DIGITAL SIGNAL PROCESSING Unit - 3 - Analog Filter Design - Lecture Notes

June 28, 2021

Contents

1	Introduction	2
2	Butterworth Filters	4
3	Design of Low-Pass Butterworth Filters	10
4	Analog to analog Transformations	12
5	Design of Band Pass Butterworth Filters	14
6	Chebyshev Filters	17

Figure 1: A typical required frequency response for a low-pass filter design

1 Introduction

- A very important approach to the design of digital filters is to apply a transformation to an existing analog filter.
- For this method of designing a digital filter, it is necessary to have a base or catalog of analog filters that can serve as the prototypes for the transformation.
- These analog procedures normally begin with a specification of the frequency response for the filter describing how the filter reacts in the steady state to sinusoidal inputs.
- If an input sinusoid is not attenuated or attenuated less than a specified tolerance as it goes through the system, it is said to be in a **pass band** of the filter.
- If an input sinusoid is attenuated more than a specified value, it is said to be stopped and within the **stop band** of the filter.
- Input sinusoids with neither a little nor a large amount of attenuation are said to be in the **transition band**.
- A typical frequency response is shown in Figure 1. showing the pass band, transition band, and stop band.
- The filter with this type of frequency response is called a low-pass filter as it passes all frequencies less than a certain value Ω_c , called the **cutoff frequency**.
- Other important basic types of filters are the high-pass(HP),band pass(BP),and Band stop filters,whose frequency responses are shown in Figure.2
- Also shown are the frequency responses for the ideal LP, HP, BP and BS filters which exhibit no transition.
- More complex filters can be obtained by placing four basic types in various **parallel and cascade** configurations.
- It is known that the low-pass, high-pass, band-pass, and band-stop filters can be obtained from a **normalized** low pass filter via specific transformations in the s-plane.
- Therefore, prime consideration will be given to low-pass filter design.
- In particular, the properties and design procedures for the **analog butterworth**, **chebyshev**, **and elliptic low-pass filters** are presented along with the procedures and transformations necessary to transform them into low-pass, high-pass, band-pass and band-stop filters.

Figure 2: Basic types of frequency responses

Figure 3: The magnitude squared frequency response for a Butterworth filter

2 Butterworth Filters

- A linear time invariant analog filter can be characterized by its system function H(s) or its corresponding frequency response $H(j\Omega)$.
- The Butterworth filter of order n is described by the magnitude squared of its frequency response given by

$$|H_n(j\Omega)^2| = \frac{1}{1 + \left(\frac{\Omega}{\Omega_c}\right)^{2n}}\dots(1)$$

- In figure 3,the magnitude squared frequency response of the butterworth filter is shown for different values of n.
- The following properties can be easily determined:
 - 1. $|H_n(j\Omega)^2|_{\Omega=0} = 1$ for all n
 - 2. $|H_n(j\Omega)^2|_{\Omega=\Omega_c}=1/2$ for all finite n.

This implies that $20log|H_n(j\Omega)|_{\Omega=\Omega_c}=-3.0103$

Figure 4: Filter gain plot for analog butterworth filter of various orders

- 3. $|H_n(j\Omega)^2|$ is a monotonically decreasing function of Ω .
- 4. As n gets larger, $|H_n(j\Omega)|^2$ approaches an ideal low-pass frequency response.
- 5. $|H_n(j\Omega)|^2$ is called maximally flat at the origin since all order derivatives exist and are zero.
- It is convenient in many cases to look at the frequency response in decibels, that is, plot $20 \log |H(j\Omega)|$ versus Ω .
- Figure 4 is a straight line approximation of the frequency response in decibels for the butterworth filter.
- The straight lines are determined for $\Omega \ll \Omega_c$ by approximating $20 \log |H_n(j\Omega)|$.
- We have,

$$G_n(\Omega) = 20 \log |H_n(j\Omega)| \dots (2)$$

$$G_n(\Omega) = 10 \log |H_n(j\Omega)|^2 \dots (3)$$

$$G_n(\Omega) = 10 \log \left[\frac{1}{1 + \left(\frac{\Omega}{\Omega_c} \right)^{2n}} \right] \dots (4)$$

$$G_n(\Omega) = 10\log(1) - 10\log\left[1 + \left(\frac{\Omega}{\Omega_c}\right)^{2n}\right]\dots(5)$$

