Chapter 1: Information representation and multimedia

Decimal and binary prefix

- Decimal prefix:
 - $kilo(K) = 10^3$
 - \circ mega(M) = 10^6
 - $giga(G) = 10^9$
 - tera(T) = 10¹²
- Binary prefix:
 - kibi(Ki) = 2¹⁰
 - mebi(Mi) = 2²⁰
 - $qibi(Gi) = 2^{30}$
 - teib(Ti) = 2⁴⁰

Internal coding of numbers

- Coding for integers
- Two methods:
 - Sign-magnitude: 0 is used to represent + and 1 for -
 - Twos complement
- Advantage of twos complement:
 - Only one representation of zero.
 - It simplifies subtraction. Number being subtracted is converted to two's complement form and added to other number.
 - Two's complement values are self-complementary. i.e. Twos complement can be taken to change the sign of number.
 - You can add any number of leading ones to positive and any leading zeros to negative value without changing value.
- Binary coded decimal.
 - Useful when single digit is to be stored or transmitted.
 - The digit is converted to binary and stored.
 - If two BCD digits per byte, it is called packed BCD.
 - If one BCD digit per byte, it is called unpacked BCD.

Internal coding of text

- ASCII code:
 - 7-bits => 2^7 = 128 combinations.
 - Limited number of non-printing or conttrol characters.
 - Only english.

- Numbers and letters are in sequence.
- Unicode(eg. UTF-8):
 - 1st byte used for ASCII: when first bit is 0
 - Can be upto 4 bytes long but some bytes are used by pre-defined format.
 - Various languages
 - Support for emojis
 - More symbols

Representing images

- Types:
 - Vector image:
 - Consists of drawing list that has command for drawing object to be included in the image.
 - Each command has a list of attributes like shape, color, thickness of line etc.
 - Can be scaled up as dimensions are defined relatively.
 - Bitmaps:
 - Image is represented as 2d matrix of pixels.
 - Pixel is the smallest identifiable component of bitmap image. Each pixel has a position and color.
 - Color depth is number of bits used to represent a pixel.
 - Bit depth is the number of bits used to store each of red, green and blue primary colors in RGB color scheme.
 - Image resolution is number of pixels in a image.
 - Bitmap image cannot be scaled up. If that is done, individual pixels can be distinguished.

Not every image can be defined as a collection of shapes/features so, vector graphics is not practical in every case.

Vector graphics is often used for logos and bitmap for other daily task.

Representing sound

Sound we hear is continuous and irregular and representing it requires practically infinite data. So, sampling is done.

- Sampling is the process of taking value from analogue signal at regular interval to make it digital.
- Sampling is done by ADC: Analog to digital converter.
- Sample refers to one such value taken from analogue signal.
- Sampling resolution is the number of bits used to represent a sample.
- Sampling rate is the number of samples taken per second.

Nyquist's theorem => Sampling must be done with a frequency at least twice the highest frequency of the sound being sampled.

Videos are collection of images + sound.

Compression techniques.

Compression refers to reduction in file size.

- · Reasons:
 - Less storage requirement.
 - Lower download/transmission time.
 - Lower processing time.
- Types:
 - Lossless compression: no information is lost
 - Lossy compression: some information is lost
- Examples:
 - Lossy compression:
 - Image: Cropping, reducing color depth, etc.
 - Video: reducing resolution, reducing frame rate etc.
 - Audio: reducing sampling rate, reducing sampling resolution etc.
 - Lossless compression:
 - Run Length Encoding(RLE): Number of times a byte is represented and the byte are sent together.
 - Huffman encoding: Using less bits to represent most frequently used values. None of the codes begin with sequence of bits representing shorter codes. A table is also required.

Mostly RLE is used for bitmap images, Huffman encoding for audio.

Lossy compressions cannot be used for texts.