IMPERIAL COLLEGE LONDON DEPARTMENT OF MATHEMATICS

Solutions to Question Sheet 3

MATH40003 Linear Algebra and Groups

Term 2, 2019/20

Problem sheet released on Wednesday of week 4. All questions can be attempted before the problem class on Monday Week 5. Question 3 is suitable for tutorials. Solutions will be released on Wednesday of week 5.

Question 1 For each of the following matrices $A \in M_3(\mathbb{R})$, find the eigenvalues and eigenvectors. Then diagonalise A, or prove it cannot be diagonalised.

$$(i) \begin{pmatrix} -1 & -2 \\ 4 & 5 \end{pmatrix} \qquad (ii) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix} \qquad (iii) \begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 & -1 \\ -1 & 1 & 4 \end{pmatrix} \qquad (iv) \begin{pmatrix} 2 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 3 & 1 \end{pmatrix}.$$

Solution: (i) Eigenvalues 1, 3 with eigenvectors $a\begin{pmatrix} 1\\-1 \end{pmatrix}$ and $b\begin{pmatrix} 1\\-2 \end{pmatrix}$ respectively, for any non-zero real numbers a,b. So if we set (for instance) $P=\begin{pmatrix} 1&1\\-1&-2 \end{pmatrix}$ then $P^{-1}AP=\begin{pmatrix} 1&0\\0&3 \end{pmatrix}$.

(ii) Eigenvalues 1, 2, 3 with eigenvectors
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. So setting $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

gives $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.

(iii) Characteristic polynomial is $(x-1)(x-3)^2$, so eigenvalues are 1, 3. For $\lambda = 1$, eigenvectors are scalar multiples of $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$. For $\lambda = 3$ eigenvectors are $\begin{pmatrix} a+b \\ a \\ b \end{pmatrix}$ for

any a, b (not both zero). So taking $P = \begin{pmatrix} 2 & 1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ for instance gives $P^{-1}AP =$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

(iv) Eigenvalues 2, -1. For $\lambda = 2$ eigenvectors are multiples of $(1,0,1)^T$; for $\lambda = -1$ eigenvectors are multiples of $(1,-3,4)^T$. So there is no basis of \mathbb{R}^3 consisting of eigenvectors and therefore the matrix is not diagonalisable.

Question 2 For which values of c is the matrix $\begin{pmatrix} 1-2c & 4c & -c \\ -c & 2c+1 & -c \\ 0 & 0 & -1 \end{pmatrix} \in M_3(\mathbb{R})$ diagonalisable?

The characteristic polynomial is $(1-x)^2(1+x)$, so eigenvalues are 1, -1 with 1 repeated. For $c \neq 0$, the eigenvectors for $\lambda = 1$ are scalar multiples of $(2, 1, 0)^T$, so we cannot form a 3×3 matrix P with linearly independent eigenvectors as its columns. But for c=0 the eigenvectors for $\lambda=1$ are $(a,b,0)^T$, so we can find an invertible P such

as
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 such that $P^{-1}AP$ is diag $(-1,1,1)$. So the matrix is diagonalisable if and only if $c=0$.

Question 3 Let $A = \begin{pmatrix} -10 & -18 \\ 9 & 17 \end{pmatrix} \in M_2(\mathbb{R}).$

- (a) Find an invertible 2×2 matrix P such that $P^{-1}AP$ is diagonal.
- (b) Find A^n , where n is an arbitrary positive integer.
- (c) Find a matrix $B \in M_2(\mathbb{R})$ such that $B^3 = A$.
- (d) Find a matrix $C \in M_2(\mathbb{C})$ such that $C^2 = A$.
- (e) Prove that there is no $C \in M_2(\mathbb{R})$ such that $C^2 = A$.

Solution: (a) Solving for the eigenvalues -1, 8, let P be the matrix with columns the

eigenvectors, i.e.
$$P = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$
. Then $P^{-1}AP = D = \begin{pmatrix} -1 & 0 \\ 0 & 8 \end{pmatrix}$.
(b) As seen in lectures, $(P^{-1}AP)^n = P^{-1}A^nP$, hence $P^{-1}A^nP = D^n$, giving $A^n = PD^nP^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} (-1)^n & 0 \\ 0 & 8^n \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$. This works out as $\begin{pmatrix} 2 \cdot (-1)^n - 8^n & 2 \cdot (-1)^n - 2 \cdot 8^n \\ (-1)^{n+1} + 8^n & (-1)^{n+1} + 2 \cdot 8^n \end{pmatrix}$.