• Since the $\left(\frac{\Omega}{\Omega_c}\right)^{2n}$ is approximately zero for $\Omega << \Omega_c$, we have

$$G_n(\Omega) \approx -10 \log(1+0) = 0 \dots (6)$$

.

• For $\Omega >> \Omega_c$,1 in the summation becomes insignificant compared to $\left(\frac{\Omega}{\Omega_c}\right)^{2n}$ so,

$$G_n(\Omega) = -10 \log \left| \left(\frac{\Omega}{\Omega_c} \right)^{2n} \right| \dots (7)$$

$$G_n(\Omega) = -20n \log \left| \left(\frac{\Omega}{\Omega_c} \right) \right| \dots (8)$$

- Therefore, the appropriate gain for $\Omega \ll \Omega_c$ is 0dB while for $\Omega \gg \Omega_c$, the slope of $G_n(\Omega) = -20ndB/decade$.
- For $\Omega = \Omega_c$, the actual value of $G_n(j\Omega)$ is approximately -3dB, as seen earlier, and the actual values for Ω around Ω_c can be calculated using equation (5) as shown below.

$$G_n(\Omega) = 10\log(1) - 10\log\left[1 + \left(\frac{\Omega}{\Omega_c}\right)^{2n}\right]\dots(5)$$

- In most of the work to follow, the normalized butterworth low pass filter will be considered, which is the case for $\Omega_c = 1 \ rad/sec$.
- It will be shown, once the normalized low-pass filter transfer function has been determined, that the transfer function for any other **butterworth low-pass, high-pass, band-pass or band-stop filter** can be obtained by applying a transformation to the normalized low-pass filter specified by $H_n(s)$.
- Starting with the magnitude squared frequency response, we would like to find the **system function** H(s) that gives the Butterworth magnitude squared response.
- For an analog system, we remember that the frequency response is obtained by setting $s = j\Omega$ in the transfer function H(s) for the given system.
- Therefore, if Ω is replaced by $\frac{s}{i}$, the system function is determined.
- Setting $\Omega_c = 1$ in equation below gives $|H_n(j\Omega)|^2$ for the normalized filter as follows
- We know that

$$|H_n(j\Omega)^2| = \frac{1}{1 + \left(\frac{\Omega}{\Omega_c}\right)^{2n}} \dots (1)$$

• For $\Omega_c = 1$, we get

$$|H_n(j\Omega)^2| = \frac{1}{1 + \Omega^{2n}} \dots (6)$$

$$H_n(j\Omega) * H_n(-j\Omega) = \frac{1}{1 + \Omega^{2n}} \dots (7)$$

$$H_n(s) * H_n(-s) = \frac{1}{1 + \left(\frac{s}{j}\right)^{2n}} \dots (8)$$

• Poles of $H_n(s) * H_n(-s)$ are given by the roots of the denominator.i.e

$$1 + \left(\frac{s}{j}\right)^{2n} = 0\dots(9)$$

$$1 + \left(\frac{s^{2n}}{j^{2n}}\right) = 0\dots(10)$$

$$\left(\frac{s^{2n}}{j^{2n}}\right) = -1\dots(11)$$

$$s^{2n} = -1 * (j)^{2n} \dots (12)$$

$$s^{2n} = -1 * (j^2)^n \dots (13)$$

$$s^{2n} = -1 * (-1)^n \dots (14)$$

$$s^{2n} = (-1)^{n+1} \dots (15)$$

- The roots of the above equation can be identified for the cases when n is odd and when n is even.
- For n odd, the poles of $H_n(s) * H_n(-s)$ become $2n^{th}$ roots of 1, while for n even, the poles are $2n^{th}$ roots of -1.
- for n odd,

$$s_k = 1 \angle (\frac{k\pi}{n}), k = 0, 1, 2, \dots, 2n - 1 \dots (16)$$

• for n even,

$$s_k = 1 \angle (\frac{\pi}{2n} + \frac{k\pi}{n}), k = 0, 1, 2, \dots, 2n - 1 \dots (17)$$

