<u>University of Moratuwa</u> <u>Department of Electronics and Telecommunication</u>

EN2160 – Engineering Design Realization

Report

Noise Cancelling Adapter

200356A

Table of Contents

List of figures	4
Acknowledgement	6
Abstract	7
Chapter 1 – Introduction	8
Problem identification	8
Project objectives	8
Project	9
Delay calculation	9
Block diagram	11
Basic Circuit Diagram	11
Simulation Results	12
Circuit	12
Chapter 2 – conceptual report	14
Sketches Drawn by Group Members	14
Sketch 1	14
Sketch 2	15
Sketch 3	16
Summary of user feedback	17
User Feedback sketches	17
Evaluation for Sketches	18
Block Diagram	19
Block 1	19
Block 2	19
Block 3	20
User Feedback Block Diagram	21
Evaluation for block diagram	22
Selected Sketches	23
Selected Schematic	24
Chapter 3 – preliminary report	26
Schematic and Solidworks	26
Power circuit Schematic	26
Main PCB Schematic	26
Implemented SolidWorks	27
Lower Part	27
Upper Part	27

Ear part	28
Battery lid	28
Problems Identified	29
Problems and Improvements Provided by Group Members	30
Problems Identified	30
Improvements	30
Problems and Improvements Provided by Users	31
Problems Identified	31
Improvements	31
Chapter 4 – detailed design	32
Block diagram	32
Circuit	33
Altium design	34
Main Schematic	34
PCB	37
Gerber file details	38
Noise cancelling PCB	38
Power PCB	40
Encloser	42
Chapter 5 – Manufacturing	43
PCB fabrication process	43
Noice cancelling PCB	43
Power PCB	43
BOM	44
Chapter 6 – results and conclusion	46
Chapter 7 - User manual	47
Initializing	47
Using	48
Battery changing	50
Rihlingranhy	51

List of figures

Figure 1 delay calculation	9
Figure 2 delay curve	10
Figure 3 distance time delay calculation	10
Figure 4 Basic Block Diagram	11
Figure 5 Basic Circuit Diagram	11
Figure 6 simulation circuit	12
Figure 7 simulation result 1	13
Figure 8 simulation result 2	13
Figure 9 3D view 1	14
Figure 10 sketch 1	14
Figure 11 sketch 2	15
Figure 12 3D view 2	15
Figure 13 sketch 3	16
Figure 14 3D view 3	
Figure 15 user feedback 3D view	
Figure 16 user feedback side view	17
Figure 17 user feedback top view	17
Figure 18 user feedback front view	17
Figure 19 block diagram 1	19
Figure 20 block diagram 2	19
Figure 21 block diagram 3	20
Figure 22 user feedback block diagram	21
Figure 23 selected sketch front view	23
Figure 24 selected sketch side view	23
Figure 25 selected sketch top view	23
Figure 26 selected schematic sheet 1	
Figure 27 selected schematic sheet 2	
Figure 28 selected schematic sheet 3	
Figure 29 selected schematic sheet 4	
Figure 30 power circuit schematic	
Figure 31 main circuit schematic	
Figure 32 printed encloser lower part	27
Figure 33 printed encloser upper part	27
Figure 34 printed encloser ear part	28
Figure 35 printed encloser battery lid	
Figure 36 detailed design basic block diagram	
Figure 37 detailed design circuit	33
Figure 38 detailed design schematic sheet 1	34
Figure 39 detailed design schematic sheet 2	
Figure 40 detailed design schematic sheet 3	
Figure 41 detailed design schematic sheet 4	
Figure 42 detailed design power circuit schematic sheet	
Figure 43 main PCB altium	
Figure 44 power PCB altium	
Figure 45 Bottom layer Gerber data	38

