EVALUASI RUNNING TIME

ANALISIS DAN DESAIN ALGORITMA 1

ATURAN ESTIMASI

- Running time proporsional dengan term yang paling signifikan pada T (n)
 - Pada saat ukuran input n menjadi besar, term yang paling signifikan adalah term yang memiliki pangkat tertinggi dari n.
 - Term ini naik lebih cepat dibandingkan dengan term-term lain (yang signifikansinya semakin berkurang)
- Konstanta bergantung pada compiler, bahasa pemrograman, komputer, dll.
 - Konstanta diabaikan ketika menganalisis algoritma.
 - Konstanta akan mengecil jika digunakan hardware yang lebih cepat
 - Tetapi ini tidak akan mempengaruhi perilaku algoritma untuk ukuran input yang besar.

OPERASI ELEMENTER DAN DATA INPUT

- Operasi elementer:
 - Operasi aritmetika (+; -; *; /; %)
 - Operasi relasional (==; !=; >; <; ≥; ≤)
 - Operasi Boolean (AND; OR; XOR; NOT)
 - Operasi percabangan
 - Return
- Penyederhanaan asumsi: semua pernyataan/ekspresi dasar memerlukan waktu yang sama untuk dieksekusi.
- Running time algoritma: jumlah operasi elementer yang dominan digunakan (operasi khas).
- Input untuk domain permasalahan (arti dari n):
 - Sorting: n item
 - Graf/ lintasan: n verteks/ sisi
 - Image processing: n pixel (2D image) atau voxel (3D image)
 - Text processing: n karakter (panjang string yang diinputkan)

MENGESTIMASI RUNNING TIME: LOOP

- Loop tunggal memiliki kompleksitas linier yaitu λ . T_{body of a loop} dengan λ jumlah eksekusi dari loop.
- Loop bersarang memiliki running time polinomial T(n) = cn^k
 - Dalam hal ini jumlah operasi pada loop paling dalam berupa suatu konstanta (k adalah level tertinggi dari persarangan, c adalah konstanta).
- Tiga nilai pertama k memiliki nama khusus :
 - Waktu linier untuk k = 1 (loop tunggal);
 - Waktu kuadratik untuk k = 2 (2 loop bersarang), dan
 - Waktu kubik untuk k = 3 (3 loop bersarang).

MENGESTIMASI RUNNING TIME: KONDISIONAL

 Perhitungan running time untuk pernyataan kondisional / switch lebih kompleks.

if {condition} then {const time T1} else {const time T2}

- Kita harus mengetahu frekuensi (probabilitas) dari percabangan f_{condition=true}
 - $f_{\text{condition=false}} = 1 f_{\text{condition=true}}$
- Dengan demikian, running time dari algoritma adalah: $T_{true}T_1 + (1 f_{true})T_2 \le \max\{T_1, T_2\}$

MENGESTIMASI RUNNING TIME: FUNGSI

Running time pemanggilan fungsi:

```
T_{\text{function}} = \sum T_{\text{statements in function}}
```

- Secara detil: T_{function} = Σ_i T_{statement i}
 ... x.myMethod(5, ...);
 ...
 public void myMethod(int a, ...) {
 statement 1,2,...,M }
- Komposisi fungsi: T(f(g(n))) = T(g(n)) + T(f(n))
 - Secara detil:
 - Komputasi dari $x = g(n) \longrightarrow T(g(n))$
 - Komputasi dari $y = f(n) \longrightarrow T(f(n))$
 - T(f(g(n))) = T(g(n)) + T(f(n))

CONTOH

- Kasus paling sederhana untuk loop : T(i) tidak bergantung pada i
 - Contoh:
 for (i = 1; i <= n; i++) // waktu: c₁, n+1 kali
 {...sejumlah konstan operasi} // waktu: c₂, n kali
 - Setiap T(i) memerlukan waktu $c_2 \rightarrow T = (n+1)c_1 + nc_2 = O(n)$
- Menggunakan while loop:

• Waktu total : $T \le (c_2 + c_3 + c_4) m + c_1 + c_2$.

