Метод штрафов. ADMM Методы оптимизации

Александр Безносиков

Московский физико-технический институт

31 октября 2024

Рассмотрим следующую задачу с ограничениями:

$$\min_{x \in \mathbb{R}^d} f(x),$$

s.t.
$$h_i(x) = 0, i = 1, ... m$$
.

Рассмотрим следующую задачу с ограничениями:

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $h_i(x) = 0, i = 1, \dots m$.

Возьмем некоторое $\rho > 0$ и немного модифицируем нашу задачу:

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(\mathbf{x}),$$

s.t. $h_i(\mathbf{x}) = 0, i = 1, \dots, m.$

Вопрос: что можно сказать о новой задаче?

Рассмотрим следующую задачу с ограничениями:

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}),$$
 $\mathrm{s.t.} \ h_i(\mathbf{x}) = 0, \ i = 1, \dots m.$

Возьмем некоторое $\rho > 0$ и немного модифицируем нашу задачу:

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(\mathbf{x}),$$

s.t. $h_i(\mathbf{x}) = 0, i = 1, \dots, m.$

Вопрос: что можно сказать о новой задаче? она эквивалентна старой, так как «добавка» равна 0 для x, удовлетворяющих ограничениям.

$$\min_{x \in \mathbb{R}^d} \left[f_{\rho}(x) = f(x) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(x) \right].$$

А теперь сделаем вот так:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left[f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(\mathbf{x}) \right].$$

Вопрос: осталась ли задача эквивалента исходной?

А теперь сделаем вот так:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left[f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(\mathbf{x}) \right].$$

Вопрос: осталась ли задача эквивалента исходной? нет!

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left[f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(\mathbf{x}) \right].$$

- **Вопрос**: осталась ли задача эквивалента исходной? нет! f_{ρ} называют штрафной функцией, а ρ параметром штрафа.
 - Задача с ограничениями стала задачей без ограничений.

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left[f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(\mathbf{x}) \right].$$

- Вопрос: осталась ли задача эквивалента исходной? нет! f_{ρ} называют штрафной функцией, а ρ параметром штрафа.
 - Задача с ограничениями стала задачей без ограничений.
 - Решая новую задачу, можно выйти за пределы множества ограничений.

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left[f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(\mathbf{x}) \right].$$

- **Вопрос:** осталась ли задача эквивалента исходной? нет! f_{ρ} называют штрафной функцией, а ρ параметром штрафа.
 - Задача с ограничениями стала задачей без ограничений.
 - Решая новую задачу, можно выйти за пределы множества ограничений.
 - Предельное ρ :

$$\lim_{\rho \to +\infty} f_{\rho} =$$

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left[f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(\mathbf{x}) \right].$$

- **Вопрос:** осталась ли задача эквивалента исходной? нет! f_{ρ} называют штрафной функцией, а ρ параметром штрафа.
 - Задача с ограничениями стала задачей без ограничений.
 - Решая новую задачу, можно выйти за пределы множества ограничений.
 - Предельное ρ :

$$\lim_{
ho o +\infty} f_{
ho} = egin{cases} f(x), & x \$$
удовлетворяет ограничениям исходной задачи $+\infty, &$ иначе

А теперь сделаем вот так:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left[f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(\mathbf{x}) \right].$$

- **Вопрос:** осталась ли задача эквивалента исходной? нет! f_{ρ} называют штрафной функцией, а ρ параметром штрафа.
 - Задача с ограничениями стала задачей без ограничений.
 - Решая новую задачу, можно выйти за пределы множества ограничений.
 - Предельное ρ:

• Есть надежда, что минимизируя f_{ρ} (решая штрафную задачу) для достаточно большого ρ , мы получим неплохое решение и для исходной задачи.

Штрафная функция: ограничения вида неравенств

Добавим еще ограничения вида неравенств:

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $h_i(x) = 0, i = 1, \dots m,$

$$g_i(x) \le 0, j = 1, \dots n.$$

Штрафная функция: ограничения вида неравенств

Добавим еще ограничения вида неравенств:

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $h_i(x) = 0, i = 1, \dots m,$

$$g_i(x) \le 0, j = 1, \dots n.$$

Вопрос: как их запихать в штраф?

Штрафная функция: ограничения вида неравенств

Добавим еще ограничения вида неравенств:

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $h_i(x) = 0, i = 1, \dots m,$
 $g_i(x) \le 0, j = 1, \dots n.$

Вопрос: как их запихать в штраф?

