1. Ştiind $\cos x = \frac{\sqrt{3}}{2}$, atunci $\sin^2 x$ este: (6 pct.)

a)
$$\frac{1}{\sqrt{2}}$$
; b) $\frac{1}{4}$; c) $\frac{1}{2}$; d) $\frac{\sqrt{3}}{2}$; e) $\frac{1}{8}$; f) $\frac{\sqrt{3}}{3}$.

Soluţie. Folosind prima formulă trigonometrică fundamentală $\sin^2 x + \cos^2 x = 1$, obținem:

$$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{\sqrt{3}}{2}\right)^2 = 1 - \frac{3}{4} = \frac{1}{4}$$
.

2. Valoarea expresie
i $E=\frac{{\rm ctg}\,30^\circ\cdot\cos90^\circ}{\sin15^\circ}$ este: (6 pct.)

a) 1; b)
$$\frac{\sqrt{3}}{3}$$
; c) $\frac{\sqrt{2}}{2}$; d) $\frac{1}{2}$; e) 0; f) $\frac{1}{4}$.

Soluție. Se observă că unul dintre factorii numărătorului este nul $(\cos 90^{\circ} = 0)$, deci E = 0.

Altfel. Aplicând formula $\sin(x-y) = \sin x \cos y - \sin y \cos x$ pentru $x=60^{\circ}$ și $y=45^{\circ}$, obținem

$$\sin 15^\circ = \sin 60^\circ \cos 45^\circ - \sin 45^\circ \cos 60^\circ = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{3} - 1}{2\sqrt{2}} \Rightarrow E = \frac{\sqrt{3} \cdot 0}{(\sqrt{3} - 1)/(2\sqrt{2})} = 0.$$

Altfel. Aplicând formula $\sin^2 x = \frac{1-\cos 2x}{2}$ pentru $x=15^\circ$, rezultă

$$\sin^2 15^\circ = \frac{1 - \cos 30^\circ}{2} = \frac{1 - (\sqrt{3}/2)}{2} = \frac{2 - \sqrt{3}}{4},$$

deci sin 15° = $\frac{\sqrt{2-\sqrt{3}}}{2}$. Folosind formula $\sqrt{a\pm\sqrt{b}}=\sqrt{\frac{a+c}{2}}\pm\sqrt{\frac{a-c}{2}}$, unde $c=\sqrt{a^2-b}$, pentru $a=2,\ b=3$ și varianta cu " – ", obținem $c=\sqrt{4-3}=1$ și

$$\sqrt{a - \sqrt{b}} = \sqrt{\frac{a + c}{2}} - \sqrt{\frac{a - c}{2}} = \sqrt{\frac{3}{2}} - \sqrt{\frac{1}{2}} = \frac{\sqrt{3} - 1}{2} \Rightarrow \sin 15^{\circ} = \frac{1}{2} \cdot \frac{\sqrt{3} - 1}{\sqrt{2}} = \frac{\sqrt{3} - 1}{2\sqrt{2}},$$

deci
$$E = \frac{\sqrt{3} \cdot 0}{(\sqrt{3} - 1)/(2\sqrt{2})} = 0.$$

3. Să se determine valoarea parametrului $m \in \mathbb{R}$, știind că punctul A(m,2) aparține dreptei de ecuație d: 2x + y = 3. (6 pct.)

a)
$$\frac{1}{3}$$
; b) 1; c) 0; d) $\frac{1}{2}$; e) 2; f) 3.

Soluție. Punctul A se află pe dreapta d doar dacă coordoatele sale satisfac ecuația dreptei. Prin înlocuire directă, obținem: $2 \cdot m + 2 = 3 \Leftrightarrow 2m = 1$, deci $m = \frac{1}{2}$.

4. Se consideră triunghiul ABC în care $AB=1, BC=\sqrt{2}, \hat{B}=\frac{\pi}{4}$. Atunci AC este: (6 pct.)

a)
$$\sqrt{2}$$
; b) $\frac{1}{4}$; c) $\frac{3}{2}$; d) 1; e) $\frac{1}{2}$; f) 2.

Soluție. Cunoaștem unghiul \hat{B} și laturile aferente din triunghi, AB și BC, deci aplicăm teorema cosinusului,

$$\cos \hat{B} = \frac{AB^2 + BC^2 - AC^2}{2 \cdot AB \cdot BC} \Leftrightarrow \frac{\sqrt{2}}{2} = \frac{1 + 2 - AC^2}{2 \cdot 1 \cdot \sqrt{2}} \Leftrightarrow \frac{\sqrt{2}}{2} = \frac{3 - AC^2}{2\sqrt{2}},$$

de unde rezultă $AC^2=1$ și deoarece AC>0, obținem AC=1.

