Polyhedral Network Aware Task Scheduling

Martin Kong

Brookhaven National Laboratory

October 14th, 2017
9th Annual Concurrent Collections Workshop
College Station, TX, USA

Introduction

 Context: Shared and distributed memory computers, or any hardware where the underlying network can be modeled

- We introduce different virtual network topologies that allow to model concepts such as direction and distance in order to produce a task schedule
- As an application, we choose the task isolation problem: how to schedule tasks which access shared resources
- Networks and hierarchies are pervasive in computer science, i.e. memory systems, computation graphs, programs
- Concrete instances of this problem are:
 - False sharing
 - Placing tasks close or nearby to fixed shared resources
 - Scheduling access of R/W resources (e.g. a file or freshly created data block)
 - Job scheduling and accessing a file system (explicit hierarchy) with fast and slow storage systems

Motivation

 Large scale applications require substantial domain, algorithmic and hardware/software knowledge

- Current and emerging technologies pose an enormous challenge in terms of performance portability and user productivity
- Data movement and long latencies are strong limiting factors for performance
- Knowledge of the underlying network topology, even in shared-memory machines, is essential to performance tuning
- Diverse background of users calls for abstractions that allow to easily switch between prescriptive and descriptive programming models and methods
- New abstractions are necessary in order to exploit and integrate network-aware compiler optimizations which:
 - Avoid communication
 - Perform efficient communication: minimize synchronization and data movement
 - Schedule tasks around data
 - Transfer domain knowledge to the compiler

A Look into the (near) Future

Feature	Titan	Summit			
Application Performance	Baseline	5-10x Titan			
Number of Nodes	18,688	~4,600			
Node Performance	1.4 TF	> 40 TF			
Feature	32 GB DDR3 + 6 GB GDDR5	512 GB DDR4 + HBM			
NV Memory per Node	0	1600 GB			
Total System Memory	710 TB	10 PB DDR4 + HBM + Non-Volatile			
System Interconnect (Injection Bandwidth)	Gemini (6.4 GB/s)	Dual Rail EDR-IB (23 GB/s)			
Interconnect Topology	3D Torus	Non-blocking Fat Tree			
Procesor	1 AMD Opteron + 1 NVIDIA Kepler	2 IBM Power9 + 6 NVIDIA Volta			
File System	32 PB, 1 TB/s, Lustre	250 PB, 2.5 TB/s GPFS			
Peak Power	9 MW	15 MW			

Context

 Previously considered data dependences and "performance dependences" (e.g. additional dependences that affect scheduling, directly or indirectly)

- We leverage polyhedral tools to model different network topologies
- Goal: composability of networks
- Polyhedral compilation frameworks leverage lexicographic minimization
- Optimization of Manhattan-distance type problems are not immediately modelable
- In this work, we provide abstractions for modeling different types of network topologies
- ► We follow an iterative optimization process

Contributions

Kong, Pouchet, Sadayappan, Sarkar, "PIPES: A Language and Compiler for Task-Based Programming on Distributed-Memory Clusters", SC, 2016

¹ Budimlic et. al, "Concurrent Collections", Scientific Programming, 2010

² A. Sbirlea, L.-N Pouchet and V. Sarkar, "DFGR: an intermediate graph representation for macro-dataflow programs", DFM, 2014

Contributions

Kong, Pouchet, Sadayappan, Sarkar, "PIPES: A Language and Compiler for Task-Based Programming on Distributed-Memory Clusters", SC, 2016

¹ Budimlic et. al, "Concurrent Collections", Scientific Programming, 2010

² A. Sbirlea, L.-N Pouchet and V. Sarkar, "DFGR: an intermediate graph representation for macro-dataflow programs", DFM, 2014

Contributions

Kong, Pouchet, Sadayappan, Sarkar, "PIPES: A Language and Compiler for Task-Based Programming on Distributed-Memory Clusters", SC. 2016

¹ Budimlic et. al, "Concurrent Collections", Scientific Programming, 2010

² A. Sbirlea, L.-N Pouchet and V. Sarkar, "DFGR: an intermediate graph representation for macro-dataflow programs", DFM, 2014

Contributions

Kong, Pouchet, Sadayappan, Sarkar, "PIPES: A Language and Compiler for Task-Based Programming on Distributed-Memory Clusters", SC, 2016

¹ Budimlic et. al, "Concurrent Collections", Scientific Programming, 2010

² A. Sbirlea, L.-N Pouchet and V. Sarkar, "DFGR: an intermediate graph representation for macro-dataflow programs", DFM, 2014

