

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	PEGATRON CORPORATION
Applicant Address	5F No. 76, Ligong St., Beitou District, Taipei City 112, Taiwan
FCC ID	VUIDPC3929CA
Manufacturer's company	MAINTEK COMPUTER
Manufacturer Address	233 Jinfeng Rd., Suzhou, Jiangsu, PRC

Product Name	Wireless cable modem
Brand Name	CISCO
Model No.	DPC3929XXXX (X=0~1 and A~Z or blank)
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407
Test Freq. Range	5150 ~ 5250 MHz / 5725 ~ 5850 MHz
Received Date	May 07, 2014
Final Test Date	Jun. 03, 2014
Submission Type	Original Equipment

Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a/ac of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart E, KDB789033 D02 General UNII Test Procedures Effective 2014 DR02-41759, KDB 662911 D01 v02r01, KDB644545 D01v01r02.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. CER	RTIFICATE OF COMPLIANCE	1
2. SUM	MMARY OF THE TEST RESULT	2
3. GEN	NERAL INFORMATION	3
3.1.		
3.2.	. Accessories	5
3.3.	. Table for Filed Antenna	6
3.4.	. Table for Carrier Frequencies	7
3.5.	Table for Test Modes	8
3.6.	. Table for Testing Locations	9
3.7.	. Table for Explanation	9
3.8.	. Table for Supporting Units	10
3.9.	. Table for Parameters of Test Software Setting	10
3.10	0. EUT Operation during Test	10
3.11	1. Duty Cycle	11
3.12	2. Test Configurations	13
4. TEST	T result	14
4.1.	AC Power Line Conducted Emissions Measurement	14
4.2.	. 26dB Bandwidth and 99% Occupied Bandwidth Measurement	18
4.3.	. 6dB Spectrum Bandwidth and 99% Occupied Bandwidth Measurement	26
4.4.	Maximum Conducted Output Power Measurement	31
4.5.	Power Spectral Density Measurement	35
4.6.	Radiated Emissions Measurement	48
4.7.	Band Edge Emissions Measurement	71
4.8.	Frequency Stability Measurement	79
4.9.	. Antenna Requirements	81
5. LIST	OF MEASURING EQUIPMENTS	82
6. ME/	ASUREMENT UNCERTAINTY	84
APPEN	NDIX A. TEST PHOTOS	A1 ~ A5
APPFN	NOIX R. PADIATED EMISSION COLLOCATION PEPOPT	R1 ~ R3

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR453003AB	Rev. 01	Initial issue of report	Jun. 16, 2014

:Jun. 16, 2014

Issued Date

Certificate No.: CB10306008

1. CERTIFICATE OF COMPLIANCE

Product Name : Wireless cable modem

Brand Name : CISCO

Model No. : DPC3929XXXX (X=0~1 and A~Z or blank)

Applicant : PEGATRON CORPORATION

Test Rule Part(s): 47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on May 07, 2014 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen

SPORTON INTERNATIONAL INC.

Page No. : 1 of 86 Issued Date : Jun. 16, 2014

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E						
Part	Rule Section	Description of Test	Result	Under Limit			
4.1	15.207	AC Power Line Conducted Emissions	Complies	7.49 dB			
4.2	15.407(a)	26dB Spectrum Bandwidth and 99% Occupied	Complies	-			
		Bandwidth					
4.3	15.407(e)	6dB Spectrum Bandwidth and 99% Occupied	Complies	-			
		Bandwidth					
4.4	15.407(a)	Maximum Conducted Output Power	Complies	4.37 dB			
4.5	15.407(a)	Power Spectral Density	Complies	6.91 dB			
4.6	15.407(b)	Radiated Emissions	Complies	0.02 dB			
4.7	15.407(b)	Band Edge Emissions	Complies	0.11 dB			
4.8	15.407(g)	Frequency Stability	Complies	-			
4.9	15.203	Antenna Requirements	Complies	-			

Page No. : 2 of 86 Issued Date : Jun. 16, 2014

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n/ac

Items	Description
Product Type	WLAN (3TX, 3RX)
Radio Type	Intentional Transceiver
Power Type	From Internal Power Supply and Li-ion battery
Modulation	see the below table for IEEE 802.11n/ac
Data Modulation	For 802.11n: OFDM (BPSK / QPSK / 16QAM / 64QAM)
	For 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)
Data Rate (Mbps)	see the below table for IEEE 802.11n/ac
Frequency Range	5150 ~ 5250 MHz / 5725 ~ 5850 MHz
Channel Number	9 for 20MHz bandwidth ; 4 for 40MHz bandwidth
	2 for 80MHz bandwidth
Channel Band Width (99%)	Band 1:
	802.11ac MCS0/Nss1 (VHT20): 17.92 MHz ;
	802.11ac MCS0/Nss1 (VHT40): 36.48 MHz ;
	802.11ac MCS0/Nss1 (VHT80): 76.80 MHz
	Band 4:
	802.11ac MCS0/Nss1 (VHT20): 17.84 MHz ;
	802.11ac MCS0/Nss1 (VHT40): 36.48 MHz ;
	802.11ac MCS0/Nss1 (VHT80): 76.16 MHz
Maximum Conducted Output	Band 1:
Power	802.11ac MCS0/Nss1 (VHT20): 23.77 dBm ;
	802.11ac MCS0/Nss1 (VHT40): 25.63 dBm ;
	802.11ac MCS0/Nss1 (VHT80): 22.75 dBm
	Band 4:
	802.11ac MCS0/Nss1 (VHT20): 23.65 dBm ;
	802.11ac MCS0/Nss1 (VHT40): 23.86 dBm ;
	802.11ac MCS0/Nss1 (VHT80): 19.99 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

IEEE 802.11a

Items	Description
Product Type	WLAN (1TX, 1RX)
Radio Type	Intentional Transceiver
Power Type	From Internal Power Supply and Li-ion battery
Modulation	OFDM for IEEE 802.11a
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	OFDM (6/9/12/18/24/36/48/54)
Frequency Range	5150 ~ 5250 MHz / 5725 ~ 5850 MHz
Channel Number	9
Channel Band Width (99%)	Band 1: 24.16 MHz ; Band 4: 22.00 MHz
Maximum Conducted Output	Band 1: 23.74 dBm ; Band 4: 21.37 dBm
Power	
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Items	Description				
Communication Mode					
Beamforming Function	☐ With beamforming				

Antenna and Band width

Antenna	Single (TX)				Three (TX)	
Band width Mode	20 MHz	40 MHz	80 MHz	20 MHz	40 MHz	80 MHz
IEEE 802.11a	V	Х	Х	Х	Х	Х
IEEE 802.11n	Х	Х	Х	٧	٧	Х
IEEE 802.11ac	Х	Х	Х	٧	٧	٧

Report Format Version: Rev. 01 Page No. : 4 of 86 FCC ID: VUIDPC3929CA Issued Date : Jun. 16, 2014

IEEE 11n/ac Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	3	MC\$ 0-23
802.11n (HT40)	3	MC\$ 0-23
802.11ac (VHT20)	3	MCS 0-9/Nss1-3
802.11ac (VHT40)	3	MCS 0-9/Nss1-3
802.11ac (VHT80)	3	MCS 0-9/Nss1-3

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40.

Note 2: IEEE Std. 802.11ac modulation consists of VHT20, VHT40, VHT80 and VHT160 (VHT: Very High Throughput). Then EUT support VHT20, VHT40 and VHT80.

Note 3: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n, VHT20/VHT40/VHT80: IEEE 802.11ac

3.2. Accessories

Power	Brand Model CISCO P/N		Rating				
Li-ion Battery	Li-ion Battery PEG∧TRON PB020 35-4043873-01 7.2V – 2600mA		7.2V – 2600mAh, 18Wh				
Others							
Power Cable: Non-Shielded, 1.45m							
RJ-45 Cable: Non-Shielded, 1.2m							

Report Format Version: Rev. 01 FCC ID: VUIDPC3929CA

Page No. : 5 of 86 Issued Date : Jun. 16, 2014

3.3. Table for Filed Antenna

A 4	Drand Holder	Brand Holder Model Name P/N Antenna Type		Antonna Timo	Connector	Gain (dBi)	
Ant.	brana noider	Wodel Name	P/N	Antenna Type	Connector	2.4GHz	5GHz
1	HL TECHNOLOGY GROUP LIMITED	DPC-3940CAD and DPC-3929CAD (Q Housing)	290-30035	PCB Antenna	I-PEX	1.94	
2	HL TECHNOLOGY GROUP LIMITED	DPC-3940CAD and DPC-3929CAD (Q Housing)	290-30036	PCB Antenna	I-PEX	4.21	2.50
3	HL TECHNOLOGY GROUP LIMITED	DPC-3940CAD and DPC-3929CAD (Q Housing)	290-30037	PCB Antenna	I-PEX	4.21	2.55
4	HL TECHNOLOGY GROUP LIMITED	DPC-3940CAD and DPC-3929CAD (Q Housing)	290-30038	PCB Antenna	I-PEX	-	2.38

Note: The EUT has four Antennas.

<For 2.4GHz Function>:

For IEEE 802.11n mode (3TX/3RX)

Chain 1, Chain 2 and Chain 3 can be used as transmitting/receiving antenna.

Chain 1, Chain 2 and Chain 3 could transmit/receive simultaneously.

For IEEE 802.11b/g mode (1TX/1RX):

Only Chain 3 can be used as transmitting/receiving antenna.

<For 5GHz Function>:

For IEEE 802.11n/ac mode (3TX/3RX)

Chain 4, Chain 5 and Chain 6 can be used as transmitting/receiving antenna.

Chain 4, Chain 5 and Chain 6 could transmit/receive simultaneously.

For IEEE 802.11a mode (1TX/1RX):

Only Chain 6 can be used as transmitting/receiving antenna.

According to the above antennas, there are three antennas will transit simultaneously (one is Horizontal and the others are Vertical).

3.4. Table for Carrier Frequencies

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 36, 40, 44, 48, 149, 153, 157, 161, 165.

For 40MHz bandwidth systems, use Channel 38, 46, 151, 159.

