Problem B Super Number

Input: Standard Input
Output: Standard Output
Time Limit: 3 Seconds

Don't you think 162456723 very special? Look at the picture below if you are unable to find its speciality. ($\mathbf{a} \mid \mathbf{b}$ means ' \mathbf{b} is divisible by \mathbf{a} ')

Figure: Super Numbers

Given n, m (0 < n < m < 30), you are to find a m-digit positive integer X such that for every i (n < i < m), the first i digits of X is a multiple of i. If more than one such X exists, you should output the lexicographically smallest one. Note that the first digit of X should **not** be 0.

Input

The first line of the input contains a single integer $t(1 \le t \le 15)$, the number of test cases followed. For each case, two integers n and m are separated by a single space.

Output

For each test case, print the case number and **X**. If no such number, print **-1**.

Sample Input Output for Sample Input

2	Case 1: 1020005640
1 10	Case 2: -1
3 29	

Problemsetter: Rujia Liu, Member of Elite Problemsetters' Panel

Special Thanks to:

Monirul Hasan (Alternate solution)

Shahriar Manzoor (Figure Drawing)