25

CLAIMS

- 1. A membrane or matrix for controlling the permeation rate of a drug, said membrane or matrix comprising a siloxane-based elastomer composition comprising at least one elastomer and possibly a non-crosslinked polymer, characterized in that the elastomer composition comprises poly(alkylene oxide) groups, and that the poly(alkylene oxide) groups are present in the elastomer or polymer as alkoxy-terminated grafts of polysiloxane units, or as blocks, the said grafts or blocks being linked to the polysiloxane units by silicon-carbon bonds, or as a mixture of these forms.
- 2. The membrane or matrix according to Claim 1, characterized in that the elastomer composition is an elastomer made up of polysiloxane units which comprise poly(alkylene oxide) groups.
 - 3. The membrane or matrix according to Claim 1 or 2, characterized in that the polytalkylene oxide) groups are polytethylene oxide) groups (PEO groups).
- 4. The membrane or matrix according to Claim 2 or \$\beta\$, char-20 acterized in that the formula of the polysiloxane groups is

$$-(SiR'R''O)_qSiR'R''-$$

where R' and R'' are

- partly free groups, which are the same or different and which are a lower alkyl group, or a phenyl group, in which case the said alkyl or phenyl group may be substituted or unsubstituted, or alkoxy-terminated poly(alkylene oxide) groups having the formula

 $R_{-R^3-O-(CH-CH_2-O)_m-alk}$, where alk is a lower alkyl group,

30

suitably methyl, R is hydrogen or a lower alkyl, R^3 is a straight-chain or branched C_2 - C_6 alkyl, and m is 1...30, - partly bonds formed from the hydrogen or alkylene groups to other polymer chains in the elastomer, and - possibly partly unreacted groups, such as hydrogen, vinyl or vinyl-terminated alkene, and - q is 1...3000.

- 5. The membrane or matrix according to Claim 4, characterized in that the free R' and R'' groups are a lower alkyl group, preferably methyl.
- 6. The membrane or matrix according to Claim 2 or ♂, characterized in that the poly(alkylene oxide) groups are present in the elastomer in the form of poly(alkylene oxide) blocks having the formula

15 R $-R^3-O(CHCH_2O)_{m}R^4-$, or

R₁ R R₁ -CH₂CHCOO(CHCH₂O)_mCOCHCH₂-

where R is hydrogen, a lower alkyl or phenyl, R_1 is hydrogen or a lower alkyl, R^3 and R^4 are the same or different and are straight-chain or branched C_2 - C_6 alkyl groups, and m is 1...30.

7. The membrane or matrix according to Claim 1, characterized in that the elastomer composition is made up of two elastomers interlaced one inside the other, in which case - the first elastomer comprises poly(alkylene oxide) groups, and that the poly(alkylene oxide) groups are present in the said elastomer as alkoxy-terminated grafts of polysiloxane units, or as blocks, in which case the said grafts or blocks are linked to the polysiloxane units by silicon-carbon bonds, or as a mixture of these forms, and

that

- the second elastomer is a siloxane-based elastomer.
- 8. The membrane or matrix according to Claim 7, characterized in that the second elastomer is a poly(dimethyl siloxane)-based elastomer which possibly comprises poly(alkylene oxide) groups.
- 9. The membrane or matrix according to Claim 8, characterized in that the possible poly(alkylene oxide) groups of the second poly(dimethyl siloxane)-based elastomer are present in the form of alkoxy-terminated grafts of poly(dimethyl siloxane) units, or as blocks, the said grafts or blocks being linked to the poly(dimethyl siloxane) units by silicon-carbon bonds, or as a mixture of these forms.
- 15 10. The membrane or matrix according to Claim 1, characterized in that the elastomer composition is a blend which comprises
 - a siloxane-based elastomer and
- a straight-chain polysiloxane copolymer which comprises

 20 poly(alkylene oxide) groups, in which case the
 poly(alkylene oxide) groups are present in the said polymer
 as alkoxy-terminated grafts of polysiloxane units, or as
 blocks, the said grafts or blocks being linked to the
 polysiloxane units by silicon-carbon bonds, or a mixture of

