${\bf Baye suvius},$

a small visual dictionary of Bayesian Networks

Robert R. Tucci www.ar-tiste.xyz

July 12, 2020

Figure 1: View of Mount Vesuvius from Pompeii

Figure 2: Mount Vesuvius and Bay of Naples

Contents

	0.1 Foreword	: 4
1	Basic Curve Fitting Using Gradient Descent	7
2	Bell and Clauser-Horne Inequalities in Quantum Mechanics	9
3	Generative Adversarial Network (GAN)	10
4	Kalman Filter	15
5	Linear and Logistic Regression	18
6	Monty Hall Problem	22
7	Naive Bayes	2 4
8	Neural Networks	25
9	Reinforcement Learning (RL)	31
10	Recurrent Neural Networks	40
11	Simpson's Paradox	41
Bi	bliography	42

0.1 Foreword

Welcome to Bayesuvius! a proto-book uploaded to github.

A different Bayesian network is discussed in each chapter. Each chapter title is the name of a B net. Chapter titles are in alphabetical order.

This is a volcano in its early stages. First version uploaded to a github repo called Bayesuvius on June 24, 2020. First version only covers 2 B nets (Linear Regression and GAN). I will add more chapters periodically. Remember, this is a moonlighting effort so I can't do it all at once.

For any questions about notation, please go to Notational Conventions section. Requests and advice are welcomed.

Thanks for reading this. Robert R. Tucci www.ar-tiste.xyz

0.2 Notational Conventions

bnet=B net=Bayesian Network

Define $\mathbb{Z}, \mathbb{R}, \mathbb{C}$ to be the integers, real numbers and complex numbers, respectively.

For a < b, define \mathbb{Z}_I to be the integers in the interval I, where I = [a, b], [a, b), (a, b], (a, b) (i.e, I can be closed or open on either side).

 $A_{>0} = \{k \in A : k > 0\} \text{ for } A = \mathbb{Z}, \mathbb{R}.$

Random Variables will be indicated by underlined letters and their values by non-underlined letters. Each node of a bnet will be labelled by a random variable. Thus, $\underline{x} = x$ means that node \underline{x} is in state x.

 $P_{\underline{x}}(x) = P(\underline{x} = x) = P(x)$ is the probability that random variable \underline{x} equals $x \in S_{\underline{x}}$. $S_{\underline{x}}$ is the set of states (i.e., values) that \underline{x} can assume and $n_{\underline{x}} = |S_{\underline{x}}|$ is the size (aka cardinality) of that set. Hence,

$$\sum_{x \in S_x} P_{\underline{x}}(x) = 1 \tag{1}$$

$$P_{\underline{x},y}(x,y) = P(\underline{x} = x, \underline{y} = y) = P(x,y)$$
(2)

$$P_{\underline{x}|\underline{y}}(x|y) = P(\underline{x} = x|\underline{y} = y) = P(x|y) = \frac{P(x,y)}{P(y)}$$
(3)

Kronecker delta function: For x, y in discrete set S,

$$\delta(x,y) = \begin{cases} 1 \text{ if } x = y\\ 0 \text{ if } x \neq y \end{cases} \tag{4}$$

Dirac delta function: For $x, y \in \mathbb{R}$,

$$\int_{-\infty}^{+\infty} dx \, \delta(x - y) f(x) = f(y) \tag{5}$$

Transition probability matrix of a node of a bnet can be either a discrete or a continuous probability distribution. To go from continuous to discrete, one replaces integrals over states of node by sums over new states, and Dirac delta functions by Kronecker delta functions. More precisely, consider a function $f: S \to \mathbb{R}$. Let $S_x \subset S$ and $S \to S_x$ upon discretization (binning). Then

$$\int_{S} dx \ P_{\underline{x}}(x)f(x) \to \frac{1}{n_{\underline{x}}} \sum_{x \in S_{\underline{x}}} f(x) \ . \tag{6}$$

Both sides of last equation are 1 when f(x) = 1. Furthermore, if $y \in S_{\underline{x}}$, then

$$\int_{S} dx \, \delta(x - y) f(x) = f(y) \to \sum_{x \in S_{\underline{x}}} \delta(x, y) f(x) = f(y) . \tag{7}$$

Indicator function:

$$\mathbb{1}(\mathcal{S}) = \begin{cases} 1 \text{ if } \mathcal{S} \text{ is true} \\ 0 \text{ if } \mathcal{S} \text{ is false} \end{cases}$$
 (8)

For example, $\delta(x, y) = \mathbb{1}(x = y)$.

$$\vec{x} = (x[0], x[1], x[2], \dots, x[nsam(\vec{x}) - 1]) = x[:]$$
 (9)

 $nsam(\vec{x})$ is the number of samples of \vec{x} . $\underline{x}[i]$ are i.d.d. (independent identically distributed) samples with

$$x[i] \sim P_{\underline{x}} \text{ (i.e. } P_{x[i]} = P_{\underline{x}})$$
 (10)

$$P(\underline{x} = x) = \frac{1}{nsam(\vec{x})} \sum_{i} \mathbb{1}(x[i] = x)$$
(11)

If we use two sampled variables, say \vec{x} and \vec{y} , in a given bnet, their number of samples $nsam(\vec{x})$ and $nsam(\vec{y})$ need not be equal.

$$P(\vec{x}) = \prod_{i} P(x[i]) \tag{12}$$

$$\sum_{\vec{x}} = \prod_{i} \sum_{x[i]} \tag{13}$$

$$\partial_{\vec{x}} = [\partial_{x[0]}, \partial_{x[1]}, \partial_{x[2]}, \dots, \partial_{x[nsam(\vec{x})-1]}]$$

$$\tag{14}$$

$$P(\vec{x}) \approx \left[\prod P(x)^{P(x)}\right]^{nsam(\vec{x})} \tag{15}$$

$$= e^{nsam(\vec{x})\sum_{x}P(x)\log P(x)}$$
 (16)

$$= e^{-nsam(\vec{x})H(P_{\underline{x}})} \tag{17}$$

$$f^{[1,\partial_x,\partial_y]}(x,y) = [f,\partial_x f,\partial_y f] \tag{18}$$

$$f^{+} = f^{[1,\partial_x,\partial_y]} \tag{19}$$

For probabilty distributions p(x), q(x) of $x \in S_{\underline{x}}$

• Entropy:

$$H(p) = -\sum_{x} p(x) \log p(x) \ge 0 \tag{20}$$

• Kullback-Liebler divergence:

$$D_{KL}(p \parallel q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)} \ge 0$$
 (21)

• Cross entropy:

$$CE(p \to q) = -\sum_{x} p(x) \log q(x)$$
 (22)

$$= H(p) + D_{KL}(p \parallel q) \tag{23}$$

Normal Distribution: $x, \mu, \sigma \in \mathbb{R}, \sigma > 0$

$$\mathcal{N}(\mu, \sigma^2)(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
 (24)

