

a-Si TFT LCD Single Chip Driver 176RGBx220 Resolution and 262K color

Datasheet

Version: V0.5

Document No.: ILI9225B_DS_V0.5.pdf

ILI TECHNOLOGY CORP.

8F, No.38, Taiyuan St., Jhubei City, Hsinchu County, Taiwan 302, R.O.C.
Tel.886-3-5600099; Fax.886-3-5600585
http://www.ilitek.com

Table of Contents

Se	ction			Page
1.	Introd	uction		5
2.	Featu	res		5
3.	Block	Diagrar	m	7
4.	Pin D	escriptio	ons	8
5.	Pad A	rranger	ment and Coordination	13
6.	Block	Descrip	otion	19
7.	Syste	m Interf	face	21
	7.1.	Interf	face Specifications	21
	7.2.	Input	Interfaces	22
		7.2.1.	18-bit System Interface	23
		7.2.2.	16-bit System Interface	24
		7.2.3.	9-bit System Interface	27
		7.2.4.	8-bit System Interface	28
	7.3.	Seria	al Peripheral Interface (SPI)	30
		7.3.1.	24-bit 4 wires Serial Peripherial Interface	30
		7.3.2.	3-wire 9-bit Serial Interface	34
		7.3.3.	4-wire 8-bit Serial Interface	36
		7.3.4.	Data Transfer Recovery	38
	7.4.	RGB	Input Interface	39
		7.4.1.	RGB Interface	39
		7.4.2.	RGB Interface Timing	41
		7.4.3.	Moving Picture Mode	43
		7.4.4.	6-bit RGB Interface	43
		7.4.5.	16-bit RGB Interface	45
		7.4.6.	18-bit RGB Interface	45
	7.5.	Interf	face Timing	48
8.	Regis	ter Des	criptions	49
	8.1.	Regis	sters Access	49
	8.2.	Instru	uction Descriptions	53
		8.2.1.	Index (IR)	56
		8.2.2.	Chip ID Code (R00h)	56
		8.2.3.	Driver Output Control (R01h)	56
		8.2.4.	LCD Driving Waveform Control (R02h)	59
		8.2.5.	Entry Mode (R03h)	61
		8.2.6.	Display Control 1 (R07h)	63
		8.2.7.	Display Control 2 (R08h)	64
		8.2.8.	Frame Cycle Control (R0Bh)	65
		8.2.9.	RGB Input Interface Control 1 (R0Ch)	67
		8.2.10	Oscillator Control (R0Fh)	68
		8.2.11.	Power Control 1 (R10h)	68
		8.2.12	Power Control 2 (R11h)	70

8.2.13. Power Control 3 (R12h)	71
8.2.14. Power Control 4 (R13h)	73
8.2.15. Power Control 5 (R14h)	73
8.2.16. RAM Address Set (R20h, R21h)	75
8.2.17. Write Data to GRAM (R22h)	75
8.2.18. Read Data from GRAM (R22h)	75
8.2.19. Software Reset (R28h)	75
8.2.20. Gate Scan Control (R30h)	76
8.2.21. Vertical Scroll Control 1 (R31h, R32h)	77
8.2.22. Vertical Scroll Control 1 (R33h)	77
8.2.23. Partial Screen Driving Position (R34h, R35h)	78
8.2.24. Horizontal and Vertical RAM Address Position (R36h/R37h, R38h/R39h)	79
8.2.25. Gamma Control (R50h ~ R59h)	80
8.2.26. NV Memory Data Programming (R60h)	80
8.2.27. NV Memory Control (R61h)	81
8.2.28. NV Memory Status (R62h)	81
8.2.29. NV memory Protection Key (R63h)	81
8.2.30. ID Code (R65h, Read Only)	81
8.2.31. SPI Read/Write Control (R66h, Write Only)	82
9. NV Memory Programming Flow	83
10. GRAM Address Map & Read/Write	84
11. Window Address Function	88
12. Gamma Correction	89
13. Application	106
13.1. Configuration of Power Supply Circuit	106
13.2. Voltage Generation	108
13.3. Power Supply Configuration	109
13.4. STB and DSTB Mode	110
14. Electrical Characteristics	111
14.1. Absolute Maximum Ratings	111
14.2. DC Characteristics	112
14.3. Reset Timing Characteristics	112
14.4. AC Characteristics	113
14.4.1. i80-System Interface Timing Characteristics	113
14.4.2. M68-System Interface Timing Characteristics	115
14.4.3. Serial Data Transfer Interface Timing Characteristics	116
14.4.4. RGB Interface Timing Characteristics	117
15. Revision History	118

Figures

FIGURE 1 SYSTEM INTERFACE AND RGB INTERFACE CONNECTION	21
Figure 218-bit System Interface Data Format	23
Figure3 16-bit System Interface Data Format	25
Figure4 i80 16/18-bit System Interface Timing	26
FIGURE5 M68 16/18-BIT SYSTEM INTERFACE TIMING	26
Figure6 9-bit System Interface Data Format	27
Figure 78-bit System Interface Data Format	28
Figure8 Data Transfer Synchronization in 8/9-bit System Interface	29
Figure9 Data Format of SPI Interface	31
Figure 10 Data transmission through SPI, 65 Color	32
Figure 11 Data transmission through SPI, 262K Color	33
Figure 12 RGB Interface Data Format	39
FIGURE 13 GRAM ACCESS AREA BY RGB INTERFACE	40
Figure 14 Timing Chart of Signals in 18-/16-bit RGB Interface Mode	41
FIGURE 15 TIMING CHART OF SIGNALS IN 6-BIT RGB INTERFACE MODE	42
FIGURE 16 EXAMPLE OF UPDATE THE STILL AND MOVING PICTURE	43
FIGURE 17 INTERNAL CLOCK OPERATION/RGB INTERFACE MODE SWITCHING	46
FIGURE 18 GRAM ACCESS BETWEEN SYSTEM INTERFACE AND RGB INTERFACE	47
FIGURE 19 RELATIONSHIP BETWEEN RGB I/F SIGNALS AND LCD DRIVING SIGNALS FOR PANEL	48
Figure 20 Register Setting with Serial Peripheral Interface (SPI)	49
Figure 21 Register setting with i80/M68 System Interface	50
Figure 22 Register Read/Write Timing of 180 System Interface	51
FIGURE 23 REGISTER READ/WRITE TIMING OF M68 SYSTEM INTERFACE	52

1. Introduction

ILI9225B is a 262,144-color one-chip SoC driver for a-TFT liquid crystal display with resolution of 176RGBx220 dots, comprising a 528-channel source driver, a 220-channel gate driver, 87120 bytes RAM for graphic data of 176RGBx220 dots, and power supply circuit.

ILI9225B has four kinds of system interfaces which are i80/M68-system MPU interface (8-/9-/16-/18-bit bus width), serial data transfer interface (SPI) and RGB 6-/16-/18-bit interface (DOTCLK, VSYNC, HSYNC, ENABLE, DB[17:0]).

In RGB interface, the combined use of high-speed RAM write function and widow address function enables to display a moving picture at a position specified by a user and still pictures in other areas on the screen simultaneously, which makes it possible to transfer display the refresh data only to minimize data transfers and power consumption.

ILI9225B can operate with low I/O interface power supply up to 1.65V, with an incorporated voltage follower circuit to generate voltage levels for driving an LCD. The ILI9225B also supports a function to display in 8 colors and a standby mode, allowing for precise power control by software. These features make the ILI9225B an ideal LCD driver for medium or small size portable products such as digital cellular phones or small PDA, where long battery life is a major concern.

2. Features

- Single chip solution for a liquid crystal QCIF+ TFT LCD display
- ◆ 176RGBx220-dot resolution capable of graphics display in 262,144 color
- Incorporate 528-channel source driver and 220-channel gate driver
- Internal 87,120 bytes graphic RAM
- High-speed RAM burst write function
- System interfaces
 - ➤ i80 system interface with 8-/ 9-/16-/18-bit bus width
 - ➤ M68 system interface with 8-/ 9-/16-/18-bit bus width
 - Serial Peripheral Interface (SPI)
 - RGB interface with 8-/16-/18-bit bus width (VSYNC, HSYNC, DOTCLK, ENABLE, DB[17:0])
- Reversible source/gate driver shift direction
- Window address function to specify a rectangular area for internal GRAM access
- Abundant functions for color display control
 - γ-correction function enabling display in 262,144 colors
 - Line-unit vertical scrolling function
- ♦ Partial drive function, enabling partially driving an LCD panel at positions specified by user
- Incorporate step-up circuits for stepping up a liquid crystal drive voltage level up to 6 times (x6)
- Power saving functions
 - > 8-color mode
 - > standby mode
 - Deep standby mode
- Low -power consumption architecture
 - Low operating power supplies:

- IOVcc (VDD3) = 1.65 ~ 3.3 V (interface I/O)
- Vci = 2.5 ~ 3.3 V
- ► Low voltage drive: DDVDH (DDVDH) = 4.5 ~ 5.5 V

3. Block Diagram

4. Pin Descriptions

Pin Name	I/O	Туре					Descriptions						
				Inp	ut Int	erfac	е						
			Selec	t the I	MPU	syste	m interface mode						
			IM3	IM2	IM1	IMO	MPU-Interface Mode	DB Pin in use					
			0	0	0	0	M68-system 16-bit interface	DB[17:10], DB[8:1]					
			0	0	0	1	M68-system 8-bit interface	DB[17:10]					
			0	0	1	0	i80-system 16-bit interface	DB[17:10], DB[8:1]					
			0	0	1	1	i80-system 8-bit interface	DB[17:10]					
IM3,			0	1	0	ID	24-bit 4 wires Serial Peripheral Interface (SPI)	SDI, SDO, SCL, nCS					
IM2,	ı	IOVcc	0	1	1	0	9-bit 3 wires Serial Peripheral Interface	SDA, SCL, nCS					
IM1, IM0/ID			0	1	1	1	8-bit 4 wires Serial Peripheral Interface	SDA, SCL, nCS, RS (D/CX)					
IIVIO/IE			1	0	0	0	M68-system 18-bit interface	DB[17:0]					
			1	0	0	1	M68-system 9-bit interface	DB[17:9]					
			1	0	1	0	i80-system 18-bit interface	DB[17:0]					
			1	0	1 *	1 *	i80-system 9-bit interface	DB[17:9]					
			1				Setting invalid	10 1 1 1 1					
			Wher	the s	serial	peripr	neral interface is selected, IM	10 pin is used for the					
			devic	e cod	e ID s	etting	J.						
			A chi	sele	ct sig	nal.							
		MPU	Lov	w the	11 192	25R i	s selected and accessible						
nCS	1	IOVcc	Low: the ILI9225B is selected and accessible										
			High: the ILI9225B is not selected and not accessible										
			Fix to IOVCC level when not in use.										
			A register select signal.										
		MPU IOVcc	Low: select an index or status register										
RS (D/CX)	I		_										
		IOVCC	High: select a control register										
			Fix to	GNE) leve	el whe	en not in use.						
		MPU	In 68-	systen	n mod	e, this	is used to select operation, rea	d or write. (RW)					
RW_nWR /SCL	- 1		In 80-	systen	n mod	e, this	serves as a write strobe signal	(nWR).					
		IOVcc	In SPI	mode	, it se	rves a	s a synchronous clock (SCL).						
							serves as write/read enable str	obe (F)					
EDD	١,	MPU		•				. ,					
E_nRD	1	IOVcc		-			serves as a read strobe signal.	. (NKD).					
			Must be fixed to GND level when SPI mode.										
		MDU	A res	et pin									
nRESET	1	MPU	Initial	izes	the II	LI922	5B with a low input. Be	sure to execute a					
		IOVcc					upplying power.						
			1										
			18-bit	para	llel bi-	-direc	tional data bus for MPU syst	tem interface mode					
			Serve	s as a	n inpu	t data	bus for MPU I/F.						
DB[17:0]	I/O	MPU	8_	hit I/F	· DBI	17·10 [.]	l is used						
	"	IOVcc	8-bit I/F: DB[17:10] is used.										
			9-bit I/F: DB[17:9] is used.										
			16-bit I/F: DB[17:10] and DB[8:1] is used.										
			18	B-bit I/	F: DB	[17:0]	is used.						

Pin Name	I/O	Туре	Descriptions
			Serves as an input data bus for RGB I/F. 6-bit interface: DB[17:12] 16-bit interface: {DB[17:13], DB[11:1]} 18-bit interface: DB[17:0] Unused pins must be fixed GND level.
SDI/SDA	I/O	MPU IOVcc	In the 24-bit 4 wires serial peripheral interface, this pin is used as input pin. In the 8/9-bit serial peripheral interface, this pin is used as bi-directional data pin. Fix to GND level when not in use.
SDO	0	MPU IOVcc	Serial data output (SDO) pin in serial interface operation. The data is outputted on the falling edge of the SCL signal. When the SPI interface is not used, please let SDO as floating.
DOTCLK	1	MPU IOVcc	A dot clock signal. DPL = "0": Input data on the rising edge of DOTCLK DPL = "1": Input data on the falling edge of DOTCLK Fix to GND level when not in use.
VSYNC	I	MPU IOVcc	A frame synchronizing signal. VSPL = "0": Active low. VSPL = "1": Active high. Fix to GND level when not in use.
HSYNC	I	MPU IOVcc	A line synchronizing signal. HSPL = "0": Active low. HSPL = "1": Active high. Fix to GND level when not in use.
ENABLE	I	MPU IOVcc	A data ENEABLE signal in RGB interface mode. Low: Select (access enabled) High: Not select (access inhibited) The EPL bit inverts the polarity of the ENABLE signal. Fix to GND level when not in use.
			LCD Driving signals
S528~S1	0	LCD	Source output voltage signals applied to liquid crystal. To change the shift direction of signal outputs, use the SS bit. SS = "0", the data in the RAM address "h00000" is output from S1. SS = "1", the data in the RAM address "h00000" is output from S528. S1, S4, S7, display red (R), S2, S5, S8, display green (G), and S3, S6, S9, display blue (B) (SS = 0).
G220~G1	0	LCD	Gate line output signals.

Pin Name	I/O	Туре	Descriptions
			VGH: the level selecting gate lines
			VGL: the level not selecting gate lines
		TFT	A supply voltage to the common electrode of TFT panel.
VCOM	0	common	VCOM is AC voltage alternating signal between the VCOMH and
		electrode	VCOML levels.
		Cł	narge-pump and Regulator Circuit
VCOMH	0	Stabilizing	The high level of VCOM AC voltage. Connect to a stabilizing
VOOIVII I		capacitor	capacitor.
			The low level of VCOM AC voltage. Adjust the VCOML level with the
VCOML	0	Stabilizing	VML[6:0] bits. Connect to a stabilizing capacitor. To fix the VCOML
VOOIVIE		capacitor	level to GND and set VCOMG = "0". In this case, capacitor
			connection is not necessary.
VCOMR	_	open	ILI9225BThis is a floating pad.
VOOIVIIX		Орсп	Leave this pin open.
C11P, C11M	_	Step-up	Connect the charge-pumping capacitor for generating DDVDH level.
C12P, C12M		capacitor	Connect the charge-pumping capacitor for generating DD VD11 level.
C21P, C21M	_	Step-up	Connect the charge-pumping capacitor for generating VGH, VGL level.
C22P, C22M		capacitor	Confident the charge-pumping capacitor for generating vori, vol level.
C31P, C31M	_	Step-up	Connect the charge-pumping capacitor for generating VCL level.
0011 , 001W		capacitor	Connect the charge pumping capacitor for generating VOL level.
		Stabilizing	An output voltage from the step-up circuit 1, twice the Vci1 level. Place
DDVDH	0	capacitor,	a stabilizing capacitor between GND. Place a shottkey diode
	O	DDVDH	between Vci and DDVDH. See "Configurations of Power supply
		DDVDII	circuit". DDVDH = 4.5 ~ 5.5V
		Stabilizing	An output voltage from the step-up circuit 2, 4 ~ 6 times the Vci1 level.
VGH	0	capacitor,	The step-up rate is set with the BT bits. Place a stabilizing capacitor
VOIT		VGH	between GND. Place a shottkey diode between Vci. See
		V 011	"Configurations of Power supply circuit". VGH = max 16.5V
			An output voltage from the step-up circuit 2, -3 \sim -5 times the Vci1
		Stabilizing	level. The step-up rate is set with the BT bits. Place a stabilizing
VGL	0	capacitor,	capacitor between GND. Place a shottkey diode between VGL and
		VGL	GND. See "Configurations of Power supply circuit". VGL =
			min –16.5V
		Stabilizing	An output voltage from the step-up circuit 2, –1 times the Vci1 level.
VCL	0	capacitor,	Connect to a stabilizing capacitor. VCL = 0 ~ -Vci
		VCL	
		Stabilizing	A reference voltage level.
VREG10UT	I/O	capacitor	The voltage level of VREG1OUT can be adjusted by the GVD[6:0]
(GVDD)	"	or power	bits. VREG1OUT is a source driver grayscale reference voltage.
		supply	Connect to a stabilizing capacitor. VREG1OUT = (Vci+0.3) ~

Pin Name	I/O	Туре	Descriptions
			(DDVDH – 0.5)V
VGS	I	GND or external resistor	A reference level for the grayscale voltage generating circuit. The VGS level can be changed by connecting to an external resistor.
VREF	-	-	Floating pin. This pin is a floating pin.
			Power Pads
Vci	I	Power supply	A supply voltage to the analog circuit. Connect to an external power supply of $2.5 \sim 3.3 \text{V}$.
Vci1	0	Stabilizing capacitor Vci1	An internal reference voltage for the step-up circuit1. The amplitude between Vci and GND is determined by the VC[2:0] bits. Vci1 must be set so that the output voltages DDVDH, VGH, VGL are generated within the respective setting ranges.
IOVCC (VDD3)	I	Power supply	A supply voltage to the interface pins (IOVcc = 1.65 ~ 3.3V).
AVSS (GND)	Р	-	GND for analog circuits
VSSC (GND)	Р	-	GND for booster circuits.
VSS (GND)	Р	-	GND for logic circuits.
RVDD	Р	Stabilizing Capacitor	Voltage regulator output for VDD. Connect to VDD pad for supplying power. Connect a capacitor for stabilization.
VDD	Р	RVDD	Power supply for memory and internal logic circuit. Connect this pin to regulated voltage output RVDD. Do not apply any external power to this pin over 1.8V.
			Test Pads
CL1	0	-	Output pins used only for test purpose at vendor-side. In normal operation, leave this pin open.
FLM	0	-	Tearing effect output pin to synchronize MCU to frame writing, activated by S/W command. When this pin is not activated, this pin is low. If not used, open this pin.
М	0	-	Output pins used only for test purpose at vendor-side. In normal operation, leave this pin open.
TEST_MODE[2:0]	I	-	Input pins used only for test purpose In normal operation, connect this pin to VSS or IOVCC.
TEST_MUX[2]	I	-	Input pins used only for test purpose This pin is internal pull low. In normal operation, please connect this pin to GND or leave this pin as open.
TEST_MUX[1:0]	I	-	Input pins used only for test purpose In normal operation, connect this pin to VSS or IOVCC.
TEST_DA	I	-	Input pins used only for test purpose

Pin Name	I/O	Туре	Descriptions
			In normal operation, connect this pin to VSS or IOVCC.
Contact	-	-	Contact resistance measurement pin.
EXCLK	ı	-	Test pin In normal operation, connect this pin to VSS or IOVCC.
EN_EXCLK	I	-	Test pin In normal operation, connect this pin to VSS or IOVCC.

