Group Meeting - November 6, 2020 Paper review & Research progress

Truong Son Hy *

*Department of Computer Science The University of Chicago

Ryerson Physical Lab

Confucius (Kung Fu Tzu)

- Wheresoever you go, go with all your heart.
- Choose a job you love, and you will never have to work a day in your life.

Papers

- Autofocused oracles for model-based design (NeurIPS 2020) https://arxiv.org/abs/2006.08052
- Self-supervised Learning on Graphs: Deep Insights and New Directions https://arxiv.org/abs/2006.10141

Paper 1

Autofocused oracles for model-based design (NeurIPS 2020)

Clara Fannjiang and Jennifer Listgarten https://arxiv.org/abs/2006.08052

Design problems (1)

Design problems

Design problems can be cast as seeking points in the design space, $x \in \mathcal{X}$, that with high probability satisfy desired conditions on a property random variable, $y \in \mathbb{R}$. Solve:

$$\operatorname{arg} \max_{\mathbf{x}} P(\mathbf{y} \in S | \mathbf{x})$$

where S is a constraint set.

Design problems (1)

Design problems

Design problems can be cast as seeking points in the design space, $x \in \mathcal{X}$, that with high probability satisfy desired conditions on a property random variable, $y \in \mathbb{R}$. Solve:

$$\operatorname{arg\,max}_{\boldsymbol{x}} P(y \in S | \boldsymbol{x})$$

where S is a constraint set.

Model-based optimization (MBO)

MBO seeks the parameters θ of a **search model** $p_{\theta}(x)$ that maximizes an objective that bounds the original objective:

$$\max_{\mathbf{x}} P(y \in S | \mathbf{x}) \ge \max_{\theta \in \Theta} \mathbb{E}_{p_{\theta}(\mathbf{x})} [P(y \in S | \mathbf{x})] = \max_{\theta \in \Theta} \mathbb{E}_{p_{\theta}(\mathbf{x})} \left[\int_{S} p(y | \mathbf{x}) dy \right]$$

Design problems (2)

Oracle-based model-based design (MBD)

- Oracle-based MBD replaces costly and time-consuming queries of the ground truth p(y|x), with calls to a trained regression model (i.e., **oracle**) $p_{\beta}(y|x)$ with parameters $\beta \in B$.
- Given access to a fixed dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$, the oracle is typically trained **once** using standard techniques and thereafter considered **fixed**.
- Optimize the lower bound:

$$\max_{\theta \in \Theta} \mathbb{E}_{p_{\theta}(\boldsymbol{x})} \bigg[\int_{\mathcal{S}} p_{\beta}(y|\boldsymbol{x}) dy \bigg]$$

Design problems (3)

MBO problems are often tackled with an **Estimation of Distribution Algorithm** (EDA):

- Belongs to a class of iterative optimization algorithms
- Monte Carlo Expectation-Maximization

Given an oracle $p_{\beta}(y|x)$ and an inital search model $p_{\theta^{(t=0)}}$:

- E-step:
 - Sample from the current search model $\bar{\mathbf{x}}_i \sim p_{\theta^{(t-1)}}(\mathbf{x})$ for all $i \in \{1,..,m\}$.
 - Compute a weight for each sample $v_i = V(P_\beta(y \in S|\bar{x}_i))$ where V(.) is a method-specific, monotonic transformation.
- **M-step:** Perform weighted MLE to yield an updated search mod $p_{\theta^{(t)}}(\mathbf{x})$ which tends to have more mass where $P_{\beta}(y \in S|\mathbf{x})$ is high

Model-based design as a game (1)

Problem

Substituting the oracle $p_{\beta}(y|x)$ for the ground-truth p(y|x) has a problem: the oracle is only likely to be reliable over the distribution from which its training data were drawn.

Solution

- An algorithmic strategy for iteratively updating the oracle within any MBO algorithm.
- Reformulate the MBD problem as a non-zero-sum game.

