PROGRAMME DE COLLES

SUP MPSI 2

Semaine 25

Du 15 au 19 avril 2024.

SOLUTIONS AQUEUSES:

Solution aqueuse 3

REACTIONS D'OXYDO-REDUCTION

EN TD UNIQUEMENT + 2 QUESTIONS DE COURS ESSENTIELLES.

Notions et contenus	Capacités exigibles
4.4.2. Réactions d'oxydo-réduction	
Oxydants et réducteurs, réactions d'oxydo- réduction Nombre d'oxydation. Exemples d'oxydants et de réducteurs minéraux usuels : nom, nature et formule des ions thiosulfate, permanganate, hypochlorite, du peroxyde d'hydrogène.	Relier la position d'un élément dans le tableau périodique et le caractère oxydant ou réducteur du corps simple correspondant. Prévoir les nombres d'oxydation extrêmes d'un élément à partir de sa position dans le tableau périodique.
Pile, tension à vide, potentiel d'électrode, formule de Nernst, électrodes de référence.	Identifier l'oxydant et le réducteur d'un couple. Décrire le fonctionnement d'une pile à partir d'une mesure de tension à vide ou à partir des potentiels d'électrode.
Diagrammes de prédominance ou d'existence.	Utiliser les diagrammes de prédominance ou d'existence pour prévoir les espèces incompatibles ou la nature des espèces majoritaires.
Aspect thermodynamique des réactions d'oxydo-réduction. Dismutation et médiamutation.	Prévoir qualitativement ou quantitativement le caractère thermodynamiquement favorisé ou défavorisé d'une réaction d'oxydo-réduction à partir des potentiels standard des couples. Mettre en œuvre une réaction d'oxydo-réduction pour réaliser une analyse quantitative en
	solution aqueuse. Réaliser une pile et étudier son fonctionnement.

Solution aqueuse 4

DIAGRAMMES POTENTIEL-PH

EN COURS ET TD.

Notions et contenus	Capacités exigibles
Diagrammes potentiel-pH	
Principe de construction, lecture et utilisation d'un diagramme potentiel-pH.	Identifier les différents domaines d'un diagramme fourni associés à des espèces chimiques données. Déterminer la valeur de la pente d'une frontière dans un diagramme potentiel-pH. Justifier la position d'une frontière verticale. Prévoir le caractère thermodynamiquement favorisé ou non d'une transformation par superposition de diagrammes.
Diagramme potentiel-pH de l'eau	Prévoir la stabilité des espèces dans l'eau. Prévoir une dismutation ou médiamutation en fonction du pH du milieu. Confronter les prévisions à des données expérimentales et interpréter d'éventuels écarts en termes cinétiques. Mettre en œuvre des réactions d'oxydoréduction en s'appuyant sur l'utilisation de

THERMODYNAMIQUE:

Thermodynamique 1

INTRODUCTION A LA THERMODYNAMIQUE

EN COURS UNIQUEMENT.

Notions et contenus	Capacités exigibles
Échelles microscopique, mésoscopique, et macroscopique. Libre parcours moyen.	Définir l'échelle mésoscopique et en expliquer la nécessité. Citer quelques ordres de grandeur de libres parcours moyens.
Système thermodynamique.	Identifier un système ouvert, un système fermé, un système isolé.
Etat d'équilibre d'un système soumis aux seules forces de pression. Pression, température, volume, équation d'état. Grandeur extensive, grandeur intensive. Exemples du gaz parfait et d'une phase condensée indilatable et incompressible.	Calculer une pression à partir d'une condition d'équilibre mécanique. Déduire une température d'une condition d'équilibre thermique. Citer quelques ordres de grandeur de volumes molaires ou massiques dans les conditions usuelles de pression et de température. Citer et utiliser l'équation d'état des gaz parfaits.
Du gaz réel au gaz parfait.	Comparer le comportement d'un gaz réel au modèle du gaz parfait sur des réseaux d'isothermes expérimentales en coordonnées de Clapeyron ou d'Amagat.

Thermodynamique 2 ENERGIE INTERNE ET CAPACITE THERMIQUE A VOL CST

EN COURS UNIQUEMENT.

