HYDROGEOECOLOGY AND NANOTECHNOLOGY

УДК 502.7

Мамедова Назиля Исаг кызы

старший лаборант, Азербайджанский государственный университет нефти и промышленности naza 366@mail.ru

Аннотация. Извлекаемые вместе с нефтью пластовые воды, сгруппированные с одинаковыми параметрами после добавления нанокомпозиций повышают эффективность воды, что позволяет вторично использовать их в технологических процессах.

Ключевые слова: геоэкологическая среда, утилизация, пластовые воды, нанотехнология, резервуар-отстойник.

Mamedova Nazila Isag qizi

Senior Laboratory Assistant, Azerbaijan State University Oil and Industry naza 366@mail.ru

Annotation. Reservoir water extracted together with oil, grouped with the same parameters after adding nanocompositions, increases the efficiency of water, which allows them to be reused in technological processes.

Keywords: geoecological environment, utilization, reservoir water, nanotechnology, settling tank.

В нефтегазовой промышленности основное место в повсеместном загрязнении окружающей среды занимают проблемы, возникающие при разведке и разработке месторождений. Развитие нефтегазового сектора превратило государство в страну с большим промышленным потенциалом.

Однако изначально известно, что нефтедобывающая отрасль является потенциально опасным производством для окружающей среды. Так как, эти места, где добываются нефть и газ, а это богатое нефтяными запасами Каспийское море с значительными земельными участками Апшеронского полуострова, оказались загазованными и опасными.

Целью данного исследования послужило рациональное использование водных ресурсов в нефтедобыче и предотвращение негативного воздействия на окружающую среду методом инновационной утилизации пластовых вод, на месторождении Биби-Эйбат. Несмотря на актуальность проблемы, многие вопросы охраны и вторичного использования водных ресурсов в нефтедобыче еще не нашли своего экологически обоснованного решения [1].

С этой целью были определены геоэкологические и гидрогеологические условия месторождения Биби-Эйбат. Для оценки влияния воздействия попутных вод на природные комплексы, а также для установления степени загрязнения водных объектов был определен физико-химический состав пластовых вод по горизонтам в лабораторных условиях, который систематизировался по классификации В.А. Сулина и представлен в таблице 1.

Таблица 1 — Физико-химический состав по горизонтам на месторождения Биби-Эйбата (минимум верхний, максимум нижний)

Гор,	Плотность кг/м ³	Мин, г/л	Количество ионов, мг/л								
			Na ⁺ +K ⁺	Ca ²⁺	Mg	CI	SO ₄ ²	HCO ₃ + CO ₃ ²	RCOO ⁻	HB ₄ O ₇	В,А, Сулин
1	2	3	4	5	6	7	8	9	10	11	12
	1053,4	70,98	22945	1599	1020	44000	19	156	71	35	кх
1	1082,0	109,60	35427	3763	3975	67600	453	1760	543	91	
11	1042,1	54,91	16680	1173	770	33100	7	134	429	44	
II	1094,0	122,09	37559	8034	3940	74200	1675	2562	2805	-	
III	1045,6	57,59	17827	1112	380	35169	7	85	21	13	
1111	1086,4	112,45	39459	4318	3625	69420	720	1300	699	433	
III _r	1031,9	44,21	12119	1200	1401	25500	11	208	74	23	
	1110,0	141,05,	45480	6150	3520	86000	2018	1598	146	44	
IV	1032	44,27	13315	661	950	26900	13	116	63	39	НГК,
	1109,2	145,50	47359	6571	3480	89300	1700	6000	1087	125	KX
V	1024,0	33,54	11006	180	528	19200	3	37	132	34	
	1102,5	134,83	44822	5900	4253	82600	3576	9650	1485	842	NHK,
VII	1055	73,77	22676	1080	600	45500	13	244	252	42	KX, MX
	1095	125,40	41545	5009	2740	77300	846	7137	2310	64]

