Introducció als Computadors

Tema 4: Blocs aritmètics combinacionals per a naturals http://personals.ac.upc.edu/enricm/Docencia/IC/IC4.pdf

Enric Morancho (enricm@ac.upc.edu)

Departament d'Arquitectura de Computadors Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

2020-21, 1^{er} quad.

Presentació publicada sota Ilicència Creative Commons 4.0 @ (1) (3)

Aritmètica del rellotge (o modular)

Índex

Introducció

- Sumador binari
- Multiplicar per potències de 2
- Dividir entre potències de 2
- Comparadors de nombres naturals
- Disseny de nous blocs aritmètics
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lànea

Introducció

- Hem vist com sintetitzar CLC's a partir de la seva taula de veritat
 - Descomposició de la funció en suma de minterms
- Però aquest mètode no serveix per a circuits amb moltes entrades
 - Ex: un sumador que rebi dos enters de 16 bits té 32 entrades
 - La seva taula de veritat tindria $2^{32} \approx 4.000$ milions de files
 - Amb dades de 32 o 64 bits, encara seria molt pitjor
- Dissenyarem CLC's que realitzin càlculs aritmètics amb naturals
 - Per fer un sumador binari adaptarem a base 2 el que sabeu de base 10
 - Respecte als altres blocs, farem dissenys ad-hoc per a cada cas
 - Intentarem fer dissenys modulars, basant-nos en blocs més senzills

Aritmètica convencional vs. computacional

- Aritmètica convencional: el conjunt dels naturals és infinit
 - Si cal, el resultat de les operacions pot tenir més dígits que els operands
- Aritmètica computacional: utilitza subconjunt finit dels naturals
 - Els naturals es representen amb n bits (a IC, n=16)
 - El màxim natural representable és $2^n 1$ (a IC, $2^{16} 1 = 65.535$)
 - El resultat de les operacions no pot tenir més dígits que els operands
 - Penseu en el comptaquilòmetres d'un cotxe o en un rellotge de busques
 - Després del quilòmetre 999.999 vindrà el 000.000
 - Després de les 12:59 vindrà la 1:00

[3]

Aritmètica modular

Índex

- Introducció
- Sumador binari
 - Algoritme de suma en base b ($b \ge 2$)
 - Implementació del sumador binari
- Multiplicar per potències de 2
- Dividir entre potències de 2
- Comparadors de nombres naturals
- Disseny de nous blocs aritmètics
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lànea

Índex

- Introducció
- Sumador binari
 - Algoritme de suma en base b ($b \ge 2$)
 - Implementació del sumador binari
- Multiplicar per potències de 2
- Dividir entre potències de 2
- Comparadors de nombres naturals
- Disseny de nous blocs aritmètics
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lànea

Repassem suma en base 10

- Siguin X i Y dos vectors de n dígits decimals
- Volem calcular un vector W tal que $W_u = X_u + Y_u$
 - Quants dígits ha de tenir el resultat?
 - Com $0 \le X_u$, $Y_u \le 10^n 1 \implies 0 \le X_u + Y_u \le 2 \cdot 10^n 2 < 10^{n+1}$
 - ullet Per tant, X_u+Y_u pot necessitar n+1 dígits decimals
- Algorisme de suma
 - Sumem els dígits de les unitats $t_0 = x_0 + y_0$
 - w_0 pren per valor el dígit de les unitats de t_0
 - ullet Si $t_0 \geq 10$, me'n porto 1 per a la propera suma
 - Sumem els dígits de les desenes $t_1 = x_1 + y_1$
 - Incremento t_1 en 1 si me'n porto 1 de la suma anterior
 - w₁ pren per valor el dígit de les unitats de t₁
 - ullet Si $t_1 \geq 10$, me'n porto una per a la propera suma
 - Repetim el procés amb centenes,... fins a processar els *n* dígits
 - ullet Si al fer la darrera suma me'n porto una, el resultat tindrà n+1 dígits

