MAT3007 - Assignment 7

Yohandi

November 24, 2023

Problem 1: Convex Sets

- To prove that $\Omega_1 = \{x \in R^n : \alpha \leq (a^T x)^2 \leq \beta\}, \alpha, \beta \in R, 0 < \alpha \leq \beta, a \in R^n \text{ is not a convex set, we can simply find any two different points } x_1, x_2 \in \Omega_1 \text{ and a} \lambda \in [0,1] \text{ such that } \lambda x_1 + (1-\lambda)x_2 \notin \Omega_1. \text{ Consider the following counterexample:}$ Suppose we have $x_1, x_2 \in \Omega_1$, where $a^T x_1 = \sqrt{\alpha}$ and $a^T x_2 = -\sqrt{\alpha}$. Then, for a $\lambda = \frac{1}{2}$, $(a^T(\lambda x_1 + (1-\lambda)x_2))^2 = (\lambda \sqrt{\alpha} (1-\lambda)\sqrt{\alpha})^2 = ((2\lambda 1)\sqrt{\alpha})^2 = 0 < \alpha$. This implies that $\frac{1}{2}x_1 + \frac{1}{2}x_2 \notin \Omega_1$; hence, Ω_1 is not a convex set.
 - To prove the convexity of $\Omega_2 = \{(x,t) \in R^n \times R : x^T x \leq t^2\}$, we let a function $g_t(x) = x^T x t^2 = ||x||^2 t^2$ for a fixed t. Note that $x^T x$ is a convex function as it is a quadratic form with a positive semi-definite matrix (the identity matrix). As the term $-t^2$ is a constant in this particular case, we conclude that g_t is a convex function; by theorem, this further implies that $\Omega_2 = \{(x,t) \in R^n \times R : g_t(x) \leq 0\}$ is formulated as a convex set.
- The statement is true. Let $x_1, x_2 \in \Omega_1 \cap \Omega_2$ and $\lambda \in [0, 1]$, then:

$$\circ \ x_1, x_2 \in \Omega_1 \Rightarrow \lambda x_1 + (1 - \lambda) x_2 \in \Omega_1$$

$$x_1, x_2 \in \Omega_2 \Rightarrow \lambda x_1 + (1 - \lambda)x_2 \in \Omega_2$$

, implying that $\lambda x_1 + (1 - \lambda)x_2 \in \Omega_1 \cap \Omega_2$. This verifies that $\Omega_1 \cap \Omega_2$ is also a convex set.

• The statement is false. Consider a case where n=1 and $f(x)=x^3$, for which f is not a convex function; however, $(x,1) \in S, \forall x \in [0,1]$, for which Ω and S are convex sets. This disproves the claim of f being a convex function. A few claims were taken from the Lecture 14, page 18.

Problem 2: Convex Compositions

a) The statement is *false*. One of the counterexamples is as follows:

Consider f(x) = -x and $g(x) = \sqrt{x}$, for which both functions are concave. However, $f(g(x)) = -\sqrt{x}$ is convex. The functions' convexity and concavity claims are taken from the Lecture 14, page 9 and 11.

b) The statement is false (not necessarily true). The proof is as follows:

Let $x_1, x_2 \in \Omega$ and $\lambda \in [0, 1]$, then $g(\lambda x_1 + (1 - \lambda)x_2) \ge \lambda g(x_1) + (1 - \lambda)g(x_2)$ due to the concavity of g. Subsequently, $(f \circ g)(\lambda x_1 + (1 - \lambda)x_2) = f(g(\lambda x_1 + (1 - \lambda)x_2)) \ge f(\lambda g(x_1) + (1 - \lambda)g(x_2))$ due to the non-decreasing property of f. As $g(\Omega) \subseteq I$, we conclude that $g(x_1), g(x_2) \in I \Rightarrow f(\lambda g(x_1) + (1 - \lambda)g(x_2)) \ge \lambda f(g(x_1)) + (1 - \lambda)f(g(x_2)) = \lambda (f \circ g)(x_1) + (1 - \lambda)(f \circ g)(x_2)$ using the concavity of f.

As a result, it is shown that $(f \circ g)(\lambda x_1 + (1 - \lambda)x_2) \ge \lambda(f \circ g)(x_1) + (1 - \lambda)(f \circ g)(x_2)$, which implies $f \circ g$ is concave (not necessarily convex unless $f \circ g$ is an affine function).

c) The statement is false. One of the counterexamples is as follows:

Consider $f(x) = -\sqrt{x}$, for which the function is convex. As $\sqrt{x} \ge 0 \Rightarrow -\sqrt{x} \le 0$. This means |f(x)| = -f(x), which implies |f(x)| is concave.

Problem 3: Convex Functions

a) The triangle inequality, $|a+b| \le |a| + |b|$, will be used in the proof. The proof is as follows:

Let $p, q \in \mathbb{R}^n$ and $\lambda \in [0, 1]$, then:

$$r(\lambda p + (1 - \lambda)q) = \max_{i} |\lambda p_i + (1 - \lambda)q_i|$$

$$\leq \max_{i} |\lambda p_i| + |(1 - \lambda)q_i|$$

$$\leq \max_{i} |\lambda p_i| + \max_{i} |(1 - \lambda)q_i|$$

$$= \lambda \max_{i} |p_i| + (1 - \lambda) \max_{i} |q_i|$$

$$= \lambda r(p) + (1 - \lambda)r(q)$$

Hence, r is shown to be a convex function.

b) For the followings, $\|\cdot\|^2$ will often appear and claimed to be convex. Proof will be provided here:

For $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$:

$$\|\theta x + (1 - \theta)y\|^{2} \le (\theta \|x\| + (1 - \theta) \|y\|)^{2}$$

$$= \theta^{2} \|x\|^{2} + 2\theta(1 - \theta) \|x\| \|y\| + (1 - \theta)^{2} \|y\|^{2}$$

$$\le \theta \|x\|^{2} + (1 - \theta) \|y\|^{2}$$

By the triangle inequality and the arithmetic-geometric mean inequality, $\|\cdot\|^2$ is convex.

• For a function $f(x) = \frac{x_1^2}{x_2}$, the Hessian matrix is derived as follows:

$$\nabla f(x) = \begin{pmatrix} \frac{2x_1}{x_2} \\ -\frac{x_1}{x_2^2} \end{pmatrix}$$

$$\nabla^2 f(x) = \begin{pmatrix} \frac{2}{x_2} & -\frac{2x_1}{x_2^2} \\ -\frac{2x_1}{x_2^2} & \frac{2x_1^2}{x_2^3} \end{pmatrix}$$

Then, the eigenvalues λ_1, λ_2 satisfy: $\lambda_1 + \lambda_2 = \frac{2x_1^2 + 2x_2^2}{x_2^3}$ and $\lambda_1 \lambda_2 = 0$. One of them is 0 and the other one is $\frac{2x_1^2 + 2x_2^2}{x_2^3}$, which is positive as $x_2 > 0$. This shows the positive semi-definite of the Hessian matrix for f, which implies that f is convex.

- Let's claim that $\frac{1}{2} \|Ax b\|^2$ is convex. As Ax b is an affine function and $\frac{1}{2} \|z\|^2$ is a convex quadratic function, the composition is convex under affine transformations and non-negative weighted sums, the claim is true. Then, by part a), $\|Lx\|_{\infty} = \max_i |Lx_i|$ is shown to be convex. By convex function properties taken from Lecture 14, page 15, f is convex.
- As $||x||^2$ is a convex quadratic function, so is $\frac{\lambda}{2} ||x||^2$ provided that $\lambda > 0$, for which the λ constraint is guaranteed in this problem. Then, for a function, say $g_i(x,y) = \max\{0, 1 b_i(a_i^T x + y)\}$, g_i is mapped to either 0 or $1 b_i(a_i^T x + y)$, which is an affine function. In their linear mappings, both functions are convex, which implies that g_i is convex as well. Now, as $\sum_{i=1}^m g_i(x,y)$ is a summation over m convex functions, along with the addition of a convex function $\frac{\lambda}{2} ||x||^2$, we deduce that f is convex by convex function properties taken from Lecture 14, page 15.
- c) Let $h_y(x) = y^T x f(y)$, then for a fixed y, h_y is linear. This implies that $g(x) = \sup_{y \in \mathbb{R}^n} h_y(x)$, i.e., g(x) is a supremum of $h_y(x), \forall y \in \mathbb{R}^n$. As h_y is convex and forms a set g for all $y \in \mathbb{R}^n$, g is convex by Lecture 14, page 17.