- These poles for n odd and n even are illustrated in figure 5.
- For n odd,we have a pole of $H_n(s)H_n(-s)$ at s=1,and then poles equally spaced on the circle $\frac{\pi}{n}$ in angle,while for n even,the first pole is at $1 \angle (\frac{\pi}{2n})$ and the remaining poles equally spaced around the unit circle by $\frac{\pi}{n}$.
- If we wish the filter $H_n(s)$ to be a stable and causal filter, the poles of $H_n(s)$ are selected to be those in the left half plane and H(s) can be written in the following form

$$H_n(s) = \frac{1}{\prod(s - s_k)} = \frac{1}{B_n(s)} \dots (18)$$

- where s_k are the left half plane poles of $H_n(s) * H_n(-s)$.
- The denominator, $B_n(s)$, can be shown to be a **butterworth polynomial** of order n.

Figure 5: Poles of $H_n(s) * H_n(-s)$ for a low-pass butterworth filter with a 1-radian cut-off frequency for n even and n odd

Order n	Butterworth polynomial $B_n(s)$	
1	s + 1	
2	$s^2 + \sqrt{2s} + 1$	
3	$(s^2 + s + 1)(s + 1)$	
4	$(s^2 + 0.76536s + 1)(s^2 + 1.84776s + 1)$	
5	$(s + 1)(s^2 + 0.6180s + 1)(s^2 + 1.6180s + 1)$	
	Normalized low-pass Butterworth filters	
	$H_n(s) = \frac{1}{B_n(s)}$	

Figure 6: Butterworth polynomials and Normalized butterworth low-pass filters

- Table shown in Figure 6 shows the first five Butterworth polynomials in a real factored form.
- Example 1: Find the transfer function $H_1(s)$ for the normalized Butterworth filter of order 1.
- Solution: Since n = 1, we have that the poles of $H_1(s) * H_1(-s)$ are given by

$$s_k = 1 \angle (\frac{\pi k}{n}) \dots (1)$$

Here k=0,1

$$s_0 = 1 \angle (0) \dots (2)$$

$$s_1 = 1 \angle (\pi) = -1 \dots (3)$$

Therefore,

$$s_0 = 1, s_1 = -1 \dots (4)$$

Taking left half plane pole $s_1, H_1(s)$ can be written as

$$H_1(s) = \frac{1}{s+1} \dots (5)$$

- Example 2: Find the transfer function $H_2(s)$ for the normalized butterworth filter of order 2.
- Solution: Since n = 2, we have poles of $H_2(s) * H_2(-s)$ given by

$$s_k = 1 \angle \left(\frac{\pi}{2n} + \frac{k\pi}{n}\right) \dots (1)$$

Since n = 2, we have

$$s_k = 1 \angle \left(\frac{\pi}{4} + \frac{k\pi}{2}\right) \dots (2)$$

We know that

$$k = 0, 1, 2, \dots, 2n - 1 \dots (3)$$

Therefore

$$k = 0, 1, 2, 3 \dots (4)$$

For k=0,

$$s_0 = \frac{\pi}{4}$$

For k=1,

$$s_0 = \frac{3\pi}{4}$$

Figure 7: Pole Diagram for example 2

For k=2,
$$s_0 = \frac{5\pi}{4}$$
 For k=3,
$$s_0 = \frac{7\pi}{4}$$

- These poles are shown in Figure 7.
- Considering only left half of s-plane poles, s_1 and s_2 ,