CONTOH: MENGESTIMASI WAKTU UNTUK MENJUMLAHKAN M+1 SUBARRAY

- m subarray dengan ukuran masing-masing m = n/2:
 - Abaikan inisialisasi data
 - Lakukan penjumlahan secara "Brute-force" dengan 2 loop bersarang:

```
for (j=0; j<=m; j++)
  s[j] = 0; { //m+1kali
  for ( k = 0; k < m; k++ )
      s[j] += a[k]; { // m kali
  }
}</pre>
```

• $T(n) = m(m + 1) = n/2 (n/2 + 1) = 0.25n^2 + 0.5n$

 Term kuadratik vs linier dalam penjumlahan m + 1 subarray masing-masing berukuran m = n/2 :

$$T(n) = 0.25n^2 + 0.5n$$

n	T(n)	$0.25n^{2}$	0.5n	
			value	% of T(n)
10	30	25	5	16.7
50	650	625	25	3.8
100	2550	2500	50	≈2.0
500	62750	62500	250	≈0.4
1000	250500	250000	500	≈0.2
5000	6252500	6250000	2500	≈0.04

CONTOH: MENGANALISIS ALGORITMA INSERTION-SORT

Algoritma insertion sort :

```
Insertion-Sort(A)
  1. for j \leftarrow 2 to length [A] do /*c_1 (n kali) */
             key \leftarrow A[j] /*c<sub>2</sub> (n-1 kali) */
  2.
  3. /* Insert A[j] into the sorted sequence A[1... j-1]*/
       /*0 (n-1 kali) */
  4. i \leftarrow j - 1 /*c<sub>4</sub> (n-1 kali) */
  5. while i > 0 and A[i] > key do /*c<sub>5</sub> <math>(\sum_{i=2}^{n} t_i \text{ kali}) */
  6. A[i+1] \leftarrow A[i] / {^*C_6} (\sum_{j=2}^{n} (t_{j-1}) \text{ kali}) */
  7. i \leftarrow i-1 /*c_7 (\sum_{i=2}^{n} (t_i-1) \text{ kali}) */
  8. A[i+1] \leftarrow key /*c<sub>8</sub> (n-1 kali) */
• T(n)=c_1n+c_2(n-1)+c_4(n-1)+c_5\sum_{i=2}^n t_i+c_6\sum_{i=2}^n (t_i-1)+c_7\sum_{i=2}^n t_i
   (t_i-1)+c_8(n-1)
```

- Best case: kasus ketika jumlah perhitungan minimal.
- Best-case untuk insertion sort: array sudah terurut.
 - $t_2 = t_3 \dots = t_n = 1$.
 - $T(n)=c_1n+c_2(n-1)+c_4(n-1)+c_5(n-1)+c_8(n-1)$
 - = $(C_1 + C_2 + C_4 + C_5 + C_8) n (C_2 + C_4 + C_5 + C_8)$.
 - Merupakan fungsi **linier** dari *n*.

- Worst case: waktu terlama yang diperlukan oleh sembarang instance dengan ukuran n.
- Worst-case pada insertion sort: array terurut secara terbalik.
 - $t_2 = 2$, $t_3 = 3$,, $t_n = n$
 - $T(n)=c_1 n+c_2 (n-1)+c_4 (n-1)+c_5 (n(n+1)/2-1)+c_6 (n(n-1)/2)+c_7 (n(n-1)/2+c_8 (n-1))$ = $(c_5/2+c_6/2+c_7/2)n^2+(c_1+c_2+c_4+c_5/2-c_6/2-c_7/2+c_8)n-c_7$

$$= (C_5/2 + C_6/2 + C_7/2)n^2 + (C_1 + C_2 + C_4 + C_5/2 - C_6/2 - C_7/2 + C_8)n + (C_2 + C_4 + C_5 + C_8)$$

- Merupakan fungsi kuadrat dari n.
- Catatan: $\sum_{k=1}^{n} k = 1 + 2 + 3 + ... + n = n(n+1)/2 \rightarrow deret$ aritmetik

LATIHAN

 Untuk nested loop berikut, berupa fungsi apakah running time-nya?

```
m = 1;
for (j = 1; j <= n; j++) {
    if (j == m) {
        m = m * (n - 1);
        for (i = 1; i <= n; i++) {
            ...sejumlah konstan operasi elementer
        } // end for
    } // end for</pre>
```

- Inner loop dieksekusi hanya 2 kali, untuk j = 1 dan j = n 1
- Waktu totalnya: $T(n) = 2n \rightarrow running time linier$.

LATIHAN

 Tentukan running time yang diperlukan oleh algoritma berikut, jika diasumsikan bahwa operasi khas dari masing-masing fungsi adalah perkalian, dan running time funct1 adalah i², sedangkan running time dari funct2 adalah j².

```
i = 5
j = 10
while i < j do
    i = i + 1
    j = j - 1
funct1(i)
funct2(j)</pre>
```