Equations

Listed here a re the computational equations used in this textbook. The page number refers to the page where the equation first appears.

Equation	Description	Equation First Occurs on Page:
$\sum_{i=1}^{N} X_i = X_1 + X_2 + X_3 + \dots + X_N$	summation	27
$\operatorname{cum} \% = \frac{\operatorname{cum} f}{N} \times 100$	cumulative percentage	55
Percentile point = $X_L + (i/f_i)(\operatorname{cum} f_p - \operatorname{cum} f_L)$	equation for computing percentile point	58
Percentile rank = $\frac{\operatorname{cum} f_L + (f_i/i)(X - X_L)}{N} \times 100$	equation for computing percentile rank	59
$\overline{X} = rac{\sum X_i}{N}$	mean of a sample	81
$\mu = rac{\sum X_i}{N}$	mean of a population of raw scores	81
$\overline{X}_{\text{overall}} = \frac{n_1 \overline{X}_1 + n_2 \overline{X}_2 + \dots + n_k \overline{X}_k}{n_1 + n_2 + \dots + n_k}$	overall mean of several groups	84
$Mdn = P_{50} = X_L + (if_i) (cum f_p - cum f_L)$	median of a distribution	85
Range = Highest score - Lowest score	range of a distribution	89
$X - \overline{X}$	deviation score for sample data	90
$X - \mu$	deviation score for population data	90
$\sigma = \sqrt{\frac{SS_{ ext{pop}}}{N}} = \sqrt{\frac{\Sigma(X - \mu)^2}{N}}$	standard deviation of a population of raw scores	91
$s = \sqrt{\frac{SS}{N-1}} = \sqrt{\frac{\Sigma(X-\overline{X})^2}{N-1}}$	standard deviation of a sample of raw scores	91

Equation	Description	Equation First Occurs on Page:
$SS = \sum X^2 - \frac{(\sum X)^2}{N}$	sum of squares	93
$s^2 = \frac{SS}{N-1}$	variance of a sample of raw scores	95
$\sigma^2 = \frac{SS_{\text{pop}}}{N}$	variance of a population of raw scores	95
$z = \frac{X - \mu}{\sigma}$	z score for population data	106
$z = \frac{X - \overline{X}}{s}$	z score for sample data	106
$X = \mu + \sigma z$	equation for finding a population raw score from its z score	114
Y = bX + a	equation of a straight line	125
$b = \text{Slope} = \frac{\Delta Y}{\Delta X} = \frac{Y_2 - Y_1}{X_2 - X_1}$	slope of a straight line	125
$r = \frac{\sum z_X z_Y}{N - 1}$	computational equation for Pearson r using z scores	133
$r = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{N}}{\sqrt{\left[\sum X^2 - \frac{(\sum X)^2}{N}\right]\left[\sum Y^2 - \frac{(\sum Y)^2}{N}\right]}}$	computational equation for Pearson r	133
$r_s = 1 - \frac{6 \sum D_i^2}{N^3 - N}$	computational equation for Spearman rho	141
$Y' = b_Y X + a_Y$	linear regression equation for predicting <i>Y</i> given <i>X</i>	162
$b_Y = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{N}}{\sum X^2 - \frac{(\sum X)^2}{N}}$	regression constant b for predicting <i>Y</i> given <i>X</i> , computational equation with raw scores	163
$a_Y = Y - b_Y \overline{X}$	regression constant a for predicting Y given X	163
$s_{Y X} = \sqrt{\frac{SS_Y - \frac{\left[\sum XY - (\sum X)(\sum Y)/N\right]^2}{SS_X}}{N - 2}}$	computational equation for the standard error of estimate when predicting <i>Y</i> given <i>X</i>	170
$b_Y = r \frac{s_Y}{s_X}$	equation relating r to the b_Y regression constant	173
