UNIVERSITY OF OKLAHOMA DEPARTMENT OF MATHEMATICS

Homework #1

Student name: Clayton Curry

Course: *Abstract Linear Algebra* – Professor: *Dr. Gregory Muller*Due date: *Sep 5*, 2021

1C: 7

Give an example of a nonempty subset U of \mathbb{R}^2 such that U is closed under addition and under taking additive inverses (meaning $-u \in U$ whenever $u \in U$), but U is not a subspace of \mathbb{R}^2 .

Answer. Will demonstrate by example:

1C:8

Give an example of a nonempty subset U of \mathbb{R}^2 such that U is closed under scalar multiplication, but U is not a subspace of \mathbb{R}^2 .

Answer. Will demonstrate by example:

1C: 9

A function $f : \mathbb{R} \to \mathbb{R}$ is called periodic if there exists a positive number p such that f(x) = f(x+p) for all $x \in \mathbb{R}$. Is the set of periodic functions from \mathbb{R} to \mathbb{R} a subspace of $\mathbb{R}^{\mathbb{R}}$? Explain.

Answer. Will demonstrate by example:

2A: 1

Suppose v_1 , v_2 , v_3 , v_4 spans V. Prove that the list

$$v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4$$

also spans V.

Answer. Will demonstrate by example:

2A: 3

Find a number *t* such that

$$(3,1,4), (2,-3,5), (5,9,t)$$

is not linearly independent in \mathbb{R}^3 .

Answer. Will demonstrate by example:

2A:9

Prove or give a counterexample: If v_1, \ldots, v_m and w_1, \ldots, w_m are linearly independent lists of vectors in V, then $v_1 + w_1 + \cdots + v_m + w_m$ is linearly independent.

Answer. Will demonstrate by counter-example:

2B: 5

Prove or disprove: there exists a basis p_0 , p_1 , p_2 , p_3 of $\mathcal{P}_3(\mathbb{F})$ such that none of the polynomials p_0 , p_1 , p_2 , p_3 has degree 2.

Answer. Will demonstrate by counter-example:

2A: 6

Suppose v_1 , v_2 , v_3 , v_4 is a basis of V. Prove that

$$v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4$$

is a basis of *V*.

Answer. Will demonstrate by counter-example: