

ЭТИКЕТКА

СЛКН.431233.010 ЭТ

Микросхема интегральная 564 ИР2В Функциональное назначение – Два четырехразрядных регистра сдвига

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Тактовый вход 2-го регистра	9	Тактовый вход 1-го регистра
2	Выход 4-го разряда 2-го регистра	10	Выход 4-го разряда 1-го регистра
3	Выход 3-го разряда 1-го регистра	11	Выход 3-го разряда 2-го регистра
4	Выход 2-го разряда 1-го регистра	12	Выход 2-го разряда 2-го регистра
5	Выход 1-го разряда 1-го регистра	13	Выход 1-го разряда 2-го регистра
6	Установка в состоянии «0» 1-го регистра	14	Установка в состоянии «0» 2-го регистра
7	Информационный вход 1-го регистра	15	Информационный вход 2-го регистра
8	Общий	16	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = (25 \pm 10) °C) Таблица 1

	Буквенное	Норма		
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более	
1	2	3	4	
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5 \; B, \; 10 \; B$	U_{OL}	-	0,01	
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5 \; B$ $U_{CC} = 10 \; B$	U _{ОН}	4,99 9,99	- -	
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{\rm CC}$ = 5 B, $U_{\rm IL}$ = 1,5 B, $U_{\rm IH}$ = 3,5 B $U_{\rm CC}$ = 10 B, $U_{\rm IL}$ = 3,0 B, $U_{\rm IH}$ = 7,0 B	U _{OL max}		0,8 1,0	
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IL} = 3,0 B, U_{IH} = 7,0 B	$U_{ m OHmin}$	4,2 9,0	- -	
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15 \; B$	${ m I}_{ m IL}$	-	/-0,1/	

Продолжение таблицы 1				
1	2	3	4	
6. Входной ток высокого уровня, мкА, при:	I_{IH}	-	0,1	
$U_{\rm CC}$ = 15 B	111			
7. Выходной ток низкого уровня, мА, при:	_			
$U_{CC} = 5 \text{ B}, U_0 = 0.5 \text{ B}$	I_{OL}	0,5	-	
$U_{CC} = 10 \text{ B}, U_0 = 0.5 \text{ B}$		1,0	-	
8. Выходной ток высокого уровня, мА, при:				
$U_{CC} = 5 \text{ B}, U_0 = 4.5 \text{ B}$	I_{OH}	/-0,5/	-	
$U_{CC} = 10 \text{ B}, U_0 = 9.5 \text{ B}$		/-1,0/	-	
9. Ток потребления, мкА, при:				
$U_{CC} = 5 B$	I_{CC}	-	5,0	
$U_{CC} = 10 B$	1CC	-	10,0	
$U_{cc} = 15 B$		-	20,0	
10. Ток потребления в динамическом режиме, мА, при:	т		1.0	
$U_{CC} = 10 \text{ B}, C_L = 50 \pi\Phi$	I _{OCC}	-	1,2	
11. Время задержки распространения при включении, нС, при:				
$U_{CC} = 5 \text{ B, } C_L = 50 \text{ m}\Phi$	$t_{ m PHL}$	-	500	
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ m}\Phi$		-	200	
12. Время задержки распространения при выключении, нС, при:				
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ m}\Phi$	$t_{\rm PLH}$	-	500	
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ m}\Phi$		-	200	
13. Входная емкость, пФ, при:			7.5	
$U_{CC} = 10 B$	C_{I}	-	7,5	

1.2	Содержание	драгоценных	металлов в	1000	ШТ. 1	микрос	хем

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В 11 0398 - 2000 и ТУ, при температуре окружающей среды (температуре эксплуатации) не более 65 $^{\circ}$ C - не менее 100000 ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC} = 5B \pm 10\%$ - не менее 120000 ч.

 Γ амма – процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе "Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (T _{см}) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- 3.1 <u>Гарантии предприятия изготовителя по ОСТ В 11 0398 2000:</u>

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ИР2В соответствуют техническим условиям бК0.347.064 ТУ 11/02 и признаны годными для эксплуатации.

Приняты по	ОТ	(дата)	
Место для штампа ОТК			Место для штампа ВП
Место для штампа «Перепроверка п	троиз	ведена	» (дата)
Приняты по	ОТ	(дата)	
Место для штампа ОТК			Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.