Afina in projektivna geometrija

Stožnice

(1) Skiciraj stožnico v evklidski ravnini \mathbb{R}^2 , ki je določena z enačbo

$$\frac{5}{16}x^2 - \frac{3}{8}xy + \frac{5}{16}y^2 = 1.$$

Rešitev: Stožnica v evklidski ravnini je krivulja, ki jo določa enačba

$$ax^2 + 2bxy + cy^2 + 2dx + 2ey + f = 0.$$

Posamezni členi v zgornji enačbi imajo različne geometrijske pomene:

- · Člen $ax^2 + 2bxy + cy^2$ določa tip stožnice in pa njeno orientacijo. Neizrojene stožnice so krožnica, elipsa, parabola in hiperbola, poleg njih pa obstajajo še izrojene stožnice.
- · Člen 2dx + 2ey določa središče stožnice.
- \cdot Člen f določa velikost stožnice.

Vsaki stožnici lahko priredimo simetrično matriko

$$M = \begin{bmatrix} a & b \\ b & c \end{bmatrix},$$

ki nam pomaga pri skiciranju stožnice. Lastni vektorji matrike M določajo orientacijo stožnice, lastne vrednosti pa nam povedo, katerega tipa je stožnica.

V našem primeru je

$$M = \begin{bmatrix} \frac{5}{16} & -\frac{3}{16} \\ -\frac{3}{16} & \frac{5}{16} \end{bmatrix}.$$

<u>Lastni vrednosti matrike M</u>:

Lastni vrednosti matrike M zadoščata enačbi

$$\begin{vmatrix} \frac{5}{16} - \lambda & -\frac{3}{16} \\ -\frac{3}{16} & \frac{5}{16} - \lambda \end{vmatrix} = \lambda^2 - \frac{5}{8}\lambda + \frac{1}{16} = 0,$$

od koder sledi, da sta lastni vrednosti matrike M števili

$$\lambda_1 = \frac{1}{2},$$

$$\lambda_2 = \frac{1}{8}.$$

Lastna vektorja matrike M:

Lastna vektorja matrike M sta vektorja, ki napenjata jedri matrik $M - \lambda_1 \operatorname{Id}$ in $M - \lambda_2 \operatorname{Id}$. To pomeni, da mora vektor v_1 , ki pripada lastni vrednosti λ_1 , zadoščati sistemu enačb

$$\begin{bmatrix} -\frac{3}{16} & -\frac{3}{16} \\ -\frac{3}{16} & -\frac{3}{16} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0.$$

Vrstici sta linearno odvisni, zato je dovolj poiskati vektor, ki reši zgornjo enačbo. Prvo koordinato si lahko izberemo poljubno, druga pa je nato natanko določena. Vzamemo lahko vektor $v_1 = (1, -1)$.

Vektor v_2 , ki pripada lastni vrednosti λ_2 , pa mora rešiti sistem enačb

$$\begin{bmatrix} \frac{3}{16} & -\frac{3}{16} \\ -\frac{3}{16} & \frac{3}{16} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0.$$

Sedaj lahko vzamemo vektor $v_2 = (1, 1)$.

Lastni vrednosti in lastna vektorja nam povedo, da imamo opravka z elipso, ki ima osi v smereh simetral lihih in sodih kvadrantov. Formalno to lahko pokažemo tako, da najprej z normiranjem lastnih vektorjev naredimo razcep

$$M = PDP^{T} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{8} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}.$$

Prehodna matrika P določa zamenjavo koordinat:

$$x' = \frac{\sqrt{2}}{2} (x - y),$$

$$y' = \frac{\sqrt{2}}{2}(x+y).$$

V novih koordinatah lahko našo stožnico izrazimo z enačbo

$$\frac{x^2}{2} + \frac{y^2}{8} = 1,$$

kar pomeni, da gre za elipso s polosema $\sqrt{2}$ in $2\sqrt{2}$ v smeri simetral kvadrantov.

- (2) Homogeniziraj dane enačbe in opiši stožnice v projektivni ravnini $P(\mathbb{R}^3)$, ki jih določajo:
 - (a) $x^2 + y^2 = 1$,
 - (b) $x^2 y^2 = 1$,
 - (c) $y^2 = x$.

