Two-stage exams: Study 1

George Kinnear 20/06/2020

Contents

Data	1
Check that it makes sense to combine the two datasets	1
Mean at each stage (as bars)	3
Mean at each stage (as points)	4
Mean at each stage (table, with standard errors)	5
Forming the Zipp tables	6
Stages 1-3 only	6
Stages 1-4	
Group dynamics: Stage 1 vs Stage 2	6
Group dynamics	10
Bayesian analysis	13
For Stage 4	23

Data

Import and combine the datasets.

Check that it makes sense to combine the two datasets

Viewing both sets of data to check that the items performed similarly in both years.

```
# Code from here:
# https://www.r-bloggers.com/building-barplots-with-error-bars/
plotData <- aggregate(ld$score,</pre>
                       by = list(Year = ld$Year, Q = ld$Q, Stage = ld$stage),
                       FUN = function(x) c(mean = mean(x), sd = sd(x),
                                            n = length(x))
plotData <- do.call(data.frame, plotData)</pre>
plotData$se <- plotData$x.sd / sqrt(plotData$x.n)</pre>
colnames(plotData) <- c("Year","Q", "Stage", "mean", "sd", "n", "se")</pre>
limits <- aes(ymax = plotData$mean + plotData$se,</pre>
              ymin = plotData$mean - plotData$se)
p <- ggplot(data = plotData, aes(x = factor(Q), y = mean,</pre>
                                  fill = factor(Stage))) +
  facet_grid(Year ~ .)+
  geom_bar(stat = "identity",
           position = position_dodge(0.9)) +
  labs(x = "Question",
       y = "Percentage of students answering correctly",
       fill = "Stage") +
  scale_fill_manual(values=heathers) + #viridis_pal(1,0,1)(4)) +
  scale_y_continuous(labels = scales::percent)
```


Mean at each stage (as bars)

```
ld <- gather(data = S1234data,</pre>
             key = stage,
             value = score,
             Stage1score, Stage2score, Stage4score)
ld <- ld[complete.cases(ld),]</pre>
plotData <- aggregate(ld$score,</pre>
                       by = list(Q = ld$Q, Stage = ld$stage),
                       FUN = function(x) c(mean = mean(x), sd = sd(x),
                                            n = length(x))
plotData <- do.call(data.frame, plotData)</pre>
plotData$se <- plotData$x.sd / sqrt(plotData$x.n)</pre>
colnames(plotData) <- c("Q", "Stage", "mean", "sd", "n", "se")</pre>
plotData = plotData %>%
  mutate(
    Q = fct_relevel(Q, c( "Q1b", "Q2a", "Q2b", "Q1a", "Q2c", "Q11")),
    Stage = gsub(".*(\d).*","\label{eq:stage} # alternatively: Stage = parse_number(Stage)
plotCounts = plotData %>% filter(Q=="Q1b") %>% group_by(Stage) %>% select(Stage,n) %>%
  mutate(scale_lab = paste0("Stage ",Stage, " (n=",n,")"))
```

Mean at each stage (as points)

ggsave("Figs/Study1_S1234_means_pts.pdf",width=20,height=10,units="cm",dpi=300)

Mean at each stage (table, with standard errors)

```
tab = plotData %>%
  mutate(
    entry = pasteO(sprintf("%2.0f", mean*100), " (", sprintf("%2.1f", se*100), ")"),
    Stage = gsub(".*(\\d).*","\\1",Stage)
) %>%
  group_by(Q,Stage) %>%
  select(Q,Stage,entry) %>%
  spread(Q,entry)

tab %>% knitr::kable()
```

Stage	Q1b	Q2a	Q2b	Q1a	Q2c	Q11
1	30 (6.7)	34 (7.0)	53 (7.4)	49 (7.4)	55 (7.3)	21 (6.0)
2	64(7.1)	64(7.1)	100(0.0)	87 (4.9)	72 (6.6)	47 (7.4)
3	63 (7.9)	63 (7.9)	76(7.0)	87(5.6)	71 (7.5)	NA
4	48 (7.6)	82 (5.9)	34(7.2)	NA	NA	27(6.8)

```
#tab %>% knitr::kable(format="latex",booktabs=T)
```

Forming the Zipp tables

This constructs the data in Table 3 of the paper.

