

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addiese: COMMISSIONER FOR PATENTS P O Box 1450 Alexandra, Virginia 22313-1450 www.wepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO
10/510,167	07/18/2005	Gunnar Nordmark	1554-1003	6777
466 7590 12/12/29/08 YOUNG & THOMPSON 209 Madison Street			EXAMINER	
			SCIACCA, SCOTT M	
Suite 500 ALEXANDRI	A. VA 22314		ART UNIT	PAPER NUMBER
	,		2446	
			MAIL DATE	DELIVERY MODE
			12/12/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/510,167 NORDMARK ET AL. Office Action Summary Examiner Art Unit Scott M. Sciacca 2446 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 29 September 2008. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1.4-9 and 11-22 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1,4-9 and 11-22 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on 04 October 2004 is/are: a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s) 1) Notice of References Cited (PTO-892) 4) Interview Summary (PTO-413)

Notice of Draftsperson's Patent Drawing Review (PTO-948)

Information Disclosure Statement(s) (PTO/SB/08)
 Paper No(s)/Mail Date ______.

Paper No(s)/Mail Date.

6) Other:

5) Notice of Informal Patent Application

Application/Control Number: 10/510,167 Page 2

Art Unit: 2446

DETAILED ACTION

This office action is responsive to communications filed on September 29, 2008. Claims 1, 9 and 19 have been amended. New claims 20-22 have been added. Claims 1, 4-9 and 11-22 are pending in the application.

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on September 29, 2008 has been entered.

Claim Rejections - 35 USC § 103

- The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- Claims 1, 6-9, 11-12, 15-22 are rejected under 35 U.S.C. 103(a) as being unpatentable over Sonksen (US 2003/0046429) in view of Kawarai et al. (US 2002/0122424) and Farinacci et al. (US 7,016,351).

Art Unit: 2446

Regarding Claim 1, Sonksen teaches a method of pipelined processing of a data packet in a processing means comprising at least two processing stages ("A method and apparatus for packet processing is disclosed. In one embodiment of the invention the method and apparatus is implemented in plurality of pipeline stages" – See Abstract), said data packet containing information ("In most instances, each packet includes a payload portion, containing the data, proceeded by a header portion, containing information about the packet such as the source and destination of the packet, quality of service, packet size and other information" – See [0002]; The packet includes a payload (information) portion), said method comprising:

generating an intermediate data packet by adding at least one of a dummy header and dummy tail to said data packet, said dummy header and dummy tail being capable of storing information of a communication system ("the invention may comprise a method of adding a tag to a packet comprising identifying a control word to guide processing of a packet and then storing a portion of a packet in a memory" – See [0015]);

associating information reference to said intermediate data packet ("each packet is associated with a control word" – See [0025]; "The control words are generated from information extracted from the packet handle" – See [0095]; "The packet handle comprises information about the packet, such as including but not limited to the packet format, packet length or type of service" – See [0094]);

storing said information reference in additional register ("In one embodiment the invention comprises a system for dynamically modifying or supplementing the contents

Art Unit: 2446

of a packet on a packet by packet basis including a first memory configured to store a control word" – See [0017]); and

processing said intermediate data packet in a processing stage ("the invention modifies a packet based on control instructions and includes a pipeline processing stage comprising one or more memory modules configured to store packet data and supplemental data" – See [0019]).

Sonksen goes on to disclose that various fields in a packet may be modified ("The one or more data modifiers may perform modifications consisting of modification to a time to live value, a type of service value, a checksum value, or other data fields in a packet" - See [0022]). Sonksen shows that values such as a time to live value or checksum value must be updated as a packet is processed in order to account for the modifications to the information in the packet ("In this embodiment the checksum generator 1340 creates a running total of the value of the bytes in a packet. The use of a checksum for error checking is know in the art and accordingly not described in great detail here. If a packet is modified it may be desired to modify the checksum to account for the modification" - See [0112]). Thus, Sonksen generally teaches as shown above that certain fields in a packet are modified to account for changes to the information in the packet. Sonksen does not explicitly teach that the information reference comprises information relating to the length and position of the information of the data packet contained in the intermediate data packet. However, Kawarai discloses a packet containing parameters regarding a length and position of the information (payload portion) of a data packet ("Offset Value indicates the start position of a valid field for

Art Unit: 2446

payload information in a fixed-length packet. Payload Length indicates the length of the valid field from that start position" – See [0053]). It would have been obvious to one of ordinary skill in the art at the time the invention was made to associate with a packet the length and position of information within said packet. Motivation for doing so would be to provide information regarding the location of the "useful" data otherwise known as the payload of a packet so that the packet may be handled properly when received (See Kawarai, [0056]).

