

SAR Test Report

Product Name: AirPcap Nx

Model No. : APC-NX

FCC ID : VHL-AIRPCAP-NX

Applicant: CACE Technologies, Inc.

Address: 1949 5th Street, Suite 103, Davis, CA 95616 USA

Date of Receipt: Oct. 22, 2010

Date of Test : Nov. 10, 2010

Issued Date : Nov. 11, 2010

Report No. : 109S022R-HP-US-P03V01

Report Version: V1.1

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: Nov. 11, 2010

Report No: 109S022R-HP-US-P03V01

QuieTek

Product Name AirPcap Nx

Applicant CACE Technologies, Inc.

1949 5th Street, Suite 103, Davis, CA 95616 USA Address

Manufacturer CACE Technologies, Inc.

Address 1949 5th Street, Suite 103, Davis, CA 95616 USA

FCC ID **VHL-AIRPCAP-NX**

Model No. APC-NX

Trade Name **CACE Technologies**

EUT Voltage DC 5V

FCC OET65 Supplement C June 2001 Applicable Standard

IEEE Std. 1528-2003,

47CFR § 2.1093

Test Result Max. SAR Measurement (1g)

802.11n(20MHz)(2.4GHz): 1.159 W/kg

802.11n(40MHz)(5GHz): 1.092 W/kg

Performed Location Suzhou EMC Laboratory

No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech

Development Zone., Suzhou, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

FCC Registration Number: 800392

Documented By

(Engineering ADM: Alice Ni)

Tested By

Marlinchen

(Engineering Supervisor: Marlin Chen)

Approved By

(Engineering Manager: Dream Cao)

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited by the following accreditation Bodies in compliance with ISO 17025, EN 45001 and Guide 25:

Taiwan R.O.C. : BSMI, NCC, TAF

Germany : TUV Rheinland

Norway : Nemko, DNV

USA : FCC, NVLAP

Japan : VCCI

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site: http://tw.quietek.com/modules/myalbum/

The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: http://www.quietek.com/

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C. TEL:+886-3-592-8859 E-Mail: service@guietek.com

LinKou Testing Laboratory:

No. 5-22, Ruei-Shu Valley, Ruei-Ping Tsuen, Lin-Kou Shiang, Taipei, Taiwan, R.O.C. TEL: 886-2-8601-3788 / FAX: 886-2-8601-3789 E-Mail: service@quietek.com

Suzhou (China) Testing Laboratory:

TABLE OF CONTENTS

Description	Page
1. General Information	5
1.1. EUT Description	5 6
2. SAR Measurement System	7
2.1. DASY5 System Description 2.1.1. Applications 2.1.2. Area Scans 2.1.3. Zoom Scan (Cube Scan Averaging) 2.1.4. Uncertainty of Inter-/Extrapolation and Averaging 2.2. DASY5 E-Field Probe 2.2.1. Isotropic E-Field Probe Specification 2.3. Boundary Detection Unit and Probe Mounting Device 2.4. DATA Acquisition Electronics (DAE) and Measurement Server 2.5. Robot 2.6. Light Beam Unit	
2.8. SAM Twin Phantom	
3. Tissue Simulating Liquid	
 3.1. The composition of the tissue simulating liquid	13
4. SAR Measurement Procedure	16
4.1. SAR System Validation	16
5. SAR Exposure Limits	19
6. Test Equipment List	20
7. Measurement Uncertainty	21
8. Conducted Power Measurement	22
9. Test Procedures	22
9.1. Test position and configuration	22 22
Appendix A. SAR System Validation Data	22
Appendix B. SAR measurement Data	22
Appendix C. Test Setup Photographs & EUT Photographs錯誤! 尚未	定義書籤。
Appendix D. Probe Calibration Data	22
Appendix E. Dipole Calibration Data	22

1. General Information

1.1. EUT Description

Product Name	AirPcap Nx
FCC ID	VHL-AIRPCAP-NX
Trade Name	CACE Technologies
Model No.	APC-NX
Frequency Range	For 2.4GHz Band
	802.11b/g/n(20MHz): 2412 - 2462 MHz
	802.11n(40MHz): 2422 - 2452 MHz
	For 5.0GHz Band
	802.11a/n(20MHz): 5180 - 5320 MHz, 5500 - 5700 MHz,
	5745 - 5825MHz
	802.11n(40MHz): 5190 - 5310 MHz, 5510 - 5670 MHz,
	5755 - 5795 MHz
Channel Number	For 2.4GHz Band
	802.11b/g/n(20MHz): 11
	802.11n(40MHz): 7
	For 5.0GHz Band
	802.11a/n(20MHz): 24
	802.11n(40MHz): 11
Type of Modulation	802.11b: DSSS
	802.11a/g/n: OFDM
Data Rate	802.11a/g: 6/9/12/18/24/36/48/54 Mbps
	802.11b: 1/2/5.5/11 Mbps
	802.11n: up to 300 Mbps
Device Category	Mobile
RF Exposure Environment	Uncontrolled
Antenna Type	PCB (Internal)
Peak Antenna Gain	0 dBi for 2.4GHz band
	0 dBi for 5GHz band
Max. Output Power	802.11b: 22.37dBm
(Conducted)	802.11g: 25.83dBm
	802.11a: 23.42dBm
	802.11n(20MHz): 26.63dBm
	802.11n(40MHz): 26.18dBm

1.2. Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21.3± 2
Humidity (%RH)	30-70	52

2. SAR Measurement System

2.1. DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x, y, z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$

$$f_2(x, y, z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$

$$f_3(x, y, z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

2.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

2.2.1. Isotropic E-Field Probe Specification

Model	EX3DV4	
Construction	Symmetrical design with triangular core Built-in st charges PEEK enclosure material (resistant to o DGBE)	
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)	
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	/
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)	
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	
Application	High precision dosimetric measurements in any (e.g., very strong gradient fields). Only procompliance testing for frequencies up to 6 GHz w 30%.	bbe which enables

2.3. Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.

2.4. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

2.5. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

2.6. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

2.7. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.8. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- > Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

INGREDIENT	2450MHz	2450MHz	5200MHz	5800MHz
(% Weight)	Head	Body	Body	Body
Water	46.7	73.2	76	75.68
Salt	0.00	0.04	0.00	0.43
Sugar	0.00	0.00	0.00	0.00
HEC	0.00	0.00	0.00	0.00
Preventol	0.00	0.00	0.00	0.00
DGBE	53.3	26.7	4.44	4.42
Triton X-100	0.00	0.00	19.56	19.47

3.2. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

Body Tissue Simulant Measurement				
Frequency	Description	Dielectric P	arameters	Tissue Temp.
[MHz]	Description	ε _r	σ [s/m]	[°C]
	Reference result	52.7	1.95	N/A
2450MHz	± 5% window	50.07 to 55.34	1.85 to 2.05	IN/A
	23-Oct-10	51.76	2.00	20.1
2412 MHz	Low channel	51.90	1.95	20.1
2437 MHz	Mid channel	51.80	1.98	20.1
2462 MHz	High channel	51.70	2.02	20.1

Body Tissue Simulant Measurement				
Frequency	Description	Dielectric Parameters		Tissue Temp.
[MHz]	Description	٤ _٢	σ [s/m]	[°C]
	Reference result	49.0	5.30	N/A
5200MHz	± 5% window	46.55 to 51.45	5.04 to 5.57	IN/A
	23-Oct-10	48.65	5.31	20.1
5180 MHz	Low channel	48.71	5.28	20.1
5240 MHz	Mid channel	48.55	5.39	20.1
5320 MHz	High channel	48.33	5.50	20.1

Page: 13 of 116

Body Tissue Simulant Measurement				
Frequency	Decembries	Dielectric Parameters		Tissue Temp.
[MHz]	Description	ε _r	σ [s/m]	[°C]
	Reference result	48.6	5.65	N/A
5500MHz	± 5% window	46.17 to 51.03	5.37 to 5.93	IN/A
	23-Oct-10	47.85	5.78	20.1
5590 MHz	Low channel	47.62	5.93	20.1
5600 MHz	Mid channel	47.59	5.94	20.1
5670 MHz	High channel	47.42	5.97	20.1
				•

Body Tissue Simulant Measurement				
Frequency	Description	Dielectric Parameters		Tissue Temp.
[MHz]	Description	ε _r	σ [s/m]	[°C]
	Reference result	48.2	6.00	N/A
5800MHz	± 5% window	45.79 to 50.61	5.70 to 6.30	IN/A
	23-Oct-10	47.07	6.25	20.1
5745 MHz	Low channel	47.22	6.17	20.1
5785 MHz	Mid channel	47.11	6.23	20.1
5825 MHz	High channel	47.01	6.30	20.1

3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	He	ad	Во	ody
(MHz)	€ _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4. SAR Measurement Procedure

4.1. SAR System Validation

4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	53.5	30.4	3.6
5800MHz	20.6	14.2	3.6

4.1.2. Validation Result

System	Performance	Check a	£ 2450MHz
System	i enominance	CHECK a	L 24301VII 12

Validation Dipole: D2450V2, SN: 839

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
2450 MHz	Reference result ± 10% window	51.6 46.44 to 56.76	24.2 21.78 to 26.62	N/A
	23-Oct-10	52.40	24.48	20.1

Note: All SAR values are normalized to 1W forward power.