 $Re \check{s}itev$: Stožnici v evklidski ravnini \mathbb{R}^2 , ki je določena z enačbo

$$ax^2 + 2bxy + cy^2 + 2dx + 2ey + f = 0,$$

lahko priredimo stožnico v projektivni ravnini $P(\mathbb{R}^3)$ s homogenizacijo zgornje enačbe. To pomeni, da vsakemu členu dodamo potenco spremenljivke z, tako da imajo na koncu vsi členi stopnjo 2. Konkretno tako dobimo stožnico z enačbo

$$ax^{2} + 2bxy + cy^{2} + 2dxz + 2eyz + fz^{2} = 0.$$

Pri homogenizaciji torej iz kvadratne enačbe dveh spremenljivk dobimo kvadratno enačbo treh spremenljivk, ki določa neko ploskev v evklidskem prostoru \mathbb{R}^3 . Ker je dobljena enačba homogena, je ta ploskev premonosna (sestavljena iz premic), zato definira neko krivuljo v projektivni ravnini. Prvotna krivulja ustreza zožitvi te krivulje na afini del projektivne ravnine, ki je dan s pogojem z=1. V splošnem pa lahko pri homogenizaciji krivulje dobimo še kakšno dodatno točko na premici v neskončnosti.

(a) Pri homogenizaciji enačbe $x^2 + y^2 = 1$ dobimo enačbo

$$x^2 + y^2 = z^2.$$

Ta enačba določa neko krivuljo v projektivni ravnini, katere slika na zaslonu z=1 je ravno prvotna krožnica.

Poglejmo še, ali morda vsebuje še kakšno točko na premici v neskončnosti. Na premici v neskončnosti je z=0, zato dobimo pogoj

$$x^2 + y^2 = 0,$$

od koder sledi x = y = 0. Rešitev enačbe je torej točka (0,0,0), ki pa ne definira nobene točke v projektivni ravnini.

(b) Pri homogenizaciji enačbe $x^2 - y^2 = 1$ dobimo enačbo

$$x^2 - y^2 = z^2.$$

Na zaslonu z = 1 tokrat dobimo hiperbolo.

V preseku te projektivne krivulje s premico v neskončnosti so točke, za katere velja

$$x^2 - y^2 = 0.$$

Takšni sta točki $T_1 = [1:1:0]$ in $T_2 = [1:-1:0]$, ustrezata pa asimptotama hiperbole. Zanimivo je pogledati, kaj dobimo, če to krivuljo pogledamo na zaslonu x = 1. Tam je podana z enačbo $v^2 + z^2 = 1$, kar pomeni, da gra za krožnico. Točki (1,0) in (-1,0)

podana z enačbo $y^2 + z^2 = 1$, kar pomeni, da gre za krožnico. Točki (1,0) in (-1,0) ustrezata točkama T_1 in T_2 , medtem ko zgornja in spodnja polkrožnica ustrezata desni in levi veji hiperbole.

(c) Za konec si poglejmo še parabolo $y^2=x$. Če to enačbo homogeniziramo, dobimo enačbo

$$y^2 = xz.$$

Tokrat dobimo v neskončnosti še eno dodatno točko, in sicer T = [1:0:0].

Če na to stožnico pogledamo iz različnih zornih kotov, dobimo različne slike na zaslonih. Pri izbiri zaslona x + z = 2 tako dobimo krivuljo z enačbo:

$$y^{2} = x(2 - x),$$
$$(x - 1)^{2} + y^{2} = 1,$$

ki pa je v bistvu krožnica. Na tem zaslonu ima standardna premica v neskončnosti enačbo x=2 in se dotika naše krivulje v točki (2,0), ki je v bistvu točka T=[1:0:0]. Iz tega zornega kota dobro vidimo, da je premica v neskončnosti tangenta na našo parabolo, čeprav na začetku to ni bilo jasno.

Opomba: Iz zgornjih primerov je razvidno, da v projektivni ravnini krožnice, elipse, parabole in hiperbole vse predstavljajo isto stožnico, ki pa jo opazujemo iz različnih zornih kotov. V projektivni ravnini namreč do projektivne ekvivalence natanko obstaja le en tip neizrojenih stožnic. V afini in evklidski ravnini je situacija drugačna. Tam z izometrijami oziroma afinimi transformacijami ne moremo preslikati elipse v parabolo ali hiperbolo.

- (3) V projektivni ravnini $P(\mathbb{R}^3)$ je dana stožnica $\mathcal{S} = \{[x:y:z] \mid x^2 + y^2 z^2 = 0\}.$
 - (a) Izračunaj polare točk A = [0:0:1], B = [-1/2:0:1], C = [0:1:1] in D = [1:1:1] glede na stožnico \mathcal{S} .
 - (b) Poišči pola premic $p=\{[x:y:z]\,|\,x-z=0\}$ in $q=\{[x:y:z]\,|\,x=0\}$ glede na $\mathcal{S}.$

Rešitev: Pri tej nalogi bomo spoznali geometrijska opisa polare in pola glede na stožnico v projektivni ravnini.

