METODE MABAC

(Multi-Attributibutive Border Aproximation area Comparison)

Saifur Rohman Cholil, S.Kom., M.Kom.

- ☐ Metode MABAC dapat menangani masalah pengambilan keputusan yang kompleks dan tidak pasti dengan menghitung jarak antara setiap alternatif dan *Bored Approximation Area* (BAA) (Wang et al., 2020).
- MABAC memiliki proses komputasi yang sederhana, prosedur yang sistematis, dan logika yang sehat yang mewakili rasional dari pengambilan keputusan manusia (Xue et al., 2016).

- ☐ Metode MABAC dapat digunakan untuk membuat hasil secepat mungkin dengan menghitung nilai keuntungan dan kerugian potensial (Liang et al., 2019).
- Metode MABAC stabil dan handal dibandingkan dengan metode SAW, COPRAS, MOORA, TOPSIS dan VIKOR (Ndruru et al., 2020).

1. Membuat Matriks Keputusan Awal (X)

Pada langkah ini adanya evaluasi alternatif dengan kriteria dimana alternatif disajikan dalam bentuk vektor.

$$X = A_1 \quad C_1 \quad \cdots \quad C_n$$

$$X = A_3 \begin{pmatrix} X_{11} & \cdots & X_{mn} \\ X_{21} & \cdots & X_{mn} \\ X_{1m} & \cdots & X_{mn} \end{pmatrix}$$

Dimana m adalah nomor alternatif, n adalah jumlah total kriteria.

2. Normalisasi elemen matriks awal (N) Jenis Kriteria Benefit:

$$t_{ij} = \frac{X_{ij} - X_i^-}{X_i^+ - X_i^-}$$

Jenis Kriteria Cost:

$$t_{ij} = \frac{X_{ij} - X_i^+}{X_i^- - X_i^+}$$

 x_i^+ = max (x1, x2, x3, ..., xm) mewakili nilai maksimum dari kriteria yang diamati oleh alternatif

 x_i^- = min (x1, x2, x3, ..., xm) mewakili nilai minimum dari kriteria yang diamati oleh alternatif.

$$V_{ij} = (W_i \times t_{ij}) + W_i$$

Keterangan:

 w_i = menyajikan koefisien bobot kriteria

 t_{ij} = menyajikan elemen matriks yang dinormalisasi (N)

4. Penentuan matriks area perkiraan perbatasan (G)

$$g_i = \left[\prod_{j=1}^m V_{ij}\right]^{\frac{1}{m}}$$

 V_{ij} = menampilkan elemen matriks tertimbang/berbobot (V)

m = menyajikan jumlah total alternatif.

Setelah menghitung nilai-nilai g_i berdasarkan kriteria, itu membentuk matriks daerah perkiraan perbatasan G dalam bentuk n x 1 ("n" menyajikan jumlah total kriteria yang dilakukan pemilihan alternatif yang ditawarkan).

$$Q = V - G$$

V = elemen matriks tertimbang

G = matriks area perkiraan perbatasan

Alternatif Ai dapat termasuk ke area perkiraan perbatasan (G), area perkiraan atas (G+) atau area perkiraan lebih rendah (G-), Daerah perkiraan atas (G+) menyajikan area di mana alternatif ideal terletak (A+), sedangkan area perkiraan yang lebih rendah (G-) menyajikan area di mana alternatif anti-ideal berada (A-).

6. Perangkingan Alternatif (S).

Perangkingan dilakukan dengan melihat hasil dari perhitungan jumlah akhir dari daerah perkiraan perbatasan (Q), dimana nilai tertinggi menjadi rangking 1 dan seterusnya.

$$S_i = \sum_{j=1}^{n} Q_{ij}, j = 1, 2 \dots n, \qquad i = 1, 2 \dots m$$
 n = kriteria

m = alternatif

Contoh:

- ☐ Sebuah perusahaan akan melakukan rekrutmen kerja terhadap 5 calon pekerja untuk posisi operator mesin.
- ☐ Posisi yang dibutuhkan hanya 2 orang.
- ☐ Kriteria :
 - ✓ Pengalaman kerja (disimbolkan C1) → Benefit
 - ✓ Pendidikan (C2) → Benefit
 - ✓ Usia (C3) → Benefit
 - ✓ Status perkawinan (C4) → Cost
 - ✓ Alamat (C5) → Cost

