Wahrscheinlichkeiten und Statistik

Fabio Oesch

21. November 2012

Inhaltsverzeichnis

1	Zufa	allsexperiment 3			
	1.1	Ergebnisraum			
	1.2	Ereignis $E \subseteq \Omega$			
	1.3	Wahrscheinlichkeitsfunktion			
	1.4	Subaditivitt			
	1.5	Wahrscheinlichkeitsraum (Vorlufig)			
	1.6	Theoretische Wahrscheinlichkeitsfunktion			
	1.7	Laplace-Experimente			
	1.8	Mehrstufige Zufallsexperiment			
	1.9	Urnenmodel			
	1.10	Geburtstagparadoxon:			
	1.11	Repetition			
		Erwartungswert:			
		Streuung, Varianz			
		Binomialverteilung			
		1.14.1 Binomialverteilung:			
		1.14.2 Testen einer Hypothese:			
	1.15	Poissonverteilung			
2	Stetige Zufallsgrssen und Verteilungen 6				
_	2.1	Erwartungswert von stetigen ZV			
	$\frac{2.1}{2.2}$	Varianz			
	2.3	Normalverteilung $N(0,1)$			
	2.0	2.3.1 Zentrale Grenzwertsatz			
		2.3.2 Dichtefunktion			
		2.3.3 allgemeine Normalverteilung $N(\mu, \sigma^2)$			
	2.4	Prinzip eines Tests:			
	2.4	t-Verteilung			
	$\frac{2.6}{2.6}$	Parametertests			
	$\frac{2.0}{2.7}$	Konfidenz/Vertrauensintervall			
	۷.1	2.7.1 2-Stichproben t-Test			
		2.7.1 2-Strenproben t-Test			
		2.1.2 Holiosacuasuscilei fali			

1 Zufallsexperiment

- 1. beliebig oft wiederholbar
- 2. Resultat ist zufllig

Bsp: Lotto, Mnze werfen, Wrfeln

1.1 Ergebnisraum

 $\Omega=$ Menge aller m
glichen Ausg
nge des Experiemnts (im Skript mit S) B
sp: Ω von Lotto: $\Omega=\{1,\dots,45\}$

1.2 Ereignis $E \subseteq \Omega$

Ereignis $E = \{\text{Augenzahl ist gerade}\}\$ spezielle Ereignisse:

- $E = \Omega$ sicheres Ereignis
- $E = \emptyset$ unmgliches Ereignis

E Ereignis: $E^C=\overline{E}=\Omega\backslash E$

1.3 Wahrscheinlichkeitsfunktion

 $\mathbb{P}: \mathcal{P}(\Omega) \to [0,1]$

2 wichtige Eigenschaften: $\mathcal{P}(\Omega) = 1$, $\mathcal{P}(\emptyset) = 0$, $0 \leq \mathcal{P}(E) \leq 1$

Bsp: $\Omega = \{\text{Kopf, Zahl, Kante}\}\$

$$\begin{array}{l} \mathcal{P}(\{\text{Kopf}\} = \frac{2}{3} \\ \mathcal{P}(\{\text{Kante}\} = 0 \\ \mathcal{P}(\{\text{Zahl}\} = \frac{1}{3} \end{array}) \Rightarrow \mathcal{P}(E) = 1, E = \{\text{Kopf, Zahl}\}$$

1.4 Subaditivitt

 $E_1, E_2 \subseteq \Omega, E_1 \cap E_2 = \emptyset \Rightarrow \mathcal{P}(E_1 \cup E_2) = \mathcal{P}(E_1) + P(E_2)$

$$\Rightarrow \mathcal{P}(E_1 \cup E_2) = \mathcal{P}(E_1) + \mathcal{P}(E_2), E = E_1 \cup E_2$$

$$\Rightarrow \mathcal{P}(E) = \mathcal{P}(E_1) + \mathcal{P}(E_2) - \mathcal{P}(E_1 \cap E_2), E = E_1 \cup E_2$$

