Measures of Dispersion:

Statistically, Dispersion means the spread or scatterness of observations in a data set. The spread or scatterness in a data set can be seen in two ways:

- (i) The spread between two extreme observations in a data set.
- (ii) The spread of observations around an average say their arithmetic mean.

The purpose of finding Dispersion is to study the behavior of each unit of population around the average value. This also helps in comparing two sets of data in more detail.

The measures that are used to determine the degree or extent of variation in a data set are called Measures of Dispersion.

We shall discuss only some important absolute measures of dispersion now.

(i) Range:

Range measures the extent of variation between two extreme observations of a data set. It is given by the formula:

Range =
$$X_{max} - X_{min} = X_m - X_0$$

where $X_{max} = X_m =$ the maximum, highest or largest observation.

 $X_{min} = X_0 =$ the minimum, lowest or smallest observation.

The formula to find range for grouped continuous data is given below:

Range = (Upper class boundary of last group) - (lower class boundary of first group).

(ii) Variance:

Variance is defined as the mean of the squared deviations of x_i (i = 1, 2,, n) observations from their arithmetic mean. In symbols,

Variance of X = Var(X) =
$$S^2 = \frac{\sum (X-\overline{X})^2}{n}$$

(iii) Standard Deviation:

Standard deviation is defined as the positive square root of mean of the squared deviations of X_i (i = 1, 2, ..., n) observations from their arithmetic mean. In symbols we write.

Standard Deviation of X = S.D(X) =
$$S = \sqrt{\frac{\sum (X-\overline{X})^2}{n}}$$

Computation of Variance and Standard Deviation:

We use the following formulae to compute Variance and Standard Deviation for Ungrouped and Grouped Data.

Ungrouped Data

The formula of Variance is given by:

$$Var(X) = S^{2} = \frac{\sum X^{2}}{n} - \left(\frac{\sum X}{n}\right)^{2}$$

And Standard Deviation is given by:

S.D(X) =
$$S = \sqrt{\left[\frac{\sum X^2}{n} - \left(\frac{\sum X}{n}\right)^2\right]}$$

Grouped Data:

The formula of Variance is given by:

$$Var(X) = S^{2} = \frac{\sum fX^{2}}{\sum f} - \left(\frac{\sum fX}{\sum f}\right)^{2}$$

And Standard Deviation is given by:

$$S.D(X) = S = \sqrt{\frac{\sum fX^2}{\sum f} - \left(\frac{\sum fX}{\sum f}\right)^2}$$

Exercise 6.3

1. What do you understand by Dispersion?

Solution:

Dispersion:

Dispersion means the spread or scatterness of observations in a data set. By dispersion we mean the extent to which the observations in a sample or in a population are spread out. The main measures of dispersion are range, variance and standard deviation.

2. How do you define measure of dispersion?

Solution:

The measures that are used to determine the degree or extent of variation in a data set are called measure of dispersion.

3. Define Range, Standard deviation and Variance.

Range:

Range measures the extent of variation between two extreme observations of a data set. It is given by the formula:

Range =
$$X_{max} - X_{min}$$

Range = (upper C. B of the last group) - (lower C. B of first group)

Variance:

The mean of the squared deviations of x_i (i = 1, 2, ..., n) observations from their arithmetic mean.

Variance =
$$S^2 = \frac{\sum (X - \overline{X})^2}{n}$$

$$=S^2 = \frac{\sum X^2}{n} - \left(\frac{\sum X}{n}\right)^2$$

Standard Deviation:

The positive square root of the squared deviations of x_i (i = 1, 2, 3,, n) observations from their mean.

Standard Deviation =
$$S = \sqrt{\frac{\sum (X - \overline{X})^2}{n}}$$

$$= S = \sqrt{\frac{\sum X^2}{n} - \left(\frac{\sum X}{n}\right)^2}$$

4. The salaries of five teachers in Rupees are as follows.

Find Range and standard deviation.

Solution:

$$\overline{X} = \frac{\sum X}{n}$$

$$=\frac{11500 + 12400 + 15000 + 14500 + 14800}{5}$$

$$=\frac{68200}{5}=13640$$

Х	$X - \overline{X}$	$(x-\overline{x})^{2}$ 4579600 1537600 1849600 739600	
11500	-2140		
12400	-1240		
15000	1360		
14500	860		
14800	1160	1345600	

$$\sum (X - \overline{X})^2 = 10052000, n = 5$$

$$S.D = S = \sqrt{\frac{\sum (X - \overline{X})^2}{n}} = \sqrt{\frac{10052000}{5}}$$

$$= \sqrt{2010400} = 1417.88$$

5.

