COMP527

Data Mining and Visualisation Problem Set 2

Danushka Bollegala

Question 1 Let us consider the hinge loss $h(y) = \max(0, y)$. Given a train dataset $\mathcal{D} = \{(\boldsymbol{x}_i, t_i)\}_{i=1}^N$, we define the loss of classifying an instance (\boldsymbol{x}_n, t_n) by $h(-t_n \boldsymbol{w}^\top \boldsymbol{x}_n)$. Here, $t_n \in \{1, -1\}$ is the target label of the instance \boldsymbol{x}_n . Answer the following questions about the derivation of the perceptron update rule.

- A. Plot the hinge loss as a function of y.
- B. Compute the differential $h'(y) = \frac{dh(y)}{dy}$.
- C. Let us define the loss associated with a single instance to be $L(\boldsymbol{x}_n, t_n) = h(-t_n \boldsymbol{w}^{\top} \boldsymbol{x}_n)$. Show that this loss function reflects the *error-driven learning* approach on which perceptron is based.
- D. Write the stochastic gradient descent rule for obtaining a new vector $\boldsymbol{w}^{(t+1)}$ from the current weight vector $\boldsymbol{w}^{(t)}$ after observing a train instance (\boldsymbol{x}_n, t_n) . Assume learning rate to be η .
- E. Show that when $\eta=1$ the update rule you derived in part D becomes the perceptron update rule.
- F. How does regularization prevent overfitting?
- G. Let us now add an ℓ_2 regularizer $||\boldsymbol{w}||^2 = \boldsymbol{w}^\top \boldsymbol{w}$ to our loss function to design the following objective function.

$$L(\boldsymbol{x}_n, t_n) = h(-t_n \boldsymbol{w}^{\top} \boldsymbol{x}_n) + \lambda ||\boldsymbol{w}||_2$$

Derive the perceptron update rule for this case.

- H. Write the update rule for the logistic regression classifier.
- I. Comparing part E and G, write the update rule for the regularised logistic regression.