

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Centro Tecnológico - Departamento de Engenharia Elétrica

Instalações Elétricas I - ELE 8512/03670 Curso: Eng. Elétrica/Computação

Professor: Hélio Marcos André Antunes E-mail: helio@ele.ufes.br

1ª Prova Parcial de Instalações Elétricas I – Engenharia Elétrica – 2020-2 (EARTE)

Aluno:	Data:	/	/	

Instruções:

- A prova deve ser enviada até às 17h do dia 25/03/2021. Quem enviar fora desse horário receberá nota zero.
- A prova resolvida deve conter o nome do aluno e matrícula, e deve ser salva no formato pdf.
- O arquivo com a solução da prova deve ter o seguinte nome: "p1_instel_I_T1"; o primeiro e último nome do aluno com a respectiva matrícula. Exemplo: Bruno Farias Soares (matrícula: 20207890) -> p1_instel_I_T1_bruno_soares_20207890.pdf

Questão 1) A figura abaixo ilustra um projeto elétrico residencial inacabado. Ao lado é apresentada uma tabela com as distâncias dos trechos da instalação, já considerando as subidas e descidas. Adote uma tensão de fase-neutro de 127 V, com todos os condutores do tipo fio e com isolação de PVC. Os condutores encontram-se instalados segundo o método de referência B1, com temperatura ambiente de 30°C. Pede-se: **(3,5 pontos)**

AB	15 m
ВС	10 m
CD	8 m
DE	9 m
BF	15 m
FG	9 m
GH	10 m
HI	8 m
JK	15 m

15 m

KL

Trecho Distância

- a) Realize o dimensionamento do circuito 1, calculando a seção do condutor pelos critérios da seção mínima, capacidade de condução de corrente e queda de tensão. Adote o fator de potência do circuito igual a 0,8 e despreze a queda de tensão nos retornos das lâmpadas. (1,5 ponto)
- b) Calcule a proteção contra sobrecarga e curto-circuito do circuito 3. Adote uma corrente de falta igual a 500A a jusante do DTM e considere que o circuito alimenta cargas indutivas. Após o dimensionamento faça a especificação para compra do DTM. (1,5 ponto)
- c) Dimensione o eletroduto flexível para os trechos JK e KL. Só existe uma curva de 90° no trecho KL. (0,5 ponto)

Questão 2) Utilizando a simbologia da norma NBR 5444/89 complete o projeto elétrico abaixo, fazendo todas as ligações elétricas por meio da representação unifilar, respeitando a numeração dos circuitos. (**4 pontos**)

Questão 3) Classifique as afirmativas a seguir como verdadeira (V) ou falsa (F). Quando a afirmativa for falsa, justifique o motivo de tal classificação. (Valor: 0,25 pontos para cada afirmativa classificada corretamente, e quando necessário em conjunto com a sua justificativa). (**2,5 pontos**)

- a) () Quanto maior a tensão de isolamento de um condutor, menor a espessura do material que faz a sua isolação.
- b) () Um interruptor automático é um dispositivo que permite que as lâmpadas fiquem acessas em um ambiente na presença de pessoas. Tal dispositivo só atua quando não há luz ambiente no local.
- c) () Em uma instalação elétrica residencial é permitido unir o circuito de TUG da cozinha com o circuito de TUG da copa.
- d) () A previsão do número de tomadas de uso geral em uma sala residencial é função apenas do perímetro.
- e) () Um condutor elétrico deve ser composto por um material com elevada resistividade.
- f) () Os disjuntores comerciais mais utilizados nas instalações elétricas não possuem câmara de extinção de arco.
- g) () Um disjuntor termomagnético com In=20 A tem sua atuação contra sobrecarga garantida a partir dos 20 A
- h) () A máxima queda de tensão em um circuito terminal, com relação ao ponto de conexão com a concessionária de energia elétrica deve ser de 4%.
- i) () Segundo a NBR 5410/2004 deve-se usar dispositivo DR de baixa sensibilidade, para proteção contra contato direto e indireto.
- j) () O banheiro de uma residência é um local adequado para a instalação de um quadro de distribuição de circuitos.

Tabelas úteis

Tabela 1 — Capacidades de condução de corrente, em ampères,

para os métodos de referência A1, A2, B1e B2

Condutores: cobre e alumínio

Temperatura no condutor: 70°C Isolação: PVC

Temperaturas de referência do ambiente: 30°C (ar), 20°C (solo)

Seções	Méto	Métodos de referência indicados na tabela 33								
nominais	Α	.1	А	A2		B1		B2		
mm ²					Número o	de condut	ores carr	egados		
mm-	2	3	2	3	2	3	2	3		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)		
					C	obre				
0,5	7	7	7	7	9	8	9	8		
0,75	9	9	9	9	11	10	11	10		
1	11	10	11	10	14	12	13	12		
1,5	14,5	13,5	14	13	17,5	15,5	16,5	15		
2,5	19,5	18	18,5	17,5	24	21	23	20		
4	26	24	25	23	32	28	30	27		
6	34	31	32	29	41	36	38	34		
10	46	42	43	39	57	50	52	46		

