

Dr. Nick Feamster Professor

Software Defined Networking

In this course, you will learn about software defined networking and how it is changing the way communications networks are managed, maintained, and secured.

Lesson Overview

- Overview of different SDN Controllers
- Basic understanding of each controller
 - Concepts
 - Architecture
 - Programming Model
- Pros and cons of each controller
- Ideal situations for each controller

Many Different SDN Controllers

- NOX/POX
- Ryu
- Floodlight
- OpenDaylight
- Pyretic
- Frenetic
- Procera
- RouteFlow
- Trema

Many Considerations

- Programming Language (can affect performance)
- Learning curve
- User base and community support
- Focus
 - Southbound API
 - Northbound API / "Policy Layer"
 - Support for OpenStack
 - Education, Research, or Production?

Many Different SDN Controllers

- NOX/POX
- Ryu
- Floodlight
- OpenDaylight
- Pyretic
- Frenetic
- Procera
- RouteFlow
- Trema

NOX: Overview

- First-generation OpenFlow controller
 - Open source, stable, widely used
- Two "flavors" of NOX
 - NOX-Classic: C++/Python. No longer supported.
 - NOX (the "new NOX")
 - C++ only
 - Fast, clean codebase
 - Well maintained and supported

NOX: Characteristics

- Users implement control in C++
- Supports OpenFlow v.1.0
 - A fork (CPqD) supports 1.1, 1.2, and 1.3
- Programming model
 - Controller registers for events
 - Programmer writes event handler

When to Use NOX

You know C++

 You are willing to use low-level facilities and semantics of OpenFlow

You need good performance

POX: Overview

- NOX in Python
 - Supports OpenFlow v. 1.0 only
- Advantages
 - Widely used, maintained, supported
 - Relatively easy to read and write code
- Disadvantages: Performance

When to Use POX

 If you know (or can learn) Python and are not concerned about controller performance

- Rapid prototyping and experimentation
 - Research, experimentation, demonstrations
 - Learning concepts

Ryu

- Open source Python controller
 - Supports OpenFlow 1.0, 1.2, 1.3, 1.4,
 Nicira extensions
 - Works with OpenStack
- Aims to be an "Operating System" for SDN
- Advantages
 - OpenStack integration, OpenFlow 1.2, 1.3, 1.4
- Objective in the property of the property o

Floodlight

- Open-source Java controller
 - Supports OpenFlow v. 1.0
 - Fork from the Beacon Java OpenFlow controller
 - Maintained by Big Switch Networks

Advantages

- Good documentation
- Integration with REST API
- Production-level, OpenStack/Multi-Tenant Clouds
- Disadvantages: Steep learning curve

Evolving Existing Controllers: LoxiGen

- Generates OF language-specific bindings
 - Input: Wire-protocol descriptions
 - Output: Protocol-specific bindings
 - http://github.com/floodlight/loxigen
- Generates OpenFlow v1.0-v1.3.1+ bindings
 - C: for Indigo
 - Java: for Floodlight
 - Python: for OFTest
 - Wireshark/Lua

When to Use Floodlight

You know Java

 You need production-level performance and support

 You will use the REST API to interact with the controller

OpenDaylight

- Goal: Common industry supported platform
 - Robust, extensible open source codebase
 - Common abstractions for northbound capabilities
- Advantages: Industry acceptance, integration with OpenStack, cloud applications, etc.

Also: HP VAN

 Disadvantages: Complex, steep learning curve

When to Use OpenDaylight

- You know Java
- You need production-level performance and support
- You need support with cloud applications,
 OpenStack, etc.
- You need modular functions
- You need apps already supported by vendors

Summary

	NOX	POX	Ryu	Floodlight	ODL
Language	C++	Python	Python	Java	Java
Performance	Fast	Slow	Slow	Fast	Fast
Distributed	No	No	Yes	Yes	Yes
OpenFlow	1.0 (CPqD: 1.1, 1.2, 1.3)	1.0	1.0, 1.1, 1.3, 1.4	1.0	1.0, 1.3
Multi-tenant Clouds	No	No	Yes	Yes	Yes
Learning Curve	Moderate	Easy	Moderate	Steep	Steep

- Choice of controller depends on needs, language, etc.
- So far: Southbound API implementations Later: "Northbound" APIs