

自动控制 Automatic Control 原理 Theory

西南交通大学电气工程学院

Chapter 2 Mathematical Model of Systems

2

- 2.1 Introduction
- 2.2 Input-Output Models 输入输出模型
- 2.3 Block Diagram Models 框图模型
- 2.4 State Variable Models 状态空间模型
- 2.5 The Transform Between I/O Model and SV Model 输入输出模型与状态空间模型之间的转换
- 2.6 Examples of Mathematical Models 系统数学 模型举例

3

Mathematic Models 数学模型:

Descriptions of the behavior of a system using mathematics.

利用数学工具对系统行为进行的描述

Control System Mathematical Models 控制系统数学模型:

We use the quantitative mathematic models to design and analyze the physical control system.

采用定量数学模型分析和设计控制系统

Linear Control System Description

线性控制系统的描述方法

Linear Control System Mathematical Model

线性控制系统的数学模型

Linear Control System I/O Model

线性控制系统的输入/输出模型

$$a_{n} \frac{d^{n} y(t)}{dt^{n}} + a_{n-1} \frac{d^{n-1} y(t)}{dt^{n-1}} + \dots + a_{1} \frac{dy(t)}{dt} + a_{0} y(t)$$

$$= b_{m} \frac{d^{m} r(t)}{dt^{m}} + b_{m-1} \frac{d^{m-1} r(t)}{dt^{m-1}} + \dots + b_{1} \frac{dr(t)}{dt} + b_{0} r(t)$$

$$a_{i} (i = 0, 1, \dots, n), b_{i} (j = 0, 1, \dots, m)$$
为实数

$$G(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} = \frac{M(s)}{N(s)}$$

$$R(s) \xrightarrow{\text{Input}} + \underbrace{E(s)}_{G(s)} \xrightarrow{\text{Output}} Y(s)$$

$$H(s) \xrightarrow{Y(s)}$$

历由交通大學

E-mail:zhaoduo@home.swjtu.edu.cn

6

How to build a mathematical model of control system

- Analysis Method 分析法
- Experimental Method 实验法

The Rationality of Mathematical Model:

Tradeoff between of Simplicity Model and Accuracy of the results.在模型的*简化性*和分析结果的*准确性*之间,作*折衷*考虑.

The Characteristics of the Linear System:

- Superposition 叠加性 (Additivity)
- Homogeneity 齐次性

2.2 Input Output Models

7

Linear Time-invariant System

An input-output model is a mathematical model of a system which is expressed by input-output signal or its transformation.

输入-输出模型:用系统的输入、输出信号或其变换式所表示的数学模型;

When I/O signal is:

- *r*(*t*), *y*(*t*) —Differential Equation 微分方程
- *R*(*s*), *Y*(*s*) Transfer Function 传递函数
- \bigcirc $R(j\omega)$, $Y(j\omega)$ Transfer function in frequency domain频率特性

2.2 Input Output Models

Linear Time-invariant System

An input-output model is a mathematical model of a system which is expressed by input-output signal or its transformation.

输入-输出模型:用系统的输入、输出信号或其变换式所表示的数学模型;

Why LTI system is important:

• "Linear systems are important, because we can solve them"

2.2.1 Differential Equations 微分方程(组)

S

2.2.1.1 Differential equations of linear, time-invariant systems 用微分方程(组)描述线性时不变系统

The general procedure to establish the differential equations of a system:

- 1. Ascertain the input and output signals r(t) y(t);
- 2. Write the differential equation of every part;
- 3. Eliminate the interim variables and gain the relationship of input-output;
- 4. Standardize the differential equation;

2.2.1.2 Linear approximations of physical systems 物理系统的线性近似

Consider the excitation variable x(t) and a response variable y(t), the relation ship of the two variables is non-linear as

$$y(t) = g(x(t)) \tag{2.2}$$

If the function y=g(x(t)) is continuous and differentiable at the operating point x_0 , then its Taylor series expansion is

$$y = g(x) = g(x_0) + \frac{dg}{dx} \bigg|_{x=x_0} \frac{(x-x_0)}{1!} + \frac{d^2g}{dx^2} \bigg|_{x=x_0} \frac{(x-x_0)^2}{2!} + \cdots$$
(2.3)

When the range $\Delta x = x - x_0$ is small, we can neglect higher-order terms and have

$$g(x) - g(x_0) = y - y_0 = \frac{dg}{dx}\Big|_{x=x_0} \frac{(x - x_0)}{1!}$$

$$\Delta y = K \Delta x, \tag{2.4}$$

where

$$\Delta y = y - y_0 = y - g(x_0)$$
 $\Delta x = x - x_0$ $K = \frac{dg}{dx}\Big|_{x = x_0}$

This kind of Linear approximation is based on the small signal analytical theory.