System Performance Check at 5200MHz

Validation Dipole: D5GHzV2, SN: 1078

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
5200 MHz	Reference result ± 10% window	77.9 70.11 to 85.69	21.8 19.62 to 23.98	N/A
	23-Oct-10	77.50	21.70	20.1

Note: All SAR values are normalized to 1W forward power.

System Performance Check at 5500MHz

Validation Dipole: D5GHzV2, SN: 1078

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
5500 MHz	Reference result ± 10% window	83.6 75.24 to 91.96	23.0 20.70 to 25.30	N/A
	23-Oct-10	84.50	23.10	20.1

Note: All SAR values are normalized to 1W forward power.

System Performance Check at 5800MHz

Validation Kit: ASL-D-2450-S-2

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
5800 MHz	Reference result ± 10% window	73.3 65.97 to 80.63	20.2 18.18 to 22.22	N/A
	23-Oct-10	75.00	21.90	20.1

Note: All SAR values are normalized to 1W forward power.

4.2. SAR Measurement Procedure

The ALSAS-10U calculates SAR using the following equation,

$$SAR = \frac{\sigma |\mathbf{E}|^2}{\rho}$$

σ: represents the simulated tissue conductivity

p: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled
	Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

6. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Last	Next
				Calibration	Calibration
Stäubli Robot TX60L	Stäubli	TX60L	F10/5C90A1/A/01	Mar. 2010	only once
Controller	Stäubli	SP1	S-0034	Mar. 2010	only once
DASY5 Reference Dipole	Speag	D2450V2	839	Mar. 2010	Mar. 2012
2450MHz					
DASY5 Reference Dipole	Speag	D5GHzV2	1078	Mar. 2010	Mar. 2012
5GHz					
SAM Twin Phantom	Speag	SAM	TP-1561/1562	N/A	N/A
Device Holder	Speag	SD 000 H01 HA	N/A	N/A	N/A
Data	Speag	DAE4	1220	Mar. 2010	Mar. 2011
Acquisition Electronic					
E-Field Probe	Speag	EX3DV4	3710	Mar. 2010	Mar. 2011
SAR Software	Speag	DASY5	V5.2 Build 162	N/A	N/A
Power Amplifier	Mini-Circuit	ZHL-42	D051404-28	N/A	N/A
Directional Coupler	Agilent	778D	20160	N/A	N/A
Universal Radio	R&S	CMU 200	117088	Jul. 2010	Jul. 2011
Communication Tester					
Vector Network	Agilent	E5071C	MY48367267	Mar. 2010	Mar. 2011
Signal Generator	Agilent	E4438C	MY49070163	Apr. 2010	Apr. 2011
Power Meter	Anritsu	ML2495A	0905006	Jan. 2010	Jan. 2011
Wide Bandwidth Sensor	Anritsu	MA2411B	0846014	Jan. 2010	Jan. 2011

7. Measurement Uncertainty

DASY5 Uncertainty								
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std.	Std.	(Vi)
	value	Dist.		1g	10g	Unc.	Unc.	Veff
						(1g)	(10g)	
Measurement System								
Probe Calibration	±5.5%	N	1	1	1	±5.5%	±5.5%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	√3	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	√3	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Test Sample Related		ı		l	l .		•	
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Setup		1	•	· ·	•	1	1	
Phantom Uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Liquid Conductivity	. 5.00/	_	-	0.04	0.40	.4.00/	.4.00/	
(target)	±5.0%	R	√3	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity	.2.50/	NI	1	0.64	0.42	.4 60/	.1 10/	∞
(meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	ω
Liquid Permittivity	±5.0%	R	l 77	0.6	0.49	±1.7%	±1.4%	8
(target)	±3.0 %	IX	√3	0.0	0.43	±1.7 /0	±1.470	
Liquid Permittivity	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	8
(meas.)	±2.J /0	1 1		0.0	0.73	±1.070	±1.∠/0	
Combined Std. Uncertain	inty					±10.7%	±10.5%	387
Expanded STD Uncertain	inty					±21.5%	±21.0%	

8. Conducted Power Measurement

1Tx Chain 100

Test Mode	Data Rate	Channel No.	Frequency	Conducted Power
	(Mbps)		(MHz)	(dBm)
		01	2412	21.85
802.11b	1	06	2437	22.61
		11	2462	22.73
		01	2412	23.33
802.11g	6	06	2437	25.83
		11	2462	23.55
		01	2412	23.32
802.11n(20MHz)	6.5	06	2437	26.04
		11	2462	23.40
		03	2422	23.36
802.11n(40MHz)	13.5	06	2437	26.16
		09	2452	23.61
		36	5180	16.35
		48	5240	16.36
		52	5260	21.44
		64	5320	21.10
902 446		100	5500	21.63
802.11a	6	120	5600	22.32
		140	5700	21.94
		149	5745	23.16
		157	5785	22.88
		165	5825	23.00
		36	5180	16.56
		48	5240	16.48
		52	5260	21.66
		64	5320	22.17
902 11p/20MU=\	6	100	5500	22.10
802.11n(20MHz)	6	120	5600	22.19
		140	5700	22.20
		149	5745	23.25
		157	5785	22.91
		165	5825	23.04

Test Mode	Data Rate (Mbps)	Channel No.	Frequency (MHz)	Conducted Power (dBm)
	(Mbp3)		, ,	,
		38	5190	16.40
		46	5230	16.42
		54	5270	20.95
		62	5310	21.47
802.11n(40MHz)	13.5	102	5510	22.08
		118	5590	22.22
		134	5670	21.90
		151	5755	22.82
		159	5795	23.12

1Tx Chain 001

Test Mode	Data Rate	Channel No.	Frequency	Conducted Power
	(Mbps)		(MHz)	(dBm)
		01	2412	19.14
802.11b	1	06	2437	22.23
		11	2462	21.05
		01	2412	23.26
802.11g	6	06	2437	25.52
		11	2462	23.08
		01	2412	22.95
802.11n(20MHz)	6.5	06	2437	25.72
		11	2462	22.48
		03	2422	21.65
802.11n(40MHz)	13.5	06	2437	25.66
		09	2452	21.89
		36	5180	16.72
		48	5240	16.41
		52	5260	21.74
		64	5320	22.25
000 44 0		100	5500	21.70
802.11a	6	120	5600	23.42
		140	5700	23.38
		149	5745	23.21
		157	5785	23.40
		165	5825	23.02
		36	5180	16.65
		48	5240	16.51
		52	5260	22.02
		64	5320	22.30
000 44 = (001411.)		100	5500	22.15
802.11n(20MHz)	6	120	5600	22.49
		140	5700	22.95
		149	5745	24.41
		157	5785	23.64
		165	5825	23.11

Test Mode	Data Rate (Mbps)	Channel No.	Frequency (MHz)	Conducted Power (dBm)
	(111265)	38	5190	16.48
		46	5230	16.59
		54	5270	21.20
		62	5310	22.21
802.11n(40MHz)	13.5	102	5510	22.19
		118	5590	22.28
		134	5670	23.02
		151	5755	23.80
		159	5795	23.42

2Tx Chain 101

Test Mode	Data Rate	Channel No.	Frequency	Conducted Power
	(Mbps)		(MHz)	(dBm)
		01	2412	26.01
		06	2437	26.63
		11	2462	24.87
		36	5180	16.18
		48	5240	16.22
		52	5260	21.55
802.11n(20MHz)	6.5	64	5320	21.73
		100	5500	22.12
		120	5600	22.17
		140	5700	22.44
		149	5745	26.71
		157	5785	26.23
		165	5825	26.17
		03	2422	23.56
		06	2437	26.18
		09	2452	24.49
		38	5190	16.31
		46	5230	16.30
802.11n(40MHz)	13.5	54	5270	21.17
602.1111(40IVIHZ)	13.3	62	5310	22.03
		102	5510	22.13
		118	5590	22.09
		134	5670	23.00
		151	5755	26.54
		159	5795	26.41

9. Test Procedures

9.1. Test position and configuration

SAR was performed with the device configured in the positions according to IEEE1528, and 447498 D02 SAR Procedures for Dongle Xmtr v01 1, body SAR was performed with the device to phantom separation distance of 5mm. All USB orientations (A: Horizontal-Up, B: Horizontal-Down, C: Vertical-Front, D: Vertical-Back, and E: Tip) were evaluated with 15cm USB cable for extension. Please check the SAR test photos.

Other KDB files were referred for this device SAR evaluation: D01 Mobile Portable RF Exposure v04, 248227 802.11abg SAR and 388624 D02 Permit But Ask List v09R01.

