概率论与数理统计

二维离散型随机变量

主讲人:郑旭玲

信息科学与技术学院

昌 定义

如果二维随机变量(X,Y)全部可能取到的不相同的值是有限对或可列无限多对,则称(X,Y)是离散型随机变量。

昌 定义

设二维离散型随机变量(X,Y) 可能取的值是 (x_i,y_i) , $i,j=1,2,\cdots$,

记
$$P(X = x_i, Y = y_j) = p_{ij}, i, j = 1, 2, \dots$$

称之为二维离散型随机变量 (X,Y)的分布律,或随机变量X和Y的联合分布律。

二维离散型随机变量(X,Y)的 分布律具有性质

$$\begin{cases} p_{ij} \geq 0, i, j = 1, 2, \cdots \\ \sum_{i} \sum_{j} p_{ij} = 1 \end{cases}$$

一维随机变量X 离散型X 的分布律

$$P(X = x_{k}) = p_{k},$$
 $k=1,2,...$

$$p_{k} \ge 0, k=1,2,...$$

$$\sum_{k} p_{k} = 1$$

也可用表格来表示随机变量X和Y的联合分布律。

YX	x_1	x_2	• • • • • • • • • • • • • • • • • • • •	x_i	• •
<i>y</i> ₁	p ₁₁	p_{21}	••••	p_{i1}	• • •
<i>y</i> ₂ :	p_{12}	p ₂₂	•••	p_{i2}	••
y_{j}	p_{1j}	p_{2j}		p_{ij}	
/ :/					

例 把一枚均匀硬币抛掷三次,设X为三次抛掷中正面出现的次数 ,而Y为正面出现次数与反面出现次数之差的绝对值,求(X,Y)的分布律。

解: (X, Y) 可取值(0,3),(1,1),(2,1),(3,3)

$$P\{X=0, Y=3\} = (1/2)^{3} = 1/8$$

$$P\{X=1, Y=1\} = {3 \choose 1} \cdot \frac{1}{2} \cdot \left(\frac{1}{2}\right)^{2} = 3/8$$

$$P\{X=2, Y=1\} = {3 \choose 2} \cdot \left(\frac{1}{2}\right)^{2} \cdot \frac{1}{2} = 3/8$$

$$P\{X=3, Y=3\} = (1/2)^{3} = 1/8.$$

由联合概率分布可以确定联合分布函数:

离散型随机变量X和Y的联合分布

$$F(x, y) = \sum_{x_i \le x} \sum_{y_j \le y} p_{ij}$$

其中,和式是对一切满足 $x_i \leq x$, $y_j \leq y$ 的 p_{ij} 求和。

