System typów F_{ω}

Systemy Typów 2010/11 Prowadzący: dr Dariusz Biernacki

Piotr Polesiuk Małgorzata Jurkiewicz bassists@o2.pl gosia.jurkiewicz@gmail.com

Wrocław, dnia 13 lutego 2011 r.

1. Wstęp

No to na razie taki balagan

2. System F_{ω}

W rozdziale tym chcielibyśmy się skupić na systemie F_{ω} okrojonym do niezbędnego minimum. Przedstawimy, jak wyglądają termy, typy i wartości tego języka, a także pokażemy, jak przebiega typowanie, znajdowanie rodzaju, ewaluacja czy sprawdzanie równości typów. Postaramy się pisać jasno i pokażemy parę przykładów, aby nieobyty w temacie Czytelnik nie zgubił się. W rozdziale trzecim do tak zdefiniowanego systemu będziemy wprowadzać rozszerzenia.

2.1. Termy i typy w F_{ω}

System F_{ω} to rachunek będący rozszerzeniem λ_{ω} oraz systemu F. Wszystkie trzy wywodzą się z rachunku lambda z typami prostymi. Termy oraz typy definiujemy w λ_{\rightarrow} następująco:

t ::=		termy
	X	zmienne
	$\lambda \mathtt{x}:\mathtt{T.t}$	abstrakcja
	tt	aplikacja
T ::=		typy
	X	$zmienna\ typowa$
	$\mathtt{T}\to\mathtt{T}$	$typ\ funkcji$

2.1.1. System λ_{ω}

Główną cechą systemu λ_{ω} jest to, że oprócz termów zależnych od termów mamy typy zależne od typów, czyli możemy mówić o aplikacji i abstrakcji typowej, a tak powstałe 'typy' będziemy nazywać konstruktorami. By nam się nie pomyliło z abstrakcją na termach, zmienne konstruktorowe będziemy zaczynać dużą literą. Przykładowo Tb $= \lambda X.X \rightarrow Bool$ i $\lambda X.X$ są abstrakcjami konstruktowymi, ale $\lambda x.x$ jest abstrakcją na termach. Do konstruktora Tb możemy zaaplikować Bool i dostaniemy ($\lambda X.X \to Bool$)Bool równoważne Bool $\to Bool$. Jak widać, użyliśmy słowa równoważne. W rachunku lambda z typami prostymi sposób konstrukcji typów gwarantował nam, że dwa typy T_1 i T_2 na pewno są różne (zakładając, że typy bazowe były sobie różne). W λ_{ω} jest inaczej – konstruktory tego systemu możemy podzielić na klasy równoważności. Do klasy Bool \rightarrow Bool należą również (Tbⁿ)Bool dla n naturalnego, a Tⁿ oznacza aplikację n konstruktorów T. Zauważmy, że odpowiednikiem takiej relacji równoważności w λ_{\rightarrow} jest β -równoważność. W świecie typów nazwiemy taką relację \equiv^1 . Każdy konstruktor typu jest silnie normalizowalny i zachodzi własność Churcha-Rossera. Przez nf(T) oznaczamy postać normalną konstruktora rodzaju T. Dodatkowo wprowadzimy następującą regułę: $\frac{\Gamma \vdash t:S}{\Gamma \vdash t:T}$ mówiącą, że jeżeli S jest konstruktorem termu t, to dowolny konstruktor S równoważny z T również jest konstruktorem t.

Niestety, w tak zdefiniowanym systemie powstaje jeden problem. Nie chcielibyśmy, aby Bool Bool było dozwolone, tak samo, jak w świecie termów nie chcieliśmy, by true true było

¹formalnie zdefiniujemy ta relację w rozdziale 2.2.3

dozwolone. W świecie termów, by rozwiązać ten problem, wprowadziliśmy typy na termach, w świecie typów wprowadzimy *rodzaje* na konstruktorach. Piszemy, że T :: K, czyli konstruktor T jest rodzaju K. Wprowadzimy też jeden rodzaj bazowy *.

Wszystkie typy, jakie pojawiły się w λ_{\rightarrow} , są rodzaju *. Np. Bool :: *, Nat \rightarrow Nat, (Bool \rightarrow Nat) \rightarrow Nat :: *, itd. Rodzaj * \Rightarrow * będzie odpowiadał funkcjom z konstruktorów w konstruktory, np. $\lambda X.X \rightarrow$ Bool :: * \Rightarrow *. * \Rightarrow * * bierze konstruktor i zwraca funkcję konstruktorową, np. $\lambda X.\lambda Y.X \rightarrow Y$:: * \Rightarrow * *, itd.

Teraz możemy λ_{\rightarrow} rozszerzyć o następujące konstrukcje:

• rodzaje

abstrakcję i aplikację typową na typach

Powstaje pytanie, czy wszystkie konstruktory są typami? Otóż nie, typy to konstruktory rodzaju *.

2.1.2. System F

System F jest systemem, w którym dodatkowo, oprócz termów zależnych od termów, mamy termy zależne od typów. Wprowadzimy trzeci już rodzaj abstrakcji i aplikacji, poprzedni był w świecie typów, ten będzie w świecie termów. Znana jest nam funkcja identycznościowa $\lambda x.x$, w λ_{\rightarrow} możemy ją napisać na wiele sposób: $\lambda x: Bool.x, \lambda x: Nat.x, \lambda x: Bool \rightarrow Nat.x.$ W systemie F możemy wszystkie te funkcje zapisać jako: $\lambda X.\lambda x: X.x$. Zauważmy, że ten term przyjmuje jako pierwszy argument typ, następnie term tego typu i zwraca term. Przykładem użycia takiego termu mogą być: $(\lambda X.\lambda x: X.x)$ [Bool] true, co daje true, albo $(\lambda X.\lambda x: X.x)$ [Nat] 1, co daje 1. W ten sposób powstała nam uniwersalna funkcja identycznościowa, której nadamy tzw. uniwersalny typ: $\lambda X.\lambda x: X.x: \forall X.x: \forall X.X. \rightarrow X$. Dodatkowo, jako że dodaliśmy już do systemu rodzaje, napiszemy $\lambda X: x.x: X.x: \forall X:x: x.x \rightarrow X: x.x$

Czy moglibyśmy napisać $\lambda X :: * \Rightarrow *.\lambda x : X.x : \forall X :: * \Rightarrow *.X \rightarrow X :: * \Rightarrow *?$ Jak już mówiliśmy, tylko konstruktory rodzaju * są typami, więc powyższy term nie jest dobry.

Po tym krótkim wstępie możemy już zdefiniować odziedziczone z systemu F własności takie, jak:

• abstrakcję i aplikację typową na termach

• typ uniwersalny

```
egin{array}{lll} {\sf T} ::= & \ldots & typy \ & orall {\sf X} :: {\sf K}. {\sf T} & typ \ uniwersalny \end{array}
```

2.2. Typowanie

2.2.1. Kontekst

Kontekst typowania opisany jest następującą składnią abstrakcyjną:

$\Gamma ::=$		kontekst
	Ø	$pusty\ kontekst$
	$\Gamma,\mathtt{x}:\mathtt{T}$	$wiqzanie\ typu$
	$\Gamma, \mathtt{X} :: \mathtt{K}$	$wiqzanie\ rodzaju$

Konteksty typowania bedziemy często traktować jako skończone zbiory wiązań i będziemy używać teoriomnogościowych symboli na nich. Np. przynależność do kontekstu formalnie definiujemy jako:

$$\frac{B \in \Gamma}{B \in \Gamma, B'} \qquad \frac{B \in \Gamma}{B \in \Gamma, B'}$$

Definicje pozostałych operacji teoriomnogościowych są na tyle naturalne, że zostawiamy je Czytelnikowi do uzupełnienia.

2.2.2. Podstawienia

Oprócz zwykłego podstawienia za zmienne, które pozostawiamy Czytelnikowi do uzupełnienia, powinniśmy zdefiniować podstawienie za zmienne konstruktorowe.

$$\bullet \ [\mathtt{Y} \mapsto \mathtt{T}]\mathtt{X} = \begin{cases} \mathtt{T} & Y = X \\ \mathtt{X} & \mathrm{w.p.p} \end{cases}$$

•
$$[Y \mapsto T](X_1 X_2) = [Y \mapsto T]X_1[Y \mapsto T]X_2$$

$$\bullet \ [\mathtt{Y} \mapsto \mathtt{T}](\mathtt{S}_1 \to \mathtt{S}_2) = [\mathtt{Y} \mapsto \mathtt{T}]\mathtt{S}_1 \to [\mathtt{Y} \mapsto \mathtt{T}]\mathtt{S}_2$$

$$\bullet \ [\mathtt{Y} \mapsto \mathtt{T}] \forall \mathtt{X}.\mathtt{S} = \begin{cases} \forall \mathtt{X}.\mathtt{S} & Y = X \text{ lub } Y \notin FV(S) \\ \forall \mathtt{X}.[\mathtt{Y} \mapsto \mathtt{T}]\mathtt{S} & X \notin FV(S) \text{ i } Y \in FV(S) \end{cases}$$

$$\bullet \ [\mathtt{Y} := \mathtt{T}] \lambda \mathtt{X.S} = \begin{cases} \lambda \mathtt{X.S} & Y = X \text{ lub } Y \notin FV(S) \\ \lambda \mathtt{X.} [\mathtt{Y} \mapsto \mathtt{T}] \mathtt{S} & X \notin FV(S) \text{ i } Y \in FV(S) \end{cases}$$

2.2.3. Relacja \equiv

Jak wspomnieliśmy w rozdziałe 2.1.1, definiujemy na typach relację równoważności. W poniższych wzorach S, S_1, S_2, T, T_1, T_2 to typy, K to rodzaj. Następujące trzy reguły:

$$\frac{S \equiv T}{T \equiv T} \qquad \frac{S \equiv U \quad U \equiv T}{S \equiv T}$$

gwarantują nam równoważność relacji ≡. Pozostałe reguły jak następuje:

$$\begin{split} \frac{S_1 \equiv T_1 \quad S_2 \equiv T_2}{S_1 \rightarrow S_2 \equiv T_1 \rightarrow T_2} & \frac{S_1 \equiv T_1 \quad S_2 \equiv T_2}{S_1 \ S_2 \equiv T_1 \ T_2} \\ \frac{S \equiv T}{\lambda \texttt{X} :: \texttt{K.S} \equiv \lambda \texttt{X} :: \texttt{K.T}} & (\lambda \texttt{X} :: \texttt{K.S}) \texttt{T} \equiv [\texttt{X} \mapsto \texttt{T}] \texttt{S} \end{split}$$

definiują równoważność funkcji typowych, aplikacji i abstrakcji konstruktorowych oraz typów uniwersalnych.

2.2.4. Reguły znajdowania rodzaju

W systemie F_{ω} każdemu poprawnie zbudowanemu typowi przyporządkowujemy rodzaj. Przyporządkowanie to określa relacja (. \vdash . :: .) zdefiniowana następująco.

Jeżeli zachodzi $\Gamma \vdash T :: K$, to powiemy, że $typ\ T$ $jest\ rodzaju\ K\ w\ kontekście\ \Gamma$, gdzie relacja określenia rodzaju (. \vdash . :: .) $\subseteq \Gamma \times T \times K$ jest najmniejszą relacją zamkniętą na reguły:

$$\begin{split} \frac{\mathtt{X} :: \mathtt{K} \in \Gamma}{\mathtt{\Gamma} \vdash \mathtt{X} :: \mathtt{K}} & \frac{\Gamma \vdash \mathtt{T}_1 :: \mathtt{K}_1 \Rightarrow \mathtt{K}_2 \quad \Gamma \vdash \mathtt{T}_2 :: \mathtt{K}_1}{\Gamma \vdash \mathtt{T}_1 \mathtt{T}_2 :: \mathtt{K}_2} \\ \\ \frac{\Gamma \vdash \mathtt{X} :: \mathtt{K}_1 \quad \Gamma \vdash \mathtt{T} :: \mathtt{K}_2}{\Gamma \vdash \lambda \mathtt{X} :: \mathtt{K}_1 .\mathtt{T} :: \mathtt{K}_1 \Rightarrow \mathtt{K}_2} & \frac{\Gamma \vdash \mathtt{X} :: \mathtt{K} \quad \Gamma \vdash \mathtt{T} :: *}{\Gamma \vdash \mathtt{T}_1 :* \quad \Gamma \vdash \mathtt{T}_2 :*} \\ \\ \frac{\Gamma \vdash \mathtt{T}_1 :* \quad \Gamma \vdash \mathtt{T}_2 :*}{\Gamma \vdash \mathtt{T}_1 \to \mathtt{T}_2 :*} \end{split}$$

2.2.5. Reguly typowania

Jesteśmy już gotowi przedstawić reguły typowania zdefiniowanego wyżej systemu F_{ω} . Każdemu poprawnie zbudowanemu termowi przyporządkowujemy typ. Przyporządkowanie to określa relacja (. \vdash . : .) zdefiniowana następująco.

$$\begin{split} \frac{\underline{x:T\in\Gamma}}{\Gamma\vdash x:T} & \frac{\Gamma\vdash T_1::*\quad \Gamma,x:T_1\vdash t_2:T_2}{\Gamma\vdash \lambda x:T_1.t_2:T_1\to T_2} \\ \frac{\Gamma\vdash t_1:T_1\to T_2\quad \Gamma\vdash t_2:T_1}{\Gamma\vdash t_1:t_2:T_2} & \frac{\Gamma\vdash t:S\quad S\equiv T\quad \Gamma\vdash T::*}{\Gamma\vdash t:T} \\ \frac{\Gamma,X::K\vdash t:T}{\Gamma\vdash \lambda X::K.t:\forall X::K.T} & \frac{\Gamma\vdash t:\forall X::K.T\quad \Gamma\vdash T'::K}{\Gamma\vdash t[T']:[X\mapsto T']T} \end{split}$$

2.3. Ewaluacja

Wartości w F_{ω} zdefiniujemy dokładnie jak w λ_{\rightarrow} .

Ewaluacja przebiega w sposób standardowy dla aplikacji i abstrakcji termów. Teraz, dla czytelności, przetoczymy te reguły ewaluacji $(t_1, t_1', t_2, t_2', t$ to termy, v to wartość, x:T to zmienna x typu T):

$$\begin{split} \frac{\mathtt{t_1} \longrightarrow \mathtt{t_1'}}{\mathtt{t_1} \ \mathtt{t_2} \longrightarrow \mathtt{t_1'} \ \mathtt{t_2}} & \quad \frac{\mathtt{t_2} \longrightarrow \mathtt{t_2'}}{\mathtt{v_1} \ \mathtt{t_2} \longrightarrow \mathtt{v_1} \ \mathtt{t_2'}} \\ & (\lambda \mathtt{x} : \mathtt{T.t}) \mathtt{v} \longrightarrow [\mathtt{x} \mapsto \mathtt{v}] \mathtt{t} \end{split}$$

Do tego dochodzą reguły dla nowych w języku abstrakcji typowych i aplikacji typowych.

$$\frac{\mathtt{t} \longrightarrow \mathtt{t}'}{\mathtt{t}[\mathtt{T}] \longrightarrow \mathtt{t}'[\mathtt{T}]}$$
$$(\lambda \mathtt{X} :: \mathtt{K}.\mathtt{t})[\mathtt{T}] \longrightarrow [\mathtt{X} \mapsto \mathtt{T}]\mathtt{t}$$

3. Rozszerzenia F_{ω}

W rozdziale tym chcielibyśmy poruszyć, jak w systemie F_{ω} zdefiniować najprostrze konstrukcje, takie jak wyrażenia arytmetyczne i logiczne, warianty, sekwencje wyrażeń, typy egzystencjalne, rekordy i inne. Pokażemy również, jak przebiega typowanie, ewaluacja i gdzieniegdzie dodamy reguły tworzenia rodzaju.

Chcielibysmy podkreślić, że następująca reguła typowania:

$$\frac{\Gamma \vdash t : T \quad S \equiv T \quad \Gamma \vdash S :: *}{\Gamma \vdash t : S}$$

bardzo ułatwia definiowanie reguł typowania w F_{ω} . W większości przypadków są one takie same lub lekko zmodyfikowane, dlatego nie powinny nastręczać trudności.

