

as SU an 1090761 A

3(5D C 25 D 9/08

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСНОМУ СВИДЕТЕЛЬСТВУ

(21) 3471525/22-02
(22) 19.07.82
(46) 07.05.84.Бюл. № 17
(72) Ф.Ф.Ажогин, Т.И.Курилович,
А.И.Воробьев, В.Н.Высоцкая
и Е.Н.Особенкова
(71) Московский ордена Трудового
Красного Знамени вечерний металлур
гический институт
(53) 621.357.359(088.8)
(56) 1. Заявка Японии В 47-84986,
кл. 13 A 41, C 23 F 7/20, 1977.
2. Заявка Японии № 52-4255,
кл. 12 A 41, C 23 F 7/20, 1977.
3. Патент ЛНР № 76986,
кл. С 23 F 7/20, 1976.
4. Авторское свидетельство СССР
№ 411173, кл. C 23 F 7/18, 1971.
N 4111/3, KJ, C 23 F //10, 13/1

(54) (57) РАСТВОР ДЛЯ КАТОДНОГО НАНЕ-СЕНИЯ ЗАМИТНЫХ ПЛЕНОК НА ТИТАНОВЫЕ СПЛАВЫ, СОДЕРЖАЩИЙ ОКСАЛАТ ЖЕЛЕЗА (II), ЩАВЕЛЕВУЮ КИСЛОТУ, ПЕРЕКИСЬ ВОДОРОДА, ФТОРИД НАТРИЯ, О Т Л И -Ч а ю щ и й с я тем, что, с целью повышения работоспособности электролита и износостойкости пленок, он дополнительно содержит кислый фторид натрия, монофосфат цинка и двуокись марганца при следующем соотношении компонентов, г/л:

Оксалат железа (II)	12-14
Мавелевая кислота	24-28
Перекись водорода	
(30%-ный раствор)	8-10
Фторид натрия	10-12
Кислый фторид натрия	10-12
Монофосфат цинка	15-20
Двуокись марганца	5 -7 ,

Изобретение относится к гальваностегии, а именно к проблеме создания эластичных пленок, предотвращающих схватывание титановых сплавов с инструментом при деформации.

Известен раствор для химического оксалатирования легированной стали, содержащей щавелевую кислоту, кистый фторид аммония, натриевую соль метанитробензосульфокислоты, желатину, окись олова [1].

Известен раствор для химического оксалатирования черных металлов, содержащий шавелевую кислоту, кислый фторид натрия, тиосульфат натрия, нитрат хрома [2].

Известен раствор для химического оксалатирования высоколегированной стали, содержащий шавелевую кислоту, хлорид натрия, тиосульфат натрия, фторид натрия, хлорид железа [3].20

Однако данные растворы обладают низкой работоспособностью, обеспечивают получение покрытий только в горячих растворах. Свежесоставленные растворы не позволяют получить качественные покрытия.

наиболее близким к изобретению является раствор для оксалатирования титановых сплавов, содержащий маве-левую кислоту, оксалат железа (II), перекись водорода, фторид натрия, сульфит натрия (1У) [4].

Однако данный раствор обладает низкой работоспособностью и не позволяет получать качественные износостойкие защитные пленки.

Целью изобретения является повышение работоспособности электролита и повышение износостойкости пленок.

Поставленная цель достигается тем, 40 что раствор для катодного нанесения защитных пленок на титановые сплавы, содержащий оксалат железа (II), ша-велевую кислоту, перекись водорода, фторид натрия, дополнительно содертит кислый фторид натрия, монофосфат цинка и двуокись марганца, при следующем соотношении компонентов,

Оксалат железа (II) 12-14	-
Мавелевая кислота	24-28	50
Перекись водорода		
(30%-ный раствор)	8-10	
Фторид натрия	10-12	
Кислый вторид нат-		
рия	10-12	55
Монофосфат цинка	15-20	
Двуокись марганца	5-7	
TROUGE WARECONNE	THEHOK DEKO-	

Процесс нанесения пленок рекомендуют проводить при катодной плотности тока 1-2 A/дм² и 18-25°C в те- 60 чение 1-10 мин.

