MobiCharged Design Document

Team Super Charged (No.33)
Nashit Mohammad - mohamn31
Eric Nguyen - nguyee13
Samuel De Haan - dehaas1
Eamon Earl - earle2
Mustafa Choueib - choueibm

January 18th, 2023

Contents

1	\mathbf{Sys}	tem Overview	1				
	1.1	Naming Conventions and Terminology	1				
	1.2	Relevant Facts and Assumptions	1				
	1.3	Introduction	1				
	1.4	Purpose	2				
		1.4.1 System Purpose	2				
		1.4.2 Document Purpose	2				
2	Scope						
	2.1	System Summary	3				
	2.2	Assumptions	3				
3	Pro	oject Overview	4				
	3.1	Normal Operation	4				
	3.2	Behaviour Overview	4				
	3.3	Undesired Event Handling	5				
4	System Contexts 5						
	4.1	Preliminary System Contexts	5				
	4.2	Server Integrated System Context	9				
	4.3	Deployed System Context	10				
	4.4	Hardware System Context	11				
	4.5	Hardware System Parts	12				
5	\mathbf{Sys}	tem Boundary	13				
	5.1	Preliminary Set of Monitored & Controlled Variables	13				
	5.2	Environment Variables	14				
6	Mo	dule Hierarchy	14				
	6.1	Software System Module Hierarchy	14				
	6.2	Modules	15				
	6.3	Hardware Module Hierarchy	15				
7	Mo	dule Decomposition	17				
	7.1	Software Module Decomposition	17				
	7 2	Hardware System Module / Component Timelines	21				

8	Tra	ceablility Matrix	21
9	Ant	cicipated and Unlikely Changes	22
10	Use	e Hierarchy between Modules	24
\mathbf{L}	\mathbf{ist}	of Figures	
	1	Prelim System Contexts 1	6
	2	Prelim System Contexts 2	7
	3	Prelim System Contexts 3	8
	4	Server-Int System Contexts 1	9
	5	Deployed System Contexts 1	11
	6	Hardware Context	12
	7	Software Architecture Modules	15
	8	PCB and Power	16
	9	Arduino Connectrion	17
	10	Hardware Complete System	17
	11	Uses Hierarchy	24
\mathbf{L}	\mathbf{ist}	of Tables	
	1	Revision History	iii
	2	Naming Conventions and Terminology	1
	3	Parts List for Physical Remote Charging Simulation	
		Device	13
	4	Monitored & Controlled Variables	14
	5	Environment Variables	14
	6	Software Modules	17
	7	Hardware System Timeline	21
	8	Traceablility Matrix	21
	9	Anticipated Changes	22
	10	Unlikely Changes	23

Table 1: Revision History

Author	Date	Version	Description
All	January, 2023	Rev 0	Created first draft of document

1 System Overview

1.1 Naming Conventions and Terminology

Table 2: Naming Conventions and Terminology

Word/Acronym	Definition/Context
Functional Requirement	Requirements that describe what the prod-
	uct is supposed to do
Non-functional Requirement	Requirements that describe qualities that
	product will have
General Contractor	Third party companies that acquire services
	by Mobilite-Power
Data Smoothing	The process of using old data as well as "fu-
	ture" data in order to predict designs
ML	"Machine Learning" algorithm
AC	Ancticipated Change
R	Requirement
UC	Unlikely Change
A	Assumption
DS	Download Speed
US	Upload Speed
I/O	Input/Output

1.2 Relevant Facts and Assumptions

• There is an assumption that the developers will eventually have access to enough processing power to conduct large quantities of simulations.

1.3 Introduction

Engineers are tasked with design in construction to exceed requirements without hindering safety. Safety is a topic that is never missed within the industry and is continuously being highlighted amongst designs; especially as Engineers are reminded of their moral obligations to society by their awarded rings upon graduation.

As a current process, the construction industry places sensors within concrete spaces to continuously test and/or monitor the integrity of buildings during as well as after construction. Ultimately however, these sensors run out of battery and are required to be re-charged.

The industry still faces challenges when attempting to charge these sensors with the method of remote charging as the current products that satisfy remote charging abilities are yet to be optimized. There are a significant number of buildings being built in the GreaterToronto-Area, which is emphasized considering that 70% of cranes within Canada are in just the GTA alone. To place innovation in the sub-field of safety within the industry, it is indeed a requirement to modernize the ability of producing efficient remote charging systems and to have the design process optimized to provide the most effective results.

