Data Science

Charles Adriano dos Santos

Turma Março/2020

Agenda

1 – Agenda

2 – Namorando Dados (SQL)

3 – Welcome to Python

4 – Intro Machine Learning

Horário	Assunto	
09:00	Namorando Dados - SQL - Análise Exploratório Desafio Curso	
10:30	Welcome to Python	
12:00	Almoço	

Tarde

Horário	Assunto
13:00	Welcome Python - Continuação
15:00	Introdução a Machine Learning
17:30	Dúvidas Homework ETL

Nos Episódios Anteriores...

Profissão Data Science

Desafio Agro XP

ETL

Modelagem de Dados

Banco de Dados

Queries SQL

Conceitos Estatísticos

R

Agenda

1 – Agenda

2 – Namorando Dados (SQL)

3 – Welcome to Python

4 – Intro Machine Learning

O Trabalho do Cientista de Dados > Desafio Curso

- 1. Definição do problema e levantamento de perguntas a serem respondidas 🗸
- 2. Planejamento do processo de Data Science ✓
- 3. Coleta de dados ✓
- 4. Processamento e limpeza dos dados
- Armazenamento dos dados √
- 6. Análise de dados
- 7. Construção e validação de algoritmos e modelos
- 8. Data Visualization
- 9. Disseminação da informação
- 10. Colocar modelo em produção

Desafio – Modelo de Dados

Namorando os Dados (Queries SQL)

Namorando os Dados (Queries SQL)

SQL JOINS

Medicals à obra Pesser list Pesse list Pesser list Pesse list Pesser list Pesser list Pesse list

SELECT <select_list>
FROM TableA A
LEFT JOIN TableB B
ON A.Key = B.Key
WHERE B.Key IS NULL

SELECT <select_list>
FROM TableA A
FULL OUTER JOIN TableB B
ON A.Key = B.Key

SELECT <select_list>
FROM TableA A
INNER JOIN TableB B
ON A.Key = B.Key

@ C.L. Moffatt, 2008

SELECT <select_list>
FROM TableA A
RIGHT JOIN TableB B
ON A.Key = B.Key
WHERE A.Key IS NULL

SELECT <select_list>
FROM TableA A
FULL OUTER JOIN TableB B
ON A.Key = B.Key
WHERE A.Key IS NULL
OR B.Key IS NULL

Agenda

1 – Agenda

2 – Namorando Dados (SQL)

3 – Welcome to Python

4 – Intro Machine Learning

Python

Fonte: https://www.tiobe.com/tiobe-index/

Python – Me Dê Motivos

Linguagem em forte ascenção (2ª linguagem mais amada Stack Overflow)

Curva de Aprendizado Baixa

Free (Licença GLP)

Estável (1ª versão 1991) / Última Versão 3.8.0 (Out/2019)

Multiplataforma (Windows, Linux, MacOS e etc.)

Comunidade

Data Science → Ótimos pacotes

Python – História

Pai do Python → Guido van Rossum

A inspiração do nome →

Python – História

Versão 2 (2.7) x Versão 3 (3.7.1)

3/4 Paradigmas de Programação:

- Programação Imperativa → Ações/Comandos de um programa
- Programação Orientada o Objeto → Abstração,
 Encapsulamento, Herança e Polimorfismo
- Programação Funcional → Soluções como problemas de funções

Interpretada

Python – Hands-on

Python – Versão 2 x Versão 3

Python 2.X	Python 3.X
There's ASCII str type and unicodetype, but no separate type to handle bytes of data	All strings (str) are Unicode strings; two byte classes are introduced: bytes and bytearray
Two types of integers: C-based integers (int) and Python long integer (long)	All integers are long but referred to by the int type
Return type of division is int if operands are integers: 5 / 4 gives 1; 4 / 2 gives 2	Return type of division is float even if operands or result are integers: 5 / 4 gives 1.25; 4 / 2 gives 2.0
round(16.5) returns a float of value 16.0	round(16.5) returns an int of value 16
Unorderable types can be compared	Comparison of unorderable types raises a TypeError
print is a statement: print "Hello World!"	print() is a built-in function: print("Hello World!")
range() returns a list of numbers while xrange() returns an object for lazy evaluation	range() returns an object for lazy evaluation similar to Python 2 xrange(); and range()methodcontains speeds up lookups
Functions/methods map(), filter(), zip(), dict.items(), dict.k eys(), dict.values() return lists	These function/methods return objects for lazy evaluation
raw_input() returns input as strand input() evaluates the input as a Python expression	input() will return a string similar to Python 2 raw_input()
Raising exceptions: raise IOError("file error") or raise IOError, "file error"	Raising exceptions: raise IOError("file error")
Handling exceptions: except NameError, err: or except (TypeError, NameError), err:	Handling exceptions: except NameError as err or except (TypeError, NameError) as err
On generators, a method or function call: g.next() or next(g)	On generators, only a function call: next(g)
Loop variables in a comprehension leak to global namespace	Loop variables are limited in scope to the comprehension
IOError, "file error" Handling exceptions: except NameError, err: or except (TypeError, NameError), err: On generators, a method or function call: g.next() or next(g) Loop variables in a comprehension leak to global	Handling exceptions: except NameError as err or except (TypeError, NameError) as err On generators, only a function call: next(g) Loop variables are limited in scope to the

Fonte: ttps://devopedia.org/python-2-vs-3

Quero Saber Mais...

