Algorithms

Lecture 5: Amortized Analysis

Anxiao (Andrew) Jiang

CH. 17 Amortized Analysis

```
for i from 1 to x

{
Operations
O(y)
}
```

"Amortized Analysis" can sometimes help us get tighter bounds for time complexity.

Example: Stack Operations

Stack: first-in-last-out (FILO)

Example: Stack Operations

Push 3

Example: Stack Operations

Push	2
_	3

Example: Stack Operations

Push	100
•	2
	3

Example: Stack Operations

Рор	
	2
	3

Example: Stack Operations

Example: Stack Operations

Size of Stack: |S| = 1

Operations:

- 1) PUSH: push a number into stack
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Example: Stack Operations

Size of Stack: |S| = 1

Operations:

1) PUSH: push a number into stack Cost: 1

2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Example: Stack Operations

Size of Stack: |S| = 1

Operations:

1) PUSH: push a number into stack Cost: 1

2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Example: Stack Operations

Size of Stack: |S| = 1

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

- 1) PUSH: push a number into stack Cost: 1
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Is it $O(n^2)$?

Example: Stack Operations

Size of Stack: |S| = 1

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

- 1) PUSH: push a number into stack Cost: 1
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Is it
$$O(n^2)$$
?
It is actually $O(n)$

Observation: The stack is initially empty. To pop out a number, we first need to push it in to the stack.

So the cost of POP operations can never be more than the cost of PUSH operations. (No matter what k is in POP(k).)

Observation: The stack is initially empty. To pop out a number, we first need to push it in to the stack.

So the cost of POP operations can never be more than the cost of PUSH operations. (No matter what k is in POP(k).)

Total cost of PUSH operations $\leq n$

Observation: The stack is initially empty. To pop out a number, we first need to push it in to the stack.

So the cost of POP operations can never be more than the cost of PUSH operations. (No matter what k is in POP(k).)

Total cost of PUSH operations $\leq n$

Total cost of POP operations $\leq n$

Observation: The stack is initially empty. To pop out a number, we first need to push it in to the stack.

So the cost of POP operations can never be more than the cost of PUSH operations. (No matter what k is in POP(k).)

Total cost of PUSH operations $\leq n$

Total cost of POP operations $\leq n$

Total cost of n operations: $\leq 2n$, or O(n)

