高等数学 AI 习题课讲义

龚诚欣

gongchengxin@pku.edu.cn

2022年10月18日

目录

1	第 1 次习题课: 函数, 序列极限	3
	1.1 问题	3
	1.2 解答	3
	1.3 补充 (不要求掌握!)	4
2	第 2 次习题课: 序列极限, 函数极限	4
	2.1 问题	4
	2.2 解答	4
	2.3 补充 (不要求掌握!)	5
3	第 3 次习题课: 闭区间上的连续函数	5
	3.1 问题	5
	3.2 解答	6
	3.3 补充 (不要求掌握!)	7
4	第 4 次习题课: 导数, 高阶导数	7
	4.1 问题	7
	4.2 解答	8
	4.3 补充 (不要求掌握!)	9
5	第 5 次习题课: 隐函数求导, 微分, 不定积分	9
	5.1 问题	9
	5.2 解答	10
	5.3 补充 (不要求掌握!)	11
6	第 6 次习题课: 不定积分, 变上限积分, 定积分	11
	6.1 问题	11
	6.2 解答	12
	6.3 补充 (不要求掌握!)	13
7	第7次习题课: 定积分及其应用	14
	7.1 问题	14
	7.2 解答	14
	7.3 补充 (不要求掌握!)	15

8 致谢

第 1 次习题课: 函数, 序列极限 1

1.1 问题

- 1. $f(x) = |x \sin^3 x| e^{\cos x}$. 判断函数 f(x) 的有界性、单调性和奇偶性.
- 2. 证明 f(x) = x [x] 是有界周期函数.

3.
$$f(x) = \begin{cases} x^2 & x \le 0 \\ \cos x + \sin x & x > 0 \end{cases}$$
 if $f(-x)$.

- 4. $f(x) = e^{x^2}$, $f \circ \phi = 1 3x$ 并且 $\phi(x) \ge 0$, 求解 $\phi(x)$ 及其定义域.
- 5. 证明 $\lim_{n\to\infty} \frac{4n^2}{n^2-n} = 4$.
- 6. 设 $q>1, k\in\mathbb{N}_+$, 证明 $\lim n\to\infty\frac{n^k}{q^n}=0$.
- 7. 计算 $\lim_{n\to\infty} \frac{1}{n^2+n+1} + \frac{2}{n^2+n+2} + \cdots + \frac{n}{n^2+n+n}$. 8. 令 $x_1 > 0$ 并且 $x_{n+1} = \frac{3(1+x_n)}{3+x_n}$. 计算 $\lim_{n\to\infty} x_m$.
- 9. 证明 $\lim_{n\to\infty} n^{1/n} = 1$.
- 10. 计算 $\lim_{n\to\infty} \sqrt[n]{2^n+3^n}$.
- 11. 证明 $\lim_{\frac{1}{1^2}} + \frac{1}{2^2} + \cdots + \frac{1}{n^2} \exists$.
- 12. $\sum_{n=1}^{\infty} b_n = \infty, \frac{a_n}{b_n} \to 0, a_n, b_n > 0, \text{ if } \frac{\sum_{n=1}^{\infty} a_n}{\sum_{n=1}^{\infty} b_n} = 0.$
- 13. (Stolz) $0 < b_n \uparrow +\infty, a_n > 0$, 如果 $(a_n a_{n-1})/(b_n b_{n-1}) \to L$, 则 $a_n/b_n \to L$.

- 1. 注意到 $f(2k\pi + \frac{\pi}{4}) = \frac{\sqrt{2}}{4}(2k\pi + \frac{\pi}{4})e^{\frac{1}{\sqrt{2}}} \to \infty$, 所以 f(x) 无界. 又因为 $f(k\pi) \equiv 0$ 且对于 $x \neq k\pi$ 成立 $f(x) \neq 0$, 所 以 f(x) 不单调. 由定义知 f(x) 是偶函数.
- 2. 容易看出 f(x) 有周期 1 且 $|f(x)| \le 1$ 对于所有 $x \in \mathbb{R}$ 成立.
- 3. 代入验证即可. $f(-x) = \begin{cases} x^2 & x \ge 0\\ \cos x \sin x & x < 0 \end{cases}$.
- 4. $f(\phi) = e^{\phi^2} = 1 3x \Rightarrow \phi = \sqrt{\log(1 3x)}$. $\phi(x)$ 的定义域是 $\log(1 3x) \ge 0 \Leftrightarrow x \le 0$. 5. $\left| \frac{4n^2}{n^2 n} 4 \right| = \frac{4}{n 1}$. 所以当 $n \ge \frac{4}{\epsilon} + 1$ 时, $\frac{4n^2}{n^2 n}$ 与 4 相差不超过 ϵ .
- 6. 注意到 $q^n = (1+q-1)^n \ge C_n^{k+1}(q-1)^{k+1} = a_{k+1}n^{k+1} + a_kn^k + \dots + a_0$ 是 n^k 的高阶无穷大量.
- 7. 使用夹逼定理. (*) $\geq \frac{\sum_{i=1}^{n} i}{(n+1)^2} = \frac{n(n+1)}{2(n+1)^2} \rightarrow \frac{1}{2}$, (*) $\leq \frac{\sum_{i=1}^{n} i}{n^2+n} = \frac{n(n+1)}{2(n+n)} \rightarrow \frac{1}{2}$. 8. 在这类问题中, $\{x_n\}$ 一定会是单调有界的. 首先凑答案, 假设极限存在, 令递推公式两边 $n \to \infty$, 我们有 a = 1 $\frac{3(1+a)}{3+a} \Rightarrow a = \sqrt{3}$. 然后使用递推公式,利用数学归纳法,容易证明如果 $0 < x_1 < \sqrt{3}$ 则 $0 < x_n < x_{n+1} < \sqrt{3}$; 如果 $x_1 > \sqrt{3}$ 则 $x_n > x_{n+1} > \sqrt{3}$. 这意味着极限 $\lim x_n$ 存在.
- 9. $n^{1/n} > (n+1)^{1/(n+1)} \Leftrightarrow n > (1+1/n)^n$ 对于 $n \geq 3$ 成立, 这意味着 $n^{1/n}$ 是单调递减的. 注意到我们作业中已经证 明了对于任意 $\epsilon>0$, 成立 $n^{1/n}<1+\epsilon\Leftrightarrow n<(1+\epsilon)^n$ 对于足够大的 n. 然后使用极限定义的 $N-\epsilon$ 语言.
- 10. $3 \le \sqrt[n]{2^n + 3^n} \le \sqrt[n]{2 \times 3^n} \to 3$.
- 11. 单调上升性显然. 由于 $\frac{1}{n^2} < \frac{1}{(n-1)n}$, 从而 $\sum_{n=1}^{\infty} \frac{1}{n^2} < \sum_{n=1}^{\infty} \frac{1}{(n-1)n}$, 有上界 2.
- 12. 使用截断. $\forall \epsilon > 0, \exists N, \forall n > N, |a_n/b_n| < \epsilon/2$. 从而 $\sum a_n/\sum b_n = \sum_{i=1}^N a_i/\sum_{i=1}^n b_i + \sum_{i=N+1}^n a_i/\sum_{i=1}^n b_i := \sum_{i=1}^N a_i/\sum_{i=1}^n b_i$ $I_1 + I_2$. 当 n 足够大时, $I_1 < \epsilon/2$ (因为 $\sum b_n \to \infty$); 而 $I_2 < \epsilon/2$ 对于所有的 $n \ge N$ 成立. 因此当 n 足够大时, 可以让 $I_1 + I_2 < \epsilon$.
- 13. 用定义. $\forall \epsilon > 0, \exists N,$ 使得对于 $\forall n > N,$ 成立 $(L \epsilon)(b_n b_{n-1}) \leq (a_n a_{n-1}) \leq (L + \epsilon)(b_n b_{n-1})$. 然后用 累加 $\Rightarrow (L - \epsilon)(b_n - b_N) \leq a_n - a_N \leq (L + \epsilon)(b_n - b_N) \Rightarrow L - \epsilon < \frac{a_n - a_N}{b_n - b_N} < L + \epsilon.$ 然后估计误差 $|\frac{a_n - a_N}{b_n - b_N} - \frac{a_n}{b_n}| = |\frac{(a_n - a_N)b_N}{(b_n - b_N)b_n} + \frac{a_Nb_N}{(b_n - b_N)b_n} + \frac{a_Nb_N}{b_n - b_N}| \leq (L + \epsilon)\frac{b_N}{b_n} + \frac{a_Nb_N}{(b_n - b_N)b_n} + \frac{a_N}{b_n - b_N} < \epsilon$ (这三项都是趋于 0 的, 所以你总可以找一个足够 大的 n 使得上式成立).

作为一个已经学习数学这么多年的北京大学练习生,我相信你一定关心过下面这个问题:可导函数和连续函数之间差多少?事实上,我们有以下定义和结论:

- (1) 开集: 我们称集合 $A \subset \mathbb{R}$ 是开的, 当且仅当 $\forall x \in A$, 存在 $\delta_x > 0$, 使得 $(x \delta_x, x + \delta_x) \subset A$.
- (2) 闭集: 我们称集合 $B \subset \mathbb{R}$ 是闭的, 当且仅当它的补集是开的.
- (3) 定义 $f^{-1}(A) = \{x : f(x) \in A\}$, 这里 f 是一个函数.
- (4) 你可以证明一个函数 f 是连续的当且仅当任意开集 $A \subset \mathbb{R}$, $f^{-1}(A)$ 是开集.
- (5) 内点: 我们称 $x \in A$ 是集合 A 的内点当且仅当 $\exists \delta_x > 0$, 使得 $(x \delta_x, x + \delta_x) \subset A$.
- (6) 可数/可列: 我们称集合 A 是可数的当且仅当存在一个从 A 到自然数集 \mathbb{N} 的一一映射或者 $|A| < \infty$, 这里 |A| 是集合 A 中元素的个数.
- (7) 极限点: 我们称 x 是集合 A 的极限点, 当且仅当存在一个序列 $\{x_i\}_{i=1}^{\infty} \subset A$ 使得 $x_i \to x$. 我们用记号 A' 来表示 A 所有极限点构成的集合.
- (8) 闭包: 我们称集合 $\bar{A} = A \cup A'$ 是集合 A 的闭包.
- (9) 那么, 对于所有 [a,b] 上的连续函数, 至少存在一点可导的函数构成的集合是无处稠密集的可列并 (第一纲集). 这里, 无处稠密集是指其闭包不存在内点的集合, 并且连续函数之间的度量定义为 $\rho_{[a,b]}(f,g) = \max_{x \in [a,b]} |f-g|$.
- (10) Baire 纲集定理: 闭集 B_n 无内点, 则 $\cup_{n=1}^{\infty} B_n$ 也无内点. 由此容易知道第一纲集是没有内点的.

2 第 2 次习题课: 序列极限, 函数极限

2.1 问题

- 1. 证明 $\lim_{x\to 2} \frac{1}{x-1} = 1$.
- 2. 计算 $\lim_{x\to 0} x^2 \sin \frac{1}{x}$.
- 3. 计算 $\lim_{h\to 0} \frac{(x+h)^3-x^3}{h}$.
- 4. 计算 $\lim_{x\to +\infty} x(\sqrt{x^2+1}-x)$.
- 5. 计算 $\lim_{x\to+\infty}\cos\sqrt{x+1}-\cos\sqrt{x}$.
- 6. 计算 $\lim_{x\to 0} \frac{\cos x \cos 3x}{x^2}$.
- 7. 计算 $\lim_{x\to+\infty} \left(\frac{x^2+1}{x^2-2}\right)^{x^2}$.
- 8. 设数列 $a_n \to 0$ 并且 $\lim_{n \to \infty} |a_{n+1}/a_n| = a$. 证明 $a \le 1$.
- 9. $\diamondsuit a_n = \sum_{k=1}^n (\sqrt{1 + \frac{k}{n^2}} 1)$, 计算 $\lim a_n$.
- 10. $\lim_{n\to\infty} \frac{\sum a_n}{n} \exists$, 证明 $a_n/n \to 0$.
- 11. 证明 $(n!)^{1/n^2} = 1$.
- 12. $a_1 = b, a_2 = c, a_n = \frac{a_{n-1} + a_{n-2}}{2},$ †
- 13. 计算 $\lim_{x\to +\infty} (\frac{1}{x} \frac{a^x-1}{a-1})^{1/x}$. 其中 a>0 且 $a\neq 1$.
- 14. $f(x) = a_1 \sin x + a_2 \sin 2x + \dots + a_n \sin nx$, 且 $|f(x)| \le \sin x$. 证明 $|a_1 + 2a_2 + \dots + na_n| \le 1$.
- 15. 设 $\delta > 0$, 且 f(x) 在区间内 $(-\delta, \delta)$ 有界. $\exists a > 1, b > 1$ 使得 f(ax) = bf(x). 证明当 $x \to 0$ 时 $f(x) \to 0$.
- 16. a_n 收敛到 a 当且仅当 a_n 的任意子列都收敛到 a.