9.2. SAR Test Results Summary

SAR MEASUREMENT									
Ambient Temperature (°C): 21.4 ±2					Relative Humidity (%): 55				
Liquid Temperature (°C): 20.1 ±2					Depth of Liquid (cm):>15				
Product: AirPcap NX									
Test Mode: 802.11b-Chain 100									
Test Position Body	Antenna Position	Frequency Channel MHz		Dist	aration ance cm)	Power Drift (<±0.2)	SAR 1g (W/kg)	Limit (W/kg)	
Horizontal Up (Laptop)	Fixed	11	2462	Ì).5	-0.105	0.675	1.6	
Horizontal Down (Laptop)	Fixed	11	2462	C).5	-0.157	0.665	1.6	
Vertical Front (USB Cable)	Fixed	11	2462	С).5	0.040	0.240	1.6	
Vertical Back (Laptop)	Fixed	11	2462	С).5	-0.173	0.034	1.6	
Tip (USB Cable)	Fixed	11	2462	C).5	-0.071	0.113	1.6	
Test Mode: 802.1	1g-Chain 10	00							
Horizontal Up (Laptop)	Fixed	6	2437	C).5	0.140	0.763	1.6	
Test Mode: 802.1	1n(20MHz)-	Chain 101							
Horizontal Up (Laptop)	Fixed	1	2412	C).5	-0.100	1.159	1.6	
Horizontal Up (Laptop)	Fixed	6	2437	С).5	0.056	1.132	1.6	
Horizontal Up (Laptop)	Fixed	11	2462	C).5	-0.115	0.466	1.6	
Test Mode: 802.11n(40MHz)-Chain 101									
Horizontal Up (Laptop)	Fixed	3	2422	C).5	-0.126	0.647	1.6	
Horizontal Up (Laptop)	Fixed	6	2437	C).5	0.052	1.122	1.6	
Horizontal Up (Laptop)	Fixed	9	2452	C).5	-0.107	0.480	1.6	

SAR MEASUREMENT

Ambient Temperature (°C): 21.4 ±2 Relative Humidity (%): 55

Liquid Temperature (°C): 20.1 ±2 Depth of Liquid (cm):>15

Product: AirPcap NX

Test Mode: 802.11a-Chain 001

Test Position	Antenna	Frequency		Separation	Power	SAR 1g	Limit
Body	Position	Channel	MHz	Distance (cm)	Drift (<±0.2)	(W/kg)	(W/kg)
Horizontal Up (Laptop)	Fixed	36	5180	0.5	-0.175	0.223	1.6
Horizontal Up (Laptop)	Fixed	48	5240	0.5	0.093	0.198	1.6
Horizontal Up (Laptop)	Fixed	52	5260	0.5	-0.148	0.914	1.6
Horizontal Up (Laptop)	Fixed	64	5320	0.5	0.110	0.635	1.6
Horizontal Up (Laptop)	Fixed	100	5500	0.5	-0.009	0.842	1.6
Horizontal Up (Laptop)	Fixed	120	5600	0.5	0.086	1.053	1.6
Horizontal Down (Laptop)	Fixed	120	5600	0.5	0.146	0.963	1.6
Vertical Front (USB Cable)	Fixed	120	5600	0.5	-0.184	0.308	1.6
Vertical Back (Laptop)	Fixed	120	5600	0.5	0.069	0.965	1.6
Tip (USB Cable)	Fixed	120	5600	0.5	-0.038	0.900	1.6
Horizontal Up (Laptop)	Fixed	140	5700	0.5	0.059	0.835	1.6
Horizontal Up (Laptop)	Fixed	149	5745	0.5	-0.142	0.906	1.6
Horizontal Up (Laptop)	Fixed	157	5785	0.5	0.159	0.897	1.6
Horizontal Up (Laptop)	Fixed	165	5825	0.5	0.134	0.930	1.6

Test Mode: 802.11n(20MHz)-Chain 001							
Horizontal Up (Laptop)	Fixed	36	5180	0.5	-0.107	0.214	1.6
Horizontal Up (Laptop)	Fixed	48	5240	0.5	0.102	0.236	1.6
Horizontal Up (Laptop)	Fixed	52	5260	0.5	0.132	1.072	1.6
Horizontal Up (Laptop)	Fixed	64	5320	0.5	-0.114	0.796	1.6
Horizontal Up (Laptop)	Fixed	100	5500	0.5	0.036	0.924	1.6
Horizontal Up (Laptop)	Fixed	120	5600	0.5	0.014	1.075	1.6
Horizontal Up (Laptop)	Fixed	140	5700	0.5	0.153	0.735	1.6
Horizontal Up (Laptop)	Fixed	149	5745	0.5	-0.010	0.872	1.6
Horizontal Up (Laptop)	Fixed	157	5785	0.5	0.119	0.867	1.6
Horizontal Up (Laptop)	Fixed	165	5825	0.5	0.186	0.912	1.6

Test Mode: 802.11n(40MHz)-Chain 001							
Horizontal Up (Laptop)	Fixed	38	5190	0.5	-0.139	0.252	1.6
Horizontal Up (Laptop)	Fixed	46	5230	0.5	0.157	0.168	1.6
Horizontal Up (Laptop)	Fixed	54	5270	0.5	0.083	0.923	1.6
Horizontal Up (Laptop)	Fixed	62	5310	0.5	0.127	0.849	1.6
Horizontal Up (Laptop)	Fixed	102	5510	0.5	0.056	0.785	1.6
Horizontal Up (Laptop)	Fixed	118	5590	0.5	0.062	1.092	1.6
Horizontal Up (Laptop)	Fixed	134	5670	0.5	0.019	0.813	1.6
Horizontal Up (Laptop)	Fixed	151	5755	0.5	-0.158	0.905	1.6
Horizontal Up (Laptop)	Fixed	159	5795	0.5	0.120	0.911	1.6

Appendix A. SAR System Validation Data

Date/Time: 23-Oct-2010

Test Laboratory: QuieTek Lab System Check Body 2450MHz

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2

Communication System: CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1;

Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 2$ mho/m; $\epsilon r = 51.8$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section; Input Power=250mW

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/Body 2450MHz/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 13.1 mW/g

Configuration/Body 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm, Reference Value = 85.8 V/m; Power Drift = 0.039 dB

Peak SAR (extrapolated) = 26.4 W/kg

SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.12 mW/g Maximum value of SAR (measured) = 15.2 mW/g

0 dB = 15.2 mW/g

Date/Time: 23-Oct-2010

Test Laboratory: QuieTek Lab System Check Body 5200MHz

DUT: Dipole D5GHzV2; Type: D5GHzV2

Communication System: CW; Communication System Band: ITD5500 (5000.0 - 5900.0 MHz); Duty Cycle: 1:1; Frequency: 5200 MHz; Medium parameters used: f = 5200 MHz; σ = 5.31 mho/m; ϵ r = 48.6; ρ = 1000 kg/m3; Phantom section: Flat Section; Input Power=100mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(4.13, 4.13, 4.13); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/Body 5200MHz/Area Scan (6x6x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 5.37 mW/g

Configuration/Body 5200MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 40.3 V/m; Power Drift = -0.082 dB

Peak SAR (extrapolated) = 37.9 W/kg

SAR(1 g) = 7.75 mW/g; SAR(10 g) = 2.17 mW/g Maximum value of SAR (measured) = 8.07 mW/g

0 dB = 8.07 mW/g

Date/Time: 23-Oct-2010

Test Laboratory: QuieTek Lab System Check Body 5500MHz

DUT: Dipole D5GHzV2; Type: D5GHzV2

Communication System: CW; Communication System Band: ITD5500 (5000.0 - 5900.0 MHz); Duty Cycle: 1:1; Frequency: 5500 MHz; Medium parameters used: f = 5500 MHz; $\sigma = 5.78$ mho/m; $\epsilon = 47.9$; $\rho = 1000$ kg/m3; Phantom section: Flat Section; Input Power=100mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.81, 3.81, 3.81); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/Body 5500MHz/Area Scan (6x6x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 5.3 mW/g

Configuration/Body 5500MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 38.8 V/m; Power Drift = -0.183 dB

Peak SAR (extrapolated) = 48.4 W/kg

SAR(1 g) = 8.45 mW/g; SAR(10 g) = 2.31 mW/g Maximum value of SAR (measured) = 7.98 mW/g

0 dB = 7.98 mW/g

Date/Time: 23-Oct-2010

Test Laboratory: QuieTek Lab System Check Body 5800MHz

DUT: Dipole D5GHzV2; Type: D5GHzV2

Communication System: CW; Communication System Band: ITD5500 (5000.0 - 5900.0 MHz); Duty Cycle: 1:1; Frequency: 5800 MHz; Medium parameters used: f = 5800 MHz; $\sigma = 6.25$ mho/m; $\epsilon = 47.1$; $\rho = 1000$ kg/m3; Phantom section: Flat Section; Input Power=100mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.97, 3.97, 3.97); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/Body 5800MHz/Area Scan (6x6x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 6.29 mW/g

Configuration/Body 5800MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 40.3 V/m; Power Drift = -0.057 dB

Peak SAR (extrapolated) = 25.1 W/kg

SAR(1 g) = 7.5 mW/g; SAR(10 g) = 2.19 mW/g Maximum value of SAR (measured) = 9.65 mW/g

0 dB = 9.65 mW/g

Appendix B. SAR measurement Data

Date/Time: 10-Nov-2010

Test Laboratory: QuieTek Lab

802.11b Chain100 High-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1.0;

Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; $\sigma = 2.02$ mho/m; $\epsilon r = 51.7$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Chain100 High-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.542 mW/g

Configuration/802.11b Chain100 High-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 16.7 V/m; Power Drift = -0.105 dB Peak SAR (extrapolated) = 1.73 W/kg

SAR(1 g) = 0.675 mW/g; SAR(10 g) = 0.234 mW/g Maximum value of SAR (measured) = 0.794 mW/g

0 dB = 0.794 mW/g

Date/Time: 23-Oct-2010

Test Laboratory: QuieTek Lab

802.11b Chain100 High-Horizontal Down

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1.0;

Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; $\sigma = 2.02$ mho/m; $\epsilon r = 51.7$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Chain100 High-Horizontal Down/Area Scan (5x9x1): Measurement grid:

dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.499 mW/g

Configuration/802.11b Chain100 High-Horizontal Down/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm, Reference Value = 18.6 V/m; Power Drift = -0.157 dB

Peak SAR (extrapolated) = 1.78 W/kg

SAR(1 g) = 0.665 mW/g; SAR(10 g) = 0.236 mW/g Maximum value of SAR (measured) = 0.829 mW/g

0 dB = 0.829 mW/g

Date/Time: 23-Oct-2010

Test Laboratory: QuieTek Lab

802.11b Chain100 High-Vertical Front

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1.0;

Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; $\sigma = 2.02$ mho/m; $\epsilon r = 51.7$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Chain100 High-Vertical Front/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.244 mW/g

Configuration/802.11b Chain100 High-Vertical Front/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 11.7 V/m; Power Drift = 0.040 dB

Peak SAR (extrapolated) = 0.583 W/kg

SAR(1 g) = 0.240 mW/g; SAR(10 g) = 0.094 mW/g Maximum value of SAR (measured) = 0.280 mW/g

0 dB = 0.280 mW/g

Test Laboratory: QuieTek Lab

802.11b Chain100 High-Vertical Back

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1.0;

Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; $\sigma = 2.02$ mho/m; $\epsilon r = 51.7$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Chain100 High-Vertical Back/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.037 mW/g

Configuration/802.11b Chain100 High-Vertical Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 3.21 V/m; Power Drift = -0.173 dB

Peak SAR (extrapolated) = 0.057 W/kg

SAR(1 g) = 0.034 mW/g; SAR(10 g) = 0.021 mW/g Maximum value of SAR (measured) = 0.036 mW/g

0 dB = 0.036 mW/g

Date/Time: 23-Oct-2010

Test Laboratory: QuieTek Lab 802.11b Chain100 High-Tip Mode DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1.0;

Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; $\sigma = 2.02$ mho/m; $\epsilon r = 51.7$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Chain100 High-Tip Mode/Area Scan (5x5x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.101 mW/g

Configuration/802.11b Chain100 High-Tip Mode/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 7.04 V/m; Power Drift = -0.071 dB

Peak SAR (extrapolated) = 0.224 W/kg

SAR(1 g) = 0.113 mW/g; SAR(10 g) = 0.055 mW/g Maximum value of SAR (measured) = 0.125 mW/g

0 dB = 0.125 mW/g

Test Laboratory: QuieTek Lab

802.11g Chain100 Mid-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1.0;

Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; $\sigma = 1.98$ mho/m; $\epsilon r = 51.8$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11g Chain100 Mid-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.657 mW/g

Configuration/802.11g Chain100 Mid-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 19.7 V/m; Power Drift = 0.140 dB
Peak SAR (extrapolated) = 1.89 W/kg

SAR(1 g) = 0.763 mW/g; SAR(10 g) = 0.282 mW/g Maximum value of SAR (measured) = 0.938 mW/g

0 dB = 0.938 mW/g

Test Laboratory: QuieTek Lab

802.11n(20) Chain101 Low-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1.0;

Frequency: 2412 MHz; Medium parameters used: f = 2412 MHz; $\sigma = 1.95$ mho/m; $\varepsilon_r = 51.9$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20) Chain101 Low-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 1.02 mW/g

Configuration/802.11n(20) Chain101 Low-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 25.9 V/m; Power Drift = -0.100 dB Peak SAR (extrapolated) = 2.81 W/kg

SAR(1 g) = 1.159 mW/g; SAR(10 g) = 0.478 mW/g Maximum value of SAR (measured) = 1.39 mW/g

0 dB = 1.39 mW/g

802.11n(20MHz) EUT Bottom, Z-Axis Plot

Channel 01

Test Laboratory: QuieTek Lab

802.11n(20) Chain101 Mid-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1.0;

Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; $\sigma = 1.98$ mho/m; $\varepsilon_r = 51.8$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20) Chain101 Mid-Horizontal Up/Area Scan (5x9x1): Measurement grid:

dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.93 mW/g

Configuration/802.11n(20) Chain101 Mid-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm, Reference Value = 24.5 V/m; Power Drift = 0.056 dB

Peak SAR (extrapolated) = 2.72 W/kg

SAR(1 g) = 1.132 mW/g; SAR(10 g) = 0.438 mW/g Maximum value of SAR (measured) = 1.36 mW/g

0 dB = 1.36 mW/g

Test Laboratory: QuieTek Lab

802.11n(20) Chain101 High-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1.0;

Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; $\sigma = 2.02$ mho/m; $\varepsilon_r = 51.7$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20) Chain101 High-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.422 mW/g

Configuration/802.11n(20) Chain101 High-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 15.7 V/m; Power Drift = -0.115 dB Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.466 mW/g; SAR(10 g) = 0.184 mW/g Maximum value of SAR (measured) = 0.557 mW/g

0 dB = 0.557 mW/g

Test Laboratory: QuieTek Lab

802.11n(40) Chain101 Low-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1.0;

Frequency: 2422 MHz; Medium parameters used: f = 2422 MHz; $\sigma = 1.96$ mho/m; $\varepsilon_r = 51.9$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(40) Chain101 Low-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.557 mW/g

Configuration/802.11n(40) Chain101 Low-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 19.4 V/m; Power Drift = -0.126 dB Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 0.647 mW/g; SAR(10 g) = 0.262 mW/g Maximum value of SAR (measured) = 0.776 mW/g

0 dB = 0.776 mW/g

Test Laboratory: QuieTek Lab

802.11n(40) Chain101 Mid-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1.0;

Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; $\sigma = 1.98$ mho/m; $\varepsilon_r = 51.8$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(40) Chain101 Mid-Horizontal Up/Area Scan (5x9x1): Measurement grid:

dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.949 mW/g

Configuration/802.11n(40) Chain101 Mid-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm, Reference Value = 23.5 V/m; Power Drift = 0.052 dB

Peak SAR (extrapolated) = 2.67 W/kg

SAR(1 g) = 1.122 mW/g; SAR(10 g) = 0.428 mW/g Maximum value of SAR (measured) = 1.347 mW/g

0 dB = 1.347 mW/g

Test Laboratory: QuieTek Lab

802.11n(40) Chain101 High-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1.0; Frequency: 2452 MHz; Medium parameters used: f = 2452 MHz; $\sigma = 2$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(40) Chain101 High-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.406 mW/g

Configuration/802.11n(40) Chain101 High-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 15.8 V/m; Power Drift = -0.107 dB Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.480 mW/g; SAR(10 g) = 0.187 mW/g Maximum value of SAR (measured) = 0.586 mW/g

0 dB = 0.586 mW/g

Test Laboratory: QuieTek Lab

802.11a Chain001 5180MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1.0; Frequency: 5180 MHz; Medium parameters used: f = 5180 MHz; $\sigma = 5.28$ mho/m; $\epsilon_r = 48.7$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(4.13, 4.13, 4.13); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11a Chain001 5180MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.206 mW/g

Configuration/802.11a Chain001 5180MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 7.65 V/m; Power Drift = -0.175 dB Peak SAR (extrapolated) = 0.725 W/kg

SAR(1 g) = 0.223 mW/g; SAR(10 g) = 0.086 mW/g Maximum value of SAR (measured) = 0.297 mW/g

0 dB = 0.297 mW/g

Test Laboratory: QuieTek Lab

802.11a Chain001 5240MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle:

1:1.0; Frequency: 5240 MHz; Medium parameters used: f = 5240 MHz; σ = 5.39 mho/m; ϵ_r = 48.5; ρ = 1000

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(4.13, 4.13, 4.13); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11a Chain001 5240MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.135 mW/g

Configuration/802.11a Chain001 5240MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 7.24 V/m; Power Drift = 0.093 dB Peak SAR (extrapolated) = 0.618 W/kg

SAR(1 g) = 0.198 mW/g; SAR(10 g) = 0.062 mW/g Maximum value of SAR (measured) = 0.227 mW/g

0 dB = 0.227 mW/g

Test Laboratory: QuieTek Lab

802.11a Chain001 5260MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1.0; Frequency: 5260 MHz; Medium parameters used: f = 5260 MHz; $\sigma = 5.41$ mho/m; $\epsilon_r = 48.5$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.91, 3.91, 3.91); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11a Chain001 5260MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.616 mW/g

Configuration/802.11a Chain001 5260MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 13.2 V/m; Power Drift = -0.148 dB Peak SAR (extrapolated) = 2.56 W/kg

SAR(1 g) = 0.914 mW/g; SAR(10 g) = 0.289 mW/g Maximum value of SAR (measured) = 1.174 mW/g

0 dB = 1.174 mW/g

Test Laboratory: QuieTek Lab

802.11a Chain001 5320MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1.0; Frequency: 5320 MHz; Medium parameters used: f = 5320 MHz; $\sigma = 5.5$ mho/m; $\epsilon_r = 48.3$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.91, 3.91, 3.91); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11a Chain001 5320MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.427 mW/g

Configuration/802.11a Chain001 5320MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 12.4 V/m; Power Drift = 0.110 dB Peak SAR (extrapolated) = 1.87 W/kg

