Лабораторная работа 2

Имитационное моделирование

Оразгелдиев Язгелди

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	11

Список иллюстраций

3.1	Newreno	8
3.2	Графики с типом Newreno	8
3.3	Vegas	8
3.4	График с типом Vegas	9
3.5	График с изменениями цветов и названий легенд, подписей	LC

Список таблиц

1 Цель работы

Исследование протокола TCP и алгоритма управления очередью RED

2 Задание

- 1. Выполнить пример с дисциплиной RED
- 2. Измените в модели на узле s1 тип протокола TCP с Reno на NewReno, затем на Vegas. Сравните и поясните результаты.
- 3. Внесите изменения при отображении окон с графиками (измените цвет фона, цвет траекторий, подписи к осям, подпись траектории в легенде).

3 Выполнение лабораторной работы

Выполним построение сети в соответствии с описанием.

После запуска кода выше, получаем график изменения ТСР-окна и график изменения

длины очереди и ср. длины очереди

По графику мы видим что средняя длина очереди находится в отрезке 2 и 4.

Максимальная длина - 14

Изменения протокола ТСР

В условии требуется изменить тип Reno на Newreno. Поэтому меняем следующий пункт кода

```
# Агенты и приложения:
set tcp1 [$ns create-connection TCP/Newreno $node_(s1) TCPSink $node_(s3) 0]
$tcp1 set window_ 15
set tcp2 [$ns create-connection TCP/Reno $node_(s2) TCPSink $node_(s3) 1]
$tcp2 set window_ 15
set ftp1 [$tcp1 attach-source FTP]
set ftp2 [$tcp2 attach-source FTP]
```

Рис. 3.1: Newreno

По итогу получаем новый график изменений ТСР и график изменения длины очереди и средней длины очереди

Рис. 3.2: Графики с типом Newreno

Сильных отличий от прошлого графика у нас нет. В обоих случаях средняя длина очереди находится в отрезке 2 и 4. Максимальная длина - 14. И кстати в обоих случаях размер окна увеличивается до тех пор, пока не произойдет потеря сегмента(пакета)

Теперь мы поменяем тип на Vegas

```
# Агенты и приложения:
set tcp1 [$ns create-connection TCP/Vegas $node_(s1) TCPSink $node_(s3) 0]
$tcp1 set window_ 15
set tcp2 [$ns create-connection TCP/Reno $node_(s2) TCPSink $node_(s3) 1]
$tcp2 set window_ 15
set ftp1 [$tcp1 attach-source FTP]
set ftp2 [$tcp2 attach-source FTP]
```

Рис. 3.3: Vegas

Выводим график

Рис. 3.4: График с типом Vegas

По графику мы видим, что средняя длина очереди опять находится в отрезке от 2 до 4, но значение длины чаще бывает меньше, чем в прошлых типах. Максимальная длина - 14. Отличие мы видим по графику динамики размера окна. При типе Вегас размер окна где-то 20, в то время как у Newreno он равен 34. ТСР Vegas находит перегруз в сети до потери пакета и моментально уменьшает размер окна. Он обрабатывает перегрузку без потери пакета

Изменение отображения окон с графиками

Этот пункт чуть проще остальных. Нам необходимо было изменить цвет фона, траекторий, подпись к осям и подпись траекторий в легенде Меняем код

Выводим на экран результат

Рис. 3.5: График с изменениями цветов и названий легенд, подписей

4 Выводы

В ходе работы я исследовал протокол TCP и алгоритм управления очередью RED