NONLINEAR OPTIMIZATION

GRADIENT

• Gradient of $f(x_1, x_2, ..., x_n)$: $\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$

HESSIAN MATRIX

• Hessian of $f(x_1, x_2, ..., x_n)$: $\mathbf{H}_f =$

POSITIVE [SEMI]DEFINITE MATRIX

- A symmetric matrix M with real entries is positive definite if the real number $z^{t*}M^*z > 0$ for every nonzero real column vector z.
- A symmetric matrix M with real entries is positive semidefinite if the real number $z^{t*}M^*z \ge 0$ for every nonzero real column vector z.
- If neither A nor –A is positive semi-definite, we say that A is indefinite.

NEGATIVE DEFINITE MATRIX

■ A symmetric matrix M with real entries is negative-definite if the real number $z^{t*}M^*z < 0$ for every nonzero real column vector z.

MATRIX DETERMINANT

The determinant of a 2×2 matrix is

$$egin{bmatrix} a & b \ c & d \end{bmatrix} = ad - bc,$$

and the determinant of a 3×3 matrix is

$$egin{bmatrix} a & b & c \ d & e & f \ g & h & i \end{bmatrix} = aei + bfg + cdh - ceg - bdi - afh.$$

MATRIX DETERMINANT

				a 1n														
a 21	a_{22}	a 23	•••	a_{2n}		a22	a 23	•••	a 2n	a 21	a 23	•••	a 2n	a 21	a 22	•••	a 2n	
					= A 11*													
a n1	a_{n2}	a _{n3}	•••	a_{nn}		an2	an3	•••	Ann	a n1	an3	•••	Ann	a n1	a_{n2}	•••	a_{nn}	

EIGENVALUES

- To calculate the eigenvalues of a square matrix, we need to solve the characteristic equation for the matrix: $(A-\lambda I)x=0$
 - x is the eigenvector associated with the eigenvalue λ .
- To find non-trivial solutions for x, the determinant of the matrix $(A-\lambda I)$ must be equal to 0.

$$\det(A-\lambda I)=0$$

- The solutions are the eigenvalues of the matrix A.
- There can be up to n eigenvalues for an n x n matrix.

EIGENVALUES

The Courant-Fischer Theorem

Let A be a symmetric matrix in $\mathbb{R}^{n \times n}$, with eigenvalues $\lambda 1 \le \lambda 2 \le ... \le \lambda n$. Then

$$\lambda_i = \min_{\substack{\text{subspace } W \subseteq \mathbb{R}^n \\ \dim(W) = i}} \max_{x \in W, x \neq 0} \frac{x^\top A x}{x^\top x}$$

$$\lambda_i = \max_{\substack{\text{subspace } W \subseteq \mathbb{R}^n \\ \dim(W) = n+1-i}} \min_{x \in W, x \neq 0} \frac{x^\top A x}{x^\top x}$$

EIGENVALUES

Theorem

Let **A** be a symmetric matrix in $R^{n\times n}$.

- 1. A is positive definite iff all its eigenvalues are positive;
- 2. A is positive semidefinite iff all its eigenvalues are non-negative

LOCAL MINIMUM

- If x is a local extremum of a differentiable function f then $\nabla f(x) = 0$.
- Let f be a function twice differentiable at x. If x is a local minimum, then Hf(x) is positive semidefinite.
- If Hf(x) is positive definite then x is a local minimum

CONVEXITY

- If Hf(x) is positive semidefinite for any $x \in S$ then f is convex on S.
- If Hf(x) is positive definite for any $x \in S$ then f is strictly convex on S.
- If f is convex, then Hf(x) is positive semi-definite $\forall x \in S$.

UNCONSTRAINED OPTIMIZATION

The optimization algorithms generate a sequence $\{x_n\}$ starting from some x_0 using a displacement operation:

$$x_{n+1} \leftarrow x_n + \tau_n \cdot d_n$$

- \mathbf{t}_{n} is a stepsize coefficient along the direction \mathbf{d}_{n} .
- Methods differentiate in the way the direction and the stepsize coefficient are chosen.

GRADIENT DESCENT

- Start from an initial position x_0
- This idea is to take a step in the direction of $-\nabla f(x_0)$
- For a one variable function:
 - $f'(x_0)>0$ when f is increasing; we should make a negative move to get towards the minimum value.
 - $f'(x_0)<0$ when f is decreasing; we should make a positive move to get towards the minimum value.
- Apply iteratively $x_{n+1} \leftarrow x_n \tau_n \cdot \nabla f(x_n)$ τ is a positive "learning rate"

GRADIENT DESCENT

- For a one variable function:
 - $f'(x_0)>0$ when f is increasing; we should make a negative move to get towards the minimum value.
 - $f'(x_0)<0$ when f is decreasing; we should make a positive move to get towards the minimum value.
- The choice of τ influences the speed of convergence.
- A small step size makes convergence too slow.
- A large step size may lead to divergence.

GRADIENT DESCENT

Barzilai and Borwein (1988) proposed a particular rule for computing the stepsize in gradient methods that leads to a significant improvement in numerical performance. In particular the stepsize is chosen as:

$$\tau_k = \frac{\|x_k - x_{k-1}\|^2}{(x_k - x_{k-1})^T (\nabla f(x_k) - \nabla f(x_{k-1}))}$$

CONJUGATE GRADIENT METHODS

- Introduced first for minimizing strictly convex quadratic functions
- Requires only first order derivatives

$$f(x) = \frac{1}{2}(x_1, x_2, \dots, x_n). Q. \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} + (a_1, a_2, \dots, a_n). \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

$$f(x) = \frac{1}{2}x^T \cdot Q \cdot x + a^T \cdot x$$

with Q symmetric positive definite.

CONJUGATE DIRECTIONS ALGORITHM (CDA)

- Minimizing f can be split into n minimizations over IR.
- This is done by means of n directions d_0 , d_1 , ..., d_{n-1} conjugate with respect to the Hessian Q.

$$d_j^T \cdot Q \cdot d_i = 0 \text{ for } i \neq j$$

with Q symmetric positive definite.

• The global minimizer of a strictly convex quadratic function is found in at most *n* iterations

CONJUGATE DIRECTIONS ALGORITHM (CDA)

• Starting from x_0 , $x_{k+1} \leftarrow x_k + \tau_k \cdot d_k$

$$\tau_{k} = \frac{-\nabla f(x_{k})^{T} \cdot d_{k}}{d_{k}^{T} \cdot Q \cdot d_{k}}$$

$$d_{0} = -\nabla f(x_{0})$$

$$d_{k} = -\nabla f(x_{k}) + \beta_{k-1} d_{k-1}$$

 β_{k-1} is calculated using either the Fletcher-Reeves formula:

$$\beta_{k-1} = \frac{\|\nabla f(x_k)\|^2}{\|\nabla f(x_{k-1})\|^2}$$

or the Polak-Ribiére formula:

$$\beta_{k-1} = \frac{\nabla f(x_k)^T (\nabla f(x_k) - \nabla f(x_{k-1}))}{\|\nabla f(x_{k-1})\|^2}$$

NEWTON'S METHOD

relies on the quadratic approximation

$$x_{k+1} = x_k - \tau_k [\nabla^2 f(x_k)]^{-1} \cdot \nabla f(x_k)$$

 $\nabla^2 f(x_k)$ is the Hessian matrix