Листок 3. Векторные поля и потоки на многообразиях Γ ладкие многообразия

Крайний срок сдачи 27.11.2020

Задачи со звездочками можно сдавать и после дедлайна.

- 1. Докажите, что инъективное погружение компактного многообразия M в многообразие N является вложением.
- **2.** Рассмотрим в \mathbb{R}^n векторное поле V_A , которое в точке $x \in \mathbb{R}^n$ принимает значение Ax, где A квадратная матрица порядка n. Докажите, что

$$[V_A, V_B] = -V_{[A,B]},$$

где [A, B] = AB - BA — коммутатор матриц.

3. На многообразии M с локальными координатами q^1,\dots,q^n для векторных полей $X=X^1(q)\frac{\partial}{\partial q^1}+\dots+X^n(q)\frac{\partial}{\partial q^n}$ и $Y=Y^1(q)\frac{\partial}{\partial q^1}+\dots+Y^n(q)\frac{\partial}{\partial q^n}$ и отображения потока X_t поля X за время t найдите первый порядок по t в разложении в ряд по t поля

$$Y^{1}(X_{t}(q))\frac{\partial}{\partial(X_{t}(q))^{1}}+\ldots+Y^{n}(X_{t}(q))\frac{\partial}{\partial(X_{t}(q))^{n}}$$

4. Пусть X, Y — векторные C^{∞} -поля, определенные в окрестности $p \in M$. Пусть g_1 — интегральная кривая X, начинающаяся в p. Пусть для достаточно малого τ, g_2 — интегральная кривая поля Y, начинающаяся в $g_1(\tau); g_3$ — интегральная кривая поля -X, начинающаяся в $g_2(\tau); g_4$ — интегральная кривая поля -Y, начинающаяся в $g_3(\tau)$. Определим кривую γ для достаточно малых τ следующим образом $\gamma(\tau^2) = g_4(\tau)$. Докажите, что

$$[X,Y](p) = \lim_{t \to +0} \dot{\gamma}(t).$$

- **5.** * Пусть X и Y векторные поля и $[X,Y]\equiv 0.$ Докажите, что потоки X_t и Y_s коммутируют.
- **6.** Если M компактное многообразие, а X гладкое поле на нём, то действие X_t является полным, то есть для каждой точки $p \in M$ интегральная кривая, проходящая через эту точку, определена на всех $t \in \mathbb{R}$.
- 7. Пусть D бесконечно малый параллелепипед, V(D) его объём, X гладкое векторное поле с преобразованием потока φ_t , тогда

$$V(\varphi_t(D)) = V(D) + V(D) \operatorname{div} X(p) \cdot t + o(tV(D)), \quad t \to 0,$$

где p — одна из вершин параллелепипеда. В ортонормированной системе координат (x,y,z) дивергенция определяется как

$$\mathrm{div}X = \frac{\partial X^1}{\partial x} + \frac{\partial X^2}{\partial y} + \frac{\partial X^3}{\partial z}, \qquad X = (X^1, X^2, X^3).$$

8. Для всяких двух точек x,y связного гладкого многообразия M существует диффеоморфизм f такой, что f(x)=y.

Решения

Задача 1

Заметим, что факт того, что F – гомеоморфизм на образ равносилен тому, что F – непрерывная биекция на образ, F^{-1} непрерывна.

F — гладкая, следовательно непрерывная. N — многообразие, следовательно оно хаусдорфово и F — непрерывное отображение из компактного многообразие в хаусдорфово. Тогда из курса топологии известно, что F — замкнута (и прообраз замкнутого замкнут), Тогда F^{-1} непрерывна ($A \subset M$ — компакт, то F(A) — компакт в хаусдорфовом, а следовательно F(A) замкнуто). Тогда так как F — инъекция, то F — биекция на образ (то есть M и F(M) биективны), откуда следует, что F — гомеоморфизм на образ, а следовательно вложение.

