Exercise Sheet 9

F. Bornemann, C. Ludwig

December 23, 2022

Exercise 27 (Frequently asked questions (FAQ) about multistep-methods)

To solve the IVP x' = f(t, x), $x(t_0) = x_0$ on an equidistant time grid with stepsize τ we consider linear multistep-methods of the form

$$\varrho(E)x_{\tau} = \tau\sigma(E)f_{\tau}$$
 with $\varrho(\xi) = \alpha_k \xi^k + \alpha_{k-1} \xi^{k-1} + \dots + \alpha_0$

with $\alpha_k \neq 0$ and $|\alpha_0| + |\beta_0| > 0$.

Prove the following statements or find counter examples:

- (a) If $\alpha_j = \alpha_{k-j}$ for all j = 1, ..., k and the method is (zero-)stable then all roots of ϱ are simple and they are on the boundary of the unit disk.
- (b) If (ϱ_1, σ_1) and (ϱ_2, σ_2) are two k-step methods of order p then for all $\lambda \in [0; 1]$ also (ϱ, σ) with $\varrho := \lambda \varrho_1 + (1 \lambda) \varrho_2$ is a k-step method of order p.
- (c) Let (ϱ_1, σ_1) and (ϱ_2, σ_2) be two (zero-)stable and consistent multistep-methods. For all $\lambda \in [0; 1]$ the methods (ϱ, σ) with $\sigma := \lambda \sigma_1 + (1 - \lambda)\sigma_2$ and $\varrho := \lambda \varrho_1 + (1 - \lambda)\varrho_2$ are also multistep methods. Then (ϱ, σ) is stable.

Exercise 28

Find all $y \in C^1[a, b]$ with $y(a) = y_a$, $y(b) = y_b$ and $\int_a^b x^2(y')^2 dx = \min!$ for the following cases:

- (a) y(1) = 1 and y(2) = 1/2.
- (b) y(-2) = -1/2 and y(1) = 1.

Exercise 29

Consider the IVP

$$x'' = 100x$$
, $x(0) = 1$, $x'(0) = s$

with the solution x(t; s). Let $\bar{s} = s(1 + \epsilon)$ (with $0 < \epsilon < 1$).

- (a) Compute for s = -10 the relative error of $x(3; \bar{s})$.
- (b) Give reasons why it's not a good idea to solve the boundary value problem

$$x'' = 100x$$
, $x(0) = 1$, $x(3) = e^{-30}$

by numerically searching roots for

$$F(s) = x(3; s) - e^{-30} \stackrel{!}{=} 0.$$