Naj bo S neprazna, neizrojena stožnica v projektivni ravnini $P(\mathbb{R}^3)$ in M simetrična 3×3 matrika, ki ji pripada. Nadalje naj bo $A \in P(\mathbb{R}^3)$ poljubna točka in $a \in \mathbb{R}^3$ poljuben vektor na premici skozi izhodišče, ki določa točko A. Polara točke A glede na stožnico S je projektivna premica

$$p_A = \{ [x : y : z] \mid \langle x, Ma \rangle = 0 \}.$$

Če je p poljubna premica v projektivni ravnini, je njen pol tista točka v projektivni ravnini, katere polara je premica p.

(a) Stožnici $\mathcal{S} = \{[x:y:z]\,|\,x^2+y^2-z^2=0\}$ pripada simetrična matrika

$$M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

Polara točke A = [0:0:1] glede na S:

Pri računanju polare v bistvu iščemo ortogonalni komplement vektorja Ma v \mathbb{R}^3 . Tako dobimo ravnino v \mathbb{R}^3 (vektor Ma je njena normala), ki določa polaro v projektivni ravnini. V našem primeru je Ma = (0, 0, -1), zato je

$$p_A = \{ [x : y : z] \mid z = 0 \}.$$

Polara točke A je torej premica v neskončnosti.

Polara točke B = [-1/2:0:1] glede na S:

Sedaj je Mb = (-1/2, 0, -1), zato je

$$p_B = \{ [x : y : z] \mid \frac{x}{2} + z = 0 \}.$$

Na zaslonu z = 1 ima polara točke B enačbo x = -2.

Polara točke C = [0:1:1] glede na \mathcal{S} :

V tem primeru je Mc = (0, 1, -1), od koder dobimo

$$p_C = \{ [x:y:z] | y-z=0 \}.$$

Na zaslonu z=1 ima polara točke C enačbo y=1. Vidimo, da je polara v tem primeru kar tangenta na krožnico skozi točko C.

Polara točke D = [1:1:1] glede na S:

Sedaj imamo Md = (1, 1, -1). Od tod sledi

$$p_D = \{ [x:y:z] \mid x+y-z=0 \}.$$

Na zaslonu z = 1 lahko polaro točke D podamo z enačbo x + y = 1.

(b) Sedaj bomo imeli dano neko premico v projektivni ravnini, iskali pa bomo točko, katere polara je ta premica. Denimo, da je premica p v $P(\mathbb{R}^3)$ določena z neko ravnino v \mathbb{R}^3 z normalo n. Potem je pol A premice p določen z enačbo

$$Ma = n$$
.

Pol premice $p = \{[x : y : z] | x - z = 0\}$ glede na S:

Iščemo vektor a, ki reši enačbo Ma=(1,0,-1), oziroma:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}.$$

Od tod sledi, da je pol premice p točka A = [1:0:1]. Vidimo, da premica p vsebuje svoj pol. To se zgodi natanko takrat, ko je premica tangentna na stožnico, pol pa je v tem primeru kar dotikališče premice in stožnice.

Pol premice $q:\{[x:y:z]\,|\,x=0\}$ glede na \mathcal{S} :

Sedaj iščemo vektor a, ki reši enačbo Ma=(1,0,0), oziroma (x,y,-z)=(1,0,0). Pol premice q je točka A=[1:0:0], ki leži na premici v neskončnosti. Točka A je presečišče tangent na stožnico $\mathcal S$ v presečiščih premice q in stožnice $\mathcal S$.

Opomba: Pojma polare in pola po naši definiciji sta posplošitvi pojmov polare in pola glede na krožnico v evklidski ravnini. Denimo, da sta A in B inverzni točki glede na krožnico K. Potem gre polara točke A skozi točko B in je pravokotna na zveznico točk A in B. Analogno velja tudi za polaro točke B. Polara točke B seka krožnico K natanko v dotikališčih tangent na K, ki potekata skozi B.

(4) V projektivni ravnini $P(\mathbb{R}^3)$ je dana stožnica

$$S = \{ [x:y:z] \mid -x^2 + 2xy + 2xz + 2yz + z^2 = 0 \}.$$

- (a) Določi polaro točke A = [0:1:0] glede na \mathcal{S} .
- (b) Določi pol premice $p = \{[x:y:z] \mid x+y+z=0\}$ glede na \mathcal{S} .
- (c) Ali je premica $q = \{[x:y:z] \mid x+2y+z=0\}$ tangentna na stožnico \mathcal{S} ?

