Sprawozdanie Ćwiczenie komputerowe z dynamiki molekularnej

Jakub Sobolewski 274437

6 listopada 2018

1 Opis oprogramowania

- Do wykonania symulacji wykorzystano język C++11
- Wizualizacja została wykonana w OpenGL
- Wykresy zostały stworzone z pomocą języka Python i biblioteki Matplotlib

1.1 Struktura programu

- $\bullet \ main.cpp$ główna funkcja programu
- GasSimulation.h biblioteka implementująca wszystkie wymagane symulacje
- Utils.h biblioteka implementująca trójwymiarowy wektor, wektor bazowy, oraz szybszą funkcję do obliczania potęgi z wykładnikiem naturalnym dodatnim od funkcji z bibioteki standardowej std:pow()
- plot.py skrypt rysujący wykresy

1.2 Stabilność rozwiązania

Rys. 1 Wariancja energii w funkcji kroku czasowego τ .

Widać że dla kroku mniejszego niż 0.001ps symulacja jest stabilna.

1.3 Minimum energii kryształu

Rys. 2 Wykres energii potencjalnej kryształu w funkcji stałej kryształu.

Dla stałej siatki równej a=0.372um kryształ znajduje się w minimum energii w temperaturze 0K.

Temperatura układu w trakcie trwania symulacji wzrasta, jest to spowodowane działaniem niezrównoważonych sił na atomy co przyczynia sie do ich ruchu.

1.4 Zachowanie temperatury i ciśnienia gazu

Rys. 3 Wykres funkcji temperatury od czasu, $T_0 = 500K$.

Rys. 4 Wykres funkcji temperatury od czasu, $T_0 = 1000K$.

Rys. 5 Wykres funkcji temperatury od czasu, $T_0=1500K.\,$

Rys. 6 Wykres funkcji temperatury od czasu, $T_0=2000K. \label{eq:total_total_relation}$

Rys. 7 Wykres funkcji ciśnienia od czasu, $T_0=500K.\,$

Rys. 8 Wykres funkcji ciśnienia od czasu, $T_0=1000K. \label{eq:total_total}$

Rys. 9 Wykres funkcji ciśnienia od czasu, $T_0=1500K. \label{eq:total_total_total}$

Rys. 10 Wykres funkcji ciśnienia od czasu, $T_0=2000K. \label{eq:total_total}$