
Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: markspencer

Timestamp: [year=2008; month=10; day=17; hr=7; min=40; sec=41; ms=10;]

Reviewer Comments:

<210> 8

<211> 31

<212> DNA

<213> Artifical Sequence

<400> 8

cacgctgtttggcatcgacctgaccatcatg

<210> 9

<211> 31

<212> DNA

<213> Artifical Sequence

<400> 9

Gccacggcacgcggaatgtgatgccgcccc

Please change "Artifical" to "Artificial" in the response for numeric identifier <213>.

For SEQ ID # 8 and 9, when using "Artificial sequence", for numeric identifier <213>, a mandatory feature is required to explain the source of the genetic material. The feature consists of <220>, which remains blank, and <223>, which states the source of the genetic material. To explain the source, if the sequence is put together from several organisms, please list those organisms. If the sequence is made in the laboratory, please indicate that the sequence is synthesized. Please

make all necessary changes.

For SEQ ID # 8 and 9, the nucleic acid sequence is not in the proper format. Nucleotide bases must be in groups of ten nucleotides. The individual groups of ten nucleotides must be separated by a space. The sequence rules require that "the enumeration of nucleotide bases shall start at the first base of the sequence with 1. The enumeration shall be continuous through the whole sequence in the direction 5' to 3'. The enumeration shall be marked in the right margin, next to the line containing the one-letter codes for bases, and giving the number of the last base of that line." Please make all necessary changes.

Validated By CRFValidator v 1.0.3

Application No: 10553097 Version No: 1.0

Input Set:

Output Set:

Started: 2008-10-15 14:45:15.073 **Finished:** 2008-10-15 14:45:15.670

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 597 ms

Total Warnings: 2
Total Errors: 2

No. of SeqIDs Defined: 9

Actual SeqID Count: 9

Error code		Error Description								
W	402	Undefined organism found in <213> in SEQ ID (8)								
E	254	The total number of bases conflicts with running total Input: Calculated: 31 SEQID(8)								
W	402	Undefined organism found in <213> in SEQ ID (9)								
E	254	The total number of bases conflicts with running total Input: Calculated: 31 SEOID(9)								

SEQUENCE LISTING

<110>	National	Renewak	ole Energ	jy Lak	oorat	ory							
<120>	OXYGEN R	ESISTANT	HYDROGE	ENASES	E AND	MET	THODS	5 FOI	R DE:	SIGN:	ING AND	MAKING	SAME
<130>	NREL 03-	11											
<140> <141>	10553097 2008-10-												
<160>	9												
<170>	PatentIn	versior	3.4										
<210>	1												
<211>	333												
<211>													
	PRT			_									
<213>	Chlamydo	monas re	einhardt	_1									
<400>	1												
Pro Va	l Ala Ala	T.eu T.ve	: Glu Lv	Ser	Hiq	Tle	Glu	T.vs	Val	Gln	Glu		
1	i iiia iiia	5	, cra my.	DCI	10	110	Olu	шур	Val	15	CIU		
Ala T.e	u Asn Asp	Pro Lvs	. I.va Hi	. Val	Tlo	Val	Δla	Mot	Δla	Pro	Ser		
AIG LE	20	гто шу.	, mys ni.	25	110	vai	Ата	riec	30	110	Del		
	20			23					30				
77-1 7-2	~ Thw Nla	Mot Cl.	. Clu To	Dho	Tira	Mot	C1	Tire	C1	Tira	7 an		
val Al	g Thr Ala 35	Met Gi	40 dia 1	ı Pile	туз	мес	GIY	45	СТУ	цуѕ	Asp		
	33		40					45					
77-3 ml-		T	. ml 3.1	T	7	N.C I-	T	G1	D1	7	T		
	r Gly Lys	_		ı Leu	Arg			GLY	Phe	Asp	гла		
50			55				60						
71	1	1	~1 -1	_		1	- 1		~ 1	~ 1			
	e Asp Ile		e Gly Ala	a Asp			IIe	Met	GLu	GLu			
65		70				75					80		
The Cl		Cl., 7	. 37-1 7	. 7	7	C1	D	Dl	D	N.T 1-	Dh.a		
IIII GI	u Leu Leu	85) var ry:	s ASII		СТУ	PIO	PHE	PIO	мес 95	rne		
		0.0			90					93			
m1				-	-	7. 7	a 1		_		_		
inr se	r Cys Cys		ı ігр va.		ьеи	Ата	GIN	ASN		птз	PIO		
	100			105					110				
Cl., T-	1 Ton 7	Ago Ta-	. Com Co	- 7.1 -	T	g o	D	C1	C1	т1-	Dha		
сти те.	u Leu Asp	ASH Let			туз	ser	PLO		GTII	тте	FIIG		
	115		120	,				125					

