最適化(後半) 第9回

講義資料と課題

0,1-ナップサック問題に対する分枝木 (n=4)

0,1-ナップサック問題の問題例(3)に対する分枝限定法の進行の様子

 $z_2 = 0$

$$b=11$$
, $c_1=4$, $c_2=6$, $c_3=13$, $c_4=15$, $a_1=2$, $a_2=4$, $a_3=6$, $a_4=7$

ここで[]は整数値への 切り下げを表す.

LB: =
$$c_3 + c_1 = 17$$

UB(P_1) = $[c_3 + c_4 \times (5/7)]$
= $[13 + 15 \times (5/7)]$
= $[166/7] = 23 > LB = 17$

 $z_4 = 0$

$$UB(P_2)$$

= $[c_4 + c_3 \times (4/6)]$
= $[15 + 13 \times (4/6)]$
= $23 > LB = 17$
 $z_3 = 1$
 2
実行不可能

実行可能 6

 $z_4 = 1$

$$f(P_6) = c_4 + c_2 = 15 + 6 = 21$$

LB: = $\max\{17, 21\} = 21$ 暫定値の更新

$$Z_3 = 0$$

$$= [c_4 + c_1 + c_2 \times (2/4)]$$

$$= [15 + 4 + 6 \times (2/4)]$$

$$= [13 + 4 + 6 \times (3/4)]$$

$$= 22 > LB = 17$$

$$= 21 \le LB = 21$$
限定操作により終端

$$UB(P_7) = [c_4 + c_1]$$

= $[15 + 4] = 19 \le LB = 21$

限定操作により終端