Program:
Authors:
Publisher:

HLM 7 Hierarchical Linear and Nonlinear Modeling Stephen Raudenbush, Tony Bryk, & Richard Congdon Scientific Software International, Inc. (c) 2010 techsupport@ssicentral.com www.ssicentral.com

Module: HLM2.EXE (7.01.21202.1001)
Date: 28 June 2013, Friday
Time: 11:36:19

Specifications for this Ordinal HLM2 run

Problem Title: no title

The data source for this run = C:\Dokumente und Einstellungen\tcserpes1\Eigene

Dateien\Dropbox\politics\data\V20623good.mdm

The command file for this run = $C:\DOKUME~1\TCSERP~1\LOKALE~1\Temp\whlmtemp.hlm$

Output file name = C:\Dokumente und Einstellungen\tcserpes1\Eigene Dateien\Dropbox\politics\data\hlm2.html

The maximum number of level-1 units = 2606

The maximum number of level-2 units = 2606

The maximum number of micro iterations = 14

Number of categories = 5

Method of estimation: restricted PQL

Maximum number of macro iterations = 100

Distribution at Level-1: Ordinal

The outcome variable is TIEPOLIT

Summary of the model specified

Level-1 Model

```
\begin{split} & \log[ \ \ ^*{}_{3ij}/(1 \ - \ \ ^*{}_{3ij})] = \beta_{0j} + \beta_{Ij}*(TIEAGE_{ij}) + \beta_{2j}*(TIEKIN_{ij}) + \beta_{3j}*(TIECOWOR_{ij}) + \beta_{4j}*(STRANS\_N_{ij}) + \\ & \beta_{5j}*(TIEHOUS_{ij}) + \beta_{6j}*(HETFEMAL_{ij}) + \beta_{7j}*(HETMIGR_{ij}) + \beta_{8j}*(HETRACE_{ij}) + \beta_{9j}*(HETEDUC_{ij}) + \delta_{3} \\ & \log[ \ \ ^*{}_{4ij}/(1 \ - \ \ ^*{}_{4ij})] = \beta_{0j} + \beta_{Ij}*(TIEAGE_{ij}) + \beta_{2j}*(TIEKIN_{ij}) + \beta_{3j}*(TIECOWOR_{ij}) + \beta_{4j}*(STRANS\_N_{ij}) + \\ & \beta_{5j}*(TIEHOUS_{ij}) + \beta_{6j}*(HETFEMAL_{ij}) + \beta_{7j}*(HETMIGR_{ij}) + \beta_{8j}*(HETRACE_{ij}) + \beta_{9j}*(HETEDUC_{ij}) + \delta_{4} \end{split}
```

Level-2 Model

```
\begin{split} \beta_{0j} &= \gamma_{00} + \gamma_{01}*(MENTION_j) + \gamma_{02}*(NETSIZE_j) + \gamma_{03}*(EFEMALE_j) + \gamma_{04}*(EAGE_j) \\ &+ \gamma_{05}*(ERACED_j) + \gamma_{06}*(EEDUCD_j) + \gamma_{07}*(PARTNERE_j) + \gamma_{08}*(NONCITIZ_j) \\ &+ \gamma_{09}*(ELIVEDTH_j) + \gamma_{010}*(E1_j) + \gamma_{011}*(E4_j) + \gamma_{012}*(E5_j) \\ &+ \gamma_{013}*(E6_j) + \gamma_{014}*(E7_j) + \gamma_{015}*(PROPPOLI_j) + \gamma_{016}*(PROPHOUS_j) + \gamma_{017}*(LCATHETE_j) \\ \beta_{1j} &= \gamma_{10} \\ \beta_{2j} &= \gamma_{20} \\ \beta_{3j} &= \gamma_{30} \\ \beta_{4j} &= \gamma_{40} + \gamma_{41}*(DENSITYD_j) \\ \beta_{5j} &= \gamma_{50} \\ \beta_{6j} &= \gamma_{60} \\ \beta_{7j} &= \gamma_{70} + \gamma_{71}*(NONCITIZ_j) + \gamma_{72}*(PROPKIN_j) + \gamma_{73}*(PHETMIGR_j) \\ \beta_{8j} &= \gamma_{80} \\ \beta_{9j} &= \gamma_{90} \\ \delta_{2} &= \delta_{3} &= \delta_{4} \end{split}
```

TIEAGE TIEKIN TIECOWOR STRANS_N TIEHOUS HETFEMAL HETMIGR HETRACE HETEDUC have been centered around the grand mean.

Final Results for Ordinal Iteration 8

Final estimation of fixed effects:

Fixed Effect	Coefficient	Standard error	<i>t</i> -ratio	Approx. d.f.	<i>p</i> -value	
For INTRCPT1 slope, β_0)						
INTRCPT2, γ_{00}	-6.146569	0.373901	-16.439	2572	< 0.001	
MENTION, γ_{01}	-0.148414	0.033293	-4.458	2572	< 0.001	
NETSIZE, γ_{02}	0.093823	0.058549	1.602	2572	0.109	
EFEMALE, γ_{03}	0.063452	0.079533	0.798	2572	0.425	
EAGE, γ_{04}	-0.002713	0.003108	-0.873	2572	0.383	
ERACED, γ_{05}	0.084040	0.094134	0.893	2572	0.372	
EEDUCD, γ_{06}	-0.003705	0.095606	-0.039	2572	0.969	
PARTNERE, γ_{07}	-0.110048	0.083820	-1.313	2572	0.189	
NONCITIZ, γ_{08}	-0.024341	0.193586	-0.126	2572	0.900	
ELIVEDTH, γ_{09}	0.000182	0.002428	0.075	2572	0.940	
E1, γ_{010}	-0.271186	0.047421	-5.719	2572	< 0.001	
E4, γ_{011}	-0.123810	0.108244	-1.144	2572	0.253	
E5, γ_{012}	0.545318	0.156475	3.485	2572	< 0.001	
E6, γ_{013}	-0.218204	0.127897	-1.706	2572	0.088	
E7, γ_{014}	0.196998	0.191350	1.030	2572	0.303	
PROPPOLI, γ_{015}	5.402124	0.154625	34.937	2572	< 0.001	
PROPHOUS, γ_{016}	-1.227008	0.243030	-5.049	2572	< 0.001	
LCATHETE, γ_{017}	0.295446	0.140538	2.102	2572	0.036	

For TIEAGE slope, β_I						
INTRCPT2, γ_{10}	0.001596	0.003067	0.520	2572	0.603	
For TIEKIN slope, β_2						
INTRCPT2, γ_{20}	0.078156	0.116072	0.673	2572	0.501	
For TIECOWOR slop	e, β_3					
INTRCPT2, γ_{30}	0.801696	0.120724	6.641	2572	< 0.001	
For STRANS_N slope	ϵ, β_4					
INTRCPT2, γ_{40}	0.188197	0.049864	3.774	2572	< 0.001	
DENSITYD, γ_{41}	-0.236680	0.075686	-3.127	2572	0.002	
For TIEHOUS slope,	\mathcal{B}_5					
INTRCPT2, γ_{50}	1.757500	0.153607	11.442	2572	< 0.001	
For HETFEMAL slop	e, β_6					
INTRCPT2, γ_{60}	0.095613	0.088501	1.080	2572	0.280	
For HETMIGR slope,	β_7					
INTRCPT2, γ_{70}	0.840176	0.319766	2.627	2572	0.009	
NONCITIZ, γ_{71}	0.511631	0.404409	1.265	2572	0.206	
PROPKIN, γ_{72}	-0.799921	0.334450	-2.392	2572	0.017	
PHETMIGR, γ_{73}	-1.131478	0.435797	-2.596	2572	0.009	
For HETRACE slope, β_8						
INTRCPT2, γ_{80}	-0.355612	0.131991	-2.694	2572	0.007	
For HETEDUC slope, β_9						
INTRCPT2, γ_{90}	-0.020355	0.089944	-0.226	2572	0.821	
For THOLD2,						
δ_2	2.185272	0.076618	28.522	2572	< 0.001	
For THOLD3,						
δ_3	4.786226	0.110346	43.375	2572	< 0.001	
For THOLD4,	- 10 1 =	0.4050.55	4	2	0.001	
δ_4	6.405545	0.137267	46.665	2572	< 0.001	