Продолжение таблицы 1

1	2	3	4	5	6	7	8	9	10	11	12
,	1062,8	84,97	27370	1782	1160	49750	16	51	165	38	
VIII	1089,0	116,21	38408	3780	2848	68830	2547	2070	1373	551	KX, MX
VIII + IX	1029,0	39,29	13089	650	950	23400	91	146	292	51	
	1103,4	136,4	42453	6550	3165	84000	1350	1530	627	93	1
	1073,2	98,92	32191	3612	1300	59900	2	280	-	-	KX
IX	1089,5	117,82	39344	4200	1893	72233	1050	438	235	59	1
.,	1044,5	60,84	23147	1208	92	34220	31	500	400	-	
Х	1089,6	114,79	38175	9820	2483	70060	1440	2855	2775	23	кх
.,	1055,8	75,81	26721	990	780	43800	61	244	165	-	
Хсв,	1096,0	125,08	41662	5240	2197	76100	1191	1980	1201	-	
	1063,5	85,79	29399	792	750	55750	130	258	990	-	НГК,
ΧI	1084,8	112,85	37419	3960	2080	68320	997	1891	1320	_	MX, KX
	1042,8	58,81	20649	618	563	33650	84	561	924	-	
XI–XII св,	1083,2	111,85	39537	4140	1656	66890	1669	2957	1185	_	1
	1054,2	73,49	26708	603	542	42910	20	154	52	85	1
XII	1074,8	107,93	36772	3096	1573	62882	1736	1598	1485	178	MX, KX
	1049,8	66,97	24801	129	167	35970	42	209	330	70	1
XII св,	1083,8	111,36	40756	2560	2334	66900	1050	4697	1390	146	1
	1055,0	73,70	26572	211	222	44000	50	115	280	130	
XIII	1071,6	96,39	34799	2500	720	58230	1100	4874	2013	390	_
	1039,0	53,63	18952	420	490	29050	80	293	400	-	НГК,
XIII св,	1072,8	98,19	36890	1620	780	59000	1677	2769	680	-	MX, KX
	1042,0	57,02	21632	36	50	31601	49	268	400	_	1 '
XIV св,	1074,7	100,99	34521	1100	810	61200	290	3830	1630	-	1
	1031,1	42,81	15812	11	18	21661	7	720	172	_	MX,
XV	1094,2	124,74	44305	2494	1218	75704	456	6729	1201	-	KX, HГK
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1032,5	46,30	16806	10	9	24700	12	700	296	190	
XV_B	1073,5	99,46	37113	1739	400	59900	820	4440	3600	800	НГК,
)() / ·	1022,0	31,71	11178	21	38	14100	14	1637	26	220	HC,
XV св,	1048,2	64,56	23943	486	386	32560	314	9577	2800	330	MX, KX
XVв, св,	1024,6	33,95	12091	10	22	15700	132	549	329	200	НГК,
, - ,	1049,2	64,23	23207	500	340	32900	680	7214	3750	826	КХ
)() / ·	1024,8	34,53	13184	14	21	18631	52	422	343	-	НГК,
XV св,	1042,8	39,27	21719	301	516	34000	1010	4940	4661	-	MX, KX
\0.1	1028,4	38,88	14283	18	20	19200	184	664	163	250	1.1516
XV св,	1042,9	59,35	21204	104	179	32200	3210	5252	2376	414	НГК
XV _{н,} св,	1028,2	39,15	14311	20	7	15880	58	1550	457	220	НГК.
(c+d)	1047,2	63,17	21885	1790	1070	29900	547	6161	6270	2060	КХ
	1018,0	24,82	9021	32	20	11100	173	3080	1150	210	НГК,
XVI	1042,0	56,80	21535	207	377	26446	421	7320	11180	540	MX
	1016,0	22,22	7480	10	15	9420	121	420	330	137	НГК,
XVIc,π	1046,2	62,21	23244	326	241	30800	1245	3965	1940	406	MX, KX, HC
НКГ	1020,3	27,45	9163	21	6	8990	73	3230	186	75	НГК,
	1042,5	57,08	21396	237	400	30320	1402	7878	2906	645	MX
НКГ	1020,0	26,57	8321	16	18	6832	111	1941	549	210	,
НКП	1042,9	59,16	22443	469	295	32800	1370	7510	1287	530	НГК
НКП	1014,0	19,99	6723	22	12	7240	15	2574	903	250	НГК,
XVII ₂₋₃	1038,1	53,57	18170	191	298	23940	882	8906	6766	526	MX,
НКП	1009,0	13,56	4324	11	7	3772	10	5168	1155	200	НГК,
XVII ₄₋₅	1032,5	46,44	14138	240	300	15420	852	11480	7920	610	MX
IKC -	1016,3	23,83	7608	18	12	6925	138	6780	277	164	НГК,
	. 5 . 5,5	_0,00	. 000			5520	100	10750	1120	107	HC

