mfiaDLTS Website: https://github.com/nelsongt/mfiaDLTS

Click "Source code (zip)"

Click "Assets"

To download
development version
latest features but some
functions may be broken
due to bugs

- Click "Code"
- Click "Download ZIP"

Hardware Requirements

Requirements

- -Device to perform DLTS on
- -Cryostat with electrical leads for device connection
- -Lakeshore temperature controller to control cryostat temperature
- -Zurich Instruments MFIA
- -PC with MATLAB to run this code

Pump

Model 33X w/GPIB

Software Requirements

Software Dependencies

General:

MATLAB (with statistics and instrument control toolboxes)

ProcessData:

[optional,not included] ezyfit: http://www.fast.u-psud.fr/ezyfit/ DLTS peak fitting, delayed to future version

AcquireData:

[required, not included] LabOne: https://www.zhinst.com/downloads

[required, not included] LabOne Matlab Driver (place in AcquireData folder): https://www.zhinst.com/downloads

[required, included] lakshore driver:

https://www.mathworks.com/matlabcentral/fileexchange/48366-lakeshore

[required, included] cprintf:

https://www.mathworks.com/matlabcentral/fileexchange/24093-cprintf-display-formatted-colored-text-in-the-command-window

LabOne software from zhinst.com

Included MATLAB 3rd party code (Here for attribution purposes)

Wiring Block Diagram

Wiring Photos

L_{CUR} to sample (2 point probe)

H_{CUR} to sample (2 point probe)

Aux Out 1 to Aux In 1

Aux Out 2 to Trig In 1 (on back)

Wiring Photos

Cryostat ground (optional)

Trig in 1 from Aux Out 2 (on front)

Gigabit Ethernet to PC

Start LabOne local data server

mfiaDLTS Code Organization

Setup for AcquireData

Viewing CDLTS_Main.m

Script editor shows CDLTS_Main code

We will change experiment parameters here

Run button executes code

Command window acts as experiment progress log

CDLTS_Main User defined parameters – Sample and DLTS

```
%%% Init %%%
% Set sample info
sample.user = 'George';
sample.material = 'In0.53Ga0.47As';
                                                        Mostly arbitrary, used to describe sample in data files
sample.name = 'GPD7-250keV8V0V';
sample.area = '0.196'; % mm^2
sample.comment = '150ms 30s 1MHz 125mV 4rej';
% Set DLTS experiment parameters
mfia.ss bias = -2.0; % V, steady-state bias
mfia.pulse height = 1.8; % V, bias applied by pulse generator, absolute bias during pulse is ss bias+pulse bias
mfia.full period = 0.152; % s, length of single experiment in time (must be longer than trns length+pulse width)
mfia.trns length = 0.150; % s, amount of transient sampled and saved
mfia.pulse width = 0.001; % s, length of pulse in time
mfia.sample time = 30;
                           % sec, length to sample each temp point, determines speed of scan and SNR
                                                                                  Time
                                          full period
                                                                  pulse height
                                                                              ss bias
                     Bias
                              pulse width
                                             trns length
```

CDLTS user defined parameters - Temperature

- Only these Lakeshore settings are handled by the code so far
- If you want to change eg. PID parameters you will have to use the Lakeshore front panel manually

CDLTS_Main User defined parameters – Lock-in settings

```
% Configure MFIA Parameters - Advanced Users Only
mfia.time_constant = 2.4e-6; % us, lock in time constant, GN suggests 2.4e-6
mfia.ac_freq = 1.0e6; % Hz, lock in AC frequency, GN suggests 1MHz
mfia.ac_ampl = 0.125; % V, lock in AC amplitude, GN suggests ~100 mV for good SNR
mfia.sample_rate = 107143; % Hz, sampling rate Hz, for CDLTS use 53571 or 107143 or 214286
```

