14. ČÍSLICOVÝ MĚŘIČ IMPEDANCÍ A ADMITANCÍ

Úkol měření

1. Odvoďte, že pro zapojení na obr. 1 platí vztahy

$$R_{\rm X} = \frac{-R_{\rm N} \operatorname{Re}\{\mathbf{U}_{2}\}}{U_{1}}; \qquad L_{\rm X} = \frac{-R_{\rm N} \operatorname{Im}\{\mathbf{U}_{2}\}}{\omega U_{1}}$$
(1)

a pro zapojení na obr. 2 platí:

$$G_{\mathbf{X}} = \frac{-\operatorname{Re}\{\mathbf{U}_{2}\}}{R_{\mathbf{N}}U_{1}}; \qquad C_{\mathbf{X}} = \frac{\operatorname{Im}\{\mathbf{U}_{2}\}}{\omega R_{\mathbf{N}}U_{1}}$$
(2)

Obr. 2 Zapojení převodníku pro měření admitance

2. Sestaveným LRC měřičem změřte indukčnost a ztrátový odpor předložené cívky. Použijte sériové náhradní schéma L_S , R_S , měřte při doporučených hodnotách kmitočtů a odporů R_N uvedených v tabulce.

Doporučený kmitočet f (Hz)	ω	Velikost $R_{ m N}$ (Ω)
159,2	10^{3}	100
1592	10^{4}	1000

- 3. Pro jedno měření zakreslete do sešitu průběhy napětí za řízeným usměrňovačem (v poloze $Rei\ Im$) a dokažte, že střední hodnota (stejnosměrná složka) tohoto napětí U_{2s} odpovídá reálné, popř. imaginární složce fázoru výstupního napětí \mathbf{U}_2 .
- 4. Výše uvedeným RLC měřičem změřte průchozí admitanci předloženého kondenzátoru a obě dvě parazitní kapacity vůči stínění. Použijte paralelní náhradní schéma C_P , G_P , měřte při kmitočtu 1592 Hz, $R_N = 100 \text{ k}\Omega$.

Schéma zapojení

Obr. 3 Schéma zapojení přípravku pro měření impedancí a admitancí (není nakresleno napájení).

Poznámky k měření:

- Pozn. 1: Volbou $\omega = 10^3 \text{ s}^{-1} \text{ popř. } 10^4 \text{ s}^{-1} \text{ a } U_1 = 1 \text{ V se dosáhne toho, že hodnoty prvků náhradního schématu } (L_X, R_X \text{ popř. } C_X, G_X) \text{ se vypočtou z příslušných složek výstupního napětí pouhým vynásobením mocninami } 10.$
- Pozn. 2: Vzhledem k tomu, že stejnosměrná složka napětí na výstupu řízeného usměrňovače je úměrná střední hodnotě měřeného napětí $U_{2S} = U_2 \cos \varphi$), je nutné na vstupu převodníku $\mathbf{Z} \to \mathbf{U}$ popř. $\mathbf{Y} \to \mathbf{U}$ nastavovat též střední hodnotu napětí. Protože však u vstupního napětí nastavujeme jeho efektivní hodnotu (údaj číslicového voltmetru odpovídá efektivní hodnotě měřeného napětí) a platí $U_{ef} \cong 1,11 \ U_{stř}$, je nutné nastavit hodnotu efektivní na vstupu převodníku 1,11-krát větší, než je požadovaná hodnota střední. Aby bylo možné na vstupu přípravku nastavovat napětí bez vynásobení koeficientem 1,11, je v přípravku vstupní napětí zesilováno invertujícím zesilovačem s přenosem -1,11; záporná hodnota přenosu odpovídá znaménku ve vztazích (1) a (2).