

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 952 137 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
27.10.1999 Patentblatt 1999/43

(51) Int. Cl.⁶: C07C 39/08, C07C 37/07

(21) Anmeldenummer: 99107633.2

(22) Anmeldetag: 16.04.1999

(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 21.04.1998 DE 19817644

(71) Anmelder:
Degussa-Hüls Aktiengesellschaft
60287 Frankfurt am Main (DE)

(72) Erfinder:
• Shi, Nongyuan, Dr.
63512 Hainburg (DE)

- Scholz, Mario, Dr.
63584 Gründau (DE)
- Hasenzahl, Steffen, Dr.
63477 Maintal (DE)
- Weigel, Horst
63517 Rodenbach (DE)
- Drapal, Bernd
63755 Alzenau (DE)
- McIntosh, Ralph
63457 Hanau (DE)
- Hasselbach, Hans Joachim, Dr.
63571 Gelnhausen (DE)
- Huthmacher, Klaus, Dr.
63584 Gelnhausen (DE)

(54) Neues Verfahren zur Herstellung von 2,3,5-Trimethylhydrochinondiestern

(57) Die Erfindung betrifft ein neues Verfahren zur Herstellung von 2,3,5-Trimethylhydrochinondiestern durch Umlagerung von 2,6,6-Trimethylcyclohex-2-en-1,4-dion (4-Oxo-Isophoron, Ketoisophoron) in Gegenwart eines festen, sauren Katalysators und eines Acylierungsmittels, wie z. B. Cabonsäureanhydriden, Carbonsäurehalogeniden. Der 2,3,5-Trimethylhydrochinondiester kann gegebenenfalls anschließend zum freien 2,3,5-Trimethylhydrochinon verseift werden, einen wertvollen Baustein bei der Synthese von Vitamin E.

EP 0 952 137 A1

Beschreibung

[0001] Die Erfindung betrifft ein neues Verfahren zur Herstellung von 2,3,5-Trimethylhydrochinondiestern durch Umlagerung von 2,6,6-Trimethylcyclohex-2-en-1,4-dion (4-Oxo-Isophoron, Ketoisophoron) in Gegenwart eines festen, sauren Katalysators und eines Acylierungsmittels, wie z. B. Cabonsäureanhydriden, Carbonsäurehalogeniden. Der 2,3,5-Trimethylhydrochinondiester kann gegebenenfalls anschließend zum freien 2,3,5-Trimethylhydrochinon verseift werden, das ein wertvoller Baustein bei der Synthese von Vitamin E ist.

Stand der Technik

[0002] 2,3,5-Trimethylhydrochinon (TMHQ) ist ein wichtiges Zwischenprodukt, das bei der Produktion von Vitamin-E bzw. Vitamin-E-Acetat verwendet wird. Neben den bekannten Herstellungsverfahren aus aromatischen Ausgangsmaterialien kann 2,3,5-Trimethylhydrochinon aus einer nichtaromatischen Verbindung, dem 2,6,6-Trimethylcyclohex-2-en-1,4-dion, durch Umlagerung unter acylierenden Bedingungen und anschließender Hydrolyse hergestellt werden.

[0003] In der Patentschrift DE 26 46 172 C2 wird ein Verfahren beschrieben, bei dem 2,6,6-Trimethylcyclohex-2-en-1,4-dion in der Dampfphase bei hoher Temperatur in Kontakt mit einem sauren Katalysator zu Trimethylhydrochinon direkt umgelagert wird. Allerdings ist die Ausbeute bei diesem Verfahren nur gering (50% bei 30% Umsatz). Wird die Aromatisierung von 2,6,6-Trimethylcyclohex-2-en-1,4-dion in Gegenwart eines Acylierungsmittels durchgeführt, so werden Trimethylhydrochinon-diester erhalten, die durch anschließende Hydrolyse zum Trimethylhydrochinon führen. So wird beispielsweise gemäß *Bull. Korean. Chem. Soc.* 1991, 12, 253 die Umlagerung in 5 %-iger Lösung in Acetanhydrid durch Zugabe von fünf Äquivalenten konzentrierter Schwefelsäure durchgeführt. Der Trimethylhydrochinondiester wird dabei lediglich mit 30% Ausbeute erhalten.

