Algebra II

Fall 2018

Contents

1	Review	1
2	Field Extensions 2.1 Minimal Polynomial	
3	2.2 Splitting Fields	7
4	yy	11
	4.1 Squaring the Circle, Trisecting Angles, etc. 4.2 Irreducibility of Cyclotomic Polynomials	14

Review Algebra II

Review 1

Definition 1.1. An ideal I in a ring R is a subset of R such that (i) I is an additive subgroup (ii) if $x \in I$ and $r \in R$, then $rx \in I$ and $xr \in I$.

Note: We exclusively work in commutative rings, so we only need to check one way.

Definition 1.2. An ideal P is **prime** if (i) $P \neq A$ (ii) if $xy \in P$ then either $x \in P$ or $y \in P$.

Definition 1.3. An ideal P is **maximal** if it is a maximal proper ideal.

Examples.

- $p\mathbb{Z} \times \mathbb{Z}$ is prime and maximal in $\mathbb{Z} \times \mathbb{Z}$. $p\mathbb{Z}$ is a prime ideal of \mathbb{Z}
- $0\mathbb{Z} \times \mathbb{Z}$ is prime but not maximal in $\mathbb{Z} \times \mathbb{Z}$.

Proposition 1.4. I is a prime ideal if and only if R/I is an ID. I is a maximal ideal if and only if R/I is a field.

Corollary 1.4.1. All maximal ideals are prime.

Theorem 1.5 (Euclidean Algorithm). Given $a, b \in \mathbb{Z}$ with b > 0, there exists unique integers q, r such that a = bq + r and $0 \le r < b$. Similarly, if $f, g \in K[x]$, for some field K and g is a nonzero, monic polynomial, then there exist unique polynomials $q, r \in K[x]$ such that f = gq + rwhere $0 \le \deg(r) < \deg(q)$.

Corollary 1.5.1. If $f(x) \in K[x]$ is a polynomial of degree d and $\alpha \in K$, then $f(\alpha) = 0$ if and only if $f(x) = (x - \alpha)q(x)$ for some $q \in K[x]$. Moreover, f(x) can have at most d roots in any field containing K.

Theorem 1.6. Every PID is a UFD.

Proof. To prove it is a factorization domain, suppose there exists a 'smallest' non-factorizable element. To get uniqueness, use induction.

Proposition 1.7. Both K[x] (K is a field) and \mathbb{Z} are PIDs, and hence UFDs.

Proof. Let I be an ideal in k[x]. If I=(0), we're done. Otherwise, I contains some nonzero polynomial. Choose $f(x) \in I$ to be a polynomial of minimal degree. Since $f(x) \in I$, $(f(x)) \in I$. Let $p(x) \in I$. Write

$$p(x) = q(x)f(x) + r(x),$$

where $q(x), r(x) \in k[x]$, and either r(x) = 0 or $\deg(r(x)) < \deg(f(x))$. Then r(x) = p(x) - q(x)f(x), so $r(x) \in I$. Hence $\deg(r(x)) \ge \deg(f(x))$. Thus r(x) = 0, so f(x) divides p(x), i.e. $p(x) \in (f(x))$. (The proof for \mathbb{Z} is similar.)

Recall that in an integral domain D, an element $\pi \in D$ is said to be irreducible if whenever $\pi = xy$,

1 Review Algebra II

for $x, y \in D$, either x or y is a unit.

Proposition 1.8. Let A be a PID. Then $\pi \in A$ is irreducible if and only if (π) is a prime ideal.

Proof. For forward direction, show that (π) is maximal. Suppose $(\pi) \subset J \subset A$, for some ideal J of A. A is a PID so J = (x) for some $x \in A$. Then $\pi \in (x)$, so $\pi = xy$ for some $y \in A$. By irreducibility, either x or y is a unit. If x is a unit, then J = A, if y is a unit, $x = \pi y^{-1}$, so x is a multiple of π , hence $J \subset (\pi)$.

For reverse, suppose I=(a) is a nonzero prime ideal. Suppose a=bc for $b,c\in A$. Then $bc\in (a)$, so either b or c is a multiple of a. WLOG b=ad for some $d\in A$. Thus a=bc=adc so dc=1, hence c is a unit, so a is irreducible.

Thus an ideal I in a PID is prime $\Leftrightarrow I = (p(x))$ for irreducible $p(x) \in K[x] \Leftrightarrow I$ is maximal.

Theorem 1.9. Let $f(x) \in K[x]$ be a *cubic* or *quadratic* polynomial. Then f(x) is irreducible in K[x] if and only if f(x) has a root in K.

Proof. Some factor must be linear.

Proposition 1.10. (Rational Root Thorem). Let $f(x) = a_n x^n + \ldots + a_1 x + a_0$ in $\mathbb{Z}[x]$ be primitive. If f(x) has a root in \mathbb{Q} , that root is of the form $\frac{p}{q}$, where (p,q) = 1, $p|a_0$ and $q|a_n$.

Proof. $q^n f(\frac{p}{q}) = 0$ implies $-a_0 q^n = p(a_n p^{n-1} + \ldots + a_1 q^{n-1})$. Thus $p \mid a_0$. Similarly, $\frac{q}{p}$ is a root of $g(x) = a_n + \ldots + a_1 x^{n-1} + a_0 x^n$, so $p^n g(\frac{q}{p}) = 0$, implies $-a_n p^n = q(a_{n-1} + \ldots + a_0 q^{n-1})$.

Theorem 1.11 (Eisenstein). Let $f(x) = a_n x^n + \ldots + a_1 x + a_0$ be in $\mathbb{Z}[x]$ and p be a prime. If $p \nmid a_n$, $p|a_i$ for $1 \leq i < n$, and $p^2 \nmid a_0$, then f(x) is irreducible in $\mathbb{Q}[x]$.

Proof. Suppose f(x) is reducible over \mathbb{Q} . By Gauss, f(x) factors over \mathbb{Z} . Say

$$f(x) = (b_r x^r + \dots b_1 x + b_0)(c_s x^s + \dots + c_1 x + c_0)$$

 $b_i, c_j \in \mathbb{Z}$. Since $p \mid a_0$ and $p^2 \nmid a_0 = b_0 c_0$, p divides only one of b_0 and c_0 . Assume WLOG $p \mid c_0$ but $p \nmid b_0$. Note p does not divide either b_r or c_s as $p \nmid a_n$. Let d be the smallest positive integer such that $p \nmid c_d$, $1 \leq d \leq s < n$.

$$a_d = b_0 c_d + b_1 c_{d-1} + \ldots + \begin{cases} b_d c_0 & r \ge d \\ b_r c_{d-r} & \text{otherwise} \end{cases}$$
.

