TABLE OF CONTENTS

WARMUP

Evaluate $\int_3^7 \frac{1}{\sqrt{x^2 + 2x + 1}} dx$.

WARMUP

Evaluate $\int_{3}^{7} \frac{1}{\sqrt{x^2 + 2x + 1}} dx.$

$$\int_{3}^{7} \frac{1}{\sqrt{x^{2} + 2x + 1}} dx = \int_{3}^{7} \frac{1}{\sqrt{(x+1)^{2}}} dx$$
$$= \int_{3}^{7} \frac{1}{|x+1|} dx$$

When $3 \le x \le 7$, we have |x + 1| = x + 1.

$$= \int_{3}^{7} \frac{1}{x+1} dx$$
$$= [\log |x+1|]_{3}^{7}$$
$$= \log 8 - \log 4 = \log 2$$

Idea: $\sqrt{\text{(something)}^2} = |\text{something}|$. We cancelled off the square root.

Evaluate $\int \frac{1}{\sqrt{x^2+1}} dx$.

Evaluate
$$\int \frac{1}{\sqrt{x^2+1}} dx$$
.

We still want to cancel off the square root, but $x^2 + 1$ is not obviously of the form (something)².

Let $x = \tan \theta$, $dx = \sec^2 \theta d\theta$.

$$\int \frac{1}{\sqrt{x^2 + 1}} dx = \int \frac{1}{\sqrt{\tan^2 \theta + 1}} \sec^2 \theta d\theta = \int \frac{\sec^2 \theta}{\sqrt{\sec^2 \theta}} d\theta$$
$$= \int \frac{\sec^2 \theta}{\sec \theta} d\theta = \int \sec \theta d\theta = \log|\sec \theta + \tan \theta| + C$$

We need to get these back in terms of x. From our substitution, we know $\tan \theta = x$. From simplifying our denominator, we also know $\sec \theta = \sqrt{x^2 + 1}$.

$$= \log \left| \sqrt{x^2 + 1} + x \right| + C$$

Same idea: $\sqrt{\text{(something)}^2} = |\text{something}|$; cancel off the square root.

CHECK OUR WORK

Let's verify that
$$\int \frac{1}{\sqrt{x^2 + 1}} = \log \left| \sqrt{x^2 + 1} + x \right| + C$$
. Seems improbable, right?

CHECK OUR WORK

Let's verify that $\int \frac{1}{\sqrt{x^2 + 1}} = \log \left| \sqrt{x^2 + 1} + x \right| + C$. Seems improbable, right?

$$\frac{d}{dx} \left[\log \left| \sqrt{x^2 + 1} + x \right| + C \right] = \frac{1}{\sqrt{x^2 + 1} + x} \cdot \left(\frac{2x}{2\sqrt{x^2 + 1}} + 1 \right)$$
$$= \frac{x + \sqrt{x^2 + 1}}{(\sqrt{x^2 + 1} + x)\sqrt{x^2 + 1}} = \frac{1}{\sqrt{x^2 + 1}}$$

So, our answer works!

An integrand has the form: $\sqrt{\text{quadratic}}$, and we'd like to cancel off the square root.

- An integrand has the form: $\sqrt{\text{quadratic}}$, and we'd like to cancel off the square root.
- ► So, we need to write our quadratic expression as a perfect square. Choose a helpful substitution:

- An integrand has the form: $\sqrt{\text{quadratic}}$, and we'd like to cancel off the square root.
- ➤ So, we need to write our quadratic expression as a perfect square. Choose a helpful substitution:

$$x = \sin \theta, 1 - \sin^2 \theta = \cos^2 \theta$$
 changes $\sqrt{1 - x^2}$ into

- An integrand has the form: $\sqrt{\text{quadratic}}$, and we'd like to cancel off the square root.
- ► So, we need to write our quadratic expression as a perfect square. Choose a helpful substitution:

$$ightharpoonup x = \sin \theta$$
, $1 - \sin^2 \theta = \cos^2 \theta$ changes $\sqrt{1 - x^2}$ into $\sqrt{\cos^2 \theta} = |\cos \theta|$

- An integrand has the form: $\sqrt{\text{quadratic}}$, and we'd like to cancel off the square root.
- ➤ So, we need to write our quadratic expression as a perfect square. Choose a helpful substitution:

$$ightharpoonup x = \sin \theta$$
, $1 - \sin^2 \theta = \cos^2 \theta$ changes $\sqrt{1 - x^2}$ into $\sqrt{\cos^2 \theta} = |\cos \theta|$

$$ightharpoonup x = \tan \theta$$
, $1 + \tan^2 \theta = \sec^2 \theta$ changes $\sqrt{1 + x^2}$ into

- An integrand has the form: $\sqrt{\text{quadratic}}$, and we'd like to cancel off the square root.
- ➤ So, we need to write our quadratic expression as a perfect square. Choose a helpful substitution:

$$ightharpoonup x = \sin \theta$$
, $1 - \sin^2 \theta = \cos^2 \theta$ changes $\sqrt{1 - x^2}$ into $\sqrt{\cos^2 \theta} = |\cos \theta|$

$$ightharpoonup x = \tan \theta, 1 + \tan^2 \theta = \sec^2 \theta \text{ changes } \sqrt{1 + x^2} \text{ into } \sqrt{\sec^2 \theta} = |\sec \theta|$$