[0004] In einem weiteren Verfahren gemäß DE-OS 2 149 159 kann 2,6,6-Trimethylcyclohex-2-en-1,4-dion in Gegenwart von Acetanhydrid in einer durch Protonen- oder Lewissäurenkatalysierten Umlagerung zu Trimethylhydrochinondiacetat umgewandelt werden, welches anschließend zu Trimethylhydrochinon verseift wird. Mäßige bis gute Ausbeuten werden bei diesem Verfahren genannt.

[0005] Aus der DE-OS 196 27977 ist bekannt, TMHQ durch Umsetzung von Ketoisophoron mit einem Acylierungsmittel in Gegenwart sehr starker Säuren, wie z. B. Fluorsulfosäure oder Oleum herzustellen. Bei diesem Verfahren folgt auf die zunächst eintretende Bildung des entsprechenden Esters die Verseifung.

[0006] Die bekannten Verfahren haben den Nachteil, daß entweder die Ausbeuten niedrig sind oder daß gleichzeitig durch den Einsatz von starken Säuren in gelöster Form Korrosionsprobleme auftreten, die den Einsatz von hochwertigen Werkstoffen erforderlich machen. Die Abtrennung und Recyclierung des gelösten Katalysators sind außerdem nur schwierig durchzuführen.

Aufgabe

[0007] Die Aufgabe besteht darin, ein Verfahren zur Herstellung von 2,6,6-Trimethylcyclohex-2-en-1,4-dion-diester zu finden, das die Nachteile der bekannten Verfahren überwindet. Aus den Estern sind gegebenenfalls die entsprechenden Hydrochinone durch Hydrolyse zu gewinnen.

Lösung der Aufgabe

[0008] Es wurde gefunden, daß 2,6,6-Trimethylcyclohex-2-en-1,4-dion in Gegenwart einer festen Säure mit einem Acylierungsmittel zu einem Trimethylhydrochinondiester umgesetzt wird. Durch eine sich gegebenenfalls anschließende Verseifung erhält man 2,3,6-Trimethylhydrochinon.

[0009] Für das erfindungsgemäße Verfahren können prinzipiell alle als Säuren wirkende Feststoffe eingesetzt werden, die unter den Reaktionsbedingungen stabil sind. Beispiele hierfür sind kristalline und/oder amorphe Alumosilikate, Tonminerale oder Pillard Clays die jeweils in der H-Form eingesetzt werden, Mineralsäuren auf geeigneten Trägern wie z.B. Schwefelsäure auf ZrO₂ oder SnO₂ bzw. Phosphorsäure auf SiO₂, Ionenaustascherharze mit sauren Gruppen, insbesondere auf fluorierter Basis wie Nafion-H® (Du Pont) oder Amberlyst® (Rohm und Haas) sowie Polysiloxane mit sauren Gruppen wie z.B. Deloxan ASP® (Degussa). Als saure Gruppen dienen insbesondere SO₃-Gruppen.

[0010] Besonders geeignet sind saure, großporige (mit 12-Ringporen) Zeolithe mit Poredurchmessern zwischen 0.5 und 0.8 nm. Beispiele hierfür sind Y-Zeolith, Beta-Zeolith, dealuminierte Zeolithe oder Mordenite. Diese werden besonders in „Atlas of Zeolite Structure Types“ (W.M. Meier et al., 4th Revised Edition, Elsevier, 1996) beschrieben.

[0011] Prinzipiell sind saure Zeolithtypen mit dem genannten oder größeren Poredurchmessern geeignet. Auch geeignet sind mittelporige (mit 10-Ringporen) Zeolithe, z.B. vom ZSM-5-Typ.

