Аналитическая механика

Муницина Мария Александровна

8 ноября 2017 г.

Набор: Александр Валентинов Об ошибках писать: https://vk.com/valentiay

Содержание

Кинематика точки	1
Векторное описание движения	1
Декартовы координаты	1
Движение по окружности	1
	2
Ортогональные векторные координаты	4
Геометрический смысл	4
Кинематика твердого тела	5
Формулы Пуассона	6
Формула распределения скоростей точек твердого тела	7
Геометрический смысл	8
Классификация движения твердого тела	8
Поступательное	8
Вращательное движение (вращение вокруг неподвижной оси)	8
Плоскопараллельное движение	9
Тело с неподвижной точкой (вращение вокруг точки)	0
Винтовое движение	0
Общий случай	0
Кинематика сложного движения	1
Сложное движение материальной точки	2
Сложное движение твердого тела	3
Несколько подвижных сисем отсчета	3
Кинематические формулы Эйлера	4
Алгебра кватернионов 1-	4
Задание ориентации твердого тела с помощью кватернионов 10	6

Кинематика твердого тела в кватернионном описании	20
Интегрирование уравнения Пуассона	22
Динамика	23
Стационарные силы	25
Позиционные силы	25
Критерий потенциальности	26
Свойства внутренних сил	27
Основные теоремы динамики	28
Основные динамические величины	28
Основные теоремы динамики в неинерциальных системах от- счета	32
Тут не хватает куска	32
Динамика твердого тела	32
${ m T}$ вердое тело с неподвижной точкой $(\overline{v}_O=0)$	35
Произвольное движение тела	36
Динамика твердого тела с неподвижной точкой	37

Кинематика точки

Определение. *Материальная точка - точка, размером которой можно пренебречь.*

Мы будем полагать, что время меняется равномерно и непрерывно.

Векторное описание движения

Зависимость координат от времени назовем законом движения.

$$\overline{r} = \overline{r}(t) \in C^2$$

Определение. $\gamma = \{\overline{r}(t), t \in (0, +\infty)\}$ - траектория

$$\overline{v} = \frac{d\overline{r}}{dt}$$

$$\overline{w} = \frac{d\overline{v}}{dt} = \frac{d^2\overline{r}}{dt^2}$$

Декартовы координаты

$$\begin{split} \overline{r}(t) &= x(t)\overline{e_x} + y(t)\overline{e_y} + z(t)\overline{e_z} \\ \overline{v}(t) &= \dot{x}(t)\overline{e_x} + \dot{y}(t)\overline{e_y} + \dot{z}(t)\overline{e_z} \\ \overline{w}(t) &= \ddot{x}(t)\overline{e_x} + \ddot{y}(t)\overline{e_y} + \ddot{z}(t)\overline{e_z} \end{split}$$

Движение по окружности

$$\begin{cases} x = R\cos\varphi \\ y = R\sin\varphi \end{cases}$$

$$\begin{cases} \dot{x} = -R\sin\varphi \cdot \dot{\varphi} \\ \dot{y} = R\cos\varphi \cdot \dot{\varphi} \end{cases}$$

$$\begin{cases} \ddot{x} = -R\cos\varphi \cdot \dot{\varphi}^2 - R\sin\varphi \cdot \ddot{\varphi} \\ \ddot{y} = -R\sin\varphi \cdot \dot{\varphi}^2 + R\cos\varphi \cdot \ddot{\varphi} \end{cases}$$

$$\overline{v} = R\dot{\varphi}(-\sin\varphi \cdot \overline{e_x} + \cos\varphi \cdot \overline{e_y}) = R\dot{\varphi}\overline{r}$$

$$\overline{w} = R\ddot{\varphi}(-\sin\varphi \cdot \overline{e_x} + \cos\varphi \cdot \overline{e_y}) + R\dot{\varphi}^2(-\cos\varphi \cdot \overline{e_x} - \sin\varphi \cdot \overline{e_y}) = R\ddot{\varphi}\overline{\tau} + R\dot{\varphi}^2\overline{n}$$

$$\overline{v} = R\dot{\varphi}\overline{\tau} = v\overline{\tau}$$

$$\overline{w} = R\ddot{\varphi}\overline{\tau} + R\dot{\varphi}^2\overline{n} = \dot{v}\overline{\tau} + \frac{v^2}{R}\overline{n}$$

Естественное описание движения

Кривая задана параметрически естественным параметром $s.\ ds = |\overline{dr}| \neq 0$

Определение.

$$\overline{ au} = rac{d\overline{r}}{ds} = \dot{\overline{r}}$$
 - касательный вектор (1)

$$\overline{n} = \frac{\dot{\vec{r}}}{|\dot{\vec{\tau}}|}$$
 - вектор главной нормали (2)

$$\overline{b} = [\overline{t}; \overline{n}]$$
 - вектор бинормали (3)

Утверждение 1. $\{\overline{ au},\overline{n},\overline{b}\}$ - тройка ортогональных единичных векторов.

$$\begin{split} |\overline{\tau}| &= \frac{|d\overline{r}|}{|ds|} = 1 \\ |\overline{n}| &= \frac{|\dot{r}|}{|\dot{\overline{\tau}}|} = 1 \\ |\overline{\tau}| &= 1 \Rightarrow (\tau, \tau) = 1 \\ (\dot{\overline{\tau}}, \overline{\tau}) + (\overline{\tau}, \dot{\overline{\tau}}) &= 0 \\ 2(\dot{\overline{\tau}}, \overline{\tau}) &= 0 \Rightarrow \dot{\overline{\tau}} \perp \overline{\tau} \Rightarrow \overline{n} \perp \overline{\tau} \end{split}$$

Этот трехгранник называют репер Ферне. (Дарбу, сопровождающий трехгранник).

Теорема 1. $\overline{v}=v\overline{ au},\ \overline{w}=\dot{v}\overline{ au}+\frac{v^2}{\rho}\overline{n},\ \emph{rde}\ v=\dot{s}.$

Доказательство.

$$\begin{split} \overline{v} &= \frac{d\overline{r}}{dt} = \frac{d\overline{r}}{ds}\frac{ds}{dt} = v\overline{\tau} \\ \dot{\overline{\tau}} &= \frac{d\overline{\tau}}{ds}\frac{ds}{dt} = \overline{n}kv, \text{ по формуле (2)} \\ \overline{w} &= \dot{\overline{v}} = \dot{v}\overline{\tau} + v\dot{\overline{\tau}} = \dot{v}\overline{\tau} + v^2k\overline{n} = \dot{v}\overline{\tau} + \frac{v^2}{\rho}\overline{n} \end{split}$$

 $\dot{v}\overline{ au}$ - касательное ускорение

$$\frac{v^2}{
ho}\overline{n}$$
 - нормальное ускорение

$$ho = rac{1}{|\dot{r}|}$$
 - радиус кривизны

$$k=|\overline{\ddot{r}}|$$
 - кривизна

 $\overline{\ddot{r}}$ - вектор кривизны

Формулы Френеля:

$$\begin{cases} \overline{\tau}' = k\overline{n} \\ \overline{n}' = -k\overline{\tau} + \varkappa \overline{b} \end{cases}$$
$$\overline{b}' = -\varkappa \overline{n}$$

где \varkappa - коэффициент кручения.

$$\begin{aligned} |\overline{n}| &= 1 \Rightarrow (\overline{n}, \overline{n}) = 0 \\ \overline{n} \perp \overline{\tau} &\Rightarrow (\overline{n}', \overline{\tau}) + (\overline{n}, \overline{\tau}') = 0 \Rightarrow (\overline{n}', \overline{\tau}) + k = 0 \end{aligned}$$

$$\overline{b}' = [\overline{\tau}', \overline{n}] + [\overline{\tau}, \overline{n}'] = [k\overline{n}, \overline{n}] + [\overline{\tau}, -k\overline{\tau} + \varkappa \overline{b}] = 0 + \varkappa [\overline{r}, \overline{b}] = -\varkappa \overline{n}$$

Ортогональные векторные координаты

$$\overline{r}=\overline{r}(q_1(t),q_2(t),q_3(t))$$

$$\overline{v}=\dot{\overline{\tau}}^i=\sum_{i=1}^3\frac{\partial\overline{r}}{\partial q_i}\dot{q}_i$$

$$\overline{H_i}=\frac{\partial\overline{r}}{\partial q_i}=H_i\overline{e_i},\ \text{где}\ H_i\text{ - коэффициенты Ламе}.$$

Геометрический смысл

$$ds_i = H_i dq_i$$

 s_i - длина дуги i-й к-ой линии.

$$H_{i} = \frac{\partial \overline{r}}{\partial q_{i}} = \sqrt{\left(\frac{\partial x}{\partial q_{i}}\right)^{2} + \left(\frac{\partial y}{\partial q_{i}}\right)^{2} + \left(\frac{\partial z}{\partial q_{i}}\right)^{2}}$$
$$\overline{v} = \sum_{i=1}^{3} H_{i} \dot{q}_{i} \overline{e_{i}}, \quad v^{2} = (\overline{v}, \overline{v}) = \sum_{i=1}^{3} H_{i}^{2} \dot{q}_{i}^{2}$$

Теорема 2. Копоненты вектора ускорения в ортогональном криволинейном базисе определяются равенством:

$$w_{i} = \frac{1}{H_{i}} \left(\frac{d}{dt} \frac{\partial}{\partial \dot{q}_{i}} \left(\frac{v^{2}}{2} \right) - \frac{\partial}{\partial q_{i}} \left(\frac{v^{2}}{2} \right) \right)$$

$$\begin{split} (\overline{w}, \overline{H_i}) &= \left(\frac{d\overline{v}}{dt}, \frac{\partial \overline{r}}{\partial q_i}\right) = \frac{d}{dt} \left(\overline{v}, \frac{\overline{r}}{\partial q_i}\right) - \left(\overline{v}, \frac{d}{dt} \frac{\partial \overline{r}}{\partial q_i}\right) \triangleq \\ 1) \frac{\partial \overline{r}}{\partial q_i} &= \frac{\partial \overline{v}}{\partial q_i'} \text{ - из определения скорости} \\ 2) \frac{d}{dt} \left(\frac{\partial \overline{r}}{\partial q_i}\right) &= \sum_{j=1}^3 \frac{\partial^2 \overline{r}}{\partial q_j \partial q_i} \dot{q}_j = \sum_{j=1}^3 \frac{\partial^2 \overline{r}}{\partial q_i \partial q_j} \dot{q}_j = \\ &= \frac{\partial}{\partial q_i} \left(\frac{d\overline{r}}{dt}\right) = \frac{\partial \dot{r}'}{\partial q_i} = \frac{\partial \overline{v}}{\partial q_i} \\ \triangleq \frac{d}{dt} \left(\overline{v}, \frac{\partial \overline{v}}{\partial q_i}\right) - \left(\overline{v}, \frac{\partial \overline{v}}{\partial q_i}\right) = \frac{d}{dt} \frac{1}{2} \frac{\partial}{\partial q_i} (\overline{v}, \overline{v}) - \frac{1}{2} \frac{\partial}{\partial q_i} (\overline{v}, \overline{v}) = \\ &= \frac{d}{dt} \frac{\partial}{\partial \dot{q}_i} \left(\frac{v^2}{2}\right) - \frac{\partial}{\partial q_i} \left(\frac{v^2}{2}\right) \\ w_i &= (\overline{w}, \overline{e_i}) = \frac{1}{H_i} (\overline{w}, \overline{H_i}) \end{split}$$

Кинематика твердого тела

Определение. Абсолютно твердым телом называется множество точек, расстояние между которыми не меняется со временем.

$$\{\overline{r_i}, i = \overline{1 \dots n} : |\overline{r_i} - \overline{r_j}| = C_{ij} = const, n \geqslant 3\}$$

OXYZ - неподвижная система отсчета.

 $S\xi\eta\zeta$ - связаны с телом (движется).

$$X = \begin{pmatrix} (\overline{e_{\xi}}, \overline{e_{x}}) & (\overline{e_{\xi}}, \overline{e_{y}}) & (\overline{e_{\xi}}, \overline{e_{z}}) \\ (\overline{e_{\eta}}, \overline{e_{x}}) & (\overline{e_{\eta}}, \overline{e_{y}}) & (\overline{e_{\eta}}, \overline{e_{z}}) \\ (\overline{e_{\zeta}}, \overline{e_{x}}) & (\overline{e_{\zeta}}, \overline{e_{y}}) & (\overline{e_{\xi}}, \overline{e_{\zeta}}) \end{pmatrix}$$
 - матрица направляющих косинусов.

$$\overline{AB} = x\overline{e_x} + y\overline{e_y} + z\overline{e_z}$$

$$\overline{AB} = \xi \overline{e_{\xi}} + \eta \overline{e_{\eta}} + \zeta \overline{e_{\zeta}}$$

$$X \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} (\overline{e_{\xi}}, x\overline{e_x} + y\overline{e_y} + z\overline{e_z}) \\ (\overline{e_{\eta}}, x\overline{e_x} + y\overline{e_y} + z\overline{e_z}) \\ (\overline{e_{\zeta}}, x\overline{e_x} + y\overline{e_y} + z\overline{e_z}) \end{pmatrix} = \begin{pmatrix} (\overline{e_{\xi}}, \overline{AB}) \\ (\overline{e_{\eta}}, \overline{AB}) \\ (\overline{e_{\zeta}}, \overline{AB}) \end{pmatrix} = \begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} = \overline{\rho}$$

$$\overline{\rho}=X\overline{r}$$

Утверждение 2. Х - ортогональная матрица.

