2282437_Assignment2

Zaid Shariff

2022-08-01

1) Create a matrix

```
matrx=matrix(c(22,-35,10,234,54,23,-7,49,30), nrow=3, ncol=3, byrow=TRUE)
matrx
##
        [,1] [,2] [,3]
## [1,]
        22 -35
                   10
## [2,]
        234
              54
                   23
## [3,]
              49
                   30
rownames(matrx)=c("R1","R2","R3")
colnames(matrx)=c("C1","C2","C3")
matrx
##
       C1 C2 C3
## R1 22 -35 10
## R2 234 54 23
## R3 -7 49 30
mat_mean=apply(matrx,2,mean)
mat_mean
##
         C1
                 C2
                           СЗ
## 83.00000 22.66667 21.00000
mat_max=apply(matrx,1,max)
mat_max
## R1 R2 R3
## 22 234 49
2) Create a function
fnctn=function(x){
  y=3*(1-x)^3
}
fnctn(2)
```

0.75 with absolute error < 8.3e-15

[1] -3

integrate(fnctn,0,1)

```
integrate(fnctn,0.5,0.9)

## 0.0468 with absolute error < 5.2e-16

2) Create a function

fnctn=function(x){
    y=3*(1-x)^3
    y
}
fnctn(2)

## [1] -3
integrate(fnctn,0,1)

## 0.75 with absolute error < 8.3e-15
integrate(fnctn,0.5,0.9)</pre>
```

0.0468 with absolute error < 5.2e-16

3) Create a function to print squares of numbers in sequence.

```
sqr_fn = function(n) {
  for(i in 1:n) {
    m = i^2
    print(m) }
}
sqr_fn(4)

## [1] 1
## [1] 4
```

[1] 1 ## [1] 4 ## [1] 9 ## [1] 16

4) Create a data frame in R

```
##
    Emp_name Salary Joining
## 1
       Rick 723.30
                       2011
## 2
                       2015
         Dan 616.20
## 3 Michelle 691.00
                       2013
## 4
     Ryan 629.00
                       2012
## 5
        Gary 843.25
                       2013
```

```
employeedaa_new= data.frame(
  Emp_name = c("Rasmi"),
  Salary = c(778.00),
  Joining = ("2014")
employeedaa_new
     Emp_name Salary Joining
        Rasmi
                  778
                         2014
employeedaa= rbind(employeedaa,employeedaa_new)
employeedaa
##
     Emp_name Salary Joining
## 1
         Rick 723.30
                         2011
## 2
          Dan 616.20
                         2015
## 3 Michelle 691.00
                         2013
## 4
         Ryan 629.00
                         2012
## 5
         Gary 843.25
                         2013
## 6
        Rasmi 778.00
                         2014
employeedaa$Dept <- c("HR", "Finance", "IT", "IT", "Operations", "IT")</pre>
employeedaa
     Emp_name Salary Joining
##
                                     Dept
## 1
         Rick 723.30
                         2011
                                       HR.
## 2
          Dan 616.20
                         2015
                                  Finance
## 3 Michelle 691.00
                         2013
                                       IT
## 4
         Ryan 629.00
                                       IT
                         2012
## 5
         Gary 843.25
                         2013 Operations
## 6
        Rasmi 778.00
                         2014
employeedaa$binSalary <- ifelse(employeedaa$Salary >= 700,"1", "0")
employeedaa
     Emp_name Salary Joining
                                     Dept binSalary
## 1
         Rick 723.30
                                       HR
                         2011
                                                   1
## 2
          Dan 616.20
                         2015
                                 Finance
                                                   0
## 3 Michelle 691.00
                                                   0
                         2013
                                       IT
## 4
         Ryan 629.00
                         2012
                                       IT
                                                   0
         Gary 843.25
## 5
                         2013 Operations
                                                   1
        Rasmi 778.00
## 6
                         2014
                                                   1
```

5) Consider a dataset from any package

and obtain sum of all the values, mean, maximum, minimum values of each variables of the data set. (In report mention the package and description of dataset considered)

```
\#\# USArrests Dataset
```

This data set contains statistics, in arrests per 100,000 residents for assault, murder, and rape in each of the 50 US states in 1973. Also given is the percent of the population living in urban areas.

data("USArrests") USArrests

##		Murder	Assault	UrbanPop	Rape
##	Alabama	13.2	236	58	21.2
##	Alaska	10.0	263	48	44.5
##	Arizona	8.1	294	80	31.0
##	Arkansas	8.8	190	50	19.5
##	California	9.0	276	91	40.6
##	Colorado	7.9	204	78	38.7
##	Connecticut	3.3	110	77	11.1
##	Delaware	5.9	238	72	15.8
##	Florida	15.4	335	80	31.9
##	Georgia	17.4	211	60	25.8
##	Hawaii	5.3	46	83	20.2
##	Idaho	2.6	120	54	14.2
##	Illinois	10.4	249	83	24.0
##	Indiana	7.2	113	65	21.0
##	Iowa	2.2	56	57	11.3
##	Kansas	6.0	115	66	18.0
##	Kentucky	9.7	109	52	16.3
##	Louisiana	15.4	249	66	22.2
##	Maine	2.1	83	51	7.8
##	Maryland	11.3	300	67	27.8
##	Massachusetts	4.4	149	85	16.3
##	Michigan	12.1	255	74	
##	Minnesota	2.7	72	66	14.9
##	Mississippi	16.1	259	44	17.1
##	Missouri	9.0	178	70	
##	Montana	6.0	109	53	16.4
##	Nebraska	4.3	102	62	16.5
##	Nevada	12.2	252	81	46.0
##	New Hampshire	2.1	57	56	9.5
##	New Jersey	7.4	159	89	18.8
##	New Mexico	11.4	285	70	32.1
##	New York	11.1	254	86	26.1
##	North Carolina	13.0	337	45	16.1
##	North Dakota	0.8	45	44	7.3
##	Ohio	7.3	120		21.4
##	Oklahoma	6.6	151		20.0
	Oregon	4.9	159		
	Pennsylvania Rhode Island	6.3	106 174	72 87	14.9
	South Carolina	3.4			8.3
	South Carolina South Dakota	14.4	279	45	22.5
##	Tennessee	3.8 13.2	86		12.8 26.9
##	Tennessee	12.7	188 201		25.5
##	Utah	3.2	120		22.9
##	Vermont	2.2	48	32	11.2
##	Virginia	8.5	156		20.7
	Washington	4.0	145	73	26.2
	West Virginia	5.7	81	39	9.3
##	Wisconsin	2.6	53	66	10.8
##	Wyoming	6.8	161	60	15.6
πĦ	" y Omiting	0.0	101	00	10.0

```
sum_col=apply(USArrests,2,sum)
sum_col
##
    Murder Assault UrbanPop
                              Rape
     389.4 8538.0
                   3277.0
                           1061.6
mean_col=apply(USArrests,2,mean)
mean_col
   Murder Assault UrbanPop
                              Rape
    7.788 170.760 65.540
                             21.232
max_col=apply(USArrests,2,max)
max_col
   Murder Assault UrbanPop
                              Rape
##
             337.0
                               46.0
     17.4
                      91.0
min_col=apply(USArrests,2,min)
min_col
## Murder Assault UrbanPop
                              Rape
    0.8 45.0
                      32.0
                               7.3
##
```