142798

FOREIGN TECHNOLOGY DIVISION

THE VISCOSITY OF METHANE-NITROGEN AND METHANE-NITROGEN-HYDROGEN MIXTURES AT TEMPERATURES FROM 273 TO 473°K

AND PRESSURES TO 490.3·10⁵ N/m²

bу

N. Ye. Gnezdilov and I. F. Golubev

Approved for public release; distribution unlimited.

10

Roproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
Springfield, Va. 22151

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

EDITED MACHINE TRANSLATION

THE VISCOSITY OF METHANE-NITROGEN AND METHANE-NITROGEN-HYDROGEN MIXTURES AT TEMPERATURES FROM 273 TO 473°K AND PRESSURES TO 490.3.105 N/m2

By: N. Ye. Gnezdilov and I. F. Golubev

English pages: 6

Source:

Gazovaya Promyshlennost' (The Gas Industry), Vol. 13, No. 4, 1968, pp. 46-48.

This document is a SYSTRAN machine aided translation, post-edited for technical accuracy by: Charles T. Ostertag.

IR/0492-68-013-004

Approved for public release; distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

FTD-MT- 24-1583-71

Date 1 Feb 1972

UNCLASSIFIED

Security Classification			
DOCUMENT CONT (Security classification of title, body of abstract and independent			overall report is classified)
Foreign Technology Division Air Force Systems Command U. S. Air Force			CURITY CLASSIFICATION [FIED
THE VISCOSITY OF METHANE-NITROG MIXTURES AT TEMPERATURES FROM 2 TO 490.3 TIMES 10 ⁵ N/m ²	EN AND MET 73 TO 473	L HANE-NITE DEGREES E	ROGEN-HYDROGEN (AND PRESSURES
4 DESCRIPTIVE NOTES (Type of report and inclusive dates) [ranslation			
Gaezdilov, N. Ye., and Golubev,	I. F.		
6. REPORT DATE 1 90 8	74. TOTAL NO. O	PAGES	76. NO. OF REFS
b. PROJECT NO. F-3615-71-C-1182 (71 Jan 01)		-24-1583	
u.			
Approved for public release; di	stribution	unlimite	ed.
SUPPLEMENTARY NOTES		;n Techno	logy Division on AFR, Ohio
13. ABSTRACT			

Mixtures containing methane, nitrogen, and hydrogen are frequently encountered in the industrial practice of the gas and economical industry, for example in the processes of conversion of methane, synthesis of ammonia, and others. For the hydrodynamic and thermal calculations of these processes it is required to know the viscosity coefficients of mixtures containing the indicated components at various temperatures and pressures. At the present time data are available on the viscosity of mixtures containing methane, nitrogen, and hydrogen which were obtained earlier for one binary mixture with given composition, percentages, temperatures and pressures.

DD FORM . 1473

UNCLASSIFIED

Security Classification

UNCLASSIFIED

UNCLASSIFIED Security Clumification							
KEY WORDS	LIN	LINK A		LINK 5		LINKC	
	ROLE	W T	ROLE	WT	HOLE	WT.	
Viscosity Digh Fressure Methane							
High Pressure	i						
Methane							
Nitrogen			,				
Hydrogen					i		
	į.		!				
			İ				
)						
			•				
	1						
	1				1		
	i						
					1		
	į		İ	İ			
	1						
	1 a		: 1				
				J			
	j				! !		
	i] }		
	!						
	4						
	1				i l		
			ĺ		;		
			İ				
]				
	İ		1				
					!		
					į į		
			Ì				
					1 1		

UNCLASS IFIED
Securic Cleanification

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block	Italic	Transliteration	Block	Italic	Transliteration
A 4	Aa	Α, ε	PP	P ,	R, r
8 6	B 8	B, b	Cc	CG	S, B
В .	B .	V, v	TT	T m	T, t
Гг	T .	G, g	Уу	Уу	U, u
Дд	Дд	D, d	Φ Φ	0 0	F, f
Ë •	Ê.	Ye, ye; E, e*	XX	XX	Kh, kh
жж	Жж	Zh, zh	Ци	4 4	Ta, ta
_	3,	Z, z	4 4	¥ ;	Ch, ch
-		<i>ع و بل</i> تا	Шш	Шш	
И и	Hu	1, 1			Sh, sh
Я я	A a	Ү, у	Щщ	Щщ	Shch, shch
KK	K ĸ	К, к	ъъ	3	11
Лл	JI A	L. 1	Pi Pi	Ыш	Y, y
Ми	Мм	M, m	ЬЬ	b .	1
Н н	HH	N, n	a •	9 ,	Е, е
0 0	0 0	0, 0	10 m	10 m	Yu, yu
_		-		-	
П п	Пп	P, p	Яя	N R	Ya, ya