Liquid crystal power supply specifications Table 1

No.	Item		Description								
1	TFT data lines		528 pins (176 x RGB)								
2	TFT gate lines		220 pins								
3	TFT display's capacitor s	structure	Cst structure only (Common VCOM)								
	Liquid opyotol	S1 ~ S528	V0 ~ V63 grayscales								
4	Liquid crystal drive output	G1 ~ G220	VGH - VGL								
	arive output	VCOM	VCOMH - VCOML: Amplitude = electronic volumes								
5	Input voltage	IOVcc	1.65V ~ 3.30V								
3	Input voltage	Vci	2.50V ~ 3.30V								
		DDVDH	Vci1 x 2								
6	Internal step-up circuits	VGH	Vci1 x 4, x 5, x 6								
U	internal step-up circuits	VGL	Vci1 x -3, x -4, x -5								
		VCL	Vci1 x -1								

5. Pad Arrangement and Coordination

No.	Name	Х	Υ	No.	Name	Х	Υ	No.	Name	х	Υ	No.	Name	х	Υ	No.	Name	х	Υ
1	DUMMY1	-6695	-267	51	C11P	-3695	-267	101	VCI	-695	-267	151	TEST MUX<2>	2855	-267	201	GVDD	5855	
2	DUMMY2	-6635	-267	52	C11P	-3635	-267	102	VCI	-635	-267	152	TEST MUX<1>	2915	-267	202	VCOMH	5915	
3	VCOM	-6575	-267	53	C11P	-3575	-267	103	VCI	-575	-267	153	TEST MUX<0>	2975	-267	203	VCOMH	5975	
4	VCOM	-6515	-267	54	C11P	-3515	-267	104	VCI	-515	-267	154	TEST DA	3035	-267	204	VCOML	6035	-267
5	VCOM	-6455	-267	55	C11P	-3455	-267	105	VCI	-455	-267	155	EN EXCLK	3095	-267	205	VCOML	6095	-267
6	VCOM	-6395	-267	56	C11P	-3395	-267	106	VCL	-395	-267	156	EXCLK	3155	-267	206	VCOMR	6155	-267
7	DUMMY3	-6335	-267	57	C11P	-3335	-267	107	VCL	-335	-267	157	AVSS	3215	-267	207	CONTACT	6215	
8	VGH	-6275	-267	58	C11M	-3275	-267	108	VCL	-275	-267	158	AVSS	3275	-267	208	CONTACT	6275	-267
9	VGH	-6215	-267	59	C11M	-3215	-267	109	VCL	-215	-267	159	AVSS	3335	-267	209	DUMMY10	6335	-267
10	VGH	-6155	-267	60	C11M	-3155	-267	110	VCL	-155	-267	160	AVSS	3395	-267	210	VCOM	6395	-267
11	VGH	-6095	-267	61	C11M	-3095	-267	111	DUMMY8	-95	-267	161	AVSS	3455	-267	211	VCOM	6455	-267
12	VGH	-6035	-267	62	C11M	-3035	-267	112	RS	-35	-267	162	AVSS	3515	-267	212	VCOM	6515	-267
13	DUMMY4	-5975	-267	63	C11M	-2975	-267	113	CSB	25	-267	163	AVSS	3575	-267	213	VCOM	6575	-267
14	VGL	-5915	-267	64	C11M	-2915	-267	114	VSYNC	85	-267	164	AVSS	3635	-267	214	DUMMY11	6635	-267
15	VGL	-5855	-267	65	C11M	-2855	-267	115	HSYNC	145	-267	165	AVSS	3695	-267	215	DUMMY12	6695	-267
16	VGL	-5795	-267	66	C12P	-2795	-267	116	DOTCLK	205	-267	166	VSS	3755	-267	216	DUMMY13	6772	236
17	VGL	-5735	-267	67	C12P	-2735	-267	117	ENABLE	265	-267	167	VSS	3815	-267	217	DUMMY14	6756	83
18	VGL	-5675	-267	68	C12P	-2675	-267	118	RESETB	325	-267	168	VSS	3875	-267	218	DUMMY15	6740	236
19	DUMMY5	-5615	-267	69	C12P	-2615	-267	119	SDI	385	-267	169	VSS	3935	-267	219	DUMMY16	6724	83
20	C22P	-5555	-267	70	C12P	-2555	-267	120	E_RDB	445	-267	170	VSS	3995	-267	220	G<2>	6708	236
21	C22P	-5495	-267	71	C12P	-2495	-267	121	RW_WRB	505	-267	171	VSS	4055	-267	221	G<4>	6692	83
22	C22P	-5435	-267	72	C12M	-2435	-267	122	DB<17>	565	-267	172	VSS	4115	-267	222	G<6>	6676	236
23	C22M	-5375	-267	73	C12M	-2375	-267	123	DB<16>	650	-267	173	VSS	4175	-267	223	G<8>	6660	83
24	C22M	-5315	-267	74	C12M	-2315	-267	124	DB<15>	735	-267	174	VSS	4235	-267	224	G<10>	6644	236
25	C22M	-5255	-267	75	C12M	-2255	-267	125	DB<14>	820	-267	175	VSS	4295	-267	225	G<12>	6628	83
26	C21P	-5195	-267	76	C12M	-2195	-267	126	DB<13>	905	-267	176	VGS	4355	-267	226	G<14>	6612	236
27	C21P	-5135	-267	77	C12M	-2135	-267	127	DB<12>	990	-267	177	VGS	4415	-267	227	G<16>	6596	83
28	C21P	-5075	-267	78	C31P	-2075	-267	128	DB<11>	1075	-267	178	RVDD	4475	-267	228	G<18>	6580	236
29	C21M	-5015	-267	79	C31P	-2015	-267	129	DB<10>	1160	-267	179	RVDD	4535	-267	229	G<20>	6564	83
30	C21M	-4955	-267	80	C31P	-1955	-267	130	DB<9>	1245	-267	180	RVDD	4595	-267	230	G<22>	6548	236
31	C21M	-4895	-267	81	C31P	-1895	-267	131	DB<8>	1330	-267	181	RVDD	4655	-267	231	G<24>	6532	83
32	DUMMY6	-4835	-267	82	C31P	-1835	-267	132	DB<7>	1415	-267	182	RVDD	4715	-267	232	G<26>	6516	236
33	DUMMY7	-4775	-267	83	C31M	-1775	-267	133	DB<6>	1500	-267	183	RVDD	4775	-267	233	G<28>	6500	83
34	VSSC	-4715	-267	84	C31M	-1715	-267	134	DB<5>	1585	-267	184	VDD	4835	-267	234	G<30>	6484	236
35	VSSC	-4655	-267	85	C31M	-1655	-267	135	DB<4>	1670	-267	185	VDD	4895	-267	235	G<32>	6468	83
36	VSSC	-4595	-267	86	C31M	-1595	-267	136	DB<3>	1755	-267	186	VDD	4955	-267	236	G<34>	6452	236
37	VSSC	-4535	-267	87	C31M	-1535	-267	137	DB<2>	1840	-267	187	VDD	5015	-267	237	G<36>	6436	83
38	VSSC	-4475	-267	88	DDVDH	-1475	-267	138	DB<1>	1925	-267	188	VDD	5075	-267	238	G<38>	6420	236
39	VSSC	-4415	-267	89	DDVDH	-1415	-267	139	DB<0>	2010	-267	189	VDD	5135	-267	239	G<40>	6404	83
40	VSSC	-4355	-267	90	DDVDH	-1355	-267	140	IM<3>	2095	-267	190	VDD3	5195	-267	240	G<42>	6388	236
41	VSSC	-4295	-267	91	DDVDH	-1295	-267	141	IM<2>	2155	-267	191	VDD3	5255	-267	241	G<44>	6372	83
42	VSSC	-4235	-267	92	DDVDH	-1235	-267	142	IM<1>	2215	-267	192	VDD3	5315	-267	242	G<46>	6356	236
43	VSSC	-4175	-267	93	DDVDH	-1175		143	IM<0>	2275		193	VDD3	5375	-267	243	G<48>	6340	
44	VCI1	-4115	-267	94	DDVDH	-1115		144	SDO	2335		194	VDD3	5435	-267	244	G<50>	6324	
45	VCI1	-4055	-267	95	DDVDH	-1055		145	M	2420		195	VDD3	5495	-267	245	G<52>	6308	
46	VCI1	-3995	-267	96	VCI	-995	-267	146	FLM	2505	-267	196	DUMMY9	5555	-267	246	G<54>	6292	236
47	VCI1	-3935	-267	97	VCI	-935	-267	147	CL1	2590		197	VREF	5615	-267	247	G<56>	6276	
48	VCI1	-3875	-267	98	VCI	-875	-267	148	TEST_MODE<2>	2675		198	GVDD	5675	-267	248	G<58>	6260	
49	VCI1	-3815	-267	99	VCI	-815		149	TEST_MODE<1>	2735		199	GVDD	5735	-267	249	G<60>	6244	83
50	C11P	-3755	-267	100	VCI	-755	-267	150	TEST_MODE<0>	2795	-267	200	GVDD	5795	-267	250	G<62>	6228	236

No.	Name	Х	Υ	No.	Name	х	Υ	No.	Name	х	Υ	No.	Name	х	Υ	No.	Name	х	Υ
251	G<64>	6212	83	301	G<164>	5412	83	351	S<516>	4612	83	401	S<466>	3812	83	451	S<416>	3012	83
252	G<66>	6196	236	302	G<166>	5396	236	352	S<515>	4596	236	402	S<465>	3796	236	452	S<415>	2996	236
253	G<68>	6180	83	303	G<168>	5380	83	353	S<514>	4580	83	403	S<464>	3780	83	453	S<414>	2980	83
254	G<70>	6164	236	304	G<170>	5364	236	354	S<513>	4564	236	404	S<463>	3764	236	454	S<413>	2964	236
255	G<72>	6148	83	305	G<172>	5348	83	355	S<512>	4548	83	405	S<462>	3748	83	455	S<412>	2948	83
256	G<74>	6132	236	306	G<174>	5332	236	356	S<511>	4532	236	406	S<461>	3732	236	456	S<411>	2932	236
257	G<76>	6116	83	307	G<176>	5316	83	357	S<510>	4516	83	407	S<460>	3716	83	457	S<410>	2916	83
258	G<78>	6100	236	308	G<178>	5300	236	358	S<509>	4500	236	408	S<459>	3700	236	458	S<409>	2900	236
259	G<80>	6084	83	309	G<180>	5284	83	359	S<508>	4484	83	409	S<458>	3684	83	459	S<408>	2884	83
260	G<82>	6068	236	310	G<182>	5268	236	360	S<507>	4468	236	410	S<457>	3668	236	460	S<407>	2868	236
261	G<84>	6052	83	311	G<184>	5252	83	361	S<506>	4452	83	411	S<456>	3652	83	461	S<406>	2852	83
262	G<86>	6036	236	312	G<186>	5236	236	362	S<505>	4436	236	412	S<455>	3636	236	462	S<405>	2836	236
263	G<88>	6020	83	313	G<188>	5220	83	363	S<504>	4420	83	413	S<454>	3620	83	463	S<404>	2820	83
264	G<90>	6004	236	314	G<190>	5204	236	364	S<503>	4404	236	414	S<453>	3604	236	464	S<403>	2804	236
265	G<92>	5988	83	315	G<192>	5188	83	365	S<502>	4388	83	415	S<452>	3588	83	465	S<402>	2788	83
266	G<94>	5972	236	316	G<194>	5172	236	366	S<501>	4372	236	416	S<451>	3572	236	466	S<401>	2772	236
267	G<96>	5956	83	317	G<196>	5156	83	367	S<500>	4356	83	417	S<450>	3556	83	467	S<400>	2756	83
268	G<98>	5940	236	318	G<198>	5140	236	368	S<499>	4340	236	418	S<449>	3540	236	468	S<399>	2740	236
269	G<100>	5924	83	319	G<200>	5124	83	369	S<498>	4324	83	419	S<448>	3524	83	469	S<398>	2724	83
270	G<102>	5908	236	320	G<202>	5108	236	370	S<497>	4308	236	420	S<447>	3508	236	470	S<397>	2708	236
271	G<104>	5892	83	321	G<204>	5092	83	371	S<496>	4292	83	421	S<446>	3492	83	471	S<396>	2642	83
272	G<106>	5876	236	322	G<206>	5076	236	372	S<495>	4276	236	422	S<445>	3476	236	472	S<395>	2626	236
273	G<108>	5860	83	323	G<208>	5060	83	373	S<494>	4260	83	423	S<444>	3460	83	473	S<394>	2610	83
274	G<110>	5844	236	324	G<210>	5044	236	374	S<493>	4244	236	424	S<443>	3444	236	474	S<393>	2594	236
275	G<112>	5828	83	325	G<212>	5028	83	375	S<492>	4228	83	425	S<442>	3428	83	475	S<392>	2578	83
276	G<114>	5812	236	326	G<214>	5012	236	376	S<491>	4212	236	426	S<441>	3412	236	476	S<391>	2562	236
277	G<116>	5796	83	327	G<216>	4996	83	377	S<490>	4196	83	427	S<440>	3396	83	477	S<390>	2546	83
278	G<118>	5780	236	328	G<218>	4980	236	378	S<489>	4180	236	428	S<439>	3380	236	478	S<389>	2530	236
279	G<120>	5764	83	329	G<220>	4964	83	379	S<488>	4164	83	429	S<438>	3364	83	479	S<388>	2514	83
280	G<122>	5748	236	330	DUMMY17	4948	236	380	S<487>	4148	236	430	S<437>	3348	236	480	S<387> S<386>	2498	236
281	G<124> G<126>	5732 5716	236	331	DUMMY18 DUMMY19	4932 4916	236	381	S<486> S<485>	4132 4116	236	431	S<436>	3332 3316	236	481	S<385>	2482	236
283	G<128>	5700	83	333	DUMMY20	4900	83	383	S<484>	4100	83	433	S<434>	3300	83	483	S<384>	2450	83
284	G<130>	5684	236	334	DUMMY21	4884	236	384	S<483>	4084	236	434	S<433>	3284	236	484	S<383>	2434	236
285	G<132>	5668	83	335	DUMMY22	4868	83	385	S<482>	4068	83	435	S<432>	3268	83	485	S<382>	2418	83
286	G<134>	5652	236	336	DUMMY23	4852	236	386	S<481>	4052	236	436	S<431>	3252	236	486	S<381>	2402	236
287	G<136>	5636	83	337	DUMMY24	4836	83	387	S<480>	4036	83	437	S<430>	3236	83	487	S<380>	2386	83
288	G<138>	5620	236	338	DUMMY25	4820	236	388	S<479>	4020	236	438	S<429>	3220	236	488	S<379>	2370	236
289	G<140>	5604	83	339	S<528>	4804	83	389	S<478>	4004	83	439	S<428>	3204	83	489	S<378>	2354	83
290	G<142>	5588	236	340	S<527>	4788	236	390	S<477>	3988	236	440	S<427>	3188	236	490	S<377>	2338	236
291	G<144>	5572	83	341	S<526>	4772	83	391	S<476>	3972	83	441	S<426>	3172	83	491	S<376>	2322	83
292	G<146>	5556	236	342	S<525>	4756	236	392	S<475>	3956	236	442	S<425>	3156	236	492	S<375>	2306	236
293	G<148>	5540	83	343	S<524>	4740	83	393	S<474>	3940	83	443	S<424>	3140	83	493	S<374>	2290	83
294	G<150>	5524	236	344	S<523>	4724	236	394	S<473>	3924	236	444	S<423>	3124	236	494	S<373>	2274	236
295	G<152>	5508	83	345	S<522>	4708	83	395	S<472>	3908	83	445	S<422>	3108	83	495	S<372>	2258	83
296	G<154>	5492	236	346	S<521>	4692	236	396	S<471>	3892	236	446	S<421>	3092	236	496	S<371>	2242	236
297	G<156>	5476	83	347	S<520>	4676	83	397	S<470>	3876	83	447	S<420>	3076	83	497	S<370>	2226	83
298	G<158>	5460	236	348	S<519>	4660	236	398	S<469>	3860	236	448	S<419>	3060	236	498	S<369>	2210	236
299	G<160>	5444	83	349	S<518>	4644	83	399	S<468>	3844	83	449	S<418>	3044	83	499	S<368>	2194	83
300	G<162>	5428	236	350	S<517>	4628	236	400	S<467>	3828	236	450	S<417>	3028	236	500	S<367>	2178	236

No.	Name	Х	Υ	No.	Name	х	Υ	No.	Name	х	Υ	No.	Name	х	Υ	No.	Name	Х	Υ
501	S<366>	2162	83	551	S<316>	1362	83	601	S<266>	562	83	651	S<216>	-1322	83	701	S<166>	-2122	83
502	S<365>	2146	236	552	S<315>	1346	236	602	S<265>	546	236	652	S<215>	-1338	236	702	S<165>	-2138	236
503	S<364>	2130	83	553	S<314>	1330	83	603	S<264>	-554	83	653	S<214>	-1354	83	703	S<164>	-2154	83
504	S<363>	2114	236	554	S<313>	1314	236	604	S<263>	-570	236	654	S<213>	-1370	236	704	S<163>	-2170	236
505	S<362>	2098	83	555	S<312>	1298	83	605	S<262>	-586	83	655	S<212>	-1386	83	705	S<162>	-2186	83
506	S<361>	2082	236	556	S<311>	1282	236	606	S<261>	-602	236	656	S<211>	-1402	236	706	S<161>	-2202	236
507	S<360>	2066	83	557	S<310>	1266	83	607	S<260>	-618	83	657	S<210>	-1418	83	707	S<160>	-2218	83
508	S<359>	2050	236	558	S<309>	1250	236	608	S<259>	-634	236	658	S<209>	-1434	236	708	S<159>	-2234	236
509	S<358>	2034	83	559	S<308>	1234	83	609	S<258>	-650	83	659	S<208>	-1450	83	709	S<158>	-2250	83
510	S<357>	2018	236	560	S<307>	1218	236	610	S<257>	-666	236	660	S<207>	-1466	236	710	S<157>	-2266	236
511	S<356>	2002	83	561	S<306>	1202	83	611	S<256>	-682	83	661	S<206>	-1482	83	711	S<156>	-2282	83
512	S<355>	1986	236	562	S<305>	1186	236	612	S<255>	-698	236	662	S<205>	-1498	236	712	S<155>	-2298	236
513	S<354>	1970	83	563	S<304>	1170	83	613	S<254>	-714	83	663	S<204>	-1514	83	713	S<154>	-2314	83
514	S<353>	1954	236	564	S<303>	1154	236	614	S<253>	-730	236	664	S<203>	-1530	236	714	S<153>	-2330	236
515	S<352>	1938	83	565	S<302>	1138	83	615	S<252>	-746	83	665	S<202>	-1546	83	715	S<152>	-2346	83
516	S<351>	1922	236	566	S<301>	1122	236	616	S<251>	-762	236	666	S<201>	-1562	236	716	S<151>	-2362	236
517	S<350>	1906	83	567	S<300>	1106	83	617	S<250>	-778	83	667	S<200>	-1578	83	717	S<150>	-2378	83
518	S<349>	1890	236	568	S<299>	1090	236	618	S<249>	-794	236	668	S<199>	-1594	236	718	S<149>	-2394	236
519	S<348>	1874	83	569	S<298>	1074	83	619	S<248>	-810	83	669	S<198>	-1610	83	719	S<148>	-2410	83
520	S<347>	1858	236	570	S<297>	1058	236	620	S<247>	-826	236	670	S<197>	-1626	236	720	S<147>	-2426	236
521	S<346>	1842	83	571	S<296>	1042	83	621	S<246>	-842	83	671	S<196>	-1642	83	721	S<146>	-2442	83
522	S<345>	1826	236	572	S<295>	1026	236	622	S<245>	-858	236	672	S<195>	-1658	236	722	S<145>	-2458	236
523	S<344>	1810	83	573	S<294>	1010	83	623	S<244>	-874	83	673	S<194>	-1674	83	723	S<144>	-2474	83
524	S<343>	1794	236	574	S<293>	994	236	624	S<243>	-890	236	674	S<193>	-1690	236	724	S<143>	-2490	236
525	S<342>	1778	83	575	S<292>	978	83	625	S<242>	-906	83	675	S<192>	-1706	83	725	S<142>	-2506	83
526	S<341>	1762	236	576	S<291>	962	236	626	S<241>	-922	236	676	S<191>	-1722	236	726	S<141>	-2522	236
527	S<340>	1746	83	577	S<290>	946	83	627	S<240>	-938	83	677	S<190>	-1738	83	727	S<140>	-2538	83
528	S<339>	1730	236	578	S<289>	930	236	628	S<239>	-954	236	678	S<189>	-1754	236	728	S<139>	-2554	236
529	S<338>	1714	83	579	S<288>	914	83	629	S<238>	-970	83	679	S<188>	-1770	83	729	S<138>	-2570	83
530	S<337>	1698	236	580	S<287>	898	236	630	S<237>	-986	236	680	S<187>	-1786	236	730	S<137>	-2586	236
531	S<336>	1682	83	581	S<286>	882	83	631	S<236>	-1002	83	681	S<186>	-1802	83	731	S<136>	-2602	83
532	S<335>	1666	236	582	S<285>	866	236	632	S<235>	-1018	236	682	S<185>	-1818	236	732	S<135>	-2618	236
533	S<334>	1650	83	583	S<284>	850	83	633	S<234>	-1034	83	683	S<184>	-1834	83	733	S<134>	-2634	83
534	S<333>	1634	236	584	S<283>	834	236	634	S<233>	-1050	236	684	S<183>	-1850	236	734	S<133>	-2650	
535	S<332>	1618	83	585	S<282>	818	83	635	S<232>	-1066	83	685	S<182>	-1866	83	735	S<132>	-2716	83
536	S<331>	1602	236	586	S<281>	802	236	636	S<231>	-1082	236	686	S<181>	-1882	236	736	S<131>	-2732	236
537	S<330>	1586	83	587	S<280>	786	83	637	S<230>	-1098	83	687	S<180>	-1898	83	737	S<130>	-2748	83
538	S<329>	1570	236	588	S<279>	770	236	638	S<229>	-1114	236	688	S<179>	-1914	236	738	S<129>	-2764	236
539	S<328>	1554	83	589	S<278>	754 738	83	639	S<228>	-1130	83	689	S<178>	-1930	83	739	S<128>	-2780	83
540	S<327>	1538	236	590 591	S<277>	722	236 83	640	S<227>	-1146	236	690	S<177>	-1946	236	740	S<127>	-2796	236
541	S<326>	1522	83	592	S<275>	706	236	641	S<226>	-1162	83	691	S<176>	-1962	83	741	S<126>	-2812	83
542	S<325>	1506	236	593	S<274>	690	83	642	S<225>	-1178	236	692	S<175>	-1978	236	742	S<125>	-2828	236
543	S<324> S<323>	1490	236	594	S<273>	674	236	643	S<224> S<223>	-1194	83	693	S<174>	-1994	83	743	S<124>	-2844	83
544		1474	236	595	S<272>	658	83	644		-1210	236	694	S<173>	-2010	236	744		-2860 -2876	236
545 546	S<322> S<321>	1458 1442	236	596	S<271>	642	236	645	S<222> S<221>	-1226 -1242	236	695 696	S<172>	-2026 -2042	236	745 746	S<122> S<121>	-2876 -2892	236
547	S<321>	1442	83	597	S<270>	626	83	646	S<221>	-1242	83	696	S<171>	-2042	83	746	S<121>	-2892	83
548	S<320>	1410	236	598	S<269>	610	236		S<220>	-1258	236	698	S<170>	-2058	236	747	S<120>	-2908	
549	S<319>	1394	83	599	S<268>	594	83	648	S<219>	-1274	83	699	S<169>	-2074	83	748	S<119>	-2924	236 83
550	S<317>	1378	236	600	S<267>	578	236	650	S<210>	-1306	236	700	S<167>	-2106	236	750	S<110>	-2940	236
JUU	U-U112	13/0	۷30	500	0 -201/	910	200	030	U^21/2	-1300	۷30	700	U-10/2	-2100	230	750	<i>۱۱۱۰ د</i>	-2930	۷30

