

Assessments and Other Guidelines

Assessment Type	Date	Max. marks	Weightage	Remarks
Assignment I	Before CAT I	30	10%	Questions and Rubrics will be given later
Assignment II	After CAT II	30	10%	Questions and Rubrics will be given later
Quizes	Throughout the course	50	10%	During class
CAT-I	As per University announcement		15%	Schedule to be announced by University in due course.
CAT-II			15%	
FAT			40%	

ATTENDANCE: 75%!!!

Kirchhoff's Current law (KCL)

$$i_A + i_B = i_C + i_D$$

Algebraic sum of currents entering any node is zero

Entering the node $i_A + i_B + (-i_C) + (-i_D) = 0$

Leaving the node $(-i_A) + (-i_B) + i_C + i_D = 0$

$$\sum_{n=1}^{N} i_n = 0$$

Example: If the voltage source supplies 3A of current, compute the current through resistor R₃

Strategy for such questions

- 1) Identify goal of the problem
- 2) Collect known info
- 3) Devise a plan
- 4) Construct proper set of equations.

Kirchhoff's Current law (KCL)

Example: If the voltage source supplies 3A of current, compute the current through resistor R₃

- 1) <u>Identify goal of the problem</u>: Labelled 'i' on the figure
- Collect known info:
 Top node of R₃ connected to 3 branches.
 Current flowing into this node will have currents from these 3 branches.
- 3) <u>Devise a plan</u>: Label current thr' R1 and write KCL at the top node of R₃
- 4) <u>Construct proper set of equations</u>: Summing up the currents flowing into the node - Which node to choose?

$$i_{R_1} - 2 - i + 5 = 0$$

$$3-2+5=i$$

$$i = 6A$$

Kirchhoff's Current law (KCL)

Elements connected from end to end ——— Series circuit

CURRENT in a **SERIES** circuit – remains same!

Apply KCL to check this!

@ Node 1,
$$i_a = i_b$$

@ Node 2,
$$i_b = i_c$$

Thus,
$$i_a = i_b = i_c$$

Kirchhoff's Voltage law (KVL)

Algebraic sum of voltages around any closed path is zero

$$v_1 + v_2 + v_3 + \cdots + v_N = 0$$

$$\sum_{n=1}^{N} v_n = 0$$

Move mentally in a clockwise direction, write voltage of each element in such a way that if a +ve terminal is encountered then +ve, and if –ve terminal, then -ve

Example: Find v_x and i_y

Applying KVL,

$$-5 - 7 + v_x = 0$$

$$i_x = \frac{v_x}{100} = \frac{12}{100} \text{ A} = 120 \text{ mA}$$

Kirchhoff's Voltage law (KVL)

Both ends of an element to the _____ Parallel corresponding ends of the other circuit

VOLTAGE in a **PARALLEL** circuit – remains same!

Apply KVL to check this!

@ Loop 1,
$$-v_a + v_b = 0$$

@ Loop 2,
$$-v_a - v_c = 0$$

Thus,
$$V_a = V_h = -V_c$$

Practice

Q) Find voltages, current and power in this simple circuit

1)Apply KVL to the loop -

2) Source and R in parallel – V has to be same!

4) Apply KCL to 2 nodes

3) Use Ohm's law -

5) Source and resistance in series – I has to same!

Practice

Q) Find voltages, current and power in this simple circuit

Case where source and R were in series and parallel!

Happens only in a 2 element circuit

Power delivered to resistor

$$p_R = v_R i_R = 10 \times 2 = 20 \text{ W}$$

 $p_R = i_R^2 R = 2^2 \times 5 = 20 \text{ W}$
 $p_R = \frac{v_R^2}{R} = \frac{10^2}{5} = 20 \text{ W}$

Power supplied by the source

$$p_s = -v_s i_s = -10 \times 2 = -20 \text{ W}$$

Law of conservation of energy!