Grafika komputerowa

Wykład

Poprawa jakości obrazu

- Poprawa jakości obrazu (ang. image enchancement) jest przekształceniem w ramach 1 klasy danych obrazowych.
- Poprawa jakości obrazu dokonywana jest poprzez modyfikację jasności, kontrastu lub histogramu rozkładu poziomów tonalnych obrazu.
- Metody poprawy jakości obrazu oparte są o kryteria subiektywne (wrażenia wzrokowe człowieka). W metodach tych nie są wykorzystywane matematyczne (obiektywne) kryteria oceny jakości obrazu.

Parametry wpływające na ocenę jakości obrazu

Jasność:

$$J = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} f(i, j)$$

Kontrast:

$$C = \sqrt{\frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} [f(i, j) - J]^{2}}$$

gdzie:

M, *N* − wymiary obrazu;

f(i, j) – poziom jasności w punkcie (i, j).

Metody poprawy jakości obrazu wykorzystują narzędzia bazujące na statystycznej analizie przetwarzanych obrazów:

- krzywa odwzorowania poziomów jasności;
- histogram rozkładu poziomów tonalnych obrazu;
- macierze sąsiedztwa.

Korekcja tonalna

Korekcja tonalna jest przykładem operacji punktowej. W wyniku korekcji tonalnej wykonać można:

- rozjaśnienie obrazu;
- przyciemnienie obrazu;
- obniżenie kontrastu;
- zwiększenie kontrastu.

Operacje punktowe

Operacje punktowe to takie, dla których wynik operacji dla każdego piksela obrazu zależy tylko od jego wartości. Operacje punktowe nie uwzględniają przestrzennych zależności między elementami obrazu.

Korekcja tonalna – macierze LUT

- operacje punktowe wyraża się przy pomocy dwukolumnowych macierzy LUT (Look Up Tables)
- w pierwszej kolumnie macierzy znajdują się wartości jasności pikseli obrazu wejściowego. Dla obrazu 8 bitowego będą to liczby od 0 do 255.
- w drugiej kolumnie znajdują się wartości pikseli obrazu wyjściowego, odpowiadające według zadanego przekształcenia wartościom pierwotnym.
- wynik transformacji obrazu otrzymywany jest przez podstawienie w miejsce oryginalnych poziomów jasności, wartości wyjściowych.
- macierze LUT są często opisywane równaniem funkcji, krzywą odwzorowania tonów.

4

Krzywa odwzorowania tonów

Krzywa jest wykresem opisujący zależności pomiędzy wielkością poziomów jasności na wejściu – oś pozioma (obraz przed korekcją) a poziomami jasności na wyjściu – oś pionowa (obraz po korekcji)

(obraz po korekcji).

Krzywa posiada umowne zakresy (obszary) jasności:

- Cienie
- Tony średnie
- Światła

Krzywa odwzorowania tonów

Na osi poziomej zaznaczone są poziomy jasności obrazu wejściowego, a na osi pionowej poziomy jasności obrazu wyjściowego.

Przed korekcją krzywa jest linią prostą nachyloną pod kątem 45° - przypisuje identyczne poziomy jasności obrazowi wejściowemu i wyjściowemu. W trakcie korekcji kształt krzywej jest zmieniany.

Krzywa odwzorowania tonów

- W przypadku obrazów barwnych opisanych modelem RGB, krzywą można stosować oddzielnie dla każdej barwy podstawowej. Należy jednak pamiętać, że zmiana każdej składowej zmienia zarówno barwę jak i jasność piksela.
- Do korekcji tonalnej obrazów barwnych wygodniej stosować modele koloru HLS lub HSB, w których w jawnej postaci występuje parametr określający jasność piksela (L lub B).