• С помощью «срезки»:

$$f_{\rho}(x) = f(x) + \rho \cdot \frac{1}{2} \sum_{i=1}^{m} h_{i}^{2}(x) + \rho \cdot \frac{1}{2} \sum_{j=1}^{n} (g_{j}^{+})^{2}(x),$$

где $y^+ = \max\{y, 0\}$. Активируем штраф только, когда нарушено неравенство.

Пусть x^* – решение исходной задачи, а x_o^* – решение соотвествующей штрафной задачи с $\rho > 0$, тогда

$$f(x^*) \geq f(x_o^*).$$

$$f(x^*) = f_{\rho}(x^*) \ge \min_{\substack{\gamma \in \mathbb{R}^d \\ \rho}} f_{\rho}(x) = f_{\rho}(x_{\rho}^*) \ge f(x_{\rho}^*).$$

Предыдущий результат говорит о том, что либо нарушаем ограничения, либо $f(x^*) = f(x_o^*)$. Но за счет ρ с этим можно бороться. Следующие два свойства про это.

Предыдущий результат говорит о том, что либо нарушаем ограничения, либо $f(x^*) = f(x_o^*)$. Но за счет ρ с этим можно бороться. Следующие два свойства про это.

Свойства решений штрафной задачи

С увеличение ρ решения штрафной задачи (если существует) гарантировано не ухудшает степень нарушения ограничений, т.е. для $\rho_1 > \rho_2$ следует, что

$$\sum_{i=1}^{m} h_i^2(x_{\rho_2}^*) \ge \sum_{i=1}^{m} h_i^2(x_{\rho_1}^*),$$

где x_{01}^* и x_{02}^* – решения соответствующих штрафных задач.

<u>Док</u>азательство

• Пользуясь тем, что $x_{\rho_1}^*$ и $x_{\rho_2}^*$ – решения соответствующих штрафных задач:

$$f(x_{\rho_2}^*) + \rho_1 \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(x_{\rho_2}^*) \ge f(x_{\rho_1}^*) + \rho_1 \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(x_{\rho_1}^*)$$

И

$$f(x_{\rho_1}^*) + \rho_2 \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(x_{\rho_1}^*) \ge f(x_{\rho_2}^*) + \rho_2 \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(x_{\rho_2}^*)$$

Складываем и делим на $(\rho_1 - \rho_2) > 0$:

$$\sum_{i=1}^m h_i^2(x_{\rho_2}^*) \geq \sum_{i=1}^m h_i^2(x_{\rho_1}^*).$$

Свойства решений штрафной задачи

Пусть функция f и все функции h_i ($i=1,\ldots m$) являются непрерывными. Пусть X^* множество решений исходной условной задачи оптимизации и для $x^* \in X^*$ множество

$$U = \{ x \in \mathbb{R}^d \mid f(x) \le f(x^*) \}$$

ограничено. Тогда для любого e > 0 существует $\rho(e) > 0$ такое, что множество решений штрафной задачи X_a^* для любых $\rho \geq \rho(e)$ содержится в

$$X_e^* = \{ x \in \mathbb{R}^d \mid \exists x^* \in X^* : \|x - x^*\|_2 \le e \}.$$

Свойства решений штрафной задачи

Пусть функция f и все функции h_i $(i=1,\dots m)$ являются непрерывными. Пусть X^* множество решений исходной условной задачи оптимизации и для $x^* \in X^*$ множество

$$U = \{ x \in \mathbb{R}^d \mid f(x) \le f(x^*) \}$$

ограничено. Тогда для любого e>0 существует $\rho(e)>0$ такое, что множество решений штрафной задачи X_{ρ}^* для любых $\rho\geq\rho(e)$ содержится в

$$X_e^* = \{ x \in \mathbb{R}^d \mid \exists x^* \in X^* : \|x - x^*\|_2 \le e \}.$$

Ограниченность U нужна для того, чтобы гарантировать, что вне ограничений функция f ведет себя «адекватно» и штрафная функция просто не улетит в $-\infty$. По факту это и гарантирует существование и непустоту X_a^* .

Александр Безносиков

От противного:

От противного: пусть существует некоторое e > 0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$ не лежащие в X_e^* .

- От противного: пусть существует некоторое e>0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$ не лежащие в $X_{\mathfrak{p}}^*$.
- Мы уже знаем, что $f(x^*) \ge f(x_o^*)$, а значит все x_i^* лежат в ограниченном множестве.

- От противного: пусть существует некоторое e > 0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$ не лежащие в $X_{\mathfrak{p}}^*$.
- Мы уже знаем, что $f(x^*) \ge f(x_o^*)$, а значит все x_i^* лежат в ограниченном множестве.
- По теореме Больцано-Вейерштрасса из ограниченной последовательности можно выделить сходящуюся подпоследовательность: $ilde{x}_i^* o ilde{x}^*$. Посмотрим, что мы можем сказать про \tilde{x}^* .

