La corrente alternata

Segnali sinusoidali

- Importanti perché:
 - La tensione disponibile nella rete di distribuzione elettrica ha forma sinusoidale
 - Qualunque forma d'onda può essere scomposta in una somma di sinusoidi

Rappresentazione vettoriale

$$v(t) = V_p sen(\omega t + \varphi)$$

- La lunghezza del vettore corrisponde al valore di picco Vp
- L'angolo tra il vettore e l'asse orizzontale è detto fase iniziale
- L'angolo compreso tra due vettori rappresenta lo sfasamento

Operazioni tra grandezze sinusoidali

- Moltiplicazione per una costante (fase invariata)
- Somma e differenza (regola parallelogramma)
- Prodotto (somma delle fasi)
- Rapporto (differenze delle fasi)

Operazioni tra grandezze sinusoidali

Rappresentazione complessa (simbolica)

- V=a+jb
 - Dove a è la parte reale
 - Dove b è la parte immaginaria
 - Dove j*j=-1

Da cartesiane a polari

Cartesiane → Polari

Modulo:
$$V_p = |\overline{V}| = \sqrt{a^2 + b^2}$$
 (2.2)
 $\varphi = \angle \overline{V} = \operatorname{arctg} \frac{b}{a}$ (1° quadrante: $a > 0, b > 0$)
Argomento: $\varphi = \angle \overline{V} = \operatorname{arctg} \frac{b}{a} + \pi$ (2° e 3° quadrante: $a < 0$) (2.3)
 $\varphi = \angle \overline{V} = \operatorname{arctg} \frac{b}{a} + 2\pi$ (4° quadrante: $a > 0, b < 0$)

Da polari a cartesiane

Polari → Cartesiane

Parte reale:
$$a = |\overline{V}| \cos \varphi$$
 (2.4)

Parte immaginaria:
$$b = |\overline{V}| \operatorname{sen} \varphi$$
 (2.5)

Rappresentazione complessa

$$e^{j\varphi} = \cos \varphi + jsen \varphi$$

Parte Parte reale (a) Parte immaginaria (b)

$$\cos \varphi = \frac{e^{j\varphi} + e^{-j\varphi}}{2}$$
 $\sin \varphi = \frac{e^{j\varphi} - e^{-j\varphi}}{2j}$

Rappresentazione complessa

Componenti reattivi

Induttore

$$v(t) = L \frac{di(t)}{dt}$$

$$v(t) = \omega Lisen(\omega t + \varphi + \pi/2)$$

$$V = j \omega LI$$

Condensatore

$$i(t) = \frac{dv(t)}{dt}$$

$$I = j \omega CV$$

Impedenza

$$\overline{Z} = \overline{V} / \overline{I}$$

Componente	Impedenza	Impedenza per $\omega \to 0$ (continua)	Impedenza per $\omega \to \infty$ (alta frequenza)
	$\overline{Z} = R$	$\overline{Z} = R$	$\overline{Z} = R$
	$\overline{Z}=j\omega L$	$\overline{Z} \rightarrow 0$ (cortocircuito)	$\overline{Z} \to \infty$ (circuito aperto)
	$\overline{Z} = \frac{1}{j\omega C} = -\frac{j}{\omega C}$	$\overline{Z} \to \infty$ (circuito aperto)	V (cortocircuito)

Impedenza in serie e parallelo

impedenze in serie:

$$\overline{Z}_{eq} = \overline{Z}_1 + \overline{Z}_2 + \overline{Z}_3 \tag{2.18}$$

• impedenze in parallelo:
$$\frac{1}{\overline{Z}_{eq}} = \frac{1}{\overline{Z}_1} + \frac{1}{\overline{Z}_2} + \frac{1}{\overline{Z}_3}$$

(2.19)