Seaborn

Импортируем необходимые библиотеки

```
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Откроем набор данных с помощью pandas

```
In [ ]: df = pd.read_csv('data\penguins_size.csv')
    df.dropna(inplace=True)
    df.drop(df.index[df['gender'] == '.'], inplace=True)
```

In []: df.head()

Out[]:		species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
	0	Adelie	Torgersen	39.1	18.7	181.0	3750.0
	1	Adelie	Torgersen	39.5	17.4	186.0	3800.0
	2	Adelie	Torgersen	40.3	18.0	195.0	3250.0
	4	Adelie	Torgersen	36.7	19.3	193.0	3450.0
	5	Adelie	Torgersen	39.3	20.6	190.0	3650.0

Для красоты попросим seaborn установить тему по умолчанию с помощью sns.set_theme() и отобразим типовые графики

```
In [ ]: sns.set_theme()
```

ScatterPlot

```
In [ ]: sns.scatterplot(df, x='flipper_length_mm', y='body_mass_g')
    plt.show()
```


LinePlot

По умолчанию график показывает оценку центрального тенда и доверительный интервал для этой оценки.

```
In [ ]: sns.lineplot(data=df, x="flipper_length_mm", y="body_mass_g")
    plt.show()
```


StripPlot

```
In [ ]: sns.stripplot(data=df, x="body_mass_g", y="species")
plt.show()
```


BarPlot

```
In [ ]: sns.barplot(data=df, x="species", y="body_mass_g")
plt.show()
```


CountPlot

```
In [ ]: sns.countplot(x='island', data=df)
   plt.show()
```


HistPlot

In []: sns.histplot(df["body_mass_g"], binwidth=200, kde=True, stat='density')
 plt.show()

ECDfPlot

BoxPlot

```
In [ ]: sns.boxplot(x='species', y='flipper_length_mm', data=df)
    plt.show()
```


Pairplot

```
In [ ]: sns.pairplot(df, hue="species")
   plt.show()
```


ViolinPlot

