2022 年度概率论与数理统计模拟题2

一、填空题

1.设 A,B,C 随机事件,且 A 与 B 互不相容, A 与 C 互不相容, B 与 C 相互独立. 若 $P(A) = P(B) = P(C) = \frac{1}{3}$,则 $P(B \cup C | A \cup B \cup C) =$

2.设二维随机变量 (X,Y) 服从正态分布 $N(\mu,\mu;\sigma^2,\sigma^2;0)$, 则 $E(XY^2)$ =

3.设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{x}{2}, 0 < x < 2, \\ 0, 其他, \end{cases}$, F(x)为X的分布函数,E(X)为X的数学期望, 则 $P\{F(X) > E(X) - 1\} =$

4.设随机变量 Y 服从参数为 1 的指数分布, a 为常数且大于零, 则 $P\{Y \le a+1|Y>a\}$ =

5.设 X_1, X_2, \dots, X_n 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本, 样本均值 $\bar{X} = 9.5$, 参数 μ 的置信度为 0.95 的双侧置信区间的置信上限为 10.8,则 μ 的置信度为 0.95 的双侧置信区间为

二、选择题

1.设随机变量 $X \sim U(0,3)$, 随机变量 Y 服从参数为 2 的泊松分布,且 X 与 Y 协方差为 -1, 则 D(2X - Y + 1) = () (C) 9. (D) 12.

2.设随机变量 $X \sim N(0,1)$, 在 X = x 条件下随机变量 $Y \sim N(x,1)$, 则 X 与 Y 的相关系数为 ()

(A)
$$\frac{1}{4}$$
. (B) $\frac{1}{2}$. (C) $\frac{\sqrt{3}}{3}$. (D) $\frac{\sqrt{2}}{2}$.

3.设 A, B, C 为三个随机事件, 且 $P(A) = P(B) = P(C) = \frac{1}{4}$, P(AB) = 0, $P(AC) = P(BC) = \frac{1}{12}$, 则 A, B, C 中恰有一个事件发生的概率为()
(A) $\frac{3}{4}$. (B) $\frac{2}{3}$. (C) $\frac{1}{2}$. (D) $\frac{5}{12}$:

4.设随机变量 X 的概率密度 f(x) 满足 f(1+x) = f(1-x), 且 $\int_0^2 f(x) dx = 0.6$, 则 $P\{X < 0\} = ($) (B) 0.3. (C) 0.4. (D) 0.5.

5.设总体 X 服从正态分布 $N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 是来自总体 X 的简单随机样本, 据此样本检验 假设: H_0 : $\mu = \mu_0$, H_1 : $\mu \neq \mu_0$, 则 ()

(A) 如果在检验水平 $\alpha = 0.05$ 下拒绝 H_0 , 那么 $\alpha = 0.01$ 下必拒绝 H_0 .

- (B) 如果在检验水平 $\alpha = 0.05$ 下拒绝 H_0 , 那么 $\alpha = 0.01$ 下必接受 H_0 .
- (C) 如果在检验水平 $\alpha = 0.05$ 下接受 H_0 , 那么 $\alpha = 0.01$ 下必拒绝 H_0 .
- (D) 如果在检验水平 $\alpha = 0.05$ 下接受 H_0 , 那么 $\alpha = 0.01$ 下必接受 H_0 ,

三、

三个箱子,第一个箱子中有4个黑球,1个白球;第二个箱子中有3个黑球,3个白球;第三个箱子中有3个黑球,5个白球.现随机地取一个箱子,再从这个箱子中取出一个球,

- 求 (1) 该球是白球的概率;
 - (2) 若已 知取出一个白球的条件下,它来自第一个箱子的概率。

四、

已知 X 与 Y 独立同分布, 且 $X \sim N(0,1), Z = X + Y$

- 求 (1) 利用卷积公式求 Z 的概率密度 $f_z(z)$;
- (2) 利用 (1) 的结论试给出 n 个相互独立的正态随机变量的线性函数服从何分布?

五、

设随机变量 X,Y 相互独立, $X \sim B\left(2,\frac{1}{3}\right), Y \sim U[0,1],$ 设 Z = X + Y,

求Z的分布函数及EZ

六、

设总体 $X \sim U[\theta_1, \theta_2]$, $(\theta_1 < \theta_2)X_1, ..., X_n$ 为来自 X 的一个简单随 机样本, 求 (1) θ_1, θ_2 的矩估计;

(2) θ_1 , θ_2 的似然估计

七、

实验室器血中产生甲、乙两类细菌的机会是相等的,且产生 k 个细菌 的概率为 $p_k = \frac{\lambda^k}{k!} \mathrm{e}^{-\lambda}$, $k = 0,1,2,\cdots$ 试求产生了甲类细菌但没有乙类 细菌的概率。

命题人:计算学部讲师团概率论命题组命制时间:2022.12.29