此类线性近似是基于小信号分析理论

Consider a mass M on a nonlinear spring with $f = y^2$. The normal operation point is the equilibrium position, thus $f_0 = Mg$. The linear model for small deviation is as follows

where
$$m = \frac{df}{dy}\Big|_{y_0}$$

$$\Delta f = m\Delta y$$

If the dependent variable y depends upon several excitation variables, the relationship is written as

$$y = g(x_1, x_2, \dots, x_n)$$

The Taylor series expansion about the operating point is useful for a linear approximation to the nonlinear function. When the higher-order terms are neglected, the linear approximation can be written as

$$y = g(x_{1_0}, x_{2_0}, \dots, x_{n_0}) + \frac{\partial g}{\partial x_1} \Big|_{x = x_0} (x_1 - x_{1_0})$$

$$+ \frac{\partial g}{\partial x_2} \Big|_{x = x_0} (x_2 - x_{2_0}) + \dots + \frac{\partial g}{\partial x_n} \Big|_{x = x_0} (x_n - x_{n_0})$$

14

2.2.2.1 Transfer function of linear, time-invariant systems For a linear, time-invariant system

$$a_{n} \frac{d^{n} y(t)}{dt^{n}} + a_{n-1} \frac{d^{n-1} y(t)}{dt^{n-1}} + \dots + a_{1} \frac{dy(t)}{dt} + a_{0} y(t)$$

$$= b_{m} \frac{d^{m} r(t)}{dt^{m}} + b_{m-1} \frac{d^{m-1} r(t)}{dt^{m-1}} + \dots + b_{1} \frac{dr(t)}{dt} + b_{0} r(t)$$

$$a_{i} (i = 0, 1, \dots, n), \quad b_{j} (j == 0, 1, \dots, m)$$

$$(2.1)$$

Taking the Laplace transform on both sides, we have

$$(a_{n}s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0})Y(s)$$

$$= (b_{m}s^{m} + b_{m-1}s^{m-1} + \dots + b_{1}s + b_{0})R(s)$$

$$where Y(s) = \mathcal{L}[y(t)], R(s) = \mathcal{L}[r(t)]$$
(2.5)

The ratio of the Laplace transform of the *output variable* to the Laplace transform of the *input variable*.

$$G(s) = \frac{Y(s)}{R(s)} \Big|_{\text{sol}} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$
 (2.6)

传递函数反映系统"零初始状态"响应的传递关系;表明了系统数学模型的阶次n,它表征着系统的固有特性,与输入r(t)的形式无关;

传递函数是研究线性系统动态特性的重要工具。利用 Laplace变换给出的传递函数G(s)是最常见的形式;

Common expression of transfer function:

● Rational function expression有理分式函数表示形式

$$G(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} = \frac{M(s)}{N(s)}$$
(2.6)

M(*s*) — Numerator Polynomial 分子多项式

N(*s*) — Denominator Polynomial 分母多项式

N(s) — Characteristic Polynomial 特征多项式

Common expression of transfer function:

● Time Constant Expression 时间常数表示形式

$$G(s) = \frac{b_0}{a_0} \frac{d_m s^m + d_{m-1} s^{m-1} + \dots + d_1 s + 1}{c_n s^n + c_{n-1} s^{n-1} + \dots + c_1 s + 1} = K \frac{\prod_{i=1}^m (T_i s + 1)}{\prod_{j=1}^n (\tau_j s + 1)}$$
(2.7)

where, K—System Gain 系统增益或传递系数

 T_i , τ_j — Time Constant 时间常数

When s=0, thus $G(s)=b_0/a_0=K$

从微分方程的角度看,此时相当于所有的导数项都为零。 K—系统处于静态时,输出与输入的比值

Common expression of transfer function:

● Zeros Poles Expression 零极点表示形式

$$G(s) = \frac{b_m}{a_n} \frac{s^m + h_{m-1}s^{m-1} + \dots + h_1s + h_0}{s^n + l_{n-1}s^{n-1} + \dots + l_1s + l_0} = K_g \frac{\prod_{i=1}^m (s + z_i)}{\prod_{j=1}^n (s + p_j)}$$
(2.8)

where, $-z_i$ —Zeros 系统零点 $-p_j$ —Poles系统极点 K_g — Root locus Gain 根轨迹增益 系统传递函数的极点就是系统的特征根。 零点和极点的数值完全取决于系统的结构参数。

Common expression of transfer function:

● Zeros Poles Expression 零极点表示形式

Zeros and Poles on S-plane
Where × represents Poles
O represents Zeros

2.2.2.2 Transfer function of Typical Components

1. Inertial component 惯性环节

$$T\frac{dy(t)}{dt} + y(t) = r(t)$$
(2.9)

$$G(s) = \frac{1}{Ts + 1} \tag{2.10}$$

where, *T*—Time Constant

(a)零极点分布

(c)RC 电路 $\frac{U_0(s)}{U_1(s)} = \frac{1}{Ts+1}$

历由交通大學

Integral Component积分环节

$$T_i \frac{dy(t)}{dt} = r(t)$$

(2.11)

$$G(s) = \frac{1}{T_i s}$$

(2.12)

where, T_i — Time Constant

(c) 电容器充电 $\frac{U_c(s)}{I(s)} = \frac{1}{Cs}$

历由交通大學

3. Oscillatory component 振荡环节

$$T^{2} \frac{d^{2} y(t)}{dt^{2}} + 2T \zeta \frac{dy(t)}{dt} + y(t) = r(t), 0 < \zeta < 1$$
 (2.13)

$$G(s) = \frac{1}{T^2 s^2 + 2\zeta T s + 1}, 0 < \zeta < 1$$
 (2.14)

