 plot2d(fr,hm_butt)
17 poly1 = a.children(1).children(1);
18 poly1.foreground = 2;
19 poly1.thickness = 2;
20 poly1.line_style = 3;
21 plot2d(fr,hm_ellip)
22 poly1 = a.children(1).children(1);
23 poly1.foreground = 5;
24 poly1.thickness = 2;
25 xlabel ('Frequency (Hz)')
26 ylabel ('Magnitude of frequency response')
27 legend(['Butterworth Filter'; 'Elliptic Filter'])
```


Figure 6.4: Results of Exa 6.3

Example 6.4 Bode Plot

```
1 //Example 6.4:Bode Plot
2 s = %s;
3 //Open Loop Transfer Function
4 H = syslin('c',[20000/(s^2+100*s+10000)]);//jw
    replaced by s
5 clf;
6 bode(H,0.01,10000)
```


Figure 6.5: Results of Exa 6.4

Example 6.5 Bode Plot

```
1 //Example 6.5:Bode Plot
2 s = %s;
3 //Open Loop Transfer Function
4 H = syslin('c',[(100*(1+s))/((10+s)*(100+s))]);//jw replaced by s
5 clf;
6 bode(H,0.01,10000)
```


Figure 6.6: Results of Exa 6.5

Chapter 7

Sampling

7.1 Scilab Codes

Example 7.1 Sinusoidal signal

```
1 //Example7.1: Sinusoidal signal
2 clear;
3 close;
4 clc;
5 \text{ Wm} = 2*\%pi;
6 \text{ Ws} = 2*\text{Wm};
7 t = -2:0.01:2;
8 phi = -\%pi/2;
9 x = \cos((Ws/2)*t+phi);
10 y = sin((Ws/2)*t);
11 subplot (2,1,1)
12 \ a = gca();
13 a.x_location = "origin";
14 a.y_location = "origin";
15 plot(t,x)
16 title ('\cos (Ws/2*t+phi)')
17 subplot(2,1,2)
18 \ a = gca();
19 a.x_location = "origin";
20 a.y_location = "origin";
```

```
21 plot(t,y)
22 title('sin(Ws/2*t)')
```


Figure 7.1: Results of Exa 7.1

Example 7.2 Digital Differentiator

```
//Example7.2: Digital Differentiator
syms t n;
T = 0.1; //Sampling time in seconds
xct = sin(%pi*t/T)/(%pi*t);
yct = diff(xct,t);
disp(yct, 'yc(t)=');
```

```
7 t = n*T;
8 xdn = sin(%pi*t/T)/(%pi*t);
9 ydn = diff(xdn,n);
10 disp(ydn, 'yd[n]=');
11 hdn = T*ydn;
12 disp(hdn, 'hd[n]=');
13 //Result
14 //yc(t) = (10*cos(31.415927*t)/t) -(0.3183099*sin(31.415927*t)/(t^2))
15 //yd[n]=(10*cos(3.1415927*n)/n) -3.183*sin(3.1415927*n)/(n^2)
16 //hd[n]=(cos(3.1415927*n)/n) -0.3183*sin(3.1415927*n)/(n^2)
```

Example 7.3 Half Sample Delay system

```
1 //Example7.3: Half Sample Delay system
2 syms t n T;
3 / T = 0.1; //Sampling time in seconds
4 \text{ xct} = \frac{\sin(\%\text{pi*t/T})}{(\%\text{pi*t})};
5 t = t-T/2;
6 \text{ yct\_del} = \sin(\%pi*t/T)/(\%pi*t);
7 disp(yct_del, 'Output of Half Sample delay system
      continuous =');
8 t = n*T-T/2;
9 xdn = sin(\pi/T)/(\pi/t);
10 \text{ ydn\_del} = xdn;
11 disp(ydn_del, 'Output of Half Sample delay system
      discrete =');
12 hdn = T*ydn_del;
13 disp(hdn, 'Impulse Response of discrete time half
      sample delay system=');
14 // Result
15 //Output of Half Sample delay system continuous =
16 //\sin(3.14*(t-T/2)/T)/(3.14*(t-T/2))
17 //Output of Half Sample delay system discrete =
18 // \sin(3.14*(n*T-T/2)/T)/(3.14*(n*T-T/2))
```

Example 7.4 Finding the period of the sampled signal and Sampling frequency

```
//Example7.4: Finding the period of the sampled
    signal
//and Sampling frequency
clear;
close;
clc;
Wm = 2*%pi/9;
N = floor(2*%pi/(2*Wm))
disp(N, 'Period of the discrete signal')
Ws = 2*%pi/N;
disp(Ws, 'The Sampling frequency corresponding to the period N')
```

Example 7.5 Multirate Signal Processing:Sampling Rate Conversion (1)Downsampling by 4 (2)Upsampling by 2 (3)Upsampling by 2 and followed by downsampling by 9

```
//Example7.5: Multirate Signal Processing: Sampling
Rate Conversion
//(1) Downsampling by 4
//(2) Upsampling by 2
//(3) Upsampling by 2 and followed by downsampling by
9
clear;
close;
close;
clc;
Wm = 2*%pi/9; //Maximum frequency of signal
Ws = 2*Wm; //Sampling frequency
N = floor(2*%pi/Ws); // period of discrete signal
// Original discrete time signal generation and
Magnitude response
```