Model-based design as a game (2)

The oracle-based optimization

$$rg \max_{\theta \in \Theta} \mathbb{E}_{p_{\theta}(\mathbf{x})}[P_{\beta}(y \in S|\mathbf{x})]$$

has the solution to be **sub-optimal** with respect to the original objective that uses the ground-truth $P(y \in S|x)$. But the ground-truth is not accessible. We introduce the **oracle gap**:

$$\mathbb{E}_{p_{\theta}(\mathbf{x})}[|P(y \in S|\mathbf{x}) - P_{\beta}(y \in S|\mathbf{x})|]$$

9/20

Model-based design as a game (3)

A non-zero-sum game with the coupled objectives of two players:

$$rg \max_{\theta \in \Theta} \mathbb{E}_{p_{\theta}(\mathbf{x})}[P_{\beta}(y \in S|\mathbf{x})]$$

$$\arg\min_{\beta\in\mathcal{B}}\mathsf{ORACLEGAP}(\theta,\beta) = \arg\min_{\beta\in\mathcal{B}}\mathbb{E}_{p_{\theta}(\mathbf{x})}[|P(y\in\mathcal{S}|\mathbf{x}) - P_{\beta}(y\in\mathcal{S}|\mathbf{x})|]$$

- \rightarrow Search for a **Nash** equilibrium: a pair of values (θ^*, β^*) such that **neither** can improve its objective given the other.
- \rightarrow An alternating ascent-descent algorithm.

 ✓ □ ▷ ✓ ⓓ ▷ ✓ ẫ ▷ ✓ ẫ ▷ 및
 ✓ ○ ○

 Son (UChicago)
 Group Meeting
 November 6, 2020
 10 / 20

Model-based design as a game (4)

An alternating ascent-descent algorithm:

- **1 The Ascent step:** Fixing the oracle parameters and updating the search model parameters to increase the objective.
- **2** The Descent step: Fixing the search model parameters and updating the oracle parameters to decrease the objective.

Note

Isn't it just a variant of EM? I think it doesn't need a whole bunch of game theory (Nash equilibrium) machinery here.

11/20

Model-based design as a game (5)

Some bound

For any search model $p_{\theta}(x)$, if the oracle parameters β satisfy:

$$\mathbb{E}_{p_{\theta}(\boldsymbol{x})}[\mathcal{D}_{\mathsf{KL}}(p(y|\boldsymbol{x})||p_{\beta}(y|\boldsymbol{x}))] = \int_{\mathcal{X}} \mathcal{D}_{\mathsf{KL}}(p(y|\boldsymbol{x})||p_{\beta}(y|\boldsymbol{x}))p_{\theta}(\boldsymbol{x})d\boldsymbol{x} \leq \epsilon$$

then the following bound holds:

$$\mathbb{E}_{p_{\theta}(\boldsymbol{x})}[|P(y \in S|\boldsymbol{x}) - P_{\beta}(y \in S|\boldsymbol{x})|] \leq \sqrt{\frac{\epsilon}{2}}$$

Son (UChicago) Group Meeting November 6, 2020 12 / 20

Auto-focusing

Generally, we don't have access to the ground-truth p(y|x), we do have labeled training data, $\{(x_i, y_i)\}_{i=1}^n$, whose labels come from the ground-truth distribution $y_i \sim p(y|x=x_i)$). Practical oracle parameter update:

$$\beta^{(t)} = \arg \max_{\beta \in B} \frac{1}{n} \sum_{i=1}^{n} \frac{p_{\theta^{(t)}}(\mathbf{x}_i)}{p_0(\mathbf{x}_i)} \log p_{\beta}(y_i|\mathbf{x}_i)$$

Auto-focusing strategy: The oracle is retrained on re-weighted training data according to the importance weights:

$$w_i = p_{\theta}(\mathbf{x}_i)/p_0(\mathbf{x}_i)$$

Son (UChicago) Group Meeting November 6, 2020 13 / 20

Experiment & Our research

Discussion

I find the experiments in this paper **not** related to our current work. But the open question is how to apply it into our work of graph/molecule generation?

Some ideas

We want to generate molecules with certain properties:

- In our case, the **oracle model** $p_{\beta}(y|\mathbf{x})$ is a molecular-properties-predicting model, \mathbf{x} is the molecular graph, y is the property, and β is the learnable parameters of a GNN.
- The **search model** $p_{\theta}(x)$ **cannot** be directly applied to VAE. But I think of a way around as follows. Let $p_{\theta}(z)$ be the learnable/adaptive prior of a VAE (or GAN), where z is the latent. From z, we reconstruct the molecule x by the decoder.
- The game theory machinery can be applied similarly.

Self-supervised Learning on Graphs: Deep Insights and New Directions

Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, Suhang Wang, Zitao Liu, Jiliang Tang

https://arxiv.org/abs/2006.10141

15/20

Proposals

Proposals

Self-supervised learning (SSL): creates domain specific pretext tasks on unlabled data – SelfTask.

Note

- In my opinion, the authors haven't applied the famous label propagation (neighborhood aggregation) that propagates labels from labeled nodes into un-labeled nodes.
- However, that label propagation carries uncertainty → I have an idea of a probabilistic model addressing this uncertainty.

16/20

Son (UChicago) Group Meeting November 6, 2020

Local structure information (1)

• **Node Property:** The aim is to predict the property for each node in the graph such as vertex degree, local node importance, and local clustering coefficient.

$$\mathcal{L}_{\mathsf{self}}(heta, oldsymbol{A}, oldsymbol{X}, \mathcal{D}_U) = rac{1}{|\mathcal{D}_U|} \sum_{v_i \in \mathcal{D}_U} (f_{ heta}(\mathcal{G})_{v_i} - d_i)^2$$

where \mathcal{D}_U represents the set of unlabeled nodes.

Son (UChicago) Group Meeting November 6, 2020 17 / 20

Local structure information (2)

• Edge Mask: Randomly mask some edges and then the model is asked to reconstruct the masked edges:

$$\begin{split} \mathcal{L}_{\text{self}}(\theta, \boldsymbol{A}, \boldsymbol{X}, \mathcal{D}_{U}) &= \frac{1}{|\mathcal{M}_{e}|} \sum_{(v_{i}, v_{j}) \in \mathcal{M}_{e}} \ell(f_{w}(|f_{\theta}(\mathcal{G})_{v_{i}} - f_{\theta}(\mathcal{G})_{v_{j}}|), 1) \\ &+ \frac{1}{|\bar{\mathcal{M}}_{e}|} \sum_{(v_{i}, v_{j}) \in \bar{\mathcal{M}}_{e}} \ell(f_{w}(|f_{\theta}(\mathcal{G})_{v_{i}} - f_{\theta}(\mathcal{G})_{v_{j}}|), 0) \end{split}$$

where \mathcal{M}_e is the edge set while $\bar{\mathcal{M}}_e$ is the set of non-edges.

Son (UChicago) Group Meeting November 6, 2020 18 / 20

Global structure information

- **Pairwise Distance:** Predict the shortest path pairwise distance. Discretize into 4 categories: $p_{ij} = 1$, $p_{ij} = 2$, $p_{ij} = 3$, and $p_{ij} \ge 4$.
- **Distance to clusters**: First, partitioning the graph to get k clusters. For each cluster, assign the node with the highest degree to the center of the corresponding cluster. Create a cluster distance $\mathbf{d}_i \in \mathbb{R}^k$ for node v_i where the j-th element is the distance from v_i to the center of C_i .

Label propagation

Note

- The authors missed the label propagation (message passing) that propagates the labels from labeld nodes into un-labeled nodes.
- However, the propagated labels carry uncertainty. We need to address this too.

Ideas:

- Suppose we have discrete labels of *N* types. Initialize each node with a one-hot vector of size *N* indicating its labels. Un-labeled nodes just have a zero vector.
- Run message passing iterations.
- For each un-labeled nodes, we normalize its vector to sum up to 1.
 This vector might indicate the probability the node belongs to extype → addresses uncertainty.
- Train the pretext model to predict each node's distribution. We duse KL or Jensen-Shannon distance.