Let \mathbb{F}_q be a finite field of size q and characteristic p, where p is an odd prime. Let $r \in \mathbb{F}_q$ be such that the polynomial $x^2 - r \in \mathbb{F}_q[x]$ is irreducible; that is, r has no square root in \mathbb{F}_q . Denote by $L_r(a,b)$ the line in $\mathbb{P}^3_{\mathbb{F}_q}$ connecting the points (1,0,a,b) and (0,1,rb,a). Denote by $L(\infty)$ the line connecting the points (0,0,1,0) and (0,0,0,1).

Proposition 1. The set of lines $S_r = \{L_r(a,b), L(\infty) : a,b \in \mathbb{F}_q\}$ is a spread in $\mathbb{P}^3_{\mathbb{F}_q}$. We will call this the r-spread of $\mathbb{P}^3_{\mathbb{F}_q}$.

Proof. First note that for all $(a,b) \in \mathbb{F}_q^2$, $L_r(a,b) \cap L(\infty) = \emptyset$. Now it is enough to show that for distinct pairs $(a,b),(c,d) \in \mathbb{F}_q^2$, $L_r(a,b) \cap L_r(c,d) = \emptyset$.

Note that the lines $L_r(a,b)$ and $L_r(c,d)$ are skew if and only if the two vector subspaces of $\mathbb{F}_q^4 \text{ span}\{(1,0,a,b),(0,1,rb,a)\} \text{ and } \text{span}\{(1,0,c,d),(0,1,rd,c)\} \text{ intersect only at the origin.}$ This is true if and only if the set of vectors $\{(1,0,a,b),(0,1,rb,a),(1,0,c,d),(0,1,rd,c)\}$ is linearly independent.

We can check this by confirming that

$$\det\begin{pmatrix} 1 & 0 & a & b \\ 0 & 1 & rb & a \\ 1 & 0 & c & d \\ 0 & 1 & rd & c \end{pmatrix} \neq 0.$$

In fact, we get $\det \begin{pmatrix} 1 & 0 & a & b \\ 0 & 1 & rb & a \\ 1 & 0 & c & d \\ 0 & 1 & rd & c \end{pmatrix} = (a-c)^2 - (b-d)^2 r$. For contradiction, let us assume

 $(a-c)^2-(b-d)^2r=0$. In the case that b=d, then we get $(a-c)^2=0$, and so a=c, which means (a, b) = (c, d), which contradicts the assumption that (a, b) and (c, d) are distinct.

If $b \neq d$, then b-d is a unit. Then $(a-c)^2 - (b-d)^2 r = 0$ if and only if $\left(\frac{a-c}{b-d}\right)^2 - r = 0$. This contradicts the assumption that r does not have any square roots.

Therefore $\det\begin{pmatrix} 1 & 0 & a & b \\ 0 & 1 & rb & a \\ 1 & 0 & c & d \\ 0 & 1 & rd & c \end{pmatrix} \neq 0$ for all $(a,b) \neq (c,d)$, and so the lines $L_r(a,b)$ and $L_r(c,d)$ are skew in $\mathbb{P}^3_{\mathbb{F}_q}$. Since $\#S_r = q^2 + 1$ and each line contains q+1 unique points, S_r

must be a spread of $\mathbb{P}^3_{\mathbb{F}_q}$

Remark 2. In the case char $\mathbb{F}_q = 2$, we want to choose $r \in \mathbb{F}_q$ to be such that the polynomial x^2+x+r is irreducible in $\mathbb{F}_q[x]$. Then define $L_r(a,b)$ to be the line in $\mathbb{P}^3_{\mathbb{F}_q}$ connecting the points (1,0,a,b) and (0,1,br,a+b). Then a similar argument shows that $S_r = \{L_r(a,b), L(\infty):$ $a, b \in \mathbb{F}_q$ is a spread.

This construction gives us a unique spread for each quadratic non-residue of \mathbb{F}_q (q is again odd). This constructs $\frac{q-1}{2}$ spreads for $\mathbb{P}^3_{\mathbb{F}_q}$.

Now we will see that there are q+1 lines of S_r that are invariant based on r. Let Qdenote the set of elements of \mathbb{F}_q that do not have square roots: for all $r, s \in Q$, the set of lines $I = \{L_r(a,0), L(\infty) : a \in \mathbb{F}_q\}$ is contained in the spread S_s . Indeed, $L_r(a,0) = L_s(a,0)$ for all $r, s \in Q$. For this reason we can simply call these lines L(a).

In fact, I forms a $(q+1)\times(q+1)$ grid. For $a\in\mathbb{F}_q$, let us define the line $\Gamma(a)$ to be the line connecting the points (0,0,1,a) and (1,a,0,0) and $\Gamma(\infty)$ to be the line through the points (0,0,0,1) and (0,1,0,0). Then $J=\{\Gamma(a),\Gamma(\infty):a\in\mathbb{F}_q\}$ is a set of q+1 mutually-skew lines in $\mathbb{P}^3_{\mathbb{F}_q}$. Furthermore, each line in I intersects each line in J exactly once. Thus for each $\Gamma\in J$, all of the q+1 points of Γ are contained in one of the q+1 lines of I. Therefore none of the lines of J meet any of the lines in $S_r\setminus I$ for any $r\in Q$. Thus

$$T_r := (S_r \setminus I) \cup J$$

is a spread of $\mathbb{P}^3_{\mathbb{F}_q}$. Thus each quadratic non-residue r of \mathbb{F}_q gives us two unique spreads: S_r and T_r for a total of q-1 unique spreads. Is there a way to construct a maximal partial spread out of mixing up lines from these q-1 spreads?