Features: Representing your data
COMS21202, Part III
Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

How does machine see the world?

- OMachine does not see the world in the same way we do.
 - Olt does not need to.
 - Olt only needs the representation of info to perform its task.
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

4

How does machine learning algorithm see the world?

OVisualization of layers in Alexnet.

OZeiler and Fergus, ECCV 2014

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

5

Turning Data into Features

- OModern machine learning rarely uses raw data input to perform learning tasks.
- Raw input is usually transformed into a more powerful representation: features.
- This procedure of representing data using features is usually referred as feature engineering in literatures.
- * Song Liu ($\underline{song.liu@bristol.ac.uk}$), Lecturer in Data Science and A.I.

Feature Engineering

- OTask: finding a feature transform function f(x), which takes a d-dimensional raw input x and outputs a m-dimensional feature vector.
- OFeature function f is the medium through which your learning algorithm interacts with your data.
- OLet us put feature engineering in the context of **Least squares**.
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

7

An Appetizer

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

8

Least Squares (LS) + Feature Transform f

- ORecall, given $D = \{(y_i, x_i)\}_i, y_i \in R$,
- OLS solves the following minimization:
 - $\bigcirc \hat{\beta} \coloneqq \arg\min_{\beta} \sum_{i=1}^{n} (y_i \beta x_i)^2$ (1)
- OReplace x with f(x), a feature transform
 - $\bigcirc \hat{\beta} := \arg\min_{\beta} \sum_{i=1}^{n} (y_i \beta f(x_i))^2$ (2)
- \circ (1) and (2) are identical if f(x) = x.
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

LS Classification + Feature Transform

- Classification dataset: $D = \{(y_i, x_i)\}_{i=1}^n, y \in \{-1,1\}.$
- Now y only takes two discrete values -1 or 1 as class labels.
 If y_i = 1/-1, x_i belongs to pos/neg class.
- Solving LS on D using feature transform f:
 $\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} (y_i \beta f(x_i))^2$
- $\hat{\beta}f(x) = 0$ indicates the classification boundary. • Mphå
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

13

14

Two schools of thoughts: ○ Choosing f manually (Week 20,22) ○ Pros: ○ Efficient, require little computational effort. ○ Works well if you have domain knowledge. ○ Cons: Less flexible, requires tuning on different datasets. ○ Choosing f automatically (Week 21) ○ Pros: Adaptive, automatically done on different datasets ○ Cons: ○ Extra computational burden. ○ Hard to integrate your domain knowledge. ○ Real-world problem solving involves a bit of both!! • Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

A Note on Math	
Song Liu (<u>song.liu@bristol.ac.uk</u>), Lecturer in Data Science and A.I.	
19	
Math required in this part	
OMultivariate Linear Algebra OCOM\$10003,	-
OMathematical Methods for Computer Scientists	
O Probability and Statistics	
OCOM\$10011 OProbability and Statistics	-
ORefer to these units for detailed math explanation.	
Song Liu (<u>song.liu@bristol.ac.uk</u>), Lecturer in Data Science and A.I.	
20	
Formal Notations	
$\bigcirc x, y, z$, scalars, x, y, z , vectors.	-
$\bigcirc x \in \mathbb{R}^d$, vector in d dimensional real-space. $\bigcirc x^{(i)}$, the i -th dimension of x .	

columns.

 $\bigcirc x_i$, the *i*-th data point in our dataset.

O"=" is equality, ":=" is definition.

 $\bigcirc f(x) \in \mathbb{R}^m$, function takes input vector x and maps it into m dimensional real space.

 $\bigcirc X, Y, Z \in \mathbb{R}^{b \times d}$, matrices, with b rows and d

* Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

Polynomial Transform

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

22

A Generic Model

- OWe introduce a generic model.
- $\bigcirc \hat{\mathbf{y}} := \langle \boldsymbol{\beta}, \boldsymbol{f}(\boldsymbol{x}) \rangle = \sum_{i} \beta^{(i)} f^{(i)}(\boldsymbol{x}).$
 - Olnner product between β and f.
 - $\bigcirc \hat{y}$ is linear w.r.t. parameter β .
- OSpecial case:
 - Owhen $f(x), \beta \in R, \hat{y} = \beta f(x)$.

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

23

Polynomial Transform

- OLet f(x) be polynomial functions:
- OWhen $x \in R$, $f(x) := [x^0, x^1, x^2, ..., x^b]$.
 - $\bigcirc b$ is called the degree of f.
 - $\bigcirc f(x) = [0, x, x^2]$ is called a degree 2 polynomial trans. on x.

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

Polynomial Transform

OWhen $x \in \mathbb{R}^d$,

$$\circ f(x) := [h(x^{(1)}), h(x^{(2)}), ..., h(x^{(d)})].$$

$$\bigcirc h(t) := [t^0, t^1, t^2, ..., t^b] \in \mathbb{R}^{b+1}.$$

- $\bigcirc f(x) \in \mathbb{R}^{d(b+1)}$, which means $\beta \in \mathbb{R}^{d(b+1)}$.
- OPC: Write down $f^{(i)}(x)$ given i, b and d.

