Homework module #9) Sec 4.3 # 2,56,50,60

2)

5how that the language L= {a"bkc"; n ≥ 0, kzn3

· Assume L is regular and m is a constant, then we get w= ambmem where wel.

We take w = xyz where $1xy1 \le m$ and $1y1 \ge 1$ thus $x = \emptyset$, $y = a^{m+}$ and $z = b^m c^m$.

From the pumping lemma, we get w= y'z, where i=0,1,2...

For i=0 we get $w=a^mb^mc^m$ where $w \not\in L$. For i=1 we get $w=a^mb^mc^m$ where $w \not\in L$ For i=2 we get $w=a^{2m}b^mc^m$ where $w \not\in L$ This is a contradiction, thus L is NOT regular.

5) Prove that the following languages are not regular.
b) L= & and ah; K + n + L}

" Assume that L is regular and in is a constant, we get $w = a^m b^m a^{2m+1}$ and wel.

<u>e</u>

· We fake w=xyz, where |xy| = m and |y| = 1, thus x=8, y=am and z=bma=+1

From the pumping lemma, we get w=y'z, where 1=0,1,2...

For i=0, we get $w=b^m a^{2m+2}$ where well For i=1, we get $w=a^m b^m a^{2m+2}$ where well For i=2, we get $w=a^{2m}b^m a^{2m+2}$ where well. This is a contradiction, thus L is NOT regular.

5) C) L= {a"b" a"; n=L OR L + K} on Z={a} are regular: c) L = {a": n= k3 for some k≥0} $W = a^m$.

· Assume L is regular and m is a constant, we get w=ambmam for the condition n=L.

" We take w=xyz where |xy| = m and |y| ≥ 1, thus X=0, $y=a^m$, and $z=b^ma^m$

· From the pumping lemma, we get w= y'z.

· For i=0 We get w= 5 mam where w #L

This is a contradiction, thus L is NOT regular.

6) Determine whether or not the following languages

" Assume L is regular and M is a constant, we get

we take w=xyz, where |xyl ≤ m | and |y| ≥1 , thw $X = \emptyset$ $y = a^{m^3}$ and $z = \emptyset$.

· From the pumping lemma, we get w=y'.

For i=2, we get $w=(a^n)^2=a^{(n^3+a)}$ Where W&L

" This is a contradiction, thus Lis NOT regular.