Доказательство.

$$XX^{T} = X^{T}X = \begin{pmatrix} (\overline{e_{\xi}}, \overline{\xi}) & (\overline{e_{\xi}}, \overline{\eta}) & (\overline{e_{\xi}}, \overline{\zeta}) \\ \vdots & \ddots & \vdots \\ & \ddots & \end{pmatrix} = 0$$

Т.к. базис ортогональный.

$$\begin{pmatrix} \overline{e_{\xi}} \\ \overline{e_{\eta}} \\ \overline{e_{\zeta}} \end{pmatrix} = X \begin{pmatrix} \overline{e_{x}} \\ \overline{e_{y}} \\ \overline{e_{z}} \end{pmatrix}$$

$$\begin{pmatrix} \dot{e_{\xi}} \\ \dot{e_{\eta}} \\ \overline{e_{\zeta}} \end{pmatrix} = \dot{X} \begin{pmatrix} \overline{e_{x}} \\ \overline{e_{y}} \\ \overline{e_{z}} \end{pmatrix} = \underbrace{\dot{X}X^{T}}_{\Omega} \begin{pmatrix} \overline{e_{\xi}} \\ \overline{e_{\eta}} \\ \overline{e_{\zeta}} \end{pmatrix} = \Omega \begin{pmatrix} \overline{e_{\xi}} \\ \overline{e_{\eta}} \\ \overline{e_{\zeta}} \end{pmatrix}$$

$$\Omega = \dot{X}X^{T}$$

Утверждение 3. Ω - *кососимметрична*.

Доказательство.

$$\Omega\Omega^{2} = \dot{X}X^{T} + (\dot{X}X^{T})T = \dot{X}X^{T} + X\dot{X}^{T} = \frac{d}{dt}(XX^{T}) = \frac{d}{dt}(E) = 0$$

Следствие.

$$\Omega = egin{pmatrix} 0 & \omega_{\zeta} & -\omega_{\eta} \\ -\omega_{\zeta} & 0 & \omega_{\xi} \\ \omega_{\eta} & -\omega_{\xi} & 0 \end{pmatrix}$$
 - Факт, который может быть законспектирован неправильно

Определение. $\overline{\omega}=\omega_\xi\overline{e_\xi}+\omega_\eta\overline{e_\eta}+\omega_\zeta\overline{e_\zeta}$ - угловая скорость подвижного репера.

Формулы Пуассона

Утверждение 4.

$$\frac{\dot{e}_i}{e_i} = [\overline{\omega}, \overline{e_i}], \quad i = \overline{1 \dots 3}$$

Доказательство.

$$\frac{\dot{e}_{\xi}}{e_{\xi}} = \omega_{\zeta} \overline{e_{\eta}} - \omega_{\eta} \overline{e_{\zeta}} = \begin{vmatrix} \overline{e_{\xi}} & \overline{e_{\eta}} & \overline{e_{\zeta}} \\ \omega_{\xi} & \omega_{\eta} & \omega_{\zeta} \\ 1 & 0 & 0 \end{vmatrix} = [\overline{\omega}, \overline{e_{\xi}}]$$

Утверждение 5. $\overline{\omega}=\overline{e_{\xi}}(\dot{e_{\eta}},\overline{e_{\zeta}})+\overline{e_{\eta}}(\dot{e_{\zeta}},\overline{e_{\xi}})+\overline{e_{\zeta}}(\dot{e_{\xi}},\overline{e_{\eta}})$

Доказательство.

$$(\dot{e}_{\xi}, \overline{e_{\eta}}) = \omega_{\zeta}$$
$$(\dot{e}_{\eta}, \overline{e_{\zeta}}) = \omega_{\xi}$$
$$(\dot{e}_{\zeta}, \overline{e_{\xi}}) = \omega_{\eta}$$

Утверждение 6. $\overline{\omega} = \frac{1}{2}([\overline{e_{\xi}}, \dot{\overline{e_{\xi}}}] + [\overline{e_{\eta}}, \dot{\overline{e_{\eta}}}] + [\overline{e_{\zeta}}, \dot{\overline{e_{\zeta}}}])$

$$\begin{split} \overline{\omega} &= \frac{1}{2} ([\overline{e_{\xi}}, \dot{\overline{e_{\xi}}}] + [\overline{e_{\eta}}, \dot{\overline{e_{\eta}}}] + [\overline{e_{\zeta}}, \dot{\overline{e_{\zeta}}}]) = \frac{1}{2} ([\overline{e_{\xi}}, [\overline{\omega}, \overline{e_{\xi}}]] + [\overline{e_{\eta}}, [\overline{\omega}, \overline{e_{\eta}}]] + [\overline{e_{\zeta}}, [\overline{\omega}, \overline{e_{\zeta}}]]) = \\ &= \frac{1}{2} (\overline{\omega} (\overline{e_{\xi}}, \overline{e_{\xi}}) - \overline{e_{\xi}} (\overline{\omega}, \overline{e_{\xi}}) + \overline{\omega} (\overline{e_{\eta}}, \overline{e_{\eta}}) - \overline{e_{\eta}} (\overline{\omega}, \overline{e_{\eta}}) + \overline{\omega} (\overline{e_{\zeta}}, \overline{e_{\zeta}}) - \overline{e_{\zeta}} (\overline{\omega}, \overline{e_{\zeta}})) = \\ &= \frac{1}{2} (3\overline{\omega} - \overline{\omega}) = \overline{\omega} \end{split}$$

Пример. Угловая скорость репера Френеля.

$$\begin{cases} \overline{\tau}' = k\overline{n} \\ \overline{n}' = -k\overline{\tau} + \varkappa \overline{b} \\ \overline{b}' = -\varkappa \overline{n} \end{cases}$$

$$\begin{cases} \dot{\overline{\tau}} = \frac{d\overline{\tau}}{ds}\dot{s} \\ \dot{\overline{n}} = \frac{d\overline{n}}{ds}\dot{s} \\ \dot{\overline{b}} = \frac{d\overline{b}}{ds}\dot{s} \end{cases}$$

$$\overline{\omega} = \overline{\tau}(\dot{s}(-k\overline{\tau} + \varkappa \overline{b}), \overline{b}) + \overline{n}(\dot{s}(-\varkappa \overline{n}, \overline{\tau}) + \overline{b}(\dot{s}(k\overline{n}), \overline{n}) = \dot{s}(\varkappa \overline{\tau} + k\overline{b})$$

Определение. Угловой скоростью твердого тела называется угловая скорость подвижного репера, с ним свзязанного.

Формула распределения скоростей точек твердого тела

$$\overline{v_B} = \overline{v_A} + \left[\overline{\omega}, \overline{AB}\right]$$

Доказательство.

$$\overline{AB} = \xi \overline{e_{\xi}} + \eta \overline{e_{\eta}} + \zeta \overline{e_{\zeta}}$$

$$\dot{\overline{AB}} = \xi \dot{\overline{e_{\xi}}} + \eta \dot{\overline{e_{\eta}}} + \zeta \dot{\overline{e_{\zeta}}}, \quad \dot{\xi} = \dot{\eta} = \dot{\zeta} = 0$$

$$(\overline{r_B} \dot{\overline{-r_A}}) = \xi [\overline{\omega}, \overline{e_{\xi}}] + \eta [\overline{\omega}, \overline{e_{\eta}}] + \zeta [\overline{\omega}, \overline{e_{\zeta}}]$$

$$\dot{\overline{r_1}} - \dot{\overline{r_2}} = [\overline{\omega}, \xi \overline{e_{\xi}} + \eta \overline{e_{\eta}} + \zeta \overline{e_{\zeta}}]$$

$$\overline{v_B} = \overline{v_A} + [\overline{\omega}, \overline{AB}]$$

Следствие. $S\xi\eta\zeta\to\overline{\omega},\ S'\xi'\eta'\zeta'\to\overline{\omega}'$

 $\begin{array}{c|c} \overline{v_B} = \overline{v_A} + [\overline{\omega}, \overline{AB}] \\ \overline{v_B} = \overline{v_A} + [\overline{\omega'}, \overline{AB}] \end{array} \bigg| [\overline{\omega} - \overline{\omega'}, \overline{AB}] = 0; \ \forall A, B \ \ \emph{в абсолютно твердом теле} \Rightarrow$

$$\Rightarrow \overline{\omega} - \overline{\omega}' = 0 \Rightarrow \overline{\omega} = \overline{\omega}'$$

Утверждение 7. $(\Phi$ ормула Pивальса) $\overline{w_B}=\overline{w_A}+[\overline{arepsilon},\overline{AB}]+[\overline{\omega},[\omega,\overline{AB}]].$

Доказательство.

$$\begin{split} \overline{v_B} &= \overline{v_A} + [\overline{\omega}, \overline{AB}] \\ \dot{\overline{v_B}} &= \dot{\overline{v_A}} + [\dot{\overline{\omega}}, \overline{AB}] + [\overline{\omega}, \overline{r_B} \stackrel{\cdot}{-} \overline{r_A}] \\ \overline{w_B} &= \overline{w_A} + [\overline{\varepsilon}, \overline{AB}] + [\overline{\omega}, [\overline{\omega}, \overline{AB}]] \end{split}$$

 $[\overline{\varepsilon}, \overline{AB}]$ - вращательное ускорение, $[\overline{\omega}, [\overline{\omega}, \overline{AB}]]$ - осестремительное ускорение

7

Геометрический смысл

$$\overline{w} = [\overline{\omega}, [\overline{\omega}, \overline{AB}]] = \overline{\omega}(\overline{\omega}, \overline{AB}) - \overline{AB}\omega^2 = \omega^2(\overline{e_{\omega}}(\overline{AB}, \overline{e_{\omega}}) - \overline{AB})$$
$$|\overline{w_{oc}}| = \omega^2 \rho(B, l)$$

Утверждение 8. Проекции скоростей двух точек твердого тела на прямую, их соединяющую, равны.

Доказательство.

$$\overline{v_B} = \overline{v_A} + [\overline{\omega}, \overline{AB}]$$
$$(\overline{v_B}, \overline{AB}) = (\overline{v_A}, \overline{AB}) + ([\overline{\omega}, \overline{AB}], \overline{AB})$$
$$v_B \cos \beta = v_A \cos \alpha$$

Замечание. Аналогичная теорема для ускорений не верна.

Классификация движения твердого тела

Поступательное

Определение. Такое движение твердого тела, при котором угловая скорость равна нулю.

$$\overline{v_B} \equiv \overline{v_A}$$

$$\overline{w_B} \equiv \overline{v_A}$$

Мгновенное поступательное движение: $\exists t : \overline{\omega}(t) = 0, \ \overline{\varepsilon}(t) \neq 0$

Вращательное движение (вращение вокруг неподвижной оси)

$$\begin{array}{l} \exists A,B:\overline{v_A}=\overline{v_B}=0\\ \overline{v_B}=\overline{v_A}+[\overline{\omega},\overline{AB}],\overline{v_A}=\overline{v_B}=0\Rightarrow [\omega,\overline{AB}]=0\Rightarrow \omega\parallel\overline{AB}\\ \forall M\in l:\overline{v_M}=0,\ l\text{ - ось вращения}\\ \dot{\vec{e}_\xi}=\dot{\varphi}\vec{e}_\eta,\ \dot{\vec{e}}_\eta=-\dot{\varphi}\vec{e}_\xi,\ \dot{\vec{e}_\zeta}=0\\ \vec{\omega}=\vec{e}_\xi(-\dot{\varphi}\vec{e}_\xi,\vec{e}_\zeta)+\vec{e}_\eta(0,\vec{e}_\xi)+\vec{e}_\zeta(\dot{\varphi}\vec{e}_\eta,\vec{e}_\eta)=\dot{\varphi}\vec{e}_\zeta=\dot{\varphi}\vec{e}_z\\ \vec{e}=\dot{\vec{\omega}}=\ddot{\varphi}\vec{e}_z\\ \vec{v}_p=\vec{v}_{p'}+[\overrightarrow{\omega},\overline{pp'}]=0+[\dot{\varphi}\vec{e}_z,\xi\vec{e}_\xi+\eta\vec{e}_\eta]=\dot{\varphi}(x\vec{e}_\eta-y\vec{e}_\xi)\\ |\vec{v}_p|=|\vec{\omega}|\cdot|\overrightarrow{p'p}|\\ \vec{w}_p=\vec{w}_{p'}+[\vec{e},\overrightarrow{p'p}]+[\vec{\omega},[\vec{\omega},\overline{p'p}]]=0+[\vec{e},\overline{p'p}]-\omega^2\overline{p'p} \end{array}$$

Плоскопараллельное движение

Определение. Движение твердого тела называется плоскопараллельным, если скорости всех точек тела параллельны некоторой неподвижной плоскости:

$$\overline{v}_{p_i} \parallel \pi, \ \forall p_i \in ATT$$

$$\overline{v}_{p_{i}} = \overline{v}_{p_{j}} + [\overline{\omega}, \overline{p_{j}}\overline{p_{i}}]$$

$$(\overline{p}_{i} - \overline{v}_{p_{i}}) = 0 \Leftrightarrow \begin{bmatrix} \overline{\omega} = 0 \\ \overline{v}_{p_{i}} = \overline{v}_{p_{j}}, \ \forall p_{i}, p_{j} \in \text{ATT} \\ \overline{\omega} \perp \overline{p}_{i} - \overline{v}_{p_{i}} \parallel \pi \end{bmatrix}$$

$$\overline{v}_{p_{i}} + \omega[\overline{v}, \overline{M}, M] = \overline{v}_{p_{i}} + \overline{M}, M : \overline{M}, M : \overline{M}, M : \overline{m} \Rightarrow \overline{w}_{p_{i}} = \overline{w}_{p_{i}}$$

 $\overline{v}_{M_i} = \overline{v}_{M_j} + \omega[\overline{\omega}, \overline{M_j M_i}] = \overline{v}_{M_j}, \quad \forall M_i, M_j : \overline{M_i M_j} \perp \pi \Rightarrow \overline{w}_{M_i} = \overline{w}_{M_j}$

Качение:

$$\begin{split} \overline{r}_S &= x_S \overline{e}_x + y_S \overline{e}_y \\ \dot{\overline{e}}_\xi &= \dot{\varphi} \overline{e}_\eta, \quad \dot{\overline{e}}_\eta = \dot{\varphi} \overline{e}_\zeta, \quad \dot{\overline{e}}_\zeta = 0 \\ \overline{\omega} &= \dot{\varphi} \overline{e}_z, \quad \overline{\varepsilon} = \ddot{\varphi} \overline{e}_z \parallel \overline{\omega} \\ \overline{v}_M &= \overline{v}_S + [\overline{\omega}, \overline{SM}] \\ \overline{w}_M &= \overline{w}_S + [\overline{\varepsilon}, \overline{SM}] + [\overline{\omega}, [\overline{\omega}, \overline{SM}]] = \overline{w}_s + [\overline{\varepsilon}, \overline{SM}] - \omega^2 \overline{SM} \end{split}$$

Теорема 3. Если при плоскопараллельном движении угловая скорость твердого тела отлична от нуля, то существует точка, скорость которой равна нулю в данный момент времени.

