CYBER502x Computer Forensics

Unit 3: Sleuthkit

Sleuth Kit/Autopsy

- http://sleuthkit.org
- http://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview
- Is a collection of file system analysis tools
- Extends the Coroner's Toolkit (TCT)
- Sleuth Kit /Autopsy supports ntfs; iso9660; hfs; ufs1,2; raw; swap; fat12 16, 32; ext2,3,4 file systems

Autopsy

- Front-end of sleuth-kit, http://www.sleuthkit.org/autopsy/
- Autopsy 3 runs on Windows while Autopsy 2 runs on Linux and OS X
- Autopsy Features:
 - File system analysis
 - Timeline analysis
 - Keyword search
 - File type sorting
 - Hash analysis

The filesystem as an abstraction

- Five "layers"
 - Physical layer
 - Data layer
 - Meta-data layer
 - File system layer
 - File name layer

Physical layer

- Magnetic hard disks (HDD)
 - Heads and Magnetic impulses
 - New data over-writes old data
- Flash-memory-based Solid State drives (SSD)
 - Transistors

Solid State drives (SSD)

- The term solid-state refers to
 - Data is stored in fixed arrangements of electronic transistors
- Rewrite requires blocks to be erased electronically before they can be used again.
 - vs 'write-over-old-data' property of magnetic tapes and disks
 - Garbage Collection technology built into SSD controllers
 - automatically reset the data blocks back to free space
 - Most manufacturers use TRIM, an OS-based command for cleaning up "garbage" files
 - What will affect rebuilding evidence after garbage collection has taken place?

Data layer

- data stores in this layer
- Typically in blocks (512-byte, 1024-byte, ..., etc)
- Each block has an address
- Note:
 - In fat/ntfs, block is called **cluster**
 - In ufs, data is in fragments further subdivided into blocks

Meta-data layer

- Contains structure and values (in inode) that define a file
 - Pointers to location(s) in data layer
 - MAC times
 - Permissions
 - Other attributes

File system layer

- Contains data that describes file system structural details
 - size of blocks
 - the address of the first inode
 - structure offsets
 - mounting info
 - ...
- Usually stored in "super block" or "boot sector"

File name layer

 File name layer defines the association between a name and its inode

Sleuth Kit commands examples for each layer: 1

- File System Layer
 - fsstat: Displays the file system details
- Data Layer
 - blkcat: displays the contents of a given disk block
 - blkls: lists contents of deleted disk blocks in a raw image
 - blkstat: lists statistics associated with specific disk blocks

Sleuth Kit commands examples for each layer: 2

- Meta Data Layer
 - ils: displays inode content details
 - istat: displays information about a specific inode
 - icat: displays content of the disk blocks allocated to an given inode
 - ifind: determine the correspondent inode given a block address
- File name Layer
 - fls: list file and sub dir in a directory along with their inode content
 - ffind: determine the correspondent file give an inode

Syntax

- All commands need at least the image name
- The -f <Fs_TYPE> specifies the file system type such as ext2, ext3, ntfs, fat, fat12, fat16, fat32, etc
- The -o imgoffset specifies the sector offset where the file system starts in the image

fsstat

- Displays information (for example, block sizes, # of inodes, type of file system) about the file system
- Example:
 - fsstat -o offset someImage.img
 - -o imgoffset: the sector offset in bytes where the file system starts in the image.

blkstat

- Data information (for example, allocated?) on a given data unit
- Example:
 - blkstat -f ext2 myImage.img 300
 - 300 is a block address number

blkls

- By default, it will display only the unallocated data
- It is most useful to extract unallocated data for deleted file recovery
- Example
 - blkls -f ext2 myImage.img > myDls
- Other options
 - e: list all the data
 - s: list the slack (in NTFS or FAT images)

blkcat

- Displays the content of a given data block number
- The -h flag is for a hexdump output
- To display the contents of block 200
 - blkcat -f ext2 myImag.img 200 | more

istat

- Displays inode information for a given inode number
 - Inode number
 - MAC time
 - Permission
 - Size
 - Allocation status (allocated or unallocated)
 - All allocated data block number
 - Number of links
 - All the attributes for NTFS image
- Example
 - istat -f ext2 myImage.img inodeNumber

ifind

- Map from a block number to an inode number
- When to use it
 - When you do a search and find out the data block, you need to find the meta data information
- ifind -f ext2 -d datablocknumber myImage.img

List inode info -ils

- ils
 - Can list
 - ALL inodes along with information stored in the inodes
 - Inodes of unlinked but open files
 - Inodes of deleted files
 - Often used to collect inodes for deleted files.
- http://www.sleuthkit.org/sleuthkit/man/ils.html

ils

- List inode information given a disk device or a disk image file
- By default (-r), only list the inodes of removed files
- -e: display all inodes
- -m: intermedia file mactime
- -o: open but no filename (possible data hiding)
- -z: the inodes with a zero status time change
 - The file nerve be used
- Example:
 - ils -rf ext2 -m /dev_hda1.img (+ mactime)
 - Wed Mar 20 2002 16:56:12 0 ..c s/srwxrwxr-x 500 500 127 <linux.dd-dead-127>

icat

- Cat a file content given an inode
 - icat -f ext2 /image 20
- Example:
 - To recover the deleted file
 - ils -rf ext2 /dev_hda1.img + mactime,
 - you may get the inode-number
 - Wed Mar 20 2002 16:56:12 0 ..c s/srwxrwxr-x 500 500 127 <linux.dd-dead-127>
 - Use icat to get the deleted file's content
 - icat -f ext2 /dev_hda1.img 127

fls

- List the file names and sub-directories in a directory, including deleted files given an inode of a directory
- defalult it will list files in the root directory if an dir is not given
- Deleted files have a '*' before them
- http://www.sleuthkit.org/sleuthkit/man/fls.html

fls usage

- fls [options] image [directory-inode-number]
- Options
 - -a: display the '.' and '..' also
 - -d: display deleted entries only
 - -u: display undeleted entries only
 - -D: display directory entries only
 - -F: display file entries only
 - -r: recursive on subdirectories
 - -p: display full path when process through
 - -m output: display in timeline format
 - -1: display long version information
 - -s: clock skew in seconds when combined with -1 and/or -m

fls examples

- # fls -r image 12
- # fls -f ext3 -m "/" -r images/root.dd > data/body
- Use fls + mactime, you get ...
 - Wed Mar 20 2002 16:56:12 0 ..c s/srwxrwxr-x 500 500 127 /tmp/socket1 (deleted)

ffind

- Finds the file name for a given inode number
- This tool processes the entire directory tree and looks for filename that points to the given inode number
- the deleted file name may also be found
 - if the mapping between the deleted filename and its inode is still available.

ffind usage

- ffind -f ext2 myImage.img inodeNumber
- The -a flag gets all names that point to the given inodeNumber
 - ffind -f ext2 -a myImage.img inodeNumber

If you are interested in file system (not required)

 Read the paper, "System Forensics Analysis", by Prashant Sahu, Jayesh Plwar, ..., etc.