SAR(1 g) = 0.635 mW/g; SAR(10 g) = 0.237 mW/g Maximum value of SAR (measured) = 0.879 mW/g

0 dB = 0.879 mW/g

Test Laboratory: QuieTek Lab

802.11a Chain001 5500MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1.0; Frequency: 5500 MHz; Medium parameters used: f = 5500 MHz; $\sigma = 5.78$ mho/m; $\epsilon_r = 47.9$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.81, 3.81, 3.81); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11a Chain001 5500MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.815 mW/g

Configuration/802.11a Chain001 5500MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 13.1 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 2.58 W/kg

SAR(1 g) = 0.842 mW/g; SAR(10 g) = 0.316 mW/g Maximum value of SAR (measured) = 1.13 mW/g

0 dB = 1.13 mW/g

Test Laboratory: QuieTek Lab

802.11a Chain001 5600MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1.0; Frequency: 5600 MHz; Medium parameters used: f = 5600 MHz; $\sigma = 5.94$ mho/m; $\epsilon_r = 47.6$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.58, 3.58, 3.58); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11a Chain001 5600MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.815 mW/g

Configuration/802.11a Chain001 5600MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 13.6 V/m; Power Drift = 0.086 dB Peak SAR (extrapolated) = 3.03 W/kg

SAR(1 g) = 1.053 mW/g; SAR(10 g) = 0.378 mW/g Maximum value of SAR (measured) = 1.32 mW/g

0 dB = 1.32 mW/g

Date/Time: 23-Oct-2010

Test Laboratory: QuieTek Lab

802.11a Chain001 5600MHz-Horizontal Down

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle:

1:1.0; Frequency: 5600 MHz; Medium parameters used: f = 5600 MHz; $\sigma = 5.94$ mho/m; $\varepsilon_r = 47.6$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.58, 3.58, 3.58); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11a Chain001 5600MHz-Horizontal Down/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.994 mW/g

Configuration/802.11a Chain001 5600MHz-Horizontal Down/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 14.1 V/m; Power Drift = 0.146 dB Peak SAR (extrapolated) = 2.76 W/kg

SAR(1 g) = 0.963 mW/g; SAR(10 g) = 0.352 mW/g Maximum value of SAR (measured) = 1.15 mW/g

0 dB = 1.15 mW/g

Date/Time: 23-Oct-2010

Test Laboratory: QuieTek Lab

802.11a Chain001 5600MHz-Vertical Front

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1.0; Frequency: 5600 MHz; Medium parameters used: f = 5600 MHz; $\sigma = 5.94$ mho/m; $\epsilon_r = 47.6$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.58, 3.58, 3.58); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11a Chain001 5600MHz-Vertical Front/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.234 mW/g

Configuration/802.11a Chain001 5600MHz-Vertical Front/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 4.87 V/m; Power Drift = -0.184 dB Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 0.308 mW/g; SAR(10 g) = 0.142 mW/g Maximum value of SAR (measured) = 0.246 mW/g

0 dB = 0.246 mW/g

Test Laboratory: QuieTek Lab

802.11a Chain001 5600MHz-Vertical Back

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1.0; Frequency: 5600 MHz; Medium parameters used: f = 5600 MHz; $\sigma = 5.94$ mho/m; $\epsilon r = 47.6$; $\rho = 1000$ kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.5, Liquid temperature ($^{\circ}$): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.58, 3.58, 3.58); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11a Chain001 5600MHz-Vertical Back/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 1.12 mW/g

Configuration/802.11a Chain001 5600MHz-Vertical Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 11.7 V/m; Power Drift = 0.069 dB Peak SAR (extrapolated) = 2.73 W/kg

SAR(1 g) = 0.965 mW/g; SAR(10 g) = 0.355 mW/g Maximum value of SAR (measured) = 1.08 mW/g

0 dB = 1.08 mW/g

Date/Time: 23-Oct-2010

Test Laboratory: QuieTek Lab

802.11a Chain001 5600MHz-Tip Mode

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle:

1:1.0; Frequency: 5600 MHz; Medium parameters used: f = 5600 MHz; $\sigma = 5.94$ mho/m; $\varepsilon_r = 47.6$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.58, 3.58, 3.58); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11a Chain001 5600MHz-Tip Mode/Area Scan (5x5x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.774 mW/g

Configuration/802.11a Chain001 5600MHz-Tip Mode/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 11.8 V/m; Power Drift = -0.038 dB Peak SAR (extrapolated) = 5.36 W/kg

SAR(1 g) = 0.900 mW/g; SAR(10 g) = 0.312 mW/g Maximum value of SAR (measured) = 0.788 mW/g

0 dB = 0.788 mW/g

Test Laboratory: QuieTek Lab

802.11a Chain001 5700MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1.0; Frequency: 5700 MHz; Medium parameters used: f = 5700 MHz; $\sigma = 6.1$ mho/m; $\epsilon_r = 47.3$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.97, 3.97, 3.97); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11a Chain001 5700MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.827 mW/g

Configuration/802.11a Chain001 5700MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 12.8 V/m; Power Drift = 0.059 dB Peak SAR (extrapolated) = 2.48 W/kg

SAR(1 g) = 0.835 mW/g; SAR(10 g) = 0.307 mW/g Maximum value of SAR (measured) = 1.02 mW/g

0 dB = 1.02 mW/g

Test Laboratory: QuieTek Lab

802.11a Chain001 5745MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1.0; Frequency: 5745 MHz; Medium parameters used: f = 5745 MHz; $\sigma = 6.17$ mho/m; $\epsilon_r = 47.2$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.97, 3.97, 3.97); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11a Chain001 5745MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.752 mW/g

Configuration/802.11a Chain001 5745MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 12.7 V/m; Power Drift = -0.142 dB Peak SAR (extrapolated) = 2.76 W/kg

SAR(1 g) = 0.906 mW/g; SAR(10 g) = 0.316 mW/g Maximum value of SAR (measured) = 1.13 mW/g

0 dB = 1.13 mW/g

Test Laboratory: QuieTek Lab

802.11a Chain001 5785MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1.0; Frequency: 5785 MHz; Medium parameters used: f = 5785 MHz; $\sigma = 6.23$ mho/m; $\epsilon_r = 47.1$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.97, 3.97, 3.97); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11a Chain001 5785MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.722 mW/g

Configuration/802.11a Chain001 5785MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 12.8 V/m; Power Drift = 0.159 dB Peak SAR (extrapolated) = 2.68 W/kg

SAR(1 g) = 0.897 mW/g; SAR(10 g) = 0.305 mW/g Maximum value of SAR (measured) = 1.16 mW/g

0 dB = 1.16 mW/g

Test Laboratory: QuieTek Lab

802.11a Chain001 5825MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1.0; Frequency: 5825 MHz; Medium parameters used: f = 5825 MHz; $\sigma = 6.3$ mho/m; $\epsilon_r = 47$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.97, 3.97, 3.97); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11a Chain001 5825MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.703 mW/g

Configuration/802.11a Chain001 5825MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 13.1 V/m; Power Drift = 0.134 dB Peak SAR (extrapolated) = 2.86 W/kg

SAR(1 g) = 0.930 mW/g; SAR(10 g) = 0.316 mW/g Maximum value of SAR (measured) = 1.18 mW/g

0 dB = 1.18 mW/g

Test Laboratory: QuieTek Lab

802.11n(20) Chain001 5180MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle:

1:1.0; Frequency: 5180 MHz; Medium parameters used: f = 5180 MHz; $\sigma = 5.28$ mho/m; $\varepsilon_r = 48.7$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(4.13, 4.13, 4.13); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20) Chain001 5180MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.197 mW/g

Configuration/802.11n(20) Chain001 5180MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 7.25 V/m; Power Drift = -0.107 dB Peak SAR (extrapolated) = 0.687 W/kg

SAR(1 g) = 0.214 mW/g; SAR(10 g) = 0.078 mW/g Maximum value of SAR (measured) = 0.306 mW/g

0 dB = 0.306 mW/g

Test Laboratory: QuieTek Lab

802.11n(20) Chain001 5240MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle:

1:1.0; Frequency: 5240 MHz; Medium parameters used: f = 5240 MHz; $\sigma = 5.39$ mho/m; $\varepsilon_r = 48.5$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(4.13, 4.13, 4.13); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20) Chain001 5240MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.176 mW/g

Configuration/802.11n(20) Chain001 5240MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 7.04 V/m; Power Drift = 0.102 dB Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 0.236 mW/g; SAR(10 g) = 0.089 mW/g Maximum value of SAR (measured) = 0.267 mW/g

0 dB = 0.267 mW/g

Test Laboratory: QuieTek Lab

802.11n(20) Chain001 5260MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle:

1:1.0; Frequency: 5260 MHz; Medium parameters used: f = 5260 MHz; $\sigma = 5.41$ mho/m; $\varepsilon_r = 48.5$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.91, 3.91, 3.91); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20) Chain001 5260MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.615 mW/g

Configuration/802.11n(20) Chain001 5260MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 13.5 V/m; Power Drift = 0.132 dB Peak SAR (extrapolated) = 6.63 W/kg

SAR(1 g) = 1.072 mW/g; SAR(10 g) = 0.315 mW/g Maximum value of SAR (measured) = 1.06 mW/g

