1. Greedy Algorithm

Question: Minimum Number of Coins

You are given an amount of money and a list of coin denominations. Your task is to find the minimum number of coins needed to make that amount.

Input:

- The first line contains an integer **n** ($1 \le n \le 100$), the number of coin denominations.
- The second line contains n space-separated integers representing the coin denominations (1 ≤ denomination ≤ 1000).
- The third line contains an integer **amount** ($1 \le \text{amount} \le 10000$).

Output:

Print the minimum number of coins needed to make the amount. If it is not possible, print 1.

Example:

Input:

3

134

6

Output:

2

2. Dynamic Programming

Question: Longest Increasing Subsequence

Given an array of integers, find the length of the longest increasing subsequence.

Input:

- The first line contains an integer **n** ($1 \le n \le 1000$), the number of elements in the array.
- The second line contains **n** space-separated integers $(1 \le arr[i] \le 10000)$.

Output:

• Print the length of the longest increasing subsequence.

Example:

Input:

Q

10 22 9 33 21 50 41 60

Given a 2D grid of '1's (land) and '0's (water), count the number of islands. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically.
Input:
 The first line contains two integers m and n (1 ≤ m, n ≤ 100), the number of rows and columns in the grid.
• The next m lines each contain a string of length n consisting of '0's and '1's.
Output:
Print the number of islands.
Example:
Input:
4 5
11000
11000
00100
00011
Output:
3
4. Divide and Conquer
Question: Merge Sort
Implement the merge sort algorithm to sort an array of integers.
Input:
• The first line contains an integer \mathbf{n} (1 \leq n \leq 1000), the number of elements in the array.

• The second line contains **n** space-separated integers.

Output:

Output:

• Print the sorted array.

3. Graph Algorithm

Question: Number of Islands

Example:
Input:
5
38 27 43 3 9
Output:
3 9 27 38 43
5. Backtracking
Question: N-Queens Problem
The N-Queens puzzle is the problem of placing N chess queens on an N×N chessboard so that no two queens threaten each other. Write a program to solve the N-Queens problem.
Input:
• The first line contains an integer n ($1 \le n \le 10$), the number of queens.
Output:
 Print all distinct solutions to the N-Queens puzzle. Each solution should be represented by a list of strings, where each string represents a row of the chessboard.
Example:
Input:
4
Output:
.Q
Q
Q
Q.
Q.
Q
Q
.Q

6. String Manipulation

Question: Anagram Check

Given two strings, determine if they are anagrams of each other. An anagram is a word or phrase formed by rearranging the letters of a different word or phrase.

Input:

- The first line contains the first string **s1** ($1 \le |s1| \le 100$).
- The second line contains the second string **s2** ($1 \le |s2| \le 100$).

Output:

• Print "YES" if the strings are anagrams, otherwise print "NO".

Example:		
Input:		
listen		
silent		
Output:		
YES		

7. Searching Algorithm (continued)

Question: Binary Search

Implement a binary search algorithm to find the index of a target value in a sorted array. If the target is not found, return -1.

Input:

- The first line contains an integer n ($1 \le n \le 1000$), the number of elements in the array.
- The second line contains **n** space-separated integers (sorted in ascending order).
- The third line contains the target integer target.

Output:

• Print the index of the target value if found, otherwise print -1.

Example:	
Input:	
5	
12345	

8. Hashing
Question: Two Sum
Given an array of integers, return the indices of the two numbers such that they add up to a specific target.
Input:
• The first line contains an integer \mathbf{n} (1 \leq n \leq 10^4), the number of elements in the array.
• The second line contains n space-separated integers.
The third line contains the target integer target.
Output:
• Print the indices of the two numbers (0-based index). If no such indices exist, print -1.
Example:
Input:
4
2 7 11 15
9
Output:
01
9. Bit Manipulation
Question: Single Number
Given a non-empty array of integers, every element appears twice except for one. Find that single one.
Input:
• The first line contains an integer n ($1 \le n \le 1000$), the number of elements in the array.
• The second line contains n space-separated integers.
Output:
Print the single number.
Input:
5

Output:

Output:
4
10. Recursion
Question: Factorial Calculation
Write a recursive function to calculate the factorial of a given non-negative integer.
Input:
• The first line contains a single integer \mathbf{n} ($0 \le n \le 20$).
Output:
• Print the factorial of n .
Example:
Input:
5
Output:
120
11. Sliding Window
Question: Maximum Sum Subarray of Size K
Given an array of integers and a number k , find the maximum sum of a subarray of size k .
Input:
• The first line contains two integers \mathbf{n} (1 \leq n \leq 1000) and \mathbf{k} (1 \leq k \leq n).
The second line contains n space-separated integers.
Output:
Print the maximum sum of a subarray of size k.
Example:
Input:
53
21513
Output:

12. Tree Traversal

Question: Binary Tree Inorder Traversal

Given a binary tree, return the inorder traversal of its nodes' values.

Input:

• The input will be given as a series of integers representing the level order traversal of the binary tree, where -1 represents a null node.

Output:

• Print the inorder traversal of the binary tree as space-separated integers.

Example:

Input:

123-1-145-1-1-1

Output:

21435

13. Dynamic Programming (Advanced)

Question: Coin Change Problem

You are given an integer array **coins** representing coins of different denominations and an integer **amount** representing a total amount of money. You want to compute the number of combinations that make up that amount.

Input:

- The first line contains an integer **n** ($1 \le n \le 100$), the number of coin denominations.
- The second line contains n space-separated integers representing the coin denominations (1 ≤ denomination ≤ 5000).
- The third line contains an integer **amount** ($1 \le \text{amount} \le 5000$).

Output:

Print the number of combinations that make up the amount.

Example:

Input:

3

125

Output: