Supplementary Material for the Multiple Instance Learning Gaussian Process Probit Model

1 Details of Variational Inference Updates

As noted in the main text, we aim to find

$$\operatorname{argmax}_{Q \in \mathcal{Q}} \operatorname{ELBO}(Q)$$
, where (1)

$$ELBO(Q) := E_Q[\log P(\mathbf{u}, \mathbf{f}, \mathbf{m} | \{Y_b\}; \mathbf{x}) - \log Q(\mathbf{u}, \mathbf{f}, \mathbf{m})] \text{ and}$$
(2)

Q denotes distributions of the form

$$Q(\mathbf{u}, \mathbf{f}, \mathbf{m}) = Q(\mathbf{u})Q(\mathbf{m})P(\mathbf{f}|\mathbf{u}; \mathbf{x}, \mathbf{z}), \tag{3}$$

where P the augmented MIL-GP-Probit model is as described in Section 3.2 of the main text. We will derive coordinate ascent updates for $Q(\mathbf{u})$ and $Q(\mathbf{m})$, which will also simultaneously give us the parametric form Q has if it satisfies Equation 1. To proceed, we first write down $\mathrm{ELBO}(Q)$, where $Q(\mathbf{u}, \mathbf{f}, \mathbf{m}) = Q(\mathbf{u})Q(\mathbf{m})P(\mathbf{f}|\mathbf{u})$ and notation has been cleaned to reduce clutter:

$$ELBO(Q) = E_{Q(\mathbf{u})Q(\mathbf{m})P(\mathbf{f}|\mathbf{u})}[\log P(\mathbf{u} + \log P(\mathbf{m}|\mathbf{f})) + \sum_{b \in \mathcal{B}} \log P(Y_b|M_b) - \log Q(\mathbf{u}) - \log Q(\mathbf{m})].$$

Coordinate ascent update of $Q(\mathbf{u})$: To maximize ELBO(Q) with respect to $Q(\mathbf{u})$ such that $\int Q(\mathbf{u})d\mathbf{u} = 1$, we write down the Lagrangian, omitting additive terms not depending on $Q(\mathbf{u})$, and then its functional derivative with respect to $Q(\mathbf{u})$:

$$\mathcal{L}(Q) = E_{Q(\mathbf{u})}[E_{P(\mathbf{f}|\mathbf{u})Q(\mathbf{m})}[\log P(\mathbf{u}) + \log P(\mathbf{m}|\mathbf{f})] - \log Q(\mathbf{u})] - \lambda \int Q(\mathbf{u})d\mathbf{u}$$

$$\frac{d\mathcal{L}}{O(\mathbf{u})}(Q) = E_{P(\mathbf{f}|\mathbf{u})Q(\mathbf{m})}[\log P(\mathbf{u}) + \log P(\mathbf{m}|\mathbf{f})] - \log Q(\mathbf{u}) - 1 - \lambda$$

Setting the derivative equal to 0 gives

$$Q(\mathbf{u}) \propto \exp(E_{P(\mathbf{f}|\mathbf{u})Q(\mathbf{m})}[\log P(\mathbf{m}|\mathbf{f}) + \log P(\mathbf{u})]) \tag{4}$$

Recall that $P(\mathbf{f}|\mathbf{u}) = \mathcal{N}(\mathbf{f}; K_{\mathbf{xz}}K_{\mathbf{zz}}^{-1}\mathbf{u}, \operatorname{diag}(K_{\mathbf{xx}} - K_{\mathbf{xz}}K_{\mathbf{zz}}^{-1}K_{\mathbf{zx}}))$ so that

$$Q(\mathbf{u}) \propto \exp(E_{P(\mathbf{f}|\mathbf{u})Q(\mathbf{m})}[\operatorname{tr}(\mathbf{f}\mathbf{f}^{T}) + \mathbf{f}^{T}\mathbf{m} - \frac{1}{2}\operatorname{tr}(K_{\mathbf{z}\mathbf{z}}^{-1}\mathbf{u}\mathbf{u}^{T})])$$

$$= \exp(-\frac{1}{2}\operatorname{tr}(K_{\mathbf{x}\mathbf{z}}K_{\mathbf{z}\mathbf{z}}^{-1}\mathbf{u}(K_{\mathbf{x}\mathbf{z}}K_{\mathbf{z}\mathbf{z}}^{-1}\mathbf{u})^{T}) + (K_{\mathbf{x}\mathbf{z}}K_{\mathbf{z}\mathbf{z}}^{-1}\mathbf{u})^{T}E_{Q(\mathbf{m})}[m] - \frac{1}{2}\operatorname{tr}(K_{\mathbf{z}\mathbf{z}}^{-1}\mathbf{u}\mathbf{u}^{T}))$$

$$= \exp(-\frac{1}{2}\operatorname{tr}(K_{\mathbf{x}\mathbf{z}}K_{\mathbf{z}\mathbf{z}}^{-1}\mathbf{u}\mathbf{u}^{T}K_{\mathbf{z}\mathbf{z}}^{-1}K_{\mathbf{z}\mathbf{x}}) + \mathbf{u}^{T}K_{\mathbf{z}\mathbf{z}}^{-1}K_{\mathbf{z}\mathbf{x}}E_{Q(\mathbf{m})}[\mathbf{m}] - \frac{1}{2}\operatorname{tr}(K_{\mathbf{z}\mathbf{z}}^{-1}\mathbf{u}\mathbf{u}^{T}))$$

$$= \exp(-\frac{1}{2}\operatorname{tr}(K_{\mathbf{z}\mathbf{z}}^{-1}K_{\mathbf{z}\mathbf{x}}K_{\mathbf{z}\mathbf{z}}K_{\mathbf{z}\mathbf{z}}^{-1}(\mathbf{u}\mathbf{u}^{T})) + (K_{\mathbf{z}\mathbf{z}}^{-1}K_{\mathbf{z}\mathbf{x}}E_{Q(\mathbf{m})}[\mathbf{m}])^{T}\mathbf{u} - \frac{1}{2}\operatorname{tr}(K_{\mathbf{z}\mathbf{z}}^{-1}(\mathbf{u}\mathbf{u}^{T})))$$

$$(6)$$

We recognize this as the density of a $\mathcal{N}(\mathbf{u}; \mathbf{\Sigma}^u K_{\mathbf{zz}}^{-1} K_{\mathbf{zx}} E_{Q(\mathbf{m})}[\mathbf{m}], \Sigma^u)$ distribution, where $\Sigma^u = (K_{\mathbf{zz}}^{-1} K_{\mathbf{zx}} K_{\mathbf{zz}} K_{\mathbf{zz}}^{-1} + K_{\mathbf{zz}}^{-1})^{-1}$. So, the coordinate ascent update to $Q(\mathbf{u})$ gives a distribution

$$Q(\mathbf{u}) = \mathcal{N}(\mathbf{u}; \mu^u, \Sigma^u), \text{ where}$$
 (7)

$$\Sigma^{u} = (K_{zz}^{-1} K_{zx} K_{xz} K_{zz}^{-1} + K_{zz}^{-1})^{-1}$$
(8)

$$\mu^{u} = \Sigma^{u} K_{\mathbf{z}\mathbf{z}}^{-1} K_{\mathbf{z}\mathbf{x}} E_{O(\mathbf{m})}[\mathbf{m}] \tag{9}$$

