CMOS OPEN ENDED

4-BIT PARALLEL ADDER

TEAM - 02

NAME	USN	
Manjunath Inamati	01FE21BEC356	
Goutami Naragund	01FE21BEC177	
Shrihari Joshi	01FE21BEC184	

A. CMOS LOGIC:

1. 2 INPUT AND GATE

Figure 1. 2 Input AND Gate Schematic

Figure 2. 2 Input AND Gate Symbol

2. 3 INPUT OR GATE

Figure 3. 3 Input OR Gate Schematic

Figure 4. 3 Input OR Gate Symbol

3. 3 INPUT XOR GATE

Figure 5. 3 Input XOR Gate Schematic

Figure 6. 3 Input XOR Gate Symbol

4. FULL ADDER

Figure 8. Full Adder Symbol

5. 4 BIT PARALLEL ADDER

Figure 9. 4 Bit Parallel Adder Schematic

Figure 10. 4 Bit Parallel Adder Symbol

Figure 11. 4 Bit Parallel Adder Test Schematic

Figure 12. Output

B. PSEUDO NMOS LOGIC:

1. 2 INPUT AND GATE

Figure 13. 2 Input AND Gate Schematic

Figure 14. 2 Input AND Gate Symbol

2. 3 INPUT OR GATE

3. 3 INPUT XOR GATE

Figure 18. 3 Input XOR Gate Symbol

4. FULL ADDER

Figure 19. Full Adder Schematic

5. 4 BIT PARALLEL ADDER

Figure 21. 4 Bit Parallel Adder Schematic

Figure 22. 4 Bit Parallel Adder Symbol

Figure 33. 4 Bit Parallel Adder Test Schematic

Figure 24. Output

C. COMPARISION

		CMOS LOGIC	NMOS LOGIC
	S0	3.597 n s	3.547 n s
	S1	3.633 n s	3.613 n s
Rise Time	S2	3.638 n s	3.569 n s
	S3	3.631 n s	3.574 n s
	Cout	3.563 n s	3.573 n s
	S0	1.346 n s	2.156 n s
	S1	1.346 n s	2.148 n s
Fall Time	S2	1.297 n s	2.157 n s
	S3	1.299 n s	2.145 n s
	Cout	1.121 n s	2.102 n s
Power	S0	818.7 m Watt	904.1 m Watt
	S1	805.8 m Watt	906 m Watt
	S2	861.7 m Watt	897.6 m Watt
	S3	844.7 m Watt	903 m Watt
	Cout	876 m Watt	970.9 m Watt
Area	-	NMOS - 116	NMOS - 116
		PMOS - 116	PMOS - 52

D. CONCLUSION

By observing the table, we can conclude that CMOS Logic outperforms Pseudo NMOS Logic regarding speed (rise and fall time) and power consumption. Therefore, CMOS Logic can be used in applications where there is a requirement for low power consumptions and faster while Pseudo NMOS Logic is preferable in scenarios where minimizing area is crucial, since the number of transistors used are comparatively less.