BME2322 – Logic Design

The Instructors:

Dr. Görkem SERBES (C317)

gserbes@yildiz.edu.tr

https://avesis.yildiz.edu.tr/gserbes/

Lab Assistants:

Nihat AKKAN

nakkan@yildiz.edu.tr

https://avesis.yildiz.edu.tr/nakkan

LECTURE 4

Functional Specifications

There are many ways of specifying the function of a combinational device, for example:

unless the words are very carefully crafted, there may be ambiguities introduced by words with multiple interpretations or by lack of completeness

Functional Specifications

There are many ways of specifying the function of a combinational device, for example:

Concise alternatives:

- *truth tables* are a concise description of the combinational system's function.
- Boolean expressions form an algebra whose operations are AND (multiplication), OR (addition), and inversion (overbar).

L	Tu	LII	I d	IDIC
	C	В	Α	Y
	0	0	0	0
	O	0	1	1
	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	0
	1	1	0	1
	1	1	1	1

 $Y = \overline{C} \cdot \overline{B} \cdot A + \overline{C}BA + CB\overline{A} + CBA$

Any combinational (Boolean) function can be specified as a truth table or an equivalent <u>sum-of-products</u> Boolean expression!

Boolean Algebra

A **Boolean algebra** B is a finite set over which two binary operations + (sum) and \cdot (product) and satisfy five postulates.

Boolean Algebra Postulates

- P1 Operations + and · are internal: $\forall a,b \in B$, $a+b \in B$ $y \ a \cdot b \in B$
- P 2 To each operation corresponds a **neutral element:** $\forall a \in B$, a+0=a, $a\cdot 1=a$
- P 3 To each element corresponds an **inverse element**: $\forall a \in B, \exists \overline{a} \in B \mid a + \overline{a} = 1, \quad a \cdot \overline{a} = 0$
- P 4 Operations + and \cdot are **commutative**: a+b=b+a, $a\cdot b=b\cdot a$
- P 5 –Operations + and · are distributive: $a \cdot (b+c) = a \cdot b + a \cdot c$, $a+b \cdot c = (a+b) \cdot (a+c)$

Boolean Algebra

The set {0, 1} is a Boolean algebra if the operations are defined as follows:

a b	a∙b	a + b	a
0 0	0	0	1
01	0	1	1
10	0	1	0
11	1	1	0

Boolean Algebra (distributive rule)

Example: check that $a \cdot (b+c) = a \cdot b + a \cdot c$

a b	a∙b	a + b	a
00	0	0	1
01	0	1	1
10	0	1	0
11	1	1	0

a b c	b+c	a·(b+c)	a·b	а·с	a·b+ a·c
000	0	0	0	0	0
001	1	0	0	0	0
010	1	0	0	0	0
011	1	0	0	0	0
100	0	0	0	0	0
101	1	1	0	1	1
110	1	1	1	0	1
111	1	1	1	1	1

Boolean Algebra (distributive rule)

Comment:

$$a \cdot (b+c) = a \cdot b + a \cdot c =>$$

Some useful properties

1 – Neutral element properties: $\bar{0} = 1$, $\bar{1} = 0$

2 – Idempotence: a + a = a, $a \cdot a = a$

$$a = a + 0 = a + (a \cdot a) = (a + a) \cdot (a + a) = (a + a) \cdot 1 = a + a$$

P1 -
$$\forall a,b \in B$$
, $a+b \in B$ $y a \cdot b \in B$

$$P2 - \forall a \in B, a+0=a, a\cdot 1=a$$

$$P3 - \forall a \in B, \exists \overline{a} \in B \mid a + \overline{a} = 1, \quad a \cdot \overline{a} = 0$$

$$P4 - a+b=b+a$$
, $a \cdot b=b \cdot a$

P5 -
$$a \cdot (b+c) = a \cdot b + a \cdot c$$
, $a+b \cdot c = (a+b) \cdot (a+c)$

Some useful properties - Exercise

Demonstrate that $a \cdot a = a$

Hint: Use the second part of P2, P3 and P5.

P1 -
$$\forall a,b \in B$$
, $a+b \in B$ $y a \cdot b \in B$
P2 - $\forall a \in B$, $a+0=a$, $a \cdot 1=a$
P3 - $\forall a \in B, \exists \overline{a} \in B | a+\overline{a}=1$, $a \cdot \overline{a}=0$
P4 - $a+b=b+a$, $a \cdot b=b \cdot a$
P5 - $a \cdot (b+c) = a \cdot b + a \cdot c$, $a+b \cdot c = (a+b) \cdot (a+c)$

Some useful properties - Exercise

Demonstrate that $a \cdot a = a$

Hint: Use the second part of P2, P3 and P5.

$$a = a \cdot 1 = a \cdot (a + \overline{a}) = (a \cdot a) + (a \cdot \overline{a}) =$$

 $(a \cdot a) + 0 = a \cdot a$

$$a = a + 0 = a + (a \cdot \overline{a}) = (a + a) \cdot (a + \overline{a}) =$$

 $(a + a) \cdot 1 = a + a$

$$P1 - \forall a,b \in B, a+b \in B \ y \ a \cdot b \in B$$

$$P2 - \forall a \in B, \quad a+0=a, \quad a\cdot 1=a$$

$$P3 - \forall a \in B, \exists \overline{a} \in B \mid a + \overline{a} = 1, \quad a \cdot \overline{a} = 0$$

$$P4 - a+b=b+a$$
, $a \cdot b=b \cdot a$

$$p_5$$
 $a \cdot (b+c) = a \cdot b + a \cdot c, \quad a+b \cdot c = (a+b) \cdot (a+c)$

Some useful properties

- 1 Neutral element properties: $\bar{0} = 1$, $\bar{1} = 0$
- 2 Idempotence: a + a = a, $a \cdot a = a$
- 3 Involution: a = a
- 4 Asociativity: a+(b+c)=(a+b)+c, $a\cdot(b\cdot c)=(a\cdot b)\cdot c$
- 5 Absortion law: $a + a \cdot b = a$, $a \cdot (a + b) = a$
- 6 (nameless): $a + \overline{a \cdot b} = a + b$, $a \cdot (\overline{a} + b) = a \cdot b$
- 7 de Morgan law: $(\overline{a+b}) = \overline{a} \cdot \overline{b}, \quad \overline{a \cdot b} = \overline{a} + \overline{b}$
- 8 generalized de Morgan law: $(\overline{a_1 + a_2 + ... + a_n}) = \overline{a_1 \cdot a_2 \cdot ... \cdot a_n}, \overline{a_1 \cdot a_2 \cdot ... \cdot a_n} = \overline{a_1} + \overline{a_2} + ... + \overline{a_n}$

Simplifying Boolean Equations 1

$$Y = A(AB + ABC)$$

=A(AB(1+C))

=A(AB(1))

=A(AB)

= (AA)B

= AB

Distributivity

Null Element

Identity

Associativity

Idempotency

Simplifying Boolean Equations 2

$$Y = (\overline{A + \overline{BD}})\overline{C}$$

Simplifying Boolean Equations 3

$$Y = (\overline{ACE} + \overline{D}) + B$$

Boolean functions and truth tables

Any Boolean function can be explicitely defined by a truth table

$$f(a,b,c) = b.\overline{c} + \overline{a}.b$$

a b c	C	$b \cdot \overline{c}$	a	_ a · b	f
000	1	0	1	0	0
001	0	0	1	0	0
010	1	1	1	1	1
011	0	0	1	1	1
100	1	0	0	0	0
101	0	0	0	0	0
110	1	1	0	0	1
111	0	0	0	0	0

Boolean functions and truth tables

Given a truth table can we find an equivalent Boolean function?...

Answer is YES

LITERAL

A variable or an inverted variable : $a, \bar{a}, b, \bar{b}, c, \bar{c}, ...$

n-variable **MINTERM**

A product of n literals such that each variable appears only once. Example: if n=3, there are eight minterms.

$$a.b.c, a.b.\overline{c}, a.\overline{b}.c, a.\overline{b}.\overline{c}, \overline{a}.b.c, \overline{a}.b.\overline{c}, \overline{a}.\overline{b}.\overline{c}, \overline{a}.\overline{b}.\overline{c}$$

Boolean functions and truth tables

Given a **MINTERM** m, there is one, an only one, set of variable values such that m = 1. With n = 3:

From Truth Table to Boolean Function

MINTERMS of an *n*-variable Boolean function *f* ?

= minterms that correspond to the 1s of f.

a	b	С	<i>f</i> (<i>a</i> , <i>b</i> , <i>c</i>)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

From Truth Table to Boolean Function

Canonical sum of products **representation** of an *n*-variable Boolean function.

Any Boolean function can be represented by the sum of its *minterm*.

$$f(a,b,c) = \sum (m_2, m_3, m_6)$$

$$f(a,b,c) = \bar{a}.\bar{b}.\bar{c} + \bar{a}.\bar{b}.\bar{c} + a.\bar{b}.\bar{c}$$

From Truth Table to Boolean Function

```
if ((a=1 and b=1 and c=0) or (a=0 and b=1)) then f=1;
else f=0;
end if;
```

а	b	c	<i>f</i> (<i>a</i> , <i>b</i> , <i>c</i>)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

$$f(a,b,c) = \bar{a}.\bar{b}.\bar{c} + \bar{a}.\bar{b}.c + a.\bar{b}.\bar{c} =$$

= $\bar{a}.\bar{b}(\bar{c}+c) + \bar{b}.\bar{c}.(\bar{a}+a) = \bar{a}.\bar{b} + \bar{b}.\bar{c}$

$$f(a,b,c) = \sum (m_2, m_3, m_6)$$

$$f(a,b,c) = \bar{a}.\bar{b}.\bar{c} + \bar{a}.\bar{b}.c + a.b.\bar{c}$$

Example: 4 bit-adder

Example: 4 bit-adder

х	у	C_i	C_{o}	Z
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Circuit Schematics Rules

- Inputs on the left (or top)
- Outputs on right (or bottom)
- Gates flow from left to right
- Straight wires are best

Circuit Schematics Rules (Cont.)

- Wires always connect at a T junction
- A dot where wires cross indicates a connection between the wires
- Wires crossing without a dot make no connection

wires connect at a T junction	wires connect at a dot	without a dot do not connect

Example: 4 bit-adder

$$c_o = y. c_i + x. c_i + x. y$$

$$z = \overline{x}. \overline{y}. c_i + \overline{x}. y. \overline{c_i} + x. \overline{y}. \overline{c_i} + x. y. c_i$$

Circuit generation from a functional description:

(functional description \rightarrow truth table \rightarrow Boolean function(s) \rightarrow circuit)

a b	NAND(a,b)	NOR(a,b)
0 0	1	1
01	1	0
10	1	0
11	0	0

Algebraic symbols:

$$\mathsf{NAND}(a,b) = a \uparrow b,$$

$$NOR(a, b) = a \downarrow b$$
.

NAND and NOR gates are universal modules. For example, with NAND gates:

=

3-input, 4-input, ··· NAND and NOR gates can be defined:

$$NAND(a, b, c) = 0 \text{ iff } a = b = c = 1$$

NAND(
$$a$$
, b , c , d) = 0 iff a = b = c = d = 1

$$b = b$$
 NOR(a, b, c)

$$NOR(a, b, c) = 0 \text{ iff } (a = 1) OR (b = 1) OR (c = 1)$$

$$NOR(a, b, c, d) = 0 \text{ iff } (a = 1) OR (b = 1) OR (c = 1) OR (d = 1)$$

BUT NAND and NOR are not associative operations. In particular:

NAND(NAND(a, b), c)

NAND(1, 1, 1) = 0

NAND(NAND(1, 1), 1) = NAND(0, 1) = 1

NOR(0, 0, 0) = 1

NOR(NOR(0, 0), 0) = NOR(1, 0) = 0

Why NAND (or NOR) Gates?

Why do we use NAND gates (or NOR gates) instead of AND and OR gates?

