

SEQUENCE LISTING

<110> Saksena, Anil K

Girijavaliabhan, Viyyor M

Lovey, Raymond G

Jao, Edwin

Bennett, Frank

McCormick, Jinping L

Pike, Russell E

Bogen, Stephane L

Liu, Yi-Tsung

Arasappan, Ashok

Pinto, Patrick A

Njoroge, F George

Ganguly, Ashit

<120> NOVEL PEPTIDES AS NS3-SERINE PROTEASE INHIBITORS OF HEPATITIS C VIRUS

<130> IN01157K-US

<140> 09/909,062

<141> 2001-07-19

<150> 60/220,109

<151> 2000-07-21

<160> 149

<170> PatentIn version 3.1

<210> 1

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (6) .. (6)

<223> norvaline-C(=0)

<400> 1

Glu Glu Val Val Pro Xaa Gly

<210> 2

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

```
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Fmoc-Val
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> norvaline-diphenylmethyl semicarbazide (dpsc)
 <220>
 <221> MISC_FEATURE
 <222> (4)..(4)
 <223> Gly-PAM resin
 <400> 2
 Xaa Pro Xaa Xaa
  <210> 3
  <211> 5
  <212> PRT
  <213> Artificial Sequence
  <220>
  <223> synthetic peptide
  <220>
   <221> MISC_FEATURE
   <222> (1)..(1)
```

<223> Fmoc-Val <220> <221> MISC_FEATURE <222> (4)..(4) <223> norvaline-diphenylmethyl semicarbazide (dpsc) <220> <221> MISC_FEATURE <222> (5)..(5) <223> Gly-PAM resin <400> 3 Xaa Val Pro Xaa Xaa <210> 4 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> synthetic peptide <220> <221> MISC_FEATURE <222> (1)..(1) <223> Fmoc-Glu(OtBu)

<220>

```
<221> MISC_FEATURE
<222> (5)..(5)
<223> norvaline-diphenylmethyl semicarbazide (dpsc)
<220>
<221> MISC_FEATURE
<222> (6)..(6)
 <223> Gly-PAM resin
 <400> 4
 Xaa Val Val Pro Xaa Xaa
 <210> 5
 <211> 7
 <212> PRT
 <213> Artificial Sequence
  <220>
  <223> synthetic peptide
  <220>
  <221> MISC_FEATURE
  <222> (1)..(1)
  <223> Fmoc-Glu(OtBu)
  <220>
  <221> MISC_FEATURE
   <222> (2)..(2)
```

<223> Glu(OtBu)

```
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> norvaline-diphenylmethyl semicarbazide (dpsc)
 <220>
 <221> MISC_FEATURE
 <222> (7)..(7)
 <223> Gly-PAM resin
  <400> 5
 Xaa Xaa Val Val Pro Xaa Xaa
  <210> 6
  <211> 7
   <212> PRT
   <213> Artificial Sequence
   <220>
   <223> synthetic peptide
    <220>
    <221> MISC_FEATURE
    <222> (1)..(1)
    <223> acetyl-Glu(OtBu)
     <220>
     <221> MISC_FEATURE
```

```
<222> (2)..(2)
```

<220>

<220>

<220>

<220>

```
<220>
```

<221> MISC_FEATURE

<222> (2)..(2)

<223> Glu(OtBu)

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

<220>

<221> MISC_FEATURE

<222> (7)..(7)

<223> Gly-PAM resin

<400> 7

Xaa Xaa Val Val Pro Xaa Xaa 1

<210> 8

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> acetyl-Glu

```
<220>
```

<220>

<223> ACETYLATION

<220>

```
<210> 10
```

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> sar.

