Statistical Thinking 2

David Gabriel Corzo Mcmath

 $2020 \ \mathrm{July} \ 27, \ 11{:}28\mathrm{AM}$

Capítulo 1

Pruebas de hipótesis

1.1. Pruebas de hipótesis

- Inferencia estadística: dar conclusiones de la población (parámetros: μ, σ^2, σ, p) a partir de una muestra (estadísticos: \bar{x}, s^2, s, \bar{p}).
 - \bullet $s \longrightarrow \sigma$
 - \bullet $s^2 \longrightarrow \sigma^2$
 - $\bar{p} \longrightarrow p$

1.1.1. Inferencia estadística

- Intervalos de confianza
- pruebas de hipótesis

1.1.2. Pruebas de hipótesis

1.1.3. Ejemplo

Una empresa azucarera tiene como producto líder, su presentación de 100 libras. Se sopecha que en promedio, dicho producto NO pesa 100 libras.

- 1. Parámetros de interés μ .
- 2. Hipótesis:

$$\begin{array}{lll} H_0: & \mu = 100 & \mu \leq 100 & \mu \geq 100 \\ H_a: & \mu \neq 100 & \mu > 100 & \mu < 100 \end{array}$$

• La hipótesis nula siempre va a tener la igualdad.

• Este es un método alternativo a hacer lo del intervalo de confianza.

3. Asumimos como verdad lo siguiente:

- Si la distribución fuera la correcta el 95 % de todas las medias muestrales estarían en este intervalo.
- 4. Si \bar{x} cae en las colas (poco probable asumiendo que la distribución es verdadera).
 - Por ende rechazamos H_0
- 5. Por ende la hipótesis nula no es verdadera.

1.2. Pruebas de hipótesis

- Asumimos que $\mu = \mu_0$ (hipótesis nula).
 - Esto significa que estoy asumiendo que existe una campana de Gauss.

Si cae en la región de rechazo.

- ¿Cuál es la probabilidad de error? α (significa la prueba)
 - α : error tipo 1: rechazar H_0 , cuando este era verdadero.
- Si cae en la región de no rechazo:

No podemos asegurar que $\mu = \mu_0$

Si $\bar{x_1}$ cat en la región de no rechazo, diremos que no hay evidencia para rechazar H_0 .

• Dado a que estamos en un estado en el que no hay evidencia, a esto se le llama una conclusión débil.

La conclusión débil: no rechazar μ_0

Tipo de error: β

Error tipo 2: aceptar H_0 cuando este es falso.

Conslusión fuerte: Rechazar H_0

Tipo de error: α (controlado)

Error tipo 1: Rechazar H_0 cuando este es verdadero.

 Ya no hablemos del nivel de confianza si no de la significancia de la prueba, y eso es la probabilidad del error tipo uno y error controlado.

1.3. Errores

- Ejemplo: usted es un juez y debe decidir si aplica la pena de muerte a un hombre acusado de violación.
- Planteamos la hipótesis nula:
 - H_0 : el acusado es culpable.
 - H_a : el acusado no es culpable.
 - El error tipo 1: (rechace la hipótesis nula, eso me lleva a aceptar la alternativa) Declaro al acusado inocente y lo dejo en libertad y si resulta que si era culpable.
 - El error tipo 2: lo declaro culpable y es inocente.
- Con el error tipo 2, si no llegue a rechazar la hipótesis nula lo que generalmente se hace es no tomar acción.
- Planteemola al revés:
 - H_0 : el acusado no es culpable.
 - H_a : el acusado es culpable.
 - Error tipo 1: rechazar H_0 cuando esta era verdadera. Es decir, lo declaro culpable, cuando este era inocente.
 - Error tipo 2 (β) : aceptar a H_0 cuando esta era falsa. Es decir, declararlo inocente siendo culpable.

1.4. Ejercicios

Plantear las hipótesis para los siguientes problemas.

- 1. Acusan a nuestra empresa de estar robando, ya que aseguran que no damos las 100 lb que dice nuestro empaque.
 - Del lado del acusador: si nos enfocamos en la cantidad promedio.
 - H_0 : $\mu \ge 100$
 - H_a : $\mu < 100$

- 2. Un planteamiento alterno podría ser el siguiente:
 - H_0 : $\mu \le 100$
 - H_a : $\mu > 100$

