1. DataSet Breast Cancer

DATA COLLECTION:

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

a=pd.read_csv(r"C:\Users\user\Downloads\8_BreastCancerPrediction.csv")
a

Out[2]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothne
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	М	20.29	14.34	135.10	1297.0	
564	926424	М	21.56	22.39	142.00	1479.0	
565	926682	М	20.13	28.25	131.20	1261.0	
566	926954	М	16.60	28.08	108.30	858.1	
567	927241	М	20.60	29.33	140.10	1265.0	
568	92751	В	7.76	24.54	47.92	181.0	
FCO	v 22 s						

569 rows × 33 columns

```
In [3]:
```

b=a.head(10) b

Out[3]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness		
0	842302	М	17.99	10.38	122.80	1001.0			
1	842517	М	20.57	17.77	132.90	1326.0	(
2	84300903	М	19.69	21.25	130.00	1203.0	(
3	84348301	М	11.42	20.38	77.58	386.1	(
4	84358402	М	20.29	14.34	135.10	1297.0	(
5	843786	М	12.45	15.70	82.57	477.1	(
6	844359	М	18.25	19.98	119.60	1040.0	(
7	84458202	М	13.71	20.83	90.20	577.9	1		
8	844981	М	13.00	21.82	87.50	519.8	(
9	84501001	М	12.46	24.04	83.97	475.9	1		
10	10 rows × 33 columns								
4							>		

DATA CLEANING AND PRE-PROCESSING

In [4]:

b.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 33 columns):

Column Non-Null Count Dtype ----10 non-null 0 id int64 1 diagnosis 10 non-null object 2 radius_mean 10 non-null float64 3 texture_mean 10 non-null float64 4 float64 perimeter mean 10 non-null 5 area_mean 10 non-null float64 6 smoothness mean 10 non-null float64 7 float64 compactness_mean 10 non-null 8 concavity_mean 10 non-null float64 9 concave points_mean 10 non-null float64 10 symmetry_mean 10 non-null float64 fractal_dimension_mean 10 non-null float64 11 float64 12 radius_se 10 non-null 10 non-null float64 13 texture_se 14 perimeter_se 10 non-null float64 15 area_se 10 non-null float64 16 smoothness_se 10 non-null float64 17 compactness se 10 non-null float64 float64 18 concavity_se 10 non-null 19 concave points_se 10 non-null float64 20 symmetry_se 10 non-null float64 21 float64 22 radius worst float64 10 non-null texture worst float64 10 non-null perimeter_worst float64 24 10 non-null 25 area_worst 10 non-null float64 26 smoothness_worst 10 non-null float64 27 compactness_worst 10 non-null float64 28 concavity worst 10 non-null float64 29 concave points worst 10 non-null float64 symmetry worst 10 non-null float64 31 fractal_dimension_worst 10 non-null float64 32 Unnamed: 32 0 non-null float64

dtypes: float64(31), int64(1), object(1)

memory usage: 2.7+ KB

In [5]:

b.describe()

Out[5]:

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_
coun	t 1.000000e+01	10.000000	10.00000	10.000000	10.000000	10.00
mea	1 4.261848e+07	15.983000	18.64900	106.222000	830.380000	0.1
st	d 4.403463e+07	3.686001	4.10719	23.680745	377.613035	0.0
mi	n 8.423020e+05	11.420000	10.38000	77.580000	386.100000	30.0
25%	6 8.439292e+05	12.595000	16.21750	84.852500	487.775000	0.10
50%	4.257294e+07	15.850000	20.18000	104.900000	789.450000	0.1
75%	6 8.435588e+07	19.330000	21.14500	128.200000	1162.250000	0.12
ma	x 8.450100e+07	20.570000	24.04000	135.100000	1326.000000	0.14
8 rows × 32 columns						
4						

In [6]:

a.isna()

Out[6]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_
0	False	False	False	False	False	False	
1	False	False	False	False	False	False	
2	False	False	False	False	False	False	
3	False	False	False	False	False	False	
4	False	False	False	False	False	False	
564	False	False	False	False	False	False	
565	False	False	False	False	False	False	
566	False	False	False	False	False	False	
567	False	False	False	False	False	False	
568	False	False	False	False	False	False	
569 rows × 33 columns							
4							>

In [7]:

```
b=a.dropna(axis=1)
b
```

Out[7]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothne		
0	842302	М	17.99	10.38	122.80	1001.0			
1	842517	М	20.57	17.77	132.90	1326.0			
2	84300903	М	19.69	21.25	130.00	1203.0			
3	84348301	М	11.42	20.38	77.58	386.1			
4	84358402	М	20.29	14.34	135.10	1297.0			
564	926424	М	21.56	22.39	142.00	1479.0			
565	926682	М	20.13	28.25	131.20	1261.0			
566	926954	М	16.60	28.08	108.30	858.1			
567	927241	М	20.60	29.33	140.10	1265.0			
568	92751	В	7.76	24.54	47.92	181.0			
569 r	569 rows × 32 columns								

569 rows × 32 columns

In [8]:

```
d=b.head(100)
d
```

Out[8]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes		
0	842302	М	17.990	10.38	122.80	1001.0			
1	842517	М	20.570	17.77	132.90	1326.0			
2	84300903	М	19.690	21.25	130.00	1203.0			
3	84348301	М	11.420	20.38	77.58	386.1			
4	84358402	М	20.290	14.34	135.10	1297.0			
95	86208	М	20.260	23.03	132.40	1264.0			
96	86211	В	12.180	17.84	77.79	451.1			
97	862261	В	9.787	19.94	62.11	294.5			
98	862485	В	11.600	12.84	74.34	412.6			
99	862548	М	14.420	19.77	94.48	642.5			
100	100 rows × 32 columns								

```
In [9]:
c=d.columns[2:10]
С
Out[9]:
Index(['radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean',
       'smoothness_mean', 'compactness_mean', 'concavity_mean',
       'concave points_mean'],
      dtype='object')
In [10]:
c1=d[['radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean',
       'smoothness_mean', 'compactness_mean', 'concavity_mean',
       'concave points_mean']]
c1
Out[10]:
```

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness			
0	17.990	10.38	122.80	1001.0	0.11840	(
1	20.570	17.77	132.90	1326.0	0.08474	(
2	19.690	21.25	130.00	1203.0	0.10960	(
3	11.420	20.38	77.58	386.1	0.14250	(
4	20.290	14.34	135.10	1297.0	0.10030	(
		•••							
95	20.260	23.03	132.40	1264.0	0.09078	(
96	12.180	17.84	77.79	451.1	0.10450	(
97	9.787	19.94	62.11	294.5	0.10240	(
98	11.600	12.84	74.34	412.6	0.08983	(
99	14.420	19.77	94.48	642.5	0.09752				
100	100 rows × 8 columns								

EDA and VISUALIZATION

In [11]:

sns.pairplot(c1)

Out[11]:

<seaborn.axisgrid.PairGrid at 0x231c8695c40>

In [12]:

sns.distplot(c1['radius_mean'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[12]:

<AxesSubplot:xlabel='radius_mean', ylabel='Density'>

In [13]:

sns.heatmap(c1.corr())

