

Table of Contents

- Executive Summary
- Introduction
- Methodology
- · Results
 - · Task 1: Visualization
 - Task 2: Visualization
 - Task 3: Visualization
 - · Task 4: Visualization Charts
 - · Task 5: Visualization Charts
 - · Task 6: Visualization Charts
 - · Task 7: Visualization Charts
 - · Task 8: Visualization Charts
 - · Findings & Implications
- Discussion
 - · Findings & Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

In this Project, I will predict if the Falcon 9 first stage will land successfully. SpaceX advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.

Instead of using rocket science to determine if the first stage will land successfully, I will train several different machine learning models and use public information to predict if SpaceX will reuse the first stage.

INTRODUCTION

- Methodology
 - Quick review of Business Understanding and Analytic Approach
- Methodology (Our Methodology)
 - Data Collection: I collected data using the SpaceX REST API and publicly available data. This data forms the backbone of our analysis and prediction model.
 - Data Wrangling: This step involved cleaning and organizing the data to prepare it for further analysis. This is a crucial step as the quality of data affects the performance of the model.
 - Results and Exploratory Data Analysis (EDA): After preparing the data, we conducted an EDA using SQL, Pandas, and Matplotlib. This helped us understand the patterns in the data, identify any outliers or anomalies, and form hypotheses about potential relationships between variables.

METHODOLOGY

TEM DATA SCIENCE METHODOLOGY

METHODOLOGY (Our Methodology)

Objective

- Determine the price of each launch.
- Gather information about SpaceX and create a dashboard for the team
- Determine if SpaceX will reuse the first stage
- Train various ML models to predict if SpaceX will reuse the first stage

•Request to the SpaceX API Exploratory Data Analysis Task 1: Data Collection Task 5: EDA with Pandas •Clean the requested data Preparing Data Feature Engineering Mark all launch sites on a map •Request Historical data from public source Task 2: Data Collection Using Task 6: Launch Site Location Analysis • Mark the success/failed launches for each site on the map BeautifulSoup •Clean the requested data with Folium • Calculate the distances between a launch site to its proximities Perform Exploratory Data Analysis Task 3: EDA Data Wrangling Task 7: Dashboard Create a Dashboard Determine Training Labels Standardize the data •Understand the SpaceX Data Split into training data and test data Task 4: EDA with SQL •Load the dataset into the corresponding table in a Task 8: Model training And Evaluation • Find best Hyperparameter for SVM, Classification Trees and Db2 database Logistic Regression • Find the method performs best using test data

RESULTS

With the instructions given for this project, we can say things like from Site X with Payload Y it should "Succeed" and which model brought us to this conclusion. But with the data we collected I believe the model is underfitted. We don't have weather data(windspeeds, temperature), nor do we have data on fuel types, fuel mixture used during launches, which I believe would greatly increase accuracy.

"We'll go into further details of our findings later on."

Task 1: Data Collection

Data (Uncleaned)

Data (Cleaned)

st	tatic_fire_date_utc	static_fire_date_unix	net	window	rocket	success	failures	details	crew	ships	capsules	payloads	launchpad	flight_number	nam
0 2006-03	3-17T00:00:00.000Z	1.142554e+09	False	0.0	5e9d0d95eda69955f709d1eb	False	[{'time': 33, 'altitude': None, 'reason': 'merlin engine failure'}]	Engine failure at 33 seconds and loss of vehicle	۵	D	0	[5eb0e4b5b6c3bb0006eeb1e1] 5e9	9e4502f5090995de566f86	1	FalconS
1	None	NaN	False	0.0	5e9d0d9Seda69955f709d1eb	False	[{"time": 301, 'altitude": 289, 'reason': 'harmoi oscillation	Successful first stage burn and transition to second stage, maximum altitude 289 km, Premature engine shutdown	П	0	0	[5eb0e4b6b6c3bb0006eeb1e2]	9e4502f5090995de566f86	2	DemoS

ghtNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	0	GridFins	Reused	Legs	LandingPad	Block	ReusedCo Serial	Longitude	e Latitude
	6	6/4/2010 Falcon 9	6123.547647	LEO	CCSFS SLC 40	None None		1	FALSE	FALSE	FALSE			1 0 B0003	-80.5774	28.561
	8	5/22/2012 Falcon 9	525	LEO	CCSFS SLC 40	None None		1	FALSE	FALSE	FALSE			1 0 B0005	-80.5774	28.5618
	10	3/1/2013 Falcon 9	677	ISS	CCSFS SLC 40	None None		1	FALSE	FALSE	FALSE			1 0 B0007	-80.5774	28.561
	11	9/29/2013 Falcon 9	500	PO	VAFB SLC 4E	False Ocean		1	FALSE	FALSE	FALSE			1 0 B1003	-120.611	34.632
	12	12/3/2013 Falcon 9	3170	GTO	CCSFS SLC 40	None None		1	FALSE	FALSE	FALSE			1 0 B1004	-80.5774	28.561
	13	1/6/2014 Falcon 9	3325	GTO	CCSFS SLC 40	None None		1	FALSE	FALSE	FALSE			1 0 B1005	-80.5774	28.5618
	14	4/18/2014 Falcon 9	2296	ISS	CCSFS SLC 40	True Ocean		1	FALSE	FALSE	TRUE			1 0 B1006	-80.5774	28.5618
	15	7/14/2014 Falcon 9	1316	LEO	CCSFS SLC 40	True Ocean		1	FALSE	FALSE	TRUE			1 0 B1007	-80.5774	28.5618
	16	8/5/2014 Falcon 9	4535	GTO	CCSFS SLC 40	None None		1	FALSE	FALSE	FALSE			1 0 B1008	-80.5774	28.5618
	17	9/7/2014 Falcon 9	4428	GTO	CCSFS SLC 40	None None		1	FALSE	FALSE	FALSE			1 0 B1011	-80.5774	28.561
	18	9/21/2014 Falcon 9	2216	ISS	CCSFS SLC 40	False Ocean		1	FALSE	FALSE	FALSE			1 0 B1010	-80.5774	28.561
	19	1/10/2015 Falcon 9	2395	ISS	CCSFS SLC 40	False ASDS		1	TRUE	FALSE	TRUE	5e9e3032383ecb761		1 0 B1012	-80.5774	28.561
	20	2/11/2015 Falcon 9	570	ES-L1	CCSFS SLC 40	True Ocean		1	TRUE	FALSE	TRUE			1 0 B1013	-80.5774	28.561
	22	4/14/2015 Falcon 9	1898	ISS	CCSFS SLC 40	False ASDS		1	TRUE	FALSE	TRUE	5e9e3032383ecb761		1 0 B1015	-80.5774	28.5618
	23	4/27/2015 Falcon 9	4707	GTO	CCSFS SLC 40	None None		1	FALSE	FALSE	FALSE			1 0 B1016	-80.5774	28.5618
	24	6/28/2015 Falcon 9	2477	ISS	CCSFS SLC 40	None ASDS		1	TRUE	FALSE	TRUE	5e9e3032383ecb6bb		1 0 B1018	-80.5774	28.5618
	25	12/22/2015 Falcon 9	2034	LEO	CCSFS SLC 40	True RTLS		1	TRUE	FALSE	TRUE	5e9e3032383ecb267	,	1 0 B1019	-80.5774	28.5618
	26	1/17/2016 Falcon 9	553	PO	VAFB SLC 4E	False ASDS		1	TRUE	FALSE	TRUE	5e9e3033383ecbb9e		1 0 B1017	-120.611	34.6320
	27	3/4/2016 Falcon 9	5271	GTO	CCSFS SLC 40	False ASDS		1	TRUE	FALSE	TRUE	5e9e3032383ecb6bb		1 0 B1020	-80.5774	28.5618
	28	4/8/2016 Falcon 9	3136	ISS	CCSFS SLC 40	True ASDS		1	TRUE	FALSE	TRUE	5e9e3032383ecb6bl		2 1 B1021	-80.5774	28.5618
	29	5/6/2016 Falcon 9	4696	GTO	CCSFS SLC 40	True ASDS		1	TRUE	FALSE	TRUE	5e9e3032383ecb6bb		2 0 B1022	-80.5774	28.5618