Доказательство.

$$\begin{cases} \overline{v}_c = \overline{v}_s + [\overline{\omega}, \overline{SC}] \\ \overline{v}_c = 0 \end{cases} \Rightarrow [\overline{\omega}, \overline{v}_s] + [\overline{\omega}, [\overline{\omega}, \overline{SC}]] = 0$$
$$[\overline{\omega}, \overline{v}_s] + \overline{\omega}(\overline{\omega}, \overline{SC}) - \omega^2 \overline{SC} = 0$$
$$\overline{SC} = \frac{[\overline{\omega}, \overline{v}_s]}{\omega^2}$$

Следствие. Любое плоскопараллельное движение является либо мгновеннопоступательным, либо мгновенно-вращательным

Доказательство. $\overline{\omega}=0$ - мгновенно-поступательное. $\overline{\omega}(t)\neq 0$ - вращение вокруг l.

Определение. C - мгновенный центр скоростей

Замечание. Положение С меняется со временем.

Пример. Качение без проскальзывания

Тело с неподвижной точкой (вращение вокруг точки)

$$\exists \overline{v}_0 \equiv 0$$

$$l \parallel \overline{\omega}, O \in l$$

$$\overline{v}_M = \overline{v}_0 + [\overline{\omega}, \overline{OM}] = 0 + 0, \ \forall M \in l$$

Определение. l - мгновенная ось вращения

$$\overline{v}_p = [\overline{\omega}, \overline{OP}], \ \overline{w_p} = [\overline{\varepsilon}, \overline{OP}] + \underbrace{[\overline{\omega}, [\overline{\omega}, \overline{OP}]]}_{\overline{v}_{OC}}$$

Винтовое движение

Определение. Движение твердого тела называется винтовым, если тело равномерно вращается вокруг неподвижной оси, а скорости всех точек, лежащий на этой оси, равны между собой, постоянны и сонаправленны с осью.

Общий случай

Теорема 4. $\overline{\omega} \neq 0 \Rightarrow \exists l : \overline{\omega} \parallel l, \overline{v}_{k_i} \parallel l, \forall k_i \in l$

Доказательство.

$$\overline{\alpha} \perp \overline{\omega}, \ S \in \alpha$$

$$\left\{ \begin{aligned} \overline{v}_c &= \overline{v}_c = \overline{v}_s + [\overline{\omega}, \overline{SC}] \\ \overline{v}_c &= \lambda \overline{\omega} \end{aligned} \right. \Rightarrow 0 = [\overline{\omega}, \overline{v}_s] + [\overline{\omega}, [\overline{\omega}, \overline{SC}]]$$

$$\left[\overline{\omega}, \overline{v}_s \right] + \overline{\omega}(\overline{\omega}, \overline{SC}) - \omega^2 \overline{SC} = 0$$

$$\overline{SC} = \frac{[\overline{\omega}, \overline{v}_c]}{\omega^2}$$

$$\exists l : C \in l, l \parallel \overline{\omega}$$

$$\overline{v}_{C_1} = \overline{v}_C + [\overline{\omega}, \overline{CC_1}] = \overline{v}_C, \ \forall C_1 \in l$$

$$\overline{v}_C = \overline{v}_S + \left[\overline{\omega}, \frac{[\overline{\omega}, \overline{v}_C]}{\omega^2}\right] = \overline{v}_S + \frac{1}{\omega^2} \left(\overline{\omega}(\overline{\omega}, \overline{v}_S) - \omega^2 \overline{v}_S\right) = \underbrace{\frac{(\overline{\omega}, \overline{v}_S)}{\omega^2}}_{\lambda} \overline{\omega}$$
$$\lambda = \frac{(\overline{\omega}, \overline{v}_S)}{\omega^2} - \text{параметр (шаг винта)}.$$

Следствие. Любое движение твердого тела является в каждый момент времени либо мгновенно-поступательным ($\omega=0,\,\lambda\to+\infty$), либо мгновенно-вращательным ($\omega\neq0,\,\lambda=0$), либо мгновенно-винтовым ($\omega\neq0,\,\lambda\neq0$).

Определение. $\{l,\overline{\omega},\overline{v}\}$ - кинематический винт.

$$\begin{split} \overline{v}_S &= v_x \overline{e}_x + v_y \overline{e}_y + v_z \overline{e}_z \\ \overline{r}_S &= x_S \overline{e}_x + y_S \overline{e}_y + z_S \overline{e}_z \\ \overline{\omega} &= \omega_x \overline{e}_x + \omega_y \overline{e}_y + \omega_z \overline{e}_z \\ \overline{r}_C &= x \overline{e}_x + y \overline{e}_y + z \overline{e}_z \\ \overline{v}_S + [\overline{\omega}, \overline{SC}] &= \lambda \overline{\omega} \Rightarrow \lambda = \frac{v_x + \omega_y (z - z_S) - \omega_z (y - y_S)}{\omega_x} = \\ &= \frac{v_y + \omega_z (x - x_S) - \omega_x (z - z_S)}{\omega_y} = \frac{v_z + \omega_x (y - y_S) - \omega_y (x - x_S)}{\omega_z} \end{split}$$

Кинематика сложного движения

OXYZ - неподвижная система отсчета $(\overline{r}),\,O_1\xi\eta\zeta$ - подвижная система отсчета $(\overline{
ho}).$

$$\overline{u} = u_x \overline{e}_x + u_y \overline{e}_y + u_z \overline{e}_z$$

$$\overline{u} = u_\xi \overline{e}_\xi + u_\eta \overline{e}_\eta + u_\zeta \overline{e}_\zeta$$

$$\frac{d\overline{u}}{dt} = \dot{u}_x \overline{e}_x + \dot{u}_y \overline{e}_y + \dot{u}_z \overline{e}_z \text{ - абсолютная производная}$$

$$\dot{\overline{u}} = \dot{u}_\xi \overline{e}_\xi + \dot{u}_\eta \overline{e}_\eta + \dot{u}_\zeta \overline{e}_\zeta \text{ - относительная производная}$$

Теорема 5. (Связь абсолютной и относительной производной) $\frac{d\overline{u}}{dt} = \dot{\overline{u}} + [\overline{\omega}, \overline{u}], \ rde \ \overline{\omega} \ - \ y$ гловая скорость $O_1\xi\eta\zeta$ относительно OXYZ

$$\begin{split} &\frac{du}{dt} = \dot{u}_{\xi} \overline{e}_{\xi} + \dot{u}_{\eta} \overline{e}_{\eta} + \dot{u}_{\zeta} \overline{e}_{\zeta} + u_{\xi} \frac{d\overline{e}_{\xi}}{dt} + u_{\eta} \frac{d\overline{e}_{\eta}}{dt} + u_{\zeta} \frac{d\overline{e}_{\zeta}}{dt} = \\ &= \dot{\overline{u}} + u_{\xi} [\overline{\omega}, \overline{e}_{\xi}] + u_{\eta} [\overline{\omega}, \overline{e}_{\eta}] + u_{\zeta} [\overline{\omega}, \overline{e}_{\zeta}] = \dot{\overline{u}} + [\overline{\omega}, \overline{u}] \\ &\left(\frac{d\overline{e}_{i}}{dt} = [\overline{\omega}, \overline{e}_{i}] - - \text{формула Пуассона, } \dot{\overline{e}}_{i} = 0 \right) \end{split}$$

Сложное движение материальной точки

Определение. Абсолютной скоростью материальной точки называется ее скорость относительно неподвижной системы отсчета. $\overline{v}_{abc} = \frac{d}{dt}\overline{r}$

Определение. Относительной скоростью материальной точки называется ее скорость относительно подвижной системы отсчета. $\overline{v}_{omn} = \dot{\overline{\rho}}$

Определение. Переносной скоростью материальной точки называется абсолютная скорость той точки подвижной системы отсчета, в которой находится движующаяся точка в данный момент времени.

Теорема 6 (Формула сложения скоростей). $\overline{v}_{abc} = \overline{v}_{omn} + \overline{v}_{nep}$

Доказательство.

$$\begin{split} \overline{v}_{\rm a6c} &= \frac{d}{dt}(\overline{R} + \overline{\rho}) = \frac{dR}{dt} + \dot{\overline{\rho}} + [\overline{\omega}, \overline{\rho}] = \\ &= \overline{v}_{O_1} + \overline{v}_{\rm oth} + [\overline{\omega}, \overline{\rho}] = \overline{v}_{\rm oth} + \overline{v}_{\rm nep} \end{split}$$

Определение. Абсолютным ускорением материальной точки называется ее ускорение относительно неподвижной системы отсчета. $\overline{w}_{a\delta c}=\frac{d}{dt}\overline{v}_{a\delta c}$

Определение. Относительным ускорением материальной точки называется ее ускорение относительно подвижной системы отсчета. $\overline{w}_{omn}=\overline{v}_{omn}$

Определение. $\overline{w}_{nep} = \overline{\omega}_{O_1} + [\overline{\varepsilon}, \overline{\rho}] + [\overline{\omega}, [\overline{\omega}, \overline{\rho}]]$

Определение. $\overline{w}_{\kappa op} = 2[\overline{\omega}, \overline{v}_{omn}]$

Теорема 7 (Формула сложения ускорений). $\overline{w}_{abc} = \overline{w}_{omn} + \overline{w}_{nep} + \overline{w}_{\kappa op}$

$$\begin{split} \overline{w}_{\mathrm{a6c}} &= \frac{d}{dt} (\overline{v}_{\mathrm{отh}} + \overline{v}_{\mathrm{пер}}) = \frac{d}{dt} (\overline{v}_{\mathrm{отh}} + \overline{v}_{O_{1}} + [\overline{\omega}, \overline{\rho}]) = \\ &= \dot{\overline{v}}_{\mathrm{отh}} + [\overline{\omega}, \overline{v}_{\mathrm{отh}}] + \frac{d}{dt} \overline{v}_{O_{1}} + \left[\frac{d\overline{\omega}}{dt}, \overline{\rho} \right] + [\overline{\omega}, \overline{\rho} + [\overline{\omega}, \overline{\rho}]] = \\ &= \dot{\overline{v}}_{\mathrm{отh}} + \dot{\overline{v}}_{O_{1}} + [\overline{\varepsilon}, \overline{\rho}] + 2[\overline{\omega}, \overline{v}_{\mathrm{отh}}] + [\overline{\omega}, [\overline{\omega}, \overline{\rho}]] \end{split}$$

Сложное движение твердого тела

Рассмотрим неподвижную систему отсчета OXYZ, подвижную O_1xyz , и систему, связанную с телом $S\xi\eta\zeta$.

Определение. Абсолютная угловая скорость - угловая скорость $S\xi\eta\zeta$ относительно OXYZ

Определение. Относительная угловая скорость - угловая скорость $S\xi\eta\zeta$ относительно O_1xyz

Определение. Переносная угловая скорость - угловая скорость Oxyz относительно OXYZ

Теорема 8 (О сложении угловых скоростей). $\overline{\omega}_{abc} = \overline{\omega}_{omn} + \overline{\omega}_{nep}$

Доказательство.

$$\begin{split} \overline{v}_A^{\text{a6c}} &= \overline{v}_A^{\text{oth}} + \overline{v}_A^{\text{nep}} \\ \overline{v}_B^{\text{a6c}} &= \overline{v}_B^{\text{oth}} + \overline{v}_B^{\text{nep}} \\ \overline{v}_B^{\text{a6c}} &= \overline{v}_A^{\text{a6c}} + [\overline{\omega}_{\text{a6c}}, \overline{AB}] \end{split}$$

$$\overline{v}_B^{\text{\tiny OTH}} = \overline{v}_A^{\text{\tiny OTH}} + [\overline{\omega}_{\text{\tiny OTH}}, \overline{AB}]$$

$$\begin{split} \overline{v}_B^{\text{пер}} &= \overline{v}_A^{\text{пер}} + [\overline{\omega}_{\text{пер}}, \overline{AB}] \\ \Rightarrow 0 &= 0 + [\overline{\omega}_{\text{a6c}} - \overline{\omega}_{\text{отн}} - \overline{\omega}_{\text{пер}}, \overline{AB}] = 0, \ \forall \overline{AB} \Leftrightarrow \overline{\omega}_{\text{a6c}} = \overline{\omega}_{\text{отн}} + \overline{\omega}_{\text{пер}} \end{split}$$

Замечание. $rac{d\overline{\omega}_{nep}}{dt}=\dot{\overline{\omega}}_{nep}+\left[\overline{\omega}_{nep},\overline{\omega}_{nep}
ight]=\dot{\overline{\omega}}_{nep}$

Теорема 9 (О сложении угловых ускорений). $\overline{\varepsilon}_{a\delta c} = \overline{\varepsilon}_{omn} + \overline{\varepsilon}_{nep} + [\overline{\omega}_{nep}, \overline{\omega}_{omn}],$ $\varepsilon de \ \overline{\varepsilon}_{a\delta c} = \frac{d}{dt} \overline{\omega}_{a\delta c}, \ \overline{\varepsilon}_{omn} = \dot{\overline{\omega}}_{omn}, \ \overline{\varepsilon}_{nep} = \frac{d}{dt} \overline{\omega}_{nep} = \dot{\overline{\omega}}_{nep}$

Доказательство.

$$\begin{split} \overline{\varepsilon}_{\mathrm{a6c}} &= \frac{d}{dt} (\overline{\omega}_{\mathrm{отh}} + \overline{\omega}_{\mathrm{пер}}) = \\ &= \dot{\overline{\omega}}_{\mathrm{отh}} + [\overline{\omega}_{\mathrm{пер}}, \overline{\omega}_{\mathrm{отh}}] + \frac{d}{dt} \overline{\omega}_{\mathrm{пер}} = \overline{\varepsilon}_{\mathrm{отh}} + [\overline{\omega}_{\mathrm{пер}}, \overline{\omega}_{\mathrm{отh}}] + \overline{\varepsilon}_{\mathrm{пер}} \end{split}$$

