

SEQUENCE LISTING

<110> Flasinski, Stanislaw

<120> Methods for Using Artificial Polynucleotides and Compositions thereof to Reduce Transgene Silencing

<130> 11899.0235.PCUS00

<140> PCT/US 03/21551

<141> 2003-07-10

<150> US 06/396,665

<151> 2002-07-18

<160> 35

<170> PatentIn version 3.3

<210> 1

<211> 515

<212> PRT

<213> Oryza sativa

<400> 1

Met Ala Ala Thr Met Ala Ser Asn Ala Ala Ala Ala Ala Val Ser
1 5 10 15

Leu Asp Gln Ala Val Ala Ala Ser Ala Ala Phe Ser Ser Arg Lys Gln
20 25 30

Leu Arg Leu Pro Ala Ala Ala Arg Gly Gly Met Arg Val Arg Val Arg
35 40 45

Ala Arg Gly Arg Arg Glu Ala Val Val Val Ala Ser Ala Ser Ser Ser
50 55 60

Ser Val Ala Ala Pro Ala Ala Lys Ala Glu Glu Ile Val Leu Gln Pro
65 70 75 80

Ile Arg Glu Ile Ser Gly Ala Val Gln Leu Pro Gly Ser Lys Ser Leu
85 90 95

Ser Asn Arg Ile Leu Leu Leu Ser Ala Leu Ser Glu Gly Thr Thr Val
100 105 110

Val Asp Asn Leu Leu Asn Ser Glu Asp Val His Tyr Met Leu Glu Ala
115 120 125

Leu Lys Ala Leu Gly Leu Ser Val Glu Ala Asp Lys Val Ala Lys Arg
130 135 140

Ala Val Val Val Gly Cys Gly Gly Lys Phe Pro Val Glu Lys Asp Ala
145 150 155 160

Lys Glu Glu Val Gln Leu Phe Leu Gly Asn Ala Gly Ile Ala Met Arg
165 170 175

Ser Leu Thr Ala Ala Val Thr Ala Ala Gly Gly Asn Ala Thr Tyr Val
180 185 190

Leu Asp Gly Val Pro Arg Met Arg Glu Arg Pro Ile Gly Asp Leu Val
195 200 205

Val Gly Leu Lys Gln Leu Gly Ala Asp Val Asp Cys Phe Leu Gly Thr
210 215 220

Glu Cys Pro Pro Val Arg Val Lys Gly Ile Gly Gly Leu Pro Gly Gly
225 230 235 240

Lys Val Lys Leu Ser Gly Ser Ile Ser Ser Gln Tyr Leu Ser Ala Leu
245 250 255

Leu Met Ala Ala Pro Leu Ala Leu Gly Asp Val Glu Ile Glu Ile Ile
260 265 270

Asp Lys Leu Ile Ser Ile Pro Tyr Val Glu Met Thr Leu Arg Leu Met
275 280 285

Glu Arg Phe Gly Val Lys Ala Glu His Ser Asp Ser Trp Asp Arg Phe
290 295 300

Tyr Ile Lys Gly Gly Gln Lys Tyr Lys Ser Pro Gly Asn Ala Tyr Val
305 310 315 320

Glu Gly Asp Ala Ser Ser Ala Ser Tyr Phe Leu Ala Gly Ala Ala Ile
325 330 335

Thr Gly Gly Thr Val Thr Val Gln Gly Cys Gly Thr Thr Ser Leu Gln
340 345 350

Gly Asp Val Lys Phe Ala Glu Val Leu Glu Met Met Gly Ala Lys Val
355 360 365

Thr Trp Thr Asp Thr Ser Val Thr Val Thr Gly Pro Pro Arg Glu Pro
370 375 380

Tyr Gly Lys Lys His Leu Lys Ala Val Asp Val Asn Met Asn Lys Met
385 390 395 400

Pro Asp Val Ala Met Thr Leu Ala Val Val Ala Leu Phe Ala Asp Gly
405 410 415

Pro Thr Ala Ile Arg Asp Val Ala Ser Trp Arg Val Lys Glu Thr Glu
420 425 430

Arg Met Val Ala Ile Arg Thr Glu Leu Thr Lys Leu Gly Ala Ser Val
435 440 445

Glu Glu Gly Pro Asp Tyr Cys Ile Ile Thr Pro Pro Glu Lys Leu Asn
450 455 460

Ile Thr Ala Ile Asp Thr Tyr Asp Asp His Arg Met Ala Met Ala Phe
465 470 475 480

Ser Leu Ala Ala Cys Ala Asp Val Pro Val Thr Ile Arg Asp Pro Gly
485 490 495

Cys Thr Arg Lys Thr Phe Pro Asn Tyr Phe Asp Val Leu Ser Thr Phe
500 505 510

Val Arg Asn
515

<210> 2
<211> 1548
<212> DNA
<213> Oryza sativa

<400> 2
atggcggcga ccatggcgtc caacgcccgc gctgcggcgg cggtgtccct ggaccaggcc 60
gtggcggcgt cggcggcggt ctcgtcgccg aagcagctgc ggctgcccgc cgccggcgcc 120
ggggggatgc ggggtgcgggt gcggggcgccg gggcggcggg aggccgtggt ggtggcgtcc 180
gcgtcgctgt cgtcggtggc agcgccggcg gcgaaggcgg aggagatcgt gctccagccc 240
atcagggaga tctccggggc ggttcagctg ccagggtcca agtcgctctc caacaggatc 300
ctcctcctct ccgcctctc cgagggcaca acagtggtgg acaacttgct gaacagttag 360
gatgttcaact acatgcttga gcccctgaaa gccctcgccc tctctgtgaa agcagataaa 420
gttgcaaaaa gagctgttagt cgttggctgt ggtggcaagt ttccctgttga gaaggatgcg 480
aaagaggaag tgcaactctt cttggggAAC gctggaaatcg caatgcgatc cttgacagca 540
gccgtgactg ctgctgggtgg aaatgcaact tatgtgcttg atggagtgcc acgaatgagg 600
gagagaccga ttgggtgactt gggtgtcggtt ttgaaacaac ttgggtgcggg tgtcgactgt 660
ttccttggca ctgaatgccc acctgttcgt gtcaaggaa ttggaggact tcctgggtggc 720
aaggtaagc tctctggttc catcagcagt cagttacttga gtgccttgct gatggctgct 780
cctttggccc ttggggatgt ggagatcgaa atcattgaca aactaatctc cattcattac 840
gtgaaatga cattgagatt gatggagcgt tttgggtgtga aggccagagca ttctgatagt 900
tggcacagat tctatattaa gggagggcag aagtacaaat ctcctggaaa tgcctatgtt 960
gaaggtgatg cctcaagcgc gagctatttc ttggctgggtg ctgcaatcac tggaggcact 1020
gtgacagttc aagggtgtgg tacgaccagt ttgcagggtg atgtcaaatt tgctgaggta 1080
cttgagatga tgggagcaaa ggttacatgg actgacacca gtgttaaccgt aactggtcca 1140
ccacgtgagc cttatggaa gaaacacctg aaagctgttg atgtcaacat gaacaaaatg 1200
cctgatgttg ccatgaccct tgccgttgc ttgcactttcg ctgatggtcc aactgctatc 1260
agagatgtgg cttccctggag agtaaaggaa accgaaagga tggttgcaat tcggaccgag 1320
ctaacaaagc tgggagcatc ggttgaagaa ggtcctgact actgcatcat cacccccaccg 1380
gagaagctga acatcacggc aatcgacacc tacgatgatc acaggatggc catggccttc 1440
tccctcgctg cctgcggccga cgtgcccgtg acgatcaggg accctgggttgc caccggcaag 1500
accttccccca actacttcga cgttctaagc actttcgta ggaactga 1548

