SISTEMAS PARALELOS

Clase 7 – Análisis de rendimiento Prof Dr Enzo Rucci

Agenda de la clase anterior

Programación en modelo híbrido

Agenda de esta clase

Análisis de rendimiento

ANÁLISIS DE RENDIMIENTO EN SISTEMAS PARALELOS

Análisis de rendimiento: Métricas - Tiempo de ejecución

- Un algoritmo secuencial se suele evaluar por su tiempo de ejecución → En general, es posible encontrar alguna ley asintótica del tiempo de ejecución en función del tamaño de datos de entrada
- El tiempo de ejecución de un programa paralelo no sólo depende del tamaño de los datos de entrada sino también del número de procesadores y de los parámetros de comunicación de la arquitectura de soporte → es incorrecto analizar el algoritmo paralelo en forma aislada

El análisis se debe realizar a nivel de **sistema paralelo** (combinación de algoritmo paralelo y contexto de hardware y software).

Análisis de rendimiento: Métricas - Tiempo de ejecución

- El tiempo de ejecución secuencial (T_s) es el tiempo que transcurre desde el inicio hasta el fin de la ejecución sobre una máquina empleando una única unidad de procesamiento.
- El *tiempo de ejecución paralela* (T_p) resume la diferencia de tiempo entre que la primera tarea que comienza hasta que la última tarea haya completado su trabajo.

Análisis de rendimiento: Fuentes de overhead

- Usando el doble de recursos, se espera que el programa paralelo se ejecute en la mitad del tiempo → Sin embargo, en la práctica, esto es muy raro que ocurra.
- Existen factores que generan overhead en los programas paralelos e impiden una mejora proporcional al aumento de la arquitectura:
 - Ocio
 - Interacción entre procesos
 - Cómputo adicional

 El Speedup (S) refleja el beneficio de emplear procesamiento paralelo para resolver un problema dado comparado a realizarlo en forma secuencial

$$S_p(n) = \frac{T_s(n)}{T_p(n)}$$

- Es una medida de cuántas veces más rápido pudimos resolver el problema empleando el algoritmo paralelo con p unidades de procesamiento comparado al algoritmo secuencial.
- Para un problema dado, pueden existir diferentes algoritmos secuenciales, los cuales pueden tener diferentes tiempo de ejecución (complejidad) y, a su vez, pueden ser paralelizados de distintas maneras.
- Para computar el Speedup, siempre se debe considerar el mejor algoritmo secuencial (el que resuelva el problema en menos tiempo).

- Límites del Speedup:
 - Si $S_p(n) < 1$ entonces el algoritmo paralelo tarda más que el mejor algoritmo secuencial $\to S_p(n)$ debe ser mayor a 1
 - El mejor resultado se logra si somos capaces de distribuir el trabajo entre las unidades de procesamiento sin introducir ocio, interacción ni cómputo adicional → Situación poco usual
 - Con p unidades de procesamiento $\rightarrow S_p(n) = p$ (conocido como Speedup lineal, Speedup óptimo, Speedup perfecto)
 - Teóricamente, siempre se cumple que $S_p(n) \leq p$
 - Un Speedup mayor a p sólo es posible si cada unidad de procesamiento requiere menos de $\frac{T_s(n)}{p}$ unidades de tiempo
 - Entonces podríamos construir un nuevo algoritmo secuencial que emule las p unidades de procesamiento usando una única unidad física, resolviendo el problema en menos de Ts unidades de tiempo → Contradicción

- En la práctica, a veces se puede dar $S_p(n) > p$ (fenómeno conocido como *Speedup superlineal*)
 - Un motivo puede ser que la versión paralela del algoritmo realice menos trabajo que la versión secuencial
 - Ejemplo: búsqueda Depth-First-Search en árbol binario, donde expandir cada nodo cuesta t_c

- Un segundo motivo de Speedup superlineal es la combinación de características de hardware y distribución de los datos del algoritmo paralelo que ponen en desventaja al algoritmo secuencial
- Por ejemplo, consideremos un procesador con 64Kb de caché y un algoritmo secuencial con 80% de hits en la caché:
 - Si el algoritmo paralelo emplea 2 procesadores, disminuye el volumen de datos con los que se trabaja, llevando la tasa de hits al 90%
 - Siguiendo este razonamiento, al emplear 4 procesadores, se podría alcanza una tasa de 100% de hits.

- Calculemos las relaciones para 20.000 accesos a memoria considerado que:
 - la latencia de la caché es 2 ns;
 - el tiempo de acceso a memoria es 100 ns;
 - el tiempo de acceso a disco es 1000 ns;
 - los fallos de caché se reparten 80% en RAM y 20% en disco.

