Hierarchical Models and Shrinkage

EstimationProfessor Karsten I. Hansen

UC San Diego, Rady School of Management MGTA 495, Spring 2022

Example: Uber Trip Data

- · 37,961 Uber trips for 1,909 users
- · Goal: Identify users who on average take high value trips
- · This seems like an easy exercise right?

Top 20

```
## # A tibble: 20 x 7
      userId nTrips avgLogPrice userIdF userIndex empiricalRank Position
##
##
       <dbl> <int>
                           <dbl> <fct>
                                                             <dbl> <chr>
                                              <int>
##
   1 13907
                            4.57 13907
                                                                 1 Top 20
                   3
                                               1316
    2
        9755
                   3
                            4.27 9755
                                               1071
##
                                                                 2 Top 20
                   3
                            4.09 1849
                                                233
                                                                 3 Top 20
##
    3
        1849
      13138
    4
                  29
                            4.05 13138
                                               1282
                                                                 4 Top 20
##
##
    5
       15994
                            4.02 15994
                                               1414
                                                                 5 Top 20
                   4
##
    6
        2868
                            3.99 2868
                                                                 6 Top 20
                   3
                                                390
                            3.92 641
                                                 48
                                                                 7 Top 20
   7
         641
##
                   4
##
   8
        9108
                   4
                            3.88 9108
                                               1025
                                                                 8 Top 20
                            3.87 3402
                                                465
##
   9
        3402
                   3
                                                                 9 Top 20
## 10
       20446
                            3.86 20446
                   5
                                               1567
                                                                10 Top 20
       15664
                            3.83 15664
## 11
                   3
                                               1397
                                                                11 Top 20
        6885
                            3.80 6885
## 12
                   3
                                                                12 Top 20
                                                841
## 13
       18739
                            3.78 18739
                                               1501
                   3
                                                                13 Top 20
## 14
         442
                 16
                            3.78 442
                                                 36
                                                                14 Top 20
       28191
                            3.76 28191
                                               1799
## 15
                 10
                                                                15 Top 20
## 16
       15796
                            3.74 15796
                                               1403
                                                                16 Top 20
                   3
       20822
                            3.74 20822
## 17
                 11
                                               1579
                                                                17 Top 20
## 18
        4094
                 16
                            3.71 4094
                                                552
                                                                18 Top 20
                            3.70 1837
                                                                19 Top 20
## 19
        1837
                   6
                                                228
## 20
        9656
                   4
                            3.66 9656
                                               1067
                                                                20 Top 20
```

Bottom 20

##	# A	tibble	e: 20 x	7				
##	ı	userId	nTrips	${\tt avgLogPrice}$	userIdF	userIndex	${\tt empiricalRank}$	Position
##		<dbl></dbl>	<int></int>	<dbl></dbl>	<fct></fct>	<int></int>	<dbl></dbl>	<chr></chr>
##	1	19288	9	0.759	19288	1526	1909	Bottom 20
##	2	5880	13	0.942	5880	749	1908	Bottom 20
##	3	17527	5	1.11	17527	1459	1907	Bottom 20
##	4	1052	4	1.13	1052	147	1906	Bottom 20
##	5	1106	4	1.15	1106	155	1905	Bottom 20
##	6	12035	3	1.23	12035	1217	1904	Bottom 20
##	7	7851	31	1.29	7851	934	1903	Bottom 20
##	8	26257	3	1.29	26257	1747	1902	Bottom 20
##	9	726	3	1.33	726	68	1901	Bottom 20
##	10	16178	11	1.33	16178	1424	1900	Bottom 20
##	11	2495	6	1.33	2495	328	1899	Bottom 20
##	12	6744	11	1.35	6744	823	1898	Bottom 20
##	13	14161	3	1.41	14161	1330	1897	Bottom 20
##	14	5861	4	1.44	5861	747	1896	Bottom 20
##	15	13819	6	1.47	13819	1313	1895	Bottom 20
##	16	6632	3	1.49	6632	814	1894	Bottom 20
##	17	29331	4	1.49	29331	1838	1893	Bottom 20
##	18	7816	3	1.50	7816	929	1892	Bottom 20
##	19	892	78	1.52	892	110	1891	Bottom 20
##	20	22802	5	1.55	22802	1643	1890	Bottom 20

Raw Averages

General Problem!