Where ζ is **Damping Ration 周尼比** ω_n is **Nature Frequency** 无阳尼比自然振荡频率 T is **Time Constant** 时间常数

Characteristic Roots

$$-p_{1,2} = -\zeta \omega_n \pm j\omega_n \sqrt{1-\zeta^2}$$

四亩交通大學

4. Derivative component 微分环节

$$y(t) = T_d \frac{dr(t)}{dt}$$
 (2.16)

$$G(s) = T_d s \tag{2.17}$$

理想微分环节的传递函数不是真有理分式,工程实现较为 困难,工程上常采用具有惯性环节的微分环节

西南交通大學

5. Proportional component 比例环节

(2.18)

$$y(t) = K_p r(t)$$

(2.19)

Where, K_p — Gain

 $u_i \bullet R_0 \longrightarrow \infty$

(a)单位阶跃响应曲线

(b)比例调节器 $\frac{U_0(s)}{U_i(s)} = -\frac{R_1}{R_0}$

历由交通大學

6. Time delayed component 时滞环节

$$y(t) = r(t - \tau)1(t - \tau)$$
 (2.20)

$$G(s) = e^{-\tau s} \tag{2.21}$$

(a)带式运输机系统

(b)单位阶跃响应曲线

实际控制系统的传递函数均可视为上述典型环节的某种组合,因此熟悉和掌握典型环节对于分析研究系统是很基本的,也是很重要的

西南交通大學

Review:

Determine the transfer function of the system

2.2.2.3 Transfer function of the circuit

2.2.3 Transfer Functions in Frequency Domain

29

Transfer Functions in Frequency Domain:

The ratio of the Fourier transform of the output signal to the Fourier transform of the input signal where the input is a *sinusoid*.

$$G(j\omega) = G(s)|_{s=j\omega}$$
 (2.22)

频率特性:

在正弦输入信号作用下,系统输出的稳态分量与输入量的复数之比,用 $G(j\omega)$ 表示

2.2.4 Relationship of I/O Models

2.3 Block Diagram Models

2.3.1 Block Diagram

Block Diagram: Unidirectional, operational blocks that represent the transfer functions of the elements of the system.

系统结构图: 用单方向功能方框组成的一种结构图,这些方框代表了系统元件的传递函数。

2.3.2 Equivalent transformations of block 32 diagrams

1.Transformation Principle 原则

Keep the same relationship between the input and output signals after transformation.

变换前后,输入、输出及其相互关系不变。

2.3.2 Equivalent transformations of block 33 diagrams

The equivalent transformation of blocks in series

串联环节的等效变换

西南交通大學

2.3.2 Equivalent transformations of block 34 diagrams

The equivalent transformation of blocks in parallel

并联环节的等效变换

西南交通大學

自动控制原理 2.3.2 Equivalent transformations of block diagrams

The equivalent transformation of feedback loop 反馈环节的等效变换

$$B(s) = H(s)Y(s)$$

 $E(s) = R(s) \pm B(s) = R(s) \pm H(s)Y(s)$
 $Y(s) = G(s)E(s) = G(s)[R(s) \pm H(s)Y(s)]$
 $[1 + G(s)H(s)]Y(s) = G(s)R(s)$

西南交通大學

35

自动控制原理 2.3.2 Equivalent transformations of block diagrams

● Moving pickoff points 分支点移动

Moving a pickoff point ahead of a block 分支点前移

Moving a pickoff point behind of a block 分支点后移

西南交通大學

36

自动控制原理 2.3.2 Equivalent transformations of block diagrams

● Moving summing points 相加点移动

Moving a summing point ahead of a block 相加点前移

37

Moving a summing point behind of a block 相加点后移

E-mail:zhaoduo@home.switu.edu.cn

自动控制原理 2.3.2 Equivalent transformations of block diagrams

● Exchanging summing points 相加点互换

Exchanging a summing point ahead of another one

Exchanging pickoff points 分支点互换

Exchanging a pickoff point ahead of another one

38

2.3.2 Equivalent transformations of block 39 diagrams

<E2.2> Block diagram reduction

2.3.2 Equivalent transformations of block diagrams

2.3.2 Equivalent transformations of block 41 diagrams

2.3.3 Transfer function of feedback control

42

system

Negative feedback control system block diagram

Transfer function

$$B(s) = H(s)Y(s)$$

 $E(s) = R(s) - B(s) = R(s) - H(s)Y(s)$
 $Y(s) = G(s)E(s) = G(s)[R(s) - H(s)Y(s)]$
 $[1 + G(s)H(s)]Y(s) = G(s)R(s)$

2.3.3 Transfer function of feedback control

自动控制原理

43

system

Negative feedback control system block diagram

$$\frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

Closed-loop Transfer Function

$$\frac{Y(s)}{E(s)} = G(s)$$

Forward Transfer Function

$$\frac{B(s)}{E(s)} = G(s)H(s)$$

Loop Transfer Function

2.4 State Variable Model

State of a system: A set of minimum numbers such that the knowledge of these numbers and the input function will, with the equations describing the dynamics, provide the future state of the system.

状态: 表示系统的一组变量,只要知道了这组变量的当前值,知道了输入激励和系统动态方程,就可以完全确定的未来状态;

2.4 State Variable Model

State Variable: The set of minimum numbers of variables that describe the system dynamics.

