MÉTODOS NUMÉRICOS - LISTA DE EXERCÍCIOS III

SÉRGIO CORDEIRO

SUMÁRIO

1. Sobre SVD: apresente modelagem matemática para calculo; apresente aplicações práticas; escolha uma aplicação associada à compressão de matrizes e faça a decomposição, a compressão e a analise o número de condicionamento antes e depois da compressão. Comente e analise todos os resultados.

A aplicação imediata da decomposição SVD é a solução mais fácil de um sistema linear, pois U e V são matrizes unitárias, por isso suas transpostas são as inversas; S, por sua vez, é diagonal, e encontrar sua inversa é trivial. Portanto:

$$\mathbf{A}\mathbf{x} = \mathbf{b} \implies \mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

$$= \left(\mathbf{U}\mathbf{S}\mathbf{V}^{(T)}\right)^{-1}\mathbf{b}$$

$$= \mathbf{V}\mathbf{S}^{-1}\mathbf{U}^{(T)}\mathbf{b}$$

Uma segunda aplicação é a compressão da matriz, que pode ser expressa pelo produto $\hat{\mathbf{U}}\hat{\mathbf{S}}\hat{\mathbf{V}}^{(T)}$, com as matrizes $\hat{\mathbf{U}}$, $\hat{\mathbf{S}}$ e $\hat{\mathbf{V}}^{(T)}$ derivadas das originais por eliminação de colunas menos significativas, correspondentes a valores singulares de menor valor absoluto.

Uma terceira aplicação é a diminuição do número de condicionamento da matriz, através da eliminação dos valores singulares com menor valor absoluto.

A compressão de matrizes por meio da decomposição SVD usa a técnica conhecida como *low-rank approximation*: após encontrarem-se os n autovalores, selecionam-se os m maiores; todas linhas de U e V são mantidas, mas apenas as m colunas que correspondem aos maiores autovalores dessas matrizes; quanto a S, são selecionadas tanto as linhas quanto as colunas que correspondem aos autovalores mais importantes. O resultado é uma matriz C que tem o mesmo tamanho da matriz original, mas apenas m autovalores.

A manutenção dos maiores autovalores faz com que a maior parte da variância original seja preservada, e com ela, a informação relevante. O número de condição, por sua vez, é bastante melhorado.

A aplicação escolhida foi a compressão de imagens em preto e branco, com e sem introdução de ruído. As imagens originais foram obtidas no banco de dados do Departamento de Engenharia Elétrica e de Computação do Instituto Politécnico da Universidade de Nova York.

O programa exercmat.c, em anexo, escrito em C, lê uma matriz em

disco e comprime-a pelo método de decomposição SVD, calculando o número de condicionamento antes e depois da compressão. Basta digitar:

exercmat 20 n

onde n é o tamanho da matriz (n x n). Ele também calcula o número de operações em ponto flutuante necessário para cada etapa. O próprio programa tenta descobrir qual é a maior taxa de compressão possível sem que resulte perda expressiva de dados.

O algoritmo é totalmente genérico, e pode ser aplicado diretamente a uma matriz que representa uma imagem. Para este exercício, experimentouse com alguns valores diferentes para a taxa de compressão.

O algoritmo usa o método de Jacobi para encontrar os autovalores e autovetores da matriz $A^{(T)}A$, o que não é uma solução ótima.

Os resultados obtidos são mostrados e tabelados a seguir. Foi usada apenas precisão simples, de forma a favorecer a ocorrência de erros de arredondamento.

n		nome	Número de condição		custo ¹		iteraçõ
antes	depois		antes	depois	decomposição	"compressão	
512	347	Lena	38.146271	1.860093	68728250624	521	406
	240			1.495879			
	149			1.273939			
	71			1.142361			
512	336	Bárbara	23.812378	1.879261	68728250624	521	348
	232			1.471599			
	145			1.275514			
	68			1.138802			

Imagem original: Lena com 512 valores singulares

Imagem original: Bárbara com 512 valores singulares

Imagem comprimida: Lena com 347 valores singulares

Imagem comprimida: Bárbara com 336 valores singulares

Imagem comprimida: Lena com 240 valores singulares

Imagem comprimida: Bárbara com 232 valores singulares

Imagem comprimida: Lena com 149 valores singulares

Imagem comprimida: Bárbara com 145 valores singulares

Imagem comprimida: Lena com 71 valores singulares

Imagem comprimida: Bárbara com 68 valores singulares Para a pronunciada compressão obtida, as imagens mostram que a informação importante foi preservada.

2. Simule (utilizando qualquer software) o circuito da figura 1 e obtenha a tabela de valores (t (seg) e I (A)). Resolva analiticamente o circuito. Faça o ajuste da função utilizando regressão (avalie a que melhor se adeque a esse problema). Plote em um gráfico os valores simulados, calculados (solução analítica) e os valores obtidos a partir da regressão. Escolha os valores para os elementos de forma que a resposta seja oscilatória. Comente os resultados.

- 3. Para os Tópicos: Interpolação de Hermite, Interpolação com Spline Cúbico e Extrapolação faça:
 - Descrição de um problema real;
 - Modelagem matemática e numérica (código em anexo);
 - Resultados e conclusões

4. O gráfico a seguir apresenta as variações do PIB e PIB/percapita.

Para esses dados (PIB e PIB per capita) faça:

- 1. Encontre o polinômio interpolador que melhor represente essa função (PI de maior grau possível) (Use interpolação);
- 2. Plote o diagrama de dispersão e o PI encontrado;
- 3. Comente todos os resultados

O programa **exercmat.c**, em anexo, escrito em C, lê uma tabela em disco e encontra o polinômio interpolador com o maior grau possível. Basta digitar:

exercmat 18 n

onde n é o tamanho da tabela (n x 2). Ele também calcula o número de operações em ponto flutuante necessário para cada etapa.

