سؤالات كنكور سراسري ١٣٩۶

ا. گزینه درست در مورد سیستم زیر، کدام است؟ ([n] ورودی و y[n] خروجـی سیسـتم مـی- باشد.)

$$y[n] = (n^{\Upsilon} + 1)x[n^{\Upsilon}]\sin(\frac{\pi n^{\Upsilon}}{\Delta})$$
 ... () سیستم پلیدار است. (*) سیستم علی است. (*) سیستم معکوس پذیر است. (*) سیستم معکوس پذیر است. (*)

ریر است: x[n] و ناحیه همگرایی آن به صورت زیر است: x[n]

$$X(z)=rac{z^{\Lambda}+\Upsilon z^{rac{r}{2}}}{z^{rac{r}{2}-\Upsilon}}$$
 , $\left|z\right|>\Upsilon$ مقدار $x\left[n\right]$ در $x\left[n\right]$ برابر کدام است؟ $x\left[n\right]$ ۱۶ (۴ $x\left[n\right]$ ۸ (۱)

۳. پاسخ ضربه یک سیستم LTI برابر است با:

$$h(t)=u(t+\frac{\pi}{\epsilon})-u(t-\frac{\pi}{\epsilon})$$
 پاسخ سیستم در لحظه $t=\frac{\pi}{\epsilon}$ به ورودی $t=\frac{\pi}{\epsilon}$ ، کدام است؟
$$\frac{1}{\tau} (t) = \frac{1}{\tau} (t)$$

 $T_{\gamma}= {}^{\pi}T_{\gamma}$ متناوب با پریود اصلی $T_{\gamma}= {}^{\pi}T_{\gamma}$ و ضرایب فوریه a_n و و a_n متناوب با پریود اصلی $T_{\gamma}= {}^{\pi}T_{\gamma}$ است. ضرایب سری فوریه b_n با پریود اصلی b_n با پریود اصلی b_n

اگدام است؟
$$\begin{cases} a_{\frac{n}{r}} + b_n & \text{where } r \text{ pinch } n \text{ pinch$$

ه. ارتباط ورودی – خروجی یک سیستم زمان گسسته (ورودی x[n] و خروجی y[n]) به صورت x[n]

$$y[n] = \begin{cases} -x[n] & \text{id} & x[n] \ge x[n-\tau] \\ x[n-\tau] & \text{id} & x[n] < x[n-\tau] \end{cases}$$

داده شده است. پاسخ این سیستم به ورودی $x[n] = \delta[n+1] - \delta[n]$ برابر کدام است؟

$$\delta[n+1]+\delta[n-1]$$
 (7 $\delta[n+1]+\delta[n-1]$

$$\delta[n+1] + \delta[n-1] \quad (\Upsilon \qquad \qquad \delta[n+1] + \delta[n-T] \quad (\Upsilon \qquad \qquad -\delta[n+1] - \delta[n-T] \quad (\Upsilon \qquad \qquad -\delta[n+1] - \delta[n-1] \quad (\Upsilon \qquad \sim -\delta[n+1] - \delta[n-1] \quad$$

است. مقدار $X(j\omega)=j\sqrt{\pi}\,\mathrm{sgn}\,(\omega)\big[u(\omega+1)-u(\omega-1)\big]$ است. مقدار $X(j\omega)=j\sqrt{\pi}\,\mathrm{sgn}\,(\omega)$

هشتق این سیگنال در
$$t=\circ$$
 پقدر است؟
$$-\frac{1}{7\sqrt{\pi}}~(f) \qquad \qquad \circ (f) \qquad \qquad -\frac{1}{\sqrt{\pi}}~(f) \qquad \qquad \circ (f) \qquad \qquad \circ (f)$$

ستسمى با رابطه ورودى x[n] و خروجى y[n] = xx[n] + xx[n-1] - y[n-1] مفروض است. $n=\Delta r$ باشد، پاسخ پله سیستم در شرایط آرامش اولیه (initial rest condition) باشد، پاسخ پله سیستم در

. یک سیستم LTI زمان – گسسته با پاسخ فرکانسی داده شده در شکل زیر مفروض است.

خروجی این فیلتر به ازای ورودی $\left[n-\mathsf{Yk}\right] = \sum_{k=-\infty}^{\infty} (-\mathsf{I})^k \delta[n-\mathsf{Yk}]$ برابر کدام است؟

 $7(-1)^{n} + 7\cos(\frac{\pi}{r}n)$ (1) $(-1)^{n} + \cos(\frac{\pi}{r}n)$ (7)

$$(-1)^n + \cos(\frac{\pi}{r}n)$$
 ($($

$$\cos(\frac{\pi}{r}n)$$
 ("

$$\mathsf{Y}\mathsf{cos}(\frac{\pi}{2}\mathsf{n})$$
 (*

برابر کدام است? $I=\sum_{k=-\infty}^{\infty} rac{\sin^{ au}(rac{k\pi}{ au})}{k^{ au}}$ برابر کدام است? .٩

$$\frac{1}{r}$$
 (* $\frac{\pi}{r}$ (* $\frac{\pi}{r}$ (* $\frac{\pi^r}{r}$ (* $\frac{\pi^r}{r}$ (* $\frac{\pi^r}{r}$ (*)

$$\frac{\pi^r}{r}$$
 (1 Ω Ω

ابرای کدام یک از توابع زیر برقرار است؟ ($f \times f$)(t) = $\pi f(\frac{t}{\tau})$ رابطه ($\frac{t}{\tau}$)

$$\frac{r}{\pi} \frac{1}{\Delta - jt}$$
 (7

$$\frac{r}{\pi} \frac{1}{\Delta - jt} \text{ (f} \qquad \qquad \frac{r}{\pi^r + t^r} \text{ ()} \qquad \qquad \frac{r}{\pi^r + t^r} \text{ ()} \qquad \qquad \frac{r}{\pi^r + t^r} \text{ ()} \qquad \qquad \frac{r}{\pi} \frac{r}{\pi t} \text{ ()} \qquad \qquad \frac{r}{\pi t} \frac{r}{\pi t} \frac{r}{\pi t} \text{ ()} \qquad \qquad \frac{r}{\pi t} \frac{r}{\pi t} \frac{r}{\pi t} \text{ ()} \qquad \qquad \frac{r}{\pi t} \frac{r}{\pi t} \frac{r}{\pi t} \frac{r}{\pi t} \text{ ()} \qquad \qquad \frac{r}{\pi t} \frac{r}$$

$$\forall \pi \delta(\frac{t}{r} - 1)$$

$$\varphi \frac{\sin(\pi t)}{\pi t}$$

یک سیگنال گسسته باشد. «کانولوشن» این دو a[n] یک سیگنال گسسته باشد. «کانولوشن» این دو x[n]. (که خودش سیگنال را به صورت زیر تعریف می کنیم (که خودش سیگنال پیوسته y(t) می شود)

$$y(t) = \sum_{n=-\infty}^{+\infty} a[n]x(t-n)$$

(ابطه تبدیل فوریه این سیگنال ها یعنی $Y(j\omega)$ ، $A(e^{j\omega})$ ، $X(j\omega)$ کدام است

$$Y(j\omega) = A(e^{j\omega})X(j\omega)$$
 (1)

$$Y(j\omega) = \frac{1}{7\pi}A(e^{j\omega})X(j\omega)$$
 (7

$$Y(j\omega) = A(e^{j\omega}) \sum_{k=-\infty}^{+\infty} X(j(\omega - \tau k\pi))$$
 (*

$$Y(j\omega) = \frac{1}{\text{T}\pi} A(e^{j\omega}) \sum_{k=-\infty}^{+\infty} X(j(\omega - \text{T}k\pi)) \ \text{(f}$$

را در نظر بگیرید. پاسخ این سیستم به $h(t) = \frac{\sin(\mathfrak{f}(t-1))}{\pi(t-1)}$ ، با پاسخ ضربه نظر بگیرید. پاسخ این سیستم به S .

ورودی
$$x(t) = (\frac{\sin(\tau t)}{\pi t})^{\tau}$$
 کدام است؟

 $\frac{\sin(\Upsilon(t-1))}{\pi(t-1)} \times \frac{\sin(\Upsilon(t-\frac{1}{\gamma}))}{\pi(t-\frac{1}{\gamma})}$ (1)

$$\left(\frac{\sin(\Upsilon(t-1))}{\pi(t-1)}\right)^{\Upsilon}$$

$$\left(\frac{\sin^{\epsilon}(t-1)}{\pi(t-1)}\right)^{r}$$
 ("

$$\left(\frac{\sin(\Upsilon(t-\frac{1}{\Upsilon}))}{\pi(t-\frac{1}{\Upsilon})}\right)^{\Upsilon}$$
(F

ياسخ تشريحي سؤالات كنكور سراسري ١٣٩۶

() گزینه ۲ صحیح است.

سیستم خطی، ناپایدار، غیرعلی و معکوس ناپذیر است.

۲) گزینه ۳ صحیح است.

