2/M-24 (vii) (Syllabus-2005)

2009

PHYSICS

(Honours)

SEVENTH PAPER (Phys-223)

(Electromagnetic Theory, Relativity and Classical Mechanics)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer any five questions

- (a) If the components of a tensor of any rank is zero in one coordinate system, then prove that the components are zero in all coordinate systems.
 - (b) Show that a tensor of second rank can be written as a sum of a symmetric and an antisymmetric tensor of the same rank.
 - (c) Show that Kronecker delta function is a tensor of rank two.

9/4-600/885

(Turn Over)

3

2. (a) Establish the Poisson equation relating the charge density to the second derivative of the potential.	
 (b) Using Maxwell equations, show that magnetic and electric fields can be expressed in terms of scalar and vector potentials. 	
3. Obtain the wave equation from Maxwell equations. Derive the plane wave solution from the wave equation. Establish the orthogonality of \overrightarrow{E} and \overrightarrow{B} with respect to the propagation vector. $3+6+3=12$	
4. (a) Prove that the electromagnetic wave propagating in conductors shows attenuation, and find the skin depth. 5+3=8	
(b) Explain what is meant by retarded potential.	
5. (a) Show that for small velocities the Lorentz transformation equations reduce to the Galilean transformation equations.	
(b) Derive the relativistic formula for the addition of velocities. Show that it the velocity of light	
(c) An electron of rest mass 9.1×10^{-31} kg is its total energy?	

- 6. (a) What are generalised coordinates? What is the advantage of using them? Derive Hamilton's canonical equations of motion in generalised coordinates.

 2+1+5=8
 - (b) Obtain Lagrange's equation of motion for a simple pendulum placed in a uniform gravitational field.

4

- 7. (a) Define differential scattering crosssection. Derive an expression of
 scattering cross-section when a uniform
 beam of particles, all of the same mass
 and kinetic energy, incident upon the
 centre of force. 2+4=6
- a circular orbit about the earth at a constant speed v and at an altitude h, above the earth's surface. Determine the period of revolution of the satellite around the earth. How to put a geostationary satellite into orbit? 3+3=6
 - 8. Write short notes on any two of the following: $6 \times 2 = 12$
 - (a) Betatron and its applications
 - (b) Uniqueness theorem of electrostatics

**

- (c) Poynting theorem
- (d) Mass-energy equivalence

9/4-600/885

2/M-24 (vii) (Syllabus-2005)