Algorisme de suma en base 10

- $X = x_{n-1}x_{n-2} \dots x_1x_0$ $x_i \in \{0, 1, \dots, 9\}$ • $Y = y_{n-1}y_{n-2} \dots y_1y_0$ $y_i \in \{0, 1, \dots, 9\}$
- $W = w_n w_{n-1} w_{n-2} \dots w_1 w_0$ $w_i \in \{0, 1, \dots, 9\}$
 - Volem que $W_u = X_u + Y_u$, on W té n+1 dígits, X i Y en tenen n

```
c_0=0; // A la suma de les unitats no em porto res for (k=0; k<n; k=k+1) { w_k = x_k + y_k + c_k; // 0 \le w_k \le (9+9+1) = 19 if (w_k >= 10) { w_k = w_k - 10; // Em quedo amb xifra de les unitats c_{k+1} = 1; // Me'n porto una (carry) per a propera suma } else c_{k+1} = 0; } w_k = c_n; // Val 1 si de la darrera suma me'n porto una
```

Generalització: algorisme en base b

- $X = x_{n-1}x_{n-2} \dots x_1x_0$ $x_i \in \{0, 1, \dots, b-1\}$ • $Y = y_{n-1}y_{n-2} \dots y_1y_0$ $y_i \in \{0, 1, \dots, b-1\}$
- Quants dígits té la suma?
 - Com $0 \le X_u$, $Y_u \le b^n 1 \implies 0 \le X_u + Y_u \le 2 \cdot b^n 2 < b^{n+1} \implies$ la suma pot necessitar n+1 dígits
- $W = w_n w_{n-1} w_{n-2} \dots w_1 w_0$ $w_i \in \{0, 1, \dots, b-1\}$
 - ullet Volem que $W_u=X_u+Y_u$, on W té n+1 dígits, X i Y en tenen n

```
c_0=0; // A la suma de les unitats no em porto res for (k=0; k<n; k=k+1) { w_k = x_k + y_k + c_k; // 0 \le w_k \le (b-1+b-1+1) = 2b-1 if (w_k >= b) { w_k = w_k - b; // Em quedo amb xifra de les unitats c_{k+1} = 1; // Me'n porto una (carry) per a propera suma } else c_{k+1} = 0; } w_k = c_n; // Val 1 si de la darrera suma me'n porto una
```

Exercici: sumes en diverses bases

• Base 2:

• Base 8:

Base 16:

Exercici: sumes en diverses bases

• Base 2:

• Base 8:

Base 16:

"Paradoxes" de la suma en base 2

[4]

Índex

- Introducció
- Sumador binari
 - Algoritme de suma en base b ($b \ge 2$)
 - Implementació del sumador binari
- Multiplicar per potències de 2
- Dividir entre potències de 2
- Comparadors de nombres naturals
- Disseny de nous blocs aritmètics
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lànea

Algorisme de suma en base 2

- $X = x_{n-1}x_{n-2} \dots x_1x_0$ $x_i \in \{0, 1\}$
- $Y = y_{n-1}y_{n-2}...y_1y_0$ $y_i \in \{0,1\}$
- $W = w_n w_{n-1} w_{n-2} \dots w_1 w_0$ $w_i \in \{0, 1\}$
 - Volem que $W_u = X_u + Y_u$, on W té n+1 dígits, X i Y en tenen n

```
c_0=0; // A la suma de les unitats no em porto res for (k=0; k<n; k=k+1) { w_k = x_k + y_k + c_k; // 0 \le w_k \le 3 if (w_k >= 2) { w_k = w_k - 2; // Em quedo amb xifra de les unitats c_{k+1} = 1; // Me'n porto una (carry) per a propera suma } else c_{k+1} = 0; } w_k = c_n; // Val 1 si de la darrera suma me'n porto una
```

Una iteració del bucle de suma


```
\begin{aligned} w_k &= x_k + y_k + c_k; \ // \ 0 \leq w_k \leq 3 \\ &\text{if } (w_k >= 2) \ \{ \\ &w_k = w_k - 2; \ // \ \text{Em quedo amb xifra de les unitats} \\ &c_{k+1} = 1; \ // \ \text{Me'n porto una per a propera suma} \\ \} \\ &\text{else } c_{k+1} = 0; \end{aligned}
```