Secuencial \rightarrow 16.000 × 2 ns + 3.200 × 100 ns + 800 × 1000 ns = 1152 ms

Paralelo (p=2) \rightarrow 18.000 \times 2 ns + 1.600 \times 100 ns + 400 \times 1000 ns = 0,596 ms

**Paralelo (
$$p=4$$
)** \rightarrow 20.000 × 2 ns = 0,04 ms \rightarrow

$$S_p = \frac{1152}{0.4} = 2880$$

¿Es una causa real de speedup superlineal?

- Lo visto hasta ahora asume que todas las unidades de procesamiento empleadas son idénticas
- En arquitecturas heterogéneas, el Speedup se debe calcular considerado la Potencia Cómputo Total (pct) en lugar del número de unidades de procesamiento (p)

$$pct = \sum_{i=0}^{p-1} pcr_i$$

$$pcr_i = \frac{p_i}{p_m}$$

pct	Potencia de Cómputo Total
pcr	Potencia de Cómputo Relativa
p_i	Potencia del procesador i
ρ_m	Potencia del mejor procesador

• Consideremos una arquitectura compuesta por 8 procesadores $(p_0..p_7)$, donde p_0 es el de mayor potencia, $p_1...p_4$ tienen un 75% de la potencia de p_0 y $p_5...p_7$ tienen el 50% de potencia de p_0 ; entonces:

$$pcr_0 = 1$$

 $pcr_{1..4} = 0.75$
 $pcr_{5..7} = 0.5$

$$pct = \sum_{i=0}^{7} pcr_i = 1 + 4 \times 0.75 + 3 \times 0.5 = 5.5$$

• El límite superior para el Speedup en esta arquitectura es 5,5 más allá de contar con 8 procesadores

¿Cómo calcular potencia de cada unidad de procesamiento?

Análisis de rendimiento: Métricas – Eficiencia

- Sólo un sistema paralelo ideal con p unidades de procesamiento puede reportar speedups iguales a p → En la práctica es difícil que ocurra debido a las fuentes de overhead
- La Eficiencia es una medida de la fracción de tiempo en la cual las unidades de procesamiento son empleadas en forma útil

$$E_p(n) = \frac{S_p(n)}{S_{ont}}$$

- En arquitecturas homogéneas $S_{Opt}=p$ mientras que en heterogéneas $S_{Opt}=pct$
- Si $S_p(n) = p$ (sistema paralelo ideal), entonces $E_p(n) = 1$
- En la práctica, $S_p(n) \le p$ lo que implica que $E_p(n) \le 1$
- Por definición, $E_p(n) > 0$. Por lo tanto, $0 < E_p(n) \le 1$

Análisis de rendimiento: Métricas – Ejemplos de Speedup y Eficiencia

Tiempos de ejecución y valores de Speedup y Eficiencia para algoritmos que resuelven multiplicación de matriz-vector

p	Order of Matrix				
	1024	2048	4096	8192	16,384
1	4.1	16.0	64.0	270	1100
2	2.3	8.5	33.0	140	560
4	2.0	5.1	18.0	70	280
8	1.7	3.3	9.8	36	140
16	1.7	2.6	5.9	19	71
	1 2 4 8	1 4.1 2 2.3 4 2.0 8 1.7	1 4.1 16.0 2 2.3 8.5 4 2.0 5.1 8 1.7 3.3	1 4.1 16.0 64.0 2 2.3 8.5 33.0 4 2.0 5.1 18.0 8 1.7 3.3 9.8	1 4.1 16.0 64.0 270 2 2.3 8.5 33.0 140 4 2.0 5.1 18.0 70 8 1.7 3.3 9.8 36

 $S_p(n)$

p	Order of Matrix					
	1024	2048	4096	8192	16,384	
1	-	-	-	-	_	
2	1.8	1.9	1.9	1.9	2.0	
4	2.1	3.1	3.6	3.9	3.9	
8	2.4	4.8	6.5	7.5	7.9	
16	2.4	6.2	10.8	14.2	15.5	
4 8	2.1 2.4	3.1 4.8	3.6 6.5	3.9 7.5	3.9 7.9	

 T_s , T_p , S y E dependen del tamaño de problema

 T_p , S y E además dependen de p

 $E_p(n)$

p	Order of Matrix				
	1024	2048	4096	8192	16,384
1	_	-	-	-	_
2	0.89	0.94	0.97	0.96	0.98
4	0.51	0.78	0.89	0.96	0.98
8	0.30	0.61	0.82	0.94	0.98
16	0.15	0.39	0.68	0.89	0.97

