Shu Ou

Ling 473

07/27/2017

Assignment I

Question 1

Question 2

a. I saw/understood that gas, in general, is capable of exploding.

a.

b. (S (NP (PRP I))(VP (VBD saw)(SBAR (IN that)(S (NP (NN gas))(VP (MD can)(VB explode))))))

b. I saw that particular gas container explode.

a.

- b. (S (NP (PRP I))(VP (VBD saw) (SBAR (NP (DT that) (NP (NN gas)(NN can)))(VP (VB explode)))))
- c. I saw/understood that a particular gas is capable of exploding.

a.

b. (S (NP (PRP I))(VP (VBD saw)(SBAR (NP (DT that) (NN gas))(VP (MD can)(VB explode)))))

Question 3

Six-letter "words" with at least one vowel = All six-letter "words" – six-letter "words with only constants

$$\rightarrow$$
 26⁶ - 21⁶

Six-letter "words" that contain all vowels {a e I o u}

Six-letter "words" with at least one vowel, yet might not contain all vowels

$$\rightarrow$$
 26⁶ - 21⁶ - 5⁶ = 223,134,030

Question 4

$$\frac{9!}{4!\,2!} = 7,560$$

The given characters can be arranged in 7,560 ways.

Question 5

- a. There are 60 possible pair comparisons between documents on the same topic.
 - a. Conference Proceeding: $\binom{7}{2} = 21$
 - b. Journal Articles: $\binom{9}{2} = 36$
 - c. Workshop Abstracts $\binom{3}{2} = 3$
 - d. Total = 21+36+3=60
- b. There are 111 possible pair comparisons between documents on different topics.

a.
$$(7 \times 9) + (7 \times 3) + (9 \times 3) = 111$$

Extra Credit

Table 1 below shows an example unordered sets of 3 items that can be formed from a set of 4 distinct items while allowing repetition in the output set. In this case, n = 4, and k = 3, and the original data set is $\{1,2,3,4\}$.

- Chosen sets that start with 1 = the number of {1,X,Y} [unordered, no repetition] + the number of {1,X,X} [repetition]
 - The number of {1,X,Y} = choosing 2 items from set {1,2,3,4}

$$\circ$$
 $\binom{4}{2} + 4 = 10$

- Chosen sets that start with 2 (similar concept...)
 - The number of {2,X,Y} = choosing 2 items from set {2,3,4}

$$\circ$$
 $\binom{3}{2} + 3 = 6$

Chosen sets that start with 3

$$\circ$$
 $\binom{2}{2} + 2 = 3$

• Chosen sets that start with 4

$$\circ$$
 $\binom{1}{2} + 1 = 1$

Looking at the pattern above, it's determined that the expression below will be a good representation for cases as such

$$\sum_{i}^{n} {i \choose k-1} + i$$

Table 1

Sets that start with 1	111	112	113	114
	121	122	123	124
	131	132	133	134
	141	142	143	144
Sets that start with 2	222	221	223	224
	211	212	213	214
	231	232	233	234
	241	242	243	244
Sets that start with 3	333	331	332	334
	311	312	313	314
	321	322	323	324
	341	342	343	344
Sets that start with 4	444	441	442	443
	411	412	413	414
	421	422	423	424
	431	432	433	434

Duplicate Sets