 $\mathcal{P}(E_1 \cup E_2 \cup \cdots \cup E_n) \leq \mathcal{P}(E_1) + \cdots + \mathcal{P}(E_n)$

Bsp: Lotto mit Matryoshka

$$\mathcal{P}(\{w\}) = \frac{1}{45}, E_1 = \{1\}, E_2 = \{1, 2\}, \dots, E_{45} = \{1, \dots, 45\} = \Omega \Rightarrow \mathcal{P}(E_1 \cup \dots \cup E_{45}) = 1$$

$$\mathcal{P}(E_1 \cup E_2 \cup \dots \cup E_{45} \leq \mathcal{P}(E_1) + \dots + \mathcal{P}(E_{45}) = \frac{1}{45} + \frac{2}{45} + \dots + \frac{45}{45} = \frac{\frac{45 \cdot 46}{2}}{\frac{2}{45}} = \frac{46}{2} = 23$$

1.5 Wahrscheinlichkeitsraum (Vorlufig)

 $W = (\Omega, \mathcal{P}(\Omega), \mathbb{P}), \Omega = \text{Ergebnisraum}, \mathcal{P}(\Omega) = \text{alle Ausgnge des Experiments. alle } E's, \mathbb{P} = \text{Wahrschein-}$ lichkeitsfunktion

Theoretische Wahrscheinlichkeitsfunktion 1.6

 $\mathcal{P}(\{Zahl\}) = \mathcal{P}(\{Kopf\} = \frac{1}{2} \text{ (Definiere die Wahrscheinlichkeit synthetisch)}$ $\mathcal{A}(E) = \frac{\text{wie hufig tritt } E \text{ ein bei N-facher Wiederholung}}{N}$ (Empirische Wahrscheinlichkeit)

Laplace-Experimente

∧ Fairen Spielen, Die Wahrscheinlichkeiten sind gleichverteilt

 $|\Omega| = n$ endlicher Wahrscheinlichkeitraum.

Jedes Elementarergebnis ist gleich wahrscheinlich (|E|=1). Bsp: Wrfel: $\{1\}=\{1,2,3,4,5,6\}$. kein Elementarergebnis: $\{3,4\}$ $\omega \in \Omega : \mathcal{P}(\{\omega\}) = \frac{1}{n} = \frac{1}{|\Omega|}, |A| = \text{Anzahl Elemente in } A$

Mehrstufige Zufallsexperiment 1.8

Zufallsexperiment Z, das mehrfache hintereinander angefhrt wird.

Bsp: mehrmals Wrfeln: Wie gross ist die W'keit $2 \times$ hintereinander 6 zu wrfeln: $\mathcal{P}(2 \times 6 \text{ Wrfeln}) = \frac{1}{36}$ Produktregel: $\mathcal{P}(E_1 \text{ und } E_2) = \mathcal{P}(E_1) \cdot \mathcal{P}(E_2)$

Mglichkeiten: Ω_1 hat n_1 viele Ausgnge ($|\Omega_1| = n_1$), Ω_2 hat n_2 viele Ausgnge ($|\Omega_2| = n_2$) also $n_1 \cdot n_2$

1.9 Urnenmodel

Unterscheidung nach "Zurcklegen" oder "nicht zurcklegen" und "geordnet" oder "keine Reihenfolge"

	zurcklegen	nicht zurcklegen
geordnet	n^k	$n!$ oder $\frac{n!}{(n-k)!}$
ungeordnet		$\binom{n}{k} = \frac{n!}{k!(n-k)!}$

Bsp: Klasse aus 10 Mdchen und 14 Knaben. Whle 5 Personen aus.

a) W'keit, dass alle Mdchen sind?

Antwort:
$$P(\{5 \text{ Mdchen}\}) = \frac{|\{5 \text{ Mdchen}\}|}{|\Omega|}, |\Omega| = {24 \choose 5}, |\{5 \text{ Mdchen}\}| = {10 \choose 5}$$

$$\Rightarrow P(\{5 \text{ Mdchen}\}) = \frac{{10 \choose 5}}{{24 \choose 5}}$$

- b) W'keit alles Knaben: $P(\{5 \text{ Knaben}\}) = \frac{\binom{14}{5}}{\binom{24}{12}}$
- c) W'keit, dass in der 5-er Gruppe, sowohl Mdchen, als auch Knaben vorkommen.

