

(11)Publication number:

2001-169211

(43) Date of publication of application: 22.06.2001

(51)Int.CI.

HO4N 5/74

(21)Application number: 11-346098

(71)Applicant : HITACHI LTD

(22)Date of filing:

06.12.1999

(72)Inventor: ONOZUKA AKIHIRO

OKAMOTO TADASHI

(54) VIDEO PROJECTOR AND DISTORTION CORRECTING METHOD THEREFOR

(57)Abstract:

PROBLEM TO BE SOLVED: To realize the precise correction of distortion of an image by an inexpensive camera even on a screen of a curved plane as well as a flat plane.

SOLUTION: A light spot of a laser pointer 5 whose angle can be controllable and which is placed in the vicinity of an ideal visual point is projected on a screen 2 of a curved plane. A CPU 11 draws a measurement image (dot image) generated by a graphics board 12 into a frame memory of an image modification circuit 13 to allow a projector 3 to project the image onto the screen 2. A camera 4 photographs a projected image including a light spot and the dot image on the screen and a capture board 14 captures the photographed image. The CPU 11 measures the position of the light spot and the dot image on the received image by the board 14 and converts a pixel coordinate of pixels of the dot image on the received image when both the light spot and the dot image are coincident while moving the dot

image. A coordinate conversion parameter memory of the image modification circuit 13 receives converted values of each pixel coordinate.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-169211 (P2001-169211A)

(43)公開日 平成13年6月22日(2001.6.22)

(51) Int.Cl.7

離別記号

 \mathbf{F} I

テーマコート (参考)

H04N 5/74

H04N 5/74

D 5C058

審査請求 未請求 請求項の数10 OL (全 11 頁)

(21)出顧番号

特顧平11-346098

(22) 出顧日

平成11年12月6日(1999.12.6)

(71)出顧人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(72)発明者 小野塚 明弘

式会社日立製作所大みか事業所内

(72)発明者 岡本 正

茨城県门立市大みか町五丁目2番1号 株

式会社门立製作所大みか事業所内

(74)代理人 100068504

弁理士 小川 勝男 (外1名)

Fターム(参考) 50058 BA25 BA27 BB11 BB25 EA02

EA03 EA33

(54) 【発明の名称】 映像投影装置およびその歪補正方法

(57)【要約】

【課題】平面はもちろん曲面のスクリーンに対しても、 安価なカメラで精度のよい画像歪補正を実現する。

【解決手段】理想視点の近傍に配置され、角度制御可能なレーザポインタ5の光点を曲面のスクリーン2に投影する。一方、CPU11からグラフイックスボード12で生成した計測用画像(点画像)を画像変形回路13のフレームメモリに描画して、プロジェクタ3からスクリーン2に投影する。スクリーン上の光点と点画像を含む投影画像をカメラ4で撮影して、キャプチャボード14に取り込む。CPU11は、ボード14の入力画像上の光点と点画像の位置計測を行い、点画像を移動しながら両点が一致したときに、その点画像のフレームメモリ上の画素座標を、光点の入力画像上の座標に置換する。各画素座標の変換値は画像変形回路13の座標変換パラメータメモリに設定される。

【請求項1】 画像メモリに描画された表示画像をプロ ジェクタによって平面または曲面のスクリーンに投影す る映像投影装置の歪補正方法において、

スクリーンの理想視点またはその近傍に配置した投光装 置から前記スクリーンの投影位置を変えながら投影した 光点と、前記プロジェクタから前記スクリーンに投影し た計測用表示画像をカメラにより撮影して取り込み、こ の入力画像上で前記光点と前記計測用表示画像の相対位 置を計測し、前記相対位置を移動しながら前記光点と前 記計測用表示画像間が所定内接近をしたと判定されると き、前記画像メモリ上での前記計測用表示画像の画素座 標を前記入力画像上における前記光点の座標によって置 換する変換パラメータを設定することを特徴とする映像 投影装置の歪補正方法。

【請求項2】 請求項1において、

前記計測用表示画像は画像メモリの任意画素を描画した 点画像で、この点画像と前記光点との距離を求めて、こ の距離が短縮する方向に順次、前記点画像の表示を変更 して前記所定内接近をさせることを特徴とする映像投影 装置の歪補正方法。

【請求項3】 請求項1において、

前記計測用表示画像は画像メモリの表示範囲を表し、こ の表示範囲に前記光点が含まれるように順次、表示範囲 を縮小して前記所定内接近をさせることを特徴とする映 像投影装置の歪補正方法。

【請求項4】 請求項1、2または3において、

前記所定内接近は、前記光点と前記計測用表示画像の最 接近または表示限界を最適値とする映像投影装置の歪補 正方法。

【請求項5】 請求項1、2または3において、

前記所定内接近は、前記カメラによる拡大入力画像上で 判定することを特徴とする映像投影装置の歪補正方法。

【請求項6】 請求項1~5のいずれかにおいて、

前記画像メモリの画素座標の中で、前記光点の座標によ って置換されていない画素の前記変換パラメータは、光 点間の補間によって求める映像投影装置の歪補正方法。

【請求項7】 請求項1~6のいずれかにおいて、

前記スクリーンに複数のプロジェクタによる合成映像を 投影する場合に、各プロジェクタの投影領域の重複領域 に前記光点を投影し、この光点による前記変換パラメー タを重複するプロジェクタ毎に設定することを特徴とす る映像投影装置の歪補正方法。

【請求項8】 平面または曲面のスクリーンと、スクリ ーンに投影画像を投影するプロジェクタと、前記投影画 像となる表示画像をフレームメモリに描画して前記プロ ジェクタに出力する画像制御装置を備える映像投影装置 において、

前記スクリーンの理想視点またはその近傍に配置され、 スクリーン上の任意の投影位置に光点を投影する投光装 置と、前記光点の投影位置を変更する装置と、前記スク リーンの映像を撮影するカメラを設け、

さらに、前記カメラから取り込んだ入力画像を記憶する 入力画像記憶装置と、前記プロジェクタによる計測用表 示画像と前記光点との前記入力画像上における相対位置 を計測して前記投影画像の歪を補正する画像歪補正手段 を前記画像制御装置に設けたことを特徴とする映像投影 装置。

【請求項9】 請求項8において、

前記画像歪補正手段は、前記入力画像上で光点と前記計 測用表示画像とが一致したときの前記フレームメモリ上 の画素座標を前記光点の座標により置き換える座標変換 パラメータメモリを有していることを特徴とする映像投 影装置。

【請求項10】 請求項9において、

前記フレームメモリはダブルバッファ構成され、前記表 示画像を描画する入力バッファと、描画されている表示 画像を前記座標変換パラメータメモリの座標によって置 換して前記プロジェクタへ出力する出力バッファがフレ ーム毎に交替することを特徴とする映像投影装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、スクリーン上に画 像を投射して表示する映像投影装置に係わり、特に投影 画像の歪補正機能に関する。

[0002]

【従来の技術】従来の映像投影装置の画像歪の補正方法 として、例えば、特開平8-88860号(引用例1) や特開平8-331610号(引用例2)の公報に記載 されているものが知られている。引用例1では、スクリ ーンに投影された画像をカメラを用いて撮影して画像歪 の認識を行っている。引用例2では、例えば長方形が歪 むと平面のスクリーンでは台形に見えることを利用して 歪補正を行っている。

[0003]

【発明が解決しようとする課題】上記の引用例1による 画像歪の補正方式は、カメラによる撮像は特に周辺部で 歪を起こしやすいので、歪を減らすためには光学的に精 密なカメラが必要で、高価となる。もしくは、撮影映像 へ正確に中心を合わせ、拡大表示する必要があった。

