ST5215 Advanced Statistical Theory, Lecture 18

HUANG Dongming

National University of Singapore

20 Oct 2020

Overview

Last time

- Weak Law of Large Number (WLLN)
- Weak Convergence of Measures
- Central Limit Theorem

Today

- Consistency
- Asymptotic bias, variance, mean squared error

Needs for the Asymptotic Approach

- In many applications of statistics, the distribution of given statistic $T_n(X)$ is needed, but the exact distributions of $T_n(X)$ is not available or too complicated to deal with
- The limiting distribution is used as an approximation to the distribution of $T_n(X)$ in the situation with a large but actually finite n
 - ▶ by using CLT, SLLN, WLLN, δ -method, etc.
 - We treat a sample $X = (X_1, ..., X_n)$ as a member of a sequence corresponding to n = 1, 2, ...
 - Similarly, a statistic T(X), often denoted by T_n to emphasize its dependence on the sample size n, is viewed as a member of a sequence T_1, T_2, \ldots
- In addition, the asymptotic approach requires less stringent mathematical assumptions than does the exact approach

Consistency

Intuitively, a good estimator shall be close to the *estimand* (the target parameter) when n is large in some sense

Definition (Consistency of point estimators)

Let $X=(X_1,\ldots,X_n)$ be a sample from $P\in\mathcal{P}$ and $T_n(X)$ be an estimator of θ (a parameter related to P) for every n.

- **1** $T_n(X)$ is called *consistent* for θ if and only if $T_n(X) \stackrel{P}{\to} \theta$ w.r.t. any $P \in \mathcal{P}$.
- ② Let $\{a_n\}$ be a sequence of positive constants diverging to ∞ . $T_n(X)$ is called a_n -consistent for θ if and only if $a_n\{T_n(X)-\theta\}=O_P(1)$ w.r.t. any $P\in\mathcal{P}$.
- **3** $T_n(X)$ is called *strongly consistent* for θ if and only if $T_n(X) \stackrel{a.s.}{\to} \theta$ w.r.t. any $P \in \mathcal{P}$
- **1** $T_n(X)$ is called L_r -consistent for θ if and only if $T_n(X) \xrightarrow{L^r} \theta$ w.r.t. any $P \in \mathcal{P}$ for some fixed r > 0.

Remarks

- Consistency is a concept relating to a sequence of estimators, $\{T_n: n=n_0, n_0+1, \ldots\}$, but we usually just say "consistency of T_n " for simplicity
- Each of the four types of consistency describes the convergence of T_n to ϑ in some sense, as $n \to \infty$
- Consistency in (1) is the weakest one among the four
 - it is implied by any of the other three types of consistency
 - but it is the most common one in statistics
 - also the most basic requirement for an estimator
- L_2 -consistency is also called consistency in mse, which is the most useful type of L_r -consistency.

Example

Assume the population mean μ is finite

- The sample mean \overline{X}_n is strongly consistent for μ by SLLN
- Consider estimators of the form $T_n = \sum_{i=1}^n c_{ni} X_i$, where $\{c_{ni}\}$ is a double array of constants
 - ▶ If $c_{ni} = c_i/n$ satisfying that $n^{-1} \sum_{i=1}^n c_i \to 1$ and $\sup_i |c_i| < \infty$, then T_n is strongly consistent
 - ▶ If P has a finite variance, then T_n is consistent in mse iff $\sum_{i=1}^n c_{ni} \to 1$ and $\sum_{i=1}^n c_{ni}^2 \to 0$

Methods of proving consistency

- Combinations of the LLN, the CLT, Slutsky's theorem, and the continuous mapping theorem are typically applied
- In particular, if T_n is (strongly) consistent for θ and g is continuous at θ , then $g(T_n)$ is (strongly) consistent for $g(\theta)$

Example: \overline{X}_n^2 is \sqrt{n} -consistent for μ^2 under the assumption that P has a finite variance:

- $\sqrt{n}(\overline{X}_n^2 \mu^2) = \sqrt{n}(\overline{X}_n \mu)(\overline{X}_n + \mu)$
- \overline{X}_n is \sqrt{n} -consistent for μ by CLT
- $\bullet \ \overline{X}_n + \mu = O_P(1)$
- If $Y_n = O_P(b_n)$ and $Z_n = O_P(c_n)$, then $Y_n Z_n = O_P(b_n c_n)$

Exercise: Prove the \sqrt{n} -consistency of \overline{X}_n^2 using CLT and δ -method.

