Estrazione della Densità degli Stati in semiconduttori organici

Pasquale Africa

19 novembre 2014

Introduzione

Motivazione

Sommario

Modello

Metodi numerici

Implementazione

Risultati

Introduzione

Motivazione

Sommario

Modello

Metodi numerici

Implementazione

Risultati

Condensatore MIS (Metal - Insulator - Semiconductor)

Semiconduttore a base organica:

- basso costo
- possibilità di ottenere dispositivi flessibili (display, smart-card etc.)
- prestazioni paragonabili

Introduzione

Motivazione

Sommario

Modello

Metodi numerici

Implementazione

Risultati

Sistema drift-diffusion:

$$\begin{cases} -\nabla \cdot (\epsilon \nabla \varphi) = \rho & \text{in } \Omega \\ q \frac{\partial \mathbf{n}}{\partial t} - q \nabla \cdot (D_n \nabla \mathbf{n} - \mathbf{n} \mu_n \nabla \varphi) + qR = qG & \text{in } \Omega_{semic} \\ q \frac{\partial \mathbf{p}}{\partial t} - q \nabla \cdot (D_p \nabla \mathbf{p} + \mathbf{p} \mu_p \nabla \varphi) + qR = qG & \text{in } \Omega_{semic} \end{cases}$$

dove:

- ullet φ è potenziale elettrico [V];
- \blacksquare n è la concentrazione volumetrica di elettroni $[m^{-3}]$;
- lacksquare è la concentrazione volumetrica di lacune $\lceil m^{-3} \rceil$.

Introduzione

Motivazione

Sommario

Modello

Metodi numerici

Implementazione

Risultati

Sistema drift-diffusion:

$$\begin{cases} -\nabla \cdot (\epsilon \nabla \varphi) = \rho & \text{in } \Omega \\ q \frac{\partial \mathbf{n}}{\partial t} - q \nabla \cdot (D_n \nabla \mathbf{n} - \mathbf{n} \mu_n \nabla \varphi) + qR = qG & \text{in } \Omega_{semic} \\ q \frac{\partial \mathbf{p}}{\partial t} - q \nabla \cdot (D_p \nabla \mathbf{p} + \mathbf{p} \mu_p \nabla \varphi) + qR = qG & \text{in } \Omega_{semic} \end{cases}$$

dove:

- ullet φ è potenziale elettrico [V];
- \blacksquare n è la concentrazione volumetrica di elettroni $[m^{-3}]$;
- \blacksquare p è la concentrazione volumetrica di lacune $[m^{-3}]$.

Extended Gaussian Disorder Model:

$$\mu_n(T, \nabla \varphi, n) = \mu_0(T) \cdot g_1(\nabla \varphi) \cdot g_2(n),$$

$$D_n = g_3 V_{th} \mu_n$$

$$g_1, g_2 \propto \text{DOS}$$

Sommario

Introduzione

Motivazione

Sommario

Modello

Metodi numerici

Implementazione

Risultati

- Problema di identificazione dei parametri
 - disordine molecolare σ, λ
- estensione di un codice Octave

Sommario

- Problema di identificazione dei parametri
 - disordine molecolare σ , λ
- estensione di un codice Octave
- equazione di Poisson integro-differenziale non lineare
 - relazioni costitutive per la Density of States

Sommario

Introduzione

Motivazione
Sommario

Modello

Metodi numerici

Implementazione

Risultati

- Problema di identificazione dei parametri
 - disordine molecolare σ , λ
- estensione di un codice Octave
- equazione di Poisson integro-differenziale non lineare
 - relazioni costitutive per la Density of States
- 1. Modello matematico
- 2. Metodi numerici: linearizzazione, discretizzazione etc.
- 3. Implementazione della libreria
- 4. Risultati e conclusioni

Introduzione

Modello

Equazione di Poisson

Statistica di

Fermi-Dirac

Ipotesi

Relazioni costitutive

Condizioni al contorno

Rieplogo

Metodi humerici

Implementazione

Risultati

Dalle equazioni di Maxwell:

$$\nabla \cdot \vec{D} = \rho$$

$$\nabla \cdot \vec{D} = \rho$$

$$\nabla \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = \vec{0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{H} - \frac{\partial \vec{D}}{\partial t} = \vec{J}$$

Introduzione

Modello

Equazione di Poisson

Statistica di Fermi-Dirac

Ipotesi

Relazioni costitutive

Condizioni al contorno

RiepNogo

Metodi humerici

Implementazione

Risultati

Dalle equazioni di Maxwell:

$$\nabla \cdot \vec{D} = \rho$$

$$\nabla \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = \vec{0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\Rightarrow \qquad \boxed{-\nabla \cdot (\epsilon \nabla \varphi) = \rho}$$

$$\nabla \times \mathbf{H} - \frac{\partial \vec{D}}{\partial t} = \vec{J}$$

dove:

- lacktriangle φ è potenziale elettrico [V];
- \bullet è la permittività elettrica del mezzo $[C \cdot V^{-1} \cdot m^{-1}];$
- ho è la densità di carica $\left[C \cdot m^{-3}\right]$;

Introduzione

Modello

Equazione di Poisson

Statistica di Fermi-Dirac

Ipotesi

Relazioni costitutive

Condizioni al contorno

Riepilogo

Metodi numerici

Implementazione

Risultati

$$\epsilon = \left\{ egin{array}{ll} \epsilon_{semic} & ext{nel semiconduttore} \\ \epsilon_{ins} & ext{nell'isolante} \end{array}
ight.$$

Introduzione

Modello

Equazione di Poisson

Statistica di Fermi-Dirac

Ipotesi

Relazioni costitutive

Condizioni al contorno

Riepilogo

Metodi numerici

Implementazione

Risultati

$$\epsilon = \begin{cases} \epsilon_{semic} & \text{nel semiconduttore} \\ \epsilon_{ins} & \text{nell'isolante} \end{cases}$$

$$\rho = \begin{cases} -q \left(n - p + N_A - N_D \right) & \text{nel semiconduttore} \\ 0 & \text{nell'isolante.} \end{cases}$$

dove:

- n,p concentrazioni di elettroni e lacune $\left[m^{-3}\right]$;
- N_A, N_D drogaggio (assunto nullo nel caso organico) $[m^{-3}]$.

