Analysis 1 Übungsblatt 1

Jarne, Lars

Aufgabe 1 Beweisen Sie die folgenden Äquivalenzen

(a) $\neg (A \land B)$ ist äquivalent zu $\neg A \lor \neg B$.

A	B	$A \wedge B$	$\neg A$	$\neg B$	$\neg A \lor \neg B$	$\neg (A \land B)$
1	1	1	0	0	0	0
1	0	0	0	1	1	1
0	1	0	1	0	1	1
0	0	0	1	1	1	1

(b) $A \Rightarrow B$ ist äquivalent zu $\neg B \Rightarrow \neg A$

A	B	$\neg A$	$\neg B$	$A \Rightarrow B$	$\neg B \Rightarrow \neg A$
1	1	0	0	1	1
1	0	0	1	0	0
0	1	1	0	1	1
0	0	1	1	1	1

(c) $A \vee (B \wedge C)$ ist äquivalent zu $(A \vee B) \wedge (A \vee C)$

A	B	C	$B \wedge C$	$A \vee B$	$A \lor C$	$A \vee (B \wedge C)$	$(A \vee B) \wedge (A \vee C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	1	0	0	0
0	0	1	0	0	1	0	0
0	0	0	0	0	0	0	0

Aufgabe 2 Sei M eine Menge. Für jedes Element $x \in M$ bezeichne A(x) eine gegebene Aussage. Zeigen Sie:

(a) $\neg (\forall x \in M : A(x)) \Leftrightarrow \exists x \in M : \neg A(x).$

" \Rightarrow ": $\neg (\forall x \in M : A(x))$ bedeutet: Es ist nicht wahr, dass für alle x aus M die Aussage gilt. Diese Aussage ist wahr, wenn es ein $x \in M$ gibt, für welches A(x) nicht gilt, also: $\exists x \in M : \neg A(x)$.

" \Leftarrow ": $\exists x \in M : \neg A(x)$ bedeutet: Es existiert ein x aus M für das A(x) nicht gilt. Das bedeutet, dass es nicht für alle x aus M gelten kann, also: $\neg (\forall x \in M : A(x))$.

(b) $\neg (\exists x \in M : A(x)) \Leftrightarrow \forall x \in M : \neg A(x).$

" \Rightarrow ": $\neg (\exists x \in M : A(x))$ bedeutet: Es ist nicht wahr, dass es ein x aus M gibt, für das A(x) gilt. Also bedeutet das, dass für jedes x aus M die Aussage A(x) nicht gilt: $\forall x \in M : \neg A(x)$.

" \Leftarrow ": $\forall x \in M : \neg A(x)$ bedeutet: Für alle x aus M gilt, dass A(x) nicht gilt. Also gibt es kein x aus M, für das A(x) gilt: $\neg (\exists x \in M : A(x))$.

Aufgabe 3

(a) Gegeben seien die folgenden Mengen:

 $X = \{ n \in \mathbb{N} \mid 1 \le n \le 100 \},$

 $A = \{ n \in X \mid 2(n-13)(n-3) < 0 \},\$

 $B = \{ n \in X \mid \text{es gibt ein } m \in \mathbb{N} \text{ mit } m^2 = n \},$

 $C = \{ n \in X \mid n \text{ ist durch 2 teilbar} \}.$

Bestimmen Sie die Mengen:

- 1. $A \cup B C = \{1, 5, 7, 9, 11, 25, 49, 81\}$
- 2. $A \cup (B C) = \{1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 49, 81\}$
- 3. $(B \cap A) C = \{9\}$
- 4. $B \cap (A C) = \{9\}$
- (b) Seien X, Y, Z Mengen. Beweisen Sie die De Morganschen Regeln:

(i)
$$X - (Y \cap Z) = (X - Y) \cup (X - Z)$$

"
$$\Rightarrow$$
": Sei $x \in X - (Y \cap Z)$.

- \circ Dann ist $x \in X \land x \notin (Y \cap Z)$.
- \circ Daraus folgt, dass $(x \notin Y) \vee (x \notin Z)$, da x sonst im Schnitt wäre.
- \circ Wenn $x \notin Y$, dann $x \in X Y$.
- \circ Wenn $x \notin Z$, dann $x \in X Z$.
- Aus Punkt 2 folgt, dass x mindestens in $(X Y) \vee (X Z)$.
- \circ Somit folgt $x \in (X Y) \cup (X Z)$.

"
$$\Leftarrow$$
": Sei $x \in (X - Y) \cup (X - Z)$.

- \circ Somit ist $x \in X \land (x \in (X Y) \lor x \in (X Z))$.
- \circ Daraus folgt $x \notin Y \lor x \notin Z$.
- o Da Punkt 2 gilt, muss $x \notin (Y \cap Z)$, da sonst $x \in Y \land x \in Z$ wäre.
- \circ Somit ist $x \in X \land x \notin (Y \cap Z)$.
- \circ Daraus folgt $x \in X (Y \cap Z)$.

Da beide Implikationen gezeigt wurden, folgt: $X - (Y \cap Z) = (X - Y) \cup (X - Z)$.

(ii)
$$X - (Y \cup Z) = (X - Y) \cap (X - Z)$$

"
$$\Rightarrow$$
": Sei $x \in X - (Y \cup Z)$.

- \circ Dann ist $x \in X \land x \notin (Y \cup Z)$.
- o Daraus folgt, dass $x \notin Y \land x \notin Z$, da x nicht in der Vereinigung von Y und Z ist.
- \circ Wenn $x \notin Y$, dann $x \in X Y$.
- \circ Wenn $x \notin Z$, dann $x \in X Z$.
- o Da beide Bedingungen erfüllt sind, folgt $x \in (X Y) \land x \in (X Z)$.
- \circ Somit folgt $x \in (X Y) \cap (X Z)$.

