

Autonomous Systems Challenge 1 – Search and Rescue(Mission)

Team: autsys-projects-gkd

Team members: Yiwei Wang, Yiyang Li, Tao Ma, Chenming Wang

Technische Universität München

22. March 2023

Table of Contents

- 1. Background and Task introduction
- 2. Overall framework
- 3. Generation of Survivor Signals
- 4. Visualization of Overall Searching Process
- 5. Signal Processing and Mission Planning
- 6. Comparison and Evaluation of Different Searching Methods

Background of Avalanche Scenario

- Avalanche is responsible for over 200 fatalities every year
- Golden rescue time is only 15 mins
- Risk of a second avalanche for the victims and rescuers
- UAV: Ability of autonomous searching without terrain restriction

Task Introduction

In this project, our main tasks are flying the drone over the avalanche and locating victims.

And the subtasks are:

- Realistic sensor models for avalanche beacon(with noise & capabilities)
- Mission planning(global planning & local planning)
- Adaptive trajectory generation
- Location report

Overall Framework

Rosgraph

Victims and Signal Generation

- 1. Random Victims Generation
 - Distance of each victim > 32m(Normally >2*15m, Considering noise)

2. Signal Generation

- Check the distance between the drone's current position and generated victims' positions.
- When distance < 15m, two signals will be generated into two topics:
 - /gen_beaconSignalStrength
 - /gen_beaconAngle

Victims and Signal Generation

Signal Strength:

SignalStrength =
$$1 - \frac{\text{space_distance}}{15} + \text{noise}$$

Angle:

$$\alpha_{vel} = \tan^{-1} \left(\frac{\mathbf{v}_{\underline{y}}}{\mathbf{v}_{\underline{x}}} \right) \cdot \frac{180}{\pi}$$

$$\alpha_{rel} = \tan^{-1} \left(\frac{\mathbf{y}_{\underline{v}} - \mathbf{y}_{\underline{u}} - \mathbf{v}_{\underline{u}}}{\mathbf{x}_{\underline{v}} - \mathbf{x}_{\underline{u}} - \mathbf{v}_{\underline{u}}} \right) \cdot \frac{180}{\pi}$$

beaconAngle = $\alpha_{rel} - \alpha_{vel} + \text{Angle_noise}$

Visualization

Global Planning

- Flying height: 5m
- Distance between trajectories: 27m
- Starting point: (0, -13.5)
- If receive signal, start local search

- Two step gradient search methods
- Search in small setps until signal strength satisfied/ upper limit of steps is reached

Evaluation: Total Search Time

Scenario 2:
 Signal strength
 random noise
 ±0.02,
 signal angle
 random noise ±10°

TABLE III SCENARIO 2 MODE 1

Information	Test 1	Test 2	Test3
global search time	290.698381	273.59735	256.29099
average local search time	5.146234	5.083524	5.094643
standard deviation (local)	0.138154	0.005491	0.003964
average distance error	0.706028	0.963725	0.653671

TABLE IV SCENARIO 2 MODE 2

Information	Test 1	Test 2	Test3
global search time	405.359339	413.126449	426.346457
average local search time	35.818823	39.55433	40.001796
standard deviation (local)	5.762559	9.959535	7.515077
average distance error	2.255175	1.780168	2.065041

Evaluation: Comparison of Local Search Time

With noise: Signal strength random noise ±0.02, signal angle random noise ±10°

Visualization (using local search method 1)

Evaluation: with large angle noise

- Angle signal based on EM-field may be not reliable
- Possibility of discriminating the y-direction incorrectly
- Useless excavation operation

Conclusion

- Total Search time 5 victims:
 UAV-based search: 4 8 Min VS.
 Human rescuer: 27 Min (speed: 0.5556m/s)
- Eliminate the risk of second avalanche
- Excavation still by human rescuers

✓ Human – Robot Collaboration

Future Improvment

- Magnetic field simulation for a more realistic model of the signal
- Noise types and strength may be gained through real-world measurements
- Expolre more advanced local search methods
- Multi-UAV Collaboration for large area

Contribution

Chenming Wang

- Local search method 1
- Part of global search
- Part of overall code construction and optimization

Tao Ma

- Modification of planner code
- Part of local search method
- Part of overall code construction and optimization

Yiwei Wang

- Local search method 2
- Part of global search
- Literature and conceptual research

Yiyang Li

- Overall code construction and optimization
- Victim and signal generation
- Visualization

Thanks for your attention!

Yiwei Wang, Yiyang Li, Tao Ma, Chenming Wang

22. March 2023

