Lecture 7: Methods for combining codes.

Course instructor: Alexey Frolov

Teaching Assistant: Stanislav Kruglik stanislav.kruglik@skolkovotech.ru

February 13, 2018

- Are the codes we already know asymptotically good?
- 2 Interleaved codes
- 3 Product codes
- 4 Concatenated codes
- 5 Generalized concatenated codes
- 6 Problems
- Soft decoding

- Are the codes we already know asymptotically good?
- 2 Interleaved codes
- Product codes
- 4 Concatenated codes
- Generalized concatenated codes
- O Problems
- Soft decoding

Asymptotic regime, $n \to \infty$

 $\frac{d}{n} \to \delta$ (relative minimum distance), $\frac{k}{n} \to R$ (code rate).

Definition

A code family $\{C_n\}$ is said to be *asymptotically good* if there exist constants $R, \delta > 0$:

- $\bullet \ \frac{k_n}{n} \ge R > 0;$
- $\frac{d_n}{n} \geq \delta > 0$;

Are the codes we already know asymptotically good?

- $(n = 2^m 1, k = 2^m m 1, d = 3)_2$ Hamming codes
 - $R = \frac{2^m m 1}{2^m 1} \to 1$;
 - $\delta = \frac{3}{2m-1} \to 0$.
- ② $(n = 2^m, k, d)_2 RM(m, s)$ code
 - $k = \sum_{i=0}^{s} {m \choose i} = V_s;$ $d = 2^{m-s};$

 - $R = \frac{V_r}{2m}$
 - $\delta = 2^{-s}$

Statement

Hamming and RM codes are asymptotically bad.

Are the codes we already know asymptotically good?

BCH codes:

• t = const. Hamming bound

$$n-k \geq t \log n + O(1).$$

BCH code

$$n-k \leq t \log n + O(1).$$

BCH codes are good!

t grows with n

Theorem

Let $n \to \infty$ and $\delta > 0$, then the rate of BCH code $R \to 0$.

BCH codes are asymptotically bad.

- 1 Are the codes we already know asymptotically good?
- 2 Interleaved codes
- 3 Product codes
- 4 Concatenated codes
- 6 Generalized concatenated codes
- 6 Problems
- Soft decoding

Interleaved codes

$$R = \frac{\sum R_i}{\ell}.$$

- 1 Are the codes we already know asymptotically good?
- 2 Interleaved codes
- 3 Product codes
- 4 Concatenated codes
- 6 Generalized concatenated codes
- 6 Problems
- Soft decoding

Construction

A codeword of a product code is a matrix whose rows are codewords of the first component code and whose columns are codewords of the second component code.

Parameters

Consider a product code C constructed from row code C_r and column code C_c , then

$$n(C) = n_r n_c$$

 $R(C) = R(C_r)R(C_c)$
 $d(C) \ge d(C_r)d(C_c)$

Iterative decoder

Generator matrix

Statement

Let G_r and G_c be generator matrices of a row code C_r and a column code C_c , then

$$G = G_r \otimes G_c$$
.

Recall the Kronecker product definition. Let $\mathbf{X} = [x_{i,j}]$ be of size $m_x \times n_x$, $\mathbf{Y} = [y_{i,j}]$ be of size $m_y \times n_y$, then

$$X \otimes Y = \begin{bmatrix} x_{1,1}Y & x_{1,2}Y & \dots & x_{1,n_x}Y \\ x_{2,1}Y & x_{2,2}Y & \dots & x_{2,n_x}Y \\ \vdots & \vdots & \ddots & \vdots \\ x_{m_x,1}Y & x_{m_x,2}Y & \dots & x_{m_x,n_x}Y \end{bmatrix}$$

Product of cyclic codes

Statement

Let C_r and C_c be cyclic codes with $(n_r, n_c) = 1$, then $C = C_r \otimes C_c$ is also cyclic.

- 1 Are the codes we already know asymptotically good?
- 2 Interleaved codes
- Product codes
- 4 Concatenated codes
- 6 Generalized concatenated codes
- 6 Problems
- Soft decoding

Forney's view

Concatenation according to Blokh and Zyablov

Construction

Inner and outer codes:

- Outer (n_a, k_a) code A over $\mathbb{F}_{q^{k_b}}$.
- Inner (n_b, k_b) code B over \mathbb{F}_q .

Parameters of $A \diamond B$:

$$N = n_a n_b$$
 (symbols from \mathbb{F}_q)
 $R = R_a R_b$
 $D \geq d_a d_b$

Zyablov bound

Theorem

Let $R \in (0,1)$, then it is possible to construct a code of rate R and distance

$$\delta(R) = \max_{R \le r \le 1} \left(1 - \frac{R}{r} \right) h^{-1} (1 - r),$$

where h^{-1} is the inverse of entropy function.

