

王石嵘

April 6, 2020

Contents

6	Mai	ny-bod	ly Perturbation Theory
	6.1	RS Pe	rturbation Theory
	6.2	Diagra	ammatic Representation of RS Perturbation Theory
		6.2.1	Diagrammatic Perturbation Theory for Two States
			Ex 6.1
		6.2.2	Diagrammatic Perturbation Theory for N States
			Ex 6.2
		6.2.3	Summation of Diagrams
	6.3	Orbita	al Perturbation Theory: One-Particle Perturbations
			Ex 6.3
			Ex 6.4

6 Many-body Perturbation Theory

6.1 RS Perturbation Theory

6.2 Diagrammatic Representation of RS Perturbation Theory

6.2.1 Diagrammatic Perturbation Theory for Two States

Ex 6.1

Similarly,

thus, the sum of above terms is

$$\frac{V_{12}V_{21}(V_{22}^3 - V_{11}^3)}{(E_1^{(0)} - E_2^{(0)})^4} + 3 \times \frac{V_{12}V_{21}(V_{11}^2V_{22} - V_{11}V_{22}^2)}{(E_1^{(0)} - E_2^{(0)})^4} = \frac{V_{12}V_{21}(V_{22} - V_{11})^3}{(E_1^{(0)} - E_2^{(0)})^4}$$
(6.2.1)

6.2.2 Diagrammatic Perturbation Theory for N States

Ex 6.2 The 4th-order perturbation energy of state i can be expressed as

$$\sum_{k,n,m\neq i} \frac{V_{ki}V_{nk}V_{mn}V_{im}}{(E_{i}^{(0)} - E_{k}^{(0)})(E_{i}^{(0)} - E_{n}^{(0)})(E_{i}^{(0)} - E_{m}^{(0)})} + \sum_{n\neq i} \frac{V_{ii}^{2}V_{ni}V_{in}}{(E_{i}^{(0)} - E_{n}^{(0)})^{3}} - \sum_{m,n\neq i} \frac{V_{ii}V_{mi}V_{in}V_{nm}}{(E_{i}^{(0)} - E_{m}^{(0)})^{2}(E_{i}^{(0)} - E_{n}^{(0)})} - \sum_{m,n\neq i} \frac{V_{mi}V_{im}V_{in}V_{ni}}{(E_{i}^{(0)} - E_{m}^{(0)})^{2}(E_{i}^{(0)} - E_{n}^{(0)})} - \sum_{m,n\neq i} \frac{V_{mi}V_{im}V_{in}V_{ni}}{(E_{i}^{(0)} - E_{m}^{(0)})(E_{i}^{(0)} - E_{n}^{(0)})(E_{i}^{(0)} - E_{n}^{(0)})(2E_{i}^{(0)} - E_{n}^{(0)} - E_{m}^{(0)})} - \sum_{m,n\neq i} \frac{V_{mi}V_{im}V_{in}V_{in}}{(E_{i}^{(0)} - E_{n}^{(0)})^{2}(2E_{i}^{(0)} - E_{n}^{(0)} - E_{m}^{(0)})} + \sum_{n\neq i} \frac{V_{ii}^{2}V_{ni}V_{in}}{(E_{i}^{(0)} - E_{n}^{(0)})^{3}} - 2\sum_{m,n\neq i} \frac{V_{ii}V_{mi}V_{in}V_{in}V_{nm}}{(E_{i}^{(0)} - E_{m}^{(0)})^{2}(E_{i}^{(0)} - E_{n}^{(0)})} - \sum_{m,n\neq i} \frac{V_{mi}V_{im}V_{in}V_{in}}{(E_{i}^{(0)} - E_{m}^{(0)})(E_{i}^{(0)} - E_{n}^{(0)})^{2}}$$

$$(6.2.2)$$

while

$$\left\langle n \left| \mathcal{H} \left| \Psi_i^{(3)} \right\rangle + \left\langle n \left| \mathcal{V} \right| \Psi_i^{(2)} \right\rangle = E_i^{(0)} \left\langle n \left| \Psi_i^{(3)} \right\rangle + E_i^{(1)} \left\langle n \left| \Psi_i^{(2)} \right\rangle + E_i^{(2)} \left\langle n \left| \Psi_i^{(1)} \right\rangle \right\rangle \right.$$
(6.2.3)

