

Page 1 of 113

Full SAR Test Report

Applicant Name: LENOVO MOBILE COMMUNICATION TECHNOLOGY LTD.

Applicant Address: No.999, Qishan North 2nd Road, Information & Optoelectronics Park,

Torch Hi-tech Industry Development Zone, Xiamen, P.R. China

The following samples were submitted and identified on behalf of the client as:

Sample Description	Mobile phone
SGS Ref	GSM10232281S01
Model Number	S62
Final Hardware Version Tested	H301
Final Software Version Tested	S62_VE_S100_100119
FCC ID	YCNS62
Date Initial Sample Received	04-26,2010
Testing Start Date	04-28,2010
Testing End Date	05-06,2010

According to:

FCC 47CFR § 2.1093, IEEE Std C95.1-2005

IEEE1528-2003, OET Bulletin 65 Supplement C

Comments/ Conclusion:

The configuration tested complied to the certification requirements specified in this report.

Signed for on behalf of SGS

Project Manager

Technical Manager

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/terms_and_conditions.htm. and, for electronic format documents to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained heron reflects the company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligation under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorised alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Table of Contents

Cha	ange H	History	3			
1.	Repo	ort Overview	4			
2.	Test	Lab Declaration or Comments	4			
3.	Applicant Declaration or Comments4					
4.	Full	Full Test Report4				
5.	Parti	ial Test Report	4			
6.	Meas	Measurement Uncertainty4				
7 .	Testi	Testing Environment6				
8.	Prim	nary Test Laboratory	6			
9.	Deta	nils of Applicant	6			
10.	Deta	nils of Manufacturer	6			
11.	Othe	er testing Locations	6			
12.		erenced Documents				
13.		nary Laboratory Accreditation Details				
14.	SGS	Shanghai Wireless Telecommunications lab, Personnel	9			
15.	Test	Equipment Information	10			
	15.1	SPEAG DASY4	10			
	15.2	The SAR Measurement System	11			
	15.3	Isotropic E-field Probe ES3DV3	13			
	15.4	SAM Twin Phantom	14			
	15.5	Device Holder for Transmitters	15			
16.	Detai	niled Test Results	16			
	16.1	Summary of Results	16			
	16.2	Maximum Results	17			
	16.3	Operation Configurations	18			
	16.4	Measurement procedure	19			
	16.5	Detailed Test Results	20			
17.	ldent	tification of Samples	62			
18.	Phot	tographs of EUT	63			
Anr	nex A	Photographs of Test Setup	65			
Anr	nex B	Tissue Simulant Liquid	68			
Anr	nex C	SAR System Validation	69			
Anr	nex D	Description of Test Position	76			
Anr	nex E	Calibration certificate	79			
	Anne	ex E.1 Probe Calibration certificate	79			
	Anne	ex E.2 DAE Calibration certificate	90			
	Anne	ex E.3 Dipole Calibration certification	95			
Anr	nex F	Additional SAR Probe Validation	105			
ENI	OF F	REPORT	113			

Page 3 of 113

Change History

Version	Change Contents	Author	Date
V1.0	First edition	Zenger Zhang	05-10, 2010
V2.0	Add annex F and change crest factor	Zenger Zhang	06-07, 2010

Page 4 of 113

Report Overview

This report details the results of testing carried out on the samples listed in section 17, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this test report is used in any configuration other than that detailed in the test report, the manufacturer must ensure the new configuration complies with all relevant standards and certification requirements. Any mention of SGS Shanghai Wireless Telecommunications lab or testing done by SGS Shanghai Wireless Telecommunications lab made in connection with the distribution or use of the tested product must be approved in writing by SGS Shanghai Wireless Telecommunications lab.

2. **Test Lab Declaration or Comments**

None

3. **Applicant Declaration or Comments**

None

Full Test Report

A full test report contains, within the results section, all the applicable test cases from the certification requirements of the permanent reference documents of the listed certification bodies.

5. Partial Test Report

A partial test report contains within the results section a sub-set of all the applicable test cases from the certification requirements of the permanent reference documents of the listed certification bodies.

6. **Measurement Uncertainty**

Measurements and results are all in compliance with the standards listed in section 12 of this report. All measurements and results are recorded and maintained at the laboratory performing the tests and measurement uncertainties are taken into account when comparing measurements to pass/fail criteria.

10	1		
	-		
	W.		
	G	GS	GS

а	b1	С	d	e = f(d,k)	g	i = cxg/e	k
Uncertainty Component	Section	Tol	Prob .	Div.	Ci	1g	Vi
Uncertainty Component	in P1528	(%)	Dist.		(1g)	ui (%)	(Veff)
Probe calibration	E.2.1	6.3	N	1	1	6.3	∞
Axial isotropy	E.2.2	0.5	R	$\sqrt{3}$	$(1-\mathbf{C}_{p})^{1/2}$	0.20	∞
hemispherical isotropy	E.2.2	2.6	R	$\sqrt{3}$	$\sqrt{c_p}$	1.06	∞
Boundary effect	E.2.3	0.8	R	$\sqrt{3}$	1	0.46	∞
Linearity	E.2.4	0.6	R	$\sqrt{3}$	1	0.35	∞
System detection limit	E.2.5	0.25	R	$\sqrt{3}$	1	0.15	∞
Readout electronics	E.2.6	0.3	N	1	1	0.3	∞
Response time	E.2.7	0	R	$\sqrt{3}$	1	0	∞
Integration time	E.2.8	2.6	R	$\sqrt{3}$	1	1.5	∞
RF ambient Condition -Noise	E.6.1	3	R	$\sqrt{3}$	1	1.73	∞
RF ambient Condition - reflections	E.6.1	3	R	$\sqrt{3}$	1	1.73	∞
Probe positioning- mechanical tolerance	E.6.2	1.5	R	$\sqrt{3}$	1	0.87	∞
Probe positioning- with respect to phantom	E.6.3	2.9	R	$\sqrt{3}$	1	1.67	∞
Max. SAR evaluation	E.5.2	1	R	$\sqrt{3}$	1	0.58	∞
Test sample positioning	E.4.2	4	N	1	1	3.7	9
Device holder uncertainty	E.4.1	3.6	N	1	1	3.6	∞
Output power variation -SAR drift measurement	6.62	5	R	$\sqrt{3}$	1	2.89	∞
Phantom uncertainty (shape and thickness tolerances)	E.3.1	4	R	$\sqrt{3}$	1	2.31	8
Liquid conductivity - deviation from target values	E.3.2	5	R	$\sqrt{3}$	0.64	1.85	∞
Liquid conductivity - measurement uncertainty	E.3.2	4	N	1	0.64	2.56	5
Liquid permittivity	E.3.3	5	R	$\sqrt{3}$	0.6	1.73	∞
- deviation from target values				·			
Liquid permittivity	E.3.3	4	N	1	0.6	2.40	5
- measurement uncertainty	2.0.0	·	',				<u> </u>
Combined standard uncertainty				RSS		10.71	430
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		21.43	

Page 6 of 113

7. Testing Environment

Normal Temperature	+20 to +24 °C
Relative Humidity	35 to 60 %

8. Primary Test Laboratory

Name:	Wireless Telecommunications Laboratory	
	SGS-CSTC Standards Technical Services(Shanghai) Co., Ltd	
Address:	9F, 3rd Building, No.889, Yishan Rd, Xuhui District, Shanghai,	
	China 200233	
Telephone:	+86 (0) 21 6140 2666	
Fax:	+86 (0) 21 5450 0149	
Internet:	http://www.cn.sgs.com	
Contact:	Mr. Peter Xue	
Email:	peter.xue@sgs.com	

9. Details of Applicant

Name:	LENOVO MOBILE COMMUNICATION TECHNOLOGY LTD.
	No.999,Qishan North 2nd Road, Information & Optoelectronics
Address:	Park, Torch Hi-tech Industry Development Zone, Xiamen, P.R.
	China
Telephone:	+86 592-216 6651
Contact:	Qiushou yu
Fax	+86 592-216 6651
Email:	qiusya@lenovomobile.com

10. Details of Manufacturer

Name:	LENOVO MOBILE COMMUNICATION TECHNOLOGY LTD.
	No.999,Qishan North 2nd Road, Information & Optoelectronics
Address:	Park, Torch Hi-tech Industry Development Zone, Xiamen, P.R.
	China
Telephone:	+86 592-216 6651
Contact:	Qiushou yu
Fax	+86 592-216 6651
Email:	qiusya@lenovomobile.com

11. Other testing Locations

Name:	Not Required
Address:	
Telephone:	
Contact:	
Fax	

Page 7 of 113

Email:

12. Referenced Documents

The Equipment under Test (EUT) has been tested at SGS's (own or subcontracted) laboratories according to FCC 47CFR § 2.1093, IEEE Std C95.1-2005, IEEE1528-2003, OET Bulletin 65 Supplement C

The following table summarizes the specific reference documents such as harmonized standards or test specifications which were used for testing as SGS's (own or subcontracted) laboratories.

Identity	Document Title	Version
FCC 47CFR § 2.1093	Radiofrequency radiation exposure evaluation:portable devices	2001
IEEE Std C95.1-2005	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.	2005
IEEE1528-2003	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques	2003
OET Bulletin 65 Supplement C	Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions	2001
KDB 648474 D01	SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas	-
KDB 941225 D03	Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE	-

Human Exposure	Uncontrolled Environment General Population
Spatial Peak SAR	1.60 W/kg (averaged over a mass of 1g)

Table 12-1 RF Exposure Limits

Notes:

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

13. Primary Laboratory Accreditation Details

Page 9 of 113

14. SGS Shanghai Wireless Telecommunications lab, Personnel

SGS Wireless Shanghai Project Management Team and list of approved Testers for SGS Wireless Shanghai.

Surname	Forename	Initials
CAI	CAI	CAICAI
Xue	Peter	PETERXUE
Xu	Anya	ANYA
Ni	Lemon	LEMONNI
Тао	Kevin	KEVINTAO
Wang	Lawrence	LAWRENCE
Zhang	Sean	SEANZH
Ruan	Roger	ROGER
Tan	Terry	TERRY
Zhang	Zenger	ZENGER
Tang	Eva	EVATANG
Но	James	JAMESHO
Tang	Kenny	KENNY
Hailiang	Cai	HAILIANG
Chan	Hik Kwong	НКС
Nie	Neo	Neo
Gong	Tina	TINA

Version 2010-05-10

Page 10 of 113

15. Test Equipment Information

SPEAG DASY4 15.1

Test Platform	SPEAG DASY4 Professional					
Location	SGS SH Lab #8	SGS SH Lab #8				
Manufacture	SPEAG					
	SAR Test System (Frequency range 300N	ИHz-3GHz)			
Description	835, 900, 1800, 19	00, 2000, 2450 freque	ncy band			
HAC Extension						
Software Reference	DASY4: V4.7 Build					
	SEMCAD: V1.8 Bu	ıild 186				
Hardware Reference			Т	T		
Equipment	Model	Serial Number	Calibration Date	Due date of calibration		
Robot	RX90L	F03/5V32A1/A01	n/a	n/a		
Phantom	SAM 12	TP-1283	n/a	n/a		
DAE	DAE3	569	2009-11-18	2010-11-17		
E-Field Probe	ES3DV3	3088	2009-11-19	2010-11-18		
Validation Kits	D835V2	4d070	2008-12-15	2010-12-14		
Validation Kits	D1900V2	5d028	2009-11-24	2011-11-23		
Agilent Network Analyzer	E5071B	MY42100549	2009-11-25	2010-11-24		
RF Bi-Directional Coupler	ZABDC20-252H	n/a	2010-05-21	2011-05-20		
Agilent Signal Generator	E4438C	14438CATO-19719	2009-11-30	2010-11-29		
Mini-Circuits Preamplifier	ZHL-42	D041905	2009-11-30	2010-11-29		
Agilent Power Meter	E4416A	GB41292095	2009-11-25	2010-11-24		
Agilent Power Sensor	8481H	MY41091234	2009-11-25	2010-11-24		
R&S Power Sensor	NRP-Z92	100025	2010-04-12	2011-04-11		
R&S Universal Radio Communication Tester	CMU200	103633	2009-11-26	2010-11-25		

Page 11 of 113

15.2 The SAR Measurement System

A photograph of the SAR measurement System is given in Fig. 15-1.

This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (Speag Dasy 4 professional system). A Model ES3DV3 3088 E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant.

The DASY4 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software. An arm extension for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

Fig. 15-1 SAR System Configuration

- Ÿ The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- Υ A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- Ÿ A computer operating Windows 2000.

Page 12 of 113

- Ϋ DASY4 software.
- Ÿ Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- Ϋ The SAM twin phantom enabling testing left-hand, right-hand and BodyWorn usage.
- Ÿ The device holder for handheld mobile phones.
- Ÿ Tissue simulating liquid mixed according to the given recipes.
- Ϋ Validation dipole kits allowing to validating the proper functioning of the system

Page 13 of 113

15.3 Isotropic E-field Probe ES3DV3

Fig. 15-2 E-field Probe

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration Basic Broad Band Calibration in air

Conversion Factors (CF) for HSL 900 and HSL 1810

Additional CF for other liquids and frequencies upon request

Frequency 10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.3 dB in tissue material (rotation normal to probe axis)

Dynamic Range $5 \mu W/g$ to > 100 mW/g; Linearity: $\pm 0.2 dB$

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

> Dosimetry in strong gradient fields Compliance tests of mobile phones

Page 14 of 113

Fig. 15-3 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left hand
- · Right hand
- Flat phantom

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Phantom specification:

Description The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM)

phantom defined in IEEE 1528-2003, CENELEC 50361 and IEC 62209. It enables the

dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids

by teaching three points with the robot.

Shell Thickness 2+0.2mm, Center ear point: 6+0.2mm

Filling Volume Approx.25 liters

Dimensions Length: 1000mm, Width: 500mm, Height: 850mm

Page 15 of 113

15.5 **Device Holder for Transmitters**

Fig. 15-4 Device Holder for Transmitters

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ±20%. An accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions, in which the devices must be measured, are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity "=3 and loss tangent _=0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Page 16 of 113

16. Detailed Test Results

16.1 **Summary of Results**

16.1.1 Measurement of RF conducted Power

Unit:dBm

N	lode		GPR	S			EGPRS					GSM		
Slot	(Uplink)	1	2	3	4	1		2	}	3		4	ļ	-
Band	Channel		GMS	K		GMSK	8PSK	GMSK	8PSK	GMSK	8PSK	GMSK	8PSK	-
	128	32.0	32.0											31.8
850	190	31.7	31.7											31.7
	251	31.6	31.6											31.6
	512	29.2	29.2											29.1
1900	661	28.8	28.8											28.8
	810	28.5	28.6											28.5

16.1.2 Measurement of SAR average value

GSM 850

				Average	d SAR over 1	g (W/kg)	SAR	
Band	EUT Position	Mode	Test Configuration	CH128	CH190	CH251	limit 1g	Verdict
				824.2MHz	836.6MHz	848.8MHz	(W/kg))	
GSM850			Cheek	0.231	0.404	0.539	1.6	Passed
	Left		Tilt		0.046	-	1.6	Passed
	Leit	- GSM	Worstcase With memory			0.541	1.6	Passed
			Worstcase With BlueTooth			0.562	1.6	Passed
			Cheek	0.202	0.336	0.519	1.6	Passed
			Tilt		0.037		1.6	Passed
	Right		Worstcase With memory			0.513	1.6	Passed
			Worstcase With BlueTooth			0.476	1.6	Passed
	Body	GPRS (1 slot uplink)	Front of EUT facing phantom		0.195		1.6	Passed
	Worn	GPRS	Rear of EUT facing phantom	0.692	0.857	1.1	1.6	Passed
	(2	(2 slot uplink)	Front of EUT facing phantom		0.393		1.6	Passed

Page 17 of 113

Worstcase With headset	 	0.939	1.6	Passed
Worstcase With memory	 	0.906	1.6	Passed
Worstcase With Bluetooth	 	1.03	1.6	Passed

PCS1900

				Averaged SA	SAR			
Band	Band Position	Mode	Mode Test Configuration CH512 CH661		CH661	CH810	limit 1g	Verdict
				1850.2MHz	1880MHz	1909.8MHz	(W/kg)	
			Cheek	0.198	0.241	0.263	1.6	Passed
	Left		Tilt		0.058		1.6	Passed
	Leit		Worstcase With memory			0.245	1.6	Passed
		GSM	Worstcase With BlueTooth			0.245	1.6	Passed
			Cheek	0.266	0.333	0.323	1.6	Passed
	Right		Tilt		0.068		1.6	Passed
			Worstcase With memory		0.270		1.6	Passed
			Worstcase With BlueTooth		0.270		1.6	Passed
PCS1900		GPRS (1 slot uplink)	Front of EUT facing phantom	-	0.049		1.6	Passed
		GPRS	Rear of EUT facing phantom	0.358	0.362	0.396	1.6	Passed
E	Body	(2 slot uplink)	Front of EUT facing phantom	-	0.142	-	1.6	Passed
	Worn	Wors	Worstcase With headset			0.390	1.6	Passed
		Wors	Worstcase With memory		ı	0.391	1.6	Passed
		Worst	case With Bluetooth		-	0.388	1.6	Passed

16.2 **Maximum Results**

The maximum measured SAR values for Head configuration and BodyWorn configuration are given in section 16.2.1 and 16.2.2 respectively.

Page 18 of 113

16.2.1 Head Configuration

Frequency Band	EUT Position	Conducted Power (dBm)	SAR, Averaged over 1g (W/kg)	Power Drift (dB)	SAR limit (W/kg)	Verdict
GSM850	Left/Cheek/High With Bluetooth	31.6	0.562	0.024	1.6	Passed
PCS1900	Right/Cheek/Mid	28.8	0.333	-0.094	1.6	Passed

16.2.2 BodyWorn Configuration

Frequency Band	EUT Position	Conducte d Power (dBm)	SAR, Averaged over 1g (W/kg)	Power Drift (dB)	SAR limit (W/kg)	Verdict
GSM850	GPRS/2slot uplink/Rear/High	31.6	1.1	-0.056	1.6	Passed
PCS1900	GPRS/2slot uplink/Rear/High	28.6	0.396	0.074	1.6	Passed

16.2.3 Maximum Drift

Maximum Drift during measurement	0.352
----------------------------------	-------

16.2.4 Measurement Uncertainty

Extended Uncertainty (k=2) 95% 21.43%	Extended Uncertainty (k=2) 95%	21.43%
---	--------------------------------	--------

16.3 **Operation Configurations**

The EUT is controlled by using a radio communication tester (CMU200) with air link, and the EUT is set to maximum output power by CMU200 during all tests.

The tests in the band of GSM850, PCS1900 are performed in the GSM/GPRS mode.

- 1. Testing Head SAR at GSM mode for all bands with Left Cheek/Tilt and Right Cheek/Tilt conditions.
- 2. Testing Body SAR at GPRS mode for all bands by separating 1.5cm from the EUT (both front and rear) to flat phantom.
- 3. Body SAR at GPRS, EGPRS modes for all bands with front and rear of EUT facing to the phantom should be done.
- 4. Head and Body SAR with accessories should be done at worstcase to identify maximum SAR value.
- 5. Test reduction has been adopted according to conducted output power and produced SAR level:

Low and High channel SAR are optional if SAR value produced in the middle channel is 3dB lower than the applicable SAR limit;

In GPRS mode, the multislot configuration which produces highest SAR value is regard as the worst case to be measured, other multislot configurations are selectively confirmed;

Page 19 of 113

6. In EGPRS mode, the test is in the GMSK modulation according to the power between GMSK and 8PSK.

The maximum output power of EGPRS, GMSK mode is the same as the GPRS mode. So the EGPRS mode SAR evaluation is optional.

- 7. The (max.cube) labeling indicates that during the grid scanning an additional peak was found which within 2dB of the highest peak
- 8. Bluetooth: the maximum output power is below Pref/12mw, stand alone SAR evaluation is not required so the simultaneous transmission is not required.
- 9. Head SAR for GSM should be tested in GPRS/EGPRS modes, if EUT support DTM.

16.4 Measurement procedure

Step 1: Power reference measurement

The SAR measurement was taken at a selected spatial reference point to monitor power variations during testing. This fixed location point was measured and used as a reference value.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 10mm*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

Around this point, a volume of 30mm*30mm*30mm (fine resolution volume scan, zoom scan) was assessed by measuring 7*7*7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the center of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification) The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points (10*10*10) were interpolated to calculate the average. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Power reference measurement (drift)

The SAR value at the same location as in step 1 was again measured. (If the value changed by more than 5%, the evaluation should be done repeatedly)

Page 20 of 113

16.5 **Detailed Test Results**

16.5.1 GSM850-LeftHandSide-Cheek-Middle

Date/Time: 2010-4-29 15:51:23

Test Laboratory: SGS-GSM

GSM850-LeftHandSide-Cheek-Mid

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: GSM850-GSM Mode; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: HSL835Head Medium parameters used: f = 836.6 MHz; σ = 0.908 mho/m; ϵ_r = 41.8; ρ = 1000

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Mid/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.428 mW/g

Cheek position - Mid/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.14 V/m; Power Drift = 0.102 dB

Peak SAR (extrapolated) = 0.596 W/kg

SAR(1 g) = 0.404 mW/g; SAR(10 g) = 0.266 mW/g

Maximum value of SAR (measured) = 0.432 mW/g

0 dB = 0.432 mW/g

Page 21 of 113

16.5.2 GSM850-LeftHandSide-Tilt-Middle

Date/Time: 2010-4-29 14:58:01

Test Laboratory: SGS-GSM GSM850-LeftHandSide-Tilt-Mid

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: GSM850-GSM Mode; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: HSL835Head Medium parameters used: f = 836.6 MHz; $\sigma = 0.908$ mho/m; $\epsilon_r = 41.8$; $\rho = 1000$

kq/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt position - Mid/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.051 mW/g

Tilt position - Mid/Zoom Scan (7x7x7) (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 1.63 V/m; Power Drift = 0.352 dB

Peak SAR (extrapolated) = 0.061 W/kg

SAR(1 g) = 0.046 mW/g; SAR(10 g) = 0.034 mW/gMaximum value of SAR (measured) = 0.049 mW/g

0 dB = 0.049 mW/g

Page 22 of 113

16.5.3 GSM850-LeftHandSide-Cheek-Low

Date/Time: 2010-4-29 16:19:58

Test Laboratory: SGS-GSM

GSM850-LeftHandSide-Cheek-Low

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: GSM850-GSM Mode; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL835Head Medium parameters used: f = 824.2 MHz; $\sigma = 0.896$ mho/m; $\epsilon_r = 41.9$; $\rho = 1000$

kq/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.248 mW/g

Cheek position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.41 V/m; Power Drift = 0.116 dB

Peak SAR (extrapolated) = 0.332 W/kg

SAR(1 g) = 0.231 mW/g; SAR(10 g) = 0.157 mW/gMaximum value of SAR (measured) = 0.250 mW/g

0 dB = 0.250 mW/g

16.5.4 GSM850-LeftHandSide-Cheek-High

Date/Time: 2010-4-29 16:47:01

Test Laboratory: SGS-GSM

GSM850-LeftHandSide-Cheek-High

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: GSM850-GSM Mode; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL835Head Medium parameters used: f = 848.8 MHz; $\sigma = 0.92 \text{ mho/m}$; $\epsilon_r = 41.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position -High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.572 mW/g

Cheek position -High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.57 V/m; Power Drift = 0.035 dB

Peak SAR (extrapolated) = 0.771 W/kg

SAR(1 g) = 0.539 mW/g; SAR(10 g) = 0.366 mW/g

Maximum value of SAR (measured) = 0.572 mW/g

0 dB = 0.572 mW/g

Page 24 of 113

16.5.5 GSM850-LeftHandSide-Worstcase-With Memory

Date/Time: 2010-4-29 17:18:50

Test Laboratory: SGS-GSM

GSM850-LeftHandSide-Cheek-High with Memory

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: GSM850-GSM Mode; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL835Head Medium parameters used: f = 848.8 MHz; $\sigma = 0.92 \text{ mho/m}$; $\epsilon_r = 41.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position -High With Memory/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.571 mW/g

Cheek position -High With Memory/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.58 V/m; Power Drift = -0.080 dB

Peak SAR (extrapolated) = 0.778 W/kg

SAR(1 g) = 0.541 mW/g; SAR(10 g) = 0.365 mW/gMaximum value of SAR (measured) = 0.573 mW/g

