(19) World Intellectual Property Organization International Bureau

. I BERTA BINADOR IA CORNI BERTA ITALI I IR IDRIBATINI BATUR BINDO BODI BERTA DALI BINDO BODI.

(43) International Publication Date 29 November 2001 (29.11.2001)

PCT

(10) International Publication Number WO 01/90358 A2

- (51) International Patent Classification⁷: C12N 15/12, C07K 14/715, 16/18, G01N 33/53, C12N 5/10
- (21) International Application Number: PCT/US01/16767
- (22) International Filing Date: 23 May 2001 (23.05.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/206,862

24 May 2000 (24.05.2000) US

- (71) Applicant: SCHERING CORPORATION [US/US]; 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).
- (72) Inventor: GORMAN, Daniel, M.; 6371 Central Avenue, Newark, CA 94560 (US).
- (74) Agent: ZARADIC, Sandy; Schering-Plough Corporation, Patent Department, K-6-1, 1990, 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LU, LV, MA, MD, MG, MK, MN, MX, MZ, NO, NZ, PL, PT, RO, RU, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UZ, VN, YU, ZA.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

 as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

90358 A2

(54) Title: MAMMALIAN RECEPTOR PROTEINS; RELATED REAGENTS AND METHODS

(57) Abstract: Nucleic acids encoding mammalian, e.g., primate, receptors, purified receptor proteins and fragments thereof. Antibodies, both polyclonal and monoclonal, are also provided. Methods of using the compositions for both diagnostic and therapeutic utilities are described.

MAMMALIAN RECEPTOR PROTEINS; RELATED REAGENTS AND METHODS

10

FIELD OF THE INVENTION

The present invention relates to compositions and methods for affecting mammalian physiology, including immune system function. In particular, it provides methods to regulate development and/or the immune system. Diagnostic and therapeutic uses of these materials are also disclosed.

15

20

25

30

35

BACKGROUND OF THE INVENTION

Recombinant DNA technology refers generally to techniques of integrating genetic information from a donor source into vectors for subsequent processing, such as through introduction into a host, whereby the transferred genetic information is copied and/or expressed in the new environment. Commonly, the genetic information exists in the form of complementary DNA (cDNA) derived from messenger RNA (mRNA) coding for a desired protein product. The carrier is frequently a plasmid having the capacity to incorporate cDNA for later replication in a host and, in some cases, actually to control expression of the cDNA and thereby direct synthesis of the encoded product in the host. See, e.g., Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual, (2d ed.) vols. 1-3, CSH Press, NY.

For some time, it has been known that the mammalian immune response is based on a series of complex cellular interactions, called the "immune network". Recent research has provided new insights into the inner workings of this network. While it remains clear that much of the immune response does, in fact, revolve around the network-like interactions of lymphocytes, macrophages, granulocytes, and other cells, immunologists now generally hold the opinion that soluble proteins, known as lymphokines, cytokines, or monokines, play critical roles in controlling these cellular interactions. Thus, there is considerable interest in the isolation, characterization, and mechanisms of action of cell modulatory factors, an understanding of which will lead to significant advancements in the diagnosis and therapy of numerous medical abnormalities, e.g., immune system disorders.

10

15

20

25

30

35

The immune system of vertebrates consists of a number of organs and several different cell types. Two major cell types include the myeloid and lymphoid lineages. Among the lymphoid cell lineage are B cells, which were originally characterized as differentiating in fetal liver or adult bone marrow, and T cells, which were originally characterized as differentiating in the thymus. See, e.g., Paul (ed. 1998) Fundamental Immunology (4th ed.) Raven Press, New York; and Thomson (ed. 1994) The Cytokine Handbook 2d ed., Academic Press, San Diego. Lymphokines apparently mediate cellular activities in a variety of ways. They have been shown to support the proliferation, growth, and/or differentiation of cells, e.g., pluripotential hematopoietic stem cells, into vast numbers of progenitors comprising diverse cellular lineages which make up a complex immune system. Proper and balanced interactions between the cellular components are necessary for a healthy immune response. The different cellular lineages often respond in a different manner when lymphokines are administered in conjunction with other agents.

Cell lineages especially important to the immune response include two classes of lymphocytes: B-cells, which can produce and secrete immunoglobulins (proteins with the capability of recognizing and binding to foreign matter to effect its removal), and T-cells of various subsets that secrete lymphokines and induce or suppress the B-cells and various other cells (including other T-cells) making up the immune network. These lymphocytes interact with many other cell types.

Research to better understand and treat various immune disorders has been hampered by the general inability to maintain cells of the immune system in vitro. Immunologists have discovered that culturing many of these cells can be accomplished through the use of T-cell and other cell supernatants, which contain various growth factors, including many of the lymphokines.

Various growth and regulatory factors exist which modulate morphogenetic development. And many receptors for cytokines are also known. Often there are at least two critical subunits in the functional receptor. See, e.g., Gonda and D'Andrea (1997) Blood 89:355-369; Presky, et al. (1996) Proc. Nat'l Acad. Sci. USA 93:14002-14007; Drachman and Kaushansky (1995) Curr. Opin. Hematol. 2:22-28; Theze (1994) Eur. Cytokine Netw. 5:353-368; and Lemmon and Schlessinger (1994) Trends Biochem. Sci. 19:459-463.

From the foregoing, it is evident that the discovery and development of new soluble proteins and their receptors, including ones similar to lymphokines, should contribute to new therapies for a wide range of degenerative or abnormal conditions which directly or indirectly involve development, differentiation, or function, e.g., of the

immune system and/or hematopoietic cells. In particular, the discovery and understanding of novel receptors for lymphokine-like molecules which enhance or potentiate the beneficial activities of other lymphokines would be highly advantageous. However, the lack of understanding of how the immune system is regulated or differentiates has blocked the ability to advantageously modulate the normal defensive mechanisms to biological challenges. Medical conditions characterized by abnormal or inappropriate regulation of the development or physiology of relevant cells thus remain unmanageable. The discovery and characterization of specific cytokines and their receptors will contribute to the development of therapies for a broad range of degenerative or other conditions which affect the immune system, hematopoietic cells, as well as other cell types. The present invention provides new receptors for ligands exhibiting similarity to cytokine like compositions and related compounds, and methods for their use.

15

20

10

5

SUMMARY OF THE INVENTION

The present invention is directed to novel receptors related to cytokine receptors, e.g., primate, cytokine receptor like molecular structures, designated DNAX Cytokine Receptor Subunits (DCRS), and their biological activities. In particular, it provides description of various subunits, designated DCRS6, DCRS7, DCRS8, DCRS9, and DCRS10. Primate, e.g., human, and rodent, e.g., mouse, embodiments of the various subunits are provided. It includes nucleic acids coding for the polypeptides themselves and methods for their production and use. The nucleic acids of the invention are characterized, in part, by their homology to cloned complementary DNA (cDNA) sequences enclosed herein.

25

30

35

The present invention provides a composition of matter selected from: a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at least four amino acids identical to segments of SEQ ID NO: 2, 5, 8, 11, 23, or 26; a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at least four amino acids identical to segments of SEQ ID NO: 14; a substantially pure or recombinant polypeptide comprising at least two distinct nonoverlapping segments of at least five amino acids identical to segments of SEQ ID NO: 14; a natural sequence DCRS8 comprising mature SEQ ID NO: 14; a fusion polypeptide comprising DCRS8 sequence; a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at least four amino acids identical to segments of SEQ ID NO: 17 or 20; a substantially pure or recombinant polypeptide comprising at least two distinct nonoverlapping segments of at least five amino acids identical to segments of SEQ ID NO: 17 or 20; a natural

10

15

20

25

30

35

4

-

sequence DCRS9 comprising mature SEQ ID NO: 17 or 20; or a fusion polypeptide comprising DCRS9 sequence. Preferably, wherein the distinct nonoverlapping segments of identity include: one of at least eight amino acids; one of at least four amino acids and a second of at least five amino acids; at least three segments of at least four, five, and six amino acids, or one of at least twelve amino acids. In other embodiments, the: polypeptide: comprises a mature sequence of Tables 1, 2, 3, 4, or 5; is an unglycosylated form of DCRS8 or DCRS9; is from a primate, such as a human; comprises at least seventeen amino acids of SEQ ID NO: 14 or 17; exhibits at least four nonoverlapping segments of at least seven amino acids of SEQ ID NO: 14 or 17; is a natural allelic variant of DCRS8 or DCRS9; has a length at least about 30 amino acids; exhibits at least two non-overlapping epitopes which are specific for a primate DCRS8 or DCRS9; is glycosylated; has a molecular weight of at least 30 kD with natural glycosylation; is a synthetic polypeptide; is attached to a solid substrate; is conjugated to another chemical moiety; is a 5-fold or less substitution from natural sequence; or is a deletion or insertion variant from a natural sequence.

The invention further embraces a composition comprising: a substantially pure DCRS8 or DCRS9 and another cytokine receptor family member; a sterile DCRS8 or DCRS9 polypeptide; the DCRS8 or DCRS9 polypeptide and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration. Additional embodiments include a polypeptide comprising: mature protein sequence of Tables 1, 2, 3, 4, or 5; a detection or purification tag, including a FLAG, His6, or Ig sequence; or sequence of another cytokine receptor protein. Kit embodiments include ones comprising a described polypeptide, and: a compartment comprising the protein or polypeptide; or instructions for use or disposal of reagents in the kit.

Binding compositions are provided, e.g., comprising an antigen binding site from an antibody, which specifically binds to a natural DCRS8 or DCRS9 polypeptide, wherein: the binding compound is in a container; the DCRS8 or DCRS9 polypeptide is from a human; the binding compound is an Fv, Fab, or Fab2 fragment; the binding compound is conjugated to another chemical moiety; or the antibody: is raised against a peptide sequence of a mature polypeptide of Table 3 or 4; is raised against a mature DCRS8 or DCRS9; is raised to a purified human DCRS8 or DCRS9; is immunoselected; is a polyclonal antibody; binds to a denatured DCRS8 or DCRS9; exhibits a Kd to antigen of at least 30 µM; is attached to a solid substrate, including a bead or plastic membrane; is in a sterile composition; or is detectably labeled, including a radioactive or fluorescent label. Kits include ones comprising such a binding compound, and: a compartment

10

15

20

25

30

35

comprising the binding compound; or instructions for use or disposal of reagents in the kit.

The invention also provides methods of producing an antigen:antibody complex, comprising contacting under appropriate conditions a primate DCRS8 or DCRS9 polypeptide with a described antibody, thereby allowing the complex to form. Preferred methods include ones wherein: the complex is purified from other cytokine receptors; the complex is purified from other antibody; the contacting is with a sample comprising an interferon; the contacting allows quantitative detection of the antigen; the contacting is with a sample comprising the antibody; or the contacting allows quantitative detection of the antibody. Further compositions include those comprising: a sterile binding compound, as described, or the binding compound and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration.

Nucleic acid compositions include an isolated or recombinant nucleic acid encoding a desribed polypeptide wherein the: DCRS8 or DCRS9 is from a human; or the nucleic acid: encodes an antigenic peptide sequence of Table 3 or 4; encodes a plurality of antigenic peptide sequences of Table 3 or 4; exhibits identity over at least thirteen nucleotides to a natural cDNA encoding the segment; is an expression vector; further comprises an origin of replication; is from a natural source; comprises a detectable label; comprises synthetic nucleotide sequence; is less than 6 kb, preferably less than 3 kb; is from a primate; comprises a natural full length coding sequence; is a hybridization probe for a gene encoding the DCRS8 or DCRS9; or is a PCR primer, PCR product, or mutagenesis primer. Also provided are a cell or tissue comprising such a recombinant nucleic acid, e.g., where the cell is: a prokaryotic cell; a eukaryotic cell; a bacterial cell; a yeast cell; an insect cell; a mammalian cell; a mouse cell; a primate cell; or a human cell.

Kit embodiments include those comprising a described nucleic acid and: a compartment comprising the nucleic acid; a compartment further comprising a primate DCRS8 or DCRS9 polypeptide; or instructions for use or disposal of reagents in the kit.

Other nucleic acids provided include ones which: hybridize under wash conditions –of 30-minutes at 30° C and less than 2M salt to the coding portion of SEQ ID NO: 13 or 16; or exhibit identity over a stretch of at least about 30 nucleotides to a primate DCRS8 or DCRS9. Preferably, such will be nucleic acids where: the wash conditions are: at 45° C and/or 500 mM salt; at 55° C and/or 150 mM salt; or the stretch is at least 55 or 75 nucleotides.

Also provided are methods of modulating physiology or development of a cell or tissue culture cells comprising contacting the cell with an agonist or antagonist of a

mammalian DCRS8 or DCRS9. Preferably, the cell is transformed with a nucleic acid encoding the DCRS8 or DCRS9 and another cytokine receptor subunit.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

5

15

25

OUTLINE

- I. General
- II. Activities
- III. Nucleic acids
- 10 A. encoding fragments, sequence, probes
 - B. mutations, chimeras, fusions
 - C. making nucleic acids
 - D. vectors, cells comprising
 - IV. Proteins, Peptides
 - A. fragments, sequence, immunogens, antigens
 - B. muteins
 - C. agonists/antagonists, functional equivalents
 - D. making proteins
 - V. Making nucleic acids, proteins
- A. synthetic
 - B. recombinant
 - C. natural sources
 - VI. Antibodies
 - A. polyclonals
 - B. monoclonal
 - C. fragments; Kd
 - D. anti-idiotypic antibodies
 - E. hybridoma cell lines
 - VII. Kits and Methods to quantify DCRSs
- 30 A. ELISA
 - B. assay mRNA encoding
 - C. qualitative/quantitative
 - D. kits
 - VIII. Therapeutic compositions, methods
- 35 A. combination compositions
 - B. unit dose
 - C. administration
 - IX. Screening
 - X. Ligands

40

I. General

The present invention provides the amino acid sequence and DNA sequence of mammalian, herein primate, cytokine receptor-like subunit molecules, these designated DNAX Cytokine Receptor Subunits 6 (DCRS6), 7 (DCRS7), 8 (DCRS8), 9 (DCRS9), and 10 (DCRS10) having particular defined properties, both structural and biological.

45

10

15

20

25

35

40

Various cDNAs encoding these molecules were obtained from primate, e.g., human, and/or rodent, e.g., mouse, cDNA sequence libraries. Other primate or other mammalian counterparts would also be desired.

Some of the standard methods applicable are described or referenced, e.g., in Maniatis, et al. (1982) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor Press; Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual, (2d ed.), vols. 1-3, CSH Press, NY; Ausubel, et al., Biology, Greene Publishing Associates, Brooklyn, NY; or Ausubel, et al. (1987 and periodic supplements) Current Protocols in Molecular Biology, Greene/Wiley, New York; each of which is incorporated herein by reference.

Nucleotide (SEQ ID NO: 1) and corresponding amino acid sequence (SEQ ID NO: 2) of a primate, e.g., human, DCRS6 coding segment is shown in Table 1 along with reverse translation (SEQ ID NO: 3). Rodent, e.g., mouse, counterpart sequences are provided, e.g., SEQ ID NO: 4-6.

Similarly, nucleotide (SEQ ID NO: 7) and corresponding amino acid sequence (SEQ ID NO: 8) of a primate, e.g., human, DCRS7 coding segment is shown in Table 2 along with reverse translation (SEQ ID NO: 9). Rodent, e.g., mouse, counterpart sequences are provided, e.g., SEQ ID NO: 10-12. Nucleotide (SEQ ID NO: 13) and corresponding amino acid sequence (SEQ ID NO: 14) of a primate, e.g., human, DCRS8 coding segment is shown in Table 3 along with reverse translation (SEQ ID NO: 15).

Nucleotide (SEQ ID NO: 16) and corresponding amino acid sequence (SEQ ID NO: 17) of a primate, e.g., human, DCRS9 coding segment is shown in Table 4 along with reverse translation (SEQ ID NO: 18). Rodent, e.g., mouse, counterpart sequences are provided, e.g., SEQ ID NO: 19-21. Nucleotide (SEQ ID NO: 22) and corresponding amino acid sequence (SEQ ID NO: 23) of a primate, e.g., human, DCRS10 coding segment is shown in Table 5 along with reverse translation (SEQ ID NO: 24). Rodent, e.g., mouse, counterpart sequences are provided, e.g., SEQ ID NO: 26-27.

Table 1: Nucleotide and polypeptide sequences of DNAX Cytokine Receptor Subunit like embodiments (DCRS6). Primate, e.g., human, embodiment (see SEQ ID NO: 1 and 2).

Predicted signal sequence indicated, but may vary by a few positions and depending upon cell type.

gcg atg tcg ctc gtg ctg cta agc ctg gcc gcg ctg tgc agg agc gcc 48

Met Ser Leu Val Leu Leu Ser Leu Ala Ala Leu Cys Arg Ser Ala

-10

-5
-1 1

gta ccc cga gag ccg acc gtt caa tgt ggc tct gaa act ggg cca tct 96 Val Pro Arg Glu Pro Thr Val Gln Cys Gly Ser Glu Thr Gly Pro Ser 5 10 15

			tgg Trp 20													144
5			gta Val													192
10			atg Met													240
15			aag Lys													288
20			agc Ser													336
			ccc Pro 100													384
25			ctg Leu													432
30			atg Met													480
35			tgc Cys		_			_					_	-		528
40			agc Ser													576
			gta Val 180													624
45 	Met	Āla	ctt Leu	Ile	Gln	His	Ser	Thr	Ile	Ile	Gly	Phe	Ser	Gln	Val	672
50			cac His													720
55			gat Asp													768

		agc Ser 245							816
5		ggc ggc							864
10		ctg Leu							912
15		gca Ala							960
20		ttt Phe							1008
		cca Pro 325							1056
25		ctt Leu							1104
30		aag Lys							1152
35		aag Lys							1200
40		gtg Val							1248
		tct Ser 405							1296
45		aga Arg							1344
50		att Ile							1392
55	Lys	cac His							1440

	ctc cat gtc aag cag gtg tca gca gga aaa aga tca caa gcc tgc Leu His Val Lys Gln Gln Val Ser Ala Gly Lys Arg Ser Gln Ala Cys 470 475 480	1488
5	cac gat ggc tgc tgc tcc ttg tagcccaccc atgagaagca agagacctta His Asp Gly Cys Cys Ser Leu 485	1539
10	aaggetteet ateecaceaa ttacagggaa aaaacgtgtg atgateetga agettaetat	1599
	gcagcctaca aacagcctta gtaattaaaa cattttatac caataaaatt ttcaaatatt	1659
	gctaactaat gtagcattaa ctaacgattg gaaactacat ttacaacttc aaagctgttt	1719
15	tatacataga aatcaattac agctttaatt gaaaactgta accattttga taatgcaaca	1779
	ataaagcatc ttcagcc	1796
20	MSLVLLSLAALCRSAVPREPTVQCGSETGPSPEWMLQHDLIPGDLRDLRVEPVTTSVATGDYSILM RADASIRLLKATKICVTGKSNFQSYSCVRCNYTEAFQTQTRPSGGKWTFSYIGFPVELNTVYFIGM NMNEDGPSMSVNFTSPGCLDHIMKYKKKCVKAGSLWDPNITACKKNEETVEVNFTTTPLGNRYMAI IGFSQVFEPHQKKQTRASVVIPVTGDSEGATVQLTPYFPTCGSDCIRHKGTVVLCPQTGVPFPLDM GWLPLLLLSLLVATWVLVAGIYLMWRHERIKKTSFSTTTLLPPIKVLVVYPSEICFHHTICYFTEM SEVILEKWQKKKIAEMGPVQWLATQKKAADKVVFLLSNDVNSVCDGTCGKSEGSPSENSQDLFPLM	AHNIPN LIQHST NNKSKPO FLQNHC
25	DLRSQIHLHKYVVVYFREIDTKDDYNALSVCPKYHLMKDATAFCAELLHVKQQVSAGKRSQACHDO	
	Reverse translation of primate, e.g., human, DCRS6 (SEQ ID NO: 3):	
30	atgwsnytng tnytnytnws nytngcngcn ytntgymgnw sngcngtncc nmgngarccn	60
	acngtncart_gyggnwsnga racnggnccn_wsnccngart_ggatgytnca_rcaygayytn	120

athcenggng ayytnmgnga yytnmgngtn garcengtna enaenwsngt ngenaenggn 180 35 gaytaywsna thytnatgaa ygtnwsntgg gtnytnmgng cngaygcnws nathmgnytn 240 ytnaargcna cnaarathtg ygtnacnggn aarwsnaayt tycarwsnta ywsntgygtn 300 40 mgntgyaayt ayacngarge nttycaracn caracnmgnc cnwsnggngg naartggacn 360 ttywsntaya thggnttycc ngtngarytn aayacngtnt ayttyathgg ngcncayaay 420 athccnaayg cnaayatgaa ygargayggn ccnwsnatgw sngtnaaytt yacnwsnccn 480 45 ggntgyytng aycayathat gaartayaar aaraartgyg tnaargcngg nwsnytntgg 540 gayccnaaya thacngcntg yaaraaraay gargaracng tngargtnaa yttyacnacn 600 50 acnocnytng gnaaymgnta yatggcnytn athcarcayw snacnathat hggnttywsn 660 cargintityg arcencayea raaraarear acnmgngenw snginginat heenginaen 720 ggngaywsng arggngcnac ngtncarytn acnccntayt tyccnacntg yggnwsngay 780 55 tgyathmgnc ayaarggnac ngtngtnytn tgyccncara cnggngtncc nttyccnytn 840 gayaayaaya arwsnaarcc nggnggntgg ytnccnytny tnytnytnws nytnytngtn 900

	genacntggg tnytngtngc nggnathtay ytnatgtggm gncaygarmg nathaaraar	960
_	acnwenttyw snacnacnac nytnytneen cenathaarg tnytngtngt ntayeenwen	1020
5	garathtgyt tycaycayac nathtgytay ttyacngart tyytncaraa ycaytgymgn	1080
	wsngargtna thytngaraa rtggcaraar aaraarathg cngaratggg nccngtncar	1140
10	tggytngcna cncaraaraa rgcngcngay aargtngtnt tyytnytnws naaygaygtn	1200
	aaywsngtnt gygayggnac ntgyggnaar wsngarggnw snccnwsnga raaywsncar	1260
	gayytnttyc cnytngcntt yaayytntty tgywsngayy tnmgnwsnca rathcayytn	1320
15	cayaartayg tngtngtnta yttymgngar athgayacna argaygayta yaaygcnytn	1380
	wsngtntgyc cnaartayca yytnatgaar gaygcnacng cnttytgygc ngarytnytn	144(
20	caygtnaarc arcargtnws ngcnggnaar mgnwsncarg cntgycayga yggntgytgy	1500
	wsnytn	150
25	Rodent, e.g., mouse embodiment (see SEQ ID NO: 4 and 5).	
20	gat ttc agc agc cag acg cat ctg cac aaa tac ctg gag gtc tat ctt Asp Phe Ser Ser Gln Thr His Leu His Lys Tyr Leu Glu Val Tyr Leu 1 5 10 15	48
30	ggg gga gca gac ctc aaa ggc gac tat aat gcc ctg agt gtc tgc ccc Gly Gly Ala Asp Leu Lys Gly Asp Tyr Asn Ala Leu Ser Val Cys Pro	96
35	caa tat cat ctc atg aag gac gcc aca gct ttc cac aca gaa ctt ctc Gln Tyr His Leu Met Lys Asp Ala Thr Ala Phe His Thr Glu Leu Leu 35 40 45	144
40	aag gct acg cag agc atg tca gtg aag aaa cgc tca caa gcc tgc cat Lys Ala Thr Gln Ser Met Ser Val Lys Lys Arg Ser Gln Ala Cys His 50 55 60	192
45	gat agc tgt tca ccc ttg tagtccaccc gggggaatag agactctgaa Asp Ser Cys Ser Pro Leu 65 70	240
	gccttcctac tctcccttcc agtgacaaat gctgtgtgac gactctgaaa tgtgtgggag	300
50	aggctgtgtg gaggtagtgc tatgtacaaa cttgctttaa aactggagtt tgcaaagtca	360
50	acctgagcat acacgcctga ggctagtcat tggctggatt tatgaagaca acacagttac	420
	agacaataat gagtgggacc tacatttggg atatacccaa agctgggtaa tgattatcac	480
55	tgagaaccac gcactctggc catgaggtaa tacggcactt ccctgtcagg ctgtctgtca	540
	ggttgggtct gtcttgcact gcccatgctc tatgctgcac gtagaccgtt ttgtaacatt	600
	ttaatctgtt aatgaataat ccgtttggga ggctctc	637

DFSSQTHLHKYLEVYLGGADLKGDYNALSVCPQYHLMKDATAFHTELLKATQSMSVKKRSQACHDSCSPL.

5	Reve	erse	tran	ıslat	ion	of 1	coder	nt, e	.g.,	mou	ıse,	DCRS	36 (S	SEQ :	ID NO): 6):	
	gayt	tywa	snw s	sncar	acno	а уу	tnca	ayaar	tay	ytng	garg	tnta	ıyytı	ıgg ı	nggng	gcngay	60
10	ytna	arg	gng a	aytay	/aayg	gc ny	tnws	engtr	tgy	ccnc	art	ауса	yytı	nat 🤉	gaarg	gaygcn	120
10	acno	gcnti	tyc a	ayacı	ngary	rt ny	/tnaa	arger	acr	ncarv	vsna	tgws	ngti	naa :	raarı	ngnwsn	180
	car	gente	gyc a	aygay	wsnt	g yv	vsnco	enytr	1								210
15 20	emb	odime icted	ents (1	DCRS	7). P	rimat	e, e.g	., hun	nan, e	mbod	limen	t (see	SEQ	ID N	IO: 7	ibunit li and 8). ling upo	
	gagt	cag	gac t	ccca	aggad	a ga	agagt	gcac	aaa	ctac	cca	gcad	aged	ccc (ctcc	geecee	60
	tcts	ggagg	get g	gaaga	ggga	at to	cago	ccct	gcc	acco	caca	gaca	cggg	gct (gacto	gggtg	120
25 .	tct	geced	ccc t	tggg	ggca	an co	cacac	gggcc	tc:	ggco	tgg	gtgo	caco	tg q	gcact	agaag	180
30										Leu					agc Ser		228
50															acc Thr		276
35															ctc Leu		324
40															cct Pro		372
45															gac Asp		420
50															cac His 75		468
															tta Leu		516
55															ctc Leu		564

				tac Tyr													612
5	cct Pro 125	gct Ala	gcc Ala	ctt Leu	gtg Val	cag Gln 130	ttt Phe	ggt Gly	cag Gln	tct Ser	gtg Val 135	ggc Gly	tct Ser	gtg Val	gta Val	tat Tyr 140	660
10				gag Glu													708
15				agg Arg 160													756
20				gjå aåa													804
				ctc Leu													852
25				tct Ser													900
30				gly ggc													948
35				att Ile 240													996
40				tgg Trp													1044
	ccc Pro	ttc Phe 270	agg Arg	gag Glu	gac Asp	ccc Pro	cgc Arg 275	gca Ala	cac His	cag Gln	aac Asn	ctc Leu 280	tgg Trp	caa Gln	gcc Ala	gcc Ala	1092
45				ctg Leu													1140
50	tcg Ser	ctg Leu	ccc Pro	gca Ala	gaa Glu 305	gcg Ala	gca Ala	ctg Leu	tgc Cys	tgg Trp 310	cgg Arg	gct Ala	ccg Pro	ggt Gly	999 Gly 315	gac Asp	1188
55	ccc Pro	tgc Cys	cag Gln	cca Pro 320	ctg Leu	gtc Val	cca Pro	ccg Pro	ctt Leu 325	tcc Ser	tgg Trp	gag Glu	aat Asn	gtc Val 330	act Thr	gtg Val	1236
				agc Ser													1284

5					cct Pro												1332
-					aac Asn												1380
10					agc Ser 385												1428
15					gac Asp												1476
20					gcg Ala												1524
^Q 25					ctc Leu												1572
			Leu	Ile	ctc Leu	Leu 450	Leu	Lys	Lys	Asp	His 455	Ala	Lys	Gly	Trp	Leu 460	1620
30		ctc Leu			cag Gln 465												1668
35	Arg gcg	Leu gct	Leu	Lys	Gln	Asp tac	Val tca	Arg gcc	Ser gat	Gly 470 gac	Ala tcg	Ala ggt	Ala ttc	Arg gag	Gly 475 cgc	Arg ctg	1668 1716
	gcg Ala	gct Ala	Leu ctg Leu gcc	ctc Leu 480 ctg	Gln 465 ctc	Asp tac Tyr tcg	Val tca Ser	Arg gcc Ala ctg	gat Asp 485	Gly 470 gac Asp	tcg Ser	Ala ggt Gly ccg	Ala ttc Phe ctg	gag Glu 490	Gly 475 cgc Arg	ctg Leu gcc	
35	gcg Ala gtg Val	gct Ala ggc Gly	ctg Leu gcc Ala 495	ctc Leu 480 ctg Leu	Gln 465 ctc Leu gcg	Asp tac Tyr tcg ser	tca Ser gcc Ala	gcc Ala ctg Leu 500	gat Asp 485 tgc Cys	Gly 470 gac Asp cag Gln	tcg ser ctg Leu	ggt Gly ccg Pro	Ala ttc Phe ctg Leu 505	gag Glu 490 cgc Arg	Gly 475 cgc Arg gtg Val	ctg Leu gcc Ala	1716
35 40 45	gcg Ala gtg Val gta Val	gct Ala ggc Gly gac Asp 510	ctg Leu gcc Ala 495 ctg Leu	ctc Leu 480 ctg Leu tgg Trp	Gln 465 ctc Leu gcg Ala	tac Tyr tcg ser cgt Arg	tca ser gcc Ala cgt Arg 515	gcc Ala ctg Leu 500 gaa Glu	gat Asp 485 tgc Cys ctg Leu	Gly 470 gac Asp cag Gln agc ser	tcg Ser ctg Leu gcg Ala	ggt Gly ccg Pro cag Gln 520	Ala ttc Phe ctg Leu 505 ggg Gly	gag Glu 490 cgc Arg ccc Pro	Gly 475 cgc Arg gtg Val gtg Val	ctg Leu gcc Ala gct Ala	1716 1764
35	gcg Ala gtg Val gta Val tgg Trp 525 gtc	gct Ala ggc Gly gac Asp 510 ttt Phe	ctg Leu gcc Ala 495 ctg Leu cac His	ctc Leu 480 ctg Leu tgg Trp	Gln 465 ctc Leu gcg Ala agc ser	Asp tac Tyr tcg ser cgt Arg cgg Arg 530	tca Ser gcc Ala cgt Arg 515 cgc Arg	gcc Ala ctg Leu 500 gaa Glu cag Gln gcg	gat Asp 485 tgc Cys ctg Leu acc Thr	Gly 470 gac Asp cag Gln agc ser ctg Leu	tcg ser ctg Leu gcg Ala cag Gln 535	Ala ggt Gly ccg Pro cag Gln 520 gag Glu tgc	Ala ttc Phe ctg Leu 505 ggg Gly ggc Gly	gag Glu 490 cgc Arg ccc Pro	Gly 475 cgc Arg gtg Val gtg Val gtg	ctg Leu gcc Ala gct Ala gtg Val 540 cta	1716 1764 1812

	cgc Arg	gcc Ala	tcg Ser 575	ctc Leu	agc Ser	tgc Cys	gtg Val	ctg Leu 580	ccc Pro	gac Asp	ttc Phe	ttg Leu	cag Gln 585	ggc	cgg Arg		2004
5	ccc Pro	ggc Gly 590	agc Ser	tac Tyr	gtg Val	Gly 999	gcc Ala 595	tgc Cys	ttc Phe	gac Asp	agg Arg	ctg Leu 600	ctc Leu	cac His	ccg Pro	gac Asp	2052
10	gcc Ala 605	gta Val	ccc Pro	gcc Ala	ctt Leu	ttc Phe 610	cgc Arg	acc Thr	gtg Val	ccc Pro	gtc Val 615	ttc Phe	aca Thr	ctg Leu	ccc Pro	tcc Ser 620	2100
15	caa Gln	ctg Leu	cca Pro	gac Asp	ttc Phe 625	ctg Leu	Gly 999	gcc Ala	ctg Leu	cag Gln 630	cag Gln	cct Pro	cgc Arg	gcc Ala	ccg Pro 635	cgt Arg	2148
20	tcc Ser	gly ggg	cgg Arg	ctc Leu 640	caa Gln	gag Glu	aga Arg	gcg Ala	gag Glu 645	caa Gln	gtg Val	tcc Ser	cgg Arg	gcc Ala 650	ctt Leu	cag Gln	2196
20	cca Pro	gcc Ala	ctg Leu 655	gat Asp	agc Ser	tac Tyr	ttc Phe	cat His 660	ccc Pro	ccg Pro	gly aaa	acn Xaa	tcc Ser 665	gcg Ala	ccg Pro	gga Gly	2244
25	cgc Arg	999 Gly 670	gtg Val	gga Gly	cca Pro	ggg ggg	gcg Ala 675	gga Gly	cct Pro	Gly 999	gcg Ala	680 Gly 999	gac Asp	G1y 999	act Thr		2289
30	taa	ataa	agg (caga	cgct	3											2308
35	PAA DGD PFR	KETD LVQF NVHL EDPR	CDLC: GQSV: VLNV: AHQN:	LRVA GSVV SEEQ LWQA	VHLA YDCF: HFGL: ARLR:	VHGH EAAL SLYW LLTL	WEEP: GSEV! NQVQ! QSWL:	EDEE: RIWS GPPK LDAP	KFGG YTQP: PRWH CSLP:	AADL(RYEKI KNLT(AEAA	GVEE: ELNH' GPQI: LCWR.	PRNA TQQL: ITLN: APGG:	SLQA PDCR HTDL DPCQ	PLVP: VPCL(GLEV) GVVL:	SFQA WNSI CIQV PLSW	YPTARC PSCWAL: WPLEPD: ENVTVD	LQTELVL VLLEVQV PWLNVSA SVRTNIC VNSSEKL
40	DDL DDS QDG	GALW GFER VSGP	ACPM LVGA GAHG	DKYI LASA PHDA	HKRW. LCQL FRAS:	ALVW PLRV LSCV	LACL: AVDL: LPDF:	LFAA WSRR LQGR	ALSL ELSA APGS	ILLL! QGPV	KKDH AWFH CFDR	AKGW: AQRR LLHP:	LRLL: QTLQ: DAVP:	KQDVI EGGV ALFR'	RSGA VVLL TVPV	AARGRA FSPGAV	QCLQLWD ALLLYSA ALCSEWL LPDFLGA
	Rev	erse t	ransla	tion (of prii	mate,	e.g.,]	huma	n, DC	RS7	(SEQ	ID N	O: 9)	:			
45	atg	ccng	tnc	cntg	gtty	yt n	ytnw	snyt	n gc	nytn	ggnm	gnw	snca	rtg	gath	ytnwsn	60
	ytn	garm	gny	tngt	nggn	cc n	carg	aygc	n ac	ncay	tgyw	snc	cngg	nyt :	nwsn	tgymgn	120
50																	
	ytn	tggg	ayw	snga	yath	yt n	tgyy	tncc	n gg	ngay	athg	tnc	cngc	ncc	nggn	ccngtn	180
	ytn	gcnc	cna	cnca	yytn	ca r	acng	aryt	n gt	nytn	mgnt	gyc	araa	rga	racn	gaytgy	240
	ytn gay	gcnc ytnt	cna 9yy	cnca tnmg	yytn	ca r gc n	acng gtnc	aryt ayyt	n gt n gc	nytn	mgnt cayg	gnc	araa aytg	rga gga	racn rgar	gaytgy	300
55	ytn gay gay	gcnc ytnt garg	cna 9yy ara	cnca tnmg	yytn ngtn yggn	ca r gc n	acng gtnc gcng	aryt ayyt cnga	n gt n gc y yt	nytn ngtn nggn	mgnt cayg gtng	gyc gnc arg	araa aytg arcc	rga gga nmg	racn rgar naay	gaytgy ccngar gcnwsn	240 300 360
55	ytn gay gay ytn	gcnc ytnt garg carg	cna gyy ara	cnca tnmg artt argt	yytn ngtn yggn ngtn	ca r gc n gg n	acng gtnc gcng wsnt	aryt ayyt cnga	n gt n go y yt r go	nytn ngtn nggn ntay	mgnt cayg gtng ccna	gyc gnc arg cng	araa aytg arcc	rga gga nmg ntg	racn rgar naay ygtn	gaytgy	240 300 360 420

gaytgyttyg argengenyt nggnwsngar gtnmgnatht ggwsntayae nearcenmgn 540 taygaraarg arytnaayca yacncarcar ytnccngayt gymgnggnyt ngargtntgg 600 5 aaywsnathc cnwsntgytg ggcnytnccn tggytnaayg tnwsngcnga yggngayaay 660 gtncayytng tnytnaaygt nwsngargar carcayttyg gnytnwsnyt ntaytggaay 720 10 cargtncarg gnccnccnaa rccnmgntgg cayaaraayy tnacnggncc ncarathath 780 acnytnaayc ayacngayyt ngtnecntgy ytntgyathc argtntggcc nytngarcen 840 gaywsngtnm gnacnaayat htgyccntty mgngargayc cnmgngcnca ycaraayytn 900 15 tggcargcng cnmgnytnmg nytnytnacn ytncarwsnt ggytnytnga ygcnccntgy 960 wsnytneeng engargenge nytntgytgg mgngeneeng gnggngayee ntgyeareen 1020 20 ytngtnccnc cnytnwsntg ggaraaygtn acngtngayg tnaaywsnws ngaraarytn 1080 carytncarg artgyytntg ggcngaywsn ytnggnccny tnaargayga ygtnytnytn 1140 ytngaracnm gnggnccnca rgayaaymgn wsnytntgyg cnytngarcc nwsnggntgy 1200 25 acnwsnytnc cnwsnaargc nwsnacnmgn gcngcnmgny tnggngarta yytnytncar 1260 gayytncarw snggncartg yytncarytn tgggaygayg ayytnggngc nytntgggcn 1320 30 tgyccnatgg ayaartayat hcayaarmgn tgggcnytng tntggytngc ntgyytnytn 1380 ttygcngcng cnytnwsnyt nathytnytn ytnaaraarg aycaygcnaa rggntggytn 1440 mgnytnytna arcargaygt nmgnwsnggn gengengenm gnggnmgnge ngenytnytn 1500 35 ytntaywsng cngaygayws nggnttygar mgnytngtng gngcnytngc nwsngcnytn 1560 tgycarytnc cnytnmgngt ngcngtngay ytntggwanm gnmgngaryt nwangcncar 1620 40 ggnccngtng cntggttyca ygcncarmgn mgncaracny tncargargg nggngtngtn 1680 gtnytnytnt tywsneengg ngengtngen ytntgywsng artggytnea rgayggngtn 1740 wsnggnccng gngcncaygg nccncaygay gcnttymgng cnwsnytnws ntgygtnytn 1800 45 ccngayttyy tncarggnmg ngencenggn wsntaygtng gngentgytt ygaymgnytn 1860 ytneayeeng aygengtnee ngenytntty mgnaengtne engtnttyae nytneenwsn 1920 50 carytneeng ayttyytngg ngenytnear careenmgng encenmgnws nggnmgnytn 1980 cargarmgng engarcargt nwsnmgngen ytncarceng enytngayws ntayttycay 2040 ccnccnggna cnwsngcncc nggnmgnggn gtnggnccng gngcnggncc nggngcnggn 2100 55 2109 gayggnacn

Rodent, e.g., mouse, embodiment (see SEQ ID NO: 10 and 11). Predicted signal sequence indicated, but may vary by a few positions and depending upon cell type. ccaaatcgaa agcacgggag ctgatactgg gcctggagtc caggctcact ggagtgggga 60 5 agcatggctg gagaggaatt ctagcccttg ctctcccca gggacacggg gctgattgtc 120 agcaggggcg aggggtctgc cccccttgg gggggcagga cggggcctca ggcctgggtg 180 ctgtccggca cctggaag atg cct gtg tcc tgg ttc ctg ctg tcc ttg gca 231 10 Met Pro Val Ser Trp Phe Leu Leu Ser Leu Ala -15 -20 ctg ggc cga aac cct gtg gtc gtc tct ctg gag aga ctg atg gag cct 279 Leu Gly Arg Asn Pro Val Val Val Ser Leu Glu Arg Leu Met Glu Pro 15 -1 1 cag gac act gca cgc tgc tct cta ggc ctc tcc tgc cac ctc tgg gat 327 Gln Asp Thr Ala Arg Cys Ser Leu Gly Leu Ser Cys His Leu Trp Asp 20 ggt gac gtg ctc tgc ctg cct gga agc ctc cag tct gcc cca ggc cct 375 Gly Asp Val Leu Cys Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro 25 25 gtg cta gtg cct acc cgc ctg cag acg gag ctg gtg ctg agg tgt cca 423 Val Leu Val Pro Thr Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro 45 50 40 471 cag aag aca gat tgc gcc ctc tgt gtc cgt gtg gtg gtc cac ttg gcc 30 Gln Lys Thr Asp Cys Ala Leu Cys Val Arg Val Val His Leu Ala 60 gtg cat ggg cac tgg gca gag cct gaa gaa gct gga aag tct gat tca 519 Val His Gly His Trp Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser 35 75 gaa ctc cag gag tct agg aac gcc tct ctc cag gcc cag gtg gtg ctc 567 Glu Leu Gln Glu Ser Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu 40 100 90 tee tte cag gee tae eee ate gee ege tgt gee etg etg gag gte cag 615 Ser Phe Gln Ala Tyr Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln 110 115 105 45 gtg ccc gct gac ctg gtg cag cct ggt cag tcc gtg ggt tct gcg gta 663 -- Val Pro Ala Asp Leu Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val 125 120 ttt gac tgt ttc gag gct agt ctt ggg gct gag gta cag atc tgg tcc 711 50 Phe Asp Cys Phe Glu Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser 145 140 759 tac acg aag ccc agg tac cag aaa gag ctc aac ctc aca cag cag ctg Tyr Thr Lys Pro Arg Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu 55 165 160 155

													agc Ser			1 807
5	_	_							_		_		gtc Val		_	855
10													ctg Leu			903
15			_	_	-	_			_				aac Asn	_		951
20													ccc Pro 245			999
													gtc Val			1047
25													tgg Trp			1095
30													gat Asp			1143
35													cca Pro			1191
40	_		-	_							_	_	aac Asn 325	-		1239
						_	_	_		_			ccc Pro			1287
45	_	Val	Gln		Ser		 	_	_	_	_		gcg Ala	_	_	1335
50			_		-					_	_	-	tta Leu	_		1383
55	_								_	_	_	_	gaa Glu		_	1431
													gct Ala 405			1479

gga gag gag ttg ctg caa gac ttc cga tca cac cag tgt atg cag ctg Gly Glu Glu Leu Leu Gln Asp Phe Arg Ser His Gln Cys Met Gln Leu tgg aac gat gac aac atg gga tcg cta tgg gcc tgc ccc atg gac aag Trp Asn Asp Asp Asn Met Gly Ser Leu Trp Ala Cys Pro Met Asp Lys tac atc cac agg cgc tgg gtc cta gta tgg ctg gcc tgc cta ctc ttg Tyr Ile His Arg Arg Trp Val Leu Val Trp Leu Ala Cys Leu Leu Leu gct gcg gcg ctt ttc ttc ttc ctc ctt cta aaa aag gac cgc agg aaa Ala Ala Leu Phe Phe Phe Leu Leu Lys Lys Asp Arg Arg Lys geg gee egt gge tee ege aeg gee ttg ete ete eae tee gee gae gga Ala Ala Arg Gly Ser Arg Thr Ala Leu Leu Leu His Ser Ala Asp Gly gcg ggc tac gag cgc ctg gtg gga gca ctg gcg tcc gcg ttg agc cag Ala Gly Tyr Glu Arg Leu Val Gly Ala Leu Ala Ser Ala Leu Ser Gln atg cca ctg cgc gtg gcc gtg gac ctg tgg agc cgc cgc gag ctg agc Met Pro Leu Arg Val Ala Val Asp Leu Trp Ser Arg Arg Glu Leu Ser gcg cac gga gcc cta gcc tgg ttc cac cac cag cga cgc cgt atc ctg Ala His Gly Ala Leu Ala Trp Phe His His Gln Arg Arg Ile Leu cag gag ggt ggc gtg gta atc ctt ctc ttc tcg ccc gcg gcc gtg gcg Gln Glu Gly Gly Val Val Ile Leu Leu Phe Ser Pro Ala Ala Val Ala cag tgt cag cag tgg ctg cag ctc cag aca gtg gag ccc ggg ccg cat Gln Cys Gln Gln Trp Leu Gln Leu Gln Thr Val Glu Pro Gly Pro His gac gcc ctc gcc gcc tgg ctc agc tgc gtg cta ccc gat ttc ctg caa Asp Ala Leu Ala Ala Trp Leu Ser Cys Val Leu Pro Asp Phe Leu Gln ggc cgg gcg acc ggc cgc tac gtc ggg gtc tac ttc gac ggg ctg ctg Gly Arg Ala Thr Gly Arg Tyr Val Gly Val Tyr Phe Asp Gly Leu Leu His Pro Asp Ser Val Pro Ser Pro Phe Arg Val Ala Pro Leu Phe Ser ctg ccc tcg cag ctg ccg gct ttc ctg gat gca ctg cag gga ggc tgc Leu Pro Ser Gln Leu Pro Ala Phe Leu Asp Ala Leu Gln Gly Gly Cys

				gcg Ala 635													2199
5				tcc Ser													2247
10				gag Glu													2292
	taaa	aagco	ga t	cacag	gtatt	c ct	:										2314
15	MPVS	SWFLI	SLAI	GRNI	PVVVS	TERT	MEDO	וביתו	CST	TISCE	HI-WDC	יואטני	Tipgs	SLOSI	DGDI	ומיזים ע. זו	OTELV

MPVSWFLLSLALGRNPVVVSLERLMEPQDTARCSLGLSCHLWDGDVLCLPGSLQSAPGPVLVPTRLQTELVL RCPQKTDCALCVRVVVHLAVHGHWAEPEEAGKSDSELQESRNASLQAQVVLSFQAYPIARCALLEVQVPADL VQPGQSVGSAVFDCFEASLGAEVQIWSYTKPRYQKELNLTQQLPDCRGLEVRDSIQSCWVLPWLNVSTDGDN VLLTLDVSEEQDFSFLLYLRPVPDALKSLWYKNLTGPQNITLNHTDLVPCLCIQVWSLEPDSERVEFCPFRE DPGAHRNLWHIARLRVLSPGVWQLDAPCCLPGKVTLCWQAPDQSPCQPLVPPVPQKNATVNEPQDFQLVAGH PNLCVQVSTWEKVQLQACLWADSLGPFKDDMLLVEMKTGLNNTSVCALEPSGCTPLPSMASTRAARLGEELL QDFRSHQCMQLWNDDNMGSLWACPMDKYIHRRWVLVWLACLLLAAALFFFLLLKKDRRKAARGSRTALLLHS ADGAGYERLVGALASALSQMPLRVAVDLWSRRELSAHGALAWFHHQRRRILQEGGVVILLFSPAAVAQCQQW LQLQTVEPGPHDALAAWLSCVLPDFLQGRATGRYVGVYFDGLLHPDSVPSPFRVAPLFSLPSQLPAFLDALQ GGCSTSAGRPADRVERVTQALRSALDSCTSSSEAPGCCEEWDLGPCTTLE.