- If we use "of the shelf" components (laboratory) we only need one type of gate.
- In CMOS technology
 - an AND gate is implemented with a NAND and an INV,

- an OR gate is implemented with a NOR and an INV.

=> Within an IC (Integrated Circuit) NAND and NOR are "cheaper" than AND and OR.

DeMorgan's Theorem

•
$$Y = \overline{AB} = \overline{A} + \overline{B}$$
 $A = A = A$
 $A =$

•
$$Y = \overline{A} + \overline{B} = \overline{A} \cdot \overline{B}$$
 $A = 0$
 $B = 0$
 $A = 0$
 $B = 0$
 $A = 0$
 A

Bubble Pushing

Backward:

- Body changes
- Adds bubbles to inputs

Forward:

- Body changes
- Adds bubble to output

Bubble Pushing

What is the Boolean expression for this circuit?

Bubble Pushing

What is the Boolean expression for this circuit?

$$Y = AB + CD$$

Bubble Pushing Rules

- Begin at output, then work toward inputs
- Push bubbles on final output back
- Draw gates in a form so bubbles cancel

Bubble Pushing Example

Bubble Pushing Example

XOR – XNOR Gates

a b	XOR(a,b)	XNOR(a,b)
0 0	0	1
01	1	0
10	1	0
11	0	1

XOR (= eXclusive OR): XOR(a, b) = 1 if $a \neq b$;

XNOR (= eXclusive NOR): XNOR(a, b) = 1 if a = b.

Algebraic symbols:

$$XOR(a, b) = a \oplus b$$
,

$$(XNOR(a, b) = a \equiv b)$$

XOR – XNOR Gates

Equivalent definition:

 $XOR(a, b) = (a + b) \mod 2 = a \oplus b$,

 $XNOR(a, b) = INV(a \oplus b).$

=> 3-input, 4-input, ··· XOR and XNOR gates can be defined:

 $XOR(a, b, c) = (a + b + c) \mod 2 = a \oplus b \oplus c$, $XNOR(a, b, c) = INV(a \oplus b \oplus c)$,

 $XOR(a, b, c, d) = (a + b + c + d) \mod 2 = a \oplus b \oplus c \oplus d$, $XNOR(a, b, c, d) = INV(a \oplus b \oplus c \oplus d)$,

...

XOR is an associative operation =>

XOR – XNOR Gates

- XOR y NXOR are not universal modules,
- useful functions.

First example: magnitud comparator. Given two 4-input vectors $a = a_3 a_2 a_1 a_0$ and $b = b_3 b_2 b_1 b_0$, generate comp = 1 iff a = b.

Algorithm

```
if (a_3 \neq b_3) or (a_2 \neq b_2) or (a_1 \neq b_1) or (a_0 \neq b_0)
then comp <= 0;
else comp <= 1;
end if;
```


Summary

AND
$$\begin{vmatrix} a & x & 1 \\ b & x & 1 \end{vmatrix} \qquad z = a \cdot b$$

OR
$$\begin{vmatrix} a & x & 1 \\ b & x & 1 \end{vmatrix} \qquad z = a + b$$

INV
$$\begin{vmatrix} a & x & 1 \\ a & x & 1 \end{vmatrix} \qquad z = \bar{a}$$

NAND
$$\begin{vmatrix} a & x & 1 \\ b & x & 1 \end{vmatrix} \qquad z = a \uparrow b = \bar{a} \cdot \bar{b}$$

NOR
$$\begin{vmatrix} a & x & 1 \\ b & x & 1 \end{vmatrix} \qquad z = a \uparrow b = \bar{a} \cdot \bar{b}$$

XOR
$$\begin{vmatrix} a & x & 1 \\ b & x & 1 \end{vmatrix} \qquad z = a \oplus b = \bar{a} \cdot b + a \cdot \bar{b}$$

XNOR
$$\begin{vmatrix} a & x & 1 \\ b & x & 1 \end{vmatrix} \qquad z = \bar{a} \oplus \bar{b} = \bar{a} \cdot \bar{b} + a \cdot \bar{b}$$

XNOR