☐ Pembobotan (w)

Kriteria	Bobot
C1	0,3
C2	0,2
C3	0,2
C4	0,15
C5	0,15
Total	1

- □ Ada lima orang yang menjadi kandidat (alternatif) yaitu :
 - ✓ Doni Prakosa (disimbolkan A1)
 - ✓ Dion Pratama (A2)
 - ✓ Dina Ayu Palupi(A3)
 - ✓ Dini Ambarwati (A4)
 - ✓ Danu Nugraha (A5)

☐ Penilaian alternatif untuk setiap kriteria

Alternatif	kriteria				
	C1	C2	C3	C4	C5
A1	0,5	1	0,7	0,7	0,8
A2	0,8	0,7	1	0,5	1
A3	1	0,3	0,4	0,7	1
A4	0,2	1	0,5	0,9	0,7
A5	1	0,7	0,4	0,7	1

Jawab:

1. Membuat matriks keputusan awal (X):

			•		` '
	0,5	1	0,7	0,7	0,8
	0,8	0,7	1	0,5	0,8 1 1 0,7
X =	1	0,3	0,4	0,7	1
	0,2	1	0,5	0,9	0,7
	1	0,7	0,4	0,7	1

Alternatif	kriteria				
	C1	C2	C3	C4	C5
A1	0,5	1	0,7	0,7	0,8
A2	0,8	0,7	1	0,5	1
А3	1	0,3	0,4	0,7	1
A4	0,2	1	0,5	0,9	0,7
A5	1	0,7	0,4	0,7	1

2. Normalisasi elemen matriks awal (X)
$$X_{i}^{+} = \{0,5; 0,8; 1; 0,2; 1\}$$

$$= 1$$

$$X_{i}^{-} = \{0,5; 0,8; 1; 0,2; 1\}$$

$$= 0,2$$
Vritorio C1

Kriteria C1: $t_{11} = \left(\frac{0.5 - 0.2}{1 - 0.2}\right) = 0.375$

 $t_{31} = \left(\frac{1-0.2}{1-0.2}\right) = 1$

 $t_{41} = \left(\frac{0,2-0,2}{1-0.2}\right) = 0$

 $t_{51} = \left(\frac{1 - 0.2}{1 - 0.2}\right) = 1$

Kriteria C1:

$$t_{11} = \left(\frac{0.5 - 0.2}{1 - 0.2}\right) = 0.375$$

$$t_{21} = \left(\frac{0.8 - 0.2}{1 - 0.2}\right) = 0.75$$

$$= 0.2$$
iteria C1:
$$= \left(\frac{0.5 - 0.2}{1 - 0.2}\right) = 0.375$$

$$0,9$$
 $0,$ $0,$ 1

Jenis Kriteria Untuk Benefit:
$$X_{i,i} - X_{i}$$

Jenis Kriteria Untuk Cost:

$$\frac{X_{ij} - X_i^+}{X_i^- - X_i^+}$$

$$\frac{X_i^+}{X_i^+}$$

$$t_{ij} = \frac{X_{ij}}{X_i^-}$$

$$t_{ij} = \frac{X_{ij} - X_{ij} - X_{ij}}{X_{i} - X_{ij}}$$

 $t_{42} = \left(\frac{1 - 0.3}{1 - 0.3}\right) = 1$

 $t_{52} = \left(\frac{0.7 - 0.3}{1 - 0.3}\right) = 0.571$

 $X_i^+ = \{1; 0,7; 0,3; 1; 0,7\}$

0,2 1 0,5 0,4 0,7 1

0,2 1 0,5 0,9 0,7

1 0,7 0,4 0,7 1

Jenis Kriteria Untuk Benefit:
$$t_{i,i} = \frac{X_{i,j} - X_i^{-}}{X_i}$$

Jenis Kriteria Untuk Cost: $t_{ij} = \frac{X_{ij} - X_i^+}{X_i^- - X_i^+}$

Jenis K
$$t_{ij} = \frac{X}{X}$$

 $t_{53} = \left(\frac{0.4 - 0.4}{1 - 0.4}\right) = 0$

 $X_i^+ = \{0.7; 1; 0.4; 0.5; 0.4\}$

Jenis Kriteria Untuk Benefit: $X_{ij} - X_{i}$

 $t_{ij} = \frac{X_{ij} - X_i^-}{X_i^+ - X_i^-}$ Jenis Kriteria Untuk Cost:

Jenis Kriteria Untuk Cost: $t_{ij} = \frac{X_{ij} - X_i^+}{X_i^- - X_i^+}$

 $X_i^+ = \{0,7; 0,5; 0,7; 0,9; 0,7\}$

0,2 1 0,5 0,9 0,7 1

Jenis Kriteria Untuk Benefit:
$$t_{ij} = \frac{X_{ij} - X_i^-}{X_i^+ - X_i^-}$$
Jenis Kriteria Untuk Cost:
$$t_{ij} = \frac{X_{ij} - X_i^+}{X_i^+ - X_i^-}$$

 $t_{45} = \left(\frac{0.7 - 1}{0.7 - 1}\right) = 1$

 $t_{55} = \left(\frac{1-1}{0.7-1}\right) = 0$

 $X_i^+ = \{0,8;1;1;0,7;1\}$

 $t_{ij} = \frac{X_{ij} - X_i^+}{X_i^- - X_i^+}$

$$X = \begin{bmatrix} 0.5 & 1 & 0.7 & 0.7 & 0.8 \\ 0.8 & 0.7 & 1 & 0.5 & 1 \\ 1 & 0.3 & 0.4 & 0.7 & 1 \\ 0.2 & 1 & 0.5 & 0.9 & 0.7 \\ 1 & 0.7 & 0.4 & 0.7 & 1 \end{bmatrix}$$

$$t_{ij} = \frac{X_{ij} - X_i^-}{X_i^+ - X_i^-}$$

Jenis Kriteria Untuk Cost:

Hasil normalisasi elemen matriks awal (N):

	0,375	1	0,5	0,5	0,667
	0,75	0,571	1	1	0
N =	1	0	0	0,5	0
	0	1	0,167	0	1
	1	0,571	0	0,5	0

Kriteria C1:

$$V_{11} = (0.3 \times 0.375) + 0.3 = 0.413$$

 $V_{21} = (0.3 \times 0.75) + 0.3 = 0.525$

$$V_{31} = (0.3 \times 1) + 0.3 = 0.6$$

$$V_{41} = (0.3 \times 0) + 0.3 = 0.3$$

$$V_{51} = (0.3 \times 1) + 0.3 = 0.6$$

(m_1, m_2))) · ···ι	
Keterangan:		
w. = menyajikan l	koefisien hohot kriteria	

 $V_{\cdot \cdot \cdot} = (W_{\cdot} \times t_{\cdot \cdot}) + W_{\cdot}$

 w_i = menyajikan koefisien bobot kriteria t_{ij} = menyajikan elemen matriks yang dinormalisas (N)

	(14)	5
	Kriteria	Bobot
	C1	0,3
	C2	0,2
	C3	0,2
	C4	0,15
	C5	0,15
Γο 276	1 0.5	05 0667

Kriteria C2:

$$V_{12} = (0,2 \times 1) + 0,2 = 0,4$$

 $V_{22} = (0,2 \times 0,571) + 0,2 = 0,314$
 $V_{32} = (0,2 \times 0) + 0,2 = 0,2$
 $V_{42} = (0,2 \times 1) + 0,2 = 0,4$
 $V_{52} = (0,2 \times 0,571) + 0,2 = 0,314$

Vritoria	Robet			
(N)				
t_{ij} = menyajikan elemen	matriks yang dinormalisasi			
w_i = menyajikan koefisien bobot kriteria				
Keterangan:				

	(14)	
	Kriteria	Bobot
	C1	0,3
	C2	0,2
	C3	0,2
	C4	0,15
	C5	0,15
Γ ₀ 375	1 0.5	0.5 0.667

 $V_{ii} = (W_i \times t_{ii}) + W_i$

Kriteria C3:

$$V_{13} = (0,2 \times 0,5) + 0,2 = 0,3$$

$$V_{23} = (0,2 \times 1) + 0,2 = 0,4$$

$$V_{33} = (0,2 \times 0) + 0,2 = 0,2$$

$$V_{43} = (0,2 \times 0,167) + 0,2 = 0,233$$

$$V_{53} = (0,2 \times 0) + 0,2 = 0,2$$

ı	
	(N)
	t_{ij} = menyajikan elemen matriks yang dinormalisasi
	w_i = menyajikan koefisien bobot kriteria
	Keterangan:
ı	

