UNIVERSIDADE FEDERAL DE MINAS GERAIS Sistemas Digitais Prof. Julio Conway

Sistema de Destravamento Presencial Sequencial

Cleber Vargas Borges Gabriel Machado de Castro Fonseca

1 Introdução

A eletrônica talvez seja considerada o maior avanço tecnológico do século XX. A sua evolução se deu de forma exponencial, sendo hoje em dia uma tecnologia acessível e praticamente onipresente. Enquanto no início lidávamos com componentes grandes, delicados e pouco eficientes, com o passar das décadas, foram-se criando alternativas menores, menos dispendiosas e muito mais rápidas.

Com o uso da eletrônica digital e as possibilidades surgidas com a miniaturização dos circuitos, foi possível criar máquinas programáveis que cabem em nossos bolsos e executam milhões de cálculos a mais por segundo do que os primeiros computadores a válvulas. A lógica digital permite uma extrema maleabilidade na solução de um problema, fazendo com que blocos construtivos simples componham um circuito complexo, projetado para lidar com uma situação específica.

O objetivo deste trabalho é o de demonstrar a modelagem de um circuito lógico seqüencial que funcione como um sistema de destravamento de um cofre. São necessárias 3 pessoas para se abrir o cofre, cada uma deve digitar seu código de acesso na ordem certa para que a porta se destrave. Ao identificar corretamente a primeira pessoa uma luz vermelha se acende, a segunda pessoa a ser identificada faz com que se acenda uma luz amarela e, finalmente, quando a terceira pessoa é identificada acende-se uma luz verde e a tranca é aberta por 4 segundos, retornando então ao estado inicial. Qualquer erro de identificação ou na ordem de entrada das senhas faz com que se retorne ao estado inicial.

2 Identificação dos Indivíduos

Definimos que as senhas seriam, conforme instruções do trabalho, G0, C7 e J2. Conforme tabela ASCII, a representação das senhas, considerando maiúscula e minúscula, seria conforme a tabela 1.

Se	nha	I_0	I_1	I_2	I_3	I_4	I_5	I_6	I_7	I_8	I_9	I_{10}	I_{11}
	05	0	1	0	0	0	1	1	1	0	0	0	0
9	g0	0	1	1	0	0	1	1	1	0	0	0	0
	27	0	1	0	0	0	0	1	1	0	1	1	1
(e7	0	1	1	0	0	0	1	1	0	1	1	1
	J 2											1	
j	2	0	1	1	0	1	0	1	0	0	0	1	0

Tabela 1: Codificação ASCII das senhas do sistema

Pode-se perceber que os números em destaque são redundantes para a identificação das senhas, uma vez que se repetem ou seguem um padrão óbvio, variando apenas um bit entre o caractere maiúsculo e minúsculo. Dessa forma podemos adotar apenas 5 bits para a letra e 4 bits para os números.

Na figura 1 pode-se ver os circuitos lógicos necessários para se identificar as senhas codificadas na tabela 1.

Figura 1: Lógica dos identificadores dos indivíduos

3 Máquina de Estados Finitos

O próximo passo da criação do sistema é a definição dos estados da máquina, para que possamos dimensionar as entradas, as saídas e as transições de estado, definindo em seguida o circuito lógico combinacional equivalente. Os estados da nossa máquina podem ser definidos conforme tabela 2. Com isso sabemos que os estados podem ser codificados usando 3 bits, que suportariam até 8 estados diferentes. A codificação deles pode ser vista na tabela 3.

A representação em forma de diagrama, com suas respectivas transições pode ser vista na figura 2. Pode-se perceber que a transição entre os estados só é feita quando os identificadores são identificados em certa ordem, no caso $X_a \to X_b \to X_c$.

Estado	Descrição
0	Fechadura trancada, luzes apagadas, estado inicial
1	Fechadura trancada, luz vermelha acesa
2	Fechadura trancada, luzes vermelha e amarela acesas
3	Fechadura destrancada, todas as luzes acesas
4	Fechadura destrancada, todas as luzes acesas, 2 segundos passados
5	Fechadura destrancada, todas as luzes acesas, 4 segundos passados

Tabela 2: Descrição dos estados

Estado	S_0	S_1	S_2
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1

Tabela 3: Codificação dos estados da máquina

Figura 2: Diagrama de estados da FSM

4 Tabela Verdade

Com os estados codificados e as transições definidas podemos então montar a tabela verdade e definir as equações booleanas que descrevem os circuitos lógicos que controlarão a FSM. A tabela 4 contém os valores de entrada e saída que representam nossa máquina de estados.

Tabela 4: Tabela verdade da máquina de estados

			Saídas								
1	tifica		Est. Atual			Pro	x. Es		Luzes		
X_a	X_b	X_c	S_0	S_1	S_2	N_0	N_1	N_2	Vm	Am	Ve
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	1	1	1
0	0	0	1	0	0	1	0	1	1	1	1
0	0	0	1	0	1	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0	0
0	0	1	0	1	1	1	0	0	1	1	1
0	0	1	1	0	0	1	0	1	1	1	1
0	0	1	1	0	1	0	0	0	0	0	0
0	0	1	1	1	0	0	0	0	0	0	0
0	0	1	1	1	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0	0
0	1	0	0	1	0	0	0	0	0	0	0
0	1	0	0	1	1	1	0	0	1	1	1
0	1	0	1	0	0	1	0	1	1	1	1
0	1	0	1	0	1	0	0	0	0	0	0
0	1	0	1	1	0	0	0	0	0	0	0
0	1	0	1	1	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0	0
0	1	1	0	0	1	0	0	0	0	0	0
0	1	1	0	1	0	0	0	0	0	0	0
0	1	1	0	1	1	1	0	0	1	1	1
0	1	1	1	0	0	1	0	1	1	1	1
0	1	1	1	0	1	0	0	0	0	0	0
0	1	1	1	1	0	0	0	0	0	0	0
0	1	1	1	1	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1	0	0
1	0	0	0	0	1	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	0
1	0	0	0	1	1	1	0	0	1	1	1
1	0	0	1	0	0	1	0	1	1	1	1
1	0	0	1	0	1	0	0	0	0	0	0
1	0	0	1	1	0	0	0	0	0	0	0