0 dB = 0.573 mW/g

Page 25 of 113

16.5.6 GSM850-LeftHandSide-Worstcase-With Bluetooth

Date/Time: 2010-4-29 17:47:45

Test Laboratory: SGS-GSM

GSM850-LeftHandSide-Cheek-High with Bluetooth

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: GSM850-GSM Mode; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL835Head Medium parameters used: f = 848.8 MHz; $\sigma = 0.92 \text{ mho/m}$; $\epsilon_r = 41.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position -High With Bluetooth/Area Scan (61x101x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.592 mW/g**

Cheek position -High With Bluetooth/Zoom Scan (7x7x7) (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 1.80 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 0.807 W/kg

SAR(1 g) = 0.562 mW/g; SAR(10 g) = 0.379 mW/gMaximum value of SAR (measured) = 0.600 mW/g

0 dB = 0.600 mW/g

Page 26 of 113

16.5.7 GSM850-RightHandSide-Cheek-Middle

Date/Time: 2010-4-29 10:41:18

Test Laboratory: SGS-GSM

GSM850-RightHandSide-Cheek-Mid

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: GSM850-GSM Mode; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: HSL835Head Medium parameters used: f = 836.6 MHz; $\sigma = 0.908$ mho/m; $\epsilon_r = 41.8$; $\rho = 1000$

kq/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Middle/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.360 mW/g

Cheek position - Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.05 V/m; Power Drift = 0.103 dB

Peak SAR (extrapolated) = 0.478 W/kg

SAR(1 g) = 0.336 mW/g; SAR(10 g) = 0.230 mW/gMaximum value of SAR (measured) = 0.359 mW/g

0 dB = 0.359 mW/g

16.5.8 GSM850-RightHandSide-Tilt-Middle

Date/Time: 2010-4-29 11:10:06

Test Laboratory: SGS-GSM GSM850-RightHandSide-Tilt-Mid

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: GSM850-GSM Mode; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: HSL835Head Medium parameters used: f = 836.6 MHz; $\sigma = 0.908$ mho/m; $\epsilon_r = 41.8$; $\rho = 1000$

kq/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt position - Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.041 mW/g

Tilt position - Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.93 V/m; Power Drift = 0.096 dB

Peak SAR (extrapolated) = 0.048 W/kg

SAR(1 g) = 0.037 mW/g; SAR(10 g) = 0.027 mW/gMaximum value of SAR (measured) = 0.039 mW/g

0 dB = 0.039 mW/g

Page 28 of 113

16.5.9 GSM850-RightHandSide-Cheek-Low

Date/Time: 2010-4-29 11:37:33

Test Laboratory: SGS-GSM

GSM850-RightHandSide-Cheek-Low

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: GSM850-GSM Mode; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL835Head Medium parameters used: f = 824.2 MHz; $\sigma = 0.896$ mho/m; $\epsilon_r = 41.9$; $\rho = 1000$

kq/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Low/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.215 mW/g

Cheek position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.00 V/m; Power Drift = -0.002 dB

Peak SAR (extrapolated) = 0.312 W/kg

SAR(1 g) = 0.202 mW/g; SAR(10 g) = 0.139 mW/g

Maximum value of SAR (measured) = 0.214 mW/g

0 dB = 0.214 mW/g

16.5.10 GSM850-RightHandSide-Cheek-High

Date/Time: 2010-4-29 12:02:22

Test Laboratory: SGS-GSM

GSM850-RightHandSide-Cheek-High

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: GSM850-GSM Mode: Frequency: 848.8 MHz:Duty Cycle: 1:8.3

Medium: HSL835Head Medium parameters used: f = 848.8 MHz; $\sigma = 0.92 \text{ mho/m}$; $\epsilon_r = 41.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - High/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.545 mW/g

Cheek position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.69 V/m; Power Drift = 0.169 dB

Peak SAR (extrapolated) = 0.791 W/kg

SAR(1 g) = 0.519 mW/g; SAR(10 g) = 0.353 mW/g

Maximum value of SAR (measured) = 0.554 mW/g

0 dB = 0.554 mW/g

16.5.11 GSM850-RightHandSide-Worstcase-With Memory

Date/Time: 2010-4-29 12:58:29

Test Laboratory: SGS-GSM

GSM850-RightHandSide-Cheek-High with Memory

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: GSM850-GSM Mode: Frequency: 848.8 MHz:Duty Cycle: 1:8.3

Medium: HSL835Head Medium parameters used: f = 848.8 MHz; $\sigma = 0.92 \text{ mho/m}$; $\epsilon_r = 41.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - High With Memory/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.547 mW/g

Cheek position - High With Memory/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.58 V/m; Power Drift = 0.325 dB

Peak SAR (extrapolated) = 0.765 W/kg

SAR(1 g) = 0.513 mW/g; SAR(10 g) = 0.350 mW/gMaximum value of SAR (measured) = 0.547 mW/g

0 dB = 0.547 mW/g

16.5.12 GSM850-RightHandSide-Worstcase-With Bluetooth

Date/Time: 2010-4-29 13:53:15

Test Laboratory: SGS-GSM

GSM850-RightHandSide-Cheek-High with Bluetooth

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: GSM850-GSM Mode: Frequency: 848.8 MHz:Duty Cycle: 1:8.3

Medium: HSL835Head Medium parameters used: f = 848.8 MHz; $\sigma = 0.92 \text{ mho/m}$; $\epsilon_r = 41.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - High With Bluetooth/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.501 mW/g

Cheek position - High With Bluetooth/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.02 V/m; Power Drift = 0.037 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.476 mW/g; SAR(10 g) = 0.316 mW/gMaximum value of SAR (measured) = 0.511 mW/g

0 dB = 0.511 mW/g

Page 32 of 113

16.5.13 GSM850-BodyWorn-GPRS-1Slot-Front-Middle

Date/Time: 2010-4-28 7:36:53

Test Laboratory: SGS-GSM

GSM850-Body-Worn-GPRS-1TS-Mid-Front

DUT: KL005AD01; Type: Body; Serial: 8626950006736938

Communication System: GSM850-GPRS: Frequency: 836.6 MHz:Duty Cycle: 1:8.3

Medium: HSL835 Body Medium parameters used: f = 836.6 MHz; σ = 0.947 mho/m; ϵ_r = 56.1; ρ = 1000

kq/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Middle-Front/Area Scan (81x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.211 mW/g

Body Worn - Middle-Front/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 9.45 V/m; Power Drift = -0.137 dB

Peak SAR (extrapolated) = 0.263 W/kg

SAR(1 g) = 0.195 mW/g; SAR(10 g) = 0.140 mW/gMaximum value of SAR (measured) = 0.207 mW/g

0 dB = 0.207 mW/g

Page 33 of 113

16.5.14 GSM850-BodyWorn-GPRS-2Slot-Front-Middle

Date/Time: 2010-4-28 8:42:36

Test Laboratory: SGS-GSM

GSM850-Body-Worn-GPRS-2TS-Middle-Front

DUT: KL005AD01; Type: Body; Serial: 8626950006736938

Communication System: GSM850-GPRS Mode; Frequency: 836.6 MHz;Duty Cycle: 1:4.15

Medium: HSL835 Body Medium parameters used: f = 836.6 MHz; σ = 0.96 mho/m; ϵ_r = 55.1; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn-Mid -Front/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.421 mW/g

Body Worn-Mid -Front/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.7 V/m; Power Drift = -0.040 dB

Peak SAR (extrapolated) = 0.535 W/kg

SAR(1 g) = 0.393 mW/g; SAR(10 g) = 0.280 mW/gMaximum value of SAR (measured) = 0.420 mW/g

0 dB = 0.420 mW/g

16.5.15 GSM850-BodyWorn-GPRS-2Slot-Rear-Middle

Date/Time: 2010-4-28 8:10:19

Test Laboratory: SGS-GSM

GSM850-Body-Worn-GPRS-2TS-Middle-Rear

DUT: KL005AD01; Type: Body; Serial: 8626950006736938

Communication System: GSM850-GPRS Mode; Frequency: 836.6 MHz;Duty Cycle: 1:4.15

Medium: HSL835 Body Medium parameters used: f = 836.6 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn-Mid -Rear/Area Scan (81x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.931 mW/g**

Body Worn-Mid -Rear/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 19.4 V/m; Power Drift = -0.053 dB

Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.857 mW/g; SAR(10 g) = 0.597 mW/g

Maximum value of SAR (measured) = 0.913 mW/g

0 dB = 0.913 mW/g

16.5.16 GSM850-BodyWorn-GPRS-2Slot-Rear-Low

Date/Time: 2010-4-28 9:11:27

Test Laboratory: SGS-GSM

GSM850-Body-Worn-GPRS-2TS-Low-Rear

DUT: KL005AD01; Type: Body; Serial: 8626950006736938

Communication System: GSM850-GPRS Mode; Frequency: 824.2 MHz;Duty Cycle: 1:4.15

Medium: HSL835 Body Medium parameters used: f = 824.2 MHz; $\sigma = 0.947 \text{ mho/m}$; $\epsilon_r = 55.2$; $\rho = 1000$

ka/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Low -Rear/Area Scan (81x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.752 mW/g

Body Worn - Low -Rear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.7 V/m; Power Drift = -0.169 dB

Peak SAR (extrapolated) = 0.975 W/kg

SAR(1 g) = 0.692 mW/g; SAR(10 g) = 0.477 mW/g

Maximum value of SAR (measured) = 0.735 mW/g

0 dB = 0.735 mW/g

Page 36 of 113

16.5.17 GSM850-BodyWorn-GPRS-2Slot-Rear-High

Date/Time: 2010-4-28 9:47:19

Test Laboratory: SGS-GSM

GSM850-Body-Worn-GPRS-2TS-High-Rear

DUT: KL005AD01; Type: Body; Serial: 8626950006736938

Communication System: GSM850-GPRS Mode: Frequency: 848.8 MHz:Duty Cycle: 1:4.15

Medium: HSL835 Body Medium parameters used: f = 848.8 MHz; σ = 0.973 mho/m; ϵ_r = 55.1; ρ = 1000

kq/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn-High -Rear/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.18 mW/g

Body Worn-High -Rear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.1 V/m; Power Drift = -0.056 dB

Peak SAR (extrapolated) = 1.54 W/kg

SAR(1 g) = 1.1 mW/g; SAR(10 g) = 0.760 mW/g

Maximum value of SAR (measured) = 1.18 mW/g

0 dB = 1.18 mW/g

Page 37 of 113

Page 38 of 113

16.5.18 GSM850-BodyWorn-GPRS-Worstcase With Headset

Date/Time: 2010-4-28 13:45:32

Test Laboratory: SGS-GSM

GSM850-Body-Worn-GPRS-2TS-High-Rear With Headset DUT: KL005AD01; Type: Body; Serial: 8626950006736938

Communication System: GSM850-GPRS Mode; Frequency: 848.8 MHz;Duty Cycle: 1:4.15

Medium: HSL835 Body Medium parameters used: f = 848.8 MHz; $\sigma = 0.973$ mho/m; $\epsilon_r = 55.1$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn-High -rear with Headset 2/Area Scan (61x81x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.01 mW/g**

Body Worn-High -rear with Headset 2/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 20.8 V/m; Power Drift = -0.151 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 0.939 mW/g; SAR(10 g) = 0.653 mW/gMaximum value of SAR (measured) = 0.994 mW/g

0 dB = 0.994 mW/g

Page 39 of 113

16.5.19 GSM850-BodyWorn-GPRS-Worstcase With Memory

Date/Time: 2010-4-28 10:13:48

Test Laboratory: SGS-GSM

GSM850-Body-Worn-GPRS-2TS-High-Rear With Memory DUT: KL005AD01; Type: Body; Serial: 8626950006736938

Communication System: GSM850-GPRS Mode: Frequency: 848.8 MHz:Duty Cycle: 1:4.15

Medium: HSL835 Body Medium parameters used: f = 848.8 MHz; $\sigma = 0.973$ mho/m; $\epsilon_r = 55.1$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn-High rear with Memory/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.970 mW/g

Body Worn-High rear with Memory/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.5 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.906 mW/g; SAR(10 g) = 0.628 mW/gMaximum value of SAR (measured) = 0.966 mW/g