Example: Counter Incrementation

Counter: 0, 1, 2, 3,

000000000

- 000000000
- 1 0000000001

- 0 0 0 0 0 0 0 0 0
- 1 000000001
- 2 000000010

- 3 000000011

```
0 0000000000
1 000000000
2 0000000010
3 0000000011
4 0000000101
5 000000101
```

```
0 0000000000
1 000000000
2 0000000001
3 0000000011
4 0000000100
5 0000000110
6 0000000110
```

```
000000000
0
     000000001
     000000010
     000000011
     000000100
5
     000000101
6
     000000110
     000000111
8
     000001000
     000001001
9
     000001010
10
```

```
000000000
0
     000000001
     000000010
3
     000000011
     000000100
5
     000000101
6
     000000110
     000000111
8
     000001000
     0000001001
9
     000001010
10
     0000001011
11
```

```
000000000
0
     000000001
     000000010
3
     000000011
     000000100
5
     000000101
6
     000000110
     000000111
8
     000001000
9
     0000001001
     000001010
10
     0000001011
11
```

```
000000000
0
                    cost: 1
     000000001
     000000010
3
     000000011
     000000100
5
     000000101
6
     000000110
     000000111
8
     000001000
9
     0000001001
     000001010
10
     0000001011
11
```

```
000000000
0
                    cost: 1
      000000001
                     cost: 2
      000000010
3
     000000011
     000000100
5
     000000101
6
     000000110
     000000111
8
     000001000
9
     0000001001
     000001010
10
     0000001011
11
```

```
000000000
0
                     cost: 1
      000000001
                     cost: 2
      000000010
                      cost: 1
3
      000000011
      000000100
5
     000000101
6
      000000110
      000000111
8
     000001000
9
     0000001001
     000001010
10
     0000001011
11
```

```
000000000
0
                     cost: 1
      000000001
                      cost: 2
      000000010
                       cost: 1
3
      000000011
                     cost: 3
      000000100
      000000101
5
6
      000000110
      000000111
8
      000001000
9
      0000001001
      000001010
10
      0000001011
11
```

```
000000000
0
                      cost: 1
      000000001
                      cost: 2
      000000010
                       cost: 1
3
      000000011
                      cost: 3
      000000100
                       cost: 1
      000000101
5
6
      000000110
      0000000111
8
      000001000
9
      0000001001
      000001010
10
      0000001011
11
```

```
000000000
0
                      cost: 1
      000000001
                      cost: 2
      000000010
                        cost: 1
3
      000000011
                      cost: 3
      000000100
                       cost: 1
5
      000000101
                        cost: 2
6
      000000110
      000000111
8
      000001000
9
      0000001001
      000001010
10
      0000001011
11
```

```
000000000
0
                      cost: 1
      000000001
                       cost: 2
      000000010
                        cost: 1
3
      000000011
                       cost: 3
      0000000100
                        cost: 1
      000000101
5
                         cost: 2
      000000110
6
                        cost: 1
      0000000111
8
      000001000
9
      0000001001
      000001010
10
      0000001011
11
```

```
000000000
0
                       cost: 1
      000000001
                       cost: 2
      000000010
                         cost: 1
3
      000000011
                       cost: 3
      0000000100
                        cost: 1
5
      000000101
                         cost: 2
      000000110
6
                        cost: 1
      000000111
                        cost: 4
8
      000001000
      0000001001
9
      000001010
10
      0000001011
11
```



```
000000000
0
                       cost: 1
      000000001
                        cost: 2
      000000010
                         cost: 1
3
      000000011
                        cost: 3
      000000100
                         cost: 1
5
      000000101
                          cost: 2
6
      000000110
                        cost: 1
      0000000111
                         cost: 4
8
      000001000
                         cost: 1
9
      0000001001
                      cost: 2
      0000001010
10
      0000001011
11
```

```
000000000
0
                        cost: 1
       000000001
                        cost: 2
       000000010
                          cost: 1
3
      000000011
                        cost: 3
      000000100
                         cost: 1
5
      000000101
                          cost: 2
6
      000000110
                         cost: 1
      0000000111
                         cost: 4
8
      0000001000
                          cost: 1
9
      0000001001
                      cost: 2
      0000001010
10
                        cost: 1
      000001011
11
```

```
000000000
0
                        cost: 1
       000000001
                         cost: 2
       0000000010
                          cost: 1
3
       0000000011
                         cost: 3
       000000100
                         cost: 1
5
      0000000101
                           cost: 2
6
       000000110
                         cost: 1
       0000000111
                          cost: 4
      0000001000
8
                          cost: 1
      0000001001
                      cost: 2
      0000001010
10
                        cost: 1
      000001011
11
```

What is the total cost of n increments?

0	000000000
1	0 0 0 0 0 0 0 0 1 cost: 1
2	0000000010 cost: 2
3	000000011 \cost: 1
4	0 0 0 0 0 0 0 1 0 0 cost: 3
5	0 0 0 0 0 0 0 1 0 1 cost: 1
6	0 0 0 0 0 0 0 1 1 0 cost: 2
7	000000111 cost: 1
8	0000001000 cost: 4
9	0000001001 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
10	$000001010 \frac{\text{cost: 2}}{\text{cost: 2}}$
11	0000001011 cost: 1

What is the total cost of n increments?

$$O(n^2)$$
?

$$O(n^2)$$
? $O(n \log n)$?

0	000000000 \
1	000000001 cost: 1
2	000000010 cost: 2
3	$0000000011 \setminus 2 cost: 1$
4	000000100 cost: 3
5	000000101 cost: 1
6	0000000110 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
7	0000000111 \(\sum_{\text{cost: 1}}
8	000001000 cost: 4
9	0000001001 \ cost: 1
10	$0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ \cos t$: 2
11	0000001011 cost: 1

What is the total cost of n increments?

$$O(n^2)$$
?

$$O(n^2)$$
?
 $O(n \log n)$?