Example: Estimating the Right End of the Support

- Let X_1, \ldots, X_n be i.i.d. from an unknown P with a continuous c.d.f. F.
- Suppose that there is an unknown $\theta \in \mathcal{R}$ s.t. $F(\theta) = 1$ and F(x) < 1 for any $x < \theta$.

Consider the largest order statistic $X_{(n)}$ as an estimator of θ

- For any $\epsilon > 0, F(\theta \epsilon) < 1$
- Note that

$$P(|X_{(n)} - \theta| \ge \epsilon) = P(X_{(n)} \le \theta - \epsilon) = [F(\theta - \epsilon)]^n$$
 (1)

8 / 28

- Therefore, $\sum_{n=1}^{\infty} P(|X_{(n)} \theta| \ge \epsilon) < \infty$, for any $\epsilon > 0$
- By the first Borel-Cantelli lemma, $X_{(n)} \stackrel{a.s.}{\to} \theta$, i.e., $X_{(n)}$ is strongly consistent for θ

Example (Cont.)

- Note that the CDF of $X_{(n)}$ is $F_n(x) = [F(x)]^n$, which is also continuous
- Suppose F is left-differentiable and $F'(\theta-) \neq 0$, we can show that

$$P(nF'(\theta-)(\theta-X_{(n)}) \ge t) \to \exp(-t), \qquad \forall t > 0,$$

which means that $X_{(n)}$ is n-consistent (left for exercise; use the fact that $F_n(X_{(n)}) \sim \text{Unif}(0,1)$ and use Taylor expansion of $F_n(x)$ around θ),

▶ More generally, if $F^{(i)}(\theta-) = 0$ for i < m and $F^{(m)}(\theta-) \neq 0$, then $X_{(n)}$ is $n^{\frac{1}{m}}$ -consistent.

Example: Importance of consistent estimators

Suppose that an estimator T_n of θ satisfies

$$c_n[T_n(X)-\theta] \stackrel{\mathcal{D}}{\to} \sigma Y,$$

where Y is a random variable with a known distribution, $\sigma > 0$ is an unknown parameter, and $\{c_n\}$ is a sequence of constants

- ullet Ignorance about σ makes the asymptotic distribution above useless
- If a consistent estimator $\hat{\sigma}_n$ of σ can be found, then, by Slutsky's theorem,

$$c_n \left[T_n(X) - \theta \right] / \hat{\sigma}_n \stackrel{\mathcal{D}}{\to} Y$$

• We may approximate the distribution of $c_n [T_n(X) - \theta] / \hat{\sigma}_n$ by the known distribution of Y

Remarks on Consistency

- There can be many consistent estimators
- Consistency is an essential requirement in the sense that any inconsistent estimators should not be used, but a consistent estimator is not necessarily good
- Consistency should be used together with one or a few more criteria
 - Asymptotic unbiasedness
 - Asymptotic efficiency

Approximate Unbiasedness

- Unbiasedness is a good property, but in many cases it is impossible to have an unbiased estimator
- A slight bias might reduce variability
- Nevertheless, asymptotically, the bias shall be small

Definition (Approximate unbiasedness)

An estimator $T_n(X)$ for θ is called *approximately unbiased* if $b_{T_n}(\theta) \equiv E_{\theta} T_n(X) - \theta \to 0$ as $n \to \infty$.

- If T_n is a consistent estimator, and $\{T_n\}$ is uniformly integrable, then T_n is approximate unbiased (Exercise 1 in Tutorial 17)
- Note that there are many estimators whose expectations are not well defined
 - ▶ Consider i.i.d. X_1, \ldots, X_n from a normal distribution $N(\mu, 1)$, $\mu \neq 0$
 - Let $\vartheta = 1/\mu$ be the parameter of interest
 - ▶ Then $T_n = 1/\bar{X}$ is consistent but does not have a finite mean

12/28

Asymptotic Unbiasedness

Definition (Asymptotic Expectation)

Let $\xi, \xi_1, \xi_2, \ldots$ be random variables and $\{a_n\}$ be a sequence of positive numbers satisfying $a_n \to \infty$ or $a_n \to a > 0$.

If $a_n\xi_n \stackrel{\mathcal{D}}{\to} \xi$ and $E|\xi| < \infty$, then $E\xi/a_n$ is called an asymptotic expectation of ξ_n

Definition (Asymptotic Bias)

Suppose ν is a parameter related to P. Suppose T_n is a point estimator of ν for every n.

- The asymptotic expectation of $T_n \nu$, if exists, is called an asymptotic bias of T_n , denoted by $\tilde{b}_{T_n}(P)$ (or by $\tilde{b}_{T_n}(\theta)$ if P is in a parametric family indexed by θ).
- If $\lim_{n\to\infty} \tilde{b}_{T_n}(P) = 0$ for any $P \in \mathcal{P}$, then T_n is said to be asymptotically unbiased.

13 / 28

Remarks

- Like the consistency, the asymptotic bias is a concept relating to sequences $\{T_n\}$ and $\left\{\tilde{b}_{T_n}(P)\right\}$
- When both the exact bias $b_{T_n}(P)$ and the asymptotic bias $\tilde{b}_{T_n}(P)$ exist, they are not necessarily the same
- If T_n is a consistent estimator of ϑ , then $T_n = \vartheta + o_p(1)$, and thus T_n is asymptotically unbiased
 - ▶ T_n may not be approximately unbiased
 - $g(T_n)$ is asymptotically unbiased for $g(\vartheta)$ for any continuous function g
 - ▶ In the example of estimating $1/\mu$ by $T_n = 1/\bar{X}$, $T_n \stackrel{a.s.}{\to} 1/\mu$ by the SLLN and the continuous mapping. Hence T_n is asymptotically unbiased, although ET_n is not defined.

High Order Bias

- Sometimes we are interested in finding a more precise order of the asymptotic bias for asymptotic unbiased estimators
- Suppose $a_n \to \infty$ and $\{\eta_n\}$ is a sequence of random variables such that

$$a_n\eta_n \stackrel{\mathcal{D}}{\to} Y$$
, where $EY = 0$

and

$$a_n^2 (T_n - \vartheta - \eta_n) \stackrel{\mathcal{D}}{\to} W,$$

then we may define a_n^{-2} to be the order of $\tilde{b}_{T_n}(P)$ or define EW/a_n^2 to be the a_n^{-2} order asymptotic bias of T_n

Example

Consider i.i.d. X_1, \ldots, X_n with a finite mean $\mu \neq 0$ and finite variance σ^2 . Suppose $\vartheta = 1/\mu$ is the parameter of interest.

- Let $T_n = 1/\bar{X}$. It is asymptotic unbiased.
- Note that $\frac{\mu \bar{X}}{\mu^2} \stackrel{a.s.}{\to} 0$ and

$$n\left(T_n - \vartheta - \frac{\mu - \bar{X}}{\mu^2}\right) = n\frac{(\mu - \bar{X})^2}{\bar{X}\mu^2}.$$
 (2)

16/28

By the CLT and Slutsky's theorem,

$$n\frac{(\mu - \bar{X})^2}{\bar{X}\mu^2} \stackrel{\mathcal{D}}{\to} \mu^{-3}\sigma^2\chi_1^2,$$

where the mean of the RHS is σ^2/μ^3 .

• Therefore, $\sigma^2/(n\mu^3)$ is the 1/n order asymptotic bias of T_n .

