Informatik S C H U L E Hauptcampus T R I E R

Systemadministration Teil 4

Prof. Dr.-Ing. Jörn Schneider

WIEDERHOLUNG

Betriebssystemkonzepte

- Prozesse
- Adressraum
- Files
- Protection

Prozess

- Instanz eines Programmes mit eigenem Ausführungskontext
- Zum Ausführungskontext gehören Ressourcen wie:
 - Befehlszähler
 - Inhalt von Statusregistern
 - Stack
 - Sonstige Daten im Hauptspeicher
 - Informationen über offene Dateien, etc.

Betriebssystemkonzepte

- Prozesse
- Adressraum
- Files
- Protection

Speichersegmente

Informatik
Hauptcampus

Processes have three segments: text, data, stack

T R I E R

Paging: Ablaufschritte

- 1. Bei Page Fault wird Trap (Interrupt) ausgelöst
- 2. OS sichert wenig benutzte Page auf Festplatte
- 3. OS lädt angefragte Page in Speicher
- 4. OS ändert MMU Mapping, d.h. die Seitentabelle des Prozesses
- 5. OS kehrt zum Befehl zurück, der Trap auslöste

Betriebssystemkonzepte

- Prozesse
- Adressraum
- Files
- Protection

Verzeichnisstruktur

File system for a university department

Verzeichnisse und i-Nodes

The steps in looking up /usr/ast/mbox

Betriebssystemkonzepte

- Prozesse
- Adressraum
- Files
- Protection

Beispiel UNIX (I)

- Prozesse können auf Speicherbereiche anderer Prozesse nur zugreifen, wenn dies explizit erlaubt ist
 - Beispiel: Kommunikation über Shared Memory
- Benutzer haben eindeutige Nummer: UID
 - 0 = root
- Benutzer gehören zu mindestens einer Gruppe
- Gruppen haben eindeutige Nummer: GID
- Prozess erbt UID und GID des startenden Users

Beispiel UNIX (II)

- Dateien haben einen Besitzer, eine Gruppe und Rechte für:
 - User (=Besitzer)
 - Group (=Gruppe)
 - Others (=Alle anderen)
- Für jede Kategorie drei Basisrechte:
 - r = read
 - w = write
 - x = execute
- Beispiel: **rwxr-x--x**
 - Besitzer: lesen, schreiben und ausführen
 - Gruppe: lesen und ausführen
 - Rest: ausführen

WIEDERHOLUNG - ENDE

Teil 4

- Was ist ein Rechnersystem?
- Was ist ein Betriebssystem?
- Aufgaben eines Systemadministrators
- Rechneraufbau
- Betriebssystemkonzepte
- Benutzer

Warum mehrere Benutzer?

- Kosten
 - Historisch:
 - Mehrfachnutzung des gleichen Systems (Batch Systeme)
- Personalisierung
- Datenschutz

Konzepte zum Thema Benutzer

- Anmeldung
 - Authentifizierung
 - Ausführungsumgebung
- Rechte
 - CPU
 - Speicher (Arbeitsspeicher)
 - Prozesse
 - Dateien
 - Speicherplatz (Hintergrundspeicher, z.B. Festplatte)

Authentifizierung

- Authentifizieren <griech.> die Echtheit bezeugen
- Identifizieren des Benutzers und überprüfen, ob die "Behauptung" glaubwürdig ist

User Authentication

Basic Principles. Authentication must identify:

- 1. Something the user knows
- 2. Something the user has
- 3. Something the user is

This is done before user can use the system

Authentication Using Passwords

LOGIN: ken

PASSWORD: FooBar SUCCESSFUL LOGIN

ESSFUL LOGIN LOGIN:

(a) (b)

LOGIN: carol

LOGIN: carol

PASSWORD: Idunno

INVALID LOGIN NAME

INVALID LOGIN

LOGIN:

(c)

- (a) A successful login
- (b) Login rejected after name entered
- (c) Login rejected after name and password typed

Authentication Using Passwords

LBL> telnet elxsi

ELXSI AT LBL

LOGIN: root

PASSWORD: root

INCORRECT PASSWORD, TRY AGAIN

LOGIN: guest

PASSWORD: guest

INCORRECT PASSWORD, TRY AGAIN

LOGIN: uucp

PASSWORD: uucp

WELCOME TO THE ELXSI COMPUTER AT LBL

- How a cracker broke into LBL
 - a U.S. Dept. of Energy research lab

Authentication Using Passwords

Bobbie, 4238, e(Dog,4238)

Tony, 2918, e(6%%TaeFF,2918)

Laura, 6902, e(Shakespeare,6902)

Mark, 1694, e(XaB@Bwcz,1694)

Deborah, 1092, e(LordByron, 1092)

Salt

Password

The use of salt to defeat precomputation of encrypted passwords

Authentication Using a Physical Object

- Magnetic or chip cards
 - magnetic stripe cards
 - chip cards: stored value cards, smart cards

Authentifizierung über biometrische Merkmale

- Fingerabdrucksensor
- Gesichtserkennung
- Stimmerkennung

...

