

CITY UNIVERSITY OF HONG KONG

DEPARTMENT OF MEDIA AND COMMUNICATION (COM), COLLEGE OF LIBERAL ARTS AND SOCIAL SCIENCES (CLASS)

GE2234 Social Networks

for Media, Business and Technological Applications

Lecture Note 2: Basic Concepts in Social Networks

By Dr. Wang Xiaohui, Vincent

Outline

- Network Representation
- Network Measures

Introduction to Network Science: Fundamental Concepts

Nodes

- Nodes = Actors = Agents = Vertices
 - Individual or social structures (e.g., teams, organizations)
 - Content (e.g., webpage, article, keyword, video)
 - Physical locations or events
- Individual attributes attached to nodes help data analysis and visualization

Edges

• Edges = Ties = Connections = Links

Similarities			Social Relations			Interactions	Flows
Location e.g., Same spatial and temporal space Same clubs Same events etc.	e.g., Same gender Same	Kinship e.g., Mother of Sibling of	Other role e.g., Friend of Boss of Student of Competitor of	Affective e.g., Likes Hates etc.	e.g., Knows Knows about Sees as happy etc.	e.g., Sex with Talked to Advice to Helped Harmed etc.	e.g., Information Beliefs Personnel Resources etc.

Fig. 3. A typology of ties studied in social network analysis.

Undirected vs. Directed

Undirected (= Symmetric)

No clear origin and destination

Directed (= Asymmetric)

- Follower vs. Followee
- Email sender vs. Receiver

Unweighted vs. Weighted

- Unweighted Edge (= Binary Edge)
 - If an edge exists or not

Weighted Edge

- Values assigned to edges indicating the strength/frequency of a tie
- Thicker or darker lines

2 × 2 Combination

Examples

	Unweighted	Weighted
Undirected	MTR network / Road Network	Co-authorship Network / Actor Network
Directed	Hyperlinks on WWW / Follower- followee network on Twitter	Communication network / Retweet network on Twitter

Beyond direction and strength, edges differ between:

- Observed (directly measured, e.g., hyperlinks) vs. hidden (inferred, e.g., co-occurrences)
- Formal (institutionally arranged) vs. informal (self-organized)
- Strong-tie (close friend) vs. weak-tie (occasional acquaintance)
- Static (unchanged over time) vs. dynamic (evolving)
- Positive (e.g., friending) vs. negative (e.g., de-friending)
- Innovative network analysis focuses on unobvious relationships such as hidden, informal, weak, and evolving edges.

Network Representation

Three Types of Representation

- Graph
- Edge List
- Adjacency Matrix

Network Representation as Diagram (Graph)

A graph is a diagrammatical representation of some physical structure

Network Representation as Edge Lists

• A list, or array, of edges

From	То	Weight
А	В	1
Α	С	1
В	С	1

Network Representation as Matrix

Attribute-based data

ID	Sex	Race	Education	
id01	0	Malay	Diploma	
id02	1	Indian	Postgraduate	
id03	1	Chinese	A-level	
id04	0	Eurasian	O-level	

Relational data

	id01	id02	id03	 N_k
id01	0	3	6	 m
id02	2	NA	0	 n
id03	7	5	1	
N_k	i	j	k	

Adjacency Matrix (AM)

 A square matrix in which the rows and columns represent nodes and an entry in row i and column j represent a link from i to j.

- By convention
 - The direction goes from the rows to the columns
 - Values in the entry are all positive
 - 0 indicates no ties
 - If the network is undirected, the matrix will be symmetric
 - If the network is reflexive (self loop via which a node is connected to itself), there will be values down the main diagonal

	id01	id02	id03	 N_k
id01	0	3	6	 m
id02	2	NA	0	 n
id03	7	5	1	
•••				
N_k	i	j	k	

AM for Undirected and Unweighted Network

	A	В	С	D	E
Α	0	1	0	0	1
В	1	0	1	1	0
С	0	1	0	1	0
D	0	1	1	0	1
Е	1	0	0	1	0

AM for Undirected and weighted Network

	A	В	С	D	E
A	0	6	0	0	1
В	6	0	3	1	0
С	0	3	0	2	0
D	0	1	2	0	1
E	1	0	0	1	0

AM for directed and unweighted Network

	A	В	С	D	E
A	0	0	0	1	1
В	1	0	1	1	0
С	0	1	0	0	0
D	0	1	1	0	1
E	1	0	0	1	0

AM for directed and weighted Network

	A	В	С	D	E
A	0	0	0	1	2
В	6	0	3	1	0
С	0	4	0	0	0
D	0	1	5	0	1
E	1	0	0	1	0

AM for Reflexive Network

	A	В	С	D	E
Α	0	0	0	1	2
В	3	0	3	1	0
С	0	2	0	0	0
D	0	1	4	0	1
E	1	0	0	1	3

Which is better?