(c) If
$$E = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$$
 then $E^3 = D$, so $(PEP^{-1})^3 = PE^3P^{-1} = PDP^{-1} = A$. So take

$$B = PEP^{-1} = \begin{pmatrix} -4 & -6 \\ 3 & 5 \end{pmatrix}.$$

(d) If
$$F = \begin{pmatrix} i & 0 \\ 0 & \sqrt{8} \end{pmatrix}$$
 then $F^2 = D$, so $C = PFP^{-1} = \begin{pmatrix} -\sqrt{8} + 2i & -2\sqrt{8} + 2i \\ \sqrt{8} - i & 2\sqrt{8} - i \end{pmatrix}$

satisfies $C^2 = A$ just as in (c).

(e) Suppose $C^2 = A$ with all entries of C real. Then $\det(C)^2 = \det(C^2) = \det(A) = \det(A)$ -8. This is impossible as det(C) is real.

Question 4 Suppose V is a vector space over a field F and $T: V \to V$ is linear. If $\lambda \in F$, let $E_{\lambda} = \{v \in V : T(v) = \lambda v\}$. Prove that this is a subspace of V and λ is an eigenvalue of T if and only if $E_{\lambda} \neq \{0\}$.

Solution: Either use the test for a subspace, or note that E_{λ} is the kernel of the linear map $(T - \lambda Id): V \to V$, and is therefore a subspace.

Question 5 For each of the linear maps θ_i below, write down the matrix representing θ_i with respect to the standard basis. Hence find the eigenvalues of θ_i and for each eigenvalue λ , find the eigenspace E_{λ} . Determine whether θ_i is diagonalizable.

i)
$$\theta_1: \mathbb{R}^3 \to \mathbb{R}^3$$
 given by

$$\theta_1: \left(\begin{array}{c} a\\b\\c \end{array}\right) \mapsto \left(\begin{array}{c} c-b\\a-c\\c \end{array}\right).$$

ii) $\theta_2: \mathbb{C}^3 \to \mathbb{C}^3$ given by

$$\theta_2: \left(\begin{array}{c} a\\b\\c\end{array}\right) \mapsto \left(\begin{array}{c} c-b\\a-c\\c\end{array}\right).$$

Solution:

i) The characteristic polynomial is

$$\det \begin{pmatrix} x & 1 & -1 \\ -1 & x & 1 \\ 0 & 0 & x-1 \end{pmatrix} = \dots = (x-1)(x^2+1)$$

So the only eigenvalue is $\lambda = 1$.

$$E_1 = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} : \begin{pmatrix} c - b \\ a - c \\ c \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right\} = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} : b = 0, a = c \right\}.$$

So this is a 1-dimensional space, with basis $\{(1,0,1)^T\}$. The only eigenvectors of θ are multiples of $(1,0,1)^T$. The map is not diagonalizable.

ii) The characteristic polynomial is again $x(x^2+1)$, but this time the roots are $1, \pm i$. Since there are 3 distinct eigenvectors, the map is diagonalizable. The eigenspaces are given by

$$E_{1} = \left\{ \begin{pmatrix} a \\ 0 \\ a \end{pmatrix} : a \in \mathbb{C} \right\}, \quad E_{i} = \left\{ \begin{pmatrix} ib \\ b \\ 0 \end{pmatrix} : b \in \mathbb{C} \right\}, \quad E_{-i} = \left\{ \begin{pmatrix} a \\ ia \\ 0 \end{pmatrix} : a \in \mathbb{C} \right\}.$$

A basis of eigenvectors would therefore be $(1,0,1)^T$, $(i,1,0)^T$, $(1,i,0)^T$.

Question 6 For each of the linear maps T in Question 2 of Sheet 2, compute the eigenvalues and eigenvectors of T and determine whether or not T is diagonalisable.

Solution: (i) The matrix of T with respect to the standard basis is $\begin{pmatrix} -1 & 1 & -1 \\ 0 & -4 & 6 \\ 0 & -3 & 5 \end{pmatrix}$.

So the char poly is $(x + 1)^2(x - 2)$. The eigenvalues are -1, 2. The eigenspace E_{-1} is spanned by (-1, 2, 1); the eigenspace E_2 is spanned by (0, 1, 1). There is no basis of eigenvectors, so T is not diagonalisable.

(ii) Matrix of
$$T$$
 w.r.t. basis $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ is $A = \begin{pmatrix} 1 & -2 & 0 & 0 \\ 1 & 4 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & 4 \end{pmatrix}$.

So the char poly is $(x-2)^2(x-3)^2$, so the eignvalues are 2, 3. The eigenspace E_2 of A is spanned by $(2,-1,0,0)^T$ and $(0,0,2,-1)^T$. So the eigenspace E_2 of T is spanned by $\begin{pmatrix} 2 & 0 \\ -1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix}$. Likewise the eigenspace E_3 of T is spanned by $\begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$. So T is diagonalisable.

