## Sequence Learning Problems

- 1. Successive inputs may not be independent of each other.
- 2. The input size is not fixed.

#### Text Completion



- is Input is no longer independent.
- (ii) kength of word (i/p) is not fixed.
- (iii) Each network is performing the same task.

#### Part of Speech Tagging



#### Sentiment Analysis



#### Objectives:

- 1. Account for the dependence between inputs.
- 2. Account for variable size of input
- 3. Make sure that the function executed at each time step is the same.

bias 
$$S_1 = \sigma(Ux_1 + b)$$

$$Y_1 = O(VS_1 + c)$$

$$O: Output function$$

$$Shave the same weight accross different time-steps.
$$S_2 = \sigma(Ux_2 + b)$$

$$Y_3 = O(VS_2 + c)$$

$$U = U$$$$

Since we want the same function to be implemented at each step, we should shave the same network parameters.

## Variable size of the input can be taken care of by replicating the network of at each time step.



flow do we account for the dependence between the imports?



Solution: Add a recurrent connection



$$S_{\lambda} = \sigma(Ux_{\lambda} + WS_{1} + b)$$

$$V \qquad Y_{\lambda} = o(VS_{\lambda} + c)$$

 $\bigcup_U$  (Unvolled version)

Recuvent connection

$$S_{i} = O(Ux_{i} + WS_{i-1} + b)$$

$$y_{i} = O(VS_{i} + c)$$

Si: State of the network



# How to Irain an RNN? Backpropagation through time.



### What is a suitable oblight function

In this case: softmax





min  $\mathcal{L}(\theta) = \sum_{t=1}^{4} \mathcal{L}_{t}(\theta)$ Do backpropagation

Problem of Vanishing and Exploding greatients



When gradient information is passed backward it's multiplied with W.

(1) Exploding Gradients: Gradient value starts to increase very rapidly when  $\|W\| > 1$  (eg,  $2^{t}$ )

(2) Vanishing gradients: Gradient value starts to decrease very rapidly. noughly when ||w|| < 1 (eg.  $\frac{1}{2t}$ )

One simple solution could be Truncated Backpropagation restrict the product to T-terms.



Another solution: Clipping

St gradient > Threshold T then

Gradient = T

#### Other Representations





Bi-directional RNN





Hultiple hidden layery