 $Re \breve{s}itev$: Stožnici $\mathcal{S}=\{[x:y:z]\,|\, -x^2+2xy+2xz+2yz+z^2=0\}$ pripada simetrična matrika

$$M = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

(a) Polara točke A = [0, 1, 0] je premica

$$p_A = \{ [x : y : z] \mid x + z = 0 \}.$$

Ker točka A leži na stožnici (v neskončnosti), je polara točke A tangenta na stožnico v projektivni ravnini. Na zaslonu z=1 pa polara sovpada z asimptoto hiperbole.

(b) Pol premice p mora rešiti enačbo

$$\begin{bmatrix} -1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix},$$

kar pomeni, da je pol premice p točka A = [0:0:1].

(c) Za testiranje, ali je dana premica tangentna na stožnico, imamo na voljo dokaj preprost kriterij. Premica je namreč tangentna na stožnico natanko takrat, ko vsebuje svoj pol. Pol premice q zadošča enačbi

$$\begin{bmatrix} -1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

od koder sledi, da je pol točka A=[0:-1:2]. Preverimo lahko, da točka A leži na premici q, kar pomeni, da je q tangentna na stožnico \mathcal{S} .

(5) Parametriziraj šop stožnic, ki ga določata stožnici:

$$S_1 = \{ [x:y:z] \mid \frac{x^2}{4} + y^2 - z^2 = 0 \},$$

$$S_2 = \{ [x:y:z] \mid x^2 + \frac{y^2}{4} - z^2 = 0 \}$$

ter poišči vse izrojene stožnice v tem šopu.

Rešitev: Poglejmo si najprej skici obeh stožnic na zaslonu z=1.

Presečišča obeh stožnic zadoščajo sistemu enačb:

$$\frac{x^2}{4} + y^2 = 1,$$

$$x^2 + \frac{y^2}{4} = 1,$$

katerega rešitve so
$$T_1\left(\sqrt{\frac{4}{5}}, \sqrt{\frac{4}{5}}\right), T_2\left(-\sqrt{\frac{4}{5}}, \sqrt{\frac{4}{5}}\right), T_3\left(-\sqrt{\frac{4}{5}}, -\sqrt{\frac{4}{5}}\right) \text{ in } T_4\left(\sqrt{\frac{4}{5}}, -\sqrt{\frac{4}{5}}\right).$$

Označimo z M_1 in M_2 matriki, ki pripadata stožnicama \mathcal{S}_1 in \mathcal{S}_2 . Zanimala nas bo družina stožnic, ki potekajo skozi te štiri točke. Tej družini rečemo šop stožnic, ki ga določata \mathcal{S}_1 in \mathcal{S}_2 , stožnice v tej družini pa lahko opišemo z matrikami

$$M = \alpha M_1 + \beta M_2,$$

kjer je $[\alpha : \beta] \in P(\mathbb{R}^2)$ (večkratniki matrike M namreč določajo isto stožnico v $P(\mathbb{R}^3)$). V našem primeru dobimo

$$M = \alpha M_1 + \beta M_2 = \alpha \begin{bmatrix} \frac{1}{4} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} + \beta \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} \frac{\alpha}{4} + \beta & 0 & 0 \\ 0 & \alpha + \frac{\beta}{4} & 0 \\ 0 & 0 & -\alpha - \beta \end{bmatrix}.$$

Izrojene so tiste stožnice v tem šopu, katerih pripadajoče matrike niso obrnljive. To pomeni, da imajo ničelno determinanto, od koder sledi

$$\det(M) = \left(\frac{\alpha}{4} + \beta\right) \left(\alpha + \frac{\beta}{4}\right) \left(-\alpha - \beta\right) = 0.$$

Ker nas zanima samo razmerje α in β in ker rešitve [0:0] ne upoštevamo, lahko postavimo $\alpha=1$. V danem šopu so potem tri izrojene stožnice.

$$\alpha = 1, \beta = -1/4$$
:

V tem primeru dobimo izrojeno stožnico

$$S_{-1/4} = \left\{ [x:y:z] \left| \frac{15}{16} y^2 - \frac{3}{4} z^2 = 0 \right. \right\}$$

Na zaslonu z = 1 dobimo unijo dveh vzporednih premic

$$y = \pm \sqrt{\frac{4}{5}}.$$

$$\alpha = 1, \beta = -1$$
:

Sedaj je izrojena stožnica

$$S_{-1} = \left\{ [x:y:z] \mid -\frac{3}{4}x^2 + \frac{3}{4}y^2 = 0 \right\},\,$$

ki je na zaslonu z = 1 unija simetral kvadrantov

$$y = \pm x$$
.

$$\underline{\alpha = 1, \, \beta = -4}$$
:

V tem primeru dobimo izrojeno stožnico

$$S_{-4} = \left\{ [x:y:z] \left| \frac{15}{16}x^2 - \frac{3}{4}y^2 = 0 \right\} \right\},$$

ki je na zaslonu z = 1 unija premic

$$x = \pm \sqrt{\frac{4}{5}}.$$

Poglejmo si sliko stožnic S_1 , S_2 ter vseh treh izrojenih stožnic.

