

Entiers, récurrences, suites classiques

- **1. a)** On a par un simple calcul $v_0 = v_1 = 3$.
 - **b)** D'après la relation (R): $v_{n+2} = u_{n+3} + 2u_{n+2} = 2u_{n+2} + 3u_{n+1} 2u_n$. D'où $v_{n+2} = 2v_{n+1} v_n$.
 - **c)** Montrons par récurrence que la propriété $P_n: v_{n+1} = v_n$ est vraie pour tout entier $n \in \mathbb{N}$. *Initialisation*: On a $v_0 = 3$ et $v_1 = 3$ donc P_0 est vraie.

Hérédité : Soit $n \in \mathbb{N}$ tel que P_n est vraie, c'est-à-dire $v_{n+1} = v_n$.

Montrons que P_{n+1} est vraie, c'est-à-dire $v_{n+2} = v_{n+1}$.

D'après la question précédente : $v_{n+2} = 2v_{n+1} - v_n$, et d'après l'hypothèse de récurrence, cette dernière différence vaut v_{n+1} . D'où P_{n+1} est vraie.

Ainsi, la suite (v_n) est constante égale à 3.

d) On en déduit que : $\forall n \in \mathbb{N}, \ u_{n+1} + 2u_n = v_n = 3$ d'après la question précédente. Donc :

$$\forall n \in \mathbb{N}, \ u_{n+1} = -2u_n + 3.$$

e) On remarque que la suite (u_n) est arithmético-géométrique. Pour tout $n \in \mathbb{N}$, on pose $t_n = u_n - \alpha$, $\alpha \in \mathbb{R}$.

On a: $t_{n+1} = u_{n+1} - \alpha = -2u_n + 3 - \alpha = -2t_n + 3 - 3\alpha$.

La suite (t_n) est géométrique de raison -2 pour $\alpha = 1$ et dans ce cas : $\forall n \in \mathbb{N}, t_n = t_0(-2)^n = 3(-2)^n$.

Par conséquent,

$$\forall n \in \mathbb{N}, \ u_n = 3(-2)^n + 1.$$

f) En utilisant l'expression trouvée à la question précédente, on a :

$$\sum_{k=0}^{n} u_k = \sum_{k=0}^{n} 3(-2)^k + 1 = 3\sum_{k=0}^{n} (-2)^k + \sum_{k=0}^{n} 1 = 3\frac{1 - (-2)^{n+1}}{1 - (-2)} + (n+1).$$

D'où

$$\sum_{k=0}^{n} u_k = n + 2 - (-2)^{n+1}.$$

2. a) On a : $w_2 - 2w_1 + w_0 = u_2 - t(-2)^2 - 2u_1 + 2t(-2) + u_0 - t = 3 - 4t + 4 - 4t + 2 - t = 9 - 9t$. Si bien que :

$$w_2 - 2w_1 + w_0 = 0 \Longleftrightarrow t = 1$$

b) Montrons par récurrence que la propriété $P_n: w_{n+2} - 2w_{n+1} + w_n = 0$ est vraie pour tout entier $n \in \mathbb{N}$.

Initialisation : t a été choisi de sorte que P_0 soit vraie.

 $H\acute{e}r\acute{e}dit\acute{e}$: Soit $n\in \mathbb{N}$ tel que P_n est vraie, c'est-à-dire $w_{n+2}-2w_{n+1}+w_n=0.$

Montrons que P_{n+1} est vraie, c'est-à-dire $w_{n+3} - 2w_{n+2} + w_{n+1} = 0$.

On a:

$$\begin{split} w_{n+3} - 2w_{n+2} + w_{n+1} &= u_{n+3} - (-2)^{n+3} - 2w_{n+2} + w_{n+1} = 3u_{n+1} - 2u_n - (-2)^{n+3} - 2w_{n+2} + w_{n+1} \\ &= 3w_{n+1} + 3(-2)^{n+1} - 2w_n - 2(-2)^n - (-2)^{n+3} - 2w_{n+2} + w_{n+1} \\ &= -2(w_{n+2} - 2w_{n+1} + w_n) + (-2)^n (-6 - 2 - (-2)^3) \\ &= 0 \quad \text{par hypothèse de récurrence.} \end{split}$$

Donc P_{n+1} est vraie.

Par conséquent,

$$\forall n \in \mathbb{N}, \quad w_{n+2} - 2w_{n+1} + w_n = 0.$$

c) La suite (w_n) vérifie une relation de récurrence linéaire double. L'équation caractéristique associée est : $r^2 - 2r + 1 = 0$ qui admet 1 pour racine double. On en déduit que : $\forall n \in \mathbb{N}, \ w_n = (A+Bn)$ où $A,B \in \mathbb{R}$. D'autre part, on a $w_0 = 1$ et $w_1 = 0$, ce qui permet de trouver A = 1 et B = -1. Ainsi,

$$\forall n \in \mathbb{N}, \quad w_n = 1 - n \quad \text{et} \quad u_n = 1 - n + (-2)^n.$$

d) On en déduit que : $\sum_{k=0}^{n} u_k = \sum_{k=0}^{n} (1-k) + \sum_{k=0}^{n} (-2)^n = (n+1) - \frac{n(n+1)}{2} + \frac{1 - (-2)^{n+1}}{1 - (-2)}.$ Ainsi,

$$\sum_{k=0}^{n} u_k = (n+1) - \frac{n(n+1)}{2} + \frac{1 - (-2)^{n+1}}{3}.$$

■ Exercice 1.

```
1
   def SommeGeom(u0,r,p,q):
2
3
        entrées : u0 : un flottant
4
                   p,q : deux entiers
                   r : un flottant
5
6
        sortie : O si p>q, sinon calcule
        la somme de t.g. u0r**k pour k allant
7
8
        p à q
        11 11 11
9
        S = 0
10
        if p>q:
11
12
            return S
13
        else:
14
            for k in range(p,q+1):
                 S += u0 * r * * k
15
16
             return S
```

In[1]: SommeGeom(2,5,7,61)

Out[1]: 10842021724855044340074528008699417114218750