Misleading stars: What cannot be measured on the Internet?

Yvonne-Anne Pignolet, Stefan Schmid, Gilles Tredan

How accurate are network maps?

Why?

- To develop/adapt protocols to Internet PaDIS, RMTP
- To understand the impact of uncertainty: networks metrology?

How?

- multicast [Marchetta et al., JSAC'11]
- network tomography
- Traceroute

Takeaway

- Compare internet topologies instead of counting them
- Local properties suffer
- Global properties suffer less

Traceroute principle

Idea = send « buggy » TTL packets, collect error messages

- Sampling bias: Impact of sources location
- Aliasing: How to map IPs to the equipement
- Load-Balancing: Traceroute assumes all packets follow the same path...
- Stars: Disabled/Filtered ICMP messages

- Sampling bias: Impact of sources location
- Aliasing: How to map IPs to the equipement
- Load-Balancing: Traceroute assumes all packets follow the same path...
- Stars: Disabled/Filtered ICMP messages

Trace:
$$t_1 = a, \star_1, b$$

$$t_2 = b, \star_2, i_1, i_2, i_3, \star_3, c$$

- Sampling bias: Impact of sources location
- Aliasing: How to map IPs to the equipement
- Load-Balancing: Traceroute assumes all packets follow the same path...
- Stars: Disabled/Filtered ICMP messages

Trace:

$$t_1 = a, \star_1, b$$

 $t_2 = b, \star_2, i_1, i_2, i_3, \star_3, c$ \leftarrow

- Sampling bias: Impact of sources location
- Aliasing: How to map IPs to the equipement
- Load-Balancing: Traceroute assumes all packets follow the same path...
- Stars: Disabled/Filtered ICMP messages

Trace: $t_1 = a, \star_1, b$ $t_2 = b, \star_2, i_1, i_2, i_3, \star_3, c$

- Sampling bias: Impact of sources location
- Aliasing: How to map IPs to the equipement
- Load-Balancing: Traceroute assumes all packets follow the same path...
- Stars: Disabled/Filtered ICMP messages

Trace:

$$t_1 = a, \star_1, b$$

 $t_2 = b, \star_2, i_1, i_2, i_3, \star_3, c$ \leftarrow

- Sampling bias: Impact of sources location
- Aliasing: How to map IPs to the equipement
- Load-Balancing: Traceroute assumes all packets follow the same path...
- Stars: Disabled/Filtered ICMP messages

Trace:

$$t_1 = a, \star_1, b$$

 $t_2 = b, \star_2, i_1, i_2, i_3, \star_3, c$ \leftarrow

Related Works

Works initiated by Acharya and Gouda [SSS09, ICDCN10, ICDCN11]

- Models to capture irregular nodes
- ullet Irregular nodes o anonymous nodes
- Central concept of minimal topologies
- Counting the number of generable topologies

Our approach: Lots of generable topologies is not a problem if they are all similar

Model

- $G_0(V_0, E_0)$: static undirected graph = Target Topology.
- $v \in V_0$ is
 - either named: always answers with its only name (no aliasing)
 - either anonymous: always answers *.
- Not necessarily minimal!
- $d_{G_0}(u, v)$ is the shortest path distance.

Model

- $G_0(V_0, E_0)$: static undirected graph = Target Topology.
- $v \in V_0$ is
 - either named: always answers with its only name (no aliasing)
 - either anonymous: always answers *.
- Not necessarily minimal!
- $d_{G_0}(u, v)$ is the shortest path distance.

Model/2

We don't know G_0 , but we know a set of traces $\mathcal T$ of G_0 .

- ullet Anonymous nodes appear as stars (\star) in ${\mathcal T}$
- ullet Each star has a unique number $(\star_i, i=1..s)$ in ${\mathcal T}$
- $d_T(u, v)$ is the number of symbols in $T \in \mathcal{T}$ between u and v.
- No Assumption on the number of traces, on path uniqueness nor symmetry.

Rules

Complete cover: Each edge of G_O appears at least once in some trace to \mathcal{T}

Reality sampling: For every trace $T \in \mathcal{T}$, if the distance between two symbols $\sigma_1, \sigma_2 \in T$ is $d_T(\sigma_1, \sigma_2) = k$, then there exists a path (i.e., a walk without cycles) of length k connecting two (named or anonymous) nodes σ_1 and σ_2 in G_0 .

No assumption on coverage

$$\begin{array}{c}
a, b, c \\
a, c, b \\
a, \star_1, c \\
a, d, c
\end{array}$$

Rules -2

 α -(Routing) Consistency: There exists an $\alpha \in (0,1]$ such that, for every trace $T \in \mathcal{T}$, if $d_T(\sigma_1, \sigma_2) = k$ for two entries σ_1, σ_2 in trace T, then the shortest path connecting the two (named or anonymous) nodes corresponding to σ_1 and σ_2 in G_0 has distance at least $\lceil \alpha k \rceil$.

