(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-104834

(43)公開日 平成9年(1997)4月22日

(51) Int.Cl.6	識別記号 庁	内整理番号	FΙ				技術表示箇所
C 0 9 D 5/0	PPU		C09D	5/00		PPU	
C 0 9 C 3/10	PBW		C 0 9 C	3/10		PBW	
C O 9 D 11/02	PTF		C 0 9 D	11/02		PTF	
17/00	PUJ			17/00		PUJ	
167/02	PLD		1	67/02		PLD	
		審査請求	未請求 請求	項の数15	OL	(全 19 頁)	最終頁に続く
(21)出願番号	特願平8-200313		(71)出願人	0000028	86		
				大日本~	インキ	化学工業株式:	会社
(22)出願日	平成8年(1996)7月30	目		東京都村	友橋区域	坂下3丁目35 粒	番58号
			(72)発明者	桶詰 🖁	美美		
(31)優先権主張番号	号 特願平7-203238			千葉県ī	市原市列	東五所25-25	
(32)優先日	平7(1995)8月9日		(72)発明者	浅田 目	宝彦		
(33)優先権主張国	日本 (JP)			千葉県一	F葉市‡	吉葉区都賀の	台2-11-1
			(72)発明者	日代 南	有征		
				千葉県本	曲ヶ浦で	市長浦駅前7-	-4-6
			(72)発明者	鷹尾 县	幸		
				茨城県首	直ヶ崎で	市松ヶ丘3ー	8 —19
			(74)代理人	、弁理士	髙橋	勝利	
(33)優先權王張国	日本(】 P)		(72)発明者	田代 南千葉県初「虚尾 長茨城県省	育征 曲ヶ浦で 長幸 色ヶ崎で	市長浦駅前7- 市松ヶ丘3-6	-4-6

(54) 【発明の名称】 水性顔料分散体の製造方法、および水性着色剤組成物

(57)【要約】

【効果】 被塗物の光沢、発色性および着色力に優れ、しかも、耐水性などの耐久性や堅牢性にも優れる微細に分散された水性顔料分散体の製造方法、および、該水性顔料分散体を含有する水性着色剤組成物を提供する。

【解決手段】 顔料と、カルボキシル基および架橋性官能基または自己架橋性官能基を有する樹脂とを用い、該樹脂のカルボキシル基を塩基性化合物で中和することにより親水性化してなる顔料の水性分散体を、酸性化合物を用いてpHを中性または酸性とすることによって樹脂を析出させて顔料に固着する工程(1)、次いで、樹脂のカルボキシル基を塩基性化合物を用いて中和することにより、樹脂(B)が固着した顔料を水性媒体に再分散させる工程(2)からなり、しかも、顔料の水性分散体を得た後の任意の時期に、樹脂を架橋させる水性顔料分散体の製造方法、および、該水性顔料分散体を含有する水性

【特許請求の範囲】

【請求項1】 顔料(A)と、カルボキシル基および架橋性官能基を有する樹脂(B)とを用い、該樹脂(B)のカルボキシル基を塩基性化合物(F1)で中和することにより親水性化してなる顔料の水性分散体(1a)を、酸性化合物(E)を用いてpHを中性または酸性とすることによって樹脂(B)を析出させて顔料に固着させる工程(1)、次いで、樹脂(B)のカルボキシル基を塩基性化合物(F2)を用いて中和することにより、樹脂(B)が固着した顔料を水性媒体に再分散させる工10程(2)からなり、かつ、任意の時期に架橋剤(C)を配合する水性顔料分散体の製造方法であって、しかも、顔料の水性分散体(1a)を得た後の任意の時期に、樹脂(B)の架橋性官能基と架橋剤(C)とを反応させて架橋させることを特徴とする水性顔料分散体の製造方法。

【請求項2】 顔料の水性分散体(1a)として、顔料(A)と樹脂(B)とを有機溶剤媒体中で混練し、混練する前または混練した後に架橋剤(C)を配合し、さらに、混練する前および/または混練した後に樹脂(B)のカルボキシル基の少なくとも一部を塩基性化合物(F1)を用いて中和することにより、水性媒体に分散して得られた顔料の水性分散体を用いる請求項1記載の製造方法。

【請求項3】 顔料の水性分散体(1a)として、顔料(A)と、塩基性化合物(F1)を用いてカルボキシル基を中和した樹脂(B)と、架橋剤(C)とを水性媒体中で混合および/または混練して得られた顔料の水性分散体を用いる請求項1記載の製造方法。

【請求項4】 樹脂(B)が、ビニル系共重合体、ポリエステル樹脂またはポリウレタン樹脂である請求項1、2または3記載の製造方法。

【請求項5】 樹脂(B)のカルボキシル基に基づく酸価が、30~120KOHmg/樹脂固形分1gの範囲にある請求項1、2、3または4記載の製造方法。

【請求項6】 樹脂(B)の架橋性官能基がカルボキシル基であって、架橋剤(C)がアミノ樹脂および分子内にエポキシ基を2個以上有する化合物から成る群から選ばれる架橋剤、または樹脂(B)の架橋性官能基が水酸基であって、架橋剤(C)がアミノ樹脂である請求項1、2、3、4または5記載の製造方法。

【請求項7】 酸性化合物(E)を添加する前、または、樹脂(B)が固着した顔料(A)を水性媒体に再分散させた後で、樹脂(B)の架橋性官能基と架橋剤

(C) とを反応させて架橋させる請求項 $1\sim6$ のいずれか1 つに記載の製造方法。

【請求項8】 顔料 (A) と、カルボキシル基および自 己架橋性官能基を有する樹脂 (D) とを用い、該樹脂 (D) のカルボキシル基を塩基性化合物 (F1) で中和 することにより親水性化してなる顔料の水性分散体 (1 50 い。

b)を、酸性化合物(E)を用いてpHを中性または酸性とすることによって樹脂(D)を析出させて顔料に固着させる工程(1)、次いで樹脂(D)のカルボキシル基を塩基性化合物(F2)を用いて中和することにより、樹脂(D)が固着した顔料(A)を水性媒体に再分散させる工程(2)からなる水性顔料分散体の製造方法であって、しかも、顔料の水性分散体(1b)を得た後の任意の時期に、樹脂(D)を自己架橋させることを特徴とする水性顔料分散体の製造方法。

【請求項9】 顔料の水性分散体(1b)として、顔料(A)と樹脂(D)とを有機溶剤媒体中で混練し、混練する前および/または混練した後に樹脂(D)のカルボキシル基の少なくとも一部を塩基性化合物(F1)を用いて中和することにより、水性媒体に分散して得られた顔料の水性分散体(1b)を用いる請求項8記載の製造方法。

【請求項10】 顔料(A)と、塩基性化合物(F1)を用いてカルボキシル基を中和した樹脂(D)とを水性媒体中で混合および/または混練して得られた顔料の水性分散体(1b)を用いる請求項8記載の製造方法。

【請求項11】 樹脂(D)が、ビニル系共重合体、ポリエステル樹脂またはポリウレタン樹脂である請求項8、9または10記載の製造方法。

【請求項12】 樹脂(D)のカルボキシル基に基づく酸価が、 $30\sim120$ KOHmg/樹脂固形分1 gの範囲にある請求項8、9、10 または11記載の製造方法。

【請求項13】 樹脂(D)の自己架橋性官能基が、

(1) 1分子内にカルボキシル基およびエポキシ基を有するもの、(2) 1分子内に水酸基およびNーアルコキシメチルアミド基を有するもの、または(3) ラジカル重合性不飽和基である請求項8、9、10、11または12記載の製造方法。

【請求項14】 酸性化合物(E)を添加する前、または、樹脂(D)が固着した顔料(A)を水性媒体に再分散させた後で、樹脂(D)を自己架橋させる請求項8~13のいずれか1つに記載の製造方法。

【請求項15】 請求項1~14のいずれか1つに記載の製造方法によって製造された水性顔料分散体を含有してなることを特徴とする水性着色剤組成物。

【発明の詳細な説明】

[0001]

40

【発明の属する技術分野】本発明は、水性塗料、水性インキ、捺染剤、カラーフィルター、ジェットインキ、カラートナーの如き水性着色剤組成物に有用な水性顔料分散体の製造方法に関する。

[0002]

【従来の技術】公害防止や労働衛生の面から、塗料、インキの如き着色剤を使用する業界では水性化指向が強

【0003】水性着色剤に使用される顔料を水性媒体中 に分散させるには、界面活性剤や水溶性樹脂を使用して 粉末顔料を分散する方法が一般的であり、現在でも広く 行われている。しかしながら、界面活性剤を用いて分散 された顔料を含有する塗料は、得られる塗膜の耐水性が 極めて悪く、限られた用途にしか使用できない、という 問題点がある。また、水溶性樹脂を含有する水性媒体中 に顔料を分散させるには、概して、有機溶剤媒体中に顔 料を分散させる場合よりも困難であり、顔料を髙度なレ ベルで微細に分散し、かつ、その状態を安定に保つこと 10 は難しい。

【0004】一方、水溶性樹脂を用いて顔料を単に分散 させた場合、顔料と樹脂との結合が吸着という弱い結合 のみによるものであり、たとえ、製造直後において、微 細に分散されていたものであっても、顔料が経時的に凝 集するので、貯蔵安定性は良くない、という問題点があ る。

【0005】易分散性の顔料を得る方法として、塩基で 中和されたカルボキシル基を有する樹脂中に分散して成 る顔料の水性分散体に、酸を添加して当該樹脂を疎水性 20 化することによって樹脂を顔料に固着する、いわゆる酸 析法が知られている。

【0006】例えば、ロジンを使用して酸析法により顔 料に固着して、分散性の良好な粉末顔料を得る手法が知 られている。しかしながら、ロジンは、その分子量が小 さいために被膜形成性樹脂となり得ず、また、耐候性も 極めて劣るため、ロジンの使用量を多くすることができ ず、その使用量を10重量%程度以下に制限せざるを得 ないのが現状である。そのため、ロジンは、顔料の処理 剤として粉末顔料に使用されているのが現状で、本発明 30 のように、水性顔料分散体に使用した場合、ロジン単独 では安定な水性顔料分散体が得られず、また、得られた **塗膜の性能も低いものとなってしまう、という問題点が** ある。

【0007】この問題点を解決するために、特開昭50 -122528号公報、特公昭61-11979号公報 には、比較的高分子量のアクリル系樹脂という限定され た樹脂を使用して酸析を行い、粉末または固形顔料を得 る方法が開示されている。

【0008】しかしながら、これらの方法では、いずれ 40 も、酸析後に粉末化あるは固形化されるため、その過程 でもって顔料が少なからず凝集してしまい、水性塗料や 水性インキに使用する際には、再び混練という手間の掛 かる工程が必要とならざるをえない、という問題点があ る。しかも、これらの方法で得られる粉末または固形顔 料は、未処理の粉末顔料よりも易分散性であるとはい え、一度粉末化あるいは固形化した顔料でもって、水性 着色剤において高度な発色性や着色力を発揮する程度に 微分散するには、かなりの労力を要する、という問題点 もある。

【0009】一方、米国特許4,166,811号明細 書には、親水性の高い水溶性樹脂を使用し、酸析後に塩 基性化合物でもって再中和を行ない、水性媒体に分散し

易い顔料を得る方法が開示されている。

【0010】しかしながら、この方法の基本構成は、塩 基性化合物でもって再中和した後に、粉末化または固形 化する方法であって、水性媒体中に再分散する際には簡 単な撹拌のみで可能であるとされているが、やはり、一 度粉末化あるいは固形化されたものは顔料の再凝集の問 題を無視することができず、高度なレベルで被塗物の発 色性や着色力を発揮するには、簡単な攪拌のみでは不充 分である、とい問題点がある。また、粉末化または固形 化後に水性媒体に再分散し易くするために、この方法に おいて使用できる樹脂は、分子量が低く、かつ、酸価が かなり高いものとなっており、着色剤として塗装された 塗膜の強靭性や耐水性が極めて低いものとなってしま う、という問題点もある。