0 dB = 1.06 mW/g

Test Laboratory: QuieTek Lab

802.11n(20) Chain001 5320MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1.0; Frequency: 5320 MHz; Medium parameters used: f = 5320 MHz; $\sigma = 5.5$ mho/m; $\epsilon_r = 48.3$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.91, 3.91, 3.91); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20) Chain001 5320MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.620 mW/g

Configuration/802.11n(20) Chain001 5320MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 13.7 V/m; Power Drift = -0.114 dB Peak SAR (extrapolated) = 2.33 W/kg

SAR(1 g) = 0.796 mW/g; SAR(10 g) = 0.235 mW/g Maximum value of SAR (measured) = 1.05 mW/g

0 dB = 1.05 mW/g

Test Laboratory: QuieTek Lab

802.11n(20) Chain001 5500MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle:

1:1.0; Frequency: 5500 MHz; Medium parameters used: f = 5500 MHz; $\sigma = 5.78$ mho/m; $\epsilon_r = 47.9$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.81, 3.81, 3.81); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20) Chain001 5500MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid:

dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.568 mW/g

Configuration/802.11n(20) Chain001 5500MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 12.8 V/m; Power Drift = 0.036 dB Peak SAR (extrapolated) = 2.65 W/kg

SAR(1 g) = 0.924 mW/g; SAR(10 g) = 0.314 mW/g Maximum value of SAR (measured) = 1.13 mW/g

0 dB = 1.13 mW/g

Test Laboratory: QuieTek Lab

802.11n(20) Chain001 5600MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle:

1:1.0; Frequency: 5600 MHz; Medium parameters used: f = 5600 MHz; $\sigma = 5.94$ mho/m; $\varepsilon_r = 47.6$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.58, 3.58, 3.58); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20) Chain001 5600MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.763 mW/g

Configuration/802.11n(20) Chain001 5600MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 14.2 V/m; Power Drift = 0.014 dB Peak SAR (extrapolated) = 3.27 W/kg

SAR(1 g) = 1.075 mW/g; SAR(10 g) = 0.383 mW/g Maximum value of SAR (measured) = 1.46 mW/g

0 dB = 1.46 mW/g

Test Laboratory: QuieTek Lab

802.11n(20) Chain001 5700MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1.0; Frequency: 5700 MHz; Medium parameters used: f = 5700 MHz; $\sigma = 6.1$ mho/m; $\epsilon_r = 47.3$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.97, 3.97, 3.97); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20) Chain001 5700MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.517 mW/g

Configuration/802.11n(20) Chain001 5700MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 11.4 V/m; Power Drift = 0.153 dB Peak SAR (extrapolated) = 2.17 W/kg

SAR(1 g) = 0.735 mW/g; SAR(10 g) = 0.215 mW/g Maximum value of SAR (measured) = 0.934 mW/g

0 dB = 0.934 mW/g

Test Laboratory: QuieTek Lab

802.11n(20) Chain001 5745MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle:

1:1.0; Frequency: 5745 MHz; Medium parameters used: f = 5745 MHz; $\sigma = 6.17$ mho/m; $\epsilon_r = 47.2$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.97, 3.97, 3.97); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20) Chain001 5745MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.635 mW/g

Configuration/802.11n(20) Chain001 5745MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 12.3 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 2.65 W/kg

SAR(1 g) = 0.872 mW/g; SAR(10 g) = 0.314 mW/g Maximum value of SAR (measured) = 1.1 mW/g

0 dB = 1.1 mW/g

Test Laboratory: QuieTek Lab

802.11n(20) Chain001 5785MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle:

1:1.0; Frequency: 5785 MHz; Medium parameters used: f = 5785 MHz; $\sigma = 6.23$ mho/m; $\epsilon_r = 47.1$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.97, 3.97, 3.97); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20) Chain001 5785MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.713 mW/g

Configuration/802.11n(20) Chain001 5785MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 12.4 V/m; Power Drift = 0.119 dB Peak SAR (extrapolated) = 2.52 W/kg

SAR(1 g) = 0.867 mW/g; SAR(10 g) = 0.312 mW/g Maximum value of SAR (measured) = 0.97 mW/g

0 dB = 0.97 mW/g

Test Laboratory: QuieTek Lab

802.11n(20) Chain001 5825MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1.0; Frequency: 5825 MHz; Medium parameters used: f = 5825 MHz; $\sigma = 6.3$ mho/m; $\epsilon_r = 47$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.97, 3.97, 3.97); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20) Chain001 5825MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.714 mW/g

Configuration/802.11n(20) Chain001 5825MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 12.8 V/m; Power Drift = 0.186 dB Peak SAR (extrapolated) = 2.75 W/kg

SAR(1 g) = 0.912 mW/g; SAR(10 g) = 0.306 mW/g Maximum value of SAR (measured) = 1.18 mW/g

0 dB = 1.18 mW/g

Test Laboratory: QuieTek Lab

802.11n(40) Chain001 5190MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

1:1.0; Frequency: 5190 MHz; Medium parameters used: f = 5190 MHz; σ = 5.29 mho/m; ϵ_r = 48.7; ρ = 1000

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(4.13, 4.13, 4.13); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(40) Chain001 5190MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.156 mW/g

Configuration/802.11n(40) Chain001 5190MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 7.02 V/m; Power Drift = -0.139 dB Peak SAR (extrapolated) = 1.63 W/kg

SAR(1 g) = 0.252 mW/g; SAR(10 g) = 0.104 mW/g Maximum value of SAR (measured) = 0.246 mW/g

0 dB = 0.246 mW/g

Test Laboratory: QuieTek Lab

802.11n(40) Chain001 5230MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle:

1:1.0; Frequency: 5230 MHz; Medium parameters used: f = 5230 MHz; $\sigma = 5.38$ mho/m; $\varepsilon_r = 48.6$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(4.13, 4.13, 4.13); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(40) Chain001 5230MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.175 mW/g

Configuration/802.11n(40) Chain001 5230MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 7.21 V/m; Power Drift = 0.157 dB Peak SAR (extrapolated) = 0.584 W/kg

SAR(1 g) = 0.168 mW/g; SAR(10 g) = 0.074 mW/g Maximum value of SAR (measured) = 0.286 mW/g

0 dB = 0.286 mW/g

Test Laboratory: QuieTek Lab

802.11n(40) Chain001 5270MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle:

1:1.0; Frequency: 5270 MHz; Medium parameters used: f = 5270 MHz; $\sigma = 5.42$ mho/m; $\varepsilon_r = 48.5$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.91, 3.91, 3.91); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(40) Chain001 5270MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.584 mW/g

Configuration/802.11n(40) Chain001 5270MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 12.4 V/m; Power Drift = 0.083 dB Peak SAR (extrapolated) = 4.36 W/kg

SAR(1 g) = 0.923 mW/g; SAR(10 g) = 0.286 mW/g Maximum value of SAR (measured) = 0.97 mW/g

0 dB = 0.97 mW/g

Test Laboratory: QuieTek Lab

802.11n(40) Chain001 5310MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle:

1:1.0; Frequency: 5310 MHz; Medium parameters used: f = 5310 MHz; $\sigma = 5.49$ mho/m; $\varepsilon_r = 48.4$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.91, 3.91, 3.91); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(40) Chain001 5310MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.646 mW/g

ax=15111111, dy=15111111, Waxiinani Valde of GATE (medsured) = 0.040 11111/19

Configuration/802.11n(40) Chain001 5310MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 13.5 V/m; Power Drift = 0.127 dB Peak SAR (extrapolated) = 2.38 W/kg

SAR(1 g) = 0.849 mW/g; SAR(10 g) = 0.303 mW/g Maximum value of SAR (measured) = 1.06 mW/g

0 dB = 1.06 mW/g

Test Laboratory: QuieTek Lab

802.11n(40) Chain001 5510MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle:

1:1.0; Frequency: 5510 MHz; Medium parameters used: f = 5510 MHz; $\sigma = 5.79$ mho/m; $\varepsilon_r = 47.8$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.81, 3.81, 3.81); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(40) Chain001 5510MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.683 mW/g

Configuration/802.11n(40) Chain001 5510MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 13.5 V/m; Power Drift = 0.056 dB Peak SAR (extrapolated) = 2.32 W/kg

SAR(1 g) = 0.785 mW/g; SAR(10 g) = 0.215 mW/g Maximum value of SAR (measured) = 0.94 mW/g

0 dB = 0.94 mW/g

Test Laboratory: QuieTek Lab

802.11n(40) Chain001 5590MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle:

1:1.0; Frequency: 5590 MHz; Medium parameters used: f = 5590 MHz; $\sigma = 5.93$ mho/m; $\varepsilon_r = 47.6$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.58, 3.58, 3.58); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(40) Chain001 5590MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.914 mW/g

Configuration/802.11n(40) Chain001 5590MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 14.3 V/m; Power Drift = 0.062 dB Peak SAR (extrapolated) = 3.37 W/kg

SAR(1 g) = 1.092 mW/g; SAR(10 g) = 0.413 mW/g Maximum value of SAR (measured) = 1.42 mW/g

0 dB = 1.42 mW/g

802.11n(40MHz) EUT Bottom, Z-Axis Plot

Test Laboratory: QuieTek Lab

802.11n(40) Chain001 5670MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle:

