VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL

Variável Aleatória

Uma função X que associa a cada elemento ω do espaço amostral Ω um valor $x \in R$ é denominada uma variável aleatória.

Experimento: jogar 1 dado duas vezes e observar o resultado (P = par e I = impar)

Variável Aleatória

Uma variável aleatória pode ser classificada em:

- Variável aleatória discreta
- Variável aleatória contínua

Exemplos:

1) Observa-se o sexo (característica) das crianças em famílias com três filhos (M: masculino e F: feminino).

Espaço amostral:

$$\Omega = \{ (MMM), (MMF), (MFM), (FMM), (MFF), (FMF), (FFM), (FFF) \}$$

$$\omega_1 \qquad \omega_2 \qquad \omega_3 \qquad \omega_4 \qquad \omega_5 \qquad \omega_6 \qquad \omega_7 \qquad \omega_8$$

Defina X: n°. de crianças do sexo masculino (M).

Ω	MMM	MMF	MFM	FMM	MFF	FMF	FFM	FFF	
\overline{X}	3	2	2	2	1	1	1	0	

→ Então X assume valores no conjunto {0, 1, 2, 3}, logo é uma variável aleatória discreta.

Variável Aleatória

Uma variável aleatória pode ser classificada em:

Variável aleatória discreta

Uma v.a. é discreta quando o conjunto de valores possíveis que ela assume for finito ou infinito enumerável.

Exemplos:

1) No mesmo experimento...

Espaço amostral:

$$\Omega = \{ (MMM), (MMF), (MFM), (FMM), (MFF), (FMF), (FFM), (FFF) \}$$

$$\omega_1 \qquad \omega_2 \qquad \omega_3 \qquad \omega_4 \qquad \omega_5 \qquad \omega_6 \qquad \omega_7 \qquad \omega_8$$

Podemos definir agora

Y: n°. de crianças do sexo feminino (F).

Ω	MMM	MMF	MFM	FMM	MFF	FMF	FFM	FFF
\overline{Y}	0	1	1	1	2	2	2	3

 \rightarrow Então Y também assume valores no conjunto {0, 1, 2, 3}, porém, para outros valores de Ω .

Exemplos:

2) Observar o tempo de vida, em horas, de lâmpadas produzidas por uma fábrica.

Defina *T*: tempo de vida, em horas, da lâmpada escolhida, ao acaso, da fábrica.

 \rightarrow Então, T é uma variável aleatória contínua que assume qualquer valor real não negativo.

Variável Aleatória

Uma variável aleatória pode ser classificada em:

Variável aleatória contínua

Uma v.a. é contínua quando o conjunto de valores possíveis que ela assume for não enumerável.

VARIÁVEL ALEATÓRIA DISCRETA

Caracterização

Função de probabilidade: É a função que atribui a cada valor x_i da v. a. discreta X sua probabilidade de ocorrência e pode ser representada pela tabela:

Uma função de probabilidade deve satisfazer:

$$0 \le P(X = x_i) \le 1$$
 $\sum_{i=1}^{n} P(X = x_i) = 1$

Exemplo 1:

O Departamento de Estatística é formado por 35 professores, sendo 21 homens e 14 mulheres. Uma comissão de 3 professores será constituída sorteando, ao acaso, três membros do departamento.

Qual é a probabilidade da comissão ser formada por pelo menos duas mulheres?

Vamos definir a v.a.

X: nº. de mulheres na comissão.

Quais são os possíveis valores que X pode assumir?

Espaço ar	nostral	Probabilio	dade	\boldsymbol{X}
(ННН	l)	$\frac{21}{35} \times \frac{20}{34} \times \frac{20}{34}$	0	
(HHM	1)		$\frac{14}{33} = 0,150$	1
(HMH)	1)	$\frac{21}{35} \times \frac{14}{34} \times \cdots$	$\frac{20}{33} = 0,150$	1
(МНЬ	1)		$\frac{20}{33} = 0,150$	1
(HMN	/ I)	$\frac{21}{35} \times \frac{14}{34} \times$	$\frac{13}{33} = 0,097$	2
(MHN	1)		$\frac{13}{33} = 0.097$	2
(MMH	H)	$\frac{14}{35} \times \frac{13}{34} \times$	$\frac{21}{33} = 0,097$	2
(MMI)	VI)		$\frac{12}{33} = 0,056$	3
\mathcal{X}	0	1	2	3
P(X=x)	0,203	0,450	0,291	0,056

Assim, $P(X \ge 2) = P(X=2) + P(X=3) = 0.291 + 0.056 = 0.347$.

