

COMP 8167: ADVANCED DATABASE TOPICS PROJECT PRESENTATION

Query Optimization of Employee Performance in Supply Chain Management System

TEAM MEMBERS

- 1. ESWARAN BADRINARAYANAN VENKATESWARAN 110069235
- 2. HANI PANKAJKUMAR BHAVSAR 110072568
- 3. VISHAL JAYARAMAN 110067134

PROJECT OUTLINE

KEY DISCUSSION POINTS

- Problem Statement
- Motivation
- Background Study/Related Work
- Solution Statement
- Project Demo
- Conclusion & Future Scope
- References

PROBLEM STATEMENT?

- The management of the flow of goods and services has been largely transformed by automation softwares.
- However, over the years there has been a persisting mismatch between supply and demand globally, leading to an imbalance in a company's inventory management.
- As a result, small-scale businesses need to retreive employee's work record through Query Optimization techniques to enhance overall production rate of resources.

MOTIVATION - W-

- Entrepreneurship in Canada is considered as one of the driving forces behind innovation productivity, job creation, and economic progress.
- As the league of entrepreneurship is challenging, emerging businesses must deal with volatile markets, untested technologies, & inconsistencies in organizational processes.
- Small-scale businesses are signficantly affected due to Covid -19 and require an efficient solution to operate at a profitable level.

BACKGROUND STUDY

The following concepts were briefly examined from the list of research papers

Citation	Concepts
Thalheim, Bernhard. (1993). Database Design Strategies. 267–285. 10.1007/978–3–7091– 2704–9_14.	Database Design Strategies
Khan, M., & Khan, M. N. A. (2013). Exploring query optimization techniques in relational databases. International Journal of Database Theory and Application, 6(3), 11–20.	Query Optimization Techniques & Indexing
Zheng, J. G. (2017). Data visualization for business intelligence. Global business intelligence, 67-82.	Data Visualization using Bl Tools

SOLUTION STATEMENT

CUSTOM DATASET
USING PYTHON
SCRIPT

DATABASE CREATION

(MS-SQL SERVER)

DATABASE OPERATIONS

(IMPORT, EXPORT, etc)

RETREIVE EMPLOYEE
RECORD, ANALYSIS OF
SQL EXECUTION PLAN, SQL
QUERY TUNING, INDEXING

USER INTERFACE

DISPLAY QUERIED
RESULTS &
GENERATE REPORT

PROJECT DEMO

DATABASE

- 1. Dataset Creation
- 2. DB Design
- 3. Bulk Data Insert
- 4. View Creation Work_Efficiency
- 5. SQL Query Execution Plan
- 6. SQL Query Tuning Like Vs Equals

ANALYSIS

- 1. DB Connection & Relationships
- 2. Heat Map Analysis Explain Data
- 3. Generating Email Report
- 4. Feedback for each employee -Calculated Field

PROJECT DEMO

a. Before Index

SELECT Estimated operator progress: 100%		
Actual Number of Rows for All Executions	10	
Cached plan size	120 KB	
Degree of Parallelism	1	
Estimated Operator Cost	0 (0%)	
Estimated Subtree Cost	0.326598	
Memory Grant	2720 KB	
Estimated Number of Rows for All Executions 0		
Estimated Number of Rows Per Execution	1	

Statement

select * from Employee_Efficiency order by Employee_ID

b. After Index

SELECT		
Estimated operator progress: 100%		
Actual Number of Rows for All Executions	10	
Cached plan size	120 KB	
Degree of Parallelism	1	
Estimated Operator Cost	0 (0%)	
Estimated Subtree Cost	0.118313	
Memory Grant	2720 KB	
Estimated Number of Rows for All Executions	0	
Estimated Number of Rows Per Execution 1		
Statement		
select * from Employee_Efficiency order by Employee_ID		

c. Heat Map Analysis

To: shankarl@uwindsor.ca;

Employee Performance Report for March 2019 - Reg

Hello Mr. Lakshmi Narayanan Shankar,

Hope you are doing well. Please find your performance report below.

Item: Soups

Average Product per hour: 12.343663594469

Average Successful Produced Quantity(Percentage): 72.9926646758606

Location : Alberta

Comments: Below Average. Needs Improvement!

Feel free to reach out if you have any clarifications. Have a great day!

Regards,

Regional Manager - Alberta

d. Employee Peformance - Email Report

CONCLUSION & FUTURE WORK

In conclusion,

- The project's goal to demonstrate the impact of query optimization on employee performance in the SCM DB was successfully analyzed.
- Heat maps were utilized to visualize the data, and the employee received autogenerated tailored feedback in the form of an email.

In future,

- Query tuning can be used to optimize queries which will improve the performance of the DB using transformation rules (Relation Algebra, eg: Nested Queries), multi-level indexing on large datasets can be used to fetch faster results, Query Store and Event Sessions can be created to monitor query statistics and performance.
- Supply chain analysis can be conducted on complex industrial datasets collected in real time that may be utilized to provide precise pragmatic outcomes.
- Database design may be made flexible to handle semi-structured and unstructured data (which is more common in the modern era) for query processing.
- Advanced tableau features, such as data blending, predictive analysis, and so on, may be explored in more detail to provide better meaningful insights on the dataset.

REFERENCES O

- [1] Small Business Tourism and Marketplace Services. (2021, December 15). Key Small Business Statistics SME research and statistics. Statistics Canada. https://www.ic.gc.ca/eic/site/061.nsf/eng/h_02689.html
- [2] Overview of the food and beverage processing industry agriculture.canada.ca. (2021, October 28). Agriculture Canada. https://agriculture.canada.ca/en/canadas-agriculture-sectors/food-processing-industry/overview-food-and-beverage-processing-industry
- [3] Yevtushenko, A. (2019, April 24). Supercharge Your SQL Queries for Production Databases. Sisense. https://www.sisense.com/blog/8-ways-fine-tune-sql-queries-production-databases
- [4] Plinere, Darya & Borisov, Arkady. (2015). Case Study on Inventory Management Improvement. Information Technology and Management Science. 18. 10.1515/itms-2015-0014.
- [5] Thalheim, Bernhard. (1993). Database Design Strategies. 267–285. 10.1007/978–3–7091–2704–9_14.