1:1.0; Frequency: 5670 MHz; Medium parameters used: f = 5670 MHz; $\sigma = 5.97$ mho/m; $\epsilon_r = 47.4$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.58, 3.58, 3.58); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(40) Chain001 5670MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.746 mW/g

Configuration/802.11n(40) Chain001 5670MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 12.7 V/m; Power Drift = 0.019 dB Peak SAR (extrapolated) = 2.47 W/kg

SAR(1 g) = 0.813 mW/g; SAR(10 g) = 0.312 mW/g Maximum value of SAR (measured) = 0.96 mW/g

0 dB = 0.96 mW/g

Test Laboratory: QuieTek Lab

802.11n(40) Chain001 5755MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle:

1:1.0; Frequency: 5755 MHz; Medium parameters used: f = 5755 MHz; $\sigma = 6.18$ mho/m; $\varepsilon_r = 47.2$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.97, 3.97, 3.97); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(40) Chain001 5755MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.742 mW/g

Configuration/802.11n(40) Chain001 5755MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 12.6 V/m; Power Drift = -0.158 dB Peak SAR (extrapolated) = 2.74 W/kg

SAR(1 g) = 0.905 mW/g; SAR(10 g) = 0.316 mW/g Maximum value of SAR (measured) = 1.12 mW/g

0 dB = 1.12 mW/g

Test Laboratory: QuieTek Lab

802.11n(40) Chain001 5795MHz-Horizontal Up

DUT: AirPcap Nx; Type: APC-NX

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle:

1:1.0; Frequency: 5795 MHz; Medium parameters used: f = 5795 MHz; $\sigma = 6.24$ mho/m; $\epsilon_r = 47.1$; $\rho = 1000$

kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.97, 3.97, 3.97); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 09/03/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(40) Chain001 5795MHz-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.680 mW/g

Configuration/802.11n(40) Chain001 5795MHz-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 12.6 V/m; Power Drift = 0.120 dB Peak SAR (extrapolated) = 2.86 W/kg

SAR(1 g) = 0.911 mW/g; SAR(10 g) = 0.324 mW/g Maximum value of SAR (measured) = 1.15 mW/g

0 dB = 1.15 mW/g

Appendix D. Probe Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Quietek (Auden)

Certificate No: EX3-3710_Mar10

Accreditation No.: SCS 108

	CERTIFICAT		
Object	EX3DV4 - SN:3	710	
Calibration procedure(s)		QA CAL-14.v3, QA CAL-23.v3 and edure for dosimetric E-field probes	
Calibration date:	March 5, 2010		
The measurements and the unc	ertainties with confidence	ational standards, which realize the physical unit probability are given on the following pages and ory facility: environment temperature (22 ± 3)°C	d are part of the certificate.
			•
Calibration Equipment used (M&	TE critical for calibration)		
Calibration Equipment used (M& Primary Standards	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards Power meter E4419B	ID# GB41293874	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030)	Apr-10
Primary Standards Power meter E4419B Power sensor E4412A	ID # GB41293874 MY41495277	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030)	Apr-10 Apr-10
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ID # GB41293874 MY41495277 MY41498087	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030)	Apr-10 Apr-10 Apr-10
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026)	Apr-10 Apr-10 Apr-10 Mar-10
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026)	Apr-10 Apr-10 Apr-10 Mar-10
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 30-Dec-09 (No. ES3-3013_Dec09)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Dec-10
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 30-Dec-09 (No. ES3-3013_Dec09) 29-Sep-09 (No. DAE4-660_Sep09)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Dec-10 Sep-10
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID#	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 30-Dec-09 (No. ES3-3013_Dec09) 29-Sep-09 (No. DAE4-660_Sep09) Check Date (in house)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Dec-10 Sep-10 Scheduled Check
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID# GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b) SN: 3013 SN: 660 ID# US3642U01700 US37390585 Name	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 30-Dec-09 (No. ES3-3013_Dec09) 29-Sep-09 (No. DAE4-660_Sep09) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Dec-10 Sep-10 Scheduled Check In house check: Oct-11
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID# GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b) SN: 3013 SN: 660 ID# US3642U01700 US37390585	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 30-Dec-09 (No. ES3-3013_Dec09) 29-Sep-09 (No. DAE4-660_Sep09) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Dec-10 Sep-10 Scheduled Check In house check: Oct-11 In house check: Oct10
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID# GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b) SN: 3013 SN: 660 ID# US3642U01700 US37390585 Name	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 30-Dec-09 (No. ES3-3013_Dec09) 29-Sep-09 (No. DAE4-660_Sep09) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Dec-10 Sep-10 Scheduled Check In house check: Oct-11 In house check: Oct10

Certificate No: EX3-3710_Mar10

Page 1 of 11

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

Multilateral Agreement for the recognition of calibration certificates

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". December 2003
- Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx.y.z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3710 Mar10

Page 2 of 11

Probe EX3DV4

SN:3710

Manufactured: Calibrated: July 21, 2009 March 5, 2010

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3710_Mar10

Page 3 of 11

DASY - Parameters of Probe: EX3DV4 SN:3710

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m)²) ^A	0.48	0.58	0.60	± 10.1%
DCP (mV) ^B	90.8	94.4	91.8	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	X	0.00	0.00	1.00	300	±1.5%
		- 1	Y	0.00	0.00	1.00	300	
			Z	0.00	0.00	1.00	300	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^{*} The uncertainties of NormX,Y,Z do not affect the É-field uncertainty inside TSL (see Pages 5 and 6).

^a Numerical linearization parameter, uncertainty not required

E Uncartainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value

DASY - Parameters of Probe: EX3DV4 SN:3710

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	41.5 ± 5%	$0.90 \pm 5\%$	8.83	8.83	8.83	0.68	0.64 ± 11.0%
900	±50/±100	41.5 ± 5%	0.97 ± 5%	8.73	8,73	8.73	0.83	0.58 ± 11.0%
1810	±50/±100	40.0 ± 5%	1.40 ± 5%	7.69	7.69	7,69	0.62	0.63 ±11.0%
1950	±50/±100	$40.0\pm5\%$	1.40 ± 5%	7.35	7.35	7.35	0.70	0.60 ±11.0%
2450	$\pm 50 / \pm 100$	$39.2\pm5\%$	$1.80\pm5\%$	6.96	6.96	6.96	0.46	0.75 ±11.0%
2600	$\pm 50 / \pm 100$	$39.0\pm5\%$	1.96 ± 5%	6,88	6.88	6.88	0.31	0.92 ± 11.0%
3500	$\pm 50 / \pm 100$	$37.9 \pm 5\%$	2.91 ± 5%	6.64	6.64	6.64	0.33	1.18 ± 13.1%
5200	±50/±100	$36.0 \pm 5\%$	4.66 ± 5%	4.92	4.92	4.92	0.40	1.90 ± 13.1%
5300	±50/±100	35.9 ± 5%	4.76 ± 5%	4.60	4.60	4.60	0.40	1.90 ± 13.1%
5500	±50/±100	$35.6 \pm 5\%$	$4.96 \pm 5\%$	4.42	4.42	4.42	0.50	1.90 ± 13.1%
5600	\pm 50 / \pm 100	$35.5 \pm 5\%$	5.07 ± 5%	4.42	4.42	4.42	0.40	1.90 ± 13.1%
5800	±50/±100	35.3 ± 5%	5.27 ± 5%	4.26	4.26	4.26	0.50	1.90 ± 13.1%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency, and the uncertainty for the indicated frequency band

DASY - Parameters of Probe: EX3DV4 SN:3710

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	8.95	8.95	8.95	0.84	0.62 ± 11.0%
900	± 50 / ± 100	$55.0 \pm 5\%$	1.05 ± 5%	8.80	8,80	8.80	0.65	0.69 ± 11.0%
1810	±50/±100	$53.3 \pm 5\%$	1.52 ± 5%	7.71	7.71	7.71	0.57	0.72 ± 11.0%
1950	±50/±100	53.3 ± 5%	1.52 ± 5%	7.45	7.45	7,45	0.38	0.87 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	7.00	7,00	7.00	0.32	0.95 ± 11.0%
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	6.90	6,90	6.90	0.47	0.79 ±11.0%
3500	±50/±100	51.3 ± 5%	3.31 ± 5%	6.19	6.19	6.19	0.31	1.44 ± 13.1%
5200	±50/±100	49.0 ± 5%	5.30 ± 5%	4.13	4.13	4.13	0.50	1.90 ± 13.1%
5300	±50/±100	48.5 ± 5%	$5.42\pm5\%$	3.91	3.91	3.91	0.55	1.90 ± 13.1%
5500	$\pm 50 / \pm 100$	48.6 ± 5%	$5.65 \pm 5\%$	3.81	3.81	3.81	0.55	1.90 ± 13.1%
5600	± 50 / ± 100	48.5 ± 5%	$5.77 \pm 5\%$	3.58	3.58	3.58	0.60	1.90 ± 13.1%
5800	± 50 / ± 100	48.2 ± 5%	6.00 ± 5%	3.97	3.97	3.97	0.60	1.90 ± 13.1%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2) The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3710_Mar10

Page 8 of 11

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3710_Mar10

Page 9 of 11

Conversion Factor Assessment

Deviation from Isotropy in HSL

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3710_Mar10

Page 10 of 11

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Appendix E. Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Quietek (Auden)

