

GERAL

ATESTADO TÉCNICO USINA HIDRELÉTRICA BAIXO IGUAÇU

Atestamos para os devidos fins que a empresa **INTERTECHNE CONSULTORES S.A.**, inscrita no CGC/MF nº 80.378.052/0001-35, com sede a Av. Iguaçu, 100 - Rebouças - Curitiba, PR, executou para a **CONSTRUTORA NORBERTO ODEBRECHT S/A**, inscrita no CNPJ/MF sob o nº 15.102.288/0329-71 com filial estabelecida na Rodovia PR 163, S/Nº - KM 106, Zona Rural, no município de Capanema, PR, os Serviços de Engenharia de Projeto, no âmbito de Contrato de Engenharia dos Projetos Básico e Executivo, relativos à implantação da UHE Baixo Iguaçu, com potência instalada de 350 MW, localizada no rio Iguaçu, entre os municípios de Capitão Leônidas Marques e Capanema, no estado do Paraná.

1. CARACTERÍSTICAS TÉCNICAS DO APROVEITAMENTO

GL	INAL			
•	Rio	lguaçu		
•	Distância da Foz	703,00 m		
•	Bacia	Rio Paraná (6)		
•	Sub-bacia	Rio Iguaçu (65)		
•	Municípios	Capitão Leônidas Marques e Capanema		
•	UF	PR		
•	Latitude:	25° 30' S		
•	Longitude:	53º 40' W		
•	Queda de Referência	15,3 m		
•	Potência Instalada	350 MW		
RE	RESERVATÓRIO			
•	Nível máximo normal	259,00 m		
•	Nível mínimo normal	258,00 m		
•	Nível máximo maximorum	261,60 m		
•	Volume no N.A. máximo normal	211,92 x 10 ⁶ m³		
•	Volume útil	N/A		
•	Área inundada no N.A. máx. normal	31,63 km²		
NÍVEIS DE JUSANTE				
•	Nível mínimo (Q = 255 m³/s)	240,77 m		
•	Nível normal (Q = 2.598 m³/s)	243,21 m		
•	Nível máximo (Q = 53.585 m³/s)	257,90 m		

DESVIO

•	TipoVãos concluídos do Verte	edouro
•	Número de vãos	16
•	Seção	m (H))
•	Comprimento	336 m
•	Vazão de desvio23.87	⁷ 3 m³/s
•	Tempo de Recorrência5	0 anos
ВА	RRAGEM PRINCIPAL	
•	TipoEnrocamento com Núcleo de	Argila
•	Cota de coroamento	263 m
•	Comprimento total da crista	446 m
•	Altura máxima.	30 m
ВА	RRAGEM DE CONCRETO (MURO DIREITO CENTRAL)	
•	TipoConcreto (Seção mista CCR/Moldado er	n loco)
	Cota de coroamento	
•	Comprimento total da crista	446 m
•	Altura máxima.	
VE	RTEDOURO	
۷Ľ		
•	TipoCon	
•	Número de vãos	
•	Largura do vão	
•	Comprimento total	
•	Cota da crista	1,50 m
•	Capacidade (CMP)53.58	35 m³/s
CIR	RCUITO HIDRÁULICO DE GERAÇÃO:	
	omada de água é composta por 3 (três) unidades no total de 9 aduções e caça do tipo acoplada com 3 blocos de unidades típicas.	asa de
CA	NAL DE ADUÇÃO	
•	Largura	100 m
•	Comprimento	
TO	MADA DE ÁGUA	
•	Tipo Ac	oplada
•	Número de unidades	
•	Número de vãos por unidade	
•	Altura total	
-		20,0