$$S_{1} = 1 \angle (\frac{3\pi}{4}) \dots (5)$$

$$S_{2} = 1 \angle (\frac{5\pi}{4}) \dots (6)$$

$$S_{1} = \cos(\frac{3\pi}{4}) + \sin(\frac{3\pi}{4}) \dots (7)$$

$$S_{1} = -0.707 + j0.707 \dots (8)$$

$$S_{2} = \cos(\frac{5\pi}{4}) + \sin(\frac{5\pi}{4}) \dots (9)$$

$$S_{2} = -0.707 - j0.707 \dots (10)$$

$$H_{2}(s) = \frac{1}{(s - s_{2})(s - s_{1})} \dots (11)$$

$$(s-s_2)(s-s_1)$$

• Subtituting for s_1 and s_2 and simplifying, we get

$$H_2(s) = \frac{1}{s^2 + \sqrt{2}s + 1} \dots (12)$$

3 Design of Low-Pass Butterworth Filters

- The filter requirements are normally given in terms of a set of critical frequencies, say Ω_1, Ω_2 and gains K_1 and K_2 .
- A common set of conditions for the low-pass response given in Figure 8 are

$$0 \ge 20 \log |H(j\Omega)| \ge K_1 \text{ for all } \Omega \le \Omega_1 \dots (1)$$

$$20 \log |H(j\Omega)| \leq K_2 \text{ for all } \Omega \geq \Omega_2 \dots (2)$$

- The Butterworth LP frequency response is characterized by only two parameters,n,the order of the filter, and Ω_c , the cut-off frequency.
- The Butterworth filter of order n is described by the magnitude squared frequency response given by

$$|H_n(j\Omega)|^2 = \frac{1}{1 + \left(\frac{\Omega}{\Omega_c}\right)^{2n}} \dots (3)$$

• If we replace $H(j\Omega)$ in equations (1) and (2) by equation (3) and consider that the equalities hold,n and Ω_c must satisfy the following.

$$10\log_{10}\frac{1}{1+\left(\frac{\Omega_1}{\Omega_c}\right)^{2n}}=k_1\dots(4)$$

$$10\log_{10}\frac{1}{1+\left(\frac{\Omega_2}{\Omega_c}\right)^{2n}}=k_2\dots(5)$$

• From equation (4), we have

$$\log_{10} \frac{1}{1 + \left(\frac{\Omega_1}{\Omega_c}\right)^{2n}} = \frac{k_1}{10} \dots (6)$$

$$-\log_{10}\left\{1 + \left(\frac{\Omega_1}{\Omega_c}\right)^{2n}\right\} = \frac{k_1}{10}\dots(7)$$

$$\{1 + \left(\frac{\Omega_1}{\Omega_c}\right)^{2n}\} = 10^{\frac{-k_1}{10}} \dots (8)$$

$$\left(\frac{\Omega_1}{\Omega_c}\right)^{2n} = 10^{-\frac{k_1}{10}} - 1\dots(9)$$

• Similarly

$$\left(\frac{\Omega_2}{\Omega_c}\right)^{2n} = 10^{-\frac{k_2}{10}} - 1\dots(10)$$

• Dividing to cancel Ω_c , we have the following implicit equation relating $\Omega_1, \Omega_2, k_1, k_2$.

$$\left(\frac{\Omega_1}{\Omega_2}\right)^{2n} = \frac{10^{-\frac{k_1}{10}} - 1}{10^{-\frac{k_2}{10}} - 1} \dots (11)$$

