Informatik II: Algorithmen und Datenstrukturen SS 2017

Vorlesung 3a, Dienstag, 9. Mai 2017 (O-Notation, Teil 1)

Prof. Dr. Hannah Bast
Lehrstuhl für Algorithmen und Datenstrukturen
Institut für Informatik
Universität Freiburg

Blick über die Vorlesung heute

Organisatorisches

Korrektur vom ÜB1
 Wie, wann, was

Fragestunde
 Teil 2 der VL morgen

– Was zählt als PlagiatErinnerung + Klarstellung

Erfahrungen mit dem ÜB2
 Laufzeitanalyse

O-Notation

- Motivation, Definition, Beispiele $O, \Omega, \Theta, o, \omega$
- ÜB3: ein paar Rechenaufgaben zu O und Θ ... und die Laufzeit von drei Programmen als Θ(...) bestimmen

Korrektur vom ÜB1 1/2

Das funktioniert so

- Im SVN in einer Datei im zum ÜB gehörigen Ordner, z.B.
 xy123/blatt-01/feedback-tutor.txt
- Machen Sie einfach svn update in Ihrer Arbeitskopie
- Sie erhalten Ihre Korrektur in der Regel spätestens am Freitag nach Abgabe, allerspätestens am Wochenende Manchmal aber auch schon Mittwoch oder Donnerstag
- Falls Sie Wünsche oder Abneigungen in Bezug auf die Korrektur haben, sprechen Sie einfach mit Ihrem Tutor
 Das hat in der Vergangenheit immer sehr gut funktioniert

JNI FREIBURG

Korrektur vom ÜB1 2/2

- Rückmeldung vom Tutorentreffen
 - Es haben trotz mehrfacher Warnung einige ein MergeSort mit quadratischer Laufzeit produziert
 - Variablennamen sollten selbst-dokumentierend sein
 Einbuchstabige Laufvariablen bei Schleifen OK, aber nur da
 - Einige Leute sagen, sie h\u00e4tten es nicht verstanden, aber haben sich keine Hilfe auf dem Forum geholt
 - Man kann seinen Tutor auch um ein Treffen bitten!
 - Dokumentation sollte nicht sagen, was der Code macht (sieht man ja am Code), sondern welches Problem er löst
 - Aber nicht sowas schreiben wie: "Das steht hier, weil es sonst einen Index-Out-Of-Range Fehler gibt"

Erinnerung und Klarstellung

- Es wurde in der Vorlesung 1a besprochen, stand auf den Folien und in rot und fett auf dem 1. Übungsblatt ... und trotzdem gab es schon wieder einige Plagiatsfälle
- Deswegen hier nochmal zur Klarstellung:

Auch das Übernehmen von **Lösungen oder Code aus dem Internet**, und sei es nur teilweise, gilt als **Plagiat**

Sie können miteinander diskutieren und recherchieren und googeln so viel Sie möchten

Aber den Code bzw. Ihre Lösungen müssen Sie dann zu **100% selber schreiben**

Ausnahme: alles aus dem SVN /public dürfen Sie benutzen

Fragestunde morgen

- Nach der Vorlesung morgen
 - Die Vorlesung morgen wird nur ca. 1 Stunde dauern
 - Danach machen wir eine Frage(halbe)stunde
 - Sie können dort Fragen aller Art rund um den Vorlesungsstoff (und die Übungen dazu) stellen

Überlegen Sie sich was!

Erfahrungen mit dem ÜB2 1/3

- Zusammenfassung / Auszüge
 - Manche haben generelle Probleme mit dem Beweisen
 - Fehler bei der Aufgabenstellung von Aufgabe 1 (ϕ = y/x) Wurde im Forum sehr schnell (Mittwoch 12:22 Uhr) geklärt!
 - Probleme mit dem Verständnis von Aufgabe 4
 - Quartische Gleichungen haben noch eine Lösungsformel
 Keine allgemeine Lösungsformel erst ab Grad 5
 - Einige haben bei Aufgabe 4 Beweis aus der VL wiederholt
 Bitte die Aufgaben sorgfältig lesen und verstehen und nicht einfach nur halbautomatisch Output produzieren
 - Hurra, die Fragen sind zurück + die ÜB haben wieder Sinn!

