PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE MATEMATICAS DEPARTAMENTO DE MATEMATICA

Segundo semestre 2021

Ayudantía 11 - MAT1610

- 1. Suponga que f es una función continua en [0,3] la cual satisface que:
 - f(0) = -1
 - f'(x) = 2 para todo $x \in (0,1)$
 - f'(x) = 1 para todo $x \in (1, 2)$
 - f'(x) = -1 para todo $x \in (2,3)$

Encuentre una fórmula para la función f.

Solución:

Notemos que

- una antiderivada para la función f sobre el intervalo (0,1) es de la forma $2x + C_1$
- una antiderivada para la función f sobre el intervalo (1,2) es de la forma $x+C_2$
- una antiderivada para la función f sobre el intervalo (2,3) es de la forma $-x + C_3$

como f es continua y f(x) = -1 se deduce que $C_1 = -1$, nuevamente por continuidad se tiene que $2 \cdot 1 - 1 = 1 + C_2$ y por tanto $C_2 = 0$ y que $2 = -2 + C_3$ y por tanto $C_3 = 4$, luego tenemos que

$$f(x) = \begin{cases} 2x - 1 & \text{si } x \in [0, 1] \\ x & \text{si } x \in (1, 2] \\ -x + 4 & \text{si } x \in (2, 3] \end{cases}$$

2. (a) Determine la antiderivada general de la función

$$g(x) = \frac{2 + x^2 + x\sqrt{1 + x^2}}{1 + x^2}$$

(b) Determine la función f tal.

$$f''(x) = sen(x) + cos(x)$$
 y $f(0) = 3$ y $f'(0) = 7$

(c) Determine la antiderivada de la función $f(x) = 10 * 2^x - 1$ que pasa por el punto (0, 20).

(d) Determine una función f tal que $f'(x) = x^3$ y la recta x + y = 0 sea tangente a la grafica de f.

Solución:

(a) Notar que $g(x) = \frac{2+x^2}{1+x^2} + \frac{x\sqrt{1+x^2}}{1+x^2} = 1 + \frac{1}{1+x^2} + \frac{x}{\sqrt{1+x^2}} = 1 + \frac{1}{1+x^2} + \frac{2x}{2\sqrt{1+x^2}}$ Enonces, la antiederivada general es:

$$G(x) = x + \arctan(x) + \sqrt{1 + x^2} + C$$

(b) Dado que $f''(x) = \operatorname{sen}(x) + \cos(x) \operatorname{su}(x) + \operatorname{sen}(x) + \operatorname{sen}(x) + \operatorname{cos}(x) \operatorname{su}(x) + \operatorname{sen}(x) + \operatorname{cos}(x) \operatorname{su}(x) + \operatorname{sen}(x) + \operatorname{cos}(x) \operatorname{su}(x) + \operatorname{cos}(x) + \operatorname{cos}(x) \operatorname{su}(x) + \operatorname{cos}(x) + \operatorname{$

$$f'(0) = -\cos(0) + \sin(0) + C = 7$$

es decir, C = 8. Entonces, $f(x) = -\operatorname{sen}(x) - \cos(x) + 8x + K$ y K es el valor que hace que $f(0) = -\operatorname{sen}(0) - \cos(0) + K = 3$, es decir, k = 4. Así, la función buscada es:

$$f(x) = -\operatorname{sen}(x) - \cos(x) + 8x + 4$$

(c) Recordar que $(2^x)' = 2^x \ln(2)$, entonces, $\frac{(2^x)'}{\ln(2)} = \left(\frac{2^x}{\ln(2)}\right)' = 2^x$, es decir, una antiderivada de la función 2^x es $\frac{2^x}{\ln(2)}$. Entonces, la antiderivada general para f es:

$$F(x) = \frac{10}{\ln(2)} 2^x - x + C$$

Para que F(0)=20 debe cumplirse que $C=20-\frac{10}{\ln(2)}$, entonces la función buscada es $F(x)=\frac{10}{\ln(2)}2^x-x+20-\frac{10}{\ln(2)}$.

- (d) La antiderivada general para f' es $F(x) = \frac{x^4}{4} + C$, para que la recta y = -x (que tiene pendiente -1) sea tangente a F debe ocurrir que $f'(x_0) = -1$, es decir, $x_0^3 = -1$ para algún x_0 , lo cual ocurre si $x_0 = -1$ e $y_0 = -x_0 = 1$. Por lo tanto la constante C debe ser tal que F(-1) = 1, esto es, $\frac{(-1)^4}{4} + C = \frac{1}{4} + C = 1$, es decir, $C = \frac{3}{4}$. Entonces, $f(x) = \frac{x^4}{4} + \frac{3}{4}$
- 3. ¿Qué aceleración constante se requiere para incrementar la rapidez de un vehículo desde 48Km/h hasta 80Km/h en 5 segundos?