状态变量: 动态系统的状态变量是确定动态系统状态的最小一组变量;

State Vector: The vector containing all n state variables.

状态向量:若完全描述一个给定的系统的行为需要n个状态变量,那么这n个状态变量可以看成是向量x的n个分量,这个向量就称为状态向量;

46

Consider the MIMO system that contains n state variables, the number of input signals and output signals are m and q respectively.

47

Consider the MIMO system that contains n state variables, the number of input signals and output signals are m and q respectively.

$$\dot{x}_1(t) = f_1(x_1, x_2, \dots, x_n; u_1, u_2, \dots, u_m; t)$$

$$\dot{x}_2(t) = f_2(x_1, x_2, \dots, x_n; u_1, u_2, \dots, u_m; t)$$

•

$$\dot{x}_n(t) = f_n(x_1, x_2, \dots, x_n; u_1, u_2, \dots, u_m; t)$$

$$y_1(t) = g_1(x_1, x_2, \dots, x_n; u_1, u_2, \dots, u_m; t)$$

$$y_2(t) = g_2(x_1, x_2, \dots, x_n; u_1, u_2, \dots, u_m; t)$$

:

$$y_q(t) = g_q(x_1, x_2, \dots, x_n; u_1, u_2, \dots, u_m; t)$$

$$\mathbf{x}(t) = \begin{vmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{vmatrix}$$

$$\mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_q(t) \end{bmatrix}$$

$$\mathbf{u}(t) = \begin{bmatrix} u_1(t) \\ u_2(t) \\ \vdots \\ u_m(t) \end{bmatrix}$$

Consider the MIMO system that contains n state variables, the number of input signals and output signals are m and q respectively.

$$\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}, \mathbf{u}, t]$$

$$\mathbf{y}(t) = \mathbf{g}(\mathbf{x}, \mathbf{u}, t)$$
(2.23)

$$\dot{x}_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + b_{11}u_1 + b_{12}u_2 + \dots + b_{1m}u_m$$

$$\dot{x}_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + b_{21}u_1 + b_{22}u_2 + \dots + b_{2m}u_m$$

$$\vdots$$

$$\dot{x}_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n + b_{n1}u_1 + b_{n2}u_2 + \dots + b_{nm}u_m$$

Consider the MIMO system that contains n state variables, the number of input signals and output signals are m and q respectively.

$$\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}, \mathbf{u}, t]$$

$$\mathbf{y}(t) = \mathbf{g}(\mathbf{x}, \mathbf{u}, t)$$
(2.23)

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} b_{11} & \cdots & b_{1m} \\ \vdots & & \vdots \\ b_{n1} & \cdots & b_{nm} \end{bmatrix} \begin{bmatrix} u_1 \\ \vdots \\ u_m \end{bmatrix}$$

The state variable models of LTI systems:

 $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$ State Differential Equation

(2.24)

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$ Output Equation

where $t \ge 0, x_0 = x(0)$ (Initial condition)

 $\mathbf{x} \in \mathbb{R}^n$, State Vector (状态向量)

 $\mathbf{u} \in R^m$, Input Vector (输入向量)

 $\mathbf{y} \in R^q$ Output Vector (输出向量)

 $A \in R^{n \times n}$, System Matrix (系统矩阵)

 $\mathbf{B} \in \mathbb{R}^{n \times m}$, Input Matrix (输入矩阵)

 $\mathbf{C} \in \mathbb{R}^{q \times n}$, Output Matrix (输出矩阵)

 $\mathbf{D} \in \mathbb{R}^{q \times m}$, Feedforword Matrix (前馈矩阵)

The state variable models of LTI systems:

 $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$ State Differential Equation (2.24)

y(t) = Cx(t) + Du(t) Output Equation

状态变量描述时LTI系统的结构图

52

选择状态变量必须要满足:

- 选择最小的状态变量为状态向量的元素。这些最少的 状态变量可以充分地完全描述系统的状态;
- 状态向量的元素必须是线性无关的;

通过对状态微分方程的分析可以发现:

- 状态空间表达式是系统的一种完全描述,其核心是状态方程;
- 系统的状态空间表达式不是唯一的;

E2.4> Determine the state variable model for the circuit. The input variable is v_i the output variable is v_c .

Solution:

Select v_c (the voltage of the capacitor) and i_L (the current of the inductance) as the state variables, we have

$$i_L = C\dot{v}_C$$
, $v_L = L\dot{i}_L$
 $v_R + v_L + v_C = v_i$
 $R\dot{i}_L + L\dot{i}_L + v_C = v_i$

54

$$\dot{v}_{C} = \frac{1}{C} i_{L} + \bullet \bullet \bullet$$

$$\dot{i}_{L} = -\frac{1}{L} v_{C} - \frac{R}{L} i_{L} + \frac{1}{L} v_{i} \qquad v_{i}$$

$$\text{Let} \begin{cases} x_{1} = v_{C} & \text{Output } \mathbf{y} = y = v_{C}(t) \\ x_{2} = i_{L} & \text{Input } \mathbf{u} = u = v_{i}(t) \end{cases}$$

State Variable Model

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{C} \\ -\frac{1}{L} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{L} \end{bmatrix} u$$

E2.5> Determine the state variable model for the circuit. u(t) Current The input variable is u_i the source output variable is v_o .

