Value-Based Reinforcement Learning

Shusen Wang

Value Functions

Action-Value Function Q(s, a)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$$
 (to infinity.)

Definition: Action-value function.

•
$$Q_{\pi}(s, \mathbf{a}) = \mathbb{E}\left[R_t|s, \mathbf{a}, \pi\right].$$

- Taken w.r.t. the randomness in the state transition p(s'|s,a).
- The state transition $(s_t, a_t) \mapsto s_{t+1}$ is random.

Action-Value Function Q(s, a)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$$
 (to infinity.)

Definition: Action-value function.

• $Q_{\pi}(s, \mathbf{a}) = \mathbb{E}[R_t|s, \mathbf{a}, \pi].$

Definition: Optimal action-value function.

•
$$Q^*(s, \mathbf{a}) = \max_{\pi} Q_{\pi}(s, \mathbf{a}).$$

Deep Q-Network (DQN)

Approximate the Q Function

Goal: Win the game (\approx maximize the total reward.)

Question: If we know $Q^*(s, a)$, what is the best action?

• Obviously, the best action is $a^* = \underset{a}{\operatorname{argmax}} Q(s, a)$.

Challenge: We do not know $Q^*(s, a)$.

- **Solution:** Use a deep neural network to approximate $Q^*(s, a)$.
- Let Q(s, a; w) be a neural network parameterized by w.
- The inputs are state and action; the output is the approximate Q^* .

Deep Q Network (DQN)

- Input shape: size of the screenshot.
- Output shape: dimension of action space.

Deep Q Network (DQN)

- Input shape: size of the screenshot.
- Output shape: dimension of action space.

Question: Based on the predictions, what should be the action?

• I want to drive from NYC to Atlanta.

• Model $Q(\mathbf{w})$ estimate the time cost, e.g., 1000 minutes.

Question: How do I update the model?

- I want to drive from NYC to Atlanta.
- Model $Q(\mathbf{w})$ estimate the time cost, e.g., 1000 minutes.

Question: How do I update the model?

- Make a prediction: $q = Q(\mathbf{w})$, e.g., q = 1000.
- Finish the trip and get the target y, e.g., y = 860.
- Loss: $L = \frac{1}{2}(q y)^2$.
- Gradient: $\frac{\partial L}{\partial \mathbf{w}} = \frac{\partial q}{\partial \mathbf{w}} \cdot \frac{\partial L}{\partial x} = (q y) \cdot \frac{\partial Q(\mathbf{w})}{\partial \mathbf{w}}$.
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L}{\partial \mathbf{w}} \mid_{\mathbf{w} = \mathbf{w}_t}$.

- I want to drive from NYC to Atlanta.
- Model $Q(\mathbf{w})$ estimate the time cost, e.g., 1000 minutes.

Question: How do I update the model?

Can I update the model before finishing the trip?

- I want to drive from NYC to Atlanta (via DC).
- Model $Q(\mathbf{w})$ estimate the time cost, e.g., 1000 minutes.

Question: How do I update the model?

- Can I update the model before finishing the trip?
- Can I get a better w as soon as I arrived DC?

• Model's estimate:

NYC to Atlanta: 805 minutes (estimate).

Model's estimate:

NYC to Atlanta: 805 minutes (estimate).

• I arrived at DC; actual time cost:

NYC to DC: 300 minutes (actual).

Model's estimate:

NYC to Atlanta: 805 minutes (estimate).

• I arrived at DC; actual time cost:

NYC to DC: 300 minutes (actual).

Model now updates its estimate:

DC to Atlanta: 589 minutes (estimate).

- Model's estimate: $Q(\mathbf{w}) = 805$ minutes.
- Updated estimate: 300 + 589 = 889 minutes. TD target.

- Model's estimate: $Q(\mathbf{w}) = 805$ minutes.
- Updated estimate: 300 + 589 = 889 minutes. TD target.

• TD target y = 889 is a more reliable estimate than 805.

- Model's estimate: $Q(\mathbf{w}) = 805$ minutes.
- Updated estimate: 300 + 589 = 889 minutes.

TD target.

