Relational Reinforcement Learning

Stefano Albrecht, Mark Sollweck Seminar aus maschinellem Lernen

Vortragsstruktur

Teil 1:

Relational Reinforcement Learning
 S. Džeroski, L. De Readt, K. Driessens

Teil 2:

 Reinforcement Learning in Relational Domains: A Policy-Language Approach A. Fern, S. Yoon, R. Givan

Vortragsstruktur von Teil 1

- Reinforcement Learning
- Relational Reinforcement Learning

Reinforcement Learning Inhalt

- Reinforcement Learning
 - \rightarrow Beispiel: Roboter
 - → Beispiel: Hund
 - \rightarrow Definition
 - \rightarrow Q-Learning
 - $\rightarrow \text{P-Learning}$
 - → Nachteile der Algorithmen

Reinforcement Learning Beispiel: Roboter

Reinforcement Learning Beispiel: Hund

Reinforcement Learning Definition

Gegeben:

- Zustandsmenge S
- Aktionsmenge A
- ▶ Übergangsfunktion δ : $S \times A \rightarrow S$ (unbekannt)
- ▶ Reward-Funktion $r: S \times A \rightarrow \mathbb{R}$ (unbekannt)

Gesucht ist eine Policy $\pi: S \rightarrow A$, die den kumulativen Reward

$$V^{\pi}(s_t) = \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

mit $0 \le \gamma < 1$ für alle $s_t \in S$ maximiert (fortan bezeichnet als π^*).

Reinforcement Learning Q-Learning (1)

Die optimale Policy π^* lässt sich schreiben als:

$$\qquad \qquad \pi^*(s) = argmax_a(r(s,a) + \gamma V^{\pi^*}(\delta(s,a)))$$

Problem: r und δ sind unbekannt

Reinforcement Learning Q-Learning (2)

Die Q-Funktion für Policy π ist definiert als:

$$P Q^{\pi}(s,a) = r(s,a) + \gamma V^{\pi}(\delta(s,a))$$

Damit lässt sich π^* schreiben als:

- \blacktriangleright $\pi^*(s) = argmax_aQ^*(s, a)$
- Q^* ist die Q-Funktion der optimalen Policy π^*

Lösung: Approximiere Q^* (möglich ohne Kenntnis von r und δ)

Reinforcement Learning Q-Learning (3)


```
for each s, a do
  initialize table entry \hat{Q}(s, a) = 0
do forever
  i := 0
  generate random state s<sub>0</sub>
  while not goal(s_i) do
     select action a; and execute it
     receive immediate reward r_i = r(s_i, a_i)
     observe new state s_{i+1}
     i := i + 1
  endwhile
  for i = i - 1 to 0 do
     update \hat{Q}(s_i, a_i) := r_i + \gamma \max_{a'} \hat{Q}(s_{i+1}, a')
```

Reinforcement Learning P-Learning

Die P-Funktion für Policy π ist definiert als:

 $P^{\pi}(s, a) = 1$, falls $a = argmax_{a'} Q^{\pi}(s, a')$, sonst 0

Aus der Approx. \hat{Q} von Q^* lässt sich eine Approx. \hat{P} von P^* ableiten.

Vorteile der P-Funktion gegenüber Q-Funktion:

- Geringere Komplexität
- Generalisiert oftmals besser

Reinforcement Learning Nachteile der Algorithmen

Drei Nachteile der Q/P-Algorithmen:

- Undurchführbar für große Zustandsräume
- Gelernte Ziele generalisieren nicht auf ähnliche Ziele
- Manipulation der Lernumgebung erfordert neues Lernen der Ziele

Insbesondere die letzten beiden Probleme (*Generalisierungs-Problem*) werden durch Hinzufügen von relationalen Lernmechanismen behandelt.

