Machine Intelligence:: Deep Learning

Beate Sick, Lilach Goren, Pascal Bühler

Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften

Outline of the DL Module (tentative)

The course is split in 8 sessions, each 4 lectures long. Topics might be adapted during the course

Day	Date	Time	Торіс
1	15.04.2025	09:00-12:30	Introduction to Deep Learning & Keras, first NNs
-	21.04.2025	-	FRÜHLINGS-FERIEN
-	28.04.2025	-	FRÜHLINGS-FERIEN
2	06.05.2025	09:00-12:30	Loss, Optimization, Regression, Classification
3	13.05.2025	09:00-12:30	Computer vision, CNN-archictecture
4	20.05.2025	09:00-12:30	DL in practice, pretrained (foundation) models
5	27.05.2025	09:00-12:30	Model evaluation, baselines, xAI, troubleshooting
6	03.06.2025	09:00-12:30	Generative Models, Transformer-architecture
7	10.06.2025	09:00-12:30	Vision Transformer
8	17.06.2025	09:00-12:30	Projects, deep Ensembling

Look back on homework: MNIST with CNN

Use a CNN to classify MNIST data to 10 possible classes

<u>06_cnn_mnist_shuffled_keras_torch.ipynb</u> <- first part with the unshuffled cnn

FCNN Accuracy = 0.9255 CNN Accuracy = 0.9861

What is a good CNN architecture?

CNN breakthrough in 2012: Imagenet challenge

1000 classes1 Mio samples

. .

A. Krizhevskyfirst CNN in 2012Und es hat zoom gemacht

Review of ImageNet winning CNN architectures

The trend in modern CNN architectures goes to small filters

Why do modern architectures use very small filters?

Determine the receptive field in the following situation:

1) Suppose we have one7x7 conv layers (stride 1)49 weights

2) Suppose we stack **two** 3x3 conv layers (stride 1)

3) Suppose we stack three 3x3 conv layers (stride 1) 3*9=27 weights

Answer 3): 7x7								
					Х			
				Х				

We need less weights for the same receptive field when stacking small filters!

"Oxford Net" or "VGG Net" 2014 2nd place

- 2nd place in the imageNet challenge
- More traditional, easier to train
- Small pooling
- Stacked 3x3 convolutions before maxpooling
 - -> large receptive field
- no strides (stride 1)
- ReLU after conv. and FC (batchnorm was not introduced)
- Pre-trainined model is available (see excercise)

conv-64
conv-64
maxpool
conv-128
conv-128

maxpool

conv-256 conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096

FC-1000

softmax

http://arxiv.org/abs/1409.1556

"ResNet" from Microsoft 2015 winner of imageNet

ResNet basic design (VGG-style)

- add shortcut connections every two
- all 3x3 conv (almost)

152 layers: Why does this train at all?

This deep architecture could still be trained, since the gradients can skip layers which diminish the gradient!

$$H(x_1)=x_{1+1}=x_1+F(x_1)$$

F(x) is called "residual" since it only learns the "delta" which is needed to add to x to get H(x)

Tricks of the trade

- Early stopping
- Input Standardization
- Batch Norm Layer
- Dropout
- Data augmentation

Best practice: Split in Train, Validation, and Test Set

Best practice: Lock an extra test data set away, and use it only at the very end, to evaluate the chosen model, that performed best on your validation set.

Reason: When trying many models, you probably overfit on the validation set.

Loss curve and early stopping

Very common check: Plot loss in train and validation data vs epoch of training.


```
## Early Stopping
early_stopping = EarlyStopping(
    monitor='val_loss',
    patience=10,
    verbose=1,
    restore_best_weights=False
)
```

Training completed all epochs.
Best model weights were restored from epoch 11

- If training loss does not go down to zero: model is not flexible enough.
- Use weights @minimum of validation before overfitting
- Early stopping: stop to training if validation loss does not improve anymore

07_early_stopping_and_modelweights

Take-home messages from CIFAR10 CNN study

• DL does not need a lot of preprocessing, but working with standardized (small-valued) input data often helps.

