Assignment 1

Name: Gautam Kumar

Roll Number: 21CS30020

```
In [68]:
                                                                                       M
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split, KFold
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score
In [69]:
                                                                                       M
df = pd.read_csv('../../dataset/cross-validation.csv')
print(df.shape)
(614, 13)
                                                                                       M
In [70]:
df.head()
```

Out[70]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Co
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
4								•

In [71]:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):
```

#	Column	Non-Null Count	Dtype			
0	Loan_ID	614 non-null	object			
1	Gender	601 non-null	object			
2	Married	611 non-null	object			
3	Dependents	599 non-null	object			
4	Education	614 non-null	object			
5	Self_Employed	582 non-null	object			
6	ApplicantIncome	614 non-null	int64			
7	CoapplicantIncome	614 non-null	float64			
8	LoanAmount	592 non-null	float64			
9	Loan_Amount_Term	600 non-null	float64			
10	Credit_History	564 non-null	float64			
11	Property_Area	614 non-null	object			
12	Loan_Status	614 non-null	object			
11 (7)						

dtypes: float64(4), int64(1), object(8)

memory usage: 62.5+ KB

```
In [72]:

print(df["Loan_Status"].unique())
```

```
['Y' 'N']
```

In [73]: ▶

```
mapping = {'Y': 0 , 'N' : 1}
df.replace({'Loan_Status': mapping} , inplace=True)
mapping = {'Male': 0, 'Female': 1}
df.replace({'Gender' : mapping}, inplace=True)
mapping = {'Graduate': 0, 'Not Graduate': 1}
df.replace({'Education': mapping}, inplace=True)
mapping = {'No': 0, 'Yes': 1}
df.replace({'Married': mapping}, inplace=True)
df.replace({'Self_Employed': mapping}, inplace=True)
mapping = {'Rural': 0, 'Urban': 1, 'Semiurban': 2}
df.replace({'Property_Area': mapping}, inplace=True)
mapping = {'3+': 3}
df.replace({'Dependents': mapping}, inplace=True)

df.head()
```

Out[73]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Со
0	LP001002	0.0	0.0	0	0	0.0	5849	
1	LP001003	0.0	1.0	1	0	0.0	4583	
2	LP001005	0.0	1.0	0	0	1.0	3000	
3	LP001006	0.0	1.0	0	1	0.0	2583	
4	LP001008	0.0	0.0	0	0	0.0	6000	
4								•

Here For Replacing the Missing values(NaN), i am using the following ways:

- 1. For "Loan Status" We have to two classes so i replaces them with 1 and 0
- 2. For "Gender", We have two classes so I replaced them with 1 and 0
- 3. For "Education", We have two classes so I replaced them with 1 and 0
- 4. For "Property area", We have three classes so I replaced them with 0,1 and 2.
- 5. For "Self Employment", We have two classes so I replaced them with 1 and 0

In [74]: ▶

```
df.describe()
```

Out[74]:

	Gender	Married	Education	Self_Employed	ApplicantIncome	CoapplicantInco
count	601.000000	611.000000	614.000000	582.000000	614.000000	614.000
mean	0.186356	0.651391	0.218241	0.140893	5403.459283	1621.245
std	0.389718	0.476920	0.413389	0.348211	6109.041673	2926.248
min	0.000000	0.000000	0.000000	0.000000	150.000000	0.000
25%	0.000000	0.000000	0.000000	0.000000	2877.500000	0.000
50%	0.000000	1.000000	0.000000	0.000000	3812.500000	1188.500
75%	0.000000	1.000000	0.000000	0.000000	5795.000000	2297.250
max	1.000000	1.000000	1.000000	1.000000	81000.000000	41667.000
4						•

```
In [75]: ▶
```

```
df['Gender'].fillna(1,inplace=True)
df['Married'].fillna(1,inplace=True)
df['Dependents'].fillna(1,inplace=True)
df['Self_Employed'].fillna(1,inplace=True)
df['LoanAmount'].fillna(146,inplace=True)
df['Loan_Amount_Term'].fillna(342,inplace=True)
df['Credit_History'].fillna(1,inplace=True)
```

For missing values, For some attributes like "Gender", "Married", "Dependents", "Self_employement" and "Credit_History", I took the maximum occurance of the class and replaced the NaN value with it. While for the attributes like "LoanAmount" and "Loan_Amount_term" i took the mean value and replaced NaN with it.

