VoteOnChain

Dizme Hackathon_21

VoteOnChain

- Progetto per la gestione di votazioni online sicure
- Basato sulle tecnologie di Blockchain e Self-Sovereing Identity (SSI)
- Gestisce sia la votazione palese che segreta
- Utilizza Dizme come sistema di gestione dell'identità dei votanti e la verifica del diritto al voto
- I voti sono consolidati sulla BlockChain Algorand

Tipologie di voto

Voto Palese

Si può associare l'identità della persona alla propria opinione.

La dichiarazione del voto può avvenire in diverse modalità (alzata di mano, scheda elettorale nominale).

Voto Segreto

Modalità di voto attraverso la quale la preferenza espressa dall'elettore rimane segreta e non viene conosciuta da terzi.

Il voto espresso rimane segreto e slegato dalla persona che lo ha espresso.

Caratteristiche di sicurezza

- Eleggibilità (segreto / palese)
 - Può votare solo chi è in possesso di diritto di voto
- Non riutilizzabilità (segreto / palese)
 - Nessuno può votare più di un'unica volta
- Non tracciabilità (segreto)
 - Nessuno può determinare la preferenza espressa da altri

Caratteristiche di sicurezza

- Non duplicabilità (segreto / palese)
 - Nessuno può duplicare il voto di altri
- Immutabilità (segreto / palese)
 - Nessuno può cambiare la preferenza espressa da altri
- Verificabilità (segreto / palese)
 - Ogni votante può controllare che il suo voto è stato conteggiato nel computo finale

Architettura

- Gli attori coinvolti sono
 - Organizzazione
 - Entità che indice il voto
 - Gestisce le identità dei votanti
 - Attribuisce diritto la voto
 - Third Trusted Party (TTP)
 - Gestisce le procedure di voto
 - Votante
 - Tramite wallet Dizme si identifica all'Organizzazione e riceve il diritto di voto
 - Tramite wallet Algorand esprime il suo voto

Fase Preliminare

- Gli utenti dovranno dotarsi di una identità Dizme LoA1 e di un wallet Algorand
- L'Organizzioni dovranno riconoscere i propri utenti, tramite l'identità Dizme LoA1, per poi distribuirgli la credenziale Dizme Member

Nuova Votazione

- L'Organizzazione rilascerà agli utenti che hanno diritto al voto la credenziale Dizme Accreditation
- La **TTP**, crea un nuovo Asset Algorand dedicato alla votazione, generando un numero sufficiente di token
- Il votate che intende votare, dovrà
 - 1. presentare all'Organizzazione la Proof della propria **Member** per avere la credenziale **Accreditation**
 - 2. presentare al **TTP** la Proof dell'**Accreditation** aggiungendo come attributo self-attested l'indirizzo del wallet Algorand
 - 3. Se ha diritto a votare, riceverà sull'indirizzo dedicato un Asset dalla TTP, che dovrà rimandare alla TTP indicando nelle note la sua intenzione di voto

Chiusura Votazione

- La votazione termina quando la TTP "chiude" l'Asset dedicato alla votazione
- I voti sono espressi tramite le transazioni **Algorand** per quel specifico Asset
- Il conteggio si effettua parsando tutte le transazioni di quell'Asset verso il **TTP**

Voto Palese / Segreto

- I voti sono transfer di Asset sulla blockchain Algorand, quindi pubblici e immutabili
- La TTP per effettuare il transfer dell'Asset verso un utente dovrà ricevere dall'utente la Proof con
 - o il Ballot, che esprime solo il diritto di voto senza svelare l'identità
 - l'Address Algorand dell'utente
- Per il voto palese, l'utente userà il proprio Algorand Address reso pubblico all'Organization
- Per il voto segreto, l'utente dovrà generare ogni volta un Algorand Address per la specifica votazione, così da restare anonimo

Analisi

- Eleggibilità: Può votare solo chi è in possesso di diritto di voto
 - Solo l'Organizzazione distribuisce a chi ne ha diritto la credenziale Accreditation
- Non riutilizzabilità: Nessuno può votare più di un'unica volta
 - La TTP trasferisce 1 solo Asset di voto per ogni credenziale Accreditation presentata
- Non tracciabilità (segreto): Nessuno può determinare la preferenza espressa da altri
 - Il voto è un transfer di Asset Algorand da un Address anonimo

Analisi

- Non duplicabilità: Nessuno può duplicare il voto di altri
 - I voti sono transfer di Asset Agorand, solo la TTP li può distribuire
- Immutabilità: Nessuno può cambiare la preferenza espressa da altri
 - I voti sono transfer di Asset Agorand, quindi consolidati sulla blockchain
- **Verificabilità:** Ogni votante può controllare che il suo voto è stato conteggiato nel computo finale
 - L'utente può verificare che il transfer dell'Asset sia sulla blockchain

Implementazione

- Una Organizzazione è una Dizme-Organization
 - Proof LoA1 -> Credential Member
 - Proof Member -> Credenziale Accreditation
- La TTP è una Dizme-Organization
 - Proof (Accreditation, Algorand Address (self-attested))
 - Transfer 1 Asset Votazione sul Algorand Address

Votante

- Usa Dizme App e Algorand Wallet
- o Tramite Dizme gestisce le credenziali di Identità, Member e Accreditation
- Per la votazione effettua un transfer di 1 Asset Votazione sul Algorand Address del TTP indicando nelle info il suo voto

Conclusioni

- E-Voting è uno dei problemi più complessi dal punto di vista della sicurezza informatica
- Il binomio **Dizme-Algorand** ha fornito gli strumenti necessari per disegnare una soluzione completa, funzionale, ma soprattutto che garantisce un elevato livello di sicurezza
- La POC ha simulato l'integrazione tra Dizme e Algorand, ma sarebbe auspicato una integrazione nativa a cura della Fondation