

Mauro José Silva Sousa Heitor Alves Felipe Fernandes

Conhecendo o CoppeliaSim

Campina Grande 18 de junho de 2024

Sumário

IN	TRODUÇÃO	1
1	Tipos de Juntas no CoppeliaSim	2
2	Corpos Dinâmicos vs. Corpos Responsivos	3
3	Robôs de Tração Diferencial	4
4	Processo de Modelagem no CoppeliaSim	5
5	Modelando o Robô de Tração Diferencial 5.1 Passos Detalhados para a Modelagem	6
C	CONCLUSÃO	

${\bf INTRODUÇ\tilde{A}O}$

Nesta atividade, vamos explorar como usar o CoppeliaSim para criar um modelo de robô móvel de tração diferencial. Este artigo abordará cinco tarefas principais que incluem a compreensão dos tipos de juntas, a diferença entre corpos dinâmicos e responsivos, o que é um robô de tração diferencial, o processo de modelagem no CoppeliaSim, e a correta modelagem do robô de tração diferencial.

1 Tipos de Juntas no CoppeliaSim

No ambiente de simulação CoppeliaSim, as juntas são componentes fundamentais para a construção e operação de modelos robóticos. Elas são classificadas com base no tipo de movimento que permitem e são essenciais para emular o comportamento dinâmico dos sistemas robóticos na simulação. Os principais tipos de juntas utilizados são:

• Juntas Revolutas

As juntas revolutas permitem a rotação de um objeto em torno de um eixo.
Elas são amplamente utilizadas para articulações de robôs, como os braços robóticos.

• Juntas Prismaticas

 As juntas prismaticas permitem o movimento linear de um objeto ao longo de um eixo. São comuns em sistemas onde é necessário movimento de translação.

• Juntas Esféricas

 As juntas esféricas permitem a rotação em torno de múltiplos eixos, proporcionando maior liberdade de movimento, semelhante a uma articulação de ombro humano.

2 Corpos Dinâmicos vs. Corpos Responsivos

A distinção entre corpos dinâmicos e responsivos é fundamental para compreender como diferentes sistemas interagem com o mundo ao seu redor.

• Definição de Corpos Dinâmicos

 Corpos dinâmicos são objetos que interagem com o ambiente de forma física, respondendo a forças e colisões. Eles são regidos pelas leis da física.

• Definição de Corpos Responsivos

 Corpos responsivos são objetos que reagem a estímulos externos, como sensores e comandos, mas não necessariamente seguem as leis da física de forma estrita.

A principal diferença entre corpos dinâmicos e responsivos é como eles interagem com o ambiente. Corpos dinâmicos são influenciados por forças físicas, enquanto corpos responsivos são controlados por algoritmos ou comandos específicos.

3 Robôs de Tração Diferencial

Um robô de tração diferencial é um sistema robótico que se destaca pela sua capacidade de manobra e flexibilidade de movimento.

• O que é um Robô de Tração Diferencial

- Um robô de tração diferencial possui duas rodas motorizadas independentes, permitindo que ele se mova em qualquer direção e gire em seu próprio eixo. Este tipo de tração é comum em robôs móveis devido à sua simplicidade e eficiência.

• Exemplos de Uso

 Robôs de tração diferencial são amplamente utilizados em competições de robótica, pesquisa em navegação autônoma e aplicações industriais.

4 Processo de Modelagem no CoppeliaSim

A modelagem de robôs no CoppeliaSim é um processo detalhado que começa com o planejamento cuidadoso da estrutura do robô. A seleção de componentes é crucial, pois cada peça deve ser compatível com as outras e adequada para o propósito pretendido do robô.

• Etapas Iniciais

 Para iniciar a modelagem no CoppeliaSim, é essencial planejar a estrutura do robô, selecionar os componentes adequados e configurar o ambiente de simulação.

• Ferramentas e Recursos Utilizados

 O CoppeliaSim oferece uma variedade de ferramentas para a modelagem, incluindo bibliotecas de componentes, editores de scripts e motores de física para simulação realista.

5 Modelando o Robô de Tração Diferencial

Para esta atividade, seguiremos um modelo de robô de tração diferencial disponível em uma pasta no Google Drive. Este modelo servirá como referência para nossa modelagem.

5.1 Passos Detalhados para a Modelagem

Modelar um robô de tração diferencial no CoppeliaSim envolve várias etapas essenciais, desde a criação inicial da estrutura até a configuração das juntas para permitir o movimento correto. Neste caso específico, foi necessário criar uma réplica baseada nas imagens fornecidas. Este processo, embora mais trabalhoso, é fundamental para garantir que o robô final funcione conforme esperado.

• Importação do Modelo

 Esta etapa foi adaptada para recriar o modelo manualmente no ambiente de simulação.

• Configuração da Estrutura

- Com a réplica do modelo em mãos, o próximo passo é ajustar a estrutura do robô. Isso inclui definir a forma e o tamanho de cada componente, garantindo que todos estejam corretamente alinhados e proporcionais ao modelo de referência.

Figura 1: Car chassi replica

Figura Propria tirada do CoppeliaSim

Configuração das Juntas

a configuração das juntas é uma das etapas mais importantes. As juntas precisam ser configuradas para permitir os movimentos desejados, como rotação das rodas e articulações específicas. Isso envolve definir os parâmetros de cada junta no CoppeliaSim para garantir que o robô possa se mover de acordo com os comandos programados.

CONCLUSÃO

A modelagem de robôs no CoppeliaSim é uma habilidade valiosa que combina conhecimento teórico com prática aplicada. Compreender os tipos de juntas, a diferença entre corpos dinâmicos e responsivos, e o conceito de tração diferencial são fundamentais para criar modelos eficientes e funcionais. Esta atividade não apenas aprimora habilidades técnicas, mas também fomenta a criatividade e a capacidade de resolução de problemas.