Symmetry and Group Theory for Computational Chemistry Applications

Chemistry 5325/5326

Angelo R. Rossi
Department of Chemistry
The University of Connecticut

angelo.rossi@uconn.edu January - February, 2012

Symmetry Selection Rules for Infrared and Raman Spectra

Infrared Spectra

A **Fundamental Transition** consists of a transition from a molecule in a vibrational ground state (initial vibrational state wave function, ψ_i) to a vibrationally excited state (final vibrational state wave function, ψ_f) where the molecule absorbs one quantum of energy in one vibrational mode.

A vibrational transition in the infrared occurs when the molecular dipole moment (μ) interacts with incident radiation which occurs with a probability which is proportional to the transition moment:

$$\int \psi_i \mu \psi_f d\tau$$

- A transition is said to be forbidden in the infrared if the value of this integral is zero because the
 probability of that transition is zero and no absorption will be observed.
- The integral will be zero unless the direct product of $\psi_i \mu \psi_f$ contains the totally symmetric representation which has the character +1 for all symmetry operations for the molecule under consideration.

The vector μ can be split into three components, μ_x , μ_y , and μ_z along the Cartesian coordinate axes, and only one of the three integrals needs to be non-zero:

$$\int \psi_i \begin{pmatrix} \mu_x \\ \mu_y \\ \mu_z \end{pmatrix} \psi_f d\tau$$

January - February, 2012

Symmetry and Group Theory

Symmetry Selection Rules for Infrared and Raman Spectra

Infrared Spectra

The vibrational ground state wave function, ψ_i belongs to the totally symmetric representation.

The symmetry properties of the components of the dipole moment (μ_x, μ_y, μ_z) are the same as those of the translation vectors along the same axes: T_x, T_y, T_z .

The symmetry of the vibrationally excited state wave function, ψ_f are the same as the symmetry which describes the vibrational mode.

Therefore, it is necessary to form direct products of the totally symmetric representation of ground state vibrational wave function (ψ_i) , the irreducible representations of each of the translation vectors (T_x, T_y, T_z) , and the irreducible representation of the excited vibration under consideration.

Symmetry Selection Rules for Infrared and Raman Spectra

Infrared Spectra

Consider the vibrations of the tetrahedral molecule, ruthenium tetroxide (T_d symmetry),

where there are vibrations of A_1 , E, and T_2 , and deduce the infrared activity of each of them

- 1. ψ_i has A_1 symmetry.
- 2. The character table for T_d shows that T_x , T_y , T_z together have T_2 symmetry.

The direct products are then

Thus, the T_2 vibrations are infrared active because the direct products produce an A_1 representation, but the E and T_2 vibrations will not appear in the infrared spectrum.

An important result of the above analysis is that if an excited vibrational mode has the same symmetry as the translation vectors, T_x , T_y , T_z , for that point group, then the totally symmetric irreducible representation is present and a transition from the vibrational ground state to that excited vibrational mode will be infrared active.

January - February, 2012

Symmetry and Group Theory

January - February, 2012

Symmetry and Group Theory

Symmetry Selection Rules for Infrared and Raman Spectra

Raman Spectra

The probability of a vibrational transition occurring in Raman scattering is proportional to:

$$\int \psi_i \alpha \psi_f d\tau$$

where α is the **polarizability** of the molecule.

The Raman effect depends on a molecular dipole induced by the electromagnetic field of the incident radiation and is proportional to the polarizability of the molecule which is a measure of the ease with which the molecular electron distribution can be distorted.

 α is a tensor, i.e. a 3 x 3 array of components

$$\begin{pmatrix} \alpha_{x^2} & \alpha_{xy} & \alpha_{xz} \\ \alpha_{yx} & \alpha_{y^2} & \alpha_{yz} \\ \alpha_{zx} & \alpha_{zy} & \alpha_{z^2} \end{pmatrix}$$

so there will be six distinct components

$$\int \psi_i \begin{pmatrix} \alpha_{x^2} \\ \alpha_{y^2} \\ \alpha_{z^2} \\ \alpha_{xy} \\ \alpha_{yz} \\ \alpha_{xy} \end{pmatrix} \psi_f dt$$

where one non-zero integral is needed to have an allowed Raman transition.

