アーベル群の指数 n の部分群の個数

真中遥道 @GirlwithAHigoi

最終更新: 2023年8月27日

本稿の内容

院試勉強をしているときに次のようなタイプの問題に出会った.

問題 1

アーベル群 G の指数 n の部分群の個数を求めよ.

本稿ではこのタイプの解法を解説する. 順番に一般性を上げて解法への理解を深める. なお, ${
m sHom}(G,H)$ で全射準同型 $G\to H$ 全体の集合を表す.

n=2 の場合

まず n=2 のときを考えよう. $K\subseteq G$ が指数 2 の部分群であるとき,G の可換性から K は正規部分群であり G/K が位数 2 の群,つまり $\mathbb{Z}/2\mathbb{Z}$ と同型になる.逆に部分群 K が $G/K\cong \mathbb{Z}/2\mathbb{Z}$ を満たしているなら,K は指数 2 の部分群になる.

$$K \leq G$$
 かつ $(G:K) = 2 \iff K \leq G$ かつ $G/K \cong \mathbb{Z}/2\mathbb{Z}$.

よって $G/K\cong \mathbb{Z}/2\mathbb{Z}$ なる部分群の個数を調べれば良い.このような K として思い浮かぶのが全射準同型 $\phi:G\to\mathbb{Z}/2\mathbb{Z}$ の核 $\ker\phi$ である.実際, $\phi:G\to\mathbb{Z}/2\mathbb{Z}$ が全射準同型なら準同型定理より $G/\ker\phi\cong\mathbb{Z}/2\mathbb{Z}$ である.

 $\phi:G \to \mathbb{Z}/2\mathbb{Z}$ が全射準同型 \Longrightarrow $\operatorname{Ker} \phi \unlhd G$ かつ $G/\operatorname{Ker} \phi \cong \mathbb{Z}/2\mathbb{Z}$.

では逆に,任意の指数 2 の部分群 K はある全射準同型 $\phi:G\to \mathbb{Z}/2\mathbb{Z}$ の核となるだろうか.答えは Yes であり,以下の命題が成立する.

- 命題 2. 一

任意のアーベル群Gについて以下が成り立つ.

 $\{K \mid K \text{ は } G \text{ の指数 2 の部分群 }\} = \{\operatorname{Ker} \phi \mid \phi \in \operatorname{sHom}(G, \mathbb{Z}/2\mathbb{Z})\}$

証明. $\phi: G \to \mathbb{Z}/2\mathbb{Z}$ が全射準同型なら、準同型定理より $G/\ker \phi \cong \mathbb{Z}/2\mathbb{Z}$ ゆえ、 $\ker \phi$ は G の指数 2 の部分群になる.逆に K が G の指数 2 の部分群であれば同型 $\psi: G/K \to \mathbb{Z}/2\mathbb{Z}$ が存在し、これと射影 $\pi: G \to G/K$ との合成 $\psi \circ \pi$ を ϕ とすれば $K = \ker \phi$ となる.

次に核と全射準同型の対応について考えよう. $x \in G \setminus \operatorname{Ker} \phi$ なら $\phi(x) = \overline{1}$ ゆえ, $\phi, \psi \in \operatorname{SHom}(G, \mathbb{Z}/2\mathbb{Z})$ について、 $\operatorname{Ker} \phi = \operatorname{Ker} \psi = K \implies \phi|_K = \psi|_K$ かつ $\phi|_{G \setminus K} = \psi|_{G \setminus K} \implies \phi = \psi$ である. もちろん $\phi = \psi \implies \operatorname{Ker} \phi = \operatorname{Ker} \psi$ でもある. よって

$$\#\{\operatorname{Ker} \phi \mid \phi \in \operatorname{sHom}(G, \mathbb{Z}/2\mathbb{Z})\} = \#\operatorname{sHom}(G, H)$$

なので、結局全射準同型 $\phi:G\to \mathbb{Z}/2\mathbb{Z}$ の個数を数え上げれば良いと分かる.これを踏まえて次の問題を考えてみよう.

- 演習 3. —

- 1. ℤ の指数 2 の部分群を求めよ.
- $2. \mathbb{Z}^2$ の指数 2 の部分群を求めよ.