•	Comprimento total	102,50 m
Сс	omporta Ensecadeira	
•	Quantidade de comportas	3
•	Largura	7,69 m
•	Altura	18,72 m
CA	ASA DE FORÇA	
•	Tipo	abrigada
•	Nº de unidades geradoras	3
•	Largura total dos blocos das unidades	102,50 m
•	Altura do blocos	68,50 m
•	Largura da área de montagem	84,20 m
•	Largura total da estrutura	73 m
Tu	rbinas	
•	Tipo	Kaplan de eixo vertical
•	Número de unidades	3
•	Potência nominal	119,29 MW
•	Queda líquida nominal (referência)	15,3 m
•	Rotação	66,67 rpm
•	Vazão Nominal Unitária	866 m³/s
•	Vazão Máxima Turbinada	2598 m³/s
Ge	eradores	
•	Quantidade	3
•	Potência Nominal	130,75 MVA
•	Tensão Nominal	13,8 kV
•	Fator de Potência	0,90
•	Velocidade Nominal	66,67 rpm
Tra	ansformadores	
•	Quantidade	3
•	Potência Unitária Nominal	130 MVA
•	Tensão enrolamento Principal	13,8 kV
•	Tensão enrolamento Secundário	230 kV
Es	tudos Energéticos	
•	Operação reservatório	a fio de água
•	Potência instalada	350 MW
•	Queda bruta	15,79 m
•	Queda líquida nominal (referência)	15,3 m
•	Rendimento conjunto turbina/gerador	92.8%

•	Engolimento nominal unitário	171,47 m³/s	
•	Energia Gerada	184,3 MW médios	
•	Energia firme	168,6 MW médios	
SUBESTAÇÃO E LINHA DE TRANSMISSÃO SUBESTAÇÃO			
•	Município	Cascavel	
•	UF	PR	

LINHA DE TRANSMISSÃO

•	Municípios	Capitão Leônidas Marques / Cascavel
•	UF	PR
•	Extensão	60 km
•	Tensão	230 kV
•	Circuito	Simples

PRINCIPAIS QUANTIDADES

ГП	FRINCIPAIS QUANTIDADES		
•	Escavação Comum	699.746 m³	
•	Escavação em Rocha	2.151.377m³	
•	Solo	46.097 m³	
•	Enrocamento	11.401 m³	
•	Aterro compactado	1.388.893 m³	
•	Concreto Convencional	327.226 m³	

2. ESCOPO DOS SERVIÇOS DE ENGENHARIA DE PROJETO

A INTERTECHNE, no âmbito do objeto do presente contrato, atuou como empresa especializada realizando as seguintes atividades:

2.1. PROJETO BÁSICO

O PROJETO BÁSICO da UHE Baixo Iguaçu correspondeu à preparação do conjunto de definições das estruturas civis e dos equipamentos e sistemas eletromecânicos, visando apresentar à ANEEL as alterações e melhorias introduzidas na concepção das obras posteriormente aos Estudos de Viabilidade deste aproveitamento.

O produto final desta atividade foi o Relatório Final do Projeto Básico composto dos seguintes documentos:

- Relatório descritivo contendo todos os dados básicos que embasaram a elaboração do arranjo da UHE Baixo Iguaçu, com a descrição detalhada das estruturas, equipamentos e sistemas eletromecânicos que compõem este aproveitamento;
- Desenhos gerais do arranjo e das estruturas abrangendo as disciplinas de engenharia civil, elétrica e mecânica;

- Fluxogramas dos sistemas auxiliares mecânicos e diagramas dos sistemas elétricos;
- Orçamento padrão Eletrobrás;
- Ficha técnica do empreendimento.

2.2. PROJETO BÁSICO CONSOLIDADO

O PROJETO BÁSICO CONSOLIDADO da UHE Baixo Iguaçu correspondeu à preparação do conjunto de definições das estruturas a serem construídas e dos equipamentos e sistemas a serem fornecidos e montados de modo a permitir a preparação dos documentos detalhados que foram utilizados para construção. Esta etapa foi conduzida após o desenvolvimento do PROJETO BÁSICO e concomitantemente com o recebimento de informações dos equipamentos eletromecânicos dos FORNECEDORES.

Os serviços desenvolvidos pela INTERTECHNE durante a fase do PROJETO BÁSICO CONSOLIDADO incluíram a análise de dados técnicos coletados e/ou elaborados por terceiros anteriormente ao início dos SERVIÇOS e dados de investigações de campo e laboratório realizadas contemporaneamente aos trabalhos.