【0004】上記の引用例2による画像歪の補正方式 は、曲面など、平面以外のスクリーンに適用するうえで 困難がある。図17(a)~(c)により、曲面のスク リーンにおける投影画像の歪を説明する。ここでのプロ ジェクタは、平面スクリーンに対して長方形(4:3) を投影する一般的なものとする。(a)では、プロジェ クタ3から曲面スクリーン2に対し、観察者とは異なる 視点より投影している。

【0005】長方形の元画像を曲面スクリーン2に投影 した場合の映像は、プロジェクタとスクリーン間の距離

の違いによって歪み、観察者からは(b)のような曲面 形状の画像21に見える。この曲面形状に歪んだ画像2 1を観察者が長方形に見えるように補正することが必要 になる。この歪形状はスクリーンの形状や曲率、プロジ ェクタや観察者の位置によって大きく変化する。

【0006】図17(c)は、1つの曲面スクリーンに 対し、2つのプロジェクタから投影した映像21-1と 映像21-2との合成画像である。元画像は長方形でそ の拡大された理想的な投影映像21-4が点線で示され ている。この場合、実際の投影画像21-1,2が重な る領域21-3の任意の点21-5は、両方のプロジェ クタからの補正が一致しなければ、点線のような映像2 1-4を得ることができない。このためには、相互に共 通する位置情報を持たなければならず、スクリーンの点 と各プロジェクタでの座標との位置関係が正確に計測さ れることが必要になる。

【0007】本発明の目的は、上記した従来技術の問題 点を克服し、高価なカメラを必要とせずに安価に実現で き、かつ、曲面等のスクリーン形状においても高精度に 画像歪を補正できる映像投影装置及びその画像歪補正方 法を提供することにある。また、複数のプロジェクタの 合成画面などにも適用できる画像歪補正方法を提供する ことにある。

[0008]

【課題を解決するための手段】上記目的を達成するため に、光点をスクリーン上に投影する手段と、光点投影手 段の投影する方向を変更する手段と、プロジェクタ画像 と光点の相対位置を計測する手段を設けて、光点とプロ ジェクタの投影映像の相対位置を識別しながら、両者が 一致した位置でのプロジェクタ画像の座標を光点座標に 置き換えることで、曲面を含むスクリーン上の画像歪を 補正できるようにしたものである。

【0009】すなわち、本発明は、画像メモリに描画さ れた表示画像をプロジェクタによって平面または曲面の スクリーンに投影する映像投影装置の歪補正方法におい て、スクリーンの理想視点またはその近傍に配置した投 光装置から前記スクリーンの投影位置を変えながら投影 した光点と、前記プロジェクタから前記スクリーンに投 影した計測用表示画像をカメラにより撮影して取り込 み、この入力画像上で前記光点と前記計測用表示画像の 相対位置を計測し、前記相対位置を移動しながら前記光 点と前記計測用表示画像間が所定内接近をしたと判定さ れるとき、前記画像メモリ上での前記計測用表示画像の 画素座標を前記入力画像上における前記光点の座標によ って置換する変換パラメータを設定することを特徴とす る。

【0010】前記計測用画像の一形態は点画像である。 あるいは、画像を表示していない表示範囲である。前記 所定内接近は、前記光点と前記計測用表示画像の最接近 または表示限界(1画素または1ドットの表示限界)を

最適値とする。

【0011】また、本発明では、カメラの拡大機能を利 用してスクリーンの投影画像を取り込み、この拡大入力 画像上で前記所定内接近を判定する。これによれば、安 価なカメラを使用して、精度の高い歪補正ができる。

【0012】さらに、本発明では、スクリーンに複数の プロジェクタによる合成映像を投影する場合に、各プロ ジェクタの投影領域の重複領域に前記光点を投影し、こ の光点による前記変換パラメータを重複するプロジェク タ毎に設定する。これによれば、重複部が滑らかな品質 の良い合成画像が得られる。

[0013]

