

Machine Learning CS7052 Lecture 2

Dr. Elaheh Homayounvala week 2

Outline of today's lecture

- Review last week
- An introduction to Machine Learning (ML)
 - States of the Art Applications of ML
 - Types of Learning
- Understanding Data and Data Analysis Process, Nelli's book Ch. 1
- A First Application, Iris, Muller & Guido's book, Ch. 1, pp. 13-23

Review last week

- About the module, Weblearn page, Assessment
- What we'll cover in this module
- What is Machine Learning?
- When do we use ML?
- Some applications of ML

What is Machine Learning?

"Learning is any process by which a system improves performance from experience."

- Herbert Simon

Definition by Tom Mitchell (1998):

Machine Learning is the study of algorithms that

- improve their performance P
- at some task T
- with experience E.

A well-defined learning task is given by $\langle P, T, E \rangle$.

Traditional Programming

Machine Learning

What is ML?

When do we use Machine Learning?

- A pattern exists
- We do not know it mathematically
- We have data on it

State of the Art Applications of Machine Learning

Types of Learning

Types of Learning

- Supervised (inductive) learning
 - Given: training data + desired outputs (labels)
- Unsupervised learning
 - Given: training data (without desired outputs)
- Semi-supervised learning
 - Given: training data + a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

Supervised Learning: Regression

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is real-valued == regression

Supervised Learning: Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is categorical == classification

Supervised Learning: Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is categorical == classification

Supervised Learning: Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is categorical == classification

Supervised Learning

- x can be multi-dimensional
 - Each dimension corresponds to an attribute

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape

. . .

- Given $x_1, x_2, ..., x_n$ (without labels)
- Output hidden structure behind the x's
 - E.g., clustering

Genomics application: group individuals by genetic similarity

Organize computing clusters

Market segmentation

Social network analysis

Astronomical data analysis

 Independent component analysis – separate a combined signal into its original sources

Reinforcement Learning

- Given a sequence of states and actions with (delayed) rewards, output a policy
 - Policy is a mapping from states actions that tells you what to do in a given state
- Examples:
 - Credit assignment problem
 - Game playing
 - Robot in a maze
 - Balance a pole on your hand

Understanding Data and Data Analysis Process

Nelli's book Chapter 1

Understanding the nature of the Data

When the data become information

When the information becomes knowledge

Types of Data

Categorical (nominal and ordinal)

Numerical (discrete and continuous)

Data Analysis Process

is a process

- consisting of several steps
- in which the raw data are transformed and processed
- in order to produce data visualisations and
- make predictions
- thanks to a mathematical model (in this module, a ML model)
- based on the collected data.

• Source: Nelli's book page 6

Data Analysis Process

• Source: Nelli's book page 8

Problem Definition

- A new problem to be solved
- Focus on the system you want to study
 - A mechanism
 - An application
 - A process
- Prepare documentation
- Project planning
 - Resources
 - Issues
 - Team

Data Extraction

Obtain the data

• If sample data to be collected, does it reflect as much as possible the real world?

Quality and quantity of data

Data sources (experimental data or otherwise)

Data Preparation

- Obtaining
- Cleaning
- Normalising
- Transforming into an optimized dataset

Issues: invalid, ambiguous, or missing values, replicated fields, and outof-range data

Data Exploration/Visualisation

Exploring data involves:

- Searching data in a graphical or statistical presentation
- in order to find patterns, connections and relationships
- Data visulaisation is the best tool to highlight possible patterns
- Data visulisations may consists of
 - summerisation,
 - grouping data,
 - exploring the relationship between the various attributes,
 - identifying patterns and trends and more

Predictive Modeling

- Classification models
 - If the result obtained by the model type is categorical
- Regression models
 - If the result obtained by the model type is numeric
- Clustering models
 - If the result obtained by the model type is descriptive

Model Validation

Validate the model built on the basis of the starting data

- Training data for building the model
- Validation set for validating the model

- Model validation numerically evaluates the effectiveness of the model
- Cross-validation

Deployment

Deploy and document

- Analysis results
- Decision deployment
- Risk analysis
- Measuring the business impact

Quantitative and Qualitative Data Analysis

Source: Nelli's book, page 15

Figure 1-2. Quantitative and qualitative analyses

Open Data

- DataHub
- World Health Organisation
- Data.gov
- European Union Open Data Portal
- Amazon Web Service Public datasets
- Facebook Graph
- Healthdata.gov
- Google Trends, Google Finance, Google Books Ngrams
- Machine Learning Repository

LOD cloud diagram

• Nelli's book page 16

Figure 1-3. Linking open data cloud diagram 2014, by Max Schmachtenberg, Christian Bizer, Anja Jentzsch, and Richard Cyganiak. http://lod-cloud.net/[CC-BY-SA license]

A First Application, Classifying Iris Species

 Muller & Guido's book, Chapter 1, pp. 13-23

A First Application, Iris

- A hobby botanist is interested in distinguishing the species of some iris flower
- Source: Muller & Guido's book, page

Figure 1-2. Parts of the iris flower

Measurements collected

- The length and the width of the petals in cm
- The length and the width of the sepals in cm

Figure 1-2. Parts of the iris flower

Three species

Our goal

Build a machine learning model

- that can learn from the measurements of these irises whose species is known
- so that we can predict the species for a new iris

Which machine learning model?

- Supervised or unsupervised?
- Classification, clustering, regression?

Today's workshop

- Meet the data
- Training and testing data
- Look at your data (visualization)
- Building your first model
- Making predictions
- Evaluating the model
- As you can see above, you are going to practice some of the steps in data analysis process