Solving the monster of collinearity

By Alejandro Mahecha June 25 2020

- 1. Definition and collinearity examples.
- 2. Synthetic data simulation OLS
- 3. Simulation Ridge, Lasso and elastic-net.
- 4. Bayesian regression
- 5. Conclusions and next steps

Multicollinearity

volume_sales(price, %_diff_price,)

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots$$

$$\downarrow \beta_1,\beta_2 \uparrow$$

salary(age, years experience,)

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots$$


```
egin{aligned} x_2 &= x_1 + \epsilon \ x_1, \epsilon &\sim \mathcal{N}(\mu, \sigma^2) \,. \ y &= x_1 + x_2 \end{aligned}
```

mu, sigma = 2, 0.9
x1 = np.random.normal(mu, sigma, size=100)
x2 = np.random.normal(loc=x1, scale=0.05)
y = np.random.normal(loc=x1+x2, scale=1)

		0LS Regr	ession Re	sults		
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:		OL Least Square Fri, 29 May 202 16:13:1 10 9	S Adj. s F-sta 0 Prob 9 Log-L 0 AIC: 7 BIC:	ared: R-squared: tistic: (F-statistic) ikelihood:):	0.816 0.812 214.6 2.41e-36 -128.01 262.0 269.8
	coet	std err	t	P> t	[0.025	0.975]
const x1 x2	-0.2954 3.6637 -1.5003	1.868	-1.365 1.962 -0.799	0.176 0.053 0.426	-0.725 -0.043 -5.228	0.134 7.371 2.227

Assumptions

- Predictors have to be independent(pearson corr).
- Probability distributions of predictors has influence on coefficients precision.

$$\mathbf{C} = (\mathbf{X}'\mathbf{X})^{-1} = \begin{bmatrix} \frac{1}{1 - r_{12}^2} & \frac{-r_{12}}{1 - r_{12}^2} \\ \frac{-r_{12}}{1 - r_{12}^2} & \frac{1}{1 - r_{12}^2} \end{bmatrix}$$

$$(\mathbf{X}'\mathbf{X})\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y}$$

$$\begin{bmatrix} 1 & r_{12} \\ r_{12} & 1 \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}}_1 \\ \hat{\boldsymbol{\beta}}_2 \end{bmatrix} = \begin{bmatrix} r_{1y} \\ r_{2y} \end{bmatrix}$$

$$\hat{\beta}_1 = \frac{r_{1y} - r_{12}r_{2y}}{1 - r_{12}^2}, \quad \hat{\beta}_2 = \frac{r_{2y} - r_{12}r_{1y}}{1 - r_{12}^2}$$

$$|r_{12}| \to 1$$
, $\operatorname{Var}(\hat{\beta}_j) = C_{jj}\sigma^2 \to \infty$

Simulations

Questions

- % opposite sign coeff dist?
- R_2 dist?
- Coeffs dists?

Low collinearity $\,\sigma=0.2\,$

High collinearity $\,\sigma=0.05\,$

Regularization

- Ridge
- Lasso
- ElasticNet

Ridge: $(Y - X\beta)^2 + \lambda \beta^2$

Lasso: $(Y - X\beta)^2 + \lambda |\beta|$

ElasticNet: $(Y - X\beta)^2 + \lambda(\epsilon |\beta| + (1 - \epsilon)\beta^2)$

Bayes Regression model

$$Y \sim \mathcal{N}(\mu, \sigma^2) \ \mu = lpha + eta_1 X_1 + eta_2 X_2$$

$$\pi(\theta \mid \mathbf{Y} = \mathbf{y}) = \frac{P(\mathbf{Y} = \mathbf{y} \mid \theta) \pi(\theta)}{P(\mathbf{Y} = \mathbf{y})} = \frac{P(\mathbf{Y} = \mathbf{y} \mid \theta) \pi(\theta)}{\int_{0.1} P(\mathbf{Y} = \mathbf{y} \mid \theta) \pi(\theta) d\theta}.$$

$$f_{\boldsymbol{\beta},\sigma^2}(\boldsymbol{\beta},\sigma^2 \mid \mathbf{Y},\mathbf{X}) \propto f_Y(\mathbf{Y} \mid \mathbf{X},\boldsymbol{\beta},\sigma^2) f_{\boldsymbol{\beta}}(\boldsymbol{\beta}|\sigma^2) f_{\sigma}(\sigma^2)$$

Bayes Linear regression

Pymc3

scikit-learn

```
In [86]: reg.coef_
Out[86]: array([0.80923041, 1.25820039])
In [87]: lireg.coef_
Out[87]: array([-0.43266424, 2.50474319])
```

References

- 1) https://iopscience.iop.org/article/10.1088/1742-6596/1265/1/012021/pdf
- $2) \quad \underline{\text{https://arxiv.org/pdf/1509.09169.pdf}}$