Intro

 In this video we will talk about the simplest neural network – multi-layer perceptron (MLP)

Let's recall linear binary classification

- Features: $x = (x_1, x_2)$
- Target: $y \in \{+1, -1\}$
- Decision function: $d(x) = \mathbf{w_0} + \mathbf{w_1}x_1 + \mathbf{w_2}x_2$
- Algorithm: a(x) = sign(d(x))

Logistic regression

- Predicts probability of the positive class (+1)
- Decision function: $d(x) = \mathbf{w_0} + \mathbf{w_1}x_1 + \mathbf{w_2}x_2$
- Algorithm: $a(x) = \sigma(d(x))$

Triangle problem

- Features: $x = (x_1, x_2)$
- Target: $y \in \{+1, -1\}$

Triangle problem: solving a subproblem

- Features: $x = (x_1, x_2)$
- Target: $y \in \{+1, -1\}$

This line helps us to separate minuses on the left

$$z_1 = \sigma(\mathbf{w_{0,1}} + \mathbf{w_{1,1}}x_1 + \mathbf{w_{2,1}}x_2)$$

A logistic regression per a subproblem

- Features: $x = (x_1, x_2)$
- Target: $y \in \{+1, -1\}$

Imagine that we've somehow found these 3 lines

$$z_i = \sigma(w_{0,i} + w_{1,i}x_1 + w_{2,i}x_2)$$

These lines give us new features

 $z_i = \sigma(w_{0.i} + w_{1.i}x_1 + w_{2.i}x_2)$

- Features: $x = (x_1, x_2)$
- Target: $y \in \{+1, -1\}$

New features:

Final algorithm

- Features: $x = (x_1, x_2)$
- Target: $y \in \{+1, -1\}$

New features:

 χ_1

 $z_i = \sigma(\mathbf{w_{0.i}} + \mathbf{w_{1.i}}x_1 + \mathbf{w_{2.i}}x_2)$

top of these new features:

$$a(x) = \sigma(w_0 + w_1 z_1(x) + w_2 z_2(x) + w_3 z_3(x))$$

We still don't know how to find these 4 lines

- But we know how our algorithm will predict once we find them:
 - $z_i = \sigma(\mathbf{w_{0,i}} + \mathbf{w_{1,i}}x_1 + \mathbf{w_{2,i}}x_2)$
 - $a(x) = \sigma(w_0 + w_1 z_1(x) + w_2 z_2(x) + w_3 z_3(x))$
- Let's rewrite our algorithm in terms of a computation graph:

Nodes: computed variables $(x_1, x_2, z_1, z_2, z_3, a)$

Edges: dependencies (we need x_1 and x_2 to compute z_1)

Our computation graph has a name

Multi-layer perceptron (MLP):

Here each node is a **neuron**:

1. Take a linear combination of inputs
2. Apply **activation** function (e.g. $\sigma(x)$)

Why is it called a neuron?

Neuron in a human brain:

Artificial neuron:

We need a non-linear activation function!

• Let's see what happens if we throw away $\sigma(x)$:

- Our algorithm turns into a fancy linear function!
 - $a = (w_1 w_{1,1} + w_2 w_{1,2}) x_1 + (w_1 w_{2,1} + w_2 w_{2,2}) x_2$

MLP overview

• MLP is an example of artificial neural network

MLP can have many hidden layers:

- Architecture of an MLP:
 - Number of layers
 - Number of neurons in each layer
 - Activation function

- Hidden layer in MLP:
 - Dense layer
 - Fully-connected layer

How to train your MLP?

- We know how to train one neuron (e.g. logistic regression): SGD
- Let's do the same for the whole MLP!

Bob chilling at a local optima

https://hackernoon.com/life-is-gradient-descent-880c60ac1be8

Check out MLP training demo

http://playground.tensorflow.org (change activation to ReLU)

How to train your MLP?

- Other problems:
 - We can have many hidden layers (hyper-parameter) ->
 we need to calculate gradients automatically!

In the next video we will solve these problems!