

CM1 Biomécanique : Anthropométrie en translation

Dorian Verdel, Bastien Berret

Année universitaire 2020-2021

Contact:

Université Paris-Saclay, CIAMS, 91405 Orsay, France. dorian.verdel@universite-paris-saclay.fr

Anthropométrie

- Anthropométrie : étude des particularités dimensionnelles et physiques du corps humain
- Informations nécessaires pour étudier le corps en mouvement :
 - > **Dimensions** (ex : longueurs des segments, taille)
 - Masses des segments
 - Position du centre de masse
 - Moments d'inertie
 - Mais aussi : insertion des muscles et tendons, position des centres de rotation etc.

I. Bases de l'anthropométrie

Importance de l'anthropométrie

Domaine nécessaire pour simplifier l'étude du mouvement humain

Principe fondamental de la dynamique en translation

$$m \vec{a}_G = \sum \vec{F}_{ext}$$
 — 2^{nde} loi de Newton

 \vec{a}_G « accélération linéaire » (en m/s²)

① Ce principe s'applique à chaque segment corporel. Il faut donc connaître sa masse, sa longueur, la position de son CM etc.

Modèle articulations et segments

Segment :

- Solide indéformable
- Décomposition du corps humain

Articulation :

- Lien entre deux segments
- Définit les mouvements relatifs possibles

Longueur des segments

Table de D. Winter (1990)

H = taille du sujet

Exemple:

Longueur de la **jambe** :

L=(0.285-0.039)H=**0.246H**

Si H=1.80 m, alors:

 $L=0.246 \times 1.8 = 0.4428 \text{ m}$

Application:

Calculer la taille de la tête et la largeur du bassin pour H=1.68 m.

Masse des segments

Table de De Leva (1996)

Masse: caractérise la quantité de matière contenue dans un corps (≠ Poids !!!)

M = Masse du sujet en kg

Application:

Calculer la masse de la tête et d'un pied pour M=75 kg.

Segments	Coefficient de Masse de De Leva
Tête + Cou	6,94%
Tronc sup	15,96%
Tronc inf	27,50%
Bras	2,71%
Avant bras	1,62%
Main	0,61%
Cuisse	14,16%
Jambe	4,33%
Pied	1,37%
Total	75.20%

Coefficients de De Leva en pourcentage de la masse

La masse d'une seule jambe est donnée... C'est pourquoi le total n'est pas égal à 100% de la masse de l'individu.

II. Repérage dans le corps humain

Point proximal et point distal

Le point proximal d'un segment est le repère anatomique (ex : articulation) qui est le plus proche du sommet du crâne

Le point distal d'un segment est le repère anatomique qui est le plus éloigné (c-à-d *distant*) du sommet du crâne.

Position de référence

On détermine quelle extrémité est proximale ou distale en se référant à la posture anatomique standard du corps

III. Notion de centre de masse

Définitions

- <u>Centre de masse (CM)</u>: point fictif autour duquel les masses sont également réparties (aussi appelé centre de gravité).
- Défini pour tout corps matériel, rigide ou non...
- Barycentre d'un système de points matériels :

$$C$$
 tel que $\sum_{i} m_{i} \overrightarrow{CA_{i}} = \overrightarrow{0}$

<u>ou</u>

$$C ext{ tel que } m_{tot}\overrightarrow{OC} = \sum_i m_i \overrightarrow{OA_i}$$
 (indépendant du choix de O, point fixe) université université paris-sacial.

Position du centre de masse

Le barycentre (point C) est toujours à l'intérieur de l'enveloppe convexe (c-à-d le contour extérieur) créé par les points matériels A_i

Position d'équilibre

Exemple intuitif : équilibre d'une balance

le point O donne la position du centre de masse (barycentre)

Détermination expérimentale

Méthode de la suspension :

Centre de masse d'un segment

	Distance du centre de masse à l'extrémité	
	du segment en % de sa longueur	
	Proximale	Distale
Tête-cou-tronc	66	34
Un bras	43,6	56,4
Un avant-bras	43	57
Une main	50,6	49,4
Une cuisse	43,3	56,7
Une jambe	43,3	56,7
Un pied	42,9	57,1

Table de Winter (1990)

Application:

Calculer la position du CM de la tête à partir du point proximal et distal

Centre de masse du corps

Centre de masse et posture

IV. Application

Application similaire à ce qui sera demandé en CC et devoir terminal

Méthodologie de détermination du CM

- 1. Calcul longueurs segments
- 2. Calcul masse segments
- 3. Détermination des repères distaux ou proximaux
- 4. Calcul position CM de chaque segment
- 5. Changements de repères
- 6. Calcul CM global dans repère d'origine

Application au bras (H = 1,86 m; M = 72 kg)

Questions:

- Nombre segments ?
- **Articulations?**
- Noms segments ?bras ; av-bras; main
- Articulations ? épaule ; coude ; poignet
- L segments? b: 0.35; ab: 0.27; m: 0.2 \uparrow
- M segments?
- Repères proximaux?
- Repères distaux?
- CM segments?
- Chgts de repères ?
- CM global?

Calcul des masses (M = 72 kg)

Segments	Coefficient de Masse de De Leva
Tête + Cou	6,94%
Tronc sup	15,96%
Tronc inf	27,50%
Bras	2,71%
Avant bras	1,62%
Main	0,61%
Cuisse	14,16%
Jambe	4,33%
Pied	1,37%
Total	75.20%

Application au bras (H = 1,86 m; M = 72 kg)

Questions:

- Nombre segments ?
- Articulations?
- Noms segments ?bras ; av-bras; main
- Articulations ? épaule ; coude ; poignet $\vec{y}_{p,b}$
- L segments ? b: 0.35 ; ab: 0.27 ; m: 0.2
- M segments ?b: 1.95 ; ab: 1.17 ; m:0.44
- Repères proximaux ?
- Repères distaux ?
- CM segments p?
- Chgts de repères ?
- CM global ?

Calcul des CM (proximal)

	Distance du centre de masse à l'extrémité	
	du segment en % de sa longueur	
	Proximale	Distale
Tête-cou-tronc	66	34
Un bras	43,6	56,4
Un avant-bras	43	57
Une main	50,6	49,4
Une cuisse	43,3	56,7
Une jambe	43,3	56,7
Un pied	42,9	57,1

Application au bras (H = 1,86 m; M = 72 kg)

Questions:

- Nombre segments?
- Articulations?
- Noms segments ?bras ; av-bras; main
- Articulations? épaule; coude; poignet $\vec{y}_{p,b}$
- L segments ? b: 0.35 ; ab: 0.27 ; m: 0.2
- M segments ?b: 1.95 ; ab: 1.17 ; m:0.44
- Repères proximaux ?
- Repères distaux ?
- CM segments p? 0.15; 0.12; 0.1
- Chgts de repères ? 0.15 ; 0.47 ; 0.72
- CM global ? $x_{CM} = 0.33 m$

Questions?

