Estudo de Python e dados

Sergio Pedro Rodrigues Oliveira 30 July 2025

SUMÁRIO

1	1 Objetivo			
2	Bás	ico sob	re o DataFrame do Pandas	1
	2.1	Introd	ução	1
	2.2	Carre	gando seu primeiro conjunto de dados	2
	2.3	Obser	vando colunas, linhas e células	7
		2.3.1	Obtendo subconjuntos de colunas	
			Obtendo subconjuntos de colunas pelo nome	7
			Obter subconjuntos de colunas pela posição dos índices não funciona	
			mais no Pandas v0.20	7
		2.3.2	Obtendo subconjuntos de linhas	8
		2.3.3	Combinando tudo	
	2.4	Cálcul	los agrupados e agregados	9
	2.5		gem básica	
3	Estr	utura c	le dados do Pandas	10
4	Intr	odução	à plotagem	10

LISTA DE FIGURAS

LISTA DE TABELAS

1	Informações do método info() do Pandas	5
2	Tipos do Pandas versus tipos de Python	6

1 Objetivo

O objetivo deste estudo é explorar e documentar as funcionalidades essenciais das principais bibliotecas científicas do Python, como NumPy, Pandas e outras, através de exemplos práticos e casos de uso selecionados. Pretende-se consolidar o conhecimento sobre a manipulação, análise e visualização de dados, servindo como um guia de referência pessoal para futuros projetos de programação científica.

2 Básico sobre o DataFrame do Pandas

2.1 Introdução

O Pandas é uma biblioteca Python de código aberto para análise de dados. Ele dá a Python a capacidade de trabalhar com dados do tipo planilha, permitindo carregar, manipular, alinhar e combinar dados rapidamente, entre outras funções.

Para proporcionar esses recursos mais sofisticados ao Python, o Pandas introduz dois novos tipos de dados: Series e DataFrame.

• DataFrame

Representa os dados de planilhas ou retangulares completos.

• Series

Corresponde a única coluna do DataFrame.

• Também podemos pensar em um DataFrame do Pandas como um dicionário ou uma coleção de objetos Series.

Por que você deveria usar uma linguagem de programação como Python e uma ferramenta como o Pandas para trabalhar com dados? Tudo se reduz à automação e à reprodutibilidade.

Objetivos do capítulo:

- 1. Carga de um arquivo de dados simples e delimitado.
- 2. Como contar quantas linhas e colunas foram carregadas.
- 3. Como delimitar quais tipos de dados foram carregados.
- 4. Observação de diferentes porções de dados criando subconjuntos de linhas e colunas.

2.2 Carregando seu primeiro conjunto de dados

Dado um conjunto de dados inicialmente o carregamos e começamos a observar sua estrutura e contéudo.

O modo mais simples de observar um conjunto de dados é analisar e criar subconjuntos de linhas e colunas específicas. Podemos ver quais tipos de informação estão armazenadas em cada coluna, e começar a procurar padrões por meio de estatísticas descritivas agregadas.

Como o **Pandas** não faz parte da biblioteca-padrão de Python, devemos dizer antes ao Python que carregue a biblioteca (import):

```
import pandas as pd
```

Quando trabalhamos com funções **Pandas**, usar o alias pd para pandas é uma prática comum.

Com a biblioteca carregada, podemos usar a função read_csv para carregar um arquivo de dados CSV. Para acessar a função read_csv do Pandas, usamos a notação de ponto.

```
# Por padrão, a função read_csv lerá um arquivo separado por vírgula;
# Nosso dados Gapminder estão separados por tabulações;
# Podemos usar o parâmetro sep a representar uma tabulação com \t
import pandas as pd # Importa a biblioteca pandas como 'pd'.

# --- Carregamento e Inspeção Inicial ---
df = pd.read_csv('./Data/Cap_01/gapminder.tsv', sep='\t')
# Carrega o arquivo TSV em um DataFrame, usando tabulação como separador.

# Usamos o método head para que Python nos mostre as 5 primeiras linhas
print(df.head())
```

	country	continent	year	lifeExp	pop	gdpPercap
0	Afghanistan	Asia	1952	28.801	8425333	779.445314
1	Afghanistan	Asia	1957	30.332	9240934	820.853030
2	Afghanistan	Asia	1962	31.997	10267083	853.100710
3	Afghanistan	Asia	1967	34.020	11537966	836.197138
4	Afghanistan	Asia	1972	36.088	13079460	739.981106

• Função type():

Podemos verificar se estamos trabalhando com um DataFrame do Pandas usando a função embutida type (isto é, se ele vem diretamente de Python, e não de algum pacote, como o Pandas).

