Clustering

Bird's-eye (over)view of existing mixtures methods

Outline

- Introduction
- 2 K-means
- 3 Hierarchical clustering
- 4 Notes
- 5 Example

What is clustering?

- \circ Clustering \rightarrow set of unsupervised techniques to identify subgroups
- Aka clusters

What is clustering?

- Clustering → set of unsupervised techniques to identify subgroups
- Aka clusters

<u>Aim:</u> partition observations in a dataset into homogeneous distinct groups, so that:

- Observations within group are similar to each other
- Observations in different groups are different from each other

What is clustering of environmental exposures?

- Suppose we have N study participants and exposure information on p chemicals
- We want to identify k distinct subgroups (clusters) of participants with distinct exposure experiences. E.g.
 - Cluster 1 includes M₁ participants with high exposures to one subset of the p chemicals (q₁) and low exposures to a different subset of p (q₂)
 - Cluster 2 includes M₂ participants with low exposures to q₁ and high exposures q₂
 - Etc...
 - Please note that the classification into high and low exposures is not necessary

An alternative formulation

- Suppose we have N study participants and exposure information on p chemicals
- \circ We want to identify ℓ distinct clusters of chemicals with distinct participant contributions. E.g.
 - Cluster 1 includes Q₁ chemicals to which one subset of the N participants has high exposure (m₁) and a different subset of N (m₂) has low exposure
 - Cluster 2 includes Q_2 chemicals to which m_1 participants have low exposures and m_2 participants has high exposure

An alternative formulation

- Suppose we have N study participants and exposure information on p chemicals
- \circ We want to identify ℓ distinct clusters of chemicals with distinct participant contributions. E.g.
 - Cluster 1 includes Q₁ chemicals to which one subset of the N participants has high exposure (m₁) and a different subset of N (m₂) has low exposure
 - Cluster 2 includes Q_2 chemicals to which m_1 participants have low exposures and m_2 participants has high exposure
- For simplicity, we will discuss clustering observations (N)
 on the basis of chemicals (p)
- The alternative could be performed simply by transposing the data matrix X

I.e.,

Example

I.e.,

Vs.

Clustering Methods

- o There are numerous methods for clustering
- Here we will focus on the two most popular ones
- K-means
 - Partition N into k (pre-specified) number of clusters

Clustering Methods

- There are numerous methods for clustering
- Here we will focus on the two most popular ones
- K-means
 - Partition N into k (pre-specified) number of clusters
- Hierarchical clustering
 - Tree-like visual representation of all possible clusters $(1 \cdots n)$

K-means Clustering

- Iterative algorithm
- Requires pre-specification of desired number of clusters k
- Partitions each data point into k distinct and non-overlapping clusters

K-means Clustering

Aim: Minimize the within-cluster variation

$$\min_{C_1,\cdots,C_k} \left\{ \sum_{k=1}^K W(C_k) \right\}$$

 I.e. the amount by which the observations in a cluster differ from each other

Define Within-Cluster Variation, $W(C_k)$

First, we need to define what metric of distance to use

- By far the most commonly used: Euclidean Distance
- E.g. in a 3-D space (p = 3), the ED between points 1 and 2 is

$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}$$

Define Within-Cluster Variation, $W(C_k)$ (cont'd)

$$W(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^{\rho} (x_{ij} - x_{i'j})^2$$

• i.e. $W(C_k)$ is the sum of all pairwise squared ED between the observations in cluster k, divided by the total number of observations in cluster k, $|C_k|$

Please note that $\frac{1}{|C_k|}\sum_{i,i'\in C_k}\sum_{j=1}^p(x_{ij}-x_{i'j})^2=2\sum_{i\in C_k}\sum_{j=1}^p(x_{ij}-\mu_{kj})^2$, where μ_{kj} is the mean of pollutant j in cluster C_k

K-means Clustering

Putting all together:

Aim: Minimize the within-cluster variation

$$\min_{C_1, \dots, C_k} \left\{ \sum_{k=1}^K \frac{1}{|C_k|} \sum_{i, i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2 \right\}$$

K-means Algorithm

- Randomly assign a number (1 · · · K) to each of the observations → initial cluster assignments
- Iterate until cluster assignments stop changing:
 - (a) For each of the K clusters compute the cluster centroid: a vector of p means for the observations in the kth cluster
 - (b) Assign each observation to each closest cluster centroid
 - Closest defined using ED

Please note that the algorithm presented in ISLR (above) is not the same as the most commonly used Lloyd's algorithm, but they are equivalent

Keep in Mind

- Local minimum instead of global
 - Results will depend on initial cluster assignments
 - May be unstable
 - ⇒ Need to run multiple times with different initial assignments
 - Select the best run, i.e. the one that yields the minimal

$$\sum_{k=1}^K W(C_k)$$

Keep in Mind

- Local minimum instead of global
 - Results will depend on initial cluster assignments
 - May be unstable
 - ⇒ Need to run multiple times with different initial assignments
 - Select the best run, i.e. the one that yields the minimal

$$\sum_{k=1}^K W(C_k)$$

- Iterative algorithm
 - Default number of iterations in R is 10
 - Might need to increase if local minimum not reached within
 10 iterations (i.e. if the results have not stopped changing)

How to Pick *k*?

- Unfortunately, no "golden rule"
- One potential way: plot the $\sum_{k=1}^{K} W(C_k)$ against the # of clusters to identify the k above which we stop having benefit (aka find the "elbow")

- Try several different options
- The importance of expert knowledge aim for interpretability of the solution!

Hierarchical Clustering

- An alternative clustering approach to K-means
- Does not require pre-specification of k by the user
- Results in a dendrogram, i.e. an upside-down tree-based representation of the clustered observations
- Bottom-up or agglomerative clustering
 - The dendrogram is built starting from the leaves and combining clusters up to the trunk

What is a Dendrogram?

- Each observation is represented by a leaf, i.e. start with N leaves at the bottom
- As we move up the tree, the leaves fuse into branches
- At the top, all branches fuse into the trunk

What is a Dendrogram?

- Each observation is represented by a leaf, i.e. start with N leaves at the bottom
- As we move up the tree, the leaves fuse into branches
- At the top, all branches fuse into the trunk

- Early fusions (lower): more similar the (groups of) observations to each other
- Later fusions (higher): observations can be quite different

Number of Clusters

- A single tree can be used to obtain different numbers of clusters
- Hierarchical: clusters obtained by cutting the tree at a given height are nested within the clusters obtained by cutting the tree at any greater height

Hierarchical Clustering Algorithm

- Begin with N observations and estimate the ED distance of all the $\binom{N}{2} = N(N-1)/2$ pairwise dissimilarities
 - Each observation is its own cluster
- ② For $i = n, n 1, \dots, 2$:
 - (a) Examine all pairwise inter-cluster dissimilarities among the *i* clusters and identify the pair of the clusters that are the *least* dissimilar (i.e. most similar). Fuse these two clusters.
 - The dissimilarity between these two clusters indicates the height in the tree at which the fusion is placed
 - (b) Compute the new pairwise dissimilarities among the i-1 remaining clusters
 - Linkage: Dissimilarity between two groups of observations

Linkage

- Average
 - Mean inter-cluster dissimilarity
 - Computes all pairwise dissimilarities between observations in Cluster A and in Cluster B and records the average of the two
 - Robust against noise
- Complete
 - Max inter-cluster dissimilarity
 - Computes all pairwise dissimilarities between observations in Cluster A and in Cluster B and records the *largest*
 - Compact clusters
- Single
 - Min inter-cluster dissimilarity
 - Computes all pairwise dissimilarities between observations in Cluster A and in Cluster B and records the smallest
 - Results in extended, trailing clusters single observations are fused one at a time

Linkage (cont'd)

Average and complete linkage tend to yield more balanced clusters

Keep in Mind

- What type of linkage should be used?

