Advanced Algorithms - Notes

Dom Hutchinson

February 3, 2020

Contents

1	Hashing	2
	1.1 Perfect Hashing	5
0	Reference	8
	0.1 Probability	8

1 Hashing

Definition 1.1 - Dictionary

A *Dictionary* is an abstract data structure which stores (*key*, *value*) pairs, with *key* being unique. A *Dynamic Dictionary* can perform the following operations

Operation	Description
add(k,v)	Add the pair (k,v).
lookup(k)	Return v if (k,v) is in dictionary, NULL otherwise.
delete(k)	Remove pair (k,v), assuming (k,v) is in dictionary.

A Static Dictionary can only perform lookups

Operation	Description
lookup(k)	Return v if (k, v) is in dictionary, NULL otherwise.

Proposition 1.1 - Implementing a Dictionary

Many data structures can be used to implement a *Dictionary*. These include, but not limited to:

- i) Linked lists.
- ii) Binary Search, (2,3,4) & Red-Black Trees.
- iii) Skip lists
- iv) van Emde Boas Trees.

Remark 1.1 - Motivation for Hashing

None of the implementations of a *Dictionary* suggested in **Proposition 1.1** achieves a O(1) run-time complexity in the worst case for <u>all</u> operations. To achieve this we introduce *Hashing*.

Definition 1.2 - Hash Function

A *Hash Function* takes in object's key and returns a value which is used to index the object in a *Hash Table*.

Let S be the set of all possible keys a hash function can recieve & m be the number of indexes in its $Associated\ Hash\ Table$. Then

$$h: S \to [m]$$

N.B. We want to avoid cases where h(x) = h(y) for $x \neq y$ (collisions).

Remark 1.2 - Hashing functions assign items to indices with a geometric distribution

Remark 1.3 - Avoiding Collisions in Hashing

When indexing n items to m indicies using a Hash Function we only avoid Collisions if $m \gg n$.

Definition 1.3 - Hash Table

A *Hash Table* is an abstract data structre which extends the *Dictionary* in such a way that time complexity is reduced.

A Hash Table is comprise of an array & a Hash Function. The Hash Function maps an object's key to an index in the array. If multiple objects have the same Hash Value then a Linked List is used in that index, with new objects added to the end of the Linked List (Called Chaining).

Proposition 1.2 - Time Complexity for Dictionary Operations in a Hash Table

By building a *Hash Table* with *Chaining* we achieve the following time complexities for *Dictionary* operations

Operation	Worst Case Time Complexity	Comments
add(k,v)	O(1)	Add item to the end of <i>Linked List</i> if necessary.
lookup(k)	$O(\text{length of chain containing } \mathbf{k})$	We might have to search through the whole
		Linked List containing k.
delete(k)	$O(\text{length of chain containing } \mathbf{k})$	Only $O(1)$ to perform the actual deletion,
	,	but need to find k first.

Theorem 1.1 - True Randomness

Consider n fixed inputs for a $Hash\ Table$ with m indices. (i.e. any sequence of n add/lookup/delete operations).

Pick a Hash Function, h, at random from a set of all Hash Functions, $H := \{h : S \to [m]\}$. Then

$$\mathbb{E}(\text{Run-Time per Operation}) = O\left(1 + \frac{n}{m}\right)$$

N.B. The expected run-time per operation is O(1) if $m \gg n$.

Proof 1.1 - *Theorem 1.1*

Let $x \& y \in S$ be two distincy keys & T be a Hash Table with m indexes.

Define
$$I_{x,y}$$

$$\begin{cases} 1 & h(x) = h(y) \\ 0 & \text{otherwise} \end{cases}$$
.

We have $\mathbb{P}(h(x) = h(y)) = \frac{1}{m}$

Therefore

$$\mathbb{E}(I_{x,y}) = \mathbb{P}(I_{x,y} = 1)$$

$$= \mathbb{P}(h(x) = h(y))$$

$$= \frac{1}{m}$$

Let N_x be the number of keys stored in H that are hashed to h(x).

Note that
$$N_x = \sum_{k \in T} I_{x,k}$$
.

Now we have that

$$\mathbb{E}(N_x) = \mathbb{E}\left(\sum_{k \in T} I_{x,k}\right) = \sum_{k \in H} \mathbb{E}(I_{x,k}) = n\frac{1}{m} = \frac{n}{m}$$

Remark 1.4 - Why not hash to unique values

Suppose we want to define a $Hash\ Function$ which maps each key in S to a unique position in the $Hash\ Table,\ T$. This requires m unique positions, which in turn require $\log_2 m$ bits for each key. This is an unreasonably large amount of space.

