credit-risk-and-analysis

October 13, 2024

```
[2]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
[3]: df = pd.read_csv('Credit_score.csv')
```

```
<ipython-input-3-6ebc9aea8e05>:1: DtypeWarning: Columns (26) have mixed types.
Specify dtype option on import or set low_memory=False.
   df = pd.read_csv('Credit_score.csv')
```

Data Description:

- 1. ID, Represents a unique identification of an entry
- 2. Customer ID, Represents a unique identification of a person
- 3. Month, Represents the month of the year
- 4. Name, Represents the name of a person
- 5. Age, Represents the age of the person
- 6. SSN, Represents the social security number of a person
- 7. Occupation, Represents the occupation of the person
- 8. Annual Income, Represents the annual income of the person
- 9. Monthly Inhand Salary, Represents the monthly base salary of a person
- 10. Num Bank Accounts, Represents the number of bank accounts a person holds
- 11. Num Credit Card, Represents the number of other credit cards held by a person
- 12. Interest Rate, Represents the interest rate on credit card
- 13. Num of Loan, Represents the number of loans taken from the bank
- 14. Type_of_Loan, Represents the types of loan taken by a person
- 15. Delay_from_due_date, Represents the average number of days delayed from the payment date
- 16. Num of Delayed Payment, Represents the average number of payments delayed by a person
- 17. Changed Credit Limit, Represents the percentage change in credit card limit
- 18. Num Credit Inquiries, Represents the number of credit card inquiries
- 19. Credit Mix, Represents the classification of the mix of credits
- 20. Outstanding Debt, Represents the remaining debt to be paid (in USD)
- 21. Credit_Utilization_Ratio, Represents the utilization ratio of credit card
- 22. Credit_History_Age, Represents the age of credit history of the person
- 23. Payment_of_Min_Amount, Represents whether only the minimum amount was paid by the person
- 24. Total EMI per month, Represents the monthly EMI payments (in USD)

- 25. Amount_invested_monthly, Represents the monthly amount invested by the customer (in USD)
- 26. Payment_Behaviour, Represents the payment behavior of the customer (in USD)
- 27. Monthly_Balance, Represents the monthly balance amount of the customer (in USD)

[4]: df.head()

1 2 3	0 1 2 3 4	ID C 0x1602 0x1603 0x1604 0x1605 0x1606	Customer_ID CUS_0xd40 CUS_0xd40 CUS_0xd40 CUS_0xd40 CUS_0xd40	Janua Februa Mar Apr	ry Aaron ry Aaron ch Aaron il Aaron	Name n Maashoh n Maashoh n Maashoh n Maashoh n Maashoh	Age 23 23 -500 23 23	821-00-02 821-00-02 821-00-02 821-00-02 821-00-02	265 Scienti 265 Scienti 265 Scienti	.st .st .st .st
	1	Annual_In	come Mont	hly_Inha:	nd_Salar	y Num_Bar	nk_Acco	unts \		
(0	1911	4.12	18	24.84333	3		3		
1	1	1911	4.12		Nal	J		3		
2	2	1911	4.12		Nal	J		3		
3	3	1911	4.12		Nal	J		3		
4	4	1911	4.12	18	24.84333	3		3		
1 2 3	0 1 2 3	Num_Cred	4 4 4	es Cred .0 .0 .0 .0	it_Mix On Good Good Good Good	8 8 8	g_Debt 809.98 809.98 809.98 809.98	Credit_Uti	11ization_Ra 26.822 31.944 28.609 31.377 24.797	2620 1960 9352 7862
		Credi	t_History_	Age Paym	ent of M	in Amount	Total	EMT ner mo	onth \	
(0		and 1 Mon	-	0110_01_11	No	10001_	49.574		
	1			NaN		No		49.574		
2	2	22 Years	and 3 Mon	ths		No		49.574	1949	
3	3	22 Years	and 4 Mon	ths		No		49.574	1949	
4	4	22 Years	and 5 Mon	ths		No		49.574	1949	
		Amount_i	nvested_mo	-		•	_		onthly_Balan	
	0		80.415			nt_Small_v			312.49408	
	1		118.28			nt_Large_v		•	284.62916	
	2		81.699			t_Medium_v		•	331.20986	
	3		199.45			nt_Small_v		•	223.45130	
4	4		41.420	15309 Н	igh_spen [.]	t_Medium_v	/alue_p	ayments	341.4892	231