- Donats els tres bits x_k, y_k, c_k retorna el nombre binari $c_{k+1}w_k$ que indica quants d'aquests tres bits valen "1"
 - Casos possibles:

$\mathbf{x}_{\mathbf{k}}$	0	0	0	0	1	1	1	1
Уk	0	0	1	1	0	0	1	1
$\frac{+ c_k}{c_{k+1} w_k}$	+ 0	+ 1	+ 0	+ 1	+ 0	+ 1	+ 0	+ 1
C _{k+1} W _k	0 0	0 1	0 1	1 0	0 1	1 0	1 0	1 1

- Podem implementar-la mitjançant un CLC amb 3 entrades i 2 sortides
 - Full-adder (FA)

Full-adder (FA)

• Taula de veritat:

			С	S
x_k	y_k	c_k	c_{k+1}	W_k
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$x_k + y_k + c_k = 2 \cdot c_{k+1} + w_k$$
 (+ i . aritmètiques, no lògiques)

- Encapsulat:
 - Les entrades no estan etiquetades perquè són intercanviables

Construir sumador a partir de blocs FA

- Exemple n = 4
 - Al FA de la dreta li fem arribar un "0" com a una de les entrades perquè la suma de les unitats no pot portar-se res d'una suma anterior
 - ullet Si c_4 val "1" indica que el resultat de la suma necessitaria 5 bits

$$\begin{array}{lll} c_0 = 0 \ ; \\ (c_1,w_0) & = & \textbf{Fa} \left(x_0,y_0,c_0 \right) \ ; \\ (c_2,w_1) & = & \textbf{Fa} \left(x_1,y_1,c_1 \right) \ ; \\ (c_3,w_2) & = & \textbf{Fa} \left(x_2,y_2,c_2 \right) \ ; \\ (c_4,w_3) & = & \textbf{Fa} \left(x_3,y_3,c_3 \right) \ ; \end{array}$$

- Ripple carry adder (RCA)
 - Hi ha altres dissenys de sumadors amb millors prestacions

Bloc ADD

- Entrades: X, Y de n = 16 bits
 - Els cables gruixuts blaus representen busos (feixos) de n senyals
- Sortides: W de n = 16 bits i c (carry) d'un bit
 - $W_u = (X_u + Y_u) \mod 2^n$
 - $c=1 \iff X_u+Y_u\geq 2^n$
 - ullet c=1 indica que el resultat necessitaria n+1 bits (overflow)
 - La propagació del carry per tots els FA's determinarà el camí crític

ADD: suma no representable (overflow)

- El bloc aritmètic ADD **no** calcula la suma convencional $(X_u + Y_u)$
 - El bloc ADD calcula la suma mòdul 2ⁿ
 - $\bullet \ \ W = ADD(X,Y)$
 - En general, $W_u = (X_u + Y_u) \mod 2^n \neq X_u + Y_u$
 - El que seria el bit w_n no forma part del resultat W
- En molts casos, el resultat de la suma convencional i el de la suma modular coincideixen
 - Quan no ho facin, $W_u \neq X_u + Y_u$, direm que el resultat de la suma convencional no és representable amb n bits
 - Overflow (sobreeximent)
 - La sortida c del bloc ADD tindrà el valor "1" per indicar-ho
 - Sempre es complirà que $X_u + Y_u = c \cdot 2^n + W_u$
 - ullet c seria el bit w_n de la suma convencional
 - W conté els n bits baixos de la suma convencional

Exercici (n = 4)

• Donats vectors X i Y de 4 bits, determineu el resultat de la suma modular en 4 bits (W = ADD(X, Y) i W_u), si s'ha produit *overflow* (c) i el resultat de la suma convencional ($X_u + Y_u$)