(解答)

- 1. 全射準同型 $\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ の個数を数えれば良い. \mathbb{Z} は 1 で自由に生成されるので,全射準同型は $\phi(1)=\overline{1}$ なるもののみ. よって \mathbb{Z} の指数 2 の部分群は 1 つ.
- 2. 全射準同型 $\mathbb{Z}^2 \to \mathbb{Z}/2\mathbb{Z}$ の個数を数えれば良い. \mathbb{Z}^2 は (1,0),(0,1) で自由に生成されるので,準同型はこれらの像を自由に定めることで決定される. 像の選択肢は $\overline{0},\overline{1}$ の二つがあり,(1,0),(0,1) を共に $\overline{0}$ に写す場合のみ全射とならない. よって全射準同型は 3 つあり,したがって \mathbb{Z}^2 の指数 2 の部分群は 3 つ.

n=p の場合

p を素数とし,n=p の場合について考える.部分群 K の指数が p であるとは, $G/K\cong \mathbb{Z}/p\mathbb{Z}$ であることである.n=2 のときの命題 2 と同様に以下が成り立つ.

- 命題 4. -

任意のアーベル群Gについて以下が成り立つ.

 $\{K \mid K \text{ は } G \text{ の指数 } p \text{ の部分群 }\} = \{\operatorname{Ker} \phi \mid \phi \in \operatorname{sHom}(G, \mathbb{Z}/p\mathbb{Z})\}$

証明. $\phi: G \to \mathbb{Z}/p\mathbb{Z}$ が全射準同型なら、準同型定理より $G/\ker \phi \cong \mathbb{Z}/p\mathbb{Z}$ ゆえ、 $\ker \phi$ は G の指数 p の部分群になる.逆に K が G の指数 p の部分群であれば同型 $\psi: G/K \to \mathbb{Z}/p\mathbb{Z}$ が存在し、これと射影 $\pi: G \to G/K$ との合成 $\psi \circ \pi$ を ϕ とすれば $K = \ker \phi$ となる.

ここからが $n \neq 2$ のときに気をつけなければならない箇所である. n=2 のときは $\operatorname{Ker} \phi = \operatorname{Ker} \psi \iff \phi = \psi$ だったので全射準同型の核と全射準同型に一対一対応があった. しかし一般に

はこれは成り立たない. 実際 ϕ, ψ を

$$\phi: \mathbb{Z}/6\mathbb{Z} \ni \overline{1} \mapsto \overline{1} \in \mathbb{Z}/3\mathbb{Z},$$
$$\psi: \mathbb{Z}/6\mathbb{Z} \ni \overline{1} \mapsto \overline{2} \in \mathbb{Z}/3\mathbb{Z}$$

とすると $\phi \neq \psi$ だが $\operatorname{Ker} \phi = \operatorname{Ker} \psi = 3\mathbb{Z}/6\mathbb{Z}$ である. すなわち命題 4 の右辺を直ちには $\mathbb{Z}/p\mathbb{Z}$ への全射準同型に帰着できないのである. ここで救世主のように次の命題がある.

命題 5.

G, H をアーベル群とする. $\mathrm{sHom}(G, H)$ に

$$\phi \sim \psi : \iff$$
 ある $\sigma \in \operatorname{Aut}(H)$ が存在し $\sigma \circ \phi = \psi$.

と同値関係を定めると,

$$\operatorname{Ker} \phi = \operatorname{Ker} \psi \iff \phi \sim \psi$$

であり、各同値類の位数は $\# \operatorname{Aut}(H)$.

