$\alpha_1(0) = \alpha_1 + \alpha_2 = 3$ (1)	2; a = 3 + 3a2
$\alpha_{2}(0) = \frac{\alpha_{1}}{3} - \alpha_{2} = 1$ (2)	
3	a, in (); (3+302)+a2=3
	4a2 = 0
	α, = 0
a2 in 0; a1 = 3	
so P.S.: $x(t) = 3 \begin{bmatrix} \frac{1}{3} \end{bmatrix}$	e
2,(t)=3e ^{7t}	
2, (t) = e 7t	
22(1)	ans.
CX = XX O	
C(cx)=C(xx) x C	
$C(CX) = \lambda(CX)$	
$C(cx) = \lambda(\lambda x) \bigcirc cx$	= λ×
$(^{2}X = \lambda^{2}X)$	
so λ^2 is an eigenvalue of	N C ²
SO Y O an eigenname	/ ON3.

7.
$$p \text{ in } u(x,t) : u = B \sin(\frac{n\pi}{100}x)(C\cos(\frac{n\pi}{100}t) + D\sin(\frac{n\pi}{100}t))$$

or $u_n(x,t) = \sum_{n=1}^{\infty} \left[\sin(\frac{n\pi}{100}x)(A_n\cos(\frac{n\pi}{100}t) + B_n\sin(\frac{n\pi}{100}t)) \right]$

or $u_n(x,t) = \sum_{n=1}^{\infty} \left[\sin(\frac{n\pi}{100}x)(A_n\cos(\frac{n\pi}{100}t) + B_n\sin(\frac{n\pi}{100}t)) \right]$

on $u_n(x,t) = \sum_{n=1}^{\infty} \left[\sin(\frac{n\pi}{100}x)(A_n\cos(\frac{n\pi}{100}t) + B_n\sin(\frac{n\pi}{100}t)) \right]$

on $u_n(x,t) = \sum_{n=1}^{\infty} \left[\sin(\frac{n\pi}{100}x)(A_n\cos(\frac{n\pi}{100}t) + B_n\sin(\frac{n\pi}{100}t)) \right]$

on $u_n(x,t) = \sum_{n=1}^{\infty} \left[\sin(\frac{n\pi}{100}x)(A_n\cos(\frac{n\pi}{100}t) + B_n\sin(\frac{n\pi}{100}t)) \right]$

on $u_n(x,t) = \sum_{n=1}^{\infty} \left[\sin(\frac{n\pi}{100}x)(A_n\cos(\frac{n\pi}{100}t) + B_n\sin(\frac{n\pi}{100}t)) \right]$

on $u_n(x,t) = \sum_{n=1}^{\infty} \left[\sin(\frac{n\pi}{100}x)(A_n\cos(\frac{n\pi}{100}t) + B_n\sin(\frac{n\pi}{100}t)) \right]$

on $u_n(x,t) = \sum_{n=1}^{\infty} \left[\sin(\frac{n\pi}{100}x)(A_n\cos(\frac{n\pi}{100}t) + B_n\sin(\frac{n\pi}{100}t)) \right]$

on $u_n(x,t) = \sum_{n=1}^{\infty} \left[\sin(\frac{n\pi}{100}x)(A_n\cos(\frac{n\pi}{100}t) + B_n\sin(\frac{n\pi}{100}t) \right]$

on $u_n(x,t) = \sum_{n=1}^{\infty} \left[\sin(\frac{n\pi}{100}x)(A_n\cos(\frac{n\pi}{100}t) + B_n\sin(\frac{n\pi}{100}t) \right]$

on $u_n(x,t) = \sum_{n=1}^{\infty} \left[\sin(\frac{n\pi}{100}x)(A_n\cos(\frac{n\pi}{100}t) + B_n\sin(\frac{n\pi}{100}t) \right]$

on $u_n(x,t) = \sum_{n=1}^{\infty} \left[\sin(\frac{n\pi}{100}t)(A_n\cos(\frac{n\pi}{100}t) + B_n\sin(\frac{n\pi}{100}t) \right]$

on $u_n(x,t) = \sum_{n=1}^{\infty} \left[\sin(\frac{n\pi}{100}t)(A_n\cos(\frac{n\pi}{100}t) + B_n\sin(\frac{n\pi}{100}t) \right]$
 $u_n(x,t) = \sum_{n=1}^{\infty} \left[\sin(\frac{n\pi}{100}t)(A_n\cos($

$\frac{d^2\theta}{dt^2} + 2 \frac{d\theta}{dt}$	+ 0 = 4	B.c. 6=0	9=0 , t=0	de = 0	
aux: m²					
(m+	1)(m+1)=0				
m=	:-1 , m=-1				
C.F. : u = (A	t + B) e - t				
Let P.I., v=k	(D2 + 2D	+1) = 4			
	k=4 l	c= A 80 A:	: 4		
P.S. 0 = 4+	+ U				
	(+ + B) e - + +				
B.C. t=0, 0=	0				
0 = B	+ 4				
B= -4	4				
	. 6	-+			
$\frac{d\theta}{dt} = (A$	t + B)(-e ^{-t})+	Ae			
B.C. t=0 <u>d0</u>	= 0				
dt					
0=-	B+A				
A = B					
A=-4					
	θ= (~46 -4)e	-t +u			
00 (1.5.)	θ = 4 -4 (£ +) -t			
	0 = 4 -4 (6 +	ans.			

