Graphes Représentation carte Course d'Orientation

Christophe Viroulaud

Terminale - NSI

Algo 13

Graphes Représentation carte Course d'Orientation

Notion de graphe

1 TOPTICECS

mémoire

latrice d adjacence

Passage d'une structure à

Représentation de la cart de CO

Graphes Représentation carte Course d'Orientation

otion de graphe

Propriétés

Représentations er

Matrice d'adjacence

Dictionnaire d'adjacence Passage d'une structure à l'autre

Représentation de la cart de CO

Graphes Représentation carte Course d'Orientation

lotion de graphe Vocabulaire

Représentations en mémoire

Dictionnaire d'adjacence
Passage d'une structure à l'autre
Représentation de la carte de CO

Comment représenter un graphe en mémoire?

Graphes Représentation carte Course d'Orientation

Notion de graphe

Vocabulan

Froprietes

mémoire

Natrice d'adjacence

Passage d'une structure à

Représentation de la cartide CO

Sommaire

Graphes Représentation carte Course d'Orientation

Notion de graphe

Vocabulai

Propriétés

Représentations en mémoire

Matrice d'adjacence

Dictionnaire d'adjacence Passage d'une structure

> autre 'eprésentation de la cart

Représentation de la cart de CO

1. Notion de graphe

- 1.1 Vocabulaire
- 1.2 Propriétés
- 2. Représentations en mémoire

Notion de graphe

Graphes Représentation carte Course d'Orientation

Notion de graphe

Vocabulai

Proprietes

Représentations en mémoire

Matrice d'adjacence

Dictionnaire d'adjacence Passage d'une structure

Représentation de la car

Un graphe est défini par :

- ses sommets (ou nœuds),
- ses arêtes (ou arcs) qui relient deux sommets.

Vocabulaire

À retenir

- L'ordre du graphe est le nombre de ses sommets.
- Un graphe est non orienté quand ses arêtes peuvent être parcourues dans les deux sens.

FIGURE 1 – Graphe non orienté d'ordre 4

Graphes Représentation carte Course d'Orientation

Notion de graphe

vocabalan.

Propriétés

Représentations en mémoire

atrice d'adjacence

Dictionnaire d'adjacence Passage d'une structure : l'autre

Représentation de la carte le CO

Deux sommets reliés par une arête sont **adjacents**.

Graphes Représentation carte Course d'Orientation

Notion de graphe

Vocabulaire

Toprietes

Représentations en mémoire

atrice d'adjacence

Dictionnaire d'adjacence Passage d'une structure à l'autre

Représentation de la carte de CO

- Deux sommets reliés par une arête sont **adjacents**.
- ► Le **degré d'un sommet** est le nombre d'arêtes de ce sommet.

Graphes Représentation carte Course d'Orientation

Notion de graphe

Vocabulaire

Toprietes

Représentations en mémoire

latrice d'adjacence

Dictionnaire d'adjacence Passage d'une structure : l'autre

Représentation de la carte le CO

Un graphe est **complet** si tous les sommets sont adjacents à tous les autres.

FIGURE 2 - Graphe complet d'ordre 4

Graphes Représentation carte Course d'Orientation

Notion de graphe

Vocabulaire

Toprietes

Représentations en mémoire

atrice d'adjacence

Passage d'une structure à

Représentation de la carte de CO

Sommaire

Graphes Représentation carte Course d'Orientation

Notion de graphe

Vocabulain

Propriétés

Représentations en mémoire

Matrice d'adjacence

Dictionnaire d'adjacence Passage d'une structure

autre Représentation de la cart

Représentation de la carte de CO

- 1. Notion de graphe
- 1.1 Vocabulaire
- 1.2 Propriétés
- 2. Représentations en mémoire

Propriétés

À retenir

La somme des degrés d'un graphe est pair.

$$\sum_{s \in S} deg(s) = 2.A$$

 $\ensuremath{\mathrm{Figure}}$ 3 – Chaque arête est comptée deux fois.

Graphes Représentation carte Course d'Orientation

Notion de graphe Vocabulaire

Propriétés

Représentations en mémoire

atrice d'adjacence

Passage d'une structure à l'autre

Représentation de la carte le CO

Un arbre est un graphe qui ne possède pas de cycle.

FIGURE 4 – Graphe avec au moins un cycle.

