

Project Goals

- Prospective Modeling
 - Predict the Fantasy Points that a player will score in a given future game based on his past performance and game characteristics known ahead of time
- Performance Indicators
 - Understand the factors that contribute to a player's performance, measured in Fantasy Points

Consumers

- People that participate in Fantasy Football and/or bet on professional football.
- Modeling Component
 - Sports bettors can <u>enter information</u> about their player of interest into the model and <u>receive a predicted fantasy score</u> in return. The score can help the person decide whether to bet on the player <u>each week</u>.
 - Used on a <u>weekly basis</u>
- Data Visualization Component
 - Sports bettors can explore the interactive visualizations to better understand patterns in player performance.
 - Used at the **beginning of the season** or on a **weekly basis**

Academic Literature

Estimating player value in American football using plusminus models

R. Paul Sabin

From the journal Journal of Quantitative Analysis in Sports https://doi.org/10.1515/jqas-2020-0033

Journal of Quantitative Analysis in Sports

Volume 7, Issue 3

2011

Article 12

The Quarterback Prediction Problem: Forecasting the Performance of College Quarterbacks Selected in the NFL Draft

Julian Wolfson, University of Minnesota, Twin Cities Vittorio Addona, Macalester College Robert H. Schmicker, University of Washington

Commercial Literature

Data Source

StatHead.com

NFL.com

Data Pre-Processing

- Standardizing Team Names
- Substituting 0's for missing rates
- Grouping injury types
- Cleaning date formatting
- Exclude games with less than5 pass attempts (Quarterbacks only)

Feature Engineering

- Extract the month from date
- Extract the points scored by each team and game result
- Shift data so that past performance is in line with future game characteristics and fantasy points scored
- Calculate moving and cumulative averages of each player's past performance stats
 - Treat k as a tuning parameter
- Get averages of performance against opponent
- Join injury data to player-game data

Recipe

- Remove near zero variance columns
- Remove correlated predictors
- Remove columns that were linear combinations of one another
- Center & scale continuous variables
- Fit natural cubic splines on numeric predictors with 3 degrees of freedom (regression only)
- Create dummy columns for categorical variables (regression only)
- One-hot encode categorical variables (ML only)

Modeling Frameworks

Training-Validation-Test Split

Tune K on Linear Regression using training-validation split

Select optimal K and retrain models using training and validation data

Models & Tuning Parameters:

- Base Linear Regression
- Penalized Linear Regression
 - Penalty & mixture
- Random Forest for Regression
 - o Minimum number of observations in terminal node
 - Number of predictors considered at each split
- XGBoost for Regression
 - Minimum number of observations in terminal node
 - Number of predictors considered at each split
 - Tree Depth
 - Learning Rate

Modeling Frameworks

- Separate models for
 - Quarterbacks
 - Running Backs, Wide Receivers and Tight Ends
- 5-Fold cross validation repeated 5 times

Model Performance: Quarterbacks

Model	Resampled RMSE	Test RMSE
Base Linear Regression	7.448	8.096
Penalized Linear Regression	7.458	8.130
Random Forest	7.451	8.196
XGBoost	7.446	8.151

Model Performance: Running Backs, Wide Receivers, and Tight Ends

Model	Resampled RMSE	Test RMSE
Base Linear Regression	5.3348	5.5318
Penalized Linear Regression	5.3321	5.5316
Random Forest	5.3692	5.5763
XGBoost	5.3327	5.5447

Shiny App

Explore Tab

- Consumers can use the interactive visualizations to explore the relationship between Fantasy Points and other factors, such as type of injury, performance history, and team.
- Useful for high level overviews

Predictions Tab

- Consumers can enter information about a player of interest and receive a projected fantasy score in return.
- Used on a weekly basis to make decisions about player line-up

Limitations

- Training-Validation-Test splits were not proportional for Quarterbacks and Running Backs/Wide Receivers/Tight Ends
- Injury data was sparse prior to 2008

Future Work

- Tune for a wider range of K
- Tune number of knots on natural cubic splines
- Gather more data for RB, WR, &
 TE

Takeaways

- Simple > Complex
- Strong indicators of performance:
 - Player's performance history
 - Track record of opponent
 - Home or Away

Literature Citations

- ESPN. (2022, August 31). *Mike Clay's Projections + Mid-Round Madnes*s [Video]. YouTube. https://www.youtube.com/watch?app=desktop&v=0aluQ44GsNM
- Sabin, R. (2021). Estimating player value in American football using plus–minus models. *Journal of Quantitative Analysis in Sports*, 17(4), 313-364. https://doi.org/10.1515/jqas-2020-0033
- Sidell, T. (2022, October 24). *IBM Watson and ESPN use AI to Transform Fantasy Football Data*. Journey to AI Blog. Retrieved December 1, 2022, from https://www.ibm.com/blogs/journey-to-ai/2022/10/ibm-watson-and-espn-use-ai- to-transform-fantasy-football-data-into-insight/
- Wolfson, J., Addona, V. & Schmicker, R. (2011). The Quarterback Prediction Problem: Forecasting the Performance of College Quarterbacks Selected in the NFL Draft. *Journal of Quantitative Analysis in Sports*, **7**(3). https://doi.org/10.2202/1559-0410.1302