ANTIKNOCKING PROPERTY DETECTOR FOR FUEL

Patent number:

JP61243352

Publication date:

1986-10-29

Inventor:

KAGEYAMA OKIFUMI; AKAGI KEIKO

Applicant:

MAZDA MOTOR

Classification:

- international:

F02P5/145; G01N27/04; G01N27/22; G01N33/22; F02P5/145; G01N27/04; G01N27/22; G01N33/22;

(IPC1-7): F02P5/145; G01N27/04; G01N27/22

- european:

Application number: JP19850086090 19850422 Priority number(s): JP19850086090 19850422

Report a data error here

Abstract of JP61243352

PURPOSE:To enable accurate detection of antiknocking property such as octane value or cetane value of a fuel such as gasoline and light oil, by measuring the content of aromatic hydrogen-carbon in the fuel from the dielectric constant. CONSTITUTION:An antiknocking property detector 1 is arranged in a bypass fuel path 5 in the course of a fuel path 4 to a fuel pump 3 from a fuel tank 2 into which a fuel is injected with a filler pipe 2b with a fuel cap 2a. A high frequency current from a high frequency transmission means 10 is applied selectively to reference and sample side capacitors 14 and 15 by an application means 13 through a resistance 11 and a coil 12. Then, the dielectric constant is determined from the ratio between the voltage value as obtained when a high frequency current is applied to the sample side capacitor 15 which is filled with the fuel between electrodes and the reference voltage value as obtained when a high frequency current is applied to the reference side capacitor 14 to measure the content of aromatic hydrogen carbon in the fuel thereby enabling the detection of antiknocking property.

Data supplied from the esp@cenet database - Worldwide

5

(B) 日本国特許庁(JP)

(1) 特許出願公開

四公開特許公報(A) 昭61-243352

@Int Cl.4

識別記号

庁内整理番号

匈公開 昭和61年(1986)10月29日

G 01 N 27/22 5/145 27/04 F 02 P G 01 N

D-7813-3G 6843-2G

審査請求 未請求 発明の数 1 (全4頁)

燃料のアンチノツク性検知装置

> 21)特 頤 昭60-86090

29出 願 昭60(1985) 4月22日

⑫発 明者 Ш 興 史 広島県安芸郡府中町新地3番1号 マッダ株式会社内

②発 明 者 木 恵 子 マッダ株式会社 広島県安芸郡府中町新地3番1号 マッダ株式会社内 広島県安芸郡府中町新地3番1号

邳代 理 弁理士 柳田 征史

外1名

1. 発明の名称

创出

願 人

燃料のアンチノック性検知装置

2. 特許請求の範囲

(1) 燃料のアンチノック性と相関関係のある芳 香族炭化水素の含有量を検知する装置であって、 高周波電流を出力する高周波発信手段と、基準電 圧値を出力する基準出力手段と、燃料通路内の燃 料に対応させて配設された対向する一対の電極か らなるコンデンサと、上記コンデンサに高周波電 流を印加する印加手段とを備え、コンデンサに高 周波電流を印加した時の検出電圧値と基準電圧値 との比率により燃料中の芳香族炭化水素の含有品 を測定することを特徴とする燃料のアンチノック 性検知装置。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、ガソリン、軽油等の燃料のアンチノ ック性すなわちオクタン価もしくはセタン価を検 出する燃料のアンチノック性検知装置に関するも のである。

(従来技術)

一般に、市販されているガソリンは2種類のオ クタン価のものがあり、これらは併用可能である が、この燃料のアンチノック性の変化によりそれ ぞれ最適な点火時期、圧縮比等のエンジン制御も しくは排気ガス浄化システムの設定が異なり、燃 料のアンチノック性を知ることはエンジンの最適 制御を行うために重要な事項である。.

