Putnam 2022 Problem A3:

Let p > 5 be a prime number. Let f(p) denote the number of infinite sequences $\{a_n\}_{n=1}^{\infty}$ such that $a_n \in \{1, 2, \dots, p-1\}$ and $a_n a_{n+2} \equiv 1 + a_{n+1} \pmod{p}$ for all $n \geq 1$. Show that $f(p) \equiv 0$ or $2 \pmod{5}$.

Proof. For a_n and $1 + a_{n+1}$ in \mathbf{F}_p^* , we know that the a_{n+2} is uniquely determined. Also note that if $1 + a_{n+1} = 0$, i.e., $a_{n+1} = p - 1$, then $p \mid a_n a_{n+2}$, so that the sequence must terminate. Therefore, the number of such infinite sequences is the number of pairs (a_1, a_2) such that p - 1 can never appear in the sequence.

Now suppose p-1 appears in the sequence, and let $a_{n+2}=p-1$. It follows that $a_{n+1}\equiv -1-a_n\pmod p$. We move the index forward by 1, and then we have $a_{n-1}a_{n+1}\equiv 1+a_n\pmod p$. This shows that $a_{n-1}(-1-a_n)\equiv 1+a_n\pmod p$, which shows that $a_{n-1}=p-1$, which contradicts our assumption. Therefore, p-1 must appear in either a_1, a_2, a_3 , if it can ever appear.

First consider a_1 , which has p-2 options (excluding $a_1=p-1$). For a_2 , first $a_2 \neq p-1$. Second, for every $a_1 \in \{1, 2, \dots, p-2\}$, if $a_3 \equiv -1$, then $a_2 \equiv -1 - a_1$ for the corresponding a_1 . Thus we cannot let $a_2 = p-1-a_1$. Meanwhile, $a_2 \neq p-1$ either, and so only (p-2)(p-3) pairs of (a_1, a_2) are valid.

Now it suffices to check for all $p \not\equiv 0 \pmod{5}$, $(p-2)(p-3) \equiv 0$ or $2 \pmod{5}$, which is indeed true. \square