1 D D	ı •	0
AP P	hysics	2
Quiz:	Electr	CO

statics, Form: A

Date: _ Period: _____ Peer Reviewer: _____ Authentication Code: _____

+1	0	-1	Σ

Section 1. Multiple Choice

Information:

 $k = 9 \times 10^9 Nm^2/C^2$

Coulomb's Law: $F_e = \frac{kq_1q_2}{r^2}$ Charge of an electron: -1.6×10^{-19} C

Choose the best answer to each question.

- 1. If an object has a positive charge -
 - (a) It has gained extra protons.
 - (b) It has gained extra neutrons.
 - (c) It has gained extra electrons
 - (d) It has lost some of its electrons.
- 2. If the distance between two objects is doubled, the force between them is -?
 - Double the original force.
 - (b) The same as the original force.
 - (c) Half the original force.
 - (d) One fourth the original force.
- 3. When using Coulomb's law a Negative force indicates -
 - The force is repulsive. (a)
 - (b) The force is attractive.
 - (c) The force is to the left.
 - The force is downward.
- 4. You calculate the charge of an object to be -4.2×10^{-20} C. You know that this answer is -
 - (a) wrong because charge cannot be negative.
 - (b) wrong because the charge is smaller than the elementary charge.
 - (c) wrong because the charge is faster than the speed of light.
 - (d) correct, because charges are made of electrons, which are negative.

5.	How many	${ m electrons}$	would	need	to b	e removed	${\rm from}$	an	object	for	it to	have	a c	harge
	of 0.25 C?													

- (a) 4×10^{-20} electrons
- (b) 6.4×10^{-19} electrons
- (c) 1.563×10^{18} electrons
- (d) This is impossible, the object would need to have an excess of electrons.

Section 2. Free Response

- 6. An astronaut has designed a new way to butter his pancakes while in space. He is able to cause a pancake to have a charge of 1.6×10^{-6} C, and a blob of butter (m=0.002kg) to have a charge of -2.7×10^{-6} C. The butter and pancake start off 2 m apart and the pancake is held in place.
 - (a) What is the electrostatic force that the butter feels?
 - (b) What is the acceleration of the butter? (Hint: F = ma)
 - (c) How long will it take for the butter to collide with the pancake? (Hint: $d = v_i t + \frac{1}{2}at^2$)

Answer Key for Exam A

Section 1. Multiple Choice

Information:

Coulomb's Law: $F_e = \frac{kq_1q_2}{r^2}$

 $k = 9 \times 10^9 Nm^2/C^2$

Charge of an electron: -1.6×10^{-19} C

Choose the best answer to each question.

- 1. If an object has a positive charge -
 - (a) It has gained extra protons.
 - (b) It has gained extra neutrons.
 - (c) It has gained extra electrons
 - (d) It has lost some of its electrons.
- 2. If the distance between two objects is doubled, the force between them is -?
 - (a) Double the original force.
 - (b) The same as the original force.
 - (c) Half the original force.
 - (d) One fourth the original force.
- 3. When using Coulomb's law a **Negative** force indicates -
 - (a) The force is repulsive.
 - (b) The force is attractive.
 - (c) The force is to the left.
 - (d) The force is downward.
- 4. You calculate the charge of an object to be -4.2×10^{-20} C. You know that this answer is -
 - (a) wrong because charge cannot be negative.
 - (b) wrong because the charge is smaller than the elementary charge.
 - (c) wrong because the charge is faster than the speed of light.
 - (d) correct, because charges are made of electrons, which are negative.
- 5. How many electrons would need to be removed from an object for it to have a charge of 0.25 C?
 - (a) 4×10^{-20} electrons
 - (b) 6.4×10^{-19} electrons
 - (c) 1.563×10^{18} electrons
 - (d) This is impossible, the object would need to have an excess of electrons.

Section 2. Free Response

- 6. An astronaut has designed a new way to butter his pancakes while in space. He is able to cause a pancake to have a charge of 1.6×10^{-6} C, and a blob of butter (m=0.002kg) to have a charge of -2.7×10^{-6} C. The butter and pancake start off 2 m apart and the pancake is held in place.
 - (a) What is the electrostatic force that the butter feels?
 - (b) What is the acceleration of the butter? (Hint: F = ma)
 - (c) How long will it take for the butter to collide with the pancake? (Hint: $d=v_it+\frac{1}{2}at^2$)