A COLLEGE OF THE UNITING CHURCH IN AUSTRALIA **LKESBALEKIVN TYDIES, COTTECE**

MATHEMATICAL METHODS YEAR 12 - TEST 2 **INATHEMATICS DEPARTMENT**

		-	-			_
-	Name:	0	אומו רוו לחד			$\overline{}$
	.oueM	9	Narch 201	I puC	·コエ ^	u

SECTION ONE: CALCULATOR FREE

3 minutes

31 marks :JATOT WORKING TIME: Maximum 30 minutes

:ТИЭМЧІОФЭ

Reading Time:

(provided) pens, pencils, pencil sharpener, highlighter, eraser, ruler, SCSA formula sheet

SECTION TWO: CALCULATOR ASSUMED

19 marks :JATOT WORKING TIME: Minimum 20 minutes

instruments, templates, up to 3 calculators, formula sheet (provided), pens, pencils, pencil sharpener, highlighter, eraser, ruler, drawing :ТИЭМЧІОЎЭ

one A4 page of notes (one side only)

	20	JATOT			
	6T	Sect 2 Total		37	Sect 1 Total
	9	9		9	3
	9	9		9	2
	L	Þ		6T	τ
Marks	Marks available	Question	Marks awarded	Marks available	Question

(19 marks) Question 1 (a) Determine the following, writing your answers with positive indices and simplifying where possible.

$$\int 8 x e^{x^2} dx$$
 (ii) (2 marks)

$$\int \left|e^{2\,x} + \,e^{-2\,x}\right|^2 \,dx \tag{3 marks} \label{eq:3.1}$$

... beunifinoo 1 noiteauQ

$$x \le \lambda x = \chi \text{ if } \frac{\sqrt{b}}{\sqrt{b}}$$
 (vi)

tesT to bn3

(S marks)

(S marks)

$$3b^{x}(z-z_{1}) + 2b^{x} \int_{1}^{x} \frac{b}{xb}$$
 (i) (d)

$$\int_{0}^{1} \frac{e^{3x} - e^{2x}}{e^{3x}} dx$$

(ii) Evaluate exactly

(4 marks)

Question 1 continued ...

(iii) Evaluate exactly
$$\int_{\alpha}^{2\alpha} \left(pe^{px+q} + 2 pxe^{px^2} \right) dx$$

(4 marks)

Question 6 (6 marks)

Find the area bound by the curve $y=x^2+2x-15$ between x=1, x=5 and the x-axis. (3 marks)

(b) The curves $y = ax^2$ and $y = a\sqrt{x}$ intersect at the point A (1, a) as shown in the diagram below.

If the shaded area is equal to one square unit, find the value of a.

(3 marks)

Question 2 (6 marks)

Question 5 (6 marks)

Use the graph above to determine the following definite integrals.

The area of A is 3 cm 2 , B is 6 cm 2 and C is 10 cm 2 .

. (2 marks) Determine a formula for the current at any time, ${}^{t \geq 0.2}$ seconds.

(CARMIN 2) SCHOOOC (SUBMIN AND MICHING ON THE MICHING OF THE MICHI

The amount of current in a circuit, $I^{(t)}$ amps, decreases in accordance with the rule $\frac{dI}{dt} = \frac{100}{t^2}$ where t is the time in seconds, provided that $t \ge 0.2$ seconds. It is known that when t = 2, the current is t = 1.

) Find the current after 20 seconds (1 mark)

Determine the amount of current lost during the fifth second. (2 marks)

Describe what happens to the current as $t \to \infty$.

$$\int\limits_{1-}^{2}\left(f\left(x\right) +4\right) dx \tag{2 marks}$$

(J mark)

(T mark)

(J mark)

 $xp\left(x\right)J-\int\limits_{S}^{\varepsilon-}$

$$\int\limits_{-5}^{1}f\left(-x\right) dx \tag{1 mark}$$

Question 3 (6 marks)

(6 marks) A curve has equation $y=x^2e^{-x}$. Show that $\frac{dy}{dx}=ax^be^{-x}(c-x)$, giving the values of a, b and c. Sketch the graph on the axes below. Clearly show the exact location of any turning points, intercepts and asymptotes.

	_	_	
End	Λf	Section 2	1
⊏iiu	vı	Section .	L

	Sect	on 2: Calculator Assumed	Name:	
	Quest	ion 4		(7 marks
Students at the University of Sydney observed the number of possums in a nearby area of bushlar It was known that the original population when they commenced observation in January 2010 was $\frac{dP}{dt} = 0.05P$ approximately 250. The population of possums was found to be growing such that $\frac{dP}{dt} = 0.05P$.				
	approx	imately 250. The population of possums was found	d to be growing such that dt	
	(a)	Write an equation that can be used to determine thobservations by the students.		e initial (2 marks
	(b)	Determine the population of possums in July 2015		(2 marks
	(c)	Determine, to the nearest month, when the numbe	r of possums will first exceed 400.	(3 marks