Gegenw'keit von a) + b), also $\overline{E} = \{\text{nur Mdchen oder nur Knaben}\} \Rightarrow P(\overline{E}) = P(\{\text{nur Mdchen}\}) + P(\{\text{nur Knaben}\}) = \frac{\binom{10}{5} + \binom{14}{5}}{\binom{24}{5}} \Rightarrow P(E) = 1 - P(\overline{E})$ Gegenw'keit benutzen: P(E), $\frac{\Omega}{E} = \overline{E}$, $1 - P(\overline{E}) = P(E)$

$$P(\{\text{nur Knaben}\}) = \frac{\binom{10}{5} + \binom{14}{5}}{\binom{24}{5}} \Rightarrow P(E) = 1 - P(\overline{E})$$

Bsp: 8x Mnze werfen

Wie gross ist die W'keit, das Zahl & Kopf gleichhufig vorkommen.

 $|E| = \binom{8}{4} \cdot \binom{4}{4}$

1.10 Geburtstagparadoxon:

Wie gross ist die W'keit, dass in einer beliebigen Gruppe von n Leuten, mind. zwei am selben Tag Geburstag haben?

Gegenw'heit bestimmen:

1.11 Repetition

X Zufallsvariable: Anzahl bei 1x wrfeln Y Zufallsvariable: Anzahl bei 1x wrfeln $\Big\}$ X,Y Gleichverteilt (uniform) uniform Z := X + Y Zufallsvariable: $F(z) = \sum_{X_i \leq Z} p_i, p_i = P(Z = x_i)$

1.12Erwartungswert:

Theoretischer Pendant zum Mittelwert.

Bsp:
$$x_1, x_2, x_3, x_4, h = |\{x_1, x_2, x_3, x_4\}| \rightarrow \overline{x} = \frac{\sum x_i}{h}$$
 $\mathbb{E}X = \mu = \sum_{\text{alle } X_i} x_i \cdot \mathbb{P}(X = x_i)$ keine Zufallsvariable

1.13Streuung, Varianz

$$\operatorname{Var}(X) := \mathbb{E}((X - \mathbb{E}(X))^2) \Rightarrow \mathbb{E}(X - \mu)^2 = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

Binomialverteilung 1.14

Zufallsexperiment mit 2 Ausgagen: Erfolg, Misserfolg

$$P(X = \text{Erfolg}) = p \in [0, 1], P(X = \text{Misserfolg}) = 1 - p = q$$

Zufallsvariable X= Anzahl Erfolge bei n-facher Wiederholung des Experiments

Wahrscheinlichkeitsfunktion von
$$X$$
 aus. $P(X=x) = \frac{x_i \mid 0}{p_i \mid (1-p)^n \mid \binom{n}{1}p(1-p)^{n-1} \mid \binom{n}{k}p^k(1-p)^{n-k} \mid \binom{n}{n}p^n}$

Bsp:

Spieler A: M.D. 40% Erfolgsw'keit, Spieler B: K.G. 60% Erfolgsw'keit.

Sie spielen 3x gegeneinander. E: W'keit dass A hufiger als B gewinnt. Also muss A 2- oder 3-Mal gewinnen. $P(X=2) + P(X=3) \Rightarrow \binom{3}{2}0.4^2 \cdot 0.6 + \binom{3}{3}0.4^3 + 0.6^0 = 0.352 \Rightarrow 35.2\%$ W'keit gewinnt A

Erfolgsw'keit von p: $\mathbb{E}X$ bei n spielen. Mit Trick: $\mathbb{E}X = n \cdot p$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} f(t) = (q+pt)^n = \sum_{k=0}^n \binom{n}{k} q^{n-k} (pt)^k$$

Binomialverteilung:

Abkrzung:
$$X \sim \text{Bin}(n, p)$$
, n : Anzahl Experimente, p : Erfolgsw'keit $P = (X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$, $\mathbb{E}(X) = np$, $\text{Var}(X) = \sigma^2 = np(1 - p)$. σ : Std'abweichung

1.14.2 Testen einer Hypothese:

Vermutung: Hhner knnen zw. \circ und \triangle Futter entscheiden.

