CS6135 VLSI Physical Design Automation

Homework 4: Global Placement

1. 112062525 蔡品棠

2. The wirelength and the runtime of each testcase

Testcase	Wirelength	Runtime (sec)
public1	146143988	33.59
public2	21027870	64.07
public3	1130186371	122.29

3. The details of your algorithm.

- net_place(seed)可透過送入 random seed 來實作 net first place。透過把連到相同 net 的 modules 擺得更近,來讓後續做 gradient 時可以更順利。
- wirelength model 採用 LSE, bin density model 則使用 smooth bell-shaped function, 兩者都是上課所教的方法。

4. What tricks did you use to enhance your solution quality?

- 把 random place 替換成 net first place。
- 以 findBestInitPlace(int try_times)這個 method 來試著找出 net first place 可以做到最佳的 wirelength 後再進入 gradient,但不僅得到的 result 會 忽好忽壞,還有可能沒辦法 legalize,因此最後決定以相對穩定的 random seed = 0 來做 net first place。

- ●經過多次嘗試後,找出對三個 testcases 都能得到合法解且得到的 HPWL 也相對不錯的參數,如 lambda, eta, NumIteration, StepSizeBound, bin_cut_per_row 等等。
- 5. Please compare your results with the previous top 5 students' results and show your advantage in solution quality. Are your results better than theirs?

Wirelength				
Rank	public1	public2	public3	
1	68783367	8778312	456197589	
2	79542407	9155930	478967869	
3	83860394	9783498	463664700	
4	73804994	11105419	413161709	
5	80176617	10921603	539864787	
Me	146143988	21027870	1130186371	

跟之前的 top 5 相比,我的 wirelength 接近於第五名的兩倍。可能是因為我在 WL model 和 bin density model 都只實作課堂上所教的 LSE 和 bell-shape smoothing,若在 WL model 選擇 WA,bin density 也以更好的方法來實作的話,或許就能得到更好的 solution quality。