For 80MHz bandwidth systems, use Channel 42, 155.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	36	5180 MHz	44	5220 MHz
5150~5250 MHz	38	5190 MHz	46	5230 MHz
Band 1	40	5200 MHz	48	5240 MHz
	42	5210 MHz	-	-
	149	5745 MHz	157	5785 MHz
5725~5850 MHz	151	5755 MHz	159	5795 MHz
Band 4	153	5765 MHz	161	5805 MHz
	155	5775 MHz	165	5825 MHz

Page No. : 7 of 86 Issued Date : Jun. 16, 2014

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Мо	de	Data Rate	Channel	Chain
AC Power Conducted Emission	СТХ		-	-	-
Max. Conducted Output Power	11ac VHT20	Band 1&4	MCS0/Nss1	36/40/48/149/	4+5+6
				157/165	
	11ac VHT40	Band 1&4	MCS0/Nss1	38/46/151/159	4+5+6
	11ac VHT80	Band 1&4	MCS0/Nss1	42/155	4+5+6
	11a/BPSK	Band 1&4	6Mbps	36/40/48/149/	6
				157/165	
Power Spectral Density	11ac VHT20	Band 1&4	MCS0/Nss1	36/40/48/149/	4+5+6
				157/165	
	11ac VHT40	Band 1&4	MCS0/Nss1	38/46/151/159	4+5+6
	11ac VHT80	Band 1&4	MCS0/Nss1	42/155	4+5+6
	11a/BPSK	Band 1&4	6Mbps	36/40/48/149/	6
				157/165	
26dB&6dB Spectrum Bandwidth	11ac VHT20	Band 1&4	MCS0/Nss1	36/40/48/149/	4+5+6
99% Occupied Bandwidth				157/165	
Measurement	11ac VHT40	Band 1&4	MCS0/Nss1	38/46/151/159	4+5+6
	11ac VHT80	Band 1&4	MCS0/Nss1	42/155	4+5+6
	11a/BPSK	Band 1&4	6Mbps	36/40/48/149/	6
				157/165	
Radiated Emission Below 1GHz	CTX		-	-	-
Radiated Emission Above 1GHz	11ac VHT20	Band 1&4	MCS0/Nss1	36/40/48/149/	4+5+6
				157/165	
	11ac VHT40	Band 1&4	MCS0/Nss1	38/46/151/159	4+5+6
	11ac VHT80	Band 1&4	MCS0/Nss1	42/155	4+5+6
	11a/BPSK	Band 1&4	6Mbps	36/40/48/149/	6
				157/165	
Band Edge Emission	11ac VHT20	Band 1&4	MCS0/Nss1	36/40/48/149/	4+5+6
				157/165	
	11ac VHT40	Band 1&4	MCS0/Nss1	38/46/151/159	4+5+6
	11ac VHT80	Band 1&4	MCS0/Nss1	42/155	4+5+6

Page No. : 8 of 86 Issued Date : Jun. 16, 2014

	11a/BPSK	Band 1&4	6Mbps	36/40/48/149/	6
				157/165	
Frequency Stability	Un-modulation	n	-	40	4+5+6

Note: VHT20/VHT40 covers HT20 / HT40, due to same modulation.

For Conducted Emission test:

Mode 1. EUT standing with 2.4GHz (CTX)

Mode 2. EUT standing with 5GHz (CTX)

Mode 2 is the worst case, so it was selected to record in this test report.

For Radiated Emission test <Below 1GHz>:

Mode 1. EUT standing with 2.4GHz (CTX)

Mode 2. EUT standing with 5GHz (CTX)

Mode 1 is the worst case, so it was selected to record in this test report.

For Radiated Emission test <Above 1GHz>:

Mode 1. EUT standing (CTX)

For Radiated Emission Co-location Test:

The EUT could be applied with 2.4GHz WLAN function and 5GHz WLAN function; therefore Maximum Permissible Exposure (Please refer to Maximum Permissible Exposure Test Report: FA453003) and Co-location (please refer to Appendix B) tests are added for simultaneously transmit between 2.4GHz WLAN function and 5GHz WLAN function.

3.6. Table for Testing Locations

Test Site Location								
Address:	No.	8, Lane 724, Bo-a	i St., Jhubei City,	Hsinchu County 3	02, Taiwan, R.O.C	C.		
TEL:	886	5-3-656-9065						
FAX:	886	886-3-656-9085						
Test Site N	Ю.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No		
03CH01-0	СВ	SAC	Hsin Chu	262045	IC 4086D	-		
CO01-C	В	Conduction	Hsin Chu	262045	IC 4086D	-		
TH01-CB	3	OVEN Room	Hsin Chu	-	-	-		

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.7. Table for Explanation

The difference for each model is shown as below:

Model Name	Description
DPC3929XXXX	X=0~1 and A~Z or blank

DPC3929CAD was selected as representative model for the test and its data was recorded in this report.

 Report Format Version: Rev. 01
 Page No. : 9 of 86

 FCC ID: VUIDPC3929CA
 Issued Date : Jun. 16, 2014

3.8. Table for Supporting Units

For Test Site No: CO01-CB

Support Unit	Brand	Model	FCC ID
NB	DELL	E6430	DoC

For Test Site No: 03CH01-CB

Support Unit	Brand	Model	FCC ID
NB	DELL	E6220	DoC

For Test Site No: TH01-CB

Support Unit	Brand	Model	FCC ID
NB	DELL	E6430	DoC

3.9. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameters of IEEE 802.11ac MCS0/Nss1 VHT20

Test Software Version	Mtool 2.0.1.0					
Frequency	5180 MHz	5200 MHz	5240 MHz	5745 MHz	5785 MHz	5825 MHz
MCS0/Nss1 VHT20	80	72	76	78	84	78

Power Parameters of IEEE 802.11ac MCS0/Nss1 VHT40

Test Software Version	Mtool 2.0.1.0					
Frequency	5190 MHz	5230 MHz	5755 MHz	5795 MHz		
MCS0/Nss1 VHT40	78	88	68	85		

Power Parameters of IEEE 802.11ac MCS0/Nss1 VHT80

Test Software Version	Mtool 2.0.1.0				
Frequency	5210 MHz	5775 MHz			
MCS0/Nss1 VHT80	77	71			

Power Parameters of IEEE 802.11a

Test Software Version	Mtool 2.0.1.0					
Frequency	5180 MHz	5200 MHz	5240 MHz	5745 MHz	5785 MHz	5825 MHz
802.11a	93	95	100	97	100	100

3.10. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No.
 : 10 of 86

 FCC ID: VUIDPC3929CA
 Issued Date
 : Jun. 16, 2014

3.11. Duty Cycle

IEEE 802.11ac MCS0/Nss1 VHT20

Date: 22.MAY.2014 17:59:58

IEEE 802.11ac MCS0/Nss1 VHT40

Date: 22.MAY.2014 18:01:21

IEEE 802.11ac MCS0/Nss1 VHT80

Date: 22.MAY.2014 18:02:34

IEEE 802.11a

Date: 22.MAY.2014 17:58:56

3.12.Test Configurations

3.12.1. AC Power Line Conduction Emissions and Radiation Emissions Test Test Configuration

Item	Connection	Shielded	Length(m)
1	Power Cable	No	1.45m
2	RJ-45 Cable	No	10m

Page No. : 13 of 86
Issued Date : Jun. 16, 2014

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product that is designed to connect to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.1.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far
 from the conducting wall of the shielding room and at least 80 centimeters from any other
 grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

Report Format Version: Rev. 01 Page No. : 14 of 86

FCC ID: VUIDPC3929CA Issued Date : Jun. 16, 2014

4.1.4. Test Setup Layout

LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

 Report Format Version: Rev. 01
 Page No. : 15 of 86

 FCC ID: VUIDPC3929CA
 Issued Date : Jun. 16, 2014

4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	24°C	Humidity	51%
Test Engineer	Hank Huang	Phase	Line
Configuration	СТХ	Test Mode	Mode 2

			Over	Limit	LISN	Read	Cable		
	Freq	Level	Limit	Line	Factor	Level	Loss	Pol/Phase	Remark
	MHz	dBuV	dВ	dBuV	dB	dBuV	dВ		
1 @	0.15000	58.32	-7.68	66.00	0.08	58.08	0.16	LINE	QP
2	0.15000	42.90	-13.10	56.00	0.08	42.66	0.16	LINE	AVERAGE
3	0.16327	49.02	-16.28	65.30	0.08	48.78	0.16	LINE	QP
4	0.16327	34.78	-20.52	55.30	0.08	34.54	0.16	LINE	AVERAGE
5	0.18152	52.17	-12.24	64.42	0.08	51.93	0.16	LINE	QP
6	0.18152	32.67	-21.74	54.42	0.08	32.43	0.16	LINE	AVERAGE
7	0.22676	44.14	-18.43	62.57	0.08	43.89	0.17	LINE	QP
8	0.22676	30.26	-22.31	52.57	0.08	30.01	0.17	LINE	AVERAGE
9	0.46367	37.03	-19.59	56.63	0.08	36.77	0.18	LINE	QP
10	0.46367	32.74	-13.88	46.63	0.08	32.48	0.18	LINE	AVERAGE
11	18.622	24.33	-25.67	50.00	0.35	23.49	0.49	LINE	AVERAGE
12	18.622	28.78	-31.22	60.00	0.35	27.94	0.49	LINE	QP

Temperature	24°C	Humidity	51%
Test Engineer	Hank Huang	Phase	Neutral
Configuration	СТХ	Test Mode	Mode 2

			0ver	Limit	LISN	Read			
	Freq	Level	Limit	Line	Factor	Level	Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dB	dBuV	ф		-
1 @	0.15000	58.51	-7.49	66.00	0.08	58.27	0.16	NEUTRAL	QP
2	0.15000	41.97	-14.03	56.00	0.08	41.73	0.16	NEUTRAL	AVERAGE
3	0.15733	52.78	-12.82	65.60	0.08	52.54	0.16	NEUTRAL	QP
4	0.15733	30.09	-25.51	55.60	0.08	29.85	0.16	NEUTRAL	AVERAGE
5	0.18152	53.06	-11.35	64.42	0.08	52.82	0.16	NEUTRAL	QP
6	0.18152	36.01	-18.40	54.42	0.08	35.77	0.16	NEUTRAL	AVERAGE
7	0.30348	36.95	-23.20	60.15	0.09	36.69	0.17	NEUTRAL	QP
8	0.30348	26.65	-23.50	50.15	0.09	26.39	0.17	NEUTRAL	AVERAGE
9	0.47110	33.30	-13.19	46.49	0.09	33.03	0.18	NEUTRAL	AVERAGE
10	0.47110	37.16	-19.33	56.49	0.09	36.89	0.18	NEUTRAL	QP
11	19.532	28.23	-21.77	50.00	0.35	27.38	0.51	NEUTRAL	AVERAGE
12	19.532	32.93	-27.07	60.00	0.35	32.08	0.51	NEUTRAL	QP

Note:

Level = Read Level + LISN Factor + Cable Loss.

