PROFILE

천소영

학력 사항

- 2012.03 ~ 2015.02 서울광남고등학교
- 2016.02 ~ 2020.08 경희대학교 생체의공학과(3.57/4.3)
- 2020.09 ~ 2022.08 서울대학교 바이오엔지니어링 협동과정(3.95/4.3)

외부 활동 및 경험

- 2016.03 ~ 2019.08 한국의공학전공대학생연합 중앙 대외협력팀장
- 2019.06 ~ 2019.07 Saarland Univ. 전자정보대학 전공연수
- 2020.01 ~ 2021.08 서울대학교 의료영상혁신연구실(MIIL) 인턴
- 2023.03 ~ 네이버 부스트캠프 AI Tech

학사 과정

- 세포(구슬) 자동 분석기, 손동작 자동인식 유튜브 제어기 (Arduino, Atmega128 ,임베디드)
- 생체 시스템 모델링, CT 구현, Spike sorting, Clustering 등 Machine learning 경험 (Matlab)
- 레고 블록 분류 CNN 개발 (Tensorflow, Python)
- 망막 안저 영상에서의 혈관 분할 (Keras, Python)

석사 과정

- 딥러닝을 이용한 하악 제3대구치와 하악관의 3차원 위치관계를 위한 자동 분류 프레임워크 (Keras, Python)
- Multi-class Segmentation of Anatomical Structures Using Deep Learning in CBCT Images Containing Metal Artifacts (Keras, Python)
- 인공지능 기반 환자 맞춤형 보철물 자동 디자인 기술 (Pytorch, Python)
- 소프트웨어 관련 과목 수강
 - 자연어처리를 이용한 의료정보추출 및 분석, 환경-의료 융합 데이터 사이언스 연구방법론, 의료정보시스템설계

Conferences (Poster)

[C01] "Classification of 3D relative positional relationship between MTM and MC and segmentation using deep learning", 2022 The Korean Society of Medical & Biological Engineering (KOSOMBE 2022)

[C02] "Application of pointnet++ for automation of implant crown design", 44th IEEE International Engineering in Medicine and Biology Conference(EMBC 2022)

[C03] "Automatic classification of relative positional relationship between MTM and MC using deep learning segmentation", 2022 Information and Control Symposium (ICS 2022)

[C04] "PointNet++ Based Method for Automated Prediction of Tooth Crown Center of Mass, Main Axis Angle and Mesiodistal Width", 2021 IBEC_ICBHI

[C05] "Multi-center Study of Segmentation Using Deep Learning in CBCT Images", 23rd International Congress of DentoMaxilloFacial Radiology(ICDMFR 2021)

[C06] "A PointNet based Method for Automatic Design of Implant Crowns", 43th IEEE International Engineering in Medicine and Biology Conference(EMBC 2021)

[C07] "Multi-segmentation of Third Molar and Mandibular canal Using SegNet", 2021 The Korean Society of Medical & Biological Engineering(KOSOMBE 2021)

[C08] "Segmentation of Third Molars Using DU-Net in CBCT Images", 2020 The Korean Society of Medical & Biological Engineering(KOSOMBE 2020)

Journals

[J01] 금속 음영이 포함된 CBCT 영상에서 딥러닝을 이용한 해부학적 구조물의 다중 클래스 분할 방법, 전기학회논문지 71.1 (2022): 253-261.

Patents

[P01] 인공지능 기반 환자 맞춤형 치아 보철물 자동 디자인 시스템 (in progress)

인공지능 기반 환자 맞춤형 보철물 자동 디자인 기술

- 연구 목표 : 임플란트를 위한 환자 맞춤형 크라운 디자인 제안
- 연구 방법:
 - ▶ PointNet++를 이용한 치아 무게 중심점과 방향벡터 예측
 - ▶ 상실된 치아의 예측된 중심점과 각도로 치아 평균모델 적용

-	
	학습 하이퍼 파라미터
Epoch	조기 종료를 포함한 80번
목적 함수	Mean squared error
최적화 방법	RMSprop (0.0001)
결과 활성화 함수	Linear

