Richard Correro

Email | Website | GitHub | LinkedIn

EDUCATION

Stanford University

MS in Statistics

Stanford University

BS in Mathematical and Computational Science

Stanford, CA

June 2022
Stanford, CA

June 2021

Experience

Technical Program Manager, Data Engineering

July 2022 - Present

Stanford, CA

 $Stanford\ University\ School\ of\ Medicine$

- Developed a containerized, distributed, cloud-native data pipeline to process hundreds of millions of hectares of high-resolution satellite imagery daily using deep-learning-based computer vision algorithms (Docker, Kubernetes, Redis, RabbitMQ, Google Cloud Platform, AWS).
- Developed novel computer vision algorithms for image classification, image segmentation, and object detection.
- Applied mathematical and statistical theories, techniques, and methods, to perform statistical inference on massive data sets produced using the pipeline.
- System is being used by the Brazilian Federal Labor Prosecution Office to target inspections to identify and prevent **modern** slavery and illegal deforestation in the Amazon rainforest.
- Article about my work here.

Graduate Research Assistant

June 2021 – June 2022

Stanford, CA

Stanford Human Trafficking Data Lab

- Designed, trained, and deployed computer vision algorithms to identify remote commodity production sites using satellite imagery (PyTorch, GDAL).
- Papers forthcoming.

Research Assistant

June 2020 – June 2021

Stanford Center for Ocean Solutions

Stanford, CA

- Created a deep-learning-based computer vision algorithm to identify small fishing vessels in satellite imagery (PyTorch, GDAL, OpenCV).
- Analyzed entire near-shore region of the Peruvian EEZ and identified previously unknown locations where illegal, unreported, or unregulated fishing was occurring (Google Cloud Platform, Statsmodels, R).
- Code available here.
- Article about my work here.
- Paper accepted for publication (forthcoming).

Projects

Light-Pipe | Python, C++

- Extensible, light-weight, open-source Python framework for data pipelines that scale.
- Provides a set of intuitive abstractions designed to decouple pipeline implementation from the operations they perform.
- Scales effortlessly, being built from the ground-up to support concurrency in all its forms.
- Super fast and efficient, used to perform critical geospatial data processing tasks at least an order of magnitude faster than existing systems.
- Talk I presented about Light-Pipe at Google's Geo for Good Summit in Mountain View available here.
- Code available here.

"Weak Supervision with Incremental Source Accuracy Estimation"

- Developed an algorithm to estimate the dependency structure and accuracy of weak supervision sources incrementally using precision matrices and robust principal components analysis.
- Allows for model training with weakly-supervised training data in on-line settings.
- Preprint available here.
- Code available here.

SKILLS

Languages: Python, C++, SQL, R, BASH

Tools: Git, Docker, Kubernetes, Apache Beam, Apache Spark, PostgreSQL, PostGIS, Rabbit MQ, Redis, Google Cloud Platform, Amazon Web Services (AWS), RESTful APIs, QGIS

 $\textbf{Libraries:} \ \ \text{GDAL}, \ \text{Rasterio}, \ \text{PyTorch}, \ \text{Tensorflow}, \ \text{Scikit-Learn}, \ \text{OpenCV}, \ \text{Statsmodels}, \ \text{NumPy}, \ \text{Pandas}, \ \text{Flask}, \ \text{Celery}, \ \text{PyTest}, \ \text{PyTest},$

AWARDS

National Merit Scholar April 2017