MATH2211 SPRING 2022 PROBLEM SET 3 SOLUTIONS

Let F be a field and let V be an F-vector space.

Problem 1. Suppose we are given a list $v_1, \ldots, v_n \in V$.

(a) Show that v_1, \ldots, v_n are linearly dependent if and only if there is some $1 \le i \le n$ such that $v_i \in \text{span}(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n)$ (i.e. the span of the list with v_i taken out).

Solution

First suppose that v_1, \ldots, v_n are linearly dependent. One characterization of linear dependence is that some vector v_i is a linear combination of the other vectors $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n$. Therefore, for this choice of $i, v_i \in \text{span}(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n)$.

Now suppose that some v_i is in the span of $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n$. This says that the vector v_i is a linear combination of the other vectors in the list. That implies that v_1, \ldots, v_n is a linearly dependent set.

(b) Show that $v_i \in \text{span}(v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_n)$ if and only if

$$\operatorname{span}(v_1, \dots, v_n) = \operatorname{span}(v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_n).$$

(That is, the span doesn't change when v_i is taken out.)

Solution

First note that for two subsets $A \subseteq B$ of V, span $A \le \text{span } B$ automatically. So to say that $\text{span}(v_1, \ldots, v_n) = \text{span}(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n)$ is equivalent to saying that $\text{span}(v_1, \ldots, v_n) \subseteq \text{span}(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n)$, because the other containment always holds. This in turn is equivalent to saying that every linear combination of v_1, \ldots, v_n is also a linear combination of $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n$.

For one direction, suppose that $v_i \in \text{span}(v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_n)$ for some i. This says that there exist scalars $a_j \in F$ for $j \in \{1, 2, \dots, i-1, i+1, \dots, n\}$ such that $v_i = \sum_{j \in \{1, 2, \dots, i-1, i+1, \dots, n\}} a_j v_j$. Now let

$$v = b_1 v_1 + \dots + b_n v_n$$

be an arbitrary element in span (v_1, \ldots, v_n) . By replacing the $b_i v_i$ term with the sum $\sum_{j \in \{1, 2, \ldots, i-1, i+1, \ldots, n\}} b_i a_j v_j$, we can rewrite v as

$$v = (b_i a_1 + b_1)v_1 + \dots + (b_i a_{i-1} + b_{i-1})v_{i-1} + (b_i a_{i+1} + b_{i+1})v_{i+1} + (b_i a_n + b_n)v_n,$$

showing that v is in the span of $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n$.

For the other direction, suppose that every linear combination of v_1, \ldots, v_n is also a linear combination of $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n$. Now it is certainly true that v_i is a linear combination of v_1, \ldots, v_n , so this says that v_i is also able to be written as a linear combination of $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n$. This shows that $v_i \in \operatorname{span}(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n)$ and concludes the proof.

Problem 2. Suppose $v_1, v_2, v_3, v_4 \in V$ and set

$$w_1 = v_1 - v_2$$
, $w_2 = v_2 - v_3$, $w_3 = v_3 - v_4$, $w_4 = v_4$.

(a) Show that span $(v_1, v_2, v_3, v_4) = \text{span}(w_1, w_2, w_3, w_4)$.

Solution

As was given, each w_i is a linear combination of the v_i . In other words, $w_i \in \text{span}(v_1, v_2, v_3, v_4)$ for all i. Therefore,

$$span(w_1, w_2, w_3, w_4) \le span(v_1, v_2, v_3, v_4)$$

since span (w_1, w_2, w_3, w_4) is the smallest subspace of V containing the vectors w_1, w_2, w_3, w_4 .

Now we can also write each v_i as a linear combination of the w_i as follows:

$$v_1 = w_1 + w_2 + w_3 + w_4$$
, $v_2 = w_2 + w_3 + w_4$, $v_3 = w_3 + w_4$, $v_4 = w_4$.

By the same argument as above, this shows that

$$\operatorname{span}(w_1, w_2, w_3, w_4) \ge \operatorname{span}(v_1, v_2, v_3, v_4).$$

Thus we are done.

(b) Show that v_1, v_2, v_3, v_4 are linearly independent if and only if w_1, w_2, w_3, w_4 are linearly independent.

