

Preliminary Data Analysis

Measures of Central Tendency

We will be covering...

- Measures of Central Tendency
 - Mean
 - Median
 - Mode
 - Quartiles
 - Options of central tendency in pandas
- Measures of Dispersion
 - Range
 - Semi Inter-Quartile Range
 - Mean Deviation
 - Variance
 - Standard Deviation
 - Coefficient of Variation
 - Skewness
 - Kurtosis
 - Options of dispersion in pandas

What are averages?

 These are statistical constants which enable us to comprehend in a single effort the significance of the whole thing.

Measures of Central Tendency

- Mean
 - Arithmetic mean
- Median
- Mode
- Quartiles , Deciles and Percentiles

Arithmetic mean

- Arithmetic mean of a given set of observations is their sum divided by the number of observations.
- e.g. A.M. of 5, 8, 10, 15, 24 and 28 is 5+8+10+15+24+28 = 90 = 15

Median

- Median is that value which divides the set of given numbers in two equal parts.
- E.g. Median of numbers 5, 10, 8, 15, 28 and 24 can be calculated as follows:
 - Arrange the given numbers in ascending/descending order as
 5, 8, 10, 15, 24, 28
 - Count the numbers. They are 6 in number.
 - The middle two numbers are 10 and 15. Hence median is the arithmetic mean of 10 and 15. i.e. 12.5

Mode

- The mode is the value which has greatest frequency.
- E.g. Mode of numbers [4, 5, 5, 6, 7, 8, 6, 5] is 5

Quartiles

Quartiles divide the given data into four equal parts.

Min Q1 Q2 / Q3 Max Median

• Inter-quartile range (IQR) is given by the formula:

$$IQR = Q3 - Q1$$

Preliminary Data Analysis

Measures of Dispersion

Measures of Dispersion

- Absolute Measures
 - Range
 - Quartile Deviation or Semi-Interquartile Range
 - Mean Deviation
 - Standard Deviation
- Relative Measures
 - Coefficient of Variation

Range

- Range is defined as the difference between the two extreme observations in a distribution (i.e. greatest (maximum) and the smallest (minimum) observation.)
- E.g. Range of 5, 8, 10, 15, 24 and 28 is 28 5 = 23

Quartile Deviation or Semi-Interquartile Range

Quartile Deviation: It is calculated by a formula:

$$QD = \frac{Q_3 - Q_1}{2}$$

Mean Deviation

 Mean Deviation (average deviation) is a measure of dispersion that is obtained on taking the average (arithmetic mean) of the absolute deviation of the given values from a measure of central tendency (mean).

Standard Deviation

- Standard Deviation is defined as the positive square root of the arithmetic mean of the squares of the deviations of the given observations from their arithmetic mean.
- More is the magnitude of a standard deviation more is the dispersion.
- e.g. Data with SD=23.4 can be said to be more dispersed than data with SD=12.7.

Coefficient of Variation

- The ratio of SD and Mean
- CV is unit less quantity

$$CV = \frac{SD}{Mean} * 100$$

$$CV = \frac{\sigma}{\mu} * 100$$

Skewness and Kurtosis

Skewness

- Measure of asymmetry of a frequency distribution
 - Skewed to left
 - Symmetric or unskewed
 - Skewed to right

Kurtosis

- Measure of flatness or peakedness of a frequency distribution
 - Platykurtic (relatively flat)
 - Mesokurtic (normal)
 - Leptokurtic (relatively peaked)

Skewness

Skewed to left

Skewness

Symmetric

Skewness

Skewed to right

Coefficient of Skewness

Coefficient of Skewness (CS):

$$CS = \frac{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^3}{\sigma^3}$$

- CS is negative for left-skewed data.
- CS is positive for right-skewed data.
- ▶ |CS| > 1 suggests high degree of skewness.
- ▶ $0.5 \le |CS| \le 1$ suggests moderate skewness.
- ▶ |CS| < 0.5 suggests relative symmetry.

Platykurtic - flat distribution

Mesokurtic - not too flat and not too peaked

Leptokurtic - peaked distribution

- Kurtosis refers to the peakedness (i.e., high, narrow) or flatness (i.e., short, flat-topped) of a histogram.
- The coefficient of kurtosis (CK) measures the degree of kurtosis of a population

$$CK = \frac{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^4}{\sigma^4} - 3$$

- ▶ CK < 0 indicates the data is somewhat flat with a wide degree of dispersion.
- ▶ CK > 0 indicates the data is somewhat peaked with less dispersion.