DESAFÍO DE INTERPOLACIÓN

Ejercicio:

The boiling temperature of water T_B at various altitudes h is given in the following table. Determine a linear equation in the form $T_B = mh + b$ that best fits the data. Use the equation for calculating the boiling temperature at 5,000 m. Make a plot of the points and the equation.

h (ft)	-1,000	0	3,000	8,000	15,000	22,000	28,000
<i>T</i> (°F)	213.9	212	206.2	196.2	184.4	172.6	163.1

h(ft)	T(°F)
-1000	213,9
0	212
3000	206,2
8000	196,2
15000	184,8
22000	172,6
28000	163,1
5000	

h(m)	T(°F)
-304,8	213,9
0	212
914,4	206,2
2438,4	196,2
4572	184,8
6705,6	172,6
8534,4	163,1
1524	

donde: T_B=mh+b

LAGRANGE

1.- Proyectemos los grados de ebullición para una altura de 5000 pies usando "Interpolación" por el método de Lagrange:

- Usando la atura en pies (ft)

	х	У
#	h(ft)	T(°F)
0	-1000	213,9
1	0	212
2	3000	206,2
3	8000	196,2
4	15000	184,8
5	22000	172,6
6	28000	163,1

p(x)=L06(x)y0+L16(x)y1+L26(x)y2+L36(x)y3+L46(x)y4+L56(x)y5+L66(x)y6

L06(x) = ((x-x1)(x-x2)(x-x3)(x-x4)(x-x5)(x-x6)) / ((x0-x1)(x0-x2)(x0-x3)(x0-x4)(x0-x5)(x0-x6))	0,305316092
L16(x) = ((x-x0)(x-x2)(x-x3)(x-x4)(x-x5)(x-x6)) / ((x1-x0)(x1-x2)(x1-x3)(x1-x4)(x1-x5)(x1-x6))	#¡DIV/0!
L26(x) = ((x-x0)(x-x1)(x-x3)(x-x4)(x-x5)(x-x6)) / ((x2-x0)(x2-x1)(x2-x3)(x2-x4)(x2-x5)(x2-x6))	1,028947368
L36(x) = ((x-x0)(x-x1)(x-x2)(x-x4)(x-x5)(x-x6)) / ((x3-x0)(x3-x1)(x3-x2)(x3-x4)(x3-x5)(x3-x6))	0,332482993
L46(x) = ((x-x0)(x-x1)(x-x2)(x-x3)(x-x5)(x-x6)) / ((x4-x0)(x4-x1)(x4-x2)(x4-x3)(x4-x5)(x4-x6))	-0,03836342
L56(x) = ((x-x0)(x-x1)(x-x2)(x-x3)(x-x4)(x-x6))/((x5-x0)(x5-x1)(x5-x2)(x5-x3)(x5-x4)(x5-x6))	0,007323504
L66(x) = ((x-x0)(x-x1)(x-x2)(x-x3)(x-x4)(x-x5))/((x6-x0)(x6-x1)(x6-x2)(x6-x3)(x6-x4)(x6-x5))	-0,00096628

Nota: Al analizar los datos completos, vemos que hay un error de aritméica en L16(x), entonces, analizaremos los datos siguientes a ese:

	х	У
#	h(ft)	T(°F)
0	3000	206,2
1	8000	196,2
2	15000	184,8
3	22000	172,6
4	28000	163,1

xk= 5000 yk=?

p(x)=L04(x)y0+L14(x)y1+L24(x)y2+L34(x)y3+L44(x)y4	201,765081
L04(x)=((x-x1)(x-x2)(x-x3)(x-x4))/((x0-x1)(x0-x2)(x0-x3)(x0-x4)	0,41157895
L14(x)=((x-x0)(x-x2)(x-x3)(x-x4))/((x1-x0)(x1-x2)(x1-x3)(x1-x4)	0,79795918
	-
L24(x)=((x-x0)(x-x1)(x-x3)(x-x4))/((x2-x0)(x2-x1)(x2-x3)(x2-x4)	0,30690738
L34(x)=((x-x0)(x-x1)(x-x2)(x-x4))/((x3-x0)(x3-x1)(x3-x2)(x3-x4)	0,12352309
	-
L44(x)=((x-x0)(x-x1)(x-x2)(x-x3))/((x4-x0)(x4-x1)(x4-x2)(x4-x3)	0,02615385

Para el error, tomamos en cuenta el valor de una calculadora online:

Entonces: A una altura, tanto en metros como en pies, de 5000 (ft)(~1524 (m)), el agua llega a su punto de ebullición a 201,76 °F con un error de: 0,394919111

NEWTON

2.- Proyectemos los grados de ebullición para una altura xk usando "Interpolación" por el método de Newton:

a) 5000 pies (ft)

