Aim: Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny Warm		High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

```
In [1]: import pandas as pd
          import numpy as np
          #to read the data in the csv file
data = pd.read_csv("lab1.csv")
          print(data)
                Sky AirTemp Humidity
                                              Wind Water Forecast EnjoySport
                                                             Same
              Sunny
                         Warm
                                Normal Strong Warm
              Sunny
                         Warm
                                    High Strong Warm
                                                                  Same
                                                                                 Yes
              Rainy
                         Cold
                                     High Strong Warm
                                                               Change
                                                                                  No
              Sunny
                         Warm
                                    High Strong Cool
                                                               Change
                                                                                 Yes
In [2]: #making an array of all the attributes
d = np.array(data)[:,:-1]
          print("The attributes are: ",d)
          The attributes are: [['Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']
['Sunny' 'Warm' 'High' 'Strong' 'Warm' 'Same']
['Rainy' 'Cold' 'High' 'Strong' 'Warm' 'Change']
['Sunny' 'Warm' 'High' 'Strong' 'Cool' 'Change']]
In [3]: #segragating the target that has positive and negative examples
          target = np.array(data)[:,-1]
print(" The target is: ",target)
            The target is: ['Yes' 'Yes' 'No' 'Yes']
In [4]: #training function to implement find-s algorithm
          def train(c,t):
               for i, val in enumerate(t):
    if val == "Yes":
                         specific_hypothesis = c[i].copy()
               for i, val in enumerate(c):
    if t[i] == "Yes":
                         for x in range(len(specific_hypothesis)):
                              if val[x] != specific_hypothesis[x]:
                                   specific_hypothesis[x] =
                               else:
               return specific_hypothesis
In [5]: print(" The final hypothesis is:",train(d,target))
            The final hypothesis is: ['Sunny' 'Warm' '?' 'Strong' '?' '?']
```

Aim: For a given set of training data examples stored in a .CSV file, implement and demonstratethe Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny Warm		High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

```
In [1]: import pandas as pd
           import numpy as np
data=pd.read_csv('lab1.csv')
           print(data)
                  Sky AirTemp Humidity
                                                  Wind Water Forecast EnjoySport
                                   Normal Strong Warm
                                     High Strong Warm
               Sunny
                           Warm
                                                                       Same
                                                                                       Yes
                                        High Strong Warm
                                                                    Change
           3 Sunny
                           Warm
                                       High Strong Cool
                                                                   Change
                                                                                        Yes
In [2]: concepts = np.array(data.iloc[:,0:-1])
target = np.array(data.iloc[:,-1])
           print(target)
           ['Yes' 'Yes' 'No' 'Yes']
In [3]: print(concepts)
           [['Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']
['Sunny' 'Warm' 'High' 'Strong' 'Warm' 'Same']
['Rainy' 'Cold' 'High' 'Strong' 'Warm' 'Change']
['Sunny' 'Warm' 'High' 'Strong' 'Cool' 'Change']]
In [4]: def learn(concepts, target):
                specific_h = concepts[0].copy()
general_h = [["?" for i in range(len(specific_h))] for i in range(len(specific_h))]
                 for i, h in enumerate(concepts):
                      if target[i] == "Yes":
    for x in range(len(specific_h)):
                                if h[x]!= specific_h[x]:
    specific_h[x] = '?'
                                      general_h[x][x] = '?'
                     if target[i] == "No":
    for x in range(len(specific_h)):
                                if h[x]!= specific_h[x]:
    general_h[x][x] = specific_h[x]
                                      general_h[x][x] = '?'
                 indices = [i for i, val in enumerate(general_h) if val == ['?', '?', '?', '?', '?', '?']
                 for i in indices:
                      general_h.remove(['?', '?', '?', '?', '?', '?'])
                 return specific_h, general_h
In [5]: s_final, g_final = learn(concepts, target)
           print("Final Specific_h:", s_final, sep="\n")
print("Final General_h:", g_final, sep="\n")
           Final Specific_h:

"""" 'Strong' '?' '?']
           [ sumy warm : Scrong : : ]
Final General_h:
[['Sunny', '?', '?', '?', '?'], ['?', 'Warm', '?', '?', '?', '?']]
```

Aim: Write a program to demonstrate the working of the decision tree-based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

Data Set:

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

```
In [1]: import pandas as pd
import numpy as np
data=pd.read_csv('PlayTennis.csv')
data
```

Out[1]:

