Problema D **Máquina Dobradora**

Arquivo: dobra.[c|cpp|java]

Uma das principais ferramentas de uma Máquina de Turing, que possibilita que seu poder de computação seja maior do que de outros modelos mais simples, é uma fita infinita, dividida em células, onde informações de um alfabeto ficam armazenadas.

Uma Máquina Dobradora é uma máquina inspirada na Máquina de Turing, onde a fita é finita, os dados armazenados são números inteiros e, ao invés do mecanismo de funcionamento tradicional de Turing, a máquina utiliza operações de dobras da fita para fazer computações.

Para efetuar uma dobra, a máquina escolhe uma posição entre células adjacentes e, ao realizar a dobra, ela soma os valores das células que se sobrepuseram, como pode ser visto na figura abaixo.

Observe também que a dobra pode ser feita em uma posição anterior ao centro da fita, como ilustrado a seguir. Note também que, com isso, podem ser feitas dobras também no início e no final da fita, invertendo a ordem desta.

A empresa Science of Bends Company vem desenvolvendo versões comerciais da Máquina Dobradora e a produção tem aumentado recentemente. Infelizmente o último lote de Máquinas Dobradoras produzidas está com problemas e algumas máquinas não estão funcionando corretamente. Assim, testes são necessários para evitar a venda de produtos com defeito, o que poderia denegrir a imagem da empresa.

Para testar as máquinas, um conjunto de testes é dado e, para cada fita, a máquina devolve o resultado da computação. Assim os engenheiros responsáveis pelos testes tomam nota do resultado e podem verificar se este está correto. Mas os engenheiros esqueceram-se de tomar nota de qual computação foi feita em cada conjunto de teste. Para evitar a necessidade de testar todas as máquinas novamente, os engenheiros estariam satisfeitos em descobrir se pelo menos existe uma sequência de dobras coerente para um par de fitas de entrada e saída. Para isso, eles contrataram você para desenvolver um programa que verifique, para cada fita de entrada, se existe uma sequência de dobraduras que leve a uma fita de saída.

Entrada

Cada caso de teste é composto por 4 linhas. As primeiras duas linhas referem-se à entrada fornecida à Máquina Dobradora e as duas seguintes referem-se à saída fornecida pela Máquina. A primeira

linha da entrada contém um único inteiro N, descrevendo o tamanho da fita de entrada. A linha seguinte conterá N inteiros v_1, \ldots, v_N , correspondentes ao conteúdo da fita de entrada. A terceira linha contém um inteiro M, o tamanho da fita de saída e a última linha conterá inteiros w_1, \ldots, w_M , correspondentes ao conteúdo da fita de saída.

Saída

A saída de cada caso de teste conterá uma única linha contendo a letra "S" caso exista uma sequência de dobraduras que transforme a fita de entrada na fita de saída e "N" em caso contrário.

Restrições

- $1 \le M \le N \le 15$.
- $0 \le v_i, w_j \le 10^8$, para $1 \le i \le N$ e $1 \le j \le M$.

Exemplos

Exemplos

Entrada	Saída
7	S
5 6 23 8 19 7 10	
4	
5 16 30 27	

Entrada	Saída
7	S
1 2 3 4 5 6 7	
5	
7 6 5 5 5	

Entrada	Saída
4	S
1 2 3 4	
1	
10	

Entrada	Saída
6	N
19 23 3 51 2 0	
2	
34 64	

Entrada	Saída
6	S
1 2 3 4 5 6	
6	
1 2 3 4 5 6	

Entrada	Saída
6	S
1 2 3 4 5 6	
6	
6 5 4 3 2 1	