Chimica Organica Triennale 2019/2020

Lezione 3

Reattività

Le molecole organiche sono in grado di reagire con altre molecole. Questa proprietà può essere utilizzata per trasformare queste molecole.

La reattività prevede la rottura e la formazione di legami tra atomi. Per rompere un legame è necessaria energia.

Ad esempio la molecola di idrogeno H₂ avrà una distanza tra i nuclei degli H ben definita. Se i nuclei vengono distanziati (fornendo energia) ci vorrà meno energia per rompere il legame. La rottura di un legame tra due atomi di idrogeno richiede circa 100 kcal/mole (detto dal prof. Nicotra). Se la distanza tra i nuclei viene ridotta, aumenterà la repulsione (tra i nuclei positivi) che tenderà ad

Observed bond distance in the state of the s

allontanare i nuclei ed a riportarli alla distanza ottimale.

L'H2O è un debole elettrolita, che si dissocia i OH- ed H+. La costante di dissociazione si può misurare con la formula nell'immagine.

$$K_{\text{dissy}} = \frac{[H^+] \cdot [OH^-]}{[H_2 O]} = 1.8 \cdot 10^{-16} \quad (25^{\circ} C)$$

Da notare che la costante di dissociazione all'equilibrio Kdiss in formula è diversa dalla Kw, che è pari a circa 10^{-14} . (????)

La **costante di equilibrio di una reazione** è data dalla relazione nell'immagine.

La costante di equilibrio è legata alla **energia libera di Gibbs** Δ G. L'energia libera di Gibbs è correlata ad altre due grandezze termodinamiche: l'*entalpia* Δ H e l'*entropia* Δ S.

In una reazione i reagenti si trovano ad un certo livello energetico. Per far avvenire la reazione devono essere spezzati dei legami, quindi va fornita energia. Fornendo energia si arriva allo **stato di transizione**, dove si ha effettivamente la reazione. L'energia fornita si chiama **energia di attivazione**,

The Equilibrium Constant

To generalize this expression, consider the reaction

The equilibrium expression for this reaction would be

$$K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}$$

$$\Delta G^\circ = -RT \ln K$$
 and $\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ$
Hence: $-RT \ln K = \Delta H^\circ - T\Delta S^\circ$
Divide both sides by RT:

$$\ln K = -\frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$$

che è la massima energia fornita. Dallo stato di transizione si avrà la formazione dei prodotti, con diminuzione dell'energia del sistema.

Il **postulato di Hammond** dice che la struttura dello stato di transizione assomiglia a quella della specie che gli è più vicina in energia. Nell'immagine a destra si vede come lo stato di transizione della reazione identificata dalla linea blu sia più vicino ai reagenti, mentre quello della linea verde sia più vicino ai prodotti.

Cinetica

Per cinetica si intende la velocità a cui avviene la reazione. La velocità di una reazione dipende dall'ordine della reazione. L'**equazione di Arrenius** esprime quelle che sono le grandezze a cui è collegata la costante di reazione **k**. La k dipende da A, che è il numero di collisioni tra le molecole al secondo, per la probabilità di una collisione di successo.

Va da sé che nelle reazioni in cui l'energia di attivazione è più bassa si avranno più mole che reagiscono nell'unità di tempo, e quindi la reazione sarà più veloce.

Meccanismi di reazione

Per effettuare una reazione si deve avere inizialmente una rottura di un legame. La rottura può avvenire in maniera **omolitica** (uguale distribuzione degli elettroni di legami tra gli atomi che si sono separati) oppure in maniera **eterolitica** (gli elettroni di legame vengono trattenuti dell'atomo più elettronegativo).

Genericamente si possono distinguere 2 specie intermedie. Una con un orbitale occupato da un doppietto elettronico, definiti Nucleofili, o basi di Lewis. Un'altra con un orbitale vuoto, definiti acidi di Lewis, o Elettrofili.

