Group G

Student Id	Name	Student Email	Contribution	In Percentage
0283599	Krina Patel	cbu22cgxl@cbu.ca	Data understanding and cleaning	33%
0269627	Amara Okonkwo	Cbu22bdqd@cbu.ca	Normalization and Correlation	33%
0205450		CRUIDOCI RNIG. I	recommendation and the contract of	2.40

Video Game Sale Prediction

Dataset

The data is taken from: https://www.kaggle.com/datasets/gregorut/videogamesales

Dataset Understanding

Dataset Understanding
The gaming industry is certainly one of the thiving industries of the modem age and one of those that are most influenced by the advancement in technology. With the availability of technologies like ARA/R in consumer products like gaming concides and even smartphones, the predict the sales of video games depending on given factors. Given are 8 distinguishing factors that can influence the sales of a video game. Our objective as a data scientist is to build a machine learning model that can accurately predict the sales in millions of units for a game.

• Rank – This column seems to indicate the ranking of the video game is more context. It might represent the position of the game in a particular list or ranking based on certain criteria.

• Name – The name of the video game. Each row represents a specific game, and this column holds the teller of that game.

• Platform – Refers to the gaming platform or conside on which the game is available or intended to be played, such as PlayStation, Xbox, PC, etc.

• Vara – Represents the years when the game was released.

• Genera-indicates the category or type of the video game, such as action, adventure, sports, role-playing, etc.

• Publisher – The company or entily responsible for publishing or releasing the game.

• IA, Sales – Sales figures in Knorne

• Justice – Sales figures in North America

• Li, Sales – Sales figures in North America

• Other, sales – Sales figures in Curpo

Problem Statement

- Find the trends for the sales of games?
 Find the correlation among the variables?
 Predict the Global sales for game on the basis of regional sales?

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as ans import scipy from scipy.stats import zscore

Loading a CSV file

Viewing the data df = pd.read_csv('vgsales.csv') df.head()

4 5 Pokemon Red/Pokemon Blue GB 1996.0 Role-Playing Nintendo 11.27 8.89 10.22 31.37

Dataset Structure

]: Rank		Rank	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
		- 1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74
	1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
	2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82
	3	4	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	15.75	11.01	3.28	2.96	33.00
	4	5	Pokemon Red/Pokemon Blue	GB	1996.0	Role-Playing	Nintendo	11.27	8.89	10.22	1.00	31.37
		-	_	-		-	-	-	-			-
1	6593	16596	Woody Woodpecker in Crazy Castle 5	GBA	2002.0	Platform	Kemco	0.01	0.00	0.00	0.00	0.01
1	6594	16597	Men in Black II: Alien Escape	GC	2003.0	Shooter	Infogrames	0.01	0.00	0.00	0.00	0.01
1	6595	16598	SCORE International Baja 1000: The Official Game	PS2	2008.0	Racing	Activision	0.00	0.00	0.00	0.00	0.01
1	6596	16599	Know How 2	DS	2010.0	Puzzle	7G//AMES	0.00	0.01	0.00	0.00	0.01
1	6597	16600	Spirits & Spells	GBA	2003.0	Platform	Wanadoo	0.01	0.00	0.00	0.00	0.01