Solution:

Select v_C (the voltage of the capacitor) and i_L (the current of the inductance) as the state variables, we have

$$i_C = C\dot{v}_C, \qquad v_L = L\dot{i}_L$$

$$KCL: i_C = C\dot{v}_C = u_i - i_L$$

$$KVL: L\dot{i}_L = v_C - Ri_L$$

Output:
$$v_o = Ri_L$$

56

State Variable Model

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{C} \\ \frac{1}{L} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \frac{1}{C} \\ 0 \end{bmatrix} u_i$$

$$y = \begin{bmatrix} 0 & R \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

2.4.2 Time response of SV models

57

For LTI system

The state differential equation is $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$

To get $\mathbf{x}(t)$

$$\dot{\mathbf{x}}(t) - \mathbf{A}\mathbf{x}(t) = \mathbf{B}\mathbf{u}(t)$$

Both side multiply with e^{-At}

$$e^{-\mathbf{A}t}[\dot{\mathbf{x}}(t) - \mathbf{A}\mathbf{x}(t)] = e^{-\mathbf{A}t}\mathbf{B}\mathbf{u}(t)$$

$$\frac{d[e^{-\mathbf{A}t}\mathbf{x}(t)]}{dt} = e^{-\mathbf{A}t}\mathbf{B}\mathbf{u}(t)$$

The integral from zero to infinity

$$\int_0^t \frac{d[e^{-\mathbf{A}\tau}\mathbf{x}(\tau)]}{d\tau} d\tau = \int_0^t e^{-\mathbf{A}\tau}\mathbf{B}\mathbf{u}(\tau)d\tau$$

2.4.2 Time response of SV models

$$\left. e^{-\mathbf{A}\tau} \mathbf{x}(\tau) \right|_0^t = \int_0^t e^{-\mathbf{A}\tau} \mathbf{B} \mathbf{u}(\tau) d\tau$$

$$e^{-\mathbf{A}t}\mathbf{x}(t) = \mathbf{x}(0) + \int_0^t e^{-\mathbf{A}\tau}\mathbf{B}\mathbf{u}(\tau)d\tau$$

两边左乘
$$e^{\mathbf{A}t}$$
 \Rightarrow $\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0) + \int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$ (2.25)

Thus
$$\mathbf{x}(t) = \exp(\mathbf{A}t)\mathbf{x}(0) + \int_0^t \exp[\mathbf{A}(t-\tau)]\mathbf{B}\mathbf{u}(\tau)d\tau$$

The matrix exponential function: $e^{\mathbf{A}t}$

$$e^{\mathbf{A}t} = \mathbf{I}_n + \mathbf{A}t + \frac{\mathbf{A}^2}{2!}t^2 + \dots = \sum_{k=1}^{\infty} \frac{\mathbf{A}^k}{k!}t^k$$
 (2.26)

2.4.2 Time response of SV models

59

$$Φ(t) = e^{At}$$
 State Transition Matrix

$$\mathbf{x}(t) = \mathbf{\Phi}(t)\mathbf{x}(0) + \int_0^t \mathbf{\Phi}(t-\tau)\mathbf{B}\mathbf{u}(t)d\tau$$

How to get State Transition Matrix

According to the definition

$$e^{\mathbf{A}t} = \mathbf{I}_n + \mathbf{A}t + \frac{\mathbf{A}^2}{2!}t^2 + \dots = \sum_{k=1}^{\infty} \frac{\mathbf{A}^k}{k!}t^k$$

Complex Number Domain

$$e^{\mathbf{A}t} = \mathcal{L}^{-1}[(s\mathbf{I} - \mathbf{A})^{-1}]$$

(2.27)

60

2.5.1 Transform state variable models into transfer function models 由状态空间模型转换为传递函数(阵)

nth-order Linear Time Invariant System SV model

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

Initial conditions are set to zero. Taking Laplace transform.

We have:

$$sX(s) = AX(s) + BU(s)$$
 (2.28)

$$\mathbf{Y}(s) = \mathbf{CX}(s) + \mathbf{DU}(s) \tag{2.29}$$

Taking matrix operation of Eq.(2.28), we have :

$$(s\mathbf{I} - \mathbf{A})\mathbf{X}(s) = \mathbf{B}\mathbf{U}(s) \tag{2.30}$$

$$\mathbf{X}(s) = (s\mathbf{I} - \mathbf{A})^{-1} \mathbf{B} \mathbf{U}(s) \tag{2.31}$$

61

Substituting Eq. (2.31) into Eq. (2.29), we obtain:

$$\mathbf{Y}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}\mathbf{U}(s) + \mathbf{D}\mathbf{U}(s)$$
$$= [\mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}]\mathbf{U}(s)$$

For a SISO system, U(s), Y(s) are single input and single output respectively, we have the transfer function 对于SISO系统, U(s), Y(s)是标量,则传递函数为:

$$G(s) = \frac{Y(s)}{U(s)} = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + D$$
 (2.32)