$$\begin{split} \left(E_{i}^{(0)}-E_{n}^{(0)}\right)\left\langle n\left|\Psi_{i}^{(3)}\right\rangle &=\left\langle n\left|\mathcal{V}\right|\Psi_{i}^{(2)}\right\rangle -E_{i}^{(1)}\left\langle n\left|\Psi_{i}^{(2)}\right\rangle -E_{i}^{(2)}\left\langle n\left|\Psi_{i}^{(1)}\right\rangle \right. \\ &=\left\langle n\left|\mathcal{V}\right|\Psi_{i}^{(2)}\right\rangle -E_{i}^{(1)}\frac{\left\langle n\left|\mathcal{V}\right|\Psi_{i}^{(1)}\right\rangle -E_{i}^{(1)}\left\langle n\left|\Psi_{i}^{(1)}\right\rangle }{E_{i}^{(0)}-E_{n}^{(0)}} -E_{i}^{(2)}\left\langle n\left|\Psi_{i}^{(1)}\right\rangle \right. \\ &=\left\langle n\left|\mathcal{V}\right|\Psi_{i}^{(2)}\right\rangle -E_{i}^{(1)}\frac{\left\langle n\left|\mathcal{V}\right|\Psi_{i}^{(1)}\right\rangle }{E_{i}^{(0)}-E_{n}^{(0)}} +\left[E_{i}^{(1)}\right]^{2}\frac{\left\langle n\left|\mathcal{V}\right|i\right\rangle }{\left[E_{i}^{(0)}-E_{n}^{(0)}\right]^{2}} -E_{i}^{(2)}\frac{\left\langle n\left|\mathcal{V}\right|i\right\rangle }{E_{i}^{(0)}-E_{n}^{(0)}} \end{split} \tag{6.2.4}$$

$$\begin{split} E_{i}^{(4)} &= \left\langle i \, \middle| \, \mathcal{V} \, \middle| \, \Psi_{i}^{(3)} \right\rangle \\ &= \sum_{n \neq i} \frac{\left\langle i \, \middle| \, \mathcal{V} \, \middle| \, n \right\rangle}{E_{i}^{(0)} - E_{n}^{(0)}} \left\{ \left\langle n \, \middle| \, \mathcal{V} \, \middle| \, \Psi_{i}^{(2)} \right\rangle - E_{i}^{(1)} \frac{\left\langle n \, \middle| \, \mathcal{V} \, \middle| \, \Psi_{i}^{(1)} \right\rangle}{E_{i}^{(0)} - E_{n}^{(0)}} + \left[E_{i}^{(1)} \right]^{2} \frac{\left\langle n \, \middle| \, \mathcal{V} \, \middle| \, i \right\rangle}{\left[E_{i}^{(0)} - E_{n}^{(0)} \right]^{2}} - E_{i}^{(2)} \frac{\left\langle n \, \middle| \, \mathcal{V} \, \middle| \, i \right\rangle}{E_{i}^{(0)} - E_{n}^{(0)}} \right\} \\ &= \sum_{n \neq i} \frac{\left\langle i \, \middle| \, \mathcal{V} \, \middle| \, n \right\rangle}{E_{i}^{(0)} - E_{n}^{(0)}} \left\langle n \, \middle| \, \mathcal{V} \, \middle| \, \Psi_{i}^{(2)} \right\rangle - E_{i}^{(1)} \sum_{n \neq i} \frac{\left\langle i \, \middle| \, \mathcal{V} \, \middle| \, n \right\rangle}{\left[E_{i}^{(0)} - E_{n}^{(0)} \right]^{2}} \left\langle n \, \middle| \, \mathcal{V} \, \middle| \, \Psi_{i}^{(1)} \right\rangle \\ &+ \left[E_{i}^{(1)} \right]^{2} \sum_{n \neq i} \frac{V_{in} V_{ni}}{\left[E_{i}^{(0)} - E_{n}^{(0)} \right]^{3}} - E_{i}^{(2)} \sum_{n \neq i} \frac{V_{in} V_{ni}}{\left[E_{i}^{(0)} - E_{n}^{(0)} \right]^{2}} \\ &= \sum_{n, m \neq i} \frac{\left\langle i \, \middle| \, \mathcal{V} \, \middle| \, n \right\rangle}{E_{i}^{(0)} - E_{n}^{(0)}} \left\langle n \, \middle| \, \mathcal{V} \, \middle| \, m \right\rangle \left\langle m \, \middle| \, \Psi_{i}^{(2)} \right\rangle - E_{i}^{(1)} \sum_{n, m \neq i} \frac{\left\langle i \, \middle| \, \mathcal{V} \, \middle| \, n \right\rangle}{\left[E_{i}^{(0)} - E_{n}^{(0)} \right]^{2}} \\ &= \sum_{n, m, \neq i} \frac{\left\langle i \, \middle| \, \mathcal{V} \, \middle| \, n \right\rangle}{\left[E_{i}^{(0)} - E_{n}^{(0)} \right]^{3}} - E_{i}^{(2)} \sum_{n \neq i} \frac{V_{in} V_{ni}}{\left[E_{i}^{(0)} - E_{n}^{(0)} \right]^{2}} - E_{i}^{(1)} \left\langle m \, \middle| \, \Psi_{i}^{(1)} \right\rangle - E_{i}^{(1)} \left\langle m \, \middle| \, \Psi_{i}^{(1)} \right\rangle - E_{i}^{(1)} \left\langle m \, \middle| \, \Psi_{i}^{(1)} \right\rangle - E_{i}^{(1)} \left\langle m \, \middle| \, \Psi_{i}^{(1)} \right\rangle \\ &= \sum_{n, m, \neq i} \frac{V_{in} V_{nm}}{\left[E_{i}^{(0)} - E_{n}^{(0)} \right]^{3}} - E_{i}^{(2)} \sum_{n \neq i} \frac{V_{in} V_{ni}}{\left[E_{i}^{(0)} - E_{n}^{(0)} \right]^{3}} - E_{i}^{(2)} \sum_{n \neq i} \frac{V_{in} V_{ni}}{\left[E_{i}^{(0)} - E_{n}^{(0)} \right]^{3}} \\ &= \sum_{n, m, k \neq i} \frac{V_{in} V_{ni}}{\left[E_{i}^{(0)} - E_{n}^{(0)} \right]^{2} \left[E_{i}^{(0)} - E_{n}^{(0)} \right]} + \left[E_{i}^{(1)} \right]^{2} \sum_{n \neq i} \frac{V_{in} V_{ni}}{\left[E_{i}^{(0)} - E_{n}^{(0)} \right]^{2}} \left[E_{i}^{(0)} - E_{n}^{(0)} \right]^{2}} \\ &= \sum_{n, m, k \neq i} \frac{V_{in} V_{ni}}{\left[E_{i}^{(0)} - E_{n}^{(0)} \right]^{2} \left[E_{i}^{(0)} - E_{n}^{(0)} \right]} + \left[E_{i}^{(1)} \right]^{2} \sum_{n \neq i} \frac{V_{in} V_{ni}}{\left[E_{i}^{(0)} - E_{n}^{(0)}$$

