L datacamp R for Data Science

Getting started with R Cheat Sheet

Learn R online at www.DataCamp.com

How to use this cheat sheet

R is one of the most popular programming languages in data science and is widely used across various industries and in academia. Given that it's open-source, easy to learn, and capable of handling complex data and statistical manipulations, R has become the preferred computing environment for many data scientists today.

This cheat sheet will cover an overview of getting started with R. Use it as a handy, high-level reference for a quick start with R. For more detailed R Cheat Sheets, follow the highlighted cheat sheets below.

Accessing help

Accessing help files and documentation

?max #Shows the help documentation for the max function ?tidyverse #Shows the documentation for the tidyverse package ??"max" #Returns documentation associated with a given input

Information about objects

str(my_df) #Returns the structure and information of a given object class(my_df) #Returns the class of a given object

Using packages

R packages are collections of functions and tools developed by the R community. They increase the power of R by improving existing base R functionalities, or by adding new ones.

install.packages("tidyverse") #Lets you install new packages (e.g., tidyverse package) library(tidyverse) #Lets you load and use packages (e.g., tidyverse package)

The working directory

The working directory is a file path that R will use as the starting point for relative file paths. That is, it's the default location for importing and exporting files. An example of a working directory looks like "C://file/path"

getwd() #Returns your current working directory setwd("C://file/path") - #Changes your current working directory to a desired filepath

Operators

R has multiple operators that allow you to perform a variety of tasks. Arithmetic operators let you perform arithmetic such as addition and multiplication. Relational operators are used to compare between values. Logical operators are used for Boolean operators.

Arithmetic Operators

- a + b #Sums two variables
- a b #Subtracts two variables
- a * b #Multiply two variables
- a / b #Divide two variables
- a ^ b #Exponentiation of a variable a‰b #Remainder of a variable a%/%b #Integer division of variables

Assignment Operators

x <- 1 # Assigns a variable to x x = 1 #Assigns a variable to x

Relational Operators

- a == b #Tests for equality
- a != b #Tests for inequality
- a > b #Tests for greater than a < b #Tests for lower than
- a >= b #Tests for greater than or equal to || #Logical OR
- a <= b #Tests for less than or equal to

Other Operators

%in% #Identifies whether an element belongs to a vector \$ #Allows you to access objects stored within an object %>% #Part of magrittr package, it's used to pass objects to functions

Logical Operators

& #Element-wise logical AND

#Element-wise logical OR

! #Logical NOT

&& #Logical AND

Getting started with vectors

Vectors are one-dimension arrays that can hold numeric data, character data, or logical data. In other words, a vector is a simple tool to store data.

Creating vectors

Input	Output	Description
c(1,3,5)	135	Creates a vector using elements separated by commas
1:7	1234567	Creates a vector of integers between two numbers
seq(2,8,by = 2)	2468	Creates a vector between two numbers, with a specified interval between each element.
rep(2,8,times = 4)	28282828	Creates a vector of given elements repeated a number of times.
rep(2,8,each = 3)	222888	Creates a vector of given elements repeating each element a number of times.

Vector functions

These functions perform operations over a whole vector.

sort(my_vector) #Returns my_vector sorted rev(my_vector) #Reverses order of my_vector table(my_vector) #Count of the values in a vector unique(my_vector) #Distinct elements in a vector

Selecting vector elements

These functions allow us to refer to particular parts of a

my_vector[6] #Returns the sixth element of my_vector my_vector[-6] #Returns all but the sixth element my_vector[2:6] #Returns elements two to six my_vector[-(2:6)] #Returns all elements except those between the second and the sixth $my_vector[c(2,6)]$ #Returns the second and sixth my_vector[x == 5] #Returns elements equal to 5 my_vector[x < 5]#Returns elements less than 5</pre> my_vector[x %in% c(2, 5 ,8)] #Returns elements in the set {2, 5, 8}

Math functions

These functions enable us to perform basic mathematical operations within R

log(x) #Returns the logarithm of a variable exp(x) #Returns exponential of a variable

max(x) #Returns maximum value of a vector min(x) #Returns minimum value of a vector mean(x) #Returns mean of a vector

median(x) #Returns median of a vector

sum(x) #Returns sum of a vector

quantile(x) #Percentage quantiles of a vector round(x, n) #Round to n decimal places rank(x) #Rank of elements in a vector signif(x, n) #Round off n significant figures var(x) #Variance of a vector cor(x, y) #Correlation between two vectors sd(x) #Standard deviation of a vector

Getting started with strings

The "stringr" package makes it easier to work with strings in R - you should install and load this package to use the following functions.

Find Matches

#Detects the presence of a pattern match in a string str_detect(string, pattern, negate = FALSE) #Detects the presence of a pattern match at the beginning of a string

str_starts(string, pattern, negate = FALSE) #Finds the index of strings that contain pattern match str_which(string, pattern, negate = FALSE) #Locates the positions of pattern matches in a string str_locate(string, pattern)

#Counts the number of pattern matches in a string str_count(string, pattern)

Mutate

#Replaces substrings by identifying the substrings with str_sub() and assigning them to the results. str_sub() <- value #Replaces the first matched pattern in each string. str_replace(string, pattern, replacement) #Replaces all matched patterns in each string str_replace_all(string, pattern, replacement) #Converts strings to lowercase str_to_lower(string) #Converts strings to uppercase str_to_upper(string)

#Converts strings to title case

str_to_title(string)

#Extracts substrings from a character vector str_sub(string, start = 1L, end = -1L) #Returns strings that contain a pattern match str_subset(string, pattern, negate = FALSE) #Returns first pattern match in each string as a vector str_extract(string, pattern) #Returns first pattern match in each string as a matrix with a column for each group in the pattern str_match(string, pattern)

Join and Split

#Repeats strings n times str_dup(string, n) #Splits a vector of strings into a matrix of substrings str_split_fixed(string, pattern, n)

Order

#Returns the vector of indexes that sorts a character str_order(x) #Sorts a character vector str_sort(x)

Getting started with Data Frames in R A data frame has the variables of a data set as columns and the observations as rows. #This selects all rows of the secon #This creates the data frame df, seen on 1 h 12 df <- data.frame(x = 1:3, y =c("h", "i", "j"), z = 12:14)3 j 14 #This selects all columns of the third row df[,3] 1 h 12 #This selects the third column of the df[2,3] #This selects the column z

3 j 14

