Apuntes de Ecuaciones en Derivadas Parciales Guillermo Gallego Sánchez

Índice general

1.	Der	ivada débil y espacios de Sobolev	5
	1.1.	Repaso de espacios L^p	6
	1.2.	Derivada débil y espacios de Sobolev	11

4 ÍNDICE GENERAL

Capítulo 1

Derivada débil y espacios de Sobolev

Ejemplo 1.0.1. Supongamos que se nos da un problema de contorno, como por ejemplo

$$\begin{cases}
-y'' + 2y = e^x + \cos x \\
y(0) = 1, y(1) = 2.
\end{cases}$$
(1.1)

Es fácil definir lo que entendemos como una solución del problema (1.1): una función $y \in C^2([0,1])$ que cumpla la ecuación y los datos. Sin embargo, podemos cambiar la función a la derecha de la ecuación por otra con una forma más complicada, por ejemplo, que no sea continua, como

$$f(x) = \begin{cases} 1, & x \in [0, 1/2) \\ 0, & x \in [1/2, 1). \end{cases}$$

De modo que ahora queremos resolver el problema de contorno

$$\begin{cases}
-y'' + 2y = f(x) \\
y(0) = 1, y(1) = 2.
\end{cases}$$
(1.2)

En este caso ya no podemos pedir que la solución sea C^2 , en esta sección vamos a tratar de ver en qué espacios pueden vivir estas funciones que podemos entender como "soluciones" de problemas como el (1.2).

En primer lugar, vamos a cambiar ligeramente el aspecto de nuestra ecuación. Para ello consideramos una función φ en [0,1], con $\varphi(0) = \varphi(1) = 0$ tan buena como queramos, por ejemplo $\varphi \in C^{\infty}([0,1])$ y la multiplicamos por la ecuación

$$-y''\varphi + 2y\varphi = f\varphi.$$

Integramos a ambos lados y obtenemos

$$-\int_0^1 y''\varphi + \int_0^1 2y\varphi = \int_0^1 f\varphi.$$

Integrando por partes

$$\int_0^1 y'\varphi' + 2 \int_0^1 y\varphi = \int_0^1 f\varphi.$$

Buscaremos entonces qué funciones y pueden hacer que estas integrales tengan sentido. Los espacios en los que viven estas y serán los que llamaremos espacios de Sobolev.

1.1. Repaso de espacios L^p

A partir de ahora, $\Omega \subset \mathbb{R}^N$ será un conjunto abierto y conexo, es decir, un dominio.

Definición 1.1.1. Dado $p \ge 1$, se llama *espacio* L^p en Ω al conjunto

$$L^p(\Omega) = \left\{ f : U \to \mathbb{R} \text{ medibles} : \int_{\Omega} |f|^p < \infty \right\}.$$

Se define la norma-p de una función $f \in L^p(\Omega)$ como el número

$$||f||_p = \left(\int_{\Omega} |f|^p\right)^{1/p}.$$

Proposición 1.1.2 (Desigualdad de Hölder). Sean p, q tales que

$$\frac{1}{p} + \frac{1}{q} = 1$$

y sean $f \in L^p(\Omega)$ y $g \in L^p(\Omega)$. Entonces se verifica la siguiente designaldad

$$\int_{\Omega} |f||g| \le ||f||_p ||g||_q.$$

Demostración. Para probar la desigualdad de Hölder haremos uso del siguiente lema:

Lema 1. Sean $a \ge b \ge 0$, $y \ \lambda \in (0,1)$. Se verifica la siguiente designaldad

$$a^{\lambda}b^{1-\lambda} \le \lambda a + (1-\lambda)b.$$

Demostración. (del Lema 1) Si a=0 ó b=0, entonces el resultado es trivial. Supongamos entonces que a,b>0. En tal caso, podemos considerar x=a/b y queremos probar la desigualdad

$$x^{\lambda} \le \lambda x + (1 - \lambda).$$

Para verlo, consideremos la función

$$g(x) = x^{\lambda} - \lambda x - (1 - \lambda).$$

Si tomamos su derivada, tenemos

$$g'(x) = \lambda(x^{\lambda - 1} - 1).$$

Ahora, si $a \ge b$, tenemos que $x \ge 1$ y, como $\lambda \in (0,1), \ \lambda - 1 \le 0$ y $x^{\lambda - 1} \le 1$. Por tanto, g'(x) < 0, y, como g(1) = 0; para todo $x \ge 1$, $g(x) \le 0$.

