

The Truth Value Project

truthvalue.org

presented by

Massimo Di Pierro

@ DePaul University

The Team

Luca de Alfaro, UC Santa Cruz, USA

Eugenio Tacchini, Università Cattolica, Piacenza, Italy

Massimo Di Pierro, DePaul University, Chicago, USA

Gabriele Ballarin, Independent Researcher, Italy

Stefano Moret, EPFL, Switzerland

Marco L. Della Vedova, Università Cattolica, Brescia, Italy

- about me and this paper
- data collection
- unsupervised learning
- supervised learning (logistic / topic modeling)
- supervised learning (harmonic algorithm)
- results
- code examples
- conclusions

About me

1999: PhD in Physics

1999 - 2002: postdoc at Fermilab

2002 - today: Prof in CS at DePaul (co-director MS-Computational Finance)

2007: created web2py (best framework for Python web app, still!)

Some Like it Hoax: Automated Fake News Detection in Social Networks

Eugenio Tacchini¹, Gabriele Ballarin², Marco L. Della Vedova³, Stefano Moret⁴, and Luca de Alfaro⁵

¹Università Cattolica, Piacenza, Italy. eugenio.tacchini@unicatt.it

²Independent researcher. gabriele.ballarin@gmail.com

³Università Cattolica, Brescia, Italy. marco.dellavedova@unicatt.it

⁴École Polytechnique Fédérale de Lausanne, Switzerland. moret.stefano@gmail.com

⁵Department of Computer Science, UC Santa Cruz, CA, USA. luca@ucsc.edu

https://arxiv.org/pdf/1704.07506.pdf

2018 Facebook Twitter

Automatic online Fake News Detection combining Content and Social Signals

Reputation Systems for News on Twitter: A Large-Scale Study

Goal

find fake news

help humans identify news items that should be double checked

Fake News!

CLAIM

Pope Francis has endorsed Hillary Clinton for President.

RATING

ORIGIN

Pope Francis seems to be something of a political gadfly. Having broken with tradition and endorsed Democratic presidential candidate <u>Bernie Sanders</u> in October 2015, he turned around and endorsed Republican nominee <u>Donald Trump</u> in July 2016 and then immediately reversed himself yet again and endorsed Trump's rival in the presidential race, Hillary Clinton:

News outlets around the world are reporting on the news that Pope Francis has made the unprecedented decision to endorse a US presidential candidate. His statement in support of Hillary Clinton was released from the Vatican this evening:

Fake News

Fake or Misleading News

DONALD TRUMP

"We are now, very proudly, an exporter of energy to the world."

PolitiFact National on Wednesday, January 31st, 2018

Still a net energy importer

Fake or Misleading News

vote

who is tweeting?

I am biased

How does my bias play a role in this analysis?

Choice of news sources to follow

Choice of sources of ground truth

Collected Data

Data Structure

Data Collection - time

collector

Compute Engine

collector stream API ٠ store tweets 40 SQL Compute Engine App Engine Cloud SQL ٠ =: Compute Engine App Engine Cloud Storage ₽ store HTML Compute Engine

truthvalue.org

Compute Engine

What/Who do we follow?

Mainstream news: including ABC News, Breitbart, BuzzFeed, CBS News, Channel 7 News, CNN, Fox News, MSNBC, NBC News, The Huffington Post, The Economist, The Guardian, The Hill, The Onion, The New York Post, The New York Times, The Times, The US Herald, The Washing- ton Post, USA Today, US News

The Associated Press and Reuters

ArXiV, Nature, and Science Magazine

Politifact and Snopes

News from 160 selected users

Low-quality news from our Ground Truth (OpenSources & MetaCert)

Data Collection - Results

Site	%	Site	%
youtube.com	4.319	wordpress.com	0.754
nytimes.com	3.145	nypost.com	0.625
theguardian.com	2.904	thehill.com	0.619
huffingtonpost.com	1.964	latimes.com	0.616
washingtonpost.com	1.944	breitbart.com	0.609
arxiv.org	1.585	cbsnews.com	0.563
usatoday.com	1.504	reuters.com	0.426
indiatimes.com	1.458	reddit.com	0.388
foxnews.com	1.262	dailycaller.com	0.367
blogspot.com	1.202	newsmax.com	0.336

Table 1: The 20 news sites with the most URLs in our dataset in the period from September 1 to November 30, 2017.

