

Signed Networks in Social Media

Jure Leskovec

Daniel Huttenlocher

Jon Kleinberg

연구 개요

- Relations between users on social media sites often reflect a mixture of positive (friendly) and negative (antagonistic) interactions.
- Researches has focused almost exclusively on positive interpretations of links between people
- Source : on-line social networks
- 'Signed Network'

연구 개요

- · classical theory : 'Structural Balance'
- · capture certain common patterns of interaction
- at odds with some of the fundamental phenomena we observe (evolving, directed)
- Alternate theory
- -> one of the first large-scale evaluations of theories of signed networks using on-line datasets
- -> perspective for reasoning about social media sites

연구의 필요성

- Structure of networks in social computing applications
- offers insights into patterns of interactions
- reveals global phenomena at scales that may be hard to identify when looking at a finer-grained resolution
- · Richness(complex) -> Stylized network representation(simple) stylized

접근 방법

- theories from social psychology (social balance, social status .etc)
 - -> analyzing signed networks of social computing applications
- -> characterize the differences between the observed and predicted configurations

연구에 필요한 요소

- · large-scale datasets from social applications where the sign of each link can be reliably determined
- theories of signed networks (Balance, Status)

Datasets

Explicit

- Epinions (product review) : trust or distrust
- Slashdot (blog): "friends" or "foes

Implicit

· Wikipedia admin candidates : public votes in favor of or against

Edges in networks derived from the datasets are directed

Datasets

	Epinions	Slashdot	Wikipedia		
Nodes	119,217	82,144	7,118		
Edges	841,200	549,202	103,747		
+ edges	85.0%	77.4%	78.7%		
— edges	15.0%	22.6%	21.2%		
Triads	13,375,407	1,508,105	790,532		
Table 1. Dataset statistics. Background proportion					

Background proportion

Theories of signed networks: Balance

- Initially made for undirected networks
- triangles on three individuals can be signed

balanced (T3, T1), unbalanced (T2, T0)

Theories of signed networks: Balance

- Weak Structural Balance
- · eliminating the enemy of my enemy is my friend
- only triangles with exactly two positive edges are implausible in real networks

balanced (T3, T1, T0), unbalanced (T2)

Theories of signed networks: Status

- Directed networks of signed links
- a positive(negative) directed link : the recipient as having higher(lower)
 status

Comparing the two theories

a user A links positively to a user B, and B in turn links positively to a user C

Theories of signed networks: Balance

- · (Weak Structural Balance)
- two positive edges are massively underrepresented
- triangles with three positive edges are massively overrepresented
- · difficult to evaluate the predictions on large network datasets

추가적인 요소

several experimental conditions

- · including both directed and undirected networks
- · Respecting and ignoring the order in which edges were created

Heterogeneity

Generative / Receptive

연구의 결론

- · Comparison of balance and status provides insights into ways in which people use linking mechanisms in social computing applications
 - : to be used more dominantly for expressions of status (Epinions, Wiki)
- Contrast between balance and status distinction between undirected and directed interpretations of links
- : different theories to be appropriate to different levels of resolution in the representation of a single network

연구의 결론 (insight)

 balance hold more strongly on the subset of links in these networks that are reciprocated (small proportion)

: reciprocal link follow different pattern of use

 connection between the sign of a link and the extent to which it is embedded

: many common neighbors (on display) -> more likely to be positive

ANALYSIS OF UNDIRECTED NETWORKS

- p0 : shuffle signs of all edges
- p(Ti) > p0(Ti) : over-rep-> T3
- p(Ti) < p0(Ti) : under-rep-> T2

Tri	ad T_i	$ T_i $	$p(T_i)$	$p_0(T_i)$	$s(T_i)$				
	Epinions								
T_3	+++	11,640,257	0.870	0.621	1881.1				
T_1	+	947,855	0.071	0.055	249.4				
T_2	++-	698,023	0.052	0.321	-2104.8				
T_0		89,272	0.007	0.003	227.5				
	•	Slash	dot	ı	•				
T_3	+++	1,266,646	0.840	0.464	926.5				
T_1	+	109,303	0.072	0.119	-175.2				
T_2	++-	115,884	0.077	0.406	-823.5				
T_0		16,272	0.011	0.012	-8.7				
Wikipedia									
T_3	+++	555,300	0.702	0.489	379.6				
T_1	+	163,328	0.207	0.106	289.1				
T_2	++-	63,425	0.080	0.395	-572.6				
T_0		8,479	0.011	0.010	10.8				

Table 3. Number of balanced and unbalanced undirected triads.