- An integrand has the form: $\sqrt{\text{quadratic}}$, and we'd like to cancel off the square root.
- ➤ So, we need to write our quadratic expression as a perfect square. Choose a helpful substitution:
 - $ightharpoonup x = \sin \theta$, $1 \sin^2 \theta = \cos^2 \theta$ changes $\sqrt{1 x^2}$ into $\sqrt{\cos^2 \theta} = |\cos \theta|$
 - $ightharpoonup x = \tan \theta$, $1 + \tan^2 \theta = \sec^2 \theta$ changes $\sqrt{1 + x^2}$ into $\sqrt{\sec^2 \theta} = |\sec \theta|$
 - $= \sec \theta, \sec^2 \theta 1 = \tan^2 \theta \text{ changes } \sqrt{x^2 1} \text{ into }$

- An integrand has the form: $\sqrt{\text{quadratic}}$, and we'd like to cancel off the square root.
- ➤ So, we need to write our quadratic expression as a perfect square. Choose a helpful substitution:
 - $ightharpoonup x = \sin \theta$, $1 \sin^2 \theta = \cos^2 \theta$ changes $\sqrt{1 x^2}$ into $\sqrt{\cos^2 \theta} = |\cos \theta|$
 - $ightharpoonup x = \tan \theta$, $1 + \tan^2 \theta = \sec^2 \theta$ changes $\sqrt{1 + x^2}$ into $\sqrt{\sec^2 \theta} = |\sec \theta|$
 - $ightharpoonup x = \sec \theta, \sec^2 \theta 1 = \tan^2 \theta \text{ changes } \sqrt{x^2 1} \text{ into } \sqrt{\tan^2 \theta} = |\tan \theta|$

- An integrand has the form: $\sqrt{\text{quadratic}}$, and we'd like to cancel off the square root.
- ► So, we need to write our quadratic expression as a perfect square. Choose a helpful substitution:

$$ightharpoonup x = \sin \theta$$
, $1 - \sin^2 \theta = \cos^2 \theta$ changes $\sqrt{1 - x^2}$ into $\sqrt{\cos^2 \theta} = |\cos \theta|$

$$ightharpoonup x = \tan \theta, 1 + \tan^2 \theta = \sec^2 \theta \text{ changes } \sqrt{1 + x^2} \text{ into } \sqrt{\sec^2 \theta} = |\sec \theta|$$

$$ightharpoonup x = \sec \theta, \sec^2 \theta - 1 = \tan^2 \theta \text{ changes } \sqrt{x^2 - 1} \text{ into } \sqrt{\tan^2 \theta} = |\tan \theta|$$

► After integrating, convert back to the original variable (possibly using a triangle–more details later)

$$1 - \sin^2 \theta = \cos^2 \theta \qquad \qquad 1 + \tan^2 \theta = \sec^2 \theta$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$\sec^2\theta - 1 = \tan^2\theta$$

►
$$\sqrt{x^2 - 1}$$

►
$$\sqrt{x^2 + 1}$$

$$ightharpoonup \sqrt{1-x^2}$$

$$1 - \sin^2 \theta = \cos^2 \theta \qquad \qquad 1 + \tan^2 \theta = \sec^2 \theta$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$\sec^2\theta - 1 = \tan^2\theta$$

►
$$\sqrt{x^2 + 1}$$

$$ightharpoonup \sqrt{1-x^2}$$

$$1 - \sin^2 \theta = \cos^2 \theta \qquad \qquad 1 + \tan^2 \theta = \sec^2 \theta$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$\sec^2\theta - 1 = \tan^2\theta$$

$$ightharpoonup \sqrt{1-x^2}$$

$$1 - \sin^2 \theta = \cos^2 \theta \qquad \qquad 1 + \tan^2 \theta = \sec^2 \theta \qquad \qquad \sec^2 \theta - 1 = \tan^2 \theta$$

- ► $\sqrt{1-x^2}$ Let $x = \sin \theta$ so $\sqrt{1-x^2}$ becomes $\sqrt{1-\sin^2 \theta} = \sqrt{\cos^2 \theta} = |\cos \theta|$ (Alternately, $x = \cos \theta$ works as well)

$$1 - \sin^2 \theta = \cos^2 \theta$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$1 - \sin^2 \theta = \cos^2 \theta \qquad \qquad 1 + \tan^2 \theta = \sec^2 \theta \qquad \qquad \sec^2 \theta - 1 = \tan^2 \theta$$

$$ightharpoonup \sqrt{x^2+7}$$

$$ightharpoonup \sqrt{3-2x^2}$$

$$1-\sin^2\theta=\cos^2\theta \hspace{1cm} 1+\tan^2\theta=\sec^2\theta \hspace{1cm} \sec^2\theta-1=\tan^2\theta$$