3.1. wyrażenia arytmetyczne i logiczne

Wyreżania arytmetyczne i logiczne to część, bez której żaden język się nie obędzie. Oczywiście można je sobie zakodować w systemie F_{ω} , ale normą są wbudowane w język wyrażenia. Termy, typy i wartości wyrażeń zdefiniujemy następująco:

t ::=		termy
	true	prawda
	false	falsz
	zero	zero
	succ t	nastepnik
	pred t	poprzednik
	iszero	test na zero
	if t then t else t	warunek
T ::=		typy
	Nat	$typ\ liczbowy$
	Bool	$typ\ boolowski$
v ::=		typy
	true	wartość prawdy
	false	$wartość\ fałszu$
	nv	$wartość\ liczbowa$
nv ::=		$wartość\ liczbowa$
	zero	wartość zera
	succ nv	wartość następnika

Na pewno musimy dodać reguły tworzenia rodzaju dla Nat i Bool, którym nadamy rodzaj *:

$$\overline{\Gamma \vdash Bool :: *}$$
 $\overline{\Gamma \vdash Nat :: *}$

Typowanie wygląda dokładnie tak samo jak w rachunku lambda z typami prostymi. Możemy sobie pozwolić na takie reguły dzięki regule XXX. Przykładowo, nie tylko termy typu Nat mogą się dobrze otypować, gdy zaaplikujemy je do succ. Dla $t:(\lambda X.X)$ Nat otrzymamy:

$$\frac{\Gamma\vdash t: (\lambda X.X) \text{Nat} \qquad \Gamma\vdash (\lambda X.X) \text{Nat} \equiv \text{Nat} \qquad \Gamma\vdash (\lambda X.X) \text{Nat} ::*}{\Gamma\vdash t: \text{Nat}}$$

$$\Gamma\vdash \text{Succ} \ t: \text{Nat}$$

Nie musimy również pisać reguł typu:

$$\frac{\Gamma \vdash \mathtt{t}_1 : \mathtt{Bool} \quad \Gamma \vdash \mathtt{t}_2 : T \quad \Gamma \vdash \mathtt{t}_3 : T \quad \Gamma \vdash T :: *}{\Gamma \vdash \mathtt{if} \ \mathtt{t}_1 \ \mathtt{then} \ \mathtt{t}_2 \ \mathtt{else} \ \mathtt{t}_3 : T}$$

ponieważ posiadanie typu przez term t_2 gwarantuje nam, że ten typ będzie rodzaju *. Stąd, reguły typowania wyrażeń arytmetycznych i logicznych wyglądają następująco w F_{ω} :

$$\begin{array}{c} \frac{\Gamma \vdash t : \mathtt{Nat}}{\Gamma \vdash \mathtt{true} : \mathtt{Bool}} & \frac{\Gamma \vdash t : \mathtt{Nat}}{\Gamma \vdash \mathtt{iszero} \ t : \mathtt{Bool}} \\ \\ \frac{\Gamma \vdash \mathsf{t}_1 : \mathtt{Bool} \quad \Gamma \vdash \mathsf{t}_2 : T \quad \Gamma \vdash \mathsf{t}_3 : T}{\Gamma \vdash \mathtt{if} \ \mathsf{t}_1 \ \mathtt{then} \ \mathsf{t}_2 \ \mathtt{else} \ \mathsf{t}_3 : T} \\ \\ \frac{\Gamma \vdash \mathsf{t} : \mathtt{Nat}}{\Gamma \vdash \mathtt{zero} : \mathtt{Nat}} & \frac{\Gamma \vdash \mathsf{t} : \mathtt{Nat}}{\Gamma \vdash \mathtt{succ} \ \mathsf{t} : \mathtt{Nat}} & \frac{\Gamma \vdash \mathsf{t} : \mathtt{Nat}}{\Gamma \vdash \mathtt{pred} \ \mathsf{t} : \mathtt{Nat}} \end{array}$$

Zdefiniowanie reguł ewaluacji pozostawiamy Czytelnikowi.

3.2. Unit i sekwencje

W rachunku lambda z typami prostymi dodaliśmy do składnię języka rozszerzaliśmy o konstrukcje takie, jak:

inoje tame, jam.				
t ::=		termy		
	unit	$term\ unit$		
T ::=		typy		
	Unit	$typ\ unit$		
v ::=		$warto\acute{s}ci$		
	unit	wartość unit		

natomiast typowanie przebiegało następująco:

$$\overline{\Gamma \vdash \mathtt{unit} : \mathtt{Unit}}$$

a sekwencje definiowaliśmy jako:

$$t_1; t_2 \stackrel{\text{def}}{=} (\lambda x : \text{Unit.} t_2) t_1 \qquad \text{gdzie } x \notin FV(t_2)$$

Aby pozostać przy wbudowanym unit w język wystarczy dodać regułę znajdowania rodzaju dla typu Unit:

$$\overline{\Gamma \vdash \mathtt{Unit} :: *}$$

W rachunku F_{ω} pojawia się możliwość zakodowania unit i Unit. Robimy to w taki sposób: unit $\stackrel{\tt def}{=} = \lambda {\tt X} :: *.\lambda {\tt x} : {\tt X}.{\tt x}$ Unit $\stackrel{\tt def}{=} \forall {\tt X} :: *.{\tt X} \to {\tt X}$

3.3. Anotacje typowe

Anotacje typowe są przydatną konstrukcją używaną na przykład przy typach egzystencjalnych.

Ewaluacja i typowanie nie zmieniają się.