Uniform Distribution: $a < b, x \in [a, b]$

$$\mathcal{U}(a,b)(x) = \frac{1}{b-a} \tag{25}$$

Expected Value

Given a random variable \underline{x} with states $S_{\underline{x}}$ and a function $f: S_{\underline{x}} \to \mathbb{R}$, define

$$E_{\underline{x}}[f(\underline{x})] = E_{x \sim P(x)}[f(x)] = \sum_{x} P(x)f(x)$$
(26)

Conditional Expected Value

Given a random variable \underline{x} with states $S_{\underline{x}}$, a random variable \underline{y} with states $S_{\underline{y}}$, and a function $f: S_{\underline{x}} \times S_{\underline{y}} \to \mathbb{R}$, define

$$E_{\underline{x}|\underline{y}}[f(\underline{x},\underline{y})] = \sum_{x} P(x|\underline{y})f(x,\underline{y}) , \qquad (27)$$

$$E_{\underline{x}|\underline{y}=y}[f(\underline{x},y)] = E_{\underline{x}|y}[f(\underline{x},y)] = \sum_{x} P(x|y)f(x,y) . \tag{28}$$

Note that

$$E_{\underline{y}}[E_{\underline{x}|\underline{y}}[f(\underline{x},\underline{y})]] = \sum_{x,y} P(x|y)P(y)f(x,y)$$
(29)

$$= \sum_{x,y} P(x,y)f(x,y) \tag{30}$$

$$= E_{\underline{x},y}[f(\underline{x},y)]. \tag{31}$$

Basic Curve Fitting Using Gradient Descent

Figure 1.1: Basic curve fitting bnet.

Samples $(x[i], y[i]) \in S_{\underline{x}} \times S_{\underline{y}}$ are given. $nsam(\vec{x}) = nsam(\vec{y})$. Estimator function $\hat{y}(x; \phi)$ for $x \in S_{\underline{x}}$ and $\phi \in \mathbb{R}$ is given.

Let

$$P_{\underline{x},\underline{y}}(x,y) = \frac{1}{nsam(\vec{x})} \sum_{i} \mathbb{1}(x = x[i], y = y[i]). \tag{1.1}$$

Let

$$\mathcal{E}(\vec{x}, \vec{y}, \phi) = \frac{1}{nsam(\vec{y})} \sum_{i} |y[i] - \hat{y}(x[i]; \phi)|^2$$
(1.2)

 \mathcal{E} is called the mean square error.

Best fit is parameters ϕ^* such that

$$\phi^* = \operatorname{argmin}_{\phi} \mathcal{E}(\vec{x}, \vec{y}, \phi) . \tag{1.3}$$

The node transition matrices for the basic curve fitting bnet Fig.1.1 are printed below in blue.

$$P(\phi) = \text{given} .$$
 (1.4)

The first time it is used, ϕ is arbitrary. After the first time, it is determined by previous stage.

$$P(\vec{x}) = \prod_{i} P_{\underline{x}}(x[i]) \tag{1.5}$$

$$P(\vec{y}|\vec{x}) = \prod_{i} P_{\underline{y}|\underline{x}}(y[i] \mid x[i]) \tag{1.6}$$

$$P(\hat{y}[i]|\phi, \vec{x}) = \delta(\hat{y}[i], \hat{y}(x[i]; \phi)) \tag{1.7}$$

$$P(\mathcal{E}|\vec{\hat{y}}, \vec{y}) = \delta(\mathcal{E}, \frac{1}{nsam(\vec{x})} \sum_{i} |y[i] - \hat{y}[i]|^2). \tag{1.8}$$

$$P(\phi'|\phi,\mathcal{E}) = \delta(\phi',\phi - \eta\partial_{\phi}\mathcal{E}) \tag{1.9}$$

 $\eta > 0$ is the descent rate. If $\Delta \phi = \phi' - \phi = -\eta \frac{\partial \mathcal{E}}{\partial \phi}$, then $\Delta \mathcal{E} = \frac{-1}{\eta} (\Delta \phi)^2 < 0$ so this will minimize the error \mathcal{E} . This is called "gradient descent".

Bell and Clauser-Horne Inequalities in Quantum Mechanics

Figure 2.1: bnet used to discuss Bell and Clauser-Horne inequalities in Quantum Mechanics.

I wrote an article about this in 2008 for my blog "Quantum Bayesian Networks". See Ref.[1].

Generative Adversarial Network (GAN)

Figure 3.1: Generative Adversarial Network (GAN)

Original GAN, Ref. [2] (2014).

Generator G (counterfeiter) generates samples \vec{f} of fake money and submits them to Discriminator D (Treasury agent). D also gets samples \vec{r} of real money. D submits veredict $V \in [0,1]$. G depends on parameter θ_G and D on parameter θ_D . Veredict V and initial θ_G, θ_D are used to get new parameters θ'_G, θ'_D . Process is repeated (Dynamical Bayesian Network) until saddle point in $V(\theta_G, \theta_D)$ is reached. D makes G better and vice versa. Zero-sum game between D and G.

Figure 3.2: Discriminator node \underline{V} in Fig.3.1 can be split into 3 nodes $\underline{\vec{c}}$, $\underline{\vec{d}}$ and \underline{V} .

Let \mathcal{D} be the domain of $D(\cdot, \theta_D)$. Assume that for any $x \in \mathcal{D}$,

$$0 \le D(x, \theta_D) \le 1. \tag{3.1}$$

For any $S \subset \mathcal{D}$, define

$$\sum_{x \in S} D(x, \theta_D) = \lambda(S, \theta_D) . \tag{3.2}$$

In general, $G(\cdot, \theta_G)$ need not be real valued.

Assume that for every $u \in S_{\underline{u}}$, $G(u, \theta_G) = f \in S_{\underline{f}} \subset \mathcal{D}$. Define

$$\overline{D}(f,\theta_D) = 1 - D(f,\theta_D). \tag{3.3}$$

Note that

$$0 \le \overline{D}(f, \theta_D) \le 1. \tag{3.4}$$

Define:

$$V(\theta_G, \theta_D) = \sum_r P(r) \log D(r, \theta_D) + \sum_u P(u) \log \overline{D}(G(u, \theta_G), \theta_D) . \tag{3.5}$$

We want the first variation of $V(\theta_G, \theta_D)$ to vanish.

$$\delta V(\theta_G, \theta_D) = 0. (3.6)$$

This implies

$$\partial_{\theta_G} V(\theta_G, \theta_D) = \partial_{\theta_D} V(\theta_G, \theta_D) = 0 \tag{3.7}$$

and

$$V_{opt} = \min_{\theta_G} \max_{\theta_D} V(\theta_G, \theta_D) . \tag{3.8}$$

Node transition probability matrices for Figs. 3.1 and 3.2 are given next in blue:

$$P(\theta_G) = \text{given}$$
 (3.9)

$$P(\theta_D) = \text{given}$$
 (3.10)

$$P(\vec{u}) = \prod_{i} P(u[i]) \text{ (usually uniform distribution)}$$
(3.11)

$$P(\vec{r}) = \prod_{i} P(r[i]) \tag{3.12}$$

$$P(f[i] \mid \vec{u}, \theta_G) = \delta[f[i], G(u[i], \theta_G)]$$
(3.13)

$$P(c[i] \mid \vec{f}, \theta_D) = \delta(c[i], \overline{D}(f[i], \theta_D))$$
(3.14)

$$P(d[j] \mid \vec{r}, \theta_D) = \delta(d[j], D(r[j], \theta_D))$$
(3.15)

$$P(V|\vec{d}, \vec{c}) = \delta(V, \frac{1}{N} \log \prod_{i,j} (c[i]d[j]))$$
 (3.16)

where $N = nsam(\vec{r})nsam(\vec{u})$.

