# Gov 51: Large Sample Theorems and the Normal Distribution

Matthew Blackwell

Harvard University

# **Fulton county data**

- fulton.csv: data on all registered voters in Fulton County, GA in 1994.
- Data on the entire population is a **census**

| Name    | Description                                |
|---------|--------------------------------------------|
| turnout | did person vote (1) or not (0) in 1994?    |
| black   | is this person black (1) or not (0)?       |
| sex     | is this person a woman (1) or not (0)?     |
| age     | age                                        |
| dem     | registered as a Democrat (1) or not (0)?   |
| rep     | registered as a Republican (1) or not (0)? |
| urban   | registered in a city (1) or not (0)?       |

### **Load Fulton county data**

```
fulton <- read.csv("data/fulton.csv")
head(fulton)</pre>
```

```
##
    turnout black sex age dem rep urban
                0
                       19
## 1
          0
                            0
                                0
                                      0
## 2
                0
                    0 35
                                0
## 3
                    0 36
                                0
## 4
                0
                    0 27
                                0
                    1 79 1
                                0
## 5
                0
                       42
                            1
                                0
## 6
                                      0
```

### **Large random samples**

• In real data, we will have a set of *n* measurements on a variable:

$$X_1, X_2, \ldots, X_n$$

- $X_1$  is the age of the first randomly selected registered voter.
- $\cdot X_2$  is the age of the second randomly selected registered voter, etc.
- · What are the properties of the sample mean of these measurements?
  - Expectation:  $\mathbb{E}(\overline{X}) = \mathbb{E}[X_i] = \mu$
  - Variance:  $V(\overline{X}) = \mathbb{V}(X_i)/n = \sigma_X^2/n$
  - · Valid for any sample size!
- Asymptotics: what can we learn as n gets big?

### Law of large numbers

#### Law of Large Numbers

Let  $X_1,\ldots,X_n$  be i.i.d. random variables with mean  $\mu$  and finite variance  $\sigma^2$ . Then,  $\overline{X}_n$  converges to  $\mu$  as n gets large.

- Probability of  $\overline{X}_n$  being "far away" from  $\mu$  goes to 0 as n gets big.
- The distribution of sample mean "collapses" to population mean.
- Can see this from the variance of  $\overline{X}_n$ :  $\mathbb{V}[X]/n$ .

### **Normal random variable**



- A normal distribution has a PDF that is the classic "bell-shaped" curve.
  - · Extremely ubiquitous in statistics.
  - An r.v. is more likely to be in the center, rather than the tails.
- Three key properties of this PDF:
  - Unimodal: one peak at the mean.
  - · Symmetric around the mean.
  - Everywhere positive: any real value can possibly occur.

### **Normal distribution**



- A normal distribution can be affect by two values:
  - mean/expected value usually written as  $\mu$
  - variance written as  $\sigma^2$  (standard deviation is  $\sigma$ )
  - Written  $X \sim N(\mu, \sigma^2)$ .
- Standard normal distribution: mean 0 and standard deviation 1.

### **Reentering and scaling the normal**

- · How do transformations of a normal work?
- Let  $X \sim N(\mu, \sigma^2)$  and c be a constant.
- If Z = X + c, then  $Z \sim N(\mu + c, \sigma^2)$ .
- Intuition: adding a constant to a normal shifts the distribution by that constant.



### Recentering and scaling the normal

- Let  $X \sim N(\mu, \sigma^2)$  and c be a constant.
- If Z = cX, then  $Z \sim N(c\mu, (c\sigma)^2)$ .
- Intuition: multiplying a normal by a constant scales the mean and the variance.



### **Z-scores of normals**

• These facts imply the **z-score** of a normal variable is a standard normal:

$$z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

- Subtract the mean and divide by the SD  $\leadsto$  standard normal.
- $\cdot$  z-score measures how many SDs away from the mean a value of X is.

### **Central limit theorem**

#### Central limit theorem

Let  $X_1, \ldots, X_n$  be i.i.d. r.v.s from a distribution with mean  $\mu$  and variance  $\sigma^2$ . Then,  $\overline{X}_n$  will be approximately distributed  $N(\mu, \sigma^2/n)$  in large samples.

- "Sample means tend to be normally distributed as samples get large."
- $\leadsto$  we know (an approx. of) the entire probability distribution of  $\overline{X}_n$ 
  - Approximation is better as *n* goes up.
  - Does not depend on the distribution of  $X_i$ !

### **CLT** simulation

- 1. Draw a sample of size 1000 from the Fulton county population.
- 2. Calculate the sample mean of Democratic registration (dem) for that sample.
- 3. Save the sample mean.
- 4. Repeat steps 1-3 a large number of times.

# Histogram of sample means



# Histogram of sample means



# Histogram of sample means





• If  $X \sim N(\mu, \sigma^2)$ , then:



- If  $X \sim N(\mu, \sigma^2)$ , then:
  - $\cdot \approx$  68% of the distribution of X is within 1 SD of the mean.



- If  $X \sim N(\mu, \sigma^2)$ , then:
  - pprox 68% of the distribution of X is within 1 SD of the mean.
  - $\cdot \, pprox$  95% of the distribution of X is within 2 SDs of the mean.



- If  $X \sim N(\mu, \sigma^2)$ , then:
  - $\approx$  68% of the distribution of X is within 1 SD of the mean.
  - $\approx$  95% of the distribution of X is within 2 SDs of the mean.
  - $\approx$  99.7% of the distribution of X is within 3 SDs of the mean.

### Why the CLT?

- · Why do we care about CLT?
  - We usually only 1 sample, so we'll only get 1 sample mean.
  - Implies our 1 sample mean will won't be too far from population mean.
- By CLT, sample mean pprox normal with mean  $\mu$  and SD  $\frac{\sigma}{\sqrt{n}}$ .
- By empirical rule, sample mean will be...
  - Between  $\mu-2 imes \frac{\sigma}{\sqrt{n}}$  and  $\mu+2 imes \frac{\sigma}{\sqrt{n}}$  95% of the time.
- This will also help us create measure of uncertainty for our estimates.