25

Reverse translation of rodent, e.g., mouse, DCRS7 (SEQ ID NO: 12):

atgccngtnw sntggttyyt nytnwsnytn gcnytnggnm gnaayccngt ngtngtnwsn 60 30 ytngarmgny tnatggarcc ncargayacn gcnmgntgyw snytnggnyt nwsntgycay 120 ythtgggayg gngaygtnyt ntgyythccn ggnwsnythc arwsngcncc nggnccngtn 180 35 ytngtnccna cnmgnytnca racngarytn gtnytnmgnt gyccncaraa racngaytgy 240 genythtgyg thmgngthgt ngtheayyth gengtheayg gheaytggge ngareengar 300 gargenggna arwsngayws ngarytnear garwsnmgna aygenwsnyt neargenear 360 40 gtngtnytnw snttycargc ntayccnath gcnmgntgyg cnytnytnga rgtncargtn 420 ccngcngayy tngtncarcc nggncarwsn gtnggnwsng cngtnttyga ytgyttygar 480 45 gcnwsnytng gngcngargt ncarathtgg wsntayacna arccnmgnta ycaraargar 540 ytnaayytna cncarcaryt nccngaytgy mgnggnytng argtnmgnga ywsnathcar 600 wsntgytggg tnytnccntg gytnaaygtn wsnacngayg gngayaaygt nytnytnacn 660 50 ytngaygtnw sngargarca rgayttywsn ttyytnytnt ayytnmgncc ngtnccngay 720 gcnytnaarw snytntggta yaaraayytn acnggnccnc araayathac nytnaaycay 780 55 acngayytng tncentgyyt ntgyathcar gtntggwsny tngarcenga ywsngarmgn 840 gtngarttyt gyccnttymg ngargayccn ggngcncaym gnaayytntg gcayathgcn 900 mgnytnmgng tnytnwsnec nggngtntgg carytngayg cnccntgytg yytnccnggn 960

	aargtnacny	tntgytggca	rgcnccngay	carwsnccnt	gycarccnyt	ngthcencen	1020
_	gtnccncara	araaygcnac	ngtnaaygar	ccncargayt	tycarytngt	ngcnggncay	1080
5	ccnaayytnt	gygtncargt	nwsnacntgg	garaargtnc	arytncargc	ntgyytntgg	1140
	gcngaywsny	tnggncentt	yaargaygay	atgytnytng	tngaratgaa	racnggnytn	1200
10	aayaayacnw	sngtntgygc	nytngarccn	wsnggntgya	cnccnytncc	nwsnatggcn	1260
	wsnacnmgng	cngcnmgnyt	nggngargar	ytnytncarg	ayttymgnws	ncaycartgy	1320
1.5	atgcarytnt	ggaaygayga	yaayatgggn	wsnytntggg	cntgyccnat	ggayaartay	1380
15	athcaymgnm	gntgggtnyt	ngtntggytn	gcntgyytny	tnytngcngc	ngcnytntty	1440
	ttyttyytny	tnytnaaraa	rgaymgnmgn	aargcngcnm	gnggnwsnmg	nacngcnytn	1500
20	ytnytncayw	sngcngaygg	ngcnggntay	garmgnytng	tnggngcnyt	ngcnwsngcn	1560
	ytnwsncara	tgccnytnmg	ngtngcngtn	gayytntggw	snmgnmgnga	rytnwsngcn	1620
0.5	cayggngcny	tngcntggtt	ycaycaycar	mgnmgnmgna	thytncarga	rggnggngtn	1680
25	gtnathytny	tnttywsncc	ngengengtn	gcncartgyc	arcartggyt	ncarytncar	1740
	acngtngarc	cnggnccnca	ygaygcnytn	gengentggy	tnwsntgygt	nytnccngay	1800
30	ttyytncarg	gnmgngcnac	nggnmgntay	gtnggngtnt	ayttygaygg	nytnytncay	1860
•	ccngaywsng	tnccnwsncc	nttymgngtn	gcnccnytnt	tywsnytncc	nwsncarytn	1920
25	cengenttyy	tngaygcnyt	ncarggnggn	tgywsnacnw	sngcnggnmg	nccngcngay	1980
35	mgngtngarm	gngtnacnca	rgcnytnmgn	wsngcnytng	aywsntgyac	nwsnwsnwsn	2040
	gargeneeng	gntgytgyga	rgartgggay	ytnggnccnt	gyacnacnyt	ngar	2094
40	embodiments	(DCRS8). Pri	mate, e.g., hum	nan, embodime	nt (see SEQ ID	eptor Subunit lil NO: 13 and 14 depending upo).
45	cccacgente	cgggccagca	gegggegge	ggggcgcaga	gaacggcctg	gctgggcgag	60
50	cgcacggcc	atg gcc ccg Met Ala Pro -15	tgg ctg ca Trp Leu Gl	g ctc tgc t n Leu Cys S -10	cc gtc ttc er Val Phe	ttt acg gtc Phe Thr Val -5	111
55	aac gcc tg Asn Ala Cy -1	gc ctc aac g rs Leu Asn G 1	gc tcg cag ly Ser Gln 5	ctg gct gtn Leu Ala Xaa	gcc gct gg Ala Ala Gl 10	c ggg tcc y Gly Ser	159
JJ	ggc cgc gc Gly Arg Al	eg eng gge g La Xaa Gly A	cc gac acc la Asp Thr 20	tgt agc tgg Cys Ser Trp 25	Xaa Gly Va	g ggg cca al Gly Pro 30	207

													ŧ	ţ	1
			aac Asn												255
5			tac Tyr 50												303
10			acc Thr												351
15			tgg Trp												399
20			ata Ile												447
25	_		cta Leu	-	_	 _	_				-				495
23			gaa Glu 130												543
30		_	agg Arg	_							_	_			591
35			ttc Phe		_	_	_	_	_	-					639
40			gct Ala												687
45			ggc Gly												735
45			ttc Phe 210												783
50			aag Lys												831
55	_	_	ctc Leu										_		87 <u>9</u>

			gat Asp														927
5			gtg Val														975
10			cca Pro														1023
15			cgc Arg 305														1071
20			tct Ser														1119
			ccg Pro														1167
25			cac His														1215
30			ggc Gly														1263
35			gaa Glu 385														1311
40			atc Ile														1359
	_	_	aac Asn								-		_				1407
45	gag Glu	ctc Leu	ttc Phe	ctg Leu	gtg Val 435	gcg Ala	gtg Val	tca Ser	gcc Ala	att Ile 440	gcc Ala	gaa Glu	aag Lys	ctc Leu	cgc Arg 445	cag Gln	1455
50	Ala	Lys	cag Gln	Ser 450	Ser	Ser	Ala	Ala	Leu 455	Ser	Lys	Phe	Ile	Ala 460	Val	Tyr	1503
55	Phe	Asp	tat Tyr 465	Ser	Cys	Glu	Gly	Asp 470	Val	Pro	Gly	Ile	Leu 475	Asp	Leu	Ser	1551
	acc Thr	aag Lys 480	tac Tyr	aga Arg	ctc Leu	atg Met	gac Asp 485	aat Asn	ctt Leu	cct Pro	cag Gln	ctc Leu 490	tgt Cys	tcc Ser	cac His	ctg Leu	1599

				gac Asp													; 1647
5				agg Arg													1695
10				tgc Cys 530													1743
15				cag Gln													1791
20				ttg Leu													1839
				cca Pro													1887
25				GJA aaa													1935
30	His	Gly	Gly	ctg Leu 610	Asp	Gln	Asp	Gly	Glu 615	Ala	Arg	Pro	Ala	Leu 620	Asp	Gly	1983
35				ctg Leu													2031
40				ccg Pro													2079
				tct Ser											Gln		2127
45	gaa Glu	acg Thr	tct Ser	tcc Ser	ctg Leu 675	acg Thr	gag Glu	agc Ser	gtg Val	tcc Ser 680	tcc Ser	tct Ser	tca Ser	ggc	ctg Leu 685	ggt Gly	2175
50				cct Pro 690													2223
55				gat Asp													2271
			cct Pro	ttg Leu	taa	caaa	acg a	aaag	agtc	ta a	gcat	tgcc	a ct	ttag	ctgc		2323

tgcctcctc tgattccca gctcatctcc ctggttgcat ggccacttg gagctgaggt 2383
ctcatacaag gatatttgga gtgaaatgct ggccagtact tgttctccct tgccccaacc 2443
ctttaccgga tatcttgaca aactctccaa ttttctaaaa tgatatggag ctctgaaagg 2503
catgtccata aggtctgaca acagcttgcc aaatttggtt agtccttgga tcagagcctg 2563
ttgtgggagg tagggaggaa atatgtaaag aaaaacagga agatacctgc actaatcatt 2623
cagacttcat tgagctctgc aaactttgcc tgtttgctat tggctacctt gatttgaaat 2683
gctttgtgaa aaaaggcact tttaacatca tagccacaga aatcaagtgc cagtctatct 2743
ggaatccatg ttgtattgca gataatgttc tcatttattt ttg 2786
MAPWLQLCSVFFTVNACLNGSQLAVAAGGSGRAXGADTCSWXGVGPASRNSGLYNITFKYDNCTTYLNPVGK
HVIADAQNITISQYACHDQVAVTILWSPGALGIEFLKGFRVILEELKSEGRQXQQLILKDPKQXNSSFKRTG
MESOPXLNMKFETDYFVRLSFSFIKNESNYHPFFFRTRACDLLLOPDNLACKPFWKPRNLNISOHGSDMQVS

HVIADAQNITISQYACHDQVAVTILWSPGALGIEFLKGFRVILEELKSEGRQXQQLILKDPKQXNSSFKRTG
MESQPXLNMKFETDYFVRLSFSFIKNESNYHPFFFRTRACDLLLQPDNLACKPFWKPRNLNISQHGSDMQVS
FDHAPHNFGFRFFYLHYKLKHEGPFKRKTCKQEQTTEMTSCLLQNVSPGDYIIELVDDTNTTRKVMHYALKP
VHSPWAGPIRAVAITVPLVVISAFATLFTVMCRKKQQENIYSHLDEESSESSTYTAALPRERLRPRPKVFLC
YSSKDGQNHMNVVQCFAYFLQDFCGCEVALDLWEDFSLCREGQREWVIQKIHESQFIIVVCSKGMKYFVDKK
NYKHKGGGRGSGKGELFLVAVSAIAEKLRQAKQSSSAALSKFIAVYFDYSCEGDVPGILDLSTKYRLMDNLP
QLCSHLHSRDHGLQEPGQHTRQGSRRNYFRSKSGRSLYVAICNMHQFIDEEPDWFEKQFVPFHPPPLRYREP
VLEKFDSGLVLNDVMCKPGPESDFCLKVEAAVLGATGPADSQHESQHGGLDQDGEARPALDGSAALQPLLHT
VKAGSPSDMPRDSGIYDSSVPSSELSLPLMEGLSTDQTETSSLTESVSSSSGLGEEEPPALPSKLLSSGSCK
ADLGCRSYTDELHAVAPL.

Reverse translation of primate, e.g., human, DCRS8 (SEQ ID NO: 15):

wsncarytng cngtngcngc nggnggnwsn ggnmgngcnn nnggngcnga yacntgywsn 120 tggnnnggng tnggnccngc nwsnmgnaay wsnggnytnt ayaayathac nttyaartay 180 gayaaytgya cnacntayyt naayccngtn ggnaarcayg tnathgcnga ygcncaraay 240 athacnathw sncartaygc ntgycaygay cargtngcng tnacnathyt ntggwsnccn 300 ggngcnytng gnathgartt yytnaarggn ttymgngtna thytngarga rytnaarwsn 360 garggnmgnc arnncarca rytnathytn aargayccna arcarnnnaa ywsnwsntty 420 aarmgnacng gnatggarws ncarccnnnn ytnaayatga arttygarac ngaytaytty 480 gtnmgnytnw snttywsntt yathaaraay garwsnaayt aycayccntt yttyttymgn 540 acnmgngcnt gygayytnyt nytncarccn gayaayytng cntgyaarcc nttytggaar 600 ccncayaayt tyggnttymg nttyttytay ytncaytaya arytnaarca ygarggnccn 720 ttyaarmgna aracntgyaa rcargarcar acnacngara tgacnwsntg yytnytncar 780 aaygtnwsnc cnggngayta yathathgar ytngtngayg ayacnaayac nacnmgnaar 840

gtnatgcayt aygcnytnaa recngtneay wsncentggg enggneenat hmgngengtn 900 genathaeng tneenytngt ngtnathwsn genttygena enythttyae ngtnatgtgy 960 5 mgnaaraarc arcargaraa yathtaywsn cayytngayg argarwsnws ngarwsnwsn 1020 achtayacng engenythee nmgngarmgn ythmgneenm gneenaargt nttyythtgy 1080 10 taywsnwsna argayggnca raaycayatg aaygtngtnc artgyttygc ntayttyytn 1140 cargayttyt gyggntgyga rgtngcnytn gayytntggg argayttyws nytntgymgn 1200 garggncarm gngartgggt nathcaraar athcaygarw sncarttyat hathgtngtn 1260 15 tgywsnaarg gnatgaarta yttygtngay aaraaraayt ayaarcayaa rggnggnggn 1320 mgnggnwsng gnaarggnga rytnttyytn gtngcngtnw sngcnathgc ngaraarytn 1380 20 mgncargcna arcarwsnws nwsngcngcn ytnwsnaart tyathgcngt ntayttygay 1440 taywsntgyg arggngaygt nccnggnath ytngayytnw snacnaarta ymgnytnatg 1500 gayaayytnc cncarytntg ywsncayytn caywsnmgng aycayggnyt ncargarccn 1560 25 ggncarcaya cnmgncargg nwsnmgnmgn aaytayttym gnwsnaarws nggnmgnwsn 1620 ytntaygtng cnathtgyaa yatgcaycar ttyathgayg argarccnga ytggttygar 1680 30 aarcarttyg tnccnttyca yccnccnccn ytnmgntaym gngarccngt nytngaraar 1740 ttygaywang gnytngtnyt naaygaygtn atgtgyaarc cnggnccnga rwangaytty 1800 tgyytnaarg tngargenge ngtnytnggn genaenggne engengayws neareaygar 1860 35 wsncarcayg gnggnytnga ycargayggn gargcnmgnc cngcnytnga yggnwsngcn 1920 genythcare enythythca yaengthaar genggnwsne enwsngayat geenmgngay 1980 40 wsnggnatht aygaywsnws ngtnccnwsn wsngarytnw snytnccnyt natggarggn 2040 ytnwsnacng aycaracnga racnwsnwsn ytnacngarw sngtnwsnws nwsnwsnggn 2100 ytnggngarg argarcence ngenytneen wsnaarytny tnwsnwsngg nwsntgyaar 2160 45 gengayytng gntgymgnws ntayaengay garytneayg engtngenee nytn 2214

Table 4: Nucleotide and polypeptide sequences of DNAX Cytokine Receptor Subunit like embodiments (DCRS9). Primate, e.g., human, embodiment (see SEQ ID NO: 16 and 17). Predicted signal sequence indicated, but may vary by a few positions and depending upon cell type.

atg ggg agc tcc aga ctg gca gcc ctg ctc ctg cct ctc ctc ctc ata 48

55 Met Gly Ser Ser Arg Leu Ala Ala Leu Leu Leu Pro Leu Leu Leu Ile

-20 -15 -10

			gac Asp -5														
5			aac Asn		_	-		-	_			-		-			144
10			ctt Leu														192
15		_	gag Glu				-		_	_	_	_	_			_	240
20	_	_	gct Ala 60	_	_				_						_	_	288
20			aaa Lys	_					_				_		_	_	336
25	_		ctg Leu		_		_	_	_		_	_		_	_	_	384
30	_	-	atc Ile							_						-	432
35		_	cta Leu														480
40			gat Asp 140														528
			tgg Trp														576
45			gag Glu														624
50	_	_	gtg Val	_		_		_		_	_		_	_		_	672
55			ccc Pro														720
		_	cct Pro 220		_			-		_	_	_			_		768

_				gag Glu													816
5				gcc Ala													864
10				cag Gln													912
15				ctg Leu 285													960
20				gac Asp		_		_	_	_	_						1008
25				gag Glu													1056
				ttc Phe													1104
30				tct Ser													1152
35				att Ile 365													1200
40				agc Ser													1248
45				gtc Val													1296
		His		ttg Leu													1344
50	atc Ile	ctg Leu	gca Ala	ctg Leu	ctg Leu 430	gcc Ala	ctc Leu	ctc Leu	acc Thr	cta Leu 435	Leu	ggt Gly	gtt Val	gtt Val	ctg Leu 440	gcc Ala	1392
55				cgg Arg 445													1440

			_	cac His			_	_			_		_	_			1488
5				gaa Glu													1536
10				ctg Leu													1584
15				tgg Trp													1632
20				ctg Leu 525													1680
20	gac Asp			gcc Ala													1728
25	_	_	_	ctg Leu		_				_		_	_	_		-	1776
30			_	ccg Pro	_	_	_	_	_	_		_	_	_	_	-	1824
35	_	_	_	ctg Leu	_		_	_	-					_		_	1872
40		_		ggc Gly 605	-					_	_		_				1920
40				agc Ser													1968
45	ggt Gly	_	gcag	agc	tcca	ccgc	ag t	cccg	ggtg	t ct	gcgg	ccgc	t				2012
50	AVC FAL WAL DYS	ASIC KGPN ECEE QHTQ	CQVA LRIQ LSSP MVMA	QVFN RHGK YDVQ LTLR	GASS VFPD KIVS CPLK	TSWC WTHK GGHT LEAA	RNPK GMEV VELP LCQR	SLPH GTGY YEFL HDWH	SSSI NRRW LPCL TLCK	GDTR VQLS CIEA DLPN	CQHL: GGPE: SYLQ: ATAR:	LRGS FSFD EDTV ESDG	CCLV LLPE RRKK WYVL	VTCL ARAII CPFQ: EKVD	RRAI' RVTI SWPE LHPQ	TFPSPP SSGPEV AYGSDF LCFKVQ	CESGTVP QTSPTRD SVRLCHQ WKSVHFT PWFSFGN SDVQFAW
55	KHL ALG PLL	LCPD GGRD	VSYR VIVD FSRL	HLGL LWEG	LILA RHVA	LLAL RVGP	LTLL LPWL	GVVL WAAR	ALTC TRVA	RRPQ REQG	SGPG TVLL	PARP LWSG	VLLL ADLR	HAAD PVSG	SEAQ PDPR	RRLVGA AAPLLA	LAELLRA LLHAAPR LCSRLER

Reverse translation of primate, e.g., human, DCRS9 (SEQ ID NO: 18):

atgggnwsnw snmgnytngc ngcnytnytn ytnccnytny tnytnathgt nathgayytn 60 5 wsngaywsng enggnathgg nttymgneay ytneeneayt ggaayaenmg ntgyeenytn 120 genwancaya engargtnyt neenathwan ytngengene enggnggnee nwanwaneen 180 10 carwsnytng gngtntgyga rwsnggnacn gtnccngcng tntgygcnws nathtgytgy 240 cargingene arginityaa yggngenwsn wsnachwsni ggigymgnaa yeenaarwsn 300 ytnceneayw snwsnwsnat hggngayaen mgntgyeare ayytnytnmg nggnwsntgy 360 15 tgyytngtng tnacntgyyt nmgnmgngcn athacnttyc cnwsnccncc ncaracnwsn 420 ccnacnmgng ayttygcnyt naarggnccn aayytnmgna thcarmgnca yggnaargtn 480 20 ttyccngayt ggacncayaa rggnatggar gtnggnacng gntayaaymg nmgntgggtn 540 carytnwsng gnggnccnga rttywsntty gayytnytnc cngargcnmg ngcnathmgn 600 gtnacnathw snwsnggncc ngargtnwsn gtnmgnytnt gycaycartg ggcnytngar 660 25 tgygargary tnwsnwsncc ntaygaygtn caraarathg tnwsnggngg ncayacngtn 720 garytneent aygarttyyt nytneentgy ytntgyathg argenwanta yytneargar 780 30 gayacngtnm gnmgnaaraa rtgyccntty carwsntggc cngargcnta yggnwsngay 840 ttytggaarw sngtncaytt yacngaytay wsncarcaya cncaratggt natggcnytn 900 acnytnmgnt gyccnytnaa rytngargcn gcnytntgyc armgncayga ytggcayacn 960 35 ytntgyaarg ayytncenaa ygenaengen mgngarwsng ayggntggta ygtnytngar 1020 aargtngayy tncayccnca rytntgytty aargtncarc cntggttyws nttyggnaay 1080 40 wsnwsncayg tngartgycc ncaycaracn ggnwsnytna cnwsntggaa ygtnwsnatg 1140 gayacncarg cncarcaryt nathytncay ttywsnwsnm gnatgcaygc nacnttywsn 1200 gengentggw snytneengg nytnggnear gayaenytng theeneengt ntayaength 1260 45 wsncargtnt ggmgnwsnga ygtncartty gcntggaarc ayytnytntg yccngaygtn 1320 wsntaymgnc ayytnggnyt nytnathytn gcnytnytng cnytnytnac nytnytnggn 1380 50 gtngtnytng cnytnacntg ymgnmgnccn carwsnggnc cnggnccngc nmgnccngtn 1440 ytnytnytnc aygengenga ywsngargen carmgnmgny tngtnggnge nytngengar 1500 ytnytnmgng cngcnytngg nggnggnmgn gaygtnathg tngayytntg ggarggnmgn 1560 55 caygingenm gnginggnee nytneenigg yintgggeng enmgnaenmg ngingenmgn 1620 garcarggna engtnytnyt nytntggwsn ggngengayy tnmgneengt nwsnggneen 1680

	gayc	cnmg	ng c	ngcn	ccny	t ny	tngc	nytn	ytn	cayg	cng	cncc	nmgn	cc n	ytņy	tnytn	174
	ytng	cnta	yt t	ywsn	mgny	t nt	gygc	naar	ggn	gaya	thc	cncc	nccn	yt r	mgnig	cnytn	180
5	ccnm	gnta	ym g	nytn	ytnm	g ng	ayyt	nccn	mgn	ytny	tnm	gngc	nytn	ga y	gcnm	gnccn	186
	ttyg	cnga	rg c	nacn	wsnt	g gg	gnmg	nytn	ggn	gcnm	gnc	armg	nmgn	.ca r	ws'nm	gnytn	192
10	gary	tntg	yw s	nmgn	ytng	a rm	gnga	rgcn	gcn	mgny	tng	cnga	yytn	.gg r	1		197
	Rode	nt, e., ated,	g., mo but m	ouse, o ay va	embo ry by	dimer a few	nt (see posi	e SEQ tions	ID N and d	IO: 19	9 and ling v	20). ipon c	Predi ell ty	cted : pe.	signal	sequen	ce
15	cago	tccg	igg c	cagg	ccct	g ct	gccc	tctt	gca	gaca	ıgga	aaga	catg	gt d	ctctc	cgccc	60
	tgat	ccta	ıca g	jaagc	tc a	tg g Met G	gg a	er F	cc a Pro A 20	ga c rg I	tg g eu F	jca g Mla A	la I	tg d eu I 15	ctc c Seu I	tg eu	110
20	tct Ser	ctc Leu	ccg Pro -10	cta Leu	ctg Leu	ctc Leu	atc Ile	ggc Gly -5	ctc Leu	gct Ala	gtg Val	tct Ser -1	gct Ala 1	cgg Arg	gtt Val	gcc Ala	158
25	tgc Cys 5	ccc Pro	tgc Cys	ctg Leu	cgg Arg	agt Ser 10	tgg Trp	acc Thr	agc Ser	cac His	tgt Cys 15	ctc Leu	ctg Leu	gcc Ala	tac Tyr	cgt Arg 20	206
30	gtg Val	gat Asp	aaa Lys	cgt Arg	ttt Phe 25	gct Ala	ggc Gly	ctt Leu	cag Gln	tgg Trp 30	ggc Gly	tgg Trp	ttc Phe	cct Pro	ctc Leu 35	ttg Leu	254
35	gtg Val	agg Arg	aaa Lys	tct Ser 40	aaa Lys	agt Ser	cct Pro	cct Pro	aaa Lys 45	ttt Phe	gaa Glu	gac Asp	tat Tyr	tgg Trp 50	agg Arg	cac His	302
40	agg Arg	aca Thr	cca Pro 55	gca Ala	tcc Ser	ttc Phe	cag Gln	agg Arg 60	aag Lys	ctg Leu	cta Leu	ggc Gly	agc Ser 65	cct Pro	tcc Ser	ctg Leu	350
40	tct Ser	gag Glu 70	gaa Glu	agc Ser	cat His	cga Arg	att Ile 75	tcc Ser	atc Ile	ccc Pro	tcc Ser	tca Ser 80	gcc Ala	atc Ile	tcc Ser	cac His	398
45	aga Arg 85	ggc	caa Gln	cgc Arg	acc Thr	aaa Lys 90	agg Arg	gcc Ala	cag Gln	cct Pro	tca Ser 95	gct Ala	gca Ala	gaa Glu	gga Gly	aga Arg 100	446
50	gaa Glu	cat His	ctc Leu	cct Pro	gaa Glu 105	gca Ala	gly	tca Ser	caa Gln	aag Lys 110	tgt Cys	gga Gly	gga Gly	cct Pro	gaa Glu 115	ttc Phe	494
55	tcc Ser	ttt Phe	gat Asp	ttg Leu 120	ctg Leu	ccc Pro	gag Glu	gtg Val	cag Gln 125	gct Ala	gtt Val	cgg Arg	gtg Val	act Thr 130	att Ile	cct Pro	542

		Gly															590
5		gaa Glu 150															638
10		cac His															686
15		gag Glu															734
20		tcc Ser													Ser		782
-		gct Ala							ac								808
25	WRH:	RTPA	SFQR VTIP	KLLG: AGPK	SPSL: ARVR	SEES!	HRIS: WALE	IPSS	AISH:	RGQR'	TKRA	QPSA	AEGR:	EHLP	EAGS	QKCGGP	PPKFEDY EFSFDLL QEDTVRR
30	Rev	erse 1	transl	lation	of ro	dent	, e.g.,	, mou	ıse, I	CRS	9 (SI	EQ II	OM O	: 21)	:		
	atg	ggnw	snc	cnmg:	nytn	gc n	gcny	tnyt	n yt:	nwsn	ytnc	cny	tnyt	nyt :	nath	ggnytn	60
35	gcn	gtnw	sng	cnmg	ngtn	gc n	tgyc	cntg	y yt	nmgn	wsnt	gga	cnws	nca	ytgy	ytnytn	120
	gcn	taym	gng	tnga	yaarı	mg n	ttyg	cngg:	n yt	ncar	tggg	gnt	ggtt	ycc	nytn	ytngtn	180
40	mgn	aarw	sna	arws	nccn	cc n	aart	tyga	r ga	ytay	tggm	gnc	aymg	nac	nccn	gcnwsn	240
	tty	carm	gna	aryt	nytn	gg n	wsnc	cnws	n yt	nwsn	garg	arw	snca	X mg	nath	wsnath	300
	ccn	wsnw	sng	cnat	hwsn	ca y	mgng	gnca	r mg	nacn	aarm	gng	cnca	rcc	nwsn	gengen	360
45	gar	ggnm	gng	arca	yytn	cc n	garg	cngg	n ws	ncar	aart	aya	gngg	ncc	ngar	ttywsn	420
*** *****	tty	gayy	tny	tncc	ngar	gt n	carg	cngt	n mg	ngtn	acnā	thc	cngc	ngg	nccn	aargcn	480
50	mgn	gtnm	gny	tntg	ytay	ca r	tggg	cnyt	n ga	rtgy	garg	ауу	tnws	nws	nccn	ttygay	540
	acn	cara	ara	thgt	nwsn	gg n	ggnc	ayac	n gt	ngay	ytnc	cnt	ayga	rtt	yytn	ytnccn	600
	tgy	atgt	gya	thga	rgcn	ws n	tayy	tnca	r ga	rgay	acng	tnm	gnmg	naa	rwsn	gtnccn	660
55	wsn	mgng	cng	gnyt	naar	yt n	atgg	cnca	r ac	nwsn	ggnw	snc	arta	ygc	nwsn	ytnacn	720
	acn	gcnw	sn														729

Table 5: Nucleotide and polypeptide sequences of DNAX Cytokine Receptor Subunit like embodiments (DCRS10). Primate, e.g., human, embodiment (see SEQ ID NO: 22 and 23). ttttgagcag aggetteeta ggeteegtag aaatttgeat acagetteea etteetgett 60 5 cagageetgt tettetaett acetgggeee ggagaaggtg gagggagaeg agaageegee 120 gagagccgac taccetecgg geceagtetg tetgteegtg gtggatetaa gaaactaga 179 10 atg aac cga agc att cct gtg gag gtt gat gaa tca gaa cca tac cca 227 Met Asn Arg Ser Ile Pro Val Glu Val Asp Glu Ser Glu Pro Tyr Pro agt cag ttg ctg aaa cca atc cca gaa tat tcc ccg gaa gag gaa tca 275 15 Ser Gln Leu Leu Lys Pro Ile Pro Glu Tyr Ser Pro Glu Glu Glu Ser gaa cca cct gct cca aat ata agg aac atg gca ccc aac agc ttg tct 323 Glu Pro Pro Ala Pro Asn Ile Arg Asn Met Ala Pro Asn Ser Leu Ser 20 40 gca ccc aca atg ctt cac aat tcc tcc gga gac ttt tct caa gct cac Ala Pro Thr Met Leu His Asn Ser Ser Gly Asp Phe Ser Gln Ala His 25 tca acc ctg aaa ctt gca aat cac cag cgg cct gta tcc cgg cag gtc Ser Thr Leu Lys Leu Ala Asn His Gln Arg Pro Val Ser Arg Gln Val 30 acc tgc ctg cgc act caa gtt ctg gag gac agt gaa gac agt ttc tgc Thr Cys Leu Arg Thr Gln Val Leu Glu Asp Ser Glu Asp Ser Phe Cys 90 agg aga cac cca ggc ctg ggc aaa gct ttc cct tct ggg tgc tct gca 515 35 Arg Arg His Pro Gly Leu Gly Lys Ala Phe Pro Ser Gly Cys Ser Ala gtc agc gag cct gcg tct gag tct gtg gtt gga gcc ctc cct gca gag Val Ser Glu Pro Ala Ser Glu Ser Val Val Gly Ala Leu Pro Ala Glu 40 120 cat cag ttt tca ttt atg gaa aaa cgt aat caa tgg ctg gta tct cag His Gln Phe Ser Phe Met Glu Lys Arg Asn Gln Trp Leu Val Ser Gln 45 ctt toa gog got tot oot gac act ggo cat gac toa gac aaa toa gac Leu Ser Ala Ala Ser Pro Asp Thr Gly His Asp Ser Asp Lys Ser Asp 155 50 caa agt tta cct aat gcc tca gca gac tcc ttg ggc ggt agc cag gag 707 Gln Ser Leu Pro Asn Ala Ser Ala Asp Ser Leu Gly Gly Ser Gln Glu atg gtg caa cgg ccc cag cct cac agg aac cga gca ggc ctg gat ctg 755 55 Met Val Gln Arg Pro Gln Pro His Arg Asn Arg Ala Gly Leu Asp Leu 190 185 180

	cca Pro	acc Thr	ata Ile 195	gac Asp	acg Thr	gga Gly	tat Tyr	gat Asp 200	tcc Ser	cag Gln	ccc Pro	cag Gln	gat Asp 205	gtc Val	ctģ Leu	gg'c Gly	1 803
5	atc Ile	agg Arg 210	cag Gln	ctg Leu	gaa Glu	agg Arg	ccc Pro 215	ctg Leu	ccc Pro	ctc Leu	acc Thr	tcc Ser 220	gtg Val	tgt Cys	tac Týr	ccc Pro	851
10				ccc Pro													899
15	cct Pro	cag Gln	agg Arg	tat Tyr	cca Pro 245	gca Ala	tgt Cys	gca Ala	cag Gln	atg Met 250	ctg Leu	cct Pro	ccc Pro	aat Asn	ctt Leu 255	tcc Ser	947
20				cca Pro 260													995
20				cca Pro													1043
25				ccg Pro													1091
30				cac His													1139
35				gaa Glu													1187
40	ctt Leu	cca Pro	agg Arg	cac His 340	cag Gln	gac Asp	cag Gln	cca Pro	cat His 345	cac His	cag Gln	cca Pro	cct Pro	aat Asn 350	aga Arg	gct Ala	1235
				ejà aaa													1283
45				cct Pro													1331
50	cct Pro 385	cca Pro	gcc Ala	aga Arg	gga Gly	act Thr 390	cta Leu	aaa Lys	aca Thr	agc Ser	aat Asn 395	ttg Leu	cca Pro	gaa Glu	gaa Glu	ttg Leu 400	1379
55				ttt Phe													1427
				aac Asn 420						Gly							1475

F	ata Ile	ttt Phe	gag Glu 435	gat Asp	aga Arg	atc Ile	cga Arg	ggc Gly 440	att Ile	gat Asp	atc Ile	att Ile	aaa Lys 445	tgg Trp	atg Met	gag Glu	1523
5	cgc Arg	tac Tyr 450	ctt Leu	agg Arg	gat Asp	aag Lys	acc Thr 455	gtg Val	atg Met	ata Ile	atc Ile	gta Val 460	gca Ala	atc Ile	agc Ser	ccc Pro	1571
10								ggc Gly									1619
15	gag Glu	cat His	Gly	tta Leu	cat His 485	act Thr	aag Lys	tac Tyr	att Ile	cat His 490	cga Arg	atg Met	atg Met	cag Gln	att Ile 495	gag Glu	1667
20	ttc Phe	ata Ile	aaa Lys	caa Gln 500	gga Gly	agc Ser	atg Met	aat Asn	ttc Phe 5 0 5	aga Arg	ttc Phe	atc Ile	cct Pro	gtg Val 510	ctc Leu	ttc Phe	1715
25	cca Pro	aat Asn	gct Ala 515	aag Lys	aag Lys	gag Glu	cat His	gtg Val 520	ccc Pro	acc Thr	tgg Trp	ctt Leu	cag Gln 525	aac Asn	act Thr	cat His	1763
23	gtc Val	tac Tyr 530	agc Ser	tgg Trp	ccc Pro	aag Lys	aat Asn 535	aaa Lys	aaa Lys	aac Asn	atc Ile	ctg Leu 540	ctg Leu	cgg Arg	ctg Leu	ctg Leu	1811
30								cct Pro									1859
35	_		gtt Val			tga	cacc	gtt (catc	ccca	ga t	cact	gagg	c ca	ggcc	atgt	1914
	ttg	gggc	ctt	gttc	tgac	ag c	attc	tggc	t ga	ggct	ggtc	ggt	agca	ctc	ctgg	ctggtt	1974
40	ttt	ttct	gtt	cctc	cccg	ag a	ggcc	ctct	g gc	cccc	agga	aac	ctgt	tgt	gcag	agctct	2034
	tcc	ccgg	aga	cctc	caca	ca c	cctg	gctt	t ga	agtg	gagt	ctg	tgac	tgc	tctg	cattct	2094
45	ctg	cttt	taa	aaaa	acca	tt g	cagg	tgcc	a gt	gtcc	cata	tgt	tcct	cct	gaca	gtttga	2154
45	tgt	gtcc	att	ctgg	gcct	ct c	agtg	ctta	g ca	agta	gata	atg	taag	gga	tgtg	gcagca	2214
	aat	ggaa	atg	acta	caaa	ca c	tctc	ctat	c aa	tcac	ttca	ggc	tact	ttt	atga	gttagc	2274
50	cag	atgc	ttg	tgta	tcct	ca g	acca	aact	g at	tcat	gtac	aaa	taat	aaa	atgt	ttactc	2334
	ttt	tgta	aaa	aaaa	aaaa	aa a	aaaa	aaaa	g aa	aaaa	aaaa	aaa					237

MNRSIPVEVDESEPYPSQLLKPIPEYSPEESEPPAPNIRNMAPNSLSAPTMLHNSSGDFSQAHSTLKLANH QRPVSRQVTCLRTQVLEDSEDSFCRRHPGLGKAFPSGCSAVSEPASESVVGALPAEHQFSFMEKRNQWLVSQ LSAASPDTGHDSDKSDQSLPNASADSLGGSQEMVQRPQPHRNRAGLDLPTIDTGYDSQPQDVLGIRQLERPL PLTSVCYPQDLPRPLRSREFPQFEPQRYPACAQMLPPNLSPHAPWNYHYHCPGSPDHQVPYGHDYPRAAYQQ VIQPALPGQPLPGASVRGLHPVQKVILNYPSPWDQEERPAQRDCSFPGLPRHQDQPHHQPPNRAGAPGESLE CPAELRPQVPQPPSPAAVPRPPSNPPARGTLKTSNLPEELRKVFITYSMDTAMEVVKFVNFLLVNGFQTAID IFEDRIRGIDIIKWMERYLRDKTVMIIVAISPKYKQDVEGAESQLDEDEHGLHTKYIHRMMQIEFIKQGSMN FRFIPVLFPNAKKEHVPTWLQNTHVYSWPKNKKNILLRLLREEEYVAPPRGPLPTLQVVPL

10

5

Reverse translation of primate, e.g., human, DCRS10 (SEQ ID NO: 24):

15	atgaaymgnw	snathccngt	ngargtngay	garwsngarc	cntayccnws	ncarytnytn	60
13	aarccnathc	cngartayws	nccngargar	garwsngarc	cnccngcncc	naayathmgn	120
	aayatggcnc	cnaaywsnyt	nwsngcnccn	acnatgytnc	ayaaywsnws	nggngaytty	180
20	wsncargcnc	aywsnacnyt	naarytngcn	aaycaycarm	gnccngtnws	nmgncargtn	240
	acntgyytnm	gnacncargt	nytngargay	wsngargayw	snttytgymg	nmgncayccn	300
25	ggnytnggna	argenttyce	nwanggntgy	wsngcngtnw	sngarcenge	nwsngarwsn	360
23	gtngtnggng	cnytneenge	ngarcaycar	ttywsnttya	tggaraarmg	naaycartgg	420
	ytngtnwsnc	arytnwsngc	ngcnwsnccn	gayacnggnc	aygaywsnga	yaarwsngay	480
30	carwsnytnc	cnaaygcnws	ngcngaywsn	ytnggnggnw	sncargarat	ggtncarmgn	540
	ccncarccnc	aymgnaaymg	ngenggnytn	gayytnccna	cnathgayac	nggntaygay	600
35	wsncarccnc	argaygtnyt	nggnathmgn	carytngarm	gnccnytncc	nytnacnwsn	660
<i>33</i> .	gtntgytayc	cncargayyt	nccnmgnccn	ytnmgnwsnm	gngarttycc	ncarttygar	720
	ccncarmgnt	ayccngcntg	ygcncaratg	ytneeneena	ayytnwsncc	ncaygeneen	780
40	tggaaytayc	aytaycaytg	yccnggnwsn	ccngaycayc	argtnccnta	yggncaygay	840
	tayccnmgng	cngcntayca	rcargtnath	carcengeny	tnccnggnca	recnytneen	900
45	ggngcnwsng	tnmgnggnyt	ncaycongtn	caraargtna	thytnaayta	yccnwsnccn	960
	tgggaycarg	argarmgncc	ngcncarmgn	gaytgywsnt	tyccnggnyt	nccnmgncay	1020
	cargaycarc	cncaycayca	rccnccnaay	mgngcnggng	cnccnggnga	rwsnytngar	1080
50	tgyccngcng	arytnmgncc	ncargtnccn	carcencenw	snccngcngc	ngtnccnmgn	1140
	ccnccnwsna	ayccnccngc	nmgnggnacn	ytnaaracnw	snaayytncc	ngargarytn	1200
55	mgnaargtnt	tyathacnta	ywsnatggay	acngcnatgg	argtngtnaa	rttygtnaay	1260
	ttyytnytng	tnaayggntt	ycaracngcn	athgayatht	tygargaymg	nathmgnggn	1320
	athgayatha	thaartggat	ggarmgntay	ytnmgngaya	aracngtnat	gathathgtn	1380

	gcnathwsnc	cnaartaya	a rcarga	ygtn gar	ggngcng	arwsncar	yt ngay	gargay _;	1440
	garcayggny	tncayacna	a rtayat	hcay mgn	atgatgc	arathgar	tt yath	aarcar	1500
5	ggnwsnatga	ayttymgnt	t yathco	ngtn ytn	ittyccna	aygcnaar	aa rgar	caygtn	1560
	ccnacntggy	/ tncaraaya	c ncaygt	ntay wsr	ntggccna	araayaar	aa raay	athytn	1620
	ytnmgnytny	tnmgngarg	a rgarta	ygtn gcr	ccnccnm	gnggnccn	yt nccn	acnytn	1680
10	cargtngtno	cnytn							1695
15	Rodent, e.g.,	mouse, embo	diment (see	e SEQ ID 1	NO: 25 and	26).			
	cag gac ct Gln Asp Le	cc cct ggg eu Pro Gly 5	cct ctg Pro Leu	agg tcc Arg Ser	agg gaa Arg Glu 10	ttg cca Leu Pro	cct cag Pro Gln 15	ttt Phe	48
20	gaa ctt ga Glu Leu Gl	ag agg tat lu Arg Tyr 20	cca atg Pro Met	aac gcc Asn Ala 25	cag ctg Gln Leu	ctg ccg Leu Pro	ccc cat Pro His 30	cct Pro	96
25	Ser Pro Gl	ag gcc cca ln Ala Pro 35	tgg aac Trp Asn	tgt cag Cys Gln 40	tac tac Tyr Tyr	tgc ccc Cys Pro 45	gga ggg Gly Gly	ccc Pro	144
30	tac cac ca Tyr His Hi	ac cag gtg is Gln Val	cca cac Pro His 55	ggc cat Gly His	ggc tac Gly Tyr	cct cca Pro Pro 60	gca gca Ala Ala	gcc Ala	192
25		aa gta ctc ln Val Leu							240
35	gca agg go Ala Arg Al	ca aga ggc la Arg Gly 85	cca cgc Pro Arg	cct gtg Pro Val	cag aag Gln Lys 90	gtc atc Val Ile	ctg aat Leu Asr 95	Asp	288
40	tcc agc co Ser Ser Pr	cc caa gac ro Gln Asp 100	caa gaa Gln Glu	gag aga Glu Arg 105	cct gca Pro Ala	cag aga Gln Arg	gac tto Asp Phe 110	tct Ser	336
45	Phe Pro A:	gg ctc ccg rg Leu Pro 15	agg gac Arg Asp	cag ctc Gln Leu 120	tac cgc Tyr Arg	cca cca Pro Pro 125	tct aat Ser Asr	gga Gly	384
50	gtg gaa go Val Glu A	cc cct gag la Pro Glu	gag tcc Glu Ser 135	ttg gac Leu Asp	ctt cct Leu Pro	gca gag Ala Glu 140	ctg aga	cca Pro	432
55	cat ggt co His Gly P 145	cc cag gct ro Gln Ala	cca tcc Pro Ser 150	cta gct Leu Ala	gcc gtg Ala Val 155	Pro Arg	ccc cct Pro Pro	agc Ser 160	480
JJ	aac ccc t Asn Pro L	ta gcc cga eu Ala Arg 165	gga act Gly Thr	cta aga Leu Arg	acc ago Thr Ser 170	aat ttg Asn Leu	cca gaa Pro Gli 17!	ı Glu	528

													gcc Ala				:576
5													caa Gln 205				624
10													att Ile				672
15													gta Val				720
20													cag Gln				768
20													atg Met				816
25	gag Glu												atc Ile 285				864
30								His					ctt Leu				912
35													ctg Leu				960
40													cct Pro				1008
.0					ccc Pro				ggc (cact	ccag	ct ca	agtg	ccag	С		1056
45	_ctg	ttct	cac a	agca	ttct	tc ta	agcg	gagc	t gg	ctgg	tggc	acc	cagg	ccc '	tgga	acacct	1116
,	ctt	ctaca	aga 🤅	gtcc	tctg	tc to	cctg	agtc	t ga	gttg	tcct	cgc	tggg	ctt (ccag	agcttc	1176
50	agt	gcct	gga	tgct	gcag	gt g	acag	aaac	a aa	catc	tatg	acc	acaa	aaa	ctct	catcac	1236
	ttc	agct	act '	ttta	tgag	tc g	gtca	gatg	c tc	tgtg [.]	tcct	tag	acca	gtc	taaa	tcatgc	1296
	tca	aata	ata a	aaat	gatt	at t	cttt	gt									1323
55	LPG HGP GID	QVLP(QAPS) IIKW	GARA LAAV MERY	RGPR PRPP LRDK	PVQK SNPL IVMI	VILN ARGT IVAI	DSSP LRTS SPKY	QDQE: NLPE: KQDV:	ERPA ELRK EGAE	QRDF: VFIT SQLD:	SFPR: YSMD' EDEH	LPRDO TAME GLHT:	QLYR VVKF	PPSN VNFL RMMQ	GVEA LVNG	PEESLD FQTAID	QQVLQPA LPAELRP IFEDRIR FRFIPVL

FPNAKKEHVPTWLQNTHVYSWPKNKKNILLRLLREEEYVAPPRGPLPTLQVVPL.