Statistica di Fermi-Dirac

Introduzione

Modello

Equazione di Poisson

Statistica di Fermi-Dirac

Ipotesi

Relazioni costitutive

Condizioni al contorno

Riepilogo

Metodi numerici

Implementazione

Risultati

$$f_D(\mathcal{E}) = \frac{1}{1 + \exp\left(\frac{\mathcal{E} - \mathcal{E}_F}{k_B \cdot T}\right)}$$

 $f_D \approx$ numero di elettroni aventi energia \mathcal{E} (Pauli)

■ k_B costante di Boltzmann $[J \cdot K^{-1}]$, T temperatura [K];

Statistica di Fermi-Dirac

Introduzione

Modello

Equazione di Poisson

Statistica di Fermi-Dirac

Ipotesi

Relazioni costitutive

Condizioni al contorno

Riepilogo

Metodi numerici

Implementazione

Risultati

$$f_D(\mathcal{E}) = \frac{1}{1 + \exp\left(\frac{\mathcal{E} - \mathcal{E}_F}{k_B \cdot T}\right)}$$

 $f_D pprox$ numero di elettroni aventi energia ${\cal E}$ (Pauli)

- lacksquare k_B costante di Boltzmann $\left[J\cdot K^{-1}\right]$, T temperatura [K];
- lacksquare \mathcal{E}_F livello di Fermi [J]: livello occupato di maggior energia in un sistema di fermioni alla temperatura di 0K.

Statistica di Fermi-Dirac

Introduzione

Modello

Equazione di Poisson

Statistica di Fermi-Dirac

Ipotesi

Relazioni costitutive

Condizioni al contorno

Riepilogo

Metodi numerici

Implementazione

Risultati

Valgono:

$$n = \int_{-\infty}^{+\infty} g(\mathcal{E} - \mathcal{E}_{LUMO}) \cdot f_D(\mathcal{E} - \mathcal{E}_F) d\mathcal{E}$$
$$p = \int_{-\infty}^{+\infty} g(\mathcal{E}_{HOMO} - \mathcal{E}) \cdot [1 - f_D(\mathcal{E} - \mathcal{E}_F)] d\mathcal{E}$$

dove l'integrale è esteso ai livelli di energia ammissibili e:

- $g \equiv DOS;$
- \blacksquare \mathcal{E}_{HOMO} energia Highest Occupied Molecular Orbital;
- \blacksquare \mathcal{E}_{LUMO} energia Lowest Unoccupied Molecular Orbital:

$$\varphi = -\frac{\mathcal{E}_{LUMO}}{q} \quad \text{in } \Omega_{semic}.$$

Introduzione

Modello

Equazione di Poisson

Statistica di

Fermi-Dirac

Ipotesi

Relazioni costitutive

Condizioni al contorno

Riepilogo

Metodi numerici

Implementazione

Risultati

Approssimazione 1D:

- effetti termici trascurabili (solo disordine)
- regime quasi-statico:
 - equilibrio ($\Rightarrow \mathcal{E}_F$ costante, assunto 0)
 - no trasporto
- semiconduttore intrinseco:

$$\rho = -q(n-p)$$

solo una specie di portatori (elettroni):

$$\rho = -qn$$

Relazioni costitutive

Introduzione

Modello

Equazione di Poisson

Statistica di

Fermi-Dirac

Ipotesi

Relazioni costitutive

Condizioni al contorno

Riepilogo

Metodi numerici

Implementazione

Risultati

■ Gaussiana (singola o multipla)

Esponenziale

10 / 42

Relazioni costitutive

Introduzione

Modello

Equazione di Poisson

Statistica di

Fermi-Dirac

Ipotesi

Relazioni costitutive

Condizioni al contorno

Riepilogo

Metodi numerici

Implementazione

Risultati

Gaussiana (singola o multipla) :

$$g_{\sigma}(\cdot) = \frac{N_0}{\sqrt{2\pi}\sigma} e^{-\frac{(\cdot)^2}{2\sigma^2}}$$

Esponenziale :

$$g_{\lambda}(\cdot) = \frac{N_0}{\lambda} \exp\left(-\frac{\langle \cdot \rangle}{\lambda}\right)$$

Relazioni costitutive

Introduzione

Modello

Equazione di Poisson

Statistica di

Fermi-Dirac

Ipotesi

Relazioni costitutive

Condizioni al contorno

Riepilogo

Metodi numerici

Implementazione

Risultati

Gaussiana (singola o multipla) :

$$g_{\sigma}(\cdot) = \frac{N_0}{\sqrt{2\pi}\sigma} e^{-\frac{(\cdot)^2}{2\sigma^2}}$$

$$n(\varphi) = \frac{N_0}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-\alpha^2} \left(1 + \exp\left(\frac{\sqrt{2}\sigma\alpha - q\varphi}{k_B \cdot T}\right) \right)^{-1} d\alpha$$

