Московский физико-технический институт Факультет инноваций и высоких технологий Математическая логика и теория алгоритмов, весна 2015 Арифметическая иерархия

Множество $A \subset \mathbb{N}$ принадлежит классу Σ_k , если существует разрешимое множество $R \subset \mathbb{N}^{k+1}$, такое что $x \in A$ тогда и только тогда, когда

$$\exists y_1 \forall y_2 \dots \mathbf{Q} y_k \ (x, y_1, y_2, \dots, y_k) \in R,$$

где $\mathbf{Q} = \forall$ при чётном k и $\mathbf{Q} = \exists$ при нечётном k.

Аналогично множество $B \subset \mathbb{N}$ принадлежит классу Π_k , если существует разрешимое множество $R \subset \mathbb{N}^{k+1}$, такое что $x \in B$ тогда и только тогда, когда

$$\forall y_1 \exists y_2 \dots \mathbf{Q} y_k \ (x, y_1, y_2, \dots, y_k) \in R,$$

где $\mathbf{Q} = \exists$ при чётном k и $\mathbf{Q} = \forall$ при нечётном k.

- **1.** Докажите, что $A \in \Sigma_k$ тогда и только тогда, когда $\overline{A} \in \Pi_k$.
- **2.** Докажите, что $\Sigma_k \subset \Sigma_{k+1}$, $\Sigma_k \subset \Pi_{k+1}$, $\Pi_k \subset \Sigma_{k+1}$, $\Pi_k \subset \Pi_{k+1}$.
- **3.** Докажите, что классы Σ_k и Π_k не изменятся, если в определении разрешить замену одного квантора на несколько одноимённых ему.
 - **4.** Пусть $A \in \Sigma_k$ и $B \in \Sigma_k$. Докажите, что $A \cup B$ и $A \cap B$ лежат в Σ_k .
 - **5.** Пусть $A \in \Pi_k$ и $B \in \Pi_k$. Докажите, что $A \cup B$ и $A \cap B$ лежат в Π_k .
 - **6.** Пусть $A \in \Sigma_k$ и $B \in \Pi_k$. Докажите, что $A \cup B$ и $A \cap B$ лежат в $\Sigma_{k+1} \cap \Pi_{k+1}$.
- 7. Пусть $A \in \Sigma_k$. Докажите, что $A \times A \in \Sigma_k$ (тут используется вычислимое кодирование пар).
- **8.** Укажите, каким классам арифметической иерархии принадлежат следующие множества. Докажите, что ни они сами, ни их дополнения не перечислимы.
 - а) Множество программ, определённых в бесконечном количестве точек
 - б) Множество программ, множество значений которых бесконечно;
 - в) Множество программ, которые останавливаются на всех числах из некоторой арифметической прогрессии;
 - г) Множество программ, в области определения которых ни одно число не делится на другое;
 - д) Множество программ, которые на всех достаточно больших n останавливаются не более, чем за n^2 шагов;
 - е) Множество программ, которые определены и принимают одно и то же значение для всех достаточно больших n;
 - ж) Множество программ, которые вычисляют некоторую биекцию.

Множество X называется m-полным в классе \mathcal{C} , если $X \in \mathcal{C}$ и для всех $Y \in \mathcal{C}$ выполнено $Y \leqslant_m X$.

- **9.** Докажите, что если X является m-полным в $\mathcal{C}, Z \in \mathcal{C}$ и $X \leqslant_m Z$, то Z является m-полным в \mathcal{C} .
 - **10.** Опишите все m-полные множества в классе разрешимых множеств.
 - **11.** Докажите, что если X является m-полным в Σ_k , то \overline{X} является m-полным в Π_k .
 - **12.** Докажите m-полноту следующих множеств в классе перечислимых множеств:
 - а) Множество пар (p, x), таких что программа p останавливается на входе x;
 - б) Множество самоприменимых программ;
 - в) Множество программ, которые останавливаются в нуле;
 - г) Множество программ, принимающих различные значения на своей области определения.
 - **13.** Докажите m-полноту множества всюду определённых программ в классе Π_2 .
- 14. Докажите, что существует перечислимое неразрешимое множество, не являющееся m-полным в классе перечислимых. (Указание: постройте его таким образом, чтобы как любая программа, пытающаяся разрешить его, так и любая программа, пытающаяся свести в нему некоторое перечислимое множество K, ошибались).