Accelerating deep learning with the biggest losers

Angela Jiang, Daniel Wong, Giuio Zhou, Dave Andersen, Jeff Dean*, Greg Ganger, Gauri Joshi, Michael Kaminsky[^], Michael A. Kozuch[†], Zachary C. Lipton, Padmanabhan Pillai[†] Carnegie Mellon University; * Google AI; †Intel Labs, ^brdg.ai

Overview

Can we speed up DNN training by backpropogating only useful examples?

Motivation

- Labeled datasets are getting larger
- Not enough time/resources to train on whole dataset (e.g., ImageNet)
- Training bottlenecked by backprop

Goal

- Speed up training by reducing the number of backprops
 - Learn from surprising examples that have more to teach the model

Approach

- Identify useful examples using inference (output of forward pass)
 - If example's output is different from target, learn from this example
- Further accelerate training by reducing the number of forwards
 - Use example's historical loss to decide if we want to backprop it

Calculate usefulness of backpropping example based on its accuracy

Training with Selective-Backprop (SB) and StaleSB

Time to train SVHN to 1.72%

- SB reduces time spent in backwards
- StaleSB reduces time spent in forwards
 - Runs selecting passes every 3 epochs
- SB reaches same final accuracy

SVHN training time vs. Error

- Kath18 is a SoA sampling technique
- Pareto optimal points enlarged
- For almost all training time budgets
 - SB or Stale-SB reaches lowest err

Speedup over Traditional

- Traditional does not filter examples
- Compare time to reach 1.4x of best acc

SB, S=33%, Err=6.72%

Traditional S=100%, Err=6.92%

• SB accelerates training by up to 5x

0.6

0.5

Test Error

0.1

0.0

StaleSB accelerates SB by avg of 26%

Diving into CIFAR10

- Target Confidence 80 **Fraditional** 80 100 20 Percentile
- Y-axis is conf in our pred of correct class
- On test examples after 10 epochs
- SB improves conf of hard examples W/out sacrificing acc of easier examples
- Training CIFAR10 w/ 10% randomized labels

Num Images Backpropped (millions)

- SB accelerates training despite label err
- SB tolerates modest amounts of label err
- SVHN known to have label error too

Hard Examples