Modelos de crescimento: Da instabilidade de Harrod às suas soluções

Acelerador e (Super)multiplicador

Gabriel Petrini

Junho de 2020

Objetivo

Apresentar um modelo geral de modo a explicitar a taxa instabilidade fundamental de Harrod para então comparar as soluções dentro da ortodoxia (Solow) e da heterodoxia (Supermultiplicador sraffiano). Um objetivo específico é compatibilizar as notações e conceitos para facilitar a leitura dos textos (especialmente Jones com Serrano).

Roteiro

- 1 Introdução
- 2 Roteiro
- 3 Da estática para a dinâmica
- 4 Modelo Geral
- 5 Taxa efetiva de crescimento
- 6 Taxa garantida
- 7 Soluções
- 8 Comparações

Estática na Teoria Geral

Harrod (1939) estende o Princípio da Demanda Efetiva (PDE) da Teoria Geral (Estática) de Keynes (1936) para uma economia em crescimento.

Estática na TG

Estoque de capital (K), População (N), etc são considerados como dados na TG (ver cap. 18) enquanto a renda (Y) é determinada pelo investimento autônomo (I) e pelo multiplicador (1/1-c)

$$Y = \frac{I}{1 - c}$$

Se existe investimento líquido, o estoque de capital não pode ser considerado constante, logo, é preciso estudar a economia dinamicamente

$$I > 0 \Rightarrow \Delta K \neq 0$$

Harrod (1939) propõe a conjugação do multiplicador (já estudado) com o princípio do acelerador (adiante) para tratar do PDE em uma economia em crescimento. Antes de avancar nesses conceitos, vamos apresentar um Modelo Geral¹.

¹Esta estrutura "Geral" está ausente tanto no artigo de Harrod (1939) quanto no de Solow (1956) e é semelhante ao apresentado por Serrano Freitas e Bhering (2019).

Vamos iniciar pelas variáveis em nível e no curto prazo:

$$Y = C + I + Z$$

em que:

- C Consumo ($C = c \cdot Y$, c é a propensão marginal à consumir);
 - Investimento (das firmas)
- Z Gastos autônomos não criadores de capacidade produtiva ao setor privado

Podemos rescrever a equação anterior da seguinte forma:

$$Y = \frac{I + Z}{1 - c}$$

A taxa de crescimento do produto (g) é dada por:

$$g_Y = \frac{\Delta Y}{Y_{t-1}}$$

A contribuição para a taxa de crescimento do produto é dada pela soma das taxas de crescimento de cada componente da demanda ponderada pela sua respectiva participação na renda:

$$g_Y = \frac{C}{Y} \cdot g_C + \frac{I}{Y} \cdot g_I + \frac{Z}{Y} \cdot g_Z$$

Contribuição para a taxa de crescimento I

Uma vez que o consumo é induzido pela renda, ambos crescem a uma mesma taxa:

$$C = c \cdot Y \Rightarrow g_C = g_Y$$

Qual a contribuição dos demais componentes da demanda para a taxa de crescimento do produto?

O investimento é idêntico a demanda, logo, a participação de ambos na renda é igual

$$\frac{I}{Y} \equiv \frac{S}{Y} = h$$

em que h é a proporção marginal à investir.

Contribuição para a taxa de crescimento II

Vamos chamar a participação de Z na renda de z

$$g_{Y} = c \cdot g_{Y} + h \cdot g_{I} + z \cdot g_{Z}$$

$$g_{Y} = \frac{h \cdot g_{I} + z \cdot g_{Z}}{1 - c}$$
(1)

Finalmente, para comparar os modelos, precisamos apresentar o **Princípio Acelerador**.

