Wilhelm-Schickard-Institut für Informatik Arbeitsbereich Technische Informatik Prof. Dr. W. Rosenstiel



## Chip Design WS 2018/19

Prof. Dr.-Ing. W. Glauert

## Übungsblatt 2 – Abgabe zum 09.11.2017

## Aufgabe 1: Netzwerktheorie

[4 Punkte]

Gegeben der folgende Spannungsteiler:



Nehmen Sie jeweils die folgenden Konstanten zur Berechnung an:

$$U_0 = 5V$$
  $R_1 = 1k\Omega$   $R_2 = 250\Omega$   $U_D = 0, 6V$   $C = 100\mu F$ 

Stellen Sie mit Hilfe der Kirchhoffschen Gesetze die benötigten Knoten- und Maschengleichungen auf und berechnen Sie mit den gegebenen Werten die gesuchten Größen. Vereinfachen Sie dazu die Gleichungen zuerst so weit wie möglich und setzen Sie dann die numerischen Werte ein.

- 1. Berechnen Sie für den gegebenen Spannungsteiler  $U_{R1}$ ,  $U_{R2}$  und I.
- 2. Ersetzen Sie den Widerstand  $R_2$  durch eine Diode und berechnen Sie  $U_{R1}$  und I. Berechnen Sie anschließend den thoretisch möglichen Strom  $I_D$  durch die Diode. Verwenden Sie dazu die Gleichungen und Konstanten aus dem Skript (3-17).
- 3. Ersetzen Sie  $R_2$  durch eine Kapazität. Berechnen Sie den Strom i und die Spannung über der Kapazität  $U_C$  zum Zeitpunkt t=0.1s. Nehmen Sie dazu an, dass zum Zeitpunkt t=0 die Kapazität C ungeladen ist und stellen Sie die benötigte Differenzialgleichung der Ladekurve der Kapazität auf.

## **Aufgabe 2: Back Annotation**

[1 Punkt]

1. Erklären Sie das Prinzip der Rückannotation (back annotation).