Stages 1-3 only

ZippGroup	numcorrect	numingroup	pc	entry
1	10	34	0.2941176	29.4 (10/34)
2	47	64	0.7343750	73.4 (47/64)
3	2	5	0.4000000	40.0 (2/5)
4	78	87	0.8965517	89.7 (78/87)

Stages 1-4

ZippGroup	${\rm numcorrect}$	numingroup	pc	entry
1	17	54	0.3148148	31.5 (17/54)
2	30	61	0.4918033	49.2 (30/61)
3	3	4	0.7500000	75.0 (3/4)
4	34	57	0.5964912	59.6 (34/57)

Group dynamics: Stage 1 vs Stage 2

Here we look at the relative performance in the groups across the first two stages.

```
groupCorrectness = data1718 %>%
  mutate(
    Stage2group = paste0(Year,"_",Stage2group)
) %>%
```

```
group_by(Stage2group,Q) %>%
summarise(
   GpSize = n(),
   S1sum = sum(Stage1score),
   S1avg = S1sum/GpSize,
   S2 = max(Stage2score)
)
groupCorrectness %>% ungroup() %>% gt()
```

Stage2group	Q	GpSize	S1sum	Slavg	S2
2017 1	Q1a	3	2	0.6666667	1
2017 1	Q1b	3	1	0.3333333	1
2017 1	$\overline{\mathrm{Q2a}}$	3	1	0.3333333	1
2017 1	$\overline{\mathrm{Q2b}}$	3	1	0.3333333	1
2017 1	m Q2c	3	3	1.0000000	1
2017 1	$\tilde{Q}11$	3	0	0.0000000	0
2017^{-2}	Q1a	3	2	0.6666667	1
2017^{-2}	Q1b	3	1	0.3333333	0
2017 2	Q2a	3	1	0.3333333	1
2017 2	Q2b	3	3	1.0000000	1
2017_{2}	m Q2c	3	1	0.3333333	1
2017_{2}	Q11	3	1	0.3333333	1
2017_{-3}^{-3}	Q1a	3	0	0.0000000	0
2017_3	Q1b	3	0	0.0000000	1
2017_3	Q2a	3	2	0.6666667	1
2017_3	Q2b	3	2	0.6666667	1
2017_3	Q2c	3	1	0.3333333	1
2017_3	Q11	3	0	0.0000000	0
2017_4	Q1a	3	2	0.6666667	1
2017_4	Q1b	3	0	0.0000000	0
2017_4	Q2a	3	1	0.3333333	1
2017_4	Q2b	3	2	0.6666667	1
2017_4	Q2c	3	2	0.6666667	1
2017_4	Q11	3	1	0.3333333	1
2017_5	Q1a	3	2	0.6666667	1
2017_5	Q1b	3	1	0.3333333	1
2017_5	Q2a	3	3	1.0000000	1
2017_5	Q2b	3	2	0.6666667	1
2017_5	Q2c	3	3	1.0000000	1
2017_5	Q11	3	0	0.0000000	0
2017_6	Q1a	3	2	0.6666667	1
2017_6	Q1b	3	1	0.3333333	1
2017_6	Q2a	3	1	0.3333333	1
2017_6	Q2b	3	1	0.3333333	1
2017_6	Q2c	3	2	0.6666667	1
2017_6	Q11	3	2	0.6666667	1
2017_7	Q1a	3	3	1.0000000	1
2017_7	Q1b	3	3	1.0000000	1
2017_7	Q2a	3	2	0.6666667	1
2017_7	Q2b	3	2	0.6666667	1
2017_7	Q2c	3	3	1.0000000	1
2017_7	Q11	3	1	0.3333333	1
2017_8	Q1a	3	2	0.6666667	1

```
Q1b
                                  2
2017\_8
                                        0.6666667
                                                     1
                                  1
2017_8
              Q2a
                        3
                                        0.3333333
                                                     0
                                  2
2017_8
                        3
              Q2b
                                        0.6666667
                                                     1
2017\_8
              Q2c
                        3
                                  1
                                                     0
                                        0.3333333
                                 0
2017_8
              Q11
                        3
                                        0.0000000
                                                     1
2017_9
              Q1a
                        3
                                  1
                                                     1
                                        0.3333333
                                 2
2017_9
              Q1b
                        3
                                        0.6666667
                                                     1
2017_9
                                 2
              Q2a
                        3
                                        0.6666667
                                                     1
2017\_9
              Q2b
                        3
                                  1
                                        0.3333333
                                                     1
2017\_9
              Q2c
                        3
                                  2
                                        0.6666667
                                                     1
                                  2
2017\_9
              Q11
                        3
                                        0.6666667
                                                     1
                                 0
2018 1
              Q1a
                        4
                                                     1
                                        0.0000000
                                  0
                                                     0
2018\_1
              Q1b
                        4
                                        0.0000000
                                                     0
2018 1
                        4
                                  1
                                        0.2500000
              Q2a
2018\_1
              Q2b
                        4
                                  2
                                        0.5000000
                                                     1
                                  3
2018\_1
               Q2c
                        4
                                        0.7500000
                                                     1
2018 1
              Q11
                                  0
                                        0.0000000
                                                     0
                        4
                                  2
2018 2
              Q1a
                        4
                                        0.5000000
                                                     1
2018_2
              Q1b
                        4
                                  1
                                        0.2500000
                                                     1
                                 0