- 1. 注意到 $\left| \frac{1}{x-1} 1 \right| = \left| \frac{x-2}{x-1} \right|$, 取 $\delta = \min(\frac{1}{2}, \frac{1}{2}\epsilon)$.
- 2. 注意到 $|x^2 \sin \frac{1}{x}| \le |x^2| \to 0$, 取 $\delta = \sqrt{\epsilon}$.
- 3. $\frac{(x+h)^3 x^3}{h} = \frac{3x^2h + 3xh^3 + h^3}{h} \to 3x^2.$
- 4. $\lim_{x \to +\infty} x(\sqrt{x^2 + 1} x) = \lim_{x \to +\infty} \frac{x}{x + \sqrt{x^2 + 1}} = \lim_{x \to +\infty} \frac{1}{1 + \sqrt{1 + \frac{1}{2}}} \to 2.$

- 5. $|\cos\sqrt{x+1} \cos\sqrt{x}| = |2\sin\frac{\sqrt{x+1} + \sqrt{x}}{2}\sin\frac{\sqrt{x+1} \sqrt{x}}{2}| \le |\sin\frac{\sqrt{x+1} \sqrt{x}}{2}| \le \frac{\sqrt{x+1} \sqrt{x}}{2} \to 0.$
- 6. $\frac{\cos x \cos 3x}{x^2} = \frac{2\sin 2x \sin x}{x^2} \sim \frac{2 \times 2x \times x}{x^2} = 4$.
- 7. 这种形如 $(1+0)^{\infty}$ 的极限问题一定是去试图凑 e. 原式 = $[(1+\frac{3}{x^2-2})^{\frac{x^2-2}{3}}]^{\frac{3x^2}{x^2-2}} \to e^3$.
- 8. 如果 a>1, 那么 $\exists N$ 使得 $\forall n>N, |a_{n+1}/a_n|>(1+a)/2,$ 则 $|a_n|>|a_N|(\frac{1+a}{2})^{n-N}\Rightarrow |a_n|\to\infty.$
- 9. $\sum_{k=1}^{n} \left(\sqrt{1 + \frac{k}{n^2}} 1 \right) = \sum_{k=1}^{n} \frac{k}{n^2} \left(\frac{1}{1 + \sqrt{1 + \frac{k}{n^2}}} \right). \ (*) \le \sum_{k=1}^{n} \frac{k}{n^2} \times \frac{1}{2} \to \frac{1}{4}. \ (*) \ge \sum_{k=1}^{n} \frac{k}{n^2} \times \frac{1}{1 + \sqrt{1 + \frac{1}{n}}} \to \frac{1}{4}.$
- 10. $a_n/n = \sum a_n/n \frac{n-1}{n} \sum a_{n-1}/(n-1) \xrightarrow{n-1} 0 1 \times 0 \to 0.$
- 11. 使用夹逼定理知 $1 \le (n!)^{1/n^2} \le n^{1/n} \to 1$. (PLUS: Stirling: $n! \sim (\frac{n}{e})^n \sqrt{2\pi n}$).
- 12. $a_n a_{n-1} = (-\frac{1}{2})(a_{n-1} a_{n-2}) = (-\frac{1}{2})^2(a_{n-2} a_{n-3}) = \dots = (-\frac{1}{2})^{n-1}(a_1 a_0), \ \text{M}\ \vec{m}\ a_n a_0 = (a_1 a_0)[1 + (-\frac{1}{2}) + \dots + (-\frac{1}{2})^{n-1}] \rightarrow \frac{2}{3}(a_1 a_0) \Rightarrow a_n \rightarrow \frac{1}{3}a_0 + \frac{2}{3}a_1.$
- 13. 我们已经证明了 $(a-1)^{1/x} \to 1$, $(1/x)^{1/x} \to 1$, 所以原极限值等于 $\lim_{x \to +\infty} (a^x-1)^{1/x}$. 从而: 如果 a > 1, $\lim = a$; 如果 0 < a < 1, $\lim = 1$.
- 14. 注意到 $|f(x)/\sin x| \le 1$. 令 $x \to 0$ 即可.
- 15. $x \in (-\delta, \delta), |f(x)| < M \Rightarrow x \in (-\delta/a, \delta/a), |f(x)| = \frac{1}{b}|f(ax)| \le \frac{M}{b} \Rightarrow x \in (-\delta/a^n, \delta/a^n), |f(x)| \le \frac{M}{b^n} \Rightarrow f(x) \to 0$ $\implies x \to 0 \implies$.
- 16. ⇒ 是显然的. ←. 反证法, 如果结论不对, 则 $\exists \epsilon_0 > 0, \forall N, \exists n_k > N$ 使得 $|a_{n_k} a| > \epsilon_0$. 取子列 $\{a_{n_k}\}$ 即可.

闭区间套定理: $a_n \uparrow, b_n \downarrow, 0 < b_n - a_n \to 0$, 那么 \exists 唯一一个点 $x \in \cap_n [a_n, b_n]$.

证明: $\diamondsuit x = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$ 即可.

有限覆盖定理: $\{I_{\lambda}\}_{\lambda\in\Lambda}$ 是一族开集 (可能不可数). 如果 $[a,b]\subset\cup_{\lambda\in\Lambda}I_{\lambda}$,则 $\exists I_{1},\cdots,I_{m}\in\{I_{\lambda}\}$ 使得 $[a,b]\subset\cup_{i=1}^{m}I_{i}$. 证明. 如果结论不对,即不存在可数子覆盖,那么对于区间 [a,(a+b)/2] 和 [(a+b)/2,b],至少有一个区间不存在有限子覆盖,这样一直切半,由闭区间套,必然夹出一个点 x. 由于这是开覆盖,因此存在开集 O_{x} 使得 $x\in O_{x}$. 从而由极限知这个开区间迟早会覆盖前面的从某项开始的闭区间列,这与假设 (不存在有限覆盖) 矛盾.

聚点原理: $|a_n| < M$, 那么 $\exists \{n_k\}_{k=1}^{\infty} \subset \mathbb{N}$, 使得 $a_{n_k} \to a$ 当 $k \to \infty$ 时. (有界序列必有收敛子列) 我们给出几种证明方法:

- (1) 取 M 使得 $\forall n, |x_n| \leq M$, 取 $a_1 = -M, b_1 = M$. 对 $[a_n, b_n]$ 多次迭代,每次找到 $\frac{a_n + b_n}{2}$,这个点将当前区间划分为两个子区间。两个子区间中必然至少有一个含有无穷项。任取其中一个含有无穷项的区间作为 $[a_{n+1}, b_{n+1}]$ 。由闭区间套定理,最终 a_n, b_n 有相同的极限 x,同时 x_n 中有无穷项与 x 任意接近。选取 $x_{n_k} \in [a_i, b_i]$,则 $x_{n_k} \to x$.
- (2) 如果不存在这样的子列,那么 $\forall x \in [a,b]$, $\exists \delta > 0$ 使得 $|(x-\delta,x+\delta) \cap \{x_i\}_{i=1}^n| \leq 1$. 这样构造出的开区间集合覆盖了 [a,b],由有限覆盖定理,必然存在有限个开区间覆盖整个区间.而由假设,对于取出的每个开区间中至多只有原序列中的一个点,由于开区间的数量为有限个,可以得出原序列长度也是有限的,这显然不成立.

柯西收敛: $\forall \epsilon > 0, \exists N, \forall n, m > N, |a_n - a_m| < \epsilon$. 这与之前的极限定义是等价的,但优点是不需要提前知道"无理数". 证明. ⇒: 取 $\epsilon = 1$ 以及满足条件的 N, 那么 $1 + \max_{i=1,2,\cdots,N} |x_i|$ 给出了整个序列 $\{x_n\}$ 的界. 取它的一个收敛子列 x_{n_k} , 并记这个极限为 x. 从而 $|x_n - x| \le |x_{n_k} - x| + |x_n - x_{n_k}| \to 0$. \Leftarrow : $|a_n - a_m| \le |a_n - a| + |a_m - a| \to 0$.

3 第 3 次习题课: 闭区间上的连续函数

3.1 问题

- 1. 计算 $\lim_{n\to\infty} \frac{(2n-1)!!}{(2n)!!}$.
- 2. $\{x_n\}$ 收敛且 $\{y_n\}$ 收敛, 证明 $\{x_n + y_n\}$ 收敛. $\{x_n\}$ 且 $\{y_n\}$ 发散, 是否有 $\{x_n + y_n\}$ 或者 $\{x_n y_n\}$ 一定发散? 如果 $\{x_n y_n\}$ 是无穷小量, 是否有 $\{x_n\}$ 或者 $\{y_n\}$ 一定是无穷小?
- 3. 求极限. $\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \cdots$.

- 4 (不要求掌握). $0 \le x_{n+m} \le x_n + x_m$. 证明 $\lim \frac{x_n}{n} \exists$. (这个引理在大偏差理论中很有用).
- 5. $\lim_{n\to\infty} a_n = a$. 求证 $\lim_{n\to\infty} \frac{\sum_{i=1}^n p_i a_{n+1-i}}{\sum_{i=1}^n p_i} = a$. 其中 $p_k > 0$ 且 $\lim_{x\to 0} \frac{p_n}{\sum_{p_n}} = 0$. 6. 求极限. $\lim_{x\to 0} \frac{e^{ax} e^{bx}}{x}$, $\lim_{x\to \infty} \sqrt{x + \sqrt{x} + \sqrt{x}} \sqrt{x}$, $\lim_{x\to \infty} (\sin\frac{1}{x} + \cos\frac{1}{x})^x$.
- 7. 证明 $\lim_{x\to 0} f(x)$ $\exists \Leftrightarrow \lim_{x\to 0} f(x^3)$ \exists , 但是 $\lim_{x\to 0} f(x)$ $\exists \Leftrightarrow \lim_{x\to 0} f(x^2)$.
- 8. 举例说明存在 f(x) 在 \mathbb{R} 上处处不连续, 但 |f(x)| 处处连续.
- 9. $a_1, a_2, \cdots, a_p > 0$,计算 $\lim_{x \to 0+0} \left(\frac{\sum_{i=1}^p a_i^x}{p}\right)^{1/x}$. 10. 求极限. $\lim_{x \to 0+0} \frac{x \log(1+3x)}{(1-\cos 2\sqrt{x})^2}$, $\lim_{x \to 0} \frac{2^x-3^x}{3^x-4^x}$.
- 11 (不要求掌握). 举例说明存在一个函数处处不连续, 其定义域是 [0,1] 但是值域为区间.
- 12. $f(x) \in C[a,b], |f(x)|$ 单调. 证明 f(x) 单调.
- 13 (不要求掌握). $|f(x) f(y)| \le k|x y|$. 0 < k < 1. 证明 kx f(x) 单调上升并且 $\exists c, f(c) = c$.
- 14. $f(x) \in C[a, b], \forall x, \exists y,$ 使得 $|f(y)| \leq \frac{1}{2} |f(x)|$. 证明 ∃ξ, 使得 $f(\xi) = 0$.
- 15 (不要求掌握). f(x) 在 [a,b] 上只有第一类间断点, 证明 f(x) 有界.
- 16. 设 $f(x) \in C[a,b], f(a)f(b) < 0$. 证明 $\forall n = 1, 2, \dots, \exists \{\xi_i\}_{i=1}^n \subset [a,b], \xi_i \neq \xi_j$ 使得 $\sum_{i=1}^n e^{f(\xi_i)} = n$.
- 17. 非负函数 $f \in C[0,1], f(0) = f(1) = 0$. 证明 $\forall a \in (0,1), \exists x_0 \in [0,1]$ 使得 $x_0 + a \in [0,1]$ 且 $f(x_0) = f(x_0 + a)$. 如 果去掉非负条件还对吗?
- 18. $f_n(x) = x^n + x$. (1) 证明: $\forall n, f_n(x) = 1$ 在 $\left[\frac{1}{2}, 1\right]$ 中有且仅有一个根 c_n ; (2) 计算 $\lim c_n$.
- 19. 不等于常数的连续周期函数一定有最小正周期. 如果把连续性去掉结论如何?
- 20 (不要求掌握). f 在 [a,b] 内处处有极限. 证明 $\forall \epsilon > 0$, 在 [a,b] 中使得 $|\lim_{t\to x} f(t) f(x)| > \epsilon$ 的点至多有有限个.
- (2) f(x) 至多有可列个间断点.

- 1. $\frac{(2n-1)!!}{(2n)!!} < \frac{(2n)!!}{(2n+1)!!}$ (使用不等式 $\frac{i}{i+1} < \frac{i+1}{i+2}$), 那么 $x_n^2 < \frac{1}{2n+1}$, 这意味着 $x_n \to 0$.
- 2. 如果 $\{x_n\}$ 和 $\{x_n+y_n\}$ 都收敛, 那么 $\{x_n+y_n-x_n=y_n\}$ 也会收敛. 构造 $x_n=(-1)^{n-1}, y_n=(-1)^n,$ 那么 $\{x_n\}$
- 和 $\{y_n\}$ 发散但是 $\{x_n+y_n\}$, $\{x_ny_n\}$ 都收敛. 再构造 $x_{2n-1}=\frac{1}{2n-1}, x_{2n}=1, y_{2n-1}=1, y_{2n}=\frac{1}{2n}$. $\{x_n\}$ 和 $\{y_n\}$ 都不 是无穷小量但是 $\{x_ny_n\}$ 是无穷小量.
- 3. $\lim_{n\to\infty} x_n = \sqrt{2 \lim_{n\to\infty} x_{n-1}} \Rightarrow \lim_{n\to\infty} x_n = 2$.
- 4. 考虑 $\{\frac{x_n}{n}\}$ 的下确界 α . 那么 $\exists n$ 使得 $x_n/n < a + \epsilon$. 设 $\max_{i=1,2,\cdots,n} x_i = M$. 那么 $\frac{x_m}{m} \leq \frac{x_n}{m} + \frac{x_{m-n}}{n} \leq \frac{2x_n}{m} + \frac{x_{m-2n}}{m}$ (假设 m=kn+b) $\leq \cdots \leq \frac{kx_n}{m} + \frac{x_b}{m} \leq \frac{kx_n}{kn+b} + \frac{M}{m} \leq \frac{x_n}{n} + \frac{M}{m}$. 选择足够大的 m 使得 $\frac{M}{m} < \epsilon$. 从而 $a \leq \frac{x_m}{m} < a + 2\epsilon$.
- 5. WLOG 今 a=0. 设 $\sup_n\{a_n\}=M$. $\forall \epsilon>0, \exists N_1, \forall n\geq N_1,$ 使得 $|a_n|<\epsilon;$ $\exists N_2, \forall n\geq N_2,$ 使得 $p_n/\sum_n p_n<\epsilon/N_1.$
- $\frac{\epsilon}{N_1} \times N_1 \times M = (M+1)\epsilon$.