Несколько подвижных сисем отсчета

$$OXYZ$$
 - неподвижная CO $Ox_1y_1z_1,\,Ox_2y_2z_2\,,\,\dots Ox_ny_nz_n$ - подвижные CO $S\xi\eta\zeta$ - связана с телом $\overline{\omega}$ - угловая скорость $S\xi\eta\zeta$ относительно $OXYZ$ Тогда: $\overline{\omega}=\sum_{i=1}^n\overline{\omega_i}$

Кинематические формулы Эйлера

Определение.
$$Ox = (OXY) \cap (O\xi\eta)$$
 - линия узлов

Определение.
$$\psi = \angle(Ox, OX)$$
 - yeon npeueccuu

Определение.
$$\Theta = \angle(O\zeta, OZ)$$
 - угол нутации

Определение.
$$\varphi = \angle(Ox, O\xi)$$
 - угол нутации

Определение.
$$\{\psi,\Theta,\varphi\}$$
 - углы Эйлера

Повороты:
$$OXYZ \xrightarrow{\psi,OZ} OxyZ \xrightarrow{\Theta,Ox} Oxy\zeta \xrightarrow{\varphi,O\zeta} O\xi\eta\zeta$$
 $\overline{\omega} = \dot{\psi}\overline{e}_z + \dot{\Theta}\overline{e}_x + \dot{\varphi}\overline{e}_\zeta$ $\overline{e}_x = \cos\varphi\overline{e}_\xi + \sin\varphi\overline{e}_\eta$ $\overline{e}_z = \cos\Theta\overline{e}_\zeta + \sin\Theta(\sin\varphi\overline{e}_\xi + \cos\varphi\overline{e}_\eta)$

$$\begin{array}{rcl} \overline{\omega} & = & \dot{\psi}(\sin\Theta\sin\varphi\overline{e}_{\xi} + \sin\Theta\cos\varphi\overline{e}_{\eta} + \cos\Theta\overline{e}_{\zeta}) \\ & + & \dot{\Theta}(\cos\varphi\overline{e}_{\xi} - \sin\overline{e}_{\eta}) \\ & + & \dot{\varphi}\overline{e}_{\zeta} = \omega_{\xi}\overline{e}_{\xi} + \omega_{\eta}\overline{e}_{\eta} + \omega_{\zeta}\overline{e}_{\zeta} \end{array}$$

$$\begin{cases} \overline{\omega}_{\xi} = \dot{\psi} \sin \Theta \sin \varphi + \dot{\Theta} \cos \varphi \\ \overline{\omega}_{\eta} = \dot{\psi} \sin \Theta \cos \varphi + \dot{\Theta} \sin \varphi \end{cases}$$
 - кинематические формулы Эйлера
$$\overline{\omega}_{\zeta} = \dot{\psi} \cos \Theta + \dot{\varphi}$$

Определение. Движение твердого тела называется прецессией, если некоторая ось, неподвижная в теле, в абсолютном пространстве движется по поверхности неподвижного кругового конуса. $\dot{\Theta}=0$. Если $\dot{\psi}=const,$ $\dot{\varphi}=const,$ то прецессия называется регулярной.

Алгебра кватернионов

Определение. Алгеброй над полем называется векторное пространство над этим полем, снабженное билинейной операцией умножения.

Пример.

$$\underline{n=2}$$
 (Комплексные числа). $z_1=a+bi, z_2=c+di$

$$z_1 z_2 = (ac - bd) + (ad + bc)i$$

n = 4(Алгебра кватернионов)

$$\begin{split} &\Lambda = \lambda_0 \bar{i}_0 + \lambda_1 \bar{i}_1 + \lambda_2 \bar{i}_2 + \lambda_3 \bar{i}_3 \in \mathbb{H} \\ &\{\bar{i}_0, \bar{i}_1, \bar{i}_2, \bar{i}_3\} \text{ - базис} \\ &\Lambda = \lambda_0 + \overline{\lambda} \\ &i_0 \circ i_k = i_k k = \overline{1, 3}, \ i_0 \circ i_0 = 1 \end{split}$$

$$i_{k} \circ i_{m} = -(i_{k}, i_{m}) + [i_{k}, i_{m}]k, m \in \{1, 2, 3\}$$

$$\overline{\lambda} \circ \overline{\mu} = (\lambda_{1}\overline{i}_{1} + \lambda_{2}\overline{i}_{2} + \lambda_{3}\overline{i}_{3}) \circ (\mu_{1}\overline{i}_{1} + \mu_{2}\overline{i}_{2} + \mu_{3}\overline{i}_{3}) = -(\overline{\lambda}, \overline{\mu}) + [\overline{\lambda}, \overline{\mu}]$$

$$\Lambda \circ M = (\lambda + \overline{\lambda}) \circ (\mu + \overline{\mu}) = \lambda_{0}\mu_{0} + \lambda_{0}\overline{\mu} + \overline{\lambda}\mu_{0} - (\overline{\lambda}, \overline{\mu}) + [\overline{\lambda}, \overline{\mu}]$$

Свойства:

1.
$$(\Lambda \circ M) \circ N = \Lambda \circ (M \circ N)$$

2.
$$(\Lambda + M) \circ N = \Lambda \circ N + M \circ N$$

3.
$$\Lambda \circ M \neq M \circ \Lambda$$

Определение.

$$\overline{\Lambda} = \lambda_0 - \overline{\lambda}$$

Утверждение 9.

$$\overline{\Lambda \circ M} = \overline{M} \circ \overline{\Lambda}$$

Доказательство.

$$\overline{\Lambda \circ M} = \lambda_0 \mu_0 - (\overline{\lambda}, \overline{\mu}) - \lambda_0 \overline{\mu} - \mu_0 \overline{\lambda} - [\overline{\lambda}, \overline{\mu}] =$$
$$= (\mu_0 - \overline{\mu}) \circ (\lambda_0 - \overline{\lambda}) = \overline{M} \circ \overline{\Lambda}$$

Определение.

$$\parallel \Lambda \parallel = \Lambda \circ \overline{\Lambda} = (\lambda_0 + \overline{\lambda}) \circ (\lambda_0 - \overline{\lambda}) = \lambda_0^2 + \overline{\lambda}^2 = \sum_{k=0}^3 \lambda_k^2 = |\Lambda|^2$$
 - норма Λ

Утверждение 10.

$$\parallel \Lambda \circ M \parallel = \parallel \Lambda \parallel \cdot \parallel M \parallel$$

Доказательство.

$$\parallel \Lambda \circ M \parallel = (\Lambda \circ M) \circ (\overline{\Lambda \circ M}) = \Lambda \circ \underbrace{M \circ \overline{M}}_{\parallel M \parallel} \circ \overline{\Lambda} = \parallel M \parallel \cdot \parallel \Lambda \parallel$$

Определение.

$$\Lambda^{-1} = \frac{\overline{\Lambda}}{\parallel \Lambda \parallel}, \parallel \Lambda \parallel \neq 0$$

Замечание.

$$\Lambda \circ \frac{\overline{\Lambda}}{\parallel \Lambda \parallel} = \frac{\overline{\Lambda}}{\parallel \Lambda \parallel} \circ \Lambda = \frac{\parallel \Lambda \parallel}{\parallel \Lambda \parallel} = 1$$

Формула Муавра

$$\begin{split} & \Lambda = \lambda_0 + \overline{\lambda} = |\Lambda| \left(\frac{\lambda_0}{|\Lambda|} + \frac{\overline{\lambda}}{|\lambda|} \frac{|\overline{\lambda}|}{|\Lambda|} \right) = |\Lambda| \left(\cos \nu + \overline{e} \sin \nu \right) \\ & \overline{e} = \frac{\overline{\lambda}}{|\overline{\lambda}|}, \ \cos \nu = \frac{\lambda_0}{\Lambda}, \ \sin \nu = \frac{\overline{\lambda}}{|\Lambda|} \end{split}$$

$$\Lambda_1 = |\Lambda_1|(\cos\nu_1 + \overline{e}\sin\nu_1)$$

$$\Lambda_2 = |\Lambda_2|(\cos\nu_2 + \overline{e}\sin\nu_2)$$

$$\begin{split} &\Lambda_1 \circ \Lambda_2 = |\Lambda_1| \cdot |\Lambda_2| (\cos \nu_1 \cos \nu_2 - \sin \nu_1 \sin \nu_2 (\overline{e}, \overline{e}) + \cos \nu_1 \sin \nu_2 \overline{e} + \\ &+ \cos \nu_2 \sin \nu_1 \overline{e} + \sin \nu_2 \sin \nu_2 [\overline{e}, \overline{e}]) = |\Lambda_1| |\Lambda_2| \cdot (\cos (\nu_1 + \nu_2) + \overline{e} \sin (\nu_1 + \nu_2)) \end{split}$$

$$\Lambda^k = |\Lambda|^k \cdot (\cos k\nu + \overline{e}\sin k\nu)$$
 — формула Муавра

Задание ориентации твердого тела с помощью кватернионов

$$E=\{\overline{e}_1,\overline{e}_2,\overline{e}_3\}$$
 — неподвижный базис $E'=\{\overline{e}_1',\overline{e}_2',\overline{e}_3'\}$ — связанный с телом

Теорема 10. Произвольному положению твердого тела с неподвижной точкой соответсвует номированный кватернион, удовлетворяющий равенству:

$$\overline{e}_i = \Lambda \circ \overline{e}_i \circ \overline{\Lambda}, \quad i = 1 \dots 3$$

Замечание. Λ — нормирован, если $\| \Lambda \| = 1$

Доказательство.

1. Нормированность

$$\parallel \overline{e}'_i \parallel = \parallel \Lambda \parallel \cdot \parallel \overline{e}_i \parallel \cdot \parallel \overline{\Lambda} \parallel \Rightarrow 1 = \parallel \Lambda \parallel \cdot 1 \cdot \parallel \Lambda \parallel \Rightarrow \parallel \Lambda \parallel = 1$$

2. Существование решения. $\Lambda = \lambda_0 + \overline{\lambda}$

$$\begin{cases} \lambda_0^2 + \overline{\lambda}^2 = 1 \\ \overline{e}_i' \circ \Lambda = \Lambda \circ \overline{e}_i \end{cases} \qquad \begin{cases} \lambda_0^2 + \overline{\lambda}^2 = 1 \\ \overline{e}_i' \circ (\lambda_0 + \overline{\lambda}) = (\lambda_0 + \overline{\lambda}) \circ \overline{e}_i \end{cases}$$

$$\begin{cases} \lambda_0 \overline{e}'_i - (\overline{e}'_i, \overline{\lambda}) + [\overline{e}'_i, \overline{\lambda}] = \lambda_0 \overline{e}'_i - (\lambda, \overline{e}'_i) + [\overline{\lambda}, \overline{e}_i] \\ \lambda_0^2 + \overline{\lambda}^2 = 1 \end{cases}$$

$$\begin{cases} \lambda_0^2 + \overline{\lambda}^2 = 1\\ (\overline{\lambda}, \overline{r}_i) = 0 \\ \lambda_0 \overline{r}_i - [\overline{\lambda}, \overline{s}_i] = 0 \end{cases} \qquad \overline{r}_i = \overline{e}'_i - \overline{e}_i, \ \overline{s}_i = \overline{e}'_i + \overline{e}_i \ i = 1 \dots 3$$

(a)
$$(\overline{r}_k, \overline{s}_k) = (\overline{e}'_k - \overline{e}_k, \overline{e}'_k + \overline{e}_k) = (\overline{e}'_k, \overline{e}'_k) - (\overline{e}_k, \overline{e}_k) = 0$$

$$(\overline{r}_k, \overline{s}_l) = (\overline{e}'_k - \overline{e}_k, \overline{e}'_l + \overline{e}_l) = (\overline{e}'_k, \overline{e}'_l) + (\overline{e}'_k, \overline{e}_l) - (\overline{e}_k, \overline{e}'_l) - (\overline{e}_k, \overline{e}_l) =$$

$$= -(\overline{e}'_l - \overline{e}_l, \overline{e}'_k + \overline{e}_k) = -(\overline{s}_k, \overline{r}_l), \ k \neq 1$$