Caráter Dual do Investimento I

Investimento como demanda: Taxa de crescimento do investimento (g_I) determina a taxa de crescimento econômico. Supondo temporariamente que Z=0, temos

$$Y = \frac{I}{1 - c} \Rightarrow g_I \to g_Y$$

Investimento como oferta: Investimento (líquido) aumenta a capacidade produtiva, logo, aumenta o estoque de capital. Firmas ajustam o estoque de capital de acordo com o princípio do acelerador, ou seja, se o produto aumenta, firmas aumentam o estoque de capital

$$\Delta K = v \cdot \Delta Y$$

Caráter Dual do Investimento II

Variação do investimento determina variação da renda, pelo efeito multiplicador

$$\Delta I \Rightarrow \Delta Y$$

Variação da renda determina o nível do investimento pelo princípio do acelerador

$$\Delta Y \Rightarrow K \Rightarrow I$$

Depois de algum tempo, crescimento do produto, do investimento e do estoque de capital são iguais

$$g_Y = g_I = g_K$$

Memo: Considerando Z=0

Equilíbrio de Mercado no Longo Prazo I

Partindo do equilíbrio de mercado do curto prazo $(I \equiv S)$ para o longo prazo e dividindo ambos os lados pelo estoque de capital

$$\frac{I}{K} = \frac{S}{K} \tag{2}$$

Do lado **esquerdo** temos.

- Taxa de crescimento do estoque de capital, igual a
- Taxa de crescimento do investimento, igual a
- Taxa de crescimento do produto

$$g_K = g_I = g = \frac{S}{K}$$

Equilíbrio de Mercado no Longo Prazo II

Multiplicando o lado direito por (Y/Y) e (Y_p/Y_p) em que Y_p é o produto potencial $(Y_p = K/v)$

$$g_Y = \frac{S}{K} \cdot \underbrace{\frac{1}{Y}}_{Y} \cdot \underbrace{\frac{1}{Y_p}}_{Y_p}$$

rearranjando

$$g_{Y} = \frac{s}{Y} \cdot \frac{u}{Y_{p}} \cdot \frac{1/v}{Y_{p}}$$

$$g_{Y} = \frac{s}{v} \cdot u$$

Equilíbrio de Mercado no Longo Prazo III

Repetindo a última equação

$$g_Y = \frac{s}{v} \cdot u \tag{3}$$

em que

- s propensão média a poupar
- u grau de utilização da capacidade
- v relação capital-produto

A equação 3 é um truísmo e mostra uma relação positiva entre crescimento econômico (g_Y) e o grau de utilização (u)

Taxa Garantida: Versão Jones I

Alguns conceitos básicos na exposição de Jones:

Relação capital-produto efetiva v_F : É a relação que realmente acontece

$$v_E = \frac{K}{Y}$$

Relação capital-produto requerida V_R : Anteriormente denominada de relação técnica (v) e expressa o quanto firma a precisa de capital para produzir uma unidade de produto

$$v_R = v = \frac{K}{Y_p}$$

Taxa Garantida: Versão Jones II

Objetivo das firmas: Tomam decisões de acumulação de capital para ajustar a relação capital-produto efetiva à relação capital-produto requerida

$$v_E
ightarrow v$$

- $v_E < v$: As firmas têm *menos* capital por unidade de produto do que gostariam
- $v_E > v$: As firmas têm mais capital por unidade de produto do que gostariam

Combinando Jones e Serrano

Partindo da relação capital-produto efetiva e dividindo e multiplicando o lado direito por Y_n , temos

$$v_E = \frac{K}{Y} \frac{Y_p}{Y_p}$$

$$v_E = \frac{K}{Y_p} \frac{Y}{Y_p}$$

$$v_E = \frac{v}{u} \Rightarrow v = \frac{u}{v_E}$$

Importante: Para uma dada relação técnica/requerida capital-produto (v), grau de utilização (u) e relação efetiva capital-produto (v_F) variam na direção contrária

$$\uparrow v_E \Leftrightarrow \downarrow u$$

E finalmente a taxa garantida

Taxa garantida (g_w) : expressa a condição para que ocorra um crescimento equilibrado entre demanda e capacidade produtiva, ou ainda, taxa de crescimento em que as firmas estão satisfeitas com sua acumulação de capital

$$v_E = v_R = v$$

Substituindo na equação 3

$$g_Y = \frac{s}{v_F} u$$

$$g_w = \frac{s}{\frac{V_R}{\mu}} u \Rightarrow g_w = \frac{s}{V_R}$$

Instabilidade em Harrod

Vamos analisar o caso em que $g > g_w$ e o que isso implica:

$$g > g_w \Leftrightarrow v_E > v_R$$

Reação das firmas: aumentar a acumulação de capital acelerando o crescimento do investimento