<210> 3
<211> 1548
<212> DNA
<213> Oryza sativ

<400> 3
atggctgcaa ctatggctag taacgcagcg gctgccgctg ccgtttcctt agaccaagca 60
gttagcagcga gcgcgtgcatt ctcatacacgt aagcaactac ggctaccagc agccgctaga 120
ggcggcatga gagtttagagt gagggctaga ggtaggcggg aggctgttagt cgtagccctcc 180
gcttctagca gttcggtggc tgcgccggct gctaaggcag aggagattgt tttacaacct 240
attaggaaaa tatcgggggc cgtacaatta cctggaagca agagcctttc caacaggatt 300
ctgttgcttt cagctctctc ggagggaaaca acagttgtgg ataatctgtt gaatagttag 360
gatgtgcact atatgctaga ggctctcaag gctctagggc tttctgtaga agcggataaaa 420
gtagcaaaac gcgcagtggg ttaggttgtt ggtggaaagt tcccagttga aaaggatgct 480
aaggaagaag tacagctctt tctcggaat gccgggatcg ccatgcggag tttgactgct 540
gcggtcacag ccgctggagg caacgcaaca tacgtcctag atgggtgcc gagaatgcgt 600
gagcgtccta ttggtgatct tgctgttagt ctcaagcaac tcggcgctga cgtagattgt 660
ttcctggta ctgagtgtcc gccagtcaga gttaaaggaa tcggtggct gccggcgga 720
aaggtaauc tgtcgggcag tatttcgagt cagtatctt ctgctctcct gatggctgcg 780
ccattagctt tggagatgt tgagatcgag atcattgata aacttatatc tatccgtat 840
gtcgagatga cttaagact tatggaacgg tttggggta aggccgagca tagcgacagt 900
tgggatcggt tctacataaa gggaggccag aagtataagt ctccctggaa tgcttatgt 960
gaagggatg cttcatctgc gtcttacttc cttgcggag cggctataac tggaggaaca 1020
gtcacagttc agggctgcgg tacaacaagt ttgcaagggtg acgtgaagtt tgccgaggta 1080
cttgaatga tgggtgccaa agtaacgtgg acagacacat cggtgacagt tactggcct 1140
ccacgagaac cttaacggcaa aaagcatctt aaggccgtgg atgttaatat gaataagatg 1200
cctgacgttg ctatgacact tgccgttgc ttgccttttgc cagacggccc aacggcgata 1260
cgcgatgttgc catcatggcg cgtcaaggaa acggagagga tggggctat tcgaactgaa 1320
ctcaccaaaac ttgggtgcctc ttagaggag ggccctgttactgttatcat tacacccct 1380
gagaaactta acatcactgc tattgataca tacgacgatc atagaatggc tatggcttc 1440
tcactggccg cttgtgcaga tgccctgtc acaatcagag atcctggctg tactagaaag 1500
acgttccccga actactttga tggttcttca acattcgtcc gcaattga 1548

<210>	4	
<211>	1548	
<212>	DNA	
<213>	Oryza sativa	
<400>	4	
	atggctgcaa ctatggctag taacgcagcg gctgccgctg ccgtttcctt agaccaagca	60
	gtagcagcga gcgctgcatt ctcatacacgt aagcaactac ggctaccaggc agccgctaga	120
	ggccggcatga gagtttagagt gagggctaga ggtaggcggg aggctgttagt cgtagcctcc	180
	gcttctagca gttcgggtggc tgcgccggct gctaaggcag aggagattgt tttacaacct	240
	attagggaaa tatcgggggc cgtacaatta cctggaagca agagccttcc caacaggatt	300
	ctgttgcttt cagctctctc ggagggaaaca acagttgtgg ataatctgtt gaatagttag	360
	gatgtgcact atatgctaga ggctctcaag gctctagggc tttctgtaga agcggataaa	420
	gtagcaaaac gcgcagtggt tgtaggttgt ggtggaaagt tcccagttga aaaggatgct	480
	aaggaagaag tacagctctt tctcgggaat gccgggatcg ccatgcggag tttgactgct	540
	gcggtcacag ccgctggagg caacgcaaca tacgtcctag atgggtgcc gagaatgcgt	600
	gagcgtccta ttggtgatct tgtaggttgt ctcaagcaac tcggcgctga cgtagattgt	660
	ttcctggta ctgagtgcc gccagtcaga gttaaaggaa tcggtgccgt gccgggcgga	720
	aaggtaauc tgtcggcag tatttcgagt cagtatctt ctgctctcct gatggctgcg	780
	ccattagctt tggagatgt tgagatcgag atcattgata aacttatatc tatccgtat	840
	gtcgagatga cttaaagact tatggaacgg tttgggtta aggccgagca tagcgacagt	900
	tgggatcggt tctacataaa gggaggccag aagtataagt ctcctggaa tgcttatgt	960
	gaaggggatg cttcatctgc gtcttacttc cttgcggag cggtataac tggaggaaca	1020
	gtcacagttc agggctgcgg tacaacaagt ttgcaaggtg acgtgaagtt tgccgaggta	1080
	cttgaaatga tgggtgccaa agtaacgtgg acagacacat cggtgacagt tactggcct	1140
	ccacgagaac cttacggcaa aaagcatctt aaggccgtgg atgttaatat gaataagatg	1200
	cctgacgttg ctatgacact tgccgttggt gcccttttg cagacggccc aacggcgata	1260
	cgcgatgttg catcatggcg cgtcaaggaa acggagagga tggtggtat tcgaactgaa	1320
	ctcaccaaactt tgggtgcctc tgtagaggag ggccctgatt actgtatcat tacacccct	1380
	gagaaactta acatcaactgc tattgataca tacgacgatc atagaatggc tatggcttc	1440
	tcactggccg cttgtgcaga tggcctgtc acaatcagag atcctggctg tactagaaag	1500
	acgttcccgaa actactttga tggcctttca acattcgatc gcaattga	1548

<210> 5
 <211> 525
 <212> PRT
 <213> Glycine max

<400> 5

Met	Ala	Gln	Val	Ser	Arg	Val	His	Asn	Leu	Ala	Gln	Ser	Thr	Gln	Ile
1															15
Phe	Gly	His	Ser	Ser	Asn	Ser	Asn	Lys	Leu	Lys	Ser	Val	Asn	Ser	Val
															30
Ser	Leu	Arg	Pro	Arg	Leu	Trp	Gly	Ala	Ser	Lys	Ser	Arg	Ile	Pro	Met
															45
His	Lys	Asn	Gly	Ser	Phe	Met	Gly	Asn	Phe	Asn	Val	Gly	Lys	Gly	Asn
															60
Ser	Gly	Val	Phe	Lys	Val	Ser	Ala	Ser	Val	Ala	Ala	Ala	Glu	Lys	Pro
															80
Ser	Thr	Ser	Pro	Glu	Ile	Val	Leu	Glu	Pro	Ile	Lys	Asp	Phe	Ser	Gly
															95
Thr	Ile	Thr	Leu	Pro	Gly	Ser	Lys	Ser	Leu	Ser	Asn	Arg	Ile	Leu	Leu
															110
Leu	Ala	Ala	Leu	Ser	Glu	Gly	Thr	Thr	Val	Val	Asp	Asn	Leu	Leu	Tyr
															125
Ser	Glu	Asp	Ile	His	Tyr	Met	Leu	Gly	Ala	Leu	Arg	Thr	Leu	Gly	Leu
															140
Arg	Val	Glu	Asp	Asp	Lys	Thr	Thr	Lys	Gln	Ala	Ile	Val	Glu	Gly	Cys
															160
Gly	Gly	Leu	Phe	Pro	Thr	Ser	Lys	Glu	Ser	Lys	Asp	Glu	Ile	Asn	Leu
															175
Phe	Leu	Gly	Asn	Ala	Gly	Ile	Ala	Met	Lys	Ser	Leu	Thr	Ala	Ala	Val
															190
Val	Ala	Ala	Gly	Gly	Asn	Ala	Ser	Tyr	Val	Leu	Asp	Gly	Val	Pro	Arg
															205
Met	Arg	Glu	Arg	Pro	Ile	Gly	Asp	Leu	Val	Ala	Gly	Leu	Lys	Gln	Leu
															220
Gly	Ala	Asp	Val	Asp	Cys	Phe	Leu	Gly	Thr	Asn	Cys	Pro	Pro	Val	Arg
															240
Val	Asn	Gly	Lys	Gly	Gly	Leu	Pro	Gly	Gly	Lys	Val	Lys	Leu	Ser	Gly
															255
Ser	Val	Ser	Ser	Gln	Tyr	Leu	Thr	Ala	Leu	Leu	Met	Ala	Ala	Pro	Leu
															270
Ala	Leu	Gly	Asp	Val	Glu	Ile	Glu	Ile	Val	Asp	Lys	Leu	Ile	Ser	Val
															285