It is actually: O(n)

```
0000000000
                          Cost of the last bit: n
0
      000000001
      000000010
3
      000000011
      000000100
5
      000000101
6
      000000110
      000000111
8
      0000001000
9
      0000001001
      0000001010
10
      0000001011
11
```

```
0000000000
0
     000000001
     000000010
3
     000000011
     000000100
5
     000000101
6
     000000110
     000000111
8
     000001000
9
     0000001001
     0000001010
10
     0000001011
11
```

Cost of the last bit: n

Cost of 2nd last bit: $\leq \frac{n}{2}$

0	0 0 0 0 0 0 0 0 0 0 0
1	0000000001
2	0000000010
3	0000000011
4	000000100
5	0000000101
6	0000000110
7	0000000111
8	0000001000
9	0000001001
10	0000001010
11	0000001011

Cost of the last bit: n

Cost of 2nd last bit: $\leq \frac{n}{2}$

Cost of 3rd last bit: $\leq \frac{n}{4}$

0	$0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$
1	0000000001
2	0000000010
3	0000000011
4	0000000100
5	0000000101
6	0000000110
7	0000000111
8	0000001000
9	0000001001
10	0000001010
11	0000001011

Cost of the last bit: n

Cost of 2nd last bit: $\leq \frac{n}{2}$

Cost of 3rd last bit: $\leq \frac{n}{4}$

Cost of 4th last bit: $\leq \frac{n}{8}$

.

0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	1
2	0	0	0	0	0	0	0	0	1	0
3	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	1	0	0
5	0	0	0	0	0	0	0	1	0	1
6	0	0	0	0	0	0	0	1	1	0
7	0	0	0	0	0	0	0	1	1	1
8	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	1	0	0	1
10	0	0	0	0	0	0	1	0	1	0
11	0	0	0	0	0	0	1	0	1	1

Cost of the last bit: n

Cost of 2nd last bit:
$$\leq \frac{n}{2}$$

Cost of 3rd last bit:
$$\leq \frac{n}{4}$$

Cost of 4th last bit:
$$\leq \frac{n}{8}$$

.

Total cost
$$\leq n + \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \frac{n}{16} \dots \leq 2n$$
O(n)

Consider *n* operations.

For $i = 1, 2, \dots, n$,

let C_i be the real cost of the i-th operation,

let \hat{C}_i be the amortized cost of the *i*-th operation.

such that

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Consider *n* operations.

For $i = 1, 2, \dots, n$,

let C_i be the real cost of the *i*-th operation,

let \hat{C}_i be the amortized cost of the *i*-th operation.

such that

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

If we get an upper bound for the amortized cost $\sum_{i=1}^{\infty} \hat{C}_i$

we also get an upper bound for the real cost $\sum_{i=1}^{\infty} C_i$

Example: Stack Operations

Operations:

- 1) PUSH: push a number into stack Cost: 1
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Example: Stack Operations

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

1) PUSH: push a number into stack

Cost: 1 Amortized Cost: 2

2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Amortized Cost: 0

Example: Stack Operations

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

- 1) PUSH: push a number into stack
 Cost: 1 Amortized Cost: 2
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Amortized Cost: 0

Example: Stack Operations

Size of Stack: |S| = 0

Total real cost: 0
Total amortized cost: 0

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

- 1) PUSH: push a number into stack
 Cost: 1 Amortized Cost: 2
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Amortized Cost: 0

Example: Stack Operations

Total real cost: 1
Total amortized cost: 2

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

1) PUSH: push a number into stack

Cost: 1 Amortized Cost: 2

2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Amortized Cost: 0

Example: Stack Operations

Total real cost: 2
Total amortized cost: 4

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

1) PUSH: push a number into stack
Cost: 1 Amortized Cost: 2

2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Amortized Cost: 0

Is it true that
$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$
?

Example: Stack Operations

		Size of Stack: $ S = 0$
PUSH	12	\$1 \$1
•	10	\$1 \$1
-	8	\$1 \$1

Total real cost: 3
Total amortized cost: 6

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

1) PUSH: push a number into stack
Cost: 1 Amortized Cost: 2

2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Amortized Cost: 0

Example: Stack Operations

		Siz	e of Stack:	S = 0		
POP(3)	12	\$1 \$1	Have to save	ver the real cost?		
	10	\$1 \$1				
	8	\$1 \$1		•		

Total real cost: 6
Total amortized cost: 6

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

- 1) PUSH: push a number into stack

 Cost: 1 Amortized Cost: 2
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Amortized Cost: 0

Is it true that
$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$
?

