Epigenomics Roadmap Hands-on

Jan Izquierdo

2024-05-24

Data preparation

```
library(dplyr)
source("/home/jj/bedtools2/BEDtoolsR.R")
gen_path<-"/home/jj/Desktop/Bioinformatics/2nd_year/3term/"</pre>
fullpath <-paste0(gen_path, "Omics_Techniques/Seminars/3.1-Epigenomics_roadmap/metadata.roadmap_clean.txt
metadata<-read.table(fullpath ,sep="\t")</pre>
#View(metadata)
\#Distinguish\ Fetal\ and\ Non-fetal(Adult)\ samples
metadata$PERIOD<-ifelse(grep1("fetal|Fetal", metadata$V3), "Fetal", "Adult")</pre>
#Create a new column with UniqueNames incorporating the tissue, PERIOD and ID information
metadata$UniqueName<-paste0(metadata$V2, "_", metadata$PERIOD, "_", metadata$V1)
#Choosing tissues
tissues <-c ("Brain", "brain", "Muscle", "muscle", "Digestive", "digestive", "Heart", "heart")
filtered_metadata<-dplyr::filter(metadata, V2 %in% tissues)$V1 #Teacher's method
filtered_metadata<-metadata[grepl(paste(tissues, collapse="|"), metadata$V2)==TRUE,]
#database of only the files that interest us (all that contain any of the words of
#tissues in column metadata$V2)
```

Reading files and storing them in a list

```
#Changing ID "keys" to UniqueNames that we generated before
library(plyr)
names(roadmap) <- mapyalues(names(roadmap), from=metadata$V1, to=metadata$UniqueName)
names(roadmap)
                                "Brain_Adult_E074"
## [1] "Brain_Adult_E071"
                                                         "Brain_Adult_E068"
##
  [4] "Brain_Adult_E069"
                                "Brain_Adult_E072"
                                                         "Brain_Adult_E067"
## [7] "Brain_Adult_E073"
                                "Muscle_Adult_E100"
                                                         "Muscle_Adult_E108"
                                                         "Heart_Adult_E104"
## [10] "Muscle_Fetal_E089"
                                "Muscle_Fetal_E090"
## [13] "Heart_Adult_E095"
                                "Heart_Adult_E105"
                                                         "Heart_Adult_E065"
                                                         "Sm. Muscle_Adult_E103"
## [16] "Sm. Muscle_Adult_E078" "Sm. Muscle_Adult_E076"
## [19] "Sm. Muscle_Adult_E111"
                                "Digestive_Fetal_E092"
                                                         "Digestive_Fetal_E085"
## [22] "Digestive_Fetal_E084"
                                "Digestive_Adult_E109"
                                                         "Digestive_Adult_E106"
## [25] "Digestive_Adult_E075"
                                "Digestive_Adult_E101"
                                                         "Digestive_Adult_E102"
## [28] "Digestive Adult E079"
                                "Digestive Adult E094"
roadmap[["Muscle_Fetal_E089"]] %>% head()
##
        V1
                                  V4
               V2
                0 115200
                            18 Quies
## 1 chr10
## 2 chr10 115200 119200 17 ReprPCWk
## 3 chr10 119200 119600
                           16_ReprPC
                           14_TssBiv
## 4 chr10 119600 120200
## 5 chr10 120200 121200 17_ReprPCWk
## 6 chr10 121200 122000
                           16_ReprPC
#avoid executing this chink every time by saving roadmap
#saveRDS(roadmap, "roadmap.rds")
1. Calculate pairwise Jaccard index
```

Prepare the data and create the matrix

8459800 19145600 0.441867

```
#Load roadmap if the previous chunk hasn't been executed
roadmap<-readRDS("roadmap.rds")

#Doing the intersection
state="1_TssA"
b1<-dplyr::filter(roadmap[["Muscle_Fetal_E090"]], V4==state) #V4 are the promoters
#(if we did all genomes it'd almost the same), we choose 1 promoter
b2<-dplyr::filter(roadmap[["Digestive_Adult_E102"]], V4==state)
b<-bedTools.2jac(bed1=b1,bed2=b2)

b

## V1 V2 V3 V4
## 1 intersection union jaccard n_intersections</pre>
```

13028

```
rdmap<-list()
for (id in names(roadmap)){#for 2 states
    rdmap[[id]] <- dplyr::filter(roadmap[[id]], V4 == "12_ZNF/Rpts" | V4 == state)
    #another V4 can be: 13_Het, and more
}
roadmap<-rdmap

#do for all members in names(roadmap) and place in a matrix
rnames<-names(roadmap)
m<-matrix(nrow=length(rnames), ncol=length(rnames), dimnames=list(rnames))
#matrix of rnames dimensions
colnames(m)<-rnames</pre>
```

