Graph Theory and Optimization Introduction on Duality in LP

Nicolas Nisse

Université Côte d'Azur, Inria, CNRS, I3S, France

October 2018

Thank you to F. Giroire for his slides

Motivation

- Finding bounds on the optimal solution. Provides a measure of the "goodness" of a solution.
- Provide certificate of optimality.
- Economic interpretation of the dual problem.

Outline

- Introduction to duality: find bounds
- Building the dual programme
- Ouality
- 4 Certificate of Optimality
- 5 Economical Interpretation

Lower bound: a feasible solution, e.g. $(0,0,1,0) \Rightarrow z^* \geq 5$.

What if we want an upper bound?

Second Inequation $\times 5/3$:

$$\frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4 \le \frac{275}{3}.$$

Note that (all variables are positive).

$$4x_1 + x_2 + 5x_3 + 3x_4 \le \frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4$$

Hence, a first bound:

$$z^* \leq \frac{275}{3}$$

Second Inequation $\times 5/3$:

$$\frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4 \le \frac{275}{3}.$$

Note that (all variables are positive),

$$4x_1 + x_2 + 5x_3 + 3x_4 \le \frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4$$

Hence, a first bound

$$z^* \leq \frac{275}{3}.$$

Second Inequation $\times 5/3$:

$$\frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4 \le \frac{275}{3}.$$

Note that (all variables are positive),

$$4x_1 + x_2 + 5x_3 + 3x_4 \le \frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4$$

Hence, a first bound:

$$z^* \leq \frac{275}{3}.$$

Similarly, $2^d + 3^d$ constraints:

$$4x_1 + 3x_2 + 6x_3 + 3x_4 \le 58.$$

Hence, a second bound:

$$z^* < 58$$
.

Similarly, $2^d + 3^d$ constraints:

$$4x_1 + 3x_2 + 6x_3 + 3x_4 \le 58$$
.

Hence, a second bound:

$$z^* \le 58$$
.

→ need for a systematic strategy.

Outline

- Introduction to duality: find bounds
- Building the dual programme
- 3 Duality
- Certificate of Optimality
- 5 Economical Interpretation

Build linear combinations of the constraints. Summing:

$$(y_1 + 5y_2 - y_3)x_1 + (-y_1 + y_2 + 2y_3)x_2 + (-y_1 + 3y_2 + 3y_3)x_3 + (3y_1 + 8y_2 - 5y_3)x_4 \le y_1 + 55y_2 + 3y_3.$$

We want left part upper bound of z. We need coefficient of $x_i \ge$ coefficient in z:

$$y_1 + 5y_2 - y_3 \ge 4$$

 $-y_1 + y_2 + 2y_3 \ge 1$
 $-y_1 + 3y_2 + 3y_3 \ge 5$
 $3y_1 + 8y_2 - 5y_3 \ge 3$.

Build linear combinations of the constraints. Summing:

$$(y_1 + 5y_2 - y_3)x_1 + (-y_1 + y_2 + 2y_3)x_2 + (-y_1 + 3y_2 + 3y_3)x_3 + (3y_1 + 8y_2 - 5y_3)x_4 \le y_1 + 55y_2 + 3y_3.$$

We want left part upper bound of z. We need coefficient of $x_j \ge$ coefficient in z:

$$y_1 + 5y_2 - y_3 \ge 4$$

 $-y_1 + y_2 + 2y_3 \ge 1$
 $-y_1 + 3y_2 + 3y_3 \ge 5$
 $3y_1 + 8y_2 - 5y_3 \ge 3$.

If the $y_i \ge 0$ and satisfy theses inequations, then

$$4x_1 + x_2 + 5x_3 + 3x_4 \le y_1 + 55y_2 + 3y_3.$$

In particular,

$$z^* \leq y_1 + 55y_2 + 3y_3$$
.

Objective: smallest possible upper bound. Hence, we solve the following PL:

It is the dual problem of the problem.

