Лекция 7: вывод типов и ленивость

Функциональное программирование на Haskell

Алексей Романов 4 апреля 2018

ТЕИМ

• Во многих ООП-языках сейчас есть вывод типов:

- Во многих ООП-языках сейчас есть вывод типов:
 - auto в C++11
 - var в C# 3.0 и Java 10
 - Отсутствие явного типа в Kotlin, Scala

- Во многих ООП-языках сейчас есть вывод типов:
 - auto в C++11
 - var в C# 3.0 и Java 10
 - Отсутствие явного типа в Kotlin, Scala
- Устроен в них всех похоже:

- Во многих ООП-языках сейчас есть вывод типов:
 - auto в C++11
 - var в C# 3.0 и Java 10
 - Отсутствие явного типа в Kotlin, Scala
- Устроен в них всех похоже:
 - Тип аргументов функций задаётся явно.

- Во многих ООП-языках сейчас есть вывод типов:
 - auto в C++11
 - var в C# 3.0 и Java 10
 - Отсутствие явного типа в Kotlin, Scala
- Устроен в них всех похоже:
 - Тип аргументов функций задаётся явно.
 - Дальше типы протягиваются сверху вниз.

- Во многих ООП-языках сейчас есть вывод типов:
 - auto в C++11
 - var в C# 3.0 и Java 10
 - Отсутствие явного типа в Kotlin, Scala
- Устроен в них всех похоже:
 - Тип аргументов функций задаётся явно.
 - Дальше типы протягиваются сверху вниз.
 - Тип локальных переменных/полей = тип инициализатора (если нет явного).

- Во многих ООП-языках сейчас есть вывод типов:
 - auto в C++11
 - var в C# 3.0 и Java 10
 - Отсутствие явного типа в Kotlin, Scala
- Устроен в них всех похоже:
 - Тип аргументов функций задаётся явно.
 - Дальше типы протягиваются сверху вниз.
 - Тип локальных переменных/полей = тип инициализатора (если нет явного).
 - Возвращаемый тип = общий тип для всех return.

- Во многих ООП-языках сейчас есть вывод типов:
 - auto в C++11
 - var в C# 3.0 и Java 10
 - Отсутствие явного типа в Kotlin, Scala
- Устроен в них всех похоже:
 - Тип аргументов функций задаётся явно.
 - Дальше типы протягиваются сверху вниз.
 - Тип локальных переменных/полей = тип инициализатора (если нет явного).
 - Возвращаемый тип = общий тип для всех return.
- Отдельный вопрос: вывод параметров шаблонов (в C++)/генериков (в других языках).

- Во многих ООП-языках сейчас есть вывод типов:
 - auto в C++11
 - var в C# 3.0 и Java 10
 - Отсутствие явного типа в Kotlin, Scala
- Устроен в них всех похоже:
 - Тип аргументов функций задаётся явно.
 - Дальше типы протягиваются сверху вниз.
 - Тип локальных переменных/полей = тип инициализатора (если нет явного).
 - Возвращаемый тип = общий тип для всех return.
- Отдельный вопрос: вывод параметров шаблонов (в C++)/генериков (в других языках).
- Он сложнее, но появился раньше.

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.
- Даже без указания типов параметров.

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.
- Даже без указания типов параметров.
- Плюсы:

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.
- Даже без указания типов параметров.
- Плюсы:
 - Для любого данного выражения есть наиболее общий тип (если есть хоть какой-то).

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.
- Даже без указания типов параметров.
- Плюсы:
 - Для любого данного выражения есть наиболее общий тип (если есть хоть какой-то).
 - Есть эффективные (для реальных программ) алгоритмы их нахождения.

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.
- Даже без указания типов параметров.
- Плюсы:
 - Для любого данного выражения есть наиболее общий тип (если есть хоть какой-то).
 - Есть эффективные (для реальных программ) алгоритмы их нахождения.
- Не все расширения Haskell их сохраняют (но это один из критериев оценки расширений).

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.
- Даже без указания типов параметров.
- Плюсы:
 - Для любого данного выражения есть наиболее общий тип (если есть хоть какой-то).
 - Есть эффективные (для реальных программ) алгоритмы их нахождения.
- Не все расширения Haskell их сохраняют (но это один из критериев оценки расширений).
- Минусы:

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.
- Даже без указания типов параметров.
- Плюсы:
 - Для любого данного выражения есть наиболее общий тип (если есть хоть какой-то).
 - Есть эффективные (для реальных программ) алгоритмы их нахождения.
- Не все расширения Haskell их сохраняют (но это один из критериев оценки расширений).
- Минусы:
 - Сложнее понять, как работает.

