3 Поля

3.1 Векторные пространства

Определение 1. Множество V называется векторным пространством над полем F, если V - абелева группа относительно сложения u если для $\forall a \in F \ u \ \forall v \in V \exists av \in V |$ выполняются условия:

- 1. a(v+u) = av + au
- 2. (a+b)v = av + br
- 3. a(br) = ()ab)v
- 4. $1 \cdot v = v, \forall a, b \in F, \forall u, v \in V$

Определение 2. Пусть V - векторные пространство над полем F, U - подмножество в V. U называются подпространством V, если U - векторное пространство над F относительно операций в V.

Определение 3. Пусть $S = \{v_1, v_2, ..., v_n\}$ - множество векторов. Векторы из S называются линейно зависимыми над F, если $\exists a_1, ..., a_n$ и не все $a_i = 0 | a_1 v_1 + ... + a_n v_n = 0$. В противном случае векторы из S называются линейно независимыми.

Определение 4. Пусть V - векторное пространство над F. Подмножество $B \subset V$ называется базисом пространства V, если B - линейно независимо над F и \forall элемент из V есть линейная комбимнация элементов из B.

Теорема 1. Если $\{u_1, u_2, ..., u_m\}$ и $\{w_1, w_2, ..., w_m\}$ - базисы вектрное пространство V над полем F, то m=n.

Определение 5. Пусть векторное пространство имебщее базис, состоящий из n элементов. В этом случае говорят, что размерность $V(\dim_F V) = n$.

3.2 Расширение полей

Определение 6. Поле E называется расширением поля F, если $F \subseteq E$ и операции в F - операции из E, суженные до F.

Теорема 2 (Кронекера). Пусть F - поле u $f(X)(\neq const) \in F[X]$. Тогда \exists расширение E поля F, в котором многочлен f(X) имеет ноль (корень).

Определение 7. Пусть E - расширение поля F и $f(X) \in F[X]$. Многочлен f расщепляется в E, если f разлагаетсяв произведение линейных множителей в E[X]. E называется полем разложения для f над F, если f расщепляется в E, но ни в каком другом собственном подполе E.

Теорема 3. Пусть F - none, $f(X)(\neq const) \in F[X]$. Тогда \exists none разложения $^{E}/_{F}$ для многочлена f(X).