2024 考研 408

计算机组成原理

复习笔记

【考查目标】

- 1. 理解单处理器计算机系统中主要部件的工作原理、组成结构以及相互连接方式。
- 2. 掌握指令集体系结构的基本知识和基本实现方法,对计算机硬件相关问题进行分析,并能够对相关部件进行设计。
- 3. 理解计算机系统的整机概念,能够综合运用计算机组成的基本原理和基本方法,对高级编程语言 (C语言)程序中的相关问题进行分析,具备软硬件协同分析和设计能力。

目录

1	计算	计算机系统概述					
	1.1	计算机系统层次结构	2				
	1.2	计算机性能指标	2				
2	数据的表示和运算						
	2.1	数制与编码	3				
	2.2	运算方法和运算电路	3				
	2.3	整数的表示和运算	3				
	2.4		3				
3	存储	音器层次结构	4				
-	3.1		4				
	3.2	层次化存储器的基本结构	4				
	3.3	半导体随机存取存储器	4				
	3.4	主存储器	4				
	3.5	外部存储器	4				
	3.6	高速缓冲存储器(Cache)	4				
	3.7	虚拟存储器	5				
	5.7	MEDIA 11 184 HB	,				
4	指令	·系统	6				
	4.1	· 新筑 指令系统的基本概念 . .	6				
	4.2	指令格式	6				
	4.3	寻址方式	6				
	4.4	数据的对齐和大/小端存放方式	6				
	4.5	CISC 和 RISC 的基本概念	6				
	4.6	高级语言程序与机器级代码之间的对应	6				
5	中央	是处理器 (CPU)	7				
	5.1	CPU 的功能和基本结构	7				
	5.2	指令执行过程	7				
	5.3	数据通路的功能和基本结构	7				
	5.4	控制器的功能和工作原理	7				
	5.5	异常和中断机制	8				
	5.6	指令流水线	8				
	5.7	多处理器基本概念	8				
6	总线和输入/输出系统						
	6.1		9				
	6.2	I/O 接口 I/O 控制器	9				
		I/O 方式	9				

1 计算机系统概述

1.1 计算机系统层次结构

- 1. 计算机系统的基本组成
- 2. 计算机硬件的基本组成
- 3. 计算机软件和硬件的关系
- 4. 计算机系统的工作原理
- "存储程序"工作方式,高级语言程序与机器语言程序之间的转换,程序和指令的执行过程

图 1: hello.c 源程序文件到可执行目标文件的转换过程

1.2 计算机性能指标

吞吐量、响应时间;

CPU 时钟周期、主频、CPI、CPU 执行时间;

MIPS, MFLOPS, GFLOPS, TFLOPS, PFLOPS, EFLOPS, ZFLOPS

2 数据的表示和运算

2.1 数制与编码

1. 进位计数制及其数据之间的相互转换 2. 定点数的编码表示

2.2 运算方法和运算电路

1. 基本运算部件:加法器,算术逻辑部件(ALU) 2. 加减运算:补码加/减运算器,标志位的生成

- 1. 补码运算: Sub = 1 时,减法, $X + \overline{Y} + 1 = [x]_{-} + [-y]_{-}$,Sub = 0 时,加法, $X + Y = [x]_{-} + [y]_{-}$.
- 2. 标志位的生成:
- 1) 溢出标志 OF: OF=1 表示带符号数运算发生溢出,无符号数运算没有意义. OF= $C_n \oplus C_{n-1}$.
- 2) 符号标志 SF: 结果的符号, 无符号数没有意义. SF= F_{n-1} .
- 3) 零标志 ZF: ZF=1 表示结果为 0, 无符号/带符号整数都有意义. ZF=F=0.
- 4)进位/借位标志 CF: 加法时,CF=1 表示无符号数加法溢出,减法时,CF=1 表示有借位,不够减,带符号整数没有意义. CF= $Cout \oplus Cin$.
 - 3. 乘除运算: 乘/除法运算的基本原理, 乘法电路和除法电路的基本结构

2.3 整数的表示和运算

1. 无符号整数的表示和运算 2. 带符号整数的表示和运算

2.4 浮点数的表示和运算

1. 浮点数的表示: IEEE754 标准

表 1: IEEE754 浮点数的范围

格式	最小值	最大值
单精度	$(-1)^s \times 1.0 \times 2^{1-127} = (-1)^s \times 2^{-126}$	$(-1)^s \times 1.111 \times 2^{254-127} = (-1)^s \times 2^{127} \times (2-2^{-23})$
双精度	$(-1)^s \times 1.0 \times 2^{1-1023} = (-1)^s \times 2^{-1022}$	$(-1)^s \times 1.111 \times 2^{2046-1023} = (-1)^s \times 2^{1023} \times (2-2^{-52})$