```
In [76]:
                                                                                        H
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):
 #
     Column
                        Non-Null Count
                                         Dtype
     -----
                        -----
 0
     Loan ID
                        614 non-null
                                         object
 1
     Gender
                        614 non-null
                                         float64
 2
     Married
                        614 non-null
                                         float64
 3
     Dependents
                        614 non-null
                                         object
 4
                        614 non-null
                                         int64
     Education
 5
     Self_Employed
                        614 non-null
                                         float64
 6
     ApplicantIncome
                        614 non-null
                                         int64
 7
                                         float64
     CoapplicantIncome
                        614 non-null
 8
     LoanAmount
                        614 non-null
                                         float64
                                         float64
 9
     Loan Amount Term
                        614 non-null
                        614 non-null
 10 Credit_History
                                         float64
     Property_Area
                        614 non-null
                                         int64
 11
 12 Loan_Status
                        614 non-null
                                         int64
dtypes: float64(7), int64(4), object(2)
memory usage: 62.5+ KB
In [77]:
                                                                                        M
X = df.iloc[:,1:-1].values
Y = df.iloc[:,-1].values
X_train , X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.2,random_state=0)
In [78]:
                                                                                        H
print(X_train.shape, Y_train.shape)
print(X_test.shape, Y_test.shape)
(491, 11) (491,)
(123, 11) (123,)
In [79]:
                                                                                        H
st = StandardScaler()
X_train = st.fit_transform(X_train)
X test = st.transform(X test)
In [80]:
                                                                                        H
model = LogisticRegression(solver='saga', penalty=None, max_iter=10000)
```

```
In [81]:
model.fit(X_train, Y_train)
```

Out[81]:

LogisticRegression(max_iter=10000, penalty=None, solver='saga')

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [82]:
                                                                                       M
Y_pred = model.predict(X_test)
In [83]:
num folds = 5
kf = KFold(n_splits=num_folds)
In [84]:
                                                                                       M
accuracies = []
precisions = []
recalls = []
In [85]:
                                                                                       M
for train_idx, val_idx in kf.split(X_train):
    X_fold_train, X_fold_val = X_train[train_idx], X_train[val_idx]
    y_fold_train, y_fold_val = Y_train[train_idx], Y_train[val_idx]
    fold_model = LogisticRegression(solver='saga', penalty=None, max_iter=10000)
    fold_model.fit(X_fold_train, y_fold_train)
    y fold val pred = fold model.predict(X fold val)
    accuracies.append(accuracy_score(y_fold_val, y_fold_val_pred))
    precisions.append(precision_score(y_fold_val, y_fold_val_pred))
    recalls.append(recall_score(y_fold_val, y_fold_val_pred))
In [86]:
                                                                                       H
mean accuracy = np.mean(accuracies)
mean_precision = np.mean(precisions)
mean recall = np.mean(recalls)
```

```
In [87]:
print(f"Mean Accuracy: {mean_accuracy:.2f}")
print(f"Mean Precision: {mean_precision:.2f}")
print(f"Mean Recall: {mean_recall:.2f}")
Mean Accuracy: 0.81
Mean Precision: 0.93
Mean Recall: 0.44
In [88]:
                                                                                       M
print("Without using K-folds:")
print("Accuracy:", accuracy_score(Y_test, Y_pred))
print("Precision:", precision_score(Y_test, Y_pred))
print("Recall:", recall_score(Y_test, Y_pred))
Without using K-folds:
Accuracy: 0.8373983739837398
Precision: 0.8823529411764706
Recall: 0.45454545454545453
In [ ]:
                                                                                       M
```