(b)
$$(\overline{r}_1, \overline{r}_2, \overline{r}_3) = (\overline{e}'_1 - \overline{e}_1, \overline{e}'_2 - \overline{e}_2, \overline{e}'_3 - \overline{e}_3) = (\overline{e}'_1, \overline{e}'_2, \overline{e}'_3) - (\overline{e}_1, \overline{e}_2, \overline{e}_3) - (\overline{e}_1, \overline{e}_2, \overline{e}_3) + (\overline{e}_1, \overline{e}_2, \overline{e}'_3) = 1 - 1 - (\underbrace{[\overline{e}'_1, \overline{e}'_2]}_{\overline{e}'_3}, \overline{e}_3) + (\underbrace{[\overline{e}_1, \overline{e}_2]}_{\overline{e}_3}, \overline{e}'_3) = 0$$

$$\begin{array}{l} (c) \\ \hline r_1(\overline{s}_2,\overline{r}_3) + \overline{r}_2(\overline{s}_3,\overline{r}_1) + \overline{r}_3(\overline{s}_1,\overline{r}_2) \\ (2b) \Rightarrow c_1\overline{r}_1 + c_2\overline{r}_2 + c_3\overline{r}_3 = 0 \\ \hline \begin{cases} 0 + c_2(\overline{s}_1,\overline{r}_2) - c_3(\overline{s}_2,\overline{r}_1) = 0 \\ -c_1(\overline{s}_1,\overline{r}_2) + 0 + c_3(\overline{s}_2,\overline{r}_3) = 0 \\ c_1(\overline{s}_3,\overline{r}_1) - c_2(\overline{s}_2,\overline{r}_3) + 0 = 0 \\ \end{cases} \\ \begin{cases} c_1 = (\overline{s}_2,\overline{r}_3) \\ c_2 = (\overline{s}_3,\overline{r}_1) \\ c_3 = (\overline{s}_1,\overline{r}_2) \end{cases} & \begin{cases} \lambda_0^2 + \lambda^2 = 1 \\ (\overline{r}_k,\overline{\lambda}) = 0 \\ \lambda_0\overline{r}_k + [\overline{s}_k,\overline{\lambda}] = 0 \end{cases} \\ \end{cases} \\ (3) \Leftrightarrow \begin{cases} \lambda_0\overline{r}_1 + [\overline{s}_1,\alpha[\overline{r}_1,\overline{r}_2]] = 0 \\ \lambda_0\overline{r}_2 + [\overline{s}_2,\alpha[\overline{r}_1,\overline{r}_2]] = 0 \\ \lambda_0\overline{r}_3 + [\overline{s}_3,\alpha[\overline{r}_1,\overline{r}_2]] = 0 \end{cases} \\ \begin{cases} \lambda_0\overline{r}_1 + \alpha\overline{r}_1(\overline{s}_1,\overline{r}_1) - 0 = 0 \\ \lambda_0\overline{r}_2 + 0 - \alpha\overline{r}_2(\overline{s}_2,\overline{r}_1) = 0 \\ \lambda_0\overline{r}_3 + \alpha r_1(\overline{s}_3,\overline{r}_2) - \alpha r_2(\overline{s}_3,\overline{r}_1) = 0 \end{cases} \\ \end{cases} \\ \begin{cases} \lambda_0\overline{r}_1 + \alpha\overline{r}_1(\overline{s}_1,\overline{r}_2) = 0 \\ \lambda_0\overline{r}_2 + \alpha\overline{r}_2(\overline{s}_1,\overline{r}_2) = 0 \\ \lambda_0\overline{r}_3 + \alpha\overline{r}_3(\overline{s}_1,\overline{r}_2) = 0 \end{cases} \\ \lambda_0\overline{r}_3 + \alpha\overline{r}_3(\overline{s}_1,\overline{r}_2) = 0 \end{cases} \\ \lambda_0\overline{r}_3 + \alpha\overline{r}_3(\overline{s}_1,\overline{r}_2) = 0 \end{cases} \qquad \lambda_0 = -\alpha(\overline{s}_1,\overline{r}_2) = \alpha(\overline{s}_2,\overline{r}_1) \end{cases}$$

$$(1) \Rightarrow \alpha^2((\overline{s}_2,\overline{r}_1)^2 + [\overline{r}_1,\overline{e}_2]^2)^2 = 1 \Rightarrow \qquad \alpha = \pm \frac{1}{\sqrt{(\overline{s}_2,\overline{r}_1)^2 + [\overline{r}_1,\overline{r}_2]^2}} \end{cases}$$

$$\Lambda = \pm \frac{(\overline{s}_2, \overline{r}_1) + [\overline{r}_1, \overline{r}_2]}{\sqrt{(\overline{s}_2, \overline{r}_1)^2 + [\overline{r}_1, \overline{r}_2]^2}}$$

Определение.

 $f(M) = \Lambda \circ M \circ \overline{\Lambda}; M \to f(M), \|\Lambda\| = 1 - npucoeduneнное пpeoбразование$

Утверждение 11. Присоединенное преобразование не меняет скалярные части кватернионов и модуль векторной части

Доказательство.

1.
$$f(M) = \Lambda \circ (\mu_0 + \overline{\mu}) \circ \overline{\Lambda} = \Lambda \circ \mu_0 \circ \overline{\Lambda} + \Lambda \circ \overline{\mu} \circ \Lambda = \mu_0 \|\Lambda\| + f(\overline{\mu}) = \mu_0 + \overline{\mu}'$$

2.
$$\mu_0^2 + \overline{\mu}^2 = ||M|| = ||\Lambda \circ M \circ \overline{\Lambda}|| = ||f(M)|| = \mu_0^2 + \overline{\mu}'^2 \Rightarrow \mu^2 = \overline{\mu}'^2$$

Следствие. Всегда существует присоединенное преобразование, переводящее орты неподвижного базиса в орты базиса, связанного с телом.

Доказательство.

$$\overline{e}_i' = \Lambda \circ \overline{e}_i \circ \overline{\Lambda} = f(\overline{e}_i) \tag{4}$$

$$\overline{r} = \sum_{k=1}^{3} r_k \overline{e}_k, \quad f(r) = \Lambda \circ \sum_{k=1}^{3} r_k \overline{h} = \sum_{k=1}^{3} r_k f(\overline{e}_k) = \sum_{k=1}^{3} r_k \overline{e}_k = \overline{r}'$$
 (5)

(6)

$$\boxed{\overline{r}' = \Lambda \circ \overline{r} \circ \overline{\Lambda}} \tag{7}$$

Следствие. При повороте твердого тела вокруг неподвижной точки справедлива (7), где \overline{r} — начальное положение точки, \overline{r}' — ее положение после поворота, а Λ — кватернион соответствующего преобразования.

Теорема 11. Преобразование, заданное кватернионом $\Lambda = \cos \nu + \overline{e} \sin \nu$ соответствует повороту пространства вокруг вектора \overline{e} на угол 2ν

Доказательство.

1.

$$\begin{split} & \Lambda = \lambda_0 + \overline{\lambda} \\ & \overline{\lambda}' f(\overline{\lambda}) = \Lambda \circ \overline{\lambda} \circ \overline{\Lambda} = (\lambda_0 + \overline{\lambda}) \circ \overline{\Lambda} \circ (\lambda_0 - \overline{\lambda}) = \end{split}$$

$$\begin{split} &(\lambda_0 + \overline{\lambda}) \circ (-\lambda^2 + \lambda_0 \overline{\lambda}) = -\lambda_0 \overline{\lambda}^2 - \lambda_0 \overline{\lambda}^2 + \lambda_0^2 + \lambda^2 \overline{\lambda} = \\ &= \overline{\lambda} (\lambda_0^2 + \overline{\lambda}^2) \Rightarrow \overline{\lambda} - \text{ неподвижная ось} \Rightarrow \\ &\Rightarrow \overline{e} = \frac{\overline{\lambda}}{\sin \nu} - \text{ ось поворота} \\ &\overline{a} \in \pi \perp \overline{e} \\ &\overline{a}' = f(\overline{a}) = (\cos \nu + \overline{e} \sin \nu) \circ \overline{a} \circ (\cos \nu - \overline{e} \sin \nu) = \\ &= (\cos \nu + \overline{e} \sin \nu) \circ ([\overline{a}, \overline{e}] \cdot \sin \nu + \cos \nu \overline{a} - \sin \nu [\overline{a}, \overline{e}]) = \\ &\cos^2 \nu \overline{a} + \cos \nu \sin \nu (\overline{a}, \overline{e}) + \cos \nu \sin \nu = \dots \end{split}$$

2.

$$\overline{a}' = (\cos\frac{\varphi}{2} + \overline{e}\sin\frac{\varphi}{2} \circ \overline{a}) \circ (\cos\frac{\varphi}{2} + \overline{e}\sin\frac{\varphi}{2}) =$$

$$= (\overline{a}\cos\frac{\varphi}{2} + [\overline{e}, \overline{a}]\sin\frac{\varphi}{2}) \circ (\cos\frac{\varphi}{2} - \overline{e}\sin\frac{\varphi}{2}) =$$

$$= \overline{a}\cos^2\frac{\varphi}{2} + 2[\overline{e}, \overline{a}]\cos\frac{\varphi}{2}\sin\frac{\varphi}{2} - \overline{a}\sin^2\frac{\varphi}{2} =$$

$$= \overline{a}\cos\varphi + [\overline{e}, \overline{a}]\sin\varphi$$

$$|\overline{a}'| = |\overline{a}|$$

Следствие.

$$\Lambda = \lambda_0 + \lambda_1 \overline{e}_1, +\lambda_2 \overline{e}_2 + \lambda_3 \overline{e}_3 = \lambda_0 + \lambda_1 \overline{e}'_1 + \lambda_2 \overline{e}'_2 + \lambda_3 \overline{e}'_3$$

Определение.

$$\lambda_0,\;\lambda_1,\;\lambda_2,\;\lambda_3$$
 — Параметры Родрига-Гамильтона

Следствие (Теорема Эйлера о конечном повороте). Любые два положения твердого тела с неподвижной точкой могут быть получены одно из другого одним поворотом вокруг некторой оси, проходящей через неподвижную точку на некоторый угол

Доказательство.

1.

$$\forall E, E' \ \exists \Lambda E \to E'$$

2.

$$\forall \Lambda \overline{r} \rightarrow \overline{r}' \Leftrightarrow \Pi$$
оворот вокруг e на φ

$$E \xrightarrow{\Lambda_1} E' \xrightarrow{\Lambda_2} E'', E \xrightarrow{\Lambda}$$

$$\overline{r}' = \Lambda_1 \circ \overline{r} \circ \overline{\Lambda}, \overline{r}'' = \Lambda_2 \circ \overline{r}' \circ \overline{\Lambda}$$

$$\overline{r}'' = \Lambda_2 \circ \Lambda_1 \circ \overline{r} \circ \overline{\Lambda} \circ \overline{\Lambda}_2 = \Lambda \circ \overline{r} \circ \overline{\Lambda}, \Lambda = \Lambda_2 \circ \Lambda_1$$

$$\boxed{\Lambda = \Lambda_2 \circ \Lambda_1}$$
 — формула сложения поворотов

$$\begin{split} &\Lambda_2 = \lambda_0^{(2)} + \sum_{k=1}^3 \lambda_k^{(2)} \overline{e}_k'' = \lambda_0^{(2)} + \sum_{k=1}^3 \lambda_k^{(2)} \overline{e}_k' \\ &\Lambda_2^* = \lambda_0^{(2)} + \sum_{k=1}^3 \lambda_k^{(2)} \overline{e}_k - \text{собственный к } \Lambda_2 \text{ кватернион} \\ &\overline{e}_k' = \Lambda_1 \circ \overline{e}_k \circ \overline{\Lambda}_1, \quad \Lambda_2 = \lambda_0^{(2)} + \sum \lambda_k^{(2)} \Lambda_1 \circ \overline{e}_k \circ \overline{\Lambda}_1 = \\ &= \Lambda_1 \circ (\lambda_0^{(2)} + \sum \lambda_k^{(2)} \overline{e}_k) \circ \overline{\Lambda}_1 = \Lambda_1 \circ \Lambda_2^* \circ \overline{\Lambda}_1 \\ &\Lambda = \Lambda_2 \circ \Lambda_1 = \Lambda_1 \circ \Lambda_2^* \circ (\overline{\Lambda}_1 \circ \Lambda_1) = \Lambda_1^* \circ \Lambda_2^*, \quad \Lambda_1^* = \Lambda_1 \end{split}$$

$$\boxed{\Lambda = \Lambda_1^* \circ \Lambda_2^*}$$

— формула сложения поворотов в параметрах Родрига-Гамильтона

Кинематика твердого тела в кватернионном описании

Теорема 12. Угловая скорость твердого тела определяется равенством:

$$\overline{\omega} = 2\dot{\Lambda} \circ \overline{\Lambda}$$

где Λ - кватернион, задающий положение твердого тела относительно неподвижного базиса

Доказательство.

1.

$$\begin{split} B &= \dot{\Lambda} \circ \overline{\Lambda} \\ B &+ \overline{B} = \dot{\Lambda} \circ \overline{\Lambda} + \overline{\left(\dot{\Lambda} \circ \overline{\Lambda}\right)} = \dot{\Lambda} \circ \overline{\Lambda} + \Lambda \circ \overline{\Lambda} = \\ &= \frac{d}{dt} (\Lambda \circ \overline{\Lambda}) = \frac{d}{dt} (\parallel \Lambda \parallel) = 0 \Rightarrow B = \overline{B} \end{split}$$

2.

$$\begin{split} &\dot{\overline{e}}_k' = [\overline{\omega}, \overline{e}_k] \\ &\overline{e}_k' = \Lambda \circ \overline{e}_k \circ \overline{\Lambda}, \quad \overline{e}_k = \overline{\Lambda} \circ \overline{e}_k' \circ \Lambda \\ &\dot{\overline{e}}_k' = \dot{\Lambda} \circ \overline{e}_k \circ \Lambda + \Lambda \circ \overline{e}_k \circ \dot{\overline{\Lambda}} = \\ &\dot{\Lambda} \circ (\overline{\Lambda} \circ \overline{e}_k' \circ \Lambda) \circ \overline{\Lambda} + \Lambda \circ (\overline{\Lambda} \circ \overline{e}_k' \circ \Lambda) \circ \dot{\overline{\Lambda}} = \\ &= \dot{\Lambda} \circ \overline{\Lambda} \circ \overline{e}_k' + \overline{e}_k' \circ \Lambda \circ \dot{\overline{\Lambda}} = B \circ \overline{e}_k' + \overline{e}_k' \circ \overline{B} = \\ &[2\overline{B}, \overline{e}_k] \Rightarrow 2\overline{B} = \overline{\omega} \end{split}$$

Пример.

$$\Lambda = \cos\frac{\varphi}{2} + \overline{e}\sin\frac{\varphi}{2}$$

$$\begin{split} \overline{\omega} &= 2(-\sin\frac{\varphi}{2} \cdot \frac{\dot{\varphi}}{2} + \dot{\overline{e}}\sin\frac{\varphi}{2} + \overline{e}\cos\frac{\varphi}{2} \cdot \frac{\dot{\varphi}}{2}) \circ (\cos\frac{\varphi}{2} + \overline{e}\sin\frac{\varphi}{2}) = \\ &= \cos\frac{\varphi}{2} \cdot \sin\frac{\varphi}{2} \cdot \dot{\varphi} + \cos\frac{\varphi}{2} \cdot \sin\frac{\varphi}{2} \cdot \dot{\varphi} + \overline{e}\sin^2\frac{\varphi}{2} \cdot \dot{\varphi} + \\ &+ \overline{e}\cos^2\frac{\varphi}{2} \cdot \dot{\varphi} + 2\dot{\overline{e}}\sin\frac{\varphi}{2}\cos\frac{\varphi}{2} + 2[\overline{e},\dot{\overline{e}}]\sin^2\frac{\varphi}{2} = \overline{e}\dot{\varphi} + \dot{\overline{e}}\sin\varphi + 2[\overline{e},\dot{\overline{e}}]\sin^2\frac{\varphi}{2} \end{split}$$

Замечание.

