Práctica 1: Lógica proposicional y de primer orden

Comisión: Rodrigo Cossio-Pérez y Leonardo Lattenero

- 1. Demostrar que las siguientes relaciones son de equivalencia, indicar sus clases de equivalencia y el conjunto cociente.
 - (a) La relación $\sim = \{(x,y) \in \mathbb{Z}^2 \mid \exists k \in \mathbb{Z} \ (x-y=2k)\}$ donde $x \sim y$ se lee como "x tiene la misma paridad que y".
 - (b) La relación $\sim = \{(x,y) \in \mathbb{Z}^2 \mid x^2 = y^2\}$ donde $x \sim y$ se lee como "x tiene el mismo cuadrado que y".
 - (c) Considerando un rectángulo L_1 de lados a y b con área a.b y otro rectángulo L_2 de lados c y d con área c.d, donde $a, b, c, d \in (0, +\infty)$. Se define la relación $\sim = \{(L_1, L_2) \mid a.b = c.d\}$ donde $L_1 \sim L_2$ se lee como " L_1 tiene la misma área que L_2 ".
 - (d) Considerando la fracción q_1 representada por $\frac{a}{b}$ y otra fracción q_2 representada por $\frac{c}{d}$, con $a, c \in \mathbb{Z}$ y $b, d \in \mathbb{Z} \setminus \{0\}$. Se define la relación: $\sim = \{(q_1, q_2) \mid a.d = c.b\}$ donde $q_1 \sim q_2$ se lee como " q_1 es una fracción equivalente a q_2 ".
- 2. Averiguar si las siguientes relaciones son de orden amplio u orden estricto y demostrarlo
 - (a) Dada la relación R definida en \mathbb{R} , se establece la relación como "x es menor o igual que y" donde x R y se anota $x \leq y$ definida de la forma $R = \{(x,y) \mid \exists k \in [0,+\infty) \mid (y=x+k)\}$
 - (b) Dada la relación R definida en \mathbb{R} , se establece la relación como "x es divisor de y" donde x R y se anota $x \mid y$ definida de la forma $R = \{(x, y) \mid \exists n \in \mathbb{N} \ (y = n.x)\}$
 - (c) Dados dos conjuntos A y B se define la relación "A es subconjunto de en B" donde x R y se anota $A \subseteq B$ definida de la forma $R = \{(A, B) \mid \forall x \in A \ (x \in A \to x \in B)\}$
 - (d) Dada la relación R definida en \mathbb{R} , se establece la relación "x es menor que y" donde x R y se anota x < y definida de la forma $R = \{(x,y) \mid \exists k \in (0,+\infty) \mid (y=x+k)\}$
- 3. Considerando el siguiente árbol genealógico:

- (a) Verificar que la relación "x tiene el mismo color de pelo que y" es una relación de equivalencia y representarla con un grafo. Indicar las clases de equivalencia y el conjunto cociente.
- (b) Verificar que la relación "x nació en el mismo país que y" es una relación de equivalencia y representarla con un grafo. Indicar las clases de equivalencia y el conjunto cociente.