62

<E2.6> Determine the transfer function for the RLC circuit as described by the differential equations.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{C} \\ \frac{1}{L} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \frac{1}{C} \\ 0 \end{bmatrix} u \text{ Current source}$$

$$y = \begin{bmatrix} 0 & R \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

We have

$$[s\mathbf{I} - \mathbf{A}] = \begin{bmatrix} s & \frac{1}{C} \\ -\frac{1}{L} & (s + \frac{R}{L}) \end{bmatrix}$$

63

Therefore, we obtain

$$[s\mathbf{I} - \mathbf{A}]^{-1} = \frac{adj(s\mathbf{I} - \mathbf{A})}{\det(s\mathbf{I} - \mathbf{A})} = \frac{1}{s^2 + \frac{R}{L}s + \frac{1}{LC}} \begin{bmatrix} (s + \frac{R}{L}) & -\frac{1}{C} \\ \frac{1}{L} & s \end{bmatrix}$$

The Transfer Function is

$$G(s) = \mathbf{C}[s\mathbf{I} - \mathbf{A}]^{-1}\mathbf{B} = \begin{bmatrix} 0 & R \end{bmatrix} \begin{bmatrix} \frac{(s + \frac{R}{L})}{\Delta(s)} & \frac{-\frac{1}{C}}{\Delta(s)} \\ \frac{1}{L\Delta(s)} & \frac{s}{\Delta(s)} \end{bmatrix} \begin{bmatrix} \frac{1}{C} \\ 0 \end{bmatrix}$$

$$=\frac{R/LC}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$$

64

2.5.2 Transform transfer function models into state variable models 由传递函数转换为状态空间模型

由状态空间模型可以唯一的转换为一个传递函数(阵); 由传递函数转换为状态空间模型,称为系统的实现问题。 由于状态量选择的多样性,对于一个传递函数(阵),系 统地实现是不唯一的。这里给出一种"能控规范型 Controllable Canonical Form"的实现形式。

65

The numerator of transfer function is constant

当传递函数的分子为常数项时

Transfer function of *n-th* order system:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{1}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}$$
(2.33)

Initial conditions are set to zero. Taking the inverse Laplace transform, we have:

在零初始条件下,运用拉普拉斯反变换得到

$$\frac{d^{n}y(t)}{dt^{n}} + a_{n-1}\frac{d^{n-1}y(t)}{dt^{n-1}} + \dots + a_{1}\frac{dy(t)}{dt} + a_{0}y(t) = u(t)$$
 (2.34)

66

$$\frac{d^{n}y(t)}{dt^{n}} + a_{n-1}\frac{d^{n-1}y(t)}{dt^{n-1}} + \dots + a_{1}\frac{dy(t)}{dt} + a_{0}y(t) = u(t)$$
 (2.34)

Selecting State Variable

$$\begin{cases} x_1 = y(t) \\ x_2 = \frac{dy(t)}{dt} \\ x_3 = \frac{d^2 y(t)}{dt^2} \\ \vdots \\ x_n = \frac{d^{n-1} y(t)}{dt^{n-1}} \end{cases}$$

We have

$$\begin{cases} \dot{x}_1 = \frac{dy(t)}{dt} = x_2 \\ \dot{x}_2 = \frac{d^2y(t)}{dt^2} = x_3 \\ \vdots \\ \dot{x}_{n-1} = \frac{d^{n-1}y(t)}{dt^{n-1}} = x_n \\ \dot{x}_n = \frac{d^ny(t)}{dt^n} = -a_0x_1 - a_1x_2 - \dots - a_{n-1}x_n + u(t) \end{cases}$$

67

The State Variable Model

$$\begin{cases}
 \begin{vmatrix}
 \dot{x}_{1} \\
 \dot{x}_{2} \\
 \vdots \\
 \dot{x}_{n-1} \\
 \dot{x}_{n}
 \end{vmatrix} = \begin{bmatrix}
 0 & 1 & 0 & \cdots & 0 \\
 0 & 0 & 1 & \cdots & 0 \\
 \vdots & \vdots & \vdots & \cdots & \vdots \\
 0 & 0 & 0 & \cdots & 1 \\
 -a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-1}
 \end{bmatrix} \begin{bmatrix}
 x_{1} \\
 x_{2} \\
 \vdots \\
 x_{n-1} \\
 x_{n}
 \end{bmatrix} + \begin{bmatrix}
 0 \\
 0 \\
 \vdots \\
 0 \\
 1
 \end{bmatrix}$$
(2.35)

$$y = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x \end{bmatrix}$$
 (2.36)

能控规范型Controllable Canonical Form

68

The numerator of transfer function is polynomial

当传递函数的分子为多项式, m<n

Transfer function of *n-th* order system:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

$$= \frac{1}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} \left[b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0 \right]$$
(2.37)

$$\frac{X_1(s)}{U(s)} = \frac{1}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}$$
 (2.38)

$$\begin{array}{c|c}
\underline{U(s)} & 1 & X_1(s) \\
\hline
 & s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0 & X_1(s) \\
\hline
\end{array}
\qquad b_m s^m + \dots + b_1 s + b_0 \qquad Y(s)$$

69

therefore $Y(s) = X_1(s) [b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0]$ (2.39)