Gly Thr Ala Ser Lys Thr Tyr Tyr Pro Ser Ile Ser Gly Ile Ala Pro

140

135

130

Glu Asp Val Tyr Thr Val Thr Ile Met Pro Cys Asn Asp Lys Lys Tyr 150 155 160 Glu Ala Asp Ile Pro Phe Met Glu Thr Asn Ser Leu Arg Asp Ile Asp 165 170 175 Ala Ser Leu Thr Thr Arg Glu Leu Ala Lys Met Ile Lys Asp Ala Lys 180 185 190 Ile Lys Phe Ala Asp Leu Glu Asp Gly Glu Val Asp Pro Ala Met Gly 195 200 205 Thr Tyr Ser Gly Ala Gly Ala Ile Phe Gly Ala Thr Gly Gly Val Met 210 215 Glu Ala Ile Arg Ser Ala Lys Asp Phe Ala Glu Asn Lys Glu Leu 225 230 235 240 Glu Asn Val Asp Tyr Thr Glu Val Arg Gly Phe Lys Gly Ile Lys Glu 245 250 255 Ala Glu Val Glu Ile Ala Gly Asn Lys Leu Asn Val Ala Val Ile Asn 260 265 270 Gly Ala Ser Asn Phe Phe Glu Phe Met Lys Ser Gly Lys Met Asn Glu 275 280 285 Lys Gln Tyr His Phe Ile Glu Val Met Ala Cys Pro Gly Gly Cys Ile 295 300 290 Asn Gly Gly Gln Pro His Val Asn Ala Leu Asp Arg Glu Asn Val 305 310 315 320 Asp Tyr Arg Lys Leu Arg Ala Ser Val Leu Tyr Asn Gln 330 325 <210> 2

<400> 2

<211> 333 <212> PRT

<213> Chlamydomonas reinhardtii

Pro 1	Val	Ala	Ala	Leu 5	Ser	Glu	Lys	Ser	His 10	Met	Asp	Arg	Val	Lys 15	Asn
Ala	Leu	Asn	Ala 20	Pro	Glu	Lys	His	Val 25	Ile	Val	Ala	Met	Ala 30	Pro	Ser
Val	Arg	Ala 35	Ser	Ile	Gly	Glu	Leu 40	Phe	Asn	Met	Gly	Phe 45	Gly	Val	Asp
Val	Thr 50	Gly	Lys	Ile	Tyr	Thr 55	Ala	Leu	Arg	Gln	Leu 60	Gly	Phe	Asp	Lys
Ile 65	Phe	Asp	Ile	Asn	Phe 70	Gly	Ala	Asp	Met	Thr 75	Ile	Met	Glu	Glu	Ala 80
Thr	Glu	Leu	Val	Gln 85	Arg	Ile	Glu	Asn	Asn 90	Gly	Pro	Phe	Pro	Met 95	Phe
Thr	Ser	Cys	Cys 100	Pro	Gly	Trp	Val	Arg 105	Gln	Ala	Glu	Asn	Tyr 110	Tyr	Pro
Glu	Leu	Leu 115	Asn	Asn	Leu	Ser	Ser 120	Ala	Lys	Ser	Pro	Gln 125	Gln	Ile	Phe
Gly	Thr 130	Ala	Ser	Lys	Thr	Tyr 135	Tyr	Pro	Ser	Ile	Ser 140	Gly	Leu	Asp	Pro
Lys 145	Asn	Val	Phe	Thr	Val 150	Thr	Val	Met	Pro	Cys 155	Thr	Ser	Lys	Lys	Phe 160
Glu	Ala	Asp	Arg	Pro 165	Gln	Met	Glu	Lys	Asp 170	Gly	Leu	Arg	Asp	Ile 175	Asp
Ala	Val	Ile	Thr 180	Thr	Arg	Glu	Leu	Ala 185	Lys	Met	Ile	Lys	Asp 190	Ala	Lys
Ile	Pro	Phe 195	Ala	Lys	Leu	Glu	Asp 200	Ser	Glu	Ala	Asp	Pro 205	Ala	Met	Gly
Glu	Tyr 210	Ser	Gly	Ala	Gly	Ala 215	Ile	Phe	Gly	Ala	Thr 220	Gly	Gly	Val	Met

