Homework 1 of Introduction to Analysis (I), Honor Class

AM15 黃琦翔 111652028

2023/9/19

- 1. For any Cauchy sequence $\{x_n\}_{n=1}^{\infty}$, for all $\varepsilon > 0$, $\exists N \in \mathbb{N}$ s.t. for all n, m > N, $|x_n x_m| \le \varepsilon$ Then, since for any convergence sequence, it is Cauchy sequence
- 2. (a) If we can find infinite many points labeled by n_1, n_2, \dots s.t. $\{x_{n_k}\}_{k=1}^{\infty}$ is decreasing, thus $\{x_n\}_{n=1}^{\infty}$ have a decreasing subsequence.
 - If not, then we only can find finite points s.t. $\{x_{n_k}\}_{k=1}^l$ is decreasing. Thus, we name the last element of the decreasing sequence as N. Thus, we can say that $n_1' = N+1$, since n_1' is not in decreasing sequence, implies that $\exists n_2' > n_1' \Rightarrow x_{n_2'} \geq x_{n_1'}$. And doing the same way, we can find $n_1' < n_2' < n_3' < \cdots$ s.t. $\{x_{n_i'}\}_{i=1}^{\infty}$ is a increasing subsequence.
 - Then, every sequence in $\mathbb R$ either has an increasing subsequence or a decreasing subsequence
 - (b) Since every sequence have either increasing or decreasing subsequence and $\{x_n\}$ is bounded, then by monotone convergence theorem, the subsequence converges.