Transformers and BERT

<u>Disclaimer</u>: Work in progress. Portions of these written materials are incomplete.

Outline

BERT

History of Language Representations Self-Attention & Transformers 15 minutes

15 minutes

15 minutes

Natural Language Processing (NLP)

- NLP enables computers to process natural language
 - o e.g. sentiment analysis, question answering, summarization, etc.
- Example: question answering

Q: The traveling salesman problem is an example of what type of problem?

P: A function problem is a computational problem ...

Notable examples include the traveling salesman problem and the integer factorization problem.

How should we encode text in ML models?

A reasonable start is a discrete representation via one-hot vectors

Token	Index	One-hot vector
aardvark	0	[<mark>1</mark> , 0, 0,]
• • •		
king	123	[0,, 0, <mark>1</mark> , 0,]
queen	124	[0,, 0, 0, <mark>1</mark> ,]

Distances between any two words...

- o are always the same!
- however, "queen" should be closer to "king" than "aardvark"

Continuous Representations of Words

Word embeddings = continuous representations **pre-trained** on an **unlabeled** corpus on **co-occurrence statistics**

Token	Index	Word Embedding
aardvark	0	[0.1, 1.9, -0.4,]
• • •		
king	123	[-0.5, -0.9, 1.4,]
queen	124	[-0.6, -0.8, -0.2,]

Contextual Representation of Words

• **Problem**: word embeddings are context-independent

Ideally, representations should be contextual

Contextual Encoders for Natural Language

- Contextual encoders go beyond a simple dictionary lookup of word embeddings
- They are pre-trained on an unlabeled corpus of general-domain text, usually with a language model objective

The Recurrent Neural Network (RNN) Encoder

The RNN Encoder: Unfolding in Time

The RNN Encoder: Unfolding in Time

The RNN Encoder: Unfolding in Time

The final hidden state can be used as a sentence embedding

The Bidirectional RNN Encoder

The sentence embedding is the concatenation of the two final hidden states: [H^f₆; H^b₆]

Disadvantages of RNN Encoders

- 1. **Slow**: O(N) in the number of tokens N
- 2. **Vanishing Gradient** => cannot process very long sequences
- 3. Pseudo-Bidirectional
- 4. etc.

Outline

History of Language Representations

Self-Attention & Transformers

BERT

Colab Notebook

15 minutes

15 minutes

15 minutes

30 minutes

Self-Attention

Self-Attention

This is quite expensive: O(N²) connections **But** we can compute all Y's in parallel

The Transformer Encoder

The transformer encoder is a stack of self-attention layers.

The Transformer Encoder

The sentence embedding is the embedding of the [start] token.

Computing Keys and Queries

query tokens

key token

query tokens

The Transformer Encoder

The Transformer Encoder

Disclaimer: for simplicity, the presentation of the transformer encoder in these slides omits certain details:

- Self-attention is multi-headed
- Multi-headed self-attention is followed by a feed-forward network
- Residual/skip connections
- Layer normalization
- Dropout

Disadvantages of Transformer Encoders

- 1. Computationally intense: $O(N^2L)$
- 2. Input must have a **fixed number of tokens**
 - Because the number of <u>position embeddings</u> needs to be finite
 - All inputs are truncated or padded to e.g. 512 tokens

Outline

History of Language Representations

Self-Attention & Transformers

BERT

15 minutes

15 minutes

15 minutes

BERT: Bidirectional Encoder Representations from Transformers

BERT is a contextual encoder:

- 1. built with **Transformer** layers
- 2. operating on WordPieces
- 3. trained with two **training objectives**:
 - a. Next Sentence Prediction
 - b. Masked Language Model

Whole-Word Tokens vs WordPieces

Oh, supercalifragilisticexpialidocious Is something quite atrocious

Whole-Word Tokens

Oh|,|supercalifragilisticexpialidocious |Is|something|quite|atrocious

WordPieces

Oh|,|super|##cal|##if|##rag|##ilis|##tic|##e x|##pia|##lid|##oc|##ious|is|something|qui te|at|##ro|##cious

Advantages of WordPieces:

- fewer OOVs
- might enable reuse across languages in multilingual models

How do we feed two sentences to the model?

• Use two special tokens [CLS] (i.e. [start]) and [SEP] (i.e. separator)

```
[CLS] ][Example]

(WordPiece tokenization)

[CLS] Example]
```

But now we need to encode the *segments* (i.e. tell the model what token belongs to which sentence)!

Input Representation Details

Each token representation is the sum of three embeddings:

Masked Language Model Training Objective

Training Objective: Mask 15% of the input tokens and train the model to predict them.

Using Contextual Representations

Fine-Tuning

Fine-Tuning BERT for Classification

- 1. Download **labeled** data & tokenize it.
- 2. Process it into BERT-compatible inputs:
 - a. token_ids
 - b. segment_ids
 - c. input_mask
- Download pre-trained BERT (graph + weights)
- 4. Define your ML Model on top
 - a. input = embedding of [CLS] from BERT
- Train on the labeled data from 2.

Where can I find BERT?

- The original paper open-sourced two BERT sizes, available on Github and TF-Hub:
 - o BERT-Base (12 layers, embedding size 768)
 - BERT-Large (24 layers, embedding size 1024)
- BERT comes in multiple flavors:
 - uncased vs cased
 - English vs multilingual
 - (more recently: wordpiece-masking vs whole-word masking)

Smaller BERT Models

https://arxiv.org/pdf/1908.08962.pdf

In additional to the two original bert sizes (BERT-Base and BERT-Large), there are now 24 more sizes