ANALYSIS OF EVOLVING DIRECTED NETWORKS

- 1. links are created at specific points in time order in which links are added
- $A \rightarrow X \rightarrow B$ (semi-path) // A B (shortcut)
- 2. different users make use of positive and negative signs differently (mix, almost exclusively one sign)
- -> generative baseline / receptive baseline

Motivating Example (context)

- · 축구 팀에 선수 A와 B 그리고 어떤 동료 X가 있다
- · 인터뷰를 통해 X에게 A와 B가 자신(X) 보다 잘하는지 묻는다 (status)
- Directed Graph
- · 이때, X가 A도, B도 모두 자신보다 잘한다고 말했다면? (못한다고 했을 때도 동일)
- · B는 X보다 잘하므로, 평균보다 높은 status 를 가질 확률이 크다. 따라서, A는 무작위로 한 동료에게 link를 생성할 때보다 B에게 positive 한 link를 생성할 가능성이 높다.
- · A의 경우에서 봐도 마찬가지

Contextualized Links (c-links)

t_i	count	P(+)	s_g	s_r	B_g	B_r	$S_{m{g}}$	S_r
t_1	178,051	0.97	95.9	197.8	√	√	√	√
t_2	45,797	0.54	-151.3	-229.9	✓	\checkmark	\checkmark	0
t_3	246,371	0.94	89.9	195.9	✓	\checkmark	0	\checkmark
t_4	25,384	0.89	1.8	44.9	0	0	\checkmark	\checkmark
t_5	45,925	0.30	18.1	-333.7	0	\checkmark	\checkmark	\checkmark
t_6	11,215	0.23	-15.5	-193.6	0	0	\checkmark	\checkmark
t_7	36,184	0.14	-53.1	-357.3	✓	\checkmark	\checkmark	\checkmark
t_8	61,519	0.63	124.1	-225.6	✓	0	\checkmark	\checkmark
t_9	338,238	0.82	207.0	-239.5	✓	0	\checkmark	\checkmark
t_{10}	27,089	0.20	-110.7	-449.6	✓	\checkmark	\checkmark	\checkmark
t_{11}	35,093	0.53	-7.4	-260.1	0	0	\checkmark	\checkmark
t_{12}	20,933	0.71	17.2	-113.4	0	\checkmark	\checkmark	\checkmark
t_{13}	14,305	0.79	23.5	24.0	0	0	\checkmark	\checkmark
t_{14}	30,235	0.69	-12.8	-53.6	0	0	\checkmark	0
t_{15}	17,189	0.76	6.4	24.0	0	0	0	\checkmark
t_{16}	4,133	0.77	11.9	-2.6	✓	0	✓	0
Number of correct predictions					8	7	14	13

P(+): prob. That closing red edge is positive;

sg: surprise of edge initiator giving a positive edge;

sr: surprise of edge destination receiving a positive edge;

Bg: consistency of balance with generative surprise;

Br: consistency of balance with receptive surprise;

Sg: consistency of status with generative surprise;

Sr: consistency of status with receptive surprise.

Result

- the predictions of status with respect to both generative and receptive surprise perform much better than the predictions of structural balance
- status is consistent with generative (14) and receptive (13) surprise on the vast majority of c-link types
- Failed on t3 -> structural balance (f-f-f)
- constitute natural "duals" to each other (reverse the direction and the sign)
 (t3 and t14, t2 and t15)

Result

Reciprocal (8%) -> structural balance

Epinions	Count	Probability
P(+ +)	38,415	0.969
P(- +)	1,204	0.031
P(+ -)	1,192	0.692
P(- -)	560	0.308
Wikipedia	Count	Fraction
P(+ +)	2,509	0.945
P(- +)	145	0.055
P(+ -)	193	0.706
P(- -)	80	0.294

Epinions	Triads	P(RSS)	P(+ +)	P(- -)
Balanced	348,538	0.929	0.941	0.688
Unbalanced	74,860	0.788	0.834	0.676
	· ·	5/5 66	5/	5/1
Wikipedia	Triads	P(RSS)	P(+ +)	P(- -)
Wikipedia Balanced	Triads 53,973	P(RSS) 0.912	P(+ +) 0.934	P(- -) 0.336

B-A link is significantly have the same sign as the A-B link

How public the edge signs are (epinions < Wikipedia)

Directed edges point both -> reinforcing mutual relationship

Embeddedness

- · Cluster (closed triad)
- all-positive networks have significantly higher clustering than their randomized counterparts, and the all-negative networks have significantly lower clustering
- ,both the all-positive and all-negative networks are less well-connected than expected

I	Size		Clustering		Component	
	Nodes	Edges	Real	Rnd	Real	Rnd
Epinions: -	119,090	123,602	0.012	0.022	0.308	0.334
Epinions: +	119,090	717,027	0.093	0.077	0.815	0.870
Slashdot: –	82,144	124,130	0.005	0.010	0.423	0.524
Slashdot: +	82,144	425,072	0.025	0.022	0.906	0.909
Wikipedia: —	7,115	21,984	0.028	0.031	0.583	0.612
Wikipedia: +	7,115	81,705	0.130	0.103	0.870	0.918

Table 6. Networks composed of only positive (negative) edges. *Real*: network induced on the positive (negative) edges. *Rnd*: network where edge signs are randomly permuted. *Clustering*: fraction of closed triads (closed triads divided by number of length 2 paths) *Component*: fraction of nodes in the largest connected component.

Embeddedness

 The giant components of real social networks are believed to consistof densely connected clusters linked by less embedded ties

Embeddedness

감사합니다