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.
- Даже без указания типов параметров.
- Плюсы:
 - Для любого данного выражения есть наиболее общий тип (если есть хоть какой-то).
 - Есть эффективные (для реальных программ) алгоритмы их нахождения.
- Не все расширения Haskell их сохраняют (но это один из критериев оценки расширений).
- Минусы:
 - Сложнее понять, как работает.
 - Больше «дальнодействия».

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.
- Даже без указания типов параметров.
- Плюсы:
 - Для любого данного выражения есть наиболее общий тип (если есть хоть какой-то).
 - Есть эффективные (для реальных программ) алгоритмы их нахождения.
- Не все расширения Haskell их сохраняют (но это один из критериев оценки расширений).
- Минусы:
 - Сложнее понять, как работает.
 - Больше «дальнодействия».
- Поэтому понимание работы иногда необходимо. 3/16

Постановка задачи

- Даны:
 - Набор типов и конструкторов типов: Int, Bool,
 [] и т.д.
 - Среди них особую роль играет конструктор функций ->.
 - Набор известных именованных констант с их типами (обычно функциями).
 - Выражение, все свободные переменные которого лежат в этом наборе (обычно определение функции).

Постановка задачи

• Даны:

- Набор типов и конструкторов типов: Int, Bool,
 [] и т.д.
- Среди них особую роль играет конструктор функций ->.
- Набор известных именованных констант с их типами (обычно функциями).
- Выражение, все свободные переменные которого лежат в этом наборе (обычно определение функции).

Нужно:

• Определить наиболее общий тип для этого выражения.

Постановка задачи

• Даны:

- Набор типов и конструкторов типов: Int, Bool, [] и т.д.
- Среди них особую роль играет конструктор функций ->.
- Набор известных именованных констант с их типами (обычно функциями).
- Выражение, все свободные переменные которого лежат в этом наборе (обычно определение функции).

Нужно:

- Определить наиболее общий тип для этого выражения.
- Или найти объяснение, почему ему нельзя дать никакой тип.

• Сравните let $x = e_1$ in e_2 и ($x -> e_2$) e_1 .

- Сравните let $x = e_1$ in e_2 и ($\xspace x -> e_2$) e_1 .
- Значения всегда одинаковы (для любых e_1 и e_2).

- Cpaвнитe let $x = e_1$ in e_2 и ($\xspace x -> e_2$) e_1 .
- Значения всегда одинаковы (для любых e_1 и e_2).
- Но есть разница при типизации:

- Сравните let $x = e_1$ in e_2 и ($\xspace x -> e_2$) e_1 .
- Значения всегда одинаковы (для любых e_1 и e_2).
- Но есть разница при типизации: х в лямбде всегда мономорфна, а в let может быть полиморфной.

- Сравните let $x = e_1$ in e_2 и ($x -> e_2$) e_1 .
- Значения всегда одинаковы (для любых e_1 и e_2).
- Но есть разница при типизации: х в лямбде всегда мономорфна, а в let может быть полиморфной.
- Поэтому в нетипизированном и просто типизированном λ -исчислении let обычно не вводится.

 Нам понадобятся понятия подстановки и унификации. В общем случае:

- Нам понадобятся понятия подстановки и унификации. В общем случае:
- Пусть даны два выражения (терма) какого-то формального языка (или несколько пар).
- Они могут содержать переменные.

- Нам понадобятся понятия подстановки и унификации. В общем случае:
- Пусть даны два выражения (терма) какого-то формального языка (или несколько пар).
- Они могут содержать переменные.
- Подстановка переменных сопоставляет некоторым переменным выражения (которые тоже могут содержать переменные).

- Нам понадобятся понятия подстановки и унификации. В общем случае:
- Пусть даны два выражения (терма) какого-то формального языка (или несколько пар).
- Они могут содержать переменные.
- Подстановка переменных сопоставляет некоторым переменным выражения (которые тоже могут содержать переменные).
- Мы хотим знать, можно ли сделать такую подстановку, чтобы термы стали одинаковыми.

- Нам понадобятся понятия подстановки и унификации. В общем случае:
- Пусть даны два выражения (терма) какого-то формального языка (или несколько пар).
- Они могут содержать переменные.
- Подстановка переменных сопоставляет некоторым переменным выражения (которые тоже могут содержать переменные).
- Мы хотим знать, можно ли сделать такую подстановку, чтобы термы стали одинаковыми.
- Это достаточно широко применимое понятие.