Figure 46 Top overlay Gerber data	38
Figure 47 Top layer Gerber data	38
Figure 48 Top soldier mask Gerber data	38
Figure 49 Drill drawing layer pair Gerber data	39
Figure 50 Bottom soldier mask Gerber data	39
Figure 51 Bottom layer Gerber data	
Figure 52 Top soldier mask Gerber data	
Figure 53 Top overlay Gerber data	
Figure 54 Bottom soldier mask Gerber data	
Figure 55 Top layer Gerber data	40
Figure 56 Noise cancelling PCB after soldering	41
Figure 57 power PCB after soldering	41
Figure 58 implementation	
Figure 59 encloser uncombined	
Figure 60 encloser combined	42
Figure 61 Noice cancelling PCB	43
Figure 62 power PCB	43
Figure 63 final product	46
Figure 64 mic attach	47
Figure 65 mic attachment side identify	47
Figure 66 plug adapter to device	48
Figure 67 plug headphone to adapter	48
Figure 68 after switching on	49
Figure 69 before switching on	49
Figure 70 battery lid slide direction	50
Figure 71 battery lid open	50

Acknowledgement

This report on Analog Noise Cancelling Adapter project, completed under the electronic part, is being submitted in great pleasure. In order to better grasp this section before learning any theories, we would like to express our profound gratitude to the following people.

My deepest gratitude is conveyed to the head of the department of Electronic and Telecommunication Dr. Ranga Rodrigo and all the senior and junior lecturers who guide us to do such a project. Specially, Dr. Jayathu who gave his views and more ideas in the mid evaluation and helped us in various ways to complete this project.

I would also want to express our gratitude to Prof. J.A.K.S. Jayasinghe for your valuable lectures that helped me accomplish this project in the manner of professional engineers. Analysis, production planning, final product packaging, design strategy, and other topics were all covered in our training. This gave us some insight into how to create the finished product.

Moreover, I convey my gratitude to all my batch mates who helped me immensely by working together and buying components together.

Dulan Lokugeegana,

Electronic and Telecommunication department,

University of Moratuwa,

Sri Lanka.

Abstract

The goal of this project is to buy a product which is readily available in the market and add a new feature which is not existing in that product. I decided to buy a normal headphone and add the new feature noise cancelling to it. The main marketing strategy is the cost saving. Normal headphone noise cancelling headphones are so much expensive. The cost of a normal headphone and the noise cancelling adapter is much less than the cost of noise cancelling headphone. In the first hand I thought of having the noise capturing microphones to be inside the adapter but, I found out that it should be near the ear. So, I had to add the mics with cables which should be attached to the headphone. All the calculations, component selection, PCB design and encloser design was done in such a way that the product is marketable.

Chapter 1 – Introduction

This project was targeting a cost reduced noise cancelling adapter which will cancel the ambient noise up to a certain level. Any headphone can be connected to the adapter and the adapter should be connected to the audio port of the device we are using. Then we have to switch on the adapter so that we can hear the music with noise reduced.

Problem identification

Existing noise cancelling headphones in the market are quite expensive. If a person has a normal headphone and he wants a noise cancelling headphone, that person has to buy an separate headphone to it. It is a waste of money. Considering all these things, it was decided to design a noise cancelling adapter to convert a normal headphone to a noise cancelling headphone. Since this is only an adapter it will be able to make this at lower cost.

Project objectives

Making a noise cancelling adapter at a lower cost. Moreover, there are other factors that should be consider like weight, size, shape, etc.... Most of the market available adapters are only able to be connected to laptops. Therefore, the product objectives are making a noise cancelling adapter which can be connected to any device, and it should be made at a lower cost with reduced size.

Project

The main concept used is capture the noise signal invert it and sum it with the music. Initially noise capturing mics was kept inside the adapter. Then a single mic can capture the noise. Music for the left and the right ears are separately inverted using unity gain inverting amplifier. Next music is added to noise by using a summing amplifier. Finally output the noiseless music for a 3.5mm jack.

First problem occurred is noise capturing. To capture the noise heard to ears the mic should be kept near the ear not in the adapter. Therefore, device needed 2 separate mics to capture the noise and they should be extending outwards. Two separate enclosers were made to insert mic modules which are needed to be connected to the headphone. Both mics are connected from two separate wires.

