Séquence: 06

Document : TD03 Lycée Dorian

Renaud Costadoat Françoise Puig

La cinématique des mécanismes

Référence S06 - TD03

Compétences Mod2-C10-1: Modèle de solide indéformable

Mod2-C11: Modélisation géométrique et cinématique des mouvements entre so-

lides indéformables

Rés-C1: Loi entrée sortie géométrique et cinématique

Rés-C6: Utilisation d'un solveur ou d'un logiciel multi physique Com1-C1: Différents descripteurs introduits dans le programme

Com2-C4: Outils de communication

Description Lois E/S de fermeture géométrique et cinématique. Simulation du comportement

de modèles. Proposer des lois de commande en fonction d'exigences. Présenter

les modèles acausaux

Système Moby Crea

1 Activité 1 : Détermination de la loi d'entrée/sortie géométrique

L'objectif de cette partie est de déterminer la loi de fermeture géométrique du système Moby Crea et de la comparer avec celle obtenue par extraction de données expérimentales.

- L'angle de rotation du moteur sera appelé θ_m ,
- La distance AC sera appelée y.

Question 1: Déterminer y en fonction de θ_m et des paramètres géométriques du système, en utilisant la loi de fermeture géométrique. Les dimensions seront mesurées sur le système afin d'effectuer l'application numérique.

Question 2: Sur le logiciel *Scilab*, faire varier θ_m de 0 à 6π (a=(0:0.1:6*%pi)). Puis calculer les valeurs de y (t=f(a)). Enfin demander au logiciel de tracer la fonction t = f(a) (plot2d(a,t)).

2 Activité 2 : Détermination de la loi d'entrée/sortie cinématique

Cette partie permettra de déterminer la loi d'entrée à imposer au moteur électrique afin de permettre d'obtenir un déplacement souhaité du bras.

- La vitesse de rotation du moteur sera appelée $\omega_m = \theta_m$,
- La vitesse de rotation du bras sera appelée $v = \dot{y}$.

Question 1 : Déterminer ω_m en fonction de ν et des paramètres géométriques du système, en utilisant la loi de fermeture cinématique. Les dimensions seront mesurées sur le système afin d'effectuer l'application numérique.

3 Activité 3 : Modélisation sur un modeleur 3D

Le logiciel Solidworks va permettre de déterminer les lois d'entrée sortie géométrique et cinématique du système Moby Crea.

Le fichier à ouvrir pour cette étude est le fichier SW/_Moby-Crea. SLDASM.

- La vitesse de rotation du moteur sera appelée $\omega_m = \theta_m$,
- La vitesse de rotation du bras sera appelée $v = \dot{y}$.

Question 1 : Sur Solidworks, paramétrer le Moby Crea sur le logiciel Meca3d afin de pouvoir simuler son comportement.

- Tracer $y = f(\theta_m)$,
- Tracer v = f(t),

4 Activité 4 : Système acausal

Cette partie va permettre d'introduire le modèle « acausal »afin de déterminer si celui qui a été mis en place pour le Moby Crea en est un. Un modèle « acausal »est un modèle qui ne possède pas de lien cause à effet. Il revient à des équations implicites sans ordre entre les variables et sans spécification d'entrée et de sortie.

Question 1 : A la vue de la définition précédente, pensez-vous que ce système puisse être modélisé par un modèle « acausal » ?

Question 2 : Vous effectuerez la liaison entre les activités afin de récupérer les résultats de l'activité 2 pour les utiliser sur Solidworks durant l'activité 3.

Question 3 : Vous montrerez l'influence sur les résultat des dimensions géométriques du système afin de déterminer si leur choix dépend des données cinématiques.