4.2. 26dB Bandwidth and 99% Occupied Bandwidth Measurement

4.2.1. Limit

No restriction limits.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

26dB Bandwidth				
Spectrum Parameters	Setting			
Attenuation	Auto			
Span Frequency	> 26dB Bandwidth			
RBW	Approximately 1% of the emission bandwidth			
VBW	VBW > RBW			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			
	99% Occupied Bandwidth			
Spectrum Parameters	Setting			
Span	1.5 times to 5.0 times the OBW			
RBW	1 % to 5 % of the OBW			
VBW	≥ 3 x RBW			
Detector	Peak			
Trace	Max Hold			

4.2.3. Test Procedures

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- Measure the maximum width of the emission that is 26 dB down from the peak of the emission.
 Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

4.2.4. Test Deviation

There is no deviation with the original standard.

4.2.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No. : 18 of 86

 FCC ID: VUIDPC3929CA
 Issued Date : Jun. 16, 2014

4.2.6. Test Result of 26dB Bandwidth and 99% Occupied Bandwidth

Temperature	26°C	Humidity	63%
Test Engineer	Wen Chao	Configurations	IEEE 802.11ac

Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	21.92	17.92
40	5200 MHz	20.48	17.92
48	5240 MHz	20.64	17.92

Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
38	5190 MHz	38.40	36.48
46	5230 MHz	59.52	36.48

Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
42	5210 MHz	81.28	76.80

Report Format Version: Rev. 01 Page No. : 19 of 86
FCC ID: VUIDPC3929CA Issued Date : Jun. 16, 2014

Temperature	26°C	Humidity	63%	
Test Engineer	Wen Chao	Configurations	IEEE 802.11a	

Configuration IEEE 802.11a / Chain 6

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	33.28	17.92
40	5200 MHz	34.40	18.40
48	5240 MHz	38.40	24.16

Page No. : 20 of 86 Issued Date : Jun. 16, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6 / 5180 MHz

Date: 22.MAY.2014 17:44:31

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6 / 5200 MHz

Date: 22.MAY.2014 17:45:15

Report Format Version: Rev. 01 FCC ID: VUIDPC3929CA

Page No. : 21 of 86

Issued Date : Jun. 16, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6 / 5240 MHz

Date: 22.MAY.2014 17:45:51

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6 / 5190 MHz

Date: 22.MAY.2014 17:43:07

Report Format Version: Rev. 01
FCC ID: VUIDPC3929CA

Page No. : 22 of 86 Issued Date : Jun. 16, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6 / 5230 MHz

Date: 22.MAY.2014 17:43:49

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 4 + Chain 5 + Chain 6 / 5210 MHz

Date: 22.MAY.2014 17:41:59

Report Format Version: Rev. 01 FCC ID: VUIDPC3929CA

Page No. : 23 of 86 Issued Date : Jun. 16, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 6 / 5180 MHz

Date: 22.MAY.2014 17:50:37

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 6 / 5200 MHz

Date: 22.MAY.2014 17:50:00

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 6 / 5240 MHz

Date: 22.MAY.2014 17:49:19

4.3. 6dB Spectrum Bandwidth and 99% Occupied Bandwidth Measurement

4.3.1. Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 6dB Bandwidth
RBW	100kHz
VBW	≥ 3 x RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.3.3. Test Procedures

For Radiated 6dB Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- 2. Multiple antenna system was performed in accordance with KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 3. Measured the spectrum width with power higher than 6dB below carrier.

4.3.4. Test Deviation

There is no deviation with the original standard.

4.3.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No. : 26 of 86

 FCC ID: VUIDPC3929CA
 Issued Date : Jun. 16, 2014

4.3.6. Test Result of 6dB Spectrum Bandwidth and 99% Occupied Bandwidth

Temperature	26°C	Humidity	63%
Test Engineer	Wen Chao	Configurations	IEEE 802.11n/ac

Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	Frequency 6dB Bandwidth (MHz) 99% Occupied Bandwidth (MHz)		Min. Limit (kHz)	Test Result
149	5745 MHz	16.16	17.76	500	Complies
157	5785 MHz	16.96	17.84	500	Complies
165	5825 MHz	16.40	17.76	500	Complies

Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	6dB Bandwidth (MHz)	Kanawiath		Test Result
151	5755 MHz	35.84	36.48	500	Complies
159	5795 MHz	35.52	36.48	500	Complies

Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
155	5775 MHz	71.68	76.16	500	Complies

Report Format Version: Rev. 01 Page No. : 27 of 86
FCC ID: VUIDPC3929CA Issued Date : Jun. 16, 2014

Temperature	26°C	Humidity	63%
Test Engineer	Wen Chao	Configurations	IEEE 802.11a

Configuration IEEE 802.11a / Chain 6

Channel	Frequency 6dB Bandwidth (MHz) 99% Occupied Bandwidth (MHz)		Min. Limit (kHz)	Test Result	
149	5745 MHz	16.32	19.04	500	Complies
157	5785 MHz	16.32	22.00	500	Complies
165	5825 MHz	16.32	21.68	500	Complies

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 5745 MHz / Chain 4 + Chain 5 + Chain 6

Date: 22.MAY.2014 17:34:06

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 5795MHz / Chain 4 + Chain 5 + Chain 6

Date: 22.MAY.2014 17:37:08

Page No. : 29 of 86 Issued Date : Jun. 16, 2014

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / 5775 MHz / Chain 4 + Chain 5 + Chain 6

Date: 22.MAY.2014 17:37:53

6 dB Bandwidth Plot on Configuration IEEE 802.11a / 5745 MHz / Chain 6

Date: 22.MAY.2014 17:30:46

Page No. : 30 of 86 Issued Date : Jun. 16, 2014

4.4. Maximum Conducted Output Power Measurement

4.4.1. Limit

For the band 5.15~5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

For the band 5.725~5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm). If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Detector	AVERAGE

4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- Test was performed in accordance with KDB789033 D02 General UNII Test Procedures Effective 2014
 DR02-41759 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices
 section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM)
 =>(b).
- 3. Multiple antenna systems was performed in accordance with KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

Report Format Version: Rev. 01 Page No. : 31 of 86
FCC ID: VUIDPC3929CA Issued Date : Jun. 16, 2014

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Page No. : 32 of 86 Issued Date : Jun. 16, 2014

4.4.7. Test Result of Maximum Conducted Output Power

Temperature	26°C	Humidity	63%
Test Engineer	Wen Chao	Configurations	IEEE 802.11ac
Test Date	May 22, 2014		

Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6

Channel Frequency		Conducted Power (dBm)				Max. Limit	Result
Charlie Hequ	Frequency	Chain 4	Chain 5	Chain 6	Total	(dBm)	Kesuli
36	5180 MHz	19.19	18.62	19.15	23.77	30.00	Complies
40	5200 MHz	17.27	16.75	17.07	21.81	30.00	Complies
48	5240 MHz	18.31	17.65	17.91	22.74	30.00	Complies
149	5745 MHz	19.06	16.67	16.47	22.34	30.00	Complies
157	5785 MHz	20.11	18.16	18.06	23.65	30.00	Complies
165	5825 MHz	18.78	16.48	16.38	22.13	30.00	Complies

Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	Conducted Power (dBm)				Max. Limit	Result
		Chain 4	Chain 5	Chain 6	Total	(dBm)	Resuli
38	5190 MHz	18.68	18.12	18.38	23.17	30.00	Complies
46	5230 MHz	21.23	20.71	20.62	25.63	30.00	Complies
151	5755 MHz	16.13	14.16	14.44	19.77	30.00	Complies
159	5795 MHz	20.53	18.14	18.12	23.86	30.00	Complies

Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	Conducted Power (dBm)				Max. Limit	Result
		Chain 4	Chain 5	Chain 6	Total	(dBm)	Kesuli
42	5210 MHz	17.96	17.86	18.12	22.75	30.00	Complies
155	5775 MHz	16.35	14.45	14.58	19.99	30.00	Complies

Report Format Version: Rev. 01 Page No. : 33 of 86 FCC ID: VUIDPC3929CA Issued Date : Jun. 16, 2014

Temperature	26 ℃	Humidity	63%	
Test Engineer	Wen Chao	Configurations	IEEE 802.11a	
Test Date	May 22, 2014			

Configuration IEEE 802.11a / Chain 6

Channel	Fraguenov	Conducted Power	Max. Limit	Dogult
Channel	Frequency	(dBm)	(dBm)	Result
36	5180 MHz	22.32	30.00	Complies
40	5200 MHz	22.68	30.00	Complies
48	5240 MHz	23.74	30.00	Complies
149	5745 MHz	20.76	30.00	Complies
157	5785 MHz	21.15	30.00	Complies
165	5825 MHz	21.37	30.00	Complies

Page No. : 34 of 86 Issued Date : Jun. 16, 2014

4.5. Power Spectral Density Measurement

4.5.1. Limit

The power spectral density is defined as the highest level of power in dBm per MHz generated by the transmitter within the power envelope. The following table is power spectral density limits and decrease power density limit rule refer to section 4.4.1.

Frequency Range	Power Spectral Density limit		
5.15~5.25 GHz	17 dBm/MHz		
5.725~5.85 GHz	30 dBm/500kHz		

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

For 5.15~5.25 GHz

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	1000 kHz
VBW	3000 kHz
Detector	RMS
Trace	AVERAGE
Sweep Time	Auto
Trace Average	100 times

For 5.725~5.85 GHz

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Set the span to 1.5 times the DTS channel bandwidth.
RBW	RBW ≥ 1/T
VBW	VBW ≥ 3 RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto couple

Note: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add $10\log(500kHz/RBW)$ to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

4.5.3. Test Procedures

For 5.15~5.25 GHz

- 1. The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.
- Test was performed in accordance with KDB789033 D02 General UNII Test Procedures Effective 2014 DR02-41759 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD).
- 3. Multiple antenna systems was performed in accordance KDB 662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the outputs.
- 4. When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way.