[0011]

【発明が解決しようとする課題】水性被覆剤で使用する **塗膜形成性樹脂は、被膜の強靭性などの物理的性質や** 耐水性などの耐久性が重要であるため、ある程度以上の 分子量が必要であり、また、得られた塗膜の耐水性を低 下させないために、カルボキシル基などの親水性基や顔 料分散に有効な各種官能基の割合も少なく設計されるこ とが多い。従って、このようなレベルに設計された水性 の塗膜形成性樹脂を使用して、高度なレベルで顔料を微 分散することは極めて困難であった。

【0012】即ち、従来技術に従う限り、顔料の微分散 と、被塗物の耐水性などの耐久性とを高度なレベルで両 立できる水性顔料分散体を得ることはできなかった。

【0013】本発明が解決しようとする課題は、上述し た従来技術では達し得ない、微細に分散され、貯蔵安定 性がよく、しかも、耐水性、耐久性、堅牢性にも優れた 塗膜を形成し得る水性顔料分散体の製造方法を提供する ことにある。

[0014]

【発明を解決するための手段】本発明者らは、上記課題 を解決すべく鋭意検討を重ねた結果、塩基性化合物で中 和されたカルボキシル基を有し、かつ、架橋性を有する 樹脂でもって微分散された顔料の水性分散体を、酸性化 合物でもってpHを中性または酸性にして樹脂を疎水性 化することによって顔料に強く固着せしめ(以下、この 工程を「酸析」と称することがある。)、次いで、再度 塩基性化合物でもってカルボキシル基を中和して水に再 分散する水性顔料分散体の製造方法であって、かつ顔料 の水性分散体を得た後の任意の段階、例えば、酸析前、 酸析と同時、酸析後で再分散前、再分散と同時、または 再分散後、好ましくは、酸析前または再分散後に、樹脂 を架橋することによって、高度なレベルに光沢、発色

50 性、着色力を発揮するに充分な程度に微分散され、しか

も、貯蔵安定性に優れ、ソルベントショックや色別れの 問題もなく、さらに、被塗物の耐水性、耐久性や堅牢性 にも優れる水性顔料分散体を製造できることを見出し、 本発明を完成するに至った。

【0015】即ち、本発明は、

1. 顔料(A)と、カルボキシル基および架橋性官能基 を有する樹脂(B)とを用い、該樹脂(B)のカルボキ シル基を塩基性化合物 (F1) で中和することにより親 水性化してなる顔料の水性分散体 (1 a) を、酸性化合 物(E)を用いてpHを中性または酸性とすることによ 10 って樹脂(B)を析出させて顔料に固着させる工程

(1)、次いで、樹脂(B)のカルボキシル基を塩基性 化合物(F2)を用いて中和することにより、樹脂

(B) が固着した顔料を水性媒体に再分散させる工程

(2) からなり、かつ、任意の時期に架橋剤 (C) を配 合する水性顔料分散体の製造方法であって、しかも、顔 料の水性分散体(1a)を得た後の任意の時期に、樹脂 (B) の架橋性官能基と架橋剤(C) とを反応させて架

橋させることを特徴とする水性顔料分散体の製造方法、

【0016】2. 顔料の水性分散体(1a)として、 顔料(A)と樹脂(B)とを有機溶剤媒体中で混練し、 混練する前または混練した後に架橋剤(C)を配合し、 さらに、混練する前および/または混練した後に樹脂

(B) のカルボキシル基の少なくとも一部を塩基性化合 物(F1)を用いて中和することにより、水性媒体に分 散して得られた顔料の水性分散体を用いる上記1記載の 製造方法、

顔料の水性分散体(1a)として、顔料(A) と、塩基性化合物(F1)を用いてカルボキシル基を中 和した樹脂(B)と、架橋剤(C)とを水性媒体中で混 30 合および/または混練し得られた顔料の水性分散体を用 いる上記1記載の製造方法、

[0017]4.樹脂(B)が、ビニル系共重合体、 ポリエステル樹脂またはポリウレタン樹脂である上記 1、2または3記載の製造方法、

樹脂(B)のカルボキシル基に基づく酸価が、3 0~120KOHmg/樹脂固形分1gの範囲にある上 記1、2、3または4記載の製造方法、

6. 樹脂(B)の架橋性官能基がカルボキシル基であ って、架橋剤(C)がアミノ樹脂および分子内にエポキ 40 シ基を2個以上有する化合物から成る群から選ばれる架 橋剤、または樹脂(B)の架橋性官能基が水酸基であっ て、架橋剤(C)がアミノ樹脂である上記1、2、3、 4または5記載の製造方法、

酸性化合物(E)を添加する前、または、樹脂 (B) が固着した顔料 (A) を水性媒体に再分散させた 後で、樹脂(B)の架橋性官能基と架橋剤(C)とを反 応させて架橋させる上記1~6のいずれか1つに記載の 製造方法、

び自己架橋性官能基を有する樹脂(D)とを用い、該樹 脂(D)のカルボキシル基を塩基性化合物(F1)で中 和することにより親水性化してなる顔料の水性分散体

(1b)を、酸性化合物 (E)を用いて p Hを中性また は酸性とすることによって樹脂(D)を析出させて顔料 に固着させる工程(1)、次いで樹脂(D)のカルボキ シル基を塩基性化合物(F2)を用いて中和することに より、樹脂(D)が固着した顔料(A)を水性媒体に再 分散させる工程(2)からなる水性顔料分散体の製造方 法であって、しかも、顔料の水性分散体 (1b) を得た 後の任意の時期に、樹脂(D)を自己架橋させることを 特徴とする水性顔料分散体の製造方法、

[0019]9.顔料の水性分散体(1b)として. 顔料(A)と樹脂(D)とを有機溶剤媒体中で混練し、 混練する前および/または混練した後に樹脂 (D) のカ ルボキシル基の少なくとも一部を塩基性化合物 (F1) を用いて中和することにより、水性媒体に分散して得ら れた顔料の水性分散体 (1b) を用いる上記8記載の製 造方法、

20 10. 顔料の水性分散体(1b)として、顔料(A) と、塩基性化合物(F1)を用いてカルボキシル基を中 和した樹脂(D)とを水性媒体中で混合および/または 混練して得られた顔料の水性分散体 (1 b) を用いる上 記8記載の製造方法、

【0020】11. 樹脂(D)が、ビニル系共重合 体、ポリエステル樹脂またはポリウレタン樹脂である上 記8、9または10記載の製造方法、

樹脂(D)のカルボキシル基に基づく酸価が、 30~120KOHmg/樹脂固形分1gの範囲にある 上記8、9、10または11記載の製造方法、

樹脂(D)の自己架橋性官能基が、(1)1分 子内にカルボキシル基およびエポキシ基を有するもの、

(2) 1分子内に水酸基およびN-アルコキシメチルア ミド基を有するもの、または(3)ラジカル重合性不飽 和基である上記8、9、10、11または12記載の製 造方法、

酸性化合物(E)を添加する前、または、樹脂 14. (D) が固着した顔料 (A) を水性媒体に再分散させた 後で、樹脂(D)を自己架橋させる上記8~13のいず れか1つに記載の製造方法、および

【0021】15. 上記1~14のいずれか1つに記 載の製造方法によって製造された水性顔料分散体を含有 してなることを特徴とする水性着色剤組成物、を提供す るものである。

【0022】なお、本発明における酸価は、樹脂固形分 1gを中和するのに必要な水酸化カリウムのmg量で表 わす。

【0023】本発明の製造方法は、上記1~7に記載の 製造方法(I)と上記8~14に記載の製造方法(II) 【0018】8. 顔料(A)と、カルボキシル基およ 50 とに大別することができ、製造方法(I)は、基本的に

は次の製造工程からなる。

【0024】・工程(I-1):顔料(A)と、カルボキシル基および架橋性官能基を有する樹脂(B)とを用い、該樹脂(B)のカルボキシル基を塩基性化合物(F1)で中和することにより親水性化してなる顔料の水性分散体(Ia)を、酸性化合物(E)を用いてpHを中性または酸性とすることによって樹脂(B)を析出させて顔料(A)に固着させる。

・工程 (I-2):上記工程 (I-1)により樹脂

(B)を顔料(A)に固着させた後、樹脂(B)のカル 10 ボキシル基を塩基性化合物(F2)を用いて中和して樹脂(B)が固着した顔料(A)を水性媒体に再分散させる。

・工程(I-3):架橋剤(C)を配合し、次いで、水 顔料の水性分散体(1a)を得た後の任意の段階で樹脂 (B)の架橋性官能基と架橋剤(C)とを反応させて架 橋させる。

【0025】また、本発明の製造方法(II)は、基本的には次の製造工程からなる。

・酸析工程(II-1): 顔料(A)と、カルボキシル基 20 および自己架橋性官能基を有する樹脂(D)とを用い、該樹脂(D)のカルボキシル基を塩基性化合物(F1)で中和することにより親水性化してなる顔料の水性分散体(1b)を、酸性化合物(E)を用いてpHを中性または酸性とすることによって樹脂(D)を析出させて顔料(A)に固着させる。

・工程(II-2):上記工程(II-1)により樹脂

(D) を顔料(A) に固着させた後、樹脂(D) のカルボキシル基を塩基性化合物(F2)を用いて中和して樹脂(D) が固着した顔料(A) を水性媒体に再分散させ 30 る。

・工程 (II-3): 顔料の水性分散体 (1 b) を得た後の任意の段階で樹脂 (D) を自己架橋させる。

【0026】上記製造方法(I)および (II) において、 樹脂 (B) または (D) を架橋させる時期としては、顔 料の水性分散体 (1a) または (1b) を得た後であれ ばいつでもよく、例えば、

①工程(I-1)または(II-1)において、顔料の水性分散体(Ia)または(Ib)を得た後で、酸性化合物(E)を添加する前、

②工程(I-1)または(II-1)において、酸性化合物(E) を用いて樹脂(B) または(D) を析出させて顔料(A) に固着させる時、

③工程(I-1)または(II-1)の終了後で、工程 (I-2)または(II-2)において塩基性化合物 (F2)を添加する前、

④工程(I-2)または(II-2)において、塩基性化合物(F2)を用いて樹脂(B)または(D)が固着した顔料(A)を水性媒体に再分散させる時、

⑤工程(I-2) もしくは(II-2) により樹脂(B)

または(D)が固着した顔料(A)を水性媒体に再分散 させた後

等の時期が挙げられる。これらの中でも、良好な水性顔料分散体が得られることから、上記①または⑤の時期に架橋させることが好ましく、⑤の時期に架橋させることが最も好ましい。また、上記②または④の段階で架橋させると工程が合理化できる利点がある。

【0027】本発明の製造方法において使用する樹脂

(B) または(D) は、カルボキシル基と、架橋性官能基または自己架橋性官能基とを有しているものならば、どのような樹脂であっても差し支えなく、例えば、ビニル系共重合体、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、ロジン変性樹脂などが挙げられる。これらの中でも、カルボキシル基の導入の容易さ、あるいは、架橋性官能基または自己架橋性官能基の導入の容易さ、被膜の強靭性などの面から、ビニル系共重合体、ポリエステル樹脂およびポリウレタン樹脂が好ましい。

