Homework 10

- 1. **FET amplifier circuits**: The present problem concerns common-source, common-drain, and common-gate amplifier circuits. Assume that the amplifiers do not have a gate-biasing-resistor network.
 - (a) Draw the FET circuit symbol of an n-channel FET and the corresponding AC small-signal equivalent circuit.
 - (b) Draw a basic common-source (common-S) amplifier circuit and include a drain resistance $R_{\rm D}$ (but no other resistance). Draw the AC small-signal equivalent circuit of the amplifier (mark the G, S, and D terminals). Derive a symbolic expression for $z_{\rm in}$ (input impedance), $z_{\rm out}$ (output impedance), $A_{\rm VOC}$ (open-circuit voltage amplification), and $A_{\rm ISC}$ (short-circuit current amplification).
 - (c) Draw a basic common-drain (common-D) amplifier circuit and include a source resistance $R_{\rm s}$ (but no other resistance). Follow the same instructions as for the previous question.
 - (d) Draw a basic common-gate (common-G) amplifier circuit and do not include any resistor. Follow the same instructions as for the previous question.
 - (e) Make a table having three columns listing the three basic transistor configurations (common-source, common-drain, and common-gate configuration) and four rows listing the amplifier parameters (z_{in} , z_{out} , A_{VOC} , and A_{ISC}).
 - (f) Which of the three circuits has the lowest output impedance? Is this desirable?
 - (g) Which of the three circuits has the lowest input impedance? Is this desirable?
 - (h) Which of the three circuits has a voltage amplification (A_{voc}) of about 1.0?
 - (i) Which of the three circuits are the most useful ones?
- 2. **FET amplifier circuit and Miller capacitance**: The present problem concerns an FET amplifier circuit and its frequency response. The circuit diagram is shown in the figure below. The FET has a k-value of $k = 20 \text{ mA/V}^2$ and a threshold voltage of $V_{\text{th}} = 1 \text{ V}$. The FET gate-bias network consists of two resistors with $R_1 = 80 \text{ k}\Omega$ and $R_2 = 20 \text{ k}\Omega$. The AC signal source has an AC voltage amplitude of V_{signal} and an internal resistance of $R_{\text{signal}} = 5 \text{ k}\Omega$. The load resistance is $R_{\text{Load}} = 1 \text{ k}\Omega$. The DC power supply voltage is $V_{\text{CC}} = 10 \text{ V}$. Assume that the capacitors C_1 and C_2 are sufficiently large to let pass all AC signals (yet block DC signals).

- (a) Which one of the three basic amplifier configurations does the present amplifier have? Determine the Q-point of the amplifier circuit by calculating the drain current I_D .
- (b) Choose R_D so that the Q-point is in the middle of the load line, that is, at $V_{DS} = 5$ V.
- (c) Determine the transconductance of the amplifier circuit ($g_{\rm m}$) at the Q-point.
- (d) Draw the AC small-signal equivalent circuit of the amplifier; include the signal source and load.
- (e) Calculate the open-circuit voltage amplification $A_{\rm voc}$ (symbolic expression and numerical value). Also calculate the voltage amplification $A_{\rm v}$ (symbolic expression and numerical value).
- (f) Explain the following quantities: (i) Drain-gate capacitance $C_{\rm DG}$ and (ii) the Miller capacitance $C_{\rm Miller}$.
- (g) The experimental analysis of $A_{\rm V}$ as a function of frequency reveals that the amplifier has a high-frequency cutoff at frequency $f_{\rm Cutoff}$ = 20 MHz. It is determined that the high-frequency cutoff is due to the Miller capacitance. Redraw the AC small signal equivalent circuit and now include the Miller capacitance. Determine the *RC* time constant (τ = *RC*) of the input side of the circuit (symbolic expression and numerical value).
- (h) Calculate the Miller capacitance (numerical value). Calculate the drain-gate capacitance $C_{\rm DG}$ (numerical value).
- (i) Is there a basic amplifier configuration that suffers less (or not at all) from the limitations of the Miller capacitance?