Computação Gráfica

Rivera

Plataforma para desenvolvimento

- Ambiente Windows
 - Compiladores Visual C
 - Fonte pode ser compilável em Linux
- Ambiente Linux
 - gcc / g++
- Bibliotecas Gráficas
 - OpenGL y Glut
 - OpenGL y FLTK
 - OpenGL y IUP
 - Iup y CV

Compilado

- Tempo REAL
 - ◆ Ex. Elisson Avatares

Bibliografía

- Computação Gráfica Eduardo Azevedo y Aura Conci
- Computer Graphics Principles and Practice Foley - van Dam - Feiner - Hughes 2nd edition in C - Addison and Wesley
- Notas do Curso ministrado na Universidade de Maryland pelo Prof. David Mount
 - ftp://ftp.cs.umd.edu/pub/faculty/mount/427/427le cts.ps.gz
 - http://www.lcg.ufrj.br/~esperanc/CG/427lects.ps.g
 z

O que é Computação Gráfica?

- Conjunto de ferramentas e técnicas para converter dados para o de um dispositivo gráfico através do computador
 - Imagens geradas por computador
 - Operações de objetos gráficos
 - Usados em: revistas, jogos, web, cinema, televisão, etc.
- Computação gráfica, Arte e Matemática

Origens da Computação Gráfica (1)

- 1950 MIT (fins militares): Whirlwind
 - Visualizar dados numéricos

Origens da Computação Gráfica (2)

- 1955 Defensa Área Americana: Whirlwind I
 - SAGE: Sistema gráfico para monitorar de vôs
 - Radar oferece dados Uso de caneta ótica

Origens da Computação Gráfica (3)

- 1959: COMPUTER GRAPHICS (Verne Hudson)
 - PROJETO BOEING
 - Simulador de fatores humanos em aviões

Origens da Computação Gráfica (4)

- 1962: Ivan Sutherland (A Man-Machine Graphical Comunication System)
 - Estrutura de dados espaciais
 - CAD
 - General Motors
 - Aeroespacial

Origens da Computação Gráfica (5)

- 1970: Métodos de Sombreamento (Z-Buffer)
 - Interface gráfico (Macintosh, 1975)
 - Computação Gráfica como área da Ciência da Computação
 - Aparece SIGGRAPH
 - Livros de computação gráfica

Origens da Computação Gráfica (6)

- 1980: Plume 2 (Scientific American): imagem de erupção vulcânica no espaço (Voyager I) processamento de imagem
 - Processamento de dados
 - Técnicas de iluminação (Ray-tracing, 1980 e radiosidad, 1984)

Origens da Computação Gráfica (7)

- 1990: Cinemas
 - Jurassic Park (1993),
 - Exterminador del futuro 2,
 - Toy Store (1995),
 - Placas Gráficas NVIDIA (1999).

Origens da Computação Gráfica (8)

- 2000: Orientado a PC
 - Shrek, Matrix Reloader, Jogos interativos, etc.

Primeira Generação (WireFrame – até 1987)

- Vértices: transformações, projeções
- Rasterização: interpolação de cores (pontos e retas)
- Fragmentos: overwrite
- Primeiros projetos desenvolvidos por computador

Segunda Geração (Sólidos com Sombreamento – 1982 - 1992)

- Vértices: cálculo de luz
- Rasterização: interpolação de profundidade (triângulos)
- Fragmentos: depth buffer, color blending

Terceira Geração (Texturização: 1992 - 2000)

- Vértices: transformação de coordenada de textura
- Rasterização: interpolação de coordenada de textura
- Fragmentos: evaluação de textura, antialiasing

Quarta Geração (Programação: 2000 - 2002)

- Sombreamento programado
- Image-based rendering
- Convergência das medias de produção
- Superfícies curvas

Quinta Geração (Iluminação Global: 2002 - atual)

- Ray tracing / Radiosidade: visibilidade e integração
- True shadows, path tracing, photon mapping

Computação Gráfica, Arte e Matemática

- Ferramenta não convencional de produção de arte
- Imagens geradas a partir das equações que podem ser consideradas arte
- Maior poder de abstração

Imagem generada por equações fractais

Áreas de Computação Gráfica

- Síntese de Imagens
- Análise de Imagens
 - Pattern Recognition
- Processamento de Imagens
- Visualização Computacional

Computação Gráfica

Análise (reconhecimento de patrões) Modelos **Imágens** Matemáticos Síntese (rendering) Modelagem **Processamento** de Imágens

Disciplinas relacionadas

- Computação
 - Algoritmos
 - Estruturas de Dados
 - Inteligência Artificial
 - Métodos Numéricos
- Matemática
 - Diferencial e Integral
 - Geometria,
 - Álgebra Linear
 - Processos estocásticos

- Física
 - Ótica
 - Mecânica
- Psicologia
 - Percepção
 - Cognição
- Artes

Aplicações

- Desenho Assistido por Computador (CAD)
- Desenho Geométrico Assistido por Computador (CAGD)
- Sistemas de Informações Geográficas (GIS)
- Visualização Científica
- Visualização Médica
- Educação
- Entretenimento
- Interfaces humano-computador
- Outros

Dispositivos Gráficos

- Dispositivos vetoriais
 - Terminais gráficos vetoriais (obsoletos)
 - Plotters
 - Dispositivos virtuais
 - Ex.: Linguajes de descrição de página (HPGL / Postscript)
 - Rasterização implícita
- Dispositivos Matriciais
 - Praticamente sinônimo de dispositivo gráfico
 - Impressoras, displays

Displays

- Resolução espacial
 - ◆ Tipicamente de 640x480 até 1600x1200
 - Tendência de aumento
- Resolução no espaço de cor
 - Monocromático (negro e branco)
 - Tabela de cores
 - Cada pixel é representado por um número (tipicamente 8 bits – de 0 a 255) que indexa uma tabela de colores (tipicamente RGB 24 bits)
 - Poucas (ex.: 256) colores simultâneas mas cada cor pode ser escolhida de um universo grande (ex.: 2²⁴)
 - Problema da quantização de cores
 - RGB
 - Cor expressada por quantidades discretas de vermelho (red), verde (green) e azul (blue)
 - Tipicamente 24 bits (8 bits para cada componente)

Arquitetura de Sistemas Gráficos

Arquitetura de Sistemas Gráficos

Processador (acelerador) gráfico

- Hardware especializado
- Uso de paralelismo para atingir alto desempenho
- Libera o CPU do sistema de algumas tarefas, incluindo:
 - Transformações
 - Rotação, translação, escala, etc.
 - Recorte (clipping)
 - Supressão de elementos fora da janela de visualização
 - Projeção (3D →2D)
 - Mapeamento de texturas
 - Rasterização
 - Pontos de curvas y superfícies paramétricas
 - Geração de pontos a partir de formas polinomiais
- Normalmente usa memória separada do sistema
 - Maior banda