【0028】本発明の製造方法において使用するビニル系共重合体としては、例えば、(メタ)アクリル酸エステル樹脂、(メタ)アクリル酸エステルースチレン共重合体樹脂、スチレンー(無水)マレイン酸共重合体樹脂、含フッ素ビニル系共重合体樹脂などが挙げられる。また、本発明の製造方法において使用するポリエステル樹脂としては、例えば、飽和ポリエステル樹脂、不飽和ポリエステル樹脂、アルキド樹脂などが挙げられる。これらの樹脂は、適度な水溶性または水分散性を付与するための親水性基としてカルボキシ基を含有すること、ならびに、架橋させるために、架橋性官能基あるいは自己架橋性官能基を有することが必須である。

【0029】架橋性官能基は、架橋剤と反応して架橋結合を形成しうる官能基であり、自己架橋性官能基は、自己架橋性を有する官能基および交差結合しうる官能基のことである。

【0030】架橋性官能基としては、例えば、カルボキシル基、水酸基、3級アミノ基、ブロック化イソシアネート基、エポキシ基、1、3-ジオキソラン-2-オン-4-イル基などが挙げられる。

【0031】次に、架橋性官能基と架橋剤(C)との組み合わせの代表的なものの例を以下に掲げる。

- (a) 架橋性官能基がカルボキシル基の場合、架橋剤
- (C) としては、アミノ樹脂、1分子中にエポキシ基を 2個以上有する化合物、1分子中に1,3-ジオキソラ ン-2-オン-4-イル基(シクロカーボネート基とも 称する。)を2個以上有する化合物等が挙げられる。
- (b) 架橋性官能基が水酸基の場合、架橋剤 (C) としては、アミノ樹脂、ポリイソシアネート化合物およびブロック化ポリイソシアネート化合物等が挙げられる。
- (c) 架橋性官能基が第3級アミノ基の場合、架橋剤
- (C) としては、1分子中にエポキシ基を2個以上有す 50 る化合物、1分子中に1,3-ジオキソラン-2-オン

- 4 - イル基を 2 個以上有する化合物等が挙げられる。 (d) 架橋性官能基がブロック化イソシアネート基の場

合、架橋剤(C)としては、1分子中に水酸基を2個以 上有する化合物等が挙げられる。

(e) 架橋性官能基がエポキシ基または1,3-ジオキ ソランー2ーオンー4ーイル基の場合、架橋剤(C)と しては、1分子中にカルボキシル基を2個以上有する化 合物、ポリアミン化合物、ポリメルカプト化合物等が挙 げられる。

【0032】自己架橋性を有する官能基としては、例え 10 ば、ラジカル重合性不飽和基、加水分解性アルコキシシ ラン基などが挙げられる。自己架橋性を補強する目的で もって、ラジカル重合性不飽和基を2個以上有する化合 物および加水分解性アルコキシシラン基を有する化合物 を各々一部併用することもできる。

【0033】交差結合しうる官能基は、1分子中に反応 しうる2種以上の官能基を併有するもので、かかる官能 基の組み合わせとしては、例えば、(a)カルボキシル 基とエポキシ基、(b) カルボキシル基と1, 3-ジオ キソラン-2-オン-4-イル基、(c)水酸基とブロ ック化イソシアネート基、(d)水酸基とN-アルコキ シメチルアミド基、(e)水酸基と加水分解性アルコキ シシラン基、などの組み合わせが挙げられる。

【0034】次に、架橋性および自己架橋性官能基を樹 脂に導入する具体的な方法について述べる。

【0035】親水性基と架橋性官能基がカルボキシル基 であるビニル系共重合体は、カルボキシル基を有する重 合性モノマーを含有する重合性モノマー組成物を共重合 する方法によって容易に製造することができる。カルボ キシル基を有する重合性モノマーとしては、例えば、ア 30 クリル酸、メタクリル酸、クロトン酸、フマル酸、イタ コン酸、(無水)マレイン酸、マレイン酸モノブチルな どのマレイン酸モノアルキル類、イタコン酸モノブチル の如きイタコン酸モノアルキル類などが挙げられる。

【0036】重合性モノマー組成物中に含まれるカルボ キシル基を有する重合性ビニルモノマー以外の重合性ビ ニルモノマーとしては、例えば、スチレン、ビニルトル エン、αーメチルスチレンの如き芳香族ビニルモノマー 類;メチル(メタ)アクリレート、エチル(メタ)アク リレート、n ーブチル (メタ) アクリレート、イソブチ 40 ル (メタ) アクリレート、tertーブチル (メタ) ア クリレート、イソアミル (メタ) アクリレート、2-エ チルヘキシル (メタ) アクリレート、イソデシル (メ タ) アクリレート、ラウリル (メタ) アクリレート、ス テアリル (メタ) アクリレート、シクロヘキシル (メ タ) アクリレート、ブトキシメチル (メタ) アクリレー ト、エトキシジエチレングリコール(メタ)アクリレー ト、ベンジル(メタ)アクリレート、セチル(メタ)ア クリレート、テトラヒドロフルフリル (メタ) アクリレ ート、イソボルニル(メタ)アクリレートの如き(メ

タ)アクリル酸エステル類;酢酸ビニル、安息香酸ビニ ル、バーサチック酸ビニル、プロピオン酸ビニルの如き ビニルエステル類; (メタ) アクリロニトリルの如き重 合性ニトリル類;フッ化ビニル、フッ化ビニリデン、テ トラフルオロエチレン、ヘキサフルオロプロピレンまた はクロロトリフルオロエチレンの如きフッ素原子を有す るビニルモノマー類;ジエチルアミノエチル (メタ) ア クリレート、ジメチルアミノエチル (メタ) アクリレー ト、Nービニルイミダゾール、Nービニルカルバゾール の如き第3級アミノ基含有モノマー類;2-(2'-ヒ ドロキシー5-メタクリロイルオキシエチルフェニル) -2H-ベンゾトリアゾール、2-ヒドロシ-4-(2 ーメタクリロイルオキシエトキシ) ベンゾフェノン、 1, 2, 2, 6, 6ーペンタメチルー4ーピペリジルメ タクリレートの如き紫外線吸収性または酸化防止性を有 するモノマー類;N-ビニルピロリドン、グリシジル (メタ) アクリレート、1,3-ジオキソラン-2-オ ンー4ーイルメチル (メタ) アクリレート、1、3ージ オキソランー2ーオンー4ーイルメチルビニルエーテ ル、ジアセトンアクリルアミド、N-メチロールアクリ ルアミド、N-ブトキシメチル (メタ) アクリルアミド の如き N-アルコキシメチル (メタ) アクリルアミド類 などの官能基含有モノマー類;2-ホスホオキシエチル (メタ) アクリレート、4-ホスホオキシブチル (メ タ) アクリレートの如き燐酸基含有モノマー類;分子末 端に重合性不飽和基を1個有するマクロモノマー類など が挙げられる。

【0037】重合性ビニルモノマー組成物の重合方法 は、懸濁重合、乳化重合、塊状重合、溶液重合など公知 の各種重合方法が利用できるが、溶液重合が簡便なので 好ましい。重合開始剤としては、公知の過酸化物やアゾ 系化合物が使用できる。

【0038】また、カルボキシル基を有するビニル系共 重合体は、後述する水酸基を有するビニル系共重合体 に、無水マレイン酸、無水フタル酸、テトラヒドロ無水 フタル酸、ヘキサヒドロ無水フタル酸、無水トリメリッ ト酸などの無水酸を付加反応させる方法によっても製造 することができる。

【0039】水酸基およびカルボキシル基を有するビニ ル系共重合体は、上述したカルボキシル基を有するビニ ル共重合体を製造する際に、水酸基を有する重合性モノ マーを併用することにより容易に製造することができ る。水酸基を有する重合性モノマーとしては、例えば、 2-ヒドロキシエチル (メタ) アクリレート、2-ヒド ロキシプロピル (メタ) アクリレート、4ーヒドロキシ ブチル (メタ) アクリレート、「プラクセル FM-2」や「プラクセル FA-2」(ダイセル化学工業株 式会社製)に代表されるラクトン化合物を付加した (メ タ)アクリルモノマー類、ポリエチレングリコールモノ (メタ)アクリレートモノマー類、ポリプロピレングリ

コールモノ(メタ)アクリレートモノマー類、ヒドロキ シエチルビニルエーテル、ヒドロキシブチルビニルエー テルなどが挙げられる。

【0040】第3級アミノ基およびカルボキシル基を有 するビニル系共重合体は、上述したカルボキシル基を有 するビニル共重合体を製造する際に、第3級アミノ基を 有する重合性モノマーを併用することにより容易に製造 することができる。第3級アミノ基を有する重合性モノ マーとしては、例えば、ジエチルアミノエチル (メタ) アクリレート、ジメチルアミノエチル(メタ)アクリレ 10 ートなどが挙げられる。

【0041】ブロック化イソシアネート基およびカルボ キシル基を有するビニル共重合体は、上述したカルボキ シル基を有するビニル系共重合体を製造する際に、ブロ ックイソシアネート基を有する重合性モノマーを併用す ることにより容易に製造することができる。

【0042】ブロックイソシアネート基を有する重合性 モノマーは、2-メタクリロイルオキシエチルイソシア ネートなどのイソシアネート基を有する重合性モノマー に公知のブロック剤を付加反応させることによって容易 に得ることができる。あるいは、上述した水酸基および カルボキシル基を有するビニル系共重合体に、イソシア ネート基とブロックイソシアネート基とを有する化合物 を付加反応することによっても容易に製造することがで きる。

【0043】イソシアネート基とブロックイソシアネー ト基とを有する化合物は、ジイソシアネート化合物と公 知のブロック剤とをモル比で約1:1の割合で付加反応 させることによって容易に得ることができる。

【0044】エポキシ基およびカルボキシル基を有する 30 ビニル系共重合体は、上述したカルボキシル基を有する ビニル共重合体を製造する際に、エポキシ基を有する重 合性モノマーを併用することにより容易に製造すること ができる。エポキシ基を有する重合性モノマーとして は、例えば、グリシジル(メタ)アクリレート、脂環式 エポキシ基を有する (メタ) アクリレートモノマーなど が挙げられる。

【0045】1、3ージオキソラン-2-オン-4-イ ル基およびカルボキシル基を有するビニル系共重合体 は、上述したカルボキシル基を有するビニル共重合体を 40 製造する際に、1、3ージオキソランー2ーオンー4-イル基を有する重合性モノマーを併用することにより容 易に製造することができる。1、3-ジオキソラン-2 ーオンー4ーイル基を有する重合性モノマーとしては、 例えば、1、3-ジオキソラン-2-オン-4-イルメ チル(メタ)アクリレート、1、3ージオキソラン-2 - オン- 4 - イルメチルビニルエーテルなどが挙げられ

【0046】自己架橋性官能基である重合性不飽和基お

ば、(a)エポキシ基およびカルボキシル基を有するビ ニル系共重合体に、第3級アミノ基を有する重合性モノ マーを付加反応せしめる方法、(b)水酸基およびカル ボキシル基を有するビニル系共重合体に、2-メタクリ ロイルオキシエチルイソシアネートなどのイソシアネー ト基を有する重合性モノマー類、あるいは、無水マレイ ン酸などの重合性不飽和基を有する無水酸を付加反応せ しめる方法、(c) カルボキシル基を有するビニル系共 重合体に、エポキシ基を有する重合性モノマーを付加反 応せしめる方法、などによって容易に製造することがで きる。