■ Esponenziale:

$$g_{\lambda}(\cdot) = \frac{N_0}{\lambda} \exp\left(-\frac{\langle \cdot \rangle}{\lambda}\right)$$

$$f^{+\infty} \qquad \left(\lambda \alpha - a\alpha\right)^{-1}$$

$$n(\varphi) = \frac{N_0}{\lambda} \int_0^{+\infty} e^{-\alpha} \left(1 + \exp\left(\frac{\lambda \alpha - q\varphi}{k_B \cdot T}\right) \right)^{-1} d\alpha$$

Condizioni al contorno

Introduzione

Modello

Equazione di Poisson

Statistica di

Fermi-Dirac

Ipotesi

Relazioni costitutive

Condizioni al contorno

Riepilogo

Metodi numerici

Implementazione

Risultati

Il potenziale φ è fissato ai contatti elettrici \longrightarrow condizioni di Dirichlet.

■ Gate (tensione esterna):

$$\varphi = V_g + V_{shift} \quad \text{su } \Gamma_{ins}$$

■ Back (barriera di **Schottky**):

$$\varphi = \phi_F - \phi_B = -\phi_B \quad \text{su } \Gamma_{semic}$$

Introduzione

Modello

Equazione di Poisson

Statistica di

Fermi-Dirac

Ipotesi

Relazioni costitutive

Condizioni al contorno

Riepilogo

Metodi numerici

Implementazione

Risultati

$$\Omega_{semic} = (t_{semic}, 0]$$

$$\Omega_{ins} = (0, t_{ins})$$

$$\begin{cases}
-\left(\epsilon\varphi'\right)'(z) = -\frac{N_0 q}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \frac{e^{-\alpha^2}}{\left(1 + \exp\left(\frac{\sqrt{2}\sigma\alpha - q\varphi(z)}{k_B \cdot T}\right)\right)} d\alpha & z \in \Omega_{semic} \\
-\left(\epsilon\varphi'\right)'(z) = 0 & z \in \Omega_{ins} \\
\varphi(-t_{semic}) = -\phi_B & \\
\varphi(t_{ins}) = V_g + V_{shift} .
\end{cases}$$

Introduzione

Modello

Equazione di Poisson

Statistica di

Fermi-Dirac

Ipotesi

Relazioni costitutive

Condizioni al contorno

Riepilogo

Metodi numerici

Implementazione

Risultati

$$\Omega_{semic} = (t_{semic}, 0]$$

$$\Omega_{ins} = (0, t_{ins})$$

$$\begin{cases} -\left(\epsilon\varphi'\right)'(z) = -\frac{N_0 q}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \frac{e^{-\alpha^2}}{\left(1 + \exp\left(\frac{\sqrt{2}\sigma\alpha - q\varphi(z)}{k_B \cdot T}\right)\right)} d\alpha & z \in \Omega_{semic} \\ -\left(\epsilon\varphi'\right)'(z) = 0 & z \in \Omega_{ins} \\ \varphi(-t_{semic}) = -\phi_B & \\ \varphi(t_{ins}) = V_g + V_{shift} . \end{cases}$$

— equazione di Poisson integro-differenziale non lineare. Dovrà essere:

- 1. linearizzata;
- 2. discretizzata.

Introduzione

Modello

Metodi numerici

Linearizzazione

Discretizzazione

Post-processing

Fitting

Regole di quadratura

Sistemi lineari

Implementazione

Risultati

L'equazione si può scrivere:

$$\mathcal{F}(\varphi) = 0$$

dove ${\mathcal F}$ è un funzionale integro-differenziale non lineare.

Introduzione

Modello

Metodi numerici

Linearizzazione

Discretizzazione

Post-processing

Fitting

Regole di quadratura

Sistemi lineari

Implementazione

Risultati

L'equazione si può scrivere:

$$\mathcal{F}(\varphi) = 0$$

dove \mathcal{F} è un funzionale integro-differenziale non lineare.

→ Metodo di Newton :

occorre risolvere

$$\begin{cases} \mathcal{DF}\left(\varphi^{(k)}\right) \left[\delta\varphi^{(k)}\right] = -\mathcal{F}\left(\varphi^{(k)}\right) \\ \varphi^{(k+1)} = \varphi^{(k)} + \delta\varphi^{(k)} \end{cases}$$

fino a convergenza.

 $\mathcal{DF}(\cdot)$ è la derivata secondo **Gâteaux** di \mathcal{F} .

Introduzione

Modello

Metodi numerici

Linearizzazione

Discretizzazione

Post-processing

Fitting

Regole di quadratura

Sistemi lineari

Implementazione

Risultati

$$\mathcal{DF}(\varphi)[\chi] = \lim_{\kappa \to 0} \frac{\mathcal{F}(\varphi + \kappa \chi) - \mathcal{F}(\varphi)}{\kappa} =$$