For 5.725~5.85 GHz

- Test procedures refer KDB 662911 D01 v02r01 section In-Band Power Spectral Density (PSD)
 Measurements option (b) Measure and sum spectral maximal across the outputs.
- Use this procedure when the maximum conducted output power in the fundamental emission is
 used to demonstrate compliance. The EUT must be configured to transmit continuously at full power
 over the measurement duration.
- 3. Ensure that the number of measurement points in the sweep ≥ 2 x span/RBW (use of a greater number of measurement points than this minimum requirement is recommended).
- 4. Use the peak marker function to determine the maximum level in any 3 kHz band segment within the fundamental EBW.
- The measured result of PSD level must add 10log(500kHz/RBW) and the final result should ≤ 30 dBm.

 Report Format Version: Rev. 01
 Page No. : 36 of 86

 FCC ID: VUIDPC3929CA
 Issued Date : Jun. 16, 2014

4.5.4. Test Setup Layout

For 5.15~5.25 GHz

For 5.725~5.85 GHz

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Page No. : 37 of 86 Issued Date : Jun. 16, 2014

4.5.7. Test Result of Power Spectral Density

Temperature	26°C	Humidity	63%	
Test Engineer	Wen Chao	Configurations	IEEE 802.11ac	
Test Data	May 22, 2014			

Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6

Channel	Frequency Total Power Density (dBm/MHz)		Max. Limit (dBm/MHz)	Result
36	5180 MHz	10.09	17.00	Complies
40	5200 MHz	7.93	17.00	Complies
48	5240 MHz	9.16	17.00	Complies

Note:
$$Directional Gain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{sax}} \left\{ \sum_{k=1}^{N_{sax}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 5.49 dBi < 6 dBi, So Band 1 Limit = 17 dBm/MHz$$

Channel	Frequency	Power Density (dBm/3kHz)			BWCF factor	Total Power Density	Power Density Limit	Result	
		Chain 4	Chain 5	Chain 6	Total	3kHz to 500kHz	dBm/500kHz		
149	5745 MHz	-7.07	-9.04	-7.14	-2.89	22.22	19.33	30.00	Complies
157	5785 MHz	-5.39	-6.60	-4.78	-0.75	22.22	21.47	30.00	Complies
165	5825 MHz	-5.20	-9.12	-7.03	-2.06	22.22	20.16	30.00	Complies

Note: $Directional Gain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{ass}} \left\{ \sum_{k=1}^{N_{ass}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 5.49 dBi < 6 dBi, So Power Density Limit = 30 dBm/500 kHz$

Configuration IEEE 802.11ac MCSO/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result	
38	5190 MHz	6.58	17.00	Complies	
46	5230 MHz	9.00	17.00	Complies	

Note:
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{ext}} \left\{ \sum_{k=1}^{N_{ext}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 5.49 dBi < 6 dBi, So Band 1 Limit = 17 dBm/MHz$$

Channel	Frequency	Power Density (dBm/3kHz)				BWCF factor	Total Power Density	Result	
		Chain 4	Chain 5	Chain 6	Total	3kHz to 500kHz	dBm/500kHz		
151	5755 MHz	-12.24	-14.06	-12.30	-8.02	22.22	14.20	30.00	Complies
159	5795 MHz	-7.45	-9.19	-7.92	-3.36	22.22	18.86	30.00	Complies

Note: $Directional Gain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{ext}} \left\{ \sum_{k=1}^{N_{ext}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 5.49 dBi < 6 dBi, So Power Density Limit = 30 dBm/500 kHz$

Report Format Version: Rev. 01 Page No. : 38 of 86 FCC ID: VUIDPC3929CA Issued Date : Jun. 16, 2014

Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	Frequency Total Power Density (dBm/MHz)		Result	
42	5210 MHz	2.80	17.00	Complies	

Note:
$$Directional Gain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{sN}} \left\{ \sum_{k=1}^{N_{sN}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 5.49 dBi < 6 dBi, So Band 1 Limit = 17 dBm/MHz$$

Channel	Frequency	Powe	Power Density (dBm/3kHz)			BWCF factor	Total Power Density	Power Density Limit	Result
		Chain 4	Chain 5	Chain 6	Total	3kHz to 500kHz	dBm/s	500kHz	
155	5775 MHz	-14.27	-15.23	-11.74	-8.72	22.22	13.50	30.00	Complies

Note:
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{ext}} g_{j,k}}{N_{ANT}} \right]^2 = 5.49 dBi < 6 dBi, So Power Density Limit = 30 dBm/500 kHz$$

: 39 of 86

Issued Date : Jun. 16, 2014

Page No.

Temperature	26°C	Humidity	63%
Test Engineer	Wen Chao	Configurations	IEEE 802.11a
Test Data	May 22, 2014		

Configuration IEEE 802.11a / Chain 6

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	8.29	17.00	Complies
40	5200 MHz	8.43	17.00	Complies
48	5240 MHz	9.98	17.00	Complies

Note:
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{sN}} \left\{ \sum_{k=1}^{N_{sN}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 5.49 dBi < 6 dBi, So Band 1 Limit = 17 dBm/MHz$$

Channel	Frequency	Power Density (dBm/3kHz)	BWCF factor	Total Power Density	Power Density Limit	Result
		(45114,014,12)	3kHz to 500kHz	dBm/500kHz		
149	5745 MHz	-4.17	22.22	18.05	30.00	Complies
157	5785 MHz	-2.11	22.22	20.11	30.00	Complies
165	5825 MHz	-4.11	22.22	18.11	30.00	Complies

Note:
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{ext}} \left\{ \sum_{k=1}^{N_{ext}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 5.49 dBi < 6 dBi, So Power Density Limit = 30 dBm/500 kHz$$

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 + Chain 5 + Chain 6 / 5180 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 4 / 5785 MHz

Date: 22.MAY.2014 16:57:34

Report Format Version: Rev. 01 Page No. : 41 of 86 FCC ID: VUIDPC3929CA Issued Date : Jun. 16, 2014

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 5 / 5785 MHz

Date: 22.MAY.2014 16:59:09

Power Density Plot on Configuration IEEE 802.11ac MCSO/Nss1 VHT20 / Chain 6 / 5785 MHz

Date: 22.MAY.2014 17:00:19

Page No. : 42 of 86 Issued Date : Jun. 16, 2014

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 + Chain 5 + Chain 6 / 5230 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 4 / 5795 MHz

Date: 22.MAY.2014 17:11:39

Report Format Version: Rev. 01 Page No. : 43 of 86
FCC ID: VUIDPC3929CA Issued Date : Jun. 16, 2014

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 5 / 5795 MHz

Date: 22.MAY.2014 17:10:27

Power Density Plot on Configuration IEEE 802.11ac MCSO/Nss1 VHT40 / Chain 6 / 5795 MHz

Date: 22.MAY.2014 17:08:30

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 4 + Chain 5 + Chain 6 / 5210 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 4 / 5775 MHz

Date: 22.MAY.2014 17:13:13

Report Format Version: Rev. 01 Page No. : 45 of 86
FCC ID: VUIDPC3929CA Issued Date : Jun. 16, 2014

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 5 / 5775 MHz

Date: 22.MAY.2014 17:14:51

Power Density Plot on Configuration IEEE 802.11ac MCSO/Nss1 VHT80 / Chain 6 / 5775 MHz

Date: 22.MAY.2014 17:15:53

Power Density Plot on Configuration IEEE 802.11a / Chain 6 / 5240 MHz

Power Density Plot on Configuration IEEE 802.11a / Chain 6 / 5785 MHz

Date: 22.MAY.2014 16:52:09

4.6. Radiated Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance		
(MHz)	(micorvolts/meter)	(meters)		
0.009~0.490	2400/F(kHz)	300		
0.490~1.705	24000/F(kHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start \sim Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

Report Format Version: Rev. 01 Page No. : 48 of 86
FCC ID: VUIDPC3929CA Issued Date : Jun. 16, 2014

4.6.3. Test Procedures

Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

4.6.4. Test Deviation

There is no deviation with the original standard.

4.6.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 49 of 86 FCC ID: VUIDPC3929CA Issued Date : Jun. 16, 2014

4.6.6. Results of Radiated Emissions (9kHz~30MHz)

Temperature	23°C	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	СТХ
Test Date	Jun. 03, 2014	Test Mode	Mode 1

Freq.	Level	Over Limit	Limit Line	Remark	
(MHz)	(dBuV)	(dB)	(dBuV)		
-	-	-	-	See Note	

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

 $\label{eq:limits} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$

Report Format Version: Rev. 01 Page No. : 50 of 86 FCC ID: VUIDPC3929CA Issued Date : Jun. 16, 2014

4.6.7. Results of Radiated Emissions (30MHz~1GHz)

Temperature	23°C	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	CTX
Test Mode	Mode 1		

	Freq	Level	Limit Line	Over Limit		CableA Loss				T/Pos		Pol/Phase
-	MHz	$\overline{d B u V / m}$	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4 5 6	67.83 104.69 175.50 197.81 375.32 624.61	38.94 37.93 37.75	43.50 43.50	-5.42 -4.56 -5.57 -5.75 -6.68 -6.91	53.18 53.27	1.53 1.98 2.08 2.89	12.00 10.08 10.28 15.91		Peak Peak Peak Peak	0 0 0 0	100 100 100 100	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line	Over Limit	Read Level	CableA Loss				T/Pos	A/Pos	Pol/Phase
	MHz	$\overline{d \mathtt{BuV/m}}$	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4 5 6	31.94 68.80 97.90 147.37 375.32 812.79	37.59 38.30 40.40 37.14 40.71 38.82	40.00 40.00 43.50 43.50 46.00 46.00	-3.10	46.00 58.17 55.77 51.43 49.17 40.43	0.87 1.26 1.48 1.78 2.89 4.38	10.98 11.45 15.91	27.94 27.83 27.52 27.26	QP Peak Peak Peak	2 17 0 0 0 0	141 400 400 400	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page No. : 52 of 86 Issued Date : Jun. 16, 2014

4.6.8. Results for Radiated Emissions (1GHz~40GHz)

Temperature	23°C	Humidity	58%
Test Engineer	Vannath Uuana	Configurations	IEEE 802.11ac MC\$0/Nss1 VHT20 CH 36 /
Test Engineer	Kenneth Huang	uang Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	May 13, 2014		

