Value of Common Information in Static Teams

Mohammad Afshari and Aditya Mahajan

Electrical and Computer Engineering Department, McGill University

October 27th, 2016

- 1 Introduction
- 2 Team Problem
- 3 Common Information in Static Teams
- Results
- **5** Example
- 6 Conclusion

Decision Making:

✓ A single agent

✓ Multiple agents

Decision Making by Multiple Agents:

✓ Game Theory: Individual objectives

✓ Team Theory: Team objectives

Decision Making:

✓ A single agent

✓ Multiple agents

Necessary where centralized is not available/practical

Decision Making by Multiple Agents:

✓ Game Theory: Individual objectives

✓ Team Theory: Team objectives

Decision Making:

- ✓ A single agent
- ✓ Multiple agents Necessary where centralized is not available/practical

Decision Making by Multiple Agents:

✓ Game Theory: Individual objectives

✓ Team Theory: Team objectives

Decision Making:

- ✓ A single agent
- ✓ Multiple agents Necessary where centralized is not available practical

Decision Making by Multiple Agents:

- ✓ Game Theory: Individual objectives
- ✓ Team Theory: Team objectives

What is a Team?

A collection of multiple decision makers(agents) that have access to different information but aim to coordinate their actions to minimize(maximize) a common cost(reward) function.

Applications

Economics, Wireless Sensor Networks, Robotics, Traffic Management, and Smart Grids

What is a Team?

A collection of multiple decision makers(agents) that have access to different information but aim to coordinate their actions to minimize(maximize) a common cost(reward) function.

Applications:

Economics, Wireless Sensor Networks, Robotics, Traffic Management, and Smart Grids

- ✓ Globally optimal solutions
- ✓ Communication
- ✓ Computational complexity

- ✓ Static: Agents do not affect observations of others
- ✓ *Dynamic*: Agents affect observations of others

Main challenges:

- ✓ Globally optimal solutions
- ✓ Communication
- ✓ Computational complexity

- ✓ Static: Agents do not affect observations of others
- ✓ *Dynamic*: Agents affect observations of others

Main challenges:

- ✓ Globally optimal solutions
- ✓ Communication
- ✓ Computational complexity

Types:

- \checkmark Static: Agents do not affect observations of others
- ✓ Dynamic: Agents affect observations of others

Static Team Applications

Dynamic Teams Solution, Decentralized Estimation, Sensor Networks, Multi Robot Task Assignments, etc.

Main challenges:

- ✓ Globally optimal solutions
- ✓ Communication
- ✓ Computational complexity

Types:

- ✓ Static: Agents do not affect observations of others
- ✓ Dynamic: Agents affect observations of others

Static Team Applications

Dynamic Teams Solution, Decentralized Estimation, Sensor Networks, Multi Robot Task Assignments, etc.

Example

3 robots with 8 tasks
Which tasks should be
assigned to each robot?
Note: Centralized approach is not
practical due to communication
limits, robustness issues, and
scalability

Example

3 robots with 8 tasks Which tasks should be assigned to each robot?

Note: Centralized approach is not practical due to communication limits, robustness issues, and scalability.

Example

3 robots with 8 tasks Which tasks should be assigned to each robot?

Note: Centralized approach is not practical due to communication limits, robustness issues, and scalability.

Example

3 robots with 8 tasks Which tasks should be assigned to each robot?

Note: Centralized approach is not practical due to communication limits, robustness issues, and scalability.

Static Team Problem Formulation

Problem (Formulation)

- \checkmark n agents try to estimate x and (x, y_1, \ldots, y_n) jointly Gaussian
- $\checkmark \mathbb{E}[x] = \bar{x}, \ \mathbb{E}[y_i] = \bar{y}_i, \ \mathbb{E}[xy_i^{\mathsf{T}}] = \Theta_i, \ and \ \mathbb{E}[y_iy_i^{\mathsf{T}}] = \Sigma_{ij}.$
- ✓ Agent i observes y_i and chooses $u_i = g_i(y_i)$.