16598 rows × 11 columns

4]:		Rank	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
	11765	11767	Generator Rex: Agent of Providence	PS3	2011.0	Action	Activision	0.05	0.01	0.00	0.01	0.07
	15010	15013	Serious Sam HD: Gold Edition	X360	2011.0	Shooter	Mastertronic	0.00	0.02	0.00	0.00	0.02
	1209	1211	Resident Evil: The Umbrella Chronicles	Wii	2007.0	Action	Capcom	0.68	0.43	0.29	0.14	1.54
	9476	9478	Grand Knights History	PSP	2011.0	Role-Playing	Marvelous Interactive	0.00	0.00	0.13	0.00	0.13
	12470	12472	Dreamer Series: Zoo Keeper	DS	2010.0	Simulation	DreamCatcher Interactive	0.06	0.00	0.00	0.00	0.06
	13996	13998	Fading Shadows	PSP	2008.0	Puzzle	Ivolgamus	0.03	0.00	0.00	0.00	0.04
	5688	5690	DJ Hero	PS2	2009.0	Misc	Activision	0.10	0.02	0.00	0.20	0.32
	16558	16561	Pro Evolution Soccer 2008	PC	2007.0	Sports	Konami Digital Entertainment	0.00	0.01	0.00	0.00	0.01
	14912	14915	Chuck E. Cheese's Sports Games	Wii	2011.0	Sports	UFO Interactive	0.02	0.00	0.00	0.00	0.02
	13856	13858	Sid Meier's Railroads!	PC	2006.0	Simulation	Take-Two Interactive	0.01	0.03	0.00	0.01	0.04

In [5]: df.shape

Out[5]: (16598, 11)

List of columns and fields

In [6]: list(df)

In [7]: df.columns

Data Exploration

Review the summary of dataset

```
count 16598.000000 16327.000000 16598.000000 16598.000000 16598.000000 16598.000000 16598.000000
mean 8300.605254 2006.406443 0.264667 0.146652 0.077782 0.048063 0.537441
  std 4791.853933 5.828981
                                          0.816683
                                                           0.505351
                                                                         0.309291
                                                                                        0.188588
                                                                                                         1.555028

        25%
        4151 250000
        2003 000000
        0.000000
        0.000000
        0.000000
        0.000000
        0.000000

        50%
        8300 500000
        2007 000000
        0.080000
        0.020000
        0.000000
        0.010000
        0.110000

75% 12449.75000 2010.00000 0.24000 0.110000 0.04000 0.04000 0.470000 
max 16600.00000 2020.000000 41.490000 29.020000 10.220000 10.570000 82.740000
```

Data Cleaning

```
Data cleaning refers to the process of identifying and rectifying errors, inconsistencies, and ina exploration, analysis, or machine learning.
                                    [9]: df.info()
                                                       In the dataset, we have 6 float 1 integer and 4 object. The target variable 'Global_Sales' is float.
In [18]: df.shape
   In [11]: df.isna().sum()
                                                                  Rank
Name
Platform
Year
Genre
Publisher
NA_Sales
EU_Sales
JP_Sales
Gother_Sales
Global_Sales
dtype: int64
   In [12]: df.Year.unique()
Out[12]: array([2006., 1985., 2008., 2009., 1996., 1989., 1984., 2005., 1999., 2007., 2016., 2013., 2004., 1999., 1988., 2021., 2011., 2014., 1999., 1988., 2021., 2011., 2014., 1992., 1997., 1993., 1994., 1982., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 2008., 
                                                              # drop function to remove null value
df = df.dropna()
df.Year.unique()
                                                                     array([206., 1985., 2008., 2009., 1996., 1989., 1984., 2005., 1999., 2007., 2010., 2011., 2004., 1990., 1988., 2002., 2001., 2011., 1995., 2015., 2012., 2014., 1992., 1997., 1993., 1994., 1982., 2004., 1986., 2000., 1995., 2016., 1991., 1981., 1987., 1980., 1983., 2020., 2017.])
In [14]: # Covert the datatype of 'Year' to int df['Year'] = df['Year'].astype('int64')
                                                          C:\Users\siman\AppOmata\\ccal\Temp\ipykernel_16972\2891863982.py:2: SettingWithCopyWarning A value is trying to be set on a copy of a slice from a DataFrame. Try using _loci_frow_indexen_rol_indexen_P = value instead
                                                          See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['Year'] - df['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']-aff['Year']
                         and the second of the second o
   In [16]: df.shape
```

After cleaning the data we checked the sh needs to be converted.

