Supplementary Material: Robust Classification of HDLSS data using Data-adaptive Energy Distance

No Author Given

No Institute Given

A MATHEMATICAL DETAILS AND PROOFS

Lemma A.1. Suppose $U \sim I, V \sim J$, and $Z \sim K$ for $I, J, K \in \{F, G\}$, such that they are all independent. If assumptions 1 to 3 are satisfied, then

$$\rho_0(\mathbf{U}, \mathbf{V}, \mathbf{Z}) \stackrel{\mathbb{P}}{\to} \frac{1}{\pi} \cos^{-1} \left(\frac{\mu_{IJK}}{\sqrt{\mu_{IK}\mu_{JK}}} \right) , as d \to \infty$$

where $\mu_{IJK} = \lim_d \frac{1}{d} \mathbb{E}((\mathbf{U} - \mathbf{Z})^\top (\mathbf{V} - \mathbf{Z}))$ and $\mu_{IK} = \lim_d \frac{1}{d} \mathbb{E}(\|\mathbf{U} - \mathbf{Z}\|^2)$.

Proof of lemma A.1 Note that

$$\frac{1}{d}\mathbb{E}((\mathbf{U} - \mathbf{Z})^{\top}(\mathbf{V} - \mathbf{Z})) = \lim_{d} \frac{1}{d}\mathbb{E}[\mathbf{U}^{\top}\mathbf{V} - \mathbf{U}^{\top}\mathbf{Z} - \mathbf{V}^{\top}\mathbf{Z} + \mathbf{Z}^{\top}\mathbf{Z}]$$

$$= \frac{1}{d} (\boldsymbol{\mu}_{I}^{\top}\boldsymbol{\mu}_{J} - \boldsymbol{\mu}_{I}^{\top}\boldsymbol{\mu}_{K} - \boldsymbol{\mu}_{J}^{\top}\boldsymbol{\mu}_{K} + \boldsymbol{\mu}_{K}^{\top}\boldsymbol{\mu}_{K} + \operatorname{trace}(\Sigma_{K}))$$

$$= \frac{1}{d} (\boldsymbol{\mu}_{I} - \boldsymbol{\mu}_{K})^{\top}(\boldsymbol{\mu}_{J} - \boldsymbol{\mu}_{K}) + \frac{1}{d} \operatorname{trace}(\Sigma_{K})$$

Since $I, J, K \in \{\mathbf{F}, \mathbf{G}\}$, at least two of these take same value. Hence, using assumption 2, we have

$$\mu_{IJK} = \begin{cases} \lambda_{IK} + \sigma_K^2, & \text{if } I = J\\ \sigma_K^2, & \text{otherwise.} \end{cases}$$

Now, using assumption 2, we shall show existence of the limiting constant μ_{IK} .

$$\mu_{IK} = \lim_{d} \frac{1}{d} \mathbb{E}[\mathbf{U}^{\top} \mathbf{U} - 2\mathbf{U}^{\top} \mathbf{Z} + \mathbf{Z}^{\top} \mathbf{Z}]$$

$$= \lim_{d} \frac{1}{d} \left(\boldsymbol{\mu}_{I}^{\top} \boldsymbol{\mu}_{I} + \operatorname{trace}(\Sigma_{I}) - 2\boldsymbol{\mu}_{I}^{\top} \boldsymbol{\mu}_{K} + \boldsymbol{\mu}_{K}^{\top} \boldsymbol{\mu}_{K} + \operatorname{trace}(\Sigma_{K}) \right)$$

$$= \lambda_{IK} + \sigma_{I}^{2} + \sigma_{K}^{2}.$$

Using Chebyshev's inequality, we have

$$\mathbb{P}\left[\left|\frac{1}{d}(\mathbf{U}-\mathbf{Z})^{\top}(\mathbf{V}-\mathbf{Z}) - \mathbb{E}\left(\frac{1}{d}(\mathbf{U}-\mathbf{Z})^{\top}(\mathbf{V}-\mathbf{Z})\right)\right| > \epsilon\right] \\
\leq \frac{1}{\epsilon^{2}}\operatorname{var}\left(\frac{1}{d}\sum_{i=1}^{n}(U_{i}-Z_{i})(V_{i}-Z_{i})\right) \\
= \frac{1}{\epsilon^{2}d^{2}}\left[\sum_{i=1}^{d}\operatorname{var}((U_{i}-Z_{i})(V_{i}-Z_{i})) \\
+ \sum_{1\leq i< j\leq d}\operatorname{cov}((U_{i}-Z_{i})(V_{i}-Z_{i}), (U_{j}-Z_{j})(V_{j}-Z_{j}))\right] \\
\leq \frac{1}{\epsilon^{2}d^{2}}\left[\sum_{i=1}^{d}\mathbb{E}((U_{i}-Z_{i})^{2}(V_{i}-Z_{i})^{2}) \\
+ \sum_{1\leq i< j\leq d}\operatorname{cov}((U_{i}-Z_{i})(V_{i}-Z_{i}), (U_{j}-Z_{j})(V_{j}-Z_{j}))\right] \\
\to 0 \text{, as } d \to \infty \text{ [Using assumptions 1 and 3].}$$

So, as $d \to \infty$,

$$\left| \frac{1}{d} (\mathbf{U} - \mathbf{Z})^{\top} (\mathbf{V} - \mathbf{Z}) - \mu_{IJK} \right| \leq \left| \frac{1}{d} (\mathbf{U} - \mathbf{Z})^{\top} (\mathbf{V} - \mathbf{Z}) - \mathbb{E} \left(\frac{1}{d} (\mathbf{U} - \mathbf{Z})^{\top} (\mathbf{V} - \mathbf{Z}) \right) + \left| \mathbb{E} \left(\frac{1}{d} (\mathbf{U} - \mathbf{Z})^{\top} (\mathbf{V} - \mathbf{Z}) \right) - \mu_{IJK} \right| \xrightarrow{\mathbb{P}} 0.$$

Since μ_{IJK} is independent of d, we can write it as

$$\frac{1}{d}(\mathbf{U} - \mathbf{Z})^{\top}(\mathbf{V} - \mathbf{Z}) \stackrel{\mathbb{P}}{\to} \mu_{IJK}, \text{ , as } d \to \infty.$$

Similarly, we have

$$\frac{1}{d} \|\mathbf{U} - \mathbf{Z}\|^2 \stackrel{\mathbb{P}}{\to} \mu_{IK} \text{ and } \frac{1}{d} \|\mathbf{V} - \mathbf{Z}\|^2 \stackrel{\mathbb{P}}{\to} \mu_{JK} \text{, as } d \to \infty.$$

Using the continuous mapping theorem repeatedly, we get

$$\cos(\pi \cdot \rho_0(\mathbf{U}, \mathbf{V}, \mathbf{Z})) = \frac{\frac{1}{d}(\mathbf{U} - \mathbf{Z})^\top (\mathbf{V} - \mathbf{Z})}{\frac{1}{\sqrt{d}} \|\mathbf{U} - \mathbf{Z}\| \cdot \frac{1}{\sqrt{d}} \|\mathbf{V} - \mathbf{Z}\|} \xrightarrow{\mathbb{P}} \frac{\mu_{IJK}}{\sqrt{\mu_{IK}\mu_{JK}}} , \text{ as } d \to \infty.$$

Therefore, we have

$$\rho_0(\mathbf{U}, \mathbf{V}, \mathbf{Z}) \xrightarrow{\mathbb{P}} \frac{1}{\pi} \cos^{-1} \left(\frac{\mu_{IJK}}{\sqrt{\mu_{IK}\mu_{JK}}} \right) , \text{ as } d \to \infty.$$

Lemma A.2. Suppose, assumptions 1 to 3 are satisfied. Then, for $U \sim I, V \sim J$; $I, J \in \{F, G\}$, as $d \to \infty$,

$$\hat{\rho}(\mathbf{U}, \mathbf{V}) \stackrel{\mathbb{P}}{\to} \frac{1}{\pi(m+n)} \left(m \cos^{-1} \left(\frac{\mu_{IJ\mathbf{F}}}{\sqrt{\mu_{I\mathbf{F}}\mu_{J\mathbf{F}}}} \right) + n \cos^{-1} \left(\frac{\mu_{IJ\mathbf{G}}}{\sqrt{\mu_{I\mathbf{G}}\mu_{J\mathbf{G}}}} \right) \right).$$

In particular, $\hat{\rho}(\mathbf{X_i}, \mathbf{X_j}) \stackrel{\mathbb{P}}{\to} \theta_{\mathbf{FF}}$, $\hat{\rho}(\mathbf{Y_i}, \mathbf{Y_j}) \stackrel{\mathbb{P}}{\to} \theta_{\mathbf{GG}}$, $\hat{\rho}(\mathbf{X_i}, \mathbf{Y_j}) \stackrel{\mathbb{P}}{\to} \theta_{\mathbf{FG}}$, as $d \to \infty$, where

$$\theta_{\mathbf{FF}} = \frac{1}{\pi(m+n)} \left(\frac{m\pi}{3} + n\cos^{-1} \left(\frac{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{\mathbf{G}}^2}{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{\mathbf{G}}^2 + \sigma_{\mathbf{F}}^2} \right) \right),$$

$$\theta_{\mathbf{GG}} = \frac{1}{\pi(m+n)} \left(m \cos^{-1} \left(\frac{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{\mathbf{F}}^2}{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{\mathbf{G}}^2 + \sigma_{\mathbf{F}}^2} \right) + \frac{n\pi}{3} \right), \text{ and}$$

$$\theta_{\mathbf{FG}} = \frac{1}{2} - \frac{1}{2\pi(m+n)} \left[m \cos^{-1} \left(\frac{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{\mathbf{G}}^2}{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{\mathbf{G}}^2 + \sigma_{\mathbf{F}}^2} \right) + n \cos^{-1} \left(\frac{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{\mathbf{F}}^2}{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{\mathbf{G}}^2 + \sigma_{\mathbf{F}}^2} \right) \right].$$

Proof of lemma A.2 From lemma A.1 and definition of $\hat{\rho}$, we see that

$$\hat{\rho}(\mathbf{U}, \mathbf{V}) \stackrel{\mathbb{P}}{\to} \frac{1}{\pi(m+n)} \left(m \cos^{-1} \left(\frac{\mu_{IJF}}{\sqrt{\mu_{IF}\mu_{JF}}} \right) + n \cos^{-1} \left(\frac{\mu_{IJG}}{\sqrt{\mu_{IG}\mu_{JG}}} \right) \right),$$

as $d \to \infty$. Therefore, as $d \to \infty$,

$$\hat{\rho}(\mathbf{X}_{i}, \mathbf{X}_{j}) \xrightarrow{\mathbb{P}} \frac{m \cos^{-1}\left(\frac{\mu_{FFF}}{\mu_{\mathbf{FF}}}\right) + n \cos^{-1}\left(\frac{\mu_{FFG}}{\mu_{\mathbf{FG}}}\right)}{\pi(m+n)} \\ = \frac{1}{\pi(m+n)} \left(\frac{m\pi}{3} + n \cos^{-1}\left(\frac{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{G}}{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{G} + \sigma_{F}}\right)\right),$$

$$\begin{split} \hat{\rho}(\mathbf{Y}_i, \mathbf{Y}_j) &\overset{\mathbb{P}}{\to} \frac{m \cos^{-1} \left(\frac{\mu_{\mathbf{GGF}}}{\mu_{\mathbf{GF}}}\right) + n \cos^{-1} \left(\frac{\mu_{\mathbf{GGG}}}{\mu_{\mathbf{GG}}}\right)}{\pi(m+n)} \\ &= \frac{1}{\pi(m+n)} \left(m \cos^{-1} \left(\frac{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{\mathbf{F}}^2}{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{\mathbf{G}}^2 + \sigma_{\mathbf{F}}^2}\right) + \frac{n\pi}{3}\right), \end{split}$$

and
$$\hat{\rho}(\mathbf{X}_i, \mathbf{Y}_j) \stackrel{\mathbb{P}}{\to} \frac{1}{\pi(m+n)} \left(m \cos^{-1} \left(\frac{\mu_{\mathbf{FGF}}}{\sqrt{\mu_{\mathbf{FF}} \mu_{\mathbf{GF}}}} \right) + n \cos^{-1} \left(\frac{\mu_{\mathbf{FGG}}}{\sqrt{\mu_{\mathbf{FG}} \mu_{\mathbf{GG}}}} \right) \right)$$

4 Anonymous authors

Note that

$$\frac{m\cos^{-1}\left(\frac{\mu_{\text{FGF}}}{\sqrt{\mu_{\text{FF}}\mu_{\text{GF}}}}\right) + n\cos^{-1}\left(\frac{\mu_{\text{FGG}}}{\sqrt{\mu_{\text{FG}}\mu_{\text{GG}}}}\right)}{\pi(m+n)}$$

$$= \frac{m\cos^{-1}\left(\frac{\sqrt{\sigma_{\text{F}}^2}}{\sqrt{2(\lambda_{\text{FF}} + \lambda_{\text{GG}} - 2\lambda_{\text{FG}} + \sigma_{\text{F}}^2 + \sigma_{\text{F}}^2})}\right) + n\cos^{-1}\left(\frac{\sqrt{\sigma_{\text{G}}^2}}{\sqrt{2(\lambda_{\text{FF}} + \lambda_{\text{GG}} - 2\lambda_{\text{FG}} + \sigma_{\text{F}}^2 + \sigma_{\text{F}}^2})}\right)}{\pi(m+n)}$$

$$= \frac{\pi(m+n) - m\cos^{-1}\left(\frac{\lambda_{\text{FF}} + \lambda_{\text{GG}} - 2\lambda_{\text{FG}} + \sigma_{\text{G}}^2}{\lambda_{\text{FF}} + \lambda_{\text{GG}} - 2\lambda_{\text{FG}} + \sigma_{\text{G}}^2 + \sigma_{\text{F}}^2}}\right) - n\cos^{-1}\left(\frac{\lambda_{\text{FF}} + \lambda_{\text{GG}} - 2\lambda_{\text{FG}} + \sigma_{\text{F}}^2}}{\lambda_{\text{FF}} + \lambda_{\text{GG}} - 2\lambda_{\text{FG}} + \sigma_{\text{G}}^2 + \sigma_{\text{F}}^2}}\right)}{2\pi(m+n)}$$

We now define

$$t_{\mathbf{FG}} = \mathbb{E}\left[\rho\left(\mathbf{X}_{1}, \mathbf{Y}_{1}\right)\right] \text{ and } \hat{t}_{\mathbf{FG}} = \frac{1}{mn} \sum_{i,j} \hat{\rho}\left(\mathbf{X}_{i}, \mathbf{Y}_{j}\right).$$

Lemma A.3. Suppose, assumptions 1 to 3 are satisfied. Then, as $d \to \infty$,

$$\mathcal{W}_{\mathbf{FG}}^* \to 2\theta_{\mathbf{FG}} - \theta_{\mathbf{FF}} - \theta_{\mathbf{GG}} = \frac{2}{3} - \frac{1}{\pi} \left[\cos^{-1} \left(\frac{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{\mathbf{G}}^2}{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{\mathbf{G}}^2 + \sigma_{\mathbf{F}}^2} \right) + \cos^{-1} \left(\frac{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{\mathbf{F}}^2}{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{\mathbf{G}}^2 + \sigma_{\mathbf{F}}^2} \right) \right].$$

Proof of lemma A.3

Since, $\hat{\rho}(\mathbf{X_i}, \mathbf{X_j}) \stackrel{\mathbb{P}}{\to} \theta_{\mathbf{FF}}$ and $\hat{\rho}$ is a bounded function, using the Dominated Convergence Theorem, we have

$$t_{\mathbf{FF}} = \mathbb{E}[\hat{\rho}(\mathbf{X_i}, \mathbf{X_i})] \to \theta_{\mathbf{FF}}$$
, as $d \to \infty$.