Tabela 2 - Queda de tensão unitária

	Eletroduto e eletrocalha ^(A) (material não-magnético)								
Seção	Pirastic e Pirastic Flex								
nominal (mm²)	Circuito monofá	sico / bifásico	Circuito trifásico						
	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95					
1,5	23,3	27,6	20,2	23,9					
2,5	14,3	16,9	12,4	14,7					
4	8,96	10,6	7,79	9,15					
6	6,03	7,07	5,25	6,14					
10	3,63	4,23	3,17	3,67					

Tabela 3 - Fator de correção por agrupamento

	E	Nún	Número de circuitos ou de cabos multipolares						Tabelas dos
Ref.	Forma de agrupamento dos condutores					_	•	-	métodos de
	condutores	1	2	3	4	5	6	7	referência
1	Em feixe: ao ar livre ou sobre superfície; embutidos;	1.00	0.80	0,70	0.65	0.60	0.57	0.54	36 a 39 (métodos
·	em conduto fechado	1,00	5,00	0,.0	0,00	5,50	0,01	0,0 .	A a F)

Tabela 4 — Seção reduzida do condutor neutro / PE

Seção dos condutores	Seção reduzida
de fase mm ²	do condutor mm²
S ≤ 25	S

Tabela 5 - Dimensionamento do eletroduto flexível

DIMENSÕES								
Cotas	16	20	25	32				
DE	16	20	25	32				
Di	11,7	15,4	19	25				
е	2,1	2,3	3	3,5				

Tabela 6 - Dimensões dos condutores isolados

Conto	750 V Pirastic Antiflan							
Seção Nominal do Condutor (mm²)								
		metro no (mm)	Área	a Total nm²)				
()	Fios	Cabos	Fios	Cabos				
(1)	(2)	(3)	(4)	(5)				
1,5	2,8	3,0	6,2	7,1				
2,5	3,4	3,7	9,1	10,7				
4	3,9	4,2	11,9	13,8				
6	4,4	4,8	15,2	18,1				
10	5,6	5,9	24,3	27,3				
16	6,5	6,9	33,2	37,4				

Tabela 8 — Valores de k para condutores com isolação de PVC, EPR ou XLPE

rabela 6 — Valores de k para con	uutores	COIII ISOI	açao ue	FVC, LF	I Ou AL	r L		
	Isolação do condutor							
Material do condutor		P۱	EDD 04 DE					
	≤ 300	mm ²	> 300	mm ²	EPR/XLPE			
iviaterial do condutor	Temperatura							
	Inicial	Final	Inicial	Final	Inicial	Final		
	70°C	160°C	70°C	140°C	90°C	250°C		
Cobre	115 103		143					
Alumínio	76		68		94			
Emendas soldadas em condutores de cobre	1	15		-		-		

Tabela 7- Disjuntores Termomagnéticos do Fabricante GE

Série	T		GE30			
Curva	Curva B	(3 a 5 ln)	Curva C (5 a 10 ln)			
Corrente Nominal (In) A	1P	2P	1P	2P	3P	
0.5						
1						
2						
4						
6	GE31B06	GE32B06	GE31C06	GE32C06	GE33C06	
10	GE31B10	GE32B10	GE31C10	GE32C10	GE33C10	
16	GE31B16	GE32B16	GE31C16	GE32C16	GE33C16	
20	GE31B20	GE32B20	GE31C20	GE32C20	GE33C20	
25	GE31B25	GE32B25	GE31C25	GE32C25	GE33C25	
32	GE31B32	GE32B32	GE31C32	GE32C32	GE33C32	
40	GE31B40	GE32B40	GE31C40	GE32C40	GE33C40	
50	GE31850	GE32B50	GE31C50	GE32C50	GE33C50	
63	GE31B63	GE32B63	GE31C63	GE32C63	GE33C63	
70			GE31C70	GE32C70	GE33C70	
Capacidade de Ruptura (k/	N		100	ilo i	t.	
IEC 898			100 O TO T			
lcn - 127Vca	3		3	-	-	
lcn - 220Vca	3	3	3	3	3	

Fórmulas úteis

$$\begin{split} S_T &= \sum_{n=1}^N \Biggl(\frac{\pi \times D_n^{-2}}{4} \Biggr) \quad I_{CC}^2 \times t = K^2 S^2 \qquad I_Z = I_C \times FCT \times FCR \times FCA \\ \Delta V_{wit} &= \frac{e(\%) \times V}{I_p \times l} \quad D_i = 2 \sqrt{\frac{S_T}{\pi \times T_X}} \\ A &= \frac{L_{real} - L_{max}}{6} \end{split}$$

l/ln