Asymptotic Mean Squared Error (amse)

Like the bias, the variance and MSE of an estimator is not well defined if its second moment does not exist

Definition

Let T_n be an estimator of ϑ for every n and $\{a_n\}$ be a sequence of positive numbers satisfying $a_n \to \infty$ or $a_n \to a > 0$ such that

$$a_n(T_n-\vartheta)\stackrel{\mathcal{D}}{ o} Y$$

with $0 < EY^2 < \infty$

The asymptotic mean squared error of T_n , denoted by amse $T_n(P)$ (or amse_{T_n}(θ) if P is in a parametric family indexed by θ) is defined to be the asymptotic expectation of $(T_n - \vartheta)^2$. In other words,

$$\mathsf{amse}_{T_n}(P) = EY^2/a_n^2.$$

The asymptotic variance of T_n is defined to be $\sigma_{T_n}^2(P) = \text{Var}(Y)/a_n^2$

Remarks

- In the definition, the amse and asymptotic variance are the same if and only if EY=0
- In the definition, one can show that

$$EY^{2} \leq \lim_{n \to \infty} E\left[a_{n}^{2}\left(T_{n} - \vartheta\right)^{2}\right]$$

- ▶ Proof is left for exercise: use Skorohod's theorem and Fatou's lemma
- ► The equality holds if and only if $\left\{a_n^2(T_n-\vartheta)^2\right\}$ is uniformly integrable (use Exercise 1 in Tutorial 17).
- ▶ In other words, the amse is no greater than the exact mse and they are equal under a certain condition.

Asymptotic Relative Efficiency

Let T_n and T'_n be two estimators of ϑ

• The asymptotic relative efficiency of T'_n w.t.r. T_n is defined to be

$$e_{T'_n,T_n}(P) = \operatorname{amse}_{T_n}(P) / \operatorname{amse}_{T'_n}(P)$$

• T_n is said to be asymptotically more efficient than T'_n if and only if

$$\limsup_{n} e_{T'_n, T_n}(P) \leq 1$$

for any P and < 1 for some P

• Historically, the "efficiency" of an estimator T of θ refers to $1/[I(\theta) \mathsf{MSE}_T(\theta)]$, where $I(\theta)$ is the Fisher information of θ . So the definition above should be understood as

$$e_{T'_n, T_n}(P) = \frac{\text{efficiency of } T'_n}{\text{efficiency of } T_n}$$

A corollary of δ -method

Theorem

Let U_n be a statistic satisfying $a_n (U_n - \theta) \stackrel{\mathcal{D}}{\to} Y$ for a random variable Y with $0 < EY^2 < \infty$ and a sequence of positive numbers $\{a_n\}$ satisfying $a_n \to \infty$

Let g be a function on \mathcal{R} that is differentiable at $\theta \in \mathcal{R}$ and $T_n = g(U_n)$ be an estimator of $\vartheta = g(\theta)$.

Then, the amse of T_n is $E\{[g'(\theta)Y]^2\}/a_n^2$; the asymptotic variance of T_n is $[g'(\theta)^2 \text{Var}(Y)]/a_n^2$

See Theorem 2.6 in the textbook for the multivariate version.

Example

Let $X_1, ..., X_n$ be i.i.d. from a Poisson distribution $Poi(\theta)$ with $\theta > 0$. Consider the estimation of $\tau = P(X_i = 0) = e^{-\theta}$.

Let
$$T_{1n} = \frac{1}{n} \sum_{j=1}^{n} I_{\{X_j = 0\}}$$

- ullet T_{1n} is unbiased and has $\mathsf{mse}_{T_{1n}}(heta) = e^{- heta} \left(1 e^{- heta}
 ight)/n$
- By CLT, $\sqrt{n} \left(T_{1n} \tau \right) \stackrel{\mathcal{D}}{\rightarrow} N \left(0, e^{-\theta} \left(1 e^{-\theta} \right) \right)$
- ullet So $\mathsf{amse}_{\mathcal{T}_{1n}}(heta) = \mathsf{mse}_{\mathcal{T}_{1n}}(heta)$

Example (Cont.)

Let X_1, \ldots, X_n be i.i.d. from a Poisson distribution $Poi(\theta)$ with $\theta > 0$. Consider the estimation of $\tau = P(X_i = 0) = e^{-\theta}$.

