Measure Theory and Integration

Luc Veldhuis

9 Oktober 2017

General setup

Let (X, A) and (X', A') be a measurable space.

Consider the mapping $T:(X,\mathcal{A})\to (X',\mathcal{A}')$.

If for all $A' \in \mathcal{A}'$, $T^{-1}(A') \in \mathcal{A}$, then we call T, \mathcal{A}/\mathcal{A}' measurable.

Example

 $T:(\mathbb{R},\mathbb{B})\to(\mathbb{R},\mathbb{B})$

Map horizontal to vertical intervals.

Theorem

If $\mathcal{A}' = \sigma(\mathcal{G}')$, then if $T^{-1}(\mathcal{G}') \in \mathcal{A}$ for all $G' \in \mathcal{G}'$, then T is \mathcal{A}/\mathcal{A}' measureable.

Proof

$$\Sigma' = \{ A' \in \mathcal{A}' | T^{-1}(A') \in \mathcal{A} \}.$$

By assumption:

- $G' \in \Sigma'$
- \bullet Σ' is a sigma algebra.

From this it follows that $\sigma(\mathcal{G}') = \mathcal{A}' \subseteq \Sigma'$.

If
$$A' \in \Sigma'$$
, then $T^{-1}(A'^c) = (T^{-1}(A'))^c \in \mathcal{A}$

Example

 $T: \mathbb{R}^n \to \mathbb{R}^n$ with \mathbb{R}^n .

Suppose T is continuous. Use topological definition: $(f^{-1}(O))$ is open for alle O open sets).

 $O \in \mathcal{O}(\text{open sets}).$

 $T^{-1}(O)$ is open and hence in \mathbb{B}^n , so T is measurable.

Example

$$(X_1, \mathcal{A}_1) \to^{\mathcal{T}} (X_2, \mathcal{A}_2) \to^{\mathcal{S}} (X_3, \mathcal{A}_3).$$

T is A_1/A_2 measurable.

S is A_2/A_3 measurable.

$$(S \circ T)^{-1}(A_3 \in A_3) = T^{-1}(S^{-1}(A_3)) \in A_1$$
 because $S^{-1}(A_2) \in A_2$ so $S \circ T$ is A_1 / A_2 measurable

$$S^{-1}(A_3) \in A_2$$
, so $S \circ T$ is A_1/A_3 measurable.

Definition

Let $T: X \to (X', \mathcal{A}')$. $\sigma(T)$ is the smallest σ -algebra \mathcal{A} on X which makes T \mathcal{A}/\mathcal{A}' measurable

Example

$$T(x) = \begin{cases} 1 & x \in \mathcal{A} \\ 0 & x \notin \mathcal{A} \end{cases}$$
$$\sigma(T) = \{\sigma, X, A, A^c\}.$$
Check:
$$T^{-1}([2, \infty]) = \emptyset.$$
$$T^{-1}([-1, 2]) = X.$$
$$T^{-1}(\left[\frac{1}{2}, \frac{3}{2}\right]) = A$$

Example

$$T(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}.$$

We can now integrate this.

Measure

 $T:(X,\mathcal{A})\to (X',\mathcal{A}').$

T is measurable. Let μ be a measure on X.

Let $\mu'(A') = \mu(T^{-1}(A')).$

Claim: μ' is a measure on \mathcal{A}' .

If A'_1, A'_2, \ldots disjoint, show $\mu'(\bigcup_{i=1}^{\infty} A'_i) = \sum_{i=1}^{\infty} \mu'(A'_i)$.

$$\mu'(\bigcup_{i=1}^{\infty} A_i') = \mu(T^{-1}(\bigcup_{i=1}^{\infty} A_i')) = \mu(\bigcup_{i=1}^{\infty} T^{-1}(A_i')) = \sum_{i=1}^{\infty} \mu(T^{-1}(A_i')) = \sum_{i=1}^{\infty} \mu'(A_i').$$

Notation: $\mu' = T\mu = T(\mu) = \mu T^{-1}$.