- (c) Verificar que la relación "x es descendiente de y" es una relación de orden estricto parcial. Representar la relación en un diagrama de Hasse.
- (d) Explicar porque la relación "x es de la misma edad o mayor que y" NO ES una relación de orden amplio.
- 4. Resolver los siguientes ejercicios variados
 - (a) Sean R_1 y R_2 dos relaciones de equivalencia en A. Averiguar si $R_1 \cap R_2$ y $R_1 \cap R_2$ son relaciones de equivalencia en A.
 - (b) Sea R una relación definida en el conjunto de número reales tal que xRy si y solo si x e ydifieron por menos de 1, es decir, |x-y| < 1. Demostrar que R no es una relación de equivalencia.
 - (c) En \mathbb{Z} se define la relación R mediante: $(a,b) \in R \Leftrightarrow a^2 + a = b^2 + b$. Clasificar R.
 - (d) En \mathbb{R}^2 se define la relación \sim mediante: $(x,y) \sim (x',y') \Leftrightarrow y=y'$. Probar que \sim es de equivalencia, determinar las clases de equivalencia y el conjunto cociente.
 - (e) En $A = \{1, 2, 4, 6, 8\}$ se define la siguiente relación: $xRy \Leftrightarrow 3|x+y$. Definir R por extensión, clasificarla y realizar su gráfico o esquema.
 - (f) En \mathbb{N}^2 se define la siguiente relación: $(a,b) = (a',b') \Leftrightarrow a+b'=a'+b$. Demostrar que es de equivalencia, obtener las clases de equivalencia, el conjunto cociente y representarla indicando las clases.
 - (g) El conjunto $\{\{a\}, \{b, c\}, \{d\}\}$ es una partición de A. Obtener la relación de equivalencia asociada a la partición.
 - (h) En el conjunto $A = \{1, 2, 3, 4, 5\} \subseteq B$ se considera la relación de menor o igual. Determinr, si los hubiere, los elementos maximales y minimales, el conjunto de cotas superiores e inferiores, y el supremo e ínfimo.
 - (i) En R, ordenado por la relación de menor o igual, se define el conjunto $A = \{x \in \mathbb{R} \mid x = \frac{1}{n} \land n \in \mathbb{N}\}$. Averiguar si A tiene primer y ultimo elemento, si es un conjunto bien ordenado, y en el caso de que admita cotas, si tiene supremo e ínfimo.
 - (j) Sea R una relación definida en el conjunto de personas tal que xRy si y solo si x es mayor (en edad) que y. Averiguar si R es una relación de orden amplio/estricto total/parcial.
- 5. Obtener, si existen, el conjunto de cotas superiores e inferiores de los siguientes conjuntos y el supremo e ínfimo, considerando el superconjunto y la relación de orden dados.
 - (a) $A = (0, 1] \subseteq \mathbb{R}$ con la relación \leq (menor o igual).
 - (b) $B = [-6, 5] \subseteq \mathbb{R}$ con la relación \leq (menor o igual).
 - (c) $C = (-6, 5) \subseteq \mathbb{R}$ con la relación \leq (menor o igual).
 - (d) $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ con la relación \subseteq (subconjunto de) con $A = \{1, 2, 3, 4 \text{ y } B = 1, 2, 3.$

Respuestas

- 1. (a)
 - (b) —
 - (c) —

(d) Reflexividad: $\forall a, b : \left(\frac{a}{b}\right) R\left(\frac{a}{b}\right)$ ya que a.b = a.b.

Simetría: $\forall a,b,c,d: \left(\frac{a}{b}\right) R\left(\frac{c}{d}\right) \rightarrow \left(\frac{c}{d}\right) R\left(\frac{a}{b}\right)$ ya que $a.d=c.b \rightarrow c.b=a.d.$

Transitividad: $\forall a,b,c,d,e,f: \left(\frac{a}{b}\right) R\left(\frac{c}{d}\right) \wedge \left(\frac{c}{d}\right) R\left(\frac{e}{f}\right) \rightarrow \left(\frac{a}{b}\right) R\left(\frac{e}{f}\right)$ ya que $(a.d=c.b) \wedge (c.f=e.d) \Rightarrow (a.d=c.b) \wedge (c=\frac{e.d}{f}) \Rightarrow a.d=\frac{e.d}{f}.b \Rightarrow a=\frac{e}{f}.b \Rightarrow af=eb$

- 2. (a) Relación de orden amplio (transitiva, antisimétrica, reflexiva)
 - (b) Relación de orden amplio (transitiva, antisimétrica, reflexiva)
 - (c) Relación de orden amplio (transitiva, antisimétrica, reflexiva)
 - (d) Relación de orden estricto (transitiva, asimétrica e irreflexiva)
- 3. (a)
 - (b) —
 - (c) —
 - (d) Porque no es antisimétrica. (Mirta) $R(\operatorname{Jos\acute{e}}) \wedge (\operatorname{Jos\acute{e}}) R(\operatorname{Mirta})$ pero José \neq Mirta. También se puede verificar con Luna, Gina y Elena, que tienen la misma edad.
- 4. (a) $R_1 \cap R_2$ es de equivalencia mientras que no necesariamente lo es $R_1 \cap R_2$.
 - (b) R es reflexiva porque |x x| = 0 < 1.

R es simétrica ya que |x-y|=|y-x| por lo que $|x-y|<1 \implies |y-x|<1$.

R NO es transitiva. Contraejemplo: x=2.8, y=1.9, y=1.9, y=1.1, donde se ve que |2.8-1.9|=0.9<1,|1.9 - 1.1| = 0.8 < 1, pero |2.8 - 1.1| = 1.7 > 1.

Por lo tanto, R no es una relación de equivalencia.

- (c) —
- (d) —
- (e) —
- (f) —
- (g) —
- (h) —
- (i) —
- (j) —