Überblick

Inhalt

- 1. Verschiedene (universelle) Berechnungsmodelle
- 2. Berechenbare Funktionen
- 3. Komplexitätstheorie

Plakative Fragestellungen

1. Was ist "Berechnung"?

(Algorithmus)

- 2. Was ist "berechenbar"?
- 3. Wie teuer ist "Berechnung"? (Dimensionen: Zeit und Speicher)

8/40

Chomsky-Hierarchie

Noam Chomsky (* 1928)

- Amer. Linguist & Philosoph
- Verfechter Präzision
- Einführung Chomsky-Hierarchie

de la Nación Argentina

Tup-0-Sprachen (allgemeine Grammatiken)

Kontextsensitive Sprachen (Tup 1)

Kontextfreie Sprachen (Typ 2)

Reguläre Sprachen (Tup 3)

9/40

Chomsky-Grammatik (VL Automaten & Sprachen)

§1.1 Definition (Grammatik; grammar)

Grammatik ist Tupel (N, Σ, S, P)

- 1. endliche Menge N von Nichtterminalen (nonterminals)
- 2. endliche Menge Σ von Terminalen (terminals) mit $N \cap \Sigma = \emptyset$
- 3. Startnichtterminal $S \in N$ (initial nonterminal)
- 4. endliche Menge *P* von **Produktionen** (productions) der Form $\ell \to r$ mit $\ell \in (N \cup \Sigma)^+ \setminus \Sigma^+$ und $r \in ((N \setminus \{S\}) \cup \Sigma)^*$

Notizen

- Linke Produktionsseite ℓ = Sequenz Nichtterminale & Terminale (mind. 1 Nichtterminal)
- Rechte Produktionsseite r =Sequenz Nichtterminale & Terminale (Startnichtterminal darf nicht vorkommen)

Chomsky-Grammatik (VL Automaten & Sprachen)

§1.2 Definition (kontextsensitiv, kontextfrei, regulär)

Grammatik (N, Σ, S, P) ist

- kontextsensitiv (context-sensitive) falls $|\ell| < |r|$,
- **kontextfrei** (context-free) falls $\ell \in N$ und $r \neq \varepsilon$, und
- regular (regular) falls $\ell \in N$ und $r \in (\Sigma \times N) \cup \Sigma$

für jede Produktion $(\ell \to r) \in P \setminus \{S \to \varepsilon\}$

§1.3 Beispiel

Grammatik $G = (\{S, S'\}, \{a, b\}, S, P)$ mit Produktionen P

$$S
ightarrow arepsilon \quad S
ightarrow S' \quad S'
ightarrow aS'a \quad S'
ightarrow bS'b \quad S'
ightarrow aa \quad S'
ightarrow bb$$

kontextsensitiv	kontextfrei	regulär
✓	✓	X

10 / 40 11/40

Chomsky-Grammatik

§1.4 Beispiel

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S \rightarrow S'E$$

$$S'
ightarrow aS'a$$
 $S'
ightarrow bS'b$

$$\textit{Ea}
ightarrow \textit{EA}$$
 $\textit{Eb}
ightarrow \textit{EB}$

$$extit{Aa}
ightarrow extit{aA} \qquad extit{Ab}
ightarrow extit{bA} \qquad extit{AE}
ightarrow extit{Ea}$$

Ba o aB

Bb o bB

$$BE \rightarrow Eb$$

$$\textit{EE}
ightarrow arepsilon$$

kontextsensitiv	kontextfrei	regulär
X	X	X

12/40

14/40

Semantik

Beispiel (§1.3)

Kontextfreie Grammatik $G = (\{S, S'\}, \{a, b\}, S, P)$ mit Produktionen P

$$S
ightarrow arepsilon \quad S
ightarrow S' \quad S'
ightarrow aS'a \quad S'
ightarrow bS'b \quad S'
ightarrow aa \quad S'
ightarrow bb$$

Ableitungsschritte

• Ableitung von v = abbaabba

$$S \Rightarrow_G S' \Rightarrow_G aS' a \Rightarrow_G abS' ba \Rightarrow_G abbS' bba \Rightarrow_G abbaabba$$

