$\frac{\mathsf{COMPUTATIONAL\ FINANCE\ \&\ RISK\ MANAGEMENT}}{\mathsf{UNIVERSITY}\ of\ \mathsf{WASHINGTON}}$ Department of Applied Mathematics

CRFM 541: Investment Science

6. The Normal Linear Regression Model

Kjell Konis Acting Assistant Professor, Applied Mathematics University of Washington

Outline

Motivation

Hunting for α

Probability Crash Course

The Multivariate Normal Distribution

The Normal Linear Regression Model

Normal Linear Regression Model Review of Maximum Likelihood Estimation Maximum Likelihood Estimator: Normal Linear Regression Model Joint Distribution of Least Squares Estimators Confidence and Prediction Intervals

Outline

Motivation

Hunting for α

Probability Crash Course

The Multivariate Normal Distribution

The Normal Linear Regression Model

Normal Linear Regression Model Review of Maximum Likelihood Estimation Maximum Likelihood Estimator: Normal Linear Regression Mode Joint Distribution of Least Squares Estimators Confidence and Prediction Intervals

Why a Statistical Model?

▶ Last time, simulated data from the model

$$\mathbf{y} = egin{bmatrix} 1 & x_1 & \sin(x_1) & x_1^2 & e^{x_1} \ 1 & x_2 & \sin(x_2) & x_2^2 & e^{x_2} \ dots & dots & dots & dots \ 1 & x_n & \sin(x_n) & x_n^2 & e^{x_n} \end{bmatrix} egin{bmatrix} 0 \ 0.5 \ 2 \ 0 \ 0 \end{bmatrix} + arepsilon \qquad arepsilon_i \stackrel{iid}{\sim} \mathcal{N}(0,1)$$

► R code: simulating the data

R code: fitting the model

Why a Statistical Model?

```
> summary(m1)
Call:
lm(formula = y ~ x + I(sin(x)) + I(x^2) + I(exp(x)))
Residuals:
  Min 1Q Median 3Q Max
-2.213 -0.712 0.124 0.691 2.151
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0615 0.1555 0.40 0.6935
        0.5071 0.1744 2.91 0.0045
x
I(\sin(x)) 2.0196 0.2684 7.52 3e-11
I(x^2) -0.0482 0.0587 -0.82 0.4134
I(exp(x)) 0.0201 0.0376 0.53 0.5943
Residual standard error: 0.96 on 95 degrees of freedom
Multiple R-squared: 0.83, Adjusted R-squared: 0.823
F-statistic: 116 on 4 and 95 DF, p-value: <2e-16
```

Why a Statistical Model?

- How many standard errors away from 0 is significant?
- Depends on the distribution of the statistic
- ▶ What is the probability of a Six Sigma (or worse) event?

$$T \sim \mathcal{N} > 2 * pnorm(-6)$$
[1] 1.973e-09

 $T \sim t_1 > 2 * pt(-6, df = 1)$
[1] 0.1051

Ratio

Hunting for α

```
> summary(lm(Asset.returns ~ SP500.returns))
Call:
lm(formula = Asset.returns ~ SP500.returns)
Residuals:
    Min
           1Q Median
                              3Q
                                      Max
-0.09001 -0.00891 -0.00030 0.00878 0.05954
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.002633 0.000984 2.67
                                         0.008
SP500.returns 2.023243 0.123288 16.41 <2e-16
```

Residual standard error: 0.0155 on 248 degrees of freedom Multiple R-squared: 0.521, Adjusted R-squared: 0.519 F-statistic: 269 on 1 and 248 DF, p-value: <2e-16

Outline

Motivation

Hunting for α

Probability Crash Course

The Multivariate Normal Distribution

The Normal Linear Regression Model

Normal Linear Regression Model Review of Maximum Likelihood Estimation Maximum Likelihood Estimator: Normal Linear Regression Mode Joint Distribution of Least Squares Estimators Confidence and Prediction Intervals