* ye initially, after vowels, and after τ, μ; e elsewhere. When written as ë in Russian, transliterate as yë or ë. The use of ciacritical marks is preferred, but such marks may be omitted when expediency dictates.

THE VISCOSITY OF METHANE-NITROGEN AND METHANE-NITROGEN-HYDROGEN MIXTURES AT TEMPERATURES FROM 273 TO 473°K AND PRESSURES TO 490.3·10⁵ N/m²

N. Ye. Gnezdilov and I. F. Golubev

Mixtures containing methane, nitrogen, and hydrogen are frequently encountered in the industrial practice of the gas and chemical industry, for example in the processes of conversion of methane, synthesis of ammonia, and others.

For the hydrodynamic and thermal calculations of these processes it is required to know the viscosity coefficients of mixtures containing the indicated components at various temperatures and pressures. At the present time data are available on the viscosity of mixtures containing methane, nitrogen, and hydrogen which were obtained earlier [1] for one binary mixture with the composition 80% CH $_{\rm h}$ + 20% N $_{\rm 2}$ at temperatures of 293, 323.6, and 373.2°% and pressures from 0.1013 to 30.39 mN/m 2 and for three termory mixtures with the composition 37.85% CH $_{\rm h}$ + 16.80% H $_{\rm 2}$ + 45.34% N $_{\rm 2}$ at temperatures from 294.4 to 373.5°% and pressures from 0.1013 to 30.39 mN/m 2 ; the composition 19.8% CH $_{\rm h}$ + 24.7% H $_{\rm 2}$ + 55.5% N $_{\rm 2}$ at temperatures from 285.7 to 373.9°% and pressures from 0.1013 to 30.39 mN/m $_{\rm 2}$; and the composition 17% CH $_{\rm h}$ + 62.5% H $_{\rm 2}$ + 29.5% N $_{\rm 2}$ at temperatures from 298 to 473°% and pressures from 0.1013 to 81.04 mN/m 2 .

Using the ampillary method on the previously described installation [1] we continued and expanded the measurements of the viscosity of mixtures containing these components. We determined the viscosity of

two binary mixtures with the composition 27.8% $\mathrm{CH_4}$ F 72.2% $\mathrm{N_2}$ and 55.1% $\mathrm{CH_4}$ + 44.9% $\mathrm{N_2}$ at temperatures from 273 to 473°K and pressures to 49.03 mN/m² and two ternary mixtures with the composition 21.8% $\mathrm{Ch_4}$ + 57.7% $\mathrm{H_2}$ F 26.4% N, and 18.4% $\mathrm{CH_4}$ + 49.8% $\mathrm{H_2}$ + 31.4% $\mathrm{N_2}$ at temperatures from 27, to 473°K and pressures to 49.03 mN/m². The results of the measurements are given in Tables 1-4.

Table 1. Viscosity ($10^{-8} \text{ N} \cdot \text{s} \cdot \text{m}^{-2}$) for the mixture: $27.8\% \text{ CH}_{L} + 42.2\% \text{ N}_{2}$.

			- J.
l'ache 2.	. Vistosit	y (16 N	• 3 • 31 -)
for the	misture:	55.1% (31)	+
+ 44.9%	No.	4	