Концентрация оксалата железа, щавелевой кислоты и перекиси водорода обусловлена эквивалентными количествами, пропорционально которым компо-65 ненты вступают во взаимодействие друг с другом $2 \text{Fe}(C_2O_4 + 4 \text{H}_2C_2O_4 + \text{H}_2O_2 = 2 \text{H}_3 [\text{Fe}(C_2O_4)_3] + \text{H}_2O_3$

При катодной поляризации титана и его сплавов в подкисленном растворе, содержащем комплексные анионы железа (III) [Fe(${\rm C}_2{\rm O}_4$)₃]³⁻, происходит восстановление железа (III) до железа (II) с образованием труднорастворимого оксалата железа (II) FeC $_2{\rm O}_4$, который осаждается на поверхности титана.

Для улучшения качества оксалатной пленки в раствор вводится монофосфат цинка $Zn\left(H_2PO_4\right)_Z$. При катодной поляризации за счет увеличения рН приэлектродного слоя создаются условия выпадения трехзамещенного нерастворимого фосфата цинка и железа (II).

20 Содержание монофосфата цинка ниже 15 г/л приводит к образованию на поверхности титанового сплава тонких несплошных оксалатных пленок. Повышение концентрации монофосфата цинха выше 20 г/л не улучшает качество оксалатных пленок.

С целью окисления осаждающегося на пне ванны избытка оксалата железа (II) – FeC_2O_4 в ванну добавляют нерастворимую двуокись марганца. $2\text{FeC}_2\text{O}_4 + 4\text{H}_2\text{C}_2\text{O}_4 + 4\text{MnO}_2 + 2\text{HF} = 2\text{H}_3 \left[\text{Fe}\left(\text{C}_2\text{O}_4\right)_3\right] + \text{MnF}_2 + 2\text{H}_2\text{O}$.

Рекомендуемая концентрация двуокиси марганца (5-7 г/л) превышает ... эквивалентное количество (3 г/л) и рассчитана на длительное использование электролита, т.е. повышает его работоспособность.

Получению качественных пленок способствует введение в раствор активаторов - фторида натрия и кислого фторида натрия, которые приводят к понижению рН электролита. При концентрации фторидов ниже 10 г/л получаются несплоиные пленки, повышение концигурации более 12 г/л не изменяет качество пленки.

Раствор приготавливают следующим образом.

Растворение реактивов проводят в объеме воды в пять раз меньшем, чем рабочий объем, воду подогревают до температуры $45-50^{\circ}$ C.

Вначале вводят щавелевую кислоту и тщательно перемешивают до полного растворения. Затем вводят оксалат железа (II) и перемешивают до образования суспензии, после чего добавляют перекись водорода небольшими порциями, не прекращая перемешивания до полного окисления оксалата железа (II) до H_3 [Fe(C₂O₄)₃]. После этого выдерживают при 70-75°C в течение 1 ч, периодическом перемещивании и охлаждают до комнатной температуры.

Отдельно приготавливают раствор фторида натрия и кислого фторида натрия, растворяют в небольшом количестве горячей воды каждый в отдельности. Раствор, содержащий $H_3[Fe(C_2O_4)_3]$, охлаждают и переносят в полиэтиленовую ванну и затем вводят при постоянном перемешивании раствор, содержаший фторид натрия и кислый фторид натрия. Добавляют двускись марганца и тщательно перемешивают. Монофосфат 10 мени катодной обработки титана прицинка растворяют в небольшом количестве электролита и вводят в основной раствор. Раствор доводят водой до метки. Раствором соляной кислоты (1:1) рн раствора доводят до 3.

Электролиз проводят со свинцовыми анопами.

Введение процесса оксалатирования при температурах ниже 18°C увеличивает время образования пленки на титане и ухудшает адгезию пленки с поверхностью титана. Повышение температуры раствора выше 25°С приводит к ухудшению качества оксалатной пленки.

Время катодной обработки титанового сплава составляет 1-10 мин. С увеличением времени катодной обработки титана в растворе масса пленки растет и зависимость масса пленки - время обработки имеет параболический характер. Дальнейшее увеличение вреводит к получению толстых рыхлых покрытий.

При плотности тока $1-2 \text{ A/дм}^2$ образуются качественные покрытия. Увели-5 чение плотности тока более $2 \ A/дм^2$ приводит к формированию несплошных пленок с полосами.

В таблице 1 показано влияние состава раствора, плотности тока и времени поляризации на качество пленок на титановом сплаве В-16.