6.
$$(e^{ax} - e^{bx})/x = a \cdot \frac{e^{ax} - 1}{ax} + b \cdot \frac{1 - e^{bx}}{b} \rightarrow a - b, \sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} = \frac{\sqrt{x + \sqrt{x}}}{\sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x}} = \frac{\sqrt{1 + \sqrt{1/x}}}{\sqrt{1 + \sqrt{1/x + \sqrt{1/x^3}}} + 1} \rightarrow \frac{1}{2}$$

 $(\sin 1/x + \cos 1/x)^x = \left[(1 + \cos 1/x + \sin 1/x - 1)^{\frac{1}{\cos 1/x + \sin 1/x - 1}} \right]^{x \cos 1/x + \sin 1/x - 1} = (1/x = t) = e^{(\cos t + \sin t - 1)/t} = e^1.$

- 7. 显然.
- 8. $f(x) = 1_{\mathbb{Q}} 1_{\mathbb{R} \setminus \mathbb{Q}}$.
- $9. \ (\frac{\sum_{i=1}^{p} a_i^x}{p})^{1/x} = \left[1 + \frac{\sum_{i=1}^{p} (a_i^x 1)}{p}\right]^{1/x} = \left\{\left[1 + \frac{\sum_{i=1}^{p} (a_i^x 1)}{p}\right]^{\frac{p}{\sum_{i=1}^{p} (a_i^x 1)}}\right\}^{\frac{p}{\sum_{i=1}^{p} (a_i^x 1)}} \frac{\sum_{i=1}^{p} (a_i^x 1)}{p^x} \to e^{\frac{\sum_{i=1}^{p} \log a_i}{p}} = (a_1 a_2 \cdots a_p)^{1/p}.$ $10. \ \lim_{x \to 0+0} \frac{x \log(1+3x)}{(1-\cos 2\sqrt{x})^2} \sim \frac{x \cdot 3x}{(2x)^2} = \frac{3}{4}, \lim_{x \to 0} \frac{2^x 3^x}{3^x 4^x} = \frac{(2/3)^x 1}{1 (4/3)^x} \sim \frac{x \log(2/3)}{-x \log(4/3)} = \frac{\log 3 \log 2}{\log 4 \log 3}.$

11.
$$f(x) = \begin{cases} x & x \in \mathbb{Q} \\ x + \frac{1}{2} & x \in [0, \frac{1}{2}] \& x \in \mathbb{R} \setminus \mathbb{Q} \\ x - \frac{1}{2} & x \in [\frac{1}{2}, 1] \& x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

- 12. 只需注意到如果 $f(x_0) = 0$, 那么对于所有的 $x \in [a, x_0]$, f(x) = 0.
- 13. 第一问是定义, 第二问用柯西收敛准则, 重复利用已知不等式来证明 $x, f(x), f(f(x)), \cdots$ 是柯西列.

- 14. 如果不存在 ξ 使得 $f(\xi) = 0$. 那么 f(x) 始终保号, 不妨设 f(x) > 0. 设 $x_0 = \arg\min f(x)$. 这样就不存在 y 使得 $|f(y)| \leq \frac{1}{2}f(x)$, 矛盾.
- 15. 第一类间断点 ⇒ 每一点都有一个邻域有界 ⇒ 所有邻域构成开覆盖, 必有有限子覆盖, 有限个有界总能找到最大界. 16. $\exists \eta > 0$, 使得 $f([a,b]) \supset [-\eta,\eta]$, 这意味着 $e^{f([a,b])} \supset [e^{-\eta},e^{\eta}] \supset [1-\epsilon,1+\epsilon]$ (\exists 一个足够小的 $\epsilon > 0$). 从而如果 n 是奇数, 选择 $e^{f(\xi_1)} = 1$, $e^{f(\xi_2)} = 1 \epsilon/2$, $e^{f(\xi_3)} = 1 + \epsilon/2$, $e^{f(\xi_4)} = 1 \epsilon/3$, $e^{f(\xi_5)} = 1 + \epsilon/3$, \cdots ; 如果 n 是偶数, 选择 $e^{f(\xi_1)} = 1 \epsilon/2$, $e^{f(\xi_2)} = 1 + \epsilon/2$, $e^{f(\xi_3)} = 1 \epsilon/3$, $e^{f(\xi_4)} = 1 + \epsilon/3$, \cdots .
- 17. 令 g(x) = f(x+a) f(x). $g(0) \ge 0$, $g(1-a) \le 0$, 用介值定理. 去掉非负条件不对, 比如说 $f(x) = \sin(2\pi x)$, a = 0.7. 18. (1) 注意到 $f_n \uparrow \in [\frac{1}{2}, 1]$ 且 $f(\frac{1}{2}) < 1$, f(1) > 1, 使用介值定理. (2) 由于 $\forall \epsilon, \exists N$, 使得 $\forall n > N$, $(1 \epsilon)^n + 1 \epsilon < 1$. 由于 $f(1 \epsilon) < 1 = f(c_n)$ 且 $f_n \uparrow \Rightarrow c_n > 1 \epsilon$. 由极限定义知 $c_n \to 1$.
- 19. 反证法. 如果 $f(a) \neq f(b)$, 考虑正周期序列 $T_n \to 0$, 则由带余除法, $(b-a) \div T_n = S_n \cdots m_n$, 其中 $0 \le m_n < T_n \to 0$. 所以 $a + S_n T_n \to b$, $f(a) = f(a + S_n T_n) \to f(b)$ (连续性) $\Rightarrow f(a) = f(b)$, 矛盾. 把连续性去掉则结论不对, 比如说 Dirichlet 函数.
- 20. (1) 如果集合有无穷多个元素那一定有聚点 (有界序列必有收敛子列). 从而 $x_n \to x$. 考虑 y_n 使得 $|y_n x_n| < 1/n$, 且 $|f(y_n) f(x_n)| > \epsilon$ (这是集合的定义,函数极限差 $> \epsilon$ 那么必然存在一个比较近的点使得函数差 $> \epsilon$). 从而 $y_n \to x$, f 在 x 的极限何在?(极限存在当且仅当任意趋于其的数列极限均相等,而这里 $\lim_{n\to\infty} f(y_n)$ 显然与 $\lim_{n\to\infty} f(x_n)$ 不同). (2) 记 (1) 中集合为 A_{ϵ} . 注意到间断点集合可以写成 $\bigcup_n A_{1/n}$. 可列个有限元素集合的并元素一定是可列个的.

有界性定理: $f(x) \in C[a,b]$, 则 f(x) 有界.

证明. 如果无界, 则选择 x_n 使得 $f(x_n) \to \infty$, 那么存在一个子列 $\{x_{n_k}\} \subset \{x_n\}$ 收敛到某个 x(聚点原理). 由连续性知 $f(x) = \infty$, 矛盾.

最值定理: $f(x) \in C[a,b]$, 那么 $\arg \max f(x) \exists$.

证明. 找一个数列 $\{x_n\}$ 使得 $f(x_n) \to \max f(x)$. 利用有界数列必有收敛子列和 f(x) 的连续性.

介值定理: $f(x_1) > 0$, $f(x_2) < 0$, $f(x) \in C[x_1, x_2]$, $\exists x_0$ 使得 $f(x_0) = 0$.

证明. 使用 Lebesgue 方法. 令 $x_0 = \sup\{x: f(x) > 0\}$. 利用连续性知如果 $f(x_0) > 0$ 则 x_0 不是上界 (因为根据连续性会有 x_0 的一个邻域都满足 f(x) > 0),如果 $f(x_0) < 0$ 则有更好的上确界 (同样根据连续性会有 x_0 的一个邻域满足 f(x) < 0).

4 第 4 次习题课: 导数, 高阶导数

4.1 问题

- 1. $f(x) \in C(\mathbb{R})$, $\lim_{x \to \infty} f(x) = +\infty$. 证明 $\arg \min_{x \in \mathbb{R}} f(x) \exists$.
- 2. 证明 $\cos x = 1/x$ 有无穷多个正实数根.
- 3. $f(x) \in C[a,b], x_1, x_2, \cdots, x_n \in [a,b]$. 证明 $\exists \xi \in [a,b]$ 使得 $f(\xi) = \frac{1}{n} \sum_{i=1}^n f(x_i)$.
- 4. $f(x) = |x|^{1/4} + |x|^{1/2} \frac{1}{2}\cos x$. 问 f(x) 在 \mathbb{R} 中有多少个根?
- 5. $f(x) \in C[0,2], f(0) = f(2)$, 证明 $\exists x_1, x_2 \in [0,2]$ 使得 $|x_1 x_2| = 1$ and $f(x_1) = f(x_2) = ...$
- 6. $f(x) = \lim_{n \to \infty} \frac{x^{n+2} x^{-n}}{x^n + x^{-n-1}}$. 讨论连续性.
- 7. $f(x) \in C(\mathbb{R}), f(x+y) = f(x) + f(y)$. $\Re \mathbf{m} f(x)$.
- 8. f(x) 连续, 问 |f(x)| 连续否?
- 9. $f(x) \in C[0,1], 0 \le f(x) \le 1$, 证明 $\exists t \in [0,1]$ 使得 f(t) = t.
- 10 (不要求掌握). f(x) 在 [0,1] 上单调递增, $0 \le f(x) \le 1$, 证明 $\exists t \in [0,1]$ 使得 f(t) = t.
- 11. f(x) 在 x = 3 连续, $\lim_{x \to 3} \frac{f(x)}{x-3} = 2$. 求 f'(3).
- 12. f(x) 在 x_0 处可导, 计算 $\lim_{x\to 0} \frac{f(x_0+x)-f(x_0-x)}{x}$.

- 13. 证明奇函数导数是偶函数, 偶函数导数是奇函数.
- 14. 求导数. $y = \sqrt[3]{2 + 3x^3}$, $y = \arcsin \frac{1}{x^2}$, $y = \log(\arctan 5x) + \log(1 x)$, $y = e^{\sin^2 x} + \sqrt{\cos x} 2^{\sqrt{\cos x}}$.
- 16. $f(x), x \in [-1, 1], x \le f(x) \le x^2 + x$, 证明 f'(0) = 1.
- 17. 求导数. $e^{xy} = 3x^2y$, $\arctan y/x = \log \sqrt{x^2 + y^2}$.
- 18. 求导数. $f(x)^{g(x)}, x^{x^x}$.
- 19. 求 $\frac{x^n}{1-x}$, $\sin^4 x + \cos^4 x$ 的 n 阶导数.
- 20. 求 $\arcsin^2 x$ 在 0 处的 n 阶导数.
- 21. 求极限. $\lim_{x\to+\infty} \sqrt{x^2+x+1} x$, $\lim_{n\to\infty} n(\sqrt[n^2]{n}-1)$, $\lim_{x\to 0} (1+2x)^{\frac{(x+1)^2}{x}}$.
- 22. $f([a,b]) \subset [a,b], |f(x)-f(y)| \leq |x-y|, x_{n+1} = \frac{1}{2}(x_n+f(x_n)),$ 证明 $\forall x_1 \in [a,b],$ 都有 x_n 收敛.

- 1. 由极限定义知 $\exists X > 0, \forall |x| > X, f(x) > f(0)$. 那么 $\arg\min_{x \in [-X,X]} f(x) = \arg\min_{x \in \mathbb{R}} f(x)$, 由最值定理知存在性.
- 2. 设 $f(x) = \cos x 1/x$, 那么 $f(2k\pi) > 0$, $f(2k\pi + \frac{\pi}{2}) < 0$, 由介质定理立得.
- 3. 注意到 $\min f(x) \le \frac{1}{n} \sum_{i=1}^{n} f(x_i) \le \max f(x)$. 使用介质定理.
- 4. 注意到 f(x) 是偶函数. 由于 $\forall x>1, f(x)>0,$ 且 f(x) 在 [0,1] 区间上单调递增, 则 f(0)<0, f(1)>0 ⇒ 有且仅 有一个正实数根. 从而在 ℝ 上有两个根.
- 5. \diamondsuit g(x) = f(x+1) f(x). 那么 $g(0)g(1) \le 0 \Rightarrow \exists x \in [0,1]$ 使得 g(x) = 0.
- 7. 先证有理数点. $f(n) = f(1) + f(n-1) = 2f(1) + f(n-2) = \cdots = nf(1), f(1) = f(1/n) + f((n-1)/n) = f(n)$ $2f(2/n) + f((n-2)/n) = \cdots = nf(1/n) \Rightarrow f(m/n) = mf(1/n) = m/n \times f(1)$. 有理数点满足 f(x) = xf(1), 无理数 点用有理数逼近用连续性就可以了.
- 8. 注意到 $||f(x)| |f(y)|| \le |f(x) f(y)|$. 因此连续.
- 10. 使用 Lebesgue 方法. 令 $x_0 = \sup_x \{f(x) > x\}$, 往证 $f(x_0) = x_0$. 如果 $f(x_0) > x_0$, 那么 $\forall x_1, x_0 < x_1 < f(x_0)$, 都 有 $f(x_1) \ge f(x_0) > x_1$. 这意味着 x_0 不是上界. 如果 $f(x_0) < x_0$, 那么 $\forall x_1, f(x_0) < x_1 < x_0$, 都有 $f(x_1) \le f(x_0) < x_1$. 这意味着 x_0 不是上确界, 因为有更好的上界. 因此 $f(x_0) = x_0$.

- 16. 注意到 f(0) = 0. 从而当 $x \to 0$ 时, $1 \leftarrow \frac{x}{x} \le \frac{f(x) f(0)}{x 0} \le \frac{x^2 + x}{x} \to 1$.

 17. 两边同时对 x 求导数, 计算可知 $y' = \frac{y(2 xy)}{x(xy 1)}, y' = \frac{x + y}{x y}$.

 18. 方法都是写成指数函数, $e^{g \log f}$, $e^{e^{x \log x \log x}}$. 结果是 $f^g(g' \log f + \frac{f}{g}f')$, $x^{x^x}(x^x(1 + \log x) \log x + x^{x 1})$.