Volviendo a la demostración de la desigualdad de Hölder, llamemos $a = |f|^p / ||f||_p^p$ y $b = |g|^q / ||g||_q^q$. Supongamos sin pérdida de generalidad que $a \ge b$ y llamemos $\lambda = 1/p$, de modo que $1 - \lambda = 1/q$. Tenemos entonces, aplicando el lema

$$\left(\frac{|f|^p}{\|f\|_p^p}\right)^{1/p} \left(\frac{|g|^q}{\|g\|_q^q}\right)^{1/q} \le \frac{1}{p} \frac{|f|^p}{\|f\|_p^p} + \frac{1}{q} \frac{|f|^q}{\|f\|_q^q}.$$

Integrando todo en Ω , queda

$$\int_{\Omega} \frac{|f||g|}{\|f\|_p \|g\|_q} \leq \frac{1}{p} \int_{\Omega} \frac{|f|^p}{\|f\|_p^p} + \frac{1}{q} \int_{\Omega} \frac{|f|^q}{\|f\|_q^q} = \frac{1}{p} + \frac{1}{q} = 1.$$

Por tanto

$$\int_{\Omega} |f||g| \le ||f||_p ||g||_q,$$

tal y como queríamos probar.

Proposición 1.1.3. Si Ω es acotado, entonces se tienen las siguientes inclusiones

$$L^1(\Omega) \supset L^2(\Omega) \supset L^3(\Omega) \supset \cdots \supset L^{p-1}(\Omega) \supset L^p(\Omega) \supset L^{p+1}(\Omega) \supset \cdots$$

Demostración. En efecto, si $1 \le p < q$, por la desigualdad de Hölder

$$\int_{\Omega} |f|^p = \int_{\Omega} |f^p| = \int_{\Omega} |f^p| |\chi_{\Omega}| \le ||f^p||_q ||\chi_{\Omega}||_r,$$

con r tal que

$$\frac{1}{q} + \frac{1}{r} = 1.$$

Por tanto,

$$||f||_p^p = \int_{\Omega} |f|^p \le ||f^p||_q ||\chi_{\Omega}||_r = ||f||_q^p \mu(\Omega)^{1/r}.$$

Luego

$$||f||_p \le \text{cte.} ||f||_q$$

Proposición 1.1.4. El espacio $L^p(\Omega)$ equipado con la norma-p es un espacio normado.

Demostración. Lo único no trivial que hay que demostrar es la desigualdad triangular, esto es

$$||f + g||_p \le ||f||_p + ||g||_p.$$

Veámosla

$$||f+g||_p^p = \int_{\Omega} |f+g|^p = \int_{\Omega} |f+g||f+g|^{p-1} \le \int_{\Omega} (|f|+|g|)|f+g|^{p-1}$$

$$= \int_{\Omega} |f||f+g|^{p-1} + \int_{\Omega} |g||f+g|^{p-1} \le ||f||_p ||f+g|^{p-1}||_q + ||g||_p ||f+g|^{p-1}||_q$$

Donde q es el necesario para que se cumpla la desigualdad de Hölder, es decir,

$$\frac{1}{q} + \frac{1}{p} = 1.$$

Despejando q, tenemos que vale precisamente q=p/(p-1).

Pero entonces

$$\||f+g|^{p-1}\|_q = \left(\int_{\Omega} (|f+g|^{p-1})^q\right)^{1/q} = \left(\int_{\Omega} (|f+g|^p)\right)^{(p-1)/p} = \|f+g\|_p^{p-1}.$$

Por tanto,

$$||f + g||_p^p \le ||f + g||_p^{p-1} (||f||_p + ||g||_p).$$

Dividiendo a ambos lados por $||f + g||_p^{p-1}$ tenemos lo que se quería probar.

Que los espacios L^p sean normados me va a permitir hablar de convergencia de funciones en L^p . Así, si (f_n) es una sucesión en $L^p(\Omega)$ y $f \in L^p(\Omega)$, diremos que la sucesión (f_n) converge $a \ f$ en L^p y se denota

$$f_n \to f L^p$$

si y sólo si $\lim_{n\to\infty} ||f_n - f||_n = 0.$

Nos interesará ahora recordar ciertos resultados de teoría de la medida que nos relacionen integrales y convergencias y que nos serán útiles más adelante. Pasamos a enunciarlos a continuación, sin demostración.

Teorema 1.1.5 (Teorema de la convergencia monótona). Sea una sucesión (f_n) de funciones $f_n \in L^1(\Omega)$ tales que

$$f_1 \leq f_2 \leq \cdots f_n \leq f_{n+1} \leq \cdots$$

Entonces

$$\int_{\Omega} \lim_{n \to \infty} |f_n| = \lim_{n \to \infty} \int_{\Omega} |f_n|.$$

Teorema 1.1.6 (Teorema de la convergencia dominada). Sea una sucesión (f_n) de funciones $f_n \in L^1(\Omega)$ tales que existe una función $g \in L^1$ tal que $|f_n| \leq g$ para cada $n \in \mathbb{N}$ y existe una función f tal que $f_n \to f$ en casi todo punto. Entonces

$$\lim_{n \to \infty} \int_{\Omega} |f_n| = \int_{\Omega} |f|.$$

Teorema 1.1.7 (Lema de Fatou). Sea una sucesión (f_n) de funciones $f_n \in L^1$ tales que $f_n \geq 0$ para cada $n \in \mathbb{N}$. Entonces

$$\int_{\Omega} \liminf_{n \to \infty} |f_n| \le \liminf_{n \to \infty} \int_{\Omega} |f_n|.$$

Haciendo uso de alguno de estos resultados, vamos a ver que los espacios L^p , con sus respectivas normas-p, son completos.

Proposición 1.1.8. El espacio $L^p(\Omega)$ es de Banach. Además, si p=2, podemos definir el producto

$$\langle u, v \rangle = \int_{\Omega} uv,$$

que dota a $L^2(\Omega)$ de la estructura de espacio de Hilbert.

Demostración. Supongamos que (f_n) es una sucesión de Cauchy en L^p . Sin pérdida de generalidad, podemos tomar una subsucesión tal que $||f_{n+1} - f_n||_p \le 2^{-n}$. Tenemos que encontrar una función $f \in L^p$ tal que $\lim_{n\to\infty} ||f_n - f||_p = 0$.

Considero entonces la sucesión de funciones (g_n) , con

$$g_n = |f_1| + |f_2 - f_1| + |f_3 - f_2| + \dots + |f_n - f_{n-1}|.$$

Esta sucesión es claramente monótona creciente. Además,

$$\|g_n\|_p \le \|f_1\|_p + \sum_{i=1}^{n-1} \|f_{i+1} - f_i\|_p \le \|f_1\|_p + \sum_{i=1}^{\infty} \|f_{i+1} - f_i\|_p \le \|f_1\|_p \sum_{i=1}^{\infty} 2^{-i} = \text{cte.}$$

De modo que las $g_n \in L^p(\Omega)$. Pero entonces las $g_n^p \in L^1(\Omega)$, ya que

$$\int_{\Omega} |g_n^p| \le \int_{\Omega} |g_n|^p \le \infty.$$

Podemos aplicar entonces el teorema de la convergencia monótona para obtener que

$$\int_{\Omega} \lim_{n \to \infty} |g_n|^p = \int_{\Omega} \lim_{n \to \infty} |g_n^p| = \lim_{n \to \infty} \int_{\Omega} |g_n^p| = \lim_{n \to \infty} \int_{\Omega} |g_n|^p.$$

Tenemos entonces que si $g = \lim_{n \to \infty} g_n$,

$$\lim_{n \to \infty} ||g_n - g||_p = 0,$$

o, lo que es lo mismo

$$q_n \to q L^p$$
.