⇒ Relational Reinforcement Learning

Relational Reinforcement Learning Inhalt

- Relational Reinforcement Learning
 - → Definition
 - → Q-Learning
 - \rightarrow P-Learning
 - \rightarrow Beispiel: 3-Blocks-World

Relational Reinforcement Learning Definition

Gegeben:

- Zustandsmenge S (Zustand ist Menge von Fakten)
- Aktionsmenge A (Menge von Fakten)
- ▶ Übergangsfunktion δ : $S \times A \rightarrow S$
- ▶ Reward-Funktion $r: S \times A \rightarrow \mathbb{R}$
- Hintergrundwissen (Menge von Prädikaten)

Gesucht ist eine Policy $\pi: S \to A$, die den kumulativen Reward maximiert.

⇒ Repräsentiert als Q/P-Funktion (Q/P-Entscheidungsbaum)

Relational Reinforcement Learning Q-Learning


```
Initialize \hat{Q}_0 to assign 0 to all (s, a) pairs, set e := 0
do forever
  e := e + 1, i := 0
  generate random state so
  while not goal(s_i) do
     select action a; and execute it
     receive immediate reward r_i = r(s_i, a_i)
     observe new state s_{i+1}
     i := i + 1
  endwhile
  for i = i - 1 to 0 do
     generate example x = (s_i, a_i, \hat{q}_i := r_i + \gamma \max_{a'} \hat{Q}_e(s_{i+1}, a'))
     replace example (s_i, a_i, \hat{q}_{old}), if existing
update \hat{Q}_e using a tree generator to produce \hat{Q}_{e+1} from the examples
```

Relational Reinforcement Learning P-Learning

P-Funktion wird hier nicht direkt von der Q-Funktion abgeleitet:

⇒ Darstellung zu komplex

Stattdessen wird sie mit folgendem zusätzlichen Code separat gelernt:

```
for j = i - 1 to 0 do

for all actions a_k possible in state s_j do

if state action pair (s_j, a_k) is optimal according to \hat{Q}_{e+1}

then generate example (s_j, a_k, c) where c = 1

else generate example (s_j, a_k, c) where c = 0

update \hat{P}_e using a tree generator to produce \hat{P}_{e+1} from examples (s_i, a_k, c)
```

Relational Reinforcement Learning Beispiel: 3-Blocks-World (1)

Example 1	Example 2	Example 3	Example 4	
qvalue(0.81).	qvalue(0.9).	qvalue(1.0).	qvalue(0.0).	
move(c,floor).	move(b,c).	move(a,b).	move(a,floor).	
<pre>goal(on(a,b)).</pre>	<pre>goal(on(a,b)).</pre>	<pre>goal(on(a,b)).</pre>	<pre>goal(on(a,b)).</pre>	
clear(c).	clear(b).	clear(a).	clear(a).	
on(c,b).	clear(c).	clear(b).	on(a,b).	
on(b,a).	on(b,a).	on(b,c).	c). on(b,c).	
on(a,floor).	on(a,floor).	on(a,floor).	on(c,floor).	
	on(c,floor).	on(c,floor).		

Relational Reinforcement Learning Beispiel: 3-Blocks-World (2)

Logischer Entscheidungsbaum in Prolog:

```
qvalue(0) :- goal_on(A,B), action_move(C,D), on(A,B), !.
qvalue(1) :- goal_on(A,B), action_move(C,D), clear(A), !.
qvalue(0.9) :- goal_on(A,B), action_move(C,D), clear(D), !.
qvalue(0.81).
```

Example 1	Example 2	Example 3	Example 4	
qvalue(0.81).	qvalue(0.9).	qvalue(1.0).	qvalue(0.0).	
move(c,floor).	move(b,c).	move(b,c). $move(a,b)$.		
goal(on(a,b)).	<pre>goal(on(a,b)).</pre>	<pre>goal(on(a,b)).</pre>	<pre>goal(on(a,b)).</pre>	
clear(c).	clear(b).	clear(a).	clear(a).	
on(c,b).	<pre>clear(c).</pre>	clear(b).	on(a,b).	
on(b,a).	on(b,a).	on(b,c).	on(b,c).	
on(a,floor).	on(a,floor).	on(a,floor).	on(c,floor).	
	on(c,floor).	on(c,floor).		