Solution

Here is a very neat proof for this problem. We first have the following lemma: A finite set of vectors $S \subseteq V$ is linearly independent if and only if the dimension of $\operatorname{span}(S)$ is equal to |S|. Proof: If S is linearly independent, then S is a basis of $\operatorname{span}(S)$ since S is linearly independent and S spans $\operatorname{span}(S)$. Conversely, if $\operatorname{dim}\operatorname{span} S = |S|$, Corollary 4.26 from the course notes along

with the fact that S spans span(S) shows that S is a basis of span(S), and therefore linearly independent.

Using this lemma, we have that v_1, v_2, v_3, v_4 are linearly independent iff span (v_1, v_2, v_3, v_4) has dimension 4, and the same for w_1, w_2, w_3, w_4 . Since part (a) proved that

$$span(v_1, v_2, v_3, v_4) = span(w_1, w_2, w_3, w_4),$$

it follows that one side has dimension 4 iff the other side has dimension 4. By the lemma, this is the same as saying that v_1, v_2, v_3, v_4 is linearly independent iff w_1, w_2, w_3, w_4 is linearly independent. This concludes the proof.

Problem 3. Suppose that $\{v_1, v_2, \ldots, v_n\}$ is linearly independent in V. Show that $\{v_1, v_1 + v_2, \ldots, v_1 + v_2 + \cdots + v_n\}$ is linearly independent as well.

Solution

We know that linear independence of v_1, \ldots, v_n says that the only solution to $\sum_i a_i v_i = 0$ is $a_i = 0$ for all i. Now let us suppose that $a_i \in \mathbb{R}$ satisfies

$$a_1v_1 + a_2(v_1 + v_2) + \dots + a_n(v_1 + \dots + v_n) = 0.$$

Let us rewrite this as

$$(a_1 + \dots + a_n)v_1 + (a_2 + \dots + a_n)v_2 + \dots + a_nv_n = 0.$$

By linear independence of v_1, \ldots, v_n , we see that

$$a_1 + a_2 + \dots + a_n = 0,$$

$$a_2 + \dots + a_n = 0,$$

$$\vdots$$

$$a_n = 0.$$

Using back-substitution we find that the only solution to this system is $a_i = 0$ for all i. Thus, $v_1, v_1 + v_2, \ldots, v_1 + v_2 + \cdots + v_n$ are linearly independent.

Problem 4.

(a) Show that V is infinite dimensional if and only if it satisfies the following property: for every integer k > 0, one can find k linearly independent vectors $v_1, \ldots, v_k \in V$.

Solution

Recall that the definition of V being infinite dimensional is that there does not exist a finite basis for V.

For one direction, suppose that V is infinite dimensional. Thus we know that there does not exist a finite basis for V. We prove that for every k > 0 we can find k linearly independent vectors $v_1, \ldots, v_k \in V$ by induction. For the base case k = 1, we can certainly find a nonzero vector in V since V cannot be the zero vector space. Now suppose we have found k - 1 linearly independent vectors $v_1, \ldots, v_{k-1} \in V$. Because v_1, \ldots, v_{k-1} is not a basis (because V is not supposed to have a finite basis), but is linearly independent, it must be that they do not span V. Hence we can let v_k be any element of $V - \operatorname{span}(v_1, \ldots, v_{k-1})$ to complete the induction.

Now suppose that V is finite dimensional and has dimension n. Then any set of n+1 vectors must be linearly dependent. This completes the proof.

(b) Show that the vector space $\mathbb{R}^{\infty} := \{ \text{ all sequences } (a_1, a_2, a_3, \dots) \text{ of real numbers} \}$ is infinite dimensional.

Solution

The sequences $(1,0,0,0,\ldots,),(0,1,0,0,\ldots),(0,0,1,0,\ldots),\ldots$ gives a sequence of linearly independent sequences in V. For any integer k>0 we can take the first k terms of this sequence to get k linearly independent vectors in \mathbb{R}^{∞} . By part (a) it follows that \mathbb{R}^{∞} is infinite dimensional.

(c) Give an example of a subspace of \mathbb{R}^{∞} which is strictly contained in \mathbb{R}^{∞} but is still infinite dimensional.

