CSCI 301 HW 2

Isaac Boaz

April 19, 2023

Proposition. Let $a, b \in \mathcal{Z}$. $(a+5)b^2 \in E$ if and only if $a \in O \lor b \in E$.

Proof. Let's first show that $(a+5)b^2 \in E \implies a \in O \lor b \in E$ by contraposition. Suppose $a \notin O \land b \notin E$.

Thus a is even and b is odd.

By definition of even and odd, $a = 2n_1, b = 2n_2 + 1$ where $n_1, n_2 \in \mathcal{Z}$.

Thus $(a+5)b^2 = (2n_1+5)(2n_2+1)^2$

 $=8n_1n_2^2+20n_2^2+8n_1n_2+20n_2+2n_1+5$

=2z+1 where $z=4n_1n_2^2+10n_2^2+4n_1n_2+10n_2+n_1+2\in\mathcal{Z}$

Therefore by definition of odd $(a+5)b^2$ is not even.

Conversely, Suppose $a \in O \lor b \in E$.

Case 1: $a \in O$

Then by definition of odd a = 2n + 1 where $n \in \mathcal{Z}$.

Thus $(a+5)b^2 = (2n+6)b^2$

 $=2b^{2}(n+3)=2z$ where $z=b^{2}(n+3)\in\mathcal{Z}$

Therefore by definition of even $(a+5)b^2$ is even.

Case 2: $b \in E$

Then by definition of even b = 2n where $n \in \mathcal{Z}$.

Thus $(a+5)b^2 = (a+5)(2n)^2$

 $=4n^{2}(a+5)=2z$ where $z=2n^{2}(a+5)\in\mathcal{Z}$

Therefore by definition of even $(a+5)b^2$ is even.

Therefore $(a+5)b^2 \in E$.

Therefore $(a+5)b^2 \in E \iff a \in O \lor b \in E$.

Proposition. $\forall n \in \mathbb{Z}, 3 \nmid (n^2 - 5)$

Proof. By contradiction.

Suppose $\exists n \in \mathcal{Z} \text{ s.t. } 3 \mid (n^2 - 5)$

By definition of divisibility, $(n^2 - 5) = 3z$, where $z \in \mathcal{Z}$

Solving for n^2 we get $n^2 = 3z + 5$

When dividing by 3, there are 3 possible remainders (0, 1, 2).

Suppose $m \in \mathcal{Z}$

Case 1: n = 3m

Then $n^2 = (3m)^2 = 9m^2 = 3(3m^2)$ which has a remainder of 0.

Case 2: n = 3m + 1

Then $n^2 = (3m+1)^2 = 9m^2 + 6m + 1 = 3(3m^2 + 2m) + 1$ which has a remainder of 1.

Case 3: n = 3m + 2Then $n^2 = (3m + 2)^2 = 9m^2 + 12m + 4 = 3(3m^2 + 4m) + 4$ which has a remainder of 4.

Thus n^2 can only have remainders of 0, 1, or 4 when divided by 3.

However, $n^2 = 3z + 5$ can only have a remainder of 2.

Therefore $n^2 = 3z + 5$ cannot be divisible by 3.