The performance is measured by

$$c(x, u_1, \dots, u_n) = \sum_{i \in N} \sum_{j \in N} u_i^{\mathsf{T}} R_{ij} u_j + 2 \sum_{i \in N} u_i^{\mathsf{T}} P_i x = u^{\mathsf{T}} R u + 2 u^{\mathsf{T}} P x$$

$$u = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}, \ P = \begin{bmatrix} P_1 \\ \vdots \\ P_n \end{bmatrix}, \ R = \begin{bmatrix} R_{11} & \cdots & R_{1n} \\ \vdots & \ddots & \vdots \\ R_{n1} & \cdots & R_{nn} \end{bmatrix}$$

Static team problem formulation

Static Team Problem

Assume:

 $\mathbf{A}(\mathbf{1}): R \geqslant 0 \text{ and } R = R^{\mathsf{T}}.$

A(2) : P, R, Θ , and Σ are common knowledge to all agents.

then choose decision rules $g = (g_1, \ldots, g_n)$ for all agents to minimize

$$J(g) = \mathbb{E}^g[c(x, u)].$$

Theorem (Radner 1962)

The optimal decision rules for static team problem are given by

$$u_i = K_i(y_i - \bar{y}_i) + H_i\bar{x}, \quad \forall i \in N;$$

$$u = \begin{bmatrix} H_1 \\ \vdots \\ H_n \end{bmatrix} = -R^{-1}P, K := \begin{bmatrix} K_1 \\ \vdots \\ K_n \end{bmatrix} = -\Gamma^{-1}\eta$$
where $n := \text{vec}(P, \Theta)$, and $\Gamma := [(\Sigma - 1)]$

where $\eta := \operatorname{vec}(P_1\Theta_1, \dots, P_n\overline{\Theta}_n)$ and $\Gamma := [(\Sigma_{ij} \otimes R_{ij})_{ij}]$ Moreover, the optimal cost J^* is given by

$$J^* = -\eta^{\mathsf{T}} \Gamma^{-1} \eta - \bar{x}^{\mathsf{T}} P^{\mathsf{T}} R^{-1} P \bar{x}.$$

Motivation for common information

Example

Before the system starts running, suppose it is possible to build an observation channel and broadcast its measurements to all agents.

What is the value of such

Motivation for common information

Example

Before the system starts running, suppose it is possible to build an observation channel and broadcast its measurements to all agents. What is the value of such

common information?.

Motivation for common information

Example

Before the system starts running, suppose it is possible to build an observation channel and broadcast its measurements to all agents.

What is the value of such common information?

Static team with common information formulation

- \checkmark In addition to x and y_i there is z available to every agent.
- \checkmark (x, y_1, \dots, y_n, z) are jointly Gaussian.
- \checkmark $\mathbb{E}[z] = \bar{z}, \mathbb{E}[xz^{\intercal}] = \Theta_c, \text{ and } \mathbb{E}[zz^{\intercal}] = \Sigma_{cc}.$
- \checkmark Agent *i* observes (y_i, z) and choose $\tilde{u}_i = \tilde{g}_i(y_i, z)$.
- \checkmark The performance is measured by the same cost.

Problem Statement

Assume (A1) and (A2) are held. Then, choose decision rules $\tilde{g} = (\tilde{g}_1, \dots, \tilde{g}_n)$ for all agents to minimize $\tilde{J}(\tilde{g}) = \mathbb{E}^{\tilde{g}}[c(x, \tilde{u})]$.

Results

It can be solved the same way as Radner solved it.

Theorem (An extension of Radner's Solution)

The optimal decision rules for this problem are given by

$$\tilde{u}_i = \bar{K}_i(y_i - \bar{y}_i) + \bar{L}_i(z - \bar{z}) + H_i\bar{x}, \quad \forall i \in N;$$

$$\begin{bmatrix} \bar{K} \\ \bar{L} \end{bmatrix} := \begin{bmatrix} K_1 \\ \vdots \\ \bar{K}_n \\ \bar{L}_1 \\ \vdots \\ \bar{L}_n \end{bmatrix} = -\bar{\Gamma}^{-1}\bar{\eta}$$

Theorem (An extension of Radner's Solution)

$$\bar{\eta} := \text{vec}(\eta, P_1\Theta_c, \dots, P_n\Theta_c)$$
 and

$$\bar{\Gamma} \coloneqq \begin{bmatrix} \Gamma & \bar{\Gamma}_{12}^{ij} \\ \bar{\Gamma}_{21}^{ij} & \bar{\Gamma}_{22}^{ij} \end{bmatrix}$$

where, $\bar{\Gamma}_{12}^{ij} := [\Sigma_{ic} \otimes R_{ij}], \ \bar{\Gamma}_{21}^{ij} := [\Sigma_{cj} \otimes R_{ij}], \ and \ \bar{\Gamma}_{11}^{ij} := [\Sigma_{cc} \otimes R_{ij}].$ Moreover, the optimal cost \bar{J}^* is given by

$$\bar{J}^* = -\bar{\eta}^{\dagger} \bar{\Gamma}^{-1} \bar{\eta} - \bar{x}^{\dagger} P^{\dagger} R^{-1} P \bar{x}.$$