Background: CNCW'17

PIPES Language Features

- Language features are task-centric
- Virtual topologies
- Task placement
- Data placement
- Data communication (pull or push communication model)

Background: CNCW'17

MatMul in PIPES

```
Parameter N. P:
    // Define data collections
3
    [float* A:1..N,1..N];
4
    [float* B:1..N,1..N];
    [float* C:1..N,1..N,1..N+1];
6
    // Task prescriptions
    env :: (MM:1..N,1..N,1..N);
8
    // Input/Output:
9
    env -> [A:1..N,1..N];
10
    env -> [B:1..N,1..N];
11
    env -> [C:1..N,1..N,1];
12
    [C:1..N,1..N,N+1] \rightarrow env;
13
    // Task dataflow
14
    [A:i,k], [B:k,j], [C:i,j,k] \rightarrow (MM:i,j,k) \rightarrow [C:i,j,k+1];
```

Figure: PIPES Matrix Multiplication

Background: CNCW'17

Language Construct Summary

Name	Syntax	ı			
Region	regname = { tuple : constraints } properties	ı			
Prescription Relation	env :: (task : regname)	ĺ			
Data-Flow Relations	[input_instances] -> (task_instance) -> [output_instance]	ĺ			
Virtual Topology	Topology topo_name = { sizes=[parameter_list] }				
Affinity Mapping	(task : tuple) @ [[topo : tuple]]	ı			
Communication	[item: tuple] @ (task1 : tuple) => (task2 : tuple)	ĺ			
Scheduling	(task1 : tuple) -> (task2 : tuple)				
	(task1 : tuple) \sim > (task2 : tuple)	ĺ			

Table: PIPES Language Constructs

Virtual Topologies and Task Mapping

- Virtual topologies (VTs) represent the logical underlying computer grid/cluster
- Each element in the set is a processor
- Requires a logical-to-physical mapping

Virtual Topologies and Task Mapping

- Mappings of tasks to elements in the topology
- Task (instance) will execute on the processor it is mapped to
- Always enforced by run-time
- Requires the topology to be defined
- Maps directly to the compute_on tuner

```
(task:tag-set) @ Topo2d(point);
```

Overall Approach

- ► Network topology abstractions
- Map task instances to virtual topology via Affinity Tasks Mappings (ATM)
- Introduce isolate relations and isolate dependences
- Compute in closed for the possible task interleavings
- Filter / prune unwanted tasks orderings from the closed form
- For each point in the closed form, iteratively compute its cost
- Apply lexicographic minimization to determine the best execution order

Network Topologies

- PIPES uses an abstraction that allow to pin task instances to processing elements / cores; main purpose is to determine if tasks execute on the same location; then generate Intel CnC++ tuners
- In this work: Implemented two different topologies: mesh and fat tree
- Pending to implement: torus / meshes + wraparound, hypercubes, hierarchies
- Each network type requires different set of abstractions
- Abstractions allow modeling concepts such as dimension, distance or direction
- ► In the future, want to pursue composing two or more topology types, so as to faithfully represent upcoming HPC and Data Analytics clusters

INL 12

Driving Example

- Consider a 4x4 mesh and 4 tasks (A,B,C,D)
- What if A has to start the computation?
- What if any task can start the computation?
- What if wrap-around communication is allowed?
- In general, avoiding ping-pong-ing around

Network Topologies: N-dimensional Meshes

Key: idea: translate task tuple to network coordinates, then compute distance between network coordinates. Example:

Compute task topology coordinates:

Compute task-to-task topology directions:

$$Dir(A,B) = [3,3];$$
 $Dir(B,C) = [0,-3];$
 $Dir(C,D) = [-3,1]$

3 Compute "positive directions":

4 Compute task-to-task topology distance:

$$\begin{split} & \mathsf{Dist}(\mathsf{A},\mathsf{B}) = \mathsf{MultiplexAddMap}([3,3]) = 6 \\ & \mathsf{Dist}(\mathsf{B},\mathsf{C}) = \mathsf{MultiplexAddMap}([0,3]) = 3 \end{split}$$

$$Dist(C,D) = MultiplexAddMap([3,1]) = 4$$

Network Topologies: Fat Trees

- Distance metrics in fat tree type of network are non-linear
- Coordinate space is one dimensional
- Task tuples must be "flattened" to represent processors in the grid
- Restricted to fixed (non-parametric) network sizes
- Approach: explicitly construct a distance map from a pair of processors to a fixed non-parameteric value, i.e. [[P_i] − > [P_j]] − > [distance]
- Does not require the coordinate to direction map nor the positive direction map
- Observe the recursive nature