Wyróżniamy dwa rodzaje korekcji tonalnej:

- Liniową krzywa odwzorowania tonów ma postać linii prostej (łamanej) nachylonej do osi poziomej pod pewnym kątem. Wadą korekcji liniowej jest możliwość obcięcia pikseli o wartościach końcowych w obszarze cieni lub świateł. Przy rozjaśnianiu część jasnych pikseli staje się zupełnie biała (brak szczegółów w światłach obrazu), przy przyciemnianiu znikają szczegóły w cieniach.
- Nieliniową krzywa odwzorowania tonów ma postać linii krzywej. Nie występuje obcięcie pikseli o wartościach końcowych w obszarze cieni lub świateł

Korekcja tonalna liniowa – zmiana jasności

Obraz bez korekcji. Histogramy przed i po korekcji bez zmian. Krzywa odwzorowania tonów (prosta pod kątem 45°) obejmuje równomiernie cała skalę.

Obraz rozjaśniony z zawężoną skalą odwzorowania tonów. Cienie o zwiększonej jasności. Światła wyrównane (utrata szczegółów).

Obraz przyciemniony z zawężoną skalą odwzorowania tonów. Cienie obcięte (utrata szczegółów). Światła przyciemnione.

Korekcja tonalna liniowa – zmiana kontrastu

Obraz bez korekcji. Histogramy przed i po korekcji bez zmian. Krzywa odwzorowania tonów (prosta pod kątem 45°) obejmuje równomiernie cała skalę.

Obraz o zwiększonym kontraście, tony średnie rozciągnięte na cała skalę. Cienie wyrównane (utrata szczegółów). Światła wyrównane (utrata szczegółów).

Obraz o zmniejszonym kontraście, zawężenie skali tonalnej obrazu. Cienie o zwiększonej jasności. Światła przyciemnione.

4

Korekcja tonalna nieliniowa – zmiana jasności

Obraz przed korekcją z histogramem rozkładu poziomów jasności.

Rozjaśnienie obrazu. Zwiększenie jasności cieni i tonów średnich kosztem utraty szczegółów w światłach.

Przyciemnienie obrazu. Zmniejszenie świateł i tonów średnich kosztem utraty szczegółów w cieniach.

4

Korekcja tonalna nieliniowa – zmiana kontrastu

Obraz przed korekcją z histogramem rozkładu poziomów jasności.

Zwiększenie kontrastu obrazu. Utrata szczegółów w cieniach i światłach.

Obniżenie kontrastu obrazu. Utrata szczegółów w tonach średnich

Histogram - jest to graficzne przedstawienie ilościowego udziału pikseli obrazu w poszczególnych zakresach tonalnych.

- histogram ma postać wykresu słupkowego, np.: dla obrazu 8-bitowego, zawiera 256 słupków, których wysokość odpowiada liczbie pikseli w obrazie o danej wartości tonalnej.
- wykres może być sporządzony dla każdej składowej koloru (RGB, CMYK) oddzielnie lub dla jasności pikseli w obrazie, co odpowiada przedstawieniu obrazu w skali szarości.

Histogram jest podstawowym narzędziem służącym do oceny charakteru i formalnej poprawności cyfrowego obrazu, zarówno barwnego jak i monochromatycznego. Z wyglądu histogramu (kształt i położenie jego maksymalnych wartości) można odczytać podstawowe cechy obrazu np:

- rozpiętość tonalną (najjaśniejszy i najciemniejszy punkt w obrazie);
- zakres tonalny, w którym znajduje się najwięcej informacji o obrazie.

Histogram obrazu przedstawiający liczbę pikseli w funkcji ich jasności. Pod wykresem znajduje się poglądowa skala szarości. Krzyżyk wskazuje mierzony poziom (136).

