2. Vektoren: Inhalt

- Skalare und Vektoren
- Addition, Subtraktion, Multiplikation mit einem Skalar
- Komponentendarstellung
- Skalarprodukt
- Vektorprodukt
- Spatprodukt

Skalare und Vektoren

Skalare

Physikalische Größen, die durch Angabe eines Zahlenwerts und einer Maßeinheit bestimmt sind.

Beispiele: Masse, Energie, elektrische Ladung.

Vektoren

Physikalische Größen, die durch Angabe eines Betrags und einer Richtung bestimmt sind.

Beispiele: Geschwindigkeit, Kraft, elektrische Feldstärke.

Vektoren werden z.B. mit \vec{a} , \vec{x} , usw. bezeichnet. Der Betrag (die "Länge") von \vec{a} wird mit $|\vec{a}|$ oder einfach a bezeichnet.

Geometrische Addition

Summe zweier Vektoren

Die Summe der Vektoren \vec{a} und \vec{b} ist ein Vektor \vec{c} , dessen Anfangspunkt mit dem Anfangspunkt von \vec{a} und dessen Endpunkt mit dem Endpunkt von \vec{b} zusammenfällt:

$$\vec{a} + \vec{b} = \vec{c} \tag{29}$$

Kommutativgesetz: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$

Assoziativgesetz: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$

29

Geometrische Subtraktion

Gegenvektor

Der Gegenvektor $-\vec{a}$ eines Vektors \vec{a} ist ein Vektor mit entgegengesetzter Richtung und gleichem Betrag.

Die Summe von Vektor und Gegenvektor ergibt den Nullvektor $\vec{0}$.

Differenz zweier Vektoren

Die Differenz der Vektoren \vec{a} und \vec{b} ist die Summe von \vec{a} mit dem Gegenvektor von \vec{b} :

$$\vec{a} - \vec{b} = \vec{a} + (-\vec{b}) \tag{30}$$

Multiplikation mit einem Skalar

Multiplikation eines Vektors mit einem Skalar

Der Vektor $\lambda \vec{a}$ hat die Länge λa und dieselbe Richtung wie \vec{a} .

Der Vektor $-\lambda \vec{a}$ hat die Länge λa und die entgegengesetzte Richtung wie \vec{a} .

Man kann einen Einheitsvektor \hat{a} definieren, der dieselbe Richtung wie \vec{a} und den Betrag 1 hat.

Jeder Vektor kann dann als $\vec{a} = |\vec{a}| \cdot \hat{a}$ dargestellt werden.

Das rechtwinklige Koordinatensystem

Ein rechtwinkliges Koordinatensystem besteht aus zwei oder drei paarweise senkrecht aufeinander stehenden Achsen und heißt "kartesisch".

Jeder Punkt *P* lässt sich durch Angabe von zwei oder drei Zahlenwerten eindeutig festlegen.

Die Zahlenwerte sind die **Projektionen** von *P* auf die Achsen.

Ortsvektoren

Der Ortsvektor \vec{p} zum Punkt P ist die gerichtete Strecke vom Koordinatenursprung zum Punkt P.

Die Projektionen von P auf die Achsen heißen Komponenten von \vec{p} .

Komponentendarstellung eines Vektors

Komponentendarstellung

Ein Vektor wird durch zwei Angaben festgelegt:

- das benutzte Koordinatensystem.
- die Komponenten des Vektors in Richtung der Koordinatenachsen.

Die Einheitsvektoren in Richtung der Koordinatenachsen werden mit $\vec{e_x}$, $\vec{e_v}$, $\vec{e_z}$ bezeichnet.

Ein Vektor \vec{a} ist gegeben durch eine der folgenden Schreibweisen:

$$\vec{a} = a_x \vec{e_x} + a_y \vec{e_y} + a_z \vec{e_z} = (a_x, a_y, a_z) = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$$
(31)

Operationen in Komponentendarstellung

Vektorgleichung

$$\vec{a} = \vec{b} \Leftrightarrow a_x = b_x \wedge a_y = b_y \wedge a_z = b_z$$
 (32)

Summe

$$\vec{a} + \vec{b} = (a_x + b_x, a_y + b_y, a_z + b_z)$$
 (33)

Differenz

$$\vec{a} - \vec{b} = (a_x - b_x, a_y - b_y, a_z - b_z)$$
 (34)

Multiplikation mit einem Skalar

$$\lambda \vec{a} = (\lambda a_x, \lambda a_y, \lambda a_z) \tag{35}$$

Betrag

$$|\vec{a}| = a = \sqrt{a_x^2 + a_y^2 + a_z^2}$$
 (36)

34

Skalarprodukt

Definition

Das **Skalarprodukt** zweier Vektoren \vec{a} und \vec{b} , die den Winkel α einschließen, ist der Skalar

$$\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos \alpha = a_x b_x + a_y b_y + a_z b_z$$
 (37)

Eigenschaften des Skalarprodukts:

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \tag{38}$$

$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} \tag{39}$$

$$\lambda(\vec{a} \cdot \vec{b}) = (\lambda \vec{a}) \cdot \vec{b} = \vec{a} \cdot (\lambda \vec{b}) \text{ mit } \lambda \in \mathbb{R}$$
 (40)

Beispiel für ein Skalarprodukt: Arbeit

Die Arbeit ist das Produkt aus Weg und Kraftkomponente in Wegrichtung: $W = \vec{F} \cdot \vec{s}$.

Vektorprodukt: Definition und Eigenschaften

Definition

Das **Vektorprodukt** oder **Kreuzprodukt** zweier Vektoren \vec{a} und \vec{b} , die den Winkel α einschließen, ist der Vektor

$$\vec{c} = \vec{a} \times \vec{b} \tag{41}$$

mit den Eigenschaften

- $|\vec{c}| = |\vec{a}||\vec{b}||\sin\alpha|$
- ② \vec{c} steht senkrecht auf der durch \vec{a} und \vec{b} bestimmten Ebene.
- **3** Orientierung von \vec{c} : \vec{a} , \vec{b} und \vec{c} bilden ein Rechtssystem.

Eigenschaften des Vektorprodukts:

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a} \tag{42}$$

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$
 (43)

$$\lambda(\vec{a} \times \vec{b}) = (\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b}) \text{ mit } \lambda \in \mathbb{R}$$
 (44)

Vektorprodukt: Komponentendarstellung und Beispiel

Komponentendarstellung:

$$\vec{a} \times \vec{b} = (a_y b_z - a_z b_y) \vec{e_x} + (a_z b_x - a_x b_z) \vec{e_y} + (a_x b_y - a_y b_x) \vec{e_z}$$
 (45)

Beispiel für ein Vektorprodukt: Drehmoment

Das Drehmoment ist das Produkt aus Hebelarm und Kraftkomponente senkrecht zum Hebelarm: $\vec{M} = \vec{r} \times \vec{F}$.

Spatprodukt

Definition

Das Spatprodukt ist die Kombination aus Vektor- und Skalarprodukt

$$V = (\vec{a} \times \vec{b}) \cdot \vec{c} \tag{46}$$

Das Spatprodukt ist ein Skalar und stellt ein Volumen dar.

