CS145: INTRODUCTION TO DATA MINING

6: Vector Data: Neural Network

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

October 18, 2017

Methods to Learn: Last Lecture

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Methods to Learn

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Neural Network

Introduction

- Multi-Layer Feed-Forward Neural Network
- Summary

Artificial Neural Networks

Consider humans:

- Neuron switching time ~.001 second
- Number of neurons ~ 10¹⁰
- Connections per neuron $^{\sim}10^{4-5}$
- Scene recognition time ~.1 second
- 100 inference steps doesn't seem like enough -> parallel computation

Artificial neural networks

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

Single Unit: Perceptron

• An n-dimensional input vector \mathbf{x} is mapped into variable \mathbf{y} by means of the scalar product and a nonlinear function mapping

Perceptron Training Rule

• If loss function is: $l = \frac{1}{2} \sum_i (t_i - o_i)^2$

For each training data point x_i :

$$\mathbf{w}_{new} = \mathbf{w}_{old} + \eta(t_i - o_i)\mathbf{x}_i$$

- t: target value (true value)
- o: output value
- η : learning rate (small constant)

Neural Network

- Introduction
- Multi-Layer Feed-Forward Neural Network
- Summary

A Multi-Layer Feed-Forward Neural Network

Output vector

Output layer

Hidden layer

Input layer

Input vector: x

A **two-layer** network

$$y = g(W^{(2)}h + b^{(2)})$$

Nonlinear transformation, e.g. sigmoid transformation

Sigmoid Unit

- $\sigma(x) = \frac{1}{1+e^{-x}}$ is a sigmoid function
 - Property: $\frac{d\sigma(x)}{dx} = \sigma(x)(1 \sigma(x))$
 - Will be used in learning

Activation functions

Step function

$$step_{t}(x) = \begin{cases} 1 & x > t \\ 0 & otherwise \end{cases}$$

Sign function

$$sign(x) = \begin{cases} +1 & x \ge 0 \\ -1 & altrimenti \end{cases}$$

Sigmoid function

$$sigmoide(x) = \frac{1}{1 + e^{-x}}$$

How A Multi-Layer Neural Network Works

- The inputs to the network correspond to the attributes measured for each training tuple
- Inputs are fed simultaneously into the units making up the input layer
- They are then weighted and fed simultaneously to a hidden layer
- The number of hidden layers is arbitrary, although usually only one
- The weighted outputs of the last hidden layer are input to units making up the output layer, which emits the network's prediction
- The network is feed-forward: None of the weights cycles back to an input unit or to an output unit of a previous layer
- From a math point of view, networks perform nonlinear regression: Given enough hidden units and enough training samples, they can closely approximate any continuous function

Defining a Network Topology

- Decide the network topology: Specify # of units in the input layer, # of hidden layers (if > 1), # of units in each hidden layer, and # of units in the output layer
- Normalize the input values for each attribute measured in the training tuples
- Output, if for classification and more than two classes, one output unit per class is used
- Once a network has been trained and its accuracy is unacceptable, repeat the training process with a different network topology or a different set of initial weights

Learning by Backpropagation

- Backpropagation: A neural network learning algorithm
- Started by psychologists and neurobiologists to develop and test computational analogues of neurons
- During the learning phase, the network learns by adjusting the weights so as to be able to predict the correct class label of the input tuples
- Also referred to as connectionist learning due to the connections between units

Backpropagation

- Iteratively process a set of training tuples & compare the network's prediction with the actual known target value
- For each training tuple, the weights are modified to minimize the loss function between the network's prediction and the actual target value, say mean squared error
- Modifications are made in the "backwards" direction: from the output layer, through each hidden layer down to the first hidden layer, hence "backpropagation"

Example of Loss Functions

- Hinge loss
- Logistic loss
- Cross-entropy loss
- Mean square error loss
- Mean absolute error loss

A Special Case

Activation function: Sigmoid

Loss function: mean square error

$$J = \frac{1}{2} \sum_{i} (T_{j} - O_{j})^{2},$$

 T_j : true value of output unit j; O_i : output value

Backpropagation Steps to Learn Weights

- Initialize weights to small random numbers, associated with biases
- Repeat until terminating condition meets
 - For each training example
 - Propagate the inputs forward (by applying activation function)
 - For a hidden or output layer unit j
 - Calculate net input: $I_j = \sum_i w_{ij} O_i + \theta_j$
 - Calculate output of unit $j: O_j = \sigma(I_j) = \frac{1}{1+e^{-I_j}}$
 - Backpropagate the error (by updating weights and biases)
 - For unit j in output layer: $Err_j = O_j(1-O_j)(T_j-O_j)$
 - For unit j in a hidden layer: : $Err_j = O_j (1 O_j) \sum_k Err_k w_{jk}$
 - Update weights: $w_{ij} = w_{ij} + \eta Err_j O_i$
 - Update bias: $\theta_i = \theta_i + \eta Err_i$
- Terminating condition (when error is very small, etc.)