Out[13]:

<AxesSubplot:>


```
In [14]:
```

In [15]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

In [16]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[16]:

LinearRegression()

In [17]:

```
print(lr.intercept_)
```

-3.8758647007806246

In [18]:

```
coe=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coe
```

Out[18]:

	Co-efficient
radius_mean	22.256808
texture_mean	0.072167
perimeter_mean	-2.561876
area_mean	0.027773
smoothness_mean	-68.500175
compactness_mean	140.786306
concavity_mean	-0.063608
concave points_mean	130.048004

```
In [19]:
```

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[19]:

<matplotlib.collections.PathCollection at 0x231cccc7250>

In [20]:

```
print(lr.score(x_test,y_test))
```

0.9378445550033725

In [21]:

from sklearn.linear_model import Ridge,Lasso

In [22]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[22]:

Ridge(alpha=10)

In [23]:

```
rr.score(x_test,y_test)
```

Out[23]:

0.9318282923626972

In [24]:

```
la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[24]:

Lasso(alpha=10)

```
In [25]:
```

```
la.score(x_test,y_test)
```

Out[25]:

0.9242125082436077

2. DataSet Uber

In [26]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [27]:

a1=pd.read_csv(r"C:\Users\user\Downloads\uber - uber.csv")
a1

Out[27]:

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	
0	24238194	2015- 05-07 19:52:06	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	
1	27835199	2009- 07-17 20:04:56	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	
2	44984355	2009- 08-24 21:45:00	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	
3	25894730	2009- 06-26 8:22:21	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	
4	17610152	2014- 08-28 17:47:00	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	
199995	42598914	2012- 10-28 10:49:00	3.0	2012-10-28 10:49:00 UTC	-73.987042	40.739367	
199996	16382965	2014- 03-14 1:09:00	7.5	2014-03-14 01:09:00 UTC	-73.984722	40.736837	
199997	27804658	2009- 06-29 0:42:00	30.9	2009-06-29 00:42:00 UTC	-73.986017	40.756487	
199998	20259894	2015- 05-20 14:56:25	14.5	2015-05-20 14:56:25 UTC	-73.997124	40.725452	
199999	11951496	2010- 05-15 4:08:00	14.1	2010-05-15 04:08:00 UTC	-73.984395	40.720077	
200000 rows × 9 columns							
1						•	
*						,	

In [28]:

c1=a1.head(10)
c1

Out[28]:

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	drop
0	24238194	2015- 05-07 19:52:06	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	
1	27835199	2009- 07-17 20:04:56	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	
2	44984355	2009- 08-24 21:45:00	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	
3	25894730	2009- 06-26 8:22:21	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	
4	17610152	2014- 08-28 17:47:00	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	
5	44470845	2011- 02-12 2:27:09	4.9	2011-02-12 02:27:09 UTC	-73.969019	40.755910	
6	48725865	2014- 10-12 7:04:00	24.5	2014-10-12 07:04:00 UTC	-73.961447	40.693965	
7	44195482	2012- 12-11 13:52:00	2.5	2012-12-11 13:52:00 UTC	0.000000	0.000000	
8	15822268	2012- 02-17 9:32:00	9.7	2012-02-17 09:32:00 UTC	-73.975187	40.745767	
9	50611056	2012- 03-29 19:06:00	12.5	2012-03-29 19:06:00 UTC	-74.001065	40.741787	
4							•

In [29]:

```
a1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200000 entries, 0 to 199999
Data columns (total 9 columns):
    Column
                        Non-Null Count
                                         Dtype
    Unnamed: 0
                        200000 non-null
                                         int64
 0
 1
    key
                        200000 non-null object
 2
    fare_amount
                        200000 non-null
                                        float64
 3
    pickup_datetime
                        200000 non-null object
 4
    pickup longitude
                        200000 non-null
                                        float64
    pickup_latitude
                                        float64
 5
                        200000 non-null
    dropoff_longitude 199999 non-null
 6
                                         float64
 7
    dropoff_latitude
                        199999 non-null
                                        float64
    passenger_count
                        200000 non-null
                                         int64
```

dtypes: float64(5), int64(2), object(2)

memory usage: 13.7+ MB

In [30]:

```
a1.describe()
```

Out[30]:

	Unnamed: 0	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dro
cour	t 2.000000e+05	200000.000000	200000.000000	200000.000000	199999.000000	19
mea	n 2.771250e+07	11.359955	-72.527638	39.935885	-72.525292	
st	d 1.601382e+07	9.901776	11.437787	7.720539	13.117408	
mi	n 1.000000e+00	-52.000000	-1340.648410	-74.015515	-3356.666300	
259	6 1.382535e+07	6.000000	-73.992065	40.734796	-73.991407	
509	6 2.774550e+07	8.500000	-73.981823	40.752592	-73.980093	
759	4.155530e+07	12.500000	-73.967153	40.767158	-73.963659	
ma	x 5.542357e+07	499.000000	57.418457	1644.421482	1153.572603	
4						•

In [31]:

a1.columns

Out[31]:

In [32]:

Out[32]:

	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
0	-73.999817	40.738354	-73.999512	40.723217	1
1	-73.994355	40.728225	-73.994710	40.750325	1
2	-74.005043	40.740770	-73.962565	40.772647	1
3	-73.976124	40.790844	-73.965316	40.803349	3
4	-73.925023	40.744085	-73.973082	40.761247	5
5	-73.969019	40.755910	-73.969019	40.755910	1
6	-73.961447	40.693965	-73.871195	40.774297	5
7	0.000000	0.000000	0.000000	0.000000	1
8	-73.975187	40.745767	-74.002720	40.743537	1
9	-74.001065	40.741787	-73.963040	40.775012	1

In [33]:

sns.pairplot(b1)

Out[33]:

<seaborn.axisgrid.PairGrid at 0x231d25ff490>

In [34]:

```
sns.distplot(b1['pickup_longitude'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[34]:

<AxesSubplot:xlabel='pickup_longitude', ylabel='Density'>

In [35]:

In [36]:

```
x1_train,x1_test,y1_train,y1_test=train_test_split(x1,y1,test_size=0.3)
```

In [37]:

```
lr=LinearRegression()
lr.fit(x1_train,y1_train)
```

Out[37]:

LinearRegression()

In [38]:

```
print(lr.intercept_)
```

17646.223954229048

In [39]:

```
coe1=pd.DataFrame(lr.coef_,x1.columns,columns=['Co-efficient'])
coe1
```

Out[39]:

	Co-efficient
pickup_longitude	488.144582
pickup_latitude	-630.670006
dropoff_longitude	-143.720128
dropoff_latitude	823.074354
passenger_count	-5.987244

In [40]:

```
prediction=lr.predict(x1_test)
plt.scatter(y1_test,prediction)
```

Out[40]:

<matplotlib.collections.PathCollection at 0x231d7994ee0>

In [41]:

```
print(lr.score(x1_test,y1_test))
```

-11425952.705272354

In [42]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [43]:

```
rr=Ridge(alpha=10)
rr.fit(x1_train,y1_train)
```

Out[43]:

