ESERCIZIO

Due connessioni TCP condividono un percorso in rete, in cui la capacità minima disponibile è determinata da un collegamento con banda B = 300 Kbit/s. Si ipotizzi che all'istante t_0 , per effetto delle precedenti dinamiche delle connessioni, la banda utilizzata dalla connessione 1 sia $r_1(t_0)$ =120 Kbit/s e quella utilizzata dalla connessione 2 sia $r_2(t_0)$ =80 Kbit/s.

Si ipotizzi di poter:

- trascurare le fasi di recupero degli errori;
- ipotizzare RTT circa costante;
- considerare le sole fasi di Congestion Avoidance, nelle quali per entrambe le connessioni la banda utilizzata cresca in funzione del tempo secondo la legge r(t) = r(0) + 12 10³ t;
- considerare che si verifichino perdite di segmenti su entrambi le connessioni ogni volta che la banda totale utilizzata $r_1(t')+r_2(t') > 0.8*B$, nel qual caso la banda utilizzabile da ciascuna connessione diviene r(t'+dt)=0.5*r(t') e si inizia un nuovo ciclo.

In queste condizioni si richiede di:

- identificare gli istanti di tempo t₁, t₂ e t₃ in cui si verificano i primi tre fenomeni di congestione con conseguente perdite di segmenti;
- calcolare i valori di banda utilizzata dalle due connessioni appena dopo i fenomeni di congestione (ossia all'inizio di ogni nuovo ciclo).

SOLUZIONE

Determino t₁

Scrivo l'espressione di $R_1(t)+R_2(t)$ e la pongo uguale al valore limite di banda che determina una congestione (80% di B).

$$120+12(t_1-t_0)+80+12(t_1-t_0)=0.8\times300$$

$$t_1$$
- t_0 = (240 – 200)/24 = 1,67 s

Ipotizzando $t_0 = 0$ si ha $t_1 = 1,67$ s

$$R_1(t_1) = 120 + 12*1,67 = 140,04$$

$$R_2(t_1) = 80 + 12*1,67 = 100,04$$

$$R_1(t_1+dt) = 70,02 \approx 70$$

$$R_2(t_1+dt) = 50,02 \approx 50$$

Determino t₂

$$70+12(t_2-t_1)+50+12(t_2-t_1) = 0.8 \times 300$$

$$t_2$$
- t_1 = 120/24 = 5

da cui
$$t_2 = 6.67 \text{ s}$$

$$R_1(t_2) = 70 + 12 \times 5 = 130$$

$$R_2(t_2) = 50 + 12 \times 5 = 110$$

$$R_1(t_2+dt) = 65$$

$$R_2(t_2+dt) = 55$$

Determino t₃

$$65+12(t_3-t_2)+55+12(t_3-t_2) = 0.8 \times 300$$

$$t_3$$
- t_2 = 120/24 = 5

da cui $t_3 = 11,67 s$

$$R_1(t_3) = 65 + 12 \times 5 = 125$$

$$R_2(t_3) = 55 + 12 \times 5 = 115$$

$$R_1(t_3+dt) = 62,5$$

$$R_2(t_3+dt) = 57,5$$

COMMENTO

Completato il primo ciclo (fino a t_1) in cui si èartiva da valori di banda casuali, poi si parte sempre da un valore iniziale di banda pari a $0.8 \times 300/2 = 120$ e quindi il periodo di tempo necessario per tornare in condizione di congestione è sempre $\Delta t = 120/24 = 5$

Pertanto il comportamento risulta sostanzialmente periodico almeno fintanto che non intervengono altri fattori esterni (ad esempio una terza connessione TCP che inizia a competere per la stessa banda).

Sia $\Delta R(t_i+dt) = |R_1(t_i+dt) - R_2(t_i+dt)|$ la differenza fra la banda utilizzata dalle due connessioni (o anche la differenza fra i relativi valori delle finestre) immediatamente dopo un fenomeno di congestione (appena diminuita la finestra).

