Matrix Algebra and Optimization for Statistics and Machine Learning

Yiyuan She

Department of Statistics, Florida State University

▶ Some basic decompositions

- A motivation from regression: $\min_{\beta} \|y X\beta\|_2^2$, where $\hat{\beta} = (X^T X)^{-1} X^T y$, when rank(X) = p (and so $n \geq p$)
- ► Ridge regression: $\min_{\beta} \|y X\beta\|_2^2 + \lambda \|\beta\|_2^2$. Here, $\hat{\beta} = (X^TX + \lambda I)^{-1}X^Ty$ (arbitrarily large p)
 - Bias-variance tradeoff: Sacrifice a little bit of bias to reduce the variance significantly
- ▶ Cost of matrix inversion: $\mathcal{O}(p^3)!$
- ▶ In computation, matrix decompositions are very useful

SVD

• Given any $X \in \mathbb{R}^{n \times p}$ and rank(X) = r, we have

$$X = UDV^T$$

where $U \in \mathbb{R}^{n \times r}$: $U^T U = I$, $V \in \mathbb{R}^{p \times r}$: $V^T V$, and $D = \text{diag}\{d_1, \dots, d_r\}$ with $d_1 \geq \dots \geq d_r > 0$.

- $ightharpoonup d_i$: singular values. U, V: orthogonal matrices
- Assume $n \geq p$. We can also write $X = UDV^T$ with $U \in \mathbb{R}^{n \times p}$, $V \in \mathbb{R}^{p \times p}$ and $D = \text{diag}\{d_1, \dots, d_p\}$. Here, V is orthonormal $VV^T = V^TV = I$, $d_1 \geq \dots d_p \geq 0$.

Some intuition

- ▶ Think of X as a linear transformation on a data vector $\alpha \in \mathbb{R}^p$: rotation, scaling (separable), rotation
- ▶ Think of X as a data matrix. With $U = [u_1, \ldots, u_r]$, $V = [v_1, \ldots, v_r]$ and $d_1 \ge \ldots, d_r > 0$, we have

$$X = UDV^{T} = \sum_{k=1}^{r} d_{k} u_{k} v_{k}^{T} = d_{1} u_{1} v_{1}^{T} + \dots + d_{r} u_{r} v_{r}^{T}$$

- Each component is of rank 1. u_k, v_k characterize the coordinate systems, and d_k represent the 'energy'
- ▶ A rank-k truncation leads to **principal component** analysis: $\min_B \|X B\|_F^2$ s.t. $rank(B) \le k$

- $\|X\|_F^2 = \sum x_{ij}^2$
- So $||X||_F^2 = trace(X^T X) = \sum d_i^2$ by SVD.
- ► Separation theorems for singular values of matrices and their applications in multivariate analysis, Rao, Journal of Multivariate Analysis, 362-377, 1979

▶ To visualize V, plot the n data points in \mathbb{R}^p (in an r-dimensional subspace). (U? Plot p columns in \mathbb{R}^n)

Who cares?

- ▶ Low-rank matrix approximation, as shown earlier
- ▶ The **Procrustes** problem for data alignment (assuming $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{n \times q}$, $m \ge q$):

$$\min_{T \in \mathbb{R}^{m \times q}} ||A - B\mathbf{T}^T||_F \text{ s.t. } T^T T = I$$

- $\hat{T} = UV^T$ from the SVD: $A^TB = UDV^T$
 - It is perhaps worth mentioning that $\min_T \|AT B\|_F$ s.t. $T^TT = I$ has **no** explicit-form solution

- A main usage of SVD is to simplify expressions (often due to the cancelations of U^TU, V^TV)
- ► Regression with X of full column rank: $\hat{\beta} = (X^T X)^{-1} X^T y = (V D^{-1} U^T) y$ (pseudoinverse), $\hat{y} = X (X^T X)^{-1} X^T y = U U^T y$ (orthogonal projection)
- ► An interesting result is that the fit in ridge regression/OLS does not rely on V (kernel property)
 - In fact, by **SVD**, $X\hat{\beta} = (XX^T + \lambda I)^{-1}XX^Ty$