- ► $\sqrt{x^2 + 7}$ Adjust a given identity by multiplying both sides by 7: $7 \tan^2 \theta + 7 = 7 \sec^2 \theta$. Now we see we want $x^2 = 7 \tan^2 \theta$. That is, $x = \sqrt{7} \tan \theta$: $\sqrt{x^2 + 7} = \sqrt{7 \tan^2 \theta + 7} = \sqrt{7(\sec^2 \theta)} = \sqrt{7} |\sec \theta|$
- ► $\sqrt{3-2x^2}$

$$1 - \sin^2 \theta = \cos^2 \theta \qquad \qquad 1 + \tan^2 \theta = \sec^2 \theta \qquad \qquad \sec^2 \theta - 1 = \tan^2 \theta$$

$$\sec^2 \theta - 1 = \tan^2 \theta$$

Choose a trigonometric substitution that will allow the square root to cancel out of the following expressions:

 $\rightarrow \sqrt{x^2+7}$

Adjust a given identity by multiplying both sides by 7: $7 \tan^2 \theta + 7 = 7 \sec^2 \theta$. Now we see we want $x^2 = 7 \tan^2 \theta$. That is. $x = \sqrt{7} \tan \theta$:

$$\sqrt{x^2 + 7} = \sqrt{7 \tan^2 \theta + 7} = \sqrt{7(\sec^2 \theta)} = \sqrt{7} |\sec \theta|$$

► $\sqrt{3-2x^2}$

Adjust a given identity by multiplying both sides by 3:

$$3-3\sin^2\theta=3\cos^2\theta$$
. Now we see we want $2x^2=3\sin^2\theta$, so $x=\sqrt{\frac{3}{2}}\sin\theta$:

$$\sqrt{3-2x^2} = \sqrt{3-2\left(\frac{3}{2}\sin^2\theta\right)} = \sqrt{3-3\sin^2\theta} = \sqrt{3\cos^2\theta} = \sqrt{3}|\cos\theta|$$

Consider the substitution $x = \sin \theta$, $dx = \cos \theta d\theta$ for the integral:

$$\int_0^1 \sqrt{1-x^2} \, \mathrm{d}x$$

When x = 0 (lower limit of integration), what is θ ?

When x = 1 (upper limit of integration), what is θ ?

Consider the substitution $x = \sin \theta$, $dx = \cos \theta d\theta$ for the integral:

$$\int_0^1 \sqrt{1-x^2} \, \mathrm{d}x$$

When x = 0 (lower limit of integration), what is θ ?

When x = 1 (upper limit of integration), what is θ ?

If x=0, then $\sin\theta=0$, but there are infinitely many values of θ that could make this true. To use the substitution $x=\sin\theta$, we need the function $x=\sin\theta$ to be invertible. That way, we can unambiguously convert between x and θ . With that in mind, we'll actually set $\theta=\arcsin x$. Now θ is restricted to the interval $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

$$\int_{0}^{1} \sqrt{1 - x^{2}} \, dx = \int_{\arcsin 0}^{\arcsin 1} \sqrt{1 - \sin^{2} \theta} \cos \theta \, d\theta = \int_{0}^{\frac{\pi}{2}} \sqrt{\cos^{2} \theta} \cdot \cos \theta \, d\theta$$
$$= \int_{0}^{\frac{\pi}{2}} |\cos \theta| \cdot \cos \theta \, d\theta$$

For $0 \le \theta \le \frac{\pi}{2}$, we have $\cos \theta \ge 0$, so $|\cos \theta| = \cos \theta$.

More generally, suppose a is a positive constant and we use the substitution $x = a \sin \theta$ for the term $\sqrt{a^2 - x^2}$.

More generally, suppose a is a positive constant and we use the substitution $x = a \sin \theta$ for the term $\sqrt{a^2 - x^2}$.

$$\bullet$$
 $\theta = \arcsin\left(\frac{x}{a}\right)$, so $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

More generally, suppose a is a positive constant and we use the substitution $x = a \sin \theta$ for the term $\sqrt{a^2 - x^2}$.

$$\bullet$$
 $\theta = \arcsin\left(\frac{x}{a}\right)$, so $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

•
$$\sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \sin^2 \theta} = \sqrt{a^2 \cos^2 \theta} = a |\cos \theta|$$

More generally, suppose a is a positive constant and we use the substitution $x = a \sin \theta$ for the term $\sqrt{a^2 - x^2}$.

$$\bullet$$
 $\theta = \arcsin\left(\frac{x}{a}\right)$, so $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

•
$$\sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \sin^2 \theta} = \sqrt{a^2 \cos^2 \theta} = a |\cos \theta|$$

▶ On the interval $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, $\cos \theta \ge 0$, so $|\cos \theta| = \cos \theta$

More generally, suppose a is a positive constant and we use the substitution $x = a \sin \theta$ for the term $\sqrt{a^2 - x^2}$.

- \bullet $\theta = \arcsin\left(\frac{x}{a}\right)$, so $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$
- $\sqrt{a^2 x^2} = \sqrt{a^2 a^2 \sin^2 \theta} = \sqrt{a^2 \cos^2 \theta} = a |\cos \theta|$
- ▶ On the interval $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, $\cos \theta \ge 0$, so $|\cos \theta| = \cos \theta$

▶ So, in general, when we use the substitution $x = \sin \theta$ with trigonometric substitution, we can expect $|\cos \theta| = \cos \theta$.

$$\bullet$$
 $\theta = \arctan\left(\frac{x}{a}\right)$, so $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

•
$$\theta = \arctan\left(\frac{x}{a}\right)$$
, so $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

- \bullet $\theta = \arctan\left(\frac{x}{a}\right)$, so $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$
- On the interval $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, $\cos \theta \ge 0$, so $|\cos \theta| = \cos \theta$ and $|\sec \theta| = \sec \theta$.

