Assignment 4

1.Loading Dataset into tool

In [1]:

```
from google.colab import files
uploaded = files.upload()
```

Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving abalone.csv to abalone.csv

In [2]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

In [3]:

data = pd.read_csv("abalone.csv")

2.Performing Visualization

Univariate Analysis

In [4]:

data.head()

Out[4]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

In [5]:

sns.boxplot(data['Diameter'])

Out[5]:

In [6]:

```
plt.hist(data['Diameter'])
```

Out[6]:

(array([13., 66., 180., 344., 513., 812., 1017., 934., 275., 23.]),

array([0.055 , 0.1145, 0.174 , 0.2335, 0.293 , 0.3525, 0.412 , 0.4715, 0.531 , 0.5905, 0.65]),

In [7]:

plt.plot(data['Diameter'].head(10))

Out[7]:

[]

plt.pie(data['Diameter'].head(),autopct='%.3f')

```
Out[8]:
```

In [8]:

```
([,
,
,
,
],
[Text(0.8507215626110557, 0.6973326486753676, ''),
Text(-0.32611344931648134, 1.0505474849691026, ''),
Text(-1.0998053664078908, -0.02069193128747144, ''),
Text(-0.08269436219656089, -1.096887251480709, ''),
Text(0.9758446362287218, -0.5076684409569241, '')],
[Text(0.46402994324239394, 0.3803632629138369, '21.856'),
Text(-0.17788006326353525, 0.5730259008922377, '15.868'),
Text(-0.5998938362224858, -0.011286507974984419, '25.150'),
Text(-0.045106015743578656, -0.5983021371712958, '21.856'),
Text(0.5322788924883937, -0.2769100587037768, '15.269')])
```


sns.distplot(data['Diameter'].head(300))

In [9]:

Out[9]:

plt.scatter(data['Diameter'].head(400),data['Length'].head(400))

In [10]:

Out[10]:

In [11]:

plt.bar(data['Sex'].head(20),data['Rings'].head(20))
plt.title('Bar plot')
plt.xlabel('Diameter')
plt.ylabel('Rings')

Out[11]:

sns.barplot(data['Sex'], data['Rings'])

In [12]:

Out[12]:

sns.jointplot(data['Diameter'].head(50),data['Rings'].head(100))

Out[13]:

In [13]:

sns.barplot('Diameter','Rings', hue='Sex', data=data.head())
Out[14]:

sns.lineplot(data['Diameter'].head(),data['Rings'].head())

Out[15]:

 $\label{local_local_local_local_local} In \ [16]: \\ sns.boxplot(data['Sex'].head(10), data['Diameter'].head(10), data['Rings'].head(10)) \\$

Out[16]:

fig=plt.figure(figsize=(8,5))
sns.heatmap(data.head().corr(),annot=True)

- 1.0

- 0.9

- 0.8

- 0.7

- 0.6

- 0.5

- 0.3

0.2

								Out[17]:
Length -	1	0.99	0.86	0.99	0.97	0.98	0.99	0.51
Diameter -	0.99	1	0.87	1	0.99	0.99	1	0.55
Height -	0.86	0.87	1	0.87	0.83	0.92	0.9	0.13
Whole weight -	0.99	1	0.87	1	0.99	0.99	1	0.54
Shucked weight -	0.97	0.99	0.83	0.99	1	0.98	0.98	0.65
Viscera weight -	0.98	0.99	0.92	0.99	0.98	1	1	0.48
Shell weight -	0.99	1	0.9	1	0.98	1	1	0.5
Rings -	0.51	0.55	0.13	0.54	0.65	0.48	0.5	1
	Length -	Diameter -	Height -	Whole weight -	Shucked weight -	Viscera weight -	Shell weight -	Rings -

In [18]:
sns.pairplot(data.head(), hue='Height')

Out[18]:

	In [19]:
<pre>sns.pairplot(data.head())</pre>	Out[19]:
	Out[19].

3.Perform Descriptive Statistics on the dataset

 $In \ [20]: \\$ data.head()

aa oa • 110a a ()		
	Out[20	0]:

Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
Ι	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7
	M M F M	M 0.455 M 0.350 F 0.530 M 0.440	M 0.455 0.365 M 0.350 0.265 F 0.530 0.420 M 0.440 0.365	M 0.455 0.365 0.095 M 0.350 0.265 0.090 F 0.530 0.420 0.135 M 0.440 0.365 0.125	M 0.455 0.365 0.095 0.5140 M 0.350 0.265 0.090 0.2255 F 0.530 0.420 0.135 0.6770 M 0.440 0.365 0.125 0.5160	M 0.455 0.365 0.095 0.5140 0.2245 M 0.350 0.265 0.090 0.2255 0.0995 F 0.530 0.420 0.135 0.6770 0.2565 M 0.440 0.365 0.125 0.5160 0.2155	Sex Length Diameter Height weight weight weight M 0.455 0.365 0.095 0.5140 0.2245 0.1010 M 0.350 0.265 0.090 0.2255 0.0995 0.0485 F 0.530 0.420 0.135 0.6770 0.2565 0.1415 M 0.440 0.365 0.125 0.5160 0.2155 0.1140	Sex Length Diameter Height weight weight weight weight M 0.455 0.365 0.095 0.5140 0.2245 0.1010 0.150 M 0.350 0.265 0.090 0.2255 0.0995 0.0485 0.070 F 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.210 M 0.440 0.365 0.125 0.5160 0.2155 0.1140 0.155

data.tail()

Out[21]:

In [21]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

In [22]:

data.info()

RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64

```
6 Viscera weight 4177 non-null float64
7 Shell weight 4177 non-null float64
8 Rings 4177 non-null int64
```

dtypes: float64(7), int64(1), object(1)

memory usage: 293.8+ KB

data.describe()

In [23]:

								Out[23]:
	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
cou nt	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00
mea n	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000
								In [24]:

data.mode().T

Out[24]:

0 1

Sex M NaN

Length 0.55 0.625

Diameter 0.45 NaN

Height 0.15 NaN

Whole weight 0.2225 NaN 0 1

Shucked weight	0.175	NaN
Viscera weight	0.1715	NaN
Shell weight	0.275	NaN
Rings	9.0	NaN
data.shape		
(4177, 9)		
(41//, 3)		
data.kurt()		
		0 064601
Length Diameter		0.064621 -0.045476
Height		76.025509
Whole weight		-0.023644
Shucked weig		0.595124
Viscera weig Shell weight		0.084012 0.531926
Rings		2.330687
dtype: float	.64	
data.skew()		
22 02 • 01 0W ()		
Length	_	0.639873
Diameter	_	0.609198
Height		3.128817
Whole weight Shucked weig		0.530959 0.719098
Viscera weig		0.591852
Shell weight		0.620927
Rings dtype: float		1.114102
acype. IIoac		
data.var()		
Length		0.014422
Diameter		0.009849
Height Whole weight		0.001750 0.240481
Shucked weig		0.049268
Viscera weig		0.012015
Shell weight		0.019377 10.395266
dtype: float		_0.00000
Rings dtype: float		10.39526

In [29]:

data.nunique()

Out[29]:

Sex	3
Length	134
Diameter	111
Height	51
Whole weight	2429
Shucked weight	1515
Viscera weight	880
Shell weight	926
Rings	28

dtype: int64

$4. Check \ for \ missing \ values \ and \ deal \ with \ them$

In [30]:

data.isna()

Out[30]:

								_	L J.
	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False
4172	False	False	False	False	False	False	False	False	False
4173	False	False	False	False	False	False	False	False	False
4174	False	False	False	False	False	False	False	False	False
4175	False	False	False	False	False	False	False	False	False
4176	False	False	False	False	False	False	False	False	False

```
data.isna().any()
                                                                                          Out[31]:
Sex False
Length False
Diameter False
Height False
Whole weight False
Shucked weight False
Viscera weight False
Shell weight False
Rings False
Rings
                      False
dtype: bool
                                                                                           In [32]:
data.isna().sum()
                                                                                          Out[32]:
Sex
                       0
Length
                     0
                   0
Diameter
                      0
Height
Whole weight
                     0
Shucked weight 0
Viscera weight 0
                     0
Shell weight
Rings
dtype: int64
                                                                                           In [33]:
data.isna().any().sum()
                                                                                          Out[33]:
5. Find the outliers and replace them outliers
                                                                                           In [34]:
sns.boxplot(data['Diameter'])
                                                                                          Out[34]:
```


quant=data.quantile(q=[0.25,0.75])
quant

Out[35]:

In [35]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0.25	0.450	0.35	0.115	0.4415	0.186	0.0935	0.130	8.0
0.75	0.615	0.48	0.165	1.1530	0.502	0.2530	0.329	11.0

In [36]:

iqr=quant.loc[0.75]-quant.loc[0.25]
iqr

Out[36]:

Length	0.1650			
Diameter	0.1300			
Height	0.0500			
Whole weight	0.7115			
Shucked weight	0.3160			
Viscera weight	0.1595			
Shell weight	0.1990			
Rings	3.0000			

dtype: float64

In [37]:

low=quant.loc[0.25]-(1.5*iqr) low

Out[37]:

Length	0.20250
Diameter	0.15500
Height	0.04000

dtype: float64

up=quant.loc[0.75]+(1.5*iqr)

up

Length 0.86250 Diameter 0.67500 Height 0.24000 Whole weight 2.22025 Shucked weight 0.97600 Viscera weight 0.49225 Shell weight 0.62750 15.50000 Rings

dtype: float64

In [39]:

In [38]:

Out[38]:

data['Diameter']=np.where(data['Diameter']<0.155,0.4078,data['Diameter'])
sns.boxplot(data['Diameter'])</pre>

Out[39]:

In [40]:

sns.boxplot(data['Length'])

Out[40]:

In [41]:

data['Length']=np.where(data['Length']<0.23,0.52, data['Length'])
sns.boxplot(data['Length'])</pre>

Out[41]:

sns.boxplot(data['Height'])

In [42]:

Out[42]:

In [43]:

data['Height']=np.where(data['Height']<0.04,0.139, data['Height'])
data['Height']=np.where(data['Height']>0.23,0.139, data['Height'])
sns.boxplot(data['Height'])

Out[43]:

In [44]:

Out[44]:

sns.boxplot(data['Whole weight'])

In [45]:
data['Whole weight']=np.where(data['Whole weight']>0.9,0.82, data['Whole
weight'])
sns.boxplot(data['Whole weight'])

sns.boxplot(data['Shucked weight'])

In [46]:

Out[45]:

Out[46]:

In [47]:

data['Shucked weight']=np.where(data['Shucked weight']>0.93,0.35,
data['Shucked weight'])
sns.boxplot(data['Shucked weight'])

Out[47]:

sns.boxplot(data['Viscera weight'])

In [48]:

Out[48]:

In [49]:

data['Viscera weight']=np.where(data['Viscera weight']>0.46,0.18,
data['Viscera weight'])
sns.boxplot(data['Viscera weight'])

Out[49]:

In [50]:

Out[50]:

sns.boxplot(data['Shell weight'])

In [51]:
data['Shell weight']=np.where(data['Shell weight']>0.61,0.2388, data['Shell
weight'])
sns.boxplot(data['Shell weight'])

Out[51]:

6.Check for Categorical columns and perform encoding.