Introduzione

Modello

Metodi numerici

Linearizzazione

Discretizzazione

Post-processing

Fitting

Regole di quadratura

Sistemi lineari

Implementazione

Risultati

$$\mathcal{DF}(\varphi)[\chi] = \lim_{\kappa \to 0} \frac{\mathcal{F}(\varphi + \kappa \chi) - \mathcal{F}(\varphi)}{\kappa} =$$

$$= \lim_{\kappa \to 0} \frac{1}{\kappa} \left[-\left(e\varphi' + \kappa \epsilon \chi' \right)' + \left(e\varphi' \right)' \right] +$$

$$+ \lim_{\kappa \to 0} \frac{1}{\kappa} \frac{N_0 q}{\sqrt{2\pi} \sigma} \int_{-\infty}^{+\infty} \left[\exp\left(-\frac{\left(\mathcal{E} + q(\varphi + \kappa \chi)\right)^2}{2\sigma^2} \right) +$$

$$- \exp\left(-\frac{\left(\mathcal{E} + q\varphi\right)^2}{2\sigma^2} \right) \right] \cdot \frac{1}{1 + \exp\left(\frac{\mathcal{E}}{k_B \cdot T} \right)} \, \mathrm{d}\mathcal{E} =$$

(effettuando uno sviluppo di Taylor per $\kappa \sim 0$):

$$= -\left(\epsilon \chi'\right)' - \frac{N_0 q^2 \chi}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} \exp\left(-\frac{(\mathcal{E} + q\varphi)^2}{2\sigma^2}\right) \frac{\mathcal{E} + q\varphi}{2\sigma^2} \frac{1}{1 + \exp\left(\frac{\mathcal{E}}{k_B \cdot T}\right)} d\mathcal{E}$$

Introduzione

Modello

Metodi numerici

Linearizzazione

Discretizzazione

Post-processing

Fitting

Regole di quadratura

Sistemi lineari

Implementazione

Risultati

Il sistema diventa:

$$\begin{cases}
-\left(\epsilon \left(\delta \varphi^{(k)}\right)'\right) - \frac{\mathrm{d}\rho}{\mathrm{d}\varphi} \left(\varphi^{(k)}\right) \cdot \delta \varphi^{(k)} = \left(\epsilon \left(\varphi^{(k)}\right)'\right)' + \rho \left(\varphi^{(k)}\right) \\
\varphi^{(k+1)} = \varphi^{(k)} + \delta \varphi^{(k)} \\
\delta \varphi^{(k)}(-t_{semic}) = 0 \\
\delta \varphi^{(k)}(t_{ins}) = 0 .
\end{cases}$$

per ogni iterazione k fino a convergenza, valutata sulla norma L^{∞} dell'incremento.

Introduzione

Modello

Metodi numerici

Linearizzazione

Discretizzazione

Post-processing

Fitting

Regole di quadratura

Sistemi lineari

Implementazione

Risultati

Il sistema diventa:

$$\begin{cases}
-\left(\epsilon \left(\delta \varphi^{(k)}\right)'\right) - \frac{\mathrm{d}\rho}{\mathrm{d}\varphi} \left(\varphi^{(k)}\right) \cdot \delta \varphi^{(k)} = \left(\epsilon \left(\varphi^{(k)}\right)'\right)' + \rho \left(\varphi^{(k)}\right) \\
\varphi^{(k+1)} = \varphi^{(k)} + \delta \varphi^{(k)} \\
\delta \varphi^{(k)}(-t_{semic}) = 0 \\
\delta \varphi^{(k)}(t_{ins}) = 0 .
\end{cases}$$

per ogni iterazione k fino a convergenza, valutata sulla norma L^{∞} dell'incremento.

È un'equazione integro-differenziale (diffusione-reazione) **lineare**, che dovrà essere discretizzata.

Introduzione

Modellø

Metødi numerici

Linearizzazione

Discretizzazione

Post-processing

Fitting

Regole di quadratura

Sistemi Ilneari

Implementazione

Risultati

Discretizzazione effettuata ai volumi finiti: metodo **BIM** (Box Integration Method).

Spesso utile per equazioni in forma conservativa: $\frac{\partial u}{\partial t} + \nabla \cdot \vec{F}(u) = s(u)$ Si compone delle seguenti fasi:

- 1. creazione dei box;
- 2. scrittura del problema in forma integrale locale su ogni singolo box;
- 3. ipotesi di flusso costante e assemblaggio finale.

Introduzione

Modello

Metodi numerici

Linearizzazione

Discretizzazione

Post-processing

Fitting

Regole di quadratura

Sistemi lineari

Implementazione

Risultati

Fase 1: Creazione dei box

n sotto-domini di lunghezza $h=rac{1}{n}$

$$\{\mathcal{B}_i\}_{i=1}^n$$
, $\mathcal{B}_i = \left(z_{i-\frac{1}{2}}, z_{i+\frac{1}{2}}\right)$

I volumi finiti approssimano la media su ogni box:

$$(u)_i \approx \frac{1}{h} \int_{z_{i-\frac{1}{2}}}^{z_{i+\frac{1}{2}}} u(z) dz$$

Introduzione

Modello

Metodi numerici

Linearizzazione

Discretizzazione

Post-processing

Fitting

Regole di quadratura

Sistemi lineari

Implementazione

Risultati

Fase 2: Formulazione integrale locale siano $f^{(k)}=rac{\mathrm{d}
ho}{\mathrm{d}arphi}\left(arphi^{(k)}
ight)$ e $s^{(k)}$ il right-hand side dell'equazione

Integrando sull'i-esimo box:

$$\left| - \int_{z_{i-\frac{1}{2}}}^{z_{i+\frac{1}{2}}} \left(\epsilon \left(\delta \varphi^{(k)} \right)' \right)' \, \mathrm{d}z - \int_{z_{i-\frac{1}{2}}}^{z_{i+\frac{1}{2}}} f^{(k)} \delta \varphi^{(k)} \, \mathrm{d}z = \int_{z_{i-\frac{1}{2}}}^{z_{i+\frac{1}{2}}} s^{(k)} \, \mathrm{d}z \right|.$$