Sonksen does not explicitly teach the change in length of information of the data packet comprising one of:

adding to the length a value representing a length of a portion of the at least one of the dummy header and dummy tail of said intermediate data packet, the portion storing information of the communications system, and

subtracting from the length a value representing a portion of said intermediate data packet representing empty information after said processing.

However, Farinacci does teach a change in the length of information of a data packet comprising adding to the length a value representing a length of a portion of the at least one of the dummy header and dummy tail of said intermediate data packet, the portion storing information of the communications system (See Fig. 2B; "Length 204, or No. of nodes.—The number of addresses in the address list (1 byte). The offset to the start of the address list (a) is therefore ceiling((6+n)/4) 32 bit words and hence the total length of the SGM header (i.e. the offset to the start of the encapsulated multicast data packet) is (a+n)"—See Col. 5, lines 9-14; "SGM capable routers append their IP

Art Unit: 2446

address to the list, update the offset and re-forward the packet" – See Col. 15, lines 48-50). It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Sonksen to include adding to the length a value representing a length of a portion of the dummy header of a data packet. Motivation for doing so would be to make forwarding decisions more efficient (See Farinacci, Col. 5, lines 24-25).

Regarding Claim 6, Sonksen teaches said information reference being included in additional information associated with said intermediate data packet ("Note that in different formats or protocols the entire header may be of different length, items of information may be arranged in different order, pieces of information in the header may be of different length, or additional items of information may be included.

Advantageously the dynamic processing module of the invention is able to dynamically adapt and/or accommodate the various different header formats and the challenges presented by different formats" – See [0081]; As shown above with regard to Claim 1, the information reference (position and length of an information item within a packet) is taken into consideration when the corresponding packet is processed).

Regarding Claim 7, Sonksen further teaches that prior to said step of processing said intermediate data packet, said information reference is stored in at least one register accessible to the processing stage performing said processing ("The method")

Art Unit: 2446

may also include storing associated packets and control words prior to entry of a packet into the processing pipeline" – See [0033]).

Regarding Claim 8, the combination of Sonksen and Kawarai teaches the information reference comprising a length value and an offset value, said length value representing the length of the information contained in said intermediate data packet and said offset value indicating the position in said intermediate data packet of the information contained in said data packet as shown above with respect to Claim 1.

Regarding Claim 9, Sonksen teaches a processing means for pipelined processing of a data packet ("FIG. 3 illustrates a block diagram of an example embodiment of a pipeline packet processing system of the invention" – See [0037]), said processing means comprising at least one processing stage comprising a logic unit ("Shown in FIG. 3 is a first processing module 312, a second processing module 320 up to an Nth processing module 328" – See [0062]) and a register for storing at least part of said data packet ("In one embodiment the input line 300 may carry packets and associated control data to the memory 308 for storage" – See [0061]), said processing means comprising:

a receiver is adapted to receive said data packet and to generate an intermediate data packet by adding at least one of a dummy header and a dummy tail to said data packet, said dummy header and dummy tail being capable of storing information of a communications system ("The dynamic processing module 502 comprises a module

Art Unit: 2446

that may be configured to generate or modify a tag or other portion of a packet header, such as a tag that may be attached to a portion of a packet to aid in packet processing or routing" – See [0068]);

at least one register for storing information reference associated with said intermediate data packet is accessible to said logic unit ("In one embodiment the invention comprises a system for dynamically modifying or supplementing the contents of a packet on a packet by packet basis including a first memory configured to store a control word" – See [0017]; "According, a first controller 316 connects or communicates with the memory 308 and the first processing module 312" – See [0062]); and

at least one of at said at least one logic units is adapted to operate upon said information reference ("The first processing module 312 processes the data in accordance with the controller 316" – See [0063]).

Sonksen does not explicitly teach the information reference comprising information relating to the length and position of the information of the data packet contained in said intermediate data packet. However, Kawarai discloses a packet containing parameters regarding a length and position of the information (payload portion) of a data packet ("Offset Value indicates the start position of a valid field for payload information in a fixed-length packet. Payload Length indicates the length of the valid field from that start position" – See [0053]).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to associate with a packet the length and position of information within said packet for the same reasons as those given with respect to Claim 1.

