Zero Knowledge Proof of Location Platin Yellow Paper Draft

Lionel Wolberger, Vadym Fedyukovych October 25, 2018

Abstract

Many location based services authorize a user by assessing whether or not the user is within a given range of the service. To assess this range, systems request the user's geospatial coordinates, and often store them for later analysis. We describe a system where the service authorization is based on a zero knowledge verification of a commitment. The commitment has no geographical coordinate data, yet can be reliably verified to prove that the user is within range of the service eligibility. The service has the assurance required to deliver the service while having zero knowledge of the user's geographical coordinates.

1 Zero Knowledge Proof of Location

We present two sets of equations, a graphical illustration, followed by notes and decisions.

The illustration describes a location based service with a radius that defines the range of that service. Two users are shown colored green and red, the green user inside the radius and the red user, outside. The diagram illustrates parameters that are significant to the zero knowledge proof.

The equations are presented in two sets and specify the steps required to perform the full protocol, from commitment to verification. This protocol enables a verifier to process a commitment and determine the difference, which reflects whether the commitment reflects a position inside or outside the radius of the service area. Both interactive and non-interactive protocols are defined, each presented as a series of equations.

The notes and decisions section records issues related to the protocol and illustration. Each note discusses a mathematical decision that we have made. Some of these decisions are not yet reflected in the equations and protocols shared in this paper.

A git repository is associated with this paper. C++ reference code can be found there enabling testing and efficiency metrics.

This zero knowledge proof of location protocol is sufficient for many use cases, efficient, supports large scale analytics, and preserves users' privacy.g

Figure 1: Two users request authorization for a location based service. The center of the circle and its preset radius define a range within which users are to be authorized for the service. With data known only to itself, each user calculates a mathematical commitment based on its radius, distance and difference. For green the difference is greater than zero. For red the difference is less than zero. The mathematical commitment is verified by applying the zero knowledge protocol below, without revealing the user's geospatial coordinates.

2 Notes and Decisions

Notes and decisions capture issues related to zero knowledge proofs of location and are presented in no particular order. Some of the topics discussed relate to our general approach to zero knowledge proofs, and do not directly reflect the equations or protocols above. The contents of notes and decisions may be integrated with the main body of the paper in future.

2.1 Some Definitions

Node proves the statement "distance is within a threshold" (less or equal) for node coordinates (x_n, y_n, z_n) , given location (x_l, y_l, z_l) , and some thresh-

Common input of Prover and Verifier is commitment s_U to node location (20), airdrop location (x_l, y_l, z_l) and threshold d^2 (integers), parameters $(N, g, g_x, g_y, g_z, g_r, \{h_j\})$.

$$s_U = g_x^{x_n} g_y^{y_n} g_z^{z_n} g^r \pmod{N} \tag{1}$$

Private input of Prover is node location (x_n, y_n, z_n) (integers) and location commitment randomness r, four numbers $\{a_j\}$ calculated according to (18). Statement being proved is

$$d^{2} - ((x_{n} - x_{l})^{2} + (y_{n} - y_{l})^{2}) + (z_{n} - z_{l})^{2}) = \sum_{j=1}^{4} a_{j}^{2}$$
 (2)

Protocol runs as follows:

1. Prover picks random $\{\alpha_j\}$, η , γ , β_x , β_y , β_z , β_r , ρ_0 , ρ_1 , produces f_0 , f_1 , sends b_0 , b_1 , t_a , s_a , t_n :

$$f_0 = -(\beta_x^2 + \beta_y^2 + \beta_z^2) - \sum_{j=1}^4 \alpha_j^2$$
 (3)

$$f_1 = -((x_n - x_l)\beta_x + (y_n - y_l)\beta_y + (z_n - z_l)\beta_z) - \sum_{j=1}^{4} a_j \alpha_j$$
 (4)

$$t_n = g_x^{\beta_x} g_y^{\beta_y} g_z^{\beta_z} g^{\beta_r}, \ s_a = g^{\gamma} \prod_{i=1}^4 h_j^{a_j}, \ t_a = g^{\eta} \prod_{i=1}^4 h_j^{\alpha_j}$$
 (5)

$$b_0 = g^{f_0} g_r^{\rho_0}, \ b_1 = g^{2f_1} g_r^{\rho_1} \pmod{N}$$
 (6)

