

EMOTIONS IN MOTION

MOOD PREDICTION ENGINE

Table of Contents

- The Story Begins: Why This Project Matters
- What This Project Aims to Do
- The Dataset Fit-Life Simulation
- Project Pipeline
- SMOTE Handling
- Feature Engineering
- Model 1 Random Forest

- Model 2 XGBoost
- Model 3 Deep Neural Network
- Model Comparison & Summary
- Final Takeaways
- Future Vision
- GitHub & Contact
- Thank You

The Story Begins: Why This Project Matters

"We interact with technology daily. But what if tech could interact with our emotions?"

Every day, we go through different moods – joy, stress, fatigue, excitement. But what if our digital world could *sense* those changes?

I imagined a world where your smart device understands how you feel — and nudges you toward better habits.

That's how this project was born: To explore if machines can learn to understand human mood through daily behavior.

What This Project Aims to Do

I built a machine learning system that classifies human mood into Bad, Neutral, or Good using activity patterns and emotional signals like stress, energy, and intensity.

The vision: A future where mood-aware AI supports wellness, mental health, and productivity. Embed mood intelligence into smart devices, apps, wearables.

The Dataset - Fit-Life Simulation

I worked with a synthetic behavioral dataset of over 100,000 rows capturing how people live, move, and feel throughout their day.

Key features included:

- ☐ Age, Gender, Employment
- ☐ Type of Activity, Duration, Intensity
- ☐ Mood Before / After, Energy, Stress

Mood Scale (1 – 10) into 3 classes: Bad (1 – 3) Neutral (4 – 6), Good (7 – 10)

Age	Gender	Employment Status	Time of Day	Activity Category	Sub-Category	Activity	Duration (minutes)	Intensity	Primary Emotion	Secondary Emotion	Mood Before (1-10)	After (1- 10)	Energy Level (1-10)
34	Male	Retired	Afternoon	Physical - Exercise	Mind-Body	Stretching	79	High	Energized	Challenged	3	3	6
30	Prefer not to say	Retired	Night	Physical - Sports	Extreme Sports	Bungee Jumping	72	High	Accomplished	Accomplished	6	7	4
75	Female	Employed	Night	Relaxation	Entertainment	Music Listening	117	High	Energized	Recharged	7	8	7

Project Pipeline

Let me show you the complete pipeline — from raw data to trained model.

SMOTE Handling

The original dataset had very skewed mood distribution — Neutral was dominant. So, I used SMOTE (Synthetic Minority Over-sampling Technique) to balance the training data.

Feature Engineering

I dropped unnecessary columns like Date and Mood After to avoid leakage.

Then applied One-Hot Encoding \rightarrow ended with 317 features.

For numeric fields like Age, Mood Before, Stress, I applied Standard Scaler - essential for deep learning models to converge properly.

Feature Engineering

]:	Age	Gender	Employment Status	Time of Day	Activity Category	Sub-Category	Activity	Duration (minutes)	Intensity	Primary Emotion	Secondary Emotion	Mood Before (1-10)	Level (1-10)	Level (1-10)
0	34	Male	Retired	Afternoon	Physical - Exercise	Mind-Body	Stretching	79	High	Energized	Challenged	3	6	9
1	30	Prefer not to say	Retired	Night	Physical - Sports	Extreme Sports	Bungee Jumping	72	High	Accomplished	Accomplished	6	4	ğ
2	75	Female	Employed	Night	Relaxation	Entertainment	Music Listening	117	High	Energized	Recharged	7	7	
3	28	Prefer not to say	Retired	Night	Relaxation	Leisure	Baking	78	High	Accomplished	Serene	7	8	!
4	75	Female	Student	Afternoon	Physical - Sports	Team Sports	Basketball	55	Medium	Flexible	Challenged	7	6	

Before encoding

After One-hot encoding / StandardScaler

]:		Age	Duration (minutes)	Mood Before (1-10)	Energy Level (1- 10)	Stress Level (1- 10)	Gender_Female	Gender_Male	Gender_Non- binary	Gender_Prefer not to say	Employment Status_Employed	 Seconda Emotion_Resilie
	0	0.791086	0.388994	-0.566027	-0.318153	-1.237173	False	False	True	False	False	 Fal
	1	1.506768	-1.618360	1.622729	-0.915556	-0.307327	False	False	False	True	False	 Fal
	2	-0.695330	-0.878809	-0.566027	1.474056	1.552367	False	True	False	False	False	 Fal
	3	-1.631221	-0.825984	1.622729	0.279250	0.157597	True	False	False	False	True	 Fal
	4	1.286558	-0.667508	1.622729	-1.512959	-1.237173	False	False	True	False	False	 Fal

Model 1 - Random Forest

• First, I trained a Random Forest to get quick, interpretable results.