$R^{2} = \frac{r_{YX_{1}}^{2} + r_{YX_{2}}^{2} - 2r_{YX_{1}}r_{YX_{2}}r_{X_{1}X_{2}}}{1 - r_{X_{1}X_{2}}^{2}}$	equation for computing the squared multiple correlation	176

Equation	Description	Equation First Occurs on Page:
$p(A) = \frac{\text{Number of events classifiable as } A}{\text{Total number of possible events}}$	a priori probability	193
$p(A) = \frac{\text{Number of times } A \text{ has occurred}}{\text{Total number of occurrences}}$	a posteriori probability	194
p(A or B) = p(A) + p(B) - p(A and B)	addition rule for two events, general equation	196
p(A or B) = p(A) + p(B)	addition rule when <i>A</i> and <i>B</i> are mutually exclusive	196
$p(A \text{ or } B \text{ or } C \text{ or } \dots \text{ or } Z) = p(A) + p(B) + p(C) + \dots + p(Z)$	addition rule with more than two mutually exclusive events	200
$p(A) + p(B) + p(C) + \dots + p(Z) = 1.00$	when events are exhaustive and mutually exclusive	200
P + Q = 1.00	when two events are exhaustive and mutually exclusive	201
p(A and B) = p(A)p(B A)	multiplication rule with two events—general equation	201
p(A and B) = 0	multiplication rule with mutually exclusive events	201
p(A and B) = p(A)p(B)	multiplication rule with independent events	202
$p(A \text{ and } B \text{ and } C \text{ and } \dots \text{ and } Z) = p(A)p(B)p(C) \dots p(Z)$	multiplication rule with more than two independent events	206
p(A and B) = p(A)p(B A)	multiplication rule with dependent events	207
$p(A \text{ and } B \text{ and } C \text{ and } \dots \text{ and } Z) = p(A)p(B A)p(C AB) \dots p(Z ABC \dots)$	multiplication rule with more than two dependent events	210
$p(A) = \frac{\text{Area under curve corresponding to } A}{\text{Total area under curve}}$	probability of A with a continuous variable	214
$(P+Q)^N$	binomial expansion	229
Number of Q events = N – Number of P events	relationship between number of Q events, number of P events, and N	235
$\mu = \mathit{NP}$	mean of the normal distribution approximated by the binomial distribution	239
$\sigma = \sqrt{NPQ}$	standard deviation of the normal distribution approximated by the binomial distribution	239
Beta = 1 - Power	relationship between beta and power	285
$\mu_{\overline{X}}=\mu$	mean of the sampling distribution of the mean	305
$\sigma_{\overline{X}} = rac{\sigma}{\sqrt{N}}$	standard deviation of the sampling distribution of the mean or stan- dard error of the mean	305

Equation	Description	Equation First Occurs on Page:
$z_{\text{obt}} = \frac{\overline{X}_{\text{obt}} - \mu}{\sigma_{\overline{X}}}$	z transformation for $\overline{X}_{ m obt}$	312
$z_{ m obt} = rac{\overline{X}_{ m obt} - \mu}{\sigma/\sqrt{N}}$	z transformation for $\overline{X}_{\rm obt}$	315
$N = \left[\frac{\sigma(z_{\rm crit} - z_{\rm obt})}{\mu_{\rm real} - \mu_{\rm null}}\right]^2$	determining N for a specified power	321
$t_{\rm obt} = \frac{\overline{X}_{\rm obt} - \mu}{s/\sqrt{N}}$	equation for calculating the <i>t</i> statistic	328
