SVD

SVD ∨

Suppose A is an $m \times n$ matrix with singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$ and $m \geq n$. Then A has the decomposition $A = U\Sigma V^T$ where,

$$\Sigma = egin{bmatrix} D \ 0_{m-n,n} \end{bmatrix} \qquad D = egin{bmatrix} \sigma_1 & 0 & \dots & 0 \ 0 & \sigma_2 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & \sigma_n \end{bmatrix}$$

U is a $m \times m$ orthogonal matrix, and V is a $n \times n$ orthogonal matrix. If m < n then $\Sigma = \begin{bmatrix} D & 0_{m,n-m} \end{bmatrix}^T$ with everything else being the same.

Our proof is similar to the proof for diagonalization. We construct $V=(\vec{v}_1\ \vec{v}_2\ \dots \vec{v}_n)$ and set

$$\sigma_i \vec{u}_i = A \vec{v}_i, \quad \sigma_i = ||A \vec{v}_i||$$

Thus:
$$AV = A(\vec{v}_1 \ \vec{v}_2 \ \dots \ \vec{v}_n) = (A\vec{v}_1 \ A\vec{v}_2 \ \dots A\vec{v}_n)$$

$$= (\sigma_1 \vec{u}_1 \ \sigma_2 \vec{u}_2 \ \dots \ \sigma_n \vec{u}_n)$$

$$= (\vec{u}_1 \ \vec{u}_2 \ \dots \ \vec{u}_n) \begin{pmatrix} \sigma_1 \\ & \ddots \\ & & \sigma_n \end{pmatrix} = U\Sigma$$

Thus, $AV = U\Sigma$, or $A = U\Sigma V^T$.

② Geometric Interpretation >

Computing

Suppose A is $m \times n$ and has rank r.

- 1. Compute the squared singular values of A^TA, σ_i^2 , and construct Σ .
- 2. Compute the unit <u>singular vectors</u> of A^TA , \vec{v}_i , use them to form V.
- 3. Compute an orthonormal basis for $\mathrm{Col} A$ using,

$$ec{u_i} = rac{1}{\sigma_i} A ec{v_i}, \qquad i = 1, 2, \dots, r$$

If necessary, extend the set $\{\vec{u}_i\}$ to form an orthonormal basis for \mathbb{R}^m and use the basis to form U.

Example

Find the SVD of
$$A=\begin{bmatrix}2&0\\0&-3\\0&0\\0&0\end{bmatrix}$$
.
$$A^TA=\begin{bmatrix}4&0\\0&9\end{bmatrix}, \lambda_1=9, \lambda_2=4, \sigma_1=3, \sigma_2=2$$
 So,

$$\Sigma = egin{bmatrix} 3 & 0 \ 0 & 2 \ 0 & 0 \ 0 & 0 \end{bmatrix}$$

Now find the right-singular vectors (i.e. eigenvectors of A^TA) for V,

$$ec{v_1} = egin{bmatrix} 0 \ 1 \end{bmatrix} \qquad ec{v_2} = egin{bmatrix} 1 \ 0 \end{bmatrix}$$

Hence,

$$V = egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$$

Finally find U using the left-singular vectors (i.e. orthonormal basis for $\mathrm{Col}A$). This can be found by using $\frac{1}{\sigma_i}A\vec{v_i}$.

$$ec{u_1} = egin{bmatrix} 0 \ -1 \ 0 \ 0 \end{bmatrix} \ ec{u_2} = egin{bmatrix} 1 \ 0 \ 0 \ 0 \ 0 \end{bmatrix} \ ec{u_3} = egin{bmatrix} 0 \ 0 \ 1 \ 0 \end{bmatrix} \ ec{u_4} = egin{bmatrix} 0 \ 0 \ 0 \ 1 \ 0 \end{bmatrix}$$

You may note that $\vec{u_3}, \vec{u_4}$ are arbitrary, and this is true. They are any orthonormal vectors to $\vec{u_1}, \vec{u_2}$ due to $\mathrm{Rank} A = 2$.

$$A = egin{bmatrix} 0 & 1 & 0 & 0 \ -1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} egin{bmatrix} 3 & 0 \ 0 & 2 \ 0 & 0 \ 0 & 0 \end{bmatrix} egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$$

Note: For finding $U \in \mathbb{R}^m$ if we have the vectors in $\mathrm{Col}A$, and they are not enough to make an $m \times m$ matrix, then we will create any arbitrary vectors that are orthonormal to the vectors that you already have. Then we will run the <u>Gram-Schmidt Process</u> on these newly found vectors. All the vectors must be normalized at the end.

Properties of V and U

For $i \leq r = \mathrm{Rank} A$

- $\vec{v_1}, \ldots, \vec{v_r}$ is an orthonormal basis for RowA.
- $\vec{v_{r+1}}, \ldots, \vec{v_n}$ is an orthonormal basis for $\mathrm{Nul}A$.
- $\vec{u_1}, \dots, \vec{u_r}$ is an orthonormal basis for $\mathrm{Col} A$.

 $ullet u_{r+1}^{ec{}},\ldots,ec{u_m}$ is an orthonormal basis for $\mathrm{Nul}A^T.$