Then $p \mid a_d$ but $p \nmid b_0 c_d$ yet $p \mid b_i c_{d-i}$ for i < d (as $p \mid c_{d-i}$).

Corollary 1.11.1. Let p be a prime. Then the pth cyclotomic polynomial $\Phi_p(x) = \frac{x^p-1}{x-1} = x^{p-1} + \ldots + x + 1$ is irreducible over \mathbb{Q} .

Theorem 1.12. Let p be a prime and $f(x) \in \mathbb{Z}[x]$ with $\deg(f(x)) \geq 1$. Let $\overline{f(x)} \in \mathbb{Z}_p[x]$ be obtained by reducing the coefficients of f modulo p. We require $\deg(\overline{f(x)}) = n$. Then $\overline{f(x)}$ is irreducible over \mathbb{Z}_p implies f(x) is irreducible over \mathbb{Z} .

Proof. Contrapositive. f(x) = g(x)h(x) both with degree less than n. Reducing mod p, $\bar{f} = \bar{g}\bar{h}$, since deg $f = \deg \bar{f}$, we factored \bar{f} in $\mathbb{Z}_p[x]$.

Definition 1.13. The **content** of a polynomial $p(x) = a_n x^n + \ldots + a_1 x + a_0$, is $gcd(a_n, \ldots, a_1, a_0)$. We say p(x) is **primitive** if content(p(x)) = 1.

Theorem 1.14 (Gauss' Lemma 1). $f(x) \in \mathbb{Z}[x]$ factors into a product of two polynomials of lower degrees in $\mathbb{Q}[x]$ if and only if it factors into the product to two polynomials of the same lower degrees in $\mathbb{Z}[x]$. Moreover, the polynomials from $\mathbb{Q}[x]$ and those from $\mathbb{Z}[x]$ are scalar multiples of one another. Furthermore, if f(x) is primitive, then so are the polynomials f(x) factors into.

Proof. Suffices to show for f primitive. Assume f(x) = g(x)h(x) in $\mathbb{Q}[x]$, where f(x) is primitive. Let a = lcm(denominators of the coefficients of g) and b equal that of h. Then abf(x) = (ag(x))(bh(x)) where ag(x) and bh(x) have integer coefficients. Let c = content(ag(x)) and d = content(bh(x)). Then $ag(x) = cg_1(x)$ and $bh(x) = dh_1(x)$ where $g_1(x), h_1(x) \in \mathbb{Z}[x]$ are primitive. So

$$abf(x) = cdg_1(x)h_1(x).$$

Since $g_1(x), h_1(x)$ are primitive, so is their product. Thus cd is the content of the RHS, and ab is the content of the LHS. Hence ab = cd, and by cancellation $f(x) = g_1(x)h_1(x)$.

Theorem 1.15 (Gauss' Lemma 2). The product of two primitive polynomials is primitive.

Proof. Assume f, g are primitive but $f \cdot g$ is not. Then some prime p divides every coefficient of $f \cdot g$. Reducing mod p, this implies

$$\overline{f(x)g(x)} = \overline{(f \cdot g)(x)} = 0.$$

However, neither $\overline{f(x)}$ nor $\overline{g(x)}$ is identically 0, as f,g are primitive. Since $\mathbb{Z}_p[x]$ is an integral domain, we have a contradiction.

2 Field Extensions

Definition 2.1. If E is an extension field of K (considered as a vector space), then the dimension of E over K is called the **degree** of E over K and is denoted [E:K]. We say the extension is *finite* if $[E:K] < \infty$.

Definition 2.2. An element $\alpha \in E$ is algebraic over K us α is a root of some nonzero polynomial

in K[x]. Otherwise, α is called **transcendental**.

Definition 2.3. An extension E/K is algebraic if every $\alpha \in E$ is algebraic over K.

Examples. Both $\sqrt[3]{5}$ and i are algebraic over \mathbb{Q} . \mathbb{C} is algebraic over \mathbb{R} , but not over \mathbb{Q} , as π and e are transcendental.

Theorem 2.4. Finite extensions are algebraic.

Proof. Suppose $[E:K]=d<\infty$. We want to show the for any $\alpha\in E$, α is a root of some nonzero polynomial in K[x]. Equivalently, we can show some non-trivial linear combination of powers of α is 0. Note that $\{1,\alpha,\ldots,\alpha^d\}$ is linearly dependent, so we're done.

Corollary 2.4.1. If $[E:K]=d<\infty$, then all elements of E are roots of nonzero polynomials in K[x] of degree at most d.

2.1 Minimal Polynomial

Definition 2.5. Let E be an extension field of K. Let $\alpha \in E$ such that α is algebraic over K. The minimal polynomial of α over K, denoted $\operatorname{irr}(\alpha, K, x)$, is the monic polynomial of smallest degree in K[x] with α as a root.

Proposition 2.6. Let $p(x) = \operatorname{irr}(\alpha, K, x)$. Then p(x) divides all polynomials in K[x] with α as a root. Moreover, p(x) is unique.

Proof. Use division algorithm.

Definition 2.7. Let E be an extension field of K. Let $\alpha \in E$ such that α is algebraic over K. Then $K[\alpha]$ is the smallest ring containing α and K, and $K(\alpha)$ is the smallest field containing α and K. Observe $K[\alpha] \subseteq K(\alpha)$.

In general, we have

$$K[a] = \{ f(\alpha) : f(x) \in K[x] \}$$

and

$$K(\alpha) = \{ \frac{f(\alpha)}{g(\alpha)} : f(x), g(x) \in K[x], g(\alpha) \neq 0 \}.$$

Theorem 2.8. If $\alpha \in E/K$ is algebraic over K, then $K(\alpha) = K[\alpha]$. Moreover, if $\operatorname{irr}(\alpha, K, x)$ has degree d, then $\{1, \alpha, \ldots, \alpha^{d-1}\}$ forms a basis for $K[\alpha]$ over K. Thus $[K(\alpha) : K] = d$.