【発明の実施の形態】以下、本発明の実施例を図1~図 5を用いて説明する。図1は、本発明の一実施例となる 映像投影装置の構成を示している。映像投影制御装置 1 は、主演算装置CPU11を有し、パソコン(PC)で 構成される。グラフィックスボード12、画像変形回路 13、キャプチャボード14及び雲台制御回路15は、 システムバス16によりCPU11と接続されている。 グラフィックスボード12はVGAフォーマット(64 0画素×480画素)のRGBアナログ信号を出力す る。RGBアナログ出力は画像変形回路13へ入力され る。画像変形回路13はこの入力画像を後述のように座 標変換し、VGAフォーマットのRGBアナログ信号で 出力する。

【0014】プロジェクタ3は画像変形回路のRGBア ナログ信号を受け取り、曲面形状のスクリーン2に映像 を出力する。一般に、曲面のスクリーンは臨場感を高め るのに効果がある。カメラ4は映像信号の取り込みが可 能なITVカメラである。スクリーン2の全面が撮影で きるところに設置し、スクリーン2の投影映像を撮影す る。カメラ4の映像信号はキャプチャボード14を介し て映像投影制御装置1に取り込まれる。

【0015】本実施例では、スクリーン2の位置計測の ためにレーザポインタ5が、スクリーン2の映像を見る 人の視点に合わせて設けてある。レーザポインタ5は電 動雲台6に装着されている。雲台6は雲台制御回路15 からの制御により上下左右の首振りが可能で、レーザポ インタ5の光点はスクリーン2上を水平、垂直方向に走 査できる。後述するように、スクリーン2の既知の点に レーザポインタ5の光点を表示し、カメラ4により取り 込んだ光点の位置と、歪画像の対応位置を合わせるよう に座標変換を行うことで、簡単かつ正確な画像歪の補正 が実現できる。

【0016】図2に画像変形回路の構成を示す。画像変 形回路13は歪画像補正の座標変換を行ってプロジェク タ3に出力する。画像変形回路13のCPU131は、 バス I / F 132、内部バス137を介して、制御装置 1のシステムバス16と接続されている。A/D134 はRGBアナログ信号入力をデジタル信号に変換する。

フレームメモリ135は640画素×480画素2面分 のメモリで、ダブルバッファ構成であり、一方のフレー ムバッファがA/D134からの画像データを読み込み 中のとき、他方のフレームバッファはD/A136へ画 像データを出力する。D/A136はデジタルデータを VGAフォーマットのRGBアナログ信号に変換出力す る。

【0017】座標変換パラメータメモリ133は、VG A全画素(640画素×480画素)の1画素ごとに、 座標データメモリを持っている。例えば、入力座標(1 0,15)の画素を出力座標(30,35)の画素に変 換したいときは、座標変換パラメータメモリの出力座標 (30,35)に相当するアドレスに(10,15)を 書き込む。

【0018】 CPU131は座標変換パラメータメモリ 133を参照し、画素に対応する座標のメモリへ出力す るようにフレームメモリ135ヘアドレスを指示する。 例えば、CPU131は出力座標(30,35)の出力 タイミングのとき、座標変換パラメータメモリ133の (30,35)に相当するアドレスから(10,15) の座標データを読み取る。すると、(10,15)の座 標に相当するアドレスをフレームメモリ135に与え、 フレームメモリ135は(10,15)の画素を出力す る。

【0019】次に、上記の実施例による映像投影装置の 画像歪補正の動作を説明する。図3にCPU11に制御 される全体フローを示す。座標変換パラメータ生成(ス テップA)では、レーザポインタ5による基準位置の指 示(光点)、プロジェクタ3から計測用画像の出力、カ メラ4による撮影を行い、CPU11が入力画像上での 光点と計測用画像を用いて位置計測を行いながら、歪補 正の座標変換パラメータを求める。