January - February, 2012

Symmetry and Group Theory

Symmetry Selection Rules for Infrared and Raman Spectra

Raman Spectra

For the ruthenium tetroxide molecule with T_d symmetry, the components of polarizability have the following symmetries

$$\begin{array}{lll} \mathsf{A}_1 & x^2 + y^2 + z^2 \\ \mathsf{E} & 2z^2 - x^2 - y^2, \ x^2 - y^2 \\ \mathsf{T}_2 & xy, yz, zx \end{array}$$

The vibrations are A₁, E₁ and T₂, and it is possible to deduce the infrared activity of each of them. The direct products are then

$$\begin{array}{lcl} A_1 \otimes \begin{pmatrix} A_1 \\ T_2 \end{pmatrix} \otimes A_1 & = & A_1, E, T_2; & A_1 \text{ vibration is possible.} \\ A_1 \otimes \begin{pmatrix} A_1 \\ E_2 \end{pmatrix} \otimes E & = & E, (A_1 + A_2 + E), (T_1 + T_2); & E \text{ vibrations are possible.} \\ A_1 \otimes \begin{pmatrix} A_1 \\ T_2 \end{pmatrix} \otimes T_2 & = & T_2, (T_1 + T_2), (A_1 + E + T_1 + T_2); & T_2 \text{ vibrations are possible.} \end{array}$$

Thus, all of the vibrations in the RuO₄ molecule are Raman active

A summary of the infrared and Raman activity is given as

$$\begin{array}{lll} \text{A}_1: & x^2+y^2+z^2 & \text{Raman Only} \\ \text{E:} & 2z^2-x^2-y^2, \ x^2-y^2 & \text{Raman Only} \\ \text{T}_2: & (\pmb{T_x},\pmb{T_y},\pmb{T_z}),(xy,yz,zx) & \text{Infrared and Raman Active} \end{array}$$

January - February, 2012

Symmetry and Group Theory

The Infrared Spectrum of Pd(NH₃)₂Cl₂

One can determine which isomer (*cis* or *trans*) is present in a sample from the IR spectrum by determining the contribution to the spectrum of the Pd-Cl stretching modes for both the *cis* and *trans* complexes.

The *trans* isomer exhibits a single Pd-Cl stretching vibration (ν_{Pd-Cl}) around 350 cm⁻¹, while the *cis* isomer exhibits two stretching modes.

M-X Vibrations					
	IR	Raman			
trans isomer, D _{2h}	B _{2u}	Au			
cis isomer, C _{2v}	A ₁ , B ₂	A ₁ , B ₂			

Active M-X Stretching Modes for ML₂X₂ Complexes

IR Spectrum of *cis* and *trans* Pd(NH₃)₂Cl₂ from Kazauo Nakamoto, *Infrared and Raman Spectra of Inorganic and Coordination Compounds*, 5th Edition (1997), Part B, p. 10, Fig. III-5, John Wiley & Sons, New York

January - February, 2012

Symmetry and Group Theory

The Infrared Spectrum of trans Pd(NH₃)₂Cl₂

Determine the contribution of the Pd-Cl stretching modes in the *trans* complex.

- IR active modes have the same symmetry as translational vectors $(\Gamma(\mathsf{IR}) = B_{1u}, B_{2u}, B_{3u})$ while Raman modes have the same symmetry as binary functions $(\Gamma(\mathsf{Raman}) = A_g, B_{1g}, B_{2g}, B_{3g})$.
- Trans Pd(NH₃)₂Cl₂ has a center of symmetry, and the rule of mutual exclusion indicates that no
 vibrational modes will be present in both the Raman and IR spectra.
- Thus, there should be one polarised active Raman mode and one active infrared mode Γ^{vib}_{Pd-Cl} = A_g (polarised) + B_{3u} (IR)

January - February, 2012

Symmetry and Group Theory

The Infrared Spectrum of cis Pd(NH₃)₂Cl₂

Determine the contributions to Pd-Cl stretching modes for the cis Pd(NH₃)₂Cl₂ complex.

- IR active modes have the same symmetry as translational vectors $(\Gamma(\mathsf{IR}) = A_1, B_1.B_2)$ while Raman modes have the same symmetry as binary functions $(\Gamma(\mathsf{Raman}) = A_1, A_2, B_1, B_2)$.
- Two infrared active modes and two Raman active modes, one of which will be polarised are expected. Both modes will be present in both the IR and Raman spectra: $\Gamma^{vib}_{Pd-Cl} = A_1(\text{IR}, \text{polarised}) + B_2(\text{IR}, \text{depolarized})$

Summar

- For the higher symmetry trans Pd(NH₃)₂Cl₂ complex, a single mode Pd-Cl stretching vibration is expected in the IR spectrum, while two Pd-Cl stretching modes are expected in the IR spectrum for the lower symmetry cis Pd(NH₃)₂Cl₂ complex
- The next step will be to construct and optimize the cis and trans Pd(NH₃)₂Cl₂ complexes, obtain the
 vibrational modes, and compare the results with the experimental spectrum.