Proof. Recall $\phi_{\alpha}: K[x] \to E$ given by $f(x) \mapsto f(\alpha)$. The image of ϕ_{α} is K[a] and $\ker(\phi_{\alpha}) = (p(x))$ where $p(x) = \operatorname{irr}(\alpha, K, x)$. Then $K[x]/(p(x)) \cong K[\alpha]$, but p(x) is irreducible, so K[x]/(p(x)) is a field. Hence $K[\alpha] = K(\alpha)$.

Suppose $\{1, \alpha, \dots, \alpha^{d-1}\}$ weren't linearly independent, there there exists a nonzero polynomial of degree less than d in K[x] with α as a root, a contradiction. Let $\gamma \in K[\alpha]$, so

$$\gamma = a_n \alpha^n + \ldots + a_1 \alpha + a_0 = f(\alpha)$$

for some $f(x) \in K[x]$. We're done if n < d, so suppose $n \ge d$. Let $p(x) = \operatorname{irr}(\alpha, K, x)$. We can write

$$f(x) = p(x)q(x) + r(x)$$

for $p(x), q(x), r(x) \in K[x]$ and either r(x) = 0 or $\deg(r(x)) < \deg(p(x))$. If r(x) = 0, the $\gamma = 0$, otherwise r(x) is a polynomial of degree at most d-1, with $r(\alpha) = \gamma$. So γ is in the span of $\{1, \alpha, \ldots, \alpha^{d-1}\}$.

Theorem 2.9. Suppose K is an extension field over E and E is an extension field over k. Then $[K:k]<\infty$ if and only if $[E:k]<\infty$ and $[K:E]<\infty$. Moreover, if K/E and E/k are finite, then [K:E][E:k]=[K:k]. In particular, if $\{\alpha_i\}_{i=1}^r$ is a basis for E over k and $\{\beta_j\}_{j=1}^s$ is a basis for K over E, then $\{\alpha_i\beta_j\}$ is a basis for K over k.

Proof. The second statement is easy. It also shows that if K/E and E/k are finite extensions, then K/k is a finite extension. If K/k is a finite extension, then E is a subspace of K so $[E:k] \leq [K:k]$; any spanning set of K over K is also a spanning set over E, so $[K:E] \leq [K:k]$

Theorem 2.10. Suppose α, β are algebraic over k and that $[k(\alpha) : k] = r < \infty$ and $[k(\beta) : k] = s < \infty$. Then $k(\alpha, \beta)$ is finite over k and both r and s divide $[k(\alpha, \beta) : k]$.

Corollary 2.10.1. If r and s are relatively prime, then $[k(\alpha, \beta) : k] = rs$.

Corollary 2.10.2. If α, β are algebraic over $k, \beta \neq 0$, then so are $\alpha + \beta, \alpha - \beta, \alpha\beta, \frac{\alpha}{\beta} \in k(\alpha, \beta)$. Moreover, all these have degree at most rs.

Let $\overline{\mathbb{Q}} = \{ \alpha \in \mathbb{C} : \alpha \text{ is algebraic over } \mathbb{Q} \}$. Then $\overline{\mathbb{Q}}$ is a field and is called the algebraic closure of \mathbb{Q} .

Proposition 2.11. If α is transcendental over k, then $k[\alpha] \cong k[x]$. Proof. $f(x) \mapsto f(\alpha)$.

Theorem 2.12. Let L/k be an extension field. If $\alpha_1, \ldots, \alpha_n \in L$ are all algebraic over k, then $k(\alpha_1, \ldots, \alpha_n)$ is finite over k. *Proof.* Build tower, adjoining one α_i at a time.

Theorem 2.13. If K/E and E/k are extension fields, then K/k is algebraic if and only if K/E is algebraic and E/k is algebraic.

Proof. (\Rightarrow). All $\alpha \in E$ are algebraic over k ($E \subset K$); all $\alpha \in K$ are algebraic over E (embed $irr(\alpha, k, x)$ in E[x]).

 (\Leftarrow) . Let $\alpha \in K$. α is a root of $f(x) = b_n x^n + \ldots + b_0 \in E[x]$. Let $E_0 = k(b_0, \ldots, b_n)$. So α is algebraic over E_0 . The b_i are algebraic, so E_0 is a finitely-generated algebraic extension, thus E_0/k is finite. But $E_0(\alpha)/E_0$ is finite. So $E_0(\alpha)$ is finite over k and thus it is algebraic, so α is algebraic over k.

Corollary 2.13.1. If $\alpha \in E$ is a root of some polynomial with coefficients that are algebraic over k. Then α is algebraic over k.

Corollary 2.13.2. $\overline{\mathbb{Q}}$ is algebraically closed in \mathbb{C} .

Theorem 2.14 (Kronecker). Let k be a field and $f(x) \in k[x]$ be a non-constant polynomial. Then there exists an extension field E over k in which f(x) has a root.

Proof. Any polynomial can be factored into irreducible polynomials and any roots of an irreducible factor will be a root of f(x), so it suffices to show the theorem holds in the case where f(x) is irreducible. Suppose f(x) is irreducible, then (f(x)) is maximal, thus E = k[x]/(f(x)) is a field. E contains an isomorphic copy of k (embed k in k[x], then mod out by f(x) [why is this injective?]). Identify k with its isomorphic copy in E, in this way E as an extension field of k. Then $f(\bar{x}) = f(x) = 0$, so f has a root in E.

2.2 Splitting Fields

Definition 2.15. Let k be a field and $f(x) \in k[x]$, $\deg(f(x)) = n$. Then an extension E of k is called a splitting field of f over k if (1) f(x) factors in to linear polynomials over E and (2) this is not true for any smaller extension.

Theorem 2.16. Given any $f(x) \in k[x]$ of degree $n \ge 1$, there exists a splitting field for f(x) over k. Moreover the degree of the splitting field over k is at most n! and if f(x) is irreducible, the degree is divisible by n. (In fact the degree of the splitting field divides n!.)

Definition 2.17. Let ζ_n denote an *n*th primitive root of unity. The *n*th cyclotomic polynomial, w is

$$\Phi_n(x) = \prod_{(i,n)=1} (x - \zeta_n^i).$$

Remark. Cyclotomic polynomials are always irreducible over \mathbb{Q} .

Proposition 2.18. $f(x) \in k[x]$ has a multiple root α if and only if f'(x) also has α as a root.

Theorem 2.19. If $f(x) \in k[x]$ is irreducible and f(x) has a multiple root α , then f'(x) is identically 0.

