Discrete Mathematics, Spring & Summer 2020 Quiz 2 (100pts)

Name:	Student ID:	
	llowing sequences recursively. Include initial conditions are	ıd
assume that the sequence		
(a) a_n = the number of bi	t strings of length n that contain the string 01.	
(b) a_n = the number of stadjacent vowels.	rings of letters of the ordinary alphabet that do not have	
	a particular solution of the linear nonhomogeneous $4a_{n-1} - 4a_{n-2} + F(n)$ have when $F(n) = (n^2 + 1)2^n$?	
3. (10pts) Find a closed f (a) 0, 1, 0, 0, 1, 0, 0, 1, 0	Form for the generating function for each of these sequences:	:
(b) $a_n = C(10, n+1)$, fo	$r n = 0, 1, 2, \dots$	
•	nerating function for $a_0, a_1, a_2, a_3, \ldots$, describe in terms of $G(x)$ or $a_0, 2a_1, 4a_2, 8a_3, 16a_4, \ldots$	ı
5. (5pts) What is the gen	erating function for $\{a_k\}$, where a_k is the number of solution	ıS

6. (5pts) How many permutations of all 26 letters of the alphabet are there that contain at least one of the words: SWORD, PLANT, CARTS?

of $x_1 + x_2 + x_3 + x_4 = k$ when x_1, x_2, x_3 , and x_4 are integers with $x_1 \ge 3$, $1 \le x_2 \le 5$,

 $0 \leqslant x_3 \leqslant 4$, and $x_4 \geqslant 1$?

- 7. (5pts) How many ways can the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 be arranged so that no even digit is in its original position?
- 8. (8pts) In the questions below determine whether the binary relation is: (1) reflexive, (2) symmetric, (3) antisymmetric, (4) transitive.
- a). The relation R on **Z** where aRb means $a \neq b$.
- b). The relation R on the set $\{(a,b) \mid a,b \in \mathbb{Z}\}$ where (a,b)R(c,d) means $a \leq c$ or $b = \leq d$.
- 9.(4pts) Suppose |A| = 4. Among all binary relations on A
- a) How many anti-symmetric relations?
- b) How many equivalence relations?
- 10. (3pts) In the questions below suppose R and S are relations on $\{a,b,c,d\}$, where $R = \{(a,b),(a,d),(b,c),(c,c),(d,a)\}$ and $S = \{(a,c),(b,d),(d,a)\}$.

Construct $R \circ S$.

- 11. (4pts) In the questions below find the matrix that represents the given relation. Use elements in the order given to determine rows and columns of the matrix.
- a). R^{-1} , where R is the relation on $\{1,2,3,4\}$ such that aRb means $|a-b| \le 1$.

b). \overline{R} , where R is the relation on $\{w,x,y,z\}$ such that $R = \{(w,w),(w,x),(x,w),(x,x),(x,z),(y,y),(z,y),(z,z)\}$.

12 (4pts). Find the transitive closure of R if \mathbf{M}_R is $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

- 13.(12pts, 2pts each) Suppose $A = \{2,3,6,9,10,12,14,18,20\}$ and R is the partial order relation defined on A where xRy means x is a divisor of y.
- (a) Draw the Hasse diagram for R.
- (b) Find all maximal elements.
- (c) Find all minimal elements.
- (d) Find $lub(\{2,9\})$.
- (f) Find $glb(\{14,10\})$.
- (g) Use a topological sort to order the elements of the poset (A, R).

14. (5pts) Let R be a relation that is reflexive and transitive. Prove that $R^n = R$ for all positive integers n.

- 15. (15 pts) Let a_n be the number of character strings of length n that contain odd number of As. Each character is one of the 26 upper-case English letters.
 - (1) Find a recurrence relation for a_n and give the necessary initial condition(s).
 - (2) Find an explicit formula for a_n by solving the recurrence relation in part (a) via its characteristic equation.
 - (3) Find an explicit formula for a_n by solving the recurrence relation in part (a) using generating functions.