EE3011 MODEL& CONTROL

Tutorial 6 (Solutions) PID Controller Design and Simple Root Locus

$$G(s) = \frac{K(s)}{s(s+1)};$$
 $\frac{Y(s)}{R(s)} = \frac{K(s)}{s(s+1) + K(s)}$

If $K(s) = K_P$,

$$\frac{Y(s)}{R(s)} = \frac{K_P}{s^2 + s + K_P} \equiv \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
 Standard 2nd order system!

Equating coefficients with $\zeta = 0.25$:

$$2\zeta \omega_n = 1 \qquad \Rightarrow \qquad \omega_n = 2$$

$$\omega_n^2 = K_P \qquad \Rightarrow \qquad K_P = 4$$

Overshoot:
$$M_p = e^{\frac{-\pi\zeta}{\sqrt{1-\zeta^2}}} = 0.444$$
 or 44.4%

Rise time:
$$t_r = \frac{\pi - \theta}{\omega_n \sqrt{1 - \zeta^2}} = 0.94 \text{ sec}$$

Velocity error constant:
$$K_{vel} = \lim_{s \to 0} sG(s) = K_P = 4$$

$$\therefore e_{ss}(\text{unit-ramp}) = \frac{1}{K_{vel}} = \frac{1}{4}$$

With
$$K(s) = 4 + sK_D$$

$$\frac{Y(s)}{R(s)} = \frac{4 + sK_D}{s^2 + (1 + K_D)s + 4} \equiv \frac{4 + sK_D}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
Non-standard 2nd order system!

Equating coefficients with $\zeta = 1$:

i.e.
$$s^2 + (1 + K_D)s + 4 \equiv s^2 + 2\omega_n s + \omega_n^2$$

 $\Rightarrow \omega_n = 2$ and $1 + K_D = 2 \times 2 \Rightarrow K_D = 3$

Then
$$\frac{Y(s)}{R(s)} = \frac{4+3s}{(s+2)^2} = \frac{4}{(s+2)^2} + \frac{3}{4} \cdot s \cdot \frac{4}{(s+2)^2}$$

i.e.
$$Y(s) = \frac{2}{(s+2)^2}R(s) + \frac{3}{4} \cdot s \cdot \frac{4}{(s+2)^2}R(s); \quad R(s) = \frac{1}{s}$$

$$\therefore \text{ time domain output, } y(t) = y_0(t) + \frac{3}{4} \frac{dy_0(t)}{dt}$$

where
$$y_0(t) = 1 - e^{-2t}(1 + 2t)$$

$$\frac{dy_0(t)}{dt} = 2e^{-2t}(1+2t) - e^{-2t}(2) = 4e^{-2t}t$$

$$\therefore y(t) = 1 - e^{-2t} (1 + 2t) + 3e^{-2t} t = 1 - e^{-2t} + e^{-2t} t$$

To find if there is overshoot, use the result similar to Q4 of Tutorial 3 to calculate the overshoot, rise time, etc.

Rise time:

$$y(t_r) = 1 = 1 - e^{-2t_r} + e^{-2t_r}t_r \implies t_r = 1$$

Peak time:
$$y(t) = 1 - e^{-2t} + e^{-2t}t$$

$$\Rightarrow \frac{dy}{dt} = 2e^{-2t} - 2e^{-2t}t + e^{-2t} = 0$$

$$\Rightarrow t_p = \frac{3}{2}$$

Overshoot:

$$M_p = y(t_p) - 1 = 1 - e^{-2t_p} + e^{-2t_p}t_p - 1$$

= $0.5e^{-3}$

2.

where
$$G(s) = \frac{100(K_D s^2 + K_P s + K_I)}{s(s^2 + 10s + 100)}$$

System is type '1' provided $K_I \neq 0$

 $\therefore e_{ss} = 0$ wrt to unit-step input provided $K_I \neq 0$

$$\frac{Y}{R} = \frac{G}{1+G} = \frac{100(K_D s^2 + K_P s + K_I)}{s^3 + (10+100K_D)s^2 + (100+100K_P)s + 100K_I}$$

So, C. E.
$$q(s) = s^3 + (10 + 100K_D)s^2 + (100 + 100K_P)s + 100K_I$$

$$\equiv (s^2 + 2\zeta\omega_n s + \omega_n^2)(s + p_3)$$

Besides ζ , we need spec on ω_n . We also want the pole at $s = -p_3$ to be sufficiently far away from the dominant poles so that the response is approximated by a 2nd order system.

