임베디드 기반 SW 개발 프로젝트 AURIX TC275 보드 PWM 사용

- Pulse Width Modulation 기반 모터 구동 -

현대자동차 입문교육 박대진 교수

DC 모터의 출력은 입력되는 전압 값에 따라 결 정된다.

모터쉴드는 디지털신호와 PWD 신호를 입력받 아 모터를 제어하는 아날로그 신호를 생성한 다.

Function	Motor shield	Shield buddy
Direction	D12	P10.1
PWM	D3	P2.1
Brake	D9	P2.7

Direction pin의 입력은 모터의 동작방향 Brake pin의 입력은 모터의 동작 여부 PWM pin의 입력은 모터의 동작 RPM을 결정

모터쉴드를 shield buddy에 장착하고, 모터 출 력단에 모터의 +,- 케이블을 연결한다. Shield buddy의 직류연결 단자나 모터쉴드의 Vin단자에 직류전원을 인가한다.

Function	Motor shield	Shield buddy
Direction	D12	P10.1
PWM	D3	P2.1
Brake	D9	P2.7


```
void initMotor(void)
    P10 IOCRO.U &= ~(0x1F << PC1_BIT_LSB_IDX);
    P02 IOCRO.U &= ~(0x1F << PC1 BIT LSB IDX);
    P02 IOCR4.U &= ~(0x1F << PC7 BIT LSB IDX);
    P10 IOCRO.U |= 0x10 << PC1 BIT LSB IDX;
    P02 IOCRO.U |= 0x11 << PC1 BIT LSB IDX;
    P02 IOCR4.U |= 0x10 << PC7 BIT LSB IDX;
```

Table 13-16 Port 10 Functions (cont'd)

Port	1/0	Pin Functionality	Associated	Port I/O Control Select.	
Pin			Reg./ I/O Line	Reg./Bit Field	Value
P10.1	1	General-purpose input	P10_IN.P1	P10_IOCR0. PC1	0XXXX _B
		GTM input	TIN103		
		QSPI1 input	MRST1A	1	
		GPT120 input	T5EUDB	1	
0	0	General-purpose output	P10_OUT.P1		1X000 _B
		GTM output	TOUT103		1X001 _B
	'	QSPI1 output	MTSR1		1X010 _B
		QSPI1 output	MRST1		1X011 _B
		MSC0	EN01	1	1X100 _B
		VADC output	VADCG6BFL1		1X101 _B
		MSC0 output	END03	1	1X110 _B
		Reserved	-	1	1X111 _B

P10.1, P2.7 pin은 digital output을 위해 0x10을 setting

P2.1 pin은 PWM output을 위해 0x11을 setting

Function	Motor shield	Shield buddy
Direction	D12	P10.1
PWM	D3	P2.1
Brake	D9	P2.7


```
GTM CMU FXCLK CTRL.U &= ~(0xF << FXCLK SEL BIT LSB IDX);
GTM CMU CLK EN.U |= 0x2 << EN FXCLK BIT LSB IDX;
GTM TOMO TGC1 GLB CTRL.B.UPEN CTRL1 |= 0x2;
GTM TOMO TGC1 ENDIS CTRL.B.ENDIS CTRL1 |= 0x2;
GTM TOMO TGC1 OUTEN CTRL.B.OUTEN CTRL1 |= 0x2;
GTM TOMO CH9 CTRL.B.SL |= 0x1;
GTM TOMO CH9 CTRL.B.CLK SRC SR |= 0x1;
GTM TOM0 CH9 SR0.U = 12500 - 1;
//GTM TOM0 CH9 SR1.U = 1250 - 1;
GTM TOUTSELO.U &= ~(0x3 << SEL1 BIT LSB IDX);
TOUTSELO → TOUT00 ~~ TOUT15
TOUTSEL1 → TOUT16 ~~ TOUT31
TOUTSEL2 → TOUT32 ~~ TOUT47
TOUTSEL3 → TOUT48 ~~ TOUT63
TOUTSEL4 → TOUT64 ~~ TOUT79
TOUTSEL5 → TOUT80 ~~ TOUT95
TOUTSEL6 → TOUT96 ~~ TOUT103
                                              ATOM ATOM
P00.12 TIN21
            TOUT21
                   TIM0 3 TIM1 3 TOM0 3
                                       TOM1 3
                                               2 3
                                                     3 3
                   TIM0_0 TIM1_0 TOM0_8
P02.0
      TIN0
            TOUT0
                                       TOM1 8
                                               ATOM ATOM
                                               0 0
                                                     1 0
           TOUT1
                   IM0 1 TIM1 1 TOM0 9
P02.1
      TIN1
                                        TOM1 9
                                               ATOM ATOM
                                               0_1
```


GTM 활성화 및 클락 설정을 동일하게 진행하 고 P2.1 핀의 TOM출력에 맞게 레지스터 선정 및 비트 위치 설정

P2.1핀은 TOM 9 채널의 TOUT01과 연결되어 있고 이는 TOUTSELO 레지스터에 위치하고 있 다.

