Si consideri il seguente tableau ottimo di un problema di programmazione lineare

-25/3	0	4/3	19/6	9/2	0	0	0	7/6
			-1/2					
11/3	1	-2/3	-1/3	0	0	0	0	2/3
2/3	0	1/3	1/6	-1/2	0	1	0	7/6
1			1/2					

- Quanto vale la funzione obiettivo? Quali sono le variabili in base e quanto valgono? S: [25/3]

Sia b_1^* il valore ottimo della variabile x_1 . Si aggiunga al problema il vincolo $x_1 \leq \lfloor b_1^* \rfloor$ (intero inferiore).

- Quanto vale la nuova soluzione ottima?S: [14]
- Cosa accade se il vincolo aggiunto è del tipo $x_5 \le \lfloor b_5^* \rfloor$? S: [25/3]

ESERCIZIO 2

Trasformare i seguenti problemi di programmazione lineare in forma standard

$$\min x_1 - 5x_2 - 7x_3$$

$$5x_1 - 2x_2 + 6x_3 \ge 5$$

$$3x_1 + 4x_2 - 9x_3 = 3$$

$$7x_1 + 3x_2 + 5x_3 \le 9$$

$$x_1 \ge -2$$

$$x_2, x_3 \in \mathbb{R}$$

$$\min 5x_1 + 3x_2 - 7x_3$$

$$2x_1 + 4x_2 + 6x_3 = 11$$

$$3x_1 - 5x_2 + 3x_3 + x_4 = 11$$

ESERCIZIO 3

 $x_1, x_2, x_4 \ge 0$

 $x_3 \in \mathbb{R}$

Dato il problema di programmazione lineare

$$\min 8x_1 + x_2 - 3x_3$$

$$2x_1 - 3x_2 + 5x_3 \le 10$$

$$x_1 + 3x_2 - x_3 \le 6$$

$$x_1, x_2, x_3 \ge 0$$

Calcolare:

- la soluzione ottima del problema primale
- il vettore dei costi ridotti delle variabili fuori base

S: [-26/3]

S: [29/3, 2/3, 1/3]

- la formulazione del problema duale
- la soluzione ottima del problema duale attraverso il teorema degli scarti complementari

S: [2/3, 1/3]

ESERCIZIO 4

Risolvere i seguenti problemi di PL con il metodo ritenuto più opportuno

$$\max 60x_1 + 30x_2$$
$$3x_1 + 3x_2 \le 420$$
$$x_1 + 4x_2 \le 440$$

$$x_1 \leq 80$$

$$x_1, x_2, \ge 0$$

S: [6600]

$$\max 5x_1 + 2x_2 + 3x_3$$

$$3x_2 + 5x_3 \le 30$$

$$2x_1+x_2\leq 20$$

$$3x_1 + 2x_3 \le 50$$

$$x_1, x_2, x_3 \ge 0$$

$$\max x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5$$

$$x_1 \le 20 + x_5$$

$$x_1 \le 30 - x_3$$

$$x_1 + x_2 + x_4 \le 10$$

$$x_2 + x_5 \le x_3 + x_4$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$
 S: [330]

$$\max 4x_1 + x_2 + 3x_3 + 2x_4$$

$$2x_1 - x_2 + x_3 + x_4 \le 16$$

$$x_1 + x_2 + x_3 + 2x_4 \le 20$$

$$x_1, x_2, x_3, x_4 \ge 0$$
 S: [56]

ESERCIZIO 5

Dato il problema di programmazione lineare

$$\min 2x_1 - 14x_2 - 7x_3$$

$$-5x_1 + 4x_2 + 6x_3 \le 8$$

$$7x_1 + 8x_2 - 2x_3 \le 10$$

$$x_1, x_2, x_3 \ge 0$$

Calcolare:

- la soluzione ottima del problema primale

S: [-22]

- il vettore dei costi ridotti delle variabili fuori base

S: [3/2, 3/2, 1]

- la formulazione del problema duale
- la soluzione ottima del problema duale attraverso il teorema degli scarti complementari

S: [3/2, 1]

Dato il problema di programmazione lineare

$$\min 7x_1 + 3x_2 - 2x_3 + 5x_4$$

$$5x_1 + 7x_2 + 4x_3 - 5x_4 \ge 13$$

$$x_1 - 3x_2 + 5x_3 + 6x_4 \le 8$$

$$x_1, x_2, x_3, x_4 \ge 0$$

scrivere la formulazione del problema duale e verificare, attraverso il teorema degli scarti complementari, se la soluzione $x^T = [\frac{7}{3}, 0, \frac{4}{5}, 0]$ è ottima. S: [NO]

ESERCIZIO 7

Risolvere mediante il metodo del simplesso il seguente problema di programmazione lineare

$$\min 2x_1 - x_2 x_1 + x_2 \le 4 -x_1 + 3x_2 \ge 0 x_1, x_2, \ge 0$$

Indicare per ciascuna soluzione di base ammissibile il valore delle variabili e dei costi ridotti. Rappresentare graficamente il problema evidenziando i vertici della regione individuati dal metodo del simplesso.

