Chem. Ber. 112, 1068 - 1070 (1979)

Zur Reaktion von trimethylsilyl-substituierten Methyldiphenylphosphanen mit Tetrachlorkohlenstoff¹⁾

Rolf Appel* und Heinz-Friedrich Schöler

Anorganisch-Chemisches Institut der Universität Bonn, Gerhard-Domagk-Str. 1, D-5300 Bonn 1

Eingegangen am 2. November 1978

On the Reaction of Trimethylsilyl-substituted Methyldiphenylphosphanes with Tetrachloromethane ¹⁾ In dichloromethane the [(trimethylsilyl)methyl]-substituted phosphanes 3a, b undergo a chloroform elimination with CCl₄ to give the chloromethylenediphenylphosphoranes 4a, b. The new *P*-chloroylides are remarkably stable and can be isolated as pure substances.

In unsere Untersuchungen über die Reaktionen von Phosphanen mit Polyhalogenalkanen haben wir jetzt auch die trimethylsilyl-substituierten Methyldiphenylphosphane 3a, b einbezogen. Die Anregung hierzu gaben frühere Versuche von Cooper und Owen²⁾, die sich zuerst mit der Umsetzung von 3a mit CCl₄ beschäftigt und dabei einen von dem im System R₃P/CCl₄ (R = Ph, Alkyl) deutlich abweichenden Reaktionsverlauf festgestellt hatten. Während Aryl- und Alkylphosphane (letzte nur bei Einhaltung genau definierter Reaktionsbedingungen) sich ganz überwiegend zu [Chlor(triorganylphosphoranyliden)methyl]triorganylphosphoniumchlorid (1) und dem betreffenden Dichlorphosphoran 2 umsetzen 3-5), beobachteten die Autoren eine 100proz. Chloroform- und Chlortrimethylsilan-Abspaltung zu einem polymeren Feststoff der ungefähren Zusammensetzung 5, aber unbekannter Konstitution.

$$3 R_3P + CCl_4 \longrightarrow \begin{bmatrix} Cl \\ R_3P = C = PR_3 \end{bmatrix}^+ Cl^- + R_3PCl_2$$

$$(1)$$

$$Me_{3}SiCH_{2}PPh_{2} + Cl-CCl_{3} \longrightarrow \begin{bmatrix}
Cl\\
Me_{3}Si-CH_{2}PPh_{2}\\
H-CCl_{3}
\end{bmatrix}^{+} \xrightarrow{-CHCl_{3}} (2)$$

$$\begin{pmatrix} C1 \\ Me_3Si-CH=PPh_2 \end{pmatrix} \xrightarrow{+CCl_4} [CCl_3CHP(Cl)Ph_2]_n$$

$$4a \qquad \qquad 5$$

Dieser Befund wurde in dem Sinne gedeutet, daß die Umsetzung durch einen nucleophilen Angriff des P-Atoms an einem Cl-Atom eingeleitet wird, an den sich die Ablösung des α -Protons durch das Trichlorcarbanion anschließt. Auf diese Weise entsteht primär das Ylid 4, das allerdings weder in Substanz noch durch Wittig-Reaktion nachzuweisen war und sehr rasch mit weiterem CCl_4 unter Chlortrimethylsilan-Abspaltung in den polymeren Feststoff 5 übergeht.

© Verlag Chemie, GmbH, D-6940 Weinheim, 1979

Beim Nacharbeiten dieser Experimente, wobei abweichend von den dort beschriebenen Versuchsbedingungen Dichlormethan als Lösungsmittel diente, gelang es uns jetzt, die Reaktion ausschließlich unter Chloroformabspaltung zum P-Chlor-Ylid 4a ablaufen zu lassen, das rein und in guter Ausbeute isoliert werden konnte. Das zweifach trimethylsilyl-substituierte Methyldiphenylphosphan 3b verhält sich analog und liefert [Bis(trimethylsilyl)methylen]chlordiphenylphosphoran (4b) (85%).

Den bemerkenswerten Unterschied zwischen den trimethylsilyl-substituierten Methylphosphanen und den tertiären Alkylphosphanen, bei denen nur eine äußerst geringe Chloroformabspaltung beobachtet wird, führen wir auf die erhöhte Acidität des α-Protons und die Stabilisierung des Ylid-Bindungssystems durch d-Orbitalbeteiligung des Siliciums und die sterische Abschirmung durch die Trimethylsilyl-Gruppe zurück.

Die neuen P-Chlor-Ylide sind erstaunlich stabile Substanzen, die keine Wittig-Reaktionen mehr eingehen und deren weitere Reaktionen, besonders im Hinblick auf die Halosilan- bzw. Chlorwasserstoff-Abspaltung, wir zur Zeit untersuchen.