Art Unit: 2446

Sonksen teaches a processing stage for processing said intermediate data packet ("As data is finished being processed by the first processing module 312, the data progresses down the path to the second processing module 320" – See [0063]).

Sonksen does not explicitly teach the length of the information of the data packet contained in said intermediate data packet changing upon processing said intermediate data packet in said processing stage, whereby said information reference is altered in order for said information reference to reflect said change.

wherein the change in the length of said information of said data packet comprises at least one of:

adding to the length a value representing a length of the portion of the at least one of the dummy header and dummy tail of said intermediate data packet, the portion storing information of the communications system, and

subtracting from the length a value representing a portion of said intermediate data packet comprising empty information after said processing.

However, Farinacci does teach the length of the information contained in a data packet changing upon processing said data packet, whereby said information reference is altered in order for said information reference to reflect said change,

wherein the change in the length of said information of said data packet comprises at least one of:

adding to the length a value representing a length of the portion of a dummy header of said data packet, the portion storing information of the communications system (See Fig. 2B: "Length 204, or No. of nodes.—The number of addresses in the

Art Unit: 2446

address list (1 byte). The offset to the start of the address list (a) is therefore ceiling((6+n)/4) 32 bit words and hence the total length of the SGM header (i.e. the offset to the start of the encapsulated multicast data packet) is (a+n)"—See Col. 5, lines 9-14; "SGM capable routers append their IP address to the list, update the offset and reforward the packet"—See Col. 15, lines 48-50). It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Sonksen to include adding to the length a value representing a length of a portion of the dummy header of a data packet for the same reasons as those given with respect to Claim 1.

Regarding Claim 11, Sonksen teaches said receiver for adding comprising a buffer ("FIG. 8 illustrates an example implementation of one example embodiment of the tag generation module" – See [0043]; "In the embodiment shown in FIG. 8, the FIFO unit 800 includes control word/label storage 804 and packet data storage 806" – See [0083]) and a shifter ("In the example embodiment shown in FIG. 8, the second register 844 includes four byte shift registers" – [0087]).

Regarding Claim 12, Sonksen teaches the means of Claim 9 further comprising means for removing at least one bit from said intermediate data packet ("It also includes a processing module configured to add supplemental data to a packet or strip data from a packet based on control instructions and the processing location in the packet" – See [0019]).

Art Unit: 2446

Regarding Claim 15, Sonksen teaches said at least one register for storing information reference being located in said processing stage (Each processing module in Fig. 3 includes an interface to memory 308).

Regarding Claim 16, Sonksen teaches said at least one register for storing information reference comprising one register and another register ("This system may include a control word bank having two or more locations" – See [0025]). As shown above with regard to Claim 1, Hultsch teaches that the values may be a length value and an offset value.

Regarding Claim 17, Sonksen teaches an integrated circuit characterized by processing means according to Claim 9 ("In one embodiment an the method and apparatus is enabled in an ASIC-based solution" – See [0012]; The processing means is characterized by an ASIC (application-specific integrated circuit)).

Regarding Claim 18, Sonksen teaches a computer unit characterized by an integrated circuit according to Claim 9 ("In one embodiment an the method and apparatus is enabled in an ASIC-based solution" – See [0012]; The processing means is characterized by an ASIC (application-specific integrated circuit)).

Regarding Claim 19, Sonksen teaches a pipelined processor for processing a data packet, comprising:

Art Unit: 2446

a register for storing at least part of the data packet ("invention may comprise a method of adding a tag to a packet comprising identifying a control word to guide processing of a packet and then storing a portion of a packet in a memory" – See [0015]);

at least one additional register for storing an information reference for association with an intermediate data packet ("In one embodiment the invention comprises a system for dynamically modifying or supplementing the contents of a packet on a packet by packet basis including a first memory configured to store a control word" – See [0017]);

a logic unit performing-the steps of:

receiving the data packet ("an input line 300 receives packets and/or control information to be processed by the pipeline operation" – See [0061]);

generating the intermediate data packet by adding at least one of a dummy header and dummy tail to the data packet ("The dynamic processing module 502 comprises a module that may be configured to generate or modify a tag or other portion of a packet header, such as a tag that may be attached to a portion of a packet to aid in packet processing or routing" – See [0068]);

associating information reference to the intermediate data packet ("each packet is associated with a control word" – See [0025]; "The control words are generated from information extracted from the packet handle" – See [0095]; "The packet handle comprises information about the packet, such as including but not limited to the packet format, packet length or type of service" – See [0094]);

