

Ouick start

import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt

X = np.linspace(0, 2*np.pi, 100) Y = np.cos(X)

fig, ax = plt.subplots() ax.plot(X, Y, color='green')

fig.savefig("figure.pdf") plt.show()

Anatomy of a figure

Subplots layout

Getting help

matplotlib.org

github.com/matplotlib/matplotlib/issues

discourse.matplotlib.org

stackoverflow.com/questions/tagged/matplotlib https://gitter.im/matplotlib/matplotlib

y twitter.com/matplotlib

✓ Matplotlib users mailing list

scatter(X,Y,...) X, Y, [s]izes, [c]olors, marker, cmap

Advanced plots

API

"projecting"

plt.get_cmap(name)

Cyclic

"butt"


```
from matplotlib import ticker
                                                import matplotlib.animation as mpla
ax.[xy]axis.set [minor|major] locator(locator)
                                                T = np.linspace(0, 2*np.pi, 100)
ticker.NullLocator()
                                                S = np.sin(T)
ticker.MultipleLocator(0.5)
                                                line, = plt.plot(T, S)
  0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
                                                def animate(i):
ticker.FixedLocator([0, 1, 5])
                                                     line.set_ydata(np.sin(T+i/50))
ticker.LinearLocator(numticks=3)
                                                anim = mpla.FuncAnimation(
                                                     plt.gcf(), animate, interval=5)
ticker.IndexLocator(base=0.5, offset=0.25)
                                                plt.show()
ticker.AutoLocator()
                                                Styles
ticker.MaxNLocator(n=4)
```

Animation

plt.style.use(style)

grayscale

fast

seaborn-v0_8-notebo

Tick locators

ticker.LogLocator(base=10, numticks=15)

ticker.PercentFormatter(xmax=5)

handles, labels, loc, title, frameon

abel 1

Label 2

mappable, ax, cax, orientation

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

text, xy, xytext, xycoords, textcoords, arrowprops

Ornaments

ax.legend(...)

Legend -

ax.colorbar(...)

ax.annotate(...)

Event handling

text

Label 3

O Zoom to rect

y Y pan/zoom

- x X pan/zoom
- g Minor grid 0/1
- G Major grid 0/1 X axis log/linear L Y axis log/linear

Ten simple rules

1. Know your audience

2. Identify your message

3. Adapt the figure

4. Captions are not optional

5. Do not trust the defaults 6. Use color effectively

7. Do not mislead the reader

8. Avoid "chartiunk"

9. Message trumps beauty 10. Get the right tool