The second problem is power. Power to make the adapter working cannot be taking from a USB port as this should support any device (which might not have USB port). Therefore, separate replaceable 9V battry was used. Using buck convertor 9V is divided for +4.5V and -4.5V to power up the op amps which is used for amplifiers.

Since electrical signals are travelling at speed of light and sound is much slower comparatively. There should be a delay for negative noise before adding with the music. Therefore, an All Pass Filter is used to compensate it.

Delay calculation

$$V_{in} = \frac{1}{|\mathcal{A}|} \frac{1}{|\mathcal$$

Figure 1 delay calculation

Figure 2 delay curve

Negative phase shift indicates movement to the right.

The mic is kept at about 1.4cm away from the ear.

$$330 \,\text{ms}^{-1}$$
1.4cm
$$time = \frac{1.4 \times 10^{-2}}{330} = 0.000042$$

Figure 3 distance time delay calculation

Block diagram

Figure 4 Basic Block Diagram

Basic Circuit Diagram

Figure 5 Basic Circuit Diagram

The above circuit modified and review from [1]

Simulation Results

Circuit

For simulation purpose music is represented using a 1V peak voltage 10Hz Sine wave.

Noise is represented using a 300mV peak voltage 50Hz Sine wave.

Additional Summing amplifier is used to see the noise + music to be compared.

Then noise is captured and reduced to form the clear music which are shown by pictures in the next page.

Figure 7 simulation result 1

Figure 8 simulation result 2

Chapter 2 – conceptual report

Conceptual design was done with the group members to get more ideas and their opinion on designing the product.

Sketches Drawn by Group Members

Sketch 1 Drawn by Amarasinghe Y.E - 200029B

Figure 10 sketch 1

Figure 9 3D view 1

Sketch 2 Drawn by Vishagar A - 200686J

Figure 11 sketch 2

Figure 12 3D view 2

Sketch 3 Drawn by Liyanage P.H.S. – 200352H

Figure 13 sketch 3

Figure 14 3D view 3

Summary of user feedback

- 1. The product is highly effective for users.
- 2. It should be little more affordable.
- 3. Minimum size.
- 4. Appearance and shape don't matter much but, it should be smaller as possible.
- 5. Extra feature Bluetooth.

User Feedback sketches

Figure 17 user feedback top view

Figure 16 user feedback side view

Figure 15 user feedback 3D view

Sketches are drawn such that it will be more easy to use and with an attractive shape.

Figure 18 user feedback front view

Evaluation for Sketches

Graded form 1-5, where 5 is the best.

Criteria	Sketch 1	Sketch 2	Sketch 3	User
User Interface	4	4	4	5
Stability	5	5	4	5
Durability	4	5	4	5
Novelty	5	3	5	5
User friendliness	5	5	5	5
Mobility	5	5	4	5
Reliability	3	5	4	4
Cost	3	4	4	4
Maintainance	4	5	3	4
Simplicity	2	5	4	5
Weight	3	4	4	4
Attractiveness	4	2	4	5
Total	47	52	49	56

Block Diagram

Block 1

Figure 19 block diagram 1

Block 2

Figure 20 block diagram 2

Block 3

Figure 21 block diagram 3

User Feedback Block Diagram

Block diagram is same as this is the only circuit for analog noise cancelling. Therefore, this is chosen.

Figure 22 user feedback block diagram

The above block diagram is selected for the Preliminary Design.

Bluetooth addition feature is discarded as this will be an analogue circuit.