- Diagram
 - Direct sense of overall structure
 - Direct sense of nodes' positions in small network (n < 30)
- Matrix/Edge List
 - Computation

Hands-on exercise:
Matrix/Graph Representation of
Networks

Vertex 1	Vertex 2

Hands-on exercise:
Matrix/Graph Representation of
Networks

	A	В	С	D	E
Α					
В					
С					
D					
E					

Vertex 1	Vertex 2
А	В
А	С
А	D
В	А
В	С
В	D
D	А
D	Е

	A	В	С	D	E
A	0	1	1	1	0
В	1	0	1	1	0
С	0	0	0	0	0
D	1	0	0	0	1
E	0	0	0	0	0

How to Define Nodes/Edges?

Node Attributes:

- Size (degree or another measure of magnitude)
- Color (node categories, e.g., men vs. women)
- Shape (second dimension of node categories, e.g., young, mid-age, and old)

Edge Attributes:

- Arrow (tie direction)
- Size (tie strength)
- Color (tie categories, e.g., positive vs. negative)

Data Format of Node/Edge Attributes

Node Attribute Data: a rectangular table of N rows and k columns (k = N of attributes)

Node	Attr1	Attr2	•••
Α	2	•••	•••
В	1	•••	•••
С	2	•••	•••
•••		•••	•••

Edge Attribute Data: a rectangular table of up to N(N-1)/2 rows and k columns

From	То	Attr1	•••
Α	В	10	•••
Α	С	22	•••
С	D	5	•••
	•••	•••	•••

Network Basics: Network Level Metrics

Network Size

- Network size is an important structural property, reflecting the boundary of the network.
 - Size of a school, size of a company, size of personal social network...
- Size may not be the most interesting network indicator and may only reflect the boundary of the network, but it is the primary network indicator.
- Evidence exists that 150 is an optimal size for a stable, and **cohesive** human group (Dunbar, 1993).

Density

- Density refers to the proportion of all possible ties that are actually present
- The more nodes are connected to one another, the denser the network will be

$$D = \frac{l}{N(N-1)}$$

where I is the number of links in the network and N is network size.

Density

Network Size = 30; Density = 0.1, 0.3, 0.7, and 1

Path / Walk

- A **path** is a sequence of nodes and edges starting with one node and ending with another, tracing the indirect connection between the two. On a path, you never go backwards or revisit the same node twice.
 - Example: a -> b -> c -> d
- A walk is any sequence of nodes and edges, and may go backwards.
 - Example: a -> b -> c -> d
- There may be multiple paths and walks between two nodes. The length of a walk/path is the number of occurrences of lines in it.

Path A - E:

A -> B -> D -> E

A -> B -> C -> D -> E

Walk A - E:

A -> B -> C -> D -> B -> D -> E

Distance / Diameter / Average Path Length

- The **Geodesic distance** or simply the **Distance** is the number of edges in the *shortest* path from one node to another.
- Diameter of a connected network is the maximum geodesic distance in the network
 - Networks with the same number of nodes, and even the same density (number of links), can have different diameters
- Average Path Length: Average distance between all the nodes in a network.

An Illustration on geodesic distance

- The geodesic distance between K and B is:_____(3)
 - K -> F -> J -> B
 - K -> F -> I -> B
 - •
 - K->F->J->C->E->D->B
 - K -> F -> A -> C -> J -> H -> L -> B

An Illustration on Diameter

Diameter and Average Path Length provide an overall indication of the structure of the network. Low diameter or low average path length indicate a cohesive network with more clustering.

Connectivity

- Whether every node can reach every other node by path in a network.
- A graph is connected if there is a path between every pair of nodes in the graph

Component

- A component consists of a subgroup of individuals, whereby all the individuals are connected to one another by at least one path.
- Number of components
- Isolates

Components in a high school network Source: Bearman et al., 2004