Corrigé du devoir maison 10.

1°) Soit $(a, b, c, d) \in \mathbb{R}^4$. Supposons que $af_1 + bf_2 + cf_3 + df_4 = 0$. Ainsi, pour tout $x \in \mathbb{R}$, $a \sin x + bx \sin x + c \cos x + dx \cos x = 0$. En particulier, pour x = 0, $x = \frac{\pi}{2}$, $x = -\frac{\pi}{2}$ et $x = \frac{\pi}{4}$, on obtient les 4 relations suivantes :

$$\begin{cases} c = 0 \\ a + b\frac{\pi}{2} = 0 \\ -a + b\left(-\frac{\pi}{2}\right)(-1) = 0 \\ \frac{a}{\sqrt{2}} + \frac{b\pi}{4\sqrt{2}} + \frac{c}{\sqrt{2}} + \frac{d\pi}{4\sqrt{2}} = 0 \end{cases} \quad \text{donc} \quad \begin{cases} c = 0 \\ 2a = 0 \\ 2b\frac{\pi}{2} = 0 \\ \frac{a}{\sqrt{2}} + \frac{b\pi}{4\sqrt{2}} + \frac{d\pi}{4\sqrt{2}} = 0 \end{cases} \quad \text{donc} \quad \begin{cases} c = 0 \\ a = 0 \\ b = 0 \\ d = 0 \end{cases}$$

Ainsi, la famille $\mathcal{B} = (f_1, f_2, f_3, f_4)$ est libre. De plus, c'est une famille génératrice de F. On en déduit que $\boxed{\mathcal{B}}$ est une base de F. Donc, $\boxed{\dim(F) = 4}$.

- f est une fonction et f(x) est un réel. Ainsi, d(f) a un sens et d(f(x)) n'a pas de sens, et comme d(f) est une fonction définie sur \mathbb{R} , d(f)(x) a un sens.
 - **b)** \star Soit $(f_1, f_2) \in F^2$ et $\lambda \in \mathbb{R}$. $d(\lambda f_1 + f_2) = (\lambda f_1 + f_2)' = \lambda f_1' + f_2' = \lambda d(f_1) + d(f_2)$. Ainsi, d est linéaire.

Montrons que : $\forall f \in F, d(f) \in F$, i.e. $\text{Im}(d) \subset F$.

2°) a) Soit $f \in F$ et $x \in \mathbb{R}$. d s'applique à une fonction f de \mathbb{R} dans \mathbb{R} .

Il suffit de montrer que : $\forall i \in \{1, ..., 4\}, d(f_i) \in F$.

(Car, comme F est un sous-espace vectoriel de E, il contiendra toutes les combinaisons linéaires des $d(f_i)$ i.e. il contiendra $\operatorname{Im}(d) = \operatorname{Vect}(d(f_1), d(f_2), d(f_3), d(f_4))$). $\forall x \in \mathbb{R}$,

$$d(f_1)(x) = f'_1(x) = \cos x$$

$$d(f_2)(x) = f'_2(x) = \sin x + x \cos x$$

$$d(f_3)(x) = f'_3(x) = -\sin x$$

$$d(f_4)(x) = f'_4(x) = \cos x - x \sin x$$

Ainsi, $d(f_1) = f_3$, $d(f_2) = f_1 + f_4$, $d(f_3) = -f_1$ et $d(f_4) = -f_2 + f_3$.

Ainsi, tous les $d(f_i)$ sont dans F.

Donc F est stable par d.

On en déduit que $d \in \mathcal{L}(F)$.

★ Comme $d(f_1) = f_3$, $d(f_2) = f_1 + f_4$, $d(f_3) = -f_1$ et $d(f_4) = -f_2 + f_3$, la matrice de d dans \mathcal{B} est :

$$D = \begin{pmatrix} 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

3°) a) On effectue des opérations élémentaires sur les lignes.

$$D = \begin{pmatrix} 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$I_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

$$L_1 \leftrightarrow L_3$$

$$L_2 \leftrightarrow L_4$$

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$L_3 \leftarrow L_3 - L_2$$

$$L_4 \leftarrow -L_4$$

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$

$$I_4$$

$$L_1 \leftarrow L_1 - L_4$$

$$L_3 \leftarrow -L_3$$

$$\begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$

Ainsi,
$$D$$
 est inversible et $D^{-1} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \end{pmatrix}$.

b) D est inversible donc d est bijective de F dans F.