who wer	(Э) Темлература, °К						
7. W.7	273,15	298.15	323.15	373.15	423,15	473.12	
0	1474	1575	1671	1851	2034	2200	
9.807	1 1489	1590	-	1 1866	-	-	
19.60	1504	1607	1699	1578	2054	2213	
19.60	1 1510	-	-	-			
49.03	1587	1654	1742	1911	2056	2229	
49.03	1573	-		1925	-		
98.07	1708	1779	1548	: 200L	2119	2292	
148.0	1893	1934	2000	2092	2221	2362	
1554	1502		2018	-	2230		
196.0	2107	2104	2168	2211	2310	2120	
195.0	* *123	***	-	-	110	2430	
245.2	2318	2280	2312	2324	2405	2513	
245-2	::360	-	-		-		
204.2	2552	2469	2450	2442	2504	2604	
294.2		2498		-	-	-	
343.2	2783	2699	26-03	2562	2606	2683	
343.2	2766			***		-	
392.3	3000	2851	2741	2693	2716	27.74	
392.3	3008	1.7.7.	2769		0010	0000	
441.3	1 3425	3007	2920	2816	2818	2633	
441.3	200	3038	2011	905	2000	1000	
790.3	3356	3180	3061	2955	2030	2941	
490.3	1368	3207	30t i		58.36		

et . 19*	(2) Texasperyps, *K						
P. W.	273,15	298,15	323,15	373,15	423,15	473. s	
U 2007	1311	1405	1493	1693	: 31	i 1989	
9.897 19.60	1314	1419	1500	1676	4000		
49.03	1417	1493	1567	1 1687 . 1723 :	1850 1852	2007	
49.03	1394	1,199	1301	1760	1024	2008	
98.07	1561	1600	1665	1801	1945	2086	
98.07		1621	1680		-	2000	
148.0	1784	1778	1508	1901	2028	2149	
198-0	2042	1094	1 1968	2021	2111	2224	
196.0	2051			- !	_		
245.2	2268	2190	2136	2155	2216	2312	
245.2	2282		2149		p. en	-	
294.2	2532	2387	2319	1 2501	2.230	2396	
343.2	2769	2595	2492	241	2444	:: 386	
343.2 392.3	2750	0.00	0000	2126			
441.3	2953	2780 2956	2660 2819	2562 2685	2546	2579	
441.3	3173	2971	2830	2700	2019	2663	
490.3	3327	3146	2962	2814	2751	2765	
490.3	3332	3150	2974	2821	2764	27(%)	

KMY: (1) p. N/m²·10⁵ or a componenter; (2) Temperature,

KEY: (1) μ , $k/m^2 \cdot 10^5$ on a manometer; (2) Pemperature

The data obtained on the methans-nitrogen binary mixtures were processed in coordinates "excess viscosity $(n_{\rm pT}^{-n_{\rm pp}})$ - density $\rho^{\rm m}$ (Fig. 1, curves II and III). The same processing was conducted for the data of work [1] (curve I).

The experimental points for all temperatures are arranged well on the general curve for every mixture. The values of density for the given meanar emit, ofen mixtures were taken from work [2].

FTL-MT- 4-1 53-7.

Table 3. Viscosity (10^{-8} N·s·m⁻²) for a mixture: 21.8% CH₄ + 57.7% H₂ + 20.5% N₂.

	Í	(2) Tem	ература	, °K		
(1) p, n/m*-10* no mailomethy	273,15	298,15	323,15	373,15	423,15	473,15	523,15
9.807 9.807 19.60 19.60 49.03 98.07 98.07 118.0 196.0 196.0 245.2 245.2 294.2 343.2 343.2 302.3 441.3 490.3	1256 1261 1264 1264 1300 1296 1360 1369 1441 1453 1533 1541 1627 1722 1818 1823 1916 2011 2116 2106	1340 1344 1347 1354 1381 1442 1508 1580 1592 1666 1670 1748 1754 1830 1991 1991 2071 2080	1624	1575 1579 — 1602 1633 1631 1689 1681 1743 1803 1794 1855 1904 1915 1906 1957 2021 2073	1724 1726 — 1744 1772 1811 1856 1848 1905 1941 1995 2032 2084 2001 2132	1874 	2022 2026 2027 2035 2061 2092 2124 2154 2186 2217 2248 2248 2281

KEY: (1) p, $N/m^2 \cdot 10^5$ on a manometer. (2) Temperature, °K.

Table 4. Viscosity $(10^{-8} \text{ N} \cdot \text{s} \cdot \text{m}^{-2})$ for a mixture: 18.8% CH_4 + 49.8% H_2 + 31.4% N_2 .