таблица 1

		·	· · ·	·		
Состав	Дк,	Время, мин				
-	А/дм ²	1	2	3	5	10
				*	****	
Без добавок двуокиси мар-	1	Очень то	нкие, серые	•	Серая,	Темно-зеленая плотная
ганца и моно- фосфата ции- ка	2	Серые, т	онкие	•	Серая, с желтым от	Желтый налет
	·				тенком	
	3	Очень то	нкие			то же
*	4	То же	•	. •		Жетлый налет
	5	Черные,	еравномерные	с поло	Camir	
С добавкой	1	+ Плотные,	+	, † 44	+	Неравномерные
двуокиси мар- ганца	2		Черные, нес	плошные		
	3	· :	с полосам	И		(3)
	4	Темно-ко	ричневые, не	сплошны	e	
	5		с полосам	H	9	
С добавкой мо- нофосфата цин-	1	+	+ Плотные	, серые	+	+
ка	2	+ 4	Плотные	, серые	+	
	3	+ Cepo-ser	еные. нерав	номерны	ie.	Темно-серые
	. •	плотные,				
	4	Неравном	мерные, темно	-серые		
	~					

•	
Fr	
.TDODODENE	TANK

COCTAB	Дк, A/дм ²	Время, мин				
		1	2	3	5	10
С добавками двускиси марганца	1	+ Плотные, св	+ ветло-серые	•	+ Темно-серые	+
и монофосфа- та цинка	2	+ Серо-зеле-	+	+ Темно-с	+ серые, плоты	няе +
		ные, плот- ные, равно- мерные	•	•		
· · · · · · · · · · · · · · · · · · ·	3	na pila			0.00	
	4	Черные	, неравном	ерные с г	полосами	• .
	5			•		

^{*} пленки с хорошим качеством.

Образцы титанового сплава B-16 катодно обрабатывали в течение 5 мин в растворе при плот-

25 ности тока 2 $A/дм^2$, 20^{f} С. Полученные данные представлены в табл. 2.

таблица 2 Содержание, г/л Состав раствора, свойства электро-Электролит предлагаемый лита и полученизвестный ных пленок 14 . 32 13 12 Оксалат железа шавелевая кисло-50 24 26 28 Пероксид водо-9 10 рода 30 12 10 . 11 фторид натрия Кислый фторид 10 11 натрия Диоксид марганца 20 Монофосфат цинка 3 Сульфат натрия Масса пленки, г/дм2 0,05 0,055 0,062 Время по полного истирания пленки (износостойкость), мин Работоспособ-HOCTE, M^2/π , 0,033 0,036 0,01 0,03 электролита Прочное сцепление с поверхностью Адгезия

Износостоякость покрытия оценивают по убыли массы образца при его перемещении по абразивному кругу (величина зерна 0,2 мм, скорость движения 1 м/с) при контактном давлении 1 кг/мм².

Работоспособность электролита оценивают по площади поверхности титановых деталей, на которую может быть нанесена качественная оксалатная пленка, полученная из 1 л растивора до его корректирования.

Как видно из полученных данных, предлагаемый электролит обладает более высокой работоспособностью, а полученные пленки - высокой износо- 15 стойкостью по сравнению с известным электролитом.

Адгезию пленок проверяли методом изгиба листовых титановых образцов ВТ-1 толщиной 0,3 мм с покрытием. Предложенное покрытие не отслаивается от поверхности титана при многократном изгибе до излома, в то время как пленки, полученые из электролита-прототипа, отслаивались при первом перегибе образца на угол 90°.

Таким образом, предлагаемый электролит обладает высокой работоспособностью и может быть использован для
получения плотных износостойких пленок на титане и его сплавах, обеспечивающих отсутствие охватывания титана с инструментом при значительных
контактных напряжениях.

Составитель Ю.Поздеева
Редактор С.Патрушева Техред Л.Коцюбняк Корректор Г.Решетник
Воков 2021/25 Тираж 633 Поллисное

Заказ 3021/25 Тираж 633 Подписно ВНИИПИ Государственного комитета СССР по делам изобретений и открытий 113035, Москва, ж-35, Раушская наб., д. 4/5

Филиал ППП' Патент', г. Ужгород, ул. Проектная, 4

THIS PAGE BLANK (USPTO