DPP 8 INTRODUCTION OF CONTINUITY, EXISTENCE OF CONTINUITY

1. Function
$$f(x) = \begin{cases} 1+x, & \text{when } x < 2 \\ 5-x, & \text{when } x > 2 \end{cases}$$
; is continuous at $x = 2$, if $f(2)$ equals

- (C) 2

2. If
$$f(x) = \begin{cases} x \cos \frac{1}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$$
 is continuous at $x = 0$, then

- If f(x) = |x-2|, then
 - (A) $\lim_{x \to 0} f(x) \neq 0$

- (C) $\lim_{x \to 2+} f(x) \neq \lim_{x \to 2-} f(x)$
- (D) f(x) is continuous at x = 2

4. If the function
$$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, & \text{when } x \neq \frac{\pi}{2} \\ 3, & \text{when } x = \frac{\pi}{2} \end{cases}$$
 be continuous at $x = \frac{\pi}{2}$, then $k = \frac{\pi}{2}$

- (A) 3
- (C) 12
- (D) None of these

5. Let
$$f(x) = \begin{cases} \frac{x^3 + x^2 - 16x + 20}{(x - 2)^2}, & \text{if } x \neq 2 \\ k, & \text{if } x = 2 \end{cases}$$
. If $f(x)$ be continuous for all x , then $k = -1$

- The points at which the function $f(x) = \frac{x+1}{x^2 + x 12}$ is discontinuous, are

 (A) -3, 4
 (B) 3, -4
 (C) -1, -3, 4
 (D) -1, 3, 4

7. The function
$$f(x) = |x| + \frac{|x|}{x}$$
 is

- (A) Continuous at the origin
- (B) Discontinuous at the origin because |x| is discontinuous there
- (C) Discontinuous at the origin because $\frac{|x|}{x}$ is discontinuous there
- (D) Discontinuous at the origin because both |x| and $\frac{|x|}{x}$ are discontinuous there
- 8. Which of the following statements is true for graph $f(x) = \log x$
 - (A) Graph shows that function is continuous
 - (B) Graph shows that function is discontinuous
 - (C) Graph finds for negative and positive values of x
 - (D) Graph is symmetric along x-axis
- At which points the function $f(x) = \frac{x}{|x|}$, where [.] is greatest integer function, is 9.

discontinuous

- (A) Only positive integers
- (B) All positive and negative integers and (0, 1)
- (C) All rational numbers
- (D) None of these
- If f(x) = |x b|, then function 10.
 - (A) is continuous at x = 1
- (B) is continuous at x = b
- (C) is discontinuous at x = b
- (D) None of these

11. The value of f(0), so that the function $f(x) = \frac{(27-2x)^{1/3}-3}{9-3(243+5x)^{1/5}}, (x \ne 0)$ is continuous, is given

by

(A) 2/3

(B) 6

(C) 2

(D) 4

12. If $f(x) = \frac{x^2 - 10x + 25}{x^2 - 7x + 10}$ for $x \ne 5$ and f is continuous at x = 5, then f(5) =

(A) 0

(B) 5

(C) 10

(D) 25

13. In order that the function $f(x) = (x+1)^{\cot x}$ is continuous at x = 0, f(0) must be defined as

(A) $f(0) = \frac{1}{6}$

(B) f(0) = 0

(C) f(0) = e

(D) None of these

14. The function $f(x) = \sin|x|$ is

(A) Continuous for all x

(B) Continuous only at certain points

(C) Differentiable at all points

(D) None of these

15. If f(x) = |x|, then f(x) is

(A) Continuous for all x

(B) Differentiable at x = 0

(C) Neither continuous nor differentiable at x = 0

(D) None of these

1	2	3	4	5
D	С	D	В	Α
6	7	8	9	10
В	С	Α	В	AB
11	12	13	14	15
С	Α	С	Α	Α

DPP 9 CONTINUITY IN OPEN AND CLOSE INTERVAL

- $\frac{x}{x}, \quad -1 \le x < 0$ $\frac{2x+1}{x-2}, \quad 0 \le x \le 1$ is continuous in the interval [-1,1] then p equals -
- (C) 1/2
- a, $1 \le x < \sqrt{2}$ is continuous in the interval $[0,\infty)$, then values of a $\frac{(2b^2 4b)}{\sqrt{2}} = \sqrt{2} \le x \le \infty$
 - and b are respectively -
 - (A) 1, -1

- (B) $-1, 1+\sqrt{2}$ (C) -1, 1 (D) None of these
- Which of the following function is not continuous in the interval $(0, \pi)$. 3.
 - (A) $x \sin \frac{1}{x}$
- (B) $\begin{cases} 1, & 0 < x \le \frac{3\pi}{4} \\ 2\sin(\frac{2x}{9}), & \frac{3\pi}{4} < x < \pi \end{cases}$ (C) $\tan x$
- Graph of a function f(x) is given. Which of the following statements is not correct: 4.

