

FINANCE & RISK ANALYTICS

(Milestone 1)

Mohamed Rifaz Ali K S PGP-DSBA Online May' 22

Contents

Prob	olem: Probability at default	4
In	ntroduction	4
Al	bout Data	4
1.	Outlier Treatment	5
2.	Missing Value Treatment	6
3.	Transform Target variable into 0 and 1	7
4. to	Univariate (4 marks) & Bivariate (6 marks) analysis with proper interpretation. (You may conclude only those variables which were significant in the model building)(10 marks)	
5.	Train Test Split	14
6. Da	Build Logistic Regression Model (using statsmodel library) on most important variables on ataset and choose the optimum cutoff. Also showcase your model building approach	
7. fr	Validate the Model on Test Dataset and state the performance matrices. Also state interpretom the model	
Lis	t of Figures	
	Figure 1. Sample Company Finance Dataset	4
	Figure 2. Boxplot to check the outliers	5
	Figure 3. Boxplot after outlier treatments	6
	Figure 4. After imputation of Book Value (Adj.) (Unit Curr)	7
	Figure 5. Default variable created using Networth Next Year column	7
	Figure 6. Default value counts	8
	Figure 7. Boxplot for significant variables	9
	Figure 8. Histogram for significant variables	10
	Figure 9. Default Vs Book Value Unit Curr	11
	Figure 10. Default Vs Net Sales	12
	Figure 11. Default Vs Inventory Velocity Days	12
	Figure 12. Heat Map for Significant Variables	13
	Figure 13. VIF Table for all the Variables	15
	Figure 14. Model Summary for all the variables	16

Figure 15. Model summary for specific significant variables	17
Figure 16. VIF Table for Significant variables	18
Figure 17. Default Vs Predicted Train default Boxplot	19
Figure 18. Confusion Matrix for Training set with 0.06 cut-off	19
Figure 19.Classification Report for Training Data with 0.06 cut-off	20
Figure 20. Confusion Matrix for Testing Set with 0.06 cut-off	20
Figure 21. Classification Report for Test Data with 0.06 cut-off	21
Figure 22. Classification Report for Training Data with 0.07 cut-off	21
Figure 23. Classification Report for Test Data with 0.07 cut-off	21
Figure 24. ROC Curve for Training Record with 0.07 cut-off	22
Figure 25. ROC Curve for Testing Record with 0.07 cut-off	23

Problem: Probability at default

Introduction

Businesses or companies can fall prey to default if they are not able to keep up their debt obligations. Defaults will lead to a lower credit rating for the company which in turn reduces its chances of getting credit in the future and may have to pay higher interests on existing debts as well as any new obligations. From an investor's point of view, he would want to invest in a company if it is capable of handling its financial obligations, can grow quickly, and is able to manage the growth scale.

A balance sheet is a financial statement of a company that provides a snapshot of what a company owns, owes, and the amount invested by the shareholders. Thus, it is an important tool that helps evaluate the performance of a business.

Data that is available includes information from the financial statement of the companies for the previous year (2015). Also, information about the Net worth of the company in the following year (2016) is provided which can be used to drive the labeled field.

About Data

- The number of rows (observations) is 3586 and the number of columns (variables) is 67.
- There are very few missing values present in the entire dataset. By default, numerical & categorical columns properly mapped.
- Default value can be created using Networth Next Year variable.
- Total cell size is 240262 and the total missing value is 118. It is just 0.05% of the missing values present in the dataset.
- For the Inventory velocity days variable, only 3% of the total is missing.
- There is one bad data in the Inventory velocity day column and it is in negative. This is definitely data entry issue -199 can be substituted to 199.

	Co_Code	Co_Name	Networth_Next_Year	Equity_Paid_Up	Networth	Capital_Employed	Total_Debt	Gross_Block	Net_Working_Capital	C
0	16974	Hind.Cables	-8021.60	419.36	-7027.48	-1007.24	5936.03	474.30	-1076.34	
1	21214	Tata Tele. Mah.	-3986.19	1954.93	-2968.08	4458.20	7410.18	9070.86	-1098.88	
2	14852	ABG Shipyard	-3192.58	53.84	506.86	7714.68	6944.54	1281.54	4496.25	
3	2439	GTL	-3054.51	157.30	-623.49	2353.88	2326.05	1033.69	-2612.42	
4	23505	Bharati Defence	-2967.36	50.30	-1070.83	4675.33	5740.90	1084.20	1836.23	

Figure 1. Sample Company Finance Dataset

1. Outlier Treatment

Almost, all the variables contain outliers.

