# 산보연 Data forecasting 07월 29일 Version - Leukemia Data

작성자: 이은경

#### <What to do>

: 바뀐 Data level 별로 반응변수는 "질병 발생 건수", 설명변수는 "YEAR"로 하여 3가지 모형 적합(1. 단순선형회귀모형 / 2. 1차 spline model / 3. quadratic regression)

- : train data와 validation data는 YEAR 기준으로 split / train data는 2000년 ~ 2014년, validation data는 2015년 ~ 2018년 자료로 지정
- : train data로 3가지 모형 적합 후, validation data의 질병 발생 건수 예측
- : validation data의 연도에 따른 실제 질병 발생 건수 알고 있으므로 예측값과 비교

: Performance criteria는 MAPE로 사용  $(\frac{1}{4}\sum_{t=2015}^{2018}|y_{it}-\hat{y_{it}}|/y_{it}) imes 100$  (이때, i는 각 사업장, t는 연도 의미) / 후에 진행될 model ensemble 위해 RMSE도 계산

- : Data level 별로 적합한 model들의 performance를 시각적으로 표현하기 위해 plots 생성
- : 추적 인년 합계가 매우 적어 추세가 불안정한 사업장 "T", "U"는 제외

#### <Result>

#### 1) Leukemia data

# ① Level 1 data

①-1. "YEAR" 변수로만 grouping한 data: lv1\_leukemia\_total

: 해당 데이터에 대해 3가지 모형을 적합하고 validation set을 대상으로 계산한 MAPE 1000-1 값은 아래 표와 같다.

| NAME | 단순선형회귀 | 1차 spline | Polynomial 회귀 |
|------|--------|-----------|---------------|
| X    | 28.04  | 9.19      | 5.48          |

:  $YEAR^2$ 이 설명변수로 추가된 다중선형회귀모형의 MAPE 값이 가장 작은 것을 확인할 수 있다.

: 반응변수가 "누적 발생 건수"인 경우에는 연도에 따른 변화 추세가 지수함수 혹은 이 차함수 형태를 보인다.

: 그래프의 파란색 실선은 YEAR=2014년을 의미한다.



# ①-2. "YEAR", "SEX" 변수로 grouping한 데이터: lv1\_leuekmia\_SEX



: 그래프의 파란색 실선은 YEAR=2014년을 의미한다.

: 해당 데이터에 대해 3가지 모형을 적합하고 validation set을 대상으로 계산한 MAPE 값은 아래 표와 같다.

| NAME | 단순선형회귀  | 1차 spline | Polynomial |
|------|---------|-----------|------------|
| NAME | 민준건 6위기 |           | 회귀         |
| XF   | 30.9    | 9.4       | 4.89       |
| XM   | 27.04   | 9.11      | 5.68       |

 rate of leukemia
 : 성별에 상관없이 <u>YEAR²이 설명변수로 추가된 다중선형회귀모형의 MAPE 값이</u>

 ■ true value of leukemia
 가장 작은 것을 확인할 수 있다.

: 그래프의 y축을 비교해보면, <u>같은 연도일 때, 남성의 누적 질병 발생 건수가 여</u>성의 누적 질병 발생 건수보다 많다는 것을 알 수 있다.

: 실제 누적 발생 건수 변화 추세와 모형이 예측한 추세를 비교해보면, 1차 spline function과 polynomial regression 모형은 train set에서 실제 추세와 거의 가깝게 적합이 되었다.(단순선형회귀모형의 경우, 지수적으로 증가하는 추세를 학습하지 못한 것으로 파악됨) 이때, polynomial regression 모형이 2015년 이후에도 지수적으로 증가하는 추세를 더 잘 예측하는 것으로 추측 된다.

# ①-3. "YEAR", "CAL2" 변수로 grouping한 데이터 : lv1\_leuekmia\_CAL2



: 그래프의 파란색 실선은 YEAR=2014년을 의미한다.

: 해당 데이터에 대해 3가지 모형을 적합하고 validation set을 대상으로 계산한 MAPE 값은 아래 표와 같다.

| NAME    | rl 시 시 원 취 기 | 1차 spline | Polynomial |
|---------|--------------|-----------|------------|
| NAME 단순 | 단순선형회귀       |           | 회귀         |
| X01     | 13.22        | 3.3       | 0.76       |
| X234    | 46.13        | 18.46     | 10.84      |

: 입사 시기에 상관없이  $\underline{YEAR^2}$ 이 설명변수로 추가된 다중선형회귀모형의 MAPE 값이 가장 작은 것을 확인할 수 있다.

: 그래프의 y축을 비교해보면, <u>같은 연도일 때, 입사 시기가 2000년 이전인 근로자 집단의</u> <u>누적 질병 발생 건수가 입사 시기가 2000년 이후인 근로자 집단의 누적 질병 발생 건수보다</u> 많다는 것을 알 수 있다.

: <u>입사 시기가 2000년 이전인 근로자 집단의 경우</u>, Polynomial regression 모형의 성능이 <u>매우 좋은 것</u>으로 보인다. 즉, "YEAR" 변수만으로도 설명이 충분히 가능한 집단으로 보인다. 반면, 입사 시기가 2000년 이후인 근로자 집단은 3가지 모형의 성능이 모두 좋지 않은 것으로 파악된다. 실제 추세 변화를 보면, 2000년에서 2005년까지는 발생 건수가 없었지만, 이후로 급격히 증가하는 것으로 보이는데, 이 부분을 반영할 수 있는 또 다른 모형 고려가 필요하다고 생각한다.

----- 다음 페이지로 -----

# ①-4. "YEAR", "SEX", "CAL2" 변수로 grouping한 데이터: lv1\_leuekmia\_SEX\_CAL2



: 그래프의 파란색 실선은 YEAR=2014년을 의미한다.

: 해당 데이터에 대해 3가지 모형을 적합하고 validation set을 대 상으로 계산한 MAPE 값은 아래 표와 같다.

| NAME  | 단순선형회귀 | 1차 spline | Polynomial |
|-------|--------|-----------|------------|
|       |        |           | 회귀         |
| XF01  | 11.94  | 0.45      | 5.31       |
| XF234 | 46.17  | 19.23     | 11.59      |
| XM01  | 13.58  | 4.15      | 0.52       |
| XM234 | 46.11  | 18.1      | 10.48      |

: **파란색으로 강조한 부분**은 각 집단에서 가지는 MAPE 최솟값을 뜻한다.