No.	Name	х	Υ	No.	Name	Х	Υ	No.	Name	Х	Υ	No.	Name	х	Υ	No.	Name	х	Υ
751	S<116>	-2972	83	801	S<66>	-3772	83	851	S<16>	-4572	83	901	G<167>	-5372	83	951	G<67>	-6172	83
752	S<115>	-2988	236	802	S<65>	-3788	236	852	S<15>	-4588	236	902	G<165>	-5388	236	952	G<65>	-6188	236
753	S<114>	-3004	83	803	S<64>	-3804	83	853	S<14>	-4604	83	903	G<163>	-5404	83	953	G<63>	-6204	83
754	S<113>	-3020	236	804	S<63>	-3820	236	854	S<13>	-4620	236	904	G<161>	-5420	236	954	G<61>	-6220	236
755	S<112>	-3036	83	805	S<62>	-3836	83	855	S<12>	-4636	83	905	G<159>	-5436	83	955	G<59>	-6236	83
756	S<111>	-3052	236	806	S<61>	-3852	236	856	S<11>	-4652	236	906	G<157>	-5452	236	956	G<57>	-6252	236
757	S<110>	-3068	83	807	S<60>	-3868	83	857	S<10>	-4668	83	907	G<155>	-5468	83	957	G<55>	-6268	83
758	S<109>	-3084	236	808	S<59>	-3884	236	858	S<9>	-4684	236	908	G<153>	-5484	236	958	G<53>	-6284	236
759	S<108>	-3100	83	809	S<58>	-3900	83	859	S<8>	-4700	83	909	G<151>	-5500	83	959	G<51>	-6300	83
760	S<107>	-3116	236	810	S<57>	-3916	236	860	S<7>	-4716	236	910	G<149>	-5516	236	960	G<49>	-6316	236
761	S<106>	-3132	83	811	S<56>	-3932	83	861	S<6>	-4732	83	911	G<147>	-5532	83	961	G<47>	-6332	83
762	S<105>	-3148	236	812	S<55>	-3948	236	862	S<5>	-4748	236	912	G<145>	-5548	236	962	G<45>	-6348	236
763	S<104>	-3164	83	813	S<54>	-3964	83	863	S<4>	-4764	83	913	G<143>	-5564	83	963	G<43>	-6364	83
764	S<103>	-3180	236	814	S<53>	-3980	236	864	S<3>	-4780	236	914	G<141>	-5580	236	964	G<41>	-6380	236
765	S<102>	-3196	83	815	S<52>	-3996	83	865	S<2>	-4796	83	915	G<139>	-5596	83	965	G<39>	-6396	83
766	S<101>	-3212	236	816	S<51>	-4012	236	866	S<1>	-4812	236	916	G<137>	-5612	236	966	G<37>	-6412	236
767	S<100>	-3228	83	817	S<50>	-4028	83	867	DUMMY26	-4828	83	917	G<135>	-5628	83	967	G<35>	-6428	83
768	S<99>	-3244	236	818	S<49>	-4044	236	868	DUMMY27	-4844	236	918	G<133>	-5644	236	968	G<33>	-6444	236
769	S<98>	-3260	83	819	S<48>	-4060	83	869	DUMMY28	-4860	83	919	G<131>	-5660	83	969	G<31>	-6460	83
770	S<97>	-3276	236	820	S<47>	-4076	236	870	DUMMY29	-4876	236	920	G<129>	-5676	236	970	G<29>	-6476	236
771	S<96>	-3292	83	821	S<46>	-4092	83	871	DUMMY30	-4892	83	921	G<127>	-5692	83	971	G<27>	-6492	83
772	S<95>	-3308	236	822	S<45>	-4108	236	872	DUMMY31	-4908	236	922	G<125>	-5708	236	972	G<25>	-6508	236
773	S<94>	-3324	83	823	S<44>	-4124	83	873	DUMMY32	-4924	83	923	G<123>	-5724	83	973	G<23>	-6524	83
774	S<93>	-3340	236	824	S<43>	-4140	236	874	DUMMY33	-4940	236	924	G<121>	-5740	236	974	G<21>	-6540	236
775	S<92>	-3356	83	825	S<42>	-4156	83	875	G<219>	-4956	83	925	G<119>	-5756	83	975	G<19>	-6556	83
776	S<91>	-3372	236	826	S<41>	-4172	236	876	G<217>	-4972	236	926	G<117>	-5772	236	976	G<17>	-6572	236
777	S<90>	-3388	83	827	S<40>	-4188	83	877	G<215>	-4988	83	927	G<115>	-5788	83	977	G<15>	-6588	83
778	S<89>	-3404	236	828	S<39>	-4204	236	878	G<213>	-5004	236	928	G<113>	-5804	236	978	G<13>	-6604	236
779	S<88>	-3420	83	829	S<38>	-4220	83	879	G<211>	-5020	83	929	G<111>	-5820	83	979	G<11>	-6620	83
780	S<87>	-3436	236	830	S<37>	-4236	236	880	G<209>	-5036	236	930	G<109>	-5836	236	980	G<9>	-6636	236
781	S<86>	-3452	83	831	S<36>	-4252	83	881	G<207>	-5052	83	931	G<107>	-5852	83	981	G<7>	-6652	83
782	S<85>	-3468	236	832	S<35>	-4268	236	882	G<205>	-5068	236	932	G<105>	-5868	236	982	G<5>	-6668	236
783	S<84>	-3484	83	833	S<34>	-4284	83	883	G<203>	-5084	83	933	G<103>	-5884	83	983	G<3>	-6684	83
784	S<83>	-3500	236	834	S<33>	-4300	236	884	G<201>	-5100	236	934	G<101>	-5900	236	984	G<1>	-6700	236
785	S<82>	-3516	83	835	S<32>	-4316	83	885	G<199>	-5116	83	935	G<99>	-5916	83	985	DUMMY34	-6716	83
786	S<81>	-3532	236	836	S<31>	-4332	236	886	G<197>	-5132	236	936	G<97>	-5932	236	986	DUMMY35	-6732	236
787	S<80>	-3548	83	837	S<30>	-4348	83	887	G<195>	-5148	83	937	G<95>	-5948	83	987	DUMMY36	-6748	83
788	S<79>	-3564	236	838	S<29>	-4364	236	888	G<193>	-5164	236	938	G<93>	-5964	236	988	DUMMY37	-6764	236
789	S<78>	-3580	83	839	S<28>	-4380	83	889	G<191>	-5180	83	939	G<91>	-5980	83	Alig	nment Mark Left	-6852.5	257.5
790	S<77>	-3596	236	840	S<27>	-4396	236	890	G<189>	-5196	236	940	G<89>	-5996	236	Align	ment Mark Right	6852.5	257.5
791	S<76>	-3612	83	841	S<26>	-4412	83	891	G<187>	-5212	83	941	G<87>	-6012	83				
792	S<75>	-3628	236	842	S<25>	-4428	236	892	G<185>	-5228	236	942	G<85>	-6028	236				
793	S<74>	-3644	83	843	S<24>	-4444	83	893	G<183>	-5244	83	943	G<83>	-6044	83				
794	S<73>	-3660	236	844	S<23>	-4460	236	894	G<181>	-5260	236	944	G<81>	-6060	236				
795	S<72>	-3676	83	845	S<22>	-4476	83	895	G<179>	-5276	83	945	G<79>	-6076	83				
796	S<71>	-3692	236	846	S<21>	-4492	236	896	G<177>	-5292	236	946	G<77>	-6092	236	<u> </u>			
797	S<70>	-3708	83	847	S<20>	-4508	83	897	G<175>	-5308	83	947	G<75>	-6108	83	<u> </u>			
798	S<69>	-3724	236	848	S<19>	-4524	236	898	G<173>	-5324	236	948	G<73>	-6124	236	-			
799	S<68>	-3740	83	849	S<18>	-4540	83	899	G<171>	-5340	83	949	G<71>	-6140	83	-			
800	S<67>	-3756	236	850	S<17>	-4556	236	900	G<169>	-5356	236	950	G<69>	-6156	236	<u> </u>		<u> </u>	

6. Block Description

MPU System Interface

ILI9225B supports three system high-speed interfaces: i80/M68-system high-speed interfaces to 8-, 9-, 16-, 18-bit parallel ports and serial peripheral interface (SPI). The interface mode is selected by setting the IM[3:0] pins.

ILI9225B has a 16-bit index register (IR), an 18-bit write-data register (WDR), and an 18-bit read-data register (RDR). The IR is the register to store index information from control registers and the internal GRAM. The WDR is the register to temporarily store data to be written to control registers and the internal GRAM. The RDR is the register to temporarily store data read from the GRAM. Data from the MPU to be written to the internal GRAM are first written to the WDR and then automatically written to the internal GRAM in internal operation. Data are read via the RDR from the internal GRAM. Therefore, invalid data are read out to the data bus when the ILI9225B read the first data from the internal GRAM. Valid data are read out after the ILI9225B performs the second read operation.

Registers are written consecutively as the register execution time except starting oscillator takes 0 clock cycle.

Registers selection by system interface (8-/9-/16-/18-bit bus width)		180			M68		
Function	RS	nWR	nRD	Ε	RW		
Write an index to IR register	0	0	1	1	0		
Read an internal status	0	1	0	1	1		
Write to control registers or the internal GRAM by WDR register.	1	0	1	1	0		
Read from the internal GRAM by RDR register.	1	1	0	1	1		

Registers selection by the SPI system interface								
Function R/W RS								
Write an index to IR register	0	0						
Read an internal status	1	0						
Write to control registers or the internal GRAM by WDR register.	0	1						
Read from the internal GRAM by RDR register.	1	1						

Parallel RGB Interface

ILI9225B supports the RGB interface as the external interface for displaying a moving picture. When the RGB interface is selected, display operations are synchronized with externally supplied signals, VSYNC, HSYNC, and DOTCLK. In RGB interface mode, data (DB17-0) are written in synchronization with these signals according to the polarity of enable signal (ENABLE) to prevent flicker on display while updating display data. ILI9225B

The RGB interface, by writing all display data to the internal RAM, allows for transferring data only when updating the frames of a moving picture, contributing to low power requirement for moving picture display.

ILI9225BAddress Counter (AC)

The address counter (AC) gives an address to the internal GRAM. When the index of the register for setting a RAM address in the AC is written to the IR, the address information is sent from the IR to the AC. As writing

data to the internal GRAM, the address in the AC is automatically updated plus or minus 1. The window address function enables writing data only in the rectangular area arbitrarily set by users on the GRAM.

Graphics RAM (GRAM)

GRAM is graphics RAM storing bit-pattern data of 87,120 (176 x 220x 18/8) bytes, using 18 bits for each pixel.

Grayscale Voltage Generating Circuit

The grayscale voltage generating circuit generates a liquid crystal drive voltage according to grayscale data set in the γ -correction register to display in 262,144 colors. For details, see the " γ -Correction Register" section.

Timing Controller

The timing generator generates a timing signal for operation of internal circuits such as the internal GRAM. The timing for the display operation such as RAM read operation and the timing for the internal operation such as access from the MPU are generated in the way not to interfere each other.

Oscillator (OSC.)

The ILI9225B can provide R-C oscillation without external resistor. The appropriate oscillation frequency for operation voltage, display size, and frame frequency can be obtained by adjusting the register setting value[R0Fh]. Clock pulse can also be supplied externally. Since R-C oscillation stops during the standby mode, currentconsumption can be reduced. For details, see the Oscillation Circuit section.

ILI9225B

LCD Driver Circuit

The LCD driver circuit of ILI9225B consists of a 528-output source driver (S1 \sim S528) and a 220-output gate driver (G1 \sim G220). Display pattern data are latched when the 528th bit data are input. The latched data control the source driver and generate a drive waveform. The gate driver for scanning gate lines outputs either VGH or VGL level. The shift direction of 528-bit source outputs from the source driver is set with the SS bit and the shift direction of gate outputs from the gate driver is set with the GS bit. The scan mode by the gate driver is set with the SM bit. These bits allow setting an appropriate scan method for an LCD module.

LCD Driver Power Supply Circuit

The LCD drive power supply circuit generates the voltage levels VREG10UT, VGH, VGL and Vcom for driving an LCD.

7. System Interface

7.1. Interface Specifications

ILI9225B has the system interface to read/write the control registers and display graphics memory (GRAM), and the RGB Input Interface for displaying a moving picture. User can select an optimum interface to display the moving or still picture with efficient data transfer. All display data are stored in the GRAM to reduce the data transfer efforts and only the updating data is necessary to be transferred. User can only update a sub-range of GRAM by using the window address function.

ILI9225B also has the RGB interface to transfer the display data without flicker the moving picture on the screen. In RGB interface mode, the display data is written into the GRAM through the control signals of ENABLE, VSYNC, HSYNC, DOTCLK and data bus DB[17:0].

ILI9225B operates in one of the following 3 modes. The display mode can be switched by the control register. When switching from one mode to another, refer to the sequences mentioned in the sections of RGB interfaces.

Operation Mode	RAM Access Setting (RM)	Display Operation Mode (DM)		
Internal operating clock only (Displaying still pictures)	System interface (RM = 0)	Internal operating clock (DM=0)		
RGB interface (1) (Displaying moving pictures)	RGB interface (RM = 1)	RGB interface (DM=1)		
RGB interface (2) (Rewriting still pictures while displaying moving pictures)	System interface (RM = 0)	RGB interface (DM=1)		

Note 1) Registers are set only via the system interface.

Note 2) The RGB-I/F is not available simultaneously.

Figure 1 System Interface and RGB Interface connection

7.2. <u>Input Interfaces</u>

The following are the system interfaces available with the ILI9225B. The interface is selected by setting the IM[3:0] pins. The system interface is used for setting instructions and RAM access.

IM3	IM2	IM1	IM0/ID	Interface Mode	DB Pin
0	0	0	0	M68-system 16-bit interface	DB[17:10], DB[8:1]
0	0	0	1	M68-system 8-bit interface	DB[17:10]
0	0	1	0	i80-system 16-bit interface	DB[17:10], DB[8:1]
0	0	1	1	i80-system 8-bit interface	DB[17:10]
0	1	0	ID	Serial Peripheral Interface (SPI)	SDI, SDO (DB[1:0])
0	1	1	0	3-wire 9-bit serial interface	nCS, SCL, SDA
0	1	1	1	4-wire 8-bit serial interface	nCS, SCL, SDA, RS (D/CX)
1	0	0	0	M68-system18-bit interface	DB[17:0]
1	0	0	1	M68-system 9-bit interface	DB[17:9]
1	0	1	0	i80-system18-bit interface	DB[17:0]
1	0	1	1	i80-system 9-bit interface	DB[17:9]
1	1	*	*	Setting invalid	

7.2.1. 18-bit System Interface

The data format for 18-bit data bus is as following,

Read/Write Register Data format:

Read/Write GRAM Data format:

18-bit System Interface (262K colors)

Figure 218-bit System Interface Data Format

7.2.2. 16-bit System Interface

The data format for 16-bit data bus is as following,

Read/Write Register Data format:

Data Bus (DB[17:10]), (DB[8:1])

Register Bit (D[15:0])

Read/Write GRAM Data format:

Figure 316-bit System Interface Data Format

i80 Read/Write Timing:

Figure4 i80 16/18-bit System Interface Timing

M68 Read/Write Timing:

Figure 5 M68 16/18-bit System Interface Timing

7.2.3. 9-bit System Interface

The DB17~DB9 pins are used to transfer the data. When writing the 16-bit register, the data is divided into upper byte (8 bits and LSB is not used) lower byte and the upper byte is transferred first. The display data is also divided in upper byte (9 bits) and lower byte, and the upper byte is transferred first. The unused DB[8:0] pins must be tied to ground.

Read/Write Register Data format:

Read/Write GRAM Data format:

9-bit System Interface (262K colors)

Figure 9-bit System Interface Data Format

7.2.4. 8-bit System Interface

The DB17~DB10 pins are used to transfer the data. When writing the 16-bit register, the data is divided into upper byte (8 bits and LSB is not used) lower byte and the upper byte is transferred first. The display data is also divided in upper byte (8 bits) and lower byte, and the upper byte is transferred first. The written data is expanded into 18 bits internally (see the figure below) and then written into GRAM. The unused DB[9:0] pins must be tied to ground.

Read/Write Register Data format:

Read/Write GRAM Data format:

Figure 7 8-bit System Interface Data Format

Data transfer synchronization in 8/9-bit bus interface mode

ILI9225B supports a data transfer synchronization function to reset upper and lower counters which count the

transfers umner of upper and lower byte in 8/9-bit interface mode. If a mismatch arises in then numbers of transfers between the upper and lower byte counters due to noise and so on, the "00"h register is written 4 times consecutively to reset the upper and lower counters so that data transfer will restart with a transfer of upper byte. This synchronization function can effectively prevent display error if the upper/lower counters are periodically reset.

Figure 8 Data Transfer Synchronization in 8/9-bit System Interface

7.3. Serial Peripheral Interface (SPI)

7.3.1. 24-bit 4 wires Serial Peripherial Interface

The Serial Peripheral Interface (SPI) is selected by setting the IM[3:0] pins as "010x" level. The chip select pin (nCS), the serial transfer clock pin (SCL), the serial data input pin (SDI) and the serial data output pin (SDO) are used in SPI mode. The ID pin sets the least significant bit of the identification code. The DB[17:0] pins, which are not used, must be tied to ground.

The SPI interface operation enables from the falling edge of nCS and ends of data transfer on the rising edge of nCS. The start byte is transferred to start the SPI interface and the read/write operation and RS information are also included in the start byte. When the start byte is matched, the subsequent data is received by ILI9225B.

The seventh bit of start byte is RS bit. When RS = "0", either index write operation or status read operation is executed. When RS = "1", either register write operation or RAM read/write operation is executed. The eighth bit of the start byte is used to select either read or write operation (R/W bit). Data is written when the R/W bit is "0" and read back when the R/W bit is "1".

After receiving the start byte, ILI9225B starts to transfer or receive the data in unit of byte and the data transfer starts from the MSB bit. All the registers of the ILI9225B are 16-bit format and receive the first and the second byte datat as the upper and the lower eight bits of the 16-bit register respectively. In SPI mode, 5 bytes dummy read is necessary and the valid data starts from 6th byte of read back data.

Start Byte Format

Transferred bits	S	1	2	3	4	5	6	7	8
Start byte format Transfer star		Device ID code						RS	R/W
		0	1	1	1	0	ID	1/0	1/0

Note: ID bit is selected by setting the IMO/ID pin.

RS and R/W Bit Function

RS	R/W	Function			
0	0 Set an index register				
0	1	Read a status			
1	0	Write a register or GRAM data			
1	1	Read a register or GRAM data			

Figure 9 Data Format of SPI Interface

Figure 10 Data transmission through SPI, 65 Color

Figure 11 Data transmission through SPI, 262K Color

7.3.2. 3-wire 9-bit Serial Interface

This SPI mode uses a 3-wire 9-bit serial interface. The chip-select **nCS** (active low) enables and disables the serial interface. **SCL** is the serial data clock and **SDA** is serial data.

Serial data must be input to **SDA** in the sequence D/CX, D7 to D0. The ILI9225B reads the data at the rising edge of **SCL** signal. The first bit of serial data D/CX is data/command flag. When D/CX = "1", D7 to D0 bits are display RAM data or command parameters. When D/CX = "0" D7 to D0 bits are commands.

Register Write Mode:

Register Read Mode:

When users need to read back the register or GRAM data, the register R66h must be set as "1" first, and then write the register index to read back the register or GRAM data. The following timing diagrams show examples to read back the register data.

Serial Data Transfer Interface (262K colors, MDT[1:0]="11")

7.3.3. 4-wire 8-bit Serial Interface

This SPI mode uses a 4-wire 9-bit serial interface. The chip-select **nCS** (active low) enables and disables the serial interface. **D/CX** is the command or data select signal, **SCL** is the serial data clock and **SDA** is serial data.

Serial data must be input to **SDA** in the sequence D7 to D0. The ILI9225B reads the data at the rising edge of **SCL** signal. The **D/CX** signal indicates data/command. When D/CX = "1", D7 to D0 bits are display RAM data or command parameters. When D/CX = "0" D7 to D0 bits are commands.

Register Write Mode:

Register Read Mode:

When users need to read back the register or GRAM data, the register R66h must be set as "1" first, and then write the register index to read back the register or GRAM data. The following timing diagrams show examples to read back the register data.

Serial Data Transfer Interface (65K colors, MDT[1:0]="00")

Serial Data Transfer Interface (262K colors, MDT[1:0]="11")

7.3.4. Data Transfer Recovery

If there is a break in data transmission while transferring a command or GRAM data or multiple register data, before Bit D0 of the byte has been completed, then the ILI9225B will reject the previous bits and have reset the interface such that it will be ready to receive the same byte retransmitted when the chip select line (nCS) is next activated. See the following example:

If the 2 parameter of command is being sent and a break occurs while sending any parameter before the last one and if the host then sends a new command rather than re-transmitting the parameter that was interrupted, then the parameters that were successfully sent are stored and the parameter where the break occurred isrejected. The interface is ready to receive next byte as show below.

Note: Break can be e.g. another command or noise pulse.

7.4. RGB Input Interface

The RGB Interface mode is available for ILI9225B and the interface is selected by setting the RIM[1:0] bits as following table.

RIM1	RIM0	RGB Interface	DB pins
0	0	18-bit RGB Interface	DB[17:0]
0	1	16-bit RGB Interface	DB[17:13], DB[11:1]
1	0	6-bit RGB Interface	DB[17:12]
1	1	Setting prohibited	

Figure 12 RGB Interface Data Format

7.4.1. RGB Interface

The display operation via the RGB interface is synchronized with the VSYNC, HSYNC, and DOTCLK signals. The RGB interface transfers the updated data to GRAM with the high-speed write function and the update

area is defined by the window address function. The back porch and front porch are used to set the RGB interface timing.

Figure 13 GRAM Access Area by RGB Interface

7.4.2. RGB Interface Timing

The timing chart of 18-/16-bit RGB interface mode is shown as follows.

Figure 14 Timing Chart of Signals in 18-/16-bit RGB Interface Mode

The timing chart of 6-bit RGB interface mode is shown as follows.

Figure15 Timing chart of signals in 6-bit RGB interface mode

7.4.3. Moving Picture Mode

ILI9225B has the RGB interface to display moving picture and incorporates GRAM to store display data, which has following merits in displaying a moving picture.

- The window address function defined the update area of GRAM.
- Only the moving picture area of GRAM is updated.
- When display the moving picture in RGB interface mode, the DB[17:0] can be switched as system interface to update still picture area and registers, such as icons.

RAM access via a system interface in RGB-I/F mode

ILI9225B allows GRAM access via the system interface in RGB interface mode. In RGB interface mode, data are written to the internal GRAM in synchronization with DOTCLK and ENABLE signals. When write data to the internal GRAM by the system interface, set ENABLE to terminate the RGB interface and switch to the system interface to update the registers (RM = "0") and the still picture of GRAM. When restart RAM access in RGB interface mode, wait one read/write cycle and then set RM = "1" and the index register to R22h to start accessing RAM via the RGB interface. If RAM accesses via two interfaces conflicts, there is no guarantee that data are written to the internal GRAM.

The following figure illustrates the operation of the ILI9225B when displaying a moving picture via the RGB interface and rewriting the still picture RAM area via the system interface.

Figure 16 Example of update the still and moving picture

7.4.4. 6-bit RGB Interface

The 6-bit RGB interface is selected by setting the RIM[1:0] bits to "10". The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Display data are transferred to the internal GRAM in

synchronization with the display operation via 6-bit RGB data bus (DB[17:12]) according to the data enable signal (ENABLE). Unused pins (DB[11:0]) must be fixed at ground. Registers can be set by the system interface (i80/M68/SPI).

Data transfer synchronization in 6-bit RGB interface mode

ILI9225B has data transfer counters to count the first, second, third data transfers in 6-bit RGB interface mode. The transfer counter is always reset to the state of first data transfer on the falling edge of VSYNC. If a mismatch arises in the number of each data transfer, the counter is reset to the state of first data transfer at the start of the frame (i.e. on the falling edge of VSYNC) to restart data transfer in the correct order from the next frame. This function is expedient for moving picture display, which requires consecutive data transfer in light of minimizing effects from failed data transfer and enabling the system to return to a normal state.

Note that internal display operation is performed in units of pixels (RGB: taking 3 inputs of DOTCLK). Accordingly, the number of DOTCLK inputs in one frame period must be a multiple of 3 to complete data transfer correctly. Otherwise it will affect the display of that frame as well as the next frame.

7.4.5. 16-bit RGB Interface

The 16-bit RGB interface is selected by setting the RIM[1:0] bits to "01". The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Display data are transferred to the internal RAM in synchronization with the display operation via 16-bit RGB data bus (DB17-13, DB11-1) according to the data enable signal (ENABLE). Registers are set only via the system interface.

