Claims

1. Compounds of the general formulae (I) and (II):

where

 $R_1,\,R_2$ and R_3 each independently of one another are H; $C_{1\text{-}17}\text{alkyl};$

C₃₋₁₂cycloalkyl, optionally substituted by C₁₋₄alkyl groups;

 $C_{4\text{--}20}$ cycloalkyl-alkyl, optionally substituted by $C_{1\text{--}4}$ alkyl groups;

 C_{6-10} aryl, optionally substituted by 1-3 C_{1-4} alkyl groups, -CN, Hal, OH, or C_{1-10} alkoxy;

C₇₋₁₅phenylalkyl, optionally substituted by 1-3 C₁₋₄alkyl groups;

C₃₋₁₂alkenyl; C₃₋₁₂alkynyl; or aromatic or aliphatic C₃₋₁₂acyl;

 $R_4,\,R_5,\,R_6,\,R_7,\,R_8,$ and R_9 each independently of one another are H; $C_{1\text{--}17}alkyl;$

C₃₋₁₂cycloalkyl, optionally substituted by C₁₋₄alkyl groups;

C₄₋₂₀cycloalkyl-alkyl, optionally substituted by C₁₋₄alkyl groups;

C₈₋₁₀aryl, optionally substituted by 1-3 C₁₋₄alkyl groups;

C₇₋₁₅phenylalkyl, optionally substituted by 1-3 C₁₋₄alkyl groups;

C₃₋₁₇alkenyl; C₃₋₁₂alkynyl; C₁₋₁₂alkoxy; or OH; for formula (I)

R is C₁₋₁₂alkyl; C₃₋₁₂cycloalkyl, optionally substituted by C₁₋₄alkyl groups;

C₄-∞cycloalkyl-alkyl, optionally substituted by C₁-₄alkyl groups;

C₈₋₁₀aryl, optionally substituted by 1-3 C₁₋₄alkyl groups;

 C_{7-15} phenylalkyl, optionally substituted by 1-3 C_{1-4} alkyl groups;

 C_{3-12} alkenyl; or C_{3-12} alkynyl; and for formula (II) n = 2 - 12.

- Compounds according to Claim 1, where R₁, R₂ and R₃ each independently of one another are H; C₁₋₁₂alkyl; phenyl; or C₇₋₁₅phenylalkyl, optionally substituted by 1-3 C₁₋₄alkyl groups.
- 3. Compounds according to Claim 2, where R_2 and R_3 are each H; and R_1 is C_{1-12} alkyl; phenyl; or C_{7-15} phenylalkyl, optionally substituted by 1-3 C_{1-4} alkyl groups.

- Compounds according to one of Claims 1 to 3, where for formula (I)
 R is C₁₋₁₂alkyl; or is C₃₋₁₂alkenyl; and for formula (II) n = 6 12.
- 5. Compounds according to one of Claims 1 to 4, where the radicals R₄ to R₉ are a hydrogen atom.
- Compounds according to Claim 1, where R₁ = methyl, R₂₋₉ are each a hydrogen atom, R = n-butyl, n-nonyl, n-dodecyl, or allyl, and n = 8.
- 7. Use of a compound according to Claim 1 as accelerator in epoxy resin compositions.
- 8. Curable composition comprising
 - a) an epoxy resin whose epoxide content is from 0.1 to 11 epoxide equivalents/kg,
 - b) from 1 to 10 parts by weight, based on the overall composition from the components a) to d), of a compound according to Claim 1,
 - c) a curing agent for the epoxide resin, calculated such that per epoxide group there are from 0.5 to 1.5 functional groups of the curing agent, and optionally
 - d) an additive customary in epoxy resin technology.
- Composition according to Claim 8, characterized in that the curing agent is selected from the amine group.
- Composition according to Claim 9, characterized in that the curing agent is a polyoxypropylenediamine.
- 11. Composition according to Claim 8, characterized in that the epoxy resin is a glycidyl ether, glycidyl ester, N-glycidyl or N,O-glycidyl derivative of an aromatic or heterocyclic compound, or a cycloaliphatic glycidyl compound.
- 12. Use of a curable composition according to Claim 8 as a compression moulding compound, sinter powder, encapsulating system, casting resin, for producing prepregs and laminates using the resin infusion method, wet layup method and injection methods.