3. Aufgabe: Vollpol-Synchronmaschine

- 3.1 Zeichnen Sie das Zeigerdiagramm einer Vollpol-Synchronmaschine für Motorbetrieb am starren Netz ($R_s = 0$), wobei die Maschine nur Wirkleistung winkel g ein. Wie groß ist der Phasenwinkel g? aufnimmt. Bezeichnen Sie die Spannungsabfälle und tragen Sie den Polrad-[3 P]
- 3.2 Wie muss eine Synchronmaschine am Netz betrieben werden, um kapazitive Verbraucher zu kompensieren? [1 P]
- ა ა Nennen Sie mindestens zwei Einsatzbereiche bzw. Anwendungsgebiete, für begründen Sie Ihre Antwort die der Einsatz von Synchronmaschinen besonders vorteilhaft ist, und

Drehstromnetz betrieben. Folgende Größen sind bekannt: Eine vierpolige Vollpol-Synchronmaschine wird in Sternschaltung am 400V/50Hz

synchrone Reaktanz: $X_d = 1,6 \Omega$

Verluste können vernachlässigt werden ($R_s = 0$) Polradspannung bei Nennerregung: $U_{p,N} = 400 \text{ V}$

- 3.4 Im Nennpunkt gibt die Maschine bei Nennerregung eine mechanische Leistung von $P_{\text{mech,N}} = 86,6 \text{ kW ab. Berechnen Sie}$ [5 P]
- das Nennmoment M_N
- den Polradwinkel 9_N
- die elektrisch zugeführte Leistung Pel,
- den Strangstrom Is,N (Tipp: Stromortskurve)
- 3.5 Die Maschine wird bei Nennerregung kurzzeitig bis zum Kipppunkt belastet. Bestimmen Sie für diesen Betriebspunkt: [3 P]
- den Polradwinkel 9_K
- das Kippmoment M_K
- die Überlastbarkeit ü

2

3. Teil: Grundlagen der Leistungselektronik

Aufgabe 1: Zweiquadrantensteller

Ein Motor soll von einem Zweiquadrantensteller mit variabler Spannung versorgt werden

Stromübergang von einem auf das andere Ventil, keine Verluste) Gehen Sie von idealen Bedingungen aus (ideale Halbleiter-Bauteile, idealer

Ankerwiderstand Motor: Speisespannung:

Motorgegenspannung:

 $R = 6\Omega$

 $U_{\rm M} = 60 \text{ V}$

Taktfrequenz Zweiquadrantensteller: $f_T = 25 \text{ kHz}$

Glättungsinduktivität:

30 μ s und "Rückspeisen" T_r (Betrieb mit konstanter Taktfrequenz f_T = 25 kHz) Erste Annahme: ausschließliche Betriebszustände des 2Q-Stellers: "Treiben" Te=

- 1.1. Berechnen Sie Tr.
- 1.2. Berechnen Sie die Gleichspannung U_A (Spannung an M und R)
- 1.3. Berechnen Sie den Motorstrom IR.
- 1.4. Zeichnen Sie den zeitlichen Verlauf der Gesamtspannung u_A. Benutzen Sie das bereitgestellte Diagramm (1a).
- 1.5. Beschreiben Sie die unterschiedlichen Betriebsarten "Treiben", "Rückspeisen" und "Freilauf" (kurzer Text).