FIGURE 5 – Arbre

Graphes Représentation carte Course d'Orientation

lotion de graphe

Propriétés

Représentations en mémoire

Matrice d'adjacence
Dictionnaire d'adjacence
Passage d'une structure à l'autre
Représentation de la carte

Sommaire

Graphes Représentation carte Course d'Orientation

Notion de graphe

Vocabulair

Propriétés

Représentations en mémoire

Matrice d'adjacence

Dictionnaire d'adjacence Passage d'une structure

l'autre

Représentation de la cart e CO

1. Notion de graphe

- 2. Représentations en mémoire
- 2.1 Matrice d'adjacence
- 2.2 Dictionnaire d'adjacence
- 2.3 Passage d'une structure à l'autre
- 2.4 Représentation de la carte de CO

Représentations en mémoire - matrice d'adjacence

À retenir

La **matrice d'adjacence** est la représentation mathématique dont le terme a_{ij} vaut 1 si les sommets i et j sont reliés par une arête et 0 sinon.

				0	
1	0	0	0	0	0
1	0	0	1	1	0
0	0	1	0	0	1
				0	
$\backslash 1$	0	0	1	0	0/

Graphes Représentation carte Course d'Orientation

Vocabulaire
Propriétés

mémoire

Matrice d'adjacence

Dictionnaire d'adjacence
Passage d'une structure à
l'autre
Représentation de la carte

Matrice d'adjacence

Passage d'une structure à l'autre

Représentation de la cart de CO

	Α	В	C	D	Ε	F
Α	0	1	1	0	0	1
В	1	0	0	0	0	0
C	1	1 0 0 0 0	0	1	1	0
D	0	0	1	0	0	1
Ε	0	0	1	0	0	0
F	1	0	0	1	0	0

Remarque

Dans un graphe non orienté la matrice est symétrique.

Activité 1:

- Déterminer une structure de données permettant de représenter en mémoire la matrice d'adjacence représentative d'un graphe dont les sommets sont des entiers commençant à 0.
- 2. Construire la matrice d'adjacence du graphe suivant :

- 3. Écrire la fonction est_symetrique(mat: list)
 - ightarrow bool qui renvoie True si la matrice est symétrique.

Graphes Représentation carte Course d'Orientation

lotion de graphe /ocabulaire

Propriétés

mémoire

Matrice d'adjacence

Dictionnaire d'adjacence Passage d'une structure à l'autre Représentation de la carte

Correction

Code 1 – Tableau de tableau

Graphes Représentation carte Course d'Orientation

Vocabulaire Propriétés

Représentations en mémoire

Matrice d'adjacence

Dictionnaire d'adjacence
Passage d'une structure à
l'autre
Représentation de la carte

Observation

Cette représentation peut être gourmande en mémoire : si le nombre d'arêtes est faible, la structure contient peu d'informations. La matrice est **creuse**.

Graphes Représentation carte Course d'Orientation

Notion de graphe

Propriétés

Représentations en mémoire

Matrice d'adjacence

Dictionnaire d'adjacence Passage d'une structure à l'autre

Représentation de la carte

Graphes Représentation carte Course d'Orientation

```
Propriétés

Représentations er
```

```
Matrice d'adjacence
```

```
Dictionnaire d'adjacence
Passage d'une structure à
l'autre
```

Représentation de la cart de CO

```
def est_symetrique(mat: list) -> bool:
    for i in range(len(mat)):
        for j in range(len(mat)):
        if mat[i][j] != mat[j][i]:
        return False
    return True
```

Graphes Représentation carte Course d'Orientation

```
Propriétés

Représentations mémoire

Matrice d'adjacence

Dictionnaire d'adjacence
```

Passage d'une structure à l'autre

Représentation de la car de CO

```
def est_symetrique(mat: list) -> bool:
    for i in range(len(mat)):
        # on limite le parcours au triangle haut
    for j in range(i, len(mat)):
        if mat[i][j] != mat[j][i]:
            return False
    return True
```

Code 2 – version optimisée : inutile de parcourir toute la matrice

Sommaire

- 1. Notion de graphe
- 2. Représentations en mémoire
- 2.1 Matrice d'adjacence
- 2.2 Dictionnaire d'adjacence
- 2.3 Passage d'une structure à l'autre
- 2.4 Représentation de la carte de CO

Graphes Représentation carte Course d'Orientation

Notion de graphe

VOCADUIAII

Proprietes

mémoire

latrice d'adjacence

Dictionnaire d'adjacence

Passage d'une structure à l'autre

Représentation de la carte de CO

Dictionnaire d'adjacence

À retenir

Un dictionnaire d'adjacence liste les sommets adjacents à chaque sommet.