	PlayTennis	Outlook	Temperature	Humidity	Wind
0	No	Sunny	Hot	High	Weak
1	No	Sunny	Hot	High	Strong
2	Yes	Overcast	Hot	High	Weak
3	Yes	Rain	Mild	High	Weak
4	Yes	Rain	Cool	Normal	Weak
5	No	Rain	Cool	Normal	Strong
6	Yes	Overcast	Cool	Normal	Strong
7	No	Sunny	Mild	High	Weak
8	Yes	Sunny	Cool	Normal	Weak
9	Yes	Rain	Mild	Normal	Weak
10	Yes	Sunny	Mild	Normal	Strong
11	Yes	Overcast	Mild	High	Strong
12	Yes	Overcast	Hot	Normal	Weak
13	No	Rain	Mild	High	Strong

```
In [2]: def entropy(probs):
                   return sum( [-prob*math.log(prob, 2) for prob in probs] )
In [3]: #Function to calulate the entropy of the given Data Sets/List with respect to target attributes
            def entropy_of_list(a_list):
    #print("A-list",a_list)
    from collections import Counter
              # The initial entropy of the YES/NO attribute for our dataset.
print("\n INPUT DATA SET FOR ENTROPY CALCULATION:\n", data['PlayTennis'])
             total_entropy = entropy_of_list(data['PlayTennis'])
             print("\n Total Entropy of PlayTennis Data Set:",total_entropy)
               INPUT DATA SET FOR ENTROPY CALCULATION:
                       No
                       Yes
                      Yes
                      Yes
                       No
                      Yes
                       No
                      Yes
                      Yes
             10
                      Yes
             11
                     Yes
             12
                     Yes
             13
             Name: PlayTennis, dtype: object
              Total Entropy of PlayTennis Data Set: 0.9402859586706309
Takes a DataFrame of attributes, and quantifies the entropy of a target attribute after performing a split along the values of another attribute. \dots
                  # Split Data by Possible Vals of Attribute:
df_split = df.groupby(split_attribute_name)
                 # for name,group in df_split:
# print("Name:\n",name)
# print("Group:\n",group)
                  # Calculate Entropy for Target Attribute, as well as
# Proportion of Obs in Each Data-Split
nobs = len(df.index) * 1.0
                  # print("NOBS",nobs)
df_agg_ent = df_split.agg({target_attribute_name : [entropy_of_list, lambda x: len(x)/nobs] })[target_attribute_name]
                  #print([target_attribute_name])
#print([target_attribute_name])
#print("Entropy List",entropy_of_List)
#print("DFAGGENT",df_agg_ent)
df_agg_ent.columns = ['Entropy', 'PropObservations']
#if trace: # helps understand what fxn is doing:
# print(df_agg_ent)
                   # Calculate Information Gain:
                  new_entropy = sum( df_agg_ent['Entropy'] * df_agg_ent['Prop0bservations'] )
old_entropy = entropy_of_list(df[target_attribute_name])
return old_entropy - new_entropy
            print('Info-gain for Outlook is :'+str( information_gain(data, 'Outlook', 'PlayTennis')),"\n")
print('\n Info-gain for Humidity is: ' + str( information_gain(data, 'Humidity', 'PlayTennis')),"\n")
print('\n Info-gain for Wind is:' + str( information_gain(data, 'Wind', 'PlayTennis')),"\n")
print('\n Info-gain for Temperature is:' + str( information_gain(data, 'Temperature','PlayTennis')),"\n")
             Info-gain for Outlook is :0.2467498197744391
              Info-gain for Humidity is: 0.15183550136234136
              Info-gain for Wind is:0.04812703040826927
               Info-gain for Temperature is:0.029222565658954647
```

```
In [5]: def id3(df, target_attribute_name, attribute_names, default_class=None):
              ## Tally target attribute:
              from collections import Counter
              cnt = Counter(x for x in df[target_attribute_name])# class of YES /NO
              ## First check: Is this split of the dataset homogeneous?
              if len(cnt) == 1:
                  return next(iter(cnt)) # next input data set, or raises StopIteration when EOF is hit.
              ## Second check: Is this split of the dataset empty?
              # if yes, return a default value
              elif df.empty or (not attribute_names):
                  return default_class # Return None for Empty Data Set
              ## Otherwise: This dataset is ready to be devied up!
              else:
                  # Get Default Value for next recursive call of this function:
                  default_class = max(cnt.keys()) #No of YES and NO Class
                  # Compute the Information Gain of the attributes:
gainz = [information_gain(df, attr, target_attribute_name) for attr in attribute_names] #
                  index_of_max = gainz.index(max(gainz)) # Index of Best Attribute
# Choose Best Attribute to split on:
                  best_attr = attribute_names[index_of_max]
                  # Create an empty tree, to be populated in a moment
tree = {best_attr:{}} # Initiate the tree with best attribute as a node
                  remaining_attribute_names = [i for i in attribute_names if i != best_attr]
                  # Split dataset
                  # On each split, recursively call this algorithm.
                  # populate the empty tree with subtrees, which
                  # are the result of the recursive call
                  for attr_val, data_subset in df.groupby(best_attr):
                       subtree = id3(data_subset,
                                    target attribute name,
                                    remaining_attribute_names,
                                    default_class)
                      tree[best_attr][attr_val] = subtree
                  return tree
In [6]: # Get Predictor Names (all but 'class')
         attribute_names = list(data.columns)
         print("List of Attributes:", attribute_names)
attribute_names.remove('PlayTennis') #Remove the class attribute
print("Predicting Attributes:", attribute_names)
         List of Attributes: ['PlayTennis', 'Outlook', 'Temperature', 'Humidity', 'Wind'] Predicting Attributes: ['Outlook', 'Temperature', 'Humidity', 'Wind']
In [7]: # Run Algorithm:
         from pprint import pprint
         tree = id3(data, 'PlayTennis', attribute names)
         print("\n\nThe Resultant Decision Tree is :\n")
         #print(tree)
         pprint(tree)
         attribute = next(iter(tree))
         print("Best Attribute :\n",attribute)
print("Tree Keys:\n",tree[attribute].keys())
         The Resultant Decision Tree is :
         Best Attribute :
          Outlook
         Tree Keys:
          dict_keys(['Overcast', 'Rain', 'Sunny'])
```