Problema: Investimento possui um caráter dual, ou seja, cria demanda (multiplicador) E capacidade produtiva

Resultado: $\uparrow g_I \rightarrow g \rightarrow v_E >> v_R \rightarrow \ldots \rightarrow g >> g_w$

Conclusão: a economia não tende ao crescimento equilibrado entre oferta e demanda $(g \rightarrow g_w)$. O comportamento das firmas é correto do ponto de vista micro, mas o resultado macro é indesejado: instabilidade

Significado econômico da taxa garantida

- Caso a taxa de crescimento efetiva seja igual a garantida, firmas não alteram sua taxa de acumulação de capital
- Logo, não muda o crescimento da demanda, tampouco da oferta
- Importante: Não é a taxa a qual a economia realmente cresce. Essa é determinada pela taxa de crescimento do investimento

Problema deixado por Harrod

Quais as condições para que demanda e capacidade produtiva cresçam dinamicamente equilibradas, ou seja, $g = g_w$? Se existem, tais condições são razoáveis ou estáveis? São essas questões que Solow, Robinson, Kaldor, Kalecki e, mais recentemente, Serrano tentam responder

Solow e a Lei de Say

Só há uma forma da taxa garantida representar a taxa efetiva de crescimento, de modo estável: Aceitar a validade da **lei de Say** A taxa garantida representaria o caso no qual a taxa de crescimento da demanda se ajustaria sempre ao crescimento prévio da capacidade produtiva. O crescimento esperado seria tal que geraria automaticamente o consumo induzido e o investimento induzido necessários para manter a relação técnica efetiva igual à requerida

Importante: Harrod rejeita a lei de Say, por isso formula sua instabilidade fundamental

Solow, Lucas, Romer, ...

Uma vez aceita a Lei de Say $(S \Rightarrow I)$, os modelos derivados de Solow passam a dar atenção à questões da oferta (e.g. capital humano)

A Grande Família multiplicador/acelerador

Princípio Acelerador: investimento ajusta a capacidade produtiva da economia à evolução da demanda efetiva

$$I = a(K^d - K_{t-1})$$

em que K^d é a capacidade produtiva desejada e depende da demanda esperada (Y^E)

$$K^d = vY^E$$

substituindo:

$$I = a(vY^E - K_{t-1})$$

$$I = a(vY^E - vY_{t-1})$$

 $\it a$ é um parâmetro que representa a velocidade de ajuste da capacidade

- a = 1 Ajuste completo
- a < 1 Ajuste gradual

Partindo desta apresentação geral do acelerador e da equação 1, como retornar ao Harrod? Hipóteses

z = 0 Ausência de gastos autônomos

 $Y^E = Y$ Ausência de expectativas

a=1 Ajuste completo

 $h = \overline{h}$ Acelerador rígido

$$I = a(vY^E - K_{t-1}) \Rightarrow I = v\Delta Y$$

 $g_Y \equiv g_I$

Do geral ao específico: Serrano I

No modelo do supermultiplicador, o investimento é considerado como totalmente induzido pela demanda

$$I = h \cdot Y \Rightarrow g_I = g_Y$$

Adicionalmente, supõe que a propensão marginal a investir (h) depende da taxa de crescimento da demanda efetiva

$$I = v\Delta Y \Rightarrow \frac{I}{Y} = v\frac{\Delta Y}{Y} \Rightarrow h = v \cdot g$$

