CIND-221: Elementos de teoría de conjuntos

Felipe Osorio

f.osoriosalgado@uandresbello.edu

Facultad de Ingeniería, UNAB

Un conjunto es una colección bastante general de objetos o números, los que son llamados elementos.

Decimos que a es un elemento del conjunto A, o bien, que a pertenece a A y escribimos $a \in A$, en caso contrario escribimos $a \not\in A$.

Para los objetos contenidos en A usaremos la notación:

$$A = \{a_1, a_2, \dots, a_n, \dots\},\$$

Ejemplos:

$$A = \{1, 2, \dots, n\}, \quad B = \{2, 4, 6, 8, \dots\}, \quad C = \{x : 0 < x < 1\},$$

$$D = \{f : f(x) = ax + b, a, b \in \mathbb{R}\},$$

donde $\ensuremath{\mathbb{R}}$ es el conjunto de todos los números reales.

Un conjunto también puede representar una colección de conjuntos. Sea A y B dos conjuntos, entonces $\mathcal{C}=\{A,B\}$ es un conjunto de conjuntos.

Ejemplo:

Sea
$$A=\{0,1\}$$
 y $B=\{1,2,\ldots,n\}.$ Entonces,

$$C = \{A, B\} = \{\{0, 1\}, \{1, 2, \dots, n\}\},\$$

es decir $\mathcal C$ contiene dos elementos. El conjunto $\{0,1\}$ y el conjunto $\{1,2,\ldots,n\}$.

Definición 1 (Universo y vacio):

El conjunto universal, es aquél conjunto que contiene todos los objetos bajo consideración, y será denotado por Ω . Mientras que el conjunto vacio o nulo, denotado por \varnothing corresponde al conjunto que no contiene elementos.

Ejemplo:

Considere $\Omega = \mathbb{R}$ y sea,

$$A = \{x \in \mathbb{R} : x^2 - 2x + 2 = 0\}.$$

De este modo, $A=\varnothing$, pues la ecuación cuadrática $x^2-2x+2=0$ no tiene raíces reales.

Definición 2 (Subconjunto):

Un conjunto B es llamado subconjunto de A si y sólo si para todo $x \in B$, entonces $x \in A$. en cuyo caso anotamos $B \subseteq A$.

Si $B\subseteq A$ y existe $x\in A$ tal que $x\not\in B$, entonces se dice que B es un subconjunto propio de A y anotamos $B\subset A$.

Definición 3 (Igualdad de conjuntos):

Cuando $B\subseteq A$ y $A\subseteq B$ entonces A=B.

Ejemplos:

- ▶ Suponga que $A = \{1, 2, 3, 4, 5\}$ y $B = \{1, 3, 5\}$, en este caso $B \subset A$.
- ▶ Si $A = \{0, 1\}$ y $B = \{0, 1\}$, entonces A = B.
- ▶ Considere $A = \{x : x \ge 0\}$ y $B = \{x : x > 1\}$, luego $B \subset A$.

Observación:

Tenemos que $\varnothing\subseteq A$ para todo A, mientras que $A\subseteq\Omega$. Más aún $\varnothing\subset\Omega$ y $\Omega\subseteq\Omega$.

Un par de elementos a y b (no necesariamente diferentes) donde a es el primer elemento mientras que b es el segundo es llamado par ordenado y escribimos (a,b).

En general una n-upla ordenada es (a_1,a_2,\ldots,a_n) y es usual llamar a a_i la i-ésima coordanada de la n-upla.

Definición 4 (Producto cartesiano):

El producto cartesiano de los conjuntos A y B denotado por $A \times B$ es definido como

$$A\times B=\{(a,b):a\in A,b\in B\}.$$

Observación:

Esta definición puede ser extendida a n conjuntos A_1,A_2,\ldots,A_n como

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) : a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n\}.$$

En particular, si $A_1=A_2=\cdots=A_n=A$, entonces el producto cartesiano es denotado por A^n .

Definición 5 (Unión):

La unión de dos conjuntos A y B consiste de todos los elementos en A o en B, es decir

$$A \cup B = \{x : x \in A, \text{ o } x \in B\}.$$

La definición anterior se extiende a n conjuntos A_1, \ldots, A_n como

$$A_1 \cup A_2 \cup \cdots \cup A_n = \{x \in \Omega : x \in A_k \text{ para al menos un } k \in \{1, 2, \dots, n\}\},\$$

y más generalmente para una familia de conjuntos $\{A_i, i \in I\}$, con I un conjunto de índices,

$$\bigcup_{i\in I}A_i=\{x\in\Omega:x\in A_i\text{ para al menos un subíndice }i\in I\}.$$

Ejemplo:

Sea
$$A=\{1,2\}$$
 y $B=\{1,5\}$, entonces $A\cup B=\{1,2,5\}$. Ahora, si $A=(0,1]$ y $B=(\frac{1}{2},\infty)$, entonces $A\cup B=(0,\infty)$.