[0012] Der Modul, das molare SiO₂/Al₂O₃-Verhältnis eines Zeoliths, das ein wichtiges Maß für dessen Säurekapazität ist, kann in weiten Grenzen variiert werden. Der Modul eines gegebenen Zeolithtyps kann im wesentlichen durch die Zusammensetzung des Synthesegels, aus dem er kristallisiert wird, bestimmt werden. Im Fall der Y-Zeolith kann dieser auch durch die nachträgliche Dealuminierung, beispielsweise durch Umsetzung mit Wasserdampf oder SiCl₄, in einem weitem Bereich eingestellt werden. Übliche Zeolithsynthesen, wie sie beispielsweise in „Handbook of Molecular Sieves“ (R. Szostak, Van Nastrand Reinhold, 1992) und darin zitierte Literatur beschrieben werden, liefern die Zeolithe im allgemeinen in der katalytisch inaktiven Na-Form. Um sie in die katalytisch aktive H-Form überzuführen, kann ein Ionenaustausch mit Säuren wie z.B. Salzsäure oder Schwefelsäure oder mit Ammoniumsalzen wie z.B. NH₄Cl, (NH₄)₂SO₄ oder NH₄-Acetat und einer anschließenden Kalzination durchgeführt werden.

[0013] Ebenfalls gut für das erfindungsgemäße Verfahren geeignete Materialien sind die in den letzten Jahren entdeckten Alumosilikate mit regelmäßiger Mesoporenstruktur, wie z.B. MCM-41 oder MCM-48. Hier ermöglichen die Mesoporen mit Poredurchmessern zwischen 2.0 und 10.0 nm eine rasche Diffusion der Reaktanden zu den katalytisch aktiven Zentren.

[0014] Die Zeolithe oder Alumosilikate mit regelmäßiger Mesoporenstruktur können im erfindungsgemäßen Verfahren in verformter oder unverformter Form eingesetzt werden. Die unverformten Materialien erhält man direkt nach der Synthese und einem eventuellen Ionenaustausch. Die Formgebung kann im Anschluß an die Synthese mittels bekannter Verfahren wie zum Beispiel der Granulation, z.B. durch Sprühtrocknung, Wirbelschicht-Sprühgranulationstrocknung oder die Tellergranulation, die Extrusion sowie die Tablettierung erfolgen. Beispiele für mögliche Binder, die bei dem Formgebungsschritt zugesetzt werden können, sind Siliciumdioxid, Aluminiumoxid, Titandioxid und Tonminerale. Für das erfindungsgemäße Verfahren kommt insbesondere der Einsatz von Formkörpern bei Festbettfahrweise oder von Granulaten bei Suspensionsfahrweise in Frage.

[0015] Die als Katalysatoren eingesetzten Materialien verlieren im allgemeinen während der Reaktion an katalytischer Aktivität. Ursache hierfür ist vor allem die Ablagerung von höhermolekularen Folge- oder Nebenprodukten im Poresystem. Um die ursprüngliche Aktivität wiederherzustellen, müssen diese durch geeignete Verfahren entfernt werden. Dies kann bei anorganischen Materialien beispielsweise durch Kalzination in einem Muffelofen, einem Drehrohr oder einem anderen geeigneten Aggregat bei einer Temperatur zwischen 250 und 800°C, bevorzugt zwischen 400 und 650°C, geschehen. Die Kalzination erfolgt dabei im allgemeinen in einer Luft- oder Inertgas-Atmosphäre. Besonders vorteilhaft ist es, die Kalzination zunächst in Stickstoff-Atmosphäre und daran anschließend in Luftatmosphäre durchzuführen. Die Kalzinationsdauer ist den Umständen leicht anzupassen, wobei im allgemeinen eine Dauer von 2 h ausreicht. Die Aufheizrate ist in einem weiten Bereich variierbar. Haben sich keine oder nur geringfügige Mengen höhermolekularer Produkte gebildet, kann die Regenerierung auch mit Hilfe einer Extraktion mit geeigneten Lösungsmitteln durchgeführt werden. Hier eignen sich beispielsweise Ester, wie z.B. Ethylacetat; Ketone, wie z.B. Aceton; organischen Säuren, wie z.B. Essigsäure, Säureanhydride, z.B. Essigsäureanhydrid oder Alkohole. In diesem Fall wird der zu regenerierende Katalysator mit dem entsprechenden Lösungsmittel bei Raumtemperatur oder erhöhte Temperatur geführt. Der Feststoff wird dann abgetrennt, beispielsweise durch Filtration oder Zentrifugation, eventuell getrocknet, kalziniert und wieder in das Verfahren zurückgeführt.