Altfel. Considerăm triunghiul dreptunghic isoscel ΔMNP cu unghiurile $\hat{M} = \frac{\pi}{2}$, $\hat{N} = \hat{P} = \frac{\pi}{4}$ și laturile MN = MP = 1, $NP = \sqrt{2}$. Se observă că triunghiurile ΔABC și ΔMNP sunt congruente (cazul LUL cu BA = NM = 1, $BC = NP = \sqrt{2}$ și $\hat{B} = \hat{N} = \frac{\pi}{4}$), deci AC = MP = 1.

Altfel. Înălțimea BA' dusă din B pe AC are lungimea $BA' = AC \cos \hat{B} = \sqrt{2} \cdot \frac{\sqrt{2}}{2} = 1$. Dar segmentul BA are aceeași lungime cu distanța minimă BA' de la B la AC și $A' \in AC$, deci A = A'. Prin urmare unghiul \hat{A} coincide cu $\hat{A'}$ și este de mărime $\frac{\pi}{2}$. Triunghiul dreptunghic ABC este isoscel $(\hat{C} = \hat{A} - \hat{B} = \frac{\pi}{4} = \hat{B})$, deci AC = AB = 1.

5. În triunghiul ABC are loc relația $\cos \hat{B} + \cos \hat{C} = \sin \hat{B} + \sin \hat{C}$. Atunci $\sin \hat{A}$ este: (6 pct.)

a)
$$\frac{\sqrt{2}}{2}$$
; b) -1; c) $-\frac{1}{2}$; d) $\frac{1}{2}$; e) 1; f) $\frac{\sqrt{3}}{2}$.

Soluţie. Vom ţine cont în cele ce urmează de inegalităţile $0 < \hat{B} + \hat{C} < \pi$, $|\hat{B} - \hat{C}| < \pi$ şi $0 < \hat{A} < \pi$.

Ridicând la pătrat relația din enunț, aceasta se rescrie:

$$\cos^{2} \hat{B} + \sin^{2} \hat{B} - 2\sin \hat{B}\cos \hat{B} = \cos^{2} \hat{C} + \sin^{2} \hat{C} - 2\sin \hat{C}\cos \hat{C}.$$

Aplicând formula trigonometrică fundamentală $\cos^2 x + \sin^2 x = 1$ și formula de arc dublu $2\sin x \cos x = \sin 2x$ pentru $x = \hat{B}$ și pentru $x = \hat{C}$, relația devine

$$1 - \sin 2\hat{B} = 1 - \sin 2\hat{C} \Leftrightarrow \sin 2\hat{B} - \sin 2\hat{C} = 0.$$

Folosind egalitatea $\sin x - \sin y = 2 \sin \frac{x-y}{2} \cos \frac{x+y}{2}$ pentru $x = 2\hat{B}$ şi $x = 2\hat{C}$, obţinem:

$$2\sin(\hat{B} - \hat{C})\cos(\hat{B} + \hat{C}) = 0. \tag{1}$$

Există două posibilități:

(i) $\sin(\hat{B} - \hat{C}) = 0$, care conduce la

$$\hat{B} - \hat{C} \in \{k\pi \mid k \in \mathbb{Z}\} \Rightarrow \hat{B} - \hat{C} = 0 \Rightarrow \hat{B} = \hat{C},$$

triunghi isoscel, ceea ce conduce folosind relația din enunț la

$$\cos \hat{B} - \sin \hat{B} = \sin \hat{B} - \cos \hat{B} \Leftrightarrow 2\cos \hat{B} = 2\sin \hat{B} - \Leftrightarrow \cos \hat{B} = \sin \hat{B}.$$

Dar $\cos \hat{B} \neq 0$ (altfel, $\cos \hat{B} = 0 \Rightarrow B = \frac{\pi}{2}$ iar egalitatea $\cos \hat{B} = \sin \hat{B}$ devine 0 = 1, fals). Deci împărțind egalitatea $\cos \hat{B} = \sin \hat{B}$ prin $\cos \hat{B}$, obținem tg $B = 1 \Rightarrow \hat{B} = \frac{\pi}{4}$. Însă deoarece $\hat{B} = \hat{C}$, rezultă $B = C = \frac{\pi}{4} \Rightarrow \hat{A} = \pi - (\hat{B} + \hat{C}) = \pi - \frac{\pi}{2} = \frac{\pi}{2}$, deci $\sin \hat{A} = 1$.