- От противного: пусть существует некоторое e > 0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$ не лежащие в $X_{\mathfrak{o}}^*$.
- Мы уже знаем, что $f(x^*) \ge f(x_o^*)$, а значит все x_i^* лежат в ограниченном множестве.
- По теореме Больцано-Вейерштрасса из ограниченной последовательности можно выделить сходящуюся подпоследовательность: $\tilde{x}_i^* \to \tilde{x}^*$. Посмотрим, что мы можем сказать про \tilde{x}^* .
- Опять же по известному факту, что $f(x^*) \geq f(\tilde{x}_i^*)$, можно перейти к пределу и сделать вывод, что $f(x^*) \geq f(\tilde{x}^*)$. Вопрос: почему переход к пределу валиден?

- От противного: пусть существует некоторое e > 0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$ не лежащие в $X_{\mathfrak{o}}^*$.
- Мы уже знаем, что $f(x^*) \ge f(x_o^*)$, а значит все x_i^* лежат в ограниченном множестве.
- По теореме Больцано-Вейерштрасса из ограниченной последовательности можно выделить сходящуюся подпоследовательность: $\tilde{x}_i^* \to \tilde{x}^*$. Посмотрим, что мы можем сказать про \tilde{x}^* .
- Опять же по известному факту, что $f(x^*) \geq f(\tilde{x}_i^*)$, можно перейти к пределу и сделать вывод, что $f(x^*) \geq f(\tilde{x}^*)$. Вопрос: почему переход к пределу валиден? в силу непрерывности f.

• Уже получили, что $f(x^*) \ge f(\tilde{x}^*)$. Покажем, что дополнительно \tilde{x}^* удовлетворяет исходным ограничениям h. От противного: пусть для какого-то k = 1, ... m, ограничение h_k не выполняется: $h_k(\tilde{x}^*) \neq 0$.

- Уже получили, что $f(x^*) \ge f(\tilde{x}^*)$. Покажем, что дополнительно \tilde{x}^* удовлетворяет исходным ограничениям h. От противного: пусть для какого-то k = 1, ... m, ограничение h_k не выполняется: $h_k(\tilde{x}^*) \neq 0$.
- В силу непрерывности h_k : можно заметить, что начиная с достаточно большого номера i, выполнено

$$|h_k(\tilde{x}_i^*)| \geq \frac{1}{2} |h_k(\tilde{x}^*)| > 0.$$

- Уже получили, что $f(x^*) \ge f(\tilde{x}^*)$. Покажем, что дополнительно \tilde{x}^* удовлетворяет исходным ограничениям h. От противного: пусть для какого-то k = 1, ... m, ограничение h_k не выполняется: $h_k(\tilde{x}^*) \neq 0.$
- В силу непрерывности h_k : можно заметить, что начиная с достаточно большого номера i, выполнено

$$|h_k(\tilde{x}_i^*)| \geq \frac{1}{2} |h_k(\tilde{x}^*)| > 0.$$

Вопрос: что в пределе $\tilde{\rho}_i \to +\infty$ с

$$f_{ ilde{
ho}_i}(ilde{x}_i^*) = f(ilde{x}_i^*) + ilde{
ho}_i \cdot rac{1}{2} \sum_{i=1}^m h_i^2(ilde{x}_i^*)$$
?

- Уже получили, что $f(x^*) \ge f(\tilde{x}^*)$. Покажем, что дополнительно \tilde{x}^* удовлетворяет исходным ограничениям h. От противного: пусть для какого-то k = 1, ... m, ограничение h_k не выполняется: $h_k(\tilde{x}^*) \neq 0$.
- В силу непрерывности h_k : можно заметить, что начиная с достаточно большого номера i, выполнено

$$|h_k(\tilde{x}_i^*)| \geq \frac{1}{2} |h_k(\tilde{x}^*)| > 0.$$

Вопрос: что в пределе $\tilde{\rho}_i \to +\infty$ с

$$f_{ ilde{
ho}_i}(ilde{x}_i^*) = f(ilde{x}_i^*) + ilde{
ho}_i \cdot rac{1}{2} \sum_{i=1}^m h_i^2(ilde{x}_i^*)$$
?

Улетает в бесконечность. Пришли к противоречию, так как $f_{\tilde{\rho}_i}(\tilde{x}_i^*) \leq f(x^*)$, а значит \tilde{x}^* удовлетворяет ограничениям.

Получили, что $f(x^*) \ge f(\tilde{x}^*)$ и \tilde{x}^* удовлетворяет ограничениям. Вопрос: что это значит?

