

Machine Learning for Communications

Bonus Project

Guidelines

- The project consists of 3 problems.
- Please hand in the project in a group of at most 2 students.
- Deadline: **31.01.2024 23.59 CET**.
- The solutions to the following tasks should be uploaded as one zip file to the Moodle submission form.
- The naming scheme of the zip file must be mlcomm_project_NAME1_NAME2.zip, where NAMEX should be replaced by the family name of each contributor. Additionally, include a file names.txt in your zip, which lists the names of all contributors and their matriculation numbers (one name per line and the matriculation number separated by a semicolon).
- The code for each of the three tasks should go into individual files.
- The project will be graded as either passed or failed. If it is passed a bonus of 0.3 will be given to your exam grade. However, no bonus will be given if your exam grade is worse than 4.0.
- To pass the project, you must provide a significantly good attempt to solve all the following tasks.
- Additional information for problems 1 and 2:
 - You're not allowed to add any additional libraries (everything you need is already imported).
 - Provide the solutions to theory questions in a typed pdf file (e.g., Latex).
 Graphs may be drawn by hand and imported. Always provide your solution first and the derivation afterwards.

- For the coding tasks, place to following files and folders (including all subfiles) into a folder called $problem_1_2$: nn.py, detectors.py, $detector_nn.py$, $trained_networks/$.

Problem 1: Neural Network Based Soft-Output Detector

Let $\boldsymbol{Y} = [\underline{y}_1, \dots, \underline{y}_m]$ be a $k \times m$ matrix containing m vectors \underline{y}_i in each column. Every vector $\underline{y}_i \in \mathbb{R}^k$ is the output sequence of a communication system with corresponding input $\underline{x}_i \in \{-1,1\}^k$ (more details on the system can be found in problem 2). The transmit vector \underline{x}_i is drawn from

$$C = \{\underline{c}_1, \dots, \underline{c}_{2^k}\} \tag{1}$$

where $\underline{c}_1 = [-1, \dots, -1]^T$, $\underline{c}_2 = [-1, \dots, -1, 1]^T$, $\underline{c}_3 = [-1, \dots, 1, -1]^T$ and so on all the way to $\underline{c}_{2^k} = [1, \dots, 1]^T$.

We also define a sparse matrix $\mathbf{L} \in \{0,1\}^{2^k \times m}$ where each column contains a 1 in the j-th row if $\underline{x}_i = \underline{c}_j$ and 0 elsewhere. For example, if $\underline{x}_i = [-1, \dots, 1, -1]^T$, then $(\mathbf{L})_{i,j}$ is 1 for j = 3 and 0 for $j \neq 3$. This is a so called one-hot encoding.

We would like to build a neural network which for any input vector \underline{y} gives an output of length 2^k where the j-th element corresponds to the probability that \underline{c}_j was transmitted. Note that we once again stack multiple input vectors into a matrix as discussed in the tutorials

- a) Open the file nn.py. Copy your solution from tutorial 2 wherever indicated.
- b) Implement the method $_$ -call $_$ () in the class CELossSoftmax . For input matrices O (output of neural network) and L (corresponding labels), it calculates

$$CE(\boldsymbol{L}, \boldsymbol{O}) = -\frac{1}{m} \sum_{j=1}^{m} \sum_{i=1}^{2^{k}} (\boldsymbol{L})_{i,j} \ln ((\boldsymbol{O})_{i,j}).$$
 (2)

Don't forget to register the object with the network (see tutorial 2).

Hint: If you use matrix multiplication and np.sum() or np.mean(), you can compute this without using for-loops.

c) The softmax function for 2^k inputs $z_i \in \mathbb{R}$ has 2^k outputs a_i where

$$a_i = \frac{e^{z_i}}{\sum_{i=1}^{2^k} e^{z_i}}. (3)$$

Argue why the outputs correspond to a probability mass function.

d) Implement the method __call__() in the class Softmax . For a $2^k \times m$ input matrix \boldsymbol{Z} (output of previous linear layer), it calculates the output \boldsymbol{A} where each element is

$$(\mathbf{A})_{i,j} = \frac{e^{(\mathbf{Z})_{i,j}}}{\sum_{l=1}^{2^k} e^{(\mathbf{Z})_{l,j}}}$$
(4)

Don't forget to register the object with the network (see tutorial 2). Hint: Using np.exp() and np.sum(), you can implement this without any forloop.

e) Run the script detector_nn.py to train your neural network and store the weights. This script calculates the achievable information rate.¹ Tweak the parameters indicated in the beginning of the file to improve the performance of your network. After submission, we will test your network with a fresh test dataset, but set the parameter retrain_network to false. We then use the weights and biases stored in the folder trained_networks (the script detector_nn.py stores them automatically).

¹For those not familiar with information theory: The information rate describes the information transmitted with each channel use given the transmit constellation and detector used. Higher is better.

