Praktiukumsarbeit zum Praktikum Regelungstechnik

Christian Küllmer, Jonas Kallweidt, Leon Blum ${\bf August\ 1,\ 2019,\ Kassel}$

Inhaltsverzeichnis

1	Rec	hnerteil Aufgaben aus Kapitel 9.3. des Praktikumsskrips	3
	1.1	Wichtiger Hinweis:	3
	1.2	Aufgabe a) Gebautes Simulink Modell	3
	1.3	Aufgabe b)	4
	1.4	Aufgabe c)	5
	1.5	Aufgabe d)	5
	1.6	Aufgabe e)	6
	1.7	Aufgabe f)	7
	1.8	Aufgabe g)	7
2	Vers	such Antrieb	9
3	Vers	such Schwebekörper	9
4	Vers	such Kran	9
	4.1	Vorbereitungsaufgaben	9
	4.2	Regelung der Wagenposition y_w	9
	4.3	Zusätzliche regelung des Winkels α	9
	4.4	Digitale PD-Regelung von y_w und α	9
		4.4.1 Einfluss der Abtastzeit	9
		4.4.2 Warum macht eine Erweiterung um einen PD-Regler Sinn?	11
		4.4.3 Test des PD-Regler im Realen System	12
		4.4.4 Filterung über ein PT-1 Glied	12
	4.5	Regelung mit zusätzlicher Stellgrößenbeschränkung	13
		4.5.1 Kann Stellgrößenbeschränkung für eine Regelverbesserung sorgen?	13
	4.6	Testen dieser theoretische Stellgrößenbeschränkung im realen Versuch-	
		saufbau	13
	4.7	Regelung der x- und v- Achse	14

1 Rechnerteil Aufgaben aus Kapitel 9.3. des Praktikumsskrips

In diesem Anteil geht es um die in Aufgabe 9.3a. Dieser bezeichnet das Aufstellen der Gleichungen aus den gegeben Gleichungen. Die Gleichungen sind gegen als Blockschaltbild gegeben. Diese werden jetzt übersetzt in Mathlab Simulink.

1.1 Wichtiger Hinweis:

Für alle in diesem Bereich folgenden Auswertungen gibt folgende Farbkonvention

- $\bullet\,$ Die rote Kurve entspricht dem Winkel φ
- \bullet Die blaue Kurve entspricht dann der Winkelgeschwindigkeit $\dot{\varphi}$
- \bullet Die grüne Kurve entspricht der Winkelbeschleunigung $\ddot{\varphi}$

1.2 Aufgabe a) Gebautes Simulink Modell

Teil/SimulinkModell.jpeg

Figure 1: In Simulink gebautes Modell des Systems des Roboterarms

1.3 Aufgabe b)

Das System wird simuliert und die Zustandsgrößen werden über einen Zeitverlauf dargestellt. Dabei entstehen folgende Diagramme:

Figure 2: Darstellung des Winkels für eine anfängliche Auslenkung von 40 Grad.

Aus dem Diagramm Figure 4 geht hervor, dass das System ein stabiles System darstellt,
solange keine Stellgröße eingeprägt wird und dabei für gewöhlich eine Ruhelage bei 0° annehmen kann, wenn vorher keine Auslenkung vorgenommen wurde. Hier geht die Auslenkung auf keinen stationären Endwert, da die Expotentialfunktion zur Beschreibung der Dämpfung niemals null wird. In einem Realen System wird hier aber wahrscheinlich ein Stillstand nach beliebig langer Wartezeit eintreten, wenn der Roboterarm die Haftreibung nicht mehr Überwinden kann und die Bewegung im Aperiodischen Grenzfall endet.

1.4 Aufgabe c)

Es soll eine Simulation angezeigt werden, die die Startwerte

$$\varphi(0) = 0 \tag{1}$$

$$\dot{\varphi}(0) = 0 \tag{2}$$

$$u(t) = \begin{pmatrix} 0 & f \ddot{\mathbf{u}} r \ t < 1\\ 0.17 & f \ddot{\mathbf{u}} r \ t \ge 1 \end{pmatrix}$$
 (3)

Figure 3: Darstellung des Winkels für eine anfängliche Auslenkung von 40 Grad.

Das System befindet sich zunächst in Ruhelage zum Zeitpunkt t=1 wird ein Drehmoment vom Motor aufgebaut, das den Roboterarm nach Durchlaufen eines Einschwingvorgangs um die neue Ruhelage in eben diese auslenkt . Diese neue Ruhelage hängt von dem Eingangsdrehmoment ab. Der Einschwingvorgang hat dabei ein gleiches Verhalten, wie der Einschwingvorgang von Aufgabe 9.3.b).

1.5 Aufgabe d)

$$\varphi(0) = 0 \tag{4}$$

$$\dot{\varphi}(0) = 0 \tag{5}$$

$$u(t) = \begin{pmatrix} 0 & f\ddot{\mathbf{u}}r \ t < 1\\ 0.18 & f\ddot{\mathbf{u}}r \ t \ge 1 \end{pmatrix} \tag{6}$$

Figure 4: Darstellung des Winkels für eine anfängliche Auslenkung von 40 Grad.

Anders als im Versuch 9.3c befindet sich der Roboterarm nun zum Zeitpunkt t=0 nicht mehr in der Ruhelage bei einem Winkel von 0° , sondern in einem Winkel von 40° . Dies hat zur Folge, dass der Arm zunächst in der Zeit bis t=1*s sowie in der darauffolgenden Sättigungszeit des PT1-Gliedes, das den Motor beschreibt, zurückschwingen kann. Sobald das Drehmoment des Motors aufgebaut ist legt der Roboterarm an Geschwindigkeit zu und überschreitet dabei sogar die kritische 180° Marke, ab der der Arm nicht mehr zurückschwingt, sondern einen Überschlag vollführt und weiter an Geschwindigkeit gewinnt. Da es sich bei dem betrachtetet Roboterarm um ein gedämpftes Model handelt, geht die Gewschwindigkeit in eine Sättigung über, bis diese um einen konstanten Wert fluktuiert.

1.6 Aufgabe e)

Um zu überprüfen, ob der Motor bei einem Arm bei einem Eingangssignal von eine Ruhelage bei $40\,^\circ$ zur Einstellung bringt. Wird dies in Mathlab mit folgendem Eingangssignal geprüft:

$$u_0 = \frac{m * g * l * sin(\varphi(0))}{300} = 0,1471$$
 (7)

Dies entspricht einem Drehmoment von 44,1402 Nm. Dieses Drehmoment wird im Modell als Konstante Eingangsgröße Augegebenen. Der resultierende Winkel wird dann in Grad angegeben und sollte entsprechend der Erwartung einen Winkel von 40 $^\circ$ entsprechen.

Figure 5: Darstelung des Winkelgraphen bei einem gegebenen Drehmoment

An dem Diagramm ist explizit zu sehen, dass es sich bei der Auslenkung durch das Drehmoment u $_0$ einstellt. Diese Auslenkung entspricht im Mitte. einem Wert von 0,6971 Rad. Daraus ergibt sich eine neue Auslenkung von 40 °. Damit wird die Angabe aus dem Aufgabenscript bestätigt.

1.7 Aufgabe f)

Bei der Linearisirung durch Softwarenutzung von Mathlab ergibt folgendes Ergebnis im Bogenmaß:

$$G_s = \frac{428.6}{(s^3 + 10.14 * s^2 + 8.944 * s + 75.15)}$$
(8)

Die Abweichung in der dritten Nachkommastelle des Zählers lässt sich dabei auf ein veränderten Rundungsalgorithmus im Programm verweisen. Die Ergebnisse stimmen also überein wodurch $G_{\rm s}$ von nun an unsere Funktion der Strecke beschreibt.

1.8 Aufgabe g)

Um einen Regler zu finden, der die Stabilitätskriterien einhält stellen wir zunächst die orginale Wurzelortskurve dar.

Figure 6: Wurzelortskurve des Systems G_s

In der Wurzelortskurve kann man direkt sehen, dass zwei Nullstellen in Richtung der zwei Nullstellen im positiven Bereich einen guten Reglner darstellen würden. Diese müssen dabei nicht die die Polstellen kompensieren, sondern lediglich im Imaginären Anteil des Wurzel Ortskurve liegen um dort den die Zerphilien Anteile der Wurzelortskurve anzuziehen. Es entsteht folgende Ausgabe.

Figure 7: Anzeige des Ausgangswertes

Die Sich damit realisierende Ausgabe wurde von dieser Wurzelortskurve erzeugt.

Figure 8: Wurzelortskurve des Systems \mathbf{G}_{s} mit der Anpassung zweier Nullstellen

2 Versuch Antrieb

3 Versuch Schwebekörper

4 Versuch Kran

- 4.1 Vorbereitungsaufgaben
- 4.2 Regelung der Wagenposition yw
- 4.3 Zusätzliche regelung des Winkels α
- 4.4 Digitale PD-Regelung von y_w und α

4.4.1 Einfluss der Abtastzeit

In diesem Versuch wird der Einfluss der Abtastzeit auf das Ergebnis der Regelung genommen. Da wir die Regelfunktion des PD-Regler diskretisiert haben und danach sich das Ergebnis im k Bereich befindet, muss dieses Ergebnis dann noch in die

Bildebene Z gebracht werden.

$$G_R(s) = K_P + K_D s = K_P * s + K_D * \Delta(1 + s * T_D)$$
 (9)

$$y_k = K_P * k + \frac{K_D}{T_D} * (k-1)$$
 (10)

$$y_{k} = K_{P} * k + \frac{K_{D}}{T_{D}} * (k - 1)$$

$$G_{R}(z) = K_{p} * z + \frac{K_{D}}{T_{D} * T} * \frac{z - 1}{z}$$

$$(10)$$

Was dabei einkalkuliert wurde, ist, dass T direkt die Abtastzeit des Reglers Berücksichtigt und daraus sich der Regelkreis beeinflussen lässt.

