Data Management for Data Science

Lecture 17: Linear Classifiers and Support Vector Machines

Prof. Asoc. Endri Raço

Today's Lecture

1. Linear classifiers

2. The Perceptron Algorithm

3. Support Vector Machines

Linear classifier

- Let's simplify life by assuming:
 - Every instance is a vector of real numbers, $\mathbf{x} = (x_1, ..., x_n)$. (Notation: boldface \mathbf{x} is a vector.)
 - There are only two classes, y=(+1) and y=(-1)
- A <u>linear classifier</u> is vector **w** of the same dimension as **x** that is used to make this prediction:

$$\hat{y} = \text{sign}(w_1 x_1 + w_2 x_2 + ... + w_n x_n) = \text{sign}(\mathbf{w} \cdot \mathbf{x})$$

$$\operatorname{sign}(x) = \begin{cases} +1 & \text{if } x \ge 0 \\ -1 & \text{if } < 0 \end{cases}$$

Example: Linear classifier

- Imagine 3 features (spam is "positive" class):
 - 1. free (number of occurrences of "free")
 - 2. money (occurrences of "money") $w \cdot f(x)$
 - 3. BIAS (intercept, always has value 1) $\sum w_i \cdot f_i(x)$

$$x \qquad f(x) \qquad w \qquad (1)(-3) + \\ \text{"free money"} \qquad \begin{bmatrix} \text{BIAS} & : & 1 \\ \text{free} & : & 1 \\ \text{money} & : & 1 \\ \dots & & & \end{bmatrix} \qquad \begin{bmatrix} \text{BIAS} & : & -3 \\ \text{free} & : & 4 \\ \text{money} & : & 2 \\ \dots & & & & \end{bmatrix} \qquad (1)(4) + \\ (1)(2) + \\ \dots & & & & \\ \dots & & & \\ = 3$$

 $w.f(x) > 0 \rightarrow SPAM!!!$

The Perceptron Algorithm to learn a Linear Classifier

- Start with weight vector = $\vec{0}$
- For each training instance (x_i,y_i*):
 - Classify with current weights

$$y_{\scriptscriptstyle ext{i}} = egin{cases} +1 & ext{if} & w \cdot f(x_{\scriptscriptstyle ec{i}}) \geq 0 \ -1 & ext{if} & w \cdot f(x_{\scriptscriptstyle ec{i}}) < 0 \end{cases}$$

- If correct (i.e., y=y_i*), no change!
- If wrong: update

$$w = w + y_i^* f(x_i)$$

Definition: Linearly separable data

Called the margin

Equivalently, for $y_t = +1$,

$$w \cdot x_t \ge \gamma$$

and for
$$y_t = -1$$
,

$$w \cdot x_t \leq -\gamma$$

Does the perceptron algorithm work?

 Assume the data set D is linearly separable with margin γ, i.e.,

$$\exists \mathbf{w}^*, |\mathbf{w}^*|_2 = 1, \ \forall t, y_t \mathbf{x}_t^\top \mathbf{w}^* \ge \gamma$$

- Assume $|\mathbf{x}_t|_2 \leq R, \forall t$
- Theorem: The maximum number of mistakes made by the perceptron algorithm is bounded by R^2/γ^2

Properties of the perceptron algorithm

- Separability: some parameters get the training set perfectly correct
- Convergence: if the training is linearly separable, perceptron will eventually converge

Separable

Non-Separable

Problems with the perceptron algorithm

- Noise: if the data isn't linearly separable, no guarantees of convergence or accuracy
- Frequently the training data is linearly separable! Why?
 - When the number of features is much larger than the number of data points, there is lots of flexibility
 - As a result, Perceptron can significantly overfit the data [We will see next week]
- Averaged perceptron is an algorithmic modification that helps with both issues
 - Averages the weight vectors across all iterations

Linear separators

Which of these linear separators is optimal?

Support Vector Machines

 SVMs (Vapnik, 1990's) choose the linear separator with the largest margin

Robust to outliers!

V. Vapnik

- Good according to intuition, theory, practice
- SVM became famous when, using images as input, it gave accuracy comparable to neural-network with hand-designed features in a handwriting recognition task

Normal to a plane

Scale invariance

Any other ways of writing the same dividing line?

