

Since an in-depth coverage of the individual classification algorithms exceeds the scope of this book, I warmly recommend Dr. Scott Menard's *Logistic Regression: From Introductory to Advanced Concepts and Applications, Sage Publications*, to readers who want to learn more about logistic regression.

Maximum margin classification with support vector machines

Another powerful and widely used learning algorithm is the **support vector machine** (**SVM**), which can be considered as an extension of the perceptron. Using the perceptron algorithm, we minimized misclassification errors. However, in SVMs, our optimization objective is to maximize the **margin**. The margin is defined as the distance between the separating hyperplane (decision boundary) and the training samples that are closest to this hyperplane, which are the so-called **support vectors**. This is illustrated in the following figure:

Maximum margin intuition

The rationale behind having decision boundaries with large margins is that they tend to have a lower generalization error whereas models with small margins are more prone to overfitting. To get an intuition for the margin maximization, let's take a closer look at those *positive* and *negative* hyperplanes that are parallel to the decision boundary, which can be expressed as follows:

$$w_0 + \boldsymbol{w}^T \boldsymbol{x}_{pos} = 1 \qquad (1)$$

$$w_0 + \boldsymbol{w}^T \boldsymbol{x}_{neg} = -1 \quad (2)$$

If we subtract those two linear equations (1) and (2) from each other, we get:

$$\Rightarrow \mathbf{w}^T \left(\mathbf{x}_{pos} - \mathbf{x}_{neg} \right) = 2$$

We can normalize this by the length of the vector w, which is defined as follows:

$$\|\mathbf{w}\| = \sqrt{\sum_{j=1}^{m} w_j^2}$$

So we arrive at the following equation:

$$\frac{\boldsymbol{w}^{T}\left(\boldsymbol{x}_{pos} - \boldsymbol{x}_{neg}\right)}{\|\boldsymbol{w}\|} = \frac{2}{\|\boldsymbol{w}\|}$$

The left side of the preceding equation can then be interpreted as the distance between the positive and negative hyperplane, which is the so-called margin that we want to maximize.

Now the objective function of the SVM becomes the maximization of this margin

by maximizing $\overline{\|w\|}$ under the constraint that the samples are classified correctly, which can be written as follows:

$$w_0 + \mathbf{w}^T \mathbf{x}^{(i)} \ge 1 \text{ if } y^{(i)} = 1$$

$$w_0 + \mathbf{w}^T \mathbf{x}^{(i)} < -1 \text{ if } y^{(i)} = -1$$

These two equations basically say that all negative samples should fall on one side of the negative hyperplane, whereas all the positive samples should fall behind the positive hyperplane. This can also be written more compactly as follows:

$$y^{(i)} \left(w_0 + \boldsymbol{w}^T \boldsymbol{x}^{(i)} \right) \ge 1 \ \forall_i$$

In practice, though, it is easier to minimize the reciprocal term $\frac{1}{2} \| \mathbf{w} \|^2$, which can be solved by quadratic programming. However, a detailed discussion about quadratic programming is beyond the scope of this book, but if you are interested, you can learn more about **Support Vector Machines** (**SVM**) in Vladimir Vapnik's *The Nature of Statistical Learning Theory, Springer Science & Business Media*, or Chris J.C. Burges' excellent explanation in *A Tutorial on Support Vector Machines for Pattern Recognition* (Data mining and knowledge discovery, 2(2):121–167, 1998).

Dealing with the nonlinearly separable case using slack variables

Although we don't want to dive much deeper into the more involved mathematical concepts behind the margin classification, let's briefly mention the slack variable ξ . It was introduced by Vladimir Vapnik in 1995 and led to the so-called soft-margin classification. The motivation for introducing the slack variable ξ was that the linear constraints need to be relaxed for nonlinearly separable data to allow convergence of the optimization in the presence of misclassifications under the appropriate cost penalization.