0 dB = 0.966 mW/g

Page 40 of 113

16.5.20 GSM850-BodyWorn-GPRS-Worstcase With Bluetooth

Date/Time: 2010-4-28 14:29:22

Test Laboratory: SGS-GSM

GSM850-Body-Worn-GPRS-2TS-High-Rear With Bluetooth DUT: KL005AD01; Type: Body; Serial: 8626950006736938

Communication System: GSM850-GPRS Mode: Frequency: 848.8 MHz:Duty Cycle: 1:4.15

Medium: HSL835 Body Medium parameters used: f = 848.8 MHz; σ = 0.973 mho/m; ϵ_r = 55.1; ρ = 1000

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn-High -Rear with BT/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.09 mW/g

Body Worn-High -Rear with BT/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.9 V/m; Power Drift = -0.041 dB

Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 1.03 mW/g; SAR(10 g) = 0.715 mW/gMaximum value of SAR (measured) = 1.10 mW/g

0 dB = 1.10 mW/g

16.5.21 PCS1900-LeftHandSide-Cheek-Middle

Date/Time: 2010-5-5 10:24:01

Test Laboratory: SGS-GSM

PCS1900-LeftHandSide-Cheek-Mid

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; $\sigma = 1.4 \text{ mho/m}$; $\epsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Mid/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.260 mW/g

Cheek position - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.80 V/m; Power Drift = 0.049 dB

Peak SAR (extrapolated) = 0.351 W/kg

SAR(1 g) = 0.241 mW/g; SAR(10 g) = 0.155 mW/g

Maximum value of SAR (measured) = 0.258 mW/g

0 dB = 0.258 mW/g

16.5.22 PCS1900-LeftHandSide-Tilt-Middle

Date/Time: 2010-5-5 9:12:14

Test Laboratory: SGS-GSM PCS1900-LeftHandSide-Tilt-Mid

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; $\sigma = 1.4 \text{ mho/m}$; $\epsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt position - Mid/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.068 mW/g

Tilt position - Mid/Zoom Scan (7x7x7) (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 5.67 V/m; Power Drift = 0.073 dB

Peak SAR (extrapolated) = 0.087 W/kg

SAR(1 g) = 0.058 mW/g; SAR(10 g) = 0.036 mW/gMaximum value of SAR (measured) = 0.063 mW/g

0 dB = 0.063 mW/g

Page 43 of 113

16.5.23 PCS1900-LeftHandSide-Cheek-Low

Date/Time: 2010-5-5 10:53:35

Test Laboratory: SGS-GSM

PCS1900-LeftHandSide-Cheek-Low

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: PCS1900-GSM Mode; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1850.2 MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 39.1$; $\rho = 1000$

kq/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Low/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.214 mW/g

Cheek position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.46 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 0.295 W/kg

SAR(1 g) = 0.198 mW/g; SAR(10 g) = 0.127 mW/g

Maximum value of SAR (measured) = 0.213 mW/g

0 dB = 0.213 mW/g

16.5.24 PCS1900-LeftHandSide-Cheek-High

Date/Time: 2010-5-5 11:20:07

Test Laboratory: SGS-GSM

PCS1900-LeftHandSide-Cheek-High

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: PCS1900-GSM Mode; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3

Medium: HSL1900 Head Medium parameters used: f = 1909.8 MHz; σ = 1.43 mho/m; ϵ_r = 38.9; ρ = 1000

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position -High/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.293 mW/g

Cheek position -High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.21 V/m; Power Drift = -0.267 dB

Peak SAR (extrapolated) = 0.382 W/kg

SAR(1 g) = 0.263 mW/g; SAR(10 g) = 0.168 mW/g

Maximum value of SAR (measured) = 0.283 mW/g

0 dB = 0.283 mW/g

Page 45 of 113

16.5.25 PCS1900-LeftHandSide-Worstcase-With Memory

Date/Time: 2010-5-5 11:56:30

Test Laboratory: SGS-GSM

PCS1900-LeftHandSide-Cheek-High with Memory

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: PCS1900-GSM Mode; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3

Medium: HSL1900 Head Medium parameters used: f = 1909.8 MHz; σ = 1.43 mho/m; ϵ_r = 38.9; ρ = 1000

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position -High With Memory/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.261 mW/g

Cheek position -High With Memory/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.01 V/m; Power Drift = -0.058 dB

Peak SAR (extrapolated) = 0.359 W/kg

SAR(1 g) = 0.245 mW/g; SAR(10 g) = 0.156 mW/g

Maximum value of SAR (measured) = 0.262 mW/g

0 dB = 0.262 mW/g

Page 46 of 113

16.5.26 PCS1900-LeftHandSide-Worstcase-With Bluetooth

Date/Time: 2010-5-5 12:22:48

Test Laboratory: SGS-GSM

PCS1900-LeftHandSide-Cheek-High with Bluetooth

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: PCS1900-GSM Mode; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1909.8 MHz; $\sigma = 1.43 \text{ mho/m}$; $\epsilon_r = 38.9$; $\rho = 1000 \text{ medium}$

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position -High With Bluetooth/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.261 mW/g

Cheek position -High With Bluetooth/Zoom Scan (7x7x7) (7x7x7)/Cube 0: **Measurement grid: dx=5mm**, dy=5mm, dz=5mm

Reference Value = 3.96 V/m; Power Drift = -0.073 dB

Peak SAR (extrapolated) = 0.358 W/kg

SAR(1 g) = 0.245 mW/g; SAR(10 g) = 0.156 mW/gMaximum value of SAR (measured) = 0.263 mW/g

0 dB = 0.263 mW/g

16.5.27 PCS1900-RightHandSide-Cheek-Middle

Date/Time: 2010-5-4 14:46:11

Test Laboratory: SGS-GSM

PCS1900-RightHandSide-Cheek-Mid

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; $\sigma = 1.4 \text{ mho/m}$; $\epsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Middle/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.360 mW/g**

Cheek position - Middle/Zoom Scan (7x7x7)/Cube 0: **Measurement grid: dx=5mm, dy=5mm, dz=5mm**

Reference Value = 5.47 V/m; Power Drift = -0.094 dB

Peak SAR (extrapolated) = 0.514 W/kg

SAR(1 g) = 0.333 mW/g; SAR(10 g) = 0.204 mW/gMaximum value of SAR (measured) = 0.363 mW/g

0 dB = 0.363 mW/g

16.5.28 PCS1900-RightHandSide-Tilt-Middle

Date/Time: 2010-5-4 14:20:21

Test Laboratory: SGS-GSM PCS1900-RightHandSide-Tilt-Mid

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; $\sigma = 1.4 \text{ mho/m}$; $\epsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt position - Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.075 mW/g

Tilt position - Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.73 V/m; Power Drift = -0.072 dB

Peak SAR (extrapolated) = 0.101 W/kg

SAR(1 g) = 0.068 mW/g; SAR(10 g) = 0.043 mW/gMaximum value of SAR (measured) = 0.073 mW/g

0 dB = 0.073 mW/g

16.5.29 PCS1900-RightHandSide-Cheek-Low

Date/Time: 2010-5-4 15:23:24

Test Laboratory: SGS-GSM

PCS1900-RightHandSide-Cheek-Low

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: PCS1900-GSM Mode: Frequency: 1850.2 MHz:Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1850.2 MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 39.1$; $\rho = 1000$

kq/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Low/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.287 mW/g

Cheek position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.96 V/m; Power Drift = -0.093 dB

Peak SAR (extrapolated) = 0.411 W/kg

SAR(1 g) = 0.266 mW/g; SAR(10 g) = 0.165 mW/gMaximum value of SAR (measured) = 0.289 mW/g

0 dB = 0.289 mW/g

f (86 -21) 54500149 ww.cn.sgs.com

16.5.30 PCS1900-RightHandSide-Cheek-High

Date/Time: 2010-5-4 16:14:51

Test Laboratory: SGS-GSM

PCS1900-RightHandSide-Cheek-High

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: PCS1900-GSM Mode; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3

Medium: HSL1900 Head Medium parameters used: f = 1909.8 MHz; σ = 1.43 mho/m; ϵ_r = 38.9; ρ = 1000

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - High/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.347 mW/g

Cheek position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.12 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 0.516 W/kg

SAR(1 g) = 0.323 mW/g; SAR(10 g) = 0.201 mW/g

Maximum value of SAR (measured) = 0.348 mW/g

0 dB = 0.348 mW/g

Page 51 of 113

16.5.31 PCS1900-RightHandSide-Worstcase-With Memory

Date/Time: 2010-5-4 16:47:48

Test Laboratory: SGS-GSM

PCS1900-RightHandSide-Cheek-Mid with Memory

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900 Head Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ϵ_r = 39; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Mid With Memory/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.291 mW/g

Cheek position - Mid With Memory/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.45 V/m; Power Drift = 0.054 dB

Peak SAR (extrapolated) = 0.422 W/kg

SAR(1 g) = 0.270 mW/g; SAR(10 g) = 0.171 mW/g

Maximum value of SAR (measured) = 0.290 mW/g

0 dB = 0.290 mW/g

16.5.32 PCS1900-RightHandSide-Worstcase-With Bluetooth

Date/Time: 2010-5-4 17:14:49

Test Laboratory: SGS-GSM

PCS1900-RightHandSide-Cheek-Mid with Bluetooth

DUT: KL005AD01; Type: Head; Serial: 8626950006736938

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900 Head Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ϵ_r = 39; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek position - Mid With Bluetooth/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.293 mW/g

Cheek position - Mid With Bluetooth/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.44 V/m; Power Drift = -0.027 dB

Peak SAR (extrapolated) = 0.415 W/kg

SAR(1 g) = 0.270 mW/g; SAR(10 g) = 0.171 mW/g

Maximum value of SAR (measured) = 0.290 mW/g

0 dB = 0.290 mW/g

16.5.33 PCS1900-BodyWorn-GPRS-1Slot-Front-Middle

Date/Time: 2010-5-5 14:50:33

Test Laboratory: SGS-GSM

PCS1900-Body-Worn-GPRS-1TS-Mid-Front

DUT: KL005AD01; Type: Body; Serial: 8626950006736938

Communication System: PCS1900-GPRS Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.5 \text{ mho/m}$; $\epsilon_r = 53.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.58, 4.58, 4.58); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Middle Front/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.054 mW/g

Body Worn - Middle Front/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.16 V/m; Power Drift = -0.012 dB

Peak SAR (extrapolated) = 0.073 W/kg

SAR(1 g) = 0.049 mW/g; SAR(10 g) = 0.032 mW/g

Maximum value of SAR (measured) = 0.053 mW/g

0 dB = 0.053 mW/g

16.5.34 PCS1900-BodyWorn-GPRS-2Slot-Front-Middle

Date/Time: 2010-5-6 8:23:50

Test Laboratory: SGS-GSM

PCS1900-Body-Worn-GPRS-2TS-Front-Middle

DUT: KL005AD01; Type: Body; Serial: 8626950006736938

Communication System: PCS1900-GPRS Mode; Frequency: 1880 MHz;Duty Cycle: 1:4.15

Medium: HSL 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.5 \text{ mho/m}$; $\epsilon_r = 53.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.58, 4.58, 4.58); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Middle Front/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.153 mW/g

Body Worn - Middle Front/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.59 V/m; Power Drift = -0.023 dB

Peak SAR (extrapolated) = 0.209 W/kg

SAR(1 g) = 0.142 mW/g; SAR(10 g) = 0.094 mW/g

Maximum value of SAR (measured) = 0.152 mW/g

0 dB = 0.152 mW/g

16.5.35 PCS1900-BodyWorn-GPRS-2Slot-Rear-Middle

Date/Time: 2010-5-6 7:45:02

Test Laboratory: SGS-GSM

PCS1900-Body-Worn-GPRS-2TS-Rear-Middle

DUT: KL005AD01; Type: Body; Serial: 8626950006736938

Communication System: PCS1900-GPRS Mode; Frequency: 1880 MHz; Duty Cycle: 1:4.15

Medium: HSL 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 53.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.58, 4.58, 4.58); Calibrated: 2009-11-19

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn - Middle Rear/Area Scan (61x91x1): **Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.393 mW/g**

Body Worn - Middle Rear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.50 V/m; Power Drift = -0.055 dB

Peak SAR (extrapolated) = 0.545 W/kg

SAR(1 g) = 0.362 mW/g; SAR(10 g) = 0.229 mW/gMaximum value of SAR (measured) = 0.389 mW/g

