Линейное пространство над произвольным полем. Ранг и база системы векторов.

Опр. Множество V называется линейным пространством над полем \mathbb{P} , если V является аддитивной абелевой группой относительно операции сложения векторов, а операция умножения вектора на число обладает следующими свойствами:

- $(\alpha\beta)v = \alpha(\beta v)$;
- $(\alpha + \beta)v = \alpha v + \beta v$;
- $\alpha(v+u) = \alpha v + \alpha u$;
- 1 * v = v

Эти свойства выполняются для любых чисел $\alpha, \beta \in \mathbb{P}$ и любых векторов $u, v \in V$.

Опр. Рангом системы векторов называется максимальное число линейно независимых векторов системы.

Опр. Базой системы векторов называется базис их линейной оболочки, состоящий из векторов системы.

2 Изоморфизм линейных пространств.

Опр. Гомоморфизмом двух линейных пространств V и W над одним полем $\mathbb P$ называется отображение $\varphi:V\to W$ такое, что $\varphi(\alpha v+\beta u)=\alpha \varphi(v)+\beta \varphi(u)\,\forall u,v\in V.$ Если отображение φ взаимооднозначно (является биекцией), то оно называется изоморфизмом.

3 Сумма и пересечение линейных пространств.

Опр. Непустое подмножество $L \subseteq V$ называется подпространством линейного пространства V, если оно само является линейным пространством относительно операций, действующих в V. Для этого необходимо и достаточно, чтобы результата этих операций над векторами из L оставался в L.

Опр. Сумма подпространств $L = L_1 + \dots + L_s$ пространства V называется множество вида $L = \{x_1 + \dots + x_s : x_1 \in L_1, \dots, x_s \in L_s\}$, которое так же является подпространством V. Пересечением подпространств L_1, \dots, L_n пространства V называется множество $L = \{x : x \in L_1, \dots, L_n\}$, которое так же является подпространством V.

Теорема (Теорема Грассмана). Пусть L и M - конечно мерные подпространства некоторого линейного пространства. Тогда $\dim(L+M) = \dim L + \dim M - \dim(L\cap M)$. \mathcal{A} -во. Рассмотрим базис g_1,\ldots,g_r подпространства $L\cap M$ и дополним его до базисов L и M:

$$g_1, \ldots, g_r, p_1, \ldots, p_k$$
 (базис L) $g_1, \ldots, g_r, q_1, \ldots, q_m$ (базис M).

Заметим, что вектора $p_1, \ldots, p_k, q_1, \ldots, q_m$ линейное независимы, так как если бы они были линейно зависимы, то существовал бы вектор q_i , который выражается через p_1, \ldots, p_k , а значит принадлежит $L \cap M$ - противоречие.

Ясно, что L+M является линейной оболочкой векторов $g_1,\ldots,g_r,p_1,\ldots,p_k,q_1,\ldots,q_m$ и остается лишь установить их линейную независимость. Пусть

$$\alpha_1 g_1 + \dots + \alpha_r g_r + \beta_1 p_1 + \dots + \beta_k p_k + \gamma_1 q_1 + \dots + \gamma_m q_m = 0 \implies$$

$$z := \alpha_1 g_1 + \dots + \alpha_r g_r + \beta_1 p_1 + \dots + \beta_k p_k = -(\gamma_1 q_1 + \dots + \gamma_m q_m) \in L \cap M$$

Будучи элементом из $L \cap M$, вектор z представляется в виде $z = \delta_1 g_1 + \cdots + \delta_r g_r \implies$

$$\delta_1 g_1 + \dots + \delta_r g_r + \gamma_1 q_1 + \dots + \gamma_m q_m = 0 \implies \delta_1 = \dots = \delta_r = \gamma_1 = \dots = \gamma_m = 0. \implies$$

$$z = 0 \implies \alpha_1 = \dots = \alpha_r = \beta_1 = \dots = \beta_k.$$

4 Прямая сумма линейных пространств.