そこで、例えば、特問昭58-131360月 に見られるように、燃料タンクに燃料を供給する 注入ガンに燃料の種類に応じた突起等の識別信号 を設け、この信号に基づく注入燃料のオクタン価 に対応して点火時期を制御するようにした技術が 公知である。

1987

1.14

しかるに上記のように往入燃料のオクタン価の異な出によって制御するものでは、オクタン価の異なるとは後から注入された場合には後から注入された場合には動物することになり、実際にエンジンに供給される混合が思めば料の正確なアンチノック性を検出することは既のなる。また、すべての注入ガンに上記のような説別信号を設置することは実施面で問題がある。

(発明の目的)

本発明は上記事情に盛み、ガソリン、軽油等の燃料のオクタン価もしくはセタン価等のアンチ有は化水素の含有量に応じて誘電率が変化する特性があることから、これを利用してエンジンに供給される燃料のアンチノック性を正確に検知できるようにした燃料のアンチノック性検知装置を提供することを目的とするものである。

(発明の構成)

そのアンチノック性を検知することができ、実施 面でも優れた利点を有するものである。

(実施例)

以下、図面により本発明の実施例を説明する。 第1図は全体構成を示し、アンチノック性検知装置1は、燃料キャップ2aを備えたフィラーパイプ2bにて燃料が注入される燃料タンク2から燃料ポンプ3に至る燃料通路4の途中のバイパス燃料通路5に対して配設される。

上記アンチノック性検知装置1は、第2回に一例の具体構造を示し、高周波電流を出力する高周波電流で出力する。発信手段10により出力された高周波電流は、直列に接続された抵抗11とコイル12を介して、印加手段13によって選択的に基準側もしくは試料側コンデンサ15はこの電極間に前記パイパス燃料通路5つ、燃料を例えばテフロン管によって導いて流過し、基準帽コンデンサ14は同様の電極間が真空もし

本発明の検知装置は、高周波電流を出力する高周波電流を出力する基準出力
手段と、燃料のの燃料に対応させて配設され
た対向する一対の電極からなるコンデンサとと、上
記コンデンサに高周波電流を印加した時の
検出電圧値と基準電圧値との比率により燃料中の
芳香族炭化水素の含有量を測定することを特徴と
するものである。

(発明の効果)

くはエアで満たされて基準電圧値を出力するため の基準出力手段16を構成し、切換スイッチによ る印加手段13はその切換作動により選択的に前 記高周波発信手段10からの高周波電流をコンデ ンサ14,15に印加させるものである。上記コ ンデンサ14,15と並列に接続された電圧計1 7 によって電圧値が検出され、電極間が燃料で満 たされた試料側コンデンサ15に高周波電流を印 加した際の電圧値と、基準側コンデンサ14に高 周波電流を印加した際の基準電圧値との比率によ り誘電率を求めて、燃料中の芳香族炭化水素の含 有量を測定し、アンチノック性を検知するもので ある。上記検出電圧値と基準電圧値とは、例えば、 図示しない制御回路(コンピューターユニット) に入力され、この制御回路で両信号を比較して燃 料中のアンチノック性を求め、この信号に応じた ・制御信号を点火装置等の各制御部(図示せず)に 出力するものである。

すなわち、第2図の回路において、高周波発信 手段10の抵抗9の調整によって高周波電流が一 定となるようにして、電圧 V (発信周波数ω)を 抵抗 R 1、インダクタンス L のコイル 1 2 と、 直 列抵抗 R 5、 直列容量 C 。 のコンデンサ 1 4 との 直列回路に加えるとき、

R 1 < < ω L . R S < < 1 / (ω C o)
の条件が満たされる限り、共振時においてはコイル12の両端間の電圧 V z とコンデンサ14 両端間の電圧 V o は殆ど等しく、

Vo = V 2 = (ω L V) / (R 1 + R S)
= V / [(R 1 + R S) ω Co]

で表わされ、コンデンサ14の電気容量 Co は、
Co = V / [(R 1 + R S) ω Vo]

