SEMAINE DU 05/11 AU 09/11

1 Cours

Fonctions usuelles

Fonctions exponentielle, puissances, logarithme Étude générale de ces trois types de fonctions, propriétés algébriques, croissances comparées des fonctions exponentielle, puissances et logarithme.

Fonctions trigonométriques Rappel sur les fonctions trigonométriques. Les formules usuelles de trigonométrie (addition, duplication, factorisation) sont à connaître.

Fonctions trigonométriques réciproques Définition. Ensembles de départ et d'arrivée. Dérivées. Étude des fonctions. Formules usuelles.

2 Méthodes à maîtriser

- ▶ Pour étudier une expression du type $f(x)^{g(x)}$, mettre cette expression sous forme exponentielle exp $(g(x) \ln(f(x)))$.
- ► Savoir utiliser les croissances comparées.
- ▶ A tous les coups on gagne : dès que les expressions suivantes sont définies,
 - $\sin(\arcsin x) = x$;
 - $\cos(\arccos x) = x$;
 - tan(arctan x) = x.

mais par contre, méfiance :

- $\arcsin(\sin x) = x \iff x \in [-\pi/2, \pi/2];$
- $\arccos(\cos x) = x \iff x \in [0, \pi]$;
- $\arctan(\tan x) = x \iff x \in]-\pi/2,\pi/2[$.

ou, de manière équivalente,

- $\theta = \arcsin(x) \iff x = \sin(\theta) \text{ et } \theta \in [-\pi/2, \pi/2];$
- $\theta = \arccos(x) \iff x = \cos(\theta) \text{ et } \theta \in [0, \pi];$
- $\theta = \arctan(x) \iff x = \tan(\theta) \text{ et } \theta \in]-\pi/2,\pi/2[$
- ▶ Savoir utiliser l'injectivité des fonctions usuelles sur des intervalles adéquats.
- ► Savoir établir des identités par dérivation.
- ▶ Connaître les graphes de arcsin, arccos, arctan pour retrouver parité, dérivées, ensembles de définition, images, ...
- ▶ Résoudre des équations faisant intervenir des fonctions trigonométriques réciproques.

3 Questions de cours

Pour les trois premières questions de cours, la fonction ln a été définie comme l'unique primitive de $x \mapsto \frac{1}{x}$ sur \mathbb{R}_+^* s'annulant en 1.

- ► Montrer que pour tout $(x,y) \in (\mathbb{R}_+^*)^2$, $\ln(xy) = \ln x + \ln y$.
- ▶ Établir que $\lim_{x \to +\infty} \ln x = +\infty$. On admettra qu'une fonction croissante admet en $+\infty$ une limite finie ou égale à $+\infty$.
- $\blacktriangleright \text{ Établir que } \lim_{x \to +\infty} \frac{\ln x}{x} = 0.$
- $\blacktriangleright \text{ Montrer que } \lim_{x \to 0^+} (1+x)^{\frac{1}{x}} = e.$

- ► Tracer le graphe des fonctions arcsin, arccos et arctan. On fera apparaître les tangentes remarquables et les asymptotes éventuelles.
- $\qquad \text{Montrer que pour tout } x \in \mathbb{R}^*, \arctan x + \arctan \frac{1}{x} = \begin{cases} \pi/2 & \text{si } x > 0 \\ -\pi/2 & \text{si } x < 0 \end{cases}.$
- ► Montrer que pour tout $x \in [-1, 1]$, $\arccos x + \arcsin x = \frac{\pi}{2}$.
- ▶ Montrer que pour tout $x \in [-1, 1]$, $\sin(\arccos x) = \cos(\arcsin x) = \sqrt{1 x^2}$.