# Uma Análise Comparativa de Métricas de Pontuação e Procedimentos de Busca aplicados ao Algoritmo de Otimização Bayesiano

## Ciniro Aparecido Leite Nametala

Algoritmos de Estimação de Distribuição Prof. Dr. Alexandre Cláudio Botazzo Delbem Programa de Pós-Graduação em Engenharia Elétrica São Carlos, 29 de Novembro de 2019





## Inicialização: Rede Bayesiana e População Inicial



Representação binária

Grafos direcionais acíclicos

## Função Objetivo: TrapK











#### Armazenamento do Melhor



Trap com M blocos

Blocos de tamanho K



































## Atualização da Rede Bayesiana



## Procedimentos de Busca e Métricas de Pontuação

Procedimentos de Busca
Hill Climbing
Busca Tabu
Métrica de Pontuação
K2
Akaike Information Criteria (AIC)
Bayesian Information Criteria (BIC)
Bayesian Dirichlet equivalente (BDS)

Cenários



- Move-se para o estado vizinho que proporciona a maior melhoria no valor da função objetivo.
- Apesar de existirem as versões estocásticas, neste trabalho foi utilizada a versão gulosa.

**INICIALIZAÇÃO:** Faça índice de iterações t=0 e escolha estado inicial x(t) = x(0).

**ÓTIMO LOCAL:** Pare se nenhuma ação (introdução de novo arco) do conjunto G de possíveis ações a partir do estado corrente leva a um estado melhor.

**MOVIMENTO:** Escolha a ação  $g \in G$  que leve ao estado com melhor valor de função objetivo (melhor do que o estado corrente).

**ATUALIZAÇÃO:** Aplique g sobre o estado corrente x(t) obtendo assim x(t+1).



- Move-se para o estado vizinho que proporciona a maior melhoria no valor da função objetivo.
- Apesar de existirem as versões estocásticas, neste trabalho foi utilizada a versão gulosa.

**INICIALIZAÇÃO:** Faça índice de iterações t=0 e escolha estado inicial x(t) = x(0).

**ÓTIMO LOCAL:** Pare se nenhuma ação (introdução de novo arco) do conjunto G de possíveis ações a partir do estado corrente leva a um estado melhor.

**MOVIMENTO:** Escolha a ação  $g \in G$  que leve ao estado com melhor valor de função objetivo (melhor do que o estado corrente).

**ATUALIZAÇÃO:** Aplique g sobre o estado corrente x(t) obtendo assim x(t+1).



- Move-se para o estado vizinho que proporciona a maior melhoria no valor da função objetivo.
- Apesar de existirem as versões estocásticas, neste trabalho foi utilizada a versão gulosa.

**INICIALIZAÇÃO:** Faça índice de iterações t=0 e escolha estado inicial x(t) = x(0).

**ÓTIMO LOCAL:** Pare se nenhuma ação (introdução de novo arco) do conjunto G de possíveis ações a partir do estado corrente leva a um estado melhor.

**MOVIMENTO:** Escolha a ação  $g \in G$  que leve ao estado com melhor valor de função objetivo (melhor do que o estado corrente).

**ATUALIZAÇÃO:** Aplique g sobre o estado corrente x(t) obtendo assim x(t+1).



- Move-se para o estado vizinho que proporciona a maior melhoria no valor da função objetivo.
- Apesar de existirem as versões estocásticas, neste trabalho foi utilizada a versão gulosa.

**INICIALIZAÇÃO:** Faça índice de iterações t=0 e escolha estado inicial x(t) = x(0).

**ÓTIMO LOCAL:** Pare se nenhuma ação (introdução de novo arco) do conjunto G de possíveis ações a partir do estado corrente leva a um estado melhor.

**MOVIMENTO:** Escolha a ação  $g \in G$  que leve ao estado com melhor valor de função objetivo (melhor do que o estado corrente).

ATUALIZAÇÃO: Aplique g sobre o estado corrente x(t) obtendo assim x(t+1).