3.4. Definicje lokalne

$$\texttt{let} \ \mathtt{x} = \mathtt{t_1} \ \mathtt{in} \ \mathtt{t_2} \ \overset{\texttt{def}}{=} \ (\lambda \mathtt{x} : \mathtt{T}.\mathtt{t_2})\mathtt{t_1} \qquad \quad \mathtt{gdzie} \ \mathtt{t_1} : \mathtt{T}$$

3.5. Rekordy

Składnię rekorów zdefiniujemy następująco:

Do relacji tworzenia rodzaju dodamy regułę nadającą rodzaj typowi $\{\mathtt{l_i}: \mathtt{T_i}^{\ i \in 1..n}\}$:

$$\frac{\Gamma \vdash T_1 :: * \dots \Gamma \vdash T_n :: *}{\Gamma \vdash \{1_i : T_i^{i \in 1..n}\} :: *}$$

oraz wprowadzimy niewielkie zmiany w regułach typowania:

$$\begin{split} \frac{\Gamma \vdash \mathtt{t}_1 : \mathtt{T}_1 \ \dots \ \Gamma \vdash \mathtt{t}_n : \mathtt{T}_n \qquad \Gamma \vdash \left\{ \mathtt{l}_i : \mathtt{T}_i^{\ i \in 1..n} \right\} :: *}{\Gamma \vdash \left\{ \mathtt{l}_i = \mathtt{t}_i^{\ i \in 1..n} \right\} : \left\{ \mathtt{l}_i : \mathtt{T}_i^{\ i \in 1..n} \right\}} \\ \frac{\Gamma \vdash \mathtt{t} : \left\{ \mathtt{l}_i : \mathtt{T}_i^{\ i \in 1..n} \right\}}{\Gamma \vdash \mathtt{t} . i : \mathtt{T}_i} \end{split}$$

a ewaluację pozostawimy bez zmian:

$$\begin{split} \{l_{\mathtt{i}} = \mathtt{v_i}^{\ \mathtt{i} \in 1..n}\}.\mathtt{i} &\longrightarrow \mathtt{v_i} &\quad \frac{\mathsf{e} \longrightarrow \mathsf{e'}}{\mathsf{e}.\mathtt{i} \longrightarrow \mathsf{e'}.\mathtt{i}} \\ \\ \frac{\mathtt{t_i} \longrightarrow \mathtt{t'_i}}{\{l_1 = \mathtt{v_1}, \ldots, l_{\mathtt{i}-1} = \mathtt{v_{i-1}}, l_{\mathtt{i}} = \mathtt{t_i}, \ldots, l_{\mathtt{n}} = \mathtt{t_n}\} \longrightarrow \{l_1 = \mathtt{v_1}, \ldots, l_{\mathtt{i}-1} = \mathtt{v_{i-1}}, l_{\mathtt{i}} = \mathtt{t'_i}, \ldots, l_{\mathtt{n}} = \mathtt{t_n}\} \end{split}$$

3.6. Warianty

Składnię wariantów zdefiniujemy następująco:

$$\begin{array}{|c|c|c|c|} \hline \texttt{t} ::= & \dots & & \textit{termy} \\ & < \texttt{l} = \texttt{t} > \texttt{as} \, \texttt{T} & \textit{tagowanie} \\ & \texttt{case} \, \texttt{tof} \, < \texttt{l}_{\texttt{i}} = \texttt{x}_{\texttt{i}} > \Rightarrow \texttt{t}_{\texttt{i}} \, \overset{\texttt{i} \in 1..n}{} & \textit{case} \\ \hline \texttt{T} ::= & \dots & \textit{typy} \\ & < \texttt{l}_{\texttt{i}} : \texttt{T}_{\texttt{i}} \, \overset{\texttt{i} \in 1..n}{} > & \textit{typ wariantu} \\ \hline \end{array}$$

Podobnie jak przy rekordach, typ wariantu dostanie rodzaj *:

$$\frac{\Gamma \vdash T_1 :: * \dots \Gamma \vdash T_n :: *}{\Gamma \vdash < 1_i : T_i \stackrel{i \in 1..n}{>} :: *}$$

a w regułąch typowania wprowadzimy małe zmiany:

$$\begin{split} \frac{\Gamma \vdash t_0 :< \textbf{l}_i : \textbf{T}_i \overset{\text{i} \in 1..n}{>} > \quad \Gamma, \textbf{x}_1 : \textbf{T}_1 \vdash t_1 : \textbf{T} \ \dots \ \Gamma, \textbf{x}_n : \textbf{T}_n \vdash t_n : \textbf{T}}{\Gamma \vdash \text{case } t_0 \text{ of } < \textbf{l}_i = \textbf{x}_i > \Rightarrow \textbf{t}_i \overset{\text{i} \in 1..n}{>} : \textbf{T}} \\ & \frac{\Gamma \vdash \textbf{t}_j : \textbf{T}_j \qquad \Gamma \vdash < \textbf{l}_i : \textbf{T}_i \overset{\text{i} \in 1..n}{>} : : *}{\Gamma \vdash < \textbf{l}_j = \textbf{t}_j > \text{as} < \textbf{l}_i : \textbf{T}_i \overset{\text{i} \in 1..n}{>} : < \textbf{l}_i : \textbf{T}_i \overset{\text{i} \in 1..n}{>} >} \end{split}$$

natomiast ewaluacja pozostanie bez zmian:

$$\begin{split} \text{case} \ (<\textbf{l}_{j} = \textbf{t}_{j} > \text{ as } \textbf{T}) \ \text{of} \ &<\textbf{l}_{i} = \textbf{x}_{i} > \Rightarrow \textbf{t}_{i} \ ^{i \in 1..n} \longrightarrow [\textbf{x}_{j} \mapsto \textbf{v}_{j}] \textbf{t}_{j} \\ \\ \hline \\ \frac{\textbf{t} \longrightarrow \textbf{t}'}{\text{case } \textbf{t} \ \text{of} \ &<\textbf{l}_{i} = \textbf{x}_{i} > \Rightarrow \textbf{t}_{i} \ ^{i \in 1..n} \longrightarrow \text{case } \textbf{t}' \ \text{of} \ &<\textbf{l}_{i} = \textbf{x}_{i} > \Rightarrow \textbf{t}_{i} \ ^{i \in 1..n}} \\ \hline \\ \frac{\textbf{t}_{j} \longrightarrow \textbf{t}'_{j}}{<\textbf{l}_{j} = \textbf{t}_{j} > \text{ as } \textbf{T} \longrightarrow <\textbf{l}_{j} = \textbf{t}'_{j} > \text{ as } \textbf{T}} \end{split}$$

