Unsupervised Machine Learning

Unsupervised Machine Learning
Supervised Machine Learning

Unsupervised Machine Learning

Unsupervised Machine Learning Reinforcement Machine Learning

Supervised Machine Learning

Supervised Machine Learning

Unsupervised Machine Learning

Supervised Machine Learning

Contents

1	Machine Learning Grundlagen	1
2	Data Quality Assessment	2
3	Machine Learning Fundamentals	2
4	Supervised Learning Basics	3
5	Linear Regression	3
6	Gradient Descent	3
7	Logistische Regression (eigentlich Klassifikation)	4
	7.1 Codebeispiel zum trainieren von θ	5
8	Gruppierungs und Zuordnungs-Regeln	5
	8.1 K-Means als Pseudo Code	5
	8.2 Zuordnungs-Regeln anhand Einkaufstransaktionen	6
9	Debugging	7
	9.1 Erklärung Bias und Varianz	7

1 Machine Learning Grundlagen

Disciplines in Machine Learning

1. Supervised Learning

- The algorithm is given labeled training data
- The algorithm learns to predict the label of yet unseen examples

2. Unsupervised Learning

- The algorithm is given unlabeled data
- The algorithm detects and exploits the inherent structure of the data

3. Semi-Supervised Learning

- A mixture of supervised and unsupervised machine learning techniques
- Usually there is only very limited labeled data available

4. Reinforcement Learning

- No data available but the algorithm is guided by a reward function
- It searches the ideal behavior that maximizes the agent's reward

Identifying target groups for marketing campaigns using clustering techniques	
Calculating product recommendations with collaborative filtering techniques	
Market basket analysis using association rules	
Medical image analysis for detection of skin diseases based on human expert markings	
Search query analysis for e-commerce by semantical clustering	
Prediction of selling prices for the real estate market	
Dimensionality reduction for data visualization	
Learning to play Jass by self-play	
Detecting animals on high-resolution photographs	
Identifying most-valuable customers on e-commerce platforms using transactions and tracking data	

2 Data Quality Assessment

- 1. Data Cleaning¹
 - (a) Dublizierte Daten erkennen und entfernen
 - (b) Daten mit nullen können ersetzt werden.
 - (c) Daten Machine Learning freundlicher gestalten (z.B. für Farben eigene Zeilen erstellen, damit die Euklid-Distanz gerechnet werden kann.
- 2. Analyse mit Hilfe von
 - (a) 5 Nummer Zusammenfassung (median Q2, Quartile Q1 und Q3 sowie min und max)
 - (b) Boxplots um das Datenset auf Ausreisser zu prüfen.
 - (c) Varianz und Standardabweichung berechnen

3 Machine Learning Fundamentals

¹Auch wenn die Datenqualität selbständig verbessert werden kann sollten: alle Änderungen dokumentiert werden, data-repository mit versionierung verwendet werden, den Herausgeber der Daten auf fehler in den Daten hinweisen

4 Supervised Learning Basics

$$Accuracy = \frac{TP + TN}{Total}$$

$$Errorrate = \frac{FP + FN}{Total}$$

$$Sensitivity = \frac{TP}{ActualYes} = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{ActualNo} = \frac{TN}{TN + FP}$$

$$Precision = \frac{TP}{PredictedYes} = \frac{TP}{TP+FP}$$

5 Linear Regression

Das Modell hat generell die folgende Form: $y = h_{\theta}(x) = \theta_0 + \theta_1 x$.

Mit \bar{x} und \bar{y} als Mittelwerte der Datenreihe, können somit die Werte θ_1 und θ_0 berechnet werden. ²

$$\theta_1 = \frac{\sum_{i=1}^n (y^{(i)} - \bar{y})(x^{(i)} - \bar{x})}{\sum_{i=1}^n (x^{(i)} - \bar{x})} = \frac{S_{xy}}{S_{xx}} \qquad \theta_0 = \bar{y} - \theta_1 \bar{x}$$

6 Gradient Descent

Mit der Kostenfunktion

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h(\theta, x^{(i)}) - y^{(i)})^{2}$$

wo $h(\theta, x^{(i)})$ die Vorhersage von y ist und als

$$h(\theta_k, x^{(i)}) = (x^{(i)})^T \theta = \theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} + \dots + \theta_m x_m^{(i)}$$

ausgeschrieben wird, kann θ optimiert werden. Diese wird mit $\theta = (X^T X)^{-1} X^T y$ umgesetzt. In python wird das mit X als

 $n \times m$ Matrix, bei der die erste Spalte mit Einsen aufgefüllt wurde und mit y als Zielwert $\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_m \end{bmatrix}$ definiert wird.

theta =
$$np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)$$

Korrelation liegt immer zwischen $-1 \le r \le 1$. r = 0 bedeutet keine Korrelation und |r| = 1 vollständige Korrelation.

 $^{^2}$ Bei $var^{(i)}$ ist i ein Index für den Datenpunkt und kein Exponent.