Multivariate Normal Distribution

- ▶ A random vector $\mathbf{V} = \begin{bmatrix} V_1 & V_2 & \dots & V_m \end{bmatrix}^\mathsf{T}$ is a vector of random variables
- Let $\mathcal{F} = F(v_1, v_2, \dots, v_n)$ be the joint distribution of the random variables comprising the random vector **V**
- ▶ Then we say that $\mathbf{V} \sim \mathcal{F}$
- ▶ A random vector ε in \mathbb{R}^m has the *Multivariate Normal* distribution if and only if $\gamma^{\mathsf{T}}\varepsilon$ has the univariate normal distribution $\forall \gamma \in \mathbb{R}^m$
- How to use this definition to determine the properties of the Multivariate Normal distribution?
- ▶ The moment generating function (MGF) of a random vector **V** is

$$M_W(\theta) = \mathbb{E}\left[e^{oldsymbol{ heta}^\mathsf{T} \mathbf{W}}
ight] \qquad oldsymbol{ heta} \in \mathbb{R}^m$$

(when the expectation exists)

 The following properties can be proved using the Multivariate Normal MGF

Properties of Multivariate Normal Random Vectors

1. Moment generating function of $\mathbf{V} \sim \mathcal{N}_m(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$M_{\mathbf{V}}(\mathbf{u}) = \exp\left[\mu^{\mathsf{T}}\mathbf{u} + rac{1}{2}\mathbf{u}^{\mathsf{T}}\mathbf{\Sigma}\mathbf{u}
ight]$$

2. Let $\mathbf{V} \sim \mathcal{N}_m(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, given an $n \times m$ matrix \mathbf{B} and an $n \times 1$ vector \mathbf{b} $\mathbf{B}\mathbf{V} + \mathbf{b} \sim \mathcal{N}_n(\mathbf{b} + \mathbf{B}\boldsymbol{\mu}, \mathbf{B}\boldsymbol{\Sigma}\mathbf{B}^{\mathsf{T}})$

3. $\mathcal{N}_m(\mu, \Sigma)$ density (assuming Σ nonsingular)

$$f_{\mathbf{V}}(\mathbf{v}) = rac{1}{(2\pi)^{m/2} |\mathbf{\Sigma}|^{1/2}} \exp\left[-rac{1}{2} (\mathbf{v} - oldsymbol{\mu})^{\! op} \mathbf{\Sigma}^{-1} (\mathbf{v} - oldsymbol{\mu})
ight]$$

4. Constant density isosurfaces are ellipsoidal

Properties of Multivariate Normal Random Vectors

- 5. Marginals of Gaussian are Gaussian (converse NOT true)
- 6. Σ diagonal \iff independent
- 7. $\mathbf{V} \sim \mathcal{N}_m(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

AV independent of **BV** \iff **A** Σ **B**^T = **0**

The χ^2 and F Distributions

▶ Let $\mathbf{Z} \sim \mathcal{N}_m(\mathbf{0}, \mathbf{I})$, then $\|\mathbf{Z}\|^2$ has the χ^2 distribution with m degrees of freedom

[i.e. χ^2_m is the distribution of the sum of the squares of m independent standard normal random variables]

Let $U \sim \chi_p^2$ and $W \sim \chi_q^2$ be independent random variables, then

$$V \sim rac{(U/p)}{(W/q)}$$

has the F distribution with p and q degrees of freedom

Gaussian Quadratic Forms

- 1. If $\mathbf{Z} \sim \mathcal{N}_m(\mathbf{0},\mathbf{I})$ and \mathbf{H} is a projection of rank $r \leq m$, then $\mathbf{Z}^\mathsf{T}\mathbf{H}\mathbf{Z} \sim \chi^2_r$
- 2. If $\mathbf{V} \sim \mathcal{N}_m(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma}$ nonsingular, then $(\mathbf{V} \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{V} \boldsymbol{\mu}) \sim \chi_m^2$

Outline

Motivation

Hunting for α

Probability Crash Course

The Multivariate Normal Distribution

The Normal Linear Regression Model

Normal Linear Regression Model

Review of Maximum Likelihood Estimation

Maximum Likelihood Estimator: Normal Linear Regression Model

Joint Distribution of Least Squares Estimators

Confidence and Prediction Intervals

The Normal Linear Regression Model

The Simple Linear Regression Model

$$Y_i = \beta_0 + \beta_1 x_{i1} + \varepsilon_i$$

The Multiple Linear Regression Model

$$Y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip} + \varepsilon_i$$

Notation:

- \triangleright Y_i is called the *response* variable; a random quantity
- \triangleright x_{ij} is called a *predictor* variable; a non-random quantity
- eta_0, \dots, eta_p are the *parameters* of the model Alternatively: $oldsymbol{eta} = \begin{bmatrix} eta_0 & \dots & eta_p \end{bmatrix}^{\mathsf{T}}$ is the *parameter* of the model
- $lackbr{\epsilon}_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$ is called the *noise*, *disturbance*, or *error* term

The Normal Linear Regression Model

4 Key Assumptions

1. Linearity of the conditional expectation

$$\mathsf{E}(Y_i|x_i) = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip}$$

- 2. Independent noise: $\varepsilon_1, \ldots, \varepsilon_n$ are jointly independent
- 3. Constant variance

$$Var(Y_i) = Var(\beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip} + \varepsilon_i) = Var(\varepsilon_i) = \sigma^2$$

4. Normal noise: $\varepsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$ for all i

Normal Linear Regression Model: Matrix Form

Normal Linear Regression Model: Matrix Form

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

where

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_m \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & \dots & x_{1p} \\ 1 & x_{21} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{m1} & \dots & x_{mp} \end{bmatrix} \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix} \quad \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_m \end{bmatrix}$$

Assumptions 2, 3, and 4

$$\boldsymbol{arepsilon} \sim \mathcal{N}_m(\mathbf{0}, \sigma^2 \mathbf{I})$$

► Location-scale property

$$\mathbf{Y} \sim \mathcal{N}_m(\mathbf{X}\boldsymbol{eta}, \sigma^2 \mathbf{I})$$

Outline

Motivation

Hunting for α

Probability Crash Course

The Multivariate Normal Distribution

The Normal Linear Regression Model

Normal Linear Regression Model

Review of Maximum Likelihood Estimation

Maximum Likelihood Estimator: Normal Linear Regression Model Joint Distribution of Least Squares Estimators Confidence and Prediction Intervals

Method of Maximum Likelihood

ightharpoonup The joint density of a random sample from a parametric family with parameter θ is

$$f_{X_1,\ldots,X_m}(x_1,\ldots,x_m|\theta)=\prod_{i=1}^m f_X(x_i|\theta)$$

- Let x_1, \ldots, x_m (the data) be the realization of a random sample $X_1, \ldots, X_m \stackrel{iid}{\sim} f_X(x|\theta)$
- ▶ The *likelihood* of the parameter θ is the function of θ defined by

$$L(\theta|x_1,\ldots,x_m)=f_{X_1,\ldots,X_m}(x_1,\ldots,x_m|\theta)=\prod_{i=1}^m f_X(x_i|\theta)$$

The maximum likelihood estimator $\hat{\theta}_{ML}$ of a parameter θ is the value of θ corresponding to the largest likelihood possible, i.e.,

$$L(\hat{\theta}_{ML}|x_1,\ldots,x_m) \geq L(\theta|x_1,\ldots,x_m)$$

for all possible values of θ

Calculation of $\hat{\theta}_{ML}$

- Often, maximizing the log of the likelihood is easier than maximizing the likelihood itself
- lacktriangle General algorithm for finding $\hat{ heta}_{ML}$
 - 1. Write down the likelihood function $L(\theta|x_1,\ldots,x_m)$
 - 2. $\ell(\theta|x_1,...,x_m) = \log L(\theta|x_1,...,x_m)$ (the log likelihood of θ)
 - 3. Find $\hat{\theta}_{ML}$ such that

$$\left. \frac{d}{d\theta} \ell(\theta|x_1,\ldots,x_m) \right|_{\hat{\theta}_{ML}} = 0$$

4. Verify that $\hat{\theta}_{ML}$ is a maximum

- Let x_1, \ldots, x_m be the realization of a random sample $X_1, \ldots, X_m \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$
- \blacktriangleright Find the maximum likelihood estimator of μ
- Likelihood function

$$L(\mu, \sigma^2 | x_1, \dots, x_m) = f_{X_1, \dots, X_n}(x_1, \dots, x_m | \mu, \sigma^2)$$

$$= \prod_{i=1}^m f_X(x_i | \mu, \sigma^2)$$

$$= \prod_{i=1}^m \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x_i - \mu)^2}{2\sigma^2}\right]$$