0 dB = 0.389 mW/g

Page 56 of 113

16.5.36 PCS1900-BodyWorn-GPRS-2Slot-Rear-Low

Date/Time: 2010-5-6 8:48:53

Test Laboratory: SGS-GSM

PCS1900-Body-Worn-GPRS-2TS-Rear-Low

DUT: KL005AD01; Type: Body; Serial: 8626950006736938

Communication System: PCS1900-GPRS Mode; Frequency: 1850.2 MHz;Duty Cycle: 1:4.15

Medium: HSL 1900 Body Medium parameters used: f = 1850.2 MHz; $\sigma = 1.46$ mho/m; $\varepsilon_r = 53.9$; $\rho = 1000$

ka/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.58, 4.58, 4.58); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn- Low Rear/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.386 mW/g

Body Worn- Low Rear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.6 V/m; Power Drift = -0.067 dB

Peak SAR (extrapolated) = 0.537 W/kg

SAR(1 g) = 0.358 mW/g; SAR(10 g) = 0.227 mW/g

Maximum value of SAR (measured) = 0.386 mW/g

0 dB = 0.386 mW/g

Page 57 of 113

16.5.37 PCS1900-BodyWorn-GPRS-2Slot-Rear-High

Date/Time: 2010-5-6 9:12:53

Test Laboratory: SGS-GSM

PCS 1900-Body-Worn-GPRS-2TS-Rear-High

DUT: KL005AD01; Type: Body; Serial: 8626950006736938

Communication System: PCS1900-GPRS Mode; Frequency: 1909.8 MHz;Duty Cycle: 1:4.15

Medium: HSL 1900 Body Medium parameters used: f = 1909.8 MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 53.8$; $\rho = 1000$

ka/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.58, 4.58, 4.58); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn-High Rear/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.420 mW/g

Body Worn-High Rear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.6 V/m; Power Drift = 0.074 dB

Peak SAR (extrapolated) = 0.597 W/kg

SAR(1 g) = 0.396 mW/g; SAR(10 g) = 0.248 mW/g

Maximum value of SAR (measured) = 0.426 mW/g

Page 58 of 113

Page 59 of 113

16.5.38 PCS1900-BodyWorn-GPRS-Worstcase With Headset

Date/Time: 2010-5-6 10:42:51

Test Laboratory: SGS-GSM

PCS1900-Body-Worn-GPRS-2TS-Rear-High With Headset DUT: KL005AD01; Type: Body; Serial: 8626950006736938

Communication System: PCS1900-GPRS Mode; Frequency: 1909.8 MHz;Duty Cycle: 1:4.15

Medium: HSL 1900 Body Medium parameters used: f = 1909.8 MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 53.8$; $\rho = 1000$

ka/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.58, 4.58, 4.58); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn-High With Headset/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.421 mW/g

Body Worn-High With Headset/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.7 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 0.590 W/kg

SAR(1 g) = 0.390 mW/g; SAR(10 g) = 0.246 mW/g

Maximum value of SAR (measured) = 0.422 mW/g

0 dB = 0.422 mW/g

Page 60 of 113

16.5.39 PCS1900-BodyWorn-GPRS-Worstcase With Memory

Date/Time: 2010-5-6 11:06:19

Test Laboratory: SGS-GSM

PCS1900-Body-Worn-GPRS-2TS-Rear-High With Memory DUT: KL005AD01; Type: Body; Serial: 8626950006736938

Communication System: PCS1900-GPRS Mode; Frequency: 1909.8 MHz;Duty Cycle: 1:4.15

Medium: HSL 1900 Body Medium parameters used: f = 1909.8 MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 53.8$; $\rho = 1000$

ka/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.58, 4.58, 4.58); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn-High With memory/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.432 mW/g

Body Worn-High With memory/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.7 V/m; Power Drift = 0.031 dB

Peak SAR (extrapolated) = 0.596 W/kg

SAR(1 g) = 0.391 mW/g; SAR(10 g) = 0.246 mW/g

Maximum value of SAR (measured) = 0.425 mW/g

0 dB = 0.425 mW/g

Page 61 of 113

16.5.40 PCS1900-BodyWorn-GPRS-Worstcase With Bluetooth

Date/Time: 2010-5-6 10:19:09

Test Laboratory: SGS-GSM

PCS1900-Body-Worn-GPRS-2TS-Rear-High With Bluetooth DUT: KL005AD01; Type: Body; Serial: 8626950006736938

Communication System: PCS1900-GPRS Mode; Frequency: 1909.8 MHz;Duty Cycle: 1:4.15

Medium: HSL 1900 Body Medium parameters used: f = 1909.8 MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 53.8$; $\rho = 1000$

ka/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.58, 4.58, 4.58); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn-High With Bluetooth/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.431 mW/g

Body Worn-High With Bluetooth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.7 V/m; Power Drift = 0.014 dB

Peak SAR (extrapolated) = 0.584 W/kg

SAR(1 g) = 0.388 mW/g; SAR(10 g) = 0.245 mW/g

Maximum value of SAR (measured) = 0.419 mW/g

0 dB = 0.419 mW/g

17. Identification of Samples

Product Name	GSM Mobile	GSM Mobile			
Brand Name	LENOVO	LENOVO			
Marketing Name	S62	S62			
Final Hardware Version	H301				
Final Software Version	S62_VE_S100_10	0119			
Normal Voltage	3.8V				
Low Voltage	3.5V				
High Voltage	4.2V	4.2V			
Dellaration	Lenovo BL114				
Battery Type	800mAh, 3.7V	800mAh, 3.7V			
Antenna Type	Inner antenna				
	GSM850	Tx: 824~849MHz			
GSM Frequency Bands	001/1000	Rx: 869~894MHz			
GSIVI Frequency Bands	PCS1900	Tx:1850~1910MHz			
	1 00 1000	Rx:1930~1990MHz			
Modulation Mode	GMSK				
COM / OPPO Paras Class	GSM850	4			
GSM / GPRS Power Class	PCS1900	1			
GPRS Class	Class 10				
Device Class	В				
Reference Number	KL005AD01	KL005AD01			
IMEI	862695000673693	8626950006736938			
Date of receipt	04-26,2010	04-26,2010			
Date of Testing Start	04-28,2010	04-28,2010			
Date of Testing End	05-06,2010				

Page 63 of 113

18. Photographs of EUT

Fig.17-1 Front View

Fig.17-2 Back View

Fig.17-3 Battery

SHGSM

Member of the SGS Group (Société Générale de Surveillance)

Page 64 of 113

Fig.17-3-1 Battery Label (English Version)

Fig.17-4 Headset

Photographs of Test Setup Annex A

Fig.A-1 Photograph of the SAR measurement System

Fig.A-2a Photograph of the Tissue Simulant Liquid depth 15cm for Head

Fig.A-2b Photograph of the Tissue Simulant Liquid depth 15cm for Head

Page 66 of 113

Fig.A-3a Photograph of the Tissue Simulant Liquid depth 15cm for Body Worn

Fig.A-3b Photograph of the Tissue Simulant Liquid depth 15cm for Body Worn

Fig.A-4a Photograph of the Left Hand Side Cheek status

Fig.A-4b Photograph of the Left Hand Side Tilted status

Page 67 of 113

Fig.A-4c Photograph of the Right Hand Side Cheek status

Fig.A-4d Photograph of the Right Hand Side Tilted status

Fig.A-4e Photograph of the Body Worn status

Report No.: GSM10232281S01 Issue Date: 06-07, 2010

Page 68 of 113

Annex B Tissue Simulant Liquid

Annex B.1 Recipes for Tissue Simulant Liquid

The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands.

Frequency (MHz)	835		900		1800-2000		
Tissue Type	Head	Body	Head	Body	Head	Body	
Ingredient (% by weight)							
Water	40.30	50.75	40.30	50.75	55.24	70.17	
Salt (NaCl)	1.38	0.94	1.38	0.94	0.31	0.39	
Sucrose	57.90	48.21	57.90	48.21	0	0	
HEC	0.24	0	0.24	0	0	0	
Bactericide	0.18	0.10	0.10	0.10	0	0	
DGBE	0	0	0	0	44.45	29.44	
	Measureme	ent dielectric	parameters				
Dielectric Constant	41.9	55.0	41.1	54.5	39.2	53.2	
Conductivity (S/m)	0.93	0.97	1.04	1.06	1.45	1.59	
Target values							
Dielectric Constant	41.5	55.2	41.5	55.0	40.0	53.3	
Conductivity (S/m)	0.90	0.97	0.97	1.05	1.40	1.52	
Salt: 00+0/ Dura Sadium Chlorida	Cuarage (10 ⁺ 0/ Dura Cuarage						

Salt: $99^{+}\%$ Pure Sodium Chloride Sucrose: $98^{+}\%$ Pure Sucrose Water: De-ionized, $16 \text{ M}\Omega^{+}$ resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99⁺% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Table B-1 Recipe of Tissue Simulat Liquid

Annex B.2 Measurement for Tissue Simulant Liquid

The dielectric properties for this Tissue Simulant Liquids were measured by using the Agilent Model 85070D Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjunction with Agilent E5071B Network Analyzer (300 KHz-8500 MHz). The Conductivity (σ) and Permittivity (σ) are listed in Table 1.For the SAR measurement given in this report. The temperature variation of the Tissue Simulant Liquids was 22±2°C.

Frequency (MHz)	Tissue Type	Limit/Measured	Permittivity (ρ)	Conductivity (σ)	Temp (°C)
835 —	Head	Recommended Limit	41.5±5%	0.90±5%	22±2
		Recommended Limit	(39.43~43.57)	(0.86~0.94)	
		Measured, 04-29,2010	41.8	0.90	22.3
	Body	Recommended Limit	55.2±5%	0.97±5%	22±2
		Recommended Limit	(52.44~57.96)	(0.92~1.01)	
		Measured, 04-27,2010	55.1	0.96	21.9

Page 69 of 113

1900	Head	Recommended Limit	40±5%	1.40±5%	22±2
			(38-42)	(1.33~1.47)	
		Measured, 05-04,2010	38.9	1.42	22.5
		Measured, 05-05,2010	38.9	1.42	22.3
	Body	Recommended Limit	53.3±5%	1.52±5%	22±2
			(50.64~55.96)	(1.45~1.59)	
		Measured, 05-05,2010	53.8	1.53	22.7

Table B-2 Measurement result of Tissue electric parameters

Annex C **SAR System Validation**

The microwave circuit arrangement for system verification is sketched in Fig. C-1. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. These tests were done at 835&1900MHz. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the table C-1 (A power level of 250mw was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Fig. C-1 the microwave circuit arrangement used for SAR system verification

Page 70 of 113

- A. Agilent E4438C Signal Generator
- B. Mini-Circuit ZHL-42 Preamplifier
- C. Mini-Circuit VLF-2500+ Low Pass Filter
- D. Mini-Circuits ZABDC20-252H-N+ Bi-DIR Coupling

PM1. Power Sensor NRP-Z92

PM2. Agilent Model E4416A Power Meter

PM3. Power Sensor NRP-Z92

Validation	Frequency	Tissue	Limit/Measurement			
Kit (MHz) Type		Туре	Condition	Recommended/Measured	1g	
D835V2		Head	Nomalized to 1mW(for nominal Head TSL parameters)	Recommended Limit	9.62±10% (8.66-10.58)	
			Nomalized to 1W(for nominal Head TSL parameters)	-	9.58	
	835		250mW input power	Measured, 04-29, 2010	2.39	
	633	Body	Nomalized to 1mW(for nominal Head TSL parameters)	Recommended Limit	9.89±10% (8.90-10.87)	
			Nomalized to 1W(for nominal Head TSL parameters)	-	9.87	
			250mW input power	Measured, 04-27, 2010	2.45	
D1900V2		Head	Nomalized to 1W(for nominal Head TSL parameters)	Recommended Limit	39.3±10% (35.37-43.23)	
			Nomalized to 1W(for nominal Head TSL parameters)	-	39.42 40.88	
			250mW input power	Measured, 05-04, 2010	10.0	
	1900		250mW input power	Measured, 05-05, 2010	10.6	
		Body	Nomalized to 1mW(for nominal Head TSL parameters)	Recommended Limit	40.4±10% (36.36-44.44)	
			Nomalized to 1W(for nominal Head TSL parameters)	-	41.93	
			250mW input power	Measured, 05-05, 2010	10.5	