: 그래프와 MAPE 파악 결과를 살펴보면, <u>여성이면서 입사 시기가</u> 2000년 이후인 근로자 집단의 누적 질병 누적 발생 건수 추세 파악이 현 모형들로는 어려워 보인다.

----- Level 1 Data 파악 결과 정리 -----

- 1. 백혈병 누적 발생 건수는 지수적으로 증가하는 형태를 보인다.
- 2. 남성보다는 여성의 누적 발생 건수 변화 추세가 좀 더 dynamic한 것으로 보인다.

Year

- 3. 입사 시기가 2000년 이후인 근로자 집단의 경우, 2000년부터 2005년 사이에는 질병 발생 이벤트가 없었으나, 이후부터 지수적으로 급격히 증가함을 확인하였다.
- 4. 백혈병 누적 발생 건수 추세의 차이는 성별 보다는 입사 시기에 의한 차이가 더 두드러져 보인다.
- 5. 반응변수가 "누적 통합 질병 발생률"이 아닌 "질병 누적 발생 건 수"이다 보니, <u>시간이 지남에 따라 추세가 감소하는 부분이 전혀 없어</u> 회귀모형이 이전보다 좋은 성능을 보이는 것을 확인하였다. - 모든 level data에서 보여 지는 공통사항

\_\_\_\_\_

## ② Level 2 Data

②-1. "UP1", "YEAR" 변수로 grouping한 데이터: lv2\_leukemia\_total

: "UP1", "YEAR"로 grouping한 데이터에 대해 3가지 모형을 적합하고 validation set을 대상으로 계산한 MAPE 값은 아래 표와 같다.

|      |        |           | Dolymomial |
|------|--------|-----------|------------|
| NAME | 단순선형회귀 | 1차 spline | Polynomial |
|      |        | - ,       | 회귀         |
| XA   | 10.83  | 2.46      | 3.88       |
| XB   | 36.68  | 10.57     | 4.24       |
| XC   | 25.58  | 8.54      | 4.91       |
| XD   | 34.52  | 24.27     | 19.47      |
| XE   | 20.58  | 0.91      | 11.84      |
| XF   | 25.95  | 6.78      | 1.69       |
| XG   | 30.45  | 9.72      | 5.17       |
| XH   | 25.88  | 4.38      | 3.11       |
| XI   | 38.07  | 13.94     | 13.32      |
| XJ   | 17.86  | 2.95      | 1.78       |
| XK   | 23     | 11.46     | 8.9        |
| XL   | 26.86  | 3.68      | 1.22       |
| XM   | 32.23  | 10.09     | 7.7        |
| XN   | 32.45  | 12.8      | 6.4        |
| XO   | 45.07  | 17.27     | 18.65      |
| XP   | 47.72  | 16.52     | 16.33      |
| XQ   | 39.24  | 17.09     | 12.97      |
| XR   | 31.65  | 16.39     | 14.57      |
| XS   | 28.16  | 9.54      | 1.57       |

: 각 NAME 별로 MAPE 최솟값을 **파란색으로 강 조**하였다.

: 대부분 Polynomial 회귀모형이 좋은 성능을 보이는 것을 확인할 수 있다.→ 이를 통해 각 사업장의 질병 누적 발생 건수가 선형으로 증가하지 않는다는 점을 추측할 수 있다.



: 그래프의 파란색 실선은 YEAR=2014년을 의미한다.

: 그래프 안, <mark>주황색 글씨는 Polynomial 회귀 적합 통해 얻은 MAPE 값</mark>, 보라색 글씨는 1차 spline function 적합 통해 얻은 MAPE 값, 검은색 글씨는 단순선형회귀모형 적합 통해 얻은 MAPE 값을 의미한다.

: 반응변수가 "누적 질병 발생 건수"일 때 <u>대분류 기준, 모든 사업장이 불안정한 추세를 보이지 않는다</u>는 점이 눈에 띈다. 또한, <u>사업장 "D"(전기, 가스, 증기 및 공기 조절 공급업)은 2014년 이후 누적 질병 발생 건수가</u> 급격히 증가한다는 사실도 주목할만하다.

②-2. "UP1", "SEX", "YEAR" 변수로 grouping한 데이터: lv2\_leukemia\_SEX

: "UP1", "SEX", "YEAR"로 grouping한 데이터에 대해 3가지 모형을 적합하고 validation set을 대상으로 계산한 MAPE 값은 아래 표와 같다.

: 각 사업장별로 모형 별 MAPE를 전부 기록하지 않고, 최솟값만 표에 제시한다. (그림 통해 모든 모형 적합 통해 얻은 MAPE 확인 가능)

| NAME | Female | Male  |
|------|--------|-------|
| XA   | 10.23  | 2.11  |
| XB   | 15.63  | 3.7   |
| XC   | 1.39   | 5.97  |
| XD   | 28.08  | 19.39 |
| XE   | 12.92  | 1.27  |
| XF   | 5.61   | 1.32  |
| XG   | 5.4    | 5.05  |
| XH   | 9.71   | 2.52  |
| XI   | 11.4   | 12.03 |
| XJ   | 7.99   | 2.55  |
| XK   | 9.63   | 8.57  |
| XL   | 4.04   | 2.32  |
| XM   | 5.54   | 8.32  |
| XN   | 3.06   | 10.57 |
| XO   | 14.63  | 17.98 |
| XP   | 11.52  | 23.11 |
| XQ   | 12.67  | 13.6  |
| XR   | 10.83  | 15.93 |
| XS   | 1.93   | 1.68  |

: 같은 사업장에서 <u>대부분 남성 근로자 집단</u>을 대 상으로 모형을 적합했을 때 더 좋은 성능을 보이 는 것을 확인할 수 있다. (추적 인년 합계가 더 크 기 때문이라고 추측한다.)



: 그래프의 파란색 실선은 YEAR=2014년을 의미한다.