Os coeficientes encontrados para o PIB foram:

$$a_9=5.900000$$
, $a_8=24.808952$, $a_7=-60.370991$, $a_6=49.870708$, $a_5=-19.498470$, $a_4=3.804901$, $a_3=-0.311178$, $a_2=-0.005871$, $a_1=0.002509$, $a_0=-0.000111$ A expressão do polinômio interpolador é:

 $y = \sum_{i=0}^{9} a_i x^i$

com x = ano - 1994. Os coeficientes encontrados para o PIB per capita foram:

 $a_9=4.300000,\ a_8=26.969584,\ a_7=-64.837807,\ a_6=53.848827,\ a_5=-21.452248,\ a_4=4.385204,\ a_3=-0.417683,\ a_2=0.005891,\ a_1=0.001795,\ a_0=-0.000093.$

1. Anexos

Os seguintes arquivos constam do anexo (arquivo exercmat1.zip):

- arquivo fonte em C exercmat.c
- arquivos fontes em MATLAB:
 - gerachol.m: problema 2
 - geradsis.m: problema 5
 - geraL.m: problema 11
- arquivos de dados:
 - − Sn: problemas 1, 3 e 4
 - Cn: problemas 2, 7 e 8
 - Dn: problemas 5 e 6

REFERÊNCIAS

- [FAH 2013] Folding@home, Pande Lab, Stanford University, **FAQ: FLOPS**. Disponível em https://folding.stanford.edu/home/faq/faq-flops/, acesso em 17/03/2016.
- [FASSHAUER 2006] Greg FASSHAUER, **Numerical Linear Algebra/Computational Mathematics I**: Illinois Institute of Technology, 2006. Disponível em http://www.math.iit.edu/~fass/477577_Chapter_16.pdf, acesso em 25/03/2016.
- [GATR 2015] GATR Technologies, **2.4m Antenna System Datasheet**. Disponível em http://www.gatr.com/products/2-4-antenna-system, acesso em 21/03/2016.
- [INTEL 2016] INTEL Corporation, Intel 64 and IA-32 Architectures Optimization Reference Manual, 2016, Tab. 15-3, pag. 15-9 a 15-10.
- [KAWAKAMI 1989] Y. KAWAKAMI, H. HOJO e M. UEBA, Control Design of an Antenna Pointing Control System with Large On-board Reflectors, in T. NISHI-MURA Automatic Control in Aerospace 1989: Selected Papers from The IFAC Symposium.
- [MOON 2008] Francis C. MOON, **Applied Dynamics: With Applications to Multi-body and Mechatronic Systems**, 2nd Ed., 2008, Weinheim, Wiley-VCH, ISBN 978-3-527-40751-4, Chap. 5, pp. 228 a 231.
- [NASA 1980] National Aeronautics and Space Administration, **Satellite Power System (SPS) Antenna Pointing Control**. Disponível em http://www.nss.org/settlement/ssp/library/NASACR3350-AntennaPointingControl.pdf, acesso em 21/03/2016.
- [PHILLIPS 1995] Charles L. PHILLIPS e H. Troy NAGLE, **Digital Control System Analysis and Design**, Prentice Hall, Englewood Cliffs, 1995, 3 rd Ed..
- [TAMAGAWA 2016] TAMAGAWA Seiki Corporation, **TBL-iIVseries AC Servomotor**. Disponível em http://www.tamagawa-seiki.com/pdf/download/1699N1EJ_shusei.pdf, acesso em 21/03/2016.
- [TERAN 2013] Joseph M. TERAN, **Applied Numerical Linear Algebra Course Notes: Week 5**: Mathematics Department, UCLA, 2013. Disponível em http://www.math.ucla.edu/~jteran/270c.1.13s/notes_wk6.pdf, acesso em 25/03/2016.
- [USMANI 1994] Riaz A. USMANI, Inversion of a Tridiagonal Jacobi Matrix: Department of Applied Mathematics, University of Manitoba, 1994. Disponível em http://ac.els-cdn.com/0024379594904146/1-s2.0-0024379594904146-main.pdf?_tid=1dc5a5dc-f2f2-11e5-9bd3-00000aacb35f&acdnat=1458955920_5a0cc77d01e9dbdd1dfc2d1e0b8627b1, acesso em 25/03/2016.
- [VANDENBERGHE 2012] L. VANDENBERGHE, **Complexity of matrix algorithms**: EE103 Applied Numerical Computing (Fall 2011-12), UCLA. Disponível em http://www.seas.ucla.edu/~vandenbe/103/lectures/flops.pdf, acesso em 26/03/2016.
- [VANDEBRIL 2004] Raf VANDEBRIL, Semiseparable matrices and the symmetric eigenvalue problem: Katholieke Universiteit Leuven, Faculteit Toegepaste Wetenschappen Departement Computerwetenschappen, 2004. Disponivel em http://www.cs.kuleuven.be/publicaties/doctoraten/tw/TW2004_03.pdf, acesso em 25/03/2016.

[WEISSTEIN 2016] Eric W. WEISSTEIN, **Positive Definite Matrix MathWorld**. Disponível em http://mathworld.wolfram.com/PositiveDefiniteMatrix.html, acesso em 17/03/2016.

Programas testados com **Octave** 4.0.0 e **MinGW** C 4.8.2:

https://www.gnu.org/software/octave/

https://www.mingw.org

Texto formatado com **pdflatex** em ambiente **MiKTeX** 2.9:

http://miktex.org/download/