Fixed Effect	Coefficient	Odds	Confidence			
Tixeu Effect	Coefficient	Ratio	Interval			
For INTRCPT1 slope, β_0)						
INTRCPT2, γ_{00}	-6.146569	0.002141	(0.001, 0.004)			
MENTION, γ_{01}	-0.148414	0.862074	(0.808, 0.920)			
NETSIZE, γ_{02}	0.093823	1.098365	(0.979, 1.232)			
EFEMALE, γ_{03}	0.063452	1.065508	(0.912, 1.245)			
EAGE, γ_{04}	-0.002713	0.997291	(0.991, 1.003)			
ERACED, γ_{05}	0.084040	1.087672	(0.904, 1.308)			
EEDUCD, γ_{06}	-0.003705	0.996302	(0.826, 1.202)			
PARTNERE, γ_{07}	-0.110048	0.895791	(0.760, 1.056)			
NONCITIZ, γ_{08}	-0.024341	0.975953	(0.668, 1.426)			
ELIVEDTH, γ_{09}	0.000182	1.000182	(0.995, 1.005)			
E1, γ_{010}	-0.271186	0.762475	(0.695, 0.837)			
E4, γ_{011}	-0.123810	0.883547	(0.715, 1.092)			
E5, γ_{012}	0.545318	1.725156	(1.270, 2.344)			
E6, γ_{013}	-0.218204	0.803961	(0.626, 1.033)			
E7, γ_{014}	0.196998	1.217741	(0.837, 1.772)			
PROPPOLI, γ_{015}	5.402124	221.877289	(163.868,300.423)			
PROPHOUS, γ_{016}	-1.227008	0.293168	(0.182, 0.472)			
LCATHETE, γ_{017}	0.295446	1.343725	(1.020, 1.770)			

For TIEAGE slope, β	1							
INTRCPT2, γ_{10}	0.001596	1.001597	(0.996, 1.008)					
For TIEKIN slope, β_2	?		, , ,					
INTRCPT2, γ_{20}	0.078156	1.081291	(0.861, 1.358)					
For TIECOWOR slop	be, β_3		,					
INTRCPT2, γ_{30}	0.801696	2.229319	(1.760, 2.824)					
For STRANS_N slop	e, β_4							
INTRCPT2, γ_{40}	0.188197	1.207071	(1.095, 1.331)					
DENSITYD, γ_{41}	-0.236680	0.789244	(0.680, 0.915)					
For TIEHOUS slope,	β_5							
INTRCPT2, γ_{50}	1.757500	5.797924	(4.291,7.835)					
For HETFEMAL slop	pe, β_6							
INTRCPT2, γ_{60}	0.095613	1.100334	(0.925, 1.309)					
For HETMIGR slope.	For HETMIGR slope, β_7							
INTRCPT2, γ_{70}	0.840176	2.316774	(1.238,4.336)					
NONCITIZ, γ_{71}	0.511631	1.668010	(0.755, 3.685)					
PROPKIN, γ_{72}	-0.799921	0.449365	(0.233, 0.866)					
PHETMIGR, γ_{73}	-1.131478	0.322556	(0.137, 0.758)					
For HETRACE slope, β_8								
INTRCPT2, γ_{80}	-0.355612	0.700744	(0.541, 0.908)					
For HETEDUC slope, β_9								
INTRCPT2, γ_{90}	-0.020355	0.979850	(0.821, 1.169)					
For THOLD2,								
δ_2	2.185272	8.893071	(7.653, 10.334)					
For THOLD3,								
δ_3	4.786226	119.848232	(96.539,148.785)					
For THOLD4,	< 405545	605 101644	(460, 400, 700, 000)					
δ_4	6.405545	605.191644	(462.433,792.022)					