$t_{ m obt} = rac{\overline{X}_{ m obt} - \mu}{s_{\overline{X}}}$	equation for calculating the t statistic	328
$s_{\overline{X}} = \frac{s}{\sqrt{N}}$	estimated standard error of the mean	328
df = N - 1	degrees of freedom for <i>t</i> test (single sample)	331
$t_{\text{obt}} = \frac{\overline{X}_{\text{obt}} - \mu}{\sqrt{\frac{SS}{N(N-1)}}}$	equation for calculating the <i>t</i> statistic from raw scores	334
$d = \frac{ \text{mean difference} }{\text{population standard deviation}}$	general equation for size of effect	339
$d = \frac{ \overline{X}_{\text{obt}} - \mu }{\sigma}$	conceptual equation for size of effect, single sample <i>t</i> test	339
$\hat{d} = \frac{ \overline{X}_{\text{obt}} - \mu }{s}$	computational equation for size of effect, single sample <i>t</i> test	340
$\mu_{\text{lower}} = \overline{X}_{\text{obt}} - s_{\overline{X}} t_{0.025}$	lower limit for the 95% confidence interval	342
$\mu_{\rm upper} = \overline{X}_{\rm obt} + s_{\overline{X}} t_{0.025}$	upper limit for the 95% confidence interval	342
$\mu_{\text{lower}} = \overline{X}_{\text{obt}} - s_{\overline{X}} t_{\text{crit}}$	general equation for the lower limit of the confidence interval	343
$\mu_{\rm upper} = \overline{X}_{\rm obt} + s_{\overline{X}} t_{\rm crit}$	general equation for the upper limit of the confidence interval	343
$\mu_{\text{lower}} = \overline{X}_{\text{obt}} - s_{\overline{X}} t_{0.005}$	lower limit for the 99% confidence interval	344
$\mu_{\text{upper}} = \overline{X}_{\text{obt}} + s_{\overline{X}} t_{0.005}$	upper limit for the 99% confidence interval	344
$t_{\text{obt}} = \frac{r_{\text{obt}} - p}{s_r}$	t test for testing the significance of r	346

Equation	Description	Equation First Occurs on Page:
$t_{\text{obt}} = \frac{r_{\text{obt}}}{\sqrt{\frac{1 - r_{\text{obt}}^2}{N - 2}}}$	t test for testing the significance of r	346
$t_{\rm obt} = \frac{\overline{D}_{\rm obt} - \mu_D}{s_D / \sqrt{N}}$	t test for correlated groups	360
$t_{\text{obt}} = \frac{\overline{D}_{\text{obt}} - \mu_D}{\sqrt{\frac{SS_D}{N(N-1)}}}$	t test for correlated groups	360
$SS_D = \Sigma D^2 - \frac{(\Sigma D)^2}{N}$	sum of squares of the difference scores	360
$d=rac{ \overline{D}_{ m obt} }{\sigma_D}$	conceptual equation for size of effect, correlated groups <i>t</i> test	364
$\hat{d} = \frac{ \overline{D}_{\text{obt}} }{s_D}$	computational equation for size of effect, correlated groups <i>t</i> test	364
$\mu_{\overline{X}_1-\overline{X}_2}=\mu_1-\mu_2$	mean of the difference between sample means	368
$\sigma_{\overline{X}_1-\overline{X}_2} = \sqrt{\sigma^2\!\!\left(rac{1}{n_1}+rac{1}{n_2} ight)}$	standard deviation of the difference between sample means	368
$t_{\text{obt}} = \frac{(\overline{X}_1 - \overline{X}_2) - \mu_{\overline{X}_1 - \overline{X}_2}}{\sqrt{\left(\frac{SS_1 + SS_2}{n_1 + n_2 - 2}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	computational equation for $t_{\rm obt}$, independent groups design	371
