Neural Networks based Speed-Torque Estimators for Induction Motors and Performance Metrics

S. Verma^{1,2} N. Henwood² M. Castella³ A. K. Jebai² J.C. Pesquet¹

¹Université Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique

²Schneider Toshiba Inverter Europe

³SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris

46th Annual Conference of the IEEE Industrial Electronics Society

1/40

Verma et al. (CVN and STIE) IECON 2020

Table of Contents

- Introduction
- Related Work
- Proposed Method
- 4 Experiments
- Results and Conclusion

Table of Contents

- Introduction
- 2 Related Work
- Proposed Method
- 4 Experiments
- Results and Conclusion

Introduction

Evaluating neural networks (NNs) used in induction motor use case using performance metrics.

- Physics for dynamics modeling.
- ML methods for control and fault detection.
- Large industrial sensor datasets.
- Performance metrics to evaluate NN.

Problem Statement

Estimating speed and torque from current and voltage of an induction motor using NNs.

Figure: First 40 seconds of a simulated electrical motor operation.

Table of Contents

- Introduction
- 2 Related Work
- Proposed Method
- 4 Experiments
- Results and Conclusion

Physical Modeling

Model based controller requires modeling dynamics.

- Controller design with known parameters [*Nicklasson et al., 1997*].
- Controller design with uncertain parameters [Marino et al., 1999].
- State-space model of induction motor [Jadot et al., 2009].
- Analytical mechanics and energy consumption [Jebai et al., 2014].

Neural Network based Modeling

Control and fault detection using NNs.

- NN fault classifiers [Silva et al., 2013].
- Currents and flux linkages coupling using RBF [Ortombina et al., 2018].
- Encoder-decoder learning input-output relationship [*Verma et al.*, 2020].

Table of Contents

- Related Work
- Proposed Method

Reference Trajectory Generator

- Generate reference speed and torque load
- Real world operating scenarios
- Conditional Hidden Markov model
- Paramtereized operating conditions

Reference Trajectory Generator

Figure: Generated reference speed and load torque trajectories.

Nonlinear State-Space Motor Model

- Generate simulation data.
- Fifth-order nonlinear state space model [Jadot et al., 2009]
- Widely used in industrial paradigm.
- Explained in Physical Modeling: A.

Standard Neural Networks

Three standard networks from [Verma et al., 2020]

- Four layer Fully Connected Network (FCN)
- Two layer Long-Short Term Memory Network (LSTM)
- Four layer Convolutional Neural Network (CNN)

Four layer Fully Connected Network (FCN)

Figure: Fully Connected Network.

Two layer Long-Short Term Memory Network (LSTM)

Figure: Long-Short Term Memory Network.

Four layer Convolutional Neural Network (CNN)

Figure: Convolutional Neural Network.

Encoder-Decoder Networks

Proven performance gain in temporal signal modeling.

- Vanilla Encoder-Decoder (**Vanilla**)
- Encoder-Decoder with Skip Connections (**Skip**)
- Encoder-Decoder with Recurrent Skip Connections (RNN)
- Encoder-Decoder with Bidirectional Recurrent Skip Connections (BiRNN)
- Encoder-Decoder with Bidirectional Diaganolized Recurrent Skip Connections (**DiagBiRNN**)

Vanilla Encoder-Decoder (Vanilla)

Figure: Vanilla

Encoder-Decoder with Skip Connections (Skip)

Figure: Skip Connections

Encoder-Decoder with Recurrent Skip Connections (RNN)

Figure: Recurrent Skip Connections

Encoder-Decoder with Bidirectional Recurrent Skip Connections (BiRNN)

Figure: Bidirectional Recurrent Skip Connections

Encoder-Decoder with Bidirectional Diaganolized Recurrent Skip Connections (DiagBiRNN)

Figure: Bidirectional Diaganolized Recurrent Skip Connections

Machine Learning Metrics

Analyze neural network performance using ML metrics.

MAE
$$(y, \hat{y}) = \frac{1}{T} \sum_{t=1}^{T} |y_t - \hat{y}_t|$$

SMAPE
$$(y, \hat{y}) = \frac{100}{T} \sum_{t=1}^{T} \frac{|\hat{y}_t - y_t|}{|\hat{y}_t| + |y_t|}$$

$$R^{2}(y,\hat{y}) = 1 - \frac{\sum_{t=1}^{T} (\hat{y}_{t} - \bar{y})^{2}}{\sum_{t=1}^{T} (y_{t} - \bar{y})^{2}}$$

where y_t is ground truth, \hat{y}_t is predicted output at time t, and T is total experiment duration. \bar{y} is mean of ground truth y.

Performance Metrics

Electrical engineering (EE) performance metrics widely used in industrial settings.