Experimenteller Teil

¹H-NMR: Spektrometer A 56/60 Varian, 60 MHz, Standard TMS (intern). – ³¹P-NMR: Spektrometer CFT-20 Varian, 32.2 MHz mit Protonenbreitbandentkopplung, Standard 85proz. H₃PO₄ (extern). – ¹³C-NMR: Spektrometer Bruker WH 90, 22.628 MHz mit Protonenbreitbandentkopplung, Standard TMS (intern). Bezogen auf den Standard gelten für Tieffeldverschiebungen allgemein positive Vorzeichen und umgekehrt.

Ausgangsmaterialien: Diphenyl[(trimethylsilyl)methyl]phosphan²⁾ und [Bis(trimethylsilyl)methyl]diphenylphosphan⁶⁾ synthetisierten wir nach Literaturangaben. Alle weiteren Chemikalien sind Handelsware. Sämtliche Versuche wurden unter Argon als Schutzgas durchgeführt.

Darstellung der P-Chlor-methylendiphenylphosphorane **4a**, **b**: Zu 50 mmol Phosphan (**3a**, **b**) in 200 ml CH₂Cl₂ werden 250 mmol CCl₄ (fünffacher Überschuß) gegeben. Unter kräftigem Magnetrühren ist die Reaktion nach 0.5 h beendet (leichte Wärmetönung). Das Lösungsmittel und das Reaktionsprodukt CHCl₃ werden im Ölpumpenvakuum abgezogen (bis zur Trockene). Mit Petrolether (40–60 °C) werden die Chlor-Ylide **4a**, **b** aus dem Rückstand extrahiert. Danach wird der Petrolether im Ölpumpenvakuum abgezogen. **4a**, **b** fallen analysenrein an (bei **4b** muß das Lösungsmittel bei 0 °C entfernt werden).

Chlordiphenylf (trimethylsilyl) methylen]phosphoran (4a): Ausb. 8.2 g (52%), Schmp. $5-8^{\circ}C$. $^{-1}$ H-NMR (C_6D_6): $\delta=0.3$ (s, SiMe₃), 2.1 (d, $^{2}J(PCH)=22$ Hz, CH), 7.0 $^{-8.3}$ (m, Ph). $^{-31}$ P-NMR (C_6H_6): $\delta=57.3$ (s). $^{-13}$ C-NMR (C_6D_6): $\delta=2.4$ (d, $^{3}J(PCSiC)=8.1$ Hz, SiMe₃), 32.6 (d, J(PC)=72.5 Hz, PC), 128.5 (d, $^{3}J(PC^{1}C^{2}C^{3})=13.9$ Hz, C^3), 131.9 (d, $^{4}J(PC^{1}C^{2}C^{3}C^{4})=2.9$ Hz, C^4), 132.7 (d, $^{2}J(PC^{1}C^{2})=12.4$ Hz, C^2), 134.4 (d, $J(PC^{1})=113.5$ Hz, C^{1}).

C₁₆H₂₀ClPSi (306.8) Ber. C 62.63 H 6.57 Cl 11.55 P 10.09 Si 9.15 Gef. C 62.54 H 6.40 Cl 11.41 P 10.10 Si 9.03 [Bis(trimethylsilyl)methylen]chlordiphenylphosphoran (4b): Ausb. 16.1 g (85%), Schmp. 75–77°C. – ¹H-NMR (C_6D_6): $\delta=0.35$ (s, SiMe₃), 7.0-8.2 (m, Ph). – ³¹P-NMR (C_6H_6): $\delta=54.5$ (s). – ¹³C-NMR (C_6D_6): $\delta=4.5$ (d, ³J(PCSiC) = 6.6 Hz, SiMe₃), 30.6 (d, J(PC) = 50.6 Hz, PC), 127.4 (d, ³J(PC¹C²C³) = 13.9 Hz, C³), 130.8 (d, ⁴J(PC¹C²C³C³C⁴) = 2.9 Hz, C⁴), 132.4 (d, ²J(PC¹C²) = 10.3 Hz, C²), 136.9 (d, J(PC¹) = 107.6 Hz, C¹).

C₁₉H₂₈CIPSi₂ (379.0) Ber. C 60.21 H 7.45 Cl 9.35 P 8.17 Si 14.82 Gef. C 60.54 H 7.54 Cl 9.19 P 8.15 Si 14.69

Literatur

- 1) 13. Mitteilung über Phosphor-Kohlenstoff-Halogen-Verbindungen;
 12. Mitteil.: R. Appel, K. Geisler und H.-F. Schöler, Chem. Ber. 112, 648 (1979).
- ²⁾ B. E. Cooper und W. J. Owen, J. Organomet. Chem. 21, 329 (1970).
- ³⁾ R. Appel. F. Knotl, W. Morbach, W. Michel, H. D. Wihler und H. Veltmann, Chem. Ber. 109, 58 (1976).
- 4) R. Appel, I. Ruppert und R. Milker, Chem. Ber. 110, 2385 (1977).
- ⁵⁾ R. Appel, H.-F. Schöler und H.-D. Wihler, Chem. Ber. 112, 462 (1979).
- 6) R. Appel und J. Peters, in Vorbereitung.

[410/78]