Задача 2

Распишем векторные поля по определению

$$V_A := \sum_i a_i(x) \frac{\partial}{\partial x^i} \qquad a_j(x) = \sum_m A_{jm} x_m$$

$$V_B := \sum_i b_i(x) \frac{\partial}{\partial x^i} \qquad b_j(x) = \sum_m B_{jm} x_m$$

$$\sum_i \frac{\partial b_j}{\partial x_i} = \sum_i \left(\frac{\partial \sum_m B_{jm} x_m}{\partial x_i} \right) = \sum_i B_{ij}$$

$$\frac{\partial a_j}{\partial x_i} = \sum_i A_{ij}$$

Распишем коммутатор векторных полей

$$[V_A, V_B] = \sum_{i} (a_i(x)B_{ij} - b_i(x)A_{ji}) = \sum_{i} \left(\left(\sum_{m} A_{im} x_m \right) B_{ji} - \left(\sum_{m} B_{im} x_m \right) A_{ji} \right) = \sum_{i} \sum_{m} (A_{im} B_{ji} - B_{im} A_{ji}) x_m = \sum_{m} \sum_{i} (B_{ji} A_{im} - A_{ji} B_{im}) x_m$$

Последний переход можно сделать так как

$$\sum_{i} \sum_{m} A_{im} B_{ji} = \sum_{i} (A_{i1} B_{ji} + A_{i2} B_{ji} + \dots + A_{in} B_{ji}) = \sum_{i} (B_{ji} A_{i1} + B_{ji} A_{i2} + \dots + B_{ji} A_{in}) = \sum_{m} \sum_{i} B_{ji} A_{im}$$

Тогда

$$-V_{[A,B]} = V_{[B,A]} = V_{BA-AB} = \sum_{i} c_{i}(x) \frac{\partial}{\partial x^{i}} = \sum_{m} c_{im} x_{m} = \sum_{m} \left(\sum_{i} (B_{ji} A_{im} - A_{ji} B_{im}) x_{m} \right)$$

Задача 3

Введем $\gamma_q(0)=q$ такое что $\frac{\partial \gamma_q(r)}{\partial r}|_{r=0}=X_q$ Разложим в ряд тейлора по t

$$X_{t}(q) = \gamma_{q}(t) = q + tX_{q} + o(t)$$

$$Y^{i}(X_{t}(q)) = Y^{i}(q + tX_{q} + o(t))$$

$$\frac{\partial Y^{i}(X_{t}(q))}{\partial t}|_{t=0} = \sum_{j=0}^{n} \frac{\partial Y^{i}}{\partial q^{j}} x^{j}(q)$$

$$Y^{i}(X_{t}(q)) = Y^{i}(q) + t \left(\sum_{j=0}^{n} \frac{\partial Y^{i}}{\partial q^{j}} X^{i}(q)\right) + o(t)$$

$$\frac{\partial}{\partial (X_{t}(q))^{i}} = \frac{\partial q^{i}}{\partial (X_{t}(q))^{i}} \cdot \frac{\partial}{\partial q^{i}} = \frac{\partial}{\partial q^{i}} \cdot \left(\frac{\partial (X_{t}(q))^{i}}{\partial q^{i}}\right)^{-1} =$$

$$\frac{\partial}{\partial q^{i}} \left(\frac{\partial (q^{i} + tX^{i}(q) + o(t))}{\partial q^{i}}\right)^{-1} = \frac{\partial}{\partial q^{i}} \left(1 + t \cdot \frac{\partial X^{i}}{\partial q^{i}}\right)^{-1} = \frac{\partial}{\partial q^{i}} (1 - t \frac{\partial X^{i}}{\partial q^{i}} + o(t))$$

$$\frac{1}{1+q} = 1 - q + q^{2} + \dots = 1 - q + o(q) \frac{\partial}{\partial (X_{t}(q))^{i}} = \frac{\partial}{\partial q^{i}} \left(1 - t \frac{\partial x^{i}}{\partial q^{i}} + o(t)\right)$$

Тогда

$$\sum_{i} \left(\left(Y^{i}(q) + t \sum_{j} \frac{\partial Y^{i}}{\partial q^{i}} X^{j}(q) + o(t) \right) \left(1 - t \frac{\partial X^{i}}{\partial q^{i}} + o(t) \right) \frac{\partial}{\partial q^{i}} \right)$$

При t стоит

$$\sum_{i,j} \left(\frac{\partial Y^i}{\partial q^j} X^j(q) - \frac{\partial X^i}{\partial q^i} Y^i(q) \right) \frac{\partial}{\partial q^i}$$