To relate to rise time specification, we "assume" that this 3^{rd} order system behaves like a standard 2^{nd} order system, and use the result of standard 2^{nd} order system.

From the result of standard 2nd order system,

$$\frac{Y}{R} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

If $\zeta = 0.8$,

then

$$t_r = \frac{\pi - \theta}{\omega_n \sqrt{1 - \zeta^2}} = 0.5 \qquad (\theta = \cos^{-1} \zeta)$$

$$\Rightarrow \omega_n = \frac{\pi - \theta}{0.5\sqrt{1 - \zeta^2}} = 8.33 \text{ rad/sec}$$

: the damping constant of the two dominant poles is

$$\alpha = \zeta \omega_n = 0.8 \times 8.33 = 6.66$$

Set
$$p_3 = 10 \text{ x}\alpha = 66.6!$$

Then the 3 closed-loop poles are: s_1 and s_2 as the dominant complex poles with

$$s_1, s_2 = -\zeta \omega_n \pm \omega_n \sqrt{1 - \zeta^2} = -6.66 \pm j5.0$$
 and
$$s_3 = -66.6$$

Hence

$$s^{3} + (10+100K_{D})s^{2} + (100+100K_{p})s + 100K_{I}$$

$$\equiv (s^{2} + 2 \times 6.66s + 8.33^{2})(s+66.6)$$

$$= s^{3} + 80s^{2} + 957s + 4622$$

Equating coefficients

$$10+100K_D = 80 \implies K_D = 0.7$$

 $100+100K_P = 957 \implies K_P = 8.57$
 $100K_I = 4622 \implies K_I = 46.22$

NB: The actual response is affected by the presence of the zero. With the parameters of the controller designed, the 2 zeros of the closed-loop system are $-6.12 \pm j5.34$

What happen?

A simple design is to use the zeros of $K_D s^2 + K_P s + K_I$ to cancel the "nice" stable poles of $s^2 + 10s + 100$ of the given system.

i.e.
$$s^2 + \frac{K_P}{K_D} s + \frac{K_I}{K_D} \equiv s^2 + 10s + 100$$

Then the closed loop system "becomes"

Hence
$$\frac{Y}{R} = \frac{100K_D}{s + 100K_D}$$

The system behaves exactly like a 1st order system but it's in fact a 3rd order system. It's just that 2 of the modes cannot be observed from input-output measurement.

$$\frac{Y_T}{T_L} = \frac{\frac{1}{s(s+10)}}{1 + \frac{s^2 K_D + s K_P + K_I}{s^2 (s+10)}} = \frac{s}{s^2 (s+10) + s^2 K_D + s K_P + K_I}$$

$$Y_T = \frac{s}{s^2 (s+10) + s^2 K_D + s K_P + K_I} \cdot \frac{a}{s} \; ; \quad T_L = \frac{a}{s}$$

$$y_T(\infty) = \lim_{s \to 0} s Y_T = 0$$
 if $K_I \neq 0$

Now,
$$\frac{Y}{R} = \frac{s^2 K_D + s K_P + K_I}{s^2 (s+10) + s^2 K_D + s K_P + K_I}$$

$$s^2 (s+10) + s^2 K_D + s K_P + K_I$$

$$= s^3 + (10 + K_D) s^2 + s K_P + K_I$$

$$\equiv \left(s^2 + 2\zeta \omega_n s + \omega_n^2 \right) (s+p)$$

$$= s^3 + (p + 2\zeta \omega_n) s^2 + \left(\omega_n^2 + 2p\zeta \omega_n \right) s + p \omega_n^2$$

$$= s^3 + (12\zeta \omega_n) s^2 + \left(\omega_n^2 + 20\zeta^2 \omega_n^2 \right) s + 10\zeta \omega_n^3 \quad ; \quad p = 10\zeta \omega_n$$

