

Decision Tree Learning

Decision 2: When do you stop splitting?

- · When a node is 100% one class
- · When splitting a node will result in the tree exceeding a maximum depth
- · When improvements in purity score are below a threshold
- When number of examples in a node is below a threshold

smaller and to avoid overfitting.

Choosing a split

$$p_1 = \frac{3}{4} = 0.75 \quad p_1 = \frac{2}{6} = 0.33$$

$$H(0.75) = 0.81 \quad H(0.33) = 0.92$$

$$H(0.5) - \left(\frac{4}{10}H(0.75) + \frac{6}{10}H(0.33)\right)$$

$$= 0.12$$

and w^right will be 3/10

© Deeplearning Al Stanford ONLINE

Andrew Na

Information Gain

$$p_1^{\text{left}} = \frac{4}{5}$$
 $p_1^{\text{right}} = \frac{1}{5}$
 $w^{\text{left}} = \frac{5}{10}$ $w^{\text{right}} = \frac{5}{10}$

Information gain

$$= H(p_1^{\text{root}}) - \left(w^{\text{left}} H\left(p_1^{\text{left}}\right) + w^{\text{right}} H\left(p_1^{\text{right}}\right) \right)$$

both the left and right

Decision Tree Learning

- Start with all examples at the root node
- Calculate information gain for all possible features, and pick the one with the highest information gain
- Split dataset according to selected feature, and create left and right branches of the tree
- · Keep repeating splitting process until stopping criteria is met:
 - · When a node is 100% one class
 - When splitting a node will result in the tree exceeding a maximum depth
 - · Information gain from additional splits is less than threshold
 - · When number of examples in a node is below a threshold

One hot encoding and neural networks

	Pointy ears	Floppy ears	Round ears	Face shape	Whiskers	Cat
(E)	1	0	0	-Round- 1	Present 1	1
()	0	0	1	Not round O	Present 1	1
٩	0	0	1	Round 1	-Absent- O	0
C.C.	1	0	0	Not-round O	Present 1	0
(3)	0	0	1	Round 1	Present 1	1
(200	1	0	0	Round 1	Absent 0	1
3	0	1	0	Not round 0	Absent 0	1
	0	0	1	Round 1	Absent 0	1
VEV	0	1	0	Round 1	Absent 0	1
	0	1	0	Round 1	Absent 0	1

can be fed as inputs to a neural network as well which expects numbers as inputs.

© Deeplearning Al Stanford ONLINE

Andrew Na

Continuous features

500	Ear shape	Face shape	Whiskers	Weight (lbs.)	Cat
3	Pointy	Round	Present	7.2	1
	Floppy	Not round	Present	8.8	1
	Floppy	Round	Absent	15	0
	Pointy	Not round	Present	9.2	0
(E)	Pointy	Round	Present	8.4	1
(S	Pointy	Round	Absent	7.6	1
3	Floppy	Not round	Absent	11	0
(3)	Pointy	Round	Absent	10.2	1
()	Floppy	Round	Absent	18	0
	Floppy	Round	Absent	20	0
		Dut how do	vou dooida have	t-0	

But how do you decide how to split on the weight feature?

Andrew Na

Splitting on a continuous variable

@Deeplearning Al Stanford ONLINE 5:58 / 6:53

Andrew Na

Regression with Decision Trees

Choosing a split

Weights: 7.2, Weights: 8.8, 15, 9.2, 8.4,7.6, 10.2 11, 18, 20

Variance: 21.87 Variance: 1.47

 $w^{\text{left}} = \frac{5}{10}$

$$w^{\text{right}} = \frac{5}{10}$$

$$20.51 - \left(\frac{5}{10} * 1.47 + \frac{5}{10} * 21.87\right)$$

= 8.84

Weights: 7.2, 15, 8.4, 7.6,10.2, 18, 20

Weights: 8.8,9.2,11

Variance: 27.80 $w^{\text{left}} = \frac{7}{10}$

Variance: 1.37
$$w^{\text{right}} = \frac{3}{10}$$

$$20.51 - \left(\frac{7}{10} * 27.80 + \frac{3}{10} * 1.37\right)$$

Weights: 7.2, 8.8,

Weights: 15, 7.6, 11, 10.2, 18, 20

Variance: 0.75 Variance: 23.32

$$w^{\text{left}} = \frac{4}{10}$$
 $w^{\text{right}} = \frac{6}{10}$

$$20.51 - \left(\frac{4}{10} * 0.75 + \frac{6}{10} * 23.32\right)$$

© Deeplearning Al Stanford ONLINE

Andrew Na

Prediction: Cat

Prediction: Not cat

Final prediction: Cat

New test example

Ear shape: Pointy Face shape: Not Round Whiskers: Present

Prediction: Cat

Not Cat

Not Round

© DeepLearning Al Stanford ONLINE

11 4) 2:05 / 3:59

Andrew Na

Sampling with replacement

	Ear shape	Face shape	Whiskers	Cat
=7	Pointy	Round	Present	1
	Floppy	Not round	Absent	0
(E)	Pointy	Round	Absent	1
	Pointy	Not round	Present	0
	Floppy	Not round	Absent	0
	Pointy	Round	Absent	1
-7	Pointy	Round	Present	1
	Floppy	Not round	Present	1
	Floppy	Round	Absent	0
(3)	Pointy	Round	Absent	1

Generating a tree sample

Given training set of size m

For
$$b = 1$$
 to B

Use sampling with replacement to create a new training set of size mTrain a decision tree on the new dataset

Bagged decision tree

Randomizing the feature choice

At each node, when choosing a feature to use to split, if n features are available, pick a random subset of k < n features and allow the algorithm to only choose from that subset of features.

$$K = \int_{n}$$

Random forest algorithm

Andrew No

Boosted trees intuition

Given training set of size m

For b = 1 to B:

Use sampling with replacement to create a new training set of size m But instead of picking from all examples with equal (1/m) probability, make it more likely to pick misclassified examples from previously trained trees

Train a decision tree on the new dataset

XGBoost (eXtreme Gradient Boosting)

- Open source implementation of boosted trees
- Fast efficient implementation
- Good choice of default splitting criteria and criteria for when to stop splitting
- Built in regularization to prevent overfitting
- · Highly competitive algorithm for machine learning competitions (eg: Kaggle competitions)

Using XGBoost

Classification

```
→ from xgboost import XGBClassifier from xgboost import XGBRegressor
→ model = XGBClassifier()
→model.fit(X train, y train)
→y pred = model.predict(X test)
```

Regression

```
model = XGBRegressor()
model.fit(X train, y train)
 y pred = model.predict(X test)
```


Decision Trees vs Neural Networks

Decision Trees and Tree ensembles

- Works well on tabular (structured) data
- Not recommended for unstructured data (images, audio, text)
- Fast
- Small decision trees may be human interpretable

Neural Networks

- Works well on all types of data, including tabular (structured) and unstructured data
- May be slower than a decision tree
- Works with transfer learning
- When building a system of multiple models working together, it might be easier to string together multiple neural networks

