APPLIED MATHEMATICS-I 1" Exam/Civil/Mech./ECE/Elctrical/IT/CSE/Auto/Machatronics/2952/Nov'19 (FOR 2018 BATCH ONWARDS)

Duration: 3Hrs. M.Marks:75

SECTION-A

Q1. a) Choose the correct answer:

Slope of the line
$$3x + 2y + 1 = 0$$
 is

0 is
$$a)\frac{3}{2}$$

c)
$$\frac{-3}{2}$$

Slope of the line 3x + 2y + 1 = 0 is a) $\frac{3}{2}$ b) $\frac{-2}{3}$ c) $\frac{-3}{2}$ d) $\frac{1}{2}$ ii. The value of $\frac{5\pi}{12}$ radians in degree is a) 60° b) 75° c) 90° d) 120° iii. The number of terms in the expansion of $(1-2x)^{-9}$ are a) -9 b) -10 c) infinite d) 9

a)
$$60^{\circ}$$
 b) 75°

a) 1

15×1=15

iv. Value of cos 90°

c) -1

d) none of these

v. The characteristic of log(0.0079) is

a) 0

c) $\overline{2}$

b) State True or False.

VI. The co-ordinate axis divides the plane into two parts called quadrants.

vii. Perpendicular distance from the point (0, 4) to the straight line 8x + 15y + 1 = 0 is 2.

viii. A square matrix is singular matrix if |A| = 0

 $\frac{x^2-5}{x^2-3x+2}$ is improper fraction.

c) Fill in the blanks.

xi. System has _____solution if D=D1=D2=D3=0.

xii. P (7, 3) = _____

xiii. The distance between points (4,-3) from origin is

xiv. Two lines are if their slopes are equal.

xv The revolving line is always

SECTION-B

Q2. Attempt any six questions.

a. Resolve into partial fractions $\frac{2x+1}{x^2-3x+2}$ b. Show that $\log_b a^2 \log_c b^3 \log_a c^4 = 24$ c. $\cos 24^0 + \cos 55^0 + \cos 125^0 + \cos 204^0 + \cos 300^0 = \frac{1}{2}$

d. If $\tan A = \frac{a}{a+1}$, $\tan B = \frac{1}{2a+1}$, show that $A + B = \frac{\pi}{4}$

e. Two vertices of a triangle are (6, 4) and (3, 2). If the centroid is (4, 0), find the third vertices.

f. Given a triangle A (10, 4), B (-4, 9), C (-2,-1). Find the equation of median through A.

g. Prove that $\frac{1+\sin\theta-\cos\theta}{1+\sin\theta+\cos\theta}=\tan\frac{\theta}{2}$

h. Find the modulus and amplitude of $\sqrt{3} + i$.

Solve by Crammer's rule the equations

$$7x - 2y = -7$$
$$2x - y = 1$$

SECTION-C

Q3. Attempt any three questions.

3x10=30

Prove that $\tan(60^0 + A)\tan(60^0 - A) = \frac{2\cos 2A + 1}{2\cos 2A - 1}$

(1. Obtain the equation of a circle passing through the points (4, 1); (-4,-3) and (2,-5).

iii. Solve the equations using matrix method

$$3x - 2y + 3z = 8$$

$$2x + y - z = 1$$

$$4x - 3y + 2z = 4$$

iv. If x is small, show that

$$\frac{(1+\frac{2x}{3})^{-5}+(4+2x)^{\frac{1}{2}}}{(4+x)^{\frac{3}{2}}} = \frac{1}{8} (3 - \frac{95x}{24}) \text{ (Nearly)}$$

A person standing on the bank of a river observes that the angle subtended by a tree on the opposite bank is 60° ; when he move backward 20m from the bank, he find the angle to be 30° . Find the height of the tree and the breadth of the river.

APPLIED MATHEMATICS-I 1st Exam/Civil/Mech./ECE/Elctrical/IT/CSE/Auto/Machatronics/2952/May'19 (FOR 2018 BATCH)

Duration: 3Hrs. M.Marks:75 **SECTION-A** Q1. a) Choose the correct answer. 15x1=15 Characteristic of log 0.0079 is 2 3 (a) 0 (c) (d) 2 (ii) Period of Sin₃θ is $\Pi/3$ $\Pi/2$ $2\Pi/3$ П (a) (b) (c) (d) If $n_{c_6} = n_{c_4}$ then n is equal to (iii) (a) 12 (c) 32 (d) 14 Conjugate of 3 - 2i is (iv) -3-2i (b) 3+2i (c) 3i-2 (a) (d) 3i + 2If A is non singular matrix then A⁻¹ is (v) adjA (b) adjA/|A|(c) $(adjA)^{T}$ (d)(a) b).State True or False: If $A = \begin{bmatrix} -2 & -3 \\ 5 & -2 \end{bmatrix}$ the |A| is 19 (i) (ii) Value of $\cos 90^0 = 1$ (iii) Slope of straight line 3x + 2y - 7 = 0 is (iv) Sin (A - B) = SinA CosB - CosA SinB(v) c). Fill in the blanks: Modulus of $1+i\sqrt{3}$ is (i) Number of terms in the expansion of $(2x+3y)^3$ is (ii) Two lines are _____. If their slopes are equal (iii) The centre of the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is (iv) $3SinA - 4Sin^3A =$ (v) **SECTION-B** Q2. Attempt any six questions. 6x5=30(a)

(a) Resolve
$$\frac{x^2+1}{(x^2+2)(x^2+3)}$$
 into partial fractions.

(b) Find the inverse of A if
$$A = \begin{bmatrix} 3 & 8 \\ 2 & 1 \end{bmatrix}$$

- Prove that $\sin 47^0 + \cos 77^0 = \cos 17^0$ (c)
- (d) If the points (-2, -5), (2, -2), (8, a) are collinear then find the value of a

(e) Prove that
$$7 \log \frac{10}{9} - 2 \log \frac{25}{24} + 3 \log \frac{81}{80} = \log 2$$

- Find the co-efficient of x^{16} in the expansion of $(x^2 2x)^{10}$. (f)
- Determine the polar co-ordinates for the point $(\sqrt{2}, \sqrt{2})$. (g)
- Find the equation of a straight line which passes through (2, -3) and makes an angle of 45° with x (h) - axis.

S.B. Roll No.....