$t_{\text{obt}} = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\left(\frac{SS_1 + SS_2}{n_1 + n_2 - 2}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	computational equation for $t_{\rm obt}$ assuming the independent variable has no effect	371
$SS_1 = \sum X_1^2 - \frac{(\sum X_1)^2}{n_1}$	sum of squares for group x	373
$SS_2 = \sum X_2^2 - \frac{(\sum X_2)^2}{n_2}$	sum of squares for group x	373
$t_{\text{obt}} = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{SS_1 + SS_2}{n(n-1)}}}$	computational equation for t_{obt} when $n_1 = n_2$	373
$d = \frac{ \overline{X}_1 - \overline{X}_2 }{\sigma}$	conceptual equation for size of effect, independent groups <i>t</i> test	377
$\hat{d} = \frac{ \overline{X}_1 - \overline{X}_2 }{\sqrt{{s_W}^2}}$	computational equation for size of effect, independent groups <i>t</i> test	377

Equation	Description	Equation First Occurs on Page:
$\mu_{\text{lower}} = (\overline{X}_1 - \overline{X}_2) - s_{\overline{X}_1} = \overline{X}_2 t_{0.025}$	lower limit for the 95% confidence interval for $\mu_{\overline{X}_1} = \overline{X}$,	383
$\mu_{\text{upper}} = (\overline{X}_1 - \overline{X}_2) + s_{\overline{X}_1} = \overline{X}_2 t_{0.025}$	upper limit for the 95% confidence interval for $\mu_{\overline{X}_1} = \overline{X}_2$	383
$\mu_{\text{lower}} = (\overline{X}_1 - \overline{X}_2) - s_{\overline{X}_1} = \overline{X}_2 t_{0.005}$	lower limit for the 99% confidence interval for $\mu_{\overline{X}_1} = \overline{X}_2$	385
$\mu_{\text{upper}} = (\overline{X}_1 - \overline{X}_2) + s_{\overline{X}_1} = \overline{X}_2 t_{0.005}$	upper limit for the 99% confidence interval for $\mu_{\overline{X}_1} = \overline{X}_2$	385
$F = \frac{\text{Variance estimate 1 of } \sigma^2}{\text{Variance estimate 2 of } \sigma^2}$	basic definition of F	402
$F_{\text{obt}} = \frac{\text{Between-groups variance estimate}}{\text{Within-groups variance estimate}} = \frac{MS_{between}}{MS_{within}}$	F equation for the analysis of variance	406
$s_W^2 = \frac{SS_1 + SS_2}{(n_1 - 1) + (n_2 - 1)}$	t test, only 2 groups	407
$MS_{within} = s_W^2$	both are estimates of σ^2	407
$MS_{within} = \frac{SS_1 + SS_2 + SS_3 + \dots + SS_k}{(n_1 - 1) + (n_2 - 1) + (n_3 - 1) + \dots + (n_k - 1)}$	conceptual equation for MS _{within}	407
$MS_{within} = \frac{SS_1 + SS_2 + SS_3 + \dots + SS_k}{N - k}$	simplified equation for MS _{within}	407
$MS_{within} = \frac{SS_{within}}{\mathrm{df}_{within}}$	within-groups variance estimate	407
$SS_{within} = SS_1 + SS_2 + SS_3 + \cdot \cdot + SS_k$	within-groups sum of squares	407
$\mathrm{df}_{within} = N - k$	within-groups degrees of freedom	407
$SS_{within} = \sum_{\text{scores}}^{\text{all scores}} X^2 - \left[\frac{(\sum X_1)^2}{n_1} + \frac{(\sum X_2)^2}{n_2} + \frac{(\sum X_3)^2}{n_3} + \dots + \frac{(\sum X_k)^2}{n_k} \right]$	computational equation for within- groups sum of squares	408
$MS_{between} = \frac{n[(\overline{X}_1 - \overline{X}_G)^2 + (\overline{X}_2 - \overline{X}_G)^2 + (\overline{X}_3 - \overline{X}_G)^2 + \dots + (\overline{X}_k - \overline{X}_G)^2]}{k - 1}$	conceptual equation for between- groups variance estimate	409
