MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik

Algebra VT21

Dag 26

(1) Sanningstabeller. Gör en sanningstabell för påståendet $Q \Rightarrow \neg P$.

Svar: Sant utom då både P och Q är sanna.

P	Q	$\neg P$	$Q \Rightarrow \neg P$
S	S	F	F
\mathbf{S}	F	F	F S
S S F F	S F S F	F F S	S S
F	F	S	S

(2) **Exempel.** Är implikationen $(Q \Rightarrow \neg P) \Rightarrow (\neg Q \lor \neg P)$ sann för alla påståenden P och Q? Samma fråga för $(Q \Rightarrow \neg P) \Rightarrow (\neg Q \land \neg P)$.

Svar: Ja. Nej.

- (3) Negera utsagor. Ange negationerna till följande påståenden:
 - (a) Alla hundar kan flyga.
 - (b) Inga hundar kan skälla.
 - (c) Högst tre personer är närvarande.
 - (d) För varje reellt tal x finns ett naturligt tal N sådant att $N \geq x$.

Svar: (a) Det finns minst en hund som inte kan flyga. (b) Det finns minst en hund som kan skälla. (c) Minst fyra personer är närvarande. (d) Det finns ett reellt tal x som är större än alla naturliga tal.

(4) **Kvantorer.** Definitionen av gränsvärde i analysen,

$$\lim_{x \to \infty} f(x) = A,$$

kan med kvantorer skrivas såhär: $\forall \epsilon > 0, \; \exists \omega \text{ s} \text{ att } x > \omega \Rightarrow |f(x) - A| < \epsilon.$ Vad skulle definitionen betyda om vi i stället byter plats på kvantorerna? Alltså: $\exists \epsilon > 0 \text{ s} \text{ att } \forall \omega \text{ gäller att } x > \omega \Rightarrow |f(x) - A| < \epsilon.$

Svar: Det sista påståendet skulle betyda att f(x) vore begränsad.

(5) **Bevistyper.** Använd implikationen $(\neg P \Rightarrow Q) \Rightarrow (Q \lor P)$ för att visa följande påstående: Låt a,b vara positiva heltal, och låt p vara ett primtal sådant att p|ab. Visa att då måste antingen p|a eller p|b. Ange speciellt vad påståenden P och Q innebär i detta sammanhang.

/Boris Shapiro, 210418/