 $\overline{V_{ii}} = \overline{(W_i x t_{ii})} + W_i$

	(14)	5
	Kriteria	Bobot
	C1	0,3
	C2	0,2
	C3	0,2
	C4	0,15
	C5	0,15
Γ0 375	1 0.5	0.5 0.667

Kriteria C4:

$$V_{14} = (0.15 \times 0.5) + 0.15 = 0.225$$

$$V_{24} = (0.15 \times 1) + 0.15 = 0.3$$

 $V_{34} = (0.15 \times 0.5) + 0.15 = 0.225$

$$V_{44} = (0,15 \times 0) + 0,15 = 0,15$$

$$V_{44} = (0,15 \times 0) + 0,15 = 0,15$$

 $V_{54} = (0,15 \times 0,5) + 0,15 = 0,225$

()	4))	·	
Keterangan:			
w_i = menyajikar	n koefisier	n bobot kriteria	

 w_i = menyajikan koefisien bobot kriteria iij = menyajikan elemen matriks yang dinormalisasi (N)

	(14)	
	Kriteria	Bobot
	C1	0,3
	C2	0,2
	C3	0,2
	C4	0,15
	C5	0,15
[0.375	1 05	0.5 0.667

 $V_{ii} = (W_i \times t_{ii}) + W_i$

Kriteria C5:

$$V_{15} = (0,15 \times 0,667) + 0,15 = 0,25$$

 $V_{25} = (0,15 \times 0) + 0,15 = 0,15$
 $V_{35} = (0,15 \times 0) + 0,15 = 0,15$
 $V_{45} = (0,15 \times 1) + 0,15 = 0,3$
 $V_{55} = (0,15 \times 0) + 0,15 = 0,15$

Kriteria	Bobot		
t_{ij} = menyajikan elemen matriks yang dinormalisa: (N)			
w_i = menyajikan koefisien			
Keterangan:			

	\	in the second se
	Kriteria	Bobot
	C1	0,3
	C2	0,2
	C3	0,2
	C4	0,15
	C5	0,15
[0,375	5 1 0,5	0,5 0,667

 $V_{ii} = (W_i \times t_{ii}) + W_i$

	0,413	0,4	0,3	0,225	0,25	
	0,525	0,314	0,4	0,3	0,15	3
V =	0,6	0,2	0,2	0,225	0,15	A
	0,3	0,4	0,233	0,15	0,3	1
	0,6	0,314	0,2	0,225	0,15	
						6

4. Penentuan matriks area perkiraan perbatasan (G)

$$m = \frac{1}{5} = 0,2$$

$$G_{C1} = (0,413 \times 0,525 \times 0,6 \times 0,3 \times 0,6)^{0,2} = 0,472$$

$$G_{C2} = (0,4 \times 0,314 \times 0,2 \times 0,4 \times 0,314)^{0,2} = 0,316$$

$$G_{C3} = (0,3 \times 0,4 \times 0,2 \times 0,233 \times 0,2)^{0,2} = 0,257$$

$$G_{C4} = (0,225 \times 0,3 \times 0,225 \times 0,15 \times 0,225)^{0,2} = 0,220$$

$$V_{ij} = \frac{\text{menampilkan elemen matriks tertimbang/berbobot (V)}}{\text{m = menyajikan jumlah total alternatif.}}$$

$$V = \begin{bmatrix} 0,413 & 0,4 & 0,3 & 0,225 & 0,25 \\ 0,525 & 0,314 & 0,4 & 0,3 & 0,15 \\ 0,525 & 0,314 & 0,4 & 0,3 & 0,15 \\ 0,6 & 0,2 & 0,2 & 0,225 & 0,15 \\ 0,3 & 0,4 & 0,233 & 0,15 & 0,3 \\ 0,6 & 0,314 & 0,2 & 0,225 & 0,15 \end{bmatrix}$$

$\mathbf{c}_{C5} = (0, 0)$	25 x 0,15 x	0,15 X 0,3	X 0,15) ^{0,2}	= 0,19)T	b
	C1	C2	C 3	C4	C5	
G	0,472	0,316	0,257	0,220	0,191	

