南昌大学物理实验报告

课程名称:	普	<u> 通物理实验(1</u>		
实验名称:		惠斯通电桥		
学院:	<u> 理学院</u>	专业班级:	物理学 151 班	
学生姓名:	黄泽豪	学号:	5502115014	
实验地点:	B210	座位号:	14	
空验时间,	第 十-	一周是龃冗上午	十占开始	

【实验目的】

- 1. 掌握电桥测电阻的原理和方法.
- 2. 了解减小测电阻误差的一般方法.

【实验原理】

1. 用伏安法侧电阻时,除了因使用的电流表和电压表准确度不高带来的误差外,还存在线路本身的不可避免的误差,在伏安法线路上经过改进的电桥线路克服了这些缺点. 它不用电流表和电压表(因而与电表的准确度无关),而是将待测电阻的标准电阻相比较,以确定待测电阻是标准电阻的多少倍. 这种用比较法来精确测量电阻的方法, 与早在 1833 年就有人提出基本的电路网络。但一直未引起注意,直到 1843 年惠斯通才加以应用,为纪念他,就称之为惠斯通电桥.

惠斯通电桥的电路如图 11-1 所示,四个电阻 R_1 、 R_2 、 R_3 和 R_4 连成一个四边形,每一条边称作电桥的一个臂,对角 A和 C上加上电源 E,对角 B和 D之间连接检流计 G,所谓桥就是指 BD这条对角线,它的作用就是将桥的两个端点的电势直接进行比较. 当 B、D两点电势相等时,检流计中无电流通过,电桥达到了平衡. 这时有

$$\frac{R_2}{R_1} = \frac{R_x}{R_3}
R_x = \frac{R_2}{R_1} R_3$$
(1)

即

若 R_1 、 R_2 、 R_3 均已知 $\left($ 或 $\frac{R_2}{R_1}$ 和 R_3 为已知 $\right)$,则 R_x 可由上式求出.

电桥电路可以这样理解, 电源 E、 R_1 、 R_x 是一个分压电路, R_x 上的电压为 $\frac{R_x}{R_1+R_x}$ · E ,

又 E和 R_2 、 R_3 也是一个分压电路。 R_3 上的电压等于 $\frac{R_3}{R_3+R_2}$ · E 。现在用检流计来比较 R_x 和 R_3 的电压,根据电流方向,可以发现哪一个电压大些. 当检流计指零时,说明两电压相等,也就得出式(1).

2. 电压灵敏度

式(1)是在电桥平衡的条件下推导出来的,而电桥是否平衡,实验中是以检流计示数为零来判断的,检流计的灵敏度总是有限的,假设电桥在 $\frac{R_2}{R_1}$ =1时调到了平衡,则有

 $R_x=R_3$,若把 R_3 稍微变化一点 ΔR_3 ,电桥就应失去平衡,就有电流 I_g 流过检流计,如果 I_g 小到不能被检流计觉察出来,那么我们就会认为电桥还是平衡的,因而得出 $R_x=R_3+\Delta R_3$,这就是由于检流计灵敏度不够而带来的测量误差,对此我们引入电桥灵敏度 S 的概念,它定义为

$$S = \frac{\Delta n}{\frac{\Delta R_x}{R_r}} \tag{2}$$

式中 ΔR_x 是电桥平衡后 R_x 的微小变量(实际上 R_x 是不能变的,改变的是标准电阻),而 Δn 是电桥偏离平衡而引起的检流计变化量,它越大说明就越灵敏,带来的误差就越小.

(1) 电桥平衡的调节方法

从上式(1)可以看出,调节电桥平衡与两种方法:一种是固定 R_3 值,改变比值电阻 R_1 和 R_2 的比例,使电桥平衡. 这种情况可能使 R_1 和 R_2 的值相差甚远,因而对电阻的精度要求特别高,比值的相对误差较大,另一种方法是固定 R_2 / R_1 为某一比值,调节 R_3 ,使电桥平衡. 在实际测量中,常采用后一种方法来调节电桥平衡.

【实验仪器】

箱式惠斯通电桥、待测电阻.

【实验内容及步骤】

- (1) 将箱式电桥打开平放,调节检流计指零.
- (2) 根据待测电阻的大小和 R_3 值取满四位有效数字的原则,确定比例臂的取值,例如, R_x 为数千欧的电阻,为保证四位有效数字, K_x 取为 0.1.
- (3) 调节 R_3 的值与 R_x 的估计值相同,按下 B_0 和 G_1 按钮,用逐步逼近法粗测电桥平衡,再按下 B_0 和 G_0 细调电桥平衡,根据式(1)可得

$$R_r = K_r R_3$$

(4) 用上述方法测量另一待测电阻 R_{r2} , 以及 R_{r1} 与 R_{r2} , 串、并联值, 一并记入自拟表.

(5) 测量完毕后, 先松开 $G_0(G_1)$, 然后松开 B_0 使仪器恢复到实验前状态.

【注意事项】

- 1. 箱式电桥应轻拿轻放,旋动表弹簧旋钮时应轻轻操作,切忌过猛,否则容易损坏检流计.
 - 2. 严禁在没有确定好比例臂和 R_3 值较小或为零的情况下按下 $B_0G_1(G_0)$ 开关.

【数据处理】(单位均为 Ω)

	51Ω		200Ω		$_{3k}\Omega$		$75\mathrm{k}\Omega$					
R_1	10000		10000		1000		1000					
R_2	100		1000		1000		10000					
R_3	200mA	20mA	2mA	200mA	20mA	2mA	200mA	20mA	2mA	200mA	20mA	2mA
D	5215.0	5217.0	5217.6	2025.0	2025.3	2026.5	2956.0	2956.4	2956.8	7378.8	7383.0	7383.5
R_x	52.150	52.170	52.176	202.50	202.53	202.65	2956.0	2956.4	2956.8	73788	73830	73835
ΔR_x	0.014		0.08		0.4		26					
$\overline{R_x} \pm \Delta R_x$	52.165 ± 0.014		202.56 ± 0.08		2956.4±0.4		73817±26					
$U = \frac{\Delta R_x}{\overline{R_x}}$	0.00026097		0.00039185		0.00013530		0.00034969					

【思考题】

简述箱式电桥测电阻的调节步骤?

答:

- (1) 调零;
- (2) 调节 R_1 、 R_2 使 $\frac{R_2}{R_1} = \frac{R_x$ 的数量级 (R_3 的千位不为零);
- (3) 调节 R₃, 使电桥平衡;
- (4) 记录数据;

【实验结果分析与小结】

- 1. 用惠斯通电桥法测电阻不同于用伏安法测量电阻,伏安法是粗侧电阻,惠斯通电桥法 是精测电阻,所以在使用惠斯通电桥之前必须已知待测电阻的大致阻值范围,若不知道大致 组织大小,则无法精密测量.
 - 2. 使 R_3 , 得千位不为零可使实验结果保留 5 位有效数字,实验结果更加精确.
 - 3. 若实验时出现断路情况,可能是三种原因造成的:
 - (1) 导线断路;
 - (2) 电阻虚接;
 - (3) 仪器故障;
 - 4. 这个实验虽然过程简单, 但是想要操作的迅速其实并不容易, 需要我们熟练掌握实验

原理才能做到游刃有余,在遇到突发情况的时候,及时找到问题的关键所在.

5. 误差分析:

- (1) 由于仪器非常精密, 仪器的老化很可能造成实验结果的误差;
- (2) 在改变测量精度时,会改变电路,不同的电路测出来的数据,误差也不同;

【原始数据】(见下页)

