

YC31xx ADC 应用说明

V1.1

Yichip Microelectronics ©2014

Revision History

Version	Date	Author	Description
V1.0	2020-02-14	Zhiteng.Yi	Initial version
V1.1	2020-03-01	Zhiteng.Yi	Add lib description

Confidentiality Level:

confidential

目录

1.	ADC 简	5介	∠
2.	库函数.		
		宏	
		参数类型说明	
		初始化函数	
		读 ADC 寄存器值	
		获取中位平均值	
		获取电压	
		· 集钾电池电压	

1. ADC 简介

最高采样率为600KHz,最高采样精度为10比特,电压校准值在量产芯片中会烧录到OTP中。在GPI0模式下,ADC有8个通道,对应GPI0为GPI037到GPI044,测量电压范围为0到1.2V;在HVIN模式下,测量电压范围为0-5V,精度平均在30mV以内,最大误差不超过50mV.

2. 库函数

2.1. 宏

```
#define IO_LOW_VOLTAGE_REF 500//GPIO 的参考低电压为 0.5v #define IO_HIHG_VOLTAGE_REF 1000// GPIO 的参考高电压为 1v
```

#define HVIN_LOW_VOLTAGE_REF 3300 // HVIN 的参考低电压为 3.3v #define HVIN_HIHG_VOLTAGE_REF 5000 // HVIN 的参考低电压为 5v

#define ADC_REF_OTP_ADDR 0x012c //参考电压对应值烧录的 otp 位置

#define FILT_NUM 20//中位平均数采样数 #define REMOVE_NUM 6//中位平均数去除个数

#define WAIT_TIME 5000 //采样等待时间

2.2. 参数类型说明


```
ADC_CHANNEL_3,
ADC_CHANNEL_4,
ADC_CHANNEL_5,
ADC_CHANNEL_6,
ADC_CHANNEL_7,
}ADC_ChxTypeDef;
typedef enum
{
ADC_GPIO = 0,
ADC_DIFF,
ADC_HVIN,
ADC_VINLPM,
}ADC_ModeTypeDef;
```

2.3. 初始化函数

- 函数原型: void ADC_Init(ADC_InitTypeDef*ADC_InitStruct)
- 说明: 初始化 ADC 模块,配置模式,选择通道
- 参数: ADC_InitStruct
- 返回值:无

2.4. 读 ADC 寄存器值

- 函数原型: uint16_t ADC_GetResult(ADC_ChxTypeDef ADC_Channel)
- 说明: 获取当前模式,当前通道电压对应的寄存器读数
- 参数: 采电池电压的模式下配置成 ADC_HVIN,通道选择 ADC_CHANNEL_0; ADC_GPIO 模式下,可选通道 0 到通道 7 ,对应对应 GPIO 为 GPIO37 到 GPIO44,差分模式(ADC_DIFF)下,选择 ADC_CHANNEL_0 到 ADC_CHANNEL_3, GPIO37 GPIO38 对应 ADC_CHANNEL_0。两个通道一组。
- 返回值: 当前通道电压对应的寄存器读数

2.5. 获取中位平均值

- 函数原型: int ADC_Filt(ADC_ChxTypeDef ADC_Channel)
- 说明: 获取 ADC_GetResult () 中位平均值; 取 FILT_NUM (默认 20)个去掉最大值最小值共 REMOVE_NUM (6) 个。
- 参数: 采电池电压的模式下配置成 ADC_HVIN,通道选择 ADC_CHANNEL_0; ADC_GPIO 模式下,可选通道 0 到通道 7 ,对应对应 GPIO 为 GPIO37 到 GPIO44,差分模式(ADC_DIFF)下,选择 ADC_CHANNEL_0 到 ADC_CHANNEL_3,,GPIO37 GPIO38 对应 ADC_CHANNEL_0。两个通道一组。
- 返回值: 当前通道电压对应的寄存器读数的中位平均值

2.6. 获取电压

- 函数原型: int ADC_GetVoltage(ADC_ChxTypeDef ADC_Channel)
- 说明: 获取当前模式(HVIN/GPIO/ADC_DIFF),当前通道电压(mV).
- 参数: 采电池电压的模式下配置成 ADC_HVIN (芯片 hvin 管脚),通道选择 ADC_CHANNEL_0; ADC_GPIO模式下,可选通道0 到通道7,对应对应 GPIO为 GPIO37到 GPIO44,差分模式(ADC_DIFF)下,选择 ADC_CHANNEL_0到 ADC_CHANNEL_3,, GPIO37 GPIO38 对应 ADC_CHANNEL_0。两个通道一组。
- 返回值:
 - ◆ 当前电压值(HVIIN 模式: 0~5500、GPIO/ADC_DIFF 模式: 0~1200)
 - ◆ -1:模数转换异常

3. ADC 采集锂电池电压

在 Pos 应用中, 电路上 HVIN 脚与锂电池相连,即可让 ADC 模块在 HVIN 模式下采集电压。

1. ADC 的配置,

```
void ADC_Configuration(void)
{
//定义 ADC 配置结构体
ADC_InitTypeDef ADCInitStruct;
//选择通道,HVIN 模式下只有一个通道
ADCInitStruct.ADC_Channel = ADC_CHANNEL_0;
//模式为 HVIN 模式
ADCInitStruct.ADC_Mode = ADC_HVIN;
ADC_Init(&ADCInitStruct);
}
```

2. 采集的值读取,以下接口返回值为采集的 ADC 值

ADC_GetResult (ADC_CHANNEL_0);

3. 电压计算,电压是根据采集的值求中位平均值和校准值计算得出,以下接口返回值为计算的电压值单位 (mV)

ADC_GetVoltage (ADC_CHANNEL_0);