ELECTROMAGNETISMO

Série 11 – Circuitos de corrente alternada

1. Um amplificador audio, representado na Fig. 1 por uma fonte de tensão alternada e uma resistência R, está ligado a um altifalante. Se a amplitude da diferença de potencial aos terminais da fonte de tensão for de $15.0\,V$, $R = 8.20\,\Omega$ e o altifalante for equivalente a uma resistência de $10.4\,\Omega$, qual é a potência média transferida para o altifalante?

Figura 1

- 2. No circuito ilustrado na Fig. 2, $\Delta V_{\text{max}} = 80.0 \, V$, $\omega = 65.0 \, \pi \, rad \, / \, s$ e $L = 70.0 \, mH$.
 - a) Qual é o valor da reactância indutiva?
 - b) Calcule a intensidade da corrente no indutor quando $t = 15.5 \, ms$.

Figura 2

- 3. Determine a intensidade máxima da corrente num condensador de $2.20 \,\mu F$ quando este é ligado a:
 - a) uma tomada eléctrica na América do Norte, onde $\Delta V_{ef} = 120 \, V \,$ e $\, f = 60.0 \, Hz \,$;
 - b) uma tomada eléctrica na Europa, onde $\Delta V_{ef} = 240 \, V$ e $f = 50.0 \, Hz$?

- 4. Um circuito de corrente alternada contém os seguintes componentes ligados em série: uma resistência de $150\,\Omega$, um indutor de $250\,mH$, um condensador de $2.00\,\mu F$ e uma fonte de tensão alternada com $\Delta V_{\rm max} = 210\,V$ e $f = 50.0\,Hz$. Calcule:
 - a) a reactância indutiva e a reactância capacitiva;
 - b) a impedância;
 - c) a intensidade máxima da corrente e a diferença de fase entre a corrente e a tensão aplicada.
- 5. Num circuito RL, uma fonte de tensão AC, com $\Delta V_{ef} = 120 \, V$ e $f = 60.0 \, Hz$, está em série com um indutor de 25.0 mH e uma resistência de $20.0 \, \Omega$.
 - a) Qual é a intensidade eficaz da corrente e o factor de potência?
 - b) Qual é a capacidade do condensador que seria necessário juntar em série ao circuito para que o factor de potência fosse 1? De que factor é que a diferença de potencial poderia ser reduzida para que a potência transferida para o novo circuito fosse igual à transferida para o circuito sem condensador?
- 6. Um circuito RLC é utilizado num rádio para sintonizar numa estação FM que transmite a 99.7 MHz. A resistência no circuito é de 12.0 Ω e a indutância é de 1.40 μ F. Que condensador deve ser utilizado?
- 7. Um transformador "step-down" é utilizado para carregar baterias de aparelhos portáteis, como por exemplo um leitor de MP3. A razão entre os números de espiras no transformador é de 13:1 e o transformador funciona ligado a uma tomada eléctrica onde $\Delta V_{ef} = 120\,V$. Considere que o transformador é ideal.
 - a) Se a corrente na tomada tiver uma intensidade de 0.350 A, qual é a diferença de potencial e a intensidade da corrente fornecida ao leitor de MP3?
 - b) No caso da alínea anterior, qual é a potência transferida?
- 8. Para o circuito na Fig. 3, determine a corrente eficaz que é fornecida pela fonte de tensão eficaz de 45.0 *V*, quando:
 - a) a frequência é muito grande;
 - b) a frequência é muito pequena.

Figura 3

Soluções:

1.
$$P = 3.38 W$$
.

2. a)
$$R = 14.3 \Omega$$
; b) $I = 5.60 A$.

3. a)
$$I_{max} = 141 \ mA$$
; b) $I_{max} = 235 \ mA$.

4. a)
$$X_L = 78.5 \Omega$$
, $X_C = 1.59 k\Omega$; b) $Z = 1.52 k\Omega$; c) $I_{max} = 138 mA$, $\phi = -84.3^{\circ}$.

5. a)
$$I_{ef} = 5.43~A$$
 , factor de potência = 0.905 ; b) $C = 281~\mu F$, $\Delta V_{ef} = 109~V$.

6.
$$C = 1.82 \,\mu F$$
.

7.
$$\Delta V_{ef} = 9.23 \ V$$
, $I_{ef} = 4.55 \ A$; b) $P = 42.0 \ W$.

8. a)
$$I_{ef} = 225 \text{ mA}$$
; b) $I_{ef} = 450 \text{ mA}$.