Lab 1 Results –Intro to DC Circuits

ECE202: Fundamentals of Electrical Engineering

Name	Student ID	CCID
Misbah Ahmed Nauman	1830574	misbahah
Muhammad Abdur Rab Siddiqui	1804733	msiddiq6

2.1 Equipment Familiarization

2.1.5.1

Measure Resistance								
	R1	R1 R2 R3 R4 R5						
	10Ω	100Ω	470Ω	1.0kΩ	4.7kΩ	10ΜΩ		
Color 1	Brown	Brown	Yellow	Brown	Yellow	Brown		
Color 2	Black	Black	Purple	Black	Purple	Black		
Color 3	Black	Brown	Brown	Red	Red	Blue		
Color 4	Golden	Golden	Golden	Golden	Golden	White		
Color 5	Brown	NA	NA	NA	NA	NA		
Tolerance(%)	1	5	5	5	5	5		
R (Ω)	10.1	97.8	463	977	4564	10170		

Measure Series Resistors						
RS1 RS2 RS3						
$100\Omega + 470\Omega$	1.0kΩ + 4.7kΩ	$10 \mathrm{M}\Omega$ + $10 \mathrm{M}\Omega$				
556.5 Ω	5.616 kΩ	20.62 ΜΩ				

10/4/2024 9:07 PM Page **1** of **14**

Measure Parallel Resistors						
RP1 RP2 RP3						
100Ω // 470Ω 1.0kΩ // 4.7kΩ 10MΩ // 10MΩ						
80.7	0.810 kΩ	5.15 ΜΩ				

2.2 Ohm's Law and Power

470 Ω - Resistor							
Voltage	(V)	5.0	3.5	1.0	0	-2.5	-5.0
Voltage	(V)	4.9669	4.3821	1.0105	0.02	-2.456	-4.9325
Current	(mA)	10.7	7.48	2.13	0.00	-5.33	-10.69
Resistance	(Ω)	464.2	585.84	474.41	inf	460.8	461.4
Power	(mW)	0.0531	0.0328	0.00215	0.00	0.0131	0.0527
			1.0 kΩ –	Resistor			
Voltage	(V)	5.0	3.5	1.0	0	-2.5	-5.0
Voltage	(V)	4.9898	3.5001	1.015	0.023	-2.4686	-4.9577
Current	(mA)	5.05	3.54	1.010	0.00	-2.52	-5.06
Resistance	(Ω)	988.08	988.73	1004.95	Inf	979.6	979.78
Power	(mW)	0.0252	0.0124	0.00103	0.00	0.00622	0.0251
			4.7 kΩ –	Resistor			
Voltage	(V)	5.0	3.5	1.0	0	-2.5	-5.0
Voltage	(V)	5.0076	3.5143	1.0187	0.0234	-2.4732	-4.9766
Current	(mA)	1.08	0.76	0.21	0.00	-0.55	-1.09
Resistance	(Ω)	4636.0	4624.1	4851.0	inf	4496.7	4565.7
Power	(mW)	0.00541	0.00267	0.000214	0.00	0.00136	0.00542

10/4/2024 9:07 PM Page **2** of **14**

2.3 Voltage Divider

R1	(Ω)	470						
R2	(Ω)	100	470	1.0 k	4.7 k			
VS	(V)	5	5	5	5			
IS	(mA)	8.80	5.38	3.44	0.99			
V1	(V)	4.0925	2.51	1.6146	0.480			
V2	(V)	0.855	2.4583	3.3657	4.5131			
P _{R1}	(mW)	36.0	13.5	5.55	0.475			
P _{R2}	(mW)	7.52	13.2	11.6	4.47			
P _{Total}	(mW)	43.5	26.7	17.2	4.95			

1. In the voltage divider circuit show your work for finding P_{R1} and P_{R2} for the case R1= 470 Ω and R2= 1.0 $k\Omega$.