Notions et contenus	Capacités exigibles
État microscopique et état macroscopique.	Préciser les paramètres nécessaires à la description d'un état microscopique et d'un état macroscopique sur un exemple.
Distribution des vitesses moléculaires d'un gaz (homogénéité et isotropie). Vitesse quadratique moyenne. Température cinétique. Exemple du gaz parfait monoatomique : Ec=3/2kT.	Calculer l'ordre de grandeur d'une vitesse quadratique moyenne dans un gaz parfait.
Énergie interne d'un système. Capacité thermique à volume constant dans le cas du gaz parfait.	Exprimer l'énergie interne d'un gaz parfait monoatomique à partir de l'interprétation microscopique de la température. Exploiter la propriété U _m =U _m (T) pour un gaz parfait.
Énergie interne et capacité thermique à volume constant d'une phase condensée considérée incompressible et indilatable.	Exploiter la propriété U _m =U _m (T) pour une phase condensée incompressible et indilatable.

Questions de cours à choisir parmi les suivantes :

- ✓ Q1 : Connaître le vocabulaire associé à une pile : Pôle + ; Pôle ; Cathode ; Anode ; Oxydation ; Réduction ; Sens spontané ; Sens des électrons dans le circuit extérieur ; Sens de l'intensité. Force électromotrice. Exple de la pile Daniell éventuellement : $\operatorname{Zn}_{(s)}|\operatorname{Zn}^{2+}$; $\operatorname{SO}_4^{2-}|\operatorname{SO}_4^{2-}$; $\operatorname{Cu}^{2+}|\operatorname{Cu}_{(s)}$. On donne $E^{\circ}(Cu^{2+}/Cu) = 0.34 \ V$ et $E^{\circ}(Zn^{2+}/Zn) = -0.76V$ (§ III. 1. d &IV. 3. a).
- ✓ Q2 : Savoir calculer une constante d'équilibre redox en fonction des E_1^{\bullet} et E_2^{\bullet} des couples fournis et critère de quantitativité (§ VI. 2. a & b).
- ✓ Q3 : Savoir tracer le diagramme E-pH de l'eau et interpréter la stabilité des espèces dans l'eau (§ II. 1 a & b).
- ✓ Q4 : Savoir tracer le début du diagramme potentiel-pH du fer (§ II. 2. c, d & e).
- ✓ Q5 : Savoir tracer le début du diagramme potentiel-pH du chlore (§ II. 3. b, c & d).
- ✓ Q6: Savoir attribuer les domaines, déterminer des constantes et exploiter le digramme potentiel-pH du cuivre (§ III.3.a, b & c).
- ✓ Q7: Cas du GP: Savoir passer de la loi de Boyle Mariotte à la loi d'Amagat, puis à l'équation d'état du GP; Connaitre les ordres de grandeur du volume molaire d'une phase gazeuse et de la masse volumique de l'air. Connaitre les hypothèses microscopiques du modèle (§ VII. 3. a, b, c & d).
- \checkmark Q8: Savoir refaire l'ex d'application sur la pression dans un cylindre (§ V. 5. c).
- ✓ Q9 : Savoir calculer un ordre de grandeur de la vitesse quadratique moyenne dans l'hélium assimilé à un gaz parfait, puis à partir de l'équation d'état du gaz parfait, retrouver l'expression de la pression cinétique.
- ✓ Q10: Cas du GP: $1^{\text{ère}}$ loi de Joule; Cas du GP monoatomique: Expressions de U, de U_m , de C_V , de C_{vm} molaire, de c_V massique. Cas du GP diatomique: Expressions de U, de U_m , de C_V , de C_{vm} molaire, de c_V massique. Cas des phases condensées: Propriété de U_m , de C_V , de C_{vm} molaire, de c_V massique.

Exemple d'application de Q8 : Pression dans un cylindre :

Un récipient de forme cylindrique et de section S contenant un gaz est fermé par un piston mobile sans frottement de masse m. L'extérieur du récipient est à la pression atmosphérique $P_0 = 1,0.10^5$ Pa.

Exemple d'application pour le début que la question Q9 :

On considère l'hélium (He : $M = 4 \text{ g.mol}^{-1}$) assimilable à un gaz parfait dans une enceinte à 300 K. Quelle est la vitesse quadratique moyenne dans ce gaz ? On donne $R = 8,31 \text{ J.K}^{-1}.\text{mol}^{-1}$.