Similarly, we can show that $t_{\mathbf{GG}} \to \theta_{\mathbf{GG}}$ and $t_{\mathbf{FG}} \to \theta_{\mathbf{FG}}$, as $d \to \infty$. Hence, $\mathcal{W}_{\mathbf{FG}}^* \to 2\theta_{\mathbf{FG}} - \theta_{\mathbf{FF}} - \theta_{\mathbf{GG}}$, as $d \to \infty$. Substituting the values of $\theta_{\mathbf{FG}}$, $\theta_{\mathbf{FF}}$ and $\theta_{\mathbf{GG}}$, we get

$$\mathcal{W}_{\mathbf{FG}}^* \to \frac{2}{3} - \frac{1}{\pi} \left[\cos^{-1} \left(\frac{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{\mathbf{G}}^2}{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{\mathbf{G}}^2 + \sigma_{\mathbf{F}}^2} \right) + \cos^{-1} \left(\frac{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{\mathbf{F}}^2}{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} + \sigma_{\mathbf{G}}^2 + \sigma_{\mathbf{F}}^2} \right) \right], \text{ as } d \to \infty.$$

Lemma A.4. Suppose, assumptions 1 to 3 are satisfied. Then,

- (a) $i. \ \hat{t}_{\mathbf{FF}} \xrightarrow{\mathbb{P}} \theta_{\mathbf{FF}} \ , \ as \ d \to \infty \ ;$ $ii. \ \hat{t}_{\mathbf{GG}} \xrightarrow{\mathbb{P}} \theta_{\mathbf{GG}} \ , \ as \ d \to \infty \ ;$ $iii. \ \hat{t}_{\mathbf{FG}} \xrightarrow{\mathbb{P}} \theta_{\mathbf{FG}} \ , \ as \ d \to \infty.$
- (b) i. if $\mathbf{Z} \sim \mathbf{F}$, then $\hat{t}_{\mathbf{F}}(\mathbf{Z}) \stackrel{\mathbb{P}}{\to} \theta_{\mathbf{F}\mathbf{F}}$ and $\hat{t}_{\mathbf{G}}(\mathbf{Z}) \stackrel{\mathbb{P}}{\to} \theta_{\mathbf{F}\mathbf{G}}$, as $d \to \infty$; ii. if $\mathbf{Z} \sim \mathbf{G}$, then $\hat{t}_{\mathbf{F}}(\mathbf{Z}) \stackrel{\mathbb{P}}{\to} \theta_{\mathbf{F}\mathbf{G}}$ and $\hat{t}_{\mathbf{G}}(\mathbf{Z}) \stackrel{\mathbb{P}}{\to} \theta_{\mathbf{G}\mathbf{G}}$, as $d \to \infty$.

Proof of lemma A.4

(a) Since $\hat{\rho}(\mathbf{X_i}, \mathbf{X_j}) \stackrel{\mathbb{P}}{\to} \theta_{\mathbf{FF}}$,

$$\hat{t}_{\mathbf{FF}} = \frac{1}{m(m-1)} \sum_{i \neq j} \hat{\rho}(\mathbf{X}_i, \mathbf{X}_j) \stackrel{\mathbb{P}}{\to} \theta_{\mathbf{FF}}$$
, as $d \to \infty$.

Similarly, $\hat{t}_{\mathbf{GG}} \stackrel{\mathbb{P}}{\to} \theta_{\mathbf{GG}}$ and $\hat{t}_{\mathbf{FG}} \stackrel{\mathbb{P}}{\to} \theta_{\mathbf{FG}}$, as $d \to \infty$.

(b) If $\mathbf{Z} \sim \mathbf{F}$, $\hat{\rho}(\mathbf{X_i}, \mathbf{Z}) \stackrel{\mathbb{P}}{\to} \theta_{\mathbf{FF}}$ and $\hat{\rho}(\mathbf{Y_i}, \mathbf{Z}) \stackrel{\mathbb{P}}{\to} \theta_{\mathbf{FG}}$, as $d \to \infty$. So, $\hat{t}_{\mathbf{F}}(\mathbf{Z}) = \frac{1}{n} \sum_{i} \hat{\rho}(\mathbf{X}_i, \mathbf{Z}) \stackrel{\mathbb{P}}{\to} \theta_{\mathbf{FF}}$ and $\hat{t}_{\mathbf{G}}(\mathbf{Z}) = \frac{1}{n} \sum_{i} \hat{\rho}(\mathbf{Y}_i, \mathbf{Z}) \stackrel{\mathbb{P}}{\to} \theta_{\mathbf{FG}}$,

as $d \to \infty$. Similarly, if $\mathbf{Z} \sim \mathbf{G}$, $\hat{t}_{\mathbf{F}}(\mathbf{Z}) \xrightarrow{\mathbb{P}} \theta_{\mathbf{F}\mathbf{G}}$ and $\hat{t}_{\mathbf{G}}(\mathbf{Z}) \xrightarrow{\mathbb{P}} \theta_{\mathbf{G}\mathbf{G}}$, as $d \to \infty$.

Proof of Theorem 4

From lemma A.3, we have $\theta_{\mathbf{FG}}^* = \lim_d \mathcal{W}_{\mathbf{FG}}^* = 2\theta_{\mathbf{FG}} - \theta_{\mathbf{FF}} - \theta_{\mathbf{GG}}$. Given $\mathbf{Z} \sim \mathbf{F}$,

$$\begin{aligned} & \left| l_{\mathbf{G}}(\mathbf{Z}) - l_{\mathbf{F}}(\mathbf{Z}) - \frac{1}{2} \theta_{\mathbf{F}\mathbf{G}}^* \right| \\ & = \left| (\hat{t}_{\mathbf{G}}(\mathbf{Z}) - \theta_{\mathbf{F}\mathbf{G}}) - (\hat{t}_{\mathbf{F}}(\mathbf{Z}) - \theta_{\mathbf{F}\mathbf{F}}) + \frac{1}{2} (\hat{t}_{\mathbf{F}\mathbf{F}} - \theta_{\mathbf{F}\mathbf{F}}) - \frac{1}{2} (\hat{t}_{\mathbf{G}\mathbf{G}} - \theta_{\mathbf{G}\mathbf{G}}) \right| \\ & \leq |\hat{t}_{\mathbf{G}}(\mathbf{Z}) - \theta_{\mathbf{F}\mathbf{G}}| + |\hat{t}_{\mathbf{F}}(\mathbf{Z}) - \theta_{\mathbf{F}\mathbf{F}}| + \frac{1}{2} |\hat{t}_{\mathbf{F}\mathbf{F}} - \theta_{\mathbf{F}\mathbf{F}}| + \frac{1}{2} |\hat{t}_{\mathbf{G}\mathbf{G}} - \theta_{\mathbf{G}\mathbf{G}}| \\ & \stackrel{\mathbb{P}}{\to} 0, \text{ , as } d \to \infty \text{ [By using } lemma \ A.4]. \end{aligned}$$

Therefore, if $\mathbf{Z} \sim \mathbf{F}$, $l_{\mathbf{G}}(\mathbf{Z}) - l_{\mathbf{F}}(\mathbf{Z}) \stackrel{\mathbb{P}}{\to} \frac{1}{2} \theta_{\mathbf{FG}}^*$, as $d \to \infty$.

Part (b) can be shown in an exactly similar way.

Lemma A.5. $2\theta_{\mathbf{FG}} - \theta_{\mathbf{FF}} - \theta_{\mathbf{GG}} = 0$ if and only if $\sigma_{\mathbf{G}}^2 = \sigma_{\mathbf{F}}^2$ and $\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} = 0$.

Proof of lemma A.5

$$2\theta_{\mathbf{F}\mathbf{G}} - \theta_{\mathbf{F}\mathbf{F}} - \theta_{\mathbf{G}\mathbf{G}} = \frac{2}{3} - \frac{1}{\pi} \left[\cos^{-1} \left(\frac{\lambda_{\mathbf{F}\mathbf{F}} + \lambda_{\mathbf{G}\mathbf{G}} - 2\lambda_{\mathbf{F}\mathbf{G}} + \sigma_{\mathbf{G}}^{2}}{\lambda_{\mathbf{F}\mathbf{F}} + \lambda_{\mathbf{G}\mathbf{G}} - 2\lambda_{\mathbf{F}\mathbf{G}} + \sigma_{\mathbf{G}}^{2} + \sigma_{\mathbf{F}}^{2}} \right) + \cos^{-1} \left(\frac{\lambda_{\mathbf{F}\mathbf{F}} + \lambda_{\mathbf{G}\mathbf{G}} - 2\lambda_{\mathbf{F}\mathbf{G}} + \sigma_{\mathbf{F}}}{\lambda_{\mathbf{F}\mathbf{F}} + \lambda_{\mathbf{G}\mathbf{G}} - 2\lambda_{\mathbf{F}\mathbf{G}} + \sigma_{\mathbf{G}}^{2} + \sigma_{\mathbf{F}}^{2}} \right) \right].$$

Let,
$$x = \frac{\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}}}{\sigma_{\mathbf{G}}^2 + \sigma_{\mathbf{F}}^2}$$
 and $\alpha = \frac{\sigma_{\mathbf{F}}^2}{\sigma_{\mathbf{G}}^2 + \sigma_{\mathbf{F}}^2}$. Note that $x \ge 0$ and $\alpha \in (0, 1)$.

We need to solve $\cos^{-1}\left(\frac{x+\alpha}{x+1}\right) + \cos^{-1}\left(\frac{x+1-\alpha}{x+1}\right) = \frac{2\pi}{3}$, for $x \ge 0$ and $\alpha \in (0,1)$, which is equivalent to solve

$$\cos^{-1}\left(\frac{x+\alpha}{x+1} \cdot \frac{x+1-\alpha}{x+1} - \sqrt{\left(1-\left(\frac{x+\alpha}{x+1}\right)^2\right)\left(1-\left(\frac{x+1-\alpha}{x+1}\right)^2\right)}\right) = \frac{2\pi}{3}$$

$$\Rightarrow \frac{x+\alpha}{x+1} \cdot \frac{x+1-\alpha}{x+1} - \sqrt{\left(1-\left(\frac{x+\alpha}{x+1}\right)^2\right)\left(1-\left(\frac{x+1-\alpha}{x+1}\right)^2\right)} = -\frac{1}{2}$$

$$\Rightarrow x^2 + \alpha(1-\alpha) + x - \sqrt{\alpha(1-\alpha)(4x^2+2+6x+\alpha(1-\alpha))} = -\frac{1}{2}(x+1)^2$$

$$\Rightarrow \left(\frac{1}{2}(x+1)(3x+1) + \beta\right)^2 = \beta(4x^2+2+6x+\beta) \text{ ; substituting, } \beta = \alpha(1-\alpha)$$

$$\Rightarrow \beta = \frac{(3x+1)^2}{4} \ge \frac{1}{4} \text{ since } x \ge 0.$$

But, since $\alpha \in (0,1)$, by AM-GM inequality, $\beta = \alpha(1-\alpha) \leq \frac{1}{4}$, equality holds iff $\alpha = \frac{1}{2}$. So, we must have $\beta = \frac{1}{4}$ which will imply $\alpha = \frac{1}{2}$ and x = 0, i.e, $\sigma_G = \sigma_F$ and $\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} = 0$.

and $\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} = 0$. Also, $\sigma_{\mathbf{G}} = \sigma_{\mathbf{F}}$ and $\lambda_{\mathbf{FF}} + \lambda_{\mathbf{GG}} - 2\lambda_{\mathbf{FG}} = 0$ implies $2\theta_{\mathbf{FG}} - \theta_{\mathbf{FF}} - \theta_{\mathbf{GG}} = 0$.

Proof of Theorem 5

The misclassification probability of the classifier δ_0 can be written as

$$\begin{split} & \Delta_0 = \mathbb{P}\left[\delta_0(\mathbf{Z}) = 2, \mathbf{Z} \sim \mathbf{F}\right] + \mathbb{P}\left[\delta_0(\mathbf{Z}) = 1, \mathbf{Z} \sim \mathbf{G}\right] \\ & = \frac{m}{m+n} \mathbb{P}\left[\delta_0(\mathbf{Z}) = 2 \mid \mathbf{Z} \sim \mathbf{F}\right] + \frac{n}{m+n} \mathbb{P}\left[\delta_0(\mathbf{Z}) = 1 \mid \mathbf{Z} \sim \mathbf{G}\right] \\ & = \frac{m}{m+n} \mathbb{P}\left[l_{\mathbf{G}}(\mathbf{Z}) - l_{\mathbf{F}}(\mathbf{Z}) \le 0 \mid \mathbf{Z} \sim \mathbf{F}\right] + \frac{n}{m+n} \mathbb{P}\left[l_{\mathbf{G}}(\mathbf{Z}) - l_{\mathbf{F}}(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{G}\right]. \end{split}$$

By lemma A.5, we know that if either $\lim_{d\to\infty} \frac{1}{d} \|\boldsymbol{\mu}_{\mathbf{F}} - \boldsymbol{\mu}_{\mathbf{G}}\|^2 \neq 0$ or $\sigma_{\mathbf{F}}^2 \neq \sigma_{\mathbf{G}}^2$ holds, $2\theta_{\mathbf{F}\mathbf{G}} - \theta_{\mathbf{F}\mathbf{F}} - \theta_{\mathbf{G}\mathbf{G}} > 0$. We can choose $\epsilon > 0$ such that $\epsilon < \frac{1}{2}(2\theta_{\mathbf{F}\mathbf{G}} - \theta_{\mathbf{F}\mathbf{F}} - \theta_{\mathbf{G}\mathbf{G}})$. Therefore, we have:

$$\mathbb{P}\left[l_{\mathbf{G}}(\mathbf{Z}) - l_{\mathbf{F}}(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\
\leq \mathbb{P}\left[l_{\mathbf{G}}(\mathbf{Z}) - l_{\mathbf{F}}(\mathbf{Z}) \leq \frac{1}{2}(2\theta_{\mathbf{F}\mathbf{G}} - \theta_{\mathbf{F}\mathbf{F}} - \theta_{\mathbf{G}\mathbf{G}}) - \epsilon \mid \mathbf{Z} \sim \mathbf{F}\right] \\
\leq \mathbb{P}\left[l_{\mathbf{G}}(\mathbf{Z}) - l_{\mathbf{F}}(\mathbf{Z}) - \frac{1}{2}(2\theta_{\mathbf{F}\mathbf{G}} - \theta_{\mathbf{F}\mathbf{F}} - \theta_{\mathbf{G}\mathbf{G}}) \leq -\epsilon \mid \mathbf{Z} \sim \mathbf{F}\right] \\
\leq \mathbb{P}\left[\left|l_{\mathbf{G}}(\mathbf{Z}) - l_{\mathbf{F}}(\mathbf{Z}) - \frac{1}{2}(2\theta_{\mathbf{F}\mathbf{G}} - \theta_{\mathbf{F}\mathbf{F}} - \theta_{\mathbf{G}\mathbf{G}})\right| > \epsilon \mid \mathbf{Z} \sim \mathbf{F}\right] \rightarrow 0 \text{ , as } d \rightarrow \infty .$$
[Using Theorem 4]

Similarly, one can show that

$$\mathbb{P}\left[l_{\mathbf{G}}(\mathbf{Z}) - l_{\mathbf{F}}(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{G}\right] \to 0$$
, as $d \to \infty$.