Let $\eta_G, \eta_D > 0$. Maximize V wrt θ_D , and minimize it wrt θ_G .

$$P(\theta_G'|V,\theta_G) = \delta(\theta_G',\theta_G - \eta_G \partial_{\theta_G} V)$$
(3.17)

$$P(\theta_D'|V,\theta_D) = \delta(\theta_D',\theta_D + \eta_D \partial_{\theta_D} V)$$
(3.18)

Figure 3.3: GAN, Constraining Bayesian Network

Constraining B net given in Fig.3.3. It adds 2 new nodes, namely $\underline{\vec{U}}$ and $\underline{\vec{R}}$, to the bnet of Fig.3.1. The purpose of these 2 barren (childrenless) nodes is to constrain certain functions to be probability distributions.

Node transition probabilities for the 2 new nodes given next in blue.

$$P(U[i] \mid \theta_G) = \frac{\overline{D}(G(U[i], \theta_G), \theta_D))}{\overline{\lambda}(\theta_G, \theta_D)}$$
(3.19)

where $S_{\underline{U}[i]} = S_{\underline{u}}$ and $\overline{\lambda}(\theta_G, \theta_D) = \sum_u \overline{D}(G(u, \theta_G), \theta_D)$.

$$P(R[i] \mid \theta_G, \theta_D) = \frac{D(R[i], \theta_D)}{\lambda(\theta_D)}$$
(3.20)

where $S_{\underline{R[i]}} = S_{\underline{r}}$ and $\lambda(\theta_D) = \sum_r D(r, \theta_D)$.

$$P(V|\vec{u}, \vec{r}) = \delta(V, \frac{1}{N} \log \prod_{i,j} (P(\underline{R[i]} = r[i] \mid \theta_G, \theta_D) P(\underline{U[i]} = u[j] \mid \theta_G)))$$
(3.21)

where $N = nsam(\vec{r})nsam(\vec{u})$.

 $\mathcal{L} = likelihood$

$$\mathcal{L} = P(\vec{r}, \vec{u} | \theta_G, \theta_D) \tag{3.22}$$

$$= \prod_{i,j} \left[\frac{D(r[i], \theta_D)}{\lambda(\theta_D)} \frac{\overline{D}(G(u[j], \theta_G), \theta_D))}{\overline{\lambda}(\theta_G, \theta_D)} \right]$$
(3.23)

$$\log \mathcal{L} = N[V(\theta_G, \theta_D) - \log \lambda(\theta_D) - \log \overline{\lambda}(\theta_G, \theta_D)]$$
(3.24)

Kalman Filter

Figure 4.1: Kalman Filter bnet.

Let $t = 0, 1, 2, \dots, T - 1$.

 $\underline{x}_t \in S_{\underline{x}}$ are random variables that represent the hidden (unobserved) true state of the system. $\underline{z}_t \in S_{\underline{z}}$ are random variables that represent the measured (observed) state of the system.

The Kalman Filter bnet Fig.4.1 has the following node probability transition matrices, printed in blue:

$$P(x_t|x_{t-1}) = \mathcal{N}(F_t x_{t-1} + B_t u_t, Q_t) , \qquad (4.1)$$

where F_t, Q_t, B_t, u_t are given. $P(x_t|x_{t-1})$ becomes $P(x_t)$ for t = 0.

$$P(z_t|x_t) = \mathcal{N}(H_t x_t, R_t) , \qquad (4.2)$$

where H_t , R_t are given.

Define

$$\underline{Z}_t = (\underline{z}_{t'})_{t' < t} . \tag{4.3}$$

Define \hat{x}_t and P_t by

$$P(x_t|Z_t) = \mathcal{N}(\hat{x}_t, P_t) . \tag{4.4}$$

Problem: Find \hat{x}_t and P_t in terms of

1. current (at time t) given values of F, Q, H, R, B, u

- 2. current (at time t) observed value of z
- 3. prior (previous) value (at time t-1) of \hat{x} and P.

See Fig.4.2. For that figure,

$$P(\hat{x}_t, P_t | z_t, \hat{x}_{t-1}, P_{t-1}) = \delta(\hat{x}_t, ?)\delta(P_t, ?) . \tag{4.5}$$

Figure 4.2: Kalman Filter bnet with deterministic nodes for \hat{x}_t, P_t .

Solution copied from Wikipedia Ref.[3]:

Define $\eta_{t|t} = \eta_t$ for $\eta = \hat{x}, P$.

=== Predict ===

Predicted (a priori) state estimate

$$\hat{x}_{t|t-1} = F_t \hat{x}_{t-1|t-1} + B_t u_t \tag{4.6}$$

Predicted (a priori) estimate covariance

$$P_{t|t-1} = F_t P_{t-1|t-1} F_t^{\mathsf{T}} + Q_t \tag{4.7}$$

=== Update ===

Innovation (or measurement pre-fit residual)

$$\tilde{y}_{t|t-1} = z_t - H_t \hat{x}_{t|t-1} \tag{4.8}$$

Innovation (or pre-fit residual) covariance

$$S_t = H_t P_{t|t-1} H_t^\mathsf{T} + R_t \tag{4.9}$$

Optimal Kalman gain

$$K_t = P_{t|t-1} H_t^{\mathsf{T}} S_t^{-1} \tag{4.10}$$

Updated (a posteriori) state estimate

$$\hat{x}_{t|t} = \hat{x}_{t|t-1} + K_t \tilde{y}_t \tag{4.11}$$

Updated (a posteriori) estimate covariance

$$P_{t|t} = (I - K_t H_t) P_{t|t-1}$$
(4.12)

Measurement post-fit residual

$$\tilde{y}_{t|t} = z_t - H_t \hat{x}_{t|t} \tag{4.13}$$

Linear and Logistic Regression

Figure 5.1: Linear Regression

Figure 5.2: B net of Fig.5.1 with new $\underline{\vec{Y}}$ node.

Estimators \hat{y} for linear and logistic regression.

• Linear Regression: $y \in \mathbb{R}$. Note $\hat{y} \in \mathbb{R}$. $(x, \hat{y}(x))$ is a straight line with y-intercept b and slope m.

$$\hat{y}(x;b,m) = b + mx \tag{5.1}$$

• Logistic Regression: $y \in \{0, 1\}$. Note $\hat{y} \in [0, 1]$. $(x, \hat{y}(x))$ is a sigmoid. Often in literature, b, m are replaced by β_0, β_1 .

$$\hat{y}(x;b,m) = \frac{1}{1 + e^{-(b+mx)}} \tag{5.2}$$

Define

$$V(b,m) = \sum_{x,y} P(x,y)|y - \hat{y}(x;b,m)|^2.$$
 (5.3)

We want to minimize V(b, m) (called a cost or loss function) wrt b and m.