Aim: Write a program to demonstrate the working of the decision tree-based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

```
In [1]: import numpy as np
        X = np.array(([2, 9], [1, 5], [3, 6]), dtype=float)
        y = np.array(([92], [86], [89]), dtype=float)
        X = X/np.amax(X,axis=0) \# maximum of X array Longitudinally
        y = y/100
        #Sigmoid Function
        def sigmoid (x):
            return 1/(1 + np.exp(-x))
        #Derivative of Sigmoid Function
        def derivatives_sigmoid(x):
            return x * (1 - x)
        #Variable initialization
        epoch=5000 #Setting training iterations
        lr=0.1 #Setting Learning rate
        inputlayer_neurons = 2 #number of features in data set
        hiddenlayer neurons = 3 #number of hidden Layers neurons
        output neurons = 1 #number of neurons at output Layer
        #weight and bias initialization
        wh=np.random.uniform(size=(inputlayer neurons,hiddenlayer neurons))
        bh=np.random.uniform(size=(1,hiddenlayer_neurons))
        wout=np.random.uniform(size=(hiddenlayer_neurons,output_neurons))
        bout=np.random.uniform(size=(1,output_neurons))
        #draws a random range of numbers uniformly of dim x*y
        for i in range(epoch):
        #Forward Propogation
            hinp1=np.dot(X,wh)
            hinp=hinp1 + bh
            hlayer_act = sigmoid(hinp)
            outinp1=np.dot(hlayer_act,wout)
            outinp= outinp1+ bout
            output = sigmoid(outinp)
        #Backpropagation
            EO = y-output
            outgrad = derivatives_sigmoid(output)
            d_output = EO* outgrad
            EH = d_output.dot(wout.T)
         #how much hidden layer wts contributed to error
            hiddengrad = derivatives_sigmoid(hlayer_act)
            d hiddenlayer = EH * hiddengrad
        # dotproduct of nextlayererror and currentlayerop
            wout += hlayer_act.T.dot(d_output) *lr
            wh += X.T.dot(d_hiddenlayer) *lr
        print("Input: \n" + str(X))
        print("Actual Output: \n" + str(y))
        print("Predicted Output: \n" ,output)
```

210760107005

Aim: Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

	Α	В	С	D	E
1	Outlook	Temperat	Humidity	Windy	PlayTennis
2	Sunny	Hot	High	FALSE	No
3	Sunny	Hot	High	TRUE	No
4	Overcast	Hot	High	FALSE	Yes
5	Rainy	Mild	High	FALSE	Yes
6	Rainy	Cool	Normal	FALSE	Yes
7	Rainy	Cool	Normal	TRUE	No
8	Overcast	Cool	Normal	TRUE	Yes
9	Sunny	Mild	High	FALSE	No
10	Sunny	Cool	Normal	FALSE	Yes
11	Rainy	Mild	Normal	FALSE	Yes
12	Sunny	Mild	Normal	TRUE	Yes
13	Overcast	Mild	High	TRUE	Yes
14	Overcast	Hot	Normal	FALSE	Yes
15	Rainy	Mild	High	TRUE	No

```
In [1]: # import necessary libarities
        import pandas as pd
        from sklearn import tree
        from sklearn.preprocessing import LabelEncoder
        from sklearn.naive_bayes import GaussianNB
        # Load data from CSV
        data = pd.read_csv('pr5.csv')
        print("THe first 5 values of data is :\n",data.head())
        # obtain Train data and Train output
        X = data.iloc[:,:-1]
        print("\nThe First 5 values of train data is\n",X.head())
        y = data.iloc[:,-1]
        print("\nThe first 5 values of Train output is\n",y.head())
        # Convert then in numbers
        le_outlook = LabelEncoder()
        X.Outlook = le_outlook.fit_transform(X.Outlook)
        le_Temperature = LabelEncoder()
        X.Temperature = le_Temperature.fit_transform(X.Temperature)
        le_Humidity = LabelEncoder()
X.Humidity = le_Humidity.fit_transform(X.Humidity)
        le_Windy = LabelEncoder()
        X.Windy = le_Windy.fit_transform(X.Windy)
        print("\nNow the Train data is :\n",X.head())
```

```
le_PlayTennis = LabelEncoder()
y = le_PlayTennis.fit_transform(y)
print("\nNow the Train output is\n",y)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.20)
classifier = GaussianNB()
classifier.fit(X_train,y_train)
from sklearn.metrics import accuracy score
print("Accuracy is:",accuracy_score(classifier.predict(X_test),y_test))
THe first 5 values of data is :
     Outlook Temperature Humidity Windy PlayTennis
0
      Sunny
                      Hot
                               High False
                               High
                                                     No
1
      Sunny
                      Hot
                                     True
                                                    Yes
                      Hot
                               High False
2 Overcast
                               High False
3
                     Mild
                                                    Yes
      Rainy
4
                           Normal False
      Rainy
                     Cool
                                                    Yes
The First 5 values of train data is
     Outlook Temperature Humidity Windy
                               High False
0
      Sunny
                     Hot
1
      Sunny
                      Hot
                               High
                                      True
                               High False
2 Overcast
                      Hot
3
      Rainy
                     Mild
                               High False
4
      Rainy
                     Cool
                           Normal False
The first 5 values of Train output is
0
       No
1
      No
2
     Yes
3
     Yes
4
     Yes
Name: PlayTennis, dtype: object
Now the Train data is :
    Outlook Temperature Humidity Windy
0
          2
                        1
                                   0
                                           0
1
          2
                        1
                                   0
                                           1
                                           0
2
          0
                        1
                                   0
3
          1
                        2
                                   a
                                           0
4
          1
                        0
                                   1
                                           0
Now the Train output is
 [0 0 1 1 1 0 1 0 1 1 1 1 1 1 0]
```

Aim: Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.

	Α	В
1	I love this sandwich	pos
2	This is an amazing place	pos
3	I feel very good about these beers	pos
4	This is my best work	pos
5	What an awesome view	pos
6	I do not like this restaurant	neg
7	I am tired of this stuff	neg
8	I can't deal with this	neg
9	He is my sworn enemy	neg
10	My boss is horrible	neg
11	This is an awesome place	pos
12	I do not like the taste of this juice	neg
13	I love to dance	pos
14	I am sick and tired of this place	neg
15	What a great holiday	pos
16	That is a bad locality to stay	neg
17	We will have good fun tomorrow	pos
18	I went to my enemy's house today	neg

```
[2]: import pandas as pd
    msg = pd.read_csv('pr6.csv', names=['message', 'label'])
    print("Total Instances of Dataset: ", msg.shape[0])
    msg['labelnum'] = msg.label.map({'pos': 1, 'neg': 0})

Total Instances of Dataset: 18

[3]: X = msg.message
    y = msg.labelnum
    from sklearn.model_selection import train_test_split
    Xtrain, Xtest, ytrain, ytest = train_test_split(X, y)
    from sklearn.feature_extraction.text import CountVectorizer

    count_v = CountVectorizer()
    Xtrain_dm = count_v.fit_transform(Xtrain)
    Xtest_dm = count_v.transform(Xtest)

[5]: df = pd.DataFrame(Xtrain_dm.toarray(), columns=count_v.get_feature_names_out())
    print(df[0:5])
```

```
about am an and awesome bad beers best boss do ... to today \
    0 0 0 0 0 0 0 0 0 0 ... 0
        0 0 0 0
                        0 1
                               0 0 0 0 ... 1 0
    2 1 0 0 0 0 0 1 0 0 0 ... 0 0
    0 0 0 0 0 0 ... 0 0
        9 1 9 1
     tomorrow very view we went what will work
         1 9 9 1 9 9 1 9
          0 0 0 0 0 0 0
    1
          0 1 0 0 0 0 0 0
    3
          0 0 0 0 0 0 0
          0 0 0 0 0 0 0
    [5 rows x 46 columns]
[6]: from sklearn.naive_bayes import MultinomialNB
    clf = MultinomialNB()
    clf.fit(Xtrain_dm, ytrain)
    pred = clf.predict(Xtest_dm)
[9]: for doc, p in zip(Xtest, pred):
       p = 'pos' if p == 1 else 'neg'
     print("%s -> %s" % (doc, p))
    I can't deal with this -> neg
    I do not like the taste of this juice -> neg
    I love to dance -> neg
    This is an amazing place -> pos
    What a great holiday -> pos
[10]: from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score
    print('Accuracy Metrics: \n')
    print('Accuracy: ', accuracy_score(ytest, pred))
    print('Recall: ', recall_score(ytest, pred))
    print('Precision: ', precision_score(ytest, pred))
    print('Confusion Matrix: \n', confusion_matrix(ytest, pred))
 Accuracy Metrics:
 Accuracy: 0.8
 Precision: 1.0
 Confusion Matrix:
 [[2 0]
  [1 2]]
```

Aim: Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.