$MS_{between} = \frac{SS_{between}}{df_{between}}$	between-groups variance estimate	409
$SS_{between} = n[(\overline{X}_1 - \overline{X}_G)^2 + (\overline{X}_2 - \overline{X}_G)^2 + (\overline{X}_3 - \overline{X}_G)^2 + \dots + (\overline{X}_3 - \overline{X}_G)^2]$	between-groups sum of squares	409
$\mathrm{df}_{between} = k - 1$	between-groups degrees of freedom	409
$SS_{between} = \left[\frac{(\Sigma X_1)^2}{n_1} + \frac{(\Sigma X_2)^2}{n_2} + \frac{(\Sigma X_3)^2}{n_3} + \dots + \frac{(\Sigma X_k)^2}{n_k} \right] - \frac{\left(\sum_{\text{scores}}^{\text{all}} X\right)^2}{N}$	computational equation for between-groups sum of squares	409
$SS_{total} = SS_{within} + SS_{between}$	equation for checking SS_{within} and $SS_{between}$	412

Equation	Description	Equation First Occurs on Page:
$SS_{total} = \sum_{\text{scores}}^{\text{all}} X^2 - \frac{\left(\sum_{\text{scores}}^{\text{all}} X\right)^2}{N}$	equation for calculating the total variability	412
$\hat{\omega}^2 = \frac{SS_{between} - (k-1) MS_{within}}{SS_{total} + MS_{within}}$	computational equation for estimating $\hat{\omega}^2$	419
$\eta^2 = \frac{SS_{between}}{SS_{total}}$	conceptual and computational equation for eta squared	420
$F_{\text{obt}} = \frac{MS_{between}}{MS_{within}} = \frac{n[(\overline{X}_1 - \overline{X}_G)^2 + (\overline{X}_2 - \overline{X}_G)^2 + (\overline{X}_3 - \overline{X}_G)^2]/2}{(SS_1 + SS_2 + SS_3)/(N - 3)}$	F equation for three-group experiment	421
$t_{\text{obt}} = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{MS_{within}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	general equation for <i>t</i> equation for <i>planned</i> comparisons,	422
$t_{\rm obt} = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{2MS_{within}/n}}$	t equation for <i>planned</i> comparisons with equal n in the two groups	423
$Q_{\rm obt} = \frac{\overline{X}_i - \overline{X}_j}{\sqrt{MS_{within}/n}}$	equation for calculating Q_{obt}	424
$SS_{between (groups i and j)} = \left[\frac{(\sum X_i)^2}{n_i} + \frac{(\sum X_j)^2}{n_j} \right] - \frac{\left(\sum_{i \text{ and } j}^{\text{groups}} X\right)^2}{n_i + n_j}$	computational equation for $SS_{between (groups \ i \ and \ j)}$	426
$MS_{between (groups \ i \ and \ j)} = \frac{SS_{between (groups \ i \ and \ j)}}{\mathrm{df}_{between (entire \ ANOVA)}}$	conceptual equation for $MS_{between (groups \ i \ and \ j)}$	426
$F_{Scheff\acute{e}} = rac{MS_{between(groupsiandj)}}{MS_{between(entireANOVA)}}$	equation for $F_{Scheff\acute{e}}$	426
$F_{\text{crit}} = F_{\text{crit (entire ANOVA)}}$	$F_{\rm crit}$ for Scheffé test	426
$MS_{within-cells} = rac{SS_{within-cells}}{\mathrm{df}_{within-cells}}$	conceptual equation for equation for within-cells variance estimate	451
$SS_{within-cells} = SS_{11} + SS_{12} + \dots + SS_{rc}$	conceptual equation for within-cells sum of squares	451