► Compute the log likelihood function

$$\ell(\mu, \sigma^2 | x_1, \dots, x_m) = \log L(\mu, \sigma^2 | x_1, \dots, x_m)$$

$$= \log \left[\prod_{i=1}^m \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) \right]$$

$$= \sum_{i=1}^m \log \frac{1}{\sqrt{2\pi}\sigma} + \sum_{i=1}^m \left[-\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= -m \log(\sqrt{2\pi}\sigma) - \frac{1}{2\sigma^2} \sum_{i=1}^m (x_i - \mu)^2$$

$$\propto -\frac{1}{2\sigma^2} \sum_{i=1}^m (x_i - \mu)^2$$

► Take the derivative of the log likelihood

$$\frac{d}{d\mu}\ell(\mu,\sigma^2|x_1,\ldots,x_m) = \frac{d}{d\mu}\left[-\frac{1}{2\sigma^2}\sum_{i=1}^m(x_i-\mu)^2\right]$$
$$= \frac{1}{\sigma^2}\sum_{i=1}^m(x_i-\mu)$$

▶ Set the derivative equal to 0 and solve for $\hat{\mu}_{ML}$

$$\frac{1}{\sigma^2} \sum_{i=1}^m (x_i - \hat{\mu}_{ML}) \stackrel{\text{set}}{=} 0$$

$$\sum_{i=1}^m x_i = m \hat{\mu}_{ML} \quad \Rightarrow \quad \hat{\mu}_{ML} = \frac{1}{m} \sum_{i=1}^m x_i = \bar{x}$$

▶ Last, verify that $\hat{\mu}_{ML}$ is a maximum

$$\frac{d^2}{d\mu^2}\ell(\mu,\sigma^2|x_1,\ldots,x_m) = \frac{d}{d\mu}\left[\frac{1}{\sigma^2}\sum_{i=1}^m(x_i-\mu)\right]$$
$$= -\frac{m}{\sigma^2}$$

Since

$$\left. \frac{d^2 \ell}{d\mu^2} \right|_{\mu = \hat{\mu}_{MI}} = -\frac{m}{\sigma^2} < 0$$

 $\hat{\mu}_{ML}$ is a local maximum of the log likelihood function

Outline

Motivation

Hunting for α

Probability Crash Course

The Multivariate Normal Distribution

The Normal Linear Regression Model

Normal Linear Regression Model Review of Maximum Likelihood Estimation

Maximum Likelihood Estimator: Normal Linear Regression Model

Joint Distribution of Least Squares Estimators

Normal Linear Regression Model: Likelihood

- ▶ Model: $\mathbf{Y} \sim \mathcal{N}_m(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$
- By property 3 (of multivariate normal random vectors)

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{(2\pi\sigma^2)^{m/2}} \exp\left[-\frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right]$$

Likelihood

$$L(oldsymbol{eta}, \sigma^2) = rac{1}{(2\pi\sigma^2)^{m/2}} \exp\left[-rac{1}{2\sigma^2}(\mathbf{y} - \mathbf{X}oldsymbol{eta})^{\mathsf{T}}(\mathbf{y} - \mathbf{X}oldsymbol{eta})
ight]$$

Loglikelihood

$$\ell(oldsymbol{eta}, \sigma^2) = -rac{1}{2} \left[m \log(2\pi) + m \log(\sigma^2) + rac{1}{\sigma^2} (\mathbf{y} - \mathbf{X}oldsymbol{eta})^{\mathsf{T}} (\mathbf{y} - \mathbf{X}oldsymbol{eta})
ight]$$

Maximum Likelihood Estimation: β

For any value of $\sigma^2 > 0$, the loglikelihood is maximum when $(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$ is minimum

$$\hat{\boldsymbol{\beta}} = \arg\max_{\boldsymbol{\beta}} \big\{ - (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{\scriptscriptstyle T}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \big\} = \arg\min_{\boldsymbol{\beta}} \big\{ (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{\scriptscriptstyle T}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \big\}$$