Na versão com expectativas, temos

$$h = v \cdot g^e$$

Seja com expectativas ou não, o acelerador não é rígido, o que implica

$$\Delta h \neq 0$$

Do geral ao específico: Serrano II

Uma vez que *h* varia com a demanda, a contribuição da taxa de crescimento deve se alterar

$$g_Y = c \cdot g_C + \overbrace{h \cdot g_I + \Delta h}^{\text{Regra da cadeia}} + z \cdot g_Z$$

Uma vez que o consumo e o investimento são induzidos $(g_C = g_I = g_Y)$ e existem gastos autônomos (z > 0), temos

$$Y = \frac{Z}{1 - c - h} \Leftrightarrow z = \frac{Z}{Y} = 1 - c - h$$
$$g_Y = \frac{z \cdot g_Z + \Delta h}{1 - c - h}$$

Simplificando

$$g_Y = g_Z + \frac{\Delta h}{1 - c - h}$$

Do geral ao específico: Serrano III

Faremos o mesmo procedimento utilizado anteriormente para apresentar o supermultiplicador. Hipóteses

z > 0 Presença de gastos autônomos

$$Y^E \neq Y$$
 Presentes

a < 1 Ajuste gradual

 $\Delta h \neq 0$ Acelerador flexível

$$I = hY$$
 $h = vg^e \Rightarrow \Delta h \neq 0$ $g_I = g_Y \rightarrow g_Z$ $\Delta h = 0 \Leftrightarrow g_w = g_Y = g_Z$

Diferenças teóricas

Os modelos de Harrod (1939), Solow (1956) e Serrano (1995) se distinguem em relação às hipóteses sobre:

- Lado da oferta: Adoção de uma função de Cobb-Douglas (substituição dos fatores) ou de Leontieff (complementaridade)
- Distribuição de renda: Se determinada economicamente ou por fatores sócio-históricos
- Existência de gastos autônomos: Somente o investimento é autônomo (Harrod); Investimento induzido pela renda (supermultiplicador); Investimento determinado pela poupança (Solow)
- PDE Adoção do PDE ou da Lei de Say

Explicitando as diferenças

Tabela: Comparando os modelos

	Acelerador	Gastos autônomos	PDE	Característica
Harrod	$h = \overline{h}$	z = 0	Sim	Instável
Solow	$h = \overline{s}$	z = 0	Não	Estável
Serrano	$\Delta h \neq 0$	z > 0	Sim	Estável

Referências I

- HARROD, R. F. An Essay in Dynamic Theory. en. The Economic Journal, v. 49, n. 193, p. 14, mar. 1939. ISSN 00130133. DOI: 10.2307/2225181. Disponível em: https://www.jstor.org/stable/10.2307/2225181?origin=crossref. Acesso em: 28 dez. 2018.
- KEYNES, John Maynard. The general theory of employment, interest, and money. New York/London: Harcourt Brace Jovanavich, 1936.
- SERRANO, Franklin. LONG PERIOD EFFECTIVE DEMAND AND THE SRAFFIAN SUPERMULTIPLIER. en. Contributions to Political Economy, v. 14, n. 1, p. 67-90, 1995. ISSN 1464-3588, 0277-5921. DOI: 10.1093/oxfordjournals.cpe.a035642. Disponível em: https://academic.oup.com/cpe/article/428995/LONG. Acesso em: 20 dez. 2018.

Referências II

SERRANO, Franklin: FREITAS, Fabio: BHERING, Gustavo, The Trouble with Harrod: The fundamental instability of the warranted rate in the light of the Sraffian Supermultiplier. en. Metroeconomica, v. 70, n. 2, p. 263-287, 2019, ISSN 1467-999X, DOI: 10.1111/meca.12230. Disponível em: https:

//onlinelibrary.wiley.com/doi/abs/10.1111/meca.12230>.

Acesso em: 14 nov. 2019.

SOLOW, Robert M. A Contribution to the Theory of Economic Growth. en. The Quarterly Journal of Economics, v. 70, n. 1, p. 65, fev. 1956. ISSN 00335533. DOI: 10.2307/1884513. Disponível em: <https://academic.oup.com/qje/article-</pre>

lookup/doi/10.2307/1884513>. Acesso em: 30 mai. 2019.