2.2.1 Atividades Principais Realizadas

Civil

- Preparação dos Critérios de Projeto Civil;
- Definição funcional e da localização, geometria e composição de todas as estruturas civis que compõem o aproveitamento hidrelétrico da UHE Baixo Iguaçu;
- Preparação de Programas Complementares de Investigações Topográficas, Geológicas e Geotécnicas, e Hidrométricas, assim como do Programa de Ensaios Geotécnicos de Laboratório para jazidas e áreas de empréstimo;
- Preparação do Programa de Ensaios em Modelo Hidráulico Reduzido da Usina e acompanhamento técnico do andamento deste programa no local onde o mesmo foi realizado;
- Recebimento e análise de informações topográficas, hidrológicas, geológicas e geotécnicas disponíveis e análise dos resultados das investigações complementares realizadas nesta fase dos trabalhos;
- Formulação e caracterização do arranjo geral das estruturas e equipamentos do aproveitamento hidrelétrico;
- Consolidação do arranjo da Casa de Força em função dos equipamentos e sistemas auxiliares apresentados pelos FORNECEDORES;
- Preparação das Especificações Técnicas das Obras Civis;
- Preparação dos Modelos 3D de todas as estruturas da Usina;
- Elaboração dos desenhos de arranjo das estruturas civis do empreendimento, incluindo nos mesmos os equipamentos mecânicos e elétricos da Casa e Força, Tomada de Água e Vertedouro.

<u>Mecânico</u>

 Definição da disposição e da localização e arranjo dos equipamentos eletromecânicos permanentes do aproveitamento a partir das informações dos FORNECEDORES.

- Consolidação das Especificações Técnicas elaboradas pelos FORNECEDORES e das instruções gerais relativas ao fornecimento dos equipamentos eletromecânicos principais, tais como, turbina, gerador, equipamentos hidromecânicos e de movimentação de cargas e sistemas associados;
- Preparação dos critérios de projeto para os serviços auxiliares e instalações industriais mecânicas para os diversos sistemas;
- Elaboração dos fluxogramas dos sistemas auxiliares mecânicos relacionados a seguir:
 - a. Sistema de água de resfriamento;
 - b. Sistema anti-incêndio dos transformadores isolados a óleo;
 - c. Sistemas de detecção e alarme a incêndio;
 - d. Sistema de ventilação e ar condicionado;
 - e. Sistema de drenagem da Casa de Força;
 - f. Sistema de enchimento e esgotamento das unidades geradoras;
 - g. Sistema de coleta e separação de óleo isolante e lubrificante;
 - h. Sistema de água potável;
 - i. Sistema de água de serviço;
 - j. Sistema de ar comprimido;
 - k. Sistema de esgoto sanitário;
 - I. Sistemas de Hidrantes e extintores:
 - m. Sistema de medição de níveis d'água de montante e jusante e de perdas de carga através das grades da tomada d'água.

Elétrica

- Elaboração dos critérios de projetos dos sistemas auxiliares elétricos em corrente alternada e contínua;
- Consolidação das Especificações Técnicas elaboradas pelos FORNECEDORES e das instruções gerais para fornecimento dos equipamentos e sistemas elétricos principais, tais como: geradores, sistema de excitação, barramentos de fases isoladas, transformadores elevadores, linhas curtas entre Casa de Força e Subestação da Usina e equipamentos de alta tensão da Subestação;
- Definição dos critérios elétricos para as instalações elétricas dos sistemas de iluminação e tomadas, aterramento, proteção contra descargas atmosféricas e vias para cabos;
- Elaboração dos diagramas unifilares básicos dos sistemas auxiliares elétricos em corrente alternada e contínua com base nas informações dos FORNECEDORES;
- Consolidação dos sistemas de proteção, controle e supervisão, medição e oscilografia, incluindo o diagrama unifilar de proteção geral. Diagrama de blocos e lógicos básicos elaborados com base nas informações dos FORNECEDORES
- Consolidação dos sistemas de telecomunicações e CFTV elaborados a partir das informações dos FORNECEDORES

2.2.2 Produto Final

Como produto final desta atividade foi preparado o Relatório Final do Projeto Básico Consolidado incorporando todos os estudos e documentos preparados durante esta fase, a saber:

- Relatório descritivo de todos os estudos realizados e elementos que compõem o arranjo;
- Desenhos gerais do arranjo das estruturas abrangendo as disciplinas de engenheria civil, mecânica e elétrica;
- Fluxogramas, diagramas unifilares, de blocos e lágicos básicos dos sistemas mecânicos e elétricos;
- Critérios de projeto dos sistemas e serviços auxiliares e instalações eletromecânicas.

2.3. PROJETO EXECUTIVO DAS OBRAS CIVIS

2.3.1 Caracterização dos Serviços

O Projeto Executivo das Obras Civis correspondeu à elaboração de documentos de detalhes de construção das obras civis para a UHE Baixo Iguaçu, no nível compatível com a realização física destas obras. O Projeto Executivo das Obras Civis foi preparado a partir das definições do PROJETO BÁSICO CONSOLIDADO e em sincronia com o desenvolvimento da construção.