$SS_{within-cells} = \sum_{\text{scores}}^{\text{all}} X^{2} - \left[\frac{\left(\sum_{11}^{\text{cell}} X\right)^{2} + \left(\sum_{12}^{\text{cell}} X\right)^{2} + \dots + \left(\sum_{rc}^{\text{cell}} X\right)^{2}}{n_{\text{cell}}} \right]$	computational equation for within- cells sum of squares	452
$df_{within-cells} = rc(n-1)$	within-cells degrees of freedom	452
$MS_{rows} = \frac{SS_{rows}}{\mathrm{df}_{rows}}$	conceptual equation for the row variance estimate	452
$SS_{rows} = n_{row} [(\overline{X}_{row 1} - \overline{X}_G)^2 + (\overline{X}_{row 2} - \overline{X}_G)^2 + \dots + (\overline{X}_{row r} - \overline{X}_G)^2]$	conceptual equation for the row sum of squares	453

Equation	Description	Equation First Occurs on Page:
$\mathrm{df}_{rows} = r - 1$	row degrees of freedom	453
$SS_{rows} = \left[\frac{\left(\frac{row}{1}X\right)^2 + \left(\frac{row}{2}X\right)^2 + \dots + \left(\frac{row}{r}X\right)^2}{n_{row}} \right] - \frac{\left(\frac{sall}{scores}X\right)^2}{N}$	computational equation for the row sum of squares	453
$MS_{columns} = rac{SS_{columns}}{\mathrm{df}_{columns}}$	column variance estimate	454
$SS_{columns} = n_{column} \left[(\overline{X}_{column \ 1} - \overline{X}_G)^2 + (\overline{X}_{column \ 2} - \overline{X}_G)^2 + \dots + (\overline{X}_{column \ c} - \overline{X}_G)^2 \right]$	conceptual equation for the column sum of squares	454
$\mathrm{df}_{columns} = c - 1$	column degrees of freedom	454
$SS_{columns} = \left[\frac{\left(\frac{\text{column}}{\sum_{i=1}^{1} X_{i}} \right)^{2} + \left(\frac{\text{column}}{\sum_{i=1}^{2} X_{i}} \right)^{2} + \dots + \left(\frac{\text{column}}{\sum_{i=1}^{c} X_{i}} \right)^{2}}{n_{column}} \right] - \frac{\left(\frac{\text{all scores}}{\sum_{i=1}^{c} X_{i}} \right)^{2}}{N}$	computational equation for the column sum of squares	454
$MS_{interaction} = rac{SS_{interaction}}{\mathrm{df}_{interaction}}$	interaction variance estimate	455
$SS_{interaction} = n_{cell} \left[(\overline{X}_{cell 11} - \overline{X}_G)^2 + (\overline{X}_{cell 12} - \overline{X}_G)^2 + \dots + (\overline{X}_{cell rc} - \overline{X}_G)^2 \right] $ $- SS_{rows} - SS_{columns}$	conceptual equation for the interaction sum of squares	455
$SS_{interaction} = \left[\frac{\left(\frac{\text{cell}}{11}X\right)^2 + \left(\frac{\text{cell}}{12}X\right)^2 + \dots + \left(\frac{\text{cell}}{\sum X}X\right)^2}{n_{\text{cell}}} \right] - \frac{\left(\frac{\text{all}}{\text{scores}}X\right)^2}{N} - SS_{rows} - SS_{columns}$	computational equation for the interaction sum of squares	455
$df_{interaction} = (r-1)(c-1)$	interaction degrees of freedom	455
$\chi_{ m obt}^2 = \sum \frac{(f_o - f_e)^2}{f_e}$	equation for calculating $\chi^2_{\rm obt}$	485
$U_{\text{obt}} = n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - R_1$	general equation for calculating U_{obt} or U'_{obt}	503
$U_{\text{obt}} = n_1 n_2 + \frac{n_2 (n_2 + 1)}{2} - R_2$	general equation for calculating $U_{\rm obt}$ or $U'_{\rm obt}$	503
$H_{\text{obt}} = \left[\frac{12}{N(N+1)}\right] \left[\sum_{i=1}^{k} \frac{(R_i)^2}{n_i}\right] - 3(N+1)$	equation for computing $H_{ m obt}$	509