```
12 n = 0:0.01:N;
13 x = sin(Wm*n);
14 \text{ Wmax} = 2*\%\text{pi/9};
15 \text{ K} = 4;
16 k = 0:(K/1000):K;
17 W = k*Wmax/K;
18 XW = x* exp(-sqrt(-1)*n'*W);
19 XW_Mag = real(XW);
20 XW_Mag = XW_Mag/max(XW_Mag);
21 W = [-mtlb_fliplr(W), W(2:1001)]; // Omega from -
      Wmax to Wmax
22 XW_Mag = [mtlb_fliplr(XW_Mag), XW_Mag(2:1001)];
23 / (1) downsampling by 4 and corresponding magnitude
      response
24 \text{ n1} = 0:0.01:N/4;
25 y = x(1:4:length(x));
26 \text{ k1} = 0: (K/2000):K;
27 W1 = k1*4*Wmax/K;
28 \text{ XW4} = y* \exp(-sqrt(-1)*n1'*W1);
29 \text{ XW4\_Mag} = \text{real}(\text{XW4});
30 XW4\_Mag = XW4\_Mag/max(XW4\_Mag);
31 W1 = [-mtlb_fliplr(W1), W1(2:\$)]; // Omega from -
      Wmax to Wmax
32 \text{ XW4\_Mag} = [\text{mtlb\_fliplr}(\text{XW4\_Mag}), \text{XW4\_Mag}(2:\$)];
33 //(2) Upsampling by 2 and corresponding magnitude
      response
34 \quad n2 = 0:0.01:2*N;
35 z = zeros(1, length(n2));
36 z([1:2:length(z)]) = x;
37 \text{ k2} = 0:(K/500):K;
38 \quad W2 = k2*Wmax/(2*K);
39 XW2 = z* exp(-sqrt(-1)*n2'*W2);
40 \text{ XW2\_Mag} = \text{real}(\text{XW2});
41 XW2\_Mag = XW2\_Mag/max(XW2\_Mag);
42 W2 = [-mtlb_fliplr(W2), W2(2:\$)]; // Omega from -
      Wmax to Wmax
43 XW2_Mag = [mtlb_fliplr(XW2_Mag), XW2_Mag(2:$)];
44 //(3) Upsampling by 2 and Downsampling by 9
```

```
corresponding magnitude response
45 \quad n3 = 0:0.01:2*N/9;
46 \text{ g} = z([1:9:length(z)]);
47 \text{ k3} = 0:K/(9*500):K;
48 \text{ W3} = k3*9*Wmax/(2*K);
49 XW3 = g* exp(-sqrt(-1)*n3'*W3);
50 \text{ XW3}_{\text{Mag}} = \text{real}(\text{XW3});
51 XW3_Mag = XW3_Mag/max(XW3_Mag);
52 \text{ W3} = [-\text{mtlb\_fliplr(W3)}, \text{W3}(2:\$)]; // \text{Omega from} -
      Wmax to Wmax
53 XW3\_Mag = [mtlb\_fliplr(XW3\_Mag), XW3\_Mag(2:$)];
54 / /
55 figure
56 subplot (2,2,1)
57 a = gca();
58 a.y_location = "origin";
59 a.x_location = "origin";
60 a.data_bounds = [-\%pi, 0; \%pi, 1.5];
61 plot2d(W, XW_Mag, 5);
62 title('Spectrum of Discrete Signal X(exp(jW))')
63 subplot (2,2,2)
64 \ a = gca();
65 a.y_location = "origin";
66 a.x_location = "origin";
67 a.data_bounds = [-\%pi, 0; \%pi, 1.5];
68 plot2d(W1, XW4_Mag, 5);
69 title ('Spectrum of downsampled signal by 4 X(exp(jW
      /4))')
70 subplot(2,2,3)
71 \ a = gca();
72 a.y_location = "origin";
73 a.x_location = "origin";
74 a.data_bounds = [-\%pi,0;\%pi,1.5];
75 plot2d(W2, XW2_Mag, 5);
76 title ('Spectrum of Upsampled signal by 2 X(exp(2jW)
      ) ')
77 subplot (2,2,4)
78 \ a = gca();
```

```
79 a.y_location ="origin";

80 a.x_location ="origin";

81 a.data_bounds =[-%pi,0;%pi,1.5];

82 plot2d(W3,XW3_Mag,5);

83 title('Spectrum of Upsampled by 2 and Downsampled by 9 X(\exp(2jW/9))')
```


Figure 7.2: Results of Exa 7.5

Chapter 9

The Laplace Transform

9.1 Scilab Codes

```
Example 9.1 Laplace Transform x(t) = exp(-at).u(t)
```

```
 \begin{array}{lll} 1 & // Example 9.1 \colon Lapalce & Transform & x(t) = exp(-at).u(t) \\ 2 & syms & t & s; \\ 3 & a & = & 3; \\ 4 & y & = laplace('\%e^(-a*t)',t,s); \\ 5 & disp(y) \\ 6 & // Result \\ 7 & // 1/(s+a) \end{array}
```

Example 9.2 Laplace Transform x(t) = exp(-at).u(-t)

```
 \begin{array}{lll} 1 & // Example 9.2 \colon Lapalce & Transform & x(t) = -exp(-at).u(-t) \\ 2 & \text{syms t s;} \\ 3 & a = 3; \\ 4 & y = laplace('\%e^(a*-t)',t,s); \\ 5 & \text{disp(y)} \\ 6 & // Result \\ 7 & // 1/(s+a) \end{array}
```

Example 9.3 Laplace Transform x(t) = 3exp(-2t)u(t) - 2exp(-t)u(t)