Figure 2. Boxplot to check the outliers

- Lets use the capping method to treat the outliers.
- Out of 3585 records, there are just 388(11% of the) records with default status. Data is highly imbalanced.
- We have 42449 outliers in total (i.e., 18% of the data's are outliers), of which 19% (~ 73 in number) are with a default status 1. As such we have only 388 default instances in our data therefore dropping these 73 records. i.e., 19% will not be a good option for this dataset.
- Before treating the outliers, let's include only the significant columns and remove the unwanted columns from the dataframe.
- The variables such as Revenue_earnings_in_forex, Revenue_expenses_in_forex,

 Capital_expenses_in_forex, ROG_Revenue_earnings_in_forex_perc,

 ROG_Revenue_expenses_in_forex_perc, ROG_Market_Capitalisation_perc do not have much

 variablility in the values, their 25%, 50% and 75% are just constant as 0. It might not be useful for our

 model building approach. We can keep Book Value (Unit Curr) column and drop Book Value (Adj.)

 (Unit Curr) column because both the columns are mimic to each other. Let's drop these redundant

 variables from the dataframe.

• For the remaining numerical columns, let's calculate the Inter Quartile range between 0.25 and 0.75 and treat the lower and upper range values.

$$Q1,Q3=np.percentile(col,[25,75])$$
 $IQR=Q3-Q1$
 $lower_range=Q1-(1.5*IQR)$
 $upper_range=Q3+(1.5*IQR)$

• After treating the outliers, boxplots of the numerical variables looks neat.

Figure 3. Boxplot after outlier treatments

2. Missing Value Treatment

- There are few columns with just 1 missing value in it.
- There are very few missing values in the entire dataset and present only in few columns.
- Total cell size is 240195 and Total missing values are 118. It is just 0.05% of the missing values present in the entire dataset.
- There is one row contains 11 missing values in it. We can identify and drop the row. The company named 'G M Breweries (Co_code=3240)' missed to provide the much financial information.
- After dropping the 'G M Breweries' company data, it looks much better now.

- Only 2 columns have missing values now. The columns are Inventory_Velocity_Day and Book_Value_Adj_Unit_Curr.
- Inventory_Velocity_Day 103 missing values. Approximately, 3% of this column contains missing entries.
- Inventory_Velocity_Day has the data entry issue with the value -199, can be replaced with 199 days.
- Upon reviewing, 31% of the company needs 0 days to convert the inventory into sales. So, let's impute the missing entries with 0 days using fillna(value=0) method.
- Book_Value_Adj_Unit_Curr 4 missing values. It is just 0.1% of this column contains missing entries. On further analyzing the data, the column 'Book Value (Unit Curr)' and 'Book Value (Adj.) (Unit Curr)' contains the same values. We can drop the 'Book Value (Adj.) (Unit Curr)' from the dataframe. Because 2 columns with the same data do not add any values to the model building. However, using the fillna() method, we copied the missing values from the 'Book Value (Unit Curr)' column(where the data is present).
- Ensure to check for one record, we checked for **company code=495**, the value -2.12 is imputed in missing *Book Value (Adj.) (Unit Curr) column*.

Figure 4. After imputation of Book Value (Adj.) (Unit Curr)

Now, there is no missing entry present in the entire dataset.