Solución:

Se tiene que la aceleración es constante, a, entonces la función velocidad (es antiderivada de la aceleración) es lineal, por lo que

$$v(t) = at + b$$

Dado que inicialmente la velocidad es 48Km/h, esto es, v(0)=48Km/h, por lo tanto, v(t)=at+48 y para $t=5s=\frac{5}{3600}=\frac{1}{720}\mathrm{h},~v\left(\frac{1}{720}\right)=80Km/h$ se tiene que $v\left(\frac{1}{720}\right)=80Km/h=a\frac{1}{720}h+48Km/h$ y, en consecuencia

$$32Km/h \cdot 7201/h = a$$

esto es

$$a = 23040 Km/h^2$$

que equivale a:

$$a = \frac{23040 \cdot 1000}{(3600)^2} m/s^2 = \frac{2304}{(36)^2} m/s^2 \approx 1,78m/s^2$$

- 4. (a) Determine una región cuya área sea igual al límite dado, identificándolo como una suma de Riemann: $\lim_{n\to\infty}\sum_{k=1}^n\frac{\sqrt{n^2+kn}}{n^2}$
 - (b) Determine una región cuya área sea igual al límite dado, identificándolo como una suma de Riemann: $\lim_{n\to\infty}\sum_{k=1}^n\frac{\ln(n+k)-\ln(n)}{n}$

(c) Calcule
$$\lim_{n\to\infty} \frac{e-1}{n} \left(\frac{1}{1+\frac{e-1}{n}} + \frac{1}{1+\frac{2(e-1)}{n}} + \frac{1}{1+\frac{3(e-1)}{n}} + \dots + \frac{1}{e} \right)$$

Solución:

(a)

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{\sqrt{n^2 + kn}}{n^2} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{\sqrt{n^2 + kn}}{n} \frac{1}{n}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{1 + k \frac{1}{n} \frac{1}{n}}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{1 + k \frac{1}{n} \frac{1}{n}}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{1 + k \frac{1}{n} \frac{1}{n}}$$

Así, considerando $\Delta x=\frac{1}{n}$ (note que el intervalo de intergración debe tener longitud 1) y Una opción, $[a,b]=[1,2],\ f(x)=\sqrt{x},\ x_0^*=1,\ x_k^*=1+k\Delta x=1+k\frac{1}{n},\ 1\leq k\leq n,$ $(x_n^*=2)$

Otra opción, $f(x) = \sqrt{1+x}$, [a,b] = [0,1], $x_0^* = 0$, $x_k^* = 0 + k\Delta x = k\frac{1}{n}$, $1 \le k \le n$, $(x_n^* = 1)$

Por lo tanto,

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{\sqrt{n^2 + kn}}{n^2} = \int_{1}^{2} \sqrt{x} dx = \int_{0}^{1} \sqrt{1 + x} dx$$

(b)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{\ln(n+k) - \ln(n)}{n} = \lim_{n \to \infty} \sum_{k=1}^{n} \ln\left(\frac{n+k}{n}\right) \frac{1}{n} \text{ propiedad ln}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \ln \left(1 + k \underbrace{\frac{1}{n}}_{\Delta x} \right) \underbrace{\frac{1}{n}}_{\Delta x}$$

Así, considerando $\Delta x=\frac{1}{n}$ (note que el intervalo de intergración debe tener longitud 1) y Una opción, tomar [a,b]=[1,2], $f(x)=\ln(x),$, $x_0^*=1,$ $x_k^*=1+k\Delta x=1+k\frac{1}{n},$ $1\leq k\leq n,$ $(x_n^*=2)$

Otra opción, tomar $f(x) = \ln(1+x), [a,b] = [0,1], x_0^* = 0, x_k^* = 0 + k\Delta x = k\frac{1}{n}, 1 \le k \le n,$

$$(x_n^* = 1)$$

Por lo tanto,

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{\ln(n+k) - \ln(n)}{n} = \int_{1}^{2} \ln(x) dx = \int_{0}^{1} \ln(1+x) dx$$

(c) Notar que $\frac{1}{e} = \frac{1}{1 + \frac{n(e-1)}{n}}$

$$\lim_{n \to \infty} \frac{e - 1}{n} \left(\frac{1}{1 + \frac{e - 1}{n}} + \frac{1}{1 + \frac{2(e - 1)}{n}} + \frac{1}{1 + \frac{3(e - 1)}{n}} \cdots + \frac{1}{e} \right) = \lim_{n \to \infty} \frac{e - 1}{n} \sum_{k=1}^{n} \frac{1}{1 + k \frac{(e - 1)}{n}}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{1 + k \frac{(e - 1)}{n}} \underbrace{\frac{e - 1}{n}}_{\Delta x} \underbrace{\frac{e$$

Así, considerando $\Delta x = \frac{e-1}{n}$ (note que el intervalo de intergración debe tener longitud e-1) y

Una opción, [a,b]=[1,e] y $f(x)=\frac{1}{x},\ x_0^*=1,\ x_k^*=1+k\Delta x=1+k\frac{e-1}{n},\ 1\leq k\leq n,$ $(x_n^*=e)$

Otra opción, $f(x) = \frac{1}{1+x}$, [a,b] = [0,e-1], $x_0^* = 0$, $x_k^* = 0 + k\Delta x = k\frac{e-1}{n}$, $1 \le k \le n$, $(x_n^* = e-1)$ Entonces,

$$\lim_{n \to \infty} \frac{e - 1}{n} \left(\frac{1}{1 + \frac{e - 1}{n}} + \frac{1}{1 + \frac{2(e - 1)}{n}} + \frac{1}{1 + \frac{3(e - 1)}{n}} \cdots + \frac{1}{e} \right) = \int_{1}^{e} \frac{1}{x} dx = \ln(e) - \ln(1) = 1$$
o
$$\lim_{n \to \infty} \frac{e - 1}{n} \left(\frac{1}{1 + \frac{e - 1}{n}} + \frac{1}{1 + \frac{2(e - 1)}{n}} + \frac{1}{1 + \frac{3(e - 1)}{n}} \cdots + \frac{1}{e} \right) = \int_{0}^{e - 1} \frac{1}{1 + x} dx = 1$$