

LL(1) Parsing Table Example

Left-factored grammar

 $E \rightarrow T X$

 $X \rightarrow + E \mid \epsilon$

 $T \rightarrow (E) | int Y$

 $Y \rightarrow *T \mid \epsilon$

The LL(1) parsing table:

	int	*	+	()	\$
Е	ΤX			ΤX		
X			+ E		ε	ε
Т	int Y			(E)		
Υ		* T	ε		ε	3

CS 1622 Lecture 10

LL(1) Parsing Table Example (Cont.)

- Consider the [E, int] entry
 - "When current non-terminal is E and next input is int, use production E ightarrow T X
 - This production can generate an int in the first place
- Consider the [Y,+] entry
 - "When current non-terminal is Y and current token
 - Y can be followed by + only in a derivation in which Y → ε

CS 1622 Lecture 10

LL(1) Parsing Tables. Errors

- Blank entries indicate error situations
 - Consider the [E,*] entry
 - "There is no way to derive a string starting with * from non-terminal E"

CS 1622 Lecture 10

Using Parsing Tables

- Method similar to recursive descent, except
 - For each non-terminal S
 - We look at the next token a
 - And chose the production shown at [S,a]
- We use a stack to keep track of pending nonterminals - instead of procedure stack!
- We reject when we encounter an error state
- We accept when we encounter end-of-input

CS 1622 Lecture 10

LL(1) Parsing Algorithm

1622 Lecture 10

LL(1) Parsing Example

Stack	Input	Action
E\$	int * int \$	ΤX
TX\$	int * int \$	int Y
int Y X \$	int * int \$	terminal
Y X \$	* int \$	* T
* T X \$	* int \$	terminal
T X \$	int \$	int Y
int Y X \$	int \$	terminal
Y X \$	\$	ε
X \$	\$	ε
\$	\$	ACCEPT

CS 1622 Lecture 10

Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- No table entry can be multiply defined
- We want to generate parsing tables from CFG

CS 1622 Lecture 10

cture 10

Constructing Parsing Tables (Cont.)

- If $A \rightarrow \alpha$, where in the line of A we place α ?
- In the column of t where t can start a string derived from $\boldsymbol{\alpha}$
 - $\alpha \rightarrow t \beta$
 - We say that $t \in First(\alpha)$
- In the column of t if α is ϵ and t can follow an A
 - $S \rightarrow^{\star} β A t δ$
 - We say t ∈ Follow(A)

CS 1622 Lecture 10

Computing First Sets

Definition

$$\mathsf{First}(\mathsf{X}) = \{ \ \mathsf{t} \mid \mathsf{X} \to^* \mathsf{t} \alpha \} \cup \{ \epsilon \mid \mathsf{X} \to^* \epsilon \}$$

Algorithm:

- First(t) = { t }
- $\varepsilon \in First(X)$ if $X \to \varepsilon$ is a production
- $\epsilon \in First(X)$ if $X \to A_1 \dots A_n$
 - and $ε ∈ First(A_i)$ for 1 ≤ i ≤ n
- First(α) \subseteq First(X) if X \rightarrow A₁ ... A_n α
 - and $ε ∈ First(A_i)$ for 1 ≤ i ≤ n

CS 1622 Lecture 10

10

First Sets. Example

- Recall the grammar
 - $E \rightarrow T X$ $X \rightarrow + E \mid \varepsilon$ $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \varepsilon$
- First sets
 - First(() = { (} First(T) = {int, (} First(E) = {int, (}
 - First(int) = $\{ \text{ int } \}$ First(X) = $\{+, \epsilon \}$
 - First(+) = $\{ + \}$ First(Y) = $\{ *, \epsilon \}$
 - First(*) = { * }

CS 1622 Lecture 10

11

Computing Follow Sets for Nonterminals

- Follow(S) needed for productions that generate the empty string ε
- Definition:

Follow(X) = { t | S \rightarrow * β X t δ }

- Note that ε CAN NEVER BE IN FOLLOW(X)!!
- Intuition
 - If $X \to A$ B then First(B) \subseteq Follow(A) and Follow(X) \subseteq Follow(B)
 - ${\color{red} \bullet} \ \, \mathsf{Also} \,\, \mathsf{if} \,\, \mathsf{B} \to^{^{\star}} \epsilon \,\, \mathsf{then} \,\, \mathsf{Follow}(\mathsf{X}) \subseteq \mathsf{Follow}(\mathsf{A})$
 - If S is the start symbol then \$ ∈ Follow(S)

CS 1622 Lecture 10

Computing Follow Sets (Cont.)

