Intersection theory and pure motives, Exercises – Week 10

Exercise 42. Blowing up the plane.

Show that the Chow ring of the plane \mathbb{P}^2 blown-up in one point is described by

$$CH^*(Bl_x(\mathbb{P}^2)) \cong \mathbb{Z}[h, s]/(h^3, hs, s^2 + h^2).$$
 (1)

Recall that $\mathrm{Bl}_x(\mathbb{P}^2)$ can alternatively be described as the projective bundle $\mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(1))$. Compare the induced descriptions of the Chow ring with (1).

Exercise 43. The motive of a blow-up of \mathbb{P}^3 in a twisted cubic. Consider the blow-up $\mathrm{Bl}_Z(\mathbb{P}^3) \to \mathbb{P}^3$ in a twisted cubic $Z \subset \mathbb{P}^3$ (i.e. the image of $\mathbb{P}^1 \to \mathbb{P}^3$, $[t_0:t_1] \mapsto [t_0^3:t_0^2t_1:t_0t_1^2:t_1^3]$) and denote the exceptional divisor by $j:E=\mathbb{P}(\mathcal{N}_{Z/\mathbb{P}^3}) \hookrightarrow \mathbb{P}^3$ $\mathrm{Bl}_Z(\mathbb{P}^3).$

- (i) Show that the total Chern class of the normal bundle $\mathcal{N} := \mathcal{N}_{Z/\mathbb{P}^3}$ is given by $c(\mathcal{N}) = 1 +$ $10h_0$, where h_0 is the class of a point on $Z = \mathbb{P}^1$. (This suggests that $\mathcal{N} \cong \mathcal{O}(5) \oplus \mathcal{O}(5)$. Is this actually true?)
- (ii) Show that $CH^*(E) \cong \mathbb{Z}[h_0, \xi]/(h_0^2, \xi^2 + 10h_0\xi)$.
- (iii) Show that $\mathrm{CH}^1(\mathrm{Bl}_Z(\mathbb{P}^3)) \cong \mathbb{Z}h \oplus \mathbb{Z}[E]$, where h is the pull-back the class of a line.
- (iv) Show that $CH^2(Bl_Z(\mathbb{P}^3))$ is generated by $h^2, j_*h_0, j_*\xi$ with one relation $3h^2 10j_*h_0$ $j_*\xi$.
- (v) Describe the multiplication $CH^1 \times CH^2 \to CH^2$ and $CH^1 \times CH^2 \to CH^3 \cong \mathbb{Z}$.

Exercise 44. The motive of the blow-up.

Use Manin's identity principle to prove that for the blow up $\tilde{X} := Bl_Z(X)$ of a smooth projective variety X in a smooth subvariety $Z \subset X$ of codimension c there exists an isomorphism

$$\mathfrak{h}(\tilde{X}) \cong \mathfrak{h}(X) \oplus \bigoplus_{i=1}^{c-1} \mathfrak{h}(Z)(-i).$$

Exercise 45. Lefschetz standard conjecture.

- (i) Assume the Lefschetz standard conjecture $B(X,\mathcal{L})$ holds for the smooth projective variety X with an ample line bundle \mathcal{L} . Show that then $B(X \times X, \mathcal{L} \boxtimes \mathcal{L})$ holds, so in particular $B(C_1 \times C_2)$ holds for product of curves.
- (ii) Assume B(X) holds. Does this imply that also $B(Bl_Z(X))$ holds (e.g. when Z is a point or a curve)?

Exercise 46. Chow groups of generic Lefschetz pencils.

A Lefschetz pencil in \mathbb{P}^n is a linear system of hypersurfaces X_t , $t \in \mathbb{P}^1$, where \mathbb{P}^1 is a line in the complete linear system $|\mathcal{O}(d)|$. More explicitly, $X_t = Z(f+tg)$ with two linearly independent $f, g \in H^0(\mathbb{P}^n, \mathcal{O}(d))$. For generic choice of f and g, the base locus of the liner system B := Z(f,g) is smooth and the family of hypersurfaces $\{X_t\}$ can be described as the fibres of the morphism $\mathcal{X} := \mathrm{Bl}_B(\mathbb{P}^n) \to \mathbb{P}^1$, which resolves the indeterminacies of the rational map $\mathbb{P}^n \to \mathbb{P}^1$, $x \mapsto [f(x) : g(x)]$.

For simplicity we work over an algebraically closed field and assume n=3.

- (i) Compute $CH^2(\mathcal{X})$.
- (ii) Compute $\mathrm{CH}^2(\mathcal{X}_\eta)$ of the generic fibre \mathcal{X}_η (over $k(\eta)=k(t)$).
- (iii) Find examples where $CH^2(\mathcal{X}_t)$ of a closed fibre \mathcal{X}_t are 'bigger' than $CH^2(\mathcal{X}_\eta)$.

Exercise 47. Classes of proper transforms.

Let $C_1, C_2 \subset \mathbb{P}^3$ be two distinct smooth curves and view the intersection $D := C_1 \cap C_2$ as a divisor on C_1 . Let $X := \mathrm{Bl}_{C_1}(\mathbb{P}^3)$ and $\tilde{C}_2 \subset X$ the proper transform of C_2 . Describe its class $[\tilde{C}_2] \in \mathrm{CH}^2(X)$.