Κεφάλαιο 14

<mark>Ασάφεια</mark>

Τεχνητή Νοημοσύνη - Β' Έκδοση

Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου

Ασάφεια (Fuzziness)

- Έννοια που σχετίζεται με την ποσοτικοποίηση της πληροφορίας και οφείλεται κυρίως σε μη-ακριβή (imprecise) δεδομένα.
 - 🗖 "Ο Νίκος είναι ψηλός"
- Το πρόβλημα οφείλεται στην αντίληψη που έχει ο καθένας για λεκτικούς προσδιορισμούς ποσοτικών μεγεθών (σημασιολογική ασάφεια)
- Εγγενές χαρακτηριστικό της γλώσσας.
- * Ασαφής Λογική (fuzzy logic): υπερσύνολο της κλασικής λογικής
 - χειρίζεται τιμές αληθείας μεταξύ του "απολύτως αληθούς" και του "απολύτως ψευδού".
- * Θεωρία Ασαφών Συνόλων (Fuzzy Set Theory) Lofti Zadeh '60

Βασικές Έννοιες Ασαφών Συνόλων

- A σαφές Σύνολο (fuzzy set) A: ένα σύνολο διατεταγμένων ζευγών $(x, u_A(x))$ όπου $x \in X$ και $u_A(x) \in [0,1]$).
 - Το σύνολο X περιλαμβάνει όλα τα αντικείμενα στα οποία μπορεί να γίνει αναφορά.
 - **u**_A(x): βαθμός αληθείας (degree of truth) τιμές στο διάστημα [0,1].
 - Η συνάρτηση u_A ονομάζεται συνάρτηση συγγένειας (membership function).
- **Φ** Προέλευση u_A:
 - Υποκειμενικές εκτιμήσεις
 - □ Προκαθορισμένες (ad hoc) μορφές
 - Συχνότητες εμφανίσεων και πιθανότητες
 - Φυσικές μετρήσεις
 - Διαδικασίες μάθησης και προσαρμογής (νευρωνικά δίκτυα)

Ş

Αναπαράσταση Ασαφών Συνόλων

- **Αναλυτική έκφρασης της u**_A
- **Α**πλούστευση: τμηματικώς γραμμικής απεικόνιση της u_A
- Σύνολο ζευγών της μορφής u_A(x)/x
 - \square $\Pi.\chi$. $\forall \eta \lambda \acute{o} \varsigma = \{0/1.7, 0/1.75, 0.33/1.8, 0.66/1.85, 1/1.9, 1/1.95\}$
- **Φ** Με ζεύγη της μορφής (x, u_A(x)):
 - \square $\Pi.\chi.$ $\psi\eta\lambda\delta\varsigma = \{ (1.7, 0), (1.75, 0), (1.8, 0.33), (1.85, 0.66), (1.9, 1), (1.95, 1) \}$

Ασαφείς Σχέσεις (1/2)

- Ασαφή σύνολα ορισμένα σε πεδία αναφοράς ανώτερης διάστασης.
 - **Παράδειγμα**: $R = \text{"x είναι βαρύτερο από y"} \quad x \in X, y \in Y και <math>R \in X \times Y$
- **Α**ναπαράσταση της R, σε μορφή πίνακα:

$$R = \begin{bmatrix} u_R(x_1, y_1) & u_R(x_1, y_2) & \cdots & u_R(x_1, y_n) \\ u_R(x_2, y_1) & u_R(x_2, y_2) & \cdots & u_R(x_2, y_n) \\ \vdots & & & \vdots \\ u_R(x_m, y_1) & u_R(x_m, y_2) & \cdots & u_R(x_m, y_n) \end{bmatrix}$$

- **Σύνθεση** (composition) Ασαφών Σχέσεων: συνδυασμός ασαφών σχέσεων.
 - Πρέπει να προσδιοριστεί η συνάρτηση συγγένειας $u_R(x,z)$ της R, με χρήση των συναρτήσεων συγγένειας των R_1 και R_2 , δηλαδή των $u_{R1}(x,y)$ και $u_{R2}(y,z)$.

Ασαφείς Σχέσεις (2/2)

- \bullet Σύνθεση max-min (max-min composition)
- \bullet Σύνθεση max-product (max-product composition).
- Αν R₁(x,y) και R₂(y,z) είναι δύο ασαφείς σχέσεις ορισμένες στα σύνολα X×Y και Υ×Ζ αντίστοιχα, τότε η σύνθεσή τους δίνει μία νέα σχέση R₁°R₂ ορισμένη στο X×Z με συνάρτηση συγγένειας:
 - \square $\Sigma \acute{v}v\theta \varepsilon \sigma \eta$ max-min:

$$u_{R1\circ R2}(x,z) = \bigvee_{y} [u_{R1}(x,y) \wedge u_{R2}(x,y)]$$

 \Box Σύνθεση max-product:

$$u_{R1\circ R2}(x,z) = \bigvee_{y} [u_{R1}(x,y) \cdot u_{R2}(x,y)]$$

Ασαφείς Μεταβλητές και Ασαφείς Αριθμοί

- Ασαφής Μεταβλητή (fuzzy variable): οι τιμές τις ορίζονται με ασαφή σύνολα.
 - Π.χ. τα ασαφή σύνολα {κοντός, μεσαίος, ψηλός} θα μπορούσαν να είναι το πεδίο τιμών της ασαφούς μεταβλητής "ύψος".
 - □ "ύψος": *λεκτική* (linguistic) μεταβλητή.
- * Ασαφείς αριθμοί (fuzzy numbers): ασαφή υποσύνολα του συνόλου των πραγματικών αριθμών. Π.χ. "Ασαφές 3" στο σχήμα.
- ψη ασαφείς τιμές: crisp (σαφείς, συγκεκριμένες).

Ασαφείς Προτάσεις και Ασαφείς Κανόνες

- Ασαφής πρόταση είναι αυτή που θέτει μια τιμή σε μια ασαφή μεταβλητή.
- **Ασαφής κανόνας** (fuzzy rule): είναι μία υπό συνθήκη έκφραση που συσχετίζει δύο ή περισσότερες ασαφείς προτάσεις.
 - "Εάν η ταχύτητα είναι μέτρια τότε η πίεση στα φρένα να είναι μέτρια"
- Η αναλυτική περιγραφή ενός ασαφούς κανόνα if-then είναι μία ασαφής σχέση R(x,y) που ονομάζεται σχέση συνεπαγωγής (implication relation).

Φ Γενική της μορφή της σχέσης (συνάρτησης) συνεπαγωγής:

$$R(x,y)\equiv u(x,y)=\varphi(u_A(x),u_B(y))$$

Φ φ: τελεστής συνεπαγωγής (implication operator)

P

Μερικοί Ασαφείς Τελεστές Συνεπαγωγής

Ονομασία Τελεστή	Αναλυτική Έκφραση του φ[uA(x),uB(y)]
φ _m : Zadeh Max-Min	$(u_A(x) \wedge u_B(y)) \vee (1 - u_A(x))$
φ _c : Mandani Min	$u_A(x) \wedge u_B(y)$
φ _p : Larsen Product	$u_A(x) \bullet u_B(y)$
φ_{α} : Arithmetic	$1 \wedge (1 - u_A(x) + u_B(y))$
φ _b : Boolean	$(1-u_A(x))\vee u_B(y))$

Συλλογιστικές Διαδικασίας GMP και GMT

- Γενική μορφή προβλημάτων κατά τη συλλογιστική με ασαφείς κανόνες:
 - \Box if x is A then y is B
 - □ x is A'y is B' (?)

μέσω της συλλογιστικής διαδικασίας GMP (Generalized Modus Ponens - GMP): $B'=A'\circ R(x,y)$

- \Box if x is A then y is B
- $\Box \qquad x \text{ is A' (?)} \qquad y \text{ is B'}$

μέσω της συλλογιστικής διαδικασίας GMT (Generalized Modus Tollens - GMT): A'=R(x,y)oB'

Η σχέση συνεπαγωγής R(x,y) που έχει επιλεγεί να χρησιμοποιηθεί, πρέπει να συνδυαστεί (σύνθεση) με την κατά περίπτωση γνωστή παράμετρο (A' ή B') ώστε να υπολογιστεί η άγνωστη παράμετρος.

Σύνοψη Ασαφούς Συλλογιστικής Διαδικασίας

Με βάση έναν ασαφή κανόνα της μορφής:

"if x is A then y is B"

- και έστω συλλογιστική διαδικασία GMP (δηλαδή γνωστό το A' ως τιμή του x και ζητούμενο το B' ως τιμή του y), τα ασαφή σύνολα A και B συνδυάζονται με κάποιον από τους τελεστές συνεπαγωγής και παράγουν τη σχέση συνεπαγωγής R(x,y).
- Από την R(x,y) μέσω σύνθεσης (έστω max-min σύνθεση) με το Α' προκύπτει η άγνωστη ποσότητα B':

$$B'=A'\circ R(x,y)$$

Η Αρχή της Επέκτασης (1/2)

- Επέκταση των εννοιών και των υπολογιστικών τεχνικών των κλασσικών μαθηματικών στο πλαίσιο των ασαφών.
- \bullet συνάρτηση f: ορίζει απεικόνιση του $X = \{x_1, x_2, ..., x_n\}$ στο $Y = \{y_1, y_2, ..., y_n\}$, έτσι ώστε $y_1 = f(x_1), y_2 = f(x_2), ..., y_n = f(x_n)$.
- lacktriangle ασαφές σύνολο A ορισμένο στα στοιχεία του X

$$A = \{ u_A(x_1)/x_1, u_A(x_2)/x_2, ..., u_A(x_n)/x_n \}$$

 \ref{Av} Αν η είσοδος x της συνάρτησης f γίνει ασαφής μέσω του συνόλου A, τότε τι συμβαίνει με την έξοδο y ;

Αρχή Επέκτασης: υπολογισμός ασαφούς συνόλου B με εφαρμογή της f στο A.

$$B = f(A) = \{ u_A(x_1)/f(x_1), u_A(x_2)/f(x_2), \dots, u_A(x_n)/f(x_n) \}$$

- \Box δηλαδή, κάθε $y_i = f(x_i)$ γίνεται ασαφές σε βαθμό $u_A(x_i)$
- πρακτικά, η $u_B(y)$ προκύπτει από την $u_A(x)$ όπου το x αντικαθίσταται με την έκφραση που προκύπτει για αυτό από την επίλυση της f ως προς x

P

Η Αρχή της Επέκτασης (2/2)

- **Φ** Ειδικές Περιπτώσεις
 - αν περισσότερα του ενός διαφορετικά x (έστω τα x_m και x_n) δίνουν μέσω της συνάρτησης f το ίδιο y (έστω το y_0), τότε: $u_B(y_0)=u_A(x_m)\vee u_A(x_n)$.
 - η μέγιστη τιμή συγγένειας των x_m και x_n στο A επιλέγεται ως βαθμός συγγένειας του y_0 στο B
 - \Box αν για κάποιο y_o του B δεν υπάρχει x_o του A τέτοιο ώστε $y_o = f(x_o)$, τότε η τιμή συγγένειας του B στο y_o είναι μηδέν.
- ❖ Γενίκευση σε περισσότερες διαστάσεις:
 - **α**ν υπάρχουν οι μεταβλητές *u*, *v*, ..., *w* ορισμένες στα σύνολα *U*, *V*, ..., *W* αντίστοιχα
 - \square *m* διαφορετικά ασαφή σύνολα $A_1, A_2, ..., A_m$ ορισμένα στο $U \times V \times ... \times W$
 - \Box η πολυπαραμετρική συνάρτηση y=f(u,x,...,w)

τότε η ασαφοποίηση του χώρου των y, δηλαδή η συνάρτηση συγγένειας του συνόλου B, ορίζεται ως εξής:

$$u_B(y) = \bigvee_{U \times V \times ... \times W} [u_{A1}(u) \wedge u_{A2}(v) \wedge ... \wedge u_{Am}(w)] / f(u, y, ..., w)$$

Παράδειγμα Χρήσης Αρχής Επέκτασης (1/2)

- Τρόσθεση των αριθμών Α:"ασαφές 3" και Β:"ασαφές 7"
 - \Box A: "ασαφές 3" = { 0/1, 0.5/2, 1/3, 0.5/4, 0/5 }
 - \Box B: "ασαφές 7" = { 0/5, 0.5/6, 1/7, 0.5/8, 0/9 }
- ❖ Κατασκευάζεται ο πίνακας:

В	x=2	x=3	x=4
y=6	0.5 0.5	0.5	0.5 0.5
y=7	0.5	1	0.5 1
y=8	0.5 0.5	0.5	0.5 0.5

Σύμφωνα με την αρχή της επέκτασης θα είναι:

$$u_{C=A+B}(z) = \bigvee_{z=x+y} [u_A(x) \wedge u_B(y)]/(x+y)$$

Παράδειγμα Χρήσης Αρχής Επέκτασης (2/2)

- **Φ** Έστω z=9. Υπάρχουν δύο συνδυασμοί x και y που μας δίνουν άθροισμα 9.
- αρχή της επέκτασης:

$$u_{A+B}(9) = \max(\min(u_A(3), u_B(6)), \min(u_A(2), u_B(7))) = \max(\min(1, 0.5), \min(0.5, 1) = \max(0.5, 0.5) = 0.5$$

- \Box Άρα: ο βαθμός συγγένειας του z=9 στο ασαφές σύνολο C=A+B είναι 0.5.
- όμοια για τα υπόλοιπα στοιχεία του πίνακα, οπότε προκύπτει:

$$u_{A+B}(z) = \{ 0/8, 0.5/9, 1/10, 0.5/11, 0/12 \}$$

Παράδειγμα Άμεσης Εφαρμογής Αρχής Επέκτασης

Φ Έστω η y=f(x):

$$y = f(x) = \sqrt{1 - \frac{x^2}{4}}$$

***** Έστω ότι το *x* γίνεται ασαφές μέσω της:

$$u_A(x)=1/2\cdot x$$

 \bullet Η έξοδος y της f γίνεται ασαφής με το $u_B(y)$ να προκύπτει με επίλυση της f ως προς x:

$$x = 2\sqrt{1 - y^2}$$

και αντικατάσταση στην $u_A(x)$:

$$u_B(y) = u_A(2\sqrt{1-y^2}) = \frac{1}{2} \cdot 2\sqrt{1-y^2} = \sqrt{1-y^2}$$

Ασαφής Συλλογιστική

- Εξαγωγή συμπερασμάτων με χρήση ασαφών κανόνων.
- Τέσσερα στάδια:
 - Υπολογισμός της συνάρτησης συνεπαγωγής για κάθε εμπλεκόμενο κανόνα.
 - Παραγωγή επιμέρους αποτελεσμάτων μέσω κάποιας συλλογιστικής διαδικασίας.
 - Συνάθροιση των επιμέρους αποτελεσμάτων.
 - Αποσαφήνιση αποτελεσμάτων.

Παράδειγμα Προβλήματος Ασαφούς Συλλογιστικής (1/2)

- Έστω σύστημα που ρυθμίζει τη δόση D μιας φαρμακευτικής ουσίας που πρέπει να χορηγηθεί σε ασθενή, με βάση τη θερμοκρασία του T.
- ***** Έστω ότι το σύστημα βασίζεται στους εξής δύο ασαφείς κανόνες:

 K_1 : if T is HIGH then D is HIGH

 K_2 : if T is LOW then D is LOW

Δίνονται επίσης τα ασαφή σύνολα HIGH και LOW για τα μεγέθη Τ και D:

 $T_{LOW} = \{ 0.2/37, 1/37.5, 0.5/38, 0.2/38.5, 0/39, 0/39.5, 0/40 \}$

 $T_{HIGH} = \{ 0/37, 0/37.5, 0.2/38, 0.5/38.5, 0.8/39, 1/39.5, 1/40 \}$

 $D_{LOW} = \{ 1/0, 0.8/2, 0.5/5, 0.2/8, 0/10 \}$

 $D_{HIGH} = \{ 0/0, 0.2/2, 0.5/5, 0.8/8, 1/10 \}$

❖ Αν Τ'=38.5, να υπολογιστεί η τιμή του D' με συλλογιστική διαδικασία GMP.

