次世代シーケンサ用 データ解析コマンド

基礎生物学研究所 ゲノムインフォマティクストレーニングコース 内山 郁夫 (uchiyama@nibb.ac.jp)

次世代シーケンサデータ処理の概要

SNP解析 RNA-Seq ChIP-Seq Methylome解析

次世代シーケンサデータ処理の概要

配列データファイル: FASTA format

>配列ID(説明) 塩基配列

- 配列ファイルの標準フォーマット
- >で始まる行がタイトル行、その後に配列が続く
- タイトル行の最初の単語が配列ID、以降は説明(省略可)
- タイトル行の長さに制限はないが、途中に改行は入らない
- 配列は途中に改行が入ってもよい

配列データファイル: FASTQ format

@ERR004063.1 IL33_2678:6:1:0:902/2
CTGTAAATATGTACAGGATATTTCTGACCATTTCTTC
+
CCCDDCC8@DD8DDCC5?,D7??&=-4&9*&&+-.'。
@ERR004063.2 IL33_2678:6:1:0:1059/2
AAATGGAGACTTATTCCTTGTCTTTTGGGTAATCAATC
+
@@@=@;>CC;<;DD>>7AA>88>DE>AC96@;&<C7>
@ERR004063.3 IL33_2678:6:1:0:1320/2
AGCATTTGGAGTGGCTTTTTTTTTTTTTTTTAAA
+
07ECEEE=CDCA<AC108D@0(*4(,:0;6*0*(4((

- 配列とクオリティ値をひとつにまとめたもの
- 各データの先頭は「@」、塩基配列とクオリティ値配列の間に「+」
- クオリティ値は「アスキーコード」に従って文字列で表示される→数字を使う場合と比べてサイズが圧縮され、高速な処理が可能
- 塩基配列、クオリティ値配列ともに1行で書くのが基本
- @や+で始まる行がタイトル行やクオリティデータ開始行であるとは限らない(@や+はクオリティ値の中にも現れるので)

クオリティ値

● PHRED Quality: エラー率 p_eに対して、以下で定義される

$$Q_{PHRED} = -10\log_{10}(p_e)$$

例) Q_{PHRED}=30 の場合、エラー率は10⁻³

Q_{PHRED}+33の値が、以下のアスキーコード表に従って文字列として表示 される

	30	40	50	60	70	80	90	100	110	120
0 :		(2	<	F	P	Z	d	n	x
1:)	3	=	G	Q	[е	0	У
2:	(SP)	*	4	>	Н	R	\	f	р	Z
3 :	!	+	5	?	I	S]	g	q	{
4 :	"	,	6	9	J	${f T}$	^	h	r	
5 :	#	_	7	Α	K	U	_	i	s	}
6 :	\$	•	8	В	L	V	'	j	t	~
7 :	윙	/	9	С	M	W	a	k	u	(DEL)
8 :	&	0	:	D	N	X	b	1	v	
9 :	'	1	;	E	0	Y	С	m	W	

リファレンス配列へのマッピング

Bowtie, BWA, SOAP などのコマンド

- 長大なリファレンス配列に大量の短いリード配列を若干のミス マッチを許して照合する
- リファレンス配列に対して、あらかじめ全文検索インデックスを 作成することにより高速に検索を行う
- paired-end read に対応。insert sizeに制約をつけられる

Bowtie コマンド

- BowtieとBowtie2がある。後者はギャップを考慮した検索を行うので、 感度がより高い
- インデックスの作成

 bowtie2-build 配列ファイル インデックス名
- マッピングの実行 (single-end read の場合)

(paired-end read の場合)

bowtie2 -x <u>インデックス名</u>
-1 <u>リード1</u> -2 <u>リード2</u> -S <u>出力ファイル</u>

(改行せずに1行で打つ)

実習

データ: 大腸菌RNA-Seqデータ(GEO:SRP044366)の一部を抜粋したもの

ディレクトリ:~/data/2_ngs

リードファイル: test_fastq/ecoli.[1-12].fastq

大腸菌ゲノム配列: ecoli genome.fa

大腸菌遺伝子テーブル: ecoli.gtf

● 作業ディレクトリに移動

\$ cd ~/data/2_ngs

Bowtie実習

- リファレンス配列(ecoli_genome.fa)に対してインデックスを作成する
- \$ bowtie2-build ecoli_genome.fa ecoli_genome
- リードファイル test_fastq/ecoli.1.fastq をリファレンス配列上にマッピングする
- \$ bowtie2 -x ecoli_genome
 -U test_fastq/ecoli.1.fastq

-S ecoli.sam

(改行せずに1行で打つ)

マッピング結果ファイル:SAM format

- リファレンス配列に多数の配列をマップした結果を表す形式
- 最初の@付きの行はヘッダ行、以降はタブ区切りで記述されたマッピング結果のデータ

```
@HD VN:1.3 SO:coordinate
 @SO SN:ref LN:45
 r001 163 chr1 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
 r002 0 chr1 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA
 r003 0 chr1 9 30 5H6M
                             * 0 0 AGCTAA
                                                       * NM:i:1
                              * 0 0
 r004 0
         chr1 16 30 6M14N5M
                                      ATAGCTTCAGC
 r003 16 chr1 29 30 6H5M
                              * 0
                                  0
                                      TAGGC
                                                       * NM:i:0
 r001 83 chr1 37 30 M
                              = 7 -39 CAGCGCCAT
                              対となるリード
                     アライメント
     フラグ マップ結果
                              の位置情報
レート名
                      (CIGAR)
               12345678901234 \quad 5678901234567890123456789012345
リファレンス
       chr1
               AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
 配列
  ペア
      [+r001/1
                    TTAGATAAAGGATA*CTG
 リード
      -r001/2
                                                  CAGCGCCAT
                  aaaAGATAA*GGATA
       +r002
                                        clip-outされた配列
リードの プ+r003
 同一
                 gcctaAGCTAA
                                                   (イントロン等の挿入による
     -r003
                ミスマッチ
キメラ
                                                          分割
       +r004
```

マッピグン結果ファイル:SAM format

```
ヘッダ行
                      @HD VN: バージョン番号 SO:並び順
                      @SQ SN: リファレンス配列名 LN:リファレンス配列長
@HD VN:1.3 SO:coordinate
                      @RG リードグループの情報、@PG プログラムの情報
@SO SN:ref LN:45
r001 163 chr1 7 30 8M2I4M1 = 37 39 TTAGATAAAGGATACTG *
      chr1 9
              30 3S6M1P1I4M * 0
r002 0
                             Ω
                                 AAAAGATAAGGATA
                             0
r003 0
      chr1 9 30 5H6M
                          * 0
                                 AGCTAA
                                                 * NM:i:1
       chr1 16 30 6M14N5M
r004 0
                          * 0 0 ATAGCTTCAGC
r003 16 chr1 29 30 6H5M
                          * 0 0
                                                 * NM:i:0
                                 TAGGC
                          = 7 -39 CAGCGCCAT
r001 83 chr1 37 30 M
                         対となるリード
                  アライメント
                                     リードの配列
    フラグ マップ結果
                                                  オプション
                  (CIGAR) の位置情報
SAM形式各カラムの情報
1. QNAME: クエリー配列名
                              7. RNEXT: ペアの相方が載ったリファレンス
2. FLAG: 各種情報を保持したフラグ
                                 配列名(=は同一配列、*は情報なし)
3. RNAME: リファレンス配列名
                              8. PNEXT: ペアの相方のマップ位置
4. POS: リードがマッピングされた左端位置
                              9. TLEN: フラグメントの長さ
5. MAPQ: マッピング クオリティ-10\log_{10}p_e
                              10. SEQ: リードの配列
6. CIGAR: CIGAR 文字列(アライメンド)
                              11. QUAL: リードのクオリティ(アスキー)
                              12. OPT: tag:type:value で表す任意の情報
```

BAM format

- SAM形式のテキストファイルをバイナリファイルに変換し、かつ データ圧縮をかけてコンパクトかつ効率的に処理できるようにした もの。
- samtoolsを使って変換する
 - SAM→BAM変換
 - samtools view -Sb file.sam > file.bam
 - -S 入力がSAMファイル; -b 出力がBAMファイル
 - BAM→SAM変換
 - samtools view -h file.bam > file.sam
 - -h 出力にヘッダを含める

samtools

● SAM/BAM形式のマッピング結果ファイルを扱うためのコマンド群

samtools <command> [options]

2番目の引数の<command>によって機能を切り替える

- view SAM→BAM 変換して表示
- sort 並べかえ(デフォルトはマップされた位置で)
- index ソートされたBAMファイルをインデックスづけ
- idxstats 各リファレンス配列にマップされたリード数を表示
- depth リファレンスの各位置にマップされたリード数を表示
- mpileup リファレンスの各位置にマップされた塩基を表示

samtools 実習1

- BAMファイルの作成
- \$ samtools view -bS ecoli.sam > ecoli.bam
- BAMをSAMに変換して表示
- \$ samtools view ecoli.bam |less

samtools 実習2

BAMファイルは、ソートしてインデックスづけを行うことによって、より便利に使えるようになる。

- BAMファイルをソート
- \$ samtools sort ecoli.bam -o ecoli_sorted.bam
 - ソートされたBAMファイルをSAMに変換してlessで表示
 - \$ samtools view ecoli sorted.bam |less
 - ソートされたBAMファイルに対してインデックスを作成
 - \$ samtools index ecoli sorted.bam

samtools 実習3

以下は、インデックスづけされたBAMファイルを使う

- 指定した領域内にマッピングされたリードのみを表示
- \$ samtools view ecoli_sorted.bam chr:200-500

染色体名:開始位置一終了位置

- 各染色体にマッピングされたリード数を表示
- \$ samtools idxstats ecoli sorted.bam

マッピングされなかったリードは、染色体名が '*'として表示される

- mpileupコマンドで、リファレンスの位置ごとにマッピングされた塩基を表示
- \$ samtools mpileup -f ecoli_genome.fa ecoli_sorted.bam | less

RNA-Seq 解析

● ゲノム上にマッピングされたリードを遺伝子領域ごとに集めて 数をカウント

通常、カウントした数を遺伝子の長さ、およびマップされたリード全体の数で割って標準化する

RPKM (Read Per Kilobase per Million mapped reads) または FPKM (Fragment Per Kilobase per Million mapped reads)

遺伝子アノテーションファイル: GFF format

- ゲノム上の特徴配列(Feature segment)をタブ区切りテキ スト形式で表現する標準的なフォーマット
- 最後のカラムに任意の情報を格納できるため、様々な特徴 配列の情報を記述できるが、とくに遺伝子構造を記述するた めに特化した形式を GTF format という

1	2	3	4	5	6	7	8	9
chr	RefSeq	start codon	190	192	1.000	+		gene id "b0001"; transcript id "b0001";
chr	RefSeq	CDS	190	252	1.000	+	0	gene id "b0001"; transcript id "b0001";
chr	RefSeq	stop_codon	253	255	1.000	+		<pre>gene_id "b0001"; transcript_id "b0001";</pre>
chr	RefSeq	exon	190	255	1.000	+		<pre>gene_id "b0001"; transcript_id "b0001";</pre>

- 1. Segname 配列名
- 2. Source 予測プログラム、データベース名など 7. Strand ストランド(+/-)、省略可(..)
- 3. Feature 特徴セグメントの種類
- 4. Start開始位置
- 5. End 終了位置

- 6. Score スコア、省略可(.)
- 8. Frame 読み枠(0/1/2)、省略可(.)
- 9. Attribute (Optional)

セミコロンで区切られたタグ-値の対

マッピング結果を領域ごとに 集計するコマンド: htseq-count

● htseq-count マッピングファイル(SAM) 遺伝子ファイル (GFF)

3つの照合モード: union, intersection strict, intersection nonempty

http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

htseq-countを用いた実習

- アノテーションテーブルecoli.gtf を使って、各遺伝子にマッピングされたリード数をカウント
- \$ htseq-count ecoli.sam ecoli.gtf > ecoli.htseq
 - 遺伝子アノテーション(GFF)ファイルの中で、どのFeatureの行を使うかは オプション -t で、遺伝子IDとして何を使うかについては-i で指定する。
 - 標準的なGTF形式のファイルであれば、デフォルトのまま(Featureがexonの行を使い、遺伝子IDは gene_idを使う)で動作するようになっている。

出力結果 b0001 11 b0002 117 b0003 33 b0004 44 b0005 3 b0006 14 b0007 4

181

今回使ったツールとファイルのまとめ

b0008

