GICD_CTLR, Distributor Control Register

The GICD CTLR characteristics are:

Purpose

Enables interrupts and affinity routing.

Configuration

The format of this register depends on the Security state of the access and the number of Security states supported, which is specified by GICD CTLR.DS.

Attributes

GICD CTLR is a 32-bit register.

Field descriptions

When access is Secure, in a system that supports two Security states:

RWP, bit [31]

Register Write Pending. Read only. Indicates whether a register write is in progress or not:

RWP	Meaning
0b0	No register write in progress. The
	effects of previous register writes
	to the affected register fields are
	visible to all logical components
	of the GIC architecture, including
	the CPU interfaces.

0b1	Register write in progress. The effects of previous register writes to the affected register fields are
	not guaranteed to be visible to all logical components of the GIC
	architecture, including the CPU interfaces, as the effects of the
	changes are still being
	propagated.

This field tracks writes to:

- GICD_CTLR[2:0], the Group Enables, for transitions from 1 to 0 only
- GICD CTLR[7:4], the ARE bits, E1NWF bit and DS bit.
- GICD ICENABLER<n>.

Updates to other register fields are not tracked by this field.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally unknown value.

Bits [30:8]

Reserved, res0.

E1NWF, bit [7]

Enable 1 of N Wakeup Functionality.

It is implementation defined whether this bit is programmable, or RAZ/WI.

If it is implemented, then it has the following behavior:

E1NWF	Meaning
0b0	A PE that is asleep cannot be
	picked for 1 of N interrupts.
0b1	A PE that is asleep can be
	picked for 1 of N interrupts as
	determined by implementation
	defined controls.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally unknown value.

DS, bit [6]

Disable Security.

DS	Meaning
0d0	Non-secure accesses are not permitted to access and modify
	registers that control Group 0 interrupts.
0b1	Non-secure accesses are permitted to access and modify registers that control Group 0 interrupts.

If DS is written from 0 to 1 when GICD_CTLR.ARE_S == 1, then GICD_CTLR.ARE for the single Security state is RAO/WI.

If the Distributor only supports a single Security state, this bit is RAO/WI.

If the Distributor supports two Security states, it implementation defined whether this bit is programmable or implemented as RAZ/WI.

When this field is set to 1, all accesses to GICD_CTLR access the single Security state view, and all bits are accessible.

When set to 1, this field can only be cleared by a hardware reset.

Writing this bit from 0 to 1 is unpredictable if any of the following is true:

- GICD CTLR.EnableGrp0==1.
- GICD CTLR.EnableGrp1S==1.
- GICD CTLR.EnableGrp1NS==1.
- One or more INTID is in the Active or Active and Pending state.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

ARE NS, bit [5]

Affinity Routing Enable, Non-secure state.

ARE_NS	Meaning
0b0	Affinity routing disabled for
	Non-secure state.
0b1	Affinity routing enabled for
	Non-secure state.

When affinity routing is enabled for the Secure state, this field is RAO/WI.

Changing the ARE_NS settings from 0 to 1 is unpredictable except when GICD_CTLR.EnableGrp1 Non-secure == 0.

Changing the ARE NS settings from 1 to 0 is unpredictable.

If GICv2 backwards compatibility for Non-secure state is not implemented, this field is RAO/WI.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

ARE_S, bit [4]

Affinity Routing Enable, Secure state.

ARE_S	Meaning
0b0	Affinity routing disabled for
	Secure state.
0b1	Affinity routing enabled for
	Secure state.

Changing the ARE_S setting from 0 to 1 is unpredictable except when all of the following apply:

- GICD CTLR.EnableGrp0==0.
- GICD CTLR.EnableGrp1S==0.
- GICD CTLR.EnableGrp1NS==0.

Changing the ARE S settings from 1 to 0 is unpredictable.

If GICv2 backwards compatibility for Secure state is not implemented, this field is RAO/WI.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Bit [3]

Reserved, res0.

EnableGrp1S, bit [2]

Enable Secure Group 1 interrupts.

EnableGrp1S	Meaning
0b0	Secure Group 1 interrupts are disabled.
0b1	Secure Group 1 interrupts are enabled.

If GICD CTLR.ARE S == 0, this field is res0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally unknown value.

EnableGrp1NS, bit [1]

Enable Non-secure Group 1 interrupts.

EnableGrp1NS	Meaning
0b0	Non-secure Group 1
	interrupts are
	disabled.
0b1	Non-secure Group 1
	interrupts are enabled.

Note

This field also controls whether LPIs are forwarded to the PE.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally unknown value.

EnableGrp0, bit [0]

Enable Group 0 interrupts.

EnableGrp0	Meaning
0b0	Group 0 interrupts are disabled.
0b1	Group 0 interrupts are enabled.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally unknown value.

