

Proximity Detectors

Features

- 10mA Output Current
- Oscillator Frequency 10MHz
- Supply Voltage +4 to +35V

Description

These monolithic integrated circuits are designed for metallic body detection by sensing variations in high frequency Eddy current losses. Using an externally-tuned circuit, they act as oscillators. The output signal level is altered by an approaching metallic object.

The output signal is determined by supply current changes. Independent of supply voltage, this current is high or low, according to the presence or absence of a closely located metallic object.

Block Diagram

October 2005

1/12 www.st.com

Contents

1	Connections	3
2	Electrical ratings	
3	Operating Mode	5
4	Typical Applications	6
5	Package Mechanical Data	8
6	Order codes	. 10
7	Revision history	11

TDA0161 1 Connections

1 Connections

Figure 1. Pin Connections (top view)

2 Electrical ratings TDA0161

2 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	35	V
TJ	Operating Temperature Range	+150	°C
T _{STG}	Storage Temperature Range	-55 to 150	°C

2.1 Electrical characteristics

 $-40 < T_A < +100$ °C, $P_{TOT} < 150$ mW, unless otherwise specified.

Table 2. Electrical Characteristcs

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Supply Voltage		4		35	V
	Reverse Voltage Limitation	I _{CC} = -100mA		-1		V
I _{CC}	Supply Current close target	TA = +25°C +4V < V _{CC} < +35V	8	10	12	mA
Icc	Supply Current remote target	+4V < V _{CC} < +35V			1	mA
	Supply Current transition time	C3 = 0		1		μs
		C3 ≠ 0		100 x C3 (nF)		μs
fosc	Oscillator Tuning Frequency				10	MHz
f _O	Output Frequency	C3 = 0	0		10	kHz
Δl _{CC}	Output Current Ripple	C3 = 0, C2 (pF) > 150/f _{OSC} (MHz)			20	μА
R _n	Negative Resistance on Terminals A and E	$4k\Omega < R1 < 50kΩ$, $f_{OSC} < 3MHz$	0.9 R1	R1	1.1 R1	
HYST	Hysteresis at Detection Point	C2 (pF) > 150/f _{OSC} (MHz)	0.5		5	%

TDA0161 3 Operating Mode

3 Operating Mode

Between pins 3 and 7, the integrated circuit acts like a negative resistor with a value equal to that of the external resistor R1 (connected between pins 2 and 4). The oscillation stops when the tuned circuit loss resistance (Rp) becomes smaller than R1. As a result, $I_{CC}(close) = 10mA$ (pins 1 and 6). The oscillation is sustained when Rp is higher than R1, and $I_{CC}(remote) = 1mA$ (pins 1 and 6). Eddy currents induced by coil L1 in a metallic body determine the value of Rp.

Figure 2. Electrical Scheme

If the circuit is used at frequency higher than 3MHz, it is recommended to connect a capacitor of 100pF between pins 7 and 6

4 Typical Applications TDA0161

4 Typical Applications

Figure 3. Application Interface Connection Diagram

Table 3. Detection Range

Detection Range (#)	L1 (μ H)	C1 (pF)	f _{OSC} (kHz)	R1 (kΩ)	C2 (pF)
2mm	30 (1)	120	2650	6.8	47
5mm	300 (2)	470	425	27	470
10mm	2160 (3)	4700	50	27	3300

Table 4. Coil Characteristics

	Core	Coil Former	Wire ^(##)	Number of Turns
1	Cofelec 432 FP 9 x 5 SE	1/2 Car 091 - 2	THOMSON Fils et Câbles	40
2	Cofelec 432 FP 14 x 8 SE	1/2 Car 142 - 2	Thomrex 14	100
3	Cofelec 432 FP 26x 16 SE	1/2 Car 262 - 2	(14 / 100mm)	200

^{#) .}Ingot steel target

^{##).} The above results are obtained with single wire coil. When using Litz wire instead of single wire, the parallel resistance of the coil becomes higher and value of R1 may be increased, resulting in better sensitivity

TDA0161 4 Typical Applications

4.1 Typical Application Example

Figure 4. Detection distance

5 Package Mechanical Data

Plastic DIP-8 MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α		3.3			0.130	
a1	0.7			0.028		
В	1.39		1.65	0.055		0.065
B1	0.91		1.04	0.036		0.041
b		0.5			0.020	
b1	0.38		0.5	0.015		0.020
D			9.8			0.386
Е		8.8			0.346	
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			7.1			0.280
ı			4.8			0.189
L		3.3			0.130	
Z	0.44		1.6	0.017		0.063

SO-8 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1		45 (typ.)				
D	4.8		5.0	0.188		0.196
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023
S			8 (n	nax.)		1

6 Order codes

Part number	Temp range	Package	Packing
TDA0161DP	150°C	DIP-8	Tube
TDA0161FP	150°C	SO8	Tube
TDA0161FPT	150°C	SO8	Tape and Reel

TDA0161 7 Revision history

7 Revision history

Date	Revision	Changes
06-Jan-2003	1	Initial release.
12-Oct-2005	2	Final release.

7 Revision history TDA0161

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

