# Respostas EPC03

### Oto Antonio Lopes Cunha Filho 12111186

05/10/2020

## Questão 4

Procedimento de pós-processamento realizado para os testes e validações!

## Questão 1

Os arquivos de validação para cada um dos dois tipos de classificadores foram criados retirando exemplos de cada conjunto de classes a partir da amostra de treinamento. Para *Iris plants* foram criados 10 arquivos com 15 entradas. Já para o *White Wine Quality* foi utilizado o *plugin sklearn* para retirar 20% de cada arquivo de treinamento. Para estes dois casos foi respeitado a proporção das classes presentes em toda a amostra.

#### **Iris Plants**

| Topologia     | EQM   |           | Épocas   |           | Tempo (s) |           | Acurácia |           |
|---------------|-------|-----------|----------|-----------|-----------|-----------|----------|-----------|
| Topologia     | Média | Desvio P. | Média    | Desvio P. | Média     | Desvio P. | Média    | Desvio P. |
| 4 - 1 - 3     | 0.143 | 0.065     | 2056.567 | 1422.563  | 55.645    | 38.898    | 60%      | 20.34%    |
| 4 - 2 - 3     | 0.021 | 0.020     | 1321.800 | 416.001   | 29.241    | 9.750     | 94%      | 8.96%     |
| 4 - 3 - 3     | 0.041 | 0.036     | 1655.833 | 789.932   | 54.163    | 30.832    | 90.26%   | 12.08%    |
| 4 - 1 - 2 - 3 | 0.225 | 0.104     | 913.567  | 597.989   | 17.634    | 11.288    | 35.56%   | 33.83%    |
| 4 - 2 - 2 - 3 | 0.158 | 0.080     | 1240.533 | 794.033   | 27.429    | 18.701    | 55.56%   | 25.27%    |

Table 1: Média e desvio padrão para cada execução do algoritmo nas 3x10-fold.

### White Wine Quality

| Topologia      | EQM   |           | Épocas |           | Tempo (s) |           | Acurácia |           |
|----------------|-------|-----------|--------|-----------|-----------|-----------|----------|-----------|
| Topologia      | Média | Desvio P. | Média  | Desvio P. | Média     | Desvio P. | Média    | Desvio P. |
| 4 - 3 - 4      | 0.263 | 0.0001    | 1374.5 | 105.35    | 1325.441  | 2.91      | 45.60%   | 2.45%     |
| 4 - 4 - 4      | 0.264 | 0.0003    | 1101   | 105.35    | 8234.245  | 2.913     | 52.34%   | 2.79%     |
| 4 - 2 - 4 - 4  | 0.272 | 0.006     | 405    | 7.07      | 6117.48   | 7843.78   | 46.02%   | 1.58%     |
| 4 - 5 - 11 - 4 | 0.260 | 0.177     | 2168.5 | 719.12    | 2150.68   | 2.081     | 45.04%   | 2.57%     |

Table 2: Média e desvio padrão para cada execução do algoritmo nas 3x10-fold.

## Questão 2

A partir das Table1 e Table2, foram escolhidas as topologias [4-2-3] e [4-4-4] para os dois tipos de classificadores respectivamente.

| Classificador      | EQM   |           | Épocas |           | Tempo (s) |           | Acurácia |           |
|--------------------|-------|-----------|--------|-----------|-----------|-----------|----------|-----------|
| Classificador      | Média | Desvio P. | Média  | Desvio P. | Média     | Desvio P. | Média    | Desvio P. |
| Iris Plants        | 0.331 | 0.075     | 432.6  | 47.82     | 8.059     | 1.033     | 30%      | 31.98%    |
| White Wine Quality | 0.278 | 5.635     | 424.5  | 34.65     | 440.15    | 42.632    | 44.89%   | 0.0%      |

Table 3: Execução do algoritmo com momentum~0.9 para os dois classificadores nos 3x10-fold.

## Questão 3



Figure 1: Gráfico EQM x Épocas para os dois classificadores, juntamente com o tempo de execução de cada um, considerando apenas a execução de um conjunto de treinamento.

### Questão 5

| Classificador      | Acurácia |           |  |  |
|--------------------|----------|-----------|--|--|
| Classificator      | Média    | Desvio P. |  |  |
| Iris Plants        | 94.00%   | 10.15%    |  |  |
| White Wine Quality | 48.00%   | 0.57%     |  |  |

Table 4: Média e desvio padrão da acurácia para os arquivos de teste dos 10-fold.

## Questão 6



Figure 2: Representação gráfica dos cenários de overfitting e underfitting.

### Under fitting

O *underfitting* representa um cenário onde a rede não consegue adquirir "conhecimento" suficiente para identificar os elementos mesmo na fase de treinamento, assim possuindo baixo desempenho em ambas as fases (treinamento e teste).

Podemos identificar graficamente este cenário, dispondo os dados do teste e treinamento e traçando uma função da resposta da rede através de uma regressão linear, com isso teremos a função que melhor representa a relação entre os dados. Com as informações no gráfico é possível perceber que a função desenhada não consegue passar pelos pontos de maneira satisfatória (Figure 2).

Uma forma de tentar resolver este problema seria aumentando a complexidade da rede, ou seja, aumentar o número de camadas e/ou neurônios nestas camadas.

### Overfitting

Já o *overfitting* representa um cenário onde o desempenho e erro apresentados numa rede na etapa de treinamento são muito satisfatórios. Contudo, na fase

de testes a rede não entrega o esperado. Neste caso podemos entender como se a rede estivesse apenas memorizando as informações presentes no treinamento e por isso não consegue prever dados diferentes (sem capacidade de generalização).

Seguindo a mesma ideia do *underfitting*, podemos identificar graficamente este cenário vendo que a função desenhada passa "perfeitamente" pelos dados de teste, entretanto falha com os dados fora deste conjunto (Figure 2).

Uma forma de tentar resolver este problema seria diminuindo a complexidade da rede, ou seja, diminuir o número de camadas e/ou neurônios nestas camadas.