Scenario 1

	r_0		r_1		r_2
0	q ₀ *	1		2	
1		2		3	
2		3		4	
:	:	:	:	:	
n		n		n	

Comment: Suppose r_0 replies to p_0 first with 0 and increments $pp(r_0)$ to $pp(r_0)=1$ (* means promised, not locked yet).

1

	10		' 1		12
0	q ₀ *	1	q_1^*	2	
1		2		3	
2		3		4	
:	÷	:	:	:	
n		n		n	

Comment: Suppose r_1 replies to p_1 with 1 and increments $pp(r_1)$ to $pp(r_1) = 2$.

	r_0		r_1		r_2
0	q ₀ *	1	q_1^*	2	q_1^*
1		2		3	
2		3		4	
:	:	:	:	:	
n		n		n	

Comment: Suppose r_2 replies to p_1 with 2 and increments $pp(r_2)$ to $pp(r_1) = 3$.

0	q_0^*	1	q_1^*	2	q_1^*
1		2	q ₀ *	3	
2		3		4	
:	:	:	:	:	
n		n		n	

Comment: Suppose r_1 replies to p_0 with 2 and increments $pp(r_2)$ to $pp(r_1) = 3$.

4

Comment: Both p_0 and p_1 can confirm they received all replies they needed, but $max(p_0) = max(p_1) = 2$ and so they both would like to lock $r_1(2)$.

Scenario 2 (Race condition?)

Comment: Suppose r_0 replies to p_0 with 0 and increments $pp(r_0)$ to $pp(r_0)=1$.

Comment: Suppose r_0 replies to p_1 and p_2 (r_1 hasn't replied to p_0 yet) respectively with 1 and 2, now $pp(r_0) = 3$

Comment: Suppose r_1 now replies to p_0 with 1 and increments $pp(r_1)$ and now p_0 could lock max(0, 1) = 1, but $r_0(1)$ is promised for someone else. Sure, it's possible that these will be released as other values might be higher, but it's likely they won't. (I'm considering locking lane with $keys(q_n)$, but that's not a particularly nice solution)