[0016] Neben Zeolithen und Alumosilikaten sind weitere feste Säuren, die unter den acylierenden Bedingungen stabil sind, geeignet. Beispiele hierfür sind Mineralsäuren auf geeigneten Trägern, aber auch Polymere die stark saure Gruppen enthalten. Bevorzugt wird aus dieser Gruppe ein perfluoriertes Sulfonsäuregruppen-haltiges Polymerisat, Nafion-H® der Firma DuPont, das thermisch und chemisch besonders resistent ist. Besonders bevorzugt ist hierbei eine Modifikation mit großer Oberfläche, die durch Silikonvernetzung entsteht (M. A. Harmer, J. Am. Chem. Soc., 118, 1996, 7709).

[0017] Die Einsatzmenge des Katalysators liegt zwischen 5 und 150 Gew. % bezogen auf 2,6,6-Trimethylcyclohex-2-en-1,4-dion, bevorzugt zwischen 20 und 60 Gew% bezogen auf 2,6,6-Trimethylcyclohex-2-en-1,4-dion.

[0018] Die Umlagerung erfolgt zweckmäßigerweise bei Temperaturen zwischen etwa 0°C und 140°C, vorzugsweise zwischen etwa 20°C und 100°C.

[0019] Bei dem erfindungsgemäß verwendeten Acylierungsmittel handelt es sich vorzugsweise um ein Carbonsäureanhydrid, einen Enolester oder ein Carbonsäurechlorid. Insbesondere wird ein Carbonsäureanhydrid der allgemeinen Formel I verwendet,

15

in der R einen gegebenenfalls substituierten aliphatischen, alicyclischen oder aromatischen Rest mit 1-8 Kohlenstoffatomen, der gegebenenfalls 1 bis 3 Halogenatome enthält, bedeutet. Geeignet sind insbesondere die Anhydride von Essigsäure, Propionsäure, Buttersäure, Isobuttersäure Cyclohexancarbonsäure, Benzoësäure, Chloressigsäure. Besonders geeignet ist Acetanhydrid.

Anstelle der Säureanhydride können auch andere Acylierungsmittel, wie z. B. Enolester oder Acylhalogenide eingesetzt werden.

20

[0020] Beispiele für geeignete Acylhalogenide sind Acetylchlorid, Propionsäure-, Buttersäurechlorid. Enolester, wie z. B. Vinylacetat, Isopropenylacetat und Isopropenylisobutyrat dienen als Acylierungsmittel in Gegenwart von Katalysatoren und eignen sich speziell zur Durchführung des beanspruchten Verfahrens. Als Acylierungsmittel geeignete Enolester entsprechen der allgemeinen Formel,

30

in der R₁ und R₂ Wasserstoffatome oder Alkylreste mit 1 bis 8 Kohlenstoffatomen oder Alkylenreste mit 1 bis 5 Kohlenstoffatomen, die gemeinsam einen 5- oder 6-gliedrigen Kohlenstoffring bilden, R₃ ein Wasserstoffatom oder einen Alkyrest mit 1 bis 8 Kohlenstoffatomen und R₄ einen aliphatischen, oder aromatischen Kohlenwasserstoffrest mit 1 bis zu 8 Kohlenstoffatomen bedeutet.