The system-solution for this will be the development of MobiCharged.

1.4 Purpose

1.4.1 System Purpose

The purpose of the development of MobiCharged is to assist stakeholders in the infrastructure development industry revolving around design and construction which include but are not limited to; consultant engineers, contractors and building owners.

The software will aid remote charging designers by optimizing their design through the method of machine learning, which will substantially reduce their time & efforts designing as it will remove the process of costly simulations.

The hardware will serve as a prototype and be used for demonstration purposes for the aid in display as well as understanding of limitations for the software.

1.4.2 Document Purpose

The purpose of this document is to elucidate the decomposition of the system (both the software portion as well as the hardware) into its components and provide a modular understanding for each component in the system. This document will serve as a guide for the execution of production intended to be completed in the upcoming weeks.

2 Scope

2.1 System Summary

The environments in which these physical systems operate are typically from roof-tops and/or high-altitude locations with spacial capabilities to place arrays of these systems. These systems react to user inputted (remotely) data such as the location of the device required to be charged, so that it may orient itself in a manner optimal for that application.

The purpose of the software system, MobiCharge, is a machine learning algorithm that will be used by Mobilite-Power, engineering consultant groups, general contractors and building maintenance teams to optimize the design process required to effectively and efficiently produce the most viable remote charging system. In doing so, this will negate the current process of manually conducting simulations (that requires lengthy computerized numerical calculations), ultimately minimizing cost, manual labor, and the time necessary to produce the required results. This system will provide users with the optimal configuration of a remote charging device based on the desired output, encrypt data protecting users when producing design results and use data smoothing to ensure the accuracy of the system in a time efficient manner.

The hardware system is to root our algorithms optimization in the real world environment. The production of a physical model will assist in the determination of the absolute boundaries that can be fed into the machine learning algorithm. Variable parameter ranges will be able to be derived from the physical model to determine the magnitude to which the boundaries can be pushed within the simulation. The physical system provides a secondary purpose in the form of data collection and verification. In order to increase the breadth of data that we can feed into the algorithm, we must determine the degree of computational error within the simulation results. A physical model will aid in determining this range and lead to further optimization through the machine learning algorithm.

2.2 Assumptions

A1: Developers will have access to enough processing power to conduct large quantities of simulations

A2: User does not intentionally attempt to enter inputs incorrectly, as

well as provide positive feedback to the system when it is not correct

- **A3:** Users have access to wifi with sufficient speeds, averaging 15 Mbps DS & 10 Mbps US
- ${\bf A4:}$ Users execute the software with Windows 10 OS (or higher) as instructed
- **A5:** The average developer has background knowledge in electromagnetic theory
- **A6:** The app will be used by the above-average tech savvy individual due to the niche in industry
- A7: Hardware will have sufficient power sources (specific current values are to be determined)
- **A8:** Weather conditions for the hardware are not extreme, i.e. not operating in storm conditions or temperatures below -35C or above 35C
- **A9:** Hardware is not used near other equipment which can create wave interferences
 - A10: Hardware is to not be operated near magnetic materials
- A11: Users can be individually identifiable through email addresses and/or usernames (to be determined)

3 Project Overview

3.1 Normal Operation

This application is to be used by Mobilite-Power to reduce overhead costs associated with developing remote charging devices. The company will be able to use this system on their computers with ease. By using this system, Mobilite-Power will be able to minimize the cost, time, and labor required to determine the optimal configuration necessary for remote charging devices. This will make their operations more efficient.

3.2 Behaviour Overview

This system will continuously learn and develop without an operator. However, the ultimate output of the system will be event based, thus, requiring the user to initiate operations. The user will be required to provide the necessary input, in which the machine learning algorithm will return the optimal configuration for a remote charging device, encrypt the provided output, and store the optimal data into a database for data smoothing. When the system is not in use, it will be running simulations automatically to continuously refine its ability to produce accurate optimal results.

3.3 Undesired Event Handling

Undesired event handling is critical to ensuring that, even in unintended circumstances, the system can safely revert to a desired state. Thus, the system should ensure that in the event of an error or fault, it has a failsafe state to transition to. This fail-safe state will ensure that there are no corruptions in data, the system itself, or extensive damages caused.

4 System Contexts

4.1 Preliminary System Contexts

The system will interact with pre-existing matlab simulation programs, purely at the simulations' start and end points, where the program will pull data from completed simulations and push parameters to run new ones. In the early stages of the product life cycle, it will mainly be pulling the completed simulation data, and feeding it into the deep learning algorithm in order to train it and give it some experience with optimal solutions. This will require integration with large databases in order to record this data.

