Листок 4

Задача 1. Пусть g — гладкая ограниченная функция на $\mathbb R$ с ограниченными производными. Докажите, что для достаточно малого T на [0,T] существует классическое гладкое решение задачи Коши

$$-u_t(x,t) + \frac{1}{2}|u_x(x,t)|^2 = 0, \quad u(x,T) = g(x).$$

Задача 2. Пусть $g: \mathbb{R} \times \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}$ является гладкой по x, сама функция и ее производные по x ограничены и липшицевы по μ относительно метрики W_2 . Докажите, что при достаточно малом T>0 существует единственное решение системы

$$\begin{cases} -\partial_t u(x,t) + \frac{1}{2} |u_x(x,t)|^2 = 0, \\ \partial_t \mu_t - \partial_x (u_x(x,t)\mu_t) = 0 \end{cases}$$

с начальными условиями $u(x,T) = g(x,\mu_T)$ и $\mu_0 = \nu$.

Задача 3. Пусть \mathbb{T} — единичная окружность (одномерный тор). Рассмотрим функционалы

$$A(\varphi) = \frac{1}{2} \int_0^T \int_{\mathbb{T}} \left(-\varphi_t(x,t) + \frac{1}{2} |\varphi_x(x,t)|^2 \right)^2 dx dt - \int_{\mathbb{T}} \varphi(x,0) \varrho_0(x) dx$$

И

$$B(\varrho, w) = \frac{1}{2} \int_0^T \int_{\mathbb{T}} \varrho(x, t) \left| \frac{w(x, t)}{\varrho(x, t)} \right|^2 + \varrho(x, t)^2 dx dt + \int_{\mathbb{T}} g(x) \varrho(x, T) dx.$$

Через K_0 обозначим множество функций $\varphi \in C^1([0,T] \times \mathbb{T})$, удовлетворяющих условий $\varphi(x,T) = g(x)$. Через K_1 обозначим множество таких пар (ϱ,w) , что $\varrho,w \in L^1([0,T] \times \mathbb{T})$

$$\varrho > 0, \quad \int_{\mathbb{T}} \varrho(x,t) \, dx = 1, \quad \partial_t \varrho + \partial_x w = 0.$$

Пусть (u, ρ) решение системы

$$\begin{cases} -\partial_t u(x,t) + \frac{1}{2} |u_x(x,t)|^2 = \varrho(x,t), \\ \partial_t \varrho(x,t) - \partial_x (u_x(x,t)\varrho(x,t)) = 0 \end{cases}$$

с начальными условиями $u(x,T)=g(x),\ \varrho(x,0)=\varrho_0(x).$ Докажите, что на паре $(\varrho,-\varrho u_x)$ достигается $\inf_{K_1}B(\varrho,w)$, а на функции u достигается $\inf_{K_0}A(\varphi)$.

Задача 4. В условиях предыдущей задачи с помощью теоремы Рокафеллара докажите, что

$$\inf_{K_0} A(\varphi) = \inf_{(\varrho, w)} B(\varrho, w).$$

Задача 5. Пусть $x \in \mathbb{R}$ и $t \in [0,T]$. Пусть f(x,t) и g(x) — непрерывные ограниченные функции, имеющие две непрерывные и ограниченные производные по x. Рассмотрим задачу оптимального управления с функционалом

$$J(\alpha, x, t) = \int_{t}^{T} \frac{\alpha(s)^{2}}{2} + f(y_{x}(s), s) ds + g(y_{x}(T)), \quad y_{x}(s) = x + \int_{t}^{s} \alpha(\tau) d\tau.$$

Положим $u(x,t)=\inf_{\alpha}J(\alpha,x,t)$ и через A(x,t) обозначим множество оптимальных α , принадлежащих $L^2[t,T]$.

- (i) Докажите, что A(x,t) непусто и замкнуто относительно слабой сходимости в $L^2[t,T]$. Более того, докажите, что существует такое число C>0, что $\|\alpha\|_{L^\infty}\leq C$ для всех α из A(x,t) и всех x,t.
- (ii) Докажите, что если $y_x(s)$ оптимальное решение, то для всех s множество $A(y_x(s),s)$ состоит ровно из одного элемента.
- (iii) Докажите, что A(x,t) состоит ровно из одного элемента тогда и только тогда, когда функция $z \to u(z,t)$ дифференцируема в точке x.

Задача 6. Пусть в условиях предыдущей задачи $(x,t) \to \alpha(x,t) \in A(x,t)$ — борелевское отображение и

$$\Phi(x,t,s) = x + \int_t^s \alpha(x,\tau) d\tau.$$

- (i) Докажите, что $\Phi(x,t,r) = \Phi(\Phi(x,t,s),s,r)$ и $\partial_s \Phi = -u_x(\Phi,s)$. (ii) Проверьте, что для всякой вероятностной плотности $\varrho_0 \in C_0^\infty(\mathbb{R})$ семейство мер $\mu_t = \mu_0 \circ \Phi(\,\cdot\,,0,t)^{-1}$, где $\mu_0 = \varrho_0\,dx$, удовлетворяет уравнению непрерывности

$$\partial_t \mu_t - \partial_x (u_x(x,t)\mu_t) = 0.$$

Используя принцип суперпозиции проверьте, что это единственное вероятностное решение с таким начальным условием.

Задача 7. Используя теорему Шаудера, задачи 5 и 6 и свойства вязкостных решений, докажите существование решения системы

$$\begin{cases} -\partial_t u(x,t) + \frac{1}{2} |u_x(x,t)|^2 = f(x,\mu_t), \\ \partial_t \mu_t - \partial_x (u_x(x,t)\mu_t) = 0 \end{cases}$$

с начальными условиями u(x,T) = g(x) и $\mu_0 = \varrho_0 dx$.