	Х	У						
#	h(ft)	T(°F)	1er nivel	2do nivel	3er nivel	4to nivel	5to nivel	6to nnivel
0	-1000	213,9	-0,0019	-8,33333E-09	-3,1249E-27	1,6369E-16	-1,63616E-20	9,77792E-25
1	0	212	-0,00193333	-8,33333E-09	2,61905E-12	-2,1263E-16	1,19944E-20	
2	3000	206,2	-0,002	3,09524E-08	-2,0587E-12	1,2322E-16		
3	8000	196,2	-0,00162857	-8,16327E-09	1,02172E-12			
4	15000	184,8	-0,00174286	1,22711E-08				
5	22000	172,6	-0,00158333					
6	28000	163,1						

5000

p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + f[x0,x1,x2,x3](x-x0)(x-x1)(x-x2) + f[x0,x1,x2,x3,x4](x-x0)(x-x1)(x-x2)(x-x3) + f[x0,x1,x2,x3,x4,x5](x-x0)(x-x1)(x-x2)(x-x3)(x-x4) + f[x0,x1,x2,x3,x4,x5](x-x0)(x-x1)(x-x2)(x-x3)(x-x4)(x-x5)

p(5000)= 202,1611644 E= 4,15562E-05

b) 1524 metros (m)

	x	У						
#	h(m)	T(°F)	1er nivel	2do nivel	3er nivel	4to nivel	5to nivel	6to nnivel
0	-304,8	213,9	-0,0062336	-8,96993E-08	-2,6053E-25	1,8965E-14	-6,21943E-18	1,21943E-21
1	0	212	-0,00634296	-8,96993E-08	9,24908E-11	-2,4635E-14	4,55936E-18	
2	914,4	206,2	-0,00656168	3,33169E-07	-7,2703E-11	1,4276E-14		
3	2438,4	196,2	-0,00534308	-8,78687E-08	3,60816E-11			
4	4572	184,8	-0,00571804	1,32085E-07	-			
5	6705,6	172,6	-0,00519466					
6	8534,4	163,1						
	1524		_					

p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + f[x0,x1,x2,x3](x-x0)(x-x1)(x-x2) + f[x0,x1,x2,x3,x4](x-x0)(x-x1)(x-x2)(x-x3) + f[x0,x1,x2,x3,x4,x5](x-x0)(x-x1)(x-x2)(x-x3)(x-x4) + f[x0,x1,x2,x3,x4,x5](x-x0)(x-x1)(x-x2)(x-x3)(x-x4) + f[x0,x1,x2,x3,x4,x5](x-x0)(x-x1)(x-x2)(x-x3)(x-x4)(x-x2)(x-x3)(x-x4) + f[x0,x1,x2,x3,x4](x-x0)(x-x1)(x-x2)(x-x3)(x-x4)(x-x2)(x-x3)(x-x4)(x-x2)(x-x3)(x-x4)(x-x4)(x-x2)(x-x3)(x-x4)(x-

p(1524)= 202,1611644

E= 4,15562E-05

Entonces: A una altura, tanto en metros como en pies, de 5000 (ft)(~1524 (m)), el agua llega a su punto de ebullición a 202,16 °F con un error de: 4,15562E-05

CONCLUSIÓN DE 1) Y 2):

Aplicando Lagrange vemos que los datos usados no fueron suficientes para igualarse con la calculadora online (https://es.planetcalc.com/8692/) y por lo tanto obtuvo un error mayor que al usar el métdo de Newton, el cual llegó al mismo resultado que dicha página con un error mucho menor.

3.- Proyectemos los grados de ebullición para una altura xk usando "Interpolación" por el método de Newton a las ciudades de La Paz y El Alto, comparando con los datos encontrados:

La Paz	El Alto
3650	4100
88 ₅ C	87ºC
190,4ºF	188,6ºF

a) LA PAZ: 3650 (m)

	x	у						
#	h(m)	T(°F)	1er nivel	2do nivel	3er nivel	4to nivel	5to nivel	6to nnivel
0	-304,8	213,9	-0,0062336	-8,96993E-08	-2,6053E-25	1,8965E-14	-6,21943E-18	1,21943E-21
1	0	212	-0,00634296	-8,96993E-08	9,24908E-11	-2,4635E-14	4,55936E-18	
2	914,4	206,2	-0,00656168	3,33169E-07	-7,2703E-11	1,4276E-14		•
3	2438,4	196,2	-0,00534308	-8,78687E-08	3,60816E-11			
4	4572	184,8	-0,00571804	1,32085E-07				
5	6705,6	172,6	-0,00519466		•			
6	8534,4	163,1		-				