- 2. Verifier chooses and sends his challenge c
- 3. Prover produces and sends responses

$$X_n = cx_n + \beta_x, \ Y_n = cy_n + \beta_y, \ Z_n = cz_n + \beta_z, \ R = cr + \beta_r$$
 (7)
 $A_j = ca_j + \alpha_j, \ R_a = c\gamma + \eta, \ R_d = c\rho_1 + \rho_0$ (8)

4. Verifier accepts if

$$g_x^{X_n} g_y^{Y_n} g_z^{Z_n} g^R s_U^{-c} = t_n, \quad g^{R_a} \left(\prod_{j=1}^4 h_j^{A_j} \right) s_a^{-c} = t_a$$
 (9)

$$g^{c^2d^2 - ((X_n - cx_l)^2 + (Y_n - cy_l)^2 + (Z_n - cz_l)^2) - (A_1^2 + A_2^2 + A_3^2 + A_4^2)} g_r^{R_d} = b_1^c b_0 \pmod{N}$$
(10)

Figure 2: Private location verification protocol, interactive version

Input of Prover is location commitment s_U (20), location (x_n, y_n, z_n) and random r to open this commitment, airdrop location (x_l, y_l, z_l) , threshold d^2 , parameres $(N, g, g_x, g_y, g_z, g_r, h_j)$ and public information pubp. Non-interactive proof is produced as follows:

1. Prover calculates $a_1
ldots a_4$ from locations and threshold, picks random $\{\alpha_j\}, \eta, \gamma, \beta_x, \beta_y, \beta_z, \beta_r, \rho_0, \rho_1, \text{ produces } t_n, s_a, t_a, b_0, b_1$:

$$t_n = g_x^{\beta_x} g_y^{\beta_y} g_z^{\beta_z} g^{\beta_r}, \ s_a = g^{\gamma} (\prod_{j=1}^4 h_j^{a_j}), \ t_a = g^{\eta} (\prod_{j=1}^4 h_j^{\alpha_j}) \pmod{N}$$
 (11)

$$\tilde{f}_0 = \beta_x^2 + \beta_y^2 + \beta_z^2 + \alpha_1^2 + \alpha_2^2 + \alpha_3^2 + \alpha_4^2$$
 (12)

$$\tilde{f}_1 = (x_n - x_l)\beta_x + (y_n - y_l)\beta_y + (z_n - z_l)\beta_z + a_1\alpha_1 + a_2\alpha_2 + a_3\alpha_3 + a_4\alpha_4$$
(13)

$$b_0 = g^{\tilde{f}_0} g_r^{\rho_0}, \quad b_1 = g^{2\tilde{f}_1} g_r^{\rho_1} \pmod{N}$$
 (14)

2. Prover produces his challenge with a hash function from text representation of commitments generated at previous step and public information:

$$c = H(t_n||s_a||t_a||b_1||b_0||s_U||pubp)$$
(15)

3. Prover produces responses:

$$X_n = -cx_n + \beta_x, \ Y_n = -cy_n + \beta_y, \ Z_n = -cz_n + \beta_z, \ R = -cr + \beta_r$$

 $A_i = -ca_i + \alpha_i, \ R_a = -c\gamma + \eta, \ R_d = -c\rho_1 + \rho_0$ (16)

Non-interactive proof is $(c, X_n, Y_n, Z_n, R, \{A_j\}, R_a, R_d, s_a, b_1)$. Proof verification:

$$F_{d} = ((X_{n} + cx_{l})^{2} + (Y_{n} + cy_{l})^{2} + (Z_{n} + cz_{l})^{2}) + (A_{1}^{2} + A_{2}^{2} + A_{3}^{2} + A_{4}^{2}) - c^{2}d^{2}$$

$$H(g_{x}^{X_{n}}g_{y}^{Y_{n}}g_{z}^{Z_{n}}g^{R}s_{U}^{c}||s_{a}||g^{R_{a}}(\prod_{j=1}^{4}h_{j}^{A_{j}})s_{a}^{c}||b_{1}||g^{F_{d}}g_{r}^{R_{d}}b_{1}^{c}||s_{U}||pubp) = c \quad (17)$$

Figure 3: Location proof generation and verification, non-interactive version

old d (all integers):

$$d^{2} - ((x_{n} - x_{l})^{2} + (y_{n} - y_{l})^{2} + (z_{n} - z_{l})^{2}) = a_{1}^{2} + a_{2}^{2} + a_{3}^{2} + a_{4}^{2}$$
 (18)

We rely on 4-squares Lagrange theorem to prove equality statement (Lipmaa). Proofs for integer relations are possible in hidden group order setup.

