Honor's Assignment 2

December 7, 2020

1. (Exercise 7.13) Show that the composite Trapezium rule always give accurate answer to $\int_0^{2\pi} \sin(x) dx$.

Answer: The composite trapezium rule with n subintervals is

$$I_n = \frac{1}{n} \sum_{k=1}^{n-1} \sin(\frac{2\pi k}{n}) = \frac{1}{n} \sum_{k=1}^{n-1} (\sin(\frac{2\pi k}{n}) + \sin(\frac{2\pi (n-k)}{n}))/2$$
$$= 0 = \int_0^{2\pi} \sin(x) dx$$

- 2. (Exercise 10.7) Let [a,b] = [-1,1], let p_{n-1} be the degree n-1 orthogonal polynomial of weight $1-x^2$, and let I_n be the quadrature rule where the quadrature points are roots of $(x^2-1)p_{n-1}(x)$.
 - Show that if q is a polynomial of degree no more than 2n-1, then $\int_{-1}^{1} q dx = I_n(q)$.
 - Show that all quadrature weights are positive.
 - \bullet Suppose f is smooth, find a constant C such that

$$\left| \int_{-1}^{1} f dx - I_n(f) \right| \le C \max_{x \in [-1,1]} \left| f^{(2n)}(x) \right|$$

Answer:

- I_n has n+1 quadrature points hence gives accurate answer to any polynomial of degree up to n. If q is of degree no more than 2n-1, by long division of polynomials we have $q = (x^2 1)p_{n-1}q_1 + r$, where r is of degree at most n, and q_1 is a polynomial of degree no more than n-2. Hence $I_n(q) = I_n(r) = \int_{-1}^1 r dx = \int_{-1}^1 q dx$.
- The *j*-th quadrature weight is

$$w_j = \int_{-1}^{1} \frac{\prod_{i \neq j} (x - x_i)}{\prod_{i \neq j} (x_j - x_i)} dx$$

If j = 0 or j = n, the function being integrated is non negative, hence $w_j > 0$. Now suppose 0 < j < n, then by calculation,

$$w_j = \int_{-1}^{1} \frac{x^2 - 1}{x_j^2 - 1} \cdot \frac{\prod_{i \neq j, 1 < i < n} (x - x_i)^2}{\prod_{i \neq j, 1 < i < n} (x_j - x_i)^2} dx$$

Which are all positive.

• Let p be the polynomial of degree no more than 2n-1 such that $p(x_i)=f(x_i)$, and for all 1 < i < n, $p'(x_i)=f'(x_i)$. Then by a similar argument to the error bound of Hermite interpolation polynomials we have

$$|f(x) - p(x)| \le \max |f^{(2n)}| \frac{(1 - x^2) \prod_{1 \le i \le n} (x - x_i)^2}{(2n)!}$$

So

$$C = \int_{-1}^{1} \frac{(1 - x^2) \prod_{1 < i < n} (x - x_i)^2}{(2n)!} dx$$

- 3. Consider the initial value problem $y' = \sin(y)$, y(0) = 1.
- Write down the formula for two step Adams-Bashforth.

- Show that the two step Adams-Bashforth has order of accuracy 2 for this problem.
- Suppose we use starting points z(0) = 1, $z(h) = 1 + h\sin(1)$ to carry out Adams-Bashforth till time t = nh = 1. Find number C such that

$$|z(1) - y(1)| \le Ch^2$$

Answer:

• The quadrature weights for \int_{t+h}^{t+2h} , using $x_0 = t$, $x_1 = t+h$, are

$$w_0 = \int_{t+h}^{t+2h} \frac{(s-t-h)}{-h} ds = -h/2$$

$$w_1 = \int_{t+h}^{t+2h} \frac{(s-t)}{h} ds = 3h/2$$

So the 2nd order Adams-Bashforth is

$$z(t+2h) - z(t+h) = h(\frac{3}{2}f(t+h, z(t+h)) - \frac{1}{2}f(t, z(t)))$$

- This can be done by doing power series expansion on both sides, or via the error formula for quadrature rules.
- Suppose $z_k(nh)$ satisfies

$$z_k(nh) = \begin{cases} y(nh) & n \le k \\ z_k((n-1)h) + \frac{3h}{2}\sin(z_k((n-1)h)) - \frac{h}{2}\sin(z_k((n-2)h)) & n > k, n \ge 2 \\ 1+h & n = 1, k = 0 \end{cases}$$

Then by analyzing the truncated error for Euler's and Adams-Bashforth methods, we get

$$|z_k((k+1)h) - z_{k+1}((k+1)h)| = |z_k((k+1)h) - y((k+1)h)| \le \begin{cases} \frac{h^2}{2} & k = 0\\ \frac{5h^3}{6} & k > 0 \end{cases}$$

You may be able to find better bounds.

Now we prove by induction on m that $|z_k((k+1+m)h) - z_{k+1}((k+1+m)h)| \le (1+2h)^m |z_k((k+1)h) - z_{k+1}((k+1)h)|$: when m=0 or m=1 one can verify it directly. If m>1, the left hand side is bounded by

$$|z_{k}((k+m)h)-z_{k+1}((k+m)h)| + \frac{3h}{2}|z_{k}((k+m)h)-z_{k+1}((k+m)h)| + \frac{h}{2}|z_{k}((k+m-1)h)-z_{k+1}((k+m-1)h)|$$

$$\leq ((1+2h)^{m-1} + \frac{3h}{2}(1+2h)^{m-1} + \frac{h}{2}(1+2h)^{m-2})|z_{k}((k+1)h)-z_{k+1}((k+1)h)|$$

So

$$|z(nh) - y(nh)| \le \sum_{k} |z_{k}(nh) - z_{k+1}(nh)|$$

$$\le \sum_{k=0}^{n-1} (1+2h)^{n-k-1}h^{2}$$

$$\le e^{2} \frac{h^{2}}{2} + \frac{e^{2}-1}{2h} \frac{5h^{3}}{6}$$

$$= \frac{11e^{2}-5}{12}h^{2}$$

 $\leq (1+2h)^m |z_k((k+1)h) - z_{k+1}((k+1)h)|$

Sorry for the typo in the previous version of problem 2 and part 3 of problem 3. They won't be counted.