

Infraestrutura de TI

Disciplina: Sistemas de Informações Gerenciais

Prof. Bruno Miguel Groth 2º Semestre/2024

Objetivos da Aula

Componentes de Infraestrutura

Conhecer e compreender os componentes físicos e lógicos de infraestrutura de TL

01

Tipos de Infraestrutura

Conhecer e compreender os dois tipos de infraestrutura de TI.

Redes e Comunicação

Compreender conceitos de redes, seus tipos e variações (LAN, MAN, PAN, WAN).

03

- A Infraestrutura de TI é a base física e lógica que sustenta a operação de todas as soluções tecnológicas em uma organização.
- Ela engloba os servidores, redes, armazenamento de dados, equipamentos de segurança e aplicações que trabalham de forma interconectada para garantir o funcionamento dos sistemas corporativos.

Tópico 1: Componentes da Infraestrutura de TI

Componentes da Infraestrutura de TI

- A infraestrutura de TI é composta por componentes que podem ser divididos em duas grandes categorias: infraestrutura física e infraestrutura lógica.
- A Infraestrutura Física refere-se aos recursos tangíveis, como servidores, data centers, dispositivos de rede e sistemas de energia.
- A Infraestrutura Lógica refere-se aos aos componentes digitais, como sistemas operacionais, virtualização, redes e aplicativos.

INFRAESTRUTURA FÍSICA

Servidores

- O primeiro componente da infraestrutura física é o servidor.
- Um servidor é um computador dedicado que fornece serviços a outros dispositivos (chamados de clientes) em uma rede.

 São as máquinas físicas ou virtuais que hospedam sistemas e aplicativos.

 Diferente de computadores comuns, os servidores são otimizados para processar grandes volumes de dados, lidar com muitas conexões simultâneas e funcionar continuamente por dias - meses, ou anos - sem interrupção.

Função dos Servidores

- **Centralização**: Armazenam e gerenciam arquivos, aplicações e dados acessíveis a diversos usuários.
- Automação: Executam processos de forma automática, como hospedagem de sites, gerenciamento de e-mails, etc.
- Alta disponibilidade: São projetados para estarem sempre disponíveis, funcionando 24/7.

Tipos de Servidores

- Servidor de Arquivos: Armazena e compartilha arquivos em uma rede.
- **Servidor Web:** Hospeda sites e aplicativos web.
- Servidor DNS: Converte nomes de domínio em endereços IP.
- Servidor de Banco de Dados:
 Gerencia dados estruturados em sistemas como MySQL,
 PostgreSQL.
- Servidor de E-mail: Gerencia o envio e recebimento de e-mails.

Como é composto um Servidor?

Em que ele se difere de um computador comum?

- Os servidores em nada se diferem de um computador comum. Não há peças físicas adicionais ou componentes que o fazem ser um "servidor".
- A única e principal diferença de um Computador Pessoal (PC) para um servidor é a capacidade de processamento. O hardware instalado nesse dispositivo é capaz de processar muito mais requisições que um computador comum.
- Muitos servidores antigos são menos potentes que computadores modernos utilizados para de edição de vídeo, jogos e projetos de arquitetura/engenharia.

Componentes de um Servidor

• Hardware

- CPU (Processador): Processa todas as solicitações dos clientes.
- Memória RAM: Armazena temporariamente dados e aplicações em execução.
- Armazenamento: Disco rígido (HDD) ou unidade de estado sólido (SSD), responsável por armazenar dados permanentemente.
- Placas de Rede: Conectam o servidor à rede para que ele possa comunicar-se com os clientes.

Software

- **Sistema Operacional**: Sistemas especializados em servidores, como:
 - **Linux**: Distribuições como Ubuntu Server, CentOS, Red Hat.
 - Windows Server: Versões como Windows Server 2016, 2019.
- Além disso, existem softwares especializados para gerenciar os serviços oferecidos, como Apache (servidor web), MySQL (servidor de banco de dados), etc.