Outline

- 1 Introduction to duality: find bounds
- Building the dual programme
- Ouality
- 4 Certificate of Optimality
- 5 Economical Interpretation

The Dual Problem

Primal problem:

Maximize
$$\sum_{j=1}^{n} c_j x_j$$

Subject to: $\sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad (i=1,2,\cdots,m)$
 $x_i \geq 0 \quad (j=1,2,\cdots,n)$

Its dual problem is defined by the LP problem:

$$\begin{array}{lll} \text{Minimize} & \sum_{i=1}^m b_i y_i \\ \text{Subject to:} & \sum_{i=1}^m a_{ij} y_i & \geq & c_j & (j=1,2,\cdots,n) \\ & y_i & \geq & 0 & (i=1,2,\cdots,m) \end{array}$$

Theorem Weak Duality

If $(x_1, x_2, ..., x_n)$ is feasible for the primal and $(y_1, y_2, ..., y_m)$ is feasible for the dual, then

$$\sum_{j} c_{j} x_{j} \leq \sum_{i} b_{i} y_{i}.$$

Proof:

$$\sum_{j} c_{j} x_{j} \leq \sum_{j} (\sum_{i} y_{i} a_{ij}) x_{j} \quad \text{dual definition: } \sum_{i} y_{i} a_{ij} \geq c_{j}$$

$$= \sum_{i} (\sum_{j} a_{ij} x_{j}) y_{i}$$

 $\leq \sum_i b_i y_i$ primal definition: $\sum_i x_i a_{ij} \leq b_j$

Corollary:

The optimal value of the dual is an upper bound for the optimal value of the primal.

$$\max_{(x_1, \cdots, x_n) \text{ feasible}} \sum_i c_j x_j \leq \min_{(y_1, \cdots, y_m) \text{ feasible}} \sum_i b_i y_i$$

Weak Duality Theorem

Theorem **Weak Duality**

If $(x_1, x_2, ..., x_n)$ is feasible for the primal and $(y_1, y_2, ..., y_m)$ is feasible for the dual, then

$$\sum_{j} c_{j} x_{j} \leq \sum_{i} b_{i} y_{i}.$$

Proof:

$$\begin{array}{ll} \sum_{j} c_{j} x_{j} & \leq \sum_{j} (\sum_{i} y_{i} a_{ij}) x_{j} & \text{dual definition: } \sum_{i} y_{i} a_{ij} \geq c_{j} \\ & = \sum_{i} (\sum_{j} a_{ij} x_{j}) y_{i} \\ & \leq \sum_{i} b_{i} y_{i} & \text{primal definition: } \sum_{i} x_{i} a_{ij} \leq b_{i} \end{array}$$

Corollary:

The optimal value of the dual is an upper bound for the optimal value of the primal.

$$\max_{(x_1, \dots, x_n)} \sum_{i \text{ easible}} \sum_{i} c_j x_j \leq \min_{(y_1, \dots, y_m) \text{ feasible}} \sum_{i} b_i y_i.$$

Gap or No Gap?

An important question: Is there a gap between the largest primal value and the smallest dual value?

Theorem

Strong duality

If the primal problem has an optimal solution,

$$x^* = (x_1^*, ..., X_n^*),$$

then the dual also has an optimal solution,

$$y^* = (y_1^*, ..., y_n^*),$$

and

$$\sum_{i} c_{i} x_{j}^{*} = \sum_{i} b_{i} y_{i}^{*}.$$

Lemma: The dual of the dual is always the primal problem.

Corollary: + (Strong Duality Theorem) ⇒ Primal has an optimal solution iff dual has an optimal solution.

Weak duality: Primal unbounded \Rightarrow dual unfeasible.

Relationship between the Primal and Dual Problems

Lemma: The dual of the dual is always the primal problem.

Corollary: + (Strong Duality Theorem) ⇒ Primal has an optimal solution iff dual has an optimal solution.

Weak duality: Primal unbounded \Rightarrow dual unfeasible.

			Dual	
		Optimal	Unfeasible	Unbounded
	Optimal	Х		
Primal	Unfeasible		X	X
	Unbounded		X	

Application of Duality to Maximum flow

D = (V, A) be a graph with capacity $c : A \to \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a maximum flow from *s* to *t*.

Maximize
$$\sum_{(s,u)\in A} f(su)$$

Subject to: $f(a) \leq c(a)$ for all $a\in A$
 $\sum_{(v,u)\in A} f(vu) = \sum_{(u,v)\in A} f(uv)$ for all $v\in V\setminus \{s,t\}$
 $f(a) \geq 0$ for all $a\in A$
Exercise: Write the dual program

Exercise: Write the dual program

Application of Duality to Maximum flow

Variable y_a per edge constraint; Variable z_v per vertex-constraint

$$R = \sum_{a \in A} f(a)y_a + \sum_{v \in V \setminus \{s,t\}} \left(\sum_{(v,u) \in A} f(vu) - \sum_{(u,v) \in A} f(uv)\right) z_v \le \sum_{a \in A} c(a)y_a$$