Glu Ala Ala Leu Arg Ser Ala Lys Asp Phe Ala Glu Asn Ala Glu Leu

225 230 235 240

Glu Asp Ile Glu Tyr Lys Gln Val Arg Gly Leu Asn Gly Ile Lys Glu
245 250 255

Ala Glu Val Glu Ile Asn Asn Asn Lys Tyr Asn Val Ala Val Ile Asn 260 265 270

Gly Ala Ser Asn Leu Phe Lys Phe Met Lys Ser Gly Met Ile Asn Glu 275 280 285

Lys Gln Tyr His Phe Ile Glu Val Met Ala Cys His Gly Gly Cys Val 290 295 300

Asn Gly Gly Gln Pro His Val Asn Pro Lys Asp Leu Glu Lys Val 305 310 315

Asp Ile Lys Lys Val Arg Ala Ser Val Leu Tyr Asn Gln 325 330

<210> 3

<211> 321

<212> PRT

<213> Chlamydomonas reinhardtii

<400> 3

Lys Lys Leu Lys Asp Gly Lys Val Lys Cys Ile Ala Met Pro Ala Pro 20 25 30

Ala Val Arg Tyr Ala Leu Gly Asp Ala Phe Gly Met Pro Val Gly Ser 35 40 45

Val Thr Thr Gly Lys Met Leu Ala Ala Leu Gln Lys Leu Gly Phe Ala 50 55 60

His Cys Trp Asp Thr Glu Phe Thr Ala Asp Val Thr Ile Trp Glu Glu 65 70 75 80

Gly Ser Glu Phe Val Glu Arg Leu Thr Lys Lys Ser Asp Met Pro Leu 85 90 95

Pro Gln Phe	Thr Ser 100	Суз Суз	Pro	Gly 105	Trp	Gln	Lys	Tyr	Ala 110	Glu	Thr
Tyr Tyr Pro (Glu Leu	Leu Pro	His 120	Phe	Ser	Thr	Cys	Lys 125	Ser	Pro	Ile
Gly Met Asn 0	Gly Ala	Leu Ala 135	Lys	Thr	Tyr	Gly	Ala 140	Glu	Arg	Met	Lys
Tyr Asp Pro I 145	_	Val Tyr 150	Thr	Val	Ser	Ile 155	Met	Pro	Cys	Ile	Ala 160
Lys Lys Tyr (Glu Gly 165	Leu Arg	Pro	Glu	Leu 170	Lys	Ser	Ser	Gly	Met 175	Arg
Asp Ile Asp A	Ala Thr 180	Leu Thr	Thr	Arg 185	Glu	Leu	Ala	Tyr	Met 190	Ile	Lys
Lys Ala Gly 1	Ile Asp	Phe Ala	Lys 200	Leu	Pro	Asp	Gly	Lys 205	Arg	Asp	Ser
Leu Met Gly 0 210	Glu Ser	Thr Gly 215	Gly	Ala	Thr	Ile	Phe 220	Gly	Val	Thr	Gly
Gly Val Met 0 225		Ala Leu 230	Arg	Phe	Ala	Tyr 235	Glu	Ala	Val	Thr	Gly 240
Lys Lys Pro A	Asp Ser 245	Trp Asp	Phe	Lys	Ala 250	Val	Arg	Gly	Leu	Asp 255	Gly
Ile Lys Glu A	Ala Thr 260	Val Asn	Val	Gly 265	Gly	Thr	Asp	Val	Lys 270	Val	Ala
Val Val His (275	Gly Ala	Lys Arg	Phe 280	Lys	Gln	Val	Cys	Asp 285	Asp	Val	Lys
Ala Gly Lys S 290	Ser Pro	Tyr His 295	Phe	Ile	Glu	Tyr	Met 300	Ala	Cys	Pro	Gly
Gly Cys Val (305	_	Gly Gly 310	Gln	Pro	Val	Met 315	Pro	Gly	Val	Leu	Glu 320

