Airbnb Price Prediction Using Machine Learning

Linlin Li

Load Data

```
In [1]: !pip install --quiet pandas_profiling
In [2]: !pip install --quiet xgboost
In [3]: ! python3 -m pip install --quiet scikit-optimize
In [4]: ! python3 -m pip install --quiet pycaret
In [5]: ! pip install --quiet shap
```

```
In [6]:
        import pandas as pd
        import numpy as np
        import pandas profiling as pp
        import seaborn as sns
        import matplotlib.pyplot as plt
        from datetime import datetime
        import xgboost
        from sklearn.preprocessing import StandardScaler, OneHotEncoder, Label
        Encoder
        from sklearn.model selection import cross validate, train test split,
        cross val score, GridSearchCV, KFold
        from sklearn.pipeline import Pipeline, FeatureUnion, make pipeline
        from sklearn.base import BaseEstimator, TransformerMixin
        from sklearn.ensemble import RandomForestClassifier, GradientBoostingC
        lassifier
        from sklearn.dummy import DummyClassifier
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.linear model import LogisticRegression
        from sklearn.svm import SVC
        from sklearn.metrics import accuracy score
        from skopt import BayesSearchCV
        from skopt.space import Real, Categorical, Integer
        from skopt.plots import plot objective, plot histogram
        from xgboost import XGBClassifier
        from pycaret.classification import *
```

```
In [7]: train = pd.read_csv('data/train.csv', index_col = 0)
```

Exploratory Data Analysis

```
In [8]: profile = pp.ProfileReport(train)
In [9]: profile.to_file("Initial_EDA.html")
```

```
## `is business travel ready` is the same for all observations
In [10]:
         print('is business travel ready :', np.unique(train['is business trave
         l ready']))
         train df = train.drop(['is business travel ready'], 1)
         is business travel ready : ['f']
         print('\n minimum nights > 10:', np.sum(train['minimum nights']< 10) /</pre>
In [11]:
         len(train['minimum nights']))
         print('\n maximum nights < 365:', np.sum(train['maximum nights']> 365)
         / len(train['maximum nights']))
         print('\n bed type: \n', train['bed type'].value counts())
         print('\n require guest profile picture: \n', train['require guest pro
         file picture'].value counts())
         print('\n require guest phone verification: \n', train['require guest
         phone_verification'].value_counts())
          minimum nights > 10: 0.9125090383224873
          maximum nights < 365: 0.5195744241297386
          bed_type:
          Real Bed
                            9641
         Pull-out Sofa
                             23
         Futon
                             12
         Couch
                              3
         Airbed
                              2
         Name: bed type, dtype: int64
          require quest profile picture:
               9454
          f
               227
         t
         Name: require guest profile picture, dtype: int64
          require guest phone verification:
          f
               9493
         Name: require guest phone verification, dtype: int64
```

- There are no missing values in the training set.
- is_business_travel_ready is the same for all observations, so it cannot provide any information for the price. I choose to remove it.
- The distributions of minimum_nights and maximum_nights are highly skewed. There are over 90% of Airbnb properties whose minimum nights stay is less than 10 days. However, there are over 50% of Airbnb properties whose maximum nights stay is more than a year.
- Over 99% of bed_type is the same, indicating that this feature may not provide much information about the price.
- Over 97% of require_guest_profile_picture is the same, indicating that this feature may not provide much information about the price.
- Over 98% of require_guest_phone_verification is the same, indicating that this feature may not provide much information about the price.
- require_guest_profile_picture and require_guest_phone_verification are highly correlated. Because owners who need verification are often more cautious, those require phone verification are likely to require photo verification at the same time.
- bedrooms, beds and bathrooms are highly correlated. The number of beds has traditionally been a more high priority search parameter on Airbnb, as it is more relevant for the number of people accommodated than the number of bedrooms (and is still the second highest priority parameter when searching on the site. In addition, guests included is correlated with these three variables.
- number_of_reviews and reviews_per_month are highly correlated. This is reasonable because the latter is the "average value" of the former.
- Surprisingly, maximum_nights and room_type are highly correlated. Maybe it's because customers prefer to stay in private rooms longer.
- From the correlation plots, it seems that room_type, bathrooms, bedrooms, beds, cleaning_fee, guests_included, and neighbourhood are influencing factors.

Data Preprocessing

host_since

This is a datetime column and should be converted into a metric that measures the number of days the host has been on the platform. I used today (November 5, 2020) to calculate this metric.

```
In [12]:
         train df.host since
Out[12]: id
         727
                     8/1/13
         6274
                    2/14/14
         6025
                   10/19/17
         8931
                     2/1/19
         7524
                    1/24/15
                     . . .
         11933
                    6/26/19
         10678
                    6/12/11
         13466
                    5/26/14
         2931
                     5/4/16
         6378
                    3/21/16
         Name: host since, Length: 9681, dtype: object
In [13]:
         # convert to datetime
         train df.host since = pd.to datetime(train df.host since)
         # calculate the number of days between the date that the host first jo
         ined Airbnb and today
         train df['host days active'] = (datetime(2020, 11, 5) - train df.host
         since).astype('timedelta64[D]')
         train df = train df.drop('host since', 1)
```

last review

```
In [14]: # convert to datetime
    train_df.last_review = pd.to_datetime(train_df.last_review)

# Calculate the number of days between the last review and today
    train_df['time_since_last_review'] = (datetime(2020, 11, 5) - train_df
    .last_review).astype('timedelta64[D]')
    train_df = train_df.drop('last_review', 1)
```

cancellation_policy

Since the super strict options are only available to long-term Airbnb hosts and is invitation only, it is clear that the super strict options are stricter than "strict_14_with_grace_period". As the number of "super strict" is too small, I choose to combine it with "strict_14_with_grace_period" after EDA.

bed_type

Similarly, I will convert Couch and Airbed into other after EDA.

require guest phone verification and require guest profile picture

Since require_guest_phone_verification and require_guest_profile_picture are highly correlated, and the mean and median prices for these two variables are very similar, we can simply drop one of them. I might drop require_guest_profile_picture after EDA because I think phone verification is more strict.

Data Visualization

Binary Variable

```
In [19]:
         def plot categorical(par name, ax, rename = None):
             df = train_df.groupby(by = ['price', par_name]).count().unstack(fi
         11 value=0).stack().mean(axis=1)
             ind = df.unstack().columns
             p1 = ax.bar(ind, np.array(df.iloc[len(ind)*0:len(ind)*0+len(ind)])
             p2 = ax.bar(ind, np.array(df.iloc[len(ind)*1:len(ind)*1+len(ind)])
         , bottom=np.array(df.iloc[len(ind)*0:len(ind)*0+len(ind)]))
             p3 = ax.bar(ind, np.array(df.iloc[len(ind)*2:len(ind)*2+len(ind)])
         , bottom=np.array(df.iloc[len(ind)*1:len(ind)*1+len(ind)]) + np.array(
         df.iloc[len(ind)*0:len(ind)*0+len(ind)]))
             p4 = ax.bar(ind, np.array(df.iloc[len(ind)*3:len(ind)*3+len(ind)])
         , bottom=np.array(df.iloc[len(ind)*2:len(ind)*2+len(ind)]) + np.array(
         df.iloc[len(ind)*1:len(ind)*1+len(ind)]) + np.array(df.iloc[len(ind)*0
         :len(ind)*0+len(ind)]))
             ax.set title(f'Prices by {par name}')
             ax.set xticks(ind)
             if rename is None:
                 ax.set xticklabels(df.iloc[len(ind)*i:len(ind)*i+len(ind)].uns
         tack().columns)
             else:
                 ax.set xticklabels(rename)
             ax.legend((p1[0], p2[0], p3[0], p4[0]), df.unstack().index)
```


Categorical Variable

```
In [21]: categorical = ['room_type', 'bed_type', 'cancellation_policy']

plt.rcParams.update({'font.size': 12})
fig, axs = plt.subplots(nrows=1, ncols=len(categorical), figsize=(22, 4))
for i in range(len(categorical)):
    if i == 2:
        plot_categorical(categorical[i], axs[i], rename = ['flexible', 'moderate', 'strict14', 'strict30', 'strict60'])
    else:
        plot_categorical(categorical[i], axs[i])
```


