

Institutt for matematiske fag

Eksamensoppgåve i TMA4110/TMA4115 Matematikk 3

Fagleg kontakt un	der eksamen:	Gereon Quick			
TIf: 48 50 14 12					
Eksamensdato:	august 2016				
Eksamenstid (frå-	-til):				
Hjelpemiddelkode Citizen SR-270X C			-		S PLUS, Citizen SR-270X, tisk formelsamling.
Annan informasjo Alle svar skal grunn har same vekt.		skal gå klart fran	n korleis svara	er oppnådde	e. Kvar av dei 8 oppgåvene
Målform/språk: ny	norsk				
Sidetal: 3					
Sidetal vedlegg: 0					
					Kontrollert av:
			-	Dato	Sign
Merk! Studentane finn s		eb. Har du spørsmå	al om sensuren ma	å du kontakte ir	nstituttet ditt. Eksamenskontoret

Oppgåve 1

- a) Rekn ut $\left(\frac{1}{-1+i\sqrt{3}}\right)^6$.
- **b)** Bruk polarforma $z = r \cdot e^{i\theta}$ for å finne alle komplekse tal z som tilfredsstiller $2z^2 \bar{z}^3 = 0$.

Skisser løysingane i det komplekse planet.

Oppgåve 2

Finn den unike funksjonen y(t) som tilfredsstiller initialverdiproblemet

$$\frac{1}{4}y'' - y' + y = 5e^{2t} + 1, \ y(0) = 1, \ y'(0) = 1.$$

Oppgåve 3

Vi har det følgande differensiallikningssystemet

$$\mathbf{x}' = A\mathbf{x} \mod A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}. \tag{1}$$

- a) Diagonaliser matrisa A: finn ei inverterbar matrise P slik at $P^{-1}AP$ er ei diagonalmatrise.
- b) Vi definerer ein ny variabel $\mathbf{y} := P^{-1}\mathbf{x}$. Kva for ei differensiallikning tilfredsstiller \mathbf{y} ?
- c) Finn den unike løysinga til systemet (1) som tilfredsstiller $\mathbf{x}(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Oppgåve 4 La $T: \mathbb{R}^4 \to \mathbb{R}$ vere lineærtransformasjonen definert ved

$$T\left(\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}\right) = x - y + 2z - 2w.$$

Finn ein ortogonal basis for nullrommet til T.

Oppgåve 5

$$\text{La } A = \begin{bmatrix} a & a-1 & a \\ a-1 & 1 & 0 \\ a & 0 & a \end{bmatrix}$$

- a) Bestem rangen til A for alle reelle tal a.
- b) Bestem tala a og b slik at likningssystemet

$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} b \\ 0 \\ 1 \end{bmatrix}$$

har uendeleg mange løysingar.

Oppgåve 6

Sjakkspelar Magnus kan anten vinne, spele uavgjort eller tape ein kamp. Trenaren hans har observert at Magnus sine kampar viser det følgande mønsteret:

- Dersom han vann den forrige kampen, er sannsynet 70% for at han vinn den neste kampen og 10% for at han taper den neste kampen.
- Dersom han spelte uavgjort i den forrige kampen, er sannsynet 80% for at han spelar uavgjort i den neste kampen og 10% for at han vinn den neste kampen.
- Dersom han tapte den forrige kampen, er sannsynet 30% for at han vinn den neste kampen og 30% for at han spelar uavgjort i den neste kampen.

Anta at treneren har observert mange kampar med dette mønsteret. Kva er det mest sannsynlige resultatet i Magnus sin neste kamp? (Oppgi sannsynet for kvart av dei tre moglege utfalla.)

Oppgåve 7

Finn likninga $y = ax^2 + bx + c$ som passar best til datapunkta (-2,6), (-1,6), (0,-2), (1,2) og (2,3).

Oppgåve 8

La A vere ei $n \times n$ -matrise slik at A^2 er nullmatrisa, dvs. $n \times n$ -matrisa der kvart element er null.

- a) Vis at A ikkje er inverterbar.
- **b)** Vis at den einaste eigenverdien til A er 0.
- c) Gi eit døme på ei slik matrise A som ikkje er nullmatrisa. (Tips: sjå på 2×2 -matriser.)