 $20 \times \circ$, $20 \times \triangle \Rightarrow \circ = \text{Erfolg}$, $\triangle = \text{Misserfolg}$

Zufallsvariable X zhlt die Anzahl Erfolge \Rightarrow Binomiales Experiment d.h. $X \sim \text{Bin}(20, p)$.

Fhren das Experiment durch: $15 \times \circ$ und $5 \times \triangle$, experimentelle W'keit fr Erfolg: $p = \frac{15}{20} = \frac{3}{4}$

Hypothese formulieren:

 H_0 : Nullhypothese: es gibt keinen Unterschied \to Huhn kann nicht unterscheiden zw. $\circ \& \Delta, p = q = \frac{1}{2}$ H_1 : Alternativhypothese: $p \geq q \ (p \leq q)$. d.h. es gibt einen Unterschied beim Fressverhalten.

Ziel: Entscheiden ob H_0 anzunehmen ist, oder sie zugunsten von H_1 verwerfen.

Berechnung: Berechne W'keit unter $H_0(p=q=\frac{1}{2})$, dass wir einen Ausgang mit 15× Erfolg und 5× Misserfolg

 $P(15 \le X \le 20) = \sum_{k=15}^{20} {20 \choose k} p^k (1-p)^{20-k} \stackrel{\text{unter } H_0!}{=} \sum_{k=15}^{20} {20 \choose k} \frac{1}{2}^k \cdot \frac{1}{2}^{20-k} \approx 0.021 = 2.1\%$, Signifikanz-Niveau α , $\alpha = 0.1$ (10%) \Rightarrow Falls $P(15 \le X \le 20|H_0) \le \alpha \Rightarrow$ dann verwerfen H_0 , ansonsten nehmen wir H_0 an.

- 2 Mglichkeiten: falls unter der Nullhypothese
 - 1. $P(15 \le X \le 20) > \alpha$, dann nehmen wir die Nullhypothese an es spricht nichts gegen H_0 auf Signifikanzniveau α
 - 2. $P(15 \le X \le 20) \le \alpha$, dann verwerfen wir H_0 zugunsten von H_1
- (2) Fehler 1. Art; verwerfen von H_0 , obwohl H_0 , obwohl H_0 korrekt wre \rightarrow Irrtumsw'keit $P(15 \le X \le$
- (1) Fehler 2. Art; verwerfen H_1 , obwohl H_1 korrekt ist \rightarrow Irrtumsw'keit β (Power)

1.15Poissonverteilung

- 1. Gleichverteilung (fairer Wrfel)
- 2. Binomialverteilung
- 3. Poissonverteilung

Idee: p soll sehr klein sein. n soll sehr gross sein.

Bsp: X sei binomialverteilt und Parametern $n, p. \Rightarrow \mathbb{E}(X) = n \cdot p$.

$$\lim_{n\to\inf} n \cdot p_n = \lambda \in \mathbb{R}, \Rightarrow p = \frac{\lambda}{n}$$

X binomial verteilt: $P(X=k) = \binom{n}{k} \cdot p^k (1-p)^{n-k}, \stackrel{?}{\Rightarrow} \lim_{n \to \inf} P(X=k) = \frac{\lambda^k}{k!} \cdot e^{-\lambda}$ Verteilung mit W'keitsfunktion $\frac{\lambda^k}{k!} \cdot e^{-\lambda}$ heisst Poisson verteilung.