【0047】交差反応性官能基及びカルボキシル基を有 するビニル系共重合体は、上述したカルボキシル基を有 するビニル共重合体を製造する際に、(a)エポキシ基 を有する重合性モノマー、(b) 1, 3-ジオキソラン - 2 - オン - 4 - イル基を有する重合性モノマー、

(c) 水酸基を有する重合性モノマーとブロック化イソ シアネート基を有する重合性モノマー、および(d)水 酸基を有する重合性モノマーとN-アルコキシメチルア ミド基を有する重合性モノマーなどの組み合わせの如き 交差反応性官能基を有する重合性モノマーを共重合する ことによって容易に製造することができる。

【0048】親水性基と架橋性官能基がカルボキシル基 であるポリエステル樹脂は、カルボキシル基含有化合物 と水酸基含有化合物とを、カルボキシル基が残存するよ うに、溶融法、溶剤法などの公知の方法によって脱水縮 合反応を行って製造される。

【0049】ポリエステル樹脂は、一塩基酸、二塩基 酸、多塩基酸の如きカルボキシル基を有する化合物と、 ジオール、ポリオールの如き水酸基を有する化合物とを 適宜選択して脱水縮合させて得られるものであり、さら に、油脂類または脂肪酸類を使用したものがアルキッド 樹脂となる。

【0050】本発明の製造方法で使用するポリエステル 樹脂が有するカルボキシル基は、主に、ポリエステル樹 脂を構成する二塩基酸または多塩基酸に由来する未反応 のカルボキシル基である。

【0051】二塩基酸または多塩基酸としては、例え ば、アジピン酸、(無水) コハク酸、セバシン酸、ダイ マー酸、(無水)マレイン酸、(無水)フタル酸、イソ フタル酸、テレフタル酸、テトラヒドロ(無水)フタル 酸、ヘキサヒドロ(無水)フタル酸、ヘキサヒドロテレ フタル酸、2,6ーナフタレンジカルボン酸、(無水) トリメリット酸、(無水)ピロメリット酸などが挙げら

【0052】二塩基酸または多塩基酸以外に使用可能な カルボキシル基を有する化合物としては、例えば、テレ フタル酸ジメチルの如き酸の低級アルキルエステル類; 安息香酸、pーターシャリブチル安息香酸、ロジン、水 よびカルボキシル基を有するビニル系共重合体は、例え 50 添ロジンの如き一塩基酸類;脂肪酸および油脂類;分子

末端に1または2個のカルボキシル基を有するマクロモノマー類;5-ソジウムスルフォイソフタル酸およびそのジメチルエステル類などが挙げられる。

【0053】水酸基を有する化合物としては、例えば、エチレングリコール、ネオペンチルグリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、2ーメチルー1,3ープロパンジオール、2,2ージエチルー1,3ープロパンジオール、1,4ーブタンジオール、1,4ーブタンジオール、1,4ージクロヘキサンジメタノ 10ール、1,5ーペンタンジオール、ビスフェノールAのアルキレンオキサイド付加物、水添ビスフェノールA、水添ビスフェノールAのアルキレンオキサイド付加物、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールの如きジオール類;グリセリン、トリメチロールプロパン、トリメチロールエタン、ジグリセリン、ペンタエリスリトール、トリスヒドロキシエチルイソシアヌレートの如きポリオール類;

「カージュラ E-10」 (シェル化学工業株式会社製の合成脂肪酸のグリシジルエステル) などのモノグリシ 20ジル化合物類、分子片末端に水酸基を2個有するマクロモノマー類などが挙げられる。

【0054】また、ポリエステル樹脂を合成する際に、ひまし油、12ーヒドロキシステアリン酸等の水酸基含有脂肪酸または油脂類;ジメチロールプロピオン酸、pーヒドロキシ安息香酸等のカルボキシル基と水酸基とを有する化合物;εーカプロラクトン等の環状エステル化合物なども使用できる。

【0055】さらに、二塩基酸の一部をジイソシアネート化合物に代えることもできる。

【0056】また、カルボキシル基を有するポリエステル樹脂は、水酸基を有するポリエステル樹脂に、無水マレイン酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水トリメリット酸などの無水酸を付加反応せしめる方法によっても製造することができる。

【0057】水酸基およびカルボキシル基を有するポリエステル樹脂は、ポリエステル樹脂の脱水縮合反応において、公知の方法に従って、水酸基及びカルボキシル基が残存するように反応させることによって容易に製造す 40 ることができる。

【0058】第3級アミノ基およびカルボキシル基を有するポリエステル樹脂は、トリエタノールアミン、NーメチルジエタノールアミンおよびN、Nージメチルエタノールアミン等の3級アミノ基と水酸基とを有する化合物を、ポリエステル樹脂を製造する際のアルコール成分として使用することによって容易に製造することができる。

【0059】自己架橋性官能基である重合性不飽和基およびカルボキシル基を有するポリエステル樹脂は、

(a) 水酸基及びカルボキシル基を有するポリエステル樹脂に、2ーメタクリロイルオキシエチルイソシアネートなどのイソシアネート基を有する重合性モノマー類、あるいは、無水マレイン酸などの重合性不飽和基を有する無水酸を付加反応せしめる方法、(b) カルボキシル基を有するポリエステル樹脂に、前述した如きエポキシ基を有する重合性モノマー類を付加反応せしめる方法、

(c)酸成分として無水マレイン酸などの重合性不飽和基を使用してポリエステルを合成する方法、によって容易に製造することができる。

【0060】本発明の製造方法で使用するカルボキシル基を有するポリウレタン樹脂は、カルボキシル基を導入する成分としてのジメチロールプロピオン酸の如きカルボキシル基および水酸基を有する化合物を含有するポリオール成分と、ポリイソシアネート成分とを反応させることによって、容易に製造することができる。

【0061】ポリオール成分としては、ポリエステルの 製造方法において掲げたジオール成分のほか、必要に応 じて、3官能以上のポリオール化合物を使用することも できる。

【0062】ポリイソシアネート成分には、2,4ートリレンジイソシアネート、2,6ートリレンジイソシアネート、4,4′ージフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、フェニレンジイソシアネート、1,5ーナフタレンジイソシアネート、メタキシリレンジイソシアネート、イソホロンジイソシアネート、水添トリレンジイソシアネート、水添メタキシリレンジイソシアネート、根製4,4′ージフェニルメタンジイソシアネートの如きジイソシアネート化合物のほか、ポリメチレンポリフェニルイソシアネートの如きポリイソシアネート化合物も使用できる。

【0063】ポリウレタン樹脂の製造は、常法に従えばよい。例えば、イソシアネート基と反応しない不活性な有機溶剤溶液中で、室温又は40~100℃程度の温度で付加反応を行うのが好ましい。その際、ジブチル錫ジラウレート等の公知の触媒を使用しても良い。

【0064】ポリウレタン樹脂を製造する際の反応系には、ジアミン、ポリアミン、Nーメチルジエタノールアミンの如きNーアルキルジアルカノールアミン;ジヒドラジド化合物などの公知の鎖伸長剤も使用できる。

【0065】水酸基及びカルボキシル基を有するポリウレタン樹脂は、ポリウレタン樹脂を製造する際に、イソシアネート基よりも水酸基が多くなる割合で反応させることにより容易に製造することができる。あるいは、カルボキシル基と末端イソシアネート基とを有するポリイソシアネート樹脂に、1分子中に水酸基を2個以上有する化合物を付加反応させることによっても容易に製造することができる。

【0066】第3級アミノ基及びカルボキシル基を有す

るポリウレタン樹脂は、ポリオール成分の一部としてNーメチルジエタノールアミンなどのNーアルキルジアルカノールアミンを使用することにより容易に製造することができる。

【0067】ブロック化イソシアネート基およびカルボキシル基を有するポリウレタン樹脂は、カルボキシル基と末端イソシアネート基とを有するポリイソシアネート樹脂に、公知のブロック剤を付加反応させることによって容易に製造することができる。

【0068】エポキシ基およびカルボキシル基を有する 10 ポリウレタン樹脂は、カルボキシル基と末端イソシアネート基とを有するポリイソシアネート樹脂に、水酸基とエポキシ基とを有する化合物を付加反応させることによって容易に製造することができる。

【0069】水酸基とエポキシ基とを有する化合物としては、例えば、グリシドール、グリセリンジグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、ビスフェノールAのジグリシジルエーテル等が挙げられる。

【0070】自己架橋性官能基である重合性不飽和基お 20 よびカルボキシル基を有するポリウレタン樹脂は、末端 イソシアネート基を有するポリイソシアネート樹脂に、前述した如き水酸基を有する重合性モノマー類、および、グリセロールモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、あるいは、ペンタエリスリトールトリアクリレートなどの水酸基と重合性不飽和基とを有する化合物を付加反応せしめる方法などによって容易に製造することができる。

【0071】自己架橋性官能基の加水分解性アルコキシシラン基及びカルボキシル基を有するポリウレタン樹脂 30は、末端イソシアネート基を有するポリイソシアネート樹脂に、γーメルカプトプロピルトリメトキシシラン、γーアミノプロピルトリメトキシシラン、γーアミノプロピルトリメトキシシラン、γーアミノプロピルトリエトキシシランの如きイソシアネート基と反応しうる活性水素を有するシランカップリング剤を付加反応させる方法により容易に製造することができる。

【0072】カルボキシル基と架橋性官能基とを有する樹脂(B)あるいはカルボキシル基と自己架橋性官能基とを有する樹脂(D)中のカルボキシル基の量は、酸価 40が30~120の範囲となる量が好ましく、50~100の範囲となる量がより好ましい。酸価が120を越えると、親水性が高くなり過ぎるため、被塗物の耐水性が著しく低下する傾向にあり、また、酸価が30よりも低いと、酸析して中和後の水への再分散性が低下する傾向にあるので、好ましくない。

【0073】本発明で使用するカルボキシル基と架橋性 官能基あるいは自己架橋性官能基とを有する樹脂(B) あるいは樹脂(D)が、ビニル系共重合体又はポリウレ タン樹脂である場合、数平均分子量が5,000~2 0,000の範囲にあるものが好ましい。数平均分子量が5,000よりも低いと、被覆剤に使用した時、被塗物が脆くなる傾向にあり、また、数平均分子量が、20,000よりも高いと、微細な顔料分散体を得にくくなる傾向にあるので好ましくない。

【0074】本発明で使用するカルボキシル基と架橋性官能基あるいは自己架橋性官能基とを有する樹脂(B)あるいは樹脂(D)が、ポリエステル樹脂である場合、分子量は、ポリエステル樹脂が分岐型であることがほとんどなので、線状のビニル系共重合体などの場合とは異なり、数平均分子量が小さくとも重量平均分子量は大きいので、被膜としての充分なる強靭性を有する。従って、ポリエステル樹脂の数平均分子量は、1,000~20,000の範囲にあるものが好ましく、重量平均分子量は、5,000~100,000の範囲にあるものが好ましい。

【0075】本発明で使用する顔料(A)は、無機顔料や体質顔料も使用できるが、カーボンブラックや有機顔料が特に好ましい。

【0076】有機顔料の代表的なものとしては、例えば、フタロシアニンブルー、フタロシアニングリーン、ハンザイエローおよびパーマネントレッドなどのフタロシアニン系、アントラキノン系、ペリノン系、ジオキサジン系、ペリレン系、キナクリドン系、アゾ系金属錯体、メチン系金属錯体、チオインジゴ系、イソインドリノン系、イソインドリン系、スレン系、ジアミノアンスラキノニル系などが挙げられる。