• Allgemein $S \Rightarrow_G^* ww^R$ für alle $w \in \{a, b\}^*$

Semantik (VL Automaten & Sprachen)

§1.5 Definition (Ableitungsschritt; derivation step)

Sei $G = (N, \Sigma, S, P)$ Grammatik

Ableitungsrelation $\Rightarrow_G \subseteq (N \cup \Sigma)^* \times (N \cup \Sigma)^*$ ist

$$\Rightarrow_G = \{(v\ell v', vrv') \mid (\ell \to r) \in P, v, v' \in (N \cup \Sigma)^*\}$$

Illustration

- Produktion $\ell \to r \in P$
- Ableitungsschritt $\cdots \ell \cdots \Rightarrow_G \cdots r \cdots$

Semantik

Beispiel (§1.4)

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S \rightarrow S'E$$

 $Fb \rightarrow FB$

$$S \rightarrow S'E$$
 $S' \rightarrow aS'a$ $S' \rightarrow bS'b$

$$S' \rightarrow bS'b$$

$$S' \rightarrow E$$

 $AE \rightarrow Ea$

13 / 40

15 / 40

$$Ea \rightarrow EA$$

$$\textit{Ea}
ightarrow \textit{EA} \hspace{1cm} \textit{Aa}
ightarrow \textit{aA} \hspace{1cm} \textit{Ab}
ightarrow \textit{bA}$$

$$Aa
ightarrow aA$$
 $Ab
ightarrow bA$ $Ba
ightarrow aB$ $Bb
ightarrow bB$

$$EE \rightarrow \varepsilon$$

$$S\Rightarrow_G S'E\Rightarrow_G aS'aE\Rightarrow_G abS'baE\Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE\Rightarrow_G abEaBE\Rightarrow_G abEaEb\Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab\Rightarrow_G abeab=abab$

Allgemein $S \Rightarrow_G^* ww$ für alle $w \in \{a, b\}^*$

Erzeugte Sprache (VL Automaten & Sprachen)

§1.6 Definition (Erzeugte Sprache; generated language)

Sei $G = (N, \Sigma, S, P)$ Grammatik Die von G erzeugte Sprache $L(G) \subseteq \Sigma^*$ ist

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}$$

Beispiel (§1.3)

Kontextfreie Grammatik $G = (\{S, S'\}, \{a, b\}, S, P)$ mit Produktionen P

$$S
ightarrow arepsilon \quad S
ightarrow S' \quad S'
ightarrow aS'a \quad S'
ightarrow bS'b \quad S'
ightarrow aa \quad S'
ightarrow bb$$

Erzeugte Sprache $L(G) = \{ww^R \mid w \in \{a, b\}^*\}$

Erzeugte Sprache

Beispiel (§1.4)

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$ $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$ $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$ $EF oup \varepsilon$

Erzeugte Sprache $L(G) = \{ww \mid w \in \{a, b\}^*\}$

16/40

Sprachklassen (VL Automaten & Sprachen)

§1.7 Definition (Sprachklassen; language classes)

Sprache $L \subseteq \Sigma^*$ ist

- regulär (regular), falls reguläre Grammatik G mit L(G) = L existiert
- kontextfrei (context-free),
 falls kontextfreie Grammatik G mit L(G) = L existiert
- kontextsensitiv (context-sensitive), falls kontextsensitive Grammatik G mit L(G) = L existiert

Notizen

- Sprache regulär falls erzeugbar von regulärer Grammatik
- Analog für weitere Sprachklassen

Sprachklassen

Beispiel (§1.3)

Kontextfreie Grammatik $G = (\{S, S'\}, \{a, b\}, S, P)$ mit Produktionen P

$$S
ightarrow arepsilon \quad S
ightarrow S' \quad S'
ightarrow aS'a \quad S'
ightarrow bS'b \quad S'
ightarrow aa \quad S'
ightarrow bb$$

Erzeugte Sprache $L(G) = \{ww^R \mid w \in \{a, b\}^*\}$

- Frage: Ist Sprache *L(G)* kontextfrei?
- Antwort: Ja, denn kontextfreie Grammatik G erzeugt L(G)