Calculus solution

$$\frac{\partial}{\partial \beta} \left[(\mathbf{y} - \mathbf{X}\beta)^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\beta) \right] \Big|_{\beta = \hat{\beta}} \stackrel{\text{set}}{=} 0$$

$$-2\mathbf{X}^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\hat{\beta}) = 0$$

$$\mathbf{X}^{\mathsf{T}} \mathbf{X}\hat{\beta} = \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

$$\hat{\beta} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

Maximum Likelihood Estimation: σ^2

▶ The MLE for σ^2 can be obtained by profile likelihood

$$\begin{split} \hat{\sigma}^2 &= \arg\max_{\sigma^2} \left\{ \arg\max_{\beta} \ell(\beta, \sigma^2) \right\} \\ &= \arg\max_{\sigma^2} \ell(\hat{\beta}, \sigma^2) \\ &= \arg\max_{\sigma^2} \left[-\frac{1}{2} \left\{ m \log(\sigma^2) + \frac{1}{\sigma^2} (y - X \hat{\beta})^\mathsf{T} (y - X \hat{\beta}) \right\} \right] \end{split}$$

Differentiating and setting equal to zero

$$\hat{\sigma}^2 = \frac{1}{m} (y - X\hat{\beta})^{\mathsf{T}} (y - X\hat{\beta})$$

Unbiased estimator

$$S^{2} = \frac{1}{m-p}(y-X\hat{\beta})^{\mathsf{T}}(y-X\hat{\beta})$$

Outline

Motivation

Hunting for α

Probability Crash Course

The Multivariate Normal Distribution

The Normal Linear Regression Model

Normal Linear Regression Model
Review of Maximum Likelihood Estimation
Maximum Likelihood Estimator: Normal Linear Res

Joint Distribution of Least Squares Estimators

Confidence and Prediction Intervals

Least Squares Estimators

Normal linear regression model

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \qquad \boldsymbol{\varepsilon} \sim \mathcal{N}_m(\mathbf{0}, \sigma^2 \mathbf{I})$$

Least squares estimators

$$\hat{oldsymbol{eta}} = (\mathbf{X}^{\scriptscriptstyle\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\scriptscriptstyle\mathsf{T}}\mathbf{y}$$

$$\hat{\sigma}^2 = \frac{1}{m} (\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}})^{\mathsf{T}} (\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}}) = \frac{1}{m} \|\mathbf{y} - \hat{\mathbf{y}}\|^2$$

- Want to study the distributions of these estimators to
 - understand their precision
 - make confidence intervals/regions
 - test hypotheses
 - make predictions

Theorem Let $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ where

- ho $\varepsilon \sim \mathcal{N}_m(\mathbf{0}, \sigma^2 \mathbf{I})$
- **X** is an $m \times p$ matrix $(m \ge p)$ of rank p

Then

- 1. $\hat{\boldsymbol{\beta}} \sim \mathcal{N}_{p}(\boldsymbol{\beta}, \sigma^{2}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1})$
- 2. The random variables $\hat{oldsymbol{eta}}$ and S^2 are independent

3.
$$\frac{m-p}{\sigma^2} S^2 \sim \chi^2_{m-p}$$

▶ Claim # 1

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}_{p} ig(\boldsymbol{\beta}, \sigma^{2} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} ig)$$

- ▶ Property 2: if $V \sim \mathcal{N}_m(\mu, \Sigma)$ then $BV + b \sim \mathcal{N}_n(B\mu + b, B\Sigma B^T)$
- ▶ Let $\mathbf{B} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}$, $\mathbf{b} = \mathbf{0}$, and $\mathbf{V} = \mathbf{Y} \sim \mathcal{N}_p(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, then

$$\begin{split} (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{Y} &\sim \mathcal{N}_{p}((\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta}, (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\sigma^{2}\mathbf{I}\left[(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\right]^{\mathsf{T}}) \\ &\hat{\boldsymbol{\beta}} \sim \mathcal{N}_{p}(\boldsymbol{\beta},\ (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\sigma^{2}\boldsymbol{I}\left[(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\right]^{\mathsf{T}}) \\ &\hat{\boldsymbol{\beta}} \sim \mathcal{N}_{p}(\boldsymbol{\beta},\ \sigma^{2}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}) \\ &\hat{\boldsymbol{\beta}} \sim \mathcal{N}_{p}(\boldsymbol{\beta},\ \sigma^{2}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}) \end{split}$$

- ▶ Claim #2: the estimators $\hat{\beta}$ and S^2 are independent
- ▶ If **e** is independent of $\hat{\beta}$, then $S^2 = \mathbf{e}^{\mathsf{T}}\mathbf{e}/(m-p)$ is independent of $\hat{\beta}$

$$\mathbf{e} = (\mathbf{I} - \mathbf{H})\mathbf{Y} \qquad \hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{Y} \qquad \mathbf{Y} \sim \mathcal{N}_{\mathit{m}}(\mathbf{X}\boldsymbol{\beta}, \sigma^{2}\mathbf{I})$$

▶ Property 7: If $\mathbf{Y} \sim \mathcal{N}_m(\boldsymbol{\mu}, \mathbf{\Sigma})$ then

AY independent of **BY**
$$\iff$$
 A Σ **B**^T = **0**

▶ Let
$$\mathbf{A} = (\mathbf{I} - \mathbf{H})$$
, $\mathbf{B} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}$, and $\mathbf{Y} \sim \mathcal{N}_m(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$

$$\begin{split} \mathbf{A} \mathbf{\Sigma} \mathbf{B}^{\mathsf{T}} &= (\mathbf{I} - \mathbf{H}) (\sigma^{2} \mathbf{I}) \big[(\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \big]^{\mathsf{T}} \\ &= \sigma^{2} \left[\mathbf{X} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} - \mathbf{H} \mathbf{X} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \right] \\ &= \sigma^{2} \left[\mathbf{X} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} - \mathbf{X} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{X} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \right] \\ &= \sigma^{2} \left[\mathbf{X} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} - \mathbf{X} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \right] = \mathbf{0} \end{split}$$

- ▶ Observe that $\mathbf{e} = (\mathbf{I} \mathbf{H})\varepsilon$
- ▶ It follows that

$$(m-p) S^2 = (m-p) \frac{\mathbf{e}^{\mathsf{T}} \mathbf{e}}{m-p} = \varepsilon^{\mathsf{T}} (\mathbf{I} - \mathbf{H})^{\mathsf{T}} (\mathbf{I} - \mathbf{H}) \varepsilon = \varepsilon^{\mathsf{T}} (\mathbf{I} - \mathbf{H}) \varepsilon$$

$$\frac{(m-p)}{\sigma^2} S^2 = \frac{\varepsilon^{\mathsf{T}}}{\sigma} (\mathbf{I} - \mathbf{H}) \frac{\varepsilon}{\sigma}$$

$$= \mathbf{Z}^{\mathsf{T}} (\mathbf{I} - \mathbf{H}) \mathbf{Z} \quad \text{where } \mathbf{Z} \sim \mathcal{N}_m(\mathbf{0}, \mathbf{I})$$

$$\sim \chi^2_{m-p}$$

Distribution of a Single Parameter

▶ Recall claim #1

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}_{p}(\boldsymbol{\beta}, \sigma^{2}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1})$$

- ▶ Let \mathbf{c}_j be a vector where the j^{th} component is one and the rest are zero
- ▶ Property 2

$$\hat{\beta}_j = \mathbf{c}_j^{\scriptscriptstyle \sf T} \hat{\boldsymbol{\beta}} \sim \mathcal{N}_1(\mathbf{c}_j^{\scriptscriptstyle \sf T} \boldsymbol{\beta}, \sigma^2 \mathbf{c}_j^{\scriptscriptstyle \sf T} (\mathbf{X}^{\scriptscriptstyle \sf T} \mathbf{X})^{-1} \mathbf{c}_j) = \mathcal{N}(\beta_j, \sigma^2 \delta_{jj})$$

where δ_{ii} is the j^{th} diagonal element of $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$

▶ The expected value and standard error (se) of $\hat{\beta}_i$

$$\mathbb{E}(\hat{\beta}_j) = \beta_j$$
 and $\operatorname{se}(\hat{\beta}_j) = \sqrt{\operatorname{Var}(\hat{\beta}_j)} = \sqrt{\sigma^2 \delta_{jj}}$

▶ The estimated standard error is $\widehat{\mathsf{se}}(\hat{\beta}_j) = \sqrt{S^2 \delta_{jj}}$

