Nombres complexes : point de vue géométrique

Le plan est muni d'un repère orthonormal direct (O, \vec{u}, \vec{v}) .

I. Le plan complexe

1. Affixe d'un point :

Soit x et y deux réels.

Définition :

A tout point M du plan de coordonnées (x;y)est associé le complexe z=x+iy appelé **affixe du point** M. A tout nombre complexe z=x+iy, on associe le point M de coordonnées (x;y) appelé **image de z.** Le plan muni d'un repère orthonormal direct dans lequel on représente des nombres complexes est appelé **plan complexe**.

Exemple:

Dans le plan réel : le point M a pour coordonnées (3 ; 2) et on note M(3;2).

Dans le plan complexe : le point M a pour affixe 3+2i et on note M(3+2i).

Vocabulaire:

L'axe des ordonnées est appelé l'axe des imaginaires purs .

L'axe des abscisses est appelé axe des réels.

2. Affixe d'un vecteur

Soit x et y deux réels.

Définition:

A tout vecteur \vec{w} du plan de coordonnées (x; y) est associé le nombre complexe z = x + iy appelé **affixe du vecteur** \vec{w} .

Notation:

Par habitude, on utilise la notation $z_{\vec{w}}$ pour désigner l'affixe du vecteur \vec{w} et la notation z_A pour désigner l'affixe du point A.

Propriété:

Soit \vec{w} et \vec{w}' deux vecteurs d'affixes respectives z et z'. Soit λ un réel.

L'affixe du vecteur $\vec{w} + \vec{w'}$ est z + z'.

L'affixe du vecteur $\lambda \vec{w}$ est λz .

Exemple:

 \vec{w} a pour affixe 1+i et \vec{w} ' a pour affixe -1-2i. Déterminer l'affixe de $2\vec{w}-\vec{w}$. (3+4i)

Propriété :

Soit A et B deux points du plan complexe d'affixe respectives z_A et z_B

L'affixe du vecteur \overline{AB} est $z_B - z_A$.

3. Affixe du milieu d'un segment

Propriété :

Soit A et B deux points du plan complexe d'affixe respectives $z_A et z_B$.

L'affixe du milieu I du segment [AB] est $z_I = \frac{z_A + z_B}{2}$.

Exemple:

On considère A(1+ i) et B(-2+ 3i). Calculer l'affixe de \overline{AB}

II. Module d'un nombre complexe :

Soit x et y deux réels.

Définition:

Soit z un nombre complexe de forme algébrique x+iy. Le module de z est le nombre réel positif noté |z| et défini par $|z|=|x+iy|=\sqrt{x^2+y^2}$

Interprétation géométrique :

Dans le plan complexe , si M a pour affixe z alors la distance OM = |z|.

2i

Remarques:

- 1) Si z est un nombre réel, le module de z est égal à sa valeur absolue . Par exemple : |-3| = 3
- 2) Si z est un imaginaire pur, le module de z est égal à la valeur absolue de sa partie imaginaire. Par exemple : |-2i|=2
- 3) $|z| = 0 \Leftrightarrow z = 0$

Propriété :

Pour tout nombre complexe z , $|z|^2 = z \times \overline{z}$

Propriété:

Soit A et B deux points du plan complexe d'affixe respectives $z_A et z_B$, on a : $AB = |z_B - z_A|$

Propriétés:

Soit z et z' deux nombres complexes et n entier relatif non nul.

Produit : $|z \times z'| = |z| \times |z'|$

Puissance:

 $|z^n| = |z|^n$ (si n < 0 il faut que z soit non nul)

Inverse et quotient : pour z et z' non nuls $\left| \frac{1}{z} \right| = \frac{1}{|z|}$ et $\left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$

Inégalité triangulaire : $|z+z'| \le |z| + |z'|$

Il s'agit d'une traduction de l'inégalité sur les distances

III. Argument d'un nombre complexe non nul

Définition:

Dans le plan complexe, z est un nombre complexe non nul d'image M.

On appelle argument de z , toute mesure en radians de l'angle orienté $(\vec{u}, \overrightarrow{OM})$

Si θ est un argument de z alors pour tout entier relatif k , le réel θ +2 $k\pi$ est un argument de z

Si θ est un argument de z alors on note $arg(z) = \theta(2\pi)$

Remarque: un nombre complexe non nul a une infinité d'arguments.

Exemples: $arg(i) \equiv \frac{\pi}{2} (2\pi)$; $arg(-3) \equiv \pi (2\pi)$

Propriété : zest un nombre complexe non nul-

 $arg(-z) \equiv arg(z) + \pi(2\pi)$

$$arg(\bar{z}) \equiv -arg(z)(2\pi)$$

z est un nombre réel \Leftrightarrow $arg(z) \equiv 0 (2\pi)$ ou $arg(z) \equiv \pi (2\pi)$

$$\Leftrightarrow arg(z) \equiv 0(\pi)$$

$$z$$
 est un imaginaire pur \Leftrightarrow $arg(z) \equiv -\frac{\pi}{2}(2\pi)$ ou $arg(z) \equiv \frac{\pi}{2}(2\pi)$

IV. Forme trigonométrique :

1. Définition

Soit zun nombre complexe non nul. On pose : $arg(z) \equiv \theta(2\pi)$

Propriété:

On a alors : $Re(z) = |z| \cos(\theta)$ et $Im(z) = |z| \sin(\theta)$

Définition:

On appelle forme trigonométrique d'un nombre complexe z non nul l'écriture avec $z=|z|(\cos\theta+i\sin\theta)$

Exemple: $2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$ est une forme trigonométrique de $z = 1 + i\sqrt{3}$.

Propriété :

Deux nombres complexes non nuls sont égaux si et seulement si ils ont même module et même argument.

<u>Remarque</u>: Si $z = r(\cos \alpha + i \sin \alpha)$ avec r > 0 alors |z| = r et $\alpha = -arg(z)$

Exercice 1 : Déterminer si la forme donnée est une forme trigonométrique. Si oui, donner module et argument $2(\cos\frac{3\pi}{7}+i\sin\frac{3\pi}{7})$

131=2 et ong 3 = 3 [(212)

 $-2(\cos 3\pi + i\sin 3\pi)$

-260 donc ce n'est por une forme tiege

Exercice 2: Déterminer une forme trigonométrique du nombre complexe $z = \sqrt{3} + i$

<u>video</u>: maths et tique https://youtu.be/zlbpXlglSc4