```
1 //Example 9.3: Laplace Transform x(t) = 3exp(-2t)u(t)
     -2\exp(-t)u(t)
2 syms t s;
3 y = laplace('3*\%e^(-2*t)-2*\%e^(-t)',t,s):
4 disp(y)
5 //Result
6 / (3/(s+2)) - (2/(s+1))
  Example 9.4 Laplace Transform x(t) = exp(-2t)u(t) + exp(-t)(cos3t)u(t)
1 //Example 9.4: Laplace Transform x(t) = \exp(-2t)u(t) +
     \exp(-t)(\cos 3t)u(t)
2 syms t s;
3 y = laplace('\%e^(-2*t)+\%e^(-t)*\cos(3*t)',t,s);
4 \operatorname{disp}(y)
5 //Result
6 //[(s+1)/(s^2+2*s+10)]+[1/(s+2)] refer equation
     9.29
7 // Equivalent to (2*s^2+5*s+12)/((s^2+2*s+10)*(s+2))
      refer equation 9.30
  Example 9.5 Laplace Transform x(t) = s(t) - (4/3)exp(-t)u(t) + (1/3)exp(2t)u(t)
1 //Example 9.5: Laplace Transform of x(t) = s(t) - (4/3) \exp(-t)
     (-t)u(t)+(1/3)\exp(2t)u(t)
2 syms t s;
3 y = laplace('-(4/3)*\%e^{(-t)}+(1/3)*\%e^{(2*t)}',t,s);
4 y = 1 + y;
5 \text{ disp}(y)
6 //Result
7 / [-4/(3*(s+1))] + [1/(3*(s-2))] + 1
  Example 9.6 Laplace Transform x(t) = exp(-at)u(t), 0 < t < T
1 / Example 9.6
2 //Lapalce Transform x(t) = \exp(-at)u(t), 0 < t < T
3 syms ts;
```

```
4 \ a = 3;
5 T = 10;
6 / t = T;
7 y = laplace('\%e^(-a*t)-\%e^(-a*t)*\%e^(-(s+a)*T)',t,s)
8 \text{ disp}(y)
9 //Result
10 // [1/(s+a)] - [(exp((-s-a)*T))/(s+a)]
   Example 9.7 Laplace Transform x(t) = exp(-b.abs(t)).u(t), 0 < t < Tx(t) =
   exp(-bt).u(t) + exp(bt).u(-t)
1 / Example 9.7
\frac{2}{\sqrt{\text{Lapalce Transform }}} x(t) = \exp(-b.abs(t)).u(t), 0 < t <
3 //x(t) = \exp(-bt) . u(t) + \exp(bt) . u(-t)
4 syms t s;
5 b = 3;
6 y = laplace('\%e^(-b*t)-\%e^(b*t)',t,s);
7 \text{ disp}(y)
8 //Result
9 // [1/(s+b)] - [1/(s-b)]
   Example 9.8 Inverse Laplace Transform X(S) = 1/((s+1)(s+2))
1 //Example9.8: Inverse Lapalce Transform
2 / X(S) = 1/((s+1)(s+2))
3 s = %s ;
4 G = syslin('c', (1/((s+1)*(s+2))));
5 \text{ disp}(G, "G(s) = ")
6 plzr(G)
7 x = denom(G);
8 disp(x, "Ch a r a c t e r i s t i c s Polynomial=")
9 y = roots(x);
10 disp(y, "Poles of a system=")
11 //Result
12 // -1 \text{ and } -2
```


Figure 9.1: Results of Exa 9.8

Example 9.9 Inverse Laplace Transform X(S) = 1/((s+1)(s+2))

```
1 //Example9.9:Inverse Lapalce Transform
2 //X(S) = 1/((s+1)(s+2))
3 s = %s;
4 syms t;
5 [A] = pfss(1/((s+1)*(s+2))) // partial fraction of F(s)
6 F1 = ilaplace(A(1),s,t)
7 F2 = ilaplace(A(2),s,t)
8 F = F1 + F2;
9 disp(F, "f(t) = ")
10 // Result
```

```
11 // (%e^-t)-(%e^-(2*t))
   Example 9.10 Inverse Laplace Transform X(S) = 1/((s+1)(s+2))Re(s) < 1
   -1, Re(s) < -2
 1 //Example9.10:Inverse Lapalce Transform
 2 //X(S) = 1/((s+1)(s+2)) Re(s)< -1, Re(s)< -2
 3 s = %s ;
 4 syms t;
 5 [A]=pfss(1/((s+1)*(s+2))) //partial fraction of F(s)
 6 	ext{ F1 = ilaplace}(A(1),s,t)
 7 	ext{ F2} = ilaplace(A(2),s,t)
 8 F = -F1-F2;
9 \text{ disp}(F, "f(t)=")
10 //Result
11 // \%e^-(2*t)-\%e^-t
   Example 9.11 Inverse Laplace Transform X(S) = 1/((s+1)(s+2)) - 2 <
   Re(s) < -1
 1 //Example9.11:Inverse Lapalce Transform
 2 //X(S) = 1/((s+1)(s+2)) -2 < Re(s) < -1
 3 s = %s ;
 4 \text{ syms t};
 5 [A]=pfss(1/((s+1)*(s+2))) // partial fraction of F(s)
 6 	ext{ F1 = ilaplace}(A(1),s,t)
 7 	ext{ F2} = ilaplace(A(2),s,t)
8 F = -F1+F2;
9 \text{ disp}(F, "f(t)=")
10 // Result
11 // -(\%e^-t) - (\%e^-(2*t))
   Example 9.12 Inverse Laplace Transform X(S) = 1/(s + (1/2))Re(s) >
   -1/2
 1 //Example9.12:Inverse Lapalce Transform
 2 / X(S) = 1/(s+(1/2)) Re(s)> -1/2
```

