DATS 6103 Individual Final Report May 1, 2021 Bradley Reardon

1. Introduction

- The 2020 US Presidential Election caused a great deal of speculation surrounding voter-turnout, largely driven by the high-profile candidates and new voting methods enacted to account for Covid-19 safety precautions. Furthermore, there is a long-standing interest in what drives eligible voters to either vote or not vote, and who to vote for if a vote is cast. We decided to dive deeper into the latter and explore which characteristics and features of a voter drove them to choose between Donald Trump and Joe Biden in the 2020 US Presidential Election.
- In this project, we trained and tested variations of both random forest and gradient boosting classifiers using survey data compiled by Ipsos, a multinational market research and consulting firm, and FiveThirtyEight, an American website that focuses on opinion poll analysis, politics, economics, and sports blogging. Our goal was to accurately predict the answer a survey taker might choose for question 23, "Which presidential candidate are you planning to support?"
- The shared work consisted of deciding on a dataset and project idea, cleaning of the dataset, exploratory data analysis, preprocessing, modeling, model comparison, GUI development, creating a powerpoint presentation, writing the group report, and creating a demo of the GUI.

2. Personal Contribution

Code:

- Preprocessing
 - Added new column, "Age_Group" in order to create a pie chart showing the distribution by age group.
 - Split data into train and test sets.
- o EDA
 - Created pie charts and histograms to check for normality in our demographic features.
 - Calculated and plotted feature importance
- Modelina
 - Trained and tested the full models for both the random forest and gradient boosting classifiers as well as the gradient boosting slim model.
 - Tested and compared the models to see which model performed the best.
- o Merging of Code
 - Provided the initial merge of our code into a single final python file. Divya and I then both touched up the file until it was finalized.

Powerpoint:

- Found the powerpoint template.
- Formatted powerepoint and added initial information as draft 1.
 - Touched up powerpoint with other group members to finalize the presentation.
- Added audio recording to my section of the presentation.

• Group Final Report:

- Wrote first draft
 - Finalized rest of report with group members.

3. Personal Contribution in Detail

 Please see the diagrams in the results section along with the code appended at the end of the report.

4. Results

29.3%

Some College

Percentage of Non-Voters by Age Group

Elderly

Twenties

Model 1	Model 2	Model 3	Model 4 Gradient Boosting - Slim Model
Random Forest -	Random Forest -	Gradient Boosting -	
Full Model	Slim Model	Full Model	
F1-score: 0.98 Accuracy score: 0.97	F1-score: 0.93 Accuracy score: 0.93	F1-score: 0.97 Accuracy score: 0.97	F1-score: 0.50 Accuracy score: 0.51

5. Summary

- Using FiveThirtyEight survey data, we decided to predict who voters would vote for president based on their survey answers
- We conducted exploratory data analysis to better understand the group of voters and make sure the classes were balanced
- We preprocessed our data label encoding, dropping columns and observations
- We fit both random forest and gradient boosting models, and we ran on "full" and "slim" feature sets
- We saw extremely high accuracy and f1 scores
- Random forest did better than gradient boosting, and "full" feature models did better than "slim" feature models

6. Percent of Code

• 0%. No code was copied from any external sources. Syntax and functions were referenced from official python package sites, but we wrote all code on our own.

7. References

- https://scikit-learn.org
- https://numpy.org/
- https://pandas.pydata.org/
- https://pypi.org/project/PyQt5/
- https://medium.com/analytics-vidhya/evaluating-a-random-forest-model-9d165595ad56
- https://www.datasciencecentral.com/profiles/blogs/decision-tree-vs-random-forest-vs-boosted-trees
 - explained#:~:text=Like%20random%20forests%2C%20gradient%20boosting,one%20tre e%20at%20a%20time
- https://morningconsult.com/opinions/to-persuade-or-to-turn-out-voters-is-that-the-question/

https://www.bloomberg.com/graphics/2020-us-election-results/methodology

Appended Code – My Personal Code

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
```

```
hispanic percentage = nv df[nv df['race'] ==
other mixed percentage = nv df[nv df['race'] ==
white_percentage = nv_df[nv_df['race'] == 'White']['race'].count()/total_race
black_percentage = nv_df[nv_df['race'] == 'Black']['race'].count()/total_race
other mixed percentage]
race labels = ['White', 'Black', 'Hispanic', 'Other/Mixed']
race pie, ax1 = plt.subplots()
ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a
plt.title(label = 'Percentage of Non-Voters by Race')
plt.show()
sns.catplot(x='race', kind='count', palette = "ch: 25", data = nv df)
```

```
distinct genders = set(nv df['gender'])
total gender = nv df['gender'].count()
male percentage = nv df[nv df['gender'] ==
sns.catplot(x='gender', kind='count', palette = "ch:.25", data = nv df)
total age = nv df['Age Group'].count()
fifties = nv df[nv df['Age Group'] ==
sixties = nv df[nv df['Age Group'] ==
plt.title(label = 'Percentage of Non-Voters by Age Group')
plt.show()
sns.catplot(x='Age Group', kind='count', palette = "ch:.25", data = nv df)
distinct educ = set(nv df['educ'])
```

```
educ percentages = [hs percentage, some college percentage,
educ pie, ax1 = plt.subplots()
ax1.pie(educ_percentages, labels=educ labels, autopct='%1.1f%%',
income1 percentage = nv df[nv df['income cat'] == 'Less than
income2 percentage = nv df[nv df['income cat'] == '$40-
75k']['income_cat'].count()/total_income
income3_percentage = nv_df[nv_df['income_cat'] == '$75-
educ percentages = [incomel percentage, income2 percentage,
income3 percentage, income4 percentage]
income pie, ax1 = plt.subplots()
ax1.pie(educ percentages, labels=educ labels, autopct='%1.1f%%',
plt.show()
```

```
le = LabelEncoder()
nv df['educ'] = le.fit transform(nv df['educ'])
nv_df['income_cat'] = le.fit_transform(nv_df['income_cat'])
nv df mod = nv df[(nv df['q23 which candidate supporting'] == 1) |
X = nv df mod.drop('q23 which candidate supporting', axis=1)
y = nv df mod['q23 which candidate supporting']
X_train, X_test, y_train, y_test = train_test_split(X, y, test size = 0.2,
clf = RandomForestClassifier(n estimators=100)
sel = SelectFromModel(clf)
importances = clf.feature importances
f importances = pd.Series(importances, nv df mod.iloc[:, :-1].columns)
f importances.sort values(ascending=False, inplace=True)
f importances.plot(x='Features', y='Importance', kind='bar', figsize=(16, 9),
plt.show()
X Test dropped 14 15 = X test.drop(['q14 view of republicans',
y pred = clf.predict(X test)
```

```
y pred dropped 14 15 = clf dropped 14 15.predict(X Test dropped 14 15)
y pred score dropped 14 15 =
clf dropped 14 15.predict proba(X Test dropped 14 15)
print("Classification Report: ")
print(classification report(y test, y pred))
print("Accuracy : ", accuracy score(y test, y pred) * 100)
print("ROC AUC : ", roc auc score(y test,y pred score[:,1]) * 100)
print("Results Without Q14 and Q15 features: \n")
print(classification report(y test,y pred dropped 14 15))
print("\n")
df cm = pd.DataFrame(conf matrix, index=class names, columns=class names)
plt.figure(figsize=(5,5))
plt.xlabel('Predicted label', fontsize=20)
plt.tight layout()
plt.show()
```

```
conf_matrix = confusion_matrix(y_test, y_pred_dropped_14_15)
df cm = pd.DataFrame(conf matrix, index=class names, columns=class names)
plt.figure(figsize=(5,5))
hm = sns.heatmap(df cm, cbar=False, annot=True, square=True, fmt='d',
hm.yaxis.set ticklabels(hm.yaxis.get ticklabels(), rotation=0, ha='right',
plt.ylabel('True label', fontsize=20)
plt.xlabel('Predicted label', fontsize=20)
plt.tight layout()
plt.show()
gb clf = GradientBoostingClassifier(n estimators=100, learning rate=0.05)
gb score = gb clf.predict proba(X test)
print("\n")
print("Classification Report: ")
print(classification report(y test,gb pred))
print("\n")
print("Accuracy : ", accuracy score(y test, gb pred) * 100)
```