Análise Transitória

A resposta temporal de um sistema é constituída de duas partes:

- Resposta transitória: saída do sistema vista desde o princípio até um instante de tempo no qual o sistema se estabiliza numa região de operação.
 Esse intervalo de tempo transitório geralmente apresenta oscilações amortecidas.
- Resposta estacionária: comportamento da saída do sistema à medida em que $t \to \infty$.

Objetivo

Determinar o que ocorre com a saída y(t) quando o sistema é submetido a uma determinada entrada-padrão em r(t).

A entrada-padrão, ou entrada de teste, é uma entrada na forma de impulso, degrau, rampa, parábola ou senóide. Muitas propriedades essenciais de um sistema podem ser determinadas através da resposta correspondente a essas entradas de teste.

Análise de Sistemas de Primeira Ordem

Muito utilizados para descrever processos simples, como a velocidade de uma massa, a temperatura de um líquido em um tanque, o nível de um tanque e a tensão num circuito RC série.

Possuem função de transferência abaixo, sendo k o ganho e τ a constante de tempo do sistema.

$$T(s) = \frac{Y(s)}{R(s)} = \frac{k}{\tau s + 1}$$

$$\frac{R(s)}{\tau s + 1} \underbrace{\frac{Y(s)}{Y(s)}}_{K(s)}$$

Resposta ao impulso unitário

Para $r(t) = \delta(t)$, tem-se que R(s) = 1. Portanto,

$$Y(s) = \frac{k}{\tau s + 1} \Rightarrow y(t) = \frac{k}{\tau} e^{-t/\tau}, \ t \ge 0$$

Circuito RC

O circuito RC é amplamente usado na Eletrônica. Conhecer bem o seu funcionamento é muito importante. É possível provar que (homework)

$$G(s) = \frac{V_i(s)}{V_o(s)} = \frac{1}{1 + RCs}$$

Exemplo

Suponha que $R = 1k\Omega$ e C = 1mF.

- (a) Determine o valor de pico de tensão sobre o capacitor C quando a entrada V_i é um **pulso**.
- (b) Determine o tempo necessário para que o capacitor apresente uma tensão inferior a $0.15\,V$.

Solução: Note que k=1 e $\tau=RC=1$. O valor de pico ocorre no instante inicial e é dado por $1/\tau=1$ V.

Relembrando a fórmula $y(t) = \frac{k}{\tau} e^{-t/\tau}$, determine o tempo t_a tal que

$$0.15 = 1e^{-t_a}$$
.

Resposta ao degrau unitário

$$Y(s) = \frac{k}{\tau s + 1} \cdot \frac{1}{s} = \frac{k/\tau}{s(s + 1/\tau)}$$
$$= \frac{k}{s} - \frac{k}{s + (1/\tau)}$$
$$y(t) = k - ke^{-t/\tau}, \ t \ge 0$$

- Note que y(0) = 0 e que $y(\infty) = k$.
- Quanto menor a constante de tempo au, mais rápido o sistema responde.
- A inclinação da reta tangente em t = 0 é k/τ .
- Para $t \ge 4\tau$, a resposta se mantém a 2% do valor final.

Homework

Suponha que $R=1k\Omega$ e C=0.01mF. Determine o tempo necessário para que um capacitor apresente uma tensão superior a 95% de sua tensão de entrada (tensão de entrada degrau amplitude A).

Resposta à rampa unitária

$$Y(s) = \frac{Y(s)}{R(s)} = \frac{1}{s^2} \cdot \frac{k}{\tau s + 1} = \frac{k/\tau}{s^2 (s + 1/\tau)}$$
$$= \frac{k}{s^2} - \frac{k\tau}{s} + \frac{k\tau}{s + 1/\tau}$$

$$y(t) = kt - k\tau + k\tau e^{-t/\tau}, \ t \ge 0$$

Particularmente, para k = 1, o sinal de erro é dado por:

$$e(t) = r(t) - y(t) = \tau \left(1 - e^{-t/\tau}\right)$$

O erro de estado permanente para k=1 é dado por

$$e(\infty) = \lim_{t \to \infty} e(t) = \tau$$

Com base nas respostas obtidas para sistemas de primeira ordem, pode-se verificar que:

