

Redes neurais

Algoritmo Genético

Função de Ativação

bids

peso

hiddenLayer

saída

Neuronio

entrada

bias

peso
hiddenLayer
saída
entrada
Neuronio

hiddenLayer

entrada saída

peso

hiddenLayer entrada saída

ESTÍMULOS


```
//Será um vetor que estará apontando para diagonal de frente e direita
Vector3 a = (transform.forward+transform.right);
//Vetor que aponta para frente
Vector3 b = (transform.forward);
//Será um vetor que estará apontando para diagonal de frente e esquerda
Vector3 c = (transform.forward-transform.right);
```

```
//É necessário para os inputs sempre darem valor de -1 a 1 pq senão a rede neural fica presa
if (Physics.Raycast(r , out hit)){
    //Dividir por 20 assegurará que não será um numero mt grande
    //Caso o numero fosse muito grande, quando chegar na função de ativação sigmoide
    //Ele tenderá a 1, e se ficar tendendo a 1 nunca vai diversificar
    aSensor = hit.distance / 15;
float distanCarWallB = 0;
r.direction = b;
if (Physics.Raycast(r , out hit)){
    bSensor = hit.distance/15;
    distanCarWallB = hit.distance;
r.direction = c;
if (Physics.Raycast(r , out hit)){
    cSensor = hit.distance / 15;
```


saída

hiddenLay

Noção de distância com a parede


```
public (float, float) RunNetwork (float a, float b, float c)
   inputLayer[0, 0] = a;
   inputLayer[0, 1] = b;
   inputLayer[0, 2] = c;
```


Entrada

l1

12

13

hiddenLay

Noção de distância com a parede


```
public (float, float) RunNetwork (float a, float b, float c)
{
   inputLayer[0, 0] = a;
   inputLayer[0, 1] = b;
   inputLayer[0, 2] = c;
```

Os outputs são os

resultados

saída entrado

É onde ocorre o

processamento

saída entrada

Se localiza entre as camadas de

entrada e saída, e, é onde recebe

o conjunto de entrada para ser

processada

É o que faz

variar

Cada individuo

hiddenLayer saída entrada Podemos chamar de

hiddenLay saída entrada

entrada

Função de Ativação bids <u>hiddenLayer</u> saída

peso

Função de Ativação bigs

Oculta

Bias = 1

Entrada

hiddenLayer saída

entrada

entrada

Função de Ativação hiddenLayer saída bids

Entrada

Oculta

Bias = 1

H1 = I1*w1

w1

entrada

Função de Ativação hiddenLayer saída bids

Oculta

Entrada

Função de Ativ bids

hiddenLayer saída

Oculta

H1 = I1*w1 + I2*w2 + I3*w3

Entrada

$$H1 = [(I1*w1) + (I2*w2) + (I3*w2)] + Bias$$

hiddenLay

hiddenLay

$$H1 = \{[(I1*w1) + (I2*w2) + (I3*w2)] + Bias\}$$

$$FunçãoDeAtivação(H1);$$

peso hiddenLaye

saída

Função de Ativação bias

peso

hiddenLayer

entrada saída

Função de Ativação . .

bids

peso

hiddenLayer saída entrada

$$| = [| 1 | 2 | 3]$$

	$= \lfloor \rfloor$	1 2			
HIDDEN	J1=	[H ₁	H	2 H 3	H ₄]

	H1	H2	Н3	H4
l1	l1*w1	l1*w2	l1*w3	l1*w4
12	I2*w1	12*w2	12*w3	12*w4
13	13*w1	12*w2	13*w3	13*w4

$$| = [| 1 | 2 | 3]$$

	W1	W2	W3	W4
I1	l1*w1	l1*w2	l1*w3	I1*w4
12	I2*w1	12*w2	12*w3	12*w4
13	I3*w1	12*w2	13*w3	13*w4

HIDDEN1 =
$$[H_1 H_2 H_3 H_4]$$

HIDDEN1 = $[H_1 H_2 H_3 H_4]$

W =

	W1	W2
H1	H1*W1	H1*W2
H2	H2*W1	H2*W2
Н3	H3*W1	H3*W2
H4	H4*W1	H4*W2

$$Q_{1\times 2}=[O_1\ O_2]$$

Redes neurais

GrossOver

Melhores agentes

Algoritmo Genético Fitness Function

GrossOver Melhores agentes

Individuo I

Individuo A

NOVA GERAÇÃO

Individuo A

Individuo D

Individuo G

Individuo B

Individuo E

Individuo H

Individuo C

Individuo F

Individuo I

Algoritmo Genético

Individuo A

Individuo D

Individuo G

Individuo B

Individuo E

Individuo H

Gross@wer Melhores agentes Algoritmo Genético

Individuo C

Individuo F

Individuo D

Individuo G

Individuo E

Individuo H

Algoritmo Genético

Individuo C Individuo C

Individuo F

Individuo D

Individuo E

Algoritmo Genético

Individuo B

Individuo B

Individuo D

Individuo E

Individuo A

Individuo C

Algoritmo Genético Melhores agentes

Individuo D

Individuo E

Individuo B

elhores agentes

Individuo B

NOVA GERAÇÃO

Individuo D

Individuo E

Algoritmo Genético

elhores agente

Individuo B

NOVA GERAÇÃO

```
//50% pra dar e 50% pra nao
for (int w = 0; w < filho1.weights.Count; w++)</pre>
   if (Random.Range(0.0f, 1.0f) < 0.5f)
        filho1.weights[w] = population[AIndex].weights[w];
        filho2.weights[w] = population[BIndex].weights[w];
   else
        filho1.weights[w] = population[AIndex].weights[w];
        filho2.weights[w] = population[BIndex].weights[w];
```

GrossOver Methores agentes

Individuo A

Individuo D

Individuo G

Individuo B

Individuo E

Individuo H

Gross@wer Melhores agentes Algoritmo Genético

Individuo C

Individuo F

Individuo A

Individuo D

Individuo G

Individuo B

Individuo E

Individuo H

GrossOver Melhores agentes Algoritmo Genético

Individuo C

Individuo F

GrossOver Melhores agentes Algoritmo Genético

Individuo A

Individuo D

Individuo G

Individuo B

Individuo E

Individuo H

Melhores agentes Gross0ver

Individuo C

Individuo F

Melhores agentes

Individuo A

Individuo D

Individuo F

Individuo B

Individuo E

Melhores agentes

GrossOver

Individuo A

Individuo D

Individuo F

Individuo B

Individuo E

Melhores agentes Gross@ver

Individuo D

Individuo B

Individuo A

Individuo E

Individuo A

Individuo D

Individuo G

Individuo B

Individuo E

Individuo H

Melhores agentes GrossOver

Individuo C

Individuo F

Individuo A Individuo G Individuo D Individuo B Individuo E Individuo H Individuo C Individuo F Individuo I

Individuo A Individuo G Individuo D Individuo H Individuo B Individuo E Individuo C Individuo F Individuo I

Redes neurais

Algoritmo Genético