· Whenever you want to compare averages of something, this problem will show up:

Averages based on a small number of observations will always be more noisy than averages over a large number of observations

- This means that the extremes will almost always be made up of the averages based on a small number of observations
- · Solution: Users are similar but different from each other. We should use this information to our advantage.
- · Idea: We should "shrink" the raw means toward the overall mean in a way so that the noisy averages are shrunk more than the non-noisy averages:

$$\hat{lpha}_i = F_i(ar{Y}_i)$$

- Standard approach takes $F_i(ar{Y}_i) = ar{Y}_i$ but as we have seen that is a bad idea!
- · We need $F_i(\bar{Y}_i)<\bar{Y}_i$ for large noisy averages ($F_i(\bar{Y}_i)>\bar{Y}_i$ for small noisy averages) and $F_i(\bar{Y}_i)pprox \bar{Y}_i$ for non-noisy averages

Hiearchical Model

$$egin{aligned} y_{ij} | lpha_i, \sigma &\sim \mathrm{N}(lpha_i, \sigma^2), \qquad j = 1, \ldots, N_i; i = 1, \ldots, N, \ lpha_i | \mu, \sigma_lpha &\sim \mathrm{N}(\mu, \sigma_lpha^2), \end{aligned}$$

plus a prior distribution for $\sigma, \mu, \sigma_{\alpha}$.

- · This is also called a Multilevel Model or a model with partial pooling
- · We are primarily interested in the posterior distribution of $\{\alpha_i\}_{i=1}^N$ but also in σ_α .
- · What happens when $\sigma_{lpha} o 0$ and $\sigma_{lpha} o \infty$?

Example

- · Suppose initially that $\sigma, \mu, \sigma_{\alpha}$ are known. What is the posterior for α_i ?
- · We can derive this analytically:

$$p(lpha_i|Y_i,\mu,\sigma,\sigma_lpha)=\mathrm{N}(lpha_i|\mu_{lpha_i}, au_{lpha_i}^{-1}),$$

where

$$egin{align} au_{lpha_i} &\equiv rac{N_i}{\sigma^2} + rac{1}{\sigma_lpha^2}, \ \mu_{lpha_i} &\equiv au_{lpha_i}^{-1} \left(rac{N_i}{\sigma^2} ar{Y}_i + rac{1}{\sigma_lpha^2} \mu
ight), \end{aligned}$$

and
$$ar{Y}_i \equiv N_i^{-1} \sum_j Y_{ij}$$

Special Cases

- · We can consider two special cases: $\sigma_lpha o 0$ and $\sigma_lpha o \infty$
- · The posterior mean of $lpha_i$ in these two special cases is

$$\mathrm{E}[lpha_i|Y_i,\mu,\sigma_lpha,\sigma]
ightarrow egin{cases} ar{Y}_i & \mathrm{for} \ \sigma_lpha
ightarrow \infty, \ \mu & \mathrm{for} \ \sigma_lpha
ightarrow 0. \end{cases}$$

- · These cases are also referred to as
 - $\sigma_{\alpha} \rightarrow \infty$ = "No Pooling" (everyone is completely different)
 - $\sigma_{\alpha} \rightarrow 0$ = "Complete Pooling" (everyone is the same)
 - $0<\sigma_{lpha}<\infty$ = "Partial pooling" (everyone is different but similar)
- · Preferred approach: Let the data help in determining size of σ_{α} !
 - If there is evidence in the data that all users are very similar, then we should learn that σ_{lpha} is small
 - If there is evidence in the data that users are very different, then we should learn that σ_{lpha} is large