Theorem 2.20. Let k be a field. Let $f(x) \in k[x]$ be irreducible. Then if $\operatorname{char}(k) = 0$, f(x) has no repeated roots. In characteristic p, f(x) has repeated roots if and only if $f(x) = g_0(x^p)$ for some $g_0(x) \in k[x]$. Moreover, the multiplicity of each root of f(x) is a power of p and if the multiplicity is p^s , then $f(x) = h(x^{p^s})$ for some $h(x) \in k[x]$ having no repeated roots.

Definition 2.21. A separable extension is an extension E/k such that for every $\alpha \in E$, the minimal polynomial of α over k is separable (i.e. its formal derivative is nonzero).

Example. Let $k = \mathbb{F}_p$. Let z be an indeterminate variable over k and work in k(z). Let K/k be the extension formed by adjoining the pth roots of z. Let $f(x) = x^p - z \in k(z)[x]$ and α be some root of f(x). Since α is by definition a pth root of z, by Freshman's dream $f(x) = x^p - z = x^p - \alpha^p = (x - \alpha)^p$. Now $\operatorname{irr}(\alpha, k, x) = (x - \alpha)^d$ where $d \leq p$ (since α has degree at most p) and d|p, by theorem 2.17. But $d \neq 1$, if it were then there exist $f(x), g(x) \in k[x]$ so that

$$\left(\frac{f(z)}{g(z)}\right)^p = z.$$

Then, by Freshman's dream $f(z^p) = zg(z^p)$, which is impossible, the coefficients of z on the left are congruent to $0 \mod p$, but on the right they are all congruent to $1 \mod p$. Hence d = p and f(x) is irreducible but has multiple roots.

Theorem 2.22 (Primitive Element Theorem). Let E be a finite extension of degree n over k. Suppose E is separable (e.g. has characteristic 0 or finite order). Then $E = k(\alpha)$ for some

 $\alpha \in E$.

Proof. If k is finite so is E. Taking α to be a generator for the cyclic group E^{\times} works. So assume k is infinite. By induction, we may assume n=2. Let $E=k(\beta,\gamma)$. Let $f(x)=\operatorname{irr}(\beta,k,x)$ and $g(x)=\operatorname{irr}(\gamma,k,x)$. Suppose $\beta=\beta_1,\beta_2,\ldots,\beta_r$ are all the roots of f in \overline{k} and $\gamma=\gamma_1,\ldots,\gamma_s$ are all the roots of g in \overline{k} . There are only finitely many elements of the form

$$\frac{\beta_i - \beta}{\gamma - \gamma_j}, j \neq 1.$$

Since k is infinite, there exists $a \in k$ not equal to any of the above elements. Let $\alpha = \beta + a\gamma$. Observe that $\alpha - a\gamma_j \neq \beta_i$ for all i, j with $j \neq 1$. Now I claim that $k(\beta, \gamma) = k(\alpha)$. Since $\alpha \in k(\beta, \gamma)$, it suffices to show $\gamma \in k(\alpha)$.

Consider the polynomial $h(x) = f(\alpha - ax) \in k(\alpha)[x]$. Note γ is a root of h(x). Then $\operatorname{irr}(\gamma, k(\alpha), x)$ divides both h(x) and g(x) in $k(\alpha)[x]$. By construction, h(x) and g(x) have only one root in common, if they didn't then $\alpha - a\gamma_j = \beta_i$ for some $j \neq 1$, a contradiction. It follows that $\operatorname{irr}(\gamma, k(\alpha), x)$ is linear, so $\gamma \in k(\alpha)$.

Example. Let y, z be two indeterminate variables over $k = \mathbb{F}_p$. Let K be the extension formed by adjoining the pth roots of y, z. Let E be the algebraic closure of K. In E, both $x^p - y$ and $x^p - z$ split, so there exist $a, b \in E$ such that $a^p = y$ and $b^p = z$. K(a, b) is a finite extension of degree p^2 over K. Any primitive element of K(a, b) must have degree p^2 , however, for any $\gamma \in K(a, b)$, we have

$$\gamma^p = \left(\frac{f(a,b)}{g(a,b)}\right)^p = \frac{f(a^p,b^p)}{g(a^p,b^p)} \in K.$$

So K(a,b) is not a primitive extension.

3 Galois Theory

Definition 3.1. An automorphism of a field k is an isomorphism $k \to k$. Let $\operatorname{Aut}(k)$ denote the set of all automorphisms of a field k. Then $\operatorname{Gal}(K/k) = \{ \sigma \in \operatorname{Aut}(k) : \sigma|_k = \operatorname{id} \}$.

Lemma 3.2. (Into/Onto). Suppose K/k is a finite extension. Let σ be a nonzero homomorphism from K into K such that $\sigma|_k = \text{id}$. Then σ is onto, so $\sigma \in \text{Gal}(K/k)$.

Proof. View σ as a linear map. Use rank-nullity and fact that σ is injective whenever $\sigma \neq 0$.

Fact. Whenever K is an extension field of \mathbb{Q} and r is an automorphism of K, then $\sigma|_{\mathbb{Q}} = \mathrm{id}$, so $\mathrm{Aut}(K) = \mathrm{Gal}(K/\mathbb{Q})$. The same is true of extensions of \mathbb{F}_p , p prime.

Proposition 3.3.

- 1) Aut(k) forms a group under function composition.
- 2) Gal(K/k) is a subgroup of Aut(k).

Definition 3.4. If K is a field and G is a subgroup of Aut(k), then the fixed field of G, denoted K_G , is $K_G = \{\alpha \in K : \sigma(\alpha) = \alpha \forall \sigma \in G\}$.

Proposition 3.5. K_G is a subfield of K for any subgroup $G \subset \operatorname{Aut}(K)$. Moreover, if $H \subset \operatorname{Gal}(K/k)$, then K_H is an intermediate field.

Examples.

- If $K = \mathbb{C}$ and $k = \mathbb{R}$. Then if $\sigma \in \operatorname{Gal}(K/k)$, then $\sigma(a+bi) = a+b\sigma(i)$. Since $\sigma^2(i) = -1$, we have $\sigma(i) = \pm i$. Hence the Galois group of K/k consists of the identify map and the complex conjugation map. Thus $|\operatorname{Gal}(K/k)| = 2$ and $K_{\operatorname{Gal}(K/k)} = \mathbb{R}$.
- If $K = \mathbb{Q}(\sqrt[3]{2})$ and $k = \mathbb{Q}$. Then $Gal(K/k) = \{id\}$, since σ is determined by its action on $\sqrt[3]{2}$, but $\sigma^3(\sqrt[3]{2}) = 2$, so there is only one choice.

