Final Report

Exploratory Data Analysis

Before using the dataset, we remove density as it was used to calculate body fat percentage and would thus have a direct correlation.

```
# A tibble: 6 x 15
  Density BodyFat
                    Age Weight Height Neck Chest Abdomen
                                                              Hip Thigh Knee
    <dbl>
            <dbl> <dbl>
                         <dbl> <dbl> <dbl> <dbl> <
                                                     <dbl> <dbl> <dbl> <dbl> <
     1.07
             12.3
                     23
                          154.
                                  67.8 36.2
                                              93.1
                                                      85.2
                                                            94.5
                                                                   59
                                                                         37.3
1
2
     1.09
              6.1
                     22
                          173.
                                  72.2 38.5
                                              93.6
                                                      83
                                                             98.7
                                                                   58.7
                                                                         37.3
3
     1.04
             25.3
                     22
                          154
                                  66.2 34
                                              95.8
                                                      87.9 99.2
                                                                   59.6
                                                                         38.9
4
     1.08
             10.4
                     26
                          185.
                                  72.2
                                        37.4 102.
                                                      86.4 101.
                                                                   60.1
                                                                         37.3
             28.7
                     24
                                        34.4 97.3
                                                            102.
5
     1.03
                          184.
                                  71.2
                                                     100
                                                                   63.2
                                                                         42.2
                                             104.
     1.05
             20.9
                     24
                          210.
                                  74.8 39
                                                      94.4 108.
                                                                   66
                                                                         42
# i 4 more variables: Ankle <dbl>, Biceps <dbl>, Forearm <dbl>, Wrist <dbl>
```

Next, we plot body fat percentage against different variables. We remove a data point with Height < 30 from the visualization to better observe the overall trend.

We see that Weight and Abdomen Circumference have moderate to strong positive relationships with Body Fat Percentage, while Age may have a very weak but slightly positive relationship. Height does not seem to have a relationship with Body Fat Percentage.

Next, we perform backwards selection to identify potential models.

```
Age Weight Height Neck Chest Abdomen
                                                        Hip Thigh Knee Ankle
  (Intercept)
                            FALSE FALSE FALSE
                                                 TRUE FALSE FALSE FALSE
1
         TRUE FALSE
                    FALSE
2
         TRUE FALSE
                            FALSE FALSE FALSE
                                                 TRUE FALSE FALSE FALSE
                      TRUE
         TRUE FALSE
3
                            FALSE FALSE FALSE
                      TRUE
                                                 TRUE FALSE FALSE FALSE
4
         TRUE FALSE
                      TRUE
                            FALSE FALSE FALSE
                                                 TRUE FALSE FALSE FALSE
              TRUE
                            FALSE FALSE FALSE
                                                 TRUE FALSE FALSE FALSE
5
         TRUE
                      TRUE
                      TRUE
                                                             TRUE FALSE FALSE
6
         TRUE
              TRUE
                            FALSE FALSE FALSE
                                                 TRUE FALSE
7
         TRUE
              TRUE
                            FALSE
                                   TRUE FALSE
                                                 TRUE FALSE
                                                             TRUE FALSE FALSE
                      TRUE
                            FALSE
8
         TRUE
              TRUE
                      TRUE
                                   TRUE FALSE
                                                 TRUE
                                                       TRUE
                                                             TRUE FALSE FALSE
 Biceps Forearm Wrist
           FALSE FALSE
  FALSE
           FALSE FALSE
  FALSE
2
3
  FALSE
           FALSE
                  TRUE
                  TRUE
  FALSE
            TRUE
4
  FALSE
           TRUE
                  TRUE
5
  FALSE
6
            TRUE
                  TRUE
  FALSE
            TRUE
                  TRUE
7
  FALSE
            TRUE
                  TRUE
```

To further narrow down our options, we can compute Mallows' C_p statistic for each model, treating the model with 8 covariates as our full model.

From the above plot of C_p vs p, we see that the only models with C_p values close to the p+1 line are those with 7 and 8 covariates. Let us compare them below.

Call:

Residuals:

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-33.25799	9.00681	-3.693	0.000274	***
Abdomen	0.91788	0.06950	13.207	< 2e-16	***
Weight	-0.11944	0.03403	-3.510	0.000533	***
Wrist	-1.53240	0.51041	-3.002	0.002958	**
Forearm	0.55314	0.18479	2.993	0.003043	**
Age	0.06817	0.03079	2.214	0.027769	*
Thigh	0.22196	0.11601	1.913	0.056888	

```
Neck -0.40380 0.22062 -1.830 0.068424 . ---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 4.291 on 244 degrees of freedom Multiple R-squared: 0.7445, Adjusted R-squared: 0.7371 F-statistic: 101.6 on 7 and 244 DF, p-value: < 2.2e-16

Call:

```
lm(formula = BodyFat ~ Abdomen + Weight + Wrist + Forearm + Age +
    Thigh + Neck + Hip, data = bodyfat)
```

Residuals:

```
Min 1Q Median 3Q Max -10.9757 -2.9937 -0.1644 2.9766 10.2244
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-22.65637	11.71385	-1.934	0.05426	
Abdomen	0.94482	0.07193	13.134	< 2e-16	***
Weight	-0.08985	0.03991	-2.252	0.02524	*
Wrist	-1.53665	0.50939	-3.017	0.00283	**
Forearm	0.51572	0.18631	2.768	0.00607	**
Age	0.06578	0.03078	2.137	0.03356	*
Thigh	0.30239	0.12904	2.343	0.01992	*
Neck	-0.46656	0.22462	-2.077	0.03884	*
Hip	-0.19543	0.13847	-1.411	0.15940	

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.282 on 243 degrees of freedom Multiple R-squared: 0.7466, Adjusted R-squared: 0.7382 F-statistic: 89.47 on 8 and 243 DF, p-value: < 2.2e-16

Since the Hip variable added in the model with 8 covariates is not statistically significant, we will choose the model with 7 covariates: Abdomen, Weight, Wrist, Forearm, Age, Thigh, Neck. We check residuals plots to ensure assumptions about our model have not been violated.

Normal Q-Q Plot

We see no obvious non-linear or fan-shaped pattern in the residuals vs. fitted values plot, indicating that linearity and homoscedasticity assumptions have not been violated. The QQ plot shows some signs of the errors being light-tailed, but the deviations should be small enough that our model is a good fit overall.