Data Manipulation for Machine Learning with Pandas

Os 35 Melhores Cursos de Python gratuitos disponíveis pra você

Towards Data Science
Sharing concepts, ideas, and codes

Agenda

1 – Agenda

2 – Namorando Dados (SQL)

3 – Welcome to Python

4 – Intro Machine Learning

Machine Learning - Conceito

A máquina, através de algoritmos, obter padrões sobre características extraídas dos dados para, com um modelo gerado/criados, classificar as observações futuras de novos dados.

No conceito cada vez menos intervenção humana (conceito).

Pré-processamento e análise dos dados, além de realizar "grid" de valores para treinamento obterem maior acurácia (na prática)

Machine Learning - História

1950 - IA: Computadores com habilidade de "pensar" -Teste de Turing. Em 2014 chatbot enganou 10/30 juízes

Machine Learning - História

1959 - ML: Aprender a partir dos dados - Arthur Samuel

Aprender com a experiência que existe intrínseca aos dados.

Algoritmos de aprendizado de máquina analisam as correlações entre os atributos (variáveis) de um sistema (base de dados) a partir de dados amostrais (base de treinamento)

Machine Learning - História

2012: DS – Entender os Dados

Ciência de dados utilizando probabilidade, estatística álgebra linear e computação.

Conhecimentos de IA e ML

"É a ciência (e arte) de programar computadores de tal forma que eles aprendam a partir de dados" (Aurélien Géron, 2017)

Machine Learning – Tipos de Aprendizado

Machine Learning – Tipo de Aprendizado

Supervisionado → rotulado com saídas esperadas. Modelo gera ao entrar com conjunto de características uma saída rotulada (Classificação) ou um valor futuro (Predição). Ex: Nosso desafio AgroXP.

Não Supervisionado → Não existe rótulo prévio. Analisa a rede de relacionamento entre os dados para agrupá-los por características similares. Ex: Categorização de Clientes

Reforço → Maximizar o resultado. Baseado em recompensa / punição. Com isso algoritmo encontrar a "política" que mapeia os dados. Ex: Personagens Jogos

Regressão Linear (Supervisionado – Predição)

Simples... Busca uma reta para se ajustar aos dados. Problemas de relação linear.

SVM - Support Vector Machine (Supervisionado – Classificação) – Vapnik (1963)

Distância das amostras da linha superfície de separação. Consegue trabalhar com dados não lineares com a premissa de que em alguma dimensão os dados terão linearidade.

KNN – K-Nearest Neighbors (Supervisionado – Classificação)

Baseado em encontrar o valor de K que consiga através de funções básicas de distância Euclidiana encontrar a melhor superfície de separação

Árvore de Decisão (Supervisionado – Classificação)

De fácil explicação do modelo obtido, este algoritmo utiliza a categorização utilizando técnicas referente a Ganho de Informação dos atributos (o quanto a variável sozinha classifica os exemplos de treinamento). Pode ser utilizado para dados numérico ou simbólicos.

K-Means – (Não Supervisionado)

Forma clusters que contêm pontos homogêneos aos dados.

Cadeia de Markov (Reforço)

Processo estocástico (futuro → estado atual). Com base na cadeia e suas probabilidades o algoritmo toma uma decisão e, se houver recompensa, reforça a decisão tomada. Se houver uma punição rechaça.

Redes Neurais (Supervisionado – Classificação)

Baseado no conceito matemático e computacional (1943) que visa descrever o modelo artificial para um neurônio biológico.

Responde "ligando/desligando" os vários neurônios interligada e com isso classifica as características de entrada no rótulo predito pelo modelo.

Redes Neurais (Supervisionado – Classificação)

Perceptron → Tipo básico de rede neural. Demonstrou em 1957 a possibilidade de simulação de um neurônio biológico.

Redes Neurais (Supervisionado – Classificação)

Redes Neurais (Supervisionado – Classificação)

Machine Learning – Algoritmo x Características Dados

Fonte: https://scikit-learn.org/stable/tutorial/machine_learning_map/

Usando Machine Learning

O Trabalho do Cientista de Dados > Desafio/Pessoal

- 1. Definição do problema e levantamento de perguntas a serem respondidas
- 2. Planejamento do processo de Data Science
- 3. Coleta de dados
- 4. Processamento e limpeza dos dados
- 5. Armazenamento dos dados
- 6. Análise de dados
- 7. Construção e validação de algoritmos e modelos
- 8. Data Visualization
- 9. Disseminação da informação
- 10. Colocar modelo em produção

ETL na Prática – Homework

JSON → Com remuneração variável por funcionário

ftp server: ftp.drivehq.com

User: datascienceandbigdata@gmail.com

Password: ds2019FTP

Diretório: GroupWrite

Arquivo: remunera.zip

Planilha Excel com:

Matrícula

Nome Funcionário

Cargo

Valor Hora

Último Dia e Hora Marcação Ponto

Total Remuneração Variável

- **□** Charles Adriano dos Santos
- charles.a.santos@caelis.it
- in chadri
- **9144 6663**

- Rafael Roberto Dias
 - rafael.dias@madeiramadeira.com.br
- rafael-roberto-dias-00b39123
- 41 99672 7170