Solution

Some examples:

- All sequences whose first term is 0.
- All sequences whose second term is 0.
- All sequences whose first and 42th term are zero.
- All sequences whose first through 42nd term are zero.
- All sequences with finitely many nonzero terms (fun fact: $(1,0,0,0,\ldots),(0,1,0,0,\ldots),(0,0,1,0,\ldots),\ldots$ is a basis of this space but **not** a basis of \mathbb{R}^{∞} !)

Can you come up with a cool example that is not like these?

A non-example is the set S of sequences whose terms are integers. This set fails to be closed under scalar multiplication: $0.5 \cdot (1, 0, \dots, 0) = (0.5, 0, \dots, 0)$ is not in S.

Problem 5. For each positive integer n, let

$$B_n = \{(-1, 1, \dots, 1), (1, -1, 1, \dots, 1), \dots, (1, 1, \dots, -1)\} \subseteq F^n.$$

That is, B_n is the set of vectors in F^n with one component equal to -1 and n-1 components equal to 1.

(a) Let $F = \mathbb{R}$. For which n is B_n a basis of \mathbb{R}^n ?

Solution

I claim that the set of n for which B_n is a basis of \mathbb{R}^n is the set of positive integers except 2.

For n = 1, B_n consists of $\{-1\}$ which is clearly linearly independent. For n = 2, $B_n = \{(-1,1), (1,-1)\}$. These vectors are multiples of each other, so cannot be a basis of \mathbb{R}^2 as they are not linearly independent.

For $n \geq 3$, we will prove that B_n is linearly independent, which proves that B_n is a basis of \mathbb{R}^n as $|B_n| = n$. To prove that B_n is linearly independent, let us suppose that $a_1, \ldots, a_n \in \mathbb{R}$ such that

$$a_1(-1,1,\ldots,1) + a_2(1,-1,1,\ldots,1) + \cdots + a_n(1,1,\ldots,-1) = 0.$$

This is equivalent to the system of equations

$$-a_1 + a_2 + \dots + a_n = 0$$

$$a_1 - a_2 + \dots + a_n = 0$$

$$\vdots$$

$$a_1 + a_2 \dots - a_n = 0.$$

To solve this system, let's note that if we add these equations together we get

$$(n-2)(a_1+\cdots+a_n)=0,$$

which implies that $a_1 + \cdots + a_n = 0$, since $n - 2 \neq 0$ for $n \geq 3$. Now subtracting this last equation by each of the equations in the original system, we see that $2a_i = 0$ for all i. Hence $a_i = 0$ for all i is the only solution to the system, therefore B_n is linearly independent.

(b) Let $F = \mathbb{F}_3$. Show that if n is of the form 3k + 2 for some $k \in \mathbb{Z}_{\geq 0}$ (i.e. $n \in \{2, 5, 8, ...\}$), then B_n is not a basis of \mathbb{F}_3^n .

Solution

(Side note: If $n \not\equiv 2 \pmod{3}$, then $n-2 \not\equiv 0$ in \mathbb{F}_3 , so everything in the solution to part (a) continues to hold. So in this case, B_n is a basis of \mathbb{F}_3^n . But this argument is not needed because the problem did not ask to show that B_n is a basis when $n \notin \{2, 5, 8, \ldots\}$.)

¹If you need a hint for where to start, try to check whether the vectors in B_n are linearly independent.

²Hint: Try to show that B_n is contained in a proper subspace.

Let $n \equiv 2 \pmod 3$. The argument from (a) fails because n-2=0, so the equation

$$(n-2)(a_1+\cdots+a_n)=0$$

says nothing. However, this alone is not enough to conclude that B_n is not a basis, because maybe some other argument might show that B_n is a basis. To conclude that B_n is not a basis, it suffices to make the following observation: when $n \equiv 2 \pmod{3}$, every vector in B_n has the property that the sum of its components is 0. That is,

$$B_n \subseteq U := \{(a_1, \dots, a_n) \in \mathbb{F}_3^n : a_1 + \dots + a_n = 0\}.$$

Note that U is a vector space, in fact a proper subspace of \mathbb{F}_3^n . It follows that span $B_n \subseteq U$ as well. Hence, B_n does not span \mathbb{F}_3^n , so B_n is not a basis of \mathbb{F}_3^n .