neighbourhood

```
In [22]: train_df['neighbourhood'].value_counts()
```

0+1221-	D = 1		2202	
Out[22]:			3302	
	Recoleta		1661	
	San Nico	las	595	
	Retiro		495	
	Belgrano		416	
	Monserra	_	390	
	San Telm	10	389	
	Almagro		379	
	Balvaner		365	
	Villa Cr	_	310	
	Colegial	es	183	
	Núñez		175	
	Chacarit		168	
	Caballit	0	143	
	Puerto M	adero	112	
	Villa Ur	quiza	84	
	Barracas		58	
	Constitu	ción	57	
	Saavedra		41	
	La Boca		39	
	Boedo		35	
	Flores		30	
	Coghlan		28	
	Villa Or	túzar	26	
	Parque P	atricios	24	
	Villa De	voto	22	
	San Cris	tóbal	19	
	Villa de	l Parque	19	
	Parque C	hacabuco	18	
	Parque C	has	17	
	Agronomí		15	
	Villa Ge	neral Mitre	10	
	Villa Pu	eyrredón	9	
	Liniers	_	8	
	Vélez Sá	rsfield	6	
	Villa Lu	ro	6	
	Floresta		6	
	Villa Sa	nta Rita	4	
	La Pater	nal	4	
	Matadero	s	3	
	Nueva Po	mpeya	2	
	Monte Ca		2	
		vellaneda	2	
	Villa Re		2	
	Versalle		2	
		ighbourhood,	_	int64

Out[23]:

	price		
	mean	median	std
neighbourhood			
Agronomía	2.066667	2.0	0.961150
Almagro	1.849604	2.0	0.968317
Balvanera	1.939726	2.0	1.003666
Barracas	2.120690	2.0	1.185846
Belgrano	2.413462	2.0	1.124625
Boedo	1.685714	1.0	0.900047
Caballito	1.860140	2.0	0.946464
Chacarita	2.303571	2.0	1.109345
Coghlan	2.035714	2.0	0.961563
Colegiales	2.371585	2.0	1.070925
Constitución	1.877193	2.0	0.825274
Flores	1.533333	1.0	0.899553
Floresta	2.333333	2.0	1.366260
La Boca	2.000000	2.0	1.076055
La Paternal	1.750000	1.0	1.500000
Liniers	1.750000	1.5	0.886405
Mataderos	1.333333	1.0	0.577350
Monserrat	2.243590	2.0	1.091989
Monte Castro	1.000000	1.0	0.000000
Nueva Pompeya	2.500000	2.5	2.121320
Núñez	2.302857	2.0	1.069291
Palermo	2.792550	3.0	1.056550
Parque Avellaneda	1.000000	1.0	0.000000
Parque Chacabuco	1.888889	1.0	1.182663
Parque Chas	1.588235	1.0	1.003670
Parque Patricios	1.666667	1.0	0.916831
Puerto Madero	3.553571	4.0	0.878566
Recoleta	2.685129	3.0	1.094434

Retiro	2.602020	3.0	1.084112
Saavedra	1.926829	2.0	1.009709
San Cristóbal	2.052632	2.0	1.177270
San Nicolás	2.265546	2.0	1.046112
San Telmo	2.421594	2.0	1.103951
Versalles	2.500000	2.5	0.707107
Villa Crespo	1.951613	2.0	0.982491
Villa Devoto	2.090909	1.5	1.269011
Villa General Mitre	1.200000	1.0	0.421637
Villa Luro	1.166667	1.0	0.408248
Villa Ortúzar	1.500000	1.0	0.905539
Villa Pueyrredón	2.000000	2.0	1.000000
Villa Real	2.000000	2.0	1.414214
Villa Santa Rita	1.750000	1.5	0.957427
Villa Urquiza	2.000000	2.0	0.905139
Villa del Parque	1.947368	2.0	0.970320
Vélez Sársfield	2.000000	1.5	1.264911

Numerical variable

```
In [24]: def plot_numerical(par_name, ax):
    df=train_df[['price', par_name]]

    df.boxplot(column = par_name, by = 'price', ax = ax)
    title_boxplot = f'Prices by {par_name}'
    ax.set_title(title_boxplot)
    ax.set_ylabel(par_name)
```

Boxplot grouped by price

Prepare the data for modeling

```
In [27]:
         ## bed type
         bed_others = ['Couch', 'Airbed']
         bed keep = list(set(train df.bed type) - set(bed others))
         train df.loc[~train df.bed type.isin(bed keep), 'bed type'] = 'other'
         ## neighbourhood
         #other = ['Vélez Sársfield', 'Villa Real', 'Mataderos']
         #train df = train df.loc[~train df.neighbourhood.isin(other)]
         other = ['Vélez Sársfield', 'Floresta', 'Villa Luro', 'La Paternal', '
         Villa Santa Rita', 'Mataderos', 'Villa Real', 'Monte Castro', 'Versall
         es', 'Parque Avellaneda', 'Nueva Pompeya']
         keep = list(set(train df.neighbourhood) - set(other))
         train df.loc[~train df.neighbourhood.isin(keep), 'neighbourhood'] = 'o
         ther'
         # Replacing cancellation policy categories
         train df.cancellation policy.replace({
             'super_strict_30': 'strict_14_with_grace_period',
             'super strict 60': 'strict 14 with grace period'
             }, inplace=True)
         ## require guest profile picture
         train df = train df.drop(['require guest profile picture'], 1)
         ## instant bookable
         train df = train df.drop('instant bookable', 1)
         ## number of reviews
         #train df = train df.drop('number of reviews', 1)
```