3650

p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + f[x0,x1,x2,x3](x-x0)(x-x1)(x-x2) + f[x0,x1,x2,x3,x4](x-x0)(x-x1)(x-x2)(x-x3) + f[x0,x1,x2,x3,x4,x5](x-x0)(x-x1)(x-x2)(x-x3)(x-x4) + f[x0,x1,x2,x3,x4,x5](x-x0)(x-x1)(x-x2)(x-x3)(x-x4)(x-x5)

p(3650)= 189,2986723

E= 0,000228287

b) EL ALTO: 4100 metros (m)

	х	у						
#	h(m)	T(°F)	1er nivel	2do nivel	3er nivel	4to nivel	5to nivel	6to nnivel
0	-304,8	213,9	-0,0062336	-8,96993E-08	-2,6053E-25	1,8965E-14	-6,21943E-18	1,21943E-21
1	0	212	-0,00634296	-8,96993E-08	9,24908E-11	-2,4635E-14	4,55936E-18	
2	914,4	206,2	-0,00656168	3,33169E-07	-7,2703E-11	1,4276E-14		
3	2438,4	196,2	-0,00534308	-8,78687E-08	3,60816E-11			
4	4572	184,8	-0,00571804	1,32085E-07				
5	6705,6	172,6	-0,00519466					
6	8534,4	163,1		-				
-	4100		_					

p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + f[x0,x1,x2,x3](x-x0)(x-x1)(x-x2) + f[x0,x1,x2,x3,x4](x-x0)(x-x1)(x-x2)(x-x3) + f[x0,x1,x2,x3,x4,x5](x-x0)(x-x1)(x-x2)(x-x3)(x-x4) + f[x0,x1,x2,x3,x4,x5](x-x0)(x-x1)(x-x2)(x-x3)(x-x4) + f[x0,x1,x2,x3,x4,x5](x-x0)(x-x1)(x-x2)(x-x3)(x-x4)(x-x2)(x-x3)(x-x4)(x-x2)(x-x3)(x-x4)(x-x2)(x-x3)(x-x4)(x-x2)(x-x3)(x-x4)(x-x2)(x-x3)(x-x4)(x-x2)(x-x3)(x-x4)(x-x2)(x-x3)(x-x4)(x-x2)(x-x3)(x-x4)(x-x2)(x-x3)(x-x4)(x-x2)(x-x3)(x-x4)(x-x2)(x-x3)(x-x4)(x-x2)(x-x3)(x-x4)(x-x2)(x-x3)(x-x4)(x-x4)(x-x3)(x-x4

p(4100)= 187,0592734

E= 0,000199114

CONCLUSIÓN DE 3):

Aplicando el método de Newton para calcular el punto de ebullición del agua en las ciudades de LA PAZ y EL ATO podemos observar que a mayor altura el recurso llega a ebullir a menor cantidad (°F), es decir un poco más rápido, que estando a una menor altura, y con un error mucho menor. Es decir:

Datos	LA PAZ	EL ALTO
altura(m)	3650	4100
ebullición(°F)	189,2986723	187,059273
error	0,000228287	0,00019911

=> A MAYOR ALTURA EL AGUA EBULLE A MENOR TEMPERATURA

Los datos obtenidos mediante cálculos,	La Paz	El Alto
utilizando Newton, nos ayudó a realizar	3650	4100
cálculos y obtener resultados muy similares	88ºC	87ºC
a datos estadísticos encontrados en la web	190,4ºF	188,6ºF

LA PAZ	EL ALTO
3650	4100
87,3881513	86,14404078
189,2986723	187,0592734

ANEXOS: GRÁFICOS

h(m)	T(°F)	
-304,8	213,9	
0	212	
914,4	206,2	
2438,4	196,2	
4572	184,8	
6705,6	172,6	
8534,4	163,1	
1524		

х	У
h(m)	T(°F)
-304,8	213,9
0	212
914,4	206,2
2438,4	196,2
4572	184,8
6705,6	172,6
8534,4	163,1

3650

Dígitos después del punto decimal: 2

$\begin{split} L(x) &= \frac{520965925}{427220986730287694935686119424} x^6 - \\ &- \frac{6538997159}{23211025788931706880} x^3 - \frac{71998249}{82497631030214} x^4 - \frac{71998249}{8249763103021} x^4 - \frac{71998249}{82497631000000000000000000000000000000000000$	$\frac{830070415}{35041091431290001225039872}x^5 + \frac{27063926381}{183942737172125990682624}x^4 \\ \frac{10279584023}{1657111341600}x + 212$
Puntos Interpolados	

- Polinomio base 1

- Polinomio base 5

у 189.30

3650

x	У
h(m)	T(°F)
-304,8	213,9
0	212
914,4	206,2
2438,4	196,2
4572	184,8
6705,6	172,6
8534,4	163,1
4100	