APPLIED MATHEMATICS-I 1st Exam/Common/2455/0251/5402/May'19

Duration: 3Hrs. M.Marks:75

SECTION-A

Q1. a) Choose the correct one.

i. If ${}^{18}C_r = {}^{18}C_{r+2}$, then r =a) 6 b)7 c) 8 d) 9 ii. Simplified form of $(3+2i)^2$ is= a) 5+12i b)5-12i c) 12+5i d)12-5i

a) -30° b) 0° iii. If $Sin120^{\circ} - Sin60^{\circ} = Sin x$, then x =c)30° d)60°

iv. The polar co-ordinates of (1,1) are

d) $(-\sqrt{2}, \pi/4)$ a) $(\sqrt{2}, \pi/4)$ b) $(\sqrt{2}, 3\pi/4)$ c) $(\sqrt{2}, 5\pi/4)$ v. Value of Sin34⁰ – Cos56⁰ is

b) State True or False.

- vi. Number of terms in the expansion of $(x-\frac{3}{x^2})^{18}$ is 19
- vii. $Sec^2\theta tan^2\theta = 0$
- viii. Slope of vertical line is 0.
- ix. 23rd term of an A.P. 13, 21, 29, ---- is 189.
- x. Radius of circle $x^2 + y^2 16x 8y + 78 = 0$ is $\sqrt{2}$.

c) Fill in the blanks.

- xi. Value of $\frac{4\pi}{5}$ radians in degrees is _____
- xii. Straight line parallel to X-axis and passing through (-2, 6) is______.
- xiii. If the logarithm of N is -3.4257, then characteristic=
- xiv. Value of tan (1020°) is
- xv. The centroid of triangle whose vertices are (4, -3), (-9, 7) and (8, 8) is__

Q2. Attempt any six questions.

15x1=15

- a. Resolve $\frac{2x+1}{x^2-3x+2}$ into partial fractions.
- b. Find the number of different 8 letter words formed from the word 'TRIANGLE' if each word is to begin with 'T'.
- c. If $\frac{\log x}{y-z} = \frac{\log y}{z-x} = \frac{\log z}{x-y}$, show that x^x . y^y . $z^z = 1$ d. Prove that $\cos 20^0 + \cos 50^0 + \cos 200^0 + \cos 230^0 + \cos 300^0 = \frac{1}{2}$
- e. Prove that $\tan 65^{\circ} = \tan 25^{\circ} + 2 \tan 40^{\circ}$.
- f. Prove that $tan(\frac{\pi}{4} + \theta) tan(\frac{\pi}{4} \theta) = 2 tan 2\theta$
- g. Find the equation of line passing through (4, 5) and perpendicular to line joining (1, 2) and (5, 6).
- h. If A (10, 4), B (-4, 9), C (-2,-1) are vertices of a triangle. Find the equation of altitude through C.
- Find the equation of a circle having diameter on the line joining the points (0, 1) and (1, 1).

SECTION-C

Q3. Attempt any three questions.

3x10=30

If x is so small that its squares and higher powers are neglected, prove that

$$\frac{\sqrt{9+7x}-(16+3x)^{\frac{1}{4}}}{4+5x} = \frac{1}{4} - \frac{17}{384} \times$$
Sum the series 7 + 77 + 777 + ____ up to n terms.

- ii.
- Prove that $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$ iii.
- A person standing on the bank of a river observes that the angle subtended by a tree on the iv. opposite bank is 60°. When he retires 40m from the bank, he finds the angle to be 30°. Find the height of the tree and breadth of the river.
- ٧. Find the equation of circle which passes through (4, 2) and (-6, -2) and has center on X-Axis.

1st Exam/Common/2455/5402/0251/May'18

Duration: 3Hrs. M.Marks:75 **SECTION-A** Q1. Choose the correct answer. 5x1=5 (i) The modulus of $1 + i\sqrt{3}$ is a) $\sqrt{2}$ b) -1 c) 2 d) 0 (ii) The value of $3\pi/12$ radians in degree is a) 60° b) 45° c) 90° d) 120° (iii) Characteristic of log 0.07426 is b) $\overline{2}$ a) 1 c) 0 d) 1 (iv) If Sin (A-B) = $\frac{1}{2}$ and Cos (A+B) = $\frac{1}{2}$ then value of A and B will be b) A=45°, B=15° a) A=15°, B=45° c) A=45°, B=45° d) A=30°, B=60° (v) The centroid of a triangle with two vertices (3,4) (-1,-9) is (2, -4) then third vertex is b) (4, -7) c) (4,7)a) (-4 , -7) d) (-4,7) Q2. State True or False. 5x1=5 a. The series of the R.H.S of the expansion $(1 + x)^n$ extends to infinity b. If k, k+1, k+3 are in G.P, then k=2c. Value of tan 120° is $\sqrt{3}$ d. $Sec(270^{\circ} + \theta) = Cosec\theta$ e. The point (3,4); (7,7); (x,4) are collinear, if x=3Q3. Fill in the blanks. 5x1=5 i. Radius is a ----- angle. ii. The revolving line is always iii. If CosA = ½ then Cos3A = iv. The conic is parabola if -v. Equation of line perpendicular to line ax+by+c=0 is ---**SECTION-B** Q4. Attempt any six questions. a. In how many ways, 3 boys and 3 girls are seated at round table, so that no two girls sit together. b. Find the co-ordinates of the incentre of the triangle whose vertices are (-36,7), (20,7) and (0,-8) Resolve into partial fractions. d. A (10, 4); B (-4, 9); C (-2,-1) are the vertices of a triangle ABC, find the equation of the median through A. e. Prove that $\cos \alpha + \cos(\alpha + 2\pi/3) + \cos(\alpha + 4\pi/3) = 0$ If $\frac{\log x}{y-z} = \frac{\log y}{z-x} = \frac{\log z}{x-y}$ then show that $x^x y^y z^z = 1$ g. Prove that $\frac{SinA+Sin3A+Sin5A+Sin7A}{CosA+Cos3A+Cos5A+Cos7A}$ = tan 4A h. Prove that $\frac{Cot\theta + Cosec\theta - 1}{Cot\theta - Cosec\theta + 1} = \frac{1 + Cos\theta}{Sin\theta}$ How many terms of the series 3+8+13+18+ ----- must be taken so that their sum is 1010?

S.B. Roll No.....

APPLIED MATHEMATICS-I 1st Exam/Common/2455/0251/5402/Nov'18

Duration: 3Hrs. M.Marks:75

SECTION-A

Q1. a) Choose the correct answer.

