

planetmath.org

Math for the people, by the people.

$\begin{array}{c} \textbf{proof of downward Lowenheim-Skolem} \\ \textbf{theorem} \end{array}$

 ${\bf Canonical\ name} \quad {\bf ProofOfDownwardLowenheimSkolemTheorem}$

Date of creation 2013-03-22 18:18:59 Last modified on 2013-03-22 18:18:59 Owner GodelsTheorem (21277) Last modified by GodelsTheorem (21277)

Numerical id 14

Author GodelsTheorem (21277)

Entry type Proof Classification msc 03C07 We present here a proof of the Downward Lowenheim Skolem Theorem. The idea is to construct a submodel that meets the requirements of the DLS Theorem: we take K and close it under a procedure of choosing appropriate witnesses for the existential formulas satisfied by \mathcal{A} . Choosing the appropriate witnesses is done with the help of the so-called *Skolem functions* and thus rests upon the *choice function*.

Proof: First of all we introduce a usefull tool for the proof. Lemma: (Tarski's Lemma) If \mathcal{A} and \mathcal{B} are L-structures with the domain of \mathcal{A} being a subset of the domain of \mathcal{B} then \mathcal{A} is an elementary substructure of \mathcal{B} if for every L-formula $\phi(x,y)$ with $a \in A$ and $b \in B$, we have $\mathcal{B} \models \phi(a,b)$; For some $a' \in A$ we have $\mathcal{A} \models \phi(a,a')$

Proof. Let's supposes the biconditionnal holds, then we need to show that \mathcal{A} is a substructure of \mathcal{B} . This means that we need to show that every formula that is true in \mathcal{A} is true in \mathcal{B} . The proof is straighforward with an induction on the complexity of formulas (connectives, negation, quantifiers).

Now, fix a point $p \in dom(A)$. For each L-formula $\phi(x, y)$, define the Skolem function of ϕ , $g_{\phi}: A^n \to A$ (with A = dom(A)) by:

 $p \in A^n \to \text{some } p' \in A \text{ such that } A \models \phi(p, p') \text{ if such a } p' \text{ exists and } p$ otherwise. The set of *Skolem functions* has a cardinality equal to that of L.

The purpose here is to construct a model \mathcal{B} whose domain B is closed under the skolem functions. This means that the domain of \mathcal{A} contains all the witnesses we've appropriately choosen. If we take an existential formula $\exists y \phi(x, y)$ and $b \in B^k$ and if we apply the Skolem function to b we will have a witness for $\exists x \phi(b, x)$. In other words, this means that $\mathcal{A} \models \exists x \phi(b, x) \to \mathcal{A} \models \phi(b, g_{\phi}(b))$. By construction $g_{\phi}(b)$ is in B and thus \mathcal{B} meets the requirements of Tarski's Lemma. We can find an elementary substructure of \mathcal{A} .

Let's take K of above and set $K_0 := K$ and K_{i+1} is the set of the $g_{\phi}(p), p \in K_i \wedge g_{\phi}$ (with g_{ϕ} a Skolem function). Let $B := \bigcup K_i$. Then B is closed under Skolem functions. And we have $|K| \leq \omega.|L| + |K| = |L| + |K|$. This comes from the fact that $|L| + |K_i| = |SF| + |K_i| = \sum_{k \in \mathbb{N}} |(SF)_k| * |K_i|$ but we have $|K_{i+1}| \leq \sum_{k \in \mathbb{N}} |(SF)_k| * |K_i|$. We need now to provide interpretations of relations, predicates, functions and constants so it can fit A.

We have because B is closed under L-terms and for an L-function symbol f, the Skolem function of the L-formula f(x) = y takes the value $f^{\mathcal{A}}(p)$ at p:

for any n-ary relation symbol $P: P^{\mathcal{B}} = P^{\mathcal{A}} \cap B^n$ for an m-ary function symbol f and $p \in B^m, p' \in B$ we have $f^{\mathcal{A}}(p) = p'$

j-
i $f^{\mathcal{B}}(p)=p'.$ for a constant symbol c, we have
 $c^{\mathcal{A}}=c^{\mathcal{B}}$ We have constructed a substructure
 \mathcal{B} of $\mathcal{A}.$