Full Model

$$egin{aligned} y_{ij} | lpha_i, \sigma &\sim \mathrm{N}(lpha_i, \sigma^2), & j = 1, \ldots, N_i; i = 1, \ldots, N, \ lpha_i | \mu, \sigma_lpha &\sim \mathrm{N}(\mu, \sigma_lpha^2), \ \mu &\sim \mathrm{N}(0, 5^2), \ \sigma &\sim \mathrm{Cauchy}_+(0, 3), \ \sigma_lpha &\sim \mathrm{Cauchy}_+(0, 3) \end{aligned}$$

Half Cauchy

$$p(x|\gamma) = rac{1}{\pi \gamma \left(1 + (rac{x}{\gamma})^2
ight)}$$

Probability Density for Half Cauchy gamma=3

Finding the Posterior

- · This model while simple it already too complex to easily solve analytically
- · Note that the joint posterior is a distribution of

$$(\alpha_1,\ldots,\alpha_N,\mu,\sigma,\sigma_\alpha),$$

i.e., N+3 parameters where N is the number of users. Therefore this is a probability distribution in close to 2,000 dimensions!

- · We will use a Monte Carlo algorithm to numerically simulate this posterior distribution
- This algorithm will simulate the joint posterior by drawing a sequence of S pseudo-random numbers from the posterior distribution: $\{\tilde{\alpha}_s, \tilde{\mu}_s, \tilde{\sigma}_{\alpha,s}, \tilde{\sigma}_s\}_s^S$
- · We will map the model into the probabilistic language Stan
- · We will not go into the details here more on that next class!

Stan code

```
data {
 int<lower=0> nObs;
                                           // number of rows in full data
 int<lower=0> nUsers;
                                           // number of users
 int<lower=1,upper=nUsers> userID[nObs];
                                           // user index for each row
 vector[n0bs] y;
                                           // Log amount
parameters {
                         // sd alpha
 real<lower=0> sigma;
 real mu;
                             // mean alpha
 vector[nUsers] alpha; // user effects
                         // sd data
 real<lower=0> sigma_y;
model {
  sigma \sim cauchy(0, 2.5);
 mu \sim normal(0,5);
 alpha ~ normal(mu, sigma);
  sigma_y \sim cauchy(0, 2.5);
 y ~ normal(alpha[userID], sigma_y);
```

Result

Bayes User Estimates and Number of Trips

Result

How did we make this?

- The algorithm generates a stream of pseudo random numbers from the distribution we are interested in
- · Why is this useful? Note that if $\{ ilde{x}_s\}_{s=1}^S$ are random draws from a distribution π then

$$\mathrm{E}_{\pi}[f(x)]pproxrac{1}{S}\sum_{s=1}^{S}f(ilde{x}_{s}),$$

for a function f, where we can control the approximation error by choosing large enough enough M.

- This is called Monte Carlo simulation
- · Almost all Bayesian models are trained this way
- Next week we will look at the details of how these algorithms are designed

Using Draws

- ' Posterior average: $ar{ ilde{x}} = rac{1}{S} \sum_{s=1}^{S} ilde{x}_{s}$
- · Posterior standard deviation: $\sqrt{\frac{1}{S}\sum_{s=1}^S (ilde{x}_s ar{ ilde{x}})^2}$
- · Posterior quantiles: Empirical quantiles of $\{ ilde{x}_s\}_{s=1}^S$
- · Posterior distribution: histogram or density of $\{ ilde{x}_s\}_{s=1}^S$

Using Draws

alpha

##	#	A tibble:	4 x 6				
				.lower	.upper	avgLogPrice	nTrips
##		<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
##	1	136	2.92	2.84	3.01	2.93	137
##	2	328	1.61	1.23	1.97	1.33	6
##	3	1143	1.60	1.54	1.67	1.60	278
##	4	1567	3.42	3.02	3.82	3.86	5

Using Draws: Posterior Ranks

- · Suppose want to identify the top 15 users in terms of value (measured as average spend per trip)
- · This is a question about rank. For example the top ranked user is

$$user_1(lpha_1,\ldots,lpha_N) \equiv \{i: lpha_i \geq lpha_j, \ orall j \in \{1,\ldots,N\}\}$$