Theorem 3.6. Suppose $[K:k] = n < \infty$. Then $|\operatorname{Gal}(K/k)| \le n$. In fact, if $K = k(\alpha)$ is primitive, then $|\operatorname{Gal}(K/k)|$ is the number of distinct roots of $\operatorname{irr}(\alpha, k, x)$ that are in K.

Proof. Observe the σ is determined by its action on α , as

$$\sigma(a_0 + a_1\alpha + \ldots + a_n\alpha^n) = a_0 + a_1\sigma(\alpha) + \ldots + a_n\sigma^n(\alpha),$$

for $a_i \in k$. Now, let $\alpha_1, \ldots, \alpha_d$ be the distinct roots of $f(x) = \operatorname{irr}(\alpha, k, x)$ in K. Then

$$f(\sigma(\alpha)) = \sigma(f(\alpha)) = 0.$$

Thus there are at most d choices of $\sigma(\alpha)$. Finally, for each α_i , define $\sigma(\alpha) = \alpha_i$, and $\sigma|_k = \text{id}$. By definition,

$$\sigma(a_0 + \ldots + a_n \alpha^n) = a_0 + \ldots + a_n \alpha_i^n.$$

This is easily checked to be an onto homomorphism $K \to K$ with $\sigma|_k = \text{id}$. Moreover, to be well-defined, if $g(\alpha) = h(\alpha) \in K$, then $(g - h)(\alpha) = 0$, so $\text{irr}(\alpha, k, x)$ divides (g - h)(x). Hence α_i are roots of (g - h)(x). Thus $g(\alpha_i) = h(\alpha_i)$.

Definition 3.7. An **embedding** σ of K into \mathbb{C} over k is a homomorphism $\sigma: K \to \mathbb{C}$ such that $\sigma|_k = \mathrm{id}$.

Theorem 3.8. Suppose $K = k(\alpha)$ is a primitive extension of degree n of k and $K \subset \mathbb{C}$. Let $p(x) = \operatorname{irr}(\alpha, k, x)$ and α_i be all the distinct roots of p is \mathbb{C} . Then for each i, there is exactly one embedding $\sigma : K \to \mathbb{C}$ over k such that $\sigma(\alpha) = \alpha_i$. Moreover, these are the only embeddings.

Proof. Similar to 3.6.

3.1 Normal Field Extensions

Definition 3.9. A finite extension K/k is **normal** if K is the splitting field of some $f(x) \in k[x]$ over k.

Lemma 3.10. If K/E is finite and τ is an embedding of $E \to \mathbb{C}$. Then there exists an embedding $\sigma: K \to \mathbb{C}$ which is an extension of τ , i.e. $\sigma|_E = \tau$.

Proof. Similar to 3.6.

Theorem 3.11. Let K/k be a finite extension. The following are equivalent:

- 1) K is a normal extension
- 2) If $\alpha \in K$, then so are all the roots of $irr(\alpha, k, x)$.
- 3) Any embedding σ of K into \mathbb{C} over kalways maps K into K (by the into/onto lemma, σ maps K onto K, thus σ is an automorphism of K fixing k, so $\sigma \in \operatorname{Gal}(K/k)$.)

Proof. $(2 \Rightarrow 1)$. Let $\alpha = \alpha_1, \ldots, \alpha_n$ be all the roots of $p(x) = \operatorname{irr}(\alpha, k, x)$. By $(2), \alpha_i \in K$, hence the s.f. of p(x) over k is $k(\alpha_1, \ldots, \alpha_n) = k(\alpha)$.

 $(1 \Rightarrow 3)$. Let K be the s.f. of $f(x) \in k[x]$ over k. So $K = k(\alpha_1, \ldots, \alpha_n)$, where α_i are all the roots of f over \mathbb{C} . Let σ be an embedding of $K \to \mathbb{C}$ over k. So σ is a homomorphism $K \to \mathbb{C}$ such that $\sigma|_k = \mathrm{id}$. It suffices to show σ takes α_i to α_j , but $f(\sigma(\alpha_i)) = \sigma(f(\alpha_i)) = 0$.

 $(3 \Rightarrow 1)$. Let p(x) be an irreducible polynomial that has a root $\alpha \in K$. Let α_i be another root of p(x) in \mathbb{C} (must exist as p(x) is irred). We know there exists an embedding $\tau : k(\alpha) \to k(\alpha_i)$ over k with $\tau(\alpha) = \alpha_i$ (thm 3.8). Extend τ to an embedding $\sigma : K \to \mathbb{C}$ over k. By (3), σ takes $K \to K$, so $\sigma(\alpha) = \alpha_i \in K$.

Example. Let K/E and E/k be finite extensions. Note that K/E and E/k normal extensions, does not imply K/k is a normal extension (take $K = k(\sqrt[4]{2}), E = k(\sqrt{2}), k = \mathbb{Q}$). Furthermore, K/k normal does not imply E/k is normal (it does however imply K/E is a normal ext).

Definition 3.12. We say a finite extension K/k is a **Galois extension** if it is a normal and separable extension.

Proposition 3.13. Let K/k be a Galois extension of degree n then $|\operatorname{Gal}(K/k)| = n$.

Proof. By primitive element theorem, $K = k(\alpha)$ for some $\alpha \in K$. By separability, $p(x) = \operatorname{irr}(\alpha, k, x)$ has no repeated roots. Let $\alpha_1, \ldots, \alpha_n$ be all the distinct roots of $p(x) \in \mathbb{C}$. By normality, these all live in K. The result follows by thm 3.6.

Proposition 3.14. If K/k is a Galois extension. Let G = Gal(K/k), then $K_G = k$.

Proof. By definition, $k \subset K_G$. To show reverse containment, it suffices to show that for any $\alpha \in K$ with $\alpha \notin k$, we have $\alpha \notin K_G$. If $\alpha \notin k$, then $k(\alpha) \neq k$ so $\deg(\operatorname{irr}(\alpha, k, x)) > 1$. Thus there exists $\beta \in \mathbb{C}$, $\alpha \neq \beta$ that is also a root of $\operatorname{irr}(\alpha, k, x)$. There exists an embedding $\tau : k(\alpha) \to k(\beta)$ over k. We can extend τ to an embedding $\sigma : K \to \mathbb{C}$ over k. By normality, $\sigma : K \to K$ and $\sigma(\alpha) = \beta$. By into/onto, σ is in $\operatorname{Aut}(K)$ and so $\sigma \in G$. But then $\alpha \notin K_G$.