Thus, we conclude that $\Delta_0 \to 0$ as $d \to \infty$.

Lemma A.6. It follows from assumption 6 that

$$\sum_{1 \le k_1 < k_2 \le d} \operatorname{cov}(\hat{\rho}(U_{k_1}, V_{k_1}), \hat{\rho}(U_{k_2}, V_{k_2})) = o(d^2).$$

Proof of lemma A.6 Let, $\mathcal{X} = \{\mathbf{X}_1, \cdots, \mathbf{X}_m\}$ and $\mathcal{Y} = \{\mathbf{Y}_1, \cdots, \mathbf{Y}_n\}$. Then, $\operatorname{cov}(\hat{\rho}(U_{k_1}, V_{k_1}), \hat{\rho}(U_{k_2}, V_{k_2}))$ $= \frac{1}{(m+n)^2} \sum_{\mathbf{Q}, \mathbf{Q}^* \in \mathcal{X} \cup \mathcal{Y}} \operatorname{cov}(\rho_0(U_{k_1}, V_{k_1}; Q_{k_1}), \rho_0(U_{k_2}, V_{k_2}; Q_{k_2}^*)).$

Hence, it follows that

$$\begin{split} & \sum_{1 \leq k_1 < k_2 \leq d} \text{cov}(\hat{\rho}(U_{k_1}, V_{k_1}), \hat{\rho}(U_{k_2}, V_{k_2})) \\ &= \frac{1}{(m+n)^2} \sum_{1 \leq k_1 < k_2 \leq d} \sum_{\mathbf{Q}, \mathbf{Q}^* \in \mathcal{X} \cup \mathcal{Y}} \text{cov}(\rho_0(U_{k_1}, V_{k_1}; Q_{k_1}), \rho_0(U_{k_2}, V_{k_2}; Q_{k_2}^*)) \\ &= \frac{1}{(m+n)^2} \sum_{\mathbf{Q}, \mathbf{Q}^* \in \mathcal{X} \cup \mathcal{Y}} \sum_{1 \leq k_1 < k_2 \leq d} \text{cov}(\rho_0(U_{k_1}, V_{k_1}; Q_{k_1}), \rho_0(U_{k_2}, V_{k_2}; Q_{k_2}^*)) \end{split}$$

[Since the sum over \mathbf{Q}, \mathbf{Q}^* is finite sum.]

 $= o(d^2)$ [By using assumption 6].

We now define

$$T_{\mathbf{FG}} = \mathbb{E}\left[\bar{\rho}\left(\mathbf{X}_{1}, \mathbf{Y}_{1}\right)\right] \text{ and } \hat{T}_{\mathbf{FG}} = \frac{1}{nm} \sum_{i,j} \hat{\rho}\left(\mathbf{X}_{i}, \mathbf{Y}_{j}\right).$$

Lemma A.7. Suppose assumption 6 is satisfied. Then,

(a) Irrespective of whether U, V are coming from F and/or G,

$$\hat{\rho}(\mathbf{U}, \mathbf{V}) - \mathbb{E}[\hat{\rho}(\mathbf{U}, \mathbf{V})] \stackrel{\mathbb{P}}{\to} 0$$
, as $d \to \infty$

- (b) i. $\hat{T}_{\mathbf{FF}} T_{\mathbf{FF}} \stackrel{\mathbb{P}}{\to} 0$, as $d \to \infty$; ii. $\hat{T}_{\mathbf{GG}} - T_{\mathbf{GG}} \stackrel{\mathbb{P}}{\to} 0$, as $d \to \infty$; iii. $\hat{T}_{\mathbf{FG}} - T_{\mathbf{FG}} \stackrel{\mathbb{P}}{\to} 0$, as $d \to \infty$.
- (c) i. If $\mathbf{Z} \sim \mathbf{F}$, then as $d \to \infty$, $\hat{T}_{\mathbf{F}}(\mathbf{Z}) T_{\mathbf{F}\mathbf{F}} \stackrel{\mathbb{P}}{\to} 0$ and $\hat{T}_{\mathbf{G}}(\mathbf{Z}) T_{\mathbf{F}\mathbf{G}} \stackrel{\mathbb{P}}{\to} 0$; ii. If $\mathbf{Z} \sim \mathbf{G}$, then as $d \to \infty$, $\hat{T}_{\mathbf{F}}(\mathbf{Z}) - T_{\mathbf{F}\mathbf{G}} \stackrel{\mathbb{P}}{\to} 0$ and $\hat{T}_{\mathbf{G}}(\mathbf{Z}) - T_{\mathbf{G}\mathbf{G}} \stackrel{\mathbb{P}}{\to} 0$.

Proof of lemma A.7

(a) For any $\epsilon > 0$, using Chebyshev's Inequality, we have,

$$\mathbb{P}[|\hat{\bar{\rho}}(\mathbf{U}, \mathbf{V}) - \mathbb{E}[\hat{\bar{\rho}}(\mathbf{U}, \mathbf{V})]| > \epsilon] \le \frac{\operatorname{var}(\hat{\bar{\rho}}(\mathbf{U}, \mathbf{V}))}{\epsilon^2}$$

Note that $\rho_0 \in [-1, 1]$. Thus, $\hat{\rho}$ being a convex combination of some ρ_0 , lies between [-1, 1]. Also, since $\rho(a, b) = \mathbb{E}[\rho_0(a, b)]$, we have $\hat{\rho} \in [-1, 1]$. So, $\mathbb{E}(\hat{\rho}^2(U_i, V_i)) \leq 1$.

$$\begin{split} & \mathbb{P}[|\hat{\rho}\left(\mathbf{U},\mathbf{V}\right) - \mathbb{E}[\hat{\rho}\left(\mathbf{U},\mathbf{V}\right)]| > \epsilon] \\ & \leq \frac{1}{\epsilon^2} \mathrm{var}(\frac{1}{d} \sum_{i=1}^d \hat{\rho}\left(U_i,V_i\right)) \\ & = \frac{1}{\epsilon^2 d^2} \left[\sum_{i=1}^d \mathrm{var}(\hat{\rho}\left(U_i,V_i\right)) + \sum_{1 \leq i < j \leq d} \mathrm{cov}(\hat{\rho}(U_i,V_i), \hat{\rho}(U_j,V_j)) \right] \\ & \leq \frac{1}{\epsilon^2 d^2} \left[\sum_{i=1}^d \mathbb{E}(\hat{\rho}^2\left(U_i,V_i\right)) + \sum_{1 \leq i < j \leq d} \mathrm{cov}(\hat{\rho}(U_i,V_i), \hat{\rho}(U_j,V_j)) \right] \\ & \leq \frac{1}{\epsilon^2 d^2} \left[d + o(d^2) \right] \rightarrow 0 \quad \text{, as } d \rightarrow \infty. \end{split}$$

The last assertion holds good due to lemma A.6 and the fact that $\mathbb{E}(\hat{\rho}^2(U_i, V_i)) \leq 1$. Therefore, we have:

$$|\hat{\bar{\rho}}(\mathbf{U}, \mathbf{V}) - \mathbb{E}[\hat{\bar{\rho}}(\mathbf{U}, \mathbf{V})]| \stackrel{\mathbb{P}}{\to} 0$$
, as $d \to \infty$.

(b) Once we have proved part (a), we have the following:

$$\begin{split} \hat{T}_{\mathbf{FF}} - T_{\mathbf{FF}} &= \frac{1}{m(m-1)} \sum_{i \neq j} \left[\hat{\bar{\rho}} \left(\mathbf{X}_i, \mathbf{X}_j \right) - \mathbb{E}[\hat{\bar{\rho}} \left(\mathbf{X}_i, \mathbf{X}_j \right)] + \mathbb{E}[\bar{\rho} \left(\mathbf{X}_i, \mathbf{X}_j \right)] - \mathbb{E} \left[\hat{\bar{\rho}} \left(\mathbf{X}_i, \mathbf{X}_j \right) \right] - \mathbb{E} \left[\hat{\bar{\rho}} \left(\mathbf{X}_i, \mathbf{X}_j \right) \right] \right] \\ &= \frac{1}{m(m-1)} \sum_{i \neq j} \left[\hat{\bar{\rho}} \left(\mathbf{X}_i, \mathbf{X}_j \right) - \mathbb{E}[\hat{\bar{\rho}} \left(\mathbf{X}_i, \mathbf{X}_j \right)] \right] \\ &+ \frac{1}{m(m-1)} \sum_{i \neq j} \left[\mathbb{E}[\hat{\bar{\rho}} \left(\mathbf{X}_i, \mathbf{X}_j \right)] - \mathbb{E} \left[\bar{\rho} \left(\mathbf{X}_i, \mathbf{X}_j \right) \right] \right]. \end{split}$$

We can show that as $d \to \infty$, the first summand goes to 0 in probability using part (a). Now,

$$\begin{split} &\sum_{i\neq j} \left[\mathbb{E}[\hat{\rho}\left(\mathbf{X}_{i},\mathbf{X}_{j}\right)] - \mathbb{E}\left[\bar{\rho}\left(\mathbf{X}_{i},\mathbf{X}_{j}\right)\right] \right] \\ &= \frac{1}{d} \sum_{k=1}^{d} \left[\mathbb{E}[\hat{\rho}\left(X_{1k},X_{2k}\right)] - \mathbb{E}\left[\rho\left(X_{1k},X_{2k}\right)\right] \right] \\ &= \frac{1}{d} \sum_{k=1}^{d} \left[\frac{m}{m+n} \mathbb{E}\left[\rho_{0}(X_{1k},X_{2k};X_{3k})\right] + \frac{n}{m+n} \mathbb{E}\left[\rho_{0}(X_{1k},X_{2k};Y_{3k})\right] \\ &- \mathbb{E}\left[\rho\left(X_{1k},X_{2k}\right)\right] \right] \\ &= \frac{1}{d} \sum_{k=1}^{d} \left[\frac{m}{m+n} \mathbb{E}\left[\rho_{0}(X_{1k},X_{2k};X_{3k})\right] \\ &+ \frac{n}{m+n} \mathbb{E}\left[\rho_{0}(X_{1k},X_{2k};Y_{3k})\right] - \mathbb{E}\left[E_{\mathbf{Q}}[\rho_{0}\left(X_{1k},X_{2k};Q_{k}\right)]\right] \right] \\ &\quad \text{where } \mathbf{Q} \sim \frac{m}{m+n} \mathbf{F} + \frac{n}{m+n} \mathbf{G} \\ &= \frac{1}{d} \sum_{k=1}^{d} \left[\frac{m}{m+n} \mathbb{E}\left[\rho_{0}(X_{1k},X_{2k};X_{3k})\right] + \frac{n}{m+n} \mathbb{E}\left[\rho_{0}(X_{1k},X_{2k};Y_{3k})\right] \\ &- \mathbb{E}\left[\rho_{0}\left(X_{1k},X_{2k};Q_{k}\right)\right] \right] \\ &= \frac{1}{d} \sum_{k=1}^{d} \left[\frac{m}{m+n} \mathbb{E}\left[\rho_{0}(X_{1k},X_{2k};X_{3k})\right] + \frac{n}{m+n} \mathbb{E}\left[\rho_{0}(X_{1k},X_{2k};Y_{3k})\right] \\ &- \frac{m}{m+n} \mathbb{E}\left[\rho\left(X_{1k},X_{2k};Q_{k}\right) |\mathbf{Q} \sim \mathbf{F}\right] - \frac{n}{m+n} \mathbb{E}\left[\rho\left(X_{1k},X_{2k};Q_{k}\right) |\mathbf{Q} \sim \mathbf{G}\right] \right] \\ &= 0. \end{split}$$

ii. The proof is the same as above.

- iii. The proof is the same as above.
- (c) Once again, we shall use the result from part (a).

i. If
$$\mathbf{Z} \sim \mathbf{F}$$
, in that case, $T_{\mathbf{FF}} = \mathbb{E}\left[\bar{\rho}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)\right] = \mathbb{E}\left[\bar{\rho}\left(\mathbf{X}_{i}, \mathbf{Z}\right)\right]$. So,

$$\begin{split} \hat{T}_{\mathbf{F}}(\mathbf{Z}) &- T_{\mathbf{FF}} \\ &= \frac{1}{m} \sum_{i} (\hat{\bar{\rho}} \left(\mathbf{X_i}, \mathbf{Z} \right) - \mathbb{E}[\bar{\rho} \left(\mathbf{X_i}, \mathbf{Z} \right)]) \\ &= \frac{1}{m} \sum_{i} \left[(\hat{\bar{\rho}} \left(\mathbf{X_i}, \mathbf{Z} \right) - \mathbb{E}[\hat{\bar{\rho}} \left(\mathbf{X_i}, \mathbf{Z} \right)]) + (\mathbb{E}[\hat{\bar{\rho}} \left(\mathbf{X_i}, \mathbf{Z} \right)] - \mathbb{E}[\bar{\rho} \left(\mathbf{X_i}, \mathbf{Z} \right)]) \right]. \end{split}$$

$$\begin{split} &\frac{1}{m}\sum_{i}(\mathbb{E}[\hat{\rho}\left(\mathbf{X}_{i},\mathbf{Z}\right)]-\mathbb{E}[\bar{\rho}\left(\mathbf{X}_{i},\mathbf{Z}\right)])\\ &=\mathbb{E}[\hat{\rho}\left(\mathbf{X}_{1},\mathbf{Z}\right)]-\mathbb{E}[\bar{\rho}\left(\mathbf{X}_{1},\mathbf{Z}\right)]\\ &=\frac{1}{d}\sum_{k=1}^{d}\left[\mathbb{E}[\hat{\rho}\left(\mathbf{X}_{1},\mathbf{Z}\right)]-\mathbb{E}[\rho\left(\mathbf{X}_{1},\mathbf{Z}\right)]\right]\\ &=\frac{1}{d}\sum_{k=1}^{d}\left[\frac{m}{m+n}\mathbb{E}\left[\rho_{0}(X_{1k},Z_{k};X_{2k})\right]+\frac{n}{m+n}\mathbb{E}\left[\rho_{0}(X_{1k},Z_{k};Y_{2k})\right]\\ &-\mathbb{E}\left[\rho\left(X_{1k},Z_{k}\right)\right]\right]\\ &=\frac{1}{d}\sum_{k=1}^{d}\left[\frac{m}{m+n}\mathbb{E}\left[\rho_{0}(X_{1k},Z_{k};X_{2k})\right]+\frac{n}{m+n}\mathbb{E}\left[\rho_{0}(X_{1k},Z_{k};Y_{2k})\right]-\right.\\ &\left.\mathbb{E}\left[E_{Q_{k}}[\rho_{0}\left(X_{1k},Z_{k};Q_{k}\right)\right]\right], \text{ where }\mathbf{Q}\sim\frac{m}{m+n}\mathbf{F}+\frac{n}{m+n}\mathbf{G}\\ &=\frac{1}{d}\sum_{k=1}^{d}\left[\frac{m}{m+n}\mathbb{E}\left[\rho_{0}(X_{1k},Z_{k};X_{2k})\right]+\frac{n}{m+n}\mathbb{E}\left[\rho_{0}(X_{1k},Z_{k};Y_{2k})\right]-\\ &-\mathbb{E}\left[\rho_{0}\left(X_{1k},Z_{k};Q_{k}\right)\right]\right]\\ &=\frac{1}{d}\sum_{k=1}^{d}\left[\frac{m}{m+n}\mathbb{E}\left[\rho_{0}(X_{1k},Z_{k};X_{2k})\right]+\frac{n}{m+n}\mathbb{E}\left[\rho_{0}(X_{1k},Z_{k};Y_{2k})\right]-\\ &-\frac{m}{m+n}\mathbb{E}\left[\rho\left(X_{1k},Z_{k};Q_{k}\right)|\mathbf{Q}\sim\mathbf{F}\right]-\frac{n}{m+n}\mathbb{E}\left[\rho\left(X_{1k},Z_{k};Q_{k}\right)|\mathbf{Q}\sim\mathbf{G}\right]\right]\\ &=0\quad\square \end{split}$$