Node transition probabilities of B net of Fig.5.1 given next in blue.

$$P(b,m) = given (5.4)$$

The first time it is used, (b, m) is arbitrary. After the first time, it is determined by previous stage. Let

$$P_{\underline{x},\underline{y}}(x,y) = \frac{1}{nsam(\vec{x})} \sum_{i} \mathbb{1}(x = x[i], y = y[i]) . \tag{5.5}$$

$$P(\vec{x}) = \prod_{i} P(x[i]) \tag{5.6}$$

$$P(\vec{y}|\vec{x}) = \prod_{i} P(y[i] \mid x[i])$$
 (5.7)

$$P(\hat{y}|\vec{x}, b, m) = \prod_{i} \delta(\hat{y}[i], \hat{y}(x[i], b, m))$$
 (5.8)

$$P(V|\vec{\hat{y}}, \vec{y}) = \delta(V, \frac{1}{nsam(\vec{x})} \sum_{i} |y[i] - \hat{y}[i]|^2)$$
 (5.9)

Let $\eta_b, \eta_m > 0$. For x = b, m, if $x' - x = \Delta x = -\eta \frac{\partial V}{\partial x}$, then $\Delta V \approx \frac{-1}{\eta} (\Delta x)^2 \leq 0$ for $\eta > 0$. This is called "gradient descent".

$$P(b'|V,b) = \delta(b', b - \eta_b \partial_b V) \tag{5.10}$$

$$P(m'|V,m) = \delta(m', m - \eta_m \partial_m V)$$
(5.11)

Generalization to x with multiple components(features)

Suppose that for each sample i, instead of x[i] being a scalar, it has n components called features:

$$x[i] = (x_0[i], x_1[i], x_2[i], \dots x_{n-1}[i]).$$
(5.12)

Slope m is replaced by weights

$$w = (w_0, w_1, w_3, \dots, w_{n-1}), (5.13)$$

and the product of 2 scalars mx[i] is replaced by the inner vector product $w^Tx[i]$.

Alternative V(b, m) for logistic regression

For logistic regression, since $y[i] \in \{0,1\}$ and $\hat{y}[i] \in [0,1]$ are both in the interval [0,1], they can be interpreted as probabilities. Define probability distributions p[i](x) and $\hat{p}[i](x)$ for $x \in \{0,1\}$ by

$$p[i](1) = y[i], \quad p[i](0) = 1 - y[i]$$
 (5.14)

$$\hat{p}[i](1) = \hat{y}[i], \quad \hat{p}[i](0) = 1 - \hat{y}[i] \tag{5.15}$$

Then for logistic regression, the following 2 cost functions V(b, m) can be used as alternatives to the cost function Eq.(5.3) previously given.

$$V(b,m) = \frac{1}{nsam(\vec{x})} \sum_{i} D_{KL}(p[i] \parallel \hat{p}[i])$$
 (5.16)

and

$$V(b,m) = \frac{1}{nsam(\vec{x})} \sum_{i} CE(p[i] \to \hat{p}[i])$$
(5.17)

$$= \frac{-1}{nsam(\vec{x})} \sum_{i} \{y[i] \log \hat{y}[i] + (1 - y[i]) \log(1 - \hat{y}[i])\}$$
 (5.18)

$$= \frac{-1}{nsam(\vec{x})} \sum_{i} \log \left\{ \hat{y}[i]^{y[i]} (1 - \hat{y}[i])^{(1-y[i])} \right\}$$
 (5.19)

$$= \frac{-1}{nsam(\vec{x})} \sum_{i} \log P(\underline{Y} = y[i] \mid \hat{y} = \hat{y}[i])$$
 (5.20)

$$= -\sum_{x,y} P(x,y) \log P(\underline{Y} = y | \hat{y} = \hat{y}(x,b,m))$$
 (5.21)

Above, we used

$$P(\underline{Y} = Y | \hat{y}) = \hat{y}^{Y} [1 - \hat{y}]^{1-Y}$$
(5.22)

for $Y \in S_{\underline{Y}} = \{0, 1\}$. (Bernoulli distribution).

There is no node corresponding to \underline{Y} in the B net of Fig.5.1. Fig.5.2 shows a new B net that has a new node called $\underline{\vec{Y}}$ compared to the B net of Fig.5.1. One defines the transition probabilities for all nodes of Fig.5.2 except $\underline{\vec{Y}}$ and \underline{V} the same as for Fig.5.1. For $\underline{\vec{Y}}$ and \underline{V} , one defines

$$P(Y[i] \mid \hat{y}) = P(\underline{Y} = Y[i] \mid \hat{y}[i])$$

$$(5.23)$$

$$P(V|\vec{Y}, \vec{y}) = \delta(V, \frac{-1}{nsam(\vec{x})} \log \mathcal{L}), \qquad (5.24)$$

where $\mathcal{L} = \prod_i P(\underline{Y} = y[i] \mid \hat{y}[i]) = \text{likelihood}.$

Monty Hall Problem

Figure 6.1: Monty Hall Problem.

Mr. Monty Hall, host of the game show "Lets Make a Deal", hides a car behind one of three doors and a goat behind each of the other two. The contestant picks Door No. 1, but before opening it, Mr. Hall opens Door No. 2 to reveal a goat. Should the contestant stick with No. 1 or switch to No. 3?

The Monty Hall problem can be modeled by the bnet Fig.6.1, where

- \underline{c} = the door behind which the car actually is.
- y= the door opened by you (the contestant), on your first selection.
- \underline{m} = the door opened by Monty (game host)

We label the doors 1,2,3 so $S_{\underline{c}} = S_{\underline{y}} = S_{\underline{m}} = \{1, 2, 3\}$. Node matrices printed in blue:

$$P(c) = \frac{1}{3} \text{ for all } c \tag{6.1}$$

$$P(y) = \frac{1}{3} \text{ for all } y \tag{6.2}$$

$$P(m|c,y) = \mathbb{1}(m \neq c) \left[\frac{1}{2} \mathbb{1}(y=c) + \mathbb{1}(y \neq c) \mathbb{1}(m \neq y) \right]$$
 (6.3)

It's easy to show that the above node probabilities imply that

$$P(c=1|m=2, y=1) = \frac{1}{3}$$
(6.4)

$$P(c=3|m=2,y=1) = \frac{2}{3}$$
(6.5)

So you are twice as likely to win if you switch your final selection to be the door which is neither your first choice nor Monty's choice.

The way I justify this to myself is: Monty gives you a piece of information. If you don't switch your choice, you are wasting that info, whereas if you switch, you are using the info.