#### Busca Tabu

- Capaz de escapar de ótimos locais permitindo ações que pioram a função objetivo.
- Proibir por um dado "tempo" uma ação já realizada evitando que a solução volte para um estado anterior.

```
INICIALIZAÇÃO: Faça t = 0 e escolha um estado inicial x(t) = x(0) e um limite de iterações t(max). Crie uma lista (vazia) para ações tabu.
```

**LIMITE DE PARADA:** Pare se t = t(max) e tome como solução o estado com melhor função objetivo dentre os t(max) estados explorados.

**MOVIMENTO:** Procure aleatoriamente por uma ação  $g \in G$  não tabu que leve a um estado vizinho com função objetivo melhor do que a corrente. Caso não seja encontrada tal ação dentro de um limite de tentativas, selecione a ação tabu menos pior.

ATUALIZAÇÃO: Aplique a ação g sobre o estado corrente x(t) obtendo assim x(t+1).

LISTA TABU: Retire ações que permaneceram na lista por um certo número de iterações e insira ações relacionadas a g.

INCREMENTO: Faça t = t+1 e retorne ao passo "Limite de Parada".

#### **K2**

- Cooper, G. F.; Henrskovits, E. A bayesian method for the induction of probabilistic networks from data. Machine Learning, v.9, p. 309-347, 1992.
- Korb K, Nicholson AE (2010). Bayesian Artificial Intelligence. Chapman & Hall/CRC, 2nd edition.

$$P(B_s, D) = P(B_s) \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{(r_i - 1)!}{(N_{ij} + r_i - 1)!} \prod_{k=1}^{r_i} N_{ijk}!$$

- Crocomo, Márcio Kassouf. Algoritmo de otimização bayesiano com detecção de comunidades. Tese de Doutorado. Universidade de São Paulo, 2012.
- Ruiz, Carolina. Illustration of the K2 algorithm for learning bayes net structures. Class notes. Department of Computer Science, Worcester Polytechnic Institute, 2016. [disponível em <a href="http://web.cs.wpi.edu/~cs539/s11/Projects/k2\_algorithm.pdf">http://web.cs.wpi.edu/~cs539/s11/Projects/k2\_algorithm.pdf</a>]

## AIC, BIC e BDS

#### AIC

 Gujarati, D. N.; Porter, D. C. Econometria Básica. Nova York: McGraw Hill & Bookman, 2008.

$$AIC = e^{2k/n} \frac{SQR}{n}$$

#### BIC

- Chickering DM (1995). "A Transformational Characterization of Equivalent Bayesian Network Structures". Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence, 87–98.
- Também chamado de Schwars Information Criteria.
- Similar ao AIC pois também prefere modelos mais simples.

#### BDS

- Scutari M (2016). "An Empirical-Bayes Score for Discrete Bayesian Networks". Journal of Machine Learning Research, 52:438–448.
- Métrica que podera a esparsidade da árvore.

## Atualização da Rede Bayesiana



#### Critério de Parada



## Experimento

- 20 execuções consecutivas, partindo da mesma população inicial para todos os cenários.
- Torneio
  - Amostragem de 50%
  - Torneio com 10% da amostra
- Máximo de 20 gerações
- Tamanho de população igual a 100
- TrapK

| Tamanho do indivíduo | Quantidade de Blocos | Tamanho do bloco |
|----------------------|----------------------|------------------|
| 50                   | 5                    | 10               |
| 50                   | 10                   | 5                |
| 100                  | 10                   | 10               |
| 100                  | 25                   | 4                |
| 300                  | 30                   | 10               |





















## Indivíduo de tamanho 50, 5 blocos de tamanho 10



## Indivíduo de tamanho 50, 10 blocos de tamanho 5



## Indivíduo de tamanho 100, 10 blocos de tamanho 10



## Indivíduo de tamanho 100, 25 blocos de tamanho 4



## Indivíduo de tamanho 300, 30 blocos de tamanho 10



## Desvio padrão médio (todos os experimentos)



## Obrigado!

ciniro@gmail.com

https://github.com/ciniro