Algorithm sketch:

- \$ ∈ Follow(S)
- For each production A $\rightarrow \alpha$ X β
 - First(β) { ϵ } \subseteq Follow(X)
- For each production $A \rightarrow \alpha X \beta$ where $\epsilon \in First(\beta)$ Follow(A) \subseteq Follow(X)

CS 1622 Lecture 10

13

Follow Sets. Example

- Recall the grammar
 - $E \rightarrow T X$ $T \rightarrow (E) | int Y$

 $X \rightarrow + E \mid \epsilon$ $Y \rightarrow * T \mid \epsilon$

Follow sets

Follow(E) = {), \$}

Follow(X) = $\{\$, \}$

Follow(T) = {+,), \$}

Follow(Y) = {+,), \$}

CS 1622 Lecture 10

14

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - $\quad \hbox{For each terminal } t \in \mathsf{First}(\alpha) \ \mathsf{do} \\$
 - $T[A, t] = \alpha$
 - If $\varepsilon \in \text{First}(\alpha)$, for each $t \in \text{Follow}(A)$ do • T[A, t] = α
 - If $\epsilon \in \operatorname{First}(\alpha)$ and $\$ \in \operatorname{Follow}(A)$ do • T[A, \$] = α

CS 1622 Lecture 10

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1). Possible reasons:
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - Grammar is not LL(1)
- Most programming language grammars are not LL(1)
 - Some can be made LL(1) though but others can't
- There are tools that build LL(1) tables
 - E.g. LLGen

CS 1622 Lecture 10

40

Bottom-Up Parsing

- Bottom-up parsing is more general than topdown parsing
 - And just as efficient
 - Builds on ideas in top-down parsing
- Bottom-up is the preferred method in practice
- Concepts first, algorithms next time

CS 1622 Lecture 10

17

An Introductory Example

- Bottom-up parsers don't need left-factored grammars
- Hence we can revert to the "natural" grammar for our example:

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

Consider the string: int * int + int

CS 1622 Lecture

The Idea

Bottom-up parsing *reduces* a string to the start symbol by inverting productions:

```
\begin{array}{lll} \text{int} * \text{int} + \text{int} & & T \rightarrow \text{int} \\ \text{int} * T + \text{int} & & T \rightarrow \text{int} * T \\ T + \text{int} & & T \rightarrow \text{int} \\ T + T & & E \rightarrow T \\ T + E & & E \rightarrow T + E \\ E & & \end{array}
```

CS 1622 Lecture 10

Observation

- Read the productions in parse in reverse (i.e., from bottom to top)
- This is a rightmost derivation!

```
\begin{array}{lll} \text{int} * \text{int} + \text{int} & & T \rightarrow \text{int} \\ \text{int} * T + \text{int} & & T \rightarrow \text{int} * T \\ T + \text{int} & & T \rightarrow \text{int} \\ T + T & & E \rightarrow T \\ T + E & & E \rightarrow T + E \\ E & & & \end{array}
```

CS 1622 Lecture 10

Questions

- Does this algorithm terminate?
- How fast is the algorithm?
- Does the algorithm handle all cases?
- How do we choose the substring to reduce at each step?