2018_2
              Q2a
                        4
                                        0.0000000
                                                     0
                                  2
2018_2
              Q2b
                        4
                                        0.5000000
                                                     1
2018 2
               Q2c
                        4
                                  3
                                        0.7500000
                                                     1
2018_2
              Q11
                                 0
                                                     0
                        4
                                        0.0000000
                        2
                                  2
2018_{3}
              Q1a
                                        1.0000000
                                                     1
                        2
                                  1
              Q1b
2018_3
                                        0.5000000
                                                     1
                        2
2018\_3
              Q2a
                                 0
                                        0.0000000
                                                     1
2018\_3
              Q2b
                        2
                                  2
                                        1.0000000
                                                     1
                        2
2018\_3
               Q2c
                                  1
                                        0.5000000
                                                     1
                        2
                                  1
                                                     1
2018 \ 3
              Q11
                                        0.5000000
                        3
                                  1
2018\_4
              Q1a
                                        0.3333333
                                                     1
2018\_4
              Q1b
                        3
                                  1
                                        0.3333333
                                                     1
2018\_4
              Q2a
                        3
                                  0
                                        0.0000000
                                                     0
              Q2b
                        3
                                  1
2018 	 4
                                        0.3333333
                                                     1
2018\_4
              Q2c
                        3
                                  0
                                                     0
                                        0.0000000
                        3
2018 	 4
              Q11
                                  1
                                        0.3333333
                                                     0
2018\_5
              Q1a
                        3
                                  1
                                        0.3333333
                                                     0
                                 0
2018 5
              Q1b
                        3
                                        0.0000000
                                                     0
2018\_5
              Q2a
                        3
                                  0
                                        0.0000000
                                                     0
2018\_5
              Q2b
                        3
                                  1
                                        0.3333333
                                                     1
              Q2c
                        3
                                 0
                                                     0
2018\_5
                                        0.0000000
2018\_5
              Q11
                        3
                                  0
                                        0.0000000
                                                     0
2018\_6
              Q1a
                        4
                                  1
                                        0.2500000
                                                     1
2018\_6
              Q1b
                        4
                                 0
                                        0.0000000
                                                     0
                                  1
                                                     1
2018\_6
              Q2a
                        4
                                        0.2500000
2018\_6
              Q2b
                                  1
                                        0.2500000
                                                     1
                        4
                                                     0
2018 6
               Q2c
                        4
                                  1
                                        0.2500000
                                  1
2018\_6
              Q11
                        4
                                        0.2500000
                                                     1
```

```
groupPerfS12 = groupCorrectness %>%
  mutate(
    tot_group = cut(S1sum,breaks=c(-Inf,0.5,1.5,2.5,Inf),labels=c("0","1","2","3 or more"))
) %>%
  group_by(tot_group) %>%
```

```
summarize(
    S2avg = mean(S2),
    S2se = sd(S2)/sqrt(n()),
    S2n = n()
)
groupPerfS12 %>% knitr::kable()
```

tot_group	S2avg	S2se	S2n
0	0.2	0.0917663	20
1	0.8	0.0685994	35
2	1.0	0.0000000	26
3 or more	1.0	0.0000000	9

```
ggplot(groupPerfS12,aes(x=tot_group,y=S2avg,label=S2n))+
  geom_errorbar(aes(ymax = groupPerfS12$S2avg + groupPerfS12$S2se,
                   ymin = groupPerfS12$S2avg - groupPerfS12$S2se),
                position = position_dodge(0.9),
                width = 0.1)+
  geom_point(size=5,colour=heathers[1])+
  scale_y_continuous(labels = scales::percent,breaks=seq(0,1,by=.2))+
  scale_color_manual(values=heathers) +
  coord_cartesian(ylim=c(0,1),clip="off")+
  geom_text(position = position_dodge(width = 0.9),
            aes(y=-0.01, label=paste0("n=",groupPerfS12$S2n)),
            angle=0,
            color="#777777")+
  labs(x = "Number of students correct at stage 1",
      y = "Groups answering correctly",
       colour = "Stage 2 attempt") +
  theme(strip.background = element_rect(fill=NA,colour = NA),
        strip.text = element_text(size=12, face="bold"))
```


ggsave("Figs/Study1_S12_collab.pdf", width=15, height=7, units="cm", dpi=300)

Group dynamics

This replicates the analysis of Levy et al. (2018), producing Fig 2 of the paper. There is extra detail here, with the various measures like 'collaborative efficiency' shown for each group and also plotted.

```
S12data_scored = data1718 %>%
  dplyr::select(Year,Q,Stage1score,Stage2score,Student,Stage2group) %>%
  mutate(
    Group = paste0(Year, "_", Stage2group)
  ) %>%
  dplyr::select(-Stage2group)
S1superandtop = S12data_scored %>%
  group_by(Group,Q) %>%
  mutate(
    superstudent = max(Stage1score)
  ) %>%
  group_by(Group,Student) %>%
  mutate(
    topstudent = sum(Stage1score)/n() # the Student's mean score on the n() Questions
  ) %>%
  group_by(Group) %>%
  summarise(
    superstudent = sum(superstudent)/n(),
```

```
topstudent = max(topstudent)
  )
LevyA = S12data_scored %>%
  group_by(Student) %>%
  summarise(
    Stage1pc = sum(Stage1score)/n()
  ) %>%
  summarise(
    S1mean = mean(Stage1pc),
    S1sd = sd(Stage1pc),
    S1n = n()
  )
LevyAsd = LevyA$S1sd[[1]]
LevyByGroup = groupCorrectness %>%
  mutate(
    Group = Stage2group
  ) %>%
  left_join(S1superandtop) %>%
  group_by(Group) %>%
  summarise(
    n = max(GpSize),
    IndivA = mean(S1avg),
    GroupB = mean(S2),
    TopC = max(topstudent),
    SuperD = max(superstudent),
    GainBA = (GroupB-IndivA)/LevyAsd,
    TopSurplus = (TopC-IndivA)/LevyAsd,
    SuperSurplus = (SuperD-IndivA)/LevyAsd,
    CollabEfficiency = GainBA / SuperSurplus
  ) %>%
  ungroup()
LevyByGroup %>% knitr::kable()
```