【0077】本発明で使用する顔料は、粉末および固形 化されたものであってもよいし、あるいは、水性スラリ ーやプレスケーキといった水に分散した状態の顔料も使 用できる。

【0078】次に、本発明における製造工程を順次述べる

【0079】まず、カルボキシル基と架橋性官能基あるいは自己架橋性官能基とを有する樹脂(B)あるいは樹脂(D)と顔料とを混合または混練する工程では、次の2方法が適当である。

(1) 有機溶剤媒体中で樹脂と顔料とを混練した後、水 性媒体中に分散する方法。

0 (2) 水性媒体中で顔料を混合または混練する方法。

【0080】第(1)の方法において、有機溶剤中で樹脂と顔料とを混練するには、まず、粉末あるいは固形顔料と樹脂の有機溶剤溶液とを、ボールミル、サンドミル、コロイドミルなどの公知の分散機を使用して微細に混練する。

【0081】第(1)の方法において使用する有機溶剤は、一般に使用されるものがすべて使用できるが、樹脂に対する溶解性が良く、樹脂の合成上も問題がないもの、蒸気圧が水より高く脱溶剤を行い易いもの、さらに、水と混和性のあるものが好ましい。そのような有機

18

溶剤としては、例えば、アセトン、メチルエチルケトン、メタノール、エタノール、nープロパノール、イソプロパノール、酢酸エチル、テトラヒドロフランなどが挙げられる。また、水との混和性は低いが、メチルイソプロピルケトン、メチルーnープロピルケトン、酢酸イソプロピル、酢酸nープロピル、塩化メチレン、ベンゼンなども使用できる。

【0082】有機溶剤、樹脂および顔料から成る分散体を、水性媒体中に分散させるには、樹脂のカルボキシル基を塩基性化合物 (F1) でもって中和し、樹脂を親水 10性化することによって水中に分散することができる。

【0083】水への分散方法には次のような方法が適当ある。

- (a) 有機溶剤、顔料および樹脂から成る分散体を、塩 基性化合物でもって中和した後、水を滴下する方法。
- (b) 有機溶剤、顔料および塩基性化合物を用いて中和 した樹脂から成る分散体に、水を滴下する方法。
- (c) 有機溶剤、顔料および樹脂から成る分散体に、塩 基性化合物を含有する水を滴下する方法。
- (d) 有機溶剤、顔料および樹脂から成る分散体を塩基 20 性化合物でもって中和した後、水媒体中に添加する。
- (e) 有機溶剤、顔料および塩基性化合物を用いて中和 した樹脂から成る分散体を、水媒体中に添加する。
- (f) 有機溶剤、顔料および樹脂から成る分散体を、塩 基性化合物を含有する水媒体中に添加する。

【0084】水に分散する時には、通常の低シェアーでの撹拌、ホモジナイザーなどでの高シェアー撹拌、あるいは、超音波などを使用して行ってもよい。また、水性媒体への分散を補助する目的でもって、界面活性剤や保護コロイドなどを、被塗物の耐水性を著しく低下させな30い範囲で併用することもできる。

【0085】塩基性化合物(F1)としては、例えば、水酸化ナトリウム、水酸化カリウムの如き無機塩基、アンモニア、トリエチルアミン、トリブチルアミン、ジメチルエタノールアミン、ジイソプロパノールアミン、モルホリンの如き有機アミンなどが使用できる。

【0086】第(2)の方法において、水性媒体中で樹脂と顔料とを混練するには、まず、樹脂のカルボキシル基を前記した如き塩基性化合物(F1)を用いて中和した後、水性媒体中で顔料と混合または混練する。この時、水に溶解または分散した樹脂が、有機溶剤を含有していても差し支えないし、脱溶剤を行って実質的に水のみの媒体であってもよい。顔料は、粉末顔料、水性スラリー、プレスケーキのいずれも使用できる。水性媒体中での分散においては、製造工程を簡略化するために、顔料粒子の2次凝集が少ない水性スラリーまたはプレスケーキを使用することが好ましい。混練方法、有機溶剤、塩基性化合物(F1)は、有機溶剤媒体中での分散と同じ方法、同じものであってよい。

【0087】尚、カルボキシル基と架橋性官能基あるい 50

は自己架橋性官能基とを有する樹脂(B)あるいは樹脂(D)を親水性化するために行う塩基性化合物(F1)によるカルボキシル基の中和は、樹脂が親水性化して顔料の水性分散体(1a)あるいは(1b)が得られる程度以上に樹脂が親水性化すればよく、樹脂中のカルボキシル基の全部を中和する必要はない。通常は、樹脂中のカルボキシル基の50~100モル%程度を中和する。

【0088】有機溶剤系、水性系いずれの混練の場合であっても、顔料の分散を補助する目的でもって、顔料分散剤や湿潤剤を被塗物の耐水性を低下させない範囲で併用することもできる。

【0089】顔料を混練する際、あるいは、混練後に、 顔料以外の物質、例えば、染料、酸化防止剤、紫外線吸 収剤、被覆剤バインダーの架橋触媒、防錆剤、香料、薬 剤などを添加することもできる。

【0090】樹脂と顔料との割合は、顔料100重量部に対して、樹脂の固形分で1~200重量部の範囲が好ましく、5~100重量部の範囲が特に好ましい。樹脂固形分の割合が1重量部よりも少ない場合、顔料を充分微細に分散しにくくなる傾向にあり、また、200重量部よりも多い場合、分散体中の顔料の割合が少なくなり、塗装剤などに使用するとき、配合設計上の余裕がなくなる傾向にあるので好ましくない。

【0091】水性媒体中に微分散した顔料に樹脂を強く 固着化する目的でもって行われる酸析は、塩基性化合物 (F1) によって中和されたカルボキシル基を、酸性化 合物(E)を加え、pHを中性または酸性にすることに よって、樹脂を疎水性化せしめて行われる。使用される 酸性化合物(E)としては、例えば、塩酸、硫酸、燐 酸、硝酸の如き無機酸類;蟻酸、酢酸、プロピオン酸の 如き有機酸類などが挙げられるが、排水中の有機物が少 なく、かつ、酸析効果も大きい塩酸などの無機酸が好ま しい。pHは、3~6の範囲が好ましいが、顔料によっ ては酸によって分解されるものもあり、このような顔料 の場合には、pH4~7の範囲で酸析することもでき る。ただし、樹脂あるいは架橋剤がエポキシ基を有する 場合、塩酸や有機酸はエポキシ基と反応するので酸性化 合物としての使用は好ましくなく、そのような場合に は、燐酸などが好ましく用いることができ、pHも5~ 7程度が好ましい。酸析を行う前に、系に存在する有機 溶剤を減圧蒸留などで除くことも好ましい。

【0092】酸析後、必要に応じて、濾過および水洗を 行って分散顔料の含水ケーキを製造する。濾過は、吸引 濾過、加圧濾過、遠心分離など公知の方法が採用でき る。

【0093】この含水ケーキは、乾燥させることなく、 含水した状態のままで塩基性化合物 (F2)を用いてカ ルボキシル基を再中和することによって、顔料粒子が凝 集することなく、微細な状態を保持したままで水性媒体 中に再分散される。塩基性化合物 (F2) は、被途物の 耐水性などを考慮すると、アンモニア、トリエチルアミ ン、ジメチルエタノールアミンの如き揮発性アミン化合 物が好ましい。

【0094】次に、本発明における架橋について述べ

【0095】架橋が、自己架橋の場合、酸析前の水分散 体、酸析後の含水ケーキ、および、塩基性化合物(F 2) で再中和した水性分散体のいずれの状態で架橋して も差し支えはないが、酸析前の水分散体または再中和後 の水性分散体の状態での架橋が好ましく、再中和後の水 10 性分散体の状態での架橋がより好ましい。

【0096】カルボキシル基とエポキシ基による自己架 橋、水酸基とN-アルコキシメチルアミド基による自己 架橋、加水分解性アルコキシシラン基による自己架橋 は、前述した如き条件で架橋することができ、より速や かに架橋を行うために、適宜、架橋触媒を使用すること ができる。

【0097】ラジカル重合性不飽和基による自己架橋の 場合は、過硫酸カリ、過硫酸アンモニアなどの水溶性の 重合開始剤を添加して、さらには、重合をレドックス系 20 にして、50~90℃程度の温度で架橋することができ る。

【0098】一方、架橋が架橋剤(C)を使用して行わ れる場合には、架橋剤の配合は、使用する樹脂、酸析前 の水性分散体、酸析後の含水ケーキ、および、塩基性化 合物 (F2) で再中和した水性分散体のいずれに配合す ることもでき、架橋も、酸析前の水分散体、酸析後の含 水ケーキ、および、再中和後の水性分散体のいずれの状 態であっても架橋することができる。しかしながら、顔 料のより微細な水性分散体を得るためには、次のよう な、架橋剤、配合方法、架橋方法によるのが好ましい。

【0099】架橋剤(C)は、水に無限大に溶解するも の、適度な親水性を有しているもの、完全に疎水性のも のであっても、いずれも使用することができる。完全に 疎水性のものは、カルボキシル基および架橋性官能基を 有する樹脂(B)と混合して水に分散することによっ て、粒子内に取り込むことができる。

【0100】これらの架橋剤(C)の中でも好ましい架 橋剤としては、水に無限大に溶解するものではなく、か つ、完全に疎水性のものでもなく、適度な親水性を有し 40 ているものが挙げられる。水に無限大に溶解するもので は、架橋剤が水性媒体中に一部溶解しているため、分散 粒子間での架橋が無視できず、粗大粒子が発生する危険 性があり、また、完全に疎水性のものでは、水性媒体中 に良好に分散できず、やはり、粗大粒子が発生する危険 性がある。本発明における架橋剤(C)の親水性度は、 10~2,000%なる範囲の水トレランスを有するも のであるのが好ましく、20~1,000%なる範囲の ものがより好ましい。

ある。

【0102】樹脂溶液の5gを100ccの三角フラス コに計り取り、25℃で撹拌しながらイオン交換水を滴 下し、液が濁ってきて新聞の字が読めなくなるときの滴 下水の量を、樹脂に対する%で表わす。例えば、イオン 交換水が10ccの時は、水トレランスは200%にな

【0103】架橋剤(C)を配合する段階は、顔料との 混練前に、使用樹脂溶液に配合することが好ましい。樹 脂(B)の溶液と架橋剤(C)との混合溶液でもって、 有機溶剤系で顔料(A)を混練してから水に分散する場 合も、あるいは、混合溶液を水に分散してから顔料

(A) を混練する場合のいずれであっても、架橋剤

(C) は樹脂(B) によってカプセル化されて水に分散 した状態になり、架橋は専ら粒子内部でのみ起こるの で、粗大な粒子が発生しなくなる。

【0104】架橋時期は、前記したように顔料の水性分 散体(1a)を得た後であればいつでもよいが、酸析を 行うための酸性化合物(E)の添加前、あるいは、再中 和後の水性分散体での架橋が好ましく、再中和後の水性 分散体での架橋が最も好ましい。

【0105】架橋は、常圧下50~100℃での加熱に よる架橋が好ましいが、場合により、加圧下100~1 50℃程度で架橋することもできる。架橋触媒を使用す ることも推奨できる。

【0106】かかる架橋剤 (C) としては、例えば、ア ミノ樹脂、分子内にエポキシ基を2個以上有する化合物 が挙げられる。

【0107】アミノ樹脂は、メラミン樹脂、尿素樹脂、 30 ベンゾグアナミン樹脂などが代表的なもので、ホルムア ルデヒドでメチロール化した後、メタノールやブタノー ルでエーテル化されたものである。

