CS 1555 HW 4

Mathew Varughese - mav120

Wednesday, Feb 12

- 1. (a) Arity = 1, Min = 1, Max = 1 $J \leftarrow \sigma_{start_timestamp \geq '2019-08-01\ 00:00:00' \wedge start_timestamp < '2019-09-01\ 00:00:00'}(RECORDS)$ $PA \leftarrow J \bowtie_{from_pn=cell_pn} (\sigma_{state='PA'}DIRECTORY)$ $RSLT \leftarrow F_{max(Duration)}PA$
 - (b) Arity = 2 (zip, avg(payment_count)), Min = 0 (if there are no statements in Nov 2019), Max = 50 (50 different zip codes)

$$S \leftarrow \sigma_{start_date \geq '2019-11-01\ 00:00:00' \land end_date < '2019-12-01\ 00:00:00'} (Statements)$$

$$R \leftarrow \Pi_{cell_pn} S$$

$$COUNT(zip, payment_count) \leftarrow_{zip} F_{count(cell_pn)} R$$

$$RSLT \leftarrow_{zip} F_{avg(payment_count)}$$

(c) Arity = 2, Min = 0, Max = 25 (every customer could have 2 cell_pns, so that would mean 50/2, or 25 maximum cell_pns)

$$S(SSN, cell_pn_count) \leftarrow_{SSN} F_{count(cell_pn)}$$

$$R \leftarrow \sigma_{cell_pn_count > 1} S$$

$$RSLT \leftarrow \Pi_{fname,lname}(R*Customers)$$

- (d) Assumption: If the there is only one Customer with a last name, we consider no one else in their family to be a customer of P_Mobile
 - Assumption: The count function does not count duplicates. For example, if there are two SSNs that are the same, COUNT(SSN) would return 1.

$$Arity = 1, Min = 0, Max = 50$$

$$C(lname, count_ssn) \leftarrow_{lname} F_{count(SSN)} Customers$$

$$RSLT \leftarrow \Pi_{lname} \left(\sigma_{count_ssn=1} C \right)$$

- (e) Arity = 1, Min = 0, Max = 1
 - This question is vague, so I will assume that it is asking to find the sum of the minutes and sms for this customer in this time period, and then I assume you can use arithmetic in relational algebra.

$$C \leftarrow \sigma_{cell_pn=4129876543 \ \land \ start_date \ \geq \ '1-01-2019'}(Statements)$$

$$T \leftarrow F_{sum(total_minutes),sum(total_SMS)}C$$

$$RSLT = \prod_{charges=(0.25*total_minutes+0.05*total_SMS)/100}T$$

2. See next page

Table 1: R							
A	В	\mathbf{C}	D				
0	0	0	1				
0	0	0	2				
0	0	0	3				
0	0	0	4				
0	0	0	5				
0	0	0	8				
0	0	0	9				
0	0	0	10				
0	0	0	11				
0	0	0	12				
0	0	0	13				
0	0	0	14				
0	0	0	15				

Table 2: S						
D	\mathbf{E}	F				
1	0	0				
2	0	0				
3	0	0				
4	0	0				
5	0	0				
6	0	0				
7	0	0				

Table 3: R full-outer-join (R.D = S.D) S

R.A	R.B	R.C	R.D	S.D	S.E	S.F
0	0	0	1	1	0	0
0	0	0	2	2	0	0
0	0	0	3	3	0	0
0	0	0	4	4	0	0
0	0	0	5	5	0	0
0	0	0	8	null	null	null
0	0	0	9	null	null	null
0	0	0	10	null	null	null
0	0	0	11	null	null	null
0	0	0	12	null	null	null
0	0	0	13	null	null	null
0	0	0	14	null	null	null
0	0	0	15	null	null	null
null	null	null	null	6	0	0
null	null	null	null	7	0	0