Jack Lipson lesson

Page 91, Problem 1

Proof. Say $f: C \to C$ is a map that is NOT homeomorphic to the identity where C is the unit circle. Suppose also $f(x) \neq -x$ for all $x \in C$. Thus, no antipodal points exist (taking points as (x,y) with additive inverse (-x, -y)) so no straight line between the identity and f(x) pass through the origin. Therefore, via example 2 on page 89, we can define the homotopy from fto $i F: C \times I \to C$ as

$$F(x,t) = \frac{(1-t)f(x) + tx}{\|(1-t)f(x) + tx\|}.$$

 $F(x,t)=\frac{(1-t)f(x)+tx}{||(1-t)f(x)+tx||}.$ Thus, $f(x) \underset{F}\cong i$ which is a contradiction so there exists some point $x \in C$ so f(x)=-x.

Page 95, Problem 13

Proof. Say $f: C \to C$ is a map that is NOT homeomorphic to the identity where C is the unit circle. Suppose also $f(x) \neq -x$ for all $x \in C$. Thus, no antipodal points exist (taking points as (x,y) with additive inverse (-x, -y)) so no straight line between the identity and f(x) pass through the origin. Therefore, via example 2 on page 89, we can define the homotopy from fto $i F: C \times I \to C$ as

$$F(x,t) = \frac{(1-t)f(x) + tx}{||(1-t)f(x) + tx||}.$$

Thus, $f(x) \cong i$ which is a contradiction so there exists some point $x \in C$ so f(x) = -x.