Lecture 4

Claim: For inc events A and B

ADB = a+b , $a\in A$, $b\in B$ & a:bi=0 for all $i=1,2\cdots n$

Proof of claim :

(1) LHS = RHS. $c \in A \cup B$, by $def^n \circ f A \cup B = disjoint$ Sets $F_1, F_2 \subseteq \S_{1,2} \dots n_g^g$ Such that $t = k \cdot n \cdot g$ $a, b \in \S_{0,1}^n \S_n^g$ with $a_i = \int_0^\infty C_i \circ f \circ f \in F$ $0 \circ w$.

b? = \$ 0 if ie #

Then a EA, b EB, a;b; =0 and

$$q_i + b_i^\circ = C_i^\circ \implies a + b = C$$

(a) RHS SLHS

Not a, b be so to a \in A, b \in B and qib; =0

 $\forall i = 1, 2 - n$ bet $F = \{i = q_i = 1\}$
 $F_i \cap F_2 = \emptyset$

A is an inc event, for C with $C_i = 1$
 $\forall i \in F_i$, $C \in A$

This shows the claim.

 $\{o_i, 1\}^n$ is P_i the product

The measure on $\{o_i, 1\}^n$ is P_i the product

of n Bernoulli (b) measures with
of n Bernoulli (p) measures with Marginals taking values 1 and 0 wp
p and 1-p resp.
For $A = 30,13^n$ and $t \in 30,13$ define
"
$A_{t} = \{(a_{1}, \dots a_{n-1}) \in \{a_{0}, a_{n-1}, t\} \}$
- 50313n-1
For A increasing Ao and A, are both thereasing with Ao CA,
both thereasing with Ao SA,
2) het A, B both increasing events and take C= A (B), Use the claim above to
C= A [B, Use the Claim above to Show:
a co = Ao CBo
(b) C1 = (A) DB) V(A, DB)
Use question (1) to get Bisho

$$C_0 \subseteq (A_0 IB_1) \cap (A_1 IB_0)$$

and $C_1 \subseteq A_1 IB_1$

Proof of BK ineg

We'll Show this by induction

n=1 There are 3 Posshiltes

(2) A = 312 B = 30312 A = 30313 B = 30312 A = 30313 B = 30312 A = 30313 A

(3) A = 313, $B = 313 \int ABB = \phi$ So $P_1(ABB) = 0 \leq P_2(A)P_1(B)$

BK may holds for n=1.

Suppose the BK meg, holds for all 0 < mInduction Then, $P_{m-1}(C_0) = P_{m-1}(A_0 \square B_0) \leq P_{m-1}(A_0)P_{m-1}(B_0)$ (HW 2a) $P_{m-1}(C_1) \in P_{m-1}(A_1, \mathcal{D}_B) \leq P_{m-1}(A_1)P_{m-1}(B_1)$ (HW 2b) induction Now, $P_{m-1}(C_0) + P_{m-1}(C_1) \leq P_{m-1}(A_0 B_1) \cap (A_1 B_0)$ + Pm-1 ((A, IB,) n(A, IB,)) Inclusion - Exclusion - Pm-1 (A. 13 Bo) + Pm-1 (A, 13 Bo) = Pm-1 (A0)Pm-1 (B0)+Pm-1 (A1)Pm-1 (B0)

=>
$$(1-p)^2 P_{m-1}(G) \leq (1-p)^2 P_{m-1}(A_0) P_{m-1}(B_0)$$

Pm-1 (Co) & 'Pm-1 (Ao) Pm-1 (Bo)

