Text Models 1

Internet Analytics (COM-308)

Prof. Matthias Grossglauser School of Computer and Communication Sciences

Overview

- Probabilistic models for text
 - Recall naïve Bayes: words i.i.d. conditional on a class
- Word embeddings:
 - Find a compact representation (vector) that captures semantics of a word
 - Applications: sentiment analysis; machine translation,...
- Topic models:
 - Find a generative model for a set of documents in a corpus
 - Applications: summarization; information retrieval; dimensionality reduction; ...
 - Detour: introduction to graphical models

Synonymy and polysemy

- word
- meaning

- Synonymy:
 - Different words with the same meaning
 - "car" and "automobile"
- Polysemy/homonymy:
 - One word with different meanings
 - "jaguar": animal, brand of car
- For many applications, the meaning is more useful than the symbol
 - Information retrieval
 - Sentiment analysis
 - Dialog systems

Word embeddings

Recall: vector space model for words

$$f(w) = [0,0,...,1,...,0]$$
One-hot at w 's position in the dictionary

- Problem: this high-dimensional vector space has no relationship to meaning
 - Distance is the same between any two words
- Question: can we find a lower-dimensional representations v(w) such that
 - Words with similar meanings are close ("coffee" and "tea")
 - Relationships among words reflected in the space

Similar context → similar meaning

- "The box with the baits was under the stern of the skiff along with the club that was used to subdue the big fish when they were brought alongside."
- In a parallel universe, Hemingway might have (less elegantly) written "boat" or "craft", without fundamentally changing the sentence
- But the same sentence with "toaster" or "porosity" are unlikely to be observed in a corpus
- The context (set of nearby words) suggest meaning; exchangeable words in a given context share meaning

Word2vec

 "The wooden hull of the ship crashed through the waves..." → lemming & stemming →

wood	hull	ship	crash	wave
------	------	------	-------	------

- Word2vec key idea: learn a model of words and their context
- Two forms: for some window around word, predict
 - Continuous bag-of-words → predict center from context

Skip-gram → predict context from center

7	7	chin	7	7
•	•	31116	•	•
		-		

Word2vec skip-gram model

|--|

• Data: sliding window $\rightarrow X = \{(w, C(w))\}$

box	baits	under	stern	skiff
baits	under	stern	skiff	along
under	stern	skiff	along	club

- Skip-gram model: conditional probability of context C(w) given word w, parametrized in some way (θ)
- We want to learn θ such that corpus probability

$$\prod_{w \in X} \prod_{c \in C(w)} p(c|w;\theta) = \prod_{(w,c) \in X} p(c|w;\theta)$$

is maximized

Parameterization of skip-gram

- Each word $w \in V$ and each context word $c \in V$ is represented by a (relatively) low-dimensional vector in \mathbb{R}^d (d a few hundred)
 - $u_{"cat"}$ is the vector to represent w = "cat"
 - $v_{"cat"}$ is the vector to represent c = "cat"
 - θ is the collection of all these vectors
- Conditional probability of context given word:

$$p(c|w) = \frac{e^{u_w \cdot v_c}}{\sum_{c' \in V} e^{u_w \cdot v_{c'}}}$$

- Note: this is the **soft-max** of $u_w \cdot v_c$ over all $c \in V$
- Q: why different vectors for middle words and context words?

Negative sampling

- Note: denominator $\sum_{c' \in V} e^{u_w \cdot v_{c'}}$ very costly to evaluate
 - |V| in a large corpus 10-100s k
 - Need to compute for every (w, c) in a corpus
- Negative sampling: modified objective, cheaper to compute
 - Classification: given a pair (w, c), is it from the corpus?
 - Def: $p(D=1|w,c)=\frac{1}{1+e^{-u_w\cdot v_c}}$: prob. "plausible text"
 - Maximize probability that all $(w, c) \in X$ are plausible

$$\max_{\theta} \sum_{(w,c) \in X} \log p(D = 1 | w, c)$$

Negative sampling

- Problem: trivial solution: all vectors equal and large $\rightarrow e^{-u_w \cdot v_c}$ extremely small
- Need penalty for false positives, ie, D=1 for implausible text
- Approach: let X' = all pairs $(w, c) \notin X$
- New loss with negative sampling:

$$\max_{\theta} \sum_{(w,c) \in X} \log p(D = 1 | w, c) + \sum_{(w,c) \in X'} \log p(D = 0 | w, c)$$

$$\max_{\theta} \sum_{(w,c) \in X} \log \sigma(u_w \cdot v_c) + \sum_{(w,c) \in X'} \log \sigma(-u_w \cdot v_c)$$

• Note: $\sigma(x) = \frac{1}{1+e^{-x}}$ is called the logistic function ("Scurve")

Negative sampling

- Problem: X' is very large!
- Idea: instead of enumerating entire X', just sample from it
- For every positive sample $(w,c) \in X$, add k random negative samples $(w,c') \notin X$ for the second term
 - This is much cheaper than to enumerate X': just generate (w, c') and check $\in X$; if yes, repeat
- Optimized with SGD
- Word2vec has some additional heuristics:
 - Biased negative sampling: favor more frequent c^\prime in corpus
 - Adaptive window size
 - Rare word pruning

Word2vec: properties and results

• Similarity: e.g., 8 nearest neighbors (in cosine distance $u_i \cdot u_j / \sqrt{(u_i \cdot u_i)(u_j \cdot u_j)}$) of "Sweden":

Norway	0.76
Denmark	0.72
Finland	0.62
Switzerland	0.59
Belgium	0.59
Netherlands	0.57
Iceland	0.56
Estonia	0.55

[pathmind.com] 12

Word2vec: properties and results

- Learning associations:
 - E.g.: NN of (man-king+queen) is woman

[Mikolov, Sutskever, Chen, Corrado, Dean: Distributed Representations of Words and Phrases and their Compositionality, NIPS 2013]

Word2vec: properties and results

 Vectors learned in different languages share similar relationships for same concepts:

Important in machine translation

Topic models

Without a query, how to describe a corpus?

- Topic models:
 - We see the words of docs, but we want to classify the meanings of docs
 - Ambiguity of individual words but many words per doc helps!
 - Generalization of naïve Bayes text model

Topic models

- Document classification
- Supervised: training set with known classes
 - Generalization of binary classification (spam/not spam)
- Unsupervised: need to identify sensible topic classes by comparing documents
- Assumptions:
 - Number of words per document ≫ 1
 - Number of topics
 <
 number of documents
- Examples:
 - News articles: topics = {countries, business, politics, celebrity, ...}
 - Scientific literature: {physics, mathematics, engineering, chemistry, life sciences,...}

Approach 1: Latent Semantic Indexing (LSI)

- Synonymous: Latent Semantic Analysis (LSA)
- Starting point: TF-IDF matrix of corpus

 Remember: high TF-IDF means "term that is rare overall, but prominent in this doc"

SVD of TF-IDF matrix

- Latent factors: "topics"
- Typically 100-300
- Should bunch together synonyms
- Should separate homonyms
- Critique:
 - Heuristic, no clean statistical foundation
 - Sometimes difficult to interpret results
 - Modern approaches based on probabilistic models:
 - better performance
 - better interpretability
 - generative

Gentle introduction to graphical models

- Modeling a multivariate distribution
- Example: insights from an expert:
 - "Drinking too much beer can result in headaches"
 - "Studying too much can cause headaches as well"
 - "To get a good grade, one must study"
 - "Wearing sunglasses tempers the pain of a headache"
- How to translate this into a probabilistic model?
 - Random variables
 - Dependencies?
 - Option: define/learn full joint distribution → many parameters, memory-intensive, hard to learn
 - Option: encode «causal structure» into model

Bayesian Network

Edges = "direct" influence

Bayesian Network

One conditional distribution per node → full joint distribution

21

Joint distribution from CPDs

- Joint distribution from chain rule
- P(b, c, h, g, s) =
- = P(c, h, g, s|b)P(b) =
- = P(h, g, s|b, c)P(c|b)P(b) =
- = P(h,s|b,c)P(g|b,c)P(c)P(b) =
- = P(s|b,c,h)P(h|b,c)P(g|c)P(c)P(b) =
- = P(s|h)P(h|b,c)P(g|c)P(c)P(b)
- Joint distribution = product of all individual pernode factors
 - With the joint distribution, everything else follows: all marginal and conditional distributions we could want

Types of reasoning

Causal reasoning / prediction: downstream flow of influence

Types of reasoning

Evidential reasoning / explanation: upstream flow of influence

Types of reasoning

 Intercausal reasoning: combination of upstream/downstream

$$P(B = 1|H = 1) > P(B = 1|H = 1, G = 1)$$

Explaining away: the "good grade" explains the "headache", making the possible cause "beer" less likely

Basic independencies in BNs

- Example: "the wearing of sunglasses depends only on the presence and strength of a headache"
 - Formally: $(S \perp B, C, G \mid H)$
- Also:
 - $(G \perp B, H, S \mid C)$
 - $(B \perp C)$
 - $(H \perp G|B,C)$
 - $(B \perp C, G)$
- How about $(H \perp S, G | B, C)$?
 - No! Intuition: suppose we know B=0 and C=1; then the guess for S changes according to H=0,1,2

Basic conditional independencies in BNs

- Bayesian Network: directed acyclic graph (DAG) G
- Def: $Pa(X_i)$ =parents of X_i in G
- Def: $ND(X_i)$ =non-descendents of X_i in G
- Property: G has the following local independence properties:
 - For each X_i:

$$(X_i \perp ND(X_i) \mid Pa(X_i))$$

Bayesian Networks: recap

- Defines a multivariate probability distribution
- Models direct causal influences
 - This comes from expert knowledge, underlying mechanisms, data about the problem,...
- In practice: as sparse as possible
- Conditional independence properties as graph (path) properties
- Inference:
 - Observe some variables (observables)
 - Obtain conditional distribution of some other variables of interest → estimate
 - Some variables we do not care (latent)

Example: gene network

Computational challenge in large models

- Suppose G large; a few variables $Y \subset X$ are observed, $Z = X \setminus Y$ are not observed
- Want to estimate $P(Z_{573}|Y)$, where Z_{573} is e.g. one of many diseases in a medical diagnostic system
- Need to compute $P(Z_{573}|Y) =$

$$\sum_{Z_1, Z_2, \dots, Z_{572}, Z_{574}, \dots} P(Z_1, Z_2, \dots, Z_{572}, Z_{573}, Z_{573}, Z_{574}, \dots | Y)$$

- Very costly to marginalize out all other latent variables
- Inference methods:
 - Exact
 - Markov Chain Monte Carlo (MCMC)
 - Variational inference

Inference: MCMC

- Probabilistic model:
 - Joint distribution P(x) over $X = (X_1, X_2, ..., X_n) = (Z, Y)$
 - $Y = (Y_1, ..., Y_a)$: observed variables
 - $Z = (Z_1, ..., Z_b)$: unobserved/latent variables
- Goal:
 - Obtain samples from P(Z|Y=y)

Gibbs sampling

- Markov chain Q:
 - State of Q is a variable assignment Z
 - Pick K uniformly from {1, ..., b} (or cycle through)
 - Sample Z_K from $P(Z_K|Z_1, Z_2, ..., Z_{K-1}, Z_{K+1}, ..., Z_b, Y = y)$
 - Repeat
- Possible transition in Q:
 - Def: $z' \sim_k z$ if $z' = (z_1, z_2, ..., z_{K-1}, *, z_{K+1}, ..., z_b)$, i.e., equal to z except at position k
 - Transition $z \to z'$ only possible for $z' \sim_k z$ for some k

Gibbs sampling: illustration

0	1	2	3	4	
Y_1	Y_1	Y_1	Y_1	<i>Y</i> ₁	
Y_2	Y_2	Y_2	Y_2	<i>Y</i> ₂	
Z_1	Z_1	Z_1	Z_1	Z_1	
Z_2	Z_2	Z_2	Z_2	Z_2	•••
Z_3	Z_3	Z_3	Z_3	Z_3	
Z_4	Z_4	Z_4	Z_4	Z_4	
Z_5	Z_5	Z_5	Z_5	Z_5	
	$Z(1)\sim_2 Z(0)$	$Z(2) \sim_5 Z(1)$			

Gibbs sampling for BNs: example

- Resampling variable H conditional on S
- P(H|B,C,G,S) =

$$= \frac{P(H,B,C,G,S)}{P(B,C,G,S)} =$$

$$= \frac{P(H,B,C,G,S)}{\sum_{H} P(H,B,C,G,S)} =$$

$$= \frac{P(B)P(C)P(H|B,C)P(G|C)P(S|H)}{\sum_{H'} P(B)P(C)P(H'|B,C)P(G|C)P(G|C)P(S|H')} =$$

$$= \frac{P(H|B,C)P(S|H)}{\sum_{H'} P(H'|B,C)P(S|H')}$$

Sampling from a variable only involves factors (CPDs) "touched" by this variable!