[0021] Das Molverhältnis zwischen dem Acylierungsmittel und 2,6,6-Trimethylcyclohex-2-en-1,4-dion ist variabel. Bei einer Umsetzung ohne zusätzlichem Lösungsmittel soll das Molverhältnis von Acylierungsmittel zu 2,6,6-Trimethylcyclohex-2-en-1,4-dion zwischen 3 : 1 und 10 : 1, vorzugsweise zwischen 3 : 1 und 5 : 1 liegen. Das überschüssige Acylierungsmittel dient als Lösungsmittel das nach der Abtrennung des festen Katalysators destillativ zurückgewonnen werden kann.

[0022] Die Umlagerung erfolgt ebenso in Gegenwart organischer Lösungsmittel. Als geeignete Lösungsmittel dienen aliphatische und cyclische Ester, z. B. Essigsäureethylester, Essigsäurepropylester, Essigsäureisopropylester, Essigsäureisobutylester und γ-Butrolacton; Kohlenwasserstoffe, z. B. Hexan, Heptan, Toluol, und Xylol; und Ketone, z. B. Isobutylmethylketon, Diethylketon und Isophoron.

[0023] Durch Zusatz eines der genannten Lösungsmittels kann die einzusetzende Menge an Acylierungsmittel reduziert werden. Das erfindungsgemäß verwendete Molverhältnis zwischen Acylierungsmittel und Endion liegt dann bevorzugt zwischen 2 : 1 und 3 : 1.

50 Durchführung

Beispiel 1:

[0024] Zu einer Suspension von 51,1 g (0,5 Mol) Acetanhydrid und 6,2 g H-Y-Zeolith (Modul SiO₂/Al₂O₃ = 25±5, 2 h bei 400°C aktiviert) wurden 15,2 g (0,1 Mol) 2,6,6-Trimethylcyclohex-2-en-1,4-dion bei 30 bis 40°C zugegeben. Diese Mischung wurde 5 h bei 60 bis 100°C gerührt, wobei die Reaktionsfortschritt per HPLC verfolgt wurde. Nach beendeter Reaktion wurde auf Raumtemperatur abgekühlt und der Katalysator durch Filtration abgetrennt. Das Filtrat, welches aus Essigsäure, nicht umgesetztem Acetanhydrid sowie gelöstem Trimethylhydrochinon-Diacetat besteht, wurde unter

vermindertem Druck bei 60°C am Rotavapor zur Trockne eingeengt. Der Rückstand wurde in 150 ml Wasser aufgenommen, in einer Reibschale homogenisiert und der pH-Wert der Suspension mit Natronlauge auf 5-6 eingestellt. Das dabei erhaltene Trimethylhydrochinon-Diacetat wurde abgesaugt, mit Wasser gewaschen und im Vakuum getrocknet. Die Ausbeute betrug 22,5 g, entsprechend 95 % der Theorie.

5

Beispiel 2:

[0025] 7,7 g H-Y-Zeolith (Modul SiO₂/Al₂O₃ = 25±5, 2,5 h bei 450°C aktiviert) wurden unter Rühren in 50 ml Toluol suspendiert, und mit 30,6 g (0,3 Mol) Acetanhydrid und 15,2 g (0,1 Mol) 2,6,6-Trimethylcyclohex-2-en-1,4-dion 7 h bei 10 90 bis 110°C gerührt. Nach beendet Reaktion wurde der Katalysator abfiltriert und mit Toluol gewaschen. Das Filtrat wurde am Rotavapor unter verminderter Druck bei 60°C zur Trockne eingeengt. Der Rückstand wurde in 20 ml Essigsäure gelöst und zu 100 ml Wasser gegeben. Der pH-Wert der Suspension wurde mit Natronlauge auf 6 eingestellt. Das ausgefallene Trimethylhydrochinon-Diacetat wurde abgesaugt, mit Wasser gewaschen und im Vakuum getrocknet. Die Ausbeute betrug 22,4 g, entsprechend 95 % der Theorie.