 25 these forms.
 - 11. The membrane or matrix according to Claim 10, characterized in that the poly(alkylene oxide) groups are poly-(ethylene oxide) groups (PEO groups).
- 12. The membrane or matrix according to Claim 10 or 1/2, 30 characterized in that the formula of the polysiloxane groups is
 - -(SiR'R''O) SiR'R''-

where R' and R'' are the same or different and are a lower alkyl group, or a phenyl group, in which case the said alkyl or phenyl group may be substituted or unsubstituted, or alkoxy-terminated poly(alkylene oxide) groups having the formula

R $-R^3-O-(CH-CH_2-O)_m-alk$, where alk is a lower alkyl group, suitably methyl, R is hydrogen or a lower alkyl, R^3 is a straight or branched C_2 - C_6 alkyl group, m is 1...30, and q is 1...3000.

- 13. The membrane or matrix according to Claim 12, characterized in that the free R' and R'' groups are lower alkyl groups, preferably methyl.
- 14. The membrane or matrix according to Claim 10 or 1/1,
 15 characterized in that the poly(alkylene oxide) groups are present in the straight-chain polysiloxane polymer in the form of poly(alkylene oxide) blocks having the formula

$$R$$

$$-R^{3}O(CHCH_{2}O)_{m}R^{4}-, \qquad Or$$

where R is hydrogen, a lower alkyl or phenyl, R_1 is hydrogen or a lower alkyl, R^3 and R^4 are the same or different and are straight-chain or branched C_2 - C_6 alkyl groups, and m is 1...30.

- 15. The membrane or matrix according to Claim 10, characterized in that the siloxane-based elastomer is made up of poly(dimethyl siloxane).
- A 16. The membrane or matrix according to any of Claims 10 / 30 1/5, characterized in that the siloxane-based elastomer

A

A

A

comprises poly(alkylene oxide) groups, and that the poly(alkylene oxide) groups are present in the elastomer or polymer as alkoxy-terminated grafts of polysiloxane units, or as blocks, the said grafts or blocks being linked to the polysiloxane units by silicon-carbon bonds, or as a mixture of these forms.

- 17. The membrane or matrix according to any of Claims 1 / 16, characterized in that it contains a filler, suitably silica.
- 10 18. A method for the preparation of a siloxane-based elastomer which comprises poly(alkylene oxide) groups and is intended for use in a membrane or matrix controlling the permeation rate of drugs, characterized in that
- a) a vinyl-functional polymer component and a hydride functional component are crosslinked in the presence of a catalyst, or
 - b) a polymer component is crosslinked in the presence of a peroxide catalyst.
- 19. The method according to Claim 18, characterized in that
 20 the amounts of the vinyl-functional component and the
 hydride-functional component are selected so that the ratio
 of the molar amount of hydrides to the molar amount of
 double bonds is at minimum 1.
- 20. The method according to Claim 18 of 9, characterized 25 in that
 - I) the vinyl-functional polymer component is
 - a) a vinyl-functional polysiloxane having the formula $R'-Sir'R''O(SiR'R''O)_rSiR'R''R'$
- where R' and R'' are the same or different and are a lower alkyl group or a phenyl group, in which case the

25

said alkyl or phenyl group may be substituted or unsubstituted, and where some of the substituents R' and/or R'' have been substituted for by vinyl groups, and r is 1...27000, or

5 b) an alkenyl terminated polysiloxane-based block copolymer having the formula

 $T(AB)_xAT$ (I), where

A = -(SiR'R''O)_qSiR'R''-, where R' and R'' are the same or different and are a lower alkyl group or a phenyl group, in which case the said alkyl or phenyl group may be substituted or unsubstituted;

