Logica dos predicados

Sujeito = objetos Predicados = elementos, propriedades

Esquema abreviador:

Mx : Simbolo de predicado, x é miguel Tx : Simbolo de predicado, x é talentoso Gxy : Simbolo de predicado, x gosta de y p: constante, paulo

Quantificadores ($\exists x \ \forall x$) [All(todos)] O uso de quantificadores transforma uma sentença aberta em proposições.

$\exists x = Existencial$

- Existe pelo menos 1 elemento do conjunto
- Existe pelo menos um X no universo, "tal que X é S e X é P" (ALGUM S é P)

$\forall x = Universal$

- Qualquer que seja X ,
- Dado um X qualquer do universo,

"se **X** é **S** entao **X** é **P"** (**TODO S É P**)
Todos elementos do conjunto

onde:

X é dominio ou conjunto Universo de A por exemplo :

 $A=\{1, 2, 3\} \mid A=\{4, 5, 6, 7\} \mid A=\{\}$

$$\begin{split} N &= \{0,1,2,3,4,5,6,7,8,9,10, ...\} \\ Z &= \{.... -3, -2, -1, 0, 1, 2, 3, ...\} \\ Q &= \{3/5; -3/5; 0,6; 3,5 ; raiz de 3 \} * \\ I &= \{\sqrt{2}, \sqrt{3}, -\sqrt{5}, 1,32365498...., 3,141592.... \} \\ R &= \{-\infty, 0, +\infty\} * * \end{split}$$

- *divisor diferente de zero
- ** todos conjuntos anteriores + e -

NEGAÇOES E EQUIVALENCIAS

 $(\forall x)(Sx->Px)\equiv$ $\sim[(\exists x)(Sx^\sim Px)]$ Equivalencia \equiv $(\exists x)(Sx^\sim Px)$ Negação

 $(\exists x)(Sx^Px)\equiv$ $\sim [(\forall x)(Sx->\sim Px)]$ Equivalencia \equiv $(\forall x)(Sx->\sim Px)$ Negação

EE : Exclusao de Existencial (x)

IE: Inclusao de Existencial
 (1 constante entao conclui ∃x)
 EU: Exclusao de Universal
 (conclusao enunciado singular com constante)

IU : Inclusao de universal

(so pode usar para premissas que eram $\forall x$)

Enunciados: (singulares, categoricos e relacionais)

- Enunciados Singulares :
- 1 Sujeito+Verb SER+1 predicado
- usa-se X para (ela, ele, aquele).
- Enunciados Categoricos: (TODO, ALGUM, NENHUM) Sujeito+Verb SER+ predicado

TODO = $(\forall x)(Sx-Px)$, TODO S é P ALGUM = $(\exists x)(Sx^Px)$, ALGUM S é P NENHUM = $(\forall x)(Sx-Px)$, NENHUM S é P

- Enunciados Relacionais : (verbo diferente de SER 1º relaciona o 2º) Gxy x gosta de y (G=verbo) pode conter (TODO, ALGUM, NENHUM) (∀x)(Hx^Ax)->Gxs)

Todo S é P. enunciado universal afirmativo

Nenhum S é P. enunciado universal negativo

Algum S não é P. enunciado existencial afirmativo

enunciado existencial negativo

	Nenhum S é P	Algum S é P	Algum S não é P
Todo S é P	Falso	Verdadeiro	Falso
~(Todo S é P)	Indeterminado	Indeterminado	Verdadeiro

	Todo S é P	Algum S é P	Algum S não é P
Nenhum S é P	Falso	Falso	Verdadeiro
~(Nenhum S é P)	Indeterminado	Verdadeiro	Indeterminado

	Todo S é P	Nenhum S é P	Algum S não é P
Algum S é P	Indeterminado	Falso	Indeterminado
~(Algum S é P)	Falso	Verdadeiro	Verdadeiro

	Todo S é P	Algum S é P	Nenhum S é P
Algum S não é P	Falso	Indeterminado	Indeterminado
~(Algum S não é P)	Verdadeiro	Verdadeiro	Falso