Evaluation for block diagram

Graded form 1-5, where 5 is the best

Criteria	User Block Diagram	Block Diagram 1	Block Diagram 2	Block Diagram 3
Simplicity	5	3	3	4
Accuracy	2	4	3	2
User friendly	3	3	3	3
Updatability	4	1	3	4
Troubleshooting	5	2	2	5
Feasibility	5	3	1	5
Durability	5	3	3	5
Total	29	19	18	28

Selected Sketches

Figure 25 selected sketch top view

Figure 23 selected sketch front view

Figure 24 selected sketch side view

Selected Schematic

Figure 26 selected schematic sheet 1

Figure 27 selected schematic sheet 2

Figure 28 selected schematic sheet 3

Figure 29 selected schematic sheet 4

Chapter 3 – preliminary report

Schematic and Solidworks

Power circuit Schematic

Figure 30 power circuit schematic

Main PCB Schematic

Figure 31 main circuit schematic

Implemented SolidWorks

Lower Part

Figure 32 printed encloser lower part

Upper Part

Figure 33 printed encloser upper part

Ear part

Figure 34 printed encloser ear part

Battery lid

Figure 35 printed encloser battery lid

Problems Identified

- 1. Schematic is not done in professional manner.
 - a. Status box filling.
 - b. Naming components from top to bottom for eazy identification.
 - c. Minimizing usage of wires (instead use net labels).
- 2. Encloser moldability
 - a. Draft angle analysis.
 - b. Design in a way which can be moldable.
 - c. Injection molding process.
- 3. Appearance for marketing
 - a. Importance of final appearance for marketing.
 - b. Attractiveness by colour and texture.
- 4. User need analysis
 - a. Take user feedback for better product implementation.
 - b. User feedback analysis methods.
- 5. Design cycle implementation
 - a. How to do proper design.
 - b. How the product gets improved by design cycles.
- 6. Product manual and documentation
 - a. User manual.
 - b. Maintenance manual.
 - c. How to keep proper and complete documentation.

Problems and Improvements Provided by Group Members

Problems Identified

- 1. Size (how to make small as possible)
- 2. External wire minimization.
- 3. Analog circuit accuracy.

Improvements

- 1. Using Mics in the device to capture noise.
- 2. Digital noise cancelling circuit.

Problems and Improvements Provided by Users

Problems Identified

- 1. Size (how to make small as possible)
- 2. Attractiveness.
- 3. External wire minimization

Improvements

- 1. Using Mics in the device to capture noise.
- 2. Make it more user-friendly shape.

Chapter 4 – detailed design

Block diagram

Figure 36 detailed design basic block diagram

Circuit

Figure 37 detailed design circuit

Altium design

Main Schematic

Figure 38 detailed design schematic sheet 1

Figure 39 detailed design schematic sheet 2

Figure 40 detailed design schematic sheet 3

Figure 41 detailed design schematic sheet 4

Figure 42 detailed design power circuit schematic sheet

Figure 43 main PCB altium

Figure 44 power PCB altium

Gerber file details

Noise cancelling PCB

Figure 47 Top layer Gerber data

Figure 46 Top overlay Gerber data

Figure 48 Top soldier mask Gerber data

Figure 45 Bottom layer Gerber data

Figure 50 Bottom soldier mask Gerber data

Figure 49 Drill drawing layer pair Gerber data

Power PCB

Figure 55 Top layer Gerber data

Figure 53 Top overlay Gerber data

Figure 52 Top soldier mask Gerber data

Figure 51 Bottom layer Gerber data

Figure 54 Bottom soldier mask Gerber data

Images of PCB after soldering and after first testing

Figure 57 power PCB after soldering

Figure 56 Noise cancelling PCB after soldering

Figure 58 implementation

Encloser

Enclosers are going to be made using injection molding for mass scale and it is 3D printed for the prototype.

Figure 59 encloser uncombined

Figure 60 encloser combined

Chapter 5 – Manufacturing

PCB fabrication process

There are 2 main PCBs both are 2-layer PCB. Power PCB is converting 9V input to +3.3V and -3.3V outputs.

Both PCB fabrication process is outsourced to reduce cost

and get high quality.