TOUT01은 2번째 핀이다.


```
GTM CMU FXCLK CTRL.U &= ~(0xF << FXCLK SEL BIT_LSB_IDX);
  GTM CMU CLK EN.U |= 0x2 << EN FXCLK BIT LSB IDX;
  GTM TOMO TGC1 GLB CTRL.B.UPEN CTRL1 |= 0x2;
  GTM TOMO TGC1 ENDIS CTRL.B.ENDIS CTRL1 |= 0x2;
  GTM TOMO TGC1 OUTEN CTRL.B.OUTEN CTRL1 |= 0x2;
  GTM TOMO CH9 CTRL.B.SL |= 0x1;
  GTM TOMO CH9 CTRL.B.CLK SRC SR |= 0x1;
  GTM TOM0 CH9 SR0.U = 12500 - 1;
  //GTM TOM0 CH9 SR1.U = 1250 - 1;
  GTM TOUTSELO.U &= ~(0x3 << SEL1 BIT LSB IDX);
GTM TOMI TGC0 GLB CTRL (i=0-2)
TOMi TGC0 Global Control Register(08030H+i*800H)
                                      Reset Value: 000000000
 31 30 29 28 27 26 25 24 23 22 21 20
UPEN_CT UPEN_CT UPEN_CT UPEN_CT UPEN_CT UPEN_CT
                                               UPEN_CT
                                                RL0
 15 14 13 12 11 10 9 8
RST RST RST RST RST RST RST
                                                  HOS
 _CH|_CH|_CH|_CH|_CH|_CH|_CH
                                                  T_T
                                                  RIG
    6 5 4 3 2 1
GTM_TOMi_TGC0_ENDIS_CTRL (i=0-2)
TOMi TGC0 Enable/Disable Control Register
                     (08070<sub>H</sub>+i*800<sub>H</sub>)
                                     Reset Value: 000000000
                     25 24 23 22 21
ENDIS_CT ENDIS_CT ENDIS_CT ENDIS_CT ENDIS_CT ENDIS_CT
                                               ENDIS_CT
                      RL4
                            RL3
                                   RL2
                                                RL0
```

25.11.2 TOM Global Channel Control (TGC0, TGC1)

25.11.2.1 Overview

There exist two global channel control units (TGC0 and TGC1) to drive a number of individual TOM channels synchronously by external or internal events

Each TGC[y] can drive up to eight TOM channels where TGC0 controls TOM channels 0 to 7 and TGC1 controls TOM channels 8 to 15.

The TOM submodule supports four different kinds of signalling mechanisms:

TOM 9 채널은 TGC1에서 drive한다 GTM_TOMO_TGC1에서 채널 9는 2번째 채널 이므로 CTRL1의 UPEN, ENDIS, OUTEN을 설정 하다.


```
GTM CMU FXCLK CTRL.U &= ~(0xF << FXCLK SEL_BIT_LSB_IDX);
 GTM CMU CLK EN.U |= 0x2 << EN FXCLK BIT LSB IDX;
 GTM_TOM0_TGC1_GLB_CTRL.B.UPEN CTRL1 |= 0x2;
 GTM TOMO TGC1 ENDIS CTRL.B.ENDIS CTRL1 |= 0x2;
 GTM TOMO TGC1 OUTEN CTRL.B.OUTEN CTRL1 |= 0x2;
GTM TOM0 CH9 CTRL.B.SL |= 0x1;
GTM TOMO CH9 CTRL.B.CLK SRC SR |= 0x1;
GTM TOM0 CH9 SR0.U = 12500 - 1;
 //GTM TOM0 CH9 SR1.U = 1250 - 1;
GTM TOUTSELO.U &= ~(0x3 << SEL1 BIT LSB IDX);
GTM_TOM0_CHx_CTRL (x=0-14)
TOM0 Channel x Control Register'
                       (08000_{H}+x*0040_{H})
                                         Reset Value: 00000800
               27 26 25 24 23 22 21
                                        20
                                        RST
                  OSM Rese TRIG
            SPE Rese
 Reserved GCM
                                        _cc
                                               Reserved
                      rved OUT
                                        UO
     14
        13
     CLK_SRC_SR
Field
                     Description
         Bits
                Type
SL
         11
                     Signal level for duty cycle
                        Low signal level
                     If the output is disabled, the output TOM_OUT[x] is set
```


TOM 9 채널 CTRL의 SL, CLK SRC SR에서 신 호값의 종류, clock cycle을 설정한다. Shadow register에 CMO 값을 설정한다.

to inverse value of SL


```
//initERU();
initMotor();
initGTM();
initVADC();
//initButton();
GTM TOM0_TGC1_GLB_CTRL.U |= 0x1 << HOST_TRIG_BIT_LSB_IDX;</pre>
unsigned short duty = 0;
while(1)
   VADC startConversion();
    unsigned int adcResult = VADC readResult();
    duty = 12500 * adcResult / 4096;
    P10 OUT.U |= 0x1 << P1 BIT LSB IDX;
    P02 OUT.U |= 0x1 << P1 BIT LSB IDX;
    P02 OUT.U &= ~(0x1 << P7_BIT_LSB_IDX);
    GTM TOM0 CH9 SR1.U = duty;
return (1);
```

Init 함수 설정 및 TOM의 trigger event를 발생 시킨다.

가변저항의 아날로그 출력을 받아 ADC로 변 환 후 생성한 duty값을 모터쉴드로 전송한다.

결과, 가변저항의 저항 값에 따라 DC 모터의 RPM이 변경된다.

감사합니다. 휴식~~

