

General Description

The MAX5430/MAX5431 are digitally programmable high-precision resistor arrays for PGAs. The MAX5430/ MAX5431 operate from a single 15V supply or dual ±15V supplies, and consume only 35µA supply current. These devices are intended for programmable-gain amplifier (PGA) applications and consist of fixed resistor-dividers. Each device has digitally controlled contacts with four precision noninverting gains of 1, 2, 4, and 8 with ratio accuracy of 0.025% (MAX5430A/ MAX5431A), 0.09% (MAX5430B/MAX5431B), or 0.5% (MAX5430C/MAX5431C). The MAX5431 includes an on-chip matching resistor for op amp input bias-current compensation.

The MAX5430/MAX5431 are available in space-saving 8-pin SOT23 and 10-pin µMAX® packages, and specified over the extended temperature range of (-40°C to +85°C).

Applications

General-Purpose Programmable Noninverting **Amplifier**

Programmable Instrumentation Amplifier

Features

- **♦** Four Noninverting PGA Gain Configurations: $A_V = 1, 2, 4, and 8$
- ♦ Precision 0.025% Ratio Accuracy
- ♦ On-Chip Matching Resistor for Op Amp Bias-**Current Compensation (MAX5431)**
- ♦ Single-Supply +12V to +15V, or Dual-Supply ±12V to ±15V Operation
- ♦ Low 35µA Supply Current
- **♦ CMOS/TTL Logic Compatible 2-Wire Parallel** Interface
- ♦ Space-Saving 8-Pin SOT23 and 10-Pin µMAX **Packages**
- ♦ +3V Logic Compatibility

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	GAIN ACCURACY
MAX5430AEKA	-40°C to +85°C	8 SOT23	0.025%
MAX5430BEKA	-40°C to +85°C	8 SOT23	0.09%
MAX5430CEKA	-40°C to +85°C	8 SOT23	0.5%
MAX5431AEUB	-40°C to +85°C	10 μMAX	0.025%
MAX5431BEUB	-40°C to +85°C	10 μMAX	0.09%
MAX5431CEUB	-40°C to +85°C	10 μMAX	0.5%

Functional Diagram

µMax is a registered trademark of Maxim Integrated Products, Inc.

Pin Configurations

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V _{DD} to GND0.3\	/ to +17V
V _{SS} to GND17V	to +0.3V
D0, D1 to GND0.3	3V to +6V
H, L, W, MATCH_ to GND(VSS - 0.3V) to (VD	D + 0.3V
Current Into Any Signal Pin	±50mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
8-Pin SOT23 (derate 8.9mW/°C above +70°C)	714mW
10-Pin µMAX (derate 10.3mW/°C above +70°C)	825mW

Operating Temperature Range	40°C to +85°C
Storage Temperature Range	60°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(VDD = +15V, VSS = -15V, GND = 0, TA = TMIN to TMAX. Typical values are at TA = +25°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS	
DC PERFORMANCE								
D: : 1 D :: A			MAX543_A			0.025		
Divider Ratio Accuracy (Note 2)		$V_H = +5V, V_L = -5V$	MAX543_B			0.09	%	
(11010-2)			MAX543_C			0.5		
Resistance between H and L (Figure 1)	R _{HL}				57		kΩ	
Capacitance at Analog Pins	Canalog				2		рF	
Matching Resistor		Ratio = 1			0.5		kΩ	
Waterling Hesister		Ratio = 2, 4, 8			14		1/22	
Wiper Resistance	Rw	Ratio = 1			0.5		kΩ	
Wipor Hosiotanoc		Ratio = 2, 4, 8			14			
W, H, L, MATCH_H, MATCH _L Voltage Range	Vanalog			V _{SS}		V_{DD}	V	
DIGITAL INPUTS								
Input High Voltage	VIH			2.4			V	
Input Low Voltage	VIL					0.8	V	
Input Leakage Current		D0, D1 = 5V or GND				±1	μΑ	
Input Capacitance	C _{IN}				5		рF	
POWER REQUIREMENTS								
Negative Supply Current	ISS				1	25	μΑ	
Positive Supply Current	IDD				35	60	μΑ	
Positive Power-Supply Voltage	V _{DD}			10.8		15.75	V	
Negative Power-Supply Voltage	V _{SS}			-15.75		0	V	
DYNAMIC PERFORMANCE								
Switching Time	t _{D2W} , t _{H2W}				0.3		μs	

Note 1: All devices are 100% production tested at $T_A = +25^{\circ}C$. SOT23 packages are guaranteed by design from $T_A = T_{MIN}$ to T_{MAX} . **Note 2:** Gain accuracy is measured without load at pin W.