Ridge(alpha=10)

```
In [44]:
    rr.score(x1_test,y1_test)

Out[44]:
    -9.435149906804877

In [45]:

la=Lasso(alpha=10)
    la.fit(x1_train,y1_train)

Out[45]:
    Lasso(alpha=10)

In [46]:

la.score(x1_test,y1_test)

Out[46]:
```

-3.2186956565192224

3. DataSet SalesWorkload

In [47]:

a2=pd.read_csv(r"C:\Users\user\Downloads\6_Salesworkload1.csv")
a2

Out[47]:

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	Hour
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	
7653	06.2017	9.0	Sweden	29650.0	Gothenburg	12.0	Checkout	6322.323	
7654	06.2017	9.0	Sweden	29650.0	Gothenburg	16.0	Customer Services	4270.479	
7655	06.2017	9.0	Sweden	29650.0	Gothenburg	11.0	Delivery	0	
7656	06.2017	9.0	Sweden	29650.0	Gothenburg	17.0	others	2224.929	
7657	06.2017	9.0	Sweden	29650.0	Gothenburg	18.0	all	39652.2	

7658 rows × 14 columns

In [48]:

b2=a2.fillna(value=17)
b2

Out[48]:

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	Hour
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	_
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	
7653	06.2017	9.0	Sweden	29650.0	Gothenburg	12.0	Checkout	6322.323	
7654	06.2017	9.0	Sweden	29650.0	Gothenburg	16.0	Customer Services	4270.479	
7655	06.2017	9.0	Sweden	29650.0	Gothenburg	11.0	Delivery	0	
7656	06.2017	9.0	Sweden	29650.0	Gothenburg	17.0	others	2224.929	
7657	06.2017	9.0	Sweden	29650.0	Gothenburg	18.0	all	39652.2	

7658 rows × 14 columns

In [49]:

c2=b2.head(10)
c2

Out[49]:

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	HoursLease
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	0.0
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	0.0
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	0.0
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	0.0
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	0.0
5	10.2016	1.0	United Kingdom	88253.0	London (I)	6.0	Meat	8270.316	0.0
6	10.2016	1.0	United Kingdom	88253.0	London (I)	13.0	Food	16468.251	0.0
7	10.2016	1.0	United Kingdom	88253.0	London (I)	7.0	Clothing	4698.471	0.0
8	10.2016	1.0	United Kingdom	88253.0	London (I)	8.0	Household	1183.272	0.0
9	10.2016	1.0	United Kingdom	88253.0	London (I)	9.0	Hardware	2029.815	0.0
4									•

In [50]:

c2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9

Data columns (total 14 columns):

	•	,	
#	Column	Non-Null Count	Dtype
0	MonthYear	10 non-null	object
1	Time index	10 non-null	float64
2	Country	10 non-null	object
3	StoreID	10 non-null	float64
4	City	10 non-null	object
5	Dept_ID	10 non-null	float64
6	Dept. Name	10 non-null	object
7	HoursOwn	10 non-null	object
8	HoursLease	10 non-null	float64
9	Sales units	10 non-null	float64
10	Turnover	10 non-null	float64
11	Customer	10 non-null	float64
12	Area (m2)	10 non-null	object
13	Opening hours	10 non-null	object
d+vn	os: floa+64(7)	object(7)	-

dtypes: float64(7), object(7)

memory usage: 1.2+ KB

In [51]:

```
c2.describe()
```

Out[51]:

	Time index	StoreID	Dept_ID	HoursLease	Sales units	Turnover	Customer
count	10.0	10.0	10.000000	10.0	1.000000e+01	1.000000e+01	10.0
mean	1.0	88253.0	5.800000	0.0	6.543725e+05	1.978511e+06	17.0
std	0.0	0.0	3.614784	0.0	9.914003e+05	2.861420e+06	0.0
min	1.0	88253.0	1.000000	0.0	5.491500e+04	2.904000e+05	17.0
25%	1.0	88253.0	3.250000	0.0	1.034225e+05	4.033612e+05	17.0
50%	1.0	88253.0	5.500000	0.0	2.615525e+05	5.770455e+05	17.0
75%	1.0	88253.0	7.750000	0.0	4.284400e+05	1.518067e+06	17.0
max	1.0	88253.0	13.000000	0.0	3.107935e+06	8.714679e+06	17.0

In [52]:

c2.columns

Out[52]:

In [53]:

Out[53]:

	Time index	StoreID	HoursLease	Sales units	Turnover	Customer	Area (m2)
0	1.0	88253.0	0.0	398560.0	1226244.0	17.0	953.04
1	1.0	88253.0	0.0	82725.0	387810.0	17.0	720.48
2	1.0	88253.0	0.0	438400.0	654657.0	17.0	966.72
3	1.0	88253.0	0.0	309425.0	499434.0	17.0	1053.36
4	1.0	88253.0	0.0	165515.0	329397.0	17.0	1053.36
5	1.0	88253.0	0.0	1713310.0	5617137.0	17.0	11735.16
6	1.0	88253.0	0.0	3107935.0	8714679.0	17.0	19865.64
7	1.0	88253.0	0.0	213680.0	1615341.0	17.0	8513.52
8	1.0	88253.0	0.0	54915.0	290400.0	17.0	4842.72
9	1.0	88253.0	0.0	59260.0	450015.0	17.0	5608.8

In [54]:

sns.pairplot(d2)

Out[54]:

<seaborn.axisgrid.PairGrid at 0x231d7ac91f0>

In [55]:

```
sns.distplot(d2['Turnover'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[55]:

<AxesSubplot:xlabel='Turnover', ylabel='Density'>

In [56]:

sns.heatmap(d2.corr())

Out[56]:

<AxesSubplot:>


```
In [57]:
```

In [58]:

```
x2_train,x2_test,y2_train,y2_test=train_test_split(x2,y2,test_size=0.3)
```

In [59]:

```
lr=LinearRegression()
lr.fit(x2_train,y2_train)
```

Out[59]:

LinearRegression()

In [60]:

```
print(lr.intercept_)
```

2.2472590733374114

In [61]:

```
coeff=pd.DataFrame(lr.coef_,x2.columns,columns=['Co-efficient'])
coeff
```

Out[61]:

Co-efficient

 Time index
 0.000000e+00

 StoreID
 1.792322e-17

 HoursLease
 1.409463e-18

 Sales units
 5.163565e-06

 Turnover
 -3.834808e-06

 Customer
 0.000000e+00

 Area (m2)
 1.415987e-03

In [62]:

```
prediction=lr.predict(x2_test)
plt.scatter(y2_test,prediction)
```

Out[62]:

<matplotlib.collections.PathCollection at 0x231dc228640>

In [63]:

```
print(lr.score(x2_test,y2_test))
```

-2.85300720094631

In [64]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [65]:

```
rr=Ridge(alpha=10)
rr.fit(x2_train,y2_train)
```

Out[65]:

Ridge(alpha=10)

In [66]:

```
rr.score(x2_test,y2_test)
```

Out[66]:

-2.853007279806269

```
In [67]:
la=Lasso(alpha=10)
la.fit(x2_train,y2_train)
```

```
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_coordinat
e_descent.py:530: ConvergenceWarning: Objective did not converge. You migh
t want to increase the number of iterations. Duality gap: 0.35076343700064
25, tolerance: 0.011542857142857143
  model = cd_fast.enet_coordinate_descent(
```

Out[67]:

Lasso(alpha=10)

In [68]:

```
la.score(x2_test,y2_test)
```

Out[68]:

-2.8637964269888623

4. DataSet Instagram

```
In [69]:
```

a=pd.read_csv(r"C:\Users\user\Downloads\5_Instagram data.csv")
a

Out[69]:

	Impressions	From Home	From Hashtags	From Explore	From Other	Saves	Comments	Shares	Likes	Profile Visits
0	3920	2586	1028	619	56	98	9	5	162	35
1	5394	2727	1838	1174	78	194	7	14	224	48
2	4021	2085	1188	0	533	41	11	1	131	62
3	4528	2700	621	932	73	172	10	7	213	23
4	2518	1704	255	279	37	96	5	4	123	{
114	13700	5185	3041	5352	77	573	2	38	373	73
115	5731	1923	1368	2266	65	135	4	1	148	2(
116	4139	1133	1538	1367	33	36	0	1	92	34
117	32695	11815	3147	17414	170	1095	2	75	549	148
118	36919	13473	4176	16444	2547	653	5	26	443	61 1

119 rows × 13 columns

In [70]:

b=a.head(10) b

Out[70]:

	Impressions	From Home	From Hashtags	From Explore	From Other	Saves	Comments	Shares	Likes	Profile Visits
0	3920	2586	1028	619	56	98	9	5	162	35
1	5394	2727	1838	1174	78	194	7	14	224	48
2	4021	2085	1188	0	533	41	11	1	131	62
3	4528	2700	621	932	73	172	10	7	213	23
4	2518	1704	255	279	37	96	5	4	123	8
5	3884	2046	1214	329	43	74	7	10	144	9
6	2621	1543	599	333	25	22	5	1	76	26
7	3541	2071	628	500	60	135	4	9	124	12
8	3749	2384	857	248	49	155	6	8	159	36
9	4115	2609	1104	178	46	122	6	3	191	31
4										

In [71]:

a.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 119 entries, 0 to 118
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Impressions	119 non-null	int64
1	From Home	119 non-null	int64
2	From Hashtags	119 non-null	int64
3	From Explore	119 non-null	int64
4	From Other	119 non-null	int64
5	Saves	119 non-null	int64
6	Comments	119 non-null	int64
7	Shares	119 non-null	int64
8	Likes	119 non-null	int64
9	Profile Visits	119 non-null	int64
10	Follows	119 non-null	int64
11	Caption	119 non-null	object
12	Hashtags	119 non-null	object

dtypes: int64(11), object(2)

memory usage: 12.2+ KB

In [72]:

a.describe()

Out[72]:

	Impressions	From Home	From Hashtags	From Explore	From Other	Saves	Cı
count	119.000000	119.000000	119.000000	119.000000	119.000000	119.000000	11
mean	5703.991597	2475.789916	1887.512605	1078.100840	171.092437	153.310924	
std	4843.780105	1489.386348	1884.361443	2613.026132	289.431031	156.317731	
min	1941.000000	1133.000000	116.000000	0.000000	9.000000	22.000000	
25%	3467.000000	1945.000000	726.000000	157.500000	38.000000	65.000000	
50%	4289.000000	2207.000000	1278.000000	326.000000	74.000000	109.000000	
75%	6138.000000	2602.500000	2363.500000	689.500000	196.000000	169.000000	
max	36919.000000	13473.000000	11817.000000	17414.000000	2547.000000	1095.000000	1
4							•

In [73]:

a.columns

Out[73]:

In [74]:

Out[74]:

	Impressions	From Home	From Hashtags	From Explore	From Other	Saves	Comments	Shares	Likes	Profile Visits
0	3920	2586	1028	619	56	98	9	5	162	35
1	5394	2727	1838	1174	78	194	7	14	224	48
2	4021	2085	1188	0	533	41	11	1	131	62
3	4528	2700	621	932	73	172	10	7	213	23
4	2518	1704	255	279	37	96	5	4	123	8
5	3884	2046	1214	329	43	74	7	10	144	9
6	2621	1543	599	333	25	22	5	1	76	26
7	3541	2071	628	500	60	135	4	9	124	12
8	3749	2384	857	248	49	155	6	8	159	36
9	4115	2609	1104	178	46	122	6	3	191	31
4										•

In [75]:

sns.pairplot(c)

Out[75]:

<seaborn.axisgrid.PairGrid at 0x231d79dfd60>

In [76]:

sns.distplot(c['Saves'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[76]:

<AxesSubplot:xlabel='Saves', ylabel='Density'>

In [77]:

sns.heatmap(c.corr())

Out[77]:

<AxesSubplot:>


```
In [78]:
```

In [79]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

In [80]:

```
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[80]:

LinearRegression()

In [81]:

```
print(lr.intercept_)
```

14.728575896975386

In [82]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[82]:

Co-efficient

Impressions	-0.015035
From Home	-0.007878
From Hashtags	0.008178
From Explore	0.026761
From Other	0.031747
Saves	0.761812
Comments	-0.018727
Shares	0.051975
Likes	0.402693
Profile Visits	-0.118908
Follows	0.004743

```
In [83]:
```

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[83]:

<matplotlib.collections.PathCollection at 0x231e1833520>

In [84]:

```
print(lr.score(x_test,y_test))
```

-0.5655413671813168

In [85]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [86]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[86]:

Ridge(alpha=10)

In [87]:

```
rr.score(x_test,y_test)
```

Out[87]:

-0.5847572731952695

In [88]:

```
la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[88]:

Lasso(alpha=10)

```
In [89]:
```

```
la.score(x_test,y_test)
```

Out[89]:

0.9913405617952354

5. DataSet Drug

In [90]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\4_drug200.csv")
a
```

Out[90]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [91]:

```
b=a.head(10)
b
```

Out[91]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
5	22	F	NORMAL	HIGH	8.607	drugX
6	49	F	NORMAL	HIGH	16.275	drugY
7	41	М	LOW	HIGH	11.037	drugC
8	60	М	NORMAL	HIGH	15.171	drugY
9	43	М	LOW	NORMAL	19.368	drugY

In [92]:

a.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Age	200 non-null	int64
1	Sex	200 non-null	object
2	BP	200 non-null	object
3	Cholesterol	200 non-null	object
4	Na_to_K	200 non-null	float64
5	Drug	200 non-null	object

dtypes: float64(1), int64(1), object(4)

memory usage: 9.5+ KB

In [93]:

a.describe()

Out[93]:

	Age	Na_to_K
count	200.000000	200.000000
mean	44.315000	16.084485
std	16.544315	7.223956
min	15.000000	6.269000
25%	31.000000	10.445500
50%	45.000000	13.936500
75%	58.000000	19.380000
max	74.000000	38.247000

In [94]:

```
a.columns
```

Out[94]:

Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='objec
t')

In [95]:

```
c=b[['Age','Na_to_K']]
c
```

Out[95]:

	Age	Na_to_K
0	23	25.355
1	47	13.093
2	47	10.114
3	28	7.798
4	61	18.043
5	22	8.607
6	49	16.275
7	41	11.037
8	60	15.171
9	43	19.368

