

Universidade de São Paulo – ICMC Bacharelado em Ciência da Computação SCC0221 – Introdução à Ciência da Computação I Prof. Rodrigo Fernandes de Mello – mello@icmc.usp.br Monitor: Yule Vaz – yule.vaz@usp.br

Exercício: Mapa Logístico

1 Descrição

Implemente um programa em C que produza K números reais com base em uma equação recorrente chamada **Mapa Logístico**. A equação é dada por:

$$x(t+1) = r \times x(t) \times (1 - x(t))$$

Em que t é um instante de tempo; x(t) é um valor real em um instante de tempo t; e r é uma constante definida pelo usuário. O seu programa deve ler da entrada padrão o valor de x(0) (número real), a constante r (número real) e a quantidade K de números a serem produzidos (número inteiro), nesta ordem. A saída deve ser composta por K linhas que devem conter o instante de tempo t e o valor x(t). Vale ressaltar que, como x(0) foi dado na entrada, não é necessário imprimí-lo. Para melhor compreender a entrada e saída, observe os exemplos abaixos.

2 Instruções Complementares

• Submeta o arquivo .c com seu código no http://run.codes

3 Exemplos de Entrada e Saída

A seguir são apresentados exemplos de entrada e saída para que você teste seu código enquanto desenvolve o exercício. Este são apenas exemplos ilustrativos, somente uma pequena parte das operações está representada. Enquanto estiver desenvolvendo, elabore novos testes para validar seu código.

Entrada	Saída
0.3 0.8 10	1 0.168000
	2 0.111821
	3 0.079454
	4 0.058513
	5 0.044071
	6 0.033703
	7 0.026054
	8 0.020300
	9 0.015910
	10 0.012526

${\bf Entrada}$

0.4 3.0 20

Saída

1	0.720000
2	0.604800
3	0.717051
4	0.608667
5	0.714575
6	0.611873
7	0.712453
8	0.614591
9	0.710607
10	0.616934
11	0.708979
12	0.618983
13	0.707529
14	0.620795
15	0.706226
16	0.622413
17	0.705045
18	0.623870
19	0.703969
20	0.625190