Logique et raisonnements

I Rudiments de logique

I.1 Formule propositionnelles, prédicats

Une **formule propositionnelle** est une formule liant des lettres représentant des *propositions* élémentaires et les opérations logiques suivantes :

• ∧ : et

• \vee : ou

• \Longrightarrow : implique

• ⇔ : équivalent à

• ¬: non

On dit que A est suffisante à B si $A \Longrightarrow B$, que A est nécessaire à B si $B \Longrightarrow A$ et qu'elle est suffisante et nécessaire si $A \Longleftrightarrow B$.

Les tables de vérité permettent de savoir quand une propriété est vraie ou fausse.

P	$\neg P$
V	F
\overline{F}	V

P	Q	$(P \vee Q)$
V	V	V
V	F	V
F	V	V
\overline{F}	\overline{F}	F

P	Q	$(P \wedge Q)$
V	V	V
V	F	F
F	V	F
\overline{F}	F	F

F)	Q	$(P \Longrightarrow Q)$	
V	,	V	V	
V	7	F	F	
F	,	V	V	
F	7	F	\overline{V}	

P	Q	$(P \Longleftrightarrow Q)$
V	V	V
V	F	F
F	V	F
\overline{F}	F	V

Deux formules sont dites **équivalentes** si et seulement si elles possèdent la même table de vérité, ainsi on note $A \equiv B$.

Les tautologies sont des formules toujours vraies.

On a les équivalences et tautologies suivantes :

- $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$ (associativité)
- $(A \lor B) \lor C \equiv A \lor (B \lor C)$ (associativité)
- $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$ (distributivité)
- $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$ (distributivité)
- $(A \land (A \Longrightarrow B)) \Longrightarrow B$ est une tautologie (modus ponens)
- $(A \Longrightarrow B) \Longleftrightarrow B \lor \neg A$
- $(A \Longrightarrow B) \Longleftrightarrow (\neg B \Longrightarrow \neg A)$ (contraposée)

I.2 Quantificateurs

On a F(x) une propriété dépendant d'une variable x,

- Le quantificateur \forall est satisfait si et seulement si, pour toute valeur possible prise de x, F(x) est vraie.
- Le quantificateur \exists est satisfait si et seulement si, il existe un x tel que F(x) soit vraie. Il est donc possible de choisir un x convenable. Si le x est unique, on utilise le quantificateur \exists !.

Dans le cas des quantificateurs, les variables choisies sont dites **muettes**. Les quantificateurs peuvent être réduits à des intervalles spécifiques avec $\forall x \in E$ ou $\exists x \in E$.

I.3 Négation

On a les formules suivantes pour les négations :

- $\neg \neg P \equiv P$
- $\neg (P \lor Q) \equiv \neg P \land \neg Q \text{ (loi de De Morgan)}$
- $\neg (P \land Q) \equiv \neg P \land \lor Q$ (loi de De Morgan)
- $\neg(P \Longrightarrow Q) \equiv P \land \neg Q$
- $\neg(P \Longleftrightarrow Q) \equiv ((\neg P) \Longleftrightarrow Q) \equiv (Q \Longleftrightarrow (\neg P))$

Les quantificateurs sont aussi négationnables :

- $\neg(\forall x P(x)) \equiv \exists x (\neg P(x))$
- $\neg(\exists x P(x)) \equiv \forall x (\neg P(x))$

II Principes de rédaction, modes raisonnements et démonstrations

II.1 Composition d'un texte mathématique

Un texte mathématique est constitué de :

- 1. **définitions** : descriptions de certains objets
- 2. **résultats** : énoncés mettant en jeu les objets définis, et donnant des propriétés vérifiées. On distingue :
 - axiomes : résultats qui sont des vérités fondamentales qui ne sont pas à démontrer
 - *théorèmes* : résultats les plus significatifs, démontrés à partir des axiomes et de résultats démontrés antérieurement
 - propositions : résultats de moindre envergure
 - lemmes : résultats à voir comme des étapes intermédiaires
 - corollaires : conséquences d'autres résultats
- 3. **démonstrations** : justification de la véracité des résultats
- 4. conjectures : ce qu'on pense être vrai mais qu'on a pas réussi à prouver

Un énoncé est souvent sous la forme $A \Longrightarrow B$ avec A les hypothèses et B les conclusions.