Zanimivo je še pogledati, kako se spreminja oblika stožnice, ko spreminjamo parameter β .

Pri dani vrednosti β dobimo stožnico, ki je na zaslonu z=1 dana z enačbo

$$\left(\frac{1}{4} + \beta\right)x^2 + \left(1 + \frac{\beta}{4}\right)y^2 = 1 + \beta.$$

Stožnica S_1 ustreza vrednosti $\beta = 0$, stožnica S_2 pa vrednosti $\beta = \infty$. Sedaj bomo opisali, kako se spreminja oblika stožnice, ko β preteče realna števila.

Pri vrednostih $\beta \to -\infty$ dobimo elipse, ki od zunaj aproksimirajo elipso \mathcal{S}_2 . Ko nato β narašča od $-\infty$ do -4, dobimo elipse, ki so čedalje bolj raztegnjene v navpični smeri. Pri $\beta = -4$ se elipsa pretrga, nastaneta pa dve navpični premici, ki tvorita prvo izrojeno stožnico iz šopa. Za parametre $-4 < \beta < -1$ dobimo vodoravne hiperbole, katerih asimptote so sprva skoraj navpične, nato pa se približujejo k simetralam kvadrantov, ki ustrezata drugi izrojeni stožnici pri $\beta = -1$. Na intervalu $-1 < \beta < -1/4$ dobimo navpične hiperbole, ki se pri vrednosti $\beta = -1/4$ izrodijo v dve vodoravni premici. Pri vrednostih $-1/4 < \beta < 0$ pridejo na vrsto elipse, ki se čedalje bolj od zunaj prilegajo elipsi \mathcal{S}_1 , ki ustreza parametru $\beta = 0$. Do vrednosti $\beta = 1$ se nato elipse približujejo krožnici, ki poteka skozi štiri skupne točke, za parametre $\beta > 1$ pa dobimo elipse, ki čedalje bolje od znotraj aproksimirajo elipso \mathcal{S}_2 .

(6) Poišči stožnico v projektivni ravnini $P(\mathbb{R}^3)$, ki vsebuje točke $T_1 = [0:0:1], T_2 = [1:0:1], T_3 = [1:1:1], T_4 = [0:1:1]$ in $T_5 = [2:3:1]$.

Rešitev: Kot smo videli pri prejšnji nalogi, štiri točke še ne določajo natanko stožnice v ravnini. Če pa imamo pet točk v splošni legi, je stožnica z njimi natanko določena. Začeli bomo s splošno enačbo stožnice

$$ax^{2} + 2bxy + cy^{2} + 2dxz + 2eyz + fz^{2} = 0.$$

Če v to enačbo vstavimo danih pet točk, dobimo sistem petih enačb za šest neznank. Ker je enačba homogena, lahko eno neničelno neznanko fiksiramo, tako da ostanemo s samo petimi neznankami, ki jih nato dobljeni sistem natanko določa. V našem primeru dobimo sistem enačb:

$$f = 0,$$

$$a + 2d + f = 0,$$

$$a + 2b + c + 2d + 2e + f = 0,$$

$$c + 2e + f = 0,$$

$$4a + 12b + 9c + 4d + 6e + f = 0.$$

Fiksirajmo recimo a=1. Potem sledi b=0, c=-1/3, d=-1/2, e=1/6 in f=0, od koder sledi, da je iskana stožnica

$$S = \left\{ [x:y:z] \, \middle| \, x^2 - \frac{y^2}{3} - xz + \frac{yz}{3} = 0 \right\}.$$

Zožitev te stožnice na afino ravnino ima enačbo:

$$x^{2} - \frac{y^{2}}{3} - x + \frac{y}{3} = 0,$$
$$\left(x - \frac{1}{2}\right)^{2} - \frac{1}{3}\left(y - \frac{1}{2}\right)^{2} = \frac{1}{6}.$$

Gre za hiperbolo s središčem v točki $T\left(\frac{1}{2}, \frac{1}{2}\right)$.