<210> 4 <211> 393 <212> PRT <213> Chlamydomonas reinhardtii <400> 4 Ala Thr Asp Ala Val Pro His Trp Lys Leu Ala Leu Glu Glu Leu Asp 1 5 10 15 Lys Pro Lys Asp Gly Gly Arg Lys Val Leu Ile Ala Gln Val Ala Pro 20 25 Ala Val Arg Val Ala Ile Ala Glu Ser Phe Gly Leu Ala Pro Gly Ala 35 40 45 Val Ser Pro Gly Lys Leu Ala Ala Gly Leu Arg Ala Leu Gly Phe Asp 50 55 60 Gln Val Phe Asp Thr Leu Phe Ala Ala Asp Leu Thr Ile Met Glu Glu 70 75 80 Gly Thr Glu Leu Leu His Arg Leu Lys Glu His Leu Glu Ala His Pro 85 90 His Ser Asp Glu Pro Leu Pro Met Phe Thr Ser Cys Cys Pro Gly Trp 105 100 110 Val Ala Met Met Glu Lys Ser Tyr Pro Glu Leu Ile Pro Phe Val Ser 115 120 125 Ser Cys Lys Ser Pro Gln Met Met Gly Ala Met Val Lys Thr Tyr 130 135 140 Leu Ser Glu Lys Gln Gly Ile Pro Ala Lys Asp Ile Val Met Val Ser 145 150 155 160 Val Met Pro Cys Val Arg Lys Gln Gly Glu Ala Asp Arg Glu Trp Phe 170 165

Cys Val Ser Glu Pro Gly Val Arg Asp Val Asp His Val Ile Thr Thr

185

190

180

Ala Glu Leu Gly Asn Ile Phe Lys Glu Arg Gly Ile Ile Leu Pro Glu 200 205 Leu Pro Asp Ser Asp Trp Asp Gln Pro Leu Gly Leu Gly Ser Gly Ala 210 215 220 Gly Val Leu Phe Gly Thr Thr Gly Gly Val Met Glu Ala Ala Val Arg 225 230 235 240 Thr Ala Tyr Glu Ile Val Thr Lys Glu Pro Leu Pro Arg Leu Asn Leu 245 250 255 Ser Glu Val Arg Gly Leu Asp Gly Ile Lys Glu Ala Ser Val Thr Leu 260 265 270 Val Pro Ala Pro Gly Ser Lys Phe Ala Glu Leu Val Ala Ala Arg Leu 280 285 Ala His Lys Val Glu Glu Ala Ala Ala Ala Glu Ala Ala Ala Val 290 295 300 Glu Gly Ala Val Lys Pro Pro Ile Ala Tyr Asp Gly Gly Gln Gly Phe 310 315 305 320 Ser Thr Asp Asp Gly Lys Gly Gly Leu Lys Leu Arg Val Ala Val Ala 325 330 335 Asn Gly Leu Gly Asn Ala Lys Lys Leu Ile Gly Lys Met Val Ser Gly 340 345 350 Glu Ala Lys Tyr Asp Phe Val Glu Ile Met Ala Cys Pro Ala Gly Cys 355 360 365 Val Gly Gly Gly Gln Pro Arg Ser Thr Asp Lys Gln Ile Thr Gln 380 370 375 Lys Arg Gln Ala Ala Leu Tyr Asp Leu 385 390

<210> 5 <211> 386 <212> PRT <400> 5

Ala Glu Ala Pro Leu Ser His Val Gln Gln Ala Leu Ala Glu Leu Ala 1 5 10 15

Lys Pro Lys Asp Asp Pro Thr Arg Lys His Val Cys Val Gln Val Ala 20 25 30

Pro Ala Val Arg Val Ala Ile Ala Glu Thr Leu Gly Leu Ala Pro Gly 35 40 45

Ala Thr Thr Pro Lys Gln Leu Ala Glu Gly Leu Arg Arg Leu Gly Phe 50 60

Asp Glu Val Phe Asp Thr Leu Phe Gly Ala Asp Leu Thr Ile Met Glu 65 70 75 80

Glu Gly Ser Glu Leu Leu His Arg Leu Thr Glu His Leu Glu Ala His
85 90 95

Pro His Ser Asp Glu Pro Leu Pro Met Phe Thr Ser Cys Cys Pro Gly
100 105 110

Trp Ile Ala Met Leu Glu Lys Ser Tyr Pro Asp Leu Ile Pro Tyr Val 115 120 125

Ser Ser Cys Lys Ser Pro Gln Met Met Leu Ala Ala Met Val Lys Ser 130 135 140

Ser Ile Met Pro Cys Thr Arg Lys Gln Ser Glu Ala Asp Arg Asp Trp $165 \hspace{1.5cm} 170 \hspace{1.5cm} 175$