X	X_u	Y	$ Y_u $	W =	W_u	c	$X_u + Y_u$
				W = ADD(X, Y)			
1100	12	0011	3				
0010	2	0011 1111 1111	15				
1111	15	1111	15				

Exercici (n = 4)

• Donats vectors X i Y de 4 bits, determineu el resultat de la suma modular en 4 bits (W = ADD(X, Y) i W_u), si s'ha produit *overflow* (c) i el resultat de la suma convencional ($X_u + Y_u$)

X	X_u	Y	Y_u	W =	W_u	c	$X_u + Y_u$
				W = ADD(X, Y)			
	12	0011	3	1111	15	0	15
		1111	15	0001	1	1	17
1111	15	1111	15	1110	14	1	30

Overflows al món real

- Year 2000 problem [5]
- Gangnam Style overflows INT_MAX, forces YouTube to go 64-bit [6]
- GPS Week Number Rollover [7]
- IPv4 address exhaustion [8]
- Japan running out of credit card numbers [9]
- Year 2038 problem [10]
- Sistema de fitxers NTFS: data límit 28 de maig del 60.056 [11]
- Matrícules dels cotxes
- Marcadors esportius

Introducció als Computadors (4)

2020-21, 1er quad

Síntesi del full-adder (FA)

- Podem sintetitzar el full-adder a partir de la seva taula de veritat
 - Descomposició en suma de minterms
- Però el construirem a partir d'un CLC més senzill, el half-adder
 - Disseny modular

Bloc Half-Adder (HA)

• El half-adder calcularà les taules de sumar en base 2 (+ aritmètic)

X	У	x + y
0	0	0
0	1	1

$$\begin{array}{c|cccc} x & y & x+y \\ \hline 1 & 0 & 1 \\ 1 & 1 & 10 \\ \end{array}$$

• Com un dels resultats necessita dos bits, codifiquem tots amb dos bits

$$\begin{array}{c|cccc}
x & y & x+y \\
\hline
0 & 0 & 00 \\
0 & 1 & 01 \\
\end{array}$$

$$\begin{array}{c|cccc}
x & y & x+y \\
\hline
1 & 0 & 01 \\
1 & 1 & 10
\end{array}$$

- Half-Adder: CLC que implementa taules de sumar en base 2
 - Taula de veritat del HA (separant els bits de sortida)

X	У	C	S	
0	0	0	0	
0	1	0	1	$x + y = 2 \cdot c + s$
1	1 0	0	1	(+ i . aritmètics, no lògics)
1	1	1	0	

Síntesi del Half-adder (HA)

ху	c s
0 0	0 0
0 1	0 1
1 0	0 1
1 1	1 0

- Síntesi de cada sortida:
 - c: porta AND-2
 - x: porta XOR-2
- Encapsulat:
 - No cal identificar les entrades perquè són intercanviables
 - ullet Sí que cal identificar les sortides c i s

Síntesi de full-adder amb blocs half-adder

• Utilitzant tres blocs HA (aprofitem associativitat i respectem pesos)

х0	y_0	z ₀	a ₁	a_0	b ₁	b_0	c ₂	c ₁	w ₂	w_1	w ₀
0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0	1
0	1	0	0	1	0	1	0	0	0	0	1
0	1	1	0	1	1	0	0	1	0	1	0
1	0	0	0	1	0	1	0	0	0	0	1
1	0	1	0	1	1	0		1	0	1	0
1	1	0	1	0	0	0	0	1	0	1	0
1	1	1	1	0	0	1	0	1	0	1	1

- Observem que w₂ sempre val "0"
 - Ja quadra, perquè hem vist que el resultat del FA només té 2 bits
- Simplificarem el càlcul de w_1 fent OR-2(a1, b1)

Sintesí de *full-adder* amb blocs *half-adder*

- Utilitzant dos blocs HA i una porta OR-2
 - També amb 1 porta OR-2, 2 portes AND-2 i 2 portes XOR-2

x y z

Índex

- Introducció
- Sumador binari
- Multiplicar per potències de 2
- Dividir entre potències de 2
- Comparadors de nombres naturals
- Disseny de nous blocs aritmètics
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lànea