Funcionamento

• Arquitetura Cliente-Servidor

- O modelo cliente-servidor envolve uma relação em que o servidor fornece serviços e o cliente faz requisições.
 Por exemplo:
 - Cliente: Um navegador da web que solicita uma planilha de Excel.
 - **Servidor**: O servidor de arquivos que retorna a planilha solicitada.

Funcionamento

Processamento de Requisições

- O cliente envia uma requisição ao servidor (por exemplo, ao digitar um URL em um navegador).
- O servidor processa a requisição, consulta seus dados e serviços.
- O servidor responde ao cliente com os dados ou a informação solicitada (por exemplo, uma página HTML).

Como acessar um Servidor

- Existem duas formas principais de acessar um servidor: localmente (diretamente no hardware) ou remotamente (via rede).
- Localmente, a ideia é simplesmente entrar diretamente no servidor usando teclado, mouse e monitor conectados à máquina.
- Não é realizado com muita frequência devido a dependência da presença física.

Quando falamos em "acessar um servidor", de fato, não falamos sobre acessar fisicamente a sala de servidores e abrir a tela do SO.

Falamos sobre nos conectar, de forma remota, ao dispositivo em questão.

Conexão Remota

- O acesso remoto permite que os administradores gerenciem servidores de qualquer lugar.
- SSH (Secure Shell) Acesso remoto para servidores Linux.
 - Protocolo seguro de comunicação em redes, que permite controle total sobre um servidor.
- Para se conectar a um servidor Linux via terminal, utiliza-se o comando:

ssh usuario@ip_do_servidor

Conexão Remota

- RDP (Remote Desktop Protocol) Acesso remoto para servidores Windows.
 - Permite acessar a interface gráfica do Windows Server como se estivesse fisicamente no servidor.
 - Ferramenta padrão: Remote Desktop Connection (Conexão de Área de Trabalho Remota).

Conexão Remota

- FTP (File Transfer Protocol) Transferência de arquivos para servidores.
 - Usado para transferir arquivos entre o cliente e o servidor.
 - Programas comuns: FileZilla, WinSCP.
 - Usa comandos como:

ftp ip_do_servidor

Demonstração Prática

Armazenamento

- Soluções para guardar fisicamente grandes volumes de dados.
- NAS (Network Attached Storage): Synology NAS Para armazenamento compartilhado em rede.
- SAN (Storage Area Network): EMC Unity Soluções de armazenamento de alto desempenho para grandes volumes de dados.
- O armazenamento dos dados direto em servidores utilizando discos rígidos (HDs) e SSDs também cumpre esse papel de armazenamento físico das informações.

INFRAESTRUTURA LÓGICA

Infraestrutura Lógica

Possui a seguinte composição:

- Sistemas Operacionais: Controlam e gerenciam o hardware.
 - Linux: (Ubuntu, CentOS)
 - Windows Server: Usado em muitos ambientes corporativos.
- Redes: Tratam da organização e configuração de componentes e serviços que permitem a comunicação, o gerenciamento de dados e o funcionamento de uma rede
 - Endereçamento IP e Sub-redes.
 - Roteamento e Protocolos de Roteamento.
 - DNS (Domain Name System)

- Virtualização: Permite criar versões simuladas (ou virtuais)
 de recursos computacionais em um único host.
 - VMware, VirtualBox, KVM.
- Nuvem: Infraestrutura escalável e sob demanda.
 - Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform (GCP).

Tópico 2: Tipos de Infraestrutura

Existem dois tipos de Infraestrutura de TI

Infraestrutura On-Premise

 Refere-se ao modelo tradicional de TI em que todos os recursos de hardware e software estão fisicamente localizados nas instalações da organização (servidores, data centers, etc.).

 As empresas compram e mantêm seus próprios servidores físicos, com equipe profissional

capacitada

- As empresas, nesse cenário, são responsáveis por adquirir, configurar e manter esses equipamentos de forma direta, sem o auxílio de provedores externos.
- Nesse cenário, a organização têm controle absoluto sobre todo o ambiente de TI, permitindo a personalização de hardware, software, políticas de segurança e configurações de rede, dentro de suas capacidades financeiras.
- Isso é ideal para empresas que precisam de soluções sob medida ou que possuem necessidades específicas de desempenho e segurança.

