Cap. 9 – Funções trigonométricas

01/07/2022

Num triângulo retângulo, tem-se:

Dados dois triângulos retângulos com um ângulo agudo \hat{B} comum:

Como $\hat{B}=\hat{B}'$ e os triângulos são retângulos, tem-se $\triangle ABC$ e $\triangle A'B'C'$ semalhantes. Logo

$$\cos \hat{B} = \frac{c}{a} = \frac{c'}{a'} = \cos \hat{B}'$$

$$\operatorname{sen} \hat{B} = \frac{b}{a} = \frac{b'}{a'} = \operatorname{sen} \hat{B}'$$

Assim, o valor do cosseno e do seno dependem apenas do ângulo e não do triângulo.

Sabendo o valor de $\cos\hat{B}$ e a medida da hipotenusa do triângulo, podemos determinar as medidas dos catetos:

$$\cos \hat{B} = \frac{c}{a} \Rightarrow c = a \cdot \cos \hat{B}$$

$$a^2 = b^2 + c^2 \Rightarrow b = \sqrt{a^2 - c^2}$$

Dado um triângulo qualquer:

$$\operatorname{sen} \hat{B} = \frac{h}{\overline{AB}} \Rightarrow h = \overline{AB} \cdot \operatorname{sen} \hat{B}$$

Voltando ao triângulo retângulo:

Assim, tendo uma tabela de senos é possível obter os valores do cosseno e vice-versa.

A palavra cosseno significa seno do complemento:

$$\cos \alpha = \sin(90^{\circ} - \alpha)$$

Além disso, dado um ângulo agudo \hat{B} :

$$0<\cos\hat{B}=\frac{b}{a}<1$$

$$0<\sin\hat{B}=rac{c}{a}<1$$

pois a, b, c > 0, b < a e c < a (hipotenusa é o maior lado).

Se A_1B_1 é a projeção de AB então $\overline{A_1B_1}=\overline{AB}\cdot\cos\alpha$, onde α é o ângulo entre AB e A_1B_1 . De fato,

$$\cos \alpha = \frac{\overline{AC}}{\overline{AB}} \Rightarrow \overline{A_1B_1} = \overline{AC} = \overline{AB} \cdot \cos \alpha$$

$$C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$

Definimos $E: \mathbb{R} \to C$ como

- ightharpoonup E(0) = (1,0);
- Se t > 0, percorremos sobre C um caminho de comprimento t no sentido anti-horário. E(t) é o ponto final do caminho;
- Se t < 0, percorremos sobre C um caminho de comprimento |t| no sentido horário. E(t) é o ponto final do caminho.

$$E(t+2k\pi)=E(t), \forall t\in\mathbb{R}, k\in\mathbb{Z}$$

De fato, quando t descreve um intervalo de comprimento 2π (comprimento de C), sua imagem E(t) dá uma volta completa sobre C.

Reciprocamente, se $t \neq t'$ e E(t) = E(t'), temos $t' = t + 2k\pi, k \in \mathbb{Z}$, pois E(t) = E(t') significa que ao caminhar de t a t' suas imagens vão de E(t) a E(t') dando (pelo menos) uma volta completa em C no sentido anti-horário se t < t' ou horário de t > t'.

Pondo A = (1,0), O = (0,0) e B = E(t), dizemos que o ângulo $A\hat{O}B$ mede t radianos. Assim:

- Para t > 0 o ângulo $A\hat{O}B$ tem medida positiva e se t < 0 o ângulo tem medida negativa (orientação);
- ▶ O ângulo $A\hat{O}B$ é bem definido a menos de um múltiplo 2π ; $E(t) = E(t + 2k\pi)$, logo um ângulo de t radianos é também um ângulo de $t + 2k\pi$ radianos.

- ▶ $A\hat{O}B$ mede 1 radiano \Leftrightarrow o arco \widehat{AB} de C (de raio 1) tem comprimento 1. Numa circunferência de raio r, um ângulo central mede $\frac{I}{r}$ radiano quando I é o comprimento do arco submetido por esse ângulo;
- A medida de $A\hat{O}B$ em radianos pode ser dada por $\frac{2a}{r^2}$, onde a é a área do setor AOB.

De fato, a área do setor é uma função crescente do comprimento do arco \widehat{AB} e tomando $\widehat{AB'}$ n vezes maior que \widehat{AB} a área do setor AOB' é n vezes maior que a área do setor AOB (são n fatias iguais a AOB, a(nl) = na(l)).

Assim, pelo Teo. Fund. da Proporcionalidade, a área do setor é função linear do comprimento l do arco, a=cl, com c constante.

Tomando o setor como todo o círculo de raio r, tem-se $a=\pi r^2$ e $l=2\pi r$, logo $\pi r^2=c2\pi r\Rightarrow c=\frac{r}{2}$. Assim, $\frac{l}{r}=\frac{2a}{r^2}$.

Dizemos que o ângulo $A\hat{O}B$ mede s graus quando o arco \widehat{AB} mede $\frac{2\pi}{360}s$ radianos. Assim, como a circunferência unitária mede 2π , temos que sua medida em graus é $360 \Rightarrow 2\pi$ rad $= 360^{\circ}$.

Simetrias da função E(t):