: 그래프 안, <mark>주황색 글씨는 Polynomial 회귀 적합 통해 얻은 MAPE 값</mark>, 보라색 글씨는 1차 spline function 적합 통해 얻은 MAPE 값, 검은색 글씨는 단순선형회귀모형 적합 통해 얻은 MAPE 값을 의미한다.

: 빨간색으로 강조한 부분은 사업장 내 모든 성별 집단에 대해 1차 spline function이 제일 좋은 성능을 보이는 사업장을 표시한 것이다. 해당 사업장은 "A"(농업)이다.

: 파란색으로 강조한 부분은 연도에 따른 <u>질병 누적 발생 건수의 추세가 계단 함수를 보이는 사업장</u>을 표시한 것이다. 해당 사업장은 각각 "A"(농업, 임업, 어업), "B"(광업), "D"(전기, 가스, 증기 및 공기 조절 공급업), "E"(수도, 하수 및 폐기물 처리, 원료 재생업)이고, 해당 사업장 내에서는 모두 여성 근로자 집단에 대해서만 특별한 모형을 띈다.

②-3. "UP1", "CAL2", "YEAR" 변수로 grouping한 데이터: lv2\_leukemia\_CAL2

: "UP1", "SEX", "YEAR"로 grouping한 데이터에 대해 3가지 모형을 적합하고 validation set을 대상으로 계산한 MAPE 값은 아래 표와 같다.

: 각 사업장별로 모형 별 MAPE를 전부 기록하지 않고, 최솟값만 표에 제시한다. (그림 통해 모든 모형 적합 통해 얻은 MAPE 확인 가능)

| NAME | 01    | 234   |
|------|-------|-------|
|      |       |       |
| XA   | 13.71 | 35.42 |
| XB   | 3.12  | 13.55 |
| XC   | 0.41  | 12.03 |
| XD   | 15.25 | 34.7  |
| XE   | 3.82  | 5.8   |
| XF   | 5.08  | 5.61  |
| XG   | 2.28  | 9.49  |
| XH   | 0.85  | 7.94  |
| XI   | 1.5   | 21.55 |
| XJ   | 2.55  | 2.19  |
| XK   | 7.63  | 10.07 |
| XL   | 1.07  | 2.25  |
| XM   | 3.77  | 7.72  |
| XN   | 3.36  | 12.03 |
| XO   | 8.01  | 19.31 |
| XP   | 1.36  | 21.68 |
| XQ   | 1.01  | 16.8  |
| XR   | 5.24  | 33.41 |
| XS   | 1.76  | 9.52  |

: 같은 사업장에서 <u>대부분 입사 시기가 2000년 이전인 집단을</u> 대상으로 모형을 적합했을 때 더 좋은 성능을 보이는 것을 확인할 수 있다.



: 그래프의 파란색 실선은 YEAR=2014년을 의미한다.

: 그래프 안, 주황색 글씨는 Polynomial 회귀 적합 통해 얻은 MAPE 값, 보라색 글씨는 1차 spline function 적합 통해 얻은 MAPE 값, 검은색 글씨는 단순선형회귀모형 적합 통해 얻은 MAPE 값을 의미한다.

: 파란색으로 강조한 부분은 연도에 따른 <u>질병 누적 발생 건수의 추세가 2014년 이후 급격한 증가 추세를 보이는</u> 사업장을 표시한 것이다. 해당 사업장은 각각 "D"(전기, 가스, 증기 및 공기 조절 공급업), "R"(예술, 스포츠 및 여 가 관련 서비스업)이고, 해당 사업장 내에서는 <u>모두 입사 시기가 2000년 이후인 근로자 집단</u>에 대해서만 해당 사항을 가진다.

②-4. "UP1", "SEX", "CAL2", "YEAR" 변수로 grouping한 데이터 : lv2\_leukemia\_SEX\_CAL2

: "UP1", "SEX", "CAL2", "YEAR"로 grouping한 데이터에 대해 3가지 모형을 적합하고 validation set을 대상으로 계산한 MAPE 값은 아래 표와 같다.

: 각 사업장별로 모형 별 MAPE를 전부 기록하지 않고, 최솟값만 표에 제시한다. (그림 통해 모든 모형 적합 통해 얻은 MAPE 확인 가능)

| NAME | F01   | F234  | M01   | M234  |
|------|-------|-------|-------|-------|
| XA   | 10.23 | NaN   | 12.79 | 35.42 |
| XB   | 15.63 | NaN   | 3.19  | 13.55 |
| XC   | 0.67  | 11.59 | 1.25  | 12.17 |
| XD   | 4.39  | NaN   | 15.46 | 33.73 |
| XE   | 17    | 21.06 | 3.53  | 2.61  |
| XF   | 4.8   | 6.97  | 5.2   | 1.77  |
| XG   | 13.07 | 1.51  | 7.73  | 2.44  |
| XH   | 14.44 | 1.24  | 2.83  | 7.05  |
| XI   | 3.8   | 16.37 | 1.8   | 26.25 |
| XJ   | 4.93  | 5.43  | 2.48  | 8.6   |
| XK   | 7.53  | 9.1   | 7.58  | 10.71 |
| XL   | 6.86  | 1.48  | 5.59  | 2.62  |
| XM   | 2.72  | 8.31  | 5.82  | 7.47  |
| XN   | 4.98  | 7.87  | 2.09  | 15.08 |
| XO   | 3.21  | 19.44 | 10.04 | 19.12 |
| XP   | 6.68  | 19.58 | 17.04 | 26.19 |
| XQ   | 5.22  | 17.46 | 7.4   | 14.64 |
| XR   | 4.86  | 39.16 | 9.11  | 27.48 |
| XS   | 16.4  | 14.22 | 3.2   | 6.89  |

: 파란색으로 강조한 부분은 모형을 적합한 후 얻은 MAPE값이 모두 "NaN"인 집단을 의미한다. 이때, 해당 사업장은 "A"(농업), "B"(광업), "D"(전기, 가스, 증기 및 공기 조절 공급업)이다. 이때, 세 집단의 공통점은 모두 입사 시기가 2000년 이후라는 점이다.

: 그래프의 파란색 실선은 YEAR=2014년을 의미한다.