On-Premise

Vantagens:

- Controle total sobre hardware e dados.
- Maior segurança física e personalização.
- Custo fixo a longo prazo, sem depender de mensalidades.

Desvantagens:

- Alto custo inicial (hardware e manutenção).
- Escalabilidade limitada e demorada.
- Manutenção constante e complexidade de atualização.

Infraestrutura Cloud

ou Computação em Nuvem

- É um dos temas mais relevantes na área de tecnologia da informação atualmente.
- A computação em nuvem refere-se à entrega de serviços de computação (como servidores, armazenamento, bancos de dados, redes, software, etc.) pela internet.
- Isso significa que, em vez de ter esses recursos fisicamente, os usuários podem acessá-los de forma remota, como se fosse uma "nuvem" de recursos acessíveis a partir de qualquer lugar e dispositivo.

- Nesse modelo, a infraestrutura de TI é utilizada como um serviço sob demanda, fornecida por provedores externos.
- A computação em nuvem transformou a maneira como empresas e indivíduos utilizam e gerenciam dados e serviços tecnológicos.
- Possibilita redução de custos iniciais, melhor gerenciamento de escalabilidade e acesso a grandes capacidades de processamento a um baixo custo.

São exemplos: Amazon Web Services (AWS), Microsoft Azure, Google Cloud.

Cloud

Vantagens:

- Escalabilidade rápida e flexível conforme demanda.
- Custos variáveis, pagos conforme uso.
- Acesso de qualquer lugar, fácil colaboração.

Desvantagens:

- Dependência de internet para acesso.
- Segurança e privacidade dependem do provedor.
- Custos contínuos podem aumentar com o uso prolongado.

Estudo Comparativo

Aspecto	On-Premises	Cloud / Nuvem
Controle	Total sobre hardware e software	Limitado, dependente do provedor
Custos Iniciais	Alto (investimento em hardware)	Baixo (modelo de pagamento por uso)
Escalabilidade	Difícil, requer novos investimentos	Fácil e rápida
Manutenção	Requer pessoal especializado	Automatizada pelo provedor
Acessibilidade	Local e limitado	Global, acesso remoto. Depende de rede.
Segurança	Controle interno de segurança	Segurança robusta, mas depende do provedor
Flexibilidade	Menos flexível	Alta flexibilidade e adaptação rápida
Custos Operacionais	Altos, com manutenção e energia	Menores, baseados no uso real

Fonte: Elaborado pelo autor.

Ainda assim...

- A infraestrutura on-premises ainda é muito comum e amplamente utilizada.
 - Antes da popularização da nuvem, empresas não tinham alternativas viáveis para armazenar e processar grandes volumes de dados de forma eficiente e segura.
- Além disso, após um grande investimento inicial, as empresas tendem a maximizar o retorno desse investimento (ROI) antes de considerar migrações para a nuvem.

- Esse tipo de investimento envolve custos elevados, não apenas com a compra de servidores, armazenamento e redes, mas também com energia, refrigeração, manutenção, e contratação de especialistas para gerenciar e manter o ambiente.
- Outro fator relevante é a inércia operacional. Empresas que já possuem uma infraestrutura on-premises madura e totalmente adaptada enfrentam barreiras técnicas para mudar para a nuvem.

Também há a resistência à mudança por parte da equipe de TI, que já domina o gerenciamento da infraestrutura física, além de preocupações sobre tempo de migração, custos de transição e interrupções nos negócios durante esse processo.

- É importante observar que não há uma abordagem única para todos os casos.
- Muitas empresas optam por uma estratégia híbrida, mantendo algumas cargas de trabalho críticas ou extremamente privadas em on-premises, enquanto utilizam a nuvem para soluções que exigem maior flexibilidade e escalabilidade.

Sessão de Q&A: Dúvidas / colocações?

Tópico 3: Redes e Internet

Definição

- Uma rede conecta dispositivos físicos, como computadores, smartphones, servidores, e outros, e permite que compartilhem recursos, dados e serviços, como impressoras e acesso à internet.
- É o recurso que permite que dispositivos troquem dados de maneira eficiente, escalável e segura.