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

25

Polynomial Transform on Data Matrix

 $\bigcirc X \in \mathbb{R}^{n \times d}$ is data matrix with n observations and d dimensions.

$$\mathbf{O}f(X) := \begin{bmatrix} f(x_1) \\ f(x_2) \\ \dots \\ f(x_n) \end{bmatrix} \in R^{n \times d(b+1)}.$$

- OWe expanded our data matrix.
- ofrom d to d(b+1)
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

26

Pairwise Polynomial Transform

OSo far, the polynomial transform is applied on each dimension:

Oi.e.,
$$f(x) = [h(x^{(1)}), h(x^{(2)}), ..., h(x^{(d)})].$$

- Olt does **not** consider the dependencies between features.
 - OCan be solved by appending cross terms i.e., $f(x) := [h(x^{(1)}), ..., h(x^{(d)}), \forall_{u < v} x^{(u)} x^{(v)}]$

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

LS Solution

$$\bigcirc \widehat{\beta} = \arg \min \sum_{i=1}^{n} (y_i - \langle \beta, f(x_i) \rangle)^2$$

$$\mathbf{O}\widehat{\boldsymbol{\beta}} = (f(X)^{\mathsf{T}}f(X))^{-1}f(X)^{\mathsf{T}}y$$

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

28

Questions

- OAt least, how many observations are needed to compute $\hat{\beta}$ with $f \in \mathbb{R}^{d(b+1)}$ using the formula above?
- Ohttps://pollev.com/songliu644
- OPC: what is the computational complexity?

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

29

Observations:

- OPay attention on
 - Ohow square error keeps **dropping** when **increasing** degree *b*.
 - Ohow \hat{y} becomes more flexible when increasing b.
- OWe will revisit this point in the next lecture.
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

37

Why it works?

- 1-dimensional intuition: Taylor Series.
- Taylor Series of g(x) at 0:

$$Og(x) = g(0)(x - 0)^{0} + g'(0)(x - 0)^{1} + \frac{g''(0)}{2!}(x - 0)^{2} + \frac{g'''(0)}{3!}(x - 0)^{3} + \cdots$$

- OYou can approximate a **smooth** function using polynomial terms (at some cost).
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

38

Fourier Series

- OWhat are **other ways** of decomposing a function?
- Osuppose we have a periodic signal g(x) over the time domain.
 - Oe.g. a sound wave or a stock price
 - $Og(x) = a_0 + \sum_{i=1}^{\infty} [a_i \sin(ix) + b_i \cos(ix)]$
 - OThis decomposition is called Fourier Series.
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

Trigonometric Transform

OTrigonometric Transform are used to approximate function over time domain.

 $\mathbf{O}f(x) \coloneqq [1, \sin(x), \cos(x), \sin(2x), \\
\cos(2x) \dots \sin(bx), \cos(bx)]$

 $\overbrace{\bigcirc f(x)} \in R^{2b+1}$

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

41

Example: Apple Stoc Feb 2019	k Price,
2 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.8	OTrigonometri c transform with b = 4. OSquared error: 699.9117

Linear Expansion of Basis Functions

 Polynomial and Trigonometric transforms based on the idea a function can be approximated by:

$$\bigcirc y \approx \hat{y} = \sum_{i=1}^m \beta^{(i)} f^{(i)}(x)$$

- Ocalled a linear basis expansion of y
- $\circ f^{(i)}$ are called basis function
 - OPolynomial basis, Trigonometric basis...

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

44

Radial Basis Function (RBF)

ORBF is another widely used basis function for function approximation.

$$Of^{(i)}(x) \coloneqq \exp\left(-\frac{||x-x_i||^2}{\sigma^2}\right)$$

- $\circ \sigma > 0$ is called width
- \circ_{σ} is determined before fitting
- OA practice is setting σ as the median of all pairwise distances of x in your data.
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

Radial Basis Function (RBF)

 $\bigcirc x_i$ are called **RBF centroids**.

 $\bigcirc x_i$ can be **randomly chosen** from the x in your dataset

 $\mathbf{O}f(x) \coloneqq [\mathbf{1}, f^{(1)}(x), f^{(2)}(x), \dots, f^{(b)}(x)]$

ODo not forget 1!

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

46

47

Question	
OSeeing your dataset above, what <i>f</i> should you use for classification? Hint: consider computational cost and overfitting	
OPolynomial, $b = 1$	
OPolynomial, $b=2$	
OPolynomial, $b = 3$	
\bigcirc RBF, $b = 100$	
Ohttps://bit.ly/2FnjryC	
Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.	
55	
	1
Conclusion	
 Feature transform can be crucial to regression and classification tasks. 	
OThree useful feature transform:	
OPolynomial	
Trigonometric (on time series)	-
○ RBF	
OAs b increases, \hat{y} become more	
flexible, squared error is lowered	
Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.	
56	
Unanswered Questions	
Ullansweled Quesilons	
OIncreasing <i>b</i> drops squared error.	
OHow do you select number of basis <i>b</i> ?	
OKnowing an f with a larger b makes \hat{y}	
more flexible, can we make $b = \infty$?	
ONext two lectures, The selection of	
number of basis $m{b}$ and Kernel methods.	
• Song Liu (<u>song.liu@bristol.ac.uk</u>), Lecturer in Data Science and A.I.	

To know more...

- OThe Elements of Statistical Learning: Data Mining, Inference, and Prediction, Hastie et al., 2009
 - **02.3.1** Linear Models and Least Squares
 - **0**2.6.3 Function Approximation
 - **O**2.8.3 Basis Functions

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.