COSC76/276 Artificial Intelligence Fall 2022 First Order Logic

Soroush Vosoughi
Computer Science
Dartmouth College
Soroush@Dartmouth.edu

Problems with propositional logic

- For example, for cell (2,3)
 - Landmine_2_3=>number1_1_2
 - Landmine_2_3=>number1_1_3
 - Landmine 2 3=>number1 1 4
 - Landmine_2_3=>number1_2_2
 - Landmine_2_3=>number1_2_4
 - Landmine 2 3=>number1 3 2
 - Landmine_2_3=>number1_3_3
 - Landmine_2_3=>number1_3_4
- Similarly for other cells, resulting in explosion of symbols

First Order Logic

- We will discover the first order logic which allows to write
 - landmine(x,y)=>number1(
 neighbors(x,y))

Syntax of FOL

- Three types of symbols:
 - Constant symbols (capture objects): KingJohn, 2,
 Dartmouth
 - Predicate symbols (capture relations): Brother, >,...
 - function symbols (capture functions): Sqrt, LeftLegOf
- Connectives: $\land |\lor| \Rightarrow | \Leftrightarrow | \neg \text{ (standard)}$
- Equality: = Two symbols refer to the same object
- Variables: x, y, z
- Quantifiers: ∀,∃; ways to refer to groups of objects.

Syntax of FOL: Connectives & Complex Sentences

- Complex Sentences are formed in the same way, using the same logical connectives, as in propositional logic
- The Logical Connectives:
 - − ⇔ biconditional
 - \Rightarrow implication
 - $\wedge and$
 - $\vee or$
 - − ¬ negation
- Semantics for these logical connectives are the same as we already know from propositional logic.

Examples

- Brother(Richard, John) ∧ Brother(John, Richard)
- King(Richard) ∨ King(John)
- King(John) => ¬ King(Richard)

(Semantics of complex sentences are the same as in propositional logic)

Syntax of FOL

- Three types of symbols:
 - Constant symbols (capture objects): KingJohn, 2,
 Dartmouth
 - Predicate symbols (capture relations): Brother, >,...
 - function symbols (capture functions): Sqrt, LeftLegOf
- Connectives: $\land |\lor| \Rightarrow |\Leftrightarrow| \neg \text{ (standard)}$
- Equality: = Two symbols refer to the same object
- Variables: x, y, z
- Quantifiers: ∀,∃; ways to refer to groups of objects.

Syntax of FOL: Variables

- Variables range over objects in the world.
- (A variable not bound by a quantifier is called free.)
 - All variables we will use are bound by a quantifier.

Universal quantification

- Universal (∀)
 - Sentence is true for all values of x in the domain of variable x.
 - Conjunction of all sentences obtained by substitution of an object for the quantified variable
- $\forall x \text{ human}(x) \Rightarrow \text{mammal}(x)$
 - What it really means (universal instantiation):

```
human(John)⇒mammal(John)
```

 (\land) human(Alice) \Rightarrow mammal(Alice)

 (\land) human(laptop) \Rightarrow mammal(laptop)

• • •

Is this a correct sentence?

• $\forall x \text{ human}(x) \land \text{mammal}(x)$

Common mistake for universal quantification

- Common mistake is to use AND as main connective
 - \forall x human(x) \land mammal(x)
 - This means everything is human and a mammal!
 - (human(Jerry) ∧ mammal(Jerry ∧ (human(laptop)∧ mammal(laptop)) ∧ ...
- Note that => is the natural connective to use with ∀.

Existential quantifiers

- Existential (∃)
 - Sentence is true for some value of x in the domain of variable x
 - Is equivalent to disjunction of all sentences obtained by substitution of an object for the quantified variable.

- "some humans are male"
 - $-\exists x human(x) \land male(x)$
 - Means there is an x who is a human and is a male
 - What it really means (existential instantiation):
 (human(Jerry) ∧ male(Jerry)) ∨

```
(human(laptop) \( \text{male(laptop)} \( \text{v} \)...
```

"Some pig can fly" ∃ x pig(x) => fly(x)
 (correct?)

Common mistake for existential quantifiers

- Common mistake is to use => as main connective
- "Some pig can fly" $\exists x pig(x) => fly(x)$ (wrong)
 - This is true if there is something not a pig! (pig(Jerry) => fly(Jerry)) V (pig(laptop) => fly(laptop)) V ...
- Note that ∧ is the natural connective to use with ∃.

