Statistical Learning

https://github.com/ggorr/Machine-Learning/tree/master/ISLR

10 Unsupervised Learning

- Unsupervised Learning
 - Observations
 - Features X_1 , ..., X_p
 - Without or unknown response
- To discover interesting things
 - PCA
 - Clustering

10.2 Principal Components Analysis

- To find highly variable directions
- To find subspaces that are as close as possible to the data cloud

10.2.1 What Are Principal Components?

- The first principal component
 - The most variable direction
 - The normalized linear combination

$$Z_1 = \phi_{11} X_1 + \dots + \phi_{p1} X_p$$

where ϕ_{i1} 's are normalized, i.e., $\sum \phi_{i1}^2 = 1$

• ϕ_{i1} 's are called loadings and

$$\phi_1 = [\phi_{11} \quad \cdots \quad \phi_{p1}]^T$$

a loading vector

10.3 Clustering Methods

Are observations similar or different?

10.3.1 K-Means Clustering

- To divide observations as *K*-groups
 - 1. $C_1 \cup \cdots \cup C_K = \{1, ..., n\}$
 - 2. $C_i \cap C_j = \emptyset$, if $i \neq j$
- To find C_1 , ..., C_K with

$$\underset{C_1,...,C_K}{\text{minimize}} \sum_{k} W(C_k)$$

for some measure $W(C_k)$

Squared Euclidean distance measure

$$W(C_k) = \frac{1}{|C_k|} \sum_{i,j \in C_k} ||x_i - x_j||^2$$

• To find C_1 , ..., C_K with

minimize
$$\sum_{k} \frac{1}{|C_k|} \sum_{i,j \in C_k} \|x_i - x_j\|^2$$

Algorithm 10.1 K-Means Clustering

- 1. Randomly assign a number, from 1 to K, to each observation
- 2. Iterate until the cluster assignments stop changing
 - a. For each of the K clusters, compute the cluster centroid
 - b. Assign each observation to the cluster whose centroid is closest

10.3.2 Hierarchical Clustering

- Hierarchical clustering
 - Tree based clustering

Algorithm 10.2 Hierarchical Clustering

- Begin with n observations as clusters
- Repeat
 - Fuse two clusters that are least dissimilar(most similar)

Dissimility

- Complete linkage
 - Maximal intercluster dissimilarity
- Single linkage
 - Minimal intercluster dissimilarity
- Average linkage
 - Mean intercluster dissimilarity
- Centroid linkage
 - Dissimilarity between centroids

Hierarchical Clustering with average linkage 600 observations

