Comments/corrections to a.j.scholl@dpmms.cam.ac.uk

1. Fix a positive real number D. Let \mathcal{X}_D be the set of real symmetric 2×2 matrices of determinant D. Let $SL_2(\mathbb{R})$ act on \mathcal{X}_D by $g \colon X \to gXg^t$ ($g^t = \text{transpose of } g$). Describe the orbits of this action, and identify one of them with the upper halfplane.

If you know about binary quadratic forms, describe the connection between the fundamental domain of $SL_2(\mathbb{Z})\backslash \mathcal{H}$ and Gauss's reduction theory.

- 2. A subgroup $\Lambda \subset \mathbb{R}^n$ is *discrete* if is is discrete as a topological space (i.e. for any ball $B \subset \mathbb{R}^n$, $\Lambda \cap B$ is finite). Show that Λ is discrete iff $\Lambda = \sum \mathbb{Z} x_i$ where $\{x_i\} \subset \mathbb{R}^n$ is an \mathbb{R} -linearly independent set.
- 3. Write $E_6(z)\Delta(z)=\sum_{n=1}^\infty c_nq^n$. Show that $c_n\equiv\sigma_{17}(n)\pmod{43867}$. Obtain similar congruences for the coefficients of $E_4\Delta$, $E_8\Delta$, $E_{10}\Delta$ and $E_{14}\Delta$.

[NB: $B_{16} = -3617/510$, $B_{18} = 43867/798$, $B_{20} = -174611/330$, $B_{22} = 854513/138$, $B_{26} = 8553103/6$.]

- 4. Let $f \in M_k$. Show that if $k \not\equiv 0 \pmod{4}$ then f(i) = 0, and that if $k \not\equiv 0 \pmod{3}$ then $f(\rho) = 0$, where $\rho = e^{\pi i/3}$.
- 5. Let $M_k^!$ denote the space of weakly modular (meromorphic at infinity) forms of weight $k \in 2\mathbb{Z}$. Find a basis for $M_k^!$ in terms of E_4 , E_6 and Δ .
- 6. Let $f \in M_k$ and $g \in M_l$ be modular forms. Show that $lf'g kfg' \in M_{k+l+2}$.
- 7. Let $f: \mathcal{H} \to \mathbb{C}$ satisfy $f|_k \gamma = f$ for all $\gamma \in \Gamma(1)$. Show that $y^{k/2} | f(x+iy)|$ is invariant under $z = x + iy \mapsto \gamma(z)$. Show that if moreover f is holomorphic on \mathcal{H} and k > 0, then f is a cusp form if and only if $y^{k/2} | f|$ is bounded on \mathcal{H} (or equivalently, is bounded on \mathcal{D}).
- 8. Define

$$G_2(z) = \sum_{m=-\infty}^{\infty} \left(\sum_{n=-\infty}^{\infty} \frac{1}{(mz+n)^2} \right)$$

where the inner sum is over all integers n, except where m=0, in which case the term n=0 is omitted. By rewriting the inner sum, show that the series converges to

$$\frac{\pi^2}{3} \left(1 - 24 \sum_{n=1}^{\infty} \sigma_1(n) q^n \right).$$

Explain why $G_2(z)$ is not a modular form of weight 2. (Later we will see that G_2 satisfies a somewhat more complicated transformation law for $z \mapsto -1/z$.)

9. Fix an even weight $k \geq 4$. Let $\mathbb{T} \subset \operatorname{End} S_k$ be the subalgebra of endomorphisms generated over \mathbb{Z} by the Hecke operators T_n , $n \geq 1$. Let $S_k(\mathbb{Z}) = S_k \cap \mathbb{Z}[[q]]$ denote the submodule of cusp forms with integral Fourier coefficients. Show that $S_k(\mathbb{Z})$ is stable under \mathbb{T} , and that the map

$$S_k(\mathbb{Z}) \times \mathbb{T} \to \mathbb{Z}$$

 $(f, T_n) \mapsto a_1(T_n f)$

gives an isomorphism between $S_k(\mathbb{Z})$ and $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{T},\mathbb{Z})$, which is an isomorphism of \mathbb{T} -modules.