Multiplicar per potències de 2

- En base b, multiplicar un número per b (10 $_b$) és equivalent a desplaçar tots els dígits una posició a l'esquerra i afegir un 0 per la dreta
 - Exemples:
 - $25 \cdot 10 = 250$
 - $13 = 1101_2 \implies 13 \cdot 2 = 11010_2$
 - $75 = 4B_{16} \implies 75 \cdot 16 = 4B0_{16}$
- En base b, multiplicar un número per b^k (10 k _b) és equivalent a desplaçar els dígits k posicions a l'esquerra i afegir k 0's per la dreta
 - Exemples:
 - $25 \cdot 10^4 = 250.000$
 - $13 = 1101_2 \implies 13 \cdot 2^2 = 110100_2$
 - $75 = 4B_{16} \implies 75 \cdot 16^3 = 4B000_{16}$
- Demostració: a partir de la fórmula que calcula X_u

•
$$X = x_{n-1}x_{n-2}...x_1x_0$$
, $x_i \in \{0, 1, ..., b-1\} \implies X_u = \sum_{i=0}^{n-1} x_i \cdot \mathbf{b}^i$

- Si $Y = x_{n-1}x_{n-2} \dots x_1x_00 \implies Y_u = b \cdot X_u$
- Si $Y = x_{n-1}x_{n-2}...x_1x_0000 \implies Y_u = b^3 \cdot X_u$

Resultat no representable amb n bits

- A una implementació hardware, la mida de l'entrada i del resultat de l'operació estarà limitada a n bits
- A un nombre de n bits, desplaçar els dígits k posicions a l'esquerra provoca que es descartin els k bits de més pes de l'entrada
 - Exemple:
 - Si n=8, desplaçar el nombre 10100011 tres posicions a l'esquerra resulta 00011000
 - Els bits "101" desapareixen del resultat
- Si algun d'aquests k bits de més pes val "1", el resultat del desplaçament no serà representable amb n bits

Implementació bloc SL-k

- SL-k: Shift Left-k
 - Implementació per a k=4
 - El resultat serà no representable amb 16 bits si algun dels k=4 bits de més pes de X val "1"
 - El bloc SL-4 mostrat no incorpora aquesta informació com a sortida

 $\bullet \ W_u = (X_u \cdot 2^k) \mod 2^n$

Índex

- Introducció
- Sumador binari
- Multiplicar per potències de 2
- Dividir entre potències de 2
- Comparadors de nombres naturals
- Disseny de nous blocs aritmètics
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lànea

Dividir entre potències de 2

- En base b, la divisió entera d'un número entre b (10_b), arrodonint per defecte, és equivalent a descartar el dígit de menys pes i desplaçar tots els dígits una posició a la dreta
 - Exemples:
 - 25/10 = 2
 - $13 = 1101_2 \implies 13/2 = 110_2$
 - $75 = 4B_{16} \implies 75/16 = 4_{16}$
- En base b, la divisió entera d'un número entre b^k , arrodonint per defecte, és equivalent a descartar els k dígits de menys pes i desplaçar els dígits k posicions a la dreta
 - Exemples:
 - $25.000/10^4 = 2$
 - $13 = 1101_2 \implies 13/2^3 = 1_2$
 - $331 = 14B_{16} \implies 331/16^2 = 1_{16}$
- ullet Demostració: a partir de la fórmula que calcula X_u

•
$$X = x_{n-1}x_{n-2} \dots x_1x_0$$
, $x_i \in \{0, 1, \dots, b-1\} \implies X_u = \sum_{i=0}^{n-1} x_i \cdot \mathbf{b}^i$

- Si $Y = x_{n-1}x_{n-2} \dots x_1 \implies Y_u = \lfloor X_u/b \rfloor$
- Si $Y = x_{n-1}x_{n-2}...x_2 \implies Y_u = \lfloor X_u/b^2 \rfloor$