 $\label{lambdata} \verb|data['Sex'].replace({'M':1,'F':0,'I':2},inplace = True)| \\ \verb|data| \\$

In [53]:

Out[53]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	1	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	1	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	2	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	1	0.590	0.440	0.135	0.8200	0.4390	0.2145	0.2605	10
4174	1	0.600	0.475	0.205	0.8200	0.5255	0.2875	0.3080	9
4175	0	0.625	0.485	0.150	0.8200	0.5310	0.2610	0.2960	10
4176	1	0.710	0.555	0.195	0.8200	0.3500	0.3765	0.4950	12

4177 rows × 9 columns

Х

7. Split the data into dependent and independent variables.

x=data.drop(columns= ['Rings'])
y=data['Rings']

In [54]:

Out[54]: Shell weight Sex Length Diameter Height Whole weight Shucked weight Viscera weight 0.1010 0.455 0.365 0.095 0.5140 0.2245 0.1500 0.0485 0.0700 0.350 0.265 0.090 0.2255 0.0995 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.2100

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
3	1	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550
4	2	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550
•••								
4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490
4173	1	0.590	0.440	0.135	0.8200	0.4390	0.2145	0.2605
4174	1	0.600	0.475	0.205	0.8200	0.5255	0.2875	0.3080
4175	0	0.625	0.485	0.150	0.8200	0.5310	0.2610	0.2960
4176	1	0.710	0.555	0.195	0.8200	0.3500	0.3765	0.4950
4177 1	rows	× 8 colu	ımns					
У								In [55]:
Name: 8.Scale	e the	7 9 7 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ndent vari	ables	pe: int64			Out[55]: In [56]:
<pre>from sklearn.preprocessing import scale x = scale(x) x</pre>								
array	-([-(-1 [-1	0.73281 0.01052 1.24343 1.26630	65 , -0. 25 , -1. 929, -1.	643587 613760 257421 002590	82, -1.57304 81], 51, 0.08738	487,, -	1.22513334,	Out[56]:

```
[-0.0105225, 0.63117159, 0.67657577, ..., 0.86994729,
         1.08111018, 0.56873549],
       [-1.26630752, 0.85566483, 0.78370057, ..., 0.89699645,
         0.82336724, 0.47666033],
       [-0.0105225 , 1.61894185, 1.53357412, ..., 0.00683308,
         1.94673739,
                       2.0035733611)
9. Split the data into training and testing
                                                                        In [57]:
from sklearn.model selection import train test split
x train, x test, y train, y test = train test split(x, y, test size = 0.2)
print(x train.shape, x test.shape)
(3341, 8) (836, 8)
10.Build the Model
                                                                        In [59]:
from sklearn.linear model import LinearRegression
MLR=LinearRegression()
11.Train the model
                                                                        In [60]:
MLR.fit(x train, y train)
                                                                        Out[60]:
LinearRegression()
12.Test the model
                                                                        In [61]:
y pred=MLR.predict(x test)
y pred
                                                                        Out[61]:
array([ 7.67208174, 13.9820025 , 11.0437592 , 7.537056 , 15.18592934,
        8.85514915, 13.42806111, 7.29326091, 8.86689437, 7.84406371,
       11.16501711, 8.90275839, 5.69365206, 11.13739561, 6.00767502, 10.57324499, 12.8251051, 7.59502888, 10.96544083, 7.1298908,
       12.43299056, 10.46377166, 10.52214642, 8.98150645, 10.43863197,
        9.31784819, 15.7068154 , 10.92240756, 10.71224763, 11.02616076,
       12.206313 , 8.69964099, 6.85113359, 7.85356108, 6.20684778,
        8.42611227, 15.17105996, 11.44156611, 7.02570663, 10.33977596,
       14.16281032, 13.3772169, 9.58656722, 15.40347211, 12.97500449, 9.19352535, 10.86501655, 8.73297635, 6.4963054, 11.40865691,
       10.73064325, 10.12575788, 8.40086558, 8.56014877, 12.27537817,
       11.75405793, 6.77494968, 7.90579507, 10.09926462, 12.6468215,
        8.20021579, 8.41168308, 10.1212997, 10.40692869, 8.88665534,
       11.03261606, 9.2569198, 9.67462277, 10.72661623, 9.77949317,
       11.71564028, 8.18088 , 10.18743432, 10.83537204, 12.73644755,
        9.95707153, 13.13606823, 7.16123764, 6.64095786, 8.8481335 ,
       11.2712665 , 8.03399422, 10.39308143, 10.73229034, 11.14525186,
       12.91683393, 7.23826759, 8.72307717, 7.46493074, 9.11434356,
        8.71188316, 9.38364917, 10.26762569, 9.82082711, 9.33646652,
       10.69957066, 7.87432012, 9.13546742, 9.48632785, 9.37050131,
        9.28019302, 7.42555821, 7.92996654, 7.31582064, 12.95650874,
       12.19818106, 9.51225837, 8.4512525, 11.36698566, 12.88588879,
        6.11716464, 11.4857431 , 10.54993053, 9.11068964, 13.6442629 ,
        7.55766066, 11.61303936, 10.01658431, 10.27831746, 7.77750966,
        9.34139128, 10.52574379, 11.00045493, 10.19164585, 10.57977656,
```

