

Lógica e Algoritmo

Prof. David S. Tosta

Agenda

• Revisão aula 2

Raciocínio Lógico – Tabela Verdade

Comandos Entrada/Saída

- Fluxogramas ou Diagramas de Fluxo
 - São uma representação gráfica que utilizam formas geométricas padronizadas ligadas por setas de fluxo, para indicar as diversas ações (instruções) e decisões que devem ser seguidas para resolver o problema em questão.

- A Lógica É o ramo da filosofia que cuida das regras do raciocínio.
- Proposição É uma frase que se pretende ou verdadeira ou falsa, não podendo haver uma terceira opção. Toda proposição é uma frase, mas nem toda frase é uma proposição; uma frase é uma proposição apenas quando possui valor de verdade (possibilidade de ser VERDADEIRA ou FALSA).

Ex: O homem é mortal – Proposição

Abra a porta! - frase IMPERATIVA, portanto não é PROPOSIÇÃO

Qual é o seu nome? - frase INTERROGATIVA, não é PROPOSIÇÃO,

- Argumentos Um argumento é constituído por um conjunto de proposições que pretendem provar/demonstrar uma ideia/tese.
- Um tipo de argumento é o silogismo, que é constituído de três proposições declarativas (ou mais) que se conectam de tal modo que a partir das duas primeiras – as premissas -, é possível deduzir a terceira – a conclusão.

Ex: Mariana disse que estaria na biblioteca ou na lanchonete.

Fui até a biblioteca e Mariana não estava lá.

(Logo,) Mariana está na lanchonete.

- Exercício
 - Premissa I: Nem tudo o que os artistas fazem é belo.
 Premissa 2: Tudo o que os artistas fazem é arte.
 - 2) Não podes ser um bom filósofo se não sabes argumentar. Ora, tu sabes argumentar, portanto
 - 3) É verdade que alguns políticos usam argumentos falaciosos. Ora, somente os bons oradores são políticos, então....

- Outros problema de lógica:
 - Qual dos números não pertence a série de números: 1 3 5 7 9 10 11 13
 - 2) O próximo número da sequencia numérica 10, 4, 18, 5, 28, 6, é:
 - Usando uma jangada, um camponês precisa atravessar uma cabra, um leão e um fardo de capim para a outra margem do rio. A jangada só tem lugar para ele e mais outra coisa. O que ele deve fazer para atravessar o rio com seus pertences intactos?
 - 4) Considere 3 vasos com capacidades de 8, 5 e 3 litros sendo que o o vaso de 8 litros esta cheio. Como fazer para dividir 4 litros em 2 vasos ?

- Operações Lógicas:
 - São usadas para formar novas proposições a partir de proposições existentes
 - Considerando p e q duas proposições genéricas, pode-se aplicar as seguintes operações lógicas básicas sobre elas

Operação	Símbolo	Significado
Negação	?	Não
Conjunção	^	E
Disjunção	V	OU

- Exemplos de aplicação das operações lógica :
 - Considere:
 - p = 7 é primo = (V)
 - q = 4 'e impar = (F)
 - Então:
 - 4 NÃO é impar = ~q
 - 7 NÃO é primo = ~p
 - 7 é primo E 4 NÃO é impar = p ^ ~q
 - 7 é primo E 4 é impar = p ^ q
 - 4 é impar E 7 é primo = q ^ p

Tabela Verdade:

р	q	~p	p ^ q	pvq
V	>	F	V	V
V	Щ	F	F	V
F	V	V	F	V
F	F	V	F	F

- Não (~) troca o valor lógico. Se é F passa a ser V e vice-versa
- E (^) só tem valor V quando as duas proposições forem V, basta uma proposição ser F para o resultado ser F
- OU (v) só tem valor F quando as duas proposições forem F, basta uma proposição ser V para o resultado ser V

- Exercícios:
- Considerando p = V, q = F e r = V, resolva as seguintes expressões lógicas
 - ° p ^ q
 - ∘ (~p) ^ q
 - o (p v q ^ r) ^ ~p

Operadores Relacionais

Operador	Exemplo
< (Menor)	var1 < 5; Verifica se o conteúdo de var1 é menor que 5
> (Maior)	var1 > 5; Verifica se o conteúdo de var1 é maior que 5
<= (Menor ou Igual)	var1<= 5; Verifica se o conteúdo de var1 é menor ou igual a 5
>= (Maior ou Igual)	var1 >= 5; Verifica se o conteúdo de var1 é maior ou igual a 5
= (Igual)	var1= 5; Verifica se o conteúdo de var1 é igual a 5
<> (Desigualdade)	var1 <> 5; Verifica se o conteúdo de var1 é desigual a 5

Operadores Lógicos
 E, OU e NÃO

Р	q	рЕq	p OU q
٧	٧	٧	V
V	F	F	V
F	٧	F	V
F	F	F	F

- Comando de Entrada de Dados Leia(variável)
- Comando de Saída de Dados Escreva (variável)
- Documentação * ou /* */

"Escreva os comentários no momento em que estiver escrevendo o algoritmo. Um algoritmo não documentado é um dos piores erros que um programador pode cometer e é sinal de amadorismo (mesmo com dez anos de experiência). Como o objetivo de se escrever comentários é facilitar o entendimento do algoritmo, eles devem ser tão bem concebidos quanto o próprio algoritmo."

Exercício I

 Elaborar um algoritmo que efetue a apresentação do valor da conversão em real (R\$) de um valor lido em dólar (US\$). O algoritmo deverá solicitar o valor da cotação do dólar e também a quantidade de dólares disponíveis com o usuário.

- Exercício II
 - Faça um algoritmo que receba um valor que foi depositado e exiba o valor com rendimento após 3 meses. Considere fixo o juro da poupança em 0,70% a. m