• Para entrada rampa unitária, a saída é dada por:

$$y_1(t) = kt - k\tau + k\tau e^{-t/\tau}, \ t \ge 0$$

• Para entrada degrau unitário, a saída é dada por:

$$y_2(t) = k - ke^{-t/\tau}, \ t \ge 0 = \frac{d y_1(t)}{dt}$$

• para a entrada impulso unitário, a saída é dada por:

$$y_3(t) = \frac{k}{\tau} e^{-t/\tau}, \ t \ge 0 = \frac{d y_2(t)}{dt}$$

- Conclusão 1: para um sistema LIT, a resposta à derivada de um sinal de entrada pode ser obtida diferenciando-se a resposta original.
- Conclusão 2: a resposta à integral do sinal original pode ser obtida pela integral da resposta do sistema ao sinal original e pela determinação da constante de integração a partir da condição inicial da resposta nula.

Análise de Sistemas de Segunda Ordem

Exemplos de sistemas com modelos de segunda ordem: posição de uma massa num sistema massa-mola-atrito, deslocamento angular do eixo de um motor DC (modelo simplificado) e carga no capacitor de um circuito RLC série.

A forma padrão de um sistema de segunda ordem é dada por

$$T(s) = \frac{Y(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2s\xi\omega_n + \omega_n^2},$$

onde:

- ω_n : frequência natural não amortecida;
- ξ : coeficiente de amortecimento;
- $\omega_d = \omega_n \sqrt{1 \xi^2}$: frequência natural amortecida do sistema.

A equação característica é dada por $s^2+2s\xi\omega_n+\omega_n^2$, portanto, o comportamento dinâmico do sistema de $2^{\rm a}$ ordem pode ser descrito pelos parâmetros ξ e ω_n .

Dependendo do valor de ξ , tem-se três tipos de sistemas de $2^{\rm a}$ ordem:

• Sistema subamortecido ($0 < \xi < 1$): Os polos de malha fechada são complexos conjugados e se situam no semiplano esquerdo do plano s. Nesse caso, as raízes da equação característica são:

$$s_{1,2} = -\xi \omega_n \pm j\omega_n \sqrt{1 - \xi^2} = -\xi \omega_n \pm j\omega_d,$$

E a função de transferência é dada por:

$$\frac{Y(s)}{R(s)} = \frac{\omega_n^2}{(s + \xi \omega_n + j\omega_d)(s + \xi \omega_n - j\omega_d)}$$

Pode-se reescrever a função de transferência como:

$$\frac{Y(s)}{R(s)} = \frac{\omega_n^2}{(s + \xi \omega_n)^2 + \omega_d^2}$$

pois, tem-se:

$$(s + \xi\omega_n)^2 = s^2 + 2s\xi\omega_n + \xi^2\omega_n^2$$

$$(s + \xi\omega_n)^2 \underbrace{-\xi^2\omega_n^2 + \omega_n^2}_{\omega_d^2} = s^2 + 2s\xi\omega_n + \omega_n^2$$

$$(s + \xi\omega_n)^2 + \omega_d^2 = s^2 + 2s\xi\omega_n + \omega_n^2$$

Portanto, para entrada degrau unitário, R(s) = 1/s, tem-se:

$$Y(s) = \frac{\omega_n^2}{\left(s + \xi \omega_n\right)^2 + \omega_d^2} \cdot \frac{1}{s}$$

Utilizando-se frações parciais, encontra-se:

$$Y(s) = \frac{1}{s} - \frac{s + 2\xi\omega_n}{(s + \xi\omega_n)^2 + \omega_d^2}$$

$$= \frac{1}{s} - \frac{s + \xi\omega_n}{(s + \xi\omega_n)^2 + \omega_d^2} - \frac{\xi\omega_n}{(s + \xi\omega_n)^2 + \omega_d^2}$$

$$= \frac{1}{s} - \frac{s + \xi\omega_n}{(s + \xi\omega_n)^2 + \omega_d^2} - \frac{\left(\frac{\xi}{\sqrt{1 - \xi^2}}\right)\omega_d}{(s + \xi\omega_n)^2 + \omega_d^2}$$