Next, consider $T_{2n} = e^{-\bar{X}}$

- By CLT, $\sqrt{n} (\bar{X} \theta) \stackrel{\mathcal{D}}{\rightarrow} N(0, \theta)$
- By δ -method, we have $\sqrt{n} (T_{2n} \tau) \stackrel{\mathcal{D}}{\to} N (0, e^{-2\theta} \theta)$
- So T_{2n} is asymptotic unbiased and amse $T_{2n}(\theta) = e^{-2\theta}\theta/n$
- Note that $ET_{2n}=e^{n\theta\left(e^{-1/n}-1\right)}$ and $nb_{T_{2n}}(\theta)\to\theta e^{-\theta}/2$. The exact bias of T_{2n} is not o(1/n)

Example (Cont.)

$$\operatorname{amse}_{T_{1n}}(\theta) = e^{-\theta} \left(1 - e^{-\theta} \right) / n$$

$$\operatorname{amse}_{T_{2n}}(\theta) = e^{-2\theta} \theta / n$$

The asymptotic relative efficiency of T_{1n} w.r.t. T_{2n} is

$$e_{\mathcal{T}_{1n},\mathcal{T}_{2n}}(\theta) = \theta / \left(e^{\theta} - 1\right) < 1, \qquad \forall \theta > 0$$

This shows that T_{2n} is asymptotically more efficient than T_{1n}

Tutorial

1 Let X_1, \ldots, X_n be independent and identically distributed random variables with Lebesgue p.d.f.

$$f(x) = \frac{1}{2c} \frac{1}{x^2 \log x} I_{|x| > 3},$$

where $c = \int_{x=3}^{\infty} 1/(x^2 \log x) dx$.

Show that $E\left|X_{1}\right|=\infty$ but $n^{-1}\sum_{i=1}^{n}X_{i}\rightarrow_{p}0$

② Suppose that X_n is a random variable having the binomial distribution with size n and probability $\theta \in (0,1), n = 1,2,...$

Define $Y_n = \log(X_n/n)$ when $X_n \ge 1$ and $Y_n = 1$ when $X_n = 0$.

Show that $\lim_{n} Y_{n} = \log \theta$ a.s. and $\sqrt{n} \left(Y_{n} - \log \theta \right) \stackrel{\mathcal{D}}{\to} N \left(0, \frac{1-\theta}{\theta} \right)$

3 Let X_1, X_2, \ldots be independent random variables such that X_j has the uniform distribution on $[-j, j], j = 1, 2, \ldots$ Show that

$$\frac{\sum_{j=1}^{n} X_j}{n^{3/2}} \stackrel{\mathcal{D}}{\rightarrow} N(0, 1/3) \tag{3}$$

Exercise 1

Let $X_1, ..., X_n$ be independent and identically distributed random variables with Lebesgue p.d.f.

$$f(x) = \frac{1}{2c} \frac{1}{x^2 \log x} I_{|x| > 3},$$

where $c = \int_{x=3}^{\infty} 1/(x^2 \log x) dx$. Show that $E|X_1| = \infty$ but $n^{-1} \sum_{i=1}^n X_i \to_p 0$

Proof:

- $E|X_1| = c^{-1} \int_3^\infty \frac{1}{x \log x} dx = \infty$
- For any positive integer n, $E\left[X_1I_{(-n,n)}\left(X_1\right)\right]=0$
- For any x > 3, by WLLN and the following

$$\begin{aligned} xP(|X| > x) &= c^{-1}x \int_{x}^{\infty} \frac{1}{t^{2} \log t} \, \mathrm{d}t \\ &\leq \frac{c^{-1}x}{\log(x)} \int_{x}^{\infty} \frac{1}{t^{2}} dt \\ &= \frac{c^{-1}x}{\log(x)} \cdot \frac{1}{x} \to 0, \text{ as } x \to \infty \end{aligned}$$

Exercise 2

Suppose that X_n is a random variable having the binomial distribution with size n and probability $\theta \in (0,1), n=1,2,\ldots$

Define $Y_n = \log(X_n/n)$ when $X_n \ge 1$ and $Y_n = 1$ when $X_n = 0$.

