

Building the Futuristic Blockchain Ecosystem

SECURITY AUDIT REPORT

MyroFloki

TOKEN OVERVIEW

Risk Findings

Severity	Found	
High	1	
Medium	0	
Low	2	
Informational	2	

Centralization Risks

Owner Privileges	Description
Can Owner Set Taxes >25%?	Not Detected
Owner needs to enable trading?	Yes, owner needs to enable trades
Can Owner Disable Trades ?	Not Detected
Can Owner Mint ?	Not Detected
Can Owner Blacklist ?	Not Detected
Can Owner set Max Wallet amount ?	Not Detected
Can Owner Set Max TX amount?	Not Detected

TABLE OF CONTENTS

02	Token Overview
03	Table of Contents
04	Overview
05	Contract Details ————————————————————————————————————
06	Audit Methodology
07	Vulnerabilities Checklist ————————————————————————————————————
08	Risk Classification
09	Inheritence Trees
10	Static Analysis ———————————————————————————————————
13	Manual Review
20	
20	About Expelee
21	Disclaimer

OVERVIEW

The Expelee team has performed a line-by-line manual analysis and automated review of the smart contract. The smart contract was analysed mainly for common smart contract vulnerabilities, exploits, and manipulation hacks. According to the smart contract audit:

Audit Date	4 March 2024
Audit Result	Passed with high risk

CONTRACT DETAILS

Token Address: --

Name: MyroFloki CEO

Symbol: MyroFloki

Decimals: 18

Network: --

Token Type:--

Owner: --

Deployer: --

Token Supply: 10000000000

Checksum: A2032c616934aeb47e6039f76b20df21

Testnet:

https://testnet.bscscan.com/address/0x5d4d8ea0a3dca10ef8775 721edffd40e039ae09e#code

AUDIT METHODOLOGY

Audit Details

Our comprehensive audit report provides a full overview of the audited system's architecture, smart contract codebase, and details on any vulnerabilities found within the system.

Audit Goals

The audit goal is to ensure that the project is built to protect investors and users, preventing potentially catastrophic vulnerabilities after launch, that lead to scams and rugpulls.

Code Quality

Our analysis includes both automatic tests and manual code analysis for the following aspects:

- Exploits
- Back-doors
- Vulnerability
- Accuracy
- Readability

Tools

- DE
- Open Zeppelin
- Code Analyzer
- Solidity Code
- Compiler
- Hardhat

VULNERABILITY CHECKS

Design Logic	Passed
Compiler warnings	Passed
Private user data leaks	Passed
Timestamps dependence	Passed
Integer overflow and underflow	Passed
Race conditions & reentrancy. Cross-function race conditions	Passed
Possible delays in data delivery	Passed
Oracle calls	Passed
Front Running	Passed
DoS with Revert	Passed
DoS with block gas limit	Passed
Methods execution permissions	Passed
Economy model	Passed
Impact of the exchange rate on the logic	Passed
Malicious event log	Passed
Scoping and declarations	Passed
Uninitialized storage pointers	Passed
Arithmetic accuracy	Passed
Cross-function race conditions	Passed
Safe Zepplin module	Passed

RISK CLASSIFICATION

When performing smart contract audits, our specialists look for known vulnerabilities as well as logical and acces control issues within the code. The exploitation of these issues by malicious actors may cause serious financial damage to projects that failed to get an audit in time. We categorize these vulnerabilities by the following levels:

High Risk

Issues on this level are critical to the smart contract's performance/functionality and should be fixed before moving to a live environment.

Medium Risk

Issues on this level are critical to the smart contract's performance/functionality and should be fixed before moving to a live environment.

Low Risk

Issues on this level are minor details and warning that can remain unfixed.

Informational

Issues on this level are minor details and warning that can remain unfixed.

