Московский государственный технический университет им. Н. Э. Баумана

Курс «Технологии машинного обучения»

Отчёт по рубежному контролю №2

«Методы построения моделей машинного обучения.»

Вариант № 13

 Выполнил:
 Проверил:

 Сидоров И. Д.
 Гапанюк Ю.Е.

 группа ИУ5-64Б

Дата: 25.05.25 Дата:

Подпись:

Задание:

Номер варианта: 13

Номер набора данных, указанного в задаче: **13** (https://www.kaggle.com/datasets/fivethirtyeight/fivethirtyeight-comic-characters-dataset, файл marvel-wikia-data.csv)

Метод №1: Линейная/логистическая регрессия

Метод №2: Градиентный бустинг

Ход выполнения:

Классификация персонажей Marvel

Загрузка библиотек и необходимых модулей

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import accuracy_score, fl_score, confusion_matrix
```

Загрузка данных

Загрузим набор данных marvel-wikia-data.csv

```
In [19]: # Загрузка данных

df = pd.read_csv("marvel-wikia-data.csv")

print("Размер данных:", df.shape)

df.head()

Размер данных: (16376, 13)
```

Out[19]:

					-	
EY	ALIGN	ID	urlslug	name	page_id	
Haz Eye	Good Characters	Secret Identity	\/Spider-Man_(Peter_Parker)	Spider- Man (Peter Parker)	1678	0
Blu Eye	Good Characters	Public Identity	\/Captain_America_(Steven_Rogers)	Captain America (Steven Rogers)	713U	1
Blu Eye	Neutral Characters	Public Identity	\/Wolverine_(James_%22Logan%22_Howlett)	Wolverine (James \"Logan\" Howlett)	64786	2
Blu Eye	Good Characters	Public Identity	\/lron_Man_(Anthony_%22Tony%22_Stark)	Iron Man (Anthony \"Tony\" Stark)	1868	3
Blu Eye	Good Characters	No Dual Identity	\/Thor_(Thor_Odinson)	Thor (Thor Odinson)	2460	4

Предварительный анализ и отбор целевой переменной

Целевой переменной в данной задаче выберем SEX — пол персонажа. Ограничим данные только строками, где явно указан пол (мужской или женский).

```
In [20]: # Удалим строки с неопределенным полом
df = df[df['SEX'].isin(['Male Characters', 'Female Characters'])]
```

Выбор признаков

Выбираем информативные признаки, которые, по нашему мнению, могут повлиять на пол персонажа, такие как выравнивание, цвет глаз и волос, статус, число появлений и дата первого появления.

```
In [21]: # Упрощение и отбор признаков
features = ['ALIGN', 'EYE', 'HAIR', 'GSM', 'ALIVE', 'APPEARANCES', 'FIRST
X = df[features]
y = df['SEX']
```

Обработка пропусков

Пропущенные значения будут заполнены наиболее частыми (модой) для соответствующего признака.

```
In [22]: # Οδραδοπκα προπίζεσε
imputer = SimpleImputer(strategy='most_frequent')
X_imputed = pd.DataFrame(imputer.fit_transform(X), columns=X.columns)
```

Преобразование числовых признаков

- APPEARANCES : приводим к числовому типу
- FIRST APPEARANCE : извлекаем только год из строки и также приводим к числу

```
In [23]: # Обработка числовых признаков
X_imputed['APPEARANCES'] = pd.to_numeric(X_imputed['APPEARANCES'], errors
X_imputed['FIRST APPEARANCE'] = pd.to_numeric(X_imputed['FIRST APPEARANCE'])
```

Кодирование признаков

- Категориальные признаки кодируются с помощью pd.get dummies
- Целевая переменная кодируется через LabelEncoder (0 Female, 1 Male)

```
In [24]: # Кодирование категориальных признаков
X_encoded = pd.get_dummies(X_imputed)
```

Разделение данных на обучающую и тестовую выборки

Тестовая выборка составит 20% от всего набора. Обучение будет проводиться на 80%.

```
In [25]: # Кодирование целевой переменной
y_encoded = LabelEncoder().fit_transform(y)
```

Масштабирование признаков

Для метода опорных векторов важно масштабировать признаки. Мы применим StandardScaler только к признакам, переданных в SVM.

```
In [26]: # Разделение данных
X_train, X_test, y_train, y_test = train_test_split(X_encoded, y_encoded,
```

Обучение моделей

Мы обучим две модели:

Support Vector Machine (SVM)

gb_model.fit(X_train, y_train)
gb preds = gb model.predict(X test)

Random Forest Classifier

```
In [27]: # Масштабирование данных scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

In [28]: # Модель 1: Линейная/логистическая регрессия
lr_model = LogisticRegression(max_iter=1000)
lr_model.fit(X_train_scaled, y_train)
lr_preds = lr_model.predict(X_test_scaled)

In [29]: # Модель 2: Градиентный бустинг
```

gb model = GradientBoostingClassifier(random state=42)

Оценка качества моделей

Оценим модели с использованием метрик:

- Accuracy доля верных предсказаний
- F1 Score гармоническое среднее точности и полноты, особенно важно при дисбалансе классов

```
# Метрики качества
 In [30]:
          print ("--- Линейная/логистическая регрессия ---")
          print("Accuracy:", accuracy_score(y_test, lr_preds))
          print("F1 Score:", f1 score(y test, lr preds))
          cm lr = confusion matrix(y test, lr preds)
          print("\n--- Градиентный бустинг ---")
          print("Accuracy:", accuracy score(y test, gb preds))
          print("F1 Score:", f1 score(y test, gb preds))
          cm_gb = confusion_matrix(y_test, gb_preds)
--- Линейная/логистическая регрессия ---
Accuracy: 0.7634894991922455
F1 Score: 0.8580294802172227
--- Градиентный бустинг ---
Accuracy: 0.7638126009693054
F1 Score: 0.8606291706387035
 In [31]:
          # Визуализация матриц ошибок
          fig, axs = plt.subplots(1, 2, figsize=(14, 5))
          # Линейная/логистическая регрессия
          sns.heatmap(cm lr, annot=True, fmt='d', cmap='Blues', ax=axs[0])
          axs[0].set title('Confusion Matrix - Логистическая регрессия')
          axs[0].set xlabel('Predicted')
          axs[0].set ylabel('Actual')
          axs[0].set xticklabels(['Female', 'Male'])
          axs[0].set yticklabels(['Female', 'Male'])
          # Градиентный бустинг
          sns.heatmap(cm_gb, annot=True, fmt='d', cmap='Greens', ax=axs[1])
          axs[1].set_title('Confusion Matrix - Градиентный бустинг')
          axs[1].set xlabel('Predicted')
          axs[1].set_ylabel('Actual')
          axs[1].set_xticklabels(['Female', 'Male'])
          axs[1].set_yticklabels(['Female', 'Male'])
          plt.tight layout()
          plt.show()
```


Вывод:

- Линейная/логистическая регрессия показывает базовое качество классификации, простая в реализации и интерпретации.
- Градиентный бустинг обеспечивает более высокую точность и F1-мегрику, особенно при наличии сложных зависимостей между признаками.
- В условиях дисбаланса классов (больше мужских персонажей), F1 Score остаётся приоритетной метрикой для объективной оценки модели.