- 3 実数の組(p,q)に対し $, f(x) = (x-p)^2 + q$ とおく.
- (1) 放物線 y=f(x) が点 (0,1) を通り,しかも直線 y=x の x>0 の部分と接するような実数の組 (p,q) と接点の座標を求めよ.
- (2) 実数の組 (p_1,q_1) , (p_2,q_2) に対して, $f_1(x)=(x-p_1)^2+q_1$ および $f_2(x)=(x-p_2)^2+q_2$ とおく.実数 α , β (ただし $\alpha<\beta$)に対して $f_1(\alpha)< f_2(\alpha)$ かつ $f_1(\beta)< f_2(\beta)$

であるならば , 区間 $\alpha \le x \le \beta$ において不等式 $f_1(x) < f_2(x)$ がつねに成り立つことを示せ .

(3) 長方形 $R:0\leq x\leq 1,\,0\leq y\leq 2$ を考える.また,4 点 $P_0(0,1)$, $P_1(0,0)$, $P_2(1,1)$, $P_3(1,0)$ をこの順に線分で結んで得られる折れ線を L とする.実数の組 (p,q) を,放物線 y=f(x) と折れ線 L に共有点がないようなすべての組にわたって動かすとき,R の点のうちで放物線 y=f(x) が通過する点全体の集合を T とする.R から T を除いた領域 S を座標平面上に図示し,その面積を求めよ.