7.4.6. 18-bit RGB Interface

The 18-bit RGB interface is selected by setting the RIM[1:0] bits to "00". The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Display data are transferred to the internal RAM in synchronization with the display operation via 18-bit RGB data bus (DB[17:0]) according to the data enable signal (ENABLE). Registers are set only via the system interface.

Notes in using the RGB Input Interface

1. The following are the functions not available in RGB Input Interface mode.

Function	RGB interface	I80/M68 system interface
Partial display	Not available	Available
Scroll function	Not available	Available
Interlaced scan	Not available	Available
Graphics operation function	Not available	Available

- 2. VSYNC, HSYNC, and DOTCLK signals must be supplied throughout a display operation period.
- 3. The periods set with the NO[1:0] bits (gate output non-overlap period), STD[1:0] bits (source output delay period) and EQ[1:0] bits (equalization period) are not based on the internal clock but based on DOTCLK in RGB interface mode.
- 4. In 6-bit RGB interface mode, each of RGB dots is transferred in synchronization with a DOTCLK input. In other words, it takes 3 DOTCLK inputs to transfer one pixel. Be sure to complete data transfer in units of 3

- DOTCLK inputs in 6-bit RGB interface mode.
- 5. In 6-bit RGB interface mode, data of one pixel, which consists of RGB dots, are transferred in units of 3 DOTCLK. Accordingly, set the cycle of each signal in 6-bit interface mode (VSYNC, HSYNC, ENABLE, DB[17:0]) to contain DOTCLK inputs of a multiple of 3 to complete data transfer in units of pixels.
- 6. When switching from the internal operation mode to the RGB Input Interface mode, or the other way around, follow the sequence below.
- 7. In RGB interface mode, the front porch period continues until the next VSYNC input is detected after drawing one frame.
- 8. In RGB interface mode, a RAM address (AD[15:0]) is set in the address counter every frame on the falling edge of VSYNC.

Figure 17 Internal clock operation/RGB interface mode switching

Figure 18 GRAM access between system interface and RGB interface

7.5. Interface Timing

The following are diagrams of interfacing timing with LCD panel control signals in internal operation and RGB interface modes.

Figure19 Relationship between RGB I/F signals and LCD Driving Signals for Panel

8. Register Descriptions

8.1. Registers Access

ILI9225B adopts 18-bit bus interface architecture for high-performance microprocessor. All the functional blocks of ILI9225B starts to work after receiving the correct instruction from the external microprocessor by the 18-, 16-, 9-, 8-bit interface. The index register (IR) stores the register address to which the instructions and display data will be written. The register selection signal (RS), the read/write signals (nRD/nWR) and data bus D17-0 are used to read/write the instructions and data of ILI9225B. The registers of the ILI9225B are categorized into the following groups.

- 1. Specify the index of register (IR)
- 2. Read a status
- 3. Display control
- 4. Power management Control
- 5. Graphics data processing
- 6. Set internal GRAM address (AC)
- 7. Transfer data to/from the internal GRAM (R22)
- 8. Internal grayscale γ-correction (R50 ~ R59)

Normally, the display data (GRAM) is most often updated, and in order since the ILI9225B can update internal GRAM address automatically as it writes data to the internal GRAM and minimize data transfer by using the window address function, there are fewer loads on the program in the microprocessor. As the following figure shows, the way of assigning data to the 16 register bits (D[15:0]) varies for each interface. Send registers in accordance with the following data transfer format.

Figure 20 Register Setting with Serial Peripheral Interface (SPI)

Figure21 Register setting with i80/M68 System Interface

Figure22 Register Read/Write Timing of i80 System Interface

Figure 23 Register Read/Write Timing of M68 System Interface

8.2. <u>Instruction Descriptions</u>

<u>8.2.</u>	instruction Descrip	Juoi	12																
No.	Registers Name	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
IR	Index	W	0	0	0	0	0	0	0	0	0	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
00h	Driver Code Read	R	1	0	0	0	0	0	0	0	1	0	1	1	0	0	1	0	0
01h	Driver Output Control	W	1	VSPL	HSPL	DPL	EPL	0	SM	GS	SS	0	0	0	NL4	NL3	NL2	NL1	NL0
OIII	Driver Output Control	VV	'	(0)	(0)	(0)	(0)	U	(0)	(0)	(0)	0	U	U	(1)	(1)	(1)	(0)	(0)
02h	LCD AC Driving Control	W	1	0	0	0	0	0	0	INV1	INV0	0	0	0	0	0	0	0	FLD
0211	EGD AC DITVING CONTROL	VV	'	0		0	0	U	U	(0)	(1)	0	0	0		0	U	0	(0)
03h	Entry Mode	w	1	0	0	0	BGR	0	0	MDT1	MDT0	0	0	ID1	ID0	AM	0	0	0
	Littly Wode	**	'	0		· ·	(0)	-		(0)	(0)	0	•	(1)	(1)	(0)	•	•	
07h	Display Control 1	w	1	0	0	0	TEMON	0	0	0	0	0	0	0	GON	CL	REV	D1	D0
	Bisplay Control 1		•	-		Ŭ	(0)	-	-	-	Ů	•	-		(0)	(0)	(0)	(0)	(0)
08h	Blank Period Control 1	w	1	0	0	0	0	FP3	FP2	FP1	FP0	0	0	0	0	BP3	BP2	BP1	BP0
	Statist Clied Collins I		•			, and the second		(1)	(0)	(0)	(0)					(1)	(0)	(0)	(0)
0Bh	Frame Cycle Control	w	1	NO3	NO2	NO1	NO0	SDT3	SDT2	SDT1	SDT0	0	0	0	0	RTN3	RTN2	RTN1	RTN0
	Traine Syste Control			(0)	(0)	(0)	(1)	(0)	(0)	(0)	(1)		-			(0)	(0)	(0)	(0)
0Ch	Interface Control	w	1	0	0	0	0	0	0	0	RM	0	0	0	DM	0	0	RIM1	RIM0
	interior control		•	-		ŭ					(0)		-		(0)		-	(0)	(0)
0Fh	Oscillation Control	w	1	0	0	0	0	FOSC3	FOSC2	FOSC1	FOSC0	0	0	0	0	0	0	0	OSC
			•	-		-	_	(0)	(1)	(1)	(1)	-				-			_ON(1)
10h	Power Control 1	w	1	0	0	0	0	SAP3	SAP2	SAP	SAP0	0	0	0	0	0	0	DSTB	STB
			•					(1)	(0)	(1)	(0)							(0)	(0)
11h	Power Control 2	w	1	0	0	0	APON	PON3	PON2	PON1	PON0	0	0	AON	VCI1	VC3	VC2	VC1	VC0
			•				(0)	(0)	(0)	(0)	(0)			(0)	_EN(0)	(0)	(1)	(1)	(1)
12h	Power Control 3	w	1	0	BT2	BT1	BT0	0	DC12	DC11	DC10	0	DC22	DC21	DC20	0	DC32	DC31	DC30
				-	(1)	(1)	(0)		(0)	(0)	(1)		(0)	(0)	(1)		(0)	(0)	(1)
13h	Power Control 4	w	1	0	0	0	0	0	0	0	0	0	GVD6	GVD5	GVD4	GVD3	GVD2	GVD1	GVD0
-								_					(0)	(0)	(0)	(0)	(0)	(0)	(0)
14h	Power Control 5	w	1	VCOMG	VCM6	VCM5	VCM4	VCM3	VCM2	VCM1	VCM0	0	VML6	VML5	VML4	VML3	VML2	VML1	VML0
			•	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)		(1)	(1)	(0)	(0)	(1)	(1)	(0)
20h	RAM Address Set 1	w	1	0	0	0	0	0	0	0	0	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
			•	-		ŭ			- C	-	Ů	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
21h	RAM Address Set 2	w	1	0	0	0	0	0	0	0	0	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8
<u> </u>		1										(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
22h	Write Data to GRAM	W	1						,	WD[17:0]: P	in assignment	varies accord	ing to the inter	face method.					
22h	Write Data to GRAM	R	1	1			I			RD[17:0]: P	in assignment	varies accord	ing to the inter	face method.		I			
28h	Software Reset	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

No.	Registers Name	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
						_	_		_		_				SCN4	SCN3	SCN2	SCN1	SCN0
30h	Gate Scan Control	W	1	0	0	0	0	0	0	0	0	0	0	0	(0)	(0)	(0)	(0)	(0)
	V " 10 " 10 114				•					•		SEA7	SEA6	SEA5	SEA4	SEA3	SEA2	SEA1	SEA0
31h	Vertical Scroll Control 1	W	1	0	0	0	0	0	0	0	0	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
32h	Vertical Scroll Control 2	w	1	0	0	0	0	0	0	0	0	SSA7	SSA6	SSA5	SSA4	SSA3	SSA2	SSA1	SSA0
3211	vertical Scioli Control 2	VV	'	U		U	U	U	U	U	U	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
33h	Vertical Scroll Control 3	w	1	0	0	0	0	0	0	0	0	SST7	SST6	SST5	SST4	SST3	SST2	SST1	SST0
3311	vertical Scioli Control 3	VV	'	0		U	U	0	0	U	0	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
34h	Partial Driving Position -1	w	1	0	0	0	0	0	0	0	0	SE17	SE16	SE15	SE14	SE13	SE12	SE11	SE10
3411	Fartial Driving Fosition - 1	VV	'	U	0	U	0	0	0	U	0	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(1)
35h	Partial Driving Position -2	w	1	0	0	0	0	0	0	0	0	SS17	SS16	SS15	SS14	SS13	SS12	SS11	SS10
3311	Fartial Driving Fusition -2	VV	'	0		0	0	0	0	U	0	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
36h	Horizontal Window Address -1	w	1	0	0	0	0	0	0	0	0	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0
	Tionzoniai viindow / tadrese T					Ŭ	Ů				•	(1)	(0)	(1)	(0)	(1)	(1)	(1)	(1)
37h	Horizontal Window Address -2	w	1	0	0	0	0	0	0	0	0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0
	Tionzoniai Wildow / tadicoo Z					Ŭ	Ů		Ŭ		•	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
38h	Vertical Window Address -1	W	1	0	0	0	0	0	0	0	0	VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0
	70110017100771000			-		ŭ	Ů					(1)	(1)	(0)	(1)	(1)	(0)	(1)	(1)
39h	Vertical Window Address -2	w	1	0	0	0	0	0	0	0	0	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0
				-					_			(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
50h	Gamma Control 1	w	1	0	0	0	0	KP13	KP12	KP11	KP10	0	0	0	0	KP03	KP02	KP01	KP00
								(0)	(0)	(0)	(0)					(0)	(0)	(0)	(0)
51h	Gamma Control 2	w	1	0	0	0	0	KP33	KP32	KP31	KP30	0	0	0	0	KP23	KP22	KP21	KP20
								(0)	(0)	(0)	(0)					(0)	(0)]	(0)	(0)
52h	Gamma Control 3	w	1	0	0	0	0	KP53	KP52	KP51	KP50	0	0	0	0	KP43	KP42	KP41	KP40
								(0)	(0)	(0)	(0)					(0)	(0)	(0)	(0)
53h	Gamma Control 4	w	1	0	0	0	0	RP13	RP12	RP11	RP10	0	0	0	0	RP03	RP02	RP01	RP00
								(0)	(0)	(0)	(0)					(0)	(0)	(0)	(0)
54h	Gamma Control 5	W	1	0	0	0	0	KN13	KN12	KN11	KN10	0	0	0	0	KN03	KN02	KN01	KN00
								(0)	(0)	(0)	(0)					(0)	(0)	(0)	(0)
55h	Gamma Control 6	W	1	0	0	0	0	KN33	KN32	KN31	KN30	0	0	0	0	KN23	KN22	KN21	KN20
								(0)	(0)	(0)	(0)					(0)	(0)	(0)	(0)
56h	Gamma Control 7	W	1	0	0	0	0	KN53	KN52	KN51	KN50	0	0	0	0	KN43	KN42	KN41	KN40
								(0)	(0)	(0)	(0)					(0)	(0)	(0)	(0)
57h	Gamma Control 8	W	1	0	0	0	0	RN13	RN12	RN11	RN10	0	0	0	0	RN03	RN02	RN01	RN00
								(0)	(0)	(0)	(0)					(0)	(0)	(0)	(0)

No.	Registers Name	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
58h	Gamma Control 9	w	1	0	0	0	VRP14	VRP13	VRP12	VRP11	VRP10	0	0	0	VRP04	VRP03	VRP02	VRP01	VRP00
3011	Ganina Control 9	VV	'	U	U	U	(0)	(0)	(0)	(0)	(0)	U	U	U	(0)	(0)	(0)	(0)	(0)
59h	Gamma Control 10	w	1	0	0	0	VRN14	VRP13	VRP12	VRP11	VRP10	0	0	0	VRN04	VRN03	VRN02	VRN01	VRN00
0011	Curima Control 10	**	•		Ŭ	Ŭ	(0)	(0)	(0)	(0)	(0)	Ŭ	Ŭ	Ů	(0)	(0)	(0)	(0)	(0)
60h	NV Memory Data Programming	w	1	0	0	0	0	0	0	0	0	NVM_	NVM_	NVM_	NVM_	NVM_	NVM_	NVM_	NVM_
0011	144 Memory Bata r rogramming	• • • • • • • • • • • • • • • • • • • •	'		U	· ·	U	U	U	· ·	0	D7	D6	D5	D4	D3	D2	D1	D0
61h	NV Memory Control	w	1	0	0	0	0	0	0	0	VCM_	0	0	0	0	0	0	ID_PGM_	VCM_
0111	144 Memory Control	**	'	•	· ·	•	U	•	V	•	SEL	•	U	•	•	•	•	EN	PGM_EN
62h	NV Memory Status	w	1	0	0	PGM_	PGM_	0	0	0	0	0	VCM_	VCM_	VCM_	VCM_	VCM_	VCM_	VCM_
0211	144 Memory Status	**	'	•	•	CNT2	CNT1	•	•	•	•	•	D6	D5	D4	D3	D2	D1	D0
63h	NV Memory Protection Key	R		KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY
0311	INV Memory Protection Rey	K		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
65h	ID Code	R		0	0	0	0	0	0	0	0	0	0	0	0	ID3	ID2	ID1	ID0
66h	SPI Read/Write Control	R		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R/WX
0011	SFI Read/Wille Collillol	K		U	U	U	U	U	U	U	J	U	U	U	U	U	U	U	(0)

8.2.1. Index (IR)

R/W	RS	_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
W	0		-	-	-	-	-	-	-	-	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0	

The index register specifies the address of register (R00h ~ RFFh) or RAM which will be accessed.

ILI9225B

8.2.2. Chip ID Code (R00h)

R/V	V RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	-	-	-	-	-	-	-	1	-	1	1	-	1	-	1	1
R	1	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	1

The device code "9225"h is read out when read this register.

8.2.3. Driver Output Control (R01h)

R/W	RS	_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1		VSPL	HSPL	DPL	EPL	0	SM	GS	SS	0	0	0	NL4	NL3	NL2	NL1	NL0

VSPL: Inverts the polarity of signals from the VSYNC pin.

VSPL = "0" : Low active. VSPL = "1" : High active.

HSPL: Inverts the polarity of signals from the HSYNC pin.

HSPL = "0" : Low active. HSPL = "1" : High active.

DPL: Inverts the polarity of signals from the DOTCLK pin.

DPL = "0": Data are read on the rising edge of the DOTCLK.

DPL = "1": Data are read on the falling edge of the DOTCLK.

EPL: Set the polarity of the signal from the ENABLE pin in RGB interface mode. .

EPL = "0":

ENABLE = "Low" / Write data to DB[17:0]

ENABLE = "High" / Inhibit data write operation

EPL ="1":

ENABLE = "High" / Write data to DB[17:0]

ENABLE = "Low" / Inhibit data write operation

The following table shows the relationship between the EPL, ENABLE bits, and RAM access.

EPL	ENABLE	RAM write	RAM address
0	0	Enabled	Updated
0	1	Inhibited	Retained
1	0	Inhibited	Retained
1	1	Enabled	Updated

SS: Select the shift direction of outputs from the source driver.

When SS = 0, the shift direction of outputs is from S1 to S528

When SS = 1, the shift direction of outputs is from S528 to S1.

In addition to the shift direction, the settings for both SS and BGR bits are required to change the assignment of R, G, B dots to the source driver pins.

To assign R, G, B dots to the source driver pins interchangeably from S1, set SS = 0, BGR = 0.

To assign R, G, B dots to the source driver pins interchangeably from S528, set SS = 1, BGR = 1.

When changing SS or BGR bits, RAM data must be rewritten.

GS: Select the shift direction of outputs from the gate driver. The scan order is changeable in accordance to the scan mode by the gate driver. Select an optimum shift direction for the assembly.

SM: Set the scan order by the gate driver. Select an optimum scan order for the assembly.

table. The GRAM address mapping is independent from the number of gate lines set with the NL[4:0] bits.

NL4	NL3	NL2	NL1	NL0	Display Size	Number of LCD Driver Lines	Gate Driver Used
0	0	0	0	0		Reserved	
0	0	0	0	1	528 * 8 dots	8	G1~G8
0	0	0	1	0	528 * 16 dots	16	G1~G16
0	0	0	1	1	528 * 24 dots	24	G1~G24
0	0	1	0	0	528 * 32 dots	32	G1~G32
0	0	1	0	1	528 * 40 dots	40	G1~G40
0	0	1	1	0	528 * 48 dots	48	G1~G48
0	0	1	1	1	528 * 56 dots	56	G1~G56
0	1	0	0	0	528 * 64 dots	64	G1~G64
0	1	0	0	1	528 * 72 dots	72	G1~G72
0	1	0	1	0	528 * 80 dots	80	G1~G80
0	1	0	1	1	528 * 88 dots	88	G1~G88
0	1	1	0	0	528 * 96 dots	96	G1~G96
0	1	1	0	1	528 * 104 dots	104	G1~G104
0	1	1	1	0	528 * 112 dots	112	G1~G112
0	1	1	1	1	528 * 120 dots	120	G1~G120
1	0	0	0	0	528 * 128 dots	128	G1~G128
1	0	0	0	1	528 * 136 dots	136	G1~G136
1	0	0	1	0	528 * 144 dots	144	G1~G144
1	0	0	1	1	528 * 152 dots	152	G1~G152
1	0	1	0	0	528 * 160 dots	160	G1~G160
1	0	1	0	1	528 * 168 dots	168	G1~G168
1	0	1	1	0	528 * 176 dots	176	G1~G176
1	0	1	1	1	528 * 184 dots	184	G1~G184
1	1	0	0	0	528 * 192 dots	192	G1~G200
1	1	0	0	1	528 * 200 dots	200	G1~G208
1	1	0	1	0	528 * 208 dots	208	G1~G216
1	1	0	1	1	528 * 216 dots	216	G1~G220
1	1	1	0	0	528 * 220 dots	220	G1~G220

8.2.4. LCD Driving Waveform Control (R02h)

_	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	_
	W	1	0	0	0	0	0	0	INV1	INV0	0	0	0	0	0	0	0	FLD	

Set LCD inversion method as show below.

Enables or disables 3-field interlaced scanning function like below.

INV[1:0]	FLD	Description
00	0	Frame Inversion – 1 field interlace
00	1	3 field interlace
01	0	Line Inversion – 1 field interlace
01	1	Setting Disable
10	0	Two Line Inversion – 1 field interlace
10	1	Setting Disable
11	0	No Inversion. Active with positive polarity (VCOM = Low)
11	1	No Inversion. Active with negative polarity (VCOM = High)

	GS	s = 0°			
FLD	0"		1""		
Field	-	1	2	3	4
Gate					
G1	*	*			*
G2	*		*		
G3	*			*	
G4	*	*			*
G5	*		*		
G6	*			*	
G7	*	*			*
G8	*		*		
G9	*			*	
G10	*	*			*
	;	:	:	:	:
	•	·	•	·	٠
G217	*	*		*	
G218	*		*		*
G219	*			*	
G220	*	*			*

	GS	S = 1°	,		
FLD	0""		1"	ii .	
Fie ld	-	1	2	3	4
Gate					
G220	*	*			*
G219	*		*		
G218	*			*	
G217	*	*			*
G216	*		*		
G215	*			*	
G214	*	*			*
G213	*		*		
G212	*			*	
G211	*	*			*
	÷	:	÷	÷	÷
G4	*	*		*	
G3	*		*		*
G2	*			*	
G1	*	*			*

Figure 22 Interlace Scan of AC Drive

Figure 23 Output Timing of Interlace Gate Signals (Three-field is selected)

Figure 24 AC Driving Alternating Timing

8.2.5. Entry Mode (R03h)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	0	BGR	0	0	MDT1	MDT0	0	0	I/D1	I/D0	AM	0	0	0

AM Control the GRAM update direction. When AM = "0", the address is updated in horizontal writing direction. When AM = "1", the address is updated in vertical writing direction. When a window area is set by registers R36h/R37h and R38h/R39h, only the addressed GRAM area is updated based on I/D[1:0] and AM bits setting.

I/D[1:0] Control the address counter (AC) to automatically increase or decrease by 1 when update one pixel display data. Refer to the following figure for the details.

	I/D[1:0] = 00 Horizontal: decrement Vertical: decrement	I/D[1:0] = 01 Horizontal: increment Vertical: decrement	I/D[1:0] = 10 Horizontal: decrement Vertical: increment	I/D[1:0] = 11 Horizontal: increment Vertical: increment
AM = 0 Horizontal	E	B	B	B
AM = 1 Vertical			B	B

Figure 25 GRAM Access Direction Setting

AM	I/D[1:0]	Register R21 Start Address
	00	DBAFh
0/1	01	DB00h
0/1	10	00AFh
	11	0000h

MDT1: This bit is active on the 80-system of 8-bit bus and the data for 1-pixel is transported to the memory for 3 write cycles. This bit is on the 80-system of 16-bit bus, and the data for 1-pixel is transported to the memory for 2 write cycles. When the 80-system interface mode is not set in the 8-bit or16-bit mode, set MDT1 bit to be "0".

MDT0: When 8-bit or16-bit 80 interface mode and MDT1 bit =1, MDT0 defines color depth for the IC.

BGR Swap the R and B order of written data.