15x1=15

i. If $n_{P_4} = 20 \times n_{P_2}$ then n is equal to

a) 7

b) 8

c) 2

d) 4

ii. Modulus of 3 – 4i is

a) 6

b) 5

c) 4

d) 3

iii. Slope of line 3x + y - 2 = 0 is

a) 3

, h) 2

c) - 3

d) -2

iv. Mid points internally of (-a, b) and (a, -b) is

a) $\frac{a+b}{a}$

b) $\frac{a-b}{a-b}$

c) a + b

d) (0, 0)

v. The point (-4, -5) lies in quadrant

a) 1^s

b) 2nd

c) 3rd

d) 4th

b) State True or False.

vi. Sin(A + B) = SinA CosB - CosA SinB

vii. Sum of first n natural numbers is $\frac{n(n+1)}{4}$.

viii. If a, b, c are in A.P then 2b = 2a + c.

ix. Length of latus rectum of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{2b^2}{a}$.

x. The equation 3x + 4y + 5 = 0 and 4x - 3y + 7 = 0 represent perpendicular lines.

c) Fill in the blanks.

xi. nth term of a G.P is __

xii. The eccentricity of parabola is

xiii. The equation x + 2y + 3 = 0 to the slope form is_

xiv. Two lines are _____ if their slopes are equal.

xv. Value of $\frac{tan70^0 + tan65^0}{1 - tan70^0 tan65^0} =$ ______

SECTION-B

Q2. Attempt any six questions.

6x5 = 30

a. If $CosA = \frac{5}{13}$ and A lies in the 4th quadrant, Show that $\frac{13SinA + 5SecA}{5tanA + 6CosecA} = -\frac{2}{37}$.

b. Given $\log 2 = .30103$, $\log 5 = 0.69897$ Solve the equations $2^x . 5^y = 1$, $5^{x+1} . 2^y = 2$.

c. Find the term independent of x in the expansion of $\left(\frac{3x^2}{2} - \frac{1}{3x}\right)^9$.

d. Resolve into partial fraction $\frac{2x+1}{x^2-3x+2}$

e. Express the Complex number -3 + 3i in polar form.

f. Find the co-ordinates of foot of perpendicular from the point (2, 3) on the line y = 3x + 4.

g. Prove that $\frac{1}{SecA + tanA} = \frac{1 - SinA}{CosA}$.

h. Sum the series 0.9 + 0.09 + 0.009 + ---- to nth term.

i. The sum of two angles is $\frac{2\pi}{5}$ and their difference is 18°. Find the angles in degrees and radians.

S.B. Roll No.....

SECTION-C

Q3. Attempt any three questions.

3x10=30

- i. Find the equation of circle which passes through the points (4, 1) and (6, 5) and has its centre lies on the line 4x + y = 16.
- ii. If $Sin\theta + Sin\emptyset = a$ and $cos\theta + cos\emptyset = b$ then show that $Sin(\theta + \emptyset) = \frac{2ab}{a^2 + b^2}$
- iii. If x is so small that its square and higher powers are neglected show that :

$$\frac{\sqrt[3]{1-2x}+\sqrt{(1+x)^5}}{\sqrt{9+x}}=\frac{2}{3}-\frac{11}{54}x.$$

- iv. Find the co-ordinates of focus, vertex, the equation of directrix and axis of parabola y^2 4y 2x 8 = 0
- v. A boy observes the angle of elevation of a mountain top to be 60^{0} and after walking directly away from it on level ground through 100 meters, the angle of elevation is 45^{0} . Find the height of the mountain and the distance between the mountain and first position of the boy.

Visit **www.brpaper.com** for downloading previous years question papers of 10th and 12th (PSEB and CBSE), B-Tech, Diploma, BBA, BCA, MBA, MCA, M-Tech, PGDCA, B-Com, BSC-IT, MSC-IT. J.D. INUII INU..... **APPLIED MATHEMATICS – I**