2.2**Proof Setup**

Let g be a generator of a proper group of a hidden order, and h be a group element (Pedersen commitment scheme). We use multiplicative group of invertible residue classes modulo a composite n such that n = pq, p = 2p' + 1, q = 2q' + 1 and p, q, p', q' primes (Idemix). [1]

Signal Harvesting

Node picks random (r_x, r_y, r_z) , creates commitment (s_x, s_y, s_z) to it's coordinates

$$s_x = g^{x_n} h^{r_x}, \qquad s_y = g^{y_n} h^{r_y}, \qquad s_z = g^{z_n} h^{r_z}$$
 (19)

and keeps coordinates-randoms pairs (x_n, y_n, z_n) , (r_x, r_y, r_z) private.

This section is of historical value only; 'representation-based' commitment was implemented as a proof-of-concept.

Representation-Based Commitment 2.4

Following U-Prove, consider commitment scheme resulting in a single group element:

$$s_U = g_x^{x_n} g_y^{y_n} g_z^{z_n} g^r (20)$$

where g_x, g_y, g_z are group elements, and r is a random. This scheme admits a proof of knowledge with the same responses required form threshold location verification. This scheme can be extended with additional components.

2.5Two-Level Commitment

To achieve expected properties of Merkle-tree based scheme while keeping an option to run location proof protocols, representation-based commitments could be leaves of Merkle tree.

2.6 A Proof

Sigma-protocol with 3 messages. Public information is node location commitment (20), given location and threshold (center and radius), proof parameters. Private information is node location and randomness to commitment. Setup is $g, h_1 \dots h_4, g_x, g_y, g_z, g_r$ (9 group elements).

1. Prover (node) calculates (18) $a_1 \dots a_4$ from locations and threshold with Rabin-Shallit algorithm ¹, picks random α_j , η , γ , β_x , β_y , β_z , β_r , ρ_0 , ρ_1 , computes and sends initial commitments b_0, b_1, t_a, t_n $(f_0 \text{ and } f_1 \text{ are explained at Background section})$

$$b_0 = a^{f_0} a^{\rho_0}$$
 $b_1 = a^{f_1} a^{\rho_1}$ (21)

$$b_0 = g^{f_0} g_r^{\rho_0}, \qquad b_1 = g^{f_1} g_r^{\rho_1}$$

$$s_a = g^{\gamma} \prod_{j=1}^4 h_j^{a_j}, \qquad t_a = g^{\eta} \prod_{j=1}^4 h_j^{\alpha_j}, \qquad t_n = g_x^{\beta_x} g_y^{\beta_y} g_z^{\beta_z} g^{\beta_r}$$
 (22)

¹Before R-S algorithm is implemented, we actually pick some a_j and calculate threshold (radius) instead.

- 2. Verifier chooses and sends his challenge c
- 3. Prover computes and sends responses

$$X_n = cx_n + \beta_x, \ Y_n = cy_n + \beta_y, \ Z_n = cz_n + \beta_z, \ R = cr + \beta_r$$
 (23)
 $A_j = ca_j + \alpha_j, \ R_a = c\gamma + \eta, \ R_d = c\rho_1 + \rho_0$ (24)

4. Proof verification

$$g_x^{X_n} g_y^{Y_n} g_z^{Z_n} g^R s_U^{-c} = t_n, \quad g^{R_a} (\prod_{j=1}^4 h_j^{A_j}) s_a^{-c} = t_a$$
 (25)

$$g^{c^2d^2 - ((X_n - cx_l)^2 + (Y_n - cy_l)^2 + (Z_n - cz_l)^2) - (A_1^2 + A_2^2 + A_3^2 + A_4^2)} g_r^{R_d} = b_1^c b_0$$
(26)

2.7 Quadratic Polynomial, Background

Consider quadratic (degree 2 in v) polynomial

$$f_{V}(v) = f_{2}v^{2} + f_{1}v + f_{0} = v^{2}d^{2} - (((vx_{n} + \beta_{x}) - vx_{l})^{2} + ((vy_{n} + \beta_{y}) - vy_{l})^{2} + ((vz_{n} + \beta_{z}) - vz_{l})^{2}) - ((va_{1} + \alpha_{1})^{2} + (va_{2} + \alpha_{2})^{2} + (va_{3} + \alpha_{3})^{2} + (va_{4} + \alpha_{4})^{2})$$
(27)