【0020】座標変換パラメータ書き込み (ステップ B)では、求めた座標変換パラメータ(ここでは、変換 する座標値)を座標変換パラメータメモリ133に書き 込む。映像投影(ステップC)では、CPU11がグラ フィックスボード12に生成した表示画像が、画像変形 回路13で描画、変形され、プロジェクタ3で投影され る。

【0021】図4に座標変換パラメータ生成(ステップ A)の手順を示す。まず、計測の前に座標変換パラメー タメモリ133へ、恒等パラメータの書き込みを行う (A11)。恒等パラメータとは、画像変形回路13の 出力が入力と同じになるパラメータである。例えば、入 力座標(10,15)の画素はそのまま出力座標(1 0,15)の画素になるように画像変形回路13が動作 するパラメータである。なお、恒等パラメータの書き込 みを行わずに、グラフィックスボード12の出力信号を 直接プロジェクタ3へ入力する方法がある。

【0022】次に、レーザポインタ5でスクリーン2の

基準位置を指示する(A12)。基準位置はスクリーン 2の基準となる点、一般的にはスクリーン2の中心であ る。この基準位置にレーザポインタ5の光点が当たるよ うに、レーザポインタラを理想視点(例えば、球面のス クリーン場合に視線が球面中心を通る)に向けて配置し

【0023】次に、プロジェクタ3から位置計測のため の計測用画像を投影して位置計測を行う(A13)。図 5に、このときのスクリーン状態を示す。曲面のスクリ ーン2には、プロジェクタ3による投影領域21が本来 の長方形から歪曲した表示領域となる。この投影領域2 1にレーザポインタ5の光点211 (黒点)と、プロジ ェクタ3からの計測用画像である点画像212(白点) が表示されている。

【0024】そこで、レーザポインタ5の光点が指示す る基準位置はプロジェクタ3の画素座標のどの画素に当 るか(即ち、座標変換パラメータ)を後述のように計測 する。1つの指示位置の計測が終わると、全ての計測位 置が終了するまで(A14)、次の計測位置へレーザポ インタ5の角度を移動する(A15)。計測位置の移動 は、雲台制御回路15から雲台6の動作角度で指示さ れ、上下左右に等角度間隔でマトリックス状に走査され る。プロジェクタ3の全表示画素についての直接計測を 行わなかった場合、スプライン関数などを用いて縦方向 横方向それぞれの計測点同士のデータが滑らかにつなが るように補間する(A16)。

【0025】図6に位置計測の詳細な手順を示す。この 処理は主としてCPU11が行う。まずグラフィックボ ード12の画像中心位置(x,y)=(320,240)に点画像21 2を描画する。背景は黒、点画像212は白である。グ ラフィックスボード12に描画されたデータは、画像変 形回路13にアナログ信号で入力される。上述のよう に、画像変形回路13には恒等パラメータが書き込まれ ているので、入力と同じ画像が出力され、プロジェクタ 3から投影される(A131-1)。

【0026】次に、スクリーン2の投影映像をカメラ4 を介して取り込む。キャプチャボード14上の入力画像 は黒背景に、レーザポインタ5が示す点211とプロジ ェクタ3が投影した点画像212を描画している。この 入力画像に対して画像認識を行い、2つの点211,2 12の間の距離を計測し、これをLとする(A131-2).

【0027】図7に、フレームメモリの描画画像とカメ ラによる入力画像のイメージ図を示す。(a)はグラフ ィックスボード12に書き込まれ、フレームメモリ13 5に描画された画像で、座標(x,y)の画素に点画像2 12が描画されている。また、黒色で示す隣接画素はそ れぞれ座標(x-1,y)、(x+1,y)、(x,y-1)、(x,y+1)で、光点211に近い位置を探索するときの候補点であ る。

【0028】(b)はスクリーン2の投影映像をカメラ 4で取り込んだキャプチャボード14上の入力画像で、 光点211と座標(x,y)の点画像212が描画され、 この2点間の距離Lが算出される。また、4つの×点画 像212-1~4は、それぞれ(a)の隣接画素(x-1, y)、(x+1,y)、(x,y-1)、(x,y+1)に相当する仮想点で ある。このように、フレームメモリ上の隣接画素は、ス クリーン上では各×点のように歪んで描画される。