Infraestrutura Física

- Para que uma rede funcione, precisamos de equipamentos tangíveis que permitem a comunicação dos diversos dispositivos. Esses elementos incluem:
- Cabos de Rede: Fibras ópticas, cabos Ethernet (como Cat5e, Cat6) ou coaxiais, que conectam fisicamente os dispositivos.
- Switches e Roteadores: Conectam segmentos de rede, encaminhar dados entre redes e gerenciar o tráfego.

Infraestrutura Física

- Pontos de Acesso (Access Points): Equipamentos que permitem a conexão sem fio de dispositivos em redes Wi-Fi.
- Patch Panels e Racks: Utilizados para organizar e conectar cabos, switches e outros equipamentos de forma eficiente.

Estrutura de Redes

- Uma rede é composta por dispositivos que se comunicam entre si. Nessa comunicação, o tráfego de informações deve ser entendida por ambos os pontos que se comunicam.
- Para que essa comunicação seja eficiente, surgiram dois recursos principais:
 - Arquiteturas de Redes que determinam como a informação irá trafegar
 - Protocolos de comunicação regras que padronizam a troca de informações

Modelo OSI

- O modelo OSI define uma arquitetura de rede composta por 7 camadas. Cada camada é responsável por um conjunto específico de funções na comunicação de dados.
- Vamos entender a responsabilidade de cada camada.

Modelo OSI 1, 2, 3

- Camada Física: Trata da transmissão física dos dados através de meios como cabos, sinais elétricos e ópticos.
- Camada de Enlace de Dados: Garante a entrega correta dos pacotes entre dispositivos na mesma rede local.
- Camada de Rede: Aqui, a principal função é o roteamento dos pacotes entre diferentes redes. O IP (Internet Protocol) opera nesta camada, determinando como os pacotes de dados são endereçados e roteados ao longo das redes.

Modelo OSI 4, 5, 6

- Camada de Transporte: Responsável por garantir que os dados cheguem ao destino sem erros e de forma ordenada.
- Camada de Sessão: Estabelece, gerencia e finaliza as sessões de comunicação entre os dispositivos.
- Camada de Apresentação: Cuida da representação dos dados para que sejam compreensíveis pelos sistemas envolvidos.

Modelo OSI 7

Camada de Aplicação (Layer 7):

Esta camada é a que mais interage com os usuários finais, fornecendo serviços de rede diretamente para aplicações como navegadores de internet, e-mail, e FTP. Utiliza de protocolos como HTTP/HTTPS, SMTP (para e-mail), FTP e DNS.

Modelo TCP/IP

- O modelo TCP/IP (ou modelo de 4 camadas) é mais moderno e hoje o mais amplamente utilizado, especialmente na Internet, e se concentra em uma abordagem mais prática de implementação dos protocolos.
- O modelo é mais simples que o OSI, com 4 camadas principais:

- 4. APLICAÇÃO
- 3. TRANSPORTE
- 2. INTERNET
- 1. ACESSO A REDE

Modelo TCP/IP 1, 2

- Camada de Acesso à Rede: Equivalente à combinação das camadas física e de enlace do OSI. Trata da transmissão dos dados pelo meio físico cabeamento e entrega correta dos pacotes.
- Camada de Internet: Equivalente à camada de rede no OSI. Cuida do endereçamento e roteamento dos pacotes e utiliza os protocolos de IP e ICMP (para diagnóstico e controle de tráfego).

- 4. APLICAÇÃO
- 3. TRANSPORTE
- 2. INTERNET
- 1. ACESSO A REDE

Modelo TCP/IP 3, 4

- Camada de Transporte: Semelhante à camada de transporte do OSI, ela utiliza os protocolos TCP e UDP.
 - O TCP é orientado a conexão e garante entrega confiável e ordenada de pacotes
 - UDP é não orientado à conexão e oferece uma entrega mais rápida, mas sem garantias de confiabilidade.
- Camada de Aplicação: Tem o mesmo princípio da camada de aplicação do OSI.