A função type () é conveniente quando começamos a trabalhar com vários tipos diferentes de objetos Python e precisamos saber em qual objeto estamos trabalhando no momento.

```
print(type(df))
```

<class 'pandas.core.frame.DataFrame'>

• Atributo shape:

No momento, o conjunto de dados que carregamos esta salvo como um objeto DataFrame do Pandas, e é relativamente pequeno.

Todo objeto DataFrame tem um atributo shape que nos dará o número de linhas e de colunas desse objeto.

O atributo **shape** devolve uma tupla¹ na qual o primeiro valor é o número de linhas e o segundo é a quantidade de colunas.

Com base nesse resultado anteior, podemos ver que nosso conjunto de dados Gapminder tem 1704 linhas e 6 colunas.

Como shape é um atributo de DataFrame, e não uma função ou um método, não há parênteses após o ponto. Se você cometer o erro de colocar parênteses depois do atributo shape, um erro será devolvido.

```
# Obtém o número de linhas e colunas
print(df.shape)
```

(1704, 6)

¹Uma tupla é semelhante a uma list, pois ambas podem armazenar informações heterogêneas. A principal diferença é que o conteúdo de uma tupla é "imutável", o que significa que ela não pode ser alterada. As tuplas também são criadas com parênteses, ().

• Atributo columns:

Em geral, quando observamos um conjunto de dados pela primeira vez, queremos saber quantas linhas e colunas há (acabamos de fazer isso).

Para ter uma noção de quais informações ele contém, devemos observar as colunas.

Os nomes das colunas, assim como shape, são especificados usando o atributo columns do objeto dataframe.

```
# Obtém os nomes das colunas
print(df.columns)
```

```
Index(['country', 'continent', 'year', 'lifeExp', 'pop', 'gdpPercap'], dtype='object')
```

• Atributo dtypes:

O objeto DataFrame do Pandas é semelhante a objetos do tipo DataFrame que se encontra em outras linguagens (por exemplo, Julia e R).

Toda coluna (Series) deve ser do mesmo tipo, enquanto cada linha pode conter tipos variados.

Em nosso exemplo atual, podemos esperar que a coluna country só contenha strings e que year contenha inteiros. No entanto, é melhor garantir que isso seja verdade usando o atributo dtypes ou o método info().

O atributo dtypes de um DataFrame Pandas retorna uma Series que descreve o tipo de dado de cada coluna do DataFrame. Ele é útil para inspecionar os tipos de dados inferidos ou atribuídos às suas colunas, o que é crucial para operações corretas e eficientes.

```
# Obtém o dtype de cada coluna
print(df.dtypes)
```

country object
continent object
year int64
lifeExp float64
pop int64
gdpPercap float64

dtype: object

• Método info():

O método info() de um DataFrame Pandas é uma ferramenta essencial para obter um resumo conciso e detalhado do seu DataFrame. Ele imprime um resumo conciso do DataFrame, incluindo:

Table 1: Informações do método info() do Pandas

Informação	Discrição
Tipo de índice	Informações sobre o índice
	(por exemplo, RangeIndex).
Número de entradas (linhas)	Quantas linhas seu DataFrame possui.
Número de colunas	Quantas colunas seu DataFrame tem.
Contagem de valores não nulos por coluna	Para cada coluna, informa quantos valores
	não são nulos.
	Isso é crucial para identificar dados faltantes.
Dtype (tipo de dado) de cada coluna	Semelhante ao atributo dtype,
	mas apresentado de forma mais organizada.
Uso de memória	A quantidade de memória que o DataFrame
	está utilizando.

Obtém mais informações sobre nossos dados
print(df.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1704 entries, 0 to 1703
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	country	1704 non-null	object
1	continent	1704 non-null	object
2	year	1704 non-null	int64
3	lifeExp	1704 non-null	float64
4	pop	1704 non-null	int64
5	gdpPercap	1704 non-null	float64
dtypes: float64(2), int64(2), object(2)			

memory usage: 80.0+ KB

None

Table 2: Tipos do Pandas versus tipos de Python

Tipo do Pandas	Tipo de Python	Discrição
object int64 float64 datetime64	string int float datetime	Cadeia de caracteres, usado para representar texto. Números inteiros. Números com decimais. datetime trata-se de uma biblioteca-padrão de Python (ou seja, não é carregado por padrão e deve ser importado). Representa pontos específicos no tempo.

- 2.3 Observando colunas, linhas e células
- 2.3.1 Obtendo subconjuntos de colunas

Obtendo subconjuntos de colunas pelo nome

Obter subconjuntos de colunas pela posição dos índices não funciona mais no Pandas $v0.20\,$

- 2.3.2 Obtendo subconjuntos de linhas
- 2.3.3 Combinando tudo

- 2.4 Cálculos agrupados e agregados
- 2.5 Plotagem básica

- 3 Estrutura de dados do Pandas
- 4 Introdução à plotagem