【0029】次に、グラフィックスボード12の画像を クリアした後、点画像212を(x-1,y)に描画する(A 132-1)。前回と同様に2つの点の間の距離を計測 する。これをMとする(A132-2)。レーザポイン タ5の点121に対して前回(x,y)のLより今回(x-1,y) のMが近ければ(A132-3)、これを新しい(x, y)、Lにして、ステップA132-1からの処理をL≦ Mになるまで繰り返す(A132-4)。

【0030】図8にステップA132の説明図を示す。 図7と同様のイメージで、点画像212を座標(x-1,y) に移動し、これによる点画像212-1と光点211の 距離Mが算出される。もし、距離Mが距離しより小さけ れば点画像212は光点211に近づいている。そこ で、x-1⇒x、M⇒Lに更新して、点画像212をさら に座標(x-1,y)に(画面左方向)移動して、上記処理を 繰り返す。図示の例では、光点211が最初の表示画素 点画像212のxより+側にあるので、最初に求めたM がすでにLより大きくなり、処理はステップA133に シフトされる。

【0031】ステップA133では、点画像212を(x +1,y)に描画して、ステップA132と同様の処理を繰 返し、(x,y)、Lを更新しながら、L≤Mになるまで繰 り返す。図9のように、この例では点画像212-2が 光点211のxとほぼ一致するまで繰り返される。

【0032】同様にして、ステップA134では(x,y-1)から、ステップA135では(x,y+1)からの処理を繰 返す。この例では、図10のように、yの負方向(画面 上方)に向かう処理は光点211から遠ざかるので直ち に打ち切られる。一方、図11のように yの正方向に向 かうとき、やがて点画像212は光点211に最接近す る。この最接近したときに、フレームメモリ135にお ける点画像212の座標(x,y)に対する入力画像に おける光点211の座標(X,Y)を、座標変換パラメ ータメモリ133に記憶する。そして、フレームメモリ 135の座標(x,y)の画素を出力するとき、座標 (X, Y)の画素として出力するように座標変換すれ ば、スクリーンの光点と一致する画像補正が実現でき る。

【0033】ここで、図6におけるA33、A134及 びA135で繰返しがA132の先頭から行われるのは 次の理由による。スクリーン2が平面でない場合は、光 点211に対して点画像212をx方向またはy方向に

接近させても、必ずしも両点間の距離を短縮していない ことがある。このことは、例えば、地球をメルカトル図 法で表わした地図での距離誤差を考えると容易に理解で きるであろう。ただし、円筒面などのように、例えば一 方が2次元変化となるとき、その方向から目標点に接近 する場合には必ず両点間の距離も短縮するので、最初か らの繰返しを必要としない。

【0034】以上の処理を、光点による基準位置をスク リーン上の全面に亘って移動しながら、光点の座標 (X, Y)とフレームメモリ上の画素の座標(x, y) を対応付け、さらに光点間にあるフレームメモリの画素 座標は補間して、フレームメモリの全画素の座標に対応 する光点座標を座標変換パラメータメモリ133に記憶 する。これによれば、使用するスクリーンとプロジェク タとの配置に対して、上記の座標変換パラメータを求め ておけば、曲面など任意の形状のスクリーンの投影歪に 対して、簡単かつ正確な歪補正が実現できる。

【0035】本実施例では、光点の投影方向を制御する ために雲台を用いているが、代わりに可動ミラーを用い ても同様な効果が得られる。また、手動回転でも実施で き、このときは、測定者がレーザポインタの基準位置に 対して上下方向、左右方向何度回転したかを制御装置本 体1へ入力する。また、本実施例では、映像全体の幾何 的な変形パラメータの検出を行っているが、人間の目か ら変形がよくわかる投影映像の外形測定のときだけ本方 式を適用してもよい。