Duration: 3 Hrs

1st Exam /Common/2455/0251/5402/MAY '17

M. Marks: 75

\$\text{SECTION A}\$ Q. 1) Choose the correct answer (i) 5 th term of series 3, 8, 13, 18				
(ii) The total number of terms in $(x + a)^8$ a) 7 b) 8 c) 9 d) 10 (iii) value of $\cos 90^0$ a) 0 b) 1 c) -1 d) none of these (iv) modulus of $1 + i\sqrt{3}$ is equal to a) 2 b) 1 c) 10 d) -2 (v) The radius of the circle $x^2 + y^2 - 4x + 6y - 25 = 0$ a) $\sqrt{37}$ b) $\sqrt{38}$ c) 38 d) 37 Q. 2) State true or false (i) The midpoint of $A(-3,2)$ and $B(5,4)$ is $(1,-3)$ (ii) angle 1325^0 lies in 1^{54} quadrant (iii) $\sec (90^0 - \theta) = \csc \theta$ (iv) Two lines are parallel if their slopes are equal (v) a,b,c are in $A.P.$ if $b = \frac{a-c}{2}$ Q. 3) Fill in the blanks (i) The value $\sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ i$ (ii) The area of triangle whose vertices are $(4,4),(3,-16)$ and $(3,-2)$ is (iii) If the end points of the diameter of circle are $(2,3)$ and $(6,5)$ then the centre of $(3,3)$ is $(3,3$	= 5)	(. 1) Choose th	Q. 1)	
(ii) The total number of terms in $(x + a)^8$ a) 7 b) 8 c) 9 d) 10 (iii) value of $\cos 90^0$ a) 0 b) 1 c) -1 d) none of these (iv) modulus of $1 + i\sqrt{3}$ is equal to a) 2 b) 1 c) 10 d) -2 (v) The radius of the circle $x^2 + y^2 - 4x + 6y - 25 = 0$ a) $\sqrt{37}$ b) $\sqrt{38}$ c) 38 d) 37 (5 × 1 = 5) (i) The midpoint of A(-3,2) and B(5,4) is (1,-3) (ii) angle 1325^0 lies in 1^{5t} quadrant (iii) $\sec (90^0 - 0) = \csc 0$ (iv) Two lines are parallel if their slopes are equal (v) a, b, c are in A.P. if $b = \frac{a-c}{2}$ Q. 3) Fill in the blanks (5 × 1 = 5) (iii) The value $\sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ is$ (iii) The area of triangle whose vertices are $(4,4),(3,-16)$ and $(3,-2)$ is (iii) If the end points of the diameter of circle are $(2,3)$ and $(6,5)$ then the centre of $(2,3)$ is value of $(2,3)$ value of $(3,2)$ is $(3,3)$ is $(3,3)$ value of $(3,2)$ is $(3,3)$ is $(3,3)$ value of $(3,3)$ is $(3,3)$ if the end points of the diameter of circle are $(2,3)$ and $(3,3)$ is $(3,3)$ is $(3,3)$ is $(3,3)$ in $(3,3)$ is $(3,3)$ in $(3,3)$ in $(3,3)$ is $(3,3)$ in $(3,3)$ in $(3,3)$ in $(3,3)$ is $(3,3)$ in $(3,3)$ in $(3,3)$ in $(3,3)$ is $(3,3)$ in $(3,3)$ in $(3,3)$ in $(3,3)$ in $(3,3)$ is $(3,3)$ in $($		5 th term of	(i)	
(iii) value of cos 90° a) 0 b) 1 c) -1 d) none of these (iv) modulus of $1 + i \sqrt{3}$ is equal to a) 2 b) 1 c) 10 d) -2 (v) The radius of the circle $x^2 + y^2 - 4x + 6y - 25 = 0$ a) $\sqrt{37}$ b) $\sqrt{38}$ c) 38 d) 37 Q. 2) State true or false (i) The midpoint of A(-3,2) and B(5,4) is (1,-3) (ii) angle 1325^0 lies in 1^{5t} quadrant (iii) $\sec(90^0 - 0) = \csc\theta$ (iv) Two lines are parallel if their slopes are equal (v) a, b, c are in A.P. if $b = \frac{a-c}{2}$ Q. 3) Fill in the blanks (5 × 1 = 10 (iii) The value $\sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ is$ (iii) The area of triangle whose vertices are $(4,4),(3,-16)$ and $(3,-2)$ is (iii) If the end points of the diameter of circle are $(2,3)$ and $(6,5)$ then the centre of $(2,3)$ value of $(2,3)$ $(3,3)$ $(3,4)$ $(3,3)$ $(3,4)$,		
(iii) value of $\cos 90^{0}$ a) 0 b) 1 c) -1 d) none of these (iv) modulus of $1 + i\sqrt{3}$ is equal to a) 2 b) 1 c) 10 d) -2 (v) The radius of the circle $x^{2} + y^{2} - 4x + 6y - 25 = 0$ a) $\sqrt{37}$ b) $\sqrt{38}$ c) 38 d) 37 Q. 2) State true or false (i) The midpoint of A(-3,2) and B(5,4) is (1,-3) (ii) angle 1325^{0} lies in 1^{st} quadrant (iii) $\sec (90^{0} - \theta) = \csc \theta$ (iv) Two lines are parallel if their slopes are equal (v) a, b, c are in A.P. if $b = \frac{a-c}{2}$ Q. 3) Fill in the blanks (i) The value $\sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ} is$ (ii) The area of triangle whose vertices are (4,4),(3,-16) and (3,-2) is (iii) If the end points of the diameter of circle are (2,3) and (6,5) then the centre of $\cos \frac{10}{61}$ SECTION B Q. 4) Attempt any 6 Questions (i) Which term of the series $3 + 7 + 11 + 15 + \frac{1}{2} = 10$ (ii) Sum the series $3 + 33 + 333 + \frac{1}{2} = 10$ (iii) Find the 4^{th} term in the expansion of $\frac{x}{4} + \frac{a}{x}$ to n terms. (iii) Find the 4^{th} term in the expansion of $\frac{x}{4} + \frac{a}{x}$		· ·	(ii)	
a) 0 b) 1 c) -1 d) none of these (iv) modulus of $1 + i\sqrt{3}$ is equal to a) 2 b) 1 c) 10 d) -2 (v) The radius of the circle $x^2 + y^2 - 4x + 6y - 25 = 0$ a) $\sqrt{37}$ b) $\sqrt{38}$ c) 38 d) 37 Q. 2) State true or false (i) The midpoint of A(-3,2) and B(5,4) is (1,-3) (ii) angle 1325^0 lies in 1^{st} quadrant (iii) $\sec (90^0 - \theta) = \csc \theta$ (iv) Two lines are parallel if their slopes are equal (v) a, b, c are in A.P. if $b = \frac{a-c}{2}$ Q. 3) Fill in the blanks (i) The value $\sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ is$ (iii) The area of triangle whose vertices are $(4,4),(3,-16)$ and $(3,-2)$ is (iii) If the end points of the diameter of circle are $(2,3)$ and $(6,5)$ then the centre of $(3,3)$ is $(3,3)$ is $(3,3)$ is $(3,3)$ value of $(3,3)$ is $(3,3)$ is $(3,3)$ is $(3,3)$ is $(3,3)$ if the end points of the diameter of circle are $(3,3)$ and $(3,3)$ is $(3,3)$ is $(3,3)$ is $(3,3)$ is $(3,3)$ in the series $(3,3)$ is $(3,3)$ is $(3,3)$ in the series $(3,3)$ is $(3,3)$ is $(3,3)$ is $(3,3)$ in the series $(3,3)$ is $(3,3)$ is $(3,3)$ is $(3,3)$ is $(3,3)$ in the series $(3,3)$ is $(3,3)$ is $(3,3)$ in the series $(3,3)$ is $(3,3)$ in the series $(3,3)$ is $(3,3)$ is $(3,3)$ in the series $(3,3)$ is $(3,3)$ in the series $(3,3)$ is $(3,3)$ in the series $(3,3)$ in		/		
