11868 LLM Systems Transformer

Lei Li

Recap

- Design of a Deep Learning Framework
 - o Tensorflow, a computation graph defined as dataflow
 - Auto differentiation
 - Scheduling of jobs

Today's Topic

Transformer model

How to implement Transformer

Type of Language Models

Encoder-only
Masked LM
Non-autoregressive

Encoder-decoder

Decoder-only Autoregressive

Encoder

Decoder

Encoder-Decoder Paradigm

Source: 我喜欢唱歌和跳舞。

$$p_{\theta}(y|x) = \prod_{i} p(y_i|x, y_{1:i-1})$$

conditional prob. modeled by neural networks

Sequence to Sequence Learning

• Conditional text generation: directly learning a function mapping from source sequence to target sequence $p_{\theta}(y|x) = \prod p(y_t|x,y_{1:t-1};\theta)$

Previous encoder/decoder: LSTM or GRU

Motivation for a new Architecture

 Full context and parallel: use Attention in both encoder and decoder

no recurrent ==> concurrent encoding

Transformer

Multi-head Attention

- Instead of one vector for each token
- break into multiple heads
- each head perform attention $Head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$ MultiHead(Q, K, V) $= Concat(Head_1, Head_2, ..., Head_h)W^o$

Multi-head Attention

Multihead Attention and FFN

Self-Attention for Decoder

Maskout right side before softmax (-inf)

Scaled Dot-Product Attention

Residual Connection and Layer Normalization

- Residual Connection
- Make it zero mean and unit variance within layer
- Post-norm
- Pre-norm

Transformer in Original Paper

- C layers of encoder (=6)
- D layers of decoder (=6)
- Token Embedding: 512 (base), 1024 (large)
- FFN dim=2048

Embedding

- Token Embedding:
 - Shared (tied) input and output embedding
- Positional Embedding:
 - to distinguish words in different position, Map position labels to embedding, dimension is same as Tok Emb
- $\bullet \ PE_{pos,2i} = \sin(\frac{pos}{1000^{2i/d}})$

•
$$PE_{pos,2i+1} = \cos(\frac{pos}{1000^{2i/d}})$$

Training Transformer

$$P(Y|X) = \prod P(y_t|y_{< t}, x)$$

- Training loss: Cross-Entropy $l = -\sum_{n} \sum_{t} \log f_{\theta}(x_n, y_{n,1}, \dots, y_{n,t-1})$
- Teacher-forcing during training.
- pretend to know groundtruth for prefix

Training Transformer for MT

- Dropout
 - Applied to before residual
 - o and to embedding, pos emb.
 - \circ p=0.1 ~ 0.3
- Label smoothing
 - 0.1 probability assigned to non-truth
- Vocabulary:
 - o En-De: 37K using BPE
 - o En-Fr: 32k word-piece (similar to BPE)

Label Smoothing

• Assume $y \in \mathbb{R}^n$ is the one-hot encoding of label

$$y_i = \begin{cases} 1 & if belongs to classi \\ 0 & otherwise \end{cases}$$

- Approximating 0/1 values with softmax is hard
- The smoothed version $y_i = \begin{cases} 1 \epsilon \\ \epsilon/(n-1) \end{cases}$ if belongs to classi otherwise

$$y_i = \{ \frac{1 - \epsilon}{\epsilon / (n - 1)} \}$$

o Commonly use $\epsilon = 0.1$

Training

Batch

- o group by approximate sentence length
- o still need shufflingHardware
- o one machine with 8 GPUs (in 2017 paper)
- o base model: 100k steps (12 hours)
- o large model: 300k steps (3.5 days)

Adam Optimizer

o increase learning rate during warmup, then decrease

$$\circ \eta = \frac{1}{\sqrt{d}} \min(\frac{1}{\sqrt{t}}, \frac{t}{\sqrt{t_0^3}})$$

ADAM

$$m_{t+1} = \beta_1 m_t - (1 - \beta_1) \nabla \ell(x_t)$$

$$v_{t+1} = \beta_2 v_t + (1 - \beta_2) (\nabla \ell(x_t))^2$$

$$\widehat{m}_{t+1} = \frac{m_{t+1}}{1 - \beta_1^{t+1}}$$

$$\widehat{v}_{t+1} = \frac{v_{t+1}}{1 - \beta_2^{t+1}}$$

$$x_{t+1} = x_t - \frac{\eta}{\sqrt{\widehat{v}_{t+1} + \epsilon}} \widehat{m}_{t+1}$$

Model Average

 A single model obtained by averaging the last 5 checkpoints, which were written at 10-minute interval (base)

• decoding length: within source length + 50

Summary

- Sequence-to-sequence encoder-decoder framework for conditional generation, including Machine Translation
- Key components in Transformer
 - Positional Embedding (to distinguish tokens at different pos)
 - Multihead attention
 - Residual connection
 - o layer norm

Code Go-through

https://nlp.seas.harvard.edu/annotated-transformer/

Reading for Next Class

- Neural Machine Translation of Rare Words with Subword Units. Sennrich et al. 2016.
- SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing. Kudo and Richardson. 2018