Reverse translation of rodent, e.g., mouse, DCRS6 (SEQ ID NO: 27):

cargayytnc enggneenyt nmgnwsnmgn garytneene encarttyga rytngarmgn 60 5 tayccnatga aygcncaryt nytnccnccn cayccnwsnc cncargcncc ntggaaytgy 120 cartaytayt gycenggngg neentaycay caycargtne encayggnea yggntayeen 180 10 congongong entaycarca rgtnythcar congonytho chggncargt nythconggn 240 genmgngenm gnggneenmg neengtnear aargtnathy tnaaygayws nwsneencar 300 gaycargarg armgnccngc ncarmgngay ttywsnttyc cnmgnytncc nmgngaycar 360 15 ytntaymgnc cnccnwsnaa yggngtngar gencengarg arwsnytnga yytneengen 420 garytnmgnc cncayggncc ncargencen wsnytngeng engtneenmg ncencenwsn 480 20 aayccnytng cnmgnggnac nytnmgnacn wsnaayytnc cngargaryt nmgnaargtn 540 ttyathacnt aywsnatgga yacngcnatg gargtngtna arttygtnaa yttyytnytn 600 gtnaayggnt tycaracngc nathgayath ttygargaym gnathmgngg nathgayath 660 25 athaartgga tggarmgnta yytnmgngay aaracngtna tgathathgt ngcnathwsn 720 ccnaartaya arcargaygt ngarggngcn garwsncary tngaygarga ygarcayggn 780 30 ytncayacna artayathca ymgnatgatg carathgart tyathwsnca rggnwsnatg 840 aayttymgnt tyathccngt nytnttyccn aaygcnaara argarcaygt nccnacntgg 900 ytncaraaya cncaygtnta ywsntggccn aaraayaara araayathyt nytnmgnytn 960 35 ytnmgngarg argartaygt ngcnccnccn mgnggnccny tnccnacnyt ncargtngtn 1020 1026 ccnytn 40

Table 6: Alignment of the cytoplasmic portions of various cytokine receptor subunits. The IL-17R_Hu (SEQ ID NO: 28) is GenBank AAB99730.1(U58917), gi|7657230; the IL-17R_Mu (SEQ ID NO: 29) is GenBank AAC52357.1(U31993), gi|6680411; the IL-17R_Ce (SEQ ID NO: 30) is GenBank AAA811100.1(U39997), gi|1353171; and the DCRS6_Ce (SEQ ID NO: 31) is EMBCAA90543.1(Z50177), gi|7503597. Of particular interest are motifs or features corresponding, in primate DCRS8 to: R/K at 339/340; D/E at 348/349; alpha helical regions from H353-Q365, C370-S381, E389-H396, K410-D414, and D485-H495; beta sheet regions correspond to F400-V404 and F458-Y462; E at 431; E/D at 442/443; Y/F at 458; D/E at 468-470; Y/F at 481; and Q/R/F at 523.

		in the second of
	DCRS7 Mu	RTALLLHSADG-AGYERLVGALASALSQMPLRVAVDLWSRRE-LSAHGALAWFHHQR
	DCRS7_Hu	RAALLLYSADD-SGFERLVGALASALCQLPLRVAVDLWSRRE-LSAQGPVAWFHAQR
	_	RAMINITATION DI LEGITATION DEL MACCO MENTAL DI LEGITATION
_	IL-17R_Hu	RKVWIIYSADH-PLYVDVVLKFAQFLLTACGTEVALDLLEEQA-ISEAGVMTWVGRQK
5	IL-17R_Mu	RKVWIVYSADH-PLYVEVVLKFAQFLITACGTEVALDLLEEQV-ISEVGVMTWVSRQK
	DCRS10	RKVFITYSMDTAMEVVKFVNFLLVNGFQTAIDIFEDRIRGIDIIKWMERYL
	DCRS10 Mu	RKVFITYSMDTAMEVVKFVNFLLVNGFQTAIDIFEDRIRGIDIIKWMERYL
	DCRS9 Hu	RPVLLLHAADS-EAQRRLVGALAELLRAALGGGRDVIVDLWEGRH-VARVGPLPWLWAAR
	DCRS8 Hu	PKVFLCYSSKDGQNHMNVVQCFAYFLQDFCGCEVALDLWEDFS-LCREGQREWVIQKI
10	_	VKVMIVYADDN-DLHTDCVKKLVENLRNCASCDPVFDLEKLITAEIVPSRWLVDQI
10	IL-17R_Ce	
	DCRS6_Hu	IKVLVVYPSEICFHHTICYFTEFLQNHCRSEVILEKWQKKK-IAEMGPVQWLATQK
	DCRS6_Ce	FKVMLVCPEVS-GRDEDFMMRIADALKKSNNKVVCDRWFEDSKNAEENMLHWVYEQT
	•	
15	DCRS7 Mu	RRILQEGGVVILLFSPAAVAQCQQWLQLQTVEPGPHDALAAWLSCVLPDFL
	DCRS7 Hu	RQTLQEGGVVVLLFSPGAVALCSEWLQDGVSGPGAHGPHDAFRASLSCVLPDFL
	IL-17R_Hu	QEMVESNSKIIVLCSRGTRAKWQALLGRGAP-VRLRCDHGKPV-GDLFTAAMNMILPDFK
		QEMVESNSKIIILCSRGTQAKWKAILGWAEPAVQLRCDHWKPA-GDLFTAAMNMILPDFK
	IL-17R_Mu	RDKTVMIIVAISPKYKQDVEGAESQLDED-EHGLHTKYIHRM-MQIEFIK
20	DCRS10	RDRTVMIIVAISPRYRQDVEGAESQUDED-ERGIDHITTRAM-MQIEFIA
20	DCRS10_Mu	RDKTVMIIVAISPKYKQDVEGAESQLDED-EHGLHTKYIHRM-MQIEFIS
	DCRS9_Hu	TRVAREQGTVLLLWSGADLRPVSGPDP-RAAPLLALLHAAP
	DCRS8 Hu	HESQFIIVVCSKGMKYFVDKKNYKHKGGGRGSGKGELFLVAVSAIAEKLR
	IL-17R Ce	SSLKKFIIVVSDCAEKILDTEASETHQLVQARPFADLFGPAMEMIIRDAT
	DCRS6_Hu	KAADKVVFLLSNDVNSVCDGTCGKSEGSPSENSQDLFPLAFNLFCSDLR
25	DCRS6 Ce	KIAEKIIVFHSAYYHPRCGIYDVINNFFPCTDPRLAHIALTPEAQ
	Demo_ee	*
		•••
	DCRS7 Mu	QGRATGRYVGVYFDGLLHPDSVPSPFRVAPLFSLP-SQLPAFLDALQGGCSTS
	-	QGRAPGSYVGACFDRLLHPDAVPALFRTVPVFTLP-SQLPDFLGALQQPRAPR
20 :	DCRS7_Hu	RPACFGTYVVCYFSEVSCDGDVPDLFGAAPRYPLM-DRFEEVYFRIQDLEMFQ
		RPACEGIYVVCYF5EV5CDGDVPDDFGAAPRIPDM-DRFEEVIFRIQDDEMFQ
30	IL-17R_Hu	THE PARTY OF THE P
30	IL-17R_Hu IL-17R_Mu	RPACFGTYVVCYFSGICSERDVPDLFNITSRYPLM-DRFEEVYFRIQDLEMFE
30		QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA
30	IL-17R_Mu	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA
	IL-17R_Mu DCRS10 DCRS10_Mu	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA
	IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE
35	IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE
	IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER
	IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ
	IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER
35	IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ
	IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu DCRS6_Ce	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ RSVPKEVEYVLPRDQKLLEDAFDITIADPLVIDIPIEDVAIPENVPIHHESC
35	IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu DCRS6_Ce	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ RSVPKEVEYVLPRDQKLLEDAFDITIADPLVIDIPIEDVAIPENVPIHHESC AGRPADRVERVTQALRSALDSCTS
35	IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu DCRS6_Ce	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ RSVPKEVEYVLPRDQKLLEDAFDITIADPLVIDIPIEDVAIPENVPIHHESC AGRPADRVERVTQALRSALDSCTS
35	IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu DCRS6_Ce	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ RSVPKEVEYVLPRDQKLLEDAFDITIADPLVIDIPIEDVAIPENVPIHHESC AGRPADRVERVTQALRSALDSCTS SGRLQERAEQVSRALQPALDSYFHPP
35	IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu DCRS6_Ce DCRS7_Mu DCRS7_Hu IL-17R_Hu	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ RSVPKEVEYVLPRDQKLLEDAFDITIADPLVIDIPIEDVAIPENVPIHHESC AGRPADRVERVTQALRSALDSCTS
35	IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu DCRS6_Ce DCRS7_Mu DCRS7_Hu IL-17R_Hu IL-17R_Mu	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ RSVPKEVEYVLPRDQKLLEDAFDITIADPLVIDIPIEDVAIPENVPIHHESC AGRPADRVERVTQALRSALDSCTS SGRLQERAEQVSRALQPALDSYFHPP PGRMHRVGELSGDNYLRSPSGRQLRAALDRFRDWQVRCPDW PGRMHHVRELTGDNYLQSPSGRQLKEAVLRFQEWQTQCPDW
35	IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu DCRS6_Ce DCRS7_Mu DCRS7_Hu IL-17R_Hu IL-17R_Mu DCRS10	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ RSVPKEVEYVLPRDQKLLEDAFDITIADPLVIDIPIEDVAIPENVPIHHESC AGRPADRVERVTQALRSALDSCTS SGRLQERAEQVSRALQPALDSYFHPP PGRMHRVGELSGDNYLRSPGGRQLRAALDRFRDWQVRCPDW PGRMHHVRELTGDNYLQSPSGRQLKEAVLRFQEWQTQCPDW PPRGPL
35	IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu DCRS6_Ce DCRS7_Mu DCRS7_Hu IL-17R_Hu IL-17R_Mu DCRS10 DCRS10_Mu	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ RSVPKEVEYVLPRDQKLLEDAFDITIADPLVIDIPIEDVAIPENVPIHHESC AGRPADRVERVTQALRSALDSCTS SGRLQERAEQVSRALQPALDSYFHPP PGRMHRVGELSGDNYLRSPGGRQLRAALDRFRDWQVRCPDW PGRMHHVRELTGDNYLQSPSGRQLKEAVLRFQEWQTQCPDW PPRGPL
35	IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu DCRS6_Ce DCRS7_Mu DCRS7_Hu IL-17R_Hu IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ RSVPKEVEYVLPRDQKLLEDAFDITIADPLVIDIPIEDVAIPENVPIHHESC AGRPADRVERVTQALRSALDSCTS SGRLQERAEQVSRALQPALDSYFHPP PGRMHRVGELSGDNYLRSPGGRQLRAALDRFRDWQVRCPDW PGRMHHVRELTGDNYLQSPSGRQLKEAVLRFQEWQTQCPDW PPRGPL
35	IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu DCRS6_Ce DCRS7_Mu DCRS7_Hu IL-17R_Hu IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ RSVPKEVEYVLPRDQKLLEDAFDITIADPLVIDIPIEDVAIPENVPIHHESC AGRPADRVERVTQALRSALDSCTS PGRMHRVGELSGDNYLRSPGGRQLRAALDSFRDWQVRCPDW PGRMHHVRELTGDNYLQSPSGRQLKEAVLRFQEWQTQCPDW PPRGPLPTLQVVPL ATSWGRLGAR
35 40 45	IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu DCRS6_Ce DCRS7_Mu DCRS7_Hu IL-17R_Hu IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ RSVPKEVEYVLPRDQKLLEDAFDITIADPLVIDIPIEDVAIPENVPIHHESC AGRPADRVERVTQALRSALDSCTS PGRMHRVGELSGDNYLRSPGGRQLRAALDFRDWQVRCPDW PGRMHHVRELTGDNYLQSPSGRQLKEAVLRFQEWQTQCPDW PPRGPLPTLQVVPL ATSWGRLGAR
35	IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu DCRS6_Ce DCRS7_Mu DCRS7_Hu IL-17R_Hu IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ RSVPKEVEYVLPRDQKLLEDAFDITIADPLVIDIPIEDVAIPENVPIHHESC AGRPADRVERVTQALRSALDSCTS PGRMHRVGELSGDNYLRSPGGRQLRAALDSFRDWQVRCPDW PGRMHHVRELTGDNYLQSPSGRQLKEAVLRFQEWQTQCPDW PPRGPLPTLQVVPL ATSWGRLGAR
35 40 45	IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu DCRS6_Ce DCRS7_Mu DCRS7_Hu IL-17R_Hu IL-17R_Mu DCRS10 DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce	QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALDARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ RSVPKEVEYVLPRDQKLLEDAFDITIADPLVIDIPIEDVAIPENVPIHHESC AGRPADRVERVTQALRSALDSCTS PGRMHRVGELSGDNYLRSPGGRQLRAALDRFRDWQVRCPDW PGRMHHVRELTGDNYLQSPSGRQLKEAVLRFQEWQTQCPDW PPRGPLPTLQVVPL PTLQVVPL

10

15

20

25

30

35

Table 6 shows comparison of the available sequences of primate, rodent, and various other receptors. Various conserved residues are aligned and indicated. The structually homologous cytoplasmic domains most likely signal through pathways like IL-17, e.g., through NFkB. Similar to IL-1 signalling, it is likely that these receptors are invloved in innate immunity and/or development.

As used herein, the term DCRS shall be used to describe a protein comprising amino acid sequences shown in Tables 1-5, respectively. In many cases, a substantial fragment thereof will be functionally or structurally equivalent, including, e.g., an extracellular or intracellular domain. The invention also includes a protein variation of the respective DCRS allele whose sequence is provided, e.g., a mutein or soluble extracellular construct. Typically, such agonists or antagonists will exhibit less than about 10% sequence differences, and thus will often have between 1 and 11 substitutions, e.g., 2-, 3-, 5-, 7-fold, and others. It also encompasses allelic and other variants, e.g., natural polymorphic, of the protein described. Typically, it will bind to its corresponding biological ligand, perhaps in a dimerized state with an alpha receptor subunit, with high affinity, e.g., at least about 100 nM, usually better than about 30 nM, preferably better than about 10 nM, and more preferably at better than about 3 nM. The term shall also be used herein to refer to related naturally occurring forms, e.g., alleles, polymorphic variants, and metabolic variants of the mammalian protein. Preferred forms of the receptor complexes will bind the appropriate ligand with an affinity and selectivity appropriate for a ligand-receptor interaction.

This invention also encompasses combinations of proteins or peptides having substantial amino acid sequence identity with an amino acid sequence in Tables 1-5. It will include sequence variants with relatively few residue substitutions, e.g., preferably less than about 3-5.

A substantial polypeptide "fragment", or "segment", is a stretch of amino acid residues of at least about 8 amino acids, generally at least 10 amino acids, more generally at least 12 amino acids, often at least 14 amino acids, more often at least 16 amino acids, typically at least 18 amino acids, more typically at least 20 amino acids, usually at least 22 amino acids, more usually at least 24 amino acids, preferably at least 26 amino acids, more preferably at least 28 amino acids, and, in particularly preferred embodiments, at least about 30 or more amino acids. This includes, e.g., 40, 50, 60, 70, 85, 100, 115, 130, 150, and other lengths. Sequences of segments of different proteins can be compared to one another over appropriate length stretches, typically between conserved motifs. In many situations, fragments may exhibit functional properties of the intact subunits, e.g., the extracellular domain of the transmembrane receptor may retain the ligand binding features, and may be used to prepare a soluble receptor-like complex.

10

15

20

25

30

35

Amino acid sequence homology, or sequence identity, is determined by optimizing residue matches. In some comparisons, gaps may be introduces, as required. See, e.g., Needleham, et al., (1970) J. Mol. Biol. 48:443-453; Sankoff, et al., (1983) chapter one in Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison, Addison-Wesley, Reading, MA; and software packages from IntelliGenetics, Mountain View, CA; and the University of Wisconsin Genetics Computer Group (GCG), Madison, WI; each of which is incorporated herein by reference. This changes when considering conservative substitutions as matches. Conservative substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid; asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine. Homologous amino acid sequences are intended to include natural allelic and interspecies variations in the cytokine sequence. Typical homologous proteins or peptides will have from 50-100% homology (if gaps can be introduced), to 60-100% homology (if conservative substitutions are included) with an amino acid sequence segment of, e.g., Table 3 or 4. Homology measures will be at least about 70%, generally at least 76%, more generally at least 81%, often at least 85%, more often at least 88%, typically at least 90%, more typically at least 92%, usually at least 94%, more usually at least 95%, preferably at least 96%, and more preferably at least 97%, and in particularly preferred embodiments, at least 98% or more. The degree of homology will vary with the length of the compared segments. Homologous proteins or peptides, such as the allelic variants, will share most biological activities with the embodiments described in Tables 1-5.

As used herein, the term "biological activity" is used to describe, without limitation, effects on inflammatory responses, innate immunity, and/or morphogenic development by cytokine-like ligands. For example, these receptors should mediate phosphatase or phosphorylase activities, which activities are easily measured by standard procedures. See, e.g., Hardie, et al. (eds. 1995) The Protein Kinase FactBook vols. I and II, Academic Press, San Diego, CA; Hanks, et al. (1991) Meth. Enzymol. 200:38-62; Hunter, et al. (1992) Cell 70:375-388; Lewin (1990) Cell 61:743-752; Pines, et al. (1991) Cold Spring Harbor Symp. Quant. Biol. 56:449-463; and Parker, et al. (1993) Nature 363:736-738. The receptors, or portions thereof, may be useful as phosphate labeling enzymes to label general or specific substrates. The subunits may also be functional immunogens to elicit recognizing antibodies, or antigens capable of binding antibodies.

The terms ligand, agonist, antagonist, and analog of, e.g., a DCRS8 or DCRS9, include molecules that modulate the characteristic cellular responses to cytokine ligand proteins, as well as molecules possessing the more standard structural binding competition features of ligand-receptor interactions, e.g., where the receptor is a natural

10

15

20

25

30

35

receptor or an antibody. The cellular responses likely are typically mediated through receptor tyrosine kinase pathways.

Also, a ligand is a molecule which serves either as a natural ligand to which said receptor, or an analog thereof, binds, or a molecule which is a functional analog of the natural ligand. The functional analog may be a ligand with structural modifications, or may be a wholly unrelated molecule which has a molecular shape which interacts with the appropriate ligand binding determinants. The ligands may serve as agonists or antagonists, see, e.g., Goodman, et al. (eds. 1990) Goodman & Gilman's: The Pharmacological Bases of Therapeutics, Pergamon Press, New York.

Rational drug design may also be based upon structural studies of the molecular shapes of a receptor or antibody and other effectors or ligands. See, e.g., Herz, et al. (1997) J. Recept. Signal Transduct. Res. 17:671-776; and Chaiken, et al. (1996) Trends Biotechnol. 14:369-375. Effectors may be other proteins which mediate other functions in response to ligand binding, or other proteins which normally interact with the receptor. One means for determining which sites interact with specific other proteins is a physical structure determination, e.g., x-ray crystallography or 2 dimensional NMR techniques. These will provide guidance as to which amino acid residues form molecular contact regions. For a detailed description of protein structural determination, see, e.g., Blundell and Johnson (1976) Protein Crystallography, Academic Press, New York, which is hereby incorporated herein by reference.

Π. Activities

The cytokine receptor-like proteins will have a number of different biological activities, e.g., modulating cell proliferation, or in phosphate metabolism, being added to or removed from specific substrates, typically proteins. Such will generally result in modulation of an inflammatory function, other innate immunity response, or a morphological effect. The subunit will probably have a specific low affinity binding to the ligand.

The DCRS8 and DCRS9 have characteristic motifs of receptors signaling through the JAK pathway. See, e.g., Ihle, et al. (1997) Stem Cells 15(suppl. 1):105-111; Silvennoinen, et al. (1997) APMIS 105:497-509; Levy (1997) Cytokine Growth Factor Review 8:81-90; Winston and Hunter (1996) Current Biol. 6:668-671; Barrett (1996) Baillieres Clin. Gastroenterol. 10:1-15; and Briscoe, et al. (1996) Philos. Trans. R. Soc. Lond. B. Biol. Sci. 351:167-171.

The biological activities of the cytokine receptor subunits will be related to addition or removal of phosphate moieties to substrates, typically in a specific manner, but occasionally in a non specific manner. Substrates may be identified, or conditions for

enzymatic activity may be assayed by standard methods, e.g., as described in Hardie, et al. (eds. 1995) The Protein Kinase FactBook vols. I and II, Academic Press, San Diego, CA; Hanks, et al. (1991) Meth. Enzymol. 200:38-62; Hunter, et al. (1992) Cell 70:375-388; Lewin (1990) Cell 61:743-752; Pines, et al. (1991) Cold Spring Harbor Symp. Quant. Biol. 56:449-463; and Parker, et al. (1993) Nature 363:736-738.

The receptor subunits may combine to form functional complexes, e.g., which may be useful for binding ligand or preparing antibodies. These will have substantial diagnostic uses, including detection or quantitation.

10 III. Nucleic Acids

5

15

20

25

30

35

This invention contemplates use of isolated nucleic acid or fragments, e.g., which encode these or closely related proteins, or fragments thereof, e.g., to encode a corresponding polypeptide, preferably one which is biologically active. In addition, this invention covers isolated or recombinant DNAs which encode combinations of such proteins or polypeptides having characteristic sequences, e.g., of the DCRSs. Typically, the nucleic acid is capable of hybridizing, under appropriate conditions, with a nucleic acid sequence segment shown in Tables 1-5, but preferably not with a corresponding segment of other receptors described in Table 6. Said biologically active protein or polypeptide can be a full length protein, or fragment, and will typically have a segment of amino acid sequence highly homologous, e.g., exhibiting significant stretches of identity, to one shown in Tables 1-5. Further, this invention covers the use of isolated or recombinant nucleic acid, or fragments thereof, which encode proteins having fragments which are equivalent to the DCRS8 or DCRS9 proteins. The isolated nucleic acids can have the respective regulatory sequences in the 5' and 3' flanks, e.g., promoters, enhancers, poly-A addition signals, and others from the natural gene. Combinations, as described, are also provided.

An "isolated" nucleic acid is a nucleic acid, e.g., an RNA, DNA, or a mixed polymer, which is substantially pure, e.g., separated from other components which naturally accompany a native sequence, such as ribosomes, polymerases, and flanking genomic sequences from the originating species. The term embraces a nucleic acid sequence which has been removed from its naturally occurring environment, and includes recombinant or cloned DNA isolates, which are thereby distinguishable from naturally occurring compositions, and chemically synthesized analogs or analogs biologically synthesized by heterologous systems. A substantially pure molecule includes isolated forms of the molecule, either completely or substantially pure.

An isolated nucleic acid will generally be a homogeneous composition of molecules, but will, in some embodiments, contain heterogeneity, preferably minor. This

10

15

20

25

30

35

heterogeneity is typically found at the polymer ends or portions not critical to a desired biological function or activity.

A "recombinant" nucleic acid is typically defined either by its method of production or its structure. In reference to its method of production, e.g., a product made by a process, the process is use of recombinant nucleic acid techniques, e.g., involving human intervention in the nucleotide sequence. Typically this intervention involves in vitro manipulation, although under certain circumstances it may involve more classical animal breeding techniques. Alternatively, it can be a nucleic acid made by generating a sequence comprising fusion of two fragments which are not naturally contiguous to each other, but is meant to exclude products of nature, e.g., naturally occurring mutants as found in their natural state. Thus, for example, products made by transforming cells with an unnaturally occurring vector is encompassed, as are nucleic acids comprising sequence derived using any synthetic oligonucleotide process. Such a process is often done to replace a codon with a redundant codon encoding the same or a conservative amino acid, while typically introducing or removing a restriction enzyme sequence recognition site. Alternatively, the process is performed to join together nucleic acid segments of desired functions to generate a single genetic entity comprising a desired combination of functions not found in the commonly available natural forms, e.g., encoding a fusion protein. Restriction enzyme recognition sites are often the target of such artificial manipulations, but other site specific targets, e.g., promoters, DNA replication sites, regulation sequences, control sequences, or other useful features may be incorporated by design. A similar concept is intended for a recombinant, e.g., fusion, polypeptide. This will include a dimeric repeat. Specifically included are synthetic nucleic acids which, by genetic code redundancy, encode equivalent polypeptides to fragments of DCRSs and fusions of sequences from various different related molecules, e.g., other cytokine receptor family members.

A "fragment" in a nucleic acid context is a contiguous segment of at least about 17 nucleotides, generally at least 21 nucleotides, more generally at least 25 nucleotides, ordinarily at least 30 nucleotides, more ordinarily at least 35 nucleotides, often at least 39 nucleotides, more often at least 45 nucleotides, typically at least 50 nucleotides, more typically at least 55 nucleotides, usually at least 60 nucleotides, more usually at least 66 nucleotides, preferably at least 72 nucleotides, more preferably at least 79 nucleotides, and in particularly preferred embodiments will be at least 85 or more nucleotides. Typically, fragments of different genetic sequences can be compared to one another over appropriate length stretches, particularly defined segments such as the domains described below.

10

15

20

25

30

35

A nucleic acid which codes for the DCRS8 or DCRS9 will be particularly useful to identify genes, mRNA, and cDNA species which code for itself or closely related proteins, as well as DNAs which code for polymorphic, allelic, or other genetic variants, e.g., from different individuals or related species. Preferred probes for such screens are those regions of the interleukin which are conserved between different polymorphic variants or which contain nucleotides which lack specificity, and will preferably be full length or nearly so. In other situations, polymorphic variant specific sequences will be more useful.

This invention further covers recombinant nucleic acid molecules and fragments having a nucleic acid sequence identical to or highly homologous to the isolated DNA set forth herein. In particular, the sequences will often be operably linked to DNA segments which control transcription, translation, and DNA replication. These additional segments typically assist in expression of the desired nucleic acid segment.

Homologous, or highly identical, nucleic acid sequences, when compared to one another, e.g., DCRS8 sequences, exhibit significant similarity. The standards for homology in nucleic acids are either measures for homology generally used in the art by sequence comparison or based upon hybridization conditions. Comparative hybridization conditions are described in greater detail below.

Substantial identity in the nucleic acid sequence comparison context means either that the segments, or their complementary strands, when compared, are identical when optimally aligned, with appropriate nucleotide insertions or deletions, in at least about 60% of the nucleotides, generally at least 66%, ordinarily at least 71%, often at least 76%, more often at least 80%, usually at least 84%, more usually at least 88%, typically at least 91%, more typically at least about 93%, preferably at least about 95%, more preferably at least about 96 to 98% or more, and in particular embodiments, as high at about 99% or more of the nucleotides, including, e.g., segments encoding structural domains such as the segments described below. Alternatively, substantial identity will exist when the segments will hybridize under selective hybridization conditions, to a strand or its complement, typically using a sequence derived from Tables 1-5. Typically, selective hybridization will occur when there is at least about 55% homology over a stretch of at least about 14 nucleotides, more typically at least about 65%, preferably at least about 75%, and more preferably at least about 90%. See, Kanehisa (1984) Nucl. Acids Res. 12:203-213, which is incorporated herein by reference. The length of homology comparison, as described, may be over longer stretches, and in certain embodiments will be over a stretch of at least about 17 nucleotides, generally at least about 20 nucleotides, ordinarily at least about 24 nucleotides, usually at least about 28 nucleotides, typically at least about 32 nucleotides, more typically at least about 40 nucleotides, preferably at least

about 50 nucleotides, and more preferably at least about 75 to 100 or more nucleotides. This includes, e.g., 125, 150, 175, 200, 225, 246, 273, and other lengths.

Stringent conditions, in referring to homology in the hybridization context, will be stringent combined conditions of salt, temperature, organic solvents, and other parameters typically controlled in hybridization reactions. Stringent temperature conditions will usually include temperatures in excess of about 30 C, more usually in excess of about 37 C, typically in excess of about 45 C, more typically in excess of about 55 C, preferably in excess of about 65 C, and more preferably in excess of about 70 C. Stringent salt conditions will ordinarily be less than about 500 mM, usually less than about 400 mM, more usually less than about 300 mM, typically less than about 200 mM, preferably less than about 100 mM, and more preferably less than about 80 mM, even down to less than about 20 mM. However, the combination of parameters is much more important than the measure of any single parameter. See, e.g., Wetmur and Davidson (1968) J. Mol. Biol. 31:349-370, which is hereby incorporated herein by reference.

15

20

25

5

10

The isolated DNA can be readily modified by nucleotide substitutions, nucleotide deletions, nucleotide insertions, and inversions of nucleotide stretches. These modifications result in novel DNA sequences which encode this protein or its derivatives. These modified sequences can be used to produce mutant proteins (muteins) or to enhance the expression of variant species. Enhanced expression may involve gene amplification, increased transcription, increased translation, and other mechanisms. Such mutant DCRS8—like derivatives include predetermined or site-specific mutations of the protein or its fragments, including silent mutations using genetic code degeneracy. "Mutant DCRS8" as used herein encompasses a polypeptide otherwise falling within the homology definition of the DCRS8 as set forth above, but having an amino acid sequence which differs from that of other cytokine receptor-like proteins as found in nature, whether by way of deletion, substitution, or insertion. In particular, "site specific mutant DCRS8" encompasses a protein having substantial sequence identity with a protein of Table 3, and typically shares most of the biological activities or effects of the forms disclosed herein.

30

35

Although site-specific mutation sites are predetermined, mutants need not be site specific. Mammalian DCRS8 mutagenesis can be achieved by making amino acid insertions or deletions in the gene, coupled with expression. Substitutions, deletions, insertions, or many combinations may be generated to arrive at a final construct. Insertions include amino- or carboxy- terminal fusions. Random mutagenesis can be conducted at a target codon and the expressed mammalian DCRS mutants can then be screened for the desired activity, providing some aspect of a structure-activity relationship. Methods for making substitution mutations at predetermined sites in DNA

10

15

20

25

30

35

having a known sequence are well known in the art, e.g., by M13 primer mutagenesis. See also Sambrook, et al. (1989) and Ausubel, et al. (1987 and periodic Supplements).

The mutations in the DNA normally should not place coding sequences out of reading frames and preferably will not create complementary regions that could hybridize to produce secondary mRNA structure such as loops or hairpins.

The phosphoramidite method described by Beaucage and Carruthers (1981) <u>Tetra.</u> <u>Letts.</u> 22:1859-1862, will produce suitable synthetic DNA fragments. A double stranded fragment will often be obtained either by synthesizing the complementary strand and annealing the strand together under appropriate conditions or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

Polymerase chain reaction (PCR) techniques can often be applied in mutagenesis. Alternatively, mutagenesis primers are commonly used methods for generating defined mutations at predetermined sites. See, e.g., Innis, et al. (eds. 1990) PCR Protocols: A Guide to Methods and Applications Academic Press, San Diego, CA; and Dieffenbach and Dveksler (1995; eds.) PCR Primer: A Laboratory Manual Cold Spring Harbor Press, CSH, NY.

Certain embodiments of the invention are directed to combination compositions comprising the receptor or ligand sequences described. In other embodiments, functional portions of the sequences may be joined to encode fusion proteins. In other forms, variants of the described sequences may be substituted.

IV. Proteins, Peptides

As described above, the present invention encompasses primate DCRS6-10, e.g., whose sequences are disclosed in Tables 1-5, and described above. Allelic and other variants are also contemplated, including, e.g., fusion proteins combining portions of such sequences with others, including, e.g., epitope tags and functional domains.

The present invention also provides recombinant proteins, e.g., heterologous fusion proteins using segments from these primate or rodent proteins. A heterologous fusion protein is a fusion of proteins or segments which are naturally not normally fused in the same manner. Thus, the fusion product of, e.g., a DCRS8 with another cytokine receptor is a continuous protein molecule having sequences fused in a typical peptide linkage, typically made as a single translation product and exhibiting properties, e.g., sequence or antigenicity, derived from each source peptide. A similar concept applies to heterologous nucleic acid sequences. Combinations of various designated proteins into complexes are also provided.

In addition, new constructs may be made from combining similar functional or structural domains from other related proteins, e.g., cytokine receptors or Toll-like

10

15

20

25

35

receptors, including species variants. For example, ligand-binding or other segments may be "swapped" between different new fusion polypeptides or fragments. See, e.g., Cunningham, et al. (1989) Science 243:1330-1336; and O'Dowd, et al. (1988) J. Biol. Chem. 263:15985-15992, each of which is incorporated herein by reference. Thus, new chimeric polypeptides exhibiting new combinations of specificities will result from the functional linkage of receptor-binding specificities. For example, the ligand binding domains from other related receptor molecules may be added or substituted for other domains of this or related proteins. The resulting protein will often have hybrid function and properties. For example, a fusion protein may include a targeting domain which may serve to provide sequestering of the fusion protein to a particular subcellular organelle.

Candidate fusion partners and sequences can be selected from various sequence data bases, e.g., GenBank, c/o IntelliGenetics, Mountain View, CA; and BCG, University of Wisconsin Biotechnology Computing Group, Madison, WI, which are each incorporated herein by reference. In particular, combinations of polypeptide sequences provided in Tables 1-5 are particularly preferred. Variant forms of the proteins may be substituted in the described combinations.

The present invention particularly provides muteins which bind cytokine-like ligands, and/or which are affected in signal transduction. Structural alignment of human DCRSs with other members of the cytokine receptor family show conserved features/residues. See Table 6. Alignment of the human DCRS8 sequence with other members of the cytokine receptor family indicates various structural and functionally shared features. See also, Bazan, et al. (1996) Nature 379:591; Lodi, et al. (1994) Science 263:1762-1766; Sayle and Milner-White (1995) TIBS 20:374-376; and Gronenberg, et al. (1991) Protein Engineering 4:263-269.

Substitutions with either mouse sequences or human sequences are particularly preferred. Conversely, conservative substitutions away from the ligand binding interaction regions will probably preserve most signaling activities; and conservative substitutions away from the intracellular domains will probably preserve most ligand -binding properties.

30 ------ "Derivatives" of the primate DCRS8 include amino acid sequence mutants, glycosylation variants, metabolic derivatives and covalent or aggregative conjugates with other chemical moieties. Covalent derivatives can be prepared by linkage of functionalities to groups which are found in the DCRS8 amino acid side chains or at the N- or C- termini, e.g., by means which are well known in the art. These derivatives can include, without limitation, aliphatic esters or amides of the carboxyl terminus, or of residues containing carboxyl side chains, O-acyl derivatives of hydroxyl group-containing residues, and N-acyl derivatives of the amino terminal amino acid or amino-group

10

15

20

25

30

35

containing residues, e.g., lysine or arginine. Acyl groups are selected from the group of alkyl-moieties, including C3 to C18 normal alkyl, thereby forming alkanoyl aroyl species.

In particular, glycosylation alterations are included, e.g., made by modifying the glycosylation patterns of a polypeptide during its synthesis and processing, or in further processing steps. Particularly preferred means for accomplishing this are by exposing the polypeptide to glycosylating enzymes derived from cells which normally provide such processing, e.g., mammalian glycosylation enzymes. Deglycosylation enzymes are also contemplated. Also embraced are versions of the same primary amino acid sequence which have other minor modifications, including phosphorylated amino acid residues, e.g., phosphotyrosine, phosphoserine, or phosphothreonine.

A major group of derivatives are covalent conjugates of the receptors or fragments thereof with other proteins of polypeptides. These derivatives can be synthesized in recombinant culture such as N- or C-terminal fusions or by the use of agents known in the art for their usefulness in cross-linking proteins through reactive side groups. Preferred derivatization sites with cross-linking agents are at free amino groups, carbohydrate moieties, and cysteine residues.

Fusion polypeptides between the receptors and other homologous or heterologous proteins are also provided. Homologous polypeptides may be fusions between different receptors, resulting in, for instance, a hybrid protein exhibiting binding specificity for multiple different cytokine ligands, or a receptor which may have broadened or weakened specificity of substrate effect. Likewise, heterologous fusions may be constructed which would exhibit a combination of properties or activities of the derivative proteins. Typical examples are fusions of a reporter polypeptide, e.g., luciferase, with a segment or domain of a receptor, e.g., a ligand-binding segment, so that the presence or location of a desired ligand may be easily determined. See, e.g., Dull, et al., U.S. Patent No. 4,859,609, which is hereby incorporated herein by reference. Other gene fusion partners include glutathione-S-transferase (GST), bacterial \(\beta \)-galactosidase, trpE, Protein A, \(\beta \)-lactamase, alpha amylase, alcohol dehydrogenase, and yeast alpha mating factor. See, e.g., Godowski, et al. (1988) \(\frac{Science}{241:812-816}. \) Labeled proteins will often be substituted in the described combinations of proteins.

The phosphoramidite method described by Beaucage and Carruthers (1981) <u>Tetra.</u> <u>Letts.</u> 22:1859-1862, will produce suitable synthetic DNA fragments. A double stranded fragment will often be obtained either by synthesizing the complementary strand and annealing the strand together under appropriate conditions or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

Such polypeptides may also have amino acid residues which have been chemically modified by phosphorylation, sulfonation, biotinylation, or the addition or removal of

10

15

20

25

30

35

other moieties, particularly those which have molecular shapes similar to phosphate groups. In some embodiments, the modifications will be useful labeling reagents, or serve as purification targets, e.g., affinity ligands.

Fusion proteins will typically be made by either recombinant nucleic acid methods or by synthetic polypeptide methods. Techniques for nucleic acid manipulation and expression are described generally, for example, in Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed.), Vols. 1-3, Cold Spring Harbor Laboratory, and Ausubel, et al. (eds. 1987 and periodic supplements) Current Protocols in Molecular Biology, Greene/Wiley, New York, which are each incorporated herein by reference. Techniques for synthesis of polypeptides are described, for example, in Merrifield (1963) J. Amer. Chem. Soc. 85:2149-2156; Merrifield (1986) Science 232: 341-347; and Atherton, et al. (1989) Solid Phase Peptide Synthesis: A Practical Approach, IRL Press, Oxford; each of which is incorporated herein by reference. See also Dawson, et al. (1994) Science 266:776-779 for methods to make larger polypeptides.

This invention also contemplates the use of derivatives of a DCRS8 other than variations in amino acid sequence or glycosylation. Such derivatives may involve covalent or aggregative association with chemical moieties. These derivatives generally fall into three classes: (1) salts, (2) side chain and terminal residue covalent modifications, and (3) adsorption complexes, for example with cell membranes. Such covalent or aggregative derivatives are useful as immunogens, as reagents in immunoassays, or in purification methods such as for affinity purification of a receptor or other binding molecule, e.g., an antibody. For example, a cytokine ligand can be immobilized by covalent bonding to a solid support such as cyanogen bromide-activated Sepharose, by methods which are well known in the art, or adsorbed onto polyolefin surfaces, with or without glutaraldehyde cross-linking, for use in the assay or purification of a cytokine receptor, antibodies, or other similar molecules. The ligand can also be labeled with a detectable group, for example radioiodinated by the chloramine T procedure, covalently bound to rare earth chelates, or conjugated to another fluorescent moiety for use in diagnostic assays.

A combination, e.g., including a DCRS8, of this invention can be used as an immunogen for the production of antisera or antibodies specific, e.g., capable of distinguishing between other cytokine receptor family members, for the combinations described. The complexes can be used to screen monoclonal antibodies or antigenbinding fragments prepared by immunization with various forms of impure preparations containing the protein. In particular, the term "antibodies" also encompasses antigen binding fragments of natural antibodies, e.g., Fab, Fab2, Fv, etc. The purified DCRS8 can also be used as a reagent to detect antibodies generated in response to the presence of

10

15

20

25

30

35

elevated levels of expression, or immunological disorders which lead to antibody production to the endogenous receptor. Additionally, DCRS8 fragments may also serve as immunogens to produce the antibodies of the present invention, as described immediately below. For example, this invention contemplates antibodies having binding affinity to or being raised against the amino acid sequences shown in Tables 1-5, fragments thereof, or various homologous peptides. In particular, this invention contemplates antibodies having binding affinity to, or having been raised against, specific fragments which are predicted to be, or actually are, exposed at the exterior protein surface of the native DCRS8 or DCRS9. Complexes of combinations of proteins will also be useful, and antibody preparations thereto can be made.

The blocking of physiological response to the receptor ligands may result from the inhibition of binding of the ligand to the receptor, likely through competitive inhibition. Thus, in vitro assays of the present invention will often use antibodies or antigen binding segments of these antibodies, or fragments attached to solid phase substrates. These assays will also allow for the diagnostic determination of the effects of either ligand binding region mutations and modifications, or other mutations and modifications, e.g., which affect signaling or enzymatic function.

This invention also contemplates the use of competitive drug screening assays, e.g., where neutralizing antibodies to the receptor complexes or fragments compete with a test compound for binding to a ligand or other antibody. In this manner, the neutralizing antibodies or fragments can be used to detect the presence of a polypeptide which shares one or more binding sites to a receptor and can also be used to occupy binding sites on a receptor that might otherwise bind a ligand.

V. Making Nucleic Acids and Protein

DNA which encodes the protein or fragments thereof can be obtained by chemical synthesis, screening cDNA libraries, or by screening genomic libraries prepared from a wide variety of cell lines or tissue samples. Natural sequences can be isolated using standard methods and the sequences provided herein, e.g., in Tables 1-5. Other species counterparts can be identified by hybridization techniques, or by various PCR techniques, combined with or by searching in sequence databases, e.g., GenBank.