Now, consider the substitution $x = a \tan \theta$ for $\sqrt{a^2 + x^2}$, where a is a positive constant.

- $\theta = \arctan\left(\frac{x}{a}\right)$, so $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$
- $\sqrt{a^2 + x^2} = \sqrt{a^2 + a^2 \tan^2 \theta} = \sqrt{a^2 \sec^2 \theta} = \frac{a}{|\cos \theta|}$
- On the interval $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, $\cos \theta \ge 0$, so $|\cos \theta| = \cos \theta$ and $|\sec \theta| = \sec \theta$.

▶ So, in general, when we use the substitution $x = \tan \theta$ with trigonometric substitution, we can expect $|\sec \theta| = \sec \theta$.

Finally, consider the substitution $x = a \sec \theta$ for $\sqrt{x^2 - a^2}$, where a is a positive constant.

▶
$$\sec \theta = \frac{x}{a}$$
, so $\cos \theta = \frac{a}{x}$, so $\theta = \arccos \left(\frac{a}{x}\right)$. Then $0 \le \theta \le \pi$

$$ightharpoonup$$
 $\sec \theta = \frac{x}{a}$, so $\cos \theta = \frac{a}{x}$, so $\theta = \arccos\left(\frac{a}{x}\right)$. Then $0 \le \theta \le \pi$

•
$$\sqrt{x^2 - a^2} = \sqrt{a^2 \sec^2 \theta - a^2} = \sqrt{a^2 \tan^2 \theta} = a |\tan \theta|$$

- ightharpoonup $\sec \theta = \frac{x}{a}$, so $\cos \theta = \frac{a}{r}$, so $\theta = \arccos\left(\frac{a}{r}\right)$. Then $0 \le \theta \le \pi$
- $\sqrt{x^2 a^2} = \sqrt{a^2 \sec^2 \theta a^2} = \sqrt{a^2 \tan^2 \theta} = a |\tan \theta|$
- ► Now this case gets slightly more complicated than the others:

- ightharpoonup $\sec \theta = \frac{x}{a}$, so $\cos \theta = \frac{a}{x}$, so $\theta = \arccos\left(\frac{a}{x}\right)$. Then $0 \le \theta \le \pi$
- $\sqrt{x^2 a^2} = \sqrt{a^2 \sec^2 \theta a^2} = \sqrt{a^2 \tan^2 \theta} = a |\tan \theta|$
- ► Now this case gets slightly more complicated than the others:
 - ► For $\sqrt{x^2 a^2}$ to be defined, we need $x^2 \ge a^2$. I.e. $x \ge a$ or $x \le -a$.

- ightharpoonup $\sec \theta = \frac{x}{a}$, so $\cos \theta = \frac{a}{r}$, so $\theta = \arccos\left(\frac{a}{r}\right)$. Then $0 \le \theta \le \pi$
- $\sqrt{x^2 a^2} = \sqrt{a^2 \sec^2 \theta a^2} = \sqrt{a^2 \tan^2 \theta} = a |\tan \theta|$
- ► Now this case gets slightly more complicated than the others:
 - ► For $\sqrt{x^2 a^2}$ to be defined, we need $x^2 \ge a^2$. I.e. $x \ge a$ or $x \le -a$.
 - ▶ When $x \ge a$, we have $0 \le \theta < \frac{\pi}{2}$, $\tan \theta \ge 0$, so $|\tan \theta| = \tan \theta$.

- ightharpoonup $\sec \theta = \frac{x}{a}$, so $\cos \theta = \frac{a}{x}$, so $\theta = \arccos\left(\frac{a}{x}\right)$. Then $0 \le \theta \le \pi$
- $\sqrt{x^2 a^2} = \sqrt{a^2 \sec^2 \theta a^2} = \sqrt{a^2 \tan^2 \theta} = a |\tan \theta|$
- ► Now this case gets slightly more complicated than the others:
 - For $\sqrt{x^2 a^2}$ to be defined, we need $x^2 \ge a^2$. I.e. $x \ge a$ or $x \le -a$.
 - ▶ When $x \ge a$, we have $0 \le \theta < \frac{\pi}{2}$, $\tan \theta \ge 0$, so $|\tan \theta| = \tan \theta$.
 - ▶ When $x \le -a$, we have $\frac{\pi}{2} < \theta \le \pi$, $\tan \theta < 0$, so $|\tan \theta| = -\tan \theta$.

$$y = \sqrt{\tan^2 \theta} = |\tan \theta|$$

ABSOLUTE VALUES

From now on, we will assume:

- ▶ With the substitution $x = a \sin \theta$ for $\sqrt{a^2 x^2}$, $|\cos \theta| = \cos \theta$
- ▶ With the substitution $x = a \tan \theta$ for $\sqrt{a^2 + x^2}$, $|\sec \theta| = \sec \theta$