Окончание таблицы 1

1	2	3	4	5	6	7	8	9	10	11	12
IIKC	1011,0	16,04	5322	22	14	4992	340	4070	540	133	
	1023,5	32,62	11981	136	120	15000	1354	7620	1716	312	
IIIKC	1010,6	15,58	5147	20	12	4700	240	4110	615	76	НГК,
	1024,2	34,80	11698	390	182	14410	887	9414	1899	681	HC, MX
IVKC	1011,0	16,02	5483	7	7	5690	46	4209	383	310	
	1028,8	39,66	17334	79	153	20800	1204	8174	1297	948	НГК,
IV + VKC	1010,9	16,14	5173	18	12	5200	30	4180	720	250	KX
	1020,9	28,51	10592	122	120	16600	98	5610	1000	696	
∨⊓к	1009,5	14,55	4563	15	10	3510	65	1600	143	61	
	1021,0	29,97	11399	82	192	16600	378	4508	1073	708	НГК
ПК	1007,8	11,75	3731	15	7	3553	9	3575	67	567] '" \
	1016,5	22,75	6711	80	27	6075	65	8386	4175	1004	

При сопоставлении, с учетом всех токсичных компонентов пластовых вод видно, что минерализация и изменение химического состава подземных пресных вод оказывают негативное воздействие на природную среду.

Таким образом, с повышением уровня грунтовых вод образовались крупные, мелководные пруды, озера, водоемы, ухудшающие экологическое состояние окружающей среды. В связи с этим в моем исследовании приоритетной задачей являлась разработка и внедрение научно-обоснованных методов утилизации пластовых вод [2].

Процесс разработки месторождений Биби-Эйбат и поддержание уровня добычи нефти проводился с 25 нагнетательными скважинами, которые сопровождались ростом обводнённости продукции скважин, что превышало общий объем более чем на 2,7 млрд м³. Утилизация этих вод осуществлялась только с 7 поглощающих скважин, где общий ежемесячный объем утилизированной *пластовой воды* превышал 47116 м³.

 $\dot{\text{Д}}$ ля примера — ежемесячный объем воды для поддержания давления составляет 46200 м 3 , ежедневный 1540 м 3 , а месячная добыча нефти 1200 тонн.

В настоящее время все в большей степени возрастают требования по степени очистки попутных вод для последующей закачки в пласты с целью поддержания пластового давления. На месторождения Биби-Эйбат очистка воды, используемой для процесса заводнения, осуществляется только на основе механического метода и это приводит к частыми утечками на линиях и в пластовых коллекторах.

В результате значительно ухудшается геоэкологическая среда, в период эксплуатации. Несмотря на наличие соленой и щелочной среды на Биби-Эйбатском месторождении, эти воды осаждаются в тех же отстойниках. Достаточно агрессивная вода, которая оседает в тех же резервуарахотстойниках, приводит к быстрому выходу из строя оборудования и труб, используемых в процессе закачки. Требование более глубокой очистки попутных вод, в первую очередь, исходит из необходимости увеличения нефтеотдачи эксплуатируемых горизонтов, вовлечения в разработку низкопроницаемых коллекторов, необходимостью сокращения числа ремонтных работ на нагнетательных скважинах, а так же обоснованного уменьшения их числа [3].

Внедрение нанотехнологии глубокой очистки пластовых вод, показал эффективность разработанного и апробированного в промысловых условиях метода, который и ныне используется в системе ППД при разработке нефтяных месторождений, где и показан, полученный синергетический эффект.

Литература:

- 1. Шахбазов Е.Г., Маммадова Н.И. Применение наносистем против экологических проблем, возникающих при разработке месторождений // Известия Высших Технических Учебных Заведений Азербайджана. Баку, 2019. С. 25–28.
- 2. Инструкция по нормирования выбросов (сбросов) загрязняющих веществ в атмосферу и водные объекты. М., 1989. С. 10.
- 3. Маммадова Н.И., Абдуллаева Л.А. Геоэкологические проблемы утилизации пластовых вод месторождений Нефтяные Камни // Эко-Энергетика научно-технический журнал. 2018. № 3. С. 35–38.

References:

- 1. Shahbazov E.G., Mammadova N.I. Application of nanosystems against the ecological problems arising at development of deposits // Izvestia Vysokikh Tekhnicheskikh Uchebnykh Zavodiya Azerbaijan. Baku, 2019. P. 25–28.
- 2. Instructions on standardization of pollutant emissions (discharges) into atmosphere and water objects. M., 1989. P. 10.
- 3. Mammadova N.I., Abdullayeva L.A. Geoecological problems of formation water utilization in Oil Stones fields // Eco-Energy Scientific and Technical Journal. 2018. № 3. Р. 35–38.