- ► A : B, C, F
- ▶ B : A
- ► C : A, D, E
- ▶ D : C, F
- ▶ E : C
- ► F : A, D

Graphes Représentation carte Course d'Orientation

Notion de graphe Vocabulaire

Représentations er

atrice d'adjacence

Dictionnaire d'adjacence Passage d'une structure à

Représentation de la cart de CO

Activité 2 : Construire le dictionnaire d'adjacence en Python du graphe suivant :

Graphes Représentation carte Course d'Orientation

Notion de graphe

0

Froprietes

Représentations en mémoire

latrice d'adjacence

Dictionnaire d'adjacence Passage d'une structure à

autre

Représentation de la cart de CO

Correction

Code 3 - Dictionnaire de tableau

Graphes Représentation carte Course d'Orientation

Vocabulaire

Représentations en mémoire

atrice d'adjacence

Dictionnaire d'adjacence Passage d'une structure à

autre eprésentation de la carte

Sommaire

- 1. Notion de graphe
- 2. Représentations en mémoire
- 2.1 Matrice d'adjacence
- 2.2 Dictionnaire d'adjacence
- 2.3 Passage d'une structure à l'autre
- 2.4 Représentation de la carte de CO

Graphes Représentation carte Course d'Orientation

Notion de graphe

vocabulair

Proprietes

Représentations en mémoire

Dictionnaire d'adiacence

Passage d'une structure à l'autre

Représentation de la carte de CO

Passage d'une structure à l'autre

Activité 3 : Écrire la fonction mat_to_dic(mat: list) → dict qui construit le dictionnaire d'adjacence à partir de la matrice d'adjacence.

Indication : Les nœuds sont nommés en suivant l'ordre alphabétique majuscule. La première ligne de la matrice représente les adjacences de A. La fonction native chr(n: int) → str renvoie le caractère correspondant au point de code UTF-8 n.

Graphes Représentation carte Course d'Orientation

Notion de graphe Vocabulaire

Représentations en mémoire

Dictionnaire d'adjacence Passage d'une structure à l'autre

Représentation de la cart de CO

13

```
1
   def mat to dic(mat: list) -> dict:
        dico = {}
2
        for i in range(len(mat)):
3
            # nom du noeud
4
            noeud = chr(65+i)
5
            dico[noeud] = []
6
            for j in range(len(mat[i])):
                if mat[i][j] == 1:
9
                     # noeud adjacent
10
                     adj = chr(65+j)
11
12
                     dico[noeud].append(adj)
```

return dico

Vocabulaire Propriétés

Représentations (

Matrice d'adjacence Dictionnaire d'adjacence

Passage d'une structure à l'autre

Représentation de la carte e CO

Graphes Représentation carte Course d'Orientation

Notion de graphe Vocabulaire

Représentations en mémoire

Dictionnaire d'adjacence Passage d'une structure à

Représentation de la cart de CO

l'autre

Activité 4 : Écrire la fonction dic_to_mat(dic: dict) → list qui construit la matrice d'adjacence à partir de la matrice d'adjacence.

<u>Indication</u>: La fonction native $\mathtt{ord}(\mathtt{c}\colon\mathtt{str})\to\mathtt{int}$ renvoie le point de code UTF-8 correspondant au caractère \mathtt{c} .

```
Vocabulaire
Propriétés
```

Représentations en mémoire

Dictionnaire d'adjacence

Passage d'une structure à l'autre

```
def dic_to_mat(dic: dict) -> list:
1
       # taille de la matrice connue
2
       mat = [ [0 for _ in range(len(dic))]
 3
                    for _ in range(len(dic)) ]
4
        for noeud, adjacents in dic.items():
5
6
            # indice de la ligne
            ind noeud = ord(noeud)-65
9
            for adj in adjacents:
                # indice de la colonne
10
                ind_adj = ord(adj)-65
11
12
                mat[ind_noeud][ind_adj] = 1
13
       return mat
```

Sommaire

- 2. Représentations en mémoire
- 2.1 Matrice d'adjacence
- 2.2 Dictionnaire d'adjacence
- 2.3 Passage d'une structure à l'autre
- 2.4 Représentation de la carte de CO

Graphes Représentation carte Course d'Orientation

Notion de graphe

Propriétés

Proprietes

Représentations en mémoire

Matrice d'adjacence

Passage d'une structure

Représentation de la carte de CO

Activité 5 : L'organisme qui maintient les cartes à jour stocke les informations dans un fichier json.

- Télécharger le dossier compressé representation-co.zip et extraire le fichier parcours_noir.json
- 2. Ouvrir le fichier et observer la structure des données.
- 3. Créer le fichier parcours_noir.py
- 4. Importer les données json.
- 5. Créer le dictionnaire d'adjacence associé à la carte de CO de la forme

```
1 {7: [17, 19, 45], 10: [18, 21, 43], 12: [26, 32],...}
```

Dictionnaire d'adjacence Passage d'une structure à

Représentation de la carte

```
import json
1
2
3
   f = open("parcours noir.json")
   donnees = json.load(f) # tableau de dictionnaires
   dico adj = {}
5
   for info in donnees:
        sommet = info["sommet"]
8
       adjacents = info["adjacents"]
       dico_adj[sommet] = adjacents
9
   f.close()
10
```