Pro Tyr Val Glu Met Thr Leu Lys Leu Met Glu Arg Phe Gly Val Ser
 290 295 300
 Val Glu His Ser Gly Asn Trp Asp Arg Phe Leu Val His Gly Gly Gln
 305 310 315 320
 Lys Tyr Lys Ser Pro Gly Asn Ala Phe Val Glu Gly Asp Ala Ser Ser
 325 330 335
 Ala Ser Tyr Leu Leu Ala Gly Ala Ala Ile Thr Gly Gly Thr Ile Thr
 340 345 350
 Val Asn Gly Cys Gly Thr Ser Ser Leu Gln Gly Asp Val Lys Phe Ala
 355 360 365
 Glu Val Leu Glu Lys Met Gly Ala Lys Val Thr Trp Ser Glu Asn Ser
 370 375 380
 Val Thr Val Ser Gly Pro Pro Arg Asp Phe Ser Gly Arg Lys Val Leu
 385 390 395 400
 Arg Gly Ile Asp Val Asn Met Asn Lys Met Pro Asp Val Ala Met Thr
 405 410 415
 Leu Ala Val Val Ala Leu Phe Ala Asn Gly Pro Thr Ala Ile Arg Asp
 420 425 430
 Val Ala Ser Trp Arg Val Lys Glu Thr Glu Arg Met Ile Ala Ile Cys
 435 440 445
 Thr Glu Leu Arg Lys Leu Gly Ala Thr Val Glu Glu Gly Pro Asp Tyr
 450 455 460
 Cys Val Ile Thr Pro Pro Glu Lys Leu Asn Val Thr Ala Ile Asp Thr
 465 470 475 480
 Tyr Asp Asp His Arg Met Ala Met Ala Phe Ser Leu Ala Ala Cys Gly
 485 490 495
 Asp Val Pro Val Thr Ile Lys Asp Pro Gly Cys Thr Arg Lys Thr Phe
 500 505 510
 Pro Asp Tyr Phe Glu Val Leu Glu Arg Leu Thr Lys His
 515 520 525
 <210> 6
 <211> 1578
 <212> DNA
 <213> Glycine max
 <400> 6
 atggcccaag tgagcagagt gcacaatctt gctcaaagca ctcaaatttt tggccattct 60
 tc当地actcca acaaaactcaa atcggtgaat tc当地ttcat tgaggccacg cctttgggg 120
 gc当地aaaat ctc当地atccc gatgcataaa aatggaagct ttatggaaaa tt当地atgtg 180
 gggaaaggaa attccggcgt gtttaagggtt tctgc当地cg tgc当地ccgc agagaagccg 240
 tcaacgtcgc cggagatcgt gttggaaccc atcaaagact tctc当地gggtac catcacattg 300

ccagggtcca	agtctctgtc	caatcgaaatt	ttgcttcttg	ctgctctctc	tgagggaaaca	360
actgtttag	acaacttgtt	gtatagtgag	gatattcatt	acatgcttgg	tgcattaagg	420
acccttggac	tgcgtgtgga	agatgacaaa	acaaccaaac	aagcaattgt	tgaaggctgt	480
gggggattgt	ttcccactag	taaggaatct	aaagatgaaa	tcaatttatt	ccttggaaat	540
gctggtatcg	aatgaagtc	cttgacagca	gctgtggttg	ctgcaggtgg	aaatgcaagc	600
tacgtacttg	atggggtgcc	ccgaatgaga	gagaggccaa	ttggggattt	ggttgctgg	660
cttaagcaac	ttgggtcaga	tgttgattgc	tttcttggca	caaactgtcc	acctgttcgt	720
gtaaaatggga	agggaggact	tcctggcgga	aaggtgaaac	tgtctggatc	agtttagcagt	780
caataacttga	ctgctttgct	tatggcagct	ccttagctc	ttggtgatgt	ggaaattgag	840
attgttata	aactgatttc	tgttccatat	gttcaaata	ctctgaagtt	gatggagcgt	900
tttggagttt	ctgtggaaca	cagtggtaat	tggataggt	tcttggtcca	tggaggtcaa	960
aagtacaagt	ctcctggcaa	tgctttgtt	gaaggtgatg	cttcaagtgc	cagttattta	1020
ctagctggtg	cagcaattac	tggtggact	atcaactgtta	atggctgtgg	cacaaggcgt	1080
ttacagggag	atgtaaaatt	tgctgaagtt	cttggaaaaga	tggagctaa	ggttacatgg	1140
tcagagaaca	gtgtcactgt	ttctggacca	ccacgagatt	tttctggcgt	aaaagtcttgc	1200
cgaggcattg	atgtcaatat	gaacaagatg	ccagatgttgc	ccatgacact	tgctgttgg	1260
gcactatttg	ctaattggcc	cactgctata	agagatgtgg	caagttggag	agttaaagag	1320
actgagagga	tgatagcaat	ctgcacagaa	ctcagaaagc	taggagcaac	agttgaagaa	1380
ggtcctgatt	actgtgtgat	tactccacct	gagaaattga	atgtcacagc	tatagacaca	1440
tatgtgacc	acagaatggc	catggcatttc	tctcttgctg	cttggggaa	tgttccagta	1500
accatcaagg	atcctggttg	caccaggaag	acatttcctg	actactttga	agtccttgag	1560
aggttaacaa	agcactaa					1578

<210>	7					
<211>	1578					
<212>	DNA					
<213>	Glycine max					
<400>	7					
atggctcagg	tctctcgct	tcataatctc	gctcagagta	cccagatatt	cggacattcc	60
agtaactcaa	acaaactaaa	gtctgtgaat	agtgtatcac	ttcggcctcg	gctgtggggaa	120
gcaagtaaga	gccgtatccc	tatgcacaag	aacggttcgt	tcatggggaa	ctttaacgtc	180
ggcaaaggaa	actcaggtgt	cttcaaagta	agcgcagcg	tagctgcggc	tgagaagccc	240
agtacttctc	ctgaaattgt	tcttgaaccg	ataaaggatt	tctcaggtac	gattacacta	300
cctggatcaa	agagtctctc	taatagaatt	ttgttgctcg	cagctctgtc	cgaaggaacc	360

actgtagtcg ataacctcct ttatagcgaa gatatacatt atatgttggg ggcgctcaga	420
actcttgggc taagagttga ggacgataag actactaaac aagctatcgt cgaaggttgt	480
ggcggggttgt tccctacttc taaagaaaat aaagatgaga taaacttggtt tcttggcaac	540
gcaggaatcg caatgaagag cctcaccgct gctgtcggtt cgccgggtgg taacgctagt	600
tacgtcttag acggcgtgcc tagaatgcga gaaagaccta tcggtgatct agtggctggc	660
ctaaaacagc ttggagcaga cgtcgattgt ttcttggca caaattgccc gcccgtgaga	720
gtgaacggga agggaggctt gccaggcggt aaggttaaac tatccggatc ggtctcgatca	780
cagtagctaa ctgcattgct catggccgcc ccgctcgctt tgggggacgt ggagattgaa	840
atcgatcgata agttgattag cgtgccttat gtggaaatga ccctcaaatt gatggagagg	900
ttcggagttt cggtagaaca ctccggaaat tggatcggt ttcttgtaca cggagggcaa	960
aagtacaaaa gcccaggcaa tgccattcgtc gaaggggacg ctgcgacgc ttcctatctc	1020
ctcgctggcg cagccataac cggcggcacc ataaccgtga acggctgcgg cacctcatcc	1080
cttcaaggtg atgtaaagtt cgctgaggc ttggagaaaa tggcgcaaa ggtcacatgg	1140
tctgagaaca gcgttaaccgt gtccggaccc cccagagact ttcgtggtag aaaggtcctt	1200
agggaaatag atgtgaatat gaataagatg ccagatgtgg ctatgacgct cgctgttgc	1260
gccctgttcg caaacggacc taccgcaata agggatgtcg cttcatggcg tgttaaggaa	1320
accgaacgga tgatcgctat ttgcacccgag ttgcgttaagc tgggtgcaac ggtggaaagaa	1380
ggaccagact attgcgtgat aacacccctt gaaaagctca atgtgaccgc tattgacact	1440
tatgacgatc acagaatggc tatggcattc tcacttgctg cttgcgggtga cgtgccggtt	1500
acgatcaagg acccagggtg tactaggaag acattccag attactttga ggtgttggaa	1560
agattgacaa agcactga	1578

