Vertex of the Quadratic

Given a quadratic $g(s) = a s^2 + b s + c$ compute its value at $s_1 = -\frac{b}{2a}$ namely $g(s_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at ${f s_{1}}{}^{\scriptscriptstyle +}{f h}$, namely

 $g(s_1+h) = -\frac{b^2}{4a} + a h^2 + c$ Compute $\triangle = g(s_1 + h) - g(s_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the global minimum!

Example 1. $g(s) = s^2 - 66$

