Photogrammetry & Robotics Lab

Machine Learning for Robotics and Computer Vision

Segmentation with CNNs

Jens Behley

Recap: Last Lecture

- Discussed two-stage and single-stage detectors
- Nowadays, single-stage detectors on-par with two-stage detectors
- Anchor-based vs. anchor-free detectors

Perception Tasks

Classification

Object Detection

Semantic Segmentation

Panoptic Segmentation

Semantic Segmentation

• Goal: Provide label $y_{i,j} \in \{1,\ldots,K\}$ for each pixel in the image.

Image Classification

In image classification, we produce K scores

Semantic Segmentation

- Correspondingly, in semantic segmentation we want to have K scores for each pixel
- Loss: Pixel-wise cross entropy loss with $K \times H \times W$

Pixel-wise Predictions?

• Problem: After P pooling/strided convolutions, last convolutional layer has ${\rm size}\,H/2^P\times W/2^P$

Fully Convolutional Net

- Idea: Up-sample last conv layer outputs
- Replace FC layer with 1x1 convolutions to enable arbitrary image sizes → FCN

Upsampling in FCN

- Use earlier layer outputs in up-sampling to retain fine details
- Upsampling via bilinear interpolation/transpose conv

Encoder-Decoder Architecture

Combine up-sampling with convolutional layers to regain spatial resolution

- Skip connections help to retain fine-grained results
- Concatenate feature volumes from encoder and upsampled feature volumes from decoder
- Convolve to reduce number of channels

SegNet

- SegNet uses encoder-decoder architecture
- Upsampling by un-pooling with maximums from max-pool layer of encoder

Pyramid Scene Parsing Network

- Generate feature pyramid by pooling operations
- Additional contextual information (larger receptive field of pooled regions)

Receptive Field vs. Spatial Resolution

- Max Pooling/Strided convolution effectively increases receptive field of convolutions
- Problem: Deeper layers have reduced spatial resolution → Possible solution: Upsampling decoder₁₄

DeepLabV3+

- Line of DeepLab models solves the problem via dilated convolutions (atrous convolutions)
- Atrous Spatial Pyramid Pooling (ASPP) module

Backbone with Dilated Convs

- Output stride corresponds to stride of feature map in respect to input image
- Use dilated convolutions in later layers to increase receptive field at same output stride

Atrous Spatial Pyramid Pooling

- PSPNet used different pooling operation to capture context
- Here, apply different dilated convolution on last conv layer output
- Capture contextual features at different scales

HRNet

- Multiple branches at different strides
- Fusion of branch outputs in every stage to keep high-resolution information
- Downsampling: strided convolutions
 Upsampling: bilinear interpolation

Evaluation Metric: mIoU

$$IoU_c = \frac{TP_c}{TP_c + FP_c + FN_c}$$
 $mIoU = \frac{1}{K} \sum_c IoU_c$

- For each class, determine pixe-wise intersectionover-union (IoU)
- Mean over class-wise IoUs gives mean Intersection-over-union (mIoU)

Common Datasets

name	#categories	#images	task
MS COCO (2014)	80	118k	I,P
Cityscapes (2016)	30(19)	5k	S,I,P
Mapillary Vistas (2017)	66	25k	S,I
ADE20K (2017)	2,693(150)	25k	S,I

S = Semantic Seg., I = Instance Seg., P = Panoptic Seg.

Results on ADE20K/Cityscapes

Approach	mIoU		
SegNet	21.6		
FCN-8s	29.4		
HRNetV2	43.2		
PSPNet	44.9		

ADE20K validation set

Approach	mIoU	
SegNet	57.0	
■ FCN-8s	65.3	
PSPNet	80.2	
HRNetV2	81.8	
DeepLabV3+	82.1	

Cityscapes test set

Instance Segmentation

Semantic Segmentation

Instance Segmentation

- Semantic segmentation provides only class labels
- Instance segmentation aims at distinguishing different instances of the same object class

Mask R-CNN

- Idea: Localize objects and determine binary mask
- Add mask prediction head to Faster R-CNN
- Determine foreground/background for each pixel of Region-of-Interest (RoI)

