Unknown Primary Classification Summary

1. Replicating the work of tumorTracer

- The data used in the paper is available in the paper's additional files.
- The following results are replicated using their data

The following results are obtained when we train a Random Forest Model with ntree = 500 and feature set as 233 Genes with each getting marked as 1 (for amplification), -1 (for Deletion) or 0 (for No Copy Number aberration in that gene). The results are similar to that reported in the paper (except for a swap between lung and breast). OOB estimate of error rate - 20.78%

	breast	endometrium	kidney	large.intestine	lung	ovary	Class Error
breast	540	65	5	14	27	29	0.2058824
endometrium	42	115	0	8	5	27	0.4162437
kidney	6	1	209	13	8	3	0.1291667
large.intestine	17	18	2	330	17	5	0.1516710
lung	48	5	6	19	280	23	0.2650919
ovary	30	2	0	4	20	314	0.1513514

The following results are obtained when we train a Random Forest Model with ntree = 500 and feature set as 232 Genes with each getting marked on how many point mutation the gene has. The results are similar to that reported in the paper (except for a swap between endometrium and breast). OOB estimate of error rate - 30.44%

	breast	endometrium	kidney	large.intestine	lung	ovary	Class Error
breast	504	7	23	7	33	106	0.2588235
endometrium	28	120	0	26	10	13	0.3908629
kidney	81	0	135	2	16	6	0.4375000
large.intestine	11	9	3	344	15	7	0.1156812
lung	66	1	16	23	246	29	0.3543307
ovary	100	3	11	8	27	221	0.4027027

The following results are obtained when we train a Random Forest Model with ntree = 500 and feature set as the union of the above two (PM + CNV). OOB estimate of error rate - 14.31%

	breast	endometrium	kidney	large.intestine	lung	ovary	Class Error
breast	616	4	3	4	24	29	0.09411765
endometrium	22	135	0	8	3	29	0.31472081
kidney	9	0	217	5	7	2	0.09583333
large.intestine	11	12	5	352	5	4	0.09511568
lung	52	0	10	6	292	21	0.23359580
ovary	33	0	0	2	13	322	0.12972973

Why do CNVs contribute so much?

- Average number of **CNV** events per sample = **90.5**
- Average number of **somatic** mutations per sample = **5.8**

* All files needed for the above results can be found in the following folder of the shared Google Drive Primary source prediction for cancer tumors/Final Report/Replicating-TumorTracer

2. Is there something special about <u>tumorTracer</u> 232 Gene List?

The data set used by the paper is COSMIC v68 (to which we do not have access). Hence, to do an analysis using STRAND's 152 Gene List as feature set, we used COSMIC v79 data set. '

The data is taken from here - COSMIC

COSMIC v79 Results using 231 Genes

231 because 1 gene name could not be mapped using Ensemble. This result is obtained by using only Copy Number Aberrations (A/D/N) as features and RF Model. OOB estimate of error rate - 35.22%

	breast	endometrium	kidney	large.intestine	lung	ovary	Class Error
breast	1173	10	33	36	108	68	0.1785714
endometrium	77	5	32	18	57	50	0.9790795
kidney	67	1	137	18	84	14	0.5732087
large.intestine	58	3	30	299	44	17	0.3370288
lung	118	3	41	29	632	65	0.2882883
ovary	87	6	32	23	138	268	0.5162455

Why is the result significantly different from v68?

Average number of CNV events per sample in this data set (for these classes) is only 31.5

COSMIC v79 Results using 152 Genes

This result is obtained by using only Copy Number Aberrations (A/D/N) as features and RF Model. **OOB** estimate of error rate - **29.56%**

	Breast	Lung	Ovary	Class Error
Breast	1111	227	92	0.2230769
Lung	158	593	113	0.3136574
Ovary	82	169	300	0.4555354

Why is the result better than 231 Gene List?