	Freq	Level	Limit Line	0∨er Limit	Read Level		Antenna Factor		Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	15538.72	57.46	74.00	-16.54	44.16	10.77	38.12	35.59	Peak	172	27	HORIZONTAL
2	15539.28	43.93	54.00	-10.07	30.63	10.77	38.12	35.59	Average	172	27	HORIZONTAL
Vertic	cal											
			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB			deg	
1	15538.60	43.43	54.00	-10.57	30.13	10.77	38.12	35.59	Average	172	220	VERTICAL
2	15539.16	57.90	74.00	-16.10	44.60	10.77	38.12	35.59	Peak	172	220	VERTICAL

Temperature	23°C	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 40 /
lesi Engineei	Refillelli Hudilg	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	May 13, 2014		

Horizontal

	Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	15590.84	43.45	54.00	-10.55	30.21	10.78	38.04	35.58	Average	165	352	HORIZONTAL
2	15602.52	56.25	74.00	-17.75	43.01	10.78	38.04	35.58	Peak	165	352	HORIZONTAL

Vertical

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu\√/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	15600.00	56.11	74.00	-17.89	42.87	10.78	38.04	35.58	Peak	183	64	VERTICAL
2	15600.24	43.39	54.00	-10.61	30.15	10.78	38.04	35.58	Average	183	64	VERTICAL

Temperature	23°C	Humidity	58%		
Test Engineer	Vannath Huana	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 48 /		
Test Engineer	Kenneth Huang	Configurations	Chain 4 + Chain 5 + Chain 6		
Test Date	May 13, 2014				

	Freq	Level	Limit Line	Over Limit			Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		Cm	deg	
1	15715.16	43.23	54.00	-10.77	30.15	10.79	37.85	35.56	Average	182	116	HORIZONTAL
2	15729.32	55.97	74.00	-18.03	42.91	10.79	37.83	35.56	Peak	182	116	HORIZONTAL
Vertic	cal											
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	15718.92	43.29	54.00	-10.71	30.21	10.79	37.85	35.56	Average	133	347	VERTICAL
2	15725.80	55.82	74.00	-18.18	42.76	10.79	37.83	35.56	Peak	133	347	VERTICAL

Temperature	23℃	Humidity	58%		
Test Engineer	Vannath Huana	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 149 /		
Test Engineer	Kenneth Huang	Configurations	Chain 4 + Chain 5 + Chain 6		
Test Date	May 13, 2014				

	Freq	Level	Limit Line	0∨er Limit	Read Level			Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu\//m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	11489.48	55.40	74.00	-18.60	41.74	9.24	39.50	35.08	Peak	154	307	HORIZONTAL
2	11489.92	44.23	54.00	-9.77	30.57	9.24	39.50	35.08	Average	154	307	HORIZONTAL
Vertic	cal											
			Limit	0∨er	Read	Cable	antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu∨	dB	dB/m	dB			deg	
1	11489.56	50.29	54.00	-3.71	36.63	9.24	39.50	35.08	Average	205	266	VERTICAL
2	11489.68	65.32	74.00	-8.68	51.66	9.24	39.50	35.08	Peak	205	266	VERTICAL

Temperature	23°C	Humidity	58%		
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MC\$0/Nss1 VHT20 CH 157 /		
lesi Engineei	kennein naang	Configurations	Chain 4 + Chain 5 + Chain 6		
Test Date	May 13, 2014				

			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		- Cm	deg	
1	11571.88	45.84	54.00	-8.16	32.19	9.26	39.47	35.08	Average	108	320	HORIZONTAL
2	11576.00	61.12	74.00	-12.88	47.47	9.26	39.47	35.08	Peak	108	320	HORIZONTAL
Vertic	cal											
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	11571.76	53.63	54.00	-0.37	39.99	9.26	39.47	35.09	Average	186	266	VERTICAL
2	11576.00	68.04	74.00	-5.96	54.39	9.26	39.47	35.08	Peak	186	266	VERTICAL

Temperature	23℃	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 165 /
1001 Engineer	Refilem flaging		Chain 4 + Chain 5 + Chain 6
Test Date	May 13, 2014		

	Freq	Level	Limit Line	0∨er Limit	Read Level		Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu\√m	dB	dBu√	dB	dB/m	dB			deg	
1	11647.08	46.85	54.00	-7.15	33.20	9.28	39.44	35.07	Average	111	326	HORIZONTAL
2	11647.08	60.91	74.00	-13.09	47.26	9.28	39.44	35.07	Peak	111	326	HORIZONTAL
Verti	ical											
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu∨	dB	dB/m	dB			deg	
1	11651.68	53.98	54.00	-0.02	40.33	9.28	39.44	35.07	Average	209	280	VERTICAL
2	11655.84	69.22	74.00	-4.78	55.57	9.28	39.44	35.07	Peak	209	280	VERTICAL

Temperature	23 °C	Humidity	58%		
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 38 /		
lesi Engineei	kerinein nuang	Configurations	Chain 4 + Chain 5 + Chain 6		
Test Date	May 13, 2014				

Horizontal

	Freq	Level	Limit Line	0∨er Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu∨	dB	dB/m	dB		Cm	deg	
1 2	15561.40 15563.52								_	100 100		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level		0∨er Limit						A/Pos	T/Pos Pol/Pha	se
	MHz	dBu∀/m	dBu\√/m	dB	dBu∨	dB	dB/m	dB			deg	
1	15564.44	43.66	54.00	-10.34	30.37	10.78	38.09	35.58	Average	143	102 VERTICA	L
2	15574.80	57.32	74.00	-16.68	44.05	10.78	38.07	35.58	Peak	143	102 VERTICA	d .

Temperature	23°C	Humidity	58%		
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 46		
lour Engineer	Refillent fluding	Comigaranorio	Chain 4 + Chain 5 + Chain 6		
Test Date	May 13, 2014				

	Freq	Level	Limit Line	0∨er Limit			Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		- Cm	deg	
1 2	15685.44 15686.60			-11.27 -18.39					Average	100 100		HORIZONTAL HORIZONTAL
Vertic		55.61	74.00	-10.59	42.4/	10.79	57.91	33.30	reak	100	101	HORIZOHTAL
	Freq	Level	Limit Line	0∨er Limit			Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB		- Cm	deg	
1 2	15683.16 15696.96			-11.27 -18.39					Average Peak	8955 100		VERTICAL VERTICAL

Temperature	23℃	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 151 / Chain 4 + Chain 5 + Chain 6
Test Date	May 13, 2014		

			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	11514.60	42.06	54.00	-11.94	28.41	9.25	39.50	35.10	Average	188	277	HORIZONTAL
2	11519.36	54.08	74.00	-19.92	40.44	9.25	39.49	35.10	Peak	188	277	HORIZONTAL
Vertic	cal											
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB			deg	
1	11506.28	59.86	74.00	-14.14	46.21	9.25	39.50	35.10	Peak	202	258	VERTICAL
2	11511.80	45.65	54.00	-8.35	32.00	9.25	39.50	35.10	Average	202	258	VERTICAL

Temperature	23°C	Humidity	58%		
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 159 /		
lesi Engineei	kennein naang	Cornigurations	Chain 4 + Chain 5 + Chain 6		
Test Date	May 13, 2014				

	Freq	Level	Limit Line	0∨er Limit	Read Level			Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu\//m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	11586.68	56.91	74.00	-17.09	43.25	9.27	39.47	35.08	Peak	119	328	HORIZONTAL
2	11587.16	45.99	54.00	-8.01	32.33	9.27	39.47	35.08	Average	119	328	HORIZONTAL
Vertic	cal											
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu\//m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	11591.64	66.64	74.00	-7.36	52.98	9.27	39.47	35.08	Peak	204	287	VERTICAL
2	11591.88	51.88	54.00	-2.12	38.22	9.27	39.47	35.08	Average	204	287	VERTICAL

Temperature	23°C	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MC\$0/Nss1 VHT80 CH 42 / Chain 4 + Chain 5 + Chain 6
Test Date	May 13, 2014		

Horizontal

	Freq	Level	Limit Line		Read Level					A/Pos		Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu√	dB	dB/m	dB		- Cm	deg	
1	15637.28	55.99	74.00	-18.01	42.79	10.78	37.99	35.57	Peak	100	284	HORIZONTAL
2	15639.52	43.10	54.00	-10.90	29.90	10.78	37.99	35.57	Average	164	284	HORIZONTAL

Vertical

	Freq	Level	Limit Line	0∨er Limit					A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	 Cm	deg
1	15624.44 15624.92								 100	40 VERTICAL

Page No. : 63 of 86 Issued Date : Jun. 16, 2014

Temperature	23℃	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80 CH 155 /
lesi Engineei	kennein naang	Cornigulations	Chain 4 + Chain 5 + Chain 6
Test Date	May 13, 2014		

			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu√/m	dBu\√/m	dB	dBu∀	dB	dB/m	dB			deg	
1	11549.28	54.97	74.00	-19.03	41.31	9.26	39.49	35.09	Peak	153	283	HORIZONTAL
2	11559.36	42.38	54.00	-11.62	28.73	9.26	39.48	35.09	Average	153	283	HORIZONTAL
Vertic	cal											
			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	11556.88	47.11	54.00	-6.89	33.46	9.26	39.48	35.09	Average	198	270	VERTICAL
2	11566.32	60.62	74.00	-13.38	46.97	9.26	39.48	35.09	Peak	198	270	VERTICAL

Page No.

