$L_1 \leq_{\mathrm{p}} L_2$ falls es eine polynomielle TM gibt, die eine Abbildung $f: \Sigma_1^* \to \Sigma_2^*$ berechnet, mit $w \in L_1 \Longleftrightarrow f(w) \in L_2$, für alle $w \in \Sigma_1^*$.

 $L_1 \leq_{\mathrm{p}} L_2$ falls es eine polynomielle TM gibt, die eine Abbildung $f: \Sigma_1^* \to \Sigma_2^*$ berechnet, mit $w \in L_1 \Longleftrightarrow f(w) \in L_2$, für alle $w \in \Sigma_1^*$.

Eine Sprache L heisst NP-schwer, falls für alle $L' \in NP$ gilt $L' \leq_p L$.

 $L_1 \leq_{\mathrm{p}} L_2$ falls es eine polynomielle TM gibt, die eine Abbildung $f: \Sigma_1^* \to \Sigma_2^*$ berechnet, mit $w \in L_1 \Longleftrightarrow f(w) \in L_2$, für alle $w \in \Sigma_1^*$. Eine Sprache L heisst NP-schwer, falls für alle $L' \in NP$ gilt $L' \leq_{\mathrm{p}} L$. Falls $L_1 \leq_{\mathrm{p}} L_2$ und $L_2 \leq_{\mathrm{p}} L_3$, dann $L_1 \leq_{\mathrm{p}} L_3$.

 $L_1 \leq_{\mathrm{p}} L_2$ falls es eine polynomielle TM gibt, die eine Abbildung $f: \Sigma_1^* \to \Sigma_2^*$ berechnet, mit $w \in L_1 \Longleftrightarrow f(w) \in L_2$, für alle $w \in \Sigma_1^*$.

Eine Sprache L heisst NP-schwer, falls für alle $L' \in NP$ gilt $L' \leq_p L$.

Falls $L_1 \leq_{\mathrm{p}} L_2$ und $L_2 \leq_{\mathrm{p}} L_3$, dann $L_1 \leq_{\mathrm{p}} L_3$.

Falls für eine NP-schwere Sprache L' gilt $L' \leq_{p} L$, dann ist L NP-schwer.

 $L_1 \leq_{\mathrm{p}} L_2$ falls es eine polynomielle TM gibt, die eine Abbildung $f: \Sigma_1^* \to \Sigma_2^*$ berechnet, mit $w \in L_1 \Longleftrightarrow f(w) \in L_2$, für alle $w \in \Sigma_1^*$.

Eine Sprache L heisst NP-schwer, falls für alle $L' \in NP$ gilt $L' \leq_p L$.

Falls $L_1 \leq_{\mathrm{p}} L_2$ und $L_2 \leq_{\mathrm{p}} L_3$, dann $L_1 \leq_{\mathrm{p}} L_3$.

Falls für eine NP-schwere Sprache L' gilt $L' \leq_{p} L$, dann ist L NP-schwer.

Eine Sprache L heisst NP-vollständig, falls L NP-schwer ist und $L \in NP$.

 $L_1 \leq_{\mathrm{p}} L_2$ falls es eine polynomielle TM gibt, die eine Abbildung $f: \Sigma_1^* \to \Sigma_2^*$ berechnet, mit $w \in L_1 \Longleftrightarrow f(w) \in L_2$, für alle $w \in \Sigma_1^*$.

Eine Sprache L heisst NP-schwer, falls für alle $L' \in NP$ gilt $L' \leq_p L$.

Falls $L_1 \leq_{\mathrm{p}} L_2$ und $L_2 \leq_{\mathrm{p}} L_3$, dann $L_1 \leq_{\mathrm{p}} L_3$.

Falls für eine NP-schwere Sprache L' gilt $L' \leq_p L$, dann ist L NP-schwer.

Eine Sprache L heisst NP-vollständig, falls L NP-schwer ist und $L \in NP$.

Falls L NP-schwer ist und $L \in P$, dann gilt P = NP.

Gibt es eine Sprache L, die NP-schwer ist, aber nicht NP-vollständig?

