A proof-theoretic account of classical principles of truth

Graham E. Leigh

University of Oxford

Numbers and Truth conference, Göteborg, 19th October 2012

Outline

Framework

Consistency

Classical vs. intuitionistic logic Non-trivial models of $A \rightarrow TA$

Proof theoretic strength

Truth over classical logic Truth over intuitionistic logic A surprising result?

Outline

Framework

Consistency

Classical vs. intuitionistic logic Non-trivial models of $A \rightarrow TA$

Proof theoretic strength

Truth over classical logic Truth over intuitionistic logic A surprising result?

Framework

 \mathcal{L}_{T} denotes the language of arithmetic expanded by a fresh predicate symbol T.

T(A) represents "A is true."

 PA_T is Peano arithmetic in the language \mathcal{L}_T ; HA_T is Heyting arithmetic in \mathcal{L}_T .

Definition

 $\mathsf{Base}_\mathsf{T}^i$ is the theory extending HA_T by the following axioms:

- 1. $\forall A \forall B (TA \land T(A \rightarrow B) \rightarrow TB)$.
- **2.** $\forall x(valid^i(x) \rightarrow T(x)).$
- 3. TA, if A is the universal closure of an axiom of PRA.

Base_T is Base_Tⁱ + $\forall A T(A \lor \neg A) + LEM$.

Axiom Schemata

$$A \to \mathsf{T} A$$

 $TA \rightarrow A$

Axiom Schemata

$$A \rightarrow TA$$

 $TA \rightarrow A$

Axioms

$$TA \to TTA$$
(Comp)
$$TA \lor T \neg A$$

$$TTA \to TA$$

 $\neg (TA \land T \neg A)$ (Cons)

Axiom Schemata

$$A \to TA$$
 $TA \to A$

Axioms

Axiom Schemata

$$A \rightarrow TA$$

$$TA \rightarrow A$$

Axioms

Rules of Inference

$$A/TA$$
 $\neg A/\neg TA$ TA/A $\neg TA/\neg A$

Axiom Schemata

Axioms

$$A \to TA$$

 $TA \rightarrow TTA$

(Comp) $TA \lor T \neg A$

 $(Comp(w)) \neg TA \rightarrow T \neg A$

 $(\vee \text{-Inf}) \quad \mathsf{T}(A \vee B) \to \mathsf{T}A \vee \mathsf{T}B$

Rules of Inference

is some subset of the above principles.

A/TA

TA/A

A "theory of truth" is a theory $Base_T^1 + S$, or $Base_T + S$ where S

 $(TA \rightarrow TB) \rightarrow T(A \rightarrow B)$

 $T\exists x A(x) \rightarrow \exists x T A(\dot{x})$

 $\neg A/\neg TA$ $\neg TA / \neg A$

 $TA \rightarrow A$

 $TTA \rightarrow TA$

 $\forall x T A(\dot{x}) \rightarrow T \forall x A(x) \quad (\forall -Inf)$

 $\neg (TA \wedge T \neg A)$ (Cons)

(∃-Inf)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ◆○○○

Outline

Framework

Consistency

Classical vs. intuitionistic logic Non-trivial models of $A \rightarrow TA$

Proof theoretic strength

Truth over classical logic Truth over intuitionistic logic A surprising result?

Classical vs. intuitionistic logic

Theorem (Friedman & Sheard '87)

Of the fifteen principles on the previous side, there are exactly nine maximal consistent subsets over $Base_T$.

Classical vs. intuitionistic logic

Theorem (Friedman & Sheard '87)

Of the fifteen principles on the previous side, there are exactly nine maximal consistent subsets over $Base_T$.

Over Base_T the following principles are equivalent.

T-Comp: $TA \lor T \neg A$ T-Comp(w): $\neg TA \to T \neg A$

 \vee -Inf: $T(A \vee B) \rightarrow TA \vee TB$

Over intuitionistic logic, each pair of the above can be separated.

Classical vs. intuitionistic logic

Theorem (Friedman & Sheard '87)

Of the fifteen principles on the previous side, there are exactly nine maximal consistent subsets over $Base_T$.

Over Base_T the following principles are equivalent.