Taking the inverse Laplace transform, we have:

$$y(t) = b_m \frac{d^m x_1}{dt^m} + b_{m-1} \frac{d^{m-1} x_1}{dt^{m-1}} + \dots + b_1 \frac{dx_1}{dt} + b_0 x_1$$

$$= b_0 x_1 + b_1 x_2 + \dots + b_{m-1} x_m + b_m x_{m+1}$$
(2.40)

70

State Differential Equation

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \vdots \\ \dot{x}_{n-1} \\ \dot{x}_{n} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-1} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n-1} \\ x_{n} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} u$$

$$(2.35)$$

Output Equation

$$y = \begin{bmatrix} b_0 & b_1 & \cdots & b_m & 0 \cdots & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_{m+1} \\ \vdots \\ x_n \end{bmatrix}$$

(2.41)

2.6 Examples of mathematic models of systems

71

2.6.1 Mechanical and Electrical System

Mechanical System

$$m\ddot{y} = \sum F = F - F_1 - F_2$$
 $F_1 = f \dot{y}, \quad f$ —Friction Constant 阻尼系数
 $F_2 = ky, \quad k$ —Spring Constant 弹簧刚度系数系数

$$m\ddot{y} + f \dot{y} + ky = F$$

2.6.1 Mechanical and Electrical System

● RLC series circuit (电荷*q*为变量)

$$i = \dot{q}$$

$$L\ddot{q} + R\dot{q} + \frac{1}{C}q = u \tag{2.43}$$

●RLC parallel circuit (磁链 ¥ 为变量)

$$u = \dot{\psi}$$

$$C\ddot{\psi} + \frac{1}{R}\dot{\psi} + \frac{1}{L}\psi = i$$
(2.44)

Equ. (2.42-2.44) Same Mathematical Models

73

1. State variable model of dc motor

74

● 电枢回路方程

$$L_{a} \frac{di_{a}}{dt} + R_{a}i_{a} + e_{m} = u_{a} \qquad (2.45)$$

 L_a 电枢回路电感(H)

 R_a 电枢回路电阻(Ω)

 $e_m = C'_e \Phi \omega = C_e \omega$ 电动机反电势

 C_e 为电动机反电势系数(V/(rad/s))

75

● 电动机运动方程

$$J\frac{d\omega}{dt} + f\omega + M_L = M \tag{2.46}$$

J 和f 分别为折算到电动机轴上的转动惯量(kg.m²)和粘性摩擦系数(N.m.s/rad)

 M_L 为折算置电动机轴上的负载转矩 $(N \cdot m)$

 $M = C_m i_a$ 为电动机电磁转矩 $(N \cdot m)$

 C_m 为电动机转矩系数 $(N \cdot m/A)$

76

(2.45)和(2.46)式可以写成

$$\frac{di_a}{dt} = -\frac{R_a}{L_a}i_a - \frac{C_e}{L_a}\omega + \frac{1}{L_a}u_a \tag{2.47}$$

$$\frac{d\omega}{dt} = \frac{C_m}{J} i_a - \frac{f}{J} \omega - \frac{1}{J} M_L \tag{2.48}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -R_a / & -C_e / \\ L_a & / L_a \\ C_m / J & -f / J \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 / & 0 \\ L_a & 0 \\ 0 & -1 / J \end{bmatrix} \begin{bmatrix} u_a \\ M_L \end{bmatrix}$$
 (2.49)

77

2.6.2 DC Motor Feedback Control System

2. Transfer function of dc motor

- 以转速作为输出
 - ◆ 电枢回路环节

由电枢回路方程

$$L_a \frac{di_a}{dt} + R_a i_a + K_e n = u_a \tag{2.49}$$

其中n为转速(r/min), K_e 为反电势系数

令 $T_a = L_a / R_a$ (电枢回路时间常数)

传递函数

$$\frac{I_a(s)}{U_a(s) - K_e N(s)} = \frac{1/R_a}{1 + T_a s}$$
 (2.50)

78

፟ 转动环节

电动机功率较大时其粘性摩擦系数可以忽略不计,则运动方程为:

$$J_{G} \frac{dn}{dt} + M_{L} = M$$
(2.51)
其中 $J_{G} = \frac{GD^{2}}{375}, M = K_{m}i_{a}, M_{L} = K_{m}i_{L}$

$$\Rightarrow T_m = \frac{GD^2}{375} \frac{R_a}{K_e K_m}$$
 (机电时间常数)

得到传递函数
$$\frac{N(s)}{I_a(s) - I_L(s)} = \frac{K_m}{J_G s} = \frac{R_a}{K_e T_m s} (2.52)$$

79

2.6.2 DC Motor Feedback Control System

可以得到枢控电动机结构图

枢控电动机结构图

80

2.6.2 DC Motor Feedback Control System

以角速度或角位移作为输出量(小功率伺服系统) 由于电动机功率较小,要考虑粘性摩擦 由(2.46)式,转动环节的输入输出方程为:

$$(Js+f)\Omega(s) = M(s) - M_L(s)$$
(2.53)

枢控电动机框图模型

历由交通大學

81

- 3. 枢控电动机直流调速系统结构框图
- 以测速发电机作为转速负反馈环节,有

$$u_t = K_t n$$

● 采用比例调节器时,系统的结构框图

Summary

- In this chapter, we have been concerned with quantitative mathematical models of control systems.
- Introduced the I/O model which includes differential equations, transfer function and transfer function in frequency domain.
- Introduced the graphic models, mainly talked about the block diagram with it's transformation and reduction.
- Introduced the state variable models.
- Introduced the transform between I/O models and state variable models.

