Advanced Machine Learning

Imbalanced Learning: Sampling Methods Part 1

- Know the idea of sampling methods for coping with imbalanced data
- Understand the different sampling techniques

SAMPLING METHODS: OVERVIEW

- Balance training data distribution to perform better on minority classes.
- Independent of classifier → very flexible and general.
- Three groups:

- Undersampling Removing instances of majority class(es).
- Oversampling Adding/Creating new instances of minority class(es). (Slower, but usually works better.)
- Hybrid Combining both methods.

RANDOM UNDERSAMPLING/OVERSAMPLING

- Random oversampling (ROS):
 - Randomly replicate minority instances.
 - Prone to overfitting due to multiple tied instances.
- Random undersampling (RUS):
 - Randomly eliminate majority instances.
 - Might remove informative instances and destroy important concepts in data.
- Better: Introduce heuristics in removal process (RUS) and do not create exact copies (ROS).

UNDERSAMPLING: TOMEK LINKS

- Remove "noisy borderline" examples (very close observations of different classes) of majority class(es).
- Let $E^{(i)} = (\mathbf{x}^{(i)}, y^{(i)})$ and $E^{(j)} = (\mathbf{x}^{(j)}, y^{(j)})$ be two data points in \mathcal{D} .

where d is some distance on \mathcal{X} .

- $y^{(i)} \neq y^{(j)} \rightsquigarrow$ noisy borderline examples.
- Remove majority instance in each data pair in a Tomek link where $y^{(i)} \neq y^{(j)}$.

Franciso Herrera (2013), Imbalanced Classification: Common Approaches and Open Problems (URL).

UNDERSAMPLING: CONDENSED NEAREST NEIGHBOR (CNN)

- Remove majority instances far away from decision boundary.
- Construct a **consistent** subset $\tilde{\mathcal{D}}$ of \mathcal{D} .
- A subset $\tilde{\mathcal{D}}$ of \mathcal{D} is called consistent if using a 1-NN classifier on $\tilde{\mathcal{D}}$ classifies each instance in \mathcal{D} correctly.
- Create a consistent subset:
 - Initialize $\tilde{\mathcal{D}}$ by selecting **all minority** instances and randomly picking **one majority** instance.
 - ② Classify each instance in \mathcal{D} with 1-NN classifier based on $\tilde{\mathcal{D}}$.
 - **3** Remove all misclassified instances from \mathcal{D} .

UNDERSAMPLING: OTHER APPROACHES

- Neighborhood cleaning rule (NCL):
 - Find 3 nearest neighbors for each $(\mathbf{x}^{(i)}, y^{(i)})$ in \mathcal{D} .
 - If $y^{(i)}$ is majority class and 3-NN classifies it as minority \rightsquigarrow Remove $(\mathbf{x}^{(i)}, y^{(i)})$ from \mathcal{D} .
 - If $y^{(i)}$ is minority class and 3-NN classifies it as majority \rightsquigarrow Remove 3 nearest neighbors from \mathcal{D} .
- One-sided selection (OSS): Tomek link + CNN
- CNN + Tomek link: to reduce computation of finding Tomek links
 → first use CNN and then remove the Tomek links.
- Clustering approaches: Class Purity Maximization (CPM) and Undersampling based on Clustering (SBC).

