Calibration Report: Low N Basalt Site Base Case

Kaveh Gholamhossein Siah

 $28~{\rm February}~2021$

${\bf Contents}$

	Hydrology
	Soil Solution Results
	Lysimeter Comparisons
	Weathering Results
	Litter Pool Results
	Soil Organic Matter Results
	Tree Nutrient Content
	Analysis 1: Stack Flux Data
	Cation Exchange Capacity
	Anion Exchange Capacity
	Other
List	of Figures
1	Monthly Coloine Consentations by Coil I amon
1	Monthly Calcium Concentrations by Soil Layer
2	Monthly Magnesium Concentrations by Soil Layer
3	Monthly Potassium Concentrations by Soil Layer
4	Monthly Sodium Concentrations by Soil Layer
5	Monthly Sulfate Concentrations by Soil Layer
6	Monthly Chloride Concentrations by Soil Layer
7	Monthly Aluminum Concentrations by Soil Layer
8	Monthly SiO2 Concentrations by Soil Layer
9	Monthly Organic Acid Base (R-) Concentrations by Soil Layer
10	Monthly pH by Soil Layer
11	Yearly Ammonium concentration by Soil Layer
12	Yearly Nitrate concentration by Soil Layer
13	Calcium Weathering (All Layer)
14	Magnesium Weathering (All Layer)
15	Potassium Weathering (All Layer)
16	Aluminum Weathering (All Layer)
17	Phosphate Weathering (All Layer)
18	Silica Weathering (All Layer)
19	Sodium Weathering (All Layer)
20	Forest Floor (O-Layer) Carbon Content Over Simulation Period
21	Forest Floor (O-Layer) Carbon Content Over Simulation Period
22	Forest Floor/O-horizon Ca content over time (a). and net annual Ca return in litterfall (b)
23	Forest Floor/O-horizon Mg content over time (a). and net annual Mg return in litterfall (b) 16
$\frac{23}{24}$	Forest Floor/O-horizon K content over time (a). and net annual K return in litterfall (b) 16
25	Forest Floor/O-horizon S content over time (a). and net annual S return in litterfall (b)
$\frac{25}{26}$	Forest Floor/O-horizon P content over time (a). and net annual P return in litterfall (b)
27	Forest Floor/O-horizon N content over time (a). and net annual N return in litterfall (b)
28	Base Cation Nutrient Content in Simulated Forest
29	N, S, and P Nutrient Contents and biomass per compartment
30	Calcium input and output comparison graphs
31	Magnesium input and output comparison graphs
32	Potassium input and output comparison graphs
33	Sulfur input and output comparison graphs
34	Nitrogen input and output comparison graphs
35	Calcium and Magnesium on exchangerover time
36	Potassium and Sodium on exchangerover time
37	Ammonium and Aluminum on exchangerover time
38	N and P Potential to Actual Difference
39	Ca and Mg Potential to Actual Difference
40	K and S Potential to Actual Difference

List of Tables

1	Average Soil Solution Concentrations of Reliable Months (2005-2006)	4
2	Simulated Lysimeter Fluxes by Depth (2005-2006)	10

Hydrology

Soil Solution Results

Table 1: Average Soil Solution Concentrations of Reliable Months (2005-2006)

	$\mu \mathrm{mol/L}$															
Soil Layer	Ca	Mg	K	Na	NO3	NH4	SO4	Cl	PO4	DOC	Al	Si	H+	рН	R	HR
Layer 1	21.8	26.0	12.14	59.5	27.8	39.1	7.57	48.4	0.9349	328.3	5.08e + 00	25.5	7.580116	5.12	129.5	34.66084
Layer 2	19.2	23.3	11.72	84.0	31.0	33.9	7.52	54.7	0.5803	142.9	5.37e-05	43.3	0.000107	9.97	71.5	0.00839
Layer 3	17.2	20.8	10.90	94.7	29.2	25.9	9.49	59.9	0.1329	146.4	1.96e-02	44.1	0.038829	7.41	72.8	0.39187
Layer 4	13.8	21.4	6.78	90.0	27.6	20.1	12.13	64.6	0.0628	99.2	1.51e-01	44.3	0.287366	6.54	48.7	0.89321
Layer 5	14.0	22.3	6.59	90.3	26.2	18.1	10.83	73.3	0.0402	89.8	4.48e-01	47.2	0.837123	6.08	42.9	1.93150
Layer 6	14.1	22.4	6.72	91.6	24.8	15.7	10.75	82.0	0.0511	71.4	5.49 e - 01	50.1	1.001971	6.00	34.2	1.50825
Layer 7	14.5	23.1	6.92	94.4	23.5	13.9	11.34	89.2	0.0486	65.8	9.43e-01	53.1	1.647411	5.78	31.1	1.77099
Layer 8	14.0	22.1	6.76	97.2	22.7	12.9	11.74	93.2	0.0217	54.0	8.20 e-01	55.3	1.459682	5.84	25.7	1.33902

Figure 1: Monthly Calcium Concentrations by Soil Layer

Figure 2: Monthly Magnesium Concentrations by Soil Layer

Figure 3: Monthly Potassium Concentrations by Soil Layer

Figure 4: Monthly Sodium Concentrations by Soil Layer

Figure 5: Monthly Sulfate Concentrations by Soil Layer

Figure 6: Monthly Chloride Concentrations by Soil Layer

Figure 7: Monthly Aluminum Concentrations by Soil Layer

Figure 8: Monthly SiO2 Concentrations by Soil Layer

Figure 9: Monthly Organic Acid Base (R-) Concentrations by Soil Layer

Figure 10: Monthly pH by Soil Layer

Figure 11: Yearly Ammonium concentration by Soil Layer

Figure 12: Yearly Nitrate concentration by Soil Layer

Lysimeter Comparisons

Table 2: Simulated Lysimeter Fluxes by Depth (2005-2006)

		kg/ha											
Depth	YEAR	Ca	Mg	K	Na	NO3	NH4	SO4	Cl	Р	DOC	Al	Si
2	2005	12	8.7	7.2	35	7.0	6.6	3.5	36	0.21	22	0.011	24
2	2006	13	9.7	7.4	24	6.9	6.9	4.0	29	0.22	22	0.013	22
8	2005	9.9	9.4	4.2	34	4.0	2.0	5.4	60	0.011	8.6	0.0119	26
8	2006	7.3	7.1	3.5	31	6.2	3.3	5.2	34	0.011	8.3	0.0075	22

