

통계 기반 데이터 분석

분산분석

🔷 학습내용 •

- ▶ 분산분석의 개념
- 분산분석의 특성
- R을 이용한 분산분석

🔷 학습목표

- 분산분석의 개념에 대해 이해하고, 분석 방법을 파악할수 있다.
- 분산분석의 특성에 대해 이해하고 적합한 검정 방법을 채택할 수 있다.
- ▶ 빅데이터 분석 도구인 R을 활용하여 분산분석을 시행 할수 있다.

분산분석의 개념

왜 부부싸움이 일어날까. 성격이 다르기 때문일까? 환경적 영향, 분모의 영향, 다른 가치관을 가진 인격체로 변할 가능성도 있음. - 두집단의 상관계 파악 - 분산분석두 집단의 모집단을 비교 분석하고자 할 때 - 남녀간의 의견에 대한 평균값을 비교분석 - 남녀의 시각차이 .- 독립변수에 따라 달라짐.

 두 집단 간 속성에 대한 평균 차이를 검증하는 방법으로 사용하는 t검정의 비효율성을 줄이기 위해 집단간 변화량과 집단내 변화량을 비교하는 방법으로 사용하는 F 분포에 근거하여 검정

t검정 - 두 집단 간 속성에 대한 평균 차이를 검증하는 방법

- 2. 분산분석 #비효율성 3개 이상 모집단을 비교할 때, 두 독립집단끼리 비교하는 t검정을 세번 시행하는 경우
 - 두 개 이상 집단들의 평균을 비교하는 통계분석 기법
 - 두 개 이상 집단들의 평균 간 차이에 대한 통계적 유의성을 검증하는 방법
 - 관측자료가 몇 개의 그룹으로 구분된 경우 그룹 평균 간 차이를 그룹 내 변동에 비교하여 살펴보는 데이터 분석 방법
- 3. 분산분석을 사용하는 이유 (분산분석을 발전시킨, 로널드 피셔, 1890~1962)
 - 집단들의 평균 차이 비교

🌣 분산분석의 특성

1. 분산분석의 기본 가정

- 정규성 : 각 집단에 해당되는 모집단의 분포가 정규분포임 분산동일
- 성=등분산성): 각 집단에 해당되는 모집단의 분산은 모두 동일함
- 독립성: 표본은 각 모집단에서 독립적으로(무작위로) 추출됨

2. F통계량(F-value)

■ 집단간 분산과 집단내 분산의 비

계산식

집단간 분산 F = -집단내 분산

- 집단간 분산이 클수록, 집단내 분산이 작을수록 집단평균이 다를 가능성 증가
- 두 종류의 분산이 갖는 값의 상대적 크기에 의해 집단 간 평균의 동일성 여부가 결정됨

🌣 분산분석의 특성

3. 분산분석의 구분

분석 방법	특징	
일원(배치)분산분석 (one way ANOVA)	 요인(집단을 구분하는 독립변수)이 하나인 경우 모집단의 수에 제한이 없음 각 표본의 수가 같지 않아도 됨 	
이원(배치)분산분석 (two way ANOVA)	 요인(집단을 구분하는 독립변수)이 둘인 경우 요인이 2개 이상인 경우, 요인이 결과에 미치는 영향을 알아보기 위한 주효과와 상호작용 효과를 살펴볼 수 있음 	
다원배치 분산분석 (multiple way ANOVA)	독립변수가 둘 이상인 경우를 총칭	

(귀무가설 - 모집단의 평균은 모두 동일하다., 대립가설- 적어도 두개의평균들간의 차이가 있다.

4. 분산분석의 가설 설정

구분	H₀(귀무가설)	H₁(대립가설)
일원분산분석	μ ₁ = μ ₂ = μ ₃ (모집단평균은 모두 동일함)	적어도 두 개의 평균들 간에는 차이가 있음
이원분산분석	μ ₁ = μ ₂ = μ ₃ = μ _n (모집단평균은 모두 동일함)	적어도 두 개의 평균들 간에는 차이가 있음