Data Visualization

In [17]: # Checking the duplicate of this dataset
df.duplicated().value_counts() False 16291 Name: count, dtype: int64

Out[16]: (16291, 11)

```
region_sales = df[['Ma_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales']]
total_sales = region_sales.sum()
name = (Mu_Sales' : 'North America',
'JP_Sales' : 'Japan',
'JP_Sales' : 'Japan',
'Other_Sales' : 'Other Regions')
plt.figure(figsize-(10, 3))
plt.be(ome values(), total sales.values, color-'skyblue')
plt.title('rotal Sales by Region')
plt.valuebe('region')
plt.valuebe('rotal Sales by (in millions)')
plt.valuebe('rotal Sales (in millions)')
```


The above bar plot compares the total sales of video games in different regions (North America, Europe, Japan, Other Regions). North America has a higher sales followed by Europian country.

Number of games released over the years

```
game_count = df.grouply("vear")['hame'].count().reset_index() plt.figure(figiine(9, 4)) plt.figure(figiine(9, 4)) plt.figure(figiine(9, 4)) game_count('hime'), marker-'o', linestyles-'-) plt.disel('vear') close shiesed over the 'veart') plt.disel('vear') plt.disel('vear') plt.disel('vear') plt.grid('vear') plt
```


The above line graph show the trend of game

A boxplot is a visual representation that summarizes the distribution of a numerical dataset. It shows several statistical measures, including the minimum, first quartile (Q1), median (second quartile, Q2), third quartile (Q3), maximum, and any outliers present in the data. In this case, the boxplot shows the distribution of global sales of video games, providing insights into the central tendency, spread, and presence of outliers within the sales data. The horizontal orientation allows for an easy understanding of the sales distribution and potential outliers in the dataset. Here we can an outlier

Highest Sales of games released on different Platform

platform_sales = df.groupby('Platform')[['MA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales', 'Global_Sales']].sum() plt.figure(figsize=(12, 6)) region = 'Global Sales' sorted_data = platform_sales.sort_values(by=region, ascending=False) plt.bar(sorted_data.index, sorted_data[region], color='skyblue')
plt.xlabel('Platform')
plt.ylabel(f'Total (region) (in millions)')
plt.tile(('Total (region) by Platform') plt.xticks(rotation=90) plt.tight_layout()

The above the bar plot shows the total global sales of video games acr

```
[22]: filtered_data = df[(df['Year'] >= 2000) & (df['Year'] <= 2020)]
        platform_max_sales = filtered_data.groupby(['Year', 'Platform'])['Global_Sales'].idxmax()
         top_platforms = filtered_data.loc[platform_max_sales][['Year', 'Platform', 'Global_Sales']]
        plt.figure(figsize(12, 6))
sss.barplot(data-top_platforms, se'vear', ye'Global_Sales', hue'Platform', ci-Mone)
plt.tille("Mighest Sales on Different Platforms Across Years (2000-2020)')
plt.valbed("Year")
plt.valbed("Global Sales')
plt.valbed("Global Sales')
plt.valbed("Global Sales')
```


This shows the highest sales achieved by different gaming platforms in each year between 2000 and 2020, allowing comparing 06 Wii has the higest sales globally with over 80 sales, and in 2008 it sold about 35.

In [23]: genre_sales = df.groupby('Genre')[['NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales', 'Global_Sales']].sum() plt.figure(figsize=(12, 6)) sorted_data = genre_sales.sort_values(by=region, ascending=False) plt.bar(sorted_data.index, sorted_data[region], color='skyblue')
plt.xlabel('Genre')
plt.ylabel('Fortal (region) (in millions)')
plt.title(f'Total (region) by Genre') plt.tight_layout() plt.show() plt.figure(figsize=(8, 8)) total_sales = genre_sales[region].sum() genre_sales['Percentage'] = (genre_sales[region] / total_sales) * 100