- w.x + b = 0
- 2w.x + 2b = 0
- 1000**w.x** + 1000b = 0
-

Scale invariance

During learning, we set the scale by asking that, for all *t*,

$$\label{eq:continuous_to_t} \text{for } \mathbf{y_t} = \textbf{+1}, \;\; w \cdot x_t + b \geq 1$$
 and for $\mathbf{y_t} = \textbf{-1}, \;\; w \cdot x_t + b \leq -1$

That is, we want to satisfy all of the **linear** constraints

$$y_t (w \cdot x_t + b) \ge 1 \quad \forall t$$

What is γ as a function of \mathbf{w} ?

Final result: can maximize margin by minimizing ||w||₂!!!

Support Vector Machines (SVMs)

$$\begin{array}{ll}
\text{minimize}_{\mathbf{w},b} & \mathbf{w}.\mathbf{w} \\
\left(\mathbf{w}.\mathbf{x}_{j} + b\right)y_{j} \geq 1, \ \forall j
\end{array}$$

- Example of a **convex optimization** problem
 - A quadratic program
 - Polynomial-time algorithms to solve!
- Hyperplane defined by support vectors
 - Could use them as a lower-dimension basis to write down line, although we haven't seen how yet
 - More on these later

- everything else
- moving them will not change w

Support Vectors:

 data points on the canonical lines

What if the data is not separable?

$$egin{aligned} & ext{minimize}_{\mathbf{w},b} & ext{w.w} + ext{C \#(mistakes)} \ & \left(\mathbf{w}.\mathbf{x}_j + b
ight) y_j \geq 1 & , orall j \end{aligned}$$

- First Idea: Jointly minimize w.w and number of training mistakes
 - How to tradeoff two criteria?
 - Pick C using held-out data
- Tradeoff #(mistakes) and w.w
 - -0/1 loss
 - Not QP anymore
 - Also doesn't distinguish near misses and really bad mistakes
 - NP hard to find optimal solution!!!

Allowing for slack: "Soft margin" SVM

For each data point:

- •If margin ≥ 1, don't care
- If margin < 1, pay linear penalty

Allowing for slack: "Soft margin" SVM

Equivalent Hinge Loss Formulation

$$\begin{aligned} & \text{minimize}_{\mathbf{w},b} \quad \mathbf{w}.\mathbf{w} + C \Sigma_{j} \xi_{j} \\ & \left(\mathbf{w}.\mathbf{x}_{j} + b\right) y_{j} \geq 1 - \xi_{j} , \forall j \xi_{j} \geq 0 \end{aligned}$$

Substituting $\xi_j = \max(0, 1 - (w \cdot x_j + b) y_j)$ into the objective, we get:

$$\min ||w||^2 + C \sum_{j} \max (0, 1 - (w \cdot x_j + b) y_j)$$

The hinge loss is defined as $L(y,\hat{y}) = \max\left(0,1-\hat{y}y\right)$

$$\min_{w,b} ||w||_2^2 + C \sum_j L(y_j, \mathbf{w} \cdot x_j + b)$$

This is called **regularization**; used to prevent overfitting!

This part is empirical risk minimization, using the hinge loss

Hinge Loss vs 0-1 Loss

Hinge loss upper bounds 0/1 loss!

Multiclass SVM

One versus all classification

Multiclass SVM

Simultaneously learn 3 sets of weights:

- •How do we guarantee the correct labels?
- •Need new constraints!

The "score" of the correct class must be better than the "score" of wrong classes:

$$w^{(y_j)} \cdot x_j + b^{(y_j)} > w^{(y)} \cdot x_j + b^{(y)} \quad \forall j, \ y \neq y_j$$

Multiclass SVM

As for the SVM, we introduce slack variables and maximize margin:

To predict, we use:

$$\hat{y} \leftarrow \arg\max_{k} \ w_k \cdot x + b_k$$

Now can we learn it? →

What you need to know

- Perceptron mistake bound
- Maximizing margin
- Derivation of SVM formulation
- Relationship between SVMs and empirical risk minimization
 - 0/1 loss versus hinge loss
- Tackling multiple class
 - One against All
 - Multiclass SVMs