This polynomial is actually linear ($f_2 = 0$, degree-one in v) if, and only if statement about distance (18) holds for node coordinates that are hidden from verifier. We evaluate this polynomial at a random point chosen as the challenge of verifier. It follows, distance verification equation (26) only needs constant b_0 and degree-one b_1^c components.

$$f_0 = -\beta_x^2 - \beta_y^2 - \beta_z^2 - \alpha_1^2 - \alpha_2^2 - \alpha_3^2 - \alpha_4^2$$
 (28)

$$f_1 = -2(x_n - x_l)\beta_x - 2(y_n - y_l)\beta_y - 2(z_n - z_l)\beta_z$$
$$-2a_1\alpha_1 - 2a_2\alpha_2 - 2a_3\alpha_3 - 2a_4\alpha_4 \quad (29)$$

Prover calculates b_0, b_1 from f_0, f_1 .

2.8 A Not-at-Location Proof

Proving a negative location statement is a valid usecase, that could be demonstrated with "not at the grocery store" scenario. Rather that proving "distance is smaller than" (18), complementary "is larger" proof is given. In the following, we only show changes required to the main protocol.

$$((x_n - x_l)^2 + (y_n - y_l)^2 + (z_n - z_l)^2) - d^2 = a_1^2 + a_2^2 + a_3^2 + a_4^2$$
(30)
$$a^{((X_n - cx_l)^2 + (Y_n - cy_l)^2 + (Z_n - cz_l)^2) - c^2 d^2 - (A_1^2 + A_2^2 + A_3^2 + A_4^2)} h^{Ra} = b_1^c b_0$$
(31)

$$f_V(v) = f_2 v^2 + f_1 v + f_0 =$$

$$(((vx_n + \beta_x) - vx_l)^2 + ((vy_n + \beta_y) - vy_l)^2 + ((vz_n + \beta_z) - vz_l)^2) - v^2 d^2$$

$$- ((va_1 + \alpha_1)^2 + (va_2 + \alpha_2)^2 + (va_3 + \alpha_3)^2 + (va_4 + \alpha_4)^2)$$
(32)

2.9 Logical-OR Threshold Location

Consider a franchise operating multiple stores, and a usecase of proving location is "at Starbucks" without telling which one of K known. We define each such store with it's center (x_k, y_k, z_k) and radius (size) d_k , $k \in [1..K]$. We elaborate basic threshold proof such that prover can produce 4-squares representation for center-size of some store k = p, and pick arbitrary 4-tuples for all other stores $k \neq p$.

$$\prod_{k=1} ((d_k^2 - ((x_n - x_k)^2 + (y_n - y_k)^2 + (z_n - z_k)^2) - (a_{1,k}^2 + a_{2,k}^2 + a_{3,k}^2 + a_{4,k}^2)) = 0 \quad (33)$$

Verifier is testing that polynomial $f_{KV}(v)$ is of degree at most 2K-1, not 2K.

$$f_{KV}(v) = \sum_{j=0}^{2K} f_j v^j =$$

$$\prod_{k=1}^{K} (v^2 d_k^2 - (((vx_n + \beta_x) - vx_k)^2 + ((vy_n + \beta_y) - vy_k)^2 + ((vz_n + \beta_z) - vz_k)^2)$$

$$- ((va_{1,k} + \alpha_1)^2 + (va_{2,k} + \alpha_2)^2 + (va_{3,k} + \alpha_3)^2 + (va_{4,k} + \alpha_4)^2)) \quad (34)$$

References

- [1] Jan Camenisch. Specification of the identity mixer cryptographic library RZ 3730 version 2.3.0, 2010.
- [2] Giovanni Di Crescenzo and Vadym Fedyukovych. Zero-knowledge proofs via polynomial representations. In Proceedings of the 37th International Conference on Mathematical Foundations of Computer Science, pages 335–347, 2012.
- [3] DScout. Mobile touches. Accessed Online October 2018, 2018.
- [4] Vadym Fedyukovych. An argument for Hamiltonicity. Cryptology ePrint Archive, Report 2008/363, 2008.
- [5] Vadym Fedyukovych. Proving outcome of private statistical signal testing. In *Statistical Methods of Signal and Data Processing*, pages 172–175, 2010.
- [6] Paul Pollack and Enrique Trevino. Finding four squares in Lagrange's theorem.
- [7] Lionel et al. Wolberger. Engineering privacy for verified credentials: In which we describe data minimization, selective disclosure, and progressive trust. Credentials Community Group Report 2018, 2018.