Задача 4

$$\frac{\partial \gamma}{\partial t} \cdot 2t = \frac{\partial G}{\partial t} \qquad \dot{\gamma}(t) = \frac{1}{2t} \cdot \frac{\partial G}{\partial t}$$

Заметим, что $G(t)=\gamma(t^2)=\gamma((-t)^2)=G(-t)$, следовательно G – четная функция и ее производная нечетная функция, то есть $\frac{\partial G}{\partial t}(0)=0$ Тогда

$$\lim_{t \to 0_+} \dot{\gamma}(t) = \lim_{t \to 0_+} \frac{1}{2t} \frac{\partial G}{\partial t} = \frac{1}{2} \lim_{t \to 0_+} \frac{\dot{G}(t) - \dot{G}(0)}{t} = \frac{1}{2} \ddot{G}(0)$$

То есть необходимо доказать, что $\frac{\partial^2 G}{\partial t^2}(0)=2[X,Y](p)$ Пусть $G\in C^\infty$, тогда введем функции

$$G_{2}(t,\tau) = Y_{t}(X_{\tau}(p)) \qquad G_{3}(t,\tau) = X_{-t}(Y_{\tau}(X_{\tau}(p))) \qquad G_{4}(t,\tau) = Y_{-t}(X_{-\tau}(Y_{\tau}(X_{\tau}(p))))$$

$$G(t) = G_{4}(t,t) \qquad G_{4}(0,t) = G_{3}(t,t) \qquad G_{3}(0,t) = G_{2}(t,t)$$

$$G(0) = G_{2}(0,0) = G_{3}(0,0) = G_{4}(0,0) = p$$

И тогда

$$\begin{split} \frac{\partial(G\circ G_2)}{\partial t} &= YG\circ G_2 & \frac{\partial(G\circ G_3)}{\partial t} = -XG\circ G_3 & \frac{\partial(G\circ G_4)}{\partial t} = -YG\circ G_4 \\ \frac{\partial(G\circ G_2)}{\partial \tau}(0,0) &= Xf(p) & \frac{\partial(G\circ G_2)}{\partial \tau}(0,\tau) = XG\circ G_2 \\ \frac{\partial^2(G\circ G)}{\partial t^2} &= \frac{\partial^2(G\circ G_4)}{\partial t^2} + 2\frac{\partial^2(G\circ G_4)}{\partial t\partial \tau} + \frac{\partial^2(G\circ G_4)}{\partial \tau^2} \end{split}$$

заметим что

(1)
$$\frac{\partial}{\partial t}(-YG \circ G_4) = Y(Yf(p))$$

(2)
$$\frac{\partial}{\partial \tau}(-YG \circ G_4) = \frac{\partial}{\partial t}(-YG \circ G_3) + \frac{\partial}{\partial \tau}(-YG \circ G_3) = XYf(p) + \frac{\partial}{\partial t}(-YG \circ G_2) + \frac{\partial}{\partial \tau}(-YG \circ G_2) = XYf(p) - YYf(p) - XYf(p) = -YYf(p)$$

$$(3) \qquad \frac{\partial^{2}(G \circ G_{4})}{\partial \tau^{2}} = \frac{\partial^{2}(G \circ G_{3})}{\partial t^{2}} + 2\frac{\partial^{2}(G \circ G_{3})}{\partial t \partial \tau} + \frac{\partial^{2}(G \circ G_{3})}{\partial \tau^{2}} = \\ \frac{\partial}{\partial t}(-XG \circ G_{3}) + 2\frac{\partial}{\partial \tau}(-XG \circ G_{3}) + \frac{\partial^{2}(G \circ G_{2})}{\partial t^{2}} + 2\frac{\partial^{2}(G \circ G_{2})}{\partial t \partial \tau} + \frac{\partial^{2}(G \circ G_{3})}{\partial \tau^{2}} = \\ XXf(p) + 2\frac{\partial}{\partial t}(-XG \circ G_{2}) + 2\frac{\partial}{\partial \tau}(-XG \circ G_{2}) + 2\frac{\partial}{\partial \tau}(-XG \circ G_{2}) + \frac{\partial}{\partial t}(YG \circ G_{2}) + 2\frac{\partial}{\partial \tau}(YG \circ G_{2}) + \frac{\partial}{\partial \tau}(YG \circ G_{2}$$

$$(1) + (2) + (3) = 2[X, Y] + YYG(p) + YYG(p) - 2YYf(p) = 2[X, Y]$$

Задача 5*

Если $[X,Y]\cong 0$, то $\Psi_{X,t}\circ \Psi_{Y,s}=\Psi_{Y,s}\circ \Psi_{X,t}$

Можно заметить, что равенство верно для t=0 так как $\Psi_{X,0}(y)=y \quad \forall y.$ Тогда докажем

$$\partial_t \Psi_{X,t} \circ \Psi_{Y,s} = \partial_t \Psi_{Y,s} \circ \Psi_{X,t}$$

