

Applied machine learning Group assignment 2

Team members-Group 8:

- Abdelrhman Gaber Youssef Saad Rezkallah
- Eman Metwally Mohammed Abood
- Basma Reda Shaban Abd-Elsalam Abd-Elwahab

Part 1: Calculations

Problem1:

P(Yes)	9/15
P(No)	6/15
Total	15

Colors							
P(Yes) P(No)							
Red	5/15	2/9	3/6				
Green	5/15	3/9	2/6				
Yellow	5/15	4/9	1/6				
Total	15	9	6				

Gender								
P(Yes) P(No)								
Female	7/15	6/9	1/6					
Male	8/15	3/9	5/6					
Total	15	9	6					

Price								
		P(Yes)	P(No)					
High	4/15	2/9	2/6					
Medium	5/15	2/9	3/6					
Low	6/15	5/9	1/6					
Total	15	9	6					

P (C = Yes | Green, Female, High) =

 $p(Green|\ C=Yes).p(Female|\ C=Yes).p(High|C=Yes).p(yes)$

p(Green|C=Yes).p(Female|C=Yes).p(High|C=Yes).p(yes) + (Green|C=No).p(Female|C=No).p(High|C=No)

P (C = Yes | Green, Female, High). p(Yes) =
$$\frac{3}{9} \cdot \frac{6}{9} \cdot \frac{2}{9} \cdot \frac{9}{15} = \frac{4}{135}$$

P (C = No | Green, Female, High). p(No) = $\frac{2}{6} \cdot \frac{1}{6} \cdot \frac{2}{6} \cdot \frac{6}{15} = \frac{1}{135}$
P (color = Green, Gender = Female, price = High) = P (C = Yes | Green, Female, High) * (Yes) + P (C = No | Green, Female, High) * P(No)

P (C = Yes | Green, Female, High) =
$$\frac{3}{9} \cdot \frac{6}{9} \cdot \frac{2}{9} = \frac{4}{81}$$

P (C = No | Green, Female, High) = $\frac{2}{6} \cdot \frac{1}{6} \cdot \frac{2}{6} = \frac{1}{54}$
P (color = Green, Gender = Female, price = High) = $\frac{4}{81} \cdot \frac{9}{15} + \frac{1}{54} \cdot \frac{6}{15} = \frac{1}{27}$
P (C = Yes | Green, Female, High) = $\frac{\frac{4}{135}}{\frac{1}{27}} = \frac{4}{5} = 80\%$
P (C = No | Green, Female, High) = $\frac{\frac{1}{135}}{\frac{1}{27}} = \frac{1}{5} = 20\%$

problem 2:

Target	Class1	Class2
A1(choose class2)	5	2
A2(choose class1)	0	5
A3(Reject)	4	4

$$P(\alpha_1|X) = OP(C1|X) + 5P(C2|X)$$

= 5 - (1- P(C1|X)
= 5 -5(P(C1|X)

$$P(\alpha_2 | X) = 5P(C1|X) + 2P(C2|X)$$

= $5P(C1|X) + 2(1-P(C1|X))$
= $2 + 3P(C1|X)$

P
$$(\alpha_r | x) = 4$$

R $(\alpha_1 | X) < 4$
5 - 5P (C1 | X) < 4
P (C1 | X) > $\frac{1}{5}$

R (
$$\alpha_2$$
 | X) < 4
2 + 3P(C1|X) < 4
P(C1|X) < $\frac{2}{3}$

But, there are no intersection between the two classes, so no rejection area exists.

Part 2: Programming

Problem1: Implementation steps:

1- Load wine dataset:

These data are the results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars. The analysis determined the quantities of 13 constituents found in each of the three types of wines.

2- Extracting the most two important features:

- The pair plot diagram shows the most important features to select, A pair plot plots a pairwise relationships in a data set.
- The pair plot function creates a grid of Axes such that each variable in data will be shared in the y-axis across a single row and in the x-axis across a single column.

