Análisis Matemático I

Tema 4: Compacidad y conexión

Acotación

2 Compacidad

Conexión

Conjuntos acotados en un espacio métrico

Conjunto acotado

E espacio métrico, $A \subset E$

A está acotado cuando está incluido en una bola

A acotado $\implies \forall x \in E \ \exists \ r \in \mathbb{R}^+ : A \subset B(x,r)$

Primeros ejemplos

- ullet Todo subconjunto finito de E está acotado
- $x_n \in E \ \forall n \in \mathbb{N}$. $\{x_n\}$ sucesión acotada cuando $\{x_n : n \in \mathbb{N}\}$ acotado, es decir, $\exists \ x \in E : \{d(x_n, x)\}$ acotada
- Toda sucesión convergente está acotada

La acotación no es una propiedad topológica

 $d\,$ distancia en un conjunto no vacío $E\,$

$$\rho(x,y) = \frac{d(x,y)}{1 + d(x,y)} \quad \forall x, y \in E$$

 ρ distancia en E , equivalente a d

Teorema de Bolzano-Weierstrass

Conjuntos acotados en espacios normados

X espacio normado, $A \subset X$

 $A \text{ acotado} \iff \exists M > 0 : \|x\| \leqslant M \ \forall x \in A$

Dos normas equivalentes dan lugar a los mismos conjuntos acotados En \mathbb{R}^N usamos cualquier norma cuya topología sea la usual

Caso de un producto de espacios normados

$$X = X_1 \times X_2 \times \ldots \times X_N$$
 producto de espacios normados, $A \subset X$

A acotado \iff $\{x(k): x \in A\}$ acotado $\forall k \in \Delta_N$

Teorema de Bolzano-Weierstrass

Toda sucesión acotada de vectores de \mathbb{R}^N admite una sucesión parcial convergente

Compacidad

Espacio métrico compacto

Un espacio métrico E es compacto cuando

toda sucesión de puntos de ${\cal E}\,$ admite una sucesión parcial convergente

Un conjunto $A\subset E$ es compacto cuando A es un espacio métrico compacto con la distancia inducida, es decir, cuando toda sucesión de puntos de A admite una sucesión parcial que converge a un punto de A

Dos condiciones necesarias

E espacio métrico, $A \subset E$

A compacto \implies A acotado y $\overline{A} = A$

Subconjuntos compactos de \mathbb{R}^N

Un subconjunto de \mathbb{R}^N es compacto si, y sólo si, es cerrado y acotado

Teoremas de Weierstrass y Hausdorff

Teorema de Weierstrass

 $E\,,\,F \ \ \text{espacios métricos,} \quad f:E\to F \ \ \text{continua}$ $E \ \ \text{compacto} \quad \Longrightarrow \quad f(E) \ \ \text{compacto}$

Existencia de máximos y mínimos

E espacio métrico compacto, $f:E\to\mathbb{R}$ continua. Entonces:

$$\exists u, v \in E : f(u) \leqslant f(x) \leqslant f(v) \ \forall x \in E$$

Teorema de Hausdorff (1932)

- ullet Todas las normas en \mathbb{R}^N son equivalentes
- Todas las normas en un espacio vectorial de dimensión finita son equivalentes

Conexión

Motivación

 $E \mbox{ espacio métrico, } f:E\to\mathbb{R} \mbox{ continua, tal que } f(E) \mbox{ no es un intervalo} \\ \alpha,\lambda,\beta\in\mathbb{R}, \ \ \alpha<\lambda<\beta\,, \ \ \alpha,\beta\in f(E), \ \ \lambda\notin f(E) \\ U=\{x\in E:f(x)<\lambda\} \mbox{ y } V=\{x\in E:f(x)>\lambda\} \\ E=U\cup V\,, \ \ U=U^\circ, \ \ V=V^\circ, \ \ U\neq\emptyset, \ \ V\neq\emptyset, \ \ U\cap V=\emptyset \label{eq:espacio}$

Espacio métrico conexo

Un espacio métrico es conexo cuando

no se puede expresar como unión de dos abiertos no vacíos disjuntos

$$E = U \cup V \;, \quad U = U^{\circ}, \quad V = V^{\circ}, \quad U \cap V = \emptyset \quad \Longrightarrow \quad U = \emptyset \quad \circ \quad V = \emptyset$$

$$U^{\circ} = U = \overline{U} \subset E \implies U = \emptyset \text{ o } U = E$$

Caracterización

Para un espacio métrico E, las siguientes afirmaciones son equivalentes:

- E es conexo
- ullet $f:E o\mathbb{R}$ continua \Longrightarrow f(E) intervalo
- $f: E \to \{0,1\}$ continua \implies f constante

Versión general del teorema del valor intermedio

Subconjuntos conexos de ${\mathbb R}$

Un subconjunto de $\ensuremath{\mathbb{R}}$ es conexo si, y sólo si, es un intervalo

Teorema del valor intermedio

 $E\,,\,F\,$ espacios métricos, $\,f:E\to F\,$ continua

E conexo \Longrightarrow f(E) conexo

Corolario

E espacio métrico compacto y conexo, $\;f:E\to\mathbb{R}\;$ continua. Entonces:

f(E) es un intervalo cerrado y acotado

Convexidad

Otra caracterización de los espacios métricos conexos

Un espacio métrico E es conexo si, y sólo si, para cualesquiera $x,y\in E$ existe un conjunto conexo $C\subset E$ tal que $x,y\in C$

Conjuntos convexos

Un subconjunto E de un espacio vectorial X es convexo cuando:

$$x, y \in E \implies (1-t)x + ty \in E \quad \forall t \in [0,1]$$

Ejemplos de conjuntos conexos

- Todo subconjunto convexo de un espacio normado es conexo
- Las bolas de un espacio normado son conjuntos convexos, luego conexos
- ullet E espacio métrico, C,D subconjuntos conexos de E

$$C \cap D \neq \emptyset \implies C \cup D$$
 conexo