- 4. APLICAÇÃO
- 3. TRANSPORTE
- 2. INTERNET
- 1. ACESSO A REDE

Protocolos de Rede

- Os protocolos de comunicação são conjuntos de regras e convenções que permitem que dispositivos em uma rede se comuniquem de maneira eficiente, segura e padronizada.
- Protocolos garantem que os endpoints diferentes compreendam as suas mensagens, mesmo quando os dispositivos são de fabricantes diferentes ou operam em plataformas diferentes.

BLA BLA BLAT

BLÁBLÁ BLÁ!

IP (Internet Protocol)

- O IP é o protocolo fundamental para o roteamento de pacotes de dados na internet. Ele é responsável por garantir que os pacotes sejam entregues aos dispositivos corretos, utilizando endereços IP únicos para identificar dispositivos em uma rede.
 - O IP opera principalmente em duas versões:
 - IPv4: Usa endereços de 32 bits (como 192.168.1.1) e tem um número limitado de endereços (cerca de 4 bilhões de endereços).
 - IPv6: Usa endereços de 128 bits (como 2001:0db8:85a3:0000:0000:8a2e:0370:7334) e oferece um número praticamente ilimitado de endereços únicos.

TCP

- O TCP é um protocolo de transporte orientado à conexão, o que significa que ele estabelece uma conexão entre os dispositivos antes de começar a transferir dados.
- Ele garante a entrega correta dos pacotes, detectando erros e pedindo retransmissões quando necessário.
- Handshake:
- O dispositivo A envia um sinal de SYN para iniciar a comunicação.
- O dispositivo B responde com um SYN-ACK para confirmar a solicitação.
- O dispositivo A envia um ACK final para confirmar o recebimento da resposta.

UDP

- Ao contrário do TCP, o UDP é um protocolo de transporte não orientado à conexão. Ele não realiza a negociação entre os dispositivos antes de começar a enviar dados e não garante a entrega dos pacotes ou a ordem de chegada.
- Isso o torna mais rápido, mas menos confiável.
- O UDP é comumente utilizado em aplicações que exigem rapidez e podem tolerar perdas de pacotes.
- São exemplos: streaming de vídeo e áudio, jogos online e VoIP.

- O HTTP é um protocolo de aplicação usado na comunicação entre clientes (navegadores) e servidores web. Ele define como os navegadores e servidores trocam informações.
 - HTTP: É usado sem criptografia, o que torna os dados suscetíveis a interceptação e manipulação.
 - HTTPS: A versão segura do HTTP, que utiliza criptografia SSL/TLS para proteger os dados durante a transmissão.

Classificação de Redes

- As redes são frequentemente classificadas de acordo com sua cobertura geográfica, topologia e tecnologia utilizada, e isso influencia diretamente na sua infraestrutura e desempenho.
- Vamos conhecer as principais classificações de redes, utilizadas no mundo todo.

- Uma PAN é uma rede de computadores de pequena escala, usada para conectar dispositivos pessoais, como smartphones, tablets, laptops e dispositivos Bluetooth.
- Características:
 - Distância limitada: Normalmente até 10 metros.
 - Tecnologias comuns: Bluetooth, Zigbee, infravermelho (IR).
 - Velocidade: Varia entre 1 Mbps e 3 Mbps, dependendo da tecnologia.
- Exemplos: Conexão de fones de ouvido Bluetooth ao celular ou de dispositivos de monitoramento de saúde.

• A LAN é uma rede de computadores que cobre uma área geograficamente pequena, como uma casa, escritório ou campus universitário. Geralmente, as LANs são privadas e operam com alta velocidade de transmissão, geralmente usando cabos Ethernet ou Wi-Fi.

Características:

- Distância limitada: Geralmente, até 1 km.
- Alta velocidade: De 100 Mbps até 10 Gbps ou mais.
- Baixo custo: Devido à sua cobertura limitada, o custo de implementação é relativamente baixo.
- Topologias comuns: Estrela, barramento e anel.

• Uma MAN cobre uma área maior que uma LAN, geralmente uma cidade ou uma região metropolitana. Ela é projetada para conectar diversas LANs dentro de uma área geograficamente ampla.

