SR Latch - Complete Summary

Your Name

July 2, 2025

1 Introduction

An SR Latch (Set-Reset Latch) is a basic bistable (two stable states) sequential circuit that stores 1 bit of data. It is constructed using cross-coupled NOR gates or NAND gates, forming a feedback loop to maintain its state.

2 Types of SR Latches

- NOR-based SR Latch
- \bullet NAND-based SR Latch (also called SR Latch with active-low inputs)

3 NOR-based SR Latch

3.1 Structure

Two NOR gates with feedback.

3.2 Inputs

- S (Set) Sets output Q = 1
- R (Reset) Resets output Q = 0

3.3 Truth Table

S	\mathbf{R}	Q	\mathbf{Q}'	State
0	0	Q	Q'	Hold (Memory)
1	0	1	0	Set $(Q = 1)$
0	1	0	1	Reset $(Q = 0)$
1	1	0	0	Invalid (Race)

3.4 Invalid State

When S=R=1, both outputs Q and Q' become 0 (violates $Q'=\overline{Q}$).

4 NAND-based SR Latch (Active-Low Inputs)

4.1 Structure

Two NAND gates with feedback.

4.2 Inputs

- \overline{S} (Set) Active-low (0 sets Q=1)
- \overline{R} (Reset) Active-low (0 resets Q = 0)

4.3 Truth Table

\overline{S}	\overline{R}	Q	Q'	State
1	1	Q	Q'	Hold (Memory)
0	1	1	0	Set $(Q = 1)$
1	0	0	1	Reset $(Q = 0)$
0	0	1	1	Invalid (Race)

4.4 Invalid State

When $\overline{S} = \overline{R} = 0$, both outputs Q and Q' become 1 (violates $Q' = \overline{Q}$).

5 Characteristics

- Level-Triggered: Changes state based on input levels (not edges).
- Asynchronous: No clock signal required.
- Race Condition: Occurs when both inputs are active simultaneously.

6 Applications

- Basic memory storage in registers.
- Debouncing switches.
- Temporary state storage in control circuits.

7 Limitations

- No Clock Control: Cannot synchronize with a clock (unlike flip-flops).
- Glitches: Sensitive to input changes.
- Invalid State: Must avoid S=R=1 (NOR) or $\overline{S}=\overline{R}=0$ (NAND).

8 Conclusion

The **SR Latch** is the simplest sequential circuit used for **1-bit storage**. It has two stable states (**Set & Reset**) but suffers from an **invalid state** when both inputs are active. It serves as the foundation for more complex storage elements like **Flip-Flops**.