ECC (Criptografia amb corbes el.líptiques)

Sigui p un primer > 3. Una **corba el.líptica** definida sobre el cos finit \mathbb{F}_p és una corba plana donada per una equació

$$y^2 = x^3 + ax + b$$

tal que a, b són enters mòdul p i $4a^3 + 27b^2 \not\equiv 0 \pmod{p}$, més un punt de l'infinit \mathbf{O} .

El conjunt de punts de la corba és

$$E(\mathbb{F}_p) = \{(x,y) \mid x,y \text{ enters modul } p \text{ que satisfan l'equació}\} \cup \{\mathbf{O}\}$$

Amb vistes a la implementació, el punt \mathbf{O} es representarà mitjançant tres coordenades: (0,1,0).

En aquest conjunt es defineix una llei d'addició mitjançant la condició: tres punts sumen \mathbf{O} si i només si estan alineats. Concretament, la **suma de punts** s'expressa de la manera següent: si $P = (x_1, y_1)$ és un punt de la corba, posem $-P = (x_1, -y_1 \mod p)$. Aleshores,

- $P + \mathbf{O} = P$
- $P + (-P) = \mathbf{O}$
- si $Q = (x_2, y_2) \neq -P$, aleshores $P + Q = (x', \lambda(x_1 x') y_1)$, on $x' = \lambda^2 x_1 x_2 \mod p$ i

$$\lambda = \begin{cases} (y_2 - y_1)(x_2 - x_1)^{-1} \mod p & \text{si } Q \neq P, \\ (3x_1^2 + a)(2y_1)^{-1} \mod p & \text{si } Q = P. \end{cases}$$

Aquesta operació dóna estructura de grup abelià al conjunt de punts de la corba el·líptica: la suma és associativa i commutativa, té element neutre (el \mathbf{O}) i cada element P té oposat -P (l'oposat de \mathbf{O} és ell mateix).

En aquest grup, l'exponenciació kP es pot realitzar mitjançant l'algoritme de Montgomery: es considera l'expressió binària de k, $k = b_r 2^r + \cdots + b_1 2 + b_0$, on $b_i \in \{0,1\}$ i $b_r = 1$; llavors

$$egin{aligned} R_0 &= \mathbf{O}, \ R_1 &= P, \ i = r \ \mathbf{mentre} \ i &\geq 0 \ \mathbf{fer} \ \mathbf{si} \ b_i &= 0 \ \mathbf{hacer} \ R_1 &= R_0 + R_1 \ R_0 &= R_0 + R_0 \ \mathbf{si} \ b_i &= 1 \ \mathbf{fer} \ R_0 &= R_0 + R_1 \ R_1 &= R_1 + R_1 \ i &= i - 1 \ \mathbf{sortida} \ R_0 \end{aligned}$$

En les corbes el.líptiques que s'utilitzen en Criptografia, el grup de punts $E(\mathbb{F}_p)$ té cardinal $2^m n$, on n és un nombre primer i el cofactor $h=2^m$ té exponent $0 \le m \le 16$. En aquestes condicions, sempre existeix algun punt G d'ordre n, és a dir, tal que $nG = \mathbf{O}$ però totes els múltiples anteriors G, 2G, 3G, ..., (n-1)G són $\ne \mathbf{O}$.

Fixats els paràmetres p, a, b, n, G d'un sistema criptogràfic, la **clau privada** de cada usuari serà un enter aleatori r, 1 < r < n - 1, i la **clau pública** serà el punt P = rG.

Intercanvi de claus Diffie-Hellman. Si les claus privada i pública de dos usuaris són $(r_1, P_1 = r_1G)$ i $(r_2, P_2 = r_2G)$, aleshores el primer usuari pot calcular r_1P_2 i el segon usuari pot calcular r_2P_1 , de manera que tots dos estan calculant el mateix punt: $r_1r_2G = (x, y)$

Això es pot fer servir per a que tots dos obtinguin una clau secreta, per exemple per utilitzar amb l'AES:

$$K = H(s||x)$$

on H() és una funció hash, s és un nombre aleatori que es poden intercanviar de manera pública i || indica la concatenació de cadenes binàries.

ECDSA (Elliptic Curve Digital Signature Algorithm. Amb els paràmetres p, a, b, n, G com abans, la signatura d'un missatge M per part de l'usuari que té clau privada r i clau pública P es fa de la manera següent:

- $kG = (x_1, y_1)$ amb 1 < k < n 1 aleatori
- $f_1 = x_1 \bmod n$
- $f_2 = k^{-1} (H(M) + f_1 r) \mod n$
- Enviar la signatura (f_1, f_2)

Si $f_1 = 0$ o $f_2 = 0$ s'ha de generar un nou valor de k i tornar al primer pas. Observem que si el primer p té longitud ℓ , aleshores la signatura té longitud $\leq 2\ell$.

