Christopher J. Miles

http://www.chrisjohnmiles.com/ Physicist and applied mathematician

EDUCATION

Massachusetts Institute of Technology

Cambridge, MA

Batchelor of Science in Physics with a minor in Mechanical Engineering

Sept. 2006 - June. 2010

Email: chris.john.miles@gmail.com

University of Michigan

Ann Arbor, MI Sept. 2012 – Dec 2014

Masters of Science in Applied and Interdisciplinary Mathematics

Ann Anhan M

University of Michigan

Ann Arbor, MI

• Ph.D. in Physics

Sept. 2012 - May 2018

Advisor: Prof. Charles R. Doering

Highlighted Graduate Coursework:

- Physics: Quantum Field Theory, Quantum Mechanics, Electromagnetism, Statistical Mechanics, Complex Adaptive Systems, Fractals and Percolation
- o Scientific computing: Machine Learning, Computer Modeling in Complex Systems, Numerical Methods for Differential Equations, Numerical Linear Algebra
- Applied mathematics: Mathematical Fluid Mechanics, Stochastic Processes, Dynamical Systems and Chaos, Measure Theory, Functional Analysis, Complex Analysis, Asymptotic Analysis

• Udacity: Deep Reinforcement Learning Nanodegree

July 2018 — Present

ACADEMIC RESEARCH EXPERIENCE

University of Michigan: Nucleation in acoustic droplet vaporization

Ann Arbor, MI Spring 2013-July 2016

- $Graduate\ Student\ Research\ Assistant$
 - Investigated the physics of acoustic droplet vaporization (the vaporization of micron-sized droplets by ultrasound) to inform the optimization of this mechanism in its potential chemotherapy applications.
 - Constructed a theoretical model of the acoustic wave-droplet fluid dynamic interaction with the addition of classical nucleation theory to predict a nucleation event.
 - Conducted experiments of ultrasound pulses on a bed of droplets to verify the theoretical prediction of the ultrasonic nucleation pressure threshold.
 - For more information, see article: C. J. Miles, C. R. Doering, O. D. Kripfgans, Nucleation pressure threshold in acoustic droplet vaporization, Journal of Applied Physics 120, 034903, 2016

Woods Hole Oceanographic Institution: Invasion of active matter into a fluid Woods Hole, MA Research Fellow Summer 2016

- Conducted research on an active matter system in collaboration with Prof. Michael Shelley (NYU), Art Evans (UW-Madison), and Prof. Saverio Spagnolie (UW-Madison).
- Modeled the collective motion of many swimming bacteria in a continuum model governed by the Smoluchowski equation.
- Analytically and numerically investigated the nonlinear dynamics of this model under various bacterial configurations.
- For more information, see pre-print article: **C. J. Miles**, Arthur A. Evans, Michael J. Shelley, and Saverio E. Spagnolie, Active matter invasion of a viscous fluid and a no-flow theorem arXiv:1803.05543[cond-mat.soft] (submitted)

University of Michigan: Optimal control of fluid mixing (PhD Thesis)

Ann Arbor, MI

- Computationally and analytically studied a series of optimization problems on fluid mixing.
- o Discovered that diffusion can limit the mixing effectiveness of incompressible flows in some cases.
- For more information, see articles:
 - * C. J. Miles, C. R. Doering, A shell model for optimal mixing, Journal of Nonlinear Science, 2017
 - * C. J. Miles, C. R. Doering, Diffusion-limited mixing by incompressible flows, Nonlinearity, 31, 5, 2018

Data Science and Machine Learning Experience

Santa Fe Institute's Complexity Challenge

Participant September 2017

- I implemented Q-learning in a multi-agent system where many agents are attempting to move across a board mimicking transportation problems.
- Link: http://www.chrisjohnmiles.com/personal_projects/sficc

Michigan Datathon hosted by Citadel and Correlation One Participant

Ann Arbor, MI

November 2017

- Chosen to participate based on selective assessment test.
- Competed with a four-person team against 22 other teams in an intensive seven-hour competition.