Risk of ridge regression

- ▶ As another example, let's calculate the risk $\mathbb{E}[\|X\beta^* X\hat{\beta}\|_2^2]$ of the ridge estimator $\hat{\beta} = (X^TX + \lambda I)^{-1}X^Ty$ under $y = X\beta^* + \epsilon$ (arbitrary p)
- ► First, it is easy to obtain Risk = $||X\beta^* \mathbb{E}[X\hat{\beta}]||_2^2 + Var(X\hat{\beta}) = ||X\beta^* X(X^TX + \lambda I)^{-1}X^TX\beta^*]||_2^2 + Tr\{X(X^TX + \lambda I)^{-1}X^TX(X^TX + \lambda I)^{-1}X^T\}\sigma^2$
- ▶ To simplify this, we apply the skinny (compact) SVD with $V = [v_1, \dots, v_r] \in \mathbb{R}^{p \times r}$, r = rank(X).

Tradeoff

► We get the risk as $||UD\{I - (D^2 + \lambda I)^{-1}D^2\}V^T\beta^*||_2^2 + Tr\{(D^2 + \lambda I)^{-2}D^4\}\sigma^2$ or

$$\sum_{i=1}^{r} \frac{\lambda^{2} d_{i}^{2}}{(d_{i}^{2} + \lambda)^{2}} (v_{i}^{T} \beta^{*})^{2} + \sum_{i=1}^{r} \frac{d_{i}^{4}}{(d_{i}^{2} + \lambda)^{2}} \sigma^{2}$$

- ▶ Bias² is an *increasing* function of λ , while Var is a decreasing function of λ .
- $\lambda \to 0+ \text{ (limit, not } \lambda = 0): 0 + r\sigma^2 = r\sigma^2$
- $\lambda \to +\infty$: $\sum d_i^2 (v_i^T \beta^*)^2 + 0 = ||X\beta^*||_2^2 \text{ (and } \hat{\beta} = 0)$

Effective degrees of freedom

 \triangleright Similarly, at a independent copy y' of y, we can obtain

$$\mathbb{E}[\|y' - X\hat{\beta}\|_2^2] = \mathbb{E}[\|y - X\hat{\beta}\|_2^2] + 2\sigma^2 \sum_{i=1}^r \frac{d_i^2}{(d_i^2 + \lambda)}$$
$$= \mathbb{E}[\text{Trn-Err} + 2\sigma^2 \mathbf{DF}(\lambda)]$$

- ▶ DF = $\sum_{i=1}^{r} \frac{d_i^2}{(d_i^2 + \lambda)} = Tr\{X(X^TX + \lambda I)^{-1}X^T\}$
- If $\lambda = 0$, DF = r

- ▶ Our calculation applies to any p. Note that when X has full rank, r = n or p.
- ► The optimal shrinkage amount is a function of the true signal and the noise level.
- ▶ This suggests the need of data-dependent tuning for ℓ_2

Pseudo-inverse

- ▶ Given any $X \in \mathbb{R}^{n \times p}$, let $X = UDV^T$ be its (compact) SVD where $D \in \mathbb{R}^{r \times r}$ with positive diagonal elements.
- ▶ The Pseudo-inverse or Moore-Penrose inverse of X is defined as $X^+ = VD^{-1}U^T$ (which is **unique**)
 - $X = UDV^T \text{ (any SVD)} \Rightarrow X^+ = VD^+U^T$
 - $X^+ = \lim_{\epsilon \to 0} (X^T X + \epsilon I) X^T = \lim_{\epsilon \to 0} X^T (X X^T + \epsilon I)$
- ▶ When p > n, OLS does not have a unique solution but $(X^TX)^+X^Ty = X^+y$ is the one with minimum ℓ_2 -norm
- ▶ Orthogonal projection on $\mathcal{R}(X)$: $X(X^TX)^+X^T$ (UU^T)

- ▶ The SVD definition of MP inverse is perhaps easier than the standard definition: $XX^+X = X$, $X^+XX^+ = X^+$, $(XX^+)^T = XX^+$, $(X^+X)^T = X^+X$
- ► The MP inverse has many properties (not shown here). The SVD perspective helps to derive all of them.
- ▶ MP inverse is just an example of generalized inverses

- ▶ There are other forms in addition to the skinny SVD.
- ▶ For example, when $n \ge p$ (WLOG), most software packages will deliver orthonormal U and V. (D?)
- \triangleright Once the SVD is available, inverting (D) is "effortless"
- ▶ But calculating the SVD is expensive
 - $\mathcal{O}(np^2 + p^3)$
- ▶ We will introduce some related decompositions

