

Anglia Ruskin University

School of Computing and Information Science

Principles of Data Mining and Machine Learning (MOD 007892) Practicals

Introduction to Anaconda, Jupyter Notebook

- A powerful interactive framework
- A Kernel for Jupyter
- Tools for scientific and parallel computing

Source: https://ipython.org

Anaconda installation

The open-source

Anaconda is a way to perform Python/R data science and machine learning on Linux, Windows, and Mac OS X.

Source: https://www.anaconda.com/download

Anaconda and Python-3 installation

The open-source

Anaconda is the frame to perform Python/R data science and machine learning tools on Linux,
Windows, and Mac OS X

Source: https://www.anaconda.com/download

Anaconda installation

Introduction to Jupyter Notebook

As a result, Jupyter Notebook will be launched in your browser

Introduction to Jupyter Notebook

Create a new Folder:

Create a new Jupyter Notebook:

or upload a new Notebook:

Introduction to Jupyter Notebook

"The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text. Uses include: data cleaning and transformation, numerical simulation, statistical modelling, data visualization, machine learning, and much more."

- The analysis environment for multiple computing languages such as (Python, and R, etc.)
- Supports multiple content types: code, narrative text, images, movies, etc.

JUDYTEI Lorenz Differential Equations (autosaved) Python 3 O **Exploring the Lorenz System** In this Notebook we explore the Lorenz system of differential equations: complex behaviors as the parameters (σ, β, ρ) are varied, including what are known as *chaotic* solutions. The system was originally developed as a simplified mathematical model for In [7]: interact(Lorenz, N=fixed(10), angle=(0.,360.), $\sigma = (0.0, 50.0), \beta = (0., 5), \rho = (0.0, 50.0);$

Try it in your browser

Install the Notebook

Source: http://jupyter.org/

Introduction to Jupyter Notebook

HTML & Markdown

It has a header and some text explaining (commenting) what we are about to do.

Introduction to Jupyter Notebook

HTML & Markdown

It has a header and some text explaining (commenting) what we are going to do.

LaTeX (equations)

Then, we could add some Latex format equations

Introduction to Jupyter Notebook

HTML & Markdown

It has a header and some text explaining (commenting) what we are about to do.

LaTeX (equations)

It is then followed by some Latex equations.

- Code
- There is some code which can define variables, modify them, etc.
- It connects programming with storytelling.
- Notebook could be saved to a .ipynb file which can be converted to html, pdf etc. to create websites or presentations.

Introduction to Jupyter Notebook

HTML & Markdown

It has a header and some text explaining (commenting) what we are about to do.

LaTeX (equations)

It is then followed by some Latex equations.

- Code
- There is some code, which can define variables, modify them, etc.
- It connects programming with storytelling.
- The work is saved to a .ipynb file which can be converted to html, pdf etc. to create websites or presentations.
- Images & Movies

Introduction to Jupyter Notebook

Code is divided into cells to control execution

The cells might be used as a presentation.

For example: Jupyter interactive presentation from Ben Zaitlen. http://quasiben.github.io/dfwmeetup_2014/#/

IPython Notebook: An Overview

Introduction to Jupyter Notebook

Jupyter Keyboard Hotkeys

Jupyter Keyboard Shortcuts

Keyboard shortcuts can be viewed from Help \rightarrow Keyboard Shortcuts

Introduction to Jupyter Notebook

How to save it?

Introduction to Jupyter Notebook

How to save it?

Practicals

- Go to Jupyter Notebook
- Open 'EDA-notebook.ipynb'
- Type in an empty cell all the code from a picture in the middle such as:

The sell for Typing your code:

The answer for comparison. Do not type the code here, please!

```
2.png

#Use the list to initialise a numpy array.

my_array = np.array(my_list)

my_array

In [16]: #Use the list to initialise a numpy array.

In [3]:

Out[3]: array([100, 300, 500, 700, 900])
```