- a. Find the standard deviation "S" of each set of numbers:
 - (i) 12, 6, 7, 3, 15, 10, 18, 5
 - (ii) 9, 3, 8, 8, 9, 8, 9, 18.
- b. Calculate variance for the data: 10, 8, 9, 7, 5, 12, 8, 6, 8, 2.

(i)

x	$X - \overline{X}$	$(X-\overline{X})^2$	
12	2.5	6.25	
6	-3.5	12.25 6.25 42.25	
7	-2.5		
3	-6.5		
15	5.5	30.25	
10	0.5	0.25	
18	8.5	72.25	
5	-4.5	20.25	

$$\sum x = 76$$

$$\sum \left(X - \overline{X}\right)^2 = 190, n = 8$$

$$\overline{X} = \frac{76}{8} = 9.5$$

$$S.D = S = \sqrt{\frac{\sum (X - \overline{X})^2}{n}} = \sqrt{\frac{190}{8}}$$

$$= \sqrt{23.75} = 4.87$$

(ii)

Х	$X - \overline{X}$	$(x-\overline{x})^2$ 0 36	
9	0		
3	-6		
8	-1	1	
8	-1	1	
9	0	0	
8	-1	1	
9	0	0	
18	9	81	

$$\sum x = 72$$

$$\sum \left(X - \overline{X}\right)^2 = 120$$

$$\overline{X} = \frac{\sum x}{n} = \frac{72}{8} = 9$$

$$S.D = S = \sqrt{\frac{\sum (X - \overline{X})^2}{n}} = \sqrt{\frac{120}{8}}$$

$$= \sqrt{15} = 3.87$$

b. Calculate variance for the data: 10, 8, 9, 7, 5, 12, 8, 6, 8, 2.

Solution:

(i)

X	$X - \overline{X}$	$(X - \overline{X})^2$	
10	2.5	6.25	
8	0.5	25 2.25 .25	
9	1.5		
7	- 0.5		
5	- 2.5	6.25 20.25	
12	4.5		
8	0.5	.25	
6	-1.5	2.25	
8	0.5	.25	
2	- 5.5	30.25	

 $\sum (X - \overline{X})^2 = 68.5$

n = 10

$$\overline{X} = \frac{\sum x}{n} = \frac{75}{10} = 7.5$$

$$Variance = S^{2} = \frac{\sum (X - \overline{X})^{2}}{n}$$

$$= \frac{68.5}{10} = 6.85$$

 $\sum x = 75$

The length of 32 items are given below. Find the mean length and standard deviation of the distribution.

Length	20-22	23-25	26-28	29-31	32-34
Frequency	3	6	12	9	2

C.I	f	Mid-point (x)	fx	$X - \overline{X}$	$(X - \overline{X})^2$	$f(X-\overline{X})^2$
20 – 22	3	21	63	-6	36	108
23 – 25	6	24	144	-3	9	54
26 – 28	12	27	324	0	0	0
29 – 31	9	30	270	3	9	81
32 - 34	2	33	66	6	36	72
	$\sum f = n = 32$		$\sum f_X = 867$		$\sum (X - \overline{X})^2 = 90$	$\sum f\left(X - \overline{X}\right)^2 = 315$

$$\overline{X} = \frac{\sum fx}{n} = \frac{667}{32} = 27.093 = 27 \text{ approx}$$

$$S.D = S^2 = \sqrt{\frac{\sum f(X - \overline{X})^2}{n}} = \sqrt{\frac{315}{32}}$$

$$= \sqrt{9.84375} = 3.137$$

7. For the following distribution of marks calculate Range.

Marks in percentage	Frequency/ (No of Students)
33 - 40	28
41 - 50	31
51 - 60	12
61 - 70	9
71 - 75	5

C.I	Class Boundaries	f	
33 - 40	32.5 - 40.5	28	
41 - 50	40.5 - 50.5	32	
51 - 60	50.5 - 60.5	12	
61 - 70	60.5 – 70.5	9	
71 - 75	70.5 – 75.5	5	

Here,
$$X_{max} = 75.5$$

$$X_{min} = 32.5$$

$$= 75.5 - 32.5$$