## Comparison Of Cache Replacement Policies using Gem-5 Simulator

Prepared By: Shubham Makwana Debopriya Roy Dipta Lohith Reddy Kalluru

#### Table of Content

- Motivation
- Analysis Overview
- Level 2 Cache Hierarchy
- Level 3 Cache Hierarchy
- Time Driven Cache Channel attack
- Future Task
- Results

#### Motivation

- Cache
- Limited Size
- Cache hit rate increase is ideal but what about now?
- Any other alternative?
- Cache Replacement Policy

### Analysis Overview

- No need of old and less accessed instruction
- Performance analysis through Gem-5
- RR, LRU, FIFO
- Comparative analysis among efficient cache replacement policies

# Level 2 Cache Hierarchy



# Level 3 Cache Hierarchy



RP: FIFO, LRU, Random, TreePLRU

| Configur<br>ation # 1 | L1<br>icache<br>(KB) | L1<br>dcache<br>(KB) | L2<br>cache<br>(MB) | L1<br>dcache<br>associati<br>vity | L1<br>icache<br>associ<br>ativity | L2<br>cache<br>associat<br>ivity | Cache<br>line size |
|-----------------------|----------------------|----------------------|---------------------|-----------------------------------|-----------------------------------|----------------------------------|--------------------|
| 1                     | 128                  | 128                  | 4                   | 2                                 | 2                                 | 1                                | 64                 |
| 2                     | 256                  | 256                  | 4                   | 2                                 | 2                                 | 1                                | 64                 |
| 3                     | 512                  | 512                  | 4                   | 2                                 | 2                                 | 1                                | 64                 |
| 4                     | 128                  | 128                  | 8                   | 2                                 | 2                                 | 1                                | 64                 |
| 5                     | 128                  | 128                  | 16                  | 2                                 | 2                                 | 1                                | 64                 |
| 6                     | 128                  | 128                  | 4                   | 4                                 | 4                                 | 1                                | 64                 |
| 7                     | 128                  | 128                  | 4                   | 4                                 | 4                                 | 4                                | 64                 |
| 8                     | 128                  | 128                  | 4                   | 8                                 | 8                                 | 8                                | 64                 |
| 9                     | 128                  | 128                  | 4                   | 2                                 | 2                                 | 1                                | 128                |

#### Comparison of L1 cache miss rate with LRU and Random RP



### Comparison of overall miss rate with cache configurations having varying associativity



#### Total running time with different RP while the other parameters remain constant



#### Time driven Cache side-channel attack

Input Key: 12 34 56 78 9a ab bc d0 30 40 12 45 6f 7e e1 0a

| Run time | Expected output 9 a b d 3 4 1 4 6 7 e 0 | Successful Nibbles |
|----------|-----------------------------------------|--------------------|
|          | 3 4 5 4 5 4 1 4 6 7 6 6                 |                    |
| 1        | 9 d 0 d 2 7 d 4 5 9 8 8                 | 3                  |
| 2        | b 4 b f 3 3 d b 6 7 1 c                 | 4                  |
| 3        | 4 9 4 d 0 d b 4 f 7 e d                 | 4                  |
| 4        | d a 3 7 4 4 6 66de 0                    | 5                  |
| 5        | 9 a a d 1 7 1 0 4 7 5 8                 | 5                  |
| 6        | 1 a b d 2 0 1 10023                     | 4                  |
| 7        | 9 e 1 7 3 4 c ff 8 3 0                  | 4                  |
| 8        | 9 a e 3 3 3 a 407 e 5                   | 5                  |
| 9        | b 9 a d 9 2 1 2 6 4 e 1                 | 4                  |
| 10       | c 5 b b 3 7 1 b a e e 2                 | 4                  |
|          | Total = 12 x 10 = 120                   | = 42               |

Accuracy = (42/120)x100% = 35%

#### Future task

- 1. In the full-system mode, GEM5 runs a real operating system on it and allows users to interact with the OS. Hence, users can run any applications on GEM5 as running on real-world hardware.
- 2. The downside of GEM5 is that its execution is 1000X slower than real hardware.
- 3. Run GEM5 in FS mode and run the AES attack to observe the effects.
- 4. Implementation on multi-core system.