Exemplo 2: Um dado é lançado duas vezes, de forma independente. Qual é a probabilidade da soma dos pontos nos dois lançamentos ser menor do que 6?

$$\Omega = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}.$$

Qual é a probabilidade de cada ponto w_i de Ω ?

Admitindo-se que o dado seja perfeitamente homogêneo e sendo os lançamentos independentes,

$$P(w_i) = 1/36$$
, qualquer $w_i \in \Omega$.

Defina *X*: soma dos pontos nos dois lançamentos do dado.

Função de probabilidade de X:

Então,

$$P(X < 6) = P(X=5) + P(X=4) + P(X=3) + P(X=2)$$

= 4/36 + 3/36 + 2/36 + 1/36
= 10/36 = 0,278

X: Soma dos pontos nos dois lançamentos

		2º. lançamento						
		1	2	3	4	5	6	
1º. Lan ça- men- to	1	2	3	4	5	6	7	
	2	3	4	5	6	7	8	
	3	4	5	6	7	8	9	
	4	5	6	7	8	9	10	
	5	6	7	8	9	10	11	
	6	7	8	9	10	11	12	

Y: valor máximo obtido dentre os dois lançamentos.

			2°.	lan	çam	ento)
		1	2	3	4	5	6
1º. Lan ça- men-	1	1	2	3	4	5	6
	2	2	2	3	4	5	6
	3	3	3	3	4	5	6
	4	4	4	4	4	5	6
to	5	5	5	5	5	5	6
	6	6	6	6	6	6 ¹	⁴ 6

Podemos estar interessados em outras variáveis aleatórias definidas para o mesmo espaço amostral.

Y: valor máximo obtido dentre os dois lançamentos.

Z: diferença entre os pontos do 2°. e do 1°. lançamento.

Z	-5	-4	-3	- 2	-1	0	1	2	3	4	5
P(Z=z)	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

VALOR ESPERADO E VARIÂNCIA

Qual é o valor médio da soma dos pontos (X) no lançamento de dois dados? $\Omega = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6),$

(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)

⇒ 36 pontos igualmente prováveis

x	P(X = x)
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	3/36
12	1/36

VALOR ESPERADO E VARIÂNCIA

Valor Esperado ("média"): Dada a v.a. X, assumindo os valores $x_1, x_2, ..., x_n$, chamamos de *valor médio*, ou *valor esperado*, ou *esperança matemática* da distribuição de X o valor

$$E(X) = x_1 \times P(X = x_1) + ... + x_n \times P(X = x_n) = \sum_{i=1}^{n} x_i \times P(X = x_i)$$

Notação: $\mu = E(X)$

No exemplo, para média de X (soma de pontos), temos:

$$E(X) = 2 \times (1/36) + 3 \times (2/36) + ... + 11 \times (2/36) + 12 \times (1/36)$$

= 252/36 = 7,

ou seja, em média, a soma dos pontos no lançamento dos dois dados é igual a 7.

Variância: É o valor esperado da v.a. $(X - E(X))^2$, ou seja, se X assume os valores $x_1, x_2, ..., x_n$, então

$$Var(X) = \sum_{i=1}^{n} [x_i - E(X)]^2 \times P(X = x_i)$$

Notação: $\sigma^2 = Var(X)$.

Da relação acima, segue que

$$Var(X) = E(X^2) - [E(X)]^2$$
.

Desvio Padrão: É definido como a raiz quadrada positiva da variância, isto é,

$$DP(X) = \sqrt{Var(X)}$$
.

Notação: $\sigma = DP(X)$.

