Soluciones al examen de la convocatoria ordinaria. Topología I. Doble grado en Ingeniería Informática y Matemáticas. 16 de enero de 2023

- **1.–** Observamos en primer lugar que $\sigma \circ \sigma = I_{\mathbb{R}^2}$. En particular σ es biyectiva y $\sigma^{-1} = \sigma$.
- a) Probar que $C_T = T$, donde C_T es la familia de cerrados de (\mathbb{R}^2, T) . ¿Es (\mathbb{R}^2, T) un espacio de Hausdorff?

Veamos que si $F \in T$ entonces $F^c \in T$, lo que implica que $F \in C_T$. Si $p \in F^c$ entonces $\sigma(p) \in F^c$ (razonando por contradicción: si $\sigma(p) \in F$, que es abierto, entonces $p = \sigma(\sigma(p)) \in F$). Por tanto $\sigma(p) \in F^c$. Por la definición de T, concluimos que $T \in T$. Esto demuestra que $T \in C_T$.

Para probar la inclusión opuesta, tomamos $G \in C_T$. Entonces $F = G^c \in T$ y el argumento anterior demuestra que $G = (G^c)^c = F^c \in T$. Por tanto $C_T \subset T$.

Para ver que el espacio (\mathbb{R}^2 , T) no es Hausdorff observamos que si $U \in T$ y $p \in U$ entonces $\sigma(p) \in U$. Tomando p = (x, y) con $y \neq 0$, el punto $q = \sigma(p)$ es distinto de p, y todo abierto que contenga a p también contiene a q. Luego p y q no pueden separarse por abiertos disjuntos.

b) Para cada $p \in \mathbb{R}^2$ encontrar una base de entornos de p en (\mathbb{R}^2, T) con un único entorno. ¿Verifica (\mathbb{R}^2, T) el segundo axioma de numerabilidad?

Observamos que, dado $p \in \mathbb{R}^2$, el conjunto $U_p = \{p, \sigma(p)\}$ es abierto. Si V es un entorno de p, existe un abierto $U \in T$ tal que $p \in U \subset V$. Por la definición de T, U debe contener al punto $\sigma(p)$. Por tanto

$$p \in U_p \subset U \subset V$$
.

Esto demuestra que $\{U_n\}$ es una base de entornos de p formada por un único conjunto.

Veamos que (\mathbb{R}^2,T) no verifica el segundo axioma de numerabilidad. Como la familia de abiertos $\mathcal{C}=\{U_p:p\in\mathbb{R}^2\}$, donde $U_p=\{p,\sigma(p)\}$, es no numerable, basta probar que $\mathcal{C}\subset\mathcal{B}'$ para toda base \mathcal{B}' en (\mathbb{R}^2,T) . Sea \mathcal{B}' una base en (\mathbb{R}^2,T) . Fijado $p\in\mathbb{R}^2$, el conjunto U_p es abierto. Por tanto, existe $B'\in\mathcal{B}'\subset T$ tal que $p\in B'\subset U_p$. Como B' es entorno de p, el apartado anterior nos dice que $U_p\subset B'\subset U_p$. Por tanto $U_p=B'$, lo que implica que $\mathcal{C}\subset\mathcal{B}'$.

c) Calcular la adherencia en (\mathbb{R}^2, T) del conjunto $A = \{(x, x) \in \mathbb{R}^2 : x \ge 0\}$.

Aplicamos la caracterización de la adherencia en términos de bases de entornos. Dado $S \subset \mathbb{R}^2$, tenemos que:

$$p \in \overline{S} \Leftrightarrow U_p \cap S \neq \emptyset \Leftrightarrow p \in S \circ \sigma(p) \in S \Leftrightarrow p \in S \circ p \in \sigma(S) \Leftrightarrow p \in S \cup \sigma(S),$$

donde en la tercera equivalencia hemos aplicado σ y usado que $\sigma \circ \sigma = I_{\mathbb{R}^2}$. Esto prueba que $\overline{S} = S \cup \sigma(S)$. En particular, para el conjunto A, obtenemos:

$$\overline{A} = A \cup \sigma(A) = \{(x, x) \in \mathbb{R}^2 : x \geqslant 0\} \cup \{(x, -x) \in \mathbb{R}^2 : x \geqslant 0\}.$$

d) Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ una aplicación tal que $f \circ \sigma = \sigma \circ f$. Demostrar que $f: (\mathbb{R}^2, T) \to (\mathbb{R}^2, T)$ es continua y abierta.

Veamos que es continua. Dado $U' \in T$, queremos ver que $f^{-1}(U') \in T$, es decir $\sigma(f^{-1}(U')) = f^{-1}(U')$. Dado que $f \circ \sigma = \sigma \circ f$ y $\sigma^{-1} = \sigma$, tenemos:

$$\begin{split} \sigma(f^{-1}(U')) &= \sigma^{-1}(f^{-1}(U')) = (f \circ \sigma)^{-1}(U') = (\sigma \circ f)^{-1}(U') \\ &= f^{-1}(\sigma^{-1}(U')) = f^{-1}(\sigma(U')) = f^{-1}(U'), \end{split}$$

donde en la última igualdad hemos usado que $U' \in T$.

Veamos que f es abierta. Dado $U \in T$, queremos ver que $f(U) \in T$, es decir $\sigma(f(U)) = f(U)$. Puesto que $f \circ \sigma = \sigma \circ f$, tenemos:

$$\sigma(f(U)) = (\sigma \circ f)(U) = (f \circ \sigma)(U) = f(\sigma(U)) = f(U),$$

donde en la última igualdad hemos usado que $U \in T$.

e) Probar que $A \subset \mathbb{R}^2$ es conexo en (\mathbb{R}^2, T) si y sólo si $A = \{p\}$ o $A = \{p, \sigma(p)\}$ con $p \in \mathbb{R}^2$.