Then the effect of the link can be found from the following equation.

$$J^* - \bar{J}^* = \bar{\eta}^T \bar{\Gamma}^{-1} \bar{\eta} - \eta^T \Gamma^{-1} \eta = \bar{\eta}^T \bar{\Gamma}_d \bar{\eta}$$

Positive definiteness of Γ_d can be obtained with the same method as Radner(1962).

Evaluation

In above theorem broadcasting a common information to every agent decreases the optimal cost but, the linear equation which has to be solved is of a higher order.

- ✓ Common information approach
- ✓ Hierarchical approach

Evaluation

In above theorem broadcasting a common information to every agent decreases the optimal cost but, the linear equation which has to be solved is of a higher order.

- ✓ Common information approach
- ✓ Hierarchical approach

Results

Theorem (Common information approach)

The optimal decision rules for this problem are given by

$$\tilde{u}_i = \tilde{K}_i(y_i - \tilde{y}_i) + H_i \tilde{x}, \quad \forall i \in N;$$

$$\tilde{K} := \begin{bmatrix} \tilde{K}_1 \\ \vdots \end{bmatrix} = \tilde{\Gamma}^{-1} \tilde{\alpha}$$

$$\tilde{K} := \begin{bmatrix} K_1 \\ \vdots \\ \tilde{K}_n \end{bmatrix} = -\tilde{\Gamma}^{-1}\tilde{\eta}$$

where
$$\tilde{\eta} := \text{vec}(P_1 \tilde{\Theta}_1, \dots, P_n \tilde{\Theta}_n), \ \tilde{\Theta}_i := \mathbb{E}[xy_i^{\mathsf{T}}|z], \ \tilde{\Gamma} = [\tilde{\Sigma}_{ij} \otimes R_{ij}], \ \tilde{\Sigma}_{ij} = \mathbb{E}[y_i y_i^{\mathsf{T}}|z]$$

Moreover, the optimal cost \tilde{J}^* is given by

$$J^* = -\tilde{\eta}^{\mathsf{T}} \tilde{\Gamma}^{-1} \tilde{\eta} - \bar{x} P^{\mathsf{T}} R^{-1} P \bar{x} - \text{Tr}(\Theta_c \Sigma_{cc}^{-1} \Theta_c^{\mathsf{T}} P^{\mathsf{T}} R^{-1} P)$$

Results

Theorem (Hierarchical approach)

The optimal decision rules for common information problem are given by

$$\tilde{u}_i = K_i(y_i - \bar{y}_i) + L_i(z - \bar{z}) + H_i\bar{x}, \quad \forall i \in N;$$

where

$$L = -\Gamma_L^{-1}(\eta_c - \Gamma_c \tilde{\Gamma}^{-1} \tilde{\eta})$$

where $\Gamma_L = [(\Sigma_{cc} \otimes R_{ij})_{ij}], \ \Gamma_c = [(\Sigma_{cj} \otimes R_{ij})_{ij}],$ $\eta_c := \operatorname{vec}(P_1 \Theta_c, \dots, P_n \Theta_c).$

Moreover, the optimal cost \tilde{J}^* is given by

$$J^* = -\tilde{\eta}^{\mathsf{T}} \tilde{\Gamma}^{-1} \tilde{\eta} - \bar{x} P^{\mathsf{T}} R^{-1} P \bar{x} - \text{Tr}(\Theta_c \Sigma_{cc}^{-1} \Theta_c^{\mathsf{T}} P^{\mathsf{T}} R^{-1} P).$$

example

A decentralized estimation problem

- \checkmark n sensors. x and y_i are zero mean. Let w_0, w_1, \dots, w_n be independent Gaussian random variables with distribution $\mathcal{N}(0, \Sigma_{w_i})$.
- \checkmark Assume local information of each agent is obtained by $y_i = C_i x + w_i$.
- ✓ Minimize the following performance with cross terms

