

버섯 세기 (mushrooms)

버섯 전문가인 앤드류는 싱가포르의 토종 버섯들을 조사하고 있다.

연구 목적으로 앤드류는 0부터 n-1로 나타내는 n개 버섯들을 수집했다. 각 버섯은 A와 B의 두 종류 중하나이다.

앤드류는 **버섯** 0이 A 종류에 속함을 알고 있지만, 두 종류가 비슷해 보이기 때문에, 버섯 1부터 n-1까지의 종류는 알지 못한다.

운 좋게도, 앤드류는 자신의 연구실에 이 분류를 도와 줄 기계를 가지고 있다. 기계를 사용하기 위해서, 기계 안에 (임의의 순서로) 일렬로 두 개이상의 버섯들을 놓고 기계를 동작시킨다. 그러면, 기계는 서로 다른 종류의 버섯이 **인접하게 놓인** 쌍의 개수를 계산한다. 예를 들어, 기계에 [A,B,B,A]와 같은 종류의 순서로 버섯들을 놓는다면, 결과는 2일 것이다.

그러나, 기계를 동작하는 일은 매우 큰 비용이 들기 때문에, 기계는 제한된 횟수로 사용되어야 한다. 게다가, 기계를 사용하면서 기계에 놓았던 버섯들의 개수의 총 합은 100 000을 넘을 수 없다. 수집된 A 종류 버섯들의 수를 셀 수 있도록 앤드류를 돕기 위해서 이 기계를 사용해야 한다.

Implementation details

당신은 다음 프로시저를 구현해야 한다:

int count_mushrooms(int n)

- n: 앤드류가 수집한 버섯들의 수.
- 이 프로시저는 정확히 한 번 호출되고 A 종류 버섯들의 개수를 리턴해야 한다.

위 프로시저는 다음 프로시저를 호출할 수 있다:

int use_machine(int[] x)

- x: 기계에 놓인 버섯들을 순서대로 나타내는 길이 2이상 n이하의 배열
- x의 원소들은 0부터 n-1까지의 **서로 다른** 정수여야 한다.
- d를 배열 x의 길이라고 하자. 프로시저는 $0 \le j \le d-2$ 이고 버섯 x[j]와 x[j+1]가 서로 다른 종류를 만족하는 j들의 개수를 리턴한다.
- 이 프로시저는 많아야 20 000번 호출될 수 있다.
- 프로시저 use machine의 모든 호출동안 전달된 x의 길이의 합은 $100\ 000$ 을 넘을 수 없다.

Examples

Example 1

순서대로 [A,B,B] 종류의 3개 버섯들이 존재하는 시나리오를 생각해보자. 프로시저 count_mushrooms는 다음과 같은 방식으로 호출된다:

count mushrooms(3)

이 프로시저는 (이 시나리오에서) use_machine([0, 1, 2])을 호출할 수 있고, 반환값은 1이다. 그후, use machine([2, 1])을 호출할 수 있고, 반환값은 0이다.

이 때, A 종류 버섯이 단지 한 개 존재한다는 결론을 얻기에 충분하다. 따라서 프로시저 count mushrooms는 1을 리턴해야 한다.

Example 2

순서대로 [A,B,A,A] 종류의 4개 버섯들이 존재하는 경우를 생각하자. 프로시저 count_mushrooms 는 아래와 같은 방식으로 호출된다:

count mushrooms (4)

이 프로시저는 use_machine([0, 2, 1, 3])을 호출할 수 있고, 반환값은 2이다. 그 후, use machine([1, 2])을 호출할 수 있고, 반환값은 1이다.

이 때, A 종류 버섯이 세 개 존재한다는 결론을 얻기에 충분하다. 따라서 프로시저 $count_mushrooms는$ 3을 리턴해야 한다.

Constraints

• $2 \le n \le 20\ 000$

Scoring

어떤 테스트 케이스에서 프로시저 $use_machine$ 의 호출이 위에 언급된 규칙들을 지키지 않거나 또는 $count_mushrooms$ 의 리턴 값이 틀리면, 당신의 점수는 0이다. 그렇지 않으면, Q를 모든 테스트 케이스 중에서 프로시저 $use_machine$ 의 호출의 최대 횟수라고 하자. 점수는 다음 표에 따라 계산될 것이다:

Condition	Score
$20\ 000 < Q$	0
$10~010 < Q \leq 20~000$	10
$904 < Q \leq 10~010$	25
$226 < Q \leq 904$	$rac{226}{Q} \cdot 100$
$Q \leq 226$	100

어떤 테스트 케이스에서는 그레이더의 행동이 적응적(adaptive)이다. 이것은 이 테스트 케이스에서는 그레이더가 고정된 버섯 종류의 수열을 가지지 않음을 의미한다. 대신에, 그레이더에 의해 주어진 대답이 use_machine의 이전 호출에 따라 달라 질 수 있다. 그럼에도 불구하고, 각각의 대화(interaction) 후, 지금까지 주어진 대답들에 일치하는 적어도 하나의 버섯 종류의 수열이 존재하도록 그레이더는 답할 것임을 보장한다.

Sample grader

샘플 그레이더는 버섯 종류를 나타내는 정수들의 배열 s를 읽는다. 모든 $0 \le i \le n-1$ 에 대해서, s[i]=0는 버섯 i의 종류가 A임을 의미하고, s[i]=1은 버섯 i의 종류가 B임을 의미한다. 샘플 그레이더는 다음 형식으로 입력을 읽는다:

• line 1: n

• line 2: s[0] s[1] ... s[n-1]

샘플 그레이더의 결과는 다음 형식이다:

• line 1: count mushrooms의 리턴 값.

• line 2: use_machine의 호출 횟수.

샘플 그레이더는 적응적(adaptive)이 아님에 주목하자.