(iii) T sends $1 \mapsto 0$, $x \mapsto 3x$, $x^2 \mapsto x + 6x^2$, so matrix of T wrt basis $1, x, x^2$ is $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 6 \end{pmatrix}$. The eigenvalues are 0, 3, 6. Corresponding eigenvectors are 1 (the constant function), x and $x + 3x^2$ (and their non-zero scalar multiples). T is diagonalisable.

Question 7 As in Question 9 of Sheet 1, let A be the $n \times n$ matrix

$$A = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & 0 & \cdots & 0 & -a_2 \\ & & & \cdots & & \\ 0 & 0 & 0 & \cdots & 1 & -a_{n-1} \end{pmatrix}$$

where the a_i are in the field F. Let e_1, \ldots, e_n be the standard basis of F^n .

- i) Prove that F^n is spanned by the vectors $e_1, Ae_1, \ldots, A^{n-1}e_1$. What is A^ne_1 as a linear combination of these?
- ii) Show that for every $v \in F^n$ there is a polynomial q(x) (over F) of degree at most n-1 such that $v=q(A)e_1$ (where q(A) is the result of substituting A for x into the polynomial q).
- iii) Deduce that $\chi_A(A)$ is the zero matrix (this is a special case of the Cayley Hamilton Theorem).

Solution: (i) Note that as the columns of A are the images of the standard basis vectors, $Ae_i = e_{i+1}$ for $1 \le i < n$. Thus $A^i e_1 = e_{i+1}$ for $1 \le i < n$. We also have

$$A^{n}e_{1} = A(A^{n-1}e_{1}) = Ae_{n} = -a_{0}e_{1} - a_{1}e_{2} - \dots - a_{n-1}e_{n} = -a_{0}e_{1} - a_{1}Ae_{1} - \dots - a_{n-1}A^{n-1}e_{1}.$$

(ii) By (i) each e_i is in (the span of) $e_1, Ae_1, \ldots, A^{n-1}e_1$, so the span of these is the whole of F^n . So if $v \in F^n$ there are $b_0, \ldots, b_{n-1} \in F$ with

$$v = b_0 e_1 + b_1 A e_1 + \ldots + b_{n-1} A^{n-1} e_1 = (b_0 I_n + b_1 A + \ldots + b_{n-1} A^{n-1}) e_1.$$

The result follows.

(iii) By (i) we have $p(A)e_1 = 0$, where $p(x) = a_0 + a_1x + \ldots + a_{n-1}x^{n-1} + x^n$. Let v, q be as in (ii). Then $p(A)v = p(A)q(A)e_1 = q(A)p(A)e_1 = 0$ (as A commutes with powers of itself). So p(A) = 0. But by Qu 9, Sheet 1, $\chi_A(x) = p(x)$.

Question 8 In this question you can use Q7. Unless stated otherwise, you can choose which field to use.

- (a) Find a 3×3 matrix which has characteristic polynomial $x^3 7x^2 + 2x 3$.
- (b) Find a 3×3 matrix A such that $A^3 2A^2 = I_3$.
- (c) Find a 4×4 invertible matrix B such that $B^{-1} = B^3 + I_4$.
- (d) Find a 5×5 invertible matrix B such that $B^{-1} = B^3 + I_5$.
- (e) Find a real 4×4 matrix C such that $C^2 + C + I_4 = 0$.
- (f) For each $n \geq 2$ find an $n \times n$ matrix D such that $C^n = I_n$ but $C \neq I_n$.

Solution: (a)
$$\begin{pmatrix} 0 & 0 & 3 \\ 1 & 0 & -2 \\ 0 & 1 & 7 \end{pmatrix}$$
 works (by Q9, Sh 1)
(b) Take $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 2 \end{pmatrix}$. This works, by Qu8.

- (c) Multiplying through by B, the equation is $B^4 + B I = 0$. So we can use Qu8 to find such a matrix 4×4 matrix B. Note that as the constant term of the char poly is non-zero, B is indeed invertible.
- (d) Take B_0 as in (c), and let $B = \begin{pmatrix} B_0 & 0 \\ 0 & \lambda \end{pmatrix}$, where λ is a complex root of $x^4 + x 1$. (e) By Qu7 the 2×2 matrix $A = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$ satisfies $A^2 + A + I = 0$. So take $C = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}.$
 - (f) Use Qu7 to get a non-identity $n \times n$ matrix with char poly $x^n 1$.