

Disciplina: Projeto e Otimização de Algoritmos

Professor: Rafael Scopel

Prova P1

Instruções:

Prova sem consulta e individual.

• É permitido o uso de calculadora científica.

A prova é composta por 5 questões, todas com o peso de 2 pontos.

• Responda as questões justificando os seus resultados e apresentado a memória de cálculo.

Responda as questões na folha pautada de respostas. Respostas nesta folha não serão consideradas.

1. (2 pontos) Verifique a veracidade das afirmativas sobre algoritmos Greedy abaixo e selecione a alternativa correta:

- I. Um algoritmo é greedy se ele constrói uma solução com pequenos passos, fazendo uma escolha local (míope) a cada passo para otimizar um determinado critério ou função objetivo. V
- II. Para garantir que um algoritmo greedy resolve um determinado problema precisamos procurar por dois ingredientes chave: a propriedade da escolha greedy e a subestrutura ótima do problema. V
- III. O algoritmo greedy do troco em moedas (Cashiers-Algorithm) funciona quando temos apenas as seguintes moedas 1 centavo, 10 centavos e 25 centavos. F
 - O algoritmo greedy sempre produz uma solução ótima para todas as denominações de moedas?
 - Imagine se o Real só possui-se as seguintes moedas 1 centavo, 10 centavos e 25 centavos.
 - Use o algoritmo do Cashier para dar troco para 30 centavos?
 - 1 moeda de 25 centavos
 - 5 moedas de 1 centavo
 - Total de 6 moedas. Essa solução é ótima?
 - Claramente não, pois 3 moedas de 10 centavos entregam os mesmos 30 centavos de troco!!!

()	Apenas I é verdadeira.
()	I, II e III são verdadeiras.
()	Apenas II é verdadeira.
(x)	Apenas I e II são verdadeiras.
()	Todas as alternativas são falsas.

2. (2 pontos) Verifique a veracidade das afirmativas sobre algoritmos de Divisão e Conquista abaixo e selecione a alternativa correta:

I. O valor da recorrência $T(n) = 4T\left(\frac{n}{16}\right) + n \in \Theta(\sqrt{n})$. F

TEOREMA T.1 O método mestre \Leftrightarrow Caso 1: Se $f(n) = O(n^{\log_b a - \epsilon})$ para alguma constante $\epsilon > 0$

0, então $T(n) = \Theta(n^{\log_b a})$. • Caso 2: Se $f(n) = \Theta(n^{\log_b a})$, então $T(n) = \Theta(n^{\log_b a} \log_2 n)$.

• Caso 3: Se $f(n) = \Omega(n^{\log_b a + \epsilon})$ para alguma constante $\epsilon > 0$, es $\alpha f(n/b) \le cf(n)$ para alguma constante c < 1 e todos os n suficientemente grandes, então $T(n) = \Theta(f(n))$.

$$T(n) = aT(n/b) + f(n) = 4T\left(\frac{n}{16}\right) + n$$

onde
$$a = 4$$
, $b = 16$, $f(n) = n$

Então temos que $n^{\log_b a} = n^{\log_{16} 4} = \sqrt{n} = \Theta(\sqrt{n})$

Caso 3:

Como
$$f(n) = O(n^{\log_b a + \epsilon})$$
, onde $\epsilon = 0.5$, pois $n^{\log_b a + \epsilon} = n^{\log_{16} 4 + 0.5} = n^{0.5 + 0.5} = n$.

$$af(n/b) \le cf(n) \to 4(n/16) \le cn \to \frac{1}{4}n \le cn$$

onde $c = \frac{1}{4} < 1$.

Portanto, $n^{\log_b a} < f(n)$, a solução é $T(n) = \Theta(n) = \Theta(f(n))$.

II. A recorrência $T(n) = 16T(\frac{n}{32}) + n^{\frac{1}{3}}$ é resolvida pelo Caso 2 do Teorema Mestre. F

$$T(n) = aT(n/b) + f(n) = 16T(\frac{n}{32}) + n^{\frac{1}{3}}$$

onde
$$a = 16$$
, $b = 32$, $f(n) = n^{\frac{1}{3}}$

Então temos que
$$n^{\log_b a} = n^{\log_{32} 16} = n^{\frac{4}{5}} = \Theta\left(n^{\frac{4}{5}}\right)$$

Caso 1:

Como
$$f(n) = O(n^{\log_b a - \epsilon})$$
, onde $\epsilon = \frac{7}{15} = 0.4667$, pois $n^{\log_b a - \epsilon} = n^{\log_{32} 16 - \frac{7}{15}} = n^{\frac{4}{5} - \frac{7}{15}} = n^{\frac{1}{3}}$.

Portanto,
$$n^{\log_b a} > f(n)$$
, a solução é $T(n) = \Theta\left(n^{\frac{4}{5}}\right)$.

III. O método da divisão e conquista é composto pelas etapas de dividir, conquistar e combinar. Onde o custo para dividir e combinar é representado pela função f(n) na estrutura de recorrência T(n) = aT(n/b) + f(n). V

()	Apenas I é verdadeira.
()	I, II e III são verdadeiras.
(x)	Apenas III é verdadeira.
()	Apenas I e II são verdadeiras.
()	Todas as alternativas são falsas.