Левая часть равна векторному полю X по условию, а правая равна $D\Psi_{Y,s}(X)$, то есть

$$D\Psi_{Y,s}(X) = D\Psi_{Y,0}(X) + \int_0^s \frac{d}{dr} D\Psi_{Y,r}(X) dr = X + \int_0^s D\Psi_{Y,r} \frac{d}{dr'} D\Psi_{Y,r'}(X)|_{r'=0} dr$$

$$D\Psi_{Y,r+r'} = D\Psi_{Y,r} \circ D\Psi_{Y,r}$$

Тогда выполнено

$$D\Psi_{Y,r'}(X)|_{r'=0} = -[Y, X] = 0$$

 $D\Psi_{Y,s}(X) = X$

Так как если $V \in \mathcal{X}(\mathcal{M})$ и $x \in M$, то существует $\delta > 0$, окрестность U у $x \in M$ и гладкое отображение $\Psi : U \times (-\delta, \delta) \to M$, удовлетворяющее условиям:

$$\begin{split} &\frac{\partial}{\partial t} \Psi(y,t) = V_{\Psi(y,t)} \\ &\Psi(y,0) = y \\ &\forall y \in U \qquad \forall t \in (-\delta,\delta) \end{split}$$

Для каждого $t\in (-\delta,\delta)$ отображения $\Psi_t:U\to M$ определен локальный диффеоморфизм $\Psi_t(y)=\Psi(y,t)$ и $\Psi_t\circ\Psi_s=\Psi_{s+t}$

Задача 6

ѕирр X это $\overline{\{p\in M\mid X(p)\neq 0\}}$. Заметим, что если X(p)=0, то $F_X^t(p)=p$ определено при всех $t\in\mathbb{R}$. Для каждой точки $p\in$ ѕирр X можно указать такую открытую окрестность U_p и такое $\varepsilon_p>0$, что $F_X^t(q)$ определено для всех $q\in U_p$ и всех t, удовлетворяющих $|t|<\varepsilon_p$. Так как ѕирр X компактен, выберем из открытого покрытия $\{U_p\}_{p\in$ ѕирр $X}$ этого множества конечное подпокрытие $\{U_{p_i}\}_{i=1}^N$ и положим $\varepsilon=\min\{\varepsilon_{p_i}|\ 1\leqslant i\leqslant N\}$. Тогда при $|t|<\varepsilon$ отображение $F_x^t\colon M\to M$ определено глобально на всем M. Теперь, используя групповое свойство, можно заметить, что F_X^t определено глобально на при любом $t\in\mathbb{R}$. Действительно, представим t в виде $t=t_1+\ldots+t_k$, где $|t_i|<\varepsilon$ $(1\leqslant i\leqslant k)$. Тогда $F_X^t=F_X^{t_1}\circ\ldots\circ F_x^{t_k}$. Правая часть этого равенства определена глобально. Следовательно и левая часть определена глобально.

Задача 7

Известно, что $V(\varphi_t(D))=\int_{\varphi_t(D)}du$ и $\varphi_t:D o \varphi_t(D)$ – диффеоморфизм, тогда по формуле замены координат в интеграле: $V(\varphi_t(D)) = \int_D \det\left(\frac{\partial \varphi_t^i}{\partial X^j}\right)_{::} dv$.