In [96]:

sns.pairplot(c)

Out[96]:

<seaborn.axisgrid.PairGrid at 0x231e187c220>

In [97]:

sns.distplot(c['Age'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[97]:

<AxesSubplot:xlabel='Age', ylabel='Density'>


```
In [98]:
```

```
sns.heatmap(c.corr())
```

Out[98]:

<AxesSubplot:>

In [99]:

```
x=b[['Age','Na_to_K']]
y=b['Age']
```

In [100]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

In [101]:

```
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[101]:

LinearRegression()

In [102]:

```
print(lr.intercept_)
```

7.105427357601002e-15

In [103]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[103]:

Co-efficient

Age 1.000000e+00

Na_to_K 3.704420e-17

```
In [104]:
```

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[104]:

<matplotlib.collections.PathCollection at 0x231e2b0ff70>

In [105]:

```
print(lr.score(x_test,y_test))
```

1.0

In [106]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [107]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[107]:

Ridge(alpha=10)

In [108]:

```
rr.score(x_test,y_test)
```

Out[108]:

0.9998171297144919

In [109]:

```
la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[109]:

Lasso(alpha=10)

In [110]:

la.score(x_test,y_test)

Out[110]:

0.9909218477365592

6. DataSet Vehicle

In [111]:

a=pd.read_csv(r"C:\Users\user\Downloads\Vehicle.csv")
a

Out[111]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat					
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.6115				
1	2.0	pop	51.0	1186.0	32500.0	1.0	45.666359	12.241				
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11				
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.634				
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.495				
1544	NaN	NaN	NaN	NaN	NaN	NaN	NaN					
1545	NaN	NaN	NaN	NaN	NaN	NaN	NaN					
1546	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Null				
1547	NaN	NaN	NaN	NaN	NaN	NaN	NaN					
1548	NaN	NaN	NaN	NaN	NaN	NaN	NaN					
1549 i	1549 rows x 11 columns											

1549 rows × 11 columns

In [112]:

```
b=a.head(10)
b
```

Out[112]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	I
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.6115598
1	2.0	рор	51.0	1186.0	32500.0	1.0	45.666359	12.241889
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.417
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.634609
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.495650
5	6.0	pop	74.0	3623.0	70225.0	1.0	45.000702	7.682270
6	7.0	lounge	51.0	731.0	11600.0	1.0	44.907242	8.6115598
7	8.0	lounge	51.0	1521.0	49076.0	1.0	41.903221	12.495650
8	9.0	sport	73.0	4049.0	76000.0	1.0	45.548000	11.549469
9	10.0	sport	51.0	3653.0	89000.0	1.0	45.438301	10.991700
4								•

In [113]:

```
c=b.dropna(axis=1)
c
```

Out[113]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	- 1
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.6115598
1	2.0	рор	51.0	1186.0	32500.0	1.0	45.666359	12.241889
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.417
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.634609
4	5.0	рор	73.0	3074.0	106880.0	1.0	41.903221	12.495650
5	6.0	рор	74.0	3623.0	70225.0	1.0	45.000702	7.682270
6	7.0	lounge	51.0	731.0	11600.0	1.0	44.907242	8.6115598
7	8.0	lounge	51.0	1521.0	49076.0	1.0	41.903221	12.495650
8	9.0	sport	73.0	4049.0	76000.0	1.0	45.548000	11.549469
9	10.0	sport	51.0	3653.0	89000.0	1.0	45.438301	10.991700
4								•

In [114]:

a.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1549 entries, 0 to 1548
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	ID	1538 non-null	float64
1	model	1538 non-null	object
2	engine_power	1538 non-null	float64
3	age_in_days	1538 non-null	float64
4	km	1538 non-null	float64
5	previous_owners	1538 non-null	float64
6	lat	1538 non-null	float64
7	lon	1549 non-null	object
8	price	1549 non-null	object
9	Unnamed: 9	0 non-null	float64
10	Unnamed: 10	1 non-null	object
44	Cl+C4/7\ -	L + / 4 \	

dtypes: float64(7), object(4)

memory usage: 133.2+ KB

In [115]:

a.describe()

Out[115]:

	ID	engine_power	age_in_days	km	previous_owners	la
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.54136
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.13351
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394090
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612
4						>

In [116]:

a.columns

Out[116]:

```
In [117]:
```

Out[117]:

	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	51.0	882.0	25000.0	1.0	44.907242	8.611559868	8900
1	51.0	1186.0	32500.0	1.0	45.666359	12.24188995	8800
2	74.0	4658.0	142228.0	1.0	45.503300	11.41784	4200
3	51.0	2739.0	160000.0	1.0	40.633171	17.63460922	6000
4	73.0	3074.0	106880.0	1.0	41.903221	12.49565029	5700
5	74.0	3623.0	70225.0	1.0	45.000702	7.68227005	7900
6	51.0	731.0	11600.0	1.0	44.907242	8.611559868	10750
7	51.0	1521.0	49076.0	1.0	41.903221	12.49565029	9190
8	73.0	4049.0	76000.0	1.0	45.548000	11.54946995	5600
9	51.0	3653.0	89000.0	1.0	45.438301	10.99170017	6000

In [118]:

sns.pairplot(d)

Out[118]:

<seaborn.axisgrid.PairGrid at 0x231e2b4b460>

In [119]:

sns.distplot(d['km'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[119]:

<AxesSubplot:xlabel='km', ylabel='Density'>

In [120]:

sns.heatmap(d.corr())

Out[120]:

<AxesSubplot:>


```
In [121]:
x=d[['engine_power', 'age_in_days', 'km', 'previous_owners',
       'lat', 'lon', 'price']]
y=d['price']
In [122]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [123]:
lr=LinearRegression()
lr.fit(x_train,y_train)
Out[123]:
LinearRegression()
In [124]:
print(lr.intercept_)
-5.929905455559492e-10
In [125]:
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
Out[125]:
                  Co-efficient
                1.782942e-13
   engine_power
    age_in_days
                9.071686e-16
            km
                5.556020e-15
previous_owners
                1.110223e-16
                1.139652e-12
                1.484235e-12
            lon
          price 1.000000e+00
In [126]:
print(lr.score(x_test,y_test))
1.0
In [127]:
```

localhost:8888/notebooks/10 DataSets Linear%2C Ridge and Lasso Regression.ipynb

from sklearn.linear_model import Ridge,Lasso

```
In [128]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[128]:
Ridge(alpha=10)
In [129]:
rr.score(x_test,y_test)
Out[129]:
0.999999999979275
In [130]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[130]:
Lasso(alpha=10)
In [131]:
la.score(x_test,y_test)
Out[131]:
```