Proof of Theorem 7

We shall prove part (a) only, and the next part will follow analogously.

$$\begin{aligned} &|\mathscr{D}_{1}(\mathbf{Z}) - \frac{1}{2}\overline{\mathcal{W}}_{\mathbf{FG}}^{*}| \\ &= \left| (\hat{T}_{\mathbf{G}}(\mathbf{Z}) - T_{\mathbf{FG}}) - (\hat{T}_{\mathbf{F}}(\mathbf{Z}) - T_{\mathbf{FF}}) - \frac{1}{2}(\hat{T}_{\mathbf{GG}} - T_{\mathbf{GG}}) + \frac{1}{2}(\hat{T}_{\mathbf{FF}} - T_{\mathbf{FF}}) \right| \\ &\leq |\hat{T}_{\mathbf{G}}(\mathbf{Z}) - T_{\mathbf{FG}}| + |\hat{T}_{\mathbf{F}}(\mathbf{Z}) - T_{\mathbf{FF}}| + \frac{1}{2}|\hat{T}_{\mathbf{GG}} - T_{\mathbf{GG}}| + \frac{1}{2}|\hat{T}_{\mathbf{FF}} - T_{\mathbf{FF}}| \\ &\stackrel{\mathbb{P}}{\to} 0, \text{ as } d \to \infty, \text{ given } \mathbf{Z} \sim \mathbf{F}. \end{aligned}$$

Here, the last assertion follows from lemma A.7. Now,

$$\begin{aligned} & \left| S(\mathbf{Z}) - \frac{1}{2} \left(T_{\mathbf{F}\mathbf{F}} - T_{\mathbf{G}\mathbf{G}} \right) \right| \\ & = \left| \left(\hat{T}_{\mathbf{F}}(\mathbf{Z}) - \hat{T}_{\mathbf{F}\mathbf{F}} \right) + \left(\hat{T}_{\mathbf{G}}(\mathbf{Z}) - \hat{T}_{\mathbf{F}\mathbf{G}} \right) + \frac{1}{2} \left(\hat{T}_{\mathbf{F}\mathbf{F}} - T_{\mathbf{F}\mathbf{F}} \right) - \frac{1}{2} \left(\hat{T}_{\mathbf{G}\mathbf{G}} - T_{\mathbf{G}\mathbf{G}} \right) \right| \\ & \leq \left| \hat{T}_{\mathbf{F}}(\mathbf{Z}) - \hat{T}_{\mathbf{F}\mathbf{F}} \right| + \left| \hat{T}_{\mathbf{G}}(\mathbf{Z}) - \hat{T}_{\mathbf{F}\mathbf{G}} \right| + \frac{1}{2} \left| \hat{T}_{\mathbf{F}\mathbf{F}} - T_{\mathbf{F}\mathbf{F}} \right| + \frac{1}{2} \left| \hat{T}_{\mathbf{G}\mathbf{G}} - T_{\mathbf{G}\mathbf{G}} \right|. \end{aligned}$$

From here, it follows from lemma A.7 that

$$\left| S(\mathbf{Z}) - \frac{1}{2} \left(T_{\mathbf{F}\mathbf{F}} - T_{\mathbf{G}\mathbf{G}} \right) \right| \stackrel{\mathbb{P}}{\to} 0, \text{ as } d \to \infty, \text{ given } \mathbf{Z} \sim \mathbf{F}.$$
 (1)

Also, from theorem 1, given $\mathbf{Z} \sim \mathbf{F}$,

$$\left| \mathscr{D}_1(\mathbf{Z}) - \frac{1}{2} \overline{\mathcal{W}}_{\mathbf{FG}}^* \right| \stackrel{\mathbb{P}}{\to} 0, \text{ as } d \to \infty.$$

Next, we have:

$$|\widehat{\mathcal{W}}_{\mathbf{FG}}^* - \overline{\mathcal{W}}_{\mathbf{FG}}^*| = \left| 2 \left(\hat{T}_{\mathbf{FG}} - T_{\mathbf{FG}} \right) - \left(\hat{T}_{\mathbf{FF}} - T_{\mathbf{FF}} \right) - \left(\hat{T}_{\mathbf{GG}} - T_{\mathbf{GG}} \right) \right|$$

$$\leq 2|\widehat{T}_{\mathbf{FG}} - T_{\mathbf{FG}}| + |\widehat{T}_{\mathbf{FF}} - T_{\mathbf{FF}}| + |\widehat{T}_{\mathbf{GG}} - T_{\mathbf{GG}}|$$

$$\stackrel{\mathbb{P}}{\to} 0, \text{ as } d \to \infty.$$

And also:

$$\begin{vmatrix} S_{\mathbf{F}\mathbf{G}} - (T_{\mathbf{F}\mathbf{F}} - T_{\mathbf{G}\mathbf{G}}) \end{vmatrix} = \begin{vmatrix} \left(\hat{T}_{\mathbf{F}\mathbf{F}} - T_{\mathbf{F}\mathbf{F}} \right) - \left(\hat{T}_{\mathbf{G}\mathbf{G}} - T_{\mathbf{G}\mathbf{G}} \right) \end{vmatrix}$$
$$\leq |\hat{T}_{\mathbf{F}\mathbf{F}} - T_{\mathbf{F}\mathbf{F}}| + |\hat{T}_{\mathbf{G}\mathbf{G}} - T_{\mathbf{G}\mathbf{G}}| \stackrel{\mathbb{P}}{\to} 0, \text{ as } d \to \infty.$$

Combining the 4 results stated above, we can see that given $\mathbf{Z} \sim \mathbf{F}$,

$$\left| \frac{1}{2} \hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* \mathscr{D}_1(\mathbf{Z}) + \frac{1}{2} S_{\mathbf{FG}} \cdot S(\mathbf{Z}) - \bar{\tau}_{\mathbf{FG}} \right| \stackrel{\mathbb{P}}{\to} 0, \text{ as } d \to \infty.$$

Proof of Theorem 10

We shall prove part (a) only, and the next part will follow analogously. We have already shown that given $\mathbf{Z} \sim \mathbf{F}$,

$$\left| \mathscr{D}_1(\mathbf{Z}) - \frac{1}{2} \overline{\mathcal{W}}_{\mathbf{FG}}^* \right| \stackrel{\mathbb{P}}{\to} 0, \text{ as } d \to \infty.$$

Let, $\liminf_d \overline{\mathcal{W}}_{\mathbf{FG}}^* = \delta$. By $\delta > 0$. So, there exists some $d_0 \in \mathbb{N}$, such that $\overline{\mathcal{W}}_{\mathbf{FG}}^* > \frac{\delta}{2}$, for all $d \geq d_0$.

We have, $\mathbb{P}\left[\left|\mathscr{D}_1(\mathbf{Z}) - \frac{1}{2}\overline{\mathcal{W}}_{\mathbf{FG}}^*\right| < \frac{\delta}{4} \mid \mathbf{Z} \sim \mathbf{F}\right] \to 1$, as $d \to \infty$. For all $d \ge d_0$,

$$\mathbb{P}\left[\mathscr{D}_{1}(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \geq \mathbb{P}\left[\mathscr{D}_{1}(\mathbf{Z}) > \frac{1}{2} \overline{\mathcal{W}}_{\mathbf{F}\mathbf{G}}^{*} - \frac{\delta}{4} \mid \mathbf{Z} \sim \mathbf{F}\right]$$

$$\geq \mathbb{P}\left[\left|\mathscr{D}_{1}(\mathbf{Z}) - \frac{1}{2} \overline{\mathcal{W}}_{\mathbf{F}\mathbf{G}}^{*}\right| < \frac{\delta}{4} \mid \mathbf{Z} \sim \mathbf{F}\right]$$

$$\Longrightarrow \mathbb{P}\left[\mathscr{D}_{1}(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \to 1, \text{ as } d \to \infty.$$

Given $\mathbf{Z} \sim \mathbf{F}$,

$$sign(\mathcal{D}_1(\mathbf{Z})) \stackrel{\mathbb{P}}{\to} 1$$
, as $d \to \infty$

Also, as we have seen before:

$$\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* - \overline{\mathcal{W}}_{\mathbf{FG}}^* = 2\left(\hat{T}_{\mathbf{FG}} - T_{\mathbf{FG}}\right) - \left(\hat{T}_{\mathbf{FF}} - T_{\mathbf{FF}}\right) - \left(\hat{T}_{\mathbf{GG}} - T_{\mathbf{GG}}\right) \xrightarrow{\mathbb{P}} 0 \text{ , as } d \to \infty.$$

Hence, we have

$$\frac{1}{2} \hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* \operatorname{sign} \left(\mathscr{D}_1(\mathbf{Z}) \right) - \frac{1}{2} \overline{\mathcal{W}}_{\mathbf{FG}}^* \overset{\mathbb{P}}{\to} 0 \text{ , as } d \to \infty.$$
 (2)

Now, assumption 9 implies, for any fixed $\epsilon > 0$, we can choose some d_1 , such that $|T_{\mathbf{FF}} - T_{\mathbf{GG}}| > \epsilon$, $\forall d \geq d_1$. From (1),

$$\mathbb{P}\left[\left| S(\mathbf{Z}) - \frac{1}{2} \left(T_{\mathbf{F}\mathbf{F}} - T_{\mathbf{G}\mathbf{G}} \right) \right| \le \epsilon/4 \mid \mathbf{Z} \sim \mathbf{F} \right] \to 1.$$
 (3)

So, if $\operatorname{sign}(T_{\mathbf{FF}} - T_{\mathbf{GG}}) = 1$, we have, $T_{\mathbf{FF}} - T_{\mathbf{GG}} > \epsilon$, $\forall d \geq d_0$. Then, $\left| S(\mathbf{Z}) - \frac{1}{2} \left(T_{\mathbf{FF}} - T_{\mathbf{GG}} \right) \right| \leq \epsilon/4$ implies that $S(\mathbf{Z}) > \frac{3\epsilon}{4}$ and so, $\operatorname{sign}(S(\mathbf{Z})) = 1$ Similarly, if $\operatorname{sign}(T_{\mathbf{FF}} - T_{\mathbf{GG}}) = -1$, we can show that $\left| S(\mathbf{Z}) - \frac{1}{2} \left(T_{\mathbf{FF}} - T_{\mathbf{GG}} \right) \right| \leq \epsilon/4$ implies $\operatorname{sign}(S(\mathbf{Z})) = -1$.

Hence, for all $d \geq d_1$,

$$\mathbb{P}\left[\operatorname{sign}(S(\mathbf{Z})) - \operatorname{sign}(T_{\mathbf{F}\mathbf{F}} - T_{\mathbf{G}\mathbf{G}}) = 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \ge$$

$$\mathbb{P}\left[\left|S(\mathbf{Z}) - \frac{1}{2}\left(T_{\mathbf{F}\mathbf{F}} - T_{\mathbf{G}\mathbf{G}}\right)\right| \le \epsilon/4 \mid \mathbf{Z} \sim \mathbf{F}\right]. \tag{4}$$

From (3) and (4) we get, $\mathbb{P}\left[\operatorname{sign}(S(\mathbf{Z})) - \operatorname{sign}(T_{\mathbf{FF}} - T_{\mathbf{GG}}) = 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \to 1$.

$$\implies \operatorname{sign}(S(\mathbf{Z})) - \operatorname{sign}(T_{\mathbf{FF}} - T_{\mathbf{GG}}) \stackrel{\mathbb{P}}{\to} 0.$$

And also,

$$\hat{S}_{\mathbf{FG}} - (T_{\mathbf{FF}} - T_{\mathbf{GG}}) = \left(\hat{T}_{\mathbf{FF}} - T_{\mathbf{FF}}\right) - \left(\hat{T}_{\mathbf{GG}} - T_{\mathbf{GG}}\right) \stackrel{\mathbb{P}}{\to} 0 \text{ , as } d \to \infty.$$

Hence, given $\mathbf{Z} \sim \mathbf{F}$,

$$\frac{1}{2}\hat{S}_{\mathbf{FG}}\operatorname{sign}(S(\mathbf{Z})) - \frac{1}{2}|T_{\mathbf{FF}} - T_{\mathbf{GG}}| \stackrel{\mathbb{P}}{\to} 0 \text{, as } d \to \infty.$$
 (5)

From (2) and (5), we obtain that given $\mathbf{Z} \sim \mathbf{F}$,

$$\left| \frac{1}{2} \hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* \operatorname{sign} \left(\mathscr{D}_1(\mathbf{Z}) \right) + \frac{1}{2} \hat{S}_{\mathbf{FG}} \operatorname{sign} (S(\mathbf{Z})) - \bar{\psi}_{\mathbf{FG}} \right| \stackrel{\mathbb{P}}{\to} 0 , \text{ as } d \to \infty.$$

Proof of Theorem 11

(1) The misclassification probability of the classifier δ_1 can be written as

$$\Delta_{1} = \mathbb{P}\left[\delta_{1}(\mathbf{Z}) = 2, \mathbf{Z} \sim \mathbf{F}\right] + \mathbb{P}\left[\delta_{1}(\mathbf{Z}) = 1, \mathbf{Z} \sim \mathbf{G}\right]
= \frac{m}{m+n} \mathbb{P}\left[\delta_{1}(\mathbf{Z}) = 2 \mid \mathbf{Z} \sim \mathbf{F}\right] + \frac{n}{m+n} \mathbb{P}\left[\delta_{1}(\mathbf{Z}) = 1 \mid \mathbf{Z} \sim \mathbf{G}\right]
= \frac{m}{m+n} \mathbb{P}\left[\mathcal{D}_{1}(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] + \frac{n}{m+n} \mathbb{P}\left[\mathcal{D}_{1}(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{G}\right].$$

Since $\liminf_d \overline{\mathcal{W}}_d^* > 0$ (assumption 8), we can choose $\epsilon > 0$ such that $\epsilon < \overline{\mathcal{W}}^*$ for all $d \geq d_0$ for some $d_0 \in \mathbb{N}$. Therefore, we have:

$$\begin{split} \mathbb{P}\left[\mathscr{D}_{1}(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] &\leq \mathbb{P}\left[\mathscr{D}_{1}(\mathbf{Z}) \leq \overline{\mathcal{W}}_{d}^{*} - \epsilon \mid \mathbf{Z} \sim \mathbf{F}\right] \\ &\leq \mathbb{P}\left[\mathscr{D}_{1}(\mathbf{Z}) - \overline{\mathcal{W}}_{d}^{*} \leq -\epsilon \mid \mathbf{Z} \sim \mathbf{F}\right] \\ &\leq \mathbb{P}\left[\left|\mathscr{D}_{1}(\mathbf{Z}) - \overline{\mathcal{W}}_{d}^{*}\right| > \epsilon \mid \mathbf{Z} \sim \mathbf{F}\right] \quad \to 0 \text{ , as } d \to \infty. \end{split}$$

Similarly, one can show that

$$\mathbb{P}\left[\mathcal{D}_1(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{G}\right] \to 0$$
, as $d \to \infty$.