Supongamos que A es un subconjunto conexo de (\mathbb{R}^2,T) . Si A tiene un único punto ya sabemos que es conexo. Si $A=\{p,q\}$ está formado por dos puntos distintos $p\neq q$, y suponemos que $q\neq\sigma(p)$ tendríamos que $U_p\cap A=\{p\}$ y $U_q\cap A=\{q\}$. Los conjuntos $\{U_p\cap A,U_q\cap A\}$ son entonces abiertos en $(A,T|_A)$ disjuntos, no vacíos, y su unión es el total, lo que contradice la conexión de A. Por último, si en A hay al menos tres puntos, entonces $(A,T|_A)$ no es conexo puesto que podemos encontrar en A dos puntos $p\neq q$ tales que $q\neq\sigma(p)$. En este caso, la familia $\{U_p\cap A,U_p^c\cap A\}$ es una familia de conjuntos abiertos $(T=C_T)$ disjuntos, no vacíos, cuya unión es el total.

Para probar la otra inclusión, usamos que los conjuntos formados por un punto son conexos en cualquier espacio topológico. Queda ver que $A = \{p, \sigma(p)\}$ es conexo. Sabemos que $T|_A = \{U \cap A : U \in T\}$. Dado $U \in T$ se verifica que $U \cap A = \emptyset$ o $U \cap A = A$. Así $T|_A$ coincide con la topología trivial en A y, por tanto, $(A, T|_A)$ es conexo.

f) Demostrar que si un conjunto $A \subset \mathbb{R}^2$ es compacto en (\mathbb{R}^2, T) entonces es finito.

Sea A un subconjunto compacto de (\mathbb{R}^2, T) no vacío. Para cada $p \in A$, tomamos el abierto $U_p = \{p, \sigma(p)\}$. Como $p \in U_p$ para cada $p \in A$, entonces $A \subset \bigcup_{p \in A} U_p$. Por la compacidad de A en (\mathbb{R}^2, T) debe existir $J \subset A$ finito tal que $A \subset \bigcup_{p \in J} U_p$. Esto implica que A es finito al estar contenido en un conjunto finito.

2.– Veamos que la composición $g \circ f$ es una identificación. Claramente $g \circ f$ es continua y sobreyectiva puesto que $f \circ g$ lo son. Sean

$$\begin{split} T_f &= \{U' \subset Y \,:\, f^{-1}(U') \in T\}, \\ T_g &= \{U'' \subset Z \,:\, g^{-1}(U'') \in T'\}, \\ T_{g \circ f} &= \{U'' \subset Z \,:\, (g \circ f)^{-1}(U'') \in T\}. \end{split}$$

Por ser f,g identificaciones, sabemos que $T_f=T',T_g=T''$. Queda probar que $T_{g\circ f}=T''$. La continuidad de $g\circ f$ implica que $T''\subset T_{g\circ f}$.

Veamos que $T_{g\circ f}\subset T''$. Sea $U''\in T_{g\circ f}$, es decir, $(g\circ f)^{-1}(U'')\in T$. Esto significa que $f^{-1}(g^{-1}(U''))\in T$. Por definición de T_f y por ser f identificación deducimos que $g^{-1}(U'')\in T_f=T'$. Por la definición de T_g y por ser g identificación concluimos que $U''\in T_g=T''$.

3.- Estudiar de forma razonada las siguientes cuestiones:

a) Sean $A = \{(x, y) \in \mathbb{R}^2 : x \ge 0\}$ y $f : (A, T_u|_A) \to (\mathbb{R}, T_u)$ la aplicación f(x, y) = x. Probar que f no es abierta ni cerrada.

Tomamos $A \in T_u|_A$. Se tiene que $f(A) = [0, +\infty) \notin T_u$. Esto demuestra que f no es abierta.

Tomamos $F = \{(x, y) \in A : xy = 1\}$. Como la función $g : (A, T_u|_A) \to (\mathbb{R}, T_u)$, definida por la igualdad g(x, y) = xy, es continua y $F = g^{-1}(\{1\})$, concluimos que F es cerrado en A. Puesto que $f(F) = (0, +\infty)$, la aplicación f no es cerrada.

b) Sea (X, T) un espacio T_1 . ¿Es cierto que todo compacto en (X, T) es cerrado en (X, T)?

La afirmación es falsa. Un contraejemplo es (X, T_{CF}) con X infinito. Este espacio es T_1 ya que los conjuntos finitos son cerrados (y no es Hausdorff). Además, todo subconjunto de X es compacto en T_{CF} . En particular, todo subconjunto infinito $A \subset X$ con $A \neq X$ es compacto en (X, T_{CF}) pero no es cerrado en (X, T_{CF}) .

c) Sea $f:(X,T)\to (Y,T')$ una aplicación continua y abierta, donde (X,T) es compacto e (Y,T') es un espacio de Hausdorff conexo. Demostrar que f es sobreyectiva.

Veamos que f(X) = Y. Como f es abierta entonces $f(X) \in T'$. Como f es continua, (X, T) es compacto e (Y, T') es Hausdorff, entonces f es cerrada. Por tanto $f(X) \in C_{T'}$. Por último, como $f(X) \in T' \cap C_{T'}$, $f(X) \neq \emptyset$ e (Y, T') es conexo, se concluye que f(X) = Y.