Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Blok 1: lista M 3 18 października 2017 r.

M3.1. [1,5 punktu] Załóżmy, że x,y są liczbami maszynowymi, tzn. rd(x)=x,rd(y)=y, takimi, że 0< y< x. Wykazać, że jeśli

$$2^{-q} \leqslant 1 - \frac{y}{x} \leqslant 2^{-p}$$

(p i q są całkowite), to

 $p \leq \text{liczba bitów straconych przy odejmowaniu } x - y \leq q.$

- **M3.2.** I punkt Wartość wielomianu $L(x) := a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$ w punkcie x można obliczyć według następującego schematu Hornera:
 - Oblicz wielkości pomocnicze w_0, w_1, \ldots, w_n za pomocą wzorów
 - a) $w_n := a_n$,
 - b) $w_k := w_{k+1} \times x + a_k \quad (k = n 1, n 2, \dots, 0).$
 - Wynik: $L(x) = w_0$.

Zakładając, że a_0, a_1, \ldots, a_n oraz x są liczbami zmiennopozycyjnymi wykazać, że schemat Hornera jest algorytmem numerycznie poprawnym.

M3.3. I punkt Wartość sumy $\sum_{k=1}^{n} a_k$, gdzie $n := 2^m$ dla pewnego $m \in \mathbb{N}$, można wyznaczyć stosując strategię *dziel i zwyciężaj*. Np. dla m = 3 obliczenia wykonywane są wówczas zgodnie z następującym diagramem:

gdzie $s_{ij} := a_i + a_{i+1} + \ldots + a_j$. Wykazać, że ten algorytm jest numerycznie poprawny i — dla dużych wartości n — dokładniejszy (na ogół) niż zwykły algorytm sumowania.

M3.4. $\boxed{1 \text{ punkt}}$ Pole n-kąta foremnego $(n \geqslant 4)$ wpisanego w okrąg o promieniu 1 wynosi

$$P_n = \frac{1}{2}n\sin\frac{2\pi}{n}.$$

Wartość P_n jest przybliżeniem liczby π – tym lepszym, im większe jest n. Następujący algorytm pozwala oszczędnie obliczać kolejno P_4 , P_8 , P_{16} , . . .:

$$s_2 := 1, \quad c_2 := 0, \quad P_4 := 2;$$

$$s_k := \sqrt{\frac{1}{2}(1 - c_{k-1})}, \quad c_k := \sqrt{\frac{1}{2}(1 + c_{k-1})}, \quad P_{2^k} := 2^{k-1} s_k \qquad (k = 3, 4, \ldots).$$

- a) Uzasadnić powyższy algorytm.
- b) Stosując wybraną arytmetykę t-cyfrową ($t \ge 128$) obliczyć P_{2^k} dla $k = 2, 3, \dots, 2t$.
- c) Czy wyniki są zgodne z oczekiwaniami? Jeśli nie, to jakie jest źródło kłopotów? Jak można ich uniknąć?

- **M3.5.** 1,5 punktu Załóżmy, że f'(x) > 0 i f''(x) > 0 dla $x \in \mathbb{R}$. Ponadto, niech α będzie pierwiastkiem równania f(x) = 0. Wykazać, że jest to jedyny pierwiastek, a metoda Newtona daje ciąg do niego zbieżny dla dowolnego przybliżenia początkowego x_0 .
- **M3.6.** 1,5 punktu Uzasadnić, że odwrotność liczby c można obliczać bez wykonywania dzieleń, za pomocą wzoru $x_{n+1} := x_n(2-c\,x_n) \quad (n=0,1,\ldots)$. Uzasadnić (lokalną?) zbieżność tej metody. Dla jakich wartości x_0 metoda jest zbieżna?
- **M3.7.** 1 punkt Podać przykład funkcji $f \in C^2[a,b]$ oraz przybliżenia początkowego $x_0 \in [a,b]$, dla którego ciąg przybliżeń otrzymany za pomocą metody Newtona jest zbieżny liniowio do pierwiastka funkcji f.
- M3.8. 1 punkt Zaprogramować w języku Julia metodę Steffensena

$$c_{n+1} = c_n - \frac{[f(c_n)]^2}{f[c_n + f(c_n)] - f(c_n)},$$

a następnie zastosować ją do znalezienia pierwiastka równania

$$e^{-x} - \sin x = 0.$$

Zastosować arytmetykę wysokiej precyzji (np. $t \ge 128$), aby móc podać eksperymentalną wartość wykładnika zbieżności (lokalnej?) tej metody.