

www.vishay.com

Vishay Siliconix

Automotive P-Channel 40 V (D-S) 175 °C MOSFET

DESCRIPTION

The attached SPICE model describes the typical electrical characteristics of the p-channel vertical DMOS. The sub-circuit model is extracted and optimized over the -55 °C to +125 °C temperature ranges under the pulsed 0 V to 10 V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

CHARACTERISTICS

- P-channel vertical DMOS
- Macro model (subcircuit model)
- Level 3 MOS
- · Apply for both linear and switching application
- Accurate over the -55 °C to +125 °C temperature range
- · Model the gate charge

SUBCIRCUIT MODEL SCHEMATIC

Note

• This document is intended as a SPICE modeling guideline and does not constitute a commercial product datasheet. Designers should refer to the appropriate datasheet of the same number for guaranteed specification limits

www.vishay.com

Vishay Siliconix

SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)					
PARAMETER	SYMBOL	TEST CONDITIONS	SIMULATED DATA	MEASURED DATA	UNIT
Static					
Gate threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	2	-	V
Drain-source on-state resistance ^a	R _{DS(on)}	$V_{GS} = -10 \text{ V}, I_D = -30 \text{ A}$	0.0042	0.0042	Ω
		$V_{GS} = -4.5 \text{ V}, I_D = -25 \text{ A}$	0.0059	0.0059	
Forward transconductance ^a	9 _{fs}	V _{DS} = -30 V, I _D = -15 A	76	103	S
Diode forward voltage	V _{SD}	I _S = -30 A	-0.83	-0.84	V
Dynamic ^b					
Input capacitance	C _{iss}	V _{DS} = -25 V, V _{GS} = 0 V, f = 1 MHz	12 100	11 063	pF
Output capacitance	Coss		826	847	
Reverse transfer capacitance	C _{rss}		819	757	
Total gate charge	Q_g	V _{DS} = -20 V, V _{GS} = -10 V, I _D = -50 A	180	185	nC
Gate-source charge	Q_{gs}		36	25	
Gate-drain charge	Q_{gd}		36	30	

Notes

- a. Pulse test; pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%$
- b. Guaranteed by design, not subject to production testing

www.vishay.com

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA ($T_J = 25$ °C, unless otherwise noted)

Note

 Dots and squares represent measured data Copyright: Vishay Intertechnology, Inc.