

2001 TRIAL HSC EXAMINATION

Mathematics **Extension 1**

• General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided on page 10
- All necessary working should be shown in every question

Total marks (84)

- Attempt Questions 1-7
- · All questions are of equal value
- Use a SEPARATE writing booklet for each question

Total marks (84) Attempt questions 1 - 7 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet Marks

(a) Evaluate
$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$
.

(b) Find a primitive function of
$$\frac{1}{\sqrt{4-x^2}}$$
.

(c) Show that
$$\frac{1+\cos 2\theta}{\sin 2\theta} = \cot \theta$$
.

(d) Solve
$$\frac{2}{x-4} \ge 1$$
.

(e) Solve
$$\sin x - \cos x = 1$$
 for $0 \le x \le 2\pi$.

(f) Find the acute angle between the lines y = 2x - 1 and 3x - 2y = 5.

2 Give your answer in radians correct to two decimal places.

(a)	Find $\frac{d^2}{dx^2} \left(e^{x^2} \right)$.		2

Marks

Use a SEPARATE writing booklet

(b) (i) Express
$$\cos 2x$$
 completely in terms of $\sin x$.

(ii) Hence or otherwise find
$$\int_0^{\frac{\pi}{2}} 2\sin^2 2x \, dx.$$

(c) Use the substitution
$$x = 1 - u^2$$
 to find $\int \frac{x}{\sqrt{1 - x}} dx$.

(d) If
$$\alpha$$
, β , and γ are the roots of the cubic equation $x^3 + 2x^2 - 5x - 4 = 0$ then find the value of:

Question 2 (12 marks)

(i)
$$\alpha + \beta + \gamma$$
.

(ii)
$$\alpha \beta \gamma$$
.

(iii)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}.$$

(iv)
$$\alpha^2 + \beta^2 + \gamma^2$$
.

Question 3 (12 marks)	Use a SEPARATE writing booklet		Marks

	(1 .	2
(a)	Find $\int \frac{1}{4+9x^2} dx .$	

- (b) Find the exact volume of the solid formed by rotating the area between the curve $y = \tan x$ and the x axis from x = 0 to $x = \frac{\pi}{4}$, about the x axis.
- (c) The polynomial $Q(x) = x^5 + 2x^2 + ax + b$ has a factor of (x + 2). When Q(x) is divided by (x 2) the remainder is 12.
- (d) Consider the function $f(x) = e^x + 4x$.

Find the values of a and b.

- (i) Find f'(x).
 (ii) Explain why f(x) is increasing for all x?
- (iv) By letting x = -0.5 be an initial approximation to the real root of f(x) = 0, use Newton's method to find a second approximation, correct to two decimal places.

Show that f(x) = 0 has a root lying between x = -1 and x = 0.

Question 4 (12 marks) Use a SEPARATE writing booklet		Marks	
(a)	P is the point $(2at, at^2)$ on the parabola $x^2 = 4ay$ and the line I is tangent to the parabola at P.		
	(i)	Represent this information on a clear and well-labelled diagram.	1
	(ii)	Prove that the equation of the tangent line l is given by $y = tx - at^2$.	2
	(iii)	If l cuts the x – axis at A and the y – axis at B , then find the coordinates of A and B .	2
	(iv)	In what ratio does the point P divide the interval AB externally?	1
	(v)	Suppose Q is the midpoint of the interval PS where S is the focus of the parabola.	3
		Find the Cartesian equation of the locus of Q .	

(b)

2

3

In the diagram above, TA is a tangent to the circle at A and DA bisects $\angle BAC$.

Copy or trace this diagram into your writing booklet.

Prove, with reasons, that TA = TD.

1

1

1

2

1

1

2

1

3

2

1

1

1

3

- (a) Consider the function $f(x) = (x-1)^2$.
 - (i) Sketch y = f(x).
 - (ii) Explain why f(x) does not have an inverse function for all x in its domain?
 - (iii) State a domain and range for which f(x) has an inverse function $f^{-1}(x)$.
 - (iv) For $x \ge 1$, find the equation of the inverse function $f^{-1}(x)$.
 - (v) Hence on a new set of axes, sketch the graph of $y = f^{-1}(x)$.
- (b) A small rock is projected horizontally from the top of a vertical cliff 180 metres above sea level with a speed of projection of 35 metres per second. You may assume the acceleration g due to gravity is 10 m/s².
 - (i) Show that the equations of motion of the rock after t seconds in the horizontal and vertical directions can be given by x = 35t and $y = -5t^2$.
 - (ii) Calculate the time for the rock to reach the ocean.
 - (iii) Calculate the distance from the base of the cliff to the point where the rock strikes the surface of the ocean.
 - (iv) Find, to the nearest degree, the angle at which the rock strikes the ocean.

(a)	Let T be the temperature inside a room at time t and let A be the temperature of
(-)	its surrounding. Newton's Law of Cooling states that the rate of change of the
	temperature T is proportional to $(T-A)$.

- (i) Verify that $T = A + Be^{kt}$ (where B and k are constants) satisfies Newton's Law of Cooling.
- (ii) The constant temperature of the surrounding is 4°C and an air conditioning system causes the temperature inside a room to drop from 25°C to 15°C in 45 minutes.

Find how long it takes for the inside room temperature to reach 8°C?

(b) The displacement x (in metres) of a particle is given by $x = 5\cos(4\pi t)$, where t is in seconds.

(i) Show that the acceleration of the particle can be expressed in the form:

 $x = -n^2x$

- (ii) State the period, T, of the motion.
- (iii) Determine the maximum velocity of the particle.
- Express v^2 completely in terms of x, where v is the velocity of the particle.

(c) Use the Principle of Mathematical Induction to prove that $2^{(6n+3)} + 3$ is divisible by 11 for all positive integers.

Question 7 (12 marks)

Use a SEPARATE writing booklet

Marks

(a)

In the circle, the chord AB is 6 metres long. The chord is produced to the point P and BP is a metres. A tangent to the circle cuts the chord at P where PT is x metres

Show that $x = \sqrt{a(a+6)}$

2

(b) In a rugby game, teams score by placing the ball over the try line at the end of the field. A kicker may then take the ball back at right angles from the try line and attempt to kick the ball between the goal posts.

In the diagram above, a try has been scored a metres to the right of the goal posts. The kicker has brought the ball back to the point P to attempt his kick. The kicker wants to maximise θ , his angle of view of the goal posts.

Question 7(b) continues on page 9 - please turn over.

8

Ouestion 7(b) continued

Let PT be x metres and assume that the goal posts are 6 metres wide.

(i) Show that
$$\tan \theta = \frac{6x}{a^2 + 6a + x^2}$$
.

(ii) Letting
$$T = \tan \theta$$
, find the exact value of x for which T is a maximum.

(iii) Hence show that the maximum angle,
$$\theta$$
, is given by $\theta = \tan^{-1} \left(\frac{3}{\sqrt{a^2 + 6a}} \right)$.

2

(iv) If a try is scored 10 metres to the right of the goal posts, find the maximum value of
$$\theta$$
 (to the nearest minute) and the corresponding value of x (to the nearest centimetre).

End of Paper