Foundations of Software Fall 2022

Week 5

Plan

PREVIOUSLY: untyped lambda calculus

TODAY: types!!

- 1. Two example languages:
 - 1.1 typing arithmetic expressions
 - 1.2 simply typed lambda calculus (STLC)
- 2. For each:
 - 2.1 Define types
 - 2.2 Specify typing rules
 - 2.3 Prove soundness: progress and preservation

NEXT: lambda calculus extensions

NEXT: polymorphic typing

Types

Outline

- 1. begin with a set of terms, a set of values, and an evaluation relation
- define a set of types classifying values according to their "shapes"
- 3. define a *typing relation* t : T that classifies terms according to the shape of the values that result from evaluating them
- 4. check that the typing relation is *sound* in the sense that,
 - 4.1 if t : T and t \longrightarrow * v, then v : T
 - 4.2 if t: T, then evaluation of t will not get stuck

Recall: Arithmetic Expressions – Syntax

```
::=
                                               terms
                                                  constant true
         true
                                                 constant false
        false
        if t then t else t
                                                 conditional
                                                 constant zero
        succ t
                                                 successor
                                                 predecessor
        pred t
        iszero t
                                                 zero test
                                               values
                                                 true value
        true
        false
                                                 false value
                                                 numeric value
        nv
                                               numeric values
nv :=
                                                 zero value
                                                 successor value
        succ nv
```

Recall: Arithmetic Expressions – Evaluation Rules

```
if true then t_2 else t_3 \longrightarrow t_2 (E-IFTRUE)

if false then t_2 else t_3 \longrightarrow t_3 (E-IFFALSE)

pred 0 \longrightarrow 0 \qquad (E-PREDZERO)

pred (succ nv_1) \longrightarrow nv_1 \qquad (E-PREDSUCC)
iszero 0 \longrightarrow true \qquad (E-ISZEROZERO)
iszero (succ nv_1) \longrightarrow false \qquad (E-ISZEROSUCC)
```

Recall: Arithmetic Expressions – Evaluation Rules

$$egin{array}{c} & ext{$t_1 \longrightarrow t_1'$} \ & ext{if t_1 then t_2 else $t_3 \longrightarrow if t_1' then t_2 else t_3} \end{array}$$
 (E-IF)
$$& ext{$\frac{t_1 \longrightarrow t_1'}{\text{succ $t_1 \longrightarrow \text{succ t_1'}}}} \qquad \qquad \text{(E-Succ)} \ & ext{$\frac{t_1 \longrightarrow t_1'}{\text{pred $t_1 \longrightarrow \text{pred t_1'}}}} \qquad \qquad \text{(E-PRED)} \ & ext{$\frac{t_1 \longrightarrow t_1'}{\text{iszero $t_1 \longrightarrow \text{iszero t_1'}}}} \end{array}$$

Types

In this language, values have two possible "shapes": they are either booleans or numbers.

T ::=

Bool

Nat

types type of booleans type of numbers

Typing Rules

```
(T-True)
         true : Bool
                                       (T-False)
         false: Bool
t_1: Bool t_2: T t_3: T
                                           (T-IF)
 if t_1 then t_2 else t_3: T
            0 : Nat
                                        (T-Zero)
           t_1: Nat
                                        (T-Succ)
        succ t_1 : Nat
           t<sub>1</sub>: Nat
                                       (T-Pred)
        pred t<sub>1</sub>: Nat
           t<sub>1</sub>: Nat
                                      (T-IsZero)
      iszero t<sub>1</sub>: Bool
```

Typing Derivations

Every pair (t,T) in the typing relation can be justified by a derivation tree built from instances of the inference rules.

Proofs of properties about the typing relation often proceed by induction on typing derivations.

Imprecision of Typing

Like other static program analyses, type systems are generally *imprecise*: they do not predict exactly what kind of value will be returned by every program, but just a conservative (safe) approximation.

$$\frac{\mathsf{t}_1 : \mathsf{Bool}}{\mathsf{if} \ \mathsf{t}_1 \ \mathsf{then} \ \mathsf{t}_2 : \mathsf{T} } \quad \mathsf{t}_3 : \mathsf{T}$$
 (T-IF)

Using this rule, we cannot assign a type to

if true then 0 else false

even though this term will certainly evaluate to a number.

Type Safety

The safety (or soundness) of this type system can be expressed by two properties:

1. Progress: A well-typed term is not stuck $\textit{If } t : \textit{T, then either } t \textit{ is a value or else } t \longrightarrow t' \textit{ for some }$

2. Preservation: Types are preserved by one-step evaluation If t: T and $t \longrightarrow t'$, then t': T.

Inversion

Lemma:

- 1. If true : R, then R = Bool.
- 2. If false: R, then R = Bool.
- 3. If if t_1 then t_2 else t_3 : R, then t_1 : Bool, t_2 : R, and t_3 : R.
- 4. If 0 : R, then R = Nat.
- 5. If succ $t_1 : R$, then R = Nat and $t_1 : Nat$.
- 6. If pred t_1 : R, then R = Nat and t_1 : Nat.
- 7. If iszero $t_1 : R$, then R = Bool and $t_1 : Nat$.

Inversion

Lemma:

- 1. If true : R, then R = Bool.
- 2. If false: R, then R = Bool.
- 3. If if t_1 then t_2 else t_3 : R, then t_1 : Bool, t_2 : R, and t_3 : R.
- 4. If 0 : R, then R = Nat.
- 5. If succ t_1 : R, then R = Nat and t_1 : Nat.
- 6. If pred t_1 : R, then R = Nat and t_1 : Nat.
- 7. If iszero $t_1 : R$, then R = Bool and $t_1 : Nat$.

Proof: ...

Inversion

Lemma:

```
1. If true : R, then R = Bool.
```

```
2. If false : R, then R = Bool.
```

```
3. If if t_1 then t_2 else t_3: R, then t_1: Bool, t_2: R, and t_3: R.
```

```
4. If 0 : R, then R = Nat.
```

```
5. If succ t_1: R, then R = Nat and t_1: Nat.
```

```
6. If pred t_1: R, then R = Nat and t_1: Nat.
```

```
7. If iszero t_1 : R, then R = Bool and t_1 : Nat.
```

Proof: ...

This leads directly to a recursive algorithm for calculating the type of a term...

Typechecking Algorithm

```
typeof(t) = if t = true then Bool
            else if t = false then Bool
            else if t = if t1 then t2 else t3 then
              let T1 = typeof(t1) in
              let T2 = typeof(t2) in
              let T3 = typeof(t3) in
              if T1 = Bool and T2=T3 then T2
              else "not typable"
            else if t = 0 then Nat
            else if t = succ t1 then
              let T1 = typeof(t1) in
              if T1 = Nat then Nat else "not typable"
            else if t = pred t1 then
              let T1 = typeof(t1) in
              if T1 = Nat then Nat else "not typable"
            else if t = iszero t1 then
              let T1 = typeof(t1) in
              if T1 = Nat then Bool else "not typable"
```

Properties of the Typing Relation

Recall: Typing Rules

```
(T-True)
         true : Bool
                                      (T-False)
        false: Bool
t_1: Bool t_2: T t_3: T
                                          (T-IF)
if t_1 then t_2 else t_3: T
            0 : Nat
                                      (T-Zero)
           t_1: Nat
                                      (T-Succ)
        succ t_1 : Nat
           t_1: Nat
                                      (T-Pred)
        pred t<sub>1</sub>: Nat
           t<sub>1</sub>: Nat
                                    (T-IsZero)
      iszero t<sub>1</sub>: Bool
```

Recall: Inversion

Lemma:

- 1. If true : R, then R = Bool.
- 2. If false : R, then R = Bool.
- 3. If if t_1 then t_2 else t_3 : R, then t_1 : Bool, t_2 : R, and t_3 : R.
- 4. If 0 : R, then R = Nat.
- 5. If succ t_1 : R, then R = Nat and t_1 : Nat.
- 6. If pred t_1 : R, then R = Nat and t_1 : Nat.
- 7. If iszero t_1 : R, then R = Bool and t_1 : Nat.

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof:

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

```
        v ::=
        values

        true
        true value

        false
        false value

        nv
        numeric value

        nv ::=
        numeric values

        0
        zero value

        succ nv
        successor value
```

For part 1,

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

```
        v
        true
        true value

        false
        false value

        nv
        numeric value

        nv
        numeric value

        succ
        nv

        succ
        numeric value

        succ
        nv
```

For part 1, if v is true or false, the result is immediate.