B is a poly(alkylene oxide) having the formula

R $-R^{3}O(CHCH_{2}O)_{m}R^{4}-, or$

, , , ,

 R_1 R R_1 R_2 R_3 R_4 R_4 R_5 R_6 R_7 R_8 R_8 R_9 R_9

R $R^{1}O(CHCH_{2}O)_{m}R^{3}$, or

 $R_1 = R = R_1$ $CH_2 = CCOO(CHCH_2O)_{m}COCHCH_2 -$

where R is hydrogen, a lower alkyl or phenyl, R_1 is hydrogen or a lower alkyl, R^3 and R^4 are the same or different and are straight-chain or branched C_2 - C_6 alkylene groups, R^1 is a straight-chain or branched C_2 - C_6 alkenyl group, m is 1...30, q is 1...3000, and x is 0...100, or

c) a vinyl-functional polysiloxane copolymer having the

Ĺ

5

15

20

formula

R'-SiR'R''O(SiR'R''O), (SiR'R''O), SiR'R''-R'

- where, in the first block, R' and R'' are the same or different and are a lower alkyl group, or a phenyl group, in which case the said alkyl or phenyl group may be substituted or unsubstituted, and where some of the substituents R' and/or R'' have been substituted for by vinyl groups, and r is 1...27000, and
- where, in the second block, R' is a lower alkyl group, or an alkoxy-terminated poly(alkylene oxide) group having the formula
 - R $-R^3-O-(CH-CH_2-O)_m$ -alk, where alk is a lower alkyl group, suitably methyl, R^3 is a straight or branched C_2-C_6 alkyl group, R is hydrogen or a lower alkyl group, and R is a phenyl group, in which case the said alkyl or phenyl group may be substituted or unsubstituted, and R' is a lower alkyl group or a phenyl group, in which case the said alkyl or phenyl group may be substituted or unsubstituted, and R' is a lower alkyl group or a phenyl group, in which case the said alkyl or phenyl group may be substituted or unsubstituted, and R' is a lower alkyl group or a phenyl group, in which case the said alkyl or phenyl group may
 - d) α, ω -dialkenyl poly(alkylene oxide) having the formula

$$R^{1}-O-(CH_{2}CH_{2}O)_{m}-R^{2}$$

- where R is hydrogen or a lower alkyl, R^1 and R^2 are the same or different straight-chain or branched $C_2 C_6$ alkenyl groups, and m is 1...30, or
 - e) a blend of at least two of the above-mentioned components a) d), and that

10

20

II) the hydride-functional component is

- a) a hydride-functional siloxane which may be straightchain, star shaped, branched or cyclic, or
- b) a hydride-terminated siloxane-based block copolymer having the formula

 $T(BA)_xBT$ (II), where

 $T = H-SiR'R''O(SiR'R''O)_qSiR'R''-,$

 $A = -SiR'R''O(SiR'R''O)_qSiR'R''-$, where R' and R'' are the same or different and are a lower alkyl group or a phenyl group, in which case the said alkyl or phenyl group may be substituted or unsubstituted;

B is a poly(alkylene oxide) having the formula

 $R = -R^3 - O(CHCH_2O)_mR^4 - , or$

15 R₁ R R₁
-CH₂CHCOO(CHCH₂O)_mCOCHCH₂-

where R is hydrogen, a lower alkyl or phenyl, R_1 is hydrogen or a lower alkyl, R^3 and R^4 are the same or different and are straight-chain or branched C_2 - C_6 alkyl groups, m is 1...30, q is 1...3000, and x is 0...100, or

- c) a blend of the above-mentioned components a) and b).
- 21. The method according to Claim 20, characterized in that the hydride-functional siloxane copolymer is straight-chain, and that its formula is
- 25 R'-SiR'R''O(SiR'R''O), SiR'R''R'

where R' and R'' are the same or different and are a lower alkyl group or a phenyl group, in which case the said alkyl or phenyl group may be substituted or unsubstituted, and where some of the substituents R' and/or R'' have been substituted for by hydrogen, and r is 1...27000.

22. The method according to any of Claims 18 21, characterized in that the vinyl-functional polymer component contains a filler, suitably silica.