Παράδειγμα Προβλήματος Ασαφούς Συλλογιστικής (2/2)

Τεχνητή Νοημοσύνη, Β' Έκδοση

Βήμα Α1: Υπολογισμός συνάρτησης συνεπαγωγής Μέθοδος ΜΙΝ

- **Φ** 2 κανόνες: δύο τελεστές συνεπαγωγής, οι R_{K1} και R_{K2} .
 - Σρησιμοποιείται ο τελεστής συνεπαγωγής Mandani min (ή απλά MIN).

 $\mathbf{K_1}$: if T is HIGH then D is HIGH

 $\mathbf{K_2}$: if T is LOW then D is LOW

❖ Έστω ο K₁. Κατασκευάζεται ο πίνακας αριστερά:

R _{K1}	D	0	2	5	8	10
T		0	0.2	0.5	8.0	1
37.0	0	0	0	0	0	0
37.5	0	0	0	0	0	0
38.0	0.2	0	0.2	0.2	0.2	0.2
38.5	0.5	0	0.2	0.5	0.5	0.5
39.0	8.0	0	0.2	0.5	8.0	8.0
39.5	1	0	0.2	0.5	8.0	1
40.0	1	0	0.2	0.5	8.0	1

R _{K2}	D	0	2	5	8	10
Т		1	8.0	0.5	0.2	0
37.0	0.2	0.2	0.2	0.2	0.2	0
37.5	1	1	8.0	0.5	0.2	0
38.0	0.5	0.5	0.5	0.5	0.2	0
38.5	0.2	0.2	0.2	0.2	0.2	0
39.0	0	0	0	0	0	0
39.5	0	0	0	0	0	0
40.0	0	0	0	0	0	0

- □ Κάθε κελί του εσωτερικού πίνακα περιέχει το min(u_{Thigh}, u_{Dhigh}) για τα Τ και D της γραμμής και στήλης στην οποία βρίσκεται.
- \Box Όμοια προκύπτει και η $R_{K2}(T_{LOW},D_{LOW})$ για τον κανόνα K_2 (πίνακας δεξιά)
- ❖ Γενίκευση: αν Ν εκφράσεις στο if τμήμα τότε προκύπτει πίνακας N+1 διαστάσεων.

Βήμα Α2: Παραγωγή επιμέρους αποτελεσμάτων (1/2)

- ❖ Με εφαρμογή της συλλογιστικής διαδικασίας GMP:
 - \square Κανόνας K_1 : D'_{K1} = $T' \circ R_{K1}(T_{HIGH},D_{HIGH})$
 - □ Κανόνας Κ₂: D'_{K2}=T'∘R_{K2}(T_{LOW},D_{LOW})
- Απαιτείται η γραφή της θερμοκρασίας Τ'=38.5 σε μορφή ασαφούς συνόλου, δηλαδή:

$$T' = 38.5 = \{ 0/37, 0/37.5, 0/38, 1/38.5, 0/39, 0/39.5, 0/40 \}$$

- * Χρησιμοποιείται η μέθοδος σύνθεσης (•) max-min (η συνηθέστερη περίπτωση).
- * Τεχνική όμοια με πολλαπλασιασμό πινάκων: χρησιμοποιείται min αντί πολλαπλασιασμού και max αντί πρόσθεσης.
- * 1°ς πίνακας το ασαφές σύνολο Τ' (1x7) και 2°ς ο αριστερά του βήματος Α1 (7x5)
- ❖ Το αποτέλεσμα θα είναι ένας πίνακας 1x5 που θα αποτελεί και την ποσότητα D'_{K1}.