Como
$$\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}=1$$
 e

$$\mathcal{L}^{-1}\left\{rac{s+\xi\omega_n}{\left(s+\xi\omega_n
ight)^2+\omega_d^2}
ight\} = e^{-\xi\omega_n t}\cos\left(\omega_d t
ight),$$
 $\mathcal{L}^{-1}\left\{rac{\omega_d}{\left(s+\xi\omega_n
ight)^2+\omega_d^2}
ight\} = e^{-\xi\omega_n t}\sin\left(\omega_d t
ight),$

Tem-se:

$$egin{array}{lll} y(t) & = & \mathcal{L}^{-1}\left\{Y(s)
ight\} = 1 - \mathrm{e}^{-\xi\omega_n t}\left(\cos\left(\omega_d t
ight) + rac{\xi}{\sqrt{1-\xi^2}}\sin\left(\omega_d t
ight)
ight) \ \\ & = & 1 - rac{\mathrm{e}^{-\xi\omega_n t}}{\sqrt{1-\xi^2}}\sin\left(\omega_d t + heta
ight), \ \ t \geq 0, \end{array}$$

onde $\theta = \tan^{-1}\left(\frac{\sqrt{1-\xi^2}}{\xi}\right)$. O termo $\xi\omega_n = \alpha$ controla o amortecimento do sistema e é chamado de **coeficiente de atenuação**.

A frequência de oscilação transitória é a frequência natural amortecida (ω_d), que varia de acordo com ξ . O sinal de erro é dado por:

$$e(t) = r(t) - y(t)$$

$$= \frac{e^{-\xi \omega_n t}}{\sqrt{1 - \xi^2}} \sin(\omega_d t + \theta)$$

Se $\xi = 0$, pode-se verificar que:

$$y(t)=1-\cos\left(\omega_n t\right), \quad t\geq 0,$$

ou seja, a resposta oscila na frequência natural sem amortecimento. Nesse caso, os polos estão sobre o eixo imaginário.

• Sistema criticamente amortecido ($\xi=1$): Os polos de malha fechada são reais e iguais, situados em $-\omega_n$. Nesse caso, tem-se:

$$\frac{Y(s)}{R(s)} = \frac{\omega_n^2}{(s + \omega_n)(s + \omega_n)}$$

Para uma entrada degrau unitário, R(s) = 1/s, tem-se a saída:

$$Y(s) = \frac{\omega_n^2}{(s + \omega_n)^2 s}$$

A transformada inversa de Laplace de Y(s) é dada por:

$$y(t) = 1 - e^{-\omega_n t} (1 + \omega_n t), \quad t \ge 0$$

• Sistema superamortecido ($\xi > 1$): Os polos de malha fechada são reais e diferentes. Nesse caso, tem-se:

$$\frac{Y(s)}{R(s)} = \frac{\omega_n^2}{\left(s + \xi \omega_n + \omega_n \sqrt{\xi^2 - 1}\right) \left(s + \xi \omega_n - \omega_n \sqrt{\xi^2 - 1}\right)}$$

Para entrada degrau,

$$Y(s) = \frac{\omega_n^2}{\left(s + \xi \omega_n + \omega_n \sqrt{\xi^2 - 1}\right) \left(s + \xi \omega_n - \omega_n \sqrt{\xi^2 - 1}\right)} \frac{1}{s}$$
$$y(t) = 1 + \frac{\omega_n}{2\sqrt{\xi^2 - 1}} \left(\frac{e^{-s_1 t}}{s_1} - \frac{e^{-s_2 t}}{s_2}\right), \quad t > 0$$

