用电量预测模型

罗磊 2018-07-04

1. GBDT 模型

将数据样本按照 7: 3 的比例分割为训练集和测试集,使用上一时刻的数据来预测下一时刻的数据,使用 GBDT 模型对样本训练集进行训练,然后在测试集上进行测试。GBDT 模型的参数设置为:

参数名称 参数值 $n_estimators$ 300 learning_rate 0.01 min_samples_split 100 min_samples_leaf 200 max_depth 4 1 subsample random_state 10 loss 'lad'

表格 1. GBDT 模型参数设置

结果如下:

求得的平均绝对百分偏差为 MAPE = 0.1611。

2. XGBoost 模型

同 GBDT 模型一样, XGBoost 模型也使用上一时刻的数据来预测下一时刻的数据,参数设置为:

参数名称	参数值	
n_estimators	100	
learning_rate	0.1	
seed	0	

表格 2. XGBoost 模型参数设置

loss	'mse'
1033	IIISC

结果如下:

求得的平均绝对百分偏差为 MAPE = 0.1609。

3. LSTM 模型

使用 Keras 框架搭建该 LSTM 模型,首先进行数据归一化,然后按照 7:3 的比例,构造训练集和测试集。设置预测序列长度 seq_len = 10,即使用前 10 位用电量数据去预测接下来时刻的用电量数据。模型迭代次数 epochs = 1000,使用批式随机梯度下降法,设置batch_size = 3000。对测试集预测结果如下:

求得的平均绝对百分偏差为 MAPE = 4.8434。

4. K折检验

下面均使用 K 折检验判断 XGBoost 模型和 LSTM 的准确度情况,其中参数 k-fold = 10。得到下表:

表格 3. XGBoost 和 LSTM 两模型进行 K 折检验得到的 MAPE 结果比较

XGBoost		XGBoost LSTM	
0	0.007934	0	0.2237
1	0.005522	1	0.3739

2	0.005753	2	0.1490
3	0.006681	3	0.1564
4	0.006625	4	0.1755
5	0.007439	5	0.1742
6	0.006131	6	0.4220
7	0.013443	7	0.1591
8	0.008696	8	0.1532
9	0.004889	9	0.1750
mean	0.007312	mean	0.2162

从两模型的 MAPE 来看, XGBoost 略胜一筹, 更适合解决这个问题, 不过还需要后续调参来进一步确认。

5. 考察参数 seq_len 对模型 MAPE 的影响

从上图可以看出,随着 seq_len 的增大,LSTM 的预测准确度呈现先增加后降低的趋势,但在该程序中的表现不如 XGBoost (未调参)。