Final Exam S2 Computer Architecture

Duration: 1 hr 30 min.

Answer on the answer sheet <u>only</u>.

Do not show any calculation unless you are explicitly asked.

Do not use red ink.

Exercise 1 (5 points)

- 1. Convert the numbers given on the <u>answer sheet</u> into their **single-precision** IEEE-754 representations. Write down the final result in its **binary form** and specify the three fields.
- 2. Convert the **double-precision** IEEE-754 words given on the <u>answer sheet</u> into their associated representations. If a representation is a number, use the following base-10 form: $k \times 2^n$ where k and n are integers (either positive or negative).

Exercise 2 (4 points)

We want to build a 2-Mib ROM device (labelled M) from several 16-Kib ROM devices (labelled m). The M device has a 16-bit data bus. The m devices have a 4-bit data bus. Answer the questions on the answer sheet.

Exercise 3 (5 points)

- 1. Wire the flip-flops (<u>figure 1</u>) in order to design a **modulo-11 asynchronous up counter**.
- 2. Wire the flip-flops (figure 2) in order to design a modulo-11 asynchronous down counter.
- 3. Wire the flip-flops (figure 3) in order to design a shift register (E \rightarrow Q0 \rightarrow Q1 \rightarrow Q2 \rightarrow Q3).

Exercise 4 (6 points)

The table shown on the <u>answer sheet</u> gives the sequence of a counter we want to design. This counter should be made up of JK flip-flops.

- 1. Complete the table shown on the <u>answer sheet</u>.
- 2. Write down the most simplified expressions of J and K for each flip-flop on the <u>answer sheet</u>. <u>Complete the Karnaugh maps for the solutions that are not obvious</u>. An obvious solution does not have any logical operations apart from the complement (for instance: J0 = 1, $K1 = \overline{Q2}$).

Final Exam S2

Final Exam S2 2/6

Last name:	First name:	Group:		
	ANSWER SHEET			

Exercise 1

1.

Number	S	E	M
75.75			
0.46875			

2.

IEEE-754 Representation	Associated Representation		
20A1 8000 0000 0000 ₁₆			
7FF7 0000 0000 0000 ₁₆			
0004 2000 0000 0000 ₁₆			

Exercise 2

Question	Answer
What is the depth of the <i>m</i> memory?	
What is the depth of the M memory?	
What is the number of address lines of the <i>m</i> memory?	
What is the number of address lines of the <i>M</i> memory?	
How many memory devices should be put in parallel?	
How many memory devices should be put in series?	
How many address lines are required to control the <i>CS</i> input of the memory devices?	
When the M memory is active, how many m memory devices are active simultaneously?	

Exercise 3

Figure 1

Figure 2

Figure 3

Exercise 4

Q2	Q1	Q0	J2	K2	J1	K1	J0	K0
0	0	0						
0	0	1						
0	1	1						
0	1	0						
1	1	0						
1	1	1						
1	0	1						
1	0	0						

Do not use Karnaugh maps for obvious solutions.

K2 =

J2 =