Art Unit: 2446

storing the information reference in the at least one additional register ("In one embodiment the invention comprises a system for dynamically modifying or supplementing the contents of a packet on a packet by packet basis including a first memory configured to store a control word" – See [0017]); and

processing the intermediate data packet in a processing stage ("The first processing module 312 processes the data in accordance with the controller 316" – See [0063]).

Sonksen goes on to disclose that various fields in a packet may be modified ("The one or more data modifiers may perform modifications consisting of modification to a time to live value, a type of service value, a checksum value, or other data fields in a packet" - See [0022]). Sonksen shows that values such as a time to live value or checksum value must be updated as a packet is processed in order to account for the modifications to the information in the packet ("In this embodiment the checksum generator 1340 creates a running total of the value of the bytes in a packet. The use of a checksum for error checking is know in the art and accordingly not described in great detail here. If a packet is modified it may be desired to modify the checksum to account for the modification" - See [0112]). Thus, Sonksen generally teaches as shown above that certain fields in a packet are modified to account for changes to the information in the packet. Sonksen does not explicitly teach that the information reference comprises information relating to the length and position of the information of the data packet contained in the intermediate data packet. However, Kawarai discloses a packet containing parameters regarding a length and position of the information (payload

Art Unit: 2446

portion) of a data packet ("Offset Value indicates the start position of a valid field for payload information in a fixed-length packet. Payload Length indicates the length of the valid field from that start position" – See [0053]). It would have been obvious to one of ordinary skill in the art at the time the invention was made to associate with a packet the length and position of information within said packet for the same reasons as those given with respect to Claim 1.

Sonksen does not explicitly teach the change in length of information of the data packet comprising one of:

adding to the length a value representing a length of a portion of the at least one of the dummy header and dummy tail of said intermediate data packet, the portion storing information of the communications system, and

subtracting from the length a value representing a portion of said intermediate data packet comprising empty information after said processing.

However, Farinacci does teach a change in the length of information of a data packet comprising adding to the length a value representing a length of a portion of the at least one of the dummy header and dummy tail of said intermediate data packet, the portion storing information of the communications system (See Fig. 2B; "Length 204, or No. of nodes.—The number of addresses in the address list (1 byte). The offset to the start of the address list (a) is therefore ceiling((6+n)/4) 32 bit words and hence the total length of the SGM header (i.e. the offset to the start of the encapsulated multicast data packet) is (a+n)"—See Col. 5, lines 9-14; "SGM capable routers append their IP address to the list, update the offset and re-forward the packet"—See Col. 15, lines 48-

Art Unit: 2446

50). It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Sonksen to include adding to the length a value representing a length of a portion of the dummy header of a data packet for the same reasons as those given with respect to Claim 1.

Regarding Claim 20, Sonksen in view of Kawarai and Farinacci teaches the method of Claim 1. Sonksen teaches processing of said intermediate data packet ("As data is finished being processed by the first processing module 312, the data progresses down the path to the second processing module 320. Thus, the second processing module 320 conducts processing on data simultaneous with other data processing being processed by the first processing module 312" – See [0063]).

Sonksen does not explicitly teach the processing resulting in a change of the position of said information of said data packet contained in said intermediate data packet, whereby said information reference is altered in order for said information reference to reflect said change, and wherein the change in the position of said information of said data packet comprises at least one of:

subtracting from the position a value representing a length of the portion of the dummy header of said intermediate data packet containing the information of the communications system, and

adding to the position a value representing a portion of said intermediate data packet representing empty information after said processing. Art Unit: 2446

However, Farinacci does teach processing resulting in a change of the position of information contained in a data packet, whereby an information reference is altered in order for said information reference to reflect said change, and wherein the change in the position of said information of said data packet comprises adding to the position a value representing a portion of said intermediate data packet representing empty information after said processing (See Fig. 2B; "Length 204, or No. of nodes.-The number of addresses in the address list (1 byte). The offset to the start of the address list (a) is therefore ceiling((6+n)/4) 32 bit words and hence the total length of the SGM header (i.e. the offset to the start of the encapsulated multicast data packet) is (a+n)" -See Col. 5, lines 9-14; "SGM capable routers append their IP address to the list, update the offset and re-forward the packet" - See Col. 15, lines 48-50). It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Sonksen to include adding to the position a value representing a portion of an intermediate data packet representing empty information for the same reasons as those given with respect to Claim 1.