Interface Mode	MDT1	MDT0						,	Writ	e da	ta to	GR	AM								
*	0	0	Default transfer transfer is cont				•			sfer	(MD	T[1:0	0]) fu	ıncti	on is	not	avai	lable	e. Da	ıta	
	0	1		M	1ultip	ole d	ata t	rans	fer (MDT	[1:0]) fur	nctio	n is	not a	avail	able				
80-system 8-bit	1	0	Input Data GRAM Data & RGB Mapping	DB 17 R5	DB 16	DB 15	DB 14 R2	DB 13	DB 12	DB 17 G5	DB 16	2nd Tr DB 15	DB 14 G2	DB 13	DB 12 G0	DB 17 B5	DB 16	DB 15 B3	DB 14 B2	DB 13 B1	DB 12 B0
	1	1	Input Data GRAM Data & RGB Mapping	DB 17	DB 16	DB 15 R3	DB 14 R2	DB 13 R1	DB 12	DB 17 G5	DB 16	2nd Tr DB 15	DB 14 G2	DB 13	DB 12	DB 17	DB 16	3rd T DB 15 B3	DB 14 B2	DB 13	DB 12 B0

8-bit (80-system), MDT0 = 0: 262k-color mode (3 times of 6-bit data transfer to GRAM)

8-bit (80-system), MDT0 = 1: 65k-color mode (5-bit, 6-bit, 5-bit data transfer to GRAM)

16-bit (80-system), MDT0 = 0: 262k-color mode (16-bit, 2-bit data transfer to GRAM)

16-bit (80-system), MDT1 = 1: 262k-color mode (2-bit, 16-bit data transfer to GRAM)

8.2.6. Display Control 1 (R07h)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
W	1	0	0	0	TEMON	0	0	0	0	0	0	0	GON	CL	REV	D1	D0	

D[1:0] Set D[1:0]="11" to turn on the display panel, and D[1:0]="00" to turn off the display panel.

	<u> </u>			•		
D1	D0	GON	Source Output	Gate Output	VCOM Output	Display
0	0	Χ	VSS	VGL	VSS	Off
0	1	0	VSS	VGL	VSS	Off
	Į.	1	VSS	Operate	VSS	Off
		0	White on Normally WhitePanel	VGL	Operate	Off
1	Λ		Black on Normally Black Panel	V 0L	Орогако	<u> </u>
'	U	1	White on Normally WhitePanel	Operate	Operate	Off
		•	Black on Normally Black Panel	Operate	Operate	<u> </u>
1	1	0	Normal Display	VGL	Operate	Off
	<u> </u>	1	Normal Display	Operate	Operate	On

Note: data write operation from the microcontroller is performed irrespective of the setting of D[1:0] bits.

GON Set the output level of gate driver G1 ~ G220 as follows

GON	G1 ~G220 Gate Output
0	VGL
1	Normal Display

CL When CL = "1", the 8-color display mode is selected.

CL	Colors
0	262,144
1	8

REV When REV = "1", the grayscale levels can be inverted.

REV	GRAM Data	Source Output in Display Area										
KEV	GRAW Data	Positive polarity	negative polarity									
	18'h00000	V63	V0									
	•		•									
0			•									
	18'h3FFFF	V0	V63									
	18'h00000	V0	V63									
			•									
1												
	18'h3FFFF	V63	V0									

TEMON:

TEMON = 1, Enable the Frame flag output signal from the FLM signal line for preventing Tearing Effect.

TEMON = 0, Disable the Frame flag output signal from the FLM signal line for preventing Tearing Effect.

8.2.7. Display Control 2 (R08h)

R/W	RS	_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1		0	0	0	0	FP3	FP2	FP1	FP0	0	0	0	0	BP3	BP2	BP1	BP0

FP[3:0]/BP[3:0]

The FP[3:0] and BP[3:0] bits specify the line number of front and back porch periods respectively. When setting the FP[3:0] and BP[3:0] value, the following conditions shall be met:

BP + FP ≤ 16 lines

FP ≥ 2 lines

BP ≥ 2 lines

FP[3:0]	Number of lines for Front Porch
BP[3:0]	Number of lines for Back Porch
0000	Setting Prohibited
0001	Setting Prohibited
0010	2 lines
0011	3 lines
0100	4 lines
0101	5 lines
0110	6 lines
0111	7 lines
1000	8 lines
1001	9 lines
1010	10 lines
1011	11 lines
1100	12 lines
1101	13 lines
1110	14 lines
1111	Setting Prohibited

Note: The output timing to the LCD is delayed by 2 lines period from the input of synchronizing signal.

Set the BP[3:0] and FP[3:0] bits as below for each operation mode

Operation Mode	Number of Interlace Scan Field	BP	FP	BP+FP
I80/M68	FLD = "0"	BP ≥ 2 lines	FP ≥ 2 lines	FP +BP ≤ 16 lines
System Interface	FLD = "1"	BP = 3 lines	FP = 5 lines	-
RGB interface		BP ≥ 2 lines	FP ≥ 2 lines	FP +BP ≤ 16 lines

8.2.8. Frame Cycle Control (R0Bh)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	NO3	NO2	NO1	NO0	SDT3	SDT2	SDT1	SDT0	0	0	0	0	RTN3	RTN2	RTN1	RTN0

RTN[3:0] Set the clock cycle number of one display line.

RTN[3:0]	Clock Cycles per line
4'h0	16 clocks
4'h1	17 clocks
4'h2	18 clocks
4'h3	19 clocks
4'h4	20 clocks
4'h5	21 clocks
4'h6	22 clocks
4'h7	23 clocks
4'h8	24 clocks
4'h9	25 clocks
4'hA	26 clocks
4'hB	27 clocks
4'hC	28 clocks
4'hD	29 clocks
4'hE	30 clocks
4'hF	31 clocks

Gate output delay period												
NO[3:0]	System Interface Mode	18/16-bit RGB Interface Mode	6-bit RGB Interface Mode									
4'h0	Setting disable	Setting disable	Setting disable									
4'h1	1 clock	8 clocks	8*3 clocks									
4'h2	2 clocks	16 clocks	16*3 clocks									
4'h3	3 clocks	24 clocks	24*3 clocks									
4'h4	4 clocks	32 clocks	32*3 clocks									
4'h5	5 clocks	40 clocks	40*3 clocks									
4'h6	6 clocks	48 clocks	48*3 clocks									
4'h7	7 clocks	56 clocks	56*3 clocks									
4'h8	8 clocks	64 clocks	64*3 clocks									
4'h9	9 clocks	72 clocks	72*3 clocks									
4'hA	10 clocks	80 clocks	80*3 clocks									
4'hB	Setting disable	88 clocks	88*3 clocks									
4'hC	Setting disable	96 clocks	96*3 clocks									
4'hD	Setting disable	104 clocks	104*3 clocks									
4'hE	Setting disable	112 clocks	112*3 clocks									
4'hF	Setting disable	120 clocks	120*3 clocks									

SDT[3:0]: Set delay amount from gate edge (end) to source output.

	So	urce output delay period	
SDT[3:0]	System Interface Mode	18/16-bit RGB Interface Mode	6-bit RGB Interface Mode
4'h0	Setting disable	Setting disable	Setting disable
4'h1	1 clock	8 clocks	8*3 clocks
4'h2	2 clocks	16 clocks	16*3 clocks
4'h3	3 clocks	24 clocks	24*3 clocks
4'h4	4 clocks	32 clocks	32*3 clocks
4'h5	5 clocks	40 clocks	40*3 clocks
4'h6	6 clocks	48 clocks	48*3 clocks
4'h7	Setting disable	Setting disable	Setting disable
4'h8	Setting disable	Setting disable	Setting disable
4'h9	Setting disable	Setting disable	Setting disable
4'hA	Setting disable	Setting disable	Setting disable
4'hB	Setting disable	Setting disable	Setting disable
4'hC	Setting disable	Setting disable	Setting disable
4'hD	Setting disable	Setting disable	Setting disable
4'hE	Setting disable	Setting disable	Setting disable
4'hF	Setting disable	Setting disable	Setting disable

8.2.9. RGB Input Interface Control 1 (R0Ch)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	0	0	0	0	0	RM	0	0	0	DM	0	0	RIM1	RIM0

RIM[1:0] Select the data bus width of RGB interface modes.

RIM1	RIM0	RGB Interface Mode
0	0	18-bit RGB interface (one transfer/pixel)
0	1	16-bit RGB interface (one transfer/pixel)
1	0	6-bit RGB interface (three transfers/pixel)
1	1	Setting disabled

Note1: Registers are set only by the system interface.

Note2: Be sure that one pixel (3 dots) data transfer finished when interface switch.

DM Select the display operation mode.

DM	Display Interface
0	Internal system clock
1	RGB interface

RM Select the interface to access the GRAM.

RM	Interface for RAM Access
0	Internal system clock interface
1	RGB interface (when writing display data by the RGB interface.)

Display State	Operation Mode	RAM Access (RM)	Display Operation Mode (DM)]
Still pictures	Internal clock operation	System interface (RM = 0)	Internal clock operation (DM = 0)
Moving pictures	RGB interface (1)	RGB interface (RM = 1)	RGB interface (DM = 1)
·	e area while RGB interface pictures. RGB interface (2)	System interface (RM = 0)	RGB interface (DM = 1)

Note 1) Registers are set only via the system interface or SPI interface.

Note 2) Refer to the flowcharts of "RGB Input Interface" section for the mode switch.

8.2.10. Oscillator Control (R0Fh)

R/W	RS	_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1		0	0	0	0	FOSC[3]	FOSC[2]	FOSC[1]	FOSC[0]	0	0	0	0	0	0	0	OSC_EN

FOSC[3:0]: Select the oscillation frequency of internal oscillator.

FR_SEL[3:0]	Frame Rate
0000	30Hz
0001	38Hz
0010	43Hz
0011	47Hz
0100	52Hz
0101	58Hz
0110	62Hz
0111 (default)	66Hz
1000	71Hz
1001	76Hz
1010	83Hz
1011	90Hz
1100	100Hz
1101	110Hz
1110	124Hz
1111	Setting prohibited

OSC_EN

This instruction starts the oscillator from the Halt State in the standby mode. After this instruction,

Wait at least 10 ms for oscillation to stabilize before giving the next instruction.

OSC_EN	OSC Control
0	OSC. Off
1	OSC. On

8.2.11. Power Control 1 (R10h)

R/W	RS	_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
W	1		0	0	0	0	SAP3	SAP2	SAP1	SAP0	0	0	0	0	0	0	DSTB	STB	ı

SAP[3:0] Set the driving capability of source driver.

Set a larger driving capability to obtain better display quality, but the power consumption also increases.

SAP[1:0]	Gamma Amp. Current Level
4'h0	X0.75
4'h1	X0.875
4'h2	X1.00 (default)
4'h3	X1.25

SAP[3:2]	Source Amp. Current Level
4'h0	X0.75
4'h1	X0.875
4'h2	X1.00 (default)
4'h3	X1.25

DSTB: When DSTB = 1, the ILI9225B enters the deep standby mode, where the power supply for the internal

logic is turned off to save more power than the standby mode. Writing the GRAM data or setting any instructions are prohibited during the deep-standby mode and they must be reset after releasing from the deep standby mode.

STB: When STB = 1, the ILI9225B enters the standby mode, where display operation completely stops, halting all the internal operations including the internal oscillator. Further, no external clock pulses are supplied.

Outputs	Conditions
VCOM	GND
Gate	GND
Source	GND

8.2.12. Power Control 2 (R11h)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
W	1	0	0	0	APON	PON3	PON2	PON1	PON	0	0	AON	VCI1EN	VC3	VC2	VC1	VC0	İ

APON: This is an automatic-boosting-operation-starting bit for the booster circuits. In case of APON=0, the auto booster sequence circuit is stopped, but the booster circuits are independently operated by PON, PON1, PON2 and PON3 bits. In case of APON=1, booster circuits are automatically and sequentially operated.

PON3: This is an operation-starting bit for the booster circuit 3(VCL). In case of PON3 = 0, the circuit is stopped and vice versa.

PON2: This is an operation-starting bit for the booster circuit 2(VGL). In case of PON2 = 0, the circuit is stopped and vice versa.

PON1: This is an operation-starting bit for the booster circuit 2(VGH). In case of PON1 = 0, the circuit is stopped and vice versa.

PON: This is an operation-starting bit for the booster circuit1. In case of PON = 0, the circuit is stopped and vice versa

AON: This is an operation-starting bit for the Amplifier. In case of AON = 0, the circuit is stopped and vice versa.

VCI1_EN: Internal VCI1 generation amplifier operation control bit. When VCI1_EN=0, VCI1 voltage is not generated.

VC[3:0]: Set the VCI1 voltage. These bits set the VCI1 voltage up to 3V as the nominal output (upper limit value may depend on VCI voltage)

VC[3:0]	VCI1
4'h0	1.35
4'h1	1.75
4'h2	2.07
4'h3	2.16
4'h4	2.25
4'h5	2.34
4'h6	2.43
4'h7	2.52
4'h8	2.58
4'h9	2.64
4'hA	2.70
4'hB	2.76
4'hC	2.82
4'hD	2.88
4'hE	2.94
4'hF	3.00

NOTE: Do not set any higher VCI1 level than VCI.

8.2.13. Power Control 3 (R12h)

R/W	RS	_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1		0	BT2	BT1	вто	0	DC12	DC11	DC10	0	DC22	DC21	DC20	0	DC32	DC31	DC30

BT[2:0] The output factor of step-up circuit is selected. Adjust scale factor of the step-up circuit by the voltage used. Lower amplification of the step-up circuit consumes less current.

BT2	BT1	ВТ0	Circuit1 DDVDH	Circuit4 VCL	Circuit2 VGH	Circuit3 VGL
0	0	0	2 x VCI1	-1 x VCI1	4 x VCI1	-3 x VCI1
0	0	1	2 x VCI1	-1 x VCI1	4 x VCI1	-4 x VCI1
0	1	0	2 x VCI1	-1 x VCI1	5 x VCI1	-3 x VCI1
0	1	1	2 x VCI1	-1 x VCI1	5 x VCI1	-4 x VCI1
1	0	0	2 x VCI1	-1 x VCI1	5 x VCI1	-5 x VCI1
1	0	1	2 x VCI1	-1 x VCI1	6 x VCI1	-3 x VCI1
1	1	0	2 x VCI1	-1 x VCI1	6 x VCI1	-4 x VCI1
1	1	1	2 x VCI1	-1 x VCI1	6 x VCI1	-5 x VCI1

Note: The conditions of DDVDH $\leq 5.5V$ and VGH $\leq 16.5V$ must be satisfied.

DC1[2:0]: The operating frequency in the step-up circuit1 is selected. When the step-up operating frequency is high, the driving ability of the step-up circuit and the display quality become high, but the current consumption is increased. Adjust the frequency considering the display quality and the current consumption.

DC1[2:0]	Internal Operation (synchronized with internal clock) Fosc.
3'h0	1/1
3'h1	1/2
3'h2	1/4
3'h3	1/8
3'h4	1/16
3'h5	1/32
3'h6	1/64
3'h7	Halt

[NOTE] DCCLK1 is pumping clock for step-up circuit1, f(1H) is horizontal frequency (1 raster-row)

DC2[2:0]: The operating frequency in the step-up circuit 2 is selected.

DC2[2:0]	Internal Operation (synchronized with internal clock)
	Fosc.
3'h0	1/4
3'h1	1/8
3'h2	1/16
3'h3	1/32
3'h4	1/64
3'h5	1/128
3'h6	1/256
3'h7	Halt

[NOTE] DCCLK2 is pumping clock for step-up circuit1,

DC3[2:0]: The operating frequency in the step-up circuit 3 is selected.

DC3[2:0]	Internal Operation (synchronized with internal clock) Fosc.
3'h0	1/4
3'h1	1/8
3'h2	1/16
3'h3	1/32
3'h4	1/64
3'h5	1/128
3'h6	1/256
3'h7	Halt

 $\textbf{[NOTE]} \ \mathsf{DCCLK3} \ \mathsf{is} \ \mathsf{pumping} \ \mathsf{clock} \ \mathsf{for} \ \mathsf{step-up} \ \mathsf{circuit3},$

8.2.14. Power Control 4 (R13h)

R/W	RS	 D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	0	0	0	0	0	0	0	GVD6	GVD5	GVD4	GVD3	GVD2	GVD1	GVD0

GVD[6:0]: Set the amplifying factor of the GVDD voltage (the voltage for the Gamma voltage). It allows ranging from 2.66V to 5.5V.

	mg mom 2.00				•		ř
GVD[6:0]	VREG10UT	GVD[6:0]	VREG10UT	GVD[6:0]	VREG10UT	GVD[6:0]	VREG10UT
7'h00	5.05V	7'h32	3.10V	7'h64	3.74V	7'h96	4.38V
7'h01	5.10V	7'h33	3.12V	7'h65	3.76V	7'h97	4.40V
7'h02	5.15V	7'h34	3.14V	7'h66	3.78V	7'h98	4.42V
7'h03	5.20V	7'h35	3.16V	7'h67	3.80V	7'h99	4.44V
7'h04	5.25V	7'h36	3.18V	7'h68	3.82V	7'h100	4.46V
7'h05	5.30V	7'h37	3.20V	7'h69	3.84V	7'h101	4.48V
7'h06	5.35V	7'h38	3.22V	7'h70	3.86V	7'h102	4.50V
7'h07	5.40V	7'h39	3.24V	7'h71	3.88V	7'h103	4.52V
7'h08	5.45V	7'h40	3.26V	7'h72	3.90V	7'h104	4.54V
7'h09	5.50V	7'h41	3.28V	7'h73	3.92V	7'h105	4.56V
7'h10	2.66V	7'h42	3.30V	7'h74	3.94V	7'h106	4.58V
7'h11	2.68V	7'h43	3.32V	7'h75	3.96V	7'h107	4.60V
7'h12	2.70V	7'h44	3.34V	7'h76	3.98V	7'h108	4.62V
7'h13	2.72V	7'h45	3.36V	7'h77	4.00V	7'h109	4.64V
7'h14	2.74V	7'h46	3.38V	7'h78	4.02V	7'h110	4.66V
7'h15	2.76V	7'h47	3.40V	7'h79	4.04V	7'h111	4.68V
7'h16	2.78V	7'h48	3.42V	7'h80	4.06V	7'h112	4.70V
7'h17	2.80V	7'h49	3.44V	7'h81	4.08V	7'h113	4.72V
7'h18	2.82V	7'h50	3.46V	7'h82	4.10V	7'h114	4.74V
7'h19	2.84V	7'h51	3.48V	7'h83	4.12V	7'h115	4.76V
7'h20	2.86V	7'h52	3.50V	7'h84	4.14V	7'h116	4.78V
7'h21	2.88V	7'h53	3.52V	7'h85	4.16V	7'h117	4.80V
7'h22	2.90V	7'h54	3.54V	7'h86	4.18V	7'h118	4.82V
7'h23	2.92V	7'h55	3.56V	7'h87	4.20V	7'h119	4.84V
7'h24	2.94V	7'h56	3.58V	7'h88	4.22V	7'h120	4.86V
7'h25	2.96V	7'h57	3.60V	7'h89	4.24V	7'h121	4.88V
7'h26	2.98V	7'h58	3.62V	7'h90	4.26V	7'h122	4.90V
7'h27	3.00V	7'h59	3.64V	7'h91	4.28V	7'h123	4.92V
7'h28	3.02V	7'h60	3.66V	7'h92	4.30V	7'h124	4.94V
7'h29	3.04V	7'h61	3.68V	7'h93	4.32V	7'h125	4.96V
7'h30	3.06V	7'h62	3.70V	7'h94	4.34V	7'h126	4.98V
7'h31	3.08V	7'h63	3.72V	7'h95	4.36V	7'h127	5.00V

8.2.15. Power Control 5 (R14h)

_	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	W	1	VCOMG	VCM6	VCM5	VCM4	VCM3	VCM2	VCM1	VCM0	0	VML6	VML5	VML4	VML3	VML2	VML1	VML0

VCOMG: When VCOMG = 1, low level of VCOM signal is to be fixed at GND. Therefore, the amplitude of VCOM signal is determined as |VCOMH - GND| regardless of VML setting. In this case, VCOML pin can be open or connected to GND, because VCOML amp is off and VCOML output is floated. When VCOMG=0, the amplitude of VCOM signal is determined as |VCOMH - VCOML|.

VCM[6:0]: Set the VCOMH voltage (a high level voltage at the Vcom alternating drive), these bits amplify the VcomH voltage from 0.4015 to 1.1000 times the GVDD voltage.

VCM[6:0]	VCOM Amplitude Voltage
7'h00	GVDD x 0.4015
7'h01	GVDD x 0.4070
7'h02	GVDD x 0.4125
7'h03	GVDD x 0.4180
•	-
-	-
7'h7A	GVDD x 1.0725
7'h7B	GVDD x 1.0780
7'h7C	GVDD x 1.0835
7'h7D	GVDD x 1.0890
7'h7E	GVDD x 1.0945
7'h7F	GVDD x 1.100

[NOTE]

- 1. $VcomH = GVDD \times (0.4015 + 0.0055 \times VCM)$
- 2. When using VCI recycling function, VCOMH voltage should be higher than VCI.
- 3. VCM[6:0] register set is invalid when VCM_SEL=1.

VML[6:0]: Set the alternating amplitudes of VCOM at the VCOM alternating drive. These bits amplify VCOM from 0.534 to 1.20 times the GVDD voltage. When the VCOM alternation is not driven, the settings become invalid.

VML[6:0]	VCOMH Voltage
7'h00~7'0F	Setting prohibited
7'h10	GVDD x 0.534
7'h11	GVDD x 0.540
7'h12	GVDD x 0.546
•	•
	•
7'h7A	GVDD x 1.170
7'h7B	GVDD x 1.176
7'h7C	GVDD x 1.182
7'h7D	GVDD x 1.188
7'h7E	GVDD x 1.194
7'h7F	GVDD x 1.200

[NOTE]

- 1. $VCOM \ amplitude = GVDD \ x (0.534 + 0.006(VML-16))$
- 2. Adjust the settings between GVDD and VML[6:0] so that the Vcom amplitudes are lower than 6.0 V.
- 3. VCOML voltage should be satisfied the following condition. : 0.0V > VCOML > VCL+0.5V

8.2.16. RAM Address Set (R20h, R21h)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	х	х	х	х	х	х	Х	Х	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
W	1	х	х	Х	х	Х	х	Х	Х	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8

AD[15:0] Set the initial value of address counter (AC).

The address counter (AC) is automatically updated in accordance to the setting of the AM, I/D bits as data is written to the internal GRAM. The address counter is not automatically updated when read data from the internal GRAM.

- Note1:GRAM address setting is not allowed in standby mode. Ensure that the address is set within the specified window area specified with VSA, VEA, HAS and HEA.
- Note2: When the RGB interface is selected (RM = "1"), the address AD[15:0] is set to the address counter every frame on the falling edge of VSYNC.
- Note3: When the internal clock operation or the VSYNC interface mode is selected (RM = "0"), the address AD[15:0] is set upon the execution of an instruction.

