DEVOIR SURVEILLÉ N°03

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

EXERCICE 1.

1. On considère l'application

$$\varphi \colon \left\{ \begin{array}{ccc} \mathbb{C}^* & \longrightarrow & \mathbb{C} \\ z & \longmapsto & z + \frac{1}{z} \end{array} \right.$$

- **a.** Déterminer les antécédents de i par φ .
- **b.** L'application φ est-elle injective? Justifier.
- **c.** Montrer que φ est surjective.
- **d.** On se donne $\theta \in \mathbb{R}$. Déterminer les antécédents de $2\cos\theta$ par ϕ . On précisera le nombre de ces antécédents suivant les valeurs de θ .

2. On considère un entier $n \ge 2$ ainsi que l'application

$$\psi \colon \left\{ \begin{array}{ccc} \mathbb{C}^* & \longrightarrow & \mathbb{C}^* \\ z & \longmapsto & z^n \end{array} \right.$$

- a. Déterminer les antécédents de $2\sqrt{12} 4i$ par ψ lorsque n = 3.
- **b.** On revient au cas général ($n \ge 2$). L'application ψ est-elle injective? surjective? Justifier.
- **c.** On se donne $\theta \in \mathbb{R}$. Déterminer les antécédents de $e^{in\theta}$ par ψ .
- 3. On pose $\xi = \phi \circ \psi$.
 - **a.** L'application ξ est-elle injective ? surjective ? Justifier.
 - **b.** On se donne $\theta \in \mathbb{R}$. Déterminer les antécédents de $2\cos(n\theta)$ par ξ . On en précisera le nombre suivant les valeurs de θ .
- 4. On considère l'application

$$\alpha \colon \left\{ \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{C}^* \\ z & \longmapsto & e^z \end{array} \right.$$

- **a.** L'application α est-elle injective? surjective? Justifier.
- **b.** Déterminer les antécédents de i par $\beta = \phi \circ \alpha$.

EXERCICE 2.

Soit
$$n \in \mathbb{N}^*$$
. On pose $S_n = \sum_{k=0}^n (-1)^k \binom{2n}{2k}$ et $T_n = \sum_{k=0}^{n-1} (-1)^k \binom{2n}{2k+1}$.

- **1.** Ecrire 1 + i sous forme exponentielle.
- **2.** Justifier que $S_n + iT_n = (1 + i)^{2n}$.
- 3. En déduire des expressions des sommes S_n et T_n faisant intervenir les fonctions cos et sin.

Exercice 3.

- **1.** On considère l'équation (E) : $(1+iz)^5 = (1-iz)^5$ d'inconnue $z \in \mathbb{C}$.
 - a. Soit $\theta \in \mathbb{R}$ non congru à $\frac{\pi}{2}$ modulo π . Montrer que $\frac{e^{2i\theta}-1}{e^{2i\theta}+1}=i\tan\theta$.
 - **b.** Déterminer les solutions complexes de (E) à l'aide des racines cinquièmes de l'unité. On exprimera les solutions à l'aide de la fonction tan.
 - **c.** Développer $(1+iz)^5$ et $(1-iz)^5$ à l'aide de la formule du binôme de Newton. En déduire les solutions de (E) sous une autre forme.
 - **d.** Déterminer le sens de variation de la fonction tan sur l'intervalle $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. En déduire les valeurs de tan $\frac{\pi}{5}$ et tan $\frac{2\pi}{5}$.
- 2. On se donne maintenant $\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et on considère l'équation

$$(E_{\alpha}): (1+iz)^{5}(1-i\tan\alpha) = (1-iz)^{5}(1+i\tan\alpha)$$

d'inconnue $z \in \mathbb{C}$.

- **a.** Montrer que $\frac{1+i\tan\alpha}{1-i\tan\alpha} = e^{2i\alpha}$.
- **b.** Résoudre l'équation $Z^5 = e^{2i\alpha}$ d'inconnue $Z \in \mathbb{C}$.
- **c.** En déduire les solutions de (E_{α}) que l'on exprimera à l'aide de la fonction tan.

EXERCICE 4.

- **1.** On pose $j = e^{\frac{2i\pi}{3}}$.
 - **a.** Que vaut j^3 ?
 - **b.** Calculer $1 + j + j^2$.
 - **c.** Soit $(a, b, c) \in \mathbb{C}^3$. Montrer que

$$(a + bj + cj^2)(a + bj^2 + cj) = a^2 + b^2 + c^2 - ab - bc - ca$$

- **d.** Ecrire -j et $-j^2$ sous forme exponentielle.
- 2. On considère trois points A, B et C distincts deux à deux d'affixes respectifs a, b et c dans un repère orthonormé. On suppose que $a^2 + b^2 + c^2 = ab + bc + ca$.
 - **a.** Montrer que $\frac{c-a}{b-a} = -j^2$ ou $\frac{c-a}{b-a} = -j$.
 - **b.** En déduire que le triangle ABC est équilatéral.