	P0	P1	P2	P3	P4	P5	P6	P7
P0	0	1	2	2	4	4	4	4
P1	1	0	2	2	4	4	4	4
P2	2	2	0	1	4	4	4	4
P3	2	2	1	0	4	4	4	4
P4	4	4	4	4	0	1	2	2
P5	4	4	4	4	1	0	2	2
P6	4	4	4	4	2	2	0	1
P7	4	4	4	4	2	2	1	0

Network Topology Abstractions

- Affinity maps (task tuple to network coordinate maps)
- Coordinate to direction maps (each dimension can be +/-)
- Direction unification map: consider different routes along each dimension and direction (several disjunctions), e.g. in meshes with wraparound
- Direction to distance maps: make directions positive
- Cummulative distance maps: "Multiplex Add Map"

Building the Closed Form of the Exploration Space

- Compact and closed form for encoding task orderings at the coarse level
- Assign to each task a fixed integer
- Start with the T^T potential task orderings (T : number of **lexical** tasks), fixed and known at compile time
- The exploration space consist of the set of points in a T-dimensional tuple space.
- ▶ Add bounding constraints: $\vec{t} = (t_1, t_2, ..., t_T), \forall t_i \in [1..T]$
- Add constraints to remove meaningless points, e.g. (1,1,1) which represents the same task being executed: $\sum t_i = T \times (T+1)/2$
- ▶ Add constraints to enforce data dependences, i.e. if task 1 is a dependence of task 2 then: t_i = 1 and t_j = 2, for some j > i
- ▶ Each point in the set represents a full execution path (e.g. $3 \rightarrow 1 \rightarrow 4 \rightarrow 2$)

Pruning the Scheduling Space

We consider three types of pruning constraints that are added to the complete space, e.g. $(t_1, t_2, ..., t_T), t_i \in [1..T]$

- Data dependence edges: "A(1) must to execute before B(2)"
- Scheduling edges (for performance): "We want A(1) to execute before B(2)"
- ▶ Isolation edges: "We want either A(1) before B(2) or B(2) before A(1)"

Several disjunctions might be required to model the constraints, in particular for the **isolation edges**

A few more considerations:

- ▶ In theory, we could still have meaningless points, e.g. (1,1,4,4) = 10
- In practice, these would be mostly naturally pruned by the above constraints
- To be safe, we do a manual check before the next stage to guarantee that all entries in a vector are distinct

Iteratively Computing Path Costs

```
1: space ← compute closed form (T,program)
 2: for each \vec{t} = (t_1, t_2, ..., t_N) \in space do
       path(\vec{t}) \leftarrow 0
 3.
      for each (t_i, t_{i+1}) \in (t_1, t_2, ..., t_N) do
 4.
          Fetch task domains T(t_i) and (T_{i+1})
 5:
          Fetch task affinity maps: AM(t_i) and AM(T_{i+1})
 6:
          Build synchronization map: sync_map \leftarrow T(t_i) \rightarrow T(t_{i+1})
 7:
          Intersect dependences T(t_i) \Rightarrow T(t_{i+1}) with sync_map
 8:
          Compute processor synchronization map (PSM): PSM
 9:
          \leftarrow AM(t_i)^{-1} \circ sync \circ AM(T_{i+1})
          Compute "processor coordinate difference" (PCD) with ISL
10:
          deltas map (PSM)
          Apply network specific coordinate-to-distance map to PCD
11:
          edge(i) ← quasi polynomial sum(PSM)
12:
          path(\vec{t}) \leftarrow path(\vec{t}) + edge(i)
13:
      end for
14:
15:
       M \leftarrow M \cup path(\vec{t})
16: end for
17: result ← lexmin(M)
```

Applications of this Technique

- Minimize synchronization latency among tasks
- Pre-optimization pass that affects the overall program prior to applying high-level loop transformations that optimize for locality, akin to code motion in for loops
- Allows to establish order among tasks that should be executed in a non-concurrent fashion:
 - 1 User provides **isolate relations**, e.g. " $A \sim ||B|$ ", another class of dependence that will be enforce semantic orderings, both at the compiler and runtime level
 - 2 Compiler "decides the direction" based on network distance/latency
 - 3 Isolate relations are then promoted to "isolate dependences" and fed to some other scheduler

Applications of this Technique

- This technique has the potential to reduce the runtime scheduling overhead by substantially narrowing down the scheduling options
- Autotuning: coupled with auto-generated task mappings, allows to determine suitable mappings and task schedules
- Applicable to several task parallel and data-flow runtimes (CnC!!)