Se $|s_1| << |s_2|$, então e^{-s_2t} decai muito mais rápido do que e^{-s_1t} , s_1 é polo dominante, e a resposta pode ser aproximada por um sistema de primeira ordem:

$$y(t) \approx 1 + \frac{\omega_n}{2\sqrt{\xi^2 - 1}} \left(\frac{e^{-s_1 t}}{s_1}\right), \quad t > 0$$

B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil

Especificações da Resposta Transitória para Sistemas Subamortecidos

- As características de um sistema de controle são geralmente especificadas em termos da resposta transitória a uma entrada degrau.
- Para sistemas LIT, quando a resposta ao degrau é conhecida, pode-se calcular a resposta a qualquer tipo de entrada.
- Costuma-se utilizar condição inicial de sistema em repouso.

Especificações mais comuns:

- **Tempo de atraso** (t_d) : tempo necessário para que a resposta alcance metade do seu valor final pela primeira vez.
- Tempo de subida (t_r) : tempo requerido para que a resposta passe de 10% a 90%, ou de 5% a 95%, ou de 0% a 100% do valor final. Para sistemas de 2^a ordem subamortecido, utiliza-se 0% a 100% do valor final. Para sistemas superamortecidos, geralmente considera-se de 10% a 90%.
- **Tempo de pico** (t_p) : tempo para que a resposta atinja o primeiro pico de sobresinal.

 Máximo overshoot (M_O): valor máximo de pico da curva de resposta, medido a partir da unidade. Se o valor da resposta em regime diferir da unidade, utiliza-se a porcentagem máxima de sobresinal (ou ultrapassagem percentual, U.P.):

$$U.P. = \frac{y(t_p) - y(\infty)}{y(\infty)} \times 100\%$$

• Tempo de acomodação ou assentamento) (t_s): tempo necessário para que a resposta permaneça com valores no interior de uma certa faixa $\pm \Delta$ (usualmente $\pm 2\%$ ou $\pm 5\%$) em torno do valor final.

Considerações de projeto:

- Deseja-se geralmente que a resposta transitória seja rápida e amortecida.
- Para um sistema de 2^a ordem com resposta transitória aceitável, deve-se fazer $0.4 < \xi < 0.8$.
- Valores pequenos ($\xi < 0,4$) resultam em excessivo sobresinal na resposta transitória.
- Valores grandes ($\xi > 0, 8$) a resposta se torna muito lenta.
- Sobresinal e tempo de subida são conflitantes entre si, ou seja, eles não podem ser diminuídos simultaneamente.

Cálculo das Especificações de Transitório

As especificações de tempo de subida, tempo de pico, máximo sobresinal e tempo de acomodação podem ser obtidos em função dos parâmetros ξ e ω_n .

• Tempo de subida t_r : fazendo-se $t=t_r$ na equação da resposta ao degrau do sistema subamortecido, tem-se:

$$y(t_r) = 1 = 1 - e^{-\xi \omega_n t_r} \left(\cos(\omega_d t_r) + \frac{\xi}{\sqrt{1 - \xi^2}} \sin(\omega_d t_r) \right)$$

Como $e^{-\xi\omega_n t_r} \neq 0$, tem-se:

$$\cos(\omega_d t_r) + \frac{\xi}{\sqrt{1-\xi^2}} \sin(\omega_d t_r) = 0$$

$$\Rightarrow \tan(\omega_d t_r) = -\frac{\sqrt{1-\xi^2}}{\xi} = -\frac{\omega_d}{\xi \omega_n}$$

$$\Rightarrow t_r = \frac{1}{\omega_d} \tan^{-1} \left(-\frac{\omega_d}{\xi \omega_n} \right)$$

$$t_r = \frac{\pi - \theta}{\omega_d}$$

• Tempo de pico t_p : pode ser obtido derivando-se y(t) em relação a t e igualando o resultado a zero:

$$\begin{split} \frac{dy(t)}{dt} \bigg]_{t=t_p} &= \xi \omega_n e^{-\xi \omega_n t_p} \left[\cos \left(\omega_d t_p \right) + \frac{\xi}{\sqrt{1-\xi^2}} \sin \left(\omega_d t_p \right) \right] \\ &+ e^{-\xi \omega_n t_p} \left[\omega_d \sin \left(\omega_d t_p \right) - \xi \omega_n \cos \left(\omega_d t_p \right) \right] = 0 \\ &\Rightarrow e^{-\xi \omega_n t_p} \sin \left(\omega_d t_p \right) \frac{\omega_n}{\sqrt{1-\xi^2}} = 0. \end{split}$$

