

概述

TP4057是一款性能优异的单节锂离子电池恒流/恒压线性充电器。TP4057采用S0T23-6封装配合较少的外围原件使其非常适用于便携式产品,并且适合给USB电源以及适配器电源供电。

基于特殊的内部MOSFET架构以及防倒充电路, TP4057不需要外接检测电阻和隔离二极管。当外部环境温度过高或者在大功率应用时, 热反馈可以调节充电电流以降低芯片温度。充电电压固定在4.2V, 而充电电流则可以通过一个电阻器进行外部设置。当充电电流在达到最终浮充电压之后降至设定值的1/10, 芯片将终止充电循环。

当输入电压断开时,TP4057进入睡眠状态,电池漏电流将降到1uA以下。TP4057可以被设置于停机模式,此时芯片静态电流降至25uA。

TP4057还包括其他特性: 电池温度监测, 欠压锁定, 自动再充电和两个状态引脚以显示充电和充电终止。

特性

- ◆可编程充电电流500mA
- ◆无需外接MOSFET, 检测电阻以及隔离二极管
- ◆用于单节锂电池、采用SOT23-6封装的完整线性充电器
- ◆恒定电流/恒定电压操作,并具有可在无过热危险的情况 下实现充电速率最大化的热调节功能。
- ◆精度达到±1%的4.2V预充电电压
- ◆用于电池电量检测的充电电流监控器输出
- ◆自动再充电
- ◆充电状态双输出、无电池和故障状态显示
- ◆C/10充电终止
- ◆待机模式下的静态电流为25uA
- ◆2.9V涓流充电
- ◆软启动限制浪涌电流

应用范围

- ◆移动电话、PDA
- ◆MP3、MP4播放器
- ◆充电器
- ◆数码相机
- ◆电子词典
- ◆蓝牙、GPS导航仪
- ◆便携式设备

TP4057采用S0T23-6封装

典型应用

管脚分布

管脚描述

管脚号	管脚名	描述
1	CHRG	电池充电指示端
2	GND	地端
3	BAT	电池端
4	VCC	电源端
5	STDBY	电池充电完成指示端
6	PROG	可编程恒流充电电流设置端

最大额定值 (注)

参数	范围	单位
VCC端电压	-0.3 to 6.5	V
PROG端电压	-0.3 to 6.5	V
BAT端电压	-0.3 to 6.5	V
CHRG端电压	-0.3 to 8	V
STDBY端电压	-0.3 to 8	V
BAT端电流	500 mA	mA
PROG端电流	800 uA	uA
最大功耗	400 800(增加PCB散热) ⁽¹⁾	mW
工作环境温度	-40 ~ 85	°C
最低/最高存储温度Tstg	-65 to 125	°C

注释(1): 增加PCB散热参数仅供参考, 具体以实际为准

ESD与Latch-up等级

人体模型ESD级别	4000V
机器模型ESD级别	400 V
Latch-up 级别	400mA

结构框图

电气特性

(如果没有特殊说明, 环境温度= 25°C, 输入电压=5V)

符号	参数	测试条件	最小值	典型值.	最大值	单位
Vcc	输入电源电压		4. 0		6. 5	٧
ICC 输入电		充电模式(RPROG=10K) (1)		240	500	uA
	 输入电源电流	待机模式 (充电终止)		45	90	uA
	THE COME COLL	停机模式(RPROG未连接, VCC <vbat, td="" vcc<vuvlo)<=""><td></td><td>25</td><td>50</td><td>uA</td></vbat,>		25	50	uA
VFLOAT	输出浮充电压	0°C≤T≤85°C, IBAT=40mA	4. 158	4. 2	4. 242	٧
		恒流模式, R _{PROG} =10K	93	100	107	mA
		恒流模式, R _{PROG} =2K	465	500	535	mA
IBAT	 BAT端充电电流	待机模式, VBAT=4. 2V	0	-2.5	-6	uA
IBAI	DAI物允屯屯加	停机模式		1	2	uA
		电池反接模式, VBAT=-4V		0. 7		mA
		睡眠模式,Vcc=0V		0	1	uA
ITRIKL	涓流充电电流	VBAT < VTRIKL, RPROG=2K	40	50	60	mA
VTRIKL	涓流充电门限电压	VBAT上升	2. 7	2. 9	3. 1	٧
VTRHYS	涓流充电迟滞电压	VBAT下降	60	80	100	mV
VUVL0	VCC欠压锁定电压	VCC上升	3. 6	3. 8	4. 0	٧
Vuvhys	VCC欠压锁定迟滞电压	VCC下降	150	200	300	mV
VMSD 手动关断阈值电压	手动关断圆值由压	VPROG上升	1. 15	1. 21	1.30	٧
	1 分入時內臣 0 左	VPROG下降	0. 9	1.0	1.1	٧
VASD VCC -	VCC -VBAT锁闭电压	VCC上升	70	100	140	mV
VAOD	VOO VDAT坝内电压	VCC下降	5	30	50	mV
ITERM	C/10终止电流门限 ⁽²⁾	RPROG=10K	0. 085	0. 10	0. 115	mA/mA
TIERM U/TU於	07 10% 7 20/11/1/16	RPROG=2K	0. 085	0. 10	0. 115	mA/mA
VPROG	PROG引脚电压	恒流模式,RPROG=10K	0. 93	1.0	1. 07	٧
VCHRG	CHRG端输出低电平	I CHRG=5mA		0. 35	0.6	٧
VSTDBY	STDBY端输出低电平	ISTDBY=5mA		0. 35	0.6	٧
$\Delta VRECHG$	再充电电池门限电压	VFLOAT-VRECHG		100	200	mV
tRECHG	再充电延时时间	VBAT由高到低	0.8	1.8	4	ms
TTERM	充电终止延时时间	IBAT降至I _{CHG} /10以下	0. 63	1.4	3	ms
l PROG	PROG端上拉电流			2. 0		uA