Thus, we conclude that $\Delta_1 \to 0$ as $d \to \infty$.

(2) The misclassification probability of the classifier δ_2 can be written as

$$\Delta_{2} = \mathbb{P}\left[\delta_{2}(\mathbf{Z}) = 2, \mathbf{Z} \sim \mathbf{F}\right] + \mathbb{P}\left[\delta_{2}(\mathbf{Z}) = 1, \mathbf{Z} \sim \mathbf{G}\right]
= \frac{m}{m+n} \mathbb{P}\left[\delta_{2}(\mathbf{Z}) = 2 \mid \mathbf{Z} \sim \mathbf{F}\right] + \frac{n}{m+n} \mathbb{P}\left[\delta_{2}(\mathbf{Z}) = 1 \mid \mathbf{Z} \sim \mathbf{G}\right]
= \frac{m}{m+n} \mathbb{P}\left[\hat{\overline{W}}_{\mathbf{FG}}^{*} \mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} \cdot S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right]
+ \frac{n}{m+n} \mathbb{P}\left[\hat{\overline{W}}_{\mathbf{FG}}^{*} \mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} \cdot S(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{G}\right].$$

Assumption 8 implies, we have:

$$\liminf_{d} \bar{\tau} = \liminf_{d} \left[\frac{1}{2} \overline{\mathcal{W}}_{\mathbf{FG}}^{*2} + \frac{1}{2} \left(T_{\mathbf{FF}} - T_{\mathbf{GG}} \right)^{2} \right] \ge \frac{1}{2} \liminf_{d} \overline{\mathcal{W}}_{\mathbf{FG}}^{*2} > 0.$$

From here onward, we can proceed exactly similar to the proof of part (1), and we can show that $\Delta_2 \to 0$ as $d \to \infty$.

(3) The misclassification probability of the classifier δ_3 can be written as

$$\begin{split} &\Delta_{3} = \mathbb{P}\left[\delta_{3}(\mathbf{Z}) = 2, \mathbf{Z} \sim \mathbf{F}\right] + \mathbb{P}\left[\delta_{3}(\mathbf{Z}) = 1, \mathbf{Z} \sim \mathbf{G}\right] \\ &= \frac{m}{m+n} \mathbb{P}\left[\delta_{3}(\mathbf{Z}) = 2 \mid \mathbf{Z} \sim \mathbf{F}\right] + \frac{n}{m+n} \mathbb{P}\left[\delta_{3}(\mathbf{Z}) = 1 \mid \mathbf{Z} \sim \mathbf{G}\right]. \\ &= \frac{m}{m+n} \mathbb{P}\left[\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*} \operatorname{sign} \mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\ &+ \frac{n}{m+n} \mathbb{P}\left[\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*} \operatorname{sign} \mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{G}\right]. \end{split}$$

Assumption 8 implies, we have:

$$\liminf_{d} \bar{\psi} = \liminf_{d} \left[\frac{1}{2} \overline{\mathcal{W}}_{\mathbf{FG}}^* + \frac{1}{2} |T_{\mathbf{FF}} - T_{\mathbf{GG}}| \right] \ge \frac{1}{2} \liminf_{d} \overline{\mathcal{W}}_{\mathbf{FG}}^* > 0.$$

The argument for rest of the proof is similar to what has been shown for part (1). Finally, we shall conclude that $\Delta_3 \to 0$ as $d \to \infty$.

Lemma A.8. Suppose assumptions 6 and 8 are satisfied.

- (a) If $\liminf_d (\max\{T_{\mathbf{FF}}, T_{\mathbf{GG}}\} T_{\mathbf{FG}}) > 0$ there exists $d'_0 \in \mathbb{N}$, such that $\Delta_2 \leq \Delta_1$ for all $d \geq d'_0$.
- (b) If $\liminf_d (T_{\mathbf{FG}} \max\{T_{\mathbf{FF}}, T_{\mathbf{FG}}\}) > 0$, there exists $d'_0 \in \mathbb{N}$, such that $\Delta_2 \geq \Delta_1$ for all $d \geq d'_0$.

Proof of lemma A.8

(a) Since, $\overline{W}_{\mathbf{FG}}^* - \hat{\overline{W}}_{\mathbf{FG}}^* \stackrel{\mathbb{P}}{\to} 0$ as $d \to \infty$. Therefore, for any $\epsilon_0 > 0$ and $\delta > 0$, there exists a d_0 such that for all $d \geq d_0$,

$$\mathbb{P}\left[\left|\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*} - \overline{\mathcal{W}}_{\mathbf{FG}}^{*}\right| > \delta\right] < \epsilon_{0}$$

$$\Rightarrow \mathbb{P}\left[\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*} - \overline{\mathcal{W}}_{\mathbf{FG}}^{*} < -\delta\right] < \epsilon_{0}$$

$$\Rightarrow \mathbb{P}\left[\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*} < \overline{\mathcal{W}}_{\mathbf{FG}}^{*} < -\delta\right] < \epsilon_{0}.$$

Using assumption 8, we have $\lambda_0 = \liminf_d \overline{W}_{\mathbf{FG}}^* > 0$. Hence, for any $0 < \delta < \lambda_0$,

$$\mathbb{P}[\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* < 0] < \epsilon_0, \text{ for all } d \ge d_0.$$
 (6)

WLOG, we assume that $T_{\mathbf{FF}} > T_{\mathbf{GG}}$. Since, $\liminf_{d} (\max\{T_{\mathbf{FF}}, T_{\mathbf{GG}}\} - T_{\mathbf{FG}}) > 0$, there exists $d' \in \mathbb{N}$ such that $T_{\mathbf{FF}} > T_{\mathbf{FG}}$ for all $d \geq d'$. Also, $\overline{\mathcal{W}}_{\mathbf{FG}}^* = 2T_{\mathbf{FG}} - T_{\mathbf{FF}} - T_{\mathbf{GG}} > 0$. So, we have, $T_{\mathbf{FG}} > T_{\mathbf{GG}}$ for all $d \geq d'$. Hence,

$$\overline{\mathcal{W}}_{\mathbf{FG}}^* = (T_{\mathbf{FG}} - T_{\mathbf{FF}}) + (T_{\mathbf{FG}} - T_{\mathbf{GG}}) < T_{\mathbf{FF}} - T_{\mathbf{GG}} = S_{\mathbf{FG}}$$

Since $\widehat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* - \widehat{S}_{\mathbf{FG}} - \left(\overline{\overline{\mathcal{W}}}_{\mathbf{FG}}^* - S_{\mathbf{FG}}\right) \stackrel{\mathbb{P}}{\to} 0$ as $d \to \infty$ and $\liminf_d \left(S_{\mathbf{FG}} - \overline{\overline{\mathcal{W}}}_{\mathbf{FG}}^*\right) = \liminf_d 2 \left(T_{\mathbf{FF}} - T_{\mathbf{FG}}\right) > 0$, in a similar way, we can show that for every $\epsilon_1 > 1$, there exists a d_1 , such that

$$\mathbb{P}[\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* > \hat{S}_{\mathbf{FG}}] < \epsilon_1 \text{ for all } d \ge d_1$$
 (7)

Now, it follows from (1) that for $\mathbf{Z} \sim \mathbf{F}$, $|S(\mathbf{Z}) - \frac{1}{2} (T_{\mathbf{F}\mathbf{F}} - T_{\mathbf{G}\mathbf{G}})| \stackrel{\mathbb{P}}{\to} 0$ as $d \to \infty$. We have already assumed that $T_{\mathbf{F}\mathbf{F}} > T_{\mathbf{G}\mathbf{G}}$. Define $\lambda_0 = \liminf_d \frac{1}{2} (T_{\mathbf{F}\mathbf{F}} - T_{\mathbf{G}\mathbf{G}})$.

Since $\overline{\mathcal{W}}_{\mathbf{FG}}^* < T_{\mathbf{FF}} - T_{\mathbf{GG}}$, $\liminf_d (T_{\mathbf{FF}} - T_{\mathbf{GG}}) \ge \liminf_d \overline{\mathcal{W}}_{\mathbf{FG}}^* > 0$, by assumption 8. Hence, we have $\lambda_0 > 0$. Following similar arguments, one can show that for any $\epsilon_2 > 0$, there exists d_2 , such that

$$\mathbb{P}[S(\mathbf{Z}) < 0 \mid \mathbf{Z} \sim \mathbf{F}] < \epsilon_2 \text{ for all } d \ge d_2$$
 (8)

Recall that

$$\Delta_1 = \frac{m}{m+n} \mathbb{P}\left[\mathscr{D}_1(\mathbf{Z}) \le 0 \mid \mathbf{Z} \sim \mathbf{F}\right] + \frac{n}{m+n} \mathbb{P}\left[\mathscr{D}_1(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{G}\right]$$

and

$$\Delta_{2} = \frac{m}{m+n} \mathbb{P} \left[\hat{\overline{W}}_{\mathbf{F}\mathbf{G}}^{*} \mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{F}\mathbf{G}} \cdot S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F} \right]$$

$$+ \frac{n}{m+n} \mathbb{P} \left[\hat{\overline{W}}_{\mathbf{F}\mathbf{G}}^{*} \mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{F}\mathbf{G}} \cdot S(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{G} \right]$$

It follows that

$$\begin{split} & \mathbb{P}\left[\widehat{\mathcal{W}}_{\mathbf{FG}}^{*}\mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & = \mathbb{P}\left[\widehat{\mathcal{W}}_{\mathbf{FG}}^{*}\mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) \leq 0, S(\mathbf{Z}) \geq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & + \mathbb{P}\left[\widehat{\mathcal{W}}_{\mathbf{FG}}^{*}\mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) > 0, S(\mathbf{Z}) < 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & \leq \mathbb{P}\left[\widehat{\mathcal{W}}_{\mathbf{FG}}^{*}\mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) \leq 0, S(\mathbf{Z}) \geq 0, \widehat{\mathcal{W}}_{\mathbf{FG}}^{*} \leq \hat{S}_{\mathbf{FG}} \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & + \mathbb{P}\left[\widehat{\mathcal{W}}_{\mathbf{FG}}^{*}\mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) \leq 0, S(\mathbf{Z}) \geq 0, \widehat{\mathcal{W}}_{\mathbf{FG}}^{*} > \hat{S}_{\mathbf{FG}} \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & + \mathbb{P}[S(\mathbf{Z}) < 0 \mid \mathbf{Z} \sim \mathbf{F}] \\ & \leq \mathbb{P}\left[\widehat{\mathcal{W}}_{\mathbf{FG}}^{*}\{\mathscr{D}_{1}(\mathbf{Z}) + S(\mathbf{Z})\} \leq 0, S(\mathbf{Z}) \geq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \end{split}$$

$$+ \mathbb{P}\left[\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*} > \hat{S}_{\mathbf{FG}}\right] + \epsilon_{2} \text{ for all } d \geq d_{2}$$

$$\leq \mathbb{P}\left[\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*} \left\{\mathscr{D}_{1}(\mathbf{Z}) + S(\mathbf{Z})\right\} \leq 0, S(\mathbf{Z}) \geq 0, \hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*} \geq 0 \mid \mathbf{Z} \sim \mathbf{F}\right]$$

$$+ \mathbb{P}\left[\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*} < 0\right] + \epsilon_{1} + \epsilon_{2} \text{ for all } d \geq \max\{d_{1}, d_{2}\}$$

$$\leq \mathbb{P}\left[\mathscr{D}_{1}(\mathbf{Z}) + S(\mathbf{Z}) \leq 0, S(\mathbf{Z}) \geq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] + \epsilon_{0} + \epsilon_{1} + \epsilon_{2}$$
for all $d \geq \max\{d_{0}, d_{1}, d_{2}\}$

$$\leq \mathbb{P}\left[\mathscr{D}_{1}(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] + \epsilon_{0} + \epsilon_{1} + \epsilon_{2}, \text{ for all } d \geq \max\{d_{0}, d_{1}, d_{2}\}$$

Similarly, one can show that, for all $d \ge \max\{d_0, d_1, d_2\}$

$$\mathbb{P}\left[\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* \mathscr{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} S(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{G}\right] \leq \mathbb{P}\left[\mathscr{D}_1(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{G}\right] + \epsilon_0 + \epsilon_1 + \epsilon_2$$

Adding the two inequalities, we obtain

$$\Delta_2 \leq \Delta_1 + \epsilon_0 + \epsilon_1 + \epsilon_2$$
 for all $d \geq \max\{d_0, d_1, d_2\}$

Let, $d_0' = \max\{d_0, d_1, d_2\}$. Since, $\epsilon_0, \epsilon_1, \epsilon_2 > 0$ are arbitrary, we have $\Delta_2 \le \Delta_1$ for all $d \ge d_0'$

(b) We have already proved that for every $\epsilon_1 > 0$, there exists a d_1 , such that $\mathbb{P}[\hat{\overline{W}}_{\mathbf{FG}}^* < 0] < \epsilon_1$, for all $d \geq d_1$.

$$\begin{split} & \mathbb{P}\left[\mathscr{D}_{1}(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & = \mathbb{P}\left[\mathscr{D}_{1}(\mathbf{Z}) \leq 0, \widehat{\mathcal{W}}_{\mathbf{FG}}^{*} \geq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] + \mathbb{P}\left[\mathscr{D}_{1}(\mathbf{Z}) \leq 0, \widehat{\mathcal{W}}_{\mathbf{FG}}^{*} < 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & \leq \mathbb{P}\left[\widehat{\mathcal{W}}_{\mathbf{FG}}^{*}\mathscr{D}_{1}(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] + \mathbb{P}\left[\widehat{\mathcal{W}}_{\mathbf{FG}}^{*} < 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & \leq \mathbb{P}\left[\widehat{\mathcal{W}}_{\mathbf{FG}}^{*}\mathscr{D}_{1}(\mathbf{Z}) \leq 0, \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & + \mathbb{P}\left[\widehat{\mathcal{W}}_{\mathbf{FG}}^{*}\mathscr{D}_{1}(\mathbf{Z}) \leq 0, \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{F}\right] + \epsilon_{1} \\ & \leq \mathbb{P}\left[\widehat{\mathcal{W}}_{\mathbf{FG}}^{*}\mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & + \mathbb{P}\left[\widehat{\mathcal{W}}_{\mathbf{FG}}^{*}\mathscr{D}_{1}(\mathbf{Z}) - \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) < 0 \mid \mathbf{Z} \sim \mathbf{F}\right] + \epsilon_{1} \end{split}$$

Now, we know, if $\mathbf{Z} \sim \mathbf{F}$,

$$\left| \mathscr{D}_1(\mathbf{Z}) - \frac{1}{2} \overline{\mathcal{W}}_{\mathbf{FG}}^* \right| \stackrel{\mathbb{P}}{\to} 0 \text{, as } d \to \infty$$

$$\left| S(\mathbf{Z}) - \frac{1}{2} \left(T_{\mathbf{FF}} - T_{\mathbf{GG}} \right) \right| \stackrel{\mathbb{P}}{\to} 0 \text{, as } d \to \infty$$

Also, we know,

$$\left| \hat{S}_{\mathbf{FG}} - (T_{\mathbf{FF}} - T_{\mathbf{GG}}) \right| \stackrel{\mathbb{P}}{\to} 0 \text{, as } d \to \infty$$
$$\left| \hat{\overline{W}}_{\mathbf{FG}}^* - \overline{\overline{W}}_{\mathbf{FG}}^* \right| \stackrel{\mathbb{P}}{\to} 0 \text{, as } d \to \infty$$