Group	n	IndivA	GroupB	TopC	SuperD	GainBA	TopSurplus	SuperSurplus	CollabEfficiency
2017_1	3	0.444444	0.8333333	0.8333333	0.8333333	1.3907167	1.3907167	1.3907167	1.0000000
2017_2	3	0.5000000	0.8333333	0.8333333	1.0000000	1.1920428	1.1920428	1.7880643	0.6666667
2017_3	3	0.2777778	0.6666667	0.5000000	0.5000000	1.3907167	0.7946952	0.7946952	1.7500000
2017_4	3	0.4444444	0.8333333	0.8333333	0.8333333	1.3907167	1.3907167	1.3907167	1.0000000
2017_5	3	0.6111111	0.8333333	0.6666667	0.8333333	0.7946952	0.1986738	0.7946952	1.0000000
2017_6	3	0.5000000	1.0000000	0.6666667	1.0000000	1.7880643	0.5960214	1.7880643	1.0000000
2017_7	3	0.7777778	1.0000000	1.0000000	1.0000000	0.7946952	0.7946952	0.7946952	1.0000000
2017_8	3	0.4444444	0.6666667	0.5000000	0.8333333	0.7946952	0.1986738	1.3907167	0.5714286
2017_9	3	0.5555556	1.0000000	0.8333333	1.0000000	1.5893905	0.9933690	1.5893905	1.0000000
2018_1	4	0.2500000	0.5000000	0.5000000	0.5000000	0.8940321	0.8940321	0.8940321	1.0000000
2018_2	4	0.3333333	0.6666667	0.6666667	0.6666667	1.1920428	1.1920428	1.1920428	1.0000000
2018_3	2	0.5833333	1.0000000	0.8333333	0.8333333	1.4900536	0.8940321	0.8940321	1.6666667
2018_4	3	0.2222222	0.5000000	0.6666667	0.6666667	0.9933690	1.5893905	1.5893905	0.6250000
2018_5	3	0.1111111	0.1666667	0.1666667	0.3333333	0.1986738	0.1986738	0.7946952	0.2500000
2018_6	4	0.2083333	0.6666667	0.3333333	0.8333333	1.6390589	0.4470161	2.2350803	0.7333333

```
ggplot(stack(LevyByGroup %>% select(IndivA,GroupB,TopC,SuperD)), aes(x = ind, y = values)) +
  geom_violin(fill=heathers[1]) +
  geom_boxplot(width=0.2,color=heathers[2],lwd=1) +
  geom_jitter(shape=16, position=position_jitter(0.2)) +
  labs(x = "Average score of...",
      y = "Percentage correct") +
  scale_y_continuous(labels = scales::percent)
```



```
ggsave("Figs/Study1_LevyABCD.pdf",width=20,height=10,units="cm",dpi=300)
ggsave("Figs/Study1_LevyABCD_small.pdf",width=10,height=7,units="cm",dpi=300)

ggplot(stack(LevyByGroup %>% select(GainBA,TopSurplus,SuperSurplus,CollabEfficiency)), aes(x = ind, y = geom_violin(fill=heathers[1]) +
    geom_boxplot(width=0.2,color=heathers[2],lwd=1) +
    geom_jitter(shape=16, position=position_jitter(0.2)) +
    labs(x = "Difference in average scores",
        y = "Difference (in SDs)")+
    theme(axis.text.x = element_text(angle = 15, hjust = 1))
```



```
ggsave("Figs/Study1_LevyDiffs.pdf",width=20,height=10,units="cm",dpi=300)
ggsave("Figs/Study1_LevyDiffs_small.pdf",width=10,height=7,units="cm",dpi=300)

LevyByGroup %>%
    summarise(
    CollabEfficiency_m = mean(CollabEfficiency),
    CollabEfficiency_sd = sd(CollabEfficiency)
) %>% knitr::kable()
```

CollabEfficiency_m	${\bf CollabEfficiency_sd}$
0.950873	0.3817033

Bayesian analysis

Here we look at (and compare) the proportions in the 4 Zipp groups.

Using model code for the Bayesian First Aid alternative to the test of proportions.

```
require(rjags)
source("DBDA2E-utilities.R")
##
```

```
source("DBDAderivatives.R")
myData = S123data %>%
  select(ZippGroup, Stage3score)
params = c(2,2)
# The model string written in the JAGS language
model_string <- paste0("model {</pre>
for(i in 1:length(x)) {
  x[i] ~ dbinom(theta[i], n[i])
 theta[i] ~ dbeta(",params[1],", ",params[2],")
  x_pred[i] ~ dbinom(theta[i], n[i])
}")
# Running the model
modelS3 <- jags.model(textConnection(model_string), data = list(x = zipptab$numcorrect, n = zipptab$num
                     n.chains = 3, n.adapt=1000)
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
      Observed stochastic nodes: 4
##
##
      Unobserved stochastic nodes: 8
##
      Total graph size: 17
##
## Initializing model
samplesS3 <- coda.samples(modelS3, c("theta", "x_pred"), n.iter=5000)</pre>
# Inspecting the posterior
#plot(samples)
#summary(samples)
You can extract the mcmc samples as a matrix and compare the thetas of the groups. For example, the
following shows the median and 95% credible interval for the difference between Group 1 and Group 2.
samp_mat <- as.matrix(samplesS3)</pre>
print(quantile(samp_mat[, "theta[2]"] - samp_mat[, "theta[1]"], c(0.025, 0.5, 0.975)))
##
                    50%
        2.5%
                            97.5%
## 0.2234247 0.4088187 0.5783900
print(quantile(samp_mat[, "theta[4]"] - samp_mat[, "theta[3]"], c(0.025, 0.5, 0.975)))
                    50%
##
        2.5%
                            97.5%
## 0.1143593 0.4390870 0.7283634
diagMCMC(samplesS3, parName = "theta[1]", saveName="Figs/Study1_S3props", saveType = "pdf")
```