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

<400> 10

Glu Glu Val Val Xaa Xaa Gly

<210> 11

<211> 7

- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (5)..(5)
- <223> Aze
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)
- <400> 11
- Glu Glu Val Val Xaa Xaa Gly 1 5
- <210> 12
- <211> 7
- <212> PRT
- <213> Artificial Sequence

- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (4)..(4)
- <223> G (Chx)
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)
- <400> 12
- Glu Glu Val Xaa Pro Xaa Gly 1 5
- <210> 13
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>

- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)
- <400> 13
- Glu Glu Val Phe Pro Xaa Gly 1 5
- <210> 14
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)

<400> 14

Glu Glu Val Ile Pro Xaa Gly 1 5

<210> 15

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<<223> dl-pip-norvaline-C-(=0)

<400> 15

Glu Glu Val Val Xaa Gly

<210> 16

<211> 6

<212> PRT

<213> Artificial Sequence

```
<220>
```

<223> synthetic peptide

<220>

<221> MOD_RES

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<223> Tiq-norvaline-C(=0)

<400> 16

Glu Glu Val Val Xaa Gly 1 5

<210> 17

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

```
<220>
```

<221> MISC_FEATURE

<222> (5)..(5)

<223> Cys (Me)

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

<400> 17

Glu Glu Val Val Xaa Xaa Gly 1

<210> 18

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Cysteine (O2, Met)

```
<220>
```

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

<400> 18

Glu Glu Val Val Xaa Xaa Gly 1 5

<210> 19

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Cys (2-AcOH)

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

<400> 19

Glu Glu Val Val Xaa Xaa Gly 1 5

<210> 20

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Met (O2)

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 20

Glu Glu Val Val Xaa Xaa Gly

<210> 21

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Pro (4t-Bn)

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

<400> 21

Glu Glu Val Val Xaa Xaa Gly 1 5

<210> 22

```
<211> 7
```

- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MISC_FEATURE
- <222> (5)..(5)
- <223> Pro (4t-Bn(4-OMe))
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <400> 22
- Glu Glu Val Val Xaa Xaa Gly 1 5
- <210> 23
- <211> 7
- <212> PRT
- <213> Artificial Sequence

```
<220>
```

<223> synthetic peptide

<220>

<221> MOD_RES

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Pro (4t-ally1)

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

<400> 23

Glu Glu Val Val Xaa Xaa Gly

<210> 24

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

```
<220>
```

- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)
- <400> 24
- Glu Glu Val Val Asp Xaa Gly
- <210> 25
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)

```
<400> 25
```

Glu Glu Val Val Glu Xaa Gly 1 5

- <210> 26
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)
- <400> 26
- Glu Glu Val Val Phe Xaa Gly
 1 5
- <210> 27
- <211> 7
- <212> PRT
- <213> Artificial Sequence

```
<220>
```

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Pro-(4t-AcOH)

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

<400> 27

Glu Glu Val Val Xaa Xaa Gly

<210> 28

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <400> 28
- Glu Glu Ser Val Pro Xaa Gly
- <210> 29
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)

<400> 29

Glu Ala Val Val Pro Xaa Gly 1 5

<210> 30

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

<400> 30

Glu Glu His Val Pro Xaa Gly 1 5

<210> 31

<211> 7

<212> PRT

<213> Artificial Sequence

```
<220>
```

<223> synthetic peptide

<220>

<221> MOD_RES

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

<400> 31

Glu Glu Asn Val Pro Xaa Gly 1 5

<210> 32

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

- <220>
- <221> MISC_FEATURE
- <222> (5)..(5)
- <223> Pro (4t-Ph)
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)
- <400> 32
- Glu Glu Val Val Xaa Xaa Gly
- <210> 33
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (5)..(5)
- <223> Pro (3t-Me)

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

<400> 33

Glu Glu Val Val Xaa Xaa Gly

<210> 34

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (3)..(3)

<223> Orn.

