

BME473L/474L (Fall 2021): Bicep PPG and Accelerometer Wearable

Team Member Names: Alexander Chen, Joshua Li, Ben Randoing, Nathan Yin

¹Department of Biomedical Engineering, Duke University, Durham, NC, United States. Contact: mark.palmeri@duke.edu

CLINICAL MOTIVATION

- Problem: Current internal temperature sensor needs additional data to improve performance
- Population: High school football athletes in the United States
- Outcome: A robust wearable device that measures and transmits heart rate and motion data in real time

SPECIFICATIONS & CONSTRAINTS

Need	Ideal Spec	Marginal Spec	Competitive Spec
Impact Resistance	Meets IEC 60601-1 Standards 100% of the time (95% confidence interval)	Meets IEC 60601-1 Standards 80% of the time (95% confidence interval)	Meets IEC 60601-1 Standards 100% of the time (95% confidence interval)
Low-cost	Sum Total Cost of All Components to Manufacture Device <= \$100.00	Sum Total Cost of All Components to Manufacture Device <= \$300.00	Sum Total Cost of All Components to Manufacture Device <= \$100.00
Accurate	Polar Heart Rate Sensor Quantity is Within 95% Confidence Intervals of New Heart Rate Sensor	Polar Heart Rate Sensor Quantity is Within 68% Confidence Intervals of New Heart Rate Sensor	Polar Heart Rate Sensor Quantity is Within 95% Confidence Intervals of New Heart Rate Sensor
Compatible with current sensor	Bluetooth connection established with no unwanted connections with no unwanted noise I2C connection established	Bluetooth connection established with minor connection issues and some unwanted noise I2C connection established with wire noise being an issue in rigorous physical activity	Bluetooth connection established with no unwanted connections with no unwanted noise I2C connection established
Long battery life	Have Code Output Battery Life under Most Active Use which must be >= 50% Battery Life after 4 Days	Have Code Output Battery Life under Most Active Use which must be >= 50% Battery Life after 1 Day	Have Code Output Battery Life under Most Active Use which must be >= 50% Battery Life after 2 Days

TESTING ANALYSIS

PPG and Heart Rate Accuracy Testing

Movement	Mean ± 95 % CI of Measured Heart Rate (bpm)			
	Polar Heart Rate H10 Sensor	Wearable Device at Finger	Wearable Device at Bicep	
Walking	81.3 ± 5.0	85.9 ± 26.6	95.2 ± 44.4*	
Jogging	111.7 ± 16.0	100.6 ± 34.6	82.8 ± 67.0*	

Statistical Significance with respect to the H10 Sensor is denoted by an asterisk (*)

LBM Analysis	Cost*	Impact Resistance Testin	
PLA for enclosure	\$20.50	Mean	04.70/
Bicep band	\$0.75	% Survival	91.7%
Internal components	\$59.53	Standard Deviation	11.8%
PCB Milling	\$20.00		
Complete assembly	\$20.00	95% CI	(68.1%,
Total	\$120.78	007001	115.3%)

CONCLUSIONS/FUTURE WORK

Our current prototype is a proof of concept for a wearable device that acquires PPG and accelerometry data at the bicep. This information will complement an existing internal temperature sensing wearable device to reduce the incidence of heat stroke.

Next Steps:

- Reduce enclosure size
- Optimize power consumption to achieve 8 day battery life
- Test PPG accuracy under more rigorous forms of exercise
- Test enclosure impact resistance with more representative impactor
- Establish local flash memory storage when bluetooth connection is lost

ACKNOWLEDGEMENTS

Dr. Ali Roghanizad, Client

Dr. Eric Richardson, *Professor*

Dr. Mark Palmeri, Professor

Matt Brown, BME Teaching Lab Manager

Simba Chidyagwai, BME 474 Teaching Assistant