Naive Bayes

Figure 7.1: bnet for Naive Bayes with 4 features

Class node $\underline{c} \in S_{\underline{c}}$. $|S_{\underline{c}}| = n_{\underline{c}} =$ number of classes. Feature nodes $\underline{x}_i \in S_{\underline{x}_i}$ for $i = 0, 1, 2, \dots, F-1$. F = number of features. Define

$$x. = [x_0, x_1, \dots, x_{F-1}]. (7.1)$$

For the bnet of Fig.7.1,

$$P(c,x.) = P(c) \prod_{i=0}^{F-1} P(x_i|c) .$$
 (7.2)

Given x. values, find most likely class $c \in S_{\underline{c}}$. Maximum a Posteriori (MAP) estimate:

$$c^* = \operatorname{argmax}_c P(c|x.) \tag{7.3}$$

$$= \operatorname{argmax}_{c} \frac{P(c, x.)}{P(x.)} \tag{7.4}$$

$$= \operatorname{argmax}_{c} P(c, x.) . \tag{7.5}$$

Neural Networks

In this chapter, we discuss Neural Networks (NNs) of the feedforward kind, which is the most popular kind. In their plain, vanilla form, NNs only have deterministic nodes. But the nodes of a bnet can be deterministic too, because the transition probability matrix of a node can reduce to a delta function. Hence, NNs should be expressible as bnets. We will confirm this in this chapter.

Henceforth in this chapter, if we replace an index of an indexed quantity by a dot, it will mean the collection of the indexed quantity for all values of that index. For example, x, will mean the array of x_i for all i.

Figure 8.1: Neural Network (feed forward) with 4 layers: input layer \underline{x} ., 2 hidden layers \underline{h}^0 ., \underline{h}^1 . and output layer y.

Consider Fig.8.1.

 $\underline{x}_i \in \{0,1\}$ for $i=0,1,2,\ldots,numx-1$ is the **input layer**. $\underline{h}_i^{\lambda} \in \{0,1\}$ for $i=0,1,2,\ldots,numh(\lambda)-1$ is the λ -th hidden layer. $\lambda=0,1,2,\ldots,\Lambda-1$. A NN is said to be **deep** if $\Lambda > 1$, i.e., it has more than one hidden layer.

 $y_i \in \{0,1\}$ for $i=0,1,2,\ldots,numy-1$ is the **output layer**.

The number of nodes in each layer and the number of layers are arbitrary. Fig. 8.1 is fully connected (aka dense), meaning that every node of a layer has an incoming arrow coming from every node of the preceding layer. Later on in this chapter, we will discuss non-dense layers.

Let $w_{i|j}^{\lambda}, b_i^{\lambda} \in \mathbb{R}$ be given, for $i \in \mathbb{Z}_{[0,numh(\lambda))}, j \in \mathbb{Z}_{[0,numh(\lambda-1))}$, and $\lambda \in \mathbb{Z}_{[0,\Lambda)}$. These are the transition probability matrices, printed in blue, for the nodes of the bnet Fig.8.1:

$$P(x_i \mid x_{i-1}, x_{i-1}, \dots, x_0) = \text{given}$$
 (8.1)

$$P(h_i^{\lambda} \mid h_i^{\lambda-1}) = \delta \left(h_i^{\lambda}, \mathcal{A}_i^{\lambda} \left(\sum_j w_{i|j}^{\lambda-1} h_j^{\lambda-1} + b_i^{\lambda-1} \right) \right)$$
(8.2)

$$P(y_i \mid h_{.}^{\Lambda-1}) = \delta \left(y_i, \mathcal{A}_i^{\Lambda} \left(\sum_{j} w_{i|j}^{\Lambda-1} h_j^{\Lambda-1} + b_i^{\Lambda-1} \right) \right)$$
 (8.3)

Activation Functions $\mathcal{A}_i^{\lambda}: \mathbb{R} \to \mathbb{R}$

Activation functions must be nonlinear.

• Step function (Perceptron)

$$\mathcal{A}(x) = \mathbb{1}(x > 0) \tag{8.4}$$

Zero for $x \leq 0$, one for x > 0.

• Sigmoid function

$$\mathcal{A}(x) = \frac{1}{1 + e^{-x}} \tag{8.5}$$

Smooth, monotonically increasing function. $\mathcal{A}(-\infty) = 0, \mathcal{A}(0) = 0.5, \ \mathcal{A}(\infty) = 1$

• Hyperbolic tangent

$$\mathcal{A}(x) = \tanh(x) \tag{8.6}$$

As with sigmoid: smooth, monotonically increasing function, goes from 0 to 1 as x goes from $-\infty$ to ∞ .

• ReLU (Rectified Linear Unit)

For some c > 0,

$$\mathcal{A}(x) = cx\mathbb{1}(x > 0) . \tag{8.7}$$

Compare this with step function.

• Swish

$$\mathcal{A}(x) = x * sigmoid(x) \tag{8.8}$$

Softmax

$$\mathcal{A}(x_i|x_i) = \frac{e^{x_i}}{\sum_i e^{x_i}} \tag{8.9}$$

The softmax definition implies that the bnet nodes within a softmax layer are fully connected by arrows to form a "clique".

Weight optimization via supervised training and gradient descent

The bnet of Fig.8.1 is used for classification of a single data point x.. It assumes that the weights $w_{i|i}^{\lambda}$, b_i^{λ} are given.

To find the optimum weights via supervised training and gradient descent, one uses the bnet Fig.8.2.

In Fig.8.2, the nodes in Fig.8.1 become sampling space vectors. For example, \underline{x} becomes \underline{x} , where the components of \underline{x} in sampling space are \underline{x} . $[s] \in \{0,1\}^{numx}$ for $s = 0, 1, \dots, nsam(\vec{x}) - 1$.

 $nsam(\vec{x})$ is the number of samples used to calculate the gradient during each stage (aka iteration) of Fig.8.2. We will also refer to $nsam(\vec{x})$ as the mini-batch size. A mini-batch is a subset of the training data set.

To train a bnet with a data set (d-set), the standard procedure is to split the d-set into 3 parts:

- 1. training d-set,
- 2. **testing1** d-set, for tuning of hyperparameters like $nsam(\vec{x})$, Λ , and nunh(i) for each i.
- 3. **testing2 d-set**, for measuring how well the model tuned with the testing1 d-set performs.

The training d-set is itself split into mini-batches. An **epoch** is a pass through all the training d-set.

