

Millimeter-wave precision spectroscopy of potassium in Rydberg states

Huan Bui, Charles Conover

Department of Physics and Astronomy, Colby College, Waterville, Maine

Abstract

We measure energy spacings between highly excited states in potassium to a part in 10^7 to determine d-state quantum defects and absolute energy levels of potassium. K-39 atoms are magneto-optically trapped (MOT) and cooled to 1 mK, and excited from $4s_{1/2}$ to $nd_{3/2}$ or $nd_{5/2}$ by a 405 nm and 980 nm diode laser in succession. $nd \rightarrow (n+1)d$ transitions are driven by a μs -long pulse of millimeter-wave, and the atoms are selectively ionized. The (n+1)d population is measured as a function of mm-wave frequency. Static fields in the MOT are nullified in three dimensions. Zero-oscillatory-field transition energies can be measured in two ways: (1) extrapolating zero-mm-wave resonance frequency and (2) Ramsey's separated oscillatory field (SOF) method.

Sketch of the MOT, with the MOT cloud trapped in a magnetic field created by 6 MOT coils and cooled by a 770 nm laser (not shown). The rods provide a static field and an ionization field. A mm-wave drives nd \rightarrow (n+1)d transitions.

(a) Trapping and excitations from $4s_{1/2}$ to nd states in 2 steps. (b) Two-photon mm-wave transitions and their approximate frequencies.

Static field elimination

Energy levels at highly excited states are sensitive to external static electric fields. Measured $nd \rightarrow (n+1)d$ transition frequencies vary quadratically with the static field amplitude:

$$\Delta \nu_{nd \to (n+1)d} = \nu_0 - \frac{1}{2} \Delta \alpha E^2,$$

where $\Delta \alpha$ is the difference between the (n+1)d and nd polarizabilities. In general, α represents how strongly energy levels shift in response to an external static electric field.

Static field elimination for $33d_{5/2} \rightarrow 34d_{5/2}$ transition. Shown are $34d_{5/2}$ population distributions and transition frequencies at different static field values in orthogonal directions. Projected maximum frequency in one direction corresponds to a DC bias that nullifies the field in that direction.

Zero mm-wave power extrapolation

While not a large effect, the energy shift caused by the mm-wave source is significant at our level of precision. This shift is directly proportional to the intensity of the interacting mm-wave.

Zero-power extrapolation for $33d_{5/2} \rightarrow 34d_{5/2}$ transition after static field elimination. The y-intercept of the linear fit of the measured transition frequencies is the mmwave-free transition frequency. The energy shifts from 0.35 to 0 relative intensity are on the order of a few kHz.

The $33d_{5/2} \rightarrow 34d_{5/2}$ spacing can then be calculated:

$$\Delta \nu_0 = 2 f_{mm} = 179,496 \text{ MHz} - 12.540 \text{ MHz}$$

= 179,483.46 MHz

Ramsey's SOF, an alternative technique

Ramsey's separated oscillatory field method removes the need for zero-power extrapolation. K atoms in the nd state are exposed to a double pulse of width τ and delay T instead of a long, single pulse.

The final (n+1)d state population oscillates as a function of T:

$$P_{(n+1)d} \propto \cos^2\left(\frac{\Delta_0 T}{2}\right)$$
,

where $\Delta_0 = \omega_0 - [E_{(n+1)d} - E_{nd}]/\hbar$ is the beat frequency between the mm-wave frequency and the atomic transition frequency in zero oscillatory field.

With known mm-wave frequency offset, fitting a cosine squared to a delay scan signal allows for determining the zero-power frequency for the $33d_{5/2} \rightarrow 34d_{5/2}$ transition.

Determination of d-state quantum defects

The absolute energies are given by:

$$E_n = -\frac{hcR_K}{(n-\delta(n))^2},$$

where n is the principal quantum number, and $\delta(n)$ is parameterized by two coefficients, δ_0 and δ_2 , as:

$$\delta(n) = \delta_0 + \frac{\delta_2}{(n - \delta_0)^2}.$$

nd \rightarrow (n+1)d transition frequencies versus principal quantum number. A fit of the measured transition energies can be used to determine δ_0 and δ_2 for the d_{3/2} and d_{5/2} states. Residuals of the fit are less than a part in 10⁷ of the transition frequency.

Acknowledgments

This research is supported by Colby College.