- (A) f(x) is continuous on (1, 3)
- (B) f(x) is continuous on (1, 3]
- (C) f(x) is continuous on [1, 3]
- (D) none of these
- If $f(x) = \begin{cases} x^2, & \text{when } x \neq 1 \\ 2, & \text{when } x = 1 \end{cases}$ then
 - (A) $\lim_{x \to a} f(x) = 2$

- (B) f(x) is continuous at x = 1
- (C) f(x) is discontinuous at x = 1
- (D) None of these
- If $f(x) = \begin{cases} 1+x, & \text{when } x \le 2\\ 5-x, & \text{when } x > 2 \end{cases}$, then
 - (A) f(x) is continuous at x=2
- (B) f(x) is discontinuous at x = 0(D) None of these
- (C) f(x) is continuous at x = 3
- - (A) f(x) is continuous at x = 0
- (C) f(x) is continuous at $x = \frac{3\pi}{4}$
- (B) f(x) is continuous at $x = \pi$ (D) f(x) is discontinuous at $x = \frac{3\pi}{4}$
- 8.
 - (A) f(x) is discontinuous at $x = \pi/2$
- (B) f(x) is continuous at $x = \pi/2$
- (C) f(x) is continuous at x = 0
- (D) None of these
- a, when x = 0, is continuous at x = 0, then the value of 'a' will be
 - (A) 8
- (B) -8
- (C) 4
- (D) None of these
- $\int ax^2 b$, when $0 \le x < 1$ If $f(x) = \begin{cases} 2, & x = 1 \end{cases}$ is continuous at x = 1, then the most suitable value of a, b10.

- (A) a=2, b=0 (B) a=1, b=-1 (C) a=4, b=2 (D) All the above
- If $f(x) = \int \frac{x |x|}{x}$, when $x \neq 0$ then

(A)
$$a = 2, b = 0$$
 (B) $a = 1, b = -1$ (C) $a = 4, b = 2$ (D) All the above

If $f(x) = \begin{cases} \frac{x - |x|}{x}, & \text{when } x \neq 0 \\ 2, & \text{when } x = 0 \end{cases}$, then

(A) f(x) is continuous at x = 0

(B) f(x) is discontinuous at x = 0

(C) $\lim_{x\to 0} f(x) = 2$

(D) None of these

12. If the function

$$f(x) = \begin{cases} 1 + \sin\frac{\pi}{2}x \, for \, -\infty < x \le 1 \\ ax + b \, for \, 1 < x < 3 \qquad \text{is continuous in the interval } (-\infty, 6) \,, \text{ then the value of a and b} \\ 6\tan\frac{x\pi}{12} \, for \, 3 \le x < 6 \end{cases}$$

are respectively -

If $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$, then

(C)
$$f$$
 is continuous at $x = 0$

14. The value of k so that the function

Value of
$$K$$
 so that the function
$$f(x) = \begin{cases} k(2x - x^2), & \text{when } x < 0 \\ \cos x, & \text{when } x \ge 0 \end{cases}$$
 is continuous at $x = 0$, is

- (D) None of these

If $f(x) = \begin{cases} \frac{x}{e^{1/x} + 1}, & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$, then

(A)
$$\lim_{x\to 0} f(x) = 1$$

(B)
$$\lim_{x\to 0-} f(x) = 1$$

(C)
$$f(x)$$
 is continuous at $x = 0$

1	2	3	4	5
D	С	С	С	С
6	7	8	9	10
AB	С	Α	Α	D
11	12	13	14	15
В	С	С	D	С

DPP 10 TYPES OF DISCONTINUITY

- The function f is defined in [-5, 5] as f(x) = x, if x is rational and f(x) = -x, if x is 1. irrational. Then:
 - (A) f(x) is continuous at every x, except x = 0
 - (B) f(x) is discontinuous at every x, except x = 0
 - (C) f(x) is continuous everywhere
 - (D) f(x) is discontinuous everywhere
- 2. If f(x) = [x], where [x] = greatest integer, then at x = 1, f is—

 - (A) Continuous (B) left continuous (C) right continuous (D) None of these
- If f(x) = x [x], then f is discontinuous at
 - (A) every natural number
- (B) every integer
- (C) origin

- (D) Nowhere
- Function $f(x) = \frac{x^3 1}{x^2 3x + 2}$ is discontinuous at -

- For function $f(x) = \begin{cases} \left(1 + \frac{4x}{5}\right)^{t/x}, & x \neq 0 \\ e^{4/5}, & x = 0 \end{cases}$, the correct statement is-
 - (A) $f(0^+)$ and $f(0^-)$ do not exist (B) $f(0^+) * f(0^-)$
 - (C) f(x) continuous at x = 0
- (D) $\lim_{x\to 0} f(x) \neq f(0)$
- The function $f(x) = \frac{4-x^2}{4x-x^3}$ is equal to -