theta[1]

diagMCMC(samplesS3, parName = "theta[2]", saveName="Figs/Study1_S3props", saveType = "pdf")

theta[2]

diagMCMC(samplesS3, parName = "theta[3]", saveName="Figs/Study1_S3props", saveType = "pdf")

theta[3]

diagMCMC(samplesS3, parName = "theta[4]", saveName="Figs/Study1_S3props", saveType = "pdf")

theta[4]

saveName="Figs/Study1_S3props", saveType = "pdf")

[1] 3159 ## [1] 3948 ## [1] 4738 ## [1] 5527

[1] 1 ## [1] 1 ## [1] 790 ## [1] 1580 ## [1] 2369

- ## [1] 6316
- ## [1] 7106
- ## [1] 7895 ## [1] 8685
- ## [1] 9474
- ## [1] 10263
- ## [1] 11053
- ## [1] 11842 ## [1] 12632
- ## [1] 13421
- ## [1] 14211
- ## [1] 15000 ## [1] 2
- ## [1] 1
- ## [1] 790
- ## [1] 1580
- ## [1] 2369

- ## [1] 3159
- ## [1] 3948
- ## [1] 4738
- ## [1] 5527
- ## [1] 6316
- ## [1] 7106
- ## [1] 7895
- ... [1] 1000
- ## [1] 8685 ## [1] 9474
- ## [1] 10263
- "" [1] 10200
- ## [1] 11053
- ## [1] 11842
- ## [1] 12632
- ## [1] 13421
- ## [1] 14211
- ## [1] 15000
- ## [1] 3
- ## [1] 1
- ## [1] 790
- ## [1] 1580
- ## [1] 2369
- ## [1] 3159
- ## [1] 3948
- ## [1] 4738
- ## [1] 5527
- ## [1] 6316
- ## [1] 7106
- ## [1] 7895
- ## [1] 8685
- ## [1] 9474
- ## [1] *9474* ## [1] 10263
- ## [1] 11053
- ## [1] 11842
- ## [1] 12632
- ## [1] 13421
- ## [1] 14211
- ## [1] 15000
- ## [1] 4
- ## [1] 1
- ## [1] 790
- ## [1] 1580
- ## [1] 2369
- ## [1] 3159
- ## [1] 3948
- ## [1] 4738
- ## [1] 5527
- ## [1] 6316
- ## [1] 7106 ## [1] 7895
- "" [1] 1000
- ## [1] 8685
- ## [1] 9474 ## [1] 10263
- ## [1] 11053
- ## [1] 11842

```
## [1] 12632
## [1] 13421
## [1] 14211
## [1] 15000
```