Once the core program / deep learning algorithm has been trained to some satisfying degree, the context will expand to include the second half of the cyclical integration with the pre-existing simulation software; it will now take charge of running new simulations that push the boundaries of its current knowledge base. This is in order to take full advantage of free processing power, such that the simulations are always being run, and the deep learner is constantly being trained. This may require interfacing with an additional software module in order to schedule data coming in to be processed, and outward data to be procured.

Later in the life cycle of the program, we will be either integrating with Mobilite's current remote desktop server (used to run the simulations remotely), or develop our own, and the specifics of this contextual decision will depend on the availability of their server at this time. The goal would be to integrate our program with the server such that our deep learner would

be able to access the data from any simulation run, and not just those on the local devices of our teams, which also implies that we plan on having these simulations able to be run on multiple different devices at the same time, eventually adding further scheduling and concurrency constraints to our learner-server pair.

Evidently, our context shifts and expands multiple times throughout the development lifecycle, as we wish to integrate with and expand upon pre existing software in multiple areas of the design. The following context diagrams give an idea of this development, with each diagram associated, in order, with the above paragraphs. The components will be briefly described alongside each diagram for clarity.

Figure 1: First stage of preliminary system context.

The external entity, the Super Charged team; the team of developers for the system, will begin to train the MobiCharged software system using pre existing simulation data. The simulations that are optimized by the system will then be stored into a large database for further use by the system. As shown by figure 1.

Figure 2: Second stage of the preliminary system context.

As shown in figure 2, the external entity, the Super Charged team, will then integrate the optimization algorithm with pre-existing simulation software. This will allow the system to conduct simulations automatically, furthering the knowledge base of the system

Figure 3: Final stage of the preliminary system context.

The last stage of the preliminary system context is as shown in figure 3. The external entities are the Super Charged team, as well as the MobilitePower company. Mobilite-Power is the external entity which oversees the data acquired from the simulations and provides clients with the necessary configurations for the remote charging devices. Mobilite-Power will provide access to remote desktop servers, which the Super Charged team will integrate into the system, allowing for more simulations to be accessed by the system. This will further train the system, increasing the accuracy of the optimizations produced by the system.

4.2 Server Integrated System Context

Figure 4: System context integrated with servers.

The divide between personal devices and the server will likely be structured as shown above, where the deep learner exists as a part of a central server, and the core computations of the simulations can be done on local machines. This allows the server to remain relatively low fidelity for the time being, where its core computations are the algorithms of the deep learner itself. The data processor and transmitters will handle concurrency and sync-

ing with local devices. This obviously requires cooperation and coordination of these local devices, and this may not be ideal for commercial use. The goal is to prioritize data throughput in the development stage, leaving the simulations relatively untouched and implementing enough modularity such that the server can be formalized and protected with more elegance down the line, and integrated with higher-fidelity computing devices.

4.3 Deployed System Context

Once the system has been sufficiently trained and developed, it will be deployed for commercial use. However, the software system will continuously be trained and the throughput will continue to be refined. In a commercial setting, the system will interact with Mobilite-Power, who will feed the desired output to the system, and the system will produce the optimal configuration for a remote charging device. This data will be exported to the Mobilite-Power production team once the system has encrypted the data. The system will also be able to decrypt the data following the export and retrain the system with the optimized results. Lastly, the optimized data will be stored in a database to repeatedly enhance the accuracy of the system.

Figure 5: Stage of the deployed system context.

As shown in figure 5, the external entities acting on the system are the Mobilite-Power group responsible for determining the optimal configuration for the remote charging device, and the Mobilite-Power production team responsible for building the remote charging device. The Mobilite-Power entity will access the system and provide the desired output of the remote charging device. The system will then produce the optimal configuration and provide that configuration to the production team in an encrypted manner.

4.4 Hardware System Context

The hardware system will be used by the MobiCharged team to validate parameters and be displayed for demonstration purposes. Due to limitations revolving around cost & time constraints, the MobiCharged team proceeded with designing a system that simulates a remote charging device using an array of transducers connected to the system to levitate particles which will simulate remote charging devices, i.e. sending electromagnetic waves to the receiving ends of sensors.

