ACM 100b

Interpretation in terms of linear algebra

Dan Meiron

Caltech

February 9, 2014

Interpretation in terms of linear algebra

We can interpret this identity

$$\int_{a}^{b} L[u(x)]v(x)dx = \int_{a}^{b} u(x)L[(v(x)]dx$$

in terms of linear algebra but the "vectors" and "matrices" are functions and operators not finite dimensional objects as in regular linear algebra.

- Instead the idea here is one of abstract vector spaces.
- That is we can use an analogy with vectors and matrices but the spaces are infinite dimensional (because we're working with functions and derivatives)

Generalized scalar product

We can think of the integral

$$\int_{a}^{b} u(x)v(x)dx$$

as a type of scalar product like the dot product $x \cdot y$ in vector calculus.

- In fact, the integral satisfies all the requirements of being a scalar product in an abstract vector space where the vectors are the functions u(x) and v(x).
- If we define the scalar product (u, v) by

$$(u(x),v(x))=\int_a^b u(x)v(x)dx,$$

then Lagrange's identity becomes the expression

$$(Lu,v)-(u,Lv)=0.$$

Generalized scalar product

- We see also that Lu can be thought of as a linear operator on the vector u(x).
- Indeed suppose we had the expression

$$\int_{a}^{b} vMudx,$$

where M is any linear expression involving derivatives (of which our L is a special case)

Then we can think of this as similar to a scalar product of the form

$$(\mathbf{y}, A\mathbf{x}) = \mathbf{y} \cdot (A\mathbf{x})$$

where x and y are n-dimensional vectors and A is an $n \times n$ matrix.

Adjoint operators

 By picking special boundary conditions on u and v, we can also always use integration by parts to rewrite

$$\int_{a}^{b} vMudx$$

as

$$\int_{a}^{b} u(x) M^{*}[v(x)] dx$$

Recall that when we have a scalar product of the form

$$(\boldsymbol{x}, A\boldsymbol{y})$$

we can also write this as

$$(A^*x, y)$$

where A^* is the matrix adjoint of A.

For real matrices A* is the same as the transpose of A

February 9, 2014

Self adjoint operators

- Here M* now formally plays the role of an adjoint matrix except it's now an adjoint operator.
- Note that for a general linear differential operator M, the adjoint M* is not necessarily identical to M.
- In fact, in general it isn't just like the transpose of a matrix is not identical to the original matrix unless the matrix is symmetric.
- But in the special case of the S-L operator given by L we can see from Lagrange's identity that

$$L^* = L$$

- We see that *L* is its own adjoint matrix
- We say L is a self-adjoint operator

Interpretation in terms of linear algebra

- Recall from courses on linear algebra that self-adjoint matrices have special properties.
- A real self-adjoint matrix is a symmetric matrix
- Recall from linear algebra that a symmetric matrix has real eigenvalues
- A symmetric matrix also has mutually orthogonal eigenvectors
- A similar property holds for the Sturm-Liouville ODE
- The S-L ODE also has some additional properties associated with the existence of positive eigenvalues.
- We will show that these special properties carry over to the continuous case.
- However, it's important to recall that if the S-L problem is not a regular one then some of these special properties get violated.