The bar plot visualizes the total global sales for each video game genre, allowing comparison of sales figures among different genres here it shows that Action sales more than other genre The pie chart shows the percentage distribution of global sales across various genres, providing an overview of the contribution of each genre to the total sales, we can see that Action has a higer percentage of 19.6% while adventure and puzzle has a lower perecntage of 2.7%. These visualizations offer insights into both the overall sales performance of genres and the proportional contribution of each genre to the total global sales of video games.

a = ['Year','NA_Sales','EU_Sales','JP_Sales','Other_Sales','Global_Sales']
df(a).hist(figsize = (12,12))
plt.show()

These histograms shows the distribution patterns of sales figures in different regions and the distribution of game releases across various years. They help in understanding the spread and frequency distribution of numerical data within each specified column. Here we can see that the game had a higher sales in the year 2010 while in the year 1985 it sold it didn't sell much

This pairplot shows the associations between different features in the dataset

```
In [26]: # title heatma
```

sales_by_year_genre = df.pivot_table(index='Genre', columns='Year', values='Global_Sales', aggfunc='sum'

plt.figure(figsize=(12, 6)) sns.heatmap(sales_by_year_genre, cmap=''

plt.xlabel('Year')
plt.ylabel('Genre')

plt.title('Global Sales by Year and Genre'
plt.show()

ods, and changes in sales patterns over time as we can see in this map Action genre has the higest sales between 2007 till 2015 while This heatmap shows a quick overview of how global sales are distribut adventure has a lower sales from 1980 till 2020.

Drop Columns

df = df.drop(columns=['Name','Platform', 'Genre', 'Publisher'])

Correlation

Checking if there is any correlation between the plt.figure(figsize=(14,9))
sns.heatmap(df.corr(),annot=True,cmap='RdBu_r');

As we can see that the values generated by Year and Rand variable shows negative values that is, -0.075 for years in relation to global sales and -0.43 for rank in relation to global sales, which ir as the other region sales are directly related to global sales i.e. target value. Therefore, we will drop the column Rank and Year which plays any role in predicting the global sales prediction.

In [29]: df = df.drop(columns=['Rank','Year'])

In [30]: df.info()

Here we droped the columns that we we won't need for the prediction

Feature Creation and Normalization

field = df['Global_Sales']
#mean value
mean = np.mean(field)

#median value median = np.median(field)

#mode value mode= stats.mode(field)

print("Mean: ", mean)
print("Median: ", median)
print("Mode: ", mode)

Mean: 0.5409103185808114 Median: 0.17 Mode: ModeResult(mode=0.02, count=1045)

In [32]: # Standard deviation
 np.std(df['Global_Sales'])

Out[32]: 1.567296401432299

In [33]: # Mormal distribution of columns sns.distplot(df'[dlobal_Sales'], bins=30); # Me can see a Gaussian-like shape to the data, # that although is not strongly the familiar bell-sh

C:\Users\simar\AppData\Local\Temp\ipykernel_16972\2378763684.py:2: UserWarning: 'distplot' is a deprecated function and will be removed in seaborn v0.14.0.

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df['Global_Sales'], bins=30);

A Gaussian-like shape refers to a distribution that somewhat resembles a normal (bell-shaped) curve. The presence of a central tendency and symmetry in the distribution groups approximation or similarity to a Gaussian distribution, possibly implying a certain level of symmetry and central tendency in the 'Global_Sales' data.

```
: column="Global_Sales"
# mp.percentile(df[column_], 50)
q75, q25 = mp.percentile(df[column_], [75,25])
1gr = q75 = q25
df[column_][df[column_]>1.5*iqr=q75]
                                                                                                         82.74
40.24
35.82
33.00
31.37
                     ...
1842 1.11
1843 1.11
1844 1.11
1845 1.11
1845 1.11
1846 1.11
Name: Global_Sales, Length: 1826, dtype: float64
IMAG 1.11

Manus: Clabal_Sales, Length: IRZ6, dtype: float64

Manus: Clabal_Sales, Length: IRZ6, dtype: float64

Imprint("mean of Clabal_Sales", mp.mean(df('Clabal_Sales')))

print("mean of Clabal_Sales", mp.medin(df('Clabal_Sales')))

print("mean of Clabal_Sales", mp.medin(df('Clabal_Sales')))

print("go of Clabal_Sales", mp.medf('Clabal_Sales'), 25))

print("go of Clabal_Sales", mp.mercemile(df('Clabal_Sales'), 25))

print("go of Clabal_Sales", mp.mercemile(df('Clabal_Sales'), 25))

df('Clabal_Sales'), init(thin-s80)

print("go of Clabal_Sales', mp.mercemile(df('Clabal_Sales'), 25))

mean of Clabal_Sales', mp.mercemile(df('Clabal_Sales'), 25)

mean of Clabal_Sales', and thin-sales', mp.mercemile(df('Clabal_Sa
               12000
          10000
                          8000
                               6000
```

The average 'Global Sales' value is approximately 0.1335. The middle value or median of 'Global Sales' is 0.0681, which is less than the mean, indicating a right-skewed distribution. The smallest 'Global Sales' value is 0.0043. The largest 'Global Sales' value is 19229. Q1 (25th percentile)is 0.0253 Median (50th percentile)is 0.170 Q1 (75th percentile)is 0.1702 The standard deviation of 'Global Sales' is approximately 0.17, indicating a spread or dispersion of sales values around the mean.

Normalization and Scaling using SKlearn

```
import pands as pd from silamn import propocessing data - df[["Mw_Sales','EU_Sales','7P_Sales','0ther_Sales','Global_Sales']] cols - data colour data - df[("Mw_Sales','2P_Sales','0ther_Sales','Global_Sales']] dfis - do.Cutervae(data) dfis - do.Cutervae(data)
 min max_scaler = preprocessing.MinMaxScaler()
np_scaled = min_max_scaler.fit_transform(dfns)
df_normalized = pd_DataFrame(np_scaled, columns = cols)
df_normalized
```

0

Global_Sales

		NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
	0	1.000000	1.000000	0.368885	0.800378	1.000000
	1	0.700892	0.123363	0.666341	0.072848	0.486281
	2	0.382020	0.443832	0.370841	0.313150	0.432854
	3	0.379610	0.379394	0.320939	0.280038	0.398767
	4	0.271632	0.306340	1.000000	0.094607	0.379064
			-		-	-
	16286	0.000241	0.000000	0.000000	0.000000	0.000000
	16287	0.000241	0.000000	0.000000	0.000000	0.000000
	16288	0.000000	0.000000	0.000000	0.000000	0.000000
	16289	0.000000	0.000345	0.000000	0.000000	0.000000
	16290	0.000241	0.000000	0.000000	0.000000	0.000000

```
In [37]: fig, ax = plt.subplots()
# the size of A4 paper
fig.set_size_inches(11.7, 8.27)
```

20

NA_Sales

80 60

EU_Sales

In [38]:
 fig, ax = plt.subplots()
 # the size of A4 paper
 fig.set_size_inches(11.7, 8.27)

Scalling using Sklearn

In [39]: from sklearn.preprocessing import MinMaxScaler from pandas import Series

series = Series(df['Global_Sales'])

prepare data for normalization values = series.values values = values.reshape((len(values), 1))

train the normalization
scale= *MinNascaler(feature_range=(0, 1))
scale= *scale-rit(values)
print('Min: %%, Max: %f' % (scaler.dato_min_, scaler.dato_max_))

normalize the dataset and print normalized = scaler.transform(values) # print(normalized) sns.boxplot(normalized)

<Axes: >

Feature Selection

Correlation

Heatmaps make it simple to determine which attributes are most relevant to the target variable. In order to observe the correlation between the independent variables and the output variable, we will first plot the Pearson correlation heatmap.