Implementació bloc SRL-k

- SRL-k: Shift Right Logically-k
 - Implementació per a k=4

- $W_u = \lfloor X_u/2^k \rfloor$
 - El resultat sempre és representable perquè és menor que l'entrada
- Quan estudiem la representació dels enters, veurem que el bloc SRL no serà utilitzable amb nombres enters mentre que el bloc SL serà vàlid tant per naturals com per a enters

Índex

- Introducció
- Sumador binari
- Multiplicar per potències de 2
- Dividir entre potències de 2
- Comparadors de nombres naturals
- Disseny de nous blocs aritmètics
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lànea

Comparadors de nombres naturals

- Dissenyarem tres tipus de comparadors de naturals
 - EQual: w = EQ(X, Y)

• Less Than Unsigned: w = LTU(X, Y)

if
$$(X_u < Y_u)$$
 w=1; else w=0;

• Less or Equal Unsigned: w = LEU(X, Y)

if
$$(X_u \le Y_u)$$
 w=1; else w=0;

- No farem comparadors $> i > perque A > B \iff B < A i$ $A > B \iff B < A$
- Entrades: dos nombres naturals codificats amb 16 bits
- Sortida: un bit
 - 0: la comparació és falsa
 - 1: la comparació és certa
- Els implementarem utilitzant CLC's ja vistos o més senzills
 - Disseny modular

Comparadors: CLC's auxiliars

- SUB(X, Y): bloc restador
 - El bloc SUB calcula $X_{ii} Y_{ii}$
 - Si $X_u < Y_u$, la sortida b valdrà "1"
 - Indica que el resultat no és representable (resultat negatiu)
- *z(W)*: bloc *z* (zero)
 - El bloc z retorna "1" si els n bits de l'entrada valen "0"
 - Fa la OR-n de tots els bits del resultat i inverteix la sortida

Comparadors: implementació

- EQ(X, Y) s'implementarà amb el bloc SUB i el bloc z
 - $X = Y \iff X_{\mu} Y_{\mu} = 0$
- LTU(X, Y) s'implementarà amb el bloc SUB
 - $X_u < Y_u \iff X_u Y_u < 0 \iff b = 1$
- LEU(X, Y) s'implementarà amb els blocs SUB i z
 - $X_u \leq Y_u \iff EQ(X,Y) \circ LTU(X,Y)$

Exemple

 \bullet Donats vectors X i Y de 8 bits, determineu el resultat de les comparacions entre X i Y

X	Y	EQ(X,Y)	LTU(X,Y)	LEU(X,Y)
10101100	01001010	0	0	0
00010111	01011101	0	1	1
10101010	10101010	1	0	1

- Introducció
- Sumador binari
- Multiplicar per potències de 2
- Dividir entre potències de 2
- Comparadors de nombres naturals
- Disseny de nous blocs aritmètics
 - Incrementador
 - Multiplicador per 5
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lànea

- Introducció
- Sumador binari
- Multiplicar per potències de 2
- Dividir entre potències de 2
- Comparadors de nombres naturals
- Disseny de nous blocs aritmètics
 - Incrementador
 - Multiplicador per 5
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lànea

Incrementador amb n FA's

- Incrementador: CLC que rep d'entrada un bus X de n bits i retorna un bus W de n bits tal que $W_u = (X_u + 1) \mod 2^n$
- 1 bloc ADD de n bits o directament n blocs FA
 - Suma els vectors de *n* bits *X* i 000 . . . 001
 - Un dels operands dels FA sempre valdria "0"

Incrementador amb n HA's

- Incrementador: CLC que rep d'entrada un bus X de n bits i retorna un bus W de n bits tal que $W_u = (X_u + 1) \mod 2^n$
 - Cada HA rep un element de X
 - El primer HA també rep un "1"
 - La resta de HA's reben el carry calculat pel HA anterior

• Podem substituir el primer HA per una NOT i connectar b0 al segon

- Introducció
- Sumador binari
- Multiplicar per potències de 2
- Dividir entre potències de 2
- Comparadors de nombres naturals
- Disseny de nous blocs aritmètics
 - Incrementador
 - Multiplicador per 5
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lànea

Multiplicador per 5

CLC que amb entrada X de n bits i sortida W de m bits on $W_u = 5 \cdot X_u$. Determineu m per garantir que el resultat sempre sigui representable.