 19. $\frac{x^n}{1 x} = \frac{x^n x^{n 1} + x^{n 1} x^{n 2} + \dots + x 1 + 1}{1 x} = -(x^{n 1} + \dots + x + 1) + \frac{1}{1 x}$, 因此 n 阶导数是 $\frac{n!}{(1 x)^{n + 1}}$. 第二个用倍角公式写出来是 $1 \frac{1}{2}\sin^2 2x$. $y' = -\sin 4x$. 由课上已知关于三角函数高阶导数的结论, 知 $y^{(n)} = -4^{n 1}\sin(4x + \frac{n 1}{2}\pi)$.
- 20. $f'(x) = 2\arcsin x/\sqrt{1-x^2}$, 从而 $(1-x^2)f'(x)^2 = 4f(x)$. 两边求导 $-2xf'(x)^2 + 2(1-x^2)f'(x)f''(x) = 4f'(x)$ ⇒ $-xf'(x)+(1-x^2)f''(x)=2$. 两边求 n-2 次导数, 并代入 x=0, 利用 Leibniz 公式知道 $f^{(n)}(0)=(n-2)^2f^{(n-2)}(0)$.

然后再把 f'(0), f''(0) 算出来用递推就可以了.

21. (1)
$$\sqrt{x^2 + x + 1} - x = \frac{x+1}{\sqrt{x^2 + x + 1} + x} = \frac{1+1/x}{\sqrt{1+1/x+1/x^2} + 1} \to \frac{1}{2}$$
. (2) $n(\sqrt[n^2]{n} - 1) = n(e^{\log n/n^2} - 1) \sim n \log n/n^2 \to 0$.

(3)
$$(1+2x)^{\frac{(x+1)^2}{x}} = [(1+2x)^{1/(2x)}]^{2(x+1)^2} \to e^2$$
.

22. 回忆: 这种题一定是单调数列. 容易验证数列是良定义的, 即不会跑出区间 [a,b] 外. 如果 $x_n \geq x_{n-1}$, 有 $x_{n+1} =$ $\frac{1}{2}(f(x_n)+x_n)$ (利用 $f(x_n)-f(x_{n-1})\geq x_{n-1}-x_n$) $\geq \frac{1}{2}(f(x_{n-1})+x_{n-1})=x_n$. 从而如果 $x_2\geq x_1$, 则这成为单调上升 有界数列, 必收敛. 同理若 $x_{n-1} \ge x_n$ 也可以推出 $x_n \ge x_{n+1}$.

补充 (不要求掌握!) 4.3

参考 https://wqgcx.github.io/courses/analysis1.pdf.

第 5 次习题课: 隐函数求导, 微分, 不定积分

5.1 问题

- 1. 求出闭区间 [-1,1] 上的一元函数 $f(x) = x^{\frac{2}{3}} (x^2 1)^{\frac{1}{3}}$ 达到最小值的所有 [-1,1] 上的点.
- 2. 考虑函数 $f(x) = \begin{cases} x^m \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$, 其中 m 为正整数. 在 $x \neq 0$ 处, 求 f'(x) 和 f''(x). 求 m 满足的条件, 使得

f(x) 有连续的二阶导函数

3. 设
$$f(x) = \begin{cases} \frac{\log(1+x)}{x} + \frac{x}{2} & x > 0 \\ a & x = 0 \text{ 在 } x = 0 \text{ 处可导, 确定常数 } a, b, c, \text{ 的值 (需要用洛必达法则).} \\ \frac{\sin bx}{x} + cx & x < 0 \end{cases}$$

- 4. $y = e^{-x^2}$, $\Re y^{(4)}|_{x=0}$
- 5. $y = \frac{x}{2}\sqrt{a^2 x^2} + \arccos\frac{x}{a}$, $\Re\frac{dy}{dx}$
- 6. $y^2 \tan(x+y) \sin(x-y) = 0$, $\Re \frac{dy}{dx}$
- 7. $y = x^{a^a} + a^{x^a} + a^{a^x}$, $\Re \frac{dy}{dx}$.
- 8. 求函数 $f(x) = x^{\arcsin x} (0 < x < 1)$ 的导函数 f'(x).
- 9. 求函数 $f(x) = \arctan x$ 在 x = 0 点的 3 阶导数 f'''(0).
- 11. 求方程 $y^2 + 2 \log y = x^4$ 所确定的函数 y = f(x) 的二阶导数.
- 12. 判断下列结论是否正确.
- (1) 设 f(x) 在 x_0 处可导, 且 $f'(x_0) > 0$, 那么: (1.1) f(x) 在 x_0 点一定连续. (1.2) f(x) 在 x_0 点的某个邻域内一定连
- 续. (1.3) f(x) 在 x_0 点的某个邻域内一定单调上升.
- (2) f(x) 在 x_0 点二阶可导, 那么: (2.1) f(x) 在 x_0 点一定连续. (2.2) f(x) 在 x_0 的某个邻域内一定连续.
- 13. $\c G(x) = e^{x(x-1)\cdots(x-2021)}, \c F'(2021).$

- 14. 设 $x = \arcsin \frac{t}{\sqrt{1+t^2}}, y = \arccos \frac{1}{\sqrt{1+t^2}},$ 求 $\frac{dy}{dx}$.

 15. 设 $y = \frac{1}{4\sqrt{2}} \log \frac{x^2 + \sqrt{2}x + 1}{x^2 \sqrt{2}x + 1} \frac{1}{2\sqrt{2}} \arctan \frac{\sqrt{2}x}{x^2 1},$ 求 $\frac{dy}{dx}$ 并化简.

 16. 求积分. $\int \frac{4x^3 + 2x^2 + 3x + 1}{x(x+1)(x^2+1)} dx$, $\int \frac{2x^2 + x + 5}{x^4 x^2 6} dx$, $\int \frac{\cos^3 x}{\sin x + \cos x} dx$, $\int \frac{3 + 5x}{\sqrt{4x^2 4x + 5}} dx$.
- (1) 当把 t 作为自变量时, 函数 y = f(g(t)) 的二阶微分记为 $d_t^2 y$, 函数 x = g(t) 的一阶微分记为 $d_t x$. 计算出: 当 $t=1, \Delta t=0.1$ 时, 函数 y=f(g(t)) 的二阶微分 $d_t^2y|_{t=1,\Delta t=0.1}$ 和函数 x=g(t) 的一阶微分 $d_tx|_{t=1,\Delta t=0.1}$.
- (2) 当把 x 作为自变量时, 函数 y = f(x) 的二阶微分记为 $d_x^2 y$, x(看作 x 的函数) 的一阶微分记为 $d_x x$. 计算出: 当 $x=1, \Delta x=0.21$ 时, 函数 y=f(x) 的二阶微分 $d_x^2 y|_{x=1,\Delta x=0.21}$ 和函数 x(看作 x 的函数) 的一阶微分 $d_x x|_{x=1,\Delta x=0.21}$.
- (3) $\frac{d_t^2 y}{(d_t x)^2}|_{t=1,\Delta t=0.1}$ 与 $\frac{d_x^2 y}{(d_x x)^2}|_{x=1,\Delta x=0.21}$ 相等吗?

- 18. 求极限. $\lim_{x\to 0+0} x^x$, $\lim_{x\to 0} \frac{\sqrt[3]{1+x}-1}{x+\tan x}$, $\lim_{n\to\infty} \cos\frac{a}{2}\cos\frac{a}{2^2}\cdots\cos\frac{a}{2^n}$ $(a\in(0,1))$, $\lim_{x\to+\infty} \left(\frac{\sqrt{1+x^2}}{x}\right)^{x^2}$, $\lim_{n\to\infty} \sqrt{n}(\sqrt[n]{n}-1)$. 19. 设 $\lim_{n\to+\infty} (x_n-x_{n-2})=0$, 证明 $\lim_{n\to+\infty} \frac{x_n}{n}=0$.
- 20. 设 $f(x) \in C[0,1]$, 如果极限 $\lim_{x \to +\infty} \frac{f(0) + f(1/n) + f(2/n) + \dots + f(1)}{n} = M$, 其中 $M = \max_{x \in [0,1]} f(x)$, 则 $f(x) \equiv M$.
- 21 (Riemann-Lebesgue 引理). $f \in R[a,b], g \in C[0,T], g(x+T) = g(x),$ 则 $\int_a^b f(x)g(nx)dx \rightarrow \int_a^b f(x)dx \frac{1}{T} \cdot \int_0^T g(x)dx$.

- 1. $f(1) = f(-1) = 1, f'(x) = \frac{2}{3x^{1/3}} \frac{2x}{3(x^2-1)^{2/3}} = \frac{2[(x^2-1)^{2/3}-x^{4/3}]}{3x^{1/3}(x^2-1)^{2/3}} \ge 0 \Rightarrow 0 < x \le \frac{\sqrt{2}}{2}$ 或者 $-1 < x \le -\frac{\sqrt{2}}{2}$. 注意到 f(0) = 1. 从而达到最小值的点是 -1,0,1.
- $2. \ f'(x) = -x^{m-2}\cos\tfrac{1}{x} + mx^{m-1}\sin\tfrac{1}{x}, \\ f''(x) = -x^{m-4}\sin\tfrac{1}{x} (m-2)x^{m-3}\cos\tfrac{1}{x} mx^{m-3}\cos\tfrac{1}{x} m(m-1)x^{m-2}\sin\tfrac{1}{x}.$ 要使得 f''(0) 存在需要 f'(0)∃, $f'(x) \to f'(0)$ 且 $\lim_{x\to 0} \frac{\bar{f}'(x) - f'(0)}{x}$ ∃ $\Rightarrow m \geq 4$, 二阶导函数连续性意味着 $f''(x) \to f'(x)$ $f''(0) \Rightarrow m \ge 5.$
- 3. 连续性: $f(0+0) = a \Rightarrow a = 1, b = 1$. $f'_{+}(0) = 0, f'_{-}(0) = 0 \Rightarrow c = 0$ (需要用洛必达).
- 4. $y' = -2xe^{-x^2}, y'' = 4x^2e^{-x^2} 2e^{-x^2}, y''' = -2x(4x^2 2)e^{-x^2} + 8xe^{-x^2}, y'''' = (-24x^2 + 12)e^{-x^2} + (16x^4 24x^2)e^{-x^2}.$ 从而 y''''(0) = 12.
- 5. $\frac{dy}{dx} = \frac{\sqrt{a^2 x^2}}{2} \frac{x^2}{2\sqrt{a^2 x^2}} \frac{1}{\sqrt{a^2 x^2}}$.
- 6. 两边求导, $2yy'\tan(x+y) + \frac{y^2}{\cos^2(x+y)}(y'+1) + (y'-1)\cos(x-y) = 0 \Rightarrow y' = \frac{\cos^2(x+y)\cos(x-y)}{\cos^2(x+y)\cos(x-y) + y^2 + 2y\sin(x-y)}$
- 7. $y' = a^a x^{a^a 1} + a^{x^a + 1} x^{a 1} \log a + a^{a^x + x} (\log a)^2$.
- 8. $f(x) = e^{\arcsin x \log x}, f'(x) = x^{\arcsin x} \left(\frac{\log x}{\sqrt{1-x^2}} + \frac{\arcsin x}{x}\right).$
- 9. $f'(x) = \frac{1}{1+x^2}, f''(x) = -\frac{2x}{(1+x^2)^2}, f'''(x) = -\frac{2(1+x^2)^2 8x^2(1+x^2)}{(1+x^2)^4} \Rightarrow f'''(0) = -2.$ 10. $\frac{1}{x^2-4} = \frac{1}{(x-2)(x+2)} = \frac{1}{4}(\frac{1}{x-2} \frac{1}{x+2}) \Rightarrow f^{(n)}(x) = \frac{(-1)^n n!}{4}(\frac{1}{(x-2)^{n+1}} \frac{1}{(x+2)^{n+1}}).$
- 11. 两边求导, $2yy' + 2\frac{y'}{y} = 4x^3 \Rightarrow y^2y' + y' = 2x^3y$, 再求一次, $2y(y')^2 + y^2y'' + y'' = 6x^2y + 2x^3y'$, 利用 $y' = \frac{2x^3y}{y^2+1}$, 得 到 $y'' = \frac{6x^2y}{y^2+1} + \frac{4x^6y}{(y^2+1)^2} - \frac{8x^6y^3}{(y^2+1)^3}$.
- 12. (1.1) 可导一定连续. (1.2)(1.3) 不一定, 比如说 $f(x) = \begin{cases} x & x \in \mathbb{Q} \\ x + x^2 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$. (2.1) (2.2) 都是对的.
- 13. $f'(x) = e^{x(x-1)\cdots(x-2021)}[x(x-1)\cdots(x-2021)]'$, 从而 f'(2021) = 2021!.
- 14. $\frac{dx}{dt} = \frac{1}{1+t^2}, \frac{dy}{dt} = \frac{1}{1+t^2} \operatorname{sgn}(t)$, 注意到 t, x 同号, 因此 $\frac{dy}{dx} = \operatorname{sgn}(x)$.
- 15. 直接计算, 小心化简. $y'(x) = \frac{1}{x^4+1}$.
- 16. (1) $\frac{4x^3+2x^2+3x+1}{x(x+1)(x^2+1)} = \frac{2}{x+1} + \frac{1}{x} + \frac{x}{(x^2+1)}$, 因此积分后是 $2\log|x+1| + \log|x| + \frac{1}{2}\log(x^2+1) + C$. (2) $\frac{2x^2+x+5}{x^4-x^2-6} = \frac{11}{10\sqrt{3}} \frac{1}{x-\sqrt{3}} \frac{11}{10\sqrt{3}} \frac{1}{x+\sqrt{3}} \frac{1}{5\sqrt{2}} \frac{\sqrt{2}}{x^2+2} + \frac{1}{5} \frac{x}{x^2-3} \frac{1}{5} \frac{x}{x^2+2}$, 因此积分后是 $\frac{11}{10\sqrt{3}}\log|x-\sqrt{3}| \frac{11}{10\sqrt{3}}\log|x+\sqrt{3}| \frac{1}{5\sqrt{2}} \arctan(\frac{x}{\sqrt{2}}) + \frac{1}{10}\log|x^2-3| \frac{1}{10}\log(x^2+2) + C$.
- $\frac{\cos^3 x}{\sin x + \cos x} = \frac{1}{\cos^2 x (\tan x + 1)(\tan^2 x + 1)^2}$,后面用有理式展开积分. 结果是 $\frac{1}{4} \log |\sin x + \cos x| + \frac{1}{2} x + \frac{1}{4} \sin x \cos x + \frac{1}{4} \cos^x + C$. (注: 本题也可以用对偶积分,考虑 $\int \frac{\sin^3 x}{\sin x + \cos x} dx$).
- $(4) \frac{\frac{3+5x}{\sqrt{(2x-1)^2+4}}}{\sqrt{(2x-1)^2+4}} = \frac{\frac{5(x-\frac{1}{2})}{2\sqrt{(x-\frac{1}{2})^2+1}}}{2\sqrt{(x-\frac{1}{2})^2+1}} + \frac{11}{4\sqrt{(x-\frac{1}{2})^2+1}},$ 因此积分后是 $\frac{5}{2}\sqrt{(x-\frac{1}{2})^2+1} + \frac{11}{4}\log|x-\frac{1}{2}+\sqrt{(x-\frac{1}{2})^2+1}| + C.$
- 17. (1) $d_t^2 y|_{t=1,\Delta t=0.1} = 30t^4 (\Delta t)^2|_{t=1,\Delta t=0.01} = 0.3, d_t x|_{t=1,\Delta t=0.1} = 2t\Delta t|_{t=1,\Delta t=0.1} = 0.2.$
- $(2) \ d_x^2 y|_{x=1,\Delta x=0.21} = 6x(\Delta x)^2 = 0.2646, d_x x|_{x=1,\Delta x=0.21} = 1\Delta_x|_{x=1,\Delta x=0.21} = 0.21.$
- $(3) \ (d_t x)^2|_{t=1,\Delta t=0.1} = 0.2^2 = 0.04, (d_x x)^2|_{x=1,\Delta x=0.21} = 0.21^2 = 0.0441, \frac{d_t^2 y}{(d_t x)^2}|_{t=1,\Delta t=0.1} = \frac{0.3}{0.04} = 7.5 \neq 6 = \frac{0.2646}{0.0441} = 0.21^2 = 0.0441, \frac{d_t^2 y}{(d_t x)^2}|_{t=1,\Delta t=0.1} = \frac{0.3}{0.04} = 7.5 \neq 6 = \frac{0.2646}{0.0441} = \frac{0.21}{0.04} = \frac{0.21}$ $\frac{d_x^2 y}{(d_x x)^2}|_{x=1,\Delta x=0.21}$, 因此不相等.
- 18. (1) $x^x = e^{x \log x} \to e^0 = 1$.
- (2) $\sqrt[3]{1+x} 1 \sim \frac{1}{3}x, x + \tan x \sim 2x$, 因此极限值为 $\frac{1}{6}$.
- (3) $\cos \frac{a}{2} \cdots \cos \frac{a}{2^n} \sin \frac{a}{2^n} = \frac{\sin a}{2^n} ($ 不断利用 $\sin 2x = 2 \sin x \cos x)$, 因此极限值为 $\frac{\sin a}{a}$.
- $(4) \ (1 + \frac{\sqrt{1+x^2} x}{x})^{\frac{x}{\sqrt{1+x^2} x}} x^{(\sqrt{1+x^2} x)}, \ \text{由于} \ x(\sqrt{1+x^2} x) = \frac{x}{\sqrt{1+x^2} + x} = \frac{1}{1+\sqrt{1+\frac{1}{x^2}}} \to \frac{1}{2}, \ \text{因此原极限为} \ \sqrt{e}.$
- (5) $\sqrt{n}(\sqrt[n]{n} 1) \sim \sqrt{n}(e^{(\log n)/n} 1) \sim \sqrt{n}(\log n)/n = \log n/\sqrt{n} \to 0.$

