Graphs

- A graph G = (V, E)
 - \blacksquare V = set of vertices, E = set of edges
 - *Dense* graph: |E| close to $|V|^2$
 - *Sparse* graph: |E| much less than $|V|^2$
 - *Undirected graph:*
 - \circ Edge (u,v) = Edge (v,u) and No self-loops
 - *Directed* graph:
 - \circ Edge (u,v) goes from vertex u to vertex v, notated u \rightarrow v
 - A weighted graph associates weights with either the edges or the vertices

Representations of a Graph:			
Directed Graphs			
1 2 3 4 5 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 1 0 1 0 1 0 0 2 0 0 0 0 1 0 3 0 0 0 0 1 1 4 0 1 0 0 0 0 5 0 0 0 1 0 0 6 0 0 0 0 0 1 Adjacency Matrix	
	Adjacency List	Adjacency Man IX	
Space complexity:	$\theta(V+E)$	$\theta(V^2)$	
Time to find all neighbours of vertex u : $\theta(\text{degree}(u))$		$\theta(V)$	
Time to determine if $(u, v) \in \mathbb{R}$	$E: \qquad \theta(\deg(u))$	$\theta(1)$	
	3		

Graph Searching

- Given: a graph G = (V, E), directed or undirected
- Goal: methodically explore systematically every vertex and every edge
- Discover much about structure of graph
- build a tree on the graph
 - Pick a vertex as the root
 - Choose certain edges to produce a tree
 - might also build a *forest* if graph is not connected

Breadth-First Search

- "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of discovered i.e. explored vertices across the *breadth* of the frontier
 - Discovers all vertices at distance k from s before discovering any vertices at distance k+1
- Builds a tree over the graph
 - Pick a *source vertex* to be the root
 - Find ("discover") its children, then their children, etc.

Breadth-First Search

- To keep track progress BFS associate vertex "colors" to guide the algorithm
 - White vertices → have not been discovered
 - o All vertices start out white
 - Grey vertices → discovered but not fully explored
 - o They may be adjacent to white vertices
 - Black vertices → discovered and fully explored
 - o They are adjacent only to black and gray vertices
- All vertices start out white and may later become gray and then black
- Explore vertices by scanning adjacency list of grey vertices

Breadth-First Search

- Completely explore the vertices in order of their distance from u
- implemented using a queue
 - BFS algorithm uses first-in, first-out queue Q to manage the set of grey vertices

BFS Procedure

BFS search procedure assumes that input graph G(V,E) represented using adjacency List

```
BFS(G, s)
     for each vertex u \in V[G] - \{s\}
           do color[u] \leftarrow WHITE # store color of each vertex u
               d[u] \leftarrow \infty
                                  # Store distance from s to u computed by algorithm
 4
               \pi[u] \leftarrow \text{NIL}
                                       # Store predecessor of u
 5 color[s] \leftarrow GRAY
 6 d[s] \leftarrow 0
                                             Each vertex is enqueued at most once \rightarrow O(V)
    \pi[s] \leftarrow \text{NIL}
    Q \leftarrow \emptyset
                      Each entry in the adjacency lists is scanned at most once \rightarrow O(E)
 9 ENQUEUE(Q, s)
     while Q \neq \emptyset
                                                    Thus run time is O(V + E).
           do u \leftarrow \text{DEQUEUE}(Q)
12
               for each v \in Adj[u]
13
                   do if color[v] = WHITE
14
                          then color[v] \leftarrow GRAY
15
                                d[v] \leftarrow d[u] + 1
16
                                \pi[v] \leftarrow u
17
                                ENQUEUE(Q, v)
18
              color[u] \leftarrow BLACK
```

BFS: Example

BFS search procedure assumes that input graph G(V,E) represented using adjacency List

Breadth-First Search: Example

Q: s

Depth-First Search

- *Depth-first search* is another strategy for exploring a graph
 - Explore "deeper" in the graph whenever possible
 - Edges are explored out of the most recently discovered vertex *v* that still has unexplored edges
 - When all of *v*'s edges have been explored, backtrack to the vertex from which *v* was discovered

Depth-First Search

- DFS create depth first forest
- Maintains Two timestamps on each vertex
 - d[v] → records when v is first discovered (and grayed)
 - $f[v] \rightarrow$ records when search finishes examining v's adjacency list (and blackens v)
- Explore *every* edge, starting from different vertices if necessary
- As soon as vertex discovered, explore from it.
- Keep track of progress by colouring vertices:
 - Vertices initially colored white
 - Then colored gray when discovered (but not finished still exploring it)
 - Then black when finished (found everything that reachable from it)