check data type

```
In [28]: len(train_df.columns)
Out[28]: 21
```

```
In [29]: train df.dtypes
Out[29]: neighbourhood
                                                 object
         room_type
                                                 object
                                                  int64
         minimum nights
          number of reviews
                                                  int64
          reviews per month
                                                float64
          calculated host listings count
                                                  int64
          availability 365
                                                  int64
          host_is_superhost
                                                 object
          bathrooms
                                                float64
          bedrooms
                                                  int64
         beds
                                                  int64
                                                 object
          bed type
          cleaning fee
                                                  int64
          guests included
                                                  int64
          extra_people
                                                  int64
         maximum nights
                                                  int64
          cancellation policy
                                                 object
          require guest phone verification
                                                 object
          price
                                                  int64
          host days active
                                                float64
          time since last review
                                                float64
          dtype: object
```

Modeling

```
In [30]: X = train_df.drop('price', axis=1)
y = train_df.price
```

Seperate train and test data

```
In [31]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
    0.3, random_state = 0)
```

Standardize data

The data has both numeric and categorical variables, and I want to standardize the numeric variables but leave the dummies as they are.

```
In [32]:
         numeric = np.array(X train. get numeric data().columns)
         categorical = np.delete(X train.columns, np.isin(np.array(X train.colu
         mns), numeric))
         ## standardize numeric features -- on my training set
         X train categorical = pd.get dummies(X train[categorical])
         scaler = StandardScaler()
         X train numeric = pd.DataFrame(data=scaler.fit transform(X train[numer
         ic]), columns=numeric, index = X train categorical.index)
         X train std = pd.concat([X train numeric, X train categorical], axis=1
         , sort=False)
         ## standardize numeric features -- on my test set
         X test categorical = pd.get dummies(X test[categorical])
         X test numeric = pd.DataFrame(data=scaler.transform(X test[numeric]),
         columns=numeric, index = X_test_categorical.index)
         X test std = pd.concat([X test numeric, X test categorical], axis=1, s
         ort=False)
```

```
In [33]: ## standardize numeric features -- on the whole training set
    X_categorical = pd.get_dummies(X[categorical])
    X_numeric = pd.DataFrame(data=scaler.transform(X[numeric]), columns=numeric, index = X_categorical.index)
    X_std = pd.concat([X_numeric, X_categorical], axis=1, sort=False)
```

Try many classification models using pycaret

pycaret presents a nice API that automates most of the boilerplate work in setting up a machine learning pipeline.

```
In [34]: # load data
data = X_train_std.copy()
data['price'] = y_train

test = X_test_std.copy()
test['price'] = y_test
```

	Description	Value
0	session_id	0
1	Target	price
2	Target Type	Multiclass
3	Label Encoded	1: 0, 2: 1, 3: 2, 4: 3
4	Original Data	(6776, 65)
5	Missing Values	False
6	Numeric Features	64
7	Categorical Features	0
8	Transformed Train Set	(6776, 64)
9	Transformed Test Set	(2905, 64)
10	Shuffle Train-Test	True
11	Stratify Train-Test	False
12	Fold Generator	KFold
13	Fold Number	10
14	CPU Jobs	-1
15	Use GPU	False
16	Log Experiment	False
17	Experiment Name	clf-default-name
18	USI	d774
19	Fix Imbalance	False
20	Fix Imbalance Method	SMOTE

The first step is to train all the models in the model library (sklearn, etc.) using default hyperparameters and evaluates performance metrics using cross validation. It returns the trained model object. Here, I use "Accuracy" as evaluation metric.

The output of the function is a table showing averaged score of all models across the folds. By default, the number of folds is set to 10. The table is sorted (highest to lowest) by the metric of choice.