Combining Quantifiers – Order (Scope)

The order of "like" quantifiers does not matter.

$$\forall x \ \forall y \ P(x, y) \equiv \forall y \ \forall x \ P(x, y)$$

 $\exists x \ \exists y \ P(x, y) \equiv \exists y \ \exists x \ P(x, y)$

Like nested ANDs and ANDs in a logical sentence

Combining Quantifiers – Order (Scope)

The order of "unlike" quantifiers is important. Like nested ANDs and ORs in a logical sentence.

```
\forall x \exists y Loves(x,y)
```

- For everyone ("all x") there is someone ("exists y") whom they love.
- There might be a different y for each x (y is inside the scope of x)

```
\exists y \forall x Loves(x,y)
```

- There is someone ("exists y") whom everyone loves ("all x").
- Every x loves the same y (x is inside the scope of y)

Parentheses can clarify: $\exists y (\forall x \text{ Loves}(x,y))$

Properties of quantifiers

- $\forall x P(x)$ when negated becomes ?
- $\exists x P(x)$ when negated becomes?

Properties of quantifiers

• $\forall x P(x)$ when negated becomes $\exists x \neg P(x)$

• $\exists x P(x)$ when negated becomes $\forall x \neg P(x)$

- Example
 - $\forall x \text{ sleep(x)}$
 - It means everybody sleeps
 - If negated, it becomes $\exists x \neg sleep(x)$
 - There is somebody who doesn't sleep

Properties of quantifiers

• $\forall x P(x)$ is logically equivalent to $\equiv \neg \exists x \neg P(x)$

• $\exists x P(x)$ is logically equivalent to $\equiv \neg \forall x \neg P(x)$

- Example
 - $\forall x \text{ sleep(x)}$
 - It means everybody sleeps
 - $-\neg\exists x \neg sleep(x)$
 - There is nobody who doesn't sleep

Connections between Quantifiers

In effect:

- \forall is a conjunction over the universe of objects
- ∃ is a disjunction over the universe of objects
 Thus, DeMorgan's rules can be applied

De Morgan's Law for Quantifiers

De Morgan's Rule

Generalized De Morgan's Rule

$$P \wedge Q \equiv \neg (\neg P \vee \neg Q) \qquad \forall x P(x) \equiv \neg \exists x \neg P(x)$$

$$P \vee Q \equiv \neg (\neg P \wedge \neg Q) \qquad \exists x P(x) \equiv \neg \forall x \neg P(x)$$

$$\neg (P \wedge Q) \equiv (\neg P \vee \neg Q) \qquad \neg \forall x P(x) \equiv \exists x \neg P(x)$$

$$\neg (P \vee Q) \equiv (\neg P \wedge \neg Q) \qquad \neg \exists x P(x) \equiv \forall x \neg P(x)$$

AND/OR Rule is simple: if you bring a negation inside a disjunction or a conjunction, always switch between them (\neg OR \rightarrow AND \neg ; \neg AND \rightarrow OR \neg).

QUANTIFIER Rule is similar: if you bring a negation inside a universal or existential, always switch between them $(\neg \exists \rightarrow \forall \neg; \neg \forall \rightarrow \exists \neg)$.

"All persons are mortal."

[Use: Person(x), Mortal (x)]

 $\forall x \ Person(x) \Rightarrow Mortal(x)$

• Equivalent Forms:

 $\forall x \neg Person(x) \lor Mortal(x)$

Common Mistakes:

 $\forall x \ Person(x) \land Mortal(x)$

"Sissy has a sister who is a cat."

[Use: Sister(Sissy, x), Cat(x)]

 $\exists x \ Sister(Sissy, x) \land Cat(x)$

Common Mistakes:

 $\exists x \; Sister(Sissy, x) \Rightarrow Cat(x)$

"For every food, there is a person who eats that food."

[Use: Food(x), Person(y), Eats(y, x)]

$$\forall x \exists y \text{ Food}(x) \Rightarrow [\text{ Person}(y) \land \text{ Eats}(y, x)]$$

Equivalent Forms:

```
\forall x \ \mathsf{Food}(x) \Rightarrow \exists y \ [ \ \mathsf{Person}(y) \land \mathsf{Eats}(y, x) \ ]

\forall x \ \exists y \ \neg \mathsf{Food}(x) \ \lor \ [ \ \mathsf{Person}(y) \land \mathsf{Eats}(y, x) \ ]

\forall x \ \exists y \ [ \ \neg \mathsf{Food}(x) \ \lor \ \mathsf{Person}(y) \ ] \land [ \ \neg \mathsf{Food}(x) \Rightarrow \mathsf{Eats}(y, x) \ ]

\forall x \ \exists y \ [ \ \mathsf{Food}(x) \Rightarrow \mathsf{Person}(y) \ ] \land [ \ \mathsf{Food}(x) \Rightarrow \mathsf{Eats}(y, x) \ ]
```