■ Lösungsskizze Aufgabe 1+2

AUFGABE 1:
$$\frac{\times}{5} = \frac{5}{\times + 5}$$

$$\Rightarrow \frac{y}{x} = \frac{x+y}{y} = \frac{x}{y} + 1$$

$$= \frac{y}{y} = \frac{x+y}{y} = \frac{x}{y} + 1$$

$$z^2 - 2 - 4 = 0$$
 => $z_{1;2} = \frac{1}{2} + \sqrt{\frac{1}{4} + 1} = \frac{1 + \sqrt{8}}{2}$

$$g := \frac{y}{x}$$
 2.2. $g^2 = g + 1$

$$3^2 = 1 + 9$$

$$g > 1 \Rightarrow g = \frac{1+78}{2}$$

Industrians only :
$$M = 1 \Rightarrow \frac{1}{\sqrt{s}} (y - \psi) = \frac{1}{\sqrt{s}} (\overline{s}' = 1)$$

$$M = 2 \Rightarrow \sqrt{(g^2 - \psi^2)} = - = 1$$

Industrions solutt:
$$[m, m+1] \rightarrow m+2$$

$$= \frac{1}{\sqrt{5}} \left(\frac{g^{m+1}}{g^{m+1}} + \frac{g^{m}}{g^{m}} - (\frac{g^{m+1}}{g^{m}} + \frac{g^{m}}{g^{m}}) + \frac{1}{\sqrt{5}} \left(\frac{g^{m}}{g^{m}} + \frac{g^{m}}{g^{m}} \right) + \frac{1}{\sqrt{5}} \left(\frac{g^{m}}{g^{m}} - \frac{g^{m}}{g^{m}} \right)$$

$$= \frac{1}{\sqrt{5}} \left(\frac{g^{m+1}}{g^{m}} + \frac{g^{m}}{g^{m}} - (\frac{g^{m}}{g^{m}} + \frac{g^{m}}{g^{m}}) + \frac{1}{\sqrt{5}} \left(\frac{g^{m}}{g^{m}} - \frac{g^{m}}{g^{m}} \right) + \frac{1}{\sqrt{5}} \left(\frac{g^{m}}{g^{m}} - \frac{g^{m}}{g^{m}} \right)$$

$$= \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9^m - (\psi^{m+1} + \psi^{m})}{9^{m+2}} \right) = \frac{1}{\sqrt{5}} \left(\frac{9^{m+1} + 9$$

FREIBURG

Erfahrungen mit dem ÜB2 3/3

- Lösungsskizze Aufgabe 4 (untere Schranke)
 - In Vorlesung 2b wurde gezeigt: sei T(n) eine obere
 Schranke für die Laufzeit eines vergleichsbasierten
 Algorithmus für Eingabegröße n, dann T(n) ≥ log₂ (n!)
 - Das heißt: für mindestens eine Eingabe der Größe n muss die Laufzeit ≥ log₂ (n!) sein
 - Das heißt nicht, dass für alle Eingaben der Größe n die Laufzeit ≥ log₂ (n!) sein muss
 - Es gilt auch nicht, weil man jedem Sortieralgorithmus, einen einfachen Test voranstellen kann, der in ≤ A · n Zeit prüft, ob die Eingabe schon sortiert ist
 - Für sortierte Eingaben ist die Laufzeit dann ≤ A · n

O-Notation – Grundlagen 1/11

Erinnerung

- Wir haben jetzt mehrfach die Laufzeit T(n) in Abhängigkeit von der Eingabegröße abgeschätzt
- Die Werte der Konstanten waren dabei sekundär ... und auch, wenn die Schranken erst ab n ≥ irgendeinem n₀ galten
 Für sehr kleine Eingaben sind Programme ja sowieso schnell
- Zum Beispiel hatte wir, für n ≥ irgendeinem n₀:
 Die Laufzeit von MinSort ist "irgendwas mal" n²
 Die Laufzeit von MergeSort ist "irgendwas mal" n · log n
 Die Laufzeit von CountingSort ist "irgendwas mal" n
 Vergleichsbasiertes Sortieren dauert "irgendwas mal" n · log n