January - February, 2012

Symmetry and Group Theory

The Methane Molecule

The methane molecule belongs to the T_d Point Group.

Symmetry Operations for the CH₄ Tetrahedral Molecule

January - February, 2012

Symmetry and Group Theory

Reducible Representations of 4 x H1s Orbitals on Methane

As an example, consider the irreducible representations spanned by the set of 4 H 1s basis functions in the methane molecule.

Character Table for T_d Symmetry

T _d	E	8C ₃	3C ₂	6S ₄	$6\sigma_{d}$		
A ₁	1	1	1	1	1		x ² +y ² +z ²
A_2	1	1	1	-1	-1		
E	2	-1	2	0	0		(2z ² -x ² -y ² , x ² -y ²)
T ₁	3	0	-1	1	-1	(R_x, R_y, R_z)	
T ₂	3	0	-1	-1	1	(x,y,z)	(xy,xz,yz)
Γ(H1s)	4	1	0	0	2		

Reducible Representations of the 4 x H1s on CH₄

The Reduction Formula and Basis Functions

The reduction formula

$$n(i) = \frac{1}{h} \sum_{R} \chi_r(R) \chi_i(R)$$

provides a procedure for reducing the representation spanned by a set of basis functions in a molecule

- n(i) number of times the ith irreducible representation occurs in the representation r that is being reduced.
- ullet h the order of the group, i.e. the number of operations in the group.
- ∑ summation of all R operations in the group. If there is more than one operation in a given class, each operation must be included
 in the summation.
- $\chi_r(R)$ character of the reducible representation r under the symmetry operator R.
- $\chi_i(R)$ character of the irreducible representation i under the symmetry operator R

$$\begin{array}{l} n(\mathbf{A}_1) = \frac{1}{24} \left[(4 \times 1 \times 1) + (1 \times 1 \times 8) + (0 \times 1 \times 3) + (0 \times 1 \times 6) + (2 \times 1 \times 6) \right] = 1 \\ n(\mathbf{A}_2) = \frac{1}{24} \left[(4 \times 1 \times 1) + (1 \times 1 \times 8) + (0 \times -1 \times 3) + (2 \times -1 \times 6) + (2 \times 1 \times 6) \right] = 0 \\ n(\mathbf{E}) = \frac{1}{24} \left[(4 \times 2 \times 1) + (1 \times -1 \times 8) + (0 \times 2 \times 3) + (0 \times 0 \times 6) + (2 \times 0 \times 6) \right] = 0 \\ n(\mathbf{T}_1) = \frac{1}{24} \left[(4 \times 3 \times 1) + (1 \times 0 \times 8) + (0 \times -1 \times 3) + (0 \times 1 \times 6) + (2 \times -1 \times 6) \right] = 0 \\ n(\mathbf{T}_2) = \frac{1}{24} \left[(4 \times 3 \times 1) + (1 \times 0 \times 8) + (0 \times -1 \times 3) + (0 \times -1 \times 6) + (2 \times -1 \times 6) \right] = 1 \\ \Gamma(\mathbf{H1S}) = \mathbf{A}_1 + \mathbf{T}_2 \end{array}$$

January - February, 2012

11

Symmetry and Group Theory

12

Symmetry Adapted Linear Combinations of Orbitals (SALCs)

SLACs and MO Diagram for the Methane Molecule

Inspection of the character table for the T_d point group shows that the p orbitals on the central C atom of CH $_4$ transform as T_2 . It's easy to show that the the T_2 SLAC of the 4 H 1s functions match to the three orthogonal T_2 C 2p orbitals.

In addition, the ${\rm A}_1$ SLAC of the H 1s orbitals match with the C2s orbital.

This yields the interaction diagram below for ${\rm CH_4}$ with occupied MOs of two different energies as shown below:

MO Diagram for CH₄ Showing the SLACs

The above description of the MO diagram is confirmed below in the photoelectron spectrum for CH₄.

January - February, 2012

Symmetry and Group Theory

The Cyclopropenium Ion

The cyclopropenium ion (C₃H₃) provides an excellent example of how to determine the symmetry of the MOs of a molecular species from Group Theory.

The C_3H_3 ion belongs to the D_{3h} point group.

January - February, 2012

13

15

Symmetry and Group Theory

The Cyclopropenium Ion: Secular Determinant

For C₃H₃, the secular determinant in the Hückel approximation becomes

$$\begin{vmatrix} \alpha - \epsilon & \beta & \beta \\ \beta & \alpha - \epsilon & \beta \\ \beta & \beta & \alpha - \epsilon \end{vmatrix} = 0$$

This is only a 3×3 determinant which is not difficult to evaluate explicitly.