La verificació per part del receptor consisteix a fer el següent:

- $w_1 = H(M)f_2^{-1} \bmod n$
- $w_2 = f_1 f_2^{-1} \mod n$
- $w_1G + w_2P = (x_0, y_0)$
- Acceptar si $x_0 \mod n = f_1$

En aquest algoritme hem indicat per H(M) un hash del missatge M. En la implementació considerarem que el primer p té 512 bits i que la funció hash utilitzada és SHA512. En particular, podrem expressar la signatura amb 128 bytes.

Implementació: signatures. Definiu la classe ecc amb els següents mètodes:

public static BigInteger [] invers(BigInteger [] P, BigInteger [] ParametresCorba)

entrada: P punt de la corba donat per 3 coordenades (x, y, z), (z = 1 si P no és el punt de)

l'infinit), ParametresCorba= $\{a,b,p\}$, corresponents a la corba $y^2=x^3+ax+b$

 $\mod p$;

sortida: una llista $\{R_x, R_y, R_z\}$ que representa l'invers de P, R = -P $(R_z = 1 \text{ si R no és el}$

punt de l'infinit).

public static BigInteger [] suma(BigInteger [] P, BigInteger [] Q, BigInteger [] ParametresCorba)

entrada: P i Q punts de la corba donats per 3 coordenades (x,y,z), ((z=1 si P no és el punt z)

de l'infinit),

ParametresCorba= $\{a, b, p\}$, corresponents a la corba $y^2 = x^3 + ax + b \mod p$;

sortida: una llista $\{R_x, R_y, R_z\}$ que representa el punt R=P+Q $(R_z=1 \text{ si R no \'es el punt } R_z)$

de l'infinit).

public static BigInteger [] multiple(BigInteger k, BigInteger [] P, BigInteger [] ParametresCorba)

entrada: k enter,

P punt de la corba donats per 3 coordenades (x, y, z), (si z = 0 és el punt de l'infinit),

ParametresCorba= $\{a,b,p\}$, corresponents a la corba $y^2=x^3+ax+b \mod p$;

sortida: una llista $\{R_x, R_y, R_z\}$ que representa el punt $R = P + \cdots + P = k \cdot P$ si $k \geq 0$ o

 $R = -P - \cdots - P$ si $k \le 1$ ($R_z = 1$ si R no és el punt de l'infinit).

public static BigInteger[] clausECC(BigInteger[] parametresECC)

entrada: parametresECC= $\{n,G_x,G_y,a,b,p\}$, $G=(G_x,G_y)$ punt d'ordre n de la corba $y^2=$

 $x^3 + ax + b \mod p$ (evidentment, G no és el punt de l'infinit);

sortida: una llista $\{r, P_x, P_y\}$, r és la clau privada, i (P_x, P_y) punt (diferent del punt de

l'infinit) que és la clau pública.

public static byte [] ECCDHKT(byte [] bytesAleatoris, BigInteger clauPrivadaECC, BigInteger [] parametresECC)

entrada: bytesAleatoris és una llista de bytes aleatoris,

clauPrivadaECC és un enter,

clauPublicaECC= $\{P_x, P_y\}$ (diferent del punt de l'infinit)

parametresECC= $\{n, G_x, G_y, a, b, p\}$, $G = (G_x, G_y)$ punt d'ordre n de la corba $y^2 =$

 $x^3 + ax + b \mod p$ (evidentment, G no és el punt de l'infinit);

sortida: una llista k de bytes calculats de la següent manera: Amb clauPrivadaECC i

clau Publica
ECC es calcula una clau DH de components (x,y). La clau secret
ak

es calcula k=sha512(bytesAleatoris||x), x en bytes (sense complement a 2).

public static byte firmarECCDSA(byte M, BigInteger clauFirma, BigInteger parametresECC)

entrada: M és una cadena de bytes de longitud arbitrària que és el missatge per firmar,

claufirma és un enter que és la clau privada del firmant

parametresECC= $\{n, G_x, G_y, a, b, p\}, G = (G_x, G_y)$ punt d'ordre n de la corba $y^2 =$

 $x^3 + ax + b \mod p$ (evidentment, G no és el punt de l'infinit);

sortida: una cadena de bytes que sigui el missatge firmat; és la concatenació de la cadena M

amb una cadena d'exactament 128 bytes que representen la firma.

public static boolean verificarECCDSA(byte[] MS, BigInteger[] clauVer, BigInteger[] parametresECC)

entrada: MS és un missatge (suposadament) firmat amb el sistema ECCDSA de paràmetres

parametresECC amb la clau privada corresponent a la clau pública clauVer;

sortida: un booleà que indica si la firma és autèntica o falsa.