Proposition 1.3 - Specifying the Hash Function

Consider a set of Hash Functions, $H := \{h_1, h_2, \dots\}$.

When we initialise a $Hash\ Table$ we choose a hash function $h \in H$ at random and then proceed only to use h when dealing with this specific $Hash\ Table$.

Remark 1.5 - Randomness in Hashing

All the randomness in *Hashing* comes from how we choose the *Hash Function* & not from how the *Hash Function* itself runs.

Definition 1.4 - Weakly Universal Set of Hashing Functions

Let $H := \{h|h: S \to [m]\}$ be a set of Hashing Functions.

H is Weakly Universal if for any chosen $x, y \in S$ with $x \neq y$

$$\mathbb{P}(h(x) = h(y)) \le \frac{1}{m}$$
 when varying $h(\cdot)$

when h is chosen uniformly at random from H.

Theorem 1.2 - Expected Run time for Weakly Universal Set

Consider n fixeds to a Hash Table, T, with m indexes.

Pick a Hash Function, H, from a Weakly Universal Set of Hash Functions, H.

$$\mathbb{E}(\text{Run-Time per Operation}) = O(1) \text{ for } m \geq n$$

N.B. Proof is same as for True Randomness.

Proposition 1.4 - Constructing a Weakly Universal Set of Hash Functions Let S := [s] be the set of possible keys & p be some prime greater than s^1 . Choose some $a, b \in [0, p-1]$ & define

$$\begin{array}{rcl} h_{a,b}(x) & = & \underbrace{\left[\; (ax+b) \bmod p \; \right]}_{\text{spread values over } [0,p-1]} \underbrace{\bmod m}_{\text{causes collisions}} \\ H_{p,m} & = & \{ h_{a,b}(\cdot) : a \in [1,p-1], \; b \in [0,p-1] \end{array}$$

N.B. $H_{p,m}$ is a Weakly Universal Set of Hashing Functions.

N.B. Different values of a & b perform differently for different data sets.

Remark 1.6 - True Randomness vs Weakly Universal Hashing

- For both True Randomness & Weakly Universal Hashing we have that when $m \geq n$ the expected lookup time in the Hash Table is O(1).
- Constructing a Weakly Universal Set of Hash Functions is generally easier.

Theorem 1.3 - Longest Chain - True Randomness

If $Hashing\ Function\ h$ is selected uniformly at random from all $Hashing\ Functions$ to m indicies. Then, over m inputs we have

$$\mathbb{P}(\exists \text{ a chain length} \geq 3\log_2 m) \leq \frac{1}{m}$$

Proof 1.2 - *Theorem 1.3*

This problem is equivalent to showing that if we randomly throw m balls into m bins the probabiltiy of having a bin with at least $3\log_2 m$ balls is at most $\frac{1}{m}$.

Let X_1 be the number of valls in the first bin.

Choose any k of the M balls, the probabilty that all of these K balls go into the first bin is $\frac{1}{m^k}$. By the *Union Bound Theorem* we have

$$\mathbb{P}(X_1 \ge k) \le \binom{m}{k} \frac{1}{m^k} \le 1k!$$

Applying the *Union Bound Theorem* again we have

$$\mathbb{P}(\text{at least 1 bin recieves at least } k \text{ balls}) \leq m \mathbb{P}(X_1 \geq k) \leq \frac{m}{k!}$$

¹There is a theorem that $\forall n \exists p \in [n, 2n]$ st p is prime.

Observe that

$$k! > 2^{k-1}$$
Let $k = 3 \log_2 m$

$$\Rightarrow k! > 2^{(3 \log_2 m - 1)}$$

$$\geq 2^{2 \log_2 m}$$

$$\geq (2^{\log_2 m})^2$$

$$= m^2$$

Thus, setting $k = 3 \log_2 m$ means

$$\frac{m}{k!} \le \frac{1}{m} \text{ for } m \ge 2$$

Theorem 1.4 - Longest Chain - Weakly Universal Hashing

Let Hashing Function h be picked uniformly at random from a Weakly Universal Set of Hashing Functions.

Then, over m inputs

$$\mathbb{P}(\exists \text{ a chain length} \geq 1 + \sqrt{2m}) \leq \frac{1}{2}$$

N.B. This is a poor bound.