INHERITANCE TREES

STATIC ANALYSIS

A static analysis of the code was performed using Slither. No issues were found.

```
Event emitted after the call(s):
- SetAutomatedMarketMakerPair(pair,value) (MyroFloki.sol#1585)
ncy in MyroFloki._transfer(address,address,uint256) (MyroFloki.sol#1641-1738):
- unismap/Nouter.smapExactTokensForETMSupportingFeeOnTransferTokens(smapAmount,0,path,address(this),block.timestamp) (MyroFloki.sol#1677-1683)
- (success) = marketingMallet.call{value: marketingShare}() (MyroFloki.sol#1689)
External calls sending eth:
- (success) = marketingMallet.call{value: marketingShare}() (MyroFloki.sol#1689)
Event emitted after the call(s):
   - TransferFailed(marketingWallet,marketingShare) (MyroFloki.sol#1691)
cy in MyroFloki._transfer(address,address,uint256) (MyroFloki.sol#1641-1738):
External calls:
- uniswapV2Router.smapExactTokensForETRSupportingFeeOnTransferTokens(smapAmount,0,path,address(this),block.timestamp) (MyroFloki.sol#1677-1683)
- (success) = marketingkiallet.call(value: marketingShare)() (MyroFloki.sol#1697)
- smapAndSendDividends(address(this).balance - initialBalance) (MyroFloki.sol#1697)
- uniswapV2Router.smapExactETMForTokensSupportingFeeOnTransferTokens(value: amount)(0,path,address(this),block.timestamp) (MyroFloki.sol#1745-1750)
- success = IRC20(remardToken).transferCaddress(dividendTracker),balanceRemardToken) (MyroFloki.sol#1753)
- dividendTracker.distributeDividends(balanceRemardToken) (MyroFloki.sol#1756)

External calls sending eth:
- (success) = marketingBallet.call(value: marketingShare)() (MyroFloki.sol#1697)
- smapAndSendDividends(address(this).balance - initialBalance) (MyroFloki.sol#1697)
- uniswapV2Router.smapExactETMForTokensSupportingFeeOnTransferTokens{value: amount}(0,path,address(this),block.timestamp) (MyroFloki.sol#1745-1750)

Event emitted affer the call(s):
- unimapV2Nouter.smapExactETHForTokensSupportingFeeOnTransferTokens{value: amount}(
Event emitted after the call(s):
- SendDividends(balanceRemardToken) (MyroFloki.sol#1787)
- smapAndSendDividends(address(this).balance - initialBalance) (MyroFloki.sol#1697)
- Transfer(from,to,amount) (MyroFloki.sol#681)
- super._transfer(from,address(this),fees) (MyroFloki.sol#1721)
- Transfer(from,to,amount) (MyroFloki.sol#881)
- super._transfer(from,to,amount) (MyroFloki.sol#1724)
ncy in MyroFloki._transfer(address,address,uint256) (MyroFloki.sol#1641-1738):
External calls:
External calls:
- uniswapV2Router.swapExactTokensForETRSupportingFeeOnTransferTokens(swapAmount,0,path,address(this),block.timestamp) (MyroFloki.sol#1677-1683)
- (success) = marketingBiallet.calt[value: marketingShare]() (MyroFloki.sol#1689)
- swapAndSendDividends(address(this),balance - initialBalance) (MyroFloki.sol#1697)
- swapAndSendDividends(address(this),balance - initialBalance) (MyroFloki.sol#1697)
- swapAndSendDividends(address(this),block.timestamp) (MyroFloki.sol#1697)
- swapAndSendDividends(address(this).balance - initialBalance) (MyroFloki.sol#1697)
- uniswapVZNouter.swapExactETHForTokensSupportingFeeOnTransferTokens{value: amount}(0,path,address(this),block.timestamp) (MyroFloki.sol#1745-1750)
- success = IERC20(rewardToken).transferCokers(dividendTracker),balanceRewardToken) (MyroFloki.sol#1753)
- dividendTracker.sotBalance(address(from),balanceOf(from)) (MyroFloki.sol#1756)
- dividendTracker.setBalance(address(from),balanceOf(from)) (MyroFloki.sol#1726)
- dividendTracker.setBalance(address(to),balanceOf(from)) (MyroFloki.sol#1727)
- (iterations,claims,lastProcessedIndex) = dividendTracker.process(gas) (MyroFloki.sol#1732-1736)
External calls sending eth:
- (success) = marketingBhallet.call(value: marketingShare)() (MyroFloki.sol#1689)
- swapAndSendDividends(address(this).balance - initialBalance) (MyroFloki.sol#1697)
- uniswapV2Nouter.swapExactETHForTokensSupportingFeeOnTransferTokens(value: amount)(0 cath_address(this).block_timestamp) (MyroFloki_sol#1705.1786)
                                                                                                                                                                                                                                                                                    sferTokens(value: amount)(0,path,address(this),block.timestamp) (MyroFloki.sol#1745-1750)
```