<210> 8
 <211> 506
 <212> PRT
 <213> Zea mays

<400> 8

Met Ala Ala Met Ala Thr Lys Ala Ala Ala Gly Thr Val Ser Leu Asp
 1 5 10 15

Leu Ala Ala Pro Ser Arg Arg His His Arg Pro Ser Ser Ala Arg Pro
 20 25 30

Pro Phe Arg Pro Ala Val Arg Gly Leu Arg Ala Pro Gly Arg Arg Val
 35 40 45

Ile Ala Ala Pro Pro Ala Ala Ala Ala Ala Val Gln Ala Gly
 50 55 60

Ala Glu Glu Ile Val Leu Gln Pro Ile Lys Glu Ile Ser Gly Thr Val
 65 70 75 80

 Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ile Leu Leu Leu Ala
 85 90 95

 Ala Leu Ser Glu Gly Thr Thr Val Val Asp Asn Leu Leu Asn Ser Glu
 100 105 110

 Asp Val His Tyr Met Leu Gly Ala Leu Arg Thr Leu Gly Leu Ser Val
 115 120 125

 Glu Ala Asp Lys Ala Ala Lys Arg Ala Val Val Val Gly Cys Gly Gly
 130 135 140

 Lys Phe Pro Val Glu Asp Ala Lys Glu Glu Val Gln Leu Phe Leu Gly
 145 150 155 160

 Asn Ala Gly Ile Ala Met Arg Ser Leu Thr Ala Ala Val Thr Ala Ala
 165 170 175

 Gly Gly Asn Ala Thr Tyr Val Leu Asp Gly Val Pro Arg Met Arg Glu
 180 185 190

 Arg Pro Ile Gly Asp Leu Val Val Gly Leu Lys Gln Leu Gly Ala Asp
 195 200 205

 Val Asp Cys Phe Leu Gly Thr Asp Cys Pro Pro Val Arg Val Asn Gly
 210 215 220

 Ile Gly Gly Leu Pro Gly Gly Lys Val Lys Leu Ser Gly Ser Ile Ser
 225 230 235 240

 Ser Gln Tyr Leu Ser Ala Leu Leu Met Ala Ala Pro Leu Ala Leu Gly
 245 250 255

 Asp Val Glu Ile Glu Ile Ile Asp Lys Leu Ile Ser Ile Pro Tyr Val
 260 265 270

 Glu Met Thr Leu Arg Leu Met Glu Arg Phe Gly Val Lys Ala Glu His
 275 280 285

 Ser Asp Ser Trp Asp Arg Phe Tyr Ile Lys Gly Gly Gln Lys Tyr Lys
 290 295 300

 Ser Pro Lys Asn Ala Tyr Val Glu Gly Asp Ala Ser Ser Ala Ser Tyr
 305 310 315 320

 Phe Leu Ala Gly Ala Ala Ile Thr Gly Gly Thr Val Thr Val Glu Gly
 325 330 335

 Cys Gly Thr Thr Ser Leu Gln Gly Asp Val Lys Phe Ala Glu Val Leu
 340 345 350

 Glu Met Met Gly Ala Lys Val Thr Trp Thr Glu Thr Ser Val Thr Val
 355 360 365

 Thr Gly Pro Pro Arg Glu Pro Phe Gly Arg Lys His Leu Lys Ala Ile
 370 375 380

Asp	Val	Asn	Met	Asn	Lys	Met	Pro	Asp	Val	Ala	Met	Thr	Leu	Ala	Val
385					390				395					400	
Val	Ala	Leu	Phe	Ala	Asp	Gly	Pro	Thr	Ala	Ile	Arg	Asp	Val	Ala	Ser
			405					410					415		
Trp	Arg	Val	Lys	Glu	Thr	Glu	Arg	Met	Val	Ala	Ile	Arg	Thr	Glu	Leu
			420					425					430		
Thr	Lys	Leu	Gly	Ala	Ser	Val	Glu	Glu	Gly	Pro	Asp	Tyr	Cys	Ile	Ile
			435				440					445			
Thr	Pro	Pro	Glu	Lys	Leu	Asn	Val	Thr	Ala	Ile	Asp	Thr	Tyr	Asp	Asp
			450				455				460				
His	Arg	Met	Ala	Met	Ala	Phe	Ser	Leu	Ala	Ala	Cys	Ala	Glu	Val	Pro
			465				470				475			480	
Val	Thr	Ile	Arg	Asp	Pro	Gly	Cys	Thr	Arg	Lys	Thr	Phe	Pro	Asp	Tyr
			485					490					495		
Phe	Asp	Val	Leu	Ser	Thr	Phe	Val	Lys	Asn						
			500					505							

<210> 9
 <211> 1521
 <212> DNA
 <213> Zea mays

<400> 9															
atggcggcca	tggcgaccaa	ggccgcccgc	ggcacccgtgt	cgctggacct	cggccgcggcc										60
tcgcggcc	accacccgccc	gagctcggcg	cgcggccct	tccgccccgc	cgtccggcggg										120
ctgcgggcgc	ctggggcgccg	cgtgatcgcc	gcgcggccgg	cggcggcagc	ggcggcggcgc										180
gtgcaggcgg	gtgccgagga	gatcgtgctg	cagcccatca	aggagatctc	cggcaccgtc										240
aagctgccgg	ggtccaaagtc	gtttccaac	cggatcctcc	tactcgccgc	cctgtccgag										300
gggacaacag	tggttgataa	cctgctgaac	agtgaggatg	tccactacat	gctcggggccc										360
ttgaggactc	ttggtctctc	tgtcgaaagcg	gacaaagctg	ccaaaagagc	tgttagttgtt										420
ggctgtggtg	gaaagttccc	agttgaggat	gctaaagagg	aagtgcagct	cttcttgggg										480
aatgctggaa	tcgcaatgcg	gtccttgaca	gcagctgtta	ctgctgctgg	tggaaatgca										540
acttacgtgc	ttgatggagt	accaagaatg	agggagagac	ccattggcga	cttggttgtc										600
ggattgaagc	agcttgggtgc	agatgttgat	tgtttccttg	gcactgactg	cccacctgtt										660
cgtgtcaatg	gaatcgagg	gctacctggt	ggcaaggta	agctgtctgg	ctccatcagc										720
agtcagtact	tgagtgcctt	gctgatggct	gctcctttgg	ctcttgggg	tgtggagatt										780
gaaatcattg	ataaattaat	ctccattccg	tacgtcgaaa	tgacattgag	attgatggag										840
cgttttggtg	tgaaagcaga	gcattctgat	agctgggaca	gattctacat	taagggaggt										900
caaaaataca	agtcccctaa	aaatgcctat	gttgaaggtg	atgcctcaag	cgcaagctat										960

ttcttggtg	gtgctgcaat	tactggaggg	actgtgactg	tggaagggtt	tgccaccacc	1020
agtttgcagg	gtgatgtgaa	gtttgctgag	gtactggaga	tgatgggagc	gaagggttaca	1080
tggaccgaga	ctagcgtaac	tgttactggc	ccaccgcggg	agccatttgg	gaggaaacac	1140
ctcaaggcga	ttgatgtcaa	catgaacaag	atgcctgatg	tcgccatgac	tcttgctgtg	1200
gttgccctct	ttgcccgtatgg	cccgacagcc	atcagagacg	tggcttcctg	gagagtaaag	1260
gagaccgaga	ggatgggttgc	gatccggacg	gagctaacca	agctgggagc	atctgtttag	1320
gaagggccgg	actactgcat	catcacgccc	ccggagaago	tgaacgtgac	ggcgatcgac	1380
acgtacgacg	accacaggat	ggccatggcc	ttctcccttg	ccgcctgtgc	cgaggtcccc	1440
gtcaccatcc	gggacccttgg	gtgcaccctgg	aagaccttcc	ccgactactt	cgatgtgctg	1500
agcactttcg	tcaagaatta	a				1521