Kriteria C1:

$$Q_{11} = 0.413 - 0.472 = -0.059$$

$$Q_{21} = 0.525 - 0.472 = 0.053$$

$$Q_{31} = 0.6 - 0.472 = 0.128$$

$$Q_{41} = 0.3 - 0.472 = -0.172$$

$$Q_{51} = 0.6 - 0.472 = 0.128$$

Kriteria C2:

$$Q_{12} = 0.4 - 0.316 = 0.084$$

$$Q_{22} = 0.314 - 0.316 = -0.002$$

$$Q_{32} = 0.2 - 0.316 = -0.116$$

$$Q_{42} = 0.4 - 0.316 = 0.084$$

$$Q_{52} = 0.314 - 0.316 = -0.002$$

Kriteria C3:

$$Q_{13} = 0.3 - 0.257 = 0.043$$

$$Q_{23} = 0.4 - 0.257 = 0.143$$

$$Q_{33} = 0.2 - 0.257 = -0.057$$

$$Q_{43} = 0.233 - 0.257 = -0.024$$

$$Q_{53} = 0.2 - 0.257 = -0.057$$

Kriteria C4:

$$Q_{14} = 0.225 - 0.220 = 0.005$$

$$Q_{24} = 0.3 - 0.220 = 0.080$$

$$Q_{34} = 0.225 - 0.220 = 0.005$$

$$Q_{44} = 0.15 - 0.220 = -0.070$$

$$Q_{54} = 0.225 - 0.220 = -0.005$$

Kriteria C5:

$$Q_{15} = 0.25 - 0.191 = 0.059$$

$$Q_{25} = 0.15 - 0.191 = -0.041$$

$$Q_{35} = 0.15 - 0.191 = -0.041$$

$$Q_{45} = 0.3 - 0.191 = 0.109$$

$$Q_{55} = 0.15 - 0.191 = -0.041$$

Hasil perhitungan elemen matriks jarak alternatif dari daerah perkiraan perbatasan (Q):

	[-0,059]	0,084	0,043	0,005	0,059	
	0,053	-0,002	0,143	0,080	-0,041	
Q =	0,128	-0,116	-0,057	0,005	-0,041	-
	-0,172	0,084	-0,024	-0,070	0,109	1
	0,128	-0,002	-0,057	0,005	-0,041	
						4

6. Perangkingan Alternatif (S).

$$S_1 = -0.059 + 0.084 + 0.043 + 0.005 + 0.059 = 0.132$$

 $S_2 = 0.053 + (-0.002) + 0.143 + 0.080 + (-0.041) = 0.234$
 $S_3 = 0.128 + (-0.116) + (-0.057) + 0.005 + (-0.041) = -0.081$
 $S_4 = -0.172 + 0.084 + (-0.024) + (-0.070) + 0.109 = -0.072$
 $S_5 = 0.128 + (-0.002) + (-0.057) + 0.005 + (-0.041) = 0.034$

$$S_i = \sum_{j=1}^n Q_{ij}, j=1,2\dots n, \qquad i=1,2\dots m$$
 n = kriteria m = alternatif

- □ Nilai terbesar ada pada A2 = 0,234 dan A1 = 0,132 sehingga Dion Pratama dan Doni Prakosa adalah alternatif yang terpilih sebagai alternatif terbaik.
- □ Dengan kata lain, Dion Pratama dan Doni Prakosa terpilih untuk posisi operator mesin.

Rete	rence:
	The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC)-Pamučar, D., & Ćirović, G. (2015)
	An interval-valued intuitionistic fuzzy MABAC approach for material selection with incomplete weight information-Xue, Y. X., You, J. X., Lai, X. D., & Liu, H. C. (2016)
	Risk assessment of rockburst via an extended MABAC method under fuzzy environment-Liang, W., Zhao, G., Wu, H & Dai, B. (2019)
	Penerapan Metode MABAC Untuk Mendukung Pengambilan Keputusan Pemilihan Kepala Cabang Pada PT. Cefa Indonesia Sejahtera Lestari-Ndruru, N., Mesran, Waruru, F. T., & Utomo, D. P. (2020)
	MABAC method for multiple attribute group decision making under q-rung orthopair fuzzy environment-Wang, J., Wei, G., Wei, C., & Wei, Y. (2020)