Table 1: Power budget parameters

Parameter name	Label	Unit
Orbital period	T	8
Planet radius	R	$\frac{b}{km}$
Standard gravitational		$\frac{km^3}{s^2}$
parameter	μ	KIII / S
Power required	PR	\overline{W}
for a subsystem	1 11	, , , , , , , , , , , , , , , , , , ,
Eclipse Duty	EDC	%
Cycle		/0
· ·	SDC	%
Sunlight Duty	SDC	70
Cycle	4000	117
Average Orbit Power	$AOPR_E$	W
Required During Eclipse	1000	
Average Orbit Power	$AOPR_S$	W
Required During Sunlight		
Earth angular radius	ρ h	0
Orbit height		km
Time of Eclipse	TE	s
Time in Sunlight	TS	s
Energy required during eclipse	EE	Wh
Energy required during sunlight	ES	Wh
Solar panel length	L	m
Solar panel wide	W	m
Packing Factor	PF	/
CubeSat size	size	CubeSat Unit U
Effective Area	A_{eff}	m^2
Input surface solar power	P_{in}	W/m^2
Solar array power generated	PSABOL	W
at Begin Of Life	1 2112 0 2	,,
Solar array power generated	PSAEOL	\overline{W}
at Ending Of Life		,,
Solar Cell efficiency at	nnor	/
Ending of Life	η_{EOL}	/
Solar Cell efficiency	n	/
Solar Cell Efficiency Degradation	$\frac{\eta}{YD}$	07.
Per Year		/0
Years of Mission	VM	210.000
	PM	years
Energy Required To Produce		Wh
Power Solar Array Required	PSAR	
Battery Depth of Discharge	DOD	%
Battery Capacity calculated	Batt	Wh
Battery Capacity	BC	Wh
Power Margin	PSAM	W

Table 2: Power budget constraints

Equation	Reference
$T = 2\pi \sqrt{\frac{R^3}{\mu}}$ $\rho = \arcsin \frac{R}{h+R}$	[1] p.193
$\rho = \arcsin \frac{R}{h+R}$	[1] p.193
$TE = \frac{2\rho}{360}T$	[1] p.193
TS = T - TE	[1] p.193
$PSABOL = P_{in}\eta A_{eff}$	[1] p.194
$\eta_{EOL} = \eta (1 - YD)^{YM}$	[1] p.194
$PSAEOL = \eta_{EOL}(PSABOL)$	[1] p.194
$A_{eff} = PF * L * W$	[1] p.194
With $PF = 1$ if $size = 1$	
With $PF = 0.8$ if $size = 2$	
With $PF = 0.86$ if $size! = 1$ and $size! = 2$	
$EE = \sum AOPR_E * TE * \frac{1}{3600}$	[1] p.196
$ES = \sum AOPR_S * TS * \frac{370}{3600}$	[1] p.196
$AOPR_E = PR * EDC$	[1] p.195
$AOPR_S = PR * SDC$	[1] p.195
EP = EE + ES	[1] p.195
$PSAR = \frac{EP*3600}{TS}$	[1] p.196
PSAM = PSAEOL - PSAR	[1] p.196
$Batt = \frac{EE}{DOD}$	[1] p.196

References

[1] C. Cappelletti, S. Battistini, and B. Malphrus, CubeSat Handbook: From Mission Design to Operations. Academic Press, 2020.