Equating coefficients

$$10 + K_D = 12\zeta\omega_n$$

$$K_P = \omega_n^2 + 20\zeta^2\omega_n^2$$

$$K_I = 10\zeta\omega_n^3$$

With
$$\zeta = 0.7$$
 \Rightarrow $K_D = 8.4\omega_n - 10$ $K_P = 10.8\omega_n^2$ $K_L = 7\omega_n^3$

We have many possible solutions as ω_n is still "free"!

 ω_n is related to t_r if we "assume" the CL system behaves like a standard 2nd-order system, and we use

$$t_r = \frac{\pi - \theta}{\omega_d} = \frac{\pi - \cos^{-1} \zeta}{\omega_n \sqrt{1 - \zeta^2}}$$

If we want $t_r \approx 1.0$, set $t_r = 1$ to yield $\omega_n = 3.285$. With this ω_n , we'll get the solutions for K_P , K_I and K_D as

$$K_D = 17.59; \quad K_P = 116.55; \quad K_I = 248.14$$

With the designed PID controller, the unit step response of the 3rd order CL system with/without disturbance is given below:

3(b) From earlier derivation, even with $K_D = 0$,

$$y_T(\infty) = \lim_{s \to 0} s Y_T = 0$$
 if $K_I \neq 0$

To get the 2 CL poles at $-1 \pm j1$, we have

$$(s+1+j)(s+1-j) = s^2 + 2s + 2 \equiv s^2 + 2\zeta\omega_n s + \omega_n^2$$

Thus, the specifications on the 2 desired closed-loop poles is the same as imposing specifications on ζ and ω_n .

In this case,

$$\omega_n = \sqrt{2}, \quad \zeta \omega_n = 1$$

 $\Rightarrow \quad \zeta = 1/\sqrt{2}$

With $K_D = 0$, from earlier derivation, the closed-loop CE is

$$s^{2}(s+10) + sK_{P} + K_{I} = s^{3} + 10s^{2} + sK_{P} + K_{I}$$

$$\equiv (s^{2} + 2s + 2)(s+p); \text{ which yields 2 CL poles at } -1 \pm j1$$

$$= s^{3} + (2+p)s^{2} + (2+2p)s + 2p$$

Note that we can no longer pre-fixed *p* in the desired CE. Equating coefficients:

$$10 = 2 + p p = 8$$

$$K_P = 2 + 2p \Rightarrow K_P = 18$$

$$K_I = 2p K_I = 16$$

Note that $p = 8 = 8x \zeta \omega_n$ which will still yield a good dominant 2nd order response.

With the designed PI controller, the unit step response of the 3rd order CL system with/without disturbance is given below:

4(a) The closed loop pole is at s = -(2+K). Clearly, the pole will move from -2 to $-\infty$ as K is increase from 0 to $+\infty$

(b) The 2 closed loop poles are at $s_1, s_2 = \frac{-(4+K) \pm \sqrt{(4+K)^2 - 8K}}{2}$

It's easy to verify that both are real and negative as K is increase from 0 to $+\infty$

One can also easily obtain this by apply rules 1, 2 and 7 of the procedure for the root locus sketch.

(c) The 2 closed loop poles are at
$$s_1, s_2 = \frac{-K \pm \sqrt{K^2 - 8K}}{2}$$

It's easy to verify that the poles are complex conjugate when 0 < K < 8 and real and negative when $K \ge 8$. When K = 8, the 2 poles are at s = -4.

From
$$1 + \frac{K(s+2)}{s^2} = 0 \implies K = -\frac{s^2}{(s+2)}$$

Thus,
$$\frac{dK}{ds} = 0$$
 when $s(s+4) = 0$

So, the breakaway/in points are at s = 0 and s = -4, respectively.