University Service

Co-organizer

Complex Systems Advanced Academic Workshop

Ann Arbor, MI

2015-2017

- o Organize biweekly meetings for graduate student talks, journal discussions, and tutorials
- o Organized Introduction to Agent-Based Modeling short course taught by Bill Rand (July 2015)
- o Organized Complex Systems Research Hackathon (September 2016)
- Organized Evolutionary Game Theory short course taught by Carl Simon, Charles Doering, and Christoph Adami (July 2017)

Introduction to Mechanics: Lab. Course	Ann Arbor, MI
Graduate Student Instructor	Fall 2013-Fall 2014
Electromagnetism II	Ann Arbor, MI
Graduate Student Assistant	$Spring \ 2015$
Evolutionary Game Theory Graduate Student Assistant	Ann Arbor, MI Fall 2016
Electromagnetism (Honors)	Ann Arbor, MI
Graduate Student Assistant	$Winter\ 2017$
Theory of Complex Systems Graduate Student Assistant	Ann Arbor, MI Fall 2017
Nonlinear Dynamics and Chaos Graduate Student Assistant	Ann Arbor, MI $Fall\ 2017$
• Evolutionary Game Theory Graduate Student Assistant	Ann Arbor, MI Winter 2018
Agent-based modeling in complex systems Graduate Student Assistant	Ann Arbor, MI Winter 2018

AWARDS AND FELLOWSHIPS

• National Undergraduate Fellowship in Plasma Science and Fusion Technology

Summer 2009

• University of Michigan's Rackham Merit Fellowship

June 2012-Present

• Woods Hole Oceanographic Institute's Geophysical Fluid Dynamics Fellowship

Summer 2016

Computer and Programming Skills

- **Programming**: Experience in Python and Matlab.
- Version control: Experience with Git, Mecurial, Github, and Bitbucket.

Workshops and Conferences

• Control theory short course	Minneapolis, MN, June 2014
\bullet Turbulent transport and mixing workshop - IPAM, UCLA	Los Angeles, CA, October 2014
• APS Meeting Division of Fluid Dynamics	Boston, MA, November 2015
• Extreme events and criticality in fluid mechanics	Toronto, ON, January 2016
• Challenges in non-equilibrium statistical physics and fluid dynamics	Provo, UT, May 2016
• Genetic programming: theory and practice	Ann Arbor, MI, May 2016
• APS Meeting Division of Fluid Dynamics	Portland, OR, November 2016
\bullet Turbulent dissipation, mixing, and predictability workshop	Los Angeles, CA, January 2017
• Santa Fe Institute's Complex Systems Summer School	Santa Fe, NM, June 2017
• APS Meeting Division of Fluid Dynamics	Denver, CO, November 2017
• Dynamics Days 2018	Denver, CO, January 2018
• Fundamental Problems in Active Matter	Aspen, CO, January 2018

Presentations

• Optimal fluid mixing	Ann Arbor, MI, 2014
• Optimization tutorial and fluid mixing	Ann Arbor, MI, 2015
• A shell model for optimal fluid mixing	Ann Arbor, MI, 2015
• Optimal control of a shell model for mixing	Boston, MA, 2015
• A shell model for optimal fluid mixing	Ann Arbor, MI, 2015
• Clusters, confinement, and collisions in active soft matter	Ann Arbor, MI, 2016
• Nucleation pressure threshold in acoustic droplet vaporization	Portland, OR, November 2016
• Unstable self-stretching and stealth invasion of active matter into a fluid	Denver, CO, November 2017

PUBLICATIONS

- L. Bromberg, P. C. Michael, J. V. Minervini, C. J. Miles, Current lead optimization of cryogenic operation at intermediate temperature in Transactions of the cryogenic engineering conference, AIP Conference Proceedings 1218, 577, 2010
- L. Bromberg, P. C. Michael, J. V. Minervini, C. J. Miles, Coolant topology options for high temperature superconducting transmission and distribution systems, in Transactions of the cryogenic engineering conference, AIP Conference Proceedings 1218, 871, 2010
- C. J. Miles, C. R. Doering, O. D. Kripfgans, Nucleation pressure threshold in acoustic droplet vaporization, Journal of Applied Physics 120, 034903, 2016
- C. J. Miles, C. R. Doering, A shell model for optimal mixing, Journal of Nonlinear Science, 2017, https://doi.org/10.1007/s00332-017-9400-7
- C. J. Miles, C. R. Doering, Diffusion-limited mixing by incompressible flows, Nonlinearity, 31, 5, 2018
- C. J. Miles, Arthur A. Evans, Michael J. Shelley, and Saverio E. Spagnolie, Active matter invasion of a viscous fluid and a no-flow theorem arXiv:1803.05543[cond-mat.soft] (submitted)