

Electrocinétique PS Travaux dirigés 2024-2025

UE KPHXPL51 (semestre printemps)

TD°1 Lois de base en régime continu

I) Association de résistances

Calculer la résistance équivalente R_{AB} entre les points A et B des circuits ci-dessous. Les résistances sont données en Ohm (Ω) .

II) Association de dipôles actifs

Un dipôle D_1 , constitué d'un générateur de courant $I_1=2$ A en parallèle avec une résistance $R_1=4$ Ω , est connecté avec un dipôle D_2 comprenant un générateur de tension $E_2=3$ V en série avec une résistance $R_2=6$ Ω .

- 1. En respectant les conventions du schéma ci-dessus, tracer sur un même graphique les caractéristiques U = f(I) de chacun des dipôles.
- 2. Déterminer, graphiquement et par le calcul, le point de fonctionnement du circuit.
- 3. Calculer la puissance associée au dipôle D_1 et préciser si elle est fournie ou reçue.
- 4. Calculer la puissance associée au dipôle D_2 et préciser si elle est fournie ou reçue.
- 5. Indiquer le monde de fonctionnement (générateur ou récepteur de chaque dipôle).

III) Diviseur de tension et Diviseur de courant

a) Pont diviseur de tension

- 1. Donner la relation entre la tension délivrée par le générateur et les tensions U_1 et $U_2 = U_{AB}$ aux bornes des deux résistances.
- 2. Exprimer les courants I_1 et I_2 les traversant
- 3. En déduire l'expression de U_1 et U_2 en fonction de R_1 , R_2 et E_1 .
- 4. Pour $R_2 = 10 R_1$, et $E_1 = 10 V$, calculer la tension U_{AB} .

b) Pont diviseur de courant

- 1. Donner la relation entre le courant I_0 délivré par le générateur et les courants I_1 , I_2 et I_3 parcourant les trois résistances.
- 2. En utilisant la loi d'Ohm, en déduire les valeurs de ces courants en fonction de I_0 , R_1 , R_2 et R_3 ainsi que la tension U_{AB} aux bornes de chaque résistance.

IV) Théorème de Millmann

- 1. Exprimer I_1 en fonction de E_1 , U_{AB} et R_1 .
- 2. Exprimer I_2 en fonction de E_2 , U_{AB} et R_2 .
- 3. Exprimer I_3 en fonction de E_3 , U_{AB} et R_3 .
- 4. A partir de la loi des nœuds, en déduire l'expression de $U_{AB} = V_A V_B$ en fonction des paramètres du circuit.
- 5. A. N. $R_1=R_2=R_3=100~\Omega,\,E_1=10~\mathrm{V},\,E_2=5~\mathrm{V}$ et $E_3=1\mathrm{V}.$ Calculer U_{AB}

V) Pour s'entraîner

- 1. Exprimer les relations entre les différents courants en A et en B
- 2. Déterminer les courants traversant chaque dipôle en fonction de I_1 et des résistances présentes dans le circuit.
- 3. On donne $I_1=100$ mA et $R_1=R_2=R_3=R_4=R_5=10~\Omega$, déterminer la tension E_1 aux bornes du générateur.

TD°2 Principe de superposition et Théorème de Thévenin et de Norton

I) Principe de superposition

a) Sources de tension

- 1. Enoncer le principe de superposition.
- 2. Calculer la tension U_{NM} en utilisant le principe de superposition.
- 3. Vérifier le résultat en appliquant le théorème de Millemann au point N.

b) Sources de courant

En employant le principe de superposition, exprimer le courant I_3 en fonction des courants I_{S1} et I_{S2} et des résistances R_1 , R_2 et R_3 .