In [36]: top = compare_models(sort = 'Accuracy', n_select = 10)

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	мсс	TT (Sec)
rf	Random Forest Classifier	0.5403	0.7933	0.5420	0.5485	0.5432	0.3862	0.3868	0.2170
lightgbm	Light Gradient Boosting Machine	0.5331	0.7919	0.5346	0.5410	0.5359	0.3765	0.3771	0.1160
catboost	CatBoost Classifier	0.5319	0.7894	0.5337	0.5366	0.5334	0.3750	0.3754	3.9600
xgboost	Extreme Gradient Boosting	0.5298	0.7888	0.5310	0.5381	0.5328	0.3721	0.3726	1.4750
gbc	Gradient Boosting Classifier	0.5283	0.7844	0.5301	0.5396	0.5323	0.3702	0.3710	0.6360
et	Extra Trees Classifier	0.5252	0.7753	0.5270	0.5309	0.5271	0.3663	0.3667	0.1610
ada	Ada Boost Classifier	0.4993	0.7371	0.5012	0.5045	0.5009	0.3315	0.3320	0.0630
lr	Logistic Regression	0.4907	0.7564	0.4929	0.5011	0.4942	0.3202	0.3209	0.1970
lda	Linear Discriminant Analysis	0.4824	0.7474	0.4836	0.5232	0.4921	0.3084	0.3124	0.0200
ridge	Ridge Classifier	0.4777	0.0000	0.4805	0.4832	0.4780	0.3034	0.3043	0.0750
knn	K Neighbors Classifier	0.4604	0.7026	0.4616	0.4720	0.4618	0.2798	0.2814	0.2630
dt	Decision Tree Classifier	0.4451	0.6294	0.4463	0.4476	0.4452	0.2592	0.2597	0.0840
svm	SVM - Linear Kernel	0.4418	0.0000	0.4438	0.4474	0.4184	0.2557	0.2667	0.1200
nb	Naive Bayes	0.2844	0.6482	0.2910	0.3416	0.1864	0.0525	0.0866	0.0770
qda	Quadratic Discriminant Analysis	0.2686	0.5163	0.2751	0.2694	0.2440	0.0324	0.0357	0.0150

Check each model

RF

```
In [37]: rfc = RandomForestClassifier()

In [38]: params1 = {
    'criterion': ['gini', 'entropy'],
        'n_estimators': [50, 100, 200, 300, 400, 500],
}

print('the number of parameter combinations: ', np.prod(list(map(len, params1.values()))))

the number of parameter combinations: 12

In [39]: clf_gs = GridSearchCV(
    rfc,
    params1,
    n_jobs=-1,
    cv = 10,
    )
    clf_gs.fit(X_train_std, y_train)
```

```
Out[39]: GridSearchCV(cv=10, error score=nan,
                       estimator=RandomForestClassifier(bootstrap=True, ccp al
         pha=0.0,
                                                         class weight=None,
                                                         criterion='gini', max
         depth=None,
                                                        max features='auto',
                                                        max leaf nodes=None,
                                                        max samples=None,
         min impurity decrease=0.0,
         min impurity split=None,
                                                        min samples leaf=1,
                                                        min samples split=2,
         min weight fraction leaf=0.0,
                                                         n estimators=100, n jo
         bs=None,
                                                         oob score=False,
                                                         random state=None, ver
         bose=0,
                                                        warm start=False),
                       iid='deprecated', n_jobs=-1,
                       param grid={'criterion': ['gini', 'entropy'],
                                   'n estimators': [50, 100, 200, 300, 400, 50
         01},
                       pre_dispatch='2*n_jobs', refit=True, return_train_score
         =False,
                       scoring=None, verbose=0)
```

```
In [40]: plt.rcParams.update({'font.size': 12})
    scores = clf_gs.cv_results_['mean_test_score']
    scores = np.array(scores).reshape(len(params1['criterion']), len(param s1['n_estimators']))

for ind, i in enumerate(params1['criterion']):
    plt.plot(params1['n_estimators'], scores[ind], label='criterion: '
    + str(i))
    plt.legend()
    plt.xlabel('n_estimators')
    plt.ylabel('Mean CV score')
    plt.title('CV accuracy by criterion and n_estimators')
    plt.show()
```



```
In [42]: optimised_random_forest = clf_gs.best_estimator_
    print("CV Accuracy: %.2f%%" % (np.mean(cross_val_score(optimised_rando
    m_forest, X_train_std, y_train, cv=10)) * 100.0))
    print("Out-of-sample Accuracy: %.2f%%" % (optimised_random_forest.scor
    e(X_test_std, y_test) * 100.0))
CV Accuracy: 54.94%
Out-of-sample Accuracy: 54.91%
```

Fit the classifier on the whole training set

```
%%time
In [43]:
         optimised random forest.fit(X std, y)
         CPU times: user 6.56 s, sys: 17.1 ms, total: 6.58 s
         Wall time: 6.58 s
Out[43]: RandomForestClassifier(bootstrap=True, ccp alpha=0.0, class weight=N
         one,
                                 criterion='gini', max depth=None, max feature
         s='auto',
                                 max leaf nodes=None, max samples=None,
                                 min impurity decrease=0.0, min impurity split
         =None,
                                 min samples leaf=1, min samples split=2,
                                 min weight fraction leaf=0.0, n estimators=40
         0,
                                 n jobs=None, oob score=False, random state=No
         ne,
                                 verbose=0, warm start=False)
```