Table C-1 SAR System Validation Result

Page 71 of 113

System Validation for 835MHz-Head

Date/Time: 2010-4-29 9:15:46

Test Laboratory: SGS-GSM System-Validation-D835-Head

DUT: Dipole 835MHz; Type: D835V2; Serial: D835V2 - SN:4d070 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835_Head Medium parameters used: f = 835 MHz; $\sigma = 0.907 \text{ mho/m}$; $\epsilon_r = 41.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.84, 5.84, 5.84); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.55 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.0 V/m; Power Drift = -0.163 dB

Peak SAR (extrapolated) = 3.66 W/kg

SAR(1 g) = 2.39 mW/g; SAR(10 g) = 1.55 mW/g

Maximum value of SAR (measured) = 2.58 mW/g

0 dB = 2.58 mW/g

System Validation for 835MHz-Body

Date/Time: 2010-4-27 16:26:30

Test Laboratory: SGS-GSM System-Validation-D835-Body

DUT: Dipole 835MHz; Type: D835V2; Serial: D835V2 - SN:4d070 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835 Body Medium parameters used: f = 835 MHz; $\sigma = 0.945$ mho/m; $\epsilon_r = 56.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(5.68, 5.68, 5.68); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.63 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.4 V/m; Power Drift = -0.043 dB

Peak SAR (extrapolated) = 3.64 W/kg

SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.62 mW/g

Maximum value of SAR (measured) = 2.65 mW/g

0 dB = 2.65 mW/g

System Validation for 1900MHz-Head

Date/Time: 2010-5-4 12:36:56

Test Laboratory: SGS-GSM System-Validation-D1900-Head

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d028 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900_Head Medium parameters used: f = 1900 MHz; $\sigma = 1.42 \text{ mho/m}$; $\epsilon_r = 38.9$; $\rho = 1000 \text{ mHz}$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW 2/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.7 mW/g

d=10mm, Pin=250mW 2/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 64.6 V/m; Power Drift = -0.057 dB

Peak SAR (extrapolated) = 18.6 W/kg

SAR(1 g) = 10 mW/g; SAR(10 g) = 5.24 mW/g

Maximum value of SAR (measured) = 11.3 mW/g

0 dB = 11.3 mW/g

Page 74 of 113

Date/Time: 2010-5-5 8:30:00

Test Laboratory: SGS-GSM System-Validation-D1900-Head

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d028 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900 Head Medium parameters used: f = 1900 MHz; $\sigma = 1.42 \text{ mho/m}$; $\epsilon_r = 38.9$; $\rho = 1000 \text{ mHz}$

kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.97, 4.97, 4.97); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.4 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.7 V/m; Power Drift = -0.268 dB

Peak SAR (extrapolated) = 19.8 W/kg

SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.48 mW/gMaximum value of SAR (measured) = 11.7 mW/g

0 dB = 11.7 mW/g

Page 75 of 113

System Validation for 1900MHz-Body

Date/Time: 2010-5-5 14:09:46

Test Laboratory: SGS-GSM System-Validation-D1900-Body

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d028 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 53.8$; $\rho = 1000$

ka/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ES3DV3 - SN3088; ConvF(4.58, 4.58, 4.58); Calibrated: 2009-11-19

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2009-11-18

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.3 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 78.1 V/m; Power Drift = -0.228 dB

Peak SAR (extrapolated) = 18.6 W/kg

SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.51 mW/gMaximum value of SAR (measured) = 11.9 mW/g

0 dB = 11.9 mW/g

Page 76 of 113

Description of Test Position Annex D

Annex D.1 **SAM Phantom Shape**

Figure D-1 front, back, and side views of SAM (model for the phantom shell). Full-head model is for illustration purposes only-procedures in this recommended practice are intended primarily for the phantom setup of Figure D-2. Note: The center strip including the nose region has a different thickness tolerance.

Figure D-2 Sagittally bisected phantom with extended perimeter (shown placed on its side as used for SAR measurements)

Figure D-3 Close-up side view of phantom showing the ear region, N-F and B-M lines, and seven cross-sectional plane locations

Figure D-4 Side view of the phantom showing relevant markings and seven cross-sectional plane locations

Page 77 of 113

Annex D.2 **EUT constructions**

Figure D-5a Handset vertical and horizontal reference lines-"fixed case"

Figure D-5b Handset vertical and horizontal reference lines-"clam-shell case"

Annex D.3 Definition of the "cheek" position

- a) Position the device with the vertical centre line of the body of the device and the horizontal line crossing the centre of the ear piece in a plane parallel to the sagittal plane of the phantom ("initial position" see Figure 1-7). While maintaining the device in this plane, align the vertical centre line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the centre of the ear piece with the line RE-LE;
- b) Translate the mobile phone box towards the phantom with the ear piece aligned with the line LE-RE until the phone touches the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

Annex D.4 Definition of the "tilted" position

- a) Position the device in the "cheek" position described above;
- b) While maintaining the device in the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.

Page 78 of 113

Figure D-6 Definition of the reference lines and points, on the phone and on the phantom and initial position

Figure D-7 "Cheek" and "tilt" positions of the mobile phone on the left side

Page 79 of 113

Annex E **Calibration certificate**

Annex E.1 Probe Calibration certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SGS SH (Auden)

Schweizerischer Katibrierdienst Service suisse d'étalonnage Servizio avizzero di taneture Swiss Calibration Service

Accredited by the Swiss Abbreditation Service (SAS) The Swiss Appreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Certificate No: ES3-3088 Nov09

C

CALIBRATION CERTIFICATE ES3DV3 - SN:3088 Object QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure(s) Calibration procedure for dosimetric E-field probes November 19, 2009 Calibration date:

This calibration cartificate documents the traceability to national standards, which realize the physical units of meesurements (Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the confidence.

All colibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (MATE or tical for calibration)

Frimary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Forest meder F44193	GB41293874	1-Apr-08 (No. 217-01030)	Apr-10
Fower sensor E4412A	MY41495277	1-Apr-08 (No. 217-01030)	Apr-10
Fower sensor E4412Λ	MY41498087	1-Apr-06 (No. 217-01030)	Apr-10
Reference 3 dB Attanuator	SN: 85054 (3c)	31-Mer-09 (No. 217-01026)	Mar-10
Reference 20 dB Alternuator	SN. 35086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10
Reference Proba ES3DV2	SN: 3013	2-Jan-09 (No. ES3-3013_Jan06)	Jan-10
DAE4	SN: 660	29-Sep-09 (No. DAE4-693_Sep09)	Scp 10
Secondary Stancards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8646C	US3642U017C0	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8763E	US37390586	18-Oct-01 (in house chack Oct-00)	In house chack: Oct 10
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	J-11-
Approved by:	Katja Policvio	Technical Manager	X 105
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1000	13011100	ku ed November 24 2020

Certificate No. ES3-3088_Nov09

SHGSM

This calibration carbificate shall not be reproduced except in full without written approval of the laboratory.

Page 80 of 113

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 9004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accomplishing No.: SCS 108

Accredited by the Swiss Accreditation Sprvice (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,Z ConvF

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

DCP OF A.B.C

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

e rotation around probe axis

Polarization o Polarization 9

3 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., θ = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement

Techniques", December 2003
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear [frequency range of 300 MHz to 3 GHz]*, February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z. Assessed for E-field polarization 8 = 0 (f ≤ 900 MHz in TEM-cell; 1> 1800 MHz; R22 waveguide). NORMx.y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media; VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same solups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Sonerical isotropy (3D deviation from isotropy): in a field of low gradients realized using a fat phantom exposed by a patch antenna
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3088_Nov09

Page 2 of 11

Page 81 of 113

ES3DV3 SN:3088

November 19, 2009

Probe ES3DV3

SN:3088

Manufactured:

July 20, 2005

Last calibrated:

December 22, 2008

Recalibrated:

November 19, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: E83-3088_Nov09

Page 3 of 11

Page 82 of 113

ES3DV3 SN:3088

November 19, 2009

DASY - Parameters of Probe: ES3DV3 SN:3088

Basic Calibration Parameters

19-50-0	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ⁴	1.32	1.27	1.26	± 10.1%
DCP (niV) [®]	94.2	94.4	94.3	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^c (k=2)
10000	cw	0.00	X	0.00	0.00	1.00	300.0	± 1.5%
	2.22	10000	Y	0.00	0.00	1.00	300.0	A CONTRACTOR
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Cartificate No. ES3-3088, Nov09

Page 4 of 11

^{*} The uncertainties of NermX,Y,Z do not affect the E² field uncontainty inside TEL (see Pages 6 and 6).

^{* (}knowtenty is determined, sing the maximum decart on from linear response applying recotangular distribution and is expressed for the square of the field value.

Page 83 of 113

ES3DV3 SN:3088

November 19, 2009

DASY - Parameters of Probe: ES3DV3 SN:3088

Calibration Parameter Determined in Head Tissue Simulating Media

r [MHz]	Validity (MHz) ^C	Permittivity	Conductivity	ConvF X Co	onvFY Co	mvF Z	Alpha	Depth Unc (k=2)
900	± 50 / ± 100	41.5 ± 5%	$0.97 \pm 5\%$	5.84	5.84	5.84	0.90	1.06 ± 11.0%
1810	± 50 / ± 100	$40.0 \pm 5\%$	$1.40 \pm 5\%$	5.00	5.00	5.00	0.38	1.75 ± 11.0%
1903	± 50 / ± 100.	$40.0 \pm 5\%$	$1.40 \pm 5\%$	4.97	4.97	4.97	0.48	1.53 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.40	4.40	4.40	0.43	1.79 ± 11.0%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at entiretion inequancy and the uncertainty to the Indicated frequency band.

Page 84 of 113

ES3DV3 SN:3088 November 19, 2009

DASY - Parameters of Probe: ES3DV3 SN:3088

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz]	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Dopth Unc (k=2)
500	±50/±100	$56.0 \pm 5\%$	$1.05\pm5\%$	5.88	5.68	5.68	0.97	1.07 ±11.0%
1810	±50/±100	$53.3\pm5\%$	1.52 ± 5%	4.76	4.76	4.76	0.41	1.88 ±11.0%
1900	±50/±100	$53.3 \pm 5\%$	1.52 ± 5%	4.58	4.58	4.58	0.36	2.13 ±11.0%
2450	±50/±100	52.7 ± 5%	1.95 ± 5%	4.20	4.20	4.20	0.99	1.04 + 11.0%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSE of the ConvF uncertainty at emitmation frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3-3088_Nov09

Page 6 of 11

Page 85 of 113

ES3DV3 SN:3088

November 19, 2009

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX. Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: E53-3088_Nov09

Page 7 of 11

ES3DV3 SN:3088

November 19, 2009

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ES3-3088_Nov09

Page 8 of 11.

ES3DV3 SN:3088

November 19, 2009

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3388_Nov09

Page 9 of 11

ES3DV3 SN:3088 November 19, 2009

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (¢, 9), f = 900 MHz

Uncertainty of Spherical isotropy Assessment: ± 2.6% (k=2)

Certificate No: ESS-3066_Nov09

Page 10 of 11

Page 89 of 113

ES3DV3 SN:3088

November 19, 2009

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	- 2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3085_Nov09

Page 11 of 11

Page 90 of 113

Annex E.2 DAE Calibration certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SGS - SH (Auden)

Accreditation No.: SCS 108

Certificate No: DAE3-569 Nov09 CALIBRATION CERTIFICATE DAE3 - SD 000 D03 AA - SN: 569 QA CAL-06,v12 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) Galibration date: November 18, 2009 This collibration certificats documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the dioxid laboratory locality: environment temperature (22 ± 3)°C and humidity < 70%. Colibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cel Dete (Certificate No.) Scheduled Calibration Keithley Multimote: Type 2001 SN: 0610278 1-Oct-09 (No: 9055) Oct-10 Secondary Standards Check Date (in house) Scheduled Check SE UMS 006 AB 1004 05-Jun-09 (in house check) In house check: Jun-10 Calibrated by: Dominique Steffen Technician Approved by: Fin Bon host RAD Director Issued November 18, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No. DAE3-569 Nov09

Page 1 of 5

Page 91 of 113

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Appreditation Sorvice (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics.