: 65 of 86

Issued Date : Jun. 16, 2014

Temperature	23°C	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11a CH 36 / Chain 6
Test Date	May 13, 2014		

	Freq	Level	Limit Line	0∨er Limit			Antenna Factor		Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	15538.48	44.56	54.00	-9.44	31.26	10.77	38.12	35.59	Average	187	326	HORIZONTAL
2	15542.04	59.52	74.00	-14.48	46.22	10.77	38.12	35.59	Peak	187	326	HORIZONTAL
Vertic	cal											
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	15538.44	44.41	54.00	-9.59	31.11	10.77	38.12	35.59	Average	167	299	VERTICAL
2	15541.92	59.38	74.00	-14.62	46.08	10.77	38.12	35.59	Peak	167	299	VERTICAL

Temperature	23°C	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11a CH 40 / Chain 6
Test Date	May 13, 2014		

Horizontal

	Freq	Level	Limit Line	0ver Limit	Read Level		Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu\//m	dB	dBu∀	dB	dB/m	dB		- Cm	deg	
1	15600.96	57.86		-16.14		10.78				178		HORIZONTAL
2	15601.52	43.58	54.00	-10.42	30.34	10.78	38.04	35.58	Average	178	284	HORIZONTAL
Vertic	cal											
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	15598.84	46.57	54.00	-7.43	33.33	10.78	38.04	35.58	Average	212	309	VERTICAL
2	15601.60	62.31	74.00	-11.69	49.07	10.78	38.04	35.58	Peak	212	309	VERTICAL

Page No. : 66 of 86 Issued Date : Jun. 16, 2014

Temperature	23°C	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11a CH 48 / Chain 6
Test Date	May 13, 2014		

			Limit	0ver			Antenna			A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu√/m	dBu\//m	dB	dBu∀	dB	dB/m	dB			deg	
1	15722.56	46.73	54.00	-7.27	33.65	10.79	37.85	35.56	Average	45	299	HORIZONTAL
2	15723.40	62.18	74.00	-11.82	49.10	10.79	37.85	35.56	Peak	171	299	HORIZONTAL
Vertic	cal											
			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
,	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB			deg	
1	15719.76	47.02	54.00	-6.98	33.94	10.79	37.85	35.56	Average	225	114	VERTICAL
2	15723.16	61.99	74.00	-12.01	48.91	10.79	37.85	35.56	Peak	225	114	VERTICAL

Temperature	23°C	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11a CH 149 / Chain 6
Test Date	May 13, 2014		

	Freq	Level	Limit Line	0ver Limit				Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu\//m	dB	dBu∀	dB	dB/m	dB			deg	
1	11483.60	54.01		-19.99	40.35	9.24	39.50	35.08	Peak	216	27	
2	11493.08	41.63	54.00	-12.37	27.97	9.24	39.50	35.08	Average	216	27	HORIZONTAL
Vertic	cal											
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	11488.84	61.01	74.00	-12.99	47.35	9.24	39.50	35.08	Peak	193	269	VERTICAL
2	11491.92	46.91	54.00	-7.09	33.25	9.24	39.50	35.08	Average	193	269	VERTICAL

Temperature	23°C	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11a CH 157 / Chain 6
Test Date	May 13, 2014		

			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu\//m	dB	dBu∀	dB	dB/m	dB			deg	
1	11567.52	55.79	74.00	-18.21	42.15	9.26	39.47	35.09	Peak	208	26	HORIZONTAL
2	11567.56	42.93	54.00	-11.07	29.29	9.26	39.47	35.09	Average	208	26	HORIZONTAL
Vertic	cal											
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu√/m	dBu\√/m	dB	dBu∀	dB	dB/m	dB			deg	
1	11570.52	61.26	74.00	-12.74	47.62	9.26	39.47	35.09	Peak	167	275	VERTICAL
2	11572.00	48.39	54.00	-5.61	34.74	9.26	39.47	35.08	Average	167	275	VERTICAL

Temperature	23°C	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11a CH 165 / Chain 6
Test Date	May 13, 2014		

Horizontal

	5	1	Limit	0ver				Preamp		A/Pos	T/Pos	Del (Dhase
	rreq	rever	Line	Limit	rever	Loss	ractor	ractor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB			deg	
1	11654.32	43.76	54.00	-10.24	30.11	9.28	39.44	35.07	Average	202	251	HORIZONTAL
2	11658.92	56.71	74.00	-17.29	43.06	9.28	39.44	35.07	Peak	202	251	HORIZONTAL
Vertic	cal											
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	11645.96	49.35	54.00	-4.65	35.70	9.28	39.44	35.07	Average	173	268	VERTICAL
2	11650.40	61.90	74.00	-12.10	48.25	9.28	39.44	35.07	Peak	173	268	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page No. : 70 of 86

Issued Date : Jun. 16, 2014

4.7. Band Edge Emissions Measurement

4.7.1. Limit

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance				
(MHz)	(micorvolts/meter)	(meters)				
0.009~0.490	2400/F(kHz)	300				
0.490~1.705	24000/F(kHz)	30				
1.705~30.0	30	30				
30~88	100	3				
88~216	150	3				
216~960	200	3				
Above 960	500	3				

4.7.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for Peak

4.7.3. Test Procedures

1. The test procedure is the same as section 4.6.3, only the frequency range investigated is limited to 100MHz around band edges.

4.7.4. Test Deviation

There is no deviation with the original standard.

4.7.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No. : 71 of 86

 FCC ID: VUIDPC3929CA
 Issued Date : Jun. 16, 2014

4.7.6. Test Result of Band Edge and Fundamental Emissions

Temperature	23°C	Humidity	58%		
Tost Engineer	Vonnoth Hugna	Configurations	IEEE 802.11ac MC\$0/Nss1 VHT20 CH 36, 40,		
Test Engineer	Kenneth Huang	Configurations	48 / Chain 4 + Chain 5 + Chain 6		
Test Date	May 13, 2014				

Channel 36

			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu√/m	dBu\//m	dB	dBu√	dB	dB/m	dB			deg	
1	5019.00	53.54	54.00	-0.46	48.97	6.04	33.73	35.20	Average	151	164	HORIZONTAL
2	5024.00	64.00	74.00	-10.00	59.42	6.05	33.73	35.20	Peak	151	164	HORIZONTAL
3	5179.00	101.25			96.22	6.15	34.08	35.20	Average	151	164	HORIZONTAL
4	5184.00	112.46			107.43	6.15	34.08	35.20	Peak	151	164	HORIZONTAL
5	5350.00	50.54	54.00	-3.46	45.06	6.26	34.42	35.20	Average	151	164	HORIZONTAL
6	5350.00	60.08	74.00	-13.92	54.60	6.26	34.42	35.20	Peak	151	164	HORIZONTAL

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu\√/m	dBu\//m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	5119.00	50.84	54.00	-3.16	45.99	6.11	33.94	35.20	Average	166	168	HORIZONTAL
2	5119.00	61.05	74.00	-12.95	56.20	6.11	33.94	35.20	Peak	166	168	HORIZONTAL
3	5194.00	110.84			105.80	6.16	34.08	35.20	Peak	166	168	HORIZONTAL
4	5199.00	100.02			94.95	6.16	34.11	35.20	Average	166	168	HORIZONTAL
5	5354.00	64.65	74.00	-9.35	59.17	6.26	34.42	35.20	Peak	166	168	HORIZONTAL
6	5359.00	53.52	54.00	-0.48	48.04	6.26	34.42	35.20	Average	166	168	HORIZONTAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

		Freq	Level	Limit Line		Read Level			Preamp Factor		A/Pos	T/Pos	Pol/Phase
	-	MHz	dBu\√/m	dBu\√/m	dB	dBu√	dB	dB/m	dB		cm	deg	
	1	5020.00	52.20	54.00	-1.80	47.63	6.04	33.73	35.20	Average	170	164	HORIZONTAL
	2	5021.00	62.92	74.00	-11.08	58.34	6.05	33.73	35.20	Peak	170	164	HORIZONTAL
	3	5239.00	100.00			94.84	6.18	34.18	35.20	Average	170	164	HORIZONTAL
	4	5239.00	111.04			105.88	6.18	34.18	35.20	Peak	170	164	HORIZONTAL
Г	5	5399.00	53.89	54.00	-0.11	48.27	6.29	34.53	35.20	Average	170	164	HORIZONTAL
_	6	5399,00	65.15	74.00	-8.85	59.53	6.29	34.53	35.20	Peak	170	164	HORIZONTAL

Item 3, 4 are the fundamental frequency at 5240 MHz.

Temperature	23°C	Humidity	58%		
Tost Engineer	Vonnoth Hugna	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 149,		
Test Engineer	Kenneth Huang	Configurations	157, 165 / Chain 4 + Chain 5 + Chain 6		
Test Date	May 13, 2014				

	Freq	Level	Limit Line	0ver Limit	Read Level		Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu\//m	dBu\//m	dB	dBu∿	dB	dB/m	dB		cm	deg	
1	5707.00	61.39	68.20	-6.81	55.28	6.44	34.87	35.20	Peak	233	91	HORIZONTAL
2	5725.00	77.62	78.20	-0.58	71.48	6.45	34.89	35.20	Peak	233	91	HORIZONTAL
3	5742.00	98.11			91.96	6.45	34.90	35.20	Average	233	91	HORIZONTAL
4	5742.00	108.22			102.07	6.45	34.90	35.20	Peak	233	91	HORIZONTAL
5	5860.00	57.75	68.20	-10.45	51.46	6.50	34.99	35.20	Peak	233	91	HORIZONTAL
6	5908.00	65.04	68.20	-3.16	58.70	6.52	35.02	35.20	Peak	233	91	HORIZONTAL

Item 3, 4 are the fundamental frequency at 5745 MHz.

Channel 157

	Freq	Level	Limit Line	0ver Limit	Read Level	CableA Loss				A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu\//m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	5708.00	61.97	68.20	-6.23	55.86	6.44	34.87	35.20	Peak	258	310	HORIZONTAL
2	5722.00	58.67	78.20	-19.53	52.55	6.45	34.87	35.20	Peak	258	310	HORIZONTAL
3	5784.00	99.59			93.40	6.46	34.93	35.20	Average	258	310	HORIZONTAL
4	5789.00	111.21			105.01	6.47	34.93	35.20	Peak	258	310	HORIZONTAL
5	5859.00	64.77	78.20	-13.43	58.48	6.50	34.99	35.20	Peak	258	310	HORIZONTAL
6	5944.00	65.96	68.20	-2.24	59.58	6.53	35.05	35.20	Peak	258	310	HORIZONTAL

Item 3, 4 are the fundamental frequency at 5785 MHz.