3.7. Punkt stały

Typowanie

$$\frac{\Gamma, \mathbf{f} : \mathbf{T} \vdash \mathbf{v} : \mathbf{S} \qquad \Gamma \vdash \mathbf{T} :: * \qquad \Gamma \vdash \mathbf{S} :: * \qquad \mathbf{S} \equiv \mathbf{T}}{\Gamma \vdash \mathbf{fix} \; \mathbf{f.v} : \mathbf{T}}$$

Ewaluacja

$$\mathtt{fix}\;\mathtt{f.v}\longrightarrow [\mathtt{f}\mapsto\mathtt{fix}\;\mathtt{f.v}]\mathtt{v}$$

3.8. Listy

Jako przykład wbudowanych typów danych wybraliśmy listy. Podobne rekursywne struktury, jak na przykład drzewa, możemy dodać do języka w analogiczny sposób, jednak rekurencyjne typy danych odwiodą nas od tej konieczności.

```
t ::=
                                         termy
           nil[T]
                                     lista pusta
        cons[T] t t
                              konstruktor listy
         isnil[T] t
                          test na pustość listy
        head[T] t t
                                    głowa listy
         tail[T] t
                                      ogon listy
T ::=
                                           typy
          List T
                                       typ listy
v ::=
                                           typy
          nil [T]
                           wartość pustej listy
                        wartość listy niepustej
        cons [T] v v
```

Tworzenie rodzaju:

 $\frac{\Gamma \vdash T :: *}{\Gamma \vdash \text{List } T :: *}$

Typowanie:

$$\begin{split} &\frac{\Gamma \vdash List \ T :: *}{\Gamma \vdash nil[T] : List \ T} & \frac{\Gamma \vdash t_1 : T \quad \Gamma \vdash t_2 : List \ T}{\Gamma \vdash List[T] \ t_1 \ t_2 : List \ T} \\ &\frac{\Gamma \vdash t : List \ T}{\Gamma \vdash head[T] \ t : T} & \frac{\Gamma \vdash t : List \ T}{\Gamma \vdash tail[T] \ t : List \ T} \end{split}$$

Ewaluacja:

aaa

3.9. Typy egzystencjalne

System F_{ω} jest już w stanie zakodować typy egzystencjalne, choć wbudowane typy egzystencjalne niczemu nie szkodzą. Pokażemy oba podejścia do tego problemu, zaczynając od przedstawienia składni:

```
\begin{array}{|c|c|c|c|} \hline \texttt{t} ::= & \cdots & & termy \\ & \{^*\mathtt{T} :: \mathtt{K}, \mathtt{t}\} \text{ as } \mathtt{T} & pakowanie \\ & \texttt{let} \, \{\mathtt{X}, \mathtt{x}\} = \mathtt{t} \text{ in } \mathtt{t} & odpakowanie \\ \hline \texttt{T} ::= & \cdots & typy \\ & \{\exists \mathtt{X} :: \mathtt{K}, \mathtt{T}\} & typ \ egzystencjalny \\ \hline \texttt{v} ::= & \cdots & wartości \\ & \{^*\mathtt{T}, \mathtt{v}\} \text{ as } \mathtt{T} & pakowanie \\ \hline \end{array}
```

W systemie F_{ω} powyższe elementy języka możemy zdefiniować następująco:

$$\{\exists X :: K, T\} \stackrel{\text{def}}{=} \forall Y :: *.(\forall X :: K.T \to Y) \to Y$$

$$\{^*U :: K, t\} \text{ as } \{\exists X :: K, T\} \stackrel{\text{def}}{=} \text{ let } x = t \text{ in } \lambda Y :: *.(\lambda f : \forall X :: K.T \to Y).f [U] x$$

$$\text{let } \{X :: K, x\} = t \text{ in } t' \stackrel{\text{def}}{=} t[T'](\lambda X :: K.\lambda x : T.t') \qquad \text{gdzie } t' : T'$$

Zauważmy, że dopiero obecność rodzajów pozwoliła nam na tego rodzaju sztuczki. W systemie F nie umiemy tak zrobić.

Na pierwszy rzut oka termy te są niezrozumiałe. Ależ jak bardzo można się mylić – są miłe i przyjemne dla swych wielbicieli. Pokażemy, że zachodzą podstawowe własności pakowania i odpakowania. Rozważmy term $\{^*U :: K, t\}$ as $\{\exists X :: K, T\}$.

```
\begin{array}{l} = (\lambda \mathbf{x} : [\mathbf{X} \mapsto \mathbf{U}] \mathbf{T}.\lambda \mathbf{Y} :: *.\lambda \mathbf{f} : (\forall \mathbf{X} :: \mathbf{K}.\mathbf{T} \to \mathbf{Y}).\mathbf{f}[\mathbf{U}]\mathbf{x})\mathbf{t} = \\ \overset{\mathbf{t} : [\mathbf{X} \mapsto \mathbf{U}] \mathbf{T}}{=} \lambda \mathbf{Y} :: *.\lambda \mathbf{f} : (\forall \mathbf{X} :: \mathbf{K}.\mathbf{T} \to \mathbf{Y}).\mathbf{f}[\mathbf{U}](\mathbf{t} : [\mathbf{X} \mapsto \mathbf{U}] \mathbf{T}) \\ \text{co jest typu } \forall \mathbf{Y} :: *.(\forall \mathbf{X} :: \mathbf{K}.\mathbf{T} \to \mathbf{Y}) \to \mathbf{Y}, \text{ czyli z definicji } \{\exists \mathbf{X} :: \mathbf{K}, \mathbf{T}\}. \end{array}
```

