CS 228 : Logic in Computer Science

Krishna. S

Normal Forms : CNF Validity

Let $\varphi = C_1 \wedge C_2 \wedge \cdots \wedge C_n$ be in CNF.

- ▶ Checking if φ is satisfiable is NP-complete.
- \blacktriangleright Checking if φ is valid is polynomial time. Why?
- Question raised in class: If validity check is polynomial time, so should be satisfiability. Is this true?
- If φ is valid, it is indeed satisfiable
- If φ is not valid, then...?

Normal Forms: DNF Satisfiability

Let $\varphi = D_1 \vee D_2 \vee \cdots \vee D_n$ be in DNF.

- ▶ Checking if φ is valid is NP-complete. Why?
- ▶ Checking if φ is satisfiable is polynomial time. Why?

Normal Forms from Truth Tables

Assume you are given the truth table of a formula φ . Then it is very easy to obtain the equivalent CNF/DNF of φ .

Normal Forms from Truth Tables

Assume you are given the truth table of a formula φ . Then it is very easy to obtain the equivalent CNF/DNF of φ .

- ▶ Consider for example $\varphi = \mathbf{p} \leftrightarrow \mathbf{q}$.
- ▶ Truth table of φ : φ is false when p = T, q = F and p = F, q = T.

Normal Forms from Truth Tables

Assume you are given the truth table of a formula φ . Then it is very easy to obtain the equivalent CNF/DNF of φ .

- ▶ Consider for example $\varphi = \mathbf{p} \leftrightarrow \mathbf{q}$.
- ▶ Truth table of φ : φ is false when p = T, q = F and p = F, q = T.
- ▶ CNF equivalent is $(\neg p \lor q) \land (p \lor \neg q)$.

- ▶ What is the equivalent DNF formula?

$$\varphi = (p_1 \vee q_1) \wedge (p_2 \vee q_2) \wedge \dots (p_n \vee q_n)$$

▶ What is the equivalent DNF formula?

$$arphi' = \bigvee_{S \subseteq \{1,...,n\}} (\bigwedge_{i \in S} p_i \wedge \bigwedge_{i \notin S} q_i)$$

- What is the equivalent DNF formula?

•

$$arphi' = \bigvee_{S \subseteq \{1,...,n\}} (\bigwedge_{i \in S} p_i \wedge \bigwedge_{i \notin S} q_i)$$

▶ Prove that any equivalent DNF formula has 2ⁿ clauses

- What is the equivalent DNF formula?

$$arphi' = igvee_{\mathcal{S} \subset \{1,...,n\}} (igwedge_{i \in \mathcal{S}} p_i \wedge igwedge_{i
otin \mathcal{S}} q_i)$$

- ▶ Prove that any equivalent DNF formula has 2ⁿ clauses
- ▶ Call an assignment *minimal* if it maps exactly one of p_i , q_i to 1

- What is the equivalent DNF formula?

$$arphi' = igvee_{S \subseteq \{1,...,n\}} (igwedge_{i \in S} p_i \wedge igwedge_{i
otin S} q_i)$$

- ▶ Prove that any equivalent DNF formula has 2ⁿ clauses
- ▶ Call an assignment *minimal* if it maps exactly one of p_i , q_i to 1
- ▶ There are 2^n minimal assignments, satisfying clauses in φ' ✓
- Show that no two *minimal* assignments satisfy the same clause of φ' (hence there must be 2^n clauses in φ')

Let α and β be two minimal assignments such that $\alpha(p_i) \neq \beta(p_i)$ for $i \in \{1, ..., n\}$

- Let α and β be two minimal assignments such that $\alpha(p_i) \neq \beta(p_i)$ for $i \in \{1, ..., n\}$
- ▶ Define a new assignment $\min(\alpha, \beta)$ as a pointwise min of α, β
- **∂** = $\min(\alpha, \beta)(p) = \min(\alpha(p), \beta(p))$ for each variable p with the assumption that 0 < 1, 0 represents false and 1 represents true

- Let α and β be two minimal assignments such that $\alpha(p_i) \neq \beta(p_i)$ for $i \in \{1, ..., n\}$
- ▶ Define a new assignment $\min(\alpha, \beta)$ as a pointwise min of α, β
- ▶ $\min(\alpha, \beta)(p) = \min(\alpha(p), \beta(p))$ for each variable p with the assumption that 0 < 1, 0 represents false and 1 represents true
- $\blacktriangleright \min(\alpha,\beta) \nvDash p_i \vee q_i, \min(\alpha,\beta) \nvDash \varphi'$

- Let α and β be two minimal assignments such that $\alpha(p_i) \neq \beta(p_i)$ for $i \in \{1, ..., n\}$
- ▶ Define a new assignment $\min(\alpha, \beta)$ as a pointwise min of α, β
- ▶ $\min(\alpha, \beta)(p) = \min(\alpha(p), \beta(p))$ for each variable p with the assumption that 0 < 1, 0 represents false and 1 represents true
- $\blacktriangleright \min(\alpha,\beta) \nvDash p_i \vee q_i, \min(\alpha,\beta) \nvDash \varphi'$
- ▶ However, if $\alpha \models D_j$ and $\beta \models D_j$ for some clause D_j of φ' , then $\min(\alpha, \beta) \models D_j$ and hence $\min(\alpha, \beta) \models \varphi'$, a contradiction.

Think of an example where DNF to CNF explodes.