Programmazione: l'idea di problema algoritmico

Corso di Programmazione 1A, 2021-22 Felice Cardone

Un problema di "programmazione" (dal film Die Hard)

Dati due recipienti, G da 5 litri e p da 3 litri, e una disponibilità illimitata di acqua, trovare un modo per avere esattamente 4 litri di acqua in G usando solo le seguenti operazioni:

```
riempire G riempire p vuotare (anche in parte) il contenuto di G in p (G \to p) vuotare (anche in parte) il contenuto di p in G (p \to G) vuotare G vuotare G
```

$$G = 0, p = 0$$

$$G = 0, p = 0$$

| riempi G
 $G = 5, p = 0$

G = 0, p = 0
$$| riempi G$$

G = 5, p = 0
 $| G \rightarrow p$

G = 2, p = 3
 $| vuota p$

G = 2, p = 0

G = 0, p = 0
$$| riempi G$$

G = 5, p = 0
 $| G \rightarrow p$

G = 2, p = 3
 $| vuota p$

G = 2, p = 0
 $| G \rightarrow p$

G = 0, p = 2

$$G = 0, p = 0$$
 $| riempi G$
 $G = 5, p = 0$
 $| G \rightarrow p$
 $G = 2, p = 3$
 $| vuota p$
 $G = 2, p = 0$
 $| G \rightarrow p$
 $G = 0, p = 2$
 $| riempi G$
 $G = 5, p = 2$

G = 0, p = 0
$$| riempi G$$

G = 5, p = 0
 $| G \rightarrow p$

G = 2, p = 3
 $| vuota p$

G = 2, p = 0
 $| G \rightarrow p$

G = 0, p = 2
 $| riempi G$

G = 5, p = 2
 $| G \rightarrow p$

G = 4, p = 3

$$G = 0, p = 0$$
 $| riempi G$
 $G = 5, p = 0$
 $| G \rightarrow p$
 $G = 2, p = 3$
 $| vuota p$
 $G = 2, p = 0$
 $| G \rightarrow p$
 $G = 0, p = 2$
 $| riempi G$
 $G = 5, p = 2$
 $| G \rightarrow p$
 $G = 4, p = 3$
 $| vuota p$
 $G = 4, p = 0$

$$G = 0, p = 0$$
| riempi G

 $G = 5, p = 0$
| $G \rightarrow p$
 $G = 2, p = 3$
| vuota p

 $G = 2, p = 0$
| $G \rightarrow p$
 $G = 0, p = 2$
| riempi G

 $G = 5, p = 2$
| $G \rightarrow p$
 $G = 4, p = 3$
| vuota p

 $G = 4, p = 0$

$$G = 0, p = 0$$

$$G = 0, p = 0$$
| riempi G

 $G = 5, p = 0$
| $G \rightarrow p$
 $G = 2, p = 3$
| vuota p

 $G = 2, p = 0$
| $G \rightarrow p$
 $G = 0, p = 2$
| riempi G

 $G = 5, p = 2$
| $G \rightarrow p$
 $G = 4, p = 3$
| vuota p

 $G = 4, p = 0$

$$G = 0, p = 0$$

riempi p
 $G = 0, p = 3$

$$G = 0, p = 0$$
| riempi G

 $G = 5, p = 0$
| $G \rightarrow p$
 $G = 2, p = 3$
| vuota p

 $G = 2, p = 0$
| $G \rightarrow p$
 $G = 0, p = 2$
| riempi G

 $G = 5, p = 2$
| $G \rightarrow p$
 $G = 4, p = 3$
| vuota p

 $G = 4, p = 0$

$$G = 0, p = 0$$

| riempi G
 $G = 5, p = 0$
| $G \rightarrow p$
 $G = 2, p = 3$
| vuota p
 $G = 2, p = 0$
| $G \rightarrow p$
 $G = 0, p = 2$
| riempi G
 $G = 5, p = 2$
| $G \rightarrow p$
 $G = 4, p = 3$
| vuota p
 $G = 4, p = 0$