[5 rows x 27 columns]

[5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999

Data columns (total 27 columns):

#	Column	Non-Null Count	Dtype		
0	ID	100000 non-null	object		
1	Customer_ID	100000 non-null	object		
2	Month	100000 non-null	object		
3	Name	90015 non-null	object		
4	Age	100000 non-null	object		
5	SSN	100000 non-null	object		
6	Occupation	100000 non-null	object		
7	Annual_Income	100000 non-null	object		
8	Monthly_Inhand_Salary	84998 non-null	float64		
9	Num_Bank_Accounts	100000 non-null	int64		
10	Num_Credit_Card	100000 non-null	int64		
11	Interest_Rate	100000 non-null	int64		
12	Num_of_Loan	100000 non-null	object		
13	Type_of_Loan	88592 non-null	object		
14	Delay_from_due_date	100000 non-null	int64		
15	Num_of_Delayed_Payment	92998 non-null	object		
16	Changed_Credit_Limit	100000 non-null	object		
17	Num_Credit_Inquiries	98035 non-null	float64		
18	Credit_Mix	100000 non-null	object		
19	Outstanding_Debt	100000 non-null	object		
20	${\tt Credit_Utilization_Ratio}$	100000 non-null	float64		
21	Credit_History_Age	90970 non-null	object		
22	Payment_of_Min_Amount	100000 non-null	object		
23	Total_EMI_per_month	100000 non-null	float64		
24	Amount_invested_monthly	95521 non-null	object		
25	Payment_Behaviour	100000 non-null	object		
26	Monthly_Balance	98800 non-null	object		
dtypes: float64(4), int64(4), object(19)					
memory usage: 20.6+ MB					

memory usage: 20.6+ MB

[6]: df.describe()

[6]:		Monthly_Inhand	Salary	Num_Bank_Ac	counts	Num_Credit_Card	\
	count	84998	.000000	100000.	000000	100000.00000	
	mean	4194	.170850	17.	091280	22.47443	
	std	3183	.686167	117.	404834	129.05741	
	min	303	.645417	-1.	000000	0.00000	
	25%	1625	.568229	3.	000000	4.00000	
	50%	3093	.745000	6.	000000	5.00000	
	75%	5957	.448333	7.	000000	7.00000	
	max	15204	.633330	1798.	000000	1499.00000	
		Interest_Rate	Delay_f	from_due_date	Num_C1	redit_Inquiries	\
	count	100000.000000	1	100000.000000		98035.000000	

mean	72.466040	21.068780	27.754251
std	466.422621	14.860104	193.177339
min	1.000000	-5.000000	0.000000
25%	8.000000	10.000000	3.000000
50%	13.000000	18.000000	6.000000
75%	20.000000	28.000000	9.000000
max	5797.000000	67.000000	2597.000000

	Credit_Utilization_Ratio	Total_EMI_per_month
count	100000.000000	100000.000000
mean	32.285173	1403.118217
std	5.116875	8306.041270
min	20.000000	0.000000
25%	28.052567	30.306660
50%	32.305784	69.249473
75%	36.496663	161.224249
max	50.000000	82331.000000

Exploratory Data Analysis (EDA): - Perform a comprehensive EDA to understand the data's structure, characteristics, distributions, and relationships. - Identify and address any missing values, mismatch data types, inconsistencies, or outliers. - Utilize appropriate visualizations (e.g., histograms, scatter plots, box plots, correlation matrices) to uncover patterns and insights.