Unsupervised Learning

Similarity(1,2) = T12 / sqrt(T1 * T2) = 0.81% similarity

Similarity(1,3) = T13 / sqrt(T1 * T3) = 0.40% similarity

Similarity(1,4) = T14 / sqrt(T1 * T4) = 0% similarity

Domains Graph

Similarity(1.com, 2.com) = T12 / sqrt(T1 * T2) = 51% similarity

Domains Similarity Graph

Domains Similarity Graph

Domains Similarity Graph

Supervised Learning

Ground Truth

what do we assume to be certainly true or false?

Professionally curated lists of online sources, available free for public use.

https://github.com/OpenSourcesGroup/opensources

Supervised Learning Harmonic

Master Graph

Modes of Operation

Fixed-point

Loop and propagate reputation from URLs to users and back until convergence Usually converges in few (4-8) iterations

Dynamic

Real time update when a new Tweet is discovered

Supervised Learning

Logistic Regression Bag of Word Model Topic Modeling

Bag or Words Model

Corpora

It was the best of times,
it was the worst of times,
it was the age of wisdom,
it was the age of foolishness,

Bag of Words it, was, the, best, of, times

Vocabulary

- "it"
- "was"
- "the"
- "best"
- "of"
- "times"
- "worst"
- "age"
- "wisdom"
- "foolishness"

Features

```
1 "it was the worst of times" = [1, 1, 1, 0, 1, 1, 1, 0, 0, 0]
2 "it was the age of wisdom" = [1, 1, 1, 0, 1, 0, 0, 1, 1, 0]
3 "it was the age of foolishness" = [1, 1, 1, 0, 1, 0, 0, 1, 0, 1]
```

10 features

Bag or Words Model

TF-IDF = **Term Frequency** Inverse Document Frequency

5 features

Bag or Words Model for News

Bag or Words Model for News

Bag or Words Model Limitation

Problem: A limitation of the logistic-based classification model is that we can assign coefficients only to users and words that we have seen in our ground truth.

Solution: Topic-based models extract the common behavioral similarities among users, summarizing them in a number of topics that each user is likely to share. We then train using topics as features. ("topics" not in typical english meaning)

Training vs Testing

Dataset	URLs	Tweets
Training dataset	787,601	14,587,984
Min-2 training dataset	275,400	14,075,783
Testing dataset	607,299	7,967,170

Table 2: Sizes of training and testing datasets for logisticregression based classifiers.

	Number of URLs									
	Opensources	Metacert	Common	Total						
Train	7,069	7,032	4,876	144,137						
Test	2,664	2,331	1,810	121,460						

Table 4: Number of URLs in the Opensources and Metacert lists that appear in our training and testing sets for topic modeling. The different proportion of URLs that belong to the Opensources and Metacert sets, compared to the total URLs, depends on the fact that the training set cosists only of URLs that were shared at least twice.

