复旦大学大数据学院 魏忠钰

Bayes' Nets: Independence

May 23rd, 2018

Bayes' Nets

 A Bayes' net is an efficient encoding of a probabilistic model of a domain

- Questions we can ask:
 - Inference: given a fixed BN, what is P(X | e)?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?

X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) --- \rightarrow X \perp \!\!\! \perp Y$$

X and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) --- \rightarrow X \perp \!\!\!\perp Y|Z$$

(Conditional) independence is a property of a distribution

Example:

$$Alarm \bot Fire | Smoke$$

Bayes Nets: Assumptions

Assumptions we are required to make to define the Bayes net when given the graph:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$

- Beyond above "chain rule → Bayes net" conditional independence assumptions
 - Often additional conditional independences
 - They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

Conditional independence assumptions directly from simplifications in chain rule:

Additional implied conditional independence assumptions?

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - They could be independent: how?

D-separation: Outline

D-separation: Outline

Study independence properties for triples

Analyze complex cases in terms of member triples

D-separation: a condition / algorithm for answering such queries

Causal Chains

■ This configuration is a "causal chain" ■ Guaranteed X independent of Z? No!

One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.

Example:

X: Low pressure Y: Rain

Z: Traffic

 Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

In numbers:

$$P(+y | +x) = 1, P(-y | -x) = 1,$$

 $P(+z | +y) = 1, P(-z | -y) = 1$

Causal Chains

This configuration is a "causal chain"

X: Low pressure Y: Rain

Z: Traffic

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

Guaranteed Given Y, X independent of Z?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$

Yes!

Evidence along the chain "blocks" the influence

- Guaranteed X independent of Z? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Project due causes both Email box busy and library full
 - In numbers

$$P(+x | +y) = 1, P(-x | -y) = 1,$$

 $P(+z | +y) = 1, P(-z | -y) = 1$

Project
Due!

X: Email Box busy

Z: Library full

Y: Project

due

$$P(x, y, z) = P(y)P(x|y)P(z|y)$$

Guaranteed X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$

Yes!

X: Email Box busy

Z: Library full

Observing the cause blocks influence between effects.

$$P(x, y, z) = P(y)P(x|y)P(z|y)$$

Common Effect

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be

- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

The General Case

General question: in a given BN, are two variables independent (given evidence)?

Solution: analyze the graph

 Any complex example can be broken into repetitions of the three canonical cases

Reachability

- Recipe: shade evidence nodes, look for paths in the resulting graph
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent

- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless "active"

Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables {Z}?
 - Yes, if X and Y "d-separated" by Z
 - Consider all (undirected) paths from X to Y
 - No active paths = independence!

- A path is active if every triple is active:
 - Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
 - Common cause A \leftarrow B \rightarrow C where B is unobserved
 - Common effect (aka v-structure)

 $A \rightarrow B \leftarrow C$ where B or one of its descendents is observed

• All it takes to block a path is a single inactive segment

- Query: $X_i \perp \!\!\!\perp X_j | \{X_{k_1},...,X_{k_n}\}$
- lacktriangle Check all (undirected!) paths between X_i and X_j
 - If one or more active, then independence not guaranteed

$$X_i \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Otherwise (i.e. if all paths are inactive),
 then independence is guaranteed

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Yes

$L \! \perp \! \! \perp \! T'$	T	Yes
	*	

$$L \perp \!\!\! \perp B$$
 Yes

$$L \! \perp \! \! \perp \! \! B | T$$

$$L \! \perp \! \! \perp \! \! B | T'$$

$$L \! \perp \! \! \perp \! \! B | T, R$$
 Yes

Example

Variables:

R: Raining

■ T: Traffic

■ D: Roof drips

S: I'm sad

• Questions:

Structure Implications

 Given a Bayes net structure, can run d-separation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

 This list determines the set of probability distributions that can be represented

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

Bayes nets compactly encode joint distributions

 Guaranteed independencies of distributions can be deduced from BN graph structure

 D-separation gives precise conditional independence guarantees from graph alone

 A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

- Representation
- Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Sampling (approximate)
- Learning Bayes' Nets from Data