<u>Identities</u>

$$1 - \sin^2 \theta = \cos^2 \theta \qquad \sin(2\theta) = 2\sin\theta\cos\theta$$

$$1 + \tan^2 \theta = \sec^2 \theta \qquad \sin^2 \theta = \frac{1 - \cos(2\theta)}{2}$$

$$\sec^2 \theta - 1 = \tan^2 \theta \qquad \cos^2 \theta = \frac{1 + \cos(2\theta)}{2}$$

Evaluate
$$\int_0^1 (1+x^2)^{-3/2} dx$$

Evaluate $\int_0^1 (1+x^2)^{-3/2} dx$

Evaluate $\int_{0}^{1} (1+x^{2})^{-3/2} dx$

Let $x = \tan \theta$, $dx = \sec^2 \theta \ d\theta$. When x = 0, then $\theta = \arctan 0 = 0$; when x = 1, then $\theta = \arctan 1 = \frac{\pi}{4}$.

$$\int_{0}^{1} (1+x^{2})^{-3/2} dx = \int_{\theta=0}^{\theta=\pi/4} \frac{1}{\sqrt{1+\tan^{2}\theta^{3}}} \sec^{2}\theta d\theta$$

$$= \int_{0}^{\pi/4} \frac{\sec^{2}\theta}{\sqrt{\sec^{2}\theta^{3}}} d\theta = \int_{0}^{\pi/4} \frac{\sec^{2}\theta}{|\sec\theta|^{3}} d\theta$$

$$= \int_{0}^{\pi/4} \frac{1}{|\sec\theta|} d\theta = \int_{0}^{\pi/4} |\cos\theta| d\theta$$

Given our previous investigation,

$$= \int_0^{\pi/4} \cos \theta \, d\theta = \left[\sin \theta \right]_0^{\pi/4}$$
$$= \sin \frac{\pi}{4} - \sin 0 = \frac{1}{\sqrt{2}}$$

Identities

$$1 - \sin^2 \theta = \cos^2 \theta \qquad \sin(2\theta) = \cos \theta$$

$$1 + \tan^2 \theta = \sec^2 \theta \qquad \sin^2 \theta = \frac{1 - \cos(2\theta)}{2}$$

$$\sec^2 \theta - 1 = \tan^2 \theta \qquad \cos^2 \theta = \frac{1 + \cos(2\theta)}{2}$$

Evaluate
$$\int \sqrt{1-4x^2} \, dx$$

Evaluate $\int \sqrt{1-4x^2} \, \mathrm{d}x$

Evaluate
$$\int \sqrt{1-4x^2} \, dx$$

Under the square root, we have "one minus a term with a variable," which matches the identity $1 - \sin^2 \theta$. So, we want $4x^2$ to become $\sin^2 \theta$. That is, $x = \frac{1}{2} \sin \theta$. Then $dx = \frac{1}{2} \cos \theta \ d\theta$.

$$\int \sqrt{1 - 4x^2} \, dx = \int \sqrt{1 - 4\left(\frac{1}{2}\sin\theta\right)^2} \cdot \frac{1}{2}\cos\theta \, d\theta$$

$$= \frac{1}{2} \int \sqrt{1 - \sin^2\theta} \cdot \cos\theta \, d\theta = \frac{1}{2} \int \sqrt{\cos^2\theta} \cdot \cos\theta \, d\theta$$

$$= \frac{1}{2} \int |\cos\theta| \cdot \cos\theta \, d\theta = \frac{1}{2} \int \cos^2\theta \, d\theta$$

$$= \frac{1}{2} \int \left(\frac{1 + \cos(2\theta)}{2}\right) d\theta = \frac{1}{4} \int \left(1 + \cos(2\theta)\right) d\theta$$

$$= \frac{1}{4} \left[\theta + \frac{1}{2}\sin(2\theta)\right] + C = \frac{1}{4} \left[\theta + \sin\theta\cos\theta\right] + C$$

It remains to convert θ back into x.

Evaluate
$$\int \sqrt{1-4x^2} \, dx$$

The substitution $x = \frac{1}{2} \sin \theta$ tells us $\sin \theta = 2x$. This in turn gives us $\theta = \arcsin(2x)$. We should still convert $\cos \theta$ back into terms of x. You might notice in the calculation we did that $\sqrt{1-4x^2}$ turned into $\cos \theta$, so $\cos \theta = \sqrt{1-4x^2}$.

Alternately, to find $\cos \theta$ in terms of x, we can use a triangle. From $\sin \theta = 2x$, and the understanding that $\sin \theta$ is the ratio $\frac{\text{opposite}}{\text{hypotenuse}}$ for a right triangle with angle θ , we can set up a triangle whose opposite side has length 2x, and hypotenuse has length 1.

The Pythagorean theorem tells us the side adjacent to θ has length $\sqrt{1-4x^2}$. So

$$\sqrt{1-4x^2}$$
. So $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \sqrt{1-4x^2}$.

$$\int \sqrt{1 - 4x^2} \, dx = \frac{1}{4} \left(\underbrace{\arcsin(2x)}_{\theta} + \underbrace{2x\sqrt{1 - 4x^2}}_{\sin\theta\cos\theta} \right) + C$$

CHECK OUR WORK

In the last example, we computed

$$\int \sqrt{1 - 4x^2} \, dx = \frac{1}{4} \left(\arcsin(2x) + 2x\sqrt{1 - 4x^2} \right) + C.$$

To check, we differentiate.