Define

$$W_{i|j}^{\lambda} = (w_{i|j}^{\lambda}, b_i^{\lambda}) . \tag{8.10}$$

These are the transition probability matrices, printed in blue, for the nodes of the bnet Fig.8.2:

$$P(x.[s]) = given. (8.11)$$

$$P(Y.[s] | x.[s]) = given.$$
 (8.12)

Figure 8.2: bnet for finding optimum weights of the bnet Fig.8.1 via supervised training and gradient descent.

$$P(h_i^{\lambda}[s] \mid h_i^{\lambda-1}[s]) = \delta\left(h_i^{\lambda}[s], \mathcal{A}_i^{\lambda}(\sum_j w_{i|j}^{\lambda-1} h_j^{\lambda-1}[s] + b_i^{\lambda-1})\right)$$
(8.13)

$$P(y_i[s] \mid h_{\cdot}^{\Lambda-1}[s]) = \delta\left(y_i[s], \mathcal{A}_i^{\Lambda}(\sum_{j} w_{i|j}^{\Lambda-1} h_j^{\Lambda-1}[s] + b_i^{\Lambda-1})\right)$$
(8.14)

$$P(W_{\perp}) = given (8.15)$$

The first time it is used, $W_{||}$ is arbitrary. After the first time, it is determined by previous stage.

$$P(W_{\perp}^{\lambda}|W_{\perp}) = \delta(W_{\perp}^{\lambda}, (W_{\perp})^{\lambda}) \tag{8.16}$$

$$P(\mathcal{E}|\vec{Y}., \vec{y}.) = \frac{1}{nsam(\vec{x})} \sum_{s} \sum_{i} |Y_i[s] - y_i[s]|^2$$
(8.17)

$$P((W')_{i|j}^{\lambda}|\mathcal{E}, W_{.|.}) = \delta((W')_{i|j}^{\lambda}, W_{i|j}^{\lambda} - \alpha \partial_{W_{i|j}^{\lambda}} \mathcal{E})$$
(8.18)

 $\alpha > 0$ is called the learning rate.

Non-dense layers

As you read this section, note that for some non-dense layers (e.g., convolution and pooling), the bnet nodes $\underline{h}_i^{\lambda}$ within the non-dense layer are connected by some arrows, similar to what happens in a softmax layer.

The transition probability matrix for a non-dense layer is of the form:

$$P(h_i^{\lambda}[s] \mid h^{\lambda-1}[s]) = \delta(h_i^{\lambda}[s], H_i^{\lambda}[s]), \qquad (8.19)$$

where $H_i^{\lambda}[s]$ will be specified below for each type of non-dense layer.

• Dropout Layer

The dropout layer was invented in Ref.[4]. To dropout nodes from a fixed layer λ : For all i of layer λ , define a new node $\underline{r}_i^{\lambda}$ with an arrow $\underline{r}_i^{\lambda} \to \underline{h}_i^{\lambda}$. For $r \in \{0, 1\}$, and some $p \in (0, 1)$, define

$$P(r_i^{\lambda} = r) = [p]^r [1 - p]^{1-r}$$
 (Bernouilli dist.) . (8.20)

Now one has

$$P(h_i^{\lambda}[s] \mid h_i^{\lambda-1}[s], r_i^{\lambda}) = \delta(h_i^{\lambda}[s], H_i^{\lambda}[s]) , \qquad (8.21)$$

where

$$H_i^{\lambda}[s] = \mathcal{A}_i^{\lambda}(r_i^{\lambda} \sum_j w_{i|j}^{\lambda} h_j^{\lambda-1}[s] + b_i^{\lambda}) . \tag{8.22}$$

This reduces overfitting. Overfitting might occur if the weights follow too closely several similar minibatches. This dropout procedure adds a random component to each minibatch making groups of similar minibatches less likely.

Note that dropout adds non-deterministic nodes to a NN, which in their vanilla form only have deterministic modes.

• Convolutional Layer

• 1-dim

Filter function $\mathcal{F}: \{0, 1, \dots, numf - 1\} \to \mathbb{R}$. σ =stride length

For $i \in \{0, 1, ..., numh(\lambda) - 1\}$, let

$$H_i^{\lambda}[s] = \sum_{j=0}^{numf-1} h_{j+i\sigma}^{\lambda-1}[s]\mathcal{F}(j)$$
 (8.23)

For the indices not to go out of bounds in Eq.(8.23), we must have

$$numh(\lambda - 1) - 1 = (numh(\lambda) - 1)\sigma + numf - 1.$$
(8.24)

SO

$$numh(\lambda) = \frac{1}{\sigma}[numh(\lambda - 1) - numf] + 1$$
(8.25)

• 2-dim $h_i^{\lambda}[s]$ becomes $h_{(i,j)}^{\lambda}[s]$. Do 1-dim convolution along both i and j axes.

• Pooling Layers (MaxPool, AvgPool)

Here each node i of layer λ is impinged by arrows from a subset Pool(i) of the set of all nodes of the previous layer $\lambda - 1$. Partition set $\{0, 1, \ldots, numh(\lambda - 1) - 1\}$ into $numh(\lambda)$ mutually disjoint, nonempty sets called Pool(i), where $i \in \{0, 1, \ldots, numh(\lambda) - 1\}$.

• AvgPool

$$H_i^{\lambda}[s] = \frac{1}{size(Pool(i))} \sum_{j \in Pool(i)} h_j^{\lambda - 1}[s]$$
(8.26)

• MaxPool

$$H_i^{\lambda}[s] = \max_{j \in Pool(i)} h_j^{\lambda - 1}[s] \tag{8.27}$$

Reinforcement Learning (RL)

Figure 9.1: Axes for episode time and episode number.

I based this chapter on the following references. Refs.[5][6]

In RL, we consider an "agent" or robot that is learning.

Let $T \in \mathbb{Z}_{>0}$ be the duration time of an **episode** of learning. If $T = \infty$, we say that the episode has an infinite time horizon. A learning episode will evolve towards the right, for times $t = 0, 1, \ldots, T - 1$. We will consider multiple learning episodes. The episode number will evolve from top to bottom. This is illustrated in Fig.9.1.

Let $\underline{s}_t \in S_{\underline{s}}$ for $t \in \mathbb{Z}_{[0,T-1]}$ be random variables that record the **state** of the agent at various times t.

Let $\underline{a}_t \in S_{\underline{a}}$ for $t \in \mathbb{Z}_{[0,T-1]}$ be random variables that record the **action** of the agent at various times t.

Figure 9.2: State-Action-Reward dynamical bnet

Let $\underline{\theta}_t \in S_{\underline{\theta}}$ for $t \in \mathbb{Z}_{[0,T-1]}$ be random variables that record the **policy parameters** at various times t.

For $\underline{X} \in \{\underline{s}, \underline{a}, \underline{\theta}\}$, define \underline{X} followed by a dot to be the vector

$$\underline{X} \cdot = [\underline{X}_0, \underline{X}_1, \dots, \underline{X}_{T-1}] . \tag{9.1}$$

Also let

$$\underline{X}_{\geq t} = [\underline{X}_t, \underline{X}_{t+1}, \dots, \underline{X}_{T-1}]. \tag{9.2}$$

Fig.9.2 shows the basic State-Action-Reward bnet for an agent that is learning. The transition probabilities for the nodes of Fig.9.2 are given in blue below:

$$P(a_t|s_t, \theta_t) = \text{given.} \tag{9.3}$$

 $P(a_t|s_t,\theta_t)$ is called a **policy with parameter** θ_t .

$$P(s_t|s_{t-1}, a_{t-1}) = \text{given.}$$
 (9.4)

 $P(s_t|s_{t-1}, a_{t-1})$ is called the **transition matrix of the model**. $P(s_t|s_{t-1}, a_{t-1})$ reduces to $P(s_0)$ when t = 0.

$$P(r_t|s_t, a_t) = \delta(r_t, r(s_t, a_t))$$
 (9.5)

 $r: S_{\underline{s}} \times S_{\underline{a}} \to \mathbb{R}$ is a given **one-time reward function**.

