m 1	
<u>1</u>	
Determine the molecular formula and wr natters for the combustion of Q	ite a balanced equation with correct state
Calculation	
Calculate the heat capacity of the calorim	neter (excluding the water).
	Determine the molecular formula and wrematters for the combustion of Q Calculation Calculate the heat capacity of the caloring

Version 22.30 Page 1 of 18

Name	::	Student Code:
		Problem
1-3.	Calculate the standard enthalpy of formation (ΔH^{0}_{f}) of Q. Calculation with proper units:	
	ΔH ^o f of Q is	kJ mol ⁻¹

Version 22.30 Page 2 of 18

PART B

Q in benz	zene is mon	nomer	dime	er.
Calculate the fre benzene at 1 atn	ezing point (T_f) of	a solution c	ontaining 0.	244 g of Q in 5
<u>Calculation</u>				

Version 22.30 Page 3 of 18

Name:	:	Student Code:	
Prob	lem 2		
PART A	<u>A</u>		
2-1.	On adding 1.00 mL of HCl, which species reacts first	and what would be the product	?
	Species which reacts first is		
	The product is		
2-2.	What is the amount (mmol) of the product formed in	(2-1)?	
	mmol of product =		
2-3 W	rite down the main equilibrium of the product from (2-1)) reacting with the solvent?	

Version 22.30 Page 4 of 18

blem 2				
What are the ame	ounts (mmol) of N	a ₂ A and NaHA	A initially presen	t?
mmol of Na ₂ A	=			
mmol of NaHA	=			
	1 CHO1	uired to reach	the second equiv	valence no

Version 22.30 Page 5 of 18

me		Student Code:	
oblem 2			
RT	<u>' B</u>		
).	Calculate the absorbance at 400 nm of Solution la Calculation:	III.	
	The absorbance at 400 nm of Solution III =		
	The absorbance at 400 nm of Solution III –		
' .	Apart from H ⁺ , OH ⁻ and H ₂ O, what are all the chresulting from mixing Solution II and Solution II	nemical species present in the soluti II at 1:1 volume ratio?	

Version 22.30 Page 6 of 18

me:		Student Code:
obl	em 2	
	What is the absorbance at 400 nm of the so	olution in (2-7) ?
	Calculation:	

Version 22.30 Page 7 of 18

Name	e: Student Code:
<u>Prol</u>	olem 2
2-9.	What is the transmittance at 400 nm of the solution in (2-7)? Calculation:
	Transmittance of the solution =

Version 22.30 Page 8 of 18

Name:			Student Code:
Probl	em 3		
3-1.	How many beta decays in this Calculation:	s series? Show by calculation.	
	Number of beta decays =		
3-2.		released in the complete chair	n?
	Energy released =		MeV

Version 22.30 Page 9 of 18

Name	:	Student Code:
		Problem 3
3-3.	Calculate the rate of production of energy 1.00 kilogram of 232 Th ($t_{1/2} = 1.40 \times 10^{-2}$ Calculation:	(power) in watts $(1W = Js^{-1})$ produced by 10 years).
	Rate of production of energy =	W
	r	

Version 22.30 Page 10 of 18

me:		Studer	nt Code:
			Problem 3
4.	What volume in cm ³ of helium at 0 ° ($t_{1/2}$ = 1.91 years) is stored in a contain	C and 1 atm collected wh ner for 20.0 years.	en 1.00 gram of ²²⁵
	<u>Calculation:</u>		
	Volume of He at 0 °C and 1 atm =		cm^3
5.	One member of thorium series, after is atoms of the nuclide and decays at the What is the half-life in years? <u>Calculation:</u>		

Version 22.30 Page 11 of 18

Name:	Student Code:
Problem 4	
4-1. The molecular formula of L is	
4-2. The structures of bipyridine and L	
structure of bipyridine	structure of L
4-3. Does the ligand L have any charge, i.e. - 2 charge - 1 charge no c	e., net charge? Please tick. Charge + 1 charge + 2 charge
4-4. Draw the structure when one molecule	e of L binds to metal ion (M)

Version 22.30 Page 12 of 18

Name	»:	Student Code:
		Problem 4
4-5.	Determine the empirical formula of A . <u>Calculation:</u>	
	The empirical formula of A is	
	What are the values of m and n in FeL_n	n(ClO ₄) _n .3H ₂ O?
	m =	n =
	The complete formula of A is	
	The ratio of cation to anion is	:

Version 22.30 Page 13 of 18

Name:	Student Code:
	Problem 4
4-6.	The oxidation number of Fe in complex A is
	The number of d -electrons in Fe ion in the complex $=$
	Write the high spin and the low spin configuration that may exist for this complex.
	High spin configuration Low spin configuration
	Which configuration, high or low spin, is the correct one (please tick)?
	High spin
	Low spin
	The best evidence to support your answer for this high/low spin selection (Please tick):
	Color
	Elemental analysis data
	Magnetic moment
	Molar conductance
4-7.	λ_{max} of complex ${\bf A}$ is ${oxed{n}}$ nm.

Version 22.30 Page 14 of 18

Name:		Student Code:
		Problem 4
4-8.	Calculate the 'spin-only' magnetic moment of complex B. Calculation:	
	The 'spin-only' magnetic moment of complex B =	B.M.
4-9.	The empirical formula of B is	
	x =	
	y =	
	z =	

Version 22.30 Page 15 of 18

Name:		Student Code:		
<u>Prob</u>	olem 5			
5-1.	Write structures of except for B .	A - D with appropriate s	tereochemistr	y in Haworth projection,
		A		В
		A		D
	C			D
				.
5-2. Write molecular formula for compounds F and G , and structural formula for compounds H and I and indicate stereochemistry of H .				
Molecular formula of compound F =				
	cular formula of ound G =			
		Compound H		Compound I

Version 22.30 Page 16 of 18

	211	ne.
1.7	aı	ııc.

Student Code:

Problem 5

5-3. Deduce the absolute configuration of (-) **E** and the structure with configuration of each intermediate (**J-O**) in the sequence with the proper R,S-assignment.

5-4. The mechanism involved in the conversion of compound **O** to (-) **1-phenylethane-***1-d* is

$S_N 1$
S_N2
S_Ni
E1
E2

Name:	: Student Code:
	lem 6
6-1.	sulfonic acid groups are formed from oxidation of a disulfide bond.
6-2.	Complete structure of DNP-Asp at its isoelectric point is
6-3.	The sequence of B8 is
6-4.	The sequence of B9 is
6-5.	The <i>complete</i> structure of A is
6-6.	Write the revised structure of A below and circle the site(s) to indicate all the possible source of ammonia.
6-7.	The isoelectric point of A is

Version 22.30 Page 18 of 18