ANMELDUNGSVORGANG

Anmeldungsvorgang - klassisch

- 1. Benutzer gibt seinen Usernamen an
- 2. System verlangt Passwort
- 3. Benutzer gibt Passwort ein
- 4. System überprüft Passwort
- 5. Benutzer wird im System registriert
- 6. Vorbereitung/Ausführung der Benutzerumgebung
- 7. Benutzer kann arbeiten
- 8. Benutzer meldet sich ab
- 9. System registriert Abmeldung

Beispiel UNIX (I)

- Beim anmelden, suche nach User (z.B. notroot) in
 - /etc/passwd
- Username gefunden →
 - Verschlüsseln eingegebenes Passwort
 - Vergleich mit abgelegtem Passwort
- Vergleich OK →
 - Starte Shell

Beispiel UNIX (II)

- /etc/passwd
- Jede Zeile ein User, mit Einträgen:
 - Benutzername
 - Verschlüsseltes Passwort (heute: ,x', da Passwort in /etc/shadow)
 - UID (User ID)
 - GID (ID der primären Gruppe des Users)
 - Kommentarfeld (Name des Benutzers)
 - Home-Verzeichnis
 - Shell die der User verwendet
- Bsp.:

```
hugo:x:1047:1000:Hugo Müller:/home/hugo:/bin/bash
```

Beispiel UNIX (III)

- /etc/shadow
- Enthält verschlüsselte Passwörter anstelle von /etc/passwd
- Steuert Passwort Aging

Beispiel UNIX (IV)

- Bei erfolgreicher Anmeldung:
 - Eintrag in utmp file (Ubuntu Linux: /var/log/utmp)
 - Anzeige über who
 - Setzen der Umgebungsvariablen
 - Wechsel in Home-Verzeichnis
 - Ausführung der Login Skripte in aktueller Prozessumgebung, z.B.:
 - .profile
 - .bashrc

RECHTE

Rechteebenen

- Hardware
- Betriebssystem
- Systemprogramme
- Anwendungssoftware

Quizfragen

- Wie wird verhindert, dass Anwender unberechtigt in Kernelmodus wechseln?
- Wie erfolgt ein Wechsel in den Kernelmodus überhaupt?

Rechte - Hardware

- CPU
 - SuperVisor Modus (Alle Register lese- und schreibbar)
 - User Mode
- Speicher
 - Memory Management Unit
- BIOS / Firmware

Wechsel in Supervisor-Modus der CPU

- Aus dem User-Modus kann durch einen Interrupt in den Supervisor-Modus gewechselt werden
- Zwei Arten von Interrupts:
 - HW-Interrupt (z.B. Tastendruck, Timer-Interrupt, Festplattencontroller)
 - SW-Interrupt (z.B. Trap bei "Division by Zero")
- Vorgesehene Weg um Dienst des Betriebssystemkernels zu erhalten:
 - Ausführung einer System-Call Instruktion, diese löst SW-Interrupt aus, der in ISR des Kernels landet
 - Betriebssystem prüft ob aufrufender Prozess entsprechende Rechte hat

Protection on the Pentium

Rechte - Betriebssystem

- Kernelmode Alles möglich
- User mode Rechte eingeschränkt

Rechte - Systemprogramme

- Ausführung im Auftrag eines Users
- Nur so viel Rechte, wie erforderlich
- Nur für die erforderliche Dauer

Rechte - Anwendungsprogramme

- Haben Rechte des Benutzers
- Können eigene Rechte verwalten, z.B. :
 - ftp-Server
 - Datenbank System
 - Wiki
 - Internet Foren

Problem

Wie kann ein Benutzer sein Passwort ändern, wenn er dazu root-Rechte benötigt?

Bsp.: UNIX – Passwort ändern

Kommandos zum ändern von /etc/passwd

- passwd
- chsh
- chfn

usermod

Bsp. UNIX: /etc/groups

- Zuordnung User zu secondary Groups
 - Welchen Gruppen gehört der User neben der primären Gruppe noch an
- Bei login ist die reale GID die der primären Gruppe
- Wechsel in sekundäre Gruppe xyz mit Kommando:
 - newgrp xyz
 - reale GID ist die der Gruppe xyz

Kommandos zum ändern von /etc/group

gpasswd

Ubuntu: Anlegen von Benutzern

adduser