(a)
$$y_1 = uy_1 + 3y_2 - y_1y_2^2$$
 case with $y_1 = 0$ $y_2 = 6y_1 - y_2 - y_2^2 = 0$

(b) $uy_1 + 3y_2 - y_1y_2^2 = 0$

(c) $uy_1 + 3y_2 - y_1y_2^2 = 0$

(d) $uy_1 + 3y_2 - y_1y_2^2 = 0$

(e) $uy_1 + 3y_2 - y_1y_2^2 = 0$

(e) $uy_1 + 3y_2 - y_1y_2^2 = 0$

(e) $uy_1 + 3y_2 - y_1y_2^2 = 0$

(f) $uy_1 + 3y_2 - y_1y_2^2 = 0$

(g) $uy_1 - y_1^3 - y_1$

(g) $uy_1 - y_1^3 - y_1^3$

(g) u

1.
$$x_0 = 0$$
 $y_0 = 1$ $h = 0.5$

2. $k_1 = f(x_n, y_n)$

3. $k_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}k)$
 $k_1 = 2(1) - 4(0)$
 $k_2 = 2(1.5) - 4(0.25)$
 $k_1 = 2.000000$
 $k_2 = 2.000000$

4. $k_3 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}k)$
 $k_4 = 2(2) - 4(0.5)$
 $k_5 = 2.000000$

6. $y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$
 $= 1 + \frac{0.5}{6}(2 + 2(2) + 2(2) + 2)$

4. $k_3 = f(x_n, y_n)$

3. $k_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}k)$
 $k_1 = 2.000000$

4. $k_2 = 2.000000$

4. $k_3 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}k)$
 $k_4 = 2.000000$

4. $k_5 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}k)$
 $k_6 = 2.000000$

5. $k_6 = 2.000000$

6. $k_7 = 2.000000$

7. $k_8 = 2.000000$

8. $k_8 = 2.000000$

9. $k_8 = 2.000000$

10. $k_8 = 2.000000$

11. $k_8 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_3)$

12. $k_8 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_3)$

13. $k_8 = f(x_n + h, y_n + h, y_$

<u>a</u>)	p(t)	= {	6 -	2a < t < therwise	. 2a		_			
			r=4a			- 1	1			
f (ω)	= \int_{-2}^{20}	a 6 e a	-jwt	dt		-20	20.			
	= [6e -ju	ωt] 2	20						
					2jωα jω)	Eul		10 A 10 A	αsΘ+j αsΘ-jsi	
	= 6(cos 2	wa + ;	j sin 2ωx jω) + 6(cos 2	wa - jsir	2wa)			
	= 12	jsin	2wa							
		4~								
	= 125			aka sy	nc functio	ons.				
) z=		uin Zu W	<u>×</u> , ,		nc function = 3×2-12×		=0	∂z ∂y	: -16y	949× 0
) z=		uin Zu W	<u>×</u> , ,	<u>de</u>			=0	3 z 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		949× = 0
For sto	x ³ -6	w 22 -	8y²	$\frac{\partial z}{\partial x}$ $\frac{\partial^2 z}{\partial x^2}$ $\frac{\partial z}{\partial x} = 0$	= 3ײ-12×	<u> </u>	=0			3 ¹ 2 = 0
For sto	x ³ -6	w 2u ² -	≥a , «	$\frac{\partial z}{\partial x}$ $\frac{\partial^2 z}{\partial x^2}$ $\frac{\partial z}{\partial x} = 0$	= 3x ² -12x	<u> </u>	=0			3 ¹ 2 = 0
For sto	x ³ -6	point	8y² 8y²	$\frac{\partial z}{\partial x} = 0$	= 3x ² -12x	<u> </u>	=0			3 ¹ 2 = 0
For sto 322 - 1	x3-6	point (8y² 8y²	$\frac{\partial z}{\partial x}$ $\frac{\partial^2 z}{\partial x^2}$ $\frac{\partial z}{\partial x} = 0$	= 3x ² -12x	<u> </u>	=0			9-5 = C
For sto 322 - 1	23-6 urionary 122=0 1-4)=0	point (8y² 8y²	$\frac{\partial z}{\partial x} = 0$	$= 3x^{2} - 12x$ $= 6x - 12$ $Y \frac{\partial z}{\partial y} = 0$	(4,0)				dydx =
For sto 322 - 1 322 (2) 22 - 0	x3-6 utionary 12x=0 1-4)=0	point (8y²	$\frac{\partial z}{\partial x} = 0$	$= 3x^{2} - 12x$ $= 6x - 12$ $Y \frac{\partial z}{\partial y} = 0$ $(0,0),$	(4,0)			-16	dydx =

$$Z = \chi^{2} - \chi + y^{3} - y \qquad \frac{\partial z}{\partial x} = 3x^{2} - 1 \qquad \frac{\partial^{2}z}{\partial u \partial y} = 0 \qquad \frac{\partial z}{\partial y} = 3y^{2} - 1 \qquad \frac{\partial^{2}z}{\partial y \partial x} = 0$$

$$\frac{\partial^{2}z}{\partial u^{2}} = 6x \qquad \frac{\partial^{2}z}{\partial y^{3}} = 6y \qquad \frac{\partial^{2}z}{\partial y^{3}} = 6y \qquad \frac{\partial^{2}z}{\partial u^{3}} = 6y \qquad \frac{\partial^{2}z}{\partial u^$$