7 Logistische Regression (eigentlich Klassifikation)

Logistische Regression zielt darauf ab eine binäre Zuordnung vorzunehmen (z.B. Brustkrebs oder nicht; Spam-Mail oder nicht etc.). Dabei können die unabhängigen Variablen numerisch (12mm) oder kategorisch (mag Skifahren) sein.

Die Logistische Funktion nennt sich auch "Siegmoid Funktion" und lautet wie folgt:

$$\sigma(z) = \frac{1}{1 + e^{-z}} = \frac{e^z}{e^z + 1}, z \in \mathbb{R}$$

Die Logistische Funktion ist auch die neue Hypothese:

$$h_{\theta}(x) = \frac{1}{1 + e^{\theta^T x}}$$

Die Ableitungen der Logistischen Funktion sehen folgendermassen aus.

$$\sigma'(x) = \sigma(z)(1 - \sigma(z))$$

$$\sigma''(z) = \sigma(z)(1 - \sigma(z))(1 - 2\sigma(z))$$

Wenn z > 0 wird die Aussage als wahr (Wahrscheinlichkeit über 0.5) und sonst als falsch interpretiert.

z ist mit $z = \theta^T x = \theta_0 + \theta_1 x_1 + \theta_2 x_2$ gegeben.

Mit der Logistischen Regression muss auch eine neue Kostenfunktion gewählt werden, welche folgendermassen aussieht:

$$Cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & wenn \ y = 1 \\ -log(1 - h_{\theta}(x)) & wenn \ y = 0 \end{cases}$$

Damit ergibt sich die Formel für Gradient Descent wie folgt:

$$\theta_{k+1} = \theta_k - \alpha \frac{1}{n} X^T (\sigma(X\theta_k) - y)$$

7.1 Codebeispiel zum trainieren von θ

```
def sigmoid(z):
        return 1/(1+np \cdot exp(-z))
def cost\_function(X, y, theta):
        y_hat = sigmoid(np.dot(X, theta))
         J_{-i} = -y * np. log(y_{-hat}) - (1-y) * np. log(1-y_{-hat})
        J = J_i.sum()/len(y)
         return J
def update_theta(X,y, theta, alpha):
         theta -= alpha * np. dot(X.T, sigmoid(np. dot(X, theta))-y)/len(y)
         return theta
def train(X, y, theta, alpha, kmax):
         cost\_history = []
         for i in range (kmax):
                  theta=update_theta(X,y,theta,alpha)
                 cost = cost\_function(X, y, theta)
                  cost_history.append(cost)
         return theta, cost_history
```

Danach wird zuerst ein θ definiert, wo die vorgegebenen startwerte angegeben werden. Daraus trainiert der Algorythmus danach mit α als Schrittgrösse und **kmax** als Anzahl Zyklen die optimalen Werte für θ .

8 Gruppierungs und Zuordnungs-Regeln

8.1 K-Means als Pseudo Code

- 1. Eingabe: Anzahl Gruppierungen k>0 und die Datenpunkte $x_1,...,x_n\in\mathbb{R}^m$
- 2. Zufällige k Gruppierungs-Zentrums $\mu_1, ..., \mu_k \in \mathbb{R}^m$

- 3. Widerholen bis es konvergiert:
 - (a) Jeden Datenpunkt x_i zum nächst gelegenen Gruppierungs-Zentrum μ_i zuordnen
 - (b) Jedes Gruppierungs-Zentrum auf den aktuellen Mittelpunkt aller zugeordneten Punkte aktualisieren

8.2 Zuordnungs-Regeln anhand Einkaufstransaktionen

Als "Support" zählt der Prozentanteil, von Transaktionen welche ein gesuchtes Produkt enthalten:

$$support([i_1,...,i_n]) = \frac{Anzahl\ Eink\"{a}ufe\ mit\ Gesuchtem\ Produkt}{Totale\ Anzahl\ Eink\"{a}ufe}$$

$$support(X \to Y) = support(X \cup Y)$$

wobei i_i für einen Einkaufswagen steht.

Weiter gibt es die Konfidenz, welche mit

$$confidence(X \to Y) = \frac{X \cup Y}{X}$$

angegeben wird. Die Konfidenz gibt an, wie oft Y vorkommt, wenn X eingekauft wurde. Damit eine Regel nicht als stark angeschaut wird, nur weil ein Y sehr häufig gekauft wird, gibt es noch den "lift" Wert:

$$lift(X \to Y) = \frac{support(X \cup Y)}{support(X) \cdot support(Y)}$$

Lift = 1 heisst, dass X und Y statistisch unabhängig sind. Lift < 1 heisst, dass X und Y weniger oft zusammen vorkommen als statistisch erwartet (sind antikorrelierend). Lift > 1 heisst, dass X und Y öfters zusammen vorkommen, als statistisch zu erwarten war (korrelieren zueinander).

9 Debugging

9.1 Erklärung Bias und Varianz