Combining these, we get that given $\mathbf{Z} \sim \mathbf{F}$,

$$\left| \hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* \mathscr{D}_1(\mathbf{Z}) - \hat{S}_{\mathbf{FG}} S(\mathbf{Z}) - \frac{1}{2} \left(\overline{\mathcal{W}}_{\mathbf{FG}}^{*2} - \left(T_{\mathbf{FF}} - T_{\mathbf{GG}} \right)^2 \right) \right| \stackrel{\mathbb{P}}{\to} 0 , \text{ as } d \to \infty$$

Now, if there exists a $d^{'} \in \mathbb{N}$ such that $T_{\mathbf{FG}} > \max\{T_{\mathbf{FF}}, T_{\mathbf{FG}}\}$ for all $d \geq d^{'}$,

$$\overline{W}_{\mathbf{FG}}^{*2} - (T_{\mathbf{FF}} - T_{\mathbf{GG}})^{2} = \overline{W}_{\mathbf{FG}}^{*} - (T_{\mathbf{FF}} - T_{\mathbf{GG}})) \cdot (\overline{W}_{\mathbf{FG}}^{*} + (T_{\mathbf{FF}} - T_{\mathbf{GG}}))$$

$$= 4(T_{\mathbf{FG}} - T_{\mathbf{FF}})(T_{\mathbf{FG}} - T_{\mathbf{GG}})$$

$$> 4(T_{\mathbf{FG}} - \max\{T_{\mathbf{FF}}, T_{\mathbf{GG}}\})^{2}$$

$$> 0, \text{ for all } d > d'$$

 $\liminf_{\mathbf{T}} \left(T_{\mathbf{F}\mathbf{G}} - \max\{T_{\mathbf{F}\mathbf{F}}, T_{\mathbf{G}\mathbf{G}}\} \right) > 0$

$$\implies \liminf_{J} (T_{\mathbf{FG}} - \max\{T_{\mathbf{FF}}, T_{\mathbf{GG}}\})^2 > 0$$

$$\implies \liminf_{d} \left(\overline{\mathcal{W}}_{\mathbf{FG}}^{*2} - \left(T_{\mathbf{FF}} - T_{\mathbf{GG}} \right)^{2} \right) > 4 \cdot \liminf_{d} \left(T_{\mathbf{FG}} - \max\{T_{\mathbf{FF}}, T_{\mathbf{GG}}\} \right)^{2} > 0$$

Using this, we can show that for every $\epsilon_2 > 0$, there exists a d'_0 , such that

$$\mathbb{P}[\hat{\overline{W}}_{\mathbf{FG}}^*\mathcal{D}_1(\mathbf{Z}) - \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) < 0 \mid \mathbf{Z} \sim \mathbf{F}] < \epsilon_2, \text{ for all } d \geq d_0'$$

So for all $d \geq d'_0$, we have,

$$\mathbb{P}\left[\mathscr{D}_{1}(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \leq \mathbb{P}\left[\hat{\overline{\mathcal{W}}}_{\mathbf{F}\mathbf{G}}^{*}\mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{F}\mathbf{G}}S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] + \epsilon_{1} + \epsilon_{2}$$

Since $\epsilon_1, \epsilon_2 > 0$ are arbitrary, we can say that, for all $d \geq d'_0$,

$$\mathbb{P}\left[\mathscr{D}_1(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \leq \mathbb{P}\left[\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* \mathscr{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right]$$

Similarly, one can show that, for all $d \ge d_0'$

$$\mathbb{P}\left[\mathcal{D}_{1}(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{G}\right] \leq \mathbb{P}\left[\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*}\mathcal{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{G}\right]$$

Adding the last two inequalities, we obtain $\Delta_2 \geq \Delta_1$ for all $d \geq d'_0$.

Lemma A.9. Suppose assumptions 6,8 and 9 are satisfied.

- (a) If $\liminf_d (\max\{T_{\mathbf{FF}}, T_{\mathbf{GG}}\} T_{\mathbf{FG}}) > 0$ there exists $d'_0 \in \mathbb{N}$, such that $\Delta_3 \leq \Delta_1$ for all $d \geq d'_0$
- (b) Suppose assumption 9 holds in addition. If $\liminf_d (T_{\mathbf{FG}} \max\{T_{\mathbf{FF}}, T_{\mathbf{FG}}\}) > 0$, there exists $d'_0 \in \mathbb{N}$, such that $\Delta_3 \geq \Delta_1$ for all $d \geq d'_0$.

Proof of lemma A.9

(a) WLOG, we assume that $T_{\mathbf{FF}} > T_{\mathbf{GG}}$. We have shown in (6), (7) and (8) that for every $\epsilon_0 > 0$, there exists a d_0 , such that $\mathbb{P}[\hat{\overline{W}}_{\mathbf{FG}}^* < 0] < \epsilon_0$ for all $d \geq d_0$, for every $\epsilon_1 > 0$, there exists a d_1 , such that $\mathbb{P}[\hat{\overline{W}}_{\mathbf{FG}}^* > \hat{S}_{\mathbf{FG}}] < \epsilon_1$, for all $d \geq d_1$ and for any $\epsilon_2 > 0$, there

 d_1 , such that $\mathbb{P}[\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* > \hat{S}_{\mathbf{FG}}] < \epsilon_1$, for all $d \geq d_1$ and for any $\epsilon_2 > 0$, there exists d_2 , such that $\mathbb{P}[S(\mathbf{Z}) < 0 \mid \mathbf{Z} \sim \mathbf{F}] < \epsilon_2$ for all $d \geq d_2$ respectively. It follows that

Similarly, one can show that, for all $d \ge \max\{d_0, d_1, d_2, d'\}$

$$\mathbb{P}\left[\hat{\overline{W}}_{\mathbf{FG}}^* \operatorname{sign} \mathscr{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} \operatorname{sign}(S(\mathbf{Z})) > 0 \mid \mathbf{Z} \sim \mathbf{G}\right]$$

$$\leq \mathbb{P}\left[\mathscr{D}_1(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{G}\right] + \epsilon_0 + \epsilon_1 + \epsilon_2$$

Combining the two inequalities, we obtain

$$\Delta_3 \leq \Delta_1 + \epsilon_0 + \epsilon_1 + \epsilon_2 \text{ for all } d \geq \max\{d_0, d_1, d_2, d'\}$$

Let, $d_0' = \max \{d_0, d_1, d_2, d'\}$. Since, $\epsilon_0, \epsilon_1, \epsilon_2 > 0$ are arbitrary, we have $\Delta_3 \leq \Delta_1$ for all $d \geq d_0'$

(b) In (6), we have shown that for every $\epsilon_0 > 0$, there exists a d_0 , such that $\mathbb{P}[\hat{\overline{W}}_{\mathbf{FG}}^* < 0] < \epsilon_0$, for all $d \geq d_0$.

$$\begin{split} & \mathbb{P}\left[\mathcal{D}_{1}(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & = \mathbb{P}\left[\operatorname{sign} \mathcal{D}_{1}(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & = \mathbb{P}\left[\operatorname{sign} \mathcal{D}_{1}(\mathbf{Z}) \leq 0, \widehat{\mathcal{W}}_{\mathbf{FG}}^{*} \geq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & + \mathbb{P}\left[\operatorname{sign} \mathcal{D}_{1}(\mathbf{Z}) \leq 0, \widehat{\mathcal{W}}_{\mathbf{FG}}^{*} < 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & \leq \mathbb{P}\left[\widehat{\mathcal{W}}_{\mathbf{FG}}^{*} \operatorname{sign} \mathcal{D}_{1}(\mathbf{Z}) \leq 0, \widehat{\mathcal{W}}_{\mathbf{FG}}^{*} < 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & \leq \mathbb{P}\left[\widehat{\mathcal{W}}_{\mathbf{FG}}^{*} \operatorname{sign} \mathcal{D}_{1}(\mathbf{Z}) \leq 0, \widehat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & \leq \mathbb{P}\left[\widehat{\mathcal{W}}_{\mathbf{FG}}^{*} \operatorname{sign} \mathcal{D}_{1}(\mathbf{Z}) \leq 0, \widehat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & + \mathbb{P}\left[\widehat{\mathcal{W}}_{\mathbf{FG}}^{*} \operatorname{sign} \mathcal{D}_{1}(\mathbf{Z}) + \widehat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & \leq \mathbb{P}\left[\widehat{\mathcal{W}}_{\mathbf{FG}}^{*} \operatorname{sign} \mathcal{D}_{1}(\mathbf{Z}) + \widehat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & + \mathbb{P}\left[\widehat{\mathcal{W}}_{\mathbf{FG}}^{*} \operatorname{sign} \mathcal{D}_{1}(\mathbf{Z}) - \widehat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) < 0 \mid \mathbf{Z} \sim \mathbf{F}\right] + \epsilon_{0}, \text{ for all } d \geq d_{0} \end{split}$$

In the proof of theorem 10, we have shown that given $\mathbf{Z} \sim \mathbf{F}$,

$$\hat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) - |T_{\mathbf{FF}} - T_{\mathbf{GG}}| \stackrel{\mathbb{P}}{\to} 0$$
, as $d \to \infty$
$$\hat{\overline{W}}_{\mathbf{FG}}^* \operatorname{sign} \mathscr{D}_1(\mathbf{Z}) - \overline{W}_{\mathbf{FG}}^* \stackrel{\mathbb{P}}{\to} 0$$
, as $d \to \infty$

Hence, as $d \to \infty$,

$$\left| \widehat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* \operatorname{sign} \mathscr{D}_1(\mathbf{Z}) - \widehat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) - \left(\overline{\mathcal{W}}_{\mathbf{FG}}^* - |T_{\mathbf{FF}} - T_{\mathbf{GG}}| \right) \right| \stackrel{\mathbb{P}}{\to} 0.$$

Now,

$$\begin{aligned} & \overline{\mathcal{W}}_{\mathbf{FG}}^* - |T_{\mathbf{FF}} - T_{\mathbf{GG}}| \\ &= 2T_{\mathbf{FG}} - T_{\mathbf{FF}} - T_{\mathbf{GG}} - (\max\{T_{\mathbf{FF}}, T_{\mathbf{GG}}\} - \min\{T_{\mathbf{FF}}, T_{\mathbf{GG}}\}) \\ &= 2(T_{\mathbf{FG}} - \max\{T_{\mathbf{FF}}, T_{\mathbf{GG}}\}). \end{aligned}$$

So, $\liminf_d \left(\overline{\mathcal{W}}_{\mathbf{FG}}^* - |T_{\mathbf{FF}} - T_{\mathbf{GG}}|\right) > 0$ and using this, one can show that for every $\epsilon_1 > 0$, there exists a d_0' , such that $\mathbb{P}[\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* \operatorname{sign} \mathscr{D}_1(\mathbf{Z}) - \hat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) < 0] < \epsilon_1$, for all $d \geq d_0'$.

Therefore, for all $d \ge \max\{d_0, d'_0\}$, we have,

$$\mathbb{P}\left[\mathscr{D}_{1}(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \leq \mathbb{P}\left[\hat{\overline{\mathcal{W}}}_{\mathbf{F}\mathbf{G}}^{*} \operatorname{sign} \mathscr{D}_{1}(\mathbf{Z}) - \hat{S}_{\mathbf{F}\mathbf{G}} \operatorname{sign} S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] + \epsilon_{1} + \epsilon_{0}$$

Since $\epsilon_1, \epsilon_0 > 0$ are arbitrary, we can say that, for all $d \ge \max\{d_0, d'_0\}$,

$$\mathbb{P}\left[\mathscr{D}_1(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \leq \mathbb{P}\left[\hat{\overline{W}}_{\mathbf{FG}}^* \operatorname{sign} \mathscr{D}_1(\mathbf{Z}) - \hat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right]$$

Similarly, one can show that, for all $d \ge \max\{d_0, d_0'\}$

$$\mathbb{P}\left[\mathscr{D}_{1}(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{G}\right] \leq \mathbb{P}\left[\hat{\widetilde{\mathcal{W}}}_{\mathbf{FG}}^{*} \operatorname{sign} \mathscr{D}_{1}(\mathbf{Z}) - \hat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{G}\right]$$

Adding the two inequalities, we obtain $\Delta_3 \geq \Delta_1$ for all $d \geq \max\{d_0, d'_0\}$.

Lemma A.10. Suppose assumptions 6,8 and 9 are satisfied.

- (a) If $\liminf_d (\max\{T_{\mathbf{FF}}, T_{\mathbf{GG}}\} T_{\mathbf{FG}}) > 0$ there exists $d'_0 \in \mathbb{N}$, such that $\Delta_2 \leq \Delta_3$ for all $d \geq d'_0$
- (b) Suppose assumption 9 holds in addition. If $\liminf_d (T_{\mathbf{FG}} \max\{T_{\mathbf{FF}}, T_{\mathbf{FG}}\}) > 0$, there exists $d'_0 \in \mathbb{N}$, such that $\Delta_3 \leq \Delta_2$ for all $d \geq d'_0$.

Proof of lemma A.10

(a) WLOG, we assume that $T_{\mathbf{FF}} > T_{\mathbf{GG}}$.