Phe Cys Val Asp Ala Asp Pro Thr Leu Arg Gln Leu Asp His Val Ile 180 185 190

Thr Thr Val Glu Leu Gly Asn Ile Phe Lys Glu Arg Gly Ile Asn Leu 195 200 205

Ala Glu Leu Pro Glu Gly Glu Trp Asp Asn Pro Met Gly Val Gly Ser

210 215 220

Gly Ala Gly Val Leu Phe Gly Thr Thr Gly Gly Val Met Glu Ala Ala 225 230 235 240

Leu Arg Thr Ala Tyr Glu Leu Phe Thr Gly Thr Pro Leu Pro Arg Leu 245 250 255

Ser Leu Ser Glu Val Arg Gly Met Asp Gly Ile Lys Glu Thr Asn Ile 260 265 270

Thr Met Val Pro Ala Pro Gly Ser Lys Phe Glu Glu Leu Leu Lys His 275 280 285

Arg Ala Ala Arg Ala Glu Ala Ala Ala His Gly Thr Pro Gly Pro 290 295 300

Leu Ala Trp Asp Gly Gly Ala Gly Phe Thr Ser Glu Asp Gly Arg Gly 305 310 315 320

Gly Ile Thr Leu Arg Val Ala Val Ala Asn Gly Leu Gly Asn Ala Lys 325 330 335

Lys Leu Ile Thr Lys Met Gln Ala Gly Glu Ala Lys Tyr Asp Phe Val\$340\$ \$345\$ \$350

Glu Ile Met Ala Cys Pro Ala Gly Cys Val Gly Gly Gly Gln Pro 355 360 365

Arg Ser Thr Asp Lys Ala Ile Thr Gln Lys Arg Gln Ala Ala Leu Tyr 370 380

Asn Leu 385

<210> 6

<211> 441

<212> PRT

<213> Chlamydomonas reinhardtii

<400> 6

Ala Ala Pro Ala Ala Glu Ala Pro Leu Ser His Val Gln Gln Ala Leu 1 5 10 15

Ala Glu Leu	Ala Lys 20	Pro Lys	=	Asp 25	Pro	Thr	Arg	Lys	His 30	Val	Суз
Val Gln Val 35	Ala Pro	Ala Val	Arg	Val	Ala	Ile	Ala	Glu 45	Thr	Leu	Gly
Leu Ala Pro 50	Gly Ala	Thr Thr 55	Pro	Lys	Gln	Leu	Ala 60	Glu	Gly	Leu	Arg
Arg Leu Gly	Phe Asp	Glu Val 70	Phe	Asp	Thr	Leu 75	Phe	Gly	Ala	Asp	Leu 80
Thr Ile Met	Glu Glu 85	Gly Ser	Glu	Leu	Leu 90	His	Arg	Leu	Thr	Glu 95	His
Leu Glu Ala	His Pro	His Ser	-	Glu 105	Pro	Leu	Pro	Met	Phe 110	Thr	Ser
Cys Cys Pro		Ile Ala	Met 120	Leu	Glu	Lys	Ser	Tyr 125	Pro	Asp	Leu
Ile Pro Tyr 130	Val Ser	Ser Cys 135	Lys	Ser	Pro	Gln	Met 140	Met	Leu	Ala	Ala
Met Val Lys 145	Ser Tyr	Leu Ala 150	Glu	Lys	Lys	Gly 155	Ile	Ala	Pro	Lys	Asp 160
Met Val Met	Val Ser 165	Ile Met	Pro	Суз	Thr 170	Arg	Lys	Gln	Ser	Glu 175	Ala
Asp Arg Asp	Trp Phe	Cys Val	_	Ala 185	Asp	Pro	Thr	Leu	Arg 190	Gln	Leu
Asp His Val		Thr Val	Glu 200	Leu	Gly	Asn	Ile	Phe 205	Lys	Glu	Arg
Gly Ile Asn 210	Leu Ala	Glu Leu 215	Pro	Glu	Gly	Glu	Trp 220	Asp	Asn	Pro	Met