Application of the Neumann's problem

Now, consider that $U(x_0, y_0, z_0)$ represents the function $\Theta(x_0, y_0, z_0)$. In this case:

 $r = [(x_0 - x)^2 + (y_0 - y)^2 + (y_0 - y_0)^2]^{1/2}$

the vertical component of the gravitational attraction produced by a source with positive density Hence, the scalar magnetic potential can be rewritten as follows:

$$V(x_0, y_0, y_0) = -\nabla \Theta(x_0, y_0, y_0)^{T} \hat{h}$$

$$= -\left[(\cos I \cos S) \right] \int_{-\infty}^{\infty} P(x_1, y_1, y_0) dx + dx dy + (\cos I \sin D) \int_{-\infty}^{\infty} P(x_1, y_1, y_0) dx + dx dy + (\sin I) \int_{-\infty}^{\infty} P(x_1, y_1, y_0) dx + dx dy + (\sin I) \int_{-\infty}^{\infty} P(x_1, y_1, y_0) dx + dx dy$$

$$= -\int_{-\infty}^{\infty} P(x_1, y_1, y_0) \nabla \frac{1}{x_0} \nabla \frac{1}$$

In this case, the lpha -component of the magnetic induction can be defined by the following integral:

$$\mathcal{B}_{\alpha}(x_{0},y_{0},3_{0}) = -\partial_{\alpha}V(x_{0},y_{0},3_{0}) \qquad \qquad \times = x_{1}y_{1}3$$

$$= \int \int \mathcal{D}(x_{1}y_{1})dx \qquad \qquad = \int \partial_{\alpha}x \frac{1}{x_{1}} \partial_{\alpha}x \frac{1}{x_{2}} \partial_{\alpha}x \frac{1}{x$$

By using this integral, we can define the approximated total-field anomaly as follows:

$$\Delta T (x_0, y_0, z_0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P(x, y, z_0) \hat{F}_0 T \left(\nabla^2 \frac{1}{Y}\right) \hat{h} dxdy$$

Note that this equation represents the approximated total-field anomaly produced by a continuous layer of dipoles with total-magnetization direction equal to

approximated total-field anomaly produced by a dipole

 It is worth noting that, the physical property distribution $\mathcal{P}^{(\varkappa,y,\jmath)}$ is positive at all points (\varkappa,y,\jmath) on the plane \varkappa and ι defining respectively, the directions of the main field and total-magnetization direction.

It means that, by determining $\mathcal{P}(x,y,3c)$, it is possible to determine the approximated total-field anomaly, scalar magnetic potential and magnetic induction that would be produced by the source if the main field and/or the total magnetization had different directions.

For example, if we determine $p(\varkappa, y, 3c)$, we can compute the approximated total-field anomaly that would be produced by the source if both β and β were vertical, i.e.:

$$\hat{\mathbf{F}}_{o} = \hat{\mathbf{h}} = \begin{bmatrix} o \\ o \\ \pm 1 \end{bmatrix}$$

In this case, the approximated total-field anomaly assumes the form:

which is similar to the zz-derivative of the gravitational potential produced by a source with positive density. Transforming an observed total-field anomaly into this simpler anomaly is called "reduction to the pole". This trasformation was proposed by Baranov (1957) and is valid for the case in which the sources have a uniform magnetization direction.

It is possible to determine a continuous layer of dipoles that (i) has a uniform magnetization direction different from that of the true sources and (ii) exactly reproduces the observed total-field anomaly. In this case, however, there is no guarantee that the physical property distribution is positive at all points on the layer and it is not possible to compute the reduction to the pole.

References:

- * Baranov, V., 1957, A new method for interpretation of aeromagnetic maps: Pseudo-gravimetric anomalies: Geophysics, 22, 359–382. doi: 10.1190/1.1438369
- * Silva, J. B. C., 1986, Reduction to the pole as an inverse problem and its application to low-latitude anomalies: GEOPHYSICS, 51, 369–382. doi: 10.1190/1.1442096
- * Li, Y., M. Nabighian, and D. W. Oldenburg, 2014, Using an equivalent source with positivity for low-latitude reduction to the pole without striation: GEOPHYSICS, 79, J81–J90. doi: 10.1190/geo2014-0134.1
- * André L. A. Reis, Vanderlei C. Oliveira Jr., and Valéria C. F. Barbosa, (2020). Generalized positivity constraint on magnetic equivalent layers. Geophysics, 85(6), 1-45. doi:10.1190/geo2019-0706.1