3.2 Fundamental Theorem of Galois Theory

We say E corresponds to $H \leq \operatorname{Gal}(K/k)$ if $E = K_H$ and $H = \operatorname{Gal}(K/E)$.

Let K/k be a finite, Galois extension. Let $k \subset E \subset K$ be an intermediate field.

- I. There is a one-to-one correspondence mapping $E \mapsto \operatorname{Gal}(K/E)$. Moreover,
 - (a) If H = Gal(K/E), then $E = K_H$.
 - (b) If H be a subgroup of G, then $Gal(K/K_H) = H$.
- II. (a) Let E correspond to H. Then E/k is normal if and only if $H \triangleleft \operatorname{Gal}(K/k)$.
 - (b) Let E correspond to H. Then E/k is normal if and only if $Gal(E/k) \cong G/H$.

Proof. Part I(a). K/E is finite, Galois. Thus by proposition 3.14, $K_H = E$.

Part I(b). By the primitive element theorem, $K = k(\alpha)$ for some $\alpha \in K$. Let $n = [K : K_H]$. Clearly, $H \subset \operatorname{Gal}(K/K_H)$. It suffices to show $|H| \geq n$. Let |H| = d and $\sigma_1, \ldots, \sigma_d$ be the elements of H. Define

$$f(x) = \prod_{i=1}^{d} (x - \sigma_i(\alpha)).$$

Then f has degree d, it has α as a root (as H contains the identity), and $f(x) \in K_H[x]$, as for any $\tau \in H$, $f^{\tau}(x) = \prod (x - (\tau \sigma_i)(\alpha)) = f(x)$, i.e. the coefficient of f are fixed by H. Therefore, $n \leq d$ as $\operatorname{irr}(\alpha, K_H, x)$ must divide f(x).

Part II(a). E/k is normal \Leftrightarrow every $\sigma \in \operatorname{Gal}(K/k)$ takes E to $E \Leftrightarrow \forall x \in E, \sigma \in G$, we have $\sigma(x) \in E$. Equivalently, $\sigma(x)$ is fixed by $H \Leftrightarrow \forall x \in E, \sigma \in G, \tau \in H, \tau \sigma(x) = \sigma(x) \Leftrightarrow \forall x \in E, \sigma \in G, \tau \in H, (\sigma^{-1}\tau\sigma)(x) = x$. This says $\sigma^{-1}\tau\sigma$ is the identity on E, hence it is in $\operatorname{Gal}(K/E) = H$. This is precisely what it means for $H \triangleleft \operatorname{Gal}(K/k)$.

Part II(b). Define $\phi : \operatorname{Gal}(K/k) \to \operatorname{Gal}(E/k)$ by $\sigma \mapsto \sigma|_E$. Since E/k is normal, and $\sigma|_E$ is an embedding into K over k, we have $\sigma|_E$ take E to E. By into/onto, $\sigma|_E \in \operatorname{Gal}(E/k)$. Check that ϕ is a homomorphism. ϕ is onto (by normality of E/k, given any $\tau \in \operatorname{Gal}(E/k)$ we can extend it to $\sigma \in \operatorname{Gal}(K/k)$ and $\phi(\sigma) = \tau$). ker ϕ is precisely, $\operatorname{Gal}(K/E) = H$.

Corollary 3.14.1. If K/k is finite, Galois. Let $H \leq G = \operatorname{Gal}(K/k)$ corresponds to E. Then $[K:K_H] = [K:E] = |H|$ and $[E:K] = [K_H:k] = [G:H]$.

Proof. The first statement is immediate from I(a). The second follows from |G| = [K : k] = [K : E][E : k] = |H|[E : K].

Definition 3.15. An extension K/k is abelian (cyclic) if it is Galois and if Gal(K/k) is abelian (cyclic).

Theorem 3.16.

• A finite Galois extension K/k of degree n is cyclic if and only if there exists 1 and only 1 intermediate field of degree d for each $d \mid n$.

• A finite Galois extension K/k of degree n is abelian if and only if there exists at least 1 intermediate field of degree d for each $d \mid n$.

Proof. These are immediate by the correspondence between intermediate field and subgroups of Gal(K/k), together with the analogous statements from group theory.

Corollary 3.16.1. In a finite, abelian extension, all intermediate fields are normal. Moreover, K/E and E/k are also abelian. (Any subgroup of an abelian group is normal.)

Corollary 3.16.2. If K/k is any finite, separable extension, then there are only finitely many intermediate fields.

Proof. Any such extension is contained in a finite Galois extension L/k (e.g. if $K = k(\alpha)$, then let L be the splitting field of $\operatorname{irr}(\alpha, k, x)$ over k). By the FToGT, there are finitely many intermediate fields between L and k, and every int. field of K/k is also an int. field of L/k.

Corollary 3.16.3. If $H_1, H_2 \leq \operatorname{Gal}(K/k)$ correspond to intermediate fields E_1, E_2 of K/k, respectively, then $H_1 \cap H_2$ corresponds to E_1E_2 and $\langle H_1, H_2 \rangle$ corresponds to $E_1 \cap E_2$ (Galois correspondence is order reversing).

Definition 3.17. We say E_1 and E_2 , intermediate fields of K/k (finite, Galois), are conjugate if $E_1 = k(\alpha_1)$ and $E_2 = k(\alpha_2)$, where α_1 and α_2 are conjugates over k. Equivalently, we can say there exists a $\sigma \in \text{Gal}(K/k)$ that takes $\alpha_1 \mapsto \alpha_2$ and hence $\sigma(E_1) = E_2$.

Proposition 3.18. Conjugate intermediate fields correspond to conjugate subgroups of the Galois group. In fact, $H_1 = \sigma H_2 \sigma^{-1}$ if and only if $E_1 = \sigma(E_2)$

4 Insolvability of the Quintic

Proposition 4.1. Let $G = \operatorname{Gal}(k(\zeta_n)/k)$. Then G is isomorphic to a subgroup of \mathbb{Z}_n^* and in the case of $k = \mathbb{Q}$, then $G \cong \mathbb{Z}_n^*$.