Erwartungswert von $X\tilde{P}oi(\lambda)$ (X ist Poisson-verteilung mit Parameter λ)

$$\mathbb{E}(X) = \sum_{x=0}^{\infty} x \cdot P(X = x) = \lambda$$

- \bullet Fr sehr kleine W'keiten. Mit bekanntem "Mittelwert" (Erwartungswert) λ . Mit quasi unendlich (unbekannter) Anzahl gleicher Experimente.
- $P(X = x) = \frac{\lambda^x e^{-lambda}}{x!}$
- $\mathbb{E}(X) = \lambda$
- $Var(X) = \lambda$
- $X\tilde{P}oi(\lambda), Y\tilde{P}oi(\mu), Z = X + Y : Z\tilde{P}oi(\lambda + \mu)$

Bsp: Smartphonehersteller, Fehlerquote von 1, 5.000 Smartphones

Wie gross ist die W'keit, dass mind. 2 defekt sind.

Poissonapproximation: $\lambda = 0.001 \cdot 5000 = 5$

$$P(X \ge 2) = 1 - (P(X = 1) + P(X = 0)) = 1 - (\frac{\lambda^1 e^{-\lambda}}{1!} + \frac{\lambda^0 e^{-\lambda}}{0!}) = 1 - (\frac{5^1 e^{-5}}{1!} + \frac{5^0 e^{-5}}{0!}) = 1 - 6e^{-5} \approx 0.96$$

2 Stetige Zufallsgrssen und Verteilungen

Wrfel: $P(X = 6) = \frac{1}{6}$

 $X:\Omega\to\mathbb{R}$

alle Ausginge des Experiments sind i.a. (im allgemeinen) mglich. **Bsp:** Distanz messen. $P(\Omega) = 1$ $P(X=\frac{1}{2})=0$, ist nicht sinnvoll, da es nur einzelne gibt die W'keit haben. Sinnvoller ist es ein Bereich zu nehmen: $P(1 \le x \le 2) \ne 0$ i.a.

 $P(a \le X \le b = \text{Flche unter } f \text{ sein zw. } a, b$

- f heisst Dichtefunktion. abgekrzt p.d.f.
- $P(X \in \mathbb{R}) = 1 = \int_{-\infty}^{\infty} f(x)dx = 1$

2.1 Erwartungswert von stetigen ZV

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \cdot f(x) \cdot dx$$

2.2 Varianz

$$\begin{aligned} & \operatorname{Var}(X) = \mathbb{E}(X^2) - \mathbb{E}^2(X) \text{ } \mathbf{Bsp:} \ X \sim & \operatorname{Unif}[0,1] \\ & \mathbb{E}(X) = \int_{-\infty}^{\infty} x \cdot f(x) \cdot dx = \frac{1}{2} \\ & \operatorname{Var}(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = \int_{-\infty}^{\infty} (x - \frac{1}{2})^2 f(x) dx = \int_{-\infty}^{\infty} (x^2 - x + \frac{1}{4}) f(x) dx = \int_{0}^{1} x^2 - x + \frac{1}{4} dx = \\ & (\frac{x^3}{3} - \frac{x^2}{2} + \frac{x}{4}) \mid_{0}^{1} = \frac{1}{3} - \frac{1}{2} + \frac{1}{4} = \frac{1}{12} \end{aligned}$$

2.3 Normalverteilung N(0,1)

- Wichtigste Funktion der Statistik/W'keit
- Dichtefunktion
- allgemeine Normalverteilung

2.3.1 Zentrale Grenzwertsatz

$$X_1, X_2, \dots$$
 ZV. unabhngig
$$S_n = \sum_{i=1}^n X_i$$

$$\mathbb{E}(S_n) = n\mu$$

$$\operatorname{Var}(S_n) = n\sigma^2$$

$$\left. \right\} z_n := \frac{S_n - n\mu}{\sigma\sqrt{n}} \stackrel{D}{\to} N(0, 1)$$

2.3.2 Dichtefunktion

$$\varphi(z,0,1) := \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

$$\int_{-\infty}^{\infty}\varphi(z,0,1)dz=1$$
keine elem
ntare Stammfunktion $\varPhi(z,0,1)=\varPhi(0.5,0,1)-\varPhi(-0.5,0,1)=0.6915-(1-0.6915)=0.3830$