Gradient Boosting Classifier

```
In [44]: bc = GradientBoostingClassifier()

In [45]: params2 = {
      'learning_rate': [0.001, 0.01, 0.1, 1],
      'n_estimators': [50, 100, 200, 300, 400, 500],
}

print('the number of parameter combinations: ', np.prod(list(map(len, params2.values())))))
```

the number of parameter combinations: 24

```
In [46]:
         clf gs = GridSearchCV(
             bc,
             params2,
             n jobs=-1,
             cv = 10,
         clf gs.fit(X train std, y train)
Out[46]: GridSearchCV(cv=10, error_score=nan,
                       estimator=GradientBoostingClassifier(ccp alpha=0.0,
         criterion='friedman mse',
                                                             init=None, learnin
         g rate=0.1,
                                                             loss='deviance', m
         ax depth=3,
                                                             max features=None,
         max leaf nodes=None,
         min impurity decrease=0.0,
         min impurity split=None,
         min samples leaf=1,
         min samples split=2,
         min weight fraction leaf=0.0,
                                                             n estimators=100,
         n iter no change=None,
         presort='deprecated',
                                                             random state=None,
                                                             subsample=1.0, tol
         =0.0001,
         validation fraction=0.1,
                                                             verbose=0, warm st
         art=False),
                       iid='deprecated', n jobs=-1,
                       param grid={'learning rate': [0.001, 0.01, 0.1, 1],
                                    'n estimators': [50, 100, 200, 300, 400, 50
         01},
                       pre dispatch='2*n jobs', refit=True, return train score
         =False,
                       scoring=None, verbose=0)
```

```
In [47]: scores = clf_gs.cv_results_['mean_test_score']
    scores = np.array(scores).reshape(len(params2['learning_rate']), len(p
    arams2['n_estimators']))

for ind, i in enumerate(params2['learning_rate']):
        plt.plot(params2['n_estimators'], scores[ind], label='learning_rat
    e: ' + str(i))
    plt.legend()
    plt.xlabel('n_estimators')
    plt.ylabel('Mean CV score')
    plt.title('CV accuracy by learning_rate and n_estimators')
    plt.show()
```



```
clf gs.best estimator
In [48]:
Out[48]: GradientBoostingClassifier(ccp alpha=0.0, criterion='friedman mse',
         init=None,
                                     learning rate=0.1, loss='deviance', max d
         epth=3,
                                     max features=None, max leaf nodes=None,
                                     min impurity decrease=0.0, min impurity s
         plit=None,
                                     min samples leaf=1, min samples split=2,
                                     min weight fraction leaf=0.0, n estimator
         s = 300,
                                     n_iter_no_change=None, presort='deprecate
         d',
                                     random state=None, subsample=1.0, tol=0.0
         001,
                                     validation fraction=0.1, verbose=0,
                                     warm start=False)
```

```
In [49]: optimised_gradient_boosting = clf_gs.best_estimator_
    print("CV Accuracy: %.2f%%" % (np.mean(cross_val_score(optimised_gradient_boosting, X_train_std, y_train, cv=10)) * 100.0))
    print("Out-of-sample Accuracy: %.2f%%" % (optimised_gradient_boosting.
        score(X_test_std, y_test) * 100.0))
CV Accuracy: 53.31%
Out-of-sample Accuracy: 54.70%
```

Fit the classifier on the whole training set

```
%%time
In [50]:
         optimised gradient boosting.fit(X std, y)
         CPU times: user 26.6 s, sys: 0 ns, total: 26.6 s
         Wall time: 26.6 s
Out[50]: GradientBoostingClassifier(ccp alpha=0.0, criterion='friedman mse',
         init=None,
                                     learning rate=0.1, loss='deviance', max d
         epth=3,
                                     max features=None, max leaf nodes=None,
                                     min impurity decrease=0.0, min impurity s
         plit=None,
                                     min samples leaf=1, min samples split=2,
                                     min weight fraction leaf=0.0, n estimator
         s = 300,
                                     n iter no change=None, presort='deprecate
         d',
                                     random state=None, subsample=1.0, tol=0.0
         001,
                                     validation fraction=0.1, verbose=0,
                                     warm start=False)
```