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement,
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage
 - AD Convertor Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating

Certificate No: DAE3-569_Nov09

Page 2 of 5

Report No.: GSM10232281S01

Issue Date: 06-07, 2010

Page 92 of 113

DC Voltage Measurement

A/D · Converter Resolution nominal Lligh Range: 1LSB =

Calibration Factors	x	Υ	z
High Range	404,766 ± 0.1% (k=2)	404.352 ± 0.1% (k=2)	404.129 ± 0.1% (k=2)
Low Range	3.94150 ± 0.7% (k=2)	3.93629 ± 0.7% (k=2)	3.95193 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	264.0 ° ± 1 °
---	---------------

Curtificate No: DAE3-569_Nov09

Page 3 of 5

Page 93 of 113

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	200000.4	3.78	0.00
Channel X + Input	20001.03	0.33	0.00
Channel X - Input	-19995.39	5.31	-0.03
Channel Y + Input	200010.9	3.93	0.00
Channel Y + Input	19997.76	-2.84	-0.01
Channel Y - Input	-20002.85	-3.05	0.02
Channel Z + Input	200008.6	4.33	0.00
Channel Z + Input	19999.52	-0.88	-0.00
Channel Z - Input	-20001.79	0.01	0.01

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	1999.7	-0.28	-0.01
Channel X	+ Input	199.60	-0.40	-0.20
Channel X	- Input	-201.13	-1.23	0.62
Channel Y	+ Input	2000.0	0.02	0.00
Channel Y	+ Input	199.28	-0.82	-0.41
Channel Y	- Input	-201.40	-1.50	0.75
Channel Z	+ Input	1999.9	-0.17	-0.01
Channel Z	+ Input	196,61	-1,39	-0.70
Channel Z	- Input	201.65	-1.75	0.88

2. Common mode sensitivity

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	-3.14	-5.24
	- 200	6.52	4.85
Channel Y	200	7.98	7.35
	- 200	-8.52	-8.82
Channel Z	200	-5.05	-5.64
	- 200	3.96	4.09

3. Channel separation

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	-	2.19	0.12
Channel Y	200	2.65		3.55
Channel Z	200	1.86	-0.43	

Certificate No: DAE3-569 Nov09

Page 4 of 5

Page 94 of 113

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16392	14988
Channel Y	15762	16421
Channel Z	16298	16514

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.18	-1.21	0.79	0.33
Channel Y	-0.61	-1.80	0.79	0.30
Channel Z	-0.97	-2.37	-0.10	0.36

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	199.8
Channel Y	0.2000	204.0
Channel Z	0.2001	204.9

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	17.9
Supply (- Vcc)	-7.6

9. Power Consumption (verified during one test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-U.01	-5	-9

Certificate No: DAE3-569_Nov09

Page 5 of 5

Page 95 of 113

Annex E.3 Dipole Calibration certification

D835V2

Certificate No: D835V2-4d070 Dec08

Page 1 of 9

Page 96 of 113

Measurement Conditions

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	0.89 mhoim ± 6 %
Head TSL temperature during test	(22.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43 mW / g
SAR normalized	normalized to 1W	9.72 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.62 mW/g±17.0 % (k=2)

SAR averaged over 10 cm ⁵ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.60 mW / g
SAR normalized	normalized to 1W	6.40 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.34 mW/g±16.5 % (k=2)

Certificate No: D835V2-4d070_Dec08

Page 3 of 9

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Page 97 of 113

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.7 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2,55 mW/g
SAR normalized	normalized to 1W	10.2 mW/g
SAR for nominal Body TSL parameters 2	normalized to 1W	9.89 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.68 mW/g
SAR normalized	normalized to 1W	6.72 mW / g
SAR for nominal Body TSL parameters ¹	normalized to 1W	6.58 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D835V2-4d070_Dec08

Page 4 of 9

Page 98 of 113

DASY5 Validation Report for Head TSL

Date/Time: 08.12.2008 10:31:04

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d070

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mbo/m; $\epsilon = 40.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV2 SN3025; ConvF(5.97, 5.97, 5.97); Calibrated: 28.04.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 14.03.2008
- Phantom; Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin=250mW; dip=15mm; dist=3.4mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy-5mm, dz-5mm

Reference Value = 56.7 V/m; Power Drift = -0.000938 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.6 mW/g

Maximum value of SAR (measured) = 2.73 mW/g

0 dB = 2.73 mW/g

Certificate No: D835V2-4d070 Dec08

Page 6 of 9

DASY5 Validation Report for Body TSL

Date/Time: 15.12.2008 11:58:06

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d070

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV2 SN3025; ConvF(5.9, 5.9, 5.9); Calibrated: 28.04.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 14.03.2008
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 54.7 V/m; Power Drift = 0.00608 dB

Peak SAR (extrapolated) = 3.69 W/kg

SAR(1 g) = 2.55 mW/g; SAR(10 g) = 1.68 mW/g

Maximum value of SAR (measured) = 2.87 mW/g

0 dB = 2.87mW/g

Certificate No: D835V2-4d070 Dec08

Page 8 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeoghausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibnierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swes Appreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SGS-SH (Auden)

Certificate No: D1900V2-5d028 Nov09

JAMES TO THOM C	ERTIFICATE		
Dibject	D1900V2 - SN: 5		
Calibration procedure(s)	QA CAL-05.v7 Calibration proce		
Calibration date:	November 24, 20	09	
The measurements and the unce	enainties with confidence pr	onal standards, which realize the physical un robability are given on the following pages or ry facility: environment temperature (22 ± 3)*	ic are part of the certificate.
	TE preda tor calibration (
Primary Stancards	10#	Cal Date (Certificane No.)	Scheduled Calibration
Primary Stancards Power mater EPM-412A	ID# GB3/180/04	86 Oct 69 (No. 217 01085)	Oct-10-
Primary Stancards Power mater EPM-H12A Power sensor HP 8481A	ID# GB3/480/04 UB37292783	06-Oct 09 (No. 217-01088) 06-Oct-09 (No. 217-01088)	Oct-10 Oct-10
Primary Standards Power mater EPM-412A Power sensor HP 8481A Reference 20 dB Attanuator	ID # GB3/480/04 UE37799/783 Sh: 5086 (20g)	06 Oct 09 (No. 217 01085) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025)	Oct-10 Oct-10 Mar-10
Primary Standards Power matter EPM-412A Power sensor HP 8481A Roterance 20 dB Attanuator Type-N mismatch cambination	ID # GB3/180704 UB37799783 SN: 5086 (20g) SN: 5047 27 03327	.06 Oct 09 (No. 217-01085) 06-Oct-09 (No. 217-01086) 31-Msr-06 (No. 217-01025) 31-Msr-06 (No. 217-01029)	Oct-10 Oct-10 Mar-10 Mar-10
Primary Standards Power matter EPM-412A Power sensor HP 8481A Reference 20 dB Attanuator Type-N mism and combination Reference Probe ES3DV3	ID # GB3/480/04 UE37799/783 Sh: 5086 (20g)	06 Oct 09 (No. 217 01085) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025)	Oct-10 Oct-10 Mar-10
Primary Standards Power meter EPM-412A Power sensor HP 8481A Reference 20 dB Attanuator Type-N mism arch combination Reference Probe ES3DV3 DAE4	ID # GB3/190704 U537799783 SN: 5086 (20g) SN: 5047 2 / 09327 SN: 3205	06 Oct 09 (No. 217-01088) 06-Oct-09 (No. 217-01088) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 28-Jun-09 (No. ESS-3205_Jun03)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10
Primary Standards Power matter EPM-412A Power sensor HP 8481A Roterance 20 dB Attanuator Type-N mismatch cambination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB3/180/04 UB3729783 SN: 5086 (20g) SN: 5047 2 / 08327 SN: 5205 SN: 601	.06 Oct 09 (No. 217 01085) 06-Oct-09 (No. 217-01088) 31-Msr-06 (No. 217-01028) 31-Msr-06 (No. 217-01028) 28-Jun-09 (No. ESS-3205_Jun09) 07-Msr-06 (No. DAE4-601_Msr09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-18
Primary Standards Power rener EPM-412A Power sensor HP 8481A Reference 20 dB Attanuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB3/199/04 U337799783 Sh: 5088 (20g) Sh: 5047 2 / 08327 Sh: 3205 Sh: 901	.06 Oct 09 (No. 217-01085) 06-Out-09 (No. 217-01085) 31-Msr-06 (No. 217-01025) 31-Msr-06 (No. 217-01025) 28-Jun-09 (No. ESS-3205_Jun09) 07-Msr-06 (No. DAE4-601_Msr09) Check Date (in house)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check
Primary Standards Power sensor HP 8481A Reference 20 dB Attanuator Type-N mismarch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-C6	ID # GB3/190704 UB37799783 SN: 5088 (20g) SN: 5047 2 / 05327 SN: 5205 SN: 601	.06 Oct 09 (No. 217-01088) 06-Out-09 (No. 217-01088) 31-Msr-06 (No. 217-01025) 34-Msr-06 (No. 217-01025) 28-Jun-09 (No. ES3-3205_Jun09) 07-Msr-06 (No. DAE4-601_Msr09) Check Dats (in house)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11
Primary Standards Power sensor HP 8481A Reference 20 dB Attanuator Type-N mismarch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-C6	ID # GB3/180704 UB37792783 SN: 5086 (20g) SN: 5047 2 / 03327 SN: 3205 SN: 601	06 Oct 09 (No. 217 01085) 06 Oct 09 (No. 217-01089) 31-Mar-06 (No. 217-01025) 34-Mar-06 (No. 217-01025) 26-Juni09 (No. 553-3205 Juni09) 07-Mar-06 (No. DAE 4-601 Mari09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check in house check: Oct-11 In house check: Oct-11
Calibration Equipment uses (M& Primary Standards Power sensor HP 8481A Reference 20 dB Attanuator Type-N mismarch cambination Reference Probe ES30V3 CAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-C6 Network Analyzer HP 8755E	ID # GB3/199/04 U337799783 Sh: 5086 (20g) Sh: 5047 2 / 08327 Sh: 3205 Sh: 901 ID # MY410923 7 100005 U337360585 \$4208	U6 Oct 09 (No. 217 01085) 06-Oct-09 (No. 217-01085) 31-Msr-06 (No. 217-01025) 31-Msr-06 (No. 217-01025) 31-Msr-06 (No. ES3-3205_Jun03) 07-Msr-06 (No. ES3-3205_Jun03) 07-Msr-06 (No. DAE4-601_Msr09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 19-Oct-01 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-18 Scheduled Check in house check: Oct-11 in house check: Oct-11 in house check: Oct-10
Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attanuator Type-N mismarch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-C6 Network Analyzer HP 875SE	ID # GB3 /180704 UB37799763 SN: 5086 (20g) SN: 5047 2 / 08327 SN: 3205 SN: 901 ID # MY48092317 100005 UB37360565 S4206 Name Jiston Kastralii	06 Oct 09 (No. 217-01085) 06-Oct-09 (No. 217-01085) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01025) 28-Jun-09 (No. E33-3235_Jun-09) 07-Mer-09 (No. DAE4-601_Mar-09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 19-Oct-01 (in house check Oct-09) Function Laboratory Technician	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-18 Scheduled Check in house check: Oct-11 in house check: Oct-11 in house check: Oct-10
Primary Standards Power matter EPM-412A Power sensor HP 8481A Reference 20 dB Attanuator Type-N mismatch combination Reference Probe ES3DV3 CAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-66 Network Analyzer HP 8753E	ID # GB3/199/04 UB37799783 SN: 5088 (20g) SN: 5047 2 / 06327 SN: 5205 SN: 601 ID # MY410923 7 100005 UB37360585 S4208	.06 Oct 09 (No. 217 01088) .06-Oct-09 (No. 217-01088) .31-Msr-06 (No. 217-01028) .31-Msr-06 (No. 217-01028) .28-Jun-09 (No. ESS-3205_Jun09) .07-Mer-06 (No. DAE4-601_Mar09) .08-Date (in house) .18-Oct-02 (in house check Oct-09) .4-Aug-99 (in house check Oct-09) .19-Oct-01 (in house check Oct-09) .19-Oct-01 (in house check Oct-09) .19-Oct-01 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-18 Scheduled Check in house check: Oct-11 in house check: Oct-11 in house check: Oct-10

