COVID-19 Data Analytics Report

Author : Sai Chaitanya Date : September 2025

Abstract

This project focuses on analyzing COVID-19 data using SQL to identify country-wise and date-wise trends. The dataset contains confirmed cases, deaths, recoveries, and other related attributes. SQL queries, views, and analytics functions were applied to gain meaningful insights into the global pandemic scenario

Objectives

- To create a relational database from COVID-19 datasets .
- To explore country-wise statistics such as total cases, deaths, and recovery rates
- To apply SQL queries, subqueries, and views for analytics.
- To demonstrate the use of window functions and aggregates in SQL.
- To build a reusable database for future analysis.

Tools & Dataset

Database: MySQL Workbench (alternative: SQLite DB Browser).

Dataset: COVID-19 CSV files from Kaggle.

Version Control: Git + GitHub for collaboration.

Sample Table: country_wise_latest

ountry_Region	Confirmed	Deaths	Recovered	Active	Deaths/100 Cases	Recovered/100 Cases	WHO Region
India	3,542,733	63,498	2,742,380	736,855	1.79	77.4	South-East Asia

Methodology

- Schema Design Defined tables for country-level COVID-19 data.
- Data Import Loaded CSV data into MySQL using LOAD DATA INFILE
- . Data Cleaning Handled missing values and infinite ratios (NULLIF).
- Querying Performed aggregation, filtering, and calculations.
- Views Created reusable summaries (e.g., top countries by cases).
- Analytics Applied window functions for running totals and weekly trends.

Findings

- The Americas and South-East Asia regions reported the highest number of confirmed cases
- Mortality rates varied significantly across regions, with Europe having higher death ratios
- . Window functions allowed cumulative analysis of confirmed cases effectively
- . Recovered-to-confirmed ratio highlighted countries with strong healthcare responses

Conclusion

This project successfully demonstrated how SQL can be used for analytics on real-world COVID-19 data. By leveraging queries, subqueries, and views, meaningful insights were extracted.

The project also highlighted the importance of data cleaning and handling edge cases such as missing or infinite values. Future

improvements could include:

- Automating data updates from live APIs.
- Integrating visualizations (Tableau/Power BI).
- Applying machine learning for trend forecasting.