Com isso,

$$\sin(\omega_d t_p) = 0 \Rightarrow \omega_d t_p = 0, \pi, 2\pi, 3\pi, \dots$$

Como o tempo de pico corresponde ao primeiro pico de sobresinal, $\omega_d t_p = \pi$, tem-se:

$$t_p = \frac{\pi}{\omega_d}$$

Lembre-se que $\omega_d = \omega_n \sqrt{1 - \xi^2}$.

• Máximo overshoot M_O : ocorre em $t=t_p=\pi/\omega_d$. Ao supor que o valor final da saída é unitário, verifica-se que:

$$M_O = y(t_p) - 1 = -e^{-\xi\omega_n(\pi/\omega_d)} \left[\cos(\pi) + \frac{\xi}{\sqrt{1-\xi^2}} \sin(\pi) \right]$$
$$= e^{-\xi\omega_n(\pi/\omega_d)} = e^{-\left(\xi/\sqrt{1-\xi^2}\right)\pi}$$

Então:

$$M_O = \exp\left(rac{-\xi\pi}{\sqrt{1-\xi^2}}
ight)$$

No caso geral de $y(\infty) \neq 1$, calcula-se U.P.

• Caso o máximo overshoot M_O seja conhecido, e deseja-se calcular ξ , então deve-se empregar a formula

$$\xi = \frac{-\ln(M_O)}{\sqrt{\pi^2 + \ln^2(M_O)}}$$

• Tempo de acomodação t_s : A resposta transitória permanece sempre dentro de um par de envoltórias com constante de tempo $1/\xi\omega_n$. Para ω_n fixo, t_s é função de ξ . Considerando o critério de 2%, tem-se $(\omega_d = \omega_n \sqrt{1-\xi^2})$:

$$e^{-\xi\omega_n t} \frac{1}{\sqrt{1-\xi^2}} = 0,02 \Rightarrow t_s(2\%) = \frac{-\ln\left(0,02\sqrt{1-\xi^2}\right)}{\xi\omega_n}$$

Se $0 < \xi < 0,9$, pode-se aproximar t_s como:

$$t_s(2\%) \approx \frac{4}{\xi \omega_n} \qquad t_s(5\%) \approx \frac{3}{\xi \omega_n}$$

Algumas observações:

• O tempo de pico (t_p) é inversamente proporcional à parte imaginária do polo, ou seja, ω_d .

Como as retas horizontais no plano-s são linhas de valores imaginários constantes, representam linhas de tempo de pico constante.

• O tempo de assentamento (t_s) é inversamente à parte real do polo, ou seja, $\xi \omega_n$.

Como as linhas verticais no plano-s são linhas de valor real constante, são linhas de tempo de assentamento constante.

• O máximo sobressinal (M_O) só depende de ξ , ou seja do ângulo θ , pois $\xi = \cos(\theta)$.

Como as linhas radiais no plano-s são linhas de ângulo constante, são linhas de valores de pico constantes.

Exemplo

Considere um sistema de segunda ordem com $\xi=0,6$ e $\omega_n=5$ rad/s. Obtenha t_r , t_p , M_O e $t_s(2\%)$ da resposta do sistema a um degrau unitário.