CHECK OUR WORK

In the last example, we computed

$$\int \sqrt{1 - 4x^2} \, dx = \frac{1}{4} \left(\arcsin(2x) + 2x\sqrt{1 - 4x^2} \right) + C.$$

To check, we differentiate.

$$\frac{d}{dx} \left\{ \frac{1}{4} \left(\arcsin(2x) + 2x\sqrt{1 - 4x^2} \right) + C \right\}$$

$$= \frac{1}{4} \left(\frac{2}{\sqrt{1 - (2x)^2}} + 2x\frac{-8x}{2\sqrt{1 - 4x^2}} + 2\sqrt{1 - 4x^2} \right)$$

$$= \frac{1}{4} \left(\frac{2}{\sqrt{1 - 4x^2}} - \frac{8x^2}{\sqrt{1 - 4x^2}} + \frac{2(1 - 4x^2)}{\sqrt{1 - 4x^2}} \right)$$

$$= \frac{1}{4} \left(\frac{2 - 8x^2 + 2 - 8x^2}{\sqrt{1 - 4x^2}} \right) = \frac{1 - 4x^2}{\sqrt{1 - 4x^2}} = \sqrt{1 - 4x^2}$$

Identities

$$1 - \sin^2 \theta = \cos^2 \theta \qquad \qquad \sin(2\theta) = \cos \theta$$

$$1 + \tan^2 \theta = \sec^2 \theta \qquad \qquad \sin^2 \theta = \frac{1 - \cos(2\theta)}{2}$$

$$\sec^2 \theta - 1 = \tan^2 \theta \qquad \qquad \cos^2 \theta = \frac{1 + \cos(2\theta)}{2}$$

Evaluate
$$\int \frac{1}{\sqrt{x^2 - 1}} dx$$

Evaluate $\int \frac{1}{\sqrt{x^2 - 1}} dx$

We use the substitution $x = \sec \theta$, $dx = \sec \theta \tan \theta d\theta$.

To make the substitution work, we're actually taking $\theta = \arccos\left(\frac{1}{x}\right)$, and so $0 \le \theta \le \pi$.

Note that the integrand exists on the intervals x < -1 and x > 1.

- ► When x > 1, then $0 < \frac{1}{x} < 1$, so $0 < \arccos\left(\frac{1}{x}\right) < \frac{\pi}{2}$. That is, $0 < \theta < \frac{\pi}{2}$, so $|\tan \theta| = \tan \theta$.
- ► When x < -1, then $-1 < \frac{1}{x} < 0$, so $\frac{\pi}{2} < \arccos\left(\frac{1}{x}\right) < \pi$. That is, $\frac{\pi}{2} < \theta < \pi$, so $|\tan \theta| = -\tan \theta$.

$$\begin{split} \int \frac{1}{\sqrt{x^2 - 1}} \mathrm{d}x &= \int \frac{1}{\sqrt{\sec^2 \theta - 1}} \cdot \sec \theta \tan \theta \ \mathrm{d}\theta = \int \frac{\sec \theta \tan \theta}{\sqrt{\tan^2 \theta}} \mathrm{d}\theta \\ &= \int \sec \theta \left(\frac{\tan \theta}{|\tan \theta|} \right) \mathrm{d}\theta = \begin{cases} \int \sec \theta \ \mathrm{d}\theta & 0 < \theta < \frac{\pi}{2} \\ -\int \sec \theta \ \mathrm{d}\theta & \frac{\pi}{2} < \theta < \pi \end{cases} \\ &= \begin{cases} \log|\sec \theta + \tan \theta| + C & 0 < \theta < \frac{\pi}{2} \\ -\log|\sec \theta + \tan \theta| + C & \frac{\pi}{2} < \theta < \pi \end{cases} \end{split}$$

Our substitution tells us $\sec \theta = x$. We saw from the denominator of our integrand that $\sqrt{x^2 - 1} = |\tan \theta|$.

- When $0 < \theta < \frac{\pi}{2}$, $\tan \theta = |\tan \theta| = \sqrt{x^2 1}$
- ▶ When $\frac{\pi}{2} < \theta < \pi$, $\tan \theta = -|\tan \theta| = -\sqrt{x^2 1}$

$$\int \frac{1}{\sqrt{x^2 - 1}} dx = \begin{cases} \log|x + \sqrt{x^2 - 1}| + C & x > 1\\ -\log|x - \sqrt{x^2 - 1}| + C & x < -1 \end{cases}$$

Although the two branches look different, they are actually equivalent. Remember $-\log(A) = \log\left(A^{-1}\right) = \log\left(\frac{1}{A}\right)$:

$$-\log|x - \sqrt{x^2 - 1}| = \log\left|\frac{1}{x - \sqrt{x^2 - 1}}\right| = \log\left|\frac{1}{x - \sqrt{x^2 - 1}} \cdot \frac{x + \sqrt{x^2 - 1}}{x + \sqrt{x^2 - 1}}\right|$$
$$= \log\left|\frac{x + \sqrt{x^2 - 1}}{x^2 - x^2 + 1}\right| = \log\left|x + \sqrt{x^2 - 1}\right|$$

So,

$$\int \frac{1}{\sqrt{x^2 - 1}} dx = \log \left| x + \sqrt{x^2 - 1} \right| + C$$

CHECK OUR WORK

Let's check our result,
$$\int \frac{1}{\sqrt{x^2 - 1}} dx = \log |x + \sqrt{x^2 - 1}| + C$$
.