However, group theory can be used to simplify this, and the same ideas can be applied to larger molecules leading to substantial reduction in effort.

The Cyclopropenium Ion: D_{3h} Character Table

The D_{3h} Character Table

D_{3h}	E	2 C ₃	$3C_2$	σ_h	2 S ₃	3 σ υ		
A'_1 A'_2 E'	1	1	1	1	1	1		$x^2 + y^2, z^2$
$A_2^{\bar{I}}$	1	1	-1	1	1	-1	R_z	
$E^{\tilde{\prime}}$	2	-1	0	2	-1	0	(x, y)	$x^{2} - y^{2}, xy$
$A_1^{\prime\prime}$	1	1	1	-1	-1	-1		
$A_1'' \\ A_2'' \\ E''$	1	1	-1	-1	-1	1		
$E^{\tilde{\prime}\prime}$	2	-1	0	-2	1	0	(R_x, R_y)	xz, yz
ϕ_1	ϕ_1	ϕ_2, ϕ_3	$-\phi_1$	$-\phi_1$	ϕ_2, ϕ_3	ϕ_1		
ϕ_2	ϕ_2	ϕ_3, ϕ_1	$-\phi_2$	$-\phi_2$	ϕ_3, ϕ_1	ϕ_2		
ϕ_3	ϕ_3	ϕ_1, ϕ_2	$-\phi_3$	$-\phi_3$	ϕ_1,ϕ_2	ϕ_3		
$\Gamma_{reducible}$	3	0	-1	-3	0	1		

January - February, 2012

Symmetry and Group Theory

January - February, 2012

Symmetry and Group Theory

The Cyclopropenium Ion: Reducible Representations

To use group theory to simplify MOs, we must first determine the irreducible representations spanned by the AOs.

For example, a C_mH_m polyene would require matrices of size $m\times m$ to be constructed, but a simple set of rules for determining the characters that may be derived from these matrices are:

- If an orbital is unchanged after applying a symmetry operation, a value of +1 per orbital is assigned to the character.
- 2. If the orbital changes sign, a value of -1 per orbital is assigned to the character.
- If the orbital changes location, a value of 0 per orbital is assigned to the character.

January - February, 2012

Symmetry and Group Theory

17

19

The Cyclopropenium Ion: Reducible Representations

Applying these rules to C₃H₃ for the reducible representation yields

$$\begin{array}{lll} a_{A_1'} & = & \frac{1}{12} \left[(1)(3) + (2)(0) + (3)(-1) + (1)(-3) + (2)(0) + (3)(1) \right] & = & 0 \\ a_{A_2'} & = & \frac{1}{12} \left[(1)(3) + (2)(0) + (-3)(-1) + (1)(-3) + (2)(0) + (-3)(1) \right] & = & 0 \\ a_{E'} & = & \frac{1}{12} \left[(2)(3) + (-2)(0) + (0)(-1) + (2)(-3) + (-2)(0) + (0)(1) \right] & = & 0 \end{array}$$

MOs of C₃H₃ cannot have A' symmetry.

$$\begin{array}{rcl} a_{A_1^{\prime\prime}} & = & \frac{1}{12} \left[(1)(3) + (2)(0) + (3)(-1) + (-1)(-3) + (-2)(0) + (-3)(1) \right] & = & 0 \\ a_{A_2^{\prime\prime}} & = & \frac{1}{12} \left[(1)(3) + (2)(0) + (-3)(-1) + (-1)(-3) + (-2)(0) + (3)(1) \right] & = & 1 \\ a_{E^{\prime\prime}} & = & \frac{1}{12} \left[(2)(3) + (-2)(0) + (0)(-1) + (-2)(-3) + (2)(0) + (0)(1) \right] & = & 1 \end{array}$$

Thus, $\Gamma_{reducible} = A_2'' + E''$.

January - February, 2012

Symmetry and Group Theory

40

20

The Cyclopropenium Ion: Secular Determinant in Terms of SLACs

To apply Hückel theory, we can automatically separate out the $A_2^{\prime\prime}$ symmetry sub-block of the secular determinant from the $E^{\prime\prime}$ symmetry sub-block.