Sprachklassen

Beispiel (§1.4)

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S \rightarrow S'E$$

$$S' o aS'a$$
 $S' o bS'b$

$$\textit{Ea}
ightarrow \textit{EA}$$

$$extstyle extstyle Aa o aA extstyle Ab o bA extstyle AE o Ea$$

$$\textit{Eb}
ightarrow \textit{EB}$$

$${\it Ba}
ightarrow {\it aB}$$

EE
ightarrow arepsilon

Erzeugte Sprache $L(G) = \{ww \mid w \in \{a, b\}^*\}$

- Frage: Ist *L(G)* nicht kontextsensitiv, da *G* nicht kontextsensitiv?
- Antwort: Nein, nur falls keine kontextsen. Grammatik L(G) erzeugt

20/40

Reguläre Sprachen (VL Automaten & Sprachen)

Beschreibung

- Reguläre Grammatik
- Endlicher Automat (nichtdeterministisch oder deterministisch)
- Regulärer Ausdruck

Stichworte

- Normalformen, Determinisierung & Minimierung
- Abschluss- & Entscheidbarkeitsresultate
- Pumping-Lemma

22/40

Kontextfreie Sprachen (VL Automaten & Sprachen)

Beschreibung

- Kontextfreie Grammatik
- Kellerautomat

(nichtdeterministisch)

• Deterministischer Kellerautomat

(strikt schwächer)

Stichworte

- Normalformen & Parsing-Algorithmen
- Abschluss- & Entscheidbarkeitsresultate
- Pumping-Lemma

Kontextsensitive Sprachen

Beschreibung

- Kontextsensitive Grammatik
- Linear beschränkte Turingmaschine

(nichtdeterministisch)

• Linear beschränkte det. Turingmaschine

(Mächtigkeit unklar)

Stichworte

- Normalformen & Parsing-Algorithmus
- Abschluss- & Entscheidbarkeitsresultate

23/40 25/40

Typ-0-Sprachen

Beschreibung

- Chomsky-Grammatik
- Turingmaschine (nichtdeterministisch oder deterministisch)
- While-Programm, μ -rekursive Funktion (berechenbare Funktion)

Stichworte

- Normalformen & Determinisierung
- Abschluss- & Entscheidbarkeitsresultate

26/40

Ausblick — Chomsky-Sprachklassen

Eigenschaften

- Es gibt Sprachen, die nicht Typ-0 sind
- Es gibt Typ-0-Sprachen mit unentscheidbarem Wortproblem

§1.8 Definition (abzählbar; countable — VL Diskrete Struktu

Menge M ist abzählbar falls injektive Funktion $f: M \to \mathbb{N}$ existiert

Notizen

- M abzählbar gdw. jedem $m \in M$ eigene natürliche Zahl zuweisbar
- Natürliche Zahlen $\mathbb{N} = \{0, 1, 2, 3, \dots\}$ abzählbar

Ausblick — Chomsky-Sprachklassen

 $\mathsf{Typ}\text{-}3(\Sigma) \subsetneq \mathsf{Typ}\text{-}2(\Sigma) \subsetneq \mathsf{Typ}\text{-}1(\Sigma) \subsetneq \mathsf{Typ}\text{-}0(\Sigma) \subsetneq \mathcal{P}(\Sigma^*)$

27 / 40

Abzählbarkeit

$\lceil \S 1.9$ Theorem (Abzählbarkeit von \mathbb{N}^k)

Menge \mathbb{N}^k abzählbar für alle $k \in \mathbb{N}$

Beweis

Seien p_1, \ldots, p_k verschiedene Primzahlen. Definiere $f: \mathbb{N}^k \to \mathbb{N}$ durch

$$f(n_1,\ldots,n_k)=\prod_{i=1}^k p_i^{n_i}=p_1^{n_1}\cdots p_k^{n_k}$$
 für alle $n_1,\ldots,n_k\in\mathbb{N}$

Falls $f(m_1, \ldots, m_k) = f(n_1, \ldots, n_k)$ für $m_1, \ldots, m_k, n_1, \ldots, n_k \in \mathbb{N}$, dann $m_i = n_i$ für alle $1 \le i \le k$ da Primfaktorenzerlegung eindeutig. Also ist f injektiv und \mathbb{N}^k damit abzählbar.