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

```
        v ::=
        values

        true
        true value

        false
        false value

        nv
        numeric value

        nv ::=
        numeric values

        0
        zero value

        succ nv
        successor value
```

For part 1, if v is true or false, the result is immediate. But v cannot be 0 or succ nv, since the inversion lemma tells us that v would then have type Nat, not Bool.

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

```
        v ::=
        values

        true
        true value

        false
        false value

        nv
        numeric value

        nv ::=
        numeric values

        0
        zero value

        succ nv
        successor value
```

For part 1, if v is true or false, the result is immediate. But v cannot be 0 or succ nv, since the inversion lemma tells us that v would then have type Nat, not Bool. Part 2 is similar.

Theorem: Suppose t is a well-typed term (that is, t: T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Theorem: Suppose t is a well-typed term (that is, t: T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof:

Theorem: Suppose t is a well-typed term (that is, t: T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t: T.

Theorem: Suppose t is a well-typed term (that is, t: T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t: T.

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since t in these cases is a value.

Theorem: Suppose t is a well-typed term (that is, t:T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t: T.

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since t in these cases is a value.

```
Case T-IF: t = if t_1 then t_2 else t_3
t_1 : Bool t_2 : T t_3 : T
```

Theorem: Suppose t is a well-typed term (that is, t: T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t : T.

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since t in these cases is a value.

```
Case T-IF: t = if t_1 then t_2 else t_3
t_1 : Bool t_2 : T t_3 : T
```

By the induction hypothesis, either t_1 is a value or else there is some t_1' such that $t_1 \longrightarrow t_1'$. If t_1 is a value, then the canonical forms lemma tells us that it must be either true or false, in which case either E-IFTRUE or E-IFFALSE applies to t. On the other hand, if $t_1 \longrightarrow t_1'$, then, by E-IF, $t \longrightarrow if \ t_1'$ then t_2 else t_3 .

Theorem: Suppose t is a well-typed term (that is, t: T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t : T.

The cases for rules T-ZERO, T-SUCC, T-PRED, and T-ISZERO are similar.

(Recommended: Try to reconstruct them.)

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Case T-True: t = true T = Bool

Then t is a value.

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Case T-IF:

```
t = if t_1 then t_2 else t_3 t_1 : Bool t_2 : T t_3 : T
```

There are three evaluation rules by which $t \longrightarrow t'$ can be derived: E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Case T-IF:

```
t = if t_1 then t_2 else t_3 t_1 : Bool t_2 : T t_3 : T
```

There are three evaluation rules by which $t \longrightarrow t'$ can be derived: E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Subcase E-IFTRUE: $t_1 = true$ $t' = t_2$ Immediate, by the assumption t_2 : T.

(E-IFFALSE subcase: Similar.)

Preservation

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Case T-IF:

$$t = if t_1 then t_2 else t_3 t_1 : Bool t_2 : T t_3 : T$$

There are three evaluation rules by which $t \longrightarrow t'$ can be derived: E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Subcase E-IF: $t_1 \longrightarrow t_1'$ $t' = \text{if } t_1'$ then t_2 else t_3 Applying the IH to the subderivation of t_1 : Bool yields t_1' : Bool. Combining this with the assumptions that t_2 : T and t_3 : T, we can apply rule T-IF to conclude that if t_1' then t_2 else t_3 : T, that is, t': T.

Messing With It

Messing with it: Remove a rule

What if we remove $\operatorname{E-PredZero}$?

Messing with it: Remove a rule

What if we remove E-PREDZERO?

Then pred 0 type checks, but it is stuck and is not a value. Thus the progress theorem fails.

Messing with it: If

What if we change the rule for typing if's to the following?:

$$\frac{t_1 : Bool}{if t_1 then t_2 else t_3 : Nat}$$
 (T-IF)

Messing with it: If

What if we change the rule for typing if's to the following?:

$$\frac{t_1 : Bool}{if t_1 then t_2 else t_3 : Nat}$$
 (T-IF)

The system is still sound. Some if's do not type, but those that do are fine.

Meassing with it: adding bit

```
t ::= terms ... bit(t) boolean to natural
```

- 1. evaluation rule
- 2. typing rule
- 3. progress and preservation updates

The Simply Typed

Lambda-Calculus

The simply typed lambda-calculus

The system we are about to define is commonly called the *simply typed lambda-calculus*, or λ_{\rightarrow} for short.

