

Departamento de Fisica

Física I -Vectores

Questões:

Q1 - Dado o vector \vec{A} da figura seguinte, desenhe os vectores $\frac{1}{2}\vec{A}$ e $2\vec{A}$.

Q2 - Para cada um dos pares de vectores \vec{A} e \vec{B} seguintes, obtenha graficamente o vector diferença $\vec{A}-\vec{B}$

a)

b)

c)

Q3 - Dados os vectores \vec{A} e \vec{B} seguintes, obtenha graficamente o vector $\vec{C}=2\vec{A}-3\vec{B}.$

Q4 - Obtenha os valores numéricos das componentes (escalares), segundo os eixos dos x e dos y, de cada um dos vectores indicados.

a)

b)

c)

Q5 - Quais são as componentes, segundo os eixos dos x e dos y, do vector soma $\vec{D} = \vec{A} + \vec{B} + \vec{C}$ dos três vectores referidos na questão Q4?

Q6 - Um vector pode ter uma componente nula e módulo não nulo? Justifique.

Q7 - Um vector pode ter módulo nulo e uma componente não nula? Justifique.

Q8 - Para cada vector cujas componentes segundo os eixos dos x e dos y são indicadas:

• Desenhe o vector utilizando o sistema de eixos apresentado;

• Indique o ângulo θ que define a direcção e sentido do vector;

• Obtenha o módulo do vector e o valor de θ .

a)
$$A_x = 3, A_y = -2;$$

b)
$$B_x = -2$$
; $B_y = 2$;
c) $C_x = 0$; $C_y = -2$.

c)
$$C_n = 0$$
: $C_n = -2$

Q9 - Dado o vector $\vec{A}=(5,\,30^o$ acima da horizontal), obtenha as componentes A_x e A_y nos três sistemas de coordenadas indicados abaixo.

a)

b)

c)

Problemas:

Nestes problemas, os vectores unitários que definem a direcção e sentido dos eixos coordenados x, y, z são denominados, respectivamente, por $\vec{i}, \vec{j}, \vec{k}$.

P1 - Calcule:

a) O módulo do vector $\vec{a} = \vec{i} + 2\vec{j} + 2\vec{k}$;

b) O vector unitário com a direcção e sentido de \vec{a} (Dado um vector \vec{a} , o vector unitário com a direcção e sentido de \vec{a} , que poderemos denotar por \hat{a} , denomina-se versor de \vec{a}).

R: a) 3; b) $\hat{a} = (1/3)\vec{i} + (2/3)\vec{j} + (2/3)\vec{k}$.

P2 - Dados os vectores \vec{a} e \vec{b} , cujas componentes segundo os eixos coordenados $x,\ y$ e z são, respectivamente,

$$a_x = 5; a_y = 4; a_z = -3;$$

$$b_x = 3; b_y = -4; b_z = 5,$$

determine:

a) O vector $\vec{c} = 6\vec{a} - 3\vec{b}$;

b) A quantidade $\vec{a}^2 + \vec{b}^2$;

c) O ângulo entre os vectores \vec{a} e \vec{b} ;

d) A projecção de \vec{b} segundo \vec{a} .

R: a) $\vec{c} = 21 \vec{i} + 36 \vec{j} - 33 \vec{k}$; b) 100; c) 108.7°; d) $-1.6 \vec{i} - 1.28 \vec{j} + 0.96 \vec{k}$.

P3 - Dados os pontos $P(x_1, y_1, z_1)$ e $Q(x_2, y_2, z_2)$, escreva a expressão cartesiana (isto é, em termos dos vectores unitários segundo os eixos dos x, y, z) do vector \overrightarrow{PQ} e e obtenha a expressão do seu módulo.

P4 — Considere os dois vectores \vec{u} e \vec{v} , no plano x0y, possuindo, respectivamente, os módulos $\sqrt{3}$ e 1. O vector \vec{u} faz com o semi-eixo 0x um ângulo de 30^o e o vector \vec{v} faz com esse semi-eixo um ângulo de 60^o . Calcule:

a) As componentes de \vec{u} e \vec{v} , segundo os eixos dos x, y, z;

b) As componentes da resultante da adição de \vec{u} e \vec{v} ;

c) O módulo dessa resultante;

- d) As componentes do vector diferença $\vec{u} \vec{v}$;
- e) O módulo do vector $\vec{u} \vec{v}$;
- f) O produto interno $\vec{u} \cdot \vec{v}$.

R: a)
$$u_x = 1.5$$
; $u_y = 0.87$; $u_z = 0$; $v_x = 0.5$; $v_y = 0.87$; $v_z = 0$; b) 2, 1.74, 0; c) 2.65; d) 1, 0, 0; e) 1; f) 1.5.

P5 - Calcule o módulo do vector $\vec{r} = \vec{a} + \vec{b} + \vec{c}$, em que $\vec{a}, \vec{b}, \vec{c}$ são os vectores abaixo indicados e o ângulo que o vector \vec{r} faz com o semi-eixo positivo dos x.

$$\vec{a} \equiv (37; 30^{\circ})$$

 $\vec{b} \equiv (25; 60^{\circ})$
 $\vec{c} \equiv (30; 135^{\circ})$.

Aqui os vectores são denotados por $(|\vec{v}|, \theta)$, em que $|\vec{v}|$ representa a amplitude do vector e θ representa o ângulo que o vector faz com o semi-eixo positivo dos x.

R:
$$|\vec{v}| = 65.2$$
; $\theta = 69.1$ °.

P6 - Decomponha um deslocamento de 80 km numa direcção 60° para sul da direcção Este em dois vectores, um dos quais na direcção Este.

R:
$$\vec{a} = (40\vec{i})$$
 km; $\vec{b} = (-69\vec{j})$ km., em que \vec{i} aponta para Este e \vec{j} aponta para Norte.

P7 - Um barco parte do seu porto, tendo-se deslocado de 160 km para norte do ponto de partida. Decomponha o deslocamento do barco em dois vectores componentes, um dirigido para nordeste e o outro para noroeste. Que distância teria o barco percorrido a mais para atingir a sua posição final, se viajasse primeiramente para nordeste e depois para noroeste?

R: 66.2 km.