《高等微积分1》第六次作业

- 1 (1) 设 f 处处可导. 求 $\ln |f(x)|$ 的导函数.
 - (2) 设 f 处处可导. 求 $\arcsin(f(x))$ 的导函数.
 - (3) 设 u, v 处处可导. 求 $u(x)^{v(x)}$ 的导函数.
- 2(1) 叙述函数 f 在 x_0 处可微的定义.
 - (2) 证明: 一元函数 f 在 x_0 处可微的充分必要条件是 f 在 x_0 处可导.
 - (3) 设 g(0) = h(0) = 0, 且对任何 $x \in \mathbf{R}$ 都有 $|g(x)| \le |h(x)|$. 证明: 如果 g = h 在 x = 0 处都可导, 则 $|g'(0)| \le |h'(0)|$.
- 3 设函数 f 在 x = a 处的导数为 f'(a) = L, 且 $f(a) \neq 0$.
 - (1) 计算极限

$$\lim_{n\to\infty} n\left(\ln|f(a+\frac{1}{n})|-\ln|f(a)|\right).$$

(2) 计算极限

$$\lim_{n\to\infty} \left(\frac{f(a+\frac{1}{n})}{f(a)} \right)^n.$$

- 4 设 $f: \mathbf{R} \to \mathbf{R}$ 是处处可导的双射, 其反函数为 $f^{-1}: \mathbf{R} \to \mathbf{R}$.
 - (1) f^{-1} 是否一定处处可导? 请说明理由.
 - (2) 设 f 的导函数处处非零. 设函数 f 与 $g: \mathbf{R} \to \mathbf{R}$ 都处处有二阶导数. 定义函数 $h(x) = g(f^{-1}(x))$, $\forall x \in \mathbf{R}$. 计算 h 的一阶导函数 h'(x) 与二阶导函数 h''(x), 要求用 f 与 g 的高阶导函数表示.

5 定义函数 $f: \mathbf{R} \to \mathbf{R}$ 为

$$f(x) = \begin{cases} e^{-1/x}, & \text{mft} x > 0 \\ 0, & \text{mft} x \le 0 \end{cases}$$

(1) 证明: 对每个正整数 n, 存在多项式 $P_n(t)$, 使得对每个 x>0, f 在点 x 处的 n 阶 导数为

$$f^{(n)}(x) = P_n(\frac{1}{x})e^{-1/x}.$$

- (2) 对每个正整数 n, 计算 f 在 0 处的 n 阶导数 $f^{(n)}(0)$.
- 6 计算 $f(x) = \frac{x^2+1}{x^3-x}$ 的 n 阶导函数.