Proof.

Outer code: $[n_a, k_a]$ RS code over \mathbb{F}_Q , $Q = q^{k_b}$, $n_a = Q - 1$.

Inner code: $[n_b, k_b]$ code over \mathbb{F}_q , which meets the VG bound.

Zyablov bound

Decoder

Decoder all the inner codes, then decode the outer code.

With this decoder we can decode up to $\frac{d_a d_b}{4}$ errors.

Generalized minimum distance decoder

Forget for a while about concatenated codes. Assume we are give a code $\mathcal C$ of length n. We send a codeword $\mathbf x$ and received a sequence $\mathbf y$ with errors. Assume are also provided with the reliabilities α_i , $i=1,\ldots,n$.

$$f(\mathbf{x},\mathbf{y},\alpha) = \sum_{i=1}^{n} \alpha_{i} \phi(x_{i},y_{i}),$$

where $\phi(x_i, y_i) = +1$ if $x_i = y_i$ and $\phi(x_i, y_i) = -1$ otherwise.

Generalized minimum distance decoder

$$d(\mathbf{x},\mathbf{y},\alpha)=n-f(\mathbf{x},\mathbf{y},\alpha).$$

Theorem

Forney

Assume we are given an (n, k, d) code C. If there exists a codeword c, such that $d(c, \mathbf{y}, \alpha) < d$, then c will be recovered from one of the decoding trials.

In a trial i, i = 0, ..., d - 1, we erase i least reliable symbols.

GMD for concatenated codes

Let us decode all the inner codes. How to introduce the reliabilities for outer code?

Let us consider the first inner code. \mathbf{y} is the sequence to be decoded, $\hat{\mathbf{x}}$ is the decoding result.

$$\alpha_1 = 0$$
, (decoding failure)
 $\alpha_1 = n_b - d(\mathbf{y}, \hat{\mathbf{x}})$, (otherwise)

This method allows to decode up to D/2.

- 1 Are the codes we already know asymptotically good?
- 2 Interleaved codes
- Product codes
- 4 Concatenated codes
- Generalized concatenated codes
- 6 Problems
- Soft decoding

Generalized concatenated codes

The main difference:

- ℓ outer codes A_i , $i = 1, \ldots, \ell$;
- \ell nested inner codes

$$B_1 \subset B_2 \subset \ldots \subset B_\ell$$
.

Distance estimate

$$D \ge \min_{1 \le i \le \ell} d_b^{(i)} d_a^{(i)}.$$

Multilevel coding

A. Frolov

Lecture 7

Multilevel coding

A. Frolov

Lecture 7

- 1 Are the codes we already know asymptotically good?
- 2 Interleaved codes
- Product codes
- 4 Concatenated codes
- 6 Generalized concatenated codes
- 6 Problems
- Soft decoding

Problem 1

Consider a product code which consists of single parity check codes with lengths n_1 and n_2 . What are the parameters of this code? How to decode it?

Problem 2

Consider a repetition code R_9 of length 9. The code can be presented as a concatenation of R_3 and R_3 . We first encode the sourse steam with R_3 and then encode resulting output with R_3 . Evaluate the probability of error for this decoder and compare it with probability of error for optimal decoder R_9

- 1 Are the codes we already know asymptotically good?
- 2 Interleaved codes
- Product codes
- 4 Concatenated codes
- 5 Generalized concatenated codes
- 6 Problems
- Soft decoding

Soft decoding

In case of *hard decision decoding* demodulator makes a hard decision and provides the decoder with the symbols of the field. In case of *soft decision decoding* demodulator provides the decoder with probability distributions.

Example: Binary input AWGN channel

LLR calculation

Assume again, that 0 is sent with the level +1 and 0 is sent with the level -1. Let us calculate the log likelihood ratio given y

LLR =
$$\log \frac{\Pr(X = +1|y)}{\Pr(X = -1|y)}$$

= $\log \frac{\Pr(y|X = +1)\Pr(X = +1)\Pr(y)}{\Pr(y|X = -1)\Pr(X = -1)\Pr(y)}$
= $\log \frac{f(y|+1)}{f(y|-1)}$
= $\frac{(y+1)^2 - (y-1)^2}{2\sigma^2}$
= $\frac{2}{\sigma^2}y$

Soft vs hard decoding

Consider again BI-AWGN channel. We can use LLR values or make a hard decision (+1 if LLR > 0, -1 otherwise). The difference is approx. 2 dB!

Thank you for your attention!