15

Beispiel 3:

[0026] Analog zu Beispiel 2 wurde anstelle von Toluol n-Propylacetat als Lösungsmittel eingesetzt. Die Ausbeute betrug 22,3 g, entsprechend 95 % der Theorie.

20

Beispiel 4:

[0027] Zu einer Suspension von 7,8 g H-Y-Zeolith (Modul SiO₂/Al₂O₃ = 120 ± 20, 1 h bei 450°C aktiviert) und 76,6 g (0,75 Mol) Acetanhydrid wurden 15,2 g (0,1 Mol) 2,6,6-Trimethylcyclohex-2-en-1,4-dion rasch zugesetzt. Die Mischung 25 wurde auf 95°C erwärmt und 3 h gerührt. Es wurde auf Raumtemperatur abgekühlt und analog zu Beispiel 1 aufgearbeitet. Die Ausbeute betrug 23,0 g, entsprechend 97 % der Theorie.

Beispiel 5:

[0028] In analoger Weise zu Beispiel 4 wurden 7,4 g H-Y-Zeolith (Modul SiO₂/Al₂O₃ = 55 ± 10, 1 h bei 450°C aktiviert) in 76,6 g (0,75 Mol) Acetanhydrid suspendiert und 15,2 g (0,1 Mol) 2,6,6-Trimethylcyclohex-2-en-1,4-dion rasch zugesetzt. Nach 3 h Reaktion bei 30 bis 90°C und Aufarbeitung wie in Beispiel 1 wurden 23,0 g, entsprechend 97 % der Theorie.

35

Beispiel 6:

[0029] 10,0 g H-Beta-Zeolith (Modul SiO₂/Al₂O₃ = 27, 2 h bei 150°C aktiviert) wurden in 30,7 g (0,3 Mol) Acetanhydrid suspendiert und 15,3 g (0,1 Mol) 2,6,6-Trimethylcyclohex-2-en-1,4-dion zugesetzt. Das Gemisch wurde bei 140°C für 40 48 h gerührt und anschließend wie in Beispiel 1 aufgearbeitet. Die Ausbeute betrug 22,1 g, entsprechend 94 % der Theorie.

Beispiel 7:

[0030] 15,5 g MCM-41 (Modul SiO₂/Al₂O₃ = 25, 1h bei 150°C aktiviert) wurden in 76,6 g (0,75 Mol) Acetanhydrid suspendiert und 15,3 g (0,1 Mol) 2,6,6-Trimethylcyclohex-2-en-1,4-dion zugesetzt. Das Gemisch wurde bei 140°C für 21 h gerührt und anschließend wie in Beispiel 1 aufgearbeitet. Die Ausbeute betrug 20,4 g, entsprechend 86 % der Theorie.

55

Beispiel 8:

[0031] In eine gerührte Suspension aus 30,6 g (0,30 mol) Acetanhydrid und 1,52 g Nafion® NR50 (10 - 35 mesh) wurden bei 50°C innerhalb von 15 min 15,2 g (0,1 mol) 2,6,6-Trimethyl-cyclohex-2-en-1,4-dion zugetropft. Die Suspension wurde 2 Stunden bei 50 und 3 Stunden bei 80°C gerührt. Der Katalysator wurde durch Filtration abgetrennt und im Filtrat wurden mit HPLC 2,6,6-Trimethylcyclohex-2-en-1,4-dion und Trimethyl-hydrochinon-Diacetat bestimmt. Daraus ergibt sich ein Umsatz von 93,1% und eine Ausbeute von 85,1% der Theorie.