• Taking log on both sides

$$\log_{10} \left(\frac{\Omega_1}{\Omega_2}\right)^{2n} = \log_{10} \frac{10^{-\frac{k_1}{10}} - 1}{10^{-\frac{k_2}{10}} - 1} \dots (12)$$

$$2n\log_{10}\left(\frac{\Omega_1}{\Omega_2}\right) = \log_{10}\frac{10^{-\frac{k_1}{10}} - 1}{10^{-\frac{k_2}{10}} - 1}\dots(13)$$

$$n = \frac{\log_{10} \frac{10^{-\frac{k_1}{10}} - 1}{10^{-\frac{k_2}{10}} - 1}}{2\log_{10} \left(\frac{\Omega_1}{\Omega_2}\right)} \dots (14)$$

- Using this value of n results in two different selections for Ω_c as seen from equations (9) and (10).
- If we wish to satisfy our requirement at Ω_1 exactly and do better than our requirement at Ω_2 , we use

$$\Omega_c = \frac{\Omega_1}{\left(10^{\frac{-k_1}{10}} - 1\right)^{1/2n}} \dots (15)$$

• While, if we wish to satisfy our requirement at Ω_2 and exceed our requirement at Ω_1 ,we use

$$\Omega_c = \frac{\Omega_2}{\left(10^{\frac{-k_2}{10}} - 1\right)^{1/2n}} \dots (16)$$

• Choosing a value of Ω_c in between these gives an $H(j\Omega)$ that exceeds these requirements.

4 Analog to analog Transformations

:

- We have placed emphasis on the one radian low-pass butterworth filters with the stipulation that other non-normalized Butterworth filters could be derived by transformational methods.
- The transformational method, however is not limited in its application to butterworth filters or normalized filters.
- In the following discussion, a normalized low-pass filter will be used as the prototype filter for the purpose of illustration.
- If we replace S of H(s), the system function for a normalized low-pass filter by $\frac{s}{\Omega_u}$, we get a new transfer function H'(s), given by

$$H'(s) = H(s)|_{s \to \frac{s}{\Omega_u}} = H(\frac{s}{\Omega_u}) \dots (1)$$

• If we evaluate the magnitude of the transfer function H'(s) at $s=j\Omega$ to get the frequency response, we have

$$|H'(j\Omega)| = |H\left(\frac{j\Omega}{\Omega_u}\right)|\dots(2)$$

• At the value of $\Omega = \Omega_u$, we have

$$H'(j\Omega_u) = H\left(\frac{j\Omega_u}{\Omega_u}\right) = H(j.1)\dots(3)$$

- That is the frequency response for the new transfer function evaluated at $\Omega = \Omega_u$ is equal to the value of the normalized filter transfer function at $\Omega = 1$.
- In a sense, we have moved the cut-off frequency from 1 rad/sec to Ω_u rad/sec and thus have a scaling of the frequency axis.
- Similar transformations can be defined for taking low-pass filter transfer functions to high-pass, band-pass and band-stop transfer functions.
- Table shown in figure gives these transformations along with design equations for both forward and backward equations.
- If the transformation $s \to \frac{s}{\Omega_u}$ is applied to the low-pass structure as shown in the table;
- The critical frequency Ω_r will be transformed in to Ω'_r , which is Ω_r times Ω_u as seen under the design equation column.
- In a similar fashion, if Ω'_r is the desired critical frequency of the transformed filter, the backward equation gives the value of Ω_r that must be used such that going through the transformation $s \to \frac{s}{\Omega_u}$ results in the required Ω'_r .
- We have Ω_r equals $\frac{\Omega'_r}{\Omega_u}$.
- Example on Analog Butterworth Low Pass Filter :Design an analog butterworth filter that has a -2dB or better cut-off frequency of 20 rad/sec and at least 10 dB of attenuation at 30 rad/sec.
- \bullet ${\bf Solution}.$ The critical requirements are

$$\Omega_1 = 20rad/sec, K_1 = -2, \Omega_1 = 30rad/sec, K_1 = -10$$

• The order n of the butterworth filter is given by

$$n = \frac{\log_{10} \left[\frac{10^{\frac{-K_1}{10}} - 1}{2 \log_{10} \frac{\Omega_1}{\Omega_2}} \right]}{2 \log_{10} \frac{\Omega_1}{\Omega_2}} \dots (1)$$

