Devoir sur la représentation des nombres en IEEE 754

EBANDA MBARGA Eric Jordan Matricule : 21T2462

1. Identification des nombres limites en simple et double précision

En Simple Précision

- Plus petit nombre positif représentable (dénormalisé): Environ 1.4×10^{-45} . Ce nombre est obtenu avec un exposant nul (indiquant un nombre dénormalisé) et la plus petite mantisse possible, soit 2^{-149} .
- Plus petit nombre négatif représentable (dénormalisé) : Environ -1.4×10^{-45} . Ce nombre est similaire au cas positif, avec le signe inversé.
- Plus grand nombre positif représentable : Environ 3.4×10^{38} . Ce nombre est obtenu avec un exposant de 254 et une mantisse composée uniquement de 1, soit calculé par $(2-2^{-23}) \times 2^{127}$.
- Plus grand nombre négatif représentable : Environ -3.4×10^{38} , avec une valeur similaire au cas positif mais un signe opposé.

En Double Précision

- Plus petit nombre positif représentable (dénormalisé) : Environ 4.9×10^{-324} , avec un exposant nul et la plus petite mantisse possible, soit 2^{-1074} .
- Plus petit nombre négatif représentable (dénormalisé) : Environ -4.9×10^{-324} , similaire au cas positif avec un signe inversé.
- Plus grand nombre positif représentable : Environ 1.8×10^{308} , calculé avec un exposant de 1023 et la mantisse maximale, soit $(2-2^{-52}) \times 2^{1023}$.
- Plus grand nombre négatif représentable : Environ -1.8×10^{308} .

2. Calcul des écarts entre nombres consécutifs

En Simple Précision

- Plus petit écart entre deux nombres consécutifs : Environ 1.4×10^{-45} , correspondant à la différence entre le plus petit nombre positif représentable, 2^{-149} , et zéro.
- Plus grand écart entre deux nombres consécutifs : Environ 2×10^{31} , entre les deux plus grands nombres consécutifs proches de 3.4×10^{38} et $3.4 \times 10^{38} 2^{104}$.

En Double Précision

- Plus petit écart entre deux nombres consécutifs : Environ 4.9×10^{-324} , soit la différence entre 2^{-1074} et zéro.
- Plus grand écart entre deux nombres consécutifs : Environ 2×10^{292} , entre 1.8×10^{308} et $1.8 \times 10^{308} 2^{971}$.

3. Gestion des cas exceptionnels selon la norme IEEE 754

- Overflow (dépassement de capacité) : Se produit lorsqu'un calcul dépasse le nombre maximal représentable. Il est alors représenté par $+\infty$ ou $-\infty$.
- Underflow (sous-capacité) : Lorsque le calcul produit un résultat inférieur au minimum normalisé, on utilise des nombres dénormalisés pour représenter ce résultat.
- Exposant nul : Si la mantisse est non nulle, cela indique un nombre dénormalisé. Si la mantisse est également nulle, cela représente zéro.
- Mantisse nulle : Si l'exposant est différent de zéro, cela correspond à une puissance de 2. Si l'exposant est nul, cela représente zéro.

4. Exposants valides et cas d'exception

- Nombre d'exposants valides :
 - Simple précision : 254, allant de 1 à 254.
 - Double précision : 2046, allant de 1 à 2046.
- Exposants réservés :
 - L'exposant 0 est réservé pour les nombres dénormalisés ou zéro.
 - L'exposant maximum (255 en simple précision et 2047 en double précision) est réservé pour représenter $+\infty$, $-\infty$, ou NaN.

5. Exercice 4 du support de cours

Question : Quelle est l'erreur commise lors du stockage d'une puissance de 2 dans l'intervalle [minF, maxF] ?

Réponse : Lorsqu'une puissance de 2 est stockée dans cet intervalle, l'erreur de stockage est nulle. Cependant, en dehors de cet intervalle, l'erreur peut devenir infinie (en cas d'overflow) ou être limitée (en cas d'underflow).