- 3. (2 pontos) Verifique a veracidade das afirmativas sobre algoritmos de Programação Dinâmica abaixo e selecione a alternativa correta:
 - I. A Programação Dinâmica explora um conjunto exponencialmente grande de possíveis soluções para o problema, ela faz isso examinando explicitamente todas as soluções. F

Apesar de estar explorando um conjunto exponencialmente grande de possíveis soluções para o problema, ela faz isso sem nunca examinar explicitamente todas as soluções.

- II. O termo $OPT(j) = v_j + OPT(p(j))$ no problema de escalonamento de tarefas ponderadas significa que a requisição j está no conjunto solução. V
- III. Memoização é a técnica de armazenar valores computados previamente para uso futuro. V

(x)	Apenas I é falsa.
()	I, II e III são verdadeiras.
()	Apenas III é verdadeira.
()	Apenas I e II são verdadeiras.
()	Todas as alternativas são falsas.

4. (2 pontos) Com base no algoritmo de Huffman codes responda as questões abaixo:

```
HUFFMAN(S)

1 n = |S|
2 Q = S
3 for i = 1 to n - 1
4 allocate a new node w|
5 y = \text{EXTRACT-MIN}(Q)
6 z = \text{EXTRACT-MIN}(Q)
7 w|left = z
8 w|right = y
9 w|freq = zfreq + y.freq
1 INSERT(Q|w)
11 return EXTRACT-MIN(Q) // the root of the tree is the only node left
```

- a. O Huffman codes utiliza que abordagem algorítmica para compressão de dados?
- b. Qual o tempo de execução do algoritmo?
- c. Defina a árvore final para o seguinte dicionário (letra:frequência): {[a:12], [b:11], [c:8], [d:17], [e:24], [f:5]}.
- d. Descreva os códigos definidos pela árvore do item c.
- a) O algoritmo Huffman codes utiliza uma abordagem greedy para compressão de dados.
- b) Utilizando uma implementação de filas de prioridade via heaps, podemos fazer cada inserção e extração da execução mínima no tempo $O(\log n)$. Somando todas as n iterações, obtemos um tempo total de execução de $O(n \log n)$;

c) Resposta:

d)

a:101	
b:100	
c:001	
d:01	
e:11	
f:000	

5. (2 pontos) Utilize a abordagem de programação dinâmica com memoização para resolver a alocação de tarefas ponderadas abaixo.

$$OPT(j) = \begin{cases} 0 & , \ se \ j = 0 \\ max \Big(v_j + OPT \Big(p(j) \Big), OPT (j-1) \Big) & , se \ j > 0 \end{cases}$$

Responda as seguintes perguntas:

- a. O que é memoização?
- b. Calcule p(j) para todas as requisições.
- c. Calcule OPT(8).
- d. Indique quais requisições fazem parte da solução ótima dada por *OPT*(8).
- a) A ideia básica para Programação Dinâmica é similar a intuição dos algoritmos de divisão e conquista, mas é essencialmente o oposto dos algoritmos greedy. Na programação dinâmica implicitamente procuramos o espaço de todas as soluções possíveis. De certa maneira a programação dinâmica opera muito próximo da busca via força bruta. Apesar de estar explorando um conjunto exponencialmente grande de possíveis soluções para o problema, ela faz isso sem nunca examinar explicitamente todas as soluções. Este efeito é obtido por meio da memoização.

Poderíamos armazenar o valor de chamadas recursivas anteriores numa variável global na primeira vez que computarmos o valor e depois continuar a utilizar o valor pré-computado nas chamadas recursivas subsequentes. Essa técnica de salvar valores que já foram computados é chamada de MEMOIZAÇÃO!

i. Paço, ordenar as requisições por tempo de finalização:

Nova visão com as requisições ordenadas por tempo de finalização:

Renomear as requisições:

Valores de p(j)

$$p(0) = 0$$
 $p(R1) = 0$
 $p(R2) = 0$
 $p(R3) = 0$
 $p(R4) = 1$
 $p(R5) = 0$

p(R6) = 2
p(R7) = 3
p(R8) = 5

M-Compute-Opt(R8)

$$OPT(R8) = M[8] = max(v_8 + M - Compute - Opt(p(8)), M - Compute - Opt(7))$$

= $max(v_8 + M - Compute - Opt(5), M - Compute - Opt(7))$

$$OPT(R7) = M[7] = max(v_7 + M - Compute - Opt(p(7)), M - Compute - Opt(6))$$
$$= max(v_7 + M - Compute - Opt(3), M - Compute - Opt(6))$$

$$OPT(R6) = M[6] = max(v_6 + M - Compute - Opt(p(6)), M - Compute - Opt(5))$$

= $max(v_6 + M - Compute - Opt(2), M - Compute - Opt(5))$

$$OPT(R5) = M[5] = max(v_5 + M - Compute - Opt(p(5)), M - Compute - Opt(4))$$

= $max(v_5 + M - Compute - Opt(0), M - Compute - Opt(4))$

$$OPT(R4) = M[4] = max (v_4 + M - Compute - Opt(p(4)), M - Compute - Opt(3))$$
$$= max(v_4 + M - Compute - Opt(1), M - Compute - Opt(3))$$

