Лабораторная работа №12

Многоступенчатые циклические вычислительные процессы. Двумерные массивы.

- 2. Цель работы: научиться решать задачи посредством многоступенчатых вычислительных процессов.
- 3. Используемое оборудование: ПК, Lazarus, PascalABC.

Задание №1

- 4. Найти сумму всех элементов массива 3х3. Массив задается явно внутри программы. Найти максимальный элемент.
- 5. if m[I,j]>max then max:=m[I,j]

Имя	Смысл	Тип
m	массив	Array of integer
i	Номер строки/параметр	integer
	цикла	
j	Номер столбца/параметр	integer
	цикла	
max	Максимальный элемент	integer
	массива	

```
program fdsal;
    var m: array [1..3,1..3] of integer;
      i,j,max: integer;
   ⊟begin
 5
     randomize;
     max:=0;
     for i:=1 to 3 do
     begin
       for j:=1 to 3 do
10
        begin
         m[i,j]:=random(100);
         write (m[i,j],' ');
        end;
       writeln;
15
      end;
     for i:=1 to 3 do
      for j:=1 to 3 do
         if m[i,j]>max then max:=m[i,j];
     write ('max=',max);
20
     readln;
21
    end.
9.
```

```
88
   96
        26
   41
        79
63
max=96
```

10. Для нахождения максимального элемента массива был организован многоступенчатый вычислительный процесс. Во внешнем цикле изменялась строка массива, во внутреннем столбец. Если какой-то элемент при переборе был больше максимума – он становился максимумом.

Задание №2

- 4. Дан массив 3х3. Найти сумму элементов на главной диагонали и сумму элементов побочной диагонали.
- 5. Главная диагональ: j:=i

Побочная диагональ: j:=n(размерность массива)-i+1

Имя	Смысл	Тип
m		Array of integer

i	Номер строки/параметр	integer
	цикла	
j	Номер столбца/параметр	integer
	цикла	
Sg	Сумма элементов главной	integer
	диагонали	
Sp	Сумма элементов побочной	integer
	диагонали	

8.

```
1
    program sss2;
    var m: array [1..3,1..3] of integer;
      i,j,Sg,Sp: integer;
   ,begin
 5
     Sq:=0;
     Sp:=0;
     randomize;
     for i:=1 to 3 do
      begin
10
       for j:=1 to 3 do
        begin
         m[i,j]:=random(100);
         write (m[i,j],' ');
        end;
15
       writeln;
      end;
     for i:=1 to 3 do
      begin
        j:=i;
20
       Sg:=Sg+m[i,j];
     writeln ('Summa elementov glavnoi diagonali=',Sg);
     for i:=1 to 3 do
      begin
25
       j:=3-i+1;
       Sp:=Sp+m[i,j];
     writeln ('Summa elementov pobochnoi diagonali=',Sp);
     readln;
30
    end.
9.
```

```
7 60 67
70 67 9
94 96 49
Summa elementov glavnoi diagonali=123
Summa elementov pobochnoi diagonali=228
```

10. Для нахождения суммы главной диагонали в цикле складывались те элементы, у которых строка совпадала со столбцом. Для нахождения суммы побочной диагонали в цикле складывались те элементы, у которых столбцы равнялись 3-i+1.

4. Дан массив 3х3. Заменить элементы, стоящие ниже главной диагонали нулями.

5. if i>j then m[I,j]:=0

6.

Имя	Смысл	Тип
m	массив	Array of integer
i	Номер строки/параметр	integer
	цикла	
j	Номер столбца/параметр	integer
	цикла	

```
program sss2;
    var m: array [1..3,1..3] of integer;
      i, j: integer;
  ⊟begin
 5
     randomize;
    for i:=1 to 3 do
     begin
       for j:=1 to 3 do
        begin
         m[i,j]:=random(100);
10
         write (m[i,j],' ');
        end;
       writeln;
      end;
15
     writeln;
     for i:=1 to 3 do
     begin
       for j:=1 to 3 do
        begin
         if i>j then m[i,j]:=0;
20
         write (m[i,j],' ');
        end;
       writeln;
      end;
25
    readln;
26
    end.
9.
   43
        79
27
    73
        89
   16
       80
  43 79
  73 89
     80
```

10. На ноль заменялись те элементы, значение строки которых было больше, чем значение столбца (т.е. они находились под главной диагональю).