Spectral decomposition

- ▶ If X is symmetric $(X^T = X, \text{ and so } n = p)$, the SVD becomes the spectral decomposition: $X = UDU^T$.
- ightharpoonup D provides all eigenvalues of X. U: orthonormal.
- From the SVD $X = UDV^T \in \mathbb{R}^{n \times p}$, $XX^T = UD^2U$ and $X^TX = VD^2V^T$. [What does this imply?]
- ► A square matrix does not have to be symmetric to be diagonalizable

Diagonalizable

▶ Given $X \in \mathbb{R}^{n \times n}$, there exists a nonsingular matrix $A = [\alpha_1, \dots, \alpha_n] \in \mathbb{R}^{n \times n}$ such that

$$X = ADA^{-1}$$

- ightharpoonup A is not necessarily unitary, and X may not be symmetric.
- From XA = AD or $X\alpha_i = d_i\alpha_i, \ 1 \le i \le n, \ \alpha_i$ are eigenvalues of X.

Largest singular value vs. largest eigenvalue

- ▶ Let $X \in \mathbb{R}^{n \times n}$. Its largest singular value d_1 defines the spectral norm $||X||_2$.
- Let $\lambda_1, \dots, \lambda_n$ be its eigenvalues (real or complex). The spectral radius of X is defined as $\max_{1 \le i \le n} |\lambda_i|$
- ▶ Although they are equal in the symmetric case, in general they are not.
- ▶ $\rho(X) \le ||X||$ (and $||X||_2$ is not a bad bound)

- ▶ Assume multiple time series $x_t \in \mathbb{R}^p$, $0 \le t \le T$.
- ► The simplest model might be the first order vector autoregression (VAR): $x_t|x_{t-1} \sim \mathcal{N}(Ax_{t-1}, \sigma^2 I)$.
- \blacktriangleright For large p, a sparse A is desired (Granger causality)
- ▶ Stationarity of the system is guaranteed by $\rho(A) < 1$.
- ▶ With a **convex** relation, we can formulate a problem

$$\min_{B \in \mathbb{R}^{p \times p}} \sum_{t=1}^{T} \|x_t - Ax_{t-1}\|_2^2 + \lambda \|A\|_1 \text{ s.t. } \|A\|_2 \le 1$$

100 1 100 1

(a) Pre-Great Moderation

(b) Post-Great Moderation

- ▶ Pre-Great Moderation
 - Gross private domestic investment indices (Serven, 1992)
- ▶ Post-Great Moderation
 - GDP255: real personal consumption expenditure. GDP275-3: energy goods price index (Jorgenson & Wilcoxen 1990, Halkos & Tzeremes, 2011)

- ▶ There are similar concerns in recurrent neural networks
- ▶ On the difficulty of training recurrent neural networks Pascanu, Mikolov & Bengio, *Proceedings of the 30th International Conference on Machine Learning*, 28(3): 1310-1318, 2013.

QR factorization

- ▶ Let's turn to another popular decomposition that is more efficient than SVD.
- ▶ Any $X \in \mathbb{R}^{n \times p}$ of full column rank can be factorized as

$$X = QR$$

- ▶ Here, $n \ge p$, $Q \in \mathbb{R}^{n \times p}$ is orthogonal, and R is upper triangular with nonzero diagonal elements.
- ▶ $Q\alpha$ and $Q^T\beta$ can be efficiently computed, and inverting R (or R^T) is easy [Why?]
- Regression: $\hat{\beta} = (R^T Q^T Q R)^{-1} R^T Q^T y = R^{-1} Q^T y$

- ▶ QR can be obtained efficiently
 - Householder reflections, Givens rotations, or Grand-Schmidt orthogonalization (modified)
- Cost: $2np^2 (2/3)p^3$
- ▶ QR cannot exploit sparsity well

LU factorization

▶ Any $X \in \mathbb{R}^{n \times p}$ of full column rank can be factored as

$$X = PLU$$

- ▶ P: a permutation matrix, $L \in \mathbb{R}^{n \times p}$: unit lower triangular, $U \in \mathbb{R}^{p \times p}$: upper triangular & nonsingular
- ▶ [Sometimes, to exploit the sparsity of X, we permute its columns as well (full pivoting)—X = PLUQ]
- ► Computation: Gaussian elimination (with pivoting)
- Cost: $(2/3)p^3 + p^2(n-p)$ flops