$$n = \frac{\log_{10} \left[\frac{10^{\frac{2}{10}} - 1}{10^{\frac{10}{10}} - 1} \right]}{2 \log_{10} \frac{20}{30}} \dots (2)$$

$$n \approx 4 \dots (3)$$

$$\Omega_c = \frac{\Omega_1}{\left(10^{\frac{-K_1}{10}} - 1\right)^{\frac{1}{2n}}} \dots (3)$$

$$\Omega_c = \frac{20}{(10^{0.2} - 1)^{\frac{1}{8}}} \dots (4)$$

$$\Omega_c = 21.3868 \ rad/sec...(5)$$

• The normalized low-pass Butterworth filter for n=4 can be found from table as

$$H_4(s) = \frac{1}{(s^2 + 0.7653s + 1)(s^2 + 1.84776s + 1)} \dots (6)$$

• Applying a low-pass to low-pass transformation $s \to \frac{s}{\Omega_c}$, with $\Omega_c = 21.3868$ gives the desired transfer function as follows

$$H(s) = \frac{1}{A * B} \dots (7)$$

$$A = \frac{1}{\left[\left(\frac{s}{21.3868}\right)^2 + 0.76536\left(\frac{s}{21.3868}\right) + 1\right]} \dots (8)$$

$$B = \frac{1}{\left[\left(\frac{s}{21.3868}\right)^2 + 1.84776\left(\frac{s}{21.3868}\right) + 1\right]} \dots (9)$$

$$H(s) = \frac{0.2092 * 10^6}{A * B} \dots (10)$$

$$A = \frac{1}{s^2 + 16.3686s + 457.394} \dots (11)$$

$$B = \frac{1}{s^2 + 39.5176s + 457.394} \dots (12)$$

5 Design of Band Pass Butterworth Filters

- The Design of a band pass butterworth filter is also based on applying a transformation to a low-pass normalized butterworth filter of the proper order.
- The typical requirements are shown in Figure 8.

$$0 \le 20 \log |H(j\Omega)| \le K_2 \text{ for } \Omega \le \Omega_1 \dots (1)$$

$$0 \le 20 \log |H(j\Omega)| \le K_1 \text{ for } \Omega_l \le \Omega \le \Omega_u \dots (1)$$

$$20 \log |H(j\Omega)| \le K_2 \text{ for } \Omega \ge \Omega_2 \dots (1)$$

• If $H_{LP}(s)$ represents a unit bandwidth low-pass filter with critical radian frequency Ω_r , then from table for analog-to-analog transformation, a band-pass filter with transfer function $H_{BP}(s)$ is given by

$$H_{BP}(s) = H_{LP}(s)|_{s \to \frac{s^2 + (\Omega_l * \Omega_u)}{s(\Omega_u - \Omega_l)}} \dots (2)$$

• For the band-pass filter to satisfy the k_2 requirement at Ω_1 , we must have the equality within the transformation, that is

$$j\Omega_r = \frac{[(j\Omega_1)^2 + (\Omega_l * \Omega_u)]}{(j\Omega_1)(\Omega_u - \Omega_l)} \dots (3)$$

• Solving the above equation for Ω_r and a similar equation to satisfy the K_2 requirement at Ω_2 gives,

$$\Omega_r = \frac{[(\Omega_1)^2 + (\Omega_l * \Omega_u)]}{(\Omega_1)(\Omega_u - \Omega_l)} \dots (4)$$

$$\Omega_r = \frac{[(\Omega_2)^2 + (\Omega_l * \Omega_u)]}{(\Omega_2)(\Omega_u - \Omega_l)} \dots (5)$$