ESERCIZIO 8

Dato il seguente problema di programmazione lineare

$$\min 2x_1 - x_2$$

$$2x_1 + x_2 + x_3 = 5$$

$$x_1 - 2x_2 - x_4 = 20$$

$$x_1, x_2, x_3, x_4 \ge 0$$

determinare la soluzione di base ammissibile associata in cui le variabili in base sono x_1 e x_2 . Dire se si tratta di una soluzione ottima e scrivere il relativo tableau. S: [NO]

ESERCIZIO 9

Risolvere il seguente problema di programmazione lineare

$$\min -x_1 - x_2 - x_1 - 2x_2 - x_3 = 2$$

$$3x_1 + x_2 \le -1$$

$$x_1 \in \mathbb{R}$$

$$x_2, x_3 \ge 0$$

Dire se la soluzione ottima è unica.

Risolvere il seguente problema di programmazione lineare

$$\min -x_1 + x_2 \\ -x_1 + 2x_2 \ge 1/2 \\ -2x_1 - 2x_2 \ge 1 \\ x_1 \in \mathbb{R} \\ x_2 \ge 0$$

ESERCIZIO 11

Dato il problema di programmazione lineare

$$\min 2x_1 + 3x_2 + 4x_3 + 7x_4$$

$$5x_1 + 7x_2 + 3x_3 - 5x_4 \ge 16$$

$$x_1 - 3x_2 + 5x_3 + 6x_4 \le 7$$

$$x_1, x_2, x_3, x_4 \ge 0$$

scrivere la formulazione del problema duale e verificare, attraverso il teorema degli scarti complementari, se la soluzione $x^T = [\frac{7}{2}, 0, \frac{3}{5}, 0]$ è ottima. S: [NO]

ESERCIZIO 12

Sfruttando la teoria della dualità, trovare la soluzione ottima del seguente problema:

$$\min 12x_1 + 20x_2 + 10x_3$$

$$8x_1 + 10x_2 + 7x_3 \le 20$$

$$x_1, x_2, x_3 \ge 0$$
S: [0]

ESERCIZIO 13

Si determini la soluzione ottima del duale del seguente problema di programmazione lineare

$$\max 12x_1 + 20x_2$$

$$2x_1 + x_2 \le 100$$

$$-3x_1 + 5x_2 \le 240$$

$$x_1 \le 40$$

$$x_1, x_2 \ge 0$$

sapendo che la soluzione ottima del primale è $x^* = (20,60)$

S: [28/13, 120/13, 0]

ESERCIZIO 14

Sfruttando la teoria della dualità, trovare la soluzione ottima del seguente problema

$$\min 12x_1 + 9x_2 + 10x_3 + 7x_4$$

$$8x_1 + 6x_2 + 7x_3 + 5x_4 \ge 20$$

 $x_1, x_2, x_3, x_4 \ge 0$
 S: [28]

Risolvere il seguente problema di programmazione lineare mediante il metodo del simplesso duale

$$\min 3x_1 + 2x_2$$

$$-2x_1 + x_2 + x_3 = -1$$

$$x_1 + x_2 + x_4 = 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$
S: [3/2]

ESERCIZIO 16

Risolvere col metodo primale-duale i seguenti problemi

$$\min x_1 + 6x_2 - 7x_3 + 5x_4$$

$$5x_1 - 4x_2 + 13x_3 + x_4 = 20$$

$$x_1 - x_2 + 5x_3 + x_4 = 8$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$\min 2x_1 + x_2 + 4x_3$$

$$x_1 + x_2 + 2x_3 = 3$$

$$2x_1 + x_2 + 3x_3 = 5$$

$$x_1, x_2, x_3 \ge 0$$
S: [5]

ESERCIZIO 17

Risolvere il seguente problema di programmazione lineare mediante il metodo del simplesso duale

$$\begin{aligned} \min & 5x_1 + 2x_2 \\ x_1 + x_3 &\geq 2 \\ x_1 + x_2 - 4x_3 &\geq 1 \\ x_1, x_2, x_3 &\geq 0 \end{aligned}$$
 S: [9]

ESERCIZIO 18

Si consideri il seguente problema di programmazione lineare

$$\min -x_1 - 4x_2$$

$$x_1 + x_2 \le 2$$

$$x_1 + 3x_2 \le 3$$

$$3x_2 \le 2$$

$$x_1, x_2 \ge 0$$

Utilizzare l'algoritmo del simplesso primale e l'algoritmo del simplesso duale per rispondere ai seguenti quesiti.

- Quanto vale la soluzione ottima del problema se si considera solo il primo vincolo della formulazione?
 S: [-8]
- Come cambia il valore ottimo se si considerano i primi due vincoli? S: [-4]
- Qual è la soluzione ottima del problema considerando tutti i vincoli?
 S: [-11/3]

Risolvere il seguente problema di programmazione lineare

$$\max 2x_1 + 5x_2$$

$$x_1 - 4x_2 \le 8$$

$$-x_1 + x_2 \le 6$$

$$-3x_1 + 2x_2 \le 5$$

$$x_1, x_2 \ge 0$$

In base alla teoria della dualità, cosa è possibile dire sul problema duale?

ESERCIZIO 20

Risolvere il seguente problema di programmazione lineare

$$\max -2x_1 - x_2$$

$$x_1 + x_2 \le 2$$

$$x_1 - 3x_2 \ge 3$$

$$x_1, x_2 \ge 0$$

Fare uso sia della fase uno del metodo del simplesso che del simplesso duale e confrontare i due algoritmi.