R Stats Club

t-test, ANOVA and linear regression

Damien DUPRE

27/03/2019

Statistical tests

test	DV	IV	baseR
t-test	1 continuous	1 categorical	t.test()
ANOVA	1 continuous	1+ categorical	aov()
linear regression	1 continuous	1+ continuous	lm()

Note: t-test and anova are special cases of linear models so they can be performed using the lm() function as well (see following slides)

Create a dataframe

```
gender <- c(rep("male",50), rep("female",50))</pre>
# create an object gender which combines:
## the word male repeated 50 times
## and the word female repeated 50 times
education <- c(rep("second",33), rep("undergrad",33), rep("master",34))
# create an object education which combines:
## the word second repeated 33 times,
## the word undergrad repeated 33 times
## and the word master repeated 34 times
age <- sample(15:50, 100, replace = TRUE)
# create an object age which select a number between 15 and 50, 100 times
math results \leftarrow rnorm(n = 100, mean = 50, sd = 25)
# create an object math results which creates an array of
data raw <- data.frame(gender, education, age, math results)</pre>
# create a dataframe object with 4 columns: gender, education, age, math results
str(data raw) # check the structure of the dataframe
## 'data.frame': 100 obs. of 4 variables:
## $ gender : Factor w/ 2 levels "female", "male": 2 2 2 2 2 2 2 2 2 2 ...
## $ education : Factor w/ 3 levels "master", "second",..: 2 2 2 2 2 2 2 2 2 ...
                 : int 25 43 29 46 48 16 34 47 34 31 ...
## $ age
## $ math results: num 56.3 49.3 48.9 84.2 44.4 ...
```

t-test with base R

t-test

43.65249

```
res_ttest <- t.test(math_results ~ gender, data = data_raw)
res_ttest

##
## Welch Two Sample t-test
##
## data: math_results by gender
## t = -2.1106, df = 97.241, p-value = 0.03737
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -19.4181729 -0.5972622
## sample estimates:
## mean in group female mean in group male</pre>
```

53.66021

t-test with lm()

```
res lm ttest <- lm(math results ~ gender, data = data raw)
summary(res lm ttest)
##
## Call:
## lm(formula = math results ~ gender, data = data raw)
##
## Residuals:
      Min
               10 Median
                              30
                                     Max
## -61.389 -16.007 -0.386 13.046 58.850
## Coefficients:
              Estimate Std. Error t value
                                                   Pr(>|t|)
## (Intercept) 48.656 2.371 20.523 <0.0000000000000000 ***
                           2.371 -2.111
## gender1
           -5.004
                                                     0.0374 *
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 23.71 on 98 degrees of freedom
## Multiple R-squared: 0.04348, Adjusted R-squared: 0.03372
## F-statistic: 4.455 on 1 and 98 DF, p-value: 0.03735
```

ANOVA with base R

ANOVA

education 2 1418

Residuals 96 53665

709 1.268 0.2860

559

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

ANOVA with Im()

linear regression with base R

linear regression

```
res lm <- lm(math results ~ age, data = data raw)
summary(res lm)
##
## Call:
## lm(formula = math results ~ age, data = data raw)
##
## Residuals:
      Min
           10 Median 30
                                    Max
## -55.995 -15.386 -0.476 14.891 55.464
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 50.5898 8.0486 6.286 0.00000000908 ***
              -0.0596 0.2366 -0.252 0.802
## age
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 24.23 on 98 degrees of freedom
## Multiple R-squared: 0.0006471, Adjusted R-squared: -0.00955
## F-statistic: 0.06346 on 1 and 98 DF, p-value: 0.8016
```

linear regression (main effects)

```
res_lm <- lm(math_results ~ age + gender, data = data_raw)
# summary(res_lm)
drop1(res_lm, test = "F")

## Single term deletions
##
## Model:
## math_results ~ age + gender
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 54988 636.97
## age 1 94.97 55083 635.14 0.1675 0.68322
## gender 1 2561.56 57549 639.52 4.5187 0.03607 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

linear regression (interaction effect)

linear regression (main and interaction effects)

```
res lm <- lm(math results ~ age * gender, data = data raw)
summary(res lm)
##
## Call:
## lm(formula = math results ~ age * gender, data = data raw)
## Residuals:
     Min
             10 Median
                          30
                                Max
## -60.34 -15.33 -0.51 13.96 58.85
## Coefficients:
              Estimate Std. Error t value
                                             Pr(>|t|)
## (Intercept) 51.64498 7.96649 6.483 0.00000000388 ***
            -0.09006 0.23450 -0.384
## age
                                                0.702
            -8.00625 7.96649 -1.005
                                                0.317
## gender1
## age:gender1 0.09050
                         0.23450 0.386
                                               0.700
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 23.91 on 96 degrees of freedom
## Multiple R-squared: 0.04661, Adjusted R-squared: 0.01681
## F-statistic: 1.564 on 3 and 96 DF, p-value: 0.2031
```

statistics with tadaatoolbox

install.packages("tadaatoolbox") # only once

library(tadaatoolbox)

t-test with tadaatoolbox

```
tadaa_t.test(data = data_raw, response = math_results, group = gender, print = "markdown")
```

Table 3: **Two Sample t-test** with alternative hypothesis: $\mu_1 \neq \mu_2$

Diff	μ_1 female	μ_2 male	t	SE	df	$CI_{95\%}$	p	Cohen\'s	Power
-10.01	43.65	53.66	-2.11	4.74	98	(-19.42 - -0.6)	< .05	-0.42	0.55

ANOVA with tadaatoolbox

```
tadaa_aov(data = data_raw, math_results ~ gender + education, print = "markdown")
```

Table 4: Two-Way ANOVA: Using Type III Sum of Squares

Term	df	SS	MS	F	p	$\eta_{ m part}^2$	Cohen's f	Power
education	2	1417.94	708.97	1.27	.286	0.03	0.16	0.28
gender	1	2811.53	2811.53	5.03	< .05	0.05	0.23	0.61
Residuals	96	53664.68	559.01					
Total	99	57894.15	4079.51					

statistics with jmv

install.packages("jmv") # only once

library(jmv)

t-test with jmv

```
##
## INDEPENDENT SAMPLES T-TEST
##
## Independent Samples T-Test
##
## statistic df p
```

math_results Student's t -2.11 98.0 0.037

ANOVA with jmv

```
ANOVA(formula = math_results ~ gender + education, data = data_raw)
```

## ## ##	ANOVA ANOVA					
## ## ##		Sum of Squares	df	Mean Square	F	р
## ## ## ##	gender education Residuals	2812 1418 53665	1 2 96	2812 709 559	5.03 1.27	0.027 0.286

Thank you for your attention

don't hesitate to send me an email: damien.dupre@dcu.ie