数论基础选讲

山东省实验中学 宁华

问题引入:

• 求正整数 3^83 的最后两位数

• 看到类似这样求一个数的某次方的最后几位数的问题,没有接触过初等数论的同学可能第一反应是小学的做法: 找规律。

- •可以看出来 3ⁿ 的个位是 1,3,9,7 循环,循环周期是 4
- 而十位是 0,0,0,2,8,4,2,8,6,8,4,4,4,2,6,0,2,6,8,6 循环,
- 循环周期是 20
- 所以 3^83 最后两位是 27

$$3^0 = 1$$

$$3^1 = 3$$

$$3^2 = 9$$

$$3^3 = 27$$

$$3^4 = 81$$

$$3^5 = 243$$

$$3^6 = 729$$

$$3^7 = 2187$$

$$3^8 = 6561$$

•接触过一点初等数论的同学表示这种方法too young,因为这个问题可以用欧拉定理(Euler's theorem)秒杀。

欧拉定理(Euler's theorem)

• 若a,p互质,则有

$$a \circ \varphi(p) \equiv 1 \pmod{p}$$

• 其中欧拉函数 φ(p) 是小于 p 的正整数中和 p 互质的数的个数.

• 可以看出,费马小定理其实是欧拉定理的特例。

- 回到问题引入: 求正整数 3^83 的最后两位数
- 即求 3^83%100

- 发现3与100互质,所以3^φ(100)%100=1
- $\varphi(100)=100*(1-1/2)*(1-1/5)=40$
- 3⁸3=(3⁴0)² * 3³
- 3⁸3%100=3³%100=27

习题

- 求 201420142014 的最后两位数
- 求 $1^{2016} + 2^{2016} + \cdots + 2016^{2016}$ 除以 2016 的余数
- 求 8⁷⁶⁵⁴ 的最后三位数
- 有多少个正整数 $1 \le n \le 2015$ 使得 $n^{n''}$ 和 n^n 的个位数相同?
- 249 的奇数次方末尾总会出现其本身 $249^3 = 15438249$,
- $249^5 = 957186876249$ 等等。1000 以内有多少个正整数有这样的性质?

威尔逊定理

•威尔逊定理是以英格兰数学家爱德华·华林的学生约翰·威尔逊命名的,尽管这对师生都未能给出证明。华林于1770年提出该定理,1773年由拉格朗日首次证明。

• 威尔逊定理是判定一个自然数是否为素数的充分必要条件

一个实验

- 十八世纪中叶,一位英国法官约翰·威尔逊爵士,发现了数论中一种极为罕见的关系:取从1到某个质数所有连续正整数的乘积,例如从1乘到11,即11的阶乘11!。显然,11!能被从1到11的所有整数整除,除去11这个数,得10!。无疑10!不能被11整除。
- 然而,如果给10!加上1的话,1×2×3×4×5×6×7×8×9×10 +1=3628801,怎么也不会想到,3628801却能被11整除 (3628801÷11=329891)。
- 类似地,从1到质数7的阶乘7!中略去7,再加上1,得 1×2×3×4×5×6+1=721,721也能被7整除(721÷7=103)

11和7都是质数,研究发现,此种整除性对一切质数都成立,但对合数却不成立。下面的表格展示了这一规律:

n	(n-1)!	(n-1)!+1	[(n-1)!+1] mod n	数性
2	1	2	0	质数
3	2	3	0	质数
4	6	7	3	合数
5	24	25	0	质数
6	120	121	1	合数
7	720	721	0	质数
8	5040	5041	1	合数
9	40320	40321	1	合数
10	362880	362881	1	合数
11	3628800	3628801	0	质数
12	39916800	39916801	1	合数
13	479001600	479001601	0	质数
14	6227020800	6227020801	1	合数
15	87178291200	87178291201	1	合数

威尔逊定理

- 威尔逊定理:
- 当p为质数时, (p-1)! + 1 能被p整除。
- 威尔逊定理逆定理:
- 若一个数 (p-1)! + 1 能被 p 整除,那么 p 为质数

・p 为质数
$$\Longleftrightarrow (p-1)! \equiv -1 (\mod p)$$

HDU 2973 YAPTCHA

【题意模型】:

对于给定的数 i, 求 Si 的值, 其中:

$$S_{n} = \sum_{k=1}^{n} \left[\frac{(3k+6)!+1}{3k+7} - \left\lfloor \frac{(3k+6)!}{3k+7} \right\rfloor \right]$$

核心代码参考

```
#define M 3000008 int main()
int s[M];
bool isprime[M];
void shai() int T; scanf("%d", &T);
while (T--)
{

int n; scanf("%d", &n); printf("%d\n", ans[n]);
}

return 0;
}
```