Note: $\alpha > 0 \Leftrightarrow |oop-less|$ routing

$$a, b, c$$

 $a, i_1, i_3, i_4, c \Rightarrow \alpha \leq \frac{2}{5}$

Some more definitions

A topology G is α -consistently **inferrable** from $\mathcal T$ if it respects the 3 previous rules.

Let $\mathcal{G}_{\mathcal{T}} = \{G, \text{ s.t. } G \text{ is inferrable from } \mathcal{T}\}$ We study the properties of the set $\mathcal{G}_{\mathcal{T}}$ of inferrable topologies.

We define the canonic graph G_c as the straightforward graph that treats each star as unique.

How to infer topologies?

1 inferrable topology= 1 mapping of stars to anonymous routers.

Let Map be such function.

How to infer topologies -2

- G_c is inferrable. Map= Id.
- (i) if $\star_1 \in T_1$ and $\star_2 \in T_2$, and $\lceil \alpha \cdot d_{T_1}(\star_1, u) \rceil > d_C(u, \star_2) \Rightarrow \operatorname{\mathsf{Map}}(\star_1) \neq \operatorname{\mathsf{Map}}(\star_2).$

(ii) $\star_1 \in T_1 \star_2 \in T_2$, and $\exists T$ s.t. $\lceil \alpha \cdot d_T(u, v) \rceil > d_C(u, \star_1) + d_C(v, \star_2) \Rightarrow \mathsf{Map}(\star_1) \neq \mathsf{Map}(\star_2).$

Star graph

Algorithm constructive part

We construct the Star Graph $G_*(V_*, E_*)$:

- Vertices=stars in the trace
- Edges=if stars cannot be merged: $(\star_1, \star_2) \in E_* \Leftrightarrow \mathsf{Map}(\star_1) \neq \mathsf{Map}(\star_2).$

1 proper coloring of $G_* \leftrightarrow 1$ Map function

- minimal coloring → minimal topology
- 'maximal' coloring $o G_c$

$$\sum_{k=\gamma(G_*)}^{|V_*|} P(G_*,k)/k! \ge |\mathcal{G}_{\mathcal{T}}|,$$

 $\gamma(G_*) = \text{chromatic number of } G_*$ $P(G_*, k) = \text{chromatic polynomial of } G_*.$

Star Graph /2

$$\begin{array}{c}
\overset{\alpha}{\leftarrow} \overbrace{\{i_{b}\}_{b}^{*}} \overbrace{\bigcap_{i_{b}=i_{b}-i_$$

Looking at properties/ Global

Results are bad!

Connected components
 No assumption on « coverage » ⇒
 Stars disconnect the graph!

$$|cc(G_1)/cc(G_2)| \leq \frac{n}{2}$$

Stretch
 Even if we only consider connected topologies.

$$|stretch(G)| \leq \frac{n+s-1}{2}$$

Looking at properties/ Local

ıt's Worse!

Triangles

Bipartite complete graph worst case

$$|\mathit{C}_{3}(\mathit{G}_{1})/\mathit{C}_{3}(\mathit{G}_{2})| \leq \infty$$

Degree

Worst case is on anonymous nodes $|\operatorname{DEG}(G_1) - \operatorname{DEG}(G_2)| \le 2(s - \gamma(G_*))$

Best case: Fully explored topologies

Strong assumptions:

- ullet lpha=1 : shortest path routing
- $\forall u, v \in V_0, \exists T \in \mathcal{T} \text{ such that } u \in T \lor v \in T$
- We don't see any stronger case

Results:

- Global properties conserved
- Local properties: still bad!

Overall Results

Absolute difference: $G_1 - G_2$

Property	Arbitrary	Fully Explored ($lpha=1$)
# of nodes	$\leq s - \gamma(G_*)$	$\leq s - \gamma(G_*)$
# of links	$\leq 2(s-\gamma(G_*))$	$\leq 2(s-\gamma(G_*))$
# of CC	$\leq n/2$	= 0
Diameter	$\leq (s-1)/s \cdot (N-1)$	s/2 (¶)
Max. Deg.	$\leq 2(s-\gamma(G_*))$	$\leq 2(s-\gamma(G_*))$
Triangles	$\leq 2s(s-1)$	$\leq 2s(s-1)/2$

Relative difference: G_1/G_2

# of nodes	$\leq (n+s)/(n+\gamma(G_*))$	$\leq (n+s)/(n+\gamma(G_*))$
# of links	$\leq (\nu+2s)/(\nu+2)$	$\leq (\nu+2s)/(\nu+2)$
# of CC	$\leq n/2$	= 1
Stretch	$\leq (N-1)/2$	= 1
Diameter	$\leq s$	2
Max. Deg.	$\leq s - \gamma(G_*) + 1$	$\leq s - \gamma(G_*) + 1$
Triangles	∞	∞

Conclusion

- Constructive proofs
- Complex algorithm
- Don't count, compare!
- Huge dissimilarities
- Worst case approach

A practical part:

- compare with reality
- develop property estimation algorithms

Thanks!