Aufgabe 1.

Es sei K(a)/K eine einfache algebraische Körpererweiterung.

- 1. Zeigen Sie, dass $[K(a):K]_{sep} \leq [K(a):K]$ gilt.
- 2. Zeigen Sie, dass genau dann Gleichheit gilt, wenn a separabel ist.

Aufgabe 2.

Zeigen Sie, dass der Frobenius-Automorphismus $\sigma\colon\overline{\mathbb{F}_p}\to\overline{\mathbb{F}_p}$ unendliche Ordnung hat.

Aufgabe 3.

Zeigen Sie mithilfe der Galoiskorrespondenz, dass es genau dann eine Einbettung $\mathbb{F}_{p^n}\hookrightarrow \mathbb{F}_{p^m}$ gibt, wenn $n\mid m$ gilt.

Aufgabe 4.

Es sei $\zeta_3 := e^{2\pi i/3}$. Auf dem gestrigen Aufgabenzettel wurde bereits gezeigt, dass $[\mathbb{Q}(\sqrt[3]{2},\zeta_3):\mathbb{Q}]=6$ gilt; dies darf im Folgenden ohne erneuten Beweis genutzt werden.

- 1. Zeigen Sie, dass die Erweiterung $\mathbb{Q}(\sqrt[3]{2}, \zeta_3)/\mathbb{Q}$ galoissch ist.
- 2. Folgern Sie, dass $Gal(\mathbb{Q}(\sqrt[3]{2},\zeta_3)/\mathbb{Q}) \cong S_3$. (*Hinweis*: Konstruieren Sie zunächst eine Einbettung $Gal(\mathbb{Q}(\sqrt[3]{2},\zeta_3)/\mathbb{Q}) \hookrightarrow S_3$.)

Aufgabe 5.

Es sei p prim und $\zeta_p := e^{2\pi i/p}$.

- 1. Bestimmen Sie den Grad $[\mathbb{Q}(\sqrt[p]{p},\zeta_p):\mathbb{Q}].$
- 2. Zeigen Sie, dass die Erweiterung $\mathbb{Q}(\sqrt[p]{p},\zeta_p)/\mathbb{Q}$ galoissch ist.

Aufgabe 6.

Es sei $L := \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}).$

1. Zeigen Sie, dass die Erweiterung $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})/\mathbb{Q}$ galoissch ist.

Sie dürfen im Folgenden ohne Beweis verwenden, dass $\sqrt{5} \notin \mathbb{Q}(\sqrt{2}, \sqrt{3})$ liegt.

- 2. Zeigen Sie, dass $[L:\mathbb{Q}] = 8$ gilt.
- 3. Konstruieren Sie einen Gruppenisomorphismus $\operatorname{Gal}(L/\mathbb{Q}) \to (\mathbb{Z}/2)^3$.
- 4. Betrachten Sie die folgenden Unterkörper von L:
 - a) $\mathbb{Q}(\sqrt{2})$
 - b) $\mathbb{Q}(\sqrt{6})$
 - c) $\mathbb{Q}(\sqrt{3}, \sqrt{5})$

Bestimmen Sie die Untergruppen von $\operatorname{Gal}(L/\mathbb{Q})$, denen diese Unterkörper unter der Galoiskorrespondenz entsprechen, sowie die Ordnungen dieser Untergruppen.

Lösungen

Lösung 5.

- 1. Es handelt sich bei $\mathbb{Q}(\sqrt[p]{p},\zeta_p)$ um das Kompositum von $\mathbb{Q}(\sqrt[p]{p})$ und $\mathbb{Q}(\zeta_p)$.
 - Das Minimalpolynom von $\sqrt[p]{p}$ über $\mathbb Q$ ist $t^p-p\in\mathbb Q[t]$, wobei sich die Irreduziblität aus dem Eisenstein-Kriterium ergibt. Es gilt deshalb $[\mathbb Q(\sqrt[p]{p}):\mathbb Q]=p$.
 - Es ist ζ_p eine primitive p-te Einheitswurzel. Das Minimalpolynom von ζ_p ist deshalb das p-te Kreisteilungspolynom $\Phi_p = t^{p-1} + \cdots + t + 1 \in \mathbb{Q}[t]$. Es gilt deshalb $[\mathbb{Q}(\zeta_p):\mathbb{Q}] = p 1$.

Da p und p-1 teilerfremd sind, gilt somit

$$[\mathbb{Q}(\sqrt[p]{p},\zeta_p):\mathbb{Q}] = [\mathbb{Q}(\sqrt[p]{p})\mathbb{Q}(\zeta_p):\mathbb{Q}] = [\mathbb{Q}(\sqrt[p]{p}):\mathbb{Q}][\mathbb{Q}(\zeta_p):\mathbb{Q}] = p(p-1).$$

2. Es gilt

$$\mathbb{Q}(\sqrt[p]{p},\zeta_p) = \mathbb{Q}(\sqrt[p]{p},\zeta_p\sqrt[p]{p},\ldots,\zeta_p^{p-1}\sqrt[p]{p}),$$

wobei $\sqrt[p]{p}, \zeta_p \sqrt[p]{p}, \ldots, \zeta_p^{p-1} \sqrt[p]{p}$ genau die p-ten Einheitswurzeln sind. Es ist deshalb $\mathbb{Q}(\sqrt[p]{p}, \zeta_p)$ ein Zerfällungskörper des Poylnoms $t^p - p \in \mathbb{Q}[t]$, und die Erweiterung $\mathbb{Q}(\sqrt[p]{p}, \zeta_p)/\mathbb{Q}$ ist somit normal. Die Erweiterung ist separabel, da \mathbb{Q} perfekt ist, da $\operatorname{char}(\mathbb{Q}) = 0$ gilt.