$$D'_{K1} = [0/37, 0/37.5, 0/38, 1/38.5, 0/39, 0/39.5, 0/40]$$

	T	0	2	5	8	10	
	37	0	0	0	0	0	
	37.5	0	0	0	0	0	
	38	0	0.2	0.2	0.2	0.2	\Rightarrow
	38.5	0	0.2	0.5	0.5	0.5	
	39	0	0.2	0.5	8.0	8.0	
	39.5	0	0.2	0.5	8.0	1	
	40	0	0.2	0.5	8.0	1	

$$D'_{K1} = \{ 0/0, 0.2/2, 0.5/5, 0.5/8, 0.5/10 \}$$

Βήμα Α2: Παραγωγή επιμέρους αποτελεσμάτων (2/2)

- \bullet Όμοια, ο κανόνας K_2 δίνει: $D'_{K2} = \{ 0.2/0, 0.2/2, 0.2/5, 0.2/8, 0/10 \}$
- ❖ D'_{K1} (αριστερά) και D'_{K2} (δεξιά).

Βήμα Α3: Συνάθροιση αποτελεσμάτων

Μέθοδος ΜΑΧ

Υπολογίζει τη συνδυασμένη έξοδο των κανόνων παίρνοντας τη μέγιστη τιμή συγγένειας από τις παραμέτρους εξόδου κάθε κανόνα, σημείο προς σημείο (pointwise maximum - max_{p/w}).

❖ Δεδομένου ότι έχει υπολογιστεί:

$$D_{1'K1} = \{ 0/0, 0.2/2, 0.5/5, 0.5/8, 0.5/10 \}$$

 $D_{1'K2} = \{ \ 0.2/0, \ 0.2/2, \ 0.2/5, \ 0.2/8, \quad \ 0/10 \ \}$

η συνάθροισή τους κατά ΜΑΧ δίνει

$$D_1'= \{\max(0,0.2)/0, \max(0.2,0.2)/2, \max(0.5,0.2)/5, \max(0.5,0.2)/8, \max(0.5,0)/10\} = \{0.2/0, 0.2/2, 0.5/5, 0.5/8, 0.5/10\}$$

Βήμα Α4: Αποσαφήνιση

- Μέθοδος αποσαφήνισης MAXIMUM
 - διακριτή τιμή: μέγιστη τιμή συγγένειας του τελικού αποτελέσματος.
 - \Box με average-of-maxima αποσαφήνιση: $D_1 = (5+8+10)/3=7.7$

Βήμα Β1: Υπολογισμός συνάρτησης συνεπαγωγής Μέθοδος PRODUCT

δύο κανόνες: δύο τελεστές συνεπαγωγής, οι R_{K1} και R_{K2} . Έστω ο τελεστής συνεπαγωγής Larsen Product (ή απλά PRODUCT).

 $\mathbf{K_1}$: if T is HIGH then D is HIGH $\mathbf{K_2}$: if T is LOW then D is LOW

Κανόνας Κ₁. Κατασκευάζεται ο πίνακας αριστερά:

R _{K1}	D	0	2	5	8	10
T		0	0.2	0.5	8.0	1
37	0	0	0	0	0	0
37.5	0	0	0	0	0	0
38	0.2	0	0.04	0.1	0.16	0.2
38.5	0.5	0	0.1	0.25	0.4	0.5
39	8.0	0	0.16	0.4	0.64	8.0
39.5	1	0	0.2	0.5	8.0	1
40	1	0	0.2	0.5	8.0	1

R _{K2}	D	0	2	5	8	10
Т		1	8.0	0.5	0.2	0
37	0.2	0.2	0.16	0.1	0.04	0
37.5	1	1	8.0	0.5	0.2	0
38	0.5	0.5	0.4	0.25	0.1	0
38.5	0.2	0.2	0.16	0.1	0.04	0
39	0	0	0	0	0	0
39.5	0	0	0	0	0	0
40	0	0	0	0	0	0

- Κάθε κελί του εσωτερικού πίνακα (σχέση συνεπαγωγής R_{K1}) περιέχει το $(u_{THIGH} \cdot u_{DHIGH})$ για τα Τ και D της γραμμής και στήλης στην οποία βρίσκεται.
- Όμοια προκύπτει και η R_{K2}(T_{LOW},D_{LOW}) για τον κανόνα K₂ (πίνακας δεξιά)