با تقسیم صورت بر مخرج داریم:

$$X(z) = \frac{z^{\lambda} + \gamma z^{\mathfrak{f}}}{z^{\mathfrak{f}} - \gamma} = z^{\mathfrak{f}} + \mathfrak{f} + \lambda z^{-\mathfrak{f}} + \cdots$$

ضریب $z^{-\epsilon}$ برابر $x[\epsilon]$ می باشد.

۲) گزینه ۳ صحیح است.

برای محاسبه خروجی در لحظه $\frac{\pi}{*}$ ، کافی است h(t) را قرینه کرده و $\frac{\pi}{*}$ به سمت راست انتقال داده و در x(t) ضرب نموده و مساحت بگیریم:

$$y(\frac{\pi}{\epsilon}) = \int_{\circ}^{\frac{\pi}{\epsilon}} \cos \tau t \, dt = \frac{1}{\tau}$$

۴ گزینه ۱ صحیح است.

از آنجا که دوره تناوب های x_1 و x_2 متفاوتند، یک دوره تناوب مشترک برای آنها در نظر می گیریم که برابر $T= {^{\mathfrak m}T_1}$ می دوره تناوبها یعنی $T= {^{\mathfrak m}T_1}$ میباشد. حال ضرایب فوریه X_1 و X_1 بر اساس دوره تناوب برابرند با:

$$T = rT_1$$
, $x_1(t) \stackrel{Fs}{\longleftrightarrow} a_{(r)}[k]$

$$T = rT_1$$
, $x_r(t) \stackrel{Fs}{\longleftrightarrow} b[k]$

$$y(t) = x_1(t) + x_{\gamma}(t) \implies c[k] = a_{(\gamma)}[k] + b[k]$$

با توجه به شکلهای فوق، شرط $x[n] \geq x[n-1]$ معادل $x[n] \leq x[n-1]$ معادل n = ∘ ,۱ می باشد. پس داریم:

$$y[n] = \begin{cases} -x[n], & n \neq 0, 1 \\ x[1-n], & n = 0, 1 \end{cases}$$

حال برای رسم y[n] کافی است که در لحظات $n=\circ, 1$ به شکل سمت راست و در بقیه لحظات به شکل

$$\begin{split} x'(t) & \stackrel{F}{\longleftarrow} j\omega X(\omega) \\ x'(t) &= \frac{1}{7\pi} \int_{-\infty}^{+\infty} j\omega X(\omega) e^{j\omega t} d\omega \\ x'(\circ) &= \frac{1}{7\pi} \int_{-\infty}^{+\infty} j\omega X(\omega) d\omega = \frac{1}{7\pi} \int_{-1}^{1} j\omega j\sqrt{\pi} \, sgn(\omega) d\omega = \frac{1}{7\pi} \int_{-1}^{1} -\sqrt{\pi} \left| \omega \right| d\omega = -\frac{1}{\sqrt{\pi}} \int_{0}^{1} \omega d\omega = -\frac{1}{\sqrt{2\pi}} \int_{0}^{1} \omega d\omega = -\frac{1}{\sqrt{2\pi$$

از آنجا که سیستم، یک معادله تفاضلی خطی با ضرایب ثابت است، شرط سکون اولیه ایجاب می کند که س LTI و على باشد. (فصل ١١)

داريم:

$$H(z) = \frac{r + rz^{-1}}{1 + z^{-r}} \ , \ X(z) = \frac{1}{1 - z^{-1}} \ , \ Y(z) = \frac{r + rz^{-1}}{(1 - z^{-1})(1 + z^{-r})}$$

حال برای محاسبه عکس تبدیل Z فوق هم می توان از بسط کسرهای جزئی به همراه خواص تبدیل Z استفاده کرد و هم می توان از روش ابتکاری زیر بهره برد:

$$Y(z) = \frac{(r + rz^{-1})(1 + z^{-1})}{(1 - z^{-r})(1 + z^{-r})} = \frac{r + \Delta z^{-1} + rz^{-r}}{1 - z^{-r}} = \underbrace{(r + \Delta z^{-1} + rz^{-r})}_{F(z)} \cdot \frac{1}{1 - z^{-r}}$$

$$\Rightarrow \ y \Big[n \Big] = f(n) * \sum_{-\infty}^{+\infty} \! \delta \Big[n - \mathsf{f} k \Big] \ , \ f(n) = \mathsf{T} \delta \Big[n \Big] + \Delta \Big[n - \mathsf{I} \Big] + \mathsf{T} \delta \Big[n - \mathsf{T} \Big]$$

 $y[\Delta T] = y[1] = \Delta$ یک سیگنال یمه متناوب با N = f است. در نتیجه داریم: y[n] یک سیگنال

۸) گزینه ۴ صحیح است.