Task 2: Data Collection Using BeautifulSoup

Data (Uncleaned)

Data (Cleaned)

2020 [edit]

In late 2019, Gwynne Shotwell stated that SpaceX hoped for as many as 24 launches for Starlink satellites in 2020, [490] in addition to 14 or 15 non-Starlink launches. At 26 launches, 13 of which for Starlink satellites, Falcon 9 had its most prolific year, and Falcon rockets were second most prolific pocket family [491]

[hide] Flight No.	Date and time (UTC)	Version, Booster ^[b]	Launch site	Payload ^[c]	Payload mass	Orbit	Customer	Launch outcome	Booster landing		
78	7 January 2020, 02:19:21 ^[492]	F9 B5 △ B1049.4	CCAFS, SLC-40	Starlink 2 v1.0 (60 satellites)	15,600 kg (34,400 lb) ^[5]	LEO	SpaceX	Success	Success (drone ship)		
	Third large batch and second	hird large batch and second operational flight of Starlink constellation. One of the 60 satellites included a test coating to make the satellite less reflective, and thus less likely to interfere with ground-based astronomical ob									
	19 January 2020, 15:30 ^[494]	F9 B5 △ B1046.4	KSC, LC-39A	Crew Dragon in-flight abort test ^[495] (Dragon C205.1)	12,050 kg (26,570 lb)	Sub-orbital ^[496]	NASA (CTS) ^[497]	Success	No attempt		
79	site. The test was previous	ly slated to be accomp	olished with the Cre	capsule fired its SuperDraco engines, reached an ew Dragon Demo-1 capsule; ^[498] but that test article lynamic forces after the capsule aborted. ^[500] First	e exploded during a ground test of Superi	Oraco engines on 20 A	pril 2019. ^[419] The abort test used the o	capsule originally i			
80	29 January 2020, 14:07 ^[501]	F9 B5 △ B1051.3	CCAFS, SLC-40	Starlink 3 v1.0 (60 satellites)	15,600 kg (34,400 lb) ^[5]	LEO	SpaceX	Success	Success (drone ship)		
	Third operational and four	h large batch of Starlin	nk satellites, deploy	red in a circular 290 km (180 mi) orbit. One of the f	airing halves was caught, while the other	was fished out of the c	ocean. ^[502]				
81	17 February 2020, 15:05 ^[503]	F9 B5 △ B1056.4	CCAFS, SLC-40	Starlink 4 v1.0 (60 satellites)	15,600 kg (34,400 lb) ^[5]	LEO	SpaceX	Success	Failure (drone ship)		
01				new flight profile which deployed into a 212 km \times ata. [505] This was the first time a flight proven boost		stead of launching into	a circular orbit and firing the second s	stage engine twice	. The first stage		
82	7 March 2020, 04:50 ^[506]	F9 B5 △ B1059.2	CCAFS, SLC-40	SpaceX CRS-20 (Dragon C112.3 △)	1,977 kg (4,359 lb) ^[507]	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)		
82				n ESA platform for hosting external payloads onto ligy part. [509] It was SpaceX's 50th successful landing					e failure. SpaceX		
	18 March 2020, 12:16 ^[510]	F9 B5 △ B1048.5	KSC, LC-39A	Starlink 5 v1.0 (60 satellites)	15,600 kg (34,400 lb) ^[5]	LEO	SpaceX	Success	Failure (drone ship)		
83		e first of a Merlin 1D va	ariant and first sind	rist stage booster flew for a fifth time and the second the central mission in October 2012. However, the							
84	22 April 2020, 19:30 ^[514]	F9 B5 △ B1051.4	KSC, LC-39A	Starlink 6 v1.0 (60 satellites)	15,600 kg (34,400 lb) ^[5]	LEO	SpaceX	Success	Success (drone ship)		

