Lógica Digital (1001351)

Análise de Circuitos Sequenciais

Prof. Edilson Kato kato@ufscar.br

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Maurício Figueiredo mauricio@ufscar.br

Prof. Roberto Inoue rsinoue@ufscar.br

Departamento de Computação
Universidade Federal de São Carlos

Atualizado em: 7 de junho de 2019

Introdução

Além de saber como projetar um circuito sequencial, temos que saber como analisar o comportamento de um circuito existente, o que é muito mais simples.

Para analisar um circuito, bastar seguir na ordem inversa os mesmos passos usados na síntese. As saídas dos flip-flops representam o estado atual e suas entradas o próximo estado. A partir destas informações podemos reconstruir as tabelas de estados e posteriormente a máquina.

Um circuito com 2 flip-flops

Figure 6.75 Circuit for Example 6.9.

Um circuito com 2 flip-flops

Figure 6.75 Circuit for Example 6.9.

Tabelas de estados

Present	Next state		
state	w = 0	w = 1	Output
$y_2 y_1$	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	0 1	0
0.1	0.0	10	0
10	0.0	1 1	0
1 1	0 0	1 1	1

(a) State-assigned table

Present	Next state		Output
state	w = 0	w = 1	z
A	A	В	0
В	A	C	0
C	A	D	0
D	A	D	1

(b) State table

Tabelas de estados

Present	Next state		
state	w = 0	w = 1	Output
$y_2 y_1$	Y_2Y_1	Y_2Y_1	z
0 0	0 0	0 1	0
0 1	0.0	10	0
10	0.0	1 1	0
11	0 0	1 1	1

(a) State-assigned table

Present	Next	Output	
state	w = 0	w = 1	z
A	A	В	0
В	A	C	0
C	A	D	0
D	A	D	1

(b) State table

Definição formal

$$M=(W,Z,S,arphi,\lambda)$$
 onde

- W, Z, e S são conjuntos finitos não vazios de entradas, saídas e estados respectivamente;
- φ é a função de transição de estado, tal que $S(t+1) = \varphi[W(t),S(t)]$
- λ é a função de saída, tal que:
 - $\lambda(t) = \lambda[S(t)]$ para o modelo de Moore; e
 - $\lambda(t) = \lambda[W(t), S(t)]$ para o modelo de Mealy.

Bibliografia

▶ Brown, S. & Vranesic, Z. - Fundamentals of Digital Logic with Verilog Design, 3rd Ed., Mc Graw Hill, 2009

Lógica Digital (1001351)

Análise de Circuitos Sequenciais

Prof. Edilson Kato kato@ufscar.br

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Maurício Figueiredo mauricio@ufscar.br

Prof. Roberto Inoue rsinoue@ufscar.br

Departamento de Computação Universidade Federal de São Carlos

Atualizado em: 7 de junho de 2019

