SUMMARY OF COMMANDS

rref(A)	It computes the reduced row ech-
	elon form of a matrix A
A\b	If the system $A \vec{x} = \vec{b}$ has solu-
	tion/s, it returns one of the so-
	lutions. Otherwise, it returns a
1 (2)	"least squares solution".
rank(A)	Rank of A.
eye(n,n)	Identity matrix $(n \times n)$.
ones(m,n)	Matrix of "ones" $(m \times n)$.
zeros(m,n)	Matrix of "zeros" $(m \times n)$.
kernel(A)	Kernel of a matrix A; it returns
	a matrix whose columns form a
	basis of the kernel of A.
D=diag(diag(A))	It allows us to compute the ma-
	trix D given in the decompositon
	A=L+D+U of a matrix A that
	one needs for applying the nu-
	merical methods of resolution of
	linear systems.
L=tril(A)-D	It allows us to compute the ma-
	trix L of the above decomposi-
	tion.
U=triu(A)-D	It allows us to compute the ma-
	trix U of the above decomposi-
→ D-1[7 /L . LI\ → 1	tion.
$\vec{x}_{k+1} = D^{-1}[\vec{b} - (L + U)\vec{x}_k] $ $(L + D)\vec{x}_{k+1} = \vec{b} - U\vec{x}_k$	Formula of the Jacobi's Method.
$(L + D)x_{k+1} = b - Ux_k$	Formula of the Gauss-Seidel's Method.
inv(A)	It computes the inverse of a ma-
	trix A.
[L,U]=lu(A)	It computes the LU decomposi-
	tion of A.
det(A)	Determinant of A.
norm(u)	Norm of a vector \vec{u} .
$Proj_W(\vec{x}) = (\vec{q}^t \vec{x}) \vec{q}$	Orthogonal projection of a vec-
	tor $ec{x}$ over a line W spanned by a
	unitary vector $ec{q}$.
$ M(S)^t M(S) \vec{y} = M(S)^t \vec{x}; \ Proj_W(\vec{x}) = M(S) \vec{y} $	Orthogonal projection of a vector
	$\mid ec{x} \mid$ over a vector subspace $W = \mid$
	$\operatorname{span}(S)$.
$P_W = M(S)(M(S)^t M(S))^{-1} M(S)^t$	Projection matrix.