UNCLASSIFIED

AD 416118

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

CATALOGED BY DDC 416118
AS AD NO. 416118

Single Sampling Inspections Plans
With Specified Acceptance Probability
and Minimum Costs.

By
A. Hald

416118

Institute of Mathematical Statistics, University of Copenhagen.
Technical Report No. to the Cifice of Naval Research prepared under Contract Nonr-N62558-3073 (NR 042-225).

INSTITUTE OF MATHEMATICAL STATISTICS UNIVERSITY OF COPENHAGEN

Single Sampling Inspection Plans with Specified Acceptance Probability and Minimum Costs.

Ву

A. Hald

University of Copenhagen

1. Introduction and Summary.

To design an economical sampling plan it is necessary to know the costs of sampling inspection, the costs of wrong decisions, and the quality distribution of lots submitted for inspection, the prior distribution. Sometimes it is impossible to specify the prior distribution in detail but a vague knowledge is available which means that not enough is known/for the minimax solution to be satisfactory. The problem then is to choose a third principle leading to a reasonable colution.

The principle used in the present paper is to specify the acceptance probability for one quality level and minimize the costs for another quality level.

Characterizing the quality of a lot by its fraction defective, p, we denote the costs of acceptance per item in the lot by $\mathbf{k}_a(\mathbf{p})$ and the costs of rejection by $\mathbf{k}_r(\mathbf{p})$. The value of p for which $\mathbf{k}_a(\mathbf{p}) = \mathbf{k}_r(\mathbf{p})$ is called the break-even or indifference quality, \mathbf{p}_o , and it is assumed that $\mathbf{k}_a(\mathbf{p}) < \mathbf{k}_r(\mathbf{p})$ for $\mathbf{p} < \mathbf{p}_o$ and $\mathbf{k}_a(\mathbf{p}) > \mathbf{k}_r(\mathbf{p})$ for $\mathbf{p} > \mathbf{p}_o$. Lots of quality $\mathbf{p} < \mathbf{p}_o$ are called good lots and ought to be accepted, and lots of quality $\mathbf{p} > \mathbf{p}_o$ are called bad lots and ought to be rejected.

Denoting the costs of sampling per item in the sample by $k_{_{\rm S}}(p)$, the lot size by N and the sample size by n, the costs of a sampling plan for lots of quality p become

$$K(p) = nk_s(p) + (N-n) \left(\mathbb{E}_a(p) P(p) + k_r(p) Q(p) \right)$$
 (1)

where P(p) denotes the probability of acceptance and P(p) + Q(p) = 1.

From an economic point of view inspection is justified only if the prior distribution extends on both sides of \mathbf{p}_0 . Let us suppose that our knowledge of the prior distribution is such that we can choose two numbers, \mathbf{p}_1 and \mathbf{p}_2 , $\mathbf{p}_1 < \mathbf{p}_0 < \mathbf{p}_2$, so that \mathbf{p}_1 is a typical good quality, for instance approximately equal to the average quality of good lots, and \mathbf{p}_2 is a typical bad quality.

Prepared with the partial support of the Office of Naval Research (Nonr - N62558 - 3073). Reproduction in whole or in part is permitted for any purpose of the United States Government.

[/]to find the Bayes solution and on the other hand too much is known

Sampling plans may then be determined according to the principle stated above in various ways. The following two proposals seem to correspond to requirements often met in practice:

- (1) Determine (n,c) such that $K(p_1)$ is minimized under the restriction that $P(p_2) = P_2$, where $P_2 < 1/2$ is a specified acceptance probability.
- (2) Determine (n,c) such that $K(p_2)$ is minimized under the restriction that $P(p_1) = P_1$, where $P_1 > 1/2$ is a specified acceptance probability.

Using the terminology of a producer and a consumer setting up the sampling plan the two cases may be characterized as (1) fixed consumers risk and minimum producers costs, and (2) fixed producers risk and minimum consumers costs.

In the two cases discussed above the cost functions are assumed known in one point only, p_1 or p_2 , different from the break-even point, p_0 , which need not be known precisely. If, however, the break-even quality is known we have a third case of special interest since it seems reasonable to require that $P(p_0) = 1/2$ and then minimize $K(p_1)$, $p_1 < p_0$, or $K(p_2)$, $p_2 > p_0$, whichever is supposed to be the most important.

From a mathematical point of view the three proposals are equivalent and a common solution to the problem of determining (n,c) is given in section 3. Furthermore an asymptotic solution has been developed in section 4 and the asymptotic formulas have been slightly modified to give a satisfactory approximation to the exact solution also for quite small lot sizes.

The main properties of the sampling plans for large N are the following:

- (1) Sample size increases linearly with the logarithm of lot size.
- (2) The highest allowable fraction defective, c/n, in the sample converges to the quality with fixed acceptance probability, the difference being of order 1/Vn.
- (3) The risk of the producer or the consumer, whichever has not been fixed, tends to zero imposely proportional to lot size.
- (4) In important special cases the minimum costs equal sampling inspection costs plus a constant independent of lot size.
- (5) The optimum sampling plans depend on only one cost parameter, γ , see formulas (4) and (7), and the optimum plan for lot size N and cost constant γ equals the plan for lot size N γ and cost constant 1.

Three systems of plans have been tabulated:

(1) LTPD plans with minimum producers costs for γ = 1 and 5. The consumers risk has traditionally been chosen as 10 %. For γ = 1 we get the Dodge-Romig LTPD plans,

- (2) AQL plans with minimum consumers cost for γ = 2 and 10. The producers risk has been chosen as 5 %.
- (3) IQL plans with minimum producers costs for γ = 1. The probability of acceptance for lots of indifference quality is 50 %.

In all three cases plans have been tabulated both on basis of the hypergeometric and the Poisson distribution.

The system of sampling plans presented here may be considered as a generalization of the Dodge-Romig LTPD plans [1], their average amount of inspection having been replaced by a more general cost function. The IQL plans have previously been considered by Weibull [2] and tabulated by Markbäck [3].

2. Discussion of the model.

The two proposed rules will be called case 1 and 2, respectively.

For case 1 we find from (1)

$$K(p_1) = n(k_s-k_a) + (N-n)(k_r-k_a)Q(p_1) + Nk_a$$
 (2)

where the argument p_1 has been left out in the cost functions. If $k_s \le k_a$ the minimum is obtained for n = N. For $k_s > k_a$ we have

$$K(p_1)/(k_s(p_1)-k_s(p_1)) = n + (N-n) \gamma_1 Q(p_1) + N\delta_1$$
 (3)

where

$$\gamma_1 = \frac{k_r(p_1) - k_a(p_1)}{k_s(p_1) - k_a(p_1)} > 0 \quad \text{and} \quad \delta_1 = \frac{k_a(p_1)}{k_s(p_1) - k_a(p_1)} > 0.$$
 (4)

Minimizing the first two terms on the right hand side of (3) with respect to (n,c) will thus lead to the same values of (n,c) as minimizing (2). The optimum sampling plan therefore depends on only one cost parameter γ_1 which is determined as the ratio between the two losses $k_r(p_1) - k_a(p_1)$ and $k_s(p_1) - k_a(p_1)$.

For case 2 we find similarly

$$K(p_2) = n(k_s - k_r) + (N - n)(k_a - k_r)P(p_2) + Nk_r$$
 (5)

and for $k_s > k_r$

$$K(p_2)/(k_s(p_2)-k_r(p_2)) = n + (N - n)\gamma_2 P(p_2) + N\delta_2$$
 (6)

where

$$\gamma_2 = \frac{k_a(p_2) - k_r(p_2)}{k_s(p_2) - k_r(p_2)} > 0 \text{ and } \delta_2 = \frac{k_r(p_2)}{k_s(p_2) - k_r(p_2)} > 0.$$
 (7)

If the prior distribution was known the costs of the Bayes solution could be compared to the average costs of acceptance without inspection/To find out whether sampling should be carried out at all. Since such comparisons cannot be made when the prior distribution in unknown we shall always determine a sampling plan. It may, however, turn out that we are led to total inspection (n = N) instead of sampling inspection.

To find a sampling plan we must have $K(p) < Nk_s(p)$ for the value of p for which K(p) is minimized. This leads to the condition

$$Nk_{s}(p) - K(p) = (N-n) \{(k_{s}-k_{a})P(p) + (k_{s}-k_{r})Q(p)\} > 0.$$

Solving this inequality we get as condition for n < N that

$$Q(p_1) < \frac{1}{\gamma_1}$$
, (case 1), (3)

and

$$P(p_2) < \frac{1}{\gamma_2}$$
, (case 2).

To solve the problem formulated in the present paper we need only know the relative losses at one quality level, see (3) and (6), so that much less knowledge is required regarding costs than originally implied by the cost function (1). It may, however, be of interest to point out that the cost structure used here is similar to the ones used by for example Dodge and Romig [1], Guthrie and Johns [4] and Hald [5]. A simple and in practice useful specification is obtained by setting $k_a(p) = a_1 + a_2 p$, $k_r(p) = r_1 + r_2 p$, and $k_s(p) = s_1 + s_2 p$ which means that a_1 is equal to costs of accepting an item without regard to quality, a_2 equals additional costs for an accepted defective item, and the other constants have similar interpretations. For many practical purposes we may even have the simpler specification: $k_a(p) = ap$, $k_r(p) = r$, and $k_s(p) = s$.

For linear cost functions and a binomially distributed fraction defective we have that $E(K(p)) = K(\bar{p})$, the hypergeometric probabilities in K(p) being transformed to binomial probabilities in $K(\bar{p})$ and p replaced by $\bar{p} = E(p)$.

It is difficult to state general rules for the relation between $k_g(p)$ and $k_r(p)$ but some typical cases may be pointed out.

In case of rectifying inspection rejection means inspection of the remainder of the lot. In such cases we often have $k_r(p) = k_s(p)$ but we may also have $k_r(p) < k_s(p)$. This may happen if inspection of the remainder is made by other methods than used for sampling inspection. If sampling inspection is carried out with respect to many quality characteristics and the inspection result discloses that only one characteristic is responsible for rejection of a lot then the remainder need only be inspected for this one characteristic.

/and of rejection without inspection

For <u>destructive</u> testing we have $k_s(p) > k_r(p)$ because sampling and testing costs are being added to the value of the item. In such cases rejection may mean scrapping, downgrading or performing some salvage operation on the remainder. In case a cheap salvage operation is possible $k_r(p)$ will usually be quite small as compared to $k_s(p)$ whereas in case of scrapping $k_r(p)$ will often be of the same size as $k_s(p)$.

For non-rectifying inspection with non-destructive testing rejection may similarly mean scrapping, downgrading or salvaging. In such cases $k_s(p)$ may be considerably larger or smaller than $k_r(p)$.

Two special cases of the model are of particular interest.

Consider first the case where a producer inspects his own product before delivery. To be reasonably sure that bad lots are rejected he specifies a low acceptance probability, $P(p_2) = 0.10$ say, and minimizes costs for lots of quality p_1 . Very often he will know only costs of sampling and rejection and therefore be content with minimization of

$$K(p_1) = nk_s(p_1) + (N-n)k_r(p_1)Q(p_1)$$
 (10)

which is found from (2) for $k_a(p_1) = 0$. If the producer knows that p_1 corresponds to good market quality so the consumer is supposed to accept this quality without complaints then he is justified in setting $k_a(p_1) = 0$ and using the simple model above. For $\gamma_1 = k_r(p_1)/k_s(p_1) = 1$ we get the Dodge-Romig LTPD system of sampling plans.

Consider next the case where a consumer inspects submitted lots. To be reasonably sure that good lots are accepted he specifies a high acceptance probability, $P(p_1) = 0.95$ say, and minimizes costs for lots of quality p_2 . Very often his costs consist of sampling and acceptance costs only so that he will be content with minimization of

$$K(p_2) = nk_s(p_2) + (N-n)k_s(p_2)P(p_2)$$
 (11)

which is found from (5) for $k_r(p_2) = 0$. If it is agreed that p_2 represents unsatisfactory quality so that the consumer may return (or repair) lots of this quality at the producers expense then the consumer is justified in setting $k_r(p_2) = 0$ and using the simple model above.

To indicate the relation between the solution proposed here and the Bayes solution we introduce the prior distribution $\varphi(p)$ and

$$\vec{K} = \int_{0}^{1} K(p) \varphi(p) dp$$

$$= K(i_{1}^{\prime}) \int_{0}^{1} \varphi(p) dp + K(p_{2}^{\prime}) \int_{0}^{1} \varphi(p) dp$$
(12)

where $0 < p_1' < p_0 < p_2' < 1$, p_1' and p_2' being determined by the mean value theorem. Instead of choosing the sampling plan minimizing \bar{K} , the Bayes solution, we have proposed to minimize one of the components of \bar{K} (if our p chosen equals p) and tried to reduce the other by a suitable requirement to the acceptance probability.

For the Bayes solution we know that $P(p_0) \longrightarrow 1/2$ with increasing lot size. If the prior distribution is not completely known and if both $k_a(p)$ and $k_r(p)$ differ from zero it seems therefore reasonable to require that $P(p_0) = 1/2$ and to minimize either $K(p_1)$ or $K(p_2)$ depending on which term of (12) is considered most important. A comparison of the Bayes solution and the one presented here has been given by Hald [6].

As the third important special case we therefore consider minimization of (3) or (6) under the condition $P(p_0) = 1/2$. This may be of particular interest in cases where one department delivers goods to another within the same firm. The costs of the receiving department are expressed by means of $k_a(p)$, the costs of the delivering department by $k_r(p)$, and the costs of the inspection department by $k_s(p)$.

In the above discussions costs have been expressed as functions of p. It had been more correct, however, to regard costs as functions of p and x, the number of defectives in the sample, but since $x = np + O(\sqrt{n})$ the formulation used may be considered as an approximation sufficiently good for practical purposes in view of the considerable uncertainty often connected with the choice of the parameters in the model.

3. The exact solution.

Since the three cases are of the same mathematical structure a common solution will be given.

Let \hat{p} (equal to p_1 or p_2) denote the quality for which costs should be minimized and let p^* (equal to p_0 , p_1 , or p_2) denote the quality for which the acceptance probability has been specified. The problem then consists in finding (n,c) so that K(\hat{p}) is minimized and at the same time $P(p^*) = P^*$, P^* being a given number. This problem is similar to Dodge and Romigs problem for the LTPD plans and it will be solved here along similar lines as in Hald [7].

Setting M = Np* we have

$$P_{H}(p^{*}) = H(c, n, p^{*}, N) = \sum_{\mathbf{x}=0}^{C} {M \choose \mathbf{x}} {N-M \choose \mathbf{n}-\mathbf{x}} / {N \choose \mathbf{n}} = \varphi^{*}$$
(13)

which for given N defines a relation between n and c. The solution of (13) with respect to n or m = np* for given p* and P* will be denoted by m = $m_{c.M}$.

Multiplying (1) by p* we find

$$z = p * K(\hat{p}) = mk_s(\hat{p}) + (M-m)(k_a(\hat{p})P(\hat{p}) + k_r(\hat{p})Q(\hat{p}))$$
 (14)

which is the function to be minimized subject to condition (13). The probability of acceptance is here defined as

$$P(\hat{p}) = B(c,n,\hat{p}) = \sum_{x=0}^{c} {n \choose x} \hat{p}^{x} \hat{q}^{n-x}.$$
 (15)

In the following we shall suppress the argument p in (14) and write

$$z = m(k_s - k_r) + (M - m)(k_a - k_r)P + Mk_r.$$
 (16)

For a given M the solution $m = m_{c,M}$ of (13) is inserted into (16) which makes z a function of c alone, z(c) say. The condition for z(c) to be a local minimum is that

$$\Delta z(c-1) < 0 < \Delta z(c) \tag{1}$$

where $\Delta z(c) = z(c+1) - z(c)$. From (16) we find

$$\triangle z = (k_s - k_r) \triangle m_{c,M} + M(k_a - k_r) \triangle P_{c,M} - (k_a - k_r) \triangle (m_{c,M} P_{c,M})$$

$$= (k_r - k_a) \left[-M \triangle P_{c,M} + \lambda \triangle m_{c,M} + \triangle (m_{c,M} P_{c,M}) \right]$$
(18)

where

$$\lambda = (k_{a}(\hat{1}) - k_{r}(\hat{p})) / (k_{r}(\hat{p}) - k_{a}(\hat{p}))$$
 (19)

and P = B(c, m/p*, p) like m is a function of c.

Introducing the auxiliary function

$$F(c,M) = \frac{\lambda \triangle m_{c,M} + \triangle (m_{c,M} P_{c,M})}{\triangle P_{c,M}} = m_{c+1,M} + (\lambda + P_{c,M}) \frac{\triangle m_{c,M}}{\triangle P_{c,M}}, \qquad (20)$$

substituting (18) into (17) and "solving" for M lead to the fundamental inequality

$$F(c-1,M) < M < F(c,M)$$
(21)

together with

$$(k_r - k_a) \triangle P_{c-1,M} > 0 \text{ and } (k_r - k_a) \triangle P_{c,M} > 0$$
 (22)

as the conditions for c and $n = m_{c,M}/p^*$ to be the optimum plan for lot size $N = M/p^*$.

It has only been proved that (21) and (22) are the conditions for z(c) to be a local minimum. A similar analysis may, however, be carried out by means of the difference operator $\triangle_i z(c) = z(c+i) - z(c)$. The condition for z(c) to be an absolute minimum is that $\triangle_i z(c) > 0$ for i = 1, 2, ..., n-c, and $\triangle_i (c-i) < 0$ for i = 1, 2, ..., c. It is easily seen that sufficient conditions for these inequalities to be fulfilled are that z(c) be a local minimum, i.e. (21) is fulfilled, and furthermore that F(c,M) be a non-decreasing function of c, since the inequalities

$$M F(c,M) \leq F(c+1,M) \dots F(c+i-1,M)$$

by addition of all the numerators and denominators lead to

$$M \leq F(c,M) \qquad \frac{\lambda \triangle_{i}^{m} c_{,M} + \triangle_{i}^{m} (m_{c,M}^{p} c_{,M})}{\triangle_{i}^{p} c_{,M}} \qquad (23)$$

(I have not succeeded in finding general conditions for F(c,M) to be a non-decreasing function of c. In all cases investigated it has been found that the local minimum defined by (21) and (22) is also the absolute minimum).

The solution obtained may be used in two ways: (1) To find (n,c) for a given N, and (2) to find (n,N) for a given c. Since the solution is given as an implicit function of N it is not as well suited for the first purpose as for the second.

To find an optimum plan (n,c) for a given lot size N we first guess at a value of c, which then is used to compute $m_{c,M}$ from (13), $P_{c,M}$ from (15), and F(c,M) from (20). If M = Np* satisfies (21), the value of c chosen is the optimum one, otherwise a new value has to be tried. This procedure is very tedious, and it is therefore important to develop approximations giving c and n as explicit functions of N as done in section 4.

The solution is much better suited to a systematic tabulation of optimum sampling plans with c as argument. The inequality (21) shows that for each c there exists an "optimum interval" for M and within that interval a relation between m and M is given by (13). The same idea has been given by Dodge and Romig [1] in their graphical presentation of the LTPD sampling inspection plans.

The upper limit of the interval for M having c as optimum acceptance number is determined as solution to the equation M = F(c,M). The solution is obtained by iteration starting from c and $m_{c,\infty}$ which is found from the equation

$$B(c,m) = \sum_{x=0}^{c} e^{-m} \frac{x}{x!} = P^*$$
 (24)

since the Poisson distribution may be used as approximation to the hypergeometric distribution for large M and small p^* . This leads to

$$m_{c,\infty} = \frac{1}{2} \times \sum_{1-P^*}^{2} (2c + 2),$$
 (25)

i.e. half the 1 - P* fractile of the χ^2 distribution with 2c + 2 degrees of freedom, so that $m_{c,\infty}$ may be obtained from existing tables.

From $(c,m_{c,\infty})$ we compute

$$M^1 = F(c,\infty)$$

by means of (20), $m^1 = m_{c,M^1}$ from (13), $M^2 = F(c,M^1)$, and so on. This procedure has been coded for an electronic computer and the attached tables have been constructed in that way. As stopping rule for the iteration has been used the criterion

$$|M^{i+1} - M^i| < 0.0005 \min \{A^i, M^{i+1}\},$$

The solution has then been given as $M = M^{i+1}$ and $m = m_{c,M}$

Since the hypergeometric distribution in (13) is difficult to handle an approximation developed by Wise [8] has been used in the computations. This is based on the binomial approximation

 $B(c,M, \frac{m}{M}) = \sum_{x=0}^{c} {M \choose x} \left(\frac{m_0}{M}\right)^x \left(1 - \frac{m_0}{M}\right)^{M-x} = P^*$ (26)

to (13). The unknown m_0 is found by iteration according to Newtons method. From m_0 an approximation to $m = m_{c,M}$ is found by means of Wises formula

$$m = m_0 \frac{Q}{N} + \frac{cM}{2N} \qquad \frac{M}{24QN}$$
 (27)

where

$$Q = N - (M - 1)/2$$

$$\delta = \left(\frac{1}{1-h} - 1 + h\right) \left(M - c\right)^2 + \left(h - \frac{1}{h}\right) \left(c + 1\right)^2 - \left(1 - 2h\right) \left[\left(M - c - 1\right)c - 1\right] + \frac{1}{h} - \frac{1}{1-h}$$

and $h = m_0/M$.

For each plan tabulated the condition (13) has been checked by means of Wises approximation

$$H(c,n,p^*,N) \cong B(c,M,h) + {M \choose c}h^c(1-h)^{M-c} \frac{(M-c)h \varepsilon}{24(1-h)^2(n-\frac{c}{2})^2}$$
 (28)

where

$$\varepsilon = (M-c-1)ch(1-h)(1-2h)-h^2(2-h) [(M-c)^2-1] +c(c+2)(1-h)^2(1+h)$$

and

$$h = (n - \frac{c}{2}) / (\frac{M}{p^*} - \frac{M-1}{2}).$$

The two approximations work satisfactory even for small N. By using them, however, p*, the fraction defective of the lot, is treated as continuous whereas it ought to take on only the values X/N for X = 0,1,...,N. The effect of this is negligible apart from cases with small values of p* and N where the approximations may lead to a sample size nearly equal to lot size in stead of total inspection. In extreme cases this has been corrected, but it has not been attempted in general to work out the exact solution from the hypergeometric distribution for small N because its value seems very limited from the point of view of applications of the tables.

For large N the Poisson distribution may be used as approximation to both the hyper-geometric and the binomial distribution in (13) and (15) respectively. Also the original problem may be such that the Poisson distribution is the appropriate one to use, i.e. if quality is measured in defects per unit in stead of in fraction defective. For these reasons the "Poisson solution" has also been tabulated. Since m_{c,M} in this case is a function of c only, see (25), we get

$$M = \frac{\lambda \triangle m_c + \triangle (m_c P_c)}{\triangle P_c},$$
(29)

where

$$P_{c} = \sum_{x=0}^{c} e^{-rm} \frac{(rm)^{x}}{x!} , \qquad r = \frac{\hat{p}}{p^{*}} , \qquad (30)$$

which means that M, the upper end-point of the interval in which c is the optimum acceptance number, is determined explicitly as a function of c. It is therefore possible to give a much more compact tabulation of the Poisson solution than of the hypergeometric one.

In the following sections it will be discussed how to use the Poisson solution to obtain approximations to the hypergeometric or the binomial solution.

As discussed in section 2 it may happen that total inspection is cheaper than sampling inspection for lots of quality \hat{p} when >1, see (8) and (9). In such cases the cheapest sampling plan has nevertheless been tabulated but the sample size has been underlined to indicate that total inspection is the cheaper solution.

A few remarks might be appropriate here regarding the definition of the acceptance probabilities for $p = \hat{p}$ and p = p*, respectively. For quality p* the specified acceptance probability P* has been defined by means of the hypergeometric distribution, see (13), which means that this probability refers to a series of lots all of exactly the same quality p*. For quality \hat{p} the acceptance probability $P(\hat{p})$ has been defined by means of the binomial distribution, see (15), which means that this probability is the average probability of acceptance for a series of lots of varying quality, the lots being produced by a binomially controlled process with \hat{p} as true fraction defective. This distinction is the one introduced by Dodge and Romig [1] as the Type A and B probabilities of acceptance.

Other combinations of binomial and hypergeometric probabilities are obviously possible and these might be supported by reasonable but not more convincing arguments. We have therefore kept to the definitions used by Dodge and Romig. For n/N < 0.10 the distinction is of no practical importance.

The approximate solution.

The procedure in arriving to an approximate solution giving c and n as explicit functions of N will be first to solve the problem for N \longrightarrow ∞ , treating all variables as continuous, and then to correct the asymptotic solution to obtain better approximations for small lot sizes. Similar results have previously been obtained by Hald [7] for the Dodge-Romig LTPD sampling plans.

The asymptotic relation between c and m = np* is obtained by solving the equation B(c,m) = P* which has the solution

$$m = c + 1 + u\sqrt{c+1} + (u^2 - 1)/3 + O(1/\sqrt{c})$$
 (31)

or

$$c = m - u \sqrt{m} + (u^2 - 4)/6 + O(1/\sqrt{m})$$
 (32)

where $u=u_{Q^*}$ denotes the $Q^*=1$ - P^* fractile of the standardized normal distribution. This result follows immediately from the Fisher-Cornish expansion of the χ^2 fractiles and the relation $2m=\chi^2_{Q^*}(2c+2)$.

