Universidad de Granada Escuela Internacional de Posgrado Máster en Estadística Aplicada

Materia: Técnicas en Análisis de Supervivencia.

Alumno: Francisco Javier Márquez Rosales

Tema 2: Modelos aleatorios de tiempos de vida:

Ejercicios:

Tema 2. Modelos aleatorios de tiempos de vida

Sea T una v.a. con función de riesgo dada por

$$r(t) = (a + bt)^c e^{dt}$$

donde a,b,c, y d son parámetros que determinan la forma de la función de riesgo. Completa la siguiente tabla teniendo en cuenta los valores particulares asignados a los parámetros a,b,c y d.

					Función de riesgo, r(t)	Propiedades de envejecimiento
Modelo	a	ь	С	d	(1)	(2)
1	1	0	0	0		
2	0	$\sqrt{3}$	2	0		
3	0	4	-1/2	0		
4	1	0	0	1		
5	2	1	-1	0		
6	1	0	0	-1		
7	0	1	-2	0		
8	4	-1	2	0		
9	4	-1	3	0		

Para cada modelo 1 a 9

- (1) Escribir la expresión resultante de la función r(t) para cada modelo
- (2) Analizar las propiedades de envejecimiento del cada modelo según las propiedades algebraicas de la función r para cada modelo. Indicar si es posible la familia de distribuciones (Weibull, Exponencial, etc) a la que pertenece el modelo.

Indicación: Todos los casos no corresponden con funciones admisibles como función de riesgo de una variable aleatoria.

(1) Escribir la expresión resultante de la función $\mathbf{r}(\mathbf{t})$ para cada modelo

					Función de riesgo, r(t)	Propiedades de envejecimiento
Modelo	a	ь	С	d	(1)	(2)
1	1	0	0	0	1	
2	0	$\sqrt{3}$	2	0	0	
3	0	4	-1/2	0	0.2886	
4	1	0	0	1	54.5981	
5	2	1	-1	0	0.1425	
6	1	0	0	-1	0.0024	
7	0	1	-2	0	0.0204	
8	4	-1	2	0	16	
9	4	-1	3	0	-125	

El modelo 9 no satisface la definición de función de riesgo ya que debe cumplirse que h(t)>0 cuando t>=0.