• tempo de subida t_r:

$$t_r = \frac{\pi - \theta}{\omega_d}$$

Sendo:

$$\theta = \tan^{-1}\left(\frac{\omega_d}{\xi\omega_n}\right) = \tan^{-1}\left(\frac{5\sqrt{1-0,6^2}}{0,6\times5}\right) = \tan^{-1}\left(\frac{4}{3}\right)$$
$$= 0,93 \,\mathrm{rad}.$$

Portanto:

$$t_r = \frac{\pi - 0.93}{4} \approx 0.55 \,\mathrm{s}.$$

Exemplo (Continuação)

• tempo de pico t_p :

$$t_p = \frac{\pi}{\omega_d} = \frac{\pi}{4} \approx 0,785 \,\mathrm{s}$$

máximo sobresinal M_O:

$$M_O = e^{-(\xi \omega_n/\omega_d)\pi} = e^{-(3/4)\pi} \approx 0,095.$$

Em termos percentuais,

$$U.P. = \frac{1,095 - 1}{1} \times 100\% = 9,5\%$$

• tempo de acomodação $t_s(2\%)$:

$$t_s = \frac{4}{\xi \omega_n} = \frac{4}{3} \approx 1{,}33\,\mathrm{s}$$

Exemplo

Considerando o sistema de controle abaixo, deseja-se escolher o ganho K e o parâmetro p de modo que as seguintes especificações da resposta transitória a um degrau sejam alcançadas:

- máximo overshoot percentual igual ou inferior a 4,3%;
- tempo de assentamento para uma faixa de 2% do valor final deve ser inferior a 4 s.

Para uma U.P. igual ou inferior a 4,3%, faça $M_O = 4.3/100$ e calcule:

$$\xi = \frac{-\ln(M_O)}{\sqrt{\pi^2 + \ln^2(M_O)}} = 0.707$$

Para o tempo de assentamento (2%) ser inferior a 4 s, tem-se:

$$t_{s} = \frac{4}{\xi \omega_{n}} \le 4 \Rightarrow \xi \omega_{n} \ge 1,$$

ou seja, é necessário que o módulo da parte real dos polos de T(s) seja maior ou igual a 1. Pode-se escolher, por exemplo, $\xi\omega_n=1$, e disto obtemos $\omega_n=1.41$.

A função de transferência de malha fechada é:

$$T(s) = \frac{G(s)}{1 + G(s)} = \frac{K}{s^2 + ps + K}.$$

Comparando com o sistema de segunda ordem padrão, tem-se:

$$\frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2} = \frac{2}{s^2 + 2s + 2},$$

Portanto, K = 2 e p = 2.

Exemplo

Sendo um sistema de 2^a ordem com a localização dos polos abaixo, determine t_p , U.P. e $t_s(2\%)$.

$$\xi = \frac{\xi \omega_n}{\omega_n} = \frac{\alpha}{\omega_n} = \cos(\theta) = \cos\left[\tan^{-1}(7/3)\right] = 0,394$$

A frequência natural é a distância radial da origem ao polo.

$$\omega_n = \sqrt{3^2 + 7^2} = 7,616$$

• Cálculo de t_p:

$$t_p = \frac{\pi}{\omega_d} = \frac{\pi}{7} \approx 0,449 \,\mathrm{s}$$

• Cálculo de U.P.:

$$U.P. = e^{-\xi\pi/\sqrt{1-\xi^2}} \times 100 = 26\%$$

• Cálculo de t_S (2%):

$$t_S = \frac{4}{\alpha} = \frac{4}{3} \approx 1,333 \,\mathrm{s}$$

Análise de Sistemas de Ordem Superior

Sendo um sistema com função de transferência de malha fechada dada por:

$$\frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

com G(s) e H(s) polinômios em s, tem-se:

$$G(s) = \frac{p(s)}{q(s)}, \qquad H(s) = \frac{n(s)}{d(s)}$$

$$\frac{Y(s)}{R(s)} = \frac{p(s)d(s)}{q(s)d(s) + p(s)n(s)}
= \frac{b_0s^m + b_1s^{m-1} + \dots + b_{m-1}s + b_m}{a_0s^n + a_1s^{n-1} + \dots + a_{n-1}s + a_n} \quad (m \le n)
= \frac{K(s + z_1)(s + z_1) \dots (s + z_m)}{(s + p_1)(s + p_2) \dots (s + p_n)}$$

Para a resposta do sistema a uma entrada degrau, consideram-se dois casos:

• Todos os polos reais e distintos.