Para ver que (f_n) converge en L^p , podemos usar que la sucesión es de Cauchy para observar que entonces debe converger puntualmente a una función f en casi todo punto. Además,

$$|f_n| = |f_1| + \sum_{i=1}^n (|f_{i+1}| - |f_i|) \le |f_1| + \sum_{i=1}^n |f_{i+1} - f_i| = g_n \le g.$$

Ahora, como elevar a p es continuo, tenemos que $|f_n^p| \leq g^p \in L^1(\Omega)$ y que $f_n^p \to f^p$ en casi todo punto. Por tanto, $|f_n - f|^p \leq 2|g|^p$ y $f_n^p - f^p \to 0$ en casi todo punto. Aplicando el teorema de la convergencia dominada, tenemos que

$$\lim_{n \to \infty} \int_{\Omega} |f_n - f|^p = 0.$$

Luego

$$\lim_{n \to \infty} ||f_n - f||_p = 0,$$

o, lo que es lo mismo

$$f_n \to f L^p$$
.

En lo que sigue, haremos bastante uso del siguiente teorema, que no demostraremos:

Proposición 1.1.9. El conjunto $C_c(\Omega)$ de las funciones continuas con soporte compacto en Ω es denso en $L^p(\Omega)$.

Proposición 1.1.10. Sea $f \in L^1(\Omega)$. Si

$$\int_{\Omega} f\varphi = 0,$$

para toda $\varphi \in C_c(\Omega)$, entonces f(x) = 0 para casi todo $x \in \Omega$.

Observación. Nótese que el hecho de que una sucesión (f_n) converga una función f en casi todo punto no implica que lo haga en $L^p(\Omega)$. Por ejemplo podemos tomar la sucesión

$$f_n = \frac{1}{n} \chi_{[0,n]}.$$

Esta sucesión converge a 0 en casi todo punto, pero $||f_n||_p = 1$ para todo $n \in \mathbb{N}$.

Demostración. Si f es continua, el resultado es fácil. Si hay algún punto $x_0 \in \Omega$ tal que $|f(x_0)| > 0$, entonces existe un $\varepsilon > 0$ tal que |f(x)| > 0 para todo $x \in B_{\varepsilon}(x_0)$. Basta tomar entonces una función φ que valga 1 en $B_{\varepsilon/2}(x_0)$ y 0 fuera de $B_{\varepsilon}(x_0)$, de modo que

$$\left| \int_{\Omega} f \varphi \right| = \left| \int_{B_{\varepsilon/2}(x_0)} f \right| > 0.$$

En el caso general, en que f puede no ser continua, vamos a usar la Proposición 1.1.9. Sea $\varepsilon > 0$. Sé que existe una sucesión (f_n) de funciones $f_n \in C_c(\Omega)$ tal que $f_n \to f$ L_1 , es decir, tal que existe un $n_0 \in \mathbb{N}$ de modo que si $n \geq n_0$ entonces $||f_n - f||_1 < \varepsilon$. Ahora, para cualquier $\varphi \in C_c(\Omega)$, se tiene

$$\int_{\Omega} f_n \varphi = \int_{\Omega} (f_n - f) \varphi + \int_{\Omega} f \varphi = \int_{\Omega} (f_n - f) \varphi,$$

ya que $\int_{\Omega} f \varphi = 0$ por hipótesis. Ahora, si aplico la desigualdad de Hölder,

$$\int_{\Omega} f_n \varphi = \int_{\Omega} (f_n - f) \varphi \le ||f_n - f||_1 ||\varphi||_{\infty} < ||\varphi||_{\infty} \varepsilon.$$

Defino entonces los conjuntos

$$K_1 = \{x \in \Omega | f(x) \ge \varepsilon\},\$$

 $K_2 = \{x \in \Omega | f(x) \le -\varepsilon\},\$

y llamo $K=K_1\cup K_2$. Tomo además una función $\varphi\in C_c(\Omega)$ que valga 1 en K_1 y -1 en K_2 . Entonces

$$\int_{\Omega} f_n \varphi = \int_K f_n \varphi + \int_{\Omega - K} f_n \varphi = \int_K |f_n| + \int_{\Omega - K} f_n \varphi.$$

Recordemos además que $\int_{\Omega} f_n \varphi \leq \|\varphi\|_{\infty} \varepsilon$. Tenemos entonces

$$\int_K |f_n| \le \|\varphi\|_{\infty} \varepsilon - \int_{\Omega - K} f_n \varphi \le \|\varphi\|_{\infty} \varepsilon + \varepsilon \|\varphi\|_{\infty} \mu(\Omega - K) \le \text{cte.} \varepsilon.$$

Por tanto,

$$\int_{\Omega} |f_n| \le \int_{K} |f_n| + \int_{\Omega - K} |f_n| \le \text{cte.}\varepsilon + \varepsilon \mu(\Omega - K) = \text{cte.}\varepsilon.$$

De aquí concluimos que

$$\lim_{n \to \infty} \int_{\Omega} |f_n| = 0.$$

Usando el lema de Fatou, obtenemos

$$\int_{\Omega} |f| = 0,$$

que implica que f es nula en casi todo punto de Ω , tal y como queríamos probar.