Summary

Read Chapter 4 page 183-218

Cruise Control System Design

Design Task: Design a cruise control system;

Cruise control is the term used to describe a control system that regulates the speed of an automobile. Cruise control was commercially introduced in 1958 as an option on the Chrysler Imperial.

The basic operation of a cruise controller is to sense the speed of the vehicle, compare this speed to a desired reference, and then accelerate or decelerate the car as required.

Cruise Control System Design

Manual Cruise Control Block Diagram

Automatic Cruise Control Block Diagram

Cruise Control System Design

Component of automobile:

Chassis Wheel Drive (Engine & Transmission)

1. Physical setup and mathematical equations:

Assume

Mass

m=1000kg,

Friction Constant b=50N.sec/m

Speed

v m/sec

Goal: Reach 10m/s less than 5Sec.

Keep the speed at 30m/s

$$m\frac{dv}{dt} = -bv + F_{engine} + F_{hill}$$

$$\dot{x}_v = \begin{bmatrix} -b/m \end{bmatrix} x_v + \begin{bmatrix} 1/m & 1/m \end{bmatrix} u_v$$
$$y_v = x_v$$

MATLAB 7.0

E-mail:zhaoduo@home.swjtu.edu.cn

自动控制原理

汽车速度控制系统设计实例

2. Mathematical model of engine:

$$\frac{d\tau}{dt} = -a\tau + K_i u_e$$
$$y_e = K_o \tau$$

Assume a=0.2 Time constant,

 $K_o=5$ 引擎输出力矩与 F_e 之间的转换因子(如传动装置)

ue作为对引擎的输入,可选择合适的单位

 $K_i=1$ 引擎输入量与力矩之间的转换因子(如踏板角度等)

E-mail:zhaoduo@home.swjtu.edu.cn

历由交通大學

E-mail:zhaoduo@home.swjtu.edu.cn

历由交通大學

>> whos

Name Size
ref_a 54x1
ref_b 56x1
time_a 54x1
time_b 56x1
tout 56x1
vel_a 54x1
vel_b 56x1
Grand total is 386 elem

- >> plot(time_a,vel_a)
- >> grid
- >> hold

Current plot held

>> plot(time_b,vel_b,'r')

汽车速度控制系统设计实例

汽车构成: 底盘 车轮 驱动(引擎&传动系统)

3. 考虑到路面坡度对汽车速度的影响:

$$F_{hill} = -mg\sin(\theta)$$

- g 重力加速度
- θ 路面坡度

假设在路面有10度的上坡

西南交通大學

E-mail:zhaoduo@home.swjtu.edu.cn

西南交通大學

E-mail:zhaoduo@home.swjtu.edu.cn

自动控制原理 100 Car Cruse D CL Car Cruse C Hill File Edit View Simulation Format Tools Help File Edit View Simulation Format Tools Help [] | 🚅 🔒 🐉 🖺 📵 | 🕰 | 🔎 | □ | 300 | Normal 🔽 | 👺 🛗 [] 🕸 🕮 | 🐌 🔞 []

vel_d


```
Editor - D:\MATLAB701\work\Cruise_control.m
                                                                        File Edit Text Cell Tools Debug Desktop Window Help
                                                                          X 5 K
Stack: Base 🗸
      t=[0:0.8:300];
 3 -
      num_v=[1];
      den_v=[1000 50];
      sys_v=tf(num_v, den_v)
      step(1500*sys_v,t)
      hold
      num_e=[5];
 8 -
      den_e=[1 0.2];
      sys_e=tf(num_e, den_e)
10 -
11
12 -
      sys_f=series(sys_e, sys_v)
13
14 -
      step(60*sys_f,t)
15
16 -
      num_c = [8 \ 0.4];
17 -
      den_c=[1 0];
18 -
      sys_c=tf(num_c, den_c);
19
      sys_f=series(sys_c, sys_f);
20 -
      sys_t=feedback(sys_f, 1, -1)
21 -
22 -
      step(30*sys_t,t)
23
24
25
26
                                     script
                                                            Ln 15
                                                                   Col 1
```


1. 系统方框图如图所示,计算传递函数 T(s)=Y(s)/R(s)

2. 假设如图所示运算放大器是理想的,各个参数取值为C=1 μ F, R_1 =167 $k\Omega$, R_2 =240 $k\Omega$, R_3 =1 $k\Omega$, R_4 =100 $k\Omega$,试计算运算放大器电路的传递函数G(s)= $V_o(s)/V(s)$

3. 假设以下两个系统的状态微分方程分别为:

试计算上述系统的传递函数 $G_1(s)$, $G_2(s)$

4. 假设以下两个系统的传递函数分别为:

$$(1)G(s) = \frac{8}{s^3 + 7s^2 + 14s + 8}$$
$$(2)G(s) = \frac{8(s+5)}{s^3 + 12s^2 + 44s + 48}$$

试写出上述系统的状态空间模型