(iv) modulus of $1 + i \sqrt{3}$ is equal to a) $2 - b$) $1 - c$) $10 - d$) -2 (v) The radius of the circle $x^2 + y^2 - 4x + 6y - 25 = 0$ a) $\sqrt{37}$ b) $\sqrt{38}$ c) 38 d) 37 Q. 2) State true or false (i) The midpoint of A(-3,2) and B(5,4) is (1,-3) (ii) angle 1325^0 lies in 1^{st} quadrant (iii) $\sec (90^0 - \theta) = \csc \theta$ (iv) Two lines are parallel if their slopes are equal (v) a, b, c are in A.P. if $b = \frac{a-c}{2}$ Q. 3) Fill in the blanks (i) The value $\sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ is$ (iii) The area of triangle whose vertices are $(4,4),(3,-16)$ and $(3,-2)$ is (iii) If the end points of the diameter of circle are $(2,3)$ and $(6,5)$ then the centre of $(3,3)$ is $(3,3)$ is $(3,3)$ value of $(3,3)$ is $(3,3)$ is $(3,3)$ is $(3,3)$ is $(3,3)$ is $(3,3)$ if the end points of the diameter of circle are $(2,3)$ and $(3,-2)$ is $(3,3)$ is $(3,3)$ is $(3,3)$ in $(3,3)$ is $(3,3)$ in $(3,3)$ is $(3,3)$ in $(3,3)$ in $(3,3)$ is $(3,3)$ in $(3,3)$ in $(3,3)$ in $(3,3)$ in $(3,3)$ in $(3,3)$ is $(3,3)$ in $(3$,	(iii)	
(v) The radius of the circle $x^2 + y^2 - 4x + 6y - 25 = 0$ a) $\sqrt{37}$ b) $\sqrt{38}$ c) 38 d) 37 Q. 2) State true or false (i) The midpoint of A(-3,2) and B(5,4) is (1,-3) (ii) angle 1325^0 lies in 1^{st} quadrant (iii) sec $(90^0 - \theta) = \csc \theta$ (iv) Two lines are parallel if their slopes are equal (v) a, b, c are in A.P. if $b = \frac{a-c}{2}$ Q. 3) Fill in the blanks (i) The value $\sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ i$ (iii) If the end points of the diameter of circle are $(2,3)$ and $(6,5)$ then the centre of $\cos \frac{1}{2}$ is $\cos \frac{1}{2}$ is $\cos \frac{1}{2}$ (v) value of $\cos \frac{1}{2}$ is $\sin \frac{1}{2}$ is $\cos $		· · · · · · · · · · · · · · · · · · ·		
(v) The radius of the circle $x^2 + y^2 - 4x + 6y - 25 = 0$ a) $\sqrt{37}$ b) $\sqrt{38}$ c) 38 d) 37 Q. 2) State true or false (i) The midpoint of A(-3,2) and B(5,4) is (1,-3) (ii) angle 1325° lies in I st quadrant (iii) sec $(90^\circ - \theta) = \csc\theta$ (iv) Two lines are parallel if their slopes are equal (v) a, b, c are in A.P. if $b = \frac{a-c}{2}$ Q. 3) Fill in the blanks (i) The value $\sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ is$ (ii) The area of triangle whose vertices are $(4,4),(3,-16)$ and $(3,-2)$ is		,	(iv)	
a) $\sqrt{37}$ b) $\sqrt{38}$ c) 38 d) 37 Q. 2) State true or false (i) The midpoint of A(-3,2) and B(5,4) is (1,-3) (ii) angle 1325° lies in 1st quadrant (iii) $\sec(90^{\circ}-\theta)=\csc\theta$ (iv) Two lines are parallel if their slopes are equal (v) a, b, c are in A.P. if $b=\frac{a-c}{2}$ Q. 3) Fill in the blanks (i) The value $\sin 45^{\circ}\cos 30^{\circ}-\cos 45^{\circ}\sin 30^{\circ}$ is (ii) The area of triangle whose vertices are $(4,4),(3,-16)$ and $(3,-2)$ is (iii) If the end points of the diameter of circle are $(2,3)$ and $(6,5)$ then the centre of $\sin(x)$ is (iv) value of $\cos(x)$ $\frac{11}{2}$ + $i\sin(x)$ $\frac{11}{2}$ = (v) value of $\frac{81}{61}$ SECTION B Q. 4) Attempt any 6 Questions (i) Which term of the series $3+7+11+15+\frac{1}{2}$ is 47 ? (ii) Sum the series $3+3+33+333+\frac{1}{2}$ to n terms. (iii) Find the 4th term in the expansion of $(\frac{x}{a}+\frac{a}{x})^{10}$		a) 2		
Q. 2) State true or false (i) The midpoint of $A(-3,2)$ and $B(5,4)$ is $(1,-3)$ (ii) angle 1325^0 lies in 1^{st} quadrant (iii) $\sec(90^0-\theta)=\cos \theta$ (iv) Two lines are parallel if their slopes are equal (v) a, b, c are in $A.P.$ if $b=\frac{a-c}{2}$ Q. 3) Fill in the blanks (i) The value $\sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ is$ (ii) The area of triangle whose vertices are $(4,4), (3,-16)$ and $(3,-2)$ is			(v)	
(i) The midpoint of $A(-3.2)$ and $B(5.4)$ is $(1,-3)$ (ii) angle 1325^0 lies in 1^{st} quadrant (iii) $\sec(90^0-\theta)=\csc\theta$ (iv) Two lines are parallel if their slopes are equal (v) a, b, c are in $A.P.$ if $b=\frac{a-c}{2}$ Q. 3) Fill in the blanks ($5 \times 1 = \frac{a-c}{2}$ Q. 3) Fill in the blanks ($5 \times 1 = \frac{a-c}{2}$ (i) The value $\sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ is$ (ii) The area of triangle whose vertices are $(4,4),(3,-16)$ and $(3,-2)$ is (iii) If the end points of the diameter of circle are $(2,3)$ and $(6,5)$ then the centre of a is a (iv) value of a		a) √37		
(ii) angle 1325° lies in Ist quadrant (iii) $\sec(90^{\circ}-\theta)=\csc\theta$ (iv) Two lines are parallel if their slopes are equal (v) a, b, c are in A.P. if $b=\frac{a-c}{2}$ Q. 3) Fill in the blanks (i) The value $\sin 45^{\circ}\cos 30^{\circ}-\cos 45^{\circ}\sin 30^{\circ}$ is (ii) The area of triangle whose vertices are $(4,4),(3,-16)$ and $(3,-2)$ is (iii) If the end points of the diameter of circle are $(2,3)$ and $(6,5)$ then the centre of is (iv) value of $\cos\frac{\Pi}{2}+i\sin\frac{\Pi}{2}=$ (v) value of $\frac{8!}{6!}$ SECTION B Q. 4) Attempt any 6 Questions (i) Which term of the series $3+7+11+15+$ (ii) Sum the series $3+33+333+$ (iii) Find the 4th term in the expansion of $(\frac{x}{a}+\frac{a}{x})^{10}$	= 5)). 2) State true	Q. 2)	