Restrictions of the Approach

- Very computational expensive, even in non-parametric cases
- Limited to ~ 10 tasks (millions of possible interleavings) and taking ~ 10 min
- Disallow edges that induce loops in the graph
- Some networks cannot be modeled with affine parametrics constraints, resort to use large fixed values and bound network parameters by the context

Experimental Setup

- OS: Mac Sierra
- 3.5 GHz Intel Core i7
- Memory:16 GB 2133 MHz
- ► Compiler: Clang++ Apple LLVM version 8.1.0 (clang-802.0.42)
- Barvinok 40
- ► ISL 18.0

Will show some preliminary compilation results for 2-D meshes (with fixed and parametric task domains) and fat-trees.

Mesh Results: Fixed

Test	Tasks	Deps	Factorial	Legal	Semi-legal	Complete	Time (sec)
1	2	1	2	1	2	4	0.021
2	2	0	2	2	2	4	0.059
3	2	0	2	2	2	4	0.101
4	3	2	6	2	4	27	0.153
5	5	4	120	2	130	3125	0.205
6	2	1	2	2	2	4	0.027
7	3	2	6	2	4	27	0.161
8	3	3	6	4	4	27	0.069
9	3	3	6	4	4	27	0.094

Space exploration size (T : number of lexical tasks):

Factorial: T!

Legal: Final exploration space

Semi-Legal: Exploration space before adding dependence edges

ightharpoonup Complete: T^T exploration space

Mesh Results: Parametric

Test	Tasks	Deps	Factorial	Legal	Semi-legal Complete		Time (sec)
01	2	0	2	2	2	2 4	
02	3	2	6	2	7	27	
03	3	1	6	3	7	27	0.037
04	4	1	24	17	44 256		0.1
05	5	1	120	120	20 381 3,125		
06	5	4	120	4	381 3,125		
07	6	5	720	12	4,332	46,656	0.15
08	7	5	5,040	84	60,691	823,543	0.96
09	9	7	362,880	648	19,610,233 387,420,489		233
10	9	8	362,880	1	19,610,233	387,420,489	28.8
11	10	9	3.63E+06	2	432457640	10,000,000,000	317.2

Space exploration size (T : number of lexical tasks):

Factorial: T!

Legal: Final exploration space

Semi-Legal: Exploration space before adding dependence edges

ightharpoonup Complete: T^T exploration space

Fat Tree Results

	Test	Fat Tree	Tasks	Deps	Factorial	Legal	Semi-legal	Complete	Time
İ		Max Size							(min + sec)
Ī	1	16	2	1	2	2	2	4	0m0.077s
	2	32	2	1	2	2	2	4	0m0.167s
İ	3	64	2	1	2	2	2	4	0m0.495s
İ	4	128	2	1	2	2	2	4	0m1.583s
	5	256	2	1	2	2	2	4	0m5.556s
	6	512	2	1	2	2	2	4	0m21.163s
İ	7	1024	2	1	2	2	2	4	1m21.719s
İ	8	2048	2	1	2	2	2	4	5m31.795s
	9	256	5	3	120	12	130	3125	2m5.986s
İ	10	256	5	4	120	34	130	3125	5m58.886s
	11	256	5	6	120	130	130	3125	22m57.720s

Space exploration size (T : number of lexical tasks):

- ► Factorial: T!
- Legal: Final exploration space
- Semi-Legal: Exploration space before adding dependence edges
- ightharpoonup Complete: T^T exploration space

Conclusion: CNCW17

Future Work

 Complete implementation of torus networks, hypercubes and explicit hierarchies

- Enable composability of network topology abstractions
- Integrate resource features into topology abstraction:
 - To model super nodes that have access near to accelerators or to memory nodes
 - Specialized resource types e.g. streaming nodes, compute intensive nodes, memory nodes, storage nodes, etc
- Potential direction: focus on file access scheduling (e.g. in HPF5) by using the data file and block structure to construct the program graph
- Complete integration to PIPES compiler
- Leverage the newly introduced constructs to efficiently implement and perform communication patterns such as:
 - All to all communication
 - Multicast and broadcast
 - Nearest neighbor type of communication
- Improve the scalability of the technique: Perform cuts on the graph, search for "bridge tasks" and "articulation tasks"

Conclusion: CNCW17

Das Ende Thanks for listening Questions?