As shown by Hald [7] the Poisson solution may be adjusted to give an approximate solution to the corresponding binomial equation $B(c,M,m_h/M) = P^*$

$$m_b = m(1 - \frac{m-c}{2M})$$
 (33)

which in turn may be used to find the required solution to (13)

$$m_s = (m - \frac{m-c}{2} p^*)(1 - \frac{m-c}{2M} (1 - \frac{p^*}{2})).$$
 (34)

For any given c we may thus by means of the Poisson solution m obtain an approximate solution to the corresponding hypergeometric equation (13).

To find m as a function of M we rewrite (16) on the two forms

$$z = (k_{x}-k_{y})(1+\lambda)\{m + \gamma_{1}(M-m)Q + M\delta_{1}\}, \hat{p} < p^{*},$$
 (35)

and

$$z = (k_r - k_a) \lambda (m + \gamma_2 (M - m)P + M\delta_2), \quad \hat{p} > p^*,$$
 (36)

 $\gamma_1, \gamma_2, \delta_1$, and δ_2 being defined as in (4) and (7), introduce asymptotic expansions for Q and P in terms of m for m $-> \infty$ and solve the equation dz/dm = 0.

The first step is to find an asymptotic expansion of $P = B(c,n,\hat{p})$ for $m = np^* \longrightarrow \infty$ which means that also $c \longrightarrow \infty$ according to (32). Introducing $r = \hat{p}/p^*$, approximating the binomial by the Poisson distribution $P = B(c,n\hat{p}) = B(c,m)$, and using the asymptotic expansion developed by Blackwell and Hodges [9] we find for r < 1

$$Q = 1 - B(c,rm) = \frac{rm}{c-rm} - \frac{1}{\sqrt{2\pi c}} \exp \left\{-rm + c - c \log \frac{c}{rm}\right\} (1 + O((c-rm)^{-1}))$$
 (37)

For r > 1 we find a similar expansion for P the only difference being that c-rm has to be replaced by rm-c. Both Q for r < 1 and P for r > 1 are "tail probabilities" of the same kind describing the producers risk at quality level rp* (r < 1) for fixed consumers risk at level p*, and the consumers risk at level rp* (r > 1) for fixed producers risk at level p*.

The two forms of z may therefore be considered as linear functions of y, say,

$$y = m + \gamma (M-m) f(m), \qquad (38)$$

f(m) being defined by (37) with c-rm replaced by |c-rm|, and the equation dz/dm = 0 consequently has the same solution as dy/dm = 0. Solving the equation

$$dy/dm = 1 + \gamma (M-m)f^{\dagger}(m) - \gamma f(m) = 0$$

we find

$$M - m = -\frac{1 - \gamma f(m)}{\gamma f'(m)} = \frac{1}{\gamma f(m)} \frac{1 - \gamma f(m)}{(-f'(m)/f(m))}$$

or

$$\log (M-m) = -\log f(m) - \log (-d\log f(m)/dm) + \log (1-\gamma f(m)) - \log \gamma.$$
 (39)

This relation gives us M as a function of m and it is of exactly the same form as the one derived for the Dodge-Romig LTPD plans by Hald [7]. It follows that the asymptotic axpansion is

$$\log(M-m) = \alpha_1^m + \alpha_2 \sqrt{m} + \frac{1}{2} \log m + \alpha_3 - \log \gamma + O(m^{\frac{1}{2}})$$
 (40)

where

$$\alpha_1 = r - \log r - 1,$$
 $\alpha_2 = u \log r,$

$$\alpha_3 = \frac{1}{2} u^2 - \frac{1}{6} (u^2 - 4) \log r - \log \frac{r(r - \log r - 1)}{|1 - r| \sqrt{2\pi}}$$

and $u = u_{0*}$, the $Q^* = 1 - P^*$ fractile of the standardized normal distribution.

Formulas (31), (34), and (40) give good approximations to their exact solution for M > 15 if r is outside the interval (0.5, 1.5), $p* \le 0.10$ and P* = 0.10, 0.50 or 0.95. They should be used in the following way: For c = 0.5, 1.5, 2.5, etc.m is computed from (31) and M from (40) to obtain intervals for M corresponding to every integer value of c. For each integer value of c we then compute m from (31) and use (34) to determine the relation between m_b and M within the given M-interval.

Considering M as function of m and γ , M = M(m, γ) say, (40) gives the simple and important result that asymptotically

$$M(m,\gamma) = M(m,1)/\gamma , \qquad (41)$$

i.e. the sampling plan for lot size N and cost constant γ equals the plan for lot size Ny and cost constant 1.

It is therefore only necessary to tabulate M by (40) for $\gamma=1$.

Whereas the procedure indicated above is the more simple for a complete tabulation of sampling plans corresponding to all lot sizes we need an inversion of the formulas to be able to compute the plan corresponding to a given lot size. The inversion of formula (31) leads to formula (32). As shown by Hald |7| the inversion of (40) leads to

$$m = \beta_1 x + \beta_2 \sqrt{x} + \beta_3 \log x + \beta_4 + \beta_5 \frac{\log x}{\sqrt{x}} + \beta_6 \frac{1}{\sqrt{x}} + o(x^{\frac{1}{2}})$$
 (42)

where $x = \log M$, $\beta_1 = 1/\alpha_1$, $\beta_2 = -\alpha_2/\alpha_1^{3/2}$, $\beta_3 = -\beta_1/2$, $\beta_4 = (\log \alpha_1 + \alpha_2^2/\alpha_1 - 2\alpha_3 + 2 \log \gamma)/2\alpha_1$, $\beta_5 = -\beta_2/4$, and $\beta_6 = \beta_5(2-2\alpha_1\beta_4 + \alpha_2^2/2\alpha_1)$.

From a given M = Np* we compute m by (42) and c by (32). Choosing the nearest integer value of c we next compute m by (31) and the adjusted m_h by (34) which gives $n = m_h / p^*$.

Numerical investigations have shown that (42) leads to rather accurate results for P* = 0.10, $p* \le 0.10$, $r \le 0.5$ and M > 15 whereas it should not be used for P* = 0.50 or P* = 0.95.

Asymptotically the main results are that sample size increases linearly with the logarithm of lot size and that the highest allowable fraction defective in the sample converges to p*, the difference being of order 1/ \(\frac{1}{\text{n}}\).

Considering m as a function of M and γ , m = m(M, γ) say, (42) shows that asymptotically

$$m(M,\gamma) = m(M,1) + \frac{\log \gamma}{\alpha_1} , \qquad (43)$$

i.e. sample size is a linear increasing function of $\log \gamma$ for given lot size.

It follows from the asymptotic expansions that for the optimum plans we have

$$\log f(m) = -\log(M - m) - \log(r - \log r - 1) - \log \gamma + O(m^{\frac{1}{2}})$$

or

$$f(m) = \frac{1}{(M-m)\gamma(r-\log r - 1)} (1 + O(m^{-\frac{1}{2}}))$$
 (44)

which means that the risk of the producer or the consumer, whichever has not been fixed, asymptotically tends to zero inversely proportional to lot size.

Inserting this result into (38) gives

$$y = m + \frac{1}{r - \log r - 1} + O(m^{-\frac{1}{2}})$$
 (45)

which leads to the following asymptotic expressions for the minimum costs

$$z \sim k_s(m + \frac{1}{\alpha_1}) + k_a(M - m - \frac{1}{\alpha_1}), \hat{p} < p*$$
 (46)

and

$$z \sim k_s (m + \frac{1}{\alpha_1}) + k_r (M - m - \frac{1}{\alpha_1}), \quad \hat{p} > p^*.$$
 (47)

In the important special cases with $k_a(\hat{p}) = 0$ and $k_r(\hat{p}) = 0$ it will be seen that the minimum costs asymptotically equal sampling inspection costs, k_s , plus a constant, $k_s/\alpha_1 p^*$, i.e. apart from sampling inspection costs the minimum costs are independent of lot size.

In the following sections some special cases will be discussed.

5. LTPD plans with minimum producers costs.

LTPD plans are here defined by fixing the Lot Tolerance Per Cent Defective, $100p_2$, and the corresponding probability of acceptance, the consumers risk $P(p_2)$, which traditionally is chosen as 10 per cent.

As shown in section 2 the optimum plan may always be obtained by minimizing the cost function written on standardized form

$$K_{Q}(p) = n + \gamma (N-n)Q(p_{1}).$$
 (48)

For γ - 1 we get the Dodge-Romig LTFD plans.

The tables show the exact solution computed as described in section 3/for five values of $r = p_1/p_2$ chosen among the values $r = 0.1, 0.2, \ldots, 0.7$, and for $\gamma = 1$ and 5, giving a total of $10 \times 5 \times 2 = 100$ tables. In each table the relation between N,n, and c has been given, supplemented by $P(p_1)$ which makes it easy to compute $K(p_1)$. The same 20 values of N between 30 and 200.000 have been used in all the tables. Plans have been computed only for $c \le 99$.

Originally it was intended to give a complete tabulation in accordance with the theoretical solution in section 3, but these tables proved to take up too much space, see Table 1 for an example. The structure of the solution is, however, clearly displayed in this table which is therefore useful in discussing methods of interpolation in the more compact tables published here. Table 1 shows corresponding end-points of N- and n-intervals for each c = 0,1,2,... with the modification that large n-intervals have been subdivided. N has been determined to three significant figures only.

Table 1

LTPD plans with minimum producers costs. $100p_2 = 1$, $100p_1 = 0.1$, $\gamma = 1$

					<u></u> T		
	N	ກ	С	n ₁	N ₁	n _h	
1 -	59	A11				-	
60 -	125	59 - 105	0			19	
126 -	259	105 - 152	0			128	
260 -	5 3.	153 - 187	0			180	
538 -	1110	188 - 207	0	230	1250	205	
1110 -	2040	341 - 361	1			360	
2040 -	37 30	362 - 373	1	389	3770	373	
3730	11900	508 - 523	2	532	11700	523	
11900 -	32000	656 - 663	3	668	38200	663	
39000 -	131000	793 - 796	L _k	799	128000	796	
				. , 			

 \overline{f} or 100 p₂ = 0.5, 1,2,3,4,5,7,10,15,20,

Fig. 1. Relation between lot size and sample size for the LTPD plans in Table 1. Full line Hypergeometric solution. Broken line Poisson solution. Crosses Values from abridged table.

It will be seen that n jumps to a new and higher level each time c increases by 1, the jumps being of approximately the same size. On each level n is an increasing function of N, the slope, however, being a decreasing function of c. This also follows from (34) since m - c for given c is a positive constant which only increases as \sqrt{c} whereas M increases as e^{c} . This is clearly brought out by Fig. 1.

In view of this picture it is clear that the correct value of c has to be determined before interpolation with respect to n can be carried out.

Looking at Fig. 1 it will be seen that if the given N is between two tabular values of N with the same value of c then n may be determined by linear interpolation.

If the given N is between two tabular values of N with consecutive values of c, then the "nearest" c value is chosen, but n cannot be determined by linear interpolation. We may, however, use (34) to determine an approximate value of n. Denoting the left hand side of (34) for given c by m(M) we have approximately

$$\frac{m(M_1)}{m(M)} = 1 + \frac{m-c}{2} \left(\frac{1}{M} - \frac{1}{M_1}\right) \left(1 - \frac{P_2}{2}\right) \tag{49}$$

from which we may easily find m(M,).

Suppose that $N_1=1500$. Table 1 shows that c=1 and linear interpolation gives $n_1=349$. From the corresponding less detailed table we see that we have to choose between c=0 and c=1. Choosing c=1 the problem is to determine n_1 from N=2000 and n=361. Using (49) with c=1, $m \cong m(M)=3.61$, M=20 and $M_1=15$ we find

$$n_1 \approx 361(1 - 1.30 \times 0.017) = 353.$$

In the third case the given N is between two tabular values corresponding to c-values differing more than 1. This will ordinarily only happen for large values of c for which n is nearly constant, i.e. independent of N for given c. The value of c is then determined by linear interpolation with respect to N and after rounding to the nearest integer n is determined from the c-value found by linear interpolation with respect to c.

In all cases interpolation ought to be linear in log N in stead of in N, at least for large N, see (40), but it is hardly the worth while to use logarithms, if the purpose is to look up a sampling plan for application in practice.

The proposed method of interpolation will ordinarily give the correct value of c but may lead to a value differing ± 1 from the correct one. As pointed out above it is essential to use the right method to determine n when c has been found to secure that $P(p_2) = 0.10$. If these rules are followed the plans determined by interpolation will be optimum or nearly so since the minimum of the cost function is rather broad.

The Poisson solution has been given for $c \le 99$ with the modification that tabulation has been stopped when M exceeds 50.000. Because only an abridged version is published the last figure for M given in a column may be less than 50.000 even if c < 99. This means, however, that M > 50.000 for the next entry. M has been determined to three significant figures.

Table 1 shows how the Poisson solution may be used to obtain an approximation to the hypergeometric one. The figures for n_1 and N_1 have been found from the Poisson table as $n_1 = m/p_2 = 100$ m and $N_1 = M/p_2 = 100$ M, N_1 giving the upper end-point of the lot size interval for the corresponding c. By means of (34) the Poisson sample size has then been corrected leading to n_k which is a good approximation to the hypergeometric solution apart from the first two values.

It should be observed, however, that the example in Table 1 has been choosen with the purpose to demonstrate the discontinuity of the solution wherefore it is somewhat extreme in various respects. For larger values of \mathbf{p}_2 and $\mathbf{r} = \mathbf{p}_1/\mathbf{p}_2$ the discontinuity will be much less pronounced since the height of the steps decreases when \mathbf{p}_2 increases and the width decreases when r increases. On the other hand the approximation obtained from the Poisson solution becomes poorer with increasing \mathbf{p}_2 and \mathbf{r} .

The "point-tabulation" used here may easily be transformed to an "interval-tabulation". in various ways. It is customary in practice to set up intervals for N and use the same sampling plan for all N within an interval. This means, however, that the condition $P(p_2) = 0.10$ can be upheld only for one value of N in each interval. Since $P(p_2)$ for given (n,c) is an increasing function of N two ways of constructing intervals seem reasonable.

(1) The tabular values of N are considered as "midpoints" of the following intervals:

N	Interval
100	85 - 150
200	150 - 250
300	250 - 400
500	400 - 600
700	600 - 850

The result will be that P'p2) on the average over the interval equals 0.10.

(2) The tabular values of N are considered as endpoints of an interval which means that $P(p_2) \le 0.10$ for all N. This is one of the principles used by Dodge and Romig [1] in constructing their interval-tables.

It should be noted that the effect of N's variation is small when n/N is small.

The plans have been tabulated for two values of γ only, $\gamma=1$ and $\gamma=5$. Plans for other values of γ may be obtained from these tables by using formula (41) in the following way:

For $\gamma < 3$ and a given N compute N* = N and look up the plan for N* in the table for $\gamma=1$. For $3 \le \gamma \le 10$ and a given N compute N*=N γ /5 and look up the plan for N* in the table for $\gamma=5$ As shown in section 4 the first rule is exact for N $\longrightarrow \infty$ and all values of γ . Numerical investigations have shown that it works remarkably well also for finite N and small values of γ . By means of the two tables and the corresponding rules all values of $\gamma \ge 10$ have thus been accounted for which probably is sufficient for most practical purposes.

Using these rules the largest deviations from the exact solution must be expected to occur for values of γ around 3. It should also be noted that the deviations increases with $r = p_1/p_2$. The table for $\gamma = 1$ gives the right or too large an acceptance number when used for $\gamma > 1$ and the right or too low an acceptance number when used for $\gamma < 1$. Similar results are valid for $\gamma = 5$.

To demonstrate how the formulas work in the worst case with respect to γ plans for $\gamma = 3$ have been derived both from $\gamma = 1$ and $\gamma = 5$ in Table 2. It will bee seen that the values of c found in most cases deviate at most by 1 which means that one of the plans found in the optimum one and the other one is nearly optimum.

As an example suppose that lots of 1000 items each are submitted for inspection and that the LTPD is 5% and average good quality is 1%. If rejection means sorting and the costs of sorting are the same as the costs of sampling inspection per item then $\gamma = 1$ and the table shows that the optimum plan is n = 127 and c = 3. If, however, sorting costs are only half of sampling inspection costs, i.e. $\gamma = 0.5$, then the same table should be used with N* = 0.5 N = 500 which gives the optimum plan n = 98 and c = 2.

If rejection means rework of the whole lot and the costs of rework per item equals the double of inspection costs, i.e. $\gamma=2$, then the table should be entered with N*=2N=2000 which gives a sampling plan of n=155 and c=4. Had γ been 5 instead of 2 then N*=5000 leads to n=207 and c=6. In this case, however, the table for $\gamma=1$ should not be used, since the exact solution, n=176, and c=5 has been given in a separate table for $\gamma=5$.

Table 2. LTPD plans with minimum producers costs. $100~p_2 = 5,~100~p_1 = 2.$

Plans for $\gamma = 3$ compu	sted from $\gamma = 1$ and $\gamma = 5$.
------------------------------	---

N	N* = 3N	n	C	N* = 0.6N	n	С
30	90	A11		18	1.2	0
50	150	A11	-	30	23	0
7 0	210	66	1.	42	37	1
100	300	94	2	60	57	2
200	600	148	4	120	93	3
300	900	198	6	180	149	5
500	1.500	248	8	300	178	6
700	21.00	274	. 9	420	227	8
1000	3000	323	11	600	286	10
2000	6000	396	14	1200	358	13
3000	9000	443	16	1800	384	14
500C	15000	490	18	3000	459	17
7000	21000	513	19	4200	484	18
10000	30000	536	20	6000	531	20
20000	60000	605	23	12000	602	23
30000	.90000	650	25	18000	625	24
50000	150000	6 95	27	30000	671	26
70000	210000	717	28	42000	694	27
100000		•	-	60000	739	29
200000	-		-	120000	806	32

6. IQL plans.

IQL plans are here defined by fixing the Indifference Quality Level, $100p_o$, and the corresponding probability of acceptance, $P(p_o)$, which is chosen as 50 per cent.

As shown in section 2 the optimum plan may always be obtained by minimizing the cost function written on standardized form which is either

$$K_{o}(p_{1}) = n + \gamma(N-n)Q(p_{1}), p_{1} < p_{o},$$
 (50)

for minimizing the producers costs, or

$$K_{o}(p_{2}) = n + \gamma(N-n)P(p_{2}), \quad p_{2} > p_{o},$$
 (51)

for minimizing the consumers costs.

Putting $\gamma = 1$ in (50) we have the cost function considered by Weibull [2] and F Marbäck [3].

For the system defined by (50) the tables show the exact solution computed as described in section 3 for 100 p_0 = 0.5, 1, 2, 3, 4, 5, 7, 10, 15, for five values of $r = p_1/p_0$ chosen among the values r = 0.2, 0.3, ..., 0.8, and for $\gamma = 1$ giving a total of 35 tables.

The remarks regarding the LTDP plans are also valid for the IQL plans with the modification that all approximations work better here. In particular it should be noted that since $c - m \approx 0.67$ the increase of n with N for given c is without practical importance apart from the case c = 0.

The hypergeometric solution has not been given for the system defined by (51) since this is of less practical importance. If, however, such a plan is desired it can be found approximately from the Poison solution which has been tabulated for both systems.

Tables are given for $\gamma=1$ only since these may be used to find plans for all $\gamma<10$ by means of the rule stated in section 5.

7. AQL plans with minimum consumers costs.

AQL plans are here defined by fixing the Acceptable Quality Level, 100 $\rm p_1$, and the corresponding probability of acceptance, $\rm P(\rm p_1)$, which is chosen as 95 per cent.

As shown in section 2 the optimum plan may always be obtained by minimizing the cost function written on standardized form

$$K_{0}(p_{2}) = n + \gamma(N-n)P(p_{2}).$$
 (52)

The tables show the exact solution computed as described in section 3 for 100 p_1 = 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 7, 10, for five values of $r = p_2/p_1$ chosen among the values r = 1.5, 1.7, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 10.0 (with small modifications), and for $\gamma = 2$ and 10, giving a total of 10 x 5 x 2 = 100 tables. The tables contain N, n, c, and 100P(p_2).

It should be noted that for this system of plans n is a decreasing function of N for given c, see (34), since m - c < 0. Taking this fact into account the methods of interpolation are the same as described for the LTPD plans with the modification that (49) should be replaced by

$$\frac{m(M_1)}{m(M)} = 1 + \frac{m-c}{2} \left(\frac{1}{M-0.6c} - \frac{1}{M_1-0.6c} \right) \left(1 - \frac{P_1}{2} \right)$$
 (53)

the correction term - 0.6c having been found by numerical investigations.

The cost constant γ is defined by (?) or in the simplest case as $\gamma = k_a(p_2)/k_s(p_2)$. Usually we further have that $k_a(p) = ap$ and setting $k_s(p_2) = s$ we find $\gamma = ap_2/s$. The fraction $p_0 = s/a$, i.e. the ratio between sampling inspection costs per item of the sample and the costs resulting from accepting a defective item therefore together with lot quality p_2 determines $\gamma = p_2/p_0$ in the most important case.

For γ 5 plans should be found from N* = N γ /2 and the tables for γ = 2, whereas for 5 $\leq \gamma \leq$ 20 N* = N γ /10 and the tables for γ = 10 should be used.

As an example consider a case where sampling inspection costs per item are 15 cents and costs of accepting a defective item are 10 dollars, i.e. $p_0 = 15/1000 = 0.015$. Further let AQL = 1% and let typical bad quality be 3% defective, i.e. $p_1 = 0.01$ and $p_2 = 0.03$. These assumptions lead to $\gamma = p_2/p_0 = 2$. For lots of size 10.000 the table shows that the optimum sample size is n = 789 with c = 12. If sampling costs had been 30 cents per item instead of 15, γ would have been 1 and the sampling plan is found in the same table for N* = 5000 which gives n = 645 and c = 10. For $\gamma = 4$ one similarly finds N* = 20.000, n = 859 and c = 13.

8. The OC-curve.

The tables always give two points on the OC=curve.

Since p_{10} , p_{50} , and p_{95} usually have great practical interest a compact tabulation of these values - or rather of the values of n giving specified values of the three quantities - have been given in a set of separate tables based on the binomial distribution. After having found a sampling plan it is easy to look up the three points on the OC-curve in these tables.

Acknowledgements.

My thanks are due to Mr. Egon Jensen for making the program for the computer and to Mr. E. Kousgaard for checking the formulas, investigating approximations, and carrying out a lot of exploratory computations.

References.

- [1] <u>H.F.Dodge</u> and <u>H.G. Romig</u>: A Method of Sampling Inspection. Bell System Technical Journal, 7, 1929, 613 631, also reprinted in <u>H.F. Dodge</u> and <u>H.G.Romig</u>: Sampling Inspection Tables, John Wiley, New York, 2. ed., 1959.
- [2] <u>I. Weibull</u>: A Method of Determining Inspection Plans on an Economic Basis. Bull. Intern. Statist. Inst., 33, 1951, 85-104.
- [3] N. Markbäck: Bell-Kontroll. Tabeller för enkel Provtagning. Tekniskt Meddalande, nr. 7a V. Sveriges Mekanförbund, Stockholm, 1950.
- [4] <u>D. Guthrie</u> and <u>M.V. Johns</u>: Bayes Acceptance Sampling Procedures for Large Lots.

 Ann. Math.Stat., 30, 1959, 896 925.
- [5] A. Hald: The Compound Hypergeometric Distribution. Technometrics, 2, 1960, 275 -340.
- [6] A. Hald: Efficiency of Sampling Inspection Plans for Attributes. (Forthcoming paper).
- [7] A. Hald: Some Limit Theorems for the Dodge-Romig LTPD Single Sampling Inspection Plans. Technometrics, 4, 1962, 497 513.
- [8] M.E. Wise: A Quickly Convergent Expansion for Cumulative Hypergeometric Probabilities, Direct and Inverse. Biometrica, 41, 1954, 317 329.
- [9] <u>D. Blackwell</u> and <u>J. L. Hodges</u>: The Probability in the Extreme Tail of a Convolution. Ann.Math. Stat. 30, 1959, 1113 1120.

Single sampling tables with consumers risk of 10 % and minimum producers costs.

The tables on pp. 25 - 34 are based on a hypergeometric consumers risk of 10 %, $P(p_2)$ = 0.10,a binomial producers risk, $Q(p_1)$ = 1- $P(p_1)$, and minimum producers costs

$$K(p_1) = nk_s(p_1) + (N-n)(k_a(p_1)P(p_1) + k_r(p_1)Q(p_1))$$

$$= (k_s(p_1) - k_a(p_1)(n + (N-n)\gamma_1Q(p_1) + N\delta_1)$$

where

$$\chi_1 = \frac{k_r(p_1) - k_a(p_1)}{k_s(p_1) - k_a(p_1)}$$
 and $\delta_1 = \frac{k_a(p_1)}{k_s(p_1) - k_a(p_1)}$.

The tables give corresponding values of N, n, c and $100P(p_1)$, (if $100P(p_1) > 99.95$ it has been recorded as 100), for $\chi_1 = 1$ and 5, and for the following 50 combinations of $100p_2$ and $100p_1$:

100p ₂			100p ₁		
0.5	0.05	0.1	0.15	0.2	0.25
1	0.1	0.2	0.3	0.4	0.5
2	0,2	0.4	0.6	0.8	1.0
3	0.3	0,6	0.9	1.2	1.5
4	0.8	1.2	1.6	2.0	2.4
· 5	1.0	1.5	2.0	2.5	3.0
7	2.1	2.8	3.5	4.2	4.9
10	3.0	4.0	5.0	6.0	7.0
15	4.5	6.0	7.5	9.0	10.5
20	6.0	8.C	10.0	12.0	14.0

Methods of interpolation have been discussed in section 5,

The tables may be used for $Y_1 \neq 1$ and $Y_1 \neq 5$ in the following way: For $Y_1 < 3$ compute $N^* = NY_1$ and use the plan for N^* and $Y_1 = 1$. For $3 \leq Y_1 \leq 10$ compute $N^* = NY_1 / 5$ and use the plan for N^* and $Y_1 = 5$.

The tables on pp. 35 - 37 are based on the same assumptions with the only modification that the consumers and the producers risks have been computed from the Poisson distribution. For $c \le 99$ m = np₂ and M = Np₂ have been tabulated for M < 50.000 as functions of c and r = p₁ / p₂ for r = 0.05, 0.10,...,0.70 and for $\frac{1}{1}$ = 1 and 5. The optimum plan is (c,m) for M(c-1) < M < M(c).

The tables may be used for $\gamma_1 \neq 1$ and $\gamma_1 \neq 5$ in the following way: For $\gamma_1 < 3$ $M(c, \gamma_1) = M(c, 1)/\gamma_1$ and for $3 \leq \gamma_1 \leq 10$ $M(c, \gamma_1) = M(c, 5)$ $5/\gamma_1$.

The tables may also be used to find approximations to the plans defined above since N = M/p $_2$ and n_h = m_h/p_2 , where

$$m_{h} = \left\{ m - \frac{m - c}{2} p_{2} \right\} \left\{ 1 - \frac{m - c}{2M} \left(1 - \frac{p_{2}}{2} \right) \right\} ,$$

 $\mathbf{n}_{\mathbf{h}}$ indicating the approximation to the "hypergeometric solution."

Notice that <u>underlining</u> of a sampling plan means that <u>total inspection</u> is cheaper than sampling inspection but that the plan tabulated is the cheapest sampling plan available.

- 25 -

Single Sampling Tables for LTPD = 0.5 % and Y = 1.

	100p ₁	0.05				0.1	0		0.1	5		0.2	0		0.2	5
-	N	n	С	100P	n	c	100P	n	c	100P	n	С	100P	n	c	100P
	100	All	_		All	-	-	All	-	-	Al1	-	-	All	-	-
	200 300 500 700 1000	180 235 300 337 368	0 0 0 0 0	91.4 88.9 86.1 84.5 83.2	180 235 300 337 368	00000	83.5 79.0 74.1 71.4 69.2	180 235 300 337 368	0 0 0 0	76.3 70.3 63.7 60.3 57.6	180 235 300 337 368	0 0 0 0	69.7 62.5 54.8 50.9 47.9	180 235 300 337 368	0 0 0 0	63.7 55.5 47.2 43.0 39.8
	2000 3000 5000 7 000 1 0000	410 706 733 745 1028	0 1 1 1 2	81.5 95.1 94.7 94.6 98.5	673 706 994 1266 1286	1 1 2 3 3	85.4 84.2 92.1 96.0 95.8	673 951 1239 1507 1774	1 2 3 4 5	73.2 82.7 88.2 92.1 94.6	673 951 1472 1741 2240	1 2 4 5 7	61.0 70.3 82.5 86.0 91.5	898 1177 1697 2192 2690	2 3 5 7 9	61.1 66.0 74.6 81.2 85.8
	20000 30000 50000 70000 100000 200000	1045 1318 1325 1327 1590 1594	2 3 3 4 4	98.4 99.5 99.5 99.5 99.9	1565 1827 2085 2091 2341 2590	4 5 6 7 8	97.8 98.9 99.4 99.4 99.7	2296 2553 2809 3055 3298 3543	7 8 9 10 11 12	97.5 98.3 98.9 99.2 99.5 99.7	2995 3255 3973 4217 4458 5159	10 11 14 15 16 19	95.8 96.6 98.4 98.7 99.0 99.5	3898 4390 5329 6022 6488 7627	14 16 20 23 25 30	92.9 94.5 96.9 98.0 98.5 99.3

Single Sampling Tables for LTPD = 1 % and V = 1.

100p ₁		0.1		0.2				0.3		0.4			0.5		
N	n	С	100P	n	c	100P	n	С	100P	n	С	100P	n	С	100P
50 7 0 1 00	A11 68 90	0	- 93.4 91.4	A11 68 90	0	87.3 83.5	A11 68 90	0	81.5 76.3	Al1 68 90	0	76.1 69.7	A11 68 90	0	71.1 63.7
200 300 500 700 1 000	136 160 184 195 205	0 0 0 0	87.3 85.2 83.2 82.3 81.5	136 160 184 195 336	0 0 0 0	76.2 72.6 69.2 67.7 85.4	136 160 184 316 336	0 0 0 1 1	66.5 61.8 57.5 75.5 73.3	136 160 184 316 336	0 0 0 1 1	58.0 52.7 47.8 63.9 61.1	136 160 184 316 449	0 0 0 1 2	50.6 44.8 39.8 53.1 61.1
2000 3000 5000 7000 10000	361 369 513 518 522	1 2 2 2	94.9 94.7 98.5 98.4 98.4	488 502 642 775 782	2 2 3 4 4	92.4 91.9 95.9 97.9	607 626 886 1017 1147	3 3 5 6 7	88.8 87.9 94.7 96.4 97.6	607 860 1119 1251 1496	3 5 7 8 10	77.3 86.6 91.6 93.2 95.8	720 972 1344 1590 1948	4 6 9 11 14	70.7 78.3 85.8 89.2 93.0
20000 30000 50000 70000 100000 200000	660 662 794 795 796 924	3 4 4 4 5	99.5 99.5 99.9 99.9 100	916 1043 1169 1171 1294 1416	5 6 7 7 8 9	98.9 99.4 99.7 99.7 99.9	1281 1406 1648 1768 1770 2007	8 9 11 12 12	98.3 98.9 99.5 99.7 99.7	1865 1989 2227 2460 2578 2923	13 14 16 18 19 22	97.9 98.4 99.0 99.4 99.5 99.8	2430 2781 3242 3472 3811 4373	18 21 25 27 30 35	95.9 97.3 98.5 98.9 99.3 99.7

- 26 -

Single Sampling Tables for LTPD = 2 % and γ = 1.

100p ₁				0.4		0.6		0.8			1.0)		
N 30 50	n All 45	c - 0	100P 91.4	n A11 45	c - 0	100P - 83.5	n A11 45	c - 0	100P	n A11 45	c - 0	100P - 69.7	n A11 45	° -	1COP - 63.6
70 100	56 68	0	89.4 87.3	56 68	0	79.9 76.1	56 68	0	76.3 71.4 66.4	56 68	0	63.8 57.9	56 68	0	57.0 50.5
200 300 500 700 1000	87 95 102 174 180	0 0 0 1 1	84.0 82.7 81.5 95.2 94.9	87 95 167 174 243	0 0 1 1 2	70.6 68.3 85.5 84.6 92.5	87 95 167 235 303	0 0 1 2 3	59. 2 56. 5 73. 5 83. 2 88. 9	87 152 167 235 303	0 1 1 2 3	49.7 65.7 61.4 70.9	87 152 224 291 359	0 1 2 3 4	41.7 55.0 61.2 63.7 70.9
2000 3000 5000 7000 10000	254 257 260 328 329	2 2 2 3 3	98.5 98.5 98.4 99.5	317 322 390 455 457	3 3 4 5	96.0 95.8 97.9 98.9 98.9	378 445 572 576 639	5 7 7 8	92.1 94.6 97.6 97.5 98.3	495 563 747 811 873	6 7 10 11 12	89.4 91.4 95.9 96.7	607 733 917 1094 1214	8 10 13 16 18	34.1 87.7 91.8 94.7
20000 30000 50000 70000 100000 200000	396 396 397 461 461 461	4 4 4 5 5	99.9 99.9 99.9 100 100	521 584 646 646 707 767	6 7 8 8 9	99.4 99.7 99.9 99.9 99.9	762 823 884 943 1002 1118	10 11 12 13 14 16	99.3 99.5 99.7 99.8 99.9	1053 1171 1287 1345 1460 1630	15 17 19 20 22 25	98.6 99.2 99.5 99.6 99.8 99.9	1505 1677 1904 2017 2129 2407	23 26 30 32 34 39	98.0 98.7 99.3 99.5 99.6 99.8

Single Sampling Tables for LTPD = 3 % and γ = 1.

	1 0.3 1 0.6														
100p ₁		0.	3		0.6			0.9		[1.2			1.5	
N	n	c	100P	n	С	1002	n	С	100P	n	c	1002	n	c	100P
30	28	0	91.9	, ,	0	84.5	. 3	0	77.6	28	0	71,3	2 8	0	65 , 5
50	39	0	88.9	39	0	79.1	39	0	70.3	39	0	6. 4	39	Ö	55.5
70	46	0	87.1	46	0	75.8	46	0	66.0	46	ō	57.4	46	ō	49.9
100	53	0	85.3	53	0	72.7	53	O	61.9	53	ō	52.7	53	ŏ	44.9
200	63	0	82.8	63	0	68.4	63	0	56.6	101	1	65.8	101	1	55.2
300	67	0	81.8	110	1	85.8	110	1	73.9	110	1	61.9	110	1	50.7
500	117	1	95.1	117	1	84.4	157	2	83.1	157	2	70.8	195	3	65.4
700	120	1	94.9	162	2	9ி.5	202	3	88.9	202	3	77.4	240	4	70.7
1000	122	1	94.8	166	2	92.1	208	3	0.88	286	5	86.8	32 3	6	78. 6
2000	171	2	98.5	214	3	95.9	296	5	94.7	375	7	91.5	488	10	87.9
3000	173	2	98.4	259	4	97.9	340	6	96.4	457	9	94.8	608	13	92.1
5000	218	3	99.6	303	5	98.9	424	8	98.4	540	11	96.8	729	16	94.8
7000	219	3	99.5	304	5	98.9	426	8	98.4	620	13	98,0	346	19	95.6
10000	220	3	99.5	346	6	99.5	467	9	98.9	661	14	98.4	92.5	21.	97.4
20000	264	4	99.9	388	7	99.7	548	11	99.5	779	17	99.3	1117	26	98.8
30000	264	4	99.9	429	8	99.9	588	12	99.7	857	19	99.6	1230	29	99.2
50000	307	5	100	430	8	99,9	628	13	99.8	924	21	99.7	1343	32	99.5
70000	307	5	100	470	9	99.9	667	14	99.9	972	22	99.8	1455	35	99.7
100000	307	5	100	471	9	99.9	706	15	99.9	1010	23	99.8	1529	37	99.8
200000	349	6	100	511	10	100	783	17	100	1123	26	99, 9	1677	41	99.9

- 27 -

Single Sampling Tables for LTPD = 4% and % = 1.

100p ₁	0.8		<u></u>	1.2	!		1.6			2.0			2.4		
N 30 50 70 100	n 26 34 39 43	0 0 0 0	100P 81.2 76.1 73.1 70.8	n 26 34 39 43	° 0 0 0 0	100P 73.1 66.3 62.4 59.5	n 26 34 39 43	c 0 0 0	100P 65.7 57.8 53.3 50.0	n 26 34 39 43	0 0 0 0	100P 59.1 50.3 45.5 41.9	n 26 34 39 43	c 0 0 0	100P 53.2 43.8 38.8 35.2
200 300 500 700 1000	80 85 121 124 158	1 1 2 2 3	86.5 85.2 92.6 92.2 96.1	80 85 121 155 188	1 1 2 3 4	75.1 72.8 82.2 88.3 92.3	80 115 151 184 247	1 2 3 4 6	63.3 72.0 77.6 82.6 89.6	80 115 179 240 275	1 2 4 6 7	52.3 59.5 71.1 79.3 81.1	80 115 206 267 330	1 2 5 7 9	42.5 47.7 62.6 68.7 72.8
2000 3000 5000 7000 10000	193 195 227 259 260	4 5 6	98.0 97.9 99.0 99.5 99.5	254 286 318 349 380	6 7 8 9	96.5 97.7 98.4 99.0 99.3	341 374 435 495 525	9 10 12 14 15	95.0 95.9 97.5 98.5 98.8	426 515 605 692 751	12 15 18 21 23	91.0 94.2 96.2 97.5 98.1	536 680 853 967 1080	16 21 27 31 35	84.8 89.9 93.7 95.4 96.7
20000 30000 50000 70000 100000 200000	291 322 352 352 382 412	7 8 9 9 10	99.7 99.9 99.9 100 100	440 470 499 529 558 587	12 13 14 15 16 17	99.7 99.8 99.9 99.9 100	613 671 728 757 785 870	18 20 22 23 24 27	99.4 99.7 99.8 99.8 99.9	893 978 1062 1118 1201 1311	28 31 34 36 39 43	99.1 99.4 99.7 99.7 99.8 99.9	1332 1470 1635 1744 1853 2069	44 49 55 59 63 71	98.4 99.0 99.4 99.6 99.7 99.9

Single Sampling Tables for LTPD = 5 % and X' = 1.

100p ₁	1.0		1.5		2.0		2.5			3.0					
N 30 50 70 100	n 23 30 33 36	° 0 0 0 0	100P 79.4 74.0 71.8 69.6	n 23 30 33 36	0 0 0 0	100P 70.6 63.5 60.7 58.0	n 23 30 33 36	c 0 0 0	100P 62.8 54.5 51.3 48.3	n 23 30 33 36	0000	100P 55.9 46.8 43.4 40.2	n 23 30 33 36	0 0 0 0	100P 49.6 40.1 36.6 33.4
200 300 500 7 00 1 000	66 70 98 125 127	1 1 2 3 3	85.9 84.5 92.4 96.3 96.1	66 94 123 149 176	1 2 3 4 5	73.9 83.2 88.5 92.5 94.9	66 94 146 173 222	1 2 4 5 7	61.9 70.9 83.0 86.5 92.0	89 117 168 2 1 8 267	2 3 5 7 9	61.5 66.4 75.5 81.8 86.5	89 117 190 239 311	2 3 6 8 11	49.8 53.3 65.5 70.8 77.3
2000 3000 5000 7000 10000	155 181 207 207 232	4 5 6 6 7	98.0 99.0 99.5 99.5 99.7	204 229 2 7 9 303 304	6 7 9 10 10	96.5 97.7 99.0 99.3 99.3	274 323 372 419 443	9 11 13 15 16	94.9 96.9 98.1 98.9 99.1	365 436 577 645	13 16 22 25	92.2 95.0 97.9 98.7	475 590 728 840 931	18 23 29 34 38	87.2 91.5 94.7 96.5 97.4
20000 30000 50000 70000 100000 200000	257 257 281 281 305 329	8 9 9 10 11	99.9 99.9 99.9 100 100	352 375 399 422 445 492	12 13 14 15 16 18	99.7 99.8 99.9 99.9 99.9	513 536 582 627 650 71	19 20 22 24 25 28	99.6 99.7 99.8 99.9 99.9	737 804 871 916 982 1070	29 32 35 37 40 44	99.3 99.5 99.7 99.8 99.9	1131 1219 1351 1438 1524 1697	47 51 57 61 65 73	98.8 99.2 99.5 99.6 99.8 99.9

Single Sampling Tables for LTPD = 7 % and \mathcal{X} = 1.

100p ₁	2.1		2.8			3.5		4.2		?	4.9				
N 30 50 70 100	n 20 23 25 44	0 0 0 1	100P 65.4 61.4 58.8 76.4	n 20 23 25 44	0 0 0 0	100P 56.7 52.0 49.2 65.0	n 20 23 25 44	0 0 0 0	100P 49.0 44.1 41.0 54.1	n 20 23 25 44	0 0 0 1	100P 42.4 37.3 34.2 44.3	n 20 23 25 44	0 0 0 0	100P 36.6 31.5 28.5 35.8
200 300 500 700 1000	66 86 106 125 127	2 3 4 5 5	83.8 89.2 92.7 95.1 94.8	66 86 123 142 177	2 3 5 6 8	71.8 77.9 86.8 89.5 93.7	82 102 155 190 225	3 4 7 9 11	67.7 71.4 82.2 86.8 90.1	82 118 170 221 272	3 5 8 11 14	54.7 62.4 71.3 77.9 82.6	82 118 201 252 348	3 5 10 13 19	42.5 47.8 60.2 64.6 73.6
2000 3000 5000 7000 10000	163 181 216 216 233	7 8 10 10	97.7 98.5 99.4 99.4	230 248 282 315 332	11 12 14 16 17	97.0 97.6 98.6 99.2 99.4	294 345 4 1 1 444 493	15 18 22 24 27	94.4 96.3 98.0 98.5 99.1	404 486 584 648 727	22 27 33 37 42	91.1 94.0 96.3 97.4 98.3	542 685 875 1000 1140	31 40 52 60 69	83.8 88.8 93.1 95.0 96.6
20000 30000 50000 70000 100000 200000	267 284 301 317 334 350	13 14 15 16 17 18	99.8 99.9 99.9 100 100	382 414 431 463 479 527	20 22 23 25 26 29	99.7 99.8 99.9 99.9 100	557 605 653 684 716 794	31 34 37 39 41 46		854 932 1025 1072 1134 1257	50 55 61 64 68 76	99.1 99.4 99.7 99.8 99.8	1403 1542	86 95	98•4 98•9

Single Sampling Tables for LTPD = 10 % and = 1.

100p ₁		3.0			4.0			5.0			6.0	1		7.0	
N 30 50 70 100	n 16 18 31 33	0 0 1 1	100P 61.4 57.8 76.2 74.0	n 16 18 31 33	0 0 1 1	100P 52.0 48.0 64.6 61.7	n 16 18 31 44	0 0 1 2	100P 44.0 39.7 53.7 62.1	n 16 18 31 44	0 0 1 2	100P 37.2 32.8 43.8 50.4	n 16 18 31 44	0 0 1 2	100P 31.3 27.1 35.1 39.7
200 300 500 700 1000	48 61 87 88 101	2 3 5 5 6	82.6 88.9 95.3 95.1 96.7	59 85 99 1 23 136	3 5 6 8 9	79.0 87.5 89.8 94.1 95.3	71 96 132 157 181	4 6 9 11 13	71.8 79.5 87.4 90.4 92.9	81 107 154 190 236	5 7 11 14 18	64.1 68.7 78.5 83.0 88.0	81 117 186 233 300	5 8 14 18 24	49.6 56.5 67.7 72.2 78.9
2000 3000 5000 7000 10000	126 138 151 163 174	8 9 10 11 12	98.6 99.1 99.4 99.6 99.8	172 196 220 232 243	12 14 16 17 18	97.8 98.7 99.2 99.4 99.5	240 264 310 333 355	18 20 24 26 28	96.6 97.5 98.6 99.0 99.3	3 2 8 385 452 497 54 1	26 31 37 41 45	93.9 95.9 97.6 98.3 98.8	457 567 699 786 873	38 48 60 68 76	88.2 92.3 95.3 96.7 97.7
20000 30000 50000 70000 100000 200000	198 198 221 221 233 255	14 14 16 16 17	99.9 99.9 100 100 100	278 289 312 334 345 368	21 22 24 26 27 29	99.8 99.8 99.9 99.9 100	411 434 467 500 522 565	33 35 38 41 43 47	99.7 99.8 99.9 99.9 100	629 683 738 781 824 899	53 58 63 67 71 78	99.4 99.6 99.8 99.8 99.9	1045	92	98.9

Single Sampling Tables for LTPD = 15 % and $\delta = 1$.

П	100p ₁		4.5			6.0)		7.5			9.0			10.	5
	N 30 50 70 100	n 11 20 22 30	0 1 1 2	100P 60.3 77.3 74.0 84.9	n 11 20 29 30	0 1 2 2	100P 50.6 66.0 74.9 73.2	n 11 20 29 38	0 1 2 3	100P 42.4 55.1 62.8 68.2	n 11 20 29 38	0 1 2 3	100P 35.4 45.2 50.9 55.0	n 11 20 29 45	0 1 2 4	100P 29.5 36.4 40.0 48.3
	200 300 500 700 1000	40 49 58 67 75	3 4 5 6 7	89.6 93.1 95.4 96.9 98.1	48 65 81 90 106	4 6 8 9 11	84.1 90.6 94.6 95.7 97.5	63 80 104 120 136	6 8 11 13 15	80.8 85.5 91.0 93.4 95.1	70 94 133 157 187	7 10 15 18 22	70.7 77.6 85.7 88.6 92.2	78 109 162 207 259	8 12 19 25 32	56.5 64.3 74.5 80.6 85.8
	2000 3000 5000 7000 10000	91 99 107 115 123	9 10 11 12 13	99.2 99.5 99.7 99.8 99.9	122 138 153 161 169	13 15 17 18 19	98.5 99.1 99.5 99.6 99.7	175 190 220 236 250	20 22 26 28 30	97.8 98.4 99.2 99.4 99.6	248 285 330 352 381	30 35 41 44 48	96.1 97.5 98.5 98.9 99.2	362 435 515 573 630	46 56 67 75 83	92.4 95.1 97.0 97.9 98.6
	20000 30000 50000 70000 100000 200000	131 139 146 154 162 169	14 15 16 17 18 19	99.9 99.9 100 100 100	191 199 214 221 236 251	22 23 25 26 28 30	99.9 99.9 99.9 100 100	280 302 324 339 353 382	34 37 40 42 44 48	99.8 99.9 99.9 99.9 100 100	439 468 504 533 554 604	56 60 65 69 72 7 9	99.7 99.8 99.9 99.9 100	737	98	99•3

Single Sampling Tables for LTPD = 20 % and \mathcal{Y} = 1.

100]	P ₁		6.0			8.0			10.	0		12.	0		14.	0
N 30 50 70 100		n 9 16 22	0 1 2 2	100P 57.3 75.1 85.8 84.3	n 14 16 22 29	c 1 1 2 3	100P 69.0 63.0 74.4 80.1	n 14 21 28 35	c 1 2 3 4	100P 58.5 64.8 69.5 73.1	n 14 21 28 40	c 1 2 3 5	100P 48.6 53.0 56.2 65.4	n 14 21 28 40	c 1 2 3 5	100P 39.7 42.0 43.5 50.4
200 300 500 700 1 000		36 43 49 56 62	4 5 6 7 8	93.8 95.8 97.4 98.2 98.9	42 54 67 73 79	5 7 9 10 11	88.4 93.6 96.0 97.0 97.7	53 66 84 101 113	7 9 12 15 17	84.4 88.0 92.6 95.7 96.8	64 82 111 134 157	9 12 17 21 25	76.6 82.0 88.6 92.1 94.4	75 103 149 182 221	11 16 24 30 37	64.4 73.0 80.7 85.8 89.6
2000 3000 5000 7000		68 74 80 86 92	9 10 11 12 13	99•3 99•5 99•7 99•8 99•9	97 103 114 126 131	14 15 17 19 20	99.0 99.2 99.6 99.8 99.8	136 153 170 181 192	21 24 27 29 31	98.4 99.0 99.4 99.6 99.7	196 224 252 274 296	32 37 42 46 50	97.2 98.2 98.9 99.2 99.5	298 347 407 444 487	51 60 71 78 86	94.6 96.4 97.9 98.5 99.0
20000 30000 50000 70000 100000 200000) 10 0 11 0 13	97 03 09 15 20 26	14 15 16 17 18	99.9 100 100 100 100	143 154 159 165 176 187	22 24 25 26 28 30	99.9 99.9 100 100 100	214 225 242 253 264 285	35 37 40 42 44 48	99.9 99.9 99.9 100 100	334 355 382 398 414 452	57 61 66 69 72 79	99.7 99.8 99.9 99.9 100			

Single Sampling Tables for LTPD = 0.5 % and $\frac{7}{2}$ = 5.

100p ₁		0.0)5		0.1	.0		0.1	5		0.2	0		0.2	5
N	n	С	100P	n	С	100P	n	С	100P	n	С	100P	n	С	100P
30 50 70 100	All All All All	-	- - -	All All All All	- - -	- - -	A11 A11 A11 A11	- - -	- - -	All All All	- - -	- - -	All All All	- - -	- - -
200 300 500 700 1000	180 235 300 516 583	0 0 0 1 1	91.4 88.9 86.1 97.2 96.5	180 235 438 516 753	0 0 1 1 2	83.5 79.1 92.8 90.5 95.9	180 235 438 639 753	0 0 1 2 2	76.3 70.3 85.9 92.7 89.5	180 235 438 639 887	0 0 1 2 3	69.7 62.5 78.6 86.2 89.6	180 235 438 639 979	0 0 1 2 4	63.7 55.5 70.1 79.2 89.8
2000 3000 5000 7000 10000	898 951 994 1266 1286	2 2 2 3 3	98.9 98.7 98.6 99.6	1102 1177 1472 1741 1774	3 4 5 5	97.4 96.8 98.3 99.1 99.0	1291 1594 1915 2192 2467	4 5 6 7 8	95.3 96.5 97.3 98.1 98.6	1465 1788 2538 2837 3345	5 6 9 10 12	92.3 92.9 96.5 97.0 98.0	1624 2152 3123 3655 4394	6 8 12 14 17	88.3 90.5 94.5 95.4 96.8
20000 30000 50000 70000 100000 200000	1565 1576 1584 1842 1845 2099	4 4 5 5 6	99.9 99.9 99.9 100 100	2296 2315 2571 2578 2824 3070	7 7 8 8 9	99.7 99.7 99.9 99.9 99.9	2995 3255 3743 3987 4229 4473	10 11 13 14 15 16	99.3 99.5 99.8 99.9 99.9	4120 4613 5329 5575 6041 6513	15 17 20 21 23 25	98.9 99.3 99.7 99.7 99.8 99.9	5853 6583 7530 8222 8691 9827	23 26 30 33 35 40	98.5 99.0 99.4 99.6 99.7 99.9

Single Sampling Tables for LTPD = 1 % and δ = 5.

100p ₁		0.1			0.2			0.3			0.4			0.5	
N	n	c	100P	n	С	100P	n	С	100P	n	С	100P	n	c	1 00P
30 50 70 100	A11 A11 A11 90	- - 0	91.4	A11 A11 A11 90	- - 0	- - 83.5	A11 A11 A11 <u>90</u>	- - 0	76.3	A11 A11 A11 <u>90</u>		69.7	A11 A11 A11 <u>90</u>	- - 0	63.7
200 300 500 700 1000	136 241 291 316 449	0 1 1 1 2	87.3 97.5 96.5 96.0 98.9	190 241 376 417 551	1 1 2 2 3	94.4 91.5 95.9 94.8 97.4	190 241 376 504 645	1 1 2 3 4	88.8 83.6 89.5 93.3 95.3	190 290 444 581 732	1 2 3 4 5	82.3 88.8 89.6 91.4 92.4	190 290 490 645 812	1 2 4 5 6	75.4 82.2 89.8 89.2 88.4
2000 3000 5000 7000 10000	488 626 642 649 782	2 3 3 4	98.7 99.6 99.6 99.6 99.9	720 745 886 1017 1147	4 4 5 6 7	98.4 98.2 99.0 99.5 99.7	933 1082 1232 1365 1496	6 7 8 9 10	97.6 98.2 98.7 99.1 99.4	1133 1397 1671 1921 2059	8 10 12 14 15	95.9 97.2 98.1 98.8 99.0	1322 1697 2196 2561 2925	10 13 17 20 23	92.7 95.0 96.9 97.9 98.5
20000 30000 50000 70000 100000 200000	789 919 921 923 1049 1050	4 5 5 5 6 6	99.9 100 100 100 100	1281 1286 1411 1532 1534 1655	8 9 10 10	99.9 99.9 99.9 100 100	1750 1874 1997 2117 2235 2468	12 13 14 15 16 18	99.7 99.8 99.9 99.9 99.9	2542 2669 3019 3137 3255 3597	19 20 23 24 25 28	99.6 99.7 99.8 99.9 99.9	3530 3883 4344 4683 4911 5469	28 31 35 38 40 45	99.2 99.5 99.7 99.8 99.9

Single Sampling Tables for LTPD = 2 % and \checkmark = 5.

100p ₁		0.	2		0.4			0.6			0.8			1.0)
N	n	С	100P	n	С	100P	n	С	100P	n	c	100P	n	С	100P
30 50 70 100	A11 45 56 68	0 0 0	91.4 89.4 87.3	A11 45 56 95	0 0 1	83.5 79.9 94.4	A11 45 56 95	- 0 0	76.3 71.4 88.8	A11 45 56 95	0 0 1	69.7 63.8 82.3	A11 45 56 25	0 0 1	63.6 57.0 75.4
200 300 500 700 1000	135 152 224 235 243	1 2 2 2	97.0 96.2 98.9 98.8 98.7	135 199 275 291 359	1 2 3 3 4	89.8 95.3 97.5 97.0 98.4	171 239 322 393 466	2 3 4 5 6	91.5 94.3 95.4 96.7 97.6	171 239 366 441 566	2 3 5 6 8	84.2 87.3 92.4 93.3 95.9	195 272 406 529 661	3 4 6 8 10	86.7 86.1 88.4 91.2 92.8
2000 3000 5000 7000 10000	317 322 390 392 394	3 4 4 4	99.6 99.6 99.9 99.9	437 505 513 576 639	5 6 6 7 8	99.1 99.5 99.5 99.7 99.9	607 677 747 811 873	8 9 10 11 12	98.8 99.1 99.4 99.6 99.7	769 898 1028 1149 1214	11 13 15 17 18	97.7 98.5 99.0 99.4 99.5	975 1163 1461 1586 1763	15 18 23 25 28	96.0 97.2 98.6 98.9 99.2
20000 30000 50000 70000 100000 200000	459 460 523 523 524 586	5 5 6 6 7	100 100 100 100 100	703 705 766 825 826 886	9 10 11 11	99.9 99.9 100 100 100	996 1056 1116 1174 1232 1291	14 15 16 17 18	99.9 99.9 99.9 100 100	1449 1510 1625 1739 1796 1965	22 23 25 27 28 31	99.8 99.8 99.9 99.9 100	2056 2228 2453 2566 2732 2954	33 36 40 42 45 49	99.6 99.7 99.9 99.9 99.9

Single Sampling Tables for LTPD = 3% and $\delta = 5$.

100p ₁		0,3			0.6			0.9			1.2			1,5	
N	n	С	100P	n	c	100P	n	c	100P	n	c	100P	n	С	100P
30 50 70 100	A11 39 46 80	0 0 1	88.9 87.1 97.6	A11 39 65 80	0 1 1	78.9 94.2 91.6	A11 39 65 80	0 1 1	70.1 88.4 83.8	A11 39 65 97	0 1 2	- 62.4 81.6 88.8	A11 39 65 97	0 1 2	- 55.5 74.5 82.1
200 300 500 700 1000	101 110 157 162 208	1 2 2 3	96.3 95.6 98.8 98.7 99.6	133 146 195 240 247	2 2 3 4 4	95.3 94.2 96.9 98.4 98.3	159 179 265 312 359	3 3 5 6 7	94.4 92.1 96.6 97.6 98.3	159 236 297 379 4 6 5	3 5 6 8 10	87.4 93.3 93.1 95.8 97.3	181 261 358 444 565	4 6 8 10 13	86.2 90.0 90.7 92.5 95.1
2000 3000 5000 7000 10000	214 259 261 262 305	3 4 4 4 5	99.6 99.9 99.9 99.9	336 340 384 426 427	6 6 7 8 8	99.5 99.5 99.7 99.9	451 496 540 582 623	9 10 11 12 13	99.1 99.4 99.6 99.7 99.8	598 682 766 846 887	13 15 17 19 20	98.5 99.0 99.4 99.6 99.7	775 933 1094 1175 1292	18 22 26 28 31	97.2 98.4 99.0 99.3 99.5
20000 30000 50000 70000 100000 200000	306 306 348 348 349 390	5 5 6 6 7	100 100 100 100 100 100	469 509 549 550 589 629	9 10 11 11 12 13	99.9 100 100 100 100	703 743 782 821 859 897	15 16 17 18 19 20	99.9 99.9 100 100 100	1005 1082 1158 1196 1234 1346	23 25 27 28 29 32	99.9 99.9 99.9 100 100	1484 1597 1709 1820 1894 2041	36 39 42 45 47 51	99.8 99.8 99.9 99.9 100

- 32 **-**

Single Sampling Tables for LTPD = 4 % and \mathcal{E} = 5.

100p ₁	***************************************	0.8			1.2			1.6	i		2.0	l		2.4	
N	n	c	100P	n	c	100P	n	С	100P	n	С	100P	n	С	100P
30 50 70 100	A11 47 58 67	- 1 1 1	94.5 92.1 89.9	A11 47 58 85	1 1 2	89.1 84.6 91.7	A11 47 <u>58</u> 85	1 1 2	82.7 76.7 84.4	A11 <u>47</u> <u>58</u> 85	1 1 2	75.8 68.3 76.1	A11 47 58 85	1 1 2	68.8 59.3 66.6
200 300 500 700 1 000	107 141 179 184 218	2 3 4 4 5	94.5 97.3 98.5 98.3 99.1	130 167 232 240 303	3 4 6 6 8	92.8 94.8 97.7 97.3 98.8	151 213 232 320 383	4 6 8 9 11	90.4 94.3 96.0 96.5 97.8	170 234 330 395 487	5 7 10 12 15	87.3 90.0 92.9 94.3 96.1	186 271 396 489 634	6 9 13 16 21	83.8 88.0 90.1 91.5 94.2
2000 3000 5000 7000 10000	254 286 318 320 350	6 7 8 8 9	99.5 99.8 99.9 99.9	341 403 435 466 496	9 11 12 13 14	99.1 99.6 99.7 99.8 99.9	481 543 605 664 695	14 16 18 20 21	98.8 99.2 99.5 99.7 99.8	669 761 880 940 1026	21 24 28 30 33	98.2 98.8 99.3 99.4 99.6	902 1077 1280 1422 1564	30 36 43 48 53	96.8 97.9 98.7 99.1 99.4
20000 30000 50000 70000 100000 200000	381 382 412 412 441 471	10 10 11 11 12 13	100 100 100 100 100	527 557 614 615 644 701	15 16 18 18 19 21	99.9 99.9 100 100 100	782 839 896 924 953 1036	24 26 28 29 30 33	99.9 99.9 100 100 100	1168 1253 1336 1392 1447 1584	38 41 44 46 48 53	99.8 99.9 99.9 100 100	1815 1954 2118 2227 2335 2550	62 67 73 77 81 89	99.7 99.8 99.9 99.9 100

Single Sampling Tables for LTPD = 5% and $\frac{7}{2} = 5$.

100p ₁		1.0			1.5			2.0			2.5			3.0	
N	n	С	100P	n	Ċ	100 P	n	c	100 P	n	С	100P	n	c	100P
30 50 70 1 00	A11 44 51 75	1 1 2	92.8 90.8 96.0	A11 44 64 75	1 2 2	- 85.9 92.8 89.7	A11 44 64 88	1 2 3	78.4 86.3 90.0	All 44 62 88	1 2 3	70.4 79.3 82.1	A11 44 62 88	1 2 3	61.8 71.8 73.3
200 300 500 700 1000	109 117 146 173 176	3 4 5 5	97.6 97.0 98.4 99.2 99.1	128 158 190 2 1 8 245	4 5 6 7 8	95.6 96.7 97.5 98.2 98.8	146 178 252 282 332	5 6 9 10 12	92.6 93.2 96.8 97.2 98.2	162 214 311 364 437	6 8 12 14 17	88.7 90.9 94.9 95.7 97.1	189 248 366 461 558	8 10 15 19 23	88.3 87.1 91.2 93.3 94.7
2000 3000 5000 7000 10000	204 229 255 256 280	6 7 8 8 9	99.5 99.8 99.9 99.9	297 323 349 373 397	10 11 12 13 14	99•4 99•6 99•7 99•8 99•9	410 459 508 554 579	15 17 19 21 22	99.1 99.4 99.6 99.8	561 634 728 797 844	22 25 29 32 34	98.4 98.9 99.4 99.6 99.7	792 931 1092 1184 1296	33 39 46 50 55	97.4 98.3 99.0 99.2 99.5
20000 30000 50000 70000 100000 200000	305 305 329 352 353 376	10 10 11 12 12 13	100 100 100 100 100	444 468 491 514 537 560	16 17 18 19 20 21	100 100 100 100 100	648 671 716 761 784 850	25 26 28 30 31 34	99.9 99.9 100 100 100	957 1024 1090 1135 1200 1288	39 42 45 47 50 54	99.9 99.9 99.9 100 100	1496 1606 1737 1823 1910 2082	64 69 75 79 83 91	99.8 99.8 99.9 99.9 100

Single Sampling Tables for LTPD = 7% and 6 = 5.

100p ₁		2.1			2.8			3.5		1	4,,2			4.9	
N	n	С	100P	n	С	100P	n	С	100P	n	С	100P	n	c	100P
30 50 70 100	A11 46 53 71	2 2 3	92.8 90.0 93.7	A11 46 63 83	2 3 4	86.2 90.0 91.6	A11 46 63 92	2 3 5	78.7 82.1 89.6	A11 46 63 92	2 3 5	70.2 72.9 79.6	A11 46 63 92	2 3 5	60.7 62.7 67.5
200 300 500 700 1000	111 133 155 174 193	5 6 7 8 9	97.0 97.7 98.3 98.8 99.2	125 162 201 237 257	6 8 10 12 13	93.7 96.0 97.3 98.3 98.6	150 189 259 297 348	8 10 14 16 19	91.8 93.0 95.9 96.6 97.8	173 228 328 397 481	10 13 19 23 28	88.6 89.8 93.6 95.0 96.5	192 274 406 506 636	12 17 25 31 39	85.0 87.1 89.8 91.3 93.3
2000 3000 5000 7000 10000	230 248 266 283 300	11 12 13 14 1 5	99.6 99.7 99.8 99.9	310 345 379 412 429	16 18 20 22 23	99.3 99.6 99.7 99.8 99.9	451 502 568 601 634	25 28 32 34 36	99.0 99.3 99.6 99.7 99.8	632 731 844 909 988	37 43 50 54 59	98.1 98.8 99.3 99.5 99.7	925 1102 1338 1480	57 68 83 92	96.4 97.5 98.6 99.0
20000 30000 50000 70000 100000 200000	333 333 366 366 383 415	17 17 19 19 20 22	100 100 100 100 100	478 494 527 559 575 606	26 27 29 31 32 34	99.9 100 100 100 100	714 762 809 840 872 934	41 44 47 49 51 55	99.9 99.9 100 100 100	1115 1192 1285 1347 1408 1516	67 72 78 82 86 93	99.8 99.9 99.9 100 100			

Single Sampling Tables for LTPD = 10 % and Y = 5.

100p ₁		3.0)		4.0		i.	5.0			6.0			7.C	
N	n	С	100P	n	С	100P	n	c	100P	n	c	100P	n	С	100P
30 50 70 100	A11 37 50 64	2 3 4	90.1 93.7 95.7	A11 44 58 72	3 4 5	90.2 91.8 93.2	A11 44 64 81	- 3 5 6	82.3 90.0 88.9	All All 64 88	- 5 7	 - 81.5 84.2	All All All	- - -	-
200 300 500 700 1 000	81 107 121 134 147	5 7 8 9	96.5 93.4 98.9 99.3 99.5	102 126 165 179 203	7 9 12 13 15	94.8 96.7 98.4 98.7 99.2	131 168 207 243 279	10 13 16 19 22	93.5 95.7 96.8 97.9 98.6	158 206 278 326 384	13 17 23 27 32	90.6 92.8 95.2 96.3 97.4	181 250 354 444 546	16 22 31 39 48	86.6 89.0 91.6 93.7 95.4
2000 3000 5000 7000 10000	172 185 197 209 221	12 13 14 15 16	99.8 99.8 99.9 99.9	240 253 276 299 311	18 19 21 23 24	99.6 99.7 99.8 99.9	339 374 409 442 465	27 30 33 36 38	99.3 99.5 99.7 99.8 99.9	499 556 635 679 724	42 47 54 58 62	98.8 99.2 99.5 99.7 99.8	748 870 1 024	66 77 91	97.6 98.4 99.1
20000 30000 50000 70000 100000 200000	232 244 255 267 278 289	17 18 19 20 21 22	100 100 100 100 100	345 356 379 390 412 434	27 28 30 31 33 35	100 100 100 100 100	510 543 576 5 98 6 10 66 3	42 45 48 50 52 56	99,9 100 100 100 100	811 866 920 963 995 1080	70 75 80 84 87 95	99.9 99.9 100 100 100			

Single Sampling Tables for LTPD = 15 % and $\frac{1}{2}$ = 5.

100p ₁		4•5			6.0)		7.5	i		9.0)		10.	5
N	n	c	100P	n	С	100P	n	С	100P	n	c	100P	n	С	100P
30 50 7 0 100	24 34 43 52	2 3 4 5	90.9 93.5 95.7 97.1	A11 39 49 58	- 4 5 6	91.8 92.8 94.2	A11 44 54 71	5 6 8	89.1 89.2 91.7	A11 A11 64 82	- 8 10	- 88.1 88.3	All All All 92	- - 12	- - 83.4
200 300 500 700 1000	63 80 89 98 106	6 8 9 10 11	97.7 99.0 99.3 99.5 99.7	85 101 119 135 143	9 11 13 15 16	96.9 98.2 98.8 99.3 99.4	105 129 162 185 202	12 15 19 22 24	94.9 96.8 98.1 98.8 99.0	137 170 224 255 294	17 21 28 32 37	93.3 94.6 97.0 97.8 98.4	166 220 303 364 431	22 29 40 48 57	89.7 91.7 94.4 95.7 97.0
2000 3000 5000 7000 10000	115 123 131 138 146	12 13 14 15 16	99.8 99.9 99.9 99.9	167 175 191 206 214	19 20 22 24 25	99•7 99•8 99•9 99•9	241 264 286 301 316	29 32 35 37 39	99.5 99.7 99.8 99.9	362 400 444 467 496	46 51 57 60 64	99.3 99.5 99.7 99.8 99.8	565 638 733	75 8 5 98	98.5 99.0 99.4
20000 30000 50000 70000 100000 200000	161 161 177 177 184 199	18 18 20 20 21 23	100 100 100 100 100	229 244 258 266 273 288	27 29 31 32 33 35	100 100 100 100 100	346 368 389 404 418 447	43 46 49 51 53	100 100 100 100 100	554 582 618 647 668 718	72 76 81 85 88 95	99.9 100 100 100 100	***************************************		

Single Sampling Tables for LTPD = 20 % and X = 5.

100p ₁		6.0			8.0			10.	0		12.	0		14.	0
N	n	С	100P	n	С	100P	n	С	100P	n	С	100P	n	С	100P
30 50 70 100	19 31 33 40	2 4 4 5	89.8 96.4 95.5 96.9	23 36 43 50	3 5 6 7	89.3 93.6 94.7 95.6	40 52 65	6 8 10	90.0 92.9 94.3	A11 44 60 74	7 10 12	84.9 90.1 89.8	All All All 90	- - 16	- - 88.0
200 300 500 700 1000	53 60 67 73 79	7 8 9 10 11	98.7 99.1 99.4 99.6 99.7	70 82 95 101 113	10 12 14 15 17	97•7 98•7 99•2 99•4 99•6	90 109 133 145 157	14 17 21 23 25	96.7 97.7 98.7 99.0 99.3	115 145 180 208 232	19 24 30 35 39	94.4 96.0 97.5 98.5 98.8	148 194 256 306 351	26 34 45 54 62	91.1 93.2 95.6 97.0 97.7
2000 3000 5000 7000 10000	91 97 103 103 109	13 14 15 15 16	99.9 99.9 100 100	125 136 148 154 159	19 21 23 24 25	99.8 99.9 99.9 99.9	185 197 219 230 242	30 32 36 38 40	99•7 99•8 99•9 99•9	277 305 338 354 376	47 52 58 61 65	99.4 99.6 99.8 99.8	450 500	80 89	99.0 99.3
20000 30000 50000 70000 100000 200000	120 126 131 132 137 148	18 19 20 20 21 23	100 100 100 100 100	176 182 193 198 204 215	28 29 31 32 33 35	100 100 100 100 100	263 274 291 302 312 329	44 46 49 51 53	100 100 100 100 100	414 435 462 478 499 531	72 76 81 84 88 94	99.9 100 100 100 100	70. FT. C.		

- 35 -

Single Sampling Tables with Consumer's Risk of 10 % B(c,m) = 0.10, $r = p_1/p_2$, $m = np_2$, $M = Np_2$, $\gamma = 1$.

	r	0.70	0.65	0.60	0.55	0.50	0.45	0,40	0.35	0.30	0.25	0.20
С	m	М	М	М	М	М	М	М	М	М	М	М
0	2,302	10.9	10.0	9.43	8.99	8.67	8.47	8.36	8.36	8.48	8.75	9.28
1	3.889	14.9	13.9	13.3	12.9	12.7	12.7	12.9	13.3	14.1	15.6	
2	5.322	18.5	17.5	16.9	16.7	16.7	17.1	17.8	19.1	21.4	25.5	
3	6.681	21.9	21.0	20.5	20.5	20.9	21.8	23.5	26.4	31.4	41.0	
4	7.993	2.	24.5	24.2	24.5	25.4	27.2	30.3	35.6	45.4	65.7	
5	9.274	28.7	28.0	28.0	28.7	30.4	33.3	38.5	47.6	65.6	106	220
6	10.53	32.0	31.5	31.9	33.2	35.8	40.4	48.4	63.5	95.1	173	42 5
7	12.77	35.3	35.1	35.9	37.9	41.8	48.5	60.7	84.7	138	2 86	829
8	12.99	38.7	38.8	40.1	43.1	48.5	58.1	76.1	113	203	476	1640
9	14.21	42.1	42.5	44.5	48.6	55.9	69.2	95.2	152	300	798	3 240
10	15.41	45.6	46.4	49.2	54.6	64.3	82.5	119	205	446	1350	6470
11	16.60	49.1	50.4	54.1	61.0	73.8	98.3	150	277	665	2280	13000
12	17.78	52.6	54.6	59.3	68.1	84.5	117	189	377	1000	3890	26100
13	18,95	56.2	58.8	64.7	75.8	96.7	139	238	514	1510	6 650	52700
14	20.13	59.9	63.3	70.6	84.2	111	166	302	703	2280	11400	
15	21.29	63.6	67.9	76.7	93.4	126	199	383	965	3450	19600	
16	22.45	6 7. 5	72.7	83.3	104	145	238	487	1330	5240	33800	
17	23.61	71.5	77.8	90.4	115	166	285	622	1840	7990	58500	
18	24.76	75.4	82.8	97.7	1.27	190	342	7 94	2 540	12200		
19	25. 90	79.6	88.3	106	141	217	412	1020	3510	18600		
20	27.04	83.9	94.1	114	156	2 50	49 6	1310	4880	28600		
22	29.32	92.6	106	133	191	329	722	2160	9450	67400		
24	21,58	102	110	155	235	435	1000	3 590	10 99			
26	33.84	112	134	180	288	578	1560	6000	35900			
28	36.08	122	150	210	355	7 7 2	2300	10100				
30	38.31	133	163	245	439	1040	3420	17000	r	0.15	0,10	0.05
35	43.87	164	221	3 58	75 0	2170	9300	63300	m	M	M	M
40	49.39	200	290	529	1300	4650	25700	0	2,302	10.3	12.5	19.2
45	54.88	243	381	784	2280	10000		1	3.889	23.6	37.7	106
50	60, 34	295	504	1180	4050	21900		2	5.322	52,8	117	629
60	71.20	431	887	2690	13000			3	6.681	121	382	3900
70	81.99	632	1580	6320	42 900			Z _i .	7,993	285	1280	24800
80	92.72	932	2880	15100				5	9.274	634		159000
90	103.4	1390	5300	36400				6	10,53	1670	15100	
99	113.0	2000	9280					7	11.77	4100	52700	
								8	12,99	10200		
								9	14.21	25400		
								10	15.41	63900		

- 36 **-**

Single Sampling Tables with Consumers Risk of 10 % B(c,m) = 0.10, $r = p_1/p_2$, $m = np_2$, $M = Np_2$, s = 5.

	r	0.70	0.65	0.60	0 .5 5	0.50	0.45	0.40
С	m	M	M	М	M	M	M	М
0	2.302	3.89	3.89	3.89	3.89	3.89	3.89	3.89
1	3.889	5.32	5.32	5.32	5.32	5.32	5.32	5.32
2	5.322	6.68	6.68	6.68	6.68	6.68	6.68	6.68
3	6.681	7.99	7.99	7.99	7.99	7.99	7.99	7.99
4	7.993	9.27	9.27	9.27	9.27	9.27	9.27	9.27
5	9.274	10.5	10.5	10.5	10.5	10.5	10.5	11.5
6	10.53	11.8	11.8	11.8	11.8	11.8	11.8	14.6
7	11.77	<u>13.0</u>	13.0	13.0	13.0	13.0	14.4	18.1
8	12.99	14.2	14.2	14.2	14.2	14.2	17.4	22.2
9	14.21	15.4	<u>15.4</u>	<u>15.4</u>	15.4	16.4	20.7	27.0
10	15.41	16.6	16.6	16.6	16.6	19.1	24.3	32.9
11	16.60	17.8	17.8	<u>17.8</u>	17.8	22.0	28.5	40.0
12	17.78	19.0	19.0	<u>19.0</u>	19.7	2 5. 2	33.2	48.7
13	18.96	20.1	20.1	20.1	22.2	28.6	38.7	59.6
14	20.13	21.3	21.3	21.3	24.9	32.4	45.1	73.3
15	21.29	22.5	22.5	22.5	27.8	36.5	52.5	90.4
16	22.45	23.6	23.6	23.6	30.8	41.1	61.3	112
17	23.61	24.8	24.8	26.0	34.0	46.3	71.7	140
18	24.76	<u>25.9</u>	25.9	28.5	37.4	52.0	84.0	175
19	25.90	<u>27.0</u>	27.0	31.0	41.1	58.5	98.9	221
20	27.04	28.2	28.2	33.7	45.1	65.9	117	280
22	29.32	30.5	<u> 30.5</u>	39.5	54.1	83.7	164	452
24	31.58	32.7	34.0	45.8	64.6	107	233	740
26	33.84	35.0	38.8	52.7	77.2	137	334	1220
28	36.08	37.2	44.0	60.5	92.5	178	485	2040
30	38.31	<u>39.4</u>	49.4	69.3	111	232	711	3420
35	43.87	46.2	64.8	96.7	178	465	1890	12700
40	49.39	58.2	83.3	135	293	964	5 17 0	47900
45	54.88	71.4	106	191	493	2050	14400	
50	60.34	86.4	135	274	851	4430	40500	
60	71.20	123	221	586	2660	21500		
70	81.99	172	369	1320	8640			
80	92.72	241	636	3080	28800			
90	103.4	341	1130	7360				
99	113.0	472	1930	16300				

	r	0.35	0.30	0.25	0.20	0.15	0.10	0.05
С	m	M	M	M	M	M	M	M
0	2.302	3.89	3.89	3.89	3.89	3.89	3.89	5.46
1	3.889	<u>5.32</u>	5.32	5.32	5.59	7.05	10,2	24.0
2	5.322	<u>6.68</u>	6.68	7.79	9.87	14.1	27.3	130
3	6,681	<u>7.99</u>	9.53	12.0	16.7	28.8	81.4	786
4	7.993	10.8	13.4	18.1	28.5	62.6	263	4960
5	9.274	14.3	18.6	27.2	50.5	144	883	31900
6	10.53	18.5	25.5	41.7	92.5	341	3030	207000
7	11.77	23.8	35.2	65.2	174	830	10500	
. 8	12.99	30.5	49.2	104	337	2050	37000	
9	14.21	39.3	69.5	170	659	5100	131000	
10	15.41	50.8	99•7	280	1310	12800		
11	16.60	66.3	145	469	2610	32200		
12	17.78	87.2	212	791	5230	81900		
13	18.96	116	314	1340	10500			
14	20.13	154	470	2300	21300			
15	21.29	208	705	3940	43300			
16	22.45	281	1060	6780	88100			
17	23.61	384	1620	11700				
18	24.76	525	2460	20200				
19	25.90	721	3750	35100				
20	27.04	996	5740	61200				
22	29.32	1910	13500					
24	31.58	3700	31900					
26	33.84	7210	76700					
28	36.08	14100						
30	38.31	27700						

Single sampling tables with risk of 50 % for lots of indifference quality and minimum costs.

The tables on pp. 40 - 44 are based on a hypergeometric risk of 50 % for lots of indifference quality, i.e. $P(p_0) = 0.50$, a binomial producers risk, $Q(p_1) = 1 - P(p_1)$, and minimum producers costs.

$$K(p_1) = nk_s(p_1) + (N-n)(k_a(p_1)P(p_1) + k_r(p_1)Q(p_1))$$

$$= (k_s(p_1) - k_a(p_1))(n + (N-n)Y_1Q(p_1) + N\delta_1)$$

where

$$\chi_{1} = \frac{k_{1}(p_{1}) - k_{1}(p_{1})}{k_{1}(p_{1}) - k_{1}(p_{1})}$$
 and $\xi_{1} = \frac{k_{1}(p_{1})}{k_{1}(p_{1}) - k_{1}(p_{1})}$

The tables give corresponding values of N, n, c, and $100P(p_1)$, (if $100F(p_1) > 99.95$ it has been recorded as 100) for $y_1 = 1$ and for the following 45 combinations of $100p_0$ and $100p_1$:

100p _o			100p ₁		
0.5	0.1	0.15	0.2	0.25	0.3
1	0.2	0.3	0.4	0.5	0.6
2	0.4	0.6	0.8	1.0	1.2
3	0.6	0.9	1.2	1.5	1.8
4	1.2	1,6	2.0	2.4	2.8
5	1.5	2.0	2.5	3.0	3.5
7	2.8	3.5	4.2	4.9	5.6
10	4.0	5.0	6.0	7.0	8.0
15	6.0	7.5	9.0	10.5	12.0

Methods of interpolation have been discussed in section 5.

The tables may be used for $\gamma_1 + 1$ by computing $N^* = N\gamma_1$ and using the plan for N^* and $\gamma_1 = 1$.

The tables on pp.45-46 is based on the same assumption with the only modification that the risks have been computed from the Poisson distribution. For $c \le 99$ m = np₀ and M = Np₀ have been tabulated for M < 50.000 as function of c and $r = p_1/p_0$ for r = 0.10, 0.15, ..., 0.80, and for $y_1 = 1$. The optimum plan is (c,m) for M(c-1) < M < M(c).

For
$$\chi_1 + 1$$
 use $M(c, \chi_1) = M(c, 1)/\chi_1$.

The table may also be used to find approximations to the plans defined above since N = M/p $_{\rm O}$ and n $_{\rm h}$ = m $_{\rm h}/p_{\rm O}$, where

$$m_h = (m - \frac{p_o}{3})(1 - \frac{1}{3M}(1 - \frac{p_o}{2}))$$
,

 \boldsymbol{n}_h indicating the approximation to the "hypergeometric solution".

The table on p. 47 is also based on the Poisson distribution but minimizes the consumers costs

$$K(p_2) = nk_s(p_2) + (N-n)(k_a(p_2)P(p_2) + k_r(p_2)Q(p_2))$$

$$= (k_s(p_2) - k_r(p_2))(n + (N-n) \angle P(p_2) + NA_2)$$

where

$$\chi_2' = \frac{k_a(p_2) - k_r(p_2)}{k_s(p_2) - k_r(p_2)}$$
 and $\zeta_2 = \frac{k_r(p_2)}{k_s(p_2) - k_r(p_2)}$

The solution is given as a function of $r = p_2/p_0$ for r = 1.50, 1.60, 1.80, 2.00, 2.25, 2.50, 2.75, 3.0, 3.5, 4.0, 5.0, 6.5, 10.0, and for $\frac{1}{2} = 1$. It may be used in a similar way as the table discussed above.

Notice that <u>underlining</u> of a sampling plan means that <u>total inspection</u> is cheaper than sampling inspection but that the plan tabulated is the cheapest sampling plan available.

Single Sampling Tables for IQL = 0.5 % and >= 1.

100p ₁		0.1	.0		0.1	.5		0.2	10		0.2	!5		0.3	0
N	n	С	100P	n	С	100P	n	С	100P	n	С	100P	n	c	100P
30 . 50 70 100	All 47 61 75	0 0 0	- 95•4 94•1 92•8	A11 47 61 75	0 0 0	93.2 91.2 89.4	A11 47 61 75	0 0	91.0 88.5 86.1	A11 47 61 75	0 0	88.9 85.8 82.9	A11 47 61 75	0 0 0	86.8 83.3 79.8
200 300 500 700 1000	100 111 121 126 129	0 0 0	90.5 89.5 88.6 88.2 8 7. 9	100 111 121 126 129	0 0 0 0	86.1 84.7 83.4 82.8 82.4	100 111 121 126 129	0 0 0 0	81.9 80.1 78.5 77.7 77.2	100 111 121 126 129	0 0 0 0	77.9 75.7 73.9 73.0 72.4	100 111 121 126 129	0 0 0 0	74.0 71.6 69.5 68.5 67.9
2000 3000 5000 7 000 1 0000	134 328 331 332 531	0 1 1 1 2	87.5 95.7 95.6 95.6 98.3	324 328 527 529 729	1 2 2 3	91.4 91.2 95.4 95.4	324 328 527 727 729	1 1 2 3 3	86.2 85,9 91.0 94.0 94.0	324 328 527 727 928	1 1 2 3 4	80.5 80.2 85.3 88.9 91.4	324 328 724 925 1126	1 1 3 4 5	74.6 74.2 62.5 85.2 87.4
20000 30000 50000 70000 100000 200000	732 732 733 933 933 1133	3 3 4 4 5		931 932 1132 1332 1333 1733	4 4 5 6 6 8	98.6 98.6 99.2 99.6 99.6	1130 1331 1531 1732 1932 2333	5 6 7 8 9	97.2 98.1 98.7 99.1 99.4 99.7	1528 1730 2330 2531 2931 3532	7 8 11 12 14	95.9 96.7 98.4 98.7 99.2 99.6	1927 2328 3129 3530 4130 5131	9 11 15 17 20 25	93.1 94.8 97.0 97.7 98.4 99.2

Single Sampling Tables for IQL = 1 % and Y = 1.

	100p ₁		0.2			0.3			0.4			0.5			0.6	
	N	n	С	100P	n	С	100P	n	С	100P	n	c	100P	n	С	100P
	30 50 7 0 1 00	27 38 44 50	0 0 0	94.7 92.7 91.6 90.5	27 38 44 5 0	0 0 0	92.2 89.2 87.6 86.1	27 38 44 50	0 0 0	89.7 85.9 83.8 81.8	27 38 44 50	0 0 0	87.3 82.7 80.2 77.8	27 38 44 50	0 0 0	85.0 79.6 76.7 74.0
	200 300 500 700 1000	58 62 64 66 67	0 0 0	89.0 88.3 88.0 87.6 87.4	58 62 64 66 162	0 0 0 0	84.0 83.0 82.5 82.0 91.4	58 62 64 66 162	0 0 0 0	79.3 78.0 77.4 76.8 86.2	58 62 64 66 162	0 0 0 0	74.8 73.3 72.6 71.8 80.5	58 62 64 66 162	0 0 0 0	70.5 68.9 68.0 67.2 74.6
	2000 3000 5000 7000 10000	165 166 265 266 366	1 2 2 3	95.6 95.6 98.3 98.3	165 264 364 365 465	1 2 3 3 4	91.2 95.4 97.5 97.5 98.6	263 264 364 465 565	2 2 3 4 5	91.0 90.9 94.0 95.9 97.2	263 363 464 664 764	2 3 4 6 7	85.4 88.9 91.4 94.8 95.9	263 363 563 763 963	2 3 5 7 9	78.9 82.4 87.4 90.7 93.1
oway? "	20000 30000 50000 70000 100000 200000	366 466 466 566 566 667	3 4 4 5 5 6	99.3 99.7 99.7 99.9 99.9	566 666 666 766 866 966	5 6 7 8 9	99.2 99.6 99.6 99.7 99.9	765 866 966 1066 1166 1366	7 8 9 10 11	98.7 99.1 99.4 99.6 99.7 99.8	1065 1165 1466 1566 1766 2066	10 11 14 15 17 20	98.0 98.4 99.2 99.3 99.6 99.8	1364 1665 2065 2265 2566 3166	13 16 20 22 25 31	96.1 97.4 98.4 98.8 99.2 99.6

- 41 -

Single Sampling Tables for IQL = 2 % and \hat{f} = 1.

100p ₁		0.4	·		0.6	;		0.8	1		1.0)		1,2	!
N	n	С	10 0 P	n	С	100P	n	С	100P	n	С	100P	n	c	100P
30 50 7 0 100	21 25 27 29	0 0 0	91.9 90.5 89.7 89.0	21 25 27 29	0 0 0	88.1 86.0 85.0 84.0	21 25 27 29	0 0 0	84.5 81.8 80.5 79.2	21 25 27 29	0 0 0	81.0 77.8 76.2 74.7	21 25 27 29	0 0 0	77.6 73.9 72.2 70.5
200 300 500 700 1000	32 32 33 82 82	0 0 0 1 1	88.0 87.6 95.7	32 32 81 82 82	0 0 1 1	82.5 82.5 91.4 91.3 91.3	32 32 81 82 131	0 0 1 1 2	77.3 77.3 86.3 86.0 91.1	32 32 81 82 131	0 0 1 1 2	72.5 72.5 30.6 80.2 35.6	32 32 81 82 131	0 0 1 1 2	68.0 68.0 74.6 74.2 79.1
2000 3000 5000 7000 10000	132 133 133 183 183	2 2 2 3 3	98.4 98.3 98.3 99.3	132 182 232 233 283	2 3 4 4 5	95.4 97.5 98.6 98.6 99.2	1.82 232 282 332 383	3 4 5 6 7	94.1 96.0 97.3 98.1 98.7	231 282 382 432 532	4 5 7 8 10	91.6 93.4 96.0 96.8 98.0	231 331 482 582 682	4 6 9 11 13	35.3 89.3 93.1 94.8 96.1
20000 30000 50000 70000 100000 200000	233 233 283 283 283 333 383	4 5 5 6 7	99.7 99.7 99.9 99.9 100	333 383 433 433 483 533	6 7 8 8 9	99.6 99.8 99.9 99.9 100	483 533 583 633 683 783	9 10 11 12 13	99.4 99.6 99.7 99.8 99.8	683 733 883 933 1033 1183	13 14 17 18 20 23	99.0 99.2 99.6 99.7 99.8 99.9	932 1082 1283 1433 1533 1833	16 21 25 28 30 36	98.0 98.7 99.2 99.4 99.6 99.8

Single Sampling Tables for IQL = 3 % and $\frac{1}{4}$ = 1.

100p ₁		0.6			0.9			1.2			1.5			1.8	
N	n	С	100P	n	c	100P	n	С	100P	n	С	100P	n	С	100P
30 50 70 100	16 18 20 20	0 0 0	90.8 89.7 88.7 88.7	16 18 20 20	0 0 0	86.5 85.0 83.5 83.5	16 18 20 20	0 0 0	82,4 80,5 78,5 78,5	16 18 20 20	0 0 0	78.5 76.2 73.9 73.9	16 18 20 20	0 0 0	74.8 72.1 69.5 69.5
200 300 500 700 1000	22 22 54 55 55	0 0 1 1	87.6 87.6 95.8 95.7	22 22 54 55 88	0 0 1 1 2	82.0 82.0 91.5 91.2 95.4	22 22 54 87 88	0 0 1 2 2	76.7 76.7 86.3 91.3	22 22 54 87 121	0 0 1 2 3	71.7 71.7 80.6 85.7 89.0	22 22 54 87 121	0 0 1 2 3	67.1 67.1 74.6 79.3 82.5
2000 3000 5000 7000 10000	88 88 122 122 155	2 3 3 4	98.4 98.4 99.4 99.4 99.7	121 122 155 188 188	3 3 4 5 5	97.6 97.5 98.6 99.2 99.2	155 188 222 255 288	4 5 6 7 8	96.0 97.3 98.1 98.7 99.1	188 221 288 355 388	5 6 8 10 11	93.5 94.9 96.9 98.0 98.4	221 288 388 488 555	6 8 11 14 16	89.4 92.1 94.9 96.6 97.4
20000 30000 50000 70000 100000	155 189 189 222 222 255	4 5 5 6 7	99.7 99.9 99.9 100 100	255 255 289 322 355 389	7 7 8 9 10	99.8 99.8 99.9 99.9 100	355 388 422 455 489 555	10 11 12 13 14 16	99.6 99.7 99.8 99.9 99.9	488 555 622 688 722 855	14 16 18 20 21 25	99.2 99.5 99.7 99.8 99.8	722 822 955 1055 122 1322	21 24 28 31 33 39	98.7 99.1 99.5 99.6 99.7 99.7

- 42 **-**

Single Sampling Tables for IQL = 4 % and $\frac{1}{3}$ = 1.

100p ₁		1.2			1.6			2.0			2.4			2.8	
N	n	С	100P	n	c	100P	n	С	100P	n	С	100P	n	c	100P
30 50 70 100	13 14 15 16	0 0 0	85.5 84.4 83.4 82.4	13 14 15 16	0 0 0	81.1 79.8 78.5 77.3	13 14 15 16	0 0 0	76.9 75.4 73.9 72.4	13 14 15 16	0 0 0	72.9 71.2 69.5 67.8	13 14 15 16	0 0 0	69.1 67.2 65.3 63.5
200 300 500 700 1000	16 41 41 66 66	0 1 1 2 2	82.4 91.3 91.3 95.5 95.5	16 41 65 66 91	0 1 2 2 3	77.3 86.0 91.4 91.1 94.1	16 41 65 90 116	0 1 2 3 4	72.4 80.2 85.9 89.3 91.6	16 41 65 90 116	0 1 2 3 4	67.8 74.2 79.5 82.9 85.2	16 41 65 90 116	0 1 2 3 4	63.5 68.1 72.6 75.5 77.4
2000 3000 5000 7000 10000	91 116 141 141 166	3 4 5 5 6	97.6 98.7 99.3 99.3	116 141 191 216 241	4 5 7 8 9	96.1 97.3 98.8 99.1 99.4	166 191 241 291 316	6 7 9 11 12	95.0 96.1 97.6 98.5 98.8	216 266 341 416 466	8 10 13 16 18	92.2 94.2 96.2 97.5 98.1	240 340 466 566 691	9 13 18 22 27	86.1 90.0 93.1 94.9 96.4
20000 30000 50000 70000 100000 200000	191 216 241 241 266 291	7 8 9 9 10	99.8 99.9 99.9 99.9 100	266 316 341 366 391 441	10 12 13 14 15	99.6 99.8 99.9 99.9 100	391 441 516 541 591 666	15 17 20 21 23 26	99.4 99.6 99.8 99.8 99.9	591 666 766 841 916 1041	23 26 30 33 36 41	99.0 99.3 99.6 99.7 99.8 99.9	916 1066 1241 1366 1516 1766	36 42 49 54 60 70	98.1 98.7 99.2 99.4 99.6 99.8

Single Sampling Tables for IQL = 5% and $\frac{7}{3}$ = 1.

100p ₁		1.5			2.0			2.5			3.0			3.5	
N	n	С	100P	n	С	100P	n	С	100P	n	С	100P	n	С	100P
30 50 7 0 100	11 12 12 13	0 0 0	84.7 83.4 83.4 82.2	11 12 12 13	0 0 0	80.1 78.5 78.5 76.9	11 12 12 13	0 0 0	75.7 73.8 73.8 72.0	11 12 12 13	0 0 0	71.5 69.4 69.4 67.3	11 12 12 13	0 0 0	67.6 65.2 65.2 62.9
200 300 500 700 1000	32 33 52 53 73	1 1 2 2 3	91.7 91.2 95.7 95.5 97.6	32 33 52 72 73	1 1 2 3 3	86.6 85.9 91.4 94.4	32 33 52 72 93	1 1 2 3 4	81.0 80.1 85.9 89.4 91.6	32 33 72 92 112	1 1 3 4 5	75.1 74.0 83.0 85.7 87.9	32 33 52 92 132	1 2 4 6	67.9 67.8 72.6 78.0 81.9
2000 3000 5000 7000 10000	93 93 113 133 133	4 4 5 6 6	98.7 98.7 99.3 99.6 99.6	113 133 153 173 193	5 6 7 8 9	97.4 98.2 98.8 99.2 99.4	153 173 213 253 273	7 8 10 12 13	96.1 96.9 98.1 98.8 99.0	192 233 313 353 413	9 11 15 17 20	93.5 95.0 97.1 97.8 98.6	232 312 432 513 613	11 15 21 25 30	88.3 91.5 94.6 95.9 97.2
20000 30000 50000 70000 100000 200000	173 173 193 213 213 253	8 9 10 10	99.9 99.9 99.9 100 100	233 253 293 313 333 353	11 12 14 15 16 17	99.7 99.8 99.9 99.9 100 100	333 373 413 453 493 553	16 18 20 22 24 27	99.5 99.7 99.8 99.9 99.9	513 573 653 693 753 873	25 28 32 34 37 43	99.3 99.5 99.7 99.8 99.8	793 913 1053 1153 1273 1473	39 45 52 57 63 73	98.5 99.0 99.4 99.5 99.7 99.8

Single Sampling Tables for IQL = 7% and $\frac{1}{2}$ = 1.

				_											
100p ₁		2.8			3.5			4.2			4.9			5.6	
N	n	С	100P	n	С	100P	n	С	100P	n	c	100P	n	С	100P
30 50 7 0 1 00	8 9 9	0 0 0	79 • 7 77 • 4 77 • 4 77 • 4	8 9 9	0 0 0	75.2 72.6 72.6 72.6	8 9 9 9	0 0 0	70.9 68.0 68.0 68.0	8 9 9 9	0 0 0	66.9 63.6 63.6 63.6	8 9 9 9	0 0 0	63.1 59.5 59.5 59.5
200 300 500 700 1000	23 37 52 52 66	1 2 3 3 4	86.5 91.6 94.2 94.2 96.2	23 37 52 66 80	1 2 3 4 5	80.8 86.1 89.2 91.9 93.8	23 37 66 80 109	1 2 4 5 7	74.9 79.8 85.6 88.0 91.1	23 37 66 94 123	1 2 4 6 8	68.8 72.8 77.8 82.2 85.0	23 37 66 94 123	1 2 4 6 8	62.5 65.1 69.3 72.7 74.8
2000 3000 5000 7000 10000	95 109 123 138 152	6 7 8 9	98.2 98.8 99.2 99.4	123 152 180 195 223	8 10 12 13 15	97.1 98.2 98.9 99.1 99.4	166 195 252 280 323	11 13 17 19 22	95.2 96.3 97.9 98.4 99.0	209 280 366 423 495	14 19 25 29 34	90.9 93.9 96.1 97.1 97.9	252 366 523 652 795	17 25 36 45 55	82.5 87.1 91.2 93.3 95.1
20000 30000 50000 70000 100000	181 195 209 223 238 266	12 13 14 15 16 18	99.8 99.9 99.9 99.9 100	266 281 323 338 366 409	18 19 22 23 25 28	99.7 99.8 99.9 99.9 99.9	395 438 495 523 566 652	27 30 34 36 39 45	99.5 99.6 99.8 99.9 99.9	623 709 823 895 966 1109	43 49 57 62 67 77	98.9 99.3 99.6 99.7 99.8 99.9	1109 1295	77 90	97.5 98.3

Single Sampling Tables for IQL = 10 % and χ = 1.

100p ₁		4.0			5.0			6.0			7.0			8.0	
N	n	С	100P	n	С	100P	n	С	100P	n	c	100P	n	c	100P
30 50 70 100	6 6 16	0 0 0	78.3 78.3 78.3 86.7	6 6 6 16	0 0 0	73.5 73.5 73.5 81.1	6 6 6 16	0 0 0 1	69.0 69.0 69.0 75.1	6 6 16	0 0 0	64.7 64.7 64.7 88.7	6 6 6 16	0 0 0 1	60.6 60.6 60.6 82.0
200 300 500 700 1000	26 26 36 46 56	2 2 3 4 5	91.6 91.6 94.5 96.4 97.6	26 36 46 56 76	2 3 4 5 7	86.1 89.6 92.1 94.0 96.4	26 36 56 76 96	2 3 5 7 9	79.7 83.2 88.2 91.5 93.8	26 36 66 86 116	2 3 6 8 11	72.7 75.7 82.2 85.3 88.7	26 36 66 86 126	2 3 6 8 12	65.2 67.3 75.9 75.1 79.2
2000 3000 5000 7000 10000	76 86 96 106 116	7 8 9 10 11	98.9 99.2 99.5 99.6 99.8	96 116 136 146 166	9 11 13 14 16	97.8 98.6 99.2 99.3 99.6	136 166 196 216 246	13 16 19 21 24	96.6 97.8 98.5 98.9 99.3	186 236 296 336 386	18 23 29 33 38	93.7 95.7 97.3 97.9 98.6	246 326 456 556 656	24 32 45 55 65	87.0 90.2 93.7 95.4 96.6
20000 30000 50000 70000 100000 200000	136 146 156 166 176 196	13 14 15 16 17	99.9 99.9 99.9 100 100	196 216 236 246 266 296	19 21 23 24 26 29	99.8 99.9 99.9 99.9 100 100	296 326 366 386 416 476	29 32 36 38 41 47	99.6 99.7 99.8 99.9 99.9	486 536 616 666 716 816	48 53 61 66 71 81	99.3 99.5 99.7 99.8 99.9	876	87	98.3

Single Sampling Tables for IQL = 15 % and Y = 1.

