our Code: CS /15 /CY /CI 41 Statistics, Probability and Test: Linear Programming Semester: IV Term: 15.04.2024 TO 27.07.2024 Marks: 30 30.05.2024 Date: Time: 02.00 PM - 03.00 PM Sections: CSE stream ote: Answer any TWO full questions. Each main question carries 15 marks **Blooms** Q. No. Questions CO's Marks Level (a) the normal equations to fit the 2 curve of COL LI $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$ using the method of least squares for the given data. The probability that a man aged 60 will live up to 70 is 0.65. What is the (b) 3 L2 CO₁ probability that out of 10 men, now aged 60, at least 7 will live up to 70 In some determinations of the volume V of Carbon dioxide dissolved in a (c) 5 given volume of water at different temperatures θ the following pairs of values were obtained. Find a relation of the form $V = a + b\theta$ which best fits L3 CO₁ to these observations. 0 0 5 10 15 1.80 1.45 1.18 1.00 (d) The joint distribution of two variables X and Y are given below -4 2 X 1/8 1/8 1/4 L4 CO₂ 1/4 1/8 5 1/8 Find (i) Marginal distributions of X and Y (ii) E(X) (iii) E(Y) (iv) E(XY)Write the expression of mean and variance of Uniform distribution 2 L1 (a) CO₂ (b) In a partially destroyed laboratory record, only the line of regression of y on 3 x and x on y are available as 4x - 5y + 33 = 0 and 20x - 9y = 107 respectively. L2 COI Calculate \bar{x} , \bar{y} and the coefficient correlation between x and y. The sales per day in a shop are exponentially distributed with average sale (c) 5 amounting to Rs.100 and net profit is 8%. Find the probability that the net L3 CO₂ profit exceeds Rs.30 on any given day. A communication channel receives independent pulses at the rate of 12 5 (d) pulses per micro second. The probability of transmission error is 0.001 for each micro second. Compute the probability of (i) no error during a micro L4 COL second (ii) one error per micro second (iii) at least one error per micro second. (iv) two errors using Poisson distribution.

3.	(a)	Write normal equations to fit a parabola of the form $y = ax^2 + bx$, by the					TI	COL	2	
		method of le	, ,					LI	CO1	
((b) Find k and $E(X)$ for the probability function $P(X)$ defined by the						ned by the	L.2	COI	3
		following table								
		X	1	2	3	·····	n			
		P(X)	k	2k	3k		nk			
	V	Where k is an appropriate constant.								
(c)	an average 6 and variance 18. Find the probability that there will be (i) more than 8 accidents (ii) Between 5 and 8 accidents.							L3	CO2	5
(d)	In a normal distribution (Gaussian random variable), 7% are under 35 and						L5	COO		
89% are under 63. Find the mean and the standard deviation, given that							LO	CO2	5	
	A(1.23) = 0.39 and $A(1.48) = 0.43$.									
		ON BEEN								
										101300