Получили, что $f(x^*) \ge f(\tilde{x}^*)$ и \tilde{x}^* удовлетворяет ограничениям. **Вопрос:** что это значит? $\tilde{x}^* \in X^*$.

- Получили, что $f(x^*) \ge f(\tilde{x}^*)$ и \tilde{x}^* удовлетворяет ограничениям. **Вопрос:** что это значит? $\tilde{x}^* \in X^*$.
- Но раз $\tilde{x}^* \in X^*$, то начиная с некоторого номера i элементы \tilde{x}_i^* будут лежать в X_e^* – финальное противоречие, которое завершает доказательство.

Итог по классической штрафной функции

- Условная задача превращена в безусловную.
- Увеличение ρ приближает к исходной задаче.

Итог по классической штрафной функции

- Условная задача превращена в безусловную.
- Увеличение ρ приближает к исходной задаче.
- НО даже при большом ρ будет наблюдаться нарушение ограничений, что подходит не для всех задач.

Итог по классической штрафной функции

- Условная задача превращена в безусловную.
- Увеличение ρ приближает к исходной задаче.
- НО даже при большом ρ будет наблюдаться нарушение ограничений, что подходит не для всех задач.
- И увеличение ρ влечет за собой увеличение обусловленности задачи (как будет расти константа Липшица градиента?). А значит задачу будет сложнее решать.

Двойственный подъем

Рассмотрим

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $Ax = b,$

где $A \in \mathbb{R}^{n \times d}$. $b \in \mathbb{R}^n$.

Двойственный подъем

Рассмотрим

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $Ax = b,$

где $A \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^n$.

Лагранжиан:

$$L(x,\lambda) = f(x) + \lambda^{T}(Ax - b).$$

<u>Двойственный подъем</u>

Рассмотрим

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $Ax = b,$

гле $A \in \mathbb{R}^{n \times d}$. $b \in \mathbb{R}^n$.

Лагранжиан:

$$L(x,\lambda) = f(x) + \lambda^{T}(Ax - b).$$

Идея запустить градиентный подъем с шагом lpha для максимизации двойственной функции $g(\lambda) = \min_{x \in \mathbb{R}^d} L(x, \lambda)$:

$$\lambda^{k+1} = \lambda^k + \alpha \nabla \left(\min_{x \in \mathbb{R}^d} \left[f(x) + \lambda_k^T (Ax - b) \right] \right)$$

Двойственный подъем

Двойственный подъем:

$$\lambda^{k+1} = \lambda^k + \alpha \nabla \left(\min_{x \in \mathbb{R}^d} \left[f(x) + \lambda_k^T (Ax - b) \right] \right)$$

Двойственный подъем:

$$\lambda^{k+1} = \lambda^k + \alpha \nabla \left(\min_{\mathbf{x} \in \mathbb{R}^d} \left[f(\mathbf{x}) + \lambda_k^T (A\mathbf{x} - b) \right] \right)$$

Чуть-чуть по-другому:

$$\begin{aligned} x^{k+1} &= \arg\min_{x \in \mathbb{R}^d} \left[f(x) + \lambda_k^T (Ax - b) \right] = \arg\min_{x \in \mathbb{R}^d} L(x, \lambda^k) \\ \lambda^{k+1} &= \lambda^k + \alpha \nabla \left(f(x^{k+1}) + \lambda_k^T (Ax^{k+1} - b) \right) \end{aligned}$$

Двойственный подъем

Двойственный подъем:

$$\lambda^{k+1} = \lambda^k + \alpha \nabla \left(\min_{\mathbf{x} \in \mathbb{R}^d} \left[f(\mathbf{x}) + \lambda_k^T (A\mathbf{x} - b) \right] \right)$$

Чуть-чуть по-другому:

$$x^{k+1} = \arg\min_{\mathbf{x} \in \mathbb{R}^d} \left[f(\mathbf{x}) + \lambda_k^T (A\mathbf{x} - b) \right] = \arg\min_{\mathbf{x} \in \mathbb{R}^d} L(\mathbf{x}, \lambda^k)$$
$$\lambda^{k+1} = \lambda^k + \alpha \nabla \left(f(\mathbf{x}^{k+1}) + \lambda_k^T (A\mathbf{x}^{k+1} - b) \right)$$
$$\lambda^{k+1} = \lambda^k + \alpha (A\mathbf{x}^{k+1} - b)$$

или

Аугментация

Уже знаем, что такая «добавка» не меняет задачу:

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) + \frac{\rho}{2} ||A\mathbf{x} - \mathbf{b}||_2^2,$$

s.t. $A\mathbf{x} = \mathbf{b}$,

Улучшают физику задачи за счет «регуляризации», в первую очередь трюк для практики.

