Summary:

In this experiment, a researcher uses a smart contract to issue a challenge in the blockchain. The contract contains a hashed solution (made using keccak256) and a tiny ETH reward. Any participant can try to solve the challenge by posting an answer. If their answer matches the hash, they will unlock and receive the ETH funds.

Tools used:

- Remix IDE (VM-Cancun)
- Solidity: 0.8.0
- Web3's keccak256:
 - Used to generate the answering hash:
 - keccak256(abi.encodePacked("42"))

Final Value:

0xccb1f717aa77602faf03a594761a36956b1c4cf44c6b336d1db57da799b331b8

Code Description:

The Smart Contract **Puzzle** is a reward-based problem in which participants must guess a secret answer. The contract is initialized using a keccak256 hash including the expected answer. The **solve()** function lets any guess to be submitted by a user; and if the hashed input matches the stored hash while the puzzle has not previously been solved, the contract delivers its ETH balance to the solver and produces a "**PuzzleSolved**" event. To ensure security and appropriate functionality, the contract prohibits multiple solutions (**isSolved** flag) and limits ETH deposits to the owner solely via the **receive()** function. This ensures one-time solvability and controlled fund management, emulating a fair and verifiable reward system on the blockchain.

Code for Solidity:

Solidity Compiler and verification of compiling

Deployment & Transaction details and result:

Details of verified deployment:

Solver Test & Result, correct hash:

Solver Test & Result: Wrong Answer

Html Code for Front end Website:

```
Front end:
<!DOCTYPE html>
<html lang="en">
<meta charset="UTF-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<title>Puzzle Frontend</title>
<script src="https://cdn.jsdelivr.net/npm/js-sha3@0.8.0/src/sha3.min.js"></script>
 body {
  font-family: Arial, sans-serif;
  max-width: 500px;
  margin: 40px auto;
  padding: 20px;
  border: 2px solid #ccc;
  border-radius: 10px;
 h1 {
  text-align: center;
 input, button {
  padding: 10px;
  font-size: 1rem;
  margin-top: 10px;
  width: 100%;
```

```
#status {
 margin-top: 20px;
 font-weight: bold;
<h1>Blockchain Puzzle</h1>
Enter the answer to unlock the reward:
<input type="text" id="answerInput" placeholder="Type your answer..." />
<button onclick="submitAnswer()">Submit Answer</button>
<div id="status"></div>
const correctHash =
'0xccb1f717aa77602faf03a594761a36956b1c4cf44c6b336d1db57da799b331b8";
function submitAnswer() {
 const answer = document.getElementById("answerInput").value;
 const hashHex = "0x" + keccak256(answer);
 const statusEl = document.getElementById("status");
 if (hashHex === correctHash) {
  statusEl.innerHTML = "Correct! Puzzle solved and reward unlocked.";
  statusEl.style.color = "green";
 } else {
  statusEl.innerHTML = "Incorrect answer. Try again.";
  statusEl.style.color = "red";
```

Positive answer on the front end:

Blockchain Puzzle

Enter the answer to unlock the reward:

42

Submit Answer

Correct! Puzzle solved and reward unlocked.

Negative attempt on the Puzzle:

Blockchain Puzzle

Enter the answer to unlock the reward:

wrong answer

Submit Answer

Incorrect answer. Try again.

References

Ethereum Foundation. (n.d.). *Remix IDE: Web-based tool for Solidity development*. [online] Available at: https://remix.ethereum.org [Accessed 11 Apr. 2025].

Solidity Team. (2025). *Solidity 0.8.x Documentation*. Ethereum Foundation. [online] Available at: https://docs.soliditylang.org/en/latest/ [Accessed 13 Apr. 2025].

Chen, Z. (2020). *js-sha3: A simple JavaScript implementation of SHA3 (Keccak)*. [online] GitHub. Available at: https://github.com/emn178/js-sha3 [Accessed 16 Apr. 2025].

Mozilla Developer Network. (n.d.). *HTML: HyperText Markup Language*. [online] MDN Web Docs. Available at: https://developer.mozilla.org/en-US/docs/Web/HTML [Accessed 17 Apr. 2025].

Mozilla Developer Network. (n.d.). *CSS: Cascading Style Sheets*. [online] MDN Web Docs. Available at: https://developer.mozilla.org/en-US/docs/Web/CSS [Accessed 18 Apr. 2025].

Mozilla Developer Network. (n.d.). *JavaScript Guide*. [online] MDN Web Docs. Available at: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide [Accessed 22 Apr. 2025].