CHECK OUR WORK

Let's check our result, $\int \frac{1}{\sqrt{x^2 - 1}} dx = \log |x + \sqrt{x^2 - 1}| + C.$

$$\frac{d}{dx} \left\{ \log \left| x + \sqrt{x^2 - 1} \right| + C \right\} = \frac{1 + \frac{2x}{2\sqrt{x^2 - 1}}}{x + \sqrt{x^2 - 1}} = \frac{1 + \frac{x}{\sqrt{x^2 - 1}}}{x + \sqrt{x^2 - 1}}$$

$$= \frac{1 + \frac{x}{\sqrt{x^2 - 1}}}{x + \sqrt{x^2 - 1}} \left(\frac{\sqrt{x^2 - 1}}{\sqrt{x^2 - 1}} \right) = \frac{(\sqrt{x^2 - 1} + x)}{\left(x + \sqrt{x^2 - 1} \right) \sqrt{x^2 - 1}}$$

$$= \frac{1}{\sqrt{x^2 - 1}}$$

So, our answer works.

Choose a trigonometric substitution to simplify $\sqrt{3-x^2+2x}$.

Identities have two "parts" that turn into one part:

- $ightharpoonup 1 \sin^2 \theta = \cos^2 \theta$
- $ightharpoonup 1 + \tan^2 \theta = \sec^2 \theta$
- $ightharpoonup \sec^2 \theta 1 = \tan^2 \theta$

Choose a trigonometric substitution to simplify $\sqrt{3-x^2+2x}$.

Identities have two "parts" that turn into one part:

$$1 - \sin^2 \theta = \cos^2 \theta$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$ightharpoonup \sec^2 \theta - 1 = \tan^2 \theta$$

Fact:
$$3 - x^2 + 2x = 4 - (x - 1)^2$$

Choose a trigonometric substitution to simplify $\sqrt{3-x^2+2x}$.

Identities have two "parts" that turn into one part:

$$1 - \sin^2 \theta = \cos^2 \theta$$

$$4 - 4\sin^2 \theta = 4\cos^2 \theta$$

$$4 - 4\sin^2\theta = 4\cos^2\theta$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$ightharpoonup \sec^2 \theta - 1 = \tan^2 \theta$$

Fact:
$$3 - x^2 + 2x = 4 - (x - 1)^2$$

Choose a trigonometric substitution to simplify $\sqrt{3-x^2+2x}$.

Identities have two "parts" that turn into one part:

$$1 - \sin^2 \theta = \cos^2 \theta$$

$$4 - 4\sin^2 \theta = 4\cos^2 \theta$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$ightharpoonup \sec^2 \theta - 1 = \tan^2 \theta$$

Fact:
$$3 - x^2 + 2x = 4 - (x - 1)^2$$

$$\sqrt{3 - x^2 + 2x} = \sqrt{4 - (x - 1)^2}$$

We want
$$(x - 1)^2 = 4\sin^2 \theta$$
, so let $(x - 1) = 2\sin \theta$

$$= \sqrt{4 - 4\sin^2\theta} = \sqrt{4\cos^2\theta} = 2\cos\theta$$

$$(x+b)^2 = x^2 + 2bx + b^2$$
$$c - (x+b)^2 = (c-b^2) - x^2 - 2bx$$

$$(x+b)^2 = x^2 + 2bx + b^2$$
$$c - (x+b)^2 = (c-b^2) - x^2 - 2bx$$

Write $3 - x^2 + 2x$ in the form $c - (x + b)^2$ for constants b, c.

1. Find *b*:

$$(x+b)^2 = x^2 + 2bx + b^2$$
$$c - (x+b)^2 = (c-b^2) - x^2 - 2bx$$

1. Find *b*:
$$-2bx = 2x$$
, so $b = -1$

$$(x+b)^2 = x^2 + 2bx + b^2$$
$$c - (x+b)^2 = (c-b^2) - x^2 - 2bx$$

- 1. Find *b*: -2bx = 2x, so b = -1
- 2. Solve for *c*:

$$(x+b)^2 = x^2 + 2bx + b^2$$
$$c - (x+b)^2 = (c-b^2) - x^2 - 2bx$$

- 1. Find *b*: -2bx = 2x, so b = -1
- 2. Solve for *c*: $3 = c b^2 = c 1$, so c = 4

$$(x+b)^2 = x^2 + 2bx + b^2$$
$$c - (x+b)^2 = (c-b^2) - x^2 - 2bx$$

Write $3 - x^2 + 2x$ in the form $c - (x + b)^2$ for constants b, c.