28/40 29/40

Abzählbarkeit

§1.10 Theorem (Abzählbarkeit von \mathbb{N}^*)

Menge $\mathbb{N}^* = \bigcup_{k \in \mathbb{N}} \mathbb{N}^k$ abzählbar

Beweis

Menge \mathbb{N}^k abzählbar via injektiver Funktion $f_k \colon \mathbb{N}^k \to \mathbb{N}$ für alle $k \in \mathbb{N}$ nach Thm §1.9. Sei $f \colon \mathbb{N}^* \to \mathbb{N}$ gegeben durch

$$f(w) = f_2ig(|w|, f_{|w|}(w)ig)$$
 für alle $w \in \mathbb{N}^*$

Falls f(w) = f(w') für $w, w' \in \mathbb{N}^*$, dann folgen aus Injektivität von f_2 sowohl |w| = |w'| als auch $f_{|w|}(w) = f_{|w'|}(w')$. Weiterhin folgt w = w' aus Injektivität von $f_{|w|} = f_{|w'|}$. Also ist f injektiv und \mathbb{N}^* abzählbar. \square

30/40

32/40

Abzählbarkeit der Grammatiken

- 1. Kodiere Terminale durch ungerade Zahlen (a = 1; b = 3)
- 2. Gerade positive Zahlen für Nichtterminale (S = 2; S' = 4; ...) (beginnend mit Startnichtterminal)
- 3. 0 als Trennzeichen

Beispiel (§1.4)

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P $S \to S'E \qquad S' \to aS'a \qquad S' \to bS'b \qquad S' \to E$ $Ea \to EA \qquad Aa \to aA \qquad Ab \to bA \qquad AE \to Ea$ $Eb \to EB \qquad Ba \to aB \qquad Bb \to bB \qquad BE \to Eb$ $EE \to \varepsilon$

$$c(G) = \underbrace{2.0.4.10}_{S \to S'E} .0.\underbrace{4.0.1.4.1}_{S' \to aS'a} .0.\underbrace{4.0.3.4.3}_{S' \to bS'b} .0. \cdots$$

31/40

Abzählbarkeit Typ-0-Sprachen

§1.11 Theorem (Abzählbarkeit Typ-0-Sprachen)

Typ-0-Sprachen Typ-0(Σ) $\subseteq \mathcal{P}(\Sigma^*)$ über Alphabet Σ abzählbar

Beweis (nutzt Auswahlaxiom)

Jede Grammatik G kann als Element $c(G) \in \mathbb{N}^*$ kodiert werden (c <u>nicht</u> injektiv). Sei Kodierung der Terminale aus Σ fest.

$$c \colon \{G \mid G \text{ Grammatik ""ber } \Sigma\} o \mathbb{N}^*$$

Für alle Grammatiken G und G' mit c(G) = c(G') gilt L(G) = L(G'). Menge $C = \{c(G) \mid G \text{ Grammatik "über } \Sigma\}$ abzählbar da $C \subseteq \mathbb{N}^*$ und \mathbb{N}^* abzählbar gemäß Thm §1.10. Also ist Relation

$$\rho = \{ (c(G), L(G)) \mid G \text{ Grammatik ""uber } \Sigma \}$$

surjektive Funktion $\rho\colon C\to \operatorname{Typ-0}(\Sigma)$. Mit Auswahlaxiom existiert $g\colon \operatorname{Typ-0}(\Sigma)\to C$ injektiv (VL Diskrete Strukturen). Sei f aus Thm §1.10. Dann ist $(g\,;\,f)\colon \operatorname{Typ-0}(\Sigma)\to \mathbb{N}$ injektiv und $\operatorname{Typ-0}(\Sigma)$ abzählbar. \square

