Model-Free Deep Reinforcement Learning algorithms applied to autonomous systems

Candidate: Piero Macaluso - s252894

Supervisors: Prof. Pietro Michiardi

Prof. Elena Baralis

EURECOM, France

Politecnico di Torino, Italy

POLITECNICO DI TORINO

This master thesis was developed at EURECOM (Sophia Antipolis, Biot, France) in collaboration with

Prof. Pietro Michiardi (EURECOM)
Prof. Elena Baralis (Politecnico di Torino)

Table of contents

- 1. Reinforcement Learning Background
- 2. Reinforcement Learning for Autonomous Systems
- 3. Outline of the Project
- 4. First Experiment Results
- 5. Reflections and possible developments

Reinforcement Learning Background

Beyond supervised and unsupervised learning

Supervised Learning

- Data: (x, y) where x is data, y is label
- Goal: Learn a function $f: x \to y$
- Examples: Classification, object detection, semantic segmentation, image captioning, ...

Beyond supervised and unsupervised learning

Unsupervised Learning

- Data: No more labels, just data.
- Goal: Learn some underlying hidden structure of the data.
- Examples: Clustering, dimensionality reduction, feature learning, density estimation, ...

Scholz, "Approaches to analyse and interpret biological profile data".

Reinforcement Learning

Problems involving an agent interacting with an environment, which provides numeric reward signals.

Goal: Learn how to take actions in order to maximize reward

Sutton and Barto, Reinforcement learning: An introduction.

Reinforcement Learning involves

- Optimization
- · Delayed Consequences
- Exploration
- · Generalization

Components of the Agent

· Policy: agent's behaviour function

Deterministic:
$$\pi(s) = a$$

Stochastic: $\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$

· Value Function: agent's behaviour function

State Value:
$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^k r_t | s_0 = s, \pi\right]$$

Action Value: $Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^k r_t | s_0 = s, a_0 = a, \pi\right]$

Model: agent's representation of the environment

Categorizing Reinforcement Learning agents

- · Value Based
 - No Policy (implicit)
 - · Value Function
- · Policy Based
 - Policy
 - No value function
- Actor Critic
 - Policy
 - · Value function

Model Free

- Policy and/or value function
- · No Model
- · Model Based
 - Policy and/or value function
 - Model

Reinforcement Learning aim

Learn to make good sequences of decisions.

Fundamental challenge in artificial intelligence and machine learning is learning to make good decisions under uncertainty.

Let's go Deep!

Google DeepMind's Deep Q-learning playing Atari Breakout

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Mnih et al., "Playing atari with deep reinforcement learning".

Reinforcement Learning for Autonomous Systems

State-of-the-art Autonomous Driving Systems

Deep Learning for autonomous vehicles

State-of-the-art Autonomous Driving Systems

Learning to drive in a Day

Learning to drive in a day

https://www.youtube.com/watch?v=eRwTbRtnT1I

Kendall et al., "Learning to Drive in a Day".

Learning to Drive like a Human

Urban Driving with End-to-End Deep Learning

https://www.youtube.com/watch?v=260r4QbLbMM

Model-Free Actor Critic methods

Critic Network

Estimates the value function. This could be the action value *Q* or state value *V*.

Actor Network

Updates the policy distribution in the direction suggested by the Critic (such as with policy gradients).

Sutton and Barto, Reinforcement learning: An introduction.

Model-Free algorithms exploited

Deep Deterministic Policy Gradient (DDPG)

- DDPG is an off-policy algorithm.
- · Ornstein-Uhlenbeck process noise for exploration
- Countinuous action spaces

Soft Actor-Critic (SAC)

- SAC is an off-policy algorithm which exploits entropy-regularized reinforcement learning
- · Auto-tune parameters: Less hyper-parameters, less tuning
- · Suitable for Real-World Experiments

Outline of the Project

Main Objectives

- Building a **control system** and an **interface** between Cozmo robot and algorithms using OpenAl Gym.
- · Real World Reinforcement Learning experiments.
- · Comparison between DDPG and SAC.
- · Strengths and Weaknesses of Reinforcement Learning.

Anki Cozmo - Not just a toy robot

Why Cozmo?

- Small and portable
- · 30fps VGA Camera
- Powerful mechanics
- Python SDK and interfaces

The Reinforcement Learning Control System Stack

- · Human Level Control through a WebApp (Flask, Python and Javascript)
- · Algorithm written in **Python**
- PyTorch as Deep Learning Framework
- · OpenAl Gym Framework for Reinforcement Learning
- · Cozmo SDK

Reinforcement Flow

Commands to manage episode and enable human remote control

Start/Stop Episode

Stop and Forget last episode

Toggle Test Phase

Toggle Save'n'Close Phase

Commands to restore the correct position of Cozmo

Drive Forwards Left / Back / Right

Move LIFT/HEAD up and down

Hold to Move Faster (Driving, Head and Lift)

Hold to Move Slower (Driving, Head and Lift)

Info

Phase	Train
Episode	Started
Discarded	FALSE
Save and Close	FALSE

Other Info

Phase	Mark
Episode	Jacob
Discarded	Larry

A Study of Reinforcement Learning

A Master Thesis by Piero Macaluso.

Supervisors:

Prof. Elena Baralis, Politecnico di Torino (Torino, Italy) Prof. Pietro Michiardi, Eurecom (Biot, France)

Anki Cozmo

Developed using Anki Cozmo Robot and its Open Source SDK SaveAnki | #SaveVector | #SaveCozmo

The Track

- · Contrast between lane and asphalt.
- Lane width comparable to the real one.
- · Fewer Reflections.
- · Easily Repeatable.

First Experiment Results

Results - Training Phase

Figure 1: Total reward for each episode. The maximum value of almost 3 meters between episode 2500 and 3000.

Results - Test Phase

Figure 2: Test Phase every 20 episodes of learning. Mean Reward over 5 episode of test.

Best Episodes - Episode 2748 ans 2876

Reinforcement Learning Training Episode with Anki Cozmo

https://pieromacaluso.github.io/episode

Considerations

- These results might appear not so extraordinary.
- In reality, it is like teaching a baby how to drive a car!
- It is a process which starts from scratch. From Zero to Hero!

Reflections and possible developments

Issues

- Hunger for data.
- · Human Bias.
- · Narrow view of the camera.

Possible improvements

- Increase the number of epochs for each episode.
- Apply gradient clipping.
- Prioritized Experience Replay.
- · Improve Fault Recovery System.

Possible developments

- · Increase the number of data (e.g sensors).
- · Overcome the limitations of Cozmo.
 - · Anki Vector
 - · Donkey Car
- · Neural Network for object detection.

References i

References

- Haarnoja, Tuomas et al. "Soft actor-critic algorithms and applications". In: *arXiv* preprint arXiv:1812.05905 (2018).
- Kendall, Alex et al. "Learning to Drive in a Day". In: *arXiv preprint arXiv:*1807.00412 (2018).
- Lillicrap, Timothy P et al. "Continuous control with deep reinforcement learning". In: arXiv preprint arXiv:1509.02971 (2015).
- Mnih, Volodymyr et al. "Playing atari with deep reinforcement learning". In: *arXiv* preprint arXiv:1312.5602 (2013).

References ii

Sutton, Richard S and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.

WAYVE. *Learning to Drive like a Human*. https://wayve.ai/blog/driving-like-human. 2019. (Visited on 04/03/2019).