2.3.3 allgemeine Normalverteilung $N(\mu, \sigma^2)$

$$\begin{array}{l} \varphi(z,\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \Rightarrow \varPhi(z,\mu,\sigma^2) = \int_{-\infty}^{\infty} \varphi(z,\mu,\sigma^2) du \\ \text{Transformation: } z = \frac{x-\mu}{\varphi} \end{array}$$

$$X \sim N(\mu, \sigma^2): P(x_1 \le X \le x_2) = P(\frac{x_1 - \mu}{\sigma} \le z \le \frac{x_2 - \mu}{\sigma}) = \Phi(\frac{x_2 - \mu}{\sigma}, 0, 1) - \Phi(\frac{x_1 - \mu}{\sigma}, 0, 1) \text{ mit } Z \sim N(0, 1)$$

Bsp: $X \sim N(\mu, \sigma^2)$

Behauptung: $\mathbb{E}(X) = \mu$, $Var(X) = \sigma^2$ Sei X binomialverteilt mit Parameter n, p.

 $\mathbb{E}(X) = \mu = np, \ Var(X) = \sigma^2 = np(1-p)$

X kann fr gengend grosse $n \in \mathbb{N}$ durch $N(np, np(1-p)) = N(\mu, \sigma^2)$

Faustregel: $n > \frac{g}{p(1-p)}$

Binomialvert: $P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$, Normalverteilung (approx.): P(X=k) = 0

 $P_{Bin}(x_1 \le X \le x_2) = F_{Bin}(x_2) - F_{Bin}(x_1)$

 $P_N(x_1 \le X \le x_2) = \Phi(x_2; \mu, \sigma^2) - \Phi(x_1; \mu, \sigma^2).$

de Moivre + Laplace: $F_{Bin(n,p)}\Phi(\ ; \mu, \sigma^2)\ (n \to \infty) \Rightarrow \left|F_{Bin(n,p)}(x) - \Phi(\ ; \mu, \sigma^2)\right| \to 0\ (n \to \infty)$ fr alle X

2.4 Prinzip eines Tests:

Vermutung berprfen, Stichprobe vorhanden, Signifikanzniveau festlegen

1. Nullhypothese H_0 formulieren.

Bsp:
$$H_0: p = \frac{1}{6}$$
 bei einem Wrfel $H_1: p > \frac{1}{6}$ Alternativhypoth. $H_1: p > \frac{1}{6}$ H₁ $H_0: p = \emptyset$

- 2. Signifikanzniveau $\alpha \in (0,1)$
- 3. Stichprobe sammeln
- 4. Entscheid fllen: Berechne W'keit unter H_0 , das wir einen Ausgang haben, wie die Stichprobe Ist sie grsser als $\alpha \Rightarrow H_0$ annehmen Ist sie kleiner als $\alpha \Rightarrow H_0$ zugunsten von H_1 verwerfen

Bsp: Fairer Wrfel

12'000 mal Wrfeln, 2'107 mal Sechs, $\alpha = 10\%$

 $H_0: p = \frac{1}{6}$ Nullhypothese $H_1: p > \frac{1}{6}$ Alternativhypothese

Unter H_0 ist $X \sim Bin(12'000, \frac{1}{6})$

Approximieren $X \sim (Bin(12'000, \frac{1}{6}))$ durch Normalverteilung

 $N(2000, 12000 \cdot \frac{1}{6} \cdot \frac{5}{6}) = N(2000, 1666.5) \sim Y$

$$P(X \geq 2107) \approx P(Y \geq 2107) = 1 - \varPhi(\frac{2107 - 2000}{\sqrt{1666.6}}, 0.1)$$

S. 72 Transformationsformel $\Phi(x,0,1)$ gegeben $\Phi(x,\mu,\sigma^2)$

$$z = \frac{x - \mu}{\sigma}$$

 $P(X \ge 2107) = 1 - \Phi(2107, 2000, 1666.6) = 1 - \Phi(\frac{2107 - 2000}{\sqrt{1666.6}}, 0.1) = \Phi(2.621, 0.1) = 0.0044 = 0.44\% < \alpha \Rightarrow H_0$ verwerfen