1. Find *b*:
$$-2bx = 2x$$
, so $b = -1$

2. Solve for *c*:
$$3 = c - b^2 = c - 1$$
, so $c = 4$

3. All together:

$$(x+b)^2 = x^2 + 2bx + b^2$$
$$c - (x+b)^2 = (c-b^2) - x^2 - 2bx$$

- 1. Find *b*: -2bx = 2x, so b = -1
- 2. Solve for *c*: $3 = c b^2 = c 1$, so c = 4
- 3. All together: $3 x^2 + 2x = 4 (x 1)^2$

Evaluate
$$\int \frac{x^2 - 6x + 9}{\sqrt{6x - x^2}} dx.$$

Identities have two "parts" that turn into one part:

- $1 \sin^2 \theta = \cos^2 \theta$
- $1 + \tan^2 \theta = \sec^2 \theta$
- $ightharpoonup \sec^2 \theta 1 = \tan^2 \theta$

One of those parts is a constant, and one is squared.

Evaluate
$$\int \frac{x^2 - 6x + 9}{\sqrt{6x - x^2}} dx.$$

Identities have two "parts" that turn into one part:

- $1 \sin^2 \theta = \cos^2 \theta$
- $1 + \tan^2 \theta = \sec^2 \theta$
- $ightharpoonup \sec^2 \theta 1 = \tan^2 \theta$

One of those parts is a constant, and one is squared. Write $6x - x^2$ as $c - (x + b)^2$.

$$c - (x+b)^{2} = (c - b^{2}) - x^{2} - 2bx$$

$$6x = -2bx \implies b = -3$$

$$0 = c - b^{2} = c - 9 \implies c = 9$$

$$6x - x^{2} = 9 - (x - 3)^{2}$$

Evaluate $\int \frac{x^2 - 6x + 9}{\sqrt{6x - x^2}} dx = \int \frac{(x - 3)^2}{\sqrt{9 - (x - 3)^2}} dx$.

Evaluate
$$\int \frac{x^2 - 6x + 9}{\sqrt{6x - x^2}} dx = \int \frac{(x - 3)^2}{\sqrt{9 - (x - 3)^2}} dx$$
.

We use the identity $9 - 9\sin^2\theta = 9\cos^2\theta$. We want $(x - 3)^2 = 9\sin^2\theta$, so take $(x - 3) = 3\sin\theta$, $dx = 3\cos\theta d\theta$.

$$\int \frac{(x-3)^2}{\sqrt{9-(x-3)^2}} dx = \int \frac{9\sin^2\theta}{\sqrt{9-9\sin^2\theta}} 3\cos\theta d\theta$$

$$= \int \frac{9\sin^2\theta}{\sqrt{9\cos^2\theta}} 3\cos\theta d\theta = \int 9\sin^2\theta d\theta$$

$$= \frac{9}{2} \int (1-\cos 2\theta) d\theta = \frac{9}{2} \left(\theta - \frac{1}{2}\sin 2\theta\right) + C$$

$$= \frac{9}{2} \left(\theta - \sin\theta\cos\theta\right) + C$$

$$= \frac{9}{2} \left(\arcsin\left(\frac{x-3}{3}\right) - \frac{x-3}{3} \cdot \frac{\sqrt{6x-x^2}}{3}\right) + C$$

CHECK OUR WORK

Let's verify that

$$\int \frac{x^2 - 6x + 9}{\sqrt{6x - x^2}} = \frac{9}{2} \left(\arcsin \left(\frac{x - 3}{3} \right) - \frac{x - 3}{3} \cdot \frac{\sqrt{6x - x^2}}{3} \right) + C:$$

CHECK OUR WORK

Let's verify that

$$\int \frac{x^2 - 6x + 9}{\sqrt{6x - x^2}} = \frac{9}{2} \left(\arcsin\left(\frac{x - 3}{3}\right) - \frac{x - 3}{3} \cdot \frac{\sqrt{6x - x^2}}{3} \right) + C:$$

$$\frac{d}{dx} \left\{ \frac{9}{2} \left(\arcsin\left(\frac{x - 3}{3}\right) - \frac{x - 3}{3} \cdot \frac{\sqrt{6x - x^2}}{3} \right) + C \right\}$$

$$= \frac{9}{2} \left(\frac{1/3}{\sqrt{1 - \left(\frac{x - 3}{3}\right)^2}} - \frac{x - 3}{3} \cdot \frac{3 - x}{3\sqrt{6x - x^2}} - \frac{1}{9}\sqrt{6x - x^2} \right)$$

$$= \frac{9}{2} \left(\frac{9}{9\sqrt{6x - x^2}} - \frac{6x - x^2 - 9}{9\sqrt{6x - x^2}} - \frac{6x - x^2}{9\sqrt{6x - x^2}} \right)$$

$$= \frac{9 - 6x + x^2}{\sqrt{6x - x^2}}$$

So, our answer works.

Included Work

'Notebook' by Iconic is licensed under CC BY 3.0 (accessed 9 June 2021, modified), 21, 22, 24

Notebook' by Iconic is licensed under CC BY 3.0 (accessed 9 June 2021), 44, 47, 53, 71