$$OPT(R3) = M[3] = max(v_3 + M - Compute - Opt(p(3)), M - Compute - Opt(2))$$

= $max(v_3 + M - Compute - Opt(0), M - Compute - Opt(2))$

$$OPT(R2) = M[2] = max(v_2 + M - Compute - Opt(p(2)), M - Compute - Opt(1))$$

= $max(v_2 + M - Compute - Opt(0), M - Compute - Opt(1))$

$$OPT(R1) = M[1] = max(v_1 + M - Compute - Opt(p(1)), M - Compute - Opt(0))$$
$$= max(v_1 + M - Compute - Opt(0), M - Compute - Opt(0))$$

$$OPT(0) = M[0] = 0$$

j	0	1	2	3	4	5	6	7	8
M[]	0								

$$OPT(0) = M[0] = 0$$

$$OPT(1) = M[1] = max(v_1 + M - Compute - Opt(p(1)), M - Compute - Opt(0))$$

$$= max(v_1 + M - Compute - Opt(0), M - Compute - Opt(0))$$

$$= max(v_1 + M[0], M[0]) = max(3 + 0,0) = 3$$

j	0	1	2	3	4	5	6	7	8
M[]	0	3							

$$OPT(R2) = M[2] = max (v_2 + M - Compute - Opt(p(2)), M - Compute - Opt(1))$$

$$= max(v_2 + M - Compute - Opt(0), M - Compute - Opt(1))$$

$$= max(v_2 + M[0], M[1]) = max(5 + 0.3) = 5$$

j	0	1	2	3	4	5	6	7	8
M[]	0	3	5						

$$OPT(R3) = M[3] = max(v_3 + M - Compute - Opt(p(3)), M - Compute - Opt(2))$$

$$= max(v_3 + M - Compute - Opt(0), M - Compute - Opt(2))$$

$$= max(v_3 + M[0], M[2]) = max(4 + 0.5) = 5$$

j	0	1	2	3	4	5	6	7	8
M[]	0	3	5	5					

$$OPT(R4) = M[4] = max (v_4 + M - Compute - Opt(p(4)), M - Compute - Opt(3))$$

$$= max(v_4 + M - Compute - Opt(1), M - Compute - Opt(3))$$

$$= max(v_4 + M[1], M[3]) = max(8 + 3,5) = 11$$

j	0	1	2	3	4	5	6	7	8
M[]	0	3	5	5	11				

i	Λ	1	2	3	1	5	6	7	Q
J	V	1	4	7	۲	7	U	/	O
M[]	0	3	5	5	11				

$$OPT(R5) = M[5] = max (v_5 + M - Compute - Opt(p(5)), M - Compute - Opt(4))$$

$$= max(v_5 + M - Compute - Opt(0), M - Compute - Opt(4))$$

$$= max(v_5 + M[0], M[4]) = max(2 + 0.11) = 11$$

j	0	1	2	3	4	5	6	7	8
M[]	0	3	5	5	11	11			

$$OPT(R6) = M[6] = max (v_6 + M - Compute - Opt(p(6)), M - Compute - Opt(5))$$

$$= max (v_6 + M - Compute - Opt(2), M - Compute - Opt(5))$$

$$= max (v_6 + M[2], M[5]) = max(6 + 5,11) = 11$$

j	0	1	2	3	4	5	6	7	8
M[]	0	3	5	5	11	11	11		

$$OPT(R7) = M[7] = max (v_7 + M - Compute - Opt(p(7)), M - Compute - Opt(6))$$

$$= max(v_7 + M - Compute - Opt(3), M - Compute - Opt(6))$$

$$= max(v_7 + M[3], M[6]) = max(6 + 1,11) = 11$$

j	0	1	2	3	4	5	6	7	8
M[]	0	3	5	5	11	11	11	11	

$$OPT(R8) = M[8] = max (v_8 + M - Compute - Opt(p(8)), M - Compute - Opt(7))$$

$$= max(v_8 + M - Compute - Opt(5), M - Compute - Opt(7))$$

$$= max(v_8 + M[5], M[7]) = max(7 + 11,11) = 18$$

j	0	1	2	3	4	5	6	7	8
M[]	0	3	5	5	11	11	11	11	18

```
d)
```

FIND-SOLUTION(j)

```
IF (j=0)

RETURN \varnothing.

ELSE IF (w_j + M[p[j]] > M[j-1])

RETURN \{j\} \cup FIND-SOLUTION(p[j]).

ELSE

RETURN FIND-SOLUTION(j-1).
```

Find - Solution(R8) = M[8] > M[7]	$S = \{R8\}$
Find - Solution(p(R8)) = M[5] > M[4]	$S = \{R4, R8\}$
Find - Solution(p(R4)) = M[1] > M[0]	$S = \{R1, R4, R8\}$

As requisições que compõem a solução final são: $S = \{R1, R4, R8\}$, e traduzindo para a instância original do problema: $S = \{V2, V5, V8\}$