Beispiel 9:

[0032] Als Katalysator wurde ein silikonvernetztes Nafion® eingesetzt, dessen Herstellung nach der Vorschrift in dem

Artikel von Mark A. Harmer in *J. Am. Chem. Soc.*, 118, 1996, 7709, erfolgte. In eine Suspension aus 3,1 g dieses Katalysators und 30,6 g (0,30 mol) Acetanhydrid wurden bei 40°C innerhalb von 15 min 15,2 g (0,10 mol) 2,6,6-Trimethylcyclohex-2-en-1,4-dion eingebracht, wobei die Temperatur bis auf 51°C anstieg. Nach 5 Stunden bei 50°C betrug der Umsatz 96%. Nach der gleichen Aufarbeitung wie in Beispiel 1 beschrieben, wurden 22,1 g Produkt erhalten, was einer Ausbeute von 92,2 % der Theorie bedeutet.

5

Beispiel 10:

[0033] Beispiel 9 wurde wiederholt, wobei die Katalysatormenge auf 4,5 g erhöht wurde. Nach einer Reaktionszeit von 3 Stunden bei 50°C betrug der Umsatz an 2,6,6-Trimethylcyclohex-2-en-1,4-dion 96,1%. Der Katalysator wurde abfiltriert, mit 10 ml Essigsäure gewaschen und zusammen mit 0,5 g frischem Katalysator erneut bei der Umlagerung eingesetzt. Nach einer Reaktionszeit von 3,5 Stunden betrug der Umsatz 95,8%.

10

Patentansprüche

15

1. Verfahren zur Herstellung von 2,3,5-Trimethylhydrochinon-diester durch Umsetzung von 2,6,6-Trimethylcyclohex-2-en-1,4-dion in Gegenwart eines Acylierungsmittels und einer Säure,
dadurch gekennzeichnet,
daß man einen festen, sauren Katalysator verwendet und die Umsetzung in flüssiger Phase durchführt und den festen Katalysator anschließend abtrennt.
2. Verfahren gemäß Anspruch 1,
dadurch gekennzeichnet,
daß man als Katalysatoren kristalline und/oder amorphe Alumosilikate, Tonminerale, Pillard Clays, jeweils in der H-Form, einsetzt.
3. Verfahren gemäß Anspruch 2,
dadurch gekennzeichnet,
man als Katalysator einen sauren Zeolith mit einem Porendurchmesser von 0,5 bis 0,8 nm einsetzt.
4. Verfahren gemäß Anspruch 3,
dadurch gekennzeichnet,
daß man Zeolithe der Typen Y, β oder ZSM5, dealumiinierte Zeolithe oder Mordenite einzeln oder im Gemisch miteinander einsetzt.
5. Verfahren gemäß Anspruch 3,
dadurch gekennzeichnet,
daß man mesoporöse Molekularsiebe einsetzt, insbesondere mit MCM-41 oder MGM-48 Struktur.
6. Verfahren gemäß Anspruch 1,
dadurch gekennzeichnet,
daß man Ionenaustauscherharze oder Polysiloxanverbindungen, die saure Gruppen tragen, als Katalysatoren einsetzt.
7. Verfahren gemäß Anspruch 1,
dadurch gekennzeichnet,
daß man Mineralsäuren auf anorganischen Trägern als Katalysatoren einsetzt.
8. Verfahren nach Ansprüchen 1 bis 7,
dadurch gekennzeichnet,
daß man den Katalysator in einer Menge von 5 bis 150 Gew.-% bezogen auf 2,6,6-Trimethylcyclohex-2-en-1,4-dion, insbesondere in einer Menge von 20 bis 60 % einsetzt.
9. Verfahren nach einem oder mehreren der vorhergenden Ansprüche,
dadurch gekennzeichnet,
daß man als Acylierungsmittel ein Carbonsäureanhydrid der allgemeinen Formel

(I),

10 verwendet,
in der R einen gegebenenfalls substituierten aliphatischen, alicyclischen oder aromatischen Rest mit 1 bis 8 Kohlenstoffatomen bedeutet.

15 10. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß man als Carbonsäureanhydrid Acetanhydrid verwendet.

20 11. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß man als Acylierungsmittel ein Carbonsäurehalogenid verwendet.

