

Lung Cancer Detection False Positive Reduction

Brégeat Joseph

Bucciarelli Vittoria

Gerletti Sebastian Edoardo

Kassem Karim

Mazzucchelli Umberto

1 INTRODUCTION

LUNG CANCER

1.3 million deaths annually

Need for early diagnosis from LDCT scans

Candidate screening

Computer aided detection system

False positive reduction

A FALSE POSITIVE REDUCTION

Similar appearance of FP and TP nodules

True positives

- Noisy background -√-
- Overdiagnosis 😲

• Heterogeneous size, shape and location

False positives

WHY 3D CNNS?

capability

🛓 WHAT WE DID

Implementation of Archi1, Archi2 and Archi3¹

New image processing technique

Networks combination and performance evaluation

Optimization of the 3 networks separately Comparison of the performances with the old and new processing technique

: Dou et al., Multilevel Contextual 3-D CNNs for False Positive Reduction Pulmonary Nodule Detection, 2017

2 IMAGE PROCESSING TECHNIQUE

Original Dataset Before Augmentation

DATASET FEATURES

DATA AUGMENTATION

Voxel Decomposition Original Voxel Voxel Reconstruction Augmentation Sequence of new augmented voxels = Transformations composition

• TRANSFORMATIONS

NumPy

ADVANCED Albumentation

Original image

APPLIED TO:

- ▲ Archi 1
- Archi 2
- Archi 3

Augmented image

JOINT PROBABILITY

EXCLUSIVE PROBABILITY

DATASET FEATURES

3

ARCHITECTURES EVALUATION & COMPARISON

RECEPTIVE FIELD

♦ ARCHI1 - STRUCTURE

ARCHI 2 - STRUCTURE

ARCHI 3 - STRUCTURE

ARCHI1 - LOSS

ARCHI 1 - F1 SCORE

ARCHI 2 - LOSS

ARCHI 2 – F1 SCORE

ARCHI 3 – LOSS

ARCHI 3 – F1 SCORE

ARTICLE'S ARCHIS VS OURS

	Archi 1	Archi2	Archi3
F1 score – Article* (Dou's model structure)	0,7714	0,7929	0,7431
F1 score – Our best	0,8290	0,8836	0,8066
Improvement (percentage point)	+ 5,76%	+ 9.07%	+ 6,35%

^{*} score obtained by applying the article's architecture to our dataset

4 MULTIMODAL NETWORKS

MULTIMODAL NETWORKS

1) Multimodal network with parallel convolutions and common classifier

MULTIMODAL NETWORKS

2) Multimodal network with parallel convolutions and common convolution

COMMON CONVOLUTIONS

Validation F1 (standard 🏶) 4-0

Training F1 (standard 🥡) 4-0

• MULTIMODAL #2

	F1 score	Recall	Precision
Standard	0.448	0,527	0,442
Advanced (10-2)	0,849	0,941	0,792
Improvement	+ 40%	+ 41.4%	+ 35%

5 ENSEMBLE MODELS

WHY ENSEMBLES?

Number of missclassified samples

ENSEMBLE BUILDING APPROACHES

Gs-W) Gridsearch weights for each ARCHI for best aupr

Gs-T) Gridsearch prediction threshold for all ARCHIs for best f1

F1-W) Weight each ARCHI based on **f1score** on validation set

DT) Apply decision tree to all ARCHIs outputs

LR) Apply logistic regression to all ARCHIs outputs

RESULTS FOR:5 TYPES OF ENSEMBLES – 3 DATASETS

F1 score	Gs-W	Gs-T	F1-W	DT	LR
Standard	0.84	0,83	0,83	0,79	0,80
Advanced (19-3)	0,73	0,85	0,81	0,73	0,78
Advanced (10-2) (only A1,2)	0,92	0,85	0,91	0,90	0,90

BEST MODEL:

linear combination of A1,2 on 🖊 (10-2)

BEST ENSEMBLE ANALYSIS

/4 10-2)

F1 based:

f1 A1: 0,86

f1 A2: 0,90

Logistic regression:

wA1: 3,34

wA2: 6,56

Decision tree:

6 CONCLUSIONS

Balanced loss instead of Low data data augmentation

🕠 Augmentation 💳 Best results 🕱

Multimodal networks 🛑 Too many parameters

2D Network - MobilNet (Transfer Learning & Fine Tuning)

3D Network - Custom 3D ResNet

3DResNet Main Blocks

THANK YOU FOR YOUR ATTENTION!

ADDITIONAL RESULTS

DIFFERENCES IN WHAT EACH ARCHI LEARNS:

Standard Dataset (*):

Number of common missclassified samples for Archi 1 – 2 - 3

MULTIMODAL WITH PARALLEL AND COMMON CONVOLUTIONS

AUROC: 0,9766

MULTIMODAL WITH PARALLEL CONVOLUTIONS AND COMMON CLASSIFIER

	F1 score	Recall	Precision	
Standard	0.816	0,941	0,736	
Advanced (10-2)	0,852	0,929	0,807	
Improvement	+ 3,6%	-1,2%	+ 7,1%	

GRIDSEARCH PREDICTION THRESHOLD FOR BEST F1SCORE

Standard: thr: 0.43

Advanced (19-3): thr: 0.66

thr: 0.36 Recall F1 score Precision Standard 0.83 0,90 0,77 Advanced (19-3) 0,85 0,87 0,83 Advanced (10-2) 0,85 0,87 0,83 (only A1 and A2)

WEIGHT EACH ARCHI BASED ON F1SCORE FOR SEPARATE VALIDATION SET

Standard: f	1 A1: 0,80 f1	A2: 0,33	f1 A3: 0,76	ı
Advanced (19-	3): f1 A1: C),81 f1 A2: 0,7	5 f1 A3:	
0,66 Advance 0,90	d (10-2): f	f1 A1: 0,86 f1 <i>A</i>	A2:	
0,90	F1 score	Recal	l Prec	ision
Standard	0.83	0,88	0,	79
Advanced (19-3)	0,81	0,99	0,	69
Advanced (10-2) (only A1 and A2)	0,91	0,98	0,	85

APPLY DECISION TREE TO ALL ARCHIS OUTPUTS (INTERPRETABLE)

	F1 score	Recall	Precision
Standard	0.79	0,90	0,71
Advanced (19-3)	0,73	0,96	0,58
Advanced (10-2) (only A1 and A2)	0,90	0,96	0,85

APPLY DECISION TREE TO ALL ARCHIS OUTPUTS (INTERPRETABLE)

APPLY DECISION TREE TO ALL ARCHIS OUTPUTS

(INTERPRETABLE)

Advanced 19-3

APPLY LOGISTIC REGRESSION TO ALL ARCHIS OUTPUTS (INTERPRETABLE)

Standard:	WA	41: 4,02	wA2: 4,	47 wA3: 2,7	76	
Adva	nced (19-	-3):	wA1: 1,76	wA2: 5,48	wA3: 3,04	
A	Advanced	d (10-2):	wA1: 3,3	34 wA2: 6,56	5	
		F1	score	Recall	P	recision
Standa	rd	(0.80	0,77		0,82
Advanced	(19-3)	(0.78	0,73		0,82
Advanced (only A1 ar	` '!	(),90	0,96		0,85

2D NETWORK: MOBILENET

TRANSFER LEARNING AND FINE TUNING FROM IMAGENET WEIGHTS