Regarding Claim 21, Sonksen in view of Kawarai and Farinacci teaches the processing means of Claim 9. Sonksen teaches a processing stage for processing said intermediate data packet ("As data is finished being processed by the first processing module 312, the data progresses down the path to the second processing module 320. Thus, the second processing module 320 conducts processing on data simultaneous

Art Unit: 2446

with other data processing being processed by the first processing module 312" - See [0063]).

Sonksen does not explicitly teach that the processing stage is configured to process said intermediate data packet resulting in a change of the position of said information of said data packet contained in said intermediate data packet, whereby said information reference is altered in order for said information reference to reflect said change, and wherein the change in the position of said information of said data packet comprises at least one of:

subtracting from the position a value representing a length of the portion of the dummy header of said intermediate data packet containing the information of the communications system, and

adding to the position a value representing a portion of said intermediate data packet representing empty information after said processing.

However, Farinacci does teach a processing stage configured to process a data packet resulting in a change of the position of information contained in the data packet, whereby an information reference is altered in order for said information reference to reflect said change, and wherein the change in the position of said information of said data packet comprises adding to the position a value representing a portion of said intermediate data packet representing empty information after said processing (See Fig. 2B; "Length 204, or No. of nodes.—The number of addresses in the address list (1 byte). The offset to the start of the address list (a) is therefore ceiling((6+n)/4) 32 bit words and hence the total length of the SGM header (i.e. the offset to the start of the encapsulated

Art Unit: 2446

multicast data packet) is (a+n)" – See Col. 5, lines 9-14; "SGM capable routers append their IP address to the list, update the offset and re-forward the packet" – See Col. 15, lines 48-50). It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Sonksen to include adding to the position a value representing a portion of an intermediate data packet representing empty information for the same reasons as those given with respect to Claim 1.

Regarding Claim 22, Sonksen in view of Kawarai and Farinacci teaches the pipelined processor of Claim 19. Sonksen teaches a processing stage for processing said intermediate data packet ("As data is finished being processed by the first processing module 312, the data progresses down the path to the second processing module 320. Thus, the second processing module 320 conducts processing on data simultaneous with other data processing being processed by the first processing module 312" – See [0063]).

Sonksen does not explicitly teach that the processing stage is configured to process said intermediate data packet resulting in a change of the position of said information of said data packet contained in said intermediate data packet, whereby said information reference is altered in order for said information reference to reflect said change, and wherein the change in the position of said information of said data packet comprises at least one of:

Art Unit: 2446

subtracting from the position a value representing a length of the portion of the dummy header of said intermediate data packet containing the information of the communications system, and

adding to the position a value representing a portion of said intermediate data packet representing empty information after said processing.

However, Farinacci does teach a processing stage configured to process a data packet resulting in a change of the position of information contained in the data packet, whereby an information reference is altered in order for said information reference to reflect said change, and wherein the change in the position of said information of said data packet comprises adding to the position a value representing a portion of said intermediate data packet representing empty information after said processing (See Fig. 2B; "Length 204, or No. of nodes.-The number of addresses in the address list (1 byte). The offset to the start of the address list (a) is therefore ceiling((6+n)/4) 32 bit words and hence the total length of the SGM header (i.e. the offset to the start of the encapsulated multicast data packet) is (a+n)" - See Col. 5, lines 9-14; "SGM capable routers append their IP address to the list, update the offset and re-forward the packet" - See Col. 15, lines 48-50). It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Sonksen to include adding to the position a value representing a portion of an intermediate data packet representing empty information for the same reasons as those given with respect to Claim 1.

Art Unit: 2446

 Claims 4 and 5 are rejected under 35 U.S.C. 103(a) as being unpatentable over Sonksen (US 2003/0046429) in view of Kawarai et al. (US 2002/0122424) and Farinacci et al. (US 7,016,351) and further in view of Hultsch (WO 99/60708).