1. Die Abstastzeit wird auf t = festgelegt.

Figure 9: Verlauf des Experimentes mit einer Abtastzeit von 200ms

Beobachtung: Bei der Abtaszeit im oberen Grenzbereich schaukelt sich die eigentliche Grundbewegung auf und die Pendelbewegung wird eher verstärkt als gedämpft. Das sorgt für ein stärkere Pendelbewegung als die ungeregelte Bewegung.

2. Die Abtastzeit wird auf t = 1 ms festgelegt.

Figure 10: Verlauf des Experimentes mit einer Abtastzeit von 1ms

Beobachtung: Bei dieser kleineren Abtastzeit arbeitet der Regler so, dass das Schwingen des Seils stark vermieden wird. Es sorgt dafür, dass das die Auslenkung des Seils verringert wird.

Fazit: Das Fazit, was aus diesem Versuch gezogen werden muss ist, dass die diskretisierung einer Messung und die diskretisierung eines Reglers in ausreichender Genauigkeit vorgenommen werden muss.

4.4.2 Warum macht eine Erweiterung um einen PD-Regler Sinn?

Figure 11: Aufbau der PD-Regelung im realen System

Dazu müssen wir uns die Beschreibung des Systems anschauen und mit den Zielen der Regelung vergleich. Es soll die Abweichung des Seilwinkels möglichst gering sein und die Position des Krans möglichst exakt erreicht werden. Da ein P-Regler immer eine dauerhafte Regelabweichung mit sich bringt, so kann mit dem PD-Regler gut auf

eine schnelle Änderung reagiert werden, da dieser besser auf die Veränderung einer Regelgröße reagiert. Diese Veränderung kann gut mit einem D-Regler geregelt werden um weiter einer möglichen dauerhaften Abweichung Regelungstechnik zu begegnen werden die P-Regelanteile genutzt. Dies macht den PD-Regler an dieser Stelle zum idealen Regler für den Kran.

4.4.3 Test des PD-Regler im Realen System

Figure 12: Aufbau der PD-Regelung im realen System

Bei diesem Versuch lässt sich beobachten, dass es in der Eingelphase, wenn die Überlagerung des P-Reglers nicht mehr mehr in der Sättigung des Stellmotors ist, ein zittern der Kurve zu beobachten. Auch beim Versuch im realen System gibt es dieses Regelflackern.

4.4.4 Filterung über ein PT-1 Glied

Es soll zu dem Regler ein PT-1 Filter implementiert werden. Die Idee bei diesem Versuch ist es, dass das Rauschen unterdrückt wird und die Zitterbewegungen am Ende zu vermeiden und damit gleichzeitig auch die Ausregelzeit verkürzen. Wir implementieren dazu das PT-1 Glied in das gegebene Simulinkmodell des Vorversuchs. Dieses Modell wird sowohl im Winkel, wie auch in der Streckenregelung im ein PT-1 Glied erweitert.

Figure 13: Aufbau der PD-Regelung im realen System ergänzt mit einer PT1-Strecke zur Filterung der Kleinstabweichungen

4.5 Regelung mit zusätzlicher Stellgrößenbeschränkung

4.5.1 Kann Stellgrößenbeschränkung für eine Regelverbesserung sorgen?

Die neue Struktur korregiert das Problem in gewisser Weise, weil das Verhältnis von Wegstreckeänderung zu Winkel eingeschränkt werden kann. Wenn der Stellgrößenanteil, der Wegstrecke nicht mehr voll ausgestreckt werden kann, begrenzt sich die Geschwindigkeit mit der der Krankwagen bewegt werden kann. Dieser Regelgrößenanteil steht dann der Regelung des Seilwinkels zu. Zusätzlich ist eine begrenzte Beschleunigung des Kranwagens nicht mehr dazu in der Lage einen unbegrenzt großen Winkel zu produzieren. Daraus lässt sich Schlussfolgern, dass eine Stellgrößenbeschäkung die Regelungsgenaurigkeit verbessert.

4.6 Testen dieser theoretische Stellgrößenbeschränkung im realen Versuchsaufbau

Nach einigen Versuchsreihen wurde ein Stellte sich der beste Kompromiss bei einer Stellgrößenbeschränkung auf einen Wert von 0,9 ergeben. Das Ergebnis dieser Dokumentation wurde hier dann festgehalten.

Figure 14: Regelungsdarstellung mit der Stellgrößenbeschränkung und einem PDRegler

Es lässt sich dabei festhalten

4.7 Regelung der x- und y- Achse