4

Algorytm wyznaczania histogramu

Algorytm wyznaczania histogramu (dla 256 poziomów jasności)

Oznaczenia:

```
- image:
                    tablica pikseli obrazu o rozmiarze M x N;
- histogram:
                    tablica histogramu;
                   piksel obrazu o adresie [row,col].
- image[row,col]:
(C++)
char
          image[M][N];
int histogram[256];
int row,col,i;
for (i=0; i<256; i++) histogram[i]=0;
                                         \* wyzerowanie tablicy histogramu *\
for (row=0; row<M; row++)
  for (col=0; col<N; col++)
  histogram[(int) image[row,col]]++;
```


Algorytm wyznaczania histogramów rozkładów tonalnych R, G, B dla 24-bitowej struktury piksela

```
int hR[256]; int hG[256]; int hB[256];
struct pixel{
unsigned char r;
unsigned char q;
unsigned char b;
pixel obraz[(K+1),(L+1)]; //obraz typu pixel
//zerowanie tablic histogramów
for (i=0; i<=255; i++)
hR[i]=0; hG[i]=0; hB[i]=0;
//pętla główna
for (i=1;i<=K;i++)
for(j=1;j<=L;j++) {
hR[obraz[i,j].r]++; hR[obraz[i,j].g]++; hR[obraz[i,j].b]++;
}
```


Algorytm wyznaczania histogramów rozkładów tonalnych C, M, Y

Jeżeli wyznaczono tablice histogramów dla rozkładów tonalnych R, G, B to wyznaczenie tablic histogramów dla rozkładów tonalnych C, M, Y można zrealizować następująco:

```
for(i=0;i<=255;i++)
{
    hC[i]=hR[255-i];
    hM[i]=hG[255-i];
    hY[i]=hB[255-i];
}</pre>
```


- a) obraz zawiera szczegóły wyłącznie w zakresie wysokich cieni;
- b) obraz zawiera szczegóły w zakresie cieni;
- c) obraz zawiera główną informację w zakresie tonów średnich.

- a) obraz zawiera szczegóły w zakresie świateł;
- b) obraz zawiera szczegóły wyłącznie w zakresie wysokich świateł.

Duża liczba pikseli na końcach wykresu świadczy o braku szczegółów zarówno w światłach, jak i w cieniach. Obraz o takim histogramie jest **formalnie niepoprawny**.

Nie jest możliwe całkowite odzyskanie utraconych informacji poprzez modelowanie histogramu.

Przykład obrazu o zawężonym histogramie. Brak pikseli w jasnych i w ciemnych tonach (w światłach i w cieniach). Całość informacji skupiona w tonach średnich (szarościach).

Kszt

Kształty histogramów

Przykład obrazu o histogramie przesuniętym w kierunku tonów ciemnych (cieni), o prawie całkowitym zakresie tonalnym.

Przykład obrazu o histogramie przesuniętym w kierunku tonów jasnych (świateł), zupełny brak tonów ciemnych.

Modelowanie histogramu ma na celu poprawę jakości obrazu. Obejmuje procesy:

- rozciągania histogramu;
- wyrównywania histogramu;
- normalizacji histogramu.

Procesy te przedstawić można jako transformacje punktowe obrazu.

Rozciąganie histogramu

Rozciąganie histogramu dokonuje się wówczas, gdy nie pokrywa on całego zakresu poziomów jasności - na histogramie nie występują bardzo ciemne i/lub bardzo jasne składowe. Rozciąganie histogramu polega na takiej konwersji poziomów jasności obrazu wejściowego, by rozkład poziomów jasności na histogramie obrazu wyjściowego obejmował wszystkie poziomy jasności.

$$T(z) = \begin{cases} 0 & gdy & z \le l \\ \frac{z-l}{u-l} & gdy & l \le z \le u \\ 1 & gdy & z \ge u \end{cases}$$

gdzie:

- $H_n(z)$ histogram obrazu oryginalnego
- $G_n(v)$ histogram obrazu po transformacji T
- v=T(z) transformacja