$$c(x, u_1, \dots, u_n) = \sum_{i=1}^n (x - u_i)^{\mathsf{T}} R_{ii}(x - u_i) + \sum_{i=1}^n \sum_{j=1, j \neq i}^n (u_i - u_j)^{\mathsf{T}} R_{ij}(u_i - u_j)$$

example

A decentralized estimation problem

- \checkmark n sensors. x and y_i are zero mean. Let w_0, w_1, \dots, w_n be independent Gaussian random variables with distribution $\mathcal{N}(0, \Sigma_{w_i})$.
- ✓ Assume local information of each agent is obtained by $y_i = C_i x + w_i$.
- ✓ Minimize the following performance with cross terms

$$c(x, u_1, \dots, u_n) = \sum_{i=1}^n (x - u_i)^{\mathsf{T}} R_{ii}(x - u_i) + \sum_{i=1}^n \sum_{j=1, j \neq i}^n (u_i - u_j)^{\mathsf{T}} R_{ij}(u_i - u_j)$$

example

A decentralized estimation problem

- \checkmark n sensors. x and y_i are zero mean. Let w_0, w_1, \dots, w_n be independent Gaussian random variables with distribution $\mathcal{N}(0, \Sigma_{w_i})$.
- ✓ Assume local information of each agent is obtained by $y_i = C_i x + w_i$.
- \checkmark Minimize the following performance with cross terms

$$c(x, u_1, \dots, u_n) = \sum_{i=1}^n (x - u_i)^{\mathsf{T}} R_{ii}(x - u_i) + \sum_{i=1}^n \sum_{j=1, j \neq i}^n (u_i - u_j)^{\mathsf{T}} R_{ij}(u_i - u_j)$$

Solution

Following common information approach the optimal decision rules are given by

$$u_i = \tilde{K}_i(y_i - \tilde{y}_i) + H_i\tilde{x}$$

where

$$\tilde{K} = \tilde{\Gamma}_e^{-1} \tilde{\eta}_e$$

$$L = \begin{bmatrix} \sum_{j=1}^{n} R_{1j} & -R_{12} & \cdots & -R_{1n} \\ \vdots & \ddots & \vdots \\ -R_{n1} & -R_{n2} & \cdots & \sum_{j=1}^{n} R_{nj} \end{bmatrix}^{-1} \begin{bmatrix} R_{11} \\ \vdots \\ R_{nn} \end{bmatrix} = R^{-1}R_d$$

$$\tilde{\Gamma}_e := \begin{bmatrix} \tilde{\Sigma}_{11} \otimes \sum_{j=1}^n R_{1j} & -\tilde{\Sigma}_{12} \otimes R_{12} & \cdots & -\tilde{\Sigma}_{1n} \otimes R_{1n} \\ \vdots & \ddots & \vdots \\ -\tilde{\Sigma}_{n1} \otimes R_{n1} & -\tilde{\Sigma}_{n2} \otimes R_{n2} & \cdots & \tilde{\Sigma}_{nn} \otimes \sum_{j=1}^n R_{nj} \end{bmatrix}$$

 Γ_e is strictly diagonally dominant. So by circle theorem it is positive definite. The optimal cost J^* is given by

$$J^* = -\tilde{\eta}_e^{\mathsf{T}} \tilde{\Gamma}_e^{-1} \tilde{\eta}_e - \text{Tr}(\Sigma_x C_0^{\mathsf{T}} (C_0 \Sigma_x C_0^{\mathsf{T}})^{-1} C_0 \Sigma_x R_d^{\mathsf{T}} R^{-1} R_d) + \text{Tr}(\sum_{i=1}^n R_{ii} \Sigma_x)$$

Table : Cost function

Cost matrix	With common info	Without common info
	18.655	22.244
	17.968	21.4807
	17.135	20.8493

Conclusion

- \checkmark Value of common information in a LQG system.
- \checkmark Two methods to compute the optimal strategy performance.
 - ✓ Common Information Approach: Means and covariance of the observations are the conditional means and covariance given the realization of the common information.
 - ✓ Hierarchical Structure Approach: For high-dimensional (e.g., a video) observations. Communicating corrective terms instead of the common observations.

Future Works:

- ✓ Which link is the best to broadcast?
- ✓ Dynamic Team Problem

Thank you!