```
3 s = %s ;
4 G = syslin('c', (1/(s+0.5)))
5 \text{ disp}(G, "G(s)=")
6 plzr(G)
   Example 9.13 Inverse Laplace Transform X1(S) = 1/(s+1)Re(s) > -1, X2(S) =
   1/((s+1)(s+2))Re(s) > -1
1 //Example9.13
2 //Inverse Lapalce Transform
3 / X1(S) = 1/(s+1) Re(s)> -1
4 //X2(S) = 1/((s+1)(s+2)) Re(s) > -1
5 s = %s ;
6 syms t;
7 G1 = syslin('c', (1/(s+1)));
8 \operatorname{disp}(G1, "G(s)=")
9 figure
10 plzr(G1)
11 G2 = syslin('c', (1/((s+1)*(s+2))));
12 disp(G2,"G(s)=")
13 figure
14 plzr(G2)
15 G3 = syslin('c', (1/(s+1))-(1/((s+1)*(s+2))));
16 disp(G3, "G(s)=")
17 figure
18 plzr(G3)
```


Figure 9.2: Results of Exa 9.13

Figure 9.3: Results of Exa $9.13\,$

Figure 9.4: Results of Exa 9.13

Example 9.14 Laplace Transform $x(t) = t.exp(-at), t > 0, x(t) = (t^2)/2.exp(-at), t > 0$

```
1 //Example9.14: Lapalce Transform

2 //x(t) = t.exp(-at), t>0

3 //x(t) = (t^2)/2.exp(-at), t>0

4 s =%s;

5 syms t;

6 a =10;

7 x1 = laplace('t*%e^(-10*t)',t,s);

8 disp(x1)

9 x2 = laplace('((t^2)/2)*%e^((-10*t)',t,s);
```

```
10 \text{ disp}(x2)
11 //Result
12 //1/((s+10)^2)
13 // 1/((s+10)^3)
   Example 9.15 Inverse Laplace Transform X(S) = (2s^2 + 5s + 5)/((s + 5s + 5))
   (1)^2(s+2)Re(s) > -1
1 //Example9.15:Inverse Lapalce Transform
2 //X(S) = (2 s^2 + 5 s + 5) / ((s+1)^2) (s+2)
3 s = %s ;
4 \text{ syms t};
5 [A] = pfss((2*(s^2)+5*s+5)/(((s+1)^2)*(s+2))); //
      partial fraction of F(s)
6 	ext{ F1 = ilaplace}(A(1),s,t)
7 F2 = ilaplace(A(2),s,t)
8 / F3 = ilaplace(A(3), s, t)
9 F = F1+F2;
10 disp(F, "f(t)=")
11 //Result
12 //(2*t*(\%e^-t))-(\%e^-t)+(3*\%e^-(2*t))
```

Example 9.16 Initial Value Theorem of Lapalace Transform

```
Example 9.17 Analysis and Characterization of LTI System Laplace Transform h(t) = exp(-t).u(t)
```

Example 9.18 Analysis and Characterization of LTI System Laplace Transform x(t) = exp(-abs(t))x(t) = exp(-t).u(t) + exp(t).u(-t)

Example 9.19 Analysis and Characterization of LTI System Inverse Laplace Transform $X(S) = (e^s)/(s+1)$

```
10 // Result
11 // (18089*(\%e^-t))/49171 = 0.3678794(\%e^-t)
   Example 9.20 Inverse Laplace Transform X(S) = ((s-1)/((s+1)*(s-2)))
1 //Example9.20: Inverse Lapalce Transform
2 //X(S) = ((s-1)/((s+1)*(s-2)))
3 s = %s ;
4 syms t;
5 [A] = pfss(s/((s+1)*(s-2)));
6 [B] = pfss(1/((s+1)*(s-2)));
7 	ext{ F1 = ilaplace}(A(1),s,t)
8 	ext{ F2} = ilaplace(A(2),s,t)
9 F3 = ilaplace(B(1),s,t)
10 F4 = ilaplace(B(2),s,t)
11 F = F1+F2-F3-F4;
12 disp(F, "f(t)=")
13 // Result
14 / f(t) = 33333329999999 * exp(2*t)
      /99999970000000+6666664*\%e^-t/9999997
15 //i.e. f(t) = 0.33333334 * \exp(2 * t) + 0.6666666 * \%e^{-(-t)}
16 //Refer equation 9.120. (1/3) = 0.3333 and (2/3) =
      0.66666
   Example 9.21 Analysis and Characterization of LTI System Laplace Trans-
   form h(t) = exp(2t)u(t), Re(s) > 2
1 //Example9.21: Analysis and Characterization of LTI
  //Lapalce Transform h(t) = \exp(2t)u(t), Re(s)>2
3 syms ts;
4 X = laplace('\%e^(2*t)',t,s);
5 \text{ disp}(X)
6 //Result
7 / 1/(s-2)
```

Example 9.25 LTI Systems Characterized by Linear Constant Coefficient differential Equation Finding Transfer function H(S) of LTI system x(t) = exp(-3t).u(t)y(t) = [exp(-t) - exp(-2t)].u(t)

Example 9.31 Causal LTI Systems described by differential equations and Rational System functions Partial Fraction H(S) = ((s-1)/((s+1)*(s-2)))

```
1 //Example9.31: Causal LTI Systems described by
      differential equations
2 //and Rational System functions
3 // Partial Fraction
4 //H(S) = ((s-1)/((s+1)*(s-2)))
5 s = %s ;
6 syms t;
7 [A] = pfss((2*s^2+4*s-6)/(s^2+3*s+2));
8 disp(A,"H(S)=")
9 //Result
            H(S) =
10 //// - 8
11 //
12 //
         1 + s
13 //
         6
14 //
15 //
        2 + s
16 //
```

