VLSI DESIGN FLOW: RTL TO GDS

Lecture 26 Constraints II

Sneh Saurabh Electronics and Communications Engineering IIIT Delhi

Static Timing Analysis: Environment of design

Environment of design puts additional constraints on the signal entering/leaving a design

- Signal entering the design at the input port encounters delay
- Signal leaving the design at the output port will encounter delay and get captured externally
 - ➤ Should meet setup/hold requirements at *FOUT*
 - > Check for setup/hold must also be performed at the output port

Input Port Constraints: set_input_delay

- Signal gets delayed before entering the design
 - Lesser part of clock-period is available for the signal to reach flip-flop within the design
- Delay external to design at the input ports is modelled using set_input_delay

■ Value of input delay = Delay of $CE1 + CP \rightarrow Q$ delay of FIN + Delay of DIN

create_clock -name CLK -period 2000 [get_ports *CLK_PORT*] set_input_delay -clock [get_clocks CLK] 100 [get_ports *IM*]

Transition at Input Port

set_input_transition: model slew of incoming signal

set_input_transition 10 -max -rise [get_ports //]

• *set_driving_cell:* driver of inputs

set_driving_cell -lib_cell *BUF1X* -library *tech14nm* [get_ports //]

Output Port Constraints: set_output_delay

Output Delay: signal leaving a design must meet the setup/hold constraints of the flip-flop that captures that signal

Constraints of the external flip-flop is modelled using set_output_delay

- The delay of OD needs to be chosen such that the setup/hold requirements in the actual circuit and equivalent circuit match
- Delay of OD is specified in set_output_delay command

Illustration: *set_output_delay*

create_clock -name SYS_CLOCK -period 2000 [get_ports *CLK*] set_output_delay 410 -max -clock [get_clocks SYS_CLK] [get_ports *OUT*]

Load at Output Port

 set_load: load that will be driven by the output port

set_load 0.039 [get_ports *OUT*]

Timing Exceptions

- set_false_path: To make exceptions from analysing certain paths that may not be exercised
- set_multicycle_path: To inform the STA tool that certain path may take more than one cycle

set_multicycle_path 4 -setup -from [get_pins *FF1/CP*] -to [get_pins *FF2/D*]

set_multicycle_path 4 -setup -from [get_pins *FF1/CP*] -to [get_pins *FF2/D*]

set_multicycle_path 3 -hold -from [get_pins *FF1/CP*] -to [get_pins *FF2/D*]

Constant Value to Port/Pin

set_case_analysis: assign constant value to some port/pin

set_case_analysis 1 [get_ports SCAN_ENABLE]

set_case_analysis 1 [get_ports *SLEEP_MODE*]

References

- S. Saurabh, "Introduction to VLSI Design Flow". Cambridge: Cambridge University Press, 2023.
- Bhasker, Jayaram, and Rakesh Chadha. Static timing analysis for nanometer designs: A practical approach. Springer Science & Business Media, 2009.