- 19. 分奇偶讨论. 使用 $a_n \to a$ 则 $\sum a_n/n \to a$ 这个结论.
- 20. 如果结论不对, 则存在一个长度为 δ 的区间, 在这个区间上 $f(x) \leq M \epsilon$, 则至少有 $[\delta/n] 1$ 个 f(i/n) 落在这个 区间里, 这样一来极限值就会小于等于 $M(1-\delta) + (M-\epsilon)\delta$, 矛盾.
- 21. WLOG 设 $\int_0^T g(x) dx = 0,$ 否则考虑 $h(x) = g(x) \frac{1}{T} \int_0^T g(x) dx.$

由 Riemann 积分定义,
$$\forall \epsilon > 0$$
,存在阶梯函数 $s_{\epsilon}(x) = \begin{cases} C_1 & a = x_0 \leq x < x_1 \\ C_2 & x_1 \leq x < x_2 \\ \dots & \text{使得 } \int_a^b |f(x) - s_{\epsilon}(x)| dx < \epsilon. \end{cases}$ 设
$$C_{m-1} \quad x_{m-2} \leq x < x_{m-1} \\ C_m \quad x_{m-1} \leq x \leq b$$

5.3 补充(不要求掌握!)

参考 https://wqgcx.github.io/courses/analysis2.pdf, 初步了解可积性理论.

第 6 次习题课: 不定积分, 变上限积分, 定积分

6.1 问题

- 1. 求极限. $\lim_{n\to+\infty} \frac{1}{n} (\sqrt{1+\frac{1}{n}}+\cdots+\sqrt{1+\frac{n}{n}}), \lim_{n\to+\infty} \sum_{k=1}^{n} \frac{n}{n^2+k^2}, \lim_{n\to\infty} \sum_{i=1}^{n} (1+\frac{i}{n}) \sin \frac{i\pi}{n^2}, \lim_{n\to+\infty} \sum_{k=1}^{n} \frac{1}{n+k}.$ 2. 求导数. $\int_{x^3+1}^{2^x} \frac{\sin t}{t^4+2} dt, \int_e^{e^x} \frac{dt}{1+\log t} (x>1), (\int_a^x f(t) dt)^2.$

- 3. 求积分. $\int \frac{dx}{\sqrt{a^2-x^2}}, \int \frac{dx}{\sqrt{x^2+a^2}}, \int \frac{dx}{\sqrt{x^2-a^2}}, \int \sqrt{a^2-x^2} dx, \int \sqrt{x^2+a^2} dx, \int \sqrt{x^2-a^2} dx, \int \frac{1}{1-1} \log(x+\sqrt{1+x^2}) dx.$ 4. 求积分. $\int \frac{dx}{x+\sqrt{x^2+x+1}}, \int \sqrt{\tan x} dx, \int \frac{e^x(2-x^2)}{(1-x)\sqrt{1-x^2}} dx, \int x^2 \sqrt{x^2+1} dx, \int \frac{dx}{x(x^3+2)}, \int x^2 \arctan x dx, \int \frac{1}{\cos^3 x} dx, \int \frac{1}{x\sqrt{1-x^2}} dx.$
- 5. 函数 f(x) 在 [0,1] 上有连续的导函数. 证明: 对于任意 $x \in [0,1]$, 有 $|f(x)| \leq \int_0^1 |f(t)| dt + \int_0^1 |f'(t)| dt$, 并写出取等 号条件.
- 6. $x_1 > 0$, 对于每个正整数 n, 有 $x_{n+1} = \frac{1}{2}(x_n + \frac{1}{x_n})$. 证明 $\lim_{n \to \infty} x_n$ 存在并求之.
- 7. 设 x > 0, 定义 $p(x) = \int_0^x \frac{dt}{\sqrt{t^3 + 2021}}$, 证明方程 $p(x+1) = p(x) + \sin x$ 有无穷个互不相等的正实数解.
- 8. 设 $f(x) \in R[a,b], \int_a^b f(x) dx > 0$, 证明 $\exists [\alpha,\beta] \subset [a,b]$ 使得 $f(x) > 0, x \in [\alpha,\beta]$.
- 9 (不要求掌握). $f(x) \in R[a,b]$, 是否有 [f(x)] 可积? 其中 $[\cdot]$ 表示向下取整.

- 10. 设 $f(x) \in C[0, \pi]$ 满足 $\int_0^{\pi} f(x) \cos x dx = \int_0^{\pi} f(x) \sin x dx = 0$, 证明 $\exists \alpha, \beta \in (0, \pi), \alpha \neq \beta$, 使得 $f(\alpha) = f(\beta) = 0$.

 11. 证明柯西不等式 $[\int_a^b f(x)g(x)dx]^2 \le \int_a^b f^2(x)dx \cdot \int_a^b g^2(x)dx$, 并说明取等号条件.

 12 (不要求掌握). 证明 Holder 不等式 $\int_a^b f(x)g(x)dx \le [\int_a^b f^p(x)dx]^{\frac{1}{p}}[\int_a^b g^q(x)dx]^{\frac{1}{q}}$, 其中 $p,q > 1, \frac{1}{p} + \frac{1}{q} = 1$, $f,g \ge 0$.

 13 (不要求掌握). 证明 Minkowski 不等式 $[\int_a^b [f(x) + g(x)]^p dx]^{\frac{1}{p}} \le [\int_a^b f^p(x)dx]^{\frac{1}{p}} + [\int_a^b g^p(x)dx]^{\frac{1}{p}}$, 其中 $p \ge 1, f,g \ge 0$.
- 14. 设 $f(x) \in C[a,b]$ 满足 $\forall \phi(x) \in C[a,b]$, 只要 $\int_a^b \phi(x) dx = 0$, 就有 $\int_a^b f(x) \phi(x) dx = 0$. 证明 $f(x) \equiv C$.
- 15. $a_n/n^{\alpha} \to 1, \alpha > 0, \ \ \exists \lim_{n \to \infty} \frac{1}{n^{1+\alpha}} (a_1 + a_2 + \dots + a_n).$
- 16. f(x) 在 [a,b] 上可导, f'(a) = m, f'(b) = n, 证明存在 $c \in [a,b]$ 使得 $f'(c) = \xi$, 其中 ξ 是 [m,n] 或 [n,m] 中的任意 一个数. 本题说明导函数虽然不一定连续, 但具有介值性质.
- 17. f(x) 在 [a,b] 上可导, 证明存在 $c \in [a,b]$ 使得 $f'(c) = \frac{f(b) f(a)}{b-a}$.
- 18. 记 $f_n(x) = n^2 x e^{-nx}, x \in [0,1]$, 求 $\int_0^1 \lim_{n \to +\infty} f_n(x) dx$ 和 $\lim_{n \to +\infty} \int_0^1 f_n(x) dx$. 本题说明积分极限不一定可交换.
- 19. 记 $f_n(x) = \frac{\sin nx}{n}$, 求 $\lim_{n\to\infty} f'_n(x)$ 和 $(\lim_{n\to\infty} f_n(x))'$. 本题说明求导极限不一定可交换.