<220>

<221> MISC_FEATURE

<400> 34

Glu Glu Xaa Val Pro Xaa Gly 1 5

- <210> 35
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (2)..(2)
- <223> D-Glu
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)

Glu Xaa Val Val Pro Xaa Gly

<210> 36

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (3)..(3)

<223> (s,s)allo-Thr

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

<400> 36

Glu Glu Xaa Val Pro Xaa Gly 1 5

<210> 37

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (3)..(3)

<223> Dif

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

<400> 37

Glu Glu Xaa Val Pro Xaa Gly

<210> 38

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (3)..(3)

<223> diaminobutyric acid

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

<400> 38

Glu Glu Xaa Val Pro Xaa Gly 1 5

<210> 39

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

```
<220>
```

- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)
- <400> 39
- Glu Glu Asp Val Pro Xaa Gly
- <210> 40
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)

<400> 40

Glu Glu Glu Val Pro Xaa Gly 1 5

<210> 41

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

<400> 41

Glu Glu Thr Val Pro Xaa Gly

<210> 42

<211> 7

<212> PRT

<213> Artificial Sequence

- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)
- <400> 42
- Ala Glu Val Val Pro Xaa Gly
 1 5
- <210> 43
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

<400> 43

Glu Glu Leu Val Pro Xaa Gly 1 5

<210> 44

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

<220>

<221> MISC_FEATURE

<222> (7)..(7)

<223> Gly-AllylAm

<400> 44

Glu Glu Val Val Pro Xaa Xaa 1

<210> 45

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> Glu (OtBu)

<220>

<221> MISC_FEATURE

<222> (2)..(2)

<223> Glu (OtBu)

<400> 45

Xaa Xaa Val Val Pro 1 5

<210> 46

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> Fmoc-Glu(OtBu)

<220>

<221> MISC_FEATURE

<222> (4)..(4)

<223> Pro-2ClTrt resin

<400> 46

Xaa Val Val Xaa

1

<210> 47

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

- <220>
- <221> MISC_FEATURE
- <222> (1)..(1)
- <223> Fmoc-Glu(OtBu)
- <220>
- <221> MISC_FEATURE
- <222> (5)..(5)
- <223> Pro-2ClTrt resin
- <220>
- <221> MISC_FEATURE
- <222> (2)..(2)
- <223> Glu(OtBu)
- <400> 47
- Xaa Xaa Val Val Xaa 1 5
- <210> 48
- <211> 5
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MISC_FEATURE
- <222> (1)..(1)
- <223> acetyl-Glu(OtBu)

```
<220>
```

<222> (5)..(5)

<223> Pro-2ClTrt resin

<220>

<221> MISC_FEATURE

<222> (2)..(2)

<223> Glu(OtBu)

<400> 48

Xaa Xaa Val Val Xaa

<210> 49

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> acetyl-Glu(OtBu)

<220>

<221> MISC_FEATURE

<400> 49

Xaa Xaa Val Val Pro 1 5

- <210> 50
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MISC_FEATURE
- <222> (1)..(1)
- <223> acetyl-Glu(OtBu)
- <220>
- <221> MISC_FEATURE
- <222> (2)..(2)
- <223> Glu(OtBu)
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-(CHOH)

- <220>
- <221> MISC_FEATURE
- <222> (7)..(7)
- <223> Gly-OEt
- <400> 50
- Xaa Xaa Val Val Pro Xaa Xaa 1 5
- <210> 51
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MISC_FEATURE
- <222> (1)..(1)
- <223> acetyl-Glu(OtBu)
- <220>
- <221> MISC_FEATURE
- <222> (2)..(2)
- <223> Glu(OtBu)
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-(CHOH)

<400> 51

Xaa Xaa Val Val Pro Xaa Gly

<210> 52

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> acetyl-Glu(OtBu)

<220>

<221> MISC_FEATURE

<222> (2)..(2)

<223> Glu(OtBu)

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(CHOH)

<220>

<221> MISC_FEATURE

<222> (7)..(7)

<223> Gly-allylamide

<400> 52

Xaa Xaa Val Val Pro Xaa Xaa

<210> 53

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> acetyl-Glu(OtBu)