Mismatch Data Types and Inconsistencies

```
[8]: # Extracting years from the 'Credit_History_Age' column

df['Credit_History_Years'] = df['Credit_History_Age'].str.extract(r'(\d+)').

astype(float)

# Handling categorical features 'Payment_of_Min_Amount' and 'Payment_Behaviour'

# Assuming they contain 'Yes' or 'No', we can convert them to binary

df['Payment_of_Min_Amount'] = df['Payment_of_Min_Amount'].map({'Yes': 1, 'No': u}

arrangled the column of the
```

```
[9]: df.head()
 [9]:
              ID Customer_ID
                                  Month
                                                   Name
                                                                         SSN Occupation \
                                                           Age
                   CUS_0xd40
                                January
                                         Aaron Maashoh
                                                          23.0
                                                                               Scientist
         0x1602
                                                                 821-00-0265
      1
         0x1603
                   CUS_0xd40
                              February
                                         Aaron Maashoh
                                                          23.0
                                                                 821-00-0265
                                                                               Scientist
      2 0x1604
                                         Aaron Maashoh -500.0
                   CUS_0xd40
                                  March
                                                                 821-00-0265
                                                                               Scientist
      3
         0x1605
                   CUS_0xd40
                                  April
                                         Aaron Maashoh
                                                          23.0
                                                                 821-00-0265
                                                                               Scientist
         0x1606
                   CUS_0xd40
                                    May
                                         Aaron Maashoh
                                                          23.0
                                                                 821-00-0265
                                                                               Scientist
         Annual_Income
                        Monthly_Inhand_Salary
                                                  Num_Bank_Accounts
                                                                         Credit_Mix
      0
              19114.12
                                    1824.843333
                                                                   3
      1
              19114.12
                                                                   3
                                            NaN
                                                                                Good
      2
                                                                   3
              19114.12
                                            NaN
                                                                                Good
      3
                                                                   3
                                                                                Good
              19114.12
                                            NaN
      4
              19114.12
                                    1824.843333
                                                                                Good
         Outstanding_Debt
                            Credit_Utilization_Ratio
                                                           Credit_History_Age
                                                        22 Years and 1 Months
      0
                    809.98
                                            26.822620
      1
                    809.98
                                            31.944960
                                                                           NaN
      2
                    809.98
                                            28.609352
                                                        22 Years and 3 Months
                    809.98
      3
                                            31.377862
                                                        22 Years and 4 Months
      4
                                            24.797347
                                                        22 Years and 5 Months
                    809.98
         Payment_of_Min_Amount
                                 Total_EMI_per_month
                                                        Amount_invested_monthly
      0
                            0.0
                                            49.574949
                                                                       80.415295
      1
                            0.0
                                            49.574949
                                                                      118.280222
      2
                            0.0
                                            49.574949
                                                                       81.699521
      3
                            0.0
                                            49.574949
                                                                      199.458074
      4
                            0.0
                                            49.574949
                                                                       41.420153
         Payment_Behaviour Monthly_Balance
                                             Credit_History_Years
      0
                        NaN
                                  312.494089
                                                                22.0
      1
                        NaN
                                  284.629163
                                                                 NaN
      2
                        NaN
                                  331.209863
                                                                22.0
      3
                                                                22.0
                        NaN
                                  223.451310
                                                                22.0
      4
                        NaN
                                  341.489231
      [5 rows x 28 columns]
[10]: df.dtypes
[10]: ID
                                     object
      Customer_ID
                                     object
      Month
                                     object
      Name
                                     object
      Age
                                    float64
      SSN
                                     object
```

Occupation object Annual_Income float64 Monthly_Inhand_Salary float64 Num_Bank_Accounts int64 Num_Credit_Card int64 Interest_Rate int64 Num_of_Loan float64 Type_of_Loan object Delay_from_due_date int64 Num_of_Delayed_Payment float64 Changed Credit Limit float64 Num_Credit_Inquiries float64 Credit_Mix object Outstanding_Debt float64 Credit_Utilization_Ratio float64 Credit_History_Age object Payment_of_Min_Amount float64 Total_EMI_per_month float64 Amount_invested_monthly float64 Payment_Behaviour float64 Monthly_Balance float64 Credit_History_Years float64 dtype: object