100p ₁		6.0			7•5			9.0			10.	5		12.	0
N	n	С	100P	n	С	100P	n	С	100P	n	c	100P	n	c	100P
30 50 70 100	4 4 11 11	0 0 1 1	78.1 78.1 86.2 86.2	4 4 11 11	0 0 1 1	73.2 73.2 80.3 80.3	4 4 11 11	0 0 1 1	68.6 68.6 74.0 74.0	4 4 11 11	0 0 1 1	64.2 64.2 67.6 67.6	4 4 11 11	0 0 1 1	60.0 60.0 61.0
200 300 500 700 1000	17 24 31 37 44	2 3 4 5 6	92.2 94.7 96.4 97.8 98.5	24 31 37 51 57	3 4 5 7 8	89.9 92.1 94.4 96.5 97.5	24 37 51 64 77	3 5 7 9	83.5 88.9 91.6 94.1 95.8	24 37 57 77 104	3 5 8 11 15	75.9 81.3 86.1 89.4 92.3	24 37 64 91 124	3 5 9 13 18	67.1 72.0 76.6 80.1 84.2
2000 3000 5000 7000 10000	51 57 71 77 84	7 8 10 11 12	98.9 99.3 99.7 99.8 99.9	77 84 97 111 117	11 12 14 16 17	98.8 99.0 99.4 99.6 99.7	104 124 144 164 177	15 18 21 24 26	97.6 98.5 99.0 99.3 99.5	151 184 224 257 284	22 27 33 38 42	95.6 97.1 98.2 98.8 99.1	217 284 371 437 511	32 42 55 65 76	90.8 93.4 95.7 97.0 97.8
20000 30000 50000 70000 100000 200000	91 97 111 117 124 137	13 14 16 17 18 20	99.9 99.9 100 100 100	137 151 164 171 184 204	20 22 24 25 27 30	99.9 99.9 99.9 100 100	211 231 257 271 291 324	31 34 38 40 43 48	99.7 99.8 99.9 99.9 100	351 384 431 464 497 564	52 57 64 69 74 84	99.5 99.7 99.8 99.9 99.9	651	97	9 8. 9

Single Sampling Tables with Risk of 50 % for Lots of Indifference Quality B(c,m) = 0.50, $r = p_1/p_0$, $m = np_0$, $M = Np_0$, $\chi = 1$.

	r	0.80	0.75	0.70	0.65	0.60	0.55	0.50	0.45
c	m	M	M	M	М	M	М	M	M
0	0.6930	16.8	14.2	12.5	11.3	10.5	10.0	9.65	9.46
1	1.678	25.0	21.6	19.5	18.3	17.5	17.3	17.4	17.9
2	2.674	32.5	28.7	26.5	25.4	25.1	25.4	26.6	28.7
3	3.672	39.6	35.6	33.6	32.9	33.3	34.9	37.9	42.9
4	4.671	46.4	42.4	40.8	40.8	42.4	45.9	51.8	61.5
5	5.670	53.5	49.6	48.4	49.5	52.8	58 .9	69.1	86.3
6	6.669	60.3	56.7	56.4	58.8	64.4	74.1	90.6	119
7	7.669	67.5	64.3	65.0	69.1	77.6	92.2	117	163
8	8.669	74.1	71.7	73.7	80.0	92.1	113	1 50	220
9	9.668	81.5	79.8	83.3	92.3	109	139	1 92	296
10	10.67	88.7	88.0	93.3	106	128	168	243	396
11	11.67	95.6	96.1	104	120	149	203	307	527
12	12.67	103	105	115	136	174	245	386	702
13	13.67	111	114	127	153	201	294	485	932
14	14.67	119	124	140	172	232	351	607	1230
15	15.67	126	1 34	154	193	268	419	7 58	1630
16	16.67	135	144	168	215	308	500	946	2150
17	17.67	143	154	183	240	353	595	1180	28 3 0
18	18.67	151	166	200	268	405	707	1470	3720
19	19.67	15 9	177	217	297	462	838	1820	4890
20	20.67	168	189	236	330	529	995	2260	6420
22	22.67	187	215	277	405	689	1390	3470	11000
24	24.67	206	243	323	496	893	1950	5320	18900
26	26.67	226	273	376	604	1160	2720	8120	32300
28	28.67	247	306	437	733	1490	3770	12400	55000
30	30.67	269	341	505	889	1920	5240	1 8800	
35	35.67	329	445	720	1430	3580	11800	53100	
40	40.67	397	574	1020	2270	6630	26300		
45	45.67	475	733	1420	3590	12200	58400		
50	50.67	563	930	1980	5640	22300			
60	60.67	778	1470	3790	13800				
70	70.67	1060	2300	7180	33100				
80	80.67	1420	3570	13500					
90	90.67	1890	5490	25100					
99	99.67	2440	8060	43900					

	r	0.40	0.35	0.30	0.25	0.20	0.15	0.10
c	m	M	M	M	M	M	M	M
0	0.6930	9.45	9.60	9.98	10.7	11.9	14.0	18.6
1	1.678	18.9	20.6	23.4	28.1	36.6	54.0	101
2	2.674	32.2	37.8	47.1	63.9	98.2	183	490
3	3.672	51.0	64.6	88.9	137	250	594	2270
4	4.671	77.8	107	162	286	621	1880	10300
5	5.670	116	173	292	587	1520	5830	45600
6	6.669	171	276	518	1190	3670	17900	200000
7	7.669	250	438	912	2400	8800	54400	
8	8.669	361	688	1590	4790	20900		
9	9.668	520	1080	2770	9 53 0	49500		
10	10.67	7 45	1680	4810	18900	116000		
11	11.67	1060	2610	8290	37100			
12	12.67	1520	4050	14300	73000			
13	13.67	2150	6260	24500				
14	14.67	3050	9660	41900				
15	15.67	4320	14900	71700				
16	16.67	6100	22800					
17	17.67	8600	35000					
18	18.67	12100	53600					
19	19.67	17000						
20	20.67	24000						
22	22.67	47100						

- 47 -

Single Sampling Tables with Risk of 50% for Lots of Indifference Quality

-	-									•			
			B(c,m)	= 0.5	0, r =	p ₂ /p ₀ ,	m = np	o, M =	Np _o ,	$\gamma = 1.$			
	r	1.50	1.60	1.80	2.00	2.25	2.50	2.75	3.0	3.5	4.0	5.0	
c	m	M	M	M	M	M	M	M	M	M.	M	M	
0	0.6930	10.8	10.1	9.38	9.20	9.3 9	9.90	10.7	11.7	14.7	19.1	34.4	
1	1.678	17.8	17.2	17.3	18.4	21.1	25.2	31.3	39.8	69.3	129	508	
2	2.674	25.0	25.0	27.0	31.2	40.0	54.7	78.5	117	289	778	6700	
3	3.672	32.8	33.8	39.1	49.0	71.1	112	187	329	1150	4470	84000	
4	4.671	41.3	43.9	54.5	74.4	122	221	432	897	.4440	2 5000		
5	5.670	50.6	55.4	73.8	110	206	430	983	2410	16900	137000		
6	6.669	60.9	68.8	98.5	161	342	828	2210	6380	63300			
7	7.669	72.2	84.0	130	232	564	1580	4930	16800				
8	8.669	85.0	102	170	333	924	3000	10900	43800				
9	9.668	98.8	122	220	474	1500	5650	24100	113000				
10	10.67	114	146	285	673	2440	10600	52800					
11	11.67	132	174	367	953	3950	19900						
12	12.67	151	206	469	134 0	6370	37000						
13	13.67	172	243	600	1890	10200	68800						
14	14.67	196	285	766	2660	16400							
15	15.67	222	335	976	3720	26300							
16	16.67	252	392	1240	5210	42100							
17	17.67	285	459	1580	7280	67100							
18	18.67	321	536	2000	10200								
19	19.67	362	626	2 540	14200								
20	20.67	407	727	3200	19700								
22	22.67	512	984	512 0	38000								
24	24.67	644	1330	8140									
26	26.67	806	1780	12900									
28	28.67	1010	2390	20500									
30	30.67	1250	3200	32 3 00								10.0	
35	35.67	2150	6580							r	6.5	10.0	
40	40.67	3670	13400						c	m	M	M	
45	45.67	6220	27200						0	0.6930		1010	
50	50.67	10500	54800						1	1.678		1090000	
60	60.67	29500							2	2.674	213000		

Single sampling tables with producers risk of 5 % and minimum consumers costs.

The tables on pp. 50 - 59 are based on a hypergeometric producers risk of 5 %, i.e. $P(p_1) = 0.95$, a binomial consumers risk, $P(p_2)$, and minimum consumers costs

$$K(p_2) = nk_s(p_2) + (N-n)(k_a(p_2)P(p_2) + k_r(p_2)Q(p_2))$$

$$= (k_s(p_2) - k_r(p_2))(n + (N-n)\gamma_2P(p_2) + N\delta_2)$$

where

$$\chi_2 = \frac{k_a(p_2) - k_r(p_2)}{k_s(p_2) - k_r(p_2)}$$
 and $\xi = \frac{k_r(p_2)}{k_s(p_2) - k_r(p_2)}$

The tables give corresponding values of N, n, c, and $100P(p_2)$ for $\frac{y}{2} = 2$ and 10, and for the following 50 combinations of $100p_1$ and $100p_2$:

100p ₁			100p ₂		
0.1	0.2	0.3	0.4	0.6	1.0
0.2	0.4	0.6	0.8	1.2	2.0
0.5	1.0	1.5	2.0	3.0	5.0
1.0	2.0	2.5	3.0	4.0	6.0
2.0	4.0	5.0	6.0	8.0	12.0
3.0	5.0	6.0	7.5	9.0	12.0
4.0	6.0	7.0	8.0	10.0	12.0
5.0	7.5	8.5	10.0	12.5	15.0
7.0	10.5	12.0	14.0	17.5	21.0
10.0	15.0	17.0	20.0	25.0	30.0

Methods of interpolation have been discussed in sections 5 and 7. The tables may be used for $\frac{1}{2} \neq 2$ and $\frac{1}{2} \neq 10$ in the following way: For $\frac{1}{2} < 5$ compute $N^* = N \frac{1}{2}/2$ and use the plan for N^* and $\frac{1}{2} = 2$.

For $5 \le \frac{1}{2} \le 20$ compute $N^* = N \frac{1}{2}/10$ and use the plan for N^* and $\frac{1}{2} = 10$.

The tables on pp. 60 - 61 are based on the same assumptions with the only modification that the consumers and the producers risk have been computed from the Poisson distribution. For $c \le 99$ m = np₁ and M = Np₁ have been tabulated for M < 50.000 as function of c and $r = p_2/p_1$ for r = 1.50, 1.60, 1.80, 2.00, 2.25, 2.50, 2.75, 3.0, 3.5, 4.0, 5.0, 6.5, 10.0, and for χ_2 = 2 and 10. The optimum plan is (c,m) for M(c-1) < M < M(c).

The tables may be used for $\gamma_2 \neq 2$ and $\gamma_2 \neq 10$ in the following way: For $\gamma_2 < 5$ M(c, γ_2) = M(c,2) $2/\gamma_2$ and for $5 \leq \gamma_2 \leq 20$ M(c, γ_2) = M(c,10)10/ γ_2 .

The tables may also be used to find approximations to the plans defined above since N = M/p_1 and n_h = m_h/p_1 , where

$$m_{h} = \left\{ m - \frac{m - c}{2} p_{1} \right\} \left\{ 1 - \frac{m - c}{2(M - 0.6c)} \left\{ 1 - \frac{p_{1}}{2} \right\} \frac{m + c + \frac{1}{M - c + 0.2}}{m + c + 1} \right\}$$

 \boldsymbol{n}_{h} indicating the approximation to the "hypergeometric solution".

Notice that <u>underlining</u> of a sampling plan means that <u>total inspection</u> is cheaper than sampling inspection but that the plan tabulated is the cheapest sampling plan available.

Single Sampling Tables for AQL = 0.1 % and $\frac{1}{2}$ = 2.

100p ₂		1.0	ı		0.6			0.4			0.3			0.2	
И	n	c	100P	n	c	100P	n	С	100P	n	c	100P	n	c	100P
30 50 70 100	25 32 37 40	0 0 0	7 7. 8 72.5 68.9 66.9	25 32 37 40	0 0 0	86.0 92.5 80.0 78.6	25 32 37 40	0 0 0	90.5 88.0 86.2 85.2	25 32 37 40	0 0 0	92.8 90.8 89.5 88.7	25 32 37 40	0 0 0	95.1 93.8 92.9 92.3
200 300 500 700 1000	45 47 49 49 50	0 0 0 0	63.6 62.4 61.1 61.1	45 47 49 49 50	0 0 0 0	76.3 75.4 74.5 74.5 74.0	45 47 49 49 50	0 0 0 0	83.5 82.8 82.2 82.2 81.8	45 47 49 49 50	0 0 0 0	87.4 86.8 86.3 86.3	45 47 49 49 50	0 0 0 0	91.4 91.0 90.7 90.7 90.5
2000 3000 5000 7000 10000	448 406 947 902 873	1 2 2 2	6.1 8.6 0.4 0.6 0.8	448 1106 947 1578 1501	1 2 2 3 3	25.0 3.9 7.7 1.5 2.1	448 1106 1714 2390 2225	1 2 3 4 4	46.5 18.2 8.9 3.8 5.8	448 1106 2747 3356 3935	1 2 4 5 6	61.1 35.5 8.6 6.4 5.1	448 1106 2747 4564 6060	1 2 4 6 8	77.4 61.9 35.8 19.5 14.7
70000 L00000	844 835 1390 1383 1378 1373	2 2 3 3 3 3	0.9 1.0 0.0 0.1 0.1	2083 2043 2013 2660 2646 2630	4 4 4 5 5 5	0.5 0.6 0.7 0.1 0.1	2792 3451 4111 4072 4777 5477	5 6 7 8 9	3.4 1.6 0.8 0.8 0.4 0.2	4343 5801 6430 7142 7866 8565	7 9 10 11 12 13	5.3 2.1 1.6 1.0 0.7 0.4	8841 11101 13256 15634 18019 21146	12 15 18 21 24 28	10.4 7.1 5.3 3.4 2.2 1.3

Single Sampling Tables for AQL = 0.2 % and $\frac{1}{2}$ = 2.

100p ₂		2.0			1.2			0.8			0.6			0.4	
N 30 50 70 100	n 18 20 22 23	0 0 0 0	100P 69.5 66.8 64.1 62.8	n 18 20 22 23	° 0 0 0 0	100P 80.5 78.5 76.7 75.8	n 18 20 22 23	° 0 0 0	100P 86.5 85.2 83.8 83.1	n 18 20 22 23	° 0 0 0 0	100P 89.7 88.7 87.6 87.1	n 18 20 22 23	0 0 0 0	100P 93.0 92.3 91.6 91.2
200 300 500 700 1000	24 25 25 270 224	0 0 0 1	61.6 60.3 60.3 2.8 6.0	24 25 25 270 224	0 0 0 1 1	74.8 73.9 73.9 16.4 24.9	24 25 25 270 224	0 0 0 1 1	82.5 81.8 81.8 36.3 46.4	24 25 25 270 224	0 0 0 1 1	86.6 86.0 86.0 51.8 61.1	24 25 25 270 224	0 0 0 1 1	90.8 90.5 90.5 70.6 77.4
2000 3000 5000 7000 10000	498 460 437 428 422	2 2 2 2 2	0.3 0.5 0.7 0.8 0.9	498 815 751 729 1042	2 3 3 4	6.2 1.2 2.1 2.5 0.5	947 815 1113 1444 1397	3 4 5 5	5.6 11.0 5.8 2.6 3.3	947 1256 1519 1846 21 7 2	3 4 5 6 7	18.1 12.9 10.8 7.5 5.3	947 1822 3030 3742 4421	3 5 8 10 12	47.6 26.5 14.7 12.0 10.3
20000 30000 50000 70000 00000	699 694 690 688 687 685	3 3 3 3 3	0.0 0.0 0.1 0.1 0.1	1012 1335 1324 1319 1316 1650	4 5 5 5 5 5 6	0.7 0.1 0.1 0.1 0.2 0.0	2074 2045 2389 2378 2739 3101	7 7 8 8 9 1 0	0.7 0.8 0.4 0.4 0.2 0.1	2849 3192 3934 4305 4284 5052	9 10 12 13 13	2.5 1.7 0.7 0.4 0.4 0.2	6295 7440 9011 9786 10575 12638	17 20 24 26 28 33	5.6 3.8 2.2 1.7 1.3 0.6

Single Sampling Tables for AQL = 0.5 % and δ = 2.

100p ₂		5.0)		3.0			2.0			1.5			1.0)
N	n	С	100P	n	С	100P	n	С	100P	n	С	100P	n	С	100P
30 50 70 100	9 10 10	0 0 0	63.0 63.0 59.9 59.9	9 10 10	0 0 0	76.0 76.0 73.7 73.7	9 9 10 10	0 0	83.4 83.4 81.7 81.7	9 10 10	0 0 0	87.3 87.3 86.0 86.0	9 10 10	0 0 0	91.4 91.4 90.4 90.4
200 300 500 700 1000	10 103 85 80 190	0 1 1 1 2	59.9 3.3 7.0 8.6 0.4	10 103 251 208 190	0 1 2 2 2	73.7 18.2 1.9 5.0 7.4	10 103 251 208 343	0 1 2 2 3	81.7 38.7 12.0 21.3 8.7	10 103 251 421 550	0 1 2 3 4	86.0 54.2 27.2 12.3 8.5	10 103 251 421 550	0 1 2 3 4	90.4 72.5 54.1 39.2 35.6
2000 3000 5000 7000 10000	175 171 168 281 279	2 2 2 3 3	0.7 0.8 0.9 0.0	301 291 412 407 403	3 3 4 4 4	1.9 2.4 0.5 0.6 0.7	446 574 699 686 823	4 5 6 6 7	5.6 2.7 1.4 1.6 0.7	608 901 1013 1149 1287	5 7 8 9	10.7 4.0 3.3 2.2 1.5	1213 1469 1895 2368 2653	8 10 13 16 18	14.5 13.3 9.9 6.3 5.2
20000 30000 50000 70000 100000	276 276 275 275 275 275 395	3 3 3 3 4	0.0 0.0 0.0 0.0	530 528 526 661 660 659	5 5 5 6 6	0.1 0.1 0.0 0.0 0.0	957 951 1095 1092 1240 1390	8 8 9 9 10	0.3 0.4 0.1 0.2 0.1	1575 1722 1870 1864 2020 2175	12 13 14 14 15 16	0.6 0.4 0.3 0.3 0.2 0.1	3430 3909 4563 4890 5221 5895	23 26 30 32 34 38	2.6 1.7 0.9 0.6 0.5 0.2

Single Sampling Tables for AQL = 1 % and δ = 2.

100p ₂		6.0			4.0			3.0			2.5			2.0	
N	n	С	100P	n	c	100P	n	С	100P	n	С	100P	n	С	100P
30 50 70 100	5 5 5 5 5	0 0 0	73.4 73.4 73.4 73.4	5 5 5 5	0 0 0	81.5 81.5 81.5 81.5	<u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u>	0 0 0	85.9 85.9 85.9	<u>5</u> 5555	0 0 0	88.1 88.1 88.1	5 5 5 5 5	0 0 0	90.4 90.4 90.4 90.4
200 300 500 700 1000	45 111 95 159 151	1 2 2 3 3	23.9 3.4 7.1 1.2 1.8	45 111 172 240 223	1 2 3 4 4	45.8 17.5 8.4 3.5 5.4	45 111 276 240 305	1 2 4 4 5	60.7 34.9 8.1 15.1 10.3	45 111 276 337 395	1 2 4 5 6	68.9 47.3 17.9 15.2 13.5	45 111 276 457 607	1 2 4 6 8	77.3 61.7 35.2 19.2 14.3
2000 3000 5000 7000 10000	209 205 202 267 266	4 4 5 5	0.4 0.5 0.6 0.1	280 346 412 409 479	5 6 7 7 8	3.1 1.4 0.7 0.7 0.3	436 582 645 716 789	7 9 10 11 12	4.9 1.9 1.4 0.9 0.6	606 750 892 961 1116	9 11 13 14 16	6.3 3.7 2.3 1.8 1.0	886 1112 1328 1566 1717	12 15 18 21 23	10.0 6.8 5.1 3.2 2.6
20000 30000 50000 70000 00000	264 264 331 331 330 400	5 5 6 6 7	0.1 0.1 0.0 0.0 0.0	549 548 621 621 620 695	9 9 10 10 10	0.1 0.1 0.1 0.1 0.1	859 934 1011 1090 1089 1249	13 14 15 16 16 18	0.4 0.2 0.1 0.1 0.1	1265 1341 1502 1582 1664 1828	18 19 21 22 23 25	0.6 0.4 0.2 0.2 0.1 0.1	2118 2365 2613 2780 2950 3293	28 31 34 36 38 42	1.2 0.7 0.4 0.3 0.2 0.1

- 52 -

Single Sampling Tables for AQL = 2 % and χ = 2.

100p ₂		12.	0	1	8.0			6.0			5.0			4.0)
N 30 50 7 0 100	n <u>2</u> 27 23	0 0 1 1	100P 77.4 77.4 14.8 21.9	n 2 27 23	0 0 1 1	100P 84.6 84.6 35.2 44.1	n 2 27 23	0 0 1 1	100P 88.4 88.4 51.2 59.5	n 2 27 23	0 0 1 1	100P 90,2 90,2 60,6 67,9	n 2 27 23	0 0 1 1	100P 92.2 92.2 70.6 76.6
200 300 500 700 1000	50 47 76 74 72	2 2 3 3 3	5.1 6.8 1.5 1.8 2.1	95 82 112 145 141	3 4 5 5	4.9 9.8 4.9 2.2 2.7	95 126 153 186 219	3 4 5 6 7	17.1 12.0 9.8 6.6 4.5	95 183 198 2 7 5 304	3 5 6 8 9	29.5 10.1 13.0 6.5 5.9	95 183 304 324 444	3 5 8 9 12	47.0 25.6 14.0 16.3 9.6
2000 3000 5000 7000 10000	102 101 133 133 133	4 5 5 5	0.4 0.5 0.1 0.1	172 206 240 239 238	6 7 8 8 8	1.3 0.6 0.3 0.3	286 321 356 393 430	9 10 11 12 13	2.1 1.4 0.9 0.6 0.3	410 443 517 555 634	12 13 15 16 18	2.8 2.3 1.3 1.0 0.5	632 702 860 938 1061	17 19 23 25 28	5.1 4.3 2.4 1.8 1.1
20000 30000 50000 70000 L00000	132 166 166 166 166 201	5 6 6 6 7	0.1 0.0 0.0 0.0 0.0	274 311 311 349 349 387	9 10 10 11 11	0.1 0.0 0.0 0.0 0.0	467 506 546 586 585 666	14 15 16 17 17	0.2 0.1 0.1 0.0 0.0	712 752 833 874 916 957	20 21 23 24 25 26	0.3 0.2 0.1 0.1 0.0 0.0	1224 1350 1433 1519 1605 1 77 9	32 35 37 39 41 45	0.6 0.3 0.2 0.2 0.1 0.0

Single Sampling Tables for AQL = 3 % and $\frac{7}{8}$ = 2.

100p ₂		12.	0		9.0			7.5			6.0			5.0	
N 30 50 70 100	n 18 56 37	0 1 2 2	100P 77.4 34.6 2.9 16.3	n <u>2</u> 18 56 37	0 1 2 2	100P 82.8 50.9 11.0 34.1	n <u>2</u> 18 56 37	0 1 2 2	100P 85.6 60.4 19.9 46.8	n <u>2</u> 18 56 37	0 1 2 2	100P 88.4 70.6 33.9 61.6	n <u>2</u> 18 56 37	0 1 2 2	100P 90.2 77.4 46.5 7 1.8
200 300 500 700 1000	55 7 6 97 94 116	3 4 5 5 6	9.1 4.1 1.9 2.5 1.1	85 105 123 145 168	4 5 6 7 8	11.0 8.1 6.7 4.5 2.9	122 136 181 202 251	5 6 8 9 11	9.8 10.9 6.9 5.8 3.3	122 172 246 294 341	5 7 10 12 14	25.3 18.4 12.3 9.9 8.2	122 216 320 396 503	5 8 12 15 19	42.5 24.4 18.6 16.0 12.1
2000 3000 5000 7 000 10000	138 13 7 160 159 184	7 7 8 8 9	0.5 0.5 0.2 0.2	215 238 262 288 313	10 11 12 13 14	1.2 0.8 0.5 0.3 0.2	296 347 370 423 449	13 15 16 18 19	2.1 1.1 0.9 0.5 0.3	469 547 654 708 762	19 22 26 28 30	4.1 2.6 1.4 1.0 0.7	714 849 1043 1184 1296	27 32 39 44 48	7.5 5.4 3.2 2.1 1.6
20000 30000 50000 70000 00000	183 208 208 233 233 259	9 10 10 11 11	0.1 0.0 0.0 0.0 0.0	338 365 364 391 418 445	15 16 16 17 18 19	0.1 0.1 0.0 0.0 0.0	502 529 556 584 611 667	21 22 23 24 25 27	0.2 0.1 0.1 0.1 0.0 0.0	872 928 1014 1071 1129 1217	34 36 39 41 43 46	0.4 0.3 0.1 0.1 0.1	1555 1671 1848 1936 2056 2266	57 61 67 70 74 81	0.7 0.5 0.3 0.2 0.1

Single Sampling Tables for AQL = 4% and 1/2 = 2.

100p ₂		12.	0	-	10.	0		8.0	1		7.0			6.0	
N 30 50 70 100	n 16 12 29 48	c 1 1 2 3	100P 41.2 56.9 30.7 15.7	n 16 12 29 48	c 1 1 2 3	100P 51.5 65.9 43.5 28.0	n 16 12 29 48	c 1 1 2	100P 63.0 75.1 58.7 45.8	n 16 12 29 48	c 1 1 2 3	100P 69.0 79.7 66.8 56.4	n 16 12 29 48	c 1 1 2 3	100P 75.1 84.0 74.9 67.5
200 300 500 700 1000	81 96 110 127 144	5 6 7 8 9	6.6 4.9 3.9 2.6 1.7	81 119 153 169 206	5 7 9 10 12	16.8 8.3 5.2 4.3 2.4	107 143 223 258 294	6 8 12 14 16	23.9 18.4 8.8 7.4 6.0	139 170 248 331 387	7 9 13 17 20	23.6 24.2 16.9 10.7 9.0	139 235 330 409 536	7 11 16 20 26	40,1 24.4 22.6 20.3 15.1
2000 3000 5000 7000 10000	180 178 197 216 235	11 11 12 13 14	0.7 0.7 0.4 0.3 0.1	241 280 298 317 337	14 16 17 18 19	1.5 0.7 0.6 0.4 0.3	391 451 510 551 592	21 24 27 29 31	2.9 1.8 1.2 0.8 0.6	549 629 732 816 879	28 32 37 41 44	4.4 3.1 2.0 1.3 1.0	785 979 1215 1367 1519	38 47 58 65 72	9.5 6.2 3.8 2.7 1.9
20000 30000 50000 70000 100000 200000	254 274 294 294 314 334	15 16 17 17 18 19	0.1 0.0 0.0 0.0 0.0	377 397 439 459 459 501	21 22 24 25 25 27	0.1 0.1 0.0 0.0 0.0	676 718 783 826 848 936	35 37 40 42 43 47	0.3 0.2 0.1 0.1 0.1	1030 1095 1205 1249 1316 1451	51 54 59 61 64 70	0.4 0.3 0.2 0.1 0.1	1829 2008	86 94	0.9

Single Sampling Tables for AQL = 5 % and Y = 2.

100p ₂			0		12.	5		10.	0		8.5			7.5	
N	n	c	100P	n	c	100P	n	c	100P	n	c	100P	n	С	100P
30 50 70 100	11 26 43 56	1 2 3 4	49.2 23.0 9.6 6.3	11 26 43 56	1 2 3 4	59.2 35.2 19.8 15.5	11 26 43 56	1 2 3 4	69.7 51.1 36.5 32.9	11 26 43 56	1 2 3 4	76.1 61.8 49.7 47.7	11 26 43 56	1 2 3 4	80.3 69.1 59.5 58.8
200 300 500 700 1000	62 74 103 100 114	5 6 8 8 9	8.1 5.9 2.1 2.7	80 109 137 150 163	6 8 10 11 12	11.4 6.2 3.7 3.0 2.5	100 148 191 220 268	7 10 13 15 18	20.6 11.6 8.3 6.7 4.0	122 170 250 296 360	8 11 16 19 23	28.2 21.2 13.9 11.6 8.6	149 218 314 397 477	9 13 19 24 29	31.3 23.7 19.5 15.7 13.6
2000 3000 5000 7000 10000	143 158 173 173 188	11 12 13 13	0.6 0.4 0.2 0.2 0.1	208 223 254 270 286	15 16 18 19 20	1.0 0.7 0.4 0.3 0.2	328 376 425 458 491	22 25 28 30 32	2.4 1.5 0.9 0.6 0.4	508 591 692 742 810	32 37 43 46 50	4.0 2.6 1.5 1.2 0.8	715 851 1041 1163 1286	43 51 62 69 76	7.2 5.1 3.0 2.1 1.5
20000 30000 50000 70000 00000	204 220 236 236 252 268	15 16 17 17 18 19	0.1 0.0 0.0 0.0 0.0	319 335 351 368 385 402	22 23 24 25 26 27	0.1 0.1 0.0 0.0 0.0	558 593 645 662 697 749	36 38 41 42 44 47	0.2 0.1 0.1 0.1 0.0 0.0	932 1002 1091 1145 1199 1307	57 61 66 69 72 78	0.4 0.3 0.1 0.1 0.1	1517 1643	89 96	0.7

- 54 -

Single Sampling Tables for AQL = 7% and $\frac{1}{2}$ = 2.

100p ₂	21.0				17.	5		14.	0		12.	0		10.	5
N 30 50 70 100	n 25 31 25 35	c 2 3 3 4	100P 8.0 8.5 19.9 11.4	n 25 31 41 49	2 3 4 5	100P 16.1 18.4 13.3 12.0	n 25 31 41 66	c 2 3 4 6	100P 30.0 35.2 30.2 16.6	n 25 31 41 66	c 2 3 4 6	100P 40.9 48.0 44.4 30.8	n 25 31 41 66	c 2 3 4 6	100P 50.4 58.7 56.6 45.2
200 300 500 700 1000	54 63 72 82 93	6 7 8 9 10	4.6 3.2 2.2 1.4 0.7	66 87 108 117 127	7 9 11 12 13	8.9 4.7 2.5 2.1 1.6	94 127 158 179 213	9 12 15 17 20	13.6 8.4 5.9 4.6 2.8	124 156 212 258 304	11 14 19 23 27	17.6 14.8 10.1 7.2 5.2	142 187 269 342 413	12 16 23 29 35	26.1 23.1 17.3 12.7 10.1
2000 3000 5000 7000 10000	102 113 124 124 135	11 12 13 13 14	0.5 0.3 0.2 0.2 0.1	149 171 182 193 205	15 17 18 19 20	0.8 0.4 0.3 0.2 0.1	258 280 316 339 363	24 26 29 31 33	1.5 1.1 0.6 0.4 0.3	385 445 505 555 591	34 39 44 48 51	2.9 1.8 1.1 0.7 0.5	584 682 819 894 983	49 57 68 74 81	5.2 3.6 2.0 1.5 1.0
20000 30000 50000 70000 00000	146 158 169 169 181 192	15 16 17 17 18 19	0.0 0.0 0.0 0.0	228 240 252 264 276 288	22 23 24 25 26 27	0.1 0.0 0.0 0.0 0.0	412 437 461 474 499 537	37 39 41 42 44 47	0.1 0.1 0.0 0.0 0.0	666 717 768 806 845 909	57 61 65 68 71 76	0.3 0.2 0.1 0.1 0.0	1136	93	0.5

Single Sampling Tables for AQL = 10 % and χ = 2.

100p ₂		30.	0		25.0			20.	0		17.	0		15.	0
N 30 50 70 100	n 12 18 25 32	c 2 3 4 5	100P 25.3 16.5 9.0 5.1	n 12 28 35 41	c 2 4 5 6	100P 39.1 13.5 9.8 8.3	n 12 28 47 51	c 2 4 6 7	100P 55.8 31.5 14.4 17.3	n 12 28 47 62	c 2 4 6 8	100P 66.6 47.1 29.2 25.2	n <u>12</u> <u>28</u> 47 75	c 2 4 6	100P 73.6 58.7 43.0 29.5
200 300 500 700 1000	45 44 58 58 65	7 7 9 9	2.1 2.6 0.9 0.9	53 68 74 82 97	8 10 11 12 14	6.1 2.9 2.5 1.7 0.8	81 104 126 141 157	11 14 17 19 21	9.2 5.6 3.9 2.9 2.0	100 132 181 205 238	13 17 23 26 30	17.7 12.4 7.1 5.6 3.9	133 173 240 290 340	16 21 29 35 41	20.3 17.2 11.8 9.1 7.2
2000 3000 5000 7000 20000	72 80 87 87 95	11 12 13 13	0.3 0.2 0.1 0.1	112 120 128 136 144	16 17 18 19 20	0.4 0.3 0.2 0.1 0.1	189 205 230 247 255	25 27 30 32 33	1.0 0.7 0.4 0.2 0.2	304 338 381 407 442	38 42 47 50 54	1.9 1.3 0.7 0.5 0.3	461 531 609 662 716	55 63 72 78 84	3.5 2.2 1.4 1.0 0.7
20000 30000 30000 70000 00000	103 103 111 111 119 127	15 15 16 16 17 18	0.0 0.0 0.0 0.0 0.0	152 161 169 177 186 194	21 22 23 24 25 26	0.1 0.0 0.0 0.0 0.0	290 298 324 333 351 368	37 38 41 42 44 46	0.1 0.1 0.0 0.0 0.0	495 521 557 584 611 657	60 63 67 70 73 78	0.2 0.1 0.1 0.0 0.0	824	96	0.3

Single Sampling Tables for AQL = 0.1 % and $\frac{1}{3}$ = 10.

100p ₂					0.6			0.4			0.3			0.2	
N	n	С	100P	n	c	100P	n	С	100P	n	С	100P	n	c	100P
30 50 70 100	25 32 37 40	0 0 0	77.8 72.5 68.9 66.9	25 32 37 40	0 0 0	86.0 82.5 80.0 78.6	25 32 37 40	0 0 0	90.5 88.0 86.2 85.2	25 32 37 40	0 0 0	92.8 90.8 89.5 88.7	25 32 37 40	0 0 0	95.1 93.8 92.9 92.3
200 300 500 700 1000	45 47 49 49 50	0 0 0 0	63.6 62.4 61.1 61.1	45 47 49 49 50	0 0 0 0	76.3 75.4 74.5 74.5 74.0	45 47 49 49 50	0 0 0 0	83.5 82.8 82.2 82.2 81.8	45 47 49 49 50	0 0 0 0	87.4 86.8 86.3 86.3	45 47 49 49 50	0 0 0	91.4 91.0 90.7 90.7 90.5
2000 3000 5000 7000 10000	448 1106 947 902 1501	1 2 2 2 3	6.1 0.1 0.4 0.6 0.0	448 1106 1714 1578 2225	1 2 3 3 4	25.0 3.9 0.8 1.5 0.3	448 1106 2747 3356 3935	1 2 4 5 6	46.5 18.2 1.5 0.8 0.5	448 1106 2747 4564 4932	1 2 4 6 7	61.1 35.5 8.6 1.7 2.0	448 1106 2747 4564 7413	1 2 4 6 9	77.4 61.9 35.8 19.5 7.5
20000 30000 50000 70000 00000	1428 1406 1390 1383 1378 1981	3 3 3 3 4	0.0 0.0 0.0 0.1 0.1	2792 2727 2680 3353 3333 3309	5 5 5 6 6 6	0.1 0.1 0.1 0.0 0.0	4343 4991 5638 5574 6294 6231	7 8 9 9 10	0.4 0.2 0.1 0.1 0.1	6940 7488 8897 9591 10304 10979	10 11 13 14 15 16	0.7 0.6 0.3 0.2 0.1 0.1	13128 16050 19773 22023 24317 28219	16 20 25 28 31 36	2.2 1.5 0.9 0.7 0.5 0.2

Single Sampling Tables for AQL = 0.2 % and Y = 10.

100p ₂		2.0		***	1.2			0.8			0.6			0.4	
N 30 50 70 100	n 18 20 22 23	° 0 0 0 0	100P 69.5 66.8 64.1 62.8	n 18 20 22 23	c 0 0 0	100P 80.5 78.5 76.7 75.8	n 18 20 22 23	c 0 0 0	100P 86.5 85.2 83.8 83.1	n 18 20 22 23	° 0 0 0 0	100P 89.7 88.7 87.6 87.1	n 18 20 22 23	0 0 0 0	100P 93.0 92.3 91.6 91.2
200 300 500 700 1 000	24 25 25 270 224	0 0 0 1 1	61.6 60.3 60.3 2.8 6.0	24 25 25 270 224	0 0 0 1 1	74.8 73.9 73.9 16.4 24.9	24 25 25 270 224	0 0 0 1 1	82.5 81.8 81.8 36.3 46.4	24 25 25 270 224	0 0 0 1 1	86.6 86.0 86.0 51.8 61.1	24 25 25 270 224	0 0 0 1 1	90.8 90.5 90.5 70.6 77.4
2000 3000 5000 7000	498 460 751 729 714	2 3 3 3	0.3 0.5 0.0 0.0	947 815 1113 1070 1397	3 4 4 5	0.4 1.2 0.3 0.4 0.1	947 1256 1968 1846 2172	3 4 6 6 7	5.6 2.8 0.5 0.9 0.4	947 1822 2467 2734 3471	3 5 7 8 10	18.1 3.9 2.0 1.7 0.7	947 1822 3707 4924 6565	3 5 9 12 16	47.6 26.5 7.5 4.4 2.2
20000 30000 30000 70000 30000	699 694 690 993 991 989	3 3 4 4 4	0.0 0.0 0.1 0.0 0.0	1349 1335 1667 1660 1655 1999	5 5 6 6 7	0.1 0.1 0.0 0.0 0.0	2456 2801 3148 3130 3117 3482	8 9 10 10 10	0.3 0.1 0.1 0.1 0.1	4085 4410 5153 5113 5491 6268	12 13 15 15 16 18	0.4 0.3 0.1 0.1 0.1	8665 10198 12160 12900 14111 16161	22 26 31 33 36 41	1.5 0.9 0.5 0.4 0.2 0.1

- 56 -

Single Sampling Tables for AQL = 0.5% and $\frac{1}{2}$ = 10.

100p ₂					3.0			2.0			1.5			1.0	
N	n	С	100P	n	С	100P	n	c	100P	n	c	100P	n	c	100P
30 50 70 100	9 10 10	0000	63.0 63.0 59.9 59.9	9 10 10	0 0 0	76.0 76.0 73.7 73.7	9 10 10	0 0 0	83.4 83.4 81.7 81.7	9 10 10	0 0 0	87.3 87.3 86.0 86.0	9 10 10	0 0 0	91.4 91.4 90.4 90.4
200 300 500 700 1000	10 103 251 208 190	0 1 2 2 2	59.9 3.3 0.0 0.2 0.4	10 103 251 421 343	0 1 2 3 3	73.7 18.2 1.9 0.1 0.8	10 103 251 421 550	0 1 2 3 4	81.7 38.7 12.0 3.1 1.4	10 103 251 421 550	0 1 2 3 4	86.0 54.2 27.2 12.3 8.5	10 103 251 421 550	0 1 2 3 4	90.4 72.5 54.1 39.2 35.6
2000 3000 5000 7000 10000	175 291 284 281 279	2 3 3 3	0.7 0.0 0.0 0.0	446 426 551 543 537	4 4 5 5 5	0.3 0.4 0.1 0.1	788 732 853 990 1129	6 6 7 8 9	0.4 0.9 0.5 0.2 0.1	987 1269 1351 1651 1781	7 9 10 12 13	1.9 0.8 0.9 0.3 0.2	1483 2163 2904 3332 3765	9 13 18 21 24	7.5 3.2 1.9 1.5
20000 30000 50000 70000 100000 200000	276 398 397 396 396 395	3 4 4 4 4	0.0 0.0 0.0 0.0 0.0	668 664 662 801 800 799	6 6 7 7 7	0.0 0.0 0.0 0.0	1107 1252 1398 1395 1393 1543	9 10 11 11 11	0.1 0.1 0.0 0.0 0.0	1898 2044 2355 2348 2505 2661	14 15 17 17 18 19	0.2 0.1 0.0 0.0 0.0	4866 5331 5977 6300 6629 7304	31 34 38 40 42 46	0.4 0.3 0.2 0.1 0.1

Single Sampling Tables for AQL = 1 % and $\chi = 10$.

100p ₂		6.0			4.0			3.0			2.5			2.0	
N	n	С	1001	n	С	100P	n	С	100P	n	С	100P	n	С	100P
30 50 70 100	<u>5</u> 5555	0 0 0	73.4 73.4 73.4 73.4	<u>5</u> 5555	0 0 0	81.5 81.5 81.5 81.5	<u>5</u> 5 5 5	0 0 0	85.9 85.9 85.9	<u> 5555</u>	0 0 0	88.1 88.1 88.1	5 5 5 5 5	0 0 0	90.4 90.4 90.4 90.4
200 300 500 700 1000	45 111 172 159 223	1 2 3 4	23.9 3.4 0.7 1.2 0.2	45 111 276 337 305	1 2 4 5 5	45.8 17.5 1.3 0.7 1.6	45 111 276 457 494	1 2 4 6 7	60.7 34.9 8.1 1.6 1.9	45 111 276 457 607	1 2 4 6 8	68.9 47.3 17.9 6.0 3.3	45 111 276 457 742	1 2 4 6 9	77.3 61.7 35.2 19.2 7.3
2000 3000 5000 7000 10000	209 274 269 267 334	4 5 5 5 6	0.4 0.1 0.1 0.1	436 501 488 559 554	7 8 8 9	0.4 0.2 0.2 0.1 0.1	696 750 892 878 950	10 11 13 13 14	0.6 0.5 0.2 0.3 0.2	886 1019 1238 1302 1455	12 14 17 18 20	1.3 0.9 0.4 0.4 0.2	1314 1607 1884 2112 2344	16 20 24 27 30	2.1 1.4 1.1 0.8 0.5
20000 3000 50000 70000 L00000 200000	332 331 401 400 400 400	6 7 7 7 7	0.0 0.0 0.0 0.0 0.0	625 699 697 773 773 850	10 11 11 12 12 13	0.0 0.0 0.0 0.0 0.0	1100 1177 1254 1252 1332 1412	16 17 18 18 19 20	0.1 0.0 0.0 0.0 0.0 0.0	1601 1761 1838 1919 2001 2167	22 24 25 26 27 29	0.1 0.1 0.0 0.0 0.0	2825 3070 3317 3485 3655 3911	36 39 42 44 46 49	0.2 0.1 0.1 0.1 0.0 0.0

- 57 **-**

Single Sampling Tables for AQL = 2 % and X = 10.

1	100p ₂		12.0			8.0)		6.0	1		5.0			4.0	
-	N	n	c	100P	n	c	100P	n	С	100P	n	c	100P	n	c	100P
	30 50 70 100	2 27 23	0 0 1 1	77.4 77.4 14.8 21.9	2 27 23	0 0 1 1	84.6 84.6 35.2 44.1	2 27 23	0 0 1 1	88.4 88.4 51.2 59.5	2 2 27 23	0 0 1 1	90.2 90.2 60.6 67.9	2 2 2 7 23	0 0 1 1	92.2 92.2 70.6 76.6
1	200 300 500 700	95 82 112 108 105	3 3 4 4 4	0.2 0.8 0.2 0.3 0.3	95 126 153 186 219	3 4 5 6 7	4.9 2.3 1.4 0.6 0.3	95 183 248 275 349	3 5 7 8 10	17.1 3.4 1.7 1.4 0.5	95 183 304 376 444	3 5 8 10 12	29.5 10.1 3.1 1.8 1.2	95 183 372 494 658	3 5 9 12 16	47.0 25.6 7.0 4.0 2.0
; ;	2000 3000 5000 7000	136 135 133 167 167	5 5 5 6 6	0.1 0.1 0.1 0.0 0.0	247 282 278 315 313	8 9 9 10	0.2 0.1 0.1 0.0 0.0	410 443 476 514 551	12 13 14 15 16	0.3 0.2 0.2 0.1 0.1	541 614 686 765 802	15 17 19 21 22	0.7 0.4 0.3 0.1 0.1	869 1023 1173 1293 1370	22 26 30 33 35	1.3 0.8 0.5 0.3 0.2
30 50 70 100	0000 0000 0000 0000	166 201 201 201 201 201 201	6 7 7 7 7	0.0 0.0 0.0 0.0 0.0	350 349 387 387 387 426	11 11 12 12 12 13	0.0 0.0 0.0 0.0	588 628 668 667 708 748	17 18 19 19 20 21	0.0 0.0 0.0 0.0 0.0	880 920 1002 1044 1085 1127	24 25 27 28 29 30	0.1 0.0 0.0 0.0 0.0 0.0	1576 1658 1785 1871 1958 2089	40 42 45 47 49 52	0.1 0.1 0.0 0.0 0.0

Single Sampling Tables for AQL = 3 % and $\frac{1}{1}$ = 10.

100p ₂	12.0				9.0			7•5			6.0			5.0	
N	n	С	100P	n	С	100P	n	c	100P	n	c	100P	n	c	100P
30 50 70 100	2 18 56 37	0 1 2 2	77.4 34.6 2.9 16.3	18 56 37	0 1 2 2	82.8 50.9 11.0 34.1	2 18 56 37	0 1 2 2	85.6 60.4 19.9 46.8	2 18 56 37	0 1 2 2	88.4 70.6 33.9 61.6	2 18 56 37	0 1 2 2	90.2 77.4 46.5 71.8
200 300 500 700 1000	85 105 123 145 142	4 5 6 7 7	2.0 1.0 0.6 0.3 0.4	122 172 181 231 251	5 7 8 10 11	3.2 1.1 1.5 0.5 0.4	122 216 246 294 341	5 8 10 12 14	9.8 1.6 2.0 1.2 0.7	122 216 362 433 503	5 8 13 16 19	25.3 9.5 2.8 2.2 1.8	122 216 411 557 722	5 8 14 19 25	42.5 24.4 8.0 4.6 3.0
2000 3000 5000 7000 10000	163 186 185 209 209	8 9 9 10	0.2 0.1 0.1 0.0 0.0	296 319 343 368 367	13 14 15 16 16	0.2 0.1 0.1 0.0 0.1	410 460 510 535 561	17 19 21 22 23	0.4 0.2 0.1 0.1	683 757 862 914 997	26 29 33 35 38	0.7 0.5 0.3 0.2 0.1	1042 1230 1447 1585 1725	37 44 52 57 62	1.5 1.0 0.6 0.5 0.3
20000 30000 50000 70000 100000 200000	234 233 259 259 259 285 285	11 11 12 12 13 13	0.0 0.0 0.0 0.0 0.0	419 419 446 473 4 7 3 500	18 19 20 20 21	0.0 0.0 0.0 0.0 0.0	614 641 669 696 721 781	25 26 27 28 29 31	0.0 0.0 0.0 0.0 0.0	1107 1163 1249 1277 1336 1423	42 44 47 48 50 53	0.1 0.0 0.0 0.0 0.0 0.0	1981 2127 2304 2392 2512 2693	71 76 82 85 89 95	0.2 0.1 0.1 0.0 0.0

- 58 -

Single Sampling Tables for AQL = 4% and $\delta = 10$.

100p ₂		12.0			10,	0		8.0			7.0)		6.0	
N	n	С	100P	n	С	100P	n	С	100P	n	c	100P	n	c	100P
30 50 70 100	16 12 29 48	1 1 2 3	41.2 56.9 30.7 15.7	16 12 29 48	1 2 3	51.5 65.9 43.5 28.0	16 12 29 48	1 2 3	63.0 75.1 58.7 45.8	16 12 29 48	1 2 3	69.0 79.7 66.8 56.4	16 12 29 48	1 1 2 3	75.1 84.0 74.9 67.5
200 300 500 700 1000	107 143 153 169 185	6 8 9 10 11	2.2 0.8 0.9 0.6 0.5	139 170 223 235 272	7 9 12 13 15	2.7 2.1 1.0 1.0 0.6	139 235 301 357 436	7 11 15 18 22	12.5 3.3 2.8 2.0 1.1	139 235 394 465 562	7 11 18 22 27	23.6 9.8 3.1 2.9 2.1	139 235 432 591 757	7 11 19 26 34	40.1 24.4 9.2 5.5 4.3
2000 3000 5000 7000 10000	220 238 257 276 275	13 14 15 16 16	0.2 0.1 0.1 0.0 0.0	326 343 381 401 420	18 19 21 22 23	0.3 0.2 0.1 0.1	549 607 665 727 768	28 31 34 37 39	0.5 0.4 0.2 0.1 0.1	761 860 1006 1066 1151	37 42 49 52 56	1.0 0.7 0.3 0.3	1161 1392 1691 1862 2034	53 64 78 86 94	2.0 1.3 0.8 0.6 0.4
20000 30000 50000 70000 100000 200000	315 315 335 355 355 376	18 18 19 20 20	0.0 0.0 0.0 0.0 0.0	461 481 523 544 544 587	25 26 28 29 29 31	0.0 0.0 0.0 0.0 0.0	852 894 937 981 1025 1091	43 45 47 49 51	0.0 0.0 0.0 0.0 0.0	1301 1366 1477 1521 1588 1700	63 66 71 73 76 81	0.1 0.1 0.0 0.0 0.0			

Single Sampling Tables for AQL = 5 % and δ = 10.

100p ₂		15.	0		12.	5		10.	0		8.5			7.5	
N	n	c	100P	n	c	100P	n	¢	100P	n	c	100P	n	c	100P
30 50 70 100	11 26 43 56	1 2 3 4	49.2 23.0 9.6 6.3	11 26 43 56	1 2 3 4	59.2 35.2 19.8 15.5	11 26 43 56	1 2 3 4	69.7 51.1 36.5 32.9	11 26 43 56	1 2 3 4	76.1 61.8 49.7 47.7	11 26 43 56	1 2 3 4	80.3 69.1 59.5 58.8
200 300 500 700 1 000	100 109 137 150 163	7 8 10 11 12	1.2 1.2 0.5 0.3	122 148 191 202 232	8 10 13 14 16	2.5 1.8 0.8 0.8	149 218 271 315 360	9 13 17 20 23	6.3 2.5 2.1 1.5 1.1	149 247 361 440 538	9 14 21 26 32	17.7 6.3 3.6 2.7 1.7	149 247 445 557 710	9 14 24 31 40	31.3 16.6 5.0 4.5 3.1
2000 3000 5000 7000 10000	176 190 205 221 237	13 14 15 16 17	0. 2 0. 1 0. 1 0. 0 0. 0	276 290 322 337 353	19 20 22 23 24	0.2 0.1 0.1 0.1	453 500 548 598 631	29 32 35 38 40	0.5 0.3 0.2 0.1 0.1	696 795 911 979 1047	42 48 55 59 63	0.9 0.6 0.3 0.2 0.2	1010 1197 1419 1558 1698	58 69 82 90 98	1.7 1.1 0.6 0.4 0.3
20000 30000 50000 70000 100000 200000	252 252 268 285 285 301	18 18 19 20 20 21	0.0 0.0 0.0 0.0 0.0	369 386 419 436 436 470	25 26 28 29 29 31	0.0 0.0 0.0 0.0 0.0	682 716 768 785 821 874	43 45 48 49 51 54	0.0 0.0 0.0 0.0 0.0	1168 1238 1328 1381 1436 1544	70 74 79 82 85 91	0.1 0.1 0.0 0.0 0.0	controlling manufacture components (1870-1870)		

- 59 -

Single Sampling Tables for AQL = 7% and δ' = 10.

