

March 1986

DP84240/DP84244 Octal TRI-STATE® MOS Drivers

DP84240/DP84244 Octal TRI-STATE® MOS Drivers

General Description

The DP84240 and DP84244 are octal TRI-STATE drivers which are designed for heavy capacitive load applications such as fast data buffers or as memory address drivers. The DP84240 is an inverting driver which is pin-compatible with both the 74S240 and AM2965. The DP84244 is a non-inverting driver which is pin-compatible with the 74S244 and AM2966. These parts are fabricated using an oxide isolation process, for much faster speeds, and are specified for 250 pF and 500 pF load capacitances.

TRI-STATE® is a registered trademark of National Semiconductor Corp.

Features

- t_{pd} specified with 250 pF and 500 pF loads
- Output specified from 0.8V to 2.7V
- Designed for symmetric rise and fall times at 500 pF
- Outputs glitch free at power up and power down
- PNP inputs reduce DC loading on bus lines
- Low static and dynamic input capacitance
- Low skew times between edges and pins
- AC parameters specified with all outputs switching simultaneously

Connection Diagram

Top View

Order Number DP84240J or DP84240N
See NS Package Numbers J20A or N20A

Truth Table

DP84240

Inputs		Outputs
\bar{G}	A	Y
H	X	Z
L	L	H
L	H	L

H = High Level
L = Low Level
X = Don't Care
Z = High Impedance

DP84244

Top View

Order Number DP84244J or DP84244N
See NS Package Numbers J20A or N20A

Inputs		Outputs
\bar{G}	A	Y
H	X	Z
L	L	L
L	H	H

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage, V _{CC}	7.0V
Logical "1" Input Voltage	7.0V
Logical "0" Input Voltage	-1.5V
Storage Temperature Range	-65°C to +150°C
Power Dissipation	
Cavity Package	1150 mW
Molded Package	1300 mW
Lead Temperature (soldering, 10 sec.)	300°C

Operating Conditions

	Min	Max	Units
V _{CC} Supply Voltage	4.5	5.5	V
T _A Ambient Temperature	0	+70	°C

Electrical Characteristics

V_{CC} = 5V ± 10%, 0 ≤ T_A ≤ 70°C. (Notes 2 and 3.)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V _{IN(1)}	Logical "1" Input Voltage		2.0			V
V _{IN(0)}	Logical "0" Input Voltage				0.8	V
I _{IN(1)}	Logical "1" Input Current	V _{IN} = 2.7V		0.1	20	μA
		V _{IN} = 7.0V			100	μA
I _{IN(0)}	Logical "0" Input Current	0 ≤ V _{IN} ≤ 0.4V		-50	-200	μA
V _{CLAMP}	Input Clamp Voltage	I _{IN} = -18 mA		-1	-1.2	V
V _{OH}	Logical "1" Output Voltage	I _{OH} = -100 μA I _{OH} = -1 mA	V _{CC} -1.15 V _{CC} - 1.5	4.3 3.9		V
V _{OL}	Logical "0" Output Voltage	I _{OL} = 10 μA I _{OL} = 12 mA		0.2 0.3	0.4 0.5	V
I _{1D}	Logical "1" Drive Current	V _{OUT} = 1.5V	-75	-250		mA
I _{0D}	Logical "0" Drive Current	V _{OUT} = 1.5V	+100	+150		mA
Hi-Z	TRI-STATE Output Current	0.4V ≤ V _{OUT} ≤ 2.7V	-100		+100	μA
I _{CC}	Supply Current DP84240	All Outputs Open All Outputs High All Outputs Low All Outputs Hi-Z		16 74 80	50 125 125	mA
	DP84244	All Outputs High All Outputs Low All Outputs Hi-Z		40 100 115	75 130 150	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: All currents into device pins shown as positive; all currents out of device pins shown as negative; all voltages referenced to ground unless otherwise noted. All values shown as max. or min. are on an absolute value basis.

Note 3: Typical characteristics are taken at V_{CC} = 5.0V and T_A = 25°C.