23

RoI Pooling vs. RoI Align

RoI Pooling

RoI Align

- RoI pooling from Faster RCNN suffers from rounding/discretization errors
- RoI Align uses real coordinates and bilinear interpolation to compute RoI feature map at sample locations

[He, 2017]

Embedding-based Association

- Idea: Learn embedding vectors such that vectors of same instance are closer then embedding vectors of different instance
- Cluster embedding vectors to determine instances

Multi-class Embeddings

- Shared encoder, separate decoder for instances and semantic segmentation
- Per-class embeddings are optimized to be distinct

Embedding Loss

$$[\cdot]_+ = \max(0, x)$$

$$L_{var} = rac{1}{C} \sum_{c=1}^{C} rac{1}{N_c} \sum_{i=1}^{N_c} \left[\|\mu_c - x_i\| - \delta_{\mathrm{v}}
ight]_{+}^{2}$$

 Embedding vectors of the same instance should have small distance to mean embedding

Embedding Loss

$$[\cdot]_+ = \max(0, x)$$

$$L_{var} = rac{1}{C} \sum_{c=1}^{C} rac{1}{N_c} \sum_{i=1}^{N_c} \left[\| \mu_c - x_i \| - \delta_{
m v}
ight]_+^2$$

$$L_{dist} = \frac{1}{C(C-1)} \sum_{\substack{c_A = 1 \ c_B = 1 \\ c_A \neq c_B}}^{C} \sum_{a=1}^{C} \left[2\delta_{\mathsf{d}} - \|\mu_{c_A} - \mu_{c_B}\| \right]_{+}^{2}$$

- Embedding vectors of the same instance should have small distance to mean embedding
- Mean embedding vectors of different instances should have large distance

Embedding Loss

$$[\cdot]_+ = \max(0, x)$$

$$L_{var} = rac{1}{C} \sum_{c=1}^{C} rac{1}{N_c} \sum_{i=1}^{N_c} \left[\| \mu_c - x_i \| - \delta_{ ext{v}}
ight]_+^2$$

$$L_{dist} = \frac{1}{C(C-1)} \sum_{\substack{c_A = 1 \ c_B = 1 \\ c_A \neq c_B}}^{C} \sum_{c_B = 1}^{C} \left[2\delta_{\mathsf{d}} - \|\mu_{c_A} - \mu_{c_B}\| \right]_{+}^{2}$$

$$L_{reg} = \frac{1}{C} \sum_{c=1}^{C} ||\mu_c||$$

- Embedding vectors of the same instance should have small distance to mean embedding
- Mean embedding vectors of different instances should have large distance
- Regularizer ensures that embeddings are bounded

Instance Clustering

- Clustering on embedding vectors via mean-shift variant
 - 1. Select pixel of specific class and set mean to its embedding.
 - **2.** Get all pixels within embedding distance $\delta_{
 m v}$ to mean.
 - 3. Recompute mean of thresholded embeddings, repeat 2.

Top-down vs. Bottom-up Instance Segmentation

Top-down Approach

Bottom-up Approach

- Top-down: Instances are first determined and then foreground/background mask estimated
- Bottom-up: Determine per-pixel properties that are then used to cluster instances

Panoptic Segmentation

- Panoptic Segmentation unifies semantic and instance segmentation
- Distinguish stuff (e.g., vegetation, road, ...) and thing classes (e.g., car, pedestrian, ...)

[Kirillov, 2019]

PanopticFPN

- Feature Pyramid Network (FPN)-based instance segmentation (Mask R-CNN)
- Mask R-CNN provides segmentation of things
- Semantic segmentation branch provides segmentation of stuff (+ "thing" class) by upsampling FPN maps

[Kirillov, 2019] 33

Concurrent Approaches

- Concurrently other FPN-based top-down methods:
 - Seamless Segmentation [Porzi, 2019]

Concurrent Approaches

- Concurrently other FPN-based top-down methods:
 - Seamless Segmentation [Porzi, 2019]
 - Unified Panoptic Segmentation (UPSNet) [Xiong, 2019]

Panoptic-DeepLab

- Bottom-up approach using separate branches for semantic and instance segmentation
- Use semantic labels to filter instances & majority vote on instances to assign instance labels

Panoptic-DeepLab: Instances

center

center

- For instance segmentation:
 - Instance center prediction (= center of mass)
 - For each instance pixel: estimate offset vector that points towards instance center
- At inference time: Use offsets to assign instance id of closest instance center.