```
Example 9.33 Unilateral Laplace Transform: Time Shifting Property x(t) =
   exp(-a(t+1)).u(t+1)
1 //Example9.33: Unilateral Laplace Transform: Time
       Shifting Property
2 / x(t) = \exp(-a(t+1)) \cdot u(t+1)
3 syms t s;
4 \ a = 2;
5 X = laplace('\%e^(-a*(t+1))',t,s);
6 \text{ disp}(X)
7 //Result
8 //\%e^-a/(s+a)
   Example 9.34 Unilateral Laplace Transform x(t) = s(t) + 2u(t) + e^{t} \cdot u(t)
1 //Example9.34: Unilateral Laplace Transform
2 //x(t) = s(t)+2u(t)+e^t.u(t)
3 syms ts;
4 \ a = 2;
5 X = laplace('2+\%e^(t)',t,s);
6 \quad Y = 1 + X;
7 \text{ disp}(X)
8 \operatorname{disp}(Y)
9 //Result
10 / (2/s) + (1/(s-1)) + 1
   Example 9.35 Unilateral Inverse Laplace Transform X(S) = 1/((s+1)(s+1))
   2))
1 //Example9.35: Unilateral Inverse Laplace Transform
2 //X(S) = 1/((s+1)(s+2))
3 s = \%s;
4 syms t;
5 X = 1/((s+1)*(s+2));
6 x = ilaplace(X,s,t);
```

```
7 \text{ disp}(X)
8 \text{ disp}(x)
9 // Result
10 \ // \ (\%e^-t) - (\%e^-(2*t))
   Example 9.36 Unilateral Laplace Transform X(S) = ((s^2) - 3)/(s + 2)
1 //Example9.36: Unilateral
                                  Laplace Transform
2 /X(S) = ((s^2) - 3)/(s+2)
3 s = %s;
4 syms t;
5 [X] = pfss(((s^2)-3)/(s+2));
6 \text{ disp}(X)
   Example 9.37 Unilateral Laplace Transform: Solving Differential Equation
   Y(S) = alpha/(s(s+1)(s+2))
                                  Laplace Transform: Solving
1 //Example9.37: Unilateral
      Differential Equation
2 //Y(S) = alpha/(s(s+1)(s+2))
3 s = %s;
4 syms t;
5 \text{ alpha} = 1;
                   //Alpha value assigned as some constant
  [A] = pfss(alpha/(s*(s+1)*(s+2)));
7 	ext{ F1 = ilaplace}(A(1),s,t)
8 F2 = ilaplace(A(2),s,t)
9 F3 = ilaplace(A(3),s,t)
10 	ext{ F} = 	ext{F1+F2+F3}
11 disp(F)
12 // result
13 // (-\%e^-t) + ((\%e^-(2*t))/2) + (1/2)
```

Example 9.38 Unilateral Laplace Transform:Solving Differential Equation Y(S) = [beta(s+3)/((s+1)(s+2))] + [gamma/((s+2)(s+2))] + [alpha/(s(s+1)(s+2))]

```
1 //Example9.38: Unilateral Laplace Transform: Solving
      Differential Equation
2 //Y(S) = [beta(s+3)/((s+1)(s+2))] + [gamma/((s+2)(s+2))]
     |+[alpha/(s(s+1)(s+2))]
3 s = %s;
4 syms t;
5 alpha = 2; //input constant
6 beta_B = 3; //intial condition
7 gamma_v = -5; //initial condition
8 \ Y1 = 1/s;
9 \ Y2 = 1/(s+1);
10 Y3 = 3/(s+2);
11 Y = Y1 - Y2 + Y3;
12 disp(Y)
13 y = ilaplace(Y,s,t)
14 disp(y)
15 // result
16 // (-\%e^{-(-t)}) + 3*(\%e^{-(-(2*t))}) + 1
```

Chapter 10

The Z-Transform

10.1 Scilab Codes

Example 10.1 Ztransform of $x[n] = (a)^n . u[n]$

```
1 // Example10.1: Ztransform of x[n] = (a)^n.u[n]

2 syms n z;

3 a = 0.5;

4 x = (a)^n

5 X = symsum(x*(z^(-n)),n,0,%inf)

6 disp(X,"ans=")

7 // Result

8 //1.0*(2^(-%inf-1)*z^(-%inf-1)-1)/(1/(2*z)-1)

9 // Equivalent to -1/(0.5*(z^-1)-1)
```

Example 10.2 Ztransform of $x[n] = -a^n \cdot u[-n-1]$

```
10 disp(X, "ans=")
11 //Result
12 //-1.0*(2^(\%inf+1)*z^(\%inf+1)-2*z)/(2*z-1)
13 // Equivalent to -1*-2*z/(2*z-1) = 1/(1-0.5*z^-1)
   Example 10.3 Ztransform of x[n] = 7.(1/3)^n.u[n] - 6.(1/2)^n.u[n]
1 //Example 10.3:Z transform of x[n] = 7.(1/3) \hat{n}.u[n]
      ]-6.(1/2) n.u[n]
2 syms n z;
3 \times 1 = (0.33)^{n}
4 X1 = symsum(7*x1*(z^{-1})),n,0,%inf)
5 x2=(0.5)^{n}
6 X2 = symsum(6*x2*(z^{(-n)}),n,0,%inf)
7 \quad X = X1 - X2
8 disp(X, "ans=")
9 //Result
10 // -6.0*(2^{(-\% inf-1)}*z^{(-\% inf-1)}-1)/(1/(2*z)-1)
11 //Equivalent to -6*-1/(0.5*z^{-1} -1)
12 //The Region of Convergence is |z| > 1/2
   Example 10.4 Z-transform of sine signal
1 //Example10.4:Z-transform of sine signal
2 syms n z;
3 Wo = \%pi/4;
4 a = (0.33)^n;
5 x1 = %e^(sqrt(-1)*Wo*n);
6 X1 = symsum(a*x1*(z^{(-n)}),n,0,%inf)
7 x2 = %e^{(-sqrt(-1)*Wo*n)}
8 X2=symsum(a*x2*(z^{(-n)}),n,0,%inf)
9 X = (1/(2*sqrt(-1)))*(X1-X2)
10 disp(X, "ans=")
```

Example 10.5 Z-transform of Impulse Sequence

```
1 //Example10.5:Z-transform of Impulse Sequence
```

```
2 syms n z;
3 X = symsum(1*(z^{(-n)}),n,0,0);
4 disp(X, "ans=")
5 //Result
6 / / 1
   Example 10.6 Ztransform of x[n] = a^n, 0 < n < N-1
1 //Example 10.6:Z transform of x[n] = a^n, 0 < n < N
      -1
2 \text{ syms n z};
3 = 0.5;
4 N = 6;
5 x=(a)^(n)
6 X = symsum(x*(z^{(-n)}),n,0,N)
7 disp(X, "ans=")
8 //Result
9 //0.5/z+0.25/z^2+0.125/z^3+0.0625/z^4+0.03125/z
      5+0.015625/z 6+1.0
   Example 10.7 Ztransform of x[n] = b^{n}.u[n] + b^{-}n.u[-n-1]
1 //Example 10.7:Z transform of x[n] = b^n.u[n]+b^-n.u
      [-n-1]
2 \text{ syms n z};
3 b = 0.5;
4 x1=(b)^(n)
5 x2=(b)^{-1}(-n)
6 X1 = symsum(x1*(z^{(-n)}),n,0,%inf)
7 X2 = symsum(x2*(z^{n})), n, 1, \%inf)
8 \quad X = X1 + X2;
9 disp(X, "ans=")
10 // Result
11 //+1.0*(2^(-\% inf -1)*z^(-\% inf -1) -1)/(1/(2*z) -1)
12 // Equivalent to -1/(0.5*z^{-1} - 1)
13 //Region of Convergence |z| > 0.5
```

Example 10.9 Inverse Z Transform :ROC |z| > 1/3

```
1 //Example10.9: Inverse Z Transform: ROC |z| > 1/3
2 z = \%z;
3 syms n z1; //To find out Inverse z transform z must
      be linear z = z1
     =z*(3*z-(5/6))/((z-(1/4))*(z-(1/3)))
5 X1 = denom(X);
6 \text{ zp = } \text{roots}(X1);
7 X1 = z1*(3*z1-(5/6))/((z1-(1/4))*(z1-(1/3)))
8 F1 = X1*(z1^(n-1))*(z1-zp(1));
9 F2 = X1*(z1^{(n-1)})*(z1-zp(2));
10 h1 = limit(F1,z1,zp(1));
11 disp(h1, 'h1[n]=')
12 h2 = limit(F2,z1,zp(2));
13 disp(h2, 'h2[n]=')
14 h = h1+h2;
15 disp(h, 'h[n]=')
16 ///Result
17 /h[n] = (1/4)^n + (2/3)^n
```

Example 10.10 Inverse Z Transform :ROC 1/4 < |z| < 1/3

```
1 //Example10.10: Inverse Z Transform: ROC 1/4 < |z| < 1/3
2 z = \%z;
3 syms n z1; //To find out Inverse z transform z must
      be linear z = z1
4 X = z*(3*z-(5/6))/((z-(1/4))*(z-(1/3)))
5 X1 = denom(X);
6 \text{ zp = } roots(X1);
7 X1 = z1*(3*z1-(5/6))/((z1-(1/4))*(z1-(1/3)))
8 F1 = X1*(z1^{(n-1)})*(z1-zp(1));
9 F2 = X1*(z1^{(n-1)})*(z1-zp(2));
10 h1 = limit(F1,z1,zp(1));
11 disp(h1*'u(n)', 'h1[n]=')
12 h2 = limit(F2,z1,zp(2));
13 disp((h2)*'u(-n-1)', 'h2[n]=')
14 disp((h1)*'u(n)'-(h2)*'u(n-1)', 'h[n]=')
15 ///Result
16 // h[n] = u(n)/4^n-2*u(n-1)/3^n
```

```
17 // Equivalent to h[n] = (1/4)^n \cdot u[n] - 2*(1/3)^n \cdot u[-n-1]
```

Example 10.11 Inverse Z Transform :ROC |z| < 1/4

```
1 //Example10.11: Inverse Z Transform: ROC |z| < 1/4
2 z = \%z;
3 syms n z1; //To find out Inverse z transform z must
      be linear z = z1
      =z*(3*z-(5/6))/((z-(1/4))*(z-(1/3)))
5 X1 = denom(X);
6 \text{ zp = } roots(X1);
7 X1 = z1*(3*z1-(5/6))/((z1-(1/4))*(z1-(1/3)))
8 F1 = X1*(z1^(n-1))*(z1-zp(1));
9 F2 = X1*(z1^{(n-1)})*(z1-zp(2));
10 h1 = limit(F1,z1,zp(1));
11 disp(h1*'u(-n-1)', 'h1[n]=')
12 h2 = limit(F2,z1,zp(2));
13 disp((h2)*'u(-n-1)', 'h2[n]=')
14 disp(-(h1)*'u(-n-1)'-(h2)*'u(-n-1)', 'h[n]=')
15 /// Result
16 // h[n] = -u(-n-1)/4^n-2*u(-n-1)/3^n
17 // Equivalent to h[n] = -(1/4)^n \cdot u[-n-1] - 2*(1/3)^n \cdot u[-n-1]
      n-1
```

Example 10.12 Inverse z tranform: For Finite duration discrete sequence

Example 10.13 Inverse z tranform of In Finite duration discrete sequence Power Series Method (OR) Long Division Method

