Lecture 3: Limits

Math 153 Section 57

Friday October 3, 2008

We will be following chapter 11.3.

Here, we introduce limits, the **most important idea in calculus**, and that which distinguishes calculus from mere algebra.

1 Review of where we've been

Defined "bounded" for sets and sequences.

Defined "monotone" for sequences.

1.1 Some loose ends: recursively defined sequences

One person asked: is a sequence just a function? Yes! You've probably already studied functions $\mathbb{R} \to \mathbb{R}$, and a sequence is a function $\mathbb{N} \to \mathbb{R}$.

A sequence (or a function) is not necessarily given by a formula: A weirder example: p_n is the n-th digit of π . x_n is the number of digits in the decimal representation of n.

Another way to define sequences: define future terms by using past terms.

Example: $a_1 = 2$. $a_{n+1} = 2 \cdot a_n$. Increasing? This is just $a_n = 2^n$.

Example: $a_1 = 16$. $a_{n+1} = 16 - a_n$. Increasing? This alternates between 0 and 16.

Example: $a_1 = 1$, $a_2 = 1$. $a_{n+2} = a_{n+1} + a_n$. Increasing?

2 Limits

Formal definition: $\lim_{n\to\infty} a_n = L$ means for every $\epsilon > 0$, there exists K such that $n \geq K$ implies $|a_n - L| < \epsilon$.

Intuitive definition: $\lim_{n\to\infty} a_n = L$ means that as close as you want a_n to get to L, you can go far enough out in the sequence and stay that close.

If a_n has a limit, then it is a **convergent** sequence, and we say it **converges**. If not, the sequence **diverges** (or **is divergent**).

2.1 Challenge-response

Think of the definition of limit as a challenge response game: the challenger gives you an ϵ , and you must produce the K.

To prove that something converges to L, you must be find a K for every ϵ .

To prove that something doesn't converge at all? You have to show that no matter what L you pick, there is some ϵ for which you can't find a suitable K. That sounds difficult.

2.2 Example

Useful fact: for any $b \in \mathbb{R}$, there is an $n \in \mathbb{N}$ with n > b.

Useful fact: for any $b \in \mathbb{R}$ with b > 0, there is an $n \in \mathbb{N}$ with 1/n < b.

If $\lim_{n\to\infty} (2n+1)/n = 2$. Why? Set L=2. We need to find K so that for all n > K, we get $|2+1/n-2| < \epsilon$.

If $a_n = 0.9999 \cdots 9$, i.e., the *n*-term has *n* nines, then $a_n = 1 - 10^{-n}$, and $\lim_{n \to \infty} a_n = 1$. To be precise? Set L = 1. Then need K so that for all n > K, we get $|1 - 10^{-n} - 1| < \epsilon$. That is, we need $10^{-n} < \epsilon$, so we take $\log_{10} 10^{-n} < \log_{10} \epsilon$, so we take $n > -\log_{10} \epsilon$.

2.3 Theorems

Limits are unique: if $\lim_{n\to\infty} a_n = L$ and also $\lim_{n\to\infty} a_n = M$, then L = M.

Limits only depend on their tails: if $\lim_{n\to\infty} a_n = L$ and $m \in \mathbb{N}$, then $\lim_{n\to\infty} a_{n+m} = L$. Convergent sequences are bounded.

Unbounded sequences are divergent (awesome—a situation where we can show that no matter what L we pick, there is an ϵ for which we can't find a K).

3 Survey with closed eyes

One week is over: are we going too fast, too slowly, just right?