

Term Evaluation (Even) Semester Examination March 2025

T 11																	
Roll	no																٠
TYOIT	110			4	٠			٠	٠	4			٠				٠

Name of the Course and semester: B. Tech CSE IV Core, Int., AI/DS, CS | 4th

Name of the Paper: Finite Automata and Formal Languages

Paper Code: TCS-402

Time: 1.5 hour

Maximum Marks: 50

Note:

- (i) Answer all the questions by choosing any one of the sub questions
- (ii) Each question carries 10 marks.
- (iii) Please specify COs against each question.

Q1.

(10 Marks) [CO-2]

a. Design a DFA over the input alphabet $\Sigma = \{a, b\}$ such that it does not accept the strings ending with either "aab" or "aba".

OR

b. Design a DFA over the input alphabet $\sum = \{0, 1\}$ such that it accepts only the binary strings whose decimal equivalent is divisible by 5. [For Example, 101, 0101, 1010, 1111, etc. are divisible by 5 so all these inputs should be accepted while, 100, 1100, 0111, etc. are not divisible by 5 so should be rejected]

Q2.

(10 Marks) [CO-1]

a. Apply Myhill-Nerode theorem to minimize the given DFA:

Q/Σ	0	1
$\rightarrow q_0$	q_1	q_2
q_1	q ₃	q ₅
q_2	95	Q4
*q3	q ₃	Q4 Q3
*q ₂ *q ₃ *q ₄	q ₄	Q ₄
q ₅	95	q ₅

OR

b. Convert the given ε -NFA into an equivalent DFA where $\Sigma = \{0, 1, 2\}$:

State/ symbol	3	0	1	2
\rightarrow p	{q, r}	-	{q}	{r}
q	-	{p}	{r}	{p, q}
*r	-	-	-	-

Q3.

(10 Marks) [CO-2]

a. Design a Moore machine as a sequence detector over the input alphabet $\Sigma = \{a, b\}$. The Moore machine should generate a "1" whenever there is "abb" in the input sequence otherwise nothing.

[Samples are: Input: abbaabbaa, Output: 11

Input: abbbabbbabb, Output: 111]

Term Evaluation (Even) Semester Examination March 2025

Roll no...

Convert the given Mealy machine to an equivalent Moore machine. Also, Test the output of Mealy and Moore machine for the input "101101" to prove the equivalence.

70		ut = 0	Input = 1					
Present State	Next State	Output	Next State	Output				
\rightarrow q ₁	q ₃	A	q ₂	A				
\mathbf{q}_2	q ₁	A	Q ₄	В				
q ₃	q ₂	В	Q ₁	A				
q 4	q 4	A	Q3	B				

Q4.

(10 Marks) [CO-2]

a. Define ε-closure (Epsilon-closure). State and prove Kleene's Theorem for showing the equivalence between Regular Expression and Finite Automata.

b. Find the regular expression for the given finite automata using Arden's theorem:

Q5.

(10 Marks) [CO-1]

a. Define NFA (Non-Deterministic Finite Automata). Convert the given NFA to equivalent DFA:

b. State pumping lemma for regular languages. Prove that the given language L is non-regular: $L = \{a^i b^j c^k | k > i+j\}$