This DNA can be expressed in a wide variety of host cells for the synthesis of a full-length receptor or fragments which can in turn, for example, be used to generate polyclonal or monoclonal antibodies; for binding studies; for construction and expression of modified ligand binding or kinase/phosphatase domains; and for structure/function studies. Variants or fragments can be expressed in host cells that are transformed or transfected with appropriate expression vectors. These molecules can be substantially

10

15

20

25

30

35

free of protein or cellular contaminants, other than those derived from the recombinant host, and therefore are particularly useful in pharmaceutical compositions when combined with a pharmaceutically acceptable carrier and/or diluent. The protein, or portions thereof, may be expressed as fusions with other proteins. Combinations of the described proteins, or nucleic acids encoding them, are particularly interesting.

Expression vectors are typically self-replicating DNA or RNA constructs containing the desired receptor gene or its fragments, usually operably linked to suitable genetic control elements that are recognized in a suitable host cell. These control elements are capable of effecting expression within a suitable host. The multiple genes may be coordinately expressed, and may be on a polycistronic message. The specific type of control elements necessary to effect expression will depend upon the eventual host cell used. Generally, the genetic control elements can include a prokaryotic promoter system or a eukaryotic promoter expression control system, and typically include a transcriptional promoter, an optional operator to control the onset of transcription, transcription enhancers to elevate the level of mRNA expression, a sequence that encodes a suitable ribosome binding site, and sequences that terminate transcription and translation. Expression vectors also usually contain an origin of replication that allows the vector to replicate independently of the host cell.

The vectors of this invention include those which contain DNA which encodes a combination of proteins, as described, or a biologically active equivalent polypeptide. The DNA can be under the control of a viral promoter and can encode a selection marker. This invention further contemplates use of such expression vectors which are capable of expressing eukaryotic cDNAs coding for such proteins in a prokaryotic or eukaryotic host, where the vector is compatible with the host and where the eukaryotic cDNAs are inserted into the vector such that growth of the host containing the vector expresses the cDNAs in question. Usually, expression vectors are designed for stable replication in their host cells or for amplification to greatly increase the total number of copies of the desirable gene per cell. It is not always necessary to require that an expression vector replicate in a host cell, e.g., it is possible to effect transient expression of the protein or its fragments in various hosts using vectors that do not contain a replication origin that is recognized by the host cell. It is also possible to use vectors that cause integration of the protein encoding portions into the host DNA by recombination.

Vectors, as used herein, comprise plasmids, viruses, bacteriophage, integratable DNA fragments, and other vehicles which enable the integration of DNA fragments into the genome of the host. Expression vectors are specialized vectors which contain genetic control elements that effect expression of operably linked genes. Plasmids are the most commonly used form of vector but all other forms of vectors which serve an equivalent

10

15

20

25

30

35

function and which are, or become, known in the art are suitable for use herein. See, e.g., Pouwels, et al. (1985 and Supplements) <u>Cloning Vectors: A Laboratory Manual</u>, Elsevier, N.Y., and Rodriguez, et al. (eds. 1988) <u>Vectors: A Survey of Molecular Cloning Vectors and Their Uses</u>, Buttersworth, Boston, which are incorporated herein by reference.

Transformed cells are cells, preferably mammalian, that have been transformed or transfected with vectors constructed using recombinant DNA techniques. Transformed host cells usually express the desired proteins, but for purposes of cloning, amplifying, and manipulating its DNA, do not need to express the subject proteins. This invention further contemplates culturing transformed cells in a nutrient medium, thus permitting the proteins to accumulate. The proteins can be recovered, either from the culture or, in certain instances, from the culture medium.

For purposes of this invention, nucleic sequences are operably linked when they are functionally related to each other. For example, DNA for a presequence or secretory leader is operably linked to a polypeptide if it is expressed as a preprotein or participates in directing the polypeptide to the cell membrane or in secretion of the polypeptide. A promoter is operably linked to a coding sequence if it controls the transcription of the polypeptide; a ribosome binding site is operably linked to a coding sequence if it is positioned to permit translation. Usually, operably linked means contiguous and in reading frame, however, certain genetic elements such as repressor genes are not contiguously linked but still bind to operator sequences that in turn control expression.

Suitable host cells include prokaryotes, lower eukaryotes, and higher eukaryotes. Prokaryotes include both gram negative and gram positive organisms, e.g., <u>E. coli</u> and <u>B. subtilis</u>. Lower eukaryotes include yeasts, e.g., <u>S. cerevisiae</u> and <u>Pichia</u>, and species of the genus <u>Dictyostelium</u>. Higher eukaryotes include established tissue culture cell lines from animal cells, both of non-mammalian origin, e.g., insect cells, and birds, and of mammalian origin, e.g., human, primates, and rodents.

Prokaryotic host-vector systems include a wide variety of vectors for many different species. As used herein, <u>E. coli</u> and its vectors will be used generically to include equivalent vectors used in other prokaryotes. A representative vector for amplifying DNA is pBR322 or many of its derivatives. Vectors that can be used to express the receptor or its fragments include, but are not limited to, such vectors as those containing the lac promoter (pUC-series); trp promoter (pBR322-trp); Ipp promoter (the pIN-series); lambda-pP or pR promoters (pOTS); or hybrid promoters such as ptac (pDR540). See Brosius, et al. (1988) "Expression Vectors Employing Lambda-, trp-, lac-, and Ipp-derived Promoters", in <u>Vectors: A Survey of Molecular Cloning Vectors and Their Uses</u>, (eds. Rodriguez and Denhardt), Buttersworth, Boston, Chapter 10, pp. 205-236, which is incorporated herein by reference.

10

15

20

25

30

35

1

Lower eukaryotes, e.g., yeasts and <u>Dictyostelium</u>, may be transformed with DCRS8 sequence containing vectors. For purposes of this invention, the most common lower eukaryotic host is the baker's yeast, <u>Saccharomyces cerevisiae</u>. It will be used to generically represent lower eukaryotes although a number of other strains and species are also available. Yeast vectors typically consist of a replication origin (unless of the integrating type), a selection gene, a promoter, DNA encoding the receptor or its fragments, and sequences for translation termination, polyadenylation, and transcription termination. Suitable expression vectors for yeast include such constitutive promoters as 3-phosphoglycerate kinase and various other glycolytic enzyme gene promoters or such inducible promoters as the alcohol dehydrogenase 2 promoter or metallothionine promoter. Suitable vectors include derivatives of the following types: self-replicating low copy number (such as the YRp-series), self-replicating high copy number (such as the YEp-series); integrating types (such as the YIp-series), or mini-chromosomes (such as the YCp-series).

Higher eukaryotic tissue culture cells are normally the preferred host cells for expression of the functionally active interleukin or receptor proteins. In principle, many higher eukaryotic tissue culture cell lines are workable, e.g., insect baculovirus expression systems, whether from an invertebrate or vertebrate source. However, mammalian cells are preferred. Transformation or transfection and propagation of such cells has become a routine procedure. Examples of useful cell lines include HeLa cells, Chinese hamster ovary (CHO) cell lines, baby rat kidney (BRK) cell lines, insect cell lines, bird cell lines, and monkey (COS) cell lines. Expression vectors for such cell lines usually include an origin of replication, a promoter, a translation initiation site, RNA splice sites (if genomic DNA is used), a polyadenylation site, and a transcription termination site. These vectors also usually contain a selection gene or amplification gene. Suitable expression vectors may be plasmids, viruses, or retroviruses carrying promoters derived, e.g., from such sources as from adenovirus, SV40, parvoviruses, vaccinia virus, or cytomegalovirus. Representative examples of suitable expression vectors include pCDNA1; pCD, see Okayama, et al. (1985) Mol. Cell Biol. 5:1136-1142; pMC1neo PolyA, see Thomas, et al. (1987) Cell 51:503-512; and a baculovirus vector such as pAC 373 or pAC 610.

For secreted proteins and some membrane proteins, an open reading frame usually encodes a polypeptide that consists of a mature or secreted product covalently linked at its N-terminus to a signal peptide. The signal peptide is cleaved prior to secretion of the mature, or active, polypeptide. The cleavage site can be predicted with a high degree of accuracy from empirical rules, e.g., von-Heijne (1986) Nucleic Acids Research 14:4683-4690; and Nielsen, et al. (1997) Protein Eng. 10:1-12, and the precise amino acid composition of the signal peptide often does not appear to be critical to its function, e.g.,

10

15

20

25

30

35

Randall, et al. (1989) <u>Science</u> 243:1156-1159; and Kaiser, et al. (1987) <u>Science</u> 235:312-317. The mature proteins of the invention can be readily determined using standard methods.

It will often be desired to express these polypeptides in a system which provides a specific or defined glycosylation pattern. In this case, the usual pattern will be that provided naturally by the expression system. However, the pattern will be modifiable by exposing the polypeptide, e.g., an unglycosylated form, to appropriate glycosylating proteins introduced into a heterologous expression system. For example, the receptor gene may be co-transformed with one or more genes encoding mammalian or other glycosylating enzymes. Using this approach, certain mammalian glycosylation patterns will be achievable in prokaryote or other cells. Expression in prokaryote cells will typically lead to unglycosylated forms of protein.

The source of DCRS8 can be a eukaryotic or prokaryotic host expressing recombinant DCRS8, such as is described above. The source can also be a cell line, but other mammalian cell lines are also contemplated by this invention, with the preferred cell line being from the human species.

Now that the sequences are known, the primate DCRS8 or DCRS9, fragments, or derivatives thereof can be prepared by conventional processes for synthesizing peptides. These include processes such as are described in Stewart and Young (1984) Solid Phase Peptide Synthesis, Pierce Chemical Co., Rockford, IL; Bodanszky and Bodanszky (1984) The Practice of Peptide Synthesis, Springer-Verlag, New York; and Bodanszky (1984) The Principles of Peptide Synthesis, Springer-Verlag, New York; all of each which are incorporated herein by reference. For example, an azide process, an acid chloride process, an acid anhydride process, a mixed anhydride process, an active ester process (for example, p-nitrophenyl ester, N-hydroxysuccinimide ester, or cyanomethyl ester), a carbodiimidazole process, an oxidative-reductive process, or a dicyclohexylcarbodiimide (DCCD)/additive process can be used. Solid phase and solution phase syntheses are both applicable to the foregoing processes. Similar techniques can be used with partial DCRS8 or DCRS9 sequences.

The DCRS8 proteins, fragments, or derivatives are suitably prepared in accordance with the above processes as typically employed in peptide synthesis, generally either by a so-called stepwise process which comprises condensing an amino acid to the terminal amino acid, one by one in sequence, or by coupling peptide fragments to the terminal amino acid. Amino groups that are not being used in the coupling reaction typically must be protected to prevent coupling at an incorrect location.

If a solid phase synthesis is adopted, the C-terminal amino acid is bound to an insoluble carrier or support through its carboxyl group. The insoluble carrier is not

particularly limited as long as it has a binding capability to a reactive carboxyl group. Examples of such insoluble carriers include halomethyl resins, such as chloromethyl resin or bromomethyl resin, hydroxymethyl resins, phenol resins, tert-alkyloxycarbonylhydrazidated resins, and the like.

5

An amino group-protected amino acid is bound in sequence through condensation of its activated carboxyl group and the reactive amino group of the previously formed peptide or chain, to synthesize the peptide step by step. After synthesizing the complete sequence, the peptide is split off from the insoluble carrier to produce the peptide. This solid-phase approach is generally described by Merrifield, et al. (1963) in <u>J. Am. Chem. Soc.</u> 85:2149-2156, which is incorporated herein by reference.

10

15

The prepared protein and fragments thereof can be isolated and purified from the reaction mixture by means of peptide separation, e.g., by extraction, precipitation, electrophoresis, various forms of chromatography, and the like. The receptors of this invention can be obtained in varying degrees of purity depending upon desired uses. Purification can be accomplished by use of the protein purification techniques disclosed herein, see below, or by the use of the antibodies herein described in methods of immunoabsorbant affinity chromatography. This immunoabsorbant affinity chromatography is carried out by first linking the antibodies to a solid support and then contacting the linked antibodies with solubilized lysates of appropriate cells, lysates of other cells expressing the receptor, or lysates or supernatants of cells producing the protein as a result of DNA techniques, see below.

20

Generally, the purified protein will be at least about 40% pure, ordinarily at least about 50% pure, usually at least about 60% pure, typically at least about 70% pure, more typically at least about 80% pure, preferable at least about 90% pure and more preferably at least about 95% pure, and in particular embodiments, 97%-99% or more. Purity will usually be on a weight basis, but can also be on a molar basis. Different assays will be applied as appropriate. Individual proteins may be purified and thereafter combined.

25

VI. Antibodies

30

35

Antibodies can be raised to the various mammalian, e.g., primate DCRS8 or DCRS9 proteins and fragments thereof, both in naturally occurring native forms and in their recombinant forms, the difference being that antibodies to the active receptor are more likely to recognize epitopes which are only present in the native conformations. Denatured antigen detection can also be useful in, e.g., Western analysis. Anti-idiotypic antibodies are also contemplated, which would be useful as agonists or antagonists of a natural receptor or an antibody.

Antibodies, including binding fragments and single chain versions, against predetermined fragments of the protein can be raised by immunization of animals with conjugates of the fragments with immunogenic proteins. Monoclonal antibodies are prepared from cells secreting the desired antibody. These antibodies can be screened for binding to normal or defective protein, or screened for agonistic or antagonistic activity. These monoclonal antibodies will usually bind with at least a K_D of about 1 mM, more usually at least about 300 μ M, typically at least about 100 μ M, more typically at least about 30 μ M or better.

10

15

20

5

The antibodies, including antigen binding fragments, of this invention can have significant diagnostic or therapeutic value. They can be potent antagonists that bind to the receptor and inhibit binding to ligand or inhibit the ability of the receptor to elicit a biological response, e.g., act on its substrate. They also can be useful as non-neutralizing antibodies and can be coupled to toxins or radionuclides to bind producing cells, or cells localized to the source of the interleukin. Further, these antibodies can be conjugated to drugs or other therapeutic agents, either directly or indirectly by means of a linker.

The antibodies of this invention can also be useful in diagnostic applications. As capture or non-neutralizing antibodies, they might bind to the receptor without inhibiting ligand or substrate binding. As neutralizing antibodies, they can be useful in competitive binding assays. They will also be useful in detecting or quantifying ligand. They may be used as reagents for Western blot analysis, or for immunoprecipitation or immunopurification of the respective protein. Likewise, nucleic acids and proteins may be immobilized to solid substrates for affinity purification or detection methods. The substrates may be, e.g., solid resin beads or sheets of plastic.

25

30

Protein fragments may be joined to other materials, particularly polypeptides, as fused or covalently joined polypeptides to be used as immunogens. Mammalian cytokine receptors and fragments may be fused or covalently linked to a variety of immunogens, such as keyhole limpet hemocyanin, bovine serum albumin, tetanus toxoid, etc. See (1969) Microbiology, Hoeber Medical Division, Harper and Row; Landsteiner (1962) Specificity of Serological Reactions, Dover Publications, New York; and Williams, et al. (1967) Methods in Immunology and Immunochemistry, Vol. 1, Academic Press, New York; each of which is incorporated herein by reference, for descriptions of methods of preparing polyclonal antisera. A typical method involves hyperimmunization of an animal with an antigen. The blood of the animal is then collected shortly after the repeated immunizations and the gamma globulin is isolated.

35

In some instances, it is desirable to prepare monoclonal antibodies from various mammalian hosts, such as mice, rodents, primates, humans, etc. Description of

techniques for preparing such monoclonal antibodies may be found in, e.g., Stites, et al. (eds.) Basic and Clinical Immunology (4th ed.), Lange Medical Publications, Los Altos, CA, and references cited therein; Harlow and Lane (1988) Antibodies: A Laboratory Manual, CSH Press; Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed.) Academic Press, New York; and particularly in Kohler and Milstein (1975) Nature 256:495-497, which discusses one method of generating monoclonal antibodies. Each of these references is incorporated herein by reference. Summarized briefly, this method involves injecting an animal with an immunogen. The animal is then sacrificed and cells taken from its spleen, which are then fused with myeloma cells. The result is a hybrid cell or "hybridoma" that is capable of reproducing in vitro. The population of hybridomas is then screened to isolate individual clones, each of which secrete a single antibody species to the immunogen. In this manner, the individual antibody species obtained are the products of immortalized and cloned single B cells from the immunogenic substance.

15

20

25

10

5

Other suitable techniques involve in vitro exposure of lymphocytes to the antigenic polypeptides or alternatively to selection of libraries of antibodies in phage or similar vectors. See, Huse, et al. (1989) "Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda," Science 246:1275-1281; and Ward, et al. (1989) Nature 341:544-546, each of which is incorporated herein by reference. The polypeptides and antibodies of the present invention may be used with or without modification, including chimeric or humanized antibodies. Frequently, the polypeptides and antibodies will be labeled by joining, either covalently or non-covalently, a substance which provides for a detectable signal. A wide variety of labels and conjugation techniques are known and are reported extensively in both the scientific and patent literature. Suitable labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent moieties, chemiluminescent moieties, magnetic particles, and the like. Patents, teaching the use of such labels include U.S. Patent Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241. Also, recombinant or chimeric immunoglobulins may be produced, see Cabilly, U.S. Patent No. 4,816,567; or made in transgenic mice, see Mendez, et al. (1997) Nature Genetics 15:146-156; Abgenix; and Medarex. These references are incorporated herein by reference.

30

35

The antibodies of this invention can also be used for affinity chromatography in isolating the DCRS8 proteins or peptides. Columns can be prepared where the antibodies are linked to a solid support, e.g., particles, such as agarose, Sephadex, or the like, where a cell lysate may be passed through the column, the column washed, followed by increasing concentrations of a mild denaturant, whereby the purified protein will be

10

15

20

25

30

35

released. Alternatively, the protein may be used to purify antibody. Appropriate cross absorptions or depletions may be applied.

The antibodies may also be used to screen expression libraries for particular expression products. Usually the antibodies used in such a procedure will be labeled with a moiety allowing easy detection of presence of antigen by antibody binding.

Antibodies raised against a cytokine receptor will also be used to raise antiidiotypic antibodies. These will be useful in detecting or diagnosing various immunological conditions related to expression of the protein or cells which express the protein. They also will be useful as agonists or antagonists of the ligand, which may be competitive inhibitors or substitutes for naturally occurring ligands.

A cytokine receptor protein that specifically binds to or that is specifically immunoreactive with an antibody generated against a defined immunogen, such as an immunogen consisting of the amino acid sequence of SEQ ID NO: 14, is typically determined in an immunoassay. The immunoassay typically uses a polyclonal antiserum which was raised, e.g., to a protein of SEQ ID NO: 14. This antiserum is selected to have low crossreactivity against other cytokine receptor family members, preferably from the same species, and any such crossreactivity is removed by immunoabsorption prior to use in the immunoassay.

In order to produce antisera for use in an immunoassay, the protein, e.g., of SEQ ID NO: 14, is isolated as described herein. For example, recombinant protein may be produced in a mammalian cell line. An appropriate host, e.g., an inbred strain of mice such as Balb/c, is immunized with the selected protein, typically using a standard adjuvant, such as Freund's adjuvant, and a standard mouse immunization protocol (see Harlow and Lane, supra). Alternatively, a synthetic peptide derived from the sequences disclosed herein and conjugated to a carrier protein can be used an immunogen. Polyclonal sera are collected and titered against the immunogen protein in an immunoassay, e.g., a solid phase immunoassay with the immunogen immobilized on a solid support. Polyclonal antisera with a titer of 10⁴ or greater are selected and tested for their cross reactivity against other cytokine receptor family members using a competitive binding immunoassay such as the one described in Harlow and Lane, supra, at pages 570-573. Preferably at least two cytokine receptor family members are used in this determination. These cytokine receptor family members can be produced as recombinant proteins and isolated using standard molecular biology and protein chemistry techniques as described herein.

Immunoassays in the competitive binding format can be used for the crossreactivity determinations. For example, the protein of SEQ ID NO: 14 can be immobilized to a solid support. Proteins added to the assay compete with the binding of

10

15

20

25

30

35

the antisera to the immobilized antigen. The ability of the above proteins to compete with the binding of the antisera to the immobilized protein is compared to the other proteins. The percent crossreactivity for the above proteins is calculated, using standard calculations. Those antisera with less than 10% crossreactivity with each of the proteins listed above are selected and pooled. The cross-reacting antibodies are then removed from the pooled antisera by immunoabsorption with the above-listed proteins.

The immunoabsorbed and pooled antisera are then used in a competitive binding immunoassay as described above to compare a second protein to the immunogen protein (e.g., the DCRS8 like protein of SEQ ID NO: 14). In order to make this comparison, the two proteins are each assayed at a wide range of concentrations and the amount of each protein required to inhibit 50% of the binding of the antisera to the immobilized protein is determined. If the amount of the second protein required is less than twice the amount of the protein of the selected protein or proteins that is required, then the second protein is said to specifically bind to an antibody generated to the immunogen.

It is understood that these cytokine receptor proteins are members of a family of homologous proteins that comprise at least 9 so far identified members, 6 mammalian and 3 worm embodiments. For a particular gene product, such as the DCRS8, the term refers not only to the amino acid sequences disclosed herein, but also to other proteins that are allelic, non-allelic, or species variants. It is also understood that the terms include nonnatural mutations introduced by deliberate mutation using conventional recombinant technology such as single site mutation, or by excising short sections of DNA encoding the respective proteins, or by substituting new amino acids, or adding new amino acids. Such minor alterations typically will substantially maintain the immunoidentity of the original molecule and/or its biological activity. Thus, these alterations include proteins that are specifically immunoreactive with a designated naturally occurring DCRS8 protein. The biological properties of the altered proteins can be determined by expressing the protein in an appropriate cell line and measuring the appropriate effect, e.g., upon transfected lymphocytes. Particular protein modifications considered minor would include conservative substitution of amino acids with similar chemical properties, as described above for the cytokine receptor family as a whole. By aligning a protein optimally with the protein of the cytokine receptors and by using the conventional immunoassays described herein to determine immunoidentity, one can determine the protein compositions of the invention.

VII. Kits and quantitation

Both naturally occurring and recombinant forms of the cytokine receptor like molecules of this invention are particularly useful in kits and assay methods. For

10

15

20

25

30

35

example, these methods would also be applied to screening for binding activity, e.g., ligands for these proteins. Several methods of automating assays have been developed in recent years so as to permit screening of tens of thousands of compounds per year. See, e.g., a BIOMEK automated workstation, Beckman Instruments, Palo Alto, California, and Fodor, et al. (1991) Science 251:767-773, which is incorporated herein by reference. The latter describes means for testing binding by a plurality of defined polymers synthesized on a solid substrate. The development of suitable assays to screen for a ligand or agonist/antagonist homologous proteins can be greatly facilitated by the availability of large amounts of purified, soluble cytokine receptors in an active state such as is provided by this invention.

Purified protein can be coated directly onto plates for use in the aforementioned ligand screening techniques. However, non-neutralizing antibodies to these proteins can be used as capture antibodies to immobilize the respective receptor on the solid phase, useful, e.g., in diagnostic uses.

This invention also contemplates use of receptor subunit, fragments thereof, peptides, and their fusion products in a variety of diagnostic kits and methods for detecting the presence of the protein or its ligand. Alternatively, or additionally, antibodies against the molecules may be incorporated into the kits and methods. Typically the kit will have a compartment containing, e.g., a DCRS8 peptide or gene segment or a reagent which recognizes one or the other. Typically, recognition reagents, in the case of peptide, would be a receptor or antibody, or in the case of a gene segment, would usually be a hybridization probe.

A preferred kit for determining the concentration of DCRS8 in a sample would typically comprise a labeled compound, e.g., ligand or antibody, having known binding affinity for DCRS8, a source of DCRS8 (naturally occurring or recombinant) as a positive control, and a means for separating the bound from free labeled compound, e.g., a solid phase for immobilizing the DCRS8 in the test sample. Compartments containing reagents, and instructions, will normally be provided. Appropriate nucleic acid or protein containing kits are also provided.

Antibodies, including antigen binding fragments, specific for mammalian DCRS8 or a peptide fragment, or receptor fragments are useful in diagnostic applications to detect the presence of elevated levels of ligand and/or its fragments. Diagnostic assays may be homogeneous (without a separation step between free reagent and antibody-antigen complex) or heterogeneous (with a separation step). Various commercial assays exist, such as radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), enzyme immunoassay (EIA), enzyme-multiplied immunoassay technique (EMIT), substrate-labeled fluorescent immunoassay (SLFIA) and the like. For example, unlabeled

10

15

20

25

30

35

antibodies can be employed by using a second antibody which is labeled and which recognizes the antibody to a cytokine receptor or to a particular fragment thereof. These assays have also been extensively discussed in the literature. See, e.g., Harlow and Lane (1988) <u>Antibodies: A Laboratory Manual</u>, CSH, and Coligan (ed. 1991 and periodic supplements) <u>Current Protocols In Immunology</u> Greene/Wiley, New York.

Anti-idiotypic antibodies may have similar use to serve as agonists or antagonists of cytokine receptors. These should be useful as therapeutic reagents under appropriate circumstances.

Frequently, the reagents for diagnostic assays are supplied in kits, so as to optimize the sensitivity of the assay. For the subject invention, depending upon the nature of the assay, the protocol, and the label, either labeled or unlabeled antibody, or labeled ligand is provided. This is usually in conjunction with other additives, such as buffers, stabilizers, materials necessary for signal production such as substrates for enzymes, and the like. Preferably, the kit will also contain instructions for proper use and disposal of the contents after use. Typically the kit has compartments for each useful reagent, and will contain instructions for proper use and disposal of reagents. Desirably, the reagents are provided as a dry lyophilized powder, where the reagents may be reconstituted in an aqueous medium having appropriate concentrations for performing the assay.

The aforementioned constituents of the diagnostic assays may be used without modification or may be modified in a variety of ways. For example, labeling may be achieved by covalently or non-covalently joining a moiety which directly or indirectly provides a detectable signāl. In many of these assays, a test compound, cytokine receptor, or antibodies thereto can be labeled either directly or indirectly. Possibilities for direct labeling include label groups: radiolabels such as ¹²⁵I, enzymes (U.S. Pat. No. 3,645,090) such as peroxidase and alkaline phosphatase, and fluorescent labels (U.S. Pat. No. 3,940,475) capable of monitoring the change in fluorescence intensity, wavelength shift, or fluorescence polarization. Both of the patents are incorporated herein by reference. Possibilities for indirect labeling include biotinylation of one constituent followed by binding to avidin coupled to one of the above label groups: ———

There are also numerous methods of separating the bound from the free ligand, or alternatively the bound from the free test compound. The cytokine receptor can be immobilized on various matrixes followed by washing. Suitable matrices include plastic such as an ELISA plate, filters, and beads. Methods of immobilizing the receptor to a matrix include, without limitation, direct adhesion to plastic, use of a capture antibody, chemical coupling, and biotin-avidin. The last step in this approach involves the precipitation of antibody/antigen complex by any of several methods including those

10

15

20

25

30

35

utilizing, e.g., an organic solvent such as polyethylene glycol or a salt such as ammonium sulfate. Other suitable separation techniques include, without limitation, the fluorescein antibody magnetizable particle method described in Rattle, et al. (1984) <u>Clin. Chem.</u> 30(9):1457-1461, and the double antibody magnetic particle separation as described in U.S. Pat. No. 4,659,678, each of which is incorporated herein by reference.

The methods for linking protein or fragments to various labels have been extensively reported in the literature and do not require detailed discussion here. Many of the techniques involve the use of activated carboxyl groups either through the use of carbodiimide or active esters to form peptide bonds, the formation of thioethers by reaction of a mercapto group with an activated halogen such as chloroacetyl, or an activated olefin such as maleimide, for linkage, or the like. Fusion proteins will also find use in these applications.

Another diagnostic aspect of this invention involves use of oligonucleotide or polynucleotide sequences taken from the sequence of an cytokine receptor. These sequences can be used as probes for detecting levels of the respective cytokine receptor in patients suspected of having an immunological disorder. The preparation of both RNA and DNA nucleotide sequences, the labeling of the sequences, and the preferred size of the sequences has received ample description and discussion in the literature. Normally an oligonucleotide probe should have at least about 14 nucleotides, usually at least about 18 nucleotides, and the polynucleotide probes may be up to several kilobases. Various labels may be employed, most commonly radionuclides, particularly ³²P. However, other techniques may also be employed, such as using biotin modified nucleotides for introduction into a polynucleotide. The biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionuclides, fluorescers, enzymes, or the like. Alternatively, antibodies may be employed which can recognize specific duplexes, including DNA duplexes, RNA duplexes, DNA-RNA hybrid duplexes, or DNA-protein duplexes. The antibodies in turn may be labeled and the assay carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected. The use of probes to the novel RNA may be carried out in conventional techniques such as nucleic acid hybridization, plus and minus screening, recombinational probing, hybrid released translation (HRT), and hybrid arrested translation (HART). Antisense nucleic acids, which may be used to block protein expression, are also provided. See, e.g., Isis Pharmaceuticals, Sequitur, Inc., or Hybridon. This also includes amplification techniques such as polymerase chain reaction (PCR).

Diagnostic kits which also test for the qualitative or quantitative presence of other markers are also contemplated. Diagnosis or prognosis may depend on the combination

10

15

20

25

...30 --

35

of multiple indications used as markers. Thus, kits may test for combinations of markers. See, e.g., Viallet, et al. (1989) Progress in Growth Factor Res. 1:89-97.

VIII. Therapeutic Utility

This invention provides reagents with significant therapeutic value. See, e.g., Levitzki (1996) Curr. Opin. Cell Biol. 8:239-244. The cytokine receptors (naturally occurring or recombinant), fragments thereof, mutein receptors, and antibodies, along with compounds identified as having binding affinity to the receptors or antibodies, should be useful in the treatment of conditions exhibiting abnormal expression of the receptors of their ligands. Such abnormality will typically be manifested by immunological disorders, e.g., innate immunity, or developmentally. Additionally, this invention should provide therapeutic value in various diseases or disorders associated with abnormal expression or abnormal triggering of response to the ligand. For example, the IL-1 ligands have been suggested to be involved in morphologic development, e.g., dorso-ventral polarity determination, and immune responses, particularly the primitive innate responses. See, e.g., Sun, et al. (1991) Eur. J. Biochem. 196:247-254; and Hultmark (1994) Nature 367:116-117.

Recombinant cytokine receptors, muteins, agonist or antagonist antibodies thereto, or antibodies can be purified and then administered to a patient. These reagents can be combined for therapeutic use with additional active ingredients, e.g., in conventional pharmaceutically acceptable carriers or diluents, along with physiologically innocuous stabilizers and excipients. These combinations can be sterile, e.g., filtered, and placed into dosage forms as by lyophilization in dosage vials or storage in stabilized aqueous preparations. This invention also contemplates use of antibodies or binding fragments thereof which are not complement binding.

Ligand screening using cytokine receptor or fragments thereof can be performed to identify molecules having binding affinity to the receptors. Subsequent biological assays can then be utilized to determine if a putative ligand can provide competitive binding, which can block intrinsic stimulating activity. Receptor fragments can be used as a blocker-or antagonist in that it blocks the activity of ligand. Likewise, a compound having intrinsic stimulating activity can activate the receptor and is thus an agonist in that it simulates the activity of ligand, e.g., inducing signaling. This invention further contemplates the therapeutic use of antibodies to cytokine receptors as antagonists.

The quantities of reagents necessary for effective therapy will depend upon many different factors, including means of administration, target site, reagent physiological life, pharmacological life, physiological state of the patient, and other medicants administered. Thus, treatment dosages should be titrated to optimize safety and efficacy. Typically,

10

15

20

25

30

35

dosages used in vitro may provide useful guidance in the amounts useful for in situ administration of these reagents. Animal testing of effective doses for treatment of particular disorders will provide further predictive indication of human dosage. Various considerations are described, e.g., in Gilman, et al. (eds. 1990) Goodman and Gilman's: The Pharmacological Bases of Therapeutics, 8th Ed., Pergamon Press; and Remington's Pharmaceutical Sciences, 17th ed. (1990), Mack Publishing Co., Easton, Penn.; each of which is hereby incorporated herein by reference. Methods for administration are discussed therein and below, e.g., for oral, intravenous, intraperitoneal, or intramuscular administration, transdermal diffusion, and others. Pharmaceutically acceptable carriers will include water, saline, buffers, and other compounds described, e.g., in the Merck Index, Merck & Co., Rahway, New Jersey. Because of the likely high affinity binding, or turnover numbers, between a putative ligand and its receptors, low dosages of these reagents would be initially expected to be effective. And the signaling pathway suggests extremely low amounts of ligand may have effect. Thus, dosage ranges would ordinarily be expected to be in amounts lower than 1 mM concentrations, typically less than about 10 μM concentrations, usually less than about 100 nM, preferably less than about 10 pM (picomolar), and most preferably less than about 1 fM (femtomolar), with an appropriate carrier. Slow release formulations, or slow release apparatus will often be utilized for continuous administration.

Cytokine receptors, fragments thereof, and antibodies or its fragments, antagonists, and agonists, may be administered directly to the host to be treated or, depending on the size of the compounds, it may be desirable to conjugate them to carrier proteins such as ovalbumin or serum albumin prior to their administration. Therapeutic formulations may be administered in many conventional dosage formulations. While it is possible for the active ingredient to be administered alone, it is preferable to present it as a pharmaceutical formulation. Formulations comprise at least one active ingredient, as defined above, together with one or more acceptable carriers thereof. Each carrier must be both pharmaceutically and physiologically acceptable in the sense of being compatible with the other ingredients and not injurious to the patient. Formulations include those suitable for oral, rectal, nasal, or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration. The formulations may conveniently be presented in unit dosage form and may be prepared by methods well known in the art of pharmacy. See, e.g., Gilman, et al. (eds. 1990) Goodman and Gilman's: The Pharmacological Bases of Therapeutics, 8th Ed., Pergamon Press; and Remington's Pharmaceutical Sciences, 17th ed. (1990), Mack Publishing Co., Easton, Penn.; Avis, et al. (eds. 1993) Pharmaceutical Dosage Forms: Parenteral Medications Dekker, NY; Lieberman, et al. (eds. 1990) Pharmaceutical Dosage Forms: Tablets Dekker, NY; and

Lieberman, et al. (eds. 1990) <u>Pharmaceutical Dosage Forms: Disperse Systems</u> Dekker, NY. The therapy of this invention may be combined with or used in association with other therapeutic agents, particularly agonists or antagonists of other cytokine receptor family members.

5

10

IX. Screening

Drug screening using DCRS8 or fragments thereof can be performed to identify compounds having binding affinity to the receptor subunit, including isolation of associated components. Subsequent biological assays can then be utilized to determine if the compound has intrinsic stimulating activity and is therefore a blocker or antagonist in that it blocks the activity of the ligand. Likewise, a compound having intrinsic stimulating activity can activate the receptor and is thus an agonist in that it simulates the activity of a cytokine ligand. This invention further contemplates the therapeutic use of antibodies to the receptor as cytokine agonists or antagonists.

15

Similarly, complexes comprising multiple proteins may be used to screen for ligands or reagents capable of recognizing the complex. Most cytokine receptors comprise at least two subunits, which may be the same, or distinct. Alternatively, the transmembrane receptor may bind to a complex comprising a cytokine-like ligand associated with another soluble protein serving, e.g., as a second receptor subunit.

20

25

One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant DNA molecules expressing the DCRS8 in combination with another cytokine receptor subunit. Cells may be isolated which express a receptor in isolation from other functional receptors. Such cells, either in viable or fixed form, can be used for standard antibody/antigen or ligand/receptor binding assays. See also, Parce, et al. (1989) Science 246:243-247; and Owicki, et al. (1990) Proc. Nat'l Acad. Sci. USA 87:4007-4011, which describe sensitive methods to detect cellular responses. Competitive assays are particularly useful, where the cells (source of putative ligand) are contacted and incubated with a labeled receptor or antibody having known binding affinity to the ligand, such as 125I-antibody, and a test sample whose binding affinity to the binding composition is being measured. The bound and free labeled binding compositions are then separated to assess the degree of ligand binding. The amount of test compound bound is inversely proportional to the amount of labeled receptor binding to the known source. Many techniques can be used to separate bound from free ligand to assess the degree of ligand binding. This separation step could typically involve a procedure such as adhesion to filters followed by washing, adhesion to plastic followed by washing, or centrifugation of the cell membranes. Viable cells could also be used to screen for the effects of drugs on cytokine mediated functions, e.g., second messenger

35

30

levels, e.g., Ca⁺⁺; cell proliferation; inositol phosphate pool changes; and others. Some detection methods allow for elimination of a separation step, e.g., a proximity sensitive detection system. Calcium sensitive dyes will be useful for detecting Ca⁺⁺ levels, with a fluorimeter or a fluorescence cell sorting apparatus.

5

10

15

20

X. Ligands

The descriptions of the DCRS8 herein provides means to identify ligands, as described above. Such ligand should bind specifically to the respective receptor with reasonably high affinity. Various constructs are made available which allow either labeling of the receptor to detect its ligand. For example, directly labeling cytokine receptor, fusing onto it markers for secondary labeling, e.g., FLAG or other epitope tags, etc., will allow detection of receptor. This can be histological, as an affinity method for biochemical purification, or labeling or selection in an expression cloning approach. A two-hybrid selection system may also be applied making appropriate constructs with the available cytokine receptor sequences. See, e.g., Fields and Song (1989) Nature 340:245-246.

Most likely candidates will be structually related to members of the IL-17 family. See, e.g., USSN 09/480,287.

The broad scope of this invention is best understood with reference to the following examples, which are not intended to limit the inventions to the specific embodiments.

EXAMPLES

25 I. General Methods

Some of the standard methods are described or referenced, e.g., in Maniatis, et al. (1982) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor Press; Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual, (2d ed.), vols. 1-3, CSH-Press, NY; or Ausubel, et al. (1987 and Supplements) Current

Protocols in Molecular Biology, Greene/Wiley, New York. Methods for protein purification include such methods as ammonium sulfate precipitation, column chromatography, electrophoresis, centrifugation, crystallization, and others. See, e.g., Ausubel, et al. (1987 and periodic supplements); Coligan, et al. (ed. 1996) and periodic supplements, Current Protocols In Protein Science Greene/Wiley, New York; Deutscher (1990) "Guide to Protein Purification" in Methods in Enzymology, vol. 182, and other volumes in this series; and manufacturer's literature on use of protein purification products, e.g., Pharmacia, Piscataway, N.J., or Bio-Rad, Richmond, CA. Combination

10

15

20

25

30

35

with recombinant techniques allow fusion to appropriate segments, e.g., to a FLAG sequence or an equivalent which can be fused via a protease-removable sequence. See, e.g., Hochuli (1990) "Purification of Recombinant Proteins with Metal Chelate Absorbent" in Setlow (ed.) Genetic Engineering, Principle and Methods 12:87-98, Plenum Press, N.Y.; and Crowe, et al. (1992) QIAexpress: The High Level Expression & Protein Purification System QUIAGEN, Inc., Chatsworth, CA.

Computer sequence analysis is performed, e.g., using available software programs, including those from the GCG (U. Wisconsin) and GenBank sources. Public sequence databases were also used, e.g., from GenBank and others.

Many techniques applicable to IL-10 receptors may be applied to the DCRSs, as described, e.g., in USSN 08/110,683 (IL-10 receptor), which is incorporated herein by reference.

II. Computational Analysis

Human sequences related to cytokine receptors were identified from genomic sequence database using, e.g., the BLAST server (Altschul, et al. (1994) Nature Genet. 6:119-129). Standard analysis programs may be used to evaluate structure, e.g., PHD (Rost and Sander (1994) Proteins 19:55-72) and DSC (King and Sternberg (1996) Protein Sci. 5:2298-2310). Standard comparison software includes, e.g., Altschul, et al. (1990) L. Mol. Biol. 215:403-10; Waterman (1995) Introduction to Computational Biology: Maps. Sequences, and Genomes Chapman & Hall; Lander and Waterman (eds. 1995)

Calculating the Secrets of Life: Applications of the Mathematical Sciences in Molecular Biology National Academy Press; and Speed and Waterman (eds. 1996) Genetic Mapping and DNA Sequencing (IMA Volumes in Mathematics and Its Applications, Vol 81)

Springer Verlag. Each reference is incorporate herein by reference.

III. Cloning of full-length cDNAs; Chromosomal localization

PCR primers derived from the sequences are used to probe a human cDNA library. Sequences may be derived, e.g., from Tables 1-5, preferably those adjacent the ends of sequences. Full length cDNAs for primate, rodent, or other species DCRS8 are cloned, e.g., by DNA hybridization screening of λgt10 phage. PCR reactions are conducted using T. aquaticus Taqplus DNA polymerase (Stratagene) under appropriate conditions. Extending partial length cDNA clones is typically routine.

Chromosome spreads are prepared. In situ hybridization is performed on chromosome preparations obtained from phytohemagglutinin-stimulated human lymphocytes cultured for 72 h. 5-bromodeoxyuridine was added for the final seven hours

10

15

20

25

30

35

of culture (60 µg/ml of medium), to ensure a posthybridization chromosomal banding of good quality.

A PCR fragment, amplified with the help of primers, is cloned into an appropriate vector. The vector is labeled by nick-translation with ³H. The radiolabeled probe is hybridized to metaphase spreads at final concentration of 200 ng/ml of hybridization solution as described, e.g., in Mattei, et al. (1985) <u>Hum. Genet.</u> 69:327-331.

After coating with nuclear track emulsion (KODAK NTB₂), slides are exposed. To avoid any slipping of silver grains during the banding procedure, chromosome spreads are first stained with buffered Giemsa solution and metaphase photographed. R-banding is then performed by the fluorochrome-photolysis-Giemsa (FPG) method and metaphases rephotographed before analysis.

Similar appropriate methods are used for other species.

IV. Localization of mRNA

Human multiple tissue (Cat# 1, 2) and cancer cell line blots (Cat# 7757-1), containing approximately 2 μg of poly(A)⁺ RNA per lane, are purchased from Clontech (Palo Alto, CA). Probes are radiolabeled with [α–32P] dATP, e.g., using the Amersham Rediprime random primer labeling kit (RPN1633). Prehybridization and hybridizations are performed, e.g., at 65° C in 0.5 M Na₂HPO₄, 7% SDS, 0.5 M EDTA (pH 8.0). High stringency washes are conducted, e.g., at 65° C with two initial washes in 2 x SSC, 0.1% SDS for 40 min followed by a subsequent wash in 0.1 x SSC, 0.1% SDS for 20 min. Membranes are then exposed at -70° C to X-Ray film (Kodak) in the presence of intensifying screens. More detailed studies by cDNA library Southerns are performed with selected appropriate human DCRS clones to examine their expression in hemopoietic or other cell subsets.

Alternatively, two appropriate primers are selected from Tables 1-5. RT-PCR is used on an appropriate mRNA sample selected for the presence of message to produce a cDNA, e.g., a sample which expresses the gene.

Full length clones may be isolated by hybridization of cDNA libraries from appropriate tissues pre-selected by PCR signal. Northern blots can be performed.

Message for genes encoding DCRS will be assayed by appropriate technology, e.g., PCR, immunoassay, hybridization, or otherwise. Tissue and organ cDNA preparations are available, e.g., from Clontech, Mountain View, CA. Identification of sources of natural expression are useful, as described. And the identification of functional receptor subunit pairings will allow for prediction of what cells express the combination of receptor subunits which will result in a physiological responsiveness to each of the cytokine ligands.

10

15

20

25

30

35

For mouse counterpart distribution, e.g., Southern Analysis can be performed: DNA (5 µg) from a primary amplified cDNA library was digested with appropriate restriction enzymes to release the inserts, run on a 1% agarose gel and transferred to a nylon membrane (Schleicher and Schuell, Keene, NH).