Ad ogni iterazione $R_1(t)$ ed $R_2(t)$ si avvicinano di una quantità pari a $\Delta R/2$

$$\Delta R(t_{i+1}+dt) = |R_1(t_{i+1}+dt) - R_2(t_{i+1}+dt)| = \Delta R(t_i+dt)/2$$

Nell'esempio specifico

$$\Delta R(t_0 + dt) = 40$$

$$\Delta R(t_1+dt) = 20$$

$$\Delta R(t_2+dt) = 10$$

Due connessioni TCP condividono un percorso in rete, in cui la capacità minima disponibile è determinata da un collegamento con banda B = 500 Kbit/s. Si ipotizzi che all'istante t_0 , per effetto delle precedenti dinamiche delle connessioni, la banda utilizzata dalla connessione 1 sia $r_1(t_0)$ =130 Kbit/s e quella utilizzata dalla connessione 2 sia $r_2(t_0)$ =70 Kbit/s.

Si ipotizzi di poter:

- · trascurare le fasi di recupero degli errori;
- ipotizzare RTT circa costante;
- considerare le sole fasi di Congestion Avoidance, nelle quali la banda utilizzata dalla connessione 1 cresca in funzione del tempo secondo la legge r(t) = r(0) + 25 10³ t e quella della connessione 2 cresca in funzione del tempo secondo la legge r(t) = r(0) + 50 10³ t
- considerare che si verifichino perdite di segmenti su entrambi le connessioni ogni volta che la banda totale utilizzata $r_1(t')+r_2(t') > 0.8*B$, nel qual caso la banda utilizzabile da ciascuna connessione diviene r(t'+dt)=0.5*r(t') e si inizia un nuovo ciclo.

In queste condizioni si richiede di:

- identificare gli istanti di tempo t₁, t₂ e t₃ in cui si verificano i primi tre fenomeni di congestione con conseguente perdite di segmenti;
- calcolare i valori di banda utilizzata dalle due connessioni appena dopo i fenomeni di congestione (ossia all'inizio di ogni nuovo ciclo).

Soluzione

```
Per determinare t<sub>1</sub>
                                                  Per determinare t<sub>2</sub>
130 10^3 + 25 \ 10^3 \ (t_1 - t_0) + 70 \ 10^3 + 50 \ 10^3
                                                  98.3+25(t_2-t_1)+101.75+50(t_2-t_1)=0.8\times500
(t_1-t_0) = 0.8 \times 500 \ 10^3
                                                  t_2-t_1 = 200/75 = 2,67 s
t_1-t_0 = (400 - 200)/75 = 2,67 s
                                                  da cui ipotizzando t_0 = 0 si ottiene t_2 = 5,34 s
                                                  R_1(t_2) = 98.3 + 25 \times 2.67 = 165
Ipotizzando t_0 = 0 si ha t_1 = 2,67 s
R_1(t_1) = 130 + 25*2,67 = 196,75
                                                  R_2(t_2) = 101.75 + 50 \times 2.67 = 235
                                                  R_1(t_2+dt) = 82.5
R_2(t_1) = 70 + 50*2,67 = 203,5
R_1(t_1+dt) = 196.75/2 \approx 98.3
                                                  R_2(t_2+dt) = 117.5
R_2(t_1+dt) = 203,5/2 \approx 101,75
```

Una connessione TCP viene avviata per trasferire un file di dimensione P = 2 10⁶ byte.

La connessione lavora per tutta la sua durata nelle seguenti condizioni:

- banda disponibile lungo il percorso end-to-end C = 800 Kbit/s
- perdite di segmenti dovute a fenomeni di congestione pressoché assenti
- MSS = 1000 byte considerando tutti i segmenti di dimensione pari a MSS
- conferme (ACK) generati ad ogni segmento ricevuto
- ssthr = 16 segmenti
- AW = 64 MSS
- valore iniziale della finestra per la fase di slow start pari a 1
- RTT approssimativamente costante e pari a 180 ms

Determinare:

- 1. la dimensione della finestra W_o che ottimizza l'uso del canale;
- 2. il tempo totale necessario per il trasferimento del file.

Soluzione

 $W_o = 800 \ 10^3 \times 180 \ 10^{-3} = 144000 \ bit = 18 \ MSS$ Il numero di segmenti necessari per trasferire il file è M = P/MSS = 2000

Durante la fase di slow start (SS) W varia da 1 a 16 in 5 RTT. Il numero di segmenti trasmessi in questa fase è pari a M_{ss} = 1+2+4+8+16 = 31 segmenti trasmessi in N_{SS} = 5 RTT

Segue la fase di congestion avoidance (CA) in cui W cresce linearmente.