Abzählbarkeit Typ-0-Sprachen

Notizen

- Thm §1.11 gilt auch ohne Auswahlaxiom
- Betrachte längen-lexikographische Ordnung $\preceq \subseteq \mathbb{N}^* \times \mathbb{N}^*$ auf \mathbb{N}^* (ordne Elemente zunächst nach Länge, dann lexikographisch)
- Ordnung \leq total und Wohlordnung (für nichtleere Teilmenge $N \subseteq \mathbb{N}^*$ existiert $\min_{\leq}(N) \in N$)
- Für $\rho \colon \mathcal{C} \to \mathsf{Typ}\text{-}\mathsf{0}(\Sigma)$ surjektiv, definiere $\bar{\rho} \colon \mathsf{Typ}\text{-}\mathsf{0}(\Sigma) \to \mathbb{N}^*$

$$ar{
ho}(L) = \min_{\preceq} \{ w \in \mathbb{N}^* \mid
ho(w) = L \}$$
 für alle $L \in \mathsf{Typ}\text{-}\mathsf{0}(\Sigma)$

- $\bar{\rho}$ wohldefiniert, da $\{w \in \mathbb{N}^* \mid \rho(w) = L\}$ nichtleer (Surjektivität ρ) und somit existiert Minimum
- $\bar{\rho}$ ist offensichtlich injektiv (gleiche Kodierung \rightarrow gleiche Sprache)
- Also Tup-0(Σ) abzählbar

Überabzählbarkeit aller Sprachen

§1.12 Lemma

Unendliche Menge M abzählbar gdw. Bijektion $f: \mathbb{N} \to M$ existiert

§1.13 Theorem (Überabzählbarkeit aller Sprachen)

Menge $\mathcal{P}(\Sigma^*)$ aller Sprachen über Σ <u>nicht</u> abzählbar

Beweis

 Σ^* abzählbar und unendlich. Cantors Theorem (VL Diskrete Strukturen) zeigt, dass $\mathcal{P}(\Sigma^*)$ strikt mächtiger als Σ^* . Also $\mathcal{P}(\Sigma^*)$ <u>nicht</u> abzählbar (d.h. überabzählbar).

36/40

Überabzählbarkeit aller Sprachen

Diagonalisierung

$L' \setminus w$	f(0)	f(1)	f(2)	f(3)	
g(0)	X	X	✓	✓	• • •
<i>g</i> (1)	X	✓	✓	X	
g(2)	X	X	✓	X	
g(3)	✓	✓	X	✓	
		• • •	• • •	• • •	• • •
L	√	X	X	X	

$$L = \{f(i) \mid i \in \mathbb{N}, f(i) \notin g(i)\}$$

Überabzählbarkeit aller Sprachen

Theorem (§1.13 Überabzählbarkeit aller Sprachen)

Menge $\mathcal{P}(\Sigma^*)$ aller Sprachen über Σ <u>nicht</u> abzählbar

Beweis (detailliert)

Da Σ^* abzählbar unendlich, existiert $f\colon \mathbb{N}\to \Sigma^*$ bijektiv gem. Lm §1.12. Offenbar ist $\mathcal{P}(\Sigma^*)$ unendlich. Sei $\mathcal{P}(\Sigma^*)$ abzählbar; d.h. gem. Lm §1.12 existiert $g\colon \mathbb{N}\to \mathcal{P}(\Sigma^*)$ bijektiv.

Betrachte Sprache $L = \{f(i) \mid i \in \mathbb{N}, f(i) \notin g(i)\}.$

Da g bijektiv, existiert $i \in \mathbb{N}$ mit L = g(i).

Dann $f(i) \in L$ gdw. $f(i) \notin g(i) = L$. Widerspruch 4

Also $\mathcal{P}(\Sigma^*)$ nicht abzählbar.

37 / 40

1. Hauptsatz

§1.14 Theorem

Nicht alle Sprachen sind Typ-0

Beweis

Typ-0-Sprachen Typ-0(Σ) über Σ abzählbar gemäß Thm §1.11. Menge $\mathcal{P}(\Sigma^*)$ aller Sprachen über Σ überabzählbar gemäß Thm §1.13. Also Typ-0(Σ) $\subsetneq \mathcal{P}(\Sigma^*)$.

38/40 39/40