We have shown in (6) and (7) that for every $\epsilon_0 > 0$, there exists a d_0 , such that $\mathbb{P}[\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* < 0] < \epsilon_0$ for all $d \geq d_0$, for every $\epsilon_1 > 0$, there exists a d_1 , such that $\mathbb{P}[\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* > \hat{S}_{\mathbf{FG}}] < \epsilon_1$.

$$\mathbb{P}\left[\widehat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*}\mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\
\leq \mathbb{P}\left[\widehat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*}\mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) \leq 0, \widehat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*} \geq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] + \mathbb{P}\left[\widehat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*} < 0\right] \\
\leq \mathbb{P}\left[\widehat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*}\mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) \leq 0, 0 \leq \widehat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*} \leq \hat{S}_{\mathbf{FG}} \mid \mathbf{Z} \sim \mathbf{F}\right] \\
+ \mathbb{P}\left[\widehat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*} > \hat{S}_{\mathbf{FG}}\right] + \epsilon_{0} \\
\leq \mathbb{P}\left[\widehat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*}\mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) \leq 0, 0 \leq \widehat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*} \leq \hat{S}_{\mathbf{FG}}, S(\mathbf{Z}) < 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\
+ \mathbb{P}\left[\widehat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*}\mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) \leq 0, 0 \leq \widehat{\overline{\mathcal{W}}}_{\mathbf{FG}}^{*} \leq \hat{S}_{\mathbf{FG}}, S(\mathbf{Z}) \geq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\
+ \epsilon_{0} + \epsilon_{1}$$

Now, we see that $0 \leq \hat{\overline{W}}_{\mathbf{FG}}^* \leq \hat{S}_{\mathbf{FG}}$ implies that $\hat{\overline{W}}_{\mathbf{FG}}^* \operatorname{sign} \mathscr{D}_1(\mathbf{Z}) - \hat{S}_{\mathbf{FG}} \leq 0$. Therefore,

$$\mathbb{P}\left[\hat{\overline{W}}_{\mathbf{FG}}^{*}\mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) \leq 0, 0 \leq \hat{\overline{W}}_{\mathbf{FG}}^{*} \leq \hat{S}_{\mathbf{FG}}, S(\mathbf{Z}) < 0 \mid \mathbf{Z} \sim \mathbf{F}\right]$$

$$= \mathbb{P}\left[\hat{\overline{W}}_{\mathbf{FG}}^{*}\mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) \leq 0, 0 \leq \hat{\overline{W}}_{\mathbf{FG}}^{*} \leq \hat{S}_{\mathbf{FG}}, \operatorname{sign}S(\mathbf{Z}) = -1, \\ \hat{\overline{W}}_{\mathbf{FG}}^{*} \operatorname{sign}\mathscr{D}_{1}(\mathbf{Z}) - \hat{S}_{\mathbf{FG}} \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right]$$

$$\leq \mathbb{P}\left[\hat{\overline{W}}_{\mathbf{FG}}^{*} \operatorname{sign}\mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} \operatorname{sign}S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right]$$

Now,

$$\mathbb{P}\left[\hat{\overline{W}}_{\mathbf{FG}}^{*}\mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) \leq 0, 0 \leq \hat{\overline{W}}_{\mathbf{FG}}^{*} \leq \hat{S}_{\mathbf{FG}}, S(\mathbf{Z}) \geq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\
= \mathbb{P}\left[\mathscr{D}_{1}(\mathbf{Z}) \leq -\frac{\hat{S}_{\mathbf{FG}}}{\hat{\overline{W}}_{\mathbf{FG}}^{*}}S(\mathbf{Z}), 0 \leq \hat{\overline{W}}_{\mathbf{FG}}^{*} \leq \hat{S}_{\mathbf{FG}}, S(\mathbf{Z}) \geq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\
= \mathbb{P}\left[\mathscr{D}_{1}(\mathbf{Z}) \leq -S(\mathbf{Z}) \mid \mathbf{Z} \sim \mathbf{F}\right] \\
= \mathbb{P}\left[2T_{\mathbf{G}}(\mathbf{Z}) - \hat{T}_{\mathbf{FG}} - \hat{T}_{\mathbf{GG}} \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right]$$

Given $\mathbf{Z} \sim \mathbf{F}$,

$$\left| 2T_{\mathbf{G}}(\mathbf{Z}) - \hat{T}_{\mathbf{F}\mathbf{G}} - \hat{T}_{\mathbf{G}\mathbf{G}} - (T_{\mathbf{F}\mathbf{G}} - T_{\mathbf{G}\mathbf{G}}) \right| \stackrel{\mathbb{P}}{\to} 0, \text{ , as } d \to \infty$$

$$\lim_{d} \inf (T_{\mathbf{F}\mathbf{G}} - T_{\mathbf{G}\mathbf{G}}) = \lim_{d} \inf \left(\hat{\overline{W}}_{\mathbf{F}\mathbf{G}}^* + (T_{\mathbf{F}\mathbf{F}} - T_{\mathbf{F}\mathbf{G}}) \right) > 0$$

Hence, for any $\epsilon_2 > 0$, there exists d_2 , such that

$$\mathbb{P}\left[2T_{\mathbf{G}}(\mathbf{Z}) - \hat{T}_{\mathbf{F}\mathbf{G}} - \hat{T}_{\mathbf{G}\mathbf{G}} \le 0 \mid \mathbf{Z} \sim \mathbf{F}\right] < \epsilon_2, \text{ for all } d \ge d_2$$

Combining all these, we get that for $d \ge \max\{d_0, d_1, d_2\} = d'_0(\text{let})$,

$$\begin{split} & \mathbb{P}\left[\hat{\overline{\mathcal{W}}}_{\mathbf{F}\mathbf{G}}^* \mathscr{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{F}\mathbf{G}} S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\ & \leq \mathbb{P}\left[\hat{\overline{\mathcal{W}}}_{\mathbf{F}\mathbf{G}}^* \operatorname{sign} \mathscr{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{F}\mathbf{G}} \operatorname{sign} S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] + \epsilon_0 + \epsilon_1 + \epsilon_2 \end{split}$$

Since $\epsilon_0, \epsilon_1, \epsilon_2 > 0$ are arbitrary, we can say that, for all $d \geq d'_0$,

$$\mathbb{P}\left[\widehat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* \mathscr{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} S(\mathbf{Z}) \le 0 \mid \mathbf{Z} \sim \mathbf{F}\right]$$

$$\le \mathbb{P}\left[\widehat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* \operatorname{sign} \mathscr{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) \le 0 \mid \mathbf{Z} \sim \mathbf{F}\right]$$

Similarly, one can show that, for all $d \geq d'_0$,

$$\mathbb{P}\left[\hat{\overline{W}}_{\mathbf{FG}}^{*}\mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}}S(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{G}\right]$$

$$\leq \mathbb{P}\left[\hat{\overline{W}}_{\mathbf{FG}}^{*}\operatorname{sign}\mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}}\operatorname{sign}S(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{G}\right]$$

Combing the above two inequalities, we obtain $\Delta_2 \leq \Delta_3$ for all $d \geq d'_0$.

(b) WLOG, assume that $T_{\mathbf{FF}} > T_{\mathbf{GG}}$. We know that $\hat{S}_{\mathbf{FG}} \xrightarrow{\mathbb{P}} T_{\mathbf{FF}} - T_{\mathbf{GG}}$, as $d \to \infty$. Then assumption 9 implies that for every $\epsilon_0 > 0$, there exists a d_0 , such that

$$\mathbb{P}[\hat{S}_{\mathbf{FG}} \leq 0] < \epsilon_0 \text{ for all } d \geq d_0$$

Since, $\liminf_{d} (T_{\mathbf{FG}} - \max\{T_{\mathbf{FF}}, T_{\mathbf{FG}}\}) > 0$, there exists $d' \in \mathbb{N}$ such that $T_{\mathbf{FG}} > T_{\mathbf{FF}}$ for all $d \geq d'$. Hence, for all $d \geq d'$,

$$\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* = (T_{\mathbf{FG}} - T_{\mathbf{FF}}) + (T_{\mathbf{FG}} - T_{\mathbf{GG}}) > T_{\mathbf{FF}} - T_{\mathbf{GG}} = S_{\mathbf{FG}}$$

Since
$$\widehat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* - \widehat{S}_{\mathbf{FG}} - (\overline{\mathcal{W}}_{\mathbf{FG}}^* - S_{\mathbf{FG}}) \stackrel{\mathbb{P}}{\to} 0$$
 as $d \to \infty$.

Since $\liminf_d \left(\overline{\mathcal{W}}_{\mathbf{FG}}^* - S_{\mathbf{FG}}\right) = \liminf_d 2 \left(T_{\mathbf{FG}} - T_{\mathbf{FF}}\right) > 0$, hence, we can show that for every $\epsilon_1 > 0$, there exists a d_1 , such that

$$\mathbb{P}[\hat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* \leq \hat{S}_{\mathbf{FG}}] < \epsilon_1 \text{ for all } d \geq d_1$$

It follows that

$$\mathbb{P}\left[\widehat{\overline{W}}_{\mathbf{FG}}^* \operatorname{sign} \mathcal{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\
\leq \mathbb{P}\left[\widehat{\overline{W}}_{\mathbf{FG}}^* \operatorname{sign} \mathcal{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) \leq 0, \hat{S}_{\mathbf{FG}} > 0 \mid \mathbf{Z} \sim \mathbf{F}\right] + \mathbb{P}[\hat{S}_{\mathbf{FG}} \leq 0] \\
= \mathbb{P}\left[\widehat{\overline{W}}_{\mathbf{FG}}^* \operatorname{sign} \mathcal{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) \leq 0, \widehat{\overline{W}}_{\mathbf{FG}}^* > \hat{S}_{\mathbf{FG}} > 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\
+ \mathbb{P}[\widehat{\overline{W}}_{\mathbf{FG}}^* \leq \hat{S}_{\mathbf{FG}}] + \epsilon_0 \\
\leq \mathbb{P}\left[\widehat{\overline{W}}_{\mathbf{FG}}^* \operatorname{sign} \mathcal{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) \leq 0, \widehat{\overline{W}}_{\mathbf{FG}}^* > \hat{S}_{\mathbf{FG}} > 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\
+ \mathbb{P}\left[\widehat{\overline{W}}_{\mathbf{FG}}^* \operatorname{sign} \mathcal{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) \leq 0, \widehat{\overline{W}}_{\mathbf{FG}}^* > \hat{S}_{\mathbf{FG}} > 0 \mid \mathbf{Z} \sim \mathbf{F}\right] \\
+ \mathbb{P}\left[\widehat{\overline{W}}_{\mathbf{FG}}^* \operatorname{sign} \mathcal{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) \leq 0, \widehat{\overline{W}}_{\mathbf{FG}}^* > \hat{S}_{\mathbf{FG}} > 0, \widehat{\overline{W}}_{\mathbf{FG}}^* = \hat{\overline{W}}_{\mathbf{FG}}^* = \hat{\overline{W}}_{\mathbf{FG}}^* = \hat{S}_{\mathbf{FG}}^* > 0, \widehat{\overline{W}}_{\mathbf{FG}}^* > \hat{\overline{W}}_{\mathbf{FG}}^* > \hat{\overline{S}}_{\mathbf{FG}} > 0, \widehat{\overline{W}}_{\mathbf{FG}}^* > \hat{\overline{S}}_{\mathbf{FG}} > 0, \widehat{\overline{W}}_{\mathbf{FG}}^* > \hat{\overline{S}}_{\mathbf{FG}}^* > 0, \widehat{\overline{W}}_{\mathbf{FG}}^* > 0, \widehat{\overline{W}}_{\mathbf{FG}}^*$$

where $p_0 = \mathbb{P}(A(\mathbf{Z}))$ with

$$A(\mathbf{Z}) = \{\hat{\overline{W}}_{\mathbf{FG}}^* \operatorname{sign} \mathscr{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) \le 0, \\ \hat{\overline{W}}_{\mathbf{FG}}^* \mathscr{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} S(\mathbf{Z}) > 0, \hat{\overline{W}}_{\mathbf{FG}}^* > \hat{S}_{\mathbf{FG}} > 0 \mid \mathbf{Z} \sim \mathbf{F}\}$$

We consider the four mutually disjoint and exclusive events here,

- 1. $L_{\mathbf{G}}(\mathbf{Z}) > L_{\mathbf{F}}(\mathbf{Z}), S(\mathbf{Z}) > 0 \implies A(\mathbf{Z})$ cannot occur.
- 2. $L_{\mathbf{G}}(\mathbf{Z}) > L_{\mathbf{F}}(\mathbf{Z}), S(\mathbf{Z}) < 0 \implies A(\mathbf{Z})$ cannot occur.
- 3. $L_{\mathbf{G}}(\mathbf{Z}) < L_{\mathbf{F}}(\mathbf{Z}), S(\mathbf{Z}) > 0$
- 4. $L_{\mathbf{G}}(\mathbf{Z}) < L_{\mathbf{F}}(\mathbf{Z}), S(\mathbf{Z}) < 0, \implies A(\mathbf{Z})$ cannot occur.

Hence,
$$A(\mathbf{Z})$$
 implies $L_{\mathbf{G}}(\mathbf{Z}) < L_{\mathbf{F}}(\mathbf{Z}), S(\mathbf{Z}) > 0$. So,

$$p_{0} = \mathbb{P}[\hat{\overline{W}}_{\mathbf{FG}}^{*} \operatorname{sign} \mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) \leq 0, \hat{\overline{W}}_{\mathbf{FG}}^{*} \mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} S(\mathbf{Z}) > 0,$$

$$\hat{\overline{W}}_{\mathbf{FG}}^{*} > \hat{S}_{\mathbf{FG}} > 0, L_{\mathbf{G}}(\mathbf{Z}) < L_{\mathbf{F}}(\mathbf{Z}), S(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{F}]$$

$$= \mathbb{P}[\hat{\overline{W}}_{\mathbf{FG}}^{*} > \hat{S}_{\mathbf{FG}} > 0, L_{\mathbf{G}}(\mathbf{Z}) < L_{\mathbf{F}}(\mathbf{Z}), S(\mathbf{Z}) > 0,$$

$$\hat{\overline{W}}_{\mathbf{FG}}^{*} \mathscr{D}_{1}(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} S(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{F}]$$

$$\leq \mathbb{P}[S(\mathbf{Z}) - (\mathscr{D}_{1}(\mathbf{Z})) > 0 \mid \mathbf{Z} \sim \mathbf{F}]$$

$$= \mathbb{P}[2L_{\mathbf{F}}(\mathbf{Z}) - T_{\mathbf{FG}} > 0 \mid \mathbf{Z} \sim \mathbf{F}]$$

$$= \mathbb{P}[T_{\mathbf{FF}} + T_{\mathbf{FG}} - 2T_{\mathbf{F}}(\mathbf{Z}) < 0 \mid \mathbf{Z} \sim \mathbf{F}]$$

Now, given $\mathbf{Z} \sim \mathbf{F}$,

$$T_{\mathbf{FF}} + T_{\mathbf{FG}} - 2T_{\mathbf{F}}(\mathbf{Z}) - (T_{\mathbf{FG}} - T_{\mathbf{FF}}) \stackrel{\mathbb{P}}{\to} 0$$

Now, $\liminf_d (T_{\mathbf{FG}} - T_{\mathbf{FF}}) > 0$, because we have assumed that $T_{\mathbf{FF}} = \max\{T_{\mathbf{FF}}, T_{\mathbf{GG}}\}$. So, for every $\epsilon_2 > 0$, there exists a d_2 such that

$$\mathbb{P}\left[T_{\mathbf{FF}} + T_{\mathbf{FG}} - 2T_{\mathbf{F}}(\mathbf{Z}) < 0 \mid \mathbf{Z} \sim \mathbf{F}\right] < \epsilon_2 \text{ for all } d \geq d_2.$$

Hence, $p_0 \le \epsilon_2$ for all $d \ge d_2$. And for all $d \ge \max\{d_0, d_1, d_2\}$,

$$\mathbb{P}\left[\hat{\overline{W}}_{\mathbf{FG}}^* \operatorname{sign} \mathcal{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) \le 0 \mid \mathbf{Z} \sim \mathbf{F}\right]$$

$$\le \mathbb{P}\left[\hat{\overline{W}}_{\mathbf{FG}}^* \mathcal{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} S(\mathbf{Z}) \le 0 \mid \mathbf{Z} \sim \mathbf{F}\right] + \epsilon_0 + \epsilon_1 + \epsilon_2$$

Let, $d_0' = \max\{d_0, d_1, d_2\}$. Since $\epsilon_0, \epsilon_1, \epsilon_2 > 0$ are arbitrary, we can say that, for all $d \ge d_0'$,

$$\mathbb{P}\left[\widehat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* \operatorname{sign} \mathscr{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right]$$

$$\leq \mathbb{P}\left[\widehat{\overline{\mathcal{W}}}_{\mathbf{FG}}^* \mathscr{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} S(\mathbf{Z}) \leq 0 \mid \mathbf{Z} \sim \mathbf{F}\right]$$

Similarly, one can show that, for all $d \ge d'_0$,

$$\mathbb{P}\left[\widehat{\overline{W}}_{\mathbf{FG}}^* \operatorname{sign} \mathscr{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} \operatorname{sign} S(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{G}\right]$$

$$\leq \mathbb{P}\left[\widehat{\overline{W}}_{\mathbf{FG}}^* \mathscr{D}_1(\mathbf{Z}) + \hat{S}_{\mathbf{FG}} S(\mathbf{Z}) > 0 \mid \mathbf{Z} \sim \mathbf{G}\right]$$

Combing the above two inequalities, we obtain $\Delta_3 \leq \Delta_2$ for all $d \geq d'_0$.