The pair Plot between the features Diagram:

1- train test split function in scikitlearn to split the dataset into a training set and testing set:

	[]	<pre>from sklearn.model_selection import train_test_split x_train ,x_test, y_train , y_test = train_test_split(df.drop(0,axis = 1),df[0],test_size = 0.2 ,random_state=42)</pre>												
:}		#prin x_tra	_	train data										
)			alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocyanins	color_intensity	hue	od280/od315_
		158	14.34	1.68	2.70	25.0	98.0	2.80	1.31	0.53	2.70	13.00	0.57	
		137	12.53	5.51	2.64	25.0	96.0	1.79	0.60	0.63	1.10	5.00	0.82	
		98	12.37	1.07	2.10	18.5	88.0	3.52	3.75	0.24	1.95	4.50	1.04	
		159	13.48	1.67	2.64	22.5	89.0	2.60	1.10	0.52	2.29	11.75	0.57	
		38	13.07	1.50	2.10	15.5	98.0	2.40	2.64	0.28	1.37	3.70	1.18	
		71	13.86	1.51	2.67	25.0	86.0	2.95	2.86	0.21	1.87	3.38	1.36	
		106	12.25	1.73	2.12	19.0	80.0	1.65	2.03	0.37	1.63	3.40	1.00	
		14	14.38	1.87	2.38	12.0	102.0	3.30	3.64	0.29	2.96	7.50	1.20	
		92	12.69	1.53	2.26	20.7	80.0	1.38	1.46	0.58	1.62	3.05	0.96	
>		102	12.34	2.45	2.46	21.0	98.0	2.56	2.11	0.34	1.31	2.80	0.80	
3		142 ro	ws × 13 co	olumns										

2- Implement GaussianNB classifier:

Gaussian Naive Bayes is a variant of Naive Bayes that follows Gaussian normal.

```
[14] from sklearn.naive_bayes import GaussianNB #to import GaussianNB classifier library
    nb = GaussianNB()
    nb.fit(x_train,y_train)

[15] #define y_pred to make the prediction
    y_pred = nb.predict(x_test)
```

3- use the classification report to calculate precision, recall and F1 score:

A Classification report is used to measure the quality of predictions from a classification algorithm. How many predictions are True and how many are False. More specifically, True Positives, False Positives, True negatives, and False Negatives are used to predict the metrics of a classification report.

A ×

Q						
,	✓ [16] from sklearn.	metrics impo	rt classi	fication r	eport #to us	e the function of classification report
	print(classi			_	•	
{ <i>x</i> }	print(classi				(//	′
	print(clussi	ricacion_repo	()	.,,_p, cu//		
		precision	recall	f1-score	support	
		precision	100011	11 30010	заррог с	
	0	1.00	0.96	0.98	45	
	1	0.96	0.96	0.96	57	
	2	0.95	1.00	0.98	40	
	accuracy			0.97	142	
	macro avg	0.97	0.97	0.97	142	
	weighted avg	0.97	0.97	0.97	142	
		precision	recall	f1-score	support	
	0	1.00	1.00	1.00	14	
	1	1.00	1.00	1.00	14	
	2	1.00	1.00	1.00	8	
	accuracy			1.00	36	
	macro avg	1.00	1.00	1.00	36	
	weighted avg	1.00	1.00	1.00	36	
<>						

The accuracy on training is 0.97
The accuracy on the testing phase is 1.00

4- Plot the decision boundary:

• we choose The Two features 'od280/od315_of_diluted_wines' and 'proline' because the plot shows that we can separate between these classes.

6.1 plot the decision boundary on train data between 'proline' and 'od280/od315_of_diluted_wines':

od280/od315_of_diluted_wines

6.2 plot the decision boundary on test data between 'proline' and 'od280/od315_of_diluted_wines':

The decision boundary diagram shows that we can separate between the 2 classes 'proline' and 'od280/od315_of_diluted_wines'.