Proof. Let $p = \operatorname{char}(k)$ and assume either p = 0 or $p \nmid n$. Define $\phi : G \to \mathbb{Z}_n^*$ by $\phi(\sigma) = i$ when $\sigma(\zeta_n) = \zeta_n^i$. It is easily checked that ϕ is an injective homomorphism.

Corollary 4.1.1. In the separable case, $k(\zeta_n)/k$ is an abelian extension. Moreover, if $\mathbb{Q} \subset E \subset \mathbb{Q}(\zeta_n)$, then E/\mathbb{Q} is abelian.

Proposition 4.2. Let $p = \operatorname{char}(k)$ and assume either p = 0 or $p \nmid n$. Suppose α is a root of $x^n - a$ and $\zeta_n \in k$. Then $\operatorname{Gal}(k(\alpha)/k)$ is isomorphic to a subgroup of \mathbb{Z}_n . In the case where, $x^n - a$ is irreducible, it equals \mathbb{Z}_n .

Proof. Define $\phi: G \to \mathbb{Z}_n$ by $\phi(\sigma) = i$ when $\sigma(\alpha) = \zeta_n \alpha$. Check that ϕ is an injective homomorphism. In the case where $x^n - a$ is irreducible, the conjugates of α are $\{\alpha \zeta_n^i : 0 \le i \le n-1\}$, all of which are contained in $k(\alpha)$.

Corollary 4.2.1. $k(\alpha)$ as above is always a cyclic extension with degree dividing n.

Definition 4.3. Let k be a field and $f(x) \in k[x]$. We say f(x) is solvable by radicals over k if its splitting field is contained in a Galois extension E/k which admits a sequence of subfields $E = E_s \supset \ldots \supset E_1 \supset E_0 = k$ where $E_1 = k(\zeta_d)$ for some d and for $i = 2, 3, \ldots, s$, $E_i = E_{i-1}(\alpha_i)$ where α_i is a root of an equation $x^{n_i} - a_i$ for some $a_i \in E_{i-1}$ and some $n_i \mid d$.

Definition 4.4. A group G is solvable if it admits a decomposition

$$G = N_0 \triangleright N_1 \triangleright \ldots \triangleright N_s = \{e\}$$

where N_i/N_{i+1} is abelian for each i = 0, ..., s-1.

Lemma 4.5. If G is a solvable group and $N \triangleleft G$, then G/N is solvable.

Theorem 4.6. Suppose f(x) is solvable by radicals over k. Let K be the splitting field of f(x) over k. Then Gal(K/k) is solvable.

Proof. Let E be as in definition 4.3. Let $G = \operatorname{Gal}(E/k)$ and $N = \operatorname{Gal}(E/K)$. It suffices to show that G is solvable as $K \subset E$ and $N \triangleleft G$, so $\operatorname{Gal}(K/k) \cong G/N$, which by the lemma is solvable if G is solvable.

Define $N_i = \operatorname{Gal}(E/E_i)$. In particular, note that $G = N_0$ and $\{e\} = N_s$. But E/k is Galois, so E/E_{i+1} is Galois and clearly, $N_{i+1} \subset N_i$. Since N_i/N_{i+1} is Galois (hence normal), we have $N_{i+1} \triangleleft N_i$. Also $N_i/N_{i+1} \cong \operatorname{Gal}(E_{i+1}/E_i)$ is abelian. Hence G is solvable.

Lemma 4.7. Let G^C denote the commutator subgroup of G. Then G/N abelian implies $G^C \subset N$.

Proof. We have $\overline{xyx}^{-1}\overline{y}^{-1} = \overline{1}$ for all $\overline{x}, \overline{y} \in G/N$. Hence $xyx^{-1}y^{-1} \in N$ for all $x, y \in G$. The claim follows.

Lemma 4.8. Let N, H be two subgroups of of S_n $(n \ge 5)$ such that $N \triangleleft H$ and H/N is abelian. Suppose H contains all 3-cycles, then so does N.

Proof. By the lemma, we know N contains all commutators of 3-cycles (as H contains all 3-cycles). Choose i, j, k, r, s distinct. Let $\sigma = (i, j, k)$ and $\tau = (k, r, s)$. Observe $[\sigma, \tau] = (r, k, i) \in N$, so since i, j, k, r, s were arbitrary, N contains all 3-cycles.

Theorem 4.9. S_n is not a solvable group for all $n \geq 5$.

Proof. Suppose S_n were solvable. Then $S_n = N_0 \triangleright ... \triangleright N_s = \{e\}$ and N_i/N_{i+1} is abelian. By lemma 4.8, this implies that since N_0 contains all 3-cycles, so does N_1 . Repeating this argument we obtain, N_s contains all 3-cycles, contradiction.

Proposition 4.10. Let $q(x) \in \mathbb{Q}[x]$ be irreducible of degree p, prime. Suppose q(x) has precisely two non-real roots. Then the Galois group of the splitting field of q(x) over \mathbb{Q} is isomorphic to S_n .

Proof. Let K be the s.f. of q(x) over \mathbb{Q} . Let $G = \operatorname{Gal}(K/\mathbb{Q})$. Let α be a root of q(x). Then $\mathbb{Q}(\alpha)$ has degree p over \mathbb{Q} . Hence p divides the order of G, so by Cauchy, G has an element of order p. Identify G with a subgroup T of S_p according to the action of the elements of G on the roots of G. We know G contains a G-cycle (since G is prime). We also know G contains the complex conjugation automorphism G (since its has exactly two non-real roots). But G corresponds to a transposition in G. Hence G contains a G-cycle and a transposition, so by group theory, G is

Corollary 4.10.1. Let $q(x) = 3x^5 - 15x + 5$. Let K be the splitting field of q(x) over \mathbb{Q} . Note that q satisfies the conditions of proposition 4.10. So by theorem 4.9, Gal(K/k) is not solvable, hence q is not solvable by radicals over \mathbb{Q} , i.e. there is no "quintic formula".

