CS3100 Final Note Sheet

Notation

 L^R The reversal of language L.

 L^* The Kleene-Star of L.

AB The concatenation of language A and B.

h(L) A homomorphism (a function that maps every input to a unique output) of L.

 $A \setminus B$ Set difference of A and B. A-B is the same thing.

 $f: x_1, x_2, \ldots, x_n \to y_1, y_2, \ldots, y_n$ denotes a function f that when given x_1, \ldots, x_n as inputs yields y_1, \ldots, y_n as outputs.

Chomsky Hierarchy

Regular Languages

A regular language is any language that can be recognized with a DFA. Formally a DFA is a tuple $(Q, \Sigma, \delta, q_0, F)$. Where:

Q A finite, non-empty set of states.

 Σ A finite, non-empty alphabet.

δ A function $(δ: Q \times Σ \rightarrow Q)$ that maps a state, and an input in Σ to a new state.

 q_0 A state in Q that DFA starts execution from.

 $F\subseteq Q$ A finite, possibly empty, set of accepting states.

Closures

Where R is a regular language, L is 'not regular', and ? is Unknown.

Closed:		Unclosed:
$\overline{R} \to R$	$h(R) \rightarrow R$	$R \cap L \rightarrow ?$
$R^* \rightarrow R$	$R \cup R \rightarrow R$	$R \cup L \rightarrow ?$
$R^R \rightarrow R$	$R \cap R \rightarrow R$	$L \cup L \rightarrow ?$
$RR \rightarrow R$	$R \setminus R \to R$	

Pumping Lemma

$$\exists N \in \mathbb{N} :$$

$$\forall w \in L : |w| \ge N \Rightarrow$$

$$\exists xyz \in \Sigma^* : \quad w = xyz$$

$$\land |xy| \le N$$

$$\land y \ne \varepsilon$$

$$\land \forall i \ge 0 : xy^iz \in L$$

Context Free Languages

Closures

Where C is a context-free language, R is a regular language, and ? is an Unknown language.

Closed:		Unclosed:
$C^R \rightarrow C$	$C \cup C \rightarrow C$	$\overline{C} \rightarrow ?$
$C^* \rightarrow C$	$C \cap R \rightarrow C$	$C \cap C \rightarrow ?$
$CC \rightarrow C$	$C \cup R \rightarrow R$	$C \setminus C \rightarrow ?$
$h(C) \rightarrow C$		

Pumping Lemma

$$\exists N \in \mathbb{N} :$$

$$\forall w \in L : |w| \ge N \Rightarrow$$

$$\exists uvxyz \in \Sigma^* : \quad w = uvxyz$$

$$\land |vy| > 0$$

$$\land |vxy| \le N$$

$$\land \forall i \ge 0 : uv^i xy^i z \in L$$

Ambiguous Context Free Languages

These are languages that have two separate parse-trees. To prove that a language is ambiguous, show that it actually has two separate parse-trees.

Example ambiguous grammar:

$$E \,
ightarrow \, E + E \mid E * E \mid {
m NUMBER}$$

Consistency and Completeness

Consistency: All strings generated by a grammar are in the language.

Completeness: The grammar generates all strings in the language.

You cannot know that a grammar defines a language until you show both. For example, if we want to define the language $\{a^nb^n|n\in\mathbb{N}\}$, the grammar:

$$S \rightarrow aabb$$

Is consistent because it only generates strings in the language, but not complete because it doesn't generate all strings in the language. Likewise, the grammar:

$$S \rightarrow aS \mid bS \mid \varepsilon \quad (grammar for \{a, b\}^*)$$

Is complete, it generates all possible strings in the language, but not consistent because it generates many strings that are, in-fact, outside of the language.

Cardinality

Schröder-Bernstein Theorem

The Schröder-Bernstein theorem states that, for any two sets A and B if there exists an *injective* function from $A \to B$, and there exits an injective function from $B \to A$, then |A| = |B|. Note that the injective function doesn't require every item of A to map to every item of B, only that every item of A maps to A item of A (and vice versa).

Turing Machines

Terminology and Notation

 $\begin{array}{ccc} \langle M \rangle & \text{String representation of Turing machine } M. \\ \text{halting} & \text{When a machine stops execution.} \\ \text{acceptance} & \text{When a machine halts in a final state.} \\ \text{when a machine halts and is not in a final state.} \\ \end{array}$

Decidability

Halting Problem

The halting problem states building a Turing machine P that can detect whether any other Turing machine will halt is impossible. The proof is as follows:

Assume that we have a Turing machine P, that when given a Turing machine M and string w as input $(\langle M, w \rangle)$, P will (in a finite computation time) accept in the case that M halts on input w, or reject in the case that M loops on input w. We can then define a new Turing machine Q that takes a single Turing machine M

as input. Q will then ask P whether machine M halts when given itself as input (does $P(\langle M,M\rangle)$ halt?). If P accepts (says that M halts) the Q will loop. If P rejects (says M will loop) then Q halts. Now, we can supply Q as input to machine Q. Q will then run $P(\langle Q,Q\rangle)$. If P accepts, then Q will begin to loop, but P said that Q would halt. This is a contraction, a general P decider for the halting problem cannot exist.

Mapping Reduction

A mapping reduction between $A\subseteq \Sigma^*$ and $B\subseteq \Sigma^*$ is a function $f:\Sigma^*\to \Sigma^*$ if $\forall x\in \Sigma^*, x\in A\Leftrightarrow f(x)\in B$. More plainly, a function f such that I can pick any x in A, and f(x) will also be in B. The "mapping reduction from A to B" is typically denoted as $A\leq_m B$. A mapping reduction in polynomial time is denoted $A\leq_p B$. The general steps for a mapping reduction $A\leq_m B$ are as follows:

- 1. A is designated the "known undecidable" language.
- 2. B is designated the "unknown" language.
- 3. Create a function f that maps all elements of A into B.

To form f you usually assume the decider for B (D_B), then you construct a machine M that uses to decider D_B to become a decider for A (D_A). For example, we can map A_{TM} onto $Halt_{TM}$ using the following method:

Assume that a decider R for A_{TM} exists. We will now construct a decider S for $Halt_{TM}$ from R. S has two inputs a machine M and an input string w. First, S will run decider R on $\langle M, w, if R$ accepts, then S accepts. If R rejects, then S accepts. We now have a decider for $Halt_{TM}$ which is undecidable, a decider for A_{TM} cannot exist.

Rice's Theorem

"Every non-trivial partitioning of the space of Turing machine codes based on the languages recognized by these Turing machines is undecidable."

More formally, given a property \mathcal{P} , where \mathcal{P} is non-trivial (not \emptyset or Σ^*) the language below is undecidable.

 $\langle M \rangle \mid M$ is a Turing machine and $\mathcal{P}(Lang(M))$

NP-Completeness

Problem Classes

- **P:** The set of problems that can be solved in polynomial time. Contained in NP.
- **NP:** The set of problems that can be solved in non-deterministic polynomial time.
- **NP-hard:** The set of problems that can be polynomial time reduced to every other problem in NP.
- **NP-complete:** The set of problems that are in both NP, and NP-hard.

Proving NP-Completeness

There are two steps to proving that a languages is in NP-complete. First you have to show that it is NP, and then you have to show that it is in NP-hard.

Verifiers

One way to show that a problem is in NP is by using a verifier. A verifier is a Turing machine V_L such that for all $w \in \Sigma^*$, their exists some c such that $w \in L$ when $V_L(w,c)$ accepts. Intuitively this can be understood as "There is a machine that can check the answers to problems quickly".

NP-hard Reduction