

FAKULTET ELEKTROTEHNIKE STROJARSTVA I BRODOGRADNJE

FACULTY OF ELECTRICAL ENGINEERING, MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE

Rudjera Boškovića bb, Split



LABORATORIJ ZA BIOMEHANIKU AUTOMATIKU I SUSTAVE

LABORATORY FOR BIOMECHANICS AND AUTOMATIC CONTROL SYSTEMS

# KOLEGIJ SIGNALI I SUSTAVI

# **SVOJSTVA SIGNALA**

Vježba br. 2.

#### **UVOD**

U ovoj vježbi primijenit ćemo Matlab na rješavanje zadataka iz područja prikaza kontinuiranih i diskretnih signala i sustava i njihovih svojstava.

Svaki zadatak će se rješavati tako da se napravi m-skripta koja će sadržavati rješenje zadatka i koja će se pohraniti pod imenom *Zad\_x.m* (pri čemu je x redni broj zadatka).

Prije no što započne s rješavanjem zadataka, svaki student treba u work direktoriju Matlaba napraviti novi direktorij i nazvati ga svojim imenom (ime\_prezime). Nakon što napiše pojedinu m-skriptu, neka je pohrani u kreirani direktorij. Za uspješno odrađenu vježbu potrebno je točno riješiti sve postavljene zadatke i rješenja demonstrirati nastavniku.

Napomena: Radi uspješnijeg rješavanja zadataka, na vježbama je korisno imati skriptu i bilješke s predavanja i auditornih vježbi.

#### ZADAVANJE I CRTANJE KONTINUIRANIH I DISKRETNIH SIGNALA

#### Zad 1.

Pomoću Matlaba nacrtati slijedeće kontinuirane signale:

- a)  $x_1(t) = 2\cos(3t) + 3\sin(2t)$ , na vremenskom intervalu  $-3\pi \le t \le 3\pi$ .
- b)  $x_2(t) = |e^{j4t} + e^{j11t}|$ , na vremenskom intervalu  $-\pi \le t \le \pi$ . (Pomoć: Za određivanje modula signala primijeniti Eulerovu relaciju).

Na slikama imenovati apscisu s 't' i ordinatu s 'x1(t)' ili 'x2(t)'.

Za crtanje kontinuiranih signala koristiti naredbu *plot*. Za određivanje modula (apsolutne vrijednosti) signala koristiti naredbu *abs*.

#### Zad 2.

Pomoću Matlaba nacrtati slijedeće diskretne signale:

a) 
$$x_1[n] = 5\sin(\frac{1}{8}\pi n)$$
, za vremenski interval  $-20 \le n \le 20$ .

b) 
$$x_2[n] = u[n]$$

c) 
$$x_3[n] = \delta[n+3] + 2\delta[n+1] - 4\delta[n] + \delta[n-2] - 6\delta[n-4] + 5\delta[n-5]$$

Za crtanje diskretnih signala koristiti naredbu *stem*.

#### Zad. 3.

Osim na načine prikazane u zadacima 1 i 2, signali se mogu definirati i pomoću simboličkih varijabli tj. crtati direktno kao funkcije simboličke varijable. Za definirane simboličkih varijabli koristi se naredba *syms*, a za crtanje simboličke funkcije naredba *ezplot*. Prikažimo primjerom:

```
>> syms t % definiranje simboličke varijable t
>> ezplot(cos(t)) % crtanje funkcije cos, ovisne o simboličkoj varijabli t, pri čemu t
poprima vrijednosti iz intervala -2*pi < t < 2*pi.
>> ezplot(cos(t), [a,b]) % crtanje funkcije cos, ovisne o simboličkoj varijabli t, pri čemu t
poprima vrijednosti iz intervala a < t < b (naravno, prethodno
treba definirati vrijednosti a i b.
```

Prikažimo još jednim primjerom kako možemo nacrtati funkciju ovisnu o 2 varijable (tj. dvodimenzionalni signal – 2D ili sliku). Nacrtajmo kružnicu radijusa 2. Znamo da je

jednadžba kružnice implicitno zadana funkcija prostornih koordinata:  $x^2 + y^2 = r^2$  (pri čemu je r radijus). Implicitno zadana funkcija f(x,y) = 0 u Matlabu se crta s ezplot(f). U našem primjeru će biti:

```
>> syms x y % definiranje simboličkih varijabli x i y 
>> ezplot('x*x+y*y-4') 
>> axis equal
```

Također, pomoću naredbe ezplot(x,y, [a,b]) možemo crtati i parametarski zadane funkcije x = x(t) i y = y(t), na intervalu a < t < b.

Pomoću simboličke vremenske varijable i naredbe *ezplot* nacrtati slijedeće signale:

- a)  $x(t) = 2\cos(3t) + 3\sin(2t)$ , na vremenskom intervalu  $-3\pi \le t \le 3\pi$ .
- b) parametarski zadanu 2D funkciju:  $x(t) = t*\cos(t)$  i  $y(t) = t*\sin(t)$ , na vremenskom intervalu  $0 \le t \le 10\pi$ . Kakvu smo krivulju dobili?

## Zad. 4.

Za mnoge signale ne postoji analitički izraz kojima bi se mogli matematički opisati (kao što je to bio slučaj sa sinusnim signalima iz prethodnih zadataka). Primjer su signali s diskontinuitetima.

Zadani su slijedeći signali:

a) 
$$x_1(t) = \begin{cases} 0 & t < 0 \\ t & 0 \le t < 1 \\ -t + 2 & 1 \le t < 2 \\ 0 & 2 < t \end{cases}$$
 b)  $x_2(t) = \begin{cases} 0 & t < -2 \\ t + 2 & -2 \le t < -1 \\ -t & -1 \le t < 0 \\ t & 0 \le t < 1 \\ 1 & 1 \le t \end{cases}$  c)  $x_3(t) = \begin{cases} 0 & t < 0 \\ 1 & 0 \le t < 1.5 \\ -0.5 & 1.5 \le t < 2 \\ 0 & 2 < t \end{cases}$ 

Napisati Matlab funkcije koje crtaju zadane signale. Funkcije nazvati x1.m, x2.m i x3.m, redom.

Da bismo olakšali rješavanje zadatka, navest ćemo jedan od načina kako možemo napisati funkciju x1.m:

```
function y=x1(t)

% funkcija kao rezultat daje vrijednost signala x1 za vrijeme t (zadano u obliku vektora)

for i=1: length(t)

y(i)=0; % vrijednost signala je nula za svaki zadani t, osim na intervalu 0<= t <=2

if (0<=t(i)) & (t(i)<1)

y(i)=t(i) % na intervalu 0<= t <=1 signal ima vrijednost t

end

if (1<=t(i)) & (t(i)<2)

y(i)=-t(i)+2 % na intervalu 1<= t <2 signal ima vrijednost -t+2

end

end
```

Kad smo napisali sve tri funkcije, signale ćemo nacrtati pomoću naredbe plot:

| >> t = -3:0.01:4             | % definiranje vremenskog intervala za koji ćemo nacrtati signal |
|------------------------------|-----------------------------------------------------------------|
| $\Rightarrow$ plot(t, x1(t)) | % crtanje signala x1 za definirano vrijeme                      |

## PARNI I NEPARNI SIGNALI

## Zad. 5.

Za signale iz prethodnog zadatka nacrtati parne i neparne dijelove signala. Na istu sliku nacrtati signal, ispod njega parni, te potom ispod neparni dio signala. Za crtanje više grafova na istu sliku koristiti naredbu *subplot*.

#### TRANSFORMACIJE NEZAVISNE VARIJABLE

#### Zad. 6.

Za signal  $x_3(t)$  iz zadatka 4c) izvršiti slijedeće transformacije vremenske varijable i na istoj slici nacrtati slijedeće grafove, jedan ispod drugog:

a) 
$$x_3(t)$$

b) 
$$x_3(t-3)$$

c) 
$$x_3(-t)$$

d) 
$$x_3(1/3t)$$

Iznad svakog grafa napisati naslov koji se odnosi na operaciju koju smo izvršili nad vremenskom varijablom (originalni signal, obrtanje, pomak ili skaliranje).

# Zad. 7.

Za signal  $x_2(t)$  iz zadatka 4b) izvršiti složenu transformaciju vremenske varijable i na istoj slici nacrtati slijedeće grafove, jedan ispod drugog:

a) 
$$x_2(t)$$

b) 
$$x_2(-3t +2.5)$$

Iznad grafova napisati odgovarajuće naslove (originalni signal i signal s transformiranom vremenskom varijablom).

#### Zad. 8.

Za signal  $x_3[n]$  iz zadatka 2c) izvršiti slijedeće transformacije diskretne vremenske varijable i na istoj slici nacrtati slijedeće grafove, jedan ispod drugog:

a) 
$$x_3[n]$$

b) 
$$x_3[-n-5]$$

c) 
$$x_3[2n + 8]$$

d) 
$$x_3[1/3n - 2]$$

# PREKLAPANJE SPEKTRA DISKRETNIH SIGNALA U VREMENSKOM PODRUČJU

#### Zad. 9.

Zadani su diskretni signali  $x[n] = \cos(\frac{2\pi m}{7}n)$ , pri čemu m poprima vrijednosti 1, 5/2, 6 i 8.

Na istoj slici nacrtati grafove sva četiri signala, jedan ispod drugog, za diskretno vrijeme n u intervalu [0, 30]. Koliko različitih signala ste dobili? Koji su među nacrtanim signalima jednaki i zašto?

# PERIODIČNOST SIGNALA

# a) Periodičnost kontinuiranih signala

#### Zad. 10.

Nacrtati kontinuirani vremenski signal  $x(t) = \left[\cos(\frac{3\pi}{K}t - \frac{\pi}{4})\right]^2$  za K = 1, 3, 6. Analitički odrediti temeljni period signala T (za sve tri vrijednosti od K) i provjeriti rješenje na nacrtanim slikama.

# b) Periodičnost diskretnih signala

#### Zad. 11.

Zadani su slijedeći diskretni signali:

$$x_1[n] = 2\sin(3\pi/4*n + 1/3)$$

$$x_2[n] = 1.5\cos(n/7 + \pi/5)$$

$$x_3[n] = \cos(\pi/4*n) \cos(\pi/8*n)$$

$$x_4[n] = 3\cos(\pi/8*n) + 2\sin(\pi/2*n) - 4\sin(\pi/4*n)$$

- a) Analitički ispitati koji su signali periodični i odrediti temeljni period
- b) Nacrtati sve zadane signale na vremenskom intervalu [0, 40] te na temelju dobivenih grafova provjeriti rješenja dobivena pod a). Koristiti naredbu *stem*.