: 그래프 안, <mark>주황색 글씨는 Polynomial 회귀 적합 통해 얻은 MAPE 값</mark>, 보라색 글씨는 1차 spline function 적합 통해 얻은 MAPE 값, 검은색 글씨는 단순선형회귀모형 적합 통해 얻은 MAPE 값을 의미한다.

: 파란색으로 강조한 부분은 연도에 따른 <u>질병 누적 발생 건수의 추세가 계단 함수를 보이는 사업장</u>을 표시한 것이다. 해당 사업장은 각각 <u>"A"(농업, 임업, 어업), "B"(광업), "D"(전기, 가스, 증기 및 공기 조절 공급업), "E"(수도, 하수 및 폐기물 처리, 원료 재생업)</u>이고, 해당 사업장 내 대부분 <u>입사 시기가 2000년 이전이면서 여성인 근로자 집단에서</u> 현상이 두드러져 보인다.

: 빨간색으로 강조한 부분은 2014년 이후 질병의 누적 발생 건수가 급격히 증가하는 추세를 보이는 사업장 / 집단을 뜻한다. 해당 사업장은 "P"(교육 서비스업), "R"(예술, 스포 스 및 여가관련 서비스업)이며, 세 집단의 공통점은 입사 시기가 모두 2000년 이후라는 점이다.

----- Level 2 Data 파악 결과 정리 -----

- 1. 백혈병 누적 발생 건수는 지수적으로 증가하는 형태를 보인다.
- 2. "UP1" 기준으로 사업장을 분류해 살펴보았을 때는 <u>사업장 "D"(전기, 가스, 증기 및 공기 조절업)</u>을 주목할 필요가 있다. 모든 기준에 대해 집단을 나누어 보아도 3가지 모형으로 잘 설명되지 않으며, 특히나 질병 누적 발생 건수가 계단 함수 형태를 띈다.
- 3. 반응변수가 "누적 통합 질병 발생률"이 아닌 "질병 누적 발생 건수"이다 보니, <u>시간이 지남에 따라 추세가 감소하는 부분이 전혀 없어</u> 회귀모형이 이전보다 좋은 성능을 보이는 것을 확인하였다. - 모든 level data에서 보이는 공통사항

\_\_\_\_\_\_

#### 3 Level 3 Data

#### ③-1. "UP2", "YEAR" 변수로 grouping한 데이터: lv3\_leukemia\_total

: "UP2", "YEAR"로 grouping한 데이터에 대해 3가지 모형을 적합하고 validation set을 대상으로 예측한 값을 실제값과 비교한 그래프는 아래와 같다. (UP2 기준으로 사업장 수가 많아 표로 MAPE 제시는 생략)



: 그래프의 파란색 실선은 YEAR=2014년을 의미한다.

: 그래프 안, <mark>주황색 글씨는 Polynomial 회귀 적합 통해 얻은 MAPE 값</mark>, 보라색 글씨는 1차 spline function 적합 통해 얻은 MAPE 값, 검은색 글씨는 단순선형회귀모형 적합 통해 얻은 MAPE 값을 의미한다.

#### 1) MAPE 값이 "NaN"을 가지는 사업장 : 초록색으로 강조한 부분

| NAME | 사업장명       |
|------|------------|
| X6   | 금속 광업      |
| X8   | 광업 지원 서비스업 |

: lv1 data를 살펴보면, lv1\_leukemia\_SEX\_CAL2에서 "XBF234"가 NAME인 사업장 / 집단에서 MAPE값이 "NaN"값을 가진 결과를 알 수 있다. 이를 통해 추측컨대, 대분류 기준 "B"에 속하는 중분류 사업장 05 ~ 08 중 사업장 06, 08의 MAPE 값이 "NaN"이 원인이 되어 앞의 결과가 발생한 것이라고 볼 수 있다.

## 2) 연도에 따른 질병 누적 발생 건수의 추세가 계단 함수 모형을 띄는 사업장 : 빨간색으로 강조한 부분

| NAME | 사업장명        |
|------|-------------|
| X2   | 임업          |
| X39  | 환경 정화 및 복원업 |

: lv1 data 파악 결과 중 ②-4를 살펴보면, ②-4 결과가 나온 원인을 추측할 수 있다. ②-4에서 NAME 이 "XAF01"인 사업장의 질병 누적 발생 건수 추세가 계단 함수 형태를 띄는 이유는 사업장 "2"(임업)의 영향이 큰 것 같고, ②-4에서 NAME이 "XEF234" 사업장의 질병 누적 발생 건수 추세가 계단 함수 형태를 띄는 이유는 사업장 "39"(환경 정화 및 복원업)의 영향이 유의미한 것 같다. 이 때문에 세 모형의 성능이 모두 좋지 않은 것을 알 수 있다.

# 3) 연도에 따른 질병 누적 발생 건수의 추세가 2014년 이후로 급격히 증가하여 모형의 성능이 좋지 않은 사업장 : 파란색으로 강조한 부분

| NAME | 사업장명                |
|------|---------------------|
| X12  | 담배 제조업              |
| X34  | 산업용 기계 및 장비 수리업     |
| X36  | 수도업                 |
| X73  | 기타 전문, 과학 및 기술 서비스업 |
| X87  | 사회복지 서비스업           |
| X90  | 창작, 예술 및 여가 관련 서비스업 |

: <u>위의 lv2 data 파악 결과와 비교해보았을 때 겹치는 사업장은 "90"(</u>창작, 예술 및 여가 관련 서비스업) 뿐이다.

: 이 케이스에서도 세 모형의 성능이 모두 좋지 않게 나온다는 점에 주목해야 한다.

# ③-1. "UP2", "SEX", "YEAR" 변수로 grouping한 데이터: lv3\_leukemia\_SEX

: "UP2", "SEX", "YEAR"로 grouping한 데이터에 대해 3가지 모형을 적합하고 validation set을 대상으로 예측한 값을 실제값과 비교한 그래프는 아래와 같다. (UP2 기준으로 사업장 수가 많아 표로 MAPE 제시는 생략)

: 그래프의 파란색 실선은 YEAR=2014년을 의미한다.

: 그래프 안, <mark>주황색 글씨는 Polynomial 회귀 적합 통해 얻은 MAPE 값</mark>, 보라색 글씨는 1차 spline function 적합 통해 얻은 MAPE 값, 검은색 글씨는 단순선형회귀모형 적합 통해 얻은 MAPE 값을 의미한다.