XGBoost

```
In [51]: xgbc = XGBClassifier()
```

```
In [52]: params3 = {
    'learning_rate': [0.001, 0.01, 0.1, 1],
    'n_estimators': [50, 100, 200],
}

print('the number of parameter combinations: ', np.prod(list(map(len, params3.values()))))
```

the number of parameter combinations: 12

Fit the classifier on the whole training set

```
In [56]:
         %%time
         optimised xgbc.fit(X_std, y)
         CPU times: user 11.3 s, sys: 0 ns, total: 11.3 s
         Wall time: 11.3 s
Out[56]: XGBClassifier(base score=0.5, booster='gbtree', colsample bylevel=1,
                       colsample bynode=1, colsample bytree=1, gamma=0, gpu i
         d=-1,
                       importance type='gain', interaction constraints='',
                       learning_rate=0.1, max_delta_step=0, max_depth=6,
                       min child weight=1, missing=nan, monotone constraints=
         '()',
                       n estimators=100, n jobs=0, num parallel tree=1,
                       objective='multi:softprob', random state=0, reg alpha=
         0,
                       reg lambda=1, scale pos weight=None, subsample=1,
                       tree_method='exact', validate_parameters=1, verbosity=
         None)
```

Stacked models

```
In [57]: ## stack 5 base learners to for a stacked model 'stacked5'
### the default meta_model is linear
stack_clf5 = stack_models(top[:5])
## predict on my test data
predict_model(stack_clf5);
```

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	0.5531	0.8012	0.5638	0.5564	0.5532	0.4026	0.4034
1	0.5855	0.8278	0.5859	0.6003	0.5905	0.4467	0.4480
2	0.5487	0.7997	0.5524	0.5560	0.5517	0.3970	0.3973
3	0.5634	0.8067	0.5610	0.5798	0.5697	0.4184	0.4194
4	0.5442	0.8015	0.5432	0.5565	0.5478	0.3908	0.3923
5	0.5310	0.7941	0.5330	0.5440	0.5359	0.3724	0.3731
6	0.5081	0.7776	0.5116	0.5162	0.5113	0.3434	0.3438
7	0.5377	0.8051	0.5380	0.5438	0.5399	0.3827	0.3832
8	0.5628	0.8084	0.5615	0.5706	0.5656	0.4174	0.4179
9	0.5672	0.8122	0.5678	0.5706	0.5683	0.4221	0.4225
Mean	0.5502	0.8034	0.5518	0.5594	0.5534	0.3994	0.4001
SD	0.0205	0.0122	0.0199	0.0217	0.0208	0.0277	0.0278

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	Stacking Classifier	0.5590	0.8080	0.5583	0.5720	0.5641	0.4122	0.4128

```
In [58]: ## stack 5 base learners to for a stacked model 'stacked7'
### the default meta_model is linear
stack_clf7 = stack_models(top[:7])
## predict on my test data
predict_model(stack_clf7);
```

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	0.5619	0.8011	0.5716	0.5675	0.5629	0.4141	0.4150
1	0.5782	0.8301	0.5784	0.5958	0.5839	0.4369	0.4386
2	0.5442	0.8012	0.5483	0.5540	0.5480	0.3912	0.3916
3	0.5752	0.8075	0.5724	0.5895	0.5809	0.4340	0.4348
4	0.5324	0.8027	0.5323	0.5419	0.5355	0.3752	0.3762
5	0.5339	0.7973	0.5369	0.5483	0.5390	0.3766	0.3775
6	0.5037	0.7782	0.5072	0.5087	0.5058	0.3377	0.3378
7	0.5391	0.8046	0.5392	0.5450	0.5415	0.3844	0.3846
8	0.5628	0.8084	0.5617	0.5704	0.5655	0.4173	0.4179
9	0.5687	0.8128	0.5707	0.5694	0.5682	0.4241	0.4247
Mean	0.5500	0.8044	0.5519	0.5590	0.5531	0.3992	0.3999
SD	0.0222	0.0123	0.0218	0.0240	0.0226	0.0299	0.0302

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	
0	Stacking Classifier	0.5608	0.8097	0.5599	0.5744	0.5661	0.4144	0.4152	

```
In [59]: ## stack 5 base learners to for a stacked model 'stacked10'
    ### the default meta_model is linear
    stack_clf10 = stack_models(top[:10])
    ## predict on my test data
    predict_model(stack_clf10);
```