 - (A) discontinuous at only one point (B) discontinuous exactly at two points
 - (C) discontinuous exactly at three points (D) none of these
- If $f(x) = \frac{1 \tan x}{4x \pi}$, $x \neq \frac{\pi}{x}$, $x \in \left[0, \frac{\pi}{2}\right]$, and f(x) is continuous in $\left[0, \frac{\pi}{2}\right]$, then $f(\pi/4)$ is:

 (A) 1 (B) $\frac{1}{2}$ (C) $-\frac{1}{2}$ (D) -1

- If $f(x) = \begin{cases} x^2 3, 2 < x < 3 \\ 2x + 5, 3 < x < 4 \end{cases}$, the equation whose roots are $\lim_{x \to 3^+} f(x)$ and $\lim_{x \to 3^+} f(x)$ is

- (A) $x^2 7x + 3 = 0$ (B) $x^2 20x + 66 = 0$ (C) $x^2 17x + 66 = 0$ (D) $x^2 18x + 60 = 0$
- If $f(x) = \begin{cases} x 1, & x < 0 \\ \frac{1}{4}, & x = 0 \\ x^2, & x > 0 \end{cases}$, then
 - (A) $\lim_{x \to 0} f(x) = 1$

- (B) $\lim_{x \to 0^-} f(x) = -1$
- (C) f(x) is continuous at x = 0
- (D) None of these
- If $f(x) = \begin{cases} \frac{\cos \frac{\pi}{2}[x]}{[x]}, & \text{for } x < 0 \end{cases}$; where [x] denotes the greatest integer less than or equal to x,
 - then in order that f be continuous at x = 0, the value of k is

- (A) Equal to 0 (B) Equal to 1 (C) Equal to -1 (D) Indeterminate
- The function $f(x) = \begin{cases} x+2, & 1 \le x \le 2 \\ 4, & x=2 \\ 3x-2, & x > 2 \end{cases}$ is continuous at (A) x = 2 only (B) $x \le 2$ (C) $x \ge 2$ (D) None of these

- If the function $f(x) = \begin{cases} 5x-4 & , & \text{if } 0 < x \le 1 \\ 4x^2 + 3bx & , & \text{if } 1 < x < 2 \end{cases}$ is continuous at every point of its domain, 12. then the value of b is
 - (A) 1
- (B) 0
- (C) 1
- (D) None of these
- $-2\sin x, \qquad x \le -\frac{\pi}{2}$ The values of A and B such that the function $f(x) = \begin{cases} -\frac{\pi}{2} < x < \frac{\pi}{2} \end{cases}$, is continuous 13.

everywhere are

- (A) A = 0, B = 1
- (B) A = 1, B = 1
- (C) A = -1, B = 1 (D) A = -1, B = 0
- If $f(x) = \frac{x^2 10x + 25}{x^2 7x + 10}$ for $x \ne 5$ and f is continuous at x = 5, then f(5) =
- (B) 5
- (C) 10 (D) 25

1	2	3	4	5
В	С	В	С	С
6	7	8	9	10
С	С	С	В	Α
11	12	13	14	
С	Α	С	Α	

DPP 11 THEOREMS ON CONTINUITY, PROBLEMS ON CONTINUITY

Function $f(x) = \frac{\cos x - \sin x}{\sin 4x}$ is not defined at $x = \frac{\pi}{4}$. The value which should be assigned 10.

to f at $x = \frac{\pi}{4}$, so that it is continuous there, is-

- (A) 0 (B) $\frac{1}{2\sqrt{2}}$
- (C) $-\frac{1}{\sqrt{2}}$ (D) None
- If $f(x) = \begin{cases} x \frac{e^{ivx} e^{-ivx}}{e^{ivx} + e^{-ivx}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, then correct statement is-
 - (A) f is continuous at all points except x = 0
 - (B) f is continuous at every point but not differentiable
 - (C) f is differentiable at every point
 - (D) f is differentiable only at the origin
- 12. If f(x) is continuous function and g(x) is discontinuous function, then correct statement is

 - (A) f(x) + g(x) is a continuous function (B) f(x) g(x) is a continuous function
 - (C) f(x) + g(x) is a discontinuous function (D) f(x) g(x) is a continuous function
- 13. If function is f(x) = |x| + |x-1| + |x-2|, then it is –
 - (A) discontinuous at x = 0
- (B) discontinuous at x = 0, 1
- (C) discontinuous at x = 0, 1, 2
- (D) everywhere continuous
- Function f(x) = |x-2| -2| |x-4| is discontinuous at
 - (A) x = 2, 4
- (B) x = 2
- (C) Nowhere (D) Except x = 2, 4
- Function $f(x) = |\sin x| + |\cos x| + |x|$ is discontinuous at-15.

- (D) No where

(A	x = 0		$x = \pi/2$	(C)	$x = \pi$
1	2	3	4	5	
D	С	С	В	Α	
6	7	8	9	10	
D	Α	С	В	В	
11	12	13	14	15	
В	С	D	С	D	