【0108】エポキシ基を2個以上有する化合物は、エ ポキシ樹脂と称する各種のポリグリシジルエーテル類、 ポリグリシジルエステル類、および、グリシジルメタア クリレートなどのエポキシ基を有する重合性モノマーを 共重合したビニル系共重合体などである。

【0109】樹脂(B)と架橋剤(C)との配合割合 は、固形分比でもって、概ね、50:50~95:5の 範囲が好ましく、70:30~90:10の範囲が特に 好ましい。

【0110】このようにして得られる水性顔料分散体 は、体積平均粒子径が10~500mmなる範囲にある ものが好ましい。体積平均粒子径が500mmよりも大 きいと、被塗物の光沢や、発色性、着色力の良いものが 得られなくなる傾向にあるので好ましくなく、また、1 0 n m よりも小さくすることは非常に困難で現実的では

【0111】このようにして得られる水性顔料分散体 【0101】水トレランスとは、次の測定によるもので 50 は、各種の水性着色剤組成物、例えば、水性塗料、水性

22

インキ、捺染剤などに配合して使用される。

[0112]

【実施例】以下、実施例を用いて、本発明を更に詳細に 説明するが、本発明は、これらの実施例の範囲に限定さ れるものではない。なお、以下の実施例において、

「部」及び「%」は、特に断りがない限り、『重量部』 及び『重量%』をそれぞれ表わす。

【0113】また、本発明における分子量は、GPC (ゲルパーミッションクロマトグラフィー) により測定 したものであり、体積平均粒子径は、「UPA-15 0」(日揮装社製のレーザードップラー式粒度分布計) により測定したものである。

【0114】(合成例1) [カルボキシル基および水酸 基を有するビニル系共重合体の合成]

滴下装置、温度計、窒素ガス導入管、撹拌装置および還 流冷却管を備えた3リットルの四つ口フラスコに、メチ ルエチルケトン1,000部を仕込んで78℃まで昇温 した後、スチレン100部、n-ブチルメタクリレート 538部、n-ブチルアクリレート104部、2-ヒド ロキシエチルメタクリレート150部、メタクリル酸1 20 08部およびターシャリブチルパーオキシー2-エチル ヘキサノエート (日本油脂(株)製の「パーブチル オ 一」)80部からなる混合液を4時間をかけて滴下し、 同温度にて8時間反応させた。反応終了後に、メチルエ チルケトンを加えて、不揮発分が50%になるように調 整して、樹脂固形分での酸価が70(以下、酸価は樹脂 固形分での値で表す。)で、数平均分子量が6,000 の樹脂溶液Aを得た。

【0115】(合成例2) [カルボキシル基および水酸 基を有するビニル系共重合体の合成]

合成例1において、使用するモノマー及び重合開始剤 を、スチレン100部、n-ブチルメタクリレート45 4部、n-ブチルアクリレート143部、2-ヒドロキ シエチルメタクリレート150部、メタクリル酸153 部およびターシャリブチルパーオキシー2-エチルヘキ サノエート20部に変更した以外は、合成例1と同様に して、樹脂固形分での酸価が100で、数平均分子量が 16,000の樹脂溶液Bを得た。

【0116】(合成例3) [カルボキシル基およびエポ キシ基を有するビニル系共重合体の合成]

合成例1において、使用するモノマー及び重合開始剤 を、スチレン100部、n-ブヂルメタクリレート47 6部、n-ブチルアクリレート116部、2-ヒドロキ シエチルメタクリレート150部、グリシジルメタクリ レート50部、メタクリル酸108部およびターシャリ ブチルパーオキシー2-エチルヘキサノエート80部に 変更した以外は、合成例1と同様にして、樹脂固形分で の酸価が70で、数平均分子量が10,500の樹脂溶 液Cを得た。

ブトキシメチルアミド基を有するビニル系共重合体の合

合成例1において、メチルエチルケトン1,000部に 代えて、メチルエチルケトン800部及びイソプロピル アルコール200部を用い、使用するモノマー及び重合 開始剤を、スチレン100部、n-ブチルメタクリレー ト459部、n-ブチルアクリレート83部、2-ヒド ロキシエチルメタクリレート150部、N-ブトキシメ チルメタクリルアミド100部、メタクリル酸108部 10 およびターシャリブチルパーオキシー2ーエチルヘキサ ノエート80部に変更した以外は、合成例1と同様にし て、樹脂固形分での酸価が70で、数平均分子量が8. 000の樹脂溶液Dを得た。

【0118】(合成例5) [重合性不飽和基を有するビ ニル系共重合体の合成]

滴下装置、温度計、窒素ガス導入管、撹拌装置および環 流冷却管を備えた3リットルの四つロフラスコに、合成 例1で得た樹脂溶液A190部、2-メタクリロイルオ キシエチルイソシアネート5部および「スワノックスB HT」(星光化学工業株式会社製の重合禁止剤) 0.0 5部とを仕込んで、70℃にて3時間反応させた。反応 終了後に、メチルエチルケトンを加えて、不揮発分が5 0%になるように調整して、樹脂固形分での酸価が67 で、数平均分子量が7,000の樹脂溶液Eを得た。

【0119】(合成例6) [カルボキシル基および水酸 基を有するポリエステル樹脂の合成]

脱水管、温度計、窒素ガス導入管および撹拌装置を備え た2リットルの四つロフラスコに、「カージュラ E-10」 (シェル化学工業株式会社製の合成脂肪酸のグリ 30 シジルエステル) 100部、アジピン酸241部、ヘキ サヒドロ無水フタル酸376部、ネオペンチルグリコー ル195部、トリメチロールプロパン165部およびジ ブチル錫ジオキサイド 0. 5部を仕込み、脱水しながら 5時間をかけて190℃まで昇温させた後、同温度にて 脱水縮合反応を行った。サンプリングを行って酸価を測 定し、目標酸価が60となるように反応を終了し、降温 してからメチルエチルケトンを加えて不揮発分が65% となるように希釈して、酸価が61で、数平均分子量が 2,200で、重量平均分子量が30,000で、樹脂 固形分当たりの水酸基価が60なる樹脂溶液Fを得た。

【0120】(合成例7) [カルボキシル基を有するポ リウレタン樹脂の合成]

温度計、窒素ガス導入管、撹拌装置および還流冷却管を 備えた3リットルの四つ口フラスコに、メチルエチルケ トン900部、ジメチロールプロピオン酸129部、

「プラクセル 212」(ダイセル化学工業株式会社製 のポリラクトンジオール) 521部およびイソホロンジ イソシアネート350部を仕込み、78℃で2時間反応 させた後、ジブチル錫ジラウレート0.1部を加えて、

【0117】(合成例4) [カルボキシル基およびN- 50 更に同温度で4時間反応させた。反応終了後、反応混合

物を30℃まで降温させた後、エチレンジアミン5.8 部およびメチルエチルケトン106部から成る溶液を仕 込んで、1時間反応を行ない、酸価が54で、数平均分 子量が12,000なる樹脂溶液Gを得た。

【0121】(実施例1)

(1) 水性媒体中で顔料を混練する顔料分散工程 樹脂溶液A12.8部(固形分で6.4部)を、ジメチ ルエタノールアミン 0.71部を用いて中和した後、 「ニカラック MX-041」(三和ケミカル工業株式 会社製のメチルエーテル化メラミン樹脂) 2.29部 (固形分で1.6部)を混合した。この混合溶液中に、 「ファストゲン・スーパー・マルーン (Fastogen Super Maroon) PSK」(大日本インキ化学工業株式会社製 のシアニンブルー顔料)の顔料分が16%である水性ス ラリー50部(顔料分で8部)を撹拌しながら加えた。 【0122】(2)酸析工程

分散試料に水(本明細書では、すべてイオン交換水を使 用)を加えて倍に希釈し、ディスパーで撹拌しながら、 1 規定塩酸水溶液を樹脂が不溶化して顔料に固着するま で加えた。この時のpHは概ね3~5であった。

【0123】(3)濾過および水洗工程 樹脂が固着した顔料を吸引濾過し、次いで、洗液のpH が6を越えるようになるまでイオン交換水で水洗して含 水ケーキを得た。

【0124】(4)中和および水性媒体への再分散工程 含水ケーキが流動するようになるまで水を加え、ディス パーで撹拌しながら、ジメチルエタノールアミンの10 %水溶液を、分散体のpHが8.5~9.5になるまで 加えた後、そのまま1時間撹拌を継続した。再分散体 に、水を加えて、不揮発分が20%に調整した。

【0125】(5)架橋工程

再分散体に、「ナキュアー (Nacure) 2500X」 (楠 本化成株式会社製の架橋触媒)を樹脂固形分に対して 0.5%加え、95℃にて1時間架橋反応を行って、水 性顔料分散体(A-1)を得た。

【0126】 (比較例1) 樹脂溶液A16部 (固形分で 8部)を、ジメチルエタノールアミン0.80部を用い て中和した溶液中に、「ファストゲン・スーパー・マル ーンPSK」の顔料分が16%である水性スラリー50 部(顔料分で8部)を撹拌しながら加えた後、脱溶剤を 40 行った。これに、水を加えて不揮発分が20%と成るよ うに調整して、水性顔料分散体 (a-1) を得た。

【0127】 (比較例2) 樹脂溶液A16部 (固形分で 8部)を、ジメチルエタノールアミン 0.80部を用い て中和した溶液中に、「ファストゲン・スーパー・マル ーンPSK」の顔料分が16%である水性スラリー50 部(顔料分で8部)を撹拌しながら加えた後、分散試料 に水を加えて倍に希釈し、ディスパーで撹拌しながら、 1規定塩酸水溶液を樹脂が不溶化して顔料に固着するま で加えた。この時のpHは概ね3~5であった。

24

【0128】次に、樹脂が固着した顔料を吸引濾過し、 次いで、洗液のpHが6を越えるようになるまでイオン 交換水で水洗して含水ケーキを得た。

【0129】含水ケーキが流動するようになるまで水を 加え、ディスパーで撹拌しながら、ジメチルエタノール アミンの10%水溶液を、分散体のpHが8.5~9. 5になるまで加えた後、そのまま1時間撹拌を継続し た。再分散体に、水を加えて、不揮発分が20%に調整 して、水性顔料分散体(a-2)を得た。

10 【0130】(比較例3)実施例1において、顔料分散 工程で得た分散試料に対して、脱溶剤を行った後、架橋 させた以外は、実施例1と同様にして水性顔料分散体 (a-3)を得た。

【0131】 (実施例2)

(1) 顔料分散工程

樹脂溶液B14. 4部 (固形分で 7. 2部) 、「ファス トゲン・スーパー・マルーンPSK」粉末8部およびメ チルエチルケトン40部を、平均径が1.5mmのガラ スビーズ130部とともに250ccガラスビンに仕込 20 み、ペイントシェーカーにより 4 時間混練した。

【0132】次に、この混練物に、「CR-5L」 (大 日本インキ化学工業株式会社製の親水性エポキシ樹脂) 0. 8部およびメチルエチルケトン24部を加えて撹拌 した後、濾過によりガラスビーズを除いた。

【0133】ジメチルエタノールアミン1. 2部および 水100部からなる水溶液中に、この分散液87.2部 を、ディスパーで撹拌しながら投入して、分散試料を得 た。