<220>

<221> MISC_FEATURE

<222> (2)..(2)

<223> Glu(OtBu)

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

- <220>
- <221> MISC_FEATURE
- <222> (7)..(7)
- <223> Gly-allylamide
- <400> 53
- Xaa Xaa Val Val Pro Xaa Xaa 1 5
- <210> 54
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MISC_FEATURE
- <222> (1)..(1)
- <223> acetyl-Glu
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)
- <220>
- <221> MISC_FEATURE
- <222> (7)..(7)
- <223> Gly-allylamide

```
<400> 54
```

Xaa Glu Val Val Pro Xaa Xaa 1 5

- <210> 55
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)
- <220>
- <221> MISC_FEATURE
- <222> (7)..(7)
- <223> Gly-allylAm
- <400> 55
- Glu Glu Val Val Pro Xaa Xaa

```
<210> 56
```

- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)
- <220>
- <221> MISC_FEATURE
- <222> (7)..(7)
- <223> Gly-PropAm
- <400> 57
- Glu Glu Val Val Pro Xaa Xaa
- <210> 58
- <211> 7
- <212> PRT
- <213> Artificial Sequence

- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)
- <220>
- <221> MISC_FEATURE
- <222> (7)..(7)
- <223> Gly-propynylAm
- <400> 58
- Glu Glu Val Val Pro Xaa Xaa 1 5
- <210> 59
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>

- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)
- <220>
- <221> MISC_FEATURE
- <222> (7)..(7)
- <223> Gly-iPrAm
- <400> 59
- Glu Glu Val Val Pro Xaa Xaa
- <210> 60
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION

```
<220>
```

- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)
- <220>
- <221> MISC_FEATURE
- <222> (7)..(7)
- <223> Gly (OAllyl)
- <400> 60
- Glu Glu Val Val Pro Xaa Xaa 1 5
- <210> 61
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MISC_FEATURE
- <222> (1)..(1)
- <223> acetyl-Glu(OtBu)
- <220>
- <221> MISC_FEATURE

```
<222> (2)..(2)
```

```
<220>
```

<222> (2)..(2)

<223> Glu(OtBu)

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

<220>

<221> MISC_FEATURE

<222> (7)..(7)

<223> Gly-(OAllyl)

<400> 62

Xaa Xaa Val Val Pro Xaa Xaa

<210> 63

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

```
<220>
```

<222> (6)..(6)

<223> norvaline-C(=0)

<220>

<221> MISC_FEATURE

<222> (7)..(7)

<223> Gly-(OAllyl)

<400> 63

Glu Glu Val Val Pro Xaa Xaa 1 5

<210> 64

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<220>

<220>

<223> ACETYLATION

- <220>
- <221> MISC_FEATURE
- <222> (7)..(7)
- <223> Gly-(OAllyl)
- <400> 65
- Glu Glu Val Val Pro Xaa Xaa
- <210> 66
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> Valine-C(=0)
- <220>
- <221> MISC_FEATURE
- <222> (7)..(7)
- <223> Gly-(OAllyl)

```
<400> 66
```

Glu Glu Val Val Pro Xaa Xaa 1 5

- <210> 67
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> Leucine-C(=0)
- <220>
- <221> MISC_FEATURE
- <222> (7)..(7)
- <223> Gly-(OAllyl)
- <400> 67
- Glu Glu Val Val Pro Xaa Xaa

```
<210> 68
```

- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)
- <220>
- <221> MISC_FEATURE
- <222> (7)..(7)
- <223> Gly-OEt
- <400> 69
- Glu Glu Val Val Pro Xaa Xaa
- <210> 70
- <211> 7
- <212> PRT
- <213> Artificial Sequence

```
<220>
```

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> Gly-(ally1)-C(=0)

<220>

<221> MISC_FEATURE

<222> (7)..(7)

<223> Gly-(OAllyl)

