

Announcements

- Homework #10 due Today
- Homework #11 due in one week
- Exam #3 Monday
 - Study Jam
 - Study Topics will be posted
- Read Chapter II Sections I-4

Exam #3 Study Jam Sunday November 17, 2019 12:00 - 4:00 pm GOL 1360 Bring questions

State Machine VHDL in ECTET

- We follow a 3 (+) process model for state machines
 - Synchronizing process
 - Current_state <= next_state
 - Combinational process
 - Sets up the next_state signal
 - Next_state should be the only output from this process
 - Output process(es)
 - Each state machine output should have its own process

State Machine VHDL in ECTET

 Any counters or timers that are needed should also be in their own process

Synchronizing FSM outputs

FSM with unsynchronized outputs

Synchronizing FSM outputs

 This would solve the potential glitch problem

Synchronizing FSM outputs

Solve the problem without delaying

FSM VHDL example

timer done

FSM VHDL example

Enumerated State Type

Synchronizing process

Combinatorial process (next state logic)

FSM VHDL example

Outputs

Simple Glitch

 A simple glitch can occur because not all signals change at the same time due to varying path lengths

Definitions

- Steady-State Behavior
 - Assumes inputs have been stable for a long time
- Transient Behavior
 - Takes into account circuit delays
- Hazards
 - An unintended change in output value
 - The digital circuit is logically correct but the output is incorrect

Static hazards

- Static-I hazard
 - Output was expected to stay high, but glitches low momentarily
- Static-0 hazard
 - Output was expected to stay low but glitches high momentarily
- Causes
 - When a single input has two different paths to the output and the paths are different lengths
 - Each path has a different prop delay

Static Hazard Example

Determine F assuming no prop delay

Static Hazard example

Now add prop delays (assume I unit)

Why do hazards Matter?

- Often the output of one circuit is the input of another
 - Input could be read at a precise moment in time
 - Input could drive clocked logic
 - Output could be controlling logic such as a traffic light