3. Transform Target variable into 0 and 1

Create a dependent variable named 'default' that should take the value of 1 when 'Networth_Next_Year' column value is **negative** & **0** when 'Networth_Next_Year' value is positive. It is achieved using the numpy where function.

	default	Networth_Next_Year
0	1	-8021.60
1	1	-3986.19
2	1	-3192.58
3	1	-3054.51
4	1	-2967.36

	default	Networth_Next_Year
3581	0	72677.77
3582	0	79162.19
3583	0	88134.31
3584	0	91293.70
3585	0	111729.10

Figure 5. Default variable created using Networth Next Year column

4. Univariate (4 marks) & Bivariate (6marks) analysis with proper interpretation. (You may choose to include only those variables which were significant in the model building)(10 marks)

Univariate Analysis

Default Value counts

Figure 6. Default value counts

- Company fall under the 'Default' category is very minimal compared to the non-defaulters.
- Non-Defaulter company count is 3197 and Defaulter company count is 388.

Boxplot for most important variables

greatlearning Power Ahead

Figure 7. Boxplot for significant variables

- Almost all the variable contains abundant outliers.
- Variables such as ROG_Cost_of_Production_perc,Inventory_RatioLatest, Current_RatioLatest, Debtors_Velocity_Days, ROG_Total_Assets_perc, ROG_Capital_Employed_perc, Book_Value_Unit_Curr contains largely the upper range values.
- Interest_Cover_RatioLatest contains both the upper & lower range outliers.
- ROG_Net_Worth_perc, Book_Value_Unit_Curr contains the largely the upper outliers and minimal lower outliers.

Histogram for most important variables

Figure 8. Histogram for significant variables

- Skewness for ROG_Cost_of_Production_perc is: 37.26
- Skewness for Inventory_RatioLatest is: 27.0
- Skewness for Current RatioLatest is: 31.25
- Skewness for Interest_Cover_RatioLatest is: 40.82
- Skewness for Debtors_Velocity_Days is: 38.66
- Skewness for ROG Net Worth perc is: 44.83
- Skewness for ROG_Total_Assets_perc is: 57.3
- Skewness for ROG_Capital_Employed_perc is: 56.43
- Skewness for Book_Value_Unit_Curr is: 32.98
- All the variables are positively skewed and the data's are clustered around the left tail of the distribution while the right tail of the distribution is longer.

Bivariate Analysis

Default Vs Book Value Unit Curr

Figure 9. Default Vs Book Value Unit Curr

Net asset value of defaulter's values is inclined towards negative side

Default Vs Net Sales

Figure 10. Default Vs Net Sales

 Defaulters seem to have very less net sales after subtracting the gross sales with returns, allowances and discounts.

Default Vs Inventory Velocity Days

Figure 11. Default Vs Inventory Velocity Days

 The average number of days, Company needs to turn its inventory into sales for Defaulters is high compared to the non-defaulters.

Heat Map

Figure 12. Heat Map for Significant Variables

- From the correlation heat map for the significant variables, we still see that there is high correlation on ROG_Net_Worth_perc, ROG_Total_Assets_perc, ROG_Capital_Employed_perc variables however the variation inflation factor values of these attributes below 5. So, let's keep it in the model building.
- The variables ROG_Net_Worth_perc and ROG_Capital_Employed_perc are very weakly correlated with ROG_Cost_of_Production_perc .
- Other variables such as Inventory_RatioLatest, Interest_Cover_RatioLatest, Current_RatioLatest, Debtors_Velocity_Days, Book_Value_Unit_Curr are not correlated with any other models which is the good sign of including these predictors in the model building.

5. Train Test Split

We see that proportions of dependent values (*default variable*) are highly imbalanced. i.e., 0 with 89% and 1 with 11%

Using train_test_split() method from sklearn library, split the data into train & test dataset in a ratio of 67:33 & used random_state =42 with the stratify= Company['default'] parameters.

This stratify parameter makes a split so that the proportion of values in the sample produced will be the same as the proportion of values provided to parameter stratify

6. Build Logistic Regression Model (using statsmodel library) on most important variables on Train Dataset and choose the optimum cutoff. Also showcase your model building approach.