#### ③-1-1. SEX가 Female인 경우



# 1) MAPE 값이 "NaN"을 가지는 사업장 : 초록색으로 강조한 부분

| NAME | 사업장명                 |
|------|----------------------|
| X2F  | 임업                   |
| X6F  | 금속 광업                |
| X7F  | 비금속광물 광업; 연료용 제외     |
| X8F  | 광업 지원 서비스업           |
| X34F | 산업용 기계 및 장비 수리업      |
| X36F | 수도업                  |
| X37F | 하수, 폐수 및 분뇨 처리업      |
| X59F | 영상, 오디오 기록물 제작 및 배급업 |

: MAPE 값이 "NaN"값을 가지는 사업장의 그래프를 보면 2가지 경우가 있다. 2014년 이후에도 질병 누적 발생 건수가 0건인 경우와 2014년까지는 질병 누적 발생 건수가 0건이었다가 2014년 이후 질병 누적 발생 건수가 수직으로 증가하는 경우이다. 후자로는 "X7F", "X34F", "X59F" 사업장이 해당 된다.

## 2) 연도에 따른 질병 누적 발생 건수의 추세가 계단 함수 모형을 띄는 사업장 : 빨간색으로 강조한 부분

| NAME | 사업장명                  |  |  |  |  |  |
|------|-----------------------|--|--|--|--|--|
| X1F  | 농업                    |  |  |  |  |  |
| X3F  | 어업                    |  |  |  |  |  |
| X5F  | 석탄, 원유 및 천연가스 광업      |  |  |  |  |  |
| X12F | 담배 제조업                |  |  |  |  |  |
| X35F | 전기, 가스 증기 및 공기 조절 공급업 |  |  |  |  |  |
| X39F | 환경 정화 및 복원업           |  |  |  |  |  |
| X42F | 전문직별 공사업              |  |  |  |  |  |
| X50F | 수상 운송업                |  |  |  |  |  |
| X76F | 임대업; 부동산 제외           |  |  |  |  |  |

: 옆 표에 제시된 사업장들의 그래프를 보면 MAPE가 낮은 모형도 있지만, 대부분 모든 모형에 대해 큰 MAPE 값을 보인다. 계단 함수의 특성상, 일정 구간은 상수함수 형태이고 한 시점에서 급격한 증가가 일어나게 되므로 MAPE 값이 크게 나타나는 현상은 당연해 보이며, 이 경우에는 1차 spline function이 다른 모형에 비해 더 나은 성능을 보이는 것 같아 보인다.

# 3) 연도에 따른 질병 누적 발생 건수의 추세가 2014년 이후로 급격히 증가하여 모형의 성능이 좋지 않은 사업장 : 파란색으로 강조한 부분

| NAME | 사업장명                    |  |  |  |
|------|-------------------------|--|--|--|
| X16F | 목재 및 나무제품 제조업; 가구 제외    |  |  |  |
| X17F | 펄프, 종이 및 종이제품 제조업       |  |  |  |
| X19F | 코크스, 연탄 및 석유 정제품 제조업    |  |  |  |
| X38F | 폐기물 수집, 운반, 처리 및 원료 재생업 |  |  |  |
| X66F | 금융 및 보험관련 서비스업          |  |  |  |
| X87F | 사회복지 서비스업               |  |  |  |

: 옆 표에 제시된 사업장들의 그래프를 보면 2014년 이전까지는 완만한 추세 곡선 / 직선을 보이다가 2014년 이후 누적 질병 발생 건수가 급격하게 증가하는 바람에 적합한 모형의 성능이 매우 떨어지는 것을 알 수 있다. 이 부분을 반영할 수 있는 다른 모형 혹은 추가 변수 생성이 필요해 보인다.

## ③-1-2. SEX가 Male인 경우



# 1) MAPE 값이 "NaN"을 가지는 사업장 : 초록색으로 강조한 부분

| NAME | 사업장명        |
|------|-------------|
| X6F  | 금속 광업       |
| X8F  | 광업 지원 서비스업  |
| X39F | 환경 정화 및 복원업 |

: MAPE 값이 "NaN"값을 가지는 사업장의 그래프를 보면 2가지 경우가 있다. 2014년 이후에도 질병 누적 발생 건수가 0건인 경우와 2014년까지는 질병 누적 발생 건수가 0건이었다가 2014년 이후 질병 누적 발생 건수가 수직으로 증가하는 경우이다. 후자로는 "X6M" 사업장이 해당 된다.

## 2) 연도에 따른 질병 누적 발생 건수의 추세가 계단 함수 모형을 띄는 사업장 : 빨간색으로 강조한 부분

| NAME | 사업장명 |  |  |  |
|------|------|--|--|--|
| X2M  | 임업   |  |  |  |
| X3F  | 어업   |  |  |  |

: **파란색으로 강조한 부분**은 여성 근로자 집단에서도 동일한 현상을 보이는 사업장을 의미한다. 계단 함수의 특성 상, 일정 구간은 상수함수 형태이고 한 시점에서 급격한 증가가 일어나게 되므로 MAPE 값이 크게 나타나는 현상은 당연해 보이며, 이 경우에는 여성 근로자 집단과 다르게 단순선형회귀모형이 더 좋은 성능을 보인다.

## 3) 연도에 따른 질병 누적 발생 건수의 추세가 2014년 이후로 급격히 증가하여 모형의 성능이 좋지 않은 사업장 : 파란색으로 강조한 부분

| NAME | 사업장명                    |  |  |  |
|------|-------------------------|--|--|--|
| X12M | 담배 제조업                  |  |  |  |
| X19M | 코크스, 연탄 및 석유정제품 제조업     |  |  |  |
| X34M | 산업용 기계 및 장비 수리업         |  |  |  |
| X35M | 전기, 가스, 증기 및 공기 조절 공급업  |  |  |  |
| X62M | 컴퓨터 프로그래밍, 시스템 통합 및 관리업 |  |  |  |
| X87M | 사회복지 서비스업               |  |  |  |

: 옆 표에 제시된 사업장들의 그래프를 보면 2014년 이전까지는 완만한 추세 곡선 / 직선을 보이다가 2014년 이후 누적 질병 발생 건수가 급격하게 증가하는 바람에 적합한 모형의 성능이 매우 떨어지는 것을 알 수 있다. 이 부분을 반영할 수 있는 다른 모형 혹은 추가 변수 생성이 필요해 보인다.