(1) в/ж*·10* жаноме-	((2) Температура, °К					
p, #/.> no mail rpy	273,15	298,15	323,15	373,15	423,15	473,15	
0	1408	1501	1588	1756	1913	2065	
9.807	1412	_	1593	1760		2069	
9.807	-	-	1596	1764	-		
19 60	1428	1514	1605	1769	1922	!	
19.60			1600	1764	_	:	
49.03	1466	1551	1633	1794	1943	2089-	
49.03	1460	1548	!	. —		-	
98.07	1549	1620	1692	1841	1984	2116	
98.07	-	1625	1	1831		-	
148.0	1652	1702	1760	1893	2024	2150	
1480	<u> </u>	1713		1888	2933	-	
196.0	1761	1800	1835	1953	2075	2191	
196.0	1764	<u> </u>	1843	1	-	'	
245.2	1872	1890	1920	2014	2132	2225	
245.2	_		1925	· -	2124		
294.2	1985	1985	, 2008	2054	2186	: 2263	
294.2		1986	1	_	2101		
343.2	2094	2077	i	2150	2233	2299	
343.2	-	2073	2085			***	
392.2	2193	2173		2213	2285	2234	
392.2	-	2175	2165	_		٠	
441.3	2301	2266	2246	2276	23.34	2374	
441.3			2250		2340		
490.3	2402	2363	2330	2340	2392	2411	
490.3	2409	2356	2336	,	1		

KEY: (1) p, $N/m^2 \cdot 10^5$ cn a manometer. (2) Temperature, °K.

Fig. 1. Dependence of $(n_{p,T}-n_{T})$ on density for a $\mathrm{CH_4-N_2}$ mixture. KEY: (1) Density, $\mathrm{g/cm.^3}$.

As an example Figure 2 shows the dependence of the viscosity of the methane-nitrogen mixture on composition at a temperature of 3230K and various pressures. It should be noted that the graphic processing of the experimental data on the dependence of the viscosity of methane-nitrogen mixtures on composition and other temperatures showed a picture analogous to that depicted in Fig. 2. Here the data of work [1] are arranged well in the curves of dependence on composition at all the investigated temperatures can exception are the data obtained at atmospheric pressure).

Figure 3 depicts the results of experimental measurements for one of the ternary mixtures of methane-hydrogen-nitrogen. Such a picture is also observed for the second investigated mixture.

Fig. 3. The viscosity of the mixture 18.8% CH₄ + 49.8% H₂ + 31.4% N₂ depending on pressure and temperature

FEY: (1) Viscosity, 10^{-8} N·s·m^2 ; (2) Fressure, 10^5 M/m^2 .

FPN-MT-24-1583-71

Figure 4 depicts the processing of the laboratory findings on the viscosity of ternary mixtures in the coordinates "excess viscositydensity", showing also that for triple (multicomponent) mixtures there is a uniform dependence of excess viscosity on density at various temperatures.

Fig. 4. Dependence of (n_p, T^{-n_r}) on density for a $CH_4-H_2-N_2$ mixture. KEY: (1) Density, g/cm^3 .

The values of density for ternary mixtures used in this processing were calculated according to the Krichevskiy-Kazarnovskiy equation [3] with the constants given in work [2].

CONCLUSIONS

The laboratory findings, measured by the capillary method, are given for mixtures with the composition: 27.8% $\rm CH_4$ + 70.2% $\rm H_2$; 55.1% $\rm CH_4$ + 44.9% $\rm N_2$; 21.8% $\rm CH_4$ + 57.7% $\rm H_2$ + 20.5% $\rm N_2$; and 18.8% $\rm CH_4$ + 49.5% $\rm H_3$ + 31.4% $\rm N_2$ at temperatures from 273 to 473°K and pressures to 49.03 mas/a.

The processing of the experimental results showed the unique dejemence of excess viscosity on density at all temperatures.

BIBLIOGRAPHY

[1] Голубев И. Ф. Вначость гагов и газовых смесей. Физматтиз, 1959.
[2] Кричевский И. Р., Иевченко Г. Т. Ж. Флз. Хам., т. 15 1941.
[3] Кричевский И. Р., Казарисвский Я. С. Ж. Физ. Хии., т. 13, 1939.

(THAH)

(GIAP [State Scientific Research and Planning Institute of the Nitrogen Industry and Products of Organic Synthesis])