Przykład rozciągania histogramu

Obraz i histogram obrazu przed korekcją

Obraz i histogram obrazu po korekcji

Wyrównywanie histogramu

Celem wyrównania histogramu obrazu jest uzyskanie możliwie równomiernego rozkładu poziomów jasności obrazu dla całego jego zakresu. Skutkiem wyrównania histogramu jest poprawa kontrastu obrazu. Wyrównanie histogramu pozwala na podkreślenie w obrazie tych szczegółów, które są mało widoczne z powodu niewielkiego kontrastu. Nie jest to metoda uniwersalna i w przypadku histogramów o określonym kształcie nie daje zadowalających rezultatów.

$$dv = H_n(z)dz$$

$$G_n(v)dv = [H_n(z)dz]_{z=T^{-1}(v)}$$

gdzie:

- $H_n(z)$ histogram obrazu oryginalnego
- $G_n(v)$ histogram obrazu po transformacji T
- v=T(z) transformacja

Przykład wyrównywania histogramu

Obraz i histogram obrazu przed korekcją

5000 - 4000 - 4000 - 1000 - 1000 - 150 200 25

Obraz i histogram obrazu po korekcji

Przykład wyrównywania histogramu

Obraz i histogram obrazu przed korekcją

Obraz i histogram obrazu po korekcji

Przykład wyrównywania histogramu

Obraz i histogram obrazu przed korekcją

Obraz po korekcji

Normalizacja histogramu

Operacja normalizacji histogramu zmienia zakres zmienności poziomów jasności obrazu wyjściowego.

$$T(z) = \begin{cases} \int_{0}^{l} H_{n}(z)dz = \varepsilon_{l} & gdy \quad z \leq l \\ \frac{z-l}{u-l} & gdy \quad l \leq z \leq u \\ \int_{u}^{l} H_{n}(z)dz = \varepsilon_{u} & gdy \quad z \geq u \end{cases}$$

gdzie:

- $H_n(z)$ histogram obrazu oryginalnego
- $G_n(v)$ histogram obrazu po transformacji T
- v=T(z) transformacja

Filtrowanie przestrzenne

Obraz jest reprezentowany jako macierz poziomów jasności.

Przetwarzaniu podlega bezpośrednio funkcja jasności.

Funkcję działającą na obraz wejściowy można opisać wyrażeniem:

$$g(x,y) = T[f(x,y)]$$

gdzie:

- f(x,y) funkcja reprezentująca obraz wejściowy;
- g(x,y) funkcja reprezentująca obraz przetworzony;
- T operator lokalny działający na określonym obszarze obrazu (maska) np.: 3x3, 5x5 lub 7x7 pikseli.

Filtrowanie przestrzenne

Jasność piksela obrazu wyjściowego obliczana jest na podstawie jasności pikseli obrazu wejściowego leżących w bezpośrednim sąsiedztwie.

W metodzie definiowana jest maska, która przemieszcza się w obrębie obrazu z krokiem równym odstępowi między pikselami i zgodnie z definicją operatora T wyznacza nową wartość g(x,y) dla każdego piksela obrazu.

Przykład maski / wymiar 3x3/

W_{II}	W_{12}	W_{13}
W_{21}	W_{22}	W_{23}
W_{31}	W_{32}	W_{33}

$$p'_{22} = \frac{1}{div} \sum_{i=1}^{3} \sum_{j=1}^{3} p_{ij} \cdot w_{ij}$$

gdzie:

- p'- wartość nowego poziomu jasności piksela;
- p wartość poziomu jasności piksela w obrazie wejściowym;
- w wartości współczynników;
- div podzielnik normalizujący otrzymany wynik.

Filtr rozmywający (dolnoprzepustowy)

- filtr rozmywający stosowany jest w celu ukrycia drobnych zniekształceń lub redukowania szumów, powstałych np. w wyniku skanowania obrazów rastrowych.
- filtr rozmywający nazywany jest filtrem dolnoprzepustowym ponieważ przepuszcza elementy obrazu o małej zmienności (częstotliwości), tłumi natomiast albo blokuje elementy o większych częstotliwościach (szumy).
- nowa wartość poziomu jasności piksela wyznaczana jest jako średnia ważona wartości poziomu jasności pikseli jego otoczenia.