			Limit	0∨er	Read	CableA	ntenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu\√/m	dBu\√/m	dB	dBu∿	dB	dB/m	dB		- Cm	deg	
1	5664.00	62.53	68.20	-5.67	56.48	6.42	34.83	35.20	Peak	233	88	HORIZONTAL
2	5722.00	55.37	78.20	-22.83	49.25	6.45	34.87	35.20	Peak	233	88	HORIZONTAL
3	5817.00	110.32			104.09	6.48	34.95	35.20	Peak	233	88	HORIZONTAL
4	5822.00	99.00			92.77	6.48	34.95	35.20	Average	233	88	HORIZONTAL
5	5860.00	66.95	68.20	-1.25	60.66	6.50	34.99	35.20	Peak	233	88	HORIZONTAL
6	5907.00	65.72	68.20	-2.48	59.38	6.52	35.02	35.20	Peak	233	88	HORIZONTAL

Item 3, 4 are the fundamental frequency at 5825 MHz.

Temperature	23°C	Humidity	58%
Test Engineer	Engineer Kenneth Huang Configurations		IEEE 802.11ac MCS0/Nss1 VHT40
lesi Engineer	kennein nuang	Configurations	CH 38, 46 / Chain 4 + Chain 5 + Chain 6
Test Date	May 13, 2014		

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu\√m	dBu\√/m	dB	dBu√	dB	dB/m	dB			deg	
1	5149.00	53.69	54.00	-0.31	48.75	6.13	34.01	35.20	Average	157	160	HORIZONTAL
2	5149.00	71.80	74.00	-2.20	66.86	6.13	34.01	35.20	Peak	157	160	HORIZONTAL
3	5184.00	109.88			104.85	6.15	34.08	35.20	Peak	157	160	HORIZONTAL
4	5194.00	98.27			93.23	6.16	34.08	35.20	Average	157	160	HORIZONTAL
5	5354.00	53.19	54.00	-0.81	47.71	6.26	34.42	35.20	Average	157	160	HORIZONTAL
6	5364.00	62.94	74.00	-11.06	57.45	6.27	34.42	35.20	Peak	157	160	HORIZONTAL

Item 3, 4 are the fundamental frequency at 5190 MHz.

	Freq	Level	Limit Line	0ver Limit	Read Level		Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu\√/m	dBu\√/m	dB	dBu√	dB	dB/m	dB			deg	
1	5064.00	53.65	54.00	-0.35	48.94	6.07	33.84	35.20	Average	189	162	HORIZONTAL
2	5144.00	66.83	74.00	-7.17	61.89	6.13	34.01	35.20	Peak	189	162	HORIZONTAL
3	5224.00	100.58			95.46	6.17	34.15	35.20	Average	189	162	HORIZONTAL
4	5234.00	112.36			107.20	6.18	34.18	35.20	Peak	189	162	HORIZONTAL
5	5384.00	53.80	54.00	-0.20	48.23	6.28	34.49	35.20	Average	189	162	HORIZONTAL
6	5385.00	64.45	74.00	-9.55	58.88	6.28	34.49	35.20	Peak	189	162	HORIZONTAL

Item 3, 4 are the fundamental frequency at 5230 MHz.

Temperature	23 ℃	Humidity	58%
Toot Engineer	Vannath Hugna	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40
Test Engineer	Kenneth Huang	Configurations	CH 151, 159 / Chain 4 + Chain 5 + Chain 6
Test Date	May 13, 2014		

	Freq	Level	Limit Line	0ver Limit			Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu\//m	dB	dBu√	dB	dB/m	dB		cm	deg	
1	5710.00	67.01	68.20	-1.19	60.90	6.44	34.87	35.20	Peak	195	86	HORIZONTAL
2	5722.00	72.39	78.20	-5.81	66.27	6.45	34.87	35.20	Peak	195	86	HORIZONTAL
3	5760.00	91.59			85.42	6.46	34.91	35.20	Average	195	86	HORIZONTAL
4	5760.00	102.66			96.49	6.46	34.91	35.20	Peak	195	86	HORIZONTAL
5	5852.00	58.24	78.20	-19.96	51.97	6.49	34.98	35.20	Peak	195	86	HORIZONTAL
6	5912.00	61.24	68.20	-6.96	54.89	6.52	35.03	35.20	Peak	195	86	HORIZONTAL

Item 3, 4 are the fundamental frequency at 5755 MHz.

	Freq	Level	Limit Line	0ver Limit	Read Level			Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu\√/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	5705.00	60.88	68.20	-7.32	54.78	6.44	34.86	35.20	Peak	203	91	HORIZONTAL
2	5722.00	62.99	78.20	-15.21	56.87	6.45	34.87	35.20	Peak	203	91	HORIZONTAL
3	5792.00	95.93			89.72	6.47	34.94	35.20	Average	203	91	HORIZONTAL
4	5792.00	107.21			101.00	6.47	34.94	35.20	Peak	203	91	HORIZONTAL
5	5851.00	67.89	78.20	-10.31	61.62	6.49	34.98	35.20	Peak	203	91	HORIZONTAL
6	5861.00	66.86	68.20	-1.34	60.57	6.50	34.99	35.20	Peak	203	91	HORIZONTAL

Item 3, 4 are the fundamental frequency at 5795 MHz.

Temperature	23°C	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80
lesi Engineer	Refillent fluding	Coringulations	CH 42, 155 / Chain 4 + Chain 5 + Chain 6
Test Date	May 13, 2014		

	Freq	Level	Limit Line		Read Level		Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu\//m	dB	dBu√	dB	dB/m	dB			deg	
1	5145.00	53.83	54.00	-0.17	48.89	6.13	34.01	35.20	Average	164	158	HORIZONTAL
2	5149.00	73.55	74.00	-0.45	68.61	6.13	34.01	35.20	Peak	164	158	HORIZONTAL
3	5199.00	93.10			88.03	6.16	34.11	35.20	Average	164	158	HORIZONTAL
4	5199.00	106.34			101.27	6.16	34.11	35.20	Peak	164	158	HORIZONTAL
5	5354.00	49.34	54.00	-4.66	43.86	6.26	34.42	35.20	Average	164	158	HORIZONTAL
6	5355.00	60.40	74.00	-13.60	54.92	6.26	34.42	35.20	Peak	164	158	HORIZONTAL

Item 4, 5 are the fundamental frequency at 5210 MHz.

	Freq	Level	Limit Line	0ver Limit				Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBu\//m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	5711.00	66.63	68.20	-1.57	60.52	6.44	34.87	35.20	Peak	215	88	HORIZONTAL
2	5721.00	69.96	78.20	-8.24	63.84	6.45	34.87	35.20	Peak	215	88	HORIZONTAL
3	5779.00	99.97			93.78	6.46	34.93	35.20	Average	215	88	HORIZONTAL
4	5781.40	87.30			81.11	6.46	34.93	35.20	Peak	215	88	HORIZONTAL
5	5857.20	65.17	78.20	-13.03	58.89	6.50	34.98	35.20	Peak	215	88	HORIZONTAL
6	5867.20	64.01	68.20	-4.19	57.72	6.50	34.99	35.20	Peak	215	88	HORIZONTAL

Item 4, 5 are the fundamental frequency at 5775 MHz.

Temperature	23°C	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11a CH 36, 40, 48 /
iesi Erigirieei	kerinein nuang	Cornigulations	Chain 6
Test Date	May 13, 2014		

			Limit		Read					A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu√/m	dBu\√/m	dB	dBu√	dB	dB/m	dB			deg	
1	5150.00	53.75	54.00	-0.25	48.81	6.13	34.01	35.20	Average	206	175	VERTICAL
2	5150.00	68.59	74.00	-5.41	63.65	6.13	34.01	35.20	Peak	206	175	VERTICAL
3	5181.00	99.98			94.95	6.15	34.08	35.20	Average	206	175	VERTICAL
4	5182.00	110.49			105.46	6.15	34.08	35.20	Peak	206	175	VERTICAL
5	5350.00	44.49	54.00	-9.51	39.01	6.26	34.42	35.20	Average	206	175	VERTICAL
6	5394.00	60.45	74.00	-13.55	54.88	6.28	34.49	35.20	Peak	206	175	VERTICAL

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu\//m	dB	dBu√	dB	dB/m	dB			deg	
1	5115.00	61.90	74.00	-12.10	57.05	6.11	33.94	35.20	Peak	176	172	VERTICAL
2	5118.00	51.24	54.00	-2.76	46.39	6.11	33.94	35.20	Average	176	172	VERTICAL
3	5201.00	99.97			94.90	6.16	34.11	35.20	Average	176	172	VERTICAL
4	5203.00	110.28			105.21	6.16	34.11	35.20	Peak	176	172	VERTICAL
5	5359.00	64.19	74.00	-9.81	58.71	6.26	34.42	35.20	Peak	176	172	VERTICAL
6	5362.00	53.53	54.00	-0.47	48.04	6.27	34.42	35.20	Average	176	172	VERTICAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu\//m	dB	dBui√	dB	dB/m	dB		cm	deg	
1	5081.00	48.88	54.00	-5.12	44.12	6.09	33.87	35.20	Average	201	29	VERTICAL
2	5084.00	58.88	74.00	-15.12	54.12	6.09	33.87	35.20	Peak	201	29	VERTICAL
3	5239.00	99.91			94.75	6.18	34.18	35.20	Average	201	29	VERTICAL
4	5243.00	110.00			104.82	6.20	34.18	35.20	Peak	201	29	VERTICAL
5	5400.00	63.38	74.00	-10.62	57.76	6.29	34.53	35.20	Peak	201	29	VERTICAL
6	5402.00	52.89	54.00	-1.11	47.27	6.29	34.53	35.20	Average	201	29	VERTICAL

Item 3, 4 are the fundamental frequency at 5240 MHz.

Temperature	23°C	Humidity	58%		
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11a CH 149, 157, 165/		
iesi Erigirieei	kerinein nuang	Cornigulations	Chain 6		
Test Date	May 12, 2014				

Channel 149

	Freq	Level	Limit Line	0ver Limit	Read Level		Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu\√/m	dBu\√/m	dB	dBu√	dB	dB/m	dB		cm	deg	
1	5712.00	65.33	68.20	-2.87	59.22	6.44	34.87	35.20	Peak	228	45	VERTICAL
2	5725.00	77.95	78.20	-0.25	71.81	6.45	34.89	35.20	Peak	228	45	VERTICAL
3	5746.00	98.21			92.06	6.45	34.90	35.20	Average	228	45	VERTICAL
4	5747.00	109.16			103.01	6.45	34.90	35.20	Peak	228	45	VERTICAL
5	5858.00	57.39	78.20	-20.81	51.11	6.50	34.98	35.20	Peak	228	45	VERTICAL
6	5904.00	62.18	68.20	-6.02	55.85	6.51	35.02	35.20	Peak	228	45	VERTICAL

Item 3, 4 are the fundamental frequency at 5745 MHz.

Channel 157

	Freq	Level	Limit Line	0ver Limit	Read Level			Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu\√/m	dB	dBu√	dB	dB/m	dB			deg	
1	5710.00	64.10	68.20	-4.10	57.99	6.44	34.87	35.20	Peak	222	166	VERTICAL
2	5724.00	58.93	78.20	-19.27	52.79	6.45	34.89	35.20	Peak	222	166	VERTICAL
3	5783.00	110.45			104.26	6.46	34.93	35.20	Peak	222	166	VERTICAL
4	5786.00	99.58			93.38	6.47	34.93	35.20	Average	222	166	VERTICAL
5	5858.00	63.75	78.20	-14.45	57.47	6.50	34.98	35.20	Peak	222	166	VERTICAL
6	5866.00	65.04	68.20	-3.16	58.75	6.50	34.99	35.20	Peak	222	166	VERTICAL

Item 3, 4 are the fundamental frequency at 5785 MHz.

Channel 165

		_	Limit	0∨er		CableA				A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
-	MHz	dBu√/m	dBu√/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	5666.00	62.10	68.20	-6.10	56.05	6.42	34.83	35.20	Peak	207	47	VERTICAL
2	5723.00	55.24	78.20	-22.96	49.10	6.45	34.89	35.20	Peak	207	47	VERTICAL
3	5817.00	99.69			93.46	6.48	34.95	35.20	Average	207	47	VERTICAL
4	5826.00	110.31			104.06	6.48	34.97	35.20	Peak	207	47	VERTICAL
5	5850.00	77.00	78.20	-1.20	70.73	6.49	34.98	35.20	Peak	207	47	VERTICAL
6	5902.00	64.83	68.20	-3.37	58.50	6.51	35.02	35.20	Peak	207	47	VERTICAL

Item 3, 4 are the fundamental frequency at 5825 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

4.8. Frequency Stability Measurement

4.8.1. Limit

In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

4.8.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RBW	10 kHz
VBW	10 kHz
Sweep Time	Auto

4.8.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ± 20 ppm (IEEE 802.11nspecification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature is -30°C~50°C.

4.8.4. Test Setup Layout

Report Format Version: Rev. 01 Page No. : 79 of 86
FCC ID: VUIDPC3929CA Issued Date : Jun. 16, 2014

4.8.5. Test Deviation

There is no deviation with the original standard.

4.8.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.8.7. Test Result of Frequency Stability

Temperature	26°C	Humidity	63%
Test Engineer	Wen Chao	Test Date	May 22, 2014

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)			
(V)	5200 MHz			
126.50	5199.9906			
110.00	5199.9904			
93.50	5199.9904			
Max. Deviation (MHz)	0.009600			
Max. Deviation (ppm)	1.85			

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)
(°C)	5200 MHz
-30	5199.9910
-20	5199.9908
-10	5199.9908
0	5199.9906
10	5199.9904
20	5199.9904
30	5199.9904
40	5199.9902
50	5199.9902
Max. Deviation (MHz)	0.009800
Max. Deviation (ppm)	1.88

Report Format Version: Rev. 01 Page No. : 80 of 86
FCC ID: VUIDPC3929CA Issued Date : Jun. 16, 2014

4.9. Antenna Requirements

4.9.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.9.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

Report Format Version: Rev. 01 Page No. : 81 of 86 FCC ID: VUIDPC3929CA Issued Date : Jun. 16, 2014

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100355	9 kHz ~ 2.75 GHz	Apr. 23, 2014	Conduction
						(CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150 kHz ~ 100 MHz	Nov. 23, 2013	Conduction (CO01-CB)
11011	Calauramala a alc	NCLV 9107	0107470	0141- 20141-	Nov. 11, 0012	Conduction
LISN	Schwarzbeck	NSLK 8127	8127478	9kHz ~ 30MHz	Nov. 11, 2013	(CO01-CB)
COND Cable	Woken	Cable	01	150 kHz ~ 30 MHz	Dec. 04, 2013	Conduction
						(CO01-CB)
Software	Audix	E3	5.410e	-	N.C.R.	Conduction (CO01-CB)
						Radiation
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	Apr. 16, 2013	(03CH01-CB)
Laan Antanaa	Tanan	UI A 4100	04155	0.141- 20.1411-	Nov. 05, 0010*	Radiation
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Nov. 05, 2012*	(03CH01-CB)
Horn Antenna	SCHWARZBEAK	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Dec. 17, 2013	Radiation
						(03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 12, 2013	Radiation (03CH01-CB)
						Radiation
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Dec. 16, 2013	(03CH01-CB)
Due Amerilië en	\A/B.4	TE 120N D1	003345	04611- 40611-	0-4 02 0012	Radiation
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Oct. 23, 2013	(03CH01-CB)
Spectrum analyzer	R&S	FSP40	100019	9kHz~40GHz	Dec. 02, 2013	Radiation
,					,	(03CH01-CB)
EMI Test Receiver	Agilent	N9038A	MY52260123	9kHz ~ 8GHz	Dec. 12, 2013	Radiation
						(03CH01-CB) Radiation
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R.	(03CH01-CB)
		00000	21/2			Radiation
Antenna Mast	INN CO	CO2000	N/A	1 m - 4 m	N.C.R.	(03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 17, 2013	Radiation
			. 4			(03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 17, 2013	Radiation
						(03CH01-CB) Radiation
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 17, 2013	(03CH01-CB)
	D C C	F0) / / 2	100	0111 10011	N 00 0010	Conducted
Signal analyzer	R&S	FSV40	100979	9kHz~40GHz	Nov. 29, 2013	(TH01-CB)
Signal Generator	R&S	SMR40	100302	10MHz-40GHz	Dec. 02, 2013	Conducted
signal constant	, , ,	5,7,1,7,0	100002	. 5 2 450112	200. 02, 2010	(TH01-CB)
RF Power Divider	Woken	2 Way	0120A02056002D	2GHz ~ 18GHz	Nov. 17, 2013	Conducted
						(TH01-CB) Conducted
RF Power Divider	Woken	3 Way	MDC2366	2GHz ~ 18GHz	Nov. 17, 2013	(TH01-CB)

Page No.

: 82 of 86

Issued Date : Jun. 16, 2014

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
RF Power Divider	Woken	4 Way	0120A04056002D	2GHz ~ 18GHz	Nov. 17, 2013	Conducted
						(TH01-CB)
RF Cable-high	Woken	High Cable-7		1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted
RF Cable-High	woken	nigii Cable-7	-	1 GHZ - 20.5 GHZ		(TH01-CB)
25.0				1.01- 24.5.01-		Conducted
RF Cable-high	e-high Woken High Cable		-	1 GHz – 26.5 GHz	Nov. 17, 2013	(TH01-CB)
	Woken	High Cable-9	-	1 011- 04 5 011-		Conducted
RF Cable-high				1 GHz – 26.5 GHz	Nov. 17, 2013	(TH01-CB)
					Nov. 17, 2013	Conducted
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz		(TH01-CB)
25.0				3 011 07 5 011	. 17 0010	Conducted
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 17, 2013	(TH01-CB)
	A	14404111	0017000	2001411 40011	0 10 0010	Conducted
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Sep. 18, 2013	(TH01-CB)
	A	14104054	1005000	2001411 40011	0 10 0010	Conducted
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Sep. 18, 2013	(TH01-CB)

Page No.

: 83 of 86

Issued Date : Jun. 16, 2014

Note: Calibration Interval of instruments listed above is one year.

Calibration Interval of instruments listed above is two years.

N.C.R. means Non-Calibration required.

6. MEASUREMENT UNCERTAINTY

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

	Un	certaint	by of x_i		
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$	
Receiver reading	0.026	dB	normal(k=2)	0.013	
Cable loss	0.002	dB	normal(k=2)	0.001	
AMN/LISN specification	1.200	dB	normal(k=2)	0.600	
Mismatch Receiver VSWR 1 = AMN/LISN VSWR 2=	-0.080	dB	U-shaped	0.060	
Combined standard uncertainty Uc(y)	1.2				
Measuring uncertainty for a level of confidence	of 95% U	=2Uc(y	r)	2.4	

<u>Uncertainty of Radiated Emission Measurement (30MHz ~ 1,000MHz)</u>

Uncertainty of x_i			by of x_i	
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	±0.173	dB	k=1	0.086
Cable loss	±0.174	dB	k=2	0.087
Antenna gain	±0.169	dB	k=2	0.084
Site imperfection	±0.433	dB	Triangular	0.214
Pre-amplifier gain	±0.366	dB	k=2	0.183
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty Uc(y)				1.778
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)			3.555	

Report Format Version: Rev. 01 Page No. : 84 of 86 FCC ID: VUIDPC3929CA Issued Date : Jun. 16, 2014

<u>Uncertainty of Radiated Emission Measurement (1GHz ~ 18GHz)</u>

	Uncertainty of x_i			
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	±0.191	dB	k=1	0.095
Cable loss	±0.169	dB	k=2	0.084
Antenna gain	±0.191	dB	k=2	0.096
Site imperfection	±0.582	dB	Triangular	0.291
Pre-amplifier gain	±0.304	dB	k=2	0.152
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty Uc(y)				1.839
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)			3.678	

<u>Uncertainty of Radiated Emission Measurement (18GHz \sim 40GHz)</u>

	Uncertainty of x_i			
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	±0.186	dB	k=1	0.093
Cable loss	±0.167	dB	k=2	0.083
Antenna gain	±0.190	dB	k=2	0.095
Site imperfection	±0.488	dB	Triangular	0.244
Pre-amplifier gain	±0.269	dB	k=2	0.134
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty Uc(y)				1.771
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)				3.541

Report Format Version: Rev. 01 Page No. : 85 of 86 FCC ID: VUIDPC3929CA Issued Date : Jun. 16, 2014

Uncertainty of Conducted Emission Measurement

	Uncertainty of x_i			
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Cable loss	±0.038	dB	k=2	0.019
Attenuator	±0.047	dB	k=2	0.024
Power Meter specification	±0.300	dB	Triangular	0.150
Power Sensor specification	±0.300	dB	Rectangular	0.150
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty Uc(y)				0.863
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)			1.726	