4.1 Squaring the Circle, Trisecting Angles, etc.

Note all rational numbers are constructable. Furthermore, if (x_1, y_1) and (x_2, y_2) are the intersections of two circles, then the x_i and y_j all live in an at most quadratic extension of \mathbb{Q} . Similarly, for the intersections of a line and a circle. For example, $(x-2)^2+(y+1)^2=10$ and y=5x-7 intersect at $(\frac{1}{13}(16-\sqrt{61}),\frac{1}{13}(-11-5\sqrt{61}))$ and $(\frac{1}{13}(16+\sqrt{61}),\frac{1}{13}(-11+5\sqrt{61}))$. Therefore, if $\alpha=(x,y)$ is any constructable pair, then both x and y are contained in a tower of quadratic extensions.

Proposition 4.11. If $\alpha = (x, y)$ is a constructable point, then x, y are contained in an extension of \mathbb{Q} of degree 2^k for some k.

Corollary 4.11.1. If α is transcendental over \mathbb{Q} or α is algebraic but not a power of 2, then α is not constructable.

Theorem 4.12. It is impossible to trisect an arbitrary angle using a straight-edge and compass.

Proof. We can construct an angle of 60° , so if we could trisect an angles, then 20° is a constructable angle. Hence we could construct a line segment of length $\cos(20^{\circ})$. However $\cos(3x) = 4\cos^3(x) - 3\cos(x)$ so if $\alpha = \cos(20^{\circ})$, then $8\alpha^3 - 6\alpha - 1 = 0$. However, the polynomial $8x^3 - 6x - 1$ is irreducible over \mathbb{Q} , so $\mathbb{Q}(\alpha)$ is a degree three extension of \mathbb{Q} , contradiction.

Theorem 4.13. It is impossible to double a cube with a straight-edge and compass.

Proof. $\mathbb{Q}(\sqrt[3]{2})$ is a degree 3 extension of \mathbb{Q} .

Theorem 4.14. It is impossible to square a circle with a straight-edge and compass.

Proof. π is transcendental over \mathbb{Q} , hence so is $\sqrt{\pi}$.

Definition 4.15. A Fermat prime is a prime of the form $2^m + 1$ for some non-negative integer m.

Theorem 4.16. A regular *n*-gon is constructable if and only if $n = 2^s p_1 \dots p_t$ for distinct Fermat primes p_i .

Proof. If we can construct a regular n-gon, then we can construct $\alpha = \cos(\frac{2\pi}{n})$. But $2\alpha = \zeta_n + \zeta_n^{-1}$, so the n-gon is constructable if and only if $\zeta_n + \zeta_n^{-1}$ is constructable. That is, n-gon constructable implies $\phi(n)/2$ is a power of 2, hence $\phi(n)$ is a power of 2. It is clear that this holds if and only if n is of the above form.

4.2 Irreducibility of Cyclotomic Polynomials

Theorem 4.17. $\Phi_n(x)$ is irreducible over \mathbb{Q} .

Proof. Let $\zeta = \zeta_n$ and $f(x) = \operatorname{irr}(\zeta, \mathbb{Q}, x)$. We know f(x) divides $\Phi_n(x)$ since ζ is a root of $\Phi_n(x)$.

- It suffices to show that whenever ζ is a root of f(x), then so is ζ^p for any $p \nmid n$. This is because we can repeat the argument to conclude ζ^i is a root of f(x) for any i such that (i,n) = 1. Hence $\Phi_n(x) \mid f(x)$, which since both polynomials are monic, implies they are equal.
- Fix a prime $p \nmid n$. We know $x^n 1 = f(x)h(x)$ for some $h \in \mathbb{Q}[x]$. By Gauss' lemma, we can assume $f(x), h(x) \in \mathbb{Z}[x]$. Suppose ζ^p is not a root of f(x). Then ζ^p must be a root of h(x). Hence $f(x) \mid h(x^p)$, so $h(x^p) = f(x)g(x)$ for some $g(x) \in \mathbb{Z}[x]$. By Freshman's dream, together with Fermat's little theorem, we have $h(x^p) \equiv h(x)^p \mod p$. So reducing modulo p, $\overline{h}(x)^p \equiv \overline{f}(x)\overline{g}(x)$. In particular, this implies \overline{f} and \overline{h} have a root in common, namely ζ , a contradiction since $\overline{x^n 1} = \overline{f}(x)\overline{h(x)}$, but $x^n 1$ has no multiple roots in \mathbb{F}_p , as it has no roots in common with its derivative.

4.3 Discriminant of a Cubic

Definition 4.18. For a cubic polynomial with roots $\alpha_1, \alpha_2, \alpha_3$ define

$$\delta = \alpha_1^2 (\alpha_1 - \alpha_2)(\alpha_2 - \alpha_3)(\alpha_1 - \alpha_3)$$

and the discriminant is $\Delta = \delta^2$.

Observe that given any cubic polynomial of the form $g(x) = x^3 + ax^2 + bx + c$ we can translate it into the form $z^3 + \alpha z + \beta$ via the transformation $z = x - \frac{a}{3}$. Given a cubic of the form $f(x) = x^3 + \alpha x + \beta$, we can show that $\Delta = -4a^3 - 27b^2$.

Appendix A - Vector Spaces

Theorem 4.19. Any subset $S \subset V$ that spans V has a subset that is a basis. In particular, a finite-dimensional space has a finite basis.

Proof. If $V = \{0\}$, then $\varnothing \subset S$ is a basis for V. If S is finite, we may remove elements from S until it is linearly independent. So suppose S is infinite and V is finite-dimensional. Pick a nonzero vector in S, call it α_1 . Find another vector in S not dependent on $\{\alpha_1\}$, call it α_2 . Then find a vector in S not dependent on $\{\alpha_1, \alpha_2\}$. This process must terminate, since V is finite-dimensional so we may not have more than dim V linearly independent vectors. Suppose we have obtained the set $\mathcal{A} = \{\alpha_1, \ldots, \alpha_n\}$, so that S is linearly dependent on S. Then S is a basis for S.

Theorem 4.20. Any linearly independent set can be extended to form a basis (for V).

Proof. If V is finite-dimensional, see above. Assume V is infinite-dimensional. Let $S \subset V$ be linearly independent. Define

$$C = \{T \supset S : T \text{ is linearly independent}\}.$$

We may partially order C by set inclusion. Every chain in C must have an upper bound (take the union of the sets in the chain), so by Zorn's lemma, C has a maximal element, \mathcal{M} . If \mathcal{M} is not a basis for V, this implies there exists $x \in V$ such that $x \notin \text{span}(\mathcal{M})$, hence $\mathcal{M} \cup \{x\}$ is linearly independent and contains S, contradiction.