Secular Determinant in Terms of SLACs

$$\begin{array}{rcl} \psi_1 & = & \psi_{A_2^{\prime\prime}} & = & \frac{1}{\sqrt{3}}(\phi_1 + \phi_2 + \phi_3) \\ \psi_2 & = & \psi_{E^{\prime\prime}}^{(1)} & = & \frac{1}{\sqrt{6}}(2\phi_1 - \phi_2 - \phi_3) \\ \psi_3 & = & \psi_{E^{\prime\prime}}^{(2)} & = & \frac{1}{\sqrt{2}}(\phi_2 - \phi_3) \end{array}$$

$$\left| \begin{array}{ccc} <\psi_1|H|\psi_1> -\epsilon & 0 & 0 \\ 0 & <\psi_2|H|\psi_2> -\epsilon & <\psi_2|H|\psi_3> \\ 0 & <\psi_2|H|\psi_3> & <\psi_3|H|\psi_3> -\epsilon \end{array} \right| = 0$$

Energy-Level Diagram for C₃**H**₃

e'' $\alpha - \beta$

 a_2'' $\alpha + 2\beta$

January - February, 2012

Symmetry and Group Theory

January - February, 2012

Symmetry and Group Theory

Using the Projection Operator Method to Generate MOs as Bases for Irreducible Representations

It is not always possible to deduce the form of an SALC by matching the cental atom orbital of appropriate symmetry.

However, the **projection operator method** can be used to a generate symmetry adapted molecular orbital (MO) from atomic orbitals (AOs) that form a basis for a given representation.

A projection operator projects a certain part a symmetry orbital from another orbital.

$$\psi^{\mathsf{SALC}} = P_i \phi_a = \sum_R R \phi_a \chi_i(R)$$

where

- ψ^{SALC} is the wave function for the SALC belonging to the i^{th} irreducible representation.
- P_i is the projection operator for the i^{th} irreducible representation.
- φ_a is one of the basis functions.
- \bullet $\sum_{\mathbf{p}}$ represents a summation over all operations in the group.
- $R\phi_a$ indicates the atomic basis function generated by the operation R on ϕ_a .
- $\chi_i(R)$ is the character of the i^{th} irreducible representation under R.

January - February, 2012

Symmetry and Group Theory

21

23

Using the Projection Operator Method to Generate MOs That are Bases for Irreducible Representations

A simple set of rules for determining the MO which forms a basis for a given symmetry representation can be used:

- 1. Choose an AO on an atom and determine into which AO it is transformed by each symmetry operator of that group.
- Multiply the AO of the transformed species by the character of the operator in the representation of interest for each symmetry operator.
- 3. The resulting linear combination of AOs forms an MO that is a basis for that representation.

The method will be applied to the cyclopropenium ion which belongs to the D_{3h} point group.

January - February, 2012

Symmetry and Group Theory

22

Using the Projection Operator Method to Generate MOs as Bases for Irreducible Representations

Obtain the projection operator for the A_2'' symmetry representation:

$$P^{A_2''} = \frac{1}{12} \left[E + C_3 + C_3^2 - C_2^{(1)} - C_2^{(2)} - C_2^{(3)} - \sigma_h - S_3 - S_3^2 + \sigma_v^{(1)} + \sigma_v^{(2)} + \sigma_v^{(3)} \right]$$

Project out MOs for the $A_2^{\prime\prime}$ symmetry representation

$$\begin{array}{l} P^{A_2''}\phi_1 = \frac{1}{12}(\phi_1 + \phi_2 + \phi_3 + \phi_1 + \phi_3 + \phi_2 + \phi_1 + \phi_2 + \phi_3 + \phi_1 + \phi_3 + \phi_2) = \frac{1}{3}(\phi_1 + \phi_2 + \phi_3) \\ P^{A_2''}\phi_2 = \frac{1}{12}(\phi_2 + \phi_3 + \phi_1 + \phi_3 + \phi_2 + \phi_1 + \phi_2 + \phi_3 + \phi_1 + \phi_3 + \phi_2 + \phi_1) = \frac{1}{3}(\phi_1 + \phi_2 + \phi_3) \\ P^{A_2''}\phi_3 = \frac{1}{12}(\phi_3 + \phi_1 + \phi_2 + \phi_1 + \phi_3 + \phi_3 + \phi_1 + \phi_2 + \phi_2 + \phi_1 + \phi_3) = \frac{1}{3}(\phi_1 + \phi_2 + \phi_3) \end{array}$$

The normalized symmetry adapted linear for A_2'' is given as

$$\psi_{A_2''} = \frac{1}{\sqrt{3}}(\phi_1 + \phi_2 + \phi_3)$$

Using the Projection Operator Method to Generate MOs as Bases for Irreducible Representations