O detalhamento das estruturas civis contemplou as interfaces com os equipamentos eletromecânicos principais e os sistemas auxiliares mecânicos e elétricos no que concerne à ocupação adequada de espaços, à funcionalidade e aos processos construtivos e de montagem previstos.

As seguintes estruturas foram objeto do projeto executivo:

- · Ensecadeiras para o desvio do rio;
- Barragens de enrocamento com vedação com núcleo de argila e barragem de concreto;
- Vertedouro controlado;
- Circuito de geração incluindo canal de adução, Tomada de Água, Casa de Força e canal de fuga;
- Linhas curtas entre Casa de Força e Subestação da Usina;
- Subestação da Usina;
- Acessos definitivos dentro dos limites do empreendimento, interligando as diversas estruturas:
- Edificações auxiliares permanentes previstas para a operação da Usina, sendo as seguintes: casa de relés da subestação, cercas, portões e guaritas.

2.3.2 Atividades Principais Realizadas.

- Preparação dos Desenhos de Construção necessários à realização física das obras civis da UHE BAIXO IGUAÇU. A relação indicativa destes documentos é a seguir apresentada. Foram preparados desenhos formato A1 requeridos para cobrir as necessidades normais dos serviços de construção civil, entre os quais os seguintes:
 - Desenhos gerais do arranjo e das estruturas;

- b. Desenhos de referências topográficas e de locação das obras;
- c. Detalhes típicos de construção;
- d. Dados hidrológicos e hidráulicos de importância para as atividades construtivas;
- e. Especificação e análise dos resultados das campanhas adicionais de investigação geotécnica e geológica;
- f. Seqüência das operações de desvio e controle do rio durante a construção;
- g. Desenhos das ensecadeiras e obras de proteção do sítio da construção;
- h. Desenhos de escavações em solo e rocha;
- Desenhos de injeções e tratamentos de fundações e taludes;
- Desenhos do aterro da barragem;
- k. Desenhos de forma e armadura das estruturas de concreto;
- Desenhos de peças fixas embutidas em concreto de 1º estágio;
- m. Desenhos de acabamentos metálicos (escadas, plataformas, tampas, grellas e guarda-corpos);
- n. Desenhos das edificações auxiliares;
- Desenhos de acabamentos arquitetônicos nas estruturas e edificações do aproveitamento;
- p. Desenhos do projeto geométrico dos acessos definitivos dentro dos limites do empreendimento, interligando suas diversas estruturas;
- Preparação de memórias de cálculo, especificações complementares e/ou instruções específicas eventualmente necessárias para implementação ou justificação de detalhes particulares da construção.
- Preparação dos Modelos 3D em AutoCAD e SolidWorks de todas as estruturas da Usina;
- Preparação das listas de armaduras, listas de peças embutidas, listas de acabamentos arquitetônicos e listas de materiais, necessárias para aquisição, preparação e montagem ou construção de partes específicas das obras.
- Acompanhamento e análise dos resultados dos estudos hidráulicos em modelo reduzido referentes ao desvio do rio, vertedouro e circuito de geração;
- Visita de acompanhamento das atividades de construção por membros do Grupo de Projeto;
- Análise e parecer sobre os registros de injeções de fundação, contatos concretorocha, concreto-revestimentos metálicos, gerados pelo Construtor;
- Análise e parecer sobre os registros de protensão, atestando a liberação para os trabalhos de injeção nos registros gerados pelo Construtor;
- Analise e parecer aos relatórios de instrumentação de auscultação gerados pelo Construtor durante e após o enchimento do reservatório, com apresentação do relatório correspondente;
- Preparação dos desenhos Como Construído relativos ao projeto executivo, tendo por base informações fornecidas pelo CONSTRUTOR.