Hunting for α

```
> summary(lm(Asset.returns ~ SP500.returns))
Call:
lm(formula = Asset.returns ~ SP500.returns)
Residuals:
    Min
           1Q Median
                              3Q
                                      Max
-0.09001 -0.00891 -0.00030 0.00878 0.05954
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.002633 0.000984 2.67
                                         0.008
SP500.returns 2.023243 0.123288 16.41 <2e-16
```

Residual standard error: 0.0155 on 248 degrees of freedom Multiple R-squared: 0.521, Adjusted R-squared: 0.519 F-statistic: 269 on 1 and 248 DF, p-value: <2e-16

Interpretation of summary Output

- lacktriangle The first column is the coefficient estimate \hat{eta}_j
- ▶ The second column is the standard error estimate $\widehat{\operatorname{se}}(\hat{\beta}_j)$
- ▶ The third column is the observed t value

$$t = \frac{\beta_j}{\widehat{\mathsf{se}}(\widehat{\beta}_j)}$$

▶ Under the *null hypothesis* $H_0: \beta_j = 0$

$$T = \frac{\hat{\beta}_j}{\hat{\mathsf{se}}(\hat{\beta}_j)} = \frac{\hat{\beta}_j}{\sqrt{S^2 \delta_{jj}}} = \frac{\frac{\beta_j - \beta_j}{\sqrt{\sigma^2 \delta_{jj}}}}{\sqrt{\frac{S^2}{\sigma^2}}} = \frac{Z}{\sqrt{\frac{U}{m-p}}} \sim t_{m-p}$$

where $Z \sim \mathcal{N}(0,1)$ and $U \sim \chi^2_{m-p}$ are independent

▶ The fourth column is the *p*-value P(|T| > |t|)

Hunting for α

```
> summary(lm(Asset.returns ~ SP500.returns))
Call:
lm(formula = Asset.returns ~ SP500.returns)
Residuals:
    Min
           1Q Median
                              3Q
                                      Max
-0.09001 -0.00891 -0.00030 0.00878 0.05954
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.002633 0.000984 2.67
                                         0.008
SP500.returns 2.023243 0.123288 16.41 <2e-16
```

Residual standard error: 0.0155 on 248 degrees of freedom Multiple R-squared: 0.521, Adjusted R-squared: 0.519 F-statistic: 269 on 1 and 248 DF, p-value: <2e-16

Outline

Motivation

Hunting for α

Probability Crash Course

The Multivariate Normal Distribution

The Normal Linear Regression Model

Normal Linear Regression Model

Review of Maximum Likelihood Estimation

Maximum Likelihood Estimator: Normal Linear Regression Model

Joint Distribution of Least Squares Estimators

Confidence and Prediction Intervals

Confidence Intervals

- ▶ Want a $(1 \alpha) \times 100\%$ confidence interval (CI) for a linear combination of the parameters
 - $\qquad \qquad \mathbf{c}^{\scriptscriptstyle \mathsf{T}} \hat{\boldsymbol{\beta}} \sim \mathcal{N}_1(\mathbf{c}^{\scriptscriptstyle \mathsf{T}} \boldsymbol{\beta}, \sigma^2 \mathbf{c}^{\scriptscriptstyle \mathsf{T}} (\mathbf{X}^{\scriptscriptstyle \mathsf{T}} \mathbf{X})^{-1} \mathbf{c}) = \mathcal{N}_1(\mathbf{c}^{\scriptscriptstyle \mathsf{T}} \boldsymbol{\beta}, \sigma^2 \delta)$

 - ▶ Z^2 and S^2 are independent (since $\hat{\beta}$ and S^2 are independent)
- ▶ It follows that

$$\frac{\frac{Z^2}{1}}{\frac{\frac{m-p}{\sigma^2}S^2}{m-p}} \sim F_{1,m-p} \Rightarrow \frac{\frac{(c^{\mathsf{T}}\hat{\beta} - c^{\mathsf{T}}\beta)^2}{\sigma^2\delta}}{\frac{S^2}{\sigma^2}} = \left(\frac{c^{\mathsf{T}}\hat{\beta} - c^{\mathsf{T}}\beta}{\sqrt{S^2c^{\mathsf{T}}(X^{\mathsf{T}}X)^{-1}c}}\right)^2 \sim F_{1,m-p}$$

