

## MARGIN OF ERROR IN EXCEL – DEMO NOTES

Pollsters tend to report results with a "margin of error" that is assumed to be within 2-3%. What does this number mean, and why is it assumed to be 2-3%?

The margin of error is the range within which we expect to find our true population. Here is a good visualization <u>from Wikipedia</u>. Notice the relationship between sample size and margin of error:



Our equation for the margin of error is

Margin of error = 
$$Z * \frac{\sigma}{\sqrt{n}}$$

Where

Z = critical value

 $\sigma = standard\ deviation$ 

n = sample size

$$\frac{\sigma}{\sqrt{n}} = standard\ error$$



For the demonstration, fill out the below columns of the start worksheet using these formulas.

We will take a running mean and standard deviation of our samples, then compute the margin of error given using the above formula. This is for a two-tailed test at the 95% confidence interval.

Demo file: <a href="margin-of-error.xlsx">margin-of-error.xlsx</a>

| Column   | Column label            | Formula                             |
|----------|-------------------------|-------------------------------------|
| position |                         |                                     |
| С        | Sample mean             | =AVERAGE(\$B\$7:B8)                 |
| D        | Standard deviation      | =STDEV.S(\$B\$7:C8)                 |
| Е        | Standard Error          | =D8/SQRT(A8)                        |
| F        | Critical value          | =VLOOKUP(A8,critical_values,2,TRUE) |
| G        | Margin of error         | =F8*E8                              |
| Н        | Margin of error as % of | =G8/C8/2                            |
|          | mean                    |                                     |

By default, Column H will be plotted as a line chart expressing the margin of error as a percent of the mean:



This expresses the amount of sampling error there is in the sample mean being reflective of the population. The margin of error dips significantly around n=30, n=60 and n=100. These are empirical results but are generally good rules of thumb as "good, better, best" sample sizes for conducting inferential statistics.

