METODY NUMERYCZNE – LABORATORIUM

Zadanie 2 – metoda iteracyjna Gaussa-Seidla

Opis rozwiązania

Zadanie polegało na zaimplementowaniu metody iteracyjnej Gaussa – Seidla, która to stosowana jest do rozwiązywania układów o dużej liczbie równań i niewiadomych, których macierz główna jest macierzą przekątniowo dominującą (wartości na głównej przekątnej są co do modułu znacznie większe niż pozostałe wartości).

Metoda Gaussa - Seidela jest metodą iteracyjną, pozwalającą nam obliczyć układ n równań z n niewiadomymi Ax = b. Wektor x0 będący początkowym przybliżeniem rozwiązania układu będzie dany (zwykle przyjmuje się go jako wektor złożony z samych zer). By zastosować tą metodę należy najpierw tak zamienić kolejność równań układu, aby na głównej przekątnej były elementy różne od zera i możliwie jak największe.

1. Na początku macierz współczynników A rozkładamy na sumę trzech macierzy A = L + D + U, gdzie L jest macierzą w której znajdują się elementy których numer wiersza jest większy od numeru kolumny, D to macierz diagonalna z elementami tylko na głównej przekątnej, a U to macierz, w której znajdują się elementy których numery wiersza są mniejsze od numerów kolumny.

Można to przedstawić następująco:

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \dots & \dots & \dots & \dots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \dots & 0 \\ a_{2,1} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ a_{n,1} & a_{n,2} & \dots & 0 \end{bmatrix} + \begin{bmatrix} a_{1,1} & 0 & \dots & 0 \\ 0 & a_{2,2} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{n,n} \end{bmatrix} + \begin{bmatrix} 0 & a_{1,2} & \dots & a_{1,n} \\ 0 & 0 & \dots & a_{2,n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

- 2. Następnie obliczymy macierz odwrotną do macierzy D, czyli D^{-1} . Otrzymamy ją po podniesieniu do potęgi -1 wszystkich wartości na głównej przekątnej macierzy.
- 3. Po tych operacjach możemy przystąpić już do iteracyjnego obliczania kolejnych przybliżeń rozwiązania według następującego wzoru:

$$x^{n+1} = D^{-1}b - D^{-1}Lx^{n+1} - D^{-1}Ux^n$$

Indeksy *n* oznaczają tutaj numer iteracji.

Wyniki

Układ równań 1 (h)

$$\begin{cases} 10x_1 - 5x_2 + x_3 = 3\\ 4x_1 - 7x_2 + 2x_3 = -4\\ 5x_1 + x_2 + 4x_3 = 19 \end{cases}$$

Wynik wyznaczony analitycznie	Ilość iteracji	Wynik
$X_1 = 1$ $X_2 = 2$ $X_3 = 3$	2	$X_1 = 0.2525$
		X ₂ = 1.91265306
		X ₃ = 3.95621173
	7	X ₁ = 0.99175451
		X ₂ = 1.99495318
		X ₃ = 3.01156856
	10	X ₁ = 1.00071771
		$X_2 = 2.00025425$
		X ₃ = 2.9990393

Układ równań 2 (a)

$$\begin{cases} 0.5x_1 - 0.0625x_2 + 0.1875x_3 + 0.0625x_4 = 1.5\\ -0.0625x_1 + 0.5x_2 = -1.625\\ 0.1875x_1 + 0.375x_3 + 0.125x_4 = 1.0\\ 0.0625x_1 + 0.125x_3 + 0.25x_4 = 0.4375 \end{cases}$$

Wynik wyznaczony analitycznie	Ilość iteracji	Wynik
$X_1 = 2$ $X_2 = -3$ $X_3 = 1.5$ $X_4 = 0.5$	2	$X_1 = 2.15104167$
		X ₂ = -2.98111979
		$X_3 = 1.45225694$
		X ₄ = 0.48611111
	7	$X_1 = 2.00000052$
		X ₂ = -2.9999994
		X ₃ = 1.50000331
		X ₄ = 0.49999821
	10	$X_1 = 1.99999989$
		X ₂ = -3.0000001
		X ₃ = 1.50000007
		X ₄ = 0.49999999

Układ równań 3 (j)

$$\begin{cases} x_1 + 0.2x_2 + 0.3x_3 = 1.5\\ 0.1x_1 + x_2 - 0.3x_3 = 0.8\\ -0.1x_1 - 0.2x_2 + 1x_3 = 0.7 \end{cases}$$

Wynik wyznaczony analitycznie	Ilość iteracji	Wynik
X ₁ = 1 X ₂ = 1 X ₃ = 1		X ₁ = 1.076
	2	$X_2 = 0.9864$
		X ₃ = 1.00488
		X ₁ = 1.00000021
	7	X ₂ = 0.9999995
		X ₃ = 1.0000001
	10	X ₁ = 1.0
		X ₂ = 1.0
		X ₃ = 1.0

Wnioski

- Każda kolejna iteracja wykorzystuje wyniki poprzedniej.
- Metoda nie jest uniwersalna, ponieważ można ją zastosować jedynie do niektórych układów równań, które można uporządkować zgodnie z wymaganiami.
- Dokładność metody iteracyjnej Gaussa Seidela zależy od liczby jej iteracji. Im więcej iteracji tym metoda jest dokładniejsza.
- Zaimplementowany program nie rozpoznaje układów sprzecznych i nieoznaczonych. Zamiast tego zwraca błędne wyniki.
- Przykłady b, c, d, e, f, g, I nie spełniają wymaganych warunków, więc pomineliśmy je w sprawozdaniu.