

DESIGN AND IMPLEMENTATION OF ROBUST DRONE CONTROL

Aravind S, Pranay Mundra, Sanjay DV, Kavin Vignesh Project Guide: Dr. T.S. Chandar

MOTIVATION

The ability to responsively control a drone during its flight is a prerequisite towards autonomous control and higher-level API commands such as directing it from point to point.

THEORY

Uncertainty and Disturbance Estimator:

- Uncertainties in plant dynamics are estimated dynamically.
- The controller is designed to compensate for the effects of these uncertainties and unknown external disturbances
- it does not require any knowledge of the uncertainty and/or the disturbance, such as their magnitude

Position Control Position Control Position $\phi^{\text{des}(t)}$ Attitude $\phi^{\text{des}(t)}$ Attitude $\phi^{\text{des}(t)}$ $\phi^{\text{des}(t)}$

IMPLEMENTATION

- * The quadrotor model used is PlutoX with WhyCon marker integration
- *The position and orientation of the drone are obtained after localization of the marker
- *This is fed into the controller running on the laptop using ROS framework, connected to the drone using WiFi
- *The controller then decides the next optimal control move and sends it to the drone

WhyCon marker

Pluto X

ANALYSIS

Metric	Tuned PID	UDE with virtual forces
Rise time T_r in x	1.12	1.47
Rise time T_r in y	1.13	1.47
Rise time T_r in z	∞^1	1.41
Settling time T_s in x	2.76	3.33
Settling time T_s in y	2.77	3.34
Settling time T_s in z	∞^2	3.31
Maximum overshoot in x	12.01	6.88
Maximum overshoot in y	12.01	6.83
Maximum overshoot in z	84.65	11.52

Comparitive study

RESULTS & CONCLUSION

- *Different control strategies were studied, UDE based controller was found to be optimal.
- *Two controllers based on UDE namely Small Angle Controller and Virtual Force Controller were designed, both of which were simulated and using MATLAB/SIMULINK. Virtual Force controller was implemented on the PlutoX via the ROS interface and was also directly flashed onto the drone using Cygnus IDE, both were unsuccessful due to hardware limitations.

