

Bioquímica dos Alimentos

ALTERAÇÕES NOS CARBOIDRATOS DE ALIMENTOS

Prof. M.Sc. Yuri Albuquerque

CARBOIDRATOS

AÇÚCARES REDUTORES

- Capacidade de reduzir substratos, sendo, portanto, oxidados no processo
- Aldoses são mais redutores que as cetoses

Pode ocorrer por 3 mecanismos

Mecanismo	Requerimento de oxigênio	Requerimento de grupos amino	pH ótimo	Produto final
Caramelização	Não	Não	3,0 a 9,0	Caramelo (melanoidinas)
Maillard	Não	Sim	>7,0	Melanoidinas
Oxidação de ácido ascórbico	Sim	Não	3,0 a 5,0	Melanoidinas

CARAMELIZAÇÃO

- Durante o aquecimento de carboidratos, particularmente açúcares e xaropes de açúcares
- Degradação de açúcares na ausência de aminoácidos e proteínas.
- Se oraciones no estado sólido são pirolisados a temperaturas maiores que 120 °C, formando produtos de degradação de alto peso molecular e escuros, denominados caramelos.

Mecanismo da reação:

- Desidratação do açúcar redutor provocando quebras e formações de novas ligações glicosídicas
 - 2. Formação de um anel hemiacetálico
- 3. Formação de compostos furânicos (hidroximetilfurfural), tais como as melanoidinas (caramelos)

CARAMELIZAÇÃO EM MEIO BÁSICO

1^a Etapa:

 Glicose ou outro açúcar redutor sofre isomerização em C1 passando H de C2 para C1 → forma dienol

2^a Etapa:

- Pode seguir a formação de HMF
- Outro caminho
 ocorre
 fragmentação do
 enol formando
 compostos de 3
 átomos de carbono:
 compostos
 altamente reativos

Menos HMF formado → menos cor e sabor mais intenso (mais compostos voláteis

3ª Etapa: Polimerização do HMF

CARAMELIZAÇÃO EM MEIO ÁCIDO

1^a Etapa:

 Glicose ou outro açúcar redutor sofre isomerização em C1 passando H de C2 para C1 → forma dienol

2^a Etapa:

-Etapa das desidratações: saem 3 moléculas de H₂O

- Formação da ligação hemicetálica, forma o HMF

Mais HMF formado → mais cor e sabor menos intenso (menos compostos voláteis

3ª Etapa: Polimerização do HMF

REAÇÃO DE CARAMELIZAÇÃO NA INDÚSTRIA DE ALIMENTOS

Produção do corante caramelo ácido para bebidas à base de cola

Síntese de malteol e furaneol (flavorizantes)

REAÇÃO DE CARAMELIZAÇÃO NA DETECÇÃO DE FRAUDES

Durantre a caramelização, podem ser formadas moléculas de anidridos de difrutose (ADF)

Se caramelo for a adicionado ao mel (fraude), quando ele for aquecido será detectado ADF

* Requisitos

+ Açúcares redutores → pentoses possuem maior velocidade
 de reação

x Requisitos

+ Aminoácidos

Requisitos

- + Temperaturas elevadas (acima de 40°C)
- + $A_w 0,4 a 0,7$
- + pH alcalino
- + Alta pressão
- + Cu e Fe aceleram a reação; Mn e Sn inibem

Reação envolvendo o grupo carbonila de um açúcar redutor e grupos amino de aminoácidos.

