EE6203

Appendix A

Properties and Table of Z-Transform

Discrete function	z Transform		
x(k+4)	$z^4X(z)-z^4x(0)-z^3x(1)-z^2x(2)-zx(3)$		
x(k+3)	$z^3X(z)-z^3x(0)-z^2x(1)-zx(2)$		
x(k+2)	$z^2X(z)-z^2x(0)-zx(1)$		
x(k+1)	zX(z)-zx(0)		
x(k)	X(z)		
x(k-1)	$z^{-1}X(z)$		
x(k-2)	$z^{-2}X(z)$		
x(k-3)	$z^{-3}X(z)$		
x(k-4)	$z^{-4}X(z)$		

	X(s)	x(t)	x(kT) or $x(k)$	X(z)
1.			Kronecker delta $\delta_0(k)$ 1, $k = 0$ 0, $k \neq 0$	1
2.	_	o -	$\delta_0(n-k)$ 1, $n=k$ 0, $n \neq k$	z^{-k}
3.	$\frac{1}{s}$	1(t)	1(k)	$\frac{1}{1-z^{-1}}$
4.	$\frac{1}{s+a}$	e ^{-at}	e^{-akT}	$\frac{1}{1-e^{-aT}z^{-1}}$
5.	$\frac{1}{s^2}$	t	kT	$\frac{Tz^{-1}}{(1-z^{-1})^2}$
6.	$\frac{2}{s^3}$	t ²	$(kT)^2$	$\frac{T^2z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$
7.	$\frac{6}{s^4}$	t ³	$(kT)^3$	$\frac{T^3z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$
8.	$\frac{a}{s(s+a)}$	$1-e^{-at}$	$1-e^{-akT}$	$\frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$
9.	$\frac{b-a}{(s+a)(s+b)}$	$e^{-at}-e^{-bt}$	$e^{-akT}-e^{-bkT}$	$\frac{(e^{-aT} - e^{-bT})z^{-1}}{(1 - e^{-aT}z^{-1})(1 - e^{-bT}z^{-1})}$
10.	$\frac{1}{(s+a)^2}$	te ^{-at}	kTe ^{-akT}	$\frac{Te^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2}$
11.	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$	$(1-akT)e^{-akT}$	$\frac{1 - (1 + aT)e^{-aT}z^{-1}}{(1 - e^{-aT}z^{-1})^2}$

Note: Transform Table continues on page 8.

EE6203

	X(s)	x(t)	x(kT) or $x(k)$	X(z)
12.	$\frac{2}{(s+a)^3}$	t^2e^{-at}	$(kT)^2 e^{-akT}$	$\frac{T^{2}e^{-aT}(1+e^{-aT}z^{-1})z^{-1}}{(1-e^{-aT}z^{-1})^{3}}$
13.	$\frac{a^2}{s^2(s+a)}$	$at-1+e^{-at}$	$akT-1+e^{-akT}$	$\frac{[(aT-1+e^{-aT})+(1-e^{-aT}-aTe^{-aT})z^{-1}]z^{-1}}{(1-z^{-1})^2(1-e^{-aT}z^{-1})}$
14.	$\frac{\omega}{s^2+\omega^2}$	sin <i>ωt</i>	sin <i>ωkT</i>	$\frac{z^{-1}\sin\omega T}{1 - 2z^{-1}\cos\omega T + z^{-2}}$
15.	$\frac{s}{s^2+\omega^2}$	cos ⊕t	cos ωkT	$\frac{1-z^{-1}\cos\omega T}{1-2z^{-1}\cos\omega T+z^{-2}}$
16.	$\frac{\omega}{(s+a)^2+\omega^2}$	$e^{-at}\sin\omega t$	$e^{-akT}\sin\omega kT$	$\frac{e^{-aT}z^{-1}\sin\omega T}{1-2e^{-aT}z^{-1}\cos\omega T + e^{-2aT}z^{-2}}$
17.	$\frac{s+a}{(s+a)^2+\omega^2}$	$e^{-at}\cos\omega t$	$e^{-akT}\cos\omega kT$	$\frac{1 - e^{-aT} z^{-1} \cos \omega T}{1 - 2e^{-aT} z^{-1} \cos \omega T + e^{-2aT} z^{-2}}$
18.			a^k	$\frac{1}{1-az^{-1}}$
19.			a^{k-1} $k = 1, 2, 3, \dots$	$ \frac{1}{1 - az^{-1}} $ $ \frac{z^{-1}}{1 - az^{-1}} $ $ \frac{z^{-1}}{(1 - az^{-1})^2} $
20.			ka^{k-1}	$\frac{z^{-1}}{(1-az^{-1})^2}$
21.			k^2a^{k-1}	$\frac{z^{-1}(1+az^{-1})}{(1-az^{-1})^3}$
22.			k^3a^{k-1}	$\frac{z^{-1}(1+4az^{-1}+a^2z^{-2})}{(1-az^{-1})^4}$
23.			k^4a^{k-1}	$\frac{z^{-1}(1+11az^{-1}+11a^2z^{-2}+a^3z^{-3})}{(1-az^{-1})^5}$
24.			$a^k \cos k\pi$	$\frac{1}{1+az^{-1}}$
25.			$\frac{k(k-1)}{2!}$	$\frac{1}{1+az^{-1}}$ $\frac{z^{-2}}{(1-z^{-1})^3}$
26.			$\frac{\cdots(k-m+2)}{m-1)!}$	$\frac{z^{-m+1}}{(1-z^{-1})^m}$
27.			$\frac{k(k-1)}{2!}a^{k-2}$	$\frac{z^{-2}}{(1-az^{-1})^3}$
28.	8. $\frac{k(k-1)\cdots(k-m+2)}{(m-1)!}a^{k-m+1}$			$\frac{z^{-m+1}}{(1-az^{-1})^m}$

x(t) = 0, for t < 0.

x(kT) = x(k) = 0, for k < 0.

Unless otherwise noted, $k = 0, 1, 2, 3, \cdots$