. . . ,

```
10.45526191, 12.19120281, 9.66573812, 6.11015325, 9.26593365,
 9.12271477, 10.71665174, 10.2841114 , 6.3394965 , 11.14125098,
10.72671801, 10.76222724, 9.55248707, 11.11321818, 7.70480694,
11.28396698, 10.20777138, 6.74265539, 12.92682008, 11.10625389,
 6.28139276, 11.27488093, 9.32617844, 10.80459071, 3.20540524,
10.26612537, 13.9655612 , 11.37747762, 9.17796643, 10.32216586,
11.45944908, 9.4165289, 10.60476709, 7.40626261, 10.92137064,
 7.99786312, 8.94099553, 10.44242235, 9.11385348, 6.23334588,
11.01834553, 9.580108 , 10.46889076, 10.55055621, 7.11164792,
 7.44500977, 9.81798331, 8.1792208, 12.10870195, 6.40865732,
 9.33852442, 9.40239455, 10.11842258, 9.84189102, 7.61432003,
 8.27223023, 12.14991269, 12.09546803, 7.8153319 , 6.53001684,
 8.18171933, 11.52632329, 6.74967565, 10.48957734, 6.54523606,
 7.94321232, 9.80807886, 10.51866724, 11.64166851, 9.41173851,
 8.35427725, 8.30448697, 6.00856569, 11.45668753, 12.28473872,
10.59854551, 11.19637618, 9.39514432, 7.33117806, 11.85215015,
 7.69541855, 6.03290759, 10.86132571, 12.05773656, 6.90652897,
 5.94758922, 7.17514875, 12.56462366, 8.47610341, 9.67886991,
12.55848032, 10.80810521, 7.62209787, 9.55853763, 6.59380989,
10.05829151, 7.70792548, 12.61738184, 7.56158834, 6.41848952,
11.67083445, 11.07977582, 11.49781989, 11.58767331, 14.32043021,
12.96279258, 16.45597952, 7.80220247, 10.37807173, 13.53752162,
12.30287664, 7.9002474, 6.79716898, 10.73913316, 8.82273575,
10.12987078, 13.93998734, 11.18663458, 13.0398901 , 10.81529319,
9.99497173, 10.80602261, 8.86691724, 11.6696202, 7.54523956,
10.94570681, 10.8487511 , 10.82997712, 10.78029554, 10.72537103,
10.59127564, 7.32159493, 11.66252967, 9.70428765, 9.30867893,
 6.58382894, 9.73976543, 7.65230175, 10.09557 , 13.99616669,
12.62811279, 6.38483851, 11.21531811, 11.99823864, 6.9899345,
 6.71215839, 8.63113852, 11.48487602, 13.22229896, 7.47588301,
 6.57717103, 11.15071864, 7.76249593, 9.9696191 , 16.92378394,
 8.00854384, 8.74726487, 10.76164068, 11.56681159, 12.65351686,
 9.06957467, 10.28615934, 4.42616495, 10.12617323, 7.82856135,
 8.33679288, 11.57271315, 12.67161311, 8.3504537, 12.13457626,
 7.86622943, 11.7390548, 8.64437051, 9.97687296, 8.09767324,
 6.83928864, 9.26537373, 9.86856588, 11.7763428, 7.50476133,
11.39322449, 8.06605662, 11.01584468, 10.85723162, 7.24764857,
 7.52033295, 10.34676885, 8.74005838, 12.60653045, 14.10361983,
 7.63207529, 7.25411904, 7.49622042, 6.19088881, 9.54191084,
 9.27672197, 10.75144654, 6.4100692, 9.46149507, 12.56428115,
10.70731632, 12.73684664, 13.93508441, 10.30314657, 9.5195454,
 9.85446754, 7.11154158, 8.63936036, 9.74123572, 10.86226317,
12.33326338, 6.59931273, 10.52470672, 9.14876941, 7.68858099,
 9.77781404, 12.83011489, 5.82321027, 12.00348401, 10.40946758,
10.52319061, 7.80584798, 13.42217209, 8.74571144, 6.08397402,
11.27794502, 7.41667368, 8.65767372, 6.89023595, 13.70832858,
 6.48178462, 2.97741365, 9.51463317, 4.49208705, 11.27620116,
11.81995097, 6.83356394, 12.1687126 , 9.25377237, 6.10940729,
 8.2379158 , 14.13620319, 10.11131027, 8.16417899, 11.61340757,
 6.68400388, 9.0946256, 8.69383236, 6.38637755, 6.94163948,
 9.92106113, 12.13316565, 8.88786369, 9.82761361, 6.45552614,
 8.47811278, 12.00544479, 9.06372001, 11.50743505, 12.31930275,
 9.97546278, 12.43148676, 6.37416875, 11.07642712, 7.39122599,
12.15507175, 8.16790959, 6.09685233, 8.89044726, 13.78423974,
11.2748642 , 9.49313392, 10.03588843, 12.31702669, 8.05037707,
10.37501495, 11.07304254, 9.71683275, 12.10999519, 13.59165021,
11.3221988 , 10.1778559 , 9.8676653 , 10.97568573, 11.64788185,
```

```
10.06545438, 8.80469447, 12.17050322, 8.73144485, 6.52072582,
 7.19343175, 7.73599361, 10.54700557, 10.55818669, 10.71974465,
14.09882793, 12.98438952, 11.63761 , 7.93218159, 11.20222413,
 8.7975591 , 7.93395507, 9.63729463, 10.89941762, 7.2546749 ,
 9.15134117, 7.91837348, 8.8531702, 8.96629292, 11.12684586,
 7.86930932, 9.13625783, 13.02749533, 12.78767772, 8.94089689,
12.07052499, 7.89835506, 7.17845774, 11.5947495 , 11.63161012,
 2.82406889, 6.8629771 , 7.54438912, 6.51607604, 8.43850947,
10.58916835, 8.75646721, 8.05408242, 15.39084077, 8.26406233,
10.84304151, 10.65028182, 10.56472791, 12.17609547, 9.999182 ,
 6.55611846, 6.83434583, 8.88653302, 10.11881259, 10.63930803,
10.09206528, 13.1734071 , 10.90650997, 10.72611393, 8.01917427,
10.5690271 , 8.45868542, 4.05551975, 7.38759151, 17.39683773,
10.99081353, 10.40253405, 10.36323018, 5.95713231, 11.55587429,
12.82245523, 11.7112336 , 11.7523984 , 11.90055874, 11.03905597,
10.83030192, 6.08042309, 7.42419396, 10.04055282, 7.00027775,
12.09376054, 10.65378126, 11.51340166, 9.87109488, 13.47614345,
 8.05215228, 11.87867922, 9.71251308, 8.73562386, 12.42681491,