which agrees with diagrammatic results above.

6.2.3 Summation of Diagrams

6.3 Orbital Perturbation Theory: One-Particle Perturbations

Ex 6.3 Since $n \neq 0$ and v(i) is one-particle operator, n must be single-excited, i.e. $|\Psi_a^r\rangle$. Thus,

$$E_0^{(2)} = \sum_{a,r} \frac{\left| \left\langle \Psi_0 \right| \sum_i v(i) \left| \Psi_a^r \right\rangle \right|^2}{\left\langle \Psi_0 \right| \mathcal{H} \left| \Psi_0 \right\rangle - \left\langle \Psi_a^r \right| \mathcal{H} \left| \Psi_a^r \right\rangle}$$

$$= \sum_{a,r} \frac{v_{ar} v_{ra}}{\sum_b \varepsilon_b^{(0)} - \left(\sum_{b \neq a} \varepsilon_b^{(0)} + \varepsilon_r^{(0)} \right)}$$

$$= \sum_{a,r} \frac{v_{ar} v_{ra}}{\varepsilon_a^{(0)} - \varepsilon_r^{(0)}}$$
(6.3.1)

Ex 6.4 Eq 6.15 in textbook gives

$$E_{i}^{(3)} = \sum_{n,m\neq i} \frac{\langle i \mid \mathcal{V} \mid n \rangle \langle n \mid \mathcal{V} \mid m \rangle \langle m \mid \mathcal{V} \mid i \rangle}{(E_{i}^{(0)} - E_{n}^{(0)})(E_{i}^{(0)} - E_{m}^{(0)})} - E_{i}^{(1)} \sum_{n\neq i} \frac{|\langle i \mid \mathcal{V} \mid n \rangle|^{2}}{(E_{i}^{(0)} - E_{n}^{(0)})^{2}}$$

$$= A_{i}^{(3)} + B_{i}^{(3)}$$
(6.3.2)

a.

$$B_0^{(3)} = -E_0^{(1)} \sum_{n \neq 0} \frac{|\langle \Psi_0 | \mathcal{V} | n \rangle|^2}{(E_0^{(0)} - E_n^{(0)})^2}$$

$$= -\sum_b v_{bb} \sum_{a,r} \frac{v_{ar} v_{ra}}{(\varepsilon_a - \varepsilon_r)^2}$$

$$= -\sum_{a,b,r} \frac{v_{aa} v_{br} v_{rb}}{(\varepsilon_b - \varepsilon_r)^2}$$
(6.3.3)

b.

$$A_0^{(3)} = \sum_{n,m\neq 0} \frac{\langle \Psi_0 \mid \mathcal{V} \mid n \rangle \langle n \mid \mathcal{V} \mid m \rangle \langle m \mid \mathcal{V} \mid \Psi_0 \rangle}{(E_0^{(0)} - E_n^{(0)})(E_0^{(0)} - E_m^{(0)})}$$

$$= \sum_{a,r,b,s} \frac{\langle \Psi_0 \mid \mathcal{V} \mid \Psi_a^r \rangle \langle \Psi_a^r \mid \mathcal{V} \mid \Psi_b^s \rangle \langle \Psi_b^s \mid \mathcal{V} \mid \Psi_0 \rangle}{(\varepsilon_a^{(0)} - \varepsilon_r^{(0)})(\varepsilon_b^{(0)} - \varepsilon_s^{(0)})}$$

$$= \sum_{a,r,b,s} \frac{v_{ar} v_{sb} \langle \Psi_a^r \mid \mathcal{V} \mid \Psi_b^s \rangle}{(\varepsilon_a^{(0)} - \varepsilon_r^{(0)})(\varepsilon_b^{(0)} - \varepsilon_s^{(0)})}$$

$$(6.3.4)$$