* 1ª Etapa (inicial): Reação de carbonilamina

- Condensação da carbonila do açúcar redutor (glicose) com o grupamento amino do aminoácido
- 2. Desidratação formando uma Base de Schiff
- 3. Rearranjo para a forma cíclica formando a glicosilamina ou frutosilamina N-substituída (altamente instáveis)

- 2ª Etapa (Intermediária: Reações de isomerização)
 - +Rearranjo de Amadori Isomerização da glicosilamina Nsubstituída (aldosilamina) em frutosilamina
 - (cetosilamina)
 - +Rearranjo de Heyns Isomerização da frutosilamina N-
 - substituída (cetosilamina) em glicosilamina
 - (aldosilamina)

- × 3^a Etapa (final)
 - Conversão das cetosilaminas/aldosilaminas em:
 - Hidroximetilfurfural (pH mais baixo)
 - Redutonas
 - Produtos de cisão (acetois, diacetis etc)

pH mais alto

× 3ª Etapa (final)

- Conversão redutonas → aldois e aldeídos
- Conversão hidrometilfurfural → aldois
- Descarboxilação dos produtos da cisão → aldois, aldeídos e compostos heterocíclicos voláteis aromáticos e flavorizantes (degradação de Strecker)
- Polimerização de aldois e aldeídos com grupamento amino formando melanoidinas

PRINCIPAIS ESTÁGIOS DA REAÇÃO DE MAILLARD

REAÇÃO DE MAILLARD NA INDÚSTRIA DE ALIMENTOS

- Reação entre a proteína e o carboidrato do leite sob aquecimento
 - Diminuição do valor nutritivo das proteínas

FORMAÇÃO DE ACRILAMIDA PELA ASPARAGINA ATRAVÉS DA REAÇÃO DE STRECKER

- Reação entre a asparagina da carne e carboidratos da carne sob aquecimento (T>120°C)

COMPOSTOS AROMÁTICOS E FLAVORIZANTES FORMADOS POR REAÇÃO DE STRECKER

- Pirazinas
 - Pirrois
- Oxazois e oxazolinas
 - Tiazois

OXIDAÇÃO DO ÁCIDO ASCÓRBICO

- * A vitamina C oxida rapidamente em solução aquosa (sucos de frutas como o limão, laranjas)
- Exposição ao ar, calor, luz e metais (cobre, ferro)
- ★ Anaerobiose → velocidade <<< aerobiose
 </p>

OXIDAÇÃO DO ÁCIDO ASCÓRBICO

CONTROLE DO ESCURECIMENTO NÃO ENZIMÁTICO

- Baixas temperaturas as reações se intensificam com o aumento da temperatura
- * Baixa umidade as velocidade das reações aumentam com o aumento da umidade relativa e depois diminui
 - Ex.: Leite em pó
 - * Aw = 0,6 (escurecimento mais intenso)
 - * Aw<0,4 ou Aw>0,7 (escurecimento não ocorre)

EFEITO DA UMIDADE NO ESCURECIMENTO NÃO ENZIMÁTICO

CONTROLE DO ESCURECIMENTO NÃO ENZIMÁTICO

* Adição de aditivos (metabissulfito de sódio) – sulfitos bloqueiam o grupo carbonila de açúcares redutores e impede a condensação com os aminoácidos

CONTROLE DO ESCURECIMENTO NÃO ENZIMÁTICO

* Ácidos aspártico e glutâmico

Table I. Hunter L Values of Control and Treated Potato Chips a

replicate	control	dipped in aspartic acid	dipped in glutamic acid
1	39.0 ^b	47.6	44.2
2	38.3	44.6	44.7
3	38.2	45.3	43.0
4	39.0	47.0	43.0
5	37.9	46.8	43.7
6	36.7	46.6	43.9
7	39.5	47.2	43.6
mean	38.4 ± 0.57^{c}	46.4 ± 1.00	43.7 ± 0.57

Quanto maior o valor L menor o escurecimento
 Inibição da reação de Maillard (reações ocorrem em pH alcalino)

Por que produtos fermentados sofrem menos reações de escurecimento não enzimático?