GRAM Address Range

AD[15:0]	Gram setting
"0000H" to "00AF"H	Bitmap data for G1
"0100H" to "01AF"H	Bitmap data for G2
"0200H" to "02AF"H	Bitmap data for G3
"0300H" to "03AF"H	Bitmap data for G4
•	•
:	:
:	:
"0800H" to "D8AF"H	Bitmap data for G217
"0900H" to "D9AF"H	Bitmap data for G218
"0A00H" to "DAAF"H	Bitmap data for G219
"0B00H" to "DBAF"H	Bitmap data for G220

8.2.17. Write Data to GRAM (R22h)

R/W	RS	_	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1				RA	M write	data (V	VD[17:0)], the [DB[17:0] pin a	ssignr	ment d	liffers	or ead	ch inte	rface.			

This register is the GRAM access port. When update the display data through this register, the address counter (AC) is increased/decreased automatically.

8.2.18. Read Data from GRAM (R22h)

R/W	RS	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R	1			RAI	M Read	l Data (RD[17:0	0], the [DB[17:0] pin a	ssignr	ment c	differs	for ea	ch inte	erface.			

RD[17:0] Read 18-bit data from GRAM through the read data register (RDR).

8.2.19. Software Reset (R2	28h)
----------------------------	------

\//	4	_	_	_	_	_	_	_			_	_	_				_
VV	1	()	()	I ()	()	I ()	I ()	()	1 1	1 1	()	()	()	1 1	1 1	1 1	()
• • •		•	•	_	•	_	_		•			•	•				_

When Software Reset parameter is 00CEh, It cause a software reset. This register automatically set to Zero after a Software Reset.

8.2.20. Gate Scan Control (R30h)

_	R/W	RS	_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	W	1		0	0	0	0	0	0	0	0	0	0	0	SCN4	SCN3	SCN2	SCN1	SCN0

SCN[4:0] The ILI9225B allows specifying the gate line from which the gate driver starts scan by setting the SCN[4:0] bits.

Figure 26 Scanning Start Position for Gate Driver

Note: Don't set NL[4:0], SCN[4:0] over the end position of gate line (G220)

Note: Set NL[4:0] and SCN[4:0] to let the number for the end position of the gate line scans will not exceed 220.

					Sca	anning S	tart Posit	ion
SCN4	SCN3	SCN2	SCN1	SCN0	SM=0 GS=0	SM=0 GS=1	SM=1 GS=0	SM=1 GS=1
0	0	0	0	0	G1	G220	G1	G220
0	0	0	0	1	G9	G212	G17	G204
0	0	0	1	0	G17	G204	G33	G188
0	0	0	1	1	G25	G196	G49	G172
0	0	1	0	0	G33	G188	G65	G156
0	0	1	0	1	G41	G180	G81	G140
0	0	1	1	0	G49	G172	G97	G124
0	0	1	1	1	G57	G164	G113	G108
0	1	0	0	0	G65	G156	G129	G92
0	1	0	0	1	G73	G148	G145	G76
0	1	0	1	0	G81	G140	G161	G60
0	1	0	1	1	G89	G132	G177	G44
0	1	1	0	0	G97	G124	G193	G28
0	1	1	0	1	G105	G116	G209	G12
0	1	1	1	0	G113	G108	G2	G219
0	1	1	1	1	G121	G100	G18	G203
1	0	0	0	0	G129	G92	G34	G187
1	0	0	0	1	G137	G84	G50	G171

1	0	0	1	0	G145	G76	G66	G155
1	0	0	1	1	G153	G68	G82	G139
1	0	1	0	0	G161	G60	G98	G123
1	0	1	0	1	G169	G52	G114	G107
1	0	1	1	0	G177	G44	G130	G91
1	0	1	1	1	G185	G36	G146	G75
1	1	0	0	0	G193	G28	G162	G59
1	1	0	0	1	G201	G20	G178	G43
1	1	0	1	0	G209	G12	G194	G27
1	1	0	1	1	G217	G4	G210	G11

8.2.21. Vertical Scroll Control 1 (R31h, R32h)

R/W	RS
W	1
W	1

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	SEA7	SEA6	SEA5	SEA4	SESA3	SEA2	SEA1	SEA0
0	0	0	0	0	0	0	0	SSA7	SSA6	SSA5	SSA4	SSA3	SSA2	SSA1	SSA0

SSA[7:0]: Specify scroll start address at the scroll display for vertical smooth scrolling.

SSA7	SSA 6	SSA 5	SSA 4	SSA 3	SSA 2	SSA 1	SSA 0	Scroll Start Lines
0	0	0	0	0	0	0	0	0 line
0	0	0	0	0	0	0	1	1 line
0	0	0	0	0	0	1	0	2 lines
		-						
							-	•
•	-	•	•	•	-	•	-	•
	1	Ω	1	1	<u> </u>	1	Ω	218 lines
1	<u>'</u> 1	0	'	<u>'</u> 1	0	<u>'</u> 1	1	219 lines

SEA[7:0]: Specify scroll end address at the scroll display for vertical smooth scrolling.

	<u> </u>					•			
	SEA7	SEA 6	SEA 5	SEA 4	SEA 3	SEA 2	SEA 1	SEA 0	Scroll End Lines
	0	0	0	0	0	0	0	0	0 line
	0	0	0	0	0	0	0	1	1 line
	0	0	0	0	0	0	1	0	2 lines
					-	-			•
	-					-		•	•
	1	1	0	1	1	0	1	0	218 lines
ı	1	1	0	1	1	0	1	1	219 lines

NOTE]

Do not set any higher raster-row than 219 ("DB"H).

Set SS17-10 \leq SSA7-0, if set out of range, SSA7-0 = SS17-10.

Set SE17-10 ≥ SEA7-0, if set out of range, SEA7-0 = SE17-10

8.2.22. Vertical Scroll Control 1 (R33h)

R/W	RS	 D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	0	0	0	0	0	0	SST7	SST6	SST5	SST4	SST3	SST2	SST1	SST0

SST8-0: Specify scroll start and step at the scroll display for vertical smooth scrolling. Any line from the 1st to

220th can be scrolled for the number of the raster-row. After 219th line is displayed, the display restarts from the first raster-row. When SST7-0 = 00000000, Vertical Scroll Function is disabled.

SST7	SST 6	SST 5	SST 4	SST 3	SST 2	SST 1	SST 0	Scrolling Lines
0	0	0	0	0	0	0	0	0 line
0	0	0	0	0	0	0	1	1 line
0	0	0	0	0	0	1	0	2 lines
			-					
	•	•	-	•	•	•	•	•
								•
-								
1	1	0	1	1	0	1	0	218 lines
1	1	0	1	1	0	1	1	219 lines

[NOTE]

Do not set any higher raster-row than 219 ("DB"H)

Set SS17-10 < SSA7-0 + SST7-0 ≤ SEA7-0 ≤ SE17-10, if set out of range, Scroll function is disabled

8.2.23. Partial Screen Driving Position (R34h, R35h)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
W	1	0	0	0	0	0	0	0	0	SE17	SE16	SE15	SE14	SE13	SE12	SE11	SE10	l
W	1	0	0	0	0	0	0	0	0	SS17	SS16	SS15	SS14	SS13	SS12	SS11	SS10	l

SE1[7:0]: Specify the driving end position for the screen in a line unit. The LCD driving is performed to the 'set value + 1' gate driver. For example, when SS1[7:0] = 019h and SE1[7:0] = 029h are set, the LCD driving is performed from G26 to G42, and non-display driving is performed for G1 to G25, G43, and others. Ensure that SS1[7:0] ≤ SE1[7:0] ≤DBh.

SS1[7:0]: Specify the drive starting position for the first screen in a line unit. The LCD driving starts from the 'set value +1' gate driver.

Note: Do not set the partial setting when the operation is in the normal display condition. Set this register only when in the partial display condition.

Ex) SS1[7:0]=07h and SE1[7:0]=10h are performed from G8 to G17.

8.2.24. Horizontal and Vertical RAM Address Position (R36h/R37h, R38h/R39h)

R/W	RS	_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1		0	0	0	0	0	0	0	0	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0
W	1		0	0	0	0	0	0	0	0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0
W	1		0	0	0	0	0	0	0	0	VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0
W	1		0	0	0	0	0	0	0	0	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0

HSA[7:0]/HEA[7:0] HSA[7:0] and HEA[7:0] represent the respective addresses at the start and end of the window address area in horizontal direction. By setting HSA and HEA bits, it is possible to limit the area on the GRAM horizontally for writing data. The HSA and HEA bits must be set before starting RAM write operation. In setting these bits, be sure "00"h ≤ HSA[7:0] < "AF"h.

VSA[7:0]/VEA[7:0] VSA[7:0] and VEA[7:0] represent the respective addresses at the start and end of the window address area in vertical direction. By setting VSA and VEA bits, it is possible to limit the area on the GRAM vertically for writing data. The VSA and VEA bits must be set before starting RAM write operation. In setting, be sure "00"h ≤ VSA[7:0] < VEA[7:0] ≤ "DB"h.

Figure 27 GRAM Access Range configuration

"00"h ≤HAS[7:0] ≤HEA[7:0] ≤"AF"h "00"h ≤VSA[7:0] ≤VEA[7:0] ≤"DB"h

Note1. The window address range must be within the GRAM address space.

Note2. Data are written to GRAM in four-words when operating in high speed mode, the dummy write operations should be inserted depending on the window address area. For details, see the High-Speed RAM Write Function section.

8.2.25. Gamma Control (R50h ~ R59h)

	R/ W	R S	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R50h	W	1	0	0	0	0	KP13	KP12	KP11	KP10	0	0	0	0	KP03	KP02	KP01	KP00
R51h	W	1	0	0	0	0	KP33	KP32	KP31	KP30	0	0	0	0	KP23	KP22	KP21	KP20
R52h	W	1	0	0	0	0	KP53	KP52	KP51	KP50	0	0	0	0	KP43	KP42	KP41	KP40
R53h	W	1	0	0	0	0	RP13	RP12	RP11	RP10	0	0	0	0	RP03	RP02	RP01	RP00
R54h	W	1	0	0	0	0	KN13	KN12	KN11	KN10	0	0	0	0	KN03	KN02	KN01	KN00
R55h	W	1	0	0	0	0	KN33	KN32	KN31	KN30	0	0	0	0	KN23	KN22	KN21	KN20
R56h	W	1	0	0	0	0	KN53	KN52	KN51	KN50	0	0	0	0	KN43	KN42	KN41	KN40
R57h	W	1	0	0	0	0	RN13	RN12	RN11	RN10	0	0	0	0	RN03	RN02	RN01	RN00
R58h	W	1	0	0	0	VRP	VRP	VRP	VRP	VRP	0	0	0	VRP	VRP	VRP	VRP	VRP
KOOII	VV	ı	U	0	0	14	13	12	11	10	U	U	U	04	03	02	01	00
R59h	W	1	0	0	0	VRN	VRN	VRN	VRN	VRN	0	0	0	VRN	VRN	VRN	VRN	VRN
KOSII	VV	1	U	U	U	14	13	12	11	10	U	U	U	04	03	02	01	00

KP53-00: The gamma fine adjustoment register for the positive polarity output

*Initial Value: KP53-00 = 0000

RP13-00: The gradient adjustment register for the positive polarity output.

*Initial Value: RP13-00 = 0000

.

KN53-00: The gamma fine adjustment register for the negative polarity output.

*Initial Value: KN53-00 = 0000

RN13-00: The gradient adjustment register for the negative polarity output

*Initial Value: RN13-00 = 0000

VRP14-00: The amplitude adjustment register for the positive polarity output.

*Initial Value: VRP14-00 = 0000

VRN14-00: The amplitude adjustment register for the negative polarity output

*Initial Value: VRN14-00 = 0000

8.2.26. NV Memory Data Programming (R60h)

_	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	V	1	0	0	0	0	0	0	0	0	NVM_ D7	NVM_ D6	NVM_ D5	NVM_ D4	NVM_ D3	NVM_ D2	NVM_ D1	NVM_ D0

NVM_D[7:0]: NV memory data programming.

8.2.27. NV Memory Control (R61h)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	0	0	0	0	0	VCM_ SEL	0	0	0	0	0	0	ID_ PGM_EN	VCM_ PGM_EN

VCM_PGM_EN: VCM OTP programming enable. When writing the VCOMH NV memory, the bit must be set as '1'.

ID_PGM_EN: ID OTP programming enable. When writing the ID code NV memory, the bit must be set as '1'.

ID_PGM_EN	VCM_PGM_EN	OTP Programming Selection
0	0	NV Memory programming disabled
0	1	VCM (VCOMH) NV Memory programming enable
1	0	ID code NV Memory programming enable
1	1	Setting Prohibited

VCM_SEL: Select the VCOMH voltage setting.

VCM_SEL	VCM Selection
0	Use the register R14 to adjust the VCOMH voltage (default)
1	Use the NV memory to adjust the VCOMH voltage

Note: When the VCM NV memory had been programmed, the VCM_SEL bit will be set as '1' automatically...

8.2.28. NV Memory Status (R62h)

_	R/W	RS	_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	W	1		0	0	PGM_ CNT2	PGM_ CNT1	0	0	0	0	0	VCM_ D6	VCM_ D5	VCM_ D4	VCM_ D3	VCM_ D2	VCM_ D1	VCM_ D0

PGM_CNT[1:0]: VCM NV memory programmed record, the NV memory can be programmed 2 times to adjust the VCOMH voltage. These bits are read only.

PGM_CNT[1:0]	Description
00	OTP clean
01	OTP programmed 1 time
10	OTP programmed 2 times

VCM_D[6:0]: OTP VCM data read value. These bits are read only.

8.2.29. NV memory Protection Key (R63h)

R/W	RS	 D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	(EY 15	KEY 14	KEY 13	KEY 12	KEY 11	KEY 10	KEY 9	KEY 8	KEY 7	KEY 6	KEY 5	KEY 4	KEY 3	KEY 2	KEY 1	KEY 0

KEY[15:0]: NV memory protection key. When programming the NV memory, the KEY[15:0] must set as 0xAA55 value first to make NV memory programming successfully.

8.2.30. ID Code (R65h, Read Only)

_	R/W	RS	_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	W	1		0	0	0	0	0	0	0	0	0	0	0	0	ID3	ID2	ID1	ID0

ID[3:0]: This ID code is stored in the VN memory to record the LCM vender code (read only).

8.2.31. SPI Read/Write Control (R66h, Write Only)

R/W	RS	_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R/WX

This register is used to control the read/write function of registers when the 8/9-bit serial interface is used.

If users need to read back the register data by the 8/9-bit serial interface, the R/WX bit must be set as '1'.

R/WX	Description
0	Register write mode (default)
1	Register read mode

9. NV Memory Programming Flow

Note: When the VCM NV memory had been programmed, the VCM_SEL bit will be set as 1?automatically.

10.GRAM Address Map & Read/Write

ILI9225B has an internal graphics RAM (GRAM) of 87,120 bytes to store the display data and one pixel is constructed of 18 bits. The GRAM can be accessed through the i80/M68 system, SPI and RGB interfaces.

Figure 28 GRAM Read/Write Timing of i80-System Interface

Figure29 GRAM Read/Write Timing of M68-System Interface

GRAM address map table of SS=0, BGR=0

SS=0,	BGR=0	S1S3	S4S6	S7S9	S10S12	 S517S519	S520S522	S523S525	S526S528
GS=0	GS=1	DB170	DB170	DB170	DB170	 DB170	DB170	DB170	DB170
G1	G220	"0000h"	"0001h"	"0002h"	"0003h"	 "00ACh"	"00ADh"	"00AEh"	"00AFh"
G2	G219	"0100h"	"0101h"	"0102h"	"0103h"	 "01ACh"	"01ADh"	"01AEh"	"01AFh"
G3	G218	"0200h"	"0201h"	"0202h"	"0203h"	 "02ACh"	"02ADh"	"02AEh"	"02AFh"
G4	G217	"0300h"	"0301h"	"0302h"	"0303h"	 "03ACh"	"03ADh"	"03AEh"	"03AFh"
G5	G216	"0400h"	"0401h"	"0402h"	"0403h"	 "04ACh"	"04ADh"	"04AEh"	"04AFh"
G6	G215	"0500h"	"0501h"	"0502h"	"0503h"	 "05ACh"	"05ADh"	"05AEh"	"05AFh"
G7	G214	"0600h"	"0601h"	"0602h"	"0603h"	 "06ACh"	"06ADh"	"06AEh"	"06AFh"
G8	G213	"0700h"	"0701h"	"0702h"	"0703h"	 "07ACh"	"07ADh"	"07AEh"	"07AFh"
G9	G212	"0800h"	"0801h"	"0802h"	"0803h"	 "08ACh"	"08ADh"	"08AEh"	"08AFh"
G10	G211	"0900h"	"0901h"	"0902h"	"0903h"	 "09ACh"	"09ADh"	"09AEh"	"09AFh"
		-				-	-		
						-	-		-
G211	G10	"D200h"	"D201h"	"D202h"	"D203h"	 "D2ACh"	"D2ADh"	"D2AEh"	"D2AFh"
G212	G9	"D300h"	"D301h"	"D302h"	"D303h"	 "D3ACh"	"D3ADh"	"D3AEh"	"D3AFh"
G213	G8	"D400h"	"D401h"	"D402h"	"D403h"	 "D4ACh"	"D4ADh"	"D4AEh"	"D4AFh"
G214	G7	"D500h"	"D501h"	"D502h"	"D503h"	 "D5ACh"	"D5ADh"	"D5AEh"	"D5AFh"
G215	G6	"D600h"	"D601h"	"D602h"	"D603h"	 "D6ACh"	"D6ADh"	"D6AEh"	"D6AFh"
G216	G5	"D700h"	"D701h"	"D702h"	"D703h"	 "D7ACh"	"D7ADh"	"D7AEh"	"D7AFh"
G217	G4	"D800h"	"D801h"	"D802h"	"D803h"	 "D8ACh"	"D8ADh"	"D8AEh"	"D8AFh"
G218	G3	"D900h"	"D901h"	"D902h"	"D903h"	 "D9ACh"	"D9ADh"	"D9AEh"	"D9AFh"
G219	G2	"DA00h"	"DA01h"	"DA02h"	"DA03h"	 "DAACh"	"DAADh"	"DAAEh"	"DAAFh"
G220	G1	"DB00h"	"DB01h"	"DB02h"	"DB03h"	 "DBACh"	"DBADh"	"DBAEh"	"DBAFh"

Figure 30 i 80-System Interface with 18-/9-bit Data Bus (SS="0", BGR="0")

GRAM address map table of SS=1, BGR=1

SS=1,	BGR=1	S1S3	S4S6	S7S9	S10S12	 S517S519	S520S522	S523S525	S526S528
GS=0	GS=1	DB170	DB170	DB170	DB170	 DB170	DB170	DB170	DB170
G1	G220	"00AFh"	"00AEh"	"00ADh"	"00ACh"	 "0003h"	"0002h"	"0001h"	"0000h"
G2	G219	"01AFh"	"01AEh"	"01ADh"	"01ACh"	 "0103h"	"0102h"	"0101h"	"0100h"
G3	G218	"02AFh"	"02AEh"	"02ADh"	"02ACh"	 "0203h"	"0202h"	"0201h"	"0200h"
G4	G217	"03AFh"	"03AEh"	"03ADh"	"03ACh"	 "0303h"	"0302h"	"0301h"	"0300h"
G5	G216	"04AFh"	"04AEh"	"04ADh"	"04ACh"	 "0403h"	"0402h"	"0401h"	"0400h"
G6	G215	"05AFh"	"05AEh"	"05ADh"	"05ACh"	 "0503h"	"0502h"	"0501h"	"0500h"
G7	G214	"06AFh"	"06AEh"	"06ADh"	"06ACh"	 "0603h"	"0602h"	"0601h"	"0600h"
G8	G213	"07AFh"	"07AEh"	"07ADh"	"07ACh"	 "0703h"	"0702h"	"0701h"	"0700h"
G9	G212	"08AFh"	"08AEh"	"08ADh"	"08ACh"	 "0803h"	"0802h"	"0801h"	"0800h"
G10	G211	"09AFh"	"09AEh"	"09ADh"	"09ACh"	 "0903h"	"0902h"	"0901h"	"0900h"
	-				-				
	-								
	-								
G211	G10	"D2AFh"	"D2AEh"	"D2ADh"	"D2ACh"	 "D203h"	"D202h"	"D201h"	"D200h"
G212	G9	"D3AFh"	"D3AEh"	"D3ADh"	"D3ACh"	 "D303h"	"D302h"	"D301h"	"D300h"
G213	G8	"D4AFh"	"D4AEh"	"D4ADh"	"D4ACh"	 "D403h"	"D402h"	"D401h"	"D400h"
G214	G7	"D5AFh"	"D5AEh"	"D5ADh"	"D5ACh"	 "D503h"	"D502h"	"D501h"	"D500h"
G215	G6	"D6AFh"	"D6AEh"	"D6ADh"	"D6ACh"	 "D603h"	"D602h"	"D601h"	"D600h"
G216	G5	"D7AFh"	"D7AEh"	"D7ADh"	"D7ACh"	 "D703h"	"D702h"	"D701h"	"D700h"
G217	G4	"D8AFh"	"D8AEh"	"D8ADh"	"D8ACh"	 "D803h"	"D802h"	"D801h"	"D800h"
G218	G3	"D9AFh"	"D9AEh"	"D9ADh"	"D9ACh"	 "D903h"	"D902h"	"D901h"	"D900h"
G219	G2	"DAAFh"	"DAAEh"	"DAADh"	"DAACh"	 "DA03h"	"DA02h"	"DA01h"	"DA00h"
G220	G1	"DBAFh"	"DBAEh"	"DBADh"	"DBACh"	 "DB03h"	"DB02h"	"DB01h"	"DB00h"

Figure31 i80-System Interface with 18-/9-bit Data Bus (SS="1", BGR="1")

11. Window Address Function

The window address function enables writing display data consecutively in a rectangular area (a window address area) made on the internal RAM. The window address area is made by setting the horizontal address register (start: HSA[7:0], end: HEA[7:0] bits) and the vertical address register (start: VSA[7:0], end: VEA[7:0] bits). The AM bit sets the transition direction of RAM address (either increment or decrement). These bits enable the ILI9225B to write data including image data consecutively not taking data wrap positions into account.

The window address area must be made within the GRAM address map area. Also, the AD[15:0] bits (RAM address set register) must be an address within the window address area.

[Window address setting area]

(Horizontal direction) $00H \le HSA[7:0] \le HEA[7:0] \le "AF"H$

(Vertical direction) 00H ≤ VSA[7:0] ≤ VEA[7:0]≤ "DB"H

[RAM address, AD[15:0] (an address within a window address area)]]

 $(RAM \ address) \ HSA[7:0] \le AD[7:0] \le HEA[7:0]$

 $VSA[7:0] \le AD[15:8] \le VEA[7:0]$

GRAM Address Map

Window address setting area

HSA[7:0] = 10h, HSA[7:0] = 3Fh, VD = 1 (increment) VSA[7:0] = 20h, VSA[7:0] = 4Fh, AM = 0 (horizontal writing)

Figure 32 GRAM Access Window Map

12. Gamma Correction

ILI9225B incorporates the γ -correction function to display 262,144 colors for the LCD panel. The γ -correction is performed with 3 groups of registers determining eight reference grayscale levels, which are gradient adjustment, amplitude adjustment and fine-adjustment registers for positive and negative polarities, to make ILI9225B available with liquid crystal panels of various characteristics.

