반도체 공정 운전 조건 최적화 및 실시간 모니터링 체계 구축으로 불량률 최소화

2024.08.23

B반 3조 김성은 김준규 박민제 백지연 송예인 홍해원

<u>01</u> 비즈니스 소개

<u>05</u> 분석결과

<u>02</u> 추진배경

<u>06</u> 개선방안

<u>03</u> 현황 및 개선기회

<u>04</u> 분석계획

비즈니스 소개

반도체란?

도체(전기가 통하는 물질)와 부도체의 두 가지 성질을 가진 물질 ⇒ 특정 조건(빛, 열 등)에 따라 전기가 통하기도 하고, 통하지 않기도 함

활용

자율주행 자동차

의료기기

인공위성

사업유형

유형	설계	생산	대표적인 기업
파운드리	Х	0	TSMC
Fab-less	0	X	퀄컴, 엔비디아, AMD emd
IDM	0	0	삼성전자, 인텔, SK하이닉스, 텍사스 인스트루먼트(TI)

⇒ 당사는 반도체를 생산하는 파운드리 유형의 회사에 해당

반도체 8대공정

Step 1) Wafer 제작

반도체를 제작하는 순도 높은 규소 재료인 Wafer 제작

Step 2) 산화공정

Wafer 표면에 실리콘 산화막을 형 성해 트랜지스터의 기초 형성

Step 3) 포토공정

Wafer 위에 반도체 회로를 그려 넣는 과정

Step 4) 식각공정

반도체의 구조를 형성에 필요한 회로 패턴을 제외한 나머지 부분을 제거

Step 5) 박막증착 / 이온주입공정

박막을 제작하고 반도체가 전기적인 특성을 갖도록 만드는 과정

Step 6) 금속 배선 공정

반도체 회로에 전기적 신호가 잘 전달 되도록 전기길을 연결

Step 7) EDS 공정

전기적 특성 검사를 통해 원하는 품질 수준에 도달했는지 검증

Step 8) 패키징

반도체 칩이 외부와 신호를 주고받고 환경으로부터 보호받는 형태로 제작

공정의 흐름

추진배경

4차 산업혁명(loT, Big Data, AI) 시대의 도래와 함께 반도체 시장 규모가 지속적으로 증가하고 있으나, 당사의 매출 증가율은 지속적으로 감소함에 따라 경쟁우위 확보를 위한 수익성 향상 활동 필요

현황 및 개선기회

반도체 Chip의 크기가 소형화됨에 따라 집적도 기술이 급격히 발전하고 있고, 글로벌 시장에서 업체들 간 경쟁이 심화되고 있음에 당사의 기술 경쟁력 향상 필요

반도체 공정 집적도 향상 (단위: nm)

구분	23.상	23.하	24.상	24.하	25.상
삼성	4	3	2	2	2
TSMC	4	3	2	2	2
Intel	7	4	4	2	1.8

현황 및 개선기회

국내 수출시장에서 반도체가 차지하는 비중이 높고 중요한 부분을 차지하고 있으나, 당사의 불량률은 지속적으로 높게 나타남에 따라 불량률 감소를 위한 공정 안정화 활동 필요

과제 수행목표

측정지표(KPI)	운영정의	현 수준	목표치 (25')
불량률 (%)	(불량 chip 수 / 생산된 chip 수) x 100	5.13%	4.00%

분석계획

목적	분석 방법	주요 내용	
전체 데이터의 분포 특성 확인	Histogram, Bar Plot, Box Plot, 기술통계량	변수의 분포, 운전인자 이상치 및 결측치 확인	
불량에 영향을 미치는 영향인자 도출	Box Plot, 2-sample t-test, Heatmap, 카이제곱	변수 간 상관관계 및 유의성 확인	
프로세스 안정에 따른 불량률 확인	Control Chart, Bar Chart, 카이제곱	path별 불량 발생 정도 및 공정 안정성 확인	
최적 운전조건 도출	Box Plot	공정별 핵심 변수 식별 및 최적 운전조건 확인	
불량 사전 예측 모델 개발	Decision Tree, Random Forest, Gradient Boosting, XgBoost, LightGBM	최적 머신러닝 알고리즘 선정 및 불량예측모델 생성	
최적 경로 추천 시스템 개발	Simulation	공정 흐름별 불량률 계산 및 최적 경로 도출	

분석결과_프로세스 안정성

프로세스 안정성에 따른 불량률 분석결과, 불안정한 공정흐름에서의 불량률이 높게 나타남에 따라 프로세스의 안정화 활동 필요

카이제곱 검정

H0 귀무가설: 프로세스의 안정성에 따른 불량 칩 수의 차이가 없다.

H1 대립가설: 프로세스의 안정성에 따른 불량 칩 수의 차이가 있다.

카이제곱 검정통계량 : 1824.39

P-값: 0.0 < 0.05 (대립가설 채택)

분석결과_생산부하

프로세스 생산부하에 따른 불량률 분석결과, 과부하 경로에서 불량률이 높게 나타남에 따라 생산 부하를 고려한 적정 생산 체계 필요

카이제곱 검정

H0 귀무가설: 생산부하에 따른 불량 칩 수의 차이가 없다.

H1 대립가설: 생산부하에 따른 불량 칩 수의 차이가 있다.

카이제곱 검정통계량 : 388.05

P-값 < 0.05 (대립가설 채택)

=> 생산부하의 정도가 웨이퍼 칩의 불량률에 유의미한 영향을 미친다.