Model Building using Logistic Regression for 'Probability at default'

The equation of the Logistic Regression by which we predict the corresponding probabilities and then go on predict a discrete target variable is

$$\mathbf{y} = \frac{1}{1 - e^{-z}}$$

Note:
$$\mathbf{z} = \beta_0 + \sum_{i=1}^{n} (\beta_i X_1)$$

Using the statsmodels library, creating logistic regression equation & storing it in f_1

model = SM.logit(formula='Dependent Variable $\sim \Sigma$ Independent Variables (k)' data = 'Data Frame containing the required values').fit()

Before starting model building, let's look at the problem of multi-collinearity. Multi-collinearity occurs when two or more independent variables are highly correlated with one another in a regression model.

Using the VIF library, let's calculate the VIF values for all the variables.

14	Selling_Cost	4.348235
0	Equity_Paid_Up	4.584418
11	Other_Income	4.634380
22	Book_Value_Unit_Curr	5.209492
24	CEPS_annualised_Unit_Curr	6.552598
5	Net_Working_Capital	6.567650
3	Total_Debt	7.579335
42	Fixed_Assets_RatioLatest	9.074250
56	Value_of_Output_to_Gross_Block	9.280078
45	Total_Asset_Turnover_RatioLatest	10.525898
55	Value_of_Output_to_Total_Assets	11.945726
4	Gross_Block	12.274622
1	Networth	12.404911
37	ROG_PBIT_perc	13.605636
30	ROG PAT nero	1// 0215//3

Figure 13. VIF Table for all the Variables

We see that the value of VIF is high for many variables. Here, we may drop variables with VIF more than 5 (very high correlation) & build our model.

Below independent variables are with the VIF values below 5.

f_1 = 'default ~

ROG_Gross_Block_perc+Inventory_Velocity_Days+ROG_Cost_of_Production_perc+Creditors_Velocity
_Days+Inventory_RatioLatest+Current_RatioLatest+Interest_Cover_RatioLatest+Cash_Flow_From_Inv
esting_Activities+Debtors_Velocity_Days+Debtors_RatioLatest+Cash_Flow_From_Financing_Activities
+ROG_Net_Worth_perc+ROG_Total_Assets_perc+Cash_Flow_From_Operating_Activities+ROG_Capit
al_Employed_perc+Market_Capitalisation+Selling_Cost+Equity_Paid_Up+Other_Income+Book_Value
_Unit_Curr'

Let's train the model with the above variables using the train data.

The model summary is shown below

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-0.1532	0.232	-0.659	0.510	-0.609	0.302
ROG_Gross_Block_perc	-0.0130	0.019	-0.682	0.495	-0.050	0.024
Inventory_Velocity_Days	0.0013	0.002	0.871	0.384	-0.002	0.004
ROG_Cost_of_Production_perc	-0.0073	0.003	-2.277	0.023	-0.014	-0.001
Creditors_Velocity_Days	0.0010	0.001	0.659	0.510	-0.002	0.004
Inventory_RatioLatest	-0.0274	0.020	-1.389	0.165	-0.066	0.011
Current_RatioLatest	-0.6244	0.093	-6.741	0.000	-0.806	-0.443
Interest_Cover_RatioLatest	-0.1111	0.041	-2.681	0.007	-0.192	-0.030
Cash_Flow_From_Investing_Activities	-0.0132	0.038	-0.343	0.732	-0.088	0.062
Debtors_Velocity_Days	-0.0031	0.001	-2.379	0.017	-0.006	-0.001
Debtors_RatioLatest	-0.0198	0.021	-0.961	0.336	-0.060	0.021
Cash_Flow_From_Financing_Activities	-0.0011	0.038	-0.029	0.977	-0.075	0.073
ROG_Net_Worth_perc	-0.0372	0.010	-3.842	0.000	-0.056	-0.018
ROG_Total_Assets_perc	-0.0210	0.010	-2.200	0.028	-0.040	-0.002
Cash_Flow_From_Operating_Activities	-0.0070	0.022	-0.317	0.751	-0.050	0.036
ROG_Capital_Employed_perc	0.0210	0.009	2.211	0.027	0.002	0.040
Market_Capitalisation	-0.0056	0.002	-2.437	0.015	-0.010	-0.001
Selling Cost	0 0744	0.057	1 311	0 190	-0 037	0 186

Figure 14. Model Summary for all the variables

Noticed, the few columns of probability values are above 0.05.

We can see that few variables are insignificant & may not be useful to discriminate the cases of default.