Certificate No: D2450V2-839_Mar10

Object	D2450V2 - SN: 8	39	
Calibration procedure(s)	QA CAL-05.v7 Calibration proces	dure for dipole validation kits	
Calibration date:	March 12, 2010		
		robability are given on the following pages an	
		y facility: environment temperature (22 \pm 3)°C	o and fidinidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
Calibration Equipment used (M&		Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086)	Scheduled Calibration Oct-10
Calibration Equipment used (M& Primary Standards Power meter EPM-442A	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086)	Scheduled Calibration Oct-10
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086)	Scheduled Calibration Oct-10 Oct-10
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09)	Scheduled Calibration Oct-10 Oct-10 Mar-10
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator H&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator H&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
Calibration Equipment used (M& Primary Standards Power meter EPM-442A. Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-10
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-10

Certificate No: D2450V2-839_Mar10

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-839_Mar10

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	1.80 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C	5mm);	3044

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.11 mW / g
SAR normalized	normalized to 1W	24.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.5 mW /g ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.4 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.6 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.06 mW / g
SAR normalized	normalized to 1W	24.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.2 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω - 0.6 jΩ
Return Loss	- 29.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.0 \Omega + 0.9 j\Omega$	
Return Loss	- 40.8 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1,134 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	July 20, 2009	

DASY5 Validation Report for Head TSL

Date/Time: 12.03.2010 13:24:52

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:839

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.81 \text{ mho/m}$; $\varepsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.03.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Head/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.1 V/m; Power Drift = 0.060 dB Peak SAR (extrapolated) = 26.5 W/kg

SAR(1 g) = 13 mW/g; SAR(10 g) = 6.11 mW/gMaximum value of SAR (measured) = 16.5 mW/g

0 dB = 16.5 mW/g

Page 6 of 9

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 12.03.2010 15:25:35

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:839

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 54.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 26.06.2009

· Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.03.2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Body/d=10mm, Pin250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.9 V/m; Power Drift = -0.0047 dB Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 13 mW/g; SAR(10 g) = 6.06 mW/gMaximum value of SAR (measured) = 17.2 mW/g

0 dB = 17.2 mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Quietek (Auden)

Certificate No: D5GHzV2-1078_Mar10

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object D5GHzV2 - SN: 1078

Calibration procedure(s) QA CAL-22.v1

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date: March 11, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe EX3DV4	SN: 3503	05-Mar-10 (No. EX3-3503_Mar10)	Mar-11
DAE4	SN: 601	02-Mar-10 (No. DAE4-601_Mar10)	Mar-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
	Name	Function	Signature //

Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Jeton Kastrati

Issued: March 11, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1078_Mar10

Calibrated by:

Page 1 of 14

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC Std 62209 Part 2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", Draft Version 0.9, December 2004
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D5GHzV2-1078_Mar10

Page 2 of 14

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 10 mm	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 2.5 mm	
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36,0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.7 ± 6 %	4.56 mha/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	-	4444

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ² (1 g) of Head TSL	condition	
SAR measured	100 mW input power	8.17 mW / g
SAR normalized	normalized to 1W	81.7 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	82.0 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 mW / g
SAR normalized	normalized to 1W	23.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.1 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1078_Mar10

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.82 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	100 mW input power	8.73 mW / g
SAR normalized	normalized to 1W	87.3 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	87.5 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2,45 mW / g
SAR normalized	normalized to 1W	24.5 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.5 mW / g ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	5.08 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		-

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	condition	
SAR measured	100 mW input power	8.09 mW / g
SAR normalized	normalized to 1W	80.9 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.4 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 mW / g
SAR normalized	normalized to 1W	22.8 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.7 mW/g ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.4 ± 6 %	5.44 mho/m ± 6 %
Body TSL temperature during test	(21.6 ± 0.2) °C		222

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	7.78 mW / g
SAR normalized	normalized to 1W	7.7.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	77.9 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.17 mW / g
SAR normalized	normalized to 1W	21.7 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.8 mW / g ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.8 ± 6 %	5.81 mho/m ± 6 %
Body TSL temperature during test	(21.6 ± 0.2) °C	- 1-	im

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	8.35 mW / g
SAR normalized	normalized to 1W	83,5 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	83.6 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.30 mW / g
SAR normalized	normalized to 1W	23.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.0 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1078_Mar10

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.2 ± 6 %	6.18 mho/m ± 6 %
Body TSL temperature during test	(21.6 ± 0.2) °C		****

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	7.33 mW / g
SAR normalized	normalized to 1W	73.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	73.3 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.02 mW / g
SAR normalized	normalized to 1W	20.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.2 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1078_Mar10

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	$53.4 \Omega - 8.7 j\Omega$
Return Loss	-20.9 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	52.8 Ω - 6.1 j Ω	
Return Loss	-23.7 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	.54.6 Ω - 3.8 jΩ
Return Loss	-24.9 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	53.6 Ω - 8.7 jΩ	
Return Loss	-20.8 dB	

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	51.7 Ω - 5.2 jΩ	
Return Loss	-25.4 dB	

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	55.6 Ω - 1.4 JΩ
Return Loss	-25.2 dB

Certificate No: D5GHzV2-1078_Mar10 Page 7 of 14

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns
	30077.11

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 26, 2008

Certificate No: D5GHzV2-1078_Mar10 Page 8 of 14

DASY5 Validation Report for Head TSL

Date/Time: 10.03.2010 17:25:49

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1078

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz; Duty

Cycle: 1:1

Medium: HSL 5000

Medium parameters used: f = 5200 MHz; $\sigma = 4.56$ mho/m; $\epsilon_r = 36.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.82$ mho/m; $\epsilon_r = 36.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800

MHz; $\sigma = 5.08 \text{ mho/m}$; $\varepsilon_r = 35.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5,36, 5,36, 5,36), ConvF(4.85, 4.85), ConvF(4.74, 4.74, 4.74); Calibrated: 05.03.2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

D5GHzV2 Dipole (Head)/d=10mm, Pin=100mW, f=5200 MHz/Zoom Scan (4x4x2.5mm), dist=2mm

(8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 64.8 V/m; Power Drift = 0.079 dB

Peak SAR (extrapolated) = 30.9 W/kg

SAR(1 g) = 8.17 mW/g; SAR(10 g) = 2.31 mW/g

Maximum value of SAR (measured) = 15.7 mW/g

D5GHzV2 Dipole (Head)/d=10mm, Pin=100mW, f=5500 MHz/Zoom Scan (4x4x2.5mm), dist=2mm

(8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 65.4 V/m; Power Drift = 0.074 dB

Peak SAR (extrapolated) = 35 W/kg

SAR(1 g) = 8.73 mW/g; SAR(10 g) = 2.45 mW/g

Maximum value of SAR (measured) = 17.1 mW/g

D5GHzV2 Dipole (Head)/d=10mm, Pin=100mW, f=5800 MHz/Zoom Scan (4x4x2.5mm), dist=2mm

(8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 62.3 V/m; Power Drift = 0.099 dB

Peak SAR (extrapolated) = 33.5 W/kg

SAR(1 g) = 8.09 mW/g; SAR(10 g) = 2.28 mW/g

Maximum value of SAR (measured) = 16 mW/g

Certificate No: D5GHzV2-1078_Mar10

Page 9 of 14

0 dB = 16 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 11.03.2010 14:40:41

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1078

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz; Duty

Cycle: 1:

Medium: MSL 5000 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.47$ mho/m; $\varepsilon_r = 49.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.84$ mho/m; $\varepsilon_r = 48.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800

MHz; $\sigma = 6.21 \text{ mho/m}$; $\varepsilon_r = 48.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe; EX3DV4 SN3503; ConvF(4,88, 4,88, 4,88), ConvF(4,37, 4,37), ConvF(4,57, 4,57); Calibrated: 05.03.2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 5.0 (back): Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

D5GHzV2 Dipole (Body)/d=10mm, Pin=100mW, f=5200 MHz/Zoom Scan (4x4x2.5mm), dist=2mm

(8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 59.5 V/m; Power Drift = 0.000976 dB

Peak SAR (extrapolated) = 29.6 W/kg

SAR(1 g) = 7.78 mW/g; SAR(10 g) = 2.17 mW/g

Maximum value of SAR (measured) = 15 mW/g

D5GHzV2 Dipole (Body)/d=10mm, Pin=100mW, f=5500 MHz/Zoom Scan (4x4x2.5mm), dist=2mm

(8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 60.4 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 34 W/kg

SAR(1 g) = 8.35 mW/g; SAR(10 g) = 2.3 mW/g

Maximum value of SAR (measured) = 16.4 mW/g

D5GHzV2 Dipole (Body)/d=10mm, Pin=100mW, f=5800 MHz/Zoom Scan (4x4x2.5mm), dist=2mm

(8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 55.3 V/m; Power Drift = 0.012 dB

Peak SAR (extrapolated) = 31.4 W/kg

SAR(1 g) = 7.33 mW/g; SAR(10 g) = 2.02 mW/g

Maximum value of SAR (measured) = 14.5 mW/g

Certificate No: D5GHzV2-1078_Mar10

Page 12 of 14

0 dB = 14.5 mW/g

Certificate No: D5GHzV2-1078_Mar10

Page 13 of 14

Impedance Measurement Plot for Body TSL