Controls SNR and file sizes, just keep defaults if unsure

Starting CDLTS_Main

 After setting parameters, hit run

 Then, observe log window for hardware initialization

If success, program will pause

Check configuration in LabOne Web UI

2. Check only parameter with Farad (F) units

Resume CDLTS_Main – typical operation log

```
Hardware initialized. Ensure configuration is correct, then press any key to continue ...
Waiting for set point (300.00)...
Wait for time stability: 5 s left.
Wait for time stability: 4 s left.
Wait for time stability: 3 s left.
                                          Temperature stabilization
Wait for time stability: 2 s left.
Wait for time stability: 1 s left.
                                                                                                 Yellow and Green -> Single transient data
Wait for time stability: 0 s left.
Temperature has stabilized!
                                                                                                 Red -> Averaged transient data
Capturing transient...
Acquired 7 of total 180 transients: 3.9% (elapsed time 2.116 s)
Acquired 20 of total 180 transients: 11.1% (elapsed time 4.249 s)
                                                                                                        Average transient
Acquired 35 of total 180 transients: 19.4% (elapsed time 6.389 s)
Acquired 48 of total 180 transients: 26.7% (elapsed time 8.529 s)
                                                                                                14.32
Acquired 63 of total 180 transients: 35.0% (elapsed time 10.680 s)
Acquired 76 of total 180 transients: 43.3% (elapsed time 12.819 s)
                                                                                               ^ 14.31
                                                                        Transient
Acquired 91 of total 180 transients: 50.6% (elapsed time 14.962 s)
                                                                        collection
Acquired 105 of total 180 transients: 58.3% (elapsed time 17.104 s)
Acquired 119 of total 180 transients: 66.1% (elapsed time 19.248 s)
                                                                                            apacitance
Acquired 133 of total 180 transients: 73.9% (elapsed time 21.394 s)
Acquired 148 of total 180 transients: 82.2% (elapsed time 23.552 s)
Acquired 161 of total 180 transients: 89.4% (elapsed time 25.704 s)
Acquired 176 of total 180 transients: 97.8% (elapsed time 27.862 s)
                                                                                                14.27
Acquired 180 of total 180 transients: 100.0% (elapsed time 30.004 s)
Done.
Finished transient for this temperature.
                                              Transient data plot and save file
Warning: 0.5% data loss detected.
Saving transient...
                                                                                                14.24
Waiting for set point (299.50)...
                                                                                                                   0.05
                                                                                                                                  0.1
                                                                                                                                                 0.15
                                                                    Next temp. step
                      Set point: 2.995000e+02.
                                                Delta: 0.50.
                                                                                                                      Time (s)
Current Temp: 300.00. Set point: 2.995000e+02.
                                                Delta: 0.50.
```

July 8th, 2021 mfiaDLTS How To

Where Data Goes

- GPD1-2MeV_9_295.5.iso
- GPD1-2MeV_8_296.iso
- GPD1-2MeV_7_296.5.iso
- GPD1-2MeV_6_297.iso
- GPD1-2MeV_5_297.5.iso
- GPD1-2MeV_4_298.iso
- GPD1-2MeV_3_298.5.iso
- GPD1-2MeV_2_299.iso
- GPD1-2MeV_1_299.5.iso
- GPD1-2MeV_0_300.iso

Transient data file for each temperature point

After transients are collected, Process Data

Transient_To_CDLTS - Mandatory Steps

All that is needed is:

 Change "Folder_Name" to saved data folder

Hit run

Transient_To_CDLTS - Advanced Settings

```
%% Define list of rate windows NOTE: May need to be changed depending on weighting function %rate_window = logspace(log10(20),log10(110),10); % auto generate a list rate_window = [20,50,100,200,500,1000]; % suggested windows: 20,50,100,200,500,1000,2000,5000 %rate_window = [16,32,64,128,256,512]; % also a good list: 16,32,64,256,512,1024 %rate_window = 20; % single rate good for plotting
```

Here you may set the rate window constants (only uncomment one line)

```
%% List of weighting functions, one must be used and only one
%[del_cap,del_cap_norm] = weightboxcar(Data,rate_window,sampling_rate,ss_caps,total);
%[del_cap,del_cap_norm] = weightlockin(Data,rate_window,sampling_rate,ss_caps,total);
%[del_cap,del_cap_norm] = weightexp(Data,rate_window,sampling_rate,ss_caps,total);
% Good for SNR but aliasing at high frequency
[del_cap,del_cap_norm] = weightexpaa(Data,rate_window,sampling_rate,ss_caps,total);
% Best SNR, slowest. Default
% [del_cap,del_cap_norm] = weightsine(Data,rate_window,sampling_rate,ss_caps,total);
% Alternative, decent SNR
% [del_cap,del_cap_norm] = weightcosine(Data,rate_window,sampling_rate,ss_caps,total);
% Supposed to be good for resolution
```

- Advanced users can set the weighting function (only uncomment one line)
 - You may also implement your own
- Exponential weighting function with interpolation (weightexpaa) is default and has best SNR

Results of Transient To CDLTS

Spectra and CvsT data output in data subfolder in .dat file after running Transient_to_CDLTS -No Arrhenius plotting supported at this date, will have to find peaks and plot manually