ANÁLISIS NUMÉRICO I/ ANÁLISIS NUMÉRICO

Licenciatura en Matemática/ Ciencias de la Computación FAMAF, UNC — Año 2017

TRABAJO DE LABORATORIO N° 2

- 1. Escribir una función en OCTAVE que implemente el método de bisección para hallar una raíz de $f: \mathbb{R} \to \mathbb{R}$ en el intervalo [a,b]. La función debe llamarse "rbisec", y tener como entrada los argumentos (fun, I, e, m), donde "fun" es una función que dado x retorna f(x), I = [a,b] es un intervalo en \mathbb{R} , e es la tolerancia deseada del error y m es el número máximo de iteraciones permitidas. El algoritmo debe finalizar en la k-ésima iteración si $|f(x_k)| < e$ o si $k \ge m$. La salida debe ser [hx, hf] donde $hx = [x_1, \ldots, x_N]$ es el histórico de puntos medios y $hf = [f(x_1), \ldots, f(x_N)]$ el histórico de los respectivos valores funcionales.
- 2. Utilizar la función del ejercicio anterior para:
 - a) encontrar la menor solución positiva de la ecuacón $2x = \tan(x)$ con un error menor a 10^{-5} en menos de 100 iteraciones. ¿Cuántas iteraciones son necesarias cuando comenzamos con el intervalo [0,8,1,4]? Usar la siguiente sintaxis: octave>[hx, hy] = rbisec(@fun_ej2a, I, e, m)
 - b) Encontrar una aproximación a $\sqrt{3}$ con un error menor a 10^{-5} . Para esto, considere la función $f(x) = x^2 3$ (que debe llamarse "fun_ej2b"). octave>[hx, hy] = rbisec(@fun_ej2b, I, e, m)
 - c) Graficar conjuntamente f y los pares $(x_k, f(x_k))$ para las dos funciones anteriores y con al menos dos intervalos iniciales distintos para cada una.
- 3. Escribir una función en OCTAVE que implemente el método de Newton para hallar una raíz de $f: \mathbb{R} \to \mathbb{R}$ partiendo de un punto inicial x_0 . La función debe llamarse "rnewton", y tener como entrada (fun, x_0, e, m) donde "fun" es una función que dado x retorna f(x) y f'(x), x_0 es un punto inicial en \mathbb{R} , e es la tolerancia deseada del error y m es el número máximo de iteraciones permitidas. El algoritmo debe finalizar en la k-ésima iteración si vale alguna de las siguientes:

$$\frac{|x_k - x_{k-1}|}{|x_k|} < e, \qquad |f(x_k)| < e, \qquad k \ge m.$$

La salida debe ser [hx, hf] donde $hx = [x_1, \dots, x_N]$ es el histórico de puntos generados y $hf = [f(x_1), \dots, f(x_N)]$ el histórico de los respectivos valores funcionales.

- 4. Escribir una función en OCTAVE que aproxime $\sqrt[3]{a}$ con un error menor a 10^{-6} . Para ello, haga una variable global a (use el comando global) y llame al método de Newton del ejercicio anterior para la función $f(x) = x^3 a$. Utilizar las funciones "rnewton" y "fun_ej4".
- 5. Escribir una función en OCTAVE que implemente el método de Iteración de Punto Fijo para hallar un punto fijo de $\varphi: \mathbb{R} \to \mathbb{R}$ partiendo de un punto inicial x_0 . La función debe llamarse "ripf", y tener como entrada $(\operatorname{fun}, x_0, e, m)$ donde "fun" es una función que dado x retorna $\varphi(x)$, x_0 es un punto en \mathbb{R} , e es la tolerancia deseada del error y m es el número máximo de iteraciones permitidas. El algoritmo debe finalizar en la k-ésima iteración si $|x_k x_{k-1}| < e$ o $k \ge m$. La salida debe ser hx donde $hx = [x_1, \ldots, x_N]$ es el histórico de puntos generados.
- 6. Se quiere usar la fórmula de iteración $x_{n+1} = 2^{x_n-1}$ para resolver la ecuación $2x = 2^x$. Utilizar la función del ejercicio anterior para investigar si converge; y en caso afirmativo, estudiar hacia quévalores lo hace para distintas elecciones de x_0 , tomando un número máximo de 100 iteraciones y un error menor 10^{-5} . Usar la siguiente sintaxis:

octave>[hx] = ripf(@fun_ej6, x0, e, m)

7. Se desea conocer la gráfica de una función u definida implícitamente: u(x)=y donde y es solución de

$$y - e^{-(1-xy)^2} = 0.$$

Implementar tres versiones de esta función, hallando el valor de y con los métodos de los ejercicios de Biseccion, Newton y Punto fijo. Los valores iniciales y tolerancias usadas por los distintos métodos deben ser escogidos de manera que cualquier usuario pueda graficar u en el intervalo [0,1,5] sin inconvenientes.