This heatmap provides insights into the relationships and dependencies between different numerical variables in the dataset, enabling identification of potential correlations (positive or negative) between pairs of features. Positive values show positive correlation, while negative values show inverse correlation. As we can see, sales in North America contributed considerably to overall global sales; therefore, we can see a positive correlation between the two.

In [40]: import seaborn as sns from matplotlib import pyplot as plt

The Maniputtial ampete pypole as just get correlations of each features in dataset correnat = df.corr() top.corr_features = correnat.index pitt.figuref(rgiace.d2.20) spice heat may gene heatangle(staltop_corr_features).corr(), annot-True,cmap="RdViGn") gene heatangle(staltop_corr_features).corr(), annot-True,cmap="RdViGn")

: #Correlation with output variable cor_target = abs(correat['Global_Sales']) #Selecting highly correlated features relevant_features = cor_target(cor_target)#.5] relevant_features

NA_Sales 0.941269
EU_Sales 0.963264
JP_Sales 0.512774
Other_Sales 0.747964
Global_Sales 1.060060
Name: Global_Sales, dtype: float64

In [44]: # Pearson Correlation

def cor_salector(x, y, num_features):
 cor_list = []
 feature_name = x.column.tolist()
 feature_name = x.column.tolist()
 feature_name = x.column.tolist()
 cor_list append(cor_list)
 cor_list append(cor_list)
 cor_list append(cor_list)
 replace has wint b
 cor_list append(cor_list)
 feature manufaction append(cor_list)[rom_features:]].column.tolist()
 feature manufaction append(cor_list)[rom_features:]].column.tolist()
 cor_usport = [True if i in cor_feature dise false for i in feature_name]
 return cor_usport, cor_feature dise false for i in feature_name] cor_support, cor_feature = cor_selector(x, y, 4) print(str(len(cor_feature)), 'selected features') print(cor_feature)

4 selected features ['JP_Sales', 'Other_Sales', 'EU_Sales', 'NA_Sales']

Conclusion: 'JP_Sales', 'Other_Sales', 'EU_Sales', 'NA_Sales' are important variable related to target variable 'Global_Sales'. All these features will help to predict the target values.

Linear Regression Model

```
# New data for predictionem_data = {
    'NA_Sales': [41.49],
    'EU_Sales': [29.02],
    'JP_Sales': [3.77],
    'Other_Sales': [8.46],
Other_Sales': [8.de],

# Convert the now date to a DataFrame
## Convert the now date
## Co
```

```
plt.label("Actual Prices")
plt.label("Actual Prices")
plt.label("Producted Prices")
plt.label("Producted Prices")
plt.label("Prices")
plt.label("Prices")
prices("Prices")
price
```


Linear Regression R-squared: 0.9999932860147335 Predicted price for new data (Linear Regression): 82.73

By using the linear regression model we will split the data for training and testing, for testing size is 0.2 i.e. 20% and remaing training is done by using linear regression function. then the prediction is done on test set.

Linear Regression R-squared:1.00 that means low R-squared values can be perfectly the model is 1.0. Predicted price for new data (Linear Regression):82.73

```
| (5) | pred_randon frowth - linear_souls | predictive_text) | red_random_forest.flatten())) | red_random_forest.flatten()) | red_random_forest.flatten() | red_random_forest.flatten()) | red_random_forest.flatten() | red_random_forest.flatten() | r
```

[48] ass level of Error from sklearn import netrics mee linear setrics.mean_absolute_error(y_test, y_pred_linear) print("Mean_Mosolute Errors", mee_linear percentage_error_linear = (mee_linear / y_mean()) * 100 print("Percentage_error_linear, "X")

Mean Absolute Error: 0.003063616816160768 Percentage Error: 0.566381655317427 %

We will find the mean absolute error by passing y_test and y_prediction values as a variable for the mae function, hence the result is approximately 0.00306361 which means lower the mean absolute error (mae) better the model is. After that it has been preint in form of percentage i.e. approx 0.566%.