No exemplo,

$$Var(X) = (2-7)^{2} \times \frac{1}{36} + (3-7)^{2} \times \frac{2}{36} + \dots + (11-7)^{2} \times \frac{2}{36} + (12-7)^{2} \times \frac{1}{36}$$
$$= \frac{210}{36} = 5,83.$$

Alternativamente, poderíamos calcular

$$E(X^{2}) = 2 \times \frac{1}{36} + 3^{2} \times \frac{2}{36} + \dots + 11^{2} \times \frac{2}{36} + 12^{2} \times \frac{1}{36}$$
$$= \frac{1974}{36} = 54,83$$

e, portanto, $Var(X) = 54,83 - 7^2 = 5,83$.

Propriedades:

e

1) Se P(X = a) = 1, então

$$E(X) = a$$
 e $Var(X) = 0$.

2) Se Y = aX + b, em que a e b são constantes, então

$$E(Y) = E(aX + b) = aE(X) + b$$

 $Var(Y) = Var(aX + b) = a^2 Var(X).$

- MODELOS PROBABILÍSTICOS DISCRETOS -

Modelo de Bernoulli ou Binário

Na prática, existem muitos experimentos que admitem apenas dois resultados.

Exemplos:

- uma peça é classificada como boa ou defeituosa;
- o resultado de um exame médico para detecção de uma doença é positivo ou negativo;
- um paciente submetido a um tratamento, durante um período de tempo fixo, cura-se ou não da doença;
- um entrevistado concorda ou não com a afirmação feita;
- no lançamento de um dado ocorre ou não a face "5".

Situações com alternativas *dicotômicas* podem ser representadas, genericamente, por respostas do tipo sucesso-fracasso.

Esses experimentos recebem o nome de *Ensaios de Bernoulli* e originam uma v.a. com <u>distribuição de</u> *Bernoulli*.

Variável aleatória de Bernoulli: É uma v.a. que assume apenas dois valores:

- 1 se ocorrer sucesso,
- 0 se ocorrer fracasso.

Geralmente, a probabilidade de sucesso é representada por p, 0 .

" $X \sim Bernoulli (p)$ " indica uma v.a. com distribuição de Bernoulli com parâmetro p, isto é,

$$X = \begin{cases} 1, \text{ se ocorrer "sucesso"} \\ 0, \text{ se ocorrer "fracasso"} \end{cases}$$

e sua função de probabilidade pode ser representada pela tabela

$$X$$
 1 0 $P(X=x)$ p 1 - p

Segue que

$$E(X) = p,$$

$$Var(X) = p(1 - p).$$

→ Repetições independentes de um ensaio de Bernoulli, com a mesma probabilidade de ocorrência de "sucesso", dão origem ao *modelo de probabilidade binomial.*

Modelo Binomial

Exemplo: Um dado equilibrado é lançado 3 vezes. Qual é a probabilidade de se <u>obter a face 5 duas vezes</u>?

Denotamos,

S: "sucesso", ocorrer face 5;

F: "fracasso", não ocorrer face 5.

É fácil ver que
$$p = P(sucesso) = 1/6$$
 e $q = 1 - p = P(fracasso) = 5/6$

 $\Omega = \{SSS, SSF, SFS, FSS, SFF, FSF, FFS, FFF\}$

Estamos interessados no número total de sucessos que, no caso, é o <u>número de vezes que a face 5 é observada</u> nos 3 lançamentos do dado.

A função de probabilidade de X é dada por:

Probabilidades binomiais para n = 3 e P(S) = p

nº. de sucessos	probabilidades	p = 1/6	\Rightarrow
0	q^3	125/216=0,5787	
1	$3pq^2$	75/216=0,3472	
2	$3p^2q$	15/216=0,0694	
3	p^3	1/216=0,0046	

Podemos escrever essa função como

$$P(X = k) = {3 \choose k} p^k q^{3-k}$$
, $k = 0, 1, 2, 3$.

No exemplo, para n = 3 e p = 1/6, P(X = 2) = 0.0694.