(ii) angle 1325° lies in Ist quadrant (iii) $\sec(90^{\circ}-\theta)=\csc\theta$ (iv) Two lines are parallel if their slopes are equal (v) a, b, c are in A.P. if $b=\frac{a-c}{2}$ Q. 3) Fill in the blanks (i) The value $\sin 45^{\circ}\cos 30^{\circ}-\cos 45^{\circ}\sin 30^{\circ}$ is (ii) The area of triangle whose vertices are $(4,4),(3,-16)$ and $(3,-2)$ is (iii) If the end points of the diameter of circle are $(2,3)$ and $(6,5)$ then the centre of is (iv) value of $\cos\frac{\Pi}{2}+i\sin\frac{\Pi}{2}=$ (v) value of $\frac{8!}{6!}$ SECTION B Q. 4) Attempt any 6 Questions (i) Which term of the series $3+7+11+15+$ (ii) Sum the series $3+33+333+$ (iii) Find the 4th term in the expansion of $(\frac{x}{a}+\frac{a}{x})^{10}$		(t) Tl		
(iii) $\sec(90^{\circ}-\theta) = \csc\theta$ (iv) Two lines are parallel if their slopes are equal (v) a, b, c are in A.P. if $b = \frac{a-c}{2}$ Q. 3) Fill in the blanks $ (5 \times 1 = 3) $ (i) The value $\sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ} \cos 30^{\circ}$				
(iv) Two lines are parallel if their slopes are equal (v) a, b, c are in A.P. if $b = \frac{a-c}{2}$ Q. 3) Fill in the blanks ($5 \times 1 = \frac{a-c}{2}$ (i) The value $\sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ} is$ (ii) The area of triangle whose vertices are $(4,4),(3,-16)$ and $(3,-2)$ is (iii) If the end points of the diameter of circle are $(2,3)$ and $(6,5)$ then the centre of a is				
(v) a, b, c are in A.P. if $b=\frac{a-c}{2}$ Q. 3) Fill in the blanks (i) The value $\sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ} is$ (ii) The area of triangle whose vertices are $(4,4),(3,-16)$ and $(3,-2)$ is				
Q. 3) Fill in the blanks (i) The value $\sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ} is$ (ii) The area of triangle whose vertices are $(4,4)$, $(3,-16)$ and $(3,-2)$ is				
(i) The value $\sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ} is$		(v) a,		
(i) The value $\sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ} is$				
(i) The value $\sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ} is$	= 5)). 3) Fill in the	O. 3)	
(ii) The area of triangle whose vertices are $(4,4)$, $(3,-16)$ and $(3,-2)$ is		- ,	_ /	
(iii) If the end points of the diameter of circle are (2,3) and (6,5) then the centre of (1) is (iv) value of $\cos \frac{\Pi}{2} + i \sin \frac{\Pi}{2} = (v)$ value of $\frac{8!}{6!}$ SECTION B Q. 4) Attempt any 6 Questions (6 × 5 = 3) (i) Which term of the series 3 + 7 + 11 + 15 + is 47? (ii) Sum the series 3 + 33 + 333 + to n terms. (iii) Find the 4th term in the expansion of $(\frac{x}{a} + \frac{a}{x})^{10}$		* *		
(iv) value of $\cos \frac{\Pi}{2} + i \sin \frac{\Pi}{2} =$ (v) value of $\frac{8!}{6!}$ SECTION B Q. 4) Attempt any 6 Questions (i) Which term of the series $3 + 7 + 11 + 15 + $ is $47 ?$ (ii) Sum the series $3 + 33 + 333 + $ to n terms. (iii) Find the 4^{th} term in the expansion of $\left(\frac{x}{a} + \frac{a}{x}\right)^{10}$				
(iv) value of $\cos \frac{\Pi}{2} + i \sin \frac{\Pi}{2} =$ (v) value of $\frac{8!}{6!}$ SECTION B Q. 4) Attempt any 6 Questions (i) Which term of the series $3 + 7 + 11 + 15 +$ is $47 ?$ (ii) Sum the series $3 + 33 + 333 +$ to n terms. (iii) Find the 4^{th} term in the expansion of $\left(\frac{x}{a} + \frac{a}{x}\right)^{10}$	of circle	` '		
(v) value of $\frac{8!}{6!}$ SECTION B Q. 4) Attempt any 6 Questions (i) Which term of the series $3+7+11+15+$ is $47?$ (ii) Sum the series $3+33+333+$ to n terms. (iii) Find the 4^{th} term in the expansion of $\left(\frac{x}{a} + \frac{a}{x}\right)^{10}$				
SECTION B Q. 4) Attempt any 6 Questions (i) Which term of the series $3+7+11+15+$ is 47? (ii) Sum the series $3+33+333+$ to n terms. (iii) Find the 4 th term in the expansion of $\left(\frac{x}{a} + \frac{a}{x}\right)^{10}$				
Q. 4) Attempt any 6 Questions (6 × 5 = 3) (i) Which term of the series $3 + 7 + 11 + 15 + $ is 47? (ii) Sum the series $3 + 33 + 333 + $ to n terms. (iii) Find the 4 th term in the expansion of $\left(\frac{x}{a} + \frac{a}{x}\right)^{10}$		(v) va		
Q. 4) Attempt any 6 Questions (6 × 5 = 3) (i) Which term of the series $3 + 7 + 11 + 15 + $ is 47? (ii) Sum the series $3 + 33 + 333 + $ to n terms. (iii) Find the 4 th term in the expansion of $\left(\frac{x}{a} + \frac{a}{x}\right)^{10}$				
(i) Which term of the series $3+7+11+15+$ is 47? (ii) Sum the series $3+33+333+$ to n terms. (iii) Find the 4 th term in the expansion of $\left(\frac{x}{a} + \frac{a}{x}\right)^{10}$				
(i) Which term of the series $3+7+11+15+$ is 47? (ii) Sum the series $3+33+333+$ to n terms. (iii) Find the 4 th term in the expansion of $\left(\frac{x}{a} + \frac{a}{x}\right)^{10}$	= 30)	(A) Attemnt:	0 4)	
(ii) Sum the series $3 + 33 + 333 + $ to n terms. (iii) Find the 4 th term in the expansion of $\left(\frac{x}{a} + \frac{a}{x}\right)^{10}$	- 30 j	i ij mucimpu	Q. 1)	
(iii) Find the 4 th term in the expansion of $\left(\frac{x}{a} + \frac{a}{x}\right)^{10}$		(i) Which ter	(i)	
(iii) Find the 4 th term in the expansion of $\left(\frac{x}{a} + \frac{a}{x}\right)^{10}$ (iv) if $sin(A + B) = 1$, $cos(A - B) = \frac{\sqrt{3}}{2}$ then find A and B		(ii) Sum the se	(ii)	
(iv) if $sin(A + B) = 1$. $cos(A - B) = \frac{\sqrt{3}}{2}$ then find A and B		(iii) Find the 4	(iii)	
L		(iv) if $sin(A + A)$	(iv)	
(v) Prove that $\frac{\cos 17 + \sin 17}{\cos 17 - \sin 17} = \tan 62$		(v) Prove that	(v)	
(vi) Find the co-ordinates of a point which divides the line joining the points (1,3) and (6,-	` '	(vi)		
Internally in the ratio 2:1				
(vii) Find the equation of the straight line passing through (2,5) and perpendicular to $5x + 2y + 3y + 3y + 3y + 3y + 3y + 3y + 3y$		` ′		
(viii) Find the \perp distance of the point (3,4) from the line $12x - 5y + 7 = 0$				
4 4		(ix) Show $3Lc$	(ix)	
(ix) Show $3Log \frac{3}{4} + 2Log \frac{4}{5} - 2Log \frac{3}{10} = Log3$				