Let us look at the adjusted pseudo R-square value

R – Square	0.6385
Adj. R-Square	0.6142

Adjusted pseudo R-square seems to be lower than Pseudo R-square value which means there are insignificant variables present in the model. Lets try & remove variables whose p value is greater than 0.05 & rebuild our model.

Feature selection is the process of tuning down the number of predictor variables used by the models you build.

For example, when faced with two models with the same or nearly the same score, but with the latter model using more variables, your immediate instinct should be to choose the one with fewer variables. That model is simpler to train, simpler to understand, easier to run, and less time consuming.

Let's start with feature selection methods & validate them back using manual feature selection using backward elimination approach:

The variable *Cash flow from Financial Activities* has the highest p-value (0.977), therefore we need to eliminate it and rerun the model.

After going through this exercise, removing the variables has the p-values > 0.05 one after the other.

Finally, we have the model trained with below variables.

```
f_1 = 'default ~
ROG_Cost_of_Production_perc+Inventory_RatioLatest+Current_RatioLatest+Interest_Cover_RatioLat
est+Debtors_Velocity_Days+ROG_Net_Worth_perc+ROG_Total_Assets_perc+ROG_Capital_Employed
_perc+Book_Value_Unit_Curr'
```

The new efficient model summary is shown below

Logit Regression Results

Dep. Variable:	defa	ult No.	Observat	ions:	2401	1	
Model:	Lo	git	Df Resid	uals:	239	1	
Method:	MI	.E	Df M	odel:	9	9	
Date:	Fri, 13 May 20	22 P	seudo R-	squ.:	0.6324	4	
Time:	15:32:	05 Lo	g-Likelih	lood:	-302.64	4	
converged:	Tre	ue	LL-	-Null:	-823.35	5	
Covariance Type:	nonrobu	ıst	LLR p-v	alue: 2.0	003e-218	3	
		coef	std err	Z	P> z	[0.025	0.975]
	Intercept	-0.0990	0.185	-0.536	0.592	-0.461	0.263
ROG_Cost_of_Pro	duction_perc	-0.0085	0.003	-2.752	0.006	-0.015	-0.002
Inventory	/_RatioLatest	-0.0393	0.017	-2.272	0.023	-0.073	-0.005
Curren	t_RatioLatest	-0.6238	0.090	-6.945	0.000	-0.800	-0.448
Interest_Cove	r_RatioLatest	-0.1147	0.040	-2.863	0.004	-0.193	-0.036
Debtors_\	/elocity_Days	-0.0026	0.001	-2.177	0.029	-0.005	-0.000
ROG_Ne	t_Worth_perc	-0.0384	0.009	-4.150	0.000	-0.056	-0.020
ROG_Total	_Assets_perc	-0.0224	0.009	-2.434	0.015	-0.040	-0.004
ROG_Capital_En	nployed_perc	0.0202	0.009	2.245	0.025	0.003	0.038
Book Val	ue Unit Curr	-0.1108	0.010	-11.654	0.000	-0.129	-0.092

Figure 15. Model summary for specific significant variables

We can see that all the variables p-value < 0.05 & the variables are significant & may be useful to discriminate cases of default.

Let us also check the multi-collinearity of the model using Variance Inflation Factor (VIF) for the predictor variables

	variables	VIF
0	ROG_Cost_of_Production_perc	1.190073
4	Debtors_Velocity_Days	1.517876
1	Inventory_RatioLatest	1.576691
3	Interest_Cover_RatioLatest	1.609105
2	Current_RatioLatest	1.622537
8	Book_Value_Unit_Curr	1.666688
5	ROG_Net_Worth_perc	2.049536
6	ROG_Total_Assets_perc	2.957888
7	ROG_Capital_Employed_perc	3.229932

Figure 16. VIF Table for Significant variables

We can see that multi-collinearity still exists but let's not drop them as VIFs are not very high.

Let us look at the adjusted pseudo R-square value

R – Square	0.6324
Adj. R-Square	0.6215

We see that adjusted R square is now close to R square, thus suggesting lesser insignificant variables present in the model.