1.2. Derivada débil y espacios de Sobolev

Ejemplo 1.2.1. Volvamos al caso del Ejemplo 1.0.1. Habíamos llegado a la conclusión de que podíamos entender como una solución de nuestro problema de contorno (1.2) una función y tal que

$$\int_0^1 y'\varphi' + 2\int_0^1 y\varphi = \int_0^1 f\varphi,$$

para funciones φ «tan buenas como queramos». Queríamos entonces ver qué funciones y podrían hacer que estas integrales tuvieran sentido. Para que la integral $\int_0^1 y \varphi$ tenga sentido basta pedir que $y \in L^2$. Sin embargo, ¿qué le tenemos que pedir a y para que $\int_0^1 y' \varphi'$ tenga sentido? ¿Qué es y'? ¿Se puede definir algún tipo de derivada?

Más en general, si paraa una función φ , denotamos por φ_{x_i} a la derivada parcial $\frac{\partial \varphi}{\partial x_i}$, dada una función u, queremos hallar una función «derivada débil» (respecto de x_i), que podremos denotar como u_{x_i} que cumpla la fórmula de integración por partes. Es decir, u_{x_i} ha de ser tal que

$$\int u\varphi_{x_i} = -\int u_{x_i}\varphi,$$

para cualquier φ «suficientemente buena» y de soporte compacto. De nuevo, para que esta integral tenga sentido, es necesario que esta $u_{x_i} \in L^2$.

Definición 1.2.2. Sea $u \in L^p(\Omega)$. Se dice que una función $v \in L^p(\Omega)$ para algún $p \ge 1$ es una derivada débil de u respecto de x_i si

$$\int_{\Omega} u\varphi_{x_i} = -\int_{\Omega} v\varphi$$

para toda $\varphi \in C_c^{\infty}(\Omega)$ (función suave con soporte compacto en Ω). Esta v se denota como u_{x_i} .

Más generalmente, si $\alpha = (\alpha_{i_1}, \dots, \alpha_{i_r})$, con $1 \leq i_1 < \dots < i_r \leq N$, se dice que una función $v \in L^p(\Omega)$ para algún $p \geq 1$ es una derivada débil de u respecto del multiíndice α si

$$\int_{\Omega} u D^{\alpha} \varphi = (-1)^{|\alpha|} \int_{\Omega} v \varphi$$

para toda $\varphi \in C_c^{\infty}(\Omega)$, donde

$$D^{\alpha} = \frac{\partial^{\alpha_{i_1} + \dots + \alpha_{i_r}}}{\partial x_{i_1}^{\alpha_{i_1}} \cdots \partial x_{i_r}^{\alpha_{i_r}}}.$$

Esta v se denota como $D^{\alpha}u$.

Finalmente, se definen los espacios de Sobolev como los conjuntos

$$W^{k,p}(\Omega) = \left\{ u \in L^p(\Omega) : D^j u \in L^p(\Omega), \text{ para todo } |j| \le k \right\}.$$

En particular nos interesa el espacio

$$H^{1}(\Omega) = W^{1,2}(\Omega) = \{ u \in L^{2}(\Omega) : u_{x_{i}} \in L^{2}(\Omega), \text{ para todo } i = 1, \dots, n \}.$$

Ejemplo 1.2.3. Sea f(x) = |x| para $x \in (-1,1)$. Definimos

$$f'(x) = \begin{cases} 1 & x > 0, \\ -1 & x < 0. \end{cases}$$

Veamos que, en efecto, f' es la derivada débil de f. Basta comprobar la fórmula: dada $\varphi \in C_c^{\infty}((0,1))$, tenemos que

$$\int_{-1}^{1} f(x)\varphi'(x)dx = \int_{-1}^{1} |x|\varphi'(x)dx = \int_{-1}^{0} -x\varphi'(x)dx + \int_{0}^{1} x\varphi'(x)dx$$
$$= \int_{-1}^{0} \varphi(x)dx - \int_{0}^{1} \varphi(x)dx = -\int_{-1}^{1} f'(x)\varphi(x)dx.$$

Observación. Veremos que la condición de que las $\varphi \in C_c^{\infty}(\Omega)$ se puede relajar. Podemos considerar simplemente funciones en espacios de Sobolev y tales que «valgan 0 en el borde», más tarde precisaremos qué quiere decir esto.

Cabe preguntarse ahora sobre la unicidad de la derivada débil.

Proposición 1.2.4. La derivada débil es única (en casi todo punto) si Ω es acotado.

Demostración. Supongamos que existen $v_1, v_2 \in L^p(\Omega)$ tales que

$$\int_{\Omega} u D^{\alpha} \varphi = (-1)^{|\alpha|} \int_{\Omega} v_1 \varphi = (-1)^{|\alpha|} \int_{\Omega} v_2 \varphi$$

para toda $\varphi \in C_c^{\infty}(\Omega)$. Entonces

$$\int_{\Omega} (v_1 - v_2)\varphi = 0$$

para toda φ . Como $v_1, v_2 \in L^p(\Omega), v_1 - v_2 \in L^p(\Omega) \subset L^1(\Omega)$, ya que Ω es acotado. Ahora, por la Proposición 1.1.10, $(v_1 - v_2)(x) = 0$ para casi todo x, luego $v_1(x) = v_2(x)$ para casi todo x.

Ejemplo 1.2.5. Consideremos la función

$$u(x) = \begin{cases} x & x \in (0,1] \\ 1 & x \in (1,2). \end{cases}$$

Como la derivada débil es única, en la parte donde la función es derivable, debe coincidir con la derivada «clásica», por tanto, nuestra única candidata a derivada débil es la función

$$u'(x) = \begin{cases} 1 & x \in (0,1) \\ 0 & x \in (1,2). \end{cases}$$

En efecto, esta función es la derivada débil, ya que, dada $\varphi \in C_c^{\infty}((0,2))$,

$$\int_0^2 u(x)\varphi'(x) = \int_0^1 x\varphi'(x)dx + \int_1^2 \varphi'(x)dx = \varphi(1) - \varphi(1) - \int_0^1 \varphi(x)dx = -\int_0^1 \varphi(x)dx.$$

Pero cabe preguntarse entonces qué pasa si cambiamos ligeramente la función por una que no es continua, por ejemplo

$$u(x) = \begin{cases} x & x \in (0,1] \\ 2 & x \in (1,2). \end{cases}$$

En este caso, dada $\varphi \in C_c^{\infty}((0,2)),$

$$\int_0^2 u(x) \varphi'(x) dx = \int_0^1 x \varphi'(x) dx + \int_1^2 2 \varphi'(x) dx = \varphi(1) - \int_0^1 \varphi(x) dx - 2 \varphi(1) = - \int_0^1 \varphi(x) dx - \varphi(1),$$

que es, en general, distinto de $-\int_0^1 \varphi(x) dx$.

¿Es posible encontrar entonces alguna derivada débil? Es decir, ¿existe alguna v tal que

$$-\int_0^1 v\varphi = -\int_0^1 \varphi - \varphi(1),$$

para toda $\varphi \in C_c^{\infty}((0,2))$? La respuesta es que no. Para verlo consideremos la sucesión de funciones (φ_n) , con

$$\varphi_n(x) = \begin{cases} 0 & x \le -1/n, \\ 1 + nx & x \in (-1/n, 0], \\ 1 - nx & x \in (0, 1/n], \\ 0 & x > 1/n. \end{cases}$$

(Realmente estas funciones no me sirven, porque no son C^{∞} , pero puedo tomar unas funciones similares, «redondeadas».) Puedo tomar entonces un n lo suficientemente grande de forma que

$$-\int_0^1 v\varphi_n + \int_0^1 \varphi_n < \varphi_n(1) = 1.$$

En general, este problema lo van a tener todas las funciones que no son continuas, de hecho, veremos la inclusión $H^1(\Omega) \subset C(\Omega)$.