"
$$\Leftarrow$$
": Sei $x \in (X - Y) \cap (X - Z)$.

- \circ Dann ist $x \in X \land x \in (X Y) \land x \in (X Z)$.
- \circ Das bedeutet, dass $x \notin Y \land x \notin Z$.
- \circ Daraus folgt, dass $x \notin (Y \cup Z)$, da x weder in Y noch in Z enthalten ist.
- \circ Da $x \in X$ und $x \notin (Y \cup Z)$, folgt $x \in X (Y \cup Z)$.

Da beide Implikationen gezeigt wurden, folgt: $X - (Y \cup Z) = (X - Y) \cap (X - Z)$.

Aufgabe 4 Seien X, Y Mengen und $f: X \to Y$ eine Abbildung.

- (i) Für $A \subseteq X$ setzen wir $f(A) := \{ f(a) \mid a \in A \}$.
- (ii) Für $B \subseteq Y$ setzen wir $f^{-1}(B) := \{x \in X \mid f(x) \in B\}.$

Welche der folgenden Aussagen sind wahr? Begründen oder widerlegen Sie.

- (a) Für alle $A, B \subseteq Y$ gilt $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
 - 1. Richtung: $f^{-1}(A \cap B) \subseteq f^{-1}(A) \cap f^{-1}(B)$
 - \circ Sei $x \in f^{-1}(A \cap B)$. Daraus folgt, dass $f(x) \in A \cap B$, also $f(x) \in A$ und $f(x) \in B$.
 - \circ Das bedeutet, dass $x \in f^{-1}(A)$ und $x \in f^{-1}(B)$, also $x \in f^{-1}(A) \cap f^{-1}(B)$.
 - 2. Richtung: $f^{-1}(A) \cap f^{-1}(B) \subseteq f^{-1}(A \cap B)$
 - \circ Sei $x \in f^{-1}(A) \cap f^{-1}(B)$. Dann gilt $x \in f^{-1}(A)$ und $x \in f^{-1}(B)$.
 - \circ Das bedeutet, dass $f(x) \in A$ und $f(x) \in B$, also $f(x) \in A \cap B$.
 - \circ Somit gilt $x \in f^{-1}(A \cap B)$.

Da beide Inklusionen gezeigt wurden, folgt $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.

Ergebnis: Die Aussage ist wahr.

- **(b)** Für alle $A, B \subseteq Y$ gilt $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.
 - 1. Richtung: $f^{-1}(A \cup B) \subseteq f^{-1}(A) \cup f^{-1}(B)$
 - \circ Sei $x \in f^{-1}(A \cup B)$. Dann gilt $f(x) \in A \cup B$, also $f(x) \in A$ oder $f(x) \in B$.
 - Daraus folgt $x \in f^{-1}(A)$ oder $x \in f^{-1}(B)$, also $x \in f^{-1}(A) \cup f^{-1}(B)$.
 - 2. Richtung: $f^{-1}(A) \cup f^{-1}(B) \subseteq f^{-1}(A \cup B)$
 - \circ Sei $x \in f^{-1}(A) \cup f^{-1}(B)$. Dann gilt $f(x) \in A$ oder $f(x) \in B$, also $f(x) \in A \cup B$.
 - $\circ \ \ \text{Das bedeutet} \ x \in f^{-1}(A \cup B).$

Da beide Inklusionen gezeigt wurden, folgt $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.

Ergebnis: Die Aussage ist wahr.

- (c) Für alle $A, B \subseteq X$ gilt $f(A \cap B) = f(A) \cap f(B)$.
 - 1. Richtung: $f(A \cap B) \subseteq f(A) \cap f(B)$

 - Da $x \in A$ und $x \in B$, folgt $y = f(x) \in f(A)$ und $y = f(x) \in f(B)$.
 - $\circ \ \text{Also gilt } y \in f(A) \cap f(B).$
 - 2. Richtung: $f(A) \cap f(B) \subseteq f(A \cap B)$
 - o Sei $y \in f(A) \cap f(B)$. Dann existieren $x_1 \in A$ und $x_2 \in B$, sodass $f(x_1) = y$ und $f(x_2) = y$.
 - o Da jedoch x_1 und x_2 nicht unbedingt gleich sind (da f nicht injektiv sein muss), folgt nicht, dass $y \in f(A \cap B)$.

Da die Umkehrung nicht gilt, ist $f(A \cap B) \subseteq f(A) \cap f(B)$, aber nicht umgekehrt.

Ergebnis: Die Aussage ist falsch.

- (d) Für alle $A, B \subseteq X$ gilt $f(A \cup B) = f(A) \cup f(B)$.
 - 1. Richtung: $f(A \cup B) \subseteq f(A) \cup f(B)$

 - o Da $x \in A$ oder $x \in B$, folgt $y = f(x) \in f(A)$ oder $y = f(x) \in f(B)$, also $y \in f(A) \cup f(B)$.
 - 2. Richtung: $f(A) \cup f(B) \subseteq f(A \cup B)$
 - o Sei $y \in f(A) \cup f(B)$. Dann existieren $x_1 \in A$ oder $x_2 \in B$, sodass $f(x_1) = y$ oder $f(x_2) = y$.
 - ∘ In beiden Fällen gilt $x_1 \in A \cup B$ oder $x_2 \in A \cup B$, also $y \in f(A \cup B)$.

Da beide Inklusionen gezeigt wurden, folgt $f(A \cup B) = f(A) \cup f(B)$.

Ergebnis: Die Aussage ist wahr.