8.4 首先注意到下述事实。

引理 8.2 设 G 是一个无向图, $G_1=G[V_1]$ 是 G 的一个连通分支,则对任意 $v\in V_1$,有 $d_{G_1}(v)=d_G(v)$ 。

证明:由于 $E(G_1) \subseteq E(G)$,所以显然有 $d_{G_1}(v) \le d_G(v)$ 。假设 $d_{G_1}(v) < d_G(v)$,则存在某条边 $(u,v) \in E(G)$,使得 $(u,v) \notin E(G_1)$ 。但由于 u = v 之间有通路且 $v \in V_1$,所以应有 $u \in V_1$ 。又 因为 $G_1 = G[V_1]$ 是由 V_1 生成的子图,所以应有 $(u,v) \in E(G_1)$,矛盾。

再证原题。

证明:必要性。

反设 $G-v_0$ 中有圈,我们将证明 v_0 不是可以任意行遍的。

首先,由于 G 是欧拉图,由教材定理 8.1 可知,G 中每个顶点都是偶数度的。假设 $G-v_0$ 中有圈 C_0 ,则令 $G'=G-E(C_0)$ 。注意到,圈中每个顶点都是 2 度的。所以,对任意 $v_i \in V(G)$,若 $v_i \in V(C_0)$,则 v_i 在 G' 中的度数 $d_{G'}(v_i)=d_G(v_i)-2$ 。若 $v_i \notin V(C_0)$,则 $d_{G'}(v_i)=d_G(v_i)$ 。总之,G' 中的每个顶点仍为偶数度的。特别地,由于 $v_0 \notin V(C_0)$,所以 $d_{G'}(v_0)=d_G(v_0)>0$ 。

设 G_1 是 v_0 在 G' 中所处的连通分支。由引理 8.2, G_1 中每个顶点仍是偶数度的。由教材定理 8.1 可知, G_1 是欧拉图。记 G_1 是 G_1 中的一条欧拉回路,注意到, G_1 中包含了所有与 G_2 联的边。

若在 G 中,从 v_0 出发,按 C_1 的轨迹进行行遍,则当 C_1 行遍完成,回到 v_0 时,已无可行遍的边。注意到,此时 G 中还有未被行遍的边(例如 C_0 中的边),这就是说,按此方法行遍,得到的回路 C_1 不是 G 的一条欧拉回路。从而 v_0 不是可以任意行遍的。

充分性。

假若 v_0 不是可以任意行遍的,我们将证明, $G - v_0$ 中有圈。

由于 v_0 不是可以任意行遍的,所以存在某条行遍路线,使得行遍过程终止于顶点 v_0 (行遍过程必然终止于 v_0 。若不然,假设停在某个顶点 $v_i \neq v_0$ 上,则这个行遍路线将是一条从 v_0 到 v_i 的简单路径 Γ ,设 v_i 在路径上共出现过 t 次,则前 t-1 次出现中,每次出现会使 v_i 在 Γ 中的度数加 2,最后一次出现则仅使 v_i 在 Γ 中的度数加 1,从而 v_i 在 Γ 中的度数是奇数。这就是说,E(G) 中还有与 v_i 关联且未被行遍的边,这与行遍过程的终止条件矛盾),构成一个简单回路 C,且 G'=G-E(C) 中仍有边。注意到, G' 中各顶点的度数仍为偶数。设 G_1 是 G' 中某个非平凡的(即,有边的)连通分支,由引理 8.2, G_1 中各顶点的度数也是偶数。从而教材定理 8.1可知, G_1 是若干个边不重的圈(不妨记为 $C_1, C_2, \cdots C_k$)的并。任取一个圈 C_1 ,注意到, v_0 不在 C_1 中(因为 v_0 在 G' 中是孤立点),从而 $C_1 \subseteq G - v_0$ 。