Project 1: Predicting Catalog Demand

Step 1: Business and Data Understanding

Key Decisions:

Answer these questions

1. What decisions needs to be made?

The decision to be made for sending catalog to 250 customers. If the predicted profit from this action greater than \$ 10,000 then we should send catalog.

2. What data is needed to inform those decisions?

Sales data, number of products purchased, customers segments.

Step 2: Analysis, Modeling, and Validation

1. How and why did you select the predictor variables in your model?

I ran linear regression study across most/all variables against *Avg_Sale_Amount to* see which variables are likely related to the Average Sale Amount and have linear relationship. As shown in figure no.1 we can see Customer_Segment & Avg_Num_Products_Purchased have statistical significance which mean that the results did not occur randomly.

Moreover, scatterplots are made for better understanding of the chosen predictor variables.

	Sum Sq	DF	F value	Pr(>F)
Customer_Segment	28750472.02	3	507.42	< 2.2e-16 ***
Customer_ID	4116.78	1	0.22	0.64063
ZIP	13488.52	1	0.71	0.39814
Store_Number	19045.4	1	1.01	0.31539
Avg_Num_Products_Purchased	36828004.72	1	1949.95	< 2.2e-16 ***
XYears_as_Customer	69384.42	1	3.67	0.0554.
Residuals	44685898.37	2366		

Figure 1

Figure 2

Scatterplot of Avg_Sale_Amount versus Customer_Segment

Figure 3

2. Explain why you believe your linear model is a good model.

Both Customer_Segment & Avg_Num_Products_Purchased have a p-value lower than 0.05, which mean that they are statistical significance and have strong relationship with the predictor and target variable.

In addition, we have R-squared of 0.8366 and its considered high value which is good for our model.

Record	Report								
1	Report for Linear Model Linear_Regression_7								
2	Basic Summary								
3	Call: lm(formula = Avg_Sale_Amount	~ Customer_Segmen	t + Avg_Num_Proc	lucts_Purcl	hased, data = t	he.data)			
4	Residuals:								
5	Min	1Q	Me	edian	3Q	Max			
	-663.8	-67.3		-1.9	70.7	971.7			
6	Coefficients:								
7			Estimate	Std. I	Error t value	Pr(> t)			
	(Intercept)		303.46	1	0.576 28.69	< 2.2e-16 ***			
	Customer_SegmentLoyalty Club Only		-149.36		8.973 -16.65	< 2.2e-16 ***			
	Customer_SegmentLoyalty Club and 0	Credit Card	281.84	1	1.910 23.66	< 2.2e-16 ***			
	Customer_SegmentStore Mailing List		-245.42	!	9.768 -25.13	< 2.2e-16 ***			
	Avg_Num_Products_Purchased		66.98		1.515 44.21	< 2.2e-16 ***			
	Significance codes: 0 '***' 0.00	1 '**' 0.01 '*' 0.05 '.'	0.1''1						
8	Residual standard error: 137.48 on 2370 degrees of freedom Multiple R-squared: 0.8369, Adjusted R-Squared: 0.8366 F-statistic: 3040 on 4 and 2370 degrees of freedom (DF), p-value < 2.2e-16								
9	Type II ANOVA Analysis								
10	Response: Avg_Sale_Amount								
			Sum Sq	DF	F value	Pr(>F)			
	Customer_Segment		28715078.96	3	506.4	< 2.2e-16 ***			
	Avg_Num_Products_Purchased		36939582.5	1	1954.31	< 2.2e-16 ***			
	Residuals		44796869.07	2370					

3. What is the best linear regression equation based on the available data?

 $Avg_Sale_Amount = 303.46 - 149.36 * (If Type: Loyalty Club Only) + 281.84 * (If Type: Loyalty Club and Credit Card) - 245.42 * (If Type: Store Mailing List) + 0 * (If Type: Credit Card Only) + 66.98 * (Avg_Num_Products_Purchased)$

Step 3: Presentation/Visualization

Use your model results to provide a recommendation. (500 word limit)

1. What is your recommendation? Should the company send the catalog to these 250 customers?

Yes, I would recommend sending the catalog to these 250 customers.

- 2. How did you come up with your recommendation? (Please explain your process so reviewers can give you feedback on your process)
 - By using the linear regression model and applying the equation, I predicted the sales for every customer from the 250 list.
 - The predicted sales multiplied by Score_Yes values.
 - All these values of sales are sum and that's make the revenue.

Then, the profit is manually calculated. The profit is greater than our condition (Profit > \$ 10,000).

3. What is the expected profit from the new catalog (assuming the catalog is sent to these 250 customers)?

Sum of expected revenue = \$ 47,225.87 Gross Margin = 50% ~ 0.5 Cost of catalog = \$ 6.50 per catalog

$$= (47,225.87 * 0.5) - (6.50 * 250)$$

$$= 23,612.44 - 1625$$

= **\$ 21,987.44** is the expected profit

Workflow:-

Figure 4: Workflow