STATIC ANALYSIS

Section Distance Provided DOMERS SERRATION() (Payer Links 1, 1980) is not in attackane function Distance Provided Domestic Type State (Payer Links 1, 1980) is not in attackane function Distance Provided Domestic Type State (Payer Links 1, 1980) is not in attackane function Distance Provided Domestic Type State (Payer Links 1, 1980) is not in attackane Function Distance Provided Domestic Type State (Payer Links 1, 1980) is not in attackane Furnature Distance Provided Domestic Type State (Payer Links 1, 1980) is not in attackane Furnature Distance Provided Domestic Type State (Payer Links 1, 1980) is not in attackane Furnature Distance Provided Domestic Type State (Payer Links 1, 1981) is not in attackane Furnature Distance Provided Domestic Type State (Payer Links 1, 1981) is not in attackane Furnature Distance Provided Domestic Type State (Payer Links 1, 1981) is not in attackane Furnature Distance Provided Domestic Type State (Payer Links 1, 1981) is not in attackane Furnature Distance Provided Type State (Payer Links 1, 1981) is not in attackane Furnature Distance Provided Type State (Payer Links 1, 1981) is not in attackane Furnature Provided Type State (Payer Links 1, 1981) is not in attackane Furnature Provided Type State (Payer Links 1, 1981) is not in attackane Furnature Provided Advanced Contract (Payer Links 1, 1981) is not in attackane Furnature Provided Advanced Contract (Payer Links 1, 1981) is not in attackane Furnature Provided Links (Payer Links 1, 1981) is not in attackane Furnature Provided Links (Payer Links 1, 1981) is not in attackane Furnature Provided Links (Payer Links 1, 1981) is not in attackane Furnature Provided Links (Payer Links 1, 1981) is not in attackane Furnature Provided Links (Payer Links 1, 1981) is not in attackane Furnature Provided Links (Payer Links 1, 1981) is not in attackane Furnature Provided Links (Payer Links 1, 1981) is not in attackane Furnature Provided Links (Payer Links 1, 1981) is not in attackane Furnature Provided Links (Payer Links 1, 1981) is not in attack

TESTNET VERSION

1- Approve (passed):

https://testnet.bscscan.com/tx/0x6fab88d6e3f89d5c2543fea85e940eb42a4fcec564e13f245dfd8eb32dccc6a1

2- Increase Allowance (passed):

https://testnet.bscscan.com/tx/0x40573da48e4716f61b67fa47b3fa374dc1b52f82b7512fd0b56ebddc90c790b3

3- Decrease Allowance (passed):

https://testnet.bscscan.com/tx/0xa1ec4e510cc05945a82204aed9961b6bf1eadd68f1572bcb393e958ef2ffd7d1

4- Enable Trading (passed):

https://testnet.bscscan.com/tx/0x326c7e6b04ed1d966ab629c8751caa0e82aae63f58596918c99993533fd406b5

5- Update Buy Fees (passed):

https://testnet.bscscan.com/tx/0x5978dbe68a9cbdc2db84044c0011f0d65814e1e3972 5747e6d9cd9ae04633c40

6- Update Sell Fees (passed):

https://testnet.bscscan.com/tx/0xdacb956a08ed14313d0e541fe674dbcc76710a751aa8c5571ea43cf2c0bcf63b

7- Transfer (passed):

https://testnet.bscscan.com/tx/0x5c091678cdb6f977d28244482fb6b053b47a151944f4 ca1694a58dfdd4b7dc67

8- Set marketing Wallet (passed):

https://testnet.bscscan.com/tx/0x69efd222cbd6e6c242999e9990d9dca08fc3fbbd15a 4b480b262c3b94affaa3b

MANUAL REVIEW

Severity Criteria

Expelee assesses the severity of disclosed vulnerabilities according to methodology based on OWASP standarts.

Vulnerabilities are dividend into three primary risk categroies:

High

Medium

Low

High-level considerations for vulnerabilities span the following key areas when conducting assessments:

- Malicious input handling
- Escalation of privileges
- Arithmetic
- Gas use

Overall Risk Severity							
Impact	HIGH	Medium	High	Critical			
	MEDIUM	Low	Medium	High			
	LOW	Note	Low	Medium			
		LOW	MEDIUM	HIGH			
	Likelihood						

HIGH RISK FINDING

Centralization – Enabling Trades

Severity: High

function: EnableTrading

Status: Open

Overview:

The EnableTrading function permits only the contract owner to activate trading capabilities. Until this function is executed, no investors can buy, sell, or transfer their tokens. This places a high degree of control and centralization in the hands of the contract owner.

```
function enableTrading() external onlyOwner {
  require(!tradingEnabled, "Trading is already enabled");
  tradingEnabled = true;
  startTradingBlock = block.number;
```

Suggestion

To reduce centralization and potential manipulation, consider one of the following approaches:

1.Automatically enable trading after a specified condition, such as the completion of a presale, is met.