Samples for mouse mRNA isolation may include: resting mouse fibroblastic L cell line (C200); Braf:ER (Braf fusion to estrogen receptor) transfected cells, control (C201); T cells, TH1 polarized (Mel14 bright, CD4+ cells from spleen, polarized for 7 days with IFN-y and anti IL-4; T200); T cells, TH2 polarized (Mel14 bright, CD4+ cells from spleen, polarized for 7 days with IL-4 and anti-IFN-γ; T201); T cells, highly TH1 polarized (see Openshaw, et al. (1995) J. Exp. Med. 182:1357-1367; activated with anti-CD3 for 2, 6, 16 h pooled; T202); T cells, highly TH2 polarized (see Openshaw, et al. (1995) J. Exp. Med. 182:1357-1367; activated with anti-CD3 for 2, 6, 16 h pooled; T203); CD44- CD25+ pre T cells, sorted from thymus (T204); TH1 T cell clone D1.1, resting for 3 weeks after last stimulation with antigen (T205); TH1 T cell clone D1.1, 10 µg/ml ConA stimulated 15 h (T206); TH2 T cell clone CDC35, resting for 3 weeks after last stimulation with antigen (T207); TH2 T cell clone CDC35, 10 µg/ml ConA stimulated 15 h (T208); Mel14+ naive T cells from spleen, resting (T209); Mel14+ T cells, polarized to Th1 with IFN-y/IL-12/anti-IL-4 for 6, 12, 24 h pooled (T210); Mel14+ T cells, polarized to Th2 with IL-4/anti-IFN-γ for 6, 13, 24 h pooled (T211); unstimulated mature B cell leukemia cell line A20 (B200); unstimulated B cell line CH12 (B201); unstimulated large B cells from spleen (B202); B cells from total spleen, LPS activated (B203); metrizamide enriched dendritic cells from spleen, resting (D200); dendritic cells from bone marrow, resting (D201); monocyte cell line RAW 264.7 activated with LPS 4 h (M200); bone-marrow macrophages derived with GM and M-CSF (M201); macrophage cell line J774, resting (M202); macrophage cell line J774 + LPS + anti-IL-10 at 0.5, 1, 3, 6, 12 h pooled (M203); macrophage cell line J774 + LPS + IL-10 at 0.5, 1, 3, 5, 12 h pooled(M204); aerosol challenged mouse lung tissue, Th2 primers, aerosol OVA challenge 7, 14, 23 h pooled (see Garlisi, et al. (1995) Clinical Immunology and Immunopathology 75:75-83; X206); Nippostrongulus-infected lung tissue (see Coffman, et al. (1989) Science 245:308-310; X200); total adult lung, normal (O200); total lung, rag-1 (see Schwarz, et al. (1993) Immunodeficiency 4:249-252; O205); IL-10 K.O. spleen (see Kuhn, et al. (1991) Cell 75:263-274; X201); total adult spleen, normal (O201); total spleen, rag-1 (O207); IL-10 K.O. Peyer's patches (O202); total Peyer's patches, normal (O210); IL-10 K.O. mesenteric lymph nodes (X203); total mesenteric lymph nodes, normal (O211); IL-10 K.O. colon (X203); total colon, normal (O212); NOD mouse pancreas (see Makino, et al. (1980) Jikken Dobutsu 29:1-13; X205); total thymus, rag-1 (O208); total kidney, rag-1 (O209); total heart, rag-1 (O202); total brain, rag-1 (O203);

total testes, rag-1 (O204); total liver, rag-1 (O206); rat normal joint tissue (O300); and rat arthritic joint tissue (X300).

Samples for human mRNA isolation may include, e.g.: peripheral blood mononuclear cells (monocytes, T cells, NK cells, granulocytes, B cells), resting (T100); 5 peripheral blood mononuclear cells, activated with anti-CD3 for 2, 6, 12 h pooled (T101): T cell, TH0 clone Mot 72, resting (T102); T cell, TH0 clone Mot 72, activated with anti-CD28 and anti-CD3 for 3, 6, 12 h pooled (T103); T cell, TH0 clone Mot 72, anergic treated with specific peptide for 2, 7, 12 h pooled (T104); T cell, TH1 clone HY06, resting (T107); T cell, TH1 clone HY06, activated with anti-CD28 and anti-CD3 for 3, 6, 12 h pooled (T108); T cell, TH1 clone HY06, anergic treated with specific peptide for 2, 10 6, 12 h pooled (T109); T cell, TH2 clone HY935, resting (T110); T cell, TH2 clone HY935, activated with anti-CD28 and anti-CD3 for 2, 7, 12 h pooled (T111); T cells CD4+CD45RO- T cells polarized 27 days in anti-CD28, IL-4, and anti IFN-7, TH2 polarized, activated with anti-CD3 and anti-CD28 4 h (T116); T cell tumor lines Jurkat 15 and Hut78, resting (T117); T cell clones, pooled AD130.2, Tc783.12, Tc783.13. Tc783.58, Tc782.69, resting (T118); T cell random γδ T cell clones, resting (T119); Splenocytes, resting (B100); Splenocytes, activated with anti-CD40 and IL-4 (B101); B cell EBV lines pooled WT49, RSB, JY, CVIR, 721.221, RM3, HSY, resting (B102); B cell line JY, activated with PMA and ionomycin for 1, 6 h pooled (B103); NK 20 clones pooled, resting (K100); NK 20 clones pooled, activated with PMA and ionomycin for 6 h 20 (K101); NKL clone, derived from peripheral blood of LGL leukemia patient, IL-2 treated (K106); NK cytotoxic clone 640-A30-1, resting (K107); hematopoietic precursor line TF1, activated with PMA and ionomycin for 1, 6 h pooled (C100); U937 premonocytic line, resting (M100); U937 premonocytic line, activated with PMA and ionomycin for 1, 25 6 h pooled (M101); elutriated monocytes, activated with LPS, IFNy, anti-IL-10 for 1, 2, 6, 12, 24 h pooled (M102); elutriated monocytes, activated with LPS, IFNy, IL-10 for 1, 2, 6, 12, 24 h pooled (M103); elutriated monocytes, activated with LPS, IFNy, anti-IL-10 for 4, 16 h pooled (M106); elutriated monocytes, activated with LPS, IFNy, IL-10 for 4, 16 h pooled (M107); elutriated monocytes, activated LPS for 1 h (M108); elutriated 30 monocytes, activated LPS for 6 h (M109); DC 70% CD1a+, from CD34+ GM-CSF. TNFα 12 days, resting (D101); DC 70% CD1a+, from CD34+ GM-CSF, TNFα 12 days. activated with PMA and ionomycin for 1 hr (D102); DC 70% CD1a+, from CD34+ GM-CSF, TNFa 12 days, activated with PMA and ionomycin for 6 hr (D103); DC 95% CD1a+, from CD34+ GM-CSF, TNFα 12 days FACS sorted, activated with PMA and 35 ionomycin for 1, 6 h pooled (D104); DC 95% CD14+, ex CD34+ GM-CSF, TNFa 12 days FACS sorted, activated with PMA and ionomycin 1, 6 hr pooled (D105); DC CD1a+ CD86+, from CD34+ GM-CSF, TNFa 12 days FACS sorted, activated with PMA and

10

15

20

25

30

35

ionomycin for 1, 6 h pooled (D106); DC from monocytes GM-CSF, IL-4 5 days, resting (D107); DC from monocytes GM-CSF, IL-4 5 days, resting (D108); DC from monocytes GM-CSF, IL-4 5 days, activated LPS 4, 16 h pooled (D109); DC from monocytes GM-CSF, IL-4 5 days, activated TNFα, monocyte supe for 4, 16 h pooled (D110); leiomyoma L11 benign tumor (X101); normal myometrium M5 (O115); malignant leiomyosarcoma GS1 (X103); lung fibroblast sarcoma line MRC5, activated with PMA and ionomycin for 1, 6 h pooled (C101); kidney epithelial carcinoma cell line CHA, activated with PMA and ionomycin for 1, 6 h pooled (C102); kidney fetal 28 wk male (O100); lung fetal 28 wk male (O101); liver fetal 28 wk male (O102); heart fetal 28 wk male (O103); brain fetal 28 wk male (O107); adipose tissue fetal 28 wk male (O108); ovary fetal 25 wk female (O109); uterus fetal 25 wk female (O110); testes fetal 28 wk male (O111); spleen fetal 28 wk male (O112); adult placenta 28 wk (O113); and tonsil inflamed, from 12 year old (X100).

TaqMan quantitative PCR techniques have shown the DCRS6, in both mouse and human, to be expressed on T cells, including thymocytes and CD4+ naive and differentiated (hDCRS6 is also expressed on dendritic cells), in gastrointestinal tissue, including stomach, intestine, colon and associated lymphoid tissue, e.g., Peyer's patches and mesenteric lymph nodes, and upregulated in inflammatory models of bowel disease, e.g., IL-10 KO mice. The hDCRS7 was detected in both resting and activated dendritic cells, epithelial cells, and mucosal tissues, including GI and reproductive tracts. These data suggest that family members are expressed in mucosal tissues and immune system cell types, and/or in gastrointestinal, airway, and reproductive tract development.

As such, therapeutic indications include, e.g., short bowel syndrome, post chemo/radio-therapy or alcoholic recovery, combinations with ulcer treatments or arthritis medication, Th2 pregnancy skewing, stomach lining/tissue regeneration, loss of adsorptive surface conditions, etc. See, e.g., Yamada, et al. (eds. 1999) Textbook of Gastroenterology; Yamada, et al. (eds. 1999) Textbook and Atlas of Gastroenterology; Gore and Levine (2000) Textbook of Gastrointestinal Radiology; and (1987) Textbook of Pediatric Gastroenterology.

Similar samples may isolated in other species for evaluation.

Primers specific for IL-17RA were designed and used in Taqman quantative PCR against various human libraries. IL-17RA is highly expressed in innate immune myeloid cells including dendritic cells and monocytes. Expression is also detected in T-cell libraries. These data demonstrate the receptor is expressed in immune cell types and may be regulated by activation conditions.

Table for IL-17RA	
library description	CT for IL-
•	17RA H
DC ex monocytes GM-CSF, IL-4, resting	16.97
	17.14
DC ex monocytes GM-CSF, IL-4, resting	17.53
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa,	18.17
resting	10.17
monocytes, LPS, gIFN, anti-IL-10	18.27
DC ex monocytes GM-CSF, IL-4, LPS	18.51
activated 4+16 hr	10.51
DC ex monocytes GM-CSF, IL-4, monokine	18.68
activated 4+16 hr	10.00
kidney epithelial carcinoma cell line CHA,	10 (0
activated	18.69
monocytes, LPS, 1 hr	10 70
monocytes, LPS, 6 hr	18.72
	18.72
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa,	18.91
activated 1 hr	10.04
DC 70% CD1a+, ex CD34+ GM-CSF, TNFa,	18.94
activated 6 hr	
T cell, TH1 clone HY06, activated	18.99
lung fetal	19.15
T cell, TH1 clone HY06, resting	19.18
T cell, TH1 clone HY06, anergic	19.23
monocytes, LPS, gIFN, IL-10, 4+16 hr	19.3
spleen fetal	19.51
testes fetal	19.7
T cell, THO clone Mot 72, resting	
T cell, THO clone Mot 72, resting	19.84
DC CD1a+ CD86+, ex CD34+ GM-CSF, TNFa,	19.94
activated 1+6 hr	
	20.01
activated	
hematopoietic precursor line TF1, activated	20.07
lung fibroblast sarcoma line MRC5,	20.18
activated	
Splenocytes, activated	20.21
T cell gd clones, resting	20.27
ovary fetal	20.45
T cells CD4+, TH2 polarized, activated	20.57
Splenocytes, resting	20.6
uterus fetal	20.62
DC 95% CD1a+, ex CD34+ GM-CSF, TNFa,	20.94
activated 1+6 hr	
epithelial cells, unstimulated	20.96
peripheral blood mononuclear cells, resting	20.97
adipose tissue fetal	21.13

B cell line JY, activated	21.28
	21.37 ⁱ
	21.38
L —	21.55
	21.63
F	21.65
normal human thyroid	21.72
epithelial cells, IL-1b activated normal human skin	21.72
	21.87
T cell, THO clone Mot 72, anergic	22.01
	22.01
The second secon	
	22.09
T cell clones, pooled, resting	22.29
Hashimoto's thyroiditis thyroid sample	22.3
NK 20 clones pooled, resting	22.4
B cell EBV lines, resting	22.45
T cell, TH2 clone HY935, resting	22.86
T cell, THO clone Mot 72, activated	23.3
monocytes, LPS, gIFN, anti-IL-10, 4+16 hr	23.39
T cell lines Jurkat and Hut78, resting	23.4
T cell, THO clone Mot 72, activated	23.56
Pneumocystic carnii pneumonia lung sample	24.05
U937 premonocytic line, resting	25.01
pool of rheumatoid arthritis samples, human	
pool of three heavy smoker human lung	26.1
samples	
DC 95% CD14+, ex CD34+ GM-CSF, TNFa,	32.69
activated 1+6 hr	
kidney fetal	33.7
liver fetal	34.4
NK cytotoxic clone, resting	34.49
tonsil inflammed	35.02
normal w.t. monkey lung	35.45
gallbladder fetal	35.84
TR1 T cell clone	35.86
allergic lung sample	36.39
Psoriasis patient skin sample	36.44
normal human colon	37.34
brain fetal	37.35
Ascaris-challenged monkey lung, 4 hr.	37.75
Ascaris-challenged monkey lung, 24 hr.	40
heart fetal	40
normal w.t. monkey colon	40
ulcerative colitis human colon sample	40

Primers specific for DCRS6_H were designed and used in Taqman quantative PCR against various human libraries. DCRS6_H is expressed in innate immune myeloid cells including dendritic cells and monocytes. Expression is also detected in T-cell libraries. These data demonstrate the receptor is expressed in immune cell types and may be regulated by activation conditions.

Table for DCRS6_H	
library description	CT for DCRS6 H
T cell, THO clone Mot 72, resting	15.54
T cell, THO clone Mot 72, resting	15.7
DC ex monocytes GM-CSF, IL-4, resting	
DC ex monocytes GM-CSF, IL-4, resting	
DC ex monocytes GM-CSF, IL-4, LPS	18.3
activated 4+16 hr	
DC ex monocytes GM-CSF, IL-4, monokine	18.3
activated 4+16 hr	
T cell, TH1 clone HY06, resting	18.43
NK cytotoxic clone, resting	18.53
T cell clones, pooled, resting	18.8
T cell, TH1 clone HY06, activated	19.03
·	19.1
TR1 T cell clone	19.12
T cells CD4+, TH2 polarized, activated	20.06
B cell EBV lines, resting	20.3
T cell, TH2 clone HY935, resting	
kidney epithelial carcinoma cell line CHA,	
activated	
T cell, TH1 clone HY06, anergic	21.14
normal human colon	21.29
NK 20 clones pooled, resting	21.49
T cell gd clones, resting	21.58
gallbladder fetal	22.21
kidney fetal	22.79
liver fetal	22.8
Pneumocystic carnii pneumonia lung sample	23.06
CD28- T cell clone in pME	23.18
T cell, THO clone Mot 72, anergic	23.2
ovary fetal	23.51
normal human thyroid	24.03
small intestine fetal	24.13
testes fetal	24.82
epithelial cells, IL-1b activated	26.08
pool of three heavy smoker human lung	26.49
samples	
placenta 28 wk	26.56
normal w.t. monkey lung	28.65
peripheral blood mononuclear cells,	33.39

activated	
Ascaris-challenged monkey lung, 4 hr.	36.59
	38.43
peripheral blood mononuclear cells, resting	40
<u> </u>	40
	40
-	40
	40
	40
<u> </u>	40
hematopoietic precursor line TF1, activated	40
	40
	40
	40
	40
monocytes, LPS, gIFN, anti-IL-10, 4+16 hr	
-	40
	40
	40
	40
resting	
-	40
activated 1 hr	
	40
activated 6 hr	
	40
activated 1+6 hr	
	40
activated 1+6 hr	
	40
activated 1+6 hr	
	40
· ·	40
activated	
Ascaris-challenged monkey lung, 24 hr.	40
pool of two normal human lung samples	40
allergic lung sample	40
normal w.t. monkey colon	40
ulcerative colitis human colon sample	40
Hashimoto's thyroiditis thyroid sample	40
pool of rheumatoid arthritis samples, human	
normal human skin	40
Psoriasis patient skin sample	40
tonsil inflammed	40
lung fetal	40
heart fetal	40
brain fetal	40
adipose tissue fetal	40
uterus fetal	40

T cell, THO clone Mot 72, activated

40

Primers specific for DCRS7_H were designed and used in Taqman quantative PCR against various human libraries. DCRS7_H is expressed in innate immune myeloid cells including dendritic cells and monocytes. Expression is also detected in fetal libraries. These data demonstrate the receptor is expressed in immune cell types and may be regulated by activation conditions.

	CT for DCRS7 H	
fetal uterus	_	19.05
DC mix		19.34
fetal small intestine		19.46
fetal ovary		19.68
fetal testes		19.75
fetal lung		20.04
CHA		20.24
normal thyroid		20.32
DC/GM/IL-4		20.52
fetal spleen		20.86
normal lung		20.94
TF1		21
allergic lung #19		21.02
Psoriasis skin		21.07
fetal liver		21.15
MRC5	• •	21.15
24 hr. Ascaris lung		21.17
hi dose IL-4 lung		21.23
CD1a+ 95%		21.32
Hashimotos thyroiditis Crohns colon 4003197A		21.35
		21.35
normal lung pool 70% DC resting		21.42
fetal kidney		21.58
adult placenta		21.68
lung 121897-1		21.8
Pneumocystis carnii lung		21.81
#20		21.01
A549 unstim.		21.89
normal colon #22		21.94
18 hr. Ascaris lung		22.09
normal skin		22.1
Crohns colon 9609C144		22.13
fetal adipose tissue		22.35
D6		22.39

DC resting CD34-derived	22.45
DC TNF/TGFb act CD34-der.	22.54
fetal brain	22.9
DC CD40L activ. mono-	22.91
deriv.	
Crohns colon 403242A	22.91
ulcerative colitis colon	23
	25
#26	
RA synovium pool	23.06
A549 activated	23.06
mono + IL-10	23.42
DC LPS	23.49
Mot 72 activated	23.66
CD1a+ CD86+	23.86
	23.87
HY06 resting	
U937 activated	23.97
inflammed tonsil	23.97
D1	24.06
M1	24.17
CD14+ 95%	24.21
lung 080698-2	24.28
	24.37
4 hr. Ascaris lung	
Jurkat activated pSPORT	24.42
DC resting mono-derived	24.48
HY06 activated	24.54
C+	24.64
Splenocytes resting	24.65
	24.96
	25.8
-	
Mot 72 resting	25.91
mono + anti-IL-10	26.14
NK pool	26.99
HY06 anti-peptide	27.34
mast cell pME	27.38
-	
Tc gamma delta	28.14
TC1080 CD28- pMET7	31.05
PBMC activated	31.89
NK non cytotox.	32.3
RV-C30 TR1 pMET7	32.5
Bc	33.72
C-	33.8
Splenocytes activated	34.7
JY	35.05
NK cytotox.	36.44
NKL/IL-2	37.59
HY935 resting	37.6
NK pool activated	38.15
Mot 72 anti-peptide	38.87
- -	
fetal heart	40.92

B21 resting	42.05
Jurkat resting pSPORT	42.8
B21 activated	43.09
NKA6 pSPORT	44.85
HY935 activated	45
M6	45

Primers specific for DCRS9_H were designed and used in Taqman quantative PCR against various human libraries. DCRS9_H is expressed T-cells, fetal lung, and resting monocytes. These data demonstrate the receptor is expressed in immune cell types and may be regulated by activation conditions.

Table for DCRS9_H library description CT for

	DCRS9_	H
HY06 resting	_	22.35
fetal lung		22.63
HY06 anti-peptide		22.72
HY06 activated		22.96
U937/CD004 resting		24.16
fetal small		24.94
intestine		
JY		25.04
Mot 72 resting		25.12
Jurkat activated		25.2
pSPORT		
RV-C30 TR1 pMET7		26.51
fetal kidney		26.76
MRC5		27.2
Psoriasis skin		27.3
Tc gamma delta		27.37
Crohns colon		27.44
4003197A		
fetal spleen		27.72
normal lung		27.83
Hashimotos	•	28.03
thyroiditis		
B21 resting		28.32
TF1		28.39
NK cytotox.		28.44
TC1080 CD28- pMET7		28.61
Pneumocystis carnii		29.05
lung #20		
U937 activated		29.06
HY935 resting		29.09
CD1a+ 95%		29.13

B21 activated	29.2
Mot 72 activated	29.21
fetal testes	29.27
lung 080698-2	29.32
Jurkat resting	29.38
pSPORT	
CD14+ 95%	29.38
normal thyroid	29.53
Mot 72 anti-	29.65
peptide	
Splenocytes	29.85
resting	
Crohns colon	30.28
9609C144	
lung 121897-1	30.37
24 hr. Ascaris lung	
hi dose IL-4 lung	30.8
CD1a+ CD86+	31.42
normal skin	31.73
fetal uterus	31.79
PBMC activated	31.82
inflammed tonsil	31.98
fetal brain	32.21
RA synovium pool	32.77
allergic lung #19	33.18
18 hr. Ascaris lung	
adult placenta	33.43
normal lung pool	33.45
Crohns colon	33.52
403242A	
NK pool	33.72
HY935 activated	33.75
DC/GM/IL-4	34.28
DC resting mono-	34.57
derived	
fetal ovary	35.06
fetal adipose	35.07
tissue	
CHA	35.2
PBMC resting	35.95
Bc	36.19
A549 unstim.	36.4
fetal heart	36.87
ulcerative colitis	37.83
colon #26	
C-	38.32
4 hr. Ascaris lung	40.2
D6	40.62
C+	44.38

•	
A549 activated	44.58
Splenocytes	45
activated	
NK pool activated	45
NKA6 pSPORT	45
NKL/IL-2	45
NK non cytotox.	45
mono + anti-IL-10	45
mono + IL-10	45
M1	45
M6	45
70% DC resting	45
D1	45
DC LPS	45
DC mix	45
fetal liver	45
mast cell pME	45
DC CD40L activ.	45
mono-deriv.	
DC resting CD34-	45
derived	
DC TNF/TGFb act	45
CD34-der.	
normal colon #22	45

10

15

20

25

30

35

V. Cloning of species counterparts

Various strategies are used to obtain species counterparts of the DCRSs, preferably from other primates or rodents. One method is by cross hybridization using closely related species DNA probes. It may be useful to go into evolutionarily similar species as intermediate steps. Another method is by using specific PCR primers based on the identification of blocks of similarity or difference between genes, e.g., areas of highly conserved or nonconserved polypeptide or nucleotide sequence. Sequence database searches may identify species counterparts.

VI. Production of mammalian protein

An appropriate, e.g., GST, fusion construct is engineered for expression, e.g., in E. coli. For example, a mouse IGIF pGex plasmid is constructed and transformed into E. coli. Freshly transformed cells are grown, e.g., in LB medium containing 50 µg/ml ampicillin and induced with IPTG (Sigma, St. Louis, MO). After overnight induction, the bacteria are harvested and the pellets containing the appropriate protein are isolated. The pellets are homogenized, e.g., in TE buffer (50 mM Tris-base pH 8.0, 10 mM EDTA and 2 mM pefabloc) in 2 liters. This material is passed through a microfluidizer (Microfluidics, Newton, MA) three times. The fluidized supernatant is spun down on a Sorvall GS-3 rotor for 1 h at 13,000 rpm. The resulting supernatant containing the cytokine receptor protein is filtered and passed over a glutathione-SEPHAROSE column equilibrated in 50 mM Tris-base pH 8.0. Fractions containing the DCRS8-GST fusion protein are pooled and cleaved, e.g., with thrombin (Enzyme Research Laboratories, Inc., South Bend, IN). The cleaved pool is then passed over a Q-SEPHAROSE column equilibrated in 50 mM Tris-base. Fractions containing DCRS8 are pooled and diluted in cold distilled H2O, to lower the conductivity, and passed back over a fresh Q-Sepharose column, alone or in succession with an immunoaffinity antibody column. Fractions containing the DCRS8 protein are pooled, aliquoted, and stored in the -70° C freezer.

Comparison of the CD spectrum with cytokine receptor protein may suggest that the protein is correctly folded. See Hazuda, et al. (1969) <u>J. Biol. Chem.</u> 264:1689-1693.

VII. Preparation of specific antibodies

Inbred Balb/c mice are immunized intraperitoneally with recombinant forms of the protein, e.g., purified DCRS8 or stable transfected NIH-3T3 cells. Animals are boosted at appropriate time points with protein, with or without additional adjuvant, to further stimulate antibody production. Serum is collected, or hybridomas produced with harvested spleens.

10

15

20

25

30

35

Alternatively, Balb/c mice are immunized with cells transformed with the gene or fragments thereof, either endogenous or exogenous cells, or with isolated membranes enriched for expression of the antigen. Serum is collected at the appropriate time, typically after numerous further administrations. Various gene therapy techniques may be useful, e.g., in producing protein in situ, for generating an immune response. Serum or antibody preparations may be cross-absorbed or immunoselected to prepare substantially purified antibodies of defined specificity and high affinity.

Monoclonal antibodies may be made. For example, splenocytes are fused with an appropriate fusion partner and hybridomas are selected in growth medium by standard procedures. Hybridoma supernatants are screened for the presence of antibodies which bind to the DCRS8, e.g., by ELISA or other assay. Antibodies which specifically recognize specific DCRS8 embodiments may also be selected or prepared.

In another method, synthetic peptides or purified protein are presented to an immune system to generate monoclonal or polyclonal antibodies. See, e.g., Coligan (ed. 1991) <u>Current Protocols in Immunology</u> Wiley/Greene; and Harlow and Lane (1989) <u>Antibodies: A Laboratory Manual</u> Cold Spring Harbor Press. In appropriate situations, the binding reagent is either labeled as described above, e.g., fluorescence or otherwise, or immobilized to a substrate for panning methods. Nucleic acids may also be introduced into cells in an animal to produce the antigen, which serves to elicit an immune response. See, e.g., Wang, et al. (1993) <u>Proc. Nat'l. Acad. Sci.</u> 90:4156-4160; Barry, et al. (1994) <u>BioTechniques</u> 16:616-619; and Xiang, et al. (1995) <u>Immunity</u> 2: 129-135.

VIII. Production of fusion proteins

Various fusion constructs are made with DCRS8 or DCRS9. A portion of the appropriate gene is fused to an epitope tag, e.g., a FLAG tag, or to a two hybrid system construct. See, e.g., Fields and Song (1989) <u>Nature</u> 340:245-246.

The epitope tag may be used in an expression cloning procedure with detection with anti-FLAG antibodies to detect a binding partner, e.g., ligand for the respective cytokine receptor. The two hybrid system may also be used to isolate proteins which specifically bind to the receptor subunit.

IX. Structure activity relationship

Information on the criticality of particular residues is determined using standard procedures and analysis. Standard mutagenesis analysis is performed, e.g., by generating many different variants at determined positions, e.g., at the positions identified above, and evaluating biological activities of the variants. This may be performed to the extent of determining positions which modify activity, or to focus on specific positions to

10

15

20

25

30

35

determine the residues which can be substituted to either retain, block, or modulate biological activity.

Alternatively, analysis of natural variants can indicate what positions tolerate natural mutations. This may result from populational analysis of variation among individuals, or across strains or species. Samples from selected individuals are analyzed, e.g., by PCR analysis and sequencing. This allows evaluation of population polymorphisms.

X. Isolation of a ligand

A cytokine receptor can be used as a specific binding reagent to identify its binding partner, by taking advantage of its specificity of binding, much like an antibody would be used. The binding receptor may be a heterodimer of receptor subunits; or may involve, e.g., a complex of the DCRS8 with another cytokine receptor subunit. A binding reagent is either labeled as described above, e.g., fluorescence or otherwise, or immobilized to a substrate for panning methods.

The binding composition is used to screen an expression library made from a cell line which expresses a binding partner, i.e., ligand, preferably membrane associated. Standard staining techniques are used to detect or sort surface expressed ligand, or surface expressing transformed cells are screened by panning. Screening of intracellular expression is performed by various staining or immunofluorescence procedures. See also McMahan, et al. (1991) EMBO J. 10:2821-2832.

For example, on day 0, precoat 2-chamber permanox slides with 1 ml per chamber of fibronectin, 10 ng/ml in PBS, for 30 min at room temperature. Rinse once with PBS. Then plate COS cells at $2-3 \times 10^5$ cells per chamber in 1.5 ml of growth media. Incubate overnight at 37 C.

On day 1 for each sample, prepare 0.5 ml of a solution of 66 μ g/ml DEAE-dextran, 66 μ M chloroquine, and 4 μ g DNA in serum free DME. For each set, a positive control is prepared, e.g., of DCRS8-FLAG cDNA at 1 and 1/200 dilution, and a negative mock. Rinse cells with serum free DME. Add the DNA solution and incubate 5 hr at 37 C. Remove the medium and add 0.5 ml 10% DMSO in DME for 2.5 min. Remove and wash once with DME. Add 1.5 ml growth medium and incubate overnight.

On day 2, change the medium. On days 3 or 4, the cells are fixed and stained. Rinse the cells twice with Hank's Buffered Saline Solution (HBSS) and fix in 4% paraformaldehyde (PFA)/glucose for 5 min. Wash 3X with HBSS. The slides may be stored at -80 C after all liquid is removed. For each chamber, 0.5 ml incubations are performed as follows. Add HBSS/saponin (0.1%) with 32 μ l/ml of 1 M NaN3 for 20 min. Cells are then washed with HBSS/saponin 1X. Add appropriate DCRS8 or

15

20

25

30

35

DCRS8/antibody complex to cells and incubate for 30 min. Wash cells twice with HBSS/saponin. If appropriate, add first antibody for 30 min. Add second antibody, e.g., Vector anti-mouse antibody, at 1/200 dilution, and incubate for 30 min. Prepare ELISA solution, e.g., Vector Elite ABC horseradish peroxidase solution, and preincubate for 30 min. Use, e.g., 1 drop of solution A (avidin) and 1 drop solution B (biotin) per 2.5 ml HBSS/saponin. Wash cells twice with HBSS/saponin. Add ABC HRP solution and incubate for 30 min. Wash cells twice with HBSS, second wash for 2 min, which closes cells. Then add Vector diaminobenzoic acid (DAB) for 5 to 10 min. Use 2 drops of buffer plus 4 drops DAB plus 2 drops of H₂O₂ per 5 ml of glass distilled water.

10 Carefully remove chamber and rinse slide in water. Air dry for a few minutes, then add 1 drop of Crystal Mount and a cover slip. Bake for 5 min at 85-90 C.

Evaluate positive staining of pools and progressively subclone to isolation of single genes responsible for the binding.

Alternatively, receptor reagents are used to affinity purify or sort out cells expressing a putative ligand. See, e.g., Sambrook, et al. or Ausubel, et al.

Another strategy is to screen for a membrane bound receptor by panning. The receptor cDNA is constructed as described above. Immobilization may be achieved by use of appropriate antibodies which recognize, e.g., a FLAG sequence of a DCRS8 fusion construct, or by use of antibodies raised against the first antibodies. Recursive cycles of selection and amplification lead to enrichment of appropriate clones and eventual isolation of receptor expressing clones.

Phage expression libraries can be screened by mammalian DCRS8. Appropriate label techniques, e.g., anti-FLAG antibodies, will allow specific labeling of appropriate clones.

We tested the ability of DCRS receptors to specifically bind IL-17 family cytokines. Recombinant FLAG-hIL-17 family cytokines were used in binding experiments on Baf/3 DCRS receptor transfected expressing recombinant IL-17R_H, DCRS6_H, DCRS7_H, DCRS8_H and DCRS9_H and analyzed by FACS. We can demonstrate specific binding of IL-17 family member IL-74 to DCRS6 expressing Baf/3 cells. In additional experiments we have shown IL-17 specific binding to IL-17R_H, DCRS7_H, DCRS8_H. Further experiments show IL-71 binding to DCRS8_Hu transfectants. These experiments demonstrate the sequence homology among IL-17 related cytokine receptors confers functional binding to IL-17 cytokines.

All citations herein are incorporated herein by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

WO 01/90358 PCT/US01/16767

87

Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only, and the invention is to be limited by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled; and the invention is not to be limited by the specific embodiments that have been presented herein by way of example.

5

10

15

30

35

WHAT IS CLAIMED IS:

- 1. A composition of matter selected from:
 - a) a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at least four amino acids identical to segments of SEQ ID NO: 14;
 - a substantially pure or recombinant polypeptide comprising at least two distinct nonoverlapping segments of at least five amino acids identical to segments of SEQ ID NO: 14;
 - c) a natural sequence DCRS8 comprising mature SEQ ID NO: 14;
 - d) a fusion polypeptide comprising DCRS8 sequence;
 - e) a substantially pure or recombinant polypeptide comprising at least three distinct nonoverlapping segments of at least four amino acids identical to segments of SEQ ID NO: 17 or 20;
 - f) a substantially pure or recombinant polypeptide comprising at least two distinct nonoverlapping segments of at least five amino acids identical to segments of SEQ ID NO: 17 or 20;
 - g) a natural sequence DCRS9 comprising mature SEQ ID NO: 17 or 20; or
 - h) a fusion polypeptide comprising DCRS9 sequence.
- 20 2. The substantially pure or isolated antigenic polypeptide of Claim 1, wherein said distinct nonoverlapping segments of identity include:
 - a) one of at least eight amino acids;
 - b) one of at least four amino acids and a second of at least five amino acids;
 - c) at least three segments of at least four, five, and six amino acids, or
- d) one of at least twelve amino acids.
 - 3. The composition of matter of Claim 1, wherein said:
 - a) polypeptide:
 - i) comprises a mature sequence of Table 3 or 4;
 - ii) is an unglycosylated form of DCRS8 or DCRS9;
 - iii) is from a primate, such as a human;
 - iv) comprises at least seventeen amino acids of SEQ ID NO: 14 or 17;
 - v) exhibits at least four nonoverlapping segments of at least seven amino acids of SEQ ID NO: 14 or 17;
 - vi) is a natural allelic variant of DCRS8 or DCRS9;
 - vii) has a length at least about 30 amino acids;

viii) exhibits at least two non-overlapping epitopes which are specific for

a primate DCRS8 or DCRS9; ix) is glycosylated; x) has a molecular weight of at least 30 kD with natural glycosylation; 5 xi) is a synthetic polypeptide; xii) is attached to a solid substrate; xiii) is conjugated to another chemical moiety; xiv) is a 5-fold or less substitution from natural sequence; or xv) is a deletion or insertion variant from a natural sequence. 10 A composition comprising: 4. a) a substantially pure DCRS8 or DCRS9 and another cytokine receptor family member; b) a sterile DCRS8 or DCRS9 polypeptide of Claim 1; c) said DCRS8 or DCRS9 polypeptide of Claim 1 and a carrier, wherein said 15 carrier is: i) an aqueous compound, including water, saline, and/or buffer; and/or ii) formulated for oral, rectal, nasal, topical, or parenteral administration. The fusion polypeptide of Claim 1, comprising: 20 5. a) mature protein sequence of Table 3 or 4; b) a detection or purification tag, including a FLAG, His6, or Ig sequence; or c) sequence of another cytokine receptor protein. A kit comprising a polypeptide of Claim 1, and: 25 6. a) a compartment comprising said protein or polypeptide; or b) instructions for use or disposal of reagents in said kit. A binding compound comprising an antigen binding site from an antibody, 7. which specifically binds to a natural DCRS8 or DCRS9 polypeptide of Claim 1, wherein: 30 a) said binding compound is in a container; b) said DCRS8 or DCRS9 polypeptide is from a human; c) said binding compound is an Fv, Fab, or Fab2 fragment; d) said binding compound is conjugated to another chemical moiety; or 35 e) said antibody: i) is raised against a peptide sequence of a mature polypeptide of Table 3 or 4;

ii) is raised against a mature DCRS8 or DCRS9; iii) is raised to a purified human DCRS8 or DCRS9; iv) is immunoselected; v) is a polyclonal antibody; 5 vi) binds to a denatured DCRS8 or DCRS9; vii) exhibits a Kd to antigen of at least 30 μM; viii) is attached to a solid substrate, including a bead or plastic membrane; ix) is in a sterile composition; or x) is detectably labeled, including a radioactive or fluorescent label. 10 8. A kit comprising said binding compound of Claim 7, and: a) a compartment comprising said binding compound; or b) instructions for use or disposal of reagents in said kit. 15 9. A method of producing an antigen:antibody complex, comprising contacting under appropriate conditions a primate DCRS8 or DCRS9 polypeptide with an antibody of Claim 7, thereby allowing said complex to form. 10. The method of Claim 9, wherein: 20 a) said complex is purified from other cytokine receptors; b) said complex is purified from other antibody; c) said contacting is with a sample comprising an interferon; d) said contacting allows quantitative detection of said antigen; e) said contacting is with a sample comprising said antibody; or 25 f) said contacting allows quantitative detection of said antibody. 11. A composition comprising: a) a sterile binding compound of Claim 7, or b) said binding compound of Claim 7 and a carrier, wherein said carrier is: 30 i) an aqueous compound, including water, saline, and/or buffer; and/or ii) formulated for oral, rectal, nasal, topical, or parenteral administration. 12. An isolated or recombinant nucleic acid encoding said polypeptide of Claim 1, wherein said: 35 a) DCRS8 or DCRS9 is from a human; or b) said nucleic acid: i) encodes an antigenic peptide sequence of Table 3 or 4;

ii) encodes a plurality of antigenic peptide sequences of Table, 3 or 4; iii) exhibits identity over at least thirteen nucleotides to a natural cDNA encoding said segment; iv) is an expression vector; v) further comprises an origin of replication; 5 vi) is from a natural source; vii) comprises a detectable label; viii) comprises synthetic nucleotide sequence; ix) is less than 6 kb, preferably less than 3 kb; x) is from a primate; 10 xi) comprises a natural full length coding sequence; xii) is a hybridization probe for a gene encoding said DCRS8 or DCRS9; xiii) is a PCR primer, PCR product, or mutagenesis primer. 15 A cell or tissue comprising said recombinant nucleic acid of Claim 12. 13. The cell of Claim 13, wherein said cell is: 14. a) a prokaryotic cell; b) a eukaryotic cell; 20 c) a bacterial cell; d) a yeast cell; e) an insect cell; f) a mammalian cell; g) a mouse cell; 25 h) a primate cell; or i) a human cell. A kit comprising said nucleic acid of Claim 12, and: 15. 30 a) a compartment comprising said nucleic acid; b) a compartment further comprising a primate DCRS8 or DCRS9 polypeptide; or c) instructions for use or disposal of reagents in said kit. A nucleic acid which: 35 16. a) hybridizes under wash conditions of 30 minutes at 30° C and less than 2M salt to the coding portion of SEQ ID NO: 13 or 16; or

15

- b) exhibits identity over a stretch of at least about 30 nucleotides to a primate DCRS8 or DCRS9.
- 17. The nucleic acid of Claim 16, wherein:
 - a) said wash conditions are at 45° C and/or 500 mM salt; or
 - b) said stretch is at least 55 nucleotides.
- 18. The nucleic acid of Claim 16, wherein:
 - a) said wash conditions are at 55° C and/or 150 mM salt; or
- b) said stretch is at least 75 nucleotides.
 - 19. A method of modulating physiology or development of a cell or tissue culture cells comprising contacting said cell with an agonist or antagonist of a mammalian DCRS8 or DCRS9.
 - 20. The method of Claim 19, wherein said cell is transformed with a nucleic acid encoding said DCRS8 or DCRS9 and another cytokine receptor subunit.