On remarque que $g = 2f_2 - 3f_4$. Donc $g \in F$.

Ainsi, $\exists ! f \in F$ tel que d(f) = g i.e. tel que f' = g.

Il existe bien une unique fonction f de F telle que f est une primitive de g

f est nécessairement $d^{-1}(g)$. On note $f = af_1 + bf_2 + cf_3 + df_4$ où $(a, b, c, d) \in \mathbb{R}^4$.

Matriciellement, on a :
$$\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = D^{-1} \begin{pmatrix} 0 \\ 2 \\ 0 \\ -3 \end{pmatrix} \text{ donc } \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ 0 \\ -3 \end{pmatrix}.$$

D'où a = 2, b = -3, c = -3, d = -2.

Ainsi,
$$f = 2f_1 - 3f_2 - 3f_3 - 2f_4$$
 i.e.
$$f: \mathbb{R} \rightarrow \mathbb{R}$$

$$x \mapsto 2\sin x - 3x\sin x - 3\cos x - 2x\cos x$$

4°) a) La matrice de $h = d^2 + \mathrm{id}_F$ dans la base \mathcal{B} est $D^2 + I_4$

Or
$$D^2 = \begin{pmatrix} 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 & -2 \\ 0 & -1 & 0 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

Donc
$$D^2 + I_4 = \begin{pmatrix} 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
.

- b) $\operatorname{Im}(h) = \operatorname{Vect}(h(f_1), h(f_2), h(f_3), h(f_4))$ car (f_1, f_2, f_3, f_4) est une base de F. Or $h(f_1) = h(f_3) = 0$ et $h(f_2) = 2f_3$ et $h(f_4) = -2f_1$. Ainsi, $\operatorname{Im}(h) = \operatorname{Vect}(2f_3, -2f_1)$ donc $\operatorname{Im}(h) = \operatorname{Vect}(f_1, f_3)$. (f_1, f_3) est une famille génératrice de $\operatorname{Im}(h)$ et c'est une famille libre (car sous-famille d'une base) donc (f_1, f_3) est une base de $\operatorname{Im}(h)$.
- c) $h(f_1) = h(f_3) = 0$ donc f_1 et f_3 sont dans Ker(h). Ainsi, $Vect(f_1, f_3) \subset Ker(h)$. Donc, $Im(h) \subset Ker(h)$ par la question précédente. De plus, par le théorème du rang appliqué à $h \in \mathcal{L}(F)$: dim(F) = dim(Ker(h)) + dim(Im(h)). Donc, dim(Ker(h)) = 4 2 = 2.
 - On a : $\dim(\operatorname{Ker}(h)) = \dim(\operatorname{Im}(h))$ et $\operatorname{Im}(h) \subset \operatorname{Ker}(h)$ donc $\operatorname{Im}(h) = \operatorname{Ker}(h)$.
- d) $\forall u \in F$, $h(u) \in \text{Im}(h)$ donc h(u) Ker(h) donc h(h(u)) = 0 i.e. $h^2(u) = 0$. Ainsi, $h^2 = 0$, ce qui signifie $(d^2 + id_F)^2 = 0$. En passant aux matrices, on en déduit : $(D^2 + I_4)^2 = 0$.
- e) On sait, par la question précédente que : $(D^2 + I_4)^2 = 0$. Comme D^2 et I_4 commutent, $D^4 + 2D^2 + I_4 = 0$, ce qui s'écrit : $I_4 = -D^4 - 2D^2$. Donc $I_4 = D \times (-D^3 - 2D) = (-D^3 - 2D) \times D$. Donc D est inversible et $D^{-1} = -D^3 - 2D$.
- 5°) a) V est un sous-espace vectoriel de $\mathcal{M}_4(\mathbb{R})$ donc c'est un espace vectoriel, et (I_4, D^2) en est une famille génératrice.