Unlike the untyped lambda-calculus, the "pure" form of λ_{\rightarrow} (with no primitive values or operations) is not very interesting; to talk about λ_{\rightarrow} , we always begin with some set of "base types."

- So, strictly speaking, there are *many* variants of λ_{\rightarrow} , depending on the choice of base types.
- ► For now, we'll work with a variant constructed over the booleans.

Untyped lambda-calculus with booleans

```
terms
                                          variable
X
\lambda x . t.
                                          abstraction
                                         application
t t
                                          constant true
true
                                          constant false
false
                                          conditional
if t then t else t
                                        values
\lambda x.t
                                          abstraction value
                                          true value
true
                                          false value
false
```

"Simple Types"

```
 \begin{array}{ccc} T & ::= & & \\ & \text{Bool} & & \\ & T {\rightarrow} T & & \end{array}
```

types type of booleans types of functions

What are some examples?

Type Annotations

We now have a choice to make. Do we...

annotate lambda-abstractions with the expected type of the argument

$$\lambda x:T_1.$$
 t₂

(as in most mainstream programming languages), or

continue to write lambda-abstractions as before

$$\lambda x. t_2$$

and ask the typing rules to "guess" an appropriate annotation (as in OCaml)?

Both are reasonable choices, but the first makes the job of defining the typing rules simpler. Let's take this choice for now.

true: Bool (T-TRUE)

false: Bool (T-FALSE)

$$\frac{t_1: Bool \qquad t_2: T \qquad t_3: T}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3: T}$$

$$\frac{???}{\lambda x: T_1. t_2: T_1 \rightarrow T_2}$$
(T-ABS)

true : Bool (T-TRUE)

false : Bool (T-FALSE)

$$\frac{t_1 : Bool \qquad t_2 : T \qquad t_3 : T}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T} \qquad \text{(T-IF)}$$

$$\frac{\Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1 . t_2 : T_1 \rightarrow T_2} \qquad \text{(T-ABS)}$$

$$\frac{x : T \in \Gamma}{\Gamma \vdash x : T} \qquad \text{(T-VAR)}$$

$$\begin{array}{c} \Gamma \vdash \text{ true} : \text{Bool} & (\text{T-True}) \\ \Gamma \vdash \text{ false} : \text{Bool} & (\text{T-False}) \\ \hline \\ \frac{\Gamma \vdash \text{ t}_1 : \text{Bool}}{\Gamma \vdash \text{ t}_2 : \text{ T}} & \Gamma \vdash \text{ t}_3 : \text{ T}} & (\text{T-If}) \\ \hline \\ \frac{\Gamma \vdash \text{ tif } \text{ t}_1 \text{ then } \text{ t}_2 \text{ else } \text{ t}_3 : \text{ T}}{\Gamma \vdash \text{ if } \text{ t}_1 \text{ then } \text{ t}_2 : \text{ T}_2} & (\text{T-Abs}) \\ \hline \\ \frac{\Gamma, \text{ x} : \text{T}_1 \vdash \text{ t}_2 : \text{ T}_2}{\Gamma \vdash \lambda \text{ x} : \text{T}_1 . \text{ t}_2 : \text{ T}_1 \to \text{T}_2} & (\text{T-Var}) \\ \hline \\ \frac{\text{x} : \text{T} \in \Gamma}{\Gamma \vdash \text{ x} : \text{ T}} & (\text{T-Var}) \\ \hline \\ \frac{\Gamma \vdash \text{ t}_1 : \text{T}_{11} \to \text{T}_{12}}{\Gamma \vdash \text{ t}_1 : \text{T}_{12}} & \Gamma \vdash \text{ t}_2 : \text{T}_{11}} & (\text{T-App}) \end{array}$$

Typing Derivations

What derivations justify the following typing statements?

```
    ► (\lambda x:Bool.x) true : Bool
    ► f:Bool→Bool ⊢
        f (if false then true else false) : Bool
    ► f:Bool→Bool ⊢
        \lambda x:Bool. f (if x then false else x) : Bool→Bool
```

Properties of λ_{\rightarrow}

The fundamental property of the type system we have just defined is *soundness* with respect to the operational semantics.

- 1. Progress: A closed, well-typed term is not stuck If $\vdash t : T$, then either t is a value or else $t \longrightarrow t'$ for some t'.
- 2. Preservation: Types are preserved by one-step evaluation If $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

Proving progress

Same steps as before...