Лагранжиан:

$$L_{\rho}(x,\lambda) = f(x) + \lambda^{T}(Ax - b) + \frac{\rho}{2}||Ax - b||_{2}^{2}.$$

Уже знаем, что такая «добавка» не меняет задачу:

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) + \frac{\rho}{2} ||A\mathbf{x} - \mathbf{b}||_2^2,$$

s.t. $A\mathbf{x} = \mathbf{b}$,

Улучшают физику задачи за счет «регуляризации», в первую очередь трюк для практики.

Лагранжиан:

$$L_{\rho}(x,\lambda) = f(x) + \lambda^{T}(Ax - b) + \frac{\rho}{2}||Ax - b||_{2}^{2}.$$

Двойственный подъем:

$$x^{k+1} = \arg\min_{x \in \mathbb{R}^d} L_{\rho}(x, \lambda^k), \quad \lambda^{k+1} = \lambda^k + \rho(Ax^{k+1} - b)$$

Шаг специально заменен на ρ , чтобы подбирать один параметр для метода. 4日 → 4周 → 4 直 → 4 直 → 9 Q @

Чуть более общая задача:

$$\min_{\substack{x \in \mathbb{R}^{d_x}, y \in \mathbb{R}^{d_y}}} f(x) + g(y),$$
s.t. $Ax + By = c$,

где $A \in \mathbb{R}^{n \times d_x}$, $B \in \mathbb{R}^{n \times d_y}$, $c \in \mathbb{R}^n$.

Чуть более общая задача:

$$\min_{\mathbf{x} \in \mathbb{R}^{d_{\mathbf{x}}}, \mathbf{y} \in \mathbb{R}^{d_{\mathbf{y}}}} f(\mathbf{x}) + g(\mathbf{y}),
\text{s.t. } A\mathbf{x} + B\mathbf{y} = \mathbf{c},$$
(1)

где $A \in \mathbb{R}^{n \times d_x}$, $B \in \mathbb{R}^{n \times d_y}$. $c \in \mathbb{R}^n$.

Аугментация

$$\min_{x \in \mathbb{R}^{d_x}, y \in \mathbb{R}^{d_y}} f(x) + g(y) + \frac{\rho}{2} ||Ax + By - c||_2^2,$$

s.t. $Ax + By = c$,

Чуть более общая задача:

$$\min_{\mathbf{x} \in \mathbb{R}^{d_{\mathbf{x}}}, \mathbf{y} \in \mathbb{R}^{d_{\mathbf{y}}}} f(\mathbf{x}) + g(\mathbf{y}),
\text{s.t. } A\mathbf{x} + B\mathbf{y} = \mathbf{c},$$
(1)

где $A \in \mathbb{R}^{n \times d_x}$, $B \in \mathbb{R}^{n \times d_y}$, $c \in \mathbb{R}^n$.

Аугментация

$$\min_{x \in \mathbb{R}^{d_x}, y \in \mathbb{R}^{d_y}} f(x) + g(y) + \frac{\rho}{2} ||Ax + By - c||_2^2,$$

s.t. $Ax + By = c$,

Лагранжиан:

$$L_{\rho}(x, y, \lambda) = f(x) + g(y) + \lambda^{T}(Ax + By - c) + \frac{\rho}{2}||Ax + By - c||_{2}^{2}$$

Такой Лагранжиан порождает выпукло-вогнутую седловую задачу (более подробно мы обсудим седловые задачи через 2 лекции). Двойственный подъем, он же Alternating Direction Method of Multipliers (ADMM):

Алгоритм **1** ADMM

Вход: стартовая точка $x^0 \in \mathbb{R}^{d_x}, y^0 \in \mathbb{R}^{d_y}, \lambda^0 \in \mathbb{R}^n$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- $x^{k+1} = \operatorname{arg\,min}_{x \in \mathbb{R}^{d_x}} L_o(x, y^k, \lambda^k)$ 2:
- $y^{k+1} = \operatorname{arg\,min}_{y \in \mathbb{R}^{d_y}} L_o(x^{k+1}, y, \lambda^k)$
- $\lambda^{k+1} = \lambda^k + \rho \left(Ax^{k+1} + By^{k+1} c \right)$
- 5: end for

Выход:
$$\frac{1}{K}\sum_{k=1}^K x^k, \frac{1}{K}\sum_{k=1}^K y^k, \frac{1}{K}\sum_{k=1}^K \lambda^k$$

 Двойственный подъем, он же Alternating Direction Method of Multipliers (ADMM):