Example: Stack Operations

Total real cost: 6
Total amortized cost: 6

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

1) PUSH: push a number into stack

Cost: 1 Amortized Cost: 2

2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Amortized Cost: 0

Example: Stack Operations

Total real cost: 6
Total amortized cost: 6

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

1) PUSH: push a number into stack Cost: 1 Amortized Cost: 2

2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Amortized Cost: 0

$$O(n)$$
 2n >= $\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$

Large Binary Counter

Cost of incrementing counter:
Number of bits that are changed.
What is the total cost of n increments?

Lifecycle of a bit:

Large Binary Counter

Cost of incrementing counter:
Number of bits that are changed.
What is the total cost of n increments?

Lifecycle of a bit:

Real cost: 1

Large Binary Counter

Cost of incrementing counter:
Number of bits that are changed.
What is the total cost of n increments?

Lifecycle of a bit:

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Large Binary Counter

Cost of incrementing counter: Number of bits that are changed.

What is the total cost of n increments?

Lifecycle of a bit:

Real cost: 1 Amortized cost: 2

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

3

4

5

6

8

9

10

Lifecycle of a bit:

Real cost: 1 Amortized cost: 2

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

3

4

5

6

8

9

10

Lifecycle of a bit:

Real cost: 1 Amortized cost: 2

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

3

4

5

6

8

9

10

Lifecycle of a bit:

Real cost: 1 Amortized cost: 2

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

3

4

5

6

8

9

10

Lifecycle of a bit:

Real cost: 1 Amortized cost: 2

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

3

4

5

6

8

9

10

Lifecycle of a bit:

Real cost: 1 Amortized cost: 2

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

000000000	oost: 1
0000000001	cost: 1
000000010 🗵	cost: 2
000000011	> cost: 1
0000000100	cost: 3
00000001002	> cost: 1
	\rightarrow cost: 2
0000000110	∠ cost: 1
000000111 🗸	> cost: 4
000001000	cost: 1
0000001001	
0000001010	ost: 2
0000001011	cost: 1

5

6

9

10

Lifecycle of a bit:

Real cost: 1 Amortized cost: 2

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

000000000	oot: 1
$0000000001 \angle \setminus 1$	cost: 1
000000010	cost: 2
0000000011	<pre>> cost: 1 cost: 3</pre>
000000100 🗠	cost: 1
0000000101	> cost: 2
0000000110	
0000000111	cost: 1
000001000	cost: 1
0000001001	st: 2
0000010102	cost: 1
0000001011	Just. I

5

6

9

10

Lifecycle of a bit:

Real cost: 1 Amortized cost: 2

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

3

4

5

6

8

9

10

Lifecycle of a bit:

Real cost: 1 Amortized cost: 2

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

0000000000 \
0 0 0 0 0 0 0 0 0 1 cost: 1
000000010 cost: 2
000000011 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
0000000100 cost: 3
0000000101 cost: 1
0000000110 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
0000000111 cost: 1
0000001000 cost: 4
0000001001 cost: 1
000001010 cost: 2
0000001011 > cost: 1

5

6

9

10

Lifecycle of a bit:

Real cost: 1 Amortized cost: 2

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

0000000000 \
0 0 0 0 0 0 0 0 0 1 cost: 1
000000010 cost: 2
000000011 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
0000000100 cost: 3
0000000101 cost: 1
0000000110 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
0000000111 cost: 1
0000001000 cost: 4
0 0 0 0 0 0 1 0 0 1 \cost: 1
000001010 cost: 2
0000001011 > cost: 1

5

6

9

10

Lifecycle of a bit:

Real cost: 1 Amortized cost: 2

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

General pattern of change:

Lifecycle of a bit:

Real cost: 1 Amortized cost: 2

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$2n > = \sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

total cost: O(n)

3

4

5

6

8

9

10