Results

Confusion Matrix

Confusion Matrix

	Positive	negative
Predicted positive	TP	FP
Predicted negative	FN	TN

Recall =
$$\frac{TP}{TP+FN}$$

Precision = $\frac{TP}{TP+FP}$

True Positive Rate = $\frac{TP}{TP+FN}$

False Positive Rate = $\frac{FP}{FP+TN}$

Recall / Precision for Ground Truth

		Full Training			Min-2 Training				Harmonic	
		LR-U	LR-UT	LR-T	LR-U	LR-UT	LR-T	Topics	1x	4x
All URLs	Hoax recall:	57.64	61.14	57.25	46.84	53.25	53.21	54.80	91.20	74.34
	Nonhoax recall:	97.40	97.75	94.18	98.76	98.51	94.82	93.88	89.74	96.69
	Hoax precision:	33.30	38.15	18.15	46.14	44.61	18.81	16.50	16.64	32.87
$URLs \ with \ge 2 \ shares$	Hoax recall:	72.12	71.69	62.69	63.94	66.76	59.19	66.56	91.20	74.34
	Nonhoax recall:	95.62	96.66	91.73	97.55	97.84	93.25	92.23	89.74	96.60
	Hoax precision:	41.44	49.19	24.54	46.14	57.07	27.34	26.60	16.64	32.87
URLs with ≥ 5 shares	Hoax recall:	82.57	81.27	67.38	79.03	78.94	64.93	76.32	91.83	69.79
	Nonhoax recall:	95.47	96.66	90.14	97.00	97.49	92.24	92.83	85.44	95.32
	Hoax precision:	50.24	57.43	27.46	52.83	63.56	31.66	36.12	24.79	43.75
$URLs \ with \ge 10 \ shares$	Hoax recall:	87.14	85.43	69.90	85.43	84.80	68.06	83.13	93.52	70.83
	Nonhoax recall:	95.64	96.63	88.91	96.77	97.33	91.50	93.20	84.54	95.43
	Hoax precision:	54.28	60.16	27.24	61.10	65.37	32.23	40.70	25.44	46.62

Table 5: Hoax and non-hoax recall, and hoax precision, expressed as percentages, for the news reputation systems compared in this paper. The methods are LR-U: logistic regression based on users; LR-UT: logistic regression based on users and text; LR-T: logistic regression based on text; Topics: topic analysis, and Harmonic: harmonic crowdsourcing algorithm. For logistic regression, we report results for two training sets: the full one, and the one consisting of URLs that have been shared at least twice. For the other methods, we only report results on the full training set. For Harmonic, we report the results with both 1x and 4x sampling of good URLs. The results are based on the Opensources ground truth.

Probability Fake/Unreliable

	LR-UT				LR-U				Harmonic			
	Full Train Min-2 Train		Full Train Min-2			Train	ain Entire, 1x		Entire, 4x			
	OS	MC	OS	MC	OS	MC	OS	MC	OS	MC	OS	MC
nytimes.com	0.88	0.83	0.42	0.35	0.83	0.73	0.19	0.14	4.10	3.95	1.37	1.18
theguardian.com	1.16	1.02	0.48	0.40	0.97	0.93	0.29	0.16	5.13	4.81	1.75	1.60
huffingtonpost.com	2.61	1.96	1.12	0.65	1.43	1.40	0.53	0.46	7.91	7.24	2.72	2.36
washingtonpost.com	1.92	2.12	0.77	0.80	3.07	2.98	0.38	0.33	7.32	7.46	2.45	2.10
arxiv.org	0.08	0.08	0.00	0.00	0.11	0.11	0.05	0.06	0.59	0.45	0.19	0.22
usatoday.com	1.09	1.13	0.56	0.42	0.84	0.63	0.17	0.14	4.43	4.23	1.48	1.12
foxnews.com	1.91	2.01	1.08	0.91	3.07	2.77	1.42	0.78	40.43	37.34	8.05	5.67
nypost.com	3.42	3.20	1.99	1.71	3.70	3.36	1.12	1.28	17.94	17.01	4.90	3.92
thehill.com	3.39	3.43	1.79	1.60	4.64	3.55	1.91	1.09	14.71	14.09	3.96	3.31
latimes.com	0.21	0.17	0.13	0.13	0.38	0.42	0.17	0.17	2.71	2.75	0.83	0.56
breitbart.com	5.10	3.39	3.73	1.79	11.04	9.37	6.32	4.76	77.96	82.20	20.75	13.05
cbsnews.com	1.53	1.88	0.57	0.44	1.62	1.22	0.52	0.39	11.07	10.46	3.92	3.36
reuters.com	1.16	1.11	0.44	0.44	1.07	0.93	0.62	0.36	3.54	3.26	1.29	0.98
dailycaller.com	25.00	41.38	16.76	32.07	50.58	56.59	39.63	50.58	86.41	85.99	29.07	20.77
townhall.com	31.41	16.74	21.33	14.13	38.88	23.49	28.71	16.2	78.53	76.85	31.31	18.96
truthfeednews.com	21.31	2.95	16.8	2.33	18.82	1.87	15.71	2.64	98.28	97.58	81.92	35.75
hotair.com	9.40	2.03	2.99	0.96	15.60	10.15	10.58	7.48	87.38	86.22	11.40	7.01
freedomdaily.com	88.89	87.96	89.81	86.11	81.48	78.70	79.63	77.78	95.88	96.30	79.42	71.60
conservativedailypost.com	93.20	92.37	95.88	95.46	84.54	81.03	79.38	73.61	98.18	98.18	92.66	87.89
lucianne.com	15.65	96.56	2.67	96.56	89.31	96.56	77.48	96.56	99.14	98.45	26.42	34.37
redstate.com	39.23	14.67	38.92	9.57	39.23	18.18	26.48	11.96	78.81	71.72	23.60	10.77
theblaze.com	43.06	24.07	37.96	14.81	16.67	12.50	5.09	4.63	76.01	73.99	20.61	11.92
newsbusters.org	18.22	21.78	14.22	21.78	29.33	31.56	20.89	31.11	89.98	89.74	17.53	11.20
zerohedge.com	28.18	19.86	18.24	6.47	31.18	23.33	16.40	9.24	80.24	67.62	45.88	17.12

