

IBM P9 TM	14nm FinFET SOI	24	695 <i>mm</i> ²	8 Billion
Chip	Technology	No. Cores	Area	No. of Transistors

VLSI System

- An electronic system composed of VLSI chips
- VLSI Chips
- Very Large Scale Integration Chips
- Integration Complexity
- Number of gates in a single chip

Why Integrated Circuits?

- Integration Improves the Design
- Physically small
- Integration Reduces Manufacturing Costs
- Automated (Little manual assembly)
- Less Packaging Cost
- Less Testing Cost

IC Evolution

- SSI Small Scale Integration
- 10 gates per chip (1960's)
- MSI Medium Scale Integration
- 100 gates 1000 gates per chip (1970's)
- LSI Large Scale Integration
- 1000 gates 10,000 gates per chip (1980's)
- VLSI Very Large Scale Integration
- 10,000 gates 1,00,000 gates per chip (1990's)
- ULSI Ultra Large Scale Integration
- 1M gates 10M gates per chip (late 90's)
- GSI Giant Scale Integration
- 10M gates 100M gates (early 2000's)

Technologies - Evolution

Bipolar technology

MOS (Metal-oxide-silicon)

- Although invented before bipolar transistor, was initially difficult to manufacture
- required fewer masking steps, was denser, and consumed less nMOS (n-channel MOS) technology developed in 1970s power than equivalent bipolar ICs.
- transistors with lower power consumption, simplified fabrication CMOS (Complementary MOS): n-channel and p-channel MOS

BiCMOS - hybrid Bipolar, CMOS

VLSI Design Cycle

VLSI Design Cycle

VLSI Design Cycle

Digital IC Design

Digital IC Design

Digital IC Design

The Y-Chart

"Y-chart" by Gajski

Gajski - "Y- Chart"

Gajski - "Y- Chart"

VLSI Design Process

- Move from higher to lower levels of abstraction
- Use CAD tools to automate parts of the process
- Use hierarchy to manage complexity

VLSI Design Hierarchy Hierarchy - Divide and conquer

repeat this complexity and the Divide a module into sub module operation on sub module until becomes manageable.

decomposition of 4 bit adder that shows the levels of hierarchy Structural

VLSI Design Hierarchy

Hierarchical design

Top-down design

- The initial work is quite abstract and theoretical and there is no direct connection to silicon until many steps have been completed
- Acceptable in modern digital system design
- Similar to Cell-based Design Flow

Bottom-up design

- starts at the silicon or circuit level and builds primitive units such as logic gates, adders, and registers as the first steps
- Acceptable for small projects
- Similar to Full-custom Design Flow

Regularity, Modularity and Locality

The hierarchical design approach reduces the design complexity by dividing the large system into several sub-modules. Usually, other design concepts and design approaches are also needed to simplify the process.

1) Regularity:

Decomposition of a large system in simple and similar blocks as much as possible.

2) Modularity:

- Modularity in design means that the various functional blocks which make up the larger system must have well-defined functions and interfaces.
- Modularity allows that each block or module can be designed relatively independently from each other.
- All of the blocks can be combined with ease at the end of the design process, to form the large system.
- The concept of modularity enables the parallelization of the design process.

3) Locality:

neighboring modules, avoiding long-distance connections as much as The concept of locality also ensures that connections are mostly between possible

Challenges in VLSI Design

- Increasing integration
- To reduce cost, size and power dissipation

Trends in VLSI

- Transistor
- Smaller, faster, use less power
- Interconnect
- Less delay, faster
- Yield
- Smaller die size, higher yield

VLSI Design Tradeoffs

- Performance
- Area
- Speed
- Power Consumption
- Time-to-Market