Proof 1.3 - *Theorem 1.4*

Let $x, y \in S$ be two keys and define $I_{x,y} \begin{cases} 1 & h(x) = h(y) \\ 0 & \text{otherwise} \end{cases}$.

Let C be a random variable for the total number of collision (i.e. $C = \sum_{x,y \in H, \mathbf{x} < y} I_{x,y}$). Using Linearity of Expectation and that $\mathbb{E}(I_{x,y}) = \frac{1}{m}$ when h is Weakly Universal

$$\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in H, \ x < y} I_{x,y}\right) = \sum_{x,y \in H, \ x < y} \mathbb{E}(I_{x,y}) = \binom{m}{2} \frac{1}{m} \le \frac{m}{2}$$

By Markov's Inequality

$$\mathbb{P}(C \ge m) \le \frac{\mathbb{E}(C)}{m} \le \frac{1}{2}$$

Let L be a random variable for the length of the longest chain in H. Then, $C \leq {L \choose 2}$. Now

$$\mathbb{P}\left(\frac{(L-1)^2}{2} \ge m\right) \le \mathbb{P}\left(\binom{L}{2} \ge m\right) \le \mathbb{P}(C \ge m) \le \frac{1}{2}$$

By rearranging, we have that

$$\mathbb{P}(L \ge 1 + \sqrt{2m}) \le \frac{1}{2}$$

Perfect Hashing 1.1

Remark 1.7 - Motivation

The Hashing Schemes discussed in the previous part perform well in the best & average cases but not necessarily in the worst cases (as they can have really long longest chains).

Definition 1.5 - Static Perfect Hashing

A Perfect Static Hashing Scheme maps values to a Hash Table is such a way that lookups can be done in constant time, even in the worst case.

N.B. FKS Hashing Scheme is a Perfect Static Hashing Scheme.

Definition 1.6 - FKS Hashing Scheme

Below is an algorithm for the FKS Hashing Scheme

Algorithm 1: FKS Hashing Scheme

require: $n\{\# \text{ insertions}\}, T\{\text{Table with } n \text{ entries}\}$

- 1 Insert all n into T using h
- 2 while Collisions in $T \geq n$ do
- **3** Rebuild T using a new h.
- 4 Let $n_i = |T[i]|$.
- 5 for $i \in [1, n]$ do
- Insert items of T[i] into new table T_i of size n_i^2 using h_i .
- 7 | while Collisions in $T_i \geq 1$ do
- 8 Rebuild T_i using a new h_i .
- 9 return T

N.B. $\mathbb{P}(\text{Collisions in } T_i \geq 1) \leq \frac{1}{2} \text{ and } N.B. \, \mathbb{P}(\text{Collisions in } T \geq n) \leq \frac{1}{2} \text{ so we expect to have to build each table twice.}$

Proposition 1.5 - FKS Hashing Scheme - lookup

Below is an algorithm for lookup(x) in the Hash Tables produced by the FKS Hashing Scheme

Algorithm 2: FKS - lookup(x)

require: T {main table}, $\{T_1, \ldots, T_m\}$ {sub-tables}, x {key}

- 1 Compute i = h(x).
- **2** Compute $j = h_i(x)$.
- $\mathbf{3}$ return $T_i[j]$

N.B. This runs in O(1) time.

Proof 1.4 - FKS Hashing Scheme - Space Requirements

In the FKS Hashing Scheme the main table T requires space O(n) and each sub-table T_i requires space $O(n_i^2)$, where $n_i = |T[i]|$.

Storing each task function, h_i requires space O(1).

Thus the total space used is1

$$O(n) + \sum_{i} O(n_i^2) = O(n) + O\left(\sum_{i} n_i^2\right)$$

We know there are $\binom{n_i}{2}$ collisions in T[i] so there are $\sum_i \binom{n_i}{2}$ collisions in T.

We know there are at most n collisions in T so

$$\sum_i \frac{n_i^2}{4} \le \sum_i \binom{n_i}{2} < n \implies \sum_i n_i^2 < 4n$$

Thus

$$O(n) + O\left(\sum_{i} n_i^2\right) = O(n)$$

Proof 1.5 - FKS Hashing Scheme - Expected Construction Time

The expected construction time for the main table, T, is O(n).

The expected construction time for reach sub-table, T_i , is $O(n_i^2)$ where $n_i := |T[i]|$.