10.68671104, 11.13604564, 7.50835925, 12.22571177, 5.74933397,
8.91198404, 10.53096775, 13.18533277, 10.72063785, 6.5213282 ,
8.5502314 , 12.86228473, 8.02874523, 10.99162164, 7.4222174 ,
10.91558978, 10.47505147, 8.33650208, 8.7509807, 13.668224,
11.07532863, 10.6651579 , 14.11161898, 8.65056173, 12.46042418,
12.50380935, 8.09790178, 8.57387482, 10.72675509, 9.85812287,
8.33703135, 10.13420497, 10.93297774, 7.3188816, 8.00265763,
10.27841366, 10.22984001, 6.59481374, 8.15445197, 10.32340089,
10.68001008, 8.08453451, 12.10377383, 15.28440259, 11.23834108,
7.05258047, 11.01961073, 7.92785898, 6.34451458, 10.9612442,
13.13525773, 11.8449702 , 12.37886664, 11.89139708, 7.79978547,
11.06110949, 6.60075658, 8.52621587, 12.70629798, 11.2229273,
10.62888799, 10.81359103, 6.83817704, 9.81188438, 9.88846412,
10.36906664, 7.31079235, 9.72215525, 6.14101385, 11.45478114,
7.03623008, 8.82869049, 7.16419133, 6.8019447, 9.59419823,
12.47292753, 10.34932416, 12.92535008, 7.51622366, 6.6365204,
7.96813907, 9.9331109, 9.73691753, 8.13867201, 11.2422581,
11.13177984, 11.87722169, 12.4902515 , 7.51166943, 9.66044348,
12.12878236, 6.79165551, 10.26582381, 10.47418165, 8.14121099,
 8.57030664, 11.00839049, 12.64862616, 10.03707001, 11.77936263,
10.59533262, 10.613536 , 7.32861595, 10.76800352, 10.55071749,
11.35465603, 10.27762782, 11.35011005, 12.26257137, 7.39462087,
 7.32671517, 8.5578403 , 12.52498355, 11.03744826, 11.0559728 ,
11.83718937, 10.33522551, 9.53284177, 9.1278605, 12.41900296,
14.04732452, 7.61230884, 14.84371197, 13.66734218, 6.55473078,
8.25561329, 10.16841701, 10.04399187, 6.02485517, 8.93113494,
11.81005183, 9.27102017, 12.99467069, 10.64557237, 12.00154597,
            9.24414708, 13.51092367, 7.40837211, 8.30657955,
10.4079298 ,
 4.57323995, 4.38390607, 10.58128624, 11.52524213, 11.20915754,
 9.47358451, 7.68621145, 15.19533269, 12.37263911, 6.35023244,
 9.48063947, 12.42935768, 6.55977302, 12.64978633, 9.92179249,
11.71001282, 9.7034389, 10.09593979, 12.97215385, 11.26510574,
 8.96537495, 11.13571538, 11.30990083, 12.60602006, 11.7184744 ,
 9.28631413, 9.03186234, 5.82610395, 10.04542788, 8.55538614,
 9.75591848, 8.28404484, 13.3903473, 8.11637044,
                                                  3.08773565,
 8.34621341, 9.32981414, 13.0980881 , 10.09232083, 9.19914797,
11.72383918, 3.21925585, 11.89385778, 8.2742262, 7.49549575,
 9.89464793, 6.70877318, 11.8009164, 11.04113555, 12.39967772,
 9.01709854, 12.51965454, 8.01644517, 10.96761204, 9.61604672,
```

```
10.38706254, 13.25135405, 8.70764163, 10.38156454, 13.45838507,
       11.67628119, 10.10090056, 7.11907261, 12.38438436, 10.26132231,
        9.93431398, 9.94758788, 12.36794066, 12.1260907, 10.23213025,
       12.80992369, 9.78090875, 8.45465555, 10.63973468, 11.45539162,
       13.25342014, 11.16986818, 7.71420711, 10.32564893, 12.04927835,
        7.7338128 , 11.11947596, 11.09318516, 11.13957818, 11.07095075,
       12.57449677, 10.32381639, 9.95156045, 11.92964736, 10.39246179,
       10.44149231, 10.48667826, 7.88081672, 10.88129362, 2.80574672,
        5.65197243, 6.86166742, 9.09483859, 10.73348528, 6.83106585,
        7.88236328, 9.94235572, 12.02443989, 8.39807796, 8.02612888,
        6.75306662, 9.60141674, 8.06509549, 10.59734297, 11.56836215,
        5.88032281, 9.54808592, 7.11070137, 8.75541421, 14.5673384,
       12.2573539 , 10.79517226, 7.88915511, 11.10109231, 8.41462895,
        7.35336998, 12.03390326, 13.7335033 , 11.32054727, 10.28273993,
        9.2375973 , 11.31401522, 12.1694303 , 12.05899315, 10.76606085,
       11.34862079, 6.52790628, 8.33372767, 11.62468754, 11.22413502,
       10.67557902, 10.63807865, 6.29410791, 11.53542843, 11.39144466,
       10.87609562, 7.02793261, 14.26921643, 11.41197466, 10.72343667,
        4.3833691 , 10.42707943, 11.82913483, 11.63338378, 12.21196572,
       11.10053356, 9.1244236 , 11.14365316, 8.72713724, 9.06805045,
        7.75850885, 10.47770154, 10.39255101, 7.13005698, 10.20928464,
       10.93630917, 9.99731544, 10.07526563, 9.96890221, 9.76474155,
        6.60879927, 7.64022324, 9.18078081, 5.84196937, 11.67968948,
       12.53532417, 11.72627477, 8.87087605, 8.70098852, 8.82631945,
       13.33838154, 8.34612125, 9.00843885, 8.31724864, 11.13546535,
       12.006061 , 9.54483514, 6.00774527, 11.10299282, 11.52681116,
       12.02315949, 11.7269123, 8.8067732, 11.72954014, 10.23056751,
       10.01524737, 6.91034912, 7.86340702, 13.87015457, 9.60879922,
        8.7974273 ])
                                                                     In [62]:
pred=MLR.predict(x train)
pred
                                                                    Out[62]:
array([10.66942975, 8.64184144, 12.294599 , ..., 11.54253035,