- $W_u = 5 \cdot X_u = 4 \cdot X_u + X_u = 2^2 \cdot X_u + X_u$
 - $X_u \cdot 2^2$ requereix n+2 bits
 - Sumar una dada de n + 2 bits amb una de n bits genera n + 3 bits
 - Per tant, m = n + 3
- Possibles dissenys:
 - Amb un bloc SL-2 i un bloc ADD de n + 2 bits
 - ullet Amb n+2 FA's, fent el desplaçament a l'esquerra manualment
 - Exemple per n = 4 i m = n + 3 = 7

Multiplicador per 5: simplificació

• Analitzant les entrades dels blocs FA, podem simplificar el disseny:

Multiplicador per 5: simplificació

- Analitzant les entrades dels blocs FA, podem simplificar el disseny:
 - ullet Els FA que calculen w0 i w1 tenen dues entrades amb el valor "0"
 - Podem connectar directament x0 i x1 a w0 i w1 respectivament
 - Els que calculen w2, w4, w5 i w6 tenen un operand amb el valor "0"
 Els podem substituir per blocs Ha
 - El que calcula w3 és necessari perquè pot haver de sumar tres valors diferents de "0"

- Introducció
- Sumador binari
- Multiplicar per potències de 2
- Dividir entre potències de 2
- Comparadors de nombres naturals
- Disseny de nous blocs aritmètics
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lànea

Exercicis (entrega al racó fins dia 4/oct.)

Dibuixeu l'esquema lògic intern dels blocs combinacionals que es demanen a continuació. Per a fer-los, caldrà combinar els blocs vistos anteriorment.

- Valor absolut de X-Y. Bloc que calcula Wu=|Xu-Yu| on X, Y i W són busos de 8 bits.
 - Primer, utilitzant dos restadors SUB de 8 bits, un comparador LEU i un multiplexor de busos de 8 bits.
 - Després, a partir de dos restadors SUB de 8 bits, un comparador LEU, dos blocs AND, un sumador ADD (o un bloc OR), les portes lògiques que siguin necessàries (i sense utilitzar multiplexors).
- Majoria d'uns. Bloc amb una entrada X de 8 bits i sortida d'un sol bit.
 La sortida val 1 si X conté més 1's que 0's; altrament valdrà 0.
 Construïu el bloc a partir d'un Half-Adder, dos Full-Adders, dos blocs ADD, un bloc LEU i les portes lògiques que siguin necessàries.
 - Exemple: si l'entrada és 10101010_2 la sortida serà 0 però si l'entrada és 11001111_2 la sortida serà 1.

- Introducció
- Sumador binari
- Multiplicar per potències de 2
- Dividir entre potències de 2
- Comparadors de nombres naturals
- Disseny de nous blocs aritmètics
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lànea

Conclusions

- Hem fet dissenys ad-hoc per a blocs aritmètics per a naturals
 - Síntesi basada en descomposició en suma de minterms és inviable
- Els blocs aritmètics fixen la mida dels operands d'entrada i sortida
 - A aquesta assignatura n=16, però és comú n=32 o n=64
 - ullet No és possible representar naturals majors o iguals a 2^n
 - L'aritmètica computacional implementa aritmètica modular 2ⁿ
 - El resultat de l'aritmètica computacional pot no coincidir amb el de l'aritmètica convencional
- Alguns blocs tenen una sortida que indica que el resultat de l'aritmètica convencional no és representable amb n bits
 - El bloc ADD té la sortida c carry per indicar que el resultat de la suma amb aritmètica convencional requereix n+1 bits
- No oblideu respondre l'ET4 a Atenea i fer autoaprenentatge dels temes indicats a continuació!