분석결과_최적운전조건

불량률을 효과적으로 줄일 수 있는 핵심 공정변수를 식별하고, 이를 통해 공정의 안정성과 품질을 최적화하기 위한 조건 설정

변수	범위	최적운전조건
Temp_Oxid (chamber 내 평균 온도)	861.79℃ ~ 1348.62℃	1298℃ ~ 1348.62℃
ppm (공정에 투여되는 합성물량)	20.75ppm ~ 50.09ppm	46ppm ~ 50.09ppm
N2_HMDS (HMDS 질소의 투여량)	9.28ppm ~ 23.69ppm	9.28ppm ~ 12.80ppm
RTA_Temp (RTA 작업시 chamber 온도)	148℃ ~ 162℃	148℃ ~ 150℃
Flux90s (90초 동안 주입된 이온양)	5.20e+15 ~ 2.40e+17	1.82e+17 ~ 2.40e+17
Flux480s (480초 동안 주입된 이온양)	2.99e+17 ~ 3.01e+17	2.96e+17 ~ 3.01e+17
Temp_Eching (eching 공정시 사용된 온도)	69.00℃ ~ 73.34℃	69.00℃ ~ 69.80℃
input_Energy (주입시 사용된 plasma 에너지)	29604.10 ~ 33675.75	32750.00 ~ 33675.00

핵심 공정변수 식별 기준

- 1. 직접적으로 조절할 수 있는 변수
- 2. Box Plot 내 양품과 불량 간의 분포 차이가 큰 변수

분석결과_요일별 현황

요일별 불량률 분석결과, 금요일에 특히 불량률이 높게 나타남에 따라 운전자 몰입도 향상을 위한 독려활동 전개 필요 카이제곱검정

H0 귀무가설: 요일에 따라 반도체 제조 공정에서 불량 칩 수에 차이가 없다.

H1 대립가설: 요일에 따라 반도체 제조 공정에서 불량 칩 수에 차이가 있다.

카이제곱 검정통계량 : 139.29 / P-값 < 0.05 (대립가설 채택)

⇒ 요일이 웨이퍼 불량률에 유의미한 영향을 미친다는 것을 알 수 있다.

⇒ 상대적으로 불량률이 높은 금요일에 캠페인 활동을 진행한다면 불량률 개선에 기여할 수 있을 것으로 기대

분석결과_경로 추천 시스템

Z

실시간 운전실적을 반영하여 공정 흐름별 불량률 계산 및 최적 경로 추천 시스템을 통한 실수율 향상 활동 필요

	3.88%	6.24%
	Top 5	Bottom 5
양품 칩 수	4361863	4367586
불량 칩 수	176137	302414

분석결과_모델링

최적 머신러닝 알고리즘으로 F1-score 값이 가장 높은 모델 XG-Boosting 선정 및 변수 중요도 도출

개선방안

개선방안

개선방안 1) 실시간 모니터링 체계 구축 및 운영

개선방안

개선방안 2) 최적경로 추천 시스템 구축 및 운영

	투입 경로			불량률
1	1223	2131	3312	3.2%
2	1213	2121	3332	3.3%
	•••••			
216	1232	2313	3121	7.6%

	투입 경로			불량률
1	1223	2131	3312	3.2%

개선방안 및 기대비용

개선방안 3) 운전자 근무 몰입도 향상을 위한 캠페인 활동 전개

우수 사원 복지 포인트 제공

매주 금요일에 불량률 감소에 기여한 우수 사원을 선정하여 자사 복지몰에서 사용 가능한 복지 포인트 및 Best 운전상 제공

심리 상담 프로그램 진행

정신적 스트레스 회복 및 직무 만족도 향상을 위해 주 1회 전문 심리 상담가를 초빙하여 심리 특강 및 1:1 심리 상담 복지 제공

기대비용

" 최적 운전 조건 조정 및 모델링을 통한 불량률 감소 5.13% → 4.66% "

6개월간 15,390 *2,000 * 0.0047 = 144,666개의 양품 칩 추가 생산 가능

(6개월간 생산 웨이퍼 수 * 각 칩 갯수 * 감소된 불량률)

20달러의 반도체로 순이익 2,893,320 달러 (한화 약 39억원)의 매출 상승 기대

개선방안 및 기대비용

개선방안 3) 운전자 근무 몰입도 향상을 위한 캠페인 활동 전개

우수 사원 복지 포인트 제공

매주 금요일에 불량률 감소에 기여한 우수 사원을 선정하여 자사 복지몰에서 사용 가능한 복지 포인트 및 Best 운전상 제공

심리 상담 프로그램 진행

정신적 스트레스 회복 및 직무 만족도 향상을 위해 주 1회 전문 심리 상담가를 초빙하여 심리 특강 및 1:1 심리 상담 복지 제공

기대비용

" 최적 운전 조건 조정 및 모델링을 통한 불량률 감소 5.13% → 4.66% "

6개월간 15,390 *2,000 * 0.0047 = 144,666개의 양품 칩 추가 생산 가능

(6개월간 생산 웨이퍼 수 * 각 칩 갯수 * 감소된 불량률)

20달러의 반도체로 순이익 2,893,320 달러 (한화 약 39억원)의 매출 상승 기대

시연영상

Q&A

Thank you:) 감사합니다.