       10.30506766, 8.89102502])
                                                                     In [63]:
from sklearn.metrics import r2 score
accuracy=r2_score(y_test,y_pred)
accuracy
                                                                    Out[63]:
0.41436847079806416
                                                                     In [64]:
MLR.predict([[1,0.455,0.365,0.095,0.5140,0.2245,0.1010,0.150]])
                                                                    Out[64]:
array([9.90009437])
13. Measure the performance using Metrics
                                                                     In [65]:
from sklearn import metrics
from sklearn.metrics import mean squared error
np.sqrt(mean squared error(y test,y pred))
                                                                    Out[65]:
2.39214723333425156
LASSO
```

```
In [66]:
from sklearn.linear model import Lasso, Ridge
#intialising model
lso=Lasso(alpha=0.01, normalize=True)
#fit the model
lso.fit(x train, y train)
Lasso(alpha=0.01, normalize=True)
#prediction on test data
lso pred=lso.predict(x test)
#coef
coef=lso.coef
coef
                                                                    Out[66]:
                              , 0.
                 , 0.
                                           , 0.44963161, 0.10818509,
array([-0.
                               , 0.91071248])
                   0.
       0.
                                                                     In [67]:
from sklearn import metrics
from sklearn.metrics import mean squared error
metrics.r2_score(y_test,lso pred)
                                                                    Out[67]:
0.339211462240938
                                                                     In [68]:
np.sqrt(mean squared error(y test,lso pred))
                                                                    Out[68]:
2.5410132621687236
RIDGE
                                                                     In [69]:
#initialising model
rg=Ridge(alpha=0.01, normalize=True)
#fit the model
rg.fit(x train,y train)
Ridge(alpha=0.01, normalize=True)
#prediction
rg pred=rg.predict(x test)
rg pred
                                                                    Out[69]:
array([ 7.68203899, 13.84697362, 11.06617156, 7.5170771 , 14.94553394,
        8.81883609, 13.33171983, 7.29898553, 8.88131511, 7.93505793,
       11.22101908, 8.95035835, 5.69601735, 11.08331837, 5.9896888,
       10.68867431, 12.82201619, 7.6258678, 10.85291187, 7.13087198,
       12.28707661, 10.51966815, 10.51833059, 9.00995324, 10.44395656,
        9.51388015, 15.51262813, 10.9394745 , 10.74720354, 11.00905373,
       12.13933944, 8.75590809, 6.87947165, 7.8627687, 6.20857285,
        8.3955356 , 14.92819105 , 11.39754301 , 7.03070362 , 10.30302694 ,
       14.12187321, 13.33242244, 9.56013331, 15.25294661, 12.96907859,
        9.1595615 , 10.79144345, 8.73490015, 6.48827881, 11.41484259,
       10.74514959, 10.19835218, 8.42598377, 8.56470379, 12.20077743,
       11.6427681 , 6.74984464, 7.89000729, 10.02269245, 12.62699383,
        8.15240328, 8.46789835, 10.22641054, 10.49377221, 8.78846723,
       10.97329182, 9.27778686, 9.59905333, 10.8152165, 9.82699378,
       11.63700766, 8.16785412, 10.21840548, 10.82805235, 12.72907246,
        9.98527236, 12.99490972, 7.17763135, 6.62990533, 8.90371334,
       11.29698928, 8.06003108, 10.39263523, 10.70497155, 11.25702608,
```

```
12.91856779, 7.26694094, 8.73610666, 7.46091193, 9.1368849,
8.77732245, 9.30431034, 10.19545704, 9.79099496, 9.48995307,
10.68811791, 7.85381227, 9.24499583, 9.68071502, 9.41930314,
 9.46070162, 7.38529686, 8.01654811, 7.29977665, 12.77508538,
12.23976781, 9.63804867, 8.4541093, 11.29390752, 12.91587289,
6.11789916, 11.43756111, 10.51380969, 9.11062222, 13.59555766,
7.56932268, 11.5427566 , 10.10436883, 10.35877665, 7.7824792 ,
9.34129502, 10.47465298, 10.8456737 , 10.34745854, 10.59560012,
10.47217531, 12.09640123, 9.6410689, 6.10964684, 9.40301329,
9.2472833 , 10.68528635, 10.44432142, 6.31266629, 11.06569851,
10.80898875, 10.82146782, 9.59301499, 11.15039884, 7.74691743,
11.29409118, 10.30946665, 6.7497486 , 12.84402774, 11.07122058,
6.34332044, 11.27323587, 9.36305582, 10.88313969, 3.40393629,
10.34143848, 13.7299533 , 11.32886207, 9.20730755, 10.43039098,
11.51755644, 9.40797336, 10.60328889, 7.40924544, 10.84566439,
8.07232263, 8.9707994, 10.44372916, 9.08170911, 6.21096351,
10.95241791, 9.66469115, 10.40650519, 10.59667352, 7.16461271,
7.43832101, 9.78146061, 8.21714414, 12.08928015, 6.40184488,
9.37400273, 9.41405716, 10.14019207, 9.85721143,
                                                   7.57160436,