【0036】次に、本実施例の変形例を説明する。上記 実施例で、カメラ4の解像度が低い場合は、図12

(a) のようにスクリーン 2上の光点 121と投影画像 点122とが少しずれていても、(b)のように入力画 像140上の画像認識で同一点とみなしてしまう。そこ で、カメラの拡大機能を利用して位置計測の精度を向上 する。

【0037】図13に、カメラの拡大機能を利用する位 置計測方法の手順を示す。本例では図6のA131~A 135の計測手順の後に、A136の手順が追加されて いる。即ち、拡大前のカメラ画像による光点211と表 示画素212の最接近した測定点を求めた後に、カメラ 4が拡大可能かをチエックする(A136-1)。拡大 可能であれば、ステップA135での同一点とみなされ た測定点を拡大撮影する(A136-2)。そして、こ の拡大撮影した入力画像上で光点211と表示画素21 2の距離しを求め、この距離しと表示画素212の座標 (x,y)を基にステップA132からの処理を繰り返 す。カメラの最大拡大に達したら処理を終了する。これ によれば、光学的精度の低い安価なカメラを用いても、 精度の良い歪正が可能になる。

【0038】次に、本発明の他の実施例による位置計測 方法を説明する。図14にy方向の位置計測の手順を示 す。まず、表示画像の上下範囲(x方向は左右)をドッ

ト数で設定する(B131)。例えば、y上をy0= 0、y0からの高さyhを全ドット数(yh0=48 0)とする。そして、スクリーン2上の測定したい点に レーザポインタ5を向け、その光点211をカメラ4で 拡大して撮影し、その入力画像におけるレーザポインタ 5の座標(x, y)を読み取る(B132)。

【0039】次に、CPU11からグラフィックスボー ド12、画像変形回路13、プロジェクタ3を介して画 像表示範囲を変更しながら、光点211の表示範囲を以 下のように探索する。まず、y0から高さyh/2(0 ~240ドット)の範囲を表示し(B133)、この表 示範囲に光点211の座標(x₀, y₀)が表示されてい るか判別する(B134)。表示範囲に光点211が含 まれている場合は、ステップB137に移行し、y0は そのままでy高さをyh/2(240ドット)として、 B133に戻る。すると、新たな表示範囲がy0から高 さyh/2(0~240ドット)となる。一方、表示範 囲に光点211が含まれていない場合は、表示範囲のy 上をy0=y0+yh/2とし(B135)、y高さを $yh = yh/2bl(B137), \lambda ry B133c$ 戻る。ただし、更新したy0が表示限界(y0<1ドッ ト)を超えたときは終了する(B136)。

【0040】図15は本例の説明図である。(a)のよ うに、最初の上半分の表示範囲に光点211が含まれて いる。次に、(b)ではy0=0からyh'/2(=y h/4) が表示範囲(0~120ドット) となり、ここ では光点211が含まれない。そこで、 y上を y 0 = y h/4 (前表示範囲のy下)、y高さをyh'=yh/ 2 (= y h/4) とする新たな表示範囲 (120~18) 0ドット)とすると、光点211が含まれている。

【0041】このようにして、表示限界を超える直前ま で絞り込んだ表示範囲のy座標、つまりフレームメモリ でのy座標が光点211のy座標(y゚) に対応する。 同様にしてx方向について絞り込んだ表示範囲のx座標 が求まり、光点211の座標(x_0 , y_0)に対応するフ レームメモリの画素の座標が得られる。本計測方式によ れば、計測用画素212の表示や光点211との距離の 算出が不要となるので、計測処理を高速化できる。

【0042】次に、本発明の更に他の実施例として、複 数のプロジェクタから投影するシステムでの適用例を説 明する。図16は2台のプロジェクタによる合成映像を 示す。スクリーン2に左側のプロジェクタからの投影領 域20-1と、右のプロジェクタからの投影領域20-2が一部重複している。左右のプロジェクタから長方形 の左部、右部を一部重複して表示したとき、理想的な投 影映像20-4が得られるように補正する。