- Introducció
- Sumador binari
- Multiplicar per potències de 2
- Dividir entre potències de 2
- Comparadors de nombres naturals
- Disseny de nous blocs aritmètics
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lànea

Autoaprenentatge

- Haureu d'estudiar pel vostre compte les següents seccions de la documentació de l'assignatura:
 - 4.3 Restador binari
 - És clau que us adoneu que el resultat de la resta de dos naturals serà no representable com a natural si el resultat de la resta és negatiu i com detectar-ho
 - 4.7 Operadors lògics bit a bit
 - Veureu els operadors AND, OR, XOR i NOT bit a bit.
 - Podreu resoldre The Hamlet's dilemma: To be or not to be = 0xFF:-)
 - 4.8 Disseny de multiplexors
 - Construireu multiplexors grans a partir de multiplexors més petits, en particular, construir un Mx8-1 (multiplexor de 8 entrades i 1 sortida) a partir de varis Mx2-1 (multiplexors de 2 entrades i 1 sortida)
 - 4.9 Anàlisi de circuits amb blocs
 - Interpretar els senyals com a nombres naturals i representar la tasca dels blocs algebraicament.

- Introducció
- Sumador binari
- Multiplicar per potències de 2
- Dividir entre potències de 2
- Comparadors de nombres naturals
- Disseny de nous blocs aritmètics
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lànea

Manualitats binàries

- Incrementador fet amb fusta https://www.youtube.com/watch?v=zELAfmp3fXY
- Sumador fet amb fusta i bales https://www.youtube.com/watch?v=GcDshWmhF4A

Referències I

Llevat que s'indiqui el contrari, les figures, esquemes, cronogrames i altre material gràfic o bé han estat extrets de la documentació de l'assignatura elaborada per Juanjo Navarro i Toni Juan, o corresponen a enunciats de problemes i exàmens de l'assignatura, o bé són d'elaboració pròpia.

- [1] [Online]. Available: https://www.quantamagazine.org/smaller-is-better-why-finite-number-systems-pack-more-punch-20190211/.
- [2] [Online]. Available: https://pixfeeds.com/images/auto/320-489978438-closeup-car-dashboard.jpg.
- [3] [Online]. Available:
 https://boomlyshop.com/collections/clocks-and-watches/products/lucite-11-big-number-wall-clock.
- [4] [Online]. Available: https://www.walmart.com/ip/Binary-Math-Computer-Science-Humor-Graphic-Framed-Print-Poster-Wall-or-Desk-Mount-Options/747826982.
- [5] [Online]. Available: https://en.wikipedia.org/wiki/Year_2000_problem.
- [6] [Online]. Available: https://arstechnica.com/information-technology/2014/12/gangnam-style-overflows-int_max-forces-youtube-to-go-64-bit/.
- [7] [Online]. Available: https://en.wikipedia.org/wiki/GPS_Week_Number_Rollover.
- [8] [Online]. Available: https://en.wikipedia.org/wiki/IPv4_address_exhaustion.
- [9] [Online]. Available: https://www.theguardian.com/world/2020/aug/24/japan-running-out-of-credit-card-numbers-amid-online-shopping-boom.
- [10] [Online]. Available: https://en.wikipedia.org/wiki/Year_2038_problem.
- [11] [Online]. Available: https://en.wikipedia.org/wiki/NTFS.
- [12] [Online]. Available: https://www.matriculasdelmundo.com/espana.html.

Referències II

- [13] [Online]. Available: https://www.sport.es/es/noticias/futbol/amano-eldense-apuestas-segundab-mafia-5950546.
- [14] [Online]. Available: https://upload.wikimedia.org/wikipedia/en/0/0a/Nadia_Comaneci_1.00.jpg.

Introducció als Computadors

Tema 4: Blocs aritmètics combinacionals per a naturals http://personals.ac.upc.edu/enricm/Docencia/IC/IC4.pdf

Enric Morancho (enricm@ac.upc.edu)

Departament d'Arquitectura de Computadors Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

2020-21, 1^{er} quad.

Presentació publicada sota Ilicència Creative Commons 4.0 @ (1) & (2)