Задание №4

4. Дана матрица 3х3. Найти суммы элементов каждой строки и упорядочить строки по возрастанию согласно их суммам

```
5. S1:=S1+m[1,j]
S2:=S2+m[2,j]
S3:=S3+m[3,j]
6.
```


Имя	Смысл	Тип
m	массив	Array of integer
i	Номер строки/параметр	integer
	цикла	
j	Номер столбца/параметр	integer
	цикла	
S1	Сумма элементов первой	integer
	строки	
S2	Сумма элементов второй	integer
	строки	
S3	Сумма элементов третьей	integer
	строки	
max	Максимальная сумма	integer
	элементов строки	
min	Минимальная сумма	integer
	элементов строки	

```
program sss4;
var m: array [1..3,1..3] of integer;
 i,j,S1,S2,S3,max,min: integer;
begin
randomize;
for i:=1 to 3 do
 begin
  for j:=1 to 3 do
   begin
   m[i,j]:=random(100);
   write (m[i,j],' ');
   end;
  writeln;
 end;
 for j:=1 to 3 do
 begin
   S1:=S1+m[1,j];
   S2:=S2+m[2,j];
   S3:=S3+m[3,j];
  end:
 writeln;
 writeln ('Сумма элементов первой строки=',S1);
 writeln ('Сумма элементов второй строки=',S2);
 writeln ('Сумма элементов третьей строки=',S3);
 writeln;
max:=S1;
 if (S2>max) and (S2>S3) then max:=S2;
 if (S3>max) and (S3>S2) then max:=S3;
min:=S1;
if (S2<min) and (S2<S3) then min:=S2;
 if (S3<min) and (S3<S2) then min:=S3;
 writeln ('отсортированная матрица');
 if min=S1 then write (m[1,1],' ',m[1,2],' ',m[1,3])
 else if min=S2 then write (m[2,1],' ',m[2,2],' ',m[2,3])
 else if min=S3 then write (m[3,1],' ',m[3,2],' ',m[3,3]);
 writeln;
 if (S1<>min) and (S1<>max) then write (m[1,1],',m[1,2],',m[1,3])
else if (S2<>min) and (S2<>max) then write (m[2,1],' ',m[2,2],' ',m[2,3])
 else if (S3<>min) and (S3<>max) then write (m[3,1],' ',m[3,2],' ',m[3,3]);
writeln;
 if max=S1 then write (m[1,1],' ',m[1,2],' ',m[1,3])
else if max=S2 then write (m[2,1],' ',m[2,2],' ',m[2,3])
 else if max=S3 then write (m[3,1],' ',m[3,2],' ',m[3,3]);
end.
```

```
Окно вывода

43 4 37

14 15 2

11 53 37

Сумма элементов первой строки=84

Сумма элементов второй строки=31

Сумма элементов третьей строки=101

отсортированная матрица

14 15 2

43 4 37

11 53 37
```

- 10. Для сортировки массива сначала были найдены суммы элементов первой, второй и третьей строк. Далее переменным min и max были присвоены значения самой маленькой и самой большой суммы соответственно. Далее если сумма какой-либо строки совпадала с min, то она выводилась на экран. Потом если сумма какой-либо строки не совпадала ни с min ни с max, то она выводилась на экран. И если сумма какой-либо строки совпадала с max, то она выводилась на экран.
- 11. Вывод: Многоступенчатые вычислительные процессы отлично подходят для различных действий с двумерными массивами, потому что удобно параметром внешнего цикла назначать переменную, отвечающую за строки массива, а параметром внутреннего цикла переменную отвечающую за столбцы массива.