Most Important Charts & Diagrams

A Solutions Architect Associate Study Guide

AWS Support Plans Chart

Via https://aws.amazon.com/premiumsupport/plans/

Basic Support is included for all AWS customers and includes:

Customer Service & Communities - 24x7 access to customer service, documentation, whitepapers, and support forums.

<u>AWS Trusted Advisor</u> - Access to the 7 core Trusted Advisor checks and guidance to provision your resources following best practices to increase performance and improve security.

<u>AWS Personal Health Dashboard</u> - A personalized view of the health of AWS services, and alerts when your resources are impacted.

	<u>Developer</u>	<u>Business</u>	<u>Enterprise</u>
	Recommended if you are experimenting or testing in AWS.	Recommended if you have production workloads in AWS.	n Recommended if you have business and/or mission critical workloads in AWS.
AWS Trusted Advisor Best Practice Checks	7 Core <u>checks</u>	Full set of <u>checks</u>	Full set of checks
Enhanced Technical Support	Business hours** email access to Cloud Support Associates	24x7 phone, email, and chat access to Cloud Support Engineers	24x7 phone, email, and chat access to Cloud Support Engineers
	Unlimited cases / 1 primary contact	Unlimited cases / unlimited contacts (IAM supported)	Unlimited cases / unlimited contacts (IAM supported)
Case Severity / Response Times*	General guidance: < 24 business hours** System impaired: < 12 business hours**	General guidance:	General guidance:
Architectural Guidance	General	Contextual to your use-cases	Consultative review and guidance based on your applications
Programmatic Case Management		AWS Support API	AWS Support API

Third-Party	Software	Support

Interoperability & configuration guidance and troubleshooting

Interoperability & configuration guidance and troubleshooting

Infrastructure Event Management

Proactive Programs

Access to Infrastructure Event Management for additional fee.

Well-Architected Reviews

Operations Reviews

Technical Account Management

Technical Account Manager (TAM) coordinates access to programs and other AWS experts as needed.

Designated Technical Account Manager (TAM) to proactively monitor your environment and assist with

optimization.

Access to online self-paced labs

Account Assistance

Training

Pricing

Concierge Support Team

Greater of \$100 / month***

- or -

Greater of \$15,000

Greater of \$29 / month***

10% of monthly AWS usage for the

- or -

first \$0-\$10K

10% of monthly AWS usage for the first \$0-\$150K

- or -

7% of monthly AWS usage from \$10K-\$80K

7% of monthly AWS usage from \$150K-\$500K

3% of monthly AWS usage

5% of monthly AWS usage from

5% of monthly AWS usage from \$500K-\$1M

See pricing detail and example.

\$80K-\$250K

3% of monthly AWS usage over \$1M

3% of monthly AWS usage over \$250K

See <u>pricing</u> detail and example.

See <u>pricing</u> detail and example.

*We will make every reasonable effort to respond to your initial request within the corresponding timeframes.

**Business hours are generally defined as 8:00 AM to 6:00 PM in the customer country as set in My Account console, excluding holidays and weekends. These times may vary in countries with multiple time

^{***} Plans are subject to a 30 day minimum term.

S3 Storage Classes Chart

Via https://aws.amazon.com/s3/storage-classes/

Performance across the S3 Storage Classes

	S3 Standard	S3 Intelligent- Tiering*	S3 Standard- IA	S3 One Zone- IA†	S3 Glacier	S3 Glacier Deep Archive
Designed for durability	99.999999999 % (11 9's)	99.99999999% (11 9's)	99.99999999% (11 9's)	99.99999999% (11 9's)	99.99999999% (11 9's)	99.99999999% (11 9's)
Designed for availability	99.99%	99.9%	99.9%	99.5%	99.99%	99.99%
Availability SLA	99.9%	99%	99%	99%	99.9%	99.9%
Availability Zones	≥3	≥3	≥3	1	≥3	≥3
Minimum capacity charge per object	N/A	N/A	128KB	128KB	40KB	40KB
Minimum storage duration charge	N/A	30 days	30 days	30 days	90 days	180 days
Retrieval fee	N/A	N/A	per GB retrieved	per GB retrieved	per GB retrieved	per GB retrieved
First byte latency	milliseconds	milliseconds	milliseconds	milliseconds	select minutes or hours	select hours
Storage type	Object	Object	Object	Object	Object	Object
Lifecycle transitions	Yes	Yes	Yes	Yes	Yes	Yes

[†] Because S3 One Zone-IA stores data in a single AWS Availability Zone, data stored in this storage class will be lost in the event of Availability Zone destruction.

^{*} S3 Intelligent-Tiering charges a small tiering fee and has a minimum eligible object size of 128KB for auto-tiering. Smaller objects may be stored but will always be charged at the Frequent Access tier rates. See the Amazon S3 Pricing for more information.