証明. $\operatorname{Ker} \phi = \operatorname{Ker} \psi \iff \phi \sim \psi$ について、 \iff は明らかである。 \implies を示す。 $K = \operatorname{Ker} \phi = \operatorname{Ker} \psi$ とおくと、準同型定理より同型 $\overline{\phi}, \overline{\psi}: K \to H$ があり、 $\overline{\phi} \circ \pi = \phi, \overline{\psi} \circ \pi = \psi$ となる。ただし $\pi: G \to G/K$ は射影。これらを用いて $\sigma = \overline{\psi} \circ \overline{\phi}^{-1}$ とおくと、同型の合成ゆえ σ は H の自己同型であり、 $\sigma \circ \phi = (\overline{\psi} \circ \overline{\phi}^{-1}) \circ (\overline{\phi} \circ \pi) = \overline{\psi} \circ \pi = \psi$. よって $\phi \sim \psi$. 次に同値類の位数について、 ϕ の同値類は $\{\sigma \circ \phi \mid \sigma \in \operatorname{Aut}(H)\}$ であり、 ϕ の全射性より相異なる $\sigma, \tau \in \operatorname{Aut}(H)$ に対して $\sigma \circ \phi \neq \tau \circ \phi$. よって $\#\{\sigma \circ \phi \mid \sigma \in \operatorname{Aut}(H)\} = \#\operatorname{Aut}(H)$.

これに基づくと、

#
$$\{K \mid K$$
 は G の指数 p の部分群 $\} = \#\{\operatorname{Ker} \phi \mid \phi \in \operatorname{sHom}(G, \mathbb{Z}/p\mathbb{Z})\}/\sim$
$$= \frac{\#\operatorname{sHom}(G, \mathbb{Z}/p\mathbb{Z})}{\#\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z})}$$

となる. これを踏まえて次の問題を考えてみよう.

·演習 6. -

- 1. ℤ の指数 3 の部分群の個数を求めよ.
- $2. \mathbb{Z}^2$ の指数 3 の部分群を求めよ.

(解答)

- 1. \mathbb{Z} は 1 で自由に生成されるので、全射準同型 $\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$ は 2 個ある.また $\mathrm{Aut}(\mathbb{Z}/3\mathbb{Z})$ は $\overline{1} \mapsto \overline{1}, \overline{2}$ なるもの 2 個からなる.よって指数 3 の部分群の個数は 2/2 = 1 個ある.
- 2. \mathbb{Z}^2 は (1,0), (0,1) で自由に生成されるので,全射準同型 $\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$ は $3\cdot 3-1=8$ 個ある.また $\mathrm{Aut}(\mathbb{Z}/3\mathbb{Z})$ は $\overline{1}\mapsto \overline{1},\overline{2}$ なるもの 2 個からなる.よって指数 3 の部分群の個数は 8/2=4 個ある.

演習 7.

 $G = (\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/6\mathbb{Z}) \times (\mathbb{Z}/9\mathbb{Z})$ の指数 3 の部分群の個数を求めよ.

(京大院 理・数学 2014年度 院試[1])

(解答) 自然な全単射

 $\operatorname{Hom}(G, \mathbb{Z}/3\mathbb{Z}) \cong \operatorname{Hom}(\mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/3\mathbb{Z}) \times \operatorname{Hom}(\mathbb{Z}/6\mathbb{Z}, \mathbb{Z}/3\mathbb{Z}) \times \operatorname{Hom}(\mathbb{Z}/9\mathbb{Z}, \mathbb{Z}/3\mathbb{Z})$

がある。 $\operatorname{Hom}(\mathbb{Z}/4\mathbb{Z},\mathbb{Z}/3\mathbb{Z})$ の元は位数を考えると $\overline{1}\mapsto \overline{0}$ のみ。 $\operatorname{Hom}(\mathbb{Z}/6\mathbb{Z},\mathbb{Z}/3\mathbb{Z})$ は $\overline{1}\mapsto \overline{0},\overline{1},\overline{2}$ の 3 つよりなる。 $\operatorname{Hom}(\mathbb{Z}/9\mathbb{Z},\mathbb{Z}/3\mathbb{Z})$ は $\overline{1}\mapsto \overline{0},\overline{1},\overline{2}$ の 3 つからなる。準同型 3 つの組に対応する $\operatorname{Hom}(G,\mathbb{Z}/3\mathbb{Z})$ の元が全射となるのは,組の全ての準同型が零写像でないときであり,かつこの ときに限る。よって $\#\operatorname{sHom}(G,\mathbb{Z}/3\mathbb{Z})=3\times 3-1=8$.続いて $\operatorname{Aut}(\mathbb{Z}/3\mathbb{Z})$ は $\overline{1}\mapsto \overline{1},\overline{2}$ の 2 つからなるので $\#\operatorname{Aut}(\mathbb{Z}/3\mathbb{Z})=2$.位数 3 の群は $\mathbb{Z}/3\mathbb{Z}$ と同型であるので,以上から求める個数は 8/2=4 個.

n が一般の場合

n が一般の場合を考える. K が G の指数 n の部分群のとき, G/K は位数 n のアーベル群になる. これより命題 2.4 と同様に次が成り立つ.