Obtain the projection operator for the $E^{\prime\prime}$ symmetry representation:

$$P^{E''} = \frac{2}{12} [2E - C_3 - C_3^2 - 2\sigma_h + S_3 + S_3^2]$$

Project out MOs for the $E^{\prime\prime}$ symmetry representation

$$P^{E''}\phi_1 = \frac{2}{12}(2\phi_1 - \phi_2 - \phi_3 + 2\phi_1 - \phi_2 - \phi_3) = \frac{1}{3}(2\phi_1 - \phi_2 - \phi_3)$$

$$P^{E''}\phi_2 = \frac{12}{12}(2\phi_2 - \phi_1 - \phi_3 + 2\phi_2 - \phi_1 - \phi_3) = \frac{1}{3}(2\phi_2 - \phi_1 - \phi_3)$$

$$P^{E''}\phi_3 = \frac{1}{72}(2\phi_3 - \phi_1 - \phi_2 + 2\phi_3 - \phi_1 - \phi_2) = \frac{1}{2}(2\phi_3 - \phi_1 - \phi_2)$$

From the above, it is possible to form two linear independent functions:

$$\psi_{E''}^{(1)} = P^{E''}\phi_1 = \frac{1}{\sqrt{6}}(2\phi_1 - \phi_2 - \phi_3)$$

$$\psi_{E''}^{(2)} = P^{E''}\phi_2 - P^{E''}\phi_3 = \frac{1}{\sqrt{2}}(\phi_2 - \phi_3)$$

January - February, 2012

Symmetry and Group Theory

January - February, 2012

Symmetry and Group Theory

Franck-Condon Factors

Within the Born-Oppenheimer approximations, the electric-dipole transition moment which provides the probility of a transition from the ground-electronic state, ψ_i , to an excited electronic state, ψ_f , is given by

$$\mu_{f \leftarrow i} = -e \underbrace{\sum_{i} \left\langle \psi_{f} | \pmb{r}_{i} | \psi_{i} \right\rangle}_{\text{Electric Dipole}} \underbrace{\left\langle \nu_{f} | \nu_{i} \right\rangle}_{\text{Overlap Integral}} \underbrace{\left\langle \nu_{f} | \nu_{i} \right\rangle}_{\text{Overlap Integral}}$$

The intensity of a transition is proportional to the square of the transition moment, $|S(\nu_f, \nu_i)|^2$

The upper and lower vibrational wavefunctions, ν_f and ν_i , are approximately harmonic-oscillator-like functions, so that the largest overlap of probabilities for the ground-state and excited-state vibrations will occur for a vibrational quantum number greater than 0.

This leads to the fact that the absorption probability is largest into that vibrational state of the excited electronic states whose probability is largest directly above the equilibrium internuclear distance.

January - February, 2012

Symmetry and Group Theory

25

27

Electronic Absorption Spectra of Molecules

Potential energy curves and absorption spectra for three electronic transitions (vertical lines).

- (a) The minimum in the potential in the excited state coincides with the ground state.
- (b) The minimum in the potential in the excited state is at a larger internuclear distance than in the ground state.
- (c) The absorption may raise the excited state to a higher energy than its dissociation energy so that the absorption is continuous.

January - February, 2012

Symmetry and Group Theory

26

The Franck-Condon Principle

The Franck-Condon principle states that in an electronic transition, the overlap of the ground vibrational wavefunction in the lower electronic state.

The various vibrational wavefunctions in the upper electronic state is greatest for the vibrational level whose classical turning point is at the equilibrium separation in the lower state.

Fluorescence and Phosphorescence

Excited-state molecules in a crystal, in solution, or in a gas undergo frequent collisions with other molecules in which they lose energy and return to the lowest vibrational state of S_1 .

Internal conversion is a nonradiative transition induced by collisions and involves a decay from a higher vibrational state to the ground vibrational state of the same multiplicity.

Once in the lowest vibrational state of S_1 , the molecule can undergo a radiative transition to a vibrational state in S_0 (fluorescence), or it can make a nonradiative transition to an excited vibrational state of T_1 in a process called **intersystem crossing** which can lead to **phosphorescence**.

Because internal conversion to the ground vibrational state of S_1 is generally fast in conparison with fluorescence to S_0 , the vibrationally excited-state molecule will relax to the ground vibrationally state of S_1 before undergoing fluorescence.

As a result of the relaxation, the fluorescence spectrum is shifted to lower energies relative to the absorption.

January - February, 2012

Symmetry and Group Theory

Lifetimes for Fluorescence and Phosphorescence

In **fluorescence**, the radiation is emitted during a transition between electronic states of the **same spin or multiplicity**.