Coordinate ascent update of $Q(\mathbf{m})$: Similarly, to maximize ELBO(Q) with respect to $Q(\mathbf{m})$ such that $\int Q(\mathbf{m})d\mathbf{m} = 1$, we write down the Lagrangian, omitting additive terms not depending on $Q(\mathbf{m})$, and then its functional derivative with respect to $Q(\mathbf{m})$:

$$\mathcal{L}(Q) = E_{Q(\mathbf{m})}[E_{Q(\mathbf{u})P(\mathbf{f}|\mathbf{u})}[\log P(\mathbf{m}|\mathbf{f})] + \sum_{b \in \mathcal{B}} \log P(Y_b|M_b) - \log Q(\mathbf{m})] - \lambda \int Q(\mathbf{m})d\mathbf{m}$$
$$\frac{d\mathcal{L}}{Q(\mathbf{m})}(Q) = E_{Q(\mathbf{u})P(\mathbf{f}|\mathbf{u})}[\log P(\mathbf{m}|\mathbf{f})] + \sum_{b \in \mathcal{B}} \log P(Y_b|M_b) - \log Q(\mathbf{m}) - 1 - \lambda$$

Setting the derivative to 0 gives

$$\begin{split} Q(\mathbf{m}) &\propto \exp(E_{Q(\mathbf{u})P(\mathbf{f}|\mathbf{u})}[\log P(\mathbf{m}|\mathbf{f})] + \sum_{b \in \mathcal{B}} \log P(Y_b|M_b)) \\ &= \exp(E_{Q(\mathbf{u})P(\mathbf{f}|\mathbf{u})}[\log \mathcal{N}(\mathbf{m};\mathbf{f},\mathbf{I}_N)] + \sum_{b \in \mathcal{B}} \log P(Y_b|M_b)) \\ &\propto \exp(E_{Q(\mathbf{u})P(\mathbf{f}|\mathbf{u})}[\log(-\frac{1}{2}\operatorname{tr}(\mathbf{I}_N^{-1}\mathbf{m}\mathbf{m}^T) + (\mathbf{I}_N^{-1}\mathbf{f})^T\mathbf{m})] + \sum_{b \in \mathcal{B}} \log P(Y_b|M_b)) \\ &= \exp(\log(-\frac{1}{2}\operatorname{tr}(\mathbf{I}_N^{-1}\mathbf{m}\mathbf{m}^T) + (\mathbf{I}_N^{-1}E_{Q(\mathbf{u})P(\mathbf{f}|\mathbf{u})}[\mathbf{f}])^T\mathbf{m}) + \sum_{b \in \mathcal{B}} \log P(Y_b|M_b)) \\ &= \exp(\log(-\frac{1}{2}\operatorname{tr}(\mathbf{I}_N^{-1}\mathbf{m}\mathbf{m}^T) + (\mathbf{I}_N^{-1}E_{Q(\mathbf{u})}[K_{\mathbf{xz}}K_{\mathbf{zz}}^{-1}\mathbf{u}])^T\mathbf{m}) + \sum_{b \in \mathcal{B}} \log P(Y_b|M_b)) \\ &= \exp(\log(-\frac{1}{2}\operatorname{tr}(\mathbf{I}_N^{-1}\mathbf{m}\mathbf{m}^T) + (\mathbf{I}_N^{-1}(K_{\mathbf{xz}}K_{\mathbf{zz}}^{-1}\mu^u))^T\mathbf{m}) + \sum_{b \in \mathcal{B}} \log P(Y_b|M_b)) \\ &= \mathcal{N}(\mathbf{m}; K_{\mathbf{xz}}K_{\mathbf{zz}}^{-1}\mu^u, \mathbf{I}_N)\Pi_{b \in \mathcal{B}}P(Y_b|M_b) \end{split}$$