Figure 33 Grayscale Mapping

Grayscale Voltage Generator Configuration

The following figure illustrates the grayscale voltage generator function of the ILI9225B. To generate 64 grayscale voltages (V0~V63), ILI9225B first generates eight reference grayscale voltages (VgP/N0, VgP/N1, VgP/N8, VgP/N20, VgP/N43, VgP/N55, VgP/N62, VgP/N63) and the grayscale amplifier unit then divides eight reference grayscale voltages with the ladder resistors incorporated therein. Total 64 grayscale levels are generated from the γ-correction function and used for the LCD source driver.

Figure34 Grayscale Voltage Generation

Figure35 Grayscale Voltage Adjustment 1

Figure36 Grayscale Voltage Adjustment 2

1. Gradient adjustment registers

The gradient adjustment registers are used to adjust the gradient of the curve representing the relationship between the grayscale and the grayscale reference voltage level. To accomplish the adjustment, it controls the VINP12/VINN12 and VINP56/VINN56 voltage level by the 16 to 1 selector towards the 16-leveled reference voltage generated from the resistor ladder between VINP0/VINN0 and VINP7/VINN7. Also, there is an independent register on the positive/negative polarities in order for corresponding to asymmetry drive.

2. Reference adjusting register

The Reference adjustment register is to adjust the reference of the grayscale voltage. To accomplish the adjustoment, it controls the VINP7/VINN7 voltage level by 32 to 1 selector towards the 32-leveled voltage generated from the resistor ladder between GVDD and VGS.

3. Amplitude adjustment registers

The Amplitude adjustment register is to adjust the amplitude of the grayscale voltage. To accomplish the adjustment, it controls the VINPO/VINNO voltage level by 32 to 1 selector towards the 32-leveled reference voltage generated from the resistor ladder between GVDD and VGS.

4. Fine adjustment registers

The fine adjustment registers are used to fine-adjust grayscale voltage levels. To fine-adjust grayscale voltage levels, fine adjustment registers adjust the reference voltage levels, 16 levels for each register generated from the ladder resistor, in respective 16-to-1 selectors. Same with other registers, the fine adjustment registers consist of positive and negative polarity registers.

Figure37 Gamma Curve Adjustment

Gamma Adjustment Register

Register	Positive polarity	Negative polarity	Set-up contents
	PRP0[3:0]	PRN0[3:0]	The volateg of VINP12/VINN12 is
Gradient adjustment	FIXF0[5.0]	F1(10[3.0]	elected by the 16 to 1 selector
Oracient adjustment	PRP1[3:0]	PRN1[3:0]	The volateg of VINP56/VINN56 is
	FRF 1[3.0]	FKN1[3.0]	elected by the 16 to 1 selector
Reference adjustment	VRP1[4:0]	VRN11[4:0]	The volateg of VINP7/VINN7 is elected
Reference adjustment	VKF 1[4.0]	VKN11[4.0]	by the 32 to 1 selector
Amplitude adjustment	VRP0[4:0]	VRN0[4:0]	The voltage of VINP0/VINN0 is elected
Amplitude adjustifient	VIXF0[4.0]	VICINO[4.0]	by the 32 to 1 selector
	PKP0[3:0]	PKN0[3:0]	The voltage of grayscale number 1 is
	FKF0[3.0]	PKNU[3.0]	selected by the 16 to 1 selector
	PKP1[3:0]	PKN1[3:0]	The voltage of grayscale number 20 is
			selected by the 16 to 1 selector
	PKP2[3:0]	PKN2[3:0]	The voltage of grayscale number 43 is
Fine adjustment			selected by the 16 to 1 selector
i ille adjustillerit	PKP3[3:0]	PKN3[3:0]	The voltage of grayscale number 55 is
			selected by the 16 to 1 selector
	PKP4[3:0]	PKN4[3:0]	The voltage of grayscale number 1 is
			selected by the 16 to 1 selector
	PKP5[3:0]	PKN5[3:0]	The voltage of grayscale number 62 is
			selected by the 16 to 1 selector

RESISTOR LADDER NETWORK / SELECTOR

This block outputs the reference voltage of the grayscale voltage. There are four ladder resistors including the 8 to 1 selector selecting voltage generated by the ladder resistance voltage. Also, there are pins that connect to the external volume resistor. In addition, it allows compensating the dispersion of length between one panel and another.

Resistor ladder network 1 /selector

There are 4 adjustments that are for the gradient adjustment (VRHP(N)/VRLP(N)) and for the reference / amplitude adjustment(VRP(N)1 / VRP(N)0). The voltage level is set by the gradient adjustment register and the reference / amplitude adjustment registers as below.

Amplitude Adjustment

Register value VRP(N)0 [4:0]	Selected voltage VINP(N)0	Formula of VINP(N)0
00000	AVP(N)0	(450R/450R) * (GVDD-VGS) + VGS
00001	AVP(N)1	(447R/450R) * (GVDD-VGS) + VGS
00010	AVP(N)2	(444R/450R) * (GVDD-VGS) + VGS
00011	AVP(N)3	(441R/450R) * (GVDD-VGS) + VGS
00100	AVP(N)4	(438R/450R) * (GVDD-VGS) + VGS
00101	AVP(N)5	(435R/450R) * (GVDD-VGS) + VGS
00110	AVP(N)6	(432R/450R) * (GVDD-VGS) + VGS
00111	AVP(N)7	(429R/450R) * (GVDD-VGS) + VGS
01000	AVP(N)8	(426R/450R) * (GVDD-VGS) + VGS
01001	AVP(N)9	(423R/450R) * (GVDD-VGS) + VGS
01010	AVP(N)10	(420R/450R) * (GVDD-VGS) + VGS
01011	AVP(N)11	(417R/450R) * (GVDD-VGS) + VGS
01100	AVP(N)12	(414R/450R) * (GVDD-VGS) + VGS
01101	AVP(N)13	(411R/450R) * (GVDD-VGS) + VGS
01110	AVP(N)14	(408R/450R) * (GVDD-VGS) + VGS
01111	AVP(N)15	(405R/450R) * (GVDD-VGS) + VGS
10000	AVP(N)16	(402R/450R) * (GVDD-VGS) + VGS
10001	AVP(N)17	(399R/450R) * (GVDD-VGS) + VGS
10010	AVP(N)18	(396R/450R) * (GVDD-VGS) + VGS
10011	AVP(N)19	(393R/450R) * (GVDD-VGS) + VGS
10100	AVP(N)20	(390R/450R) * (GVDD-VGS) + VGS
10101	AVP(N)21	(387R/450R) * (GVDD-VGS) + VGS
10110	AVP(N)22	(384R/450R) * (GVDD-VGS) + VGS
10111	AVP(N)23	(381R/450R) * (GVDD-VGS) + VGS
11000	AVP(N)24	(378R/450R) * (GVDD-VGS) + VGS
11001	AVP(N)25	(375R/450R) * (GVDD-VGS) + VGS
11010	AVP(N)26	(372R/450R) * (GVDD-VGS) + VGS
11011	AVP(N)27	(369R/450R) * (GVDD-VGS) + VGS
11100	AVP(N)28	(366R/450R) * (GVDD-VGS) + VGS
11101	AVP(N)29	(363R/450R) * (GVDD-VGS) + VGS
11110	AVP(N)30	(360R/450R) * (GVDD-VGS) + VGS
11111	AVP(N)31	(357R/450R) * (GVDD-VGS) + VGS

Reference Adjustment

Register value VRP(N)1 [4:0]	Selected voltage VINP(N)7	Formula of VINP(N)7
00000	AVP(N)63	(20R/450R) * (GVDD-VGS) + VGS
00001	AVP(N)62	(24R/450R) * (GVDD-VGS) + VGS
00010	AVP(N)61	(28R/450R) * (GVDD-VGS) + VGS
00011	AVP(N)60	(32R/450R) * (GVDD-VGS) + VGS
00100	AVP(N)59	(36R/450R) * (GVDD-VGS) + VGS
00101	AVP(N)58	(40R/450R) * (GVDD-VGS) + VGS
00110	AVP(N)57	(44R/450R) * (GVDD-VGS) + VGS
00111	AVP(N)56	(48R/450R) * (GVDD-VGS) + VGS
01000	AVP(N)55	(52R/450R) * (GVDD-VGS) + VGS
01001	AVP(N)54	(56R/450R) * (GVDD-VGS) + VGS
01010	AVP(N)53	(60R/450R) * (GVDD-VGS) + VGS
01011	AVP(N)52	(64R/450R) * (GVDD-VGS) + VGS
01100	AVP(N)51	(68R/450R) * (GVDD-VGS) + VGS
01101	AVP(N)50	(72R/450R) * (GVDD-VGS) + VGS
01110	AVP(N)49	(76R/450R) * (GVDD-VGS) + VGS
01111	AVP(N)48	(80R/450R) * (GVDD-VGS) + VGS
10000	AVP(N)47	(84R/450R) * (GVDD-VGS) + VGS
10001	AVP(N)46	(88R/450R) * (GVDD-VGS) + VGS
10010	AVP(N)45	(92R/450R) * (GVDD-VGS) + VGS
10011	AVP(N)44	(96R/450R) * (GVDD-VGS) + VGS
10100	AVP(N)43	(100R/450R) * (GVDD-VGS) + VGS
10101	AVP(N)42	(104R/450R) * (GVDD-VGS) + VGS
10110	AVP(N)41	(108R/450R) * (GVDD-VGS) + VGS
10111	AVP(N)40	(112R/450R) * (GVDD-VGS) + VGS
11000	AVP(N)39	(116R/450R) * (GVDD-VGS) + VGS
11001	AVP(N)38	(120R/450R) * (GVDD-VGS) + VGS
11010	AVP(N)37	(124R/450R) * (GVDD-VGS) + VGS
11011	AVP(N)36	(128R/450R) * (GVDD-VGS) + VGS
11100	AVP(N)35	(132R/450R) * (GVDD-VGS) + VGS
11101	AVP(N)34	(136R/450R) * (GVDD-VGS) + VGS
11110	AVP(N)33	(140R/450R) * (GVDD-VGS) + VGS
11111	AVP(N)32	(144R/450R) * (GVDD-VGS) + VGS

Gradient Adjustment (1)

Register value PRP(N)0 [2:0]	Selected voltage VINP(N)12	Formula of VINP(N)12
0000	GVP(N)0	(270R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
0001	GVP(N)1	(265R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
0010	GVP(N)2	(260R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
0011	GVP(N)3	(255R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
0100	GVP(N)4	(250R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
0101	GVP(N)5	(245R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
0110	GVP(N)6	(240R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
0111	GVP(N)7	(235R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
1000	GVP(N)8	(230R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
1001	GVP(N)9	(225R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
1010	GVP(N)10	(220R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
1011	GVP(N)11	(215R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
1100	GVP(N)12	(210R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
1101	GVP(N)13	(205R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
1110	GVP(N)14	(200R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
1111	GVP(N)15	(195R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7

Reference Adjustment (2)

Selected voltage VINP(N)56	Formula of VINP(N)56
GVP(N)0	(80R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
GVP(N)1	(85R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
GVP(N)2	(90R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
GVP(N)3	(95R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
GVP(N)4	(100R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
GVP(N)5	(105R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
GVP(N)6	(110R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
GVP(N)7	(115R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
GVP(N)8	(120R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
GVP(N)9	(125R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
GVP(N)10	(130R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
GVP(N)11	(135R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
GVP(N)12	(140R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
GVP(N)13	(145R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
GVP(N)14	(150R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
GVP(N)15	(155R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
	GVP(N)0 GVP(N)1 GVP(N)2 GVP(N)3 GVP(N)4 GVP(N)5 GVP(N)6 GVP(N)7 GVP(N)8 GVP(N)9 GVP(N)10 GVP(N)11 GVP(N)12 GVP(N)13 GVP(N)14

Resistor ladder network 2/selector

In the 16-to-1 selector, the voltage level must be selected by the given ladder resistance and the micro-adjustment register and output the six types of the reference voltaeg, VIN1 to VIN6. Followin figure explains the relationship between the micro-adjustment register and the selected voltage.

Relationship between Fine-adjustoment Register and Selected Voltage

Register Value	Selected Voltage					
PKP(N) [3:0]	VINP(N)1	VINP(N)2	VINP(N)3	VINP(N)4	VINP(N)5	VINP(N)6
0000	KVP(N)0	KVP(N)16	KVP(N)32	KVP(N)63	KVP(N)79	KVP(N)95
0001	KVP(N)1	KVP(N)17	KVP(N)33	KVP(N)62	KVP(N)78	KVP(N)94
0010	KVP(N)2	KVP(N)18	KVP(N)34	KVP(N)61	KVP(N)77	KVP(N)93
0011	KVP(N)3	KVP(N)19	KVP(N)35	KVP(N)60	KVP(N)76	KVP(N)92
0100	KVP(N)4	KVP(N)20	KVP(N)36	KVP(N)59	KVP(N)75	KVP(N)91
0101	KVP(N)5	KVP(N)21	KVP(N)37	KVP(N)58	KVP(N)74	KVP(N)90
0110	KVP(N)6	KVP(N)22	KVP(N)38	KVP(N)57	KVP(N)73	KVP(N)89
0111	KVP(N)7	KVP(N)23	KVP(N)39	KVP(N)56	KVP(N)72	KVP(N)88
1000	KVP(N)8	KVP(N)24	KVP(N)40	KVP(N)55	KVP(N)71	KVP(N)87
1001	KVP(N)9	KVP(N)25	KVP(N)41	KVP(N)54	KVP(N)70	KVP(N)86
1010	KVP(N)10	KVP(N)26	KVP(N)42	KVP(N)53	KVP(N)69	KVP(N)85
1011	KVP(N)11	KVP(N)27	KVP(N)43	KVP(N)52	KVP(N)68	KVP(N)84
1100	KVP(N)12	KVP(N)28	KVP(N)44	KVP(N)51	KVP(N)67	KVP(N)83
1101	KVP(N)13	KVP(N)29	KVP(N)45	KVP(N)50	KVP(N)66	KVP(N)82
1110	KVP(N)14	KVP(N)30	KVP(N)46	KVP(N)49	KVP(N)65	KVP(N)81
1111	KVP(N)15	KVP(N)31	KVP(N)47	KVP(N)48	KVP(N)64	KVP(N)80

[NOTE] The grayscale levels are determined by the following formulas listed in the next pages.

Formulas for Calculating Gamma Adjusting Voltage (Positive Polarity) 1

Pins	Formula	Micro-adjusting Register value	Reference Voltage
KVP0	(45R/48R) * (VINP0 – VINP12) + VINP12	PKP0[3:0] = "0000"	renage
KVP1	(42R/48R) * (VINP0 – VINP12) + VINP12	PKP0[3:0] = "0001"	
KVP2	(39R/48R) * (VINP0 – VINP12) + VINP12	PKP0[3:0] = "0010"	
KVP3	(36R/48R) * (VINP0 – VINP12) + VINP12	PKP0[3:0] = "0011"	
KVP4	(33R/48R) * (VINP0 – VINP12) + VINP12	PKP0[3:0] = "0100"	
KVP5	(30R/48R) * (VINP0 – VINP12) + VINP12	PKP0[3:0] = "0101"	
KVP6	(27R/48R) * (VINP0 – VINP12) + VINP12	PKP0[3:0] = "0110"	
KVP7	(24R/48R) * (VINP0 – VINP12) + VINP12	PKP0[3:0] = "0111"	VINIDA
KVP8	(21R/48R) * (VINP0 – VINP12) + VINP12	PKP0[3:0] = "1000"	VINP1
KVP9	(18R/48R) * (VINP0 – VINP12) + VINP12	PKP0[3:0] = "1001"	
KVP10	(15R/48R) * (VINP0 – VINP12) + VINP12	PKP0[3:0] = "1010"	
KVP11	(12R/48R) * (VINP0 – VINP12) + VINP12	PKP0[3:0] = "1011"	
KVP12	(9R/48R) * (VINP0 – VINP12) + VINP12	PKP0[3:0] = "1100"	
KVP13	(6R/48R) * (VINP0 – VINP12) + VINP12	PKP0[3:0] = "1101"	
KVP14	(3R/48R) * (VINP0 – VINP12) + VINP12	PKP0[3:0] = "1110"	
KVP15	VINP12	PKP0[3:0] = "1111"	
KVP16	(219R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = "0000"	
KVP17	(216R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = "0001"	
KVP18	(213R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = "0010"	
KVP19	(210R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = "0011"	
KVP20	(207R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = "0100"	
KVP21	(204R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = "0101"	
KVP22	(201R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = "0110"	
KVP23	(198R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = "0111"	VINDO
KVP24	(195R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = "1000"	VINP2
KVP25	(192R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = "1001"	
KVP26	(189R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = "1010"	
KVP27	(186R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = "1011"	
KVP28	(183R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = "1100"	
KVP29	(180R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = "1101"	
KVP30	(177R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = "1110"	
KVP31	(174R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = "1111"	
KVP32	(171R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = "0000"	
KVP33	(168R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = "0001"	
KVP34	(165R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = "0010"	
KVP35	(162R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = "0011"	
KVP36	(159R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = "0100"	
KVP37	(156R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = "0101"	
KVP38	(153R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = "0110"	
KVP39	(150R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = "0111"	VINP3
KVP40	(147R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = "1000"	VII (1)
KVP41	(144R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = "1001"	
KVP42	(141R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = "1010"	
KVP43	(138R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = "1011"	
KVP44	(135R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = "1100"	
KVP45	(132R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = "1101"	
KVP46	(129R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = "1110"	
KVP47	(126R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = "1111"	

Pins	Formula	Fine-adjusting register value	Reference voltage
KVP48	(96R/222R)*(VINP12-VINP56)+VINP56	PKP3[3:0]="1111"	vollage
KVP49	(93R/222R)*(VINP12-VINP56)+VINP56	PKP3[3:0]="1110"	
KVP50	(90R/222R)*(VINP12-VINP56)+VINP56	PKP3[3:0]="1101"	
KVP51	(87R/222R)*(VINP12-VINP56)+VINP56	PKP3[3:0]="1100"	
KVP52	(84R/222R)*(VINP12-VINP56)+VINP56	PKP3[3:0]="1011"	
KVP53	(81R/222R)*(VINP12-VINP56)+VINP56	PKP3[3:0]="1010"	
KVP54	(78R/222R)*(VINP12-VINP56)+VINP56	PKP3[3:0]="1001"	
KVP55	(75R/222R)*(VINP12-VINP56)+VINP56	PKP3[3:0]="1000"	VINDA
KVP56	(72R/222R)*(VINP12-VINP56)+VINP56	PKP3[3:0]="0111"	VINP4
KVP57	(69R/222R)*(VINP12-VINP56)+VINP56	PKP3[3:0]="0110"	
KVP58	(66R/222R)*(VINP12-VINP56)+VINP56	PKP3[3:0]="0101"	
KVP59	(63R/222R)*(VINP12-VINP56)+VINP56	PKP3[3:0]="0100"	
KVP60	(60R/222R)*(VINP12-VINP56)+VINP56	PKP3[3:0]="0011"	
KVP61	(57R/222R)*(VINP12-VINP56)+VINP56	PKP3[3:0]="0010"	
KVP62	(54R/222R)*(VINP12-VINP56)+VINP56	PKP3[3:0]="0001"	
KVP63	(51R/222R)*(VINP12-VINP56)+VINP56	PKP3[3:0]="0000"	
KVP64	(48R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1111"	
KVP65	(45R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1110"	
KVP66	(42R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1101"	
KVP67	(39R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1100"	
KVP68	(36R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1011"	
KVP69	(33R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1010"	
KVP70	(30R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1001"	
KVP71	(27R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1000"	VANDE
KVP72	(24R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0111"	VINP5
KVP73	(21R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0110"	
KVP74	(18R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0101"	
KVP75	(15R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0100"	
KVP76	(12R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0011"	
KVP77	(9R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0010"	
KVP78	(6R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0001"	
KVP79	(3R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0000"	
KVP80	VINP56	PKP5[3:0]="1111"	
KVP81	(45R/48R)*(VINP56-VINP7)+VINP7	PKP5[3:0]="1110"	
KVP82	(42R/48R)*(VINP56-VINP7)+VINP7	PKP5[3:0]="1101"	
KVP83	(39R/48R)*(VINP56-VINP7)+VINP7	PKP5[3:0]="1100"	
KVP84	(36R/48R)*(VINP56-VINP7)+VINP7	PKP5[3:0]="1011"	
KVP85	(33R/48R)*(VINP56-VINP7)+VINP7	PKP5[3:0]="1010"	
KVP86	(30R/48R)*(VINP56-VINP7)+VINP7	PKP5[3:0]="1001"	
KVP87	(27R/48R)*(VINP56-VINP7)+VINP7	PKP5[3:0]="1000"	VINDS
KVP88	(24R/48R)*(VINP56-VINP7)+VINP7	PKP5[3:0]="0111"	VINP6
KVP89	(21R/48R)*(VINP56-VINP7)+VINP7	PKP5[3:0]="0110"	
KVP90	(18R/48R)*(VINP56-VINP7)+VINP7	PKP5[3:0]="0101"	
KVP91	(15R/48R)*(VINP56-VINP7)+VINP7	PKP5[3:0]="0100"	
KVP92	(12R/48R)*(VINP56-VINP7)+VINP7	PKP5[3:0]="0011"	
KVP93	(9R/48R)*(VINP56-VINP7)+VINP7	PKP5[3:0]="0010"]
KVP94	(6R/48R)*(VINP56-VINP7)+VINP7	PKP5[3:0]="0001"	
KVP95	(3R/48R)*(VINP56-VINP7)+VINP7	PKP5[3:0]="0000"	