Análisis de rendimiento: Métricas – Ejemplos de Speedup y Eficiencia

Gráficos de Speedup y Eficiencia para las tablas anteriores

Análisis de rendimiento: Métricas – Overhead total

 El overhead total de un sistema paralelo se define como la diferencia entre la suma del tiempo requerido por todas las unidades de procesamiento y el del mejor algoritmo secuencial para resolver el mismo problema empleando una única de unidad de procesamiento.

$$OT_p(n) = pT_p(n) - T_s(n)$$

Análisis de rendimiento: Métricas – Overhead de las comunicaciones

 El overhead de las comunicaciones de un sistema paralelo se define como la relación entre el tiempo requerido por las comunicaciones de nuestra solución y el tiempo total que esta requiera.

$$OC_p(n) = \frac{Tcomm_p(n)}{T_p(n)} \times 100$$

Análisis de rendimiento: Métricas – Ley de Amdahl

- Los factores de overhead limitan los beneficios del procesamiento paralelo
- Una restricción importante proviene de aquellos secciones de código que no pueden ser paralelizadas → bloque de ejecución secuencial
- La Ley de Amdahl (Amdahl, 1967) permite estimar el Speedup alcanzable en aquellos programas paralelos que contienen partes secuenciales:
- Dada una fracción f, $0 \le f \le 1$, de un programa paralelo que debe ser ejecutada secuencialmente, el tiempo de ejecución paralela se calcula como:

$$T_p(n) = f \times T_s(n) + \frac{(1-f) \times T_s(n)}{p}$$

• Entonces el Speedup ahora puede re-escribirse de la siguiente forma:

$$S^{A}_{P}(n) = \frac{T_{S}(n)}{f \times T_{S}(n) + \frac{(1-f) \times T_{S}(n)}{p}} = \frac{1}{f + \frac{(1-f)}{p}}$$

Análisis de rendimiento: Métricas – Ley de Amdahl

• Es importante notar que, aun con un número infinito de unidades de procesamiento, el Speedup estará limitado a $\frac{1}{f}$, ya que:

$$\lim_{p \to \infty} \left(\frac{1}{f + \frac{(1-f)}{p}} \right) = \frac{1}{f}$$

- Por ejemplo, con 5% de ejecución secuencial (f = 0.05) en un programa paralelo, el máximo Speedup alcanzable será **20**, sin importar el número de unidades de procesamiento que podamos emplear.
- Es importante tener en cuenta esta características si vamos a emplear una gran cantidad de unidades de procesamiento, aunque veremos más adelante que esta estimación puede ser considerada pesismista

Análisis de rendimiento: Métricas – Escalabilidad

- El término escalabilidad es un término impreciso, ya que se la suele usar para diferentes cosas (escalabilidad arquitectónica o de hardware, escalabilidad algorítmica)
- En el contexto del análisis de rendimiento, la escalabilidad hace referencia a la capacidad que tiene un sistema de mantener un nivel de Eficiencia fijo al incrementar tanto el número de unidades de procesamiento como el tamaño del problema de resolver → En ese caso, se dice que el sistema es escalable
- Dicho de otra manera, la escalabilidad de un sistema paralelo es una medida de su capacidad de incrementar el Speedup en forma proporcional al número de unidades de procesamiento empleadas

Análisis de rendimiento: Métricas – Escalabilidad

- Casos especiales:
 - Escalabilidad débil: Cuando al incrementar el número de unidades de procesamiento, resulta necesario también aumentar el tamaño de problema para mantener la eficiencia en un valor fijo.
 - Escalabilidad fuerte: Cuando al incrementar el número de unidades de procesamiento, no resulta necesario aumentar el tamaño de problema para mantener la eficiencia en un valor fijo.

