MACM 316 Lecture 14

Alexander Ng

Wednesday, February 5, 2025

Lemma If the spectral radius $\rho(T)$ satisfies $\rho(T) < 1$ then $(I - T)^{-1} = I + T + T^2 + \dots$

And we will prove the following theorem:

Thm. For any $x^{(0)} \in \mathbb{R}^n$, $\{x^{(k)}\}_{k=0}^{\infty}$ the sequence defined by

$$x^{(k)} = Tx^{(k-1)} + c$$

converges to the unique solution of

$$x = Tx + c$$
 if and only if $\rho(T) < 1$

Proof (\iff): assume $\rho(T) < 1$

$$x^{(k)} = Tx^{(k-1)} + c$$

$$= T(Tx^{(k-2)} + c) + c$$

$$= T^{2}x^{(k-2)} + (T+I)c$$

$$\vdots$$

$$= T^{k}x^{(0)} + (T^{k-1} + \dots + T+I)c$$

Since $\rho(T) < 1$, the matrix T is convergent and

$$\lim_{k \to \infty} T^k x^{(0)} = 0$$

Proof (\Longrightarrow)

HAS NOT BEEN WRITTEN DOWN YET

The **Lemma** implies that

$$\lim_{k \to \infty} x^{(k)} = \lim_{k \to \infty} T^k x^{(0)} + \lim_{k \to \infty} \left(\sum_{j=0}^{k-1} T^j \right) c = 0 + (1 - T)^{-1} c$$

 $\Longrightarrow \{x^{(k)}\}$ converges to the unique solution of x=Tx+c i.e. $(I-T)x=c \implies x=(I-T)^{-1}c$

i.e.
$$(I - T)x = c \implies x = (I - T)^{-1}c$$

This allows us to derive some related results on the rates of convergence.

Corollary: If ||T|| < 1 for any natural matrix norm and c is a given vector, then the sequence $\{x^{(k)}\}_{k=0}^{\infty}$ defined by

$$x^{(k)} = Tx^{(k-1)} + c$$

converges for any $x^{(0)} \in \mathbb{R}^n$ to a vector $x \in \mathbb{R}^n$ and the following error bounds hold:

(i)
$$||x - x^{(k)}|| \le ||T|^k||x^{(0)} - x||$$

(ii)
$$||x - x^{(k)}|| \le \frac{||T||^k}{-||T||} ||x^{(1)} - x^{(0)}||$$

Note, however, that $\rho(A) \leq ||A||$ for any natural norm. In practice,

$$||x - x^{(k)}|| \approx \rho(T)^k ||x^{(0)} - x||$$

so it is desirable to have $\rho(T)$ as small as possible.

Some results for Jacobi's and Gauss-Seidel methods:

Thm. If A is strictly diagonally dominant, then for any choice of $x^{(0)}$, both the Jacobi and Gauss-Seidel methods give sequences $\{x^{(k)}\}_{k=0}^{\infty}$ that converge to the unique solution of Ax = b.

No general results exist tot tell which of the two methods will converge more quickly, but the following result applies in a variety of examples:

Thm. Stein Rosenberge

If $a_{ij} \leq 0$ for each $i \neq j$ and $a_{ii} > 0$ for each i = 1, 2, ..., n, then exactly one of the following holds.

(a)
$$0 \le \rho(T_g) < \rho(T_j) < 1$$

1 Successive Over-Relaxation (SOR)

To define, suppose $\tilde{x}^{(k+1)}$ is the iterate from Gauss-Seidel using $x^{(k)}$ as the initial guess. The $(k+1)^{st}$ iterate of SOR is defined by

$$x^{(k+1)} = \omega \tilde{x}^{(k)} + (1 - \omega)x^{(k)}$$

where $1 < \omega < 2$. It can be difficult to select ω optimally. Indeed, the answer to this question is not known for general $n \times n$ linear systems.

However, we do have the following results:

Thm. (kahan): If $a_{ii} \neq 0$ for each i, then

$$\rho(T_{SOR}) \ge |\omega - 1|$$

 \implies SOR can converge only if $0 < \omega < 2$

Thm. (ostrowski-reich): If A is a positive definite matrix and $0 < \omega < 2$, then the SOR method converges for any choice of initial approximate vector $x^{(0)}$

Thm. If A is positive definite and tridiagonal, then

$$\rho(T_q) = \rho(T_i)$$

 $^{2} < 1$

and the optimal choice of ω for the SOR method is

$$\omega = \frac{2}{1 + \sqrt{1 - \rho(T_j)^2}}$$

with this choice of ω , we have $\rho(T_{SOR}) = \omega - 1$