(ii) Dacă $\cos(\hat{B} + \hat{C}) = 0$, folosind $\hat{A} = \pi - (\hat{B} + \hat{C})$, obținem $\cos \hat{A} = 0 \Rightarrow \hat{A} = \frac{\pi}{2} \Rightarrow \sin \hat{A} = 1$. În final, obținem $\sin \hat{A} = 1$, (a)

Altfel. Folosind formulele $\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$ şi $\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$ pentru $x = \hat{B}$ şi $y = \hat{C}$, egalitatea din enunţ devine

$$2\cos\frac{\hat{B}+\hat{C}}{2}\cos\frac{\hat{B}-\hat{C}}{2} = 2\sin\frac{\hat{B}+\hat{C}}{2}\cos\frac{\hat{B}-\hat{C}}{2} \Leftrightarrow \cos\left(\frac{\hat{B}-\hat{C}}{2}\right) \cdot \left(\cos\frac{\hat{B}+\hat{C}}{2} - \sin\frac{\hat{B}+\hat{C}}{2}\right) = 0.$$

Distingem două cazuri: (i) $\cos\frac{\hat{B}-\hat{C}}{2}=0\Leftrightarrow\left|\frac{\hat{B}-\hat{C}}{2}\right|=\frac{\pi}{2}$, deci fie $\hat{B}=\pi+\hat{C}$, fie $\hat{C}=\pi+\hat{B}$, imposibil; (ii) $\cos\frac{\hat{B}+\hat{C}}{2}-\sin\frac{\hat{B}+\hat{C}}{2}=0$. Folosind egalitățile $\hat{B}+\hat{C}=\pi-\hat{A}$ și $\cos(\frac{\pi}{2}-x)=\sin x$, $\sin(\frac{\pi}{2}-x)=\cos x$ pentru $x=\frac{\hat{A}}{2}$, rezultă $\cos\frac{\hat{A}}{2}=\sin\frac{\hat{A}}{2}$ și cum $\hat{A}\in(0,\pi)\Rightarrow\frac{\hat{A}}{2}\in(0,\frac{\pi}{2})\Rightarrow\cos\frac{\hat{A}}{2}\neq0$, putem împărți egalitatea prin $\cos\frac{\hat{A}}{2}\neq0$, obținând tg $\frac{\hat{A}}{2}=1$, deci $\frac{\hat{A}}{2}=\frac{\pi}{4}\Leftrightarrow\hat{A}=\frac{\pi}{2}\Rightarrow\sin\hat{A}=1$.

Altfel. Folosind formula $\cos x = \sin\left(\frac{\pi}{2} - x\right)$ pentru $x = \hat{B}$ şin $x = \hat{C}$, urmată de $\sin x - \sin y = 2\sin\frac{x-y}{2}\cos\frac{x+y}{2}$ şi apoi de egalitatea $\hat{B} + \hat{C} = \pi - \hat{A}$, relația din enunț se rescrie:

$$\sin\left(\frac{\pi}{2} - \hat{B}\right) - \sin\hat{B} = \sin\hat{C} - \sin\left(\hat{C} - \frac{\pi}{2}\right) \Leftrightarrow 2\sin\left(\frac{\pi}{4} - \hat{B}\right)\cos\frac{\pi}{4} = 2\sin\left(\hat{C} - \frac{\pi}{4}\right)\cos\frac{\pi}{4}$$
$$\Leftrightarrow \sin\left(\frac{\pi}{4} - \hat{B}\right) - \sin\left(\hat{C} - \frac{\pi}{4}\right) = 0 \Leftrightarrow 2\sin\left(\frac{\pi}{4} - \frac{\hat{B} + \hat{C}}{2}\right)\cos(\hat{C} - \hat{B}) = 0.$$

Distingem două cazuri: (i)

$$\sin\left(\frac{\pi}{4} - \frac{\hat{B} + \hat{C}}{2}\right) = 0 \Leftrightarrow \frac{\pi}{4} - \frac{\hat{B} + \hat{C}}{2} = 0 \Leftrightarrow \hat{B} + \hat{C} = \frac{\pi}{2} \Leftrightarrow \hat{A} = \frac{\pi}{2};$$

