WSTĘP DO FIZYKI CIAŁA STAŁEGO	IZYKI CIAŁA STAŁEGO PROJEKT #1		
Dominik Stańczak	Zestaw 2	04.12.2015 r.	
domsta@student.fizyka.pw.edu.pl	261604	10–11, gr. M2	
Oświadczam, że jestem wyłącznym autorem wszelkich treści (obliczeń, wykresów itp.) zawartych w niniejszym projekcie.			

Zadanie #1

Podane dane z pliku *zad1_dta_2.txt* zebrano na poniższym estetycznym wykresie jako niebieska ciągła krzywa. Wyraźnie można zaobserwować przejście szkliste (obszar między zieloną a czerwoną prostą), krystalizację (peak w rejonie ~520 stopni Celsjusza) oraz topnienie materiału (dip w wykresie około 780 stopni Celsjusza).

Wyznaczone temperatury:

- 1. Temperatura przejścia szklistego: wyznaczona jako temperatura połowy fragmentu krzywej DTA między zieloną a czerwoną prostą. Wyznaczona jako 464 stopnie Celsjusza.
- 2. Temperatura rozpoczęcia krystalizacji: wyznaczona jako temperatura punktu przecięcia prostych czerwonej oraz jasnoniebieskiej. Otrzymana wartość to 502 stopnie Celsjusza.
- 3. Temperatura krystalizacji: wyznaczona jako temperatura środka wysokiego peaku wykresu. Otrzymana wartość to 523 stopnie Celsjusza.
- 4. Temperatura topnienia: otrzymana jako punkt przecięcia prostych fioletowej (otrzymanej z dopasowania prostej do liniowo malejącego fragmentu bezpośrednio po krystalizacji) oraz żółtej, bezpośrednio przed minimum związanym z topnieniem. Otrzymana wartość to 725 stopnie Celsjusza.

Zadanie #2

Pojemność grawimetryczną q obliczam jako q=tI/m, gdzie t to czas rozładowywania baterii, I to prąd (dla zestawu nr 2: 15.8 μ A), m to masa materiału aktywnego (tutaj: 2 mg). Doświadczalna pojemność grawimetryczna to maksimum pojemności grawimetrycznej zazanczonej na poniższym wykresie (w trakcie rozładowania ulega ona zmniejszeniu) – jest to więc wartość 375.25 mAh/g.

Teoretyczną pojemność wyznaczam analogicznie do ćwiczenia przeprowadzonego na zajęciach, uwzględniając jedynie fakt że na każde 9 moli V2O5 przypadać będzie 1 mol P2O5, toteż pojemność będzie równa 90% wyznaczonej na zajęciach: Q = 90% q/M(V2O5) = 90% * 3 / 181.88 C/g = 397.89 mAh/g. Stosunek wartości doświadczalnej do teoretycznej wynosi 94.3%.

Na drugim wykresie zaznaczyłem zróżniczkowaną (po napięciu) zależność pojemności grawimetrycznej od napięcia. Jednostki tej pochodnej to teoretycznie mAh/gV, lecz prawdopodobnie najlepiej myśleć o nich jako o jednostkach umownych. W celu ograniczenia szumów każdą wartość uśredniłem względem 20 najbliższych wartości pomiarowych.

Nie jestem pewien, czy wszystkie zaznaczone ekstrema (zielone) na wykresie pochodnej związane są z interkalacją litu. Pierwsze z nich (minimum pochodnej) znajduje się na pozycji 1.96V. Kolejne – maksimum – ma położenie 2.1V. Pomijam punkt przegięcia (?) około 2.2V (zaznaczony na niebiesko), ponieważ nie jestem pewien czy nie wynika on jednak z szumu pomiarowego. Ostatnie minimum znajduje się na 2.28 V.

Zadanie #3

Obliczenia przeprowadzam dla molibdenu o stałej sieciowej 3.15 A oraz strukturze BCC (o bazie [(0,0,0), (0.5, 0.5, 0.5)]). Jako że jest to struktura prosta sześcienna ("cubic"), d=a/np.sqrt($h^2+k^2+l^2$). Kąt 2Theta występowania ekstremum wyraża się jako 2arcsin($n\lambda/2d$), gdzie λ to długość fali ze źródła, tutaj: 1.4767 A, zaś n to rząd ugięcia. Ostatecznie w tabeli uwzględniłem jedynie pierwszy rząd ugięcia, ponieważ wyższe rzędy nie wpływały jakkolwiek na wyniki.

Czynnik struktury F wyraża się zaś wzorem $F = \Sigma_j f_0 \exp(i2\pi(h x_j + k y_j + l z_j))$, gdzie sumowanie odbywa się po atomach bazy dając w naszym przypadku wyrażenie $F = f_0 (1 + \exp(i\pi(h + k + l)))$

Na potrzeby obliczeń założyłem f_0 równe 1, aczkolwiek dane NIST sugerują że dla tej długości fali należałoby przyjąć tą stałą równą 42.

h	k	l	d	2Theta (radiany)	F
0	0	1	3.15 A	0.4732	0 (wygaszenie)
0	0	2	1.575 A	0.9758	2 (wzmocnienie)
0	1	1	2.2274 A	0.6758	2 (wzmocnienie)
0	1	2	1.4087 A	1.1034	0 (wygaszenie)
0	2	2	1.1137 A	1.4496	2 (wzmocnienie)
1	1	1	1.8187 A	0.8361	0 (wygaszenie)
1	1	2	1.286 A	1.2231	2 (wzmocnienie)
1	2	2	1.05 A	1.5597	0 (wygaszenie)

Wzmocnienia doskonale pokrywają się z krzywą numer siedem (czarną). Możemy więc przypuszczać, że dane pliku zad3_xrd_7.txt odpowiadają molibdenowi.