

Computer Organization

Agenda

- Announcements (~ 5 mins)
- Poll Everywhere (~15 mins)
- Complete Absolution mental Project Exam Help
- **Transistors**
- Voltage and Logic https://tutorcs.com
- Propagation DelayWeChat: cstutorcs

Announcements

- Lab 1
 - Due 9/15 @ 11:55 pm with no late penalty. Assignment Project Exam Help
- Quiz 1
 - Great job (methos 86%, medec 200%)!
 - Release grades and feedback today or tomorrow (talk to Jesse) echat: cstutorcs
- Quiz 2
 - Release this Friday @ 12 pm
 - Due this Sunday @ 11:55 pm
 - Post announcement this Thursday.

Assignment Project Exam Help

https://tutorcs.com

Transist We Chat: cstutorcs

Overview, Design, and Operation

Overview

Schematic Diagram

Transistor

Vcc

Abstraction for have Chat: cstutorcs

Physical Hardware: Along with power (V_{CC}) and ground (GND), four transistors are required to make one two-input NAND gate

N2

GND

Transistor Size?

Intel Video: Really good ©

Three billion transistors on a fingertip. Credit: Fritzchens Fritz

Voltage (V_{CC}) and Ground (GND)

Think of a direct current (DC) battery:

Assignment Project Exam Help

```
(+) voltage DC
https://tutorcs.com
or 9 VDC (many
Wether values)
Wether values
```

- (-) voltage DC
 - E.g., GND or 0 VDC

Basic Design

GND

Conceptually, a DC voltage switch!

Assignment Project Exam Help

Basic Operation

Let's work though a simple example

Input (Vin) voltage is "switching" the output (Vout) voltage

Metal Oxide
Semicoment Project Exam Help
Semicomodulateach
(MOS) Weshersisters

Complementary Pull-up/down Design

n-channel Metal Oxide Semiconductor (nMOS) Transistor

Switch is closed when gate (g) is positive VDC ProjectcEsam Help value (e.g., 5 VDC)

https://tutorcs.com

Channel is open, electrons can flow from drain to source

n-channel Metal Oxide Semiconductor (nMOS) Transistor

Switch is open when gate (g) is GND (e.g. 0 Project Exam Help VDC)

https://tutorcs.com

WeChatircestufances drain

Channel is closed, electrons cannot flow from drain to source

p-channel Metal Oxide Semiconductor (pMOS) Transistor

Switch is open when gate is positive VDC and Project Exam Help value (e.g., 5 VDC) https://tutorcs.com

p-channel Metal Oxide Semiconductor (pMOS) Transistor

Switch is closed when gate is GND (e.g. 0 Assignment Project Exam Help VDC).

https://tutorcs.com

NOT Gate MOS Gate Design

Complementary MOS Design

NAND Gate: MOS Design

NOR Gate: MOS Design

Relationship roject Exam Help betweentp works go and Log We Chat: cstutorcs

Digital abstraction

Voltage and Logic

Voltage a continuous value

- Has a defined range of values, e.g., 0 to
- And any VDC value between, e.g., 0.1, 0.11, 1.25, 4.52, etc.
 https://tutorcs.com
 Hardware understands voltage values

WeChat: cstutorcs

Boolean Logic (or Logic for short) is a discrete value that can only be 0 or 1.

- Abstraction that humans understand
- Apply the rules of Boolean algebra
- Simplifies circuit design

Continuous to Discrete Conversion

Invalid

- Less than 2 VDC and greater than 0.8 VDC
- Unstable and not reliable.

Why is a range of values acceptable?
Give an example, not related to voltage?

Assignment Project Exam Help

Componential Compo

Propagation delay

NOT Gate: Closer Inspection

Output (Y) transitions from logic 0-to-1 (or 1-to-0) **Real Property** Ideal Property nment Project Exam Help Delayed transition from 0-to-1 Instantaneous transition from, https://tutorcs.comand 1-to-0 0-to-1 and 1-to-0 1 WeChat: cstutbrcs 0 time time Α 1 0 0 time time

Gate Delay

substrate

FA Component Analysis

Assume, propagation delay (t_d) for each logic gate is 1 nanosecond (ns).

• When the gate output changes 0-to-1 (or 1-to-0) one ns is required for the output to become stable.

Sum bit analysis

Assume C_i, A, B, S are all initially 0

MOS pull-up and pull-down transistor networks are not changing, so the output is not changing (even though the inputs have changed)

New Input Value			S	
Xalli C _i	A	В	value	t _d (ns)
\mathbf{n}^{-0}	0	0	0	0
0	0	1	1	2
<mark>S</mark> 0	1	0	1	2
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1

Sum bit: Worst case analysis

Sum bit is guaranteed to be stable in 2 ns.

In general, follow the longest path from output (S) to inputs and add the gate delays Exam Help

• Easier than analyzing every possible input combination!

WeChat: cstutorcs

Carry-out bit: Worst Case Analysis

Carry-out bit is guaranteed to be stable in 3 ns.

Assignment Project Exam Help

FA Component: Worst Case Analysis

• All component outputs will be stable in 3 ns

https://tutorcs.com

WeChat: cstutorcs

A B
CO FA CI
S