<210> 10
 <211> 1521
 <212> DNA
 <213> Zea mays

<400> 10						
atggcggcta	tggccacgaa	ggcagcggcc	ggtacagtaa	gcctcgattt	ggcgcccccc	60
tccccgttaggc	accacccggcc	aagcagtgcg	aggccaccgt	tcaggccagc	agttcgcggt	120
cttagagcgc	ctggtagaag	ggttatcgca	gcgccaccgg	cggctgccgc	tgcggcagcg	180
gtgcaggccg	gcgcggaaga	gatcgtctta	cagcctatca	aggaaatctc	ttgtacggta	240
aagttaccag	gcagcaaaag	tcttagcaac	cgaatcctgc	tgttggcggc	actctctgaa	300
gggaccacgg	tcgtagataa	tctgctcaac	agcgaagacg	tgcactatat	gttgggtgcc	360
ctgaggacgc	taggtctgtc	agtggaaagcc	gataaggccg	ccaagcgcgc	tgtcgtcggt	420
ggctcgccgc	gtaagttccc	cgtggaggac	gcgaaagaag	aggtgcagtt	atttcttggg	480
aacgctggca	tcgccccatgcg	gtcccttacc	gcagccgtca	ccgctgcggg	aggcaacgca	540
acttacgtgc	ttgacgggtgt	tcctcgatg	agagagcggc	ccatagggga	tctcgtcggt	600
gggctcaagc	agctcggggc	cgacgttgat	tgcttcctcg	gaaccgactg	ccccctgtg	660
agggtaacg	gcatcgaaaa	actgccagga	ggcaaagtca	agttgtccgg	ctcaatttcc	720
tcgcagtacc	tgagtgcct	gcttatggcg	gccctctgg	ctctgggaga	cgtcgaaatt	780
gagatcattt	ataagctgat	ctctatccct	tatgttgaga	tgacactccg	tctgatggaa	840
agattcgggg	tcaaagctga	gcactccgat	tcctgggaca	ggttctatat	caagggcggg	900
cagaaatata	agtcaccgaa	aatgcgtac	gtcgagggag	acgcacatcgag	cgcgagttac	960
ttccttgcgg	gcgcgtccat	caccggggga	accgtgacag	tggaaggctg	tgggacaacg	1020

agcttcagg gcgacgtcaa atttgctgag gtgctagaaa tggatggcgc taagggtact 1080
 tggactgaga cgtccgtgac cggttacggga ccggcccccg aacctttcg ccgaaagcat 1140
 ctgaaagcga ttgtatgtgaa catgaataag atgccggacg tcgctatgac acttgccgtg 1200
 gtggccctgt tcgctgacgg ccccaccgca atcaggatg tcgcttagttg gaggggtcaag 1260
 gagacagagc gtatggtggc gatccgaacg gagctgacta aactcggggc cagtgtggag 1320
 gagggcccg attactgcat aatcacacct ccagagaagt tgaacgtcac cgctatcgac 1380
 acatacgacg atcaccggat ggcaatggcc tttagcttgg cagcgtgcgc cgaagtaccc 1440
 gtgactataa gagatccagg ttgcacccgc aaaacgtttc ccgactattt cgacgtcctc 1500
 tcaaccctcg tgaagaactg a 1521

 <210> 11
 <211> 76
 <212> PRT
 <213> Arabidopsis thaliana

 <400> 11

 Met Ala Gln Val Ser Arg Ile Cys Asn Gly Val Gln Asn Pro Ser Leu
 1 5 10 15

 Ile Ser Asn Leu Ser Lys Ser Ser Gln Arg Lys Ser Pro Leu Ser Val
 20 25 30

 Ser Leu Lys Thr Gln Gln His Pro Arg Ala Tyr Pro Ile Ser Ser Ser
 35 40 45

 Trp Gly Leu Lys Lys Ser Gly Met Thr Leu Ile Gly Ser Glu Leu Arg
 50 55 60

 Pro Leu Lys Val Met Ser Ser Val Ser Thr Ala Cys
 65 70 75

 <210> 12
 <211> 228
 <212> DNA
 <213> Arabidopsis thaliana

 <400> 12
 atggcgcaag ttagcagaat ctgcaatgggt gtgcagaacc catctcttat ctccaatctc 60
 tcgaaatcca gtcaacgcaa atctccctta tcggtttctc tgaagacgca gcagcatcca 120
 cgagcttatac cgatttcgtc gtcgtggga ttgaagaaga gtggatgac gttaattggc 180
 tctgagcttc gtcctcttaa ggtcatgtct tctgtttcca cggcgtgc 228

 <210> 13
 <211> 228
 <212> DNA
 <213> Arabidopsis thaliana

 <400> 13
 atggcccgagg taagtaggat ctgtAACGGA GTCCAAAACC CTTCACATAAT ATCGAACCTG 60

tcaaaaagct	ctcaaagaaa	gtcgccgctt	tctgtatcgt	tgaaaactca	acagcacccg	120											
agggcttatac	ccatctcaag	ctcctgggt	ctaaagaaaa	gtggaatgac	actgatcggt	180											
agcgaactac	gaccgctgaa	agtcatgtcc	tcagtcagca	ctgcgtgc		228											
<210>	14																
<211>	228																
<212>	DNA																
<213>	Arabidopsis thaliana																
<400>	14																
atggcgcaag	taagtagaat	ctgcaacggc	gtgcagaacc	cgtcgctgat	ctccaacctc	60											
agcaagtcca	gccagcggaa	gtcgccgctc	tcggtcagcc	tcaagaccca	acagcacccg	120											
agggcttacc	ctatcagctc	atcctgggc	ctcaagaaga	gtggcatgac	gctgatcggt	180											
agcgagctgc	ggccactcaa	ggtgatgtcc	tcggtctcaa	cggcgtgc		228											
<210>	15																
<211>	455																
<212>	PRT																
<213>	Agrobacterium tumefaciens																
<400>	15																
Met	Leu	His	Gly	Ala	Ser	Ser	Arg	Pro	Ala	Thr	Ala	Arg	Lys	Ser	Ser		
1				5					10				15				
Gly	Leu	Ser	Gly	Thr	Val	Arg	Ile	Pro	Gly	Asp	Lys	Ser	Ile	Ser	His		
				20					25				30				
Arg	Ser	Phe	Met	Phe	Gly	Gly	Leu	Ala	Ser	Gly	Glu	Thr	Arg	Ile	Thr		
					35				40				45				
Gly	Leu	Leu	Glu	Gly	Glu	Asp	Val	Ile	Asn	Thr	Gly	Lys	Ala	Met	Gln		
					50				55				60				
Ala	Met	Gly	Ala	Arg	Ile	Arg	Lys	Glu	Gly	Asp	Thr	Trp	Ile	Ile	Asp		
	65				70				75				80				
Gly	Val	Gly	Asn	Gly	Gly	Leu	Leu	Ala	Pro	Glu	Ala	Pro	Leu	Asp	Phe		
					85				90				95				
Gly	Asn	Ala	Ala	Thr	Gly	Cys	Arg	Leu	Thr	Met	Gly	Leu	Val	Gly	Val		
					100				105				110				
Tyr	Asp	Phe	Asp	Ser	Thr	Phe	Ile	Gly	Asp	Ala	Ser	Leu	Thr	Lys	Arg		
					115				120				125				
Pro	Met	Gly	Arg	Val	Leu	Asn	Pro	Leu	Arg	Glu	Met	Gly	Val	Gln	Val		
					130				135				140				
Lys	Ser	Glu	Asp	Gly	Asp	Arg	Leu	Pro	Val	Thr	Leu	Arg	Gly	Pro	Lys		
					145				150				155			160	
Thr	Pro	Thr	Pro	Ile	Thr	Tyr	Arg	Val	Pro	Met	Ala	Ser	Ala	Gln	Val		
					165				170				175				

