Where to from here?

Biophysical realism
Ion channel physics
Additional channels
Geometry

Simplified models
Fundamental dynamics
Analytical tractability

The electric personalities of neurons

Neuron, what are you trying to tell us?

We see that neurons can have a wide range of firing patterns, which come about partly because of the nature of their dynamics, and partly because of the nature of their inputs.

The integrate-and-fire neuron

Like a passive membrane:

$$C_m \frac{dV}{dt} = -g_L(V - E_i) - I_e$$

but with the additional rule that when $V \rightarrow V_T$, a spike is fired and $V \rightarrow V_{reset}$.

 E_L is the resting potential of the "cell".

How do we make it excitable?

Exponential integrate-and-fire neuron

 $f(V) = -a(V-V_0) + \exp([V-V_{th}]/\Delta)$

这个是负数的时候,这一项很小,因此对前一项的影响很小,所以前面还是linear的

Fourcaud-Trocmé, Hansel, van Vreeswijk and Brunel.

The theta neuron

即使没有input,还是能一直firing,它们会一直振荡。因 此通常用这样的模型来刻画周期性地firing的神经元。

$$d\theta/dt = 1 - \cos \theta + (1 + \cos \theta) I(t)$$

Ermentrout and Kopell

$$dV/dt = f(V) + I(t)$$

V变大,u也变大

Two-dimensional models

On-line resources about phase plane analysis

Two-dimensional models

The simple model

$$v'=0.04v^2+5v+140-u+1$$
 $u'=a(bv-u)$

if $v=30 \text{ mV}$,
then $v-c$, $u-u+d$

www.izhikevich.com

Where to from here?

Biophysical realism
Ion channel physics
Additional channels
Geometry

Simplified models
Fundamental dynamics
Analytical tractability