• Características:

- Abrangência: De 1 km até 100 km.
- Velocidade: Pode variar entre 1 Gbps e 10 Gbps.
- Utilização: Pode ser usada por empresas para conectar diferentes filiais em uma cidade ou região.
- Infraestrutura: Normalmente, usa tecnologia de fibra ótica para fornecer alta largura de banda.

- A WAN é uma rede que cobre uma vasta área geográfica, como países ou continentes. A internet é a maior WAN do mundo.
- Características:
 - Distância global: Pode abranger milhares de quilômetros.
 - Baixa velocidade em comparação com LANs e MANs:
 Embora as WANs modernas, como a internet, ofereçam velocidades rápidas, elas ainda podem ser mais lentas do que as redes locais.
 - Tecnologias de conexão: Utiliza fibra ótica, satélites, links dedicados, MPLS (Multiprotocol Label Switching), VPNs, entre outros.

Topologias de Redes

- Topologia é o arranjo ou layout físico e lógico dos componentes de uma rede de computadores.
- É a forma como os dispositivos (como computadores, servidores, roteadores, etc.) e os meios de comunicação (cabos, ondas de rádio, etc.) estão conectados entre si.
- A topologia de uma rede afeta diretamente o desempenho, a escalabilidade, a confiabilidade e o custo de implementação e manutenção da rede.
- Vamos conhecer as principais, suas vantagens e desvantagens.

Topologia em Barramento

- Todos os dispositivos estão conectados a um único cabo coaxial central (barramento) ou meio de comunicação.
- Vantagem: Baixo custo de instalação.
- Desvantagem: Se o cabo central falhar, toda a rede é afetada. A performance também diminui com o aumento de dispositivos.

Topologia em Estrela

- Na topologia em Estrela, existe um HUB ou Switch ao centro da rede, que conecta-se por meio de um cabo a cada nó individualmente.
- Vantagem: Facilidade de gerenciamento e manutenção. Se um dispositivo falhar, os outros continuam funcionando.
- Desvantagem: Se o ponto central falhar, toda a rede fica inoperante

Topologia em Anel

- Esse tipo de topologia de rede consiste em ligações ponto a ponto, ou seja, são pares de dispositivos que, em seu conjunto, formam um ciclo fechado — como um formato de anel.
- Assim, a informação é transmitida sob a forma de um pacote de dados que é enviada de maneira rotativa segundo uma direção específica.

Topologia em Anel

- Vantagem: A comunicação é eficiente, pois os dados circulam apenas em uma direção.
- Desvantagem: Uma falha em qualquer dispositivo ou conexão pode afetar toda a rede.

Topologia em Malha (mesh)

- É feito por meio de uma ligação ponto a ponto entre cada par de computadores da rede.
- Cada dispositivo está conectado a vários outros dispositivos,
 criando múltiplos caminhos para a transmissão de dados.
- Vantagem: Alta redundância e confiabilidade; se um caminho falhar, há outros disponíveis.
- Desvantagem: Alto custo e complexidade de instalação e manutenção.

Em resumo...

- Uma rede conecta dispositivos de forma escalável e segura
- Precisa de padrões claros para que a comunicação seja eficiente (protocolos)
- Redes no mundo todo são compostas por:
 - Infraestrutura física
 - Recursos lógicos
 - Arquiteturas (OSI, TCP/IP)
 - Protocolos (IP, TCP, UDP, HTTP)
 - Classificação (PAN, LAN, MAN, WAN)
 - Topologias (Barramento, Estrela, Anel, Malha [...])

Sessão de Q&A: Dúvidas / colocações?

Bibliografia

- LAUDON, Kenneth C.; LAUDON, Jane Price.
 Sistemas de Informação com Internet. Rio de Janeiro: LTC, 1999.
- O'BRIEN, James A. Sistemas de Informação e as Decisões Gerenciais na Era da Internet. 2. ed. São Paulo: Saraiva, 2004.
- TURBAN, Efraim; McLEAN, Ephraim;
 WETHERBE, James. Tecnologia da Informação para Gestão. 3. ed. Porto Alegre: Bookman, 2004.