: 파란색으로 강조한 부분은 여성 근로자 집단도 동일한 현상을 보이는 사업장을 뜻한다.

# ③-2. "UP2", "CAL2", "YEAR" 변수로 grouping한 데이터: lv3\_leukemia\_SEX

: "UP2", "CAL2", "YEAR"로 grouping한 데이터에 대해 3가지 모형을 적합하고 validation set을 대상으로 예측한 값을 실제값과 비교한 그래프는 아래와 같다. (UP2 기준으로 사업장 수가 많아 표로 MAPE 제시는 생략)

: 그래프의 파란색 실선은 YEAR=2014년을 의미한다.

: 그래프 안, <mark>주황색 글씨는 Polynomial 회귀 적합 통해 얻은 MAPE 값</mark>, 보라색 글씨는 1차 spline function 적합 통해 얻은 MAPE 값, 검은색 글씨는 단순선형회귀모형 적합 통해 얻은 MAPE 값을 의미한다.

------ 다음 페이지로 넘김 -----

# ③-2-1. CAL2가 "01"인 경우



1) MAPE 값이 "NaN"을 가지는 사업장 : 초록색으로 강조한 부분

| NAME  | 사업장명        |  |  |  |
|-------|-------------|--|--|--|
| X601  | 금속 광업       |  |  |  |
| X801  | 광업 지원 서비스업  |  |  |  |
| X3901 | 환경 정화 및 복원업 |  |  |  |

: MAPE 값이 "NaN"값을 가지는 사업장의 그래프를 보면 2가지 경우가 있다. 2014년 이후에도 질병 누적 발생 건수가 0건인 경우와 2014년까지는 질병 누적 발생 건수가 0건이었다가 2014년 이후 질병 누적 발생 건수가 수직으로 증가하는 경우이다. 후자로는 "X601" 사업장이 해당 된다.

: 주목할만 점은 이 결과와 ③-1-2.(SEX가 Male인 경우)의 1) 결과와 동일하다는 점이다.

## 2) 연도에 따른 질병 누적 발생 건수의 추세가 계단 함수 모형을 띄는 사업장 : 빨간색으로 강조한 부분

| NAME  | 사업장명                    |  |  |  |  |
|-------|-------------------------|--|--|--|--|
| X201  | 임업                      |  |  |  |  |
| X3601 | 수도업                     |  |  |  |  |
| X6201 | 컴퓨터 프로그래밍, 시스템 통합 및 관리업 |  |  |  |  |

: 계단 함수의 특성상, 일정 구간은 상수함수 형태이고 한 시점에서 급격한 증가가 일어나게 되므로 MAPE 값이 크게 나타나는 현상은 당연해 보인다.

## 3) 연도에 따른 질병 누적 발생 건수의 추세가 2014년 이후로 급격히 증가하여 모형의 성능이 좋지 않은 사업장 : 파란색으로 강조한 부분

| NAME  | 사업장명                 |  |  |  |
|-------|----------------------|--|--|--|
| X1201 | 담배 제조업               |  |  |  |
| X1901 | 코크스, 연탄 및 석유 정제품 제조업 |  |  |  |
| X9001 | 창작, 예술 및 여가관련 서비스업   |  |  |  |

: 옆 표에 제시된 사업장들의 그래프를 보면 2014년 이전까지는 완만한 추세 곡선 / 직선을 보이다가 2014년 이후 누적 질병 발생 건수가 급격하게 증가하는 바람에 적합한 모형의 성능이 매우 떨어지는 것을 알 수 있다. 이 부분을 반영할 수 있는 다른 모형 혹은 추가 변수 생성이 필요해 보인다.

## ③-2-2. CAL2가 "234"인 경우



# 1) MAPE 값이 "NaN"을 가지는 사업장 : 초록색으로 강조한 부분

| NAME   | 사업장명       |
|--------|------------|
| X2234  | 임임         |
| X6234  | 금속 광업      |
| X8234  | 광업 지원 서비스업 |
| X36234 | 수도업        |

: MAPE 값이 "NaN"값을 가지는 사업장의 그래프를 보면 2가지 경우가 있다. 2014년 이후에도 질병 누적 발생 건수가 0건인 경우와 2014년까지는 질병 누적 발생 건수가 0건이었다가 2014년 이후 질병 누적 발생 건수가 수직으로 증가하는 경우이다. 후자로는 "X2234", "X36234" 사업장이 해당 된다.

: **파란색으로 강조한 부분**은 입사 시기가 2000년 이전인 근로자 집단에서도 동일한 현상을 보이는 사업장을 의미한다.

## 2) 연도에 따른 질병 누적 발생 건수의 추세가 계단 함수 모형을 띄는 사업장 : 빨간색으로 강조한 부분

| NAME   | 사업장명             |  |  |  |  |
|--------|------------------|--|--|--|--|
| X3234  | 어업               |  |  |  |  |
| X5234  | 석탄, 원유 및 천연가스 광업 |  |  |  |  |
| X12234 | 담배 제조업           |  |  |  |  |
| X39234 | 환경 정화 및 복원업      |  |  |  |  |
| X76234 | 임대업; 부동산 제외      |  |  |  |  |

: 계단 함수의 특성상, 일정 구간은 상수함수 형태이고 한 시점에서 급격한 증가가 일어나게 되므로 MAPE 값이 크게 나타나는 현상은 당연해 보인다.