Cholesky factorization

- ▶ Also known as a symmetric LU factorization.
- ▶ Suppose $\Sigma \in \mathbb{R}^{p \times p}$ is symmetric and positive definite
 - Let $\Sigma = X^T X$ and X = QR. What can you see?
- ▶ Σ can be factored as $\Sigma = LL^T (= R^T R)$ for some lower-triangular L with positive diagonal elements
- Cost: $(1/3)p^3$ flops
 - Again, for a sparse Σ , we can permute its rows and columns to save computational cost $(P\Sigma P^T = LL^T)$
- ▶ The Cholesky factor R is often a good substitute for the square root $X^{1/2} = UD^{1/2}U^T$ in computation

Example: multivariate Gaussian designs

- ▶ Model: $X = [\tilde{x}_1, \dots, \tilde{x}_n]^T$ with \tilde{x}_i i.i.d. $\sim \mathcal{N}(0, \Sigma)$. Equivalently, we can write $\text{vec}(X) \sim \mathcal{N}(0, \Sigma \otimes I)$
- ▶ Generate Z with i.i.d. $\mathcal{N}(0,1)$ elements. Construct $X = Z\Sigma^{1/2}$, or preferably X = ZR where $R^TR = \Sigma$
- ▶ Cholesky factors can also be used to sphere the data
- ▶ Given the data matrix X, learning Σ is an important intriguing topic

Latent variable graphical model

- Assume $\tilde{x}_i \sim \mathcal{N}(0, \Sigma_{p \times p})$ and let $X = [\tilde{x}_1^T, \dots, \tilde{x}_n^T]^T$.
- ► This gives a pretty challenging problem when $p^2 \gg n$. A popular assumption in Gaussian graph learning is that $\Sigma^{-1} =: \Omega$, the concentration matrix, is sparse.
 - Meaning: $\Omega_{j,j'} = 0 \Leftrightarrow j \perp j'$ given the rest variables
- From the loss $\log \det \Sigma + \langle \Sigma^{-1}, \hat{\Sigma} \rangle$ $(\hat{\Sigma} = \frac{X^T X}{n})$, we get $\min_{\Omega} \log \det \Omega + \langle \Omega, \hat{\Sigma} \rangle + \lambda \|\Omega\|_1 \text{ s.t. } \Omega \succ 0 \text{ (convex!)}$
- ► Conditional independence holds only in the presence of a small number of unobserved <u>missing</u> variables

- Assume $[X,Y] \sim \mathcal{N}(0,\tilde{\Sigma})$ and $\tilde{\Omega} = \tilde{\Sigma}^{-1}$ is sparse.
- ▶ Then what does $\Omega(=\Sigma^{-1})$ correspond to?
- Let $\tilde{\Omega} = \begin{bmatrix} \Omega_X & \Omega_{XY} \\ \Omega_{YX} & \Omega_Y \end{bmatrix}$. Then the Schur complement of Ω_Y gives

$$\Sigma^{-1} = \Omega_X - \Omega_{XY} \Omega_Y^{-1} \Omega_{YX}$$

- $ightharpoonup \Omega_X$ is sparse, and positive definite!
- ▶ $\Omega_{YX}\Omega_Y^{-1}\Omega_{XY}$ is psd and has low rank (e.g., thin Y)

- ▶ Define $S = \Omega_X$, $L = \Omega_{YX}\Omega_Y^{-1}\Omega_{XY}$ so that $\Omega = S L$.
- ► Latent variable graphical model (Chandrasekaran et al 12)

$$\min_{S,L} \langle S - L, \hat{\Sigma} \rangle - \log \det(S - L) + \lambda ||S||_1 + \lambda' tr(L)$$

s.t. $S - L \succ 0, L \succeq 0$

▶ For any A, $tr(A) = \sum \sigma_i(A)$ and so enforces low rank

- ▶ $S L \succ 0, L \succeq 0$ give generalized inequalities
- ▶ We get a **convex** optimization problem owing to the reparametrization and the ℓ_1 -type regularization
- ▶ How to solve the problem?
 - SDP, proximal methods, ADMM, etc.
- ▶ Applications in machine learning and bioinformatics