TD application: mouvements courbes

${f I} \mid {\sf Projection}$ de vecteurs

1) Exprimer \overrightarrow{v}_0 dans la base $(\overrightarrow{u_x}, \overrightarrow{u_z})$ en fonction de v_0 et α .

2) Exprimer \overrightarrow{N} et \overrightarrow{T} dans la base $(\overrightarrow{u_x}, \overrightarrow{u_z})$ en fonction de N, T et α .

3) Exprimer \overrightarrow{P} et \overrightarrow{T} dans la base $(\overrightarrow{e_r}, \overrightarrow{e_\theta})$ en fonction de m, g, T et θ .

4) Équilibre plan incliné À l'équilibre des forces, on a

$$\vec{N} + \vec{T} + \vec{P} = \vec{0}$$

Projeter le poids dans la base inclinée et exprimer les normes de \overrightarrow{T} et \overrightarrow{N} en fonction de m, g et α .

5) Équilibre hamac À l'équilibre des forces, on a

$$\overrightarrow{F}_g + \overrightarrow{F}_d + \overrightarrow{P} = \overrightarrow{0}$$

Projeter les vecteurs \overrightarrow{F}_g et \overrightarrow{F}_d dans la base $(\overrightarrow{u_x}, \overrightarrow{u_y})$ avec $\overrightarrow{u_x}$ parallèle au sol vers la droite et $\overrightarrow{u_y}$ vertical ascendant. En déduire la norme littérale de ces deux vecteurs. On prend $m=60\,\mathrm{kg}$, $\alpha=45^\circ$ et $\beta=60^\circ$.

II | Masse du Soleil

La Terre subit de la part du Soleil la force d'attraction gravitationnelle :

$$\vec{F}_g = -\mathcal{G} \frac{M_T M_S}{R^2} \vec{u_r}$$
 où $\mathcal{G} = 6.67 \times 10^{-11} \, \text{SI}$

avec $\overrightarrow{u_r}$ le vecteur unitaire allant du Soleil vers la Terre. La Terre tourne autour du Soleil en décrivant un cercle de rayon $R = 149,6 \times 10^6$ km. Déterminer la masse du Soleil.

III Oscillations d'un anneau sur un cerceau

Un cerceau de centre O et de rayon R est maintenu dans un plan vertical, et un anneau de masse m assimilé à un point matériel M peut glisser sans frottements le long de ce cerceau.

- 1) Qu'est-ce que l'hypothèse « sans frottements » implique pour la réaction du cerceau sur l'anneau?
- 2) Écrire le PFD appliqué à l'anneau et le projeter dans une base adaptée.
- 3) En déduire l'équation différentielle régissant le mouvement. On se place dans l'approximation des petits angles ($|\theta| < \theta_0 = 20^{\circ}$). Initialement, l'anneau est situé à la verticale en-dessous de O et il est lancé vers la droite, avec une vitesse initiale de norme v_0 .

5) À quelle condition sur v_0 l'approximation des petits angles est-elle vérifiée?

\overrightarrow{g} O \overrightarrow{H} \overrightarrow{H} \overrightarrow{H}

$\mathrm{V}^{|}$ Mouvement hélicoïdal

Un point matériel M a pour équations horaires en coordonnées cylindriques :

$$\begin{cases} r(t) = & R \\ \theta(t) = & \omega t \\ z(t) = & \alpha t \end{cases}$$

- 1) Exprimer le vecteur vitesse et le vecteur accélération dans la base cylindrique.
- 2) Dessiner l'allure de la trajectoire.
- 3) Déterminer h le pas de l'hélice, c'est-à-dire la distance selon l'axe (Oz) dont sont séparés deux points successifs de la trajectoire correspondant à un même angle θ (modulo 2π).
- 4) Ce mouvement est-il uniforme? À quelle condition est-il circulaire?
- 5) Déterminer les coordonnées cartésiennes de ce mouvement.