Weathering Results

Figure 13: Calcium Weathering (All Layer)

Figure 14: Magnesium Weathering (All Layer)

Figure 15: Potassium Weathering (All Layer)

Figure 16: Aluminum Weathering (All Layer)

Figure 17: Phosphate Weathering (All Layer)

Figure 18: Silica Weathering (All Layer)

Figure 19: Sodium Weathering (All Layer)

Litter Pool Results

Figure 20: Forest Floor (O-Layer) Carbon Content Over Simulation Period

Looking at a range of soil carbon studies in Douglas-fir forests of the Pacific Northwest, forest floor (defined as non-mineral OM) C content goes from a lower bound of 3,700 kg C/ha in a 9-yr old stand[@cromackSoilCarbonNutrients1999] to 8200 kg C/ha in an average 38 year old stand [edmondsRelationshipsSoilOrganic1994]. These stands were notably N rich compared to the site simulated for the low N site, the soil C should be lower in the simulations as there is about half as much soil N in the low N simulated site as in the sites described in [edmondsRelationshipsSoilOrganic1994]. The high N site has about 21,000 kg N/ha at 1m depth, so it should be modeled to be at the higher end of organic and litter C buildup.

Figure 21: Forest Floor (O-Layer) Carbon Content Over Simulation Period

Note that the fine litter pool (the stage between humus and fresh/coarse litter) is growing in this model. This might deviate from observed behavior.

Figure 22: Forest Floor/O-horizon Ca content over time (a). and net annual Ca return in litterfall (b).

Soil Organic Matter Results

Mineral soil SOM C content is very high compared to other pools of carbon in the ecosystem, soil carbon should buildup over time assuming available surfaces exist for soil carbon "stabilization". In NutsFor, the SOM pool is represented by an active microbial pool, so there are issues with building up SOM in the soil as one might expect from a real stand. Microbial growth is limited by soil moisture and nutrient availability like the tree pool, so it is not a wholly adequate representation of C stabilization. Instead of calibrating this output to show buildup, I calibrated it such that it was "level", thus, soil carbon additions to the mineral soil are dictated by DOC percolation with water flow.

Figure 23: Forest Floor/O-horizon Mg content over time (a). and net annual Mg return in litterfall (b).

Figure 24: Forest Floor/O-horizon K content over time (a). and net annual K return in litterfall (b).

Figure 25: Forest Floor/O-horizon S content over time (a). and net annual S return in litterfall (b).

Figure 26: Forest Floor/O-horizon P content over time (a). and net annual P return in litterfall (b).

Figure 27: Forest Floor/O-horizon N content over time (a). and net annual N return in litterfall (b).

Tree Nutrient Content

Figure 28: Base Cation Nutrient Content in Simulated Forest

Figure 29: N, S, and P Nutrient Contents and biomass per compartment

Analysis 1: Stack Flux Data

Figure 30: Calcium input and output comparison graphs

Figure 31: Magnesium input and output comparison graphs

Figure 32: Potassium input and output comparison graphs

Figure 33: Sulfur input and output comparison graphs

The sulfate adsorbed pool depletes itself, the organic sulfur pool becomes increasingly dominant. This behavior is not unreasonable, however I would expect higher sulfate adsorption.

Figure 34: Nitrogen input and output comparison graphs

There looks to be a SOM reporting bug which causes a large negative spike in N mineralization, it does not seem to affect the simulation in terms of N flux or nutrient, which tells me it is likely a reporting error.

Cation Exchange Capacity

Figure 35: Calcium and Magnesium on exchangerover time

Figure 36: Potassium and Sodium on exchangerover time

Figure 37: Ammonium and Aluminum on exchangerover time

Anion Exchange Capacity

The phosphate adsorption is set from the original parameterization I received from Gregory. It tends to build up, which implies a high soil solution concentration (adsorption is determined by concentration).

Sulfate adsorption is weak and drains easily, I set a low adsorbed sulfate pool following IFS data from the Thompson site (glacial outwash, inceptisol). According to the book Atmospheric Sulfur Deposition: Environmental and Health Impacts, sulfur is mostly locked in organic compartments rather than on the adsorption surfaces. We might expect that sulfate, like phosphate, would increase on the AEC, however the input of sulfate relative to the adsorption and of sulfate is likely too low to facilitate adsorption. This is well supported by IFS data that show low sulfate adsorption on potentially high capacity adsorbing soils. The higher sulfate concentrations observed at the high N site could well be due to a higher inherent sulfur pool, possibly a condition of higher sulfate-mineral weathering, or due to a competitive response with phosphate.

Other

Figure 38: N and P Potential to Actual Difference

Figure 39: Ca and Mg Potential to Actual Difference

Figure 40: K and S Potential to Actual Difference

What I get from this calculation is that for all nutrients except N and P, the stand is able to extract near exactly the required amount of each nutrient for growth. For K, foliar leaching causes excessive total , however the mineral pool is rich enough in K to facilitate this excess . These graphs do not take into consideration that can vary by 20% before growth limitation is induced.