- · Note that the rank depends on the unknown parameters α_1,\ldots,α_N .
- · We can use the posterior draws of the α vector to simulate posterior ranks:
 - For each draw \tilde{lpha} find the rank of each user: $ilde{r}_1, \ldots, ilde{r}_N$
 - This creates S draws of each user's ranking
 - Then we can summarize these S draws and find the mean rank, \min rank, \max rank etc for each user

Posterior Ranks

```
## # A tibble: 15 x 7
      userIndex meanPostRank minPostRank maxPostRank nTrips avgLogPrice
                       <dbl>
                                    <dbl>
                                                <dbl> <int>
                                                                    <dbl>
##
          <int>
##
   1
           1282
                        1.35
                                                           29
                                                                     4.05
                                        1
##
   2
             36
                        7.43
                                        1
                                                   51
                                                           16
                                                                     3.78
   3
           1316
                        9.89
                                        1
                                                  154
                                                            3
                                                                     4.57
##
            552
                       10.1
                                                   78
                                                                     3.71
##
   4
                                        1
                                                           16
                       12.6
                                                                     3.74
           1579
                                        1
                                                    85
                                                           11
##
   5
                       13.8
                                                                     3.76
   6
           1799
                                        1
                                                  103
                                                           10
##
## 7
            877
                       14.4
                                        1
                                                   79
                                                                     3.63
                                                           16
                       14.7
## 8
           1129
                                        1
                                                    66
                                                           20
                                                                     3.59
            879
                       16.5
                                        2
                                                                     3.63
## 9
                                                  107
                                                           14
## 10
           1743
                       16.6
                                                                     3.57
                                        1
                                                   75
                                                           19
## 11
           1071
                       21.5
                                                  361
                                                                     4.27
                                        1
                                                            3
## 12
           1414
                       22.4
                                                                     4.02
                                        1
                                                  218
                                                            4
## 13
           1567
                       24.7
                                        1
                                                  327
                                                                     3.86
                                                            5
## 14
            271
                       27.1
                                        2
                                                  161
                                                           20
                                                                     3.44
## 15
           1375
                       28.2
                                        6
                                                                     3.36
                                                   68
                                                           51
## # ... with 1 more variable: empiricalRank <dbl>
```

Multilevel Regression Model

- · The basic idea of shrinkage estimation can be applied to any model
- · Let's consider a regression model with a multilevel/hierarchical structure:

$$egin{aligned} y_{ij} | lpha_i, eta_i, \sigma &\sim ext{N}(lpha_i + eta_i x_i, \sigma^2), \qquad j = 1, \dots, N_i; i = 1, \dots, N, \ lpha_i, eta_i | \mu, \Sigma &\sim ext{N}(\mu, \Sigma), \end{aligned}$$

- Note that without the second stage, this would be like training an independent regression model for each \dot{i}
- The model is closed by specifying a prior for σ, μ, Σ .
- Note that

$$\Sigma o egin{cases} 0 & ext{One pooled regression,} \ \infty & N ext{ independent regressions} \end{cases}$$

Case Study: Multilevel Demand Model

- Weekly sales and prices of Frito Lay Pretzels for 76 Stores
- · 3 Years of data
- · We want to allow stores to have different baseline sales and different demand price effects

$$egin{aligned} \log y_{sw} &= lpha_s + eta_s \log p_{sw} + arepsilon_{sw}, \ arepsilon_{sw} | \sigma \sim \mathrm{N}(0, \sigma^2), \ lpha_s, eta_s | \mu, \Sigma \sim \mathrm{N}(\mu, \Sigma), \end{aligned}$$

where y_{sw} is sales volume for store s in week w, and p_{sw} is the brand price for store s in week w

- Let's try two different priors:
 - A shrinkage prior where we allow the model to learn the degree to which stores are similar
 - An independence prior with zero pooling, i.e., we treat the 76 stores as independent

Priors

· To specify a prior on the covariance matrix Σ , we use the decomposition

$$\Sigma \equiv egin{bmatrix} \sigma_{11} & \sigma_{12} \ \sigma_{12} & \sigma_{22} \end{bmatrix} = egin{bmatrix} au_1 & 0 \ 0 & au_2 \end{bmatrix} imes egin{bmatrix} 1 &
ho \
ho & 1 \end{bmatrix} imes egin{bmatrix} au_1 & 0 \ 0 & au_2 \end{bmatrix},$$

where ρ is the correlation coefficient between α_i and β_i .

