Name:

### Algebra II Examination 10

Dr. Paul Bailey Thursday, February 10, 2022

The examination contains ten problems which are worth 10 points each, and two bonus problems worth ten points each.



| Prob1 | Prob2 | Prob3 | Prob4 | Prob5 | Prob6 | Prob7 | Prob8 | Prob9 | Prob10 | Bonus1 | Bonus2 | Total |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|-------|
|       |       |       |       |       |       |       |       |       |        |        |        |       |
|       |       |       |       |       |       |       |       |       |        |        |        |       |
|       |       |       |       |       |       |       |       |       |        |        |        |       |

## Problem 1. (Solving Radical Equations)

Solve the equation

$$\sqrt[5]{x^2 - 3x + 4} = 2.$$

Correctly write the solution set.

# Problem 2. (Simplifying Exponential Expressions)

Simplify

$$343^{2/3} + 625^{3/4}$$
.

The answer should be an integer.

## Problem 3. (Solving Exponential Equations)

Find  $x \in \mathbb{R}$  such that

$$9^{3x+7} = 27^{5x-12}.$$

Correctly write the solution set.

## Problem 4. (Solving Logarithmic Equations)

Find all  $x \in \mathbb{R}$  such that

$$2\log_7(x) = 2\log_7(2) + \log_7(x+15).$$

Correctly write the solution set.



Problem 7. (Solving Rational Equations) Let  $f(x) = \frac{x^2 - 3x - 6}{x + 4}$ . Solve the equation f(x) = 2. Correctly write the solution set.

Problem 8. (Finding the Domain) Let  $f(x) = \frac{\sqrt{2x-10}}{x^2-10x+21}$ . Find the domain of f. Write your answer as the union of disjoint intervals.

### Problem 9. (Set Operations)

Compute the following sets. Write your answer using correct set notation.

Let  $A = \{1, 3, 5, 7, 9\}$ ,  $B = \{3, 4, 5, 6, 7\}$ , and C = [0, 3].

- (a)  $A \cup B$
- (b)  $A \cap B$
- (c)  $A \setminus B$
- (d)  $B \setminus A$
- (e)  $C \setminus A$

### Problem 10. (Finding Inverses)

Let  $A = [4, \infty)$  and  $B = [6, \infty)$ . Let  $f : A \to B$  be given by  $f(x) = x^2 - 8x + 22$ , and let  $g : B \to A$  be its inverse. Find g(x). (Hint: complete the square.)

Problem 11. (Bonus - Finding a Fun Line) If P and Q are points in  $\mathbb{R}^2$ , let d(P,Q) denote the distance from P to Q. Let  $A,B\in\mathbb{R}^2$  be given by A=(3,1) and B=(5,5). Let L denote the set of all points  $P\in\mathbb{R}^2$  such that d(P,A)=d(P,B). Then L is a line. Find the equation for this line. (Hint: first draw a picture of this.)

**Definition 1.** Let  $f: A \to B$ . We say that f is *injective* (or *one-to-one*) on A if, for every  $a_1, a_2 \in A$ , we have

$$f(a_1) = f(a_2) \quad \Rightarrow \quad a_1 = a_2.$$

Problem 12. (Bonus - Injectivity)

Find an interval A such that the given function is injective on A.

(a) 
$$f(x) = 3x + 3$$

**(b)** 
$$f(x) = x^2 - 10x + 25$$

(c) 
$$f(x) = \sqrt{x-3} + 5$$

**(d)** 
$$f(x) = |x|$$

(e) 
$$f(x) = x^3 + 2x^2$$