Βήμα Β2: Παραγωγή επιμέρους αποτελεσμάτων (1/2)

- ❖ Με εφαρμογή της συλλογιστικής διαδικασίας GMP:
 - \Box Κανόνας K_1 : $D'_{K1}=T'\circ R_{K1}(T_{HIGH},D_{HIGH})$
 - □ Κανόνας Κ₂: D'_{K2}=T'∘R_{K2}(T_{LOW},D_{LOW})
- Απαιτείται η γραφή της θερμοκρασίας Τ'=38.5 σε μορφή ασαφούς συνόλου:

$$T' = 38.5 = \{ 0/37, 0/37.5, 0/38, 1/38.5, 0/39, 0/39.5, 0/40 \}$$

- * Χρησιμοποιείται η μέθοδος σύνθεσης (0) max-min (η συνηθέστερη περίπτωση).
- * 1^{ος} πίνακας το ασαφές σύνολο Τ' (1x7) και 2^{ος} ο εσωτερικός του βήματος Β1 (7x5)
- * Το αποτέλεσμα θα είναι ένας πίνακας 1x5 που θα αποτελεί και την ποσότητα D'_{K1}.

$$D'_{K1} = [0/37, 0/37.5, 0/38, 1/38.5, 0/39, 0/39.5, 0/40]$$

D T	0	2	5	8	10	
37	0	0	0	0	0	
37.5	0	0	0	0	0	
38	0	0.04	0.1	0.16	0.2	\Rightarrow
38.5	0	0.1	0.25	0.4	0.5	
39	0	0.16	0.4	0.64	8.0	
39.5	0	0.2	0.5	8.0	1	
40	0	0.2	0.5	8.0	1	

$$D'_{K1} = \{ 0/0, 0.1/2, 0.25/5, 0.4/8, 0.5/10 \}$$

Βήμα Β2: Παραγωγή επιμέρους αποτελεσμάτων (2/2)

- \bullet Όμοια προκύπτει ότι ο κανόνας K_2 δίνει: $D'_{K2} = \{ 0.2/0, 0.16/2, 0.1/5, 0.04/8, 0/10 \}$
- ❖ Γραφική απεικόνιση των D'_{K1} (αριστερά) και D'_{K2} (δεξιά).

Βήμα Β3: Συνάθροιση αποτελεσμάτων

Μέθοδος SUM

- Υπολογίζει τη συνδυασμένη έξοδο των κανόνων παίρνοντας το άθροισμα των τιμών συγγένειας των παραμέτρων εξόδου κάθε κανόνα, σημείο προς σημείο (pointwise sum sum_{p/w}).
- ❖ Δεδομένου ότι έχει υπολογιστεί:
 - \Box $D_{2'K1} = \{ 0/0, 0.1/2, 0.25/5, 0.4/8, 0.5/10 \}$
 - \Box $D_2'_{K2} = \{ 0.2/0, 0.16/2, 0.1/5, 0.04/8, 0/10 \}$
- ...η συνάθροισή τους κατά ΜΑΧ δίνει....
 - $D_2' = \{ (0+0.2)/0, (0.1+0.16)/2, (0.25+0.1)/5, (0.4+0.04)/8, (0.5+0)/10 \} = \{ 0.2/0, 0.26/2, 0.35/5, 0.44/8, 0.5/10 \}$

Βήμα Β4: Αποσαφήνιση

- ❖ Μέθοδος αποσαφήνισης CENDROID
 - Η διακριτή τιμή είναι αυτή που προκύπτει από το κέντρο βάρους της τελικής συνάρτησης συγγένειας για την ασαφή παράμετρο εξόδου.
 - **Τ**ο κέντρο βάρους επιφάνειας που ορίζεται από μία συνάρτηση f(t): σχέση (1)

$$t_{\kappa\beta} = \frac{\int_{t_1}^{t_2} t \cdot f(t) dt}{\int_{t_2}^{t_1} f(t) dt} \qquad (2)^{t_{\kappa\beta}} = \frac{\sum_{i=1}^{N} t_i \cdot u_{OUT}(t_i)}{\sum_{i=1}^{N} u_{OUT}(t_i)}$$