```
1 //Example10.13: Inverse z tranform of In Finite
      duration discrete sequence
2 //Power Series Method (OR)//Long Division Method
3 z = \%z;
4 \ a = 2;
5 X = \frac{1}{\text{div}}(z, z-a, 5)
   Example 10.18 Ztransform-Differentiation Property x[n] = (a)^n \cdot u[n]
1 // Example 10.18: Ztransform - Differentiation Property
2 // x[n] = (a)^n.u[n]
3 syms n z;
4 \ a = 0.5;
5 \times =(a)^n
6 X = symsum(x*(z^{(-n)}),n,0,%inf)
7 \text{ X1} = -1/((1/(2*z))-1) //z transform of 0.5 n.u
      n
8 Y = -z*diff(X,z) // Differentiation property of z-
      transform
9 disp(X, "ans=")
10 disp(Y, "ans=")
11 //Result
12 / X(z) = 1.0*(2^(-\% \inf -1)*z^(-\% \inf -1)-1)/(1/(2*z)-1)
13 //Y(z) = -1.0*(-\%\inf -1)*2^(-\%\inf -1)*z^(-\%\inf -1)
      /(1/(2*z)-1)
14 //Y1(z) = 1/(2*(1/(2*z)-1)^2*z)
15 // Equivalent to Y1(z) = 0.5*z^-1/((1-0.5*z^-1)^2)
   Example 10.19 Z Transform: Initial Value Theorem
1 //Example10.19:Z Transform : Initial Value Theorem
2 z = \%z;
3 syms n z1; //To find out Inverse z transform z must
      be linear z = z1
4 X = z*(z-(3/2))/((z-(1/3))*(z-(1/2)))
5 X1 = denom(X);
6 \text{ zp = } roots(X1);
7 X1 = z1*(z1-(3/2))/((z1-(1/3))*(z1-(1/2)))
```

```
8 F1 = X1*(z1^(n-1))*(z1-zp(1));
9 F2 = X1*(z1^(n-1))*(z1-zp(2));
10 x1 = limit(F1,z1,zp(1));
11 x2 = limit(F2,z1,zp(2));
12 x = x1+x2;
13 disp(x,'x[n]=')
14 x_initial = limit(x,n,0);
15 disp(x_initial,'x[0]=')
16 ///Result
17 //x[n]= 7/3^n-3*2^(1-n)
18 //x[0]= 1; Initial Value
```

Example 10.23 Inverse Z Transform H(z) = z/z-a

```
1 //Example10.23:Inverse Z Transform H(z) =z/z-a
2 //z = %z;
3 syms n z;
4 a = 2;
5 H = z/(z-a);
6 F = H*z^(n-1)*(z-a);
7 h = limit(F,z,a);
8 disp(h,'h[n]=')
```

Example 10.25 LTi Systems characterized by Linear Constant Coefficient Difference equations Inverse Z Transform

```
//Example10.25:LTi Systems characterized by Linear
Constant
//Coefficient Difference equations
//Inverse Z Transform
//z = %z;
syms n z;
H1 = z/(z-(1/2));
H2 = (1/3)/(z-(1/2));
F1 = H1*z^(n-1)*(z-(1/2));
F2 = H2*z^(n-1)*(z-(1/2));
h1 = limit(F1,z,1/2);
disp(h1,'h1[n]=')
```

```
12 h2 = limit(F2,z,1/2);
13 disp(h2, 'h2[n]=')
14 h = h1+h2;
15 disp(h, 'h[n]=')
16 // Result
17 //h[n] = [(1/2)^n] + [2^(1-n)]/3
18 //Which is Equivalent to h[n] = [(1/2)^n] + [(1/2)^(n]
      -1) | /3
   Example 10.33 Differentiation Property of Unilateral Ztransform x[n] =
   (a)^{(n+1)}.u[n+1]
1 // Example10.33: Differentiation Property of
       Unilateral Ztransform
2 // x[n] = (a)^(n+1).u[n+1]
3 syms n z;
4 a = 0.5;
5 x = (a)^(n+1)
6 X = symsum(x*(z^{(-n)}),n,-1,%inf)
7 disp(X, "ans=")
8 // Result
9 \ //X(\,z\,) = \ 0.5*(\,2\,\hat{}\ (\,-\,\% \inf -1\,)*z\,\hat{}\ (\,-\,\% \inf -1\,) - 2*z\,)\,/(\,1\,/\,(\,2*z\,)
10 //Equivalent to z/(1-0.5*z^-1)
   Example 10.34 Unilateral Ztransform- partial fraction X(z) = (3 - (5/6) *
   (z^{-1})/((1-(1/4)*(z^{-1}))*(1-(1/3)*(z^{-1}))
1 // Example10.34: Unilateral Ztransform - partial
      fraction
2 / X(z) = (3 - (5/6) * (z^-1)) / ((1 - (1/4) * (z^-1)) * (1 - (1/3))
      *(z^{-1}))
3 z = \%z;
4 s = %s;
5 syms n t;
6 a = 0.5;
7 [A]=pfss((3-(5/6)*(z^-1))/((1-(1/4)*(z^-1))*(1-(1/3))
      *(z^-1))))
```

