

ASSIGNMENT 3 BRIEFING

THE TASK

The **City of Melbourne** (your client) has asked you to produce an **interactive interface** to either:

- Help people discover interesting and practical information about Melbourne,
 or
- Help a government agency identify interesting patterns in the data or make decisions for specific tasks.

The boundaries of the City of Melbourne – your interface should largely focus within these boundaries (can include neighbouring areas when relevant)

THE TASK

Your interface is targeted to one of the following **user groups**:

- Tourists that would like to/are visiting Melbourne
- **2.** Local citizens that commute to the CBD
- State Government department that is interested in the performance of any government system, such as transport (e.g. public transport, vehicle volumes, pedestrian counts, ...)

HOW TO COMPLETE THE TASK

- Work in a group of 4
- Prepare an interface
- It can either be:
 - An R Shiny interface that incorporates one or more Tableau visualisations
 - A Tableau interface that incorporates one or more R Shiny visualisations

- Think about:
 - When and where will the interface be used?
 - What places are most popular?
 - What patterns can be found? How can you help the user to discover patterns?
 - Are there any anomalies or specifics?
 - What platform should be used (computer, mobile, kiosk, ...)?

DELIVERABLES – WHAT YOU NEED TO SUBMIT

A Interface and report (25%)

A.1 Interface implementation

- A single ZIP file containing your interface and any required data
- Needs to include a README.txt file explaining how to run the interface

A.2 Report

- Design summary (2 pages)
 - Describe audience and purpose
 - What aspects of the design you want to get credit for
- Pattern or use case summary (2 pages)
 - Interesting patterns or info that your target audience can discover using your interface
 - How your tool helped discover these
- Sources and references
- Group member contribution table

DELIVERABLES – WHAT YOU NEED TO SUBMIT

B Video (10%)

- 10 minutes
- Pre-recorded pitch presentation to the City of Melbourne (your client)
- Provide background for, and demonstrate, your interface
- All team members must speak

HOW TO SCORE WELL

What does a great submission look like?

- A very well-designed, revealing, logically structured, interactive Tableau story containing a Shiny viz (perhaps a map)
- An exploratory, highly interactive, polished Shiny app containing Tableau viz(zes)
- It incorporates a fresh and innovative yet effective design, and demonstrates that you have challenged yourselves technically
- Must be designed firmly with the target user group in mind

Assessment criteria

- Basic design
- Technical challenge
- Design innovation
- Report

Note: your interface should include some technical challenges beyond the lab sessions and Assignments 1 and 2.

WORKING TOGETHER

- Your group members will have different backgrounds
 - For example: uncomfortable with coding / may have a lot of experience with mapping / may not be strong at aesthetic design / ...
- Discuss your individual skills and strengths
 - What are you each good at?
 - What would you not like to work on?
- Stay in contact
 - Agree on a weekly meeting time via Zoom (or other tool)
 - Reply to your group members' messages; do not "disappear"
- We will check that all team members have been contributing
 - If there are issues in your team, do not leave it until the end

Tableau

- » Week 8 pre-lab videos on integrating Shiny and Tableau
- » Publish to Tableau Public
 - Note: This makes your work publicly visible and searchable. Do not submit private or copyrighted datasets to Tableau Public.
- » Actions in Tableau
- » Tableau Embedding API v3
 - When embedding Tableau into Shiny, you can incorporate small pieces of JavaScript code into your R Shiny code using the **runjs** function. For example, you can make Tableau update a filter when a user clicks something on a Leaflet map in Shiny.

Tableau Embedding API v3 Tutorial

R and Shiny

- » Training materials listed in Weeks 4-7
- » R and Shiny textbooks listed in the Assignment 2 page on LMS
- » R Graphics Cookbook
- » ggplot2 cheat sheets | ggplot2 workshop video | ggplot2-book
- » ggiraph-book
- » Learn Shiny
- » <u>Leaflet Tutorials</u> | <u>R leaflet package</u>

Web programming

Advanced students may wish to include web programming in their Shiny app.

- » HTML for custom content: <u>Using HTML in Shiny</u> | <u>HTML with W3Schools</u>
- » CSS for custom styling: <u>Using CSS in Shiny</u> | <u>CSS with W3Schools</u>
- » JavaScript for custom interactivity: <u>JavaScript with W3Schools</u> | <u>tutorial</u> | <u>guide</u>
- » Web programming cheat sheets:
 - HTML: This cheat sheet includes a list of every HTML tag, in alphabetical order.
 - <u>CSS</u>: There are many CSS properties, and it's easy to forget the specific name for one particular visual modification you want to make. This cheat sheet lists all of them.
 - <u>JavaScript</u>: This cheat sheet provides an overview of many basic aspects of JavaScript.

Visualisation tools

- » Non-spatial visualisations
 - Tableau's many built-in visualisations (Lab 2) | R ggplot2 and ggiraph (Labs 4 to 6)
 - 30 R Packages For Data Visualization That You May Not Know Of
 - Research other available R packages
 - Invent your own visualisation type! Draw a static visualisation using R graphics or (for advanced coders) make an interactive graphic using d3.js and the r2d3 R package
- » Geovisualisation
 - Tableau maps (Lab 3) | R leaflet (Lab 7)
 - Make your own custom basemaps using <u>Mapbox Studio</u> and add them to **leaflet** using the <u>mapboxapi</u> R package

Data

- » Suggested datasets provided on LMS
 - Download the geodatabase (.gdb) with all the data – can view in Tableau or QGIS Note some datasets are outdated! Take care.
 - Find up-to-date datasets at <u>data.vic.gov.au</u> or <u>data.melbourne.vic.gov.au</u>
 - This is spatial data, but your interface does not need to use the spatial component. However, consider the needs of your user group

https://unimelb.libguides.com/GIS

Data theme	Data source	Credit type
BusMetroRoutes	DELWP	CC BY 4.0
BusRegionalRoutes	DELWP	CC BY 4.0
CityActivitiesAndPlannedWorks	City of Melbourne	CC BY 4.0
Melbourne_Bicycle_Routes_MGA	City of Melbourne	CC BY 4.0
Melbourne_Building_Footprints_MGA	City of Melbourne	CC BY 4.0
Melbourne_CityCircle_tram_MGA	City of Melbourne	CC BY 4.0
Melbourne_Municipal_Boundary	City of Melbourne	CC BY 4.0
Melbourne_OpenSpace	DELWP	CC BY 4.0
Melbourne_POIs	City of Melbourne	CC BY 4.0

Thank you!

