模拟赛

December 4, 2019

题目名称	矩阵	树	向量
目录	matrix	tree	vector
可执行文件名	matrix	tree	vector
输入文件名	matrix.in	tree.in	vector.in
输出文件名	matrix.out	tree.out	vector.out
每个测试点时限	2.0s	2.0s	1.0s
内存限制	512MB	512MB	512MB
试题总分	100	100	100
测试点数目	10	10	10
每个测试点分值	10	10	10
是否有部分分	否	是	是
题目类型	传统型	传统型	传统型

提交的源程序文件名

对于 C++ 语言	matrix.cpp	tree.cpp	vector.cpp
对于 C 语言	matrix.c	tree.c	vector.c
对于 Pascal 语言	matrix.pas	tree.pas	vector.pas

编译开关

对于 C++ 语言	-O2 -std=c++11	-O2 -std=c++11	-O2 -std=c++11
对于 C 语言	-O2 -std=c11	-O2 -std=c11	-O2 -std=c11
对于 Pascal 语言	-O2	-O2	-O2

1 矩阵

1.1 题目描述

你有一个 n 行 m 列的 01 矩阵 A。

如果矩阵的第 i 列有奇数个 1,那么它的权值就是 $a_i3^{b_i}$,否则它的权值就是 0。一个矩阵的权值定义为每列的权值和。

现在你可以删去这个矩阵的任意多行(可以为0),使得矩阵的权值最大。

1.2 输入格式

从文件 matrix.in 中读取数据。

第一行两个整数 n,m,表示矩阵的行数和列数。

接下来 n 行,每行一个长度为 m 的 01 串表示矩阵的一行。

接下来 m 行,每行两个整数 a_i,b_i ,意义如上所述。

1.3 输出格式

输出到文件 matrix.out 中。

输出一行一个整数表示矩阵的最大权值。

1.4 样例输入 1

2 4

1101

0010

-1 1

-1 2

1 1

1 2

1.5 样例输出 1

3

1.6 样例输入 2

1 1

1

-1 1

1.7 样例输出 2

0

1.8 数据范围与约定

对于所有数据,保证 $1 \le m \le 70, a_i = \pm 1, 1 \le b_i \le 35$,且对于任意的 $i \ne j$,保证 $a_i \ne a_j$ 或 $b_i \ne b_j$ 。

对于 30% 的数据, $1 \le n \le 20$;

对于 70% 的数据, $1 \le n \le 2000$;

对于 100% 的数据, $1 \le n \le 200000$ 。

2 树

2.1 题目描述

给定一棵大小为 N,以 1 为根的有根树,每条边的初始权值是 c_i ,单位修改代价是 d_i 。将一条边 i 的权值修改为 X(X 必须为整数,但可以为负) 的代价为 $d_i \times |c_i - X|$ 。

你可以任意调整每条边的权值,使得从根节点到每个叶子的距离都相等,请你求出最小代价,并输出一种方案。

2.2 输入格式

从文件 tree.in 中读取数据。

第一行一个整数 N,表示树的大小。

接下 N-1 行,每行三个整数 u_i, c_i, d_i ,表示第 i 条边连接点 i+1 和它的父亲 u_i ,初始权值为 c_i ,单位修改代价为 d_i 。

2.3 输出格式

输出到文件 tree.out 中。

第一行输出一个整数 Ans,表示最小代价。接下来 N-1 行,每行一个整数 w_i 表示修改后第 i 条边的权值。

如果你的第一行输出正确,你可以拿到该测试点 50% 的分数,同时如果你输入的方案合法,你还会得到剩下的 50%。

2.4 样例输入

5

1 5 4

1 15 15

2 3 2

2 5 1

2.5 样例输出

19

5

15

10

10

2.6 数据范围与约定

对于所有测试数据,保证 $1 \le u_i \le i$, $1 \le c_i, d_i \le 10^6$ 。

对于 20% 的数据, $1 \le N \le 200, 1 \le c_i, d_i \le 200;$

对于 50% 的数据, $1 \le N \le 2000, 1 \le c_i, d_i \le 2000;$

对于额外 20% 的数据, $d_i = 1$;

对于 100% 的数据, $1 \le N \le 200000$ 。

3 向量

3.1 题目描述

给定一棵 n 个节点的树,点的标号为 1..n,边有边权。

记 d(u,v) 为 u 到 v 的路径上边的权值和,对于每个节点 u,你需要给出一个 m 维向量 $p_u = \{p_{u,1},...,p_{u,m}\}$,使得对于任意点对 u,v,满足 $d(u,v) = max\{|p_{u,i} - p_{v,i}|\}$ 。

3.2 输入格式

从文件 vector.in 中读取数据。

第一行一个整数 n, 表示总点数。

接下来 n-1 行,每行三个整数 u_i,v_i,w_i ,表示一条边连接 u_i,v_i ,权值为 w_i 。

3.3 输出格式

输出到文件 vector.out 中。

第一行一个正整数 m,表示向量的维数。

接下来 n 行,第 i 行 m 个整数 $p_{i,1},...,p_{i,m}$ 表示 $p_i = \{p_{i,1},...,p_{i,m}\}$ 。($|p_{i,j}| \le 10^9$) 如果你的输出合法且满足要求,则按如下方式得分:

如果 m < 16, 得 10 分;

否则如果 m < 20, 得 7 分;

否则如果 m < 32, 得 5 分;

否则如果 m < 50, 得 3 分。

3.4 样例输入 1

2

1 2 2

3.5 样例输出 1

1

0

-2

3.6 样例输入 2

4

1 2 1

1 3 1

1 4 1

3.7 样例输出 2

2

0 0

-1 -1

-1 1

1 1

3.8 数据范围与约定

对于所有测试数据,保证 $2 \le n \le 1000$, $1 \le u_i, v_i \le n$, 且构成一棵树。

对于 20% 的数据, $2 \le n \le 5, w_i = 1;$

对于 40% 的数据, $1 \le w_i \le 2$;

对于 100% 的数据, $1 \le w_i \le 10^5$ 。