1)
$$T = \frac{x - y - 8_0}{\sqrt{1 + 1 + 1 + 1}} \sim t_{N_x} + n_y - 2$$
 $S_p^2 \left(\frac{1}{N_x} + \frac{1}{N_y}\right)$
 $S_p^2 = (N_x - 1) S_x^2 + (N_y - 1) S_y^2$
 $N_x + N_y - 2$
 $N_y = N_y = 0 = 8_0 P_1$; $N_x - N_y \neq 0$
 $N_x = 30$
 $N_y = 30$
 $S_z = 0.385$
 S

2)
$$n=15$$
 $o^{2}=9$ $\alpha=0.01$ $Z_{\alpha}=-2.32$
 $M: \mu=100$ $M: \mu=100$ $Z=\frac{\overline{X}-\mu}{\overline{X}}$
 $X(18)=P(xget M.; M: \mu=98)$
 $=P(\frac{\overline{X}-100}{\overline{X}_{15}} < -2.32; \mu=98)$
 $=P(\overline{X}<-2.32/3/\overline{X}_{15})+100; \mu=18)$
 $=P(\overline{X}<-1.80; \overline{X}\sim X(98,\frac{9}{15}))$

2 prorm $[-1.80,98,\frac{3}{15})\simeq 0.60$

Without doing any calculations if $\mu=96$ EM., the probability it will reject H_{0} when H_{0} is false will inerease.

prior:
$$\pi(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\kappa)} e^{-\beta r}$$

which hood: $f(\underline{x}|\lambda) \frac{1}{|1|} = \frac{e^{-r}r^{\alpha}}{x!} = \frac{e^{\alpha r}r^{\alpha \overline{x}}}{|\overline{x}|!}$

posterior: $\pi(\lambda|x) \propto f(\underline{x}|\lambda) \pi(\lambda)$

= $\frac{e^{-nr}r^{\alpha \overline{x}}}{|\overline{x}|!}$

= $e^{-nr}-\rho r \cdot r^{\alpha-1}+n\overline{x}} = \frac{e^{r(n+\rho)}r^{\alpha-1+n\overline{x}}}{|\overline{x}|!}$

= $\lambda|x \sim \beta eta(n\overline{x}+\mu,-nr-\rho r)$