$$P_{m-1}(C_{1}) \leq P_{m-1}(A_{1}BB_{1}) \leq P_{m-1}(A_{1})P_{m-1}(B_{1})$$

$$\Rightarrow p^{2} P_{m-1}(C_{1}) \leq p^{2} P_{m-1}(A_{1})P_{m-1}(B_{1})$$

$$p(1-p) \left(P_{m-1}(C_{0}) + P_{m-1}(C_{1})\right)$$

$$\leq p(1-p) P_{m-1}(A_{0})P_{m-1}(B_{1})$$

$$+ p(1-p) \left(P_{m-1}(A_{1}) + P_{m-1}(B_{0})\right)$$

$$P_{m}(C) = (1-p) P_{m-1}(C_{0}) + p P_{m-1}(C_{1})$$

$$(add all 3 neq)$$

$$\leq (1-p) P_{m-1}(A_{0}) \left((1-p) P_{m-1}(B_{0}) + p P_{m-1}(B_{1})\right)$$

$$+ p P_{m-1}(A_{1}) \left[p P_{m-1}(B_{1}) + (1-p) P_{m-1}(B_{0})\right]$$

$$= \left[(1-p) P_{m-1}(A_{0}) + p P_{m-1}(A_{1})\right] \times [1-p) P_{m-1}(B_{0})$$

$$= P_{m}(A_{1}) P_{m}(B_{0})$$

Suppose A depends on finitely many edges (FSay)

#F=n, then
$$\mathbb{P}_{p}(A) = a$$
 boly in p

Also

 $\mathbb{P}_{p}(2\omega^{3}) = p^{+} \text{ of } 1^{s} \text{ in } \omega$
 $\mathbb{P}_{p}(A) = \sum_{w \in 30,13^{n}} \mathbb{P}_{q}(\omega) + \sum_{w \in 30,13^{n}} \mathbb{P}_{q$

$$= \sum_{n=1}^{\infty} \int_{A}^{A} (\omega) p^{N(\omega)} \left(\frac{1-p}{p} \right)^{n-N(\omega)} \frac{1-p}{1-p}$$

$$=\frac{1}{P(1-P)}\sum_{\omega}1_{A}(\omega) + N(\omega)(1-P)^{n-N(\omega)}(N(\omega)-nP)$$

$$=\frac{1}{p(1-p)}\sum_{\omega}1|_{A}(\omega)N(\omega)p^{N(\omega)}(1-p)^{n-N(\omega)}$$

A is inc depending on a finite set F of edges

Recall: Coupling Pp (A), Pp, (A);

$$f_{v(e)}: e \in E_{3}$$
 a collection of iid $v(o,1)$
 $f_{v,s}$ on (Ξ, G, P)

For
$$s \in [0,1]$$
 let $1 \in [0,1]$ be the configure by

$$\mathbb{P}_{p+s}(A) - \mathbb{P}_{p}(A) = \mathbb{P}_{p}(\mathbb{P}_{p+s}(A) + \mathbb{P}_{p+s}(A))$$

{u > v} does not occur.

$$V_e \in (\uparrow, \uparrow + 8)$$
 i.e. $\int_{\rho} (e) = 0$, $\int_{\rho + c} (e) = 1$

Now,

$$P(\gamma(e) = 0, \gamma(e) = 1) = 8, P(\gamma(f) = 0, \gamma(f) = 1) = 8$$

So for both we need
$$\xi^2 \longrightarrow o(\xi)$$

if & is very close , to o, the Probability of there being two such edges is very small"

be only 1 such edge, and that So there will edge will be essentials for the event to Def": Let A be an event and $w \in 30,13^{E}$. A. and $w \in 20,13^{E}$. An edge $e \in E$ is said to be pivotal for (A, w) if for a configuration w' given hi. $\omega'(f) = \begin{cases} \omega(f) & \text{if } f \neq e \\ 1 - \omega(e) & \text{if } f \neq e \end{cases}$ we have 11, (w) = 1/4 (w') In particular if A is an inc event, then we'A w'EA. e must be closed under w and e is open under wi. Thm (Russo's pivotel formula)

Let A be an inc event depending on a Thm (Russo's pivotal formula) finite set of edges F. Then dp Pp(A) = I Pp {w: fis pivotal for (A, w)}

_	F	(N	(4)	\mathcal{I}

whenc	N (H)	= (random)	number	of	Pivotal	edges
	~ 1.1.		\bigcirc	-111-0	1 mrs 94	, S
			- W	26 11 2	next	class