II) Théorème de Thévenin et de Norton

a) Application simple

- 1. Donner les générateurs équivalents de Thévenin et de Norton équivalent au circuit schématisé ci-dessus.
- 2. On donne E=15 V, $R_1=R_3=2$ k Ω et $R_2=1$ k Ω . Déterminer, à l'aide des générateurs équivalent, la tension aux bornes d'une résistance $R_c=1$ k Ω branchée entre A et B.

b) Circuits équivalents

- 1. Redessiner le schéma après avoir retiré la branche entre A et B où se trouve la résistance R_2 et le générateur de tension E_2 .
- 2. Déterminer la résistance équivalente de Thévenin R_{th} et puis la tension équivalente de Thévenin E_{th} et le courant équivalent de Norton I_n en écrivant la loi des nœuds en C et la loi des mailles.
- 3. Après avoir rebrancher la résistance R_2 et le générateur de tension E_2 entre A et B, dessiner le circuit équivalent de Thévenin et le circuit équivalent de Norton.
- 4. Déterminer le courant I_2 circulant dans cette branche.

c) Détecteur de température.

On considère le circuit suivant comprenant deux dipôles non usuels :

- La résistance notée R_T modélise un ruban de platine dont la résistance dépend de la température T (en °C) selon la loi : $R_T = R_0(1 + \alpha T)$, où $R_0 = 100 \Omega$ et $\alpha = 3.85 \times 10^{-3} \Omega/$ °C.
- Le dipôle (non-linéaire) formé par R_d et la LED D peut être modélisé par une résistance R_c idéale qui dépend dans la tension U_{AB} à ses bornes comme : $R_c = \infty \underset{D}{\text{si}} U_{AB} \le U_0 = 2V$.

$$R_c = \infty \text{ si } U_{AB} \le U_0 = 2V.$$

$$R_c = \frac{R_d}{1 - \frac{U_0}{U_{AB}}} \text{ si } U_{AB} > U_0.$$

- 1. Dans un premier temps, on retire le dipôle non linéaire $\{R_d + D\}$. Déterminer la tension E_{th} et la résistance R_{th} du générateur de Thévenin équivalent au circuit vu depuis les points A et B.
- 2. On branche à présent le dipôle $\{R_d + D\}$. En supposant que $U_{AB} > U_0$, donner l'expression de U_{AB} en fonction de E_{th} , R_{th} et R_d .
- 3. On prendra $R = 70 \Omega$, $R_d = 50 \Omega$ et $E_1 = 15 \text{ V}$. Montrer qu'à T = 60 °C, la LED brille $(I_D > 0)$ alors qu'à T = 50 °C la LED est éteinte $(I_D = 0)$. En déduire le rôle de ce montage.

III) Pour s'entraîner

- 1. Redessiner le schéma après avoir retiré la branche entre A et B où se trouve a résistance R_3 . Déterminer le courant circulant dans la branche CD.
- 2. Déterminer la résistance équivalente de Thévenin R_{th} puis la tension équivalent de Thévenin E_{th} .
- 3. Après avoir rebranché la résistance R_3 entre A et B, déterminer le courant I_3 qui la traverse.

TD°3 Réponse temporelle de circuits linéaires

I) Circuit RL

- a) Donner l'équation différentielle régissant le courant du circuit.
- b) Déterminer l'évolution temporelle du courant et de la tension aux bornes de la bobine pour les cas suivants :
 - 1. Le générateur applique un échelon de tension e(t) entre 0 V et E_0 . Condition initiale i(t=0)=0.
 - 2. Le générateur applique un échelon de tension e(t) entre E_0 et 0 V . Condition initiale $i(t=0)=\frac{E_0}{R}$.
 - 3. Le générateur applique une rampe de tension de la forme $e(t) = \alpha t$. Condition intiale i(t = 0) = 0.

II) Régimes permanents

1) Déterminer l'intensité du courant circulant dans la bobine lorsque le régime permanent est atteint pour les deux circuits suivants :

2) Déterminer la tension aux bornes du condensateur lorsque le régime permanent est atteint pour les deux circuits suivants :

III) Pour aller plus loin

On considère le circuit suivant. L'interrupteur K est ouvert depuis très longtemps, ce qui implique que tous les courants sont nuls et que la tension $u(0^-) = E$. A l'instant t = 0, on ferme cet interrupteur.

