Homework 3

Problem 9

- (a) Prove that if $\langle \psi | \hat{A} | \psi \rangle = \langle \psi | \hat{B} | \psi \rangle$ for all $| \psi \rangle$ then $\langle \psi_1 | \hat{A} | \psi_2 \rangle = \langle \psi_1 | \hat{B} | \psi_2 \rangle$ for all $| \psi_1 \rangle$ and $| \psi_2 \rangle$. Suggestion. Substitute $| \psi \rangle = | \psi_1 \rangle + \lambda | \psi_2 \rangle$ into $\langle \psi | \hat{A} | \psi \rangle = \langle \psi | \hat{B} | \psi \rangle$, then set $\lambda = 1$ and $\lambda = i$.
- (b) By definition, $\hat{A} = \hat{B}$ if and only if $\hat{A}|\psi\rangle = \hat{B}|\psi\rangle$ for all $|\psi\rangle$. Use the result of part (a) to show that $\hat{A} = \hat{B}$ if and only if $\langle \psi | \hat{A} | \psi \rangle = \langle \psi | \hat{B} | \psi \rangle$ for all $|\psi\rangle$.

Problem 10

Show that if $\langle \psi | \hat{A} | \psi \rangle = \langle \psi | \hat{A}^{\dagger} | \psi \rangle^*$ for all $| \psi \rangle$ then $\langle \psi_1 | \hat{A} | \psi_2 \rangle = \langle \psi_2 | \hat{A}^{\dagger} | \psi_1 \rangle^*$ for all $| \psi_1 \rangle$ and $| \psi_2 \rangle$. Suggestion. Substitute $| \psi \rangle = | \psi_1 \rangle + \lambda | \psi_2 \rangle$ into $\langle \psi | \hat{A} | \psi \rangle = \langle \psi | \hat{A}^{\dagger} | \psi \rangle^*$ then set $\lambda = 1$ and $\lambda = i$ [cf. Problem 9(a)].

Problem 11

- (a) Show that $\frac{d}{d\lambda} \left[e^{\lambda \hat{A}} \hat{B} e^{-\lambda \hat{A}} \right] = e^{\lambda \hat{A}} [\hat{A}, \hat{B}] e^{-\lambda \hat{A}}$ for all \hat{A} and \hat{B} .
- (b) Derive the expansion $e^{\hat{A}}\hat{B}e^{-\hat{A}} = \hat{B} + [\hat{A},\hat{B}] + \frac{1}{2!}[\hat{A},[\hat{A},\hat{B}]] + \frac{1}{3!}[\hat{A},[\hat{A},[\hat{A},\hat{B}]]] + \dots$ Suggestion: expand $\hat{F}(\lambda) = e^{\lambda\hat{A}}\hat{B}e^{-\lambda\hat{A}}$ in Taylor series about $\lambda = 0$, then set $\lambda = 1$.

Problem 12

Operators \hat{A} and \hat{B} commute with their commutator: $[\hat{A}, [\hat{A}, \hat{B}]] = [\hat{B}, [\hat{A}, \hat{B}]] = \hat{\mathbb{O}}$.

- (a) Show that $[\hat{A}, e^{\lambda \hat{B}}] = \lambda e^{\lambda \hat{B}} [\hat{A}, \hat{B}]$. Suggestion: use the expansion derived in Problem 11(b).
- (b) Show that $\hat{F}(\lambda) = e^{\lambda \hat{A}} e^{\lambda \hat{B}} e^{-\lambda(\hat{A}+\hat{B})}$ obeys the differential equation $\frac{d}{d\lambda} \hat{F}(\lambda) = \lambda [\hat{A}, \hat{B}] \hat{F}(\lambda)$.
- (c) By solving the equation derived in part (b), obtain the Baker-Hausdorff formula $e^{\hat{A}}e^{\hat{B}}=e^{\hat{A}+\hat{B}}e^{\frac{1}{2}[\hat{A},\hat{B}]}$.

Problem 13

By definition, trace of a linear operator acting in a finite-dimensional Hilbert space is the sum of its diagonal matrix elements: $\operatorname{tr} \hat{A} = \sum_n \langle \phi_n | \hat{A} | \phi_n \rangle$, where $\{|\phi_n\rangle\}$ is an orthonormal basis. (In an infinitely-dimensional space the sum in $\operatorname{tr} \hat{A}$ turns to an infinite series, which does not have to converge, let alone converge absolutely; equating two such divergent series would be meaningless.)

- (a) Show that $\operatorname{tr} \hat{A}$ is independent of the choice of an orthonormal basis. That is, show that $\sum_{n} \langle \phi_{n} | \hat{A} | \phi_{n} \rangle = \sum_{n} \langle \varphi_{n} | \hat{A} | \varphi_{n} \rangle$, where $\{ |\phi_{n} \rangle \}$ and $\{ |\varphi_{n} \rangle \}$ are two orthonormal basis sets.
- (**b**) Show that $\operatorname{tr}(\hat{A}\hat{B}) = \operatorname{tr}(\hat{B}\hat{A})$.
- (c) Find $\operatorname{tr} \hat{A}$ for $\hat{A} = |\varphi\rangle\langle\psi|$, where $|\varphi\rangle$ and $|\psi\rangle$ are arbitrary vectors.