1	Α	В	C	D	Е	F	G	Н	1	J	K	L	M	N
1	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	heartdisease
2	63	1	1	145	233	1	. 2	150	0	2.3		3) 6	0
3	67	1	4	160	286	0	2	108	1	1.5		2	3	2
4	67	1	4	120	229	0	2	129	1	2.6		2	2 7	1
5	37	1	3	130	250	0	0	187	0	3.5		3	3	0
6	41	0	2	130	204	0	2	172	0	1.4		1	3	0
7	56	1	2	120	236	0	0	178	0	0.8		1	3	0
8	62	0	4	140	268	0	2	160	0	3.6		3	2 3	3
9	57	0	4	120	354	0	0	163	1	0.6		1	3	0
10	63	1	4	130	254	0	2	147	0	1.4		2	1 7	2
11	53	1	4	140	203	1	. 2	155	1	3.1		3	7	1
12	57	1	4	140	192	0	0	148	0	0.4		2) 6	0
13	56	0	2	140	294	0	2	153	0	1.3		2	3	0
14	56	1	3	130	256	1	2	142	1	0.6		2	1 6	2
15	44	1	2	120	263	0	0	173	0	0		1 (7	0
16	52	1	3	172	199	1	. 0	162	0	0.5		1 (7	0
17	57	1	3	150	168	0	0	174	0	1.6		1 (3	0
18	48	1	2	110	229	0	0	168	0	1		3 (7	1
19	54	1	4	140	239	0	0	160	0	1.2		1 (3	0
20	48	0	3	130	275	0	0	139	0	0.2		1 (3	0
21	49	1	2	130	266	0	0	171	0	0.6		1 (3	0
22	64	1	1	110	211	0	2	144	1	1.8		2	3	0
23	58	0	1	150	283	1	. 2	162	0	1		1 (3	0
24	58	1	2	120	284	0	2	160	0	1.8		2	3	1
25	58	1	3	132	224	0	2	173	0	3.2		1 :	2 7	3
26	60	1	4	130	206	0	2	132	1	2.4		2	2 7	4
27	50	0	3	120	219	0	0	158	0	1.6		2	3	0
28	58	0	3	120	340	0	0	172	0	0		1 (3	0
29	66	0	1	150	226	0	0	114	0	2.6		3 (3	0
30	43	1	4	150	247		0	171	0	1.5		1 (3	0
	$\longleftarrow \vdash$	heart.c	sv (+)										1

```
import numpy as np
import pandas as pd
import csv
from pgmpy.estimators import MaximumLikelihoodEstimator
from pgmpy.models import BayesianModel
from pgmpy.inference import VariableElimination

heartDisease = pd.read_csv('heart.csv')
heartDisease = heartDisease.replace('?',np.nan)

print('Sample instances from the dataset are given below')
print(heartDisease.head())
```

```
Sample instances from the dataset are given below
   age sex cp trestbps chol fbs restecg thalach exang oldpeak slope
    63
         1
              1
                      145
                            233
                                           2
                                                   150
                                                           0
                                                                   2.3
0
                                  1
    67
              4
                            286
                                           2
1
          1
                      160
                                   0
                                                   108
                                                           1
                                                                   1.5
                                                                            2
             4
2
    67
         1
                      120
                            229
                                  0
                                           2
                                                  129
                                                           1
                                                                   2.6
                                                                            2
3
    37
              3
                      130
                            250
                                   0
                                           0
                                                  187
                                                           0
                                                                   3.5
                                                                            3
         1
             2
                      130
                            204
                                0
4
    41
          Θ
                                           2
                                                  172
                                                           0
                                                                   1.4
                                                                            1
  ca thal heartdisease
0 0
       6
1 3
       3
                      2
2 2
       7
                      1
3
  0
       3
                      0
4
  0
                      0
        3
print('\n Attributes and datatypes')
print(heartDisease.dtypes)
  Attributes and datatypes
                          int64
 age
                          int64
 sex
                          int64
 ср
                          int64
 trestbps
 chol
                          int64
 fbs
                          int64
                          int64
 restecg
 thalach
                         int64
 exang
                          int64
                       float64
 oldpeak
 slope
                         int64
                        object
 ca
 thal
                        object
 heartdisease
                          int64
 dtype: object
model= BayesianModel([('age', 'heartdisease'),('sex', 'heartdisease'),('exang', 'heartdisease'),('cp', 'heartdisease'),
('heartdisease','restecg'),('heartdisease','chol')])
print('\nLearning CPD using Maximum likelihood estimators')
model.fit(heartDisease,estimator=MaximumLikelihoodEstimator)
print('\n Inferencing with Bayesian Network:')
HeartDiseasetest_infer = VariableElimination(model)
```

print(q1)

print('\n 1. Probability of HeartDisease given evidence= restecg')

q1=HeartDiseasetest_infer.query(variables=['heartdisease'],evidence={'restecg':1})