When access is Non-secure, in a system that supports two Security states:

31	30292827262524232221201918171615141312111098765	4	3	2	1	0
RWP	RES0	ARE	NS _R	ES0	EnableGrp1A	EnableGrp1

RWP, bit [31]

This bit is a read-only alias of the Secure GICD CTLR.RWP bit.

Bits [30:5]

Reserved, res0.

ARE_NS, bit [4]

This bit is a read/write alias of the Secure GICD CTLR.ARE NS bit.

If GICv2 backwards compatibility for Non-secure state is not implemented, this field is RAO/WI.

Bits [3:2]

Reserved, res0.

EnableGrp1A, bit [1]

If ARE_NS == 1, then this bit is a read/write alias of the Secure GICD CTLR.EnableGrp1NS bit.

If ARE NS == 0, then this bit is res0.

EnableGrp1, bit [0]

If ARE_NS == 0, then this bit is a read/write alias of the Secure GICD CTLR.EnableGrp1NS bit.

If ARE NS == 1, then this bit is res0.

When in a system that supports only a single Security state:

31	3029282726252423222120191817161514131211109	8	7	6	5	4	3 2	1
RWP	RESO	nASSGIreq	E1NWF	DS	RES0	ARE	RES0	EnableGrp1

RWP, bit [31]

Register Write Pending. Read only. Indicates whether a register write is in progress or not:

RWP	Meaning
0b0	No register write in progress. The effects of previous register writes to the affected register fields are visible to all logical components of the GIC architecture, including the CPU interfaces.
	the Cr O interfaces.

0b1	Register write in progress. The effects of previous register writes to the affected register fields are
	not guaranteed to be visible to all logical components of the GIC architecture, including the CPU interfaces, as the effects of the changes are still being propagated.

This field tracks updates to:

- GICD_CTLR[2:0], the Group Enables, for transitions from 1 to 0 only.
- GICD CTLR[7:4], the ARE bits, E1NWF bit and DS bit.
- GICD ICENABLER<n>, the bits that allow disabling of SPIs.

Updates to other register fields are not tracked by this field.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally unknown value.

Bits [30:9]

Reserved, res0.

nASSGIreq, bit [8] When FEAT GICv4p1 is implemented:

Controls whether SGIs have an active state.

This bit is res0 if GICD TYPER2.GICD TYPER2.nASSGIcap is 0.

This bit is WI when any of GICD_CTLR.{EnableGrp0,EnableGrp1} is 1.

nASSGIreq	Meaning
0b0	SGIs have an active state
	and must be deactivated.
0b1	SGIs do not have an active
	state and do not require
	deactivation.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Otherwise:

Reserved, res0.

E1NWF, bit [7]

Enable 1 of N Wakeup Functionality.

It is implementation defined whether this bit is programmable, or RAZ/WI.

If it is implemented, then it has the following behavior:

E1NWF	Meaning
0b0	A PE that is asleep cannot be
	picked for 1 of N interrupts.
0b1	A PE that is asleep can be
	picked for 1 of N interrupts as
	determined by implementation
	defined controls.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally unknown value.

DS, bit [6]

Disable Security. This field is RAO/WI.

Bit [5]

Reserved, res0.

ARE, bit [4]

Affinity Routing Enable.

ARE	Meaning
0b0	Affinity routing disabled.
0b1	Affinity routing enabled.

Changing the ARE settings from 0 to 1 is unpredictable except when all of the following apply:

- GICD CTLR.EnableGrp1==0.
- GICD_CTLR.EnableGrp0==0.

Changing ARE from 1 to 0 is unpredictable.

If GICv2 backwards compatibility is not implemented, this field is RAO/WI.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Bits [3:2]

Reserved, res0.

EnableGrp1, bit [1]

Enable Group 1 interrupts.

EnableGrp1	Meaning
0b0	Group 1 interrupts disabled.
0b1	Group 1 interrupts enabled.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally unknown value.

EnableGrp0, bit [0]

Enable Group 0 interrupts.

EnableGrp0	Meaning
0b0	Group 0 interrupts are disabled.
0b1	Group 0 interrupts are enabled.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally unknown value.

Accessing GICD_CTLR

If an interrupt is pending within a CPU interface when the corresponding GICD_CTLR.EnableGrpX bit is written from 1 to 0 the interrupt must be retrieved from the CPU interface.

Note

This might have no effect on the forwarded interrupt if it has already been activated.

When a write changes the value of ARE for a Security state or the value of the DS bit, the format used for interpreting the remaining bits provided in the write data is the format that applied before the write takes effect.

GICD_CTLR can be accessed through the memory-mapped interfaces:

Component	Frame	Offset	Instance
GIC Distributor	Dist_base	0x0000	GICD_CTLR

Accesses on this interface are **RW**.

AArch32	AArch64	AArch32	AArch64	Index by	<u>External</u>
<u>Registers</u>	<u>Registers</u>	<u>Instructions</u>	<u>Instructions</u>	Encoding	<u>Registers</u>

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.