CS2040 Finals Cheatsheet v1.0 (2019-02-10) by Julius Putra Tanu Setiaji, page 1 of 1

Summary

,			
	insert	delete	search
Array	O(n)	O(n)	O(n)
Linked List	O(1)	O(1)	O(n)
BST	O(n) worst,	O(n) worst,	O(n) worst,
	$O(\log n)$ avg	$O(\log n)$ avg	O(log n) avg
AVL Tree	$O(\log n)$	$O(\log n)$	$O(\log n)$
Hash	O(n) worst,	O(n) worst,	O(n) worst,
	O(1) avg	O(1) avg	O(1) avg

List

2.1 Array Best for fixed-size lists.

- Random Access: O(1)
- Insertion: O(n)
- Random Deletion: O(n), deletion from back: O(1)

2.2 Linked List

- Random access: O(n)
- Random insertion & deletion: O(n)
- Insertion & deletion to head or tail: O(1)
- Use ListIterator to iterate through the list.
- Tailed linked list: with a pointer to tail
- Doubly linked list: each node with prev and next
- Circular linked list: pointer on one of the nodes to a prev node

3 Stacks and Queues

3.1 Stack

- LIFO with 2 operations: push and pop
- Implementation using array: one pointer for the top element.

Uses

- Bracket matching for every '(', push; every ')', pop. If doesn't
- match, underflow, stack not empty, then error.
- Converting infix to postfix print out operands. When encountering ')', pop and print until encountering '(') or stack is empty. Else, push any other operator.

4 Oueue

- FIFO with 2 operations: enqueue and dequeue
- Implementation with array: two pointers for front (pointing to front of the queue) and back (pointing to where new element should be inserted).
- Circular array:
- front = (front + 1) % maxsize; back = (back + 1) %
- To distinguish full/empty state: either (1) maintain queue size Pre-order of full status, or (2) leave a gap, so full state (((B+1) % maxsize) == F)

Uses Print queues

- · Checking palindromes a Stack reverses order, a Queue preserves order

5 Recursion

- Can be visualised using a stack
- Divide into sub-problems of the same type and Conquer the subproblems with recursion
- Recipe for recursion:
- 1. General (Recursive) Case
- 2. Base Case
- 3. Ensure base case is reached (no infinite recursion)
- **Backtracking**: allows us to exhaustively search all possible results in a systematic manner.

6 Complexity Analysis of Algo

CS1101S!

Sorting

Summary

1.1 Sullillary						
Sorting	Worst Case	Best Case	In- place?	Stable?		
Selection	$O(n^2)$	$O(n^2)$	Yes	NO		
Insertion	$O(n^2)$	O(n)	Yes	Yes		
Bubble	$O(n^2)$	$O(n^2)$	Yes	Yes		
Bubble (with	$O(n^2)$	O(n)	Yes	Yes		
flag)						
Merge	$O(n \log n)$	O(n)	NO	Yes		
Radix	O(n)	O(n)	NO	Yes		
Quick	$O(n^2)$	$O(n \log n)$	Yes	NO		

Trees

8.1 Terminology

- Node / Vertex
- Edge
- Parent
- Children
- Sibling
- Ancestor
- Descendant
- Root (has no parent)
- Internal nodes (has 1/more children)
- Leaves (has no children)
- Level of a node (no of nodes of the path from root to node) (1 indexed)
- **Height** of a tree (max level of nodes)
- Size of a tree (no of nodes in the tree)

8.2 Binary Tree

Each node has at most 2 ordered children.

8.2.1 Types

Full BT

- Full BT = every node has either 0 or 2 children
- Complete BT = Every level except the last is completely filled, and all nodes in the last level are as far left as possible

8.2.2 Properties

- **Full BT**: no of nodes = $N = 2^h 1$, height = $\log(N + 1)$
- **Complete BT**: $max(N) = 2^{h-1}$. $min(N) = 2^h 1$

8.2.3 BT Traversal

- Post-order
- In-order
- Level-order: Traverse the tree level by level from left to right. (BFS)

8.3 BST

Property: All keys smaller then root in left subtree, larger in right

Case of deleting node with 2 children: move smallest node in right subtree to the deleted node.