- This might be because of leaving out difficult classes like endometrium and kidney.
- Average number of CNV events per sample in this data set (for these classes) is 24

The following results were obtained on STRAND test data.

	Breast	Lung	Ovary
Breast	24	7	6
Lung	17	8	7
Ovary	9	2	1

Why is the result not good?

• Average number of CNV events per sample in this data set (for these classes) is only 6.5

The following results were obtained when the RF model was run with a feature set as Point Mutation status of the 152 genes (0/1 showing whether the gene is mutated or not). OOB estimate of error rate - 17.79%

	breast	kidney	lung	ovary	Class Error
breast	6897	112	263	138	0.06923077
kidney	328	1530	82	59	0.23461731
lung	1976	146	18902	338	0.11515776
ovary	1577	158	842	495	0.83886719

This model seems to have learnt quite well. But, Every sample on an average has only 1.14 genes (out of 152) marked to be mutated.

Why is the model learning well in spite of a very low variance in the data?

 This is because each class is having a marker gene that is helping the classification. The following table gives the highest marked gene's name for each class. This tells us that these four genes along with a few more (EGFR, PIK3CA, KRAS, VHL, TP53, MED12, ESR1, PBRM1, BRAF, CTNNB1, AKT1) is able to help in a good classification.

Primary Cancer	No. of Samples Available
Breast	7410 (PIK3CA - 3990 , TP53 - 1863, EGFR - 42, VHL- 4)
Kidney	1999 (VHL - 1018 , TP53 - 116, PIK3CA - 31, EGFR - 13)
Lung cancer	21362 (EGFR - 12142 , TP53 - 1820, PIK3CA - 419, VHL - 8)
Ovarian cancer	3072 (TP53 - 1206 , PIK3CA - 388, EGFR - 23, VHL - 1)

The following results were obtained when this model was tested against STRAND's test data

	breast	kidney	lung	ovary
breast	37	2	4	6
kidney	7	9	0	2
lung	36	1	39	18
ovary	7	1	0	3

Every sample in the above STRAND's data has an average of 27 genes (out of 152) marked to be mutated.

COSMIC v68 Results using 54 Genes

54 Genes is the intersection between the 232 Genes from tumorTracer and Strand's 152 Gene list. This result is obtained by using only Copy Number Aberrations (A/D/N) as features and RF Model. OOB estimate of error rate - 26.63%

	breast	endometrium	kidney	large.intestine	lung	ovary	Class Error
breast	482	82	8	23	43	42	0.2911765
endometrium	38	119	0	10	8	22	0.3959391
kidney	15	1	204	11	7	2	0.1500000
large.intestine	18	23	2	319	13	4	0.1799486
lung	81	5	9	15	249	22	0.3464567
ovary	47	1	0	11	26	285	0.2297297

Average number of CNV events per sample in this data set (for these classes) is 20.7 (out of these 54 genes)

The following result was obtained on STRAND Test.

	breast	lung	ovary
breast	20	4	7
endometrium	26	12	7
kidney	0	0	0
large.intestine	2	1	0
lung	2	0	0
ovary	0	0	0

Why again is the result not good?

Average number of CNV events per sample in this data set (for these classes) is only 2.14

In conclusion, there is nothing special about the 232 Gene list. We could get good results from STRAND's 152 Gene list if the following enhancements were made -

- ❖ Improve CNV Data collection (w.r.t variance of the CNV features).
- There is no large training data set for Somatic Features that are similar to the variance of STRAND's somatic data. (COSMIC has very less variance in its Somatic Features).
- 3. Comment on how large panels help with better copy number detection but detection of somatic variants might be compromised because coverage is only 50-100x. (Is this true?)
 - Looks to be true from our analysis.
- 4. Then a final conclusion whether 1(b), 2(b,c), 3(a,b,c) has potential or not and if so which tissues it can be used for. what are the most significant genes that contribute to the model, whether just those genes are sufficient, whether the software outputs a confidence value or not and how to use it.
 - We should discuss this.