In **phosphorescence** the radiation is emitted in a transition between states of **different multiplicities**.

- The lifetime of excited singlet states is short, i.e. usually between 10^{-6} s and 10^{-9} s.
- The lowest triplet state of a molecule with a singlet ground state is long (10^{-4} s to 100 s) because the transitions between states of different multiplicity are forbidden, and the rate is slow leading to a longer lifetime.

January - February, 2012

Symmetry and Group Theory

Effect of Solute-Solvent Equilibrium on Absorption and Fluorescence Transiton

The small difference on the 0-0 bands for absorption and fluorecence is due to the difference in the solvation of the initial and final states.

January - February, 2012

Symmetry and Group Theory

33

Acetaldehyde acetaldehyde n→π* excited state vertical excitation acetaldehyde ground state acetaldehyde ground state January - February, 2012 Symmetry and Group Theory 34

Jahn-Teller Effects

Start by assuming a particlar configuration of the molecule in a certain point group.

The Schrödinger equation is assumed to be solved giving rise to eigenvalues (E_0, E_1, \dots, E_n) , and to the corresponding wave functions $(\psi_0, \psi_1, \dots, \psi_n)$.

After distortion by displacement of the normal coordinate, \mathcal{Q} , from the original position, the change in energy is given by:

$$E = E_0 + \underbrace{\left\langle \psi_0 \left| \frac{\partial U}{\partial Q} \right| \psi_0 \right\rangle Q}_{\text{FOJT}} + \underbrace{\left[\frac{1}{2} \left\langle \psi_0 \left| \frac{\partial^2 U}{\partial Q^2} \right| \psi_0 \right\rangle - \sum_k \left(\frac{\left\langle \psi_0 \left| \frac{\partial U}{\partial Q} \right| \psi_k \right\rangle^2}{E_k - E_0} \right) \right] Q^2}_{\text{SOJT}}$$

where U is the nuclear-nuclear and nuclear-electronic potential energy

A first-order Jahn-Teller distortion (FOJT) states that a nonlinear molecule with an incompletely filled, degenerate HOMO level is susceptible to a structural distortion which removes the degeneracy. This structural distortion is related to a degenerate electronic state with partially filled highest occupied molecular orbitals which are degenerate.

A structural distortion arising from a second-order energy change in the HOMO is termed a second-order Jahn-Teller (SOJT) distortion.

35

First-Order Jahn-Teller Effects

Consider a d^8 transition metal complex which has the electronic configuration $t_{2g}^6e^{\star\,2}$

A distortion coordinate is needed such that the matrix element $<\psi_0|\frac{\partial U}{\partial Q}|\psi_0> \neq 0.$

Then,
$$\Gamma_e \otimes \Gamma_e = {}^1A_{1g} + {}^3A_{2g} + {}^1E_g$$

If Γ_{E_g} is the symmetry species of the degenerate state, and Γ_Q is the distortion coordinate, then the symmetry representation of the distortion coordinate must contain the totally symmetric representation, A_{1g} :

$$\Gamma_{E_g} \otimes \Gamma_Q \otimes \Gamma_{E_g} \subset \Gamma_{\mathsf{A}_{1g}}$$

which implies that the distortion is $\Gamma_Q = \Gamma_{E_q}$ as shown below:

January - February, 2012

Symmetry and Group Theory

January - February, 2012

Symmetry and Group Theory

Group Theory

First-Order Jahn-Teller Effects: Ni(H₂O)₆²⁺

 $Ni(H_2O)_6^{2+}$ complex is a d⁸ complex wth the electronic configuration $t_{2a}^6e^{*2}$ which splits into ${}^{1}A_{1q} + {}^{3}A_{2q} + {}^{1}E_{q}$ states

The triplet state will probably lowest in energy, and the doubly degenerate singlet state is next in energy. The 1E_g state is Jahn-Teller unstable and splits apart in energy during an e vibration.

Stretching of two trans ligands will lead to a drop in the energy of the d₂ orbital while the shrinking of four equatorial bonds leads to destabilization of the $d_{\chi^2-\gamma^2}$ orbital, as shown in the graph on the left.

The energetic behavior of the two states closest in energy as a result of this distortion is shown in the graph

If the splitting between the singlet and triplet states is small, the singlet state crosses the triplet state somewhere along the reaction coordinate. If the splitting is large, it is expected to find an octahedral triplet as in Ni(H₂O) $_{6}^{2+}$

January - February, 2012

Symmetry and Group Theory

Second Order Jahn-Teller Effects

The symmetry species of the distortion which allows the mixing of the HOMO and LUMO is derived from group theory.