<400> 70

Glu Glu Val Val Pro Xaa Xaa 1 5

<210> 71

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> Leucine-C(=0)
- <220>
- <221> MISC_FEATURE
- <222> (7)..(7)
- <223> Gly-(OAllyl)
- <400> 71
- Glu Glu Val Val Gly Xaa Xaa
- <210> 72
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION

```
<220>
```

<222> (6)..(6)

<223> norvaline-C(=0)

<220>

<221> MISC_FEATURE

<222> (7)..(7)

<223> Gly-(OtBu)

<400> 72

Glu Glu Val Val Pro Xaa Xaa 1 5

<210> 73

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<220>

<223> ACETYLATION

```
<220>
```

<222> (7)..(7)

<223> Gly-OMe

<400> 74

Glu Glu Val Val Pro Xaa Xaa

<210> 75

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Gly (N-Bu(4NH2, 4-CO2H))

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

```
<400> 75
Glu Glu Val Val Xaa Xaa Gly
<210> 76
<211> 7
<212> PRT
<213> Artificial Sequence
 <220>
 <223> synthetic peptide
 <220>
 <221> MOD_RES
 <222> (1)..(1)
 <223> ACETYLATION
  <220>
  <221> MISC_FEATURE
  <222> (5)..(5)
  <223> Gly (N-Bu(4NH2, 4-COOH))
  <220>
  <221> MISC_FEATURE
  <222> (6)..(6)
   <223> norvaline-C(=0)
   <400> 76
```

Glu Glu Val Val Xaa Xaa Gly

```
<210> 77
```

- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (5)..(5)
- <223> Gly(N-Et(CO2H))
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-C(=0)
- <400> 78
- Glu Glu Val Val Xaa Xaa Gly
- <210> 79
- <211> 7
- <212> PRT
- <213> Artificial Sequence

```
<220>
```

<223> synthetic peptide

<220>

<221> MOD_RES

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Gly(N-EtPh(3,4 diOMe))

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-C(=0)

<400> 79

Glu Glu Val Val Xaa Xaa Gly 1 5

<210> 80

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

```
<221> MOD_RES
```

<210> 81

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

```
<220>
```

<400> 81

<220>

<220>

<213> Artificial Sequence

<220>

<400> 82

Xaa Xaa Xaa Xaa

1

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> Fmoc-Val

```
<220>
```

<222> (2)..(2)

<223> Gly(N-Et(NHBz))

<220>

<221> MISC_FEATURE

<222> (3)..(3)

<223> norvaline-(dspc)

<220>

<221> MISC_FEATURE

<222> (4)..(4)

<223> Gly-PAM resin

<400> 83

Xaa Xaa Xaa Xaa

<210> 84

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

```
<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Gly(N-Et(NHBz))
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> norvaline-(C=0)
 <400> 84
 Glu Glu Val Val Xaa Xaa Gly
 <210> 85
 <211s 7
 <212> PRT
 <213> Artificial Sequence
  <220>
  <223> synthetic peptide
  <220>
  <221> MOD_RES
  <222> (1)..(1)
  <223> ACETYLATION
   <220>
```



```
<222> (5)..(5)
```

<400> 85

<210> 86

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Gly(N-Prop(NHBz))

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 86

Glu Glu Val Val Xaa Xaa Gly

<210> 87

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MOD_RES

<222> (6)..(6)

<223> AMIDATION

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)

```
<400> 87
```

Glu Glu Val Val Pro Xaa 1 5

<210> 88

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> acetyl-Glu(OtBu)

<220>

<221> MISC_FEATURE

<222> (2)..(2)

<223> Glu(OtBu)

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(CHOH)-CONH2

<400> 88

Xaa Xaa Val Val Pro Xaa

```
<210> 89
```

<400> 89

```
<212> PRT
```

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)-CONH2

<400> 90

Glu Glu Val Val Pro Xaa

<210> 91

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD RES

<222> (1) .. (1)

