Stabilitates in timp discret

$$\Delta(z) = 9_{n} z^{m} + - - + 9_{0} = 0$$

$$1 \frac{1}{2} \sqrt{\frac{2}{1}} = 1$$

$$2 \frac{1}{2} - \frac{1}{2} = 1$$

$$3 \frac{1}{2} - \frac{1}{2} = 1$$

$$4 \frac{1}{2} - \frac{1}{2} = 1$$

$$4$$

-s sou Crit. Jusy

$$b_{k} = \begin{vmatrix} a_{0} & a_{n-k} \\ a_{n} & a_{k} \end{vmatrix}, c_{k} = \begin{vmatrix} b_{0} & b_{n-1-k} \\ b_{n-1} & b_{k} \end{vmatrix}, d_{k} = \begin{vmatrix} c_{0} & c_{n-2-k} \\ c_{n-2} & c_{k} \end{vmatrix}, ...,$$

$$q_{0} = \begin{vmatrix} p_{0} & p_{3} \\ p_{3} & p_{0} \end{vmatrix}, q_{1} = \begin{vmatrix} p_{0} & p_{2} \\ p_{3} & p_{1} \end{vmatrix}, q_{2} = \begin{vmatrix} p_{0} & p_{1} \\ p_{3} & p_{2} \end{vmatrix}.$$

$$(6.2)$$

Tabelul 1. Matricea pentru testul de stabilitate al lui Jury.

Linie	z^0	z^1	z^2	$\dots z^{n-k}\dots$	z^{n-2}	z^{n-1}	z^n
1	a_0	a_1	a_2	$\ldots a_{n-k} \ldots$	a_{n-2}	a_{n-1}	a_n
2	a_n	a_{n-1}	a_{n-2}	$\dots a_k \dots$	a_2	a_1	a_0
3	b_0	b_1	b_2	b_{n-k}	b_{n-2}	b_{n-1}	_
4	b_{n-1}	b_{n-2}	b_{n-3}	b_k	b_1	b_0	_
5	c_0	c_1	c_2	$\dots c_{n-k}\dots$	c_{n-2}	_	-
6	c_{n-2}	c_{n-3}	C_{n-4}	$\dots c_k \dots$	c_0	_	_
		•••			_	_	<u></u>
2 <i>n</i> -5	p_0	p_1	p_2	p_3	_	_	 2
2 <i>n</i> -5	p_3	p_2	p_1	p_0	_	<u></u> 8	_==
2 <i>n</i> -3	q_0	q_1	q_2	_	_	_	_

Utilizând matricea pentru testul de stabilitate al lui Jury dată în tabelul 1, **criteriul de stabilitate al lui Jury este exprimat astfel**: Sistemul liniar cu polinomul caracteristic (6.1) este **stabil** (adică toate rădăcinile sunt situate în interiorul discului unitate) dacă și numai dacă sunt îndeplinite cele n+1 **condiții** următoare (cu $a_n > 0$):

$$\Delta(1) > 0,$$
 (1)
 $\Delta(-1) > 0$ dacă n este par, (2)
 < 0 dacă n este impar, (3)
 $|a_0| < a_n,$ (4)
 $|c_0| > |c_{n-2}|,$ (5)
 $|d_0| > |d_{n-3}|,$ (6)

(n+1)

 $|q_0| > |q_2|$.