Vortragsstruktur von Teil 2

- Markov Decision Process
- Relational Markov Decision Process

Markov Decision Process Inhalt

- Markov Decision Process
 - \rightarrow Beispiel
 - \rightarrow Definition
 - $\rightarrow \text{Policy Iteration}$

Markov Decision Process Beispiel

Markov Decision Process Definition (1)

Gegeben:

- Zustandsmenge S
- Aktionsmenge A
- ▶ Übergangsfunktion $T: S \times A \rightarrow S$ (probabilistisch)
- ▶ Reward-Funktion $R: S \times A \rightarrow \mathbb{R}$
- ► Initialzustands-Funktion *I (probabilistisch)*

Annahme: T und R sind bekannt

Markov Decision Process Definition (2)

Wert-Funktion:

$$\Rightarrow V^{\pi}(s) = E[R(s, \pi(s)) + \gamma V^{\pi}(T(s, \pi(s)))]$$

Q-Funktion:

$$\Rightarrow Q(s, a)^{\pi} = R(s, a) + \gamma E[V^{\pi}(T(s, a))]$$

▶ Gesucht ist eine optimale Policy $\pi: S \rightarrow A$

$$\Rightarrow \pi^* = \operatorname{argmax}_{\pi} \overline{V}(\pi) \text{ mit } \overline{V}(\pi) = E[V^{\pi}(I)]$$

Markov Decision Process Policy Iteration (1)

Ausgehend von Anfangspolicy π_0 werden folgende Schritte iterativ ausgeführt:

▶ 1.) Policy-Evaluation: Berechne für jeden Zustand $s \in S$

$$\Rightarrow V^{\pi}(s) = E[R(s, \pi(s)) + \gamma V^{\pi}(T(s, \pi(s)))]$$

2.) Policy-Verbesserung:

$$\Rightarrow \hat{\pi}(s) = argmax_{a \in A}(R(s, a) + \gamma E[V^{\pi}(T(s, a))])$$

Markov Decision Process Policy Iteration (2)

Nachteile:

- Wert-Funktionen sind schwer zu lernen
- Exakte Policy-Iteration ist nicht handhabbar für große Zustandsmengen, welche besonders bei relationalem Planen vorkommen
- Keine Generalisierbarkeit

Relational Markov Decision Process Inhalt

- Relational Markov Decision Process
 - → Definition
 - → Approximate Policy Iteration
 - → Decision List Policies
 - → Bootstrapping
 - $\rightarrow \textbf{Zusammenfassung}$
 - \rightarrow Evaluierung

Relational Markov Decision Process Definition (1)

Ein relationaler MDP ist gegeben durch:

- ► Menge von Zuständen S (relational)
- Menge von Aktionen A (relational)
- ▶ Übergangsfunktion $T: S \times A \rightarrow S$ (probabilistisch)
- ▶ Reward-Funktion $R: S \times A \rightarrow \mathbb{R}$
- Problemgenerator I (probabilistisch)
- \Rightarrow Gesucht ist eine optimale Policy π^*

S und A sind definiert durch eine endliche Menge an Objekten (O), Prädikaten (P) und Aktionstypen (Y).

Relational Markov Decision Process Definition (2)

Prädikatenmenge P ist gegeben durch $P = W \cup G$

- W ist Menge an Weltprädikaten
- G die dazugehörige Menge an Zielprädikaten

Beispiel: $W = \{on, clear, on - table\} \rightarrow G = \{gon, gclear, gon - table\}$

Ein MDP-Zustand ist eine Menge von wahren Weltfakten und Zielbedingungen.