- Нам понадобятся понятия подстановки и унификации. В общем случае:
- Пусть даны два выражения (терма) какого-то формального языка (или несколько пар).
- Они могут содержать переменные.
- Подстановка переменных сопоставляет некоторым переменным выражения (которые тоже могут содержать переменные).
- Мы хотим знать, можно ли сделать такую подстановку, чтобы термы стали одинаковыми.
- Это достаточно широко применимое понятие.
- Разрешимость задачи унификации и свойства решений зависят от структуры языка.

Унификация типов

- Для вывода типов в системе Хиндли-Милнера случай один из самых простых: унификация первого порядка.
- Подстановки σ сопоставляют переменным типов α, β, \ldots мономорфные типы. Например,

$$\sigma = \{\alpha \mapsto \mathsf{Int}, \beta \mapsto [\gamma]\}$$

• Подстановку можно применить к типу:

$$\sigma(\mathsf{Maybe}\ \beta) = \mathsf{Maybe}\ [\gamma]$$

- Композиция подстановок подстановка.
- Мономорфные типы равны, если они совпадают синтаксически.

Унификация типов

- Для вывода типов в системе Хиндли-Милнера случай один из самых простых: унификация первого порядка.
- Подстановки σ сопоставляют переменным типов α, β, \ldots мономорфные типы. Например,

$$\sigma = \{\alpha \mapsto \mathsf{Int}, \beta \mapsto [\gamma]\}$$

• Подстановку можно применить к типу:

$$\sigma(\mathsf{Maybe}\ \beta) = \mathsf{Maybe}\ [\gamma]$$

- Композиция подстановок подстановка.
- Мономорфные типы равны, если они совпадают синтаксически.
 - Т.е. синонимы типов должны быть уже раскрыты!

- Тип (α, α) более общий, чем (Int, Int), так как $\exists \sigma \ \sigma((\alpha, \alpha)) = ($ Int, Int).
- Второй частный случай первого.

- Тип (α, α) более общий, чем (Int, Int), так как $\exists \sigma \ \sigma((\alpha, \alpha)) = ($ Int, Int).
- Второй частный случай первого.
- Вопрос: когда два типа более общи друг друга?

- Тип (α, α) более общий, чем (Int, Int), так как $\exists \sigma \ \sigma((\alpha, \alpha)) = (\text{Int, Int}).$
- Второй частный случай первого.
- Вопрос: когда два типа более общи друг друга?
- Когда они отличаются только названиями переменных.

- Тип (α, α) более общий, чем (Int, Int), так как $\exists \sigma \ \sigma((\alpha, \alpha)) = (\text{Int, Int}).$
- Второй частный случай первого.
- Вопрос: когда два типа более общи друг друга?
- Когда они отличаются только названиями переменных.
- Можем рассмотреть задачу унификации $(\alpha, \beta) = (\beta, \text{ Int}).$

- Тип (α, α) более общий, чем (Int, Int), так как $\exists \sigma \ \sigma((\alpha, \alpha)) = (\text{Int, Int}).$
- Второй частный случай первого.
- Вопрос: когда два типа более общи друг друга?
- Когда они отличаются только названиями переменных.
- Можем рассмотреть задачу унификации $(\alpha, \beta) = (\beta, \text{ Int}).$
- $\{\alpha \mapsto \mathsf{Int}, \beta \mapsto \mathsf{Int}\}$ это одно из её решений.

- Тип (α, α) более общий, чем (Int, Int), так как $\exists \sigma \ \sigma((\alpha, \alpha)) = ($ Int, Int).
- Второй частный случай первого.
- Вопрос: когда два типа более общи друг друга?
- Когда они отличаются только названиями переменных.
- Можем рассмотреть задачу унификации $(\alpha, \beta) = (\beta, \text{ Int}).$
- $\{\alpha \mapsto \mathsf{Int}, \beta \mapsto \mathsf{Int}\}$ это одно из её решений.
- Наиболее общее (все остальные его частные случаи).