Tabela 4: Tabela verdade da máquina de estados

Entradas							Saídas					
Iden	tifica	dores	Est	t. At	ual	Pro	x. Es	tado	Luzes			
X_a	X_b	X_c	S_0	S_1	S_2	N_0	N_1	N_2	Vm	Am	Ve	
1	0	0	1	1	1	0	0	0	0	0	0	
1	0	1	0	0	0	0	0	0	0	0	0	
1	0	1	0	0	1	0	0	0	0	0	0	
1	0	1	0	1	0	0	0	0	0	0	0	
1	0	1	0	1	1	1	0	0	1	1	1	
1	0	1	1	0	0	1	0	1	1	1	1	
1	0	1	1	0	1	0	0	0	0	0	0	
1	0	1	1	1	0	0	0	0	0	0	0	
1	0	1	1	1	1	0	0	0	0	0	0	
1	1	0	0	0	0	0	0	0	0	0	0	
1	1	0	0	0	1	0	1	0	1	1	0	
1	1	0	0	1	0	0	0	0	0	0	0	
1	1	0	0	1	1	1	0	0	1	1	1	
1	1	0	1	0	0	1	0	1	1	1	1	
1	1	0	1	0	1	0	0	0	0	0	0	
1	1	0	1	1	0	0	0	0	0	0	0	
1	1	0	1	1	1	0	0	0	0	0	0	
1	1	1	0	0	0	0	0	0	0	0	0	
1	1	1	0	0	1	0	0	0	0	0	0	
1	1	1	0	1	0	0	1	1	1	1	1	
1	1	1	0	1	1	1	0	0	1	1	1	
1	1	1	1	0	0	1	0	1	1	1	1	
1	1	1	1	0	1	0	0	0	0	0	0	
1	1	1	1	1	0	0	0	0	0	0	0	
1	1	1	1	1	1	0	0	0	0	0	0	

Simplificando a tabela obtemos então as equações de 1 a 3 para as luzes vermelha, amarela e verde, respectivamente.

$$Vm = (S_0S_1'S_2') + (S_0'S_1S_2) + (X_aX_b'X_c'S_1'S_2') + (X_aX_bX_c'S_0'S_2) + (X_aX_bX_cS_0'S_1)$$
(1)

$$Am = (S_0 S_1' S_2') + (S_0' S_1 S_2) + (X_a X_b X_c' S_0' S_2) + (X_a X_b X_c S_0' S_1)$$
(2)

$$Ve = (S_0 S_1' S_2') + (S_0' S_1 S_2) + (X_a X_b X_c S_0' S_1)$$
(3)

As equações da máquina de estados são as de 4 a 6.

$$N_0 = (X_a X_b X_c S_0 S_1') + (X_c' S_0' S_1 S_2) + (X_b' S_0' S_1 S_2) + (X_a' S_0' S_1 S_2) + (S_0 S_1' S_2')$$

$$\tag{4}$$

$$N_1 = (X_a X_b X_c' S_0' S_1' S_2) + (X_a X_b X_c S_0' S_1 S_2')$$
(5)

$$N_2 = (S_0 S_1' S_2') + (X_a X_b X_c S_0' S_1 S_2') + (X_a X_b' X_c' S_1' S_2')$$

$$\tag{6}$$

5 Circuito Lógico Combinacional

Montadas as equações de cada uma das saídas e das transições de estado, resta montar o circuito de forma que tenhamos ao fim a máquina de estados funcionando corretamente. Nossas entradas podem ser lidas na tabela 5. Por sua vez, as saídas podem ser vistas na tabela 6.

${f Entrada}$	Descrição
$\overline{X_a}$	Identificação do indivíduo 1
X_b	Identificação do indivíduo 2
X_c	Identificação do indivíduo 3
S_0	Bit 0 do estado atual
S_1	Bit 1 do estado atual
S_2	Bit 2 do estado atual

Tabela 5: Descrição das entradas do circuito

Saída	Descrição
\overline{Vm}	Luz vermelha
Am	Luz amarela
Ve	Luz verde e tranca
N_0	Bit 0 do próximo estado
N_1	Bit 1 do próximo estado
N_2	Bit 2 do próximo estado

Tabela 6: Descrição das saídas do circuito

Os circuitos que definem as saídas de luz e tranca podem ser vistos na figura 3. Enquanto os circuitos que definem o próximo estado da máquina podem ser vistos na figura 4. É importante frisar que o registrador de estados não consta no desenho do circuito, porém consiste apenas em 3 flip-flops tipo D em paralelo, controlados pelo clock de uma onda quadrada de período igual a 2 segundos. Isso garante que a porta fique aberta por 4 segundos, uma vez que se passam 2 estados com a porta aberta. As saídas N são, portanto, entradas dos flip-flops enquanto as entradas S são saídas destes mesmos flip-flops.

Figura 3: Circuitos combinacionais das luzes

Figura 4: Circuitos combinacionais da máquina de estados

6 Simulação

Nas figuras abaixo podemos ver o diagrama de temporização da máquina de estados finitos em um caso de sucesso, no qual a tranca foi aberta, e em um caso de fracasso.

Figura 5: Simulação de um caso de sucesso

Figura 6: Simulação de um caso de fracasso