- TD target y = 889 is a more reliable estimate than 805.
- Loss: $L = \frac{1}{2}(Q(\mathbf{w}) y)^2$.
- Gradient: $\frac{\partial L}{\partial \mathbf{w}} = (805 889) \cdot \frac{\partial Q(\mathbf{w})}{\partial \mathbf{w}}$.
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.

TD Learning for DQN

If it is accurate estimate, then $Q(s_{t+1}, a_{t+1}; \mathbf{w}) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots]$

If it is accurate estimate, then $Q(s_t, a_t; \mathbf{w}) = \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots]$

If it is accurate estimate, then $Q(s_{t+1}, a_{t+1}; \mathbf{w}) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots]$

If DQN is accurate estimate, then

$$Q(s_t, \mathbf{a}_t; \mathbf{w}) = r_t + \gamma \cdot Q(s_{t+1}, \mathbf{a}_{t+1}; \mathbf{w})$$

= $r_t + \gamma \cdot \max_{a} Q(s_{t+1}, \mathbf{a}; \mathbf{w})$

If it is accurate estimate, then $Q(s_t, a_t; \mathbf{w}) = \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots]$

If DQN is accurate estimate, then

$$Q(s_t, \mathbf{a}_t; \mathbf{w}) = r_t + \gamma \cdot Q(s_{t+1}, \mathbf{a}_{t+1}; \mathbf{w})$$
$$= r_t + \gamma \cdot \max_{\mathbf{a}} Q(s_{t+1}, \mathbf{a}; \mathbf{w})$$

If DQN is accurate estimate, then

$$Q(s_t, \mathbf{a}_t; \mathbf{w}) = r_t + \gamma \cdot Q(s_{t+1}, \mathbf{a}_{t+1}; \mathbf{w})$$

= $r_t + \gamma \cdot \max_{a} Q(s_{t+1}, \mathbf{a}; \mathbf{w})$

Old estimate (less reliable)

TD target (more reliable estimate of the value)

If DQN is accurate estimate, then

$$Q(s_t, \mathbf{a}_t; \mathbf{w}) = r_t + \gamma \cdot Q(s_{t+1}, \mathbf{a}_{t+1}; \mathbf{w})$$

= $r_t + \gamma \cdot \max_{a} Q(s_{t+1}, \mathbf{a}; \mathbf{w})$

- TD target: $y_t = r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w}_t)$.
- Loss: $L_t = \frac{1}{2} [Q(s_t, a_t; \mathbf{w}) y_t]^2$.
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L_t}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$

Summary

Action-Value Function Approximation

Definition: Optimal action-value function.

• $Q^*(s, \mathbf{a}) = \max_{\pi} \mathbb{E}[R_t|s, \mathbf{a}, \pi].$

DQN: Approximate $Q^*(s, a)$ using a neural network.

- $Q(s, a; \mathbf{w})$ is a neural network parameterized by \mathbf{w} .
- Input: observed state s (e.g., a screenshot of game.)
- Output: a vector, each entry of which corresponds to an action a.

Algorithm: One iteration of TD learning.

- 1. Observe state s_t and action a_t .
- 2. Predict the value: $q_t = Q(s_t, a_t; \mathbf{w}_t)$.
- 3. Differentiate the value network: $\mathbf{d}_t = \frac{\partial Q(s_t, \mathbf{a_t}; \mathbf{w})}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.

Algorithm: One iteration of TD learning.

- 1. Observe state s_t and action a_t .
- 2. Predict the value: $q_t = Q(s_t, a_t; \mathbf{w}_t)$.
- 3. Differentiate the value network: $\mathbf{d}_t = \frac{\partial Q(s_t, \mathbf{a_t}; \mathbf{w})}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.
- 4. Environment provides new state s_{t+1} and reward r_t .
- 5. Compute TD target: $y_t = r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w}_t)$.

Algorithm: One iteration of TD learning.

- 1. Observe state s_t and action a_t .
- 2. Predict the value: $q_t = Q(s_t, a_t; \mathbf{w}_t)$.
- 3. Differentiate the value network: $\mathbf{d}_t = \frac{\partial Q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.
- 4. Environment provides new state s_{t+1} and reward r_t .
- 5. Compute TD target: $\mathbf{y_t} = r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w_t})$.
- 6. Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot (\mathbf{q}_t \mathbf{y}_t) \cdot \mathbf{d}_t$.