Indicando per semplicità con $F_{i\pm\frac{1}{2}}=-\epsilon(z_{i\pm\frac{1}{2}})\left(\delta\varphi^{(k)}\right)'(z_{i\pm\frac{1}{2}})$ l'approssimazione numerica del flusso attraverso i bordi $z_{i-\frac{1}{2}}$ e $z_{i+\frac{1}{2}}$ del box e dividendo per h:

$$\frac{F_{i+\frac{1}{2}} - F_{i-\frac{1}{2}}}{h} - \left(f^{(k)}\delta\varphi^{(k)}\right)_i = \left(s^{(k)}\right)_i$$

Introduzione

Modello

Metodi numerici

Linearizzazione

Discretizzazione

Post-processing

Fitting

Regole di quadratura

Sistemi lineari

Implementazione

Risultati

Fase 3: Assemblaggio finale problema: $\delta \varphi^{(k)}$ compare ancora sotto il segno di derivata

Sono state esplicitate delle relazioni tra la derivata e i valori "nodali" secondo lo schema di Scharfetter-Gummel.

Introduzione

Modello

Metodi numerici

Linearizzazione

Discretizzazione

Post-processing

Fitting

Regole di quadratura

Sistemi lineari

Implementazione

Risultati

Fase 3: Assemblaggio finale problema: $\delta \varphi^{(k)}$ compare ancora sotto il segno di derivata

Sono state esplicitate delle relazioni tra la derivata e i valori "nodali" secondo lo schema di Scharfetter-Gummel.

Si giunge alla formulazione algebrica:

$$\begin{cases} \left(\mathcal{K} - \mathcal{M} \cdot \operatorname{diag} \left(d\vec{\rho}^{(k)} \right) \right) \delta \vec{\varphi}^{(k)} = \mathcal{K} \cdot \vec{\varphi}^{(k)} - \mathcal{M} \cdot \operatorname{diag} \left(\vec{\rho}^{(k)} \right) \\ \vec{\varphi}^{(k+1)} = \vec{\varphi}^{(k)} + \delta \vec{\varphi}^{(k)} \end{cases}$$

dove:

- \blacksquare \mathcal{K} matrice di stiffness;
- lacktriangledown matrice di massa (lumped).

Post-processing

Introduzione

Modello

Metodi numerici

Linearizzazione

Discretizzazione

Post-processing

Fitting

Regole di quadratura

Sistemi lineari

Implementazione

Risultati

Dopo aver risolto il sistema:

- si calcola la carica totale;
- si calcola la capacità elettrica totale.

Questo avviene all'interno di un loop in cui la tensione esterna V_G varia.

Introduzione

Modello

Metodi numerici

Linearizzazione

Discretizzazione

Post-processing

Fitting

Regole di quadratura

Sistemi lineari

Implementazione

Risultati

Dopo aver risolto il sistema:

- si calcola la carica totale;
- si calcola la capacità elettrica totale.

Questo avviene all'interno di un loop in cui la tensione esterna V_G varia.

Post-processing:

- si confrontano le curve $C(V_G)$ e $\dfrac{\mathrm{d}C}{\mathrm{d}V_G}(V_G)$ sperimentali e simulate; si "allineano" i picchi della $\dfrac{\mathrm{d}C}{\mathrm{d}V_G}(V_G)$: V_{shift} dipende da fenomeni
- non quantificabili (dipoli permanenti, cariche residue etc.):

$$V_{shift} = \arg\max_{V_g} \frac{\mathrm{d}C_{sim}}{\mathrm{d}V_g} \left(V_g; \tilde{X}\right) - \arg\max_{V_g} \frac{\mathrm{d}C_{exp}}{\mathrm{d}V_g} \left(V_g\right)$$
$$V_g \longleftrightarrow V_g + V_{shift}$$

Fitting

Introduzione

Modello

Metodi numerici

Linearizzazione

Discretizzazione

Post-processing

Fitting

Regole di quadratura

Sistemi lineari

Implementazione

Risultati

Problemi di modellazione:

- $lacktriangleq V_{shift}$ non quantificabile "a priori";
- ∃ capacità parassite (accoppiamento tra i contatti, linee di campo etc.)
 - ightarrow capacità C_{sb} idealmente connessa in parallelo al MIS;
- lacktriangle misura dello spessore t_{semic} soggetta a errori sperimentali.

Modello

Metodi numerici

Linearizzazione

Discretizzazione.

Post-processing

Fitting

Regole di quadratura

Sistemi lineari

Implementazione

Risultati

Problemi di modellazione:

- V_{shift} non quantificabile "a priori";
- ∃ capacità parassite (accoppiamento tra i contatti, linee di campo etc.)
 - \rightarrow capacità C_{sb} idealmente connessa in parallelo al MIS;
- misura dello spessore t_{semic} soggetta a errori sperimentali.
- → algoritmo di ottimizzazione:
- **Step 1**: si individua la $\sigma^{(k+1)}$ ottima in un range discreto di valori.
 - Step 2:

$$C_{sb}^{(k+1)} = C_{sb}^{(k)} + C_{exp}(V_{g,max}) - C_{sim}\left(V_{g,max}; \left[C_{sb}^{(k)}, t_{semic}^{(k)}, \sigma^{(k+1)}\right]\right)$$

3. **Step 3**:

$$t_{semic}^{(k+1)} = \epsilon_{semic} \left(\frac{1}{C_{exp}(V_{g,min}) - C_{sb}^{(k+1)}} - \frac{t_{ins}}{\epsilon_{ins}} \right)$$
 21/42

Regole di quadratura

Introduzione

Modello

Metodi numerici

Linearizzazione

Discretizzazione

Post-processing

Fitting

Regole di quadratura

Sistemi lineari

Implementazione

Risultati

Nel sistema lineare i termini integrali $\vec{\rho}$ e $d\vec{\rho}$ devono essere approssimati.