ט.ט. ווטוו ווט.....

SECTION C

Q. 5) Attempt any 3 Questions

 $(3 \times 10 = 30)$

- (i) Resolve $\frac{x^2}{(x-1)(x-2)(x-3)}$ into partial fraction
- (ii) if x be so small that its square and higher powers are neglected show that

$$\frac{(1+x)^{1/2} + (1-x)^{2/3}}{(1+x)^{2/3} + (1-x)^{1/2}} = 1 - \frac{1}{6}x$$

- (iii) (a) Find the equation of the circle whose centre is the point (2, 3) and which passes Through the point (5, 7)
 - (b) Find the equation of the circle passing through the points (0, 0), (1, 0), (0,1)
- (iv) (a) Prove that $\frac{\sqrt{3}\cos 23^{\circ} \sin 23^{\circ}}{2} = \cos 53^{\circ}$
 - **(b)** Prove that $\sin 150^{\circ} \cos 120^{\circ} + \cos 330^{\circ} \sin 660^{\circ} = -1$
- (v) (a) if the three vertices of a rectangle are the points (2, -2), (8,4), (5,7) find the Co-ordinate of the fourth vertex.
 - (b) Find the equation of line joining two points (1, 2) and (2, 3)

Visit www.brpaper.com for downloading previous years question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, M-Tech, PGDCA, B-com S.B. Roll No......

APPLIED MATHEMATICS-I 1st Exam/common/2455/0251/5402/May'16

Duration:		M. Marks 75
04 4 6	SECTION - A	4
	se the correct one:	1x5=5
j.	Conjugate of 3 – i is	
(a) - 		
ii. (-) (10 th term of A.P Series 5+7+9+11+	
(a) 2 		
iii.	Middle term of $(x^2+1/x)^2$ is	
(a) 2		
iv.	Sinθ = 1/3 and cotθ = - $\sqrt{8}$ then θ lies in	
• •	First quadrant (b) Second quadrant (c) Third quadrant (d) Fou	•
V.	The centroid of a triangle whose vertices are $(2,-8)$; $(14,3)$; and $(-1,1)$	U,8) IS
(a) ((c) (-2,1) (d) (2,1)	
B. State wh	ether the following statements are true or false.	1x5=5
i.	Area of triangle is zero then three angular points are collinear.	
ii.	When equation of parabola is $y^2 = 4ax$ then Focus is (-a,0).	
iii.	Factorial of zero is zero.	
iv.	$\tan (45 + \theta) = \frac{1 + \tan \theta}{2 + 1 + 2}$	
	$2+\tan\theta$	
٧.	If a,b,c are in G.P then $b^2 = ac$	
C. Fill in the	e blanks.	1x5=5
i.	P (7,3) =	
ii.	Sin 18° =	
iii.	Logarithms to the base 10 are called	
iv.	The fixed straight line in parabola is called	
٧.	In which quadrant, the angle 750 ⁰ lies	
	SECTION – B	
Q2. Attemp	ot any six questions.	5X6=30
a.	How many terms of the series 3+8+13+18+ Must be taken so	that their sum
	is 1010	
b.	Sum the series 5+55+555+ n terms	
c.	If $a^2+b^2 = 7ab$ prove that	
	$\log(\frac{a+b}{3}) = \frac{1}{2}[\log a + \log b]$	
d.	Find the absolute term in the expansion of $(3x^2 - 1/x^3)^{10}$	
e.	If $sin(A+B) = \sqrt{3}/2$ and $cos(A-B) = \sqrt{3}/2$ then find A and B.	
f.	Prove that tan65 = tan25 + 2tan40	
g.	Obtain the equation of straight line passing through the point of inte	ersection of
J	2x+3y+1=0; 3x-4y=5 and the point (2,3)	
h.	Find the perpendicular distance of the origin from the line joining (1)	,3) and (-3,7)

Visit www.brpaper.com for downloading previous years question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, M-Tech, PGDCA, B-com S.B. Roll No......

i Resolve into partial fraction
$$\frac{2x+3}{(x-2)(x+3)}$$

SECTION - C

Attempt Any Three Questions.

10x3=30

Q3. Prove
$$\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A$$

- Q4. Find the equation of circle passing through points (0,0); (a,0), and (0,b)
- Q5. Find the equation of a circle where centre is the point (4, 5) and which passes through the centre of the circle $x^2 + y^2 + 4x 6y = 12$
- Q6. From the top of cliff 120 meter high the angle of depression of top and bottom of a tower are observed to be 30° and 60° . Find the height of tower.
- Q7. Resolve into Partial Fraction $\frac{1}{x^3+1}$
- Q8. Reduce the equation $\sqrt{3}x + y + 6 = 0$ to the form of $x \cos \alpha + y \sin \alpha = p$ Also finds the value of p and α .

Visit www.brpaper.com for

downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com

APPLIED MATHEMATICS-I 1st Exam/Common/2455/0251/5402/ Nov'15

Duration 3 hrs: M.Marks: 75

Section A

Q 1 (15 marks)

A. Choose the correct one:

- Number of terms in expansion of (1-2x)⁻⁹ are ١.
- b. infinite
- c. -10
- d. 11

- The value of SinA = $\frac{1}{2}$ then Sin 3A = II.

- d. 2

- III. The modulus of $\sqrt{3} + i$

d. 0

- IV. Latus rectum of parabola y²-8y-x+19=0
 - a. 4a = 1
- b. 4a = 2
- d. a = 1

- ٧. 310 is a term of AP 3,8,13,18,......
 - a. 14th
- b. not a term

- d. 8th
- В. State whether the following statements are true or false:
 - The radius of circle $X^2+Y^2-8X-16Y+78=0$ is $\sqrt{2}$. ١.
 - II. The number ways of selecting 6 players out 7 is ⁷P₆.
 - The value of x-radian in degrees is $\frac{180X}{2}$ III.
 - If K, K+1, K+3 are in GP then K=2. IV.
 - The co-ordinates of middle point of the line joining (3,4) and (-5,6) are ٧. (-1,-1).
- C. Fill in the blanks:
 - The value of cos53°Cos37°-Sin53°Sin37° is equal to I.
 - The value of $\frac{5!}{4!}$ = II.
 - III. Natural logarithmus are known --
 - The conic is ellipse if -----IV.
 - Value of cos $\frac{\pi}{2}$ + $i \sin \frac{\pi}{2}$ = --٧.