0.999999931211635

7. DataSet 2015

In [132]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\2015 - 2015.csv")
a
```

Out[132]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)		
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143		
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784		
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464		
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521		
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563		
153	Rwanda	Sub- Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864		
154	Benin	Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910		
155	Syria	Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.47489	0.72193		
156	Burundi	Sub- Saharan Africa	157	2.905	0.08658	0.01530	0.41587	0.22396		
157	Togo	Sub- Saharan Africa	158	2.839	0.06727	0.20868	0.13995	0.28443		
158 r	158 rows × 12 columns									
4								•		

In [133]:

b=a.head(10)

Out[133]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	F
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	_
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	
5	Finland	Western Europe	6	7.406	0.03140	1.29025	1.31826	0.88911	
6	Netherlands	Western Europe	7	7.378	0.02799	1.32944	1.28017	0.89284	
7	Sweden	Western Europe	8	7.364	0.03157	1.33171	1.28907	0.91087	
8	New Zealand	Australia and New Zealand	9	7.286	0.03371	1.25018	1.31967	0.90837	
9	Australia	Australia and New Zealand	10	7.284	0.04083	1.33358	1.30923	0.93156	
4									•

In [134]:

```
a.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 158 entries, 0 to 157
Data columns (total 12 columns):

#	Column	Non-N	Iull Count	Dtype
0	Country	158 n	on-null	object
1	Region	158 n	on-null	object
2	Happiness Rank	158 n	on-null	int64
3	Happiness Score	158 n	on-null	float64
4	Standard Error	158 n	on-null	float64
5	Economy (GDP per Capita)	158 n	on-null	float64
6	Family	158 n	on-null	float64
7	Health (Life Expectancy)	158 n	on-null	float64
8	Freedom	158 n	on-null	float64
9	Trust (Government Corruption)	158 n	on-null	float64
10	Generosity	158 n	on-null	float64
11	Dystopia Residual	158 n	on-null	float64
4+	os. floot(1/0) int(1/1) obios	+/21		

dtypes: float64(9), int64(1), object(2)

memory usage: 14.9+ KB

In [135]:

a.describe()

Out[135]:

	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom
count	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000
mean	79.493671	5.375734	0.047885	0.846137	0.991046	0.630259	0.428615
std	45.754363	1.145010	0.017146	0.403121	0.272369	0.247078	0.150693
min	1.000000	2.839000	0.018480	0.000000	0.000000	0.000000	0.000000
25%	40.250000	4.526000	0.037268	0.545808	0.856823	0.439185	0.328330
50%	79.500000	5.232500	0.043940	0.910245	1.029510	0.696705	0.435515
75%	118.750000	6.243750	0.052300	1.158448	1.214405	0.811013	0.549092
max	158.000000	7.587000	0.136930	1.690420	1.402230	1.025250	0.669730
4							•

In [136]:

a.columns

Out[136]:

In [137]:

Out[137]:

	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom	Trust (Government Corruption)
0	1	7.587	0.03411	1.39651	1.34951	0.94143	0.66557	0.41978
1	2	7.561	0.04884	1.30232	1.40223	0.94784	0.62877	0.14145
2	3	7.527	0.03328	1.32548	1.36058	0.87464	0.64938	0.48357
3	4	7.522	0.03880	1.45900	1.33095	0.88521	0.66973	0.36503
4	5	7.427	0.03553	1.32629	1.32261	0.90563	0.63297	0.32957
5	6	7.406	0.03140	1.29025	1.31826	0.88911	0.64169	0.41372
6	7	7.378	0.02799	1.32944	1.28017	0.89284	0.61576	0.31814
7	8	7.364	0.03157	1.33171	1.28907	0.91087	0.65980	0.43844
8	9	7.286	0.03371	1.25018	1.31967	0.90837	0.63938	0.42922
9	10	7.284	0.04083	1.33358	1.30923	0.93156	0.65124	0.35637
4								•

In [138]:

sns.pairplot(c)

Out[138]:

<seaborn.axisgrid.PairGrid at 0x231e3b41fd0>

In [139]:

sns.distplot(c['Family'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[139]:

<AxesSubplot:xlabel='Family', ylabel='Density'>

In [140]:

```
sns.heatmap(c.corr())
```

Out[140]:

<AxesSubplot:>

In [141]:

In [142]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

In [143]:

```
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[143]:

LinearRegression()

In [144]:

```
print(lr.intercept_)
```

1.8632387318551316

In [145]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[145]:

	Co-efficient
Happiness Rank	-0.006093
Happiness Score	-0.104144
Standard Error	-0.043451
Economy (GDP per Capita)	-0.028701
Family	-0.186589
Health (Life Expectancy)	0.012070
Freedom	-0.188674
Trust (Government Corruption)	-0.267593
Generosity	0.743399
Dystopia Residual	-0.187075

In [146]:

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[146]:

<matplotlib.collections.PathCollection at 0x231e94791f0>

In [147]:

```
print(lr.score(x_test,y_test))
```

0.8890913969924003

```
In [148]:
la=Ridge(alpha=10)
la.fit(x_train,y_train)
Out[148]:
Ridge(alpha=10)
In [149]:
la.score(x_test,y_test)
Out[149]:
-0.05469422106242772
In [150]:
rr=Lasso(alpha=10)
rr.fit(x_train,y_train)
Out[150]:
Lasso(alpha=10)
In [151]:
rr.score(x_test,y_test)
Out[151]:
```

8. DataSet Win_Equality

-0.6279493751598471

In [152]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\11_winequality-red.csv")
a
```

Out[152]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	í
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	_
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	

1599 rows × 12 columns

In [153]:

b=a.head(10) b

Out[153]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alco
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
5	7.4	0.66	0.00	1.8	0.075	13.0	40.0	0.9978	3.51	0.56	
6	7.9	0.60	0.06	1.6	0.069	15.0	59.0	0.9964	3.30	0.46	
7	7.3	0.65	0.00	1.2	0.065	15.0	21.0	0.9946	3.39	0.47	1
8	7.8	0.58	0.02	2.0	0.073	9.0	18.0	0.9968	3.36	0.57	
9	7.5	0.50	0.36	6.1	0.071	17.0	102.0	0.9978	3.35	0.80	1
4											>

In [154]:

a.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):
```

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64
44	C1+C4/44\ :-+C4	(1)	

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

In [155]:

a.describe()

Out[155]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total : di
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.0
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.4
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.8
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.0
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.0
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.0
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.0
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.0
4							•

In [156]:

a.columns

Out[156]:

In [157]:

Out[157]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0
5	7.4	0.66	0.00	1.8	0.075	13.0	40.0
6	7.9	0.60	0.06	1.6	0.069	15.0	59.0
7	7.3	0.65	0.00	1.2	0.065	15.0	21.0
8	7.8	0.58	0.02	2.0	0.073	9.0	18.0
9	7.5	0.50	0.36	6.1	0.071	17.0	102.0

In [158]:

sns.pairplot(c)

Out[158]:

<seaborn.axisgrid.PairGrid at 0x231e94c17c0>

In [159]:

sns.distplot(c['volatile acidity'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[159]:

<AxesSubplot:xlabel='volatile acidity', ylabel='Density'>

In [160]:

sns.heatmap(c.corr())

Out[160]:

<AxesSubplot:>


```
In [161]:
```

In [162]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

In [163]:

```
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[163]:

LinearRegression()

In [164]:

```
print(lr.intercept_)
```

-0.00276335903562952

In [165]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[165]:

	Co-efficient
fixed acidity	0.000406
volatile acidity	0.000524
citric acid	-0.002410
residual sugar	-0.000206
chlorides	-0.002677
free sulfur dioxide	0.999987
total sulfur dioxide	0.000004

In [166]:

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[166]:

<matplotlib.collections.PathCollection at 0x231eb2b06a0>

In [167]:

```
print(lr.score(x_test,y_test))
```

0.9999998641877811

In [168]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[168]:

Ridge(alpha=10)

In [169]:

```
rr.score(x_test,y_test)
```

Out[169]:

0.8246480821325929

In [170]:

```
la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[170]:

Lasso(alpha=10)

In [171]:

la.score(x_test,y_test)

Out[171]:

-3.1018628501862358

9. DataSet Mobile_prices

```
In [172]:
```

```
a=pd.read_csv(r"C:\Users\user\Downloads\12_mobile_prices_2023.csv")
a
```

Out[172]:

	Phone Name	Rating ?/5	Number of Ratings	RAM	ROM/Storage	Back/Rare Camera	Front Camera	Battery	Processor
0	POCO C50 (Royal Blue, 32 GB)	4.2	33,561	2 GB RAM	32 GB ROM	8MP Dual Camera	5MP Front Camera	5000 mAh	Mediatek Helio A22 Processor, Upto 2.0 GHz Pro
1	POCO M4 5G (Cool Blue, 64 GB)	4.2	77,128	4 GB RAM	64 GB ROM	50MP + 2MP	8MP Front Camera	5000 mAh	Mediatek Dimensity 700 Processor
2	POCO C51 (Royal Blue, 64 GB)	4.3	15,175	4 GB RAM	64 GB ROM	8MP Dual Rear Camera	5MP Front Camera	5000 mAh	Helio G36 Processor
3	POCO C55 (Cool Blue, 64 GB)	4.2	22,621	4 GB RAM	64 GB ROM	50MP Dual Rear Camera	5MP Front Camera	5000 mAh	Mediatek Helio G85 Processor
4	POCO C51 (Power Black, 64 GB)	4.3	15,175	4 GB RAM	64 GB ROM	8MP Dual Rear Camera	5MP Front Camera	5000 mAh	Helio G36 Processor
									•••
1831	Infinix Note 7 (Forest Green, 64 GB)	4.3	25,582	4 GB RAM	64 GB ROM	48MP + 2MP + 2MP + Al Lens Camera	16MP Front Camera	5000 mAh	MediaTek Helio G70 Processor
1832	Infinix Note 7 (Bolivia Blue, 64 GB)	4.3	25,582	4 GB RAM	64 GB ROM	48MP + 2MP + 2MP + AI Lens Camera	16MP Front Camera	5000 mAh	MediaTek Helio G70 Processor
1833	Infinix Note 7 (Aether Black, 64 GB)	4.3	25,582	4 GB RAM	64 GB ROM	48MP + 2MP + 2MP + Al Lens Camera	16MP Front Camera	5000 mAh	MediaTek Helio G70 Processor
1834	Infinix Zero 8i (Silver Diamond, 128 GB)	4.2	7,117	8 GB RAM	128 GB ROM	48MP + 8MP + 2MP + Al Lens Camera	16MP + 8MP Dual Front Camera	4500 mAh	MediaTek Helic G90T Processor
1835	Infinix S5 (Quetzal Cyan, 64 GB)	4.3	15,701	4 GB RAM	64 GB ROM	16MP + 5MP + 2MP + Low Light Sensor	32MP Front Camera	4000 mAh	Helio P22 (MTK6762) Processor

1836 rows × 11 columns

In [173]:

b=a.dropna() b

Out[173]:

	Phone Name	Rating ?/5	Number of Ratings	RAM	ROM/Storage	Back/Rare Camera	Front Camera	Battery	Processor
0	POCO C50 (Royal Blue, 32 GB)	4.2	33,561	2 GB RAM	32 GB ROM	8MP Dual Camera	5MP Front Camera	5000 mAh	Mediatek Helio A22 Processor, Upto 2.0 GHz Pro
1	POCO M4 5G (Cool Blue, 64 GB)	4.2	77,128	4 GB RAM	64 GB ROM	50MP + 2MP	8MP Front Camera	5000 mAh	Mediatek Dimensity 700 Processor
2	POCO C51 (Royal Blue, 64 GB)	4.3	15,175	4 GB RAM	64 GB ROM	8MP Dual Rear Camera	5MP Front Camera	5000 mAh	Helio G36 Processor
3	POCO C55 (Cool Blue, 64 GB)	4.2	22,621	4 GB RAM	64 GB ROM	50MP Dual Rear Camera	5MP Front Camera	5000 mAh	Mediatek Helio G85 Processor
4	POCO C51 (Power Black, 64 GB)	4.3	15,175	4 GB RAM	64 GB ROM	8MP Dual Rear Camera	5MP Front Camera	5000 mAh	Helio G36 Processor
									•••
1831	Infinix Note 7 (Forest Green, 64 GB)	4.3	25,582	4 GB RAM	64 GB ROM	48MP + 2MP + 2MP + Al Lens Camera	16MP Front Camera	5000 mAh	MediaTek Helio G70 Processor
1832	Infinix Note 7 (Bolivia Blue, 64 GB)	4.3	25,582	4 GB RAM	64 GB ROM	48MP + 2MP + 2MP + Al Lens Camera	16MP Front Camera	5000 mAh	MediaTek Helio G70 Processor
1833	Infinix Note 7 (Aether Black, 64 GB)	4.3	25,582	4 GB RAM	64 GB ROM	48MP + 2MP + 2MP + Al Lens Camera	16MP Front Camera	5000 mAh	MediaTek Helio G70 Processor
1834	Infinix Zero 8i (Silver Diamond, 128 GB)	4.2	7,117	8 GB RAM	128 GB ROM	48MP + 8MP + 2MP + Al Lens Camera	16MP + 8MP Dual Front Camera	4500 mAh	MediaTek Helic G90T Processor
1835	Infinix S5 (Quetzal Cyan, 64 GB)	4.3	15,701	4 GB RAM	64 GB ROM	16MP + 5MP + 2MP + Low Light Sensor	32MP Front Camera	4000 mAh	Helio P22 (MTK6762) Processor

1291 rows × 11 columns

In [174]:

c=b.head(10)

Out[174]:

	Phone Name	Rating ?/5	Number of Ratings	RAM	ROM/Storage	Back/Rare Camera	Front Camera	Battery	Processor	Pric
0	POCO C50 (Royal Blue, 32 GB)	4.2	33,561	2 GB RAM	32 GB ROM	8MP Dual Camera	5MP Front Camera	5000 mAh	Mediatek Helio A22 Processor, Upto 2.0 GHz Pro	₹5
1	POCO M4 5G (Cool Blue, 64 GB)	4.2	77,128	4 GB RAM	64 GB ROM	50MP + 2MP	8MP Front Camera	5000 mAh	Mediatek Dimensity 700 Processor	₹11
2	POCO C51 (Royal Blue, 64 GB)	4.3	15,175	4 GB RAM	64 GB ROM	8MP Dual Rear Camera	5MP Front Camera	5000 mAh	Helio G36 Processor	₹6
3	POCO C55 (Cool Blue, 64 GB)	4.2	22,621	4 GB RAM	64 GB ROM	50MP Dual Rear Camera	5MP Front Camera	5000 mAh	Mediatek Helio G85 Processor	₹7
4	POCO C51 (Power Black, 64 GB)	4.3	15,175	4 GB RAM	64 GB ROM	8MP Dual Rear Camera	5MP Front Camera	5000 mAh	Helio G36 Processor	₹6
5	POCO M4 5G (Power Black, 64 GB)	4.2	77,128	4 GB RAM	64 GB ROM	50MP + 2MP	8MP Front Camera	5000 mAh	Mediatek Dimensity 700 Processor	₹11
6	POCO C55 (Power Black, 64 GB)	4.2	22,621	4 GB RAM	64 GB ROM	50MP Dual Rear Camera	5MP Front Camera	5000 mAh	Mediatek Helio G85 Processor	₹7
7	POCO C55 (Forest Green, 64 GB)	4.2	22,621	4 GB RAM	64 GB ROM	50MP Dual Rear Camera	5MP Front Camera	5000 mAh	Mediatek Helio G85 Processor	₹7
8	POCO C55 (Cool Blue, 128 GB)	4.1	13,647	6 GB RAM	128 GB ROM	50MP Dual Rear Camera	5MP Front Camera	5000 mAh	Mediatek Helio G85 Processor	₹9
9	POCO M4 5G (Yellow, 128 GB)	4.2	40,525	6 GB RAM	128 GB ROM	50MP + 2MP	8MP Front Camera	5000 mAh	Mediatek Dimensity 700 Processor	₹13
4										•

In [175]:

```
a.info()
```

Phone Name 1836 non-null object 0 1 Rating ?/5 1836 non-null float64 2 Number of Ratings 1836 non-null object 3 RAM1836 non-null object 4 object ROM/Storage 1662 non-null 5 Back/Rare Camera 1827 non-null object 6 Front Camera 1435 non-null object 7 1826 non-null Battery object 8 Processor 1781 non-null object 9 Price in INR 1836 non-null object 10 Date of Scraping 1836 non-null object

dtypes: float64(1), object(10)

memory usage: 157.9+ KB

In [176]:

a.describe()

Out[176]:

Rating ?/5 count 1836.000000 mean 4.210512 std 0.543912 min 0.000000 25% 4.200000 50% 4.300000 75% 4.400000 max 4.800000

In [177]:

a.columns

Out[177]:

In [178]:

```
d=c[['Rating ?/5', 'Number of Ratings']]
d
```

Out[178]:

	Rating ?/5	Number of Ratings
0	4.2	33,561
1	4.2	77,128
2	4.3	15,175
3	4.2	22,621
4	4.3	15,175
5	4.2	77,128
6	4.2	22,621
7	4.2	22,621
8	4.1	13,647
9	4.2	40,525

In [179]:

sns.pairplot(d)

Out[179]:

<seaborn.axisgrid.PairGrid at 0x231ec2d0a00>

In [180]:

```
sns.distplot(d['Rating ?/5'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[180]:

<AxesSubplot:xlabel='Rating ?/5', ylabel='Density'>

In [181]:

```
sns.heatmap(d.corr())
```

Out[181]:

<AxesSubplot:>

In [182]:

```
x=c[['Rating ?/5']]
y=c['Rating ?/5']
```

```
In [183]:
```

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [184]:
```

```
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[184]:

LinearRegression()

In [185]:

```
print(lr.intercept_)
```

0.0

In [186]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[186]:

Co-efficient

1.0

Rating ?/5

In [187]:

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[187]:

<matplotlib.collections.PathCollection at 0x231ec4befa0>

In [188]:

```
print(lr.score(x_test,y_test))
```

1.0

```
In [189]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[189]:
Ridge(alpha=10)
In [190]:
rr.score(x_test,y_test)
Out[190]:
0.0
In [191]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[191]:
Lasso(alpha=10)
In [192]:
la.score(x_test,y_test)
Out[192]:
0.0
```

10. DataSet Placement

In [193]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\13_placement.csv")
a
```

Out[193]:

	cgpa	placement_exam_marks	placed
0	7.19	26.0	1
1	7.46	38.0	1
2	7.54	40.0	1
3	6.42	8.0	1
4	7.23	17.0	0
995	8.87	44.0	1
996	9.12	65.0	1
997	4.89	34.0	0
998	8.62	46.0	1
999	4.90	10.0	1

1000 rows × 3 columns

In [194]:

```
b=a.head(10)
b
```

Out[194]:

	cgpa	placement_exam_marks	placed
0	7.19	26.0	1
1	7.46	38.0	1
2	7.54	40.0	1
3	6.42	8.0	1
4	7.23	17.0	0
5	7.30	23.0	1
6	6.69	11.0	0
7	7.12	39.0	1
8	6.45	38.0	0
9	7.75	94.0	1

In [195]:

```
a.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 3 columns):

Column Non-Null Count Dtype
--- Ocgpa 1000 non-null float64
1 placement_exam_marks 1000 non-null float64
2 placed 1000 non-null int64

dtypes: float64(2), int64(1)

memory usage: 23.6 KB

In [196]:

a.describe()

Out[196]:

	cgpa	placement_exam_marks	placed
count	1000.000000	1000.000000	1000.000000
mean	6.961240	32.225000	0.489000
std	0.615898	19.130822	0.500129
min	4.890000	0.000000	0.000000
25%	6.550000	17.000000	0.000000
50%	6.960000	28.000000	0.000000
75%	7.370000	44.000000	1.000000
max	9.120000	100.000000	1.000000

In [197]:

a.columns

Out[197]:

Index(['cgpa', 'placement_exam_marks', 'placed'], dtype='object')

In [198]:

sns.pairplot(b)

Out[198]:

<seaborn.axisgrid.PairGrid at 0x231ec4dc5e0>

In [199]:

```
sns.distplot(b['placement_exam_marks'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[199]:

<AxesSubplot:xlabel='placement_exam_marks', ylabel='Density'>

In [200]:

```
sns.heatmap(b.corr())
```

Out[200]:

<AxesSubplot:>

In [201]:

```
x=b[['cgpa', 'placement_exam_marks', 'placed']]
y=b['cgpa']
```

In [202]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

In [203]:

```
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[203]:

LinearRegression()

In [204]:

```
print(lr.intercept_)
```

4.440892098500626e-15

In [205]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[205]:

cgpa 1.000000e+00 placement_exam_marks 5.671633e-18 placed 2.896583e-16

In [206]:

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[206]:

<matplotlib.collections.PathCollection at 0x231ec499190>


```
In [207]:
print(lr.score(x_test,y_test))
1.0
In [208]:
rr=Ridge(alpha=15)
rr.fit(x_train,y_train)
Out[208]:
Ridge(alpha=15)
In [209]:
rr.score(x_test,y_test)
Out[209]:
0.8265838494445259
In [210]:
la=Lasso(alpha=20)
la.fit(x_train,y_train)
Out[210]:
Lasso(alpha=20)
In [211]:
la.score(x_test,y_test)
Out[211]:
-0.3491183211038509
In [ ]:
```