- → formule di quadratura:
- Gauss-Hermite:

$$n(\varphi) = \frac{N_0}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-\alpha^2} \left(1 + \exp\left(\frac{\sqrt{2}\sigma\alpha - q\varphi}{k_B \cdot T}\right) \right)^{-1} d\alpha$$

Gauss-Laguerre:

$$n(\varphi) = \frac{N_0}{\lambda} \int_0^{+\infty} e^{-\alpha} \left(1 + \exp\left(\frac{\lambda \alpha - q\varphi}{k_B \cdot T}\right) \right)^{-1} d\alpha$$

$$\Longrightarrow \int g(z)f(z) dz \approx \sum_{i=1}^{N_g} w_i \cdot f(z_i)$$

e analogamente per la derivata $(d\vec{\rho})$.

Implementati metodo diretto e iterativo per il calcolo di pesi e nodi.

Modello

Metodi numerici

Linearizzazione

Discretizzazione

Post-processing

Fitting

Regole di quadratura

Sistemi lineari

Implementazione

Risultati

Matrice del sistema simmetrica, definita positiva

 \longrightarrow fattorizzazione di **Cholesky** $A=LDL^T$

 ${\cal L}$ triangolare inferiore e ${\cal D}$ diagonale

$$A\vec{w} = \vec{b}$$
 diventa:

$$i)$$
 $L\vec{x} = \vec{b}$

$$ii)$$
 $D\vec{y} = \vec{x}$

$$iii) L^T \vec{w} = \vec{y}$$

In alternativa: Preconditioned Conjugate Gradient. Un buon precondizionatore è basato sulla fattorizzazione LU incompleta.

Introduzione

Modello

Metodi numerici

Implementazione

Strumenti utilizzati

Casi test

Risultati

■ /Eigen (algebra lineare)

- libreria template (non dev'essere compilata, velocità di esecuzione e portabilità, ma tempi di compilazione maggiori e code-bloat)
- matrici e vettori ad allocazione dinamica
- supporto per formato denso e sparso

Introduzione

Modello

Metodi numerici

Implementazione

Strumenti utilizzati

Casi test

Risultati

■ /Eigen (algebra lineare)

- libreria template (non dev'essere compilata, velocità di esecuzione e portabilità, ma tempi di compilazione maggiori e code-bloat)
- matrici e vettori ad allocazione dinamica
- supporto per formato denso e sparso
- GetPot (parsing)
 - singolo header file
 - parsing file di configurazione (parametri numerici, file di input)
 - parsing linea di comando (path del file di configurazione)

Introduzione

Modello

Metodi numerici

Implementazione

Strumenti utilizzati

Casi test

Risultati

- /Eigen (algebra lineare)
 - libreria template (non dev'essere compilata, velocità di esecuzione e portabilità, ma tempi di compilazione maggiori e code-bloat)
 - matrici e vettori ad allocazione dinamica
 - supporto per formato denso e sparso
- GetPot (parsing)
 - singolo header file
 - parsing file di configurazione (parametri numerici, file di input)
 - parsing linea di comando (path del file di configurazione)
- OpenMP (calcolo parallelo)
 - no message passing (memoria condivisa)
 - "facile" da implementare
 - una errata dichiarazione delle variabili può portare a errori come "Segmentation fault."

Modello

Metodi numerici

Implementazione

Strumenti utilizzati

Casi test

Risultati

CMake (configurazione e gestione delle dipendenze)

- portabilità (anche verso sistemi operativi non Unix-like)
- facile trovare dipendenze nel sistema
- facile definizione dei target (libreria dinamica, install, doc etc.)

CMake (configurazione e gestione delle dipendenze)

- portabilità (anche verso sistemi operativi non Unix-like)
- facile trovare dipendenze nel sistema
- facile definizione dei target (libreria dinamica, install, doc etc.)
- Gnuplot (generazione di plot)
 - interfaccia gnuplot-iostream per C++ (richiede le Boost)
 - sintassi intuitiva, facile importare file .csv

- CMake (configurazione e gestione delle dipendenze)
 - portabilità (anche verso sistemi operativi non Unix-like)
 - facile trovare dipendenze nel sistema
 - facile definizione dei target (libreria dinamica, install, doc etc.)
- Gnuplot (generazione di plot)
 - interfaccia gnuplot-iostream per C++ (richiede le Boost)
 - sintassi intuitiva, facile importare file .csv
- Valgrind e gdb (profiling e debugging)
 - Callgrind: chiamata a metodi *getter* lenta
 - ightarrow restituzione per const &
 - \rightarrow dichiarazione classi friend
 - Memcheck: nessun comportamento anomalo
 - gdb: "Segmentation fault." risolto con backtrace