Enunturi și soluții U.P.B. 2019 * G1 - 2

şi (ii) $\cos(\hat{C} - \hat{B}) = 0 \Leftrightarrow |\hat{C} - \hat{B}| = \frac{\pi}{2}$, deci fie $\hat{C} = \frac{\pi}{2} + \hat{B}$, fie $\hat{B} = \frac{\pi}{2} + \hat{C}$. Dacă $\hat{C} = \frac{\pi}{2} + \hat{B}$ (cazul $\hat{B} = \frac{\pi}{2} + \hat{C}$ se tratează similar), atunci egalitatea din enunţ devine $\cos \hat{B} + \cos(\frac{\pi}{2} + \hat{B}) = \sin \hat{B} + \sin(\frac{\pi}{2} + \hat{B})$. Folosind formulele $\sin(\frac{\pi}{2} + x) = \cos x$ şi $\cos(\frac{\pi}{2} + x) = -\sin x$ pentru $x = \hat{B}$, obţinem $\cos \hat{B} - \sin \hat{B} = \sin \hat{B} + \cos \hat{B} \Leftrightarrow \sin \hat{B} = 0$, imposibil deoarece $\hat{B} \in (0, \pi) \Rightarrow \sin \hat{B} > 0$. În concluzie, singurul caz care produce soluţii este (i), $\hat{A} = \frac{\pi}{2} \Rightarrow \sin \hat{A} = 1$.

6. Aria triunghiului de vârfuri $A(0,0),\,B(2,0),\,C(1,1)$ este: (6 pct.)

a) 1; b)
$$\frac{1}{4}$$
; c) 2; d) $\frac{\sqrt{2}}{2}$; e) 4; f) $\frac{1}{2}$.

Soluție. Folosind formula ariei \mathcal{A} a triunghiului de vârfuri $A(x_A, y_A), B(x_B, y_B), C(x_C, y_C)$:

$$\mathcal{A} = \frac{1}{2} \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{vmatrix} = \frac{1}{2} |2| = 1 \textcircled{a}$$

Altfel. Folosind formula distanței dintre două puncte din plan, obținem

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{(0 - 2)^2 + (0 - 0)^2} = 2,$$

şi similar, $BC = \sqrt{2}$, $CA = \sqrt{2}$. Este evident că aceste laturi verifcă egalitatea $BC^2 + CA^2 = AB^2$ deci triunghiul este dreptunghic isoscel şi $\mathcal{A} = \frac{1}{2}AB \cdot BC = \frac{1}{2} \cdot \sqrt{2} \cdot \sqrt{2} = 1$.

Altfel. Reprezentând grafic cele trei puncte în sistemul cartezian xOy, se observă că acestea determină triunghiul ABC în care înălțimea corespuzătoare bazei AB=2 este de lungime h=1, deci aria triunghiului
este $\mathcal{A}=\frac{b\cdot h}{2}=\frac{2\cdot 1}{2}=1$.

7. Să se calculeze sin 105°. (6 pct.)

a)
$$\frac{\sqrt{6}-\sqrt{3}}{2}$$
; b) $\frac{\sqrt{6}+\sqrt{2}}{2}$; c) $\frac{\sqrt{6}}{2}$; d) $\frac{\sqrt{6}+\sqrt{2}}{4}$; e) $\frac{\sqrt{2}}{2}$; f) $\frac{\sqrt{6}-\sqrt{2}}{4}$.

Soluţie. Folosind formula $\sin(x+y) = \sin x \cos y + \sin y \cos x$ pentru $x = 60^{\circ}$ şi $y = 45^{\circ}$, obţinem

$$\sin 105^{\circ} = \sin 60^{\circ} \cos 45^{\circ} + \sin 60^{\circ} \cos 45^{\circ} = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4},$$

 $deci \sin 105^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}. \quad \textcircled{a}$

Altfel. Folosind formula $\sin(x+y) = \sin x \cos y + \sin y \cos x$ pentru $x = 90^{\circ}$ şi $y = 15^{\circ}$, obţinem

$$\sin 105^{\circ} = \sin 90^{\circ} \cos 15^{\circ} + \sin 15^{\circ} \cos 90^{\circ} = \cos 15^{\circ}.$$

Din formula de arc pe jumătate $\cos^2 x = \frac{1+\cos 2x}{2}$ aplicată pentru $x=15^{\circ}$, obținem

$$\cos 15^{\circ} = \sqrt{\frac{1 + \cos 30^{\circ}}{2}} = \sqrt{\frac{1 + (\sqrt{3}/2)}{2}} = \frac{\sqrt{2 + \sqrt{3}}}{2}.$$

