Cozim Algoritmesi
Mihendislik & Matematiksel >> Kolhma
Problemi & Modeli >> Sinoma

Uygolama

· Exepsiton; hate orani demettir.

· Epogil = Emular / Fyercoi = Emular/faire.

· Eyotlesm = (fyeni - fost:)/fyeni

Metleb

.>>3+7

ons = 10

· disp (3+7)

10

· Ndisp [[3,8])

38

·» [5,2]

ans = 5 2

· o=[2,1,-1]

· b=[3,5,7]

mast

ans = 5 6 6

Klavycien girlen 10 adet sayıdan en büyüğünü baştan sırasını, en kümüğünü sondan srosin ve girilen sıfırların sayısını bulan akır diyagramını Giziniz.

*MATRIS X

- · A(BC) = (AB) C
- · [an O O] which is
 O a22 O "Kösegen Matris"
- A-1 = A asi
- · det(A) = 0 = Singular Matris

$$aij = \begin{cases} 3i + 14i \\ 4i + 14i \end{cases}$$

$$k = \begin{cases} 1 \\ -1 \\ 0 \end{cases}$$

$$\frac{det A = \frac{1}{a_{11}} \frac{a_{12}}{a_{13}} \frac{a_{14}}{a_{14}} \frac{a_{15}}{a_{15}} \frac{a_$$

5. Hayta Oino W) Sun Burndon 2x, - 3x2+2x2=-11 x, +x2 -2x2 = 8 X = -2 3x1-2x1-x2=-1 x2 = 5.4 +1.2 x3 = 5.4+1.2(-2)=3 $X_1 = -5.5 + 1.5 \times 1 - 1 \times 2 = -5.5 + 1.5 - 1(-2) = 1$ elde edilir. @ G21 - (C2, X1) 922 - (G21 X Q12) 923 - (a21 xa13) (3) an - (a31 X1) bolonor. 932-(031×912) 1 -15 a33 - (a31 x 913) 0 1 -1,2 -5,4 Omet 2) = $\begin{bmatrix} 4 & -1 & 1 \\ -3 & -2 & 4 \\ 1 & -1 & 3 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 15 \\ 8 \\ 13 \end{pmatrix}$ 182-(34)xRi-> 4-6 1 15 Be-(16) xRa > 0 -0,5 275 9.25 1R3-(-05x-2,5)xR2 - 0.25 4.75 10.75 0 0 1.80 15.40

0,0	rel 3	' ;	X1 +	×2 :	- X	3+14= 2 3 +14=	·	
			X ₁		- X ?	+X4 =	7	
						3 .		1
	,			1	(2		1
	1	2	-1	1	1	5		-
	1	0	1 -1	1	1	0		
7	-1		1	0	1	-4		-
	,							Anny States
								I
		*		4				1
								1
				•				1
2								-
P.						'Y		ı
k.*			2			•		13
	•							1
								1
								•

•	900	ss ()	urda	~ Je	ntem:
	4	-1	1	3	
		1		5	
		1		1	
		-1		3	
		2			
	-1	1	1	1	
	0	-2	0	2	
		2	_	6	
	0	1		1	
	-1	1	,		
7/4	1	-1	0	1	
	0	1	0	3	
	-1	1	-	1	
	1	-1	0	1	
		1			
	0	U	1	2	
		00			
	6	10	, 3		
		0 1		_	

x2=7 x1=9

1	2	1	- 6	
	2			
	-3			
	1			
1	1	-1	- 1	2
0	2	1	-	5
1	0	-1	1	0
-1	-1	-	U	-4
1		- 1	1	. 2
-1	1	2	-1	-1
	0			0
-1				-4
1	1	-1	and a second	2
0		1	0	- 1
1	0	-1	{	-42
C) -1	Q	1	- 4 2
1	1	-1	1	2
O	1	1	0	- (
0 0 1	-1	O	1	0
1	0	-1	1	O
1	-1	1	1	2
10 - 4	1	4	0	-
-	-1	+1	O	0
4	0	-1	1	0

Chrk

$$\frac{G_{11}}{G_{11}}$$
 $\frac{G_{12}}{G_{21}}$ $\frac{G_{21}}{G_{21}}$ $\frac{G_{22}}{G_{23}}$ = $\frac{K_2}{|A|}$

$$a_{11}$$
 a_{12} a_{1}
 a_{24} a_{22} a_{22} a_{32} a_{32} a_{33} a_{32} a_{33} a_{34} $a_$