PCB Manufacturer: Jia Li Chuang (Hong Kong) Co., Limited (JLC PCB)

Noice cancelling PCB

Base material - FR-4

Dimensions - 57mm x 66mm

Figure 61 Noice cancelling PCB

Power PCB

Base material - FR -4

Dimentions – 57mm x 43mm

Figure 62 power PCB

BOM

No	Manufacture part no	Description	Quantity	Price	Supplier
1	https://www.smart-	Max 4466	2	830	Smart
	prototyping.com/MAX4466-Electret-	sensor			prototypi
	Microphone-Amplifier-Module				ng
2	https://tronic.lk/product/telephone-cable-4-	Telephone	1m	80	Local
	wire-per-meter	cables			supplier
3	https://tronic.lk/product/5-pin-headphone-	3.5mm	1	90	Local
	jack-pcb-mount-female-3-5mm-stereo	audio jack			supplier
4		4pin JST	1	60	Local
-		15111331	_		supplier
5		3pin JST	1	90	Local
					supplier
6		2pin JST	2	40	Local
					supplier
7		3.5mm	1	350	Local
		audio cable			supplier
8		LED	1	10	Local
				40	supplier
9		Power	1	40	Local
10		button	1	80	supplier Local
10		9V battery connector	1	80	supplier
11		100uF cap	4	20	Local
		1000i cap		20	supplier
12		3way	1	40	Local
		connector			supplier
13		330Ω	2	10	Local
					supplier
14		10kΩ	9	45	Local
					supplier
15		100kΩ	1	5	Local
10	https://www.may.com.com/DuradoutDutail/T	TI 072	1	1250	supplier
16	https://www.mouser.com/ProductDetail/Texas-	TL072cp	4	1350	Mouser electroni
	Instruments/TL072CP?qs=5nGYs9Do7G3e6Tx9u				cs.
	HIgUA%3D%3D				
17	https://www.mouser.com/c/?q=BD139	BD139	1	220	Mouser
					electroni
					cs.
18	https://www.mouser.com/c/?q=bd140	BD140	1	245	Mouser
					electroni
					CS.

19	https://www.mouser.com/ProductDetail/Texas- Instruments/LM317KCS?qs=Zu35EjizYSTLhqY3I Vz7nA%3D%3D	LM317	1	290	Mouser electroni cs.
20	https://www.mouser.com/ProductDetail/Texaslnstruments/ LM337KCSE3?qs=iSMark9AYDWpc5pQ5gDgRw %3D%3D	LM337	1	350	Mouser electroni cs.
21		10kΩ var. resistor	8	320	Local supplier
22		100kΩ var. resistor	1	40	Local supplier
23		500kΩ var. resistor	2	80	Local supplier
24		1kΩ	2	10	Local supplier
25		3.3kΩ	6	30	Local supplier
26		1nF	4	20	Local supplier
	Total cost of material			7445	

Mass production encloser cost – 200

Soldiering cost – 200

Total cost – Rs 7845

Estimated selling price is 10000

Chapter 6 – results and conclusion

Noise cancelling is only to a certain level. Problem is with the noise capturing mics. These mics are not sensitive enough to capture all the noise heard.

Product can be made in mass scale if encloser is molded instead of 3D print.

Product encloser is to be changed to be more attracted while PCBs can be reduced in size by using surface mounting components in mass production.

Figure 63 final product

Chapter 7 - User manual

Initializing

1. There are two gray colour wires which contains the microphone user have to fix them to the headphone as in the below image.

Figure 64 mic attach

2. There is a printed attachment tape on the mic so that the user can identify which mic should be attached to which sided of the headphone. **This is a very important step.**

R is to the right

L is to the left

Figure 65 mic attachment side identify

Using

1. After doing the initializing steps user can plug the 3.5mm wire to the device.

Figure 66 plug adapter to device

2. Then user can plug the headphone 3.5mm jack to the 3.5mm port in the adapter.

Figure 67 plug headphone to adapter

3. The listen to the music by switching on the device which will be indicated by a red LED.

Figure 68 after switching on

Battery changing

Battery lid needs to be slide to the left as shown in the figure.

Figure 70 battery lid slide direction

Them change the 9V battery and closed the lid again.

Figure 71 battery lid open

Bibliography						
	Analog Noise cancelling w.instructables.com/Ar					