- 1. 利用定积分定义. (1) $\int_0^1 \sqrt{1+x} dx = \frac{2}{3}(1+x)^{3/2}|_0^1 = \frac{4}{3}\sqrt{2} \frac{2}{3}$.
- (2) $\sum_{k=1}^{n} \frac{n}{n^2 + k^2} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + (k/n)^2} \to \int_0^1 \frac{1}{1 + x^2} dx = \pi/4.$
- (3) $\frac{i\pi}{n^2} \epsilon \frac{i\pi}{n^2} \le \sin \frac{i\pi}{n^2} \le \frac{i\pi}{n^2}, \sum_{i=1}^{n} (1 + \frac{i}{n}) \frac{i\pi}{n^2} = \frac{1}{n} \sum_{i=1}^{n} (1 + \frac{i}{n}) \frac{i\pi}{n} \to \int_{0}^{1} (1 + x) \pi x dx = \frac{5\pi}{6},$ 同理左边 $\ge (1 \epsilon) \frac{5\pi}{6}$, 由 ϵ -N 语言定义.
- (4) $\sum_{k=1}^{n} \frac{1}{k+n} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1+k/n} \to \int_{0}^{1} \frac{1}{1+x} dx = \log 2.$
- 2. 利用变上限积分导数结论. $f' = \frac{\sin 2^x}{16^x + 2} 2^x \log 2 \frac{\sin(x^3 + 1)}{(x^3 + 1)^4 + 2} 3x^2$. $f' = \frac{e^x}{1 + x}$. $f' = 2f(x) \int_a^x f(t) dt$.
- $3. \ \arcsin \tfrac{x}{a} + C, \log |x + \sqrt{x^2 + a^2}| + C, \log |x + \sqrt{x^2 a^2}| + C, \tfrac{1}{2}(x\sqrt{a^2 x^2} + a^2\arcsin(x/a)) + C, \tfrac{1}{2}(x\sqrt{x^2 + a^2} + a^2\log |x + a^2|) + C$ $\sqrt{x^2+a^2}|)+C, \frac{1}{2}(x\sqrt{x^2-a^2}-a^2\log|x+\sqrt{x^2-a^2}|)+C, 0$ (注意是奇函数). 都是利用换元或者分部积分.
- $4.(1) \diamondsuit u = x + \sqrt{x^2 + x + 1}, x = \frac{u^2 1}{2u + 1} \Rightarrow 2 \int \frac{u^2 + u + 1}{u(2u + 1)^2} du = 2 \int \frac{1}{u} \frac{3(u + 1)}{(2u + 1)^2} du = 2 \log|u| 3 \int \frac{du}{2u + 1} 3 \int \frac{du}{(2u + 1)^2} + C = \frac{u^2 1}{u(2u + 1)$ $2\log u - \frac{3}{2}\log|2u+1| + \frac{3}{2}\frac{1}{2u+1} + C.$
- $(2) \diamondsuit u = \sqrt{\tan x}, x = \arctan u^2 \Rightarrow 原积分 = 2\int \frac{u^2}{1+u^4} du. \quad 使用对偶积分. \quad 记 I = \int \frac{u^2}{1+u^4} du, J = \int \frac{1}{1+u^4} du, I + J = \int \frac{1+u^2}{1+u^4} du = \int \frac{1}{u^2+1/u^2} du = \int \frac{1}{(u+1/u)^2-2} d(u+1/u) = \frac{1}{\sqrt{2}} \arctan(\frac{u-1/u}{\sqrt{2}}) + C_1, \quad I J = \int \frac{u^2-1}{u^2+1} du = \int \frac{1-1/u^2}{u^2+1/u^2} du = \int \frac{1}{(u+1/u)^2-2} d(u+1/u) = \frac{1}{2\sqrt{2}} \log \left| \frac{u+1/u-\sqrt{2}}{u+1/u+\sqrt{2}} \right| + C_2. \quad \text{从而 } I = \frac{I+J}{2} + \frac{I-J}{2} = \frac{1}{2\sqrt{2}} \arctan(\frac{u-1/u}{\sqrt{2}}) + \frac{1}{4\sqrt{2}} \log \left| \frac{u+1/u-\sqrt{2}}{u+1/u+\sqrt{2}} \right| + C = \frac{1}{2\sqrt{2}} \arctan(\frac{\tan x-1}{\sqrt{2\tan x}}) + \frac{1}{4\sqrt{2}} \log \left| \frac{\tan x-\sqrt{2\tan x}+1}{\tan x+\sqrt{2\tan x}+1} \right| + C.$ $(3) = \int \frac{e^x(1-x^2)+e^x}{(1-x)\sqrt{1-x^2}} dx = \int \sqrt{\frac{1+x}{1-x}} de^x + \int \frac{e^x}{(1-x)\sqrt{1-x^2}} dx$
- $(4) = \frac{1}{2} \int \sqrt{x^4 + x^2} dx^2 = \frac{1}{2} \int \sqrt{(x^2 + \frac{1}{2})^2 \frac{1}{4}} d(x^2 + \frac{1}{2}) = \frac{1}{4} (x^2 + \frac{1}{2}) \sqrt{x^4 + x^2} \frac{1}{16} \log|x^2 + \frac{1}{2} + \sqrt{x^4 + x^2}| + C.$
- $(5) = \frac{1}{3} \int \frac{dx^3}{x^3(x^3+2)} = \frac{1}{6} \int \frac{dx^3}{x^3} \frac{dx^3}{x^3+2} = \frac{1}{6} \log \left| \frac{x^3}{x^3+2} \right| + C.$
- $(6) = \frac{1}{3} \int \arctan x dx^3 = \frac{1}{3} x^3 \arctan x + C \frac{1}{3} \int \frac{x^3}{1+x^2} dx = \frac{1}{3} x^3 \arctan x + C \frac{1}{6} \int \frac{x^2 dx^2}{1+x^2} = \frac{1}{3} x^3 \arctan x + C \frac{1}{6} x^2 + \frac{1}{3} x^3 \arctan x + C \frac{1}{6} x^3 + \frac{1}{3} x^3 \arctan x + C \frac{1}{6} x^3 + \frac{1}{3} x^3 \arctan x + C \frac{1}{6} x^3 + \frac{1}{3} x^3 \arctan x + C \frac{1}{6} x^3 + \frac{1}{3} x^3 \arctan x + C \frac{1}{6} x^3 + \frac{1}{3} x^3 \arctan x + C \frac{1}{6} x^3 + \frac{1}{3} x^3 \arctan x + C \frac{1}{6} x^3 + \frac{1}{3} x^3 \arctan x + C \frac{1}{6} x^3 + \frac{1}{3} x^3 \arctan x + C \frac{1}{6} x^3 + \frac{1}{3} x^3 \arctan x + C \frac{1}{6} x^3 + \frac{1}{3} x^3 + \frac{1}{$ $\frac{1}{6}\log|1+x^2|$.
- $(7) = \int \frac{1}{(1-\sin^2 x)^2} d\sin x = \frac{1}{4} \log |\frac{1+\sin x}{1-\sin x}| + \frac{\sin x}{2(1-\sin^2 x)} + C.$ 最后一个等号是积分 $\int \frac{1}{(1-t^2)^2} dt,$ 注意到 $\int \frac{1}{1-t^2} dt = \frac{t}{1-t^2} \int t d\frac{1}{1-t^2} + C = \frac{t}{1-t^2} \int \frac{2t^2}{(1-t^2)^2} dt + C = \frac{t}{1-t^2} + \int \frac{2}{1-t^2} dt \int \frac{2}{(1-t^2)^2} dt + C \Rightarrow \int \frac{1}{(1-t^2)^2} dt = \frac{1}{2} \int \frac{1}{1-t^2} dt + \frac{t}{2(1-t^2)} + C = \frac{t}{1-t^2} + C = \frac{t}{1-t^2$ $\frac{1}{4}\log\left|\frac{1+t}{1-t}\right| + \frac{t}{2(1-t^2)} + C.$
- (8) $x = \sin t \Rightarrow dx = \cos t dt$, $\int \frac{1}{x\sqrt{1-x^2}} dx = \int \frac{1}{\sin t} dt = -\int \frac{d\cos t}{\sin^2 t} = -\int \frac{d\cos t}{1-\cos^2 t} = \frac{1}{2} \log |\frac{1-\cos t}{1+\cos t}| + C = \frac{1}{2} \log |\frac{1-\sqrt{1-x^2}}{1+\sqrt{1-x^2}}| + C = \frac{1}{2} \log |\frac{(1-x)+(1+x)-2\sqrt{1-x}\sqrt{1+x}}{(1-x)+(1+x)+2\sqrt{1-x}\sqrt{1+x}}| + C = \log |\frac{\sqrt{1-x}-\sqrt{1+x}}{\sqrt{1-x}+\sqrt{1+x}}| + C.$ 5. 由连续性和积分中值定理知 $\exists \xi \in [0,1]$,使得 $|f(\xi)| = \int_0^1 |f(t)| dt$. 从而 $\int_0^1 |f(t)| dt + \int_0^1 |f'(t)| dt \geq |f(\xi)| + C$
- $\int_{\xi}^{x} |f'(t)| dt \geq |f(\xi)| + |\int_{\xi}^{x} f'(t) dt| = |f(\xi)| + |f(x) f(\xi)| \geq |f(x)|.$ 等号处处成立意味着 f'(x) = 0, 这也意味着
- 6. 重复这种题很多次了. 首先 $x_{n+1} = \frac{1}{2}(x_n + 1/x_n) \ge 1$. 其次如果 $x_n \ge 1$, 则 $x_{n+1} x_n = \frac{1}{2}(1/x_n x_n) \le 0$. 说明单 调递减有下界, 两边求极限知答案是 1.
- $7. \quad p(x+1) p(x) \ = \ \int_x^{x+1} \frac{dt}{\sqrt{t^3 + 2021}} \ \in \ [\frac{1}{\sqrt{(x+1)^3 + 2021}}, \frac{1}{\sqrt{x^3 + 2021}}]. \quad \text{Min} \ \ \ \, \\ g(x) \ = \ p(x+1) p(x) \sin x, \\ g(2k\pi) \ > \ \, \\ g(2k\pi)$ $0, g(2k\pi + \pi/2) < 0$, 用介值定理.
- 8. 反证法, 如果任意区间都有点 $f(x) \le 0$, 那么 Riemann 和的极限怎么可能 > 0?(我就偏偏取那个 ≤ 0 的点)
- 9. 负的 Riemann 函数可积, 但取整后变成不可积的 Dirichlet 函数.
- 10. 由于 $\int_0^1 f(x) \sin x dx = 0$, 从而存在零点 $\alpha \in (0,\pi)$. 再考虑 $\int f(x) \sin(x-\alpha) dx = 0$, 知如果只有一个零点, 那么这 个积分不可能为 0 (注意到 $f(x)\sin(x-\alpha)$ 在只有一个零点 $x=\alpha$ 时是始终同号的).
- 11. $\int_a^b (f(x)-tg(x))^2 dx \ge 0$ 对于 $\forall t \in \mathbb{R}$ 恒成立. 注意到这是关于 t 的一元二次方程, 因此 $\Delta \le 0 \Rightarrow 4[\int_a^b f(x)g(x)dx]^2 1$ $4 \int_{a}^{b} f^{2}(x) dx \int_{a}^{b} g^{2}(x) dx \leq 0$. 显然取等号条件是 f(x) = Cg(x).
- 12. 不妨设 $\int f^p(x)dx = \int g^q(x)dx = 1$. 注意到 $\frac{1}{p}\log(a^p) + \frac{1}{q}\log(b^q) \leq \log(\frac{a^p}{p} + \frac{b^q}{q}) \Leftrightarrow ab \leq \frac{a^p}{p} + \frac{b^q}{q}$. 从而
- $\int f(x)g(x)dx = \leq \int \frac{f^p(x)}{p}dx + \int \frac{g^q(x)}{q}dx = \frac{1}{p} + \frac{1}{q} = 1.$ $13. \int_a^b (f+g)^p dx = \int_a^b (f+g)^{p-1} f dx + \int_a^b (f+g)^{p-1} g dx$ 利用上一问结论 $\leq [\int_a^b (f+g)^p dx]^{(p-1)/p} [\int_a^b f^p dx]^{1/p} + [\int_a^b (f+g)^p dx]^{1/p} + [\int_a^b f^p dx]^{1/p} + [\int_a^b f^p dx]^{1/p} + [\int_a^b f^p dx]^{1/p}$

- 14. 考虑 $\phi(x) = f(x) \frac{1}{b-a} \int_a^b f(t) dt$. 从而 $\int_a^b f^2(x) dx = \frac{1}{b-a} [\int_a^b f(t) dt]^2 \Rightarrow \int_a^b f^2(t) dt \int_a^b 1 dt = [\int_a^b f(t) dt]^2$. 由 Cauchy 不等式取等条件知 $f(x) \equiv C$.
- 15. 这个题提醒大家很多时候感觉虽然可靠,但要严格说明依然应该使用 $N \epsilon$ 语言. $\forall \epsilon > 0, \exists N, \forall n > N, n^{\alpha}(1 \epsilon) < a_n < n^{\alpha}(1 + \epsilon)$. 从而存在足够大的 n, 使得 $\frac{1}{n^{1+\alpha}}(1^{\alpha} + 2^{\alpha} + \dots + N^{\alpha}) < \epsilon, \frac{1}{n^{1+\alpha}}(a_1 + a_2 + \dots + a_N) < \epsilon, |\frac{1}{n^{1+\alpha}}[(a_{N+1} (N+1)^{\alpha}) + \dots + (a_n n^{\alpha})]| \leq \frac{1}{n^{1+\alpha}}\epsilon[(N+1)^{\alpha} + \dots + n^{\alpha}] \leq \frac{1}{n^{1+\alpha}}\epsilon[1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha}] = \epsilon \frac{1}{n}\sum_{i=1}^{n}(\frac{i}{n})^{\alpha} \to \epsilon \int_{0}^{1}x^{\alpha}dx = \frac{\epsilon}{\alpha+1}.$ 这意味着当 n 足够大时, $\frac{1}{n^{1+\alpha}}(\sum_{i=1}^{n}a_i)$ 和 $\frac{1}{n^{1+\alpha}}(\sum_{i=1}^{n}i^{\alpha})$ 差不多。因此原极限是 $\frac{1}{\alpha+1}$.
- 16. 通过平移只需证明 f'(a) > 0, f'(b) < 0, 证明存在 f'(c) = 0. f'(a) > 0 说明一定有数 x > a 使得 f(x) > f(a), f'(b) < 0 说明一定有数 x < b 使得 f(x) > f(b). 闭区间上的连续函数必有最大值, 从而最大值点的导数一定为 0 (利用左导数 x < b 使得 x < b 使用 x < b 使用
- 17. 构造 $g(x) = f(x) \frac{f(b) f(a)}{b a}(x a)$. g(a) = g(b) = f(a), 从而考虑 [a, b] 区间上 g(x) 的最大值点, 其必有 $g'(x_0) = 0$, 此即 $f(x_0) = \frac{f(b) f(a)}{b a}$.
- 18. 这个题告诉我们求导和极限未必可交换. $f_n(x) \to 0$ 对于所有 $x \in [0,1]$ 从而 $\int_0^1 \lim f_n(x) dx = 0$. 而 $\int_0^1 f_n(x) dx = 1 e^{-n} ne^{-n} \to 1$.
- 19. $f'_n(x) = \cos(nx), f'_n(0) \to 1$, 而对于 $x \neq 0$ 其极限不存在. $f_n(x) \to 0$ 对于所有 $x \in \mathbb{R}$, 从而 $[\lim f_n(x)]' = 0$.

你也许认为生活中很多函数都是可积的, 但是实际上不对!

测度: 我们把满足以下性质的非负集函数 (定义域是集合, 且函数值非负) 叫做测度: $m(\emptyset) = 0$, 并且对于任意不交的集合 $A_1, A_2, \dots, \sum_i m(A_i) = m(\cup A_i)$.

 π 系: 一族集合构成的集合 \mathscr{P} , 且满足 $\forall A, B \in \mathscr{P} \Rightarrow A \cap B \in \mathscr{P}$.

半环: \mathscr{P} 是 π 系, 若 $A, B \in \mathscr{P}, A \supset B$, 则存在有限个两两不交的集合 C_1, C_2, \cdots, C_k 使得 $A \setminus B = \cup_k C_k$.