>>
$$k = [1.12; 211; 722]$$

>> $k = [110]'$
== $[1]$

$$\frac{1}{3} + \frac{1}{4} + \frac{3}{9}$$

$$\frac{1}{3} + \frac{1}{4} + \frac{1}{9}$$

$$\frac{1}{3} + \frac{1}{4} + \frac{1}{3}$$

Scanned with CamScanner

X, =-21

Ters Matris

LU (Ayrıstıma, Cholesky) Yontemi

$$\begin{bmatrix} 1 & 0 & 0 \\ C_{11} & 1 & 0 \\ C_{21} & C_{22} \end{bmatrix} \times \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{22} & C_{22} & C_{23} \\ C_{23} & C_{23} \end{bmatrix}$$

·>> [1, u] = (u (A)

· >> == inv(1)*B

·>> x = inv (u) * 2

Vacobi iterasyon yontemi X, = Ax + C X2 = A x, + C X = AXH+C 1=1:0 max xi - xi Dinet(1) * 2 3 225 42 42 42 435 2x-y=3 1,875 1,125 ×(1) = (3+0)/1=1,5 =15 x(2) = (3+1,5)/2 = 2,25 = 0,35 2,000507 0,955023 +(n)=(3+k)/2=2.000987=>0,995021 Bini 2 | 2 | 1 | 0 | 10410 0114 x,= { (1-x2-x3) x2= 1/4 (2-1/4-x4) x3= 1= (-x2-X4) X= = { (1-x2-x3)

Geuss-Seidel Yontemis

Jacobi yentemisi daha

Lisa yalla yapmastir

D XI X2 X3 X4

1 0 0 0 0 0 0 0

2 0,15 0,4375 -90625 0,1503

Aiten iterayen Johns.

Lacobiyanterini, Gaussiden

daha kan yolin Japansri.

X.k=X.k-\frac{1\times^k-\times^{k-1}}{\times^k-2\times^{k-1}+\times^{k-2}}

Bang SEWEZLI

() rel 1) Ilx = x1-x-1=0 denteminin xo=1.3 civorinda kött oldugu bilindigine gare, gercet tota E=0,000000) horagetle basit iterasjon yantraniyle bulenuz.

10
$$f(x) = x^3 - x - 1$$
 $f(x) = x^3 - 1$ $f(x) = x^3 - 1$

(grave 2) +(x) = 2x4-3x-2=0 +15,000 Xo= 1.3 ve xo=0,5 cornes bibleri olding Liliadisine jare x = 2x - 2 1, =95678 $y(x_0) = \frac{8x^3}{J} > 1$ g'(xo) = -1 <1 x =0,58.75 -0,5

Bang SENJEZLI

Janlana (Bisection) Yorteni (Xu, Xs a +(xa), +(xs) dejote. Fit isnel! 1 XI = Xatkb yearbir & Wenver. @ flxi) + (ro) on itues; (8) 1.3 1320061 $L(x) = x^2 - 65x^2 + 13x - 9$ [a = 1.75, b= 25] C1 = 2+6 = 135 + 25 = 2, 125] 1(2,125) = 1, 11086 (226+11= 1,36+3125 = 1,9875) 1(1075) =-9,93070 16 261.8 black 3) x(x) = ex 1(x) -x -2=0 H11) = -0,211718172 + (1.8)= 2.243647 46 (1= 1+1-8 = 1,4 =) L(1,6) = 0,655 155967 C2=1.4+1=1.2=) +(12)=4120116525 c3 = 1+1,2 = 1.1= +11.1) = -0,095 8375761 =) Xa=1.2 Ly = 1,2+1,1 = 1.15=) +(1,15) = 0,0 681525 0369 C5 = 1.1 + 1.15 = 1,125 =) +(1,125) = -0,044 +031 engalin bes digagrami A COPE)

Scanned with CamScanner

Kiris (secont) Jontami:

Ones (1) Orr A sogisma istration duyarlik ta karetikinin bulinneri icin Newton Raphson yantemini Kullanirat bir algoritma gelitirinit. Buna gore 10'un Karretalismo ro=1 bostongia deger:, E=0,005 muttak hatolyla believe.

A=x²

$$f(i) = 5 \cdot A \rightarrow G = 3$$

$$A = 3$$

$$X_1 = X_0 - \frac{{x_0}^2 - A}{2x_0} = \frac{1}{2}(x_0 + \frac{A}{x_0}) = 1dc$$

köle ise hesaplanen höle

One (1) Dir A sogism istration

Uporticle to Exercicionia bellumos?

Uporticle to Exercicionia bellumos?

Una Newton Raphson gantemini

Ullanior bir algoritma geletirate.

Una gare 10 un harristania volumenti

una explana bellumenti

$$(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3 = -2 \times 0$
 $(-1) = -1 \times 1 \times 3 + 3$

Since (h)
$$x^{2} + 6x^{2} + 15x - 20 = 0$$
 $f(2) = 38 > 0$
 $f'(x) >$