【0043】この重複領域20-3の映像が滑らかに見 えるように、合成画像の輝度が非重複領域との間に格差 を生じないように調節される。すなわち、左のプロジェ クタからの輝度は右にいくほど下がり、右のプロジェク

タからの輝度は左にいくほど下がり、この左右の輝度値 の和が本来の輝度値となる。このため、重複領域では左 右のプロジェクタが同一位置の映像を投影する必要があ り、歪補正のための位置情報を相互に持つことが必要に なる。

【0044】本実施例では、レーザポインタ5で1つの 光点201を重複領域20-3に表示して、まず、左の プロジェクタの画像のみを表示する位置計測によって、 光点201に対応する画素の座標変換パラメータを得 る。この位置計測は、上記した実施例の何れの方式でも よい。次に、右のプロジェクタの画像のみを表示した位 置計測によって、光点201に対応する画素の座標変換 パラメータを得る。この場合、左からの座標変換パラメ ータによる変換先の画素の輝度は上記のように低減され ていて、右からの座標変換パラメータによる同一変換先 の輝度と加算されて表示される。

【0045】本実施例によれば、曲面等のスクリーンに 複数のプロジェクタによる合成映像を表示する場合に、 重複領域での画像位置の歪を補正して輝度の加算を行う ので、違和感のない滑らかな映像を表示することができ

[0046]

【発明の効果】本発明によれば、スクリーン上に理想視 点から投影された光点と、フレームメモリに描画され、 プロジェクタからスクリーンに投影された計測用表示画 像との位置ずれをカメラから取り込んだ入力画像上で計 測し、表示画像を移動して両者が一致したときの光点の 座標で表示画像のフレームメモリ上の画素座標を置き換 えるので、平面はもちろん曲面のスクリーンに対して も、簡単かつ精度よく画像歪を補正できる。

【0047】また、カメラの拡大機能を利用して位置ず れの計測を行うので、安価なカメラでも高精度の歪補正 ができる。

【0048】さらに、映像投影装置が複数のプロジェク タによる場合、スクリーン上の重複領域の同一位置に対 して各々の投影による歪補正を行うので、品質のよい合 成画像を得ることができる。

【図面の簡単な説明】

【図1】本発明の一実施例による映像投影装置の構成 図。

【図2】一実施例による画像変形回路の構成図。

【図3】本発明の一実施例による画像歪補正方法の全体 フロー図。

【図4】一実施例による座標変換パラメータ生成方法の フロー図。

【図5】位置計測の説明図。

【図6】位置計測の詳細手順を示すフロー図。

【図7】位置計測の説明図。

【図8】位置計測の過程の説明図。

【図9】位置計測の過程の説明図。

- 【図10】位置計測の過程の説明図。
- 【図11】位置計測の過程の説明図。
- 【図12】拡大撮影の必要性を示す説明図。
- 【図13】拡大撮影の入力画像を利用する位置計測のフロー図。
- 【図14】他の実施例による位置計測のフロー図。
- 【図15】他の実施例による位置計測の説明図。
- 【図16】複数のプロジェクタを用いる画像歪の説明 図。

【図17】従来技術の問題点の説明図。 【符号の説明】

1…画像表示制御装置(PC)、2…スクリーン、3… プロジェクタ、4…カメラ、5…レーザポインタ、6… 雲台、11…CPU、12…グラフイックスボード、1 3…画像変形回路、14…キャプチャボード、15…雲 台制御回路、131…CPU、132…座標変換パラメ ータメモリ、135…フレームメモリ、211…光点、 212…点画像(計測用画像)。

【図2】

図 2

【図1】

図 1

回路

【図3】

【図4】

2 4

【図11】

図 11

【図6】

⊠ 6

【図12】

【図13】

🗵 13

【図15】

【図17】

⊠ 17

