4 Numerical Simulations of Rogue Waves Solutions

Figure 1: Mathematica plot of 1st order rogue wave solution.

Figure 2: 2nd order wave solutions plotted in MATLAB for the following values of a_3 : (a) -1/12, (b) 5/3, (c) -5i/2, and (d) 5i/2.

Figure 3: Mathematica contour plot of 3rd order solution for $(a_3, a_5) = (25i/3, 0)$ showing 6 intensity humps.

Figure 4: Mathematica plot of 3rd order solution for $(a_3, a_5) = (25i/3, 0)$.

Figure 5: Mathematica contour plot of 3rd order solution for $(a_3, a_5) = (-1/12, -1/240)$ which achieves a maximum amplitude of 9 at (x, t) = (1/2, 0).

Figure 6: Mathematica plot of 3rd order solution for $(a_3, a_5) = (-1/12, -1/240)$.

Figure 7: Mathematica contour plot of 4rd order solution for $(a_3, a_5, a_7) = (25i/3, 0, 0)$ showing 10 intensity humps.

Figure 8: Mathematica plot of 4rd order solution for $(a_3, a_5, a_7) = (25i/3, 0, 0)$.

Figure 9: Mathematica contour plot of 4rd order solution for $(a_3, a_5, a_7) = (-1/12, -1/240, 0)$, which achieves a maximum amplitude of 9 also at (1/2, 0).

Figure 10: Mathematica plot of 4rd order solution for $(a_3, a_5, a_7) = (-1/12, -1/240, 0)$.

Figure 11: Mathematica plot of 5th order solution for $(a_3,a_5,a_7,a_9)=(-1/12,-1/240,0,0)$ showing the extreme instability of such high order solutions. At (x,t)=(1/2,0) this achieves a maximum amplitude of 11.