【0134】(2)酸析工程

分散試料に水を加えて倍に希釈し、ディスパーで撹拌し ながら、1規定燐酸水溶液を樹脂が不溶化して顔料に固 着するまで加えた。この時の p H は 5 であった。

【0135】(3)濾過および水洗工程

樹脂が固着した顔料を吸引濾過し、次いで、洗液のpH が6を越えるようになるまでイオン交換水で水洗して含 水ケーキを得た。

【0136】(4)中和および水性媒体への再分散工程 含水ケーキが流動するようになるまで水を加え、ディス パーで撹拌しながら、ジメチルエタノールアミンの10 %水溶液を、分散体のpHが8.5~9.5になるまで 加えた後、そのまま1時間撹拌を継続した。再分散体 に、水を加えて、不揮発分が20%に調整した。

【0137】(5)架橋工程

再分散体を、95℃にて1時間架橋反応を行って、水性 顔料分散体(B-1)を得た。

【0138】(比較例4) 実施例2において、樹脂溶液 Bの使用量を16部とし、エポキシ樹脂を使用せず、1 規定燐酸水溶液に代えて、1規定塩酸水溶液を用いた以 外は、実施例2と同様にして、水性顔料分散体 (b-50 1)を得た。

【0139】(比較例5)実施例2において、顔料分散 工程で得た分散試料に対して、脱溶剤を行った後、架橋 させた以外は、実施例2と同様にして水性顔料分散体 (b-2)を得た。

【0140】 (実施例3) 実施例1において、メラミン 樹脂を使用せず、樹脂溶液Aに代えて、樹脂溶液C16 部(固形分で8部)を使用し、ジエチルエタノールアミ ンの使用量を0.80部とし、1規定塩酸水溶液に代え て、1規定燐酸水溶液を使用してpH5と成るまで酸析 し、「ナキュアー 2500X」を使用せずに架橋反応 10 を95℃で1時間行った以外は、実施例1と同様にし て、自己架橋型水性顔料分散体(C-1)を得た。

【0141】 (実施例4) 実施例1において、メラミン 樹脂を使用せず、樹脂溶液Aに代えて、樹脂溶液D16 部(固形分で8部)を使用し、架橋反応を120℃にて 1時間行った以外は、実施例1と同様にして、自己架橋 型水性顔料分散体(D-1)を得た。

【0142】 (実施例5) 実施例1において、メラミン 樹脂を使用せず、樹脂溶液Aに代えて、樹脂溶液E16 部(固形分で8部)を使用し、「ナキュアー 2500 X」に代えて、過硫酸アンモニアを樹脂固形分に対して 0. 5%使用し、架橋反応を90℃で3時間行った以外 は、実施例1と同様にして、自己架橋型水性顔料分散体 (E-1)を得た。

【0143】(実施例6)

(1) 顔料分散工程

樹脂溶液F12. 8部(固形分で6. 4部)、「ファス トゲン・ブルー (Fastogen Blue) FGF」 (大日本イ ンキ化学工業株式会社製の銅フタロシアニン顔料) 粉末 8部およびメチルエチルケトン40部を、平均径が1. 5 mmのガラスビーズ130部とともに250 c c ガラ スピンに仕込み、ペイントシェーカーにより4時間混練 した。

【0144】次に、この混練物に、「ニカラック MX -041」2.29部(固形分で1.6部)、「ナキュ アー 2500 X 」 0. 04 部およびメチルエチルケト ン24部を加えて撹拌した後、濾過によりガラスビーズ を除いた。

【0145】ジメチルエタノールアミン0.65部およ び水100部からなる水溶液中に、この分散液87.1 40 分散試料に水を加えて倍に希釈し、ディスパーで撹拌し 3部を、ディスパーで撹拌しながら投入し、次いで、減 圧で脱溶剤を行って、分散試料を得た。

【0146】(2)酸析工程~架橋工程

この分散試料を用い、架橋工程で「ナキュアー 250 OX」を使用せずに架橋反応を95℃で1時間行った以 外は、実施例1と同様に、順次、酸析工程、濾過および 水洗工程、中和および水性媒体への再分散工程、架橋工 程を行って、水性顔料分散体 (F-1) を得た。

【0147】(実施例7)実施例6の顔料分散工程で得

た後、実施例1と同様に、順次、酸析工程、濾過および 水洗工程、中和および水性媒体への再分散工程を行っ て、水性顔料分散体(F-2)を得た。

【0148】(比較例6)

(1) 颜料分散工程

樹脂溶液F16部(固形分で8部)、「ファストゲン・ ブルー (Fastogen Blue) FGF」粉末8部およびメチ ルエチルケトン40部を、平均径が1.5mmのガラス ビーズ130部とともに250ccガラスビンに仕込 み、ペイントシェーカーにより4時間混練した。

【0149】次に、この混練物に、メチルエチルケトン 24部を加えて撹拌した後、濾過によりガラスビーズを 除いた。

【0150】ジメチルエタノールアミン0.8部および 水100部からなる水溶液中に、この分散液88部を ディスパーで撹拌しながら投入し、次いで、減圧で脱溶 剤を行って、分散試料を得た。

【0151】(2)酸析工程~中和および水性媒体への 再分散工程

この分散試料を用い、架橋工程を行わなかった以外は、 実施例1と同様に、順次、酸析工程、濾過および水洗工 程、中和および水性媒体への再分散工程を行って、水性 顔料分散体(f-1)を得た。

【0152】(比較例7)実施例6において、酸析工程 を行わなかった以外は、実施例6と同様にして水性顔料 分散体 (f-2) を得た。

【0153】(実施例8)

(1) 顔料分散工程

樹脂溶液G7.2部(固形分で3.6部)をジメチルエ 30 タノールアミン 0.31 部で中和した後、「CR-5 L」 0. 4部を混合し、撹拌しながら水43. 1部を滴 下して水性分散体とした。

【0154】この水性分散体に「シムラー・ファスト・ レッド (Symuler Fast Red) 4195」 (大日本インキ 化学工業株式会社製の不溶性アゾ顔料) 8部およびガラ スビーズ130部を加えて、ペイントシェーカーで4時 間混練した後、濾過によりガラスビーズを除いて分散試 料を得た。

【0155】(2)酸析工程

ながら、1規定燐酸水溶液を樹脂が不溶化して顔料に固 着するまで加えた。この時のpHは5であった。

【0156】(3) 濾過および水洗工程

樹脂が固着した顔料を吸引濾過し、次いで、洗液のpH が6を越えるようになるまでイオン交換水で水洗して含 水ケーキを得た。

【0157】(4)中和および水性媒体への再分散工程 含水ケーキが流動するようになるまで水を加え、ディス パーで撹拌しながら、10%アンモニア水を、分散体の られた分散試料を用い、架橋反応を95℃で2時間行っ 50 pHが8.5~9.5になるまで加えた後、そのまま1

時間撹拌を継続した。再分散体に、水を加えて、不揮発 分が20%に調整した。

【0158】(5)架橋工程

再分散体を、95℃にて1時間架橋反応を行って、分散 用樹脂/顔料の比が固形分比で1/2である水性顔料分 散体(G-1)を得た。

【0159】(比較例8)実施例8において、「CR-5 L」を使用せずに樹脂溶液G8部(固形分で4部)を 使用して顔料を混練し、次いで、酸析を行い、濾過およ び水洗後にアンモニア水で中和して水に分散させて、分*10

*散用樹脂/顔料の比が固形分比で1/2である非架橋の 水性顔料分散体(g-1)を得た。

28

【0160】(比較例9)実施例8において、樹脂溶液 Gをアンモニア水で中和し、酸析を行わずに、脱溶剤を 行ってから架橋して、分散用樹脂/顔料の比が固形分比 で1/2である水性顔料分散体(g-2)を得た。

【0161】以上のようにして得た各種水性顔料分散体 の構成を以下の表1にまとめて示した。

[0162]

【表 1 】

	水性解料	樹	脂	分散	工程	顔 料
·	分散体	種類	酸価	酸析	架橋剤	14
実施例1	A-1	ア	7 0	有	メラミン	PSKスラリー
比較例1	a-1		70	_	_	PSKスラリー
比較例2	a-2		70	有	_	PSKスラリー
比較例3	a-3	ク	70	-	メラミン	PSKスラリー
実施例2	B-1		100	有	エポキシ	PSK
比較例4	b – 1	1	100	有	_	PSK
比較例 5	b-2	IJ	100	_	エポキシ	PSK
実施例3	C-1		70	有	自己架橋	PSKスラリー
実施例4	D-1		70	有	自己架橋	PSKスラリー
実施例5	E-1	ル	6 7	有	自己架橋	PSKスラリー
実施例6	F-1	ポリ	6 1	有	メラミン	FGF
実施例7	F-2	エス	61	有	メラミン	FGF
比較例6	f - 1	テル	6 1	有	_	FGF
比較例7	f - 2		61	-	メラミン	FGF
実施例8	G-1	ポリ	5 4	有	エポキシ	4195
比較例8	g-1	ウレ	54	有	_	4195
比較例9	g - 2	タン	5 4	-	エポキシ	4195

【0163】上表中、PSKは「ファストゲン・スーパ ー・マルーンPSK」を、FGFは「ファストゲン・ブ ルーFGF」を、4195は「シムラー・ファスト・レ※

※ッド4195」をそれぞれ表わす。

【0164】(実施例9)

「ウオーターゾール S-751」(大日本インキ化学工業株式会社製の不揮

発分50%の焼き付け塗料用水溶性アクリル樹脂) 56部(固形分で28部)

「サイメル 303」(三井サイアナミッド社製の有効成分98%のメチルエ

ーテル化メラミン樹脂)

水性顔料分散体(A-1)

12.25部(固形分で12部)

100部 (固形分で20部)

の割合になるように配合し、水を加えて不揮発分が24 %になるように希釈して、水溶性焼き付けアクリル樹脂 塗料を調製した。

【0165】この塗料を、「BT-144処理鋼板」 (日本パーカーライジング社製の燐酸亜鉛処理鋼板) に 膜厚が20±2μmとなるように、バーコーターを用い 間焼き付けを行って、試験片を作製した。

【0166】また、この塗料を、コロナ放電処理PET フィルムに膜厚が10±1μmとなるように、バーコー ターを用いて塗装し、10分セッティング後、150℃ にて20分間焼き付けを行って、試験片を作製した。

【0167】(比較例10~12)実施例9において、 て塗装し、10分セッティング後、150℃にて20分 50 水性顔料分散体(A-1)に代えて、水性顔料分散体

(a-1)、(a-2)または(a-3)をそれぞれ使用した以外は、実施例9と同様にして、水溶性焼き付けアクリル樹脂塗料を調製し、試験片を作製した。

【0168】(実施例10)実施例9において、水性顔料分散体(A-1)に代えて、水性顔料分散体(B-1)を使用した以外は、実施例9と同様にして、水溶性焼き付けアクリル樹脂塗料を調製し、試験片を作成した。

【0170】 (実施例 $11\sim13$) 実施例9において、水性顔料分散体 (A-1) に代えて、水性顔料分散体 (C-1) 、 (D-1) または (E-1) をそれぞれ使用した以外は、実施例9と同様にして、水溶性焼き付け*

*アクリル樹脂塗料を調製し、試験片を作成した。

【0171】(実施例14および15) 実施例9において、「ウオーターゾール S-751」に代えて、「ウオーターゾール S-212」(大日本インキ化学工業株式会社製の不揮発分65%の焼き付け塗料用水溶性ポリエステル樹脂)43部(固形分で28部)を使用し、水性顔料分散体 (F-1) または (F-2) をそれぞれ使用した以外は、実施例9と同様にして水溶性ポリエステル樹脂焼き付け塗料を調製し、試験片を作製した。

【0172】(比較例15および16)実施例14において、水性顔料分散体(F-1)に代えて、水性顔料分散体(f-1)または(f-2)をそれぞれ使用した以外は、実施例14と同様にして水溶性ポリエステル樹脂焼き付け塗料を調製し、試験片を作製した。