<223> ACETYLATION

```
<220>
```

<222> (6)..(6)

<223> norvaline-(C=O)-Am

<400> 91

Glu Glu Val Val Pro Xaa · 5

<210> 92

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Pro(4t-MeNHBzl(3-OPh))

<220>

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 92

Glu Glu Val Val Xaa Xaa Gly

<210> 93

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> acetyl-Glu(OtBu)

<220>

<221> MISC_FEATURE

<222> (2)..(2)

<223> Glu(OtBu)

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Pro(4t-MeNHFmoc)

- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-(dpsc)
- <220>
- <221> MISC_FEATURE
- <222> (7)..(7)
- <223> Gly-PAM resin
- <400> 93
- Xaa Xaa Val Val Xaa Xaa Xaa
- <210> 94
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MISC_FEATURE
- <222> (1)..(1)
- <223> acetyl-Glu(OtBu)
- <220>
- <221> MISC_FEATURE
- <222> (2)..(2)
- <223> Glu(OtBu)

- <220>
- <221> MISC_FEATURE
- <222> (5)..(5)
- <223> Pro(4t-MeNH2)
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-(dspc)
- <220>
- <221> MISC_FEATURE
- <222> (7)..(7)
- <223> Gly-PAM resin
- <400> 94
- Xaa Xaa Val Val Xaa Xaa Xaa
- <210> 95
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MISC_FEATURE

<222> (1)..(1)

<223> acetyl-Glu(OtBu)

<220>

<221> MISC_FEATURE

<222> (2)..(2)

<223> Glu(OtBu)

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Pro(4t-MeNHBzl(3-OPh))

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(dspc)

<220>

<221> MISC_FEATURE

<222> (7)..(7)

<223> Gly-PAM resin

<400> 95

Xaa Xaa Val Val Xaa Xaa Xaa

<210> 96

<211> 7

- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (5)..(5)
- <223> Pro(4t-MeNHBzl(3-OPh))
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-(C=O)
- <400> 96
- Glu Glu Val Val Xaa Xaa Gly 1 5
- <210> 97
- <211> 7
- <212> PRT
- <213> Artificial Sequence

- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (5)..(5)
- <223> Pro(4t-MeNHCO2Ph)
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-(C=O)
- <400> 97
- Glu Glu Val Val Xaa Xaa Gly 1 5
- <210> 98
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>

- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (5)..(5)
- <223> Pro(4t-MeNHCOPh)
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-(C=O)
- <400> 98
- Glu Glu Val Val Xaa Xaa Gly \
- <210> 99
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION

```
<220>
```

<222> (5)..(5)

<223> Pro(4t-MeNH-Fmoc)

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 99

Glu Glu Val Val Xaa Xaa Gly 1 5

<210> 100

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

```
<222> (5)..(5)
```

<400> 100

<210> 101

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Pro(4t-MeUreaPh)

```
<220>
```

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 101

Glu Glu Val Val Xaa Xaa Gly

<210> 102

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC FEATURE

<222> (5)..(5)

<223> Pro(4t-NH-Fmoc)

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)

```
<400> 102
```

Glu Glu Val Val Xaa Xaa Gly

<210> 103

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Pro(4t-NHBZ1)

<220>

<221> MISC_FEATURE

(6)..(6) <222>

<223> norvaline-(C=0)

<400> 103

Glu Glu Val Val Xaa Xaa Gly

- <210> 104
- <211> 4
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MISC_FEATURE
- <222> (1)..(1)
- <223> Fmoc-Val
- <220>
- <221> MISC_FEATURE
- <222> (2)..(2)
- <223> Pro(4t-NHBz1)
- <220>
- <221> MISC_FEATURE
- <222> (3)..(3)
- <223> norvaline-(dpsc)
- <220>
- <221> MISC_FEATURE
- <222> (4)..(4)
- <223> Gly-PAM resin
- <400> 104