🌣 분산분석의 특성

5. 연구문제 예시

- 세대 간에 패스트푸드에 대한 선호도의 차이가 있는가?
- 사용 이동통신사에 따른 모바일 뱅킹 이용횟수 수준 차이가 있는 가?
- 세대 및 성별에 따른 패스트푸드 선호도의 차이가 있는가?
- 사용 이동통신사 및 성별에 따른 모바일 뱅킹 이용횟수 수준 차이 가 있는가?
- 요인 구분 : 일원분산분석-독립변수가 한 개인 경우

요인 구분: 이원분산분석-집단을 구분하는 독립변수가 두 개인 경우

- 요인 구분 : 이워분산분석
 - 주효과 : 각 독립변수가 종속변수에 미치는 영향
 - 상호작용효과 : 여러 개의 독립변수가 상호 작용하여 나타나는 종속변수의 결과

🌣 R을 이용한 분산분석

1. R로 하는 분산분석 실습

분산분석은 등분산성을 가정함(검정 전 levene의 등분산 검정을 통해 등분산성을 확인)

거식증 환자의 치료방법에 따른 몸무게의 변화가 있는가

데이터 입력(R제공 anorexia 데이터 사용) MASS의 패키지

data(anorexia,package="MASS") annorexia

🌣 R을 이용한 분산분석

1. R로 하는 분산분석 실습

분산분석의 시행

2 분산분석의 시행, aov=out1 함수 이용

anova함수를 사용해 분산분석을 실시해 봄

anova는 분산분석을 하기 위한 함수이며 data는 데이터 처리를 받기위한 옵션이며 summy는평균과 pavalue를 알려주는 함수이다.

out2 = anova(Im(Postwt~Treat, data=anorexia))

summary(out2)

🌣 R을 이용한 분산분석

1. R로 하는 분산분석 실습

oneway함수를 사용해 분산분석을 실시해 봄

1

분산분석의 개념

1. 개요

 두 집단 간 속성에 대한 평균 차이를 검증하는 방법으로 사용하는 t검정의 비효율성을 줄이기 위해 집단 간 변화량과 집단내 변화량을 비교하는 방법으로 사용하는 F 분포에 근거하여 검정

2. 분산분석

■ 두 개 이상 집단들의 평균을 비교하는 통계분석 기법

3. 분산분석을 사용하는 이유

■ 집단들의 평균 차이 비교

2 분산분석의 특성

1. 분산분석의 기본 가정

■ 정규성, 분산동일성, 독립성

2. F통계량(F-value)

■ 집단간 분산과 집단내 분산의 비

3. 분산분석의 구분

분석 방법	특징	
일원(배치)분산분석 (one way ANOVA)	 요인(집단을 구분하는 독립변수)이 하나인 경우 모집단의 수에 제한이 없음 각 표본의 수가 같지 않아도 됨 	
이원(배치)분산분석 (two way ANOVA)	• 요인(집단을 구분하는 독립변수)이 둘인 경우 • 요인이 2개 이상인 경우, 요인이 결과에 미치는 영향을 알아보기 위한 주효과와 상호작용 효과를 살펴볼 수 있음	
다원배치 분산분석 (multiple way ANOVA)	독립변수가 둘 이상인 경우를 총칭	

4. 분산분석의 가설 설정

구분	H₀(귀무가설)	H ₁ (대립가설)
일원분산분석	μ = ½ = ႘ (모집단평균은 모두 동일함)	적어도 두 개의 평균들 간에는 차이가 있음
이원분산분석	μ = μ₂ = μ₃ = μ₁ (모집단평균은 모두 동일함)	적어도 두 개의 평균들 간에는 차이가 있음

2 분산분석의 특성

5. 연구문제 예시

- 세대 간에 패스트푸드에 대한 선호도의 차이가 있는가?
- 사용 이동통신사에 따른 모바일 뱅킹 이용횟수 수준 차이가 있는가?
- 세대 및 성별에 따른 패스트푸드 선호도의 차이가 있는가?
- 사용 이동통신사 및 성별에 따른 모바일 뱅킹 이용횟수 수준 차이가 있는가?

3

R을 이용한 분산분석

1. R로 하는 분산분석 실습

- 거식증 환자의 치료방법에 따른 몸무게의 변화가 있는가 가설 설정
- 데이터 입력(R제공 anorexia 데이터 사용)
- anova 함수를 사용해 분산분석을 실시함
- oneway 함수를 사용해 분산분석을 실시함
- P값이 0.05보다 작으므로, 귀무가설을 기각