RKVWIVYSADH-PLYVEVVLKFAQFLITACG--TEVALDLLEEQV-ISEVGVMTWVSRQK RKVFITYSMD----TAMEVVKFVNFLLVNG---FQTAIDIFEDR--IRGIDIIKWMERYL RKV‡ITYSMD----TAMEVVKFVNFLLVNG---FQTAIDIFEDR--IRGIDIIKWMERYL IKVLVVYPSEI--CFHHTICYFTEFLQNHCR--SEVILEKWQKKK-IAEMGPVQWLATQK FKVMLVCPEVS-GRDEDFMMRIADALKKSN---NKVVCDRWFEDSKNAEENMLHWVYEQT RTALLIHSADG-AGYERLVGALASALSQMP---LRVAVDLWSRRE-LSAHGALAWFHHQR RAALLLYSADD-SGFERLVGALASALCQLP---LRVAVDLWSRRE-LSAQGPVAWFHAQR RKVWIIYSADH-PLYVDVVLKFAQFLLTACG--TEVALDLLEEQA-ISEAGVMTWVGRQK RPVLLLHAADS-EAQRRLVGALAELLRAALGGGRDVIVDLWEGRH-VARVGPLPWLWAAR PKVFLCYSSKDGQNHMNVVQCFAYFLQDFCG--CEVALDLWEDFS-LCREGQREWVIQKI VKVMIVYADDN-DLHTDCVKKLVENLRNCAS--CDPVFDLEKLI--TAEIVPSRWLVDQI IL-17R_Ce DCRS6_Hu DCRS6_Ce IL-17R_Hu IL-17R_Mu DCRS10 Mu DCRS9_Hu DCRS8_Hu DCRS7_Mu DCRS7_Hu DCRS10

---TEASETHOLVOARP--FADLFGPAMEMIIRDAT --IAEKIIVFHSAYYHPRCG---IYDVINNFFPCTDPR-----LAHIALT---PEAQ RQTLQEGGVVVLLFSPGAVALCS---EWLQDGVSGPGAHGP---HDAFRASLSCVLPDFL QEMVESNSKIIVLCSRGTRAKWQALLGRGAP-VRLRCDHGKPV-GDLFTAAMMILPDFK QEMVESNSKIIILCSRGTQAKWKAILGWAEPAVQLRCDHWKPA-GDLFTAAMMILPDFK R--+DKTVMIIVAISPKYKQDVE----GAESQLDED-EHGL---HTKYIHRM-MQIEFIK R---DKTVMIIVAISPKYKQDVE----GAESQLDED-EHGL---HTKYIHRM-MQIEFIS ----LLA----LLHAAP --KKNYKHKGGGRGSGK---GELFLVAVSAIAEKLR K----AADKVVFLLSNDVNSVCD----GTCGKSEGSPSENS---QDLFPLAFNLFCSDLR RRILQEGGVVILLFSPAAVAQCQ---QWLQLQTVEP---GP---HDALAAWLSCVLPDFL ---GPDP-RAAP----H----ESQFIIVVCSKGMKYFVD--SLKKFIIVVSDCAEKILD-TRVAREQGTVLLLWSGADLRPVS-DCRS7_Mu DCRS7_Hu IL-17R_Hu IL-17R_Mu DCRS10 Mu IL-17R_Ce DCRS9_Hu DCRS8_Hu DCRS6_Hu DCRS10

FIG. 1A

LP-SQLPAFLDALQGGCSTS LP-SQLPDFLGALQQPRAPR LM-DRFEEVYFRIQDLEMFQ LM-DRFEEVYFRIQDLEMFE WP-KNKKNILLRLL-REEEYVA WP-KNKKNILLRLL-REEEYVA LL-RDLPRLLRALDARPFAE LLM-DNLPQLCSHLHSRDHGLQE FIPEQFAQLTAFLHN-VEHTER LM-KDATAFCAELLHVKQQ DIPIEDVAIPENVPIHHESC	VRCPDW TQCPDW DEEPDW VRNPNW
QGRATGRYVGVYFDGLLHPDSVPSPFRVAPLFSLP-SQLPAFLDALQ-GGCSTS QGRAPGSYVGACFDRLLHPDAVPALFRTVPVFTLP-SQLPDFLGALQQPRAPR RPACFGTYVVCYFSEVSCDGDVPDLFGAAPRYPLM-DRFEEVYFRIQDLEMFE QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA QGSMNFRFIPVLFPNAK-KEHVPTWLQNTHVYSWP-KNKKNILLRLL-REEEYVA RPLLLLAYFSRLCAKGDIPPPLRALPRYRLL-RDLPRLLRALD-ARPFAE QAKQSSSAALSKFIAVYFDYSC-EGDVPGILDLSTKYRLM-DNLPQLCSHLHSRDHGLQE HNFPEARKKYAVVRFNYSPHVPPNLAILNLPTFIPEQFAQLTAFLHN-VEHTER SQIHLHKYVVVYFREID-TKDDYNALSVCPKYHLM-KDATAFCAELLHVKQQ RSVPKEVEYVLPRDQKLLEDAFDITIADPLVIDIPIEDVAIPENVPIHHESC	AGRPADRVERVTQALRSALDSCTS SGRLQERAEQVSRALQPALDSYFHPP PGRMHRVGELSGDNYLRSPGGRQLRAALDRFRDWQVRCPDW PGRMHHVRELTGDNYLQSPSGRQLKEAVLRFQEWQTQCPDW PPRGPL
QGRATGRYVGY QGRAPGSYVGY RPACFGTYVV(QGSMNFRFIPY QGSMNFRFIPY QGSMNFRFIPY RPLLLLI QAKQSSAALSKFIAY HNFPEARYVVX SQIHLHKYVVY	AGRPADRVERVT SGRLQERAEQVS PGRMHRVGELSGDNYLRS- PGRMHHVRELTGDNYLQS PPRGPL PPRGPL PPRGPL ATSWGRLGAR ATSWGRLGAR DGYTTRQGSR VSAGKR DSIDSRNNSK
DCRS7_Mu DCRS7_Hu IL-17R_Hu IL-17R_Mu DCRS10_Mu DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu DCRS6_Ce	DCRS7_Mu DCRS7_Hu IL-17R_Hu IL-17R_Mu DCRS10_Mu DCRS10_Mu DCRS9_Hu DCRS8_Hu IL-17R_Ce DCRS6_Hu

FIG. 1B

SEQUENCE SUBMISSION

```
SEQ ID NO: 1 is primate DCRS6 nucleotide sequence.
SEQ ID NO: 2 is primate DCRS6 polypeptide sequence.
SEQ ID NO: 3 is primate DCRS6 reverse translation.
SEQ ID NO: 4 is rodent DCRS6 nucleotide sequence.
SEQ ID NO: 5 is rodent DCRS6 polypeptide sequence.
SEQ ID NO: 6 is rodent DCRS6 reverse translation.
SEQ ID NO: 7 is primate DCRS7 nucleotide sequence.
SEQ ID NO: 8 is primate DCRS7 polypeptide sequence.
SEQ ID NO: 9 is primate DCRS7 reverse translation.
SEQ ID NO: 10 is rodent DCRS7 nucleotide sequence.
SEQ ID NO: 11 is rodent DCRS7 polypeptide sequence.
SEQ ID NO: 12 is rodent DCRS7 reverse translation.
SEQ ID NO: 13 is primate DCRS8 nucleotide sequence.
SEQ ID NO: 14 is primate DCRS8 polypeptide sequence.
SEQ ID NO: 15 is primate DCRS8 reverse translation.
SEQ ID NO: 16 is primate DCRS9 nucleotide sequence.
SEQ ID NO: 17 is primate DCRS9 polypeptide sequence.
SEQ ID NO: 18 is primate DCRS9 reverse translation.
SEQ ID NO: 19 is rodent DCRS9 nucleotide sequence.
SEQ ID NO: 20 is rodent DCRS9 polypeptide sequence.
SEQ ID NO: 21 is rodent DCRS9 reverse translation.
SEQ ID NO: 22 is primate DCRS10 nucleotide sequence.
SEQ ID NO: 23 is primate DCRS10 polypeptide sequence.
SEQ ID NO: 24 is primate DCRS10 reverse translation.
SEQ ID NO: 25 is rodent DCRS10 nucleotide sequence.
SEQ ID NO: 26 is rodent DCRS10 polypeptide sequence.
SEQ ID NO: 27 is rodent DCRS10 reverse translation.
SEQ ID NO: 28 is primate IL-17 receptor peptide sequence.
SEQ ID NO: 29 is rodent IL-17 receptor peptide sequence.
SEQ ID NO: 30 is worm IL-17 receptor peptide sequence.
SEQ ID NO: 31 is worm DCRS6 nucleotide sequence.
<110> Schering Corporation
<120> Mammalian Receptor Proteins; Related Reagents and
      Methods
<130> DX01170K PCT
<140>
<141>
<150> US 60/206,862
<151> 2000-05-24
<160> 31
<170> PatentIn Ver. 2.0
 <210> 1
 <211> 1796
 <212> DNA
 <213> Unknown
 <220>
 <223> Description of Unknown Organism:primate; surmised
       Homo sapiens
```

<220> <221> CDS <222> (4)..(1509) <220> <221> mat_peptide <222> (46)..(1509) <400> 1 gcg atg tcg ctc gtg ctg cta agc ctg gcc gcg ctg tgc agg agc gcc Met Ser Leu Val Leu Leu Ser Leu Ala Ala Leu Cys Arg Ser Ala gta ccc cga gag ccg acc gtt caa tgt ggc tct gaa act ggg cca tct 96 Val Pro Arg Glu Pro Thr Val Gln Cys Gly Ser Glu Thr Gly Pro Ser cca gag tgg atg cta caa cat gat cta atc ccg gga gac ttg agg gac 144 Pro Glu Trp Met Leu Gln His Asp Leu Ile Pro Gly Asp Leu Arg Asp ctc cga gta gaa cct gtt aca act agt gtt gca aca ggg gac tat tca 192 Leu Arg Val Glu Pro Val Thr Thr Ser Val Ala Thr Gly Asp Tyr Ser att ttg atg aat gta agc tgg gta ctc cgg gca gat gcc agc atc cgc Ile Leu Met Asn Val Ser Trp Val Leu Arg Ala Asp Ala Ser Ile Arg 60 ttg ttg aag gcc acc aag att tgt gtg acg ggc aaa agc aac ttc cag 288 Leu Leu Lys Ala Thr Lys Ile Cys Val Thr Gly Lys Ser Asn Phe Gln tcc tac age tgt gtg agg tgc aat tac aca gag gcc ttc cag act cag 336 Ser Tyr Ser Cys Val Arg Cys Asn Tyr Thr Glu Ala Phe Gln Thr Gln 90 acc aga ccc tct ggt ggt aaa tgg aca ttt tcc tat atc ggc ttc cct 384 Thr Arg Pro Ser Gly Gly Lys Trp Thr Phe Ser Tyr Ile Gly Phe Pro 105 gta gag ctg aac aca gtc tat ttc att ggg gcc cat aat att cct aat 432 Val Glu Leu Asn Thr Val Tyr Phe Ile Gly Ala His Asn Ile Pro Asn gca aat atg aat gaa gat ggc cct tcc atg tct gtg aat ttc acc tca 480 Ala Asn Met Asn Glu Asp Gly Pro Ser Met Ser Val Asn Phe Thr Ser 135 140 cca ggc tgc cta gac cac ata atg aaa tat aaa aaa aag tgt gtc aag 528 Pro Gly Cys Leu Asp His Ile Met Lys Tyr Lys Lys Lys Cys Val Lys gcc gga agc ctg tgg gat ccg aac atc act gct tgt aag aag aat gag Ala Gly Ser Leu Trp Asp Pro Asn Ile Thr Ala Cys Lys Lys Asn Glu gag aca gta gaa gtg aac ttc aca acc act ccc ctg gga aac aga tac Glu Thr Val Glu Val Asn Phe Thr Thr Thr Pro Leu Gly Asn Arg Tyr 185

atg Met	gct Ala 195	ctt Leu	atc Ile	caa Gln	cac His	agc Ser 200	act Thr	atc Ile	atc Ile	gly aaa	ttt Phe 205	tct Ser	cag Gln	gtg Val	ttt Phe	672
gag Glu 210	cca Pro	cac His	cag Gln	aag Lys	aaa Lys 215	caa Gln	acg Thr	cga Arg	gct Ala	tca Ser 220	gtg Val	gtg Val	att Ile	cca Pro	gtg Val 225	720
act Thr	gly 999	gat Asp	agt Ser	gaa Glu 230	ggt Gly	gct Ala	acg Thr	gtg Val	cag Gln 235	ctg Leu	act Thr	cca Pro	tat Tyr	ttt Phe 240	cct Pro	768
act Thr	tgt Cys	Gly ggc	agc Ser 245	gac Asp	tgc Cys	atc Ile	cga Arg	cat His 250	aaa Lys	gga Gly	aca Thr	gtt Val	gtg Val 255	ctc Leu	tgc Cys	816
cca Pro	caa Gln	aca Thr 260	ggc Gly	gtc Val	cct Pro	ttc Phe	cct Pro 265	ctg Leu	gat Asp	aac Asn	aac Asn	aaa Lys 270	agc Ser	aag Lys	ccg Pro	864
gga Gly	ggc Gly 275	tgg Trp	ctg Leu	cct Pro	ctc Leu	ctc Leu 280	ctg Leu	ctg Leu	tct Ser	ctg Leu	ctg Leu 285	gtg Val	gcc Ala	aca Thr	tgg Trp	912
gtg Val 290	ctg Leu	gtg Val	gca Ala	ggg ggg	atc Ile 295	tat Tyr	cta Leu	atg Met	tgg Trp	agg Arg 300	cac His	gaa Glu	agg Arg	atc Ile	aag Lys 305	960
aag Lys	act Thr	tcc Ser	ttt Phe	tct Ser 310	acc Thr	acc Thr	aca Thr	cta Leu	ctg Leu 315	ccc Pro	ccc Pro	att Ile	aag Lys	gtt Val 320	ctt Leu	1008
gtg Val	gtt Val	tac Tyr	cca Pro 325	tct Ser	gaa Glu	ata Ile	tgt Cys	ttc Phe 330	cat His	cac His	aca Thr	att Ile	tgt Cys 335	tac Tyr	ttc Phe	1056
act Thr	gaa Glu	ttt Phe 340	Leu	caa Gln	aac Asn	cat His	tgc Cys 345	aga Arg	agt Ser	gag Glu	gtc Val	atc Ile 350	ctt Leu	gaa Glu	aag Lys	1104
tgg Trp	cag Gln 355	Lys	aag Lys	aaa Lys	ata Ile	gca Ala 360	Glu	atg Met	ggt Gly	cca Pro	gtg Val 365	Gln	tgg Trp	ctt Leu	gcc Ala	1152
act Thr 370	Gln	aag Lys	aag Lys	gca Ala	gca Ala 375	Asp	aaa Lys	gto Val	gto Val	tto Phe	: Leu	ctt Leu	tcc Ser	aat Asn	gac Asp 385	1200
gto Val	aac	agt Ser	gtg Val	tgc Cys 390	Asp	ggt Gly	acc Thr	tgt Cys	ggc Gly 395	<i>г</i>	ago Ser	gag Glu	ggc Gly	e agt Ser 400	ccc	1248
agt Ser	gag Glu	aac Asr	tct Ser 405	Gln	gac Asp	cto Lev	tto Phe	e ccc Pro 410	Let	gco Ala	ttt a Phe	aac Asr	ctt Leu 415	ı Phe	tgc Cys	1296
agt Ser	gat Asp	cta Lev 420	a Arg	ago g Ser	cag Glr	att i Ile	cat His	: Let	g cad	c aaa s Lys	a tac s Tyr	gtg Val 430	. Val	g gto Val	tac Tyr	1344

+++														1	:	
														gtc; Val		1392
	_				_	_	_	_		_		_	_	gaa Glu		1440
														gcc Ala 480		1488
			tgc Cys 485				tago	ccad	cc a	tgag	gaago	a ag	gagad	cctta	a	1539
aagg	gctto	cct a	atcco	cacca	aa tt	cacaç	ggaa	a aaa	acgt	gtg	atga	tcct	ga a	agctt	actat	1599
gcag	gccta	aca a	aacaç	jaatt	a gt	aatt	aaaa	a cat	ttta	tac	caat	aaaa	itt t	tcaa	atatt	1659
gcta	acta	at o	gtago	catta	a ct	caacç	gatto	g gaa	acta	cat	ttac	aact	tc a	aaago	etgttt	1719
tata	cata	aga a	aatca	atta	ac ag	gcttt	aatt	gaa	aact	gta	acca	tttt	ga t	aatg	gcaaca	1779
ataa	agca	atc t	tcag	gcc												1796
<210> 2 <211> 502 <212> PRT <213> Unknown																
<212 <213	3> Ur	RT.	٧n													
<212 <213 <400	3> Ur)> 2	RT iknov		Leu -10	Leu	Ser	Lèu	Ala	Ala -5	Leu	Cys	Arg	Ser -1	Ala 1	Val	
<212 <213 <400 Met	3> Ur 3> 2 Ser	RT iknov Leu	Val	-10				·	-5		-		-1			
<212 <213 <400 Met	3> Ur 3> 2 Ser Arg	RT iknov Leu Glu 5	Val Pro	-10 Thr	Val	Gln	Cys 10	Gly	-5 Ser	Glu	Thr	Gly. 15	-1 Pro	1	Pro	
<213 <213 <400 Met Pro	3> Ur 3> 2 Ser Arg Trp 20	RT nknov Leu Glu 5 Met	Val Pro Leu	-10 Thr Gln	Val His	Gln Asp 25	Cys 10 Leu	Gly	-5 Ser Pro	Glu Gly	Thr Asp	Gly 15 Leu	-1 Pro Arg	1 Ser	Pro Leu	
<212 <213 <400 Met Pro Glu Arg 35	3> Ur 0> 2 Ser Arg Trp 20	RT iknov Leu Glu 5 Met	Val Pro Leu Pro	-10 Thr Gln Val	Val His Thr 40	Gln Asp 25 Thr	Cys 10 Leu Ser	Gly Ile Val	-5 Ser Pro	Glu Gly Thr 45	Thr Asp 30	Gly 15 Leu Asp	-1 Pro Arg Tyr	1 Ser Asp	Pro Leu Ile 50	
<212 <213 <400 Met Pro Glu Arg 35 Leu	3> Ur 3> 2 Ser Arg Trp 20 Val	ET iknov Leu Glu 5 Met Glu Asn	Val Pro Leu Pro Val	-10 Thr Gln Val Ser 55	Val His Thr 40	Gln Asp 25 Thr	Cys 10 Leu Ser	Gly Ile Val	-5 Ser Pro Ala Ala	Glu Gly Thr 45 Asp	Thr Asp 30 Gly Ala	Gly 15 Leu Asp	-1 Pro Arg Tyr	Ser Asp Ser	Pro Leu Ile 50 Leu	
<212 <213 <400 Met Pro Glu Arg 35 Leu Leu	S> Ur S> 2 Ser Arg Trp 20 Val Met	ET iknov Leu Glu 5 Met Glu Asn	Val Pro Leu Pro Val Thr	-10 Thr Gln Val Ser 55 Lys	Val His Thr 40 Trp	Gln Asp 25 Thr Val	Cys 10 Leu Ser Leu Val	Gly Ile Val Arg Thr 75	-5 Ser Pro Ala 60 Gly	Glu Gly Thr 45 Asp	Thr Asp 30 Gly Ala	Gly 15 Leu Asp Ser	-1 Pro Arg Tyr Ile Phe 80	Ser Asp Ser Arg 65	Pro Leu Ile 50 Leu Ser	
<212 <213 <400 Met Pro Glu Arg 35 Leu Leu Tyr	3> Ur 3> 2 Ser Arg Trp 20 Val Met Lys	Leu Glu 5 Met Glu Asn Ala Cys	Val Pro Leu Pro Val Thr 70 Val	-10 Thr Gln Val Ser 55 Lys	Val His Thr 40 Trp Ile Cys	Gln Asp 25 Thr Val Cys Asn	Cys 10 Leu Ser Leu Val	Gly Ile Val Arg Thr 75	-5 Ser Pro Ala 60 Gly Glu	Glu Gly Thr 45 Asp Lys	Thr Asp 30 Gly Ala Ser	Gly 15 Leu Asp Ser Asn	-1 Pro Arg Tyr Ile Phe 80	Ser Asp Ser Arg 65	Pro Leu Ile 50 Leu Ser	

Asn	Met	Asn	Glu	Asp 135	Gly	Pro	Ser	Met	Ser 140	Val	Asn	Phe	Thr	Ser 145	Pro
Gly	Сув	Leu	Asp 150	His	Ile	Met	Lys	Tyr 155	Lys	Lys	Lys	Cys	Val 160	Lys	Ala
Gly	Ser	Leu 165	Trp	Asp	Pro	Asn	Ile 170	Thr	Ala	Cys	Lys	Lys 175	Asn	Glu	Glu
Thr	Val 180	Glu	Val	Asn	Phe	Thr 185	Thr	Thr	Pro	Leu	Gly 190	Asn	Arg	Tyr	Met
Ala 195	Leu	Ile	Gln	His	Ser 200	Thr	Ile	Ile	Gly	Phe 205	Ser	Gln	Val		Glu 210
Pro	His	Gln	Lyş	Lys 215	Gln	Thr	Arg	Ala	Ser 220	Val	Val	Ile	Pro	Val 225	Thr
Gly	Asp	Ser	Glu 230	Gly	Ala	Thr	Val	Gln 235	Leu	Thr	Pro	Tyr	Phe 240	Pro	Thr
Cys	Gly	Ser 245	Asp	Cys	Ile	Arg	His 250	Lys	Gly	Thr	Val	Val 255	Leu	Сув	Pro
Gln	Thr 260	Gly	Val	Pro	Phe	Pro 265	Leu	Asp	Asn	Asn	Lys 270	Ser	Lys	Pro	Gly
Gly 275	Trp	Leu	Pro	Leu	Leu 280	Leu	Leu	Ser	Leu	Leu 285	Val	Ala	Thr	Trp	Val 290
Leu	Val	Ala	Gly	Ile 295	Tyr	Leu	Met	Trp	Arg 300	His	Glu	Arg	Ile	Lys 305	Lys
Thr	Ser	Phe	Ser 310	Thr	Thr	Thr	Leu	Leu 315	Pro	Pro	Ile	Lys	Val 320	Leu	Val
Val	Tyr	Pro 325	Ser	Glu	Ile	Cys	Phe 330	His	His	Thr	Ile	Cys 335	Tyr	Phe	Thr
Glu	Phe 340		Gln	Asn	His	Cys 345	Arg	Ser	Glu	Val	Ile 350	Leu	Glu	Lys	Trp
Gln 355	_	Lys	Lys	Ile	Ala 360	Glu	Met	Gly	Pro	Val 365	Gln	Trp	Leu	Ala	Thr 370
Gln	Lys	Lys	Ala	Ala 375	Asp	Lys	Val	Val	Phe 380		Leu	Ser	Asn	Asp 385	Val
Asn	Ser	Val	Сув 390		Gly	Thr	Cys	Gly 395	Lys	Ser	Glu	Gly	Ser 400		Ser
Glu	Asn	Ser 405		Asp	Leu	Phe	Pro 410		Ala	Phe	Asn	Leu 415		Сув	Ser
Asp	Leu 420		Ser	Gln	Ile	His 425		His	Lys	Tyr	Val 430		Val	Tyr	Phe
Arg		Ile	. Asp	Thr	Lys 440		Asp	Tyr	Asn	Ala 445		Ser	• Val	. Cys	Pro 450

Lys Tyr His Leu Met Lys Asp Ala Thr Ala Phe Cys Ala Glu Leu Leu 455 460 465

His Val Lys Gln Gln Val Ser Ala Gly Lys Arg Ser Gln Ala Cys His 470 475 480

Asp Gly Cys Cys Ser Leu 485

<210> 3

<211> 1506

<212> DNA

<213> reverse translation

<220>

<221> misc feature

<222> (1)..(1506)

<223> n may be a, c, g, or t

<400> 3

atgwsnytng tnytnytnws nytngengen ytntgymgnw sngengtnee nmgngareen 60 acngtneart gyggnwsnga racnggneen wsneengart ggatgytnea reaygayytn 120 athconggng ayytnmgnga yytnmgngtn garcongtna onacnwangt ngonaonggn 180 gaytaywsna thytnatgaa ygtnwsntgg gtnytnmgng cngaygcnws nathmgnytn 240 ytnaargcna cnaarathtg ygtnacnggn aarwsnaayt tycarwsnta ywsntgygtn 300 mgntgyaayt ayacngargc nttycaracn caracnmgnc cnwsnggngg naartggacn 360 ttywsntaya thggnttycc ngtngarytn aayacngtnt ayttyathgg ngcncayaay 420 athecnaayg enaayatgaa ygargayggn cenwsnatgw sngtnaaytt yacnwsneen 480 ggntgyytng aycayathat gaartayaar aaraartgyg tnaargcngg nwsnytntgg 540 gayccnaaya thacngcntg yaaraaraay gargaracng tngargtnaa yttyacnacn 600 acncenytng gnaaymgnta yatggenytn atheareayw snaenathat hggnttywsn 660 cargtnttyg arccncayca raaraarcar acnmgngcnw sngtngtnat hccngtnacn 720 ggngaywsng arggngcnac ngtncarytn acneentayt tycenaentg yggnwsngay 780 tgyathmgnc ayaarggnac ngtngtnytn tgyccncara cnggngtncc nttyccnytn 840 gayaayaaya arwsnaarcc nggnggntgg ytnccnytny thytnytnws nytnytngtn 900 gcnachtggg thytngtngc nggnathtay ythatgtggm gncaygarmg nathaaraar 960 acnwsnttyw snacnacnac nytnytncen cenathaarg tnytngtngt ntayeenwsn 1020 garathtgyt tycaycayac nathtgytay ttyacngart tyytncaraa ycaytgymgn 1080 wsngargtna thytngaraa rtggcaraar aaraarathg engaratggg neengtnear 1140 tggytngcna cncaraaraa rgcngcngay aargtngtnt tyytnytnws naaygaygtn 1200
aaywsngtnt gygayggnac ntgyggnaar wsngarggnw snccnwsnga raaywsncar 1260
gayytnttyc cnytngcntt yaayytntty tgywsngayy tnmgnwsnca rathcayytn 1320
cayaartayg tngtngtnta yttymgngar athgayacna argaygayta yaaygcnytn 1380
wsngtntgyc cnaartayca yytnatgaar gaygcnacng cnttytgygc ngarytnytn 1440
caygtnaarc arcargtnws ngcnggnaar mgnwsncarg cntgycayga yggntgytgy 1500
wsnytn

<210> 4
<211> 637
<212> DNA
<213> Unknown

<220>
<223> Description of Unknown Organism:rodent; surmised Mus musculus .

<220>
<221> CDS
<222> (1)..(210)

ggg gga gca gac ctc aaa ggc gac tat aat gcc ctg agt gtc tgc ccc 96 Gly Gly Ala Asp Leu Lys Gly Asp Tyr Asn Ala Leu Ser Val Cys Pro 20 25 30

caa tat cat ctc atg aag gac gcc aca gct ttc cac aca gaa ctt ctc 144 Gln Tyr His Leu Met Lys Asp Ala Thr Ala Phe His Thr Glu Leu Leu 35 40 45

aag gct acg cag agc atg tca gtg aag aaa cgc tca caa gcc tgc cat 192 Lys Ala Thr Gln Ser Met Ser Val Lys Lys Arg Ser Gln Ala Cys His

gat agc tgt tca ccc ttg tagtccaccc ggggggaatag agactctgaa 240 Asp Ser Cys Ser Pro Leu
65 70

gccttcctac tctcccttcc agtgacaaat gctgtgtgac gactctgaaa tgtgtgggag 300
aggctgtgtg gaggtagtgc tatgtacaaa cttgctttaa aactggagtt tgcaaagtca 360
acctgagcat acacgcctga ggctagtcat tggctggatt tatgaagaca acacagttac 420
agacaataat gagtgggacc tacatttggg atatacccaa agctgggtaa tgattatcac 480
tgagaaccac gcactctggc catgaggtaa tacggcactt ccctgtcagg ctgtctgtca 540
ggttgggtct gtcttgcact gcccatgctc tatgctgcac gtagaccgtt ttgtaacatt 600

<222> (181)..(2289)

<220>

```
ttaatctgtt aatgaataat ccgtttggga ggctctc
                                                                   637
<210> 5
<211> 70
<212> PRT
<213> Unknown
<400> 5
Asp Phe Ser Ser Gln Thr His Leu His Lys Tyr Leu Glu Val Tyr Leu
Gly Gly Ala Asp Leu Lys Gly Asp Tyr Asn Ala Leu Ser Val Cys Pro
             20
                                  25
Gln Tyr His Leu Met Lys Asp Ala Thr Ala Phe His Thr Glu Leu Leu
                              40
Lys Ala Thr Gln Ser Met Ser Val Lys Lys Arg Ser Gln Ala Cys His
Asp Ser Cys Ser Pro Leu
 65
<210> 6
<211> 210
<212> DNA
<213> reverse translation
<220>
<221> misc_feature
<222> (1)..(210)
<223> n may be a, c, g, or t
<400> 6
gayttywsnw sncaracnca yytncayaar tayytngarg tntayytngg nggngcngay 60
ytnaarggng aytayaaygc nytnwsngtn tgyccncart aycayytnat gaargaygcn 120
acngenttye ayacngaryt nytnaargen acnearwsna tgwsngtnaa raarmgnwsn 180
cargentgyc aygaywsntg ywsnccnytn
                                                                   210
₹210> 7
<211> 2308
<212> DNA
<213> Unknown
<223> Description of Unknown Organism:primate; surmised
      Homo sapiens
<220>
<221> CDS
```

<221> mat_peptide <222> (241) .. (2289) <220> <221> misc feature <222> (664) <223> Xaa translation depends on genetic code <400> 7 gagtcaggac teccaggaca gagagtgeac aaactaeeca geacageece etecgeeeec 60 tetggagget gaagagggat tecageceet gecacecaca gacaeggget gactggggtg 120 tetgececce ttgggggcan ccacagggee tcaggeetgg gtgecacetg gcactagaag 180 atg cct gtg ccc tgg ttc ttg ctg tcc ttg gca ctg ggc cga agc cag Met Pro Val Pro Trp Phe Leu Leu Ser Leu Ala Leu Gly Arg Ser Gln -15 tgg atc ctt tct ctg gag agg ctt gtg ggg cct cag gac gct acc cac 276 Trp Ile Leu Ser Leu Glu Arg Leu Val Gly Pro Gln Asp Ala Thr His -1 tgc tct ccg ggc ctc tcc tgc cgc ctc tgg gac agt gac ata ctc tgc Cys Ser Pro Gly Leu Ser Cys Arg Leu Trp Asp Ser Asp Ile Leu Cys 20 ctg cct ggg gac atc gtg cct gct ccg ggc ccc gtg ctg gcg cct acg Leu Pro Gly Asp Ile Val Pro Ala Pro Gly Pro Val Leu Ala Pro Thr 420 cac ctg cag aca gag ctg gtg ctg agg tgc cag aag gag acc gac tgt His Leu Gln Thr Glu Leu Val Leu Arg Cys Gln Lys Glu Thr Asp Cys 50 gac ctc tgt ctg cgt gtg gct gtc cac ttg gcc gtg cat ggg cac tgg 468 Asp Leu Cys Leu Arg Val Ala Val His Leu Ala Val His Gly His Trp 516 gaa gag cct gaa gat gag gaa aag ttt gga gga gca gct gac tta ggg Glu Glu Pro Glu Asp Glu Glu Lys Phe Gly Gly Ala Ala Asp Leu Gly 564 gtg gag gag cct agg aat gcc tct ctc cag gcc caa gtc gtg ctc tcc Val Glu Glu Pro Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser 100 ttc cag gcc tac cct act gcc cgc tgc gtc ctg ctg gag gtg caa gtg 612 Phe Gln Ala Tyr Pro Thr Ala Arg Cys Val Leu Leu Glu Val Gln Val 110 660 cct gct gcc ctt gtg cag ttt ggt cag tct gtg ggc tct gtg gta tat Pro Ala Ala Leu Val Gln Phe Gly Gln Ser Val Gly Ser Val Val Tyr 135 125 130 gac tgc ttc gag gct gcc cta ggg agt gag gta cga atc tgg tcc tat 708 Asp Cys Phe Glu Ala Ala Leu Gly Ser Glu Val Arg Ile Trp Ser Tyr 150 act cag ccc agg tac gag aag gaa ctc aac cac aca cag cag ctg cct

Thr	Gln	Pro	Arg 160	Tyr	Glu	Lys	Glu	Leu 165	Asn	His	Thr	Gln	Gln 170	Leu	Pro	· .
gac Asp	tgc Cys	agg Arg 175	gly ggg	ctc Leu	gaa Glu	gtc Val	tgg Trp 180	aac Asn	agc Ser	atc Ile	ccg Pro	agc Ser 185	tgc Cys	tgg Trp	gcc Ala	804
														ctg Leu		852
														tgg Trp		900
														act Thr 235		948
														ctc Leu		996
														atc Ile		1044
														gcc Ala		1092
														ccg Pro		1140
														999 Gly 315		1188
				_	_		-						_	act Thr		1236
														tgg Trp		1284
														aca Thr		1332
						Ser								ggc Gly		1380
														gga Gly 395		1428
tac	tta	cta	caa	gac	ctg	cag	tca	ggc	cag	tgt	ctg	cag	cta	tgg	gac	1476

Ivr	Leu	Leu	Gln	αεA	Leu	Gln	Ser	Gly	Gln	Cys	Leu	Gln	Leu	Trp	Asp	
- . -			400	•				405					410			
gat Asp	gac Asp	ttg Leu 415	gga Gly	gcg Ala	cta Leu	tgg Trp	gcc Ala 420	tgc Cys	ccc Pro	atg Met	gac Asp	aaa Lys 425	tac Tyr	atc Ile	cac His	1524
aag Lys	cgc Arg 430	tgg Trp	gcc Ala	ctc Leu	gtg Val	tgg Trp 435	ctg Leu	gcc Ala	tgc Cys	cta Leu'	ctc Leu 440	ttt Phe	gcc Ala	gct Ala	gcg Ala	1572
ctt Leu 445	tcc Ser	ctc Leu	atc Ile	ctc Leu	ctt Leu 450	ctc Leu	aaa Lys	aag Lys	gat Asp	cac His 455	gcg Ala	aaa Lys	Gly 999	tgg Trp	ctg Leu 460	1620
agg Arg	ctc Leu	ttg Leu	aaa Lys	cag Gln 465	gac Asp	gtc Val	cgc Arg	tcg Ser	999 Gly 470	gcg Ala	gcc Ala	gcc Ala	agg Arg	ggc Gly 475	cgc Arg	1668
gcg Ala	gct Ala	ctg Leu	ctc Leu 480	ctc Leu	tac Tyr	tca Ser	gcc Ala	gat Asp 485	gac Asp	tcg Ser	ggt Gly	ttc Phe	gag Glu 490	cgc Arg	ctg Leu	1716
gtg Val	ggc Gly	gcc Ala 495	ctg Leu	gcg Ala	tcg Ser	gcc Ala	ctg Leu 500	tgc Cys	cag Gln	ctg Leu	ccg Pro	ctg Leu 505	cgc Arg	gtg Val	gcc Ala	1764
gta Val	gac Asp 510	ctg Leu	tgg Trp	agc Ser	cgt Arg	cgt Arg 515	gaa Glu	ctg Leu	agc Ser	gcg Ala	cag Gln 520	GJA aaa	ccc Pro	gtg Val	gct Ala	1812
tgg Trp 525	ttt Phe	cac His	gcg Ala	cag Gln	cgg Arg 530	cgc Arg	cag Gln	acc Thr	ctg Leu	cag Gln 535	gag Glu	ggc Gly	Gly	gtg Val	gtg Val 540	1860
gtc Val	ttg Leu	ctc Leu	ttc Phe	tct Ser 545	ccc Pro	ggt Gly	gcg Ala	gtg Val	gcg Ala 550	Leu	tgc Cys	agc Ser	gag Glu	tgg Trp 555	Leu	1908
cag Gln	gat Asp	Gly 999	Val	tcc Ser	Gly	Pro	Gly	Ala	His	ggc	ccg Pro	cac His	gac Asp 570	gcc Ala	ttc Phe	1956
cgc Arg	gcc Ala	tcc Ser 575	Leu	ago Ser	tgc Cys	gtg Val	ctg Leu 580	Pro	gac Asp	ttc Phe	ttg Leu	cag Gln 585	Gly	cgg	gcg Ala	2004
ccc	ggo Gly 590	Ser	tac Tyr	gtg Val	gly Gly	gcc Ala 595	Сув	ttc Phe	gac	agg Arg	Cto Leu 600	Lev	Cac His	ccg Pro	gac Asp	2052
gcc Ala 605	Val	cco Pro	gco Ala	ctt Lev	tto Phe 610	Arg	acc Thr	gtg Val	rcc Pro	gto Val 615	. Phe	aca Thi	ctg Lev	dec Pro	tcc Ser 620	2100
caa Glr	cto Lev	g cca	a gad	Phe 625	Leu	g Gl g Gg	g gcc Ala	cto Lev	cag Glr 630	ı Glr	g cct n Pro	cgo Arg	g Ala	ccg Pro 635	g cgt Arg	2148
tco	999	g cg	g cto	caa	a gaç	g aga	gcg	gag	g caa	gtg	g tco	c cgg	g gcd	ctt	cag	2196

Ser	Gly	Arg	Leu 640	Gln	Glu	Arg	Ala	Glu 645	Gln	Val	Ser	Arg	Ala 650	Leu	Gln	
cca Pro	gcc Ala	ctg Leu 655	gat Asp	agc Ser	tac Tyr	ttc Phe	cat His 660	ccc Pro	ccg Pro	gly aaa	acn Xaa	tcc Ser 665	gcg Ala	ccg Pro	gga Gly	2244
					G1y 999											2289
taaataaagg cagacgctg 230															2308	
<212 <212)> 8 L> 7(2> PI	S.T.														
	3> Ui	ıknoı	wn	•												
)> 8 Pro	Val	Pro	Trp	Phe -15	Leu	Leu	Ser	Leu	Ala -10	Leu	Gly	Arg	Ser	Gln -5	
Trp	Ile	Leu	Ser -1	Leu 1	Glu	Arg	Leu	Val 5	Gly	Pro	Gln	Asp	Ala 10	Thr	His	
Cys	Ser	Pro 15	Gly	Leu	Ser	Сув	Arg 20	Leu	Trp	Asp	Ser	Asp 25	Ile	Leu	Cys	
Leu	Pro 30	Gly	Asp	Ile	Val	Pro 35	Ala	Pro	Gly	Pro	Val 40	Leu	Ala	Pro	Thr	
His 45	Leu	Gln	Thr	Glu	Leu 50	Val	Leu	Arg	Cys	Gln 55	Lys	Glu	Thr	Asp	Cys 60	
Äsp	Leu	Сув	Leu	Arg 65	Val	Ala	Val	His	Leu 70	Ala	Val	His	Gly	His 75	Trp	
Glu	Glu	Pro	Glu 80	Asp	Glu	Glu	Lys	Phe 85	Gly	Gly	Ala	Ala	Asp 90	Leu	Gly	
Val	Glu	Glu 95	Pro	Arg	Asn	Ala	Ser 100	Leu	Gln	Ala	Gln	Val 105	Val	Leu	Ser	•
Phe	Gln 110	Ala 	Tyr	Pro	Thr	Ala 115	Arg	Cys	Val	Leu	Leu 120	Glu	Val	Gln	Val	
Pro 125	Ala	Ala	Leu	Val	Gln 130	Phe	Gly	Gln	Ser	Val 135	Gly	Ser	Val	Val	Tyr 140	
Asp	Cys	Phe	Glu	Ala 145	Ala	Leu	Gly	Ser		Val	Arg	Ile	Trp	Ser 155	Tyr	
Thr	Gln	Pro	Arg 160	Tyr	Glu	Lys	Glu	Leu 165	Asn	His	Thr	Gln	Gln 170	Leu	Pro	
Asp	Сув	Arg 175	Gly	Leu	Glu	Val	Trp 180	Asn	Ser	Ile	Pro	Ser 185	Cys	Trp	Ala	
Leu	Pro	Trp	Leu	Asn	Val	Ser	Ala	Asp	Gly	Asp	Asn	Val	His	Leu	Val	

200 190 195 Leu Asn Val Ser Glu Glu Gln His Phe Gly Leu Ser Leu Tyr Trp'Asn 215 Gln Val Gln Gly Pro Pro Lys Pro Arg Trp His Lys Asn Leu Thr Gly Pro Gln Ile Ile Thr Leu Asn His Thr Asp Leu Val Pro Cys Leu Cys 245 Ile Gln Val Trp Pro Leu Glu Pro Asp Ser Val Arg Thr Asn Ile Cys 255 Pro Phe Arg Glu Asp Pro Arg Ala His Gln Asn Leu Trp Gln Ala Ala Arg Leu Arg Leu Leu Thr Leu Gln Ser Trp Leu Leu Asp Ala Pro Cys Ser Leu Pro Ala Glu Ala Ala Leu Cys Trp Arg Ala Pro Gly Gly Asp 310 Pro Cys Gln Pro Leu Val Pro Pro Leu Ser Trp Glu Asn Val Thr Val 325 Asp Val Asn Ser Ser Glu Lys Leu Gln Leu Gln Glu Cys Leu Trp Ala Asp Ser Leu Gly Pro Leu Lys Asp Asp Val Leu Leu Glu Thr Arg Gly Pro Gln Asp Asn Arg Ser Leu Cys Ala Leu Glu Pro Ser Gly Cys Thr Ser Leu Pro Ser Lys Ala Ser Thr Arg Ala Ala Arg Leu Gly Glu 390 Tyr Leu Leu Gln Asp Leu Gln Ser Gly Gln Cys Leu Gln Leu Trp Asp Asp Asp Leu Gly Ala Leu Trp Ala Cys Pro Met Asp Lys Tyr Ile His Lys Arg Trp Ala Leu Val Trp Leu Ala Cys Leu Leu Phe Ala Ala Ala 435 Leu Ser Leu Ile Leu Leu Lys Lys Asp His Ala Lys Gly Trp Leu 450 Arg Leu Leu Lys Gln Asp Val Arg Ser Gly Ala Ala Arg Gly Arg Ala Ala Leu Leu Tyr Ser Ala Asp Asp Ser Gly Phe Glu Arg Leu 485 Val Gly Ala Leu Ala Ser Ala Leu Cys Gln Leu Pro Leu Arg Val Ala 495 Val Asp Leu Trp Ser Arg Arg Glu Leu Ser Ala Gln Gly Pro Val Ala 510 515 520

Trp Phe His Ala Gln Arg Arg Gln Thr Leu Gln Glu Gly Gly Val 525 530 540

Val Leu Leu Phe Ser Pro Gly Ala Val Ala Leu Cys Ser Glu Trp Leu
545 550 555

Gln Asp Gly Val Ser Gly Pro Gly Ala His Gly Pro His Asp Ala Phe
560 570

Arg Ala Ser Leu Ser Cys Val Leu Pro Asp Phe Leu Gln Gly Arg Ala 575 580 585

Pro Gly Ser Tyr Val Gly Ala Cys Phe Asp Arg Leu Leu His Pro Asp 590 595 600

Ala Val Pro Ala Leu Phe Arg Thr Val Pro Val Phe Thr Leu Pro Ser 605 610 615 620

Gln Leu Pro Asp Phe Leu Gly Ala Leu Gln Gln Pro Arg Ala Pro Arg 625 630 635

Ser Gly Arg Leu Gln Glu Arg Ala Glu Gln Val Ser Arg Ala Leu Gln
640 645 650

Pro Ala Leu Asp Ser Tyr Phe His Pro Pro Gly Xaa Ser Ala Pro Gly 655 660 665

Arg Gly Val Gly Pro Gly Ala Gly Pro Gly Ala Gly Asp Gly Thr 670 675 680

<210> 9

<211> 2109

<212> DNA

<213> reverse translation

<220>

<221> misc_feature

<222> (1)..(2109)

<223> n may be a, c, g, or t

<400> 9

atgccngtnc cntggttyyt nytnwsnytn gcnytnggnm gnwsncartg gathytnwsn 60 ytngarmgny tngtnggncc ncargaygcn acncaytgyw sncenggnyt nwsntgymgn 120 ytntgggayw sngayathyt ntgyytncen ggngayathg tncengencc nggncengtn 180 ytngencena cneayytnca racngarytn gtnytnmgnt gycaraarga racngaytgy 240 gayytntgyy tnmgngtngc ngtneayytn gengtneayg gneaytggga rgarcengar 300 gaygargara arttyggngg ngengengay ytnggngtng argarcenmg naaygenwsn 360 ytneargenc argtngtnyt nwsnttycar gentayeena engenmgntg ygtnytnytn 420 gargtnearg tneengenge nytngtnear ttyggnearw sngtnggnws ngtngtntay 480

gaytgyttyg argengenyt nggnwsngar gtnmgnatht ggwsntayae nearcenmgn 540 taygaraarg arytnaayca yacncarcar ytnccngayt gymgnggnyt ngargtntgg 600 aaywsnathc cnwsntgytg ggcnytnccn tggytnaayg tnwsngcnga yggngayaay 660 gtncayytng tnytnaaygt nwsngargar carcayttyg gnytnwsnyt ntaytggaay 720 cargtnearg gneencenaa reenmgntgg cayaaraayy tnaenggnee nearathath 780 acnytnaayc ayacngayyt ngtnccntgy ytntgyathc argtntggcc nytngarccn 840 gaywsngtnm gnacnaayat htgyccntty mgngargayc cnmgngcnca ycaraayytn 900 tggcargcng cnmgnytnmg nytnytnacn ytncarwsnt ggytnytnga ygcnccntgy 960 wsnytnccng cngargcngc nytntgytgg mgngcnccng gnggngaycc ntgycarccn 1020 ytngtnccnc cnytnwsntg ggaraaygtn acngtngayg tnaaywsnws ngaraarytn 1080 carythcarg artgyythtg ggcngaywsn ytnggnccny thaargayga ygtnythyth 1140 ytngaracnm gnggnccnca rgayaaymgn wsnytntgyg cnytngarcc nwsnggntgy 1200 acnwsnytnc cnwsnaargc nwsnacnmgn gengenmgny tnggngarta yytnytnear 1260 gayytncarw snggncartg yytncarytn tgggaygayg ayytnggngc nytntgggcn 1320 tgyccnatgg ayaartayat hcayaarmgn tgggcnytng tntggytngc ntgyytnytn 1380 ttygcngcng cnytnwsnyt nathytnytn ytnaaraarg aycaygcnaa rggntggytn 1440 mgnytnytna arcargaygt nmgnwsnggn gengengenm gnggnmgnge ngenytnytn 1500 ytntaywsng cngaygayws nggnttygar mgnytngtng gngcnytngc nwsngcnytn 1560 tgycarytnc cnytnmgngt ngcngtngay ytntggwsnm gnmgngaryt nwsngcncar 1620 ggnccngtng cntggttyca ygcncarmgn mgncaracny tncargargg nggngtngtn 1680 gtnytnytnt tywsnccngg ngengtngcn ytntgywsng artggytnca rgayggngtn 1740 wsnggnccng gngcncaygg nccncaygay gcnttymgng cnwsnytnws ntgygtnytn 1800 ccngayttyy tncarggnmg ngcnccnggn wsntaygtng gngcntgytt ygaymgnytn 1860 ytncaycong aygongtnoc ngonytntty mgnacngtno ongtnttyac nytnocnwsn 1920 carytnecng ayttyytngg ngenytnear careenmgng encenmgnws nggnmgnytn 1980 cargarmgng engarcargt nwsnmgngen ytneareeng enytngayws ntayttycay 2040 cencenggna enwangence nggnmgnggn gtnggneeng gngenggnee nggngenggn 2100 2109 gayggnacn