Thus, the coordinate ascent update to $Q(\mathbf{m})$ gives a distribution $Q(\mathbf{m}) = \mathcal{N}(\mathbf{m}; \mu^m, \mathbf{I}_N) \Pi_{b \in \mathcal{B}} P(Y_b | M_b)$, where $\mu^m = K_{\mathbf{x}\mathbf{z}} K_{\mathbf{z}\mathbf{z}}^{-1} \mu^u$. An alternate way to write the update is

$$Q(\mathbf{m}) = \prod_{b \in \mathcal{B}} Q(M_b), \text{ where for } b \in \mathcal{B},$$
 (10)

$$Q(M_b) \propto \prod_{i \in b} \mathcal{N}(m_i; \mu_i^m, 1) P(Y_b | M_b), \text{ where}$$
 (11)

$$\mu^m = K_{\mathbf{x}\mathbf{z}}K_{\mathbf{z}\mathbf{z}}^{-1}\mu^u. \tag{12}$$

2 Details of Gibbs Sampling Updates

To derive the full conditional distribution of \mathbf{u} under $P(\mathbf{u}, \mathbf{m}|\{Y_b\}; \mathbf{x}) = P(\mathbf{u}|\mathbf{m}; \mathbf{x})$ (by conditional independence), we can leverage the close relationship between mean-field variational inference and Gibbs sampling. Equations 11-12 gave the form of the update for $Q(\mathbf{u})$ given $Q(\mathbf{m})$. Based on standard mean-field theory, this update also equals

$$Q(\mathbf{u}) \propto \exp E_{Q(\mathbf{m})}[\log P(\mathbf{u}, \mathbf{m})].$$

If we set $Q(\mathbf{m})$ to a point mass at a given \mathbf{m} , we obtain

$$Q(\mathbf{u}) = P(\mathbf{u}|\mathbf{m})$$

The full conditional distribution $P(\mathbf{u}|\mathbf{m})$ is derived simply by setting $Q(\mathbf{m})$ to point mass at a given \mathbf{m} , and appealing to Equations 7-9.

To derive the full conditional distribution of m_i , i.e. $P(m_i|\{m_{i'}\}_{i'\in b, i'\neq i}, \mathbf{u}, \{Y_b\}; \mathbf{x})$, we again leverage the close relationship between mean-field variational inference and Gibbs sampling. Equation 10 gave the form of the update for $Q(\mathbf{m})$ given $Q(\mathbf{u})$. Based on standard mean-field theory, this update also equals

$$Q(\mathbf{m}) \propto \exp E_{Q(\mathbf{u})}[\log P(\mathbf{u}, \mathbf{m}, \{Y_b\})].$$

If we set $Q(\mathbf{u})$ to a point mass at a given \mathbf{u} , we obtain

$$Q(\mathbf{m}) = P(\mathbf{m}|\{Y_b\}, \mathbf{u})$$

Appealing to Equations 11-12, $P(\mathbf{m}|\{Y_b\}, \mathbf{u}) = \prod_{i \in \mathcal{B}} P(M_b|Y_b, \mathbf{u})$, where

$$P(M_b|Y_b, \mathbf{u}) \propto \Pi_{i \in b} \mathcal{N}(m_i; \mu_i^m, 1) P(Y_b|M_b)$$
, where $\mu^m := (\mu_1^m, \dots, \mu_N^m) = K_{\mathbf{x}\mathbf{z}} K_{\mathbf{z}\mathbf{z}}^{-1} \mathbf{u}$.

If $Y_b = 0$, then considering Equation 11 of the main text,

$$P(M_b|Y_b, \mathbf{u}) \propto \Pi_{i \in b} \mathcal{N}(m_i; \mu_i^m, 1) 1[0 > m_i], \text{ so that}$$

 $P(m_i|\{m_{i'}\}_{i \in b, i' \neq i}, Y_b, \mathbf{u}) \propto \mathcal{N}(m_i; \mu_i^m, 1) 1[0 > m_i].$

If $Y_b = 1$, then considering Equation 12 of the main text

$$P(M_b|Y_b, \mathbf{u}) \propto (1 - \Pi_{i \in b} 1[0 > m_i]) \Pi_{i \in b} \mathcal{N}(m_i; \mu_i^m, 1), \text{ so that}$$
 (13)

$$P(m_i|\{m_{i'}\}_{i\in b, i'\neq i}, Y_b, \mathbf{u}) \propto (1 - 1[0 > m_i] \prod_{i'\in b, i'\neq i} 1[0 > m_{i'}]) \prod_{i'\in b} \mathcal{N}(m_{i'}; \mu_{i'}^m, 1)$$
(14)