دوره تناوب ورودی برابر N=1 میباشد که این موضوع هم با رسم x[n] و هم با استفاده از نکته N=1 راحتی مشخص است.

حال با توجه به نکته ۷۰ داریم:

$$\begin{split} y \big[n \big] &= \sum_{k = \left< N \right>} a_k H(k \omega_\circ) e^{jk \omega_\circ n} = \sum_{k = -\tau}^{\tau} a_k H(k \frac{\pi}{\tau}) e^{jk \frac{\pi}{\tau} n} \\ H(k \frac{\pi}{\tau}) &\to \begin{cases} H(\circ) = \circ &, \quad k = \circ \\ H(\pm \frac{\pi}{\tau}) = \tau &, \quad k = \pm \tau. \\ H(-\pi) = \tau &, \quad k = -\tau \end{cases} \end{split}$$

$$\Rightarrow y[n] = \mathfrak{f} a_{-\mathsf{Y}} e^{-j\pi n} + \mathfrak{f} a_{-\mathsf{I}} e^{-j\frac{\pi}{\mathsf{Y}} n} + \mathfrak{f} a_{\mathsf{I}} e^{j\frac{\pi}{\mathsf{Y}} n}$$

برای محاسبه a_k با توجه به نکته ۴۶ داریم:

$$Z(\omega) = \iota - \mathrm{e}^{-\mathrm{j}\tau\omega} \implies \mathrm{a}_{\mathrm{k}} = \frac{\iota}{\tau}(\iota - \mathrm{e}^{-\mathrm{j}\mathrm{k}\pi}) \implies \mathrm{a}_{-\tau} = \circ, \mathrm{a}_{-\iota} = \frac{\iota}{\tau}, \mathrm{a}_{\iota} = \frac{\iota}{\tau}$$

$$\Rightarrow y[n] = 7\cos\frac{\pi}{r}n$$

٩) گزينه ١ صحيح است.

$$I = \sum_{-\infty}^{+\infty} \frac{\sin^{\gamma} \frac{\pi}{\gamma} \, n}{n^{\gamma}} = \pi^{\gamma} \sum_{n=-\infty}^{+\infty} \left| \frac{\sin \frac{\pi}{\gamma} \, n}{\pi n} \right|^{\gamma} = \pi^{\gamma} \frac{1}{\gamma \pi} \int_{-\pi}^{\pi} \left| \widetilde{\Pi}(\frac{\omega}{\pi}) \right|^{\gamma} d\omega = \frac{\pi^{\gamma}}{\gamma}$$

(۱) گزینه ۲ صحیح است.

$$f(t) * f(t) = \mathsf{rf}(\frac{t}{\mathsf{r}}) \implies F(\omega) \cdot F(\omega) = \mathfrak{S}F(\mathsf{r}\omega)$$

با امتحان کردن تک تک گزینه ها، فقط تبدیل فوریه $\frac{\tau}{\pi}\cdot\frac{1}{\Delta-jt}$ که طبق خاصیت دوگانی برابر

می شود، در رابطه فوق صدق می کند. $F(\omega) = \epsilon e^{-\Delta \omega} u(\omega)$

۱۱) گزینه ۱ صحیح است.

$$y(t) = \sum_{n=-\infty}^{+\infty} a \big[n \big] x(t-n) = x(t) * \sum_{n=-\infty}^{+\infty} a \big[n \big] \delta(t-n)$$

$$\Rightarrow \ Y(\omega) = X(\omega). \sum_{n=-\infty}^{+\infty} a \big[n \big] e^{-j\omega n} = X(\omega). A(\omega)$$

این تست کاملا مشابه تست تالیفی ۴۱ فصل ۱۲ با فرض T=1 میباشد.

۱۲) گزینه ۲ صحیح است.

این مشابه تست ۱۳ فصل ۹ (آزاد ۸۷) میباشد.

$$H(\omega) = \Pi(\frac{\omega}{\Lambda})e^{-j\omega}$$

$$X(\omega) = \frac{r}{\pi} \Lambda(\frac{\omega}{r})$$

$$\Rightarrow Y(\omega) = H(\omega).X(\omega) = H(\frac{\omega}{\lambda})e^{-j\omega} \cdot \frac{\tau}{\pi} \Lambda(\frac{\omega}{\tau})$$

$$= \frac{7}{\pi} \Lambda(\frac{\omega}{9}) e^{-j\omega} = X(\omega) e^{-j\omega}$$

$$\Rightarrow y(t) = x(t-1) = \left(\frac{\sin Y(t-1)}{\pi(t-1)}\right)^{\Upsilon}$$