Aprendizado por Reforço: conceitos, aplicações e desafios

ANNA HELENA REALI COSTA UNIVERSIDADE DE SÃO PAULO anna.reali@usp.br Parte 2

Deterministic world

Goal: to go outside the building

 $S = \{0, 1, 2, 3, 4, 5\}$ A = A(0)UA(1)UA(2)UA(3)UA(4)UA(5) $T: P(s' | s,a) = 1 \ \forall s, s' \in S, \ \forall a \in A(s)$

R: as indicated in the graph

$$\gamma = 0.8$$
; $\alpha = 1$ $Q(s, a)_{t+1} = r(s, a, s') + \gamma \max_{a'} Q(s', a')$

Suppose: initial state = 1 A(1) = {go to 3, go to 5}

$$Q(s,a)_{t+1} = r(s,a,s') + 0.8 \max_{a'} Q(s',a')$$

Initial Q-table

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

Suppose: initial state = 1 A(1) = {go to 3, go to 5}

Initial Q-table

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

By random selection: a = go to 5 Experience = (1, go to 5, 5, 100)

$$Q(1,5) = 100 + 0.8 \max(Q(5,.))$$

= 100 + 0.8 * 0 = 100

Suppose: initial state = 1 A(1) = {go to 3, go to 5}

Initial Q-table

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

By random selection: a = go to 5 Experience = (1, go to 5, 5,100)

$$Q(1,5) = 100 + 0.8 \max(Q(5,.))$$

= 100 + 0.8 * 0 = 100

	0	1	2	3	4	5	
0	0	0	0	0	0	0	
1	0	0	0	0	0	100	
2	0	0	0	0	0	0	
3	0	0	0	0	0	0	
4	0	0	0	0	0	0	
5	0	0	0	0	0	0	

New episode: state = 3A(3) = {go to 1, go to 2, go to 4}

Random selection: a = go to 1

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	0	0	0	100
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

New episode: **state = 3**A(3) = {go to 1, go to 2, go to 4}
Random selection: **a = go to 1**

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	0	0	0	100
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

Experience = (3, go to 1, 1, 0)A(1) = $\{go to 3, go to 5\}$

 $Q(3,1) = 0 + 0.8 \max(Q(1,3),Q(1,5))$ = 0 + 0.8 * 100 = 80

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	0	0	0	100
2	0	0	0	0	0	0
3	0	80	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

Now state = 1 $A(1) = \{go to 3, go to 5\}$ ϵ -greedy: a = go to 5

	0	1	2	3	4	5	
0	0	0	0	0	0	0	
1	0	0	0	0	0	100	
2	0	0	0	0	0	0	
3	0	80	0	0	0	0	
4	0	0	0	0	0	0	
5	0	0	0	0	0	0	

Now state = 1 $A(1) = \{go to 3, go to 5\}$ ϵ -greedy: a = go to 5

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	0	0	0	100
2	0	0	0	0	0	0
3	0	80	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

Experience = (1, go to 5, 5,100) $A(5) = \{ \}$ $Q(1,5) = 100 + 0.8 \max(Q(5,.))$ = 100 + 0.8 * 0 = 100

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	0	0	0	100
2	0	0	0	0	0	0
3	0	80	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

If our agent learns more through further episodes, it will finally reach convergence values in Q-table like:

							1/(*/s) = max a(3)/s a
s a	0	1	2	3	4	5	$V^*(s) = \max_a Q(s,a)$ $\pi^*(0) = \arg\max_a Q(s,a)$
0	0	0	0	0	80	0	$V^*(0)=80$ $\pi^*(0) = 90 to 4$
1	0	0	0	64	0	100	$V^*(1)=100 \pi^*(1) = go to 5$
2	0	0	0	64	0	0	$V^*(2)=64$ $\pi^*(2) = go to 3$
3	0	80	51	0	80	0	$V^*(3)=80$ $\pi^*(3) = go to 4 or 1$
4	64	0	0	64	0	100	$V^*(4)=100 \pi^*(4) = go to 5$
5	0	0	0	0	0	0	$V^*(5)=0$ $\pi^*(5)=\{\}$ (goal)