- Depending of the size of Ω_1 and Ω_2 with respect to the product $\Omega_l * \Omega_u$, the $\Omega' s$ above could correspond to either positive and negative frequency values.
- Also,in most cases the Ω_r resulting from these equations will not be equal and we must choose the most restrictive value, thus giving a filter that exceeds our less restrictive requirement.
- Therefore, the selection of Ω_r becomes that given in the backward design equations for low-pass to band-pass transformation table shown previously.

$$\Omega_r = min\{|A|, |B|\} \dots (6)$$

$$A = \frac{-(\Omega_1)^2 + \Omega_l * \Omega_u}{\Omega_1(\Omega_u - \Omega_l)} \dots (7)$$

$$B = \frac{(\Omega_2)^2 + \Omega_l * \Omega_u}{\Omega_2(\Omega_u - \Omega_l)} \dots (8)$$

- The procedure for the design of a band-pass filter, $H_{BP}(s)$, to satisfy the given set of specifications is composed of two steps:
 - 1. Design a low pass filter $H_{LP}(s)$ with the value of Ω_r
 - 2. Apply a low-pass to band-pass transformation using the desired $\Omega_l \& \Omega_u$.

Example on Design of Band-Pass Butterworth Filters

- Design an analog band-pass filter with the following characteristics
 - 1. a -3.0103 dB attenuation at upper and lower cut-off frequency of 20KHz and 50Hz respectively.
 - 2. A **Stop-band attenuation** of atleast 20dB at 20Hz and 45KHz.
 - 3. A **monotonic** frequency response.

Solution: The monotonic requirement can be satisfied with a butterworth filter.

• From the specifications, we can identify the following critical frequencies

1.
$$\Omega_1 = 20 * 2\pi = 125.663 \ rad/sec$$

2.
$$\Omega_2 = (45k) * 2\pi = 2.82 * 10^5 \ rad/sec$$

3.
$$\Omega_u = (20k) * 2\pi = 1.25663 * 10^5 \ rad/sec$$

4.
$$\Omega_l = (50) * 2\pi = 314.159 \ rad/sec$$

• Low-Pass prototype must satisfy

$$0 \ge 20 \log |H_{LP}(j.1)| \ge -3.0103 dB$$

$$20 \log |H_{LP}(j.\Omega_r)| \le -20 dB$$

• We know that A is given by

$$A = \frac{-(\Omega_1)^2 + \Omega_l * \Omega_u}{\Omega_1(\Omega_u - \Omega_l)} \dots (7)$$

• Substituting all values, we get

$$A = 2.505$$

• Similarly,

$$B = \frac{(\Omega_2)^2 + \Omega_l * \Omega_u}{\Omega_2(\Omega_u - \Omega_l)} \dots (8)$$

• Substituting all values, we get

$$B = 2.25$$

• The most critical value, Ω_r is the minimum of two values, which is

$$\Omega_r = 2.25$$

• The low-pass butterworth filter has an order n given by the following equation

$$n = \frac{\log_{10} \left[\frac{10^{\frac{-K_1}{10}} - 1}{\frac{-K_2}{10^{\frac{-K_2}{10}} - 1} \right]}}{2\log_{10} \frac{\Omega_1}{\Omega_2}} \dots (1)$$

- For a normalized butterworth low pass filter, $\Omega_1 = 1 rad/sec$ and $\Omega_r = 2.25 rad/sec$.
- Substituting these values in the expression for n,we have

$$n = \frac{\log_{10} \left[\frac{10^{0.30103} - 1}{10^2 - 1} \right]}{2 \log_{10} \frac{1}{2.25}} \dots (2)$$

$$n = 2.81...(3)$$

• Equating to the next highest integer, we have

$$n=3\dots(4)$$

• The Normalized butterworth filter of order n=3 has a transfer function given by

$$H_{LP}(s) = \frac{1}{s^3 + 2s^2 + 2s + 1} \dots (5)$$

• The required analog-to-analog transformation is determined from Ω_l and Ω_u as

$$s \to \frac{s^2 + (\Omega_l * \Omega_u)}{s(\Omega_u - \Omega_l)}$$

• Substituting all values, we get

$$s \to \frac{s^2 + 3.95 * 10^7}{s(1.25 * 10^5)}$$

$$H_{BP}(s) = \frac{1}{s^3 + 2s^2 + 2s + 1} \bigg|_{s \to \frac{s^2 + 3.95 \times 10^7}{s(1.25 \times 10^5)}}$$

