CS 241: Systems Programming Lecture 5. Version Control/Git

Fall 2019 Prof. Stephen Checkoway

A way to track changes to your files

- What you changed
- Why you changed it

A way to track changes to your files

- What you changed
- Why you changed it

A way to keep "backups" of older versions

A way to track changes to your files

- What you changed
- Why you changed it

A way to keep "backups" of older versions

A way to keep track of different versions (branches) of a project

- Development
- Release

A way to track changes to your files

- What you changed
- Why you changed it

A way to keep "backups" of older versions

A way to keep track of different versions (branches) of a project

- Development
- Release

A way to organize and collaborate on a project

- 1972 Source Code Control System (SCCS)
- 1985 Revision Control System (RCS)
- All users on the same system, each with their own checkout of the files
- 1986 Concurrent Versioning System (CVS)
 - Client/server model
- 2000 Subversion (SVN)
 - Essentially a better CVS
- 2005 Git and Mercurial
 - Distributed model: each user has their own copy of the whole repository

SCCS/RCS

- Master repository with all history stored somewhere, e.g., /source/program
- Individual users checkout the current version somewhere else, e.g.,
 ~/program
- Modifications can be checked in to the master repo
- Other users' modifications can be checked out again
- The history of files and their differences can be shown

CVS/SVN

- Master repo stored on some server, e.g., vcs.oberlin.edu:/vcs/program
- Users on many different machines can checkout copies, e.g., clyde.cs.oberlin.edu:~/program
- Changes to files are committed to the server which maintains the authoritative copy of the repository history
- Local copies can be updated with other users' changes from the server
- Multiple branches, but each with a linear commit history (r1, r2, r3, ...)

Git/Mercurial

- Decentralized
 - Each user has a full copy of the repo
 - No authoritative version
- Users can push changes to other users or pull changes from others
- Multiple, lightweight branches
- History is not linear, it's a DAG (we'll see what this means shortly)
- Decentralization is hard to deal with: use Github (or similar)

A distributed version control system

- Everyone can act as a "server"
- Everyone mirrors the entire repository

A distributed version control system

- Everyone can act as a "server"
- Everyone mirrors the entire repository

Many local operations

- Quick to add files, commit, create new branches, etc.
- Can have local changes w/o pushing to others

A distributed version control system

- Everyone can act as a "server"
- Everyone mirrors the entire repository

Many local operations

- Quick to add files, commit, create new branches, etc.
- Can have local changes w/o pushing to others

Collaborate with other developers

"Push" and "pull" code from hosted repositories such as Github

Initial setup

```
$ git config --global user.name 'Stephen Checkoway'
$ git config --global user.email \
    'stephen.checkoway@oberlin.edu'
$ git config --global core.editor vim
```

Global config values are stored in ~/.gitconfig

Can also have local config settings in \${repo}/.git/config

Creating a repository

```
$ mkdir project
$ cd project
$ git init
```

Creates a .git folder in project

No files are currently being tracked or managed

No remote server

Cloning a (remote) repository

\$ git clone https://github.com/klange/nyancat.git

Creates a local copy of the repoint including the whole history

Associated with a remote server

Cloning a (remote) repository

Cloning a (remote) repository

Warning: Git is ridiculous

Working dir vs staging vs .git

After git init or git clone, you have a working directory on the file system

Holds one version of the files in the repo

Inside it (usually) is a .git directory with

- The whole history of the repo (all commits)
- config options, branches, etc.

Conceptional staging area

Holds files to be committed

Working directory

Staging area

\$ vim README

Create a readme describing the project

Working directory

Staging area

\$ vim README

Create a readme describing the project

Working directory

README

Staging area

```
$ vim README # Create a readme describing the project
$ git add README # Add README to the staging area
```

Working directory
README

Staging area

```
$ vim README  # Create a readme describing the project
$ git add README  # Add README to the staging area
```

Working directory

README

Staging area

README

```
$ vim README  # Create a readme describing the project
$ git add README  # Add README to the staging area
$ vim hello.py  # Create some code
```

Working directory

README

Staging area

README

```
$ vim README  # Create a readme describing the project
$ git add README  # Add README to the staging area
$ vim hello.py  # Create some code
```

Working directory

README

hello.py

Staging area

README

```
$ vim README  # Create a readme describing the project
$ git add README  # Add README to the staging area
$ vim hello.py  # Create some code
$ git add hello.py # Add the hello.py to the staging area
```

Working directory

README

hello.py

Staging area

README

```
$ vim README  # Create a readme describing the project
$ git add README  # Add README to the staging area
$ vim hello.py  # Create some code
$ git add hello.py # Add the hello.py to the staging area
```

Working directory

README

hello.py

Staging area

README

hello.py

```
$ vim README  # Create a readme describing the project
$ git add README  # Add README to the staging area
$ vim hello.py  # Create some code
$ git add hello.py # Add the hello.py to the staging area
$ git commit  # Commit the files to the repo
```

Working directory

README

hello.py

Staging area

README

hello.py

```
$ vim README  # Create a readme describing the project
$ git add README  # Add README to the staging area
$ vim hello.py  # Create some code
$ git add hello.py # Add the hello.py to the staging area
$ git commit  # Commit the files to the repo
```

Working directory

README

hello.py

Working directory

README

hello.py

\$ vim hello.py # Modify the code

Working directory

README

hello.py


```
$ vim hello.py  # Modify the code
$ vim ChangeLog  # Write a change log with changes
```

Working directory

README

hello.py


```
$ vim hello.py  # Modify the code
$ vim ChangeLog  # Write a change log with changes
```

Working directory

README

hello.py

ChangeLog


```
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes
$ git add hello.py# Add the hello.py to the staging area
```