2.5 t-Verteilung

$$\begin{split} X_1, \dots, X_n &\sim N(\mu, \sigma^2) \\ T_{n-1} := \frac{\frac{1}{n} \sum_{i=1}^n X_i - \mu}{\sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)^2}} \sqrt{n} \in \mathbb{R}^{\Omega^n} \text{ heisst t-verteilt mit } n-1 \text{ Freiheitsgraden} \\ t_{n-1} := \frac{\frac{1}{n} \sum_{i=1}^n x_i - \mu}{\sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2}} \sqrt{n} \in \mathbb{R} \\ f_{n-1}(t) &= c_{n-1} (1 + \frac{t^2}{n})^{-\frac{n+1}{2}} \text{ fr } \lim_{n \to \infty} \to \varphi(t, 0, 1) \\ c_{n-1} &= \frac{\Gamma(\frac{n}{2})}{\sqrt{\pi(n-1)\Gamma(\frac{n-1}{2})}}, \ \Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt. \ \text{Gammafunktion.} \\ \Gamma(x+1) &= x \Gamma(x); \ \Gamma(1) = 1; \ \Gamma(5) = \Gamma(4+1) = 4\Gamma(4) = 4\Gamma(3+1) = 4 \cdot 3 \cdot \Gamma(3) = \dots = 5! \end{split}$$

2.6 Parametertests

- 1-Stichprobentest $H_0: \mu = \bar{x} \ X \sim W(\mu_1, \sigma_1^2) \ H_1: \mu \neq \bar{x} \ Y \sim W(\mu_2, \sigma_2^2)$
- 2-Stichprobentest $H_0: \mu_1 \neq \mu_2$

Grundvoraussage:

- Verteilungsfamilie bekannt (d.h. $W(\cdot, \cdot)$, t-verteilt, Weibull etz)
- Testen ob 1-Stichpr.fall $H_0: \vartheta = \hat{\vartheta}_n$ (ϑ : fester Wert, vartheta: empirisch) 2-sTichpr.fall $H_0: \hat{\vartheta}_n = \hat{\vartheta}_m$
- 1. Verteilung von T_n (Teststatistik) unter H_0 bekannt \Leftrightarrow : exakter Test.
- 2. Verteilung von T_n unter H_0 unbekannt.

Nicht parametrische Tests (Verteilungsfreie Tests):

- 1./2. Stichprobentests existieren
- keine Verteilungsparameter

1. Stich
probentest
$$H_0: \hat{F_n}(x) = F_0(x)$$

2. Stich
probentest $H_0: \hat{F_n}(x) = \hat{G_m}(x)$
 $\bar{F_n}(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{x_i \leq x\}$

2.7 Konfidenz/Vertrauensintervall

$$X \sim N(\mu, \sigma^2)$$
 Experiment n -mail durchfhren. $\Rightarrow X = \{x_1, \dots, x_n\}$ Theoretisch $\mathbb{E}(X) = \mu$ Empirisch: $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$ als Schtzung von μ Wie gut ist die Schtzung? Vorgabe: $\gamma \in [0, 1]$ $[\mu - \Delta x, \mu + \Delta x] \ni \bar{x}$ Finde Δx , so dass $\mathbb{P}(\bar{x} \in [\mu - \Delta x, \mu + \Delta x] = \gamma$.