3. SERVIÇOS DE ENGENHARIA RESIDENTE NO CANTEIRO DE OBRAS

No transcurso das obras civis e das montagens eletromecânicas do empreendimento, a INTERTECHNE manteve no canteiro de obras da UHE Baixo Iguaçu um grupo de técnicos com a finalidade de:

- Assistir a Construtora Norberto Odebrecht na interpretação e esclarecimentos dos desenhos de construção civil e dos sistemas eletromecânicos no decorrer das atividades de construção e de montagem;
- Elaborar e emitir adaptações dos desenhos de construção no campo e validar estas adaptações com a Engenharia do Proprietário;
- Elaborar os mapeamentos geológico-geotécnicos das fundações e das superfícies escavadas:
- Examinar e validar as condições das superfícies de fundação, antes de seu cobrimento com concreto ou aterro;
- Acompanhar a evolução dos trabalhos de construção e montagens, dando subsídios ao grupo de projeto na sede da INTERTECHNE;
- Coletar e organizar as informações para a preparação dos documentos "Como Construído".

3.1. EQUIPE

O Grupo de Engenharia Residente contou com profissionais das seguintes especialidades:

- um (1) engenheiro civil, nível sênior, atuando como Engenheiro Residente no canteiro e líder do grupo;
- um (1) engenheiro civil, nível júnior;
- um (1) geólogo, nível sênior, com conhecimento de geologia de engenharia aplicada a obras hidráulicas do porte do empreendimento;
- um (1) técnico em geologia, com reconhecida experiência em obras similares;
- um (1) desenhista civil nível médio.

4. COMPATIBILIZAÇÃO DE PROJETOS

4.1. INTEGRAÇÃO FÍSICA

A Compatibilização de Projetos para a Integração Física consistiu no exame do projeto executivo dos equipamentos, dos componentes dos sistemas e das instalações eletromecânicas, com o objetivo de assegurar a integração física dos mesmos e verificar suas interfaces com o projeto civil.

A atividade compreendeu a análise dos documentos de projeto para assegurar a ocupação racional dos espaços disponíveis e evitar interferências entre os mesmos, contemplando:

 Exame das dimensões dos equipamentos e áreas disponíveis das estruturas civis, considerando também as condições para acesso, operação e manutenção, passagens e aberturas requeridas;

- Compatibilização dos equipamentos com as instalações eletromecânicas, em particular com relação a flanges, áreas de ocupação de dutos, tubulações e vias para cabos;
- Verificação das dimensões das maiores peças do empreendimento, observando os espaços dos acessos para a montagem e manutenção, a utilização de dispositivos especiais e a visibilidade da instrumentação;
- Verificação dimensional das bases dos equipamentos, guias de comportas, caminhos de rolamento com as peças embutidas no concreto de primeiro estágio do projeto executivo civil.

A Compatibilização de Projetos para Integração Física teve por objetivo obter o ajuste físico entre os diversos equipamentos eletromecânicos que possuem interface física direta; os equipamentos eletromecânicos e as instalações eletromecânicas nos casos em que possuem interface física e partes componentes de um mesmo fornecimento ou equipamento.

4.2. INTEGRAÇÃO FUNCIONAL

A Compatibilização de Projetos para Integração Funcional consistiu no exame do projeto executivo dos equipamentos e dos sistemas, com o objetivo de assegurar a integração funcional entre os mesmos. Esta compatibilização foi feita mediante a verificação da documentação que trata dos aspectos de funcionamento e operação dos equipamentos e sistemas.

As atividades realizadas visavam a integração funcional entre o sistema digital de supervisão e controle (SDSC) e os equipamentos e sistemas por ele supervisionados / controlados, a operação dos equipamentos e os requisitos funcionais do empreendimento e as cargas elétricas e o sistema de distribuição de energia elétrica.

5. OBSERVAÇÕES GERAIS

Todos os desenhos referentes ao Projeto Básico, Projeto Básico Consolidado, Projeto Executivo Civil e os documentos "Como Construído" ("as built") foram executados através dos softwares AutoCAD e SolidWorks.

A compatibilização das disciplinas foi elaborada utilizando conceito BIM LOD 350, em que os elementos foram modelados de maneira específica e precisa em termos de quantidades, dimensões, formatos, localização e orientação, utilizando o software NavisWorks.

Todos os documentos foram entregues digitalizados, ou em arquivos .PDF e .DWG.

