Step-by-step

General Overview

Simulation

- 1. Formulate the flow problem
- 2. Build the geometry and flow domain
- 3. Establish the BC and IC
- 4. Build the mesh
- 5. Run the simulation and monitor6. Perform post-processing

Modeling

- 1. Select the features and ground truth 2. Clean and reformat the data
- 3. Build the dataset
- 4. Build and debug the neural model
- 5. Train and monitor 6. Check Physics coherence

Coupling

- 1. Containerize the neural model
- 2. Build lightweight inference engine

- 3. Optimize network placement
- 4. Couple solver + model

5. Monitor & insure numerical stability

Step-by-step

General Overview

Simulation

- 1. Formulate the flow problem
- 2. Build the geometry and flow domain
- 3. Establish the BC and IC
- 4. Build the mesh
- 5. Run the simulation and monitor
- 6. Perform post-processing

Modeling

- 1. Select the features and ground truth
- 2. Clean and reformat the data
- 3. Build the dataset
- 4. Build and debug the neural model
- 5. Train and monitor
- 6. Check Physics coherence

Coupling

- 1. Containerize the neural model
- 2. Build lightweight inference engine
- 3. Optimize network placement
- 4. Couple solver + model
- 5. Monitor & insure numerical stability

A Data Journey

Let's be Concrete