

Evaluate ML System

Ha Noi, 11/12/2022, kan pham

Content:

- 1. Accuracy
- 2. Sensitivity, Specificity and prevalence
- 3. PPV and NPV
- 4. Confusion matrix
- 5. Type error I & II
- 6. Precision, Recall, and F1-score
- 7. ROC curve and AUC
- evaluate multi-classification model

How good a classification model is?

_	Examples of correctly of classified	
Accuracy = -	Total number of examples	

boosting your data exploration

How good a classification model is?

Positive: Disease
Negative: Normal

Ground Truth

Prediction

	Positive	Negative
Positive	20	0
Negative	20	60

How many Accuracy?

Accuracy in Terms of Conditional Probability

```
Accuracy = P(Correct)
= P(Correct, Disease) + P(Correct, Normal)
```


Ground Truth

	Positive	Negative
Positive	20	0
Negative	20	60

Sensitivity (TPR)

Accuracy in Terms of Conditional Probability

Positive: Disease
Negative: Normal

```
Accuracy = P(Correct)
= P(Correct, Disease) + P(Correct, Normal)
= P(Correct | Disease) P(Disease) + P(Correct | Normal) P(Normal)
= P(+ | Disease) P(Disease) + P(- | Normal) P(Normal)
```

Specificity (TNR)

Ground Truth

	Positive	Negative
Positive	20	0
Negative	20	60

2. Sensitivity and Specificity

Accuracy in Terms of Conditional Probability

Positive: Disease
Negative: Normal

```
Accuracy = P(Correct)
= P(Correct, Disease) + P(Correct, Normal)
= P(Correct | Disease) P(Disease) + P(Correct | Normal) P(Normal)
= P(+ | Disease) P(Disease) + P(- | Normal) P(Normal)

Sensitivity (TPR)

Specificity (TNR)
```

Ground Truth

	Positive	Negative
Positive	20	0
Negative	20	60

2. Sensitivity and Specificity

Accuracy in Terms of Conditional Probability

```
Accuracy = P(Correct)
= P(Correct, Disease) + P(Correct, Normal)
= P(Correct | Disease) P(Disease) + P(Correct | Normal) P(Normal)
= P(+ | Disease) P(Disease) + P(- | Normal) P(Normal)
```

Specificity (TNR)

How could you literally define **Sensitivity** and **Specificity**?

Sensitivity (TPR)

Positive: Disease Negative: Normal

2. Sensitivity and Specificity

Accuracy in Terms of Conditional Probability

```
Positive: Disease
Negative: Normal
```

```
Accuracy = P(Correct)
= P(Correct, Disease) + P(Correct, Normal)
= P(Correct | Disease) P(Disease) + P(Correct | Normal) P(Normal)
= P(+ | Disease) P(Disease) + P(- | Normal) P(Normal)

Sensitivity (TPR)

Specificity (TNR)
```

How could you literally define **Sensitivity** and **Specificity**?

P(+ | Disease)

If a patient has disease, what is probability that model predict disease?

Sensitivity

P(- | Normal)

If a patient is normal, what is probability that model predicts normal?

Specificity

2. Sensitivity, Specificity and prevalence

Accuracy in Terms of Conditional Probability

```
Positive: Disease
Negative: Normal
```

```
Accuracy = P(Correct)
= P(Correct, Disease) + P(Correct, Normal)
= P(Correct | Disease) P(Disease) + P(Correct | Normal) P(Normal)
= P(+ | Disease) P(Disease) + P(- | Normal) P(Normal)

Sensitivity (TPR)

Specificity (TNR)

= Sensitivity * P(Disease) + Specificity * P(Normal)
```

3. PPV and NPV

P(+ | Disease)

P(Disease | +)

If a patient has disease, what is probability that model predict disease? If a model prediction is positive, what is probability that patient has the disease?

Sensitivity

PPV (positive predictive value)

Positive: Disease Negative: Normal

Ground Truth

Prediction

Positive Negative
Positive 20 0
Negative 20 60

3. PPV and NPV

P(- | Normal)

P(Normal | -)

If a patient is normal, what is probability that model predict normal?

Specificity

If a model prediction is negative, what is probability that patient is normal?

NPV (negative predictive value)

Positive: Disease Negative: Normal

Ground Truth

Prediction

Positive Negative
Positive 20 0
Negative 20 60

3. PPV and NPV

P(+ Disease)	P(Disease +)
Sensitivity	PPV
P(- Normal)	P(Normal -)
Specificity	NPV

4. Confusion matrix

Ground Truth	
--------------	--

Prediction

	Positive	Negative
Positive	True Positive (TP)	False Positive (FP)
Negative	False Negative (FN)	True Negative (TN)

sensitivity = ?

specificity = ?

4. Confusion matrix

Ground Truth

	Positive	Negative
Positive	True Positive (TP)	False Positive (FP)
Negative	False Negative (FN)	True Negative (TN)

sensitivity =
$$\frac{TP}{TP + FN}$$
 specificity = $\frac{TN}{FP + TN}$

5. Type error I & II

What error is more serious?

Model 1 and model 2 is binary classification model have the same accuracy is 80%.

Positive: Disease Negative: Normal

Model 1:

Ground Truth

Positive Negative
Positive 0 0
Negative 20 80

Model 2:

Ground Truth

Prediction

		Positive	Negative
	Positive	20	0
	Negative	20	60

What is the better model?

Model 1 and model 2 is binary classification model have the same accuracy is 80%.

Positive: Disease Negative: Normal

Model 1:

Ground Truth

Prediction

	Positive	Negative	
Positive	0	0	
Negative	20	80	

Model 2:

Ground Truth

Prediction

	Positive	Negative
Positive	20	0
Negative	20	60

What is the better model?

⇒ Model 2 is better because it predict right 50% patients that get diseases.

Model 1 and model 2 is binary classification model have the same accuracy is 80%.

Positive: Disease Negative: Normal

Model 1:

Ground Truth

Prediction

	Positive	Negative	
Positive	0	0	
Negative	20	80	

Model 2:

Ground Truth

Prediction

	Positive	Negative
Positive	20	0
Negative	20	60

What is the better model?

⇒ Model 2 is better because it predict right 50% patients that get diseases.

Thus, we need to change accuracy metric to another metric.

Ground Truth

Prediction

	Positive	Negative
Positive	True Positive (TP)	False Positive (FP)
Negative	False Negative (FN)	True Negative (TN)

TP + FN

f1-score =
$$\frac{2}{1/\text{precision} + 1/\text{recall}}$$

Model 1 and model 2 is binary classification model have the same accuracy is 80%.

Positive: *Disease* **Negative**: *Normal*

Model 1:

Ground Truth

Prediction

	Positive	Negative
Positive	0	0
Negative	20	80

Precision = ? Recall = ?

f1-score = ?

Model 2:

Ground Truth

Prediction

	Positive	Negative
Positive	20	0
Negative	20	60

Precision = ?

Recall = ?

f1-score = ?

7. ROC curve and threshold

What is threshold?

7. ROC curve and threshold

If we change threshold t, how does Sensitivity and Specificity change?

7. ROC and AUC

7. ROC and AUC

- AUC = Area under the curve ROC
- AUC in [0, 1.0]
- Bigger AUC is greater classifier

8. Evaluate multi-classification model

- Multi-classifier literally is a group of binary classifier
- One-vs-rest method:

8. Evaluate multi-classification model

Evaluate class i based on binary-classifier model i