- □ Για διακριτού συνόλου αναφοράς: διακριτό άθροισμα με δειγματοληψία N σημείων (σχ.2).
- Με CENDROID αποσαφήνιση στα αποτελέσματα της συνάθροισης SUM, προκύπτει:

$$t_{D2'} = \frac{\sum_{i=1}^{5} t_i \cdot u_{D2'}(t_i)}{\sum_{i=1}^{5} u_{D2'}(t_i)} = \frac{0 \cdot 0.2 + 2 \cdot 0.26 + 5 \cdot 0.35 + 8 \cdot 0.44 + 10 \cdot 0.5}{0.2 + 0.26 + 0.35 + 0.44 + 0.5} = 6.2$$

Διαγραμματική Επίλυση (1/2)

- Προϋπόθεση: οι συναρτ. συγγένειας να είναι συνεχείς καμπύλες όχι ζεύγη (x,u(x))
- Πρόβλημα: υπολογισμός της δόσης D' μιας φαρμακευτικής ουσίας με βάση την θερμοκρασία Τ' και τους ασαφείς κανόνες:

 $\mathbf{K_1}$: if T is HIGH then D is HIGH $\mathbf{K_2}$: if T is LOW then D is LOW

με μέθοδο ΜΙΝ για τον υπολογισμό των συναρτήσεων συνεπαγωγής:

- κανόνας K₂: DEF
- κανόνας K₁: CGH
- Λύση: αποσαφήνιση στην "καμπύλη" DJGH

Ş

Διαγραμματική Επίλυση (2/2)

Θεωρώντας μέθοδο PRODUCT για τον υπολογισμό των συναρτήσεων συνεπαγωγής:

- **Ο** κανόνας Κ₂: DF
- **ω** κανόνας K₁: CH
- Λύση: αποσαφήνιση στην "καμπύλη" DH

Συστήματα Ασαφούς Συλλογιστικής

- **Δυσκολότερο σημείο**: επιλογή ασαφών μεταβλητών, των τιμών τους και των κανόνων με τους οποίους θα συνδυαστούν.
- **Συναρτήσεις συγγένειας: χρήση νευρωνικών δικτύων.**
- σημεία προσοχής: επιλογή τελεστή συνεπαγωγής, μεθόδου αποσαφήνισης.

F

Σταθερότητα/Ποιότητα Ασαφούς Συστήματος

- **Σταθερότητα**: η ικανότητα να εμφανίζει καλή συμπεριφορά σε όλο το φάσμα τιμών εισόδου.
- Η μορφή του τελικού αποτελέσματος πολλές φορές δίνει μία καλή ένδειξη για την ποιότητα του συνολικού συστήματος.

Παράδειγμα

-) ύπαρξη ενός "ισχυρού" κανόνα (επιθυμητό χαρακτηριστικό).
- b) δύο κορυφές: αντιφατική συμπεριφορά (απαιτείται βελτίωση του συστήματος κανόνων).
 - μεγάλο πλατό: το σύστημα των κανόνων είναι ελλιπές.

Εφαρμογές Ασαφούς Λογικής

- * Σύστημα Linkman (ιστορικά η πρώτη εφαρμογή): βιομηχανίες τσιμέντου.
- * Υπόγειος σιδηρόδρομος Sendai στην Ιαπωνία.
- Φωτογραφικές μηχανές.
- Πλυντήρια ρούχων.
- * Συσκευές video-camera.
- * Συστήματα πέδησης (fuzzy ABS).
- Συστήματα ελέγχου λαβής σε ρομποτικούς βραχίονες.
- **Φ** Συσκευές κλιματισμού.
- Βαλβίδες για έλεγχο ροής.
- * Κατανομή καυσίμου ανάλογα με το φάκελο πτήσης σε δεξαμενές πολεμικών αεροσκαφών.
- Έμπειρα συστήματα με ασαφείς κανόνες.