

Speed Control of DC Motors

JIANNING ZHUANG

Classification of Motors

Permanent Magnet DC Motor

DC Shunt Motor

[4]

Circuit Equivalent of DC Shunt Motor

Deriving Speed Equation of DC Shunt Motor

$$V = E_b + I_a R_a$$

$$E_b = k_e \emptyset \omega$$

$$\omega = \frac{V - I_a R_c}{k_e \emptyset}$$

$$E_b = \frac{P\emptyset NZ}{60A}$$

[6]

Recall the speed equation for PMDC motors

$$\omega = \frac{V_m}{K_e} - \frac{R_m I_m}{K_e}$$

$$\omega = \frac{\frac{V - I_a R_a}{V - I_a R_a}}{k_e \emptyset}$$

1) Flux Control Method

$$\omega = \frac{V - I_a R_a}{k_e \emptyset}$$

$$R_{sh}$$
 I_{sh} I_{sh} I_{sh}

 ω inversely proportional to \emptyset

2) Armature Control Method

$$\omega = \frac{V - I_a R_a}{k_e \emptyset}$$

$$T_a = k_T I_a \emptyset$$

$$\omega = \frac{V}{k_e \emptyset} - \frac{R_a}{k_e k_T \emptyset^2} T_c$$

$$R_a$$
 ω

3) Voltage Control Method

$$\omega = \frac{V - I_a R_a}{k_e \emptyset}$$

 ω is proportional to V

Ward Leonard System

[9]

Speed Control

Flux Control	Armature Control	Voltage Control
 Only produce speeds higher than original rated speed 	 Only produce speeds lower than original rated speed 	 Can operate at any speed up to maximum
• Lowest speed when variable R is 0	Highest speed when variable R is 0	Bi-directionalSmooth change in speed

Efficiency

Flux Control	Armature Control	Voltage Control
Efficient	• Inefficient	• Efficient
• Shunt field current I_{sh} is very small	• Armature current I_a is much larger	PWM and Ward Leonard have minimal resistance losses
• Power loss I^2R is low even with high variable resistance	• Power loss I^2R is high as variable resistance carries full armature current	

Other Limitations

Flux Control	Armature Control	Voltage Control
 Limit on maximum speed Low current/flux may case speed to become dangerously high Instability and poorer commutation 	• Poor speed regulation $ N_0 = R = 0 $ $ N_1 = R = 0 $ $ N_2 = R = R_1 $ $ N_3 = R = R_2 $ $ R_2 > R_1 = R_2 $ $ R_2 > R_1 = R_2 $ O Torque \rightarrow $ T_L $	 Ward Leonard system requires a special motor-generator set Higher cost Larger size and weight
N _{rated} N _{rated} I _{fmax} Field current	[12]	

Summary

Flux Control Method

Armature Control Method

Voltage Control Method

Ø

 R_a

V

References

- [1] Petre Vree. "Shunt DC Motor Connections," *YouTube*, Dec 18, 2016. [Video file]. Available: https://www.youtube.com/watch?v=6RAE-Y7cQG0. [Accessed: Oct 4, 2020].
- [2] Petre Vree. "Series DC Motor Connections," YouTube, Dec 17, 2016. [Video file]. Available: https://www.youtube.com/watch?v=gSCv0rj2uYs. [Accessed: Oct 4, 2020].
- [3] Rashidi, B., Esmaeilpour, M. and Homaeinezhad, M., 2015. *Precise Angular Speed Control Of Permanent Magnet DC Motors In Presence Of High Modeling Uncertainties Via Sliding Mode Observer-Based Model Reference Adaptive Algorithm*. [online] Science Direct. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0957415815000549> [Accessed 5 October 2020].
- [4] Sourabh Sharma. "Types of DC Motors," YouTube, Aug 11, 2018. [Video file]. Available: https://www.youtube.com/watch?v=TnZAHlyW1E8. [Accessed: Oct 4, 2020].
- [5] Csanyi, E., 2015. 4 Types Of DC Motors And Their Characteristics. [online] EEP Electrical Engineering Portal. Available at: https://electrical-engineering-portal.com/4-types-of-dc-motors-and-their-characteristics [Accessed 5 October 2020].
- [6] Daware, K., 2014. *Speed Control Methods Of DC Motor*. [online] Electricaleasy.com. Available at: https://www.electricaleasy.com/2014/01/speed-control-methods-of-dc-motor.html [Accessed 6 October 2020].
- [7] Teresa, O., "DC Drives," *Power Electronics and Drives*, pp. 509-547, 2018. [Online]. Available http://www.philadelphia.edu.jo/academics/mlazim/uploads/ chapter11pdf. [Accessed 6 October 2020].
- [8] Heath, J., 2017. *PWM: Pulse Width Modulation: What Is It And How Does It Work?*. [online] Analog IC Tips. Available at: https://www.analogictips.com/pulse-width-modulation-pwm/ [Accessed 6 October 2020].
- [9] Moore, R. and Drakos, N., 2008. *AC Ward Leonard Drive Systems*. [online] Mypages.iit.edu. Available at: http://mypages.iit.edu/~qzhong2/ACDrive_web/ACDrive_web.html [Accessed 6 October 2020].
- [10] ELECTRICAL TECHNOLOGY. 2020. Speed Control Of DC Motor Voltage, Rheostatic & Flux Control Methods. [online] Available at: https://www.electricaltechnology.org/2020/05/speed-control-dc-motor.html#advantages-disadvantages-if-ward-leonard-method">https://www.electricaltechnology.org/2020/05/speed-control-dc-motor.html#advantages-disadvantages-if-ward-leonard-method [Accessed 6 October 2020].

References

[11] Athul R Padke. "Speed control of DC shunt motors," *YouTube*, May 1, 2020. [Video file]. Available: https://www.youtube.com/watch?v=BtPUCuR3XQE. [Accessed: Oct 4, 2020].

[12] ELECTRICAL TECHNOLOGY. 2020. *Speed Control Of DC Motor - Voltage, Rheostatic & Flux Control Methods*. [online] Available at: https://www.electricaltechnology.org/2020/05/speed-control-dc-motor.html#advantages-disadvantages-if-ward-leonard-method [Accessed 6 October 2020].