外测度: 我们把满足以下性质的非负集函数 (定义域是集合, 且函数值非负) 叫做外测度: $m(\emptyset) = 0$, 并且对于任意集合 $A_1, A_2, \dots, \sum_i m(A_i) \ge m(\cup A_i)$.

 σ -域: 如果 $\emptyset, \Omega \in \mathcal{P}; A \in \mathcal{P} \Rightarrow A^c \in \mathcal{P}; A_1, A_2, \dots \in \mathcal{P} \Rightarrow \cup_i A_i \in \mathcal{P}, 则称 \mathcal{P} \in \sigma$ -域.

容易验证所有形如 $(a,b], a,b \in \mathbb{R}$ 的区间构成的集合是半环, 定义 m((a,b]) = b - a, 这是半环上的外测度. 由测度扩张 定理, 这个外测度可以扩张到 $\sigma(\{(a,b]\})$ 上. 利用 Caratheodory 条件可以完备化. 这个测度成为 Lebesgue 测度.

更多关于 Lebesgue 测度的知识: Cantor 集, 胖 Cantor 集, Cantor-Lebesgue 函数, 等等.

Lebesgue 定理: $f(x) \in R[a,b]$ 当且仅当 $m(\{x: f(x) \in x \notin ax \notin b\}) = 0$, 其中 $m \in B$ Lebesgue 测度.

证明. "⇒"对于区域 [a,b] 的任何分割 $a=x_0 < x_1 < x_2 < \cdots < x_n = b$,定义 $\omega_i = \sup\{|f(x)-f(y)|, x,y \in [x_{i-1},x_i]\}, \Delta_i = |x_i-x_{i-1}|, \Delta = \max\{\Delta_i\}.$ 因而 f 是 Riemann 可积等价于 $\lim_{\Delta\to 0} \sum_i \omega_i \Delta_i = 0$. 再定义 $\omega_\epsilon(f) = \{x: \lim_{\delta\to 0} \sup_{y\in [x-\delta,x+\delta]} |f(y)-f(x)| \geq \epsilon\}.$ 先假设如果 f 的不连续点集测度为正,那么存在 ϵ_0 使得 $\omega_{\epsilon_0}(f) > 0$. 对任意分割,我们有 $\sum_i \omega_i \Delta_i \geq \sum_{[x_{i-1},x_i]\cap\omega_{\epsilon_0}(f)\neq\emptyset} \omega_i \Delta_i \geq \epsilon_0 \sum_{[x_{i-1},x_i]\cap\omega_{\epsilon_0}(f)\neq\emptyset} (x_i-x_{i-1}) \geq \epsilon_0 m(\omega_\epsilon(f))$. 这表明 f 不是Riemann 可积的。因此如果 f 是 Riemann 可积的,那么不连续点集必定是零测集。

" \Leftarrow " 现在我们假设 $\omega_{\epsilon}(f)$ 是零测集,我们证明 f 是 Riemann 可积的. 对任意 $\epsilon > 0$,存在闭集 $A_{\epsilon} \subset [a,b]$ 使得 f 在 A_{ϵ} 上连续. 对 $x_0 \in A_{\epsilon}$,存在 $\delta > 0$ 使得 $|f(x) - f(y)| < \epsilon, \forall x, y \in (x_0 - \delta, x_0 + \delta)$. 由于 A_{ϵ} 是有界闭集,因此存在 有限个开区间 $(x_l - \frac{1}{2}\delta_l, x_l + \frac{1}{2}\delta_l)$ 覆盖住 A_{ϵ} . 取 $\delta = \min\{\frac{1}{3}\delta_l\}$. 这表明对于任意 $x_0 \in A_{\epsilon}$,必定有某个 $x_l \in A_{\epsilon}$,使得 $x_0 \in (x_l - \frac{1}{2}\delta_l, x_l + \frac{1}{2}\delta_l)$. 这表明 $[x_0 - \delta, x_0 + \delta] \subset (x_l - \delta_l, x_l + \delta_l)$,因而有 $|f(x) - f(y)| < \epsilon, \forall x, y \in [x_0 - \delta, x_0 + \delta]$. 取 [a, b] 分割使得 $\Delta < \frac{1}{2}\delta$. 现在我们来考虑 $\sum_i \omega_i \Delta_i$. 如果区间 $[x_{i-1}, x_i]$ 与 A_{ϵ} 的交集非空,含有某个点 $y_0 \in [x_{i-1}, x_i] \cap A_{\epsilon}$,那么对于任意 $x, y \in [y_0 - \delta, y_0 + \delta]$ 都有 $|f(x) - f(y)| < \epsilon$. 注意到 $[x_{i-1}, x_i] \subset [y_0 - \delta, y_0 + \delta]$,故而 $\omega_i < \epsilon$. 这样我们可以估计 $\sum_i \omega_i \Delta_i = \sum_{[x_{i-1}, x_i] \cap A_{\epsilon \neq \emptyset}} \omega_i \Delta_i + \sum_{[x_{i-1}, x_i] \cap A_{\epsilon = \emptyset}} \omega_i \Delta_i \le \epsilon(b-a) + 2Mm([a,b] \setminus A_{\epsilon})$. 这里 M 为 f 在 [a,b] 上的上界。这就表明如果 f 的不连续点零测且 f 有界,则 f 在 [a,b] 上 Riemann 可积.

极限和积分可交换的三大定理 (Lebesgue 可积意义下, 但是我们有定理保证 Riemann 可积一定是 Lebesgue 可积):

Fatou 引理: 如果 $f_n \ge 0$, 那么 $\liminf_{n \to \infty} \int f_n dx \ge \int \liminf_{n \to \infty} f_n dx$.

单调收敛定理: 如果 $f_n \ge 0$ 且 $f_n \uparrow f$, 那么 $\int f_n dx \uparrow \int f dx$.

控制收敛定理: 如果 $f_n \to f$ 几乎处处成立, $|f_n| \le g$ 对于所有 n 成立, 并且 g 可积, 那么 $\int f_n dx \to \int f dx$.

第7次习题课: 定积分及其应用

7.1 问题

- 1. 判断对错. 设 f(x) 和 g(x) 是两个给定的函数, 记 $f_1(x) = f(x) + g(x), f_2(x) = f(x)g(x), f_3(x) = |f(x)|, f_4(x) = f(x)$ $\max\{f(x),g(x)\}$. (1) 假如 f(x) 和 g(x) 均在点 $x=x_0$ 处可导. 问 f_1,f_2,f_3,f_4 中哪些函数在 x_0 处一定可导, 哪些不 一定? (2) 假如 f(x) 和 g(x) 均在区间 [a,b] 可积, 问 f_1, f_2, f_3, f_4 中哪些函数在区间 [a,b] 一定可积, 哪些不一定?
- 2. 判断对错. $f_1, f_3 \in C[0,1], f_1(x) \leq f_2(x) \leq f_3(x), \forall x \in [0,1], 且 \int_0^1 f_1(x) dx = \int_0^1 f_3(x).$ 则 $f_1(x) \equiv f_2(x) \equiv f_3(x).$
- 3. 是否存在 $f: \mathbb{R} \to \mathbb{R}$ 使得 f 在所有点上局部无界?
- 4. 证明 $x^n + x^{n-1} + \dots + x = 1$ 在 $(\frac{1}{2}, 1)$ 内有且仅有一个根 x_n ,并计算 $\lim_{n \to +\infty} x_n$. 5. 求积分. $\int_{-1}^1 \frac{x^2(1 + \arcsin x)}{1 + x^2} dx$, $\int_0^2 |x^2 1| e^{-|x 1|} dx$, $\int_0^{2\pi} \sqrt{1 \sin 2x} dx$, $\int_{-1}^1 (x^4 + 2x^2 + 1) \sin^3 x dx$, $\int_0^1 \log(x + \sqrt{x^2 + 1}) dx$, $\int_0^{\frac{1}{2}} \frac{x^2}{\sqrt{1 x^2}} dx$, $\int_0^1 x^4 \sqrt{1 x^2} dx$, $\int_0^{\frac{\pi}{2}} \frac{\sin x \cos x}{1 + \sin^2 x} dx$.
- 6. 设函数 $f(x) \in C[0,1]$, 且 $\int_0^1 f(x) dx = \int_0^1 x \cdot f(x) dx = 0$. 证明 f(x) 在 [0,1] 中至少有两个零点.
- 7. 设 $0 < \lambda < 1$, $\lim_{n \to \infty} a_n = a$, 证明 $\lim_{n \to +\infty} (a_n + \lambda a_{n-1} + \lambda^2 a_{n-2} + \dots + \lambda^n a_0) = \frac{a}{1-\lambda}$.
- 8. 求直角坐标 (x,y) 给出的抛物线 $y = \frac{1}{2}x^2$ 上从点 (0,0) 到点 $(1,\frac{1}{2})$ 的弧长.
- 9. 设奇数 $n \ge 3$, 求极坐标 (r, θ) 给出的 n 叶玫瑰线 $r = \sin(n\theta), 0 \le \theta \le 2\pi$ 所围的有界图形的面积.
- 10. 证明不等式. (1) $\frac{2}{3} < \int_0^1 \frac{dx}{\sqrt{2+x-x^2}} < \frac{1}{\sqrt{2}}$. (2) $\frac{1}{10\sqrt{2}} < \int_0^1 \frac{x^9}{\sqrt{1+x}} dx < \frac{1}{10}$. 11. $f(x) \in C[-1,1]$, 证明 $\lim_{n\to\infty} \frac{\int_{-1}^1 (1-x^2)^n f(x) dx}{\int_{-1}^1 (1-x^2)^n dx} \to f(0)$. 12. $f(x) \in C[-1,1]$, 证明 $\lim_{h\to 0+0} \int_{-1}^1 \frac{h}{x^2+h^2} f(x) dx \to \pi f(0)$.

- 13. 推导重力场中粒子数量密度的分布率 $n(z) = n(0)e^{-\frac{mgz}{k_BT}}$, 其中 T 是温度, k_B 是玻尔兹曼常量.

- 1. (1) f_1, f_2 一定可导, 依据导数四则运算. f_3 不一定可导, f(x) = x. f_4 不一定可导, f(x) = x, g(x) = -x. (2) 均可积.
- 2. 正确. 用反证法, 如果 $f_3(x_0) > f_1(x_0)$, 由连续性存在 $\epsilon > 0$ 和 x_0 的某个邻域 $(x_0 \delta, x_0 + \delta)$ 使得 $f_3(x) > f_1(x) + \epsilon$.
- 3. 存在. 考虑 $f(x) = \begin{cases} p, & x = \frac{q}{p} \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ 4. 设 $f_n(x) = x^n + x^{n-1} + \dots + x$. $f_n(\frac{1}{2}) = 1 \frac{1}{2^n} < 1$, f(1) = n > 1, 再由 $f_n(x)$ 单调递增和连续性知有且仅有一个 根. 由于 $f_n(\frac{1}{2} + \epsilon) = (\frac{1}{2} + \epsilon)^{\frac{1 - (\frac{1}{2} + \epsilon)^n}{\frac{1}{2} - \epsilon}} \rightarrow \frac{1 + 2\epsilon}{1 - 2\epsilon} > 1$,因此当 n 足够大时 $f_n(x_n) = 1 < f_n(\frac{1}{2} + \epsilon) \Rightarrow x_n < \frac{1}{2} + \epsilon$,再根据极 限的 N- ϵ 定义.
- 5. (1) 注意到 $\frac{x^2 \arcsin x}{1+x^2}$ 是奇函数,因此 $\int_{-1}^1 \frac{x^2 \arcsin x}{1+x^2} dx = 0$. 从而原积分 = $\int_{-1}^1 \frac{x^2}{1+x^2} dx = 2 \int_{-1}^1 \frac{1}{1+x^2} dx = 2 \int_{-1}^$ $(\arctan x)|_{-1}^1 = 2 - \frac{\pi}{2}$.
- $(2) = \int_0^1 (1 x^2) e^{x 1} dx + \int_1^2 (x^2 1) e^{1 x} dx = (-x^2 + 2x 1) e^{x 1} |_0^1 + (-x^2 2x 1) e^{1 x}|_1^2 = 4 \frac{8}{e}.$ $(3) = 2 \int_0^{\pi} \sqrt{1 \sin 2x} dx = 2 \int_0^{\pi} \sqrt{\sin^2 x + \cos^2 x 2 \sin x \cos x} dx = 2 (\int_0^{\frac{\pi}{4}} \cos x \sin x dx + \int_{\frac{\pi}{4}}^{\pi} \sin x \cos x dx) = 4\sqrt{2}.$
- (4) 这是奇函数, 积分自然为 0.
- $(5) = x \log(x + \sqrt{x^2 + 1})|_0^1 \int_0^1 x d\log(x + \sqrt{x^2 + 1}) = \log(1 + \sqrt{2}) \int_0^1 \frac{x}{\sqrt{x^2 + 1}} dx = \log(1 + \sqrt{2}) (\sqrt{x^2 + 1})|_0^1 = \log(1 + \sqrt{2})|_0^1 =$ $\log(1+\sqrt{2}) - \sqrt{2} + 1.$
- $(6) = \int_0^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}} \sqrt{1-x^2} dx = (\arcsin x \frac{x\sqrt{1-x^2} + \arcsin x}{2})|_0^{\frac{1}{2}} = \frac{\pi}{12} \frac{\sqrt{3}}{8}.$ $(7) \Leftrightarrow x = \sin t, \text{ 则原积分} = \int_0^{\frac{\pi}{2}} \sin^4 t \cos t d \sin t = \int_0^{\frac{\pi}{2}} \sin^4 t \sin^6 t dt. \int_0^{\frac{\pi}{2}} \sin^6 t dt = -\int_0^{\frac{\pi}{2}} \sin^5 t d \cos t = \text{分部积分}$ $= \int_0^{\frac{\pi}{2}} 5 \sin^4 t \cos^2 t dt = 5 \int_0^{\frac{\pi}{2}} \sin^4 t \sin^6 t dt \Rightarrow \int_0^{\frac{\pi}{2}} \sin^6 t dt = \frac{5}{6} \int_0^{\frac{\pi}{2}} \sin^4 t dt. \text{ 从而原积分} = \frac{1}{6} \int_0^{\frac{\pi}{2}} \sin^4 t dt = \text{分部积分}$ $=\frac{1}{8}\int_{0}^{\frac{\pi}{2}}\sin^{2}tdt=\frac{\pi}{32}.$