Working directory

README

hello.py

ChangeLog

Staging area


```
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes
$ git add hello.py# Add the hello.py to the staging area
```

Working directory

README

hello.py

ChangeLog

Staging area

hello.py


```
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes
$ git add hello.py# Add the hello.py to the staging area
$ git add ChangeLog # Add ChangeLog
```

Working directory

README

hello.py

ChangeLog

Staging area

hello.py


```
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes
$ git add hello.py# Add the hello.py to the staging area
$ git add ChangeLog # Add ChangeLog
```

Working directory

README

hello.py

ChangeLog

Staging area

hello.py

ChangeLog


```
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes
$ git add hello.py# Add the hello.py to the staging area
$ git add ChangeLog # Add ChangeLog
$ git commit # Commit the files to the repo
```

Working directory

README

hello.py

ChangeLog

Staging area

hello.py
ChangeLog

Git directory

82F1A6

```
$ vim hello.py # Modify the code
$ vim ChangeLog # Write a change log with changes
$ git add hello.py# Add the hello.py to the staging area
$ git add ChangeLog # Add ChangeLog
$ git commit # Commit the files to the repo
```

Working directory

README

hello.py

ChangeLog

Staging area

Commit Message

When doing a commit, your editor will be opened so you can enter a commit message

- Short summary line
- Blank line
- Longer description

Try to provide enough detail that you can read the message to understand what changes were made (and why)

Might be easy to remember now, but in 6 months?

You've just cloned a repository from github, cd'd into the repo's directory, and created a new file.

- \$ git clone git@github.com:username/example-project.git \$ cd example-project
- \$ vim foo

What command(s) should you run to commit this new file to the repo?

- A. \$ git add foo
- B.\$ git commit foo
- C. \$ git add foo \$ git commit

- D.\$ git add foo \$ git push
- E.\$ git add --commit foo

After adding and committing initially, you've been working on foo for a while and want to commit again.

What command(s) should you run to commit your changes repo?

Commits

Each commit is (in essence) a snapshot of the repository

Commits are named by a hash of their contents, e.g., c37ce054c766b79a3577aba898b296d3557c3d24, often just the first 7 digits: c37ce05

Each commit links to its parent commit(s)

Individual commits can have human-readable names

- HEAD is the currently checked out commit
- master is most recent commit on the default branch

After two commits, HEAD and master point to the second commit

After a third commit, HEAD and master point to the third commit

HEAD!= master

We can create a new branch fix-bug and commit to that branch

We can also keep committing to master

HEAD points to the branch we have checked out

Pushing to the remote server

```
$ git push
```

Sends to the remote server all of your committed data (it doesn't already have)

Remote servers are called remotes

- When cloning, the remote is named origin by default
- Remotes have their own branches origin/master is origin's master branch
- It's possible to have multiple remotes (but we probably won't in this class)

Local repository

Local repository

```
$ git clone ...
```


\$ git clone ...

Local repository

Local repository


```
$ git clone ...
```


\$ git clone ...

Local repository


```
$ git add ...
$ git commit
$ git add ...
$ git commit
```


Origin

HEAD

Local repository


```
$ git add ...
$ git commit
$ git add ...
$ git commit
```

\$ git clone ...

\$ git push

Origin

HEAD

Local repository

\$ git clone ...

master
HEAD
origin/master

\$ git add ...
\$ git commit
\$ git add ...
\$ git add ...
\$ git commit

\$ git push

Pulling from the remote server

```
$ git pull
```

Pulls changes from the remote server to the local repo and merges with the local changes

```
$ git pull --rebase
```

Pulls changes from the remote server to the local repo and rebases local commits on top of remote commits

Pulling with merging

Commits from the remote will be added to the local repository

If there are local commits, git tries to merge them by creating a new commit

```
A---B---C master on origin
/
D---E---F---G master
^
origin/master in your repository
```

Pulling with rebasing

Commits from the remote will be added to the local repository If there are local commits, git replays them on top of the new commits

```
A---B---C master on origin
/
D---E---F---G master
^
origin/master in your repository
```

Reminder: Git is ridiculous

Warning: Git is ridiculous

Gitting help

```
$ git --help
$ git init --help
$ git clone --help
$ git add --help
$ git commit --help
$ git push --help
$ git pull --help
```

Commit often

Commits are cheap, commit often

Commits can be reverted by git revert

- Makes a new commit that undoes the old commit
- \$ git revert (commit_hash)

Commits that haven't been pushed can be undone completely by git reset

\$ git reset --hard (commit_hash)

Demo at https://git-school.github.io/visualizing-git/#free-remote

Create the repository by clicking on the link in the homework

Create the repository by clicking on the link in the homework

Clone the repository into clyde using \$ git clone (url)

Create the repository by clicking on the link in the homework

Clone the repository into clyde using \$ git clone (url)

Add files to be committed with \$ git add (filename)

Create the repository by clicking on the link in the homework

Clone the repository into clyde using \$ git clone (url)

Add files to be committed with \$ git add (filename)

Create a commit (snapshot) of added files using \$ git commit

Create the repository by clicking on the link in the homework

Clone the repository into clyde using \$ git clone (url)

Add files to be committed with \$ git add (filename)

Create a commit (snapshot) of added files using \$ git commit

Push files to the server using \$ git push

Create the repository by clicking on the link in the homework

Clone the repository into clyde using \$ git clone (url)

Add files to be committed with \$ git add (filename)

Create a commit (snapshot) of added files using \$ git commit

Push files to the server using \$ git push

See the current state of the files using \$ git status

In-class exercise

https://checkoway.net/teaching/cs241/2019-fall/exercises/Lecture-05.html

Grab a laptop and a partner and try to get as much of that done as you can!