- 命題 8. -

任意のアーベル群Gについて以下が成り立つ.

 $\{K \mid K \text{ は } G \text{ の指数 } n \text{ の部分群 }\} = \{\operatorname{Ker} \phi \mid \phi \in \operatorname{sHom}(G, H), \#H = n\}$

証明は全く同様なので省略する. さらに次が成り立つ.

- 命題 9. –

G,H をアーベル群とする. $\bigcup_{\#H=n}\operatorname{sHom}(G,H)$ という集合に

 $(\phi:G\to H)\sim (\psi:G\to H'):\iff H\cong H'$ かつある同型 $\sigma:H\to H'$ が存在し $\sigma\circ\phi=\psi$.

と同値関係を定めると,

$$\operatorname{Ker} \phi = \operatorname{Ker} \psi \iff \phi \sim \psi$$

であり、 $\phi: G \to H$ の同値類の位数は # Aut(H).

証明は $H\cong H'$ のとき $\mathrm{Aut}(H)\cong \{\phi: H\to H'\mid \phi$ は同型 $\}$ に気をつけて命題 5 と同様にできる. これに基づくと、

#
$$\{K \mid K$$
は G の指数 p の部分群 $\} = \# (\{\operatorname{Ker} \phi \mid \phi \in \operatorname{sHom}(G, H), \#H = n\}/\sim)$

$$= \sum_{H: \text{位数 } n \text{ O} \mathcal{F} - \text{ベル群の同型類}} \frac{\# \operatorname{sHom}(G, H)}{\# \operatorname{Aut}(H)}$$

となる. これを踏まえて次の問題を考えてみよう.

·演習 10. -

- 1. ℤ の指数 4 の部分群の個数を求めよ.
- $2. \mathbb{Z}^2$ の指数 4 の部分群の個数を求めよ.

(解答)

- 1. 位数 4 のアーベル群の同型類は有限生成アーベル群の構造定理より $\mathbb{Z}/4\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$ で全て. 全射準同型 $\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z}$ は 2 個あり # Aut $(\mathbb{Z}/4\mathbb{Z}) = 2$. 全射準同型 $\mathbb{Z} \to (\mathbb{Z}/2\mathbb{Z})^2$ はない. よって,指数 4 の部分群の個数は 2/2=1 個.
- 2. 準同型 $\mathbb{Z}^2 \to \mathbb{Z}/4\mathbb{Z}$ は (1,0),(0,1) の像のいずれかが $\overline{1},\overline{3}$ であるとき,かつこのときに限り 全射になるので,全射準同型 $\mathbb{Z}^2 \to \mathbb{Z}/4\mathbb{Z}$ は $4^2-2^2=12$ 個ある.また # Aut $(\mathbb{Z}/4\mathbb{Z})=2$. 次に,準同型 $\mathbb{Z}^2 \to (\mathbb{Z}/2\mathbb{Z})^2$ は (1,0),(0,1) の像が相異なりいずれも $(\overline{0},\overline{0})$ でないとき,か つこのときに限り全射になるので,全射準同型 $\mathbb{Z}^2 \to (\mathbb{Z}/2\mathbb{Z})^2$ は $3^2-3=6$ 個ある.また # Aut $((\mathbb{Z}/2\mathbb{Z})^2)=\#\mathfrak{S}_3=6$.よって,指数 4 の部分群の個数は 12/2+6/6=7 個.

参考文献

[1] "過去の入試問題". 京都大学大学院理学研究科/理学部数学教室. https://www.math.kyoto-u.ac.jp/files/master_exams/2013math_kiso2.pdf