IEEE 754 格式的浮点数, 阶码全 0 或全 1 时, 有特别的解释:

- 1) 全 0 阶码全 0 尾数, +0/-0, 零的符号取决于数符 S。
- 2) 全 1 阶码全 0 尾数, $+\infty/-\infty$,引入无穷大数是为了计算过程出现异常的情况下程序能继续进行。
 - 2. 浮点数的加减运算

溢出判断:

- 1) 右规和尾数舍入都有可能引起阶码上溢。
- 2) 左规可能引起阶码下溢。
- 3) 尾数溢出结果不一定溢出。

3 存储器层次结构

3.1 存储器的分类

- 1. 随机存取存储器(RAM): 按地址访问,SRAM(Cache),DRAM(主存)
- 2. 相联存储器 (TLB): 按内容访问

3.2 层次化存储器的基本结构

3.3 半导体随机存取存储器

1. SRAM 存储器 2. DRAM 存储器 3. Flash 存储器

3.4 主存储器

1. DRAM 芯片和内存条 2. 多模块存储器 3. 主存和 CPU 之间的连接

3.5 外部存储器

1. 磁盘存储器 2. 固态硬盘 (SSD)

3.6 高速缓冲存储器(Cache)

1. Cache 的基本原理 2. Cache 和主存之间的映射方式

3. Cache 中主存块的替换算法 4. Cache 写策略

3.7 虚拟存储器

- 1. 虚拟存储器的基本概念
- 2. 页式虚拟存储器:基本原理,页表,地址转换,TLB(快表)

图 2: TLB 和 Cache 的访问过程

3. 段式虚拟存储器 4. 段页式虚拟存储器

4 指令系统

4.1 指令系统的基本概念

4.2 指令格式

循环移位:

1) 小循环左移: 最高位移入进位标志位, 同时也移入最低位。

2) 小循环右移: 最低位移入进位标志位, 同时也移入最高位。

3) 大循环左移: 最高位移入进位标志位, 而进位标志位移入最低位。

4) 大循环右移: 最低位移入进位标志位, 而进位标志位移入最高位。

	条件	标志位				
无符号整数	A > B	CF = 0 AND ZF = 0				
	$A \geqslant B$	CF = 0 OR ZF = 1				
	A < B	CF = 1 AND ZF = 0				
	$A \leqslant B$	CF = 1 OR ZF = 1				
有符号整数	A > B	SF = OF AND ZF = 0				
	$A \geqslant B$	SF = OF OR ZF = 1				
	A < B	$SF \neq OF \text{ AND } ZF = 0$				
	$A \leqslant B$	$SF \neq OF \text{ OR } ZF = 1$				

表 2: 条件转移指令中标志信息

4.3 寻址方式

表 3: 寻址方式、有效地址及访存次数

寻址方式	有效地址	访存次数
隐含寻址	程序指定	0
立即寻址	A 即是操作数	0
直接寻址	EA = A	1
一次间接寻址	EA = (A)	2
寄存器寻址	$EA = R_i$	0
寄存器间接一次寻址	$EA = (R_i)$	1
相对寻址	EA = (PC) + A	1
基址寻址	EA = (BR) + A	1
变址寻址	EA = (IX) + A	1

4.4 数据的对齐和大/小端存放方式

4.5 CISC 和 RISC 的基本概念

4.6 高级语言程序与机器级代码之间的对应

- 1. 编译器, 汇编器和链路器的基本概念
- 2. 选择结构语句的机器级表示 3. 循环结构语句的机器级表示 4. 过程(函数)调用对应的机器级表示

5 中央处理器 (CPU)

5.1 CPU 的功能和基本结构

图 3: CPU 基本组成原理图

5.2 指令执行过程

5.3 数据通路的功能和基本结构

数据通路:指令执行过程中数据所经过的路径,包括路径上的部件称为数据通路。ALU、通用寄存器、状态寄存器、cache、MMU、浮点运算逻辑、异常和中断处理逻辑等都是指令执行过程中数据流经的部件。

图 4: 单总线数据通路

5.4 控制器的功能和工作原理

- 1. 每条机器指令对应一个微程序,每个微程序包含若干微指令,每条微指令对应一个或几个微操作命令。
- 2. 微命令是微操作的控制信号,微操作是微命令的执行过程。
- 3. 控制存储器: 在 CPU 内部, 由 ROM 构成, 存放微程序, 按地址访问。
- 4. 微指令的编码方式:字段直接编码:相容性微命令分在不同段
- 5. 微指令的格式:
- 1) 水平型微指令: 微程序短, 执行速度快; 微指令长, 编写微程序麻烦
- 2) 垂直型微指令: 微指令短, 便于编写; 微程序长, 执行速度慢, 工作效率低