Figure 6: Hardware System Context

As shown in Figure 6, the user can interact with the hardware interface to input data (such as desired location). The interface then sends those data points to the data calculations module in which the outputs (such as wavelength and phase) are calculated and then sent to the transducer array. Each transducer within the array will receive individual data such that the whole array can send constructive interfered waves to localized points. The particles will levitate due to the waves and can also move to other localized areas if intended to do so by the user.

4.5 Hardware System Parts

Table 1 below lists the parts required to create the simulation for the physical remote charging devices.

Table 3: Parts List for Physical Remote Charging Simulation Device

Part	Quantity
PCB: 183x169mm 2	1
layers	
MSO-P1040H07T	256
Ultrasonic Emitter	
(Transducers)	
CoreEP4CE6 FPGA	1
Drivers MIC4127	128
SOIC8	
shift-registers 74hc595	32
SOIC16	
0.1uf capacitors 50v	160
0805	
Arduino Nano or an	1
USB-to-UART adap-	
tor	
DC barrel connector	1
Header Connectors	1
for the FPGA (2x22)	
(2.54 pitch)	
Side connectors either	1
pin or headers (2x4	
and $2x2$) $(2.54 pitch)$	

5 System Boundary

5.1 Preliminary Set of Monitored & Controlled Variables

The following is a list of all monitored and controlled variables.

Table 4: Monitored & Controlled Variables

Name	Type	Physical Interpretation
Charging Device's	Monitored	Maximum reach of for device charging.
Range		
Device's Lower Al-	Monitored	Minimum level of charge allowed in de-
lowed Charge		vice before charging is required.
Device's Upper De-	Monitored	Level of charge desired in drive to be
sired Charge		charged.
Wireless Charging	Controlled	
Control		
Displayed Device	Controlled	
Charge		
Current Supply	Controlled	Value of current supplied to charging
		device.
Charging Device Fre-	Controlled	Frequency used by charging device.
quency		
Phase Shift	Controlled	Phase shift used by charging device.

5.2 Environment Variables

Table 5: Environment Variables

Name	Type	Physical Interpretation
Position of Device to	Environmental	Relative distance from device to be
be Charged		charged to charging device.
Density of Medium	Environmental	Density of medium which charging de-
		vice must charge through.

6 Module Hierarchy

6.1 Software System Module Hierarchy

For the machine learning algorithm to be effective, it is efficient for it to be modularized. Below is a list and diagram of the software system module hierarchy, where further information upon these modules are outlined in the Module Decomposition section.

6.2 Modules

- Input Module
- Initializer Module
- Machine Learner Blackboard Indirection Layer
- Database Access Module 1
- Database Access Module 2
- User Interface Module
- Controller / Server Module
- "Client" Module

Figure 7: Software Architecture Modularized

6.3 Hardware Module Hierarchy

Although the physical simulation component of this project is not connected to the software portion directly, the hardware system can still be modularized to exhibit the workings of the system.

Below is a high-level module hierarchy of the hardware system where further information on each module will be described in the Module Decomposition section. Please note that the "modules" here can be more thought of to be component sections.

- PCB Board Module (includes MOSFET drivers, shift registers, capacitors & transducers i.e. electrosonic emitters)
- FPGA Module
- Power Supply Module (includes connectors & ports)
- FPGA Programmer & Arduino Module

For further illustrations of the components of the hardware system, below are diagrams depicting the connection between components.

Figure 8: PCB Board Component with FPGA & Power Requirements

As shown in figure 8 above, the FPGA will be soldered onto the primary FPGA board for further ability of programming. The board will require a 5V power supply and a 9V power supply (note that the connector port is rated for 18V but 9V will be sufficient).

Next we will connect the Arduino to the primary board as shown in figure 9 below.

In order to create a 3D levitation device for the purpose of simulating remote charging devices, a secondary board will be necessary. Figure 10 below shows the connections required.

Note that for the whole system, the primary board & secondary board will be on top of each other where the ultrasonic emitters (transducers) will be facing each other. There will be a sufficient gap in between the boards such that particles can be placed in between for levitation to occur and for it to be visible by the naked eye.

Furthermore, the Arduino will be connected to the FPGA programmer component. In this case, it will be a PC running a Quartus software along with a script to operate the ultrasonic emitters.