For Stage 4

##

##

Unobserved stochastic nodes: 8

Total graph size: 17

```
myData124 = S124data %>%
  select(ZippGroup, Stage4score)
params = c(2,2)
# The model string written in the JAGS language
model_string <- paste0("model {</pre>
for(i in 1:length(x)) {
   x[i] ~ dbinom(theta[i], n[i])
   theta[i] ~ dbeta(",params[1],", ",params[2],")
   x_pred[i] ~ dbinom(theta[i], n[i])
 }
}")
# Running the model
modelS4 <- jags.model(textConnection(model_string), data = list(x = zipptab124$numcorrect, n = zipptab1</pre>
                      n.chains = 3, n.adapt=1000)
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 4
```

```
##
## Initializing model
samplesS4 <- coda.samples(modelS4, c("theta", "x_pred"), n.iter=5000)</pre>
samp_mat <- as.matrix(samplesS4)</pre>
print(quantile(samp_mat[, "theta[2]"] - samp_mat[, "theta[1]"], c(0.025, 0.5, 0.975)))
##
           2.5%
                          50%
                                      97.5%
## -0.006556672 0.166641171
                               0.332032899
print(quantile(samp_mat[, "theta[4]"] - samp_mat[, "theta[3]"], c(0.025, 0.5, 0.975)))
##
          2.5%
                        50%
                                   97.5%
## -0.34018328 -0.04419645 0.31970151
diagMCMC(samplesS4, parName = "theta[1]", saveName="Figs/Study1_S4props", saveType = "pdf")
                                       theta[1]
                                                  Autocorrelation
  Param. Value
                                                                              ESS = 9738.4
       0.4
                                                       0.4
                       3000 4000
                                    5000
                                                                             20
          1000
                2000
                                           6000
                                                           0
                                                                5
                                                                    10
                                                                        15
                                                                                 25
                                                                                      30
                                                                                           35
                      Iterations
                                                                          Lag
       1.030
                                                                                    MCSE =
  shrink factor
                                                       9
                                      median
                                                                                  0.000616
                                     97.5%
                                                  Density
       1.015
                                                       4
                2000
                      3000
                                                                       0.3
                                                                              0.4
          1000
                             4000 5000 6000
                                                          0.1
                                                                0.2
                                                                                     0.5
                                                                                            0.6
                                                                   Param. Value
               last iteration in chain
```

diagMCMC(samplesS4, parName = "theta[2]", saveName="Figs/Study1_S4props", saveType = "pdf")

theta[2]

diagMCMC(samplesS4, parName = "theta[3]", saveName="Figs/Study1_S4props", saveType = "pdf")

theta[3]

diagMCMC(samplesS4, parName = "theta[4]", saveName="Figs/Study1_S4props", saveType = "pdf")

theta[4]

plotMCMC(samplesS4, data=myData124, yName="Stage4score", sName="ZippGroup", compVal=NULL, compValDiff=saveName="Figs/Study1_S4props", saveType = "pdf")

mode = 0.337

[1] 3159 ## [1] 3948 ## [1] 4738 ## [1] 5527 ## [1] 6316 ## [1] 7106 ## [1] 7895 ## [1] 8685 ## [1] 9474 ## [1] 10263

[1] 11053 ## [1] 11842 ## [1] 12632 ## [1] 13421 ## [1] 14211 ## [1] 15000 ## [1] 2 ## [1] 1 ## [1] 790 ## [1] 1580 ## [1] 2369

[1] 1 ## [1] 1 ## [1] 790 ## [1] 1580 ## [1] 2369

- ## [1] 3159
- ## [1] 3948
- ## [1] 4738
- ## [1] 5527
- ## [1] 6316
- ## [1] 7106
- ... [1] 7100
- ## [1] 7895
- ## [1] 8685
- ## [1] 9474
- ## [1] 10263
- ## [1] 11053
- ## [1] 11842
- ## [1] 12632
- ## [1] 13421
- ## [1] 14211
- ## [1] 15000
- ## [1] 3
- ## [1] 1
- ## [1] 790
- ## [1] 1580
- ## [1] 2369
- ## [1] 3159
- ## [1] 3948
- ## [1] 4738
- ## [1] 5527
- ## [1] 6316
- ## [1] 7106
- ## [1] 7895
- ## [1] 8685
- ## [1] 9474
- ## [1] 10263
- ## [1] 11053
- ## [1] 11842
- ## [1] 12632
- ## [1] 13421
- ## [1] 14211
- ## [1] 15000
- ## [1] 4
- ## [1] 1
- ## [1] 790
- ## [1] 1580
- ## [1] 2369
- ## [1] 3159
- ## [1] 3948
- ## [1] 4738
- ## [1] 5527
- ## [1] 6316
- ## [1] 7106
- ## [1] 7895
- ## [1] 8685
- ## [1] 9474
- ## [1] 10263 ## [1] 11053
- ## [1] 11842

[1] 12632 ## [1] 13421 ## [1] 14211 ## [1] 15000