Problem 2: Sum-Product Algorithm Based Soft-Output Detector

Let $\underline{X} = [X_1, \dots, X_k]^T \in \mathbb{R}^k$ be the input to a channel and $\underline{Y} = [Y_1, \dots, Y_k]^T \in \mathbb{R}^k$ be the output. Assume

$$Y_i = H_i X_i + N_i \tag{5}$$

where N_i is white noise with $N_i \sim \mathcal{N}(0, \sigma_n^2)$ and H_i is a real-valued channel coefficient. Note that the receiver does not know the channel coefficient, but its statistics. Let $H_1 - H_2 - \ldots - H_k$ form a Markov Chain and assume Gaussian increments, that is

$$H_i|H_{i-1} = h_{i-1} \sim \mathcal{N}\left(h_{i-1}, \sigma_h^2\right)$$
 (6)

and $H_1 \sim \mathcal{N}(\mu_h, \sigma_h^2)$. We also assume i.i.d. 2-ASK signalling $X_i \in \{-1, 1\}$ with $P_{X_i}(-1) = P_{X_i}(1) = 1/2$ for all i.

Given a received sequence \underline{y} , the receiver wishes to give an estimate of the transmitted sequence $\hat{\underline{x}}$ by estimating each element individually.

Throughout this problem, we will use

$$\mathcal{N}\left(x;\mu,\sigma^2\right) := \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right). \tag{7}$$

- a) State the sequence-wise a posteriori estimate \hat{x} .
- b) State the marginalization and factorization required to compute the sequence-wise maximum a posteriori estimate $\hat{\underline{x}}$.
- c) Draw the factor graph for k = 3. Use

$$f_i(\tilde{h}_i) = P(x_i)p(y_i|x_i, \tilde{h}_i)$$
$$g_i(\tilde{h}_i\tilde{h}_{i-1}) = p(\tilde{h}_i|\tilde{h}_{i-1}).$$

d) Use Bayes' Rule and the Sum-Product Algorithm to show that

$$m_{g_i \to h_i} \left(\tilde{h}_i \right) = p \left(\underline{x}_1^{i-1}, \underline{y}_1^{i-1}, \tilde{h}_i \right).$$
 (8)

e) Show that

$$\int_{-\infty}^{\infty} \prod_{i=1}^{3} \mathcal{N}\left(x; \mu_{i}, \sigma_{i}^{2}\right) dx = \mathcal{N}\left(\mu_{1}; \mu_{2}, \sigma_{1}^{2} + \sigma_{2}^{2}\right) \mathcal{N}\left(\frac{\mu_{1}\sigma_{2}^{2} + \mu_{2}\sigma_{1}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}; \mu_{3}, \frac{\sigma_{1}^{2}\sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}} + \sigma_{3}^{2}\right). \tag{9}$$

This will be helpful later on.

f) Show that

$$\mathcal{N}\left(ax;\mu,\sigma^2\right) = \mathcal{N}\left(a\mu;x,\sigma^2\right) \tag{10}$$

for $a \in \{-1, 1\}$.

- g) Find a way to calculate $p(\underline{x}, \underline{y})$ using parts of the Sum-Product Algorithm. Calculate your algorithm analytically using k = 3. Hint: Make use of the result of subtask d).
- h) You can now define an algorithm for any length k by observing the impact the nodes have on incoming messages. Write down an algorithm to calculate $p(\underline{x},\underline{y})$ for a given transmit vector $\underline{x} \in \{-1,1\}^k$ and receive vector \underline{y} as well as the channel and noise statistics, that is σ_h^2 , μ_h and σ_n^2 .
- i) Extend the algorithm to matrix notation to efficiently compute $p(\underline{x}|\underline{y})$ for all $\underline{x} \in \{-1,1\}^k$. You can use X to denote a matrix with all vectors in $\{-1,1\}^k$ stored in individual columns.

Hint: You can use $p(\underline{x}, y)$ to calculate $p(\underline{x}|y)$ through

$$p(\underline{x}|\underline{y}) = \frac{p(\underline{x},\underline{y})}{\sum_{\underline{x}' \in \{-1,1\}^k} p(\underline{x}',\underline{y})}.$$
(11)

- j) In the file detectors.py, implement your algorithm in the function $detector_spa()$. Note that the input const corresponds to what we have defined as X. Hint: Feel free to use the function normpdf() which you can find in the file detectors.py, too.
- k) Run the file detector_spa.py which calculates the achievable information rate for the soft-output detector. How does this compare to the achievable information rate using the neural network?

Problem 3: Expectation Maximization

You are given a dataset EM_data.npy (load with np.load) of noisy receive data points $y_i \in \mathcal{C}, i = 1, ..., 10000$ after transmission over an optical channel. The transmission over the optical fiber is modeled as

$$Y = \Delta X + N$$

where $\Delta \in \mathbb{C}$ and X is from a M-QAM constellation \mathcal{X} of unknown size M. The noise N is zero mean circularly-symmetric complex Gaussian with unknown variance σ^2 . In this task, you should do the following:

- Use the expectation maximization (EM) algorithm to determine the unknown model parameters σ^2 , Δ and the distribution P_X on the constellation symbols. Print those results after performing this estimation.
- Your solution should be contained in a python file or a jupyter notebook named mlcomm_project_problem3.
- You can only use the following libraries: numpy, matplotlib.pyplot, scipy.stats.
- *Hint 1:* A scatter plot of the transmit and receive data is very helpful to gain first insights.
- *Hint 2:* Think carefully about how to initialize the algorithm. As pointed out in the lecture, an initialization with K-Means may be beneficial to get a good initial starting point for EM.