37

Metric: Panoptic Quality

- Computed class-wise over segment assignments:
 - Matched segments: $TP_c = \{g \in \mathcal{G}_c, p \in \mathcal{P}_c | IoU(p,q) > 0.5 \}$
 - Unmatched predictions FP_c : no gt segment with IoU > 0.5
 - Unmatched ground truth FN_c : no prediction with IoU > 0.5

Metric: Panoptic Quality

Class-wise PQ is defined as:

$$PQ_c = \frac{\sum_{(p,g)\in TP_c} IoU(p,g)}{|TP_c| + \frac{1}{2}|FP_c| + \frac{1}{2}|FN_c|}$$

Overall panoptic quality (PQ)

$$PQ = \frac{1}{K} \sum_{c} PQ_{c}$$

Metric: Panoptic Quality*

Ground truth

Prediction

- For stuff regions, the IoU-based definition of TP will penalize large segments
- Thus, compute PQ only for thing classes, use IoU for stuff classes:

stuff classes:
$$\mathcal{M}_c = \{(s, \hat{s}) \in \mathcal{S}_c \times \hat{\mathcal{S}}_c | \text{IoU}(s, \hat{s}) > 0\}$$

$$\text{PQ}_c^{\dagger} = \begin{cases} \frac{1}{|\mathcal{S}_c|} \sum_{(s, \hat{s}) \in \mathcal{M}_c} \text{IoU}(s, \hat{s}), & \text{if } c \text{ is stuff class} \\ \text{PQ}_c, & \text{otherwise.} \end{cases}$$

[Porzi, 2019] 40

Results on Cityscapes

Approach	PQ	\mathbf{PQ}^{Th}	PQ St	mIoU
PanopticFPN	58.1	52.0	62.4	75.7
UPSNet	59.3	54.9	62.7	75.2
Seamless Segmentation	60.3	56.1	63.3	77.5
Panoptic-DeepLab	62.3	-	-	79.4

Summary

- Fine-grained scene understanding:
 - Semantic Segmentation
 - Instance Segmentation
 - Panoptic Segmentation
- Discussed common, popular approaches for segmentation in these domains.

See you next week!

References

- Badrinarayanan et al. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation, PAMI, 2017.
- Cheng et al. Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-up Panoptic Segmentation, CVPR, 2020.
- Cordts et al. The Cityscapes Dataset for Semantic Urban Scene Understanding, CVPR, 2016.
- De Brabandere et al. Semantic Instance Segmentation with a Discriminative Loss Function, CVPRW, 2017.
- Chen et al. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation, CVPR, 2018.
- Gupta et al. LVIS: A Dataset for Large Vocabulary Instance Segmentation, CVPR, 2019.
- He et al. Mask R-CNN, ICCV, 2017.
- Kirillov et al. Panoptic Feature Pyramid Networks, CVPR, 2019.
- Kirillov et al. Panoptic Segmentation, CVPR, 2019.
- Lin et al. Microsoft COCO: Common Objects in Context, ECCV, 2014.
- Long et al. Fully Convolutional Networks for Semantic Segmentation, CVPR, 2015.
- Neuhold et al. The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes, ICCV, 2017.
- Porzi et al. Seamless Scene Segmentation, CVPR, 2019.
- Ronneberger et al. U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI, 2015.
- Shelhamer et al. Fully Convolutional Models for Semantic Segmentation, PAMI, 2016.
- Xiong et al. UPSNet: A Unified Panoptic Segmentation Network, CVPR, 2019.
- Zhao et al. Pyramid Scene Parsing Network, CVPR, 2017.
- Zhou et al. Scene Parsing through ADE20K Dataset, CVPR, 2017.