- 1) En utilisant la propriété de continuité de la tension aux bornes d'un condensateur, donner les valeurs de $u(0^+)$, $i(0^+)$, $i_1(0^+)$ et $i_2(0^+)$ juste après la fermeture de l'interrupteur.
- 2) Donner les valeurs de ces courants et de la tension u en régime établi quand $t \to \infty$.
- 3) Etablir l'équation différentielle vérifiée par u(t) et donner sa solution.
- 4) Tracer l'allure de u(t).

TD°4 Excitation sinusoïdale et circuit du 2nd ordre.

I) Retour sur le circuit RL

- a) Rappeler l'équation différentielle régissant le courant du circuit et donner la forme de sa solution homogène.
- b) Le générateur applique une tension sinusoïdale de la forme $e(t) = E \cos(\omega t)$. Le courant dans le circuit est initialement nul i(t = 0) = 0.
 - 1. Déterminer la solution particulière.
 - 2. Retrouver ce résultat en utilisant la notation complexe pour la tension $\underline{e} = E e^{j\omega t}$ et pour le courant $\underline{i}^p = I e^{j(\omega t + \varphi)}$.
 - 3. En déduire l'expression de i(t).

II) Circuit RL parallèle

On considère le circuit RL parallèle aux bornes duquel on applique une tension sinusoïdale $e(t) = E_0 \cos(\omega t)$.

- a) Ecrire les équations générales reliant la tension e(t) aux différents courants.
- b) Donner les expressions des courants i_R et i_L . On prendra $i_L(0) = 0$. En déduire l'expression du courant délivré par le générateur.
- c) En utilisant la notation complexe, retrouver l'expression de l'amplitude et du déphasage du courant.

III) Circuit RLC

On étudie la réponse temporelle de ce circuit à un échelon de tension. La tension vaut e(t) = 0 pour tout t < 0 et passe instantanément à $e(t) = E_0$ pour tout $t \ge 0$. On prendra C = 100 nF et L = 100 mH.

- 1) Exprimer la tension s(t) et les courants $i_{\mathcal{C}}(t)$ et $i_{\mathcal{R}}(t)$ en fonction de la charge q(t) accumulée par le condensateur.
- 2) En déduire l'expression de i(t) en fonction de q(t) et de ses dérivées.
- 3) En déduire que l'équation différentielle vérifiée par q(t) est de la forme :

$$\frac{e}{L} = \ddot{q} + \omega_0 \left(Q + \frac{1}{Q} \right) \dot{q} + 2\omega_0^2 q.$$

- 4) Donner l'expression générale de la solution homogène de cette équation différentielle si R=1 k Ω . Que devient-elle si R=100 Ω ?
- 5) Donner la solution particulière de cette équation différentielle pour $t \ge 0$. En déduire la forme de la solution générale (sans chercher à trouver les constantes d'intégration). Tracer l'allure de la tension dans chacun des cas.

TD°5 Régime permanent sinusoïdal

Impédance équivalente d'une bobine réelle I)

Une bobiné réelle peut être modélisée par le circuit ci-dessus où R représente la résistance due aux pertes cuivre et aux pertes fer de l'enroulement, L est l'inductance de cet enroulement et C est la capacité parasite inter-spire (souvent négligeable).

- 1) Déterminer l'impédance complexe équivalente $\underline{Z_{AB}}$. 2) Calculer les limites $\lim_{\omega \to 0} \left(\underline{Z_{AB}}\right)$, $\lim_{\omega \to \infty} \left(\underline{Z_{AB}}\right)$ et $\lim_{\omega \to (LC)^{-\frac{1}{2}}} \left(\underline{Z_{AB}}\right)$ sachant que $\frac{1}{R}\sqrt{\frac{L}{C}} \gg 1$. Déduire pour chaque cas le dipôle élémentaire correspondant.
- 3) Donner l'expression du déphasage entre le courant traversant le dipôle et la tension U_{AB} à ses bornes ainsi que l'expression de l'amplitude du courant en fonction de celle de la tension aux bornes de la bobine réelle.

