

IN THE CLAIMS

In claim 6, last line, please delete “mercaptoalkoxy”.

1. (Five Times Amended) A compound of having the following structure:

or a structure according to formula I:

wherein R₁ has the formula II:

R_2 and R_3 are independently $C_{(1-12)}$ alkyl, optionally, R_2 having one or two nonadjacent carbon atoms of the $C_{(1-12)}$ alkyl being replaced by an oxygen atom; and wherein:

C* is a chiral carbon atom;

n is four;

R_4 is a naturally occurring amino acid or a carbohydrate-moiety attached by an oxygen atom to the chiral carbon atom C^* by an ester linkage, $[-O-X-(R_5)H \text{ or}] -O-X-(R_5)_m$; m being two [or three] and X being selected from the group consisting of C, P or S; wherein one R_5 is =O and the other R_5 is a member independently selected from Group Q,

said carbohydrate moiety is selected from the group consisting of glucosyl, glucosidyl, maltosyl, glucopyranosidyl, glyceraldehydyl, erythrosyl, arabinosyl, ribolucosyl, fructosyl, erythritolyl, xylosyl, lyxosyl, allosyl, altrosyl, mannosyl, mannosidyl, gulosyl, idosyl, galactosyl and talosyl, and

Group Q consists of:

hydroxyl group;

[=O;]

substituted or unsubstituted C₍₃₋₁₀₎ alkyl, C₍₂₋₁₀₎ alkenyl, C₍₂₋₁₀₎ alkynyl, C₍₁₋₁₀₎ alkoxy, C₍₁₋₁₀₎ oxoalkyl, C₍₁₋₁₀₎ carboxyalkyl, C₍₁₋₁₀₎ hydroxyalkyl, or substituted C₍₁₋₂₎ alkyl group;

-OR₆, R₆ being a substituted or unsubstituted C₍₁₋₁₀₎ alkyl, C₍₂₋₁₀₎ alkenyl, C₍₂₋₁₀₎ alkynyl, or C₍₁₋₁₀₎ oxoalkyl;

substituted or unsubstituted heterocyclic group, attached to X through an atom within the ring, having one or two rings, each ring containing from four to seven atoms, wherein the heteroatom(s) of said heterocyclic group is 1 or 2 nitrogens; and

substituted or unsubstituted carbocyclic group that is attached to X through a carbon atom within a ring, having one or two rings, each ring containing four to seven atoms, wherein the substituents of said substituted carbocyclic group are selected from the group consisting of amino, C₍₂₋₆₎ alkenyl, C₍₁₋₆₎ alkyl, C₍₁₋₆₎ alkoxy, C₍₁₋₆₎ hydroxyalkyl, hydroxyl, C₍₁₋₆₎ oxoalkyl, azido, [carboxy,] cyano, C₍₂₋₆₎ mono- or di-haloalkyl, isocyano, isothiocyanato, imino, a chlorine atom, a bromine atom, a fluorine atom and an oxygen atom.

14. (Three Times Amended) The compound of claim 1, wherein said compound is selected from:

and

15. (Five Times Amended) A pharmaceutical composition comprising a pharmaceutically acceptable excipient or carrier and a compound having the following structure:

or a structure according to formula I:

wherein R_1 has the formula II:

R_2 and R_3 are independently $C_{(1-12)}$ alkyl, optionally, R_2 having one or two nonadjacent carbon atoms of the $C_{(1-12)}$ alkyl being replaced by an oxygen atom; and wherein:

C^* is a chiral carbon atom;

n is four;

R_4 is a naturally occurring amino acid or a carbohydrate-moiety attached by an oxygen atom to the chiral carbon atom C^* by an ester linkage, [-O-X-(R_5)H or] -O-X-(R_5) $_m$; m being two [or three] and X being selected from the group consisting of C, P or S; wherein one R_5 is =O and the other R_5 is a member independently selected from Group Q,

said carbohydrate moiety is selected from the group consisting of glucosyl, glucosidyl, maltosyl, glucopyranosidyl, glyceraldehydyl, erythrosyl, arabinosyl,

ribolucosyl, fructosyl, erythritolyl, xylosyl, lyxosyl, allosyl, altrosyl, mannosyl, mannosidyl, gulosyl, idosyl, galactosyl and talosyl, and

Group Q consists of:

hydroxyl group;

[=O;]

substituted or unsubstituted C₍₃₋₁₀₎ alkyl, C₍₂₋₁₀₎ alkenyl, C₍₂₋₁₀₎ alkynyl, C₍₁₋₁₀₎ alkoxy, C₍₁₋₁₀₎ oxoalkyl, C₍₁₋₁₀₎ carboxyalkyl, C₍₁₋₁₀₎ hydroxyalkyl, or substituted C₍₁₋₂₎ alkyl group;

