1. Prove that for any $a, b \in \mathbb{Q}$, there holds

$$||a| - |b|| \le |a - b|.$$

(This is another version of the triangle inequality.)

- 2. Solve the inequalities:
 - (i). $|x-3| \le 6$;
- (ii). $|3x 7| \ge 4$,
- (iii). $|\sin x| \le \frac{1}{2}$.
- 3. Suppose $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ are two Cauchy sequences in \mathbb{Q} . Define

$$c_n = a_n + b_n$$
 for all $n \in \mathbb{N}$.

Prove by definition that $(c_n)_{n\in\mathbb{N}}$ is also a Cauchy sequence in \mathbb{Q} .

4. Let

$$a_n = \frac{1}{n^2} + \frac{1}{n}, \quad n \in \mathbb{N}.$$

Verify by definition that $(a_n)_{n\in\mathbb{N}}$ is a Cauchy sequence in \mathbb{Q} .

- 5. Suppose $(a_n)_{n\in\mathbb{N}}$ is a sequence which converges in \mathbb{Q} to $\frac{1}{100}$. Prove that there exists N>0 such that $a_n>\frac{1}{200}$ for every $n\geq N$.
- 6. Let

$$a_n = (-1)^n.$$

Is $\{a_n\}_{n\in\mathbb{N}}$ a Cauchy sequence in \mathbb{Q} ? Why or why not?