■ PointNet++을 이용한 치아 무게 중심점과 각도 예측 결과

	x(mm)	y(mm)	z(mm)	MRE(mm)	Angle(°)
mean	0.67 ± 0.58	0.55 ± 0.43	0.37 ± 0.33	1.09 ± 0.58	5.24 ± 6.05

■ 예측된 무게 중심점과 각도로 치아 평균모델을 적용한 결과

인공지능 기반 환자 맞춤형 보철물 자동 디자인 기술

- 연구 목표 : 임플란트를 위한 환자 맞춤형 크라운 디자인 제안
- 연구 방법:
 - Progressive growing of points with tree-structured generators를 사용한 임플란트 치아 크라운 자동 생성 (Completion)
 - ➤ PointNet++를 이용한 임플란트 치아 크라운 segmentation
- 제안된 학습 workflow

- Progressive growing network (PointNet encoder +TreeGCN decoder), completion
- Completion 결과 및 성능 분석

$\frac{\text{CD}}{(\times 10^3)}$	EMD (× 10 ²)	@1%	F-Score @2%	@3%	
CD	EMD _		F-Score		
	CD EMD _	F-Score			
결과 휘	활성화 함수	Linear			
최적화 방법		Adam (0.0001)			
목	적 함수	Chamfer distance			
]	Epoch	300000번			
	학습 하	이퍼파	라미터		
	목 최 ²	Epoch 목적 함수	Epoch 목적 함수 최적화 방법	목적 함수 Chamfer di 최적화 방법 Adam (0.0	

■ 제안된 학습 workflow

- PointNet++ part segmentation network
- 분할 결과 및 성능 분석

최적화 방법	loss Adam (0.00001)		
최식와 당립 결과 활성화 함수	Softmax		

딥러닝을 이용한 하악 제3대구치와 하악관의 3차원 위치관계를 위한 자동 분류 프레임워크

- 연구 목표: CBCT영상에서 사랑니와 하악 신경 분할 후 3차원적 위치 관계(협측/설측)를 분류
- 연구 방법:
 - ▶ 분할 : Dense U-Net을 통한 다중 분할
 - ▶ 분류: 거리 맵 도입으로 3차원위치 관계가 강화된 3D CNN을 통한 협설측 분류
- 제안된 학습 workflow

학습 하이퍼 파라미터			
Epoch	조기 종료를 포함한 100번		
목적 함수	Dice coefficient		
최적화 방법	Adam (0.001)		
데이터 증강 방법	rotation, height shift, zoom, horizontal flip		
결과 활성화 함수	Softmax		

■ 분할, 분류 결과 및 성능 분석

	DSC Precision		Recall				
Network	제3대구치	하악신경관	제3대구치	하악신경관	제3대	구치	하악신경관
SegNet	0.94 ± 0.02	0.79 ± 0.11	0.96 ± 0.02	0.88 ± 0.11	0.92±	0.03	0.73 ± 0.15
Dense U-Net	0.96 ± 0.01	0.87 ± 0.04	0.97 ± 0.02	0.94 ± 0.06	0.94 <u>+</u>	0.03	0.82 ± 0.09
Segmentation Model	СВСТ	Binary Mask	Distance Map	Acc	Sen	Spec	AUC
Dense U-Net				1.00	1.00	1.00	1.00

■ 분할 결과 3차원 비교

Patient 2

Ground truth SegNet U-Net

Patient 2

• Grad-CAM을 이용한 Input에 따른 딥러닝 분류 과정에서의 활성 위치 변화 분석

Multi-class Segmentation of Anatomical Structures Using Deep Learning in CBCT Images Containing Metal Artifacts

- 연구 목표: 금속 음영이 포함된 CBCT영상에서 해부학적 구조물의 다중 클래스 분할 (안면 중앙부 골, 하악골, 상악동, 하악 신경관)
- **연구 방법**: 분할 결과 및 성능 분석

