DTS203TC Design and Analysis of Algorithms

Lecture 2: Growth of Functions

Dr. Qi Chen
School of AI and Advanced Computing

Time Complexity Analysis

- How fast is the algorithm?
 - Depend on the speed of the computer
 - Waste time coding and testing if the algorithm is slow

- How to measure efficiency?
 - Identify some important operations/steps and count how many times these operations/steps needed to executed
 - Number of operations usually expressed in terms of input size n

Time Complexity Analysis

- Suppose:
 - an algorithm takes n^2 comparisons to sort n numbers
 - we need 1 sec to sort 5 numbers (25 comparisons)
- Now, if we can perform 2500 comparisons in 1 sec (100 times speedup), How many numbers we can sort?
 - 50 numbers (10 times more)

Time Complexity Analysis

- The time complexity of Insertion Sort is: $O(n^2)$
 - If we doubled the input size, how much longer would the algorithm take?
 - Roughly 4 times
 - If we trebled the input size, how much longer would it take?
 - Roughly 9 times

Time complexityBig O notation

Which algorithm is the fastest?

• Consider a problem that can be solved by 5 algorithms A_1 , A_2 , A_3 , A_4 , A_5 using different number of operations.

```
 f_1(n) = \log n
```

•
$$f_2(n) = c$$

$$f_3(n) = n^2$$

•
$$f_4(n) = n$$

•
$$f_5(n) = 2^n$$

```
(\log n \ stand \ for \ \log_2 n) (\log_2 2^x = x) (constant)
```


Relative growth rate

Growth of functions

n	$\log n$	\sqrt{n}	n	$n \log n$	n^2	n^3	2^n
2	1	1.4	2	2	4	8	4
4	2	2	4	8	16	64	16
8	3	2.8	8	24	64	512	256
16	4	4	16	64	256	4096	65536
32	5	5.7	32	160	1024	32768	4294967296
64	6	8	64	384	4096	262144	1.84×10^{19}
128	7	11.3	128	896	16384	2097152	3.40×10^{38}
256	8	16	256	2048	65536	16777216	1.16×10^{77}
512	9	22.6	512	4608	262144	134217728	1.34×10^{154}
1024	10	32	1024	10240	1048576	1073741824	

Hierarchy of functions

• We can define a hierarchy of functions each having a greater order of magnitude than its predecessor:

Hierarchy of functions

- When we have a function, we can assign the function to some function in the hierarchy:
 - For example, $f(n) = an^2 + bn + c$ The term with the highest power is an^2 . The growth rate of f(n) is dominated by n^2 .
- This concept is captured by Big-O notation

Big-O notation

• f(n) = O(g(n)): There exists a constant c and n_0 such that $f(n) \le c \times g(n)$ for all $n \ge n_0$

 O-notation provides an asymptotic upper bound on a function

Big-O notation

Examples:

- $2n^3 = O(n^3)$
- $2n^3 + n^2 = O(n^3)$
- $nlogn + n^2 = O(n^2)$
- function on L.H.S and function on R.H.S are said to have the same order of magnitude

Proof of order of magnitude

- Show that $2n^3 + n^2$ is $O(n^3)$
 - Since $n^2 < n^3$ for all n > 1, we have $2n^3 + n^2 \le 2n^3 + n^3 = 3n^3$ for all n > 1.
 - Therefore, by definition $2n^3 + n^2$ is $O(n^3)$. (c = 3, n_0 =1)
- Show that $nlogn + n^2$ is $O(n^2)$
 - Since logn < n for all n > 1, we have $nlogn + n^2 \le n^2 + n^2 = 2n^2$ for all n > 1.
 - Therefore, by definition $nlog n + n^2$ is $O(n^2)$. (c = 2, n_0 =1)

Exercises

- Prove the order magnitude:
 - Show that $n^3 + 3n^2 + 3$ is $O(n^3)$
 - Show that $4n^2 \log n + n^3 + 5n^2 + n$ is $O(n^3)$

Exercises

$$n^3 + 3n^2 + 3$$

- $3n^2 \le n^3 \quad \forall n \ge 3$
- $3 \le n^3 \quad \forall n \ge 2$
- $\implies n^3 + 3n^2 + 3 \le 3n^3 \quad \forall n \ge 3$

$-4n^2 log n + n^3 + 5n^2 + n$

- $4n^2 log n \le 4n^3 \quad \forall n \ge 1$
- $5n^2 \le n^3 \quad \forall n \ge 5$
- $n \le n^3 \quad \forall n \ge 1$
- $\Rightarrow 4n^2 \log n + n^3 + 5n^2 + n \le 7n^3 \quad \forall n \ge 5$

c and n_0 could be different when proving the order of magnitude

Ω -notation

• $f(n) = \Omega(g(n))$: There exists a constant c and n_0 such that $c \times g(n) \le f(n)$ for all $n \ge n_0$

lacksquare Ω -notation provides an asymptotic lower bound.