8.31230883, 12.05285404, 11.93229272, 7.81527785, 6.55556756,
8.12244135, 11.63068277, 6.73878214, 10.5081584 , 6.51509771,
7.85886691, 9.80025253, 10.49561701, 11.58567639, 9.52815036,
8.37969089, 8.3578622, 6.00656628, 11.42635419, 12.17694907,
10.61985088, 11.24452675, 9.40542445, 7.28775049, 11.88064658,
7.69009211, 6.02915823, 10.91533512, 11.93656093, 6.8890668,
5.95034159, 7.19646017, 12.53340788, 8.47119676, 9.8134401 ,
12.50604357, 10.74058446, 7.65220737, 9.52935083, 6.56788751,
10.04795755, 7.7527938, 12.60245287, 7.57105648, 6.55827344,
11.66011828, 11.0974038 , 11.50307187, 11.56952788, 14.12672843,
12.86000693, 16.21595876, 7.81420132, 10.34393708, 13.39512957,
12.28118336, 7.86897826, 6.81082775, 10.6887803 , 8.79996296,
10.14577109, 13.83680032, 11.14704792, 13.0005994 , 10.84376533,
10.13190775, 10.76303897, 8.85312869, 11.56690152, 7.51536551,
10.91293188, 10.82752631, 10.94285603, 10.85342052, 10.64140806,
10.60186579, 7.32717175, 11.68738763, 9.61459007, 9.33188319,
6.59925289, 9.69281944, 7.9439247, 10.15897824, 13.84304708,
12.57907642, 6.344898 , 11.09970707, 11.95181854, 7.01352836,
6.71607682, 8.64787829, 11.46557095, 13.22923683, 7.45977156,
6.56213545, 11.00655246, 7.80464414, 9.93999566, 16.7090874,
7.94303508, 8.78859722, 10.83096568, 11.7024334 , 12.7152989 ,
9.04525089, 10.24491598, 4.55024112, 10.13137808, 8.04213213,
8.3441097 , 11.46788936, 12.60565701, 8.35031121, 12.02829705,
7.86615402, 11.68196697, 8.64118593, 10.22272454, 8.14867929,
6.86074632, 9.33096359, 9.92421975, 11.67761617, 7.54688302,
11.32219089, 8.09165252, 11.04462847, 10.93765006, 7.31386865,
7.55649826, 10.32769036, 8.70252436, 12.54226155, 13.98820589,
7.85511978, 7.27778236, 7.55221603, 6.18756535, 9.47465714,
9.49282712, 10.72279935, 6.5504224, 9.47476503, 12.55654257,
10.65337021, 12.60825629, 13.89628615, 10.3342755 , 9.57725353,
9.85317677, 7.17632692, 8.62403191, 9.75861159, 10.83256225,
12.21822851, 6.62250309, 10.60123553, 9.16449576, 7.72383924,
9.77511398, 12.83247924, 5.8117528, 11.97016523, 10.37583022,
10.55298322, 7.87674651, 13.27384752, 8.82226733, 6.00860836,
11.25960415, 7.47706869, 8.62176057, 6.89759008, 13.57919921,
6.48618339, 3.55191248, 9.55193021, 4.61993207, 11.31620576,
11.82789981, 6.9831397, 12.00179478, 9.27500836, 6.08682852,
8.30671096, 13.974781 , 10.14846581, 8.19539073, 11.58125554,
```

```
6.67510103, 9.0887027, 8.67958472, 6.43656148, 6.97854876,
 9.93802766, 12.09529794, 9.03364647, 9.82191519, 6.43677077,
 8.50451434, 11.93261396, 9.2896627, 11.63882164, 12.14785576,
10.10576358, 12.33683351, 6.319303 , 11.11562475, 7.65055292,
12.21016151, 8.19858749, 6.09499239, 8.8702979, 13.66486289,
11.2712146 , 9.52713459, 9.95973498, 12.29650779, 8.0307018 ,
10.37763649, 11.02523673, 9.7539137, 12.05357577, 13.42167242,
11.34590232, 10.22877082, 9.81882791, 11.02748679, 11.61956143,
10.15118191, 9.10294971, 12.1608746, 8.7388936, 6.65523013,
 7.16713504, 7.77606873, 10.69130871, 10.51817951, 10.73797789,
13.92630319, 12.90573529, 11.59563639, 8.00176139, 11.1866828,
 8.79037823, 7.96630964, 9.64418411, 10.88776465, 7.27389903,
 9.05202488, 7.89320368, 8.78386333, 9.11579478, 11.21895063,
 7.99645984, 9.15414163, 12.93566974, 12.7521764, 8.93558302,
12.07714777, 7.86647061, 7.21225119, 11.55930979, 11.64360649,
 3.02520112, 6.86973743, 7.5282642, 6.5202082, 8.46725888,
10.53926711, 8.7619455, 8.09910554, 15.25993555, 8.31056453,
10.85966955, 10.58661578, 10.48923804, 12.05803077, 10.1476534 ,
 6.56640632, 6.88036086, 8.8437361, 10.16231353, 10.62213385,
10.10158857, 13.06507921, 10.93277946, 10.82413653, 7.99800354,
10.52324885, 8.48428495, 4.1849242, 7.39727649, 17.15803579,
10.92965808, 10.42918907, 10.41129176, 5.95048188, 11.57047011,
12.80890145, 11.7342409 , 11.66734502, 11.94339227, 11.05827707,
10.83565188, 6.13325047, 7.39838993, 10.18124024, 7.00978932, 12.06905263, 10.64498649, 11.40329234, 9.8678707, 13.28767216,
7.56764504, 11.71088155, 9.72387169, 8.75325786, 12.31626496,
10.62154874, 11.14812425, 7.48310967, 12.23053833, 5.74716061,
 8.94699741, 10.54808191, 13.06561018, 10.74569983, 6.5161615,
8.5944105 , 12.75464508 , 8.072524 , 11.122407 , 7.49576221, 10.92879652 , 10.55987409 , 8.31196607 , 8.79878448 , 13.59884324 ,
10.9957104 , 10.77176821, 14.00563285, 8.82696384, 12.43305819,
12.40618943, 8.17101528, 8.60880152, 10.68880172, 9.89205304,
8.3827652 , 10.14253829, 10.85131955, 7.3401403 , 8.03954185,
10.4219395 , 10.20906709, 6.61335917, 8.14592689, 10.36192662,
10.76649905, 8.09315374, 12.0145261 , 15.04712488, 11.20966889,
 7.09150046, 11.0517444 , 7.96891267, 6.30019112, 10.94086078,
13.04953748, 11.77847689, 12.29371636, 11.95785888, 8.08495002,
11.09283791, 6.62292541, 8.59805692, 12.72503827, 11.22104803,