In [49]: print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred_linear))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred_linear)))

Mean Squared Error: 2.8722212446665027e-05 Root Mean Squared Error: 0.005359310818254995

Random Forest

Random Forest is a supervised learning algorithm that works on the concept of bagging, in bagging, a group of models is trained on different subsets of the dataset, and the final output is generated by collating the outputs of all the different models. In the case of random forest, the base model is a decision tree

```
[8] from sklearm.ensemble import RandomforestRegressor

# Train Random Forest model

**Train Random Forest model

**Train Random Forest model

random forest model.ftf(X_rain, y_rain)

# Forest can the test at

y_pred_random_forest random_forest_model.predict(X_test)

plt.cattler(y_test, y_pred_random_forest, plabel.3)

plt.plac((y_test.inpl), y_test.mac()), y_test.mac(), y_test.max()), '...', lw-2, color-'reed')

plt.titler(Random Forest; Attaul vs. Fredicted Frices')

plt.taled('X_test) frices')

plt.taled('X_test) frices')

plt.taled('X_test) frices')

# Frict # rangomed value

# Frict # rangomed value

# Fredict frices from the description of the d
```


Random Forest R-squared: 0.8308379390825942 Predicted price for new data (Random Forest):36.02

Random Forest R-squared:0.8308 Predicted price for new data (Random Forest):36.02

n [51]: ### Level Of Error
from sklearn import metrics
mae_random_forest = metrics.mean_absolute_error(y_test, y_pred_random_forest)
print('Mean Absolute_error', mae_random_forest)

```
percentage_error_random_forest = (mae_random_forest / y.mean()) * 100
print("Percentage Error:", percentage_error_random_forest, "%")
             Mean Absolute Error: 0.84868768488696353
Percentage Error: 7.522875931869871 %
In [52]: print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred_random_forest))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred_random_forest)))
             Mean Squared Error: 0.7236698411897116
Root Mean Squared Error: 0.8506878635490879
```

Decision tree

contribute to the final decision.

```
The sidern tree import DecisionTreeSegressor
7 Traits Continum Tree most
6 Traits Continum Tree most Interest Continum Tree Most Interest Continum Tree Most Interest Continum Tree Most Interest Continum Tree Traits Continum Tree Trai
```


Decision Tree R-squared: 0.7217023307965275 Predicted price for new data (Decision Tree): 30.71

Decision Tree R-squared: 0.72 Predicted price for new data (Decision Tree): 30.71

```
rest level of Error
from silearn import metrics
man decision (rev. metrics, mean absolute error(y test, y pred decision tree)
print([Mean Absolute Errors], man decision (rev)
print([Mean Absolute Errors], man decision (rev)
print([Mean Absolute Errors], man decision (rev)
print([Mean Absolute Errors], percentage error decision (rev, "%)
Mean Absolute Errors, percentage error decision (rev, "%)
Proceedings Errors, 12.585217120012013
Proceedings Errors, 12.58521720012013
Proceedings Errors, 12.58521720013013
Proceedings Errors, 12.58521720013013
Proceedin
```

In [55]: print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred_decision_tree))
print('Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred_decision_tree)))

Mean Squared Error: 1.190548453853824 Root Mean Squared Error: 1.091122565917241

```
**Percentage error: | pursua-wag-
# Converting the summary data to a DataFrame
comparing df = pd.DataFrame(comparing data)
# Setting the model names as the index
comparing df set index('Model', inplace-True)
# Displaying the summary toble
comparing df
```

Model				
Linear Regression	82.728442	0.999993	0.003064	0.566382
Decision Tree	30.705000	0.721702	0.040688	7.52207€
Random Forest	36.024200	0.830838	0.281567	52.054317

Conclusion: By comparing all three model we can see that the most acurate model who predict the accurate value is Linear regression with leas mean absolute and percentage error among the other models. Which implies that the Linear regression is the Best model to implement.