Common Mistakes:

```
\forall x \exists y [ Food(x) \land Person(y) ] \Rightarrow Eats(y, x) 
\forall x \exists y Food(x) \land Person(y) \land Eats(y, x)
```


"Every person eats some food."

```
[Use: Person (x), Food (y), Eats(x, y)]
```

```
\forall x \exists y \ \mathsf{Person}(x) \Rightarrow [\ \mathsf{Food}(y) \land \mathsf{Eats}(x, y) \ ]
```

Equivalent Forms:

```
\forall x \ \mathsf{Person}(x) \Rightarrow \exists y \ [ \ \mathsf{Food}(y) \land \mathsf{Eats}(x, y) \ ]
\forall x \ \exists y \ \neg \mathsf{Person}(x) \ \lor \ [ \ \mathsf{Food}(y) \land \mathsf{Eats}(x, y) \ ]
\forall x \ \exists y \ [ \ \neg \mathsf{Person}(x) \ \lor \ \mathsf{Food}(y) \ ] \land [ \ \neg \mathsf{Person}(x) \ \lor \ \mathsf{Eats}(x, y) \ ]
```

Common Mistakes:

```
\forall x \exists y [ Person(x) \land Food(y) ] \Rightarrow Eats(x, y)
\forall x \exists y Person(x) \land Food(y) \land Eats(x, y)
```


"Some person eats some food."

[Use: Person (x), Food (y), Eats(x, y)]

 $\exists x \exists y \ Person(x) \land Food(y) \land Eats(x, y)$

Common Mistakes:

 $\exists x \exists y [Person(x) \land Food(y)] \Rightarrow Eats(x, y)$

"Everyone has a favorite food."

```
[Use: Person(x), Food(y), Favorite(y, x)]
```

Equivalent Forms:

```
• \forall x \exists y \, \text{Person}(x) \Rightarrow [\, \text{Food}(y) \land \text{Favorite}(y, x) \,]
```

- $\forall x \ \mathsf{Person}(x) \Rightarrow \exists y \ [\ \mathsf{Food}(y) \land \mathsf{Favorite}(y, x) \]$
- ∀x ∃y ¬Person(x) ∨ [Food(y) ∧ Favorite(y, x)]
- ∀x ∃y [¬Person(x) ∨ Food(y)] ∧ [¬Person(x)

```
Favorite(y, x) ]
```

• $\forall x \exists y [Person(x) \Rightarrow Food(y)] \land [Person(x) \Rightarrow Favorite(y, x)]$

Common Mistakes:

- $\forall x \exists y [Person(x) \land Food(y)] \Rightarrow Favorite(y, x)$
- $\forall x \exists y \, Person(x) \land Food(y) \land Favorite(y, x)$

Equality

- term₁ = term₂ is true
 if and only if term₁ and term₂ refer to the
 same object
- E.g., definition of Sibling in terms of Parent, using = is:

```
\forall x,y \ Sibling(x,y) \Leftrightarrow
[\neg(x = y) \land \\ \exists m,f \ \neg (m = f) \land Parent(m,x) \land Parent(f,x) \\ \land Parent(m,y) \land Parent(f,y)]
```

Semantics

- sentences + (model, interpretation) → true/false
- interpretation specifies exactly which objects, relations, and functions are referred to by the constant, predicate, and function symbols.

'=' sign is used

Models

 A set of true/false values for every relation among objects. (Think of a set of directed edges, with different colors for each relation, of graph.)

How many models?

- For each binary relation, there are n^2
 possible object pairs (2-tuples), n^3 possible
 ternary relations, n^k possible k-ary relations.
- That's just the number of tuples. Each can be true or false. So for each relation, we get a factor of 2^(n^k) models.
- n might be infinite. (Maybe the objects are natural numbers, which can be described in FOL.)

Discussion

Interpretation

Computational complexity gets even worse

Example

Symbols: Luke, DarthVader, Emperor,
 Palpatine, Anikin. Five symbols, but how many objects?

Syntactic Ambiguity

- FOL provides many ways to represent the same thing.
- E.g., "Ball-5 is red."
 - HasColor(Ball-5, Red)
 - Ball-5 and Red are objects related by HasColor.
 - Red(Ball-5)
 - Red is a unary predicate applied to the Ball-5 object.
 - HasProperty(Ball-5, Color, Red)
 - Ball-5, Color, and Red are objects related by HasProperty.
 - ColorOf(Ball-5) = Red
 - Ball-5 and Red are objects, and ColorOf() is a function.
 - HasColor(Ball-5(), Red())
 - Ball-5() and Red() are functions of zero arguments that both return an object, which objects are related by HasColor.
 - **–** ...
- This can GREATLY confuse a pattern-matching reasoner.
 - Especially if multiple people collaborate to build the KB, and they all have different representational conventions.