Final estimation of fixed effects (with robust standard errors)

Fixed Effect	Coefficient	Standard	t-ratio	Approx.	<i>p</i> -value	
Tixed Effect	Cocificient	error	<i>t</i> -1atio	d.f.	p-varue	
For INTRCPT1 slope, β_0)						
INTRCPT2, γ_{00}	-6.146569	0.374064	-16.432	2572	< 0.001	
MENTION, γ_{01}	-0.148414	0.033948	-4.372	2572	< 0.001	
NETSIZE, γ_{02}	0.093823	0.060169	1.559	2572	0.119	
EFEMALE, γ_{03}	0.063452	0.079731	0.796	2572	0.426	
EAGE, γ_{04}	-0.002713	0.003108	-0.873	2572	0.383	
ERACED, γ_{05}	0.084040	0.095021	0.884	2572	0.377	
EEDUCD, γ_{06}	-0.003705	0.097970	-0.038	2572	0.970	
PARTNERE, γ_{07}	-0.110048	0.085063	-1.294	2572	0.196	
NONCITIZ, γ_{08}	-0.024341	0.201671	-0.121	2572	0.904	
ELIVEDTH, γ_{09}	0.000182	0.002432	0.075	2572	0.940	
E1, γ_{010}	-0.271186	0.048166	-5.630	2572	< 0.001	
E4, γ_{011}	-0.123810	0.106986	-1.157	2572	0.247	
E5, γ_{012}	0.545318	0.171063	3.188	2572	0.001	
E6, γ_{013}	-0.218204	0.130075	-1.678	2572	0.094	

E7, γ_{014}	0.196998	0.205095	0.961	2572	0.337	
PROPPOLI, γ_{015}	5.402124	0.137378	39.323	2572	< 0.001	
PROPHOUS, γ_{016}	-1.227008	0.253809	-4.834	2572	< 0.001	
LCATHETE, γ_{017}	0.295446	0.139899	2.112	2572	0.035	
For TIEAGE slope, β	!					
INTRCPT2, γ_{10}	0.001596	0.003007	0.531	2572	0.596	
For TIEKIN slope, β_2						
INTRCPT2, γ_{20}	0.078156	0.117387	0.666	2572	0.506	
For TIECOWOR slop	e, β_3					
INTRCPT2, γ_{30}	0.801696	0.125970	6.364	2572	< 0.001	
For STRANS_N slope	ϵ, β_4					
INTRCPT2, γ_{40}	0.188197	0.052886	3.559	2572	< 0.001	
DENSITYD, γ_{41}	-0.236680	0.079253	-2.986	2572	0.003	
For TIEHOUS slope,	eta_5					
INTRCPT2, γ_{50}	1.757500	0.160370	10.959	2572	< 0.001	
For HETFEMAL slop	e, β_6					
INTRCPT2, γ_{60}	0.095613	0.091020	1.050	2572	0.294	
For HETMIGR slope,	β_7					
INTRCPT2, γ_{70}	0.840176	0.300642	2.795	2572	0.005	
NONCITIZ, γ_{71}	0.511631	0.413952	1.236	2572	0.217	
PROPKIN, γ_{72}	-0.799921	0.306586	-2.609	2572	0.009	
PHETMIGR, γ_{73}	-1.131478	0.409889	-2.760	2572	0.006	
For HETRACE slope, β_8						
INTRCPT2, γ_{80}	-0.355612	0.135108	-2.632	2572	0.009	
For HETEDUC slope,	eta_9					
INTRCPT2, γ_{90}	-0.020355	0.090980	-0.224	2572	0.823	
For THOLD2,						
δ_2	2.185272	0.075578	28.914	2572	< 0.001	
For THOLD3,						
δ_3	4.786226	0.101983	46.932	2572	< 0.001	
For THOLD4,						
δ_4	6.405545	0.141060	45.410	2572	< 0.001	