We also notice that current model has no insignificant variables and can be used for prediction purposes.

Let's test the prediction of this model on train and test dataset. Before making the prediction, let's decide the optimum cutoff value.

Optimum Cutoff

Let's plot the graph between 'default' & 'predicted train default' data.

Figure 17. Default Vs Predicted Train default Boxplot

From the above boxplot, we need to decide on one such value of a cut-off which will give us the most reasonable descriptive power of the model.

Let us take a cut-off of 0.06 and check.

Figure 18. Confusion Matrix for Training set with 0.06 cut-off

True Negative: 1821
 False Positives: 320
 True Positives: 245

Let us now go ahead and print the classification report of training data to check the various other parameters using the 0.06 as the cut-off

	precision	recall	f1-score	support
0	0.992	0.851	0.916	2141
1	0.434	0.942	0.594	260
accuracy			0.860	2401
macro avg	0.713	0.896	0.755	2401
weighted avg	0.931	0.860	0.881	2401

Figure 19. Classification Report for Training Data with 0.06 cut-off

7. Validate the Model on Test Dataset and state the performance matrices. Also state interpretation from the model

For the testing set using the 0.06 as the cutoff

Figure 20. Confusion Matrix for Testing Set with 0.06 cut-off

True Negative: 903
 False Positives: 153
 True Positives: 120

Let us now go ahead and print the classification report for test record to check the various other parameters using 0.06 as the cut-off

	precision	recall	f1-score	support
0	0.991	0.855	0.918	1056
1	0.440	0.938	0.599	128
accuracy			0.864	1184
macro avg	0.715	0.896	0.758	1184
weighted avg	0.932	0.864	0.884	1184

Figure 21. Classification Report for Test Data with 0.06 cut-off

- As observed above, accuracy of the model. i.e. %overall correct predictions is 86%
- Sensitivity of the model is 94% i.e. 94% of those defaulted were correctly identified as defaulters by the model

Let us take a cut-off of 0.07 and check if our predictions have improved

Training Set

	precision	recall	f1-score	support
0	0.991	0.864	0.923	2141
1	0.455	0.938	0.613	260
accuracy			0.872	2401
macro avg	0.723	0.901	0.768	2401
weighted avg	0.933	0.872	0.890	2401

Figure 22. Classification Report for Training Data with 0.07 cut-off

Testing Set

	precision	recall	f1-score	support
0	0.991	0.868	0.926	1056
1	0.463	0.938	0.620	128
accuracy			0.876	1184
macro avg	0.727	0.903	0.773	1184
weighted avg	0.934	0.876	0.893	1184

Figure 23. Classification Report for Test Data with 0.07 cut-off

Threshold Value	0.06 As the cut-off for prediction (%)		0.07 As the cut-off for prediction (%)	
	Accuracy	Recall	Accuracy	Recall
Training Record	86	94.2	87.2	93.8
Testing Record	86.4	93.8	87.6	93.8

When we choose 0.07 as the cut-off, our model's accuracy of the model i.e. %overall correct predictions has increased from 86% to 87% and the sensitivity of the model becomes constant for both training & testing record as 93.8%. **So, 0.07** is the optimum cut-off for our model.

Performance Metrics for 0.07 cut-off

When we need to check or visualize the performance of the classification problem, we use the AUC (Area Under The Curve) ROC (Receiver Operating Characteristics) curve. It is one of the most important evaluation metrics for checking any classification model's performance. AUC - ROC curve is a performance measurement for the classification problems at various threshold settings. ROC is a probability curve and AUC represents the degree or measure of separability. It tells how much the model is capable of distinguishing between classes. Higher the AUC, the better the model is at predicting 0 classes as 0 and 1 classes as 1. Always, aim for high AUC score. We calculate Accuracy, confusion matrix, ROC Curve, AUC score and classification report for both training and test set for all the classification models built.

ROC Curve for Training Record

Figure 24. ROC Curve for Training Record with 0.07 cut-off

AUC Score for training record is 90.1%

ROC Curve for Testing Record

Figure 25. ROC Curve for Testing Record with 0.07 cut-off

AUC Record for testing record is 90.3%.

