

ELEMENTI DI INFORMATICA

DOCENTE: FRANCESCO MARRA

INGEGNERIA CHIMICA
INGEGNERIA ELETTRICA
SCIENZE ED INGEGNERIA DEI MATERIALI
INGEGNERIA GESTIONALE DELLA LOGISTICA E DELLA PRODUZIIONE
INGEGNERIA NAVALE

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II SCUOLA POLITECNICA E DELLE SCIENZE DI BASE

IL BISOGNO DI INFORMATICA

- La società moderna è sempre più dipendente dai dispositivi elettronici e dall' informatica
- la pervasione e l'utilizzo degli elaboratori è favorito dai bassi costi di accesso e ad interfacce user friendly e multimodali
- Diverse attività del mondo contemporaneo sono legate all'uso degli elaboratori: (gestione di documenti, acquisto "on line", servizi pubblici, identità digitale, ecc.)

- L'Informatica deriva dalla sincràsi di "Informazione Automatica"
- Alcune definizioni:
 - Scienza della rappresentazione, della gestione e della elaborazione (automatica) delle informazioni
 - Scienza interdisciplinare che riguarda tutti gli aspetti del trattamento dell'informazione mediante procedure automatizzabili

INFORMATICA

- L'informatica si occupa di due aspetti essenziali:
 - **Tecnologico**: progettazione di apparecchiature, strumenti, elaboratori per la manipolazione dell'informazione
 - **Metodologico:** definizione delle metodologie per la gestione delle informazioni
- Cosa è l'informazione?

INFORMAZIONE

Informazione

- deriva da informare, ossia dare forma
- fa riferimento ad un concetto astratto che può coincidere con qualunque notizia o racconto
- L'informazione è qualcosa che viene comunicato in una qualsiasi forma scritta o orale

INFORMAZIONE

- Nella teoria della Informazione, l'informazione viene spesso associata al concetto di messaggio
 - anche se il messaggio serve solo a rappresentarla e trasportarla
- Corretta interpretazione di un messaggio
 - solo se mittente e destinatario concordano le regole di interpretazione
 - condivisione di un insieme di regole e convenzioni da seguire per scrivere, e in seguito leggere, il messaggio da scambiare

INFORMAZIONE

- L'informazione è legata al concetto di scelta
 - le informazioni permettono di prendere decisioni
 - una informazione è tale se identifica fra più elementi di un insieme tra cui effettuare la scelta un valore, cui è assegnato il significato stabilito.
- Le informazioni sono caratterizzate dalla tripla {tipo, valore, attributo}:
 - Tipo: definisce l'insieme degli elementi fra i quali si compie la scelta.
 - Valore: è il particolare elemento scelto.
 - Attributo: è ciò che associa un significato al valore, dando senso all'informazione.

INFORMAZIONE: ESEMPIO (SEMAFORO)

- Il semaforo (da sema "segnale" e –foro "portatore") è un dispositivo che veicola una informazione in base alle lampade accese e alla loro tempificazione
- L'informazione avrà:
 - Tipo: {"Rosso fisso", "Giallo fisso", "Verde fisso", "Giallo lampeggiante", "Spento"}.
 - Valore: "Rosso fisso".
 - Attributo: "Semaforo di ingresso in galleria".
- Informazione: "Il semaforo di ingresso in galleria è rosso"
- Un conducente elabora questa informazione e fa una scelta:
 - "Arrestare il mezzo di locomozione e non procedere al transito in galleria"

RAPPRESENTAZIONE DELL'INFORMAZIONE

- Affinché persone o macchine possano utilizzare un informazione hanno bisogno che essa sia appropriatamente rappresentata:
 - la storia dell'uomo è ricca di esempi di rappresentazione efficace delle informazioni, ad es la scrittura
- Scrivere, leggere ed elaborare informazioni richiede un **codice** concordato, cioè regole e convenzioni da seguire
- Esistono due modalità diverse di rappresentazione
 - analogica o continua
 - discreta

RAPPRESENTAZIONE ANALOGICA DELL'INFORMAZIONE (CONTINUA)

