Para los teoremas y definiciones, considere $X = \langle x_1, \dots, x_n \rangle$, $Y = \langle y_1, \dots, y_n \rangle$ cadenas del mismo tamaño que pertenecen al conjunto Σ_{σ}^* , con $\sigma \in \mathbb{N}^*$.

Definición 1 (Cuerda Reducida). *Si X es una cadena usual, definimos su cuerda reducida como:*

$$red(X) = \{x_i : x_i \in X\},\tag{1}$$

es decir, es el conjunto que contiene a todos los elementos que conforman la cadena X, sin repeticiones. Denotaremos el conjunto de todos los intervalos permitidos como $I = \{I_1, \ldots, I_{|red(X)|}\}$

Definición 2 (Intervalo Permitido). *Si X e Y son dos cadenas y* $\delta \in \mathbb{N}$, *definimos el intervalo permitido de* $\overline{x_i} \in red(X)$ *como:*

$$I_{j} = \bigcap_{\substack{i=1\\x_{i}=\overline{x_{j}}}}^{n} [y_{i} - \delta, y_{i} + \delta], \tag{2}$$

con $[y_i - \delta, y_i + \delta] \subset \Sigma_{\sigma}$, donde x_i barre todas las posiciones de la cadena X.

Teorema 1. Si para algún j = 1, ..., |red(X)|, se cumple que $I_i = \emptyset$, entonces no es cierto que $X \xrightarrow{\delta} Y.z$

Teorema 2. Si se satisface la desigualdad:

$$\Big|\bigcup_{j=1}^{|red(X)|} I_j\Big| < |red(X)|, \tag{3}$$

entonces no es cierto que $X \stackrel{\delta}{\leadsto} Y$.

Deseamos encontrar una función biyectiva de modo que se satisfaga que $X \xrightarrow{\delta} Y$. Mediante la representación que construimos, nuestro objetivo es encontrar una función biyectiva

$$f: I \to \bigcup_{j=1}^{red(X)} I_j$$

que cumpla la propiedad:

$$f(I_i) \in I_i$$