A distortion coordinate is needed such that the matrix element

$$<\psi_{\mathsf{HOMO}}|\frac{\partial U}{\partial O}|\psi_{\mathsf{LUMO}}> \neq 0.$$

If Γ_{HOMO} and Γ_{LUMO} are the symmetry species of the HOMO and LUMO, respectively and Γ_Q is the distortion coordinate, then the symmetry representation of the distortion coordinate must contain the totally symmetric representation, a1:

$$\Gamma_{\mathsf{HOMO}} \otimes \Gamma_Q \otimes \Gamma_{\mathsf{LUMO}} \subset \Gamma_{\mathsf{a}_1}$$

This then implies that the distortion coordinate Q has the symmetry representation:

$$\Gamma_Q = \Gamma_{\mathsf{HOMO}} \otimes \Gamma_{\mathsf{LUMO}}$$

January - February, 2012

37

39

Symmetry and Group Theory

Second Order Jahn-Teller Effects

Why is NH₃ Pyramidal?

 $\Gamma_{\mathsf{HOMO}} \otimes \Gamma_{\mathsf{LUMO}} = \Gamma_{a_2^{\prime\prime}} \otimes \Gamma_{a_1^{\prime}} \subset \Gamma_{a_2^{\prime\prime}}$

so the distortion coordinate is a_2'' , in the z-direction.

Calculations show that the inversion barriers are 5.8 kcal/mol, 30 kcal/mol, and 46 kcal/mol while the HAH angles are 106.7°, 93.3°, and 92.1° for NH₃, PH₃, and AsH₃, respectively.

The $2a'_1$ orbital is stabilized by mixing with the a''_2 orbital. The magnitude of the stabilization is inversely proportional to the energy gap between the $2a_1'$ and $2a_1'$ a_2'' orbitals: $\mathsf{E}_{\mathsf{inv}} \propto e(a_2'') - e(2a_1') \propto \frac{1}{\Delta e}$.

January - February, 2012

Symmetry and Group Theory

Second Order Jahn-Teller Effects

An MO diagram of the σ bonding in the SF₄ constructed in a hypothetical tetrahedral geometry is shown below.

- The bonding a₁ and t₂ levels are occupied as in the CF₄ molecule, but there is also an occupied antibonding orbital, a₁*.
- In addition, there is an unoccupied antibonding t^{*} level at higher energy.

 Consider a distortion to a lower symmetry than T_d. During descent of symmetry, the a₁ orbital remains totally symmetric. But, the threefold degeneracy of the t2 level will be lifted.
- Provided that one of the lowest unoccupied molecular orbital (LUMO, 15) orbitals is also totally symmetric, the highest occupied antibonding molecular orbital (the HOMO, a1) can mix together to stabilize the lower level.

January - February, 2012

Symmetry and Group Theory

Distortion of SF_4 from T_d to Lower Symmetry

T _d	Т	D _{2d}	C _{3v}	C _{2v}
A ₁	А	A ₁	A ₁	A ₁
A_2	A	B ₁	A_2	A_2
E	E	$A_1 + B_1$	E	$A_1 + A_2$
T ₁	Т	$A_2 + E$	A ₂ + E	$A_2 + B_1 + B_2$
T ₂	Т	B_2 + E	A ₁ + E	$A_1 + B_1 + B_2$

Distortions to C_{2v} or C_{3v} symmetry would lower the electronic energy, but distortion to either D_{2d} or D_{4h} symmetry would not.

The C_{2v} and C_{3v} structures are similar to those predicted by VSEPR arguments.

January - February, 2012 Symmetry and Group Theory 41

Orbital Correlation Diagram for the Distortion of Ni(CO) $_4$ from T $_d$ to D $_{4h}$ Symmetry

The above graph is called an orbital correlation diagram. It is related to a Walsh diagram which is a plot of orbital energies of a molecular transformation as a function of some variable.

January - February, 2012 Symmetry and Group Theory 43

Distortion of Ni(CO)₄ from T_d to D_{4h} Symmetry

T_d	D_{4h}				
Unfilled Orbitals					
t ₂ (4p _x , 4p _y , 4p _z)	a _{2u} + e _u				
a ₂ (4s)	a _{1g}				
Filled Orbitals					
$t_2 (d_{x^2-y^2}, d_{xz}, d_{yz})$	$b_{1g} + e_g$				
$e(d_{z^2}, d_{xy})$	a _{1g} + b _{2g}				

During the descent to lower symmetry there is no lower unoccupied orbital that can mix and stabilize the occupied orbitals.

January - February, 2012

Symmetry and Group Theory