Θ-notation

• $f(n) = \Theta(g(n))$: There exists constant c_1, c_2 and n_0 such that $c_1 \times g(n) \le f(n) \le c_2 \times g(n)$ for all $n \ge n_0$

 Θ notation provides an asymptotically tight bound

Asymptotic Notations

- Since O-notation describes an upper bound, we usually use it to bound the worst-case running time of an algorithm.
 - $O(n^2)$ bound on worst-case running time of insertion sort also applies to its running time on every input.
 - The $\Theta(n^2)$ bound on the worst-case running time of insertion sort, does not imply $\Theta(n^2)$ bound on the running time of insertion sort on every input. Best-case insertion sort runs in $\Theta(n)$ time.
 - $n = O(n^2)$, BUT O-notation informally describing asymptotically tight upper bounds

Exercises

Write the computation complexity directly:

$$n^3 + 3n^2 + 3$$

 $O(n^3)$

$$-4n^2 \log n + n^3 + 5n^2 + n$$

 $O(n^3)$

$$-2n^2 + n^2 \log n$$

O(n² log n)

$$-6n^2 + 2^n$$

 $O(2^n)$

```
for (i=0;i<n;i++)
{
    stmt
    O(?)
}</pre>
```



```
for (i=n;i>0;i--)
{
    stmt
    O(?)
}
```



```
for (i=0;i<n;i=i+2)
{
    stmt
    O(?)
}</pre>
```



```
for (i=0;i<n;i++)
{
    stmt
}
for (j=0;j<n;j++)
{
    stmt
}
O(n)</pre>
```


$$O(\sqrt{n})$$


```
for (i=1;i<n;i=i*2)
{
    stmt
}</pre>
```

```
0(?)
```

O(logn)


```
k=0
for (i=1;i<n;i=i*2)
    k++;
for (j=1; j< k; j=j*2)
    stmt
```

```
O(?)
O(logn)
```



```
for (i=0;i<n;i++)
   for (j=1;j<n;j=j*2)
      stmt
                           0(?)
                           O(nlogn)
```


Some algorithms we learnt

```
INSERTION-SORT(A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1..j-1].

4 i = j-1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i-1

8 A[i+1] = key

O(n<sup>2</sup>)
```


Some algorithms we learnt

```
for i = 1 to n-1:
    min = i
    for j = i+1 to n do
        if a[j] < a[min]
            min = j
    swap a[i] and a[min]</pre>
```

0(?)

 $O(n^2)$

Searching

■ Input: n numbers a_1 , a_2 , ..., a_n and a number X

Output: determine if X is in the sequence or not

Sequential search

34

12 34 2 9 7 5
12 34 2 9 7 5
12 34 2 9 7 5
12 34 2 9 7 5
12 34 2 9 7 5
7

To find 7

found!

5

Sequential search

1210	34	2	9	7	5	To find 10
1 2	34 10	2	9	7	5	
1 2	34	2 10	9	7	5	
1 2	34	2	9 10	7	5	
1 2	34	2	9	7 10	5	
1 2	34	2	9	7	5 10	not found!

Sequential search

```
i = 1
found = false
while (i<=n && found==false)
     if X == a[i] then
            found = true
      else
            i = i+1
```

Best case: X is 1st no. \Rightarrow 1 comparison \Rightarrow O(1)

Worst case: X is last OR X is not found \Rightarrow n comparisons \Rightarrow O(n)

How to improve Searching?

Time complexity of Sequential searching is O(n).

If a sorted array is given, can we improve the time complexity?

Binary search

■ Input: a sequence of n sorted numbers a_1 , a_2 , ..., a_n in ascending order and a number X

Idea of algorithm:

- compare X with number in the middle
- then focus on only the first half or the second half (depend on whether X is smaller or greater than the middle number)
- reduce the amount of numbers to be searched by half

Binary Search

To find 24

3	7	11	12	15 24	19	24	33	41	55
					19	24	33 24	41	55
					19	24			

24 24

found!

Binary Search

To find 30

3	7	11	12	15 30	19	24	33	41	55
					19	24	33 30	41	55

19 2430

24 30

not found!

Binary Search – Pseudo Code

```
first = 1, last = n, found = false
while (first <= last && found == false)
      mid = \lfloor (first + last)/2 \rfloor
      if (X == a[mid])
           found = true
      else
           if (X < a[mid])
                last = mid-1
         else
               first = mid+1
if (found == true)
      report "Found"
else
      report "Not Found"
```

Xi'an Jiaotong-Liverpool Universit 西文を12の海大場 Best case: X is the number in the middle \Rightarrow 1 comparison \Rightarrow O(1)

Worst case: at most (logn+1) comparisons \Rightarrow O(logn)

Why? Every comparison reduces the amount of numbers by at least half E.g., $16 \Rightarrow 8 \Rightarrow 4 \Rightarrow 2 \Rightarrow 1$

Learning outcomes

Understand asymptotic complexity and notation

Carry out simple asymptotic analysis of algorithms