# 3) 연도에 따른 질병 누적 발생 건수의 추세가 2014년 이후로 급격히 증가하여 모형의 성능이 좋지 않은 사업장 : 파란색으로 강조한 부분

| NAME   | 사업장명                    |  |  |  |  |  |
|--------|-------------------------|--|--|--|--|--|
| X1234  | 농업                      |  |  |  |  |  |
| X10234 | 식료품 제조업                 |  |  |  |  |  |
| X11234 | 음료 제조업                  |  |  |  |  |  |
| X19234 | 코크스, 연탄 및 석유정제품 제조업     |  |  |  |  |  |
| X34234 | 산업용 기계 및 장비 수리업         |  |  |  |  |  |
| X35234 | 전기, 가스, 증기 및 공기 조절 공급업  |  |  |  |  |  |
| X42234 | 전문직별 공사업                |  |  |  |  |  |
| X51234 | 항공 운송업                  |  |  |  |  |  |
| X62234 | 컴퓨터 프로그래밍, 시스템 통합 및 관리업 |  |  |  |  |  |
| X87234 | 사회복지 서비스업               |  |  |  |  |  |
| X91234 | 스포츠 및 오락관련 서비스업         |  |  |  |  |  |
| X94234 | 협회 및 단체                 |  |  |  |  |  |

: 옆 표에 제시된 사업장들의 그래프를 보면 2014년 이전까지는 완만한 추세 곡선 / 직선을 보이다가 2014년 이후 누적 질병 발생 건수가 급격하게 증가하는 바람에 적합한 모형의 성능이 매우 떨어지는 것을 알 수 있다. 이 부분을 반영할 수 있는 다른 모형 혹은 추가 변수 생성이 필요해 보인다.

: **파란색으로 강조한 부분**은 입사 시기가 2000년 이전인 근로자 집단에서도 동일한 결과를 보였던 사업장을 의미한다.

## ③-3. "UP2", "SEX", "CAL2", "YEAR" 변수로 grouping한 데이터 : lv3\_leukemia\_SEX\_CAL2

- : "UP2", "SEX", "CAL2", "YEAR"로 grouping한 데이터에 대해 3가지 모형을 적합하고 validation set을 대상으로 예측한 값을 실제값과 비교한 그래프는 아래와 같다. (UP2 기준으로 사업장 수가 많아 표로 MAPE 제시는 생략)
- : 총 4가지 subset으로 나누어 그래프 제시 ("F01", "F234", "M01", "M234")
- : 그래프의 파란색 실선은 YEAR=2014년을 의미한다.
- : 그래프 안, <mark>주황색 글씨는 Polynomial 회귀 적합 통해 얻은 MAPE 값</mark>, 보라색 글씨는 1차 spline function 적합 통해 얻은 MAPE 값, 검은색 글씨는 단순선형회귀모형 적합 통해 얻은 MAPE 값을 의미한다.

#### (3)-3-1. Female + CAL2 = "01"



| Туре                     | NAME   | 사업장명                    |
|--------------------------|--------|-------------------------|
|                          | X2F01  | 임업                      |
|                          | X6F01  | 금속 광업                   |
|                          | X7F01  | 비금속광물 광업; 연료용 제외        |
|                          | X8F01  | 광업 지원 서비스업              |
|                          | X34F01 | 산업용 기계 및 장비 수리업         |
| MAPE값이 "NaN"인 사업장        | X36F01 | 수도업                     |
| MAPE값이 Nan 인 사업성         | X37F01 | 하수, 폐수 및 분뇨 처리업         |
|                          | X39F01 | 환경 정화 및 복원업             |
|                          | X50F01 | 수상 운송업                  |
|                          | X59F01 | 영상, 오디오 기록물 제작 및 배급업    |
|                          | X62F01 | 컴퓨터 프로그래밍, 시스템 통합 및 관리업 |
|                          | X76F01 | 임대업; 부동산 제외             |
|                          | X1F01  | 농업                      |
|                          | X3F01  | 어업                      |
|                          | X5F01  | 석탄, 원유 및 천연가스 광업        |
|                          | X12F01 | 담배 제조업                  |
|                          | X16F01 | 목재 및 나무제품 제조업; 가구제외     |
| 누적 질병 발생 건수 추세가 계단 함수    | X19F01 | 코크스, 연탄 및 석유정제품 제조업     |
| 모형을 보이는 사업장              | X35F01 | 전기, 가스, 증기 및 공기 조절 공급업  |
| 모영글 모이는 사립성<br>          | X38F01 | 폐기물 수집, 운반, 처리 및 원료 재생업 |
|                          | X42F01 | 전문직별 공사업                |
|                          | X45F01 | 자동차 및 부품 판매업            |
|                          | X73F01 | 기타 전문, 과학 및 기술 서비스업     |
|                          | X90F01 | 창작, 예술 및 여가 관련 서비스업     |
|                          | X95F01 | 개인 및 소비용품 수리업           |
| 2014년 이후 누적 질병 발생 건수 추세가 | X16F01 | 목재 및 나무제품 제조업; 가구 제외    |
| 급격히 증가하는 사업장             | X66F01 | 금융 및 보험관련 서비스업          |

: 여성이면서 입사 시기가 2000년 이전인 근로자 집단의 경우는 MAPE가 "NaN"인 경우가 제일 많다.

: 모든 사업장에 대해 특정 모형이 뛰어난 성능을 보인다고는 말할 수 없으며, 1차 spline function과 Polynomial regression 모형이 좋은 성능을 보인다.