Rozważmy bardziej życiowy przykład, aby Czytelnik mógł jeszcze raz przeanalizować pakowanie. Oto typowanie w systemie F przykładowego termu:

$$\frac{\Gamma \vdash \{a = \mathtt{zero}, \mathtt{f} : \lambda \mathtt{x} : \mathtt{Nat}.\mathtt{succ} \ \mathtt{x}\} : [\mathtt{X} \mapsto \mathtt{Nat}] \{\mathtt{a} : \mathtt{X}, \mathtt{f} : \mathtt{X} \to \mathtt{Nat}\}}{\Gamma \{^*\mathtt{X}, \{\mathtt{a} = \mathtt{zero}, \mathtt{f} : \lambda \mathtt{x} : \mathtt{Nat}.\mathtt{succ} \ \mathtt{x}\}\} \ \mathtt{as} \ \{\exists \mathtt{X}, \{\mathtt{a} : \mathtt{X}, \mathtt{f} : \mathtt{X} \to \mathtt{Nat}\}\}}$$

Następnie wyprowadzimy ten term w F_{ω} :

```
 \begin{split} & \{ \mathtt{Nat} : \mathtt{K}, \{ \mathtt{a} = \mathtt{zero}, \mathtt{f} : \lambda \mathtt{x} : \mathtt{Nat}. \mathtt{succ} \ \mathtt{x} \} \} \ \mathtt{as} \ \{ \exists \mathtt{X} : \mathtt{K}, \{ \mathtt{a} : \mathtt{X}, \mathtt{f} : \mathtt{X} \to \mathtt{Nat} \} \} = \\ & = \mathtt{let} \ \mathtt{x} = \{ \mathtt{a} = \mathtt{zero}, \mathtt{f} : \lambda \mathtt{x} : \mathtt{Nat}. \mathtt{succ} \ \mathtt{x} \} \ \mathtt{in} \ \lambda \mathtt{Y} : : *.\lambda \mathtt{f} : (\forall \mathtt{X} : : \mathtt{K}. \{ \mathtt{a} : \mathtt{X}, \mathtt{f} : \mathtt{X} \to \mathtt{Nat} \} \to \mathtt{Y}). \mathtt{f} [\mathtt{Nat}] \mathtt{x} = \\ & = (\lambda \mathtt{x} : [\mathtt{X} \mapsto \mathtt{Nat}] \{ \mathtt{a} : \mathtt{X}, \mathtt{f} : \mathtt{X} \to \mathtt{Nat} \}. \lambda \mathtt{Y} : : *.\lambda \mathtt{f} : (\forall \mathtt{X} : : \mathtt{K}. \{ \mathtt{a} : \mathtt{X}, \mathtt{f} : \mathtt{X} \to \mathtt{Nat} \} \to \mathtt{Y}). \mathtt{f} [\mathtt{Nat}] \mathtt{x}) \\ & \{ \mathtt{a} = \mathtt{zero}, \mathtt{f} : \lambda \mathtt{x} : \mathtt{Nat}. \mathtt{succ} \ \mathtt{x} \} \\ & = \lambda \mathtt{Y} : : *.\lambda \mathtt{f} : (\forall \mathtt{X} : : \mathtt{K}. \{ \mathtt{a} : \mathtt{X}, \mathtt{f} : \mathtt{X} \to \mathtt{Nat} \} \to \mathtt{Y}). \mathtt{f} [\mathtt{Nat}] \{ \mathtt{a} = \mathtt{zero}, \mathtt{f} : \lambda \mathtt{x} : \mathtt{Nat}. \mathtt{succ} \ \mathtt{x} \} \\ & \mathtt{co} \ \mathtt{jest} \ \mathtt{typu} \ \forall \mathtt{Y} : : *.(\forall \mathtt{X} : : \mathtt{K}. \{ \mathtt{a} : \mathtt{X}, \mathtt{f} : \mathtt{X} \to \mathtt{Nat} \} \to \mathtt{Y}) \to \mathtt{Y}, \mathtt{czyli} \ \mathtt{z} \ \mathtt{definicji} \ \{ \exists \mathtt{X} : : \mathtt{K}, \{ \mathtt{a} : \mathtt{X}, \mathtt{f} : \mathtt{X} \to \mathtt{Nat} \} \}. \end{split}
```

Uważne odpakowanie otrzymanego termu pozostawiamy Czytelnikowi jako ćwiczenie, my pozwolimy sobie przeprowadzać schemat wywodu:

```
 \begin{split} & \texttt{let} \ \{ \texttt{X}, \texttt{x} \} = \lambda \texttt{Y} :: *.\lambda \texttt{f} : (\forall \texttt{X} :: \texttt{K}. \{\texttt{a} : \texttt{X}, \texttt{f} : \texttt{X} \to \texttt{Nat} \} \to \texttt{Y}). \texttt{f} [\texttt{Nat}] \{\texttt{a} = \texttt{zero}, \texttt{f} : \lambda \texttt{x} : \texttt{Nat}. \texttt{succ} \ \texttt{x} \} \ \text{in} \ (\texttt{x}.\texttt{f} \ \texttt{x}.\texttt{a}) = \\ & = (\lambda \texttt{Y} :: *.\lambda \texttt{f} : (\forall \texttt{X} :: \texttt{K}. \{\texttt{a} : \texttt{X}, \texttt{f} : \texttt{X} \to \texttt{Nat} \} \to \texttt{Y}). \texttt{f} [\texttt{Nat}] \{\texttt{a} = \texttt{zero}, \texttt{f} : \lambda \texttt{x} : \texttt{Nat}. \texttt{succ} \ \texttt{x} \}) [\texttt{T}'] (\lambda \texttt{X} :: \texttt{K}.\lambda \texttt{x} : \texttt{T}. (\texttt{x}.\texttt{f} \ \texttt{x}.\texttt{a})) = \\ & = ((\lambda \texttt{X} :: \texttt{K}.\lambda \texttt{x} : \texttt{T}. (\texttt{x}.\texttt{f} \ \texttt{x}.\texttt{a})) [\texttt{Nat}] (\{\texttt{a} = \texttt{zero}, \texttt{f} : \lambda \texttt{x} : \texttt{Nat}. \texttt{succ} \ \texttt{x} \} : [\texttt{X} \mapsto \texttt{Nat}] \{\texttt{a} : \texttt{X}, \texttt{f} : \texttt{X} \to \texttt{Nat} \})) = \\ & = (\{\texttt{a} = \texttt{zero}, \texttt{f} : \lambda \texttt{x} : \texttt{Nat}. \texttt{succ} \ \texttt{x} \}. \texttt{f} \ \{\texttt{a} = \texttt{zero}, \texttt{f} : \lambda \texttt{x} : \texttt{Nat}. \texttt{succ} \ \texttt{x} \}. \texttt{a}) = \\ & = (\lambda \texttt{x} : \texttt{Nat}. \texttt{succ} \ \texttt{x}) \texttt{zero} = \texttt{succ} \ \texttt{zero} \end{split}
```