Learning CPD using Maximum likelihood estimators

Inferencing with Bayesian Network:

1. Probability of HeartDisease given evidence= restecg

```
+----+
| heartdisease | phi(heartdisease) |
+==========+
| heartdisease(0) |
               0.1016
+----+
| heartdisease(1) |
              0.0000
+----+
| heartdisease(2) |
               0.2361
+----+
heartdisease(3)
               0.2017
+----+
heartdisease(4)
              0.4605
+----+
```

```
print('\n 2. Probability of HeartDisease given evidence= cp ')
q2=HeartDiseasetest_infer.query(variables=['heartdisease'],evidence={'cp':2})
print(q2)
```

Probability of HeartDisease given evidence= cp

```
+-----+
| heartdisease | phi(heartdisease) |
+==========+===+
| heartdisease(0) |
               0.3742
+----+
| heartdisease(1) |
+----+
| heartdisease(2) |
               0.1375
+-----+
heartdisease(3)
               0.1541
+----+
| heartdisease(4) |
+----+
```

Aim: Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.

4	Α	В	С	D	E	F
1	Id	SepalLeng	SepalWid	PetalLeng	PetalWidt	Species
2	1	5.1	3.5	1.4	0.2	Iris-setosa
3	2	4.9	3	1.4	0.2	Iris-setosa
4	3	4.7	3.2	1.3	0.2	Iris-setosa
5	4	4.6	3.1	1.5	0.2	Iris-setosa
6	5	5	3.6	1.4	0.2	Iris-setosa
7	6	5.4	3.9	1.7	0.4	Iris-setosa
8	7	4.6	3.4	1.4	0.3	Iris-setosa
9	8	5	3.4	1.5	0.2	Iris-setosa
10	9	4.4	2.9	1.4	0.2	Iris-setosa
11	10	4.9	3.1	1.5	0.1	Iris-setosa
12	11	5.4	3.7	1.5	0.2	Iris-setosa
13	12	4.8	3.4	1.6	0.2	Iris-setosa
14	13	4.8	3	1.4	0.1	Iris-setosa
15	14	4.3	3	1.1	0.1	Iris-setosa
16	15	5.8	4	1.2	0.2	Iris-setosa
17	16	5.7	4.4	1.5	0.4	Iris-setosa
18	17	5.4	3.9	1.3	0.4	Iris-setosa
19	18	5.1	3.5	1.4	0.3	Iris-setosa
20	19	5.7	3.8	1.7	0.3	Iris-setosa
21	20	5.1	3.8	1.5	0.3	Iris-setosa
22	21	5.4	3.4	1.7	0.2	Iris-setosa
23	22	5.1	3.7	1.5	0.4	Iris-setosa
24	23	4.6	3.6	1	0.2	Iris-setosa
25	24	5.1	3.3	1.7	0.5	Iris-setosa
26	25	4.8	3.4	1.9	0.2	Iris-setosa
27	26	5	3	1.6	0.2	Iris-setosa
28	27	5	3.4	1.6	0.4	Iris-setosa
29	28	5.2	3.5	1.5	0.2	Iris-setosa
30	29	5,2	3.4	1.4	0.2	Iris-setosa
	← →	iris	(+)			
D	ale -					

```
: import matplotlib.pyplot as plt
  from sklearn import datasets
  from sklearn.cluster import KMeans
  from sklearn.mixture import GaussianMixture
  from sklearn import preprocessing
  import pandas as pd
 import numpy as np
  # Load the Iris dataset
 iris = datasets.load_iris()
 X = pd.DataFrame(iris.data, columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])
 y = pd.DataFrame(iris.target, columns=['Targets'])
  # KMeans clustering
 kmeans_model = KMeans(n_clusters=3, random_state=42)
 kmeans model.fit(X)
  # Standardize the data
  scaler = preprocessing.StandardScaler()
  X_scaled = scaler.fit_transform(X)
 X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)
  # Gaussian Mixture Model (GMM) clustering
  gmm = GaussianMixture(n components=3, random state=42) # Set n components to match the number of true clusters
  gmm.fit(X_scaled_df)
  # Visualization
 plt.figure(figsize=(18, 6))
  colormap = np.array(['red', 'lime', 'black'])
```

```
# Real clusters
plt.subplot(1, 3, 1)
plt.scatter(X.Petal Length, X.Petal Width, c=colormap[y.Targets], s=40)
plt.title('Real Clusters')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
# K-Means clustering
plt.subplot(1, 3, 2)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[kmeans_model.labels_], s=40)
plt.title('K-Means Clustering')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
# GMM clustering
plt.subplot(1, 3, 3)
gmm_labels = gmm.predict(X_scaled_df)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[gmm_labels], s=40)
plt.title('GMM Clustering')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.tight_layout()
plt.show()
# Observation
print('Observation: The GMM using EM algorithm-based clustering matched the true labels more closely than KMeans.')
```


