HW3

1. We consider here linear and non-linear support vector machines (SVM) of the form:

min
$$\frac{1}{2}w_1^2$$
 st $y_i(w_1x_i + w_0) - 1 \ge 0, i = 1, ..., n, \text{ or}$ (1)

min
$$\frac{1}{2}w_1^2$$
 st $y_i(w_1x_i + w_0) - 1 \ge 0, i = 1, ..., n$, or (1)
min $\frac{1}{2}\mathbf{w}^T\mathbf{w}$ st $y_i(\mathbf{w}^T\Phi_i + w_0) - 1 \ge 0, i = 1, ..., n$ (2)

where ϕ_i is a feature vector constructed from the corresponding real valued input x_i . We wish to compare the simple linear SVM classifier $(w_1x + w_0)$ and the non-linear classifier $\mathbf{w}^T \Phi + w_0$, where $\phi = [x, x^2]^T$.

- 1) Provide three input points x_1 , x_2 , and x_3 and their associated ± 1 labels such that they cannot be separated with the simple linear classifier, but are separable by the non-linear classifer with $\phi = [x, x^2]^T$. You may find Figure 1 helpful in answering this question.
- 2) In Figure 1, mark your three points x_1 , x_2 , and x_3 as points in the feature space with their associated labels. Draw the decision boundary of the SVM classifier with $\phi = [x, x^2]^T$ that separates the points.
- 3) Consider two labeled points (x = 1, y = 1) and (x = 3, y = -1). The margin we attain using feature vectors $\phi = [x, x^2]^T$ is () greater () equal () smaller than the margin resulting from using the input x directly. (Provide a brief explanation.)
- 2. Support vector machines learn a decision boundary leading to the largest margin from both classes. You are training SVM on a tiny dataset with 4 points show in Figure 2. This dataset consists of two examples with class label -1 (denoted with plus), and two examples with class label +1 (denoted with triangles).
 - 1) Find the weight vector w and bias b. What's the equation corresponding to the decision boundary?
 - 2) Circle the support vectors and draw the decision boundary.
- 3. Derive the feature mapping function $\phi(x)$ for Gaussian kernel.

Figure 1: SVM Classification

Figure 2: hard margin