6. EQUIPE TÉCNICA

Para a execução do referido escopo foi utilizado o total de 190.400 homens-hora (H.h) de acordo com a seguinte configuração:

	Gerência/Coordenação	20.400 H.h
>	Projeto Básico (ANEEL e Consolidado)	14.900 H.h
>	Projeto Executivo Civil.	.127.100 H.h
\triangleright	Grupo de Engenharia Residente	28.000 H.h

Na Sequência são listados os principais profissionais envolvidos no projeto:

Responsáveis Técnicos

Gerência/Coordenação:

Supervisão Técnica:

- > Supervisão Técnica Civil -Geotecnia...... Alex Martins Calcina ART 20133580417

Equipe Técnica

CARGO	PROFISSIONAL
ARQUITETO	Andressa Tomczyk Marques
7.11(4311-131	Fabiana Timm Vianna Cardoso
	Marcelo Paulo Furiasse
,	Silvia Bartz Kraemer
GEÓLOGO	Carolina Bitencourt de Britto Reimann
	Jose Henrique Pereira
	Leonardo Henriques Soares
	Tayne Graciela Garcia Colla - ART20160612863
ENGENHEIRO CIVIL	Claudia Lizbett Zurita Sandoval
	Danusa Haick Tavares
	Diego Zilli Ruiz
	Diogo Vieira Gomes
	Edilaine dos Santos - ART 20130498051
	Edson Jose Amaral Junior
	Fabricio Muller
	Flavio Leme Lucenti
	Jose Rodolfo Machado de Almeida

CARGO	PROFISSIONAL
	Kaue Takase
	Kenneth de Borja Jaguaribe Junior
	Luan Rodrigo de Almeida Souza
	Luisa Romano Sartor Guimaraes
	Marcelo Andre Gil de Oliveira
	Marcelo de Paula Barreto
	Marcelo Miqueletto
	Marcos Antonio Dalcin Junior ART 20133577920
	Rafael Marques Cardoso
	Melina Isabel Schepiura Artigas
	Natalia Santos Polegato
	Pedro de Carvalho Tha
	Rafael Aguiar Rodrigues Silva
	Soraia Bastos Katereniuk
ENGENHEIRO ELETRICISTA	Jose Aparecido Xavier de Souza
	Jose Eduardo Ceccarelli
	Cassiana Kendra de Souza Maia
ENGENHEIRO MECÂNICO	Flavio Delattre Levis
	Roberto Eugenio Bertol
ENGENHEIRO CARTÓGRAFO	Simone Montenegro Kraemer ART 20160612812
PROJETISTA/TÉCNICO ESPECIALIZADO	Adriano Ribeiro
ESPECIALIZADO	Juliano Prischla
	Lucas Abrahao Rodrigues
	Mariana Parussolo Lopes
	Osvaldo Luiz Dias Goncalves
	Patricia Giseli Buba
	Paulo Henrique Domingues
PROJETISTA/DESENHOS E MODELO DIGITAL	Caio Cesar Silva
PROJETISTA/TÉCNICO	Victor Hugo Takassake Broska
ESPECIALIZADO	Felipe Gustavo Bento
	Pedro Filipe Guerrera da Rocha

Grupo de Engenharia Residente

CARGO	PROFISSIONAL
ENGENHEIRO RESIDENTE	Amauri Fernandes Guterres
	Mauro Tersi Teixeira
ENGENHEIRO CIVIL JÚNIOR	Kaue Takase
	Lair Luiz Deffente
GEÓLOGO	Pedro Roberto Martins Da Rosa
	Leonardo Henriques Soares
TÉCNICO EM GEOLOGIA	Joao Francisco da Cruz
	Marcio Henrique da Costa
DESENHISTA CIVIL	Tiago Marcelino Justino Neri
	Laudir Taonira de Oliveira Karitiana

7. PERÍODO DE EXECUÇÃO

Os serviços foram iniciados em 30 de junho de 2013 e encerrados em 30 de novembro de 2019.

8. VALOR DO CONTRATO

O valor global do contrato civil foi é de R\$ 36.735.000,00 (trinta e seis milhões setecentos e trinta e cinco mil reais), referido a setembro de 2012.

Declaramos que os serviços realizados foram desenvolvidos completamente e a contento, atendendo todos os aspectos solicitados, com qualidade, pontualidade e profissionalismo.

Sem outro particular, outorgamos o presente Atestado Técnico para a empresa INTERTECHNE CONSULTORES S.A. para os fins que esta considere pertinente.

Curitiba, 6 de outubro de 2021

— Docusigned by: Luis Fernando Kaluuan — ARTADR 14290F472

Nome do Firmante: Luis Fernando Rahuan

Cargo: Gerente de Contrato CREA: 5060191927-SP