Depth-First Search Algorithm

DFS(G)

```
for each vertex u \in V[G]
          do color[u] \leftarrow \text{WHITE}
3
              \pi[u] \leftarrow \text{NIL}
4 time \leftarrow 0
                                                            running time = O(V+E)
5 for each vertex u \in V[G]
          do if color[u] = WHITE
7
                 then DFS-VISIT(u)
DFS-VISIT(u)
1 color[u] \leftarrow GRAY
                             \triangleright White vertex u has just been discovered.
   time \leftarrow time + 1
    d[u] \leftarrow time
4 for each v \in Adj[u] \triangleright Explore edge (u, v).
      do if color[v] = WHITE
                then \pi[v] \leftarrow u
                       \mathsf{DFS}\text{-}\mathsf{Visit}(v)
8 color[u] \leftarrow BLACK
                                 \triangleright Blacken u; it is finished.
9 f[u] \leftarrow time \leftarrow time + 1
```

DFS Example

Depth-First Search

- Like BFS it does not recover shortest paths, but can be useful for extracting other properties of graph, e.g.,
 - Topological sorts
 - Detection of cycles
 - Extraction of strongly connected components

Classification of Edges

- Edge type for edge (*u*, *v*) can be identified when it is first explored by DFS.
- DFS algorithm can be modified to classify edges as it encounters them
- Classification is based on the color of v
 - White indicate a tree edge: : encounter new (white) vertex
 - Gray indicate a back edge::from descendent to ancestor
 - Encounter a grey vertex (grey to grey)
 - Black indicate a forward edge:: from ancestor to descendent
 - o non-tree edge
 - o From grey node to black node
 - Cross edge: all other edges i.e. between a tree or subtrees
 - o They can go between vertices in same/ different depth-first trees

Directed Acyclic Graphs

DAG is a directed graph with no directed cycles:

DAG Used in many applications to indicate precedence among events

DFS and **DAGs**

- a directed graph G is acyclic if a DFS of G yields no back edges:
 - if G is acyclic, will be no back edges
 - o But if a back edge it implies a cycle
 - if no back edges, G is acyclic

Topological Sort

- DFS used to perform topological sort of a DAG
- *Topological sort* of a DAG:
 - Linear ordering of all vertices in graph G such that vertex u appears before vertex v in the ordering if edge $(u, v) \in G$
- Example: getting dressed

Topological Sort Algorithm

```
Topological-Sort(G)
{
1.Call DFS(G) to compute finishing times f(v)
  for each vertex v
2. As each vertex is finished, insert it onto
  the front of linked list
3.Return the linked list of vertices
}
Topological sort performed in Time: O(V+E)
```


Spanning Tree

 A spanning tree (ST) of an undirected graph is a tree which contains all vertices and some edges of the graph.

Minimum Spanning Tree

 A minimum spanning tree (MST) of an undirected weighted graph is a spanning tree whose sum of all weights is minimum.

Real Life Application

- ISP company laying LAN cable
- graph represents which houses are connected by those LAN cables
- A *spanning tree* for this graph would be a subset of those paths that has no cycles but still connects to every house
- might be several spanning trees possible.
- *minimum spanning tree* would be one with the lowest total cost

MST Algorithm

- Two common algorithms for finding MSTs.
 - Kruskal's algorithm
 - From "forest" to tree
 - Prim's algorithm
 - Build tree to span all vertices

- > Both uses a specific rule to determine a safe edge
- ➤ **Safe edge**: an edge which can be added to a subset of some minimum spanning tree without violating invariant i.e. determined edge is also a subset of a minimum spanning tree

```
Generic_MST(G, w)
{ A \leftarrow \{\}
While A does not form a spanning tree
DO find an edge(u,v) that is safe for A
A \leftarrow A \cup \{(u,v)\}
```

Kruskal's Algorithm

- Increasingly sort the edges by weights.
- For each edge e in sorted order
 - If e does not form a cycle with the already picked edges, then
 - Pick e. (Done when n 1 edges are picked.)
 - Else
 - Discard e.
- If fewer than n 1 edges are picked, then
 - Graph is disconnected. No MST exists.

Kruskal's Algorithm

Make_SET(v): Create a new set whose only member is pointed to by v.

FIND SET(v): Returns a representative element to the set

Prim's Algorithm

- Initialize the current tree T to have any one vertex.
- While T has fewer than n 1 edges
 - Pick the edge around T whose weight is the smallest and does not form a cycle.
 - (When no such edge is found, graph is disconnected and no MST exists.)

Prim's Algorithm

```
MST-Prim(G, w, r)
                                   --G is a connected graph
     for each u \in V[G]
                                   --w is edge weights
         do key[u] = \infty;
                                   --r is root
         \Pi[r] = NULL;
 key[r] = 0;
                                         Running Time: O(E + V Ig V)
                                    [using a Fibonacci heap for the priority queue]
 Q = V[G];
while (Q \neq )
          u = Extract_Min(Q);
          for each v \in Adj[u]
               if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                     \Pi[v] = u;
                    key[v] = w(u,v);
```


Batch B over	