1.

$$\overline{\omega} = \overline{e}\dot{\varphi} \Leftrightarrow \left[\begin{array}{c} \varphi = 0 \\ \dot{\overline{e}} = 0 \end{array} \right]$$

2.

$$\varphi \ll 1$$
. $\overline{\omega} \approx \overline{e}\varphi + \dot{\overline{e}}\varphi = \frac{d}{dt}(\overline{e}\varphi)$

3.

$$\overline{\omega} = \lim_{\Delta t \to 0} \frac{\Delta \overline{e} \Delta \varphi}{\Delta t}, \quad E(t) \xrightarrow{\Delta \Lambda} E(t + \delta t), \ \Delta \Lambda = \cos \frac{\Delta \varphi}{2} + \Delta \overline{e} \sin \frac{\varphi}{2}$$

Уравнение Пуассона

$$\omega = 2\dot{\Lambda} \circ \overline{\Lambda}$$

$$\dot{\Lambda} = \frac{1}{2}\overline{\omega}\Lambda$$
 — кинематическое уравнение Пуассона (8)

$$\omega = p\overline{e}_1' + q\overline{e}_2' + r\overline{e}_3', \quad \overline{\omega}^* = p\overline{e}_1 + q\overline{e}_2 + r\overline{e}_3$$

$$\dot{\Lambda} = \frac{1}{2}\Lambda \circ \overline{\omega}^*$$
(9)

Интегрирование уравнения Пуассона

$$\dot{\overline{x}} = \overline{f}(\overline{x}, t) \tag{10}$$

Определение. Функция $\Phi(\overline{x},t)$ называется первым интегралом системы (10), если

$$\Phi(\overline{x}(t), t) = const$$

 $r\partial e \ \overline{x}(t) - peшение системы (10)$

Утверждение 12. Система (8) имеет первый интерграл вида

$$|| \Lambda || = const$$

Доказательство.

$$\frac{d}{dt}(\parallel \Lambda \parallel) = \frac{d}{dt}(\Lambda \circ \overline{\Lambda}) = \dot{\Lambda} \circ \overline{\Lambda} + \Lambda \circ \dot{\overline{\Lambda}} = \frac{1}{2}\overline{\omega} \circ \Lambda \circ \overline{\Lambda} \dots$$

Утверждение 13. Общее решение системы (8) имеет вид:

$$\Lambda(t) = \Lambda'(t) \cdot C$$

 $r de \Lambda'$ - частное решение, C = const.

Доказательство. Λ, Λ' - Нетривиальные решения (8)

$$\dot{\Lambda} = \frac{1}{2}\overline{\omega} \circ \Lambda, \quad \dot{\Lambda}' = \frac{1}{2}\overline{\omega} \circ \Lambda'$$

$$M = (\Lambda')^{-1} \circ \Lambda, \quad \Lambda = \Lambda' \circ M$$

$$(9) \Rightarrow \begin{cases} \dot{\Lambda}' \circ M + \Lambda' \circ \dot{M} = \frac{1}{2}\overline{\omega} \circ \Lambda' \circ M \\ \dot{\Lambda}' = \frac{1}{2}\overline{\omega} \circ \Lambda' \end{cases} \Leftrightarrow$$

$$\Lambda' \circ \dot{M} = 0 \Leftrightarrow \dot{M} = 0 \Leftrightarrow M = C = const$$

Следствие.

$$\dot{\Lambda} = \frac{1}{2}\overline{\omega} \circ \Lambda, \quad \Lambda(\varphi) = 1$$
 (11)

Случай 1. Вращение вокруг неподвижной оси $\overline{\omega} = \overline{e}\omega$, $\overline{e} = const$:

$$(11) \Rightarrow \Lambda \cos \frac{\varphi}{2} + \overline{e} \sin \frac{\varphi}{2}, \quad \varphi = \int_{0}^{t} \omega(\tau) d\tau$$

Случай 2. Регулярная прецессия:

$$\overline{\omega} = \overline{\omega}_1 + \overline{\omega}_2$$

$$\Lambda_z = \cos\frac{\psi}{2} + \overline{e}_z \sin\frac{\varphi}{2}, \psi = \int_0^t \omega_1(\tau)d\tau$$

$$\Lambda_{\zeta} = \cos \frac{\psi}{2} + \overline{e}_{\zeta} \sin \frac{\varphi}{2}, \varphi = \int_{0}^{t} \omega_{2}(\tau) d\tau$$

1 способ:

 $O\zeta$ — ось тела (подвижная)

$$\Lambda_1 = \Lambda_z, \quad \Lambda_2 = \Lambda_\zeta$$

Oxyz — неподвижный базис, $Oxz = O\nu\zeta(0)$

$$\begin{split} &\Lambda_2^* = \cos\frac{\varphi}{2} + \overline{e}_{\xi}(0)\sin\frac{\varphi}{2} = \cos\frac{\varphi}{2} + (\sin\Theta\overline{e}_x + \cos\Theta\overline{e}_z)\sin\frac{\varphi}{2} \\ &\Lambda = (\cos\frac{\psi}{2} + \overline{e}_z\sin\frac{\psi}{2}) \circ \Lambda_2 = \dots \end{split}$$

2 способ:

 $O\zeta$ — неподвижна (ось тела в начальный момент времени)

$$\Lambda_1 = \Lambda_{\zeta}, \quad \Lambda_2 = \Lambda_z$$

Динамика

Принцип детерминированности Ньютона

$$\bar{r}_{i}(t) = \varphi_{i}(\bar{r}_{1}, \dots, \bar{r}_{N}, \dot{\bar{r}}_{1}, \dots, \dot{\bar{r}}_{N}, t_{0}, t) \quad \forall t_{0}$$

$$\ddot{\bar{r}}_{i}(t) = \frac{d^{2}\varphi_{i}}{dt^{2}} = f_{i}(\bar{r}_{1}, \dots, \bar{r}_{N}, \dot{\bar{r}}_{1}, \dots, \dot{\bar{r}}_{N}, t_{0}, t)$$

$$\bar{r}_{i}(t_{0}) = f_{i}(\dots, t) \quad \forall t_{0}$$

$$\ddot{\bar{r}}_{i}(t_{0}) = f_{i}(\bar{r}_{1}, \dots, \bar{r}_{N}, \dot{\bar{r}}_{1}, \dots, \dot{\bar{r}}_{N}, t) \quad \forall t_{0}$$
(12)

Пример. $f=0\Rightarrow \ddot{\overline{r}}=0,\ \overline{r}=\overline{r}_0+\dot{\overline{r}}_0(t-t_0)$

(Закон инерции Галилео-Ньютона); если m_i - масса точки \bar{r}_i

$$m_i\ddot{\overline{r}}_i = \overline{F}_i; \quad \overline{F}_i = m_i\overline{f}_i$$
 — сила

Преобразование Галилея

$$\begin{split} \overline{r} \rightarrow r^* &= \underbrace{A \overline{r}}_{\text{Ортог. пр.}} + \overline{v}_0 t + \overline{r}_0, \quad t^* = t + t_0 \\ A &= const, \quad \overline{v}_0 = const, \quad \overline{r}_0 = const \end{split}$$

Принцип относительности Галилея

$$\begin{split} & m_i \ddot{\overline{r}}_i = \overline{F}_i(\overline{r}_1, \dots, \overline{r}_N, \dot{\overline{r}}_1, \dots, \dot{\overline{r}}_N, t) \\ & m_i \ddot{\overline{r}}_i^* = \overline{F}_i(\overline{r}_1^*, \dots, \overline{r}_N^*, \dot{\overline{r}}_1^*, \dots, \dot{\overline{r}}_N^*, t^*) \\ & \frac{d\overline{r}_i^*}{dt^*} = \frac{d\overline{r}_i^*}{dt} \cdot 1 \\ & \ddot{\overline{r}}_i^* = A \ddot{\overline{r}} \Rightarrow \overline{F}_i^* = A \overline{F}_i \end{split}$$

Принцип относительности:

$$\overline{F}_i^*(\overline{r}_1^*, \dots \overline{r}_N^*, \dot{\overline{r}}_1^*, \dots, \dot{\overline{r}}_N^*, t^*) = \overline{F}_i(\overline{r}_1^*, \dots \overline{r}_N^*, \dot{\overline{r}}_1^*, \dots, \dot{\overline{r}}_N^*, t^*)$$

Пример. n = 1:

$$\overline{F} = A\overline{F}, \quad \forall A \Leftrightarrow \overline{F} = 0$$

Пример.
$$r^* = \overline{r}, \quad t^* = t - t_0, \quad t = t_0 \Rightarrow \overline{F}_i(\dots, t) = \overline{F}_i(\dots, 0)$$

Закон равенства действия и противодействия

$$\overline{F}_{ij} = -\overline{F}_{ji}, \ \overline{F}_{ij} \parallel \overline{r}_i - \overline{r}_i$$

Принцип суперпозиции

$$\overline{F}_i = \sum_{i \neq j} \overline{F}_{ij}$$
 (Для замкнутых систем)

$$\overline{F}_i = \overline{F}_i^{(e)} + \overline{F}_i^{(i)}$$

$$\overline{F}_i^{(e)}$$
 — внешняя сила

$$\overline{F}_i^{(i)}$$
 — внутренняя сила

Система неинерциальная

$$\overline{w}_{i}^{\mathrm{afc}} = \overline{w}_{i}^{\mathrm{oth}} + \overline{w}_{i}^{\mathrm{nep}} + \overline{w}_{i}^{\mathrm{kop}}$$

$$\begin{split} \overline{w}_i^{\text{a6c}} &= \overline{w}_i^{\text{отн}} + \overline{w}_i^{\text{пер}} + \overline{w}_i^{\text{кор}} \\ m_i \ddot{\overline{\rho}}_i &= \overline{F}_i + \overline{F}_i^{\text{отн}} + \overline{F}_i^{\text{пер}} \end{split}$$

$$\overline{w}_i^{\scriptscriptstyle{\text{OTH}}} = \ddot{\overline{\rho}}_i; \ \overline{F}_i^{\scriptscriptstyle{\text{OTH}}} = -m_i \overline{w}_i^{\scriptscriptstyle{\text{OTH}}}; \ \overline{F}_i^{\scriptscriptstyle{\text{Rep}}} = -m_i (\overline{w}_0 + [\overline{\varepsilon}, \overline{\rho}] + [\overline{\omega}, [\overline{\omega}, \overline{\rho}_i]])$$

Определение. $\overline{M}_O = [\overline{r}, \overline{F}]$ — момент инерции силы \overline{F} относительно O

Определение. $M_l = (\overline{M}_O, \overline{l})$ — момент силы \overline{F} относительно оси \overline{l}

Утверждение 14. M_l не зависит от выбора точки O.

Доказательство.

$$M_{l} = (\overline{M}_{O}, \overline{l}) = ([\overline{r}, \overline{F}], \overline{l}) = ([\overline{r}' + \overline{O'O}, \overline{F}], \overline{l}) =$$

$$= ([\overline{r}', \overline{F}], \overline{l}) + ([\lambda \overline{l}, \overline{F}], \overline{l}) \Rightarrow M_{l} = (\overline{M}_{O}, \overline{l})$$

Определение. $(\overline{F}, d\overline{r})$ — элементарная работа $(dA, d'A, \delta A, A_{s,s})$

Стационарные силы

$$F=\overline{F}(\overline{r},\dot{\overline{r}}-$$
 стационарная сила $W=(\overline{F},\overline{v})\leqslant 0,\;\;\overline{F}(\overline{r},\dot{\overline{r}})-$ диссипативная сила

Пример.

- $\overline{F} = -kN\frac{\dot{\overline{r}}}{|\overline{r}|} cyxoe \ mpenue$
- \bullet $\overline{F} = -eta\dot{\overline{r}}$ вязкое трение

 $W=(\overline{F},\overline{v})\equiv 0, \quad \overline{F}$ — гироскопическая сила

Пример.
$$\overline{F}^{\kappa op} = -m\overline{w}^{\kappa op} = -2m(\overline{\omega}, \overline{v})$$
 $(\overline{F}^{\kappa op}, \overline{v}) = -2m([\overline{\omega}, \overline{v}], \overline{v}) = 0$

Позиционные силы

 $\overline{F} = \overline{F}(r,t)$ — позиционная сила (силовое поле)

Определение. $\overline{F}(\overline{r},t)$ — потенциальная сила.

$$\exists u(\overline{r},t): \overline{F} = qrad_r - u$$

 $u-\mathit{силовая}\ \mathit{функция},\ \Pi=-u-\mathit{nomehquaльная}\ \mathit{энергия}.$

Пример.
$$F=F(x,t)\overline{e}_x=\frac{\partial u}{\partial \overline{r}}=\frac{\partial u}{\partial x}\overline{e}_x+\frac{\partial u}{\partial y}\overline{e}_y$$
 $U=\int F(x,t)dx$

Определение. Потенциальная сила $\overline{F}(\overline{r})$ - консервативная.

