Resumen de: Direccionamiento lógico. Clases de redes y división en subredes

SSF

Abril 2023

Derimán Tejera Fumero

¿Qué es el direccionamiento IP?

El direccionamiento IP es la parte encargada de asignar de forma correcta a cada equipo una dirección IP, de forma que los equipos puedan comunicarse correctamente entre sí.

¿Qué es una dirección IP? (en versión IPv4)

Una dirección IP (Protocolo de Internet) es un identificador único asignado a cada dispositivo conectado a una red que utiliza el protocolo de Internet para comunicarse. Las direcciones IP permiten que los dispositivos en una red se identifiquen y localicen entre sí, facilitando así el envío y la recepción de información a través de la red.

Aquí se tratará la v4:

Una IP consta de 32 bits, (32 bits/8 bits que forman un byte = 4 bytes).

Ejemplo de dirección IP: 11010001 11011000 00110111 00000011 = 209.216.55.3

Una dirección consta de dos partes: IP= netid + hostid

Netid: Todos los equipos que están en la misma red, tienen la misma dirección de red, llamado identificador de red.

Hostid: cada equipo, tiene un número que le identifica de forma única dentro de la red, llamado identificador de equipo.

Direcciones multicast

Reservadas para usos experimentales

	Bits fijos de Byte 1	←Byte 1→	←Byte 2→	←Byte 3→	←Byte 4→
Clase A	0	00000000 ₂ a 01111111 ₂	000000002 a 111111112 010 a 25510	000000002 a 111111112 010 a 25510	Dirección de red: 000000002 = 010 Primer equipo: 000000012 = 110 Último equipo: 111111102 = 25410
		0 ₁₀ a 127 ₁₀	120 2 2-110	-10 210	Broadcast de red: 11111111 ₂ = 255 ₁₀
Clase B	10	10 000000 ₂ a 10 111111 ₂	000000002 a 11111111 ₂ 0 ₁₀ a 255 ₁₀	000000002 a 111111112 010 a 25510	Dirección de red: 000000002 = 010 Primer equipo: 000000012 = 110 Último equipo: 111111102 = 25410
		128 ₁₀ a 191 ₁₀		-10 210	Broadcast de red: 11111111 ₂ = 255 ₁₀
Clase C	110	110 00000 ₂ a 110 11111 ₂	000000002 a 11111111 ₂ 0 ₁₀ a 255 ₁₀	000000002 a 111111112 010 a 25510	Dirección de red: 000000002 = 010 Primer equipo: 000000012 = 110 Último equipo: 111111102 = 25410
		192 ₁₀ a 223 ₁₀			Broadcast de red: 11111111 ₂ = 255 ₁₀
Clase D	1110	1110 0000 ₂ a 1110 1111 ₂	000000002 a 11111111 ₂ 0 ₁₀ a 255 ₁₀	000000002 a 111111112 010 a 25510	
		224 ₁₀ a 239 ₁₀			
Clase E	1111	11110000 ₂ a 11111111 ₂	000000002 a 11111111 ₂ 0 ₁₀ a 255 ₁₀	000000002 a 111111112 010 a 25510	
		240 ₁₀ a 255 ₁₀			

Máscaras de red y número de equipos

Para calcular máscaras de red: Se ponen todos los bits de netid a 1 y todos los bits de hostid a 0.

Para calcular número de equipos por red: 2^(número de bits de hostid) - 1 (por primero que es dirección de red) -1 (por el último que es broadcast).

	←Byte 1→	←Byte 2→	←Byte 3→	←Byte 4→	Número de equipos
Clase A	1111111 ₂ 255 ₁₀	0000000 ₂ 0 ₁₀	0000000 ₂ 0 ₁₀	0000000 ₂ 0 ₁₀	2 ²⁴ -2 = 16777214 equipos
Clase B	11111111 ₂ 255 ₁₀	11111111 ₂ 255 ₁₀	0000000 ₂ 0 ₁₀	0000000 ₂ 0 ₁₀	2 ¹⁶ -2 = 65534 equipos
Clase C	11111111 ₂ 255 ₁₀	11111111 ₂ 255 ₁₀	11111111 ₂ 255 ₁₀	0000000 ₂ 0 ₁₀	2 ⁸ -2 = 254 equipos
Clase D					
Clase E					

Por lo que las máscaras de red son:

Clase A: 255.0.0.0Clase B: 255.255.0Clase C: 255.255.255.0

Redes privadas

Las redes privadas son redes que no están directamente expuestas a Internet y se utilizan principalmente dentro de organizaciones, empresas o hogares. Estas redes utilizan direcciones IP que están reservadas para uso privado y no pueden ser asignadas en Internet. Esto permite que múltiples redes privadas utilicen las mismas direcciones IP sin causar conflictos, ya que no se comunican directamente entre sí a través de Internet.

	Rangos	Número de redes	Máscaras de red	Número de equipos
Clase	10.0.0.0 a	1	255.0.0.0 (/8)	16777214
Α	10.255.255.255			
Clase B	172.16.0.0 a	16	255.255.0.0	65534
	172.17.0.0		(/16)	
Clase C	192.168.0.0 a	256	255.255.255.0	254
	192.168.255.255		(/24)	

División de redes y subredes

Dividir 193.147.12.0 en 4 subredes

 $2^2 = 4 \rightarrow$ Necesitaremos 2 bits de **hostid** para las subredes (los subrayados).

11000001 10010011 00001100 <u>00</u>0000000 = 193.147.12.0

Ahora nos quedan 2^6 bits para identificar host, que son 64 - 2 = 62 direcciones posibles por red para dispositivos.

Si para 256 -2 (se perdían 1 dirección para dirección de red y 1 para broadcast), ahora que son 4 subredes de 64 -2 (se pierde 1 por dirección de red y 1 por broadcast, por cada subred), 2 direcciones x 4 subredes = 8 direcciones perdidas.

Calculando los números binarios de hostid, quitando los 2 bits usados para las subredes, tenemos que:

```
193.147.12.000000002 Dirección de la primera subred 193.147.12.0/26 ← 24 bits del netid + 2 bits del hostid.

193.147.12.010000002 Dirección de la segunda subred 193.147.12.64/26

193.147.12.10000002 Dirección de la tercera subred 193.147.12.128/26

193.147.12.110000002 Dirección de la cuarta subred 193.147.12.192/26
```

Diferencia entre loopback y broadcast (seguramente no necesario para examen)

Loopback:

- Las direcciones de loopback están en el rango 127.0.0.0 a 127.255.255.255, siendo la dirección 127.0.0.1 la más utilizada.
- La función principal de una dirección de loopback es permitir que un dispositivo se comunique consigo mismo, es decir, enviar y recibir información dentro del mismo dispositivo.
- Las direcciones de loopback se utilizan para fines de prueba y diagnóstico. Por ejemplo, si puedes enviar y recibir información utilizando la dirección de loopback, sabrás que la pila de protocolos de red (como TCP/IP) de tu dispositivo está funcionando correctamente.

Broadcast:

- Las direcciones de broadcast son la última dirección en cada rango de red para las clases A, B y C.
- La función principal de una dirección de broadcast es permitir que un dispositivo envíe información a todos los dispositivos en una red local de manera simultánea.
- Las direcciones de broadcast se utilizan cuando un dispositivo necesita comunicarse con todos los demás dispositivos de la red, como para descubrir servicios, solicitar direcciones IP dinámicas o anunciar cambios en la red.
- En resumen, las direcciones de loopback se utilizan para la comunicación dentro de un dispositivo, mientras que las direcciones de broadcast se utilizan para enviar información a todos los dispositivos en una red local.