• Accuracy: 72.4%

Best at predicting Neutral / Good mood

Classification Report

Random Forest	Classificati	on Report	: 111	
	precision	recall	f1-score	support
Bad	0.58	0.40	0.47	2914
Good	0.79	0.83	0.81	7556
Neutral	0.70	0.74	0.72	9530
accuracy			0.72	20000
macro avg	0.69	0.66	0.67	20000
weighted avg	0.72	0.72	0.72	20000

Model 1 - Random Forest

Confusion Matrix - RF

Top 10 Features - RF

Model 2 - XGBoost

• Then I trained XGBoost — A smarter learner with better interaction capture.

• Accuracy: 74.1%

• Best at predicting Bad mood

	\sim				
XGBoost Cla	assification Re	eport:			
	precision	recall	fl-score	support	
10	0.61	0.55	0.57	2914	
	0.81	0.82	0.81	7556	
	0.72	0.74	0.73	9530	
accurac	у		0.74	20000	
macro av	g 0.71	0.70	0.71	20000	
weighted av	g 0.74	0.74	0.74	20000	

Model 2 - XGBoost

Confusion Matrix

• XGBoost showed slightly better sensitivity to 'Bad' mood than Random Forest.

Feature Contributions (Top 10 - SHAP summary)

• SHAP reveals 'MoodBefore', 'Duration', and 'Gender' as key signals.

Model 3 - Deep Neural Network

- Finally, I trained a DNN using batch normalization, dropout, and early stopping.
- Accuracy: 74.2%
- More consistent across all mood classes

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 256)	81,408
batch_normalization (BatchNormalization)	(None, 256)	1,024
dropout (Dropout)	(None, 256)	0
dense_1 (Dense)	(None, 128)	32,896
batch_normalization_1 (BatchNormalization)	(None, 128)	512
dropout_1 (Dropout)	(None, 128)	0
dense_2 (Dense)	(None, 64)	8,256
batch_normalization_2 (BatchNormalization)	(None, 64)	256
dropout_2 (Dropout)	(None, 64)	0
dense_3 (Dense)	(None, 32)	2,080
dense 4 (Dense)	(None, 3)	99

Total params: 126,531 (494.26 KB)

Trainable params: 125,635 (490.76 KB)

Non-trainable params: 896 (3.50 KB)

DNN with 126K trainable parameters across 5 dense layers and regularization components.

Model 3 - Deep Neural Network

Model showed stable training with minor variance in validation performance across epochs.

Model 3 - Deep Neural Network

Classification Report

DNN Classifica	ation Report:			
	precision	recall	f1-score	support
Bad	0.60	0.61	0.60	2914
Good	0.84	0.78	0.81	7556
Neutral	0.72	0.75	0.74	9530
accuracy			0.74	20000
macro avg	0.72	0.72	0.72	20000
weighted avg	0.75	0.74	0.74	20000

Confusion Matrix

Model Comparison & Summary

• All three models performed well — with DNN slightly ahead in overall accuracy.

• Random Forest: ~72.4%

• XGBoost: ~74%

• DNN: ~74.2%

Final Takeaways

Mood is predictable — using activity + emotional signals

DNN gave best generalization

SHAP added transparency and trust

SMOTE made results more fair across mood classes

Future Vision

In future versions, this engine could:

- Predict energy + stress along with mood
- Be embedded into wearables or wellness apps
- Adapt to real-time mood shifts using LSTM

Imagine your smartwatch saying:

• "Hey, you've been low all morning. Want to stretch or take a walk?"

GitHub & Contact

- Project Notebook, Graphs, and Code:
- GitHub

- Connect with me:
- DinkedIn

Thank You

Let's build AI that not only understands emotions — but truly cares.