My grades for **Homework 2**

Therefore, $g=\sqrt{6}$, the life to the law to the law to the life to the law to the life to the law to the life to

Q2 25 / 25

Refer to the assignment PDF.

Problem 2. For any $\varepsilon \in (0,1/4)$, u(1,u)-cut sparsifier of an undirected waveighted graph G = (V, E) is a weighted spanning unburgue $H = (V, E_B)$ of G with weights $u \in E_B = E^0$ such that for every on $S \in V$, $(1,u) \in (V, E_B)$ of G with G weights $u \in E_B = E^0$ such that for every on $S \in V$, $(1,u) \in (V, E_B)$ is the G of G with weights $u \in E_B = F^0$ such that for every on $S \in V$, $(1,u) \in (V, E)$ is the G of G with G of G of

Then, we perform a union bound over all cuts to bound the probability that our sampled graph is not a clear will not yield the desired rends. We see the lint to union bound in a new correct way (details below). First, take a cut S and let k = |S(S)|. Define k indicates variables X_1, \dots, X_k where $X_1 = \begin{cases} 1 & \text{if } |x| \text{ in } |S \text{ is manyled} \\ 0 & \text{otherwise} \end{cases}$ and define $X = \sum_{i=1}^k X_i = 1$.

To satisfy a $(1 \pm e)$ -cut possible for the one $X_i = |X_i| = 1$. The probability of the size of the cut $X_i = |X_i| = 1$. To satisfy a $(1 \pm e)$ -cut possible for the one $X_i = |X_i| = 1$. So we use using a swight of 1/p to each edge, $w(f_H(S)) \leq 1 + e > |f_H(S)|$.

Since we using a swight of 1/p to each edge, $w(f_H(S)) \leq 1 + e > |f_H(S)|$. $(1-e) \cdot |f_H(S)| \leq w(f_H(S)) \leq (1+e) \cdot |f_H(S)|$ $+(1-e) \cdot |f_H(S)| \leq w(f_H(S)) \leq (1+e) \cdot |f_H(S)|$ $+(1-e) \cdot |f_H(S)| \leq w(f_H(S)) \leq (1+e) \cdot |f_H(S)|$ $+(1-e) \cdot |f_H(S)| \leq w(f_H(S)) \leq w(f_H(S)) \leq w(f_H(S))$ Using Chernoft, we are that $P(X - E[X]) \leq eE[X] \leq 2\exp\left(-\frac{e^2 + k}{2}\right)$ Now, we rewrite the size of our cut S as a multiple of the size of the smallest cut: $k = \alpha \lambda$. So, $P^*(X - E[X]) \leq eE[X] \leq 2\exp\left(-\frac{e^2 + k}{3}\right)$ $-2\exp\left(-\frac{e^2 + k}{3}\right)$

