IMS ENGINEERING COLLEGE	IMSEC/QF/48
	Page 1 of 2
FORMATS	Issue No: 02
Assignment 1	Issue Date: 1 May 2010
Prepared by: MR	Approved by: Director

Subject Name	TAFL	Subject Code	KCS-402
Date of Handout	15-April, 2021	Max Marks	
Date of Submission	20-April, 2021	CO1	

- Q1 Find the transitive closure R+ and reflexive transitive closure R* of relation— $R = \{ (1, 2), (2, 3), (3, 4), (5, 4) \}$
- Q2 Describe the following terms
 - a) Kleen Closure
 - b) Star Closure of language (L*)
 - c) Positive Closure of language (L⁺)
- Q3 Define Grammar and Language generated by a grammar.
- **Q4** Write a CFG which generates string of balanced parenthesis.
- **Q5** Find the grammars that generates following languages.
 - a) $L = \{ a^l b^m c^n | 1 + m = n \}$ Assume $\Sigma = \{ a, b, c \}$
 - b) $L = \{ ww^R : w \in \{a, b\}^+ \}$
 - c) $L = \{ a^n b^m | (n + m) \text{ is even} \}$
 - d) $L = \{ a^n b^{2n} : n \ge 0 \}$ Assume $\Sigma = \{ a, b \}$
 - e) $L = \{ a^n b^{n+1} : n \ge 0 \}$ Assume $\Sigma = \{ a, b \}$
 - f) $L = \{ w : |w| \mod 3 = 0 \}$ Assume $\Sigma = \{ a \}$
 - g) $L = \{ w : |w| \mod 3 = 0 \}, w \in \{ a, b \}^* \}$
 - $h) \ L = \{ \ w : n_a(w) = \ n_b(w) \ \} \qquad \qquad \text{Assume } \Sigma = \{ \ a, \ b \ \}$

(where n_a(w) denotes the number of 'a' in string w)

Q6 a) Give a simple description of the language generated by the grammar with productions

$$S \rightarrow aA$$
,

$$A \rightarrow bS$$
,

$$S \rightarrow \lambda$$
,

b) What language does the grammar with these productions generate?

$$S \rightarrow Aa$$

$$A \rightarrow B$$

$$B \rightarrow Aa$$

c) What language does the grammar with these productions generate?

$$S \rightarrow SS$$
,

$$S \rightarrow (S)$$
,

$$S \rightarrow \lambda$$
,