Note that

$$P(s., a. | \theta.) = \prod_{t=0}^{T-1} \{ P(s_t | s_{t-1}, a_{t-1}) P(a_t | s_t, \theta_t) \}.$$
 (9.6)

Define the all times reward Σ by

$$\Sigma(s., a.) = \sum_{t=0}^{T-1} \gamma^t r(s_t, a_t) . \tag{9.7}$$

Here $0 < \gamma < 1$. γ , called the **discount rate**, is included to assure convergence of Σ when $T \to \infty$. If $r(s_t, a_t) < K$ for all t, then $\Sigma < K \frac{1}{1-\gamma}$.

Define the objective (i.e. goal) function $E\Sigma(\theta)$ by

$$E\Sigma(\theta.) = E_{\underline{s.},\underline{a.}|\theta.}\Sigma(\underline{s.},\underline{a.}) = \sum_{s..a.} P(s.,a.|\theta.)\Sigma(s.,a.)$$
(9.8)

The goal of RL is to maximize the objective function over its parameters θ . The parameters θ^* that maximize the objective function are the optimum strategy:

$$\theta.^* = \operatorname{argmax}_{\theta} E\Sigma(\theta.) \tag{9.9}$$

Define a **future reward** for times $\geq t$ as:

$$\Sigma_{\geq t}((s_{t'}, a_{t'})_{t' \geq t}) = \sum_{t'=t}^{T-1} \gamma^{t'-t} r(s_{t'}, a_{t'})$$
(9.10)

Define the following **conditional future rewards** (rewards for times $\geq t$, conditioned on certain quantities having given values):

$$v_t = v(s_t, a_t; \theta) = E_{s,a,s_t,a_t,\theta}[\Sigma_{>t}]$$

$$(9.11)$$

$$V_t = V(s_t; \theta.) = E_{\underline{s.},\underline{a.}|s_t,\theta.}[\Sigma_{\geq t}] = E_{\underline{a_t}|s_t,\theta.}[v(s_t,\underline{a_t};\theta.)]$$

$$(9.12)$$

v is usually called Q in the literature. We will refer to Q as v in order to follow a convention wherein an \underline{a}_t -average changes a lower case letter to an upper case one.

We will sometimes write $v(s_t, a_t)$ instead of $v(s_t, a_t; \theta_t)$.

Since $E\Sigma_{\geq t}$ only depends on $\theta_{\geq t}$, $v(s_t, a_t; \theta_{\geq t}) = v(s_t, a_t; \theta_{\geq t})$, and $V(s_t; \theta_{\geq t}) = V(s_t; \theta_{\geq t})$.

Note that the objective function $E\Sigma$ can be expressed in terms of v_0 by averaging over its unaveraged parameters:

$$E\Sigma(\theta.) = E_{\underline{s_0},\underline{a_0}|\theta_0}v(\underline{s_0},\underline{a_0};\theta.) \tag{9.13}$$

Define a one-time reward and a conditional one-time reward as:

$$r_t = r(s_t, a_t) (9.14)$$

$$R_t = R(s_t; \theta_t) = E_{\underline{a}_t|s_t,\theta_t}[r(s_t, \underline{a}_t)] . \qquad (9.15)$$

Note that

$$\Sigma_{\geq t} = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots + \gamma^{T-1-t} r_{t+(T-1-t)}$$
(9.16)

$$= r_t + \gamma \Sigma_{\geq t+1}; \qquad (9.17)$$

If we take $E_{\underline{s},\underline{a},[s_t,a_t,\theta]}[\cdot]$ of both sides of Eq.(9.17), we get

$$v_t = r_t + \gamma E_{\underline{s}_{t+1},\underline{a}_{t+1}|\theta}[v_{t+1}]. \tag{9.18}$$

If we take $E_{s,a,|s_t,\theta}[\cdot]$ of both sides of Eq.(9.17), we get

$$V_t = R_t + \gamma E_{s_{t+1}|\theta}[V_{t+1}]. \tag{9.19}$$

Note that

$$\Delta r_t = r_t - R_t \tag{9.20}$$

$$= r_t - (V_t - \gamma E_{\underline{s}_{t+1}|\theta}[V_{t+1}]) \tag{9.21}$$

$$= r_t + \gamma E_{\underline{s}_{t+1}|\theta}[V_{t+1}] - V_t. \tag{9.22}$$

Define

$$\Delta v_t = v_t - V_t \ . \tag{9.23}$$

Note that

$$\Delta v_t = \Delta r_t \ . \tag{9.24}$$

Next, we will discuss 3 RL bnets

- exact RL bnet (exact, assumes policy is known)
- Actor-Critic RL bnet (approximate, assumes policy is known)
- Q function learning RL bnet (approximate, assumes policy is NOT known)

Exact RL bnet

An exact RL bnet is given by Fig.9.3.

Fig.9.3 is the same as Fig.9.2 but with more nodes added in order to optimize the policy parameters. Here are the transition matrices, in blue, for the nodes not already discussed in connection to Fig.9.2.

$$P(\theta_t|\theta_{\cdot}) = \delta(\theta_t, (\theta_{\cdot})_t) \tag{9.25}$$

$$\forall (s_t, a_t) : P(v_t(s_t, a_t) | r_t, v_{t+1}(\cdot), \theta.) = \delta(v_t(s_t, a_t), r_t + \gamma E_{\underline{s}_{t+1}, \underline{a}_{t+1} | \theta.}[v_{t+1}])$$
(9.26)

$$P(\theta.'|\theta., v_0(\cdot)) = \delta(\theta'., \theta. + \alpha \partial_{\theta.} \underbrace{E_{\underline{s_0}, \underline{a_0}|\theta_0} v(\underline{s_0}, \underline{a_0}; \theta.)}_{E\Sigma(\theta.)})$$
(9.27)

 $\alpha > 0$ is called the **learning rate**. This method of improving θ , is called gradient ascent. Concerning the gradient of the objective function, note that

Figure 9.3: Exact RL bnet. $v_t(\cdot)$ means the array $[v_t(s_t, a_t)]_{\forall s_t, a_t}$ The following arrows are implicit: for all t, arrow from $\underline{\theta} \to \underline{v}_t(\cdot)$. We did not draw those arrows so as not to clutter the diagram.

$$\partial_{\theta_t} E\Sigma(\theta_s) = \sum_{s,a} \partial_{\theta_t} P(s_s, a_s | \theta_s) \Sigma(s_s, a_s)$$
(9.28)

$$= \sum_{s,a} P(s.,a.|\theta.) \partial_{\theta_t} \log P(s.,a.|\theta.) \Sigma(s.,a.)$$
(9.29)

$$= E_{\underline{s},\underline{a},|\theta|} \left\{ \partial_{\theta_t} \log P(a_t|s_t,\theta_t) \Sigma(s_t,a_t) \right\} . \tag{9.30}$$

If we run the agent $nsam(\vec{s_t})$ times and obtain samples $s_t[i], a_t[i]$ for all t and for $i = 0, 1, ..., nsam(\vec{s_t}) - 1$, we can express this gradient as follows:

$$\partial_{\theta_t} E\Sigma(\theta_t) \approx \frac{1}{nsam(\vec{s_t})} \sum_{i} \sum_{t=0}^{T-1} \partial_{\theta_t} \log P(a_t[i] \mid s_t[i], \theta_t) r(s_t[i], a_t[i]) . \tag{9.31}$$

The exact RL bnet Fig.9.3 is difficult to use to calculate the optimum parameters θ^* .. The problem is that \underline{s}_t propagates towards the future and the $\underline{v}_t(\cdot)$ propagates towards the past, so we don't have a Markov Chain with a chain link for each t (i.e., a dynamical bnet) in the episode time direction. Hence, people have come up with approximate RL bnets that are doubly dynamical (i.e., dynamical along the episode time and episode number axes.) We discuss some of those approximate RL bnets next.

Actor-Critic RL bnet

For the actor-critic RL bnet, we approximate Eq.(9.31) by

$$\partial_{\theta_t} E\Sigma(\theta_t) \approx \frac{1}{nsam(\vec{s})} \sum_{i} \sum_{t=0}^{T-1} \underbrace{\partial_{\theta_t} \log P(a_t[i] \mid s_t[i], \theta_t)}_{Actor} \underbrace{\Delta r_t(s_t[i], a_t[i])}_{Critic}$$
(9.32)

The actor-critic RL bnet is given by Fig.9.4. This bnet is approximate and assumes that the policy is known. The transition matrices for its nodes are given in blue below.

$$P(\theta_t) = \text{given} \tag{9.33}$$

$$P(s_t[i] \mid s_{t-1}[i], a_{t-1}[i]) = \text{ given}$$
 (9.34)

$$P(a_t[i] \mid s_t[i], \theta_t) = given$$
(9.35)

$$P(r_t[i] \mid s_t[i], a_t[i]) = \delta(r_t[i], r(s_t[i], a_t[i]))$$
(9.36)

Figure 9.4: Actor-Critic RL bnet.

 $r: S_{\underline{s}} \times S_{\underline{a}} \to \mathbb{R}$ is given.

$$P(\Delta v_t[i] \mid s_t[i], a_t[i], s_{t+1}[i]) = \delta(\Delta v_t[i], r(s_t[i], a_t[i]) + \gamma \hat{V}(s_{t+1}[i]; \phi') - \hat{V}(s_t[i]); \phi) . \tag{9.37}$$

$$P(\theta'.) = \delta(\theta'., \theta_t + \alpha \partial_{\theta_t} \sum_{i} \log P(a_t[i] \mid s_t[i], \theta_t) \Delta v_t[i])$$
(9.38)

 $\hat{V}(s_t[i]); \phi$ is obtained by curve fitting (see Chapter 1) using samples $(s_t[i], a_t[i]) \ \forall t, i$ with

$$y[i] = \sum_{t'=t}^{T} r(s_{t'}[i], a_{t'}[i])$$
(9.39)

and

$$\hat{y}[i] = \hat{V}(s_t[i]; \phi) . \tag{9.40}$$

Eq.(9.39) is an approximation because $(s_{t'}, a_{t'})_{t'>t}$ are averaged over in the exact expression for $V(s_t)$. $\hat{V}(s_{t+1}[i]); \phi'$ is obtained in the same way as $\hat{V}(s_t[i]); \phi$ but with t replaced by t+1 and ϕ by ϕ' .

Q function learning RL bnet

Figure 9.5: Q function learning RL bnet.

The Q-function learning RL bnet is given by Fig.9.5. This bnet is approximate and assumes that the policy is NOT known. The transition matrices for its nodes are given in blue below. (Remember that Q = v).

$$P(s_t|s_{t-1}, a_{t-1}) = \text{given}$$
 (9.41)

$$P(a_t|s_t, v_t(\cdot)) = \delta(a_t, \operatorname{argmax}_a v_t(s_t, a))$$
(9.42)

$$P(r_t|s_t, a_t) = \delta(r_t, r(s_t, a_t))$$

$$(9.43)$$

 $r: S_{\underline{s}} \times S_{\underline{a}} \to \mathbb{R}$ is given.

$$\forall (s_t, a_t) : P(v_t(s_t, a_t) | v_{t-1}(\cdot)) = \\ = \delta(v_t(s_t, a_t), r(s_t, a_t) + \gamma \max_a E_{\underline{s}_{t+1}|s_t, a_t} v_{t-1}(\underline{s}_{t+1}, a))$$
(9.44)

This value for $v_t(s_t, a_t)$ approximates $v_t = r_t + \gamma E_{\underline{s}_{t+1}, \underline{a}_{t+1}} v_{t+1}$. Some people use the bnet of Fig.9.6) instead of Fig.9.5 and replace Eq.(9.44) by

$$\forall (s_t, a_t) : P(v_t(s_t, a_t) | s_{t+1}, v_{t-1}(\cdot)) =$$

$$= \delta(v_t(s_t, a_t), r(s_t, a_t) + \gamma \max_a v_{t-1}(s_{t+1}, a)) .$$

$$(9.45)$$

Figure 9.6: Q function learning RL bnet. Same as Fig.9.5 but with new arrow passing s_t to Q_{t-1} .

Recurrent Neural Networks

$$P(h_t|h_{t-1}, x_t) = \delta(h_t, \mathcal{A}(Ux_t + Wh_{t-1}))$$
(10.1)

More coming soon!

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Simpson's Paradox

Figure 11.1: bnet for a simple case of Simpson's paradox.

Figure 11.2: Equivalent to Fig.11.1

I wrote an article about this in 2020 for my blog "Quantum Bayesian Networks". See Ref.[7].

Bibliography

- [1] Robert R. Tucci. Bell's inequalities for Bayesian statisticians. blog post in blog "Quantum Bayesian Networks.
- [2] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, David Warde-Farley Bing Xu, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. https://arxiv.org/abs/1406.2661.
- [3] Wikipedia. Kalman filter. https://en.wikipedia.org/wiki/Kalman_filter.
- [4] Nitish Srivastava, G E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf.
- [5] Charles Fox, Neil Girdhar, and Kevin Gurney. A causal bayesian network view of reinforcement learning. https://www.aaai.org/Papers/FLAIRS/2008/FLAIRS08-030.pdf".
- [6] Sergey Levine. Course CS 285 at UC Berkeley, Deep reinforcement learning. http://rail.eecs.berkeley.edu/deeprlcourse/.
- [7] Robert R. Tucci. Simpson's paradox, the bane of clinical trials. blog post in blog Quantum Bayesian Networks, https://qbnets.wordpress.com/2020/07/09/simpsons-paradox-the-bane-of-clinical-trials/.