Xaa Xaa Xaa Xaa

1

<210> 105

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> Fmoc-Val

<220>

<221> MISC_FEATURE

<222> (3)..(3)

<223> Pro(4t-NHBzl)

<220>

<221> MISC_FEATURE

<222> (4)..(4)

<223> norvaline-(dpsc)

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Gly-PAM resin

<400> 105

Xaa Val Xaa Xaa Xaa

<210> 106

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> Fmoc-Glu(OtBu)

<220>

<221> MISC_FEATURE

<222> (4)..(4)

<223> Pro(4t-NHBzl)

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> norvaline-(dpsc)

<220>

Xaa Val Val Xaa Xaa Xaa

- <210> 107
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MISC_FEATURE
- <222> (1)..(1)
- <223> Fmoc-Glu(OtBu)
- <220>
- <221> MISC_FEATURE
- <222> (2)..(2)
- <223> Glu(OtBu)
- <220>
- <221> MISC_FEATURE
- <222> (5)..(5)
- <223> Pro(4t-NHBz1)

- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-(dpsc)
- <220>
- <221> MISC_FEATURE
- <222> (7)..(7)
- <223> Gly-PAM resin
- <400> 107
- Xaa Xaa Val Val Xaa Xaa Xaa
- <210> 108
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (5)..(5)
- <223> Pro(4t-NHBzl)

```
<220>
```

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 108

Glu Glu Val Val Xaa Xaa Gly

<210> 109

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Pro(4t-NHBzl(4-OMe))

<220>

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 109

Glu Glu Val Val Xaa Xaa Gly
1 5

<210> 110

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<2225 (1) ... (1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Pro(4t-NHBzl(4-OPh))

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 110

```
Glu Glu Val Val Xaa Xaa Gly
<210> 111
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
      synthetic peptide
<223>
<220>
<221> MOD_RES
<222> (1)..(1)
<223> ACETYLATION
<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Pro(4t-NHBzl(3-OPh))
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> norvaline-(C=O)
<400> 111
Glu Glu Val Val Xaa Xaa Gly
```

<210> 112

```
<211> 7
```

<220>

<400> 112

```
<220>
```

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Pro(4t-NHBzl(4F))

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 113

Glu Glu Val Val Xaa Xaa Gly

<210> 114

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Pro(4t-NHiBoc)

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline (C=O)

<400> 114

Glu Glu Val Val Xaa Xaa Gly

<210> 115

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<221> MISC_FEATURE

<222> (5)..(5)

<223> Pro(4t-NHSO2Ph)

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 115

Glu Glu Val Val Xaa Xaa Gly 1 5

<210> 116

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<220>

<220>

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 117

Glu Glu Val Val Xaa Xaa Gly

<210> 118

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Pro(4t-UreaPh(4-OMe))

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 118

Glu Glu Val Val Xaa Xaa Gly

<210> 119

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 119

Glu Glu Val Val Pro Xaa 1 5

<210> 120

<211> 6

<212> PRT

<213> Artificial Sequence

```
<220>
```

<223> synthetic peptide

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> acetyl-Glu(OtBu)

<220>

<221> MISC_FEATURE

<222> (2)..(2)

<223> Glu(OtBu)

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(CHOH)-OEt

<400> 120

Xaa Xaa Val Val Pro Xaa 1 5

<210> 121

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<400> 121

Xaa Xaa Val Val Pro Xaa

<213> Artificial Sequence

<220>

<220>

<223> ACETYLATION

```
<220>
<221> MISC_FEATURE
     (6)..(6)
<222>
<223> norvaline-(CHOH)-carboxylic acid
<400> 122
Glu Glu Val Val Pro Xaa
<210> 123
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic peptide
<220>
<221> MOD_RES
<222> (1)..(1)
<223> ACETYLATION
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> norvaline-(C=0)-carboxylic acid
```

