BAYESIAN OPTIMIZATION OVERVIEW

Marco Forgione

¹IDSIA Dalle Molle Institute for Artificial Intelligence SUPSI-USI, Lugano, Switzerland

December 10, 2019

Motivations

Obtaining the predictive model for MPC is costly and time-consuming.

Typically, models are obtained through Physical modeling or Identification

- Requires domain knowledge and/or ad-hoc identification experiments
- A trade-off emerges between accuracy and complexity

It is often difficult to decide a priori how accurate the predictive model should be in order to achieve satisfactory closed-loop performance.

In this work

- We introduce a data-driven framework aimed at finding the best model for MPC from calibration experiments
- We specialize this framework for a hierarchical MPC architecture often encountered in industrial applications

Motivations

Obtaining the predictive model for MPC is costly and time-consuming.

Typically, models are obtained through Physical modeling or Identification

- Requires domain knowledge and/or ad-hoc identification experiments
- A trade-off emerges between accuracy and complexity

It is often difficult to decide a priori how accurate the predictive model should be in order to achieve satisfactory closed-loop performance.

In this work:

- We introduce a data-driven framework aimed at finding the best model for MPC from calibration experiments
- We specialize this framework for a hierarchical MPC architecture often encountered in industrial applications

Motivations

Obtaining the predictive model for MPC is costly and time-consuming.

Typically, models are obtained through Physical modeling or Identification

- Requires domain knowledge and/or ad-hoc identification experiments
- A trade-off emerges between accuracy and complexity

It is often difficult to decide a priori how accurate the predictive model should be in order to achieve satisfactory closed-loop performance.

In this work:

- We introduce a data-driven framework aimed at finding the best model for MPC from calibration experiments
- We specialize this framework for a hierarchical MPC architecture often encountered in industrial applications

Overview

One of the best off-the-shelf global optimization algorithms

- Iteratively updates a stochastic surrogate model of the unknown $J(\theta)$ via Bayesian inference. Typically, a Gaussian Process (GP)
- ullet Balances exploitation and exploration by optimizing an acquisition function A(heta) instead of the surrogate model directly
- The acquisition function $A(\theta)$ favors points with estimated good performance \rightarrow exploitation and/or high variance \rightarrow exploration
- The acquisition function $A(\theta)$ is (relatively) cheap to evaluate. It is a mathematical object!

Overview

One of the best off-the-shelf global optimization algorithms

- Iteratively updates a stochastic surrogate model of the unknown $J(\theta)$ via Bayesian inference. Typically, a Gaussian Process (GP)
- ullet Balances exploitation and exploration by optimizing an acquisition function A(heta) instead of the surrogate model directly
- The acquisition function $A(\theta)$ favors points with estimated good performance \rightarrow exploitation and/or high variance \rightarrow exploration
- The acquisition function $A(\theta)$ is (relatively) cheap to evaluate. It is a mathematical object!

- The function $J(\theta)$ assumed Gaussian with prior mean $E[J(\theta)] = \mu(\theta)$ and covariance $\text{cov}[J(\theta_1), J(\theta_2)] = \kappa(\theta_1, \theta_2)$.
- The posterior mean and covariance given a new observation (θ_i, J_i) is obtained in closed form

- The function $J(\theta)$ assumed Gaussian with prior mean $E[J(\theta)] = \mu(\theta)$ and covariance $\text{cov}[J(\theta_1), J(\theta_2)] = \kappa(\theta_1, \theta_2)$.
- The posterior mean and covariance given a new observation (θ_i, J_i) is obtained in closed form

- The function $J(\theta)$ assumed Gaussian with prior mean $E[J(\theta)] = \mu(\theta)$ and covariance $\text{cov}[J(\theta_1), J(\theta_2)] = \kappa(\theta_1, \theta_2)$.
- The posterior mean and covariance given a new observation (θ_i, J_i) is obtained in closed form

- The function $J(\theta)$ assumed Gaussian with prior mean $E[J(\theta)] = \mu(\theta)$ and covariance $\text{cov}[J(\theta_1), J(\theta_2)] = \kappa(\theta_1, \theta_2)$.
- The posterior mean and covariance given a new observation (θ_i, J_i) is obtained in closed form

- The function $J(\theta)$ assumed Gaussian with prior mean $E[J(\theta)] = \mu(\theta)$ and covariance $\text{cov}[J(\theta_1), J(\theta_2)] = \kappa(\theta_1, \theta_2)$.
- The posterior mean and covariance given a new observation (θ_i, J_i) is obtained in closed form

- The function $J(\theta)$ assumed Gaussian with prior mean $E[J(\theta)] = \mu(\theta)$ and covariance $\text{cov}[J(\theta_1), J(\theta_2)] = \kappa(\theta_1, \theta_2)$.
- The posterior mean and covariance given a new observation (θ_i, J_i) is obtained in closed form

Acquisition function

The GP provides the probability distribution of $J(\theta)$ for each parameter θ . This probability is used to define an acquisition function, e.g.,

Probability of Improvement

Expected improvement

$$A(\theta) = PI(\theta) = \rho(J(\theta) \le J^{\min})$$

$$A(\theta) = \operatorname{PI}(\theta) = p(J(\theta) \le J^{\min})$$
 $A(\theta) = \operatorname{EI}(\theta) = \operatorname{\mathbb{E}}[\max(0, J^{\min} - J(\theta))]$

Overview

Steps of BO: for $i = 1, 2, \dots i_{\text{max}}$

- **1 Execute** experiment with θ_i , measure $J_i = J(\theta_i) + e_i$
- **2 Update** the GP model $\theta \to J(\theta)$ with (θ_i, J_i)
- **3 Construct** acquisition function $A(\theta)$
- **Maximize** $A(\theta)$ to obtain next query point θ_{i+1}

Bayesian Optimization Example

iteration 9

Bayesian Optimization Example

iteration 10

Thank you. Questions?