 $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$. $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - x)^2$. $t_{n-1} = \frac{\bar{x} - \mu}{s}$ (t-verteilt (exakt) fr ZV.). $\mathbb{P}(\bar{x} \in [\mu - \Delta x, \mu + \Delta x]) = \gamma = 1 - \alpha$

Beispiel: n = 10 Stichproben $X = \{x_1, \dots, x_n\}$

 $\bar{x}=5.\ s=0.2$ Vertrauensintervall =? bei Vertraunsw'keit von $\gamma=0.95\Rightarrow\alpha=0.05;\,1-\frac{\alpha}{2}=1-0.025=0.05$

 $\Rightarrow \Delta \ x = \frac{t_{10-1},0.975}{\sqrt{10}} \cdot 0.2 \text{ Tabelle betrachten Seite 140 ergibt mit Freiheitsgrad} = n-1 = 9. \ t_{9,0.975} = 2.262.$ $\Rightarrow \Delta \ x = \frac{t_{2.262}}{\sqrt{10}} \cdot 0.2 \approx 0.14$

Vertrauensintervall [4.86, 5.14]. mit W'keit von 95% liegt μ in [4.86, 5.14] = [5 - Δx , 5 + Δx]

Allgemein

Feste Vertrauensw'keit $\gamma = 0.95$

s konstant

Stichproben n: $\Delta x = \frac{t_{N-1,0.975}}{\sqrt{N}} s(n \to \infty) = 0$ $t_{n,0.975} \le t_{n-1,0.975} \le 2.262 \text{ fr } n \ge 10$ **Beispiel:**

$$t = \overbrace{\frac{\bar{x} - \mu}{s}}^{\Delta \mu} \sqrt{s}$$

$$\frac{t \cdot s}{\bar{x} - \mu} = \sqrt{n} \stackrel{2}{\Rightarrow} \frac{t^2 \cdot s^2}{(\Delta x)^2} \le n$$

- Beispiel: $t = \frac{\overbrace{x \mu}^{\Delta \mu}}{s} \sqrt{s}$ Festes γ , und $\Delta \mu$. Wie gross n whlen? $\frac{t \cdot s}{\overline{x} \mu} = \sqrt{n} \stackrel{?}{\Rightarrow} \frac{t^2 \cdot s^2}{(\Delta x)^2} \le n$ Vorgehen: Vertrauensintervallgrsse $\Delta \mu$, Vertrauensw'keit γ (\rightarrow fliesst in t ein)
- $t=t_{n-1,1-\frac{1-\gamma}{2}}$ Quantifunktion der t-Verteilung.
- Abschtzung: $t \approx 2$ (oder t = 3). Daumenregel: $\frac{4 \cdot s^2}{(\wedge u)^2} \geq N$ (s^2 ist geschtzt)

2-Stichproben t-Test

Annahme: • Normalverteilung, • 2 Gruppen

 $H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$

2 Flle: a) unbekannte, aber gleiche Varianz d.h. $\sigma_1^2 = \sigma_2^2 = \sigma_2$ (Homoskedastisch) exakter Test b) unbekannte, evtl. ungleiche Varianzen, $\sigma_1^2 \neq \sigma_2^2$ (Heteroskedastisch) approximation

Homoskedastischer Fall 2.7.2

Zwei Stichproben: $X = \{x_1, \dots, x_n\}$ $W(\mu, \sigma^2)$; $Y = \{y_1, \dots, y_n\}$ $W(\mu_2, \sigma^2)$ μ_1, μ_2, σ^2 sind unbekannt.

Testen, ob $\mu_1 = \mu_2$ auf Signifikanzniveau α (2-seitiger Test, d.h. $H_0: \mu_1 = \mu_2$ gegen $H_1: \mu_1 \neq \mu_2$)

Testgrsse: $t = \frac{\bar{x} - \bar{y}}{s} \sqrt{\frac{n \cdot m}{n+m}}$. t-verteilt mit n + m - 2 Freiheitsgraden

$$\bar{s_1} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2, \ m-1 = \frac{1}{m} \sum_{i=1}^{m} (y_i - \bar{y})^2$$

$$s = \frac{(n-1)s_1^2 + (m-1)s_2^2}{n+m-2} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 + \sum_{i=1}^{m} (y_i - \bar{y})^2}{n+m-2}$$
Signifikanzniveau α : Ist $|t| < t_{n+m-2, 1-\frac{\alpha}{2}} \Rightarrow H_0$ annehmen