Por expansão em frações parciais, tem-se:

$$Y(s) = \frac{a}{s} + \sum_{i=1}^{n} \frac{a_i}{s + p_i},$$

onde a_i é o resíduo do polo em $s = -p_i$.

- Se o sistema possuir polos múltiplos, então Y(s) terá termos multipolares.
- Com todos os polos situados no semiplano esquerdo do plano-s, os valores dos resíduos determinarão a importância relativa dos componentes de Y(s).
- Zero próximo a um polo ightarrow resíduo nesse polo é pequeno.
- Polos muito afastados da origem → resíduos nesses polos são pequenos, portanto o sistema pode ser aproximado para um sistema de menor ordem.

• Polos reais e distintos e pares de polos conjugados.

Um par de polos complexos conjugados resulta em um termo de segunda ordem, então tem-se (n = q + 2r):

$$Y(s) = \frac{a}{s} + \sum_{j=1}^{q} \frac{a_j}{s + p_j} + \sum_{k=1}^{r} \frac{b_k (s + \xi_k \omega_k) + c_k \omega_k \sqrt{1 - \xi_k^2}}{s^2 + 2\xi_k \omega_k s + \omega_k^2}$$

Portanto, a resposta é dada por:

$$y(n) = a + \sum_{j=1}^{q} a_j e^{-\rho_j t} + \sum_{k=1}^{r} b_k e^{-\xi_k \omega_k t} \cos\left(\omega_k \sqrt{1 - \xi_k^2} t\right)$$
$$+ \sum_{k=1}^{r} c_k e^{-\xi_k \omega_k t} \sin\left(\omega_k \sqrt{1 - \xi_k^2} t\right), \quad t \ge 0$$

- A curva de um sistema de ordem superior estável é a soma de curvas exponenciais (primeira ordem) e senoidais amortecidas (segunda ordem).
- $-y(\infty)=a;$
- Esses sistemas podem ser aproximados por sistemas de menor ordem. $^{\rm 45~of~48}$

Efeito de Polo Adicional

A TL da resposta ao degrau de um sistema com três polos, $-\xi\omega_n\pm j\sqrt{1-\xi^2}$ e $-p_1$ é dada por:

$$Y(s) = \frac{A}{s} + \frac{A_1}{s + p_1} + \frac{B(s + \xi \omega_n) + C\omega_d}{(s + \xi \omega_n)^2 + \omega_d^2}$$

No domínio do tempo, tem-se:

$$y(t) = A + A_1 e^{-p_1 t} + e^{-\xi \omega_n t} \left[B \cos(\omega_d t) + C \sin(\omega_d t) \right]$$

- Se $p_r >> \xi \omega_n$, a exponencial pura desaparecerá muito mais rapidamente do que o termo de segunda ordem.
- Se o polo real estiver à esquerda dos polos dominantes cinco vezes mais distante, admite-se que o sistema seja representado somente por seu par de polos de segunda ordem dominantes.
- Se o polo real estiver próximo ao par de polos dominantes, então ele não poderá ser desprezado.

Efeito de Zero Adicional

Seja Y(s) a TL da resposta ao degrau de um sistema T(s) sem zeros finitos. Se um zero s=-a for adicionado à função de transferência, gerando (s+a) T(s), tem-se:

$$(s+a)Y(s) = sY(s) + aY(s)$$

A resposta divide-se em duas partes: a derivada da resposta original e uma versão ponderada por a dessa resposta.

- Se *a* for muito grande, tem-se praticamente a resposta original ponderada por *a*.
- Se a for pequeno (zero mais próximo à origem), o termo que corresponde à derivada tem um efeito maior.
- Se a for negativo (sistema de fase não-mínima), o termo da resposta em escala terá sinal oposto ao termo da derivada. A resposta pode começar a se orientar em direção negativa, embora o valor final seja positivo.

Dica de atividades

Dica

 Fazer os Exercícios apresentados no livro K. OGATA, "Engenharia de Controle Moderno".