【0173】(実施例16)

「ハイドラン AP-40」と、水性顔料分散体とを、固形分重量でもって、「ハイドラン AP-40」(大日本インキ化学工業株式会社製の不揮発分2

2. 5%の水溶性ポリウレタン樹脂)

水性顔料分散体(G-1)

となるように配合し、エタノール10部を加えて、不揮発分が20%の水性インキを調製した。

【0174】このインキを、コロナ放電処理PETフィルム上にNo. 7のバーコーターを用いて塗装した後、60℃で1分間乾燥させて試料を作製した。

【0175】 (比較例17および18) 実施例16にお※

178部(固形分で40部)300部(固形分で60部)

※いて、水性顔料分散体(G-1)に代えて、水性顔料分散体(g-1)または(g-2)をそれぞれ使用した以外は、実施例16と同様にして、水性インキを調製し、試料を作製した。

【0176】 (実施例17) まず、捺染糊を、以下のようにして調製した。

「リュウダイW Reducer Conc 500」 50部

(大日本インキ化学工業株式会社製の増粘剤)

ミネラルターペン

650部

300部

をビーカーに計り取り、ホモミキサーで30分間撹拌して調製した。 ★

★【0177】次に、以下のように配合して捺染剤を調製した。

水性顔料分散体(A-1)

1. 0部 (顔料分0. 1部)

水

1. 0部

上記捺染糊

16.0部

「リュウダイW Fixer 756K-1」2. 0部

(大日本インキ化学工業株式会社製のアクリル樹脂エマルジョン)

をビーカーに計り取り、ホモミキサーで 30 分間撹拌し \Diamond 【 0178 】標準品としての捺染剤は、次のようにして て捺染剤を調製した。 \Diamond 40 調製した。

カラーベースの調製

「ファストーゲン・スーパー・マルーンPSK」

15.0部

「エマルゲン 911」(花王社製の界面活性剤)

7. 2部

7k

77.8部◆で用いて4時間混練してカラーベースを調製した。

を、平均径1.5 mmのガラスビーズ130gと共に、 250ccのガラスビンに秤量し、ペイントシェーカー◆

【0179】次に、

F里し、パイントシェーガー▼ 【U1/9】

上記カラーベース

0.67部(顔料分0.1部

)

水

1. 33部

捺染糊

16.00部

「リュウダイW Fixer 756K-1」 2.00部

をビーカーに計り取り、ホモミキサーで30分間撹拌して標準捺染剤を調製した。

【0180】このようにして調製した捺染剤を、90メッシュスクリーンを用いて綿サテン上にドクターを用いて展色し、120 $\mathbb C$ で5分間乾燥させて試験布とした。【0181】(比較例19 $\mathbb C$ 21)実施例17において、水性顔料分散体($\mathbb C$ 4-1)に代えて、水性顔料分散体($\mathbb C$ 5-1)または($\mathbb C$ 7-2)または($\mathbb C$ 7-2)または($\mathbb C$ 9-3)をそれぞれ用いた以外は、実施例17と同様にして、捺染剤を調製し、試験布を作製した。

【0182】(実施例18)実施例17において、水性 顔料分散体(A-1)に代えて、水性顔料分散体(B-1)を用いた以外は、実施例17と同様にして、捺染剤 を調製し、試験布を作製した。 *【0183】(比較例22および23) 実施例17において、水性顔料分散体 (A-1) に代えて、水性顔料分散体 (b-1) または (b-2) をそれぞれ用いた以外は、実施例17と同様にして、捺染剤を調製し、試験布を作製した。

32

【0184】<評価>

(1) 体積平均粒子径

体(a-1)、(a-2)または(a-3)をそれぞれ 各実施例および各比較例で得た水性顔料分散体の調製直用いた以外は、実施例 10 後、および、室温で30日放置後の体積平均粒子径を、し、試験布を作製した。 「UPA-150」(日揮装社製のレーザードップラー 式粒度分布計)を用いて測定した。その結果を表 2 にま顔料分散体 (A-1) に代えて、水性顔料分散体 (B-1) とめて示した。

【0185】 【表2】

	樹	脂	顔 料	水性類料	粒子往	≹ (nm)
	種類	酸価	177	分散体	直後	30日後
実施例1	ア	7 0	PSKスラリー	A-1	155	155
比較例1		70	PSKスラリー	a-1	215	300
比較例2		70	PSKスラリー	a-2	160	165
比較例3	ク	70	PSKスラリー	a-3	220	230
実施例2		100	PSK	B-1	160	160
比較例4		100	PSK	b-1	160	165
比較例5	ij	100	PSK	b-2	265	280
実施例3		70	PSKスラリー	C-1	150	155
実施例4		70	PSKスラリー	D-1	170	170
実施例 5	ル	6 7	PSKスラリー	E-1	155	160
実施例 6	ポリ	6 1	FGF	F-1	145	145
実施例7	エス	61	FGF	F-2	145	150
比較例6	テル	6 1	FGF	f - 1	140	145
比較例7		6 1	FGF	f – 2	205	210
実施例8	ポリ	5 4	4195	G-1	185	190
比較例8	ウレ	5 4	4195	g-1	180	180
比較例9	タン	5 4	4195	g - 2	240	245

【0186】表2に示した結果から、本発明の製造方法で得た水性顔料分散体は、製造直後及び製造後30日経過後において、粒子径の大きさがほぼ一定であるから分散安定性に優れていることが理解できる。一方、比較例1、3、5、7および9で得た水性顔料分散体は、酸析を行っていないので、分散安定性が良くなく、また、比較例2、6および8で得た水性顔料分散体は、酸析を行っているので、分散安定性に優れているが、架橋剤を用いて架橋していないので、後述するように、塗膜の耐水性に劣るものである。

【0187】(2)焼き付け塗料における評価

実施例9~15および比較例10~16で得た塗料について、以下の評価を行った。水溶性アクリル樹脂焼き付け塗料の結果を表3に、水溶性ポリエステル樹脂焼き付け塗料の結果を表4にまとめて示した。

【0188】・光沢: 「BT-144処理鋼板」に塗装したものを、60° 鏡面光沢で測定した。

【0189】・発色性:PETフィルムに塗装したものを、目視で判定した。

50 評価基準

◎:色の濃度、隠蔽性が高い。

【0190】○:色の濃度、隠蔽性がやや劣る。

△:色の濃度、隠蔽性がかなり劣る。

×:色の濃度、隠蔽性がかなり劣り、鮮鋭性も低い。

【0191】・耐水性:「BT-144処理鋼板」に塗装したものを、温度50℃の水に浸漬し、96時間後にブリスターの発生具合を目視にて判定した。

評価基準

*◎:全く異常なし。

【0192】○:わずかにブリスターの発生が認められ

34

た。

△:かなりのブリスターの発生が認められた。

×:試験片の全面にブリスターが発生した。

[0193]

【表3】

	水性顔料分散体	分散樹脂酸価	光沢 60°	発色性	耐水性
実施例 9	A-1 (酸析架橋)	7 0	9 3	0	0
比較例10	a – 1	7 0	8 8	Δ	Δ
比較例11	a-2 (酸析)	7 0	94	0-0	Δ
比較例12	a-3 (架橋)	7 0	79	×-△	0
実施例10	B-1 (酸析架橋)	100	9 4	0	0-0
比較例13	b-1 (酸析)	100	9 4	0	×
比較例14	b-2 (架橋)	100	7 1	Δ	0-0
実施例11	C-1 (酸析自己架橋)	7 0	9 4	0	0
実施例12	D-1 (酸析自己架橋)	7 0	9 2	0-0	0
実施例13	E-1 (酸析自己架橋)	6 7	9 3	0-0	0

[0194]

※ ※【表4】

	水性顔料分散体	分散樹脂酸価	光沢 60°	発色性	耐水性
実施例14	F-1 (酸析架橋)	6 1	9 4	©	O-©
実施例15	F-2 (酸析架橋)	6 1	9 3	O-©	
比較例15	f-1 (酸析)	6 1	9 6	©	∆
比較例16	f-2 (架橋)	6 1	8 1	△	O-©

【0195】表3及び表4に示した結果から、本発明の 製造方法で得た水性顔料分散体を用いた塗料は、光沢、 発色性および耐水性に優れていることが理解できる。

【0196】 (3) 水性インキにおける評価 実施例16および比較例 $17\sim18$ で得た水性インキに ついて、以下の評価を行った。その結果を表5にまとめ て示した。

【0197】·光沢:60° 鏡面光沢

・発色性:焼き付け塗料の場合と同じ評価

・耐水性:大平理化工業株式会社製のラビングテスター 試験機を用いて、0.1kgの荷重を掛けて水を含浸した フェルトで10回ラビングを行った。

【0198】評価基準

◎:フェルトに全く色が付かない。

40 ○:フェルトがわずかに着色した。

【0199】△:フェルトがかなり着色し、試験片から インクが一部剥離した。

×:フェルトが著しく着色し、試験片からインクが剥離した。

[0200]

【表 5】

	水性額料分散体	分散樹脂酸価	光沢 60°	発色性	耐水性
実施例16	G-1 (酸析架橋)	5 4	8 0	0	0-0
比較例17 比較例18	g-1 (酸析) g-2 (架橋)	5 4 5 4	8 1 7 1	O-© ×-∆	x-Δ Ο

【0201】表5に示した結果から、本発明の製造方法 10*試験機を用いて、1kgの荷重を掛けて水を含浸したフェ で得た水性顔料分散体を用いた水性インキは、光沢およ び発足性に優れていることが理解できる。

【0202】(4)捺染剤における評価

実施例17~18および比較例19~23で得た捺染剤 について、以下の評価を行った。その結果を表6にまと めて示した。

・着色力:分光光度計にて着色力を測定し、乳化剤で分 散した標準捺染剤を塗布した試験布の着色力を100% ととして、実施例および比較例の着色力を%で表示す る。

・耐水性:大平理化工業株式会社製のラビングテスター*

ルトで50回ラビングを行った。

【0203】評価基準

◎:フェルトに全く色が付かない。

〇:フェルトがわずかに着色した。

【0204】△:フェルトがかなり着色し、試験片の色 落ちが認められた。

×:フェルトが著しく着色し、試験片がかなり色落ちを した。

[0205]

20 【表 6】

	水性質料分散体	分散樹脂酸価	着色力 (%)	耐水性
実施例17	A-1 (酸析架橋)	7 0	151	0
比較例19	a – 1	7 0	96	Δ-0
比較例20	a-2 (酸析)	70	155	Δ-0
比較例21	a-3 (架橋)	70	100	0
実施例18	B-1 (酸析架橋)	100	156	O-Ø
比較例22	b-1 (酸析)	100	150	$\times - \triangle$
比較例23	b-2 (架橋)	100	9 2	0-0

【0206】表6に示した結果から、本発明の製造方法 で得た水性顔料分散体を用いた捺染剤は、着色力および 耐水性に優れていることが理解できる。

[0207]

【発明の効果】本発明の製造方法に従って得られる水性※

※顔料分散体は、酸析することにより、貯蔵安定性に優 れ、また、水性塗料、水性インキおよび捺染剤に使用し た時、光沢、発色性および着色力にも優れ、さらに、架 橋することによって、耐水性が優れたものになるといっ う、極めて実用性の高いものである。

フロントページの続き

(51) Int. Cl. 6

識別記号

庁内整理番号

FI

技術表示箇所

C 0 9 D 175/04

PHN

C 0 9 D 175/04

201/06

PHN PDF

201/06

PDF