There are two cases for Equation 14. If $m_{i'} < 0 \ \forall \ i' \in b, i' \neq i$, then

$$P(m_i | \{m_{i'}\}_{i \in b, i' \neq i}, Y_b, \mathbf{u}) \propto (1 - 1[0 > m_i]) \Pi_{i' \in b} \mathcal{N}(m_{i'}; \mu_{i'}^m, 1)$$

= $1[0 \le m_i] \mathcal{N}(m_i; \mu_{i'}^m, 1)$

Else,

$$P(m_i|\{m_{i'}\}_{i\in b, i'\neq i}, Y_b, \mathbf{u}) \propto \Pi_{i'\in b} \mathcal{N}(m_{i'}; \mu_{i'}^m, 1)$$
$$= \mathcal{N}(m_i; \mu_i^m, 1)$$

3 Experimental results for all methods on individual datasets

In Tables 1 and 2, we show the performance of all methods for all datasets in the 20 Newsgroups dataset collection and the addition 59 non-synthetic datasets, respectively.

Criteria	AUC				Loglik				MAP				
Method	MIL-GP- Probit-Gibbs	MIL-GP- Probit	MIL-GP- Logistic	MIL-GP- Logistic-LM	MIL-GP- Probit-Gibbs	MIL-GP- Probit	MIL-GP-	MIL-GP-	MIL-GP- PROBIT-GIBBS		MIL-GP-	MIL-GP- Logistic-LM	
dataset	I ROBIT-GIBBS	1 ROBIT	Locistic	LOGISTIC-LIVI	I ROBIT-GIBBS	1 ROBIT	Locistic	Logistic-Livi	II KOBIT-GIBBE	1 ROBIT	Logistic	LogisTic-Livi	
alt.atheism	0.877	0.969	0.974	0.967	-0.036	-0.036	-0.158	-0.343	0.642	0.714	0.700	0.684	
comp.graphics	0.878	0.901	0.928	0.926	-0.051	-0.052	-0.164	-0.343	0.765	0.796	0.787	0.783	
comp.os.ms-windows.misc	0.795	0.903	0.922	0.920	-0.035	-0.036	-0.159	-0.343	0.498	0.543	0.541	0.536	
comp.sys.ibm.pc.hardware	0.867	0.909	0.955	0.942	-0.037	-0.038	-0.156	-0.343	0.661	0.708	0.700	0.683	
comp.sys.mac.hardware	0.877	0.943	0.947	0.946	-0.041	-0.042	-0.159	-0.343	0.707	0.761	0.763	0.766	
comp.windows.x	0.861	0.946	0.972	0.972	-0.055	-0.056	-0.168	-0.343	0.667	0.734	0.736	0.728	
misc.forsale	0.753	0.908	0.945	0.935	-0.033	-0.034	-0.156	-0.343	0.465	0.521	0.526	0.524	
rec.autos	0.865	0.944	0.935	0.933	-0.050	-0.051	-0.170	-0.344	0.691	0.746	0.741	0.734	
rec.motorcycles	0.861	0.979	0.981	0.971	-0.039	-0.040	-0.169	-0.344	0.617	0.685	0.720	0.722	
rec.sport.baseball	0.866	0.945	0.976	0.970	-0.050	-0.051	-0.174	-0.344	0.706	0.759	0.776	0.773	
rec.sport.hockey	0.905	0.988	0.990	0.990	-0.074	-0.075	-0.181	-0.344	0.827	0.914	0.923	0.923	
sci.crypt	0.850	0.988	0.995	0.984	-0.041	-0.042	-0.161	-0.343	0.618	0.703	0.773	0.777	
sci.electronics	0.967	0.990	0.967	0.954	-0.047	-0.048	-0.154	-0.343	0.907	0.926	0.918	0.907	
sci.med	0.874	0.956	0.951	0.943	-0.053	-0.054	-0.171	-0.344	0.686	0.760	0.742	0.733	
sci.space	0.836	0.962	0.981	0.980	-0.049	-0.049	-0.175	-0.344	0.650	0.731	0.752	0.746	
soc.religion.christian	0.833	0.960	0.971	0.969	-0.039	-0.040	-0.178	-0.344	0.655	0.747	0.750	0.739	
talk.politics.guns	0.839	0.979	0.975	0.971	-0.047	-0.048	-0.163	-0.343	0.623	0.702	0.723	0.719	
talk.politics.mideast	0.862	0.974	0.974	0.975	-0.049	-0.050	-0.160	-0.343	0.723	0.805	0.850	0.857	
talk.politics.misc	0.826	0.966	0.969	0.968	-0.036	-0.037	-0.153	-0.343	0.574	0.637	0.646	0.641	
talk.religion.misc	0.835	0.932	0.937	0.933	-0.037	-0.038	-0.171	-0.344	0.489	0.561	0.531	0.521	