## 3-3-2. Female + CAL2 = "234"



| Туре                         | NAME    | 사업장명                    |
|------------------------------|---------|-------------------------|
| , ,                          | X1F234  | 농업                      |
|                              | X2F234  | 임업                      |
| MAPE값이 "NaN"인 사업장            | X3F234  | 어업                      |
|                              | X5F234  | 석탄, 원유 및 천연가스 광업        |
|                              | X6F234  | 금속 광업                   |
|                              | X7F234  | 비금속광물 광업; 연료용 제외        |
|                              | X8F234  | 광업 지원 서비스업              |
|                              | X12F234 | 담배 제조업                  |
|                              | X34F234 | 산업용 기계 및 장비 수리업         |
|                              | X35F234 | 전기, 가스 증기 및 공기 조절 공급업   |
|                              | X36F234 | 수도업                     |
|                              | X37F234 | 하수, 폐수 및 분뇨 처리업         |
|                              | X42F234 | 전문직별 공사업                |
|                              | X59F234 | 영상, 오디오 기록물 제작 및 배급업    |
|                              | X16F234 | 목재 및 나무제품 제조업; 가구 제외    |
|                              | X19F234 | 코크스, 연탄 및 석유정제품 제조업     |
|                              | X32F234 | 가구 제조업                  |
|                              | X38F234 | 폐기물 수집, 운반, 처리 및 원료 재생업 |
|                              | X39F234 | 환경 정화 및 복원업             |
|                              | X45F234 | 자동차 및 부품 판매업            |
| 사업장                          | X50F234 | 수상 운송업                  |
|                              | X55F234 | 숙박업                     |
|                              | X60F234 | 방송업                     |
|                              | X70F234 | 연구개발업                   |
|                              | X76F234 | 사원 지원 서비스업              |
|                              | X10F234 | 식료품 제조업                 |
|                              | X11F234 | 음료 제조업                  |
|                              | X17F234 | 펄프, 종이 및 종이제품 제조업       |
|                              | X22F234 | 고무 및 플라스틱제품 제조업         |
|                              | X25F234 | 금속 가공제품 제조업; 기계 및 가구 제외 |
| 2014년 이후 누적 질병 발생 건수 추세가 급격히 | X27F234 | 의료, 정밀, 광학 기기 및 시계 제조업  |
| 증가하는 사업장                     | X28F234 | 전기장비 제조업                |
|                              | X29F234 | 기타 기계 및 장비 제조업          |
|                              | X87F234 | 사회복지 서비스업               |
|                              | X91F234 | 스포츠 및 오락관련 서비스업         |
|                              | X94F234 | 협회 및 단체                 |
|                              | X95F234 | 개인 및 소비용품 수리업           |

: **파란색으로 강조한 부분**은 여성이면서 입사 시기가 2000년 이전인 근로자 집단에서도 동일한 특성을 보이는 사업장을 의미한다.

: 여성이면서 입사 시기가 2000년 이전인 근로자 집단의 추세와 비교해보면 많이 불안정함을 뛰다는 것을 알 수 있다.

#### $\Im$ -3-3. Male + CAL2 = "01"

2000200520102015

2000200520102015



Year

| Туре                                     | NAME   | 사업장명                    |
|------------------------------------------|--------|-------------------------|
| MAPE값이 "NaN"인 사업장                        | X6M01  | 금속 광업                   |
|                                          | X8M01  | 광업 지원 서비스업              |
|                                          | X39M01 | 환경 정화 및 복원업             |
| 누적 질병 발생 건수 추세가 계단 함수<br>모형을 보이는 사업장     | X2M01  | 임업                      |
|                                          | X3M01  | 어업                      |
|                                          | X59M01 | 영상, 오디오 기록물 제작 및 배급업    |
|                                          | X62M01 | 컴퓨터 프로그래밍, 시스템 통합 및 관리업 |
| 2014년 이후 누적 질병 발생 건수 추세가<br>급격히 증가하는 사업장 | X12M01 | 담배 제조업                  |
|                                          | X32M01 | 가구 제조업                  |
|                                          | X90M01 | 창작, 예술 및 여가 관련 서비스업     |

#### $\Im$ -3-4. Male + CAL2 = "234"



2005 2010 2015

2005 2010 2015



| Туре                                     | NAME    | 사업장명                     |
|------------------------------------------|---------|--------------------------|
| MAPE값이 "NaN"인 사업장                        | X2M234  | 임업                       |
|                                          | X6M234  | 금속 광업                    |
|                                          | X8M234  | 광업 지원 서비스업               |
|                                          | X19M234 | 코크스, 연탄 및 석유정제품 제조업      |
|                                          | X36M234 | 수도업                      |
|                                          | X39M234 | 환경 정화 및 복원웝              |
| 누적 질병 발생 건수 추세가 계단 함수 모형을 보이는<br>사업장     | X3M234  | 어업                       |
|                                          | X5M234  | 석탄 원유 및 천연가스 광업          |
|                                          | X12M234 | 담배 제조업                   |
|                                          | X51M234 | 항공 운송업                   |
|                                          | X1M234  | 농업                       |
|                                          | X10M234 | 식료품 제조업                  |
|                                          | X11M234 | 음료 제조업                   |
|                                          | X15M234 | 가죽, 가방 및 신발 제조업          |
|                                          | X20M234 | 화학 물질 및 화학제품 제조업; 의약품 제외 |
|                                          | X22M234 | 고무 및 플라스틱제품 제조업          |
|                                          | X34M234 | 산업용 기계 및 장비 수리업          |
| 2014년 이후 누적 질병 발생 건수 추세가 급격히<br>증가하는 사업장 | X42M234 | 전문직별 공사업                 |
|                                          | X51M234 | 항공 운송업                   |
|                                          | X52M234 | 창고 및 운송관련 서비스업           |
|                                          | X55M234 | 숙박업                      |
|                                          | X56M234 | 음식점 및 주점업                |
|                                          | X62M234 | 컴퓨터 프로그래밍, 시스템 통합 및 관리업  |
|                                          | X64M234 | 금융업                      |
|                                          | X71M234 | 전문 서비스업                  |
|                                          | X76M234 | 임대업; 부동산 제외              |
|                                          | X87M234 | 사회복지 서비스업                |
|                                          | X91M234 | 스포츠 및 오락관련 서비스업          |
|                                          | X94M234 | 협회 및 단체                  |

: **파란색으로 강조한 부분**은 사업장과 성별은 같은데 입사 시기가 2000년 이전인 근로자 집단과 비교했을 때, 동일한 결과를 보이는 사업장을 의미한다.

----- Level 3 data total 정리 -----

-----

<sup>1.</sup> 사업장을 중분류(UP2) 기준으로 나누었을 때, 반응변수를 "질병 누적 통합 발생률"로 했을 때의 파악 결과와 비슷하게 <u>남성보다는 여성 근로자 집단이, 입사 시기가 2000</u>년 이전보다 이후인 근로자 집단의 추세가 더 불안정하다.

<sup>2.</sup> 특히, 입사 시기가 2000년 이후인 집단의 질병 누적 발생 건수 추세는 2014년 이후로 급격히 증가하는 경향을 많이 보인다.

<sup>3.</sup> 눈에 띄는 사업장은 광업 쪽("6", "8")과 담배 제조업("12"), 창작, 예술 및 여가 관련 서비스업("90")이며, 특히 담배 제조업("12")을 주목할 필요성을 느꼈다.