Problem 2: Implementation of KNN Classifier

1- Load car evaluation dataset:

```
#read the dataset
\{x\}
            car = pd.read_csv('/content/car_evaluation.csv')
            car.head()
Ľ⇒
               vhigh vhigh.1 2 2.1 small
                                              low unacc
            0 vhigh
                         vhigh 2
                                       small med
                                                   unacc
             1
                vhigh
                         vhigh 2
                                    2
                                       small high
                                                   unacc
               vhigh
                         vhigh 2
             2
                                                   unacc
                                        med
                                              low
                vhigh
                         vhigh 2
                                    2
                                        med med
                                                   unacc
                vhigh
                         vhigh 2
                                    2
                                        med high unacc
```

2- perform label encoding:

```
#perform label encoding

car['vhigh'] = car['vhigh'].map({'low':0,'med':1,'high':2,'vhigh':3})

car['vhigh.1'] = car['vhigh.1'].map({'low':0,'med':1,'high':2,'vhigh':3})

car['2'] = car['2'].map({'2':0,'3':1,'4':2,'5more':3})

car['2.1'] = car['2.1'].map({'2':0,'4':1,'more':2})

car['small'] = car['small'].map({'small':0,'med':1,'big':2})

car['low'] = car['low'].map({'low':0,'med':1,'high':2})

car['unacc'] = car['unacc'].map({'unacc':0,'acc':1,'good':2,'vgood':3})
```

The result of label encoding is:

```
\frac{\checkmark}{O_{0}} [33] #print the head of the data after label encoding
\{x\}
             car.head()
vhigh vhigh.1 2 2.1 small
                                                  low
                                                       unacc
                vhigh
                           vhigh 2
                                       2
                                          small
                                                med
                                                       unacc
                 vhigh
                           vhigh 2
                                       2
                                          small
                                                 high
                                                       unacc
                vhigh
                           vhigh 2
                                       2
                                                  low
                                           med
                                                       unacc
                 vhigh
                           vhigh 2
                                       2
                                           med med
                                                       unacc
                 vhigh
                           vhigh 2
                                       2
                                           med high
                                                       unacc
```

a- split the dataset to training and testing: data preparation step:

b-Define the percentage of x_train and y_train:

c- plot the training set and accuracy score:

The maximum accuracy of validation is 83% The maximum accuracy of test is 88%

d- accuracy curve on the validation set when K varies from 1 to 10

number of neighbours vs val and test accuracy

The maximum accuracy of validation is 89%.

The maximum accuracy of test is 94%.

The maximum K-value is 5.

The minimum error rate is 0.058.

e-Analysis the training time when use different number of training sampl es.

Text (0, 0.5, 'error rate')

Analysis the training time when use different number of training samples.

- •10% of the whole training set and K = 2
- •100% of the whole training set and K = 2
- •10% of the whole training set and K = 10
- •100% of the whole training set and K = 10

Case:	10% training and	100% training	10% training	100% training
	k=2	and k=2	and k=10	and k=10
Start	1655224913.2653 127	1655224913.3789 108	1655224913.491 071	1655224913.58680 94
time	127	100	071	94
End time	1655224913.2882 903	1655224913.4075 544	1655224913.514 1633	1655224913.61133 05
Total	0.0229775905609 13086	0.0286436080932 6172	0.023092269897 460938	0.02452111244201 66
time				

The bar chart figure shows the prediction time on the training set.

So, the training time when K = 2 and 100% training is the highest time.

bar chart figure to show prediction time on the testing set:

The testing time when k = 2 and with 100% training is the highest time.

f- from the experiments on points c, d, e we can say that:

- 1- when the number of k decreased, it can lead to an overfitting.
- 2- When the number of k increased, it can lead to an underfitting.
- 3- We must choose the best number of K to prevent overfitting or underfitting.
- 4- when the number of the training data increased, the time will increase because it is non-parametric model, and it is not limited to that, so it causes better results.

Conclusion:

During this assignment we learned more about the calculation process of Bayesian Rule Based Classifier to make prediction on a dataset, and how to calculate the risk and rejection area of the model.

We learned more about the Naïve Bayes classifier, and how to use the GaussinNB classification algorithm, how to extract the most important features and show them in the decision boundary figure, after that we learned more about the KNN classification algorithm and how to apply different numbers of training set and different numbers of K, so we realized that the KNN algorithm require more time when the number of K increased.