 Results can vary a let based on this.
 - Results can vary a lot based on this
- Where should we cut the dendrogram to obtain the clusters?

Final thoughts

- Should we scale the observations? E.g. standardize
 - What if some pollutants we have are in ng/m³ and others in mg/m³? or even in μ g/g?
 - This can impact the solution
- Clustering should be used as an exploratory tool
- Try several different options
- Aim for interpretable solutions

Clusters in Health Models

- Clustering is unsupervised
- The resulting clusters could be included in a health model as a categorical variable
- Or could be used to assess effect modification in the association between one of the mixture members and the outcome of interest
- Or could be used to identify population subgroups e.g. based on neighborhood-level factors – and subsequently assess as modifiers in the exposure–outcome relationship

An Example: Cluster-Specific PM_{2.5} Effects

One way to assess long-term exposure to pollution mixtures:

- Is the effect of PM_{2.5} the same across locations with compositional differences in PM_{2.5}?
 - Group cities together
 - Given common pollution profiles

An Example: Cluster-Specific PM_{2.5} Effects

One way to assess long-term exposure to pollution mixtures:

- Is the effect of PM_{2.5} the same across locations with compositional differences in PM_{2.5}?
 - Group cities together
 - Given common pollution profiles

Study Goal:

Is the long-term PM_{2.5}-mortality association modified by PM_{2.5} composition?

Cluster-Specific PM_{2.5} Effects Data Collection & Methods

- 81 cities across the US, 2000 2010
- o Medicare enrollees (≥ 65 years)
- All-cause mortality

Cluster-Specific PM_{2.5} Effects

Data Collection & Methods

PM_{2.5} and speciated PM_{2.5} data from EPA's AQS

24 PM_{2.5} species: (NO₃⁻, Na⁺, K⁺, SO₄²⁻, NH₄⁺, EC, OC, S, Cu, Fe, Zn, Ni, V, Ti, Mg, K, Si, Na, Cl, Ca, Br, Sr, Pb, Mn)

Group together cities with similar pollution profiles:

- K-means clustering
 - Assign cities to clusters based on PM_{2.5} species concentrations

Cluster-Specific PM_{2.5} Effects

Data Collection & Methods

PM_{2.5} and speciated PM_{2.5} data from EPA's AQS

24 PM_{2.5} species: (NO₃⁻, Na⁺, K⁺, SO₄²⁻, NH₄⁺, EC, OC, S, Cu, Fe, Zn, Ni, V, Ti, Mg, K, Si, Na, Cl, Ca, Br, Sr, Pb, Mn)

Group together cities with similar pollution profiles:

- K-means clustering
 - Assign cities to clusters based on PM_{2.5} species concentrations

Health Models:

- City-specific Cox models
- In the second stage random effects meta-analysis
 - Indicators for cluster membership
 - → Cluster-specific effects

Cluster-Specific PM_{2.5} Effects

- Followed >19M, observed >6M deaths
- HR = 1.11 (1.01, 1.23) per 10 μ g/m³ annual PM_{2.5}

- Cl-13: Southwest oceanic
- CI-14 & 15: Rocky Mounts crustal
- Cl-2: Southeast regional
- CI-10: Harbors (South & Southeast)
 residual oil combustion and regional
- CI-11: Industrial Midwest metals & regional
- CI-16: Harbors (Northwest) residual oil combustion
- Birmingham, AL (CL-18): traffic & metals

Thank you!

Questions? mk3961@cumc.columbia.edu

Lloyd's Algorithm

Given an initial set of k means $m_1^{(1)}, \dots, m_k^{(1)}$, the algorithm proceeds by alternating between two steps:

- Assignment Step:
 Assign each observation to the cluster whose mean has the least squared Euclidean distance, i.e. the "nearest" mean
- Update Step: Calculate the new means to be the centroids of the observations in the new clusters