Figure 9: Arduino component connection to the PCB Board

Figure 10: Complete 3D Levitation System

7 Module Decomposition

7.1 Software Module Decomposition

Table 6: Software Modules

Module	Service	Secret	Estimated
			Completion

Initializer	Initializes main	The number of	End of January
Module	loop, and	inputs/outputs	2023. This mod-
Wodale	databases. Allo-	that will de-	ule is finished for
	cates space for	termine how	the most part.
	data processing,	much memory is	It may require
	verifies that the		
		allocated, and	slight edits when
	MATLAB simu-	the errors that	implementing
	lation compiles.	can be returned.	with the other
	Bounces errors if		modules.
	memory cannot		
	be allocated or if		
	MATLAB does		
	not compile.		
Controller/	Handles com-	The simulation	End of January
Server	munication	inputs passed to	2023. This mod-
Module	between the	client and the	ule is finished for
	"Server" and	optimal outputs	the most part.
	"Client". Passes	received by the	It may require
	inputs based on	client.	slight edits when
	provided bound-		implementing
	aries to Client		with the other
	module and		modules.
	returns optimal		
	outputs.		
Client	Client module	The MATLAB	End of January
Module	receives inputs	simulation for-	2023. This mod-
	and passes	mat, simulation	ule is finished for
	through MAT-	inputs and	the most part.
	LAB simulation	outputs.	It may require
	and returns	1	slight edits when
	optimal outputs.		implementing
	r strp store		with the other
			modules.

3.6.1.	D 1 1 1	701 1 1 1 1 1	
Machine	Reads batches	The data that	Feb-March. A
Learner	of data from	is read from	large amount of
Black-	Database Access	Database Ac-	simulation data
board	Module 1. Once	cess Module 1,	still needs to be
Indirection	certain data	format of valida-	produced in or-
Layer	thresholds have	tion tests, user	der to train and
	been reached,	requests, and	test models.
	this module	trained models.	
	passes batched		
	data to specific		
	model train-		
	ing streams.		
	During down-		
	times where		
	the amount of		
	new data is		
	received, this		
	module will run		
	validation test		
	suites to moni-		
	tor progress of		
	models. Allows		
	user requests		
	for input into		
	predictive mod-		
	els. This module		
	will ultimately		
	filter out the		
	best performing		
	models.		

Database	Stores the gener-	The simulation	End of January
Access	ated inputs and	inputs and opti-	2023. This mod-
Module 1	corresponding	mal outputs that	ule is completed
	optimal out-	are stored in this	for the most
	put. Establishes	database.	part. However,
	basic reading		the formatting
	and writing		of the database
	concurrency		may require
	control.		editing when
			simulation data
			is produced.
Database	Stores the	The hyperpa-	Feb-March. A
Access	generated hy-	rameters and	large amount of
Module 2	perparameters	model perfor-	simulation data
	and performance	mances stored	still needs to be
	of each model	in this database.	produced in or-
	stream in the		der to train and
	Machine Learner		test models.
	Blackboard In-		
	direction Layer.		
User Inter-	Controls the	The results of	Feb-March.
face Mod-	communication	the validation	This module
ule	of the user pre-	tests on the	requires the Ma-
	diction requests	models, and the	chine Learner
	to the Ma-	user requests.	Blackboard In-
	chine Learner		direction Layer
	Blackboard In-		to be completed
	direction Layer.		first.
	It also displays		
	the model per-		
	formances after		
	each validation		
	test trial.		

7.2 Hardware System Module / Component Timelines

The following table will outline the dates of completion for the hardware modules.

Table 7: Hardware System Timeline

Module	Estimated Comple-
	tion
PCB Board Module	Jan 28th, 2023
FPGA Module	Programming Com-
	pleted by Feb 3rd,
	2023
Power Supply Module	IJan 20th, 2023
FPGA Programmer &	Jan 28th, 2023
Arduino Module	

8 Traceablility Matrix

The following is the traceablility matrix for the software system.

Table 8: Traceablility Matrix

Module	Requirements
Initializer Module	ACR1
Machine Learner	SR1, SR2, SR3, SR5,
Blackboard Indirec-	SR6, PAR1, RAR1
tion Layer	
Database Access	IR1, RAR1, RFTR1,
Module 1	PRV1
Database Access	IR1, RAR1, RFTR1,
Module 2	PRV1
Controller/Server	SR5
Module	
Client Module	SR4, ACR1, IR1,
	ADAR1

User Interface Module	APR1, ACR1, EUR1,
	EUR2, LR1, SLR1,
	RAR1, ADAR1

9 Anticipated and Unlikely Changes

Table 9: Anticipated Changes

Module	Anticipated
	Changes
Initializer Module	The number of in-
	puts/outputs and
	their bounds will
	change once the
	MATLAB simulation
	format is finalized.
Machine Learner	The range of model ar-
Blackboard Indirec-	chitectures will change
tion Layer	as we gain insight on
	what types of mod-
	els perform the best
	with the simulation
	data. The batch size
	of the data being read
	and the data thresh-
	olds will also change.
Database Access	The formatting of this
Module 1	database will change
	if the MATLAB
	simulation format
	changes. For example,
	the simulation may
	be changed to add or
	remove features in the
	data.