light No.	Launch site	Payload	Payload mass	Orbit	Customer	Launch outcome	Version Booster	Booster landing	Date	Time
	1 CCAFS	Dragon Spacecraft Qualif		0 LEO	SpaceX		F9 v1.1	Failure	4-Jun-10	18:45
	1 CCAFS	Dragon		0 LEO	NASA	Success	F9 v1.1	Failure	4-Jun-10	18:45
	2 CCAFS	Dragon	525 kg	LEO	NASA	Success	F9 v1.1		8-Dec-10	15:43
	3 CCAFS	SpaceX CRS-1	4,700 kg	LEO	NASA		F9 v1.1	No attempt	22-May-12	7:44
	4 CCAFS	SpaceX CRS-2	4,877 kg	LEO	NASA		F9 v1.1		8-Oct-12	0:35
	5 VAFB	CASSIOPE	500 kg	Polar orbit	MDA	Success	F9 v1.1	Uncontrolled	1-Mar-13	15:10
	6 CCAFS	SES-8	3,170 kg	GTO	SES	Success	F9 v1.1	No attempt	29-Sep-13	16:00
	7 CCAFS	Thaicom 6	3,325 kg	GTO	Thaicom	Success	F9 v1.1	No attempt	3-Dec-13	22:41
	8 Cape Canaveral	SpaceX CRS-3	2,296 kg	LEO	NASA		F9 v1.1	Controlled	6-Jan-14	22:06
	9 Cape Canaveral	Orbcomm-OG2	1,316 kg	LEO	Orbcomm	Success	F9 v1.1	Controlled	18-Apr-14	19:25
	10 Cape Canaveral	AsiaSat 8	4,535 kg	GTO	AsiaSat	Success	F9 v1.1	No attempt	14-Jul-14	15:15
	11 Cape Canaveral	AsiaSat 6	4,428 kg	GTO	AsiaSat	Success	F9 v1.1		5-Aug-14	8:00
	12 Cape Canaveral	SpaceX CRS-4	2,216 kg	LEO	NASA	Success	F9 v1.1	Uncontrolled	7-Sep-14	5:00
	13 Cape Canaveral	SpaceX CRS-5	2,395 kg	LEO	NASA	Success	F9 v1.1	Failure	21-Sep-14	5:52
	14 Cape Canaveral	DSCOVR	570 kg	HEO	USAF		F9 v1.1	Controlled	10-Jan-15	9:47
	15 Cape Canaveral	ABS-3A	4,159 kg	GTO	ABS		F9 v1.1	No attempt	11-Feb-15	23:03
	16 Cape Canaveral	SpaceX CRS-6	1,898 kg	LEO	NASA		F9 v1.1	Failure	2-Mar-15	3:50
	17 Cape Canaveral	TürkmenÄlem 52°E /	4,707 kg	GTO			F9 v1.1	No attempt	14-Apr-15	20:10
	18 Cape Canaveral	SpaceX CRS-7	1,952 kg	LEO	NASA	Failure	F9 v1.1	Precluded	27-Apr-15	23:03
	19 Cape Canaveral	Orbcomm-OG2	2,034 kg	LEO	Orbcomm		F9 v1.1	Success	28-Jun-15	14:21
	20 VAFB	Jason-3	553 kg	LEO	NASA		F9 v1.1	Failure	22-Dec-15	1:29

Task 3: EDA Data Wrangling

Data (Uncleaned)

Data (Cleaned)