Observation: The GMM using EM algorithm-based clustering matched the true labels more closely than KM eans.

Aim: Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.

Dataset:

4	Α	В	С	D	Е	F			
1	Id	SepalLeng	SepalWidt	PetalLeng	PetalWidt	Species			
2	1	5.1	3.5	1.4	0.2	Iris-setosa			
3	2	4.9	3	1.4	0.2	Iris-setosa			
4	3	4.7	3.2	1.3	0.2	Iris-setosa			
5	4	4.6	3.1	1.5	0.2	Iris-setosa			
6	5	5	3.6	1.4	0.2	Iris-setosa			
7	6	5.4	3.9	1.7	0.4	Iris-setosa			
8	7	4.6	3.4	1.4	0.3	Iris-setosa			
9	8	5	3.4	1.5	0.2	Iris-setosa			
10	9	4.4	2.9	1.4	0.2	Iris-setosa			
11	10	4.9	3.1	1.5	0.1	Iris-setosa			
12	11	5.4	3.7	1.5	0.2	Iris-setosa			
13	12	4.8	3.4	1.6	0.2	Iris-setosa			
14	13	4.8	3	1.4	0.1	Iris-setosa			
15	14	4.3	3	1.1	0.1	Iris-setosa			
16	15	5.8	4	1.2	0.2	Iris-setosa			
17	16	5.7	4.4	1.5	0.4	Iris-setosa			
18	17	5.4	3.9	1.3	0.4	Iris-setosa			
19	18	5.1	3.5	1.4	0.3	Iris-setosa			
20	19	5.7	3.8	1.7	0.3	Iris-setosa			
21	20	5.1	3.8	1.5	0.3	Iris-setosa			
22	21	5.4	3.4	1.7	0.2	Iris-setosa			
23	22	5.1	3.7	1.5	0.4	Iris-setosa			
24	23	4.6	3.6	1	0.2	Iris-setosa			
25	24	5.1	3.3	1.7	0.5	Iris-setosa			
26	25	4.8	3.4	1.9	0.2	Iris-setosa			
27	26	5	3	1.6	0.2	Iris-setosa			
28	27	5	3.4	1.6	0.4	Iris-setosa			
29	28	5.2	3.5	1.5	0.2	Iris-setosa			
30	29	5,2	3.4	1.4	0.2	Iris-setosa			
iris (+)									

```
from sklearn.model selection import train test split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix
from sklearn import datasets
# Load the Iris dataset
iris = datasets.load iris()
X = iris.data
y = iris.target
# Display the features and target classes
print('Features (sepal-length, sepal-width, petal-length, petal-width):')
print('Class: 0 - Iris-Setosa, 1 - Iris-Versicolor, 2 - Iris-Virginica')
print(y)
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Create and fit the K-Nearest Neighbors classifier
classifier = KNeighborsClassifier(n_neighbors=5)
classifier.fit(X_train, y_train)
# Predict the labels for the test set
y_pred = classifier.predict(X_test)
# Display the confusion matrix and classification report
print('Confusion Matrix:')
print(confusion_matrix(y_test, y_pred))
print('Accuracy Metrics:')
print(classification_report(y_test, y_pred))
     Features (sepal-length, sepal-width, petal-length, petal-width):
     [[5.1 3.5 1.4 0.2]
      [4.9 3. 1.4 0.2]
      [4.7 3.2 1.3 0.2]
      [4.6 3.1 1.5 0.2]
      [5. 3.6 1.4 0.2]
      [5.4 3.9 1.7 0.4]
      [4.6 3.4 1.4 0.3]
      [5. 3.4 1.5 0.2]
      [4.4 2.9 1.4 0.2]
      [4.9 3.1 1.5 0.1]
      [5.4 3.7 1.5 0.2]
      [4.8 3.4 1.6 0.2]
      [4.8 3. 1.4 0.1]
      [4.3 3. 1.1 0.1]
      [5.8 4.
               1.2 0.2]
      [5.7 4.4 1.5 0.4]
      [5.4 3.9 1.3 0.4]
      [5.1 3.5 1.4 0.3]
      [6.4 3.1 5.5 1.8]
      [6. 3. 4.8 1.8]
      [6.9 3.1 5.4 2.1]
      [6.7 3.1 5.6 2.4]
      [6.9 3.1 5.1 2.3]
      [5.8 2.7 5.1 1.9]
      [6.8 3.2 5.9 2.3]
      [6.7 3.3 5.7 2.5]
      [6.7 3. 5.2 2.3]
      [6.3 2.5 5. 1.9]
      [6.5 3. 5.2 2. ]
      [6.2 3.4 5.4 2.3]
      [5.9 3. 5.1 1.8]]
     Class: 0 - Iris-Setosa, 1 - Iris-Versicolor, 2 - Iris-Virginica
     2 21
```