Análisis de rendimiento: Métricas – Ley de Gustafson

 El incremento en el Speedup por un tamaño mayor de problema no es percibido por la Ley de Amdahl

$$\lim_{p \to \infty} \left(\frac{1}{f \times + \frac{(1-f)}{p}} \right) = \frac{1}{f}$$

Análisis de rendimiento: Métricas – Ley de Gustafson

- El incremento en el Speedup por un tamaño mayor de problema no es percibido por la Ley de Amdahl
- En la década del 80, Gustafson observó en la práctica que:
 - Un multiprocesador más grande usualmente permite resolver un problema de mayor tamaño en un tiempo de ejecución determinado (escalabilidad)
 → el tamaño de problema seleccionado depende frecuentemente del número de unidades de procesamiento disponibles
 - Al incrementar el tamaño del problema y el número de unidades de procesamiento para mantener el tiempo de ejecución constante, la fracción secuencial de los programas se mantiene fija o no crece en forma proporcional al tamaño de la entrada.
- Por lo tanto, asumir que el tamaño de problema es fijo resulta tan válido como que el tiempo de ejecución paralela lo es

Análisis de rendimiento: Métricas – Ley de Gustafson

- Basándose en sus observaciones, Gustafson re-escribió la ecuación para estimar el máximo speedup alcanzable (conocido como Speedup escalado).
- Dada una fracción f', $0 \le f' \le 1$, de un programa paralelo que debe ser ejecutada secuencialmente pero que no crece en forma proporcional al tamaño de problema, el Speedup escalado se calcula como:

$$S_{p}^{S}(n) = \frac{T_{S}(n)}{T_{p}(n)} = \frac{f' \times T_{p}(n) + (1 - f') \times T_{p}(n) \times p}{T_{p}(n)} = p + (1 - p) \times f'$$

- Esta versión requiere 2 suposiciones: (1) $T_p(n)$ se mantiene constante y (2) $f' \times T_p(n)$ no escala en forma proporcional al aumento de n y p
- Según Gustafson: con 5% de ejecución secuencial (f' = 0.05) y 20 procesadores, el speedup alcanzable sería $20 + (1 20) \times 0.05 = 19.05$ en lugar de $\frac{1}{0.05 \times + \frac{(1 0.05)}{20}} = 10.26$ que se obtendría con la ecuación de Amdahl.

Análisis de rendimiento: Métricas – Desbalance de carga

 En arquitecturas heterogéneas o soluciones paralelas que contemplan problemas irregulares, resulta útil poder medir el Desbalance de carga:

$$D = \frac{max_{i=0..p-1} \left(T_{pi}(n) \right) - min_{i=0..p-1} (T_{pi}(n))}{prom_{i=0..p-1} (T_{pi}(n))}$$

- Si todas las unidades de procesamiento toman el mismo tiempo, entonces $D = 0 \rightarrow Poco$ usual
- En general, se debe intentar que D esté lo más cerca posible de 0

Análisis de rendimiento: Recomendaciones para medir tiempos de ejecución

- Usualmente interesa analizar la mejora lograda en determinada parte del programa → En la práctica, el tiempo de ejecución no siempre se considera desde el que programa empieza hasta que el mismo termina
- Por ejemplo, si consideramos un problema de ordenación por burbuja, mediremos la parte que ordena el vector, pudiendo descartar:
 - Reserva de memoria.
 - Lectura de datos de entrada
 - Impresión de datos de salida
 - Liberación de memoria

Análisis de rendimiento: Recomendaciones para medir tiempos de ejecución

- Aunque la solución paralela involucre p tareas, T_p(n) debe ser un único valor que contemple el tiempo que transcurre desde que la primera tarea comenzó a ejecutar hasta que la última haya completado su trabajo → Tener en cuenta que este tiempo puede hacer referencia a una determinada parte del programa
- En ocasiones, no todas las tareas comienzan y terminan al mismo tiempo → Para asegurarnos una medición correcta, puede ser útil emplear barreras
- La precisión en la medición puede ser un tema importante → No es lo mismo medir un programa que dure unos pocos segundos a otro que dure horas...

Análisis de rendimiento: Recomendaciones para medir tiempos de ejecución

- Otro factor a tener en cuenta es la variabilidad en las mediciones.
 - Se recomienda repetir las pruebas un determinado número de veces y calcular el promedio o la mediana → ¿Cuántas veces repetirlo?
 - En ocasiones, también puede ser de interés reportar el tiempo mínimo y el máximo

Bibliografía usada para esta clase

- Capítulo 5, An Introduction to Parallel Computing. Design and Analysis of Algorithms (2da Edition). Grama A., Gupta A., Karypis G. & Kumar V. (2003) Inglaterra: Pearson Addison Wesley.
- Capítulo 4, Parallel Programming for Multicore and Cluster Systems. Rauber, T. & Rünger, G. (2010). EEUU: Springer-Verlag Berlin Heidelberg.
- Capítulo 2, An Introduction to Parallel Programming.
 Pacheco, P. (2011) EEUU: Elsevier.
- Capítulo 1, Parallel Programming. Wilkinson, B. & Allen, M. (2005) EEUU, Pearson