· Priors are then assigned to τ_1, τ_2 and ρ :

$$au_1 \sim ext{Cauchy}_+(0,2.5), \;\; au_2 \sim ext{Cauchy}_+(0,2.5) \
ho \sim ext{U}(-1,1).$$

· For the independence prior we just assign independent diffuse (meaning large variance) normal distributions for α_s and β_s , e.g., $\alpha_s \sim N(0,10), \ \beta_s \sim N(0,10)$

Posterior Summary for α

Posterior Mean and 95% inner quantile range

Posterior Summary for β

Posterior Mean and 95% inner quantile range

Covariation

Posterior Mean of α and β

Posterior Means for 76 Stores

Illustration of Posterior Uncertainty

Joint Posterior of α and β 2,000 Posterior Draws for each of 5 Stores -1 storeIndex • 15 -2 -25 50 56 67 -3 --4 α

Posterior Summaries with Shrinkage and No Shrinkage 30 random stores

Expected Demand

- · Let's try to use the model to predict expected future demand $Y_s^{\,*}$ for a store s
- · Note that the generative model of sales is a log-normal distribution. Therefore,

$$ext{E}[Y_s^*| heta_s,\sigma] = \exp\left\{lpha_s + eta_s\log p + rac{\sigma^2}{2}
ight\} \equiv g(heta_s,\sigma;p)$$

- · Notice that this is a simple function of $heta_s \equiv (lpha_s, eta_s)$ and p.
- · Since our algorithm already provides us draws from the posterior for θ_s, σ , we can easily generated draws of g simply as

$$\left\{g(ilde{ heta}_{sd}, ilde{\sigma}_d;p)
ight\}_{d=1}^D$$

· By varying p we can then easily trace out the effect of price changes on expected demand

Posterior of Expected Demand

Two Stores

Price Setting?

Full Uncertainty

- · What is the full uncertainty facing the store about next week's demand?
- This involves two sources: model uncertainty and the specific draw of demand that will materialize conditional on a specific model
- The answer is the posterior predictive distribution:

$$p(Y_s^*|p, ext{data}) = \int p(Y_s^*|p, heta_s, \sigma) p(heta_s, \sigma| ext{data}) d heta_s d\sigma$$

- · We can simulate this quite easily:
 - 1. For each simulated draw $ilde{ heta}_s, ilde{\sigma}_{ ext{,}}$
 - 2. Sample ${ ilde Y}_s^*$ as

$${ ilde{Y}}^* \sim \operatorname{LogNormal}(ilde{lpha}_s + ilde{eta}_s \log p, ilde{\sigma})$$

Posterior Predictive Demand Distribution

Store Index 15

Model 2: Explain variation

- · Our model above naturally incorporates variation in parameters across stores
- Can we explain this variation? Why are some stores price sensitive and others not? Why do some stores have low baseline sales?
- We could do some simple correlations/regressions of parameter estimates on store characteristics....BUT...a much better approach is to incorporate store characteristics explicitly in the model and then see if we can learn any dependencies
- · All we have to do is modify the prior distribution of $heta_s=(lpha_s,eta_s)$

Model 2

$$egin{aligned} \log y_{sw} &= lpha_s + eta_s \log p_{sw} + arepsilon_{sw}, \ arepsilon_{sw} | \sigma \sim \mathrm{N}(0, \sigma^2), \ lpha_s &= \gamma_lpha' Z_s + \psi_{lpha,s}, \ eta_s &= \gamma_eta' Z_s + \psi_{eta,s}, \ arphi_s &\equiv (\psi_{lpha,s}, \psi_{s,eta}) | \Sigma \sim \mathrm{N}(0, \Sigma), \end{aligned}$$