$$G = 0, p = 0$$
| riempi p

 $G = 0, p = 3$
| $p \rightarrow G$
 $G = 3, p = 0$
| riempi p

 $G = 3, p = 3$

$$G = 0, p = 0$$
| riempi G

 $G = 5, p = 0$
| $G \rightarrow p$
 $G = 2, p = 3$
| vuota p

 $G = 2, p = 0$
| $G \rightarrow p$
 $G = 0, p = 2$
| riempi G

 $G = 5, p = 2$
| $G \rightarrow p$
 $G = 4, p = 3$
| vuota p

 $G = 4, p = 0$

G = 0, p = 0
$$| riempi p |$$
G = 0, p = 3
 $| p \rightarrow G |$
G = 3, p = 0
 $| riempi p |$
G = 3, p = 3
 $| p \rightarrow G |$
G = 5, p = 1

$$G = 0, p = 0$$
| riempi G

 $G = 5, p = 0$
| $G \rightarrow p$
 $G = 2, p = 3$
| vuota p

 $G = 2, p = 0$
| $G \rightarrow p$
 $G = 0, p = 2$
| riempi G

 $G = 5, p = 2$
| $G \rightarrow p$
 $G = 4, p = 3$
| vuota p

 $G = 4, p = 0$

$$G = 0, p = 0$$
| riempi p

 $G = 0, p = 3$
| $p \rightarrow G$
 $G = 3, p = 0$
| riempi p

 $G = 3, p = 3$
| $p \rightarrow G$
 $G = 5, p = 1$
| vuota G

 $G = 0, p = 1$

$$G = 0, p = 0$$
| riempi G

 $G = 5, p = 0$
| $G \rightarrow p$
 $G = 2, p = 3$
| vuota p

 $G = 2, p = 0$
| $G \rightarrow p$
 $G = 0, p = 2$
| riempi G

 $G = 5, p = 2$
| $G \rightarrow p$
 $G = 4, p = 3$
| vuota p

 $G = 4, p = 0$

$$G = 0, p = 0$$
| riempi p

 $G = 0, p = 3$
| $p \rightarrow G$
 $G = 3, p = 0$
| riempi p

 $G = 3, p = 3$
| $p \rightarrow G$
 $G = 5, p = 1$
| vuota G

 $G = 0, p = 1$
| $p \rightarrow G$
 $G = 1, p = 0$

$$G = 0, p = 0$$
 $| riempi G$
 $G = 5, p = 0$
 $| G \rightarrow p$
 $G = 2, p = 3$
 $| vuota p$
 $G = 2, p = 0$
 $| G \rightarrow p$
 $G = 0, p = 2$
 $| riempi G$
 $G = 5, p = 2$
 $| G \rightarrow p$
 $G = 4, p = 3$
 $| vuota p$

G = 4, p = 0

$$G = 0, p = 0$$
| riempi p

 $G = 0, p = 3$
| $p \rightarrow G$
 $G = 3, p = 0$
| riempi p

 $G = 3, p = 3$
| $p \rightarrow G$
 $G = 5, p = 1$
| vuota G

 $G = 0, p = 1$
| $p \rightarrow G$
 $G = 1, p = 0$
| riempi p

 $G = 1, p = 3$

$$G = 0, p = 0$$

$$| riempi G$$

$$G = 5, p = 0$$

$$\downarrow G \rightarrow p$$

$$G = 2, p = 3$$

$$G = 2, p = 0$$

$$G \rightarrow p$$

$$G = 0, p = 2$$

$$G = 5, p = 2$$

$$G \rightarrow p$$

$$G = 4, p = 3$$

$$G = 4, p = 0$$

$$G = 0, p = 0$$

$$G = 0, p = 3$$

$$p \rightarrow G$$

$$G = 3, p = 0$$

$$G = 3, p = 3$$

$$p \rightarrow G$$

$$G = 5, p = 1$$

$$G = 0, p = 1$$

$$p \rightarrow G$$

$$G = I, p = 0$$

$$G = I, p = 3$$

$$p \rightarrow G$$

$$G = 4, p = 0$$

Alcune domande

(1) Si possono ottenere 4 litri di acqua in G quando:

- a) G = 8, p = 3?
- b) G = 7, p = 3?
- c) G = 6, p = 3?