 Degradação dos açúcares durante a fermentação
 Redução do pH inibe as reações de Maillard

- * Escurecimento oriundo de reações catalisadas por enzimas genericamente conhecidas como polifenoloxidases (PPOs) presentes nas células do vegetal.
- * As PPO encontram-se nos plastídeos e os substratos fenólicos estão nos vacúolos.
- Durante o esmagamento, ambos os compartimentos são destruídos e as enzimas são ativadas oxidando os compostos fenólicos rapidamente
- ★ Durante o estresse → maior produção de compostos fenólicos

* A ação desta enzima resulta na formação de pigmentos escuros (benzoquinona), frequentemente acompanhados de mudanças indesejáveis na aparência e nas propriedades organolépticas do produto, resultando em diminuição da vida útil e do valor de mercado.

- Grupos de compostos fenólicos em vegetais
 - + Fenois simples
 - × Monofenois tirosina, dopamina
 - × Difenois catecol

- * Grupos de compostos fenólicos em vegetais
 - + Ácidos fenólicos
 - × Ácidos sintetizados a partir do ácido benzoico
 - × Ex.: ácido gálico, ácido protocatecuico, vanílico, siríngico

- Grupos de compostos fenólicos em vegetais
 - + Derivados do ácido cinâmico
 - × Ácidos sintetizados a partir do ácido benzoico
 - × Ex.: ácido clorogênico, ácido cafeico

- * Grupos de compostos fenólicos em vegetais
 - + Flavonoides
 - × Derivados da flavona
 - x Ex.: catequinas, antocianinas, flavonois (canferol, quercetina)

- * Grupos de compostos fenólicos em vegetais
 - + Taninos
 - × Ésteres de ácidos fenólicos

SUBSTRATOS DAS PPO

Produto	Substrato
Banana	Dopamina
Maçã	Ácido clorogênico
Cacau	Catequinas
Café	Ácido clorogênico, ácido caféico
Berinjela	Ácido caféico, ácido cinâmico
Alface	Tirosina
Cogumelo	Tirosina
Batata	Tirosina, ácido clorogênico, ácido caféico
Chá	Flavonóides, catequinas, taninos
Pêssego	Taninos
Pêra	Ácido clorogênico

MECANISMO DE REAÇÃO DAS PPO

MECANISMO DE REAÇÃO DAS PPO

Phenoloxidase

$$CH_2 CHCOOH + O + O CH_2 CHCOOH + O CH_2 CHCOOH NH_2 CHCOOH N$$

Reações ocorrem apenas na presença de:

ENZIMA + SUBSTRATO + OXIGÊNIO

- Ação do calor
- Exclusão ou remoção dos substratos
- Redução do pH
- Adição de substâncias redutoras

x Ação do calor

- + Exposição por curto período de tempo do tecido à temperatura de 70 a 90° C
- + <u>Branqueamento</u>: utilizado em pré-tratamentos de frutas e vegetais para enlatamento, congelamento e desidratação

- * Exclusão ou remoção de substratos ou cofatores
 - + O₂: Atmosfera controlada e embalagens adequadas (à vácuo, impermeáveis, troca pelo N₂)

Inibidores da PPO

- + Complexação de metais que se ligam ao grupo prostético e sítio ativo da enzima (dietilditiocarbamato de sódio, etilxanato de potássio, EDTA)
- + Inibição competitiva (resorcinol difenol estruturalmente semelhante aos substratos da PPO)

Emprego de acidulantes

- + Alteração química do sítio ativo enzimático
- + PPO atuam em pH 4,0-7,0 (pouca atividade em pH<3,0)
- + Agentes redutores (redução das benzoquinonas em difenois)

+ Ex: ácido cítrico, málico, fosfórico, ascórbico

Emprego de ácidos

- + Inibição pelo substrato
- + Emprego de ácidos fenólicos (ácidos cinâmicos, ácidos benzoicos)

Compostos a base de enxofre

- + Atuam como agentes redutores (ex.: sulfitos, cisteína)
- + Combinam-se quimicamente com o-quinonas formando produtos estáveis e incolores (ex.: cisteína)

* Emprego de ciclodextrina

+ Estrutura química forma uma malha que aprisiona as benzoquinonas

ESCURECIMENTO ENZIMÁTICO DESEJÁVEL

