Assignment Section_3.7 due 05/01/2014 at 11:58pm MST

-	/1	
	<i>,</i> ,	nt.
	١,	L/L

Evaluate the limit using L'Hospital's rule if necessary

$$\lim_{x\to 0} \frac{e^x - 1}{\sin(14x)}$$

Answer(s) submitted:

• 1/14

(correct)

Correct Answers:

• 0.0714285714285714

2. (1 pt)

Evaluate the limit using L'Hospital's rule

$$\lim_{x \to 0} \frac{\sin(7x)}{\tan(14x)}$$

Answer(s) submitted:

1/2

(correct)

Correct Answers:

• 0.5

Evaluate the limit using L'Hospital's rule if necessary

$$\lim_{x \to +\infty} \frac{13 \ln x}{x}$$

Answer: _____

Answer(s) submitted:

• 0

(correct)

Correct Answers:

• 0

4. (1 pt)

Evaluate the limit using L'Hospital's rule if necessary

$$\lim_{x\to 0}\frac{15^x-3^x}{x}$$

Answer(s) submitted:

• ln(5)

(correct)

Correct Answers:

• 1.6094379124341

5. (1 pt)

Evaluate the limit using L'Hopital's rule

$$\lim_{x \to \infty} \frac{11x^3}{e^{9x}}$$

Answer(s) submitted:

• 0

(correct)

Correct Answers:

• (

6. (1 pt)

Evaluate the limit using L'Hospital's rule if necessary

$$\lim_{x \to 0} \frac{x^3}{\sin x - x}$$

Answer: _____

Answer(s) submitted:

• -6

(correct)

Correct Answers:

• -6

7. (1 pt) Evaluate the following limit:

$$\lim_{x\to 0}\frac{4x+\tan(5x)}{2x-\tan(3x)}.$$

Enter -Inf if your answer is $-\infty$, enter Inf if your answer is ∞ , and enter DNE if the limit does not exist.

Limit = _____ Answer(s) submitted:

• -9

(correct)

Correct Answers:

−9

1

8. (1 pt) Compute the following limits using l'Hôpital's rul
if appropriate. Use INF to denote ∞ and MINF to denote $-\infty$.
$\lim_{x \to \infty} \frac{2^x - 2}{x^2 - 2} = 1$

$$\lim_{x \to 1} \frac{\sum^{n} - 2}{x^{2} - 1} = \underline{\qquad}$$

$$\lim_{x \to \infty} \frac{\tan^{-1}(x)}{(1/x) - 2} = \underline{\qquad}$$

Answer(s) submitted:

- ln(2)
- -(pi/4)

(correct)

Correct Answers:

- 0.693147180559945
- -0.785398163397448

9. (1 pt)

Evaluate the limit using L'Hopital's rule

$$\lim_{x \to \frac{\pi}{2}} 3\cos(3x)\sec(-9x)$$

Answer: ____

Answer(s) submitted:

−1

(correct)

Correct Answers:

−1

10. (1 pt) Compute the following limit using l'Hôpital's rule if appropriate. Use INF to denote ∞ and MINF to denote $-\infty$.

$$\lim_{x \to +\infty} 7\sin(x)\ln(x) = \underline{\hspace{1cm}}$$

Answer(s) submitted:

• 0

(correct)

Correct Answers:

• 0

11. (1 pt)

Evaluate the limit using L'Hospital's rule if necessary

$$\lim_{r\to\infty} 8xe^{1/x} - 8x$$

Answer(s) submitted:

• 8

(correct)

Correct Answers:

• 8

Evaluate the limit using L'Hospital's rule if necessary

$$\lim_{x\to\infty} x^3 e^{-x^2}$$

Answer: _____

Answer(s) submitted:

• 0

(correct)

Correct Answers:

•

13. (1 pt)

Evaluate the limit using L'Hospital's rule if necessary

$$\lim_{x \to 1} \frac{x^7 - 1}{x^9 - 1}$$

Answer: _____

Answer(s) submitted:

• 7/9

(correct)

Correct Answers:

• 7/9

14. (1 pt)

Evaluate the limit using L'Hospital's rule if necessary

$$\lim_{x \to \infty} \left(1 + \frac{7}{x} \right)^{\frac{x}{4}}$$

Answer(s) submitted:

• $e^{(7/4)}$

(correct)

Correct Answers:

• $e^{(7/4)}$

15. (1 pt)

Evaluate the limit using L'Hospital's rule if necessary.

$$\lim_{x\to 0^+} x^{4\sin(x)}$$

Answer: _____

Answer(s) submitted:

• 1

(correct)

Correct Answers:

• 1

16. (1 pt)

Evaluate the limit using L'Hospital's rule if necessary.

$$\lim_{x \to +\infty} x^{6/x}$$

Answer: _____

Answer(s) submitted:

• 1

(correct)

Correct Answers:

• 1

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America