Representation and Recognition in Vision

Shimon Edelman School of Cognitive and Computing Sciences University of Sussex Falmer, Brighton BN1 9QH ${\rm UK}$

 $email: \verb| shimone@cogs.susx.ac.uk|$

May 12, 1998

Contents

1	The problem of representation			
	1.1	.1 A vision of representation		
	1.2	1.2 Reconstruction		
	1.3	Representation without reconstruction		24
		1.3.1	The feature detector redux	24
		1.3.2	The challenge	2 5
2	The	eories c	of representation and object recognition	29
	2.1	Recog	nition-related tasks that require representation	29
		2.1.1	Identification and generalization	31
		2.1.2	Categorization	31
		2.1.3	Analogy	34
2.2 A formalization of the notion of representation		nalization of the notion of representation	36	
		2.2.1	The Problem of Representation	36
		2.2.2	Representation as a mapping	37
		2.2.3	First and second-order isomorphism	37
	2.3	Computational theories of recognition		
		2.3.1	Reconstructionist theories: a brief historical perspective	42
		2.3.2	Structural decomposition theories	43
		2.3.3	Theories based on geometric constraints	47
		2.3.4	Multidimensional feature spaces	49
3	$\mathcal{S} ext{-is}$	omorp	phism: The theory	57
	3.1	Simila	rity as proximity in a metric space	58
		3.1.1	Some common objections	59
		3.1.2	A metric similarity space as a working hypothesis	61
	3.2	Shape	spaces	
		3.2.1	Kendall's shape space	62

6 CONTENTS

		3.2.2	Transformations and deformations			
		3.2.3	Best-correspondence distance			
		3.2.4	An objective shape space			
	3.3	Param	eterization of distal shape space			
		3.3.1	Scope of parameterization			
		3.3.2	Dimensionality of parameterization			
	3.4	Distal	to proximal mapping			
		3.4.1	Levels of representation of similarity			
		3.4.2	The components of the mapping F			
		3.4.3	Constraints on F			
		3.4.4	Implications			
4	$\mathcal{S} ext{-} ext{is}$	omorp	hism: An implementation 8			
	4.1	Task-d	ependent treatment of the measurement space			
		4.1.1	Identification ("is this an image of object X?")			
		4.1.2	Recognition ("is this an image of something I know?")			
		4.1.3	Categorization ("what is this thing?")			
	4.2	Catego	prization as navigation in shape space			
		4.2.1	Defining the frame of reference			
		4.2.2	Active landmarks			
	4.3	Tuned	units as active landmarks			
		4.3.1	Relevance			
		4.3.2	Coverage			
		4.3.3	Smoothness			
		4.3.4	Invariance to irrelevant dimensions			
		4.3.5	Monotonicity			
		4.3.6	Learnability			
	4.4	The C	horus of Prototypes			
		4.4.1	Persistent and ephemeral representations			
		4.4.2	The underlying principles			
		4.4.3	The applications			
5	$\mathcal{S} ext{-}\operatorname{is}$	S-isomorphism: experiments				
	5.1	A Cho	rus of 10 reference-object modules			
		5.1.1	The RBF module			
		5.1.2	A multiple-module network			
	5.2	Exper	imental results: recognition-related tasks			
		591	Identification of payal views of familiar objects			

CONTENTS 7

		5.2.2	Categorization of novel object views
		5.2.3	Discrimination among views of novel objects
	5.3	Exper	imental results: analogy-related tasks
		5.3.1	Mechanism for supporting analogy
		5.3.2	Local viewpoint invariance for novel objects
		5.3.3	Recovery of a standard view for novel objects
		5.3.4	Recovery of pose for novel objects
		5.3.5	Prediction of view for novel objects
		5.3.6	Comparison with related methods
	5.4	Interi	m summary: Second-order Isomorphism and Chorus (SiC)
6	Bio	logical	evidence 141
	6.1	Neuro	biology: computing with receptive fields
	6.2	Neuro	biology: low-level RFs
		6.2.1	Broad tuning
		6.2.2	Graded response
	6.3	Neuro	biology: high-level RFs
		6.3.1	Selectivity to objects
		6.3.2	Ensemble encoding
		6.3.3	Selective invariance
		6.3.4	Plasticity and learning
		6.3.5	Speed of processing
		6.3.6	A summary of neurobiological support for SiC
	6.4	Psych	ophysics: Effects of viewpoint
		6.4.1	Canonical views
		6.4.2	Mental rotation
		6.4.3	Nonlinearities and the effects of practice
		6.4.4	A model of canonical views and mental rotation
		6.4.5	Viewpoint invariance as a tool for testing theories of representation 167
	6.5	Psych	ophysics: Veridicality of shape representation
		6.5.1	Perceived similarity as proximity in an internal metric space
		6.5.2	Veridical perception of distal shape contrasts
	6.6	Psych	ophysics: Effects of translation
		6.6.1	Translation invariance for line drawings of common objects
		662	Controlled synthetic animal-like shapes 191

8 CONTENTS

7	Dia	$\log ues$	on representation and recognition	199		
	7.1	Dialog	gue 1: On the problem of representation	. 200		
	7.2	Dialog	gue 2: On theories of representation	. 205		
	7.3	Dialog	gue 3: On $\mathcal S$ -isomorphism	. 207		
	7.4	Dialog	gue 4: On the Chorus of Prototypes	. 209		
	7.5	5 Dialogue 5: On the performance of Chorus				
	7.6	Dialog	gue 6: On representation and recognition in biological vision	. 214		
	7.7	Dialog	gue 7: On what has been left out of this book	. 218		
A	Measurement space 233					
	A.1	The v	iew space	. 233		
	A.2	The sl	hape space	. 234		
В	Rep	resent	ation by distances to prototypes	239		
	B.1	The C	Phorus Transform	. 239		
		B.1.1	Distance rank preservation by CT	. 239		
		B.1.2	Bounds on dimensionality reduction: the embedding theorems $\dots \dots \dots$. 240		
		B.1.3	CT as an implementation of Bourgain's method $\ldots \ldots \ldots \ldots$. 242		
		B.1.4	Non-expansion of distances by CT	. 242		
		B.1.5	Preservation of Voronoi structure by CT	. 243		
	B.2	Repres	sentation by rank order of distances to prototypes	. 244		
\mathbf{C}	Qua	siconf	ormal mappings and deformable shapes	247		
D	RBF modules for object representation 2					
	D.1	Radia	l Basis Function (RBF) approximation	. 249		
	D.2 Theoretical aspects of RBF module design					
		D.2.1	The infinitesimal displacement case	. 250		
		D.2.2	The finite displacement case	. 253		
	D.3	Practi	cal aspects of RBF module training	. 256		
		D.3.1	Finding the optimal placement for each basis function	. 257		
		D.3.2	Tuning the basis-function width	. 259		
${f E}$	Vec	Vector quantization 26				
	E.1	E.1 The generalized Lloyd (K-means) algorithm				
	E.2	2 Canonical Vector Quantization				
\mathbf{F}	Mu	Multidimensional scaling 26				

CONTENTS	9
G Performance of the Chorus system – additional tables	265
H Trade-off between diagnosticity and invariance	269