- Proprietà del fenomeno rappresentato omomorfe alla forma della rappresentazione
 - Varia in analogia con la grandezza reale
 - Serve insieme infinito di rappresentazioni distinte messe in relazione in modo continuo con la grandezza reale
- Esempi di rappresentazione di grandezze continue:
 - termometro tradizionale: dilatazione di mercurio correlata alla variazione rilevata di temperatura
 - tachimetro tradizionale: dove l'angolo della lancetta viene correlato alla variazione rilevata di velocità

RAPPRESENTAZIONE DISCRETA DELL'INFORMAZIONE (DIGITALE)

- La rappresentazione discreta utilizza un insieme finito di rappresentazioni distinte che vengono messe in relazione con la grandezza reale da rappresentare:
 - è un'approssimazione di quella analogica
 - ad ogni variazione della grandezza reale, non si ottiene necessariamente un'analoga variazione della rappresentazione
 - viene rappresentata con numeri e opera manipolando numeri
- Esempio:
 - Orologio digitale: rappresenta il tempo a salti di ore e di minuti (o di frazioni)
 - Due istanti di tempo diverse potrebbero avere la stessa rappresentazione

ESEMPIO DISCRETO VS ANALOGICO: BILANCIA

- La rappresentazione ha effetto sull'elaborazione dell'informazione:
 - Informazione elaborata: quanto sono dimagrito oggi?
 - Con rappresentazione digitale non sono dimagrito, quando in realtà sono dimagrito 0.03kg!!!
- Le rappresentazioni digitali di informazioni di tipo non finito possono indurre ad errori che devono essere opportunamente gestiti nelle operazioni di calcolo.

CODIFICA

- La **codifica** è la tecnica adoperata per trasformare un'informazione in una sua rappresentazione (dato), la **decodifica** è l'operazione inversa.
- Un'informazione può essere codificata in modi diversi (rappresentazioni diverse):
 - ad esempio, 1 e I sono, rispettivamente, le rappresentazioni mediante codifica araba e romana della stessa informazione numerica

CODICE

- Un codice è un sistema di simboli che permette la rappresentazione dell'informazione in una data codifica
- Un codice è definito dai seguenti elementi:
 - i **simboli** che sono gli elementi atomici della rappresentazione
 - l'alfabeto che rappresenta l'insieme dei simboli possibili del codice
 - con cardinalità (n) del codice si indica il numero di elementi dell'alfabeto
 - le parole-codice o stringhe ossia le sequenze possibili (ammissibili) di simboli
 - per lunghezza (L) delle stringhe si intende il numero di simboli dell'alfabeto da cui ciascuna parola codice risulta composta
 - il **linguaggio** che definisce le regole per costruire parole codice che abbiano significato per l'utilizzatore del codice stesso

PAROLE CODICE

- Dato un alfabeto $A = \{s_1, s_2, \ldots, s_n\}$, composto da n simboli distinti
- Si considerino diverse lunghezze L delle parole codice:
 - con L=1: si hanno tante parole-codice diverse (n1) quanti sono i simboli dell'alfabeto
 - con L=2: si hanno tante parole-codice diverse quante sono le combinazioni con ripetizione degli n simboli nelle due posizioni (ossia n²)
 - con L=3: si hanno n³ parole-codice diverse

• In generale il numero di parole codice differenti è uguale a **n**^L

ESEMPIO: CODICE MORSE

- Il codice Morse (1840 circa) è un sistema per trasmettere lettere, numeri e segni di punteggiatura per mezzo di un segnale ad intermittenza
- L'alfabeto A del codice Morse è composto da n=2 simboli:
 - linea '-' e punto '.'
 - $A = \{ '-', '.' \}$
- Le parole codice di lunghezza L = 1 saranno 2:

n ^L	L=1
	-
2	•

• Le parole codice di lunghezza L = 1 ed L=2:

n ^L	L=1	L=2
	-	
2	•	
4		

ESERCIZO: CODICE MORSE

• Definire le parole codice di lunghezza L = 3 ed L=4:

PAROLE CODICE E INFORMAZIONE

- Dato l'insieme dei possibili valori di un'informazione $V = \{v_1, v_2, \ldots, v_m\}$, di cardinalità m
- La codifica deve mettere in **corrispondenza biunivoca** i valori dell'informazione con le parole-codice:
 - ullet ad ogni valore dell'informazione v_i deve corrispondere una ed una sola sequenza di simboli
- La lunghezza L deve essere scelta in modo che n^L≥m. Se n^L>m allora la codifica è ridondante perché non tutte le configurazioni possibili vengono utilizzate per la rappresentazione
- La codifica può essere vista come una funzione biunivoca:
 - $c: V \rightarrow A$, $|V| \ge |A|$

DOMANDA

• Dato l'insieme dei possibili valori di un'informazione di cardinalità m e un alfabeto di simboli di cardinalità n, quanto deve essere la lunghezza L del codice affinché la funzione codifica c possa essere biunivoca?

DOMANDA

• Dato l'insieme dei possibili valori di un'informazione di cardinalità m e un alfabeto di simboli di cardinalita n, quanto deve essere la lunghezza L del codice affinchè la funzione codifica c possa essere biunivoca?

c può essere biunivoca se:

$$|V| \ge |A| \iff n^{L} \ge m \iff L \ge \log_{n} m$$

CODICE A LUNGHEZZA FISSA E VARIABILE

- La lunghezza della codifica può essere fissa o variabile
- Codifica a lunghezza fissa:
 - tutte le parole codice hanno sempre la stessa lunghezza fissata da particolari esigenze applicative
- Codifica a lunghezza variabile
 - non tutte le parole codice hanno la stessa lunghezza
 - ad es la scrittura è una codifica a lunghezza variabile
- I calcolatori adottano codifiche a lunghezza fissa

RAPPRESENTAZIONE DIGITALE BINARIA

- Assume particolare interesse nell'informatica
- Basata su un alfabeto costituito da due soli simboli distinti, che assumono convenzionalmente la forma di O e 1:
 - sono le unità minime di rappresentazione e memorizzazione digitale e vengono denominate bit (binary digit)

Nota:

• solitamente si indica con digitale la rappresentazione basata sui bit, anche se essa teoricamente sottintende una rappresentazione con qualsiasi tipo di cifre

PERCHE BINARIA?

- Memorizzazione semplificata
 - Alfabeto binario adatto ai registri di memoria realizzati con componenti elementari semplici detti flip-flop operanti in due soli stati possibili

- Tanti fenomeni diversi facilmente associabili ad un bit:
 - Presenza/assenza di tensione elettrica in un circuito elettrico
 - polarità positiva/negativa di un magnete o di un supporto con caratteristiche magnetiche tipo nastri e dischi
 - condizione di acceso/spento di un interruttore

PERCHE BINARIA?

- Memorizzazione semplificata e affidabile
 - Alfabeto binario adatto ai registri di memoria realizzati con componenti elementari semplici detti flip-flop operanti in due soli stati possibili
 - maggiore tolleranza a disturbi provenienti dall'ambiente o a interferenze di altri componenti (separazione elettrica massima tra i due stati)
- Tanti fenomeni diversi facilmente associabili ad un bit:
 - Presenza/assenza di tensione elettrica in un circuito elettrico
 - polarità positiva/negativa di un magnete o di un supporto con caratteristiche magnetiche tipo nastri e dischi
 - condizione di acceso/spento di un interruttore

IL CODICE BINARIO

- Il codice binario utilizza un alfabeto $A=\{0,1\}$ con n=2
 - le informazioni numeriche vengono quindi rappresentate mediante stringhe di bit di lunghezza L che producono 2^L configurazioni (parole-codice) diverse
 - viceversa se si devono rappresentare K informazioni diverse, occorrono log₂K bit per poter associare opportunamente una configurazione distinta ad ogni informazione
- Nei calcolatori la precisione è finita e predeterminata:
 - i numeri sono memorizzati con parole codice di lunghezza fissata