25 12. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß man als Acylierungsmittel einen Enoester der allgemeinen Formel

(II),

35 verwendet.
in der R₁ und R₂ Wasserstoffatome, Alkylreste mit 1 bis 8 Kohlenstoffatomen, oder Alkylenreste mit 1 bis 5 Kohlenstoffatomen, die gemeinsam einen 5- oder 6-gliedrigen Kohlenstoffring bilden, R₃ ein Wasserstoffatom oder einen Akylrest mit 1 bis 8 Kohlenstoffatomen und R₄ einen aliphatischen, acylischen oder aromatischen Rest mit 1 bis 8 Kohlenstoffatomen bedeuten.

40 13. Verfahren nach einem oder mehreren der vorgehenden Ansprüche,
dadurch gekennzeichnet,
daß man das Acylierungsmittel und das 2,6,6-Trimethylcyclohex-2-en-1,4-dion in einem Molverhältnis von 2 : 1 bis 20 : 1 verwendet, vorzugsweise 2 : 1 bis 5 : 1.

45 14. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß man die Umsetzung bei einer Temperatur von 0 bis 150 ° C, insbesondere 20 bis 100 ° C durchführt.

50 15. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß man die Umsetzung in Gegenwart eines organischen Lösungsmittels durchführt.

55 16. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß man in Gegenwart eines organischen Lösungsmittels arbeitet und das Acylierungsmittel und das 2,6,6-Trimethylcyclo-2-en-1,4-dion in einem Molverhältnis von 2 : 1 bis 3 : 1 einsetzt.

**17. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß man den jeweils erhaltenen 2,3,5-Trimethylhydrochinondiester nach bekannten Maßnahmen zum 2,3,5-Tri-
methylhydrochinon verseift.**

5

10

15

20

25

30

35

40

45

50

55

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung
EP 99 10 7633

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betritt Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)
P, X	EP 0 850 910 A (DAICEL CHEM) 1. Juli 1998 (1998-07-01) * das ganze Dokument *	1-17	C07C39/08 C07C37/07
D, Y	DE 21 49 159 A (EASTMAN KODAK) 6. April 1972 (1972-04-06) * Seite 1 - Seite 8; Anspruch 1 *	1-17	
D, Y	DE 196 27 977 A (DEGUSSA) 20. November 1997 (1997-11-20) * das ganze Dokument *	1-17	
D, Y	DE 26 46 172 A (RHONE POULENC IND) 28. April 1977 (1977-04-28) * Seite 4; Ansprüche 1,2; Beispiel 1 *	1-17	
RECHERCHIERTE SACHGEBiete (Int.Cl.6)			
C07C			
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt			
Recherchenart	Abschlußdatum der Recherche	Prüfer	
MÜNCHEN	12. August 1999	Arias-Sanz, J	
KATEGORIE DER GENANNTEN DOKUMENTE			
X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A : technologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischenliteratur		T : der Erfindung zugrunde liegende Theorien oder Grundsätze E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : aus anderen Gründen angeführtes Dokument & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	

**ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT
ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.**

EP 99 10 7633

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am
Diese Angaben dienen nur zur Unterreichung und erfolgen ohne Gewähr.

12-08-1999

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 0850910 A	01-07-1998	CN	1186065 A	01-07-1998
		JP	10237020 A	08-09-1998
		US	5908956 A	01-06-1999
DE 2149159 A	06-04-1972	US	T900015 I	25-07-1972
DE 19627977 A	20-11-1997	CN	1165133 A	19-11-1997
		EP	0808815 A	26-11-1997
		JP	10053548 A	24-02-1998
DE 2646172 A	28-04-1977	FR	2327980 A	13-05-1977
		BE	847214 A	13-04-1977
		CA	1077062 A	06-05-1980
		CH	603518 A	15-08-1978
		GB	1544851 A	25-04-1979
		IT	1068946 B	21-03-1985
		JP	1226186 C	31-08-1984
		JP	52048636 A	18-04-1977
		JP	59003454 B	24-01-1984
		NL	7611314 A	18-04-1977
		US	4247720 A	27-01-1981