Syntactic Ambiguity – Partial solution

- FOL can be TOO expressive, can offer TOO MANY choices
- Likely confusion, especially for teams of Knowledge Engineers
- Different team members can make different representation choices
 - E.g., represent "Ball43 is Red." as:
 - a property (= adjective)? E.g., "Red(Ball43)"?
 - an object (= noun)? E.g., "Red = Color(Ball43))"?
 - a predicate (= verb)? E.g., "HasProperty(Ball43, Red)"?

PARTIAL SOLUTION:

- An upon-agreed ontology that settles these questions
- Ontology = what exists in the world & how it is represented
- The Knowledge Engineering teams agrees upon an ontology BEFORE they begin encoding knowledge

Summary

- First order logic to represent also objects and relations
 - Syntax includes sentences, predicate symbols, function symbols, constant symbols, variables, quantifiers
- Nested quantifiers
 - Order of unlike quantifiers matters (the outer scopes the inner)
 - Like nested ANDs and ORs
 - Order of like quantifiers does not matter
 - like nested ANDS and ANDs
- Semantics needs also interpretation

Next

How do we make inference with FOL?

Logical agent with FOL

- Sentences are added to a knowledge base using TELL
 - TELL(KB, King(John)).
 - TELL(KB, Person(Richard))
 - TELL(KB, \forall x King(x) \Rightarrow Person(x)).
- We can ask questions of the knowledge base using ASK. E.g.,
 - ASK(KB, King(John)) returns true.
- Query that is logically entailed by the knowledge base should be answered affirmatively.
 - E.g., given the two preceding assertions, the query ASK(KB, Person(John)) should also return true.
- We can ask quantified queries, such as
 - ASK(KB, \exists x Person(x)).
 - True answer, but not very helpful. It is like answering "Can you tell me the time?" with "Yes."
- ASKVARS returns what value of x makes the sentence true
 - ASKVARS(KB, Person(x))
 - E.g., there will be two answers: {x/John} and {x/Richard} -- answer called a substitution or binding list.

FOL Version of Wumpus World

- Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t = 5:
- Typical percept sentence:

 TELL(KB, Percept([Stench, Breeze, not Glitter, None, None], t=5))
- Actions:
 Turn(Right), Turn(Left), Forward, Shoot, Grab, Release, Climb
- To determine best action, construct query:

```
ASK(∃ a BestAction(a,5))
ASKVARS(BestAction(a,5))
```

Inference to return {a/Grab}

Knowledge Base for Wumpus World

Perception

- \forall s,g,x,y,t Percept([s,Breeze,g,x,y],t) \Rightarrow Breeze(t)
- \forall s,b,x,y,t Percept([s,b,Glitter,x,y],t) \Rightarrow Glitter(t)

Reflex action

- \forall t Glitter(t) \Rightarrow BestAction(Grab,t)

Reflex action with internal state

- \forall t Glitter(t) \land ¬Holding(Gold,t) \Rightarrow BestAction(Grab,t)

Holding(Gold,t) can not be observed: keep track of change.

Deducing hidden properties

Environment definition:

```
\forallx,y,a,b Adjacent([x,y],[a,b]) \Leftrightarrow
[a,b] \in {[x+1,y], [x-1,y],[x,y+1],[x,y-1]}
```

Properties of locations:

```
\foralls,t At(Agent,s,t) \land Breeze(t) \Rightarrow Breezy(s)
```

Squares are breezy near a pit:

- Diagnostic rule---infer cause from effect
 ∀s Breezy(s) ⇔ ∃ r Adjacent(r,s) ∧ Pit(r)
- Causal rule---infer effect from cause (model based reasoning)
 ∀r Pit(r) ⇒ [∀s Adjacent(r,s) ⇒ Breezy(s)]

Knowledge engineering in FOL

- 1. Identify the task
- 2. Assemble the relevant knowledge
- 3. Decide on a vocabulary of predicates, functions, and constants
- 4. Encode general knowledge about the domain
- 5. Encode a description of the specific problem instance
- 6. Pose queries to the inference procedure and get answers
- 7. Debug the knowledge base

An interpretation maps all symbols in KB onto matching symbols in a possible world. All possible interpretations gives a combinatorial explosion of mappings. Your job, as a Knowledge Engineer, is to write the axioms in KB so <u>they are satisfied only under the</u> intended interpretation in your own real world.