Lys Ser Ala Val Leu Leu Ala Gly Leu Asn Thr Pro Gly Ile Thr Thr
 180 185 190
 Val Ile Glu Pro Ile Met Thr Arg Asp His Thr Glu Lys Met Leu Gln
 195 200 205
 Gly Phe Gly Ala Asn Leu Thr Val Glu Thr Asp Ala Asp Gly Val Arg
 210 215 220
 Thr Ile Arg Leu Glu Gly Arg Gly Lys Leu Thr Gly Gln Val Ile Asp
 225 230 235 240
 Val Pro Gly Asp Pro Ser Ser Thr Ala Phe Pro Leu Val Ala Ala Leu
 245 250 255
 Leu Val Pro Gly Ser Asp Val Thr Ile Leu Asn Val Leu Met Asn Pro
 260 265 270
 Thr Arg Thr Gly Leu Ile Leu Thr Leu Gln Glu Met Gly Ala Asp Ile
 275 280 285
 Glu Val Ile Asn Pro Arg Leu Ala Gly Gly Glu Asp Val Ala Asp Leu
 290 295 300
 Arg Val Arg Ser Ser Thr Leu Lys Gly Val Thr Val Pro Glu Asp Arg
 305 310 315 320
 Ala Pro Ser Met Ile Asp Glu Tyr Pro Ile Leu Ala Val Ala Ala Ala
 325 330 335
 Phe Ala Glu Gly Ala Thr Val Met Asn Gly Leu Glu Glu Leu Arg Val
 340 345 350
 Lys Glu Ser Asp Arg Leu Ser Ala Val Ala Asn Gly Leu Lys Leu Asn
 355 360 365
 Gly Val Asp Cys Asp Glu Gly Glu Thr Ser Leu Val Val Arg Gly Arg
 370 375 380
 Pro Asp Gly Lys Gly Leu Gly Asn Ala Ser Gly Ala Ala Val Ala Thr
 385 390 395 400
 His Leu Asp His Arg Ile Ala Met Ser Phe Leu Val Met Gly Leu Val
 405 410 415
 Ser Glu Asn Pro Val Thr Val Asp Asp Ala Thr Met Ile Ala Thr Ser
 420 425 430
 Phe Pro Glu Phe Met Asp Leu Met Ala Gly Leu Gly Ala Lys Ile Glu
 435 440 445
 Leu Ser Asp Thr Lys Ala Ala
 450 455
 <210> 16
 <211> 1368
 <212> DNA
 <213> Agrobacterium tumefaciens
 <400> 16
 atgcttcacg gtgcaagcag ccggcccgca accgccccgca aatcctctgg cctttccgga 60

accgtccgca	ttccccggcga	caagtcgatc	tcccaccggt	ccttcatgtt	cggcggtctc	120
gcgagcggtg	aaacgcgcat	caccggcctt	ctggaaggcg	aggacgtcat	caatacgggc	180
aaggccatgc	aggcgatggg	cgcccgcatc	cgtaaggaag	gacgacacctg	gatcatcgat	240
ggcgtcggca	atggcggcct	cctggcgccct	gaggcgccgc	tcgatttcgg	caatgccgccc	300
acgggctgcc	gcctgacgat	gggcctcgtc	ggggcttacg	atttcgacag	caccttcatc	360
ggcgacgcct	cgctcacaaa	gcccggatg	ggccgcgtgt	tgaacccgct	gacgcgaaatg	420
ggcgtgcagg	tgaaaatcgga	agacggtgac	cgtttcccg	ttaccttgcg	cgggcccgaag	480
acgcccacgc	cgatcaccta	ccgcgtgccg	atggcctccg	cacaggtgaa	gtccgcccgtg	540
ctgctcgccg	gcctcaaacac	gcccggcatc	acgacggtca	tcgagccgat	catgacgcgc	600
gatcatacgg	aaaagatgct	gcagggctt	ggcgccaacc	ttaccgtcga	gacggatgcg	660
gacggcgtgc	gcaccatccg	cctggaaaggc	cgccggcaagg	tcaccggcca	agtcatcgac	720
tgccggggcg	acccgtcctc	gacggccttc	ccgctggttg	cggccctgct	tgttccgggc	780
tccgacgtca	ccatcctcaa	cgtgctgatg	aaccccaccc	gcaccggcct	catcctgacg	840
ctgcagggaaa	tgggcgcccga	catcgaagtc	atcaacccgc	gccttgcggg	cggcgaagac	900
gtggcggacc	tgcgcgttcg	ctcctccacg	ctgaaggggcg	tcacggtgcc	ggaagaccgc	960
gcgccttcga	tgatcgacga	atatccgatt	ctcgctgtcg	ccgcccctt	cgcggaaaggg	1020
gcgaccgtga	tgaacggtct	ggaagaactc	cgcgtcaagg	aaagcgaccg	cctctcgccc	1080
gtcgccaatg	gcctcaagct	aatggcgtg	gattgcgatg	agggcgagac	gtcgctcgtc	1140
gtgcgtggcc	gccctgacgg	caaggggctc	ggcaacgcct	cgggcccgc	cgtcgccacc	1200
catctcgatc	accgcacatgc	catgagcttc	ctcgatcgatgg	gcctcgatgc	ggaaaaccct	1260
gtcacggtgg	acgatgccac	gatgatcgcc	acgagcttcc	cggagttcat	ggacctgatg	1320
gccgggctgg	gcgcgaagat	cgaactctcc	gatacgaagg	ctgcctga		1368

<210> 17

<211> 1368

<212> DNA

<213> Agrobacterium tumefaciens

<400> 17

atgcttcatg	gagcttcatc	taggccagct	actgccagga	agtctagcgg	gctcagtggc	60
accgtgcgca	tccctggcga	taaaaagtatt	tcacacagga	gcttcatgtt	cggaggactt	120
gctagtggag	agacgagaat	cactggtttgc	cttgaggggcg	aagatgttat	caacaccgggt	180
aaggcgatgc	aagcaatggg	tgccagaatc	cgaaaagagg	gcgatacgtg	gatcatcgac	240
ggtgttggta	acggaggatt	gctcgctccc	gaagcgccac	ttgactttgg	gaacgcagct	300

acggggtgcc	gtcttactat	gggactggta	ggcgtgtatg	acttgactc	tactttcatt	360
ggtagcgcga	gcctcactaa	gagaccaatg	ggacgagtgc	tgaatcccct	gagggagatg	420
ggtgtccagg	tgaaatctga	ggatggtgat	cgtttccgg	ttactctgcg	aggccccaaag	480
accccccacgc	caatcacgta	cagggttccg	atggcgtcag	cacaggtcaa	gtcagcggta	540
ctcctggcgg	gcctcaacac	acctggaatc	acaaccgtga	ttgaacccat	catgactaga	600
gaccacacgg	agaagatgtt	gcagggttcc	ggcgctaattc	taacggtcga	aaccgacgcc	660
gacggcgtga	ggacaatccg	cttggagggc	agaggtaaac	tgactggcca	agtcatcgat	720
gtgcctggag	atccctcgtc	cacagcgttt	cccctcgtag	ctgcgttgct	cgtccctgga	780
tctgatgtga	cgatcctgaa	tgtcctcatg	aatccaaacta	gaaccggcct	catcctcaca	840
ttgcaggaga	tgggtgctga	catcgagggtt	atcaatccta	ggttggcagg	tggagaggat	900
gtggccgatc	tgcgcgtgcg	ttctagtaca	ctcaaaggcg	tgaccgtccc	tgaggatcgc	960
gctccatcca	tgatcgacga	gtaccccatt	ctcgccgttg	ctgctgcgtt	tgccgagggc	1020
gcaactgtaa	tgaacggcct	tgaggagttt	agggttaagg	agagtgacag	gctgtccgcg	1080
gtggcgaatg	gcctgaagct	aaacggcgtg	gactgcgacg	aaggtgaaac	gtcccttgta	1140
gtccgtggtc	gcccagacgg	gaaggggttg	ggaaatgctt	cgggagctgc	tgtggcgacg	1200
caccttgatec	atagaatcgc	catgtcattt	ctgggtatgg	gacttgtctc	cgagaatccg	1260
gtgaccgttg	acgatgctac	catgatcgcc	accccttttc	ctgagttcat	ggacctcatg	1320
gcaggcttgg	ggccaaagat	cgagctgtct	gatactaagg	ccgcttga		1368

