Suites et Séries – DM1

À rendre le mardi 25 octobre 2022

Numéro	étudiant :	Nom chinois	: Nom	français:	
I GIIICI O	coadian.		,	mangano	

1 Valeurs d'adhérence

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle bornée.

- 1. Montrer que si $(u_n)_{n\in\mathbb{N}}$ est divergente, alors elle admet au moins deux valeurs d'adhérence distinctes.
- 2. Montrer que si $\lim_{n\to+\infty} \left(u_{n+1}-u_n\right)=0$ alors Adh(u) est un intervalle de \mathbb{R} .

2 Suite implicite

Soit la suite réelle $(x_n)_{n\in\mathbb{N}}$ définie par : pour tout $n\in\mathbb{N}$, x_n est l'unique solution de $\tan(x)=x$ dans l'intervalle $\left[n\pi-\frac{\pi}{2},n\pi+\frac{\pi}{2}\right[$.

- 1. Pourquoi cette suite est-elle bien définie?
- 2. Donner la limite de x_n lorsque n tend vers $+\infty$.
- 3. Donner un développement asymptotique à 3 termes de x_n au voisinage de $+\infty$.

3 Suite récurrente

Soit $f: x \mapsto \frac{x^3+1}{3}$, et soit la suite réelle $(a_n)_{n\in\mathbb{N}}$ définie par $a_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}, \ a_{n+1} = f(a_n)$.

Étudier, en fonction de a_0 , le comportement de la suite $(a_n)_{n\in\mathbb{N}}$.