Confidence Intervals

▶ But $W^2 \sim F_{1,m-p} \iff W \sim t_{m-p}$, so base the CI on

$$\frac{c^{\mathsf{T}}\hat{\beta} - c^{\mathsf{T}}\beta}{\sqrt{S^2c^{\mathsf{T}}(X^{\mathsf{T}}X)^{-1}c}} \sim t_{m-\rho}$$

• Symmetric $(1 - \alpha) \times 100\%$ confidence interval

$$\mathbf{c}^{\mathsf{T}}\hat{\boldsymbol{\beta}} \pm t_{m-p}(1-\alpha/2)\sqrt{S^2\mathbf{c}^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{c}}$$

▶ Use c_j to obtain a confidence interval for β_j

$$\hat{\beta}_j \pm t_{m-p} (1-\alpha/2) \sqrt{S^2 \delta_{jj}}$$

Prediction Intervals

- lacksquare Want to predict $y_{\scriptscriptstyle{\mathsf{new}}}$ given $\mathbf{x}_{\scriptscriptstyle{\mathsf{new}}} \in \mathbb{R}^n$
- ▶ The model predicts $y_{\text{\tiny new}}$ by $\mathbf{x}_{\text{\tiny new}}^{\text{\tiny T}}\hat{\boldsymbol{\beta}}$ but $y_{\text{\tiny new}} = \mathbf{x}_{\text{\tiny new}}^{\text{\tiny T}}\boldsymbol{\beta} + \varepsilon_{\text{\tiny new}}$
- ▶ A prediction interval is different than the interval for a linear combination $\mathbf{c}^{\mathsf{T}}\boldsymbol{\beta}$ because there is additional uncertainty due to $\varepsilon_{\mathsf{new}}$
- $\blacktriangleright \ \mathbb{E}(\mathbf{x}_{\scriptscriptstyle{\mathsf{new}}}^{\scriptscriptstyle{\mathsf{T}}} \hat{\boldsymbol{\beta}} + \varepsilon_{\scriptscriptstyle{\mathsf{new}}}) = \mathbf{x}_{\scriptscriptstyle{\mathsf{new}}}^{\scriptscriptstyle{\mathsf{T}}} \boldsymbol{\beta}$
- $\qquad \qquad \mathsf{Var}(\mathbf{x}_{\scriptscriptstyle\mathsf{new}}^{\scriptscriptstyle\mathsf{T}} \hat{\boldsymbol{\beta}} + \varepsilon_{\scriptscriptstyle\mathsf{new}}) = \mathsf{Var}(\mathbf{x}_{\scriptscriptstyle\mathsf{new}}^{\scriptscriptstyle\mathsf{T}} \hat{\boldsymbol{\beta}}) + \mathsf{Var}(\varepsilon_{\scriptscriptstyle\mathsf{new}}) = \sigma^2 \left[\mathbf{x}_{\scriptscriptstyle\mathsf{new}}^{\scriptscriptstyle\mathsf{T}} (\mathbf{X}^{\scriptscriptstyle\mathsf{T}} \mathbf{X})^{-1} \mathbf{x}_{\scriptscriptstyle\mathsf{new}} + 1 \right]$
- Base the prediction interval on

$$\frac{\mathbf{x}_{\text{new}}^{^{\mathsf{T}}}\hat{\beta}-y_{+}}{\sqrt{S^{2}\left[1+\mathbf{x}_{\text{new}}^{^{\mathsf{T}}}(X^{^{\mathsf{T}}}X)^{-1}\mathbf{x}_{\text{new}}\right]}}\sim t_{m-\rho}$$

▶ Obtain the symmetric, $(1 - \alpha) \times 100\%$ prediction interval

$$\mathbf{x}_{\scriptscriptstyle{\mathsf{new}}}^{\scriptscriptstyle{\mathsf{T}}} \hat{oldsymbol{eta}} \pm t_{m-p} (1-lpha/2) \sqrt{S^2 \left[1+\mathbf{x}_{\scriptscriptstyle{\mathsf{new}}}^{\scriptscriptstyle{\mathsf{T}}} (\mathbf{X}^{\scriptscriptstyle{\mathsf{T}}} \mathbf{X})^{-1} \mathbf{x}_{\scriptscriptstyle{\mathsf{new}}}
ight]}$$

http://computational-finance.uw.edu