5.5 异常和中断机制

- 1. 异常和中断的基本概念 2. 异常和中断的分类
- 3. 异常和中断的检测与响应
- 1. 保护断点和程序状态 (PC 和 PSW 寄存器)
- 2. 识别异常事件并转异常处理

5.6 指令流水线

1. 指令流水线的基本概念

理想情况下,每个时钟周期都有一条指令进入流水线,每个时钟周期都有一条指令完成,每条指令的时钟周期数(即 CPI)都为 1。

- 2. 指令流水线的基本实现
- 3. 结构冒险、数据冒险和控制冒险的处理
- 1. 结构冒险: 采用数据 cache 和代码 cache 分离的方式
- 2. 数据冒险:
- 1) 插入空操作指令: 在软件上采取措施, 使相关指令延迟执行
- 2) 插入气泡: 在硬件上采取措施, 使相关指令延迟执行
- 3) 采用转发技术(数据旁路): 将数据通路中生成的中间数据直接转发到 ALU 的输入端
- 3. 控制冒险:
- 1) 对转移指令进行分支预测, 尽早生成转移目标地址
- 2) 预取转移成功和不成功两个控制流方向上的目标指令
 - 4. 超标量和动态流水线的基本概念
- 1. 超标量流水线技术:每个时钟周期内可并发多条独立指令,需配置多个功能部件。多数超标量 CPU 都结合动态流水线调度技术,通过动态分支预测等手段提高指令并行性。
- 2. 超流水线技术: 通过提高流水线主频的方式提升流水线性能。

5.7 多处理器基本概念

- 1. SISD、SIMD、MIMD、向量处理器的基本概念
- 2. 硬件多线程的基本概念
- 3. 多核处理器 (multi-core) 的基本概念
- 4. 共享内存多处理器 (SMP) 的基本概念

6 总线和输入/输出系统

6.1 总线

- 1. 总线的基本概念 2. 总线的组成及性能指标
- 1. 数据线用来承载在源部件和目的部件之间传输的数据、命令或地址(数据线和地址线复用)。
- 2. 地址线用来给出源数据或目的数据所在的主存单元或 I/O 端口的地址, 地址线是单向的。
- 3. 控制线用来控制对数据线和地址线的访问和使用, 传输定时信号和命令信息。除地址线和数据线以外的通信线都称为控制线。
- 4. 同步总线采用公共的时钟信号进行定时,适合于存取时间相差不大的多个功能部件之间的通信,同步总 线不能过长,否则将会降低总线传输效率。
- 5. 越来越多的总线采用异步串行方式进行传输。因为串行总线每次在一根信号线上传送数据位,**传输速率可以比并行总线高得多**。每个位各自传输,传输时延的细微变化不会影响其他数据位的传送。通过多个数据通道的组合,可以实现比传统并行总线高得多的数据传输带宽。
- 6. 总线带宽(总线的最大数据传输率) = 总线宽度(总线上同时能够传送的数据位数) × 总线频率
- 3. 总线事务和定时

6.2 I/O 接口 I/O 控制器

1. I/O 接口的功能和基本结构 2. I/O 端口及其编址

1. I/O 端口:可被 CPU 直接访问的寄存器, CPU 对数据端口可读可写, 状态端口只读, 控制端口只写。

2. 编址方式: 统一编址: I/O 端口当作存储器的单元进行地址分配, 使用统一的访存指令访问 I/O 端口; 独立编址: 设置专门的 I/O 指令来访问 I/O 端口。

6.3 I/O 方式

- 1. 程序查询方式
- 2. 程序中断方式:中断的基本概念;中断响应过程;中断处理过程;多重中断和中断屏蔽的概念
- 1. 中断的基本概念:
- 1)"缺页"或"溢出"等异常事件是由特定指令在执行过程中产生的;中断相对于指令的执行则是异步的,中断不和任何指令相关联。CPU 只需要在开始一个新指令之前检测是否有外部发来的中断请求。
- 2) 异常的发生和异常事件的类型是由 CPU 自身发现和识别的,不必通过外部的某个信号通知 CPU,而 CPU 必须通过对外部中断请求线进行采样,才能获知哪个设备发生了何种中断。
- 2. 中断响应过程 (硬件实现):
- 1) 关中断: 屏蔽掉所有可屏蔽中断请求。
- 2) 保护断点:将 PC和 PSW 送入栈或特殊寄存器。
- 3) 识别中断源并转中断服务程序:取优先级最高中断源的中断服务程序首地址和初始 PSW,并分别送 PC和 PSWR。
- 3. 中断处理过程(软件实现):

保存现场和屏蔽字, 开中断, 执行中断服务程序, 关中断, 恢复现场和屏蔽字, 开中断

3. DMA 方式: DMA 控制器的组成, DMA 传送过程