Arithmetic, Geometric and Harmonic Means Problems 21-30

Shiv Shankar Dayal

September 20, 2021

21. Insert 17 A.M. between $\frac{7}{2}$ and $-\frac{83}{2}$.

Solution: Let a_1, a_2, \dots, a_{17} are required 17 A.M. Let d to be the common difference. We know that there will be a total of 19 terms in the A.P. Thus,

$$-\frac{83}{2} = \frac{7}{2} + 18d \Rightarrow d = -\frac{5}{2}$$

Now the means can be found easily.

22. Between 1 and 31, n A.M. are inserted such that ratio of 7th and (n-1)th means is 5:9, find n.

Solution: Let the means are a_1,a_2,\ldots,a_n betweeen 1 and 31 then $d=\frac{30}{n+1}$, where d is the common difference.

$$\frac{x_7}{x_{n-1}} = \frac{5}{9} \Rightarrow \frac{1+7d}{1+(n-1)d} = \frac{5}{9} \Rightarrow n = 14$$

23. Find the relation between x and y in order that rth mean between x and 2y may be the same as rth mean between 2x and y; if n arithmetic means are inserted in each case.

Solution: In first case $x_r = x + \frac{2y-x}{n+1}r$ and in second case $y_r = 2x + \frac{y-2x}{n+1}r$

Equating them we get $y = \frac{n+1-r}{r}x$

24. Insert 7 geometric means between 2 and 162.

Solution: If we insert 7 G.M. then total no. of terms would be 9, so if r is common ratio then $162 = 2 ext{.} r^8$

$$\Rightarrow r = \sqrt{3}$$

Thus, G.M. will be $2\sqrt{3}, 6, 6\sqrt{3}, 18, 18\sqrt{3}, 54, 54\sqrt{3}$

25. Insert 6 geometric means between $\frac{8}{27}$ and $-\frac{81}{16}$

Solution: If we insert 6 G.M. then total no. of terms would be 8, so if r is the common ratio then $-\frac{81}{16}=\frac{8}{27}r^7\Rightarrow r=-\frac{3}{2}$

Thus, G.M. will be $-\frac{4}{9},\frac{2}{3},-1,\frac{3}{2},-\frac{9}{4},\frac{27}{8}$

26. If odd number of geometric means are inserted between two given numbers a and b, show that the middle geometric mean is \sqrt{ab} .

Solution: Let 2n+1 geometric means are inserted between a and b and that r is the common ratio. Then,

$$b = ar^{2n+2} \Rightarrow r = \left(\frac{b}{a}\right)^{\frac{1}{2n+2}}$$

 $\text{Middle geometric mean } = g_{n+1} = a.r^{n+1} = \sqrt{ab}$

27. Insert four harmonic means between 1 and $\frac{1}{11}.$

Solution: Let h_1,h_2,h_3,h_4 be four harmonic means between 1 and $\frac{1}{11}$. Thus corresponding A.P. will be $1,\frac{1}{h_1},\frac{1}{h_2},\frac{1}{h_3},\frac{1}{h_4},11$

Since there are six terms in A.P. $11=1+5d \Rightarrow d=2$. So A.P. will be 1,3,5,7,8,11 and corresponsind H.P. will be composed of reciprocals of these values.