O-Notation – Grundlagen 2/11

UNI FREIBURG

Motivation

 Genau das wollen wir jetzt formaler machen, damit wir in Zukunft präzise sagen bzw. schreiben können

Die Laufzeit von MinSort ist $\Theta(n^2)$

Die Laufzeit von MergeSort ist O(n · log n)

Die Laufzeit von CountingSort ist **O(n)**

Vergleichsbasiertes Sortieren hat Laufzeit $\Omega(n \cdot \log n)$

O-Notation – Grundlagen 3/11

Vorbetrachtung

Wir betrachten Funktionen f : N → R

N = die natürlichen Zahlen ... typisch: Eingabegröße

R = die reellen Zahlen ... typisch: Laufzeit

Uns reicht, wenn f(n) > 0 für $n \ge n_0$... darunter darf f negativ sein, und das kommt bei Abschätzungen auch manchmal raus

Beispiele

$$f(n) = 3 \cdot n + 3$$

$$f(n) = 2 \cdot n \cdot (\log_2 n - 5) \quad \text{for } n \le 32 \cdot 3(n) \le 0 \text{ for } n > 32 :$$

$$f(n) = n^2 / 10$$

$$f(n) = n^2 + 3 \cdot n \cdot \log_2 n - 4 \cdot n$$

O-Notation – Grundlagen 4/11

4/11eigentlid wine 2001eld: $\frac{8}{9}$

- Groß-O, Definition
 - Seien g und f zwei Funktionen N → R
 - Intuitiv: Man sagt g ist Groß-O von f ...
 wenn g "höchstens so stark wächst wie" f
 - Informal: Man schreibt g = O(f) ... wenn ab irgendeinem Wert n_0 für all $n \ge n_0$ $g(n) \le C \cdot f(n)$ für irgendeine Konstante C
 - Formal: für eine Funktion $f: \mathbb{N} \to \mathbb{R}$ ist ...

 O(f) = { g: $\mathbb{N} \to \mathbb{R} \mid \exists n_0 \in \mathbb{N} \mid \exists C>0 \quad \forall n \geq n_0 \quad g(n) \leq C \cdot f(n) }$ dabei heißt \exists = "es existiert ..." und \forall = "für alle ..."

O-Notation – Grundlagen 5/11

■ Groß-O, Beispiel

- Sei g(n) = $5 \cdot n + 7$ und f(n) = n
- Dann ist g = O(f) bzw. man schreibt $5 \cdot n + 7 = O(n)$
- Intuitiv: 5 · n + 7 wächst höchstens "linear"

- Beweis unter Verwendung der Definition von O:

2u zeigen: 5- n + 7 \(\leq \) \(\text{in m = ingendein} \) \(\text{in m = ingendein} \) \(\text{in m = ingendein} \) Benein1: 5. m + 7 ≤ 5.m + 7.m = 12.m ≤ 7·m gin m≥1 =:mo 13 Benneis 2: $5 \cdot m + 7 \leq 5 \cdot m + m = 6 \cdot m$ $\leq m$ $\leq m$ $\leq m$ = : C国

FREIBURG

O-Notation – Grundlagen 6/11

- Es zählt "Wachstumsrate", nicht absolute Werte
 - Für zwei Funktionen kann ohne Probleme gelten

```
    g = O(f)
    g wächst nicht stärker als f
    g > f
    g ist überall echt größer als f
```

Zum Beispiel g und f von der Folie vorher

```
g(m) = 5 \cdot m + 7; g(m) = m

= g(m) > g(m) + m \ge 1 also g > g

TROTZDEM: g = O(g)
```