Database Access	The formatting of this
Module 2	database may change
	as new model architec-
	tures are tested.
Controller/Server	The formatting of the
Module	inputs and outputs
	sent and received from
	the client will change
	depending on the
	MATLAB simulation
	file.
Client Module	The formatting of the
	inputs and outputs
	sent and received from
	the client will change
	depending on the
	MATLAB simulation
	file.

Table 10: Unlikely Changes

Module	Unlikely Changes
Initializer Module	Handling memory
	storage and error calls
	as this is necessary
	and currently most
	efficient to be instilled
	within this module

Machine	Learner	During downtimes
Blackboard	Indirec-	where the amount of
tion Layer		new data is received,
		this module will run
		validation test suites
		to monitor progress
		of models. This is
		unlikely to change in
		order to maximize
		efficiency as well as
		accuracy of results.

10 Use Hierarchy between Modules

The figure below displays the use cases between the modules (eg: Optimal I/O module depends on the Initializer module to work).

Figure 11: Uses Hierarchy for Software System

References

 $SRS, \verb|https://github.com/SamueldeHaan/MobiCharged/blob/main/docs/SRS/SRS.pdf$

Appendix — Reflection

The information in this section will be used to evaluate the team members on the graduate attribute of Problem Analysis and Design. Please answer the following questions:

- 1. What are the limitations of your solution? Put another way, given unlimited resources, what could you do to make the project better? (LO ProbSolutions)
- 2. Give a brief overview of other design solutions you considered. What are the benefits and tradeoffs of those other designs compared with the chosen design? From all the potential options, why did you select documented design? (LO Explores)
- 1. The limitations of our solution is primarily cost & time.

The problem of making the process of obtaining data values for the purpose of creating remote charging devices specific to certain applications easier is proposed to be solved through the methods of machine learning algorithms. That is, the process would become significantly easier if a machine learning algorithm could output the data values necessary at a much faster speed (and subsequently lower computational costs) without the use of simulations.

The proposed solution has limitations in verifications. Through the original method of using simulations, the consequence is that it is extremely timely to output. However, the benefit of it is exhibited with verification of values. Through the machine learning algorithms, although the speed of the values being outputted increases significantly, the idea of verification becomes lost; particularly in the case where the algorithm goes past the limits of inputs provided.

Given unlimited resources, the solution could become better if more time was present such that modules were created that verify the values and provide higher certainty in the values outputted. Moreover, more servers would be purchased so that it may feed the machine learning algorithm without the use of users inputting data manually (referring to the client modules).

In regards to the hardware system, the proposed solution would become better with appropriate equipment to create a real prototype as opposed to a simulative one. The prototype would be better for display as well as feeding limits to the software by purchasing equipment such as antenna arrays, phase arrays, electromagnetic wave resistant encapsulations, etc. Moreover, with unlimited resources, the hardware system would be given an embedded system such that it may direct "charging" signals remotely to desired devices.

2. An alternative solution for the design of this project was manually obtaining values based on certain inputs (and subsequently certain applications) over a wide range such that we may feed it into the machine learning algorithm. Although the benefit of this method is that the values are verified, it was better thought of to use a single server or two in order to run these simulations continuously in the backend automatically. This way, it is more efficient obtaining the values in the long term. In addition, this would be more effective for our client Mobilite Power as they can use the architecture of our software system and feed their large data set into it. This way, the machine learning algorithm will output more accurate results over a wider range of data.

Regarding the hardware system, an alternative solution was to create a small charging device using a pre-purchased antenna array. This would be done without the phase arrays but be implemented with a larger structure around the system to solve our stretch goals (which include being resistant to weather conditions). The benefit in this is that we can display different antenna array shapes & sizing while illustrating the change in results; which we predicted to be power distributed as well as accuracy of electromagnetic waves sent. The problem with this solution is the limitation of resources. The group proceeded with creating a simulation of a remote charging device using a phased array system with the fear that the original solution mentioned would not be completed in a timely manner due to the expertise required. The original solution would dive into the area of PHD level projects and would be a risk in completion.