The Above Diagram is from ACG

The Above Information is from ACG

AWS Organizations

AWS Organizations & Consolidated Billing

CloudFront Diagram

- *The squares represent Edge Locations
- * The green rack icon represents the origin of the file to be distributed

S3 Transfer Acceleration Diagram

- *The squares represent Edge Locations
- *The red bucket icon represents S3

EBS Volume Types Chart

Via https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html

Volume characteristics

The following table describes the use cases and performance characteristics for each volume type. The default volume type is General Purpose SSD (gp2).

	Solid-s	tate drives (SSD)	Hard disk drives (HDD)		
Volume type	General Purpose SSD (gp2)	Provisioned IOPS SSD (io1)	Throughput Optimized HDD (st1)	Cold HDD (sc1)	
Descripti on	General purpose SSD volume that balances price and performance for a wide variety of workloads	Highest-performance SSD volume for mission-critical low-latency or high-throughput workloads	Low-cost HDD volume designed for frequently accessed, throughput-intensive workloads	Lowest cost HDD volume designed for less frequently accessed workloads	
Use cases	 Recommen ded for most workloads System boot volumes Virtual desktops Low-latency interactive apps Developme nt and test environmen ts 	 Critical business applications that require sustained IOPS performance, or more than 16,000 IOPS or 250 MiB/s of throughput per volume Large database workloads, such as: MongoDB Cassandra Microsoft SQL Server MySQL PostgreSQL Oracle 	 Streaming workloads requiring consistent, fast through put at a low price Big data Data warehouses Log processing Cannot be a boot 	lowest	

volume

API name	gp2	io1	st1	scl
Volume size	1 GiB - 16 TiB	4 GiB - 16 TiB	500 GiB - 16 TiB	500 GiB - 16 TiB
Max IOPS per volume	16,000 (16 KiB I/O) *	64,000 (16 KiB I/O) †	500 (1 MiB I/O)	250 (1 MiB I/O)
Max throughp ut per volume	250 MiB/s *	1,000 MiB/s †	500 MiB/s	250 MiB/s
Max IOPS per instance ††	80,000	80,000	80,000	80,000
Max throughp ut per instance ††	2,375 MB/s	2,375 MB/s	2,375 MB/s	2,375 MB/s
Dominan t performa nce attribute		IOPS	MiB/s	MiB/s

EBS Volume Types (continued)

The above chart is from ACG

Placement Group Diagrams

 $via\ https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html \#placement-groups-cluster$

Cluster Placement Group

Partition Placement Group

Spread Placement Group

RDS – Restoring Backups

Multi-AZ

Multi-AZ keeps an exact copy of your production database in another AZ (for disaster recovery only). When you write to your primary AWS automatically synchronizes the changes to the standby database. In the event of failure, RDS will failover to the standby instance automatically. You keep the same DNS Endpoint (Amazon updates the IP address to point from one RDS instance to the other and Amazon does that for you so you don't have to do it)

Multi-AZ (continued)

The above chart is from ACG

Read Replicas

Allow you to have a read only copy of your production database, for increased performance.

Read Replicas (continued)

Read Replicas are replicated **asynchronously**. It is possible to architect EC2 instances to read from different read replicas but only write to a single database.

Elasticache – Memcached vs Redis Chart

The above chart is from ACG

DNS/Route53 Diagrams

Simple Routing Policy

Weighted Routing Policy

Latency-Based Routing

Failover Routing Policy

Geolocation Routing Policy

Geoproximity Routing (Traffic Flow only mode)

Geoproximity Routing (continued)

The above information is from ACG

Multivalue Answer Policy

VPC Diagram

When you create a custom VPC a Route Table, Network ACL, and Security Group are created by default. Then it is up to you to create subnets, create an internet Gateway to be attached to your VPC, create instances, etc.

VPC Peering

No Transitive Peering. You cannot peer through one VPC to another. You have to establish a new peering relationship. So if VPC B wants to talk to VPC C you have to establish a connection between the two.

NAT Gateway Diagram

A Nat Gateway (as well as a NAT instance) is used to provide internet traffic to EC2 instances in a private subnet. A NAT Gateway is redundant. A Nat instance is an individual EC2 instance located behind a security group.

Bastion Host Diagram

A Bastion is used to SSH or RDP into an instance in your private subnet.

Whereas, A Nat Gateway (as well as a NAT instance) is used to provide internet traffic to EC2 instances in a private subnet. A NAT Gateway is redundant. A Nat instance is an individual EC2 instance located **behind** a security group.

Direct Connect

- -Directly connects your data center to AWS
- -Useful for high throughput workloads (i.e. lots of network traffic)
- -Stable Reliable Secure Connection

Direct Connect Setup Steps

The above information is from ACG

Global Accelerator

Sticky Sessions

Enabling and Disabling sticky sessions given the scenario

Cross Zone Load Balancing NOT ENABLED

Cross Zone Load Balancing **ENABLED**

Path Patterns

Example: Sending the Normal Path myurl.com to the 4 web servers in US-EAST-A1

And sending the myurl.com/images traffic to your media instances located in a separate availability zone

VPC Gateway Endpoint Diagram

*The bucket represents S3

Our instance sends files to the VPC Gateway and that Gateway is going to send the file to our S3 bucket and it will not leave the Amazon network.