Flight No.		Launch site	Payload	Payload mass	Orbit	Customer	Launch outcome	Version Booster	Booster landing	Date	Time
	1	CCAFS	Dragon Spacecraft Qualif	(LEO	SpaceX		F9 v1.1	Failure	4-Jun-10	18:45
	1	CCAFS	Dragon	(LEO	NASA	Success	F9 v1.1	Failure	4-Jun-10	18:45
	2	CCAFS	Dragon	525 kg	LEO	NASA	Success	F9 v1.1		8-Dec-10	15:43
	3	CCAFS	SpaceX CRS-1	4,700 kg	LEO	NASA		F9 v1.1	No attempt	22-May-12	7:44
	4	CCAFS	SpaceX CRS-2	4,877 kg	LEO	NASA		F9 v1.1		8-Oct-12	0:35
	5	VAFB	CASSIOPE	500 kg	Polar orbit	MDA	Success	F9 v1.1	Uncontrolled	1-Mar-13	15:10
	6	CCAFS	SES-8	3,170 kg	GTO	SES	Success	F9 v1.1	No attempt	29-Sep-13	16:00
	7	CCAFS	Thaicom 6	3,325 kg	GTO	Thaicom	Success	F9 v1.1	No attempt	3-Dec-13	22:41
	8	Cape Canaveral	SpaceX CRS-3	2,296 kg	LEO	NASA		F9 v1.1	Controlled	6-Jan-14	22:06
	9	Cape Canaveral	Orbcomm-OG2	1,316 kg	LEO	Orbcomm	Success	F9 v1.1	Controlled	18-Apr-14	19:25
	10	Cape Canaveral	AsiaSat 8	4,535 kg	GTO	AsiaSat	Success	F9 v1.1	No attempt	14-Jul-14	15:15
	11	Cape Canaveral	AsiaSat 6	4,428 kg	GTO	AsiaSat	Success	F9 v1.1		5-Aug-14	8:00
	12	Cape Canaveral	SpaceX CRS-4	2,216 kg	LEO	NASA	Success	F9 v1.1	Uncontrolled	7-Sep-14	5:00
	13	Cape Canaveral	SpaceX CRS-5	2,395 kg	LEO	NASA	Success	F9 v1.1	Failure	21-Sep-14	5:52
	14	Cape Canaveral	DSCOVR	570 kg	HEO	USAF		F9 v1.1	Controlled	10-Jan-15	9:47
	15	Cape Canaveral	ABS-3A	4,159 kg	GTO	ABS		F9 v1.1	No attempt	11-Feb-15	23:03
	16	Cape Canaveral	SpaceX CRS-6	1,898 kg	LEO	NASA		F9 v1.1	Failure	2-Mar-15	3:50
	17	Cape Canaveral	TürkmenÄlem 52°E /	4,707 kg	GTO			F9 v1.1	No attempt	14-Apr-15	20:10
	18	Cape Canaveral	SpaceX CRS-7	1,952 kg	LEO	NASA	Failure	F9 v1.1	Precluded	27-Apr-15	23:03
	19	Cape Canaveral	Orbcomm-OG2	2,034 kg	LEO	Orbcomm		F9 v1.1	Success	28-Jun-15	14:21
	20	VAFB	Jason-3	553 kg	LEO	NASA		F9 v1.1	Failure	22-Dec-15	1:29