Identifying and Addressing Missing Values

```
[11]: # Visualize missing data
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(12, 6))
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.title('Missing Values Heatmap')
plt.show()

# Check percentage of missing values
missing_percentage = (df.isnull().sum() / len(df)) * 100
print(missing_percentage)
```


ID	0.000
Customer_ID	0.000
Month	0.000
Name	9.985
Age	4.939
SSN	0.000
Occupation	0.000
Annual_Income	6.980
Monthly_Inhand_Salary	15.002
Num_Bank_Accounts	0.000
Num_Credit_Card	0.000
Interest_Rate	0.000
Num_of_Loan	4.785
Type_of_Loan	11.408
Delay_from_due_date	0.000
<pre>Num_of_Delayed_Payment</pre>	9.746
Changed_Credit_Limit	2.091
<pre>Num_Credit_Inquiries</pre>	1.965
Credit_Mix	0.000
Outstanding_Debt	1.009
Credit_Utilization_Ratio	0.000
Credit_History_Age	9.030
Payment_of_Min_Amount	12.007

```
Total_EMI_per_month
                                    0.000
     Amount_invested_monthly
                                    8.784
     Payment_Behaviour
                                  100.000
     Monthly_Balance
                                    1.209
     Credit History Years
                                    9.030
     dtype: float64
[12]: # Checking for missing values in the dataset
      missing_values = df.isnull().sum()
      # Display columns that have missing values along with the count
      missing_columns = missing_values[missing_values > 0]
      # Display the result
      missing_columns
[12]: Name
                                   9985
                                   4939
      Age
      Annual_Income
                                   6980
      Monthly_Inhand_Salary
                                  15002
      Num_of_Loan
                                   4785
      Type of Loan
                                  11408
      Num_of_Delayed_Payment
                                   9746
      Changed Credit Limit
                                   2091
      Num_Credit_Inquiries
                                   1965
      Outstanding Debt
                                   1009
      Credit_History_Age
                                   9030
      Payment_of_Min_Amount
                                  12007
      Amount_invested_monthly
                                   8784
      Payment_Behaviour
                                 100000
      Monthly_Balance
                                   1209
      Credit_History_Years
                                   9030
      dtype: int64
[13]: df['Name'].fillna('Unknown', inplace=True)
      df['Age'].fillna(df['Age'].median(), inplace=True)
      df['Annual Income'].fillna(df['Annual Income'].median(), inplace=True)
      df['Monthly_Inhand_Salary'].fillna(df['Annual_Income'] / 12, inplace=True)
      df['Num of Loan'].fillna(df['Num of Loan'].median(), inplace=True)
      df['Type_of_Loan'].fillna('Unknown', inplace=True)
      df['Num of Delayed Payment'].fillna(df['Num of Delayed Payment'].median(), u
       →inplace=True)
      df['Changed_Credit_Limit'].fillna(0, inplace=True)
      df['Num_Credit_Inquiries'].fillna(df['Num_Credit_Inquiries'].median(),_
       →inplace=True)
      df['Outstanding_Debt'].fillna(df['Outstanding_Debt'].median(), inplace=True)
```

<ipython-input-13-17fc89e209a0>:1: FutureWarning: A value is trying to be set on
a copy of a DataFrame or Series through chained assignment using an inplace
method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

```
df['Name'].fillna('Unknown', inplace=True)
```

<ipython-input-13-17fc89e209a0>:2: FutureWarning: A value is trying to be set on
a copy of a DataFrame or Series through chained assignment using an inplace
method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

```
df['Age'].fillna(df['Age'].median(), inplace=True)
```

<ipython-input-13-17fc89e209a0>:3: FutureWarning: A value is trying to be set on
a copy of a DataFrame or Series through chained assignment using