Table 1: Performance of all considered methods on datasets of the 20 newsgroups dataset collection. Our method (MIL-GP-Probit) has higher predictive log-likelihood than MIL-GP-LOGISTIC [1] on all 20 datasets, and is comparable in terms of AUC and MAP. Despite its variational approximation, MIL-GP-Probit has comparable predictive log-likelihood to our exact inference method MIL-GP-Probit-Gibbs, whose AUC and MAP suffer due to the difficult of distinguishing between instances with similar true probabilities via sampling.

Criteria	AUC				Loglik				MAP				
Method	MIL-GP-		MIL-GP-		MIL-GP-	MIL-GP-			MIL-GP-		MIL-GP-		
dataset	PROBIT-GIBBS	Probit	Logistic	Logistic-LM	Probit-Gibbs	Probit	Logistic	LOGISTIC-LM	PROBIT-GIBBS	Probit	Logistic	Logistic-LM	
50Salad 0	0.854	0.852	0.831	0.522	-0.281	-0.252	-0.258	-0.346	0.530	0.530	0.477	0.178	
50Salad 1	0.834	0.832	0.831	0.629	-0.287	-0.252	-0.255	-0.346	0.463	0.330	0.417	0.178	
50Salad 2	0.848	0.859	0.800	0.674	-0.179	-0.166	-0.191	-0.345	0.474	0.483	0.363	0.176	
50Salad_3	0.856	0.874	0.878	0.728	-0.472	-0.412	-0.287	-0.346	0.657	0.695	0.771	0.420	
50Salad_4	0.993	0.993	0.991	0.963	-0.103	-0.106	-0.143	-0.338	0.968	0.969	0.974	0.696	
50Salad_5 Voc12 0	0.817 0.664	0.825 0.643	0.835 0.542	0.713 0.419	-0.216 -0.024	-0.198 -0.025	-0.185 -0.025	-0.317 -0.024	0.351 0.013	0.372 0.012	0.445 0.009	0.200 0.007	
Voc12 0 Voc12 1	0.676	0.662	0.534	0.326	-0.073	-0.023	-0.025	-0.024	0.061	0.012	0.005	0.024	
Voc12 10	0.548	0.551	0.446	0.462	-0.082	-0.083	-0.091	-0.087	0.043	0.044	0.034	0.036	
Voc12_11	0.763	0.751	0.677	0.445	-0.058	-0.061	-0.063	-0.067	0.088	0.078	0.043	0.023	
Voc12_12	0.831	0.817	0.746	0.418	-0.050	-0.051	-0.053	-0.055	0.114	0.092	0.047	0.017	
Voc12_13	0.815	0.812	0.739	0.280	-0.068	-0.068	-0.072	-0.078	0.153	0.139	0.086	0.026	
Voc12_14 Voc12_15	0.721 0.741	0.724 0.743	0.714 0.694	0.650 0.507	-0.304 -0.088	-0.304 -0.086	-0.346 -0.090	-0.347 -0.101	0.527 0.128	0.534 0.123	0.518 0.090	0.464 0.047	
Voc12 16	0.696	0.708	0.576	0.473	-0.034	-0.034	-0.034	-0.034	0.021	0.023	0.015	0.011	
Voc12 17	0.622	0.627	0.627	0.610	-0.082	-0.083	-0.085	-0.091	0.061	0.062	0.056	0.052	
Voc12_18	0.568	0.552	0.385	0.319	-0.026	-0.028	-0.027	-0.026	0.011	0.010	0.007	0.007	