T-Comp: $TA \lor T \neg A$ T-Comp(w): $\neg TA \to T \neg A$

 \vee -Inf: $T(A \vee B) \rightarrow TA \vee TB$

Over intuitionistic logic, each pair of the above can be separated. Still:

Theorem (L & Rathjen '12)

Over $Base_T^i$ there are exactly nine maximal consistent sets.

Non-trivial models of $A \rightarrow TA$

The pair of principles $A \to TA$ and TA/A are inconsistent over Base_T.

Theorem

The following collection of axioms is consistent with $Base_{\mathrm{T}}^{i}$.

1)
$$A \rightarrow TA$$
 4) TA/A

2)
$$T(A \lor B) \to TA \lor TB$$
 5) $(TA \to TB) \to T(A \to B)$

3)
$$\forall x T[A(x)] \rightarrow T[\forall x A(x)]$$
 6) $T[\exists x A(x)] \rightarrow \exists x T[A(x)]$

Non-trivial models of $A \rightarrow TA$

The pair of principles $A \to TA$ and TA/A are inconsistent over Base_T.

Theorem

The following collection of axioms is consistent with $Base_{\mathrm{T}}^{i}$.

1)
$$A \rightarrow TA$$
 4) TA/A

2)
$$T(A \lor B) \to TA \lor TB$$
 5) $(TA \to TB) \to T(A \to B)$

3)
$$\forall x T[A(\dot{x})] \rightarrow T[\forall x A(x)]$$
 6) $T[\exists x A(x)] \rightarrow \exists x T[A(\dot{x})]$

Proof. Apply the rule-of-revision with intuitionistic Kripke models. Define a hierarchy of models such that $\mathfrak{A}_0 \models \forall A \, TA$ and

$$(\mathfrak{A}_{n+1} \models TA \Leftrightarrow \mathfrak{A}_n \models A)$$
 and $(\mathfrak{A}_{n+1} \models A \Rightarrow \mathfrak{A}_n \models A)$.

Then $\operatorname{Base}_{\mathrm{T}}^{i} + 1 - 6 \vdash A$ implies $\mathfrak{A}_{n} \models A$ for every n.

Outline

Framework

Consistency

Classical vs. intuitionistic logic Non-trivial models of $A \rightarrow TA$

Proof theoretic strength

Truth over classical logic Truth over intuitionistic logic A surprising result?

Truth over classical logic

Over $Base_T$, a proof-theoretic analysis of the maximal consistent theories yields:

Truth over intuitionistic logic

Over Base_T, a proof-theoretic analysis of the maximal consistent theories yields:

Maximal consistent set
$$(A \to TA) + \forall -\ln f + \dots$$
 Equivalent theories
$$(A \to TA) + \forall -\ln f + \dots$$
 ACA; PA + TI($<\varepsilon_{\epsilon_0}$) Cons + Comp + (TA \to TA) + \forall -Inf + \dots ACA; PA + TI($<\varepsilon_{\epsilon_0}$)
$$(TA/A) + (A/TA) + Cons + Comp + \forall -\ln f + \dots$$
 ACA; PA + TI($<\varepsilon_{\epsilon_0}$)
$$(TA/A) + (A/TA) + (TA) + (TA) + (TA) + (A \to TA) + \dots$$
 ACA; RA $_0$; RA $_0$;

Consider the theory

$$\mathcal{F}^i$$
: Baseⁱ_T + (TA/A) + (A/TA) + (TTA \rightarrow TA) + \forall -Inf + + Comp(w) + \exists -Inf + \vee -Inf.

Consider the theory

$$\mathcal{F}^i$$
: Baseⁱ_T + (TA/A) + (A/TA) + (TTA \rightarrow TA) + \forall -Inf + + Comp(w) + \exists -Inf + \vee -Inf.

Let

Then

- 1. Th_m has the disjunction and existence property for each m;
- **2.** Th_m \vdash_{ω} TA implies Th_m \vdash_{ω} A.

So

$$\mathcal{F}^i \vdash TA \implies \exists m \colon Th_m \vdash_{\omega} A$$
,

suggesting $\mathcal{F}^i \hookrightarrow \mathrm{ID}_{\scriptscriptstyle 1}^{*i}$.

How do we formally prove $Th_m \vdash_{\omega} TA \Rightarrow Th_m \vdash_{\omega} A$?

