

Block Diagram Representation

- I/O Form of Dynamical Systems
- Block Diagram Representation
- Algebraic Manipulations of Block Diagrams

I/O Form and Block Diagrams

Input - Output Representations

Mathematical models are **commonly written** in forms that describe **variation** of output with respect to input, as below.

$$y(t) = gu(t); \quad g = \frac{y(t)}{u(t)}$$

Here, **u(t)** is input, **y(t)** is output and '**g**' is the **relation** between 'y' and 'u' that 'transforms' 'u' into 'y'. E.g. spring-mass-damper model can be rewritten, as follows.

$$m\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky = b\frac{du}{dt} + ku$$
$$y(t) = gu(t), \quad g = \frac{b\left(\frac{d}{dt}\right) + k}{m\left(\frac{d^2}{dt^2}\right) + b\left(\frac{d}{dt}\right) + k}$$

Block Diagram as System Form

Block diagrams are an extension of the **I/O form** and are pictorial **representation** of the model of the **system**.

Typical **block** is the basic unit **represented** as follows.

Diagram contains algebraic **operations** e.g. multiplication / division, addition/ subtraction, **consistent** with the model **description**.

Block Diagram as Dynamical Tool

Block diagrams are also tools for analysis and design as these can be manipulated like algebraic entities, using the applicable relations. A typical diagram is shown below.

Summing point defines the algebraic **equation** in terms of inputs & output.

Branch point provides signal to other blocks or summing points.

Block represents the **process.**

Block Diagram Algebra Concept

Block diagram algebra is a discipline that helps us to manipulate diagrams, as algebraic entities.

$$\left| \frac{C(s)}{R(s)} = G_1(s) \cdot G_2(s) \right|$$

$$\frac{C(s)}{R(s)} = G_1(s) + G_2(s)$$

$$\frac{C(s)}{R(s)} = \frac{G_1(s)}{1 + G_1(s) \cdot G_2(s)}$$

Rules for Block Diagram Algebra

Given along side are **some** of the **rules** that we can use to **manipulate** / simplify system **description.**

Block Diagram Algebra Example

Consider the following block diagram.

Block Diagram Algebra Example

Summary

Block diagrams are the most common and convenient representations for dynamical systems, which can be manipulated like algebraic entities.