-OR₆, R₆ being a substituted or unsubstituted C₍₁₋₁₀₎ alkyl, C₍₂₋₁₀₎ alkenyl, C₍₂₋₁₀₎ alkynyl, or C₍₁₋₁₀₎ oxoalkyl;

substituted or unsubstituted heterocyclic group, attached to X through an atom within the ring, having one or two rings, each ring containing from four to seven atoms, wherein the heteroatom(s) of said heterocyclic group is 1 or 2 nitrogens; and

substituted or unsubstituted carbocyclic group that is attached to X through a carbon atom within a ring, having one or two rings, each ring containing four to seven atoms, wherein the substituents of said substituted carbocyclic group are selected from the group consisting of amino, C₍₂₋₆₎ alkenyl, C₍₁₋₆₎ alkyl, C₍₁₋₆₎ alkoxy, C₍₁₋₆₎ hydroxyalkyl, hydroxyl, C₍₁₋₆₎ oxoalkyl, azido, [carboxy,] cyano, C₍₂₋₆₎ mono- or di-haloalkyl, isocyano, isothiocyanato, imino, a chlorine atom, a bromine atom, a fluorine atom and an oxygen atom.

20. (Four Times Amended) A compound having the following structure:

or a structure according to formula I:

wherein R₁ or R₂ has the formula II:

R₁ or R₂, which is other than formula II, and R₃ are independently C₍₁₋₁₂₎ alkyl, optionally, R₂ having one or two nonadjacent carbon atoms of the C₍₁₋₁₂₎ alkyl being replaced by an oxygen atom; and wherein:

C* is a chiral carbon atom;

n is four;

R₄ is a naturally occurring amino acid or a carbohydrate-moiety attached by an oxygen atom to the chiral carbon atom C* by an ester linkage, [-O-X-(R₅)H or] -O-X-(R₅)_m; m being two [or three] and X being selected from the group consisting of C, P or S; wherein one R₅ is =O and the other R₅ is a member independently selected from Group Q,

said carbohydrate moiety is selected from the group consisting of glucosyl, glucosidyl, maltosyl, glucopyranosidyl, glyceraldehydyl, erythrosyl, arabinosyl, ribuloseyl, fructosyl, erythritolyl, xylosyl, lyxosyl, allosyl, altrosyl, mannosyl, mannosidyl, gulosyl, idosyl, galactosyl and talosyl, and

Group Q consists of:

hydroxyl group;

[=O;]

substituted or unsubstituted C₍₃₋₁₀₎ alkyl, C₍₂₋₁₀₎ alkenyl, C₍₂₋₁₀₎ alkynyl, C₍₁₋₁₀₎ alkoxy, C₍₁₋₁₀₎ oxoalkyl, C₍₁₋₁₀₎ carboxyalkyl, C₍₁₋₁₀₎ hydroxyalkyl, or substituted C₍₁₋₂₎ alkyl group;

-OR₆, R₆ being a substituted or unsubstituted C₍₁₋₁₀₎ alkyl, C₍₂₋₁₀₎ alkenyl, C₍₂₋₁₀₎ alkynyl, or C₍₁₋₁₀₎ oxoalkyl;

substituted or unsubstituted heterocyclic group, attached to X through an atom within the ring, having one or two rings, each ring containing from four to seven atoms, wherein the heteroatom(s) of said heterocyclic group is 1 or 2 nitrogens; and

substituted or unsubstituted carbocyclic group that is attached to X through a carbon atom within a ring, having one or two rings, each ring containing four to seven atoms, wherein

the substituents of said substituted carbocyclic group are selected from the group consisting of amino, C₍₂₋₆₎ alkenyl, C₍₁₋₆₎ alkyl, C₍₁₋₆₎ alkoxy, C₍₁₋₆₎ hydroxylalkyl, hydroxyl, C₍₁₋₆₎ oxoalkyl, azido, [carboxy,] cyano, C₍₂₋₆₎ mono- or di-haloalkyl, isocyano, isothiocyanato, imino, a chlorine atom, a bromine atom, a fluorine atom and an oxygen atom.

21. (Twice Amended) A compound according to claim 1, wherein R₂ and R₃ are methyl, and wherein R₆ is a

substituted or unsubstituted C₍₁₋₁₀₎ alkyl, C₍₂₋₁₀₎ alkenyl, C₍₂₋₁₀₎ alkynyl, or C₍₁₋₁₀₎ oxoalkyl; substituted or unsubstituted heterocyclic group, attached to X through an atom within the ring, having one or two rings, each ring containing from four to seven atoms, and a single nitrogen as the heteroatom; or

substituted or unsubstituted carbocyclic group that is attached to X through a carbon atom within a ring, having one ring containing four to seven atoms, wherein the substituents of said substituted carbocyclic group are selected from the group consisting of amino, C₍₂₋₆₎ alkenyl, C₍₁₋₆₎ alkyl, C₍₁₋₆₎ alkoxy, C₍₁₋₆₎ hydroxylalkyl, hydroxyl, C₍₁₋₆₎ oxoalkyl, azido, [carboxy,] cyano, C₍₂₋₆₎ mono- or di-haloalkyl, isocyano, isothiocyanato, imino, a chlorine atom, a bromine atom, a fluorine atom and an oxygen atom.