Variable y_a per edge constraint; Variable z_v per vertex-constraint

$$R = \sum_{a \in A} f(a)y_a + \sum_{v \in V \setminus \{s,t\}} \left(\sum_{(v,u) \in A} f(vu) - \sum_{(u,v) \in A} f(uv)\right) z_v \le \sum_{a \in A} c(a)y_a$$

that can be rewritten:

$$R = f(st)y_{st} + \sum_{(s,v)\in A, v\neq t} f(sv)(y_{sv} + z_v) + \sum_{(v,t)\in A, v\neq s} f(vt)(y_{vt} - z_v) + \sum_{(u,v)\in A, u\neq s, v\neq t} f(uv)(y_{uv} + z_v - z_u) \le \sum_{a\in A} c(a)y_a$$

Application of Duality to Maximum flow

Variable y_a per edge constraint; Variable z_v per vertex-constraint

$$R = \sum_{a \in A} f(a)y_a + \sum_{v \in V \setminus \{s,t\}} (\sum_{(v,u) \in A} f(vu) - \sum_{(u,v) \in A} f(uv))z_v \le \sum_{a \in A} c(a)y_a$$

that can be rewritten:

$$R = f(st)y_{st} + \sum_{(s,v)\in A, v\neq t} f(sv)(y_{sv} + z_v) + \sum_{(v,t)\in A, v\neq s} f(vt)(y_{vt} - z_v) + \sum_{(u,v)\in A, u\neq s, v\neq t} f(uv)(y_{uv} + z_v - z_u) \le \sum_{a\in A} c(a)y_a$$

So, to have
$$\sum_{(s,u)\in A} f(su) \leq R \leq \sum_{a\in A} c(a)y_a:$$

$$y_a \geq 1 \qquad \text{if } a = (s,t)$$

$$y_a + z_v \geq 1 \qquad \text{if } a = (s,v), v \neq t$$

$$y_a + z_v \geq 0 \qquad \text{if } a = (v,t), v \neq s$$

$$y_a + z_v - z_u \geq 0 \qquad \text{if } a = (u,v), u \neq s, v \neq t$$

The dual of the previous formulation of Max-Flow

Minimize
$$\sum_{a \in A} c(a)y_a$$
 Subject to:
$$y_a \geq 1 \qquad \qquad \text{if } a = (s,t)$$

$$y_a + z_v \geq 1 \qquad \qquad \text{if } a = (s,v), v \neq t$$

$$y_a + z_v \geq 0 \qquad \qquad \text{if } a = (v,t), v \neq s$$

$$y_a + z_v - z_u \geq 0 \qquad \qquad \text{if } a = (u,v), u \neq s, v \neq t$$

$$y_a \geq 0 \qquad \qquad \text{for all } a \in A$$

$$z_v \geq 0 \qquad \qquad \text{for all } v \in V$$

Exercise: Prove it is a LP for the Min-Cut Problem Deduce the MaxFlow-MinCut Theorem

Exercises

G = (V, E) be a graph with weight $w : E \to \mathbb{R}^+$, and $s, t \in V$.

What compute the following programmes? Give their dual Programme

Maximize
$$\sum_{P \text{ path from s to t}} x_P$$
Subject to: $\sum_{P,e \in E(P)} x_P \le w(e)$ for all $e \in E$
 $x_P \ge 0$ for all paths P from s to t

Maximize
$$x_t$$
 Subject to: $x_s = 0$ $x_v \le x_u + w(\{u,v\})$ for all $\{v,u\} \in E$ $x_v \ge 0$ for all $v \in V$

- Introduction to duality: find bounds
- Building the dual programme
- Duality
- Certificate of Optimality
- Economical Interpretation

Complementary Slackness

Theorem

Complementary Slackness

Let $x_1^*,...x_n^*$ be a feasible solution of the primal and $y_1^*,...y_n^*$ be a feasible solution of the dual. Then,

$$\sum_{i=1}^{m} a_{ij} y_{i}^{*} = c_{j} \quad \text{or} \quad x_{j}^{*} = 0 \quad \text{or both} (j = 1, 2, ...n)$$

$$\sum_{j=1}^{n} a_{ij} x_{j}^{*} = b_{i} \quad \text{or} \quad y_{i}^{*} = 0 \quad \text{or both} (i = 1, 2, ...m)$$

are necessary and sufficient conditions to have the optimality of x^* and y^* .

 x^* feasible $\Rightarrow b_i - \sum_i a_{ij} x_i \ge 0$. y^* dual feasible, hence non negative.

