

Mathématiques

Classe: BAC

Chapitre: Fonctions logarithmes

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Calculer les limites suivants :

$$\lim_{x \to +\infty} \sqrt{x} - \ln x \; ; \; \lim_{x \to +\infty} x \ln \left(\frac{x+1}{x} \right) \; ; \; \lim_{x \to 0^+} \frac{\ln (x+1)}{\sqrt{x}} \; ; \; \lim_{x \to +\infty} \frac{\ln (x+1)}{\sqrt{x}} \; ; \; \lim_{x \to 0^+} \frac{3 \ln x - 1}{2 \ln x + 2} \; ;$$

$$\lim_{x \to +\infty} x \ln \left(\frac{x+1}{x-1} \right) \; ; \; \lim_{x \to 2} \frac{\ln \left(\frac{x}{2} \right)}{x-2} \; ; \; \lim_{x \to 0^+} x \sqrt{3+2 \left(\ln x \right)^2} \; ; \; \lim_{x \to +\infty} \frac{\left(\ln x \right)^2}{\sqrt[3]{x}} \; ; \; \lim_{x \to +\infty} \frac{\ln \left(1+x^2-x \right)}{x} ;$$

$$\lim_{x\to +\infty} \frac{\ln(1+\ln x)}{x} \; ; \; \lim_{x\to 0} \frac{\ln(\cos x)}{x} \; ; \; \lim_{x\to 0^+} \frac{\ln(1-\sqrt{x})}{x} \; .$$

Exercice 2

(5) 10 min

2 pt

Dans le graphique ci-dessous, on a représenté dans un repère orthonormé (O,\vec{i},\vec{j}) la courbe représentative de la fonction logarithme népérien.

Placer, sur l'axe des abscisses les nombres ae, $\frac{b}{e}$, ab, a^2 , $\frac{a}{b}$, \sqrt{a} et $\frac{a}{c}$.

Exercice 3

(5) 40 min

6 pt

I– La figure ci-dessous, montre la courbe représentative $\mathbf{C}_{\!g}$ dans un repère orthonormé, de la fonction

g définie sur l'intervalle $]0;+\infty[$ par : $g(x)=1-x+2\ln(x)$.

 ${\rm 1\!\!\!\! I}$ La courbe $\,C_{\!g}$ coupe l'axe des abscisses en deux points d'abscisses 1 et $\,\alpha\,.$

- **1°) a)** Montrer que $3,51 < \alpha < 3,52$.
 - **b)** Déterminer le maximum de g(x).
- **2°) a)** À l'aide d'une intégration par parties, calculer $\int_{1}^{\alpha} \ln x \, dx$ en fonction de α .
 - **b)** En déduire l'aire S (α) du domaine hachuré limité par \mathbf{C}_g et l'axe des abscisses
- II-Soit f la fonction définie sur]0;+ ∞ [par $f(x) = \frac{1 + 2 \ln x}{x^2}$

On désigne par \mathbf{C}_f la courbe représentative de f dans un repère orthonormé $(0,\vec{i},\vec{j})$.

- 1°) a) Déterminer le point d'intersection de $\, C_{\!f} \,$ avec l'axe des abscisses.
 - **b)** Montrer que les axes du repère sont asymptotes à $\, {f C}_{\!f} \, .$
- **2°) a)** Montrer que f est dérivable sur $]0; +\infty[$, et pour tout $x \in]0; +\infty[$, $f'(x) = \frac{-4 \ln x}{x^3}$.
 - **b)** Dresser le tableau de variations de f et montrer que $f(\alpha) = \frac{1}{\alpha}$.
 - c) Tracer $\mathbf{C}_{\!f}$.
- **3°) a)** Montrer que la restriction de f à l'intervalle $[1;+\infty[$ admet une fonction réciproque f^{-1} .
 - **b)** Déterminer l'ensemble de définition et l'ensemble de dérivabilité de f^{-1} .
 - c) Résoudre l'inéquation $f^{-1}(x) > \alpha$.
- III- Soit (I_n) . la suite définie, pour $n \ge 4$, par $I_n = \int_n^{n+1} f(x) dx$.
- 1°) Démontrer que, pour tout x dans l'intervalle $[4;+\infty[$, $0 \le f(x) \le \frac{1}{x}$.
- **2°)** En déduire que, pour tout entier naturel $n \ge 4$, $0 \le I_n \le \ln\left(\frac{n+1}{n}\right)$.
- **3°)** Déterminer la limite de la suite (I_n) .

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

