

Practical SAT Solving

Lecture 7

Markus Iser, Dominik Schreiber, Tomáš Balyo | June 3, 2024

Recap

Lecture 6: Modern SAT Solving 2

- · Efficient Unit Propagation
- · Clause Forgetting
- Modern Decision Heuristics: VSIDS & Co.

Today

Preprocessing

Conflict-driven Clause Learning (CDCL) Algorithm

Last Time

- Efficient Unit Propagation
- Clause Forgetting
- Modern Decision Heuristics

Today

Preprocessing

Algorithm 1: CDCL(CNF Formula F, &Assignment $A \leftarrow \emptyset$) 1 if not PREPROCESSING then return UNSAT 2 while A is not complete do UNIT PROPAGATION if A falsifies a clause in F then 4 if decision level is 0 then return UNSAT else $(clause, level) \leftarrow CONFLICT-ANALYSIS$ add clause to F and backtrack to level continue 9 if RESTART then, backtrack to level 0 10 if CLEANUP then forget some learned clauses 11 **BRANCHING** 12 13 return SAT

Preprocessing

Preprocessing takes place between problem encoding and its solution.

Preprocessing is ...

- · a form of reencoding a problem: to fix bad encodings
- · a form of reasoning itself: inprocessing

Conjecture: Smaller problems are easier to solve \Longrightarrow Try to reduce the size of the formula.

Classic Preprocessing Techniques

- Subsumption
- · Self-subsuming Resolution
- (Bounded) Variable Elimination (BVE)

Preprocessing: Subsumption

A clause C is subsumed by D iff $D \subseteq C$.

Subsumed clauses can be removed from the formula without changing satisfiability: $\forall D \subseteq C, D \models C$

Example

 $\{a,b\}$ subsumes $\{a,b,c\}$ and $\{a,b,d\}$

June 3, 2024

Preprocessing: Subsumption

A clause *C* is subsumed by *D* iff $D \subseteq C$.

Subsumed clauses can be removed from the formula without changing satisfiability: $\forall D \subseteq C, D \models C$

Example

 $\{a,b\}$ subsumes $\{a,b,c\}$ and $\{a,b,d\}$

Implementation 1: Forward Subsumption

Select clause C and check if it is subsumed by any other clause $D \subseteq C$.

- Temporarily mark all literals in C as unsatifisfied, and use one-watched literal data-structure to find subsumed clauses
- Optimization 1: Watch literals with the fewest occurrences
- Optimization 2: Keep literals sorted and perform merge-sort style subset check

June 3, 2024

Preprocessing: Subsumption

Implementation 2: Backward Subsumption

Select clause D and check if it subsumes any other clause $C \supseteq D$.

Learned clauses are never subsumed but can subsume other clauses, e.g., recently learned clauses

- Optimization 1: Check the clauses of the variable with the fewest occurrences (scales to large formulas)
- Optimization 2: Use signatures to skip the majority of subsumption checks (cf. Bloom filters)

Algorithm 2: Signature-based Subsumption Check

```
// Initialization:
```

- 1 for clause \in formula do
- clause.signature = 0
- $\mathfrak{s} \mid \mathsf{for} \, \mathit{lit} \in *\mathit{clause} \, \mathsf{do}$
- 4 | clause.signature |= 1ull << (id(lit)%64)
 - // Subsumption Check:
- 5 if D.signature & invert(C.signature) == 0 then
 - // Check if D subsumes C

Applicable if the resolvent of C and another clause D subsumes C.

If $C \otimes_x D \subseteq C$ then C can be replaced by $C \otimes_x D$.

Example

Let \otimes_f be the resolution operator on variable f.

$$C := \{\neg b, \neg e, f, \neg h\} \qquad D := \{\neg b, \neg e, \neg f\} \qquad E := C \otimes_f D = \{\neg b, \neg e, \neg h\}$$

 \longrightarrow Replace C by E ("clause strengthening")

Implementation

- Integrate with subsumption: Allow at most one literal of D to occur negated in C
- Variant: On-the-fly subsumption/strengthening of reason clauses during conflict analysis

Let S_x , $S_{\overline{x}} \subseteq F$ be the sets of all clauses containing x resp. \overline{x} , and let $R = \{C \otimes_x D \mid C \in S_x, D \in S_{\overline{x}}\}$ be the set of all resolvents on x. The formulas F and $F' := (F \setminus (S_x \cup S_{\overline{x}})) \cup R$ are equisatisfiable but not equivalent.

Most important preprocessing technique in practical SAT solving

Bounded Variable Elimination (BVE)

Eliminate variable only if the formula size does not increase (too much).

- Note 1: Variables of removed clauses have to be rescheduled for further elimination attempts
- Note 2: Resolvent can trigger further subsumptions and vice versa
- Particularly effective in presence of functional definitions (cf. Tseitin encoding)
- Variant: Incrementally Relaxed BVE: Increase bound each round if formula size did not increase too much
- Optimizations: Perform check only for bounded clause size, resolvent size, or variable occurrence count

A clause $\{x\} \cup C$ is blocked in F by x if either x is pure in F or for every clause $\{\neg x\} \cup D$ in F the resolvent $C \cup D$ is a tautology.

→ Dead ends in the resolution graph, no proof beyond this point.

Blocked clause elimination (BCE) has a unique fixpoint, and preserves satisfiability.

Example

$$F := (a \lor b) \land (a \lor \neg b \lor \neg c) \land (\neg a \lor c)$$

First clause is not blocked, second is blocked by both a and $\neg c$, third is blocked by c.

- Effectiveness of BVE can be increased by interleaving it with BCE
- Relationship with circuit-level simplification techniques
- Generalization: Covered Clauses A clause is covered if it can be turned into a blocked clause by adding a covered literal. A literal x is covered by a clause C, if it contains a literal y such that all non-tautological resolvents of C on y contain x.

Many preprocessing techniques remove clauses or variables from a formula in a mere satisfiability-preserving way, such that the solution to the preprocessed formula might not be a solution to the original formula.

Reconstruction Algorithm

Keep track of eliminated variables (BVE) and clauses (BCE) in a solution reconstruction stack *S*, and if a model is found, use it to reconstruct a solution to the original formula.

Algorithm 3: Solution Reconstruction

Data: Assignment A, Stack S

- 1 while S is not empty do
- remove the last literal-clause pair (I, C) from S;
- if C is not satisfied by A then
- 4 | $A := (A \setminus \{l = 0\}) \cup \{l = 1\}$
- 5 If variables remain unassigned in *A*, then assign them an arbitrary value.

Recap.

Preprocessing: Classic Techniques

- · Subsumption and Self-subsuming Resolution
- · Bounded Variable Elimination
- Blocked Clause Elimination
- · Solution Reconstruction

Next Up

Relationship between preprocessing techniques and gate encodings

Tseitin encoding E of a gate with output o, function g, and input literals x_1, \ldots, x_n :

$$E \equiv o \leftrightarrow g(x_1,\ldots,x_n)$$

Properties of Gate Encodings

Let a Tseitin encoding $E \equiv o \leftrightarrow g(x_1, \dots, x_n)$ be given, and let $A(X) := \{T \cup \{\overline{x} \mid x \in X \setminus T\} \mid T \in 2^X\}$ denote the set of all assignments to variables in X.

For each input assignment $I \in A(\{x_1, \dots, x_n\})$,

- a) there exists at least one output assignment $O \in \{o, \overline{o}\}$ such that $I \cup O \models E$ (left-totality)
- **b)** there exists at most one output assignment $O \in \{o, \overline{o}\}$ such that $I \cup O \models E$ (right-uniqueness)
- \rightarrow The output is uniquely determined by the input, such that either $I, o \models E$ and $I, \overline{o} \not\models E$ or vice versa.

From the left-totality it follows that a Tseitin encoding E is a satisfiable set of blocked clauses.

Left-Totality of Gate Encodings

Let a Tseitin encoding $E \equiv o \leftrightarrow g(x_1, \dots, x_n)$ be given, it holds that

- a) for each clause $C \in E$, either $o \in C$ or $\overline{o} \in C$
 - **Proof:** The existence of a clause $C \in E$ such that $o \notin vars(C)$ would contradict left-totality, because the assignment falsifiying C, falsifies E for any assignment to o.
- **b)** and all resolvents $R \in E_o \otimes_o E_{\overline{o}}$ are tautological.

Proof: The existence of a non-tautological resolvent $R \in E_o \otimes_o E_{\overline{o}}$ would contradict left-totality, because $E \models R$ and $o \notin \text{vars}(R)$, such that the assignment falsifying R, falsifies E for any assignment to o.

From the left-totality it follows that a Tseitin encoding *E* is a satisfiable set of blocked clauses.

Example (Tseitin encoding $E \equiv o \leftrightarrow x \land y$)

Let a Tseitin encoding $E := \{ \{\neg o, x\}, \{\neg o, y\}, \{o, \neg x, \neg y\} \} \equiv o \leftrightarrow x \land y$ be given, it holds that

- a) all resolvents in $E_o \otimes_o E_{\overline{o}} = \{\{x, \neg x, \neg y\}, \{y, \neg x, \neg y\}\} \equiv \top$ are tautological,
- b) and Blocked Clause Elimination (BCE) would remove all clauses from E.

Questions:

- What does BCE do to $F = \{\{o\}\} \cup E$?
- What does BCE do to $F = \{\{\neg o\}\} \cup E$?
- What does BCE do to $F = \{\{q\}, \{\neg q, o, p\}, \{\neg q, \neg o, \neg p\}\} \cup E$?

Resolving the clauses of a gate encoding on the output literal o results in a set of tautological clauses.

Idea: Optimized Variable Elimination for Gate Encodings E

Let a formula $F = E \cup R$ with gate clauses E and remainder R be given.

Apply variable elimination as follows:

$$(E_{X} \cup R_{X}) \otimes (E_{\overline{X}} \cup R_{\overline{X}}) \equiv (E_{X} \otimes R_{\overline{X}}) \cup (R_{X} \otimes E_{\overline{X}}) \cup (R_{X} \otimes R_{\overline{X}}) \cup (E_{X} \otimes E_{\overline{X}})$$

$$\equiv (E_{X} \otimes R_{\overline{X}}) \cup (R_{X} \otimes E_{\overline{X}}) \cup (R_{X} \otimes R_{\overline{X}}) \qquad (E_{X} \otimes E_{\overline{X}} \equiv \top)$$

$$\equiv (E_{X} \otimes R_{\overline{X}}) \cup (R_{X} \otimes E_{\overline{X}}) \qquad ((E_{X} \otimes R_{\overline{X}}) \cup (R_{X} \otimes E_{\overline{X}}) \models R_{X} \otimes R_{\overline{X}})$$

Proof Idea: Each clause $c \in R_x \otimes R_{\overline{x}}$, derived by resolving $c_x \in R_x$ and $c_{\overline{x}} \in R_{\overline{x}}$, can also be derived by resolving clauses in $R_{\overline{x}} \otimes E_x$ and $E_{\overline{x}} \otimes R_x$.

Recap.

Recap.

- Classic Preprocessing Techniques: Subsumption, Self-subsuming Resolution, Bounded Variable Elimination, Blocked Clause Elimination
- Relationship between Preprocessing Techniques and Gate Encodings

Next Time

Propagation-based Techniques and Proof Checking