FlightNumber	Date	Boo	osterVe F	PayloadM Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPa B	Block	ReusedCo Serial	Longitude	Latitude	Class		
	1	6/4/2010 Falo	con 9	6104.959 LEO	CCAFS SLC 40	None None		1 FALSE	FALSE	FALSE		1	0 B0003	-80.577366	28.5618571		0	
	2	5/22/2012 Falo	con 9	525 LEO	CCAFS SLC 40	None None		1 FALSE	FALSE	FALSE		1	0 B0005	-80.577366	28.5618571		0	
	3	3/1/2013 Falo	con 9	677 ISS	CCAFS SLC 40	None None		1 FALSE	FALSE	FALSE		1	0 B0007	-80.577366	28.5618571		0	
	4	9/29/2013 Falo	con 9	500 PO	VAFB SLC 4E	False Ocean		1 FALSE	FALSE	FALSE		1	0 B1003	-120.610829	34.632093		0	
	5	12/3/2013 Falo	con 9	3170 GTO	CCAFS SLC 40	None None		1 FALSE	FALSE	FALSE		1	0 B1004	-80.577366	28.5618571		0	
	6	1/6/2014 Falo	con 9	3325 GTO	CCAFS SLC 40	None None		1 FALSE	FALSE	FALSE		1	0 B1005	-80.577366	28.5618571		0	
	7	4/18/2014 Falo	con 9	2296 ISS	CCAFS SLC 40	True Ocean		1 FALSE	FALSE	TRUE		1	0 B1006	-80.577366	28.5618571		1	
	8	7/14/2014 Falo	con 9	1316 LEO	CCAFS SLC 40	True Ocean		1 FALSE	FALSE	TRUE		1	0 B1007	-80.577366	28.5618571		1	
	9	8/5/2014 Falo	con 9	4535 GTO	CCAFS SLC 40	None None		1 FALSE	FALSE	FALSE		1	0 B1008	-80.577366	28.5618571		0	
1	10	9/7/2014 Falo	con 9	4428 GTO	CCAFS SLC 40	None None		1 FALSE	FALSE	FALSE		1	0 B1011	-80.577366	28.5618571		0	
1	11	9/21/2014 Falo	con 9	2216 ISS	CCAFS SLC 40	False Ocean		1 FALSE	FALSE	FALSE		1	0 B1010	-80.577366	28.5618571		0	
1	12	1/10/2015 Falo	con 9	2395 ISS	CCAFS SLC 40	False ASDS		1 TRUE	FALSE	TRUE	5e9e30328	1	0 B1012	-80.577366	28.5618571		0	
1	13	2/11/2015 Falo	con 9	570 ES-L1	CCAFS SLC 40	True Ocean		1 TRUE	FALSE	TRUE		1	0 B1013	-80.577366	28.5618571		1	
1	14	4/14/2015 Falo	con 9	1898 ISS	CCAFS SLC 40	False ASDS		1 TRUE	FALSE	TRUE	5e9e3032	1	0 B1015	-80.577366	28.5618571		0	
1	15	4/27/2015 Falo	con 9	4707 GTO	CCAFS SLC 40	None None		1 FALSE	FALSE	FALSE		1	0 B1016	-80.577366	28.5618571		0	
1	16	6/28/2015 Falo	con 9	2477 ISS	CCAFS SLC 40	None ASDS		1 TRUE	FALSE	TRUE	5e9e3032	1	0 B1018	-80.577366	28.5618571		0	
1	17	12/22/2015 Falo	con 9	2034 LEO	CCAFS SLC 40	True RTLS		1 TRUE	FALSE	TRUE	5e9e3032	1	0 B1019	-80.577366	28.5618571		1	
1	18	1/17/2016 Falo	con 9	553 PO	VAFB SLC 4E	False ASDS		1 TRUE	FALSE	TRUE	5e9e30333	1	0 B1017	-120.610829	34.632093		0	
1	19	3/4/2016 Falo	con 9	5271 GTO	CCAFS SLC 40	False ASDS		1 TRUE	FALSE	TRUE	5e9e3032	1	0 B1020	-80.577366	28.5618571		0	
2	20	4/8/2016 Falo	con 9	3136 ISS	CCAFS SLC 40	True ASDS		1 TRUE	FALSE	TRUE	5e9e3032	2	1 B1021	-80.577366	28.5618571		1	
2	21	5/6/2016 Falo	con 9	4696 GTO	CCAFS SLC 40	True ASDS		1 TRUE	FALSE	TRUE	5e9e3032	2	0 B1022	-80.577366	28.5618571		1	
			-									-						

Task 4: EDA with SQL

Q1: Display the names of the unique launch sites in the space mission

Display the names of the unique launch sites in the space mission										
%sql select d	distinct "Launch_Site" from SPACEXTABLE									
* sqlite:/// Done.	my_data1.db									
Launch_Site										
CCAFS LC-40										
VAFB SLC-4E										
KSC LC-39A										
CCAFS SLC-40										

Q2: Display 5 records where launch sites begin with the string 'CCA'

Q3: Display the total payload mass carried by boosters launched by NASA (CRS)

Q4: Display average payload mass carried by booster version F9 v1.1

Q5: List the date when the first successful landing outcome in ground pad was achieved.