10/4/2024 9:07 PM Page **3** of **14**

2.4 Current Divider

R1	(Ω)	470						
R2	(Ω)	100	470	1.0 k	4.7 k			
VS	(V)	5.0048	5.0021	5.0064	5.0028			
IS	(mA)	5.13	5.13	5.13	5.13			
I1	(mA)	0.88	2.53	3.46	4.63			
I2	(mA)	4.20	2.55	1.62	0.46			
P _{R1}	(mW)	4.40	12.7	17.3	23.2			
P _{R2}	(mW)	21.0	12.8	8.1	2.30			
P _{Total}	(mW)	25.4	25.4	25.4	25.4			

2.5 Potentiometer Divider

V1 Set-Point	(V)	0	1.0	2.5	4.0	5.0
V1	(V)	0.0146	1.0731	2.4678	3.9903	4.9920
V2	(V)	4.9623	3.9063	2.5133	0.9935	0.0067
IS	(mA)	4.66	4.66	4.66	4.66	4.66
V _{Total}	(V)	4.9769	4.9794	4.9811	4.9838	4.9987

2.6 Voltmeter Loading

V2	(V)	1.659
----	-----	-------

10/4/2024 9:07 PM Page **4** of **14**

V1	(V)	1.678
VS	(V)	5.011
V2 + V1	(V)	3.337

2.6 Ammeter Loading

VS	(V)	0.5	1.5	2.5
IS	(mA)	34.72	103.7	172.7
V _(AMMETER)	(V)	0.132	0.367	0.607
R _{DMM}	(Ω)	3.80	3.54	3.51

2. Resistors typically have two important ratings: its resistance and its wattage. Explain how this wattage rating affects the amount of the voltage that can be applied to the resistor. Consider a 100Ω resistor with 0.25watt power rating.

Wattage can be used to determine the maximum value of current or voltage a resistor can handle. In this scenario we can use P = V^2/R to find the maximum voltage V that the resistor can handle. V = $\sqrt{0.25 * 100}$ = 5 V.

3. Looking at the Resistor P-V Curves graph the power is always positive. Explain in your own words what this means? What happens to the power dissipated in the resistor when you double the voltage? Explain.

Power is always positive in a resistor because it converts electrical energy into heat, regardless of current direction. Resistors can only dissipate energy, not generate it.

Doubling the voltage across a resistor increases the power dissipation by a factor of four, as power (P=V2/RP=V2/R) is proportional to the square of the voltage.

10/4/2024 9:07 PM Page **5** of **14**

Resistor I-V Characteristic Plot

Current (mA) VS Voltage (V) For 1.0 k ohm

10/4/2024 9:07 PM Page **6** of **14**

Resistor P-V Characteristic Plot

10/4/2024 9:07 PM Page **7** of **14**

Power vs Voltage graph for 1 $k\Omega$ resistor

Power vs Voltage graph for 4.7 $k\Omega$ resistor

10/4/2024 9:07 PM Page **8** of **14**

Voltage Divider (R1 = 470Ω) – Voltage Plot

Voltage Source against Resistance of R2

Voltage of Resistance 1 against Resistance value of R2

10/4/2024 9:07 PM Page **9** of **14**

Voltage of Resistance 2 against Resistance value of R2

Voltage Divider (R1 = 470Ω) – Power Plot

Power(R1+R2) (mW) VS. R2 (ohm)

10/4/2024 9:07 PM Page **10** of **14**

Power (R1) (mW) VS R2 (ohm)

Power (R2) (mW) VS R2 (ohm)

Current Divider (R1 = 470Ω) – Current Plot

10/4/2024 9:07 PM Page **11** of **14**

Current of R1 against Resistance value of R2

Current source against Resistance value of R2

10/4/2024 9:07 PM Page **12** of **14**

Current of R1 against Resistance value of R2

Current Divider (R1 = 470Ω) – Power Plot

Power (R2) (mW) VS R2 (ohm)

10/4/2024 9:07 PM Page **13** of **14**

Power (R1) (mW) VS R1 (ohm)

Power (R1+R2) (mW) VS R1 (ohm)

10/4/2024 9:07 PM Page **14** of **14**