Approximating Weak Bisimilarity of Basic Parallel Processes

Patrick Totzke¹ Piotrek Hofman²

¹LFCS, University of Edinburgh

²University of Warsaw

September 7, 2012

Rewriting Rules

Background

•000000

$$\{Q \stackrel{a}{\longrightarrow} QQ, \ Q \stackrel{b}{\longrightarrow} \varepsilon, \ Q \stackrel{c}{\longrightarrow} Q\}$$

Rewriting Rules

Background

•000000

$$\{Q \xrightarrow{a} QQ, \ Q \xrightarrow{b} \varepsilon, \ Q \xrightarrow{c} Q\}$$

Transition System

$$\varepsilon \longleftrightarrow Q \overset{\circ}{\longleftrightarrow} Q^2 \overset{a}{\longleftrightarrow} Q^3 \overset{\circ}{\longleftrightarrow} \cdots$$

Basic Parallel Processes (BPP)

Background

•000000

Rewriting Rules Notation $\{Q \xrightarrow{a} QQ, Q \xrightarrow{b} \varepsilon, Q \xrightarrow{c} Q\}$

Background

•000000

Background

... are played in rounds between Spoiler and Duplicator. If a player cannot move the other wins. Infinite plays are won by Duplicator.

Background

...are played in rounds between Spoiler and Duplicator. If a player cannot move the other wins. Infinite plays are won by Duplicator.

In each round

VS. α

- **1** Spoiler moves $\stackrel{a}{\longrightarrow}$ from one process
- 2 Duplicator responds $\stackrel{a}{\longrightarrow}$ from the other
- \bullet the game continues from α' vs. β' .

Background

... are played in rounds between Spoiler and Duplicator. If a player cannot move the other wins. Infinite plays are won by Duplicator.

Background

... are played in rounds between Spoiler and Duplicator. If a player cannot move the other wins. Infinite plays are won by Duplicator.

Background

... are played in rounds between Spoiler and Duplicator. If a player cannot move the other wins. Infinite plays are won by Duplicator.

In each round α VS. • Spoiler moves $\stackrel{a}{\longrightarrow}$ from one process 2 Duplicator responds $\stackrel{a}{\longrightarrow}$ from the other \bullet the game continues from α' vs. β' .

Background

...are played in rounds between Spoiler and Duplicator. If a player cannot move the other wins. Infinite plays are won by Duplicator.

In each round

- Spoiler moves $\stackrel{a}{\longrightarrow}$ from one process
- 2 Duplicator responds $\stackrel{a}{\longrightarrow}$ from the other
- \bullet the game continues from α' vs. β' .

Def: Bisimulation (\sim)

 $\alpha \sim \beta$ iff Duplicator has a strategy to win the game from α vs. β .

Silent and Weak Steps

Background

0000000

silent weak step

$$\stackrel{\tau}{\Longrightarrow} := \stackrel{\tau}{\longrightarrow}^*$$

visible weak step $(a \neq \tau)$

$$\stackrel{\textit{a}}{\Longrightarrow} := \stackrel{\tau}{\longrightarrow}^* \stackrel{\textit{a}}{\longrightarrow} \stackrel{\tau}{\longrightarrow}^*$$

Background

...are played in rounds between Spoiler and Duplicator. If a player cannot move the other wins. Infinite plays are won by Duplicator.

In each round

- Spoiler moves $\stackrel{a}{\longrightarrow}$ from one process
- 2 Duplicator responds $\stackrel{a}{\longrightarrow}$ from the other
- \bullet the game continues from α' vs. β' .

Bisimulation \sim

 $\alpha \sim \beta$ iff Duplicator has a strategy to win the game from α vs. β .

Weak Bisimulation Games

Background

...are played in rounds between Spoiler and Duplicator. If a player cannot move the other wins. Infinite plays are won by Duplicator.

Weak Bisimulation \approx

 $\alpha \approx \beta$ iff Duplicator has a strategy to win the game from α vs. β .

Background

0000000

Idea

 $\alpha \sim_i \beta$ iff Duplicator can survive *i* rounds of the game.

Background

0000000

Idea

 $\alpha \sim_i \beta$ iff Duplicator can survive *i* rounds of the game.

$$\sim_0 \supseteq \sim_1 \supseteq \sim_2 \dots$$

Background

0000000

Idea

 $\alpha \sim_i \beta$ iff Duplicator can survive *i* rounds of the game.

$$\sim_0 \supseteq \sim_1 \supseteq \sim_2 \dots \supseteq \sim_\omega = \bigcap_{i \in \mathbb{N}} \sim_i$$

Background

0000000

Idea

 $\alpha \sim_i \beta$ iff Duplicator can survive i rounds of the game.

For image-finite systems:

$$\sim_0 \supseteq \sim_1 \supseteq \sim_2 \ldots \supseteq \sim_\omega = \bigcap_{i \in \mathbb{N}} \sim_i = \sim$$

Background

0000000

Idea

 $\alpha \sim_i \beta$ iff Duplicator can survive i rounds of the game.

For image-finite systems:

$$\sim_0 \supseteq \sim_1 \supseteq \sim_2 \dots \supseteq \sim_\omega = \bigcap_{i \in \mathbb{N}} \sim_i = \sim$$

In general:

$$\sim_0 \supset \sim_\omega \supset \sim_{\omega+\omega} \supset \sim_{\omega*\omega} \supset \sim_{\omega} \supset \sim$$

Background

0000000

Background

0000000

Background

0000000

Background

0000000

Background

0000000

Background

0000000

Background

0000000

Background

0000000

Background

0000000

Background

0000000

Background

0000000

Background

0000000

Background

0000000

A Guessing Game $(X \approx_{\omega} Y \not\approx X)$

Background 0000000

Semi-deciding \approx

Background

000000

... can be done (Esparza '97).

Using Approximants to decide Weak Bisimilarity

Semi-deciding \approx

Background 0000000

... can be done (Esparza '97).

Semi-deciding ≉

For every finite approximant level i check if $(\alpha, \beta) \notin \approx_i$

Using Approximants to decide Weak Bisimilarity

Semi-deciding \approx

Background

0000000

... can be done (Esparza '97).

Semi-deciding ≉

For every finite approximant level i check if $(\alpha, \beta) \notin \approx_i$

1 needs
$$\approx = \bigcap_{i \in \mathbb{N}} \approx_i$$

Using Approximants to decide Weak Bisimilarity

Semi-deciding \approx

Background

...can be done (Esparza '97).

Semi-deciding ≉

For every finite approximant level i check if $(\alpha, \beta) \notin \approx_i$

- needs $\approx = \bigcap_{i \in \mathbb{N}} \approx_i$
- 2 needs decidable \approx_i

Using Approximants to decide Weak Bisimilarity

Semi-deciding \approx

Background

...can be done (Esparza '97).

Semi-deciding ≉

For every finite approximant level i check if $(\alpha, \beta) \notin \approx_i$

- needs $\approx = \bigcap_{i \in \mathbb{N}} \approx_i$
- 2 needs decidable $\approx_i \checkmark$

Using Approximants to decide Weak Bisimilarity

Semi-deciding \approx

Background

...can be done (Esparza '97).

Semi-deciding ≉

For every finite approximant level i check if $(\alpha, \beta) \notin \approx_i$

- needs $\approx = \bigcap_{i \in \mathbb{N}} \approx_i X$
- 2 needs decidable $\approx_i \checkmark$

A Conjecture

Conjecture (Jančar, Hirshfeld)

For any BPP process description, $\approx = \approx_{\omega+\omega}$

A Conjecture

Conjecture (Jančar, Hirshfeld)

For any BPP process description, $\approx = \approx_{\omega+\omega}$

• If this holds and we could decide \approx_{ω} then we could semi-decide $\not\approx$.