Thus

$$(b_i - \sum_j a_{ij} x_j) y_i \geq 0.$$

Similarly,

 y^* dual feasible $\Rightarrow \sum_i a_{ii} y_i - c_i \ge 0$.

 x^* feasible, hence non negative.

$$(\sum_i a_{ij}y_i-c_j)x_j\geq 0.$$

$$(b_i - \sum_j a_{ij} x_j) y_i \ge 0$$
 and $(\sum_i a_{ij} y_i - c_j) x_j \ge 0$

By summing, we get:

$$\sum_i (b_i - \sum_j a_{ij} x_j) y_i \geq 0$$
 and $\sum_j (\sum_i a_{ij} y_i - c_j) x_j \geq 0$

Summing + strong duality theorem

$$\sum_{i} b_{i} y_{i} - \sum_{i,j} a_{ij} x_{j} y_{i} + \sum_{j,i} a_{ij} y_{i} x_{j} - \sum_{j} c_{j} x_{j} = \sum_{i} b_{i} y_{i} - \sum_{j} c_{j} x_{j} = 0.$$

Implies: inequalities must be equalities

$$\forall i, (b_i - \sum_i a_{ij} x_j) y_i = 0$$
 and $\forall j (\sum_i a_{ij} y_i - c_j) x_j = 0$

XY = 0 if X = 0 or Y = 0. Done

$$(b_i - \sum_i a_{ij} x_j) y_i \ge 0$$
 and $(\sum_i a_{ij} y_i - c_j) x_j \ge 0$

By summing, we get:

$$\sum_{i} (b_i - \sum_{j} a_{ij} x_j) y_i \ge 0 \qquad \text{and} \qquad \sum_{j} (\sum_{i} a_{ij} y_i - c_j) x_j \ge 0$$

$$\sum_{i} b_{i} y_{i} - \sum_{i,j} a_{ij} x_{j} y_{i} + \sum_{j,i} a_{ij} y_{i} x_{j} - \sum_{j} c_{j} x_{j} = \sum_{i} b_{i} y_{i} - \sum_{j} c_{j} x_{j} = 0.$$

$$\forall i, (b_i - \sum_i a_{ij} x_j) y_i = 0$$
 and $\forall j (\sum_i a_{ij} y_i - c_j) x_j = 0$.

$$(b_i - \sum_i a_{ij} x_j) y_i \ge 0$$
 and $(\sum_i a_{ij} y_i - c_j) x_j \ge 0$

By summing, we get:

$$\sum_{i} (b_i - \sum_{j} a_{ij} x_j) y_i \ge 0 \qquad \text{and} \qquad \sum_{j} (\sum_{i} a_{ij} y_i - c_j) x_j \ge 0$$

Summing + strong duality theorem:

$$\sum_{i} b_{i} y_{i} - \sum_{i,j} a_{ij} x_{j} y_{i} + \sum_{j,i} a_{ij} y_{i} x_{j} - \sum_{j} c_{j} x_{j} = \sum_{i} b_{i} y_{i} - \sum_{j} c_{j} x_{j} = 0.$$

$$\forall i, (b_i - \sum_i a_{ij} x_j) y_i = 0$$
 and $\forall j (\sum_i a_{ij} y_i - c_j) x_j = 0$.

$$(b_i - \sum_i a_{ij} x_j) y_i \ge 0$$
 and $(\sum_i a_{ij} y_i - c_j) x_j \ge 0$

By summing, we get:

$$\sum_{i} (b_i - \sum_{j} a_{ij} x_j) y_i \ge 0 \qquad \text{and} \qquad \sum_{j} (\sum_{i} a_{ij} y_i - c_j) x_j \ge 0$$

Summing + strong duality theorem:

$$\sum_{i} b_{i} y_{i} - \sum_{i,j} a_{ij} x_{j} y_{i} + \sum_{j,i} a_{ij} y_{i} x_{j} - \sum_{j} c_{j} x_{j} = \sum_{i} b_{i} y_{i} - \sum_{j} c_{j} x_{j} = 0.$$

Implies: inequalities must be equalities:

$$\forall i, (b_i - \sum_j a_{ij}x_j)y_i = 0$$
 and $\forall j(\sum_i a_{ij}y_i - c_j)x_j = 0.$

XY = 0 if X = 0 or Y = 0. Done.

Theorem

Optimality Certificate

A feasible solution $x_1^*, ... x_n^*$ of the primal is optimal iif there exist numbers $y_1^*, ... y_n^*$ such that

they satisfy the complementary slackness condition:

$$\sum_{i=1}^m a_{ij} y_i^* = c_j$$
 when $x_j^* > 0$
 $y_j^* = 0$ when $\sum_{j=1}^n a_{ij} x_j^* < b_i$

and $y_1^*,...y_n^*$ feasible solution of the dual, that is

$$\sum_{i=1}^{m} a_{ij} y_i^* \geq c_j \qquad \forall j = 1, ... n$$
$$y_i^* \geq 0 \qquad \forall i = 1, ..., m.$$

Example: Verify that (2,4,0,0,7,0) optimal solution of

First step: Existence of $y_1^*, ..., y_5^*$, such as

$$\begin{array}{ll} \sum_{i=1}^m a_{ij} y_i^* & = c_j & \quad \text{when } x_j^* > 0 \\ y_i^* & = 0 & \quad \text{when } \sum_{j=1}^n a_{ij} x_j^* < b_i \end{array}$$

That is

 $(\frac{1}{3}, 0, \frac{5}{3}, 1, 0)$ is solution.

Second step: Verify $(\frac{1}{3}, 0, \frac{5}{3}, 1, 0)$ is a solution of the dual.

$$\begin{array}{ccc} \sum_{i=1}^m a_{ij} y_i^* & \geq c_j & \forall j=1,...n \\ y_i^* & \geq 0 & \forall i=1,...,m. \end{array}$$

Second step: Verify $(\frac{1}{3}, 0, \frac{5}{3}, 1, 0)$ is a solution of the dual.

$$\begin{array}{ccc} \sum_{i=1}^m a_{ij} y_i^* & \geq c_j & \forall j=1,...n \\ y_i^* & \geq 0 & \forall i=1,...,m. \end{array}$$

That is, we check

Max st:

Second step: Verify $(\frac{1}{3}, 0, \frac{5}{3}, 1, 0)$ is a solution of the dual.

$$\begin{array}{ccc} \sum_{i=1}^m a_{ij} y_i^* & \geq c_j & \forall j=1,...n \\ y_j^* & \geq 0 & \forall i=1,...,m. \end{array}$$

That is, we check

Only three equations to check.

Example: Verify that (2,4,0,0,7,0) optimal solution of

Second step: Verify $(\frac{1}{3}, 0, \frac{5}{3}, 1, 0)$ is a solution of the dual.

$$\begin{array}{ll} \sum_{i=1}^m a_{ij} y_i^* & \geq c_j & \forall j=1,...n \\ y_j^* & \geq 0 & \forall i=1,...,m. \end{array}$$

That is, we check

Only three equations to check.

OK. The solution $(\frac{1}{3}, 0, \frac{5}{3}, 1, 0)$ is optimal.

Outline

- Introduction to duality: find bounds
- Building the dual programme
- Ouality
- Certificate of Optimality
- 5 Economical Interpretation

Signification can be given to variables of the dual problem (dimension analysis):

- x_i: production of a product j (chair, ...)
- b_i: available quantity of resource i (wood, metal, ...)
- a_{ii}: unit of resource i per unit of product j
- c_i: net benefit of the production of a unit of product j

Signification can be given to variables of the dual problem (dimension analysis):

- x_i: production of a product j (chair, ...)
- b_i: available quantity of resource i (wood, metal, ...)
- a_{ii}: unit of resource i per unit of product j
- c_i: net benefit of the production of a unit of product i

Theorem: If the LP admits at least one optimal solution, then there exists $\varepsilon > 0$, with the property: If $|t_i| \le \varepsilon \ \forall i = 1, 2, \cdots, m$, then the LP

Max
$$\sum_{j=1}^{n} c_j x_j$$

Subject to: $\sum_{j=1}^{n} a_{ij} x_j \leq b_i + t_i \quad (i = 1, 2, \dots, m)$
 $x_j \geq 0 \quad (j = 1, 2, \dots, n).$

has an optimal solution and the optimal value of the objective is

$$z^* + \sum_{i=1}^m y_i^* t_i$$

with z^* the optimal solution of the initial LP and $(y_1^*, y_2^*, \dots, y_m^*)$ the optimal solution of its dual.

Summary: To be remembered

- How to compute a Dual Programme.
- Weak/Strong duality Theorem.
- Optimality certificate (Complementary Slackness).

