Gruppe Körperhaltung 27.11.20

Andreas Ellwanger Timo Erdelt Samantha Kühn Johannes Tochtermann

Projektplan

Meilensteine:

- 1. Schiefhaltung erkennen (CORE) [08.12.2019]
 - a. Basierend auf PoseNet-Output Schiefhaltung durch regelbasiertes Verfahren erkennen
 - b. Weiterführendes regelbasiertes System unter Zuhilfenahme der zeitlichen Dimension (und evtl. anderer Parameter)
- 2. GUI (CORE) [bis 31.12.2019]
 - a. Schnittstellen definieren (bzgl. Feedback/Interaktion Audio? On-screen-notification?)
 - b. Implementierung einer GUI
 - c. Implementierung des Feedbacks an den Nutzer durch Schnittstellen
- 3. Statistik [ab Januar 2020]
 - a. Erstellen einer Statistik aus Userdaten (über einen gewissen Zeitraum)
 - b. Visualisieren der Statistiken in eingebetteten Plots
- 4. Optional: Belohnungssystem [ab Januar 2020]
 - a. Belohnungssystem basierend auf Statistiken definieren
 - b. Belohnungssystem implementieren
- 5. Optional: Weitere potenzielle Problemfelder einbinden: [ab Januar 2020]
 - a. Gerader Rücken
 - b. Sitzdauer vor PC

1.b) Kalibrierung und Regelbasiertes Verfahren (1/2)

Kalibrierung durch Feedback:

- User soll sich gerade hinsetzen, erhält dafür initial Feedback:
 - Beispielbild für korrektes Sitzen
 - Ist Kameraausschnitt korrekt eingestellt?
 - Feedback basierend auf Video-Output des PoseNets:
 Ausschließlich Schulter- und Nackenschiefstand
- Welche Daten der Kalibrierung müssen für eine Session gespeichert werden?
 - alle Punkte des PoseNet Outputs bei Kalibrierung
 - => Länge des Striches zw. Schulterpunkten lässt sich z.B. daraus on-the-fly berechnen

1.b) Kalibrierung und Regelbasiertes Verfahren (2/2)

- Schulterschiefstand (erstes Proof-of-Concept bereits demonstriert)
- Augen(Linie) => Nackenschiefstand?
- Für folgende Punkte Kalibrierung notwendig:
 - Länge des Striches zwischen den Schultern: wenn drastisch kürzer als bei Kalibrierung, dann...
 - => Person sitzt weiter weg als bei Kalibrierung (nicht gut!)
 - => Person sitzt mit "verdrehtem" Oberkörper (nicht gut!)
 - "Krumm" sitzen (These: Schultern nach vorne ist schlecht):
 - Höhe der Schulterlinie: wenn signifikant niedriger als bei Kalibrierung => Person sitzt krumm, ist "in sich zusammengefallen"
- Über Zeit?
 - Mittelwerte / Varianz (von einzelnen Punkten)
 - Zeitfenster! (=> evaluieren welche Zeitintervalle schlüssig sind)
- Erkennung, ob Person Arbeitsplatz verlässt (z.B. Aufzeichnung in dieser Zeit pausieren):
 - wenn Körperteile wie z.B. Ellbogen, Unterarm, Hüfte sichtbar werden, steht die Person gerade (auf), hier sollte die Messung also unterbrochen werden

2.c) Feedback in Form von Benachrichtigungen

User kann selbst auswählen, welche Form von Benachrichtigung Anwendung finden soll.

- Option 1: Audio
- Option 2: Popup-Benachrichtigung

Das Feedback kann aber auch stets innerhalb der App aufgerufen werden.

3) Statistiken, Visualisierung von Nutzerdaten

In der App Abruf von Statistiken und Liveplots möglich:

- Option 1: Aktuelle Veränderung über Zeit (Kopf, Schulter)
- Option 2: Zeitstrahl bzgl. guter (grün) / schlechter (rot) Haltung
- Option 3: Richtung/Ausprägung der Schräglage basierend auf Kalibrierung