Certificate No: D1900V2-5d028_Nov09

Page 1 of 9

Page 101 of 113

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22 0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.44 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C	-	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 mW / g
SAR normalized	normalized to 1W	40.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.3 mW/g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.22 mW / g
SAR normalized	normalized to 1W	20.9 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.7 mW/g ± 16.5 % (k=2)

Certificate No: D1903V2-5d028_NovC9

Page 3 of 9

Page 102 of 113

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.5 ± 6 %	1.58 mho/m = 6 %
Body TSL temperature during test	(21.2 ± 0.2) °C		****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition .	
SAR measured	250 mW input power	10.3 mW / g
SAR normslized	normalized to 1W	41.2 mW / g
SAR for nominal Body TSL parameters	nonnalized to 1W	40.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	concition	
SAR measured	250 mW Input power	5.44 mW / g
SAR normalized	normalized to 1W	21.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.5 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d028_Nov09

Page 4 of 9

DASY5 Validation Report for Head TSL

Date/Time: 24.11.2009 13:29:02

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type; D1900V2; Serial: D1900V2 - SN:5d028

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 1900 MHz; $\alpha = 1.44 \text{ mho/m}$; $\epsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE/I Sn601; Calibrated: 07.03.2009
- Phantont: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.4 V/m; Power Drift = 0.037 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 10 mW/g; SAR(10 g) = 5.22 mW/g

Maximum value of SAR (measured) = 12.5 mW/g

0 dB = 12.5mW/g

Certificate No. D1900V2-5d028_Nov09

Page 6 of 9

Annex F SAR Probe

DASY5 Validation Report for Body

Date/Time: 17.11.2009 13:08:34

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d028

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.58 \text{ mho/m}$; $\epsilon_t = 53.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03,2009
- Phantam: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002.
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0; Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.9 V/m; Power Drift = 0.00895 dB

Peak SAR (extrapolated) = 17.7 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.44 mW/g

Maximum value of SAR (measured) = 13 mW/g

0 dB = 13 mW/g

Certificate No: D1900V2-5d028_Nov09

Page 8 of 9

Page 105 of 113

Annex F **Additional SAR Probe Validation**

SAR PROBE CALIBRATION

Model No.: S62 FCC ID : YCNS62

The following procedures are recommended for DUT measurements at 150MHz to 3GHz to minimize probe calibration and tissue dielectric parameter discrepancies.

a) In general, CUT SAR measurements below 300 MHz should be within +/- 50 MHz of the probe calibration frequency.

SEE ALSO ITEM c).

b) At 300 MHz to 3 GHz, DUT measurements should be within +/- 100 MHz of the probe calibration frequency.

SEE ALSO ITEM c).

- c) Measurements exceeding 50% of these intervals, I.E.,
- +/- 25 MHz, DUT f<300 MHz, OR
- +/- 50 MHz. DUT f>/=300 MHz.

SHALL APPLY THE FOLLOWING ADDITIONAL STEPS:

1) When the actual tissue dielectric parameters used for probe calibration are available (careful about some probe manuf.list only nominal or range on calib.cert), the differences for relative permittivity and conductivity between probe calibration and routine measurements should each be less than or equal to 5 % while also satisfying the required +/- 5% tolerances in target dielectric parameters.

Page 106 of 113

<Head 900 MHz>

The test frequencies are properly matched as this is a cellular band. The probe calibration for permittivity and conductivity is within +/-5%, were the probe calibrated centre frequency at 900MHz has permittivity and conductivity of 41.5 and 0.97 respectively. At the probe extreme frequencies the following are true: at 800MHz the permittivity and conductivity are 39.4 and 0.86 respectively. At 1000MHz the permittivity and conductivity are 43.6 and 1.03 respectively.

The probe was calibrated at these parameters in order to cover the frequency range 800MHz to 1000MHz.

Page 107 of 113

<Body 900 MHz>

The test frequencies are properly matched as this is a cellular band. The probe calibration for permittivity and conductivity is within +/-5%, were the probe calibrated centre frequency at 900MHz has permittivity and conductivity of 55.0 and 1.05 respectively. At the probe extreme frequencies the following are true: at 800MHz the permittivity and conductivity are 52.3 and 0.92 respectively. At 1000MHz the permittivity and conductivity are 57.8 and 1.10 respectively.

The probe was calibrated at these parameters in order to cover the frequency range 800MHz to 1000MHz.

Page 108 of 113

<Head 1810 MHz>

The test frequencies are properly matched as this is a cellular band. The probe calibration for permittivity and conductivity is within +/-5%, were the probe calibrated centre frequency at 1810MHz has permittivity and conductivity of 40.0 and 1.40 respectively. At the probe extreme frequencies the following are true: at 1710MHz the permittivity and conductivity are 38.0 and 1.29 respectively. At 1910MHz the permittivity and conductivity are 42.0 and 1.47 respectively.

The probe was calibrated at these parameters in order to cover the frequency range 1710MHz to 1910MHz.

Page 109 of 113

<Body 1810 MHz>

The test frequencies are properly matched as this is a cellular band. The probe calibration for permittivity and conductivity is within +/-5%, were the probe calibrated centre frequency at 1810MHz has permittivity and conductivity of 53.3 and 1.52 respectively. At the probe extreme frequencies the following are true: at 1710MHz the permittivity and conductivity are 50.6 and 1.38 respectively. At 1910MHz the permittivity and conductivity are 56.0 and 1.60 respectively.

The probe was calibrated at these parameters in order to cover the frequency range 1710MHz to 1910MHz.

Page 110 of 113

The target permittivity and conductivity at 835 MHz is 41.5 and 0.90 and 1900 MHz is 40.0 and 1.40 respectively which is within the calibrated range of the probe parameter. The following parameters are declared in the probe calibration certificate.

DASY - Parameters of Probe: ES3DV3 SN:3088

Calibration Parameter Determined in Head Tissue Simulating Media

Validity [MHz] ^c	Permittivity	Conductivity	ConvF X C	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
±50/±100	41.5 ± 5%	$0.97 \pm 5\%$	5.84	5.84	5.84	0.90	1.06 ± 11.0%
±50/±100	$40.0 \pm 5\%$	$1.40 \pm 5\%$	5.00	5.00	5.00	0.38	1.75 ± 11.0%
±50/±100	40.0 ± 5%	1.40 ± 5%	4.97	4.97	4.97	0.48	1.53 ± 11.0%
±50/±100	39.2 ± 5%	$1.80 \pm 5\%$	4.40	4 40	4.40	0.43	1.79 ± 11.0%
	±50/±100 ±50/±100 ±50/±100	±50/±100 41.5±5% ±50/±100 40.0±5% ±50/±100 40.0±5%	±50/±100 41.5±5% 0.97±5% ±50/±100 40.0±5% 1.40±5% ±50/±100 40.0±5% 1.40±5%	$\pm 50 / \pm 100$ $41.5 \pm 5\%$ $0.97 \pm 5\%$ 5.84 $\pm 50 / \pm 100$ $40.0 \pm 5\%$ $1.40 \pm 5\%$ 5.00 $\pm 50 / \pm 100$ $40.0 \pm 5\%$ $1.40 \pm 5\%$ 4.97	±50/±100 41.5±5% 0.97±5% 5.84 5.84 ±50/±100 40.0±5% 1.40±5% 5.00 5.00 ±50/±100 40.0±5% 1.40±5% 4.97 4.97	±50/±100 41.5±5% 0.97±5% 5.84 5.84 5.84 ±50/±100 40.0±5% 1.40±5% 5.00 5.00 5.00 ±50/±100 40.0±5% 1.40±5% 4.97 4.97 4.97	±50/±100 41.5±5% 0.97±5% 5.84 5.84 0.90 ±50/±100 40.0±5% 1.40±5% 5.00 5.00 5.00 0.38 ±50/±100 40.0±5% 1.40±5% 4.97 4.97 0.48

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvF Y	ConvF Z	Alpha	Depth Unc (k=2)
900	± 50 / ± 100	$55.0 \pm 5\%$	1.05 ± 5%	5.68	5.68	5.68	0.97	1.07 ± 11.0%
1810	± 50 / ± 100	$53.3 \pm 5\%$	1.52 ± 5%	4.76	4.76	4.76	0.41	1.88 ± 11.0%
1900	± 50 / ± 100	$53.3 \pm 5\%$	1.52 ± 5%	4.58	4.58	4.58	0.36	2.13 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.20	4.20	4.20	0.99	1.04 ± 11.0%

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

<Head 850 MHz>

Liquid		Parameters	Target	Measured	Deviation[%]
Medium	Freq.[MHZ]	. arametere	rargot	Modeliod	Doridaen[70]
	825.0	Permitivity	41.6	41.93	0.79
	525.5	Conductivity	0.90	0.897	-0.33
Body	835.0 845.0	Permitivity	41.5	41.81	0.75
Body		Conductivity	0.90	0.907	0.78
		Permitivity	41.5	41.70	0.48
	845.0		0.91	0.917	0.77

<Body 850 MHz>

Lic	Liquid		Target	Measured	Deviation[%]
Medium	Freq.[MHZ]	Parameters	laigot	Wicadarda	Boviation[70]
	825.0	Permitivity	55.2	55.20	0
	0_0.0	Conductivity	0.97	0.9477	-2.30
Body		Permitivity	55.2	55.14	-0.11
Body	835.0	Conductivity	0.97	0.958	-1.24
	845.0	Permitivity	55.2	55.09	0.2
	3 .0.0	Conductivity	0.98	0.969	-1.12

<Head 1900 MHz>

Liquid		Parameters	Target	Measured	Deviation[%]
Medium	Freq.[MHZ]	. r uramotoro	largot	Modeliou	Bovicaion[70]
Body	1850	Permitivity	40	38.90	-2.75
		Conductivity	1.4	1.431	2.21
	1880	Permitivity	40	38.72	-3.20
		Conductivity	1.4	1.466	4.71
	1910	Permitivity	40	38.63	-3.43
		Conductivity	1.4	1.469	4.93

Member of the SGS Group (Société Générale de Surveillance)

Page 112 of 113

Liquid		Parameters	Target	Measured	Deviation[%]
Medium	Freq.[MHZ]	, a.a.motoro	raiget	mododiod	201144011[70]
Body	1850	Permitivity	53.3	53.85	1.03
		Conductivity	1.52	1.464	-3.68
	1880	Permitivity	53.3	53.82	0.98
		Conductivity	1.52	1.502	-1.18
	1910	Permitivity	53.3	53.79	1.89
		Conductivity	1.52	1.534	0.92

2) when nominal tissue dielectric parameters are PROVIDED in the probe calibration data, the tissue dielectric parameters measured for routine measurements should be less than the target relative permittivity and higher than the target conductivity values, to minimize SAR underestimations. Otherwise, a thorough analysis of the effective frequency interval supported by the probe calibration and dielectric medium should be included in the SAR report to substantiate the test results-SEE ITEM d).

Alternatively, the measured 1-g SAR may be compensated with respect to +5%tolerance in relative permittivity and -5% tolerances in conductivity, computed according to valid SAR sensitivity data, to reduce SAR underestimation and maintain conservativeness.

- d) When thorough analysis is required for the additional steps, the following SHALL ASSO BE ADDRESSED. These other items can contribute to additional SAR differences, especially when the probe calibration, tissue dielectric parameters and device test frequencies are misaligned.
- 1) the probe conversion factor and its frequency response, with respect to the tissue dielectric media used during probe calibration and routine measurements, should be examined to determine if the effective frequency intervals is adequate for the intended measurements, should be examined to determine if the effective frequency interval is adequate for the intended measurements to satisfy protocol requirements.
- 2) Measurements within the required frequency intervals should satisfy an expanded probe calibration uncertainty (k=2) less than or equal to 15% for all measurement conditions.
- 3) When SAR is reported within 10% of the SAR limit, differences in field conditions and effects of output power levels on signal modulation between probe calibration and routine measurements should be examined to determine probe calibration validity.
- 4) Probe isotropy should also be assessed by rotating the probe in 15 degree increments at the peak SAR

Page 113 of 113

location of the zoom scan and accounted for in the measurement uncertainty.

The measured SAR values in the report are all below 10% of the SAR limit.

The measurement within the required frequency interval satisfy an expanded probe calibration uncertainty (k=2) <=15% for all measurement conditions. Please refer to SAR report for probe and dipole calibration certificates produce by the system manufacturer.

As you can see we used the conductivity and permittivity parameters which are within +/-5% of the target values.

END OF REPORT