For each x, g(x) can be computed by finding the y that maximizes $y^Tx - ||y||_1$. Since $||y||_1$ is the sum of the absolute values of the components of y, the maximum of $y^Tx - ||y||_1$ occurs when each component y_i has the same sign as the corresponding x_i and is at most as large in absolute value.

Therefore, for each i, the optimal y_i is $y_i = \text{sign}(x_i)$ if $|x_i| \le 1$ and $y_i = x_i$ otherwise. This results in:

$$g(x) = \sum_{i:|x_i| \le 1} x_i^2 + \sum_{i:|x_i| > 1} |x_i|$$

Problem 4

(a) As A is a symmetric matrix, so is I-A. By the definition of positive semidefinite matrix, proving I-A being positive semidefinite is equivalent to proving $x^T(I-A)x \ge 0$, $\forall x \ne 0$.

As A has all its components non-negative and the sum for each of its rows equal to 1, x^TAx is essentially the sum of the components of x. Let x' = Ax, then $|x_i'| \leq |x_i|, \forall i = \{1, 2, 3, 4\}$. As the elements of x^Tx and x^Tx' are greater than or equal to 0, we conclude that x^TAx is less than or equal to x^Tx by the previous statement. This implies that $x^T(I-A)x = x^Tx - x^TAx \geq 0$ holds true, which further implies that I-A is positive semidefinite.

(b) We are interested in the Hessian matrix of f.

$$f(x) = \log(1 + \exp(a^T x))$$

$$\Rightarrow \nabla f(x) = \frac{\exp(a^T x)}{1 + \exp(a^T x)} a$$

$$\Rightarrow \nabla^2 f(x) = \frac{\exp(a^T x)}{(1 + \exp(a^T x))^2} a a^T$$

As $\exp(a^T x)$ is larger than 0 and aa^T is an outer matrix that is a positive semidefinite matrix; this implies that $\nabla^2 f(x)$ is also a positive semidefinite matrix, which further implies that f is convex.

(c) For a t, let y = xt. Then the problem is equivalent to:

$$\min_{x \in R^n, t} \quad \frac{\|Axt - bt\|}{c^T x t + dt}$$
subject to
$$\|xt\| \le t, c^T x t + dt > 0$$

, which is also equivalent to

$$\min_{y \in R^n, t} \quad \frac{\|Ay - bt\|}{c^T y + dt}$$
subject to
$$\|y\| \le t, c^T y + dt > 0$$

The set of points (y,t) such that $c^Ty+dt>0$ forms a convex set because the condition describes a half-space and a norm ball, both of which are convex sets. The condition $c^Ty+dt=1$, which defines a hyperplane, is also a convex set. We can "set" up the value of c and d accordingly and find that:

$$\min_{y \in R^n, t} \quad \|Ay - bt\|$$
 subject to
$$\|y\| \le t, c^T y + dt = 1$$

With these transformations, the original nonconvex problem is shown to be equivalent to a convex problem. The convex problem is easier to solve because it can be cast into a standard convex optimization form, for which the algorithms exist.

```
(d) import cvxpy as cp
 2 import numpy as np
 4 A = np.array([[1, 2], [3, 4]])
 5 b = np.array([2, 4])
 6 c = np.array([4, 3])
 7 d = 1
 9 y = cp.Variable(2)
 10 t = cp.Variable()
 11
 12 problem = cp.Problem(cp.Minimize(cp.norm(A @ y - b * t)), [cp.norm(y)
      = t, c.T @ y + d * t == 1]
 problem.solve()
 15 print("(y, t) := (", y.value, ", " , t.value, ")", sep = '')
 print("The minimum value is ", problem.value)
 (y, t) := ([3.96574855e-10 2.50000000e-01], 0.24999999982376303)
  2 The minimum value is 1.9160503543852565e-10
```