Moteur à courant alternatif monophasé II)

D'un point de vue électrique, le moteur est représenté par une bobine d'inductance L = 239 mH modélisant l'enrouement du circuit magnétique du moteur. Il faut qu'elle soit parcourue par un courant d'amplitude au moins $I_0 = 100$ mA pour que le moteur tourne. On branche ce moteur sur un générateur représenté par son modèle de Thévenin (e(t) = $E_0 \cos \omega t$, $E_0 = 12 \text{ V}$, $\omega = 2\pi \times 50 \text{ Hz}$ et $R = 600 \Omega$). On s'intéressera uniquement au régime établi.

1) Dans un premier temps, on néglige la résistance série de l'enroulement.

- a) Pourquoi ce circuit ne convient-il pas?
- b) Quelle amplitude de courant maximale peut délivrer le générateur ?
- c) Montrer qu'il est possible de le rendre fonctionnel avec un simple condensateur branché en parallèle de L dont on calculera la plage de capacité permettant d'obtenir un courant d'amplitude supérieur à I_0 dans l'enroulement en régime établi.
- d) Quel courant maximum peut-on obtenir ? Pour quelle valeur de capacité ?

2) On considère à présent la résistance r=1 Ω de l'enroulement

- a) Dessiner le nouveau circuit.
- b) Exprimer l'impédance de la charge rLC.
- c) Exprimer cette impédance pour $\omega = \omega_C = \frac{1}{\sqrt{LC}}$ et faire l'application numérique avec la valeur de la capacité trouvée précédemment ($C = 42.4 \mu F$).
- d) Donner la valeur de l'amplitude (en régime établi) de la tension aux bornes du moteur (c'est-à-dire du dipôle rL) pour $\omega = \omega_C$.
- e) En déduire l'amplitude (en régime établi) du courant parcourant le moteur pour $\omega = \omega_C$.
- f) La figure ci-dessous présente l'évolution temporelle de la tension aux bornes du moteur ainsi que du courant le traversant pour $C=42.4\,\mu\text{F}$. Identifier lequel des graphiques correspond à la tension et lequel correspond au courant. Identifier également le régime transitoire et le régime permanent. Le déphasage entre les deux signaux correspond-il à celui donné par les calculs ?

III) Amélioration du facteur de puissance d'un moteur

Un moteur alternatif alimenté par le réseau EDF (f = 50 Hz, $U_{eff} = 230$ V) consomme une puissance moyenne (ou active) de P = 4.4 kW. Son facteur de puissance est de 0.6.

- 1) Calculer la résistance R et l'inductance L du moteur (on supposera que le moteur est équivalent à une bobine idéale en série avec une résistance idéale).
- 2) Calculer la valeur de la capacité du condensateur à brancher en parallèle au moteur pour relever son facteur de puissance à 0.9.
- 3) Quelle est la valeur du courant efficace dans ce cas ?
- 4) Evaluer le rapport entre les pertes par effet Joule dans la ligne d'acheminement du courant dans les deux cas. Quel est l'intérêt pour le fournisseur d'électricité ?

TD°6 Filtrage

I) Filtre passe-bas du premier ordre

- 1) Montrer que la fonction de transfert $H(j\omega) = \frac{s(j\omega)}{e(j\omega)}$ de ce filtre peut s'écrire sous la forme $H(j\omega) = \frac{1}{1+j\frac{\omega}{\omega_c}}$.
- 2) Donner l'expression du gain $G = |H(j\omega)|$, du gain en décibel $G_{dB} = 20 \log(|H(j\omega)|)$ et du déphasage $\phi(j\omega)$ appliqué par ce filtre.
- 3) Etudier le comportement asymptotique de ce filtre.
- 4) Calculer la fréquence de coupure à -3 dB.
- 5) Tracer les diagrammes de Bode.