- · Here Z_s is a vector store characteristics for store s
- · The previous model is a special case of this with $Z_s=1\,$
- · We can use the same priors as the previous mmodel plus a prior on the γ parameters, e.g.,

$$\gamma_{lpha} \sim \mathrm{N}(0, 5^2 I_K), \;\; \gamma_{eta} \sim \mathrm{N}(0, 5^2 I_K)$$

Results

Results

Results

Appendix

Deriving Posterior for Normal Model

The model is

$$egin{aligned} y_{ij} | lpha_i, \sigma &\sim ext{N}(lpha_i, \sigma^2), \qquad j = 1, \dots, N_i; i = 1, \dots, N, \ lpha_i | \mu, \sigma_lpha &\sim ext{N}(\mu, \sigma_lpha^2), \end{aligned}$$

· To get the posterior for α_i conditional on the remaining parameters, we need to calculate

$$p(lpha_i|y_i) = rac{p(y_i|lpha_i)p(lpha_i)}{\int p(y_i|lpha_i)p(lpha_i)dlpha_i},$$

where the likelihood function is

$$egin{align} p(y_i|lpha_i) &= \prod_{j=1}^{N_i} rac{1}{\sqrt{2\pi}\sigma} \mathrm{exp}\left(-rac{1}{2\sigma^2}(y_{ij}-lpha_i)^2
ight) \ &= \left(rac{1}{\sqrt{2\pi}\sigma}
ight)^{N_i} \mathrm{exp}\left(-rac{1}{2\sigma^2}\sum_{j=1}^{N_i}(y_{ij}-lpha_i)^2
ight) \end{aligned}$$

Note that we can rewrite the sum as

$$egin{aligned} \sum_{j=1}^{N_i} (y_{ij} - lpha_i)^2 &= \sum_j (Y_{ij}^2 + lpha_i^2 - 2Y_{ij}lpha_i) \ &= N_i (lpha_i^2 - 2lpha_iar{y}_i) + \sum_j y_{ij}^2 \ &= N_i (lpha_i - ar{y}_i)^2 + \sum_j y_{ij}^2 - N_iar{y}_i^2 \end{aligned}$$

• The second term doesn't depend on α_i and will cancel out in the fraction definining the posterior. Therefore, we can write the numerator as

$$\exp\left(-rac{N_i}{2\sigma^2}(lpha_i-ar{y}_i)^2
ight) imes\exp\left(-rac{1}{2\sigma_lpha^2}(lpha_i-\mu)^2
ight)= \ \exp\left(-rac{1}{2}\Big[rac{N_i}{\sigma^2}(lpha_i-ar{y}_i)^2+rac{1}{\sigma_lpha^2}(lpha_i-\mu)^2\Big]
ight)$$

 Using the "completing the square" result from week 1, slide 30, we can write the term in square brackets as

$$egin{split} rac{N_i}{\sigma^2}(lpha_i-ar{y}_i)^2 + rac{1}{\sigma_lpha^2}(lpha_i-\mu)^2 = \ \Big(rac{N_i}{\sigma^2} + rac{1}{\sigma_lpha^2}\Big)ig[lpha_i-\mu_{lpha_i}ig]^2 + C, \end{split}$$

where

$$\mu_{lpha_i} \equiv rac{rac{N_i}{\sigma^2}ar{y}_i + rac{1}{\sigma_lpha^2}\mu}{rac{N_i}{\sigma^2} + rac{1}{\sigma_lpha^2}},$$

and C is a constant that doesn't depend on α_i .

· Collecting terms we then have the posterior for α_i :

$$p(lpha_i|y_i) = rac{\expig(-rac{ au_{lpha_i}}{2}(lpha-\mu_{lpha_i})^2ig)}{\int \expig(-rac{ au_{lpha_i}}{2}(lpha-\mu_{lpha_i})^2ig)dlpha_i},$$

where $au_{lpha_i}=rac{N_i}{\sigma^2}+rac{1}{\sigma_{lpha}^2}$. We can either solve the integral in the denominator or simply realize that the numerator is proportional to the density for normal distribution. Either way we have

$$p(lpha_i|y_i) = \mathrm{N}(\mu_{lpha_i}, au_{lpha_i}^{-1})$$