Пример.
$$F=-\frac{\gamma m}{r^2}\cdot\frac{\overline{r}}{r}$$
 — консервативная, $m.\kappa.$ $U=\int(\overline{F},d\overline{r})=-\int\frac{\gamma m}{r^3}(\overline{r},d\overline{r})=-\int\frac{\gamma m}{r^3}d\left(\frac{(\overline{r},\overline{r})}{2}\right)==-\int\frac{\gamma m}{r^3}d\frac{r^2}{2}=-\int\frac{\gamma m}{r^2}dr=\frac{\gamma m}{r};\quad n=-\frac{\gamma m}{r}$ $U=\int(\overline{F},d\overline{r})$

Критерий потенциальности

Утверждение 15.

$$\overline{F}(\overline{r}) = F_x \overline{e}_x + F_y \overline{e}_y + F_z \overline{e}_z - nomenyuaльная \Leftrightarrow \begin{cases} \frac{\partial F_x}{\partial y} = \frac{\partial F_y}{\partial x} \\ \frac{\partial F_y}{\partial z} = \frac{\partial F_z}{\partial y} \\ \frac{\partial F_z}{\partial z} = \frac{\partial F_z}{\partial z} \end{cases}$$

Доказательство.

$$\Rightarrow u \in c^{2}$$

$$\frac{\partial F_{x}}{\partial y} = \frac{\partial^{2} u}{\partial y \partial x} = \frac{\partial^{2} u}{\partial x \partial y} = \frac{\partial F_{y}}{\partial x}$$

$$\Leftarrow \\ u = \int\limits_{\overline{r}_0}^{\overline{r}} F_x(\xi,y,z) d\xi + \int\limits_{\overline{r}_0}^{\overline{r}} F_x(x_0,\eta,z) d\eta + \int\limits_{\overline{r}_0}^{\overline{r}} F_x(x_0,y_0,\zeta) d\zeta$$

Следствие. $F(\overline{r})$ — $nomenyuaльная cuna \Leftrightarrow \oint\limits_C (\overline{F}, d\overline{r}) = 0, \quad \forall C$

Доказательство.

$$\oint_{C=\delta W} (\overline{F}, d\overline{r}) = -\int_{W} (\frac{\partial F_x}{\partial y} - \frac{\partial F_y}{\partial x}) dx dy + \dots = 0$$

Система точек $\overline{F}_i = \overline{F}_i^{(e)} + \overline{F}_i^{(i)}$.

$$F_i^{(i)} = \sum_{j \neq i} \overline{F}_i j; \ \overline{F}_{ij} = -\overline{F}_{ji} = F_{ij} (|\overline{r}_i - \overline{r}_j|) \frac{\overline{r}_j - \overline{r}_i}{|\overline{r}_j - \overline{r}_i|}$$

Свойства внутренних сил

1.

$$\sum_{i=1}^{N} \overline{F}_{i}^{(i)} = 0$$

Доказательство.

$$\sum_{i=1}^{N} \overline{F}_{i}^{(i)} = \sum_{i=1}^{N} \sum_{j < i} \overline{F}_{ij} + \sum_{i=1}^{N} \sum_{j > i} \overline{F}_{ij} = \sum_{i=1}^{N} (\overline{F}_{ij} - \overline{F}_{ji}) = 0$$

2.

$$\sum_{i=1}^{N} [\overline{r}_i, \overline{F}_i^{(i)}] = 0$$

Доказательство.

$$\sum_{i=1}^{N} \sum_{j < i} [\overline{r}_i, \overline{F}_{ij}] + \sum_{i=1}^{N} \sum_{j < i} [\overline{r}_j, \overline{F}_{ij}] = \sum_{i=1}^{N} \sum_{j < i} [\overline{r}_i - \overline{r}_j, \overline{F}_{ij}] = 0$$

3. Внутренние силы потенциальны, т.е.

$$\exists u(\overline{r}_1,\ldots,\overline{r}_n): \overline{F}_i^{(i)} = grad_{\overline{r}_i}u$$

$$\begin{split} u_i j(|\overline{r}|) &= \int\limits_0^{|\overline{r}|} F_{ij}(\overline{\rho}) d\rho \\ u &= \sum_{i,i < j} u_{ij} \quad \frac{\partial u}{\partial \overline{r}_i} = \sum_{i,i < j} \frac{\partial u_{ij}}{\partial \overline{r}_i} = \sum \frac{\partial u_{ij}}{\partial |\overline{r}_i - \overline{r}_j|} \cdot \frac{\partial |\overline{r}_i - \overline{r}_j|}{\partial \overline{r}_i} \\ |\overline{r}_i - \overline{r}_j| &= \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2} \\ \frac{\partial |\overline{r}_i - \overline{r}_j|}{\partial x_i} &= \frac{(x_i - x_j)}{|\overline{r}_i - \overline{r}_j|} \quad \text{Аналогично для } y_i \text{ и } z_i \\ \frac{\partial |\overline{r}_i - \overline{r}_j|}{\partial r_i} &= \frac{\overline{r}_i - \overline{r}_j}{|\overline{r}_i - \overline{r}_j|} \\ \frac{\partial u}{\partial \overline{r}_i} &= \sum_{i,j,i < j} F_{ij}(\overline{r}_i - \overline{r}_j) \cdot \frac{\overline{r}_i - \overline{r}_j}{|\overline{r}_i - \overline{r}_j|} = \overline{F}_i^{(i)} \end{split}$$

4. Работа внутренних сил в тердом теле равна нулю.

Доказательство.

$$\sum (\overline{F}_i^{(i)}, v_i) = \sum (\overline{F}_i^{(i)}, \overline{v}_s + [\overline{\omega}, \overline{\rho}_i]) =$$

$$= \left(\underbrace{\sum \overline{F}_i^{(i)}}_{0}, \overline{v}_s\right) + \left(\overline{\omega}, \underbrace{\sum [\overline{\rho}_i, \overline{F}_i^{(i)}]}_{0}\right) = 0$$

Основные теоремы динамики

Основные динамические величины

Определение. $\overline{P}=\sum\limits_{i=1}^{N}m_{i}\overline{v}_{i}$ — импуль с. $\overline{K}_{O}=\sum\limits_{i=1}^{N}[[\overline{r}_{i},m_{i}\overline{v}_{i}]$ — кинематический момент онисительно точки O. $K_{l}=(\overline{K}_{0},\overline{e}_{l})$ — кинематический момент относительно оси l.

Замечание. $O \in l, \ \overline{e}_l \parallel \overline{l}; K_l$ не зависит от точки O.

Определение. $T=rac{1}{2}=\sum m_i v_i^2=rac{1}{2}m_i(\overline{v}_i,\overline{v}_i)$ — кинетическая энергия.

Определение. S - центр масс системы:

$$\overline{r}_S = \frac{\sum m_i \overline{r}_i}{m}$$

$$\overline{P} = \sum m_i \frac{d\overline{r}_i}{d\tau} = \frac{d}{dt} \left(\sum m_i \overline{r}_i \right) = \frac{d}{dt} (m\overline{r}_S) = m\overline{v}_S$$

$$\overline{P} = m\overline{v}_S$$

Определение. Осями Кенига называется система отсчета с началом в центра масс системы и осями, параллельными неподвижным. (Движется поступательно вместе с цетром масс)

$$\overline{r}_i = \overline{R} + \overline{\rho}_i$$

Определение.

$$\overline{K}_{\kappa u n} = \sum [\overline{\rho}_i, m \dot{\overline{\rho}}_i]$$

$$T_{\text{\tiny KHH}} = \frac{1}{2} \sum m_i \rho_i^2$$

Теорема 13 (Формулы Кенига).

$$\overline{K}_O = [\overline{r}_S, m\overline{v}_S] + \overline{K}_{\kappa en}$$

$$T = \frac{1}{2} m v_S^2 + T_{\kappa en}$$

Доказательство.

$$\begin{split} \overline{K}_0 &= \sum [\overline{R} + \overline{\rho}, m_i \dot{\overline{R}} + m_i \dot{\overline{\rho}}_i] = \left[\overline{R}, \left(\sum m_i \right) \dot{\overline{R}} \right] + \left[\overline{R}, \sum m_i \dot{\overline{\rho}}_i \right] + \\ &+ \left[\sum m_i \overline{\rho}_i, \dot{\overline{\rho}}_i, \overline{R} \right] + \sum [\overline{\rho}_i m_i \dot{\overline{\rho}}_i] = \left[\overline{r}_S, m \overline{v}_S \right] + \overline{K}_{\text{кен}} \\ T &= \frac{1}{2} \sum m_i (\overline{R}_i + \dot{\overline{\rho}}_i, \dot{\overline{R}}_i + \dot{\overline{\rho}}_i) = \frac{1}{2} \left(\sum m_i \right) \dot{\overline{R}}^2 + \frac{1}{2} \sum m_i \dot{\overline{\rho}}_i^2 + \\ &+ \underbrace{\sum m_i (\overline{R}, \overline{\rho})}_0 = \frac{1}{2} m v_S^2 + T_{\text{кен}} \end{split}$$

Теорема 14 (Об изменении импульса).

$$\dot{\overline{P}} = \sum \overline{F}_i^{(e)} = \overline{F}$$

Доказательство.

$$\dot{\overline{P}}_i = \frac{d}{dt} \sum m_i \overline{v}_i = \sum m_i \overline{w}_i = \sum \overline{F}_i^{(e)} + \underbrace{\sum \overline{F}_i^{(i)}}_{0} = \overline{F}$$

Теорема 15 (Формула движения центра масс).

$$m\overline{w}_S = \overline{F}$$

Следствие.

$$\overline{F} = 0 \Rightarrow \overline{w}_S = 0 \Rightarrow \overline{v}_S = \overline{v}_0 = const \Rightarrow \overline{r}_S = \overline{v}_0(t - t_0) + \overline{r}_0$$

Следствие.

$$(\overline{F}, \overline{e}_x) = 0 \Rightarrow (\dot{\overline{P}}, \overline{e}_x) = 0 \Rightarrow \overline{v}_x = const$$

Теорема 16 (Теорема об изменении кинетического момента относительно неподвижного полюса).

$$\overline{K}_O = \sum [\overline{r}_i, \overline{F}_i^{(e)}] = \overline{M}_O$$

Доказательство.

$$\begin{split} &\frac{d}{dt}\overline{K}_{O} = \frac{d}{dt}\left(\sum[\overline{r}_{i}, m_{i}\overline{v}_{i}]\right) = \sum\left[\frac{d\overline{r}_{i}}{dt}, m_{i}\overline{v}_{i}\right] + \sum[\overline{r}_{i}, m_{i}\dot{\overline{v}}_{i}] = \\ &= \sum[\overline{r}_{i}, \overline{F}_{i}^{(e)}] + \sum[\overline{r}_{i}, \overline{F}_{i}^{(e)}] = \overline{M}_{O} \end{split}$$

Следствие.

$$\overline{M}_O = 0 \Rightarrow \overline{K}_O = const$$

Следствие.

$$M_l = (\overline{M}_O, \overline{e}_l) = 0, \quad \overline{e}_l = const \Rightarrow K_l = const$$

Доказательство.

$$\frac{d}{dt}K_l = \frac{d}{dt}(\overline{K}_O, \overline{e}_l) = \left(\frac{d\overline{K}_O}{dt}, \overline{e}_l\right) + 0 = (\overline{M}_O, \overline{e}_l) = M_l$$

Следствие.

$$\dot{K}_l = M_l$$

Формула преобразования кинетического момента при смене полюса

$$\overline{K}_B = \overline{K}_A + [\overline{P}, \overline{AB}]$$

Доказательство.

$$\overline{K}_B = \sum [\overline{BA} + \overline{\rho}_i, m_i \overline{v}_i] = [\overline{BA}, m_i \overline{v}_i] + \overline{K}_A = \overline{K}_A + [\overline{P}, \overline{AB}]$$

Формула преобразовани момента сил при смене полюса

$$\overline{M}_B = \overline{M}_A + [\overline{F}, \overline{AB}]$$

Доказательство. Аналогично.

Теорема 17.

$$\overline{K}_A = \overline{M}_A + [\overline{P}, \overline{v}_A]$$

Доказательство.

$$\begin{split} \overline{K}_A &= \overline{K}_O + [\overline{P}, \overline{r}_A], \quad (\overline{v}_0 \equiv 0) \\ \dot{\overline{K}}_A &= \dot{\overline{K}}_O + [\dot{\overline{P}}, \overline{r}_A] + [\overline{P}, \dot{\overline{r}}_A] = \overline{M}_O + [\overline{F}, \overline{r}_A] + [\overline{P}, \overline{v}_A] = \\ \overline{M}_A &+ [\overline{P}, \overline{v}_A] \end{split}$$

Следствие (Первая теорема Кенига).

$$\dot{\overline{K}}_{\kappa e n} = \overline{M}_S$$

Доказательство.

$$\overline{K}_{\scriptscriptstyle{\mathrm{KeH}}} = \overline{K}_S; \ \ \dot{\overline{K}}_{\scriptscriptstyle{\mathrm{KeH}}} = \overline{M}_S + [\overline{P}, \overline{v}_S] = \overline{M}_S + [m\overline{v}_S, \overline{v}_S] = \overline{M}_S$$

Теорема 18 (Об изменении кинетической энергии).

$$\dot{T} = \sum (\overline{F}_u(e), \overline{v}_i) + \sum (\overline{F}_i^{(i)}, \overline{v}_i)$$

Доказательство.

$$T = \frac{1}{2} \sum_{i} m_{i}(\overline{v}_{i}, \overline{v}_{i})$$

$$\dot{T} = \sum_{i} (\overline{v}_{i}, m\dot{\overline{v}}_{i}) = \sum_{i} (\overline{v}_{i}, m\overline{w}_{i}) = \sum_{i} (\overline{v}_{i}, \overline{F}_{i}^{(e)} + \overline{F}_{i}^{(i)})$$

$$dT = \sum (\overline{F}_i^{(e)}, d\overline{r}_i) + \sum (\overline{F}_i^{(i)}, d\overline{r}_i)$$

Утверждение 16 (Вторая теорема Кенига).

$$\overline{T}_{\kappa un} = \sum (\overline{F}_i, \dot{\overline{\rho}}_i)$$

$$\begin{split} \dot{T}_{\text{кин}} &= \dot{T} - (m\dot{\overline{v}}_S, \overline{v}_S) = \sum (\overline{F}_i, \overline{v}_i) - \sum (\overline{F}_i, \overline{v}_S) \\ \dot{\overline{\rho}}_i &= \overline{v}_i^{\text{отн}} = \overline{v}_i^{\text{a6c}} - \overline{v}_i^{\text{nep}} = \overline{v}_i - \overline{v}_S \\ \dot{T}_{\text{кин}} &= \left(2\overline{F}_i, \overline{v}_i - \overline{v}_S\right) = \sum (\overline{F}_i, \dot{\overline{\rho}}_i) \end{split}$$