Show that $\lim_n Y_n = \log \theta$ a.s. and $\sqrt{n} \left(Y_n - \log \theta \right) \stackrel{\mathcal{D}}{\to} N \left(0, \frac{1-\theta}{\theta} \right)$

Proof: SLLN does not apply here because the joint distribution of X_n 's is unknown

- Let $Z_1, Z_2, ...$ be i.i.d. Bern (θ) . Then the distribution of X_n is the same as that of $\sum_{i=1}^n Z_i$
- For any $\epsilon > 0$, by Markov inequality $(f(x) = x^4)$,

$$P\left(\left|\frac{X_n}{n} - \theta\right| \ge \epsilon\right) \le \frac{1}{\epsilon^4} E \left|\frac{X_n}{n} - \theta\right|^4$$

$$= \frac{\theta^4 (1 - \theta) + (1 - \theta)^4 \theta}{\epsilon^4 n^3} + \frac{\theta^2 (1 - \theta)^2 (n - 1)}{\epsilon^4 n^3}$$

Hence,

$$\sum_{n=1}^{\infty} P\left(\left|\frac{X_n}{n} - \theta\right| \ge \epsilon\right) < \infty, \quad \forall \epsilon > 0$$

• By the Borel-Cantelli lemma, $\lim_n X_n/n = \theta$ a.s.

- By the continuity of the log function, $\lim_n Y_n = \log \theta$ a.s.
- Since X_n has the same distribution as $\sum_{j=1}^n Z_j$ for each n, by the CLT, $\sqrt{n}(X_n/n-\theta)\stackrel{\mathcal{D}}{\to} N(0,\theta(1-\theta))$
- Define $W_n = X_n/n + eI_{\{X_n=0\}}$. Then $Y_n = \log(W_n)$
- $\lim_n X_n/n = \theta$ a.s. implies that $\lim_n \sqrt{n} I_{\{X_n=0\}} = 0$ a.s.
- By Slutsky's theorem,

$$\sqrt{n}(W_n - \theta) = \sqrt{n}\left(\frac{X_n}{n} - \theta\right) + e\sqrt{n}I_{\{X_n = 0\}}$$

$$\stackrel{\mathcal{D}}{\to} N(0, \theta(1 - \theta))$$

• Then, by the δ -method with $g(t) = \log t$ and $g'(t) = t^{-1}$, $\sqrt{n} (\log W_n - \log \theta) \stackrel{\mathcal{D}}{\to} N \left(0, \frac{1-\theta}{\theta}\right)$, i.e., $\sqrt{n} (Y_n - \log \theta) \stackrel{\mathcal{D}}{\to} N \left(0, \frac{1-\theta}{\theta}\right)$

Exercise 3

Let X_1, X_2, \ldots be independent random variables such that X_j has the uniform distribution on $[-j, j], j = 1, 2, \ldots$ Show that

$$\frac{\sum_{j=1}^{n} X_{j}}{n^{3/2}} \stackrel{\mathcal{D}}{\rightarrow} N(0, 1/3)$$

Proof:

- Note that $EX_j=0$ and $Var\left(X_j\right)=\frac{1}{2j}\int_{-j}^j x^2dx=j^2/3$ for all j
- Hence

$$\sigma_n^2 = \text{Var}\left(\sum_{j=1}^n X_j\right) = \frac{1}{3}\sum_{j=1}^n j^2 = \frac{n(n+1)(2n+1)}{3\times 6} \sim \frac{1}{9}n^3$$

• For any $\epsilon > 0$, $n < \epsilon \sigma_n$ for sufficiently large n and $|X_j| \le j \le n$, in which case

$$\sum_{j=1}^{n} E\left(X_{j}^{2} I_{\left\{\left|X_{j}\right| > \epsilon \sigma_{n}\right\}}\right) = 0$$

28 / 28

Thus, Lindeberg's condition holds and by CLT, $\frac{\sum_{j=1}^{n} X_{j}}{\sigma_{n}^{2}} \stackrel{\mathcal{D}}{ o} \mathcal{N}(0,1)$