Without normalizing the input to the CNN

With normalizing (pixel-value/255) the input to the CNN

<u>07_cifar10_tricks_keras_torch.ipynb</u> <- CIFAR10 Study

Regularization to avoid overfitting

- Batchnorm layer
- Dropout layer

What is the idea of Batch-Normalization (BN)

Dropout helps to fight overfitting

Using dropout during training implies:

- In each training step only weights to not-dropped units are updated → we train a sparse sub-model NN
- For predictions with the trained NN we freeze the weights corresponding to averaging over the ensemble of trained models we should be able to "reduce noise", "overfitting"
- JFI: To get same expected output in training (with dropout) and after training (test time - without dropout), the weights are multiplied after training by the dropout probability p=0.5.

Dropout

Three NNs:

- a) shows the full NN with all neurons (as used when NN is trained),
- b) and c) show two versions of a thinned NN where some neurons are dropped (as done during training with dropout). Dropping neurons is the same as setting all connections that start from these neurons to zero.

Dropout fights overfitting in a CIFAR10 CNN

What to do in case of limited data?

- Data augmentation
- Pretrained (foundation) models

Fighting overfitting by Data augmentation:

During training random operations are done on the fly

- Rotate image within an angle range
- Flip image: left/right, up, down
- resize
- Take patches from images
- •

In Code: Augmentation

```
1 # Functional API Model Definition
2 x = Input(shape=input_shape)
3 x = data_augmentation(x)
4 # First Convolutional Block
5 x = Convolution2D(8, kernel_size, padding='same')(x)
6 ...
```

07_cifar10_tricks_keras_torch.ipynb

Use pre-trained CNNs for feature generation

Transfer learning beyond using off-shelf CNN feature

e.g. medium data set (<1M images)

The strategy for fine-tuning depends on the size of the data set and the type of images:

	Similar task (to imageNet challenge)	Very different task (to imageNet challenge)	
little data	Extract CNN representation of one top fc layer and use these features to train an external classifier	You are in trouble - try to extract CNN representations from different stages and use them as input to new classifier	
lots of data	Fine-tune a few layers including few convolutional layers	Fine-tune a large number of layers	

Where to get pretrained CNNs like VGG16 or ResNet: https://keras.io/api/applications/ Hint: first retrain only fully connected layer, only then add convolutional layers for fine-tuning.

Slide credits (modified): cs231n

Performance of off-the-shelf CNN features when compared to tailored hand-crafted features

CNN's distributed and compositional features generalize well to new tasks

"Astonishingly, we report consistent superior results compared to the highly tuned state-of-the-art systems in all the visual classification tasks on various datasets."

Use features from a pretrained VGG as input to t-SNE

- → Different tissue types cluster together in t-SNE: we could use knn as classifier
- → VGG features even work on images that are far away from the 1000 imageNet classes

Case Study: CIFAR10 Dataset

Cifar10 Data

10 Classes, with 5'000 images for training

Some examples:

VGG-19 with GradInit 2021 94.71 ResNet-18 2022 95.55

Dataset Splitting in Machine Learning Competitions

- Training Set
 - The set you get for training, you can do what you want with it.
- Test Set:
 - Final evaluation set, never seen by the model during training (e.g., 10,000 images in CIFAR-10).

Note: CIFAR-10 and many other datasets do NOT provide a separate validation set.

- Typical Workflow
 - Hyperparameter Tuning
 - Create validation set from training set
 - Helps in tuning hyperparameters and preventing overfitting.
 - Common practice: split 80% training / 20% validation (e.g., 40,000 train / 10,000 validation).
 - Final Training: After hyperparameter tuning, models are often retrained on the entire training set
 - Evaluation on test set
 - Sometimes test set is secret and you to upload you predictions (private test set)

Exercise: Transfer learning with CIFAR10 data

softmax

08_classification_transfer_learning_few_labels_keras_torch.ipynb

Take home: DL with images in practice

- Use NN architectures inspired by challenge winning NNs
- Use tricks of the trade when building a CNN
 - Normalization of input data
 - Batchnorm
 - Dropout
 - Data Augmentation
 - Early stopping (patience)
- In case of few data
 - Do augmentation during training of a CNN
 - Use shallow learner (e.g. RF) based on image features extracted via pretrained CNNs
 - Fine-tune a pretrained CNN on few data (transfer learning)
- Use pretrained (foundation) models