Filtr rozmywający (dolnoprzepustowy)

Przykłady filtrów

$$p'_{22} = \frac{1}{div} \sum_{i=1}^{3} \sum_{j=1}^{3} p_{ij} \cdot w_{ij}$$

Nowa wartość piksela p'_{22} (piksel środkowy maski) jest wyznaczona jako średnia ważona z wartości pikseli otoczenia. Waga poszczególnych pikseli maski zależy od rodzaju filtru.

Filtr rozmywający (dolnoprzepustowy)

Przykład działania filtru

1/9	1/9	1/9	
1/9	1/9	1/9	
1/9	1/9	1/9	

Filtr uśredniający (identyczne wagi wszystkich pikseli maski)

Filtr wyostrzający (górnoprzepustowy)

- używany do wzmocnienia szczegółów obrazu o dużej zmienności;
- wzmacnia różnice pomiędzy sąsiadującymi ze sobą jasnymi i ciemnymi punktami. Ponieważ obszary, na których piksele jasne sąsiadują z ciemnymi, to "krawędzie", zwiększenie różnicy tonalnej pomiędzy nimi wzmacnia wrażenie ostrości obrazu.;
- pozwala na osiągnięcie wyrazistości większej niż w oryginale;
- wykorzystywany do zaakcentowania obiektów w obrazie albo ich identyfikacji;
- ujemnym skutkiem jest wzmacnianie szumu w obrazie.

Przykłady filtrów

Filtr wyostrzający (górnoprzepustowy)

Przykład działania filtru

Wyostrzenie obrazu powoduje często niepożądane wzmocnienie szczegółów, tzw. zjawisko "piegowatości" w płynnych zmianach tonalnych (ludzkie twarze, chmury). W pewnym zakresie można temu zapobiec, korzystając z filtru o nazwie *Sharpen edge* (wyostrzenie krawędzi), który nie wzmacnia małych różnic w przyległych pikselach, a tylko duże różnice. W efekcie płynne przejścia tonalne nie są modyfikowane.

Filtry wykrywające krawędzie

- wykrywają krawędzie we wszystkich kierunkach;
- w wyniku działania dają ostrzejsze krawędzie niż większość filtrów wyostrzających;
- przykładami filtrów wykrywających krawędzie są operatory Laplace'a.

Przykłady filtrów

0	-1	0	-1	-1	-1	1	-2	1	-1	0	-1
-1	4	-1	-1	8	-1	-2	4	-2	0	4	0
0	-1	0	-1	-1	-1	1	-2	1	-1	0	-1
(div=	1	div=1		div = 1		div = 1				
]	LAPL	1	LAPL2		LAPL3		Ukośny				

Filtry konturowe

- używane do wykrywania krawędzi i tworzenia konturu obrazu;
- wykorzystywane w procesie segmentacji obrazu i rozpoznawania kształtów obiektów w obrazie;
- działają na zasadzie gradientowej;
- gradient określa, jak w obrazie zmieniają się jasności pomiędzy sąsiednimi pikselami, osiąga największą wartość tam, gdzie w obrazie istnieją największe zmiany jasności przy przejściu od piksela do piksela;
- przykładami filtrów konturowych są filtry Sobela i filtry Prewitta.

Przykłady filtrów

1	2	1
0	0	0
-1	-2	-1

1	0	-1
2	0	-2
1	0	-1

-1	-1	-1
0	0	0
1	1	1

1	0	-1
1	0	-1
1	0	-1

Filtr medianowy

- służy do usuwania zakłóceń typu punktowego;
- w wyniku działania filtru piksel obrazu wyjściowego przyjmuje wartość mediany z wartości pikseli obrazu wejściowego znajdujących się w jego otoczeniu (w obrębie maski).
- medianę wyznacza się w ten sposób, że wartości pikseli z otoczenia sortuje się od największego do najmniejszego a następnie wybiera się wartość środkową ciągu;
- w przypadku masek o parzystej liczbie pikseli w otoczeniu, medianę oblicza się przez uśrednienie wartości dwóch pikseli środkowych posortowanego ciągu;
- niepożądanym efektem jest tzw. działanie erozyjne polegające na tym, że po wielokrotnym użyciu filtru medianowego krawędzie obiektów o różnych poziomach jasności stają się poszarpane.