Gibbs sampling

Claim:

- Q is a reversible MC with stationary distribution $\pi(\mathbf{z}) = P(\mathbf{Z} = \mathbf{z}|Y = y)$
- Interpretation: run the MC Q and collect large # of samples of $\mathbf{Z}|Y=y$, then compute whatever statistic needed: mean, moments, confidence intervals, etc.
- But: samples are correlated!

Reminder:

- An ergodic MC (irreducible, aperiodic, pos-recurrent) MC has a single stationary distribution π
- Ergodic theorem: temporal averages → ensemble expectations
- Reversible MC: if Q is ergodic and we can find a $\pi(.)$ such that for all $z, z', \pi(z)Q(z, z') = \pi(z')Q(z', z)$, then $\pi(.)$ is the stationary distribution

Transition matrix of Q

• Write $P(Z_K|Z_1,...,Z_{K-1},Z_{K+1},...,Z_b,y) \times P(Z_1,...,Z_{K-1},Z_{K+1},...,Z_b|y) = P(Z_1,...,Z_b|y)$

Does not depend on Z_K

Transition matrix:

$$Q(\mathbf{z}, \mathbf{z}') = \begin{cases} \frac{P(Z_K = \mathbf{z}'_K | \mathbf{z}_1, \dots, \mathbf{z}_{K-1}, \mathbf{z}_{K+1}, \dots, \mathbf{z}_b, \mathbf{y})}{b} & \mathbf{z}' \sim_k \mathbf{z} \\ b & \text{for some } k \\ 0 & \text{otherwise} \end{cases}$$

$$Q(\mathbf{z}, \mathbf{z}') = \begin{cases} \frac{P(\mathbf{Z} = \mathbf{z}' | \mathbf{y})}{b \sum_{\mathbf{z}'' \sim_k \mathbf{z}} P(\mathbf{Z} = \mathbf{z}'' | \mathbf{y})} & \mathbf{z}' \sim_k \mathbf{z} \\ 0 & \text{otherwise} \end{cases}$$

Gibbs sampling: proof

Proof:

$$\bullet \ \pi(z)Q(z,z') =$$

$$= P(Z = z|y)Q(z,z') =$$

$$= \frac{P(Z=z|y)P(Z=z'|y)}{b\sum_{z''\sim k^z}P(Z=z''|y)} =$$

$$= \frac{P(Z=z'|y)P(Z=z|y)}{b\sum_{z''\sim k^{z'}}P(Z=z''|y)} =$$

$$= P(Z = z'|y)Q(z',z) =$$

$$\bullet = \pi(z')Q(z',z)$$

Note: z and z' only differ at position k; therefore, $z'' \sim_k z \iff z'' \sim_k z'$

Detailed balance equations \rightarrow global balance equations $\rightarrow \pi(z)$ is stationary distrib. of MC Q

Bayesian Network: key ideas

- Two functions:
 - Compact representation for a set of conditional independence assumptions among RVs
 - A data structure to encode a joint distribution compactly through its factors
- Flexibility: model does not specify observables
- Example: 100 binary RVs
 - Full joint distribution: $2^{100} 1 \sim 10^{30}$ values
 - All independent: 100 values, but very limiting
 - In practice, much closer to «everything independent» than to «full joint distribution»
 - Tradeoff: compact representation & efficient inference, but still capture main dependencies
- Next week: topic models using graphical models

References

- [D. Koller, N. Friedman: Probabilistic Graphical Models, MIT Press, 2009]
- [Ch. D. Manning, P. Raghavan, H. Schütze: Introduction to Information Retrieval, Cambridge, 2008]
- [C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006]