Beispiel: $S = \{on - table(a), on(a, b), clear(b), gclear(b)\}$

Relational Markov Decision Process Approximate Policy Iteration (1)

- 1. Schritt: Verbesserte Trajektorien generieren
 - ▶ Gegeben ist Anfangspolicy π
 - ▶ Trajektorie der verbesserten Policy $\hat{\pi}$ generieren:

$$I \stackrel{rnd}{\rightarrow} S_0 \stackrel{\hat{\pi}(S_0)}{\rightarrow} S_1 \stackrel{\hat{\pi}(S_1)}{\rightarrow} \dots \stackrel{\hat{\pi}(S_{h-1})}{\rightarrow} S_h$$
 wobei $\hat{\pi}$ eine Approximation der verbesserten Policy $\pi' = PI^{\pi}$ ist

- 2. Schritt: Policy Lernen
 - Es soll eine neue Policy gelernt werden, die den Trajektorien der verbesserten Policy entspricht

Vorteil:

 \Rightarrow Policy wird direkt gelernt, ohne die Wertfunktion V^{π} zu lernen

Relational Markov Decision Process Approximate Policy Iteration (2)


```
\begin{array}{l} \textbf{API} \ (n,w,h,M,\pi_0,\gamma) \\ \pi \leftarrow \pi_0; \\ \textbf{loop} \\ T \leftarrow \textbf{Improved-Trajectories}(n,w,h,M,\pi); \\ \pi \leftarrow \textbf{Learn-Policy}(T); \\ \textbf{until satisfied with } \pi; \\ \textbf{Return } \pi; \end{array}
```

Relational Markov Decision Process Approximate Policy Iteration (3)


```
Improved-Trajectories (n, w, h, M, \pi)
// training set size n, sampling width w
// horizon h, MDP M, current policy \pi
T \leftarrow \emptyset:
repeat n times
   t \leftarrow \mathsf{nil}:
   s \leftarrow state drawn from I:
   for i = 1 to h
       \langle \hat{Q}(s, a_1), ..., \hat{Q}(s, a_m) \rangle \leftarrow \text{Policy-Rollout}(\pi, s, w, h, H);
      t \leftarrow t * \langle s, \pi(s), \hat{Q}(s, a_1), ..., \hat{Q}(s, a_m) \rangle;
       a \leftarrow \text{action maximizing } \hat{Q}(s, a);
       s \leftarrow state sampled from T(s, a);
    T \leftarrow T \cup t:
Return T:
```

Relational Markov Decision Process Approximate Policy Iteration (4)


```
Policy-Rollout(s, w, h, M, \pi)
// policy \pi, state s, sampling width w
// horizon h. cost estimator H
for each action a_i \in A
   \hat{Q}(s, a_i) \leftarrow 0:
   repeat w times
      R \leftarrow R(s, a_i):
       s' \leftarrow a state sampled from T(s, a_i);
      for i = 1 to h - 1
          R \leftarrow R + \gamma^i R(s', \pi(s'));
          s' \leftarrow a state sampled from T(s', \pi(s')):
       \hat{Q}(s, a_i) \leftarrow \hat{Q}(s, a_i) + R;
   \hat{Q}(s, a_i) \leftarrow \frac{\hat{Q}(s, a_i)}{w};
Return \langle \hat{Q}(s, a_1), ..., \hat{Q}(s, a_m) \rangle;
```

Relational Markov Decision Process Decision List Policies (1)

Repräsentation der Policy π mit Hilfe von Decision-Lists:

Sei $X = (x_1, x_2, ..., x_k)$ eine Liste von Variablen, dann ist die Syntax eines Klassenausdrucks gegeben durch:

$$C[X] ::= C_0 \mid x_i \mid \text{a-thing} \mid \neg C[X] \mid (R \ C[X]) \mid (min \ R)$$

 $R ::= R_0 \mid R^{-1} \mid R^*$

Wobei:

- C₀: Primitive Klasse (1-stelliges Prädikat)
- R₀: Primitive Relation (2-stelliges Prädikat)
- x_i: Variable aus X
- a-thing: Alle Objekte im aktuellen Zustand
- ▶ d(C[X]): Tiefe von C[X] sei 1 für Primitive, Variablen, **a-thing** und (*min R*), sonst d(C[X]) + 1

Relational Markov Decision Process Decision List Policies (2)

Die Semantik eines Klassenausdrucks ist gegeben durch einen MDP-Zustand s und eine Variablenzuweisung $O = (o_1, o_2, ..., o_n)$.