Proving progress

Same steps as before...

- ▶ inversion lemma for typing relation
- canonical forms lemma
- progress theorem

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash$ if t_1 then t_2 else $t_3 : R$, then $\Gamma \vdash t_1 :$ Bool and $\Gamma \vdash t_2, t_3 : R$.

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash$ if t_1 then t_2 else $t_3:R$, then $\Gamma \vdash t_1:Bool$ and $\Gamma \vdash t_2,t_3:R$.
- 4. If $\Gamma \vdash x : R$, then

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash$ if t_1 then t_2 else $t_3:R$, then $\Gamma \vdash t_1:Bool$ and $\Gamma \vdash t_2,t_3:R$.
- 4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash$ if t_1 then t_2 else $t_3:R$, then $\Gamma \vdash t_1:Bool$ and $\Gamma \vdash t_2,t_3:R$.
- 4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x:T_1.t_2:R$, then

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash$ if t_1 then t_2 else $t_3:R,$ then $\Gamma \vdash t_1:$ Bool and $\Gamma \vdash t_2,t_3:R.$
- 4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x: T_1 \cdot t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x: T_1 \vdash t_2 : R_2$.

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash$ if t_1 then t_2 else $t_3:R$, then $\Gamma \vdash t_1:Bool$ and $\Gamma \vdash t_2,t_3:R$.
- 4. If $\Gamma \vdash x : R$, then $x:R \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x: T_1.t_2: R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x: T_1 \vdash t_2: R_2$.
- 6. If $\Gamma \vdash t_1 \ t_2 : R$, then

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash$ if t_1 then t_2 else $t_3:R$, then $\Gamma \vdash t_1:Bool$ and $\Gamma \vdash t_2,t_3:R$.
- 4. If $\Gamma \vdash x : R$, then $x:R \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x: T_1.t_2: R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x: T_1 \vdash t_2: R_2$.
- 6. If $\Gamma \vdash t_1 \ t_2 : R$, then there is some type T_{11} such that $\Gamma \vdash t_1 : T_{11} \rightarrow R$ and $\Gamma \vdash t_2 : T_{11}$.

Lemma:

1. If v is a value of type Bool, then

Lemma:

1. If v is a value of type Bool, then v is either true or false.

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type $T_1 \rightarrow T_2$, then

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type $T_1 \rightarrow T_2$, then v has the form $\lambda x: T_1 \cdot t_2$.

Theorem: Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t' with t \longrightarrow t'.

Proof: By induction

Theorem: Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t' with t \longrightarrow t'.

Proof: By induction on typing derivations.

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash t : T$ for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.

Theorem: Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t' with t \longrightarrow t'.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where $\mathbf{t} = \mathbf{t}_1 \ \mathbf{t}_2$ with $\vdash \mathbf{t}_1 : T_{11} \rightarrow T_{12}$ and $\vdash \mathbf{t}_2 : T_{11}$.

Theorem: Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t' with t \longrightarrow t'.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where $\mathbf{t} = \mathbf{t}_1 \ \mathbf{t}_2$ with $\vdash \mathbf{t}_1 : T_{11} {\rightarrow} T_{12}$ and $\vdash \mathbf{t}_2 : T_{11}$. By the induction hypothesis, either \mathbf{t}_1 is a value or else it can make a step of evaluation, and likewise \mathbf{t}_2 .

Theorem: Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t' with t \longrightarrow t'.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where $\mathbf{t} = \mathbf{t}_1 \ \mathbf{t}_2$ with $\vdash \mathbf{t}_1 : T_{11} {\rightarrow} T_{12}$ and $\vdash \mathbf{t}_2 : T_{11}$. By the induction hypothesis, either \mathbf{t}_1 is a value or else it can make a step of evaluation, and likewise \mathbf{t}_2 . If \mathbf{t}_1 can take a step, then rule E-APP1 applies to \mathbf{t} . If \mathbf{t}_1 is a value and \mathbf{t}_2 can take a step, then rule E-APP2 applies. Finally, if both \mathbf{t}_1 and \mathbf{t}_2 are values, then the canonical forms lemma tells us that \mathbf{t}_1 has the form $\lambda \mathbf{x} : T_{11} . \mathbf{t}_{12}$, and so rule E-APPABS applies to \mathbf{t} .