Introduzione

Modello

Metodi numerici

Implementazione

Strumenti utilizzati

Casi test

Risultati

- CMake (configurazione e gestione delle dipendenze)
 - portabilità (anche verso sistemi operativi non Unix-like)
 - facile trovare dipendenze nel sistema
 - facile definizione dei target (libreria dinamica, install, doc etc.)
- Gnuplot (generazione di plot)
 - interfaccia gnuplot-iostream per C++ (richiede le Boost)
 - sintassi intuitiva, facile importare file .csv
- Valgrind e gdb (profiling e debugging)
 - Callgrind: chiamata a metodi *getter* lenta
 - ightarrow restituzione per const &
 - \rightarrow dichiarazione classi friend
 - Memcheck: nessun comportamento anomalo
 - gdb: "Segmentation fault." risolto con backtrace
- \git (sistema di controllo di versione)
- Doxygen (documentazione)
- Artistic style (formattazione)

La classe CsvParser

```
Modello

Metodi numerici

Implementazione

Strumenti utilizzati

Casi test
```

Risultati

```
CsvParser() = delete;
   CsvParser(const std::string &, const bool & = true);
   RowVectorXr importRow(const Index &);
                importRows(const std::initializer_li/st < Index > &);
   MatrixXr
 5
   VectorXr
                importCol(const Index &);
   MatrixXr
                importCols(const std::initializer_list <Index> &);
 8
                importCell(const Index &, const Index &);
   Real
:10
   MatrixXr
                importAll();
```

Importa .csv (separati da virgola, tab, due punti o spazio) in strutture dati delle Eigen: legge i file contenenti i parametri da simulare e i dati sperimentali

La classe ParamList

Introduzione

Modello

Metodi numerici

Implementazione

Strumenti utilizzati

Casi test

Risultati

SIM	SPESSORE SC [m]	SPESSORE INS [m]	EPSILON_R SC [~]	EPSILON_R INS [~]	T [K]	Wf [V]	Ea [V]	N0 [m
1	6.36E-008	0.00000476	2.9	2.82	295	5	3	
2	6.36E-008	0.00000476	2.9	2.82	295	5	3.2	
3	6.36E-008	0.00000476	2.9	2.82	295	5	3.4	
4	6.36E-008	0.00000476	2.9	2.82	295	5	3.6	
5	6.36E-008	0.00000476	2.9	2.82	295	5	3.8	
6	6.36E-008	0.000000476	20	2 82	205	5	1	

```
friend class GaussianCharge;
friend class ExponentialCharge;
friend class DosModel;

ParamList() = default;
explicit ParamList(const RowVectorXr &);
...
```

Gestisce i parametri della simulazione (parametri fisici, range di tensioni etc.).

Fornisce metodi *getter/setter* per leggerli/modificarli

La classe QuadratureRule

```
Introduzione

Modello

Metodi numerici

Implementazione

Strumenti utilizzati

Casi test

Risultati
```

```
QuadratureRule() = delete;
QuadratureRule(const Index &);

virtual void apply() = 0;
...

void apply_iterative_algorithm(const Index &, const Real &);
void apply_using_eigendecomposition();
```

Implementa gli algoritmi (diretto e iterativo) per calcolare nodi e pesi.

La classe Charge

```
Introduzione
```

Modello

Metodi numerici

Implementazione

Strumenti utilizzati

Casi test

Risultati

```
Charge() = delete;
Charge(const ParamList &, const QuadratureRule &);

virtual VectorXr charge(const VectorXr &) const = 0;
virtual VectorXr dcharge(const VectorXr &) const = 0;
```

Utilizzando le formule di quadratura, assembla i termini $\vec{\rho}$ e $d\vec{\rho}$.

Le abstract factory

};

Design Pattern creazionale

Solutori

```
Modello

Metodi numerici

Implementazione

Strumenti utilizzati

Casi test

Risultati
```

8

5

```
class PdeSolver1D {
    PdeSolver1D() = delete;
    PdeSolver1D(VectorXr &);

    virtual void assembleAdvDiff(...) = 0;
    virtual void assembleStiff (...) = 0;
    virtual void assembleMass (...) = 0;
    ...
};
```

```
class NonLinearPoisson1D {
   NonLinearPoisson1D(const PdeSolver1D &, const Index &, const
        Real &);
   void apply(const VectorXr &, const VectorXr &, const Charge &);
   ...
};
```

La classe DosModel

```
Modello

Metodi numerici

Implementazione

Strumenti utilizzati

Casi test
```

Risultati

```
explicit DosModel(const ParamList &);

void simulate(...);

void post_process(...);

void save_plot(...) const;
...
```

Il metodo simulate() esegue la simulazione ed effettua il post-processing, che salva in output i risultati:

- _info.txt, contenente informazioni sull'andamento della simulazione;
- lacktriangleq _CV . csv, contenente i valori simulati e sperimentali della curva $C(V_g)$ e della sua derivata;
- _plot.png, contenente il plot di confronto;
- _plot.gp, lo script Gnuplot con cui è stato ottenuto.

Casi test

Introduzione

Modello

Metodi numerici

Implementazione

Strumenti utilizzati

Casi test

Risultati

■ simulate_dos

- definiți oggetti GetPot;
- 2. vengono letti i nomi dei file di input, le simulazioni da effettuare, il numero di thread e i nomi delle directory di output;
- 3. Noop parallelo: ogni thread crea un DosModel;
- 4. / viene chiamato il metodo simulate.

Modello

Metodi numerici

Implementazione

Strumenti utilizzati

Casi test

Risultati

■ simulate_dos

- definiți oggetti GetPot;
- 2. vengono letti i nomi dei file di input, le simulazioni da effettuare, il numero di thread e i nomi delle directory di output;
- 3. Noop parallelo: ogni thread crea un DosModel;
- 4. / viene chiamato il metodo simulate.