Nadawanie koloru

- oko ludzkie jest bardziej czułe na zmiany koloru niż na zmiany jasności, stąd odwzorowanie informacji o jasności pikseli w umowną mapę kolorów pozwala na wydobycie z obrazu większej ilości łatwo rozpoznawalnej informacji;
- technika ta nosi nazwę pseudokolorowania i stosuje się ją, gdy bardziej interesuje nas wyróżnienie pikseli o różnych jasnościach niż globalny rozkład jasności w obrazie
- przy pseudokolorowaniu wykorzystuje się tablice LUT, które zawierają informacje o kolorze zastępującym oryginalną wartość jasności.

Nadawanie koloru

Algorytm:

```
LUT – tablica odwzorowania kolorów o wymiarze L;
F[i, j] – mapa bitowa obrazu o wymiarach NxM;
L – liczba dostępnych poziomów jasności obrazu oryginalnego;
LUT: array [0..L-1] of int;
F: array [0..N-1, 0..M-1] of int;
begin
     for i:=0 to N-1 do
        for j:=0 to M-1 do
            F[i,j]:=LUT[F[i,j]];
end.
```


Zamiana poziomów jasności na umowne kolory

Obrazy z kamery termowizyjnej w zastosowaniach medycznych

Zdjęcia z kamery termowizyjnej wykorzystywanej do badania strat ciepła w budynkach

Zdjęcia z badań USG komory serca

Macierze sąsiedztwa

Def. 1.

p₁ (P,Z) – funkcja gęstości prawdopodobieństwa, że element obrazu P ma poziom jasności Z.

Def. 2.

 $p_2(P,Q,Z,Y)$ – funkcja gęstości prawdopodobieństwa, że piksel P ma poziom jasności Z a piksel Q ma poziom jasności Y.

Macierz sąsiedztwa jest oszacowaniem prawdopodobieństwa $p_2(P,Q,Z,Y)$ na pojedynczym obrazie przy założeniu, że p_2 zależy jedynie od położenia piksela p_2 względem piksela p_3

Macierz sąsiedztwa oznaczamy jako:

 $C_r[Z,Y];$

gdzie *r* oznacza rodzaj powiązania pomiędzy pikselami *P* i *Q*.

Macierze sąsiedztwa

Algorytm wyznaczania macierzy sąsiedztwa

```
for wszystkie powiązania r między P i Q do
    begin
    wyzeruj tablicę C<sub>r</sub>[Z,Y];    /* 0≤Z≤L, 0≤Y≤L */
    for wszystkie elementy P obrazu do
        begin
        if Q jest pikselem sąsiednim do P zgodnie z
        powiązaniem r then zwiększ C<sub>r</sub>[f(P), f(Q)] o 1;
    end;
end.
```


Właściwości macierzy sąsiedztwa

- oddalenie niezerowych wartości komórek macierzy sąsiedztwa od przekątnej (Rys.1) związane jest z występowaniem w obrazie dużej ilości zmian jasności (występowanie krawędzi, drobnych szczegółów). Obraz jest ostry.
- niezerowe wartości komórek macierzy sąsiedztwa skupione w pobliżu przekątnej (Rys.2) oznaczają, że w sąsiedztwie punktów o danej jasności są przeważnie punkty o jasnościach zbliżonych, co oznacza małą dynamikę (zmienność jasności) obrazu i brak w obrazie drobnych szczegółów. Obraz jest nieostry.