On homework:

- If you work with anyone else, document what you worked on together.
- Show your work.
- Always clearly label plots (axis labels, a title, and a legend if applicable).
- Homework should be done "by hand" (i.e. not with a numerical program such as MATLAB, Python, or Wolfram Alpha) unless otherwise specified. You may use a numerical program to check your work.
- If you use a numerical program to solve a problem, submit the associated code, input, and output (email submission is fine).
- 1. (20 points) Derive the 1st order form of SP_5 with isotropic source and vacuum boundary conditions.
- 2. Consider the integral

$$\int_{4\pi} d\hat{\Omega} \; \hat{\Omega}$$

The LQ_N quadrature set is given in Figure 1. Recall that $\mu_i = \eta_i = \xi_i$ for a given level, i

- (a) (5 points) Use the S_4 LQ_N quadrature set to execute this integral
- (b) (10 points) Repeat it with S_6 . What do you observe?
- (c) (10 points) Write a short code to execute this integration (and higher orders if you'd like). Try a few different functions. Turn in the code and the evaluation of these functions. Include comments on what you observe.
- 3. (a) (5 points) Briefly compare the diffusion equation, deterministic methods, and monte carlo methods in terms of complexity, accuracy, run time, and range of applicability.
 - (b) (5 points) Given what you've learned about deterministic methods so far, discuss strengths and weaknesses.
- 4. Write a function that generates the associated Legendre Polynomials:

$$P_{\ell}^{m}(x) = \frac{(-1)^{m}}{2^{\ell}\ell!} (1 - x^{2})^{m/2} \frac{d^{\ell+m}}{dx^{\ell+m}} (x^{2} - 1)^{\ell}.$$

Table 4-1 Level Symmetric S_N Quadrature Sets LQ_n^a			
Level	n	μ_n	w_n^b
S ₄	1	0.3500212	0.3333333
	2	0.8688903	
S_6	1	0.2666355	0.1761263
	2	0.6815076	0.1572071
	3	0.9261808	
S_8	1	0.2182179	0.1209877
	2	0.5773503	0.090740
	3	0.7867958	0.0925920
	4	0.9511897	
S ₁₂	1	0.1672126	0.070762
	2	0.4595476	0.055881
	3	0.6280191	0.037337
	4	0.7600210	0.050281
	5	0.8722706	0.025851
	6	0.9716377	
S_{16}	1	0.1389568	0.048987
	2	0.3922893	0.041329
	3	0.5370966	0.021232
	4	0.6504264	0.025620
	5	0.7467506	0.036048
	6	0.8319966	0.014458
	7	0.9092855	0.034495
	8	0.9805009	0.008517

Figure 1: LQ_n quadrature

Use this function in a function that generates spherical harmonics

$$Y_{lm}(\theta,\varphi) = (-1)^m \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_{lm}(\cos\theta) e^{im\varphi}$$

- (a) (30 points) Generate and plot the following l=0,1,2 for $-l \leq m \leq l$ (recall we can relate the negate m to positive m values). You will need to discretize θ and μ fairly finely (I suggest 30 increments in each to start so you get a real sense of the shape of the harmonics).
- (b) (20 points) Now, we will approximate the external source. Using the S_4 quadrature to do the integrations and $q_e = 1$ for all angles: use the equations for external source we developed in class (eqns. 19-21), calculate the external source for l = 0, 1, 2.
- 5. (5 points) What are the major nuclear data libraries and which countries manage them?