Definición 6 (Intersección):

La intersección de dos conjuntos A y B es el conjunto que incluye los elementos comunes a ambos conjuntos y es denotado por $A\cap B$, esto es

$$A \cap B = \{x : x \in A, \ y \ x \in B\}.$$

Esta definición puede ser extendida a n conjuntos A_1,\ldots,A_n como

$$A_1 \cap A_2 \cap \cdots \cap A_n = \{x \in \Omega : x \in A_k \text{ para todos los subíndices } k \in \{1, 2, \dots, n\}\},\$$

y más generalmente para una familia de conjuntos $\{A_i, i \in I\}$, como:

$$\bigcap_{i \in I} A_i = \{x \in \Omega : x \in A_i \text{ para todos los subíndices } i \in I\}.$$

Ejemplo:

Para
$$A=\{1,2\}$$
 y $B=\{1,5\}$, entonces $A\cap B=\{1\}$. Mientras que, si $A=(0,1]$ y $B=(\frac{1}{2},\infty)$, entonces $A\cap B=(\frac{1}{2},1]$.

Definición 7 (Complemento):

El complemento (con respecto a Ω) de un conjunto A es definido como:

$$A^c = \{x \in \Omega : x \not \in A\}.$$

Es fácil notar que

$$(A^c)^c = A, \qquad \Omega^c = \varnothing, \qquad \varnothing^c = \Omega.$$

Ejemplos:

- \blacktriangleright Suponga $\Omega=[0,1]$ y $A=[0,\frac{1}{2}),$ luego $A^c=[\frac{1}{2},1].$
- $\blacktriangleright \ \ \mathsf{Sea} \ \Omega = \mathbb{R} \ \mathsf{y} \ A = \mathbb{R} \mathsf{, entonces} \ A^c = \varnothing.$

Definición 8 (Diferencia entre conjuntos):

La diferencia del conjunto B con el conjunto A es definida como el conjunto de los elementos de A que no pertenecen a B, esto es,

$$A-B=\{x\in\Omega:x\in A,x\not\in B\}.$$

Podemos apreciar que,

$$A-B=A\cap B^c, \qquad A^c=\Omega-A.$$

Definición 9 (Conjuntos disjuntos):

Dos conjuntos A y B se dicen disjuntos si ellos no tienen elementos en común, y escribimos $A\cap B=\varnothing$.

Más generalmente, los conjuntos A_1,\dots,A_n se dicen disjuntos por pares (o mutuamente excluyentes) si

$$A_i \cap A_j = \emptyset, \qquad i \neq j,$$

con $\{i,j\}$ desde el conjunto de índices $\{1,2,\ldots,n\}$.

Ejemplo:

Sea $A=\{x:x>1\}$ y $B=\{x:x<0\}.$ Entonces A y B son disjuntos.

Propiedades:

► Asociatividad:

$$(A \cup B) \cup C = A \cup (B \cup C), \qquad (A \cap B) \cap C = A \cap (B \cap C).$$

► Conmutatividad:

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$.

Distributividad:

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C), \qquad A\cup (B\cap C)=(A\cup B)\cap (A\cup C).$$

► Sobre el vacio y conjunto universo.

$$A\cup\varnothing=\varnothing\cup A=A,\qquad A\cap\Omega=\Omega\cap A=A.$$

► Sobre el complemento

$$A\cap A^c=\varnothing, \qquad A\cup A^c=\Omega.$$

Leyes de De Morgan:

$$(A \cup B)^c = A^c \cap B^c, \qquad (A \cap B)^c = A^c \cup B^c.$$

Las fórmulas de De Morgan pueden ser extendidas para n conjuntos A_1,\ldots,A_n , como:

$$(A_1 \cup A_2 \cup \dots \cup A_n)^c = A_1^c \cap A_2^c \cap \dots \cap A_n^c,$$

$$(A_1 \cap A_2 \cap \dots \cap A_n)^c = A_1^c \cup A_2^c \cup \dots \cup A_n^c,$$

y para una familia de conjuntos $\{A_i, i \in I\}$, como:

$$\Big(\bigcup_{i\in I}A_i\Big)^c=\bigcap_{i\in I}A_i^c,\qquad \Big(\bigcap_{i\in I}A_i\Big)^c=\bigcup_{i\in I}A_i^c.$$

Definición 10 (Partición):

Una colección de conjuntos $\{A_1,\dots,A_n\}$ es una partición del conjunto A, si satisface las condiciones:

- (a) $\{A_1, \ldots, A_n\}$ son disjuntos por pares.
- (b) $\cup_{i=1}^{n} A_i = A$.

Ejemplo:

A y A^c son una partición de Ω , pues

$$A \cap A^c = \varnothing, \qquad A \cup A^c = \Omega.$$

Ejemplo:

La familia de conjuntos $A_i=[i,i+1)$, para $i=0,1,2,\ldots$ forman una partición de $[0,\infty).$