More Bayesian Linear Regression

Bayesian Data Analysis Steve Buyske

Bayesian Framework for the Linear Model

- Remember our model for linear regression in the Bayesian setting:
- Model:
 - $y_i \sim \text{Normal}(\mu_i, \sigma)$
 - $\mu_i = \alpha + \beta x_i$ this is sometimes called the link
 - together, these will give us the likelihood.
- · The priors:
 - $\alpha \sim \text{Normal}(\text{something})$,
 - $\beta \sim \text{Normal}(0, \text{something})$,
 - $\sigma \sim$ Exponential(something).
 - (These are not the only possible priors, just a common set.)

Kruschke Diagram

Slide added after I made the video

- In the Kruschke diagram, it is worth noting something about the distributions of the parameters.
- · As the diagram indicates, in the Bayesian framework we consider that all parameters have distributions.
- Before we get data, we label the distributions "prior distributions", since they are prior to our evidence.
 - The diagram still holds—it represents a model of the data, regardless of the specifics of the distributions.
- After we get data, we update the distributions of the parameters which we now label "posterior distributions", since they are following our updates with the new evidence.
 - Again, the diagram still holds—it still represents a model of the data, but now we have updated the specifics of the distributions.
- By "specifics of the distributions," I mean the value of K, μ_{α} , σ_{α} , and μ_{1} , σ_{1} .

Quick summary of our model

- Remember we fit a model gini_stan with stan_glm(life_expectancy ~ gini, data = mini_gapminder).
- · We can get estimates from the posterior of the median, mean, and mode a posteriori with

· We can get the highest density interval version of a 90% credible interval with

```
hdi(gini stan, ci = .9)
## # Highest Density Interval
## # Fixed Effects (Conditional Model)
## Parameter 90% HDI
## (Intercept) | [83.62, 92.20]
## gini | [-0.49, -0.27]
## # Sigma (fixed effects)
## Parameter | 90% HDI
## sigma | [ 5.99, 7.14]
```

- There is also a nice function model_parameters() that summarizes the model parameters.
 - "CI" refers to credible interval (the HDI by default).
 - We will talk about pd, ROPE, Rhat, and ESS in the future.

 (The model_parameters() function is part of the parameters package, something that is not installed in the Introduction workspace, so don't try using it yourself there.)

Bayesian Multiple Linear Regression

To fit include multiple predictor variables (with no interaction), just using the + sign on the right hand side of the formula. For example, let's regress life_expectancy on both gini and log10_gdp_per_capita.

```
gini_stan_multiple <-
stan_glm(life_expectancy ~ gini + log10_gdp_per_capita, data = mini_gapminder)</pre>
```

Graphical representation of our model

The trace plots look fine

plot(gini_stan_multiple, plotfun = "trace")

· And here are point estimates ...

point estimate(gini stan multiple)

```
## # Point Estimates
## # Fixed Effects (Conditional Model)
## Parameter | Median | Mean | MAP
## (Intercept) | 37.40 | 37.38 | 37.45
## gini | -0.19 | -0.19 | -0.19
## log10_gdp_per_capita | 10.67 | 10.67 | 10.65
## # Sigma (fixed effects)
## Parameter | Median | Mean | MAP
## sigma | 3.77 | 3.77 | 3.77
```

· ... and credible intervals.

```
hdi(gini stan multiple, ci = .9)
## # Highest Density Interval
##
## # Fixed Effects (Conditional Model)
##
## Parameter 90% HDI
## (Intercept) | [32.33, 42.53]
## gini | [-0.25, -0.13]
## log10_gdp_per_capita | [ 9.74, 11.61]
## # Sigma (fixed effects)
## Parameter | 90% HDI
## sigma | [ 3.45, 4.12]
```

Posterior Predictive Check

· The posterior predictive check is still not good, unfortunately.

pp_check(gini_stan_multiple)

Interaction Terms

- Sometimes with several predictor variables, we are interested in their interaction.
- We will illustrate it by adding a new variable to our data set, an indicator for the gini index is 40.
 - The code below shows how you can add a variable to a data frame

Interaction Terms cont.

- · We could fit a model like
 - life_expectancy ~ log10_gdp_per_capita + high_gini
 - This would have a coefficient for log10_gdp_per_capita and a coefficient for high_gini.
 - Since log10_gdp_per_capita is continuous, the coefficient represents a slope
 - Since high_gini is binary (think of it as 0 or 1), the coefficient represents the shift in life_expectancy for a country with high gini index as opposed to low.

R code for interactions

- But what if we want to model that the slope for log10_gdp_per_capita is different for low gini index countries than for high?
 - We would want to add an interaction term.
 - The R code would be
 - life_expectancy ~ log10_gdp_per_capita + high_gini + log10_gdp_per_capita : high_gini, or more compactly,
 - life_expectancy ~ log10_gdp_per_capita * high_gini.
 - One way to write the frequentist model for this would be

$$y_i = \alpha + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_{12} x_{1i} x_{2i} + \epsilon_i,$$

where $\epsilon_i \sim \text{Normal}(0, \sigma)$ and independent.

R code for interactions cont.

• The plot indicates that any interaction effect is fairly weak

· but let's fit a model.

```
gini_interaction <-
stan_glm(life_expectancy ~ log10_gdp_per_capita * high_gini, data = mini_gapminder)</pre>
```

· The trace plots look fine

plot(gini interaction, plotfun = "trace")

- The posterior predictive plot still has a problem.
 - We will continue to ignore that for now.

pp_check(gini_interaction)

· And here are the posteriors with 90% equal tails credible intervals shown.

```
plot(gini_interaction,
    plotfun = "areas",
    pars = c("log10_gdp_per_capita", "high_giniTRUE", "log10_gdp_per_capita:high_giniTRUE"),
    prob = .9
)
```



```
## # Point Estimates
## # Fixed Effects (Conditional Model)
##
## Parameter
                                  Median
                                                      MAP
                                             Mean
## (Intercept)
                                  33.08 | 33.06 | 33.34
## log10 gdp per capita
                                  | 10.11 | 10.12 | 10.19
                              | -12.20 | -12.17 | -11.96
## high_giniTRUE
## log10 gdp per capita:high giniTRUE | 2.71 | 2.70 | 2.89
##
## # Sigma (fixed effects)
## Parameter | Median | Mean | MAP
## sigma | 3.90 | 3.91 | 3.89
```

point estimate(gini interaction)

Interpretation

- The median log10_gdp_per_capita is a little over 4—a value of 4 is $10^4 = \$10,000$.
- · In a low gini index country with a log10_gdp_per_capita of 4, we would predict a life expectency of (using the Mean column)
 - 33.06 + 10.12 * 4 = 73.54.
- · If the gini index is high, however, then both the intercept and slope are different. With log10 gdp per capita equal to 4 again, we would predict a life expectency of of
 - 33.06 12.17 + (10.12 + 2.70) * 4 = 72.17.

Interpretation cont.

- · more formally in the first case we would have
 - -33.06 + 10.12 * 4 + -12.17 * 0 + 2.70 * 4 * 0 = 73.54
- · and for the second case we would have
 - 33.06 + 10.12 * 4 + -12.17 * 1 + 2.70 * 4 * 1 = 72.17

Help with the concept of interactions

- If interactions are new to you and giving you a headache, you might want to look at
 - https://www.jmp.com/en_us/statistics-knowledge-portal/what-is-multiple-regression/mlr-with-interactions.html
 - https://moderndive.com/6-multiple-regression.html#model4 or the video at
 - https://youtu.be/ScKL40dp8M4
- · Of course, you should also post questions on Piazza.