Aim: Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

```
[1]: import numpy as np
     from bokeh.plotting import figure, show
     from bokeh.layouts import gridplot
     # Local Weighted Regression (LWR) function
     def local_regression(x0, X, Y, tau):
        # Add a bias term to x0
        x0 = np.r_[1, x0]
        # Add bias term to X
        X = np.c_[np.ones(len(X)), X]
        # Calculate the kernelized weight for each point
        xw = X.T * radial_kernel(x0, X, tau) # XTranspose * Weight (W)
        # Compute beta (the weight vector)
        beta = np.linalg.pinv(xw @ X) @ xw @ Y # Using pseudo-inverse for stability
         # Predict the value
         return x0 @ beta # Predict the value using dot product
     # Radial kernel function (Gaussian)
     def radial_kernel(x0, X, tau):
         # Calculate radial kernel (Gaussian weights)
         return np.exp(np.sum((X - \times 0) ** 2, axis=1) / (-2 * tau * tau))
     # Generate dataset
     n = 1000
     X = np.linspace(-3, 3, num=n)
     Y = np.log(np.abs(X ** 2 - 1) + 0.5)
     # Add jitter to X to simulate noise
     X += np.random.normal(scale=0.1, size=n)
     # Define the domain for prediction
     domain = np.linspace(-3, 3, num=300)
     # Function to plot the locally weighted regression
     def plot_lwr(tau):
         # Make predictions using the local regression model
         prediction = [local_regression(x0, X, Y, tau) for x0 in domain]
         # Create plot
         plot = figure(width=400, height=400)
         plot.title.text = 'tau = %g' % tau # Display tau value in the title
         # Scatter plot of the original data
         plot.scatter(X, Y, alpha=0.3)
         # Line plot of the predicted regression
         plot.line(domain, prediction, line_width=2, color='red')
         return plot
     # Display the plots with different tau values in a grid layout
     show(gridplot([[plot_lwr(10.0), plot_lwr(1.0)], [plot_lwr(0.1), plot_lwr(0.01)]]))\\
```


\rightarrow tips.csv

4	Α	В	С	D	E	F	G
1	total_bill	tip	sex	smoker	day	time	size
2	16.99	1.01	Female	No	Sun	Dinner	2
3	10.34	1.66	Male	No	Sun	Dinner	3
4	21.01	3.5	Male	No	Sun	Dinner	3
5	23.68	3.31	Male	No	Sun	Dinner	2
6	24.59	3.61	Female	No	Sun	Dinner	4
7	25.29	4.71	Male	No	Sun	Dinner	4
8	8.77	2	Male	No	Sun	Dinner	2
9	26.88	3.12	Male	No	Sun	Dinner	4
10	15.04	1.96	Male	No	Sun	Dinner	2
11	14.78	3.23	Male	No	Sun	Dinner	2
12	10.27	1.71	Male	No	Sun	Dinner	2
13	35.26	5	Female	No	Sun	Dinner	4
14	15.42	1.57	Male	No	Sun	Dinner	2
15	18.43	3	Male	No	Sun	Dinner	4
16	14.83	3.02	Female	No	Sun	Dinner	2
17	21.58	3.92	Male	No	Sun	Dinner	2
18	10.33	1.67	Female	No	Sun	Dinner	3
19	16.29	3.71	Male	No	Sun	Dinner	3

\rightarrow Output:

```
The Data Set (10 Samples) X:

[-2.99399399 -2.98798799 -2.98198198 -2.97597598 -2.96996997 -2.96396396 -2.95795796 -2.95195195 -2.94594595]

The Fitting Curve Data Set (10 Samples) Y:

[2.13582188 2.13156806 2.12730467 2.12303166 2.11874898 2.11445659 2.11015444 2.10584249 2.10152068]

Normalized (10 Samples) X:

[-2.94973156 -2.85391642 -2.91528377 -2.72415615 -3.02368489 -2.86973494 -2.93495497 -3.10473025 -2.84580848]

Xo Domain Space (10 Samples):

[-2.97993311 -2.95986622 -2.93979933 -2.91973244 -2.89966555 -2.87959866 -2.85953177 -2.83946488 -2.81939799]
```