Regarding Claim 4, Sonksen further teaches upon said intermediate data packet exiting the last of said at least one processing stages removing data from said intermediate data packet ("The dynamic stages are configured to modify, remove, or supplement portions of the packet as the packet or portion thereof passes through the pipeline with the aid of a more flexible control structure. The static stages are configured to modify, remove, or supplement portions of the packet as the packet or portion thereof passes through the pipeline with the aid of a hardwired system" – See Abstract; As shown in Fig. 5A the pipeline includes at least two stages, one dynamic and one static, both of which may remove bits from a packet).

Sonksen does not explicitly teach the removal being based on a determination of whether any bits of said intermediate data packet are superfluous. However, Hultsch discloses removing superfluous data from a packet ("removing the superfluous filler data received via the circuit-switched connection in the data stream (DS1) with the constant data rate and by reformatting the useful data for the data stream with the variable data rate and sending it via a packet-orientated connection" – See Abstract). It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Sonksen to include removing superfluous bits from said intermediate

Art Unit: 2446

data packet. Motivation for doing so would be to make efficient use of transmission bandwidth (See Hultsch. Abstract).

Claim 5 is rejected using the same reasoning as that was given above with regard to Claim 4.

Claims 13 is rejected under 35 U.S.C. 103(a) as being unpatentable over
 Sonksen (US 2003/0046429) in view of Kawarai et al. (US 2002/0122424) and Farinacci et al. (US 7,016,351) and further in view of Lee et al. (US 6,996,117).

Regarding Claim 13, Sonksen teaches means for removing comprising a buffer ("FIG. 17 illustrates an example embodiment of a data modifier system as may be contemplated for use with a pipeline processing system" – See [0054]; "Register 1704 has sections A, B, C and D" – See [0125]), but does not explicitly teach means for removing also comprising a shifter. However, Lee does teach using a shifter as means for removing data ("The stripped-off information element segment 450 is rotated backward by one place (i.e., shifted to the left by one place) to produce the rotated information element segment 452" – See Col. 29, lines 65-67). It would have been obvious to one of ordinary skill in the art at the time the invention was made to include a shifter as means for removing at least one bit of data. Motivation for doing so would be to implement as much of the processing means as possible in hardware in order to boost performance (See Col. 1, lines 65-67 of Lee's disclosure).

Application/Control Number: 10/510,167 Page 22

Art Unit: 2446

Claim 14 is rejected under 35 U.S.C. 103(a) as being unpatentable over Sonksen
 (US 2003/0046429) in view of Kawarai et al. (US 2002/0122424) and Farinacci et al.
 (US 7.016.351) and further in view of Song (US 5.818.894).

Regarding Claim 14, Sonksen teaches means for adding comprising a shifter (See above remarks regarding Claim 11), but does not explicitly teach the shifter being a barrel shifter. However Song does teach a barrel shifter with inputs for adding input data ("A high speed barrel shifter in which fill input data is especially added" – See Abstract; "FIG. 1 is a block diagram of an 8-bit barrel shifter according to the present invention" – See Col. 1, lines 61-62). It would have been obvious to one of ordinary skill in the art at the time the invention was made to include a barrel shifter as means for adding at least one bit to a packet of data. Motivation for doing so would be to provide a device which can perform shift operations at high speed while minimizing the necessary logic circuitry (See Col. 1, lines 25-27 of Song's disclosure).

Response to Arguments

 Applicant's arguments with respect to Claims 1, 9 and 19 have been considered but are moot in view of the new grounds of rejection. Art Unit: 2446

Conclusion

Any inquiry concerning this communication or earlier communications from the

examiner should be directed to Scott M. Sciacca whose telephone number is (571) 270-

1919. The examiner can normally be reached on Monday thru Friday, 7:30 A.M. - 5:00

P.M. EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

supervisor, Jeff Pwu can be reached on (571) 272-6798. The fax phone number for the

organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the

Patent Application Information Retrieval (PAIR) system. Status information for

published applications may be obtained from either Private PAIR or Public PAIR.

Status information for unpublished applications is available through Private PAIR only.

For more information about the PAIR system, see http://pair-direct.uspto.gov. Should

you have guestions on access to the Private PAIR system, contact the Electronic

Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a

USPTO Customer Service Representative or access to the automated information

system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Scott M. Sciacca/ Examiner, Art Unit 2446

/Jeffrey Pwu/

Supervisory Patent Examiner, Art Unit 2446