Table 6: Percentage of URLs that are classified as hoaxes for some news sites, including the top news websites of Table 1. Min-2 Train is the training set consisting of URLs that were shared at least twice; Full Train is the full training set. OS stands for Opensources ground truth; MC stands for Metacert ground truth.


```
import twitter
import tweepy
auth = twitter.OAuth(access_token, access_token_secret,
                     consumer_key, consumer_secret)
# STRFAM APT
class MyListener(tweepy.StreamListener):
    def on_status(self, tweet):
# process tweet
listener = MyListener()
stream = tweepy.Stream(auth=auth, listener=listener)
stream.filter(follow=words_to_follow)
# REST API
twitter = twitter.Twitter(auth=auth)
result = twitter.search.tweets(q=query, count=100)
```

```
from gensim import corpora, models, similarities

dictionary = corpora.Dictionary(corpus0)

dictionary.filter_extremes(no_below=10, keep_n=100)

# [u'on', u'is', u'dog', u'cat', u'under']
corpus1 = [dictionary.doc2bow(doc) for doc in corpus0] # transform
# [[(0, 1), (2, 1)], ...]
```

word 0 "on" appears 1 in document 0

```
tfidf = models.TfidfModel(corpus1)
corpus2 = tfidf[corpus1] # transform
print corpus2[0]
# [[(0, 0.2884171765165675), (2, 0.25082562116562995)], ...]
```

word 0 "on" appears in document 0 with weight 0.288....

topic 2 appears in document 0 with weight 0.017...

```
import numpy as np
from sklearn.linear_model import LogisticRegression
# corpus to features
X = np.ndarray((len(corpus3), num_topics))
for row, doc in enumerate(corpus3):
    for col, weight in doc:
        X[row,col] = weight
# split training vs testing
[X_{train}, y_{train} = X[:50], y[:50]
X \text{ test, } y \text{ test } = X[50:], y[50:]
# fit/predict
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
# [ True, True, False, False, ...]
# metrics
tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel()
recall = float(tp) / (tp + fn)
precision = float(tp) / (tp + fp)
```

Conclusions

Conclusions

- This study was done in 4 months
- There is much more that can be done
- We continue acquire data
- We did not look at time patterns of sharing
- We did not attempt to classify users as bots