	Accuracy	AUC	Recall	Prec.	F1	Kappa	МСС
0	0.5678	0.8023	0.5772	0.5741	0.5688	0.4222	0.4234
1	0.5870	0.8294	0.5873	0.6010	0.5921	0.4486	0.4497
2	0.5546	0.8026	0.5585	0.5637	0.5579	0.4050	0.4056
3	0.5752	0.8058	0.5720	0.5895	0.5809	0.4338	0.4345
4	0.5369	0.8037	0.5360	0.5461	0.5394	0.3810	0.3821
5	0.5442	0.8000	0.5489	0.5570	0.5486	0.3905	0.3914
6	0.5111	0.7809	0.5146	0.5185	0.5140	0.3474	0.3477
7	0.5391	0.8044	0.5383	0.5433	0.5409	0.3841	0.3842
8	0.5672	0.8096	0.5661	0.5740	0.5697	0.4232	0.4236
9	0.5775	0.8151	0.5792	0.5784	0.5774	0.4358	0.4361
Mean	0.5561	0.8054	0.5578	0.5646	0.5590	0.4072	0.4078
SD	0.0221	0.0116	0.0219	0.0230	0.0223	0.0297	0.0298

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	МСС	
0	Stacking Classifier	0.5597	0.8102	0.5589	0.5712	0.5643	0.4131	0.4136	

Predict on the test set

```
In [60]: test = pd.read_csv('data/test.csv', index_col = 0)
```

```
In [61]: ## remove `is business travel ready`
         test df = test.drop(['is business travel ready'], 1)
         # host since
         test df.host since = pd.to datetime(test df.host since)
         test df['host days active'] = (datetime(2020, 11, 5) - test df.host si
         nce).astype('timedelta64[D]')
         test df = test df.drop('host since', 1)
         # last review
         test df.last review = pd.to datetime(test df.last review)
         test df['time since last review'] = (datetime(2020, 11, 5) -test df.la
         st review).astype('timedelta64[D]')
         test df = test df.drop('last review', 1)
         # cancellation policy
         test df['cancellation policy'].value counts()
         test df.cancellation policy.replace({
             'super_strict_30': 'strict_14_with_grace_period',
             'super strict 60': 'strict 14 with grace period'
             }, inplace=True)
         ## bed type
         test df.loc[~test df.bed type.isin(bed keep), 'bed type'] = 'other'
         ## neighbourhood
         test df.loc[~test df.neighbourhood.isin(keep), 'neighbourhood'] = 'oth
         er'
         ## require guest profile picture
         test df = test df.drop(['require guest profile picture'], 1)
         ## instant bookable
         test df = test df.drop('instant bookable', 1)
         ## number of reviews
         #test df = test df.drop('number of reviews', 1)
In [62]: XXX test = test df
In [63]: | ## standardize data
         XX test categorical = pd.get dummies(XXX test[categorical])
         scaler = StandardScaler()
         XX test numeric std = pd.DataFrame(data=scaler.fit transform(XXX test[
         numeric]), columns=numeric, index = XX test categorical.index)
         XX test std = pd.concat([XX test numeric std, XX test categorical], ax
```

is=1, sort=False)

```
In [64]:
         ## check number of features
         len(XX test std.columns), len(X std.columns)
Out[64]: (64, 64)
 In [ ]:
         y pred0 = optimised random forest.predict(XX test std)
In [65]:
In [66]:
         y pred1 = optimised gradient boosting.predict(XX test std)
         y pred2 = optimised xgbc.predict(XX test std)
In [67]:
In [68]: y pred3 = predict model(stack clf5, data = XX test std)['Label']
In [69]: y_pred4 = [p for p in predict_model(stack_clf7, data = XX_test_std)['L
         abel']]
In [70]: | y_pred5 = [p for p in predict_model(stack_clf10, data = XX_test std)['
         Label']]
```

Plot and Evaluate the model

In [71]: plot_model(stack_clf7)

In [72]: plot_model(stack_clf7, 'confusion_matrix')

In [73]: plot_model(stack_clf7, 'error')

Save predictions

```
In [75]: sample = pd.read_csv('data/sample_submission.csv', index_col = 0)
In [76]: sample.price = y_pred0
    sample.to_csv('best_rf.csv', index = True)

In [77]: sample.price = y_pred1
    sample.to_csv('best_gbc.csv', index = True)

In [78]: sample.price = y_pred2
    sample.to_csv('best_xgbc.csv', index = True)

In [79]: sample.price = y_pred3
    sample.to_csv('stack5.csv', index = True)
```

```
In [80]: sample.price = y_pred4
    sample.to_csv('stack7.csv', index = True)

In [81]: sample.price = y_pred5
    sample.to_csv('stack10.csv', index = True)

In []:
```