Decision Trees & Random Forests

Decision Tree – Intuition

Is this data linearly separable? – YES OR NO

Any threshold value for 'hot' which will decide – PLAY OR NOT PLAY

Any threshold value for 'Windy' which will decide – PLAY OR NOT PLAY

Decision Tree

• With the given data, I want to predict if I can give the loan or not.

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Entropy

- DEF: Measure of impurity in a bunch of samples
- Controls how the DT has to split the data
- It has a formula

$$H = -\sum_{i} p_{i} (\log_{2} p_{i})$$

- Pi Fraction of examples in class i
- All examples are same class -> entropy = 0
- All examples are evenly split between classes -> entropy = 1.0

Entropy versus Probability of belonging to a class.

Calculate Entropy

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

In python:

import math

-0.5*math.log(0.5,2) - -0.5*math.log(0.5,2)

Lets calculate the entropy of y!!

SRSRRSRSS

How many safe = 5 P s = 5/9

How many risky = 4 Pr = 4/9

Total = 9

Entropy = $5/9(\log 5/9) + 4/9(\log 4/9) = 0.99$

Information Gain

- Which feature we need to choose to split on??
- To see entropy helps us in creating trees
- Decision Trees decides to split on feature with maximum Information Gain
- Information Gain = Entropy (Parent) [Weighted Average] Entropy(Children)

Entropy(Parent) = $5/9(\log 5/9) + 4/9(\log 4/9) = 0.99$

We need to choose between Credit, Term, Income...

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Calculate Information Gain

We need to choose between Credit, Term, Income...

Start with Income..

High Low SSRRS RRSS

P safe = 3/5 P safe = 2/4 P risky = 2/5 P risky = 2/4

Entropy = 0.808 Entropy = 1

[Weighted Average] Entropy(Income)

= 5/9 * 0.808 + 4/9 * 1

= 0.89

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Calculate Information Gain

grade	bumpiness	speed Wrait?	speed
Seep	bumpy	yes	Slow
steep	smooth	yes	slow
flat	Lumpy	no	fast
steep	smooth	NO	fast

Information Gain (Grade) = $1 - (\frac{3}{4}(0.9184) + \frac{1}{4}(0)) = 0.3112$

Information Gain (Bumpiness) = $1 - (\frac{1}{2}(1) + \frac{1}{2}(1)) = 0$

Information Gain (Bumpiness) = $1 - (\frac{1}{2}(0) + \frac{1}{2}(0)) = 1$

Pruning

- Pruning helps us to avoid overfitting
- Generally it is preferred to have a simple model, it avoids overfitting issue
- Any additional split that does not add significant value is not worth while.
- We can avoid overfitting by changing the parameters like
 - max_leaf_nodes
 - min_samples_leaf
 - max_depth

Pruning Parameters

- max_leaf_nodes
 - Reduce the number of leaf nodes
- min_samples_leaf
 - Restrict the size of sample leaf
 - Minimum sample size in terminal nodes can be fixed to 30, 100, 300 or 5% of total
- max_depth
 - Reduce the depth of the tree to build a generalized tree
 - Set the depth of the tree to 3, 5, 10 depending after verification on test data

Story – DT and RF

- Dan is at a library Decides to read a book
- Sam A friend helps him to find one

- Sam Asks few question, Dan ans' Yes or No
- Who is the author? What genre? Etc

• Dan − Decision Tree here ©

Story – DT and RF

- Now only Dan is deciding the book Overfitting!
- So we ask some other friends too for help

- They each gave a vote on the book, you decide on majority option
- ENSEMBLE Classifiers ©

Story – DT and RF

- Now if we have similar circle of friends ,you want avoid them having same answer.
- So , you will give them a different sample from your list of books.
- By cutting the list and placing in a bag, and randomly draw from the bag, tell your friend whether or not you enjoyed that book.

Place the sample back in the bag

Bootstrapped Aggregated Forest

 You'll be randomly drawing a sub sample from your original list with replacement (bootstrapping your original data).

 This gives some books more emphasis, if you drew a particular book several times for one friend, and some books less, possibly never drawn from the bag.

Bootstrapped Aggregated Forest

 Then each individual will give a unique recommendation on your book preferences.

Random Forest — BLACK BOX MODEL

- Last Issue, suppose you enjoyed Harry Potter 1 and Harry Potter 2
- Same author, genre etc
- Dan, your friend, came to a conclusion that you like J.K.Rowling
- But maybe you liked the Genre

• To fix this – We need randomness in the questions

Random Forest

Decision Tree

Random Forest

DT vs RF

Outlook	Temp.	Humidity	Windy	Play Golf
Rainy	Mild	High	False	?

DT vs RF

Outlook	Temp.	Humidity	Windy	Play Golf
Rainy	Mild	High	False	?

Ensemble Learners - Terminology

Using multiple learning algorithms together for the same task.

Better predictions than individual learning models

Higher consistency (Avoids Overfitting)