1. Express derivability in Th_m by a Gentzen-style sequent calculus: $\Gamma \Rightarrow_{\alpha}^{m} A$.

- 1. Express derivability in Th_m by a Gentzen-style sequent calculus: $\Gamma \Rightarrow_{\alpha}^{m} A$.
- **2.** Aim to prove that if $\varnothing \Rightarrow_{\alpha}^{m} T^{\Gamma} A^{\Gamma}$ then $\varnothing \Rightarrow_{f_{m}(\alpha)}^{m} A$.

- 1. Express derivability in Th_m by a Gentzen-style sequent calculus: $\Gamma \Rightarrow_{\alpha}^{m} A$.
- 2. Aim to prove that if $\varnothing \Rightarrow_{\alpha}^{m} T^{\Gamma} A^{\Gamma}$ then $\varnothing \Rightarrow_{f_{m}(\alpha)}^{m} A$.
- 3. For ordinals α , β , define $A^{(\alpha,\beta)}$ by: $T(s)^{(\alpha,\beta)}$ iff $\varnothing \Rightarrow_{\varphi_m\beta}^m s$; $(A \wedge B)^{(\alpha,\beta)}$ iff $A^{(\alpha,\beta)}$ and $B^{(\alpha,\beta)}$, ..., $(A \to B)^{(\alpha,\beta)}$ iff $A^{(\beta,\alpha)}$ implies $B^{(\alpha,\beta)}$.

- 1. Express derivability in Th_m by a Gentzen-style sequent calculus: $\Gamma \Rightarrow_{\alpha}^{m} A$.
- 2. Aim to prove that if $\varnothing \Rightarrow_{\alpha}^{m} T^{\Gamma} A^{\Gamma}$ then $\varnothing \Rightarrow_{f_{m}(\alpha)}^{m} A$.
- 3. For ordinals α , β , define $A^{(\alpha,\beta)}$ by: $T(s)^{(\alpha,\beta)}$ iff $\varnothing \Rightarrow_{\varphi_m\beta}^m s$; $(A \wedge B)^{(\alpha,\beta)}$ iff $A^{(\alpha,\beta)}$ and $B^{(\alpha,\beta)}$, ..., $(A \to B)^{(\alpha,\beta)}$ iff $A^{(\beta,\alpha)}$ implies $B^{(\alpha,\beta)}$.
- 4. Soundness of *m*-derivability:

If
$$\Gamma \Rightarrow_{\alpha}^{m} A$$
 then $(\bigwedge \Gamma \to A)^{(\gamma,\gamma+\omega^{\alpha})}$ for every γ .

How do we formally prove $Th_m \vdash_{\omega} TA \Rightarrow Th_m \vdash_{\omega} A$?

- 1. Express derivability in Th_m by a Gentzen-style sequent calculus: $\Gamma \Rightarrow_{\alpha}^{m} A$.
- 2. Aim to prove that if $\varnothing \Rightarrow_{\alpha}^{m} T^{\Gamma} A^{\Gamma}$ then $\varnothing \Rightarrow_{f_{m}(\alpha)}^{m} A$.
- 3. For ordinals α , β , define $A^{(\alpha,\beta)}$ by: $T(s)^{(\alpha,\beta)}$ iff $\varnothing \Rightarrow_{\varphi_m\beta}^m s$; $(A \wedge B)^{(\alpha,\beta)}$ iff $A^{(\alpha,\beta)}$ and $B^{(\alpha,\beta)}$, ..., $(A \to B)^{(\alpha,\beta)}$ iff $A^{(\beta,\alpha)}$ implies $B^{(\alpha,\beta)}$.
- 4. Soundness of *m*-derivability:

If
$$\Gamma \Rightarrow_{\alpha}^{m} A$$
 then $(\bigwedge \Gamma \to A)^{(\gamma,\gamma+\omega^{\alpha})}$ for every γ .

Proposition 1. If $\mathcal{F}^i \vdash_m A$ then $\varnothing \Rightarrow_{\varphi_{m+1}0}^m A$. Proposition 2. If $\mathcal{F}^i \vdash_m A \in \mathcal{L}$ then $HA + TI(<\varphi_{m+2}o) \vdash A$.