Алгоритм 2 ADMM

Вход: стартовая точка $x^0 \in \mathbb{R}^{d_x}, y^0 \in \mathbb{R}^{d_y}, \lambda^0 \in \mathbb{R}^n$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- $x^{k+1} = \operatorname{arg\,min}_{x \in \mathbb{R}^{d_x}} L_o(x, y^k, \lambda^k)$ 2:
- $y^{k+1} = \operatorname{arg\,min}_{y \in \mathbb{R}^{d_y}} L_o(x^{k+1}, y, \lambda^k)$
- $\lambda^{k+1} = \lambda^k + \rho \left(Ax^{k+1} + By^{k+1} c \right)$
- 5: end for

Выход:
$$\frac{1}{K}\sum_{k=1}^K x^k, \frac{1}{K}\sum_{k=1}^K y^k, \frac{1}{K}\sum_{k=1}^K \lambda^k$$

- Alternating Direction минимизация по x и y происходит не одновременно, а альтерированно: одна за другой.
- Multipliers наличие двойственных множителей Лагранжа λ

17 / 26

- С доказательством лучше ознакомиться после лекции про седловые задачи.
- В доказательстве будем использовать немного измененную. версию:

Алгоритм **3** ADMM

Вход: стартовая точка $x^0 \in \mathbb{R}^{d_x}$, $v^0 \in \mathbb{R}^{d_y}$, $\lambda^0 \in \mathbb{R}^n$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- $y^{k+1} = \operatorname{arg\,min}_{v \in \mathbb{R}^{d_y}} L_{\rho}(x^k, y, \lambda^k)$ 2:
- $\lambda^{k+1} = \lambda^k + \rho \left(Ax^k + By^{k+1} c \right)$
- $x^{k+1} = \operatorname{arg\,min}_{x \in \mathbb{R}^{d_x}} L_o(x, y^{k+1}, \lambda^{k+1})$
- 5: end for

Выход: $\frac{1}{K} \sum_{k=1}^{K} x^k, \frac{1}{K} \sum_{k=1}^{K} y^k, \frac{1}{K} \sum_{k=1}^{K} \lambda^k$

Вид Лагранжиана для удобства:

$$L_{\rho}(x, y, \lambda) = f(x) + g(y) + \lambda^{T}(Ax + By - c) + \frac{\rho}{2} ||Ax + By - c||_{2, \infty}^{2}$$

Александр Безносиков

Лекция 9

31 октября 2024

Запишем условие оптимальности для линии 2 алгоритма:

$$\nabla g(y^{k+1}) + B^T \lambda^k + \rho B^T (Ax^k + By^{k+1} - c) = 0$$

Доказательство

Запишем условие оптимальности для линии 2 алгоритма:

$$\nabla g(y^{k+1}) + B^T \lambda^k + \rho B^T (Ax^k + By^{k+1} - c) = 0$$

Линия 3 алгоритма:

$$\lambda^{k+1} - \lambda^k = \rho(Ax^k + By^{k+1} - c)$$

<u>Док</u>азательство

Запишем условие оптимальности для линии 2 алгоритма:

$$\nabla g(y^{k+1}) + B^T \lambda^k + \rho B^T (Ax^k + By^{k+1} - c) = 0$$

Линия 3 алгоритма:

$$\lambda^{k+1} - \lambda^k = \rho(Ax^k + By^{k+1} - c)$$

• Условие оптимальности для линии 5:

$$\nabla f(x^{k+1}) + A^{T} \lambda^{k+1} + \rho A^{T} (Ax^{k+1} + By^{k+1} - c) = 0$$

Доказательство

Запишем условие оптимальности для линии 2 алгоритма:

$$\nabla g(y^{k+1}) + B^T \lambda^k + \rho B^T (Ax^k + By^{k+1} - c) = 0$$

Доказательство

Запишем условие оптимальности для линии 2 алгоритма:

$$\nabla g(y^{k+1}) + B^T \lambda^k + \rho B^T (Ax^k + By^{k+1} - c) = 0$$

Линия 3 алгоритма:

$$\lambda^{k+1} - \lambda^k = \rho(Ax^k + By^k - c)$$

<u>Док</u>азательство

Запишем условие оптимальности для линии 2 алгоритма:

$$\nabla g(y^{k+1}) + B^T \lambda^k + \rho B^T (Ax^k + By^{k+1} - c) = 0$$

Линия 3 алгоритма:

$$\lambda^{k+1} - \lambda^k = \rho(Ax^k + By^k - c)$$

Условие оптимальности для линии 5:

$$\nabla f(x^{k+1}) + A^{T} \lambda^{k+1} + \rho A^{T} (Ax^{k+1} + By^{k+1} - c) = 0$$