$$D^{2} = \begin{pmatrix} -1 & 0 & 0 & -2 \\ 0 & -1 & 0 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \text{ et } I_{4} \text{ ne sont pas colinéaires donc } (I_{4}, D^{2}) \text{ forme une famille}$$

libre de V. C'est donc une base de V. Ainsi, $\dim(V) = 2$

b) Soit $(A, B) \in V^2$. Montrons que $A \times B \in V$. A et B s'écrivent : $A = \alpha I_4 + \beta D^2$ et $B = \alpha' I_4 + \beta' D^2$ où $(\alpha, \beta, \alpha', \beta') \in \mathbb{R}^4$. On rappelle que, par 4d, $(D^2 + I_4)^2 = 0$ donc $D^4 + 2D^2 + I_4 = 0$.

$$A \times B = (\alpha I_4 + \beta D^2) \times (\alpha' I_4 + \beta' D^2)$$

$$= \alpha \alpha' I_4 + (\alpha \beta' + \alpha' \beta) D^2 + \beta \beta' D^4$$

$$= \alpha \alpha' I_4 + (\alpha \beta' + \alpha' \beta) D^2 + \beta \beta' (-I_4 - 2D^2)$$

$$= (\alpha \alpha' - \beta \beta') I_4 + (\alpha \beta' + \alpha' \beta - 2\beta \beta') D^2$$

Ainsi, $A \times B \in V$. V est stable par multiplication

c) Soit $A \in V$. A s'écrit $A = \alpha I_4 + \beta D^2$ où $(\alpha, \beta) \in \mathbb{R}^2$. A est inversible si et seulement si $\det(A) \neq 0$.

$$\det(A) = \begin{vmatrix} \alpha - \beta & 0 & 0 & -2\beta \\ 0 & \alpha - \beta & 0 & 0 \\ 0 & 2\beta & \alpha - \beta & 0 \\ 0 & 0 & 0 & \alpha - \beta \end{vmatrix}$$

$$= (\alpha - \beta) \begin{vmatrix} \alpha - \beta & 0 & 0 \\ 2\beta & \alpha - \beta & 0 \\ 0 & 0 & \alpha - \beta \end{vmatrix}$$
 en développant par rapport à la 1ere colonne
$$= (\alpha - \beta)(\alpha - \beta)^3 \text{ (déterminant d'une matrice triangulaire)}$$

$$= (\alpha - \beta)^4$$

Ainsi, A et inversible si et seulement si $\alpha \neq \beta$

- d) Soit $A \in V$. On suppose A inversible.
 - ★ Soit $(M_1, M_2) \in V^2$ et $\lambda \in \mathbb{R}$. $\varphi(\lambda M_1 + M_2) = A(\lambda M_1 + M_2) = \lambda A M_1 + A M_2 = \lambda \varphi(M_1) + \varphi(M_2)$ Donc, φ est linéaire.

Comme V est stable par produit, on a bien : $\forall M \in V, \varphi(M) \in V$. Ainsi, $\varphi \in \mathcal{L}(V)$.

★ Montrons que φ est injectif i.e. $Ker(\varphi) = \{0\}$.

On a déjà : $\{0\} \subset \text{Ker}(\varphi)$.

Soit $M \in \text{Ker}(\varphi)$. Montrons que M = 0.

 $\varphi(M) = 0$ donc AM = 0. Or A est inversible donc A^{-1} existe.

On multiplie l'égalité AM=0 à gauche par $A^{-1}:A^{-1}\times AM=A^{-1}\times 0.$

Donc M = 0.

Ainsi, $Ker(\varphi) = \{0\}.$

 φ est donc injectif.

- $\star \varphi$ est un endomorphisme de V. De plus, φ est injectif et V est un espace vectoriel de dimension finie donc φ est un automorphisme de V.
- \bigstar Montrons que $A^{-1} \in V$.

 φ est bijectif donc surjectif et $I_4 \in V$ donc $\exists M \in V, \varphi(M) = I_4$.

Donc $AM = I_4$.

A est inversible donc $A^{-1} \times AM = A^{-1} \times I_4$ i.e. $M = A^{-1}$ (on peut aussi conclure directement d'après une propriété du cours sur l'inversibilité à gauche).

Or $M \in V$ donc $A^{-1} \in V$.