K- Nearast Neighborn. (KNN)

	((((((((((((((((((((
	Now how we colembra the phytomes
	-> Clanification Problem.
	eate. 2
	cate. 1 0 - 2 Dimensional.
1	
	+ + + + + + + + + + + + + + + + + + +
	+ + > 0 -> new data
	point
	Algerithm. > 0 = new data point
	Step 1: Choone the number K of COTA OFFICENTAGE LITE
	Magnosac
	By Default 1655
	Step 2: Nearrent Neighbour point - From the new data
	200 2. Ivanian regimenate point - men man
	De Monhatton Dinforme Torimula calcultino as the
_	
	Step 3: Carulate the "dintance" of neavert neighbour.
	and and
	Step 4: How many nearest neighbours belongs to
	each eategony [categony 1 and 2]
	Cartegory-1 -> 3 data point maximum =
	new data point agrain
	Cartegory-2 -> 2 " " Thin eategory.

1. Choose the number Rof K of Neighbows. Default his 2. Take the K nearest neighbourn of the new data point, according to the Euclidean Dintance 3. Among there K neighborn count the number of Lora Points in each category. 4. Annign the new data point to the category where you counted the most neighborro. Your Model in Ready. ML A-27 In Regnersion. Select the nearest neighborn and their Mean in the pulper. A DOX Spream Remult.

Now how we calculate the dintance 1 Eucledian Dintance P2 (x2, Y2) (1/1,x),9 and Pe, botween $(x_2-x_1)^2+(y_2-y_1)^2$ stop 2: Newtont Neighbour point - From the new formula, calculate as the 2) Manhattan Dintance the aboutate difference between the two vectors. date point MUNIMINAMA regions bring who were

| X1- X2 | + | 71 - Y2 | with respect to the KNN ke R=150 new data point so most of the neighbor point comen from a category So, KNN will respected · mirmorpal

Dulliers o new data point outlier KNN will 8, Impacted GAROR K should be Regression.