となり、コンデンサ両端間の電圧 Vo に反比例し、
この電圧 Vo の測定により容量 Co が求まるもの
である。一方、誘電率が E の誘電体 (燃料)で電
極が満たされている試料 例コンデンサ 1 5 の電気
容量 C 1 も、同様に測定した電圧 V 1 により求ま
る。そして、両コンデンサ 1 4 . 1 5 の容量と誘
電率は、C 1 = E C o という関係となるものであ

周波電流の印加による電圧値を検出可能とし、そして、エンジンスタートに対応して新しい燃料が 試料側コンデンサ15の電板間を通過するように なってから、測定を開始するものである。

り、上記C」およびC。を求めることにより、物

そして、測定した基準例と燃料例との検出電圧をコンピューターユニットに入力し、前記式のような演算を行うことによって、オクタン価もしくはセタン価のアンチノック性に換算して、特性切換機構に信号を送るものであり、上記測定終了後には高周波電級を消すものである。

 質の誘電率をを検知することができる。上記関係により、コンデンサの電極間が燃料で満たされた時の電圧と基準時の電圧との比率により燃料の誘電率をが測定される。

なお、燃料に含有されている芳香族炭化水素は その他の炭化水素に比べて誘電率が高いものであ る。すなわち、ガソリン中の主な成分とその誘電 率を示すと次のようになる。

芳香族炭化水素	孫 電 本
ベンゼン	2.284
トルエン	3.289
mーキシレン	2.374
0 ~ キシレン	2.568
その他	
ベンタン	1.844
ヘキサン	1.890
ヘプタン	1.920

上記アンチノック性の研定は、例えば、燃料タンク2に燃料を注入した後、注入が終ってフィラーパイプ2bの燃料キャップ2aを閉じると、高

すると、

一方、電極間に燃料が満たされた試料側コンデンサ 1 5 に高周波電流を印加した際の、コンデンサ 両端の電圧が V 1 のときの容量 C 1 は、共振角周波数をω′とすると、

C 1 = V / (V 1 ω' R 1) である。 従って、検出燃料の誘電率 ε は、

 $\varepsilon = C_1 \ / \ C_0 = \omega \ V_0 \ / \omega' \ V_1$ となり、共振角周波数と検出電圧の比率によって求められる。

なお、上記実施例では高周波電流を一定に調整するかもしくは周波数を変更するようにして電圧を測定するようにしているが、両方を固定して測定する場合には計算式が複雑となるが、前記と同様に誘電率を求めることができるものである。

なお、ガソリン燃料におけるアンチノック性すなわちオクタン価は、芳香族炭化水素の含有量と 比例する特性を有し、一方、軽油燃料におけるア

特開昭61-243352 (4)

ンチノック性すなわちセタン価は、 芳香族炭化水 素の含有量と反比例する特性を有するものであって、 この特性に対応して上配例定に基づいてアンチノック性が検知できるものである。

また、上記実施例においては、基準用と試料用のコンデンサを印加手段によって切換えて高周波電流を印加してそれぞれの電圧値を検出するようにしているが、一方のコンデンサの接続に対して他方のコンデンサを並列に付加接続するようにしてもよい。

4. 図面の簡単な説明

第1図は本発明の一実施例におけるアンチノック性検知装置の配設位置を示す全体構成図、

第2 図は検知装置の具体構造を示す基本回路図、 第3 図は他の検知手段の具体構造を示す基本回 路図である。

1 … … アンチノック性検知装置

2 … … 燃料タンク

4 … … 燃料通路

5 … … バイパス燃料通路

7 … … 高周波铝源 8 … … 電流計10.10′ … … 高周波発信手段

11……抵抗

12……コイル

13……印加手段

1 4 … … 基準 側 コンデンサ

15 … … 試料 側 コンデンサ

16 … … 基準出力手段 17 … … 電圧計