A Conjecture

Conjecture (Jančar, Hirshfeld)

For any BPP process description, $\approx = \approx_{\omega+\omega}$

- If this holds and we could decide \approx_{ω} then we could semi-decide $\not\approx$.
- To falsify we look for inequivalent processes $\alpha \approx_{\omega+\omega} \beta$.

Non-convergence of \approx_i at level $\omega + \omega$

$$X \approx_{\omega} Y \not\approx X$$

$$X \approx_{\omega} Y \not\approx X$$
$$W \approx \varepsilon$$

$$X \approx_{\omega} Y \not\approx X$$
$$W \approx \varepsilon$$

Non-convergence of \approx_i at level $\omega + \omega$

$$X \approx_{\omega} Y \not\approx X$$
$$W \approx \varepsilon$$

$$X \approx_{\omega} Y \not\approx X$$

$$W \approx \varepsilon$$

$$XB^{m} \approx_{\omega} YB^{n} \not\approx XB^{m}$$

 $XB^m \approx_{\omega} YB^n \not\approx XB^m$

$$X_2 \approx_{\omega} Y_2 \not\approx X_2$$
$$XB^m \approx_{\omega} YB^n \not\approx XB^m$$

$$X_2 \approx Y_2 \approx X_2$$

 $XB^m \approx_\omega YB^n \not\approx XB^m$

$$X_2 \approx_{\omega} Y_2 \not\approx X_2$$
$$XB^m \approx_{\omega} YB^n \not\approx XB^m$$

$$X_2 \approx_{\omega} Y_2 \not\approx X_2$$
 $XB^m \approx_{\omega} YB^n \not\approx XB^m$
 $Z_2 \approx_{\omega+1} S_2 \not\approx Z_2$

Non-convergence of \approx_i at level $\omega + \omega$

$$X_2 \approx_{\omega} Y_2 \not\approx X_2$$
 $XB^m \approx_{\omega} YB^n \not\approx XB^m$
 $Z_2 \approx_{\omega+1} S_2 \not\approx Z_2$
 $Z_2 \approx_{\omega+2} W_2 \not\approx Z_2$

Non-convergence of \approx_i at level $\omega + \omega$

$$X_{2} \approx_{\omega+\omega} Y_{2} \not\approx X_{2}$$

$$XB^{m} \approx_{\omega} YB^{n} \not\approx XB^{m}$$

$$Z_{2} \approx_{\omega+1} S_{2} \not\approx Z_{2}$$

$$Z_{2} \approx_{\omega+2} W_{2} \not\approx Z_{2}$$

Non-convergence of \approx_i at level $\omega + \omega$

$$X_2 \approx_{\omega+\omega} Y_2 \not\approx X_2$$
 $XB^m \approx_{\omega} YB^n \not\approx XB^m$
 $Z_2 \approx_{\omega+1} S_2 \not\approx Z_2$
 $Z_2 \approx_{\omega+2} W_2 \not\approx Z_2$

Stacking this k times yields processes $X_k \approx_{\omega * k} Y_k \not\approx X_k$.

Norms

Background

The *norm* of process α :

the length of the shortest word $w = a_0 a_1 \cdots a_n$ such that $\alpha \stackrel{a_0}{\Longrightarrow} \stackrel{a_1}{\Longrightarrow} \cdots \stackrel{a_n}{\Longrightarrow} \varepsilon$ and ∞ if no such words exists.

Norms

Background

The *norm* of process α :

the length of the shortest word $w = a_0 a_1 \cdots a_n$ such that $\alpha \stackrel{a_0}{\Longrightarrow} \stackrel{a_1}{\Longrightarrow} \cdots \stackrel{a_n}{\Longrightarrow} \varepsilon$ and ∞ if no such words exists.

Properties

- Norms can be easily computed
- ullet Norm equality is an invariant for pprox

Faster Approximants

Background

Can we define faster converging approximants?

Faster Approximants

Background

Can we define faster converging approximants?

Example: Word Approximants word word

Faster Approximants

Background

Can we define faster converging approximants?

Example: Word Approximants

Example: Add Invariant P

Let \approx_i^P enforce that Duplicator must preserve P. Then for every i,

$$\approx_i \supseteq \approx_i^P$$

Jitka's Class

(Stribrna '98: $\approx = \approx_{\omega+\omega}$)

- one visible action symbol
- no zero-norm variables (and no trivial deadlocks)

Jitka's Class

Jitka's Class

(Stribrna '98: $\approx = \approx_{\omega+\omega}$)

- one visible action symbol
- no zero-norm variables (and no trivial deadlocks)

Properties

- If $norm(\alpha) = norm(\beta) = \infty$ then $\alpha \approx \beta$
- $Succ_n(\alpha) = \{\alpha' : \alpha \stackrel{a}{\Longrightarrow} \alpha' \land |\alpha'| = n < \infty\}$ is finite

Jitka's Class

Jitka's Class

(Stribrna '98: $\approx = \approx_{\omega+\omega}$)

- one visible action symbol
- no zero-norm variables (and no trivial deadlocks)

Properties

- If $norm(\alpha) = norm(\beta) = \infty$ then $\alpha \approx \beta$
- $Succ_n(\alpha) = \{\alpha' : \alpha \stackrel{a}{\Longrightarrow} \alpha' \land |\alpha'| = n < \infty\}$ is finite

Approximants with Norm test

Check norm equality in each round. Then $\approx_{\omega}^{N} = \approx$.

are undecidable already at level 1 for normed BPP

- are undecidable already at level 1 for normed BPP X
- 2 do not converge at level ω

- are undecidable already at level 1 for normed BPP X
- 2 do not converge at level ω X

Idea: Preserve equality on "contains R" to force short steps

Play L^{n+1} vs. L^n , where n is Duplicator's choice

- are undecidable already at level 1 for normed BPP X
- 2 do not converge at level ω X

Idea: Preserve equality on "contains R" to force short steps

Play L^{n+1} vs. L^n , where n is Duplicator's choice

This is useful!

Any successful approach will define a computable $\not\approx_{\omega}^{W} \subsetneq D \subseteq \not\approx$.

Hopeless invariants

Norm Equality

If α and β has different norms then $pprox_2^W$ distinguishes them.

Hopeless invariants

Norm Equality

If α and β has different norms then \approx_2^W distinguishes them.

Ability to perform an infinite sequence a^ω

Captured by \approx_1^W .

Hopeless invariants

Background

Norm Equality

If α and β has different norms then \approx_2^W distinguishes them.

Ability to perform an infinite sequence a^{ω}

Captured by \approx_1^W .

Distance to disable action a (and higher level DD-functions)

(Distance to)ⁱ disable a is captured by \approx_{i+1}^{W} .

Background

• Hirschfeld's Conjecture ($\approx = \approx_{\omega+\omega}$) is false

- Hirschfeld's Conjecture ($\approx=\approx_{\omega+\omega}$) is false
- New proofs for decidability of subclasses

- Hirschfeld's Conjecture ($\approx = \approx_{\omega+\omega}$) is false
- New proofs for decidability of subclasses
- Lower bound of $\omega + \omega$ for convergence of "Word Approximants"

- Hirschfeld's Conjecture ($\approx = \approx_{\omega+\omega}$) is false
- New proofs for decidability of subclasses
- Lower bound of $\omega + \omega$ for convergence of "Word Approximants"
- Found a distinguishing property? Make sure it's not captured by \approx_{ω}^{W} !

Bibliography

Background

Petri nets, commutative context-free grammars, and basic parallel processes. Fundam. Inform., 31(1):13-25, 1997.

Will Harwood, Faron Moller, and Anton Setzer. Weak bisimulation approximants. In CSL, pages 365-379, 2006.

Robin Milner.

Communication and concurrency.

PHI Series in computer science. Prentice Hall, 1989.

Colin Stirling.

Decidability of weak bisimilarity for a subset of basic parallel processes. In FoSSaCS, pages 379-393, 2001.

litka Stríbrná

Decidability and complexity of equivalences for simple process algebras. PhD thesis, School of Informatics, University of Edinburgh, 1998.