Nel primo RTT W = 17. Nel successivo RTT W = 18, saturando quindi la capacità del canale. Da questo punto in poi vengono trasmessi sempre 18 segmenti per RTT a prescindere dal valore di W. Rimangono da trasmettere

M' = 2000 - 31 - 17 = 1952 segmenti

Pertanto i RTT trasmessi nella fase CA sono M_{CA} = 1969 segmenti trasmessi in N_{CA} = 110 RTT

Complessivamente sono quindi necessari N = NSS + NCA = 115 RTT = 20,7 s

Una connessione TCP viene avviata per trasferire un file di dimensione P = 1 10⁶ byte.

La connessione lavora per tutta la sua durata nelle seguenti condizioni:

- banda disponibile lungo il percorso end-to-end C = 2 Mbit/s
- perdite di segmenti dovute a fenomeni di congestione pressoché assenti
- MSS = 1000 byte considerando tutti i segmenti di dimensione pari a MSS
- conferme (ACK) generati ad ogni segmento ricevuto
- ssthr = 32 segmenti
- AW = 64 MSS
- valore iniziale della finestra per la fase di slow start pari a 1
- RTT approssimativamente costante e pari a 160 ms

Determinare:

- 1. la dimensione della finestra W_o che ottimizza l'uso del canale;
- 2. il tempo totale necessario per il trasferimento del file.

Soluzione

 $W_o = 2 \cdot 10^6 \times 160 \cdot 10^{-3} = 320000 \text{ bit} = 40 \text{ MSS}$ Il numero di segmenti necessari per trasferire il file è M = P/MSS = 1000

Durante la fase di slow start (SS) W varia da 1 a 32 in 6 RTT. Il numero di segmenti trasmessi in questa fase è pari a M_{ss} = 1+2+4+8+16+32 = 63 segmenti trasmessi in N_{ss} = 6 RTT

Segue la fase di congestion avoidance (CA) in cui W cresce linearmente.

Nel primo RTT W = 33. Nei successivio RTT W = 34, 35, 36, 37, 38, 39, 40 fino a saturare la capacità del canale. Da questo punto in poi vengono trasmessi sempre 40 segmenti per RTT a prescindere dal valore di W.

In tutto ono trasmessi 355 segmenti in 14 RTT pari a 2,24 sec Rimangono M' = 1000 - 63 - 292 = 645 segmenti pari a 5,16 Mbit trasmessi in 2,58 sec ($645/40 = 16,125 \rightarrow 17$ RTT = 2,72 sec) In totale 2,24+2,58 = 4,82 sec

TCP
MSS = 1000 RTO = 3RTT
64 segmenti, perduto 53

	RTT		!	1		!	•	!			1
	SS	SS	SS	CA	CA	CA	CA	CA		Loss	
	8	8	8	8	8	8	8	8		5	ssthr
	10	10	10	10	10	10	10	10		10	AW
	2	4	8	9	10	11	12	12		1	CW
	2	4	8	9	10	10	10	10		1	W
	1,2	3,4,5,6	7 14	15 23	24 33	34 43	4453	5462	······	53	SeqN
							_/				
A	1	1	<u> </u>	<u> </u>				I			- t
			Perduto 53								
		Solo 9 ACK RTO 53									
В	2,3	4 7	8 15	16 24	25 34	35 44	45 53	53 x 9			ACKN

TCP standard

RTO = 3RTT

60 segmenti da trasmettere

				8	17				Flightsize
16	16	16	16	16	16	8	8	8	ssthr
64	64	64	64	64	64	64	64	64	AW
2	4	8	16	17	17	1	2	4	CW
2	4	8	16	17	17	1	2	4	W
1-2	3-6	7-14	15-30	31-47	48-56	40	57-58	59-60	SeqN
SS	SS	SS	CA	CA	CA	LOSS	SS	SS	Fase
		Per	duto 40						T T
2-3	4-7	8-15	16-31	32-40 7X40	9X40	57	58-59	58-59	
									ACKN

TCP con soli SS e CA