<210> 18

<211> 1368

<212> DNA

<213> Agrobacterium tumefaciens

<400> 18

atgctacacg	gtgcaagcag	ccggccggca	accgctcgca	aatcttccgg	ccttcggga	60
acggtcagga	ttccgggcga	taagtccata	tcccaccggt	cgttcatgtt	cggcggtctt	120
gccagcggtg	agacgcgcac	cacgggcctg	cttgaagggt	aggacgtat	caataccggg	180
aaggccatgc	aggctatggg	agcgcgtatc	cgcaaggaag	gtgacacatg	gatcattgac	240
ggcgttggga	atggcggtct	gctcgccct	gaggccctc	tcgacttcgg	caatgcggcg	300
acgggctgca	ggctcactat	gggactggtc	gggggtgtacg	acttcgatag	cacgttcatc	360
ggagacgcct	cgctcacaaa	gcccggaaatg	ggccgcgttc	tgaacccgtt	gcgcgagatg	420
ggcgtacagg	tcaaatccga	ggatggtgac	cgtttgcgg	ttacgctgcg	cgggcccgaag	480
acgcctaccc	cgattaccta	ccgcgtgcca	atggcatccg	cccaggtaa	gtcagccgtg	540
ctcctcgccg	gactgaacac	tccggcattc	accacggta	tcgagccat	catgaccagg	600

gatcataccg	aaaagatgct	tcaggggttt	ggcgccaacc	tgacggtcga	gacggacgct	660
gacggcgtca	ggaccatccg	cctttagggc	agggtaaac	tgactggcca	agtcatcgat	720
gttccggag	acccgtcgac	cacggccttc	ccgttggttg	cggcgctgct	cgtgccgggg	780
agtgacgtga	ccatcctgaa	cgtcctcatg	aacccgacca	ggaccggcct	gatcctcacg	840
cttcaggaga	tgggagccga	catcgaggtg	atcaacccgc	gcctggcagg	cggtgaagac	900
gttgccgatc	tgcgcgtgcg	ctcctctacc	ctgaagggcg	tgacggtccc	ggaagatcgc	960
gccccgtcca	tgatagacga	gtatcctatt	ctggccgtcg	ccgctgcgtt	cggcgaaggg	1020
gccacggtca	tgaacggtct	tgaggaactc	cgcgtgaagg	aatcgatcg	cctgtcggcg	1080
gtggccaatg	gcctgaagct	caacggtgtt	gactgcgacg	agggtgagac	ctcaactcg	1140
gtccgtggcc	ggcctgatgg	caagggcctc	ggcaacgcca	gtggagcggc	cgtcgccacg	1200
cacctcgatc	atcgcatcgc	gatgtcccttc	tttgtgatgg	gtctcgctc	agagaacccg	1260
gtgaccgtcg	atgacgccac	gatgatagcg	acgagcttcc	cagagttcat	ggatctgatg	1320
gcgggcctcg	gggccaagat	cgaactgtct	gacacgaagg	ccgcttga		1368

<210> 19

<211> 183

<212> PRT

<213> Streptomyces hygroscopicus

<400> 19

Met	Ser	Pro	Glu	Arg	Arg	Pro	Ala	Asp	Ile	Arg	Arg	Ala	Thr	Glu	Ala
1							5			10				15	

Asp	Met	Pro	Ala	Val	Cys	Thr	Ile	Val	Asn	His	Tyr	Ile	Glu	Thr	Ser
							20			25			30		

Thr	Val	Asn	Phe	Arg	Thr	Glu	Pro	Gln	Glu	Pro	Gln	Asp	Trp	Thr	Asp
						35		40				45			

Asp	Leu	Val	Arg	Leu	Arg	Glu	Arg	Tyr	Pro	Trp	Leu	Val	Ala	Glu	Val
						50		55			60				

Asp	Gly	Glu	Val	Ala	Gly	Ile	Ala	Tyr	Ala	Gly	Pro	Trp	Lys	Ala	Arg
						65		70			75		80		

Asn	Ala	Tyr	Asp	Trp	Thr	Ala	Glu	Ser	Thr	Val	Tyr	Val	Ser	Pro	Arg
						85			90			95			

His	Gln	Arg	Thr	Gly	Leu	Gly	Ser	Thr	Leu	Tyr	Thr	His	Leu	Leu	Lys
						100			105				110		

Ser	Leu	Glu	Ala	Gln	Gly	Phe	Lys	Ser	Val	Val	Ala	Val	Ile	Gly	Leu
						115			120			125			

Pro	Asn	Asp	Pro	Ser	Val	Arg	Met	His	Glu	Ala	Leu	Gly	Tyr	Ala	Pro
						130		135			140				

Arg	Gly	Met	Leu	Arg	Ala	Ala	Gly	Phe	Lys	His	Gly	Asn	Trp	His	Asp
145					150				155				160		
Val	Gly	Phe	Trp	Gln	Leu	Asp	Phe	Ser	Leu	Pro	Val	Pro	Pro	Arg	Pro
				165					170				175		
Val	Leu	Pro	Val	Thr	Glu	Ile									
				180											
<210>	20														
<211>	552														
<212>	DNA														
<213>	Streptomyces hygroscopicus														
<400>	20														
atgagccag	aacgacgccc	ggccgacatc	cgcgtgcca	ccgaggcgga	catgccggcg									60	
gtctgcacca	tcgtcaacca	ctacatcgag	acaagcacgg	tcaacttccg	taccgagccg									120	
caggaaccgc	aggactggac	ggacgaccc	gtccgtctgc	gggagcgcta	tccctggctc									180	
gtcgccgagg	tggacggcga	ggtcgccggc	atgcctacg	cgggcccctg	gaaggcacgc									240	
aacgcctacg	actggacggc	cgagtcgacc	gtgtacgtct	ccccccgcca	ccagcggacg									300	
ggactgggct	ccacgctcta	cacccacctg	ctgaagtccc	tggaggcaca	gggcttcaag									360	
agcgtggtcg	ctgtcatcg	gctgcccAAC	gacccgagcg	tgcgcattgca	cgaggcgctc									420	
ggatatgcc	cccgccgcat	gctgcggcg	gccggcttca	agcacggaa	ctggcatgac									480	
gtgggtttct	ggcagctgga	cttcagcctg	ccggtaaccgc	cccgtccgg	cctgcccgtc									540	
accgagatct	ga													552	
<210>	21														
<211>	552														
<212>	DNA														
<213>	Streptomyces hygroscopicus														
<400>	21														
atgagtccag	aaaggagacc	ggctgatatt	cgagagacc	ccgaagctga	tatgcctgct									60	
gttgtacaa	tcgtaaacca	ttatatcgag	acctcgacag	ttaattttcg	cactgagccg									120	
caggagccac	aggattggac	ggacgatctg	gtacgtttaa	gagaacgtta	tccgtggcta									180	
gttgctgagg	ttgacggaga	agtcgctggt	atacgttacg	ctggaccgtg	gaaagctcg									240	
aacgcttacg	actggacagc	agaatccact	gtctacgtca	gccctcgta	tcaaagaacc									300	
ggatttaggga	gcacgttta	cactcatctt	ttaaagtac	tggaggcaca	aggcttcaag									360	
tctgttgtgg	cagttattgg	attgccaaac	gatccgagt	ttcgaatgca	cgaagcgctt									420	
ggatacgctc	cacgaggtat	gctccgtct	gccggattca	aacatggaaa	ttggcacgac									480	
gtaggaaaa	ggcaactgga	ctttcactt	cccgttcccc	ctagacctgt	acttccagtt									540	
actgaaatct	ag													552	

```

<210> 22
<211> 552
<212> DNA
<213> Streptomyces hygroscopicus

<400> 22
atgtcgccctg agcggcggtcc tgctgacata agacgcgcta ccgaggcaga catgcctgct 60
gtttgcacca ttgtgaatca ctacatcgag acatctacgg taaacttccg cactgagcct 120
caagaaccgc aggattggac cgacgatctc gtgcgtctca gagagcgtta tccgtggctg 180
gttcagagg tggacgggtga agtggctggg atgcctacg ctggaccgtg gaaggctaga 240
aacgcatacg attggactgc ggagtccaca gtctacgtct cacccagaca tcaaagaacc 300
gggctcggct cgaccctcta tacgcacatctc ctcaagtctt tagaggcgca gggcttcaaa 360
tctgttagtgg cggtgatcgg cttgccaaac gatcccagtg tgagaatgca cgaggcactc 420
ggttacgctc ctagaggaat gctcagggcg gctggattca agcacggtaa ttggcacgac 480
gttggcttct ggcaactgga cttcttttgc ccagttccac ctcgtcctgt gctaccgc 540
accgaaaatct ag 552

<210> 23
<211> 1368
<212> DNA
<213> Agrobacterium tumefaciens

<400> 23
atgcttcacg gtgcaaggcag ccgtccagca actgctcgta agtcctctgg tctttctgg 60
accgtccgtta ttccaggtga caagtctatc tcccacaggt cttcatgtt tggaggtctc 120
gctagcggtg aaactcgtat caccggtctt ttggaaggtg aagatgttat caacactgg 180
aaggctatgc aagctatggg tgccagaatc cgtaaggaag gtgatacttg gatcattgat 240
ggtgttggta acgggtggact cttgctcctt gaggctcctc tcgatttcgg taacgctgca 300
actgggttgc gtttactat gggctttgtt ggtgtttacg atttcgatag cactttcatt 360
ggtgacgctt ctctcactaa gcgtccaatg ggtcgtgtgt tgaaccact tcgcaaatg 420
ggtgtgcagg tgaagtctga agacggtgat cgtttccag ttaccttgcg tggaccaaag 480
actccaaacgc caatcaccta cagggtacct atggcttccg ctcaagtgaa gtccgctgtt 540
ctgcttgcgtg gtctcaacac cccaggtatc accactgtta tcgagccat catgactcg 600
gaccacactg aaaagatgct tcaagggttt ggtgctaacc ttaccgttga gactgatgct 660
gacgggtgtgc gtaccatccg tcttgaaggt cgtggtaagc tcaccggta agtgattgat 720
gttccaggtg atccatcctc tactgcttcc ccattgggttgc ctgccttgc tggccagg 780
tccgacgtca ccattcctaa cgaaaaatgg aacccaaaccc gtactggtct catcttgc 840
ctgcaggaaa tgggtgccga catcgaagtg atcaacccac gtcttgcgtt tggagaagac 900

