Inleiding programmeren: Lecture 4

Martijn Stegeman en Ivo van Vulpen

Numeriek integreren

Fitten van data

Assistenten:

groep C: Daniël Pijn, Joris Schefold, Nick de Dycker

groep D: Timo Halbesma, Rico Visser, Wouter Meinster

Week 2

- Basis wiskunde
- Vergelijkingen

Week 4

- Numeriek integreren
- Fitten van data

Week 6

- Simulaties

Week 7

- Data-analyse

Algemeen: Python syntax

Importeren van bibliotheken (libraries)

Voorbeelden bibliotheken: math, random, time, matplotlib, ...

Voorbeeld: sinus functie (zit in de math bibliotheek)

```
>>> a = 1.00
>>> print sin(a)

Traceback (most recent call last):
   File "<pyshell#4>", line 1, in <module>
      print sin(a)
NameError: name 'sin' is not defined
>>> |
```

Option 1: Import only sin function

```
import math
a = 1.00
print math.sin(a)
```

Een andere library kan ook een sin() functie hebben nl

Option 2: Import full library

```
from math import *
a = 1.00
print sin(a)
```

Deel 1: numeriek integreren

- a) Riemann-som
- b) Monte-Carlo techniek

$$\int_{0}^{\pi} \sin(x) dx$$

Probleem: 1) niet altijd exacte parametrisatie: beurskoers

2) niet altijd een primitieve: $f(x) = x^x$ of $e^{-\alpha x^2}$

3) hoe doet Wolfram Alpha dat?

Strategie 1: de Riemannsom

Strategie 1: Riemannsom

Let op: je hoeft dus alleen de y-waardes te bepalen op een vast aantal punten. Doe de afleiding van 3) zelf!

- 1) Verdeel x-as in N intervallen $(x_0 t/m x_N)$ en bereken de y-waarden: $y_i = f(x_i)$
- 2) Benader f(x) voor elke bin: lineair

$$f(x) = \frac{f_i + f_{i+1}}{2}$$

$$f(x)$$

$$f(x)$$

3) Reken sommatie uit (doe dit zelf)

$$\int_{a}^{b} f(x)dx = \frac{\Delta x}{2} (f_0 + 2f_1 + 2f_2 + \dots + 2f_{N-1} + f_N)$$

Algemene tip:

start simpel om je code te testen

Algemeen:

$$\int_{a}^{b} f(x) dx = \frac{\Delta x}{2} (f_0 + 2f_1 + 2f_2 + \dots + 2f_{N-1} + f_N)$$

In 10 stappen (
$$\Delta x=1$$
): (dus 11 punten)

$$\int_{0}^{10} x^{2} dx = \frac{\Delta x}{2} (f_{0} + f_{10}) + \Delta x (f_{1} + f_{2} + f_{3} + f_{4} + f_{5} + f_{6} + f_{7} + f_{8} + f_{9})$$

$$= \frac{1}{2} (0 + 100) + (1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81)$$

$$= 335$$

In 10000 stappen ($\Delta x=0.01$): integraal = ?

Strategie 2: Monte Carlo methode

Random getallen in python

```
from random import *
x = random()
print x
random getal tussen 0 en 1
```

Hoe krijg je nou een:

- random getal tussen 0 en 2 ?
- random getal tussen -1 en 1
- random getal tussen a en b

Strategie 2: Monte-Carlo

- 1) Zet een box om de integratieregio heen
- 2) Gooi random punt (x_i, y_i) in de box

goed: binnen functie

 π

fout: buiten functie

3) Integraal is dan fractie van 'goede' punten maal de oppervlakte van de box

$$\int_{0}^{\pi} \sin(x)dx = \frac{\# \bullet}{\# \bullet + \# \bullet}$$

Handig: dit kan elke (ook een niet-analytische) functie zijn

Strategie 2: Monte-Carlo

Opgaves numeriek integreren

Opgaven 1 voor deze week:

$$\int_{0}^{1} x^{x} dx$$

$$\int_{0.1}^{2.0} \sin(x) dx$$

$$\int_{0}^{\pi} \sin(x^{2}) dx$$

Maak altijd een grafiek en check je code door een vergelijkbare en bekende integraal te evalueren

Numerical Integration

$$\int_{0.1}^{2.0} \sin(x) dx$$

Use both sum and Monte-Carlo

Check: known integral

$$\int_{0}^{\pi} \sin(x) dx$$

TIP: always make a plot on the screen.
Also with Monte-Carlo.

Deel 2: modellen (data fitten)

Data set

x	1	l			l	1	l		l	
y	55	50	39	58	54	57	78	66	62	82
σ_y	5	4	9	4	5	5	7	3	6	6

Beste beschrijving van de data?

Opgaves:

f(x) = c: vind c en Δc

f(x) = bx + c: vind b en c

Welke waarde van c past het best?

Maat van 'compatibiliteit': de χ^2 maat

Voor elke waarde van c (f(x)) kan je de χ^2 uitrekenen

() = de afstand tussen de voorspelling en het data-punt▲ uitgedrukt in het aantal keer de onzekerheid op de meting

Voorbeeld: f(x) = c = 50:

$$\chi^{2} = \left(\frac{55 - 50}{5}\right)^{2} + \left(\frac{50 - 50}{4}\right)^{2} + \left(\frac{39 - 50}{9}\right)^{2} + \left(\frac{58 - 50}{4}\right)^{2} + \left(\frac{54 - 50}{5}\right)^{2} + \left(\frac{57 - 50}{5}\right)^{2} + \left(\frac{78 - 50}{7}\right)^{2} + \left(\frac{66 - 50}{3}\right)^{2} + \left(\frac{62 - 50}{6}\right)^{2} + \left(\frac{82 - 50}{6}\right)^{2} = 85.98$$

Issue 1: wat is de optimale waarde van de parameters in f(x): c_{best}?

De beste waarde van c is de waarde waarbij de χ^2 minimaal is (χ_{min}^2)

Issue 2: wat is de onzekerheid op $c_{best} : (\Delta c)^+$ en $(\Delta c)^-$?

De fout is gegeven door de 2 waardes waarvoor geldt: $\chi^2 = \chi_{min}^2 + 1$

succes