```
8 \times 1 = horner(A(1),z)
9 \times 2 = horner(A(2),z)
10 \times 3 = A(3)
11 \quad x = x1+x2+x3
12 disp(x1, "ans=")
13 disp(x2, "ans=")
14 disp(x3, "ans=")
15 disp(x, "ans=")
16 // Result
17
18 //
            0.6666667
19 //
20 //
       -0.3333333 + z
21
22 //
            0.25
23 //
24 //
      -0.25 + z
25
26 //3
27
28 //sum of these, gives the original value
29 //
30 //
             -0.8333333z + 3z
31 //
32 //
33 //
          0.08333333 - 0.58333333z + z
```

Example 10.36 Output response of an LTI System

```
9 y2 = limit(F2,z,-3);

10 disp(y1*"u(n)"+y2*"u(n)",'y[n]=')

11 //Result

12 //y[n] = u(n)/4-(-3)^(n+1)*u(n)/4

13 //Equivalent to = (1/4).u[n]-(3/4)(-3)^n.u[n]
```

Example 10.37 Output response of an LTI System

```
1 //Example 10.37:To find output response of an LTI
      System
2 \text{ syms n z};
3 alpha = 8; //input constant
4 beta_b = 1; //initial condition y[-1] = 1
5 \text{ Y1} = -((3*beta_b*z)/(z+3))
6 \text{ Y2} = (alpha*z^2/((z+3)*(z-1)))
7 F1 = Y1*(z^{(n-1)})*(z+3);
8 \text{ y1} = limit(F1,z,-3);
9 F2 = Y2*(z^{(n-1)})*(z+3);
10 y2 = limit(F2,z,-3);
11 F3 = Y2*(z^{(n-1)})*(z-1);
12 \text{ y3} = limit(F3,z,1);
13 disp((y1+y2+y3)*'u(n)', 'y[n]=')
14 // Result
15 //y[n] = (2-(-3)^{n}(n+1))*u(n)
```

Chapter 11

Linear Feedback Systems

11.1 Scilab Codes

Example 11.1 Root locus Analysis of Linear Feedback Systems Continuous Time Systems

Figure 11.1: Results of Exa 11.1

Example 11.2 Root locus Analysis of Linear Feedback Systems Continuous Time Systems

Figure 11.2: Results of Exa 11.2

Example 11.3 Root locus Analysis of Linear Feedback Systems Discrete time system

```
5 G = syslin('d',[z/((z-0.5)*(z-0.25))]);
6 clf;
7 evans(G,2)
```


Figure 11.3: Results of Exa 11.3

Example 11.5Bode Nyquist criterion for Continuous Time Systems Bode Plot

```
4 //Open Loop Transfer Function
5 G = syslin('c',[1/(s+1)]);
6 H = syslin('c',[1/(0.5*s+1)]);
7 F = G*H;
8 clf;
9 bode(F,0.01,100)
10 show_margins(F)
```


Figure 11.4: Results of Exa 11.5Bode

Example 11.5Nyquist Nyquist criterion for Continuous Time Systems Nyquist Plot

Figure 11.5: Results of Exa 11.5Nyquist

Example 11.6 Nyquist criterion for Continuous Time Systems Nyquist Plot

Figure 11.6: Results of Exa 11.6

Example 11.7 Nyquist Plot

```
//Example 11.7
//Nyquist Plot
s = %s;
T =1;
//Open Loop Transfer Function
G = syslin('c',[-%e^(-s*T)]);
clf;
nyquist(G)
show_margins(G,'nyquist')
```

Example 11.8 Nyquist criterion for Discrete Time Systems Nyquist Plot Discrete Time System

Figure 11.7: Results of Exa 11.8

Example 11.9 Gain and Phase Margins and their associated cross over frequencies

```
//Example 11.9:Gain and Phase Margins and their
//associated cross over frequencies
s = poly(0,'s'); // Define ss as polynomial variable
//Create s transfer function in forward path
F = syslin('c',[(4*(1+0.5*s))/(s*(1+2*s)*(1+0.05*s+(0.125*s)^2))])
B = syslin('c',(1+0*s)/(1+0*s))
OL = F*B;
fmin = 0.01; // Min freq in Hz
```

```
9 fmax = 10; // Max freq in Hz
10 scf(1);
11 // clf;
12 // Plot frequency response of open loop transfer
    function
13 bode(OL, 0.01, 10);
14 // display gain and phase margin and cross over
    frequencies
15 show_margins(OL);
16 [gm, fr1] = g_margin(OL)
17 [phm, fr2] = p_margin(OL)
18 disp(gm, 'gain margin in dB')
19 disp(fr1, 'gain cross over frequency in Hz')
20 disp(phm, 'phase margin in dB')
21 disp(fr2, 'phase cross over frequency in Hz')
```


Figure 11.8: Results of Exa 11.9

Example 11.19 // Figure 11.9: Root locus analysis of Linear feedback systems 2 s = %s; 3 beta_b1 = 1; 4 beta_b2 = -1; 5 G1 = syslin('c', [2*beta_b1/s]); 6 G2 = syslin('c', [2*beta_b2/s]); 7 H = syslin('c', [s/(s-2)]); 8 F1 = G1*H; 9 F2 = G2*H; 10 clf;

```
11 evans(F1,2)
```

12 figure

13 evans(F2,2)

Figure 11.9: Results of Exa 11.9

Figure 11.10: Results of Exa $11.9\,$