Знакомство с XML на примере OSM и SVG

Муравьёв С.К.

Национальный исследовательский ядерный университет «МИФИ» Кафедра №36 «Информационные системы и технологии»

December 4, 2013

OpenStreetMap

OpenStreetMap, сокращённо OSM - некоммерческий проект по созданию силами сообщества подробной свободной и бесплатной географической карты мира.

Формат данных

OpenStreetMap использует топологическую структуру данных, состоящую из объектов:

- node (точка) точка с указанными координатами;
- way (линия) упорядоченный список точек, составляющих линию или полигон;
- tag (тег) пары «ключ значение», могут назначаться точкам, линиям и отношениям.
- relation (отношение) группы точек, линий и других отношений, которым назначаются некоторые свойства;

Точка

Точка - базовый элемент в структуре данных OSM. Точка имеет параметры «широта» и «долгота».

Точки используются для того, чтобы определить «линию», однако могут являться и самостоятельными элементами карты.

Пример точки:

```
<node id="510825254" visible="true" version="1"
changeset="2655586" timestamp="2009-09-27T18:21:30Z"
user="navigARTor" uid="75496" lat="55.6477542"
lon="37.6673022"/>
```

Линия

Линия представляет собой ломаную линию, проходящую через точки.

Линия имеет в своём составе, как минимум, две точки. Обычно линиями обозначаются улицы, дороги или что-то похожее. Одна точка может принадлежать нескольким линиям одновременно.

Пример линии:

Замкнутая линия

Замкнутая линия (Closed way) или Полигон (Area) - элемент карты, предназначенный для описания участков поверхности. В полигонах первая точка линии совпадает с последней.

Полигоны используются для обозначения участка поверхности, обладающего общими свойствами. Например, полигоны используются для описания водоёмов и лесов.

Пример полигона:

Тег

Теги задают свойства объектов. Название свойства определяется атрибутом \mathbf{k} , а значение - \mathbf{v} .

Описание стандартных тегов можно найти на странице $http://wiki.openstreetmap.org/wiki/RU:Map_Features$

Пример тега:

```
<tag k="website" v="www.mephi.ru"/>
```

Отношение

Отношения существуют, чтобы группировать объекты по определенному признаку. объекты, входящие в отношения, называются 'участниками'.

'Участниками' отношения могут любые объекты (точки, линии, области) и даже другие отношения. Каждому участнику присваивается 'роль' в отношении.

С помощью тега 'type' задаётся тип отношения.

Пример отношения:

```
<relation id="2784645" visible="true" version="2" ...>
  <member type="way" ref="41601758" role="outer"/>
  <tag k="type" v="multipolygon"/>
  </relation>
```

Типы отношений

Тип	Описание
associatedStreet	Элементы, связанные с улицей.
boundary	Для группировки и обозначения границ, замкнутых территорий
bridge	Группирует все элементы моста
destination_sign	Знаки-указатели направления движения, установленные перед или на самом перекрёстке
enforcement	Устройства контроля за движением, камеры определяющие скорость движения, устройства для взвешивания автомобиля,
multipolygon	Для полигонов, контур которых состоит из нескольких линий, или имеющих «дырки»; также используется для границ

Типы отношений

Тип	Описание
public_transport	Часть OSM public transport scheme
	(Основная транспортная схема OSM).
relatedStreet	Широко распостранен, является
	синонимом для отношения associated-
	Street
restriction	Для обозначения любого вида запретов
route	Например, автобусные, велосипедные
	маршруты и нумерация дорог

Типы отношений

Тип	Описание
site	Отношение группы элементов,
	расположенных на определенной
	территории или площадке, например
	школа и все связанные с ней объекты.
street	Отношения Relations/Proposed/Street,
	Relations/Proposed/Collected_Ways и Re-
	lations/Proposed/Collected_Ways_Simple
	придуманы для улучшения associatedStreet
waterway	Отношение группы элементов водного пути
	waterway=*

Scalable Vector Graphics

SVG (от англ. Scalable Vector Graphics - масштабируемая векторная графика) - язык разметки масштабируемой векторной графики, созданный Консорциумом Всемирной паутины (W3C) и входящий в подмножество расширяемого языка разметки XML, предназначен для описания двумерной векторной и смешанной векторно/растровой графики в формате XML.

Возможности языка SVG

- Описание путей (англ. path). Позволяет задать любую фигуру компактной строкой, описывающей путь от начальной точки до конечной через любые промежуточные координаты.
- Описание основных геометрических фигур (многоугольники, прямоугольники, окружности и т. п.).
- Широкий спектр визуальных свойств, которые можно применить к фигурам и путям: окраска, прозрачность, скругление углов и т. д.
- Интерактивность. На каждый отдельный элемент и на целое изображение можно повесить обработчик событий (клик, перемещение, нажатие клавиши и т.д)
- Анимация и сценарии. С помощью ECMAScript или JavaScript можно описывать даже самые сложные сценарии, связанные с математическими вычислениями координат и пропорций фигур.

Достоинства формата

- Текстовый формат файлы SVG можно читать и редактировать при помощи обычных текстовых редакторов.
- Масштабируемость SVG является векторным форматом.
 Существует возможность увеличить любую часть изображения SVG без потери качества.
- Текст в графике SVG является текстом, а не изображением, поэтому его можно выделять и копировать.
- Применение скриптов и анимации в SVG позволяет создавать динамичную и интерактивную графику.
- SVG открытый стандарт.
- SVG документы легко интегрируются с HTML и XHTML документами.
- Совместимость с CSS.

Структура документа

```
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
1
  \langle svg \ version = "1.1"
2
        baseProfile="full"
3
        xmlns = "http://www.w3.org/2000/svg"
4
        xmlns:xlink = "http://www.w3.org/1999/xlink"
5
        xmlns:ev = "http://www.w3.org/2001/xml-events"
        height = "400px" width = "400px">
7
8
        . . .
  </svg>
9
```

Также можно указывать DTD-диаграмму:

```
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
    "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
```

Простейший пример

Красный круг с радиусом в 40 пикселов и центром в точке (100, 50) и чёрной рамкой, толщина которой равна двум пикселям.

Полигоны

Картографические проекции

Картографическая проекция - математически определенный способ отображения поверхности эллипсоида на плоскости. При этом с эллипсоида на другую фигуру переносят сетку параллелей и меридианов. Вид этой сетки бывает разный в зависимости от того, какой фигурой заменяется эллипсоид.

Виды проекций:

- Цилиндрические
- Конические
- Азимутальные
- Псевдоконические
- Псевдоцилиндрические
- Поликонические

Проекция Меркатора

Равноугольная цилиндрическая проекция Меркатора — одна из основных картографических проекций.

Пересчёт координат:

```
r_major = 6378137.000
1
     r_minor = 6356752.3142
2
     x = r_{major*math.radians(lon)}
3
     if lat>89.5:lat=89.5
4
     if lat < -89.5: lat = -89.5
     temp=r_minor/r_major
     eccent=math.sqrt(1-temp**2)
7
     phi=math.radians(lat)
     sinphi=math.sin(phi)
     con=eccent*sinphi
10
     com=eccent/2
11
     con = ((1.0 - con)/(1.0 + con)) ** com
12
     ts=math.tan((math.pi/2-phi)/2)/con
13
     y=0-r_major*math.log(ts)
14
```

Практика

- С помощью XPath определить все теги отношения, соответствующего МИФИ
- Определить периметр МИФИ
- Найти все остановки общественного транспорта, находящиеся в заданном радиусе от МИФИ
- Создать XSLT-преобразование из OSM в SVG: