

Servo Kontrolü için Haberleşme Kanalı Tasarımı

Bengü BİLGİÇ & Selahaddin HONİ

İÇERİK

Kavramsal Tasarım

Giriş ve Tasarım Kriterleri Basitleştirilmiş Model Modülasyon Tekniği Donanım/Yazılım

Proje Şeması Teknik Tasarım

Fiziksel Katman GNU Radio'ya Harici Kaynak Bağlamak Data Link ve Network Donanım Senkronizasyonu Diğer

Demo

KAVRAMSAL TASARIM

Giriş Uzaktan servo kontrolü kullanım alanları Arama kurtarma, bomba imha, keşif robotları vb.

Tasarım Kriterleri

Gerçek zamanlı / Minimum Gecikme Gürbüz(Robust) Doğruluk Uzak Mesafelerde çalışmaya uygunluk

Basitleştirilmiş Model

Servo kontrolü için gerekli iki parametre

- Pozisyon
- HIZ

Modülasyon Tekniği

4PAM - 16QAM

- Uzun mesafelerde zayıflama
- İletilecek veri küçük, gereksiz

BPSK – QPSK

- BER oranı düşük
- Sistem karmaşıklığı
- Dolaylı yoldan gecikme az

Donanım / Yazılım

	HackRF			BladeRF			LimeSDR
	One	Ettus B200	Ettus B210	x40	RTL-SDR	LimeSDR	Mini
Frequency Range	1 MHz - 6 GHz	70 MHz - 6 GHz	70 MHz - 6 GHz	300 MHz - 3.8 GHz	22 MHz - 2.2 GHz	100 kHz - 3.8 GHz	10 MHz - 3.5 GHz
RF Bandwidth	20 MHz	61.44 MHz	61.44 MHz	40 MHz	3.2 MHz	61.44 MHz	30.72 MHz
Sample Depth	8 bit	12 bit	12 bit	12 bit	8 bit	12 bit	12 bit
Sample Rate	20 MSPS	61.44 MSPS	61.44 MSPS	40 MSPS	3.2 MSPS	61.44 MSPS	30.72MSPS
TX Channels	1	1	2	1	0	2	1
RX Channels	1	1	2	1	1	2	1
Duplex	Half	Full	Full	Full	N/A	Full	Full
Interface	USB 2.0	USB 3.0	USB 3.0	USB 3.0	USB 2.0	USB 3.0	USB 3.0
Programmable Logic Gates	64 macrocell CPLD	75k	100k	40k (115k avail)	N/A	40k	16K
Chipset	MAX5864, MAX2837, RFFC5072	AD9364	AD9361	LMS6002M	RTL2832U	LMS7002M	LMS7002M
Open Source	Full	Schematic, Firmware	Schematic, Firmware	Schematic, Firmware	No	Full	Full
Oscillator Precision	+/- 20 ppm	+/- 2 ppm	+/- 2 ppm	+/- 1 ppm	?	+/-1 ppm initial, +/-4 ppm stable	+/- 1 ppm initial, +/- 4 ppm stable
Transmit Power	-10 dBm+ (15 dBm @ 2.4 GHz)	10 dBm+	10 dBm+	6 dBm	N/A	max 10 dBm (depending on freq.)	max 10 dBm (depending on freq.)
Price	\$299	\$686	\$1,119	\$420 (\$650)	~\$10	\$299	\$99

LimeSDR Hakkında

Windows Driver
PothosSDR Environment
GNU Radio 3.7 (Python 2.7)
*Linux : File Sink desteği

Arduino UNO

Yaygın geliştirme kartı Sayısız doküman desteği

TEKNIK TASARIM

Fiziksel Katman Tasarımı için GNU Radio Öğrenme Çalışmaları AM Benzetimi

FM Ses Haberleşmesi '446MHz Bilgisayarlar ve Telsiz arasında'

QPSK Benzetimi

BPSK ile metin iletimi

QPSK Benzetimi Blok Tasarımı

QPSK Benzetimi Sonuçları

BPSK Metin İletimi Blok Tasarımı

Verici Zaman Domeni

Verici I-Q Dizilimi

Verici Frekans Domeni

Alıcı I-Q Dizilimi

Alıcı Tarafa Ulaşan Metin

Hatırlatma

Alıcı Bloğu Decoder Bölgesi

TEKNİK TASARIM

BPSK Servo Kontrolü için Fiziksel Katman Tasarımı

TEKNİK TASARIM

GNU Radio'ya Harici Kaynak Bağlamak

1- Message Strobe Mesajlar PMT objesi olarak taşınır Stream yapmak için uygun değil

PMT (Polymorphic Type)
Python ve C++ arası ortak veri tipi objesi
Bir çeşit kodlama gibi