Section B

Q2. Attempt any six questions

(5x6)

- ١.
- Prove that $\tan 28^\circ = \frac{\cos 17^\circ \sin 17^\circ}{\cos 17^\circ + \sin 17^\circ}$ Prove that $7 \log \frac{10}{9} 2 \log \frac{25}{24} + 3 \log \frac{81}{80} = \log 2$ II.
- Find absolute term in expansion of $\left(x + \frac{1}{x}\right)^{10}$. III.
- Sum the series 31 + 29 + 27 + - - + 3IV.
- ٧. The sum of first three terms of a GP is 21 while the sum of next three terms is 168. Find first term and common ratio.
- Show that $\tan 65^\circ = \tan 25^\circ + 2\tan 40^\circ$ VI.
- VII. Two vertices of triangle are (4,-6) and (2,-2) and its centroid is (8/3,-1). Find third vertex.
- VIII. Find equation of the straight line parallel to 2x+3y+11=0 and which is such that sum of its intercepts on the axis is 15.

Visit www.brpaper.com for

downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com

IX. Find the ratio in which the line joining (3, -6) and (-6, 8) is cut by x-axis.

Section C

Note: Attempt any three questions

(10x3)

3. If x is so small that its square and higher powers are neglected.

Show that
$$\frac{\sqrt{9+7x} - (16+3x)^{1/4}}{(4+5x)} = \frac{1}{4} - \frac{17x}{384}$$

- 4. Find equation of the straight line passing through the intersection of x+2y+3=0 and 3x+4y+7=0 and perpendicular to line y-x=9.
- 5. Resolve into partial fraction $\frac{3x+7}{(x+3)(x^2+1)}$
- 6. Prove that $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$
- 7. A ladder 20 m long reaches to a distance 20 m from the top of flag staff. At the foot of ladder the elevation of the top is 60° . determine the height of flag staff.
- 8. Find equation of circle passing through points (4, 2) and (-6,-2) and has its centre on x-axis.

Visit www.brpaper.com for downloading previous year question papers of B-tech, Diploma, BBA, BCA, S.B. Roll No. _ MBA, MCA, Bsc-IT, Ms-IT, M-Tech, PGDCA, B-com

APPLIED MATHEMATICS-I

1 st Exam/Common/2455/0251/5402 May 2015							
Du	ırati	on 3 hrs M.Marks: Section A	75				
Q	1	(15 mar	ks)				
		Choose the correct one:	,				
	I.	The modulus of $\sqrt{3} + i$					
		a. 2 b. 1 c2 d. 0					
	II.	The end point of diameter of circle are (2,3) and (6,5). The centre of the circle is					
		a. (4,-4) b. (-4,4) c. (4,4)					
		d. (4,0)					
	III.	The value of Sin75° is					
		a. $\frac{\sqrt{3}+1}{2}$ b. $\frac{\sqrt{3}+1}{\sqrt{2}}$ c. $\frac{\sqrt{3}+1}{2\sqrt{2}}$ d. $\frac{\sqrt{2}+1}{3}$					
	IV.	Number of terms in expansion of (1+3x) ³ are					
		a. 4 b. 5 c. 6 d. 2					
	V.	7 th term of the series $\frac{1}{2} + \frac{1}{3} + \frac{2}{9} + \cdots$					
		a. $\frac{125}{729}$ b. $\frac{32}{729}$ c. $\frac{32}{625}$ d. $\frac{25}{729}$					
В.	Sta	ate whether the following statements are true or false:					
	l.	The mid point of A(-3,2) and (5,4) is (1,-3).					
	II.	The angle -1837 lies in IV quadrant.					
	III.	Factorial of negative integers is defined.					
	IV.	The radius of circle $X^2+Y^2-8X-16Y+78=0$ is $\sqrt{2}$.					
	V.	If K, K+1, K+3 are in GP then K=2.					
C.	C. Fill in the blanks: I. The value of cos48°Sin18°-Sin48°Cos18° is equal to						
	ш						
	II. III.	The value of $\frac{81}{4!}$ = Log of 1 to any base a(a"0) is always ———.					
	IV.	The conic is ellipse if ———.					
	V.	Value of $\cos \overline{\wedge} + i \sin \overline{\wedge} =$.					
		Section B					
Q2			x6)				
	a.	Find the value of K if (K,1), (5,5) and (10,7) are collinear.					
	b.	Sum the series $\frac{4}{3} + 1 + \frac{3}{4} + \infty$					
	C.	Find absolute term in expansion of $\left(3x^2 - \frac{1}{x^3}\right)^{10}$.					
	d.	Find equation of straight line through (4,5) and parallel to 2x-3y-5=0.					
	e.	Prove that $\tan 28^\circ = \frac{\cos 17^\circ - \sin 17^\circ}{\cos 17^\circ + \sin 17^\circ}$					
	f.	Show that $\sin 51^\circ + \cos 81^\circ = \cos 21^\circ$					
	g. h.	Sum the series upto n terms 8+88+888+—————————————————————————————					

Prove that $7 \log^{10}/_9 - 2 \log^{25}/_{24} + 3 \log^{81}/_{80} = \log 2$

contd....

Visit www.brpaper.com for downloading previous year question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, Msc-IT, M-Tech, PGDCA, B-com

Section C

Attempt any three questions Note:

S.B. Roll No.

(10x3)

- Resolve into partial fraction $\frac{x+4}{(x-4)(x^2-3x+2)}$ 3.
- 4. Prove that $4 \sin A \sin(60^\circ A) \sin(60^\circ + A) = \sin 3A$
- Find equation of circle passing through (5,7), (6,6) and (2,-2).
- 6. A boy observes the angle of elevation of a mountain top to be 60° and after walking directly away from it on level ground trough 100 m, the angle of elevation is 45°. Find height of mountain and the distance between mountain and first position of the boy.
- If x is so small that its square and higher powers are neglected.

Show that
$$\frac{\sqrt{9+7x}-(16+3x)^{4/4}}{(4+5x)} = \frac{1}{4} - \frac{17x}{384}$$

Find equation of the straight line passing through the intersection of x+2y+3=0 and 3x+4y+7=0and perpendicular to line y-x=9.