Ground-Level Ozone In U.S. Counties and Air Quality Health

By

Spencer Rubin

Springboard: Capstone2

Background - Problem:

- Ground-level Ozone (O3) hazardous air-pollutant
- Result of anthropogenic and natural forces
- Monitored by the EPA
- O3 can result in respiratory disease and illness
- How does 03 health concern differ between major counties in the U.S?

Applying Data Science

- Classifying county-level O3 concentration:
 - Not of health concern (<0.06ppm)
 - Health concern (>0.06ppm)
- County population as a feature contributing to O3 health quality
- 10-most populous counties in U.S.

Acquiring Datasets

EPA Daily Air Quality data for 2019
in 10-counties (.csv):

https://www.epa.gov/outdoor-air-quality-data/download-daily-data

 Population estimation data for each county in 2019 (.csv):

https://www.census.gov/data/datasets/timeseries/demo/popest/2010s-counties-total.html

Counties:

- Los Angeles County, CA
- Orange County, CA
- San Diego County, CA
- Riverside County, CA
- Dallas County, TX
- Harris County, TX
- Miami-Dade County, FL
- Cook County, IL
- Queens County, NY
- Maricopa County, AZ

Data Wrangling

- Maximum Daily 8-hour Ozone averaged for county-wide EPA air measurement stations.
- One Ozone concentration value (ppm) per day (observation) per county
- Population (per million/people) add for each observation by county
- Time series (date) indexed.
- Dataframe:
 - 3606 observations
 - No missing values
 - Variance with number of averaged EPA air measurement stations per county

Exploratory Data Analysis

 Overall distribution of Maximum 8-hour O3 ppm

 County-level distribution of Maximum 8-hour O3 ppm

Dataset Balancing

- Classifying days per county O3 >0.06ppm:
- o Most days are not above this threshold
- imblearn SMOTE for resampling an unbalanced dataset
- Synthetic resampling of unbalanced dataset to reduce bias

Dataset Preprocessing

- Categorical variables (pandas get_dummies()):
 - County
 - Population (above or below the median of 10-counties)
 - "ozone_concern": above or below 0.06ppm
 - "ozone_threshold": above or below 0.007ppm

- Scale "Max 8-hour Ozone (ppm)":
 - sklearn's StandardScaler()

Model Selection

- Supervised learning models for classification:
 - Logistic Regression
 - Decision Tree Classifier
 - Random Forest Classifier
- Metric for selection: "Accuracy"
 - Which model can classify best if a county has O3 related air quality health concern?

Model Selection

Logistic Regression: ROC_AUC

- Model accuracy:
 - classifying "ozone_concern" by county relative to population

classifier model type	model metric
	Accuracy Score
Logistic Regression	0.8876
Decision Tree	0.8856
Random Forest	0.899

Random Forest: 90% Accuracy

Conclusions

- Supervised learning classification models can have high accuracy for determining O3 health concern
 - Random Forest Classifier performed best
- Balancing the dataset is critical to developing classification model
 - Most days of the year are not O3 related air quality issues
- County population is a strong indicator of high concentrations of O3
 - Larger population ~ more anthropogenic forcing of O3 production

Future Considerations

- Feature selection considerations:
 - Population density
 - Seasonality
 - Meteorological components: sunshine, temperature, wind
 - County-size
 - Geography of county; EPA measurement stations
- O3 < 0.06ppm of no significant health concern
- O3 0.06 0.07ppm: health concern!
- o 03 > 0.07ppm: EPA non-attainment zones; serious respiratory health concerns
 - Los Angeles and Riverside counties have notable days with O3 above 0.07ppm!

Questions?