- 2% response time $(t_{2\%})$
- 95% response time ($t_{95\%}$)
- Overshoot (D%)
- Steady-state error (E_{ss})
- Following error (E_{fol})
- Maximum acceleration torque (for speed ramp only) ($\Delta \tau_{max}$)
- Speed drop (for torque ramp only) (SD)

Table of Contents

- Introduction
- 2 Related Work
- Proposed Method
- 4 Experiments
- Results and Conclusion

Training and Validation Dataset Generation

- 100 simulated speed and torque trajectories.
- State-space model to simulate.
- Different speed and torque ramps from exponential distribution.
- 4kW induction motor at 4kHz.
- 150 minutes of training and 30 minutes of validation.

Training and Validation Dataset Generation

Figure: Density plots of torque vs speed plans showing training and validation separation.

27 / 40

Ramps Distribution Matters

Figure: Overshoot vs. ramp. Bias in **Data V1** due to normal distribution. **Data V2** from exponential distribution.

Test Dataset Generation

Bench-marking NN methods using EE performance metrics.

- **Dynamic-Speed1**: 0 to 50Hz in 1s at no load.
- Dynamic-Speed2: 50 to -50Hz in 1s at 50% of nominal load.
- Dynamic-Torque: Load from 0 to 100% of nominal in 4ms at 25Hz.
- Quasi-Static1: No load, 70 to -70Hz in 50s.
- Quasi-Static2: 50% nominal load, 70 to -70Hz in 50s.

Experimental Setup

- Ubuntu 18.04 OS, V100 GPU, and PyTorch.
- Simulink for state-space model.
- 100 time steps is the input size for all networks.
- Learning rate is 0.1 for standard and 0.001 for encoder-decoder.
- ullet Total variation weighted mean square loss $\mathcal{L}_{ ext{TV-MSE}}.$

Table of Contents

- Related Work

- Results and Conclusion

Machine Learning Metrics Aggregated

Model	Speed (ω_r)		Torque (τ _{em})		
	MAE	SMAPE	MAE	SMAPE	
FCN	0.79	21.77%	0.57	48.66%	
LSTM	0.11	18.76%	0.21	43.01%	
CNN	0.06	19.14%	0.09	38.91%	
R^2 is 0.99 for all the networks for both quantities.					

Table: ML metrics for the predictions done on benchmark set using standard models.

Machine Learning Metrics Aggregated

Model	Spe	ed (ω_r)	Torque (τ _{em})		
Wiode	MAE	SMAPE	MAE	SMAPE	
Vanilla	0.05	18.94%	0.10	39.91%	
Skip	80.0	19.08%	0.12	43.23%	
RNN	0.06	19.31%	0.08	41.81%	
BiRNN	0.05	18.67%	0.09	42.82%	
DiagBiRNN	0.03	18.76%	0.04	38.46%	

 R^2 is 0.99 for all the networks for both quantities.

Table: ML metrics for the predictions done on benchmark set using the encoder-decoder variants.

Model	<i>t</i> _{2%} (ms)	<i>t</i> _{95%} (ms)	E _{fol} (Hz)	D% (%)	E _{ss} (Hz)	Δau_{max} $(\% au_{nom})$
Real	48	960	-0.02	2.16	0.00	32.69
Vanilla	44	968	-0.08	2.62	0.02	32.37
Skip	48	952	0.12	3.04	0.01	32.46
RNN	48	952	-0.04	2.28	0.02	32.82
BiRNN	44	944	-0.11	2.29	0.01	32.67
DiagBiRNN	44	952	-0.01	2.21	0.03	32.67

Table: EE performance metrics obtained by encoder-decoder networks on Dynamic-Speed1 benchmark.

Figure: Results on Dynamic-Speed1 benchmark.

Model	<i>t</i> _{95%} (ms)	D% (%)	E_{ss} (% $ au_{nom}$)	SD (Hz)
Real	244	15.96	0.00	4.39
Vanilla	244	15.46	0.04	3.88
Skip	244	15.90	-0.02	4.43
RNN	244	15.87	0.00	4.03
BIRNN	244	16.01	0.01	4.23
DiagBiRNN	244	15.91	-0.02	4.31

Table: EE performance metrics obtained by different models on Dynamic-Torque benchmark.

Figure: Results on Dynamic-Torque benchmark.

37 / 40

FCN	LSTM	CNN	Vanilla	Skip	RNN	BiRNN	DiagBiRNN
3.66	0.992	0.261	0.178	0.549	0.341	0.236	0.198

Table: Max absolute error (Hz) for Quasi-Static1 benchmark.

Figure: Results on Quasi-Static1 benchmark.

Conclusion

- NNs for speed-torque estimation are not trivial.
- Special care in dataset generation and training procedure.
- ML metrics gives false sense performance gain.
- EE performance metrics are best suited for this kind of problems.

Thanks!

Contact: sagar.verma@se.com

Figure: Project page, code, and dataset.

