RASCUNAS ENLUCIES P2

$$A\overline{x} = \overline{d}$$

$$\overline{x}$$

= (\(\bar{\chi} \) - x sol. violvel de com valor 0. Como vi vo

- (2) leu sol. ohna = v ten solució via'vel basica ótima dignus. 2* = (x' 5) B dob pelos j teis que 2* j > 0 define ahinas l.i. de (Ai Id), protonto d A, logo x' i basica.

- Pela contrapositiva: PPL now tem valor of mo >0 =2

De hydre, not tem vals ohno or vals of mo = 0

CASOB: Solucion of ma $(x', w') = (\bar{x}', \bar{0})$ f.g. $A\bar{x}' + \bar{0} = \bar{d}$ Postunto $\bar{x}'' \neq \bar{v}$ viovel de $\bar{\omega}$ CASOB: Em $A\bar{x} = \bar{d}$ podemos considerer \bar{d} \bar{x} $\bar{0}$ The plesment \bar{x} (-1) as equacies con dical

De $A\bar{x} + \bar{w} = \bar{d}$ temos $(\bar{x}) = \bar{0}$ \bar{d} $\bar{d$ vieivel; como a frucio objetivo é limitada (20)
o PPL tem valor ottimo, logo o coo A não ocorre

MAX \vec{c} \vec{x} , $\vec{A}\vec{x} = \vec{d}$. \vec{x} \vec{y} \vec{o} \vec{b} = \vec{b} \vec{b} \vec{c} \vec Nos linhas de @

(X) = (ASIJ); - (ABAN); XN Foundo

Formo

Formo

Figure

Figure X = Pi + (-9i +) € par hypothese (-qit) >0 portanto Xki >0 e $\vec{c}^{\intercal}\vec{x} = \vec{c}_{8}\vec{p} + (\vec{c}_{N} - \vec{c}_{8}\vec{q})\vec{x} = \vec{c}_{8}\vec{p} + (\vec{c}_{N} - \vec{c}_{8}\vec{q})(\vec{c}_{N})$ $= G_{BP} + \left(\overline{C_{N}} \right)_{\ell_{t}} - \left(G_{B}^{T} \overline{q} \right)_{\ell_$ -> 100 quando 00-700 país 0070

(NOTAGAN STEQUE SLIDES)

SE fir PR é convexa, C=1x: f(x) ¿ c (GAVERD: Hxye C, the [0/1], 2x+ (1-2) ye C? $f(\lambda x + (1-\lambda)y) \leq \lambda f(\alpha) + (-\lambda)f(y)$ $\leq \lambda c + (1-\lambda)c$ [fconvexa] nonhub 1x+(1-x) y e C. * X x C= { (x,y) \in 1222 : y > ax2 + bx + c } Corners? (xy), (z,w) e C 1 7 = [0,1] $\lambda(x,y) + (1-\lambda)(2,w) = (\lambda x + (1-\lambda)2, \lambda y + (1-\lambda)w)$ $\lambda y + (1-\lambda)w > \lambda (\alpha x^{2} + bx + c) + (1-\lambda)(\alpha x^{2} + bx + c)$ $= \alpha (\lambda x^{2} + (1-\lambda)x^{2}) + b(\lambda u + (1-\lambda)w) + c$ $= \alpha (\lambda x + (1-\lambda)x^{2}) + b(\lambda u + (1-\lambda)w + c)$... >(x,y)+ (1-1)(2w) € C

C= $\frac{1}{2} \times e^{2}$: $\frac{1}{2} \cdot e^{2}$: $\frac{1}{2}$