Distribuição binomial:

A v.a. X correspondente ao número de sucessos em n ensaios de Bernoulli independentes e com mesma probabilidade p de sucesso, tem <u>distribuição binomial</u> com parâmetros n e p.

Sua função de probabilidade é dada por

$$P(X=k) = {n \choose k} p^k (1-p)^{n-k}, k = 0, 1, ..., n.$$

Notação: $X \sim b(n; p)$.

Resultado: Se $X \sim b(n; p)$, então

valor esperado: $\mu = E(X) = n \times p$

variância: $\sigma^2 = Var(X) = n \times p \times (1-p)$

Exemplo utilizando o R:

Considere uma prova com 12 questões, cada uma com 4 alternativas. Suponha que o aluno escolha a resposta ao acaso. Qual é a probabilidade de que ele *acerte pelo menos 6 questões*?

X: nº. de questões que o aluno acertará

$$X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 \text{ ou } 12\}$$

$$X \sim b(12; 0.25)$$
 $P(X = x) = {12 \choose x} 0.25^{x} (1 - 0.25)^{12 - x}$


```
74 R Commander
File Edit Data Statistics Graphs Models Distributions Tools Help
                                         X
                                                  Model: <No active model>
 74 Binomial Probabilities
                  Binomial trials 12
                                              1=FALSE)
                                              1=FALSE)
             Probability of success 0.25
                                              1=FALSE)
        OK
                   Cancel
                                    Help
                                              1=FALSE)
                                              1=FALSE)
                                         12, prob=0.25))
 rownames(.Table) <- 0:12
 .Table
 remove(.Table)
 Output Window
 > rownames(.Table) <- 0:12
 > .Table
               Pr
 0 3.167635e-02
 1 1.267054e-01
 2 2.322932e-01
 3 2.581036e-01
 4 1.935777e-01
 5 1.032414e-01
 6 4.014945e-02
 7 1.147127e-02
 8 2.389848e-03
 9 3.540516e-04
 10 3.540516e-05
 11 2.145767e-06
 12 5.960464e-08
 > remove(.Table)
 Messages
 [2] WARNING: The Windows version of the R Commander works best under RGui
 with the single-document interface (SDI); see ?Commander.
```

```
7 R Commander
File Edit Data Statistics Graphs Models Distributions Tools Help
R Data set: <No active dataset>
                                                 Model: <No active model>
                            Edit data set | View data set
 Script Window
 rownames(.Table) <- 0:12
 .Table
 remove(.Table)
 pbinom(c(6), size=12, prob=0.25, lower.tail=TRUE)
 pbinom(c(6), size=12, prob=0.25, lower.tail=FALSE)
 .Table <- data.frame(Pr=dbinom(0:12, size=12, prob=0.25))
 rownames(.Table) <- 0:12
 .Table
 remove(.Table)
 Output Window
 > rownames(.Table) <- 0:12
 > .Table
              Pr
 0 3.167635e-02
 1 1.267054e-01
 2 2.322932e-01
 3 2.581036e-01
 4 1.935777e-01
 5 1.032414e-01
 6 4.014945e-02
 7 1.147127e-02
 8 2.389848e-03
 9 3.540516e-04
 10 3.540516e-05
 11 2.145767e-06
 12 5.960464e-08
> remove(.Table)
 Messages
 [2] WARNING: The Windows version of the R Commander works best under RGui
with the single-document interface (SDI); see ?Commander.
```

> .Table

Pr

- 0 3.167635e-02
- 1 1.267054e-01
- 2 2.322932e-01
- 3 2.581036e-01
- 4 1.935777e-01
- 5 1.032414e-01
- 6 4.014945e-02
- 7 1.147127e-02
- 8 2.389848e-03
- 9 3.540516e-04
- 10 3.540516e-05
- 11 2.145767e-06
- 12 5.960464e-08

Portanto,

$$P(X \ge 6) = 0.0544.$$

Temos
$$E(X) = n \times p = 12 \times 0.25 = 3$$
,

ou seja, *em média*, o aluno que responder ao acaso todas as questões acertará 3.