$$\begin{split} \varphi_t(p) &= p + X(p)t + o(t) \\ \left(\frac{\partial \varphi_t^i}{\partial X^j}\right)_{ij} &= \begin{pmatrix} 1 + t\frac{\partial X^1}{\partial X} + o(t) & t\frac{\partial X^1}{\partial y} + o(t) & t\frac{\partial X^1}{\partial z} + o(t) \\ t\frac{\partial X^2}{\partial X} + o(t) & 1 + t\frac{\partial X^2}{\partial y} + o(t) & t\frac{\partial X^2}{\partial z} + o(t) \\ t\frac{\partial X^3}{\partial X} + o(t) & t\frac{\partial X^3}{\partial y} + o(t) & 1 + t\frac{\partial X^3}{\partial z} + o(t) \end{pmatrix} \\ \det\left(\frac{\partial \varphi_t^i}{\partial X^j}\right) &= 1 + t\left(\frac{\partial X^1}{\partial x} + \frac{\partial X^2}{\partial y} + \frac{\partial X^3}{\partial z}\right) + o(t) \\ V(\varphi_t(D)) &= \int_D 1 + t\left(\frac{\partial X^1}{\partial x} + \frac{\partial X^2}{\partial y} + \frac{\partial X^3}{\partial z}\right) + o(t) = V(D) + V(D)t\operatorname{div}X + o(t) \end{split}$$

Задача 8

 $\forall x, y \; \exists f \in \mathrm{Diff}(M)$, такой что f(x) = y.

Рассмотрим множество $\delta_y = \{x \in M | \exists F \in \mathrm{Diff}(M) \ F(x) = y\}$, оно непусто так как $y \in \delta_y$ докажем, что δ_y открыто

Из свойств δ_{u} :

$$x \in \delta_y \Rightarrow y \in \delta_x$$

 $x \in \delta_{x'}, \ x' \in \delta_y \Rightarrow x \in \delta_y$

То есть мы имеем отношение эквивалентности, доказав открытость класса эквивалентности, мы получим утверждение задачи (так как если $\delta_y \neq M$, то $M = \delta_y \sqcup \delta_{y'}, \ \delta_y, \delta_{y'}$ – непустые открытые, противоречие) $\forall p \in M \; \exists U \ni p, \; \varphi$ – гомеоморфизм, такое что $\varphi(p) = 0, \; \varphi : U \to \mathbb{R}^n$

Пусть $p' \in U$, $\varphi(p') = C$, $C = (c^1, ..., c^n)$

Рассмотрим замкнутый куб в \mathbb{R}^n с y в 0, радиуса $\varepsilon+\delta$, такой что $\varphi^{-1}(\overline{C}_{\varepsilon+\delta})\in U$

Возьмем функцию
$$f:M\to R$$
 $f(p)=\begin{cases} H_{\varepsilon,\delta}(\varphi(p)),\ p\in U\\ 0,\ p\in U \end{cases}$, где $H_{\varepsilon,\delta}(\varphi(p))$

Возьмем функцию $f:M\to R$ $f(p)=\begin{cases} H_{\varepsilon,\delta}(\varphi(p)),\ p\in U\\ 0,\ p\in U \end{cases}$, где $H_{\varepsilon,\delta}$ Функция f имеет компактный носитель, а именно $\varphi^{-1}(\overline{C}_{\varepsilon+\delta})$. Определим локально векторное поле $X=\sum c^i \frac{\partial}{\partial x^i}$ (построим векторное поле). Векторное поле $fX=\tilde{X}$ определено глобально, $\tilde{X}|_{\varphi^{-1}(\overline{C}_\varepsilon)}=X$, имеет компактный носитель, а именно $\varphi^{-1}(\overline{C}_{\varepsilon+\delta})$

Определим локально векторное поле $X = \sum c^i \frac{\partial}{\partial x^i}$

Векторное поле $fX = \tilde{X}$ определено глобально, $\tilde{X}|_{\varphi^{-1}(\overline{C}_{\varepsilon})} = X$, имеет компактный носитель (совпадает с носителем f). По задаче 6 действие \tilde{X}_t является полным, причем \tilde{X}_t : M o M – диффеоморфизм. Рассмотрим интегральную кривую $\gamma(t)=\varphi^{-1}(ct)$ $(\dot{\gamma^i}(t)=c^i)$ $\gamma(0)=p$ $\gamma(1)=p'.$

Тогда для t=1 имеем $\tilde{X}_t(p)=p'$, то есть $p\in\delta_{p'}\Rightarrow p'\in\delta_p$

Так мы доказали, что если $X \in \delta_y$, то $\forall x' \in U$ $x' \in \delta_x \Rightarrow x' \in \delta_y$, следовательно δ_y открыто