CS 1622 Lecture 10

31

Where Do Reductions Happen

Important Fact #1 has an interesting consequence:

- Let $\alpha\beta\omega$ be a step of a bottom-up parse
- Assume the next reduction is by $X \rightarrow \beta$
- \blacksquare Then ω is a string of terminals

Why? Because $\alpha X\omega \to \alpha\beta\omega$ is a step in a right-most derivation

CS 1622 Lecture 10

32

Notation

- Idea: Split string into two substrings
 - Right substring is as yet unexamined by parsing (a string of terminals)
 - Left substring has terminals and non-terminals
- The dividing point is marked by a |
 - The | is not part of the string
- Initially, all input is unexamined |x₁x₂...x_n

CS 1622 Lecture 10

Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of actions:

Shift

Reduce

CS 1622 Lecture 10

Shift

- Shift: Move one place to the right
 - Shifts a terminal to the left string

 $ABC|xyz \Rightarrow ABCx|yz$

CS 1622 Lecture 10

35

Reduce

- Apply an inverse production at the right end of the left string
 - If $A \rightarrow xy$ is a production, then

 $Cbxy|ijk \Rightarrow CbA|ijk$

CS 1622 Lecture 10

```
The Example with Reductions

Only

int * int | + int | reduce T \rightarrow int | reduce T \rightarrow int * T

T + int | reduce T \rightarrow int | reduce E \rightarrow T | T + E | reduce E \rightarrow T + E | E | CS 1622 Lecture 10 37
```


A Shift-Reduce Parse in Detail (11) int * int + int int | * int + int int * | int + int int * int | + int int * T | + int T | + int T + | int T + int | int int int T + TT + E IΕI CS 1622 Lecture 10 49

The Stack

- Left string can be implemented by a stack
 - Top of the stack is the |
- Shift pushes a terminal on the stack
- Reduce pops 0 or more symbols off of the stack (production rhs) and pushes a nonterminal on the stack (production lhs)

CS 1622 Lecture 10

50

Key Issue (will be resolved by algorithms)

- How do we decide when to shift or reduce?
 - Consider step int | * int + int
 - We could reduce by T → int giving T | * int + int
 - A fatal mistake: No way to reduce to the start symbol E

CS 1622 Lecture 10

Conflicts

- Generic shift-reduce strategy:
 - If there is a handle on top of the stack, reduce
 - Otherwise, shift
- But what if there is a choice?
 - If it is legal to shift or reduce, there is a shift-reduce conflict
 - If it is legal to reduce by two different productions, there is a reduce-reduce conflict

CS 1622 Lecture 10

52

Source of Conflicts

- Ambiguous grammars always cause conflicts
- But beware, so do many nonambiguous grammars

CS 1622 Lecture 10

53

Conflict Example

Consider our favorite ambiguous grammar:

E → E + E | E * E | (E) | int

CS 1622 Lecture 10

```
One Shift-Reduce Parse
  |int * int + int
                     shift
  E * E | + int
                     reduce E → E * E
  E | + int
                     shift
  E + | int
                     shift
                     reduce E → int
  E + int|
                     reduce E \rightarrow E + E
  E+E|
  ΕĮ
                 CS 1622 Lecture 10
                                              55
```

Another Shift-Reduce Parse

```
|int * int + int | shift | ... |

E * E | + int | Shift |

E * E + int | Shift |

<math>E * E + int | Foliate |

E * E + E | Foliate |

E * E + E | Foliate |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |

E * E |
```


Example Notes

- In the second step E * E | + int we can either shift or reduce by E → E * E
- Choice determines associativity of + and *
- As noted previously, grammar can be rewritten to enforce precedence
- Precedence declarations are an alternative

CS 1622 Lecture 10

Precedence Declarations Revisited

- Precedence declarations cause shift-reduce parsers to resolve conflicts in certain ways
- Declaring "* has greater precedence than +" causes parser to reduce at E * E | + int
- More precisely, precedence declaration is used to resolve conflict between reducing a * and shifting a +

CS 1622 Lecture 10

58

Precedence Declarations Revisited (Cont.)

- The term "precedence declaration" is misleading
- These declarations do not define precedence; they define conflict resolutions
 - Not quite the same thing!

CS 1622 Lecture 10