• This is the transfer function of the desired band-pass butterworth filter

6 Chebyshev Filters

- There are two types of Chebyshev filters, one containing a ripple in the pass band(Type-I) and the other containing a ripple in the stop band(Type-II).
- A Type-I low pass normalized (unit bandwidth) Chebyshev filter with a ripple in the pass band is characterized by the following magnitude squared frequency response.

$$|H_n(j\Omega)|^2 = \frac{1}{1 + \epsilon^2 T_n^2(\Omega)} \dots (1)$$

• Where $T_n(\Omega)$ is the nth-order Chebyshev polynomial. The Chebyshev polynomial can be generated and thus defined from the following recursive formula

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x), n > 2...(2)$$

- With $T_0(x) = 1$ and $T_1(x) = x$
- A list of ten chebyshev polynomials is given in table below for reference in Figure.9.
- It can easily be seen from the list of chebyshev polynomials that $T_n(x)$ at x=0 is 1 when n even and zero when n odd, resulting in $|H_n(j\Omega)|^2$ to be $\frac{1}{1+\epsilon^2}$ at $\Omega=0$ for n even and $|H_n(j\Omega)|^2$ to be 1 at $\Omega=0$ for n odd.
- The two general shapes of magnitude squared frequency response of the type I chebyshev filter for n even and n odd are shown in Figure.10.
- The magnitude squared frequency response oscillates between 1 and $\frac{1}{1+\epsilon^2}$ within the pass band, the so called equiripple.
- The magnitude squared frequency response has a value of $\frac{1}{1+\epsilon^2}$ at $\Omega=1$, the so called cut-off frequency.
- The magnitude squared frequency response $|H_n(j\Omega)|^2$ is monotonic outside the pass band,including both the transition band and the stop band.
- The Stop band begins at Ω_r with magnitude squared frequency response at value $\frac{1}{A^2}$.

• To obtain the causal stable transfer function $H_n(s)$ that corresponds to the Chebyshev magnitude squared function given in equation(1) below, we must find the poles of $H_n(s) * H_n(-s)$ and select the left-half plane poles for $H_n(s)$.

$$|H_n(j\Omega)|^2 = \frac{1}{1 + \epsilon^2 T_n^2(\Omega)} \dots (1)$$

• The poles of $H_n(s) * H_n(-s)$ are obtained by finding the roots of the following equation

$$1 + \epsilon^2 T_n^2(\frac{s}{i}) \dots (3)$$

- It can be shown that the roots of equation(3), that is, the poles of $H_n(s) * H_n(-s)$ fall on the ellipse as shown in Figure.11.
- If $s_k = \sigma_k + j\Omega_k$ represents a pole, then σ_k and Ω_k were shown to satisfy

$$\frac{\sigma_k^2}{a^2} + \frac{\Omega_k^2}{b^2} = 1\dots(4)$$

• where a,b, σ_k ,and Ω_k are given by

$$a = \frac{1}{2} \left\{ \frac{1 + (1 + \epsilon^2)^{1/2}}{\epsilon} \right\}^{1/n} - \frac{1}{2} \left\{ \frac{1 + (1 + \epsilon^2)^{1/2}}{\epsilon} \right\}^{-1/n} \dots (5)$$

$$b = \frac{1}{2} \left\{ \frac{1 + (1 + \epsilon^2)^{1/2}}{\epsilon} \right\}^{1/n} + \frac{1}{2} \left\{ \frac{1 + (1 + \epsilon^2)^{1/2}}{\epsilon} \right\}^{-1/n} \dots (6)$$