THE COPPERBELT UNIVERSITY SCHOOL OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF PURE AND APPLIED MATHEMATICS

MA 110 - Mathematical Methods I

Tutorial Worksheet 1

© November 2018

1.	Let $A = \{0,2,4,6,8,10\}$ $B = \{1,3,5,7,9\}$ $C = \{1,2,4,5,7,8\}$ and $D = \{1,2,3,5,7,8,9\}$ find (a) $(A-B)-C$ (b) $(A\cap B)\cup (A\cap C)$ (c) $D\cap (A\cap C)$,
	(d) $(A \cup B) - (C \cap D)$
3.	Using the laws of set theory, simplify the following (a) $A \cap (B-C)$ (b) $(A-B) \cup (A \cap B)$, (c) $(A-B)'$ Let $U=(3,4,5,6)$ be the universal set for the sets $A=(3,4)$, and $B=(4,5)$. Find (a) $P(A)-P(B)$, (b) $P(A)\cap P(B)$, (c) $P(A')-P(B')$, (d) $P(A)\cup P(B)$, Let A,B and C be subsets of U . Prove that (a) $A-(B\cap C)=(A-B)\cup (A-C)$ (b) $A\cup (U-A)=U$ (c) $A\cap (U-B)=A-B$
	(d) $(A')' = A$ (e) $(A \cup B)' = A' \cap B'$
6.	If $A \subset B$, simplify the following (a) $A' \cap B'$ (b) $A' \cup B'$ Sow that $[(A \cap B) \cup (A \cap B')]' = A'$ Determine whether the following subsets of $\mathbb Z$ are closed in $\mathbb Z$ under addition, division and multiplication. (a) $\mathbb Z^+$ (b) Even numbers (c) Odd numbers
8.	Let the universal set be a set of real numbers. Let $A=[3,8),\ B=[2,7],\ C=(1,5)$ and $D=(6,\infty),\ \text{Find}$ (a) $A\cup C$ (b) $A\cap B$ (c) A' (d) $B-D$ (e) $B-(A\cup C)$ (f) $(A\cup C)-(B\cap D)$ (g) $A-B$ (h) $B\cap D$ (i) D' (j) $D-A$ (k) $B\cap C$
9.	Write the following in the form $\frac{a}{b}$ where a and b are integers that are relatively prime: (a) $3.5\overline{57}$ (b) $-0.25\overline{25}$ (c) $3.312\overline{12}$ (d) $0.123\overline{123}$ (e) $0.203\overline{03}$ (f) 2.25
10.	Prove that the following numbers are irrational (a) $\sqrt{2}$ (b) $\sqrt{3}$ (c) $2 + \sqrt{3}$ (d) $\sqrt{2} + \sqrt{3}$ (e) $\frac{1}{3}\sqrt{2} + \sqrt{5}$

11. Simplify the following as much as possible.

(a)
$$(-2x^2y^3)^3$$

(b)
$$\left[\frac{2x^3y^4}{xy^7}\right]$$

(c)
$$\sqrt{\frac{-27r^6}{125s^9}}$$

(a)
$$(-2x^2y^3)^3$$
 (b) $\left[\frac{2x^3y^4}{xy^7}\right]^2$ (c) $\sqrt{\frac{-27r^6}{125s^9}}$ (d) $\left[\frac{16x^3y^{12}z^2}{2x^{-6}z^8}\right]^{\frac{2}{3}}$

(e)
$$\left(\frac{81}{100}\right)^{-\frac{1}{2}}$$

(f)
$$\left(16^{\frac{2}{3}}\right)^{-\frac{3}{4}}$$

(g)
$$3|1-2x|+x-1$$

(e)
$$\left(\frac{81}{100}\right)^{-\frac{3}{2}}$$
 (f) $\left(16^{\frac{2}{3}}\right)^{-\frac{3}{4}}$ (g) $3|1-2x|+x-1$ (h) $(5x^2z^5)^3(5x^3z)^{-3}$

(i)
$$\frac{3(1+x)^{\frac{1}{3}}-x(1+x)^{-\frac{2}{3}}}{(x+1)^{\frac{2}{3}}}$$
 (j) $\frac{2}{x+1} + \frac{1}{x-1} + \frac{1}{x^2-1}$ (k) $\frac{\frac{1-(x-h)}{2+h}-\frac{1-x}{2+x}}{h}$

(j)
$$\frac{2}{x+1} + \frac{1}{x-1} + \frac{1}{x^2-1}$$

(k)
$$\frac{\frac{1-(x-h)}{2+h} - \frac{1-x}{2+x}}{h}$$

12. Simplify the expression to the form a + bi where;

(a)
$$\frac{3i}{2+i}$$

(b)
$$(2+3i)(-3+7i)$$

(b)
$$(2+3i)(-3+7i)$$
 (c) $3\sqrt{-50}+\sqrt{-72}$ (d) $\frac{2+4i}{3-i}$

(d)
$$\frac{2+4i}{3-i}$$

13. Determine algebraically whether the function f is even, odd or neither

(a)
$$f(x) = x + \frac{1}{x}$$

(a)
$$f(x) = x + \frac{1}{x}$$
 (b) $f(x) = 3 + |x - 3|$ (c) $f(x) = x^4 + x^2$

(c)
$$f(x) = x^4 + x^2$$

$$(d) f(x) = \frac{1}{x^3}$$

(d)
$$f(x) = \frac{1}{x^3}$$
 (e) $f(x) = 2x^4 - 3x^2 + 7$ (f) $f(x) = (x - 2)^2 - 1$

(f)
$$f(x) = (x-2)^2 - 3$$

(g)
$$f(x) = x^5 - x$$

14. Find the functions $f\circ g$, $g\circ f$, $f\circ f$, $g\circ g$ and their doamins.

(a)
$$f(x) = 2x + 3$$
, $g(x) = 4x - 1$ (b) $f(x) = |x|$ (d) $f(x) = x^3$ (e) $f(x) = \sqrt{x}$

(b)
$$f(x) = |x|$$

$$(d) f(x) = x^3$$

(e)
$$f(x) = \sqrt{x}$$

15. Find the domain and range of the following functions;

(a)
$$f(x) = \frac{2}{x^2 - x}$$

(b)
$$g(x) = \frac{x}{\sqrt{x+1}}$$

(a)
$$f(x) = \frac{2}{x^2 - x}$$
 (b) $g(x) = \frac{x}{\sqrt{x+1}}$ (c) $h(x) = \sqrt{4 - x^2}$ (d) $k(x) = \frac{1}{x^2 + 1}$

(d)
$$k(x) = \frac{1}{x^2 + 1}$$

16. Find the inverse of *f* and its domain;

(a)
$$f(x) = \frac{x-2}{x+2}$$

(b)
$$f(x) = 4x + 7$$

(a)
$$f(x) = \frac{x-2}{x+2}$$
 (b) $f(x) = 4x + 7$ (c) $f(x) = \sqrt{2x-1}$ (d) $f(x) = 1 + \sqrt{1+x}$

$$(d)f(x) = 1 + \sqrt{1+x}$$

17. Find $f \circ g \circ h$

$$\lim_{n \to \infty} f \circ g \circ n$$

(a)
$$f(x) = x - 1$$
, $g(x) = \sqrt{x}$, $h(x) = x - 1$ (b) $f(x) = \sqrt{x}$, $g(x) = \frac{x}{x-1}$, $h(x) = \sqrt{x}$

$$f(x) = \sqrt{x}$$
, $g(x) = -$

$$h(x) = \sqrt{x}$$

18. Use f(x) = 3x - 7 and $g(x) = 2 - x^2$ to evaluate

(a)
$$f(g(0))$$
 (b) $g(g(3))$ (c) $g(f(0))$ (d) $f(g(-2))$, (e) $f(f(-1))$

(b)
$$g(g(3))$$

(c)
$$g(f(0))$$

(d)
$$f(g(-2),$$

(e)
$$f(f(-1))$$

19. Sketch the graph of the function below by starting with the graph of a standard function and applying the transformations

(a)
$$f(x) = (x+7)^2$$
 (b) $g(x) = 1 + \sqrt{x}$ (c) $h(x) = \frac{1}{2}\sqrt{x+4} - 3$

(b)
$$g(x) = 1$$

(c)
$$h(x) = \frac{1}{2}\sqrt{x}$$

(d)
$$f(x) = |x + 3| + 3$$
 (e) $g(x) = 5 + (x - 2)^2$, (f) $f(x) = 2 - |x|$

(e)
$$a(x) = 5 + (x - 2)^{2}$$

$$(f) f(x) = 2 - |x|$$

20. Show that the functions f and g are inverse functions of each other

(a)
$$f(x) = \frac{3-x}{4}$$
 and $g(x) = 3-4x$ (b) $f(x) = \frac{1}{x-1}$ and $g(x) = 1 + \frac{1}{x}$

21. Determine whether the given functions are one-to-one, onto or objective

(a)
$$f: \mathbb{R}^+ \to \mathbb{R}$$
 defined by $f(x) = x^2 + 2$ (b) $f(x) = \frac{3}{2x-1}$, $x \neq \frac{1}{2}$

(c)
$$g:[0,\infty)\to 0,\infty$$
) be a function given by $g(x)=x^2$ (d) $h(x)=\sqrt{2-x}, x\leq 2$

22. Sketch the following piecewise defined function

(a)
$$f(x) = \begin{cases} |x+2| & if -4 \le x < 0 \\ x^2 & if \ 0 \le x \le 2 \\ 3 & if \ 2 < x < 4 \end{cases}$$
 (b) $g(x) = \begin{cases} \frac{1}{x} & if -3 \le x < 0 \\ \sqrt{x} & if \ 0 \le x \le 4 \\ |x+2| & if \ 4 < x < 8 \end{cases}$

(c)
$$h(x) = \begin{cases} 3x - 1 & \text{if } x < -1 \\ 4 & \text{if } -1 \le x \le 1 \\ x & \text{if } x > 1 \end{cases}$$

- 23. A function f is given and the indicated are applied to its graph (in the given order). Write the equation of the final transformed graph.
 - (a) (a) $f(x) = x^2$ shift upward by 3 units and shift 2 units to the right.
 - (b) $f(x) = \frac{1}{x}$, shrink by a factor of 0.1 units, shift 6 units to the right and shift 3 units downwards.
 - (c) f(x) = |x| shift to the left by 1 unit, stretch vertically by a factor of 3 and shift upwards by 10 units.
 - (d) $f(x) = \sqrt{x}$, shift to the left by 2 units, and stretch horizontally by a factor of 3.

24.

- (a) Is the binary operation * defined on Z by x*y=1+x+y both commutative and associative.
- (b) Is the binary operation * defined by $a*b=a+b^2$ both commutative and associative.
- (c) Suppose the binary operation * is defined on integers by x*y=1-2xy. Show that * is both associative and commutative
- (d) Is the binary operation * defined by a*b=a+b-ab both commutative and associative
- 25. List the ordered pairs $A \times B$ Aand $B \times A$ in each case;

(a)
$$A = \{1,3,5\}, B = \{a, e, k, n, r\}$$
 (b) $A = \{1,2,\{1,2\}\}, B = \{q,\{t\},s\}$

26. Simplify each of the following expressions in the form a+bi where a and b are real numbers.

(a).
$$(3-2i)^3$$
 (b) $\sqrt{-25}\sqrt{-4}$ (c) $3i^7-2i^6+5i^5-8i^{103}+4i^2-6i-10$

(d)
$$i\sqrt{2}(2\sqrt{2}-3i\sqrt{2}+i-2)+i\sqrt{2}$$
 (e) $(2+i)^2+(4-i)i$ (f) $\frac{3-5i}{4i}$

27. Find the complex square root in the form a + bi where a and b are real numbers

(a).
$$-5 + 12i$$
 (b) $21 - 20i$ (c) $3 + 4i$

28. Solve for x and y where x and y are real numbers

(a)
$$2y + ix = 4 + x - i$$
 (b) $(4 - 3i)^2 + 5(x - iy) = x + iy$ (c) $\frac{x}{1 + i} + \frac{y}{3 + i} = 4 - 2i$

29. Rationalize the denominator

(a)
$$\frac{x+\sqrt{y}}{2x-\sqrt{y}}$$
 (b) $\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}$ (c) $\frac{2+\sqrt{3}}{3+\sqrt{3}}$ (d) $\frac{\sqrt{x+h}-\sqrt{x}}{h}$ e) $\frac{\sqrt{3}+\sqrt{4}}{\sqrt{3}-\sqrt{4}}$ (f) $\frac{\sqrt{x}-\sqrt{y}}{y+\sqrt{x}}$

30. Express each of the following in simplest form:

(a)
$$\frac{\sqrt[3]{45x^2}}{\sqrt[3]{9x}}$$
 (b) $\sqrt[3]{54} + \sqrt[3]{16} - \sqrt[3]{128}$ (c) $\sqrt[3]{-16x^4y^{-3}}$ (d) $\sqrt{72x^3y^2}$

(e)
$$\frac{\sqrt{3}}{\sqrt{2}}$$
 (f) $\sqrt[3]{16x^2} + \sqrt[3]{250x^2} - \sqrt[3]{128x^2}$