BYTE E WORD

- I bit si raggruppano in potenze di due (2,4,8,16 bit, ecc.) poiché in questo modo tutte le operazioni si semplificano
- Byte: stringhe di bit di lunghezza L =8
 - usate per ragioni legate alla costruzione dei moderni calcolatori
 - era la più piccola potenza di due in grado di contenere un set di caratteri ASCII
 - anche i dati contenuti nelle memorie, che sono a 8, 16, 32 o 64 bit, sono facilmente divisibili in byte
- Word: sequenze di bit più lunghe di un byte
 - lunghezza dipendente dalle caratteristiche del sistema
 - multiplo del byte (16, 32, 64 o 128 bit)

SISTEMA DI NUMERAZIONE BINARIO

- Il sistema di numerazione binario è un sistema posizionale:
 - Ogni cifra assume valore differente in base alla sua posizione
 - N.B. Non posizionale, il valore non dipende dalla posizione (ad es. il semaforo ©)
- Ogni numero si esprime come la somma dei prodotti di ciascuna cifra per la base elevata all'esponente che rappresenta la posizione della cifra.
- Dato un numero intero x, dette x_i le l cifre di x e b la base di riferimento (ad es. b=2 per il sistema binario):

$$x = \sum_{i=0}^{l} b^i * x_i$$

- LSB = Least Significant Bit
 - Bit più a destra (peso 0) è il meno significativo
- MSB = Most Significant Bit
 - Bit più a sinistra (peso 7) è il più significativo

Peso 7	Peso 6	Peso 5	Peso 4	Peso 3	Peso 2	Peso 1	Peso O	
128	64	32	16	8	4	2	1	b ⁱ /x
1	0	1	0	0	1	0	1	165
1	1	1	1	1	1	1	1	255
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	128

UNITA' DI MISURA BINARIE

• Unità di misura binarie per trattare con multipli bit/byte

Sigla	Nome	Numero Byte	Numero bit
В	Byte	1	8
KB	KiloByte	$2^{10} = 1.024$	8.192
MB	MegaByte	$2^{20} = 1.048.576$	8.388.608
GB	GigaByte	$2^{30} = 1.073.741.824$	8.589.934.592
ТВ	TeraByte	$2^{40} = 1.099.511.627.776$	8.796.093.022.208

CODIFICA IN BYTE

- Nei moderni calcolatori, codifica a lunghezza fissa con parole codice di lunghezza che ha valori multipli di 8 (di un byte)
- Per rappresentare **K** valori dell'informazione in multipli **B** di byte:

$$2^{(B*8)} \ge K$$

Num. di byte (B)	Num. di bit (B*8)	$2^{(B*8)}$	Parole codice
1	8	28	256
2	16	216	65.536
3	24	2 ²⁴	16.777.216
4	32	2 ³²	4.294.967.296

PRECISIONE FINITA E PERIODICITA'

- L'adozione di stringhe a lunghezza finita e definita implica che i numeri gestiti siano a precisione finita:
 - ossia siano quelli rappresentati con un numero finito di cifre, o più semplicemente definiti all'interno di un prefissato intervallo di estremi [min, max] determinati
- Concetto di *periodicità*:
 - valori non compresi nell'intervallo di definizione vengono fatti ricadere in esso per periodicità
- Esempi nel mondo reale di sistemi di rappresentazione basati su numeri a precisione finita
 - sistemi di misura degli angoli
 - sistemi di misura del tempo

ESEMPIO

- Calcolatrice decimale dotata di sole tre cifre
 - intervallo di definizione formato dai numeri interi in [-999, +999]

Operazione	Condizione
200 + 100	Risultato rappresentabile
730 + 510	Overflow
-520 – 720	Overflow
2/3	Risultato NON rappresentabile

ALGEBRA DEI NUMERI A PRECISIONE FINITA

- Diversa da quella convenzionale, e alcune proprietà non sempre sono rispettate ma dipendono dall'ordine di esecuzione delle operazioni
 - proprietà associativa a + (b c) = (a + b) c

a	b	C	a+(b-c)	Condizione	(a+b)-c	Condizione
100	900	600	100+(900-600)	OK	(100+900)-600	Overflow

• proprietà distributiva a * (b + c) = a * b + a * c

a	b	С	a*(b+c)	Condizione	a*b+a*c	Condizione
200	90	88	200*(90+88)	OK	200*90+200*88	Overflow

