

Visual Recognition using Deep Learning

Tips for Final Project Presentation

林彦宇 教授 Yen-Yu Lin, Professor

國立陽明交通大學 資訊工程學系 Computer Science, National Yang Ming Chiao Tung University

- Your presentation/reports may include
 - > Introduction
 - > Related work
 - Proposed approach
 - > Experimental results
 - Conclusions
- Presentation and reports need to include the link of your code

- Your presentation
 - > Introduction
 - > Related work
 - Proposed approach
 - > Experimental results
 - Conclusions

Introduction

- Problem statement
- The importance of this problem
- The difficulties you address

Introduction

- **Problem statement**
- The importance of this problem
- The motivation or difficulty you address

Semantic Segmentation

- Goal: Label each pixel to one of predefined classes (or background)
- Critical to high-level vision tasks such as scene understanding, robot navigation, and image retrieval

[Shotton et al., 2007]

Object Detection

- · Goal: Detecting instances of semantic objects of certain classes
- · Critical to high-level vision tasks such as surveillance, selfdriving car, and image retrieval

Introduction

- Problem statement
- The importance of this problem
- The motivation or difficulty you address

Why video interpolation

- High frame rate videos have temporally coherent content and smooth view transition
- Acquiring such videos leads to higher power consumption and more storage requirement
- Video interpolation compromises user experience and acquiring cost

Why Co-segmentation

Essential to many applications

image matching [Chen et al. PAMI'15]

3D reconstruction [Mustafa et al. CVPR'17]

55

Interduction

- Problem statement
- The importance of this problem
- The motivation or difficulty you address

Motivation for algorithms with low annotation costs

- Deep learning relies on a vast amount of training data
- This issue becomes worse for object segmentation
- Training data with pixel-wise annotations are required

- Motivation is threefold:
 - ➤ 1. Segmentation is important
 - 2. Deep learning is data hungry
 - ➤ 3. Pixel-wise annotation is required for segmentation

CNN-based methods for intermediate frame prediction

• The problems: artifacts and over-smoothed results

- Your presentation
 - > Introduction
 - > Related work
 - Proposed approach
 - > Experimental results
 - Conclusions

Related work

- Divide the related work/methods into groups
- For each group,
 - Give a high-level description about methods of this group
 - Summarize the pros and cons for each group

Related work

- · Video frame interpolation
 - > Conventional (non deep learning based) methods
 - Dense motion correspondences -> optical flow
 - Optimize complex objective function
 - X time-consuming
 - X computationally expensive
 - CNN-based methods
 - Predict the optical flow
 - Predict the intermediate frame

国立立通大學 National Chiao Tung University

Using Powerful Handcrafted Features

 Conven handera

Using CNN

 Supervised CNN [1, 2] for joint feature extraction and cosegmentation

[Li et al. arXiv'18]

• Not ada Subopti

 Need pixel-wise annotated training data: violating the unsupervised nature of co-segmentation

- Your presentation
 - > Introduction
 - > Related work
 - Proposed approach
 - > Experimental results
 - Conclusions

Proposed approach

- Overview: Network figure
- Details of your approach

Proposed approach

- Overview: Network figure
- Details of your approach

Approach Overview

- Two CNN modules: map generator and feature extractor
- Two loss functions: co-attention loss and mask loss

Our idea: Cycle consistency checking

• Observation: Over-smoothed frames or frames with artifacts cannot well reconstruct the original frames

图主文通大學 National Chiao Tung University

26

Proposed approach

- Overview: Network figure with loss function
- Details of your approach

1. feature extractor

3. ROIAlign

5. segmentation branch

2. region proposal

4. detection branch

- Your presentation
 - > Introduction
 - > Related work
 - Proposed approach
 - > Experimental results
 - Conclusions

- Dataset(s) and metric(s) for evaluation
- Comparison with state-of-the-arts
- Ablation studies

- Dataset(s) and metric(s) for evaluation
- Comparison with state-of-the-arts
- Ablation studies

ImageNet large scale visual recognition challenge (ILSVRC)

Detection accuracy

• Intersection over union (IoU)

- IoU with a threshold to determine if an object is correctly detected
- Average Precision (AP): the average precision over thresholds
- mean AP (mAP): the mean of APs over classes

- Dataset(s) and metric(s) for evaluation
- Comparison with state-of-the-arts
- **Ablation studies**

Experimental Results

Evaluation on Pascal VOC dataset

Experimental Results on Pascal VOC

	mean IU VOC2011 test	mean IU VOC2012 tes	
R-CNN [12]	47.9	-	-
SDS [17]	52.6	51.6	$\sim 50 \text{ s}$
FCN-8s	62.7	62.2	\sim 175 ms
FCN	N-8s SDS [17]	Ground Truth	Image
			M
A. C.	4		
4		(m)	

73

- Dataset(s) and metric(s) for evaluation
- Comparison with state-of-the-arts
- Ablation studies

Experimental results: Ablation studies on UCF dataset

	PSNR	SSIM
Baseline (DVF)	35.89	0.945
+ Cycle	36.71 (+0.82)	0.950 (+0.005)
+ Cycle + Motion	36.85 (+0.96)	0.950 (+0.005)
+ Cycle + Edge	36.86 (+0.97)	0.952 (+0.007)
full model	36.96 (+1.07)	0.953 (+0.008)

- Your presentation
 - > Introduction
 - > Related work
 - Proposed approach
 - > Experimental results
 - **Conclusions**

Conclusions

- Summarize your work
- Summarize what you learned/found in the final project

Presentation & Reports & Code

- Your presentation/reports should include
 - GitHub/ GitLab link of your code
 - > Introduction
 - Related work
 - Proposed approach
 - > Experiment results
 - Conclusions
- Meeting all aforementioned requirements gets 80% of the scores for this part

Presentation & Reports & Code

- Your presentation/reports should include
 - > The link to your code
 - Introduction: How you advance this field/topic?
 - Related work: What are the advantages of your method over all existing methods?
 - Proposed approach: How to design your approach to achieve the advantages you claim? Is your method technically sound?
 - Experiment results: Does your approach achieve SOTA results? Do ablation studies support the claimed advantages?
 - Conclusions: Any new and insightful findings or conclusions?
- Meeting all aforementioned requirements gets 80% of the scores for this part

Team member contribution

 Specify the contribution made by each team member to each of the following five tasks in the report:

Tasks	contributors (%)	
Literature survey	0856065 (100%)	
Approach design	0856078 (50%), 0856605 (50%)	
Approach implementation (experiment)	0856078 (30%), 0856605 (70%)	
Report writing	0856065 (80%), 0856078 (20%)	
Slide making and oral presentation	0856605 (33%), 0856065 (33%), 0856078 (33%)	

Thank You for Your Attention!

Yen-Yu Lin (林彥宇)

Email: lin@cs.nycu.edu.tw

URL: https://www.cs.nycu.edu.tw/members/detail/lin