Fill the jaccard matrix

```
for (i in 1:length(rnames)){
   for (j in 1:length(rnames)){
        a<-dplyr::filter(roadmap[[i]], V4==state)
        b<-dplyr::filter(roadmap[[j]], V4==state)
        index_num<-bedTools.2jac(bed1=a,bed2=b)
        colnames(index_num)<-make.names(index_num[1,])
        index_num<-index_num[2,]
        m[i,j]<-index_num$jaccard #store jac2 indexes there
   }
}
saveRDS(m, "jaccard_matrix.rds")</pre>
```

Load the jaccard matrix

```
m<-readRDS("jaccard_matrix.rds")</pre>
```

2. Visualize Jaccard Index matrix in a heatmap, indicating tissue of origin and PERIOD

Prepare the data for the heatmap and create it

3.Report jaccard index between sample E071 and sample E074

Set up variables and consult the index

```
#m<-readRDS("jaccard_matrix.rds")
#o be
rownames(m)<-rnames

#E071 on filtered -> Name in UniqueNames -> m[name1] is row of name -> m[name1, name2]
#m[name1, name2] is row and column of names
E071_Unique<-filtered_metadata$UniqueName[filtered_metadata$V1=="E071"]
E074_Unique<-filtered_metadata$UniqueName[filtered_metadata$V1=="E074"]

m[E071_Unique, E074_Unique]</pre>
```

[1] 0.597558

4. Perform muldimensional scaling on a distance matrix based on 1-jaccardIndex.

Creation of the 1-jaccard distance matrix and performing the multidimensional scaling

```
#distance matrix is 1-jaccard distance
dm<-1-m
```

```
\#Perform\ the\ multimensional\ scaling,\ k=4\ for\ 4\ dimensions\ (\ using\ 4\ for\ the\ next\ exercise\ ) multi\_d\_scaling<-\ cmdscale(dm,\ k=4)
```

5.Plot 1:2 and 3:4 dimensions and color by tissue, shape by fetal/adult.

Create a new dataframe for plotting the dimensions

```
#rename the coluns from [,1] to their corresponding dimension and transorm it into a dataframe
colnames(multi_d_scaling)<-c("MDS1", "MDS2", "MDS3", "MDS4")

df_multi_d_scaling <- as.data.frame(multi_d_scaling)

#Create a column with the rownames
#Easier join with filtered_metadata later (needed for PERIOD and tissue)

df_multi_d_scaling$Name<-rownames(df_multi_d_scaling)

df_multi_d_scaling <- df_multi_d_scaling %>%

left_join(filtered_metadata, by = c("Name" = "UniqueName"))
```

Plot for dimensions 1 and 2

```
library(ggplot2)
ggplot(df_multi_d_scaling, aes(x = MDS1, y = MDS2, color = V2, shape = PERIOD))+
geom_point(size = 5)+labs(x="Dimension 1", y="Dimension 2")
```


Plot for dimensions 3 and 4

```
ggplot(df_multi_d_scaling, aes(x = MDS3, y = MDS4, color = V2, shape = PERIOD))+
geom_point(size = 5)+labs(x="Dimension 3", y="Dimension 4")
```


6.Compute hierarchical clustering in jaccard distance matrix with R function "hclust", cut the dendrogram at different Ks using R function "cutree" and plot the dendrogram coloring the obtained clusters of samples. (You can use the R Package dendextend)

Prepare the data and compute the clustering

```
library(dendextend)

dmatrix_prep<-as.dist(dm)
computed_clusters<-hclust(dmatrix_prep, method="complete")

plot(computed_clusters, sub="", xlab="", cex=0.9)</pre>
```

Cluster Dendrogram

Cluster separation and plotting with cutree

```
cluster_numbers<-c(2, 3, 4, 6, 8)

#par(mfrow = c(1, length(cluster_numbers)/2))
for (cl in cluster_numbers){
   clusters <- cutree(computed_clusters, k = cl)
   dend <- color_branches(as.dendrogram(computed_clusters), k = cl)
   par(mar = c(10, 4, 2, 2)+0.1)
   plot(dend, main=paste0("Diagram of ", cl, " clusters"), cex=0.9)
}</pre>
```

Diagram of 2 clusters

Diagram of 3 clusters

Diagram of 4 clusters

Diagram of 6 clusters

Diagram of 8 clusters

Do you see a logic in the clusters using epigenomes?

Most clusters seem to be separated by tissue and the separation occurs by earliest branch
division (On 2 clusters, it divides by red and blue instead of creating a division out of
green, which is the new cluster created in the 3 clusters plot). This clustering also seems to
happen classified by Tissue and Period

Which major sub-divisions can you see?

The main subdivisons on 3 clusters are Muscle, Brain and Digestive+Heart(and some small muscle).
We observe that Fetal and Adult separate when we increase the number of clusters in later
plots, although they aren't the first to get separated when increasing the cluster number due
to the reasons mentioned previously

All states convey similar information?

The further away 2 samples are, the more epigenomic differences they present,
in this case most are similar.