<210> 10

<211> 2314

<212> DNA

<213> Unknown <220> <223> Description of Unknown Organism:rodent; surmised Mus musculus <220> <221> CDS <222> (199)..(2292) <220> <221> mat_peptide <222> (259)..(2292) <400> 10 ccaaatcgaa agcacgggag ctgatactgg gcctggagtc caggctcact ggagtgggga 60 agcatggctg gagaggaatt ctagcccttg ctctctccca gggacacggg gctgattgtc 120 agcaggggeg aggggtetge ececeettgg gggggeagga eggggeetea ggeetgggtg 180 ctgtccggca cctggaag atg cct gtg tcc tgg ttc ctg ctg tcc ttg gca Met Pro Val Ser Trp Phe Leu Leu Ser Leu Ala ctg ggc cga aac cct gtg gtc gtc tct ctg gag aga ctg atg gag cct 279 Leu Gly Arg Asn Pro Val Val Val Ser Leu Glu Arg Leu Met Glu Pro -1 cag gac act gca cgc tgc tct cta ggc ctc tcc tgc cac ctc tgg gat Gln Asp Thr Ala Arg Cys Ser Leu Gly Leu Ser Cys His Leu Trp Asp 15 ggt gac gtg ctc tgc ctg cct gga agc ctc cag tct gcc cca ggc cct 375 Gly Asp Val Leu Cys Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro gtg cta gtg cct acc cgc ctg cag acg gag ctg gtg ctg agg tgt cca 423 Val Leu Val Pro Thr Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro cag aag aca gat tgc gcc ctc tgt gtc cgt gtg gtg gtc cac ttg gcc 471 Gln Lys Thr Asp Cys Ala Leu Cys Val Arg Val Val His Leu Ala gtg cat ggg cac tgg gca gag cct gaa gaa gct gga aag tct gat tca 519 Val His Gly His Trp Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser 80 gaa ctc cag gag tct agg aac gcc tct ctc cag gcc cag gtg gtg ctc 567 Glu Leu Gln Glu Ser Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu 95 tee tte cag gee tac eec ate gee ege tgt gee etg etg gag gte cag 615 Ser Phe Gln Ala Tyr Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln gtg ccc gct gac ctg gtg cag cct ggt cag tcc gtg ggt tct gcg gta Val Pro Ala Asp Leu Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val 120 125 130

ttt Phe	gac Asp	tgt Cys	ttc Phe	gag Glu 140	gct Ala	agt Ser	ctt Leu	gly aaa	gct Ala 145	gag Glu	gta Val	cag Gln	atc Ile	tgg Trp	tcc	711
														cag Gln		759
cct Pro	gac Asp	tgc Cys 170	agg Arg	ggt Gly	ctt Leu	gaa Glu	gtc Val 175	cgg Arg	gac Asp	agc Ser	atc Ile	cag Gln 180	agc Ser	tgc Cys	tgg Trp	807
														ctt Leu		855
aca Thr 200	ctg Leu	gat Asp	gtc Val	tct Ser	gag Glu 205	gag Glu	cag Gln	gac Asp	ttt Phe	agc Ser 210	ttc Phe	tta Leu	ctg Leu	tac Tyr	ctg Leu 215	903
														ctg Leu 230		951
														tgc Cys		999
														gaa Glu		1047
														cac His		1095
														gcg Ala		1143
tgc Cys	tgt Cys	ctg Leu	ccg Pro	ggc Gly 300	aag Lys	gta Val	aca Thr	ctg Leu	tgc Cys 305	tgg Trp	cag Gln	gca Ala	cca Pro	gac Asp 310	cag Gln	1191
agt Ser	ccc Pro	tgc Cys	cag Gln 315	cca Pro	ctt Leu	gtg Val	cca Pro	cca Pro 320	gtg Val	ccc Pro	cag Gln	aag Lys	aac Asn 325	gcc Ala	act Thr	1239
gtg Val	aat Asn	gag Glu 330	cca Pro	caa Gln	gat Asp	ttc Phe	cag Gln 335	ttg Leu	gtg Val	gca Ala	ggc Gly	cac His 340	ccc Pro	aac Asn	ctc Leu	1287
tgt Cys	gtc Val 345	cag Gln	gtg Val	agc Ser	acc Thr	tgg Trp 350	gag Glu	aag Lys	gtt Val	cag Gln	ctg Leu 355	caa Gln	gcg Ala	tgc Cys	ttg Leu	1335
tgg Trp 360	Ala	gac Asp	tcc Ser	ttg Leu	ggg Gly 365	ccc Pro	ttc Phe	aag Lys	gat Asp	gat Asp 370	Met	ctg Leu	tta Leu	gtg Val	gag Glu 375	1383

atg Met	aaa Lys	acc Thr	ggc Gly	ctc Leu 380	aac Asn	aac Asn	aca Thr	tca Ser	gtc Val 385	tgt Cys	gcc Ala	ttg Leu	gaa Glu	ccc Pro 390	agt Ser	1431
ggc Gly	tgt Cys	aca Thr	cca Pro 395	ctg Leu	ccc Pro	agc Ser	atg Met	gcc Ala 400	tcc Ser	acg Thr	aga Arg	gct Ala	gct Ala 405	cgc Arg	ctg Leu	1479
gga Gly	gag Glu	gag Glu 410	ttg Leu	ctg Leu	caa Gln	gac Asp	ttc Phe 415	cga Arg	tca Ser	cac His	cag Gln	tgt Cys 420	atg Met	cag Gln	ctg Leu	1527
tgg Trp	aac Asn 425	gat Asp	gac Asp	aac Asn	atg Met	gga Gly 430	tcg Ser	cta Leu	tgg Trp	gcc Ala	tgc Cys 435	ccc Pro	atg Met	gac Asp	aag Lys	1575
tac Tyr 440	atc Ile	cac His	agg Arg	cgc Arg	tgg Trp 445	gtc Val	cta Leu	gta Val	tgg Trp	ctg Leu 450	gcc Ala	tgc Cys	cta Leu	ctc Leu	ttg Leu 455	1623
gct Ala	gcg Ala	gcg Ala	ctt Leu	ttc Phe 460	ttc Phe	ttc Phe	ctc Leu	ctt Leu	cta Leu 465	aaa Lys	aag Lys	gac Asp	cgc Arg	agg Arg 470	aaa Lys	1671
			ggc Gly 475													1719
gcg Ala	ggc Gly	tac Tyr 490	gag Glu	cgc Arg	ctg Leu	gtg Val	gga Gly 495	gca Ala	ctg Leu	gcg Ala	tcc Ser	gcg Ala 500	ttg Leu	agc Ser	cag Gln	1767
atg Met	cca Pro 505	ctg Leu	cgc Arg	gtg Val	gcc Ala	gtg Val 510	gac Asp	ctg Leu	tgg Trp	agc Ser	cgc Arg 515	cgc Arg	gag Glu	ctg Leu	agc Ser	1815
gcg Ala 520	cac His	gga Gly	gcc Ala	cta Leu	gcc Ala 525	tgg Trp	ttc Phé	cac His	cac His	cag Gln 530	cga Arg	cgc Arg	cgt Arg	atc Ile	ctg Leu 535	1863
			ggc Gly													1911
cag Gln	tgt Cys	cag Gln	cag Gln 555	tgg Trp	ctg Leu	cag Gln	ctc Leu	cag Gln 560	aca Thr	gtg Val	gag Glu	ccc Pro	999 Gly 565	ccg Pro	cat His	1959
gac Asp	gcc Ala	ctc Leu 570	gcc Ala	gcc Ala	tgg Trp	ctc Leu	agc Ser 575	tgc Cys	gtg Val	cta Leu	ccc Pro	gat Asp 580	ttc Phe	ctg Leu	caa Gln	2007
ggc Gly	cgg Arg 585	gcg Ala	acc Thr	ggc Gly	cgc Arg	tac Tyr 590	gtc Val	Gly ggg	gtc Val	tac Tyr	ttc Phe 595	gac Asp.	gly aaa	ctg Leu	ctg Leu	2055
cac His 600	cca Pro	gac Asp	tct Ser	gtg Val	ccc Pro 605	tcc Ser	ccg Pro	ttc Phe	cgc Arg	gtc Val 610	gcc Ala	ccg Pro	ctc Leu	ttc Phe	tcc Ser 615	2103

ctg ccc tcg cag ctg ccg gct ttc ctg gat gca ctg cag gga ggc tgc Leu Pro Ser Gln Leu Pro Ala Phe Leu Asp Ala Leu Gln Gly Gly Cys 620 625 630	2151
tcc act tcc gcg ggg cga ccc gcg gac cgg gtg gaa cga gtg acc cag Ser Thr Ser Ala Gly Arg Pro Ala Asp Arg Val Glu Arg Val Thr Gln 635 640 645	2199
gcg ctg cgg tcc gcc ctg gac agc tgt act tct agc tcg gaa gcc cca Ala Leu Arg Ser Ala Leu Asp Ser Cys Thr Ser Ser Ser Glu Ala Pro 650 655 660	2247
ggc tgc tgc gag gaa tgg gac ctg gga ccc tgc act aca cta gaa Gly Cys Cys Glu Glu Trp Asp Leu Gly Pro Cys Thr Thr Leu Glu 665 670 675	2292
taaaagccga tacagtattc ct	2314
<210> 11 <211> 698 <212> PRT <213> Unknown	
<pre><400> 11 Met Pro Val Ser Trp Phe Leu Leu Ser Leu Ala Leu Gly Arg Asn Pro -20 -15 -10 -5</pre>	
Val Val Val Ser Leu Glu Arg Leu Met Glu Pro Gln Asp Thr Ala Arg	
.Cys Ser Leu Gly Leu Ser Cys His Leu Trp Asp Gly Asp Val Leu Cys 15 20 25	
Leu Pro Gly Ser Leu Gln Ser Ala Pro Gly Pro Val Leu Val Pro Thr 30 35 40	
Arg Leu Gln Thr Glu Leu Val Leu Arg Cys Pro Gln Lys Thr Asp Cys 45 50 55 60	
Ala Leu Cys Val Arg Val Val Val His Leu Ala Val His Gly His Trp 65 70 75	
Ala Glu Pro Glu Glu Ala Gly Lys Ser Asp Ser Glu Leu Gln Glu Ser 80 85 90	
Arg Asn Ala Ser Leu Gln Ala Gln Val Val Leu Ser Phe Gln Ala Tyr 95 100 105	
Pro Ile Ala Arg Cys Ala Leu Leu Glu Val Gln Val Pro Ala Asp Leu 110 115 120	
Val Gln Pro Gly Gln Ser Val Gly Ser Ala Val Phe Asp Cys Phe Glu 125 130 135 140	
Ala Ser Leu Gly Ala Glu Val Gln Ile Trp Ser Tyr Thr Lys Pro Arg 145 150 155	
Tyr Gln Lys Glu Leu Asn Leu Thr Gln Gln Leu Pro Asp Cys Arg Gly	

165 170 160 Leu Glu Val Arg Asp Ser Ile Gln Ser Cys Trp Val Leu Pro Trp Leu 175 180 Asn Val Ser Thr Asp Gly Asp Asn Val Leu Leu Thr Leu Asp Val Ser 195 Glu Glu Gln Asp Phe Ser Phe Leu Leu Tyr Leu Arg Pro Val Pro Asp 210 215 Ala Leu Lys Ser Leu Trp Tyr Lys Asn Leu Thr Gly Pro Gln Asn Ile Thr Leu Asn His Thr Asp Leu Val Pro Cys Leu Cys Ile Gln Val Trp 245 Ser Leu Glu Pro Asp Ser Glu Arg Val Glu Phe Cys Pro Phe Arg Glu Asp Pro Gly Ala His Arg Asn Leu Trp His Ile Ala Arg Leu Arg Val 275 Leu Ser Pro Gly Val Trp Gln Leu Asp Ala Pro Cys Cys Leu Pro Gly 285 290 295 Lys Val Thr Leu Cys Trp Gln Ala Pro Asp Gln Ser Pro Cys Gln Pro 310 Leu Val Pro Pro Val Pro Gln Lys Asn Ala Thr Val Asn Glu Pro Gln 320 325 Asp Phe Gln Leu Val Ala Gly His Pro Asn Leu Cys Val Gln Val Ser 340 Thr Trp Glu Lys Val Gln Leu Gln Ala Cys Leu Trp Ala Asp Ser Leu Gly Pro Phe Lys Asp Asp Met Leu Leu Val Glu Met Lys Thr Gly Leu 370 375 Asn Asn Thr Ser Val Cys Ala Leu Glu Pro Ser Gly Cys Thr Pro Leu Pro Ser Met Ala Ser Thr Arg Ala Ala Arg Leu Gly Glu Glu Leu Leu 405 Gln Asp Phe Arg Ser His Gln Cys Met Gln Leu Trp Asn Asp Asp Asn Met Gly Ser Leu Trp Ala Cys Pro Met Asp Lys Tyr Ile His Arg Arg Trp Val Leu Val Trp Leu Ala Cys Leu Leu Ala Ala Ala Leu Phe Phe Phe Leu Leu Lys Lys Asp Arg Arg Lys Ala Ala Arg Gly Ser Arg Thr Ala Leu Leu His Ser Ala Asp Gly Ala Gly Tyr Glu Arg

21

480 485 490

Leu Val Gly Ala Leu Ala Ser Ala Leu Ser Gln Met Pro Leu Arg Val
495 500 505

Ala Val Asp Leu Trp Ser Arg Arg Glu Leu Ser Ala His Gly Ala Leu 510 520

Ala Trp Phe His His Gln Arg Arg Ile Leu Gln Glu Gly Gly Val 525 530 535

Val Ile Leu Leu Phe Ser Pro Ala Ala Val Ala Gln Cys Gln Gln Trp
545 550 555

Leu Gln Leu Gln Thr Val Glu Pro Gly Pro His Asp Ala Leu Ala Ala 560 565 570

Trp Leu Ser Cys Val Leu Pro Asp Phe Leu Gln Gly Arg Ala Thr Gly 575 580 585

Arg Tyr Val Gly Val Tyr Phe Asp Gly Leu Leu His Pro Asp Ser Val 590 595 600

Pro Ser Pro Phe Arg Val Ala Pro Leu Phe Ser Leu Pro Ser Gln Leu 605 610 615 620

Pro Ala Phe Leu Asp Ala Leu Gln Gly Gly Cys Ser Thr Ser Ala Gly 625 630 635

Arg Pro Ala Asp Arg Val Glu Arg Val Thr Gln Ala Leu Arg Ser Ala 640 645 650

Leu Asp Ser Cys Thr Ser Ser Glu Ala Pro Gly Cys Cys Glu Glu
655 660 665

Trp Asp Leu Gly Pro Cys Thr Thr Leu Glu 670 675

<210> 12

<211> 2094

<212> DNA

<213> reverse translation

<220>

<221> misc_feature

<222> (1)..(2094)

<223> n may be a, c, g, or t

<400> 12

atgccngtnw sntggttyyt nytnwsnytn gcnytnggnm gnaayccngt ngtngtnwsn 60 ytngarmgny tnatggarcc ncargayacn gcnmgntgyw snytnggnyt nwsntgycay 120 ytntgggayg gngaygtnyt ntgyytnccn ggnwsnytnc arwsngcnec nggnccngtn 180 ytngtnccna cnmgnytnca racngarytn gtnytnmgnt gyccncaraa racngaytgy 240 gcnytntgyg tnmgngtngt ngtncayytn gcngtncayg gncaytgggc ngarccngar 300

gargenggna arwsngayws ngarytnear garwsnmgna aygenwsnyt neargenear 360 gtngtnytnw snttycargc ntayccnath gcnmgntgyg cnytnytnga rgtncargtn 420 congongayy tngtncarco nggncarwsn gtnggnwsng ongtnttyga ytgyttygar 480 gcnwsnytng gngcngargt ncarathtgg wsntayacna arccnmgnta ycaraargar 540 ytnaayytha cncarcaryt nccngaytgy mgnggnytng argtnmgnga ywsnathcar 600 wsntgytggg tnytnccntg gytnaaygtn wsnacngayg gngayaaygt nytnytnacn 660 ytngaygtnw sngargarca rgayttywsn ttyytnytnt ayytnmgncc ngtnccngay 720 gcnytnaarw snytntggta yaaraayytn acnggnccnc araayathac nytnaaycay 780 acngayytng tnccntgyyt ntgyathcar gtntggwsny tngarccnga ywsngarmgn 840 gtngarttyt gyccnttymg ngargaycen ggngeneaym gnaayytntg geayathgen 900 mgnytnmgng tnytnwsnec nggngtntgg carytngayg cncentgytg yytnecnggn 960 aargtnacny tntgytggca rgcnccngay carwsnccnt gycarccnyt ngtnccnccn 1020 gtnccncara araaygcnac ngtnaaygar ccncargayt tycarytngt ngcnggncay 1080 ccnaayytnt gygtncargt nwsnacntgg garaargtnc arytncarge ntgyytntgg 1140 gengaywany tnggneentt yaargaygay atgytnytng tngaratgaa racnggnytn 1200 aayaayacnw sngtntgygc nytngarccn wsnggntgya cnccnytncc nwsnatggcn 1260 wsnacnmgng cngcnmgnyt nggngargar ytnytncarg ayttymgnws ncaycartgy 1320 atgcarytnt ggaaygayga yaayatgggn wsnytntggg cntgyccnat ggayaartay 1380 athcaymgnm gntgggtnyt ngtntggytn gcntgyytny tnytngcngc ngcnytntty 1440 ttyttyytny tnytnaaraa rgaymgnmgn aargcngcnm gnggnwsnmg nacngcnytn 1500 ytnytncayw sngcngaygg ngcnggntay garmgnytng tnggngcnyt ngcnwsngcn 1560 ytnwsncara tgccnytnmg ngtngcngtn gayytntggw snmgnmgnga rytnwsngcn 1620 cayggngcny tngcntggtt ycaycaycar mgnmgnmgna thytncarga rgqngqngtn 1680 gtnathytny tnttywsnec ngengengtn geneartgye areartggyt nearytnear 1740 acngtngarc enggneenca ygaygenytn gengentggy tnwsntgygt nytneengay 1800 ttyytncarg gnmgngcnac nggnmgntay gtnggngtnt ayttygaygg nytnytncay 1860 congaywang theonwance nttymgngth genechytht tywanythee nwancaryth 1920 congenttyy tngaygenyt nearggnggn tgywsnaenw sngenggnmg neengengay 1980 mgngtngarm gngtnacnca rgcnytnmgn wsngcnytng aywsntgyac nwsnwsnwsn 2040 gargeneeng gntgytgyga rgartgggay ytnggneent gyaenaenyt ngar 2094

```
<210> 13
<211> 2786
<212> DNA
<213> Unknown
<220>
<223> Description of Unknown Organism:primate; surmised
      Homo sapiens
<220>
<221> CDS
<222> (70) .. (2283)
<220>
<221> mat_peptide
<222> (118)..(2283)
<220>
<221> misc_feature
<222> (9) .. (134)
<223> Xaa translation (9, 18,26, 109,120, 134) depends
      on genetic code
<400> 13
cccacgente egggecagea gegggeggec ggggegeaga gaacggeetg getgggegag 60
cgcacggcc atg gcc ccg tgg ctg cag ctc tgc tcc gtc ttc ttt acg gtc 111
          Met Ala Pro Trp Leu Gln Leu Cys Ser Val Phe Phe Thr Val
                                   -10
              -15
                                                                   159
aac gcc tgc ctc aac ggc tcg cag ctg gct gtn gcc gct ggc ggg tcc
Asn Ala Cys Leu Asn Gly Ser Gln Leu Ala Xaa Ala Ala Gly Gly Ser
     -1
ggc cgc gcg cng ggc gcc gac acc tgt agc tgg ang gga gtg ggg cca
                                                                    207
Gly Arg Ala Xaa Gly Ala Asp Thr Cys Ser Trp Xaa Gly Val Gly Pro
                     20
                                                                    255
gcc agc aga aac agt ggg ctg tac aac atc acc ttc aaa tat gac aat
Ala Ser Arg Asn Ser Gly Leu Tyr Asn Ile Thr Phe Lys Tyr Asp Asn
                                      40
                                                                    303
tgt acc acc tac ttg aat cca gtg ggg aag cat gtg att gct gac gcc
Cys Thr Thr Tyr Leu Asn Pro Val Gly Lys His Val Ile Ala Asp Ala
                                  55
cag aat atc acc atc agc cag tat gct tgc cat gac caa gtg gca gtc
                                                                    351
Gln Asn Ile Thr Ile Ser Gln Tyr Ala Cys His Asp Gln Val Ala Val
         65
acc att ctt tgg tcc cca ggg gcc ctc ggc atc gaa ttc ctg aaa gga
                                                                    399
Thr Ile Leu Trp Ser Pro Gly Ala Leu Gly Ile Glu Phe Leu Lys Gly
     80
                                                                    447
ttt cgg gta ata ctg gag gag ctg aag tcg gag gga aga cag ngc caa
Phe Arg Val Ile Leu Glu Glu Leu Lys Ser Glu Gly Arg Gln Xaa Gln
                                         105
 95
                    100
caa ctg att cta aag gat ccg aag cag ntc aac agt agc ttc aaa aga
```

Gln	Leu	Ile	Leu	Lys 115	Asp	Pro	Lys	Gln	Xaa 120	Asn	Ser	Ser	Phe	Lys 125	Arg	÷
					caa Gln			_		_			_	_		543
					tcc Ser											591
					aga Arg											639
	Asn				aaa Lys 180								_			687
					gac Asp											735
					ttc Phe											783
			_	_	aag Lys		_	_	_						_	831
	_	_			caa Gln		_				_					879
_		_	_		aac Asn 260			_			_			_		927
					ccg Pro	Trp	Ala		Pro	Ile						975
					gtc Val											1023
					caa Gln											1071
					tcc Ser											1119
					aag Lys 340											1167
cag	aat	cac	atg	aat	gtc	gtc	cag	tgt	ttc	gcc	tac	ttc	ctc	cag	gac	1215

	Gln	Asn	His	Met	Asn 355	Val	Val	Gln	Cys	Phe 360	Ala	Tyr	Phe	Leu	Gln 365	Asp	
	ttc Phe	tgt Cys	ggc Gly	tgt Cys 370	gag Glu	gtg Val	gct Ala	ctg Leu	gac Asp 375	ctg Leu	tgg Trp	gaa Glu	gac Asp	ttc Phe 380	agc Ser	ctc Leu	1263
	tgt Cys	aga Arg	gaa Glu 385	gly ggg	cag Gln	aga Arg	gaa Glu	tgg Trp 390	gtc Val	atc Ile	cag Gln	aag Lys	atc Ile 395	cac His	gag Glu	tcc Ser	1311
	cag Gln	ttc Phe 400	atc Ile	att Ile	gtg Val	gtt Val	tgt Cys 405	tcc Ser	aaa Lys	ggt Gly	atg Met	aag Lys 410	tac Tyr	ttt Phe	gtg Val	gac Asp	1359
	aag Lys 415	aag Lys	aac Asn	tac Tyr	aaa Lys	cac His 420	aaa Lys	gga Gly	ggt Gly	ggc Gly	cga Arg 425	ggc	tcg Ser	gjy aaa	aaa Lys	gga Gly 430	1407
•	gag Glu	ctc Leu	ttc Phe	ctg Leu	gtg Val 435	gcg Ala	gtg Val	tca Ser	gcc Ala	att Ile 440	gcc Ala	gaa Glu	aag Lys	ctc Leu	cgc Arg 445	cag Gln	1455
	gcc Ala	aag Lys	cag Gln	agt Ser 450	tcg Ser	tcc Ser	gcg Ala	gcg Ala	ctc Leu 455	agc Ser	aag Lys	ttt Phe	atc Ile	gcc Ala 460	gtc Val	tac Tyr	1503
	ttt Phe	gat Asp	tat Tyr 465	tcc Ser	tgc Cys	gag Glu	gga Gly	gac Asp 470	gtc Val	ccc Pro	ggt Gly	atc Ile	cta Leu 475	gac Asp	ctg Leu	agt Ser	1551
	acc Thr	aag Lys 480	tac Tyr	aga Arg	ctc Leu	atg Met	gac Asp 485	aat Asn	ctt Leu	cct Pro	cag Gln	ctc Leu 490	tgt Cys	tcc Ser	cac His	ctg Leu	1599
	cac His 495	tcc Ser	cga Arg	gac Asp	cac His	ggc Gly 500	ctc Leu	cag Gln	gag Glu	ccg	999 505	cag Gln	cac His	acg Thr	cga Arg	cag Gln 510	1647
	ggc	agc Ser	aga Arg	agg Arg	aac Asn 515	tac Tyr	ttc Phe	cgg Arg	agc Ser	aag Lys 520	Ser	ggc	cgg Arg	tcc Ser	cta Leu 525	tac Tyr	1695
	gtc Val	gcc Ala	att Ile	tgc Cys 530	Asn	atg Met	cac His	cag Gln	ttt Phe 535	Ile	gac Asp	gag Glu	gag Glu	Pro 540	gac Asp	tgg Trp	1743
	ttc Phe	gaa Glu	aag Lys 545	Gln	ttc Phe	gtt Val	ccc Pro	ttc Phe 550	His	cct Pro	cct Pro	cca Pro	ctg Leu 555	cgc Arg	tac Tyr	cgg	1791
	gag	cca Pro 560	Val	ttg Leu	gag Glu	aaa Lys	Phe 565	Asp	tcg Ser	. Gly	ttg Lev	gtt Val 570	Leu	aat Asn	gat Asp	gtc Val	1839
	atc Met 575	: Сув	aaa Lys	cca Pro	ggg Gly	Pro 580	Glu	agt Ser	gac Asp	tto Phe	tgo Cys 585	Leu	aag Lys	gta Val	gag Glu	gcg Ala 590	1887
	gct	gtt	ctt	ggg	g gca	acc	gga	cca	gco	gad	tco	cag	cac	gag	g agt	cag	1935

Ala	Val	Leu	Gly	Ala 595	Thr	Gly	Pro	Ala	Asp 600	Ser	Gln	His	Glu	Ser (-
														gac Asp		1983
														agc Ser		2031
														ccc Pro		2079
														cag Gln		2127
														ctg Leu 685		2175
														Gly 999		2223
														cac His		2271
	gcc Ala 720			taad	caaaa	acg a	aaaga	agtet	a ag	gcatt	tgcca	a cti	tag	ctgc		2323
tgc	ctcc	ctc t	gati	tacc	ca go	ctcat	cete	ct	gtt	gcat	ggc	ccact	tg (gagct	gaggt	2383
ctca	ataca	aag g	gatai	tttgg	ga gʻt	gaaa	atgct	gg	ccagt	act	tgtt	cctc	cct	tgcc	caacc	2443
cttt	acc	gga t	tatci	ttgad	ca aa	actct	ccaa	a tti	tcta	aaaa	tgat	tatg	gag	ctcto	gaaagg	2503
cate	gtcca	ata a	aggto	ctgad	ca a	cagct	tgc	c aaa	attt	ggtt	agto	cctt	gga	tcaga	agcctg	2563
ttgt	9998	agg (cagg	gagga	aa at	tatgt	caaag	g aaa	aaaca	agga	agat	tacci	tgc :	actaa	atcatt	2623
caga	actto	cat 1	gage	ctct	gc aa	acti	tgc	c tg	ttg	ctat	tgg	ctaco	ctt (gattt	gaaat	2683
gctt	tgt	gaa a	aaaa	ggca	ct ti	taad	catca	a tag	gcca	caga	aato	caagt	tgc (cagto	ctatct	2743
ggaa	atcca	atg 1	ttgta	attg	ca ga	ataat	tgtto	c tca	attta	attt	ttg					2786

<210> 14

<211> 738

<212> PRT

<213> Unknown

<400> 14

Met Ala Pro Trp Leu Gln Leu Cys Ser Val Phe Phe Thr Val Asn Ala
-15 -10 -5 -1

Cys Leu Asn Gly Ser Gln Leu Ala Xaa Ala Ala Gly Gly Ser Gly Arg Ala Xaa Gly Ala Asp Thr Cys Ser Trp Xaa Gly Val Gly Pro Ala Ser Arg Asn Ser Gly Leu Tyr Asn Ile Thr Phe Lys Tyr Asp Asn Cys Thr Thr Tyr Leu Asn Pro Val Gly Lys His Val Ile Ala Asp Ala Gln Asn Ile Thr Ile Ser Gln Tyr Ala Cys His Asp Gln Val Ala Val Thr Ile Leu Trp Ser Pro Gly Ala Leu Gly Ile Glu Phe Leu Lys Gly Phe Arg Val Ile Leu Glu Glu Leu Lys Ser Glu Gly Arg Gln Xaa Gln Gln Leu Ile Leu Lys Asp Pro Lys Gln Xaa Asn Ser Ser Phe Lys Arg Thr Gly 120 Met Glu Ser Gln Pro Xaa Leu Asn Met Lys Phe Glu Thr Asp Tyr Phe 135 Val Arg Leu Ser Phe Ser Phe Ile Lys Asn Glu Ser Asn Tyr His Pro Phe Phe Phe Arg Thr Arg Ala Cys Asp Leu Leu Leu Gln Pro Asp Asn Leu Ala Cys Lys Pro Phe Trp Lys Pro Arg Asn Leu Asn Ile Ser Gln His Gly Ser Asp Met Gln Val Ser Phe Asp His Ala Pro His Asn Phe Gly Phe Arg Phe Phe Tyr Leu His Tyr Lys Leu Lys His Glu Gly Pro Phe Lys Arg Lys Thr Cys Lys Gln Glu Gln Thr Thr Glu Met Thr Ser 235 Cys Leu Leu Gln Asn Val Ser Pro Gly Asp Tyr Ile Ile Glu Leu Val Asp Asp Thr Asn Thr Thr Arg Lys Val Met His Tyr Ala Leu Lys Pro Val His Ser Pro Trp Ala Gly Pro Ile Arg Ala Val Ala Ile Thr Val Pro Leu Val Val Ile Ser Ala Phe Ala Thr Leu Phe Thr Val Met Cys 295 Arg Lys Lys Gln Gln Glu Asn Ile Tyr Ser His Leu Asp Glu Glu Ser 315 310 305

Ser Glu Ser Ser Thr Tyr Thr Ala Ala Leu Pro Arg Glu Arg Leu Arg Pro Arg Pro Lys Val Phe Leu Cys Tyr Ser Ser Lys Asp Gly Gln Asn 345 His Met Asn Val Val Gln Cys Phe Ala Tyr Phe Leu Gln Asp Phe Cys 360 Gly Cys Glu Val Ala Leu Asp Leu Trp Glu Asp Phe Ser Leu Cys Arg Glu Gly Gln Arg Glu Trp Val Ile Gln Lys Ile His Glu Ser Gln Phe Ile Ile Val Val Cys Ser Lys Gly Met Lys Tyr Phe Val Asp Lys Lys Asn Tyr Lys His Lys Gly Gly Gly Arg Gly Ser Gly Lys Gly Glu Leu Phe Leu Val Ala Val Ser Ala Ile Ala Glu Lys Leu Arg Gln Ala Lys 440 Gln Ser Ser Ser Ala Ala Leu Ser Lys Phe Ile Ala Val Tyr Phe Asp Tyr Ser Cys Glu Gly Asp Val Pro Gly Ile Leu Asp Leu Ser Thr Lys 475 Tyr Arg Leu Met Asp Asn Leu Pro Gln Leu Cys Ser His Leu His Ser 485 Arg Asp His Gly Leu Gln Glu Pro Gly Gln His Thr Arg Gln Gly Ser 505 Arg Arg Asn Tyr Phe Arg Ser Lys Ser Gly Arg Ser Leu Tyr Val Ala Ile Cys Asn Met His Gln Phe Ile Asp Glu Glu Pro Asp Trp Phe Glu 535 Lys Gln Phe Val Pro Phe His Pro Pro Pro Leu Arg Tyr Arg Glu Pro 545 Val Leu Glu Lys Phe Asp Ser Gly Leu Val Leu Asn Asp Val Met Cys 570 Lys Pro Gly Pro Glu Ser Asp Phe Cys Leu Lys Val Glu Ala Ala Val 580 585 Leu Gly Ala Thr Gly Pro Ala Asp Ser Gln His Glu Ser Gln His Gly 600 Gly Leu Asp Gln Asp Gly Glu Ala Arg Pro Ala Leu Asp Gly Ser Ala Ala Leu Gln Pro Leu Leu His Thr Val Lys Ala Gly Ser Pro Ser Asp 630 635

Met Pro Arg Asp Ser Gly Ile Tyr Asp Ser Ser Val Pro Ser Ser Glu 645 650 655

Leu Ser Leu Pro Leu Met Glu Gly Leu Ser Thr Asp Gln Thr Glu Thr 660 665 670

Ser Ser Leu Thr Glu Ser Val Ser Ser Ser Ser Gly Leu Gly Glu Glu 675 680 685

Glu Pro Pro Ala Leu Pro Ser Lys Leu Leu Ser Ser Gly Ser Cys Lys 690 695 700

Ala Asp Leu Gly Cys Arg Ser Tyr Thr Asp Glu Leu His Ala Val Ala 705 710 715 720

Pro Leu

<210> 15

<211> 2214

<212> DNA

<213> reverse translation

<220>

<221> misc_feature

<222> (1)..(2214)

<223> n may be a, c, g, or t

<400> 15

atgenerate ggytnearyt ntgywsngtn ttyttyaeng tnaaygentg yytnaayggn 60 wsnearytng engtngenge nggnggnwsn ggnmgngenn nnggngenga yaentgywsn 120 tggnnnggng tnggneenge nwsnmgnaay wsnggnytnt ayaayathae nttyaartay 180 gayaaytgya enaentayyt naayeengtn ggnaareayg tnathgenga ygenearaay 240 athaenathw sneartayge ntgycaygay eargtngeng tnaenathyt ntggwsneen 300 ggngenytng gnathgartt yytnaarggn ttymgngtna thytngarga rytnaarwsn 360 garggnmgne arnnearea rytnathytn aargayeena arearnnnaa ywsnwsntty 420 aarmgnaeng gnatggarws neareennnn ytnaayatga arttygarae ngaytaytty 480 gtnmgnytnw snttywsntt yathaaraay garwsnaayt ayeayeentt yttyttymgn 540 aenmgngent gygayytnyt nytneareen gayaayytng entgyaaree nttytggaar 600 cenneanaayy tnaayathws neareayggn wsngayatge argtnwsntt ygayeaygen 660 cencayaayt tyggnttymg nttyttytay ytneaytaya arytnaarea ygarggneen 720 ttyaarmgna araentgyaa reargarear aenaengara tgaenwsntg yytnytnear 780 aaygtnwsne enggngayta yathathgar ytngtngayg enggneenat hmgngengtn 900

genathacng the chythat ngthathwan genttygena chythttyae ngthatgtgy 960 mgnaaraarc arcargaraa yathtaywsn cayytngayg argarwsnws ngarwsnwsn 1020 acntayacng engenythee nmgngarmgn ytnmgneenm gneenaargt nttyythtgy 1080 taywsnwsna argayggnca raaycayatg aaygtngtnc artgyttygc ntayttyytn 1140 cargayttyt gyggntgyga rgtngcnytn gayytntggg argayttyws nytntgymgn 1200 garggncarm gngartgggt nathcaraar athcaygarw sncarttyat hathgtngtn 1260 tgywsnaarg gnatgaarta yttygtngay aaraaraayt ayaarcayaa rggnggnggn 1320 mgnggnwsng gnaarggnga rytnttyytn gtngcngtnw sngcnathgc ngaraarytn 1380 mgncargcna arcarwsnws nwsngcngcn ytnwsnaart tyathgcngt ntayttygay 1440 taywsntgyg arggngaygt nccnggnath ytngayytnw snacnaarta ymgnytnatg 1500 gayaayytnc cncarytntg ywsncayytn caywsnmgng aycayggnyt ncargarccn 1560 ggncarcaya cnmgncargg nwsnmgnmgn aaytayttym gnwsnaarws nggnmgnwsn 1620 ytntaygtng cnathtgyaa yatgcaycar ttyathgayg argarccnga ytggttygar 1680 aarcarttyg tnccnttyca yccnccnccn ytnmgntaym gngarccngt nytngaraar 1740 ttygaywsng gnytngtnyt naaygaygtn atgtgyaarc enggneenga rwsngaytty 1800 tgyytnaarg tngargenge ngtnytnggn genaenggne engengayws neareaygar 1860 wsncarcayg gnggnytnga ycargayggn gargcnmgnc cngcnytnga yggnwsngcn 1920 gcnytncarc cnytnytnca yacngtnaar gcnggnwsnc cnwsngayat gccnmgngay 1980 wsnggnatht aygaywsnws ngtnccnwsn wsngarytnw snytnccnyt natggarggn 2040 ytnwsnacng aycaracnga racnwsnwsn ytnacngarw sngtnwsnws nwsnwsnggn 2100 ytnggngarg argarcence ngenytneen wsnaarytny tnwsnwsngg nwsntgyaar 2160 gengayytng gntgymgnws ntayaengay garytneayg engtngenee nytn

```
<210> 16
```

<211> 2012

<212> DNA

<213> Unknown

<220>

<223> Description of Unknown Organism:primate; surmised Homo sapiens

<220>

<221> CDS

<222> (1)..(1971)

<220>

<221> mat_peptide <222> (70)..(1971)

	!> (7		· .													
atg		agc												ctc Leu		48
gtc Val	atc Ile	gac Asp -5	ctc Leu	tct Ser	gac Asp	tct Ser -1	gct Ala 1	ggg Gly	att Ile	ggc '	ttt Phe 5	cgc Arg	cac His	ctg Leu	ccc Pro	96
														ctg Leu		144
														ctt Leu 40		192
														tgc Cys		240
														tgc Cys		288
														aga Arg		336
														ctg Leu		384
														agg Arg 120		432
														aaa Lys		480
														tac Tyr		528
agg Arg	aga Arg 155	tgg Trp	gtt Val	cag Gln	ctg Leu	agt Ser 160	ggt Gly	gga Gly	ccc Pro	gag Glu	ttc Phe 165	tcc Ser	ttt Phe	gat Asp	ttg Leu	576
ctg Leu 170	cct Pro	gag Glu	gcc Ala	cgg Arg	gct Ala 175	att Ile	cgg Arg	gtg Val	acc Thr	ata Ile 180	tct Ser	tca Ser	ggc Gly	cct Pro	gag Glu 185	624
					Cys									gag Glu 200		672

age agt eec tat gat gte cag aaa att gtg tet ggg gge cae act gta 720 Ser Ser Pro Tyr Asp Val Gln Lys Ile Val Ser Gly Gly His Thr Val 205 210 gag ctg cct tat gaa ttc ctt ctg ccc tgt ctg tgc ata gag gca tcc 768 Glu Leu Pro Tyr Glu Phe Leu Leu Pro Cys Leu Cys Ile Glu Ala Ser 220 225 tac ctg caa gag gac act gtg agg cgc aaa aaa tgt ccc ttc cag agc 816 Tyr Leu Gln Glu Asp Thr Val Arg Lys Lys Cys Pro Phe Gln Ser 235 240 tgg cca gaa gcc tat ggc tcg gac ttc tgg aag tca gtg cac ttc act 864 Trp Pro Glu Ala Tyr Gly Ser Asp Phe Trp Lys Ser Val His Phe Thr 250 gac tac agc cag cac act cag atg gtc atg gcc ctg aca ctc cgc tgc 912 Asp Tyr Ser Gln His Thr Gln Met Val Met Ala Leu Thr Leu Arg Cys 270 275 cca ctg aag ctg gaa gct gcc ctc tgc cag agg cac gac tgg cat acc 960 Pro Leu Lys Leu Glu Ala Ala Leu Cys Gln Arg His Asp Trp His Thr 285 290 ctt tgc aaa gac ctc ccg aat gcc acg gct cga gag tca gat ggg tgg 1008 Leu Cys Lys Asp Leu Pro Asn Ala Thr Ala Arg Glu Ser Asp Gly Trp 300 . 305 tat gtt ttg gag aag gtg gac ctg cac ccc cag ctc tgc ttc aag gta 1056 Tyr Val Leu Glu Lys Val Asp Leu His Pro Gln Leu Cys Phe Lys Val 315 320 caa cca tgg ttc tct ttt gga aac agc cat gtt gaa tgc ccc cac 1104 Gln Pro Trp Phe Ser Phe Gly Asn Ser Ser His Val Glu Cys Pro His 330 335 cag act ggg tot ctc aca tcc tgg aat gta agc atg gat acc caa gcc 1152 Gln Thr Gly Ser Leu Thr Ser Trp Asn Val Ser Met Asp Thr Gln Ala 350 355 360 cag cag ctg att ctt cac ttc tcc tca aga atg cat gcc acc ttc agt Gln Gln Leu Ile Leu His Phe Ser Ser Arg Met His Ala Thr Phe Ser 365 370 gct gcc tgg agc ctc cca ggc ttg ggg cag gac act ttg gtg ccc ccc 1248 Ala Ala Trp Ser Leu Pro Gly Leu Gly Gln Asp Thr Leu Val Pro Pro 380 385 --- 390 gtg tac act gtc agc cag gtg tgg cgg tca gat gtc cag ttt gcc tgg Val Tyr Thr Val Ser Gln Val Trp Arg Ser Asp Val Gln Phe Ala Trp 395 400 aag cac ctc ttg tgt cca gat gtc tct tac aga cac ctg ggg ctc ttg Lys His Leu Cys Pro Asp Val Ser Tyr Arg His Leu Gly Leu Leu 410 415 atc ctg gca ctg ctg gcc ctc ctc acc cta ctg ggt gtt gtt ctg gcc 1392 Ile Leu Ala Leu Leu Ala Leu Leu Thr Leu Leu Gly Val Val Leu Ala

ctc Leu	acc Thr	tgc Cys	cgg Arg 445	cgc Arg	cca Pro	cag Gln	tca Ser	ggc Gly 450	ccg Pro	ggc Gly	cca Pro	gcg Ala	cgg Arg 455	cca Pro	gtg; Val	1440
ctc Leu	ctc Leu	ctg Leu 460	cac His	gcg Ala	gcg Ala	gac Asp	tcg Ser 465	gag Glu	gcg Ala	cag Gln	cgg Arg	cgc Arg 470	ctg Leu	gtg Vaļ	gga Gly	1488
gcg Ala	ctg Leu 475	gct Ala	gaa Glu	ctg Leu	cta Leu	cgg Arg 480	gca Ala	gcg Ala	ctg Leu	ggc	ggc Gly 485	Gly ggg	cgc Arg	gac Asp	gtg Val	1536
atc Ile 490	gtg Val	gac Asp	ctg Leu	tgg Trp	gag Glu 495	Gly 999	agg Arg	cac His	gtg Val	gcg Ala 500	cgc Arg	gtg Val	ggc	ccg Pro	ctg Leu 505	1584
ccg Pro	tgg Trp	ctc Leu	tgg Trp	gcg Ala 510	gcg Ala	cgg Arg	acg Thr	cgc Arg	gta Val 515	gcg Ala	cgg Arg	gag Glu	cag Gln	ggc Gly 520	act Thr	1632
gtg Val	ctg Leu	ctg Leu	ctg Leu 525	tgg Trp	agc Ser	ggc Gly	gcc Ala	gac Asp 530	ctt Leu	cgc Arg	ccg Pro	gtc Val	agc Ser 535	ggc Gly	ccc Pro	1680
gac Asp	ccc Pro	cgc Arg 540	gcc Ala	gcg Ala	ccc Pro	ctg Leu	ctc Leu 545	gcc Ala	ctg Leu	ctc Leu	cac His	gct Ala 550	gcc Ala	ccg Pro	cgc Arg	1728
ccg Pro	ctg Leu 555	ctg Leu	ctg Leu	ctc Leu	gct Ala	tac Tyr 560	ttc Phe	agt Ser	cgc Arg	ctc Leu	tgc Cys 565	gcc Ala	aag Lys	ggc Gly	gac Asp	1776
atc Ile 570	Pro	ccg Pro	ccg	ctg Leu	cgc Arg 575	gcc Ala	ctg Leu	ccg	cgc Arg	tac Tyr 580	Arg	ctg Leu	ctg Leu	cgc Arg	gac Asp 585	1824
ctg Leu	ccg Pro	cgt Arg	ctg Leu	ctg Leu 590	Arg	gcg Ala	ctg Leu	gac Asp	gcg Ala 595	Arg	cct	ttc Phe	gca Ala	gag Glu 600	gcc Ala	1872
acc Thr	ago Ser	tgg Trp	ggc Gly 605	Arg	ctt Leu	ggg Gly	gcg Ala	cgg Arg 610	Gln	cgc Arg	agg Arg	cag Gln	agc Ser 615	cgc Arg	cta Leu	1920
gag Glu	ctġ Leu	tgc Cys 620	Ser	cgg Arg	cto Leu	gaa Glu	cga Arg 625	Glu	gco Ala	gcc Ala	cga Arg	ctt Leu 630	Ala	gac Asp	cta Leu	1968
ggt		ıgcaç	jagc	tcca	ccgc	ag t	cccg	ıggtg	jt ct	gegg	geege	; t				2012

<210> 17

<211> 657

<212> PRT

<213> Unknown

<400> 17

Met Gly Ser Ser Arg Leu Ala Ala Leu Leu Leu Pro Leu Leu Leu Ile -15 -10 -20

Val	Ile	Asp -5	Leu	Ser	Asp	Ser -1	Ala 1	Gly	Ile	Gly	Phe 5	Arg	His	Leu	Pro
His 10	Trp	Asn	Thr	Arg	Cys 15	Pro	Leu	Ala	Ser	His 20	Thr	Glu	Val	Leu	Pro 25
Ile	Ser	Leu	Ala	Ala 30	Pro	Gly	Gly	Pro	Ser 35	Ser	Pro	Gln	Ser	Leu 40	Gly
Val	Cys	Glu	Ser 45	Gly	Thr	Val	Pro	Ala 50	Val	Cys	Ala	Ser	Ile 55	аұЭ	Сув
Gln	Val	Ala 60	Gln	Val	Phe	Asn	Gly 65	Ala	Ser	Ser	Thr	Ser 70	Trp	Cys	Arg
Asn	Pro 75	Lys	Ser	Leu	Pro	His 80	Ser	Ser	Ser	Ile	Gly 85	Asp	Thr	Arg	Cys
Gln 90	His	Leu	Leu	Arg	Gly 95	Ser	Cys	Сув	Leu	Val 100	Val	Thr	Cys	Leu	Arg 105
Arg	Ala	Ile	Thr	Phe 110	Pro	Ser	Pro	Pro	Gln 115	Thr	Ser	Pro	Thr	Arg 120	Asp
Phe	Ala	Leu	Lys 125	Gly	Pro	Asn	Leu	Arg 130	Ile	Gln	Arg	His	Gly 135	Lys	Val
Phe	Pro	Asp 140	Trp	Thr	His	Lys	Gly 145	Met	Glu	Val	Gly	Thr 150	Gly	Tyr	Asn
Arg	Arg 155	Trp	Val	Gln	Leu	Ser 160	Gly	Gly	Pro	Glu	Phe 165	Ser	Phe	Asp	Leu
Leu 170	Pro	Glu	Ala	Arg	Ala 175	Ile	Arg	Val	Thr	Ile 180	Ser	Ser	Gly	Pro	Glu 185
Val	Ser	Val	Arg	Leu 190	Cys	His	Gln	Trp	Ala 195	Leu	Glu	Сув	Glu	Glu 200	Leu
Ser	Ser	Pro	Tyr 205	Asp	Val	Gln	Lys	Ile 210	Val	Ser	Gly	Gly	His 215	Thr	Val
Glu	Leu	Pro 220	Tyr	Glu	Phe	Leu	Leu 225	Pro	Cys	Leu	Cys	Ile 230	Glu	Ala	Ser
Tyr	Leu 235	Gln	Glu	Asp	Thr	Val 240	Arg	Arg	ГÀв	Lys	Cys 245	Pro.	Phe	Gln	Ser
Trp 250	Pro	Glu	Ala	Tyr	Gly 255	Ser	Asp	Phe	Trp	Lys 260	Ser	Val	His	Phe	Thr 265
Asp	Tyr	Ser	Gln	His 270	Thr	Gln	Met	Val	Met 275	Ala	Leu	Thr	Leu	Arg 280	Сув
Pro	Leu	Lys	Leu 285	Glu	Ala	Ala	Leu	Сув 290	Gln	Arg	His	qaA	Trp 295	His	Thr
Leu	Сув	Lys 300	qaA	Leu	Pro	Asn	Ala 305	Thr	Ala	Arg	Glu	Ser 310	qaA	Gly	Trp

