Электрические свойства MnIn₂Se₄

© Н.Н. Нифтиев, М.А. Алиджанов, О.Б. Тагиев, Ф.М. Мамедов, М.Б. Мурадов

Азербайджанский государственный педагогический университет, 370000 Баку, Азербайджан

(Получена 13 октября 2003 г. Принята к печати 4 ноября 2003 г.)

Исследованы температурная зависимость электропроводности и вольт-амперные характеристики кристаллов $MnIn_2Se_4$. Показано, что ток в нелинейной области вольт-амперной характеристики обусловлен полевым эффектом. Определены энергии активации носителей тока и концентрации ловушек. В $MnIn_2Se_4$ наблюдалась релаксация тока со временем.

Тройные халькогенидные соединения обладают комплексом исключительно важных свойств и находят широкое применение в различных областях новой техники. В этом плане вызывает интерес группа тройных соединений $A^{II}B_2^{III}X_4^{VI}$ (где A — Mn, Fe, Ni, Co; B — Ga, In; X — S, Se, Te), ряд из которых уже получен, однако изучен недостаточно [1–5]. Эти соединения перспективны для создания на их основе лазеров, модуляторов света, фотодетекторов и других функциональных устройств, управляемых магнитным полем.

 $MnIn_2Se_4$ относится к классу соединений типа $A^{II}B_2^{III}X_4^{VI}$, физические свойства которых малоизучены [2,3].

В настоящей работе приводятся результаты исследования температурной зависимости электропроводности $\sigma(T)$ и вольт-амперных характеристик (BAX) в кристаллах MnIn₂Se₄.

Мп In_2Se_4 получен прямым сплавлением элементов высокой чистоты (99.99%) в стехиометрических количествах. Рентгенографическим методом установлено, что поликристаллы Mn In_2Se_4 имеют гексагональную структуру с постоянными кристаллической решетки: $a=4.19\,\text{Å},\ c=12.90\,\text{Å};\ c/a=3.08.$ Образцы изготавливались путем механической обработки слитка. Контакты к образцам создавались вплавлением индия на противоположные поверхности (сэндвич-структура). Для исследования электрических свойств использовали вырезанные из слитков пластинки размером порядка $2\times4\times6\,\text{мм}$. Кристаллы Mn In_2Se_4 обладают n-типом проводимости.

На рис. 1 для $MnIn_2Se_4$ представлена температурная зависимость удельной электропроводности. Зависимость $\sigma \propto \exp(10^3/T)$ состоит из двух прямых с различными наклонами. Энергии активации примесных уровней в $MnIn_2Se_4$, определенные по этим наклонам, соответственно равны: $E_1=21,\,E_2=27$ мэВ.

На рис. 2 при различных температурах представлены ВАХ для структур In–MnIn $_2$ Se $_4$ –In. На ВАХ выявляются два участка: линейный $(J \propto U)$ и область более резкого роста тока $(J \propto U^n, n > 1)$.

Видно, что при малых напряжениях ток, проходящий через образец, подчиняется закону Ома. При дальнейшем увеличении напряжения начинает нарушаться закон Ома, ток растет по степенному закону $(J \propto U^n)$. В нели-

нейной области механизм прохождения тока обусловлен полевым эффектом, так как экспериментальные точки зависимости электропроводности от электрического поля хорошо согласуются с теорией термоэлектронной ионизации Френкеля [6]:

$$\sigma = \sigma_0 \exp(\beta \sqrt{F}),$$

где σ_0 — проводимость в слабых полях, β — коэффициент Френкеля. Согласно выражению

$$N_t = \left(\frac{2e}{kT\beta}\sqrt{F_{cr}}\right)^3,$$

располагая значениями минимального электрического поля, при котором начинается зависимость σ от F, т. е. F_{cr} , оценена концентрация ионизированных центров $N_t = 9.2 \cdot 10^{13} \; \mathrm{cm}^{-3} \; [7]$.

В MnIn₂Se₄ наблюдалась релаксация тока со временем. На рис. З показана экспериментальная зависимость величины тока от времени t при фиксированном напряжении $V=30\,\mathrm{B}$. Из рисунка видно, что в начале $(0-50\,\mathrm{c})$ ток быстро уменьшается, затем с увеличением времени $(60-400\,\mathrm{c})$ ток уменьшается медленно.

Рис. 1. Температурная зависимость электропроводности MnIn₂Se₄.

Рис. 2. Темновые BAX структур In–MnIn $_2$ Se $_4$ –In при различных температурах: I, K: I — 289, 2 — 309, 3 — 329, 4 — 349, 5 — 364, 6 — 379.

Рис. 3. Зависимости тока, текущего через систему при $V=30\,\mathrm{B}$, от времени выдержки кристалла под напряжением.

Предположено, что изменения тока со временем вызваны накоплением заряда в узкой области кристалла $\sim 10^{-4} - 10^{-5}$ см. С зарядом связано существование обратной эдс, приводящей к уменьшению текущего через кристалл тока [8]. Релаксационный процесс начинается с напряжения 1 В. Однако при высоких напряжениях и температурах ток слабее зависит от времени.

Таким образом, на основе исследований ВАХ и зависимости $\sigma(T)$ показано, что ток в нелинейной области обусловлен полевым эффектом. Определены энергии активации носителей тока и концентрации ловушек. В MnIn₂Se₄ наблюдалась релаксация тока со временем.

Список литературы

- T. Kanomata, H. Ido, T. Kaneko. J. Phys. Soc. Japan, 34, 554 (1973).
- [2] Б.К. Бабаева, М.Р. Аллазов. В кн.: Исследования в области неорганической и физической химии (Баку, Наука, 1977).
- [3] Д.С. Аждарова. Полупроводники на основе халькогенидов марганца (Баку, Наука, 2001).
- [4] G.A. Medvedkin, Yu.V. Rud, M.A. Tairov. Phys. St. Sol. A, 3, 289 (1989).
- [5] Н.Н. Нифтиев, М.А. Алиджанов, О.Б. Тагиев, М.Б. Мурадов. ФТП, **37**, 173 (2003).
- [6] Я.И. Френкель. ЖЭТФ, 8, 1292 (1938).
- [7] Hill. Philos. Mag., 23, 59 (1971).
- [8] Б.Л. Тиман, А.П. Карпова. ФТП, 7, 230 (1973).

Редактор Л.В. Беляков

Electric characteristics of MnIn₂Se₄

N.N. Niftiev, M.A. Alidjanov, O.B. Tagiev, F.M. Mamedov, M.B. Muradov

Azerbaijan State Pedagogical University 370000 Baky, Azerbaijan

Abstract Studied are temperature dependence of electroconductivity and volt-ampere characteristics of MnIn₂Se₄ crystals. It has been show that the current in the non-linear area is conditioned by the field effect. The activation energy both the carriers and the trap density have been found. In MnIn₂Se₄ current relaxation with time has been observed.