• Простые алгебраические преобразования дают следующее:

$$\begin{pmatrix} \nabla f(x^{k+1}) + A^T \lambda^{k+1} \\ \nabla g(y^{k+1}) + B^T \lambda^{k+1} \\ -(Ax^{k+1} + By^{k+1} - c) \end{pmatrix} = -\begin{pmatrix} \rho A^T (Ax^{k+1} + By^{k+1} - c) \\ -B^T (\lambda^{k+1} - \lambda^k) + \rho B^T (Ax^k + By^{k+1} - c) \\ \frac{1}{\rho} (\lambda^{k+1} - \lambda^k) + A(x^{k+1} - x^k) \end{pmatrix}$$

• Используем, что $\lambda^{k+1} - \lambda^k = \rho(Ax^k + By^k - c)$:

$$\begin{pmatrix} \nabla f(x^{k+1}) + A^T \lambda^{k+1} \\ \nabla g(y^{k+1}) + B^T \lambda^{k+1} \\ -(Ax^{k+1} + By^{k+1} - c) \end{pmatrix} = -\begin{pmatrix} A^T (\lambda^{k+1} - \lambda^k) + \rho A^T A(x^{k+1} - x^k) \\ 0 \\ \frac{1}{\rho} (\lambda^{k+1} - \lambda^k) + A(x^{k+1} - x^k) \end{pmatrix}$$

Заметим, что

$$\begin{pmatrix} \nabla f(x^{k+1}) + A^T \lambda^{k+1} \\ \nabla g(y^{k+1}) + B^T \lambda^{k+1} \\ -(Ax^{k+1} + By^{k+1} - c) \end{pmatrix} = \begin{pmatrix} \nabla_x L_0(x^{k+1}, y^{k+1}, \lambda^{k+1}) \\ \nabla_y L_0(x^{k+1}, y^{k+1}, \lambda^{k+1}) \\ -\nabla_\lambda L_0(x^{k+1}, y^{k+1}, \lambda^{k+1}) \end{pmatrix}$$

• Введем $P = \left(\begin{array}{ccc} \rho A \cdot A & 0 & -A \cdot \\ 0 & 0 & 0 \\ -A & 0 & \frac{1}{I} I \end{array} \right)$ (сразу заметим, что она

симметричная и положительно полуопределенная) и получим

$$\begin{pmatrix} \nabla_x L_0(x^{k+1}, y^{k+1}, \lambda^{k+1}) \\ \nabla_y L_0(x^{k+1}, y^{k+1}, \lambda^{k+1}) \\ -\nabla_\lambda L_0(x^{k+1}, y^{k+1}, \lambda^{k+1}) \end{pmatrix} = -P \begin{pmatrix} x^{k+1} - x^k \\ y^{k+1} - y^k \\ \lambda^{k+1} - \lambda^k \end{pmatrix}$$

Тогда, вводя уже знакомое определение нормы $||x||_P = \langle x, Px \rangle$, имеем

$$\left\langle \begin{pmatrix} \nabla_{x} L_{0}(x^{k+1}, y^{k+1}, \lambda^{k+1}) \\ \nabla_{y} L_{0}(x^{k+1}, y^{k+1}, \lambda^{k+1}) \\ -\nabla_{\lambda} L_{0}(x^{k+1}, y^{k+1}, \lambda^{k+1}) \end{pmatrix}, \begin{pmatrix} x^{k+1} - x \\ y^{k+1} - y \\ \lambda^{k+1} - \lambda \end{pmatrix} \right\rangle$$

$$= -\left\langle P\begin{pmatrix} x^{k+1} - x^{k} \\ y^{k+1} - y^{k} \\ \lambda^{k+1} - \lambda^{k} \end{pmatrix}, \begin{pmatrix} x^{k+1} - x \\ y^{k+1} - y \\ \lambda^{k+1} - \lambda \end{pmatrix} \right\rangle$$

$$= \| \begin{pmatrix} x^{k} - x \\ y^{k} - y \\ \lambda^{k} - \lambda \end{pmatrix} \|_{P} - \| \begin{pmatrix} x^{k+1} - x \\ y^{k+1} - y \\ \lambda^{k+1} - \lambda \end{pmatrix} \|_{P} - \| \begin{pmatrix} x^{k+1} - x^{k} \\ y^{k+1} - y^{k} \\ \lambda^{k+1} - \lambda^{k} \end{pmatrix} \|_{P}$$

$$\leq \| \begin{pmatrix} x^{k} - x \\ y^{k} - y \\ \lambda^{k} - \lambda \end{pmatrix} \|_{P} - \| \begin{pmatrix} x^{k+1} - x \\ y^{k+1} - y \\ \lambda^{k+1} - \lambda \end{pmatrix} \|_{P}$$

Доказательство

Суммируем по всем k от 0 до K-1 и усредняем:

$$\frac{1}{K} \sum_{k=0}^{K-1} \left\langle \begin{pmatrix} \nabla_{x} L_{0}(x^{k+1}, y^{k+1}, \lambda^{k+1}) \\ \nabla_{y} L_{0}(x^{k+1}, y^{k+1}, \lambda^{k+1}) \\ -\nabla_{\lambda} L_{0}(x^{k+1}, y^{k+1}, \lambda^{k+1}) \end{pmatrix}, \begin{pmatrix} x^{k+1} - x \\ y^{k+1} - y \\ \lambda^{k+1} - \lambda \end{pmatrix} \right\rangle \\
\leq \| \begin{pmatrix} x^{0} - x \\ y^{0} - y \\ \lambda^{0} - \lambda \end{pmatrix} \|_{P} - \| \begin{pmatrix} x^{K} - x \\ y^{K} - y \\ \lambda^{K} - \lambda \end{pmatrix} \|_{P} \\
\leq \| \begin{pmatrix} x^{0} - x \\ y^{0} - y \\ \lambda^{0} - \lambda \end{pmatrix} \|_{P}$$

Доказательство

• Суммируем по всем k от 0 до K-1 и усредняем:

$$\frac{1}{K} \sum_{k=0}^{K-1} \left\langle \begin{pmatrix} \nabla_{x} L_{0}(x^{k+1}, y^{k+1}, \lambda^{k+1}) \\ \nabla_{y} L_{0}(x^{k+1}, y^{k+1}, \lambda^{k+1}) \\ -\nabla_{\lambda} L_{0}(x^{k+1}, y^{k+1}, \lambda^{k+1}) \end{pmatrix}, \begin{pmatrix} x^{k+1} - x \\ y^{k+1} - y \\ \lambda^{k+1} - \lambda \end{pmatrix} \right\rangle \\
\leq \| \begin{pmatrix} x^{0} - x \\ y^{0} - y \\ \lambda^{0} - \lambda \end{pmatrix} \|_{P} - \| \begin{pmatrix} x^{K} - x \\ y^{K} - y \\ \lambda^{K} - \lambda \end{pmatrix} \|_{P} \\
\leq \| \begin{pmatrix} x^{0} - x \\ y^{0} - y \\ \lambda^{0} - \lambda \end{pmatrix} \|_{P}$$

• Дальше остается применить уже знакомые шаги: выпуклость L_0 по (x,y), вогнутость L_0 по λ , а также неравенство Йенсена. В итоге получим

Сходимость ADMM

Сходимость ADMM

Если в задаче (1) функции f и g являются выпуклыми и дружественными с точки зрения вычислений arg min, то ADMM имеет следующую оценку сходимости для любого $x \in \mathbb{R}^{d_x}$, $y \in \mathbb{R}^{d_y}$, $\lambda \in \mathbb{R}^n$

$$L_0\left(\frac{1}{K}\sum_{k=1}^K x^k, \frac{1}{K}\sum_{k=1}^K y^k, \lambda\right) - L_0\left(x, y, \frac{1}{K}\sum_{k=1}^K \lambda^k\right) \leq \frac{1}{2K} \|z^0 - z\|_P^2,$$

где
$$L_0$$
 – Лагранжиан без аугментации, $P = \left(\begin{array}{ccc} \rho A^T A & 0 & -A^T \\ 0 & 0 & 0 \\ -A & 0 & \frac{1}{\rho} I \end{array} \right)$,

$$z^0 = \left(\begin{array}{c} x^0 \\ y^0 \\ \lambda^0 \end{array}\right)$$

ADMM является одним из ключевых и популярных методов оптимизации.

- ADMM является одним из ключевых и популярных методов оптимизации.
- Реализован во многих солверах и часто используется, как метод по умолчанию.

- ADMM является одним из ключевых и популярных методов оптимизации.
- Реализован во многих солверах и часто используется, как метод по умолчанию.
- Нестандартная формулировка самой задачи, для которой придуман ADMM оказывается вбирает в себя много важных частных случаев. «Непривычная» переменная ν часто играет роль вспомогательной переменной.

- ADMM является одним из ключевых и популярных методов оптимизации.
- Реализован во многих солверах и часто используется, как метод по умолчанию.
- Нестандартная формулировка самой задачи, для которой. придуман ADMM оказывается вбирает в себя много важных частных случаев. «Непривычная» переменная ν часто играет роль вспомогательной переменной.
- Здесь штраф дополнительная модификация для стабилизации и ускорения сходимости. При этом не требуется брать hoобязательно очень большим.