 $(C_0)^{s,0}$: Menge an Objekten, für die das Prädikat C_0 in s wahr ist (z.B. *on-table* ergibt alle Objekte, die sich im Zustand s auf dem Tisch befinden)

 $(R_0)^{s,0}$: Menge an Tupeln von Objekten, für welche die Relation R_0 in s wahr ist.

- $(\neg C[X])^{s,O} = \{o \mid o \notin C[X]^{s,O}\}$
- ► $(R C[X])^{s,O} = \{o \mid \exists o' \in C[X]^{s,O} \text{ s.t. } (o',o) \in R^{s,O}\}$
- ► $(min\ R)^{s,O} = \{o \mid \exists o'\ s.t.\ (o,o') \in R^{s,O}, \not\exists o'\ s.t.\ (o',o) \in R^{s,O}\}$
- ▶ $(R^*)^{s,O} = \mathsf{ID} \cup \{(o_1, o_v) \mid \exists o_2, ..., o_{v-1} \ s.t. \ (o_i, o_{i+1}) \in R^{s,O} \ \text{for} \ 1 \leq i < v\}$
- $(R^{-1})^{s,O} = \{(o,o') \mid (o',o) \in R^{s,O}\}$

Relational Markov Decision Process Decision List Policies (3)

Eine Policy π kann nun als eine Liste L von Regeln der Form

$$R = a(x_1, ..., x_k) : L_1, L_2, ..., L_m$$

dargestellt werden, mit

- a ist ein k-stelliger Aktionstyp
- ▶ L_i sind Literale der Form $x_i \in C[X]$
- x_i sind Variablen

Gegeben ein Zustand s und eine Menge an Objekten $O = (o_1, ..., o_n)$ ist ein Literal $x_i \in C[X]$ wahr $\leftrightarrow o_i \in C[X]^{s,O}$. Eine Regel R erlaubt eine Aktion a, wenn jedes Literal wahr ist.

Relational Markov Decision Process Decision List Policies (4)

Beispiel: Gesucht sei eine Policy $\pi[L]$, die alle roten Blöcke freilegt.

L: putdown(x_i): $x_1 \in \text{holding}$ pickup(x_1): $x_1 \in \text{clear}, x_1 \in (\text{on*(on red)})$ mit (on*(on red)) = {(2, 1), (3, 2), (3, 1)}

3

2

1

0

Relational Markov Decision Process Decision List Policies (5)


```
Learn-Decision-List(D, d, I, b)

// training set D, concept depth d, rule length I, beam width b
L \leftarrow \textbf{nil};

while (D is not empty)

R \leftarrow \textbf{Learn-Rule}(D, d, I, b);

D \leftarrow D - \{d \in D \mid R \ covers \ d\};

L \leftarrow \textbf{Extend-List}(L, R);

Return L;
```

Relational Markov Decision Process Decision List Policies (6)

Learn-Rule(D, d, I, b) // training set D, concept depth d, rule length I, beam width b for each action type a $R_a \leftarrow \text{Beam-Search}(D, d, I, w, a)$; **Return** $argmax_a\text{Hvalue}(R_a, D)$;

Relational Markov Decision Process Decision List Policies (7)


```
Beam-Search(D, d, I, w, a)
// training set D, concept depth d, rule length I, beam width b, action type a
k \leftarrow \text{arity of } a;
X \leftarrow (x_1, ..., x_k):
L \leftarrow \{(x \in C) \mid x \in X, C \in C_d[X]\};
B_0 \leftarrow \{a(X) : \mathbf{nil}\}; i \leftarrow 1;
loop
   G = B_{i-1} \cup \{R \in R_{d,l} \mid R = Add-Literal(R', l), R' \in B_{i-1}, l \in L\};
   B_i \leftarrow \mathbf{Beam\text{-}Select}(G, w, D):
   i \leftarrow i + 1:
until B_{i-1} = B_i:
Return argmax_{R \in B_i}Hvalue(R, D);
```

Relational Markov Decision Process Bootstrapping (1)

Die Wahl der Anfangspolicy π_0 ist entscheidend, damit bei großen Zustandsräumen mit seltenem Reward (wie beim zielbasierten Planen) Policy-Iteration funktioniert.

