MASSEY'S RANKING

AP

RATING AND RANKING

MOTIVATIONS

the ability to

- rate something (is this a warm day for June in London?), or to
- rank a set of elements (which is the coldest day of the month?)

is part of Science and Engineering since before Data Science.

Rating & ranking is a good framework to introduce Data Science techniques of general value and wide applicability.

Sports R&R is both fun and a huge Data Science market!

DEFINITION

A measure of value of the subject, as objective and replicable as possible.

E.g., temperature.

Normally, abilities are

- latent
- hard to measure
- time-dependent
- place-dependent

Exercise: take the Prof or Hobo? quiz!

yet, abilities are also

- hard to transcend (revert-to-the-mean effect, RTTM)
- relatively easy to perceive and project

EXAMPLE: FOOTBALL

- hard to guess the single score

 entertainment value

Low scoring creates randomness

FORMALISATION

1-DIMENSIONAL RANKING

P : players, $\left|P\right|=n$

T: time instants

 $r:P imes T o \mathbb{R}$

A given rating function r creates a ranking (ρ) on a set:

$$ho: P imes T o [1..n]$$
 $ho(p,t)=k \leftrightarrow |\{p_j: r(p_j,t) \leq r(p_i,t)\}|=k$ $\delta(p_i,p_j,t)=|r(p_i,t)-r(p_j,t)|$

 δ captures both similarity and distance

MULTI-DIMENSIONAL RANKING

Multi-dim. rating:

$$r_{multi}: P imes T
ightarrow \mathbb{R}^d$$

Often:

$$r_{multi}(p_i,t):f(r_1(p_i,t),\dots r_d(p_i,t))$$

Pareto dominance:

 p_i dominates p_j (at time t) if on every dimension x

$$r_x(p_i,t) \geq r_x(p_j,t)$$

RATING IN GAMES

RATINGS IN GAMES

- score-based games are better-suited to create ratings
- yet effect of time and hardness of the proposed test match could be hard to assess.

SHOULD GAMES KEEP USER RATINGS?

YES:

feeling of improvement

. . .

a gauge for new features

. . .

- leads to rankings:
 - better matchmaking =>> entertainment value
 - fraud/anomaly detection?

NO: GAME PROWNESS AS SOCIAL RANKING?

The spectacle is a social relation mediated by images, not a collection of images.

«Le spectacle n'est pas un ensemble d'images, mais un rapport social entre des personnes, médiatisé par des images»

[Guy Debord, La Société du spectacle (1967), Thèse 4]

- a reflection of US culture?
- a turn-off for people who don't feel competive?
- turns-off casual users?

SPORT RANKING/ESTIMATION

DOMAIN

- n teams play each other in a tournament
- final scores are recorded, e.g., Real Madrid-Borussia Dortmund: 2-0.
- predict the score for a match in the future.
- -focus on predicting the score difference (eg, 2-0=2)

RUNNING EXAMPLE

	Duke	Miami	UNC	UVA	VT	Record	Point Differential
Duke		7-52	21-24	7-38	0-45	0-4	-124
Miami	52-7		34-16	25-17	27-7	4-0	91
UNC	24-21	16-34		7-5	3-30	2-2	-40
UVA	38-7	17-25	5-7		14-52	1-3	-17
VT	45-0	7-27	30-3	52-14		3-1	90

the win-loss balance and the points balance are second-level performance measures

they are not considered sufficient to create valuable ratings/rankings/predictions.

[IN] CREDIBLE ASSUMPTIONS

1. to each team a latent variable for strength is assigned

numerical **ratings** determine a **ranking** among teams (at t=end, so we can drop it)

and a prediction
$$Pr[a o b]=rac{
ho(a)}{
ho(a)+
ho(b)}$$

- 2. strength/rating is immutable during the tournament
- 3. teams play each other exactly once during the tournament

Now, consider the score difference in each match, say i vs. j, defined as s_i-s_j

Define $\mathbf{y}_{m\times 1}$ as the vector of all score differences in matches

Assume (assumption 4) that strength/rating imbalance determines score difference:

$$r_i - r_j = s_i - s_j$$

 $X_{m \times n}$ with m >> n is overconstrained, no hope of finding a solution.

MASSEY'S RATINGS

DATA PREPARATION

Massey considered the equivalent formulation of

$$X_{m imes n}\cdot \mathbf{r}_{n imes 1}=\mathbf{y}_{m imes 1}$$

as

$$X^T \cdot X \cdot \mathbf{r} = X^T \cdot \mathbf{y}$$

Both sides are easier to work with.

On the right-and side, $X^T \cdot \mathbf{y}$ is the all-season points difference vector, called \mathbf{p} .

Notice that $\sum p_i = 0$.

On the left-hand side,

$$M_{n \times n} = X^T X$$

is squared, semidefinite and positive.

However, the rows sum to 0 and cols. are not independent: $0/\infty$ solutions ensue...

M. also noticed that M has a fixed structure and does not need to be recomputed all the times.

 $m_{i,i} = n-1$ is the numbers of games i played,

 $m_{i,j}$ is the negation of the no. of matches between i and j: here all values are set to -1.

$$\begin{pmatrix} 4 & -1 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 & -1 \\ -1 & -1 & 4 & -1 & -1 \\ -1 & -1 & -1 & 4 & -1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \end{pmatrix} = \begin{pmatrix} -124 \\ 91 \\ -40 \\ -17 \\ 0 \end{pmatrix}$$

MASSEY

- 1. drops the last row/match
- 2. replaces it with a row of 1s, and sets $p_n=0$

(all ratings, positive and negative, will sum to 0)

M=M everywhere but for the last row which is full of 1s

 $\overline{\mathbf{p}}$ is \mathbf{p} everywhere but for the last el. $p_n=0$.

- 1. now \overline{M} is non-singular and invertible
- 2. solves

$$\overline{M}\mathbf{r}=\overline{\mathbf{p}}$$

to obtain an approximated rating for the teams.

The MSE solution to Massey's formula is a form of regression.

It can also be seen as
$$\mathbf{r} = (\overline{X^TX})^{-1}\overline{X^T\mathbf{y}}$$
.

OUTPUT

ratings sum to zero

values have no direct interpretation.

however, they effectively generate a hierarchy.

Team	Rating r	Rank
Duke	-24.8	5th
Miami	18.2	1st
UNC	-8.0	4th
UVA	-3.4	3rd
VT	18.0	2nd

VISUALISE THE RANKING

Ratings are not necessarily meaningful, as a result of the matrix preparation.

Rankings are meaningful:

Team	Rating r	Rank
Duke	-24.8	5th
Miami	18.2	1st
UNC	-8.0	4th
UVA	-3.4	3rd
VT	18.0	2nd

CONCLUSIONS

POINTS TO FOCUS ON

- rating and rating is the fun side of Data Science!
- latent variables that represent non-measurable skills
- those leave in a *feature space* possibly separated from the *data space*
- yet they may get a numeric estimate, and inform our predictions
- Massey regresses on the latent variables

FURTHER READINGS