GNU Radio'ya Harici Kaynak Bağlamak


```
★ serial source.py

 1 import numpy as np
 2 from gnuradio import gr
 3 import serial
 5 class blk(gr.sync block):
       def init (self, COM PORT="COM6", BAUD RATE=9600):
           gr.sync_block.__init__(
               self,
               name='Serial Source',
11
               in sig=None,
12
               out sig=[np.int8]
13
14
15
               self.ser = serial.Serial(COM PORT, baudrate=BAUD RATE, timeout=1)
16
17
               print "(!) Baglanti kurulamadi"
18
19
      def work(self, input items, output items):
20
           incomingLine = self.ser.readline()
           output items[0] = np.array([ord(char) for char in incomingLine],
           dtype="int8")
           return len(output items[0])
```

2- Gömülü Python Bloğu

- Varsayılan stream blok çıkışları veri tipi ile aynı çıkış verilmesine rağmen başarısız
- Muhtemel çözüm BLOB (Binary Large Object) kullanılması
- Dokümantasyon yetersiz
- Zaman sınırsız değil

GNU Radio'ya Harici Kaynak Bağlamak

3- Socket Bağlantısı

Pozitif

GNU Radio varsayılan bloklar

Negatif

Varsayılan blokların 'buffer' kontrolü yapılamıyor Arduino direkt UDP bağlantısı yapamıyor UDP için aynı anda yalnızca bir bağlantı

TEKNİK TASARIM

BPSK Servo Kontrolü Vericisi için Data Link ve Network Katman Tasarımı

Serial->UDP Köprüsü

```
ser2udp.py
 1 import socket, serial
 2 from os import system
 3 system("title "+"Serial-to-UDP")
 5 UDP IP = "127.0.0.1"
 6 UDP PORT = 5005
7 COM PORT = 'COM10'
9 print(f"Transfer {COM_PORT} > {UDP_IP} {UDP_PORT}")
11 sock = socket.socket(socket.AF INET, # Internet
12
                          socket.SOCK_DGRAM) # UDP
14 ser = serial.Serial(COM PORT, baudrate=2400, timeout=None)
16 while True:
      MESSAGE = ser.read(21)
17
      sock.sendto(MESSAGE, (UDP IP, UDP PORT))
18
19
       print(MESSAGE)
```

Note Note: TRANSMITTER Packet Encoder **UDP Source** Samples/Symbol: 1 IP Address: 127.0.0.1 Bits/Symbol: 1 Port: 5.005k Preamble: Payload Size: 21 Access Code: Null Pkt is EOF: True Pad for USRP: No Payload Length: 21 Basic Print Block Null Sink

Payload Uzunluğu Seçimi

Büyük olduğunda Arduino Serial Buffer doluyor Ne kadar küçük olmalı?

```
<paramo,param1>
param = [0,1023]
Veri sözcüğü
min: 5 ve max: 11
```

"1023,1023><1023,1023>" 21 byte

Bu sayede, alıcıda ayıklama sırasında kod karmaşıklığı azalıyor. (Arayüz)

TEKNIK TASARIM

Donanım Senkronizasyonu Verici tarafı Baudrate Seçimi

Hızı artırmak I-Q diziliminde gürültüyü azaltırken paketler arası boşluğun azalması Arduino'nun Serial Buffer'ının dolmasına ve ciddi gecikmelere neden olmaktadır.

Sistemdeki en zayıf halkayı Arduino cihazı oluşturmaktadır.

Baudrate: 3200 bps

Baudrate: 4800 bps

TEKNİK TASARIM

BPSK Servo Kontrolü Alıcısı için Data Link ve Network Katman Tasarımı

Alıcı Tarafında Veritabanı Kullanılması

NEDEN:

UDP->Serial (Arduino)

Soket yapısı arayüz için ikinci bir bağlantıya izin vermiyor.

Alıcı Bilgisayar

Servo Kontrolcüsü Arduino Kodu

```
void loop() {
  if (Serial.available()>0) {
    int inChar = Serial.read();
   if (inChar == '<') {</pre>
        delay(80);
        int param0 = Serial.readStringUntil(',').toInt()/100;
        int paraml = Serial.readStringUntil('>').toInt()/100;
        pos = map(param0, 0, 10, 0, 180);
        dly = map(param1, 0, 10, 5, 40);
        Serial.print("P:");
        Serial.print(pos);
        Serial.print("D:");
        Serial.println(dly);
          servo.write(pos);
          delay(dly);
    else{
      delay(1);
```

- Veri ayıklaması yapılmadan önce bir miktar gecikme eklenerek Seri port buffer'ının dolması beklenmelidir.
- Potansiyometreler stabil çalışmadığından pozisyon bilgisinin kuantalanması verimi artırır.

Demo