<400> 123

Glu Glu Val Val Pro Xaa

```
<210> 124
```

<223> NS5A-NS5B junction sequence

<213> Artificial Sequence

```
<220>
```

- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (7)..(7)
- <223> alanine or proline
- <220>
- <221> MISC_FEATURE
- <222> (8)..(8)
- <223> norvaline
- <400> 125
- Asp Thr Glu Asp Val Val Xaa Xaa 1 5
- <210> 126
- <211> 5
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION

```
<220>
```

- <221> MISC_FEATURE
- <222> (2)..(2)
- <223> D-Gla
- <220>
- <221> MISC_FEATURE
- <222> (4)..(4)
- <223> I-(Cha)
- <400> 126
- Asp Xaa Leu Xaa Cys
- <210> 127
- <211> 8
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE

```
<222> (8)..(8)
```

<223> norvaline

<400> 127

Asp Thr Glu Asp Val Val Ala Xaa 1 5

<210> 128

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (8)..(8)

<223> norvaline

<400> 128

Asp Thr Glu Asp Val Val Pro Xaa 1

<210> 129

<211> 6

- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-(C=O)-iPrAm
- <400> 129
- Giu Glu Val Val Pro Xaa 1 5
- <210> 130
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION

```
<220>
```

- <221> MOD_RES
- <222> (7)..(7)
- <223> AMIDATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-(C=O)
- <400> 130
- Glu Glu Val Val Pro Xaa Gly
 1 5
- <210> 131
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE

<220>

<220>

<223> ACETYLATION

```
<220>
```

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 132

Glu Glu Val Val Xaa Xaa Gly 1 5

<210> 133

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> thio-Pro

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)

```
<400> 133
```

Glu Glu Val Val Xaa Xaa Gly

<210> 134

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

synthetic peptide <223>

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Pro-(4t-NH2)

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 134

Glu Glu Val Val Xaa Xaa Gly

```
<210> 135
```

<400> 135

- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (3)..(3)
- <223> Ala(2-Np)
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-(C=0)
- <400> 136
- Glu Glu Xaa Val Pro Xaa Gly
- <210> 137
- <211> 7
- <212> PRT
- <213> Artificial Sequence

```
<220>
```

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (3)..(3)

<223> Phe(alpha-Me)

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 137

Glu Glu Xaa Val Pro Xaa Gly 1 5

<210> 138

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

```
<221> MOD_RES
```

<400> 138

Glu Glu Val Leu Pro Xaa Gly

<210> 139

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (4)..(4)

<223> Gly(t-Bu)

```
<220>
```

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 139

Glu Glu Val Xaa Pro Xaa Gly 1 5

<210> 140

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 140

Glu Glu Val Ser Pro Xaa Gly

]

```
<210> 141
```

<400> 141

<210> 142

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (4)..(4)
- <223> norleucine
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-(C=O)
- <400> 142
- Glu Glu Val Xaa Pro Xaa Gly 1 5
- <210> 143
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION

```
<220>
```

<221> MISC_FEATURE

<222> (4)..(4)

<223> Dif

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 143

Glu Glu Val Xaa Pro Xaa Gly

<210> 144

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<220>

<400> 145

Glu Glu Val Asn Pro Xaa Gly

<210> 146

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<220>

<221> MOD_RES

<222> (1)..(1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> norvaline-(C=O)

<400> 146

Glu Glu Val Gln Pro Xaa Gly 1 5

<210> 147

<211> 7

<212> PRT

<213> Artificial Sequence

- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> norvaline-(C=O)
- <400> 147
- Glu Glu Phe Val Pro Xaa Gly 1 5
- <210> 148
- <211> 7
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> synthetic peptide
- <220>
- <221> MOD_RES
- <222> (1)..(1)
- <223> ACETYLATION
- <220>
- <221> MISC_FEATURE

```
<222> (6)..(6)
```

<223> ACETYLATION

<220>

<400> 149