O-Notation – Grundlagen 7/11

- Groß-Omega, Definition + Beispiel
 - Intuitiv: Man sagt g ist Groß-Omega von f ...
 - ... wenn g "mindestens so stark wächst wie" f Also wie Groß-O, nur mit "mindestens" statt "höchstens"
 - **Formal:** Für eine Funktion $f: \mathbb{N} \to \mathbb{R}$ ist

$$\Omega(f) = \{ g : \mathbf{N} \to \mathbf{R} \mid \exists n_0 \in \mathbf{N} \exists C > 0 \forall n \geq n_0 g(n) \geq C \cdot f(n) \}$$

- Zum Beispiel $5 \cdot n + 7 = \Omega(n)$

- Beweis unter Verwendung der Definition von Ω:

zu zeigen: 5-n+7 ≥ C·n zim "regendem" C

für n≥ ingendem" no Bennes: 5-m+7 = 5-m sogar jur alle n

O-Notation – Grundlagen 8/11

- Groß-Theta, Definition + Beispiel
 - Intuitiv: Man sagt g ist Theta von f ...
 - ... wenn g "genauso so stark wächst wie" f
 - **Formal:** Für eine Funktion $f: \mathbb{N} \to \mathbb{R}$ ist

$$\Theta(f) = O(f) \cap \Omega(f) = \text{die Schnittmenge von } O(f) \text{ und } \Omega(f)$$

Wächst "höchstens so stark" und "mindestens so stark"

- Zum Beispiel $5 \cdot n + 7 = \Theta(n)$
- Beweis unter Verwendung der Definition von ⊖ :

Folie 14 =>
$$5 \cdot m + 7 = O(m)$$

Folie 16 => $5 \cdot m + 7 = \Omega(m)$
=> $5 \cdot m + 7 = \Omega(m)$

UNI FREIBURG

O-Notation – Grundlagen 9/11

- Es gibt auch noch o (Klein-O) und ω (Klein-Omega)
 - Die braucht man in der Informatik viel seltener
 - Hier kurz die Definitionen für f : N → R

```
o(f) = \{ g : \forall C > 0 \exists n_0 \in \mathbb{N}  \forall n \geq n_0  g(n) \leq C \cdot f(n) \}
\omega(f) = \{ g : \forall C > 0 \exists n_0 \in \mathbb{N}  \forall n \geq n_0  g(n) \geq C \cdot f(n) \}
\text{enizinger Mathematical an } \Im(\S)
```

– Intuitiv:

```
g = o(f): g wächst (strikt) langsamer als f
```

 $g = \omega(f)$: g wächst (strikt) schneller als f

Insbesondere ist die Schnittmenge leer: $o(f) \cap \omega(f) = \emptyset$

O-Notation – Grundlagen 10/11

Intuitive Zusammenfassung

- Die Operatoren O, Ω , Θ , O, ω sind auf Funktionen, was die Operatoren \leq , \geq , =, <, > auf Zahlen sind:

o entspricht ≤

 Ω entspricht \geq

entspricht =

o entspricht <

 ω entspricht >

Wichtig: es madt denen Sum zu sagen, dass em Algonthmus Loufzeit muidesterns O(n²) Grat.

menn sæan, dann munidesterns $\Theta(n^2)$

FREIBURG

O-Notation – Grundlagen 11/11

Weitere Eigenschaften

- Viele Eigenschaften von ≤ , ≥ , = , < , > gelten auch sinngemäß genauso für O , Ω , Θ , O , ω
- Zum Beispiel: Additivität $x_1 \in y_1$ $\wedge x_2 \in y_2$ $\Rightarrow x_1 + x_2 = y_1 + y_2$ $f_1 = O(g_1) \wedge f_2 = O(g_2) \Rightarrow f_1 + f_2 = O(g_1 + g_2)$

Gute Zusatzaufgabe für die, die vom ÜB unterfordert sind

Literatur / Links

- \blacksquare O-Notation / Ω -Notation / Θ -Notation
 - In Mehlhorn/Sanders:
 - 2.1 Asymptotic Notation
 - In Wikipedia

http://en.wikipedia.org/wiki/Big O notation

http://de.wikipedia.org/wiki/Landau-Symbole