```

gtggctgact tgcgtgttcg ttcttctact ttgaagggtg ttactgttcc agaagaccgt	960
gctccttcta tgatcgacga gtatccaatt ctcgctgttgcagctgcatt cgctgaaggt	1020
gctaccgtta tgaacggttt ggaagaactc cgtgttaagg aaagcgaccg tctttctgct	1080
gtcgcaaacg gtctcaagct caacgggtt gattgcgttgc aaggtgagac ttctctcgct	1140
gtgcgtggc gtcctgacgg taagggtctc ggtaacgctt ctggagcagc tgctgctacc	1200
caccccgatc accgtatcgc tatgagcttc ctgcgttatgg gtctcggttc tgaaaaccct	1260
gttactgttg atgatgctac tatgatcgct actagcttcc cagagttcat ggatttgatg	1320
gctggtcttg gagctaagat cgaactctcc gacactaagg ctgcttga	1368
<210> 24	
<211> 16	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> DNA Primer molecule	
<400> 24	
catggagctt catcta	16
<210> 25	
<211> 16	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> DNA Primer molecule	
<400> 25	
gcctttgagt gtacta	16
<210> 26	
<211> 16	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> DNA Primer molecule	
<400> 26	
gggagcgcgt atccgc	16
<210> 27	
<211> 16	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> DNA Primer molecule	
<400> 27	
ggatggtcac gtcact	16

<210> 28		
<211> 16		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> DNA Primer molecule		
<400> 28		
cggcatcacg acggtc		16
<210> 29		
<211> 16		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> DNA Primer molecule		
<400> 29		
ggcatcggtcc accgtg		16
<210> 30		
<211> 16		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> DNA Primer molecule		
<400> 30		
gcaactgggtt gccgtt		16
<210> 31		
<211> 16		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> DNA Primer molecule		
<400> 31		
atcacacctgga acatca		16
<210> 32		
<211> 22		
<212> DNA		
<213> Zea mays		
<400> 32		
cgtcaagatc ctcttcaccc cg		22
<210> 33		
<211> 22		
<212> DNA		
<213> Zea mays		
<400> 33		
acaccctctc caacactctc ta		22

```

<210> 34
<211> 9
<212> PRT
<213> Artificial sequence

<220>
<223> Motif providing glyphosate resistance to a plant EPSPS

<400> 34

```

Gly Asn Ala Gly Ile Ala Met Lys Ser
 1 5

```

<210> 35
<211> 1596
<212> DNA
<213> Agrobacterium tumefaciens

<400> 35
atggcccaag ttagccgaat ctgcaacggt gtgcagaatc catcaactat ctccaacctg     60
tccaaatcg cacaacgtaa gtcgccatta tctgttagct tgaagactca gcaacatcct     120
cgcgcatatc ctatatcaag cagttgggt ttgaagaaat cgggtatgac cttgattgg     180
tcggaactta ggccattgaa ggtgatgtct tcagtttagta cagcttgcac gttcacgg     240
gcttcttcca gacccgcaac ggctagaaaag agttctggct tgtctggaac cgtccgtatt     300
ccaggagaca aaagcattag tcaccgtct ttcatgtttt gttggctggc atctggagag     360
acgcgcatca ctggcttctt ggaaggagag gacgtcatca atacagggaa ggcaatgcag     420
gctatgggtg cccgtattcg caaggaaggt gatacttggta tcatacgg agttggaaac     480
ggtgtgcttac ttgcaccgga ggctcctctc gactttggca acgcagccac agggtgtaga     540
cttactatgg gcctcgtggg ttttacat ttcgattcaa ctttattgg ggtgcctct     600
ctcactaaac gcccataatggg aagagtccctt aaccgttga gggagatggg cgtacaagtt     660
aagtccgagg acggcgacag attgcccgtc accttgcgcg gccctaagac acccaccct     720
attacttaca gggttccaat ggcattctgct caagtgaagt ccgcagttct gctcgctgg     780
ttgaacacac cgggttattac taccgtgatt gagccgatca tgactcgtga ccacactgag     840
aagatgcttc agggtttcgg tgctaacctc accgttgaaa cagacgcggc cgggtgtgagg     900
accattcgcc tggagggaaag gggaaaactc actggtaag tcattgacgt gcccgggtat     960
ccctccagca cggcggtcccc actgggttgc gctttctcg taccaggctc cgatgtgaca     1020
attctaaacg tcctcatgaa tcctactaga accggattga tacttacatt gcaggaaatg     1080
ggtgctgata ttgaagttat caatcctaga ctagccggag gtgaggacgt agctgatttg     1140
cgggtgaggc cttctacatt gaaagggttt accgtacctg aagatagggc accttcaatg     1200
attgacgagt atccaattct tgccgtcgac gctgcctttg ctgagggcgc gaccgtgatg     1260

```

aatggactag aggagtttag agtgaaggaa tccgacagat tgagcgcagt cgctaacgga	1320
cttaaactca atggcggtga ttgtgatgag ggtgagacta gcttggttagt ccgtggcgaa	1380
ccagacggaa agggtttggg caacgcttcg ggtgctgccg ttgcaactca cttggatcat	1440
cggatagcga tgagtttct ggtgatgggt ctcgtaagcg agaatcctgt gacagtcgac	1500
gatgcaacta tgatcgctac ttccttcctt gagtttatgg atttaatggc aggacttaggt	1560
gcaaagattt aactctctga taccaaagcg gcctaa	1596