Voc12_19	0.863	0.861	0.816	0.681	-0.061	-0.063	-0.068	-0.073	0.173	0.159	0.100	0.057	
Voc12_2	0.715	0.727	0.696	0.703	-0.022	-0.024	-0.023	-0.023	0.017	0.017	0.014	0.015	
Voc12_3 Voc12_4	0.722 0.550	0.714 0.554	0.686 0.528	0.611 0.524	-0.040 -0.117	-0.041 -0.114	-0.041 -0.114	-0.041 -0.134	0.037 0.076	0.035 0.077	0.031 0.072	0.025 0.073	
Voc12 - 5	0.858	0.855	0.805	0.512	-0.057	-0.058	-0.064	-0.134	0.109	0.106	0.072	0.073	
Voc12 6	0.877	0.876	0.853	0.677	-0.116	-0.117	-0.129	-0.164	0.368	0.359	0.285	0.111	
Voc12_7	0.709	0.693	0.549	0.441	-0.040	-0.042	-0.041	-0.041	0.030	0.027	0.017	0.013	
Voc12_8	0.807	0.808	0.807	0.780	-0.170	-0.169	-0.174	-0.264	0.377	0.375	0.357	0.282	
Voc12_9	0.652	0.652	0.605	0.515	-0.054	-0.051	-0.052	-0.054	0.031	0.030	0.026	0.021	
hja_birdsong_0 hja_birdsong_1	0.742 0.603	0.756 0.645	0.734 0.694	0.609 0.651	-0.111 -0.202	-0.108 -0.155	-0.159 -0.129	-0.245 -0.164	0.124 0.259	0.134 0.271	0.117 0.292	0.075 0.243	
hja birdsong 10	0.856	0.837	0.638	0.393	-0.041	-0.044	-0.055	-0.048	0.342	0.177	0.040	0.016	
hja birdsong 11	0.923	0.936	0.932	0.927	-0.170	-0.158	-0.101	-0.111	0.864	0.874	0.875	0.874	
hja_birdsong_12	0.481	0.763	0.746	0.417	-0.040	-0.032	-0.037	-0.033	0.011	0.025	0.023	0.010	
hja_birdsong_2	0.713	0.843	0.817	0.262	-0.106	-0.095	-0.123	-0.302	0.094	0.203	0.279	0.030	
hja_birdsong_3 hja_birdsong_4	0.950 0.612	0.934 0.568	0.927 0.635	0.920 0.482	-0.079 -0.023	-0.088 -0.023	-0.088 -0.028	-0.073 -0.024	0.560 0.009	0.490 0.009	0.502 0.011	0.402 0.008	
hja birdsong 5	0.612	0.368	0.788	0.482	-0.023	-0.023	-0.028	-0.024	0.009	0.009	0.011	0.065	
hja birdsong 6	0.691	0.597	0.700	0.548	-0.011	-0.012	-0.015	-0.013	0.008	0.005	0.010	0.004	
hja birdsong 7	0.898	0.882	0.786	0.420	-0.061	-0.066	-0.077	-0.078	0.466	0.399	0.239	0.027	
hja_birdsong_8	0.968	0.977	0.944	0.528	-0.016	-0.028	-0.050	-0.036	0.830	0.715	0.473	0.022	
hja_birdsong_9	0.590	0.619	0.661	0.394	-0.034	-0.031	-0.043	-0.031	0.015	0.015	0.018	0.009	
msrcv2_0 msrcv2_1	0.840 0.862	0.843 0.873	0.768 0.870	0.380 0.574	-0.157 -0.179	-0.160 -0.181	-0.184 -0.215	-0.347 -0.346	0.406 0.674	0.415 0.694	0.246 0.614	0.081 0.164	