Rescriem numărătorul folosind formula $\sqrt{a+\sqrt{b}}=\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a-c}{2}}$ cu $c=\sqrt{a^2-b}$, pentru a=2, b=3 și obținem c=1 și

$$\sqrt{2+\sqrt{3}} = \sqrt{\frac{3}{2}} + \sqrt{\frac{1}{2}} = \frac{\sqrt{3}+1}{\sqrt{2}} = \frac{\sqrt{6}+\sqrt{2}}{2} \Rightarrow \cos 15^\circ = \frac{\sqrt{6}+\sqrt{2}}{4}.$$

În final, $\sin 105^{\circ} = \cos 15^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$.

Altfel. Aplicând formula de unghi dublu $\sin^2 x = \frac{1-\cos 2x}{2}$ pentru $x=105^\circ$ și formula $\cos(\pi+x) = -\cos x$ pentru $x=30^\circ$, obținem

$$\sin^2 105^\circ = \frac{1 - \cos 210^\circ}{2} = \frac{1 + \cos 30^\circ}{2} - \frac{1 + (\sqrt{3}/2)}{2} = \frac{2 + \sqrt{3}}{4},$$

deci sin $105^{\circ} = \frac{\sqrt{2+\sqrt{3}}}{2}$. Se continuă ca la primul răspuns.

Enunturi și soluții U.P.B. 2019 * G1 - 3

- 8. Aflați valoarea parametrului $m \in \mathbb{R} \setminus \{0\}$ astfel încât unghiul format de vectorii $\bar{u} = \sqrt{3}\bar{i} \bar{j}$ și $\bar{v} = \bar{i} + m\bar{j}$ să fie $\frac{\pi}{6}$. (6 pct.)
 - a) 1; b) $\sqrt{5}$; c) $2\sqrt{3}$; d) 3; e) $\sqrt{2}$; f) $-\sqrt{3}$.

Soluție. Unghiul $\alpha = \frac{\pi}{6}$ format de cei doi vectori satisface egalitatea

$$\cos \alpha = \frac{\langle \bar{u}, \bar{v} \rangle}{||\bar{u}|| \cdot ||\bar{v}||} \Leftrightarrow \frac{\sqrt{3}}{2} = \frac{\sqrt{3} - m}{2 \cdot \sqrt{1 + m^2}} \Leftrightarrow \sqrt{3} \cdot \sqrt{m^2 + 1} = \sqrt{3} - m.$$

Ridicând relația obținută la pătrat, rezultă

$$3(m^2+1) = m^2 - 2m\sqrt{3} + 3 \Leftrightarrow m^2 + m\sqrt{3} = 0 \Leftrightarrow m(m+\sqrt{3}) = 0 \Leftrightarrow m \in \{0, -\sqrt{3}\}.$$

Deși ambele valori obținute pentru m satisfac egalitatea inițială, se observă că din enunț avem condiția $m \neq 0$, deci singura soluție acceptabilă este $m = -\sqrt{3}$.

- 9. Dreapta ce trece prin punctele A(0,1) și B(1,0) are ecuația: (6 pct.)
 - a) x + y = 1; b) x y = 1; c) x + y = 0; d) x y = -1; e) x y = 0; f) x + y = -1.

Soluție. Aplicăm formula dreptei care trece prin punctele A și B:

$$\frac{x-x_A}{x_B-x_A} = \frac{y-y_A}{y_B-y_A} \Rightarrow \frac{x-0}{1-0} = \frac{y-1}{0-1} \Leftrightarrow x+y = 1. \textcircled{a}$$

Altfel. Folosim faptul că problema are variante de răspuns de tip grilă (cu o singură variantă corectă). Se observă că coordonatele celor două puncte din enunț satisfac doar ecuația dreptei indicate de varianta a).

- 10. Distanța de la punctul A(2,-1) la dreapta de ecuație x-y+1=0 este: (6 pct.)
 - a) 1; b) $\sqrt{2}$; c) 2; d) $\frac{\sqrt{2}}{2}$; e) $2\sqrt{2}$; f) 4.