Gibt es eine Sprache L, die NP-schwer ist, aber nicht NP-vollständig?

$$L_U = \{Kod(M) \# w \mid w \in L(M)\}$$

Gibt es eine Sprache L, die NP-schwer ist, aber nicht NP-vollständig? $L_U = \{Kod(M) \# w \mid w \in L(M)\} \notin \mathcal{L}_R$,

Gibt es eine Sprache L, die NP-schwer ist, aber nicht NP-vollständig? $L_U = \{Kod(M) \# w \mid w \in L(M)\} \notin \mathcal{L}_R$, insbesondere $L_U \notin NP$.

Gibt es eine Sprache L, die NP-schwer ist, aber nicht NP-vollständig? $L_U = \{Kod(M) \# w \mid w \in L(M)\} \notin \mathcal{L}_R$, insbesondere $L_U \notin NP$. Wir zeigen $SAT \leq_p L_U$.

Gibt es eine Sprache L, die NP-schwer ist, aber nicht NP-vollständig?

 $L_U = \{Kod(M) \# w \mid w \in L(M)\} \notin \mathcal{L}_R$, insbesondere $L_U \notin NP$.

Wir zeigen $SAT \leq_{p} L_{U}$.

Sei M eine TM mit L(M) = SAT.

Gibt es eine Sprache L, die NP-schwer ist, aber nicht NP-vollständig?

 $L_U = \{Kod(M) \# w \mid w \in L(M)\} \notin \mathcal{L}_R$, insbesondere $L_U \notin NP$.

Wir zeigen $SAT \leq_{p} L_{U}$.

Sei M eine TM mit L(M) = SAT.

Wir definieren f(w) = Kod(M)#w für jede Eingabe w für SAT.

Gibt es eine Sprache L, die NP-schwer ist, aber nicht NP-vollständig?

 $L_U = \{Kod(M) \# w \mid w \in L(M)\} \notin \mathcal{L}_R$, insbesondere $L_U \notin NP$.

Wir zeigen $SAT \leq_{p} L_{U}$.

Sei M eine TM mit L(M) = SAT.

Wir definieren f(w) = Kod(M)#w für jede Eingabe w für SAT.

Dann gilt

$$w \in SAT$$

Gibt es eine Sprache L, die NP-schwer ist, aber nicht NP-vollständig?

 $L_U = \{Kod(M) \# w \mid w \in L(M)\} \notin \mathcal{L}_R$, insbesondere $L_U \notin NP$.

Wir zeigen $SAT \leq_{\mathrm{p}} L_U$.

Sei M eine TM mit L(M) = SAT.

Wir definieren f(w) = Kod(M)#w für jede Eingabe w für SAT.

Dann gilt

$$w \in SAT \iff w \in L(M)$$

Gibt es eine Sprache L, die NP-schwer ist, aber nicht NP-vollständig?

 $L_U = \{Kod(M) \# w \mid w \in L(M)\} \notin \mathcal{L}_R$, insbesondere $L_U \notin NP$.

Wir zeigen $SAT \leq_{\mathrm{p}} L_U$.

Sei M eine TM mit L(M) = SAT.

Wir definieren f(w) = Kod(M)#w für jede Eingabe w für SAT.

Dann gilt

$$w \in SAT \iff w \in L(M) \iff f(w) \in L_U$$

Gibt es eine Sprache L, die NP-schwer ist, aber nicht NP-vollständig?

 $L_U = \{Kod(M) \# w \mid w \in L(M)\} \notin \mathcal{L}_R$, insbesondere $L_U \notin NP$.

Wir zeigen $SAT \leq_{p} L_U$.

Sei M eine TM mit L(M) = SAT.

Wir definieren f(w) = Kod(M)#w für jede Eingabe w für SAT.

Dann gilt

$$w \in SAT \iff w \in L(M) \iff f(w) \in L_U$$

Da M unabhängig von der Eingabe w ist, kann f(w) = Kod(M)#w von einer TM in O(|w|) berechnet werden.