More on the output layer unit j

• Recall:

$$J = \frac{1}{2} \sum_{j} (T_{j} - O_{j})^{2}$$
, $O_{j} = \sigma(\sum_{i} w_{ij} O_{i} + \theta_{j})$

Chain rule of first derivation

$$\frac{\partial J}{\partial w_{ij}} = \frac{\partial J}{\partial O_j} \frac{\partial O_j}{\partial w_{ij}} = -(T_j - O_j)O_j(1 - O_j)O_i$$

$$\frac{\partial J}{\partial \theta_j} = \frac{\partial J}{\partial O_j} \frac{\partial O_j}{\partial \theta_j} = -(T_j - O_j)O_j(1 - O_j)$$
Denoted as $\frac{Err_j!}{1 - O_j}$

More on the hidden layer unit j

 Let i, j, k denote units in input layer, hidden layer, and output layer, respectively

$$J = \frac{1}{2} \sum_{k} (T_k - O_k)^2$$
, $O_k = \sigma \left(\sum_{j} w_{jk} O_j + \theta_k \right)$, $O_j = \sigma \left(\sum_{i} w_{ij} O_i + \theta_j \right)$

Chain rule of first derivation

$$\frac{\partial J}{\partial w_{ij}} = \sum_{k} \frac{\partial J}{\partial O_{k}} \frac{\partial O_{k}}{\partial O_{j}} \frac{\partial O_{j}}{\partial w_{ij}}$$

$$= \sum_{k} -(T_{k} - O_{k})O_{k}(1 - O_{k})w_{jk}O_{j}(1 - O_{j})O_{i}$$

$$= rr_{k} \text{: Already computed in the output layer!}$$

Erri

Note:
$$\frac{\partial J}{\partial O_k} = -(T_k - O_k), \frac{\partial O_k}{\partial O_j} = O_k(1 - O_k)w_{jk}, \frac{\partial O_j}{\partial w_{ij}} = O_j(1 - O_j)O_i$$

$$\frac{\partial J}{\partial \theta_j} = \sum_{k} \frac{\partial J}{\partial O_k} \frac{\partial O_k}{\partial O_j} \frac{\partial O_j}{\partial \theta_j} = -Err_j$$

Example

A multilayer feed-forward neural network

x_1	x_2	x_3	w_{14}	w_{15}	w_{24}	w_{25}	w_{34}	w_{35}	w_{46}	w_{56}	θ_4	θ_5	θ_6
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

Initial Input, weight, and bias values

Example

Input forward:

Table 9.2: The net input and output calculations.

Unit j	Net input, I_j	$Output, O_j$
4	0.2 + 0 - 0.5 - 0.4 = -0.7	$1/(1+e^{0.7}) = 0.332$
5	-0.3 + 0 + 0.2 + 0.2 = 0.1	$1/(1 + e^{-0.1}) = 0.525$
6	(-0.3)(0.332) - (0.2)(0.525) + 0.1 = -0.105	$1/(1 + e^{0.105}) = 0.474$

Error backpropagation and weight update:

Table 9.3: Calculation of the error at each node.

Unit j	Err_j
6	(0.474)(1 - 0.474)(1 - 0.474) = 0.1311
5	(0.525)(1 - 0.525)(0.1311)(-0.2) = -0.0065
4	(0.332)(1 - 0.332)(0.1311)(-0.3) = -0.0087

assuming $T_6 = 1$

Table 9.4: Calculations for weight and bias updating.

Table 3.4. Calcu	ations for weight and bias updating.
Weight or bias	New value
w_{46}	-0.3 + (0.9)(0.1311)(0.332) = -0.261
w_{56}	-0.2 + (0.9)(0.1311)(0.525) = -0.138
w_{14}	0.2 + (0.9)(-0.0087)(1) = 0.192
w_{15}	-0.3 + (0.9)(-0.0065)(1) = -0.306
w_{24}	0.4 + (0.9)(-0.0087)(0) = 0.4
w_{25}	0.1 + (0.9)(-0.0065)(0) = 0.1
w_{34}	-0.5 + (0.9)(-0.0087)(1) = -0.508
w_{35}	0.2 + (0.9)(-0.0065)(1) = 0.194
θ_6	0.1 + (0.9)(0.1311) = 0.218
$ heta_5$	0.2 + (0.9)(-0.0065) = 0.194
$ heta_4$	-0.4 + (0.9)(-0.0087) = -0.408

Efficiency and Interpretability

- <u>Efficiency</u> of backpropagation: Each iteration through the training set takes O(|D| * w), with |D| tuples and w weights, but # of iterations can be exponential to n, the number of inputs, in worst case
- For easier comprehension: <u>Rule extraction</u> by network pruning*
 - Simplify the network structure by removing weighted links that have the least effect on the trained network
 - Then perform link, unit, or activation value clustering
 - The set of input and activation values are studied to derive rules describing the relationship between the input and hidden unit layers
- <u>Sensitivity analysis</u>: assess the impact that a given input variable has on a network output. The knowledge gained from this analysis can be represented in rules
 - E.g., If x decreases 5% then y increases 8%

Neural Network as a Classifier

Weakness

- Long training time
- Require a number of parameters typically best determined empirically, e.g., the network topology or "structure."
- Poor interpretability: Difficult to interpret the symbolic meaning behind the learned weights and of "hidden units" in the network

Strength

- High tolerance to noisy data
- Successful on an array of real-world data, e.g., hand-written letters
- Algorithms are inherently parallel
- Techniques have recently been developed for the extraction of rules from trained neural networks
- Deep neural network is powerful

Digits Recognition Example

Obtain sequence of digits by segmentation

Recognition (our focus)

$$\mathcal{F} \Rightarrow 5$$

Digits Recognition Example

The architecture of the used neural network

What each neurons are doing?

Towards Deep Learning*

Deep neural network

Deep Learning References

- http://neuralnetworksanddeeplearning.com/
- http://www.deeplearningbook.org/

Neural Network

- Introduction
- Multi-Layer Feed-Forward Neural Network
- Summary

Summary

Neural Network

• Feed-forward neural networks; activation function; loss function; backpropagation