Fine Grained Analysis: examples and challenges

Jérémy Barbay

Departmento de Ciencias de la Computacion Universidad de Chile

- The Convex Hull Paradox
 - O(n lg n)
 - O(nh)
 - Worst Case Complexity?
- 2 Fine analysis of the convex hull
 - $O(n \lg h)$ in 2D
 - $O(n \lg h)$ in 3D
 - O(nH(C)), instance optimal
- Similar Paradoxes

- 1 The Convex Hull Paradox
 - O(n lg n)
 - O(nh)
 - Worst Case Complexity?
- 2 Fine analysis of the convex hull
 - $O(n \lg h)$ in 2D
 - $O(n \lg h)$ in 3D
 - O(nH(C)), instance optimal
- Similar Paradoxes

The Planar Convex Hull

- Can one of you define it?
- What is the best complexity known for it?

2d Convex Hull in $O(n \lg n)$

- Sort the points by x-coordinates;
- Scan them, backtracking if necessary.

2d Convex Hull in O(nh)

- Find the left-most point
- ② Compute the n-1 slopes with the other points
- Ohoose the highest slope
- Iterate

Worst case Complexity of 2d Convex Hull

- Question ill-defined: the worst case over what?
 - all instances of fixed size n?
 - all instances of fixed input size n and output size h?
- For each we have distinct lower bounds:
 - $\Omega(n \lg n)$, which is tight; and
 - $\Omega(n \lg h)$, which is **not** tight!
- So what is the complexity of 2d convex hull?

- 1 The Convex Hull Paradox
 - O(n | g n)
 - O(nh)
 - Worst Case Complexity?
- 2 Fine analysis of the convex hull
 - $O(n \lg h)$ in 2D
 - $O(n \lg h)$ in 3D
 - O(nH(C)), instance optimal
- Similar Paradoxes

2d Convex Hull in $O(n \lg h)$ in 2D

- **1** Compute the point *m* of median *x*-coordinate;
- Partition the points by m.x;
- **3** Compute the highest edge (a, b) intersecting the line x = m.x;
- Recurse on each side;

2d Convex Hull in $O(n \lg h)$ in 3D

- Start with a small guess for h;
- ② Group the instances in n/h x-sorted groups of size h;
- **3** Simulate the O(nh) algorithms on the groups;
- If it did not suffice, merge the group two by two and iterate.

Convex Hull in O(n(1 + H(C)))

- Algorithm: a variant of [Kirkpatrick, Seidel]
 - Compute the points leftmost / and rightmost r;
 - Compute the point m of median x-coordinate;
 - **3** Compute the highest edge (a, b) intersecting the line x = m.x;
 - **1** Remove all points contained in the polygon (I, a, b, r);
 - Recurse on each side;

Instance Optimality: definitions

Definition (Instance Optimality)

An algorithm is instance-optimal if its cost is at most a constant factor from the cost of any other algorithm A' running on the same input, for *every* input instance.

Unfortunately, for many problems, this requirement is too stringent.

Definition (Input Order Oblivious Instance Optimality)

For a set S of n elements in \mathcal{D} , let $T_A(S)$ denote the maximum running time of A on input σ over all n! possible permutations σ of S. Let $\mathrm{OPT}(S)$ denote the minimum of $T_{A'}(S)$ over all correct algorithms $A' \in \mathcal{A}$. If $A \in \mathcal{A}$ is a correct algorithm such that $T_A(S) \leq O(1) \cdot \mathrm{OPT}(S)$ for every set S, then we say A is instance-optimal in the order-oblivious setting.

Certificate and Instance Optimal Proof

Definition (Certificate)

A *Certificate* for an instance I and a solution S is the description of a sequence of steps to check the validity of S for I.

Example

For the convex hull, a list of triangles and the points they cover.

- 1 The Convex Hull Paradox
 - O(n | g n)
 - O(nh)
 - Worst Case Complexity?
- Pine analysis of the convex hull
 - $O(n \lg h)$ in 2D
 - $O(n \lg h)$ in 3D
 - O(nH(C)), instance optimal
- Similar Paradoxes

Optimal Prefix Free Codes [In Progress]

- $O(n \lg n)$ classical algorithm.
- O(n) algorithm when frequencies are sorted.
- O(n) algorithm when frequencies are all within a factor of 2.
- O(n) algorithm when frequencies are all distinct by factor of 2.
- Adaptive Results for k distinct code lengths:
 - Belal and Elmasry claim O(nk) in STACS 2006.
 - Belal and Elmasry claim $O(n4^k)$ in ARXIV 2012.
- A lower bound of $\Omega(n \lg k)$ in the worst case over instances resulting in k distinct code lengths.
- Conjectures:
 - $O(n \lg k)$ adaptive algorithm?
 - $O(nH(n_1,\ldots,n_k))$ instance optimal algorithm?
 - O(n) algorithm in word-RAM?

Optimal Minimax Trees [Open]

- Tree minimizing the max weight+height of a leaf.
- $O(n \lg n)$ classical algorithm [Golumbic];
- O(n) algorithm when weights partially sorted by fractional part [Drmota, Szpankowski];
- $O(nd \lg \lg n)$ where d is the number of distinct values $\lceil w_i \rceil$ [Kirkpatrick and Klawe]
- O(n) algorithm in word-RAM [Gawrichowski, Gagie]!

Optimal Alphabetic Binary Search Tree [Open]

- $O(n \lg n)$ classical Hu-Tucker algorithm;
- $o(n \lg n)$ algorithms in many particular cases;
- O(n) algorithm when frequencies "can be sorted in linear time";
- A lower bound of $\Omega(n \lg k)$ in the worst case over instances resulting in k distinct code lengths.

Summary

- O(nk) and $O(n \lg n)$ suggests $O(n \lg k)$
- and (Input Order Oblivious) Instance Optimality.

- Outlook
 - Input Order Adaptive Instance Optimality.
 - Full Instance Optimality (Kolmogorov's complexity?)
 - 1-instance optimality!