Tyr Val Leu Glu Lys Val Asp Leu His Pro Gln Leu Cys Phe Lys Val 325 315 320 Gln Pro Trp Phe Ser Phe Gly Asn Ser Ser His Val Glu Cys Pro His 335 340 Gln Thr Gly Ser Leu Thr Ser Trp Asn Val Ser Met Asp Thr Gln Ala Gln Gln Leu Ile Leu His Phe Ser Ser Arg Met His Ala Thr Phe Ser 370 Ala Ala Trp Ser Leu Pro Gly Leu Gly Gln Asp Thr Leu Val Pro Pro 385 380 Val Tyr Thr Val Ser Gln Val Trp Arg Ser Asp Val Gln Phe Ala Trp Lys His Leu Leu Cys Pro Asp Val Ser Tyr Arg His Leu Gly Leu Leu 415 420 Ile Leu Ala Leu Leu Ala Leu Leu Thr Leu Leu Gly Val Val Leu Ala Leu Thr Cys Arg Arg Pro Gln Ser Gly Pro Gly Pro Ala Arg Pro Val 450 Leu Leu His Ala Ala Asp Ser Glu Ala Gln Arg Arg Leu Val Gly Ala Leu Ala Glu Leu Leu Arq Ala Ala Leu Gly Gly Arg Asp Val Ile Val Asp Leu Trp Glu Gly Arg His Val Ala Arg Val Gly Pro Leu Pro Trp Leu Trp Ala Ala Arg Thr Arg Val Ala Arg Glu Gln Gly Thr Val Leu Leu Trp Ser Gly Ala Asp Leu Arg Pro Val Ser Gly Pro Asp Pro Arg Ala Ala Pro Leu Leu Ala Leu Leu His Ala Ala Pro Arg Pro Leu Leu Leu Ala Tyr Phe Ser Arg Leu Cys Ala Lys Gly Asp 560 Ile Pro Pro Pro Leu Arg Ala Leu Pro Arg Tyr Arg Leu Leu Arg Asp 575 580 Leu Pro Arg Leu Leu Arg Ala Leu Asp Ala Arg Pro Phe Ala Glu Ala Thr Ser Trp Gly Arg Leu Gly Ala Arg Gln Arg Arg Gln Ser Arg Leu 610 Glu Leu Cys Ser Arg Leu Glu Arg Glu Ala Ala Arg Leu Ala Asp Leu 625 620

Gly

```
<210> 18
<211> 1971
<212> DNA
<213> reverse translation
<220>
<221> misc feature
<222> (1)..(1971)
<223> n may be a, c, g, or t
<400> 18
atgggnwsnw snmgnytngc ngcnytnytn ytnccnytny tnytnathgt nathgayytn 60
wsngaywsng cnggnathgg nttymgncay ytnccncayt ggaayacnmg ntgyccnytn 120
gcnwsncaya cngargtnyt nccnathwsn ytngcngcnc cnggnggncc nwsnwsnccn 180
carwsnytng gngtntgyga rwsnggnacn gtnccngcng tntgygcnws nathtgytgy 240
cargingene argintiyaa yggngenwsn wsnachwsni ggigymgnaa yeenaarwsn 300
ytnccncayw snwsnwsnat hggngayacn mgntgycarc ayytnytnmg nggnwsntgy 360
tgyytngtng tnacntgyyt nmgnmgngcn athacnttyc cnwsnccncc ncaracnwsn 420
ccnacnmgng ayttygcnyt naarggnccn aayytnmgna thcarmgnca yggnaargtn 480
ttyccngayt ggacncayaa rggnatggar gtnggnacng gntayaaymg nmgntgggtn 540
carytnwsng gnggncenga rttywsntty gayytnytne engargenmg ngenathmgn 600
gtnacnathw snwsnggncc ngargtnwsn gtnmgnytnt gycaycartg ggcnytngar 660
tgygargary tnwsnwsncc ntaygaygtn caraarathg tnwsnggngg ncayacngtn 720
garytnccnt aygarttyyt nytnccntgy ytntgyathg argcnwsnta yytncargar 780
gayacngtnm gnmgnaaraa rtgyccntty carwsntggc cngargcnta yggnwsngay 840
ttytggaarw sngtncaytt yacngaytay wsncarcaya cncaratggt natggcnytn 900
acnytnmgnt gyccnytnaa rytngargcn gcnytntgyc armgncayga ytggcayacn 960
ytntgyaarg ayytnccnaa ygcnacngcn mgngarwsng ayggntggta ygtnytngar 1020
aargtngayy tncayccnca rytntgytty aargtncarc cntggttyws nttyggnaay 1080
wsnwsncayg tngartgycc ncaycaracn ggnwsnytna cnwsntggaa ygtnwsnatg 1140
gayacncarg cncarcaryt nathytncay ttywsnwsnm gnatgcaygc nacnttywsn 1200
gengentggw snytneengg nytnggnear gayaenytng tneeneengt ntayaengtn 1260
wsncargint ggmgnwsnga ygincarity gcniggaarc ayyinyintg yccngaygin 1320
```

254

302

wsntaymgnc ayytnggnyt nytnathytn gcnytnytng cnytnytnac nytnytnggn 1380 gtngtnytng cnytnacntg ymgnmgnccn carwsnggnc cnggnccngc nmgnccngtn 1440 ytnytnytnc aygcngcnga ywsngargcn carmgnmgny tngtnggngc nytngcngar 1500 ytnytnmgng cngcnytngg nggnggnmgn gaygtnathg tngayytntg ggarggnmgn 1560 caygtngcnm gngtnggncc nytnccntgg ytntgggcng cnmgnacnmg ngtngcnmgn 1620 garcarggna cngtnytnyt nytntggwsn ggngcngayy tnmgnccngt nwsnggnccn 1680 gayccnmgng cngcnccnyt nytngcnytn ytncaygcng cnccnmgncc nytnytnytn 1740 ytngcntayt tywsnmgnyt ntgygcnaar ggngayathc cnccnccnyt nmgngcnytn 1800 ccnmgntaym gnytnytnmg ngayytnccn mgnytnytnm gngcnytnga ygcnmgnccn 1860 ttygcngarg cnacnwsntg gggnmgnytn ggngcnmgnc armgnmgnca rwsnmgnytn 1920 garytntgyw snmgnytnga rmgngargcn gcnmgnytng cngayytngg n

<210> 19 <211> 808 <212> DNA <213> Unknown <220> <223> Description of Unknown Organism:rodent; surmised Mus musculus <220> <221> CDS <222> (78)..(806) <220> <221> mat_peptide <222> (147)..(806) <400> 19 cagctccggg ccaggccctg ctgccctctt gcagacagga aagacatggt ctctgcgccc 60 tgatcctaca gaagete atg ggg age eec aga etg gea gee ttg etc etg 110 Met Gly Ser Pro Arg Leu Ala Ala Leu Leu Leu -20 tct ctc ccg cta ctg ctc atc ggc ctc gct gtg tct gct cgg gtt gcc 158 Ser Leu Pro Leu Leu Leu Ile Gly Leu Ala Val Ser Ala Arg Val Ala -10 tgc ccc tgc ctg cgg agt tgg acc agc cac tgt ctc ctg gcc tac cgt 206 Cys Pro Cys Leu Arg Ser Trp Thr Ser His Cys Leu Leu Ala Tyr Arg 10

gtg gat aaa cgt ttt gct ggc ctt cag tgg ggc tgg ttc cct ctc ttg

Val Asp Lys Arg Phe Ala Gly Leu Gln Trp Gly Trp Phe Pro Leu Leu

gtg agg aaa tot aaa agt oot oot aaa ttt gaa gac tat tgg agg cac

Val 2	Arg	Lys	Ser 40	Lys	Ser	Pro	Pro	Lys 45	Phe	Glu	Asp	Tyr	Trp 50	Arg	His	
agg a	aca Thr	cca Pro 55	gca Ala	tcc Ser	ttc Phe	cag Gln	agg Arg 60	aag Lys	ctg Leu	cta Leu	ggc Gly	agc Ser 65	cct Pro	tcc Ser	ctg Leu	350
tct o		-	-		-							_				398
aga g Arg (85																446
gaa d Glu I																494
tcc t Ser 1																542
gca g Ala (590
tgt g Cys (_	_	_	-					-						638
ggg G Gly H 165																686
ata q Ile (734
cct t Pro s		-	_		_	_		_	_	_				_		782
tac q	-		_			_	_	ac					** .** .			808

<210> 20

<211> 243

<212> PRT

<213> Unknown

<400> 20

Met Gly Ser Pro Arg Leu Ala Ala Leu Leu Leu Ser Leu Pro Leu Leu -20 -15 -10

Leu Ile Gly Leu Ala Val Ser Ala Arg Val Ala Cys Pro Cys Leu Arg
-5 -1 1 5

Ser Trp Thr Ser His Cys Leu Leu Ala Tyr Arg Val Asp Lys Arg Phe 10 15 20 25

Ala Gly Leu Gln Trp Gly Trp Phe Pro Leu Leu Val Arg Lys Ser Lys 30 35 40

Ser Pro Pro Lys Phe Glu Asp Tyr Trp Arg His Arg Thr Pro Ala Ser 45 50 55

Phe Gln Arg Lys Leu Leu Gly Ser Pro Ser Leu Ser Glu Glu Ser His
60 65 70

Arg Ile Ser Ile Pro Ser Ser Ala Ile Ser His Arg Gly Gln Arg Thr
75 80 85

Lys Arg Ala Gln Pro Ser Ala Ala Glu Gly Arg Glu His Leu Pro Glu 90 95 100 105

Ala Gly Ser Gln Lys Cys Gly Gly Pro Glu Phe Ser Phe Asp Leu Leu 110 115 120

Pro Glu Val Gln Ala Val Arg Val Thr Ile Pro Ala Gly Pro Lys Ala 125 130 135

Arg Val Arg Leu Cys Tyr Gln Trp Ala Leu Glu Cys Glu Asp Leu Ser

Ser Pro Phe Asp Thr Gln Lys Ile Val Ser Gly Gly His Thr Val Asp 155 160 165

Leu Pro Tyr Glu Phe Leu Leu Pro Cys Met Cys Ile Glu Ala Ser Tyr 170 180 185

Leu Gln Glu Asp Thr Val Arg Arg Lys Ser Val Pro Ser Arg Ala Gly
190 195 200

Leu Lys Leu Met Ala Gln Thr Ser Gly Ser Gln Tyr Ala Ser Leu Thr 205 210 215

Thr Ala Ser 220

<210> 21

<211> 729

<212> DNA

<213> reverse translation

<220>

<221> misc_feature

<222> (1)..(729)

<223> n may be a, c, g, or t

<400> 21

atgggnwsnc cnmgnytngc ngcnytnytn ytnwsnytnc cnytnytnyt nathggnytn 60 gengtnwsng cnmgngtngc ntgycentgy ytnmgnwsnt ggacnwsnca ytgyytnytn 120 gentaymgng tngayaarmg nttygenggn ytneartggg gntggttycc nytnytngtn 180

mgnaarwsna arwsnccncc naarttygar gaytaytggm gncaymgnac nccngcnwsn 240 ttycarmgna arytnytngg nwsnccnwsn ytnwsngarg arwsncaymg nathwsnath 300 conwsnwsng cnathwsnca ymgnggncar mgnacnaarm gngcncarcc nwsngcngcn 360 garggnmgng arcayytnec ngargenggn wsnearaart gyggnggnec ngarttywsn 420 ttygayytny tnccngargt ncargengtn mgngtnacna thccngcngg nccnaargen 480 mgngtnmgny tntgytayca rtgggcnytn gartgygarg ayytnwsnws nccnttygay 540 acncaraara thgtnwsngg nggncayacn gtngayytnc cntaygartt yytnytnccn 600 tgyatgtgya thgargcnws ntayytncar gargayacng tnmgnmgnaa rwsngtnccn 660 wsnmgngcng gnytnaaryt natggcncar acnwsnggnw sncartaygc nwsnytnacn 720 acngcnwsn 729 <210> 22 <211> 2377 <212> DNA <213> Unknown <220> <223> Description of Unknown Organism:primate; surmised Homo sapiens <220> <221> CDS <222> (180)..(1874) <400> 22 ttttgagcag aggcttccta ggctccgtag aaatttgcat acagcttcca cttcctgctt 60 cagageetgt tettetaett acetgggeee ggagaaggtg gagggagaeg agaageegee 120 gagagccgac taccctccgg gcccagtctg tctgtccgtg gtggatctaa gaaactaga 227 atg aac cga agc att cct gtg gag gtt gat gaa tca gaa cca tac cca Met Asn Arg Ser Ile Pro Val Glu Val Asp Glu Ser Glu Pro Tyr Pro 275 agt cag ttg ctg aaa cca atc cca gaa tat tcc ccg gaa gag gaa tca Ser Gln Leu Lys Pro Ile Pro Glu Tyr Ser Pro Glu Glu Glu Ser 323 gaa cca cct gct cca aat ata agg aac atg gca ccc aac agc ttg tct Glu Pro Pro Ala Pro Asn Ile Arg Asn Met Ala Pro Asn Ser Leu Ser 40 371 gca ccc aca atg ctt cac aat tcc tcc gga gac ttt tct caa gct cac Ala Pro Thr Met Leu His Asn Ser Ser Gly Asp Phe Ser Gln Ala His tca acc ctg aaa ctt gca aat cac cag cgg cct gta tcc cgg cag gtc 419 Ser Thr Leu Lys Leu Ala Asn His Gln Arg Pro Val Ser Arg Gln Val 70 75

	•														•	
														Phe		467
														tcț Ser		515
_	-								_		_			gca Ala	_	563
	_				_	_		-						tct Ser		611
														tca Ser		659
														cag Gln 175		707
_					_					_	_		_	gat Asp	_	755
														ctg Leu		803
		_	_	_			_					_		tac Tyr		851
														ttt Phe		899
														ctt Leu 255		947
		_								_				ccc Pro		995
														cag Gln		1043
														agt Ser		1091
	Gly													agc Ser		1139

												ccg Pro 335		1187
												aga Arg		1235
												cca Pro		1283
												agc Ser		1331
	_	_						_	_		_	gaa Glu	_	1379
												gtg Val 415		1427
				_	_	_					_	att Ile	-	1475
	-		-		_			_				atg Met		1523
_				_			_		-	_		agc Ser		1571
												gag Glu		1619
												att Ile 495		1667
												ctc Leu		. 1715
												act Thr		1763
	_			_					_	_		ctg Leu	_	1811
												acc Thr		1859

cag gtg gtt ccc ttg tgacaccgtt catccccaga tcactgaggc caggccatgt 1914 Gln Val Val Pro Leu 565

<210> 23

<211> 565

<212> PRT

<213> Unknown

<400> 23

Met Asn Arg Ser Ile Pro Val Glu Val Asp Glu Ser Glu Pro Tyr Pro 1 5 10 15

Ser Gln Leu Lys Pro Ile Pro Glu Tyr Ser Pro Glu Glu Glu Ser 20 25 30

Glu Pro Pro Ala Pro Asn Ile Arg Asn Met Ala Pro Asn Ser Leu Ser

Ala Pro Thr Met Leu His Asn Ser Ser Gly Asp Phe Ser Gln Ala His
50 55 60

Ser Thr Leu Lys Leu Ala Asn His Gln Arg Pro Val Ser Arg Gln Val 65 70 75 80

Thr Cys Leu Arg Thr Gln Val Leu Glu Asp Ser Glu Asp Ser Phe Cys 85 90 95

Arg Arg His Pro Gly Leu Gly Lys Ala Phe Pro Ser Gly Cys Ser Ala
100 105 110

Val Ser Glu Pro Ala Ser Glu Ser Val Val Gly Ala Leu Pro Ala Glu 115 120 125

His Gln Phe Ser Phe Met Glu Lys Arg Asn Gln Trp Leu Val Ser Gln

Leu Ser Ala Ala Ser Pro Asp Thr Gly His Asp Ser Asp Lys Ser Asp 145 150 155 160

Gln Ser Leu Pro Asn Ala Ser Ala Asp Ser Leu Gly Gly Ser Gln Glu 165 170 175

Met	Val	Gln	Arg 180	Pro	Gln	Pro	His	Arg 185	Asn	Arg	Ala	Gly	Leu 190	Asṗ	Leu
Pro	Thr	Ile 195	Asp	Thr	Gly	Tyr	Asp 200	Ser	Gln	Pro	Gln	Asp 205	Val	Leu	Gly
Ile	Arg 210	Gln	Leu	Glu	Arg	Pro 215	Leu	Pro	Leu	Thr.	Ser 220	Val	Сув	Tyr	Pro
Gln 225	Asp	Leu	Pro	Arg	Pro 230	Leu	Arg	Ser	Arg	Glu 235	Phe	Pro	Gln	Phe	Glu 240
Pro	Gln	Arg	Tyr	Pro 245	Ala	Cys	Ala	Gln	Met 250	Leu	Pro	Pro	Asn	Leu 255	Ser
Pro	His	Ala	Pr'o 260	Trp	Asn	Tyr	His	Tyr 265	His	Cys	Pro	Gly	Ser 270	Pro	Asp
His	Gln	Val 275	Pro	Tyr	Gly	His	Asp 280	Tyr	Pro	Arg	Ala	Ala 285	Tyr	Gln	Glr
Val	Ile 290	Gln	Pro	Ala	Leu	Pro 295	Gly	Gln	Pro	Leu	Pro 300	Gly	Ala	Ser	Val
Arg 305	Gly	Leu	His	Pro	Val 310	Gln	Lys	Val	Ile	Leu 315	Asn	Tyr	Pro	Ser	Pro 320
Trp	qaA	Gln	Glu	Glu 325	Arg	Pro	Ala	Gln	Arg 330	Asp	Cys	Ser	Phe	Pro 335	Gly
Leu	Pro	Arg	His 340	Gln	Asp	Gln	Pro	His 345	His	Gln	Pro	Pro	Asn 350	Arg	Ala
Gly	Ala	Pro 355	Gly	Glu	Ser	Leu	Glu 360	Cys	Pro	Ala	Glu	Leu 365	Arg	Pro	Glr
Val	Pro 370	Gln	Pro	Pro	Ser	Pro 375	Ala	Ala	Val	Pro	Arg 380	Pro	Pro	Ser	Asr
Pro 385	Pro	Ala	Arg	Gly	Thr 390	Leu	Lys	Thr	Ser	Asn 395	Leu	Pro	Glu	Glu	Leu 400
Arg	Lys	Val	Phe	Ile 405	Thr	Tyr	Ser	Met	Asp 410	Thr	Ala	Met	Glu	Val 415	Val
Lys	-Phe	-Val-	-Asn 420	-Phe-	-Leu	Leu	-Val	Asn 425	-Gly	-Phe	-Gln	Thr	Ala 430	Ile	Asp
Ile	Phe	Glu 435	Asp	Arg	Ile	Arg	Gly 440	Ile	Asp	Ile	Ile	Lys 445	Trp	Met	Glu
Arg	Tyr 450	Leu	Arg	Asp	Lys	Thr 455	Val	Met	Ile	Ile	Val 460	Ala	Ile	Ser	Pro
Lys 465	Tyr	Lys	Gln	Asp	Val 470	Glu	Gly	Ala	Glu	Ser 475	Gln	Leu	Asp	Glu	Asr 480
Glu	His	Gly	Leu	His 485		Lys	Tyr	Ile	His 490	Arg	Met	Met	Gln	Ile 495	Glu

Phe Ile Lys Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe 500 505 510

Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His 515 520 525

Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu Leu 530 535 540

Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr Leu 545 550 555 560

Gln Val Val Pro Leu
565

<210> 24

<211> 1695

<212> DNA

<213> reverse translation

<220>

<221> misc_feature

<222> (1)..(1695)

<223> n may be a, c, g, or t

<400> 24

atgaaymgnw snathcengt ngargtngay garwsngare entayeenws nearytnytn 60 aarccnathc engartayws neengargar garwsngare encengence naayathmgn 120 aayatggcnc cnaaywsnyt nwsngcnccn acnatgytnc ayaaywsnws nggngaytty 180 wsncargene aywsnacnyt naarytngen aaycaycarm gneengtnws nmgneargtn 240 acntgyytnm gnacncargt nytngargay wsngargayw snttytgymg nmgncayccn 300 ggnytnggna argenttyce nwsnggntgy wsngengtnw sngarcenge nwsngarwsn 360 gtngtnggng cnytnccngc ngarcaycar ttywsnttya tggaraarmg naaycartgg 420 ytngtnwsnc arytnwsngc ngcnwsnccn gayacnggnc aygaywsnga yaarwsngay 480 carwsnytnc cnaaygcnws ngcngaywsn ytnggnggnw sncargarat ggtncarmgn 540 ccncarccnc aymgnaaymg ngcnggnytn gayytnccna cnathgayac nggntaygay 600 wsncarccnc argaygtnyt nggnathmgn carytngarm gnccnytncc nytnacnwsn 660 gtntgytayc cncargayyt nccnmgnccn ytnmgnwsnm gngarttycc ncarttygar 720 concarment aycongente yeencarate ytnochecha ayythwshcc neayeencen 780 tggaaytayc aytaycaytg yccnggnwsn ccngaycayc argtnccnta yggncaygay 840. tayccnmgng cngcntayca rcargtnath carcengeny tncenggnca rcenytneen 900 ggngcnwsng tnmgnggnyt ncayccngtn caraargtna thytnaayta yccnwsnccn 960

tgggaycarg argarmgncc ngcncarmgn gaytgywant tyccnggnyt nccnmgncay 1020 cargaycarc cncaycayca recnecnaay mgngenggng cncenggnga rwanytngar 1080 tgyccngcng arytnmgncc ncargtneen careeneenw sneengeenge ngtneenmgn 1140 ceneenwana ayeeneenge nmgnggnaen ytnaaraenw snaayytnee ngargarytn 1200 mgnaargtnt tyathaenta ywanatggay aengenatgg argtngtnaa rttygtnaay 1260 ttyytnytng tnaayggntt yearaengen athgayatht tygargaymg nathmgnggn 1320 athgayatha thaartggat ggarmgntay ytnmgngaya araengtnat gathathgtn 1380 genathwane enaartayaa reargaygtn garggngeng arwanearyt ngaygargay 1440 gareayggny tneayaenaa rtayatheay mgnatgatge arathgartt yathaarear 1500 ggnwanatga ayttymgntt yatheengtn ytnttycena aygenaaraa rgareaygtn 1560 cenaentggy tnearaayae neaygtntay wantggeena araayaaraa raayathytn 1620 ytnmgnytny tnmgngarga rgartaygtn geneeneenm gnggneenyt neenaenytn 1680 cargtngtne enytn

<210> 25

<211> 1323

<212> DNA

<213> Unknown

<220>

<223> Description of Unknown Organism:rodent; surmised
 Mus musculus

<220>

<221> CDS

<222> (1)..(1026)

<400> 25

cag gac ctc cct ggg cct ctg agg tcc agg gaa ttg cca cct cag ttt 48 Gln Asp Leu Pro Gly Pro Leu Arg Ser Arg Glu Leu Pro Pro Gln Phe 1 5 10

gaa ctt gag agg tat cca atg aac gcc cag ctg ctg ccg ccc cat cct 96
Glu Leu Glu Arg Tyr Pro Met Asn Ala Gln Leu Leu Pro Pro His Pro

tcc cca cag gcc cca tgg aac tgt cag tac tac tgc ccc gga ggg ccc 144 Ser Pro Gln Ala Pro Trp Asn Cys Gln Tyr Tyr Cys Pro Gly Gly Pro

tac cac cac cag gtg cca cac ggc cat ggc tac cct cca gca gca gcc 192
Tyr His His Gln Val Pro His Gly His Gly Tyr Pro Pro Ala Ala Ala
50 55 60

tac cag caa gta ctc cag cct gct ctg cct ggg cag gtc ctt cct ggg 240
Tyr Gln Gln Val Leu Gln Pro Ala Leu Pro Gly Gln Val Leu Pro Gly
65 70 75 80

											aat Asn 95		288
_			_	_		_	_	_	_	-	ttc Phe		336
											aat Asn		384
 _	_				_	_		_		_	aga Arg		432
											cct Pro		480
											gaa Glu 175		528
											gag Glu		576
				_							gcg Ala		624
											tgg Trp		672
											atc Ile		720
											gac Asp 255		768
											cag Gln		816
											gtg Val		864
											aac Asn		912
_		-		_		_			_	_	cgg Arg	_	960

1008 etc agg gag gaa gag tat gtg get eet eec ega gge eet etg eec; acc Leu Arg Glu Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr ctt cag gtg gta ccc ttg tgacgatggc cactccagct cagtgccagc ' 1056 Leu Gln Val Val Pro Leu 340 ctgttctcac agcattcttc tagcggagct ggctggtggc acccaggccc tggaacacct 1116 cttctacaga gtcctctgtc tcctgagtct gagttgtcct cgctgggctt ccagagcttc 1176 agtgcctgga tgctgcaggt gacagaaaca aacatctatg accacaaaaa ctctcatcac 1236 ttcagctact tttatgagtc ggtcagatgc tctgtgtcct tagaccagtc taaatcatgc 1296 tcaaataata aaatgattat tctttgt <210> 26 <211> 342 <212> PRT <213> Unknown <400> 26 Gln Asp Leu Pro Gly Pro Leu Arg Ser Arg Glu Leu Pro Pro Gln Phe Glu Leu Glu Arg Tyr Pro Met Asn Ala Gln Leu Leu Pro Pro His Pro 20 2.5

Ser Pro Gln Ala Pro Trp Asn Cys Gln Tyr Tyr Cys Pro Gly Gly Pro

Tyr His His Gln Val Pro His Gly His Gly Tyr Pro Pro Ala Ala Ala 50

Tyr Gln Gln Val Leu Gln Pro Ala Leu Pro Gly Gln Val Leu Pro Gly

Ala Arg Ala Arg Gly Pro Arg Pro Val Gln Lys Val Ile Leu Asn Asp

Ser Ser Pro Gln Asp Gln Glu Glu Arg Pro Ala Gln Arg Asp Phe Ser 105

Phe Pro Arg Leu Pro Arg Asp Gln Leu Tyr Arg Pro Pro Ser Asn Gly 115 120 125

Val Glu Ala Pro Glu Glu Ser Leu Asp Leu Pro Ala Glu Leu Arg Pro

His Gly Pro Gln Ala Pro Ser Leu Ala Ala Val Pro Arg Pro Pro Ser 145 150 155

Asn Pro Leu Ala Arg Gly Thr Leu Arg Thr Ser Asn Leu Pro Glu Glu 165 170

Leu Arg Lys Val Phe Ile Thr Tyr Ser Met Asp Thr Ala Met Glu Val

190 180 185 Val Lys Phe Val Asn Phe Leu Leu Val Asn Gly Phe Gln Thr Ala Ile Asp Ile Phe Glu Asp Arg Ile Arg Gly Ile Asp Ile Ile Lys Trp Met 210 215 Glu Arg Tyr Leu Arg Asp Lys Thr Val Met Ile Ile Val Ala Ile Ser Pro Lys Tyr Lys Gln Asp Val Glu Gly Ala Glu Ser Gln Leu Asp Glu Asp Glu His Gly Leu His Thr Lys Tyr Ile His Arg Met Met Gln Ile 260 Glu Phe Ile Ser Gln Gly Ser Met Asn Phe Arg Phe Ile Pro Val Leu Phe Pro Asn Ala Lys Lys Glu His Val Pro Thr Trp Leu Gln Asn Thr His Val Tyr Ser Trp Pro Lys Asn Lys Lys Asn Ile Leu Leu Arg Leu 305 310 Leu Arg Glu Glu Tyr Val Ala Pro Pro Arg Gly Pro Leu Pro Thr 330 Leu Gln Val Val Pro Leu 340 <210> 27 <211> 1026 <212> DNA <213> reverse translation <220> <221> misc feature <222> (1)..(1026) <223> n amy be a, c, g, or t cargayytnc enggneenyt nmgnwsnmgn garytneene encarttyga rytngarmgn 60 tayccnatga aygcncaryt nytnccnccn cayccnwsnc cncargcncc ntggaaytgy 120 cartaytayt gycenggngg neentaycay caycargtne encayggnea yggntayeen 180 congongong entaycarca rgtnytncar congonytne enggneargt nytneenggn 240

gcnmgngcnm gnggnccnmg nccngtncar aargtnathy tnaaygayws nwsnccncar 300

gaycargarg armgnccngc ncarmgngay ttywsnttyc cnmgnytncc nmgngaycar 360

ytntaymqnc cnccnwsnaa yggngtngar gcnccngarg arwsnytnga yytnccngcn 420

garytnmgnc cncayggncc ncargencen wsnytngeng engtneenmg ncencenwsn 480

aayccnytng cnmgnggnac nytnmgnacn wsnaayytnc cngargaryt nmgnaargtn 540 ttyathacnt aywsnatgga yacngcnatg gargtngtna arttygtnaa yttyytnytn 600 gtnaayggnt tycaracngc nathgayath ttygargaym gnathmgngg nathgayath 660 athaartgga tggarmgnta yytnmgngay aaracngtna tgathathgt ngcnathwsn 720 ccnaartaya arcargaygt ngarggngcn garwsncary tngaygarga ygarcayggn 780 ytncayacna artayathca ymgnatgatg carathgart tyathwsnca rggnwsnatg 840 aayttymgnt tyathccngt nytnttyccn aaygcnaara argarcaygt nccnacntgg 900 ytncaraaya cncaygtnta ywsntggccn aaraayaara araayathyt nytnmgnytn 960 ytnmgngarg argartaygt ngcncencen mgnggnceny tnccnacnyt ncargtngtn 1020 ccnytn

<210> 28

<211> 207

<212> PRT

<213> Unknown

<220>

<223> Description of Unknown Organism:primate; surmised Homo sapiens

<400> 28

Arg Lys Val Trp Ile Ile Tyr Ser Ala Asp His Pro Leu Tyr Val Asp 1 5 10 15

Val Val Leu Lys Phe Ala Gln Phe Leu Leu Thr Ala Cys Gly Thr Glu 20 25 30

Val Ala Leu Asp Leu Leu Glu Glu Gln Ala Ile Ser Glu Ala Gly Val 35 40 45

Met Thr Trp Val Gly Arg Gln Lys Gln Glu Met Val Glu Ser Asn Ser 50 55 60

Lys Ile Ile Val Leu Cys Ser Arg Gly Thr Arg Ala Lys Trp Gln Ala 65 70 75 80

Leu Leu Gly Arg Gly Ala Pro Val Arg Leu Arg Cys Asp His Gly Lys 85 90 95

Pro Val Gly Asp Leu Phe Thr Ala Ala Met Asn Met Ile Leu Pro Asp 100 105 110

Phe Lys Arg Pro Ala Cys Phe Gly Thr Tyr Val Val Cys Tyr Phe Ser 115 120 125

Glu Val Ser Cys Asp Gly Asp Val Pro Asp Leu Phe Gly Ala Ala Pro 130 135 140

Arg Tyr Pro Leu Met Asp Arg Phe Glu Glu Val Tyr Phe Arg Ile Gln 145 150 155 160 Asp Leu Glu Met Phe Gln Pro Gly Arg Met His Arg Val Gly Glu Leu 165 170 175

Ser Gly Asp Asn Tyr Leu Arg Ser Pro Gly Gly Arg Gln Leu Arg Ala 180 185 190

Ala Leu Asp Arg Phe Arg Asp Trp Gln Val Arg Cys Pro Asp Trp 195 200 205

<210> 29

<211> 208

<212> PRT

<213> Unknown

<220>

<223> Description of Unknown Organism:rodent; surmised
 Mus musculus

<400> 29

Arg Lys Val Trp Ile Val Tyr Ser Ala Asp His Pro Leu Tyr Val Glu
1 5 10 15

Val Val Leu Lys Phe Ala Gln Phe Leu Ile Thr Ala Cys Gly Thr Glu 20 25 30

Val Ala Leu Asp Leu Leu Glu Glu Gln Val Ile Ser Glu Val Gly Val 35 40 45

Met Thr Trp Val Ser Arg Gln Lys Gln Glu Met Val Glu Ser Asn Ser 50 60

Lys Ile Ile Ile Leu Cys Ser Arg Gly Thr Gln Ala Lys Trp Lys Ala 65 70 75 80

Ile Leu Gly Trp Ala Glu Pro Ala Val Gln Leu Arg Cys Asp His Trp 85 90 95

Lys Pro Ala Gly Asp Leu Phe Thr Ala Ala Met Asn Met Ile Leu Pro

Asp Phe Lys Arg Pro Ala Cys Phe Gly Thr Tyr Val Val Cys Tyr Phe 115 120 125

Ser Gly Ile Cys Ser Glu Arg Asp Val Pro Asp Leu Phe Asn Ile Thr 130 135 140

Ser Arg Tyr Pro Leu Met Asp Arg Phe Glu Glu Val Tyr Phe Arg Ile 145 150 155 160

Gln Asp Leu Glu Met Phe Glu Pro Gly Arg Met His His Val Arg Glu 165 170 175

Leu Thr Gly Asp Asn Tyr Leu Gln Ser Pro Ser Gly Arg Gln Leu Lys 180 185 190

Glu Ala Val Leu Arg Phe Gln Glu Trp Gln Thr Gln Cys Pro Asp Trp 195 200 205 <210> 30

<211> 190

<212> PRT

<213> Unknown

<220>

<223> Description of Unknown Organism:worm; surmised Caenorabditis elegans

<400> 30

Val Lys Val Met Ile Val Tyr Ala Asp Asp Asn Asp Leu His Thr Asp 1 5 10 15

Cys Val Lys Lys Leu Val Glu Asn Leu Arg Asn Cys Ala Ser Cys Asp 20 25 30

Pro Val Phe Asp Leu Glu Lys Leu Ile Thr Ala Glu Ile Val Pro Ser 35 40 45

Arg Trp Leu Val Asp Gln Ile Ser Ser Leu Lys Lys Phe Ile Ile Val 50 60

Val Ser Asp Cys Ala Glu Lys Ile Leu Asp Thr Glu Ala Ser Glu Thr 65 70 75 80

His Gln Leu Val Gln Ala Arg Pro Phe Ala Asp Leu Phe Gly Pro Ala 85 90 95

Met Glu Met Ile Ile Arg Asp Ala Thr His Asn Phe Pro Glu Ala Arg
100 105 110

Lys Lys Tyr Ala Val Val Arg Phe Asn Tyr Ser Pro His Val Pro Pro 115 120 125

Asn Leu Ala Ile Leu Asn Leu Pro Thr Phe Ile Pro Glu Gln Phe Ala 130 135 140

Gln Leu Thr Ala Phe Leu His Asn Val Glu His Thr Glu Arg Ala Asn 145 150 155 160

Val Thr Gln Asn Ile Ser Glu Ala Gln Ile His Glu Trp Asn Leu Cys 165 170 175

Ala Ser Arg Met Met Ser Phe Phe Val Arg Asn Pro Asn Trp
180 185 190

<210> 31

<211> 178

<212> PRT

<213> Unknown

<220>

<223> Description of Unknown Organism:worm; surmised Caenorabditis elegans

)> 31 Lys		Met	Leu 5	Val	Cys	Pro	Glu	Val 10	Ser	Gly	Arg	Asp	Glu 15	Asp
Phe	Met	Met	Arg 20	Ile	Ala	Asp	Ala	Leu 25	Lys	Lys	Ser	Asn	Asn 30	Lys	Val

Val Cys Asp Arg Trp Phe Glu Asp Ser Lys Asn Ala Glu Glu Asn Met 35 40 45

Leu His Trp Val Tyr Glu Gln Thr Lys Ile Ala Glu Lys Ile Ile Val
50 55 60

Phe His Ser Ala Tyr Tyr His Pro Arg Cys Gly Ile Tyr Asp Val Ile 65 70 75 80

Asn Asn Phe Phe Pro Cys Thr Asp Pro Arg Leu Ala His Ile Ala Leu 85 90 95

Thr Pro Glu Ala Gln Arg Ser Val Pro Lys Glu Val Glu Tyr Val Leu 100 105 110

Pro Arg Asp Gln Lys Leu Leu Glu Asp Ala Phe Asp Ile Thr Ile Ala 115 120 125

Asp Pro Leu Val Ile Asp Ile Pro Ile Glu Asp Val Ala Ile Pro Glu 130 135 140

Asn Val Pro Ile His His Glu Ser Cys Asp Ser Ile Asp Ser Arg Asn 145 150 155 160

Asn Ser Lys Thr His Ser Thr Asp Ser Gly Val Ser Ser Leu Ser Ser 165 170 175

Asn Ser

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date 29 November 2001 (29.11.2001)

PCT

(10) International Publication Number WO 01/090358 A3

(51) International Patent Classification⁷: C12N 15/12, C07K 14/715, 16/18, G01N 33/53, C12N 5/10

(21) International Application Number: PCT/US01/16767

(22) International Filing Date: 23 May 2001 (23.05.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/206,862 24 May 2000 (24.05.2000) US

(71) Applicant: SCHERING CORPORATION [US/US]; 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).

(72) Inventor: GORMAN, Daniel, M.; 6371 Central Avenue, Newark, CA 94560 (US).

(74) Agent: ZARADIC, Sandy; Schering-Plough Corporation, Patent Department, K-6-1, 1990, 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LU, LV, MA, MD, MG, MK, MN, MX, MZ, NO, NZ, PL, PT, RO, RU, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UZ, VN, YU, ZA.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

 as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations

Published:

with international search report

(88) Date of publication of the international search report: 23 January 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

90358 A

(54) Title: MAMMALIAN RECEPTOR PROTEINS; RELATED REAGENTS AND METHODS

(57) Abstract: Nucleic acids encoding mammalian, e.g., primate, receptors, purified receptor proteins and fragments thereof. Anti-bodies, both polyclonal and monoclonal, are also provided. Methods of using the compositions for both diagnostic and therapeutic utilities are described.

Interremental Application No.

PCT/US 01/16767 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N15/12 C07 C12N5/10 G01N33/53 C07K16/18 C07K14/715 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum docurnentation searched (classification system followed by classification symbols) IPC 7 CO7K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) SEQUENCE SEARCH, EMBL, EPO-Internal, MEDLINE, BIOSIS, WPI Data, PAJ, CHEM ABS Data, SCISEARCH, EMBASE C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1-18 WO 96 29408 A (IMMUNEX CORP) X 26 September 1996 (1996-09-26) page 2, line 35 -page 15, line 4 1-4,6,YAO Z ET AL: "MOLECULAR CHARACTERIZATION X 12-15 OF THE HUMAN INTERLEUKIN (IL)-17 RECEPTOR" CYTOKINE, ACADEMIC PRESS LTD, PHILADELPHIA, 'PA, US, vol. 9, no. 11, November 1997 (1997-11), pages 794-800, XP000867704 ISSN: 1043-4666 page 795; figure 2 Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance Invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the International search report Date of the actual completion of the international search 2 9. 08. 02 12 August 2002 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Steffen, P

Fax: (+31-70) 340-3016

PCT/US 01/16767

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE EMBL 'Online! EBI; 18 February 2000 (2000-02-18) BLOECKER ET AL.: "Homo sapiens mRNA; cDNA DKFZp434N1928" Database accession no. AL133097 XP002183453 the whole document	1-4,6, 12-15
A .	WO 99 14240 A (HUMAN GENOME SCIENCES INC; RUBEN STEVEN M (US); SHI YANGGU (US)) 25 March 1999 (1999-03-25) the whole document	
A	TIAN E ET AL: "EVI27 ENCODES A NOVEL MEMBRANE PROTEIN WITH HOMOLOGY TO THE IL17 RECEPOR" ONCOGENE, BASINGSTOKE, HANTS, GB, vol. 19, no. 17, 20 April 2000 (2000-04-20), pages 2098-2109, XP008000240 ISSN: 0950-9232 the whole document	
A	SHI YANGGU ET AL: "A novel cytokine receptor-ligand pair: Identification, molecular characterization, and in vivo immunomodulatory activity." JOURNAL OF BIOLOGICAL CHEMISTRY (JBC PAPERS IN PRESS, DOI 10.1074/JBC.M910228199), vol. 275, no. 25, 3 April 2000 (2000-04-03), pages 19167-19176, XP002197927 ISSN: 0021-9258 the whole document	
A	FOSSIEZ F ET AL: "INTERLEUKIN-17" INTERNATIONAL REVIEWS OF IMMUNOLOGY, HARWOOD ACADEMIC PUBLISHERS, LONDON, GB, vol. 16, no. 5/6, 1998, pages 541-551, XP000867763 ISSN: 0883-0185 the whole document	
Ε	WO 01 68859 A (AMGEN INC ;JING SHUQIAN (US)) 20 September 2001 (2001-09-20) page 2, line 19 -page 10, line 27; examples 1-4	1-18
Ė .	WO 01 46420 A (GENENTECH INC) 28 June 2001 (2001-06-28) page 5, line 1 -page 16, line 17; figures 17,18	1-18

Interrestal Application No PCT/US 01/16767

	· PC	T/US 01/16767
.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 99 55865 A (GENESIS RES & DEV CORP LTD) 4 November 1999 (1999-11-04) SEQ ID NO's 125 and 303 and corresponding cDNA's page 3 -page 17	1-18
X	DATABASE EMBL 'Online! EBI; 22 July 1999 (1999-07-22) NCI-CGAP: "ty30c03.x1 NCI_CGAP_UT2 Homo sapiens cDNA clone IMAGE:2280580 3' mRNA sequence" Database accession no. AI861981 XP002209553 the whole document	12-18
X	DATABASE EMBL 'Online! EBI; 21 October 1999 (1999-10-21) MARRA ET AL.: "ul91g04.y1 Sugano mouse kidney mkia Mus musculus cDNA clone IMAGE:2159478 5', mRNA sequence" Database accession no. AW107583 XP002209554 the whole document	12-18

PCT/US 01/16767

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Output Description:
2. X Claims Nos.: 19, 20 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
· · · · · · · · · · · · · · · · · · ·
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-18 (all partly)

Compositions comprising primate DCRS8 polypeptides and nucleic acid sequences (SEQ ID NO's 14 and 13, respectively) as well as further embodiments relating to the said polypeptides and nucleic acid sequences.

2. Claims: 1-18 (all partly)

Compositions comprising primate or rodent DCRS9 polypeptides and nucleic acid sequences (SEQ ID NO's 16, 19 and 17, 20, respectively) as well as further embodiments relating to the said polypeptides and nucleic acid sequences.

THIS PAGE BLANK (USPTO)

BEST AVAILABLE COPY

FURTHER INF

Continu

Claims

Present desirab unspeci applica

The cla whereas PCT and limited support search the abo attempt achieve render impossi and 20.

The app claims, search interna is advi Prelimi prelimi the cas receipt

PCT/US 01/16767

		1			rc1/03	01/10/0/
Patent document cited in search report		Publication date		Patent family member(s)		· . Publication date
WO 0146420	Α		WO	0073452	A2	07-12-2000
			WO	0109327	' A2	08-02-2001
			ŲS	2002072496	6 A1	; 13-06-2002
			ÚS	2002072067		13-06-2002
		:	US	2002072092		13-06-2002
			US	2002072497	' Al	13-06-2002
			AU	1916701		16-07-2001
			AU	6802801	. A	24-09-2001
			WO	0149715		12-07-2001
			WO	0168848		20-09-2001
			US	2002098505		25-07-2002
			US	2002098506		25-07-2002
			US	2002098507		25-07-2002
		•	US	2002090681		11-07-2002
			US	2002010137		24-01-2002
			US	2002058309) Al	16-05-2002
WO 9955865	Α	04-11-1999	US	6150502	? A	21-11-2000
			AU	3961499) A	16-11-1999
			CA	2327317		04-11-1999
			CN	1307637		08-08-2001
			EP	1073740		07-02-2001
			JP	2002512798		08-05-2002
		***	MO.			04-11-1999
			NZ	507728	3 A	28-06-2002

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)