Example

$$\begin{split} X &= \{(i,j)|1 \leq i,j \leq 6\}.\\ \mu((i,j)) &= \frac{1}{36}\\ \mu(X) &= 1. \text{ This is the probability of throwing 2 dice.}\\ \xi: X &\to \mathbb{R} \text{ with } \xi(i,j) = i+j.\\ \xi\mu(\{2\}) &= \frac{1}{36} = \mu(\xi^{-1}(\{2\})).\\ \xi\mu(\{7\}) &= \frac{1}{6}.\\ \xi\mu \text{ is the distribution of } \xi. \end{split}$$

Example

 λ^n : *n* dimentional Lebesque measure.

$$T: \mathbb{R}^n \to \mathbb{R}^n$$
 linear.

$$\mu = \lambda^n T^{-1}$$
.

$$\mu(x+B) = \lambda^n T^{-1}(x+B) = \lambda^n (T^{-1}(x) + T^{-1}(B)) =$$

$$\lambda^n(T^{-1}(B)) = \mu(B).$$

If T is orthogonal (preserves angles and distances) $T^tT = id$. $u = \kappa \lambda^n$.

$$\lambda^n(B_1(0)) = \lambda^n(T^{-1}(B_1(0))) = \mu(B_1(0)) = \kappa \lambda^n(B_1(0))$$
 with

 $B_1(0)$ the unit ball. So $\kappa=1$.

Definition

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}.$$

Measurable function

$$1_A(x):(X,A)\to(\mathbb{R},\mathbb{B}).$$

$$1_{\mathcal{A}}(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}.$$

The indicator function of A.

Definition

An elementary (simple, step) function is a function that takes only finitely many values.

Example

Suppose the function f takes values y_1, y_2, \ldots, y_M . And let $f^{-1}(\{y_i\}) = A_i$ Then $f(x) = \sum_{i=1}^M y_i 1_{A_i}(x) = \sum_{i=0}^M y_i 1_{A_i}(x)$ with $y_0 = 0$. Every simple function has such a representation.

Example

f,g elementary with $g(x)=\sum_{i=0}^N z_i 1_{B_i}(x)$ and f as previous example. Then $(f+g)(x)=\sum_{i=0}^M \sum_{j=0}^N (y_i+z_j) 1_{A_i\cap B_j}(x)$.

Theorem

 $u: (X, A) \to (\mathbb{R}, \mathbb{B})$ is the pointwise limit of stepfunction $u(x) = \lim_{i \to \infty} f_i(x)$ with $|f_i| \le |u|$.

Idea: with integration take the bars from above and below the function to obtain the integral.

Proof

Take u > 0.

 $j \in \mathbb{N}$. Divide y axis of plot into pieces of size 2^{-j} . We need $j2^{j}$ pieces to obtain value j on the y axis.

$$f_j(x) = \sum_{k=0}^{j2^j} k 2^{-j} 1_{A_k^j}(x)$$
 where $A_k^j = \{k2^{-j} \le u < (k+1)2^{-j}\}.$

Difference between f_k and u is at most 2^{-j} , for $j \to \infty$ this goes to 0, so pointwise convergence.

This was only for positive functions.

For all functions, define: $u^+ = \max(u, 0)$, $u^- = -\min(u, 0)$.

Now if we have $f_j o u^+$ and $h_j o u^-$ we have that

 $f_j - h_j \rightarrow u^+ - u^- = u$. So we can approximate general functions with stepfunctions.

Measurable function

Suppose $u_1, u_2, ...$ measurable and suppose $u_i(x) \to u(x) \ \forall x$, then u is also measurable.

$$\liminf_{j\to\infty} u_j(x) = \lim_{k\to\infty} (\inf_{j>k} u_j(x)).$$

$$\limsup_{j\to\infty} u_j(x) = \lim_{k\to\infty} (\sup_{j>k} u_j(x)).$$

So we need to show that $\lim_{j\to\infty}\inf u_j(x)$ and $\lim_{j\to\infty}\sup u_j(x)$ are measurable.

$$\lim_{k\to\infty} (\inf_{j>k} u_j(x)) = \sup_{k\in\mathbb{N}} (\inf_{j>k} u_j(x)).$$

$$\lim_{k\to\infty}(\sup_{j>k}u_j(x))=\inf_{k\in\mathbb{N}}(\sup_{j>k}u_j(x)).$$

Claim: $\{\sup_{j\in\mathbb{N}} u_j > a\} = \bigcup_{j\in\mathbb{N}} \{u_j > a\}$ but this is a countable union of measurable functions, so this must be measurable.

Same holds for other limit.

So liminf and lim sup are measurable, hence lim is also measurable