II) Filtre passe-haut du premier ordre

- 1) Montrer que la fonction de transfert $H(j\omega) = \frac{s(j\omega)}{e(j\omega)}$ de ce filtre peut s'écrire sous la forme $H(j\omega) = \frac{1}{1-j\frac{\omega c}{\omega}}$.
- 2) Donner l'expression du gain $G = |H(j\omega)|$, du gain en décibel $G_{dB} = 20 \log(|H(j\omega)|)$ et du déphasage $\phi(j\omega)$ appliqué par ce filtre.
- 3) Etudier le comportement asymptotique de ce filtre.
- 4) Calculer la fréquence de coupure à -3 dB.
- 5) Tracer les diagrammes de Bode.

III) Filtre passe-bande

- 1) Montrer que la fonction de transfert $H(j\omega) = \frac{s(j\omega)}{e(j\omega)}$ de ce filtre peut s'écrire sous la forme $H(j\omega) = \frac{1}{1+jQ\left(\frac{\omega}{\omega_0} \frac{\omega_0}{\omega}\right)}$.
- 2) Donner l'expression du gain $G = |H(j\omega)|$, du gain en décibel $G_{dB} = 20 \log(|H(j\omega)|)$ et du déphasage $\phi(j\omega)$ appliqué par ce filtre.
- 3) Etudier le comportement asymptotique de ce filtre.
- 4) Calculer la bande passante à -3 dB.
- 5) Tracer les diagrammes de Bode.

IV) Filtre passe-bas du second ordre

- 1) Montrer que la fonction de transfert $H(j\omega) = \frac{s(j\omega)}{e(j\omega)}$ de ce filtre peut s'écrire sous la forme $H(j\omega) = \frac{1}{\left(2 \frac{\omega^2}{\omega_0^2}\right) + j\frac{\omega}{\omega_0}\left(Q + \frac{1}{Q}\right)}$.
- 2) Donner l'expression du gain $G = |H(j\omega)|$, du gain en décibel $G_{dB} = 20 \log(|H(j\omega)|)$ et du déphasage $\phi(j\omega)$ appliqué par ce filtre.
- 3) Etudier le comportement asymptotique de ce filtre.
- 4) Dans le cas où Q = 1, que vaut la fréquence coupure à -3dB de ce filtre ?
- 5) Tracer les diagrammes de Bode pour Q = 1.

V) Diagrammes de Bode

Considérons le filtre caractérisé par les diagrammes de Bode suivant.

- 1) Déterminer la fonction du filtre et la fonction de transfert associée.
- 2) Déterminer sa bande passante $\Delta \omega$ et sa pulsation centrale ω_0 .
- 3) En déduire son facteur de qualité $Q = \frac{\omega_0}{\Delta \omega}$. 4) Considérons une tension d'entrée de la forme : $e(t) = E_1 \cos(\omega_1 t + \phi_1) + E_2 \cos(\omega_2 t + \phi_2) + E_3 \cos(\omega_3 t + \phi_3)$ avec les valeurs numériques suivantes :

$\omega_1 = 1.25 \times 10^3 \text{ rad.s}^{-1}$	$E_1 = 1 \text{ V}$	$\phi_1 = 1.3$
$\omega_2 = 1.0 \times 10^4 \text{ rad.s}^{-1}$	$E_2 = 0.5 \text{ V}$	$\phi_2 = -0.6$
$\omega_3 = 4.4 \times 10^4 \text{ rad.s}^{-1}$	$E_3 = 3 \text{ V}$	$\phi_3 = 0.8$

Déterminer l'expression temporelle de la tension de sortie correspondante.

