CS 230 : Discrete Computational Structures Section B

Spring Semester, 2021

CLASS ASSIGNMENT #4
THURSDAY, APRIL 1

N	AME (LAST, FIRST):
Ο	pen notes, open book.
1.	[8 Pts] Prove that $4+8+\cdots+4n=2n(n+1)$, for all $n\in\mathcal{Z}^+$ by induction. Let $P(n)$ be the proposition that we are proving.
	(a) State $P(1)$ and prove it.
	(b) State $P(k)$. This is what we can assume.
	(c) State $P(k+1)$.
	(d) Now prove $P(k+1)$.
	(a) Now prove $I(n+1)$.

2. [4 Pts] Give a recursive definition of the sequence $\{a_n\}$ where $a_n = 5n + 3$ for $n = 0, 1, 2, \ldots$

3. [4 Pts] Give a recursive definition of the set of positive integer powers of 5.