Zufällige Policy π_0 :

 \Rightarrow Geringe Wahrscheinlichkeit einen Zielzustand in vertretbarer Zeit zu erreichen

Lösung: Random-Walk

Relational Markov Decision Process Bootstrapping (2)

Gegeben sei ein MDP $M = \langle S, A, T, R, I \rangle$:

- ▶ Zustand s = (w, g), wobei w Menge an Weltfakten und g Menge an Zielfakten.
- ▶ Gegeben eine Menge an Zielprädikaten G, sei $s|_G$ derjenige Zustand (w, g'), in dem g' alle Zielfakten aus g enthält, die Anwendungen der Prädikate aus G sind.

Ein n-Schritt Random-Walk $RW_n(M, G)$ ist gegeben durch:

- ▶ 1.) Generiere mit I einen zufälligen Zustand $s_0 = (w_0, g_0)$.
- ▶ 2.) Führe n zufällige Aktionen durch. Der resultierende Zustand ist $s_n = (w_n, g_0)$.
- ▶ 3.) Sei g die zur Menge w_n gehörigen Zielfakten \Rightarrow **Return** $(w_0, g)|_{\mathcal{G}}$

Relational Markov Decision Process Bootstrapping (3)

Eigenschaften:

- Für kleine n sind Probleme leicht zu lösen
- ▶ Sobald gelernte Policy gewisse Erfolgsrate erreicht: Erhöhe *n*, um schwereres, aber dennoch lösbares Problem zu erzeugen
- Durch festlegen der Zielprädikate G kann die Policy π in eine bestimmte "Richtung" gelenkt werden

Ziel:

- ► Gute Performance bei langen Random-Walks (n = N)
- ▶ Dadurch soll die gelernte Policy π bereits genügend Wissen aus der Domäne gesammelt haben, um "echte" Probleme lösen zu können

Relational Markov Decision Process Zusammenfassung


```
LRW-API(N, G, n, w, h, M, \pi_0, \gamma)
// max random-walk length N, goal predicates G
// training set size n, sampling width w, horizon h
// MDP M, initial policy \pi_0, discount factor \gamma
\pi \leftarrow \pi_0: n \leftarrow 1:
loop
   if \hat{S}\hat{R}_{\pi}(n) > \tau
     // Find harder n-step distribution for \pi
      n \leftarrow \text{least } i \in [n, N]
   M' = M[RW_n(M, G)];
   T \leftarrow \text{Improved-Trajectories}(n, w, h, M', \pi);
   \pi \leftarrow \text{Learn-Policy}(T)
until satisfied with \pi
Return \pi;
```

Relational Markov Decision Process Evaluierung

		π_*		$_{ m FF}$	
Domain	Size	SR	$_{\mathrm{AL}}$	$_{ m SR}$	$_{\mathrm{AL}}$
Blocks	(20)	1	54	0.81	60
	(50)	1	151	0.28	158
Freecell	(4,2,2,4)	0.36	15	1	10
	(4,13,4,8)	0	_	0.47	112
Logistics	(1,2,2,6)	0.87	6	1	6
	(3,10,2,30)	0	_	1	158
Elevator	(60,30)	1	112	1	98
Schedule	(50)	1	175	1	212
Briefcase	(10)	1	30	1	29
	(50)	1	162	0	_
Gripper	(50)	1	149	1	149

Quellen

- Relational Reinforcement Learning
 S. Džeroski, L. De Readt, K. Driessens
- Reinforcement Learning in Relational Domains: A Policy-Language Approach
 A. Fern, S. Yoon, R. Givan
- Artificial Intelligence: A Modern Approach
 S. Russell, P. Norvig
- Machine Learning
 T. M. Mitchell