Przykłady powyższe obrazują działanie zakodowanych typów rekurencyjnych. Teraz zdefiniujemy wbudowane w język konstrukcje typów rekurencyjnych dla systemu F_{ω} . Do definicji termów, typów i wartości dodaliśmy już elementy w tabelce na początku rozdziału. Pokażemy, w jaki sposób przebiega typowanie i ewaluacja.

Tworzenie rodzaju:

$$\frac{\text{a tutaj co?}}{\Gamma \vdash \{\exists X :: K, T\} :: K}$$

Typowanie:

$$\begin{split} \frac{\Gamma \vdash \mathtt{t} : [\mathtt{X} \mapsto \mathtt{U}]\mathtt{T} & \Gamma \vdash \mathtt{U} :: \mathtt{K} & \Gamma \vdash \{\exists \mathtt{X} :: \mathtt{K}, \mathtt{T}\} :: *}{\Gamma \vdash \{*\mathtt{U} :: \mathtt{K}, \mathtt{t}\} \text{ as } \{\exists \mathtt{X} :: \mathtt{K}, \mathtt{T}\} : \{\exists \mathtt{X} :: \mathtt{K}, \mathtt{T}\}} \\ \frac{\Gamma \vdash \mathtt{t}_1 : \{\exists \mathtt{X} :: \mathtt{K}, \mathtt{T}_1\} & \Gamma, \mathtt{X} :: \mathtt{K}, \mathtt{x} : \mathtt{T}_1 \vdash \mathtt{t}_2 : \mathtt{T}_2}{\Gamma \vdash \mathtt{let} \{\mathtt{X}, \mathtt{x}\} = \mathtt{t}_1 \text{ in } \mathtt{t}_2 : \mathtt{T}_2} \end{split}$$

Ewaluacja:

$$\begin{split} \text{let} \; \{\textbf{X}, \textbf{x}\} &= (\{\text{*U} :: \textbf{K}, \textbf{v}\} \; \text{as} \; \textbf{T}) \; \; \text{in} \; \textbf{t} \longrightarrow [\textbf{X} \mapsto \textbf{U}][\textbf{x} \mapsto \textbf{v}] \textbf{t} \\ & \frac{\textbf{t} \longrightarrow \textbf{t}'}{\{\text{*U} :: \textbf{K}, \textbf{t}\} \; \text{as} \; \textbf{T} \longrightarrow \{\text{*U} :: \textbf{K}, \textbf{t}'\} \; \text{as} \; \textbf{T}} \\ & \frac{\textbf{t}_1 \longrightarrow \textbf{t}_1'}{\text{let} \; \{\textbf{X}, \textbf{x}\} = \textbf{t}_1 \; \; \text{in} \; \textbf{t}_2 \longrightarrow \text{let} \; \{\textbf{X}, \textbf{x}\} = \textbf{t}_1' \; \; \text{in} \; \textbf{t}_2} \end{split}$$

3.10. Typy rekurencyjne

Hmmm, no tu musze się zastanowić, to na dole dla zwykłej wersji.

Tworzenie rodzaju:

$$\Gamma \vdash \mu X.T :: *$$

Typowanie:

$$\frac{\mathtt{U} = \mu \mathtt{X}.\mathtt{T} \qquad \Gamma \vdash \mathtt{t} : [\mathtt{X} \mapsto \mathtt{U}]\mathtt{U}}{\Gamma \vdash \mathtt{fold}[\mathtt{U}] \ \mathtt{t} \ : \mathtt{U}}$$

Ewaluacja:

3.11. dopasowanie wzorca

- 4. Sładnia abstrakcyjna języka
- 5. Semantyka i typowanie
- 6. Rekonstrukcja typów
- 7. Własności i dowody
- 7.1. Inne własności F_{ω}

Definicja 1. Reguły przepisywania typów w systemie F_{ω} w wersji Curry'ego standardowe, oprócz:

$$\frac{\Gamma \vdash M : \forall X \sigma}{\Gamma \vdash M : nf(\sigma[X := \tau])}$$

Nierozstzygalne są problemy:

- $\bullet\,$ sprawdzania typu: dane $\Gamma, M, \tau,$ Czy $\Gamma \vdash M : \tau$
- typowalność: dane M, Czy $\exists \Gamma \tau.\Gamma \vdash M : \tau$

- 7.2. pare słów o rozszerzeniach
- 8. Praktyczne zastosowanie
- 9. Podsumowanie

Literatura

[1] Pierce,