- $(8) = \int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin^2 x} d\sin x = \int_0^1 \frac{t}{1 + t^2} dt = \frac{1}{2} \log(1 + t^2) \Big|_0^1 = \frac{\log 2}{2}.$
- 6. $\int_0^1 f(x)dx = 0 \Rightarrow$ 一个零点 α . $\int_0^1 (x \alpha)f(x)dx = 0 \Rightarrow$ 另一个零点 β (若不存在则 $(x \alpha)f(x)$ 保号).
- 界). 选择 n > N + M. 从而 $|a_n + \lambda a_{n-1} + \dots + a_N \lambda^{n-N}| < \epsilon |1 + \lambda + \dots + \lambda^{n-N}| < \frac{\epsilon}{1-\lambda}$, 且 $|a_{N-1} \lambda^{n-N+1} + \dots + a_0 \lambda^n| < \frac{\epsilon}{1-\lambda}$ $M\lambda^{n-N+1} rac{1-\lambda^N}{1-\lambda} < rac{M}{1-\lambda}\epsilon$. 从而整个求和 $< rac{M+1}{1-\lambda}\epsilon$.
- 8. $\int_0^1 \sqrt{dx^2 + dy^2} = \int_0^1 \sqrt{1 + y'^2} dx = \int_0^1 \sqrt{1 + x^2} dx = \frac{x}{1 + x^2} + \frac{1}{2} \log(x + \sqrt{1 + x^2})|_0^1 = \frac{\sqrt{2}}{2} + \frac{1}{2} \log(1 + \sqrt{2}).$
- 9. $S = n \times \frac{1}{2} \int_0^{\frac{\pi}{n}} \sin^2 n\theta d\theta = (t = n\theta) = \frac{1}{2} \int_0^{\pi} \sin^2 t dt = \int_0^{\frac{\pi}{2}} \sin^2 t dt = \frac{1}{2} (t \frac{1}{2} \sin 2t)|_0^{\frac{\pi}{2}} = \frac{\pi}{4}$.
- 10. (1) 在区间 [0,1] 上成立 $\sqrt{2} \le \sqrt{2+x-x^2} = \sqrt{\frac{9}{4}-(x-\frac{1}{2})^2} \le \frac{3}{2}$. (2) 注意到 $\frac{1}{\sqrt{2}} \le \frac{1}{\sqrt{1+x}} \le 1$, 从而 $\frac{1}{10\sqrt{2}} = \frac{1}{\sqrt{1+x}} \le 1$

10. (1) 住戶門 [0,1] 上班之 $v^2 = v^2 + w = v^2 +$

够大的 n 使得 $|I_2| < \epsilon$. 类似地放缩 I_3 , 从而 $|I_1 + I_2 + I_3| < 3\epsilon$.

- 12. 只需证明 $\int_{-1}^{1} \frac{h}{x^2 + h^2} [f(x) f(0)] dx \to 0$. $\forall \epsilon > 0, \exists \delta > 0, \forall x \in (-\delta, \delta), |f(x) f(0)| < \epsilon$. 设 $\max |f(x)| = M$. 从 而原式 = $\int_{-\delta}^{\delta} \frac{h}{x^2 + h^2} [f(x) - f(0)] dx + \int_{-1}^{-\delta} \frac{h}{x^2 + h^2} [f(x) - f(0)] dx + \int_{\delta}^{1} \frac{h}{x^2 + h^2} [f(x) - f(0)] dx := I_1 + I_2 + I_3$. 类似的有 $|I_1| \le \epsilon \int_{-\delta}^{\delta} \frac{h}{x^2 + h^2} dx < \epsilon \int_{-1}^{1} \frac{h}{x^2 + h^2} dx = \epsilon (\arctan \frac{x}{h})|_{-1}^{1} < \pi \epsilon. \ |I_2| \le 2M \int_{-1}^{-\delta} \frac{h}{x^2 + h^2} \le 2M (1 - \delta) \frac{h}{\delta^2 + h^2} < 2M \frac{1 - \delta}{\delta^2} h < \epsilon \ .$ 要 h 足够接近 0. 同理 $|I_3| < \epsilon$. 从而 $|I_1 + I_2 + I_3| < 3\epsilon$.
- 13. 由基本力学知识, 重力场中的压力差 dF 托起了单位体积内的粒子重力 dG. 从而 $dF+dG=0\Rightarrow Sdp+\rho gSdz=0$ $0 \Rightarrow dp + nmgdz = 0. \ \ \text{由} \ \ p = nk_BT \ \ \text{知} \ \ dp = k_BTdn \Rightarrow \frac{dn}{n} = -\frac{mg}{k_BT}dz. \ \ \$ 两边积分知 $\log n(z) - \log n(0) = \frac{-mgz}{k_BT} \Rightarrow \frac{dn}{n} = -\frac{mg}{k_BT}dz$ $n(z) = n(0)e^{-\frac{mgz}{k_BT}}.$

7.3 补充 (不要求掌握!)

如何计算极限 $\lim_{n\to\infty}\int_0^n e^{-x^2}dx$? (我们也会写成 $\int_0^\infty e^{-x^2}dx = \frac{1}{2}\int_{-\infty}^\infty e^{-x^2}dx = \frac{1}{2}\int_{\mathbb{R}} e^{-x^2}dx$). 这个积分和正态分布的 归一化因子有关.

证法 1: 使用二元积分. $(\int_{\mathbb{R}} e^{-x^2} dx)^2 = \int_{\mathbb{R}} e^{-x^2} dx \int_{\mathbb{R}} e^{-y^2} dy = \int_{\mathbb{R}^2} e^{-x^2-y^2} dx dy =$ 二元积分换元公式, 改写成极坐标 $= \int_{\mathbb{R}^2} e^{-r^2} r dr d\theta = \int_0^{2\pi} d\theta \int_0^{\infty} r e^{-r^2} dr = 2\pi \times (-\frac{1}{2}e^{-r^2})|_0^{\infty} = \pi. \text{ 从而 } \int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi} \Rightarrow \int_{\mathbb{R}} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}. \text{ 我们回顾}$ 标准正态分布 $\mathcal{N}(0,1)$ 的密度函数是 $p(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$, 这意味着 $\int_{\mathbb{R}} p(x) dx = 1$ (概率的归一化!).

证法 2: 使用极限逼近. 我们来证明: $\forall x \in [-A,A], (1+\frac{x^2}{n})^{-n} \Rightarrow e^{-x^2}$. 其中, \Rightarrow 表示极限的一致性 (一致收敛). 我们都 知道 $(1+\frac{x^2}{n})^{-n} \to e^{-x^2}$, 但是不同的 x 可能会有不同的收敛速度. 对于某个 x_1 , 可能从第 N_1 项开始有 $|f_n(x_1) - f(x_1)| <$ ϵ , 而对于某个 x_2 , 可能从第 N_2 项开始有 $|f_n(x_2) - f(x_2)| < \epsilon$, · · · · 在给出一致收敛的正式定义前, 我们先看几个例子. 例 1: $f_n(x) \equiv \frac{1}{n}, f(x) \equiv 0$. 容易看出来 $f_n \to f$, 且对于不同的 x, 他们的收敛步调一致: 因为只要 $n > \frac{1}{\epsilon}$, 不管 x 的值 都有 $|f_n(x) - f(x)| < \epsilon$.

例 2: $f_n(x) = x^n, x \in [0,1], f(x) = \begin{cases} 0 & x \in [0,1) \\ 1 & x = 1 \end{cases}$. 容易看出来 $f_n \to f$,但对于不同的 x,他们的收敛步调并不

一致: 距离 1 更近的 x 收敛速度更慢! 当 $x < \frac{1}{2}$ 时, 只要 $n > \log_2(\frac{1}{\epsilon})$ 就有 $x^n < \epsilon$; 但是当 $x = 1 - \frac{1}{\log_2(\frac{1}{\epsilon})}$ 时, $x^n \approx (1 - \frac{1}{\log_2(\frac{1}{\epsilon})})^{\log_2(\frac{1}{\epsilon})} \approx \frac{1}{e}$ 距离 ϵ 还远着呢, 更有 $\lim_{x \to 1-0} x^{\log_2(\frac{1}{\epsilon})} \to 1 \Rightarrow \exists \delta, \forall x \in (1-\delta,1), x^{\log_2(\frac{1}{\epsilon})} > 1-\epsilon$. 前面 的 $f_n(x)$ 已经很小于 ϵ 了, 而后面的一些 $f_n(x)$ 甚至还在原地打转 $(>1-\epsilon)!$ 下面我们给出定义.

一致收敛: 我们说在区间 [a,b] 上 $f_n(x)$ 一致收敛到 f(x)(记作 $f_n(x) \Rightarrow f(x)$), 意味着 $\forall \epsilon > 0, \exists N$, 使得 $\forall n > N, \forall x \in S$ $[a, b], |f_n(x) - f(x)| < \epsilon.$

如果在有限区间上收敛具有一致性,那么积分和极限顺序可交换。因为 $|\int_a^b f_n(x) - f(x) dx| \leq \int_a^b |f_n(x) - f(x)| dx < \int_a^b f_n(x) dx$ $\epsilon(b-a) \to 0 \Rightarrow \int_a^b f_n(x)dx \to \int_a^b f(x)dx$, 即是 $\lim \int_a^b f_n(x)dx = \int_a^b \lim f_n(x)dx$.

回到原题,往证 $\forall x \in [-A,A], (1+\frac{x^2}{n})^{-n} \Rightarrow e^{-x^2}$. 注意到 $(1+\frac{x^2}{n})^n \geq 1+C_n^1\frac{x^2}{n}+\dots+C_n^k(\frac{x^2}{n})^k$. 由带 Lagrange 余项的 泰勒展开知 $e^t=1+t+\frac{t^2}{2!}+\dots+\frac{t^k}{k!}+\frac{f^{k+1}(\xi)}{(k+1)!}t^{k+1}=1+t+\frac{t^2}{2!}+\dots+\frac{t^k}{k!}+\frac{e^{\xi}}{(k+1)!}t^{k+1}$, 其中 $f(t)=e^t,\xi\in(0,t)$. 令 $t=x^2$ 知 $e^{x^2}=1+x^2+\dots+\frac{x^{2k}}{k!}+\frac{e^{\xi}}{(k+1)!}x^{2k+2}$. 从而对于 $\forall x\in[-A,A]$,成立估计 $e^{x^2}-1-x^2-\dots-\frac{x^{2k}}{k!}=\frac{e^{\xi}}{(k+1)!}x^{2k+2}$. 从而对于 $\forall x\in[-A,A]$,成立估计 $e^{x^2}-1-x^2-\dots-\frac{x^{2k}}{k!}=\frac{e^{\xi}}{(k+1)!}x^{2k+2}\leq \frac{e^{A^2}A^{2k+2}}{(k+1)!}$ $\to 0$ 当 $k\to\infty$ 时 (利用 $n!>(\frac{n}{2})^{\frac{n}{2}}$). 这里的估计有一致性! 从而存在 K, $\forall k>K$, $x\in[-A,A]$,成立 $[e^{x^2}-1-x^2-\dots-\frac{x^{2k}}{k!}]<\epsilon$. 再回头来看 $1+C_n^1\frac{x^2}{n}+\dots+C_n^k(\frac{x^2}{n})^k$ 和 $1+x^2+\dots+\frac{x^{2k}}{k!}$. 他们之间的差是一个 2k 阶关于 x 的多项式,且 $\sum_{i=1}^k\frac{1}{n}x^{2i}<\frac{1}{n}(A^2+A^4+\dots+A^{2k})$. 这里的估计又有一致性! 所以说,当 n 足够大时, $\forall x\in[-A,A]$,成立 $[1+C_n^1\frac{x^2}{n}+\dots+C_n^k(\frac{x^2}{n})^k]-[1+x^2+\dots+\frac{x^{2k}}{k!}]]<\epsilon$. 整理一下思路, $\forall \epsilon>0$,3K,使得 $\forall k>K$, $\forall x\in[-A,A]$,成立 $[e^{x^2}-1-x^2-\dots-\frac{x^{2k}}{k!}]<\epsilon$. \in 别,使得 $\forall n>N$, $\forall x\in[-A,A]$,成立 $[1+C_n^1\frac{x^2}{n}+\dots+C_n^k(\frac{x^2}{n})^k]-[1+x^2+\dots+\frac{x^{2k}}{k!}]]<\epsilon$. 这样的话就有 $e^{x^2}-(1+\frac{x^2}{n})^n<e^{x^2}-[1+C_n^1\frac{x^2}{n}+\dots+C_n^k(\frac{x^2}{n})^k]<\epsilon$. 这样的话就有 $e^{x^2}-(1+\frac{x^2}{n})^n<e^{x^2}-[1+C_n^1\frac{x^2}{n}+\dots+C_n^k(\frac{x^2}{n})^k]+\{[1+x^2+\dots+\frac{x^{2k}}{k!}]\}-\{[1+x^2+\dots+\frac{x^{2k}}{k!}]-\{1+x^2+\dots+\frac{x^{2k}}{k!}\}-\{[1+x^2+\dots+\frac{x^{2k}}{k!}]-\{1+x^2+\dots+\frac{x^{2k}}{k!}\}-\{1+x^2+\dots+\frac{x^$

8 致谢

感谢元培学院 21 级本科生徐奕辰同学和另一位不愿意透露姓名的同学, 他们提供了大量精彩的题目. 感谢选修 2022 秋高等数学 A I 习题课 12 班的全体同学, 他们提供了很多有意思的做法和反馈.