Note 4: The output-to-output skew is primarily a function of the number of outputs switching and the capacitive loading on those outputs. See Figures 5 and 6 for the switching time variations.

Switching Characteristics $V_{CC} = 5V \pm 10\%$, $0 \leq T_A \leq 70^\circ C$, all outputs loaded with specified load capacitance and all eight outputs switching simultaneously. (Note 3.)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
t_{PLH}	Propagation Delay from LOW-to-HIGH Output	<i>Figures 1 & 3</i>	$C_L = 250 \text{ pF}$	9	16	27	ns
t_{PHL}	Propagation Delay from HIGH-to-LOW Output		$C_L = 500 \text{ pF}$	10	20	33	ns
t_{PLZ}	Output Disable Time from LOW	<i>Figures 2 & 4, S = 1, C_L = 50 pF</i>			11	24	ns
t_{PHZ}	Output Disable Time from HIGH	<i>Figures 2 & 4, S = 2, C_L = 50 pF</i>			12	24	ns
t_{PZL}	Output Enable Time to LOW	<i>Figures 2 & 4, S = 1, C_L = 500 pF</i>			30	45	ns
t_{PZH}	Output Enable Time to HIGH	<i>Figures 2 & 4, S = 2, C_L = 500 pF</i>			23	35	ns
t_{SKew}	Output-to-Output Skew (Note 4)	<i>Figures 1 & 3, C_L = 500 pF</i>			3		ns

Capacitance $T_A = 25^\circ C$, $f = 1 \text{ MHz}$, $V_{CC} = 5V \pm 10\%$. (Note 3.)

Parameter	Conditions	Typ	Units
C_{IN}	All Other Inputs Tied Low	6	pF
C_{OUT}	Output in TRI-STATE Mode	20	pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: All currents into device pins shown as positive; all currents out of device pins shown as negative; all voltages referenced to ground unless otherwise noted. All values shown as max. or min. are on an absolute value basis.

Note 3: Typical characteristics are taken at $V_{CC} = 5.0V$ and $T_A = 25^\circ C$.

Note 4: The output-to-output skew is primarily a function of the number of outputs switching and the capacitive loading on those outputs. See *Figures 5 and 6* for the switching time variations.

Switching Test Circuits

TL/F/5219-3

* C_L INCLUDES PROBE AND JIG CAPACITANCES

FIGURE 1. Capacitive Load Switching

TL/F/5219-4

FIGURE 2. TRI-STATE Enable/Disable

Typical Switching Characteristics

Voltage Waveforms

TL/F/5219-5

FIGURE 3. Output Drive Levels

TL/F/5219-6

FIGURE 4. TRI-STATE Control Levels

TL/F/5219-7

FIGURE 5. t_{PLH} Measured to 2.7V on Output vs. C_L

TL/F/5219-8

FIGURE 6. t_{PHL} Measured to 0.8V on Output vs. C_L

Typical Switching Characteristics (Continued)

FIGURE 7. Typical Power Dissipation for DP84240 at $V_{CC} = 5.5V$ (All 8 drivers switching simultaneously)

FIGURE 8. Typical Power Dissipation for DP84244 at $V_{CC} = 5.5V$ (All 8 drivers switching simultaneously)

Typical Application

DP84244 used as a buffer in a large memory array (greater than 88 dynamic RAMs)

TL/F/5219-11

DP84240/DP84244 Octal TRI-STATE MOS Drivers

Physical Dimensions inches (millimeters)

20-Lead Dual-In-Line Package (J)
Order Number DP84240J/DP84244J
NS Package Number J20A

20-Lead Dual-In-Line Package (N)
Order Number DP84240N/DP84244N
NS Package Number N20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation
1111 West Bardin Road
Arlington, TX 76017
Tel: (1800) 272-9959
Fax: (1800) 737-7018

National Semiconductor Europe
Fax: (+49) 0-180-530 85 86
Email: cnjwge@tevm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85
English Tel: (+49) 0-180-532 78 32
Français Tel: (+49) 0-180-532 93 58
Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon
Hong Kong
Tel: (852) 2737-1600
Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2406

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.