Hint: Use min function

* sqlite://my_data1.db
Done.

MIN("Date")

2015-12-22

***Sqlite://my_data1.db
Done.

2015-12-22

Q6: List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

Q7: List the total number of successful and failure mission outcomes

Q8: List the names of the booster_versions which have carried the maximum payload mass. Use a subquery

Q9: List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.

Note: SQLLite does not support monthnames. So you need to use substr(Date, 6,2) as month to get the months and substr(Date, 0,5)='2015' for year.

Q10: Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order.

Task 5: EDA with Pandas and Matplotlib

Visualize Data 1: Visualize the relationship between Flight Number and Launch Site

Visualize Data 2: Visualize the relationship between Payload and Launch Site

Visualize Data 3: Visualize the relationship between success rate of each orbit type

Visualize Data 4: Visualize the relationship between FlightNumber and Orbit type

Visualize Data 5: Visualize the relationship between Payload and Orbit type

Visualize Data 6: Visualize the launch success yearly trend

Task 6: Launch Site Location Analysis with Folium

Step 1: Mark all launch sites on a map

Step 2: Mark the success/failed launches for each site on the map

West Coast

East Coast

Task 7: Dashboard

Payload range (Kg):

Task 8: Model training And Evaluation

Examining the confusion matrix, we see that logistic regression can distinguish between the different classes. We see that the major problem is false positives.

OVERALL FINDINGS & IMPLICATIONS

Task 1 – Task 4

Findings

- That a single data source may not be sufficient to validate our hypothesis, highlighting the importance of being able to scrape data via APIs and use web scraping tools.
- Data Wrangling is a continuous process that occurs throughout the data collection phase.

Implications

- The need to cross-reference data from multiple sources in various formats implies that parsing skills are crucial for extracting necessary data.
- By answering a variety of questions, I've been able to identify data that could potentially help answer our overall objective.

**Machine Learning Models = MLM

Examining the confusion matrix, we see that or Regression, SVM, Tree, and KNN models can distinguish between the different classes. But we see that the major problem is false positives.

DASHBOARD

https://github.com/teslonobo/Notebook.git

DISCUSSION

 If you have any questions feel free to reach out to me on github!

 If there are things I could of done better you are invited to leave constructive criticism.

CONCLUSION

You can spend time playing with the models and come up with different conclusions. You could be overfitting, you could be underfitting, you can be using K-fold instead of how split test train is used. But the Tasks breaks every part down into manageable and digestible parts. Making the project easy to follow along and do. Very fun project!

APPENDIX

- There are a total of 40 points possible for the final assessment, and you will be graded by your peers, who are also completing this assignment.
- The main grading criteria will be:
- Uploaded the URL of your GitHub repository including all the completed notebooks and Python files (1 pt)
- Uploaded your completed presentation in PDF format (1 pt)
- Completed the required Executive Summary slide (1 pt)
- Completed the required Introduction slide (1 pt)
- Completed the required data collection and data wrangling methodology related slides (1 pt)
- Completed the required EDA and interactive visual analytics methodology related slides (3 pts)
- Completed the required predictive analysis methodology related slides (1 pt)
- Completed the required EDA with visualization results slides (6 pts)
- Completed the required EDA with SQL results slides (10 pts)
- Completed the required interactive map with Folium results slides (3 pts)
- Completed the required Plotly Dash dashboard results slides (3 pts)
- Completed the required predictive analysis (classification) results slides (6 pts)
- Completed the required Conclusion slide (1 pts)
- Applied your creativity to improve the presentation beyond the template (1 pts)
- Displayed any innovative insights (1 pts)