msrcv2-10	0.862	0.873	0.876	0.742	-0.179	-0.181	-0.213	-0.106	0.323	0.094	0.014	0.164	
msrcv2-10	0.781	0.792	0.575	0.342	-0.065	-0.067	-0.071	-0.071	0.076	0.079	0.040	0.028	
msrcv2 12	0.661	0.632	0.327	0.207	-0.046	-0.050	-0.049	-0.049	0.032	0.029	0.018	0.016	
msrcv2_13	0.847	0.852	0.821	0.802	-0.029	-0.030	-0.032	-0.031	0.302	0.312	0.207	0.196	
msrcv2_14	0.758	0.772	0.633	0.572	-0.033	-0.036	-0.035	-0.034	0.035	0.037	0.025	0.023	
msrcv2_15 msrcv2_17	0.562 0.565	0.564 0.581	0.405 0.528	0.355 0.524	-0.074 -0.032	-0.074 -0.034	-0.075 -0.032	-0.081 -0.031	0.043 0.033	0.043 0.033	0.035 0.035	0.033 0.035	
msrcv2 17	0.830	0.833	0.328	0.524	-0.032	-0.034	-0.032	-0.346	0.409	0.033	0.035	0.035	
msrcv2-16	0.849	0.827	0.726	0.266	-0.168	-0.169	-0.188	-0.346	0.354	0.309	0.224	0.077	
msrcv2_20	0.700	0.687	0.519	0.430	-0.038	-0.041	-0.040	-0.039	0.026	0.024	0.015	0.013	
msrcv2_21	0.758	0.762	0.726	0.618	-0.098	-0.099	-0.105	-0.115	0.139	0.142	0.137	0.113	
msrcv2_22	0.752	0.754	0.691	0.396	-0.066	-0.066	-0.070	-0.073	0.077	0.077	0.062	0.039	
msrcv2_3	0.835	0.828	0.753	0.493	-0.076	-0.077	-0.082	-0.091	0.118	0.113	0.075	0.038	
msrcv2_5 msrcv2_6	0.824 0.884	0.815 0.881	0.654 0.842	0.249 0.839	-0.052 -0.149	-0.055 -0.154	-0.056 -0.192	-0.058 -0.346	0.067 0.526	0.063 0.522	0.032 0.385	0.015 0.294	
msrcv2_6 msrcv2_7	0.884	0.881	0.842	0.839	-0.149	-0.154	-0.192	-0.346	0.052	0.522	0.385	0.294	
msrcv2-8	0.818	0.826	0.753	0.243	-0.046	-0.049	-0.054	-0.051	0.054	0.056	0.039	0.013	
msrcv2 9	0.888	0.889	0.860	0.678	-0.080	-0.084	-0.095	-0.102	0.318	0.305	0.187	0.069	

Table 2: Performance of all considered methods on the 59 non-synthetic datasets. Our methods (MIL-GP-Probit, MIL-GP-Probit-Gibbs), do better than those of [1] (MIL-GP-Logistic, MIL-GP-Logistic, MIL-GP-Logistic-LM), in terms of AUC and MAP. Despite its variational approximation, MIL-GP-Probit has comparable performance to MIL-GP-Probit-Gibbs, which characterizes the exact posterior via sampling, but is slower. MIL-GP-Logistic-LM does poorly.

References

[1] Manuel Haußmann, Fred A Hamprecht, and Melih Kandemir. Variational bayesian multiple instance learning with gaussian processes. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 6570–6579, 2017.