Soluție. Folosim formula distanței δ de la punctul $A(x_A, y_A)$ la dreapta d: ax + by + c = 0,

$$\delta = \frac{|ax_A + by_A + c|}{\sqrt{a^2 + b^2}} \Rightarrow \delta = \frac{|2 + 1 + 1|}{\sqrt{2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2}.$$
©

- 11. Mulțimea soluțiilor ecuației $\cos 2x + \sin x = 1$ din intervalul $\left[0, \frac{\pi}{2}\right]$ este: (6 pct.)
 - a) $\left\{\frac{\pi}{4}, \frac{\pi}{3}\right\}$; b) $\left\{0, \frac{\pi}{2}\right\}$; c) $\left\{\frac{\pi}{6}, \frac{\pi}{4}\right\}$; d) $\left\{\frac{\pi}{6}, \frac{\pi}{3}\right\}$; e) $\left\{0, \frac{\pi}{6}\right\}$; f) $\left\{0, \frac{\pi}{3}\right\}$.

Soluție. Folosind formula de arc dublu $\cos 2x = 1 - 2\sin^2 x$ și apoi notând $y = \sin x$, ecuația devine

$$(1-2y^2)+y=1 \Leftrightarrow y(2y-1)=0 \Leftrightarrow y \in \left\{0,\frac{1}{2}\right\}.$$

Folosind ipoteza $x \in [0, \frac{\pi}{2}]$, rezultă imediat că $y = \sin x \in [0, 1]$, deci ambele soluții convin. Din egalitatea $\sin x = y$, pentru soluțiile obținute, rezultă respectiv $x \in \{0, \frac{\pi}{6}\}$, e

- 12. Determinați valoarea parametrului $m \in \mathbb{R}$ astfel încât dreptele $d_1 : mx + y 2 = 0$ și $d_2 : x y + 2m = 0$ să fie paralele. (6 pct.)
 - a) 0; b) $\sqrt{2}$; c) -1; d) $\sqrt{3}$; e) 2; f) 3.

Soluție. Dreptele sunt paralele sau confundate doar dacă coeficienții lui x și y sunt corespunzător proporționali, deci

$$\frac{m}{1} = \frac{1}{-1} \Leftrightarrow m = -1.$$

Dar pentru m=-1, proporționalitatea tuturor coeficienților celor două drepte revine la egalitățile $\frac{-1}{1}=\frac{1}{-1}=\frac{-2}{-2}$. Ultima egalitate fiind falsă, rezultă că dreptele sunt distincte. În concluzie, pentru m=-1 dreptele din enunț sunt paralele. ©

- 13. Valoarea parametrului $m \in \mathbb{R}$ pentru care vectorii $\bar{u} = m\bar{i} + \bar{j}$ şi $\bar{v} = -\bar{i} + 4\bar{j}$ sunt perpendiculari este: (6 pct.)
 - a) -1; b) 2; c) 1; d) 0; e) 4; f) -2.

Soluție. Cei doi vectori sunt perpendiculari dacă și numai dacă produsul lor scalar este nul, deci:

$$\langle \bar{u}, \bar{v} \rangle = 0 \Leftrightarrow m \cdot (-1) + 1 \cdot 4 = 0 \Leftrightarrow -m + 4 = 0 \Leftrightarrow m = 4.$$

- 14. Lungimea razei cercului circumscris unui triunghi echilateral de latură $2\sqrt{3}$ este: (6 pct.)
 - a) 1; b) $\frac{1}{2}$; c) 3; d) 2; e) $\frac{1}{\sqrt{3}}$; f) $\sqrt{3}$.

Soluție. Raza R a cercului circumscris triunghiului echilateral reprezintă 2/3 din înălțimea acestuia (centrul cecului circumscris coincizând cu ortocentrul și cu centrul de greutate). Dar înălțimea triunghiului echilateral de latură ℓ este $h=\frac{\ell\sqrt{3}}{2}$, deci pentru $\ell=\sqrt{3}$, rezultă h=3. Atunci $R=\frac{2}{3}h=\frac{2}{3}\cdot 3=2$.

15. Se dau vectorii $\bar{u}=2\bar{i}+3\bar{j}$ şi $\bar{v}=-2\bar{i}+3\bar{j}$. Atunci vectorul $2\bar{u}-3\bar{v}$ este: (6 pct.)

a)
$$3\bar{j};$$
 b) $2\bar{j};$ c) $\bar{i}+\bar{j};$ d) $10\bar{i}-3\bar{j};$ e) $8\bar{i};$ f) $4\bar{i}+6\bar{j}.$

Soluție. Prin calcul direct, grupând coeficienții vectorilor \bar{i} și \bar{j} , obținem

$$2\bar{u} - 3\bar{v} = 2(2\bar{i} + 3\bar{j}) - 3(-2\bar{i} + 3\bar{j}) = 10\bar{i} - 3\bar{j}$$
.