Proof of Theorem 12

The proof of this theorem follows directly from lemma A.8, lemma A.9 and lemma A.10.

B ADDITIONAL NUMERICAL RESULTS and DETAILS

B.1 SIMULATION DETAILS

GLMNET: The R-package glmnet is used for implementing GLMNET. The tuning parameter α in the elastic-net penalty term is fixed at the default value 1. The weight λ of the penalty term is chosen via cross-validation using the function cv.glmnet with default values of its parameters.

NN-RP: The function classify from the package RandPro is used with default values of its parameters.

SVM: The R package e1071 is used for implementing SVM with linear (SVM-LIN) and radial basis function (SVF-RBF) kernels. For the RBF kernel, i.e., $K_{\theta}(\mathbf{x}, \mathbf{y}) = \exp\{-\theta \|\mathbf{x} - \mathbf{y}\|^2\}$, the default value of the tuning parameter θ was chosen, i.e., $\theta = \frac{1}{d}$.

N-NET: We used the nnet function from the R package nnet to fit a single-hidden-layer artificial neural network with default parameters. The number of units in the hidden layer was allowed to vary from 1 up to 10. Among them, the one with the minimum misclassification rate was reported as N-NET.

1-NN: The knn1 function from the R-package class is used for implementing the 1-nearest neighbor classifier.

B.2 TABLES

Table 1. Estimated values of $T_{\mathbf{FF}}$, $T_{\mathbf{FG}}$ and $T_{\mathbf{GG}}$ with standard errors (in parentheses) for δ_1 , δ_2 , δ_3 , for simulated examples at d = 1000

Example	$\hat{T}_{\mathbf{FF}}$	$\hat{T}_{\mathbf{FG}}$	$\hat{T}_{\mathbf{GG}}$	$\hat{T}_{\mathbf{FG}} > \max(\hat{T}_{\mathbf{FF}}, \hat{T}_{\mathbf{GG}})$
1	0.28362 (0.00008)	$0.31839 \\ (0.000023)$	0.3461 (0.000064)	FALSE
2	$0.34206 \\ (0.00007)$	$0.31841 \\ (0.000025)$	0.2876 (0.00008)	FALSE
3	0.3004 (0.000112)	0.33211 (0.000058)	0.30041 (0.000104)	TRUE
4	0.27954 (0.00009)	0.31944 (0.000024)	0.34796 (0.000077)	FALSE
5	0.26462 (0.000078)	0.32142 (0.000032)	0.35871 (0.000076)	TRUE

Table 2. Estimated misclassification probabilities (in percentages) with standard errors (in parentheses) for δ_1 , δ_2 , δ_3 , and popular classifiers **Simulated Example 1**.

	Popular Classifiers								Proposed Classifiers			
d	Bayes	GLMNET	NN-RP	SVM-LIN	SVM-RBF	N-NET	1-NN	δ_1	δ_2	δ_3		
5	30.36 (0.0031)	49.30 (0.0038)	45.10 (0.0030)	48.49 (0.0037)	36.29 (0.0039)	44.76 (0.0042)	45.68 (0.0038)	45.23 (0.0039)	33.66 (0.0032)	33.62 (0.0033)		
10	22.4	49.64	46.51	49.21	29.90	44.51	44.74	43.74	26.83	26.71		
	(0.0027)	(0.0035)	(0.0021)	(0.0033)	(0.0040)	(0.0042)	(0.0035)	(0.0041)	(0.0033)	(0.0032)		
25	11.44	48.36	48.90	48.30	18.53	45.12	45.89	40.62	16.24	16.36		
	(0.0023)	(0.0033)	(0.0011)	(0.0038)	(0.0032)	(0.0039)	(0.0024)	(0.0036)	(0.0028)	(0.0028)		
50	4.16	48.05	49.93	47.76	9.45	44.82	47.98	35.98	8.04	7.96		
	(0.0014)	(0.0038)	(0.0000)	(0.0036)	(0.0024)	(0.0041)	(0.0013)	(0.0038)	(0.0020)	(0.0020)		
100	0.73 (0.0000)	48.33 (0.0037)	50.00 (0.0000)	47.08 (0.0032)	2.90 (0.0013)	44.78 (0.0041)	49.64 (0.0000)	30.61 (0.0038)	2.38 (0.0013)	2.40 (0.0013)		
250	0.01	47.60	50.00	46.50	0.13	45.92	49.99	21.39	0.10	0.11		
	(0.0000)	(0.0038)	(0.0000)	(0.0028)	(0.0000)	(0.0035)	(1e-04)	(0.0032)	(0.0000)	(0.0000)		
500	0.00	47.95	50.00	46.48	0.00	45.08	50.00	13.30	0.00	0.00		
	(0.0000)	(0.0037)	(0.0000)	(0.0025)	(0.0000)	(0.0038)	(0.0000)	(0.0024)	(0.0000)	(0.0000)		
1000	0.00	47.14	50.00	47.11	0.00	44.46	50.00	5.74	0.00	0.00		
	(0.0000)	(0.0038)	(0.0000)	(0.0017)	(0.0000)	(0.0040)	(0.0000)	(0.0017)	(0.0000)	(0.0000)		

Table 3. Estimated misclassification probabilities (in percentages) with standard errors (in parentheses) for δ_1 , δ_2 , δ_3 , and popular classifiers **Simulated Example 2**.

	Popular Classifiers								Proposed Classifiers			
d	Bayes	GLMNET	NN-RP	SVM-LIN	SVM-RBF	N-NET	1-NN	δ_1	δ_2	δ_3		
5	30.64 (0.0030)	49.98 (0.0039)	46.78 (0.0003)	49.58 (0.0039)	$43.48 \\ (0.0051)$	47.24 (0.0042)	45.15 (0.0039)	45.18 (0.0045)	34.79 (0.0032)	35.05 (0.0041)		
10	24.17	49.60	47.84	49.66	42.19	48.01	46.56	42.91	28.73	28.61		
	(0.0031)	(0.0035)	(0.0029)	(0.0035)	(0.0042)	(0.0035)	(0.0031)	(0.0036)	(0.0032)	(0.0033)		
25	13.05	49.94	48.91	50.04	41.54	49.63	47.84	39.53	19.22	19.40		
	(0.0024)	(0.0037)	(0.0020)	(0.0039)	(0.0052)	(0.0036)	(0.0034)	(0.0045)	(0.0030)	(0.0029)		
50	5.72	49.48	49.65	50.07	40.86	49.54	48.68	35.29	11.34	11.48		
	(0.0016)	(0.0038)	(0.0016)	(0.0040)	(0.0041)	(0.0038)	(0.0027)	(0.0039)	(0.0021)	(0.0020)		
100	1.20 (0.0000)	49.01 (0.0031)	50.00 (0.0012)	49.40 (0.0034)	39.50 (0.0044)	49.56 (0.0029)	49.84 (0.0019)	30.14 (0.0034)	4.09 (0.0015)	4.15 (0.0015)		
250	0.00	48.80	50.15	49.28	37.24	49.12	49.63	20.71	0.31	0.30		
	(0.0000)	(0.0037)	(0.0011)	(0.0032)	(0.0033)	(0.0037)	(0.0014)	(0.0031)	(0.0000)	(0.0000)		
500	0.00	49.25	50.08	49.73	35.91	49.54	50.19	12.66	0.00	0.00		
	(0.0000)	(0.0034)	(0.0000)	(0.0035)	(0.0033)	(0.0033)	(0.0000)	(0.0022)	(0.0000)	(0.0000)		
1000	0.00	49.06	49.96	49.60	34.84	49.06	50.06	5.19	0.00	0.00		
	(0.0000)	(0.0033)	(0.0000)	(0.0032)	(0.0030)	(0.0033)	(0.0000)	(0.0018)	(0.0000)	(0.0000)		

Table 4. Estimated misclassification probabilities (in percentages) with standard errors (in parentheses) for δ_1 , δ_2 , δ_3 , and popular classifiers **Simulated Example 3**.

			Proposed Classifiers							
d	Bayes	GLMNET	NN-RP	SVM-LIN	SVM-RBF	N-NET	1-NN	δ_1	δ_2	δ_3
5	21.94	40.09	39.20	43.21	41.50	38.29	40.65	28.28	30.41	30.30
	(0.0030)	(0.0060)	(0.0047)	(0.0059)	(0.0058)	(0.0050)	(0.0041)	(0.0041)	(0.0058)	(0.0074)
10	14.18	39.50	41.54	41.64	41.52	39.58	41.82	21.40	22.92	22.00
	(0.0025)	(0.0053)	(0.0050)	(0.0058)	(0.0054)	(0.0044)	(0.0043)	(0.0037)	(0.0043)	(0.0057)
25	4.64 (0.0013)	37.41 (0.0045)	44.6 (0.0048)	40.71 (0.0050)	41.69 (0.0049)	41.92 (0.0042)	44.31 (0.0040)	10.18 (0.0025)	10.57 (0.0028)	10.18 (0.0025)
50	0.64	37.48	46.80	41.62	43.43	44.16	46.61	3.86	4.04	3.86
	(0.0000)	(0.0042)	(0.0037)	(0.0044)	(0.0041)	(0.0042)	(0.0040)	(0.0014)	(0.0015)	(0.0014)
100	0.04 (0.0000)	36.07 (0.0038)	47.88 (0.0036)	39.93 (0.0042)	43.17 (0.0032)	44.97 (0.0035)	47.54 (0.0037)	0.69 (0.0000)	0.76 (0.0000)	0.69 (0.0000)
250	0.00	35.82	49.42	40.45	46.26	46.44	48.62	0.01	0.01	0.01
	(0.0000)	(0.0036)	(0.0023)	(0.0035)	(0.0023)	(0.0039)	(0.0032)	(0.0000)	(0.0000)	(0.0000)
500	0.00	35.78	49.83	39.76	48.05	46.74	49.66	0.00	0.00	0.00
	(0.0000)	(0.0032)	(0.0022)	(0.0033)	(0.0016)	(0.0040)	(0.0025)	(0.0000)	(0.0000)	(0.0000)
1000	$0.00 \\ (0.0000)$	35.27 (0.0035)	50.24 (0.0022)	39.69 (0.0031)	49.64 (0.0000)	47.78 (0.0041)	49.53 (0.0029)	$0.00 \\ (0.0000)$	0.00 (0.0000)	0.00 (0.0000)

Table 5. Estimated misclassification probabilities (in percentages) with standard errors (in parentheses) for δ_1 , δ_2 , δ_3 , and popular classifiers **Simulated Example 4**.

	Popular Classifiers								Proposed Classifiers			
d	Bayes	GLMNET	NN-RP	SVM-LIN	SVM-RBF	N-NET	1-NN	δ_1	δ_2	δ_3		
5	28.90 (0.0025)	45.85 (0.0023)	44.24 (0.0023)	$46.37 \\ (0.0017)$	40.02 (0.0033)	41.82 (0.0023)	40.68 (0.0028)	43.39 (0.0046)	31.5 (0.0033)	31.52 (0.0034)		
10	22.44	45.54	45.88	45.32	37.28	41.90	40.46	39.29	25.16	25.20		
	(0.0026)	(0.0020)	(0.0021)	(0.0017)	(0.0024)	(0.0020)	(0.0024)	(0.0045)	(0.0026)	(0.0028)		
25	11.17	45.43	48.18	45.24	34.90	42.38	41.53	34.06	16.56	16.94		
	(0.0019)	(0.0016)	(0.0014)	(0.0015)	(0.0021)	(0.0020)	(0.0026)	(0.0041)	(0.0030)	(0.0029)		
50	4.13	44.99	49.01	44.54	35.38	43.53	43.92	27.92	10.53	11.00		
	(0.0014)	(0.0014)	(0.0000)	(0.0015)	(0.0027)	(0.0020)	(0.0021)	(0.0038)	(0.0028)	(0.0029)		
100	0.76	44.97	49.68	43.85	38.31	44.98	45.96	21.30	6.22	6.76		
	(0.0000)	(0.0017)	(0.0000)	(0.0018)	(0.0028)	(0.0025)	(0.0016)	(0.0035)	(0.0021)	(0.0022)		
250	0.00	45.06	49.85	44.80	44.62	45.44	47.43	10.96	1.76	2.06		
	(0.0000)	(0.0015)	(0.0000)	(0.0014)	(0.0021)	(0.0026)	(0.0013)	(0.0025)	(0.0012)	(0.0012)		
500	0.00	44.97	49.94	44.38	48.02	45.48	48.44	4.19	0.20	0.27		
	(0.0000)	(0.0012)	(0.0000)	(0.0017)	(0.0012)	(0.0030)	(0.0010)	(0.0018)	(0.0000)	(0.0000)		
1000	0.00	44.78	49.92	45.10	49.78	46.08	49.02	1.18	0.00	0.00		
	(0.0000)	(0.0017)	(0.0000)	(0.0014)	(0.0000)	(0.0019)	(0.0000)	(0.0000)	(0.0000)	(0.0000)		

Table 6. Estimated misclassification probabilities (in percentages) with standard errors (in parentheses) for δ_1 , δ_2 , δ_3 , and popular classifiers **Simulated Example 5**.

			Proposed Classifiers							
d	Bayes	GLMNET	NN-RP	SVM-LIN	SVM-RBF	N-NET	1-NN	δ_1	δ_2	δ_3
5	20.78	48.63	42.47	46.85	32.21	40.90	39.40	38.14	24.97	25.32
	(0.0027)	(0.0041)	(0.0032)	(0.0039)	(0.0047)	(0.0053)	(0.0039)	(0.0048)	(0.0033)	(0.0034)
10	11.77	48.20	45.82	47.60	28.02	40.71	40.31	33.56	17.26	17.71
	(0.0022)	(0.0041)	(0.0026)	(0.0037)	(0.0048)	(0.0045)	(0.0029)	(0.0047)	(0.0033)	(0.0033)
25	2.86	47.45	49.40	48.30	24.94	44.00	46.39	25.09	7.98	8.33
	(0.0012)	(0.0038)	(0.0017)	(0.0035)	(0.0044)	(0.0044)	(0.0022)	(0.0043)	(0.0023)	(0.0023)
50	0.36	46.66	49.91	47.84	23.55	45.47	48.87	17.22	3.08	3.43
	(0.0000)	(0.0036)	(0.0015)	(0.0035)	(0.0035)	(0.0038)	(0.0021)	(0.0033)	(0.0015)	(0.0016)
100	0.00	47.26	49.83	47.59	24.30	46.46	49.77	9.60	0.67	0.84
	(0.0000)	(0.0038)	(0.0014)	(0.0032)	(0.0028)	(0.0036)	(0.0019)	(0.0025)	(0.0000)	(0.0000)
250	0.00	46.08	50.00	48.01	29.72	48.06	50.33	2.56	0.02	0.04
	(0.0000)	(0.0040)	(0.0017)	(0.0026)	(0.0026)	(0.0035)	(0.0020)	(0.0013)	(0.0000)	(0.0000)
500	0.00	45.47	50.08	48.43	37.14	48.22	49.88	0.44	0.00	0.00
	(0.0000)	(0.0030)	(0.0016)	(0.0030)	(0.0025)	(0.0037)	(0.0019)	(0.0000)	(0.0000)	(0.0000)
1000	0.00	45.25	49.84	48.59	44.47	49.34	49.90	0.01	0.00	0.00
	(0.0000)	(0.0028)	(0.0023)	(0.0032)	(0.0015)	(0.0042)	(0.0021)	(0.0000)	(0.0000)	(0.0000)