(risolubilità)

Alcune domande

- (I) Si possono ottenere 4 litri di acqua in G quando:
 - a) G = 8, p = 3?
 - b) G = 7, p = 3?
 - c) G = 6, p = 3?

(risolubilità)

(2) Nel caso in cui una soluzione esiste, qual è il numero minimo di operazioni per ottenerla? (complessità in tempo)

Alcune domande

- (1) Si possono ottenere 4 litri di acqua in G quando:
 - a) G = 8, p = 3?
 - b) G = 7, p = 3?
 - c) G = 6, p = 3?

(risolubilità)

- (2) Nel caso in cui una soluzione esiste, qual è il numero minimo di operazioni per ottenerla? (complessità in tempo)
- (3) Come cambia la situazione se si hanno a disposizione più recipienti, per esempio
 - a) G = 5, p = 3, q = 3?
 - b) G = 6, p = 3, q = 3? (tradeoff spazio/tempo)

Analisi del comportamento di un "programma"

Immaginiamo il gioco solitario in cui ogni posizione è una fila di pedine bianche (B) e nere (N). Ogni mossa è fatta in accordo con una delle seguenti regole:

- (I) rimpiazzare una pedina bianca ed una nera consecutive con due pedine bianche consecutive, in simboli $BN \rightarrow BB$;
- (2) rimpiazzare due pedine bianche consecutive con una pedina nera, in simboli $BB \rightarrow N$;
- (3) rimpiazzare una pedina nera ed una bianca consecutive con due pedine bianche ed una nera consecutive, in simboli $NB \rightarrow BBN$.

Domande

- I. è possibile, utilizzando mosse di tipo (1), (2) e (3), passare da una posizione BBB ad una posizione NNN?
- 2. è possibile, utilizzando mosse di tipo (1), (2) e (3), passare da una posizione BBBB ad una posizione NNNN?

Analisi del comportamento di un "programma"

Immaginiamo il gioco solitario in cui ogni posizione è una fila di pedine bianche (B) e nere (N). Ogni mossa è fatta in accordo con una delle seguenti regole:

- (I) rimpiazzare una pedina bianca ed una nera consecutive con due pedine bianche consecutive, in simboli $BN \rightarrow BB$;
- (2) rimpiazzare due pedine bianche consecutive con una pedina nera, in simboli $BB \rightarrow N$;
- (3) rimpiazzare una pedina nera ed una bianca consecutive con due pedine bianche ed una nera consecutive, in simboli $NB \rightarrow BBN$.

Domande

- I. è possibile, utilizzando mosse di tipo (1), (2) e (3), passare da una posizione BBB ad una posizione NNN? NO
- 2. è possibile, utilizzando mosse di tipo (1), (2) e (3), passare da una posizione BBBB ad una posizione NNNN? SI

Soluzione

- (I) $BN \rightarrow BB$
- (2) $BB \rightarrow N$
- (3) $NB \rightarrow BBN$

Le sequenze di passi possibili sono le seguenti:

$$BBB \rightarrow (2) NB \rightarrow (3) BBN \rightarrow (2) NN$$

$$BBB \rightarrow (2) NB \rightarrow (3) BBN \rightarrow (1) BBB$$

$$BBB \rightarrow (2) BN \rightarrow (1) BB$$

Nessuna di queste può portare BBB in NNN. Ma la seguente derivazione mostra che c'è una derivazione che porta BBBB in NNNN:

BBBB
$$\rightarrow$$
(2) NBB \rightarrow (3) BBNB \rightarrow (3) BBBBN \rightarrow (2) NBBN \rightarrow (3) BBNBN \rightarrow (3) BBNBN \rightarrow (3) BBBBNN \rightarrow (2) NBBNN \rightarrow (2) NNNN

La formalizzazione dei processi di calcolo