HA Architecture Example

If one of the regions goes down or an AZ goes down then you've got failover. You can failover from one region to another or one AZ to another.

Building a fault tolerant WordPress Site

Example: Here we have a user browsing the internet to our Route53 domain name which will connect up to an elastic load balancer. We have some EC2 instances behind an autoscaling group which are going to be in separate AZ's. We have RDS instances that are multi-AZ. We have two S3 buckets, one for our media and one for our code. And we serve our pictures from our wordpress site through cloudfront.

Fault Tolerant Wordpress Site Network Diagram

On the left is the IP of our writer node. Our blog writers will navigate directly to the IP address on the left side of the diagram. That EC2 instance will push any changes to S3. The Fleet of EC2 instances on the right will be pulling the S3 bucket every minute looking for changes. Our site visitors will visit the domain and Route53 will send them to the fleet of EC2 instances on the right side of the diagram, so it is just sending them to our read nodes only. (We will also have the writer node instances on the right be an autoscaling group situated behind an ELB)

SQS

User uploads a photo to s3 which triggers a lambda function which will take the image and write text over it. It will store that text in SQS. Then a fleet of EC2 instances will pull the message queue for work and it will then create the meme and store it in S3. If an EC2 instance fails while creating the meme the message will become available again in the queue and another instance will create the meme. So SQS is storing the message independently so that even if an EC2 instance can't process the message, another EC2 instance will come along and take the message.

SQS (Continued)

User goes to ec2 server and says they want to go to Rome on these particular dates. The web server passes that information to an SQS queue. A fleet of application servers are configured to pull that message and look for different airlines. Once the information is retrieved it is passed back to the web server and then back to the end user. If we lose an individual ec2 instance we won't lose the information and another one will come along and poll the queue to do the work and ultimately return the result back to the end user.

SQS Standard Queues

FIFO Queues

FIFO Queues

SNS Availability

Elastic Transcoder

Upload a video into S3 Bucket...then a lambda function will take the metadata of the video and send it to Elastic Transcoder which will transcode the video so that it looks good on various devices and is in high resolution and then stores the transcoded video in another S3 Bucket.

API Gateway

Users do a call to our API Gateway. API Gateway is the 'front-end/front door' to our AWS environment. That API call could be passed to Lambda, or an EC2 instance, or writing to DynamoDB, etc.

API Gateway Caching

For example, User 1 makes a get request that is forwarded on to lambda and lambda returns a response. Then User 2 makes the same get request and since API Gateway has cached it, it does not go to the Lambda function.

Kinesis Streams

Data Producers (such as an EC2 monitoring stock prices, or perhaps IoT monitoring farm data) stream the data to kinesis and Kinesis Streams is a place to store that data coming in (by default stores for 24 hrs but can be stored for 7 days). The data is contained in 'shards'. EC2 instances (aka the data consumers) can then analyze that data located within the shards and then can store it in various places such as DynamoDB, S3, EMR, Redshift, RDS etc. Kinesis allows you to persistently store your data for 24 hrs to 7 days, while your data consumers do something with that data.

Kinesis Firehose

Data Producers send the data to Kinesis Firehose (of which does NOT have persistent storage and does NOT have 'shards'). The data has to be analyzed as it comes in. So perhaps you have lambda function within your Kinesis Firehose running a set of code for the data as it comes in and outputs it somewhere. It can output it to S3. Or it could output it to S3 and then you can import it to Redshift. Or it can output to Elasticsearch Cluster, etc.

Kinesis Analytics

Works with Kinesis Streams, as well as with Kinesis Firehose. It can analyze the data on the fly inside either service and then it stores this data either on S3, Redshift, or Elasticsearch Cluster.

Amazon Cognito

User logs in with Facebook account. Facebook authenticates her account and passes back an authentication token to Cognito, which converts it to a JWT token. The user sends the token to an identity pool and that identity pool will grant her AWS credentials in the form of an IAM role and then she will have access to AWS resources. User pools pertains to registration, authentication, usernames, and passwords. Identity pools pertains to **the actual granting of access** to use AWS resources.

<u>Traditional vs Serverless Architecture</u>

Traditional

ELB ->EC2->Database Storage (RDS)

<u>Serverless</u>

API Gateway ->Lambda->DynamoDB

<u>Lambda</u>

User sends http request to API Gateway. API Gateway proxies that to Lambda. Lambda will run the code in response to that HTTP request, and then send it back to API Gateway, that will send it back to the user.

If two users have two separate HTTP requests, the same lambda function will be triggered but it will be separately run, so it will be two separate lambda functions. If you have a million users hitting your API gateway at once, it will trigger a million lambda functions, so that's how well it scales.

Serverless Website with API Gateway & Lambda

User wants to go to helloucloudgurus2019.com. User is sending a query across to Route53 which will respond with the bucket address for our website. So our user goes to our S3 bucket and they are going to go to our index.html, which will show up as a static page. But it will have a button. When the button is pushed they are going to get dynamic content. Because a request is send through to API gateway which will proxy a request to a lambda function which will take the data and return a result to API gateway, which will then return a result, to our user.