Typical Operating Characteristics

(VDD = +15V, VSS = -15V or VSS = GND, VH = 5V, VL =-5V, TA = 25°C, unless otherwise noted.) (Note 3)

Typical Operating Characteristics (continued)

 $(V_{DD} = +15V, V_{SS} = -15V \text{ or } V_{SS} = \text{GND}, V_{H} = 5V, V_{L} = -5V, T_{A} = 25^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Note 3)

Note 3: For MAX543_C accuracy Typical Operating Characteristics, refer to MAX543_B accuracy Typical Operating Characteristics.

Pin Description

PIN		NAME	FUNCTION	
MAX5431	MAX5430	NAME	FUNCTION	
1	8	V _{DD}	Positive Power Supply	
2	_	MATCH_H	Matching Resistor High Terminal	
3	7	GND	Ground	
4	6	Н	High Terminal of Resistive-Divider	
5	5	L	Low Terminal of Resistive-Divider	
6	_	MATCH_L	Matching Resistor Low Terminal	
7	4	V _{SS}	Negative Power Supply	
8	3	W	Wiper Terminal of Resistive-Divider	
9	2	D1	Second Bit Digital Input (MSB) (Table 1)	
10	1	D0	First Bit Digital Input (LSB) (Table 1)	

Figure 1. Simplified Functional Diagram

Detailed Description

The MAX5430/MAX5431 are digitally programmable precision resistor arrays. These devices have fixed resistor-dividers with digitally controlled contacts, providing four precision noninverting gains of 1, 2, 4, and 8 for PGA applications (see *Functional Diagram* and Figure 1). The MAX5430/MAX5431 achieve ratio accuracies of 0.025%

(MAX5430A/MAX5431A), 0.09% (MAX5430B/MAX5431B), or 0.5% (MAX5430C/MAX5431C).

The end-to-end resistance from H to L is $57k\Omega$. The impedance seen at W is designed to be the same $14k\Omega$ for gain settings 2, 4, and 8, ensuring excellent op amp input-resistance balance, regardless of gain setting. In a gain of 1 configuration, H is internally connected to W with a typical resistance of 500Ω .

Matching Resistor (MAX5431)

The MAX5431 includes a matching resistor to compensate the offset voltage due to the input bias current of the op amp. The resistance from MATCH_H to MATCH_L is a fixed matching resistor, equal to the resistance seen at W for gains of 2, 4, and 8. In the gain of 1, an internal switch short circuits MATCH_H and MATCH_L. This internal switch matches the impedance of the switch between H and W.

Table 1. Logic-Control Truth Table

DIGITAL INPUTS		GAIN
D1	D0	GAIN
0	0	1
0	1	2
1	0	4
1	1	8

Digital Interface Operation

The MAX5430/MAX5431 feature a simple two-bit parallel programming interface. D1 and D0 program the gain setting according to the *Logic-Control Truth Table* (see Table 1). The digital interface is CMOS/TTL logic compatible.

Applications Information

Programmable-Gain Amplifier

The MAX5430/MAX5431 are ideally suited for high-precision PGA applications. The typical application circuit of Figure 2 uses the MAX5431 with matching resistor to compensate for voltage offset due to op amp input bias currents. Use the MAX5430 with an ultra-low input bias current op amp (see Figure 3).

Power Supplies and Bypassing

The MAX5430/MAX5431 operate from dual $\pm 15V$ supplies or a single 15V supply. For dual supplies, bypass V_{DD} and V_{SS} with 0.1 μ F ceramic capacitors to GND. For single supply, connect V_{SS} to GND and bypass V_{DD} with a 0.1 μ F ceramic capacitor to GND.

Switching Time and Layout Concerns

The switching time of the MAX5430/MAX5431 depends on the capacitive loading at W. For best performance, reduce parasitic board capacitance by minimizing the circuit board trace from W to the op amp inverting input, and choose an op amp with low input capacitance.

Figure 2. MAX5431 Typical Application Circuit PGA with Input IBIAS Matching

Figure 3. Programmable-Gain Amplifier Using the MAX5430

_Pin Configurations (continued)

Chip Information

TRANSISTOR COUNT: 121

PROCESS: CMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

<u>MAX5430BEKA+T</u> <u>MAX5431AEUB+</u> <u>MAX5430AEKA+T</u> <u>MAX5430CEKA+T</u> <u>MAX5431AEUB+T</u> <u>MAX5431BEUB+</u> MAX5431BEUB+T MAX5431CEUB+ MAX5431CEUB+T MAX5430AEKA+