Пусть
$$\overline{r}_i^{(e)} = -grad_{\overline{r}_i}\Pi(\overline{r}_i,\dots,\overline{r}_N)$$
 (внешние силы консервативны).
$$\sum (\overline{F}_i^{(e)},d\overline{r}_i) = -\sum \left(\frac{\partial \Pi}{\partial \overline{r}_i},d\overline{r}_i\right) = -d\Pi$$

$$dT = -d\Pi \Rightarrow d(T+\Pi) = 0 \Rightarrow T+\Pi = const$$

Теорема 19 (Закон сохранения полной механической энергии). *Если все внешние силы, действующие на систему консервативны, то полная энергия системы сохраняется.*

Основные теоремы динамики в неинерциальных системах отсчета

$$\begin{split} m_i \overline{w}_i &= \overline{F}_i^{(e)} + \overline{F}_i^{(i)} + \overline{F}_i^{(\text{nep})} + \overline{F}_i^{(\text{kop})} \\ & \dot{\overline{P}} = \overline{F} + \overline{F}^{\text{nep}} + \overline{F}^{\text{kop}} \\ & \overline{F}^{\text{nep}} = \sum \overline{F}^{\text{nep}} = -\sum m_i w_i^{\text{nep}}; \quad \overline{F}^{\text{kop}} = \sum \overline{F}_i^{\text{kop}} = -\sum m_i \cdot 2 \cdot [\overline{w}_{\text{kop}}, \overline{v}_i] \\ & \dot{\overline{K}}_0 = \overline{M}_O + \overline{M}_O^{\text{nep}} + \overline{M}_O^{\text{kop}} \\ & \overline{M}_O^{\text{kop}} = \sum [\overline{r}_i, \overline{F}_i^{\text{nep}}]; \quad \overline{M}_O^{\text{kop}} = \sum [\overline{r}_i, \overline{F}_i^{\text{kop}}] \\ & \dot{T} = \sum (F_i, \overline{v}_i) + \sum (\overline{F}_i^{\text{nep}}, \overline{v}_i) + 0 \\ & \sum (\overline{F}_i^{\text{kop}}, \overline{v}_i) = \sum (-2m_i [\overline{\omega}_{\text{nep}}, v_i], \overline{v}_i) = 0 \end{split}$$

Пример (Система отсчета Кенига).

$$\begin{split} &\dot{\overline{K}}_S = \dot{\overline{K}}_{\kappa en} = \overline{M}_S; \\ &\dot{T}_S = \sum (\overline{F}_i, \overline{v}_i); \qquad \dot{\overline{P}} = \overline{F} - \sum m_i \overline{w}_S = \overline{F} - m \overline{w}_S \end{split}$$

Тут не хватает куска

Динамика твердого тела

Определение. Моментом инерции твердого тела относительно оси называется сумма произведений масс точек тела на квадрат расстояния до этой оси:

$$J_l = \sum m_i d_i^2, \quad d_i = dist(\overline{r}_i, l); \qquad \left(J_l = \int_W d^2 dm\right)$$
 (13)

$$J_l \sum m_i([\overline{r}_i, \overline{l}])^2 = \sum m_i(\overline{r}_i - (\overline{r}_i, \overline{l}_i)^2)$$
(14)

Теорема 20. Гюйгенса-Штейнера

$$J_l = J_{l'} + md^2, \quad d = dist(l, l')$$

Доказательство.

$$J_{l} = \sum m_{i}([\overline{r}_{S} + \overline{\rho}_{i}, \overline{l}])^{2} = \sum m([\overline{r}_{S}, \overline{l}]^{2}) + \sum m_{i}[\overline{\rho}_{i}, \overline{l}]^{2} + 2\sum m_{i}((\overline{r}_{S}, \overline{l}) \cdot (\overline{\rho}_{i}, \overline{l})) =$$

$$= m \cdot d^{2} + J_{l'} + 2(\overline{r}_{S}, \overline{\rho}) \cdot \left(\sum m_{i}\overline{\rho}_{i}, \overline{l}\right) = J_{l'} + d^{2}m$$

 $\overline{r}_i = x_i \overline{e}_x + y_i \overline{e}_y + z_i \overline{e}_z$

Определение.

$$J_x = \sum m_i(y_i^2 + z_i^2)$$

 $J_y = \sum m_i(z_i^2 + x_i^2)$ — осевые моменты инерции
 $J_z = \sum m_i(x_i^2 + y_i^2)$

Свойство 1

$$J_x + J_y \geqslant J_z$$

Доказательство.

$$J_x + J_y = \sum m_i(x_i^2 + y_i^2) + 2\sum m_i, z_i \geqslant J_z$$

Замечание. Равенство достигается в случае плоского тела

$$J_x + J_y = J_z \Leftrightarrow z_i = 0 \quad \forall m$$

Определение.

$$J_{xy}=\sum m_ix_iy_i$$
 $J_{yz}=\sum m_iy_iz_i$ — центробежные моменты инерции. $J_{xz}=\sum m_ix_iz_i$

Определение.

$$\begin{pmatrix} J_x & -J_{xy} & -J_{xz} \\ -J_{xy} & J_y & -J_{yz} \\ -J_{xz} & -J_{yz} & J_z \end{pmatrix} - \textit{mensop unepuuu mena в точке O}$$

$$\begin{split} \bar{l} &= \alpha \bar{e}_x + \beta \bar{e}_y + \gamma \bar{e}_z, \quad \alpha^2 + \beta^2 + \gamma^2 = 1 \\ J_l &= \sum m_i \left((x_i^2 + y_i^2 + z_i^2)(\alpha^2 + \beta^2 + \gamma^2) - (x_i \alpha + y_i \beta + z_i \gamma)^2 \right) = \\ &= \sum m_i (y_i^2 + z_i^2)\alpha^2 + \sum m_i (x_i^2 + z_i^2)\beta^2 + \sum m_i (x_i^2 + y_i^2)\gamma^2 - \\ &- 2 \left(\sum m_i x_i y_i \right) \alpha \beta - 2 \left(\sum m_i y_i z_i \right) \beta \gamma - 2 \left(\sum m_i x_i y_i \right) \alpha \beta = \\ &= J_x \alpha^2 + J_y \beta^2 - 2J_{xy} \alpha \beta - 2J_{yz} \beta \gamma - 2J_{xz} \alpha \gamma = (J_O \bar{l}, \bar{l}) \end{split}$$

$$Ox'y'z'$$

$$\bar{l}' = \alpha'\bar{e}_{x'} + \beta'\bar{e}_{y'} + \gamma'\bar{e}_{z'}, \quad J'_0$$

$$\bar{l}' = A\bar{l}, \quad A^T = A^{-1}$$

$$J_l = (J'_0\bar{l}',\bar{l}') = (J'_0 \cdot A\bar{l}, A\bar{l}) = (A^T J'_0 A\bar{l}, \bar{l}) = (J_O\bar{l}, \bar{l}) \Leftrightarrow$$

$$\Leftrightarrow J_O = A^T J'_O A$$

Определение.

$$\Sigma\left\{\overline{r},\;\;(J_{O}\overline{r},\overline{r})=1
ight\}\;-$$
 эллипсоид инерции тела в точке 0

Замечание.

$$(J_O \overline{r}, \overline{r}) = 1 \Leftrightarrow J_x x^2 + J_y y^2 + J_z z^2 - 2J_{xy} xy - 2J_{yz} yz - 2J_{xz} xz = 1$$

Замечание.

$$(J_O \overline{r}, \overline{r}) = 1 \Leftrightarrow \underbrace{\left(J_O \frac{\overline{r}}{|\overline{r}|}, \frac{\overline{r}}{|\overline{r}|}\right)}_{J_{\overline{r}}}, \quad |r|^2 = 1 \Leftrightarrow |\overline{r}| = \sqrt{\frac{1}{J_{\overline{r}}}}$$

$$\exists O\xi\eta\zeta, \quad A\xi^2 + B\eta^2 + C\zeta^2 = 1 \equiv \Sigma$$

Определение. A, B, C — главные моменты инерции тела в точке O

Определение. $O\xi,\,O\eta,\,O\zeta\,-\,$ главные оси инерции в точке O

Определение. S — центр масс, тогда $S\xi$, $S\eta$, $S\zeta$ — главные центральные моменты

$$det(J_O-\lambda E)=0, \quad \lambda-A,B,C \to \overline{a},\overline{b},\overline{c}=\overline{e}_\xi\overline{e}_\eta\overline{e}_\zeta$$
 $A=B(\lambda-$ корень 2ой кратности, тогда $O\zeta-$ ось динамической симметрии)

Замечание. Если однородное твердое тело имеет ось геометрической симметрии, то она является главной в любой своей точке.

$$Oz$$
 — ось симметрии, $m_i=m_i'$.
$$J_{xz}=\sum_{i=1}^N m_i x_i z_i = \sum_{i=0}^{N/2} (m_i x_i z_i - m x_i z_i) = 0$$
 $J_{yz}=0$ Oz — главная

Замечание. Если однородное твердое тело имеет плоскость симметрии, то ось, перпендикулярная этой плоскости, является главной в точке пересечения с плоскостью.

Твердое тело с неподвижной точкой ($\overline{v}_O = 0$)

Теорема 21.

$$T = \frac{1}{2}(J\overline{\omega}, \overline{\omega}), \quad \overline{K}_O = J_O\overline{\omega}$$

$$l:l\parallel\overline{\omega},\ O\in l({\rm O-M}$$
гновенная ось вращения)
$$T=\frac{1}{2}\sum m_iv_i^2=\frac{1}{2}\sum m_i([\overline{\omega},\overline{r}_i])^2=\frac{1}{2}\sum m_i([\overline{l},\overline{r}_i])^2\cdot\omega^2=\frac{1}{2}J_l\omega^2=\frac{1}{2}(J_O,\overline{l},\overline{l})\omega^2=\frac{1}{2}(J_O\overline{\omega},\overline{\omega})$$
 $\overline{K}_O=\sum m_i[\overline{r}_i,[\overline{\omega},\overline{r}_i]]=\sum m_i(\overline{r}_i^2\cdot\overline{\omega}-\overline{r}_i(\overline{\omega},\overline{r}_i))$ $\overline{\omega}=\omega_x\overline{e}_x+\omega_y\overline{e}_y+\omega_z\overline{e}_z$ $(\overline{K}_O,\overline{e}_x)=\sum m_i[(x_i^2+y_i^2+z_i^2)\omega_x-(\omega_xx_i+\omega_yy_i+\omega_zz_i)]x_i=J_x\omega_x-J_{xy}\omega_y-J_{xy}\omega_z$ $(\overline{K}_O,\overline{e}_y)=J_{xy}\omega_x-J_y\omega_y-J_{xz}\omega_z$ $(\overline{K}_O,\overline{e}_z)=J_{xz}\omega_x-J_{xz}\omega_y-J_{zz}\omega_z$

Следствие. Пусть $O\xi$, $O\eta$, $O\zeta$ — главные оси инерции:

$$J_O = diag(A,B,C), \quad \overline{\omega} = p\overline{e}_{\xi} + q\overline{e}_{\eta} + r\overline{e}_{\zeta}$$

$$T = \frac{1}{2}(Ap^2 + Bq^2 + Cr^2), \quad \overline{K}_O = Ap\overline{e}_{\xi} + Bq\overline{e}_{\eta} + Cr\overline{e}_{\zeta}$$

Произвольное движение тела

Теорема 22.

$$T = \frac{1}{2}m\overline{v}_S^2 + \frac{1}{2}(J_S\overline{\omega}, \overline{\omega})$$
$$\overline{K}_O = [\overline{r}_S, m\overline{v}_S] + J_S\overline{\omega}$$

Доказательство.

$$T = \frac{1}{2}m\overline{v}_S^2 + T^{\text{\tiny KeH}} = \frac{1}{2}mv_S^2 + \frac{1}{2}(J_S\overline{\omega}, \overline{\omega})$$

Следствие. $S_{\xi}, S_{\eta}, S_{\zeta}$ — главные центральные оси

$$T = \frac{1}{2}mv_S^2 + \frac{1}{2}(Ap^2 + Bq^2 + Cr^2)$$

$$\overline{K}_O = [\overline{r}_S, m\overline{v}_S] + Ap\overline{e}_{\xi} + Bq\overline{e}_{\eta} + Cr\overline{e}_{\zeta}$$

Следствие. $\overline{\omega}||\overline{e}_z, \quad \overline{e}_z = const$:

$$T = \frac{1}{2}mv_S^2 + \frac{1}{2}\underbrace{(J_S\overline{e}_z, \overline{e}_z)}_{J_z}\omega^2 = \frac{1}{2}mv_S^2 = \frac{1}{2}J_z\omega^2$$

$$\overline{K}_O = \left[\overline{r}_S, m\overline{v}_S\right] + \underbrace{J_S \overline{\omega}}_{J_z \overline{\omega} \Leftrightarrow J_{xy} = J_{yz} = 0} \quad \text{ } \forall \overline{e}_z$$

Динамика твердого тела с неподвижной точкой

$$\begin{split} &\frac{d\overline{K}_O}{dt} = \overline{M}_O \\ &O\xi, O\eta, O\zeta - \text{главные оси} \\ &\overline{K}_O = Ap\overline{e}_\xi + Bq\overline{e}_\eta + Cr\overline{e}_\zeta \\ &\frac{d\overline{K}_O}{dt} = \overline{\dot{K}}_O + [\overline{\omega}, \overline{K}_O] \\ &\Rightarrow A\dot{p}\overline{e}_\xi = B\dot{q}\overline{e}_\eta + C\dot{r}\overline{e}_\zeta + \begin{vmatrix} \overline{e}_\xi & \overline{e}_\eta & \overline{e}_\zeta \\ p & q & r \\ Ap & Bq & Cr \end{vmatrix} = M_\xi\overline{e}_\xi + M_\eta\overline{e}_\eta + M_\zeta\overline{e}_\zeta \\ &\begin{cases} A\dot{p} + (C-B)qr = M_\xi \\ B\dot{q} + (A-C)rp = M_\eta \\ C\dot{r} + (B-A)qp = M_\zeta \end{cases} \end{split}$$