■ fit_dos

All'interno del loop di ottimizzazione:

- 1. viene individuata $\sigma^{(k+1)}$, eseguendo in parallelo tutte le simulazioni al variare del parametro nel range;
- 2. viene calcolato $C_{sb}^{(k+1)}$;
- 3. viene calcolato $t_{semic}^{(k+1)}$.

Simulazioni

Introduzione

Modellø

Metødi numeri¢i

Implementazione

/Risulta<u>t</u>í

Simulazioni

Fitting

Possibili sviluppi

Conclusioni

Condensatore MIS di tipo n, basato su P(NDI2OD-T2).

La forma considerata per la DOS è gaussiana (singola o doppia).

Dati concessi dal CNST dell'Istituto Italiano di Tecnologia

Dieci gruppi di simulazioni, al variare di:

- 1. σ
- 2. N_0
- 3. Φ_B
- 4. σ_2
- 5. φs , 2 (shift della seconda gaussiana)
- 6. numero di nodi della mesh
- 7. numero di suddivisioni per V_q
- 8. range per V_g
- 9. temperatura T (gaussiana singola)
- 10. temperatura T (gaussiana doppia)

Simulazioni: al variare di σ

Simulazioni: al variare di σ_2

Simulazioni: al variare del range di V_g

 $N_0=10^{27}$, $\sigma \neq 3$, la dimensione del range varia da 1000 a 8000 step

Simulazioni: al variare di ${\cal T}$

Modello

Metodi numerici

Implementazione

Risultati

Simulazioni

Fitting

Possibli sviluppi

Conclusioni

Eseguito su alcuni casi notevoli. Numero di iterazioni pari a 3. Simulazioni al variare di σ in $[\sigma-2,\sigma+3]$.

 C_{sb} e t_{semic} convergono a $1.06649 \cdot 10^{-11} F$ e 63.49 nm

Modello

Metodi numerici

Implementazione

Risultati

Simulazioni

Fitting

Possibli sviluppi

Conclusioni

Eseguito su alcuni casi notevoli. Numero di iterazioni pari a 3.

Simulazioni al variare di σ in $[\sigma-2,\sigma+3]$.

 C_{sb} e t_{semic} convergono a $1.06649 \cdot 10^{-11} F$ e 63.49 nm

Norma scelta: H^1

Partendo da $\sigma = 3.5$:

Partendo da $\sigma = 4.5$:

Iterazione	$\sigma_{opt}[k_B \cdot 300K]$	Iterazione	$\sigma_{opt}[k_B \cdot 300K]$
1	1.5	1	2.5
2	0.8	2	0.5
3	0.1	3	0.1

Partendo da $\sigma = 5$:

Partendo da $\sigma = 6$:

Iterazione	$\sigma_{opt}[k_B \cdot 300K]$	Iterazione	$\sigma_{opt}[k_B / 300K]$
1	3	1	4
2	1	2	2
3	1	3	0.1

Modello

Metodi numerici

<u>Implementazione</u>

X

Simulazioni

Fitting

Risultati

Possibli sviluppi

Conclusioni

Eseguito su alcuni casi notevoli. Numero di iterazioni pari a 3.

Simulazioni al variare di σ in $[\sigma-2,\sigma+3]$.

 C_{sb} e t_{semic} convergono a $1.06649 \cdot 10^{-11} F$ e 63.49 nm

Norma scelta: distanza tra i picchi in $rac{\mathrm{d}C}{\mathrm{d}V_g}$

Partendo da $\sigma = 3.5$:

Partendo da $\sigma = 4.5$:

Iterazione	$\sigma_{opt}[k_B \cdot 300K]$	Iterazione	$\sigma_{opt}[k_B \cdot 300K]$
1	1.5	1	2.5
2	0.1	2	0.5
3	0.1	3	0.3

Partendo da $\sigma = 5$:

Partendo da $\sigma = 6$:

Iterazione	$\sigma_{opt}[k_B \cdot 300K]$	Iterazione	$\sigma_{opt}[k_B/300K]$
1	3	1	$\sqrt{4}$
2	1	2	2
3	0.1	3	0.1

Possibili sviluppi

Introduzione

Modello

Metodi numerici

Implementazione

Risultati

Simulazioni

Fitting

Possibili sviluppi

Conclusioni

- Geometria più realistica in 2D o 3D;
- regime non quasi-statico o tempo-variante (sistema completo drift-diffusion);
- migliorare l'algoritmo di fitting, formalizzandolo dal punto di vista teorico e numerico;
- ottimizzazione multi-obiettivo (forme più complesse per la DOS);
- effetti di adattività di griglia (l'area vicino al "picco" della derivata soggetta a variazioni).

Conclusioni

Introduzione

Modello

Metodi numerici

Implementazione

Risultati

Simulazioni

Fitting

Possibili sviluppi

Conclusioni

Risultati coerenti con Octave (errore <0.1%)

stesso metodo, diversa implementazione tra Eigen e Cholmod;

- il solutore ha un'influenza trascurabile sia nei tempi di esecuzione che nei risultati (confronti tra Cholesky e BiCGSTAB);
- esecuzione molto più veloce:

8 core (hyperthreading) @ 2.2GHz:

- Octave 30 minuti vs. C++ 16 secondi
- -Octave 2+ ore vs. C++ 8 minuti

Grazie per l'attenzione