

高分辨率革命助力中国气候 研究

图片来源: Vitor Dutra Kaosnoff Pixabay

Explainer

气候科学支持服务伙伴关系(CSSP)计划中国项目面 向决策者提供简单易用的研究。07

焦点

由于缺乏长期的高分辨率数据集,我们对中国复杂多变气候的了解不多。英国气象局最近开发的高分辨率 (25千米)数据集可以更好地反映中国气候的逐年变化,并证实了自1850年以来温度呈持续升高趋势。这与全 球气候的变化趋势是一致的。

重要性

中国是一个幅员辽阔的国家,与欧洲面积相近。由于 复杂的地形,中国遭受各种气候和极端天气(例如热 浪、洪水)的影响,并且呈现出大范围的变暖趋势 (Zhou 等, 2016年)。

若要了解气候多变性和极端天气变化的全部信息,连 续、均质且公正的长期观测记录至关重要。但是在 20世纪50年代以前,中国许多地区的地表气候记录很 少,特别是喜马拉雅山脉和青藏高原等西部地区。即 使卫星可以提供覆盖范围越来越广的精细数据集,但 也只能追溯到1979年以后。

长期高质量数据集的缺乏始终限制我们对中国气候的 重要驱动因素和变化趋势的了解。虽然全球气候模型 可以延长现有数据集的周期,但由于全球数据集的空 间分辨率较低,我们仍较难重现中国极端降水等方面。 为了更好地反映中国的区域气候,同时与全球气候保 持一致,我们亟需一个包含全球气候特征和局部地形 详情的具有更高分辨率的数据集。

Amato 等人(2019年)尝试通过缩小中国在全球数据 集(20Crv2c)内的水平空间分辨率来解决低分辨率带 来的一些局限性。该全球数据集以200千米和6小时的 时空分辨率来提供风、温度和湿度数据。

通过利用英国气象局开发的高分辨率气候模型, 我们 扩大了大范围气候过程对区域尺度(25千米)的影响, 还生成了1851年至2010年中国历史气候数据集(20CR- DS)。它的空间分辨率更高,并按照每日/每月的时间 尺度提供可用结果。以外我们还评估了缩小尺度数据集 的优势和局限性。尽管缩小尺度数据集可能导致温暖潮 湿与季节性潮湿出现偏差,但是它的偏差很小。此外这 一举措很大的优势是能真实地反映空间和时间趋势。它 可以反映中国的年气候循环(温度和降水),特别是青 藏高原等观测数据稀少的地区。另外, 该数据集还可以 更好地反映1901年以来观测温度的年际变化和趋势,并 证实了自19世纪50年代以来温度呈显著持续升高的趋势。

后续措施

高分辨率长期气候数据(20CR-DS)是19世纪下半叶 和整个20世纪中国首个缩小尺度的再分析数据集。这 项工作是深入了解中国发生热浪、干旱和降水等影响 较大事件的模式和驱动因素所必经的第一步。该数据 集具有难能可贵的高分辨率,并免费提供月平均数据 下的标准(NetCDF)格式数据(Sadri 等,2019 年),其有望在未来的科学分析、影响研究和气候服 务开发中广泛使用。英国气象局还在.Jupyter Notebooks中,用计算效率更高的(Zarr)格式,为 20CR-DS提供了一套基于Python的教程。它旨在促进 其在研究社区的应用。同时,我们对更高频率数据集 (每天、3小时和每小时)的检查也在进行中。最近, 我们正在开发用于中国的空气质量控制的20CR-DS的 气候服务原型。它的高分辨率优势有望帮助研究者对 雾霾天气指数的区域进行预测。

Amato et al., 2019 DOI:10.1175/JAMC-D-19-0083.1 Sadri et al., 2019 DOI:10.5281/ZENOD0.2558135 Zhou et al., 2016 DOI:10.1002/joc.4400

www.viewpoint-cssp.org