100p ₂		21.	0		17.	5		14.	0		12.	0		10.	5
N	n	С	100 P	n	С	100P	n	С	100P	n	С	100P	n	С	100P
30 50 70 100	25 31 41 49	2 3 4 5	8.0 8.5 4.9 3.9	25 31 41 66	2 3 4 6	16.1 18.4 13.3 4.3	25 31 41 66	2 3 4 6	30.0 35.2 30.2 16.6	25 31 41 66	2 3 4 6	40.9 48.0 44.4 30.8	25 31 41 66	2 3 4 6	50.4 58.7 56.6 45.2
200 300 500 7 00 1000	80 87 96 105 116	8 9 10 11 12	0.8 0.7 0.5 0.4 0.2	108 127 145 154 176	10 12 14 15 17	1.2 0.8 0.6 0.5 0.3	142 171 226 258 291	12 15 20 23 26	3.1 2.6 1.3 0.9 0.6	163 221 315 371 427	13 18 26 31 36	6.6 4.3 2.1 1.5 1.1	163 261 399 494 601	13 20 31 39 48	17.9 7.7 4.1 3.1 2.3
2000 3000 5000 7000 10000	137 136 147 158 158	14 14 15 16 16	0.1 0.1 0.0 0.0	196 207 230 241 253	19 20 22 23 24	0.2 0.1 0.1 0.0 0.0	346 368 403 427 451	31 33 36 38 40	0.3 0.2 0.1 0.1	530 589 661 710 747	45 50 56 60 63	0.6 0.4 0.2 0.1 0.1	818 953 1101 1188	66 77 89 96	1.1 0.7 0.4 0.3
20000 30000 50000 70000 100000 200000	181 181 192 192 204 216	18 18 19 19 20 21	0.0 0.0 0.0 0.0 0.0	264 276 300 300 312 337	25 26 28 28 29 31	0.0 0.0 0.0 0.0 0.0	500 525 550 562 588 626	44 46 48 49 51 54	0.0 0.0 0.0 0.0 0.0	835 872 923 962 1001 1066	70 73 77 80 83 88	0.0 0.0 0.0 0.0 0.0			

Single Sampling Tables for AQL = 10 % and δ = 10.

100p ₂		30.	0		25.	0		20.	0		17.	0		15.	0
N	n	С	100P	n	С	100P	n	С	100P	n	c	100P	n	c	100P
30 50 7 0 1 00	12 28 35 41	2 4 5 6	25.3 4.7 2.7 1.9	12 28 47 62	2 4 6 8	39.1 13.5 3.2 1.5	12 28 47 7 5	2 4 6 9	55.8 31.5 14.4 5.0	12 28 47 75	2 4 6 9	66.6 47.1 29.2 15.9	12 28 47 75	2 4 6 9	73.6 58.7 43.0 29.5
200 300 500 700 1000	53 68 74 73 81	8 10 11 11 12	1.0 0.3 0.2 0.3 0.1	81 95 108 115 1 22	11 13 15 16 17	0.9 0.5 0.4 0.3	122 142 172 196 210	15 18 22 25 27	1.8 1.5 0.9 0.5 0.4	158 195 260 290 331	18 23 31 35 40	3.4 2.9 1.5 1.3 0.8	174 243 345 411 487	19 27 39 47 56	7.6 5.0 2.9 2.2 1.5
2000 3000 5000 7000 10000	88 96 103 103 111	13 14 15 15 16	0.1 0.0 0.0 0.0 0.0	137 145 161 161 169	19 20 22 22 23	0.1 0.1 0.0 0.0	250 266 291 300 317	32 34 37 38 40	0.2 0.1 0.1 0.1 0.0	405 447 490 524 551	49 54 59 63 66	0.4 0.2 0.1 0.1	632 719 805	73 83 93	0.7 0.4 0.3
20000 30000 50000 70000 100000 200000	119 119 127 136 136 144	17 17 18 19 19	0.0 0.0 0.0 0.0 0.0	186 194 203 211 211 228	25 26 27 28 28 30	0.0 0.0 0.0 0.0 0.0	342 360 377 395 404 431	43 45 47 49 50 53	0.0 0.0 0.0 0.0 0.0	604 630 666 694 721 766	72 75 79 82 85 90	0.0 0.0 0.0 0.0 0.0			

Single Sampling Tables with Producer's Risk of 5 % B(c,n) = 0.95, $r = p_2/p_1$, $m = np_1$, $M = Np_1$, $\gamma = 2$.

			, ,	•		- 7 - 1.		T.	J				
С	r m	1.50 M	1.60 M	1.80 M	2.00 M	2.25 M	2.50 M	2.75 M	3.C M	3.5 M	4.C M	5.C M	6.5 M
0	0.0515	0,355	0.355	0.355	0.355	0.355	0.355	0.355	0.355	0:-355	0.355	0.355	0.355
1	0.3555	0.817	0.817	0.817	0.817	0.317	0.817	0.817	0.817	0.817	0.817	0.875	1.17
2	0.8175	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.52	1.83	2.49	4.19
3	1,366	1.97	1.97	1.97	1.97	1.97	1,97	2.07	7,41	2.06	3.77	6.18	17.3
4	1,970	2,61	2.61	2,67	2.61	2.61	2.95	3.51	4.05	5.31	7.22	16.3	90.7
5	2,613	3.29	3.29	3.29	3.29	3.61	4.48	5.31	6.23	8.93	14.1	48.6	575
6	3.285	3.98	3.98	3.98	3.98	5.14	6.31	7.60	9.27	15.1	28.8	162	4180
7	3,981	4.69	4.69	4.69	5.26	6.88	€.51	10.6	13.7	26.3	62.6	585	33600
8	4.695	5.43	5.43	5.43	6.85	8.86	11.2	14.6	20.2	47.3	144	2260	294000
9	5.425	6.17	13.47	5.40	8.58	11.2	14.6	20.3	30.4	88.6	346	9180	
10	6.159	6. 92	6.92	7.97	10 5	13. €	19.0	28.3	46.6	172	854	39000	
11	6.924	7.69	7.69	9.64	12.6	17.9	24.5	3 9. C	72. 9	342	2220	172000	
12	7.689	8.46	8.46	11.4	14.9	20.8	32.1	56.9	116	699	5880		
13	8.464	9.25	9.25	13.3	17.4	25.4	42.2	82.5	18.9	1460	15900		
14	9.246	10,0	10.4	15.3	20.3	31.1	55.9	131	314	3100	43800	1	
15	10.04	10.8	12.1	17.4	23.6	38.1	74.6	181	526	66 7 0	123000)	
16	10.83	11.6	13.8	19.7	2 7.3	46.7	100	272	895	14600)		
17	11.63	12.4	15.5	22.1	31.5	57.7	137	416	1540	32300)		
18	12.44	13.3	17.3	24.3	36.3	71. 5	188	640	2670	72200)		
19	13.25	14.9	19.2	27.6	41.9	89.1	260	9 94	4680				
25	14.07	16.6	21.2	30.8	48.4	112	362	1560	8280				
22	15.72	20.1	25.3	37.9	64.7	178	718	3900	26400				
24	17.38	23.8	29. 8	46.4	87. 3	290	1460	9970	86200				
26	19.06	27.7	34.7	56.7	119	480	3010	26000					
28	20.75	31.8	40.1	69.4	164	809	6 33 0	6 9200					
30	22.44	36.1	46.0	85.1	228	. 1380	13500						
3 5	26.73	48.2	63.7	144	546	5530							
40	31.07	62.5	87.4	2 5 3	1380	23400					r	10.0	
45	35,44	79.7	120	45 7	3 630					¢	m	M	
50	39,85	101	165	852	9840						0.0515	0.355	
60	48.75	160	325	3180							0.3555	2.26	
70	57.73	257	673	12800							0.8175	24.9	
80	6679	424	1460	53 8 0 0							1,366	506	
90	75.90	7 16	3290								1.970	15300	
99	84-14	1180	7020							5	2.613	616000	

Single Sampling Tables with Producers Risk of 5 % B(c,m) = 0.95, $r = p_2/p_1$, $m = np_1$, $M = Np_1$, $\gamma = 10$.

		- (-)	,	• • 2	. • I.	-1,	- 1-					
	r	1.50	1.60	1.80	2.00	2.25	2.50	2.75	3.0	3.5	4.0	5.0
С	m	М	M	M	M	M	M	M	M	M	M	M
0	0.0515	0.355	0.355	0.355	0.355	0.355	0.355	0.355	0.355	0.355	0.355	0.355
1	0.3555	0.817	0.817	0.817	0.817	0.817	0.817	0.817	0.817	0.817	0.817	0.817
2	0.8175	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	<u>1.37</u>	<u>1.3</u> 7	1.37
3	1.366	1.97	1.97	1.97	1.97	1.97	<u>1.97</u>	1.97	<u>1.97</u>	1.97	1.97	2.06
4	1.970	2.61	2.61	2.61	2.61	2.61	2.61	2.61	2.61	2.61	2.61	4.60
5	2.613	3.29	3.29	3.29	3.29	3.29	3.29	3.29	3.29	3.29	4.44	11.6
6	3.285	3.98	3.98	3.98	3.98	3.98	3.98	3.98	3.98	4.99	7.95	34.7
7	3.981	4.69	4.69	4.69	4.69	4.69	4.69	4.69	4.87	7.80	15.3	120
8	4.695	5.43	5.43	5.43	5.43	5.43	5.43	<u>5.43</u>	6 .7 8	12.6	32.1	455
9	5.425	6.17	6.17	6.17	6.17	6.17	6.17	7.08	9.43	21.5	73.1	1840
10	6.169	6.92	6.92	6.92	6.92	6.92	6.94	9.30	13.3	38.7	177	7810
11	6 , 92 4	7.69	7.69	7.69	7.69	7.69	8.71	12.2	19.2	73.3	450	34400
12	7.689	8,46	8.46	8.46	8.46	8.46	10.9	16.3	28.5	145	1180	157000
13	8.464	9.25	9.25	9.25	9.25	9.38	13.5	22.0	43.7	298	3190	
14	9.246	0.0	10.0	10.0	0.0	11.2	16.9	30.5	69.2	626	8780	
15	10.04	10.8	10.8	10.8	10.8	13.2	21.3	43.0	112	1340	24600	
16	10,83	11.6	11.6	11.6	11.6	15.6	27.1	62.0	187	2920	70100	
17	11.63	12.4	12.4	12.4	12.4	18.5	35.1	91.3	316	6460		
18	12.44	13.3	13.3	13.3	13.5	21.9	45.9	137	544	14400		
19	13.25	14.1	14,1	14.1	15.3	26.1	60.9	208	947	32600		
20	14.07	14.9	14.9	14.9	17.3	31.3	82.1	322	1670	74500		
22	15.72	16.5	16.5	16.5	21.9	45.9	155	7 91	5 290			
24	17.38	18.2	18.2	18.2	27.9	69.6	304	2010	17300			
26	19,06	19.9	19.9	21.0	35.6	109	616	5220	57600			
28	20.75	21.6	21.6	25.0	46.0	17 6	1280	13900				
30	22.44	23.3	23.3	29.6	60.2	292	2710	37300		r	6.5	10.0
35	26.73	27.6	27.6	45.0	127	1130	18800		c	m	M	M
βO	31.07	31.9	32.9	70.3	297	4700			0 0.	0515	0.355	0.355
۶5	35.44	36.3	43.1	115	751	20600			1 0.	3555	0.817	0.817
iO	39.85	40.7	56.0	197	2000				2 0.	8175	1.37	5.61
50	48.75	58.1	95.3	6 7 0	15600					366	4.44	162
'0	57.73	85.2	172	2590						970	19.6	3060
10	66.79	126	337	1.0800						613	117	123000
ю	75.90	192	710	47100						.285	839	
19	84.14	291	1460							, 981	6730	
1									8 4	.695	-56800	

Tables of p₁₀, p₅₀, and p₉₅.

The three tables on pp. 63 - 68 are based on the binomial distribution

$$B(c,n,p) = \sum_{x=0}^{c} {n \choose x} p^{x} q^{n-x}$$

For c = 0, 1, ..., 99, and for 100p = 0.1, 1.0, 5.0, 10.0, 15.0, 20.0 the tables give respectively

- a) the smallest integer, n, for which $B(c,n,p) \leq 0.10$,
- b) the integer, n, for which B(c,n,p) is nearest to 0.50, and
- c) the largest integer, n, for which $B(c,n,p) \ge 0.95$.

For the combinations of c and n found in the tables the stated values of p are therefore equal to p_{10} , p_{50} , and p_{95} , respectively.

For any sampling plan (c,n), $c \le 99$ and n not in the table, p may be determined from the formula

$$p = p_0 n(p_0)/n,$$

 $n(p_0)$ being the nearest tabular value of n and p_0 the corresponding p.

An approximation to the corresponding "hypergeometric value", $\mathbf{p}_{h},$ may be found from

$$p_h = p_b - \frac{np_b - c}{2N}$$

ph being the value obtained from the present tables.

-63 - Table of p_{10} . $B(c,n,p) \leq 0.10$. $p = p_0 n(p_0)/n$.

			100p			
С	0.1	1.0	5.0	10.0	15.0	20.0
0	2302	230	45	22	15	11
1	3889	388	77	38	25	18
2	5321	531	105	52	34	25
3	6679	667	132	65	43	32
4	7992	798	158	78	52	38
5	9273	926	184	91	60	45
6	10530	1051	209	104	68	51
7	11769	1175	234	116	77	57
8	12993	1297	258	128	85	63
9	14204	1418	282	140	93	69
10	15404	1538	306	152	100	75
11	16596	1658	330	164	108	81
12	17779	1776	353	175	116	86
13	18955	1893	377	187	124	92
14	20125	2010	400	199	132	98
15	21 290	2127	423	210	139	104
16	22449	2242	446	222	147	109
17	23603	2358	469	233	154	115
18	24753	2473	492	245	162	121
19	25900	2587	515	256	170	126
20	27042	2701	538	267	177	132
21	28181	2815	561	279	185	138
22	29317	2929	583	290	192	143
23	30450	3042	606	301	200	149
24	31580	3155	628	312	207	154
25	32708	3268	651	324	215	160
26	33833	3380	673	335	222	166
27	34956	3492	696	346	229	171
28	36076	3604	718	357	237	177
29	37195	3716	740	368	244	182
30	38311	3828	763	379	252	188
31	39426	3939	785	390	259	193
32	40539	4050	807	402	266	199
33	41650	4162	829	413	274	204
34	42760	4272	851	424	281	210
35	43868	4383	873	435	288	215
36	44974	4494	896	446	296	221
37	46079	4604	918	457	303	226
38	47183	4 71 5	940	468	310	232
39	48285	4825	962	479	318	237
40	49386	4935	984	490	325	243
41	50486	5045	1006	501	332	248
42	51584	5155	1027	511	339	253
43	52682	5264	1049	522	347	259
44	53778	5374	1071	533	354	264
45	54873	5483	1093	544	361	270
46	55968	5593	1115	555	368	2 7 5
47	57061	5702	1137	566	376	281
48	58153	5811	1159	577	383	286
49	59244	5920	1180	588	390	291

-64 - Table of p_{10} . $B(c,n,p) \leq 0.10$. $p = p_0 n(p_0)/n$.

			100p			
C	0.1	1.0	5.0	10.0	15.0	20.0
50	60335	6029	1202	599	397	297
51	61424	6138	1224	609	405	302
52	62513	6247	1246	620	412	308
53	63601	6356	1267	631	419	313
54	64688	6464	1289	642	426	318
55	65774	6573	1311	653	433	324
56	66859	6681	1332	664	441	329
57	67944	6790	1354	674	448	334
58	69028	6898	1376	685	455	340
59	70111	7007	1397	696	462	345
60	71194	7115	1419	707	469	351
61	72276	7223	1440	718	477	356
62	73357	7331	1462	728	484	361
63	74437	7439	1484	739	491	367
64	75517	7547	1505	750	498	372
65	76597	7655	1527	761	505	377
66	77675	7763	1548	771	512	383
67	78753	7870	1570	782	519	388
68	79831	7978	1591	793	527	393
69	80908	8086	1613	804	534	399
70	81984	8193	1634	814	541	404
71	83060	8301	1656	825	548	409
72	84136	8409	1677	836	555	415
73	85211	8516	1699	846	562	420
74	86285	8623	1720	857	569	425
75	87359	8731	1742	868	577	431
76	88432	8838	1763	879	584	436
77	89505	8945	1784	889	591	441
78	90577	9053	1806	900	598	447
79	91649	9160	1827	911	605	452
80	92721	9267	1849	921	612	45 7
81	93792	9374	1870	932	619	463
82	94863	9481	1891	943	626	468
83	95933	9588	1913	953	633	473
84	97003	9695	1934	964	640	479
85	98072	9802	1955	975	648	484
86	99141	9909	1977	985	655	489
87	100210	10015	1998	996	662	495
88	101278	10122	2019	1007	669	500
89	102346	10229	2041	1017	676	505
90	103413	10336	2062	1028	683	511
91	104480	10442	2083	1038	690	516
92	105547	10549	2105	1049	697	521
93	106613	10656	2126	1060	704	526
94	107679	10762	2147	1070	711	532
95	108745	10869	2169	1081	718	537
96	109810	10975	2190	1092	725	542
97	110875	11082	2211	1102	733	548
98	111940	11188	2232	1113	740	553
99	113004	11295	2254	1123	747	558

- 65 **-**

Table of p_{50} . B(c,n,p) = 0.50. $p = p_o n(p_o)/n$.

	Table of	P50. D(C,II	,p) = 0.)0	• p - pon(p	0//	
			100p			
С	0.1	1.0	5.0	10.0	15.0	20.0
0	693	69	14	7	4	3
1	1678	167	33	16	11	8
2	2674	267	53	26	17	13
3	3672	367	73	36	24	18
4	4671	467	93	46	31	23
5	5670	567	113	56	37	28
6	6669	667	133	66	44	33
7	7669	767	153	7 6	51	38
8	8669	867	173	86	57	43
9	9668	967	193	96	64	48
10	10668	1067	213	106	71	53
11	11668	1167	233	116	77	58
12	12668	1266	253	126	84	63
13	13668	1366	273	136	91	68
14	14668	1466	293	146	97	7 3
15	15668	1566	313	156	104	78
16	16668	1666	333	166	111	83
17	17667	1766	353	176	117	88
18	18667	1866	373	186	124	93
19	19667	1966	393	196	131	98
20	20667	2066	413	206	137	103
21	21667	2166	433	216	144	108
22	22667	2266	453	226	151	113
23	23667	2366	473	236	157	118
24	24667	2466	493	246	164	123
25	25667	2566	513	256	171	128
26	26667	2666	533	266	177	133
2 7	27667	2 7 66	553	276	184	138
28	28667	2866	5 7 3	286	191	143
29	29667	2966	593	296	197	148
30	30667	3066	613	306	204	153
31	31667	3166	633	316	211	158
32	32667	3266	653	326	217	163
33	33667	3366	673	336	224	168
34	34667	3466	693	346	231	1 7 3
35	35667	3566	713	356	237	178
36	36667	3666	733	366	244	183
3 7	37667	3766	753	3 7 6	251	188
38	38667	3866	773	386	257	193
39	39667	3966	793	396	264	198
40	40667	4066	813	406	271	203
41	41667	4166	833	416	277	208
42	42667	4266	853	426	284	213
43	43667	4366	8 7 3	436	291	218
44	44667	4466	893	446	297	223
45	45667	4566	913	456	304	228
46	46667	4666	933	466	311	233
47	47 6 67	4766	953	476	317	238
48	48 6 67	4866	973	486	324	243
49	49667	4 9 6 6	993	496	331	248

- 66 **-**

Table of p_{50} . B(c,n,p) = 0.50. $p = p_0 n(p_0)/n$.

	100p								
c	0.1	1.0	5.0	10.0	15.0	20.0			
50	50667	5066	1013	506	337	253			
51	51667	5166	1033	516	344	258			
52	52667	5266	1053	526	351	263			
53	53667	5366	1073	536	357	268			
54	54667	5466	1093	546	364	273			
55	55667	5566	1113	556	371	278			
56	56667	5666	1133	566	377	283			
57	57667	5766	1153	576	384	288			
58	58667	5866	1173	586	391	293			
59	59667	5966	1193	596	397	298			
60	60667	6066	1213	606	404	303			
61	61667	6166	1233	616	411	308			
62	62667	6266	1253	626	417	313			
63	63667	6366	1273	636	424	318			
64	64667	6466	1293	646	431	323			
65	65667	6566	1313	656	437	328			
66	66667	6666	1333	666	444	333			
67	67667	6766	1353	676	451	338			
68	68667	6866	1373	686	457	343			
69	69667	6966	1393	696	464	348			
70	70667	7066	1413	706	471	353			
71	71667	7166	1433	716	477	358			
72	72667	7266	1453	726	484	363			
73	73667	7366	1473	736	491	368			
7 4	74667	7466	1493	746	497	373			
75	75667	7566	1513	756	504	378			
76	76667	7666	1533	766	511	383			
77	77667	7766	1553	776	517	388			
78	78667	7866	1573	786	524	393			
79	79667	7966	1593	796	531	398			
80	80667	8066	1613	806	537	403			
81	81667	8166	1633	816	544	408			
82	82667	8266	1653	826	551	413			
83	83667	8366	1673	836	557	418			
84	84667	8466	1693	846	564	423			
85	85667	8566	1713	856	571	428			
86	86667	8666	1733	866	577	433			
87	87667	8766	1753	876	584	438			
88	88667	8866	1773	886	591	443			
89	89667	8966	1793	896	597	448			
90	90667	9066	1813	906	604	453			
91	91667	9166	1833	916	611	458			
92	92667	9266	1853	926	617	463			
93	93667	9366	1873	936	624	468			
94	94667	9466	1893	946	631	473			
95	95667	9566	1913	956	63 7	478			
96	96667	9666	1933	966	644	483			
97	97667	9766	1953	976	651	488			
98	9866 7	9866	1973	986	65 7	493			
99	9966 7	9966	1993	9 96	664	498			

-67 Table of p_{95} . $B(c,n,p) \ge 0.95$. $p = p_0 n(p_0)/n$.

			100p			
С	0.1	1.0	5.0	10.0	15.0	20.0
0	51	5	1	0	0	0
1	355	35	7	3	2	2
2	818	82	16	8	6	4
3	1367	137	28	14	10	7
4	1971	198	40	20	14	10
5	2614	262	53	27	18	14
6	3286	329	67	34	23	17
7	3982	399	81	41	28	21
8	4696	471	95	48	33	25
9	5427	544	110	56	38	29
10	6170	618	125	63	43	32
11	6926	694	140	71	48	36
12	7691	771	155	79	53	40
13	8466	848	171	86	58	44
14	9248	927	187	94	64	48
15	10038	1006	203	102	69	52
16	10834	1085	219	110	74	56
17	11637	1166	235	119	80	61
18	12444	1246	251	127	85	65
19	13257	1328	268	135	91	69
20	14075	1410	284	143	96	73
21	14896	1492	300	152	102	77
22	15722	1575	317	160	108	81
23	16552	1658	334	168	113	86
24	17385	1741	351	177	119	90
25	18221	1825	367	185	125	94
26	19061	1909	384	194	130	99
27	19904	1993	401	202	136	103
28	20749	2078	418	211	142	107
29	21597	2163	435	219	147	111
30	22448	2248	452	228	153	116
31	23301	2333	469	236	159	120
32	24156	2419	48 7	245	165	124
33	25014	2505	504	254	170	129
34	25873	2591	521	262	176	133
35	26735	2677	538	271	182	138
36	27598	2763	556	280	188	142
37	28464	2850	573	289	194	146
38	29331	2937	590	297	200	151
39	30200	3023	608	306	205	155
40	31070	3111	625	315	211	160
41	31942	3198	643	324	217	164
42	32816	3285	660	332	223	168
43	33691	3373	678	341	229	173
44	34567	3461	696	350	235	177
45	35445	3548	713	359	241	182
46	36324	3636	731	368	247	186
47	37205	3724	748	377	253	191
48	38086	3813	766	385	259	195
49	38969	3901	7 84	394	265	200

-68 - Table of p_{95} . $B(c,n,p) \ge 0.95$. $p = p_o n(p_o)/n$.

				100p			
_	С	0.1	1.0	5.0	10.0	15.0	20.0
	50	39853	3989	802	403	270	204
	51	40739	4078	819	412	276	209
	52	41625	4167	837	421	282	213
	53	42512	4256	855	430	288	218
	54	43401	4344	873	439	294	222
	55	44290	4433	891	448	300	227
	56	45181	4522	909	457	306	231
	57	46072	4612	926	466	312	236
	58	46964	4701	944	475	318	240
	59	47857	4790	962	484	324	245
	60	48752	4880	980	493	330	249
	61	49647	4969	998	502	336	254
	62	50542	5059	1016	511	342	258
	63	51439	5149	1034	520	348	263
	64	52337	5238	1052	529	354	267
	65	53235	5328	1070	538	361	272
	66	54134	5418	1088	547	367	276
	67	55034	5508	1106	556	373	281
	68	55934	5598	1124	565	379	286
	69	56835	5689	1142	574	385	290
	70	57737	5779	1160	583	391	295
	71	58640	5869	1178	592	397	299
	72	59543	5959	1197	601	403	304
	73	60447	6050	1215	610	409	308
	74	61352	6140	1233	619	415	313
	75	62257	6231	1251	629	421	318
	76	63163	6322	1269	638	427	322
	77	64069	6412	1287	647	433	327
	78	64976	6503	1306	656	439	331
	79	65884	6594	1324	665	446	336
	80	66792	6685	1342	674	452	340
	81	67701	6776	1360	683	458	345
	82	68611	6867	1378	692	464	350
	83	69521	6958	1397	702	470	354
	84	70431	7049	1415	711	476	359
	85	71342	7140	1433	720	482	363
	86	72253	7231	1451	729	488	368
	87	73165	7322	1470	738	494	373
	88	74078	7414	1488	747	501	377
	89	74991	7505	1506	757	507	382
	90	75904	7596	1525	766	513	386
	91	76818	7688	1543	775	519	391
	92	77733	7779	1561	784	525	396
	93	78648	7871	1580	793	531	400
	94	79563	7962	1598	802	537	405
	95	80479	8054	1616	812	544	410
	96	81395	8146	1635	821	550	414
	9 7	82312	8237	1653	830	556	419
	98	83229	8329	1671	839	562	423
	99	84146	8421	1690	849	568	428