Formulas for Calculating Gamma Adjusting Voltage (Positive Polarity) 2

Grayscale voltage	Formula	Grayscale voltage	Formula
V0	VINP0	V32	V20-(V20-V43)*(12/23)
V1	VINP1	V33	V20-(V20-V43)*(13/23)
V2	V1-(V1-V8)*(28/96)	V34	V20-(V20-V43)*(14/23)
V3	V1-(V1-V8)*(42/96)	V35	V20-(V20-V43)*(15/23)
V4	V1-(V1-V8)*(60/96)	V36	V20-(V20-V43)*(16/23)
V5	V1-(V1-V8)*(69/96)	V37	V20-(V20-V43)*(17/23)
V6	V1-(V1-V8)*(78/96)	V38	V20-(V20-V43)*(18/23)
V7	V1-(V1-V8)*(87/96)	V39	V20-(V20-V43)*(19/23)
V8	VINP2	V40	V20-(V20-V43)*(20/23)
V9	V8-(V8-V20)*(2/24)	V41	V20-(V20-V43)*(21/23)
V10	V8-(V8-V20)*(4/24)	V42	V20-(V20-V43)*(22/23)
V11	V8-(V8-V20)*(6/24)	V43	VINP4
V12	V8-(V8-V20)*(8/24)	V44	V43-(V43-V55)*(2/24)
V13	V8-(V8-V20)*(10/24)	V45	V43-(V43-V55)*(4/24)
V14	V8-(V8-V20)*(12/24)	V46	V43-(V43-V55)*(6/24)
V15	V8-(V8-V20)*(14/24)	V47	V43-(V43-V55)*(8/24)
V16	V8-(V8-V20)*(16/24)	V48	V43-(V43-V55)*(10/24)
V17	V8-(V8-V20)*(18/24)	V49	V43-(V43-V55)*(12/24)
V18	V8-(V8-V20)*(20/24)	V50	V43-(V43-V55)*(14/24)
V19	V8-(V8-V20)*(22/24)	V51	V43-(V43-V55)*(16/24)
V20	VINP3	V52	V43-(V43-V55)*(18/24)
V21	V20-(V20-V43)*(1/23)	V53	V43-(V43-V55)*(20/24)
V22	V20-(V20-V43)*(2/23)	V54	V43-(V43-V55)*(22/24)
V23	V20-(V20-V43)*(3/23)	V55	VINP5
V24	V20-(V20-V43)*(4/23)	V56	V55-(V55-V62)*(9/96)
V25	V20-(V20-V43)*(5/23)	V57	V55-(V55-V62)*(18/96)
V26	V20-(V20-V43)*(6/23)	V58	V55-(V55-V62)*(27/96)
V27	V20-(V20-V43)*(7/23)	V59	V55-(V55-V62)*(36/96)
V28	V20-(V20-V43)*(8/23)	V60	V55-(V55-V62)*(45/96)
V29	V20-(V20-V43)*(9/23)	V61	V55-(V55-V62)*(54/96)
V30	V20-(V20-V43)*(10/23)	V62	VINP6
V31	V20-(V20-V43)*(11/23)	V63	VINP7

Formulas for Calculating Gamma Adjusting Voltage (Negative Polarity) 1

Pins	Formula	Micro-adjusting	Reference
KVN0	(45R/48R) * (VINP0 – VINN12) + VINN12	register value PKP0[3:0] = "0000"	voltage
KVN1	(42R/48R) * (VINN0 – VINN12) + VINN12	PKN0[3:0] = "0001"	
KVN2	(39R/48R) * (VINN0 – VINN12) + VINN12	PKN0[3:0] = "0010"	
KVN3	(36R/48R) * (VINN0 – VINN12) + VINN12	PKN0[3:0] = "0011"	
KVN4	(33R/48R) * (VINN0 – VINN12) + VINN12	PKN0[3:0] = "0100"	
KVN5	(30R/48R) * (VINN0 – VINN12) + VINN12	PKN0[3:0] = "0101"	
KVN6	(27R/48R) * (VINN0 – VINN12) + VINN12	PKN0[3:0] = "0110"	_
KVN7	(24R/48R) * (VINN0 – VINN12) + VINN12	PKN0[3:0] = "0111"	
KVN8	(21R/48R) * (VINN0 – VINN12) + VINN12	PKN0[3:0] = "1000"	VINN1
KVN9	(18R/48R) * (VINN0 – VINN12) + VINN12	PKN0[3:0] = "1001"	_
KVN10	(15R/48R) * (VINN0 – VINN12) + VINN12	PKN0[3:0] = "1010"	_
KVN11	(12R/48R) * (VINN0 – VINN12) + VINN12	PKN0[3:0] = "1011"	_
KVN12	(9R/48R) * (VINN0 – VINN12) + VINN12	PKN0[3:0] = "1100"	
KVN13	(6R/48R) * (VINN0 – VINN12) + VINN12	PKN0[3:0] = "1101"	
KVN14	(3R/48R) * (VINN0 – VINN12) + VINN12	PKN0[3:0] = "1110"	_
KVN15	VINN12	PKN0[3:0] = "1111"	_
KVN16	(219R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = "0000"	
KVN17	(216R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = "0001"	_
KVN18	(213R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = "0010"	_
KVN19	(210R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = "0011"	_
KVN20	(207R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = "0100"	
KVN21	(204R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = "0101"	_
KVN22	(201R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = "0110"	_
KVN23	(198R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = "0111"	1 ,,,,,,,
KVN24	(195R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = "1000"	VINN2
KVN25	(192R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = "1001"	
KVN26	(189R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = "1010"	
KVN27	(186R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = "1011"	
KVN28	(183R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = "1100"	
KVN29	(180R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = "1101"	
KVN30	(177R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = "1110"	
KVN31	(174R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = "1111"	
KVN32	(171R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = "0000"	
KVN33	(168R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = "0001"	
KVN34	(165R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = "0010"	
KVN35	(162R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = "0011"	
KVN36	(159R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = "0100"	
KVN37	(156R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = "0101"	
KVN38	(153R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = "0110"	
KVN39	(150R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = "0111"	VINN3
KVN40	(147R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = "1000"	VIININO
KVN41	(144R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = "1001"	
KVN42	(141R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = "1010"	
KVN43	(138R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = "1011"	
KVN44	(135R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = "1100"	
KVN45	(132R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = "1101"	
KVN46	(129R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = "1110"	_
KVN47	(126R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = "1111"	

Pins	Formula	Fine-adjusting register value	Reference voltage
KVN48	(96R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1111"	Voltago
KVN49	(93R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1110"	
KVN50	(90R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1101"	
KVN51	(87R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1100"	
KVN52	(84R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1011"	
KVN53	(81R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1010"	
KVN54	(78R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1001"	
KVN55	(75R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1000"	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
KVN56	(72R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0111"	VINN4
KVN57	(69R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0110"	
KVN58	(66R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0101"	
KVN59	(63R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0100"	
KVN60	(60R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0011"	
KVN61	(57R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0010"	
KVN62	(54R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0001"	
KVN63	(51R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0000"	
KVN64	(48R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1111"	
KVN65	(45R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1110"	
KVN66	(42R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1101"	
KVN67	(39R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1100"	
KVN68	(36R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1011"	
KVN69	(33R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1010"	
KVN70	(30R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1001"	
KVN71	(27R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="1000"	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
KVN72	(24R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0111"	VINN5
KVN73	(21R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0110"	
KVN74	(18R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0101"	
KVN75	(15R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0100"	
KVN76	(12R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0011"	
KVN77	(9R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0010"	1
KVN78	(6R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0001"	1
KVN79	(3R/222R)*(VINP12-VINP56)+VINP56	PKP4[3:0]="0000"	
KVN80	VINP56	PKP4[3:0]="1111"	
KVN81	(45R/48R)*(VINP56-VINP7)+VINP7	PKP4[3:0]="1110"	1
KVN82	(42R/48R)*(VINP56-VINP7)+VINP7	PKP4[3:0]="1101"	1
KVN83	(39R/48R)*(VINP56-VINP7)+VINP7	PKP4[3:0]="1100"	1
KVN84	(36R/48R)*(VINP56-VINP7)+VINP7	PKP4[3:0]="1011"	1
KVN85	(33R/48R)*(VINP56-VINP7)+VINP7	PKP4[3:0]="1010"	
KVN86	(30R/48R)*(VINP56-VINP7)+VINP7	PKP4[3:0]="1001"	1
KVN87	(27R/48R)*(VINP56-VINP7)+VINP7	PKP4[3:0]="1000"	VANING
KVN88	(24R/48R)*(VINP56-VINP7)+VINP7	PKP4[3:0]="0111"	VINN6
KVN89	(21R/48R)*(VINP56-VINP7)+VINP7	PKP4[3:0]="0110"	
KVN90	(18R/48R)*(VINP56-VINP7)+VINP7	PKP4[3:0]="0101"	
KVN91	(15R/48R)*(VINP56-VINP7)+VINP7	PKP4[3:0]="0100"	
KVN92	(12R/48R)*(VINP56-VINP7)+VINP7	PKP4[3:0]="0011"	
KVN93	(9R/48R)*(VINP56-VINP7)+VINP7	PKP4[3:0]="0010"	
KVN94	(6R/48R)*(VINP56-VINP7)+VINP7	PKP4[3:0]="0001"	
KVN95	(3R/48R)*(VINP56-VINP7)+VINP7	PKP4[3:0]="0000"	

Formulas for Calculating Gamma Adjusting Voltage (Negative Polarity) 2

Grayscale voltage	Formula	Grayscale voltage	Formula
V0	VINN0	V32	V20-(V20-V43)*(12/23)
V1	VINN1	V33	V20-(V20-V43)*(13/23)
V2	V1-(V1-V8)*(28/96)	V34	V20-(V20-V43)*(14/23)
V3	V1-(V1-V8)*(42/96)	V35	V20-(V20-V43)*(15/23)
V4	V1-(V1-V8)*(60/96)	V36	V20-(V20-V43)*(16/23)
V5	V1-(V1-V8)*(69/96)	V37	V20-(V20-V43)*(17/23)
V6	V1-(V1-V8)*(78/96)	V38	V20-(V20-V43)*(18/23)
V7	V1-(V1-V8)*(87/96)	V39	V20-(V20-V43)*(19/23)
V8	VINN2	V40	V20-(V20-V43)*(20/23)
V9	V8-(V8-V20)*(2/24)	V41	V20-(V20-V43)*(21/23)
V10	V8-(V8-V20)*(4/24)	V42	V20-(V20-V43)*(22/23)
V11	V8-(V8-V20)*(6/24)	V43	VINN4
V12	V8-(V8-V20)*(8/24)	V44	V43-(V43-V55)*(2/24)
V13	V8-(V8-V20)*(10/24)	V45	V43-(V43-V55)*(4/24)
V14	V8-(V8-V20)*(12/24)	V46	V43-(V43-V55)*(6/24)
V15	V8-(V8-V20)*(14/24)	V47	V43-(V43-V55)*(8/24)
V16	V8-(V8-V20)*(16/24)	V48	V43-(V43-V55)*(10/24)
V17	V8-(V8-V20)*(18/24)	V49	V43-(V43-V55)*(12/24)
V18	V8-(V8-V20)*(20/24)	V50	V43-(V43-V55)*(14/24)
V19	V8-(V8-V20)*(22/24)	V51	V43-(V43-V55)*(16/24)
V20	VINN3	V52	V43-(V43-V55)*(18/24)
V21	V20-(V20-V43)*(1/23)	V53	V43-(V43-V55)*(20/24)
V22	V20-(V20-V43)*(2/23)	V54	V43-(V43-V55)*(22/24)
V23	V20-(V20-V43)*(3/23)	V55	VINN5
V24	V20-(V20-V43)*(4/23)	V56	V55-(V55-V62)*(9/96)
V25	V20-(V20-V43)*(5/23)	V57	V55-(V55-V62)*(18/96)
V26	V20-(V20-V43)*(6/23)	V58	V55-(V55-V62)*(27/96)
V27	V20-(V20-V43)*(7/23)	V59	V55-(V55-V62)*(36/96)
V28	V20-(V20-V43)*(8/23)	V60	V55-(V55-V62)*(45/96)
V29	V20-(V20-V43)*(9/23)	V61	V55-(V55-V62)*(54/96)
V30	V20-(V20-V43)*(10/23)	V62	VINN6
V31	V20-(V20-V43)*(11/23)	V63	VINN7

Figure 38 Relationship between GRAM Data and Output Level

13. Application

13.1. Configuration of Power Supply Circuit

Figure39 Power Supply Circuit Block

The following table shows specifications of external elements connected to the ILI9225B's power supply circuit.

Items	Recommended Specification	Pin connection
	6.3V	VREG1OUT, VCI1, VDDD, VCL, VCOMH,
Capacity	6.3V	VCOML, C11A/B, C12A/B
1 μF (B characteristics)	10V	DDVDH, C21A/B, C22A/B
	25V	VGH, VGL

13.2. Voltage Generation

The pattern diagram for setting the voltages and the waveforms of the voltages of the ILI9225B are as follows.

Figure 43 Voltage Configuration Diagram

Note: The DDVDH, VGH, VGL, and VCL output voltage levels are lower than their theoretical levels (ideal voltage levels) due to current consumption at respective outputs. The voltage levels in the following relationships (DDVDH - VREG1OUT) > 0.5V, (VCOML1 - VCL) > 0.5V, (VCOML2 - VCL) > 0.5V are the actual voltage levels. When the alternating cycles of VCOM are set high (e.g. the polarity inverts every line cycle), current consumption is large. In this case, check the voltage before use.

13.3. Power Supply Configuration

When supplying and cutting off power, follow the sequence below. The setting time for step-up circuits and operational amplifiers depends on external resistance and capacitance.

Figure44 Power On/Off Sequence

13.4. STB and DSTB Mode

Figure 45 STB/DSTB Mode Register Setting Sequence

14. Electrical Characteristics

14.1. Absolute Maximum Ratings

The absolute maximum rating is listed on following table. When ILI9225B is used out of the absolute maximum ratings, the ILI9225B may be permanently damaged. To use the ILI9225B within the following electrical characteristics limit is strongly recommended for normal operation. If these electrical characteristic conditions are exceeded during normal operation, the ILI9225B will malfunction and cause poor reliability.

Item	Symbol	Unit	Value	Note
Power supply voltage (1)	IOVCC	V	-0.3 ~ + 4.6	1, 2
Power supply voltage (1)	VCI – GND	V	-0.3 ~ + 4.6	1, 4
Power supply voltage (1)	DDVDH – GND	V	-0.3 ~ + 6.0	1, 4
Power supply voltage (1)	GND -VCL	V	-0.3 ~ + 4.6	1
Power supply voltage (1)	DDVDH – VCL	V	-0.3 ~ + 9.0	1, 5
Power supply voltage (1)	VGH – GND	V	-0.3 ~ + 18.5	1, 5
Power supply voltage (1)	GND – VGL	V	-0.3 ~ + 18.5	1, 6
Input voltage	Vt	V	-0.3 ~ VCI+ 0.3	1
Operating temperature	Topr	°C	-40 ~ + 85	8, 9
Storage temperature	Tstg	°C	-55 ~ + 110	8, 9

Notes:

- 1. VCI,GND must be maintained
- 2. (High) VCI ≥ GND (Low), (High) IOVCC ≥ GND (Low).
- 3. Make sure (High) VCI ≥ GND (Low).
- 4. Make sure (High) DDVDH ≥ ASSD (Low).
- 5. Make sure (High) DDVDH ≥ VCL (Low).
- 6. Make sure (High) VGH ≥ ASSD (Low).
- 7. Make sure (High) ASSD ≥ VGL (Low).
- 8. For die and wafer products, specified up to 85°C.
- 9. This temperature specifications apply to the TCP package

14.2. DC Characteristics

 $(VCI = 2.50 \sim 3.30V, IOVCC = 1.65 \sim 3.30V, Ta = -40 \sim 85 °C)$

Item	Symbol	Unit	Test Condition	Min.	Тур.	Max.	Note
Input high voltage	V _{IH}	V	IOVCC= 1.65 ~ 3.3V	0.7*IOVCC		IOVCC	-
Input low voltage	V_{IL}	V	IOVCC= 1.65 ~ 3.3V	-0.3	-	0.3*IOVCC	-
Output high voltage(1) (DB0-17 Pins)	V _{OH1}	V	IOH = -0.1 mA	0.8*IOVCC	-	-	-
Output low voltage (DB0-17 Pins)	V _{OL1}	V	IOVCC=1.65~3.3V VCI= 2.5 ~ 3.3V IOL = 0.1mA	-	-	0. 2*IOVCC	-
I/O leakage current	I _{LI}	μΑ	Vin = 0 ∼ IOVCC	-0.1	-	0.1	-
Current consumption during standby mode (VCI – GND)	I _{ST}	μΑ	VCI=2.8V , Ta=25 °C	-	5	10	-
LCD Driving Voltage (DDVDH-GND)	DDVDH	V	-	4.5	1	6	-
Output voltage deviation		mV	-	-	5	-	-
Dispersion of the Average Output Voltage	V	mV	-	-10	-	10	-

14.3. Reset Timing Characteristics

Reset Timing Characteristics (IOVCC = 1.65 ~ 3.3 V)

Item	Cymbol	Unit	Min.	Tym	Max
пеш	Symbol	Unit	WIII.	Тур.	Max.
Reset front high-level width	t _{RES_FH}	ms	1	-	-
Reset low-level width	t _{RES_L}	ms	10		
Reset back high-level width	t _{RES BH}	ms	50	-	-
Reset rise time	t _{rRES}	μs			10

14.4. AC Characteristics

14.4.1. i80-System Interface Timing Characteristics

Normal Write Mode (IOVCC = 1.65~3.3V, VCI=2.5~3.3V)

	Item	Symbol	Unit	Min.	Max.	Test Condition
Pue evele time	Write	t _{CYCW}	ns	70	-	-
Bus cycle time	Read	t _{CYCR}	ns	300	-	-
Write low-level pulse width		PW_{LW}	ns	15	500	-
Write high-level p	ulse width	PW_{HW}	ns	15	-	-
Read low-level pulse width		PW_{LR}	ns	150	-	-
Read high-level pulse width		PW_{HR}	ns	150	-	
Write / Read rise / fall time		t _{WRr} /t _{WRf}	ns	-	15	
Satur tima	Write (RS to nCS, E/nWR)		20	10	-	
Setup time	Read (RS to nCS, RW/nRD)	t _{AS}	ns	5	-	
Address hold time	9	t _{AH}	ns	5	-	
Write data set up time		t _{DSW}	ns	10	-	
Write data hold time		t _H	ns	15	-	·
Read data delay time		t _{DDR}	ns	-	100	
Read data hold tir	ne	t _{DHR}	ns	5	-	

Figure46 i80-System Bus Timing

Figure47 M68-System Bus Timing

14.4.2. M68-System Interface Timing Characteristics

Normal Write Mode (IOVCC = 1.65~3.3V, VCI=2.5~3.3V)

	Item			Min.	Max.	Test Condition
Due evele time	Write	tcycew	ns	70	-	-
Bus cycle time	Read	t _{CYCER}	ns	300	-	-
Write low-level pu	lse width	PW_{ELW}	ns	50	500	-
Write high-level p	ulse width	PW _{EHW}	ns	50	-	-
Read low-level pu	Read low-level pulse width		ns	150	-	-
Read high-level pulse width		PW _{EHR}	ns	150	-	
Write / Read rise /	Write / Read rise / fall time		ns	-	15	
Catum time	Write (RS to nCS, E/nWR)		20	10	-	
Setup time	Read (RS to nCS, RW/nRD)	t _{ASE}	ns	10	-	
Address hold time	•	t _{AHE}	ns	5	-	
Write data set up time		t _{DSWE}	ns	10	-	
Write data hold time		t _{HE}	ns	15	-	
Read data delay time		t _{DDRE}	ns	-	100	
Read data hold tir	ne	t _{DHRE}	ns	5	-	

Figure 48 M68-System Interface Timing

14.4.3. Serial Data Transfer Interface Timing Characteristics

(IOVCC= 1.65~3.3V and VCI=2.5~3.3V)

Iten	1	Symbol	Unit	Min.	Max.	Test Condition
Serial clock cycle time	Write (received)	tscyc	ns	80	-	
Serial Clock Cycle tille	Read (transmitted)	tscyc	ns	80	-	
Serial clock high – level	Write (received)	t _{sch}	ns	8	-	
pulse width	Read (transmitted)	t _{sch}	ns	18	ı	
Serial clock low – level	Write (received)	t _{SCL}	ns	8	-	
pulse width	Read (transmitted)	t _{SCL}	ns	18	-	
Serial clock rise / fall time	e	t_{SCr} , t_{SCf}	ns	ı	5	
Chip select set up time		t _{CSU}	ns	10	-	
Chip select hold time		t _{CH}	ns	10	ı	
Serial input data set up ti	Serial input data set up time		ns	5	-	
Serial input data hold time		t _{SIH}	ns	5	-	
Serial output data set up time		t _{SOD}	ns	1	100	
Serial output data hold ti	me	t _{soн}	ns	10	-	-

Figure 49 SPI System Bus Timing

14.4.4. RGB Interface Timing Characteristics

18/16-bit Bus RGB Interface Mode (IOVCC = 1.65 ~ 3.3V, VCI=2.5~3.3V)

Item	Symbol	Unit	Min.	Тур.	Max.	Test Condition
VSYNC/HSYNC setup time	tsyncs	ns	0	-	ı	-
ENABLE setup time	t _{ENS}	ns	10	-	-	-
ENABLE hold time	t _{ENH}	ns	10	-	ı	-
PD Data setup time	t _{PDS}	ns	10	-	ı	-
PD Data hold time	t _{PDH}	ns	40	-	-	-
DOTCLK high-level pulse width	PWDH	ns	40	-	ı	-
DOTCLK low-level pulse width	PWDL	ns	40	-	ı	-
DOTCLK cycle time	t _{CYCD}	ns	100	-	ı	-
DOTCLK, VSYNC, HSYNC, rise/fall time	t _{rghr,} t _{rghf}	ns	-	-	25	-

6-bit Bus RGB Interface Mode (IOVCC = 1.65 ~ 3.3V, VCI=2.5~3.3V)

Item	Symbol	Unit	Min.	Тур.	Max.	Test Condition
VSYNC/HSYNC setup time	t _{SYNCS}	ns	0	-	-	-
ENABLE setup time	t _{ENS}	ns	10	ı	-	-
ENABLE hold time	t _{ENH}	ns	10	-	-	-
PD Data setup time	t _{PDS}	ns	10	ı	-	-
PD Data hold time	t _{PDH}	ns	30	-	-	-
DOTCLK high-level pulse width	PWDH	ns	30	ı	-	-
DOTCLK low-level pulse width	PWDL	ns	30	ı	-	-
DOTCLK cycle time	t _{CYCD}	ns	80	ı	-	-
DOTCLK, VSYNC, HSYNC, rise/fall time	t _{rghr} , t _{rghf}	ns	ı	ı	25	-

Figure 50 RGB Interface Timing

15. Revision History

Version No.	Date	Page	Description
V0.11	2008/04/15		new created.
		120	Add Power Supply Configuration.
V0.2	2008/10/31	122	Add STB and DSTB Mode.
		131	Reset Timing Characteristics.
V0.3	2008/11/24	106	Remove Schottky diode.
		113	
V0.4	2008/11/26	115	Modify write speed in I80 M68 and SPI mode.
V0.5	2008/12/04	109	Modify the flowchart of power on/off sequence.
V0.5	2006/12/04	115	Modify the bus timing of SCL.