수학 및 연습 2 중간고사

(2012년 10월 20일 오후 1:00-3:00)

학번: 이름:

모든 문제의 답에 풀이과정을 명시하시오. (총점 200점)

문제 1 (25점). 다음과 같이 정의된 함수 f 에 대하여 물음에 답하시오.

$$f(x,y) = \begin{cases} xy \sin \frac{1}{\sqrt{x^2 + y^2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

- (a) (5점) 벡터 ${\bf v}$ 에 대해 함수 f 의 (0,0) 에서의 ${\bf v}$ -방향 미분계수를 구하시오.
- (b) (10점) 함수 $f \in (0,0)$ 에서 미분가능한지 아닌지 판별하고 그 이유를 밝히시오.
- (c) (10점) 함수 D_1f 는 (0,0) 에서 불연속임을 보이시오.

문제 2 (20점). 다음 함수의 극대점, 극소점과 안장점을 구하시오.

$$f(x,y) = \frac{1}{3}x^3 - x\sin y \ (-\pi < y < \pi)$$

문제 $\mathbf{3}$ (25점). 원점에서 곡면 $z^3 = x^2y + 2$ 까지의 최단거리를 구하시오.

문제 4 (25점). x > 0, y > 0 인 영역에서 정의된 함수

$$f(x,y) = \int_{\frac{\pi}{2}}^{x^2 y} \frac{\sin(xt)}{t} dt$$

에 대하여 $\left(1,\frac{\pi}{2}\right)$ 에서 f(x,y) 의 일차 근사다항식을 구하시오.

문제 $\mathbf{5}$ (20점). 일급함수 F(x,y) = (f(x,y), g(x,y)) 가 다음 조건을 만족한다고 하자.

- (i) 모든 점 (x,y) 에 대하여 $q(x,y) = f(2x y, y^2 4x)$ 이다.
- (ii) 다음 표는 점과 그 점에서의 함수값을 각각 나타낸다.

점	f	g	D_1f	D_2f
(0,0)	2	2	5	2
(1, 2)	1	2	4	6

이 때, 점 (1,2) 에서 함수 F 의 야코비 행렬을 구하시오.

문제 ${\bf 6}$ (20점). 직교좌표계로 표현된 함수 $F(x,y,z)=(x^3,x+z^2,x+y^3+z^5)$ 를 구면좌표계로 치환하여 나타낸 것을 $G(\rho,\varphi,\theta)$ 라 할 때, 점 $(\rho,\varphi,\theta)=\left(1,\frac{\pi}{6},\frac{\pi}{4}\right)$ 에서 G 의 순간 부피 팽창률을 구하시오.

문제 7 (15점). 자연수 n 에 대하여 곡선 $c_n(t)=(t,\,t^n,\,t^{2n})$ $(0\leq t\leq 1)$ 을 생각하자. 다음과 같이 정의된 I_n 에 대하여 $\lim_{t\to\infty}I_n$ 을 구하시오.

$$I_n = \int_{c_n} y \, dx + (3y^3 - x) \, dy + z \, dz$$

문제 8 (30점). z-축을 제외한 3 차원 좌표공간에서 정의된 벡터장들

$$\mathbf{a}(x,y,z) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}, 0\right), \quad \mathbf{F}(x,y,z) = \left(\frac{-y}{x^2 + y^2} + e^x, \frac{x}{x^2 + y^2}, 1\right)$$

과 곡선 $X(t) = (3\cos t, 2\sin t, t)$ $(0 < t < 2\pi)$ 에 대하여 다음 물음에 답하시오.

- (a) (10점) 두 벡터장 a, F 는 닫힌 벡터장인지 아닌지 판별하고 그 이유를 밝히시오.
- (b) (10점) 두 벡터장 ${\bf a}, {\bf F}$ 는 잠재함수를 가지는지 아닌지 판별하고 그 이유를 밝히시오.
- (c) (10점) 선적분 $\int_X \mathbf{F} \cdot d\mathbf{s}$ 의 값을 구하시오.

문제 $\mathbf{9}$ (20점). 다음 벡터장 \mathbf{F} 와 곡선 X 에 대해 선적분 $\int_{Y} \mathbf{F} \cdot d\mathbf{s}$ 의 값을 구하시오. $(\mathbf{C}, y > 0.)$

$$\mathbf{F}(x, y, z) = (e^x \log y, \frac{e^x}{y} - \cos z, y \sin z), \qquad X(t) = (\sin t \log t, e^t, \frac{t}{2}) \ (\frac{\pi}{2} \le t \le \frac{3\pi}{2})$$