注释(1): 这时处于充电状态, ICC= IVCC- IBAT

(2): 这里 C/10终止电流门限指的是终止电流与恒流充电电流的比值

使用说明

TP4057是一款专门为锂离子电池设计的线性充电器,利用芯片内部的功率MOSFET对电池进行恒流/恒压充电。充电电流可以由外部电阻编程决定,最大充电电流可以达到500mA。TP4057拥有两个漏极开路输出的状态指示输出端,充电状态指示端CHRG和电池充电完成指示输出端STDBY。芯片内部的功率管电路在芯片的结温超过135℃时自动降低充电电流,这个功能可以使用户最大限度利用芯片充电,不用担心芯片过热而损坏芯片或者外部元器件。

●工作原理

当输入电压大于UVLO检测阈值和芯片使能输入端接高电平时,TP4057开始对电池充电。如果电池电压低于2.9V,充电器用小电流对电池进行预充电。当电池电压超过2.9V时,充电器采用恒流模式对电池充电,充电电流由PROG端和GND端之间的电阻决定。当电池电压接近4.2V时,充电电流逐渐减小,TP4057进入恒压充电模式。当充电电流减小到充电结束阈值时,充电周期结束。

充电结束阈值是恒流充电电流的1/10。当电池电压降到再充电阈值以下时,自动开始新的充电周期。芯片内部的高精度的电压基准源,误差放大器和电阻分压网络确保BAT端调制电压的精度在1%以内,满足锂离子和锂聚合物电池的要求。当输入电压掉电或者输入电压低于电池电压时,充电器进入停机模式,电池端消耗的电流小于2uA,从而增加待机时间。

●充电终止

当充电电流在达到最终浮充电压之后降至设定值的1/10,充电循环被终止。该条件是通过采用一个内部滤波比较器对PROG端进行监控来检测的。当PROG端电压降至100mV以下的时间超过1.8ms时,充电终止,TP4057进入待机模式,此时的输入电源电流降至约45uA。

充电时,BAT端上的瞬变负载会使PROG端电压在DC充电电流降至设定值的1/10之间短暂地降至100mV以下,比较器的1.8ms延时时间确保了这种性质的瞬变负载不会导致充电循环过早终止。一旦平均充电电流降至设定值的1/10以下,TP4057集中式充电循环并停止通过BAT端提供任何电流。在这种状态下,BAT端上所有负载都必须由电池供电。

●充电状态指示

TP4057有两个漏极开路状态指示输出端CHRG和STDBY。当充电器处于充电状态时,CHRG被拉到低电平,在其他状态CHRG为高阻态;当电池充电结束后,STDBY被拉到低电平,在其他状态STDBY为高阻态。

当电池没有接到充电器时,CHRG闪烁表示没有安装电池。

充电状态	CHRG	STDBY
正在充电	亮	灭
充电完成	灭	亮
BAT端连接1uF电容,无电池	闪烁(频率约20Hz)	亮

●热限制

如果芯片温度升至135°C以上时,一个内部热反馈环路将减小设定的充电电流。该功能可防止TP4057过热,并允许用户提高给定电路板功率处理能力的上限而减小损坏TP4057的风险。

●欠压锁闭

TP4057拥有一个内部欠压锁定电路对输入电压进行监控,在VCC升至欠压锁定门限电压之前使芯片保持在停机工作模式。当VCC电压升高至3.8V之后,芯片退出UVLO,开始正常工作。VCC下降时的UVLO迟滞电压为200mV。

●自动充电循环

电池电压达到浮充电压,充电循环被终止之后,TP4057立即对BAT端电压进行监控。当BAT端电压低于4.1V时,充电循环重新开始。确保了电池被维持在一个接近满电的状态,同时免除了进行周期性充电循环启动的需要。

封装说明: S0T23-6

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
C	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E1	1.500	1.700	0.059	0.067	
E	2.650	2.950	0.104	0.116	
е	0.950(0.950(BSC)		(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	