II.2 Comment construire une démonstration

Pour construire une démonstration on utilise les principes suivants :

• Prouver une implication $A \Longrightarrow B$:

On suppose que A est vrai, et on montre que B est vrai. Il peut être plus simple de montrer la contraposée dans certains cas.

• Prouver une équivalence $A \iff B$:

On prouve $A \Longrightarrow B$ et $B \Longrightarrow A$, il est aussi possible de faire par équivalences successives mais il faut bien vérifier qu'on peut *remonter* les équivalences.

• Prouver une conjonction $A \wedge B$:

On prouve A puis on prouve B.

• Prouver une disjonction $A \vee B$:

On prouve que $\neg A \Longrightarrow B$, ainsi on suppose que $\neg A$ et on montre que B est vraie. On peut intervertir A et B pour faciliter la résolution.

• Prouver $\forall x A(x)$:

On pose un x supposé quelconque et on montre que pour ce x, A(x) est vérifié. Le fait d'avoir pris x quelconque montre qu'alors A(x) est vrai pour tout x.

• Prouver $\exists x A(x)$:

Dans le meilleur des cas on construit \mathbf{x} qui convient. Pour s'aider à trouver un \mathbf{x} convenable on peut faire une analyse/synthèse.

⚠ Il ne faut jamais perdre de vue le but d'une preuve

II.3 Le Modus ponens

Pour que B soit vrai, il suffit que A soit vrai et que $A\Longrightarrow B$, on exploite la tautologie $(A\land (A\Longrightarrow B))\Longrightarrow B$. Il est important de vérifier à la fois A et à la fois $A\Longrightarrow B$, comme quand on utilise un théorème utilisé en donnant son nom, et la validité des hypothèses d'autre part.

II.4 Démonstration par la contraposée

On exploite l'équivalence $(A\Longrightarrow B)\equiv (\neg B\Longrightarrow \neg A)$, ainsi on suppose la conclusion B fausse et on montre que dans ce cas l'hypothèse A ne peut être vraie. L'expression $\neg B\Longrightarrow \neg A$ est appelée **contraposée** de $A\Longrightarrow B$.

Si A est toujours vraie, alors on montre que supposer $\neg B$ nous amène à une contradiction, on procède donc à une **démonstration par l'absurde**.

II.5 Disjonction de cas

Le principe de disjonction de cas repose sur $(A \vee B) \Longrightarrow C \equiv (A \Longrightarrow C) \wedge (B \Longrightarrow C)$. On regarde ce qu'il se passe pour l'hypothèse A, puis pour l'hypothèse B. Ainsi si A est vérifiée C aussi, et pareillement pour B.

II.6 Analyse-Synthèse

Ce principe de démonstration est surtout adapté pour les problèmes existenciels.

- Phase d'analyse (recherche de CN) : On suppose que l'objet existe, et à l'aide des propriétés qu'il est censé vérifier on récupère le plus d'informations possibles sur la façon de le construire.
- Phase de **synthèse** (vérification des CS) : Lorsqu'on a suffisamment d'informations sur une façon de construire l'objet, on construit un objet de la sorte, et on vérifie si il répond au problème.
- Si la phase d'analyse fournit une expression explicite de l'objet, alors l'objet est unique.

⚠ Il est primordial de préciser qu'il s'agit d'une analyse synthèse car on suppose que l'objet existe.

II.7 Raisonnement par récurrence

Le principe de récurrence est un axiome de la construction de N, il s'énonce :

$$(P(0) \land (\forall n \in \mathbb{N}, P(n) \Longrightarrow P(n+1))) \Longrightarrow (\forall n \in \mathbb{N}, P(n))$$

On a P(0) l'initialisation et $\forall n \in \mathbb{N}, P(n) \Longrightarrow P(n+1)$) l'hérédité.

II.8	Princi	ipe d	e la	descente	infinie	(HP)
-------------	--------	-------	------	----------	---------	------