Thus

$$expect (\text{construction time}) = \mathbb{E}\left(\text{construction time of } T + \sum_{i} \text{construction time of } T_{i}\right)$$

$$= \mathbb{E}\text{construction time of } T) + \mathbb{E}\left(\sum_{i} \text{construction time of } T_{i}\right)$$

$$= O(n) + \sum_{i} O(n_{i}^{2})$$

$$= O(n) + O\left(\sum_{i} n_{i}^{2}\right) \text{ see Proof 1.4}$$

$$= O(n)$$

Proposition 1.6 - FKS Hashing Scheme - Properties

- Has no collisions.
- lookup takes O(1) time in worst-case.
- Uses O(n) space.
- Can be build in O(n) expected time.

0 Reference

0.1 Probability

Definition 0.1 - Sample Space, Ω

A Sample Space is the set of possible outcomes of a scenario. A Sample Space is not necessarily finite.

e.g. Rolling a dice $\Omega := \{1, 2, 3, 4, 5, 6\}.$

Definition 0.2 - Event

An Event is a subset of the Sample Space.

The probability of an *Event*, A, happening is

$$\mathbb{P}(A) = \sum_{x \in A} \mathbb{P}(x)$$

Definition 0.3 - Disjoint Events

Let $A_1 \& A_2$ be events.

 $A_1 \& A_2$ are said to be *Disjoint* if $A_1 \cap A_2 = \emptyset$.

Definition 0.4 - σ -Field, \mathcal{F}

A Sigma Field is the set of possible events in a given scenario.

A Sigma Field must fulfil the following criteria

- i) $\emptyset, \Omega \in \mathcal{F}$.
- ii) $\forall A \in \mathcal{F} \implies A^c \in \mathcal{F}$.

iii)
$$\forall \{A_1, \ldots, A_n\} \subseteq \mathcal{F} \implies \bigcup_{i=1}^n A_i \in \mathcal{F}.$$

Definition 0.5 - Probability Measure, \mathbb{P}

A Probability Measure maps a σ -Field to [0,1] which satisfies

- i) $\mathbb{P}(\emptyset) = 0 \& \mathbb{P}(S) = 1$; and,
- ii) If $\{A_1, \ldots, A_n\} \subseteq \mathcal{F}$ are pair-wise disjoint then $\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mathbb{P}(A_i)$. $[\sigma\text{-Additivity}]$

Definition 0.6 - Random Variable

A Random Variable is a function from the sample space, S, to the real numbers, \mathbb{R} .

$$X:S\to\mathbb{R}$$

The probability of a Random Variable, X, taking a specific value x is found by

$$\mathbb{P}(X=x) = \sum_{\{a \in \Omega: X(a) = x\}} \mathbb{P}(a)$$

Definition 0.7 - Indicator Random Variable

An *Indicator Random Variable* is a *Random Variable* which only ever takes 0 or 1 and is used to indicate whether a particular event has happened (1), or not (0).

$$\mathbb{E}(I) = \mathbb{P}(I=1)$$

Definition 0.8 - Expected Value, \mathbb{E}

The Expected Value of a Random Variable is the mean value of said Random Variable

$$\mathbb{E}(X) := \sum_{x} x \mathbb{P}(X = x)$$

Theorem 0.1 - Linearity of Expected Value Let X_1, \ldots, X_n be random variables. Then

$$\mathbb{E}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \mathbb{E}(X_i)$$

Theorem 0.2 - Markov's Inequality

Let X be a non-negative random variable. Then

$$\mathbb{P}(X \ge a) \le \frac{1}{a} \mathbb{E}(X) \quad \forall \ a > 0$$

Theorem 0.3 - Union Bound Let A_1, \ldots, A_n be Events. Then

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} \mathbb{P}(A_i)$$

N.B. This in an equality if the events are disjoint.

Proof 0.1 - Union Bound

Define $Indicator RV I_i$ st

$$I_i := \begin{cases} 1 & A_i \text{ happened} \\ 0 & \text{otherwise} \end{cases}$$

Define Random Variable $X := \sum_{i=1}^{n} I_i$ (the number of events that happened).

Then

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \mathbb{P}(X > 0)$$

$$\leq \mathbb{E}(X) \text{ by Markov's Inequality}$$

$$= \mathbb{E}\left[\sum_{i=1}^{n} I_{i}\right]$$

$$= \sum_{i=1}^{n} \mathbb{E}[I_{i}]$$

$$= \sum_{i=1}^{n} \mathbb{P}(I_{i} = 1)$$

$$= \sum_{i=1}^{n} \mathbb{P}(A_{i}1)$$

9