Алгоритм унификации

- Вообще, у каждой задачи унификации типов есть наиболее общее решение (или нет вообще).
- Оно находится следующим алгоритмом:

Алгоритм унификации

- Вообще, у каждой задачи унификации типов есть наиболее общее решение (или нет вообще).
- Оно находится следующим алгоритмом:
- На каждом шаге есть система уравнений. Одно из них рассматривается (порядок не важен) и система преобразуется.
- Закончим, когда в каждом уравнении слева переменная, среди них нет одинаковых, и справа нет ни одной переменной, которая есть слева (это подстановка).
- Правило выбирается в зависимости от рассмотренного уравнения:

• $C \ t_1 \ t_2 \ \dots \ t_k = C \ s_1 \ s_2 \ \dots \ s_k$ (одинаковые конструкторы):

• $C\ t_1\ t_2\ \dots\ t_k=C\ s_1\ s_2\ \dots\ s_k$ (одинаковые конструкторы): заменяется на $t_1=s_1,t_2=s_2,\dots$

- $C\ t_1\ t_2\ \dots\ t_k=C\ s_1\ s_2\ \dots\ s_k$ (одинаковые конструкторы): заменяется на $t_1=s_1,t_2=s_2,\dots$
- C ... = D ... (разные конструкторы):

- $C\ t_1\ t_2\ \dots\ t_k=C\ s_1\ s_2\ \dots\ s_k$ (одинаковые конструкторы): заменяется на $t_1=s_1,t_2=s_2,\dots$
- $C \dots = D \dots$ (разные конструкторы): унификатора не существует.

- $C \ t_1 \ t_2 \ \dots \ t_k = C \ s_1 \ s_2 \ \dots \ s_k$ (одинаковые конструкторы): заменяется на $t_1 = s_1, t_2 = s_2, \dots$
- $C \ldots = D \ldots$ (разные конструкторы): унификатора не существует.
- *X* = *X*:

- $C \ t_1 \ t_2 \ \dots \ t_k = C \ s_1 \ s_2 \ \dots \ s_k$ (одинаковые конструкторы): заменяется на $t_1 = s_1, t_2 = s_2, \dots$
- $C \ldots = D \ldots$ (разные конструкторы): унификатора не существует.
- x = x: оно удаляется, переходим к следующему (можно обобщить и на t = t).

- $C\ t_1\ t_2\ \dots\ t_k=C\ s_1\ s_2\ \dots\ s_k$ (одинаковые конструкторы): заменяется на $t_1=s_1,t_2=s_2,\dots$
- $C \ldots = D \ldots$ (разные конструкторы): унификатора не существует.
- x = x: оно удаляется, переходим к следующему (можно обобщить и на t = t).
- x = t или t = x: два случая.

- $C \ t_1 \ t_2 \ \dots \ t_k = C \ s_1 \ s_2 \ \dots \ s_k$ (одинаковые конструкторы): заменяется на $t_1 = s_1, t_2 = s_2, \dots$
- $C \ldots = D \ldots$ (разные конструкторы): унификатора не существует.
- x = x: оно удаляется, переходим к следующему (можно обобщить и на t = t).
- x = t или t = x: два случая.
 - Если в *t* нет переменной *x*:

- $C \ t_1 \ t_2 \ \dots \ t_k = C \ s_1 \ s_2 \ \dots \ s_k$ (одинаковые конструкторы): заменяется на $t_1 = s_1, t_2 = s_2, \dots$
- $C \ldots = D \ldots$ (разные конструкторы): унификатора не существует.
- x = x: оно удаляется, переходим к следующему (можно обобщить и на t = t).
- x = t или t = x: два случая.
 - Если в t нет переменной x: во всех остальных уравнениях делаем замену $x \mapsto t$, переходим к следующему.
 - Если есть

- $C t_1 t_2 \dots t_k = C s_1 s_2 \dots s_k$ (одинаковые конструкторы): заменяется на $t_1 = s_1, t_2 = s_2, \dots$
- $C \ldots = D \ldots$ (разные конструкторы): унификатора не существует.
- x = x: оно удаляется, переходим к следующему (можно обобщить и на t = t).
- x = t или t = x: два случая.
 - Если в t нет переменной x: во всех остальных уравнениях делаем замену $x \mapsto t$, переходим к следующему.
 - Если есть, то унификатора не существует (иначе результат будет бесконечным)!

Алгоритм ${\mathcal J}$ вывода типов

- Г окружение типов (набор переменных с их типами).
- $\mathcal{J}(\Gamma;e)$ возвращает наиболее общий тип для e с окружением Γ или выдаёт ошибку.

Алгоритм ${\mathcal J}$ вывода типов

- Г окружение типов (набор переменных с их типами).
- $\mathcal{J}(\Gamma;e)$ возвращает наиболее общий тип для e с окружением Γ или выдаёт ошибку.
- ϕ глобальная переменная (только для простоты объяснения), содержащая уже сделанные подстановки.
- Функция fresh() возвращает свежую переменную типа (т.е. такую, которой ещё нигде не было).
- Функция ftv возвращает свободные переменные типов в аргументе.
- Функция *unify* решает задачу унификации.

Алгоритм \mathcal{J} : приведение e к стандартному виду

- Переименуем связанные переменные с одинаковыми именами.
- Заменим where на let.
- Все сопоставления с образцом в case.
- Заменим рекурсию на вызовы функции fix :: (а -> а) -> а и добавим её как константу в Г.
- fix f возвращает неподвижную точку f (т.е. fix f x == x). Определение:

Алгоритм \mathcal{J} : приведение e к стандартному виду

- Переименуем связанные переменные с одинаковыми именами.
- Заменим where на let.
- Все сопоставления с образцом в case.
- Заменим рекурсию на вызовы функции fix :: (a -> a) -> a и добавим её как константу в Г.
- fix f возвращает неподвижную точку f (т.е. fix f x == x). Определение:
 fix f = let x = f x in x

Алгоритм \mathcal{J} : приведение e к стандартному виду

- Переименуем связанные переменные с одинаковыми именами.
- Заменим where на let.
- Все сопоставления с образцом в case.
- Заменим рекурсию на вызовы функции fix :: (a -> a) -> a и добавим её как константу в Г.
- fix f возвращает неподвижную точку f (т.е. fix f x == x). Определение:
 - fix f = let x = f x in x
- Почему это не всегда бесконечный цикл, расскажу в лекции про ленивость. Для вывода типов это неважно.

•
$$\mathcal{J}(\Gamma; x) = do$$

 $\forall \alpha_1 \dots \alpha_k t = \phi(\Gamma(x))$
 $\text{return } t[\alpha_1 \mapsto fresh(), \dots, \alpha_k \mapsto fresh()]$

```
• \mathcal{J}(\Gamma; x) = do

\forall \alpha_1 \dots \alpha_k t = \phi(\Gamma(x))

\text{return } t[\alpha_1 \mapsto \textit{fresh}(), \dots, \alpha_k \mapsto \textit{fresh}()]
```

```
• \mathcal{J}(\Gamma; e_1 \ e_2) = \mathsf{do}
t_1 = \mathcal{J}(\Gamma; e_1)
t_2 = \mathcal{J}(\Gamma; e_2)
\alpha = \mathsf{fresh}()
\phi := \mathsf{unify}(t_1 = t_2 \to \alpha) \circ \phi
return \phi(\alpha)
```

•
$$\mathcal{J}(\Gamma; \lambda x.e_1) = do$$

 $\alpha = fresh()$
 $t = \mathcal{J}(\Gamma, x : \alpha; e_1)$
return $\phi(\alpha \to t)$

```
 \begin{array}{l} \bullet \  \, \mathcal{J}(\Gamma;\lambda x.e_1) \, = \, \mathrm{do} \\ \alpha = \mathit{fresh}() \\ t = \mathcal{J}(\Gamma,x:\alpha;e_1) \\ \mathrm{return} \  \, \phi(\alpha \to t) \end{array}
```

```
• \mathcal{J}(\Gamma; \text{let } x = e_1 \text{ in } e_2) = \text{do}
t_1 = \mathcal{J}(\Gamma; e_1)
\Gamma_1 = \phi(\Gamma)
fv = ftv(t_1) \setminus ftv(\Gamma_1)
t_2 = \forall fv.t_1
\text{return } \mathcal{J}(\Gamma_1, x : t_2; e_2)
```

• Разберём несколько примеров

- Разберём несколько примеров
- Без let:

```
f1 = (.) . (.)
```

- Разберём несколько примеров
- Без let:

```
f1 = (.) . (.)
```

• C let-полиморфизмом:

```
f2 x = let pair x = (x,x) in pair (pair x)
```

- Разберём несколько примеров
- Без let:

$$f1 = (.) . (.)$$

• C let-полиморфизмом:

```
f2 x = let pair x = (x,x) in pair (pair x)
```

• Пример ошибки типа:

$$f3 x = x x$$

Дополнительное чтение

- Более известна альтернатива \mathcal{J} , избегающая «глобальной» ϕ алгоритм \mathcal{W} . Вы можете легко найти его описания и реализации в Интернете.
- Реализации на Haskell обычно используют монады, но это не должно сильно осложнить понимание. Если не получится, ищите реализации на других языках.
- Глава Hindley-Milner Inference в Write You a Haskell
- Algorithm W Step by Step
- Реализация системы типов всего (!) стандарта Haskell 98 с выводом, основанная на \mathcal{J} , есть в Typing Haskell in Haskell.