2.If manual activation is still desired, consider transferring the ownership of the contract to a trustworthy, third-party entity like a certified "PinkSale Safu" developer. This can give investors more confidence in the eventual activation of trading capabilities, mitigating concerns of potential bad-faith actions by the original owner.

LOW RISK FINDING

Centralization – Missing Events

Severity: Low

function: Missing Events

Status: Open

Overview:

They serve as a mechanism for emitting and recording data onto the blockchain, making it transparent and easily accessible.

function setLastProcessedIndex(uint256 index) external onlyOwner {
 dividendTracker.setLastProcessedIndex(index);
}

Suggestion

Emit an event for critical changes.

LOW RISK FINDING

Centralization – Unsafe Usage of tx.origin

Severity: Low

function: Tx.origin

Status: Open

Overview:

Avoid using TX.origin for authorization, another contract can have a method that will call your contract (where the user has some funds for instance) and your contract will authorize that transaction as your address is in tx. origin.

```
function processDividendTracker(uint256 gas) external {
   (uint256 iterations, uint256 claims, uint256 lastProcessedIndex) =
   dividendTracker.process(gas);
   emit ProcessedDividendTracker(iterations, claims,
   lastProcessedIndex, false, gas, tx.origin);
  }
```

Suggestion

You should use msg. sender for authorization (if another contract calls your contract msg.sender will be the address of the contract and not the address of the user who called the contract).

INFORMATIONAL & OPTIMIZATIONS

Optimization

Severity: Informational

subject: Remove Safe Math

Status: Open

Line: 20-219

Overview:

compiler version above 0.8.0 can control arithmetic overflow/underflow, it is recommended to remove the unwanted code to avoid high gas fees.

INFORMATIONAL & OPTIMIZATIONS

Optimization

Severity: Optimization

subject: Remove Unused Code

Status: Open

Overview:

Unused variables are allowed in Solidity, and they do. not pose a direct security issue. It is the best practice though to avoid them.

```
function _msgData() internal view virtual returns (bytes
calldata) {
return msg.data;
function mul(int256 a, int256 b) internal pure returns (int256) {
int256 c = a * b;
// Detect overflow when multiplying MIN_INT256 with -1
require(c != MIN_INT256 || (a & MIN_INT256) != (b &
MIN_INT256));
require((b == 0) || (c / b == a));
return c;
function div(int256 a, int256 b) internal pure returns (int256) {
// Prevent overflow when dividing MIN_INT256 by -1
require(b != -1 || a != MIN_INT256);
// Solidity already throws when dividing by 0.
return a / b;
```


INFORMATIONAL & OPTIMIZATIONS

```
function abs(int256 a) internal pure returns (int256) {
require(a!= MIN_INT256);
return a < 0? -a: a;
}
event SwapAndLiquify(uint256 tokensSwapped, uint256
bnbReceived, uint256 tokensIntoLiqudity);
event UpdateUniswapV2Router(address indexed newAddress,
address indexed oldAddress);
event UpdateDividendTracker(address indexed newAddress,
address indexed oldAddress);
```


ABOUT EXPELEE

Expelee is a product-based aspirational Web3 start-up.
Coping up with numerous solutions for blockchain security and constructing a Web3 ecosystem from deal making platform to developer hosting open platform, while also developing our own commercial and sustainable blockchain.

www.expelee.com

- 🔰 expeleeofficial
- expelee

对 Expelee

- in expelee
- expelee_official
- 👩 expelee-co

Building the Futuristic Blockchain Ecosystem

DISCLAIMER

All the content provided in this document is for general information only and should not be used as financial advice or a reason to buy any investment. Team provides no guarantess against the sale of team tokens or the removal of liquidity by the project audited in this document.

Always do your own research and project yourselves from being scammed. The Expelee team has audited this project for general information and only expresses their opinion based on similar projects and checks from popular diagnostic tools.

Under no circumstances did Expelee receive a payment to manipulate those results or change the awarding badge that we will be adding in our website. Alway do your own research and protect yourselves from scams.

This document should not be presented as a reason to buy or not buy any particular token. The Expelee team disclaims any liability for the resulting losses.

Building the Futuristic Blockchain Ecosystem