10.68676506, 10.79629275, 6.82910138, 9.79021188, 9.95886551,
10.30830597, 7.32456054, 9.75777606, 6.1491385, 11.42237604,
 7.0764448 , 8.82188787, 7.1862073 , 6.8217148 , 9.64482703,
12.37554151, 10.42092394, 12.93778993,
                                       7.51834917, 6.69283691,
 7.97967463, 9.89918817, 9.70601747, 8.11761397, 11.26041979,
11.16431321, 11.87778673, 12.4655023 , 7.50487995, 9.63404273,
12.08359693, 6.80459175, 10.18561403, 10.46321892, 8.13624573,
 8.57265928, 11.03258986, 12.64203468, 10.02660744, 11.80232748,
10.60478723, 10.64422104, 7.31981181, 10.84406791, 10.60423076,
11.38359396, 10.20148205, 11.25532269, 12.1740195 , 7.38956314,
7.32521037, 8.67409691, 12.36489909, 11.02816989, 11.17319032,
11.83550628, 10.32259303, 9.52595352, 9.10559504, 12.36845939,
14.0218438 , 7.65030159, 14.64430039, 13.4979665 , 6.58693957,
 8.25531089, 10.17272954, 10.00255488, 6.07265599, 8.9360691,
11.69157266, 9.22093807, 12.83988752, 10.63498066, 11.965202
10.38474727, 9.23478567, 13.38694214, 7.41472726, 8.528341 ,
 4.71360643, 4.51038162, 10.61479402, 11.50795689, 11.28502307,
 9.63366133, 7.6407041 , 15.0433491 , 12.34212921, 6.3455866 ,
 9.5260907 , 12.28648894, 6.52799593, 12.49671789, 9.95622525,
```

```
11.70247334, 9.66891935, 10.20482295, 12.88962152, 11.23516065,
        8.97991529, 11.13287188, 11.33281692, 12.54446633, 11.70542713,
        9.29767787, 9.00244117, 5.78758492, 10.05294521, 8.5862263,
        9.83746209, 8.35307622, 13.22200373, 8.09916374, 3.64051214,
        8.38608704, 9.31127217, 13.12479622, 10.0581184, 9.16553085,
       11.77005422, 3.81255318, 11.83317869, 8.2473479,
                                                             7.52455877,
                    6.68371509, 11.78969291, 11.1319114 , 12.38338715,
        9.85502551,
        9.00503488, 12.58818857, 8.31623252, 11.01152365, 9.69549011,
       10.4447624 , 13.26470692, 8.79358104, 10.36144061, 13.36043516,
       11.6463457 , 10.16612087, 7.1653074 , 12.38172132, 10.3032298 ,
        9.92826931, 9.94602717, 12.29282926, 12.02946639, 10.3449639,
       12.71169201, 9.80853972, 8.46327751, 10.55182462, 11.49968025,
       13.18457667, 11.114199 , 7.74002195, 10.35944449, 12.0221965 ,
        7.72416398, 11.16207997, 11.07838393, 11.07329788, 11.0459465 ,
       12.61431962, 10.41593592, 10.01529845, 11.80075451, 10.54229029,
       10.42501922, 10.48731312, 8.20175095, 10.94423682, 3.38222418,
        5.70217753, 6.90475262, 9.12995101, 10.78535208, 6.7985152,
        7.96481149, 10.00365146, 12.017692 , 8.55039718, 7.96914487, 6.80540993, 9.67499937, 8.09057157, 10.52701919, 11.44489178,
        6.03222699, 9.5264666, 7.13952933, 8.76655079, 14.4432703,
       12.21720411, 10.78888584, 7.8938706, 11.12218212, 8.47210017,
        7.35642915, 11.9759251 , 13.5911395 , 11.27616017, 10.20618267,
        9.35466477, 11.25539471, 12.06332306, 12.0767551 , 10.83970883,
       11.40458485, 6.57736814, 8.3554199, 11.50086832, 11.24794403,
       10.70381282, 10.60806856, 6.31864332, 11.49384838, 11.35058699,
       10.83933997, 7.00979403, 14.13268016, 11.37043893, 10.72704267,
        4.50939625, 10.36268612, 11.84025943, 11.59016694, 12.22479002,
       11.17100773, 9.18937206, 11.24741617, 8.81886898, 9.08054189,
        7.76438027, 10.50683584, 10.5492084,
                                               7.13049183, 10.19200617,
        1.06422383, 9.94089234, 10.00353593, 9.96733374, 9.73070387, 6.70579464, 7.64380508, 9.18953979, 5.82668077, 11.67756681,
       11.06422383,
       12.55057182, 11.77359723, 8.87057171, 8.74004768, 8.79869301,
       13.32854706, 8.45018954, 8.99865625, 8.2938608, 11.01518743,
       12.04013955, 9.57267203, 5.9593748, 11.04374204, 11.49470871,
       11.99040282, 11.66643965, 8.84189086, 11.60547805, 10.24205648,
       10.03573857, 6.90855818, 7.90687239, 13.74558962, 9.71250328,
        8.90537242])
                                                                       In [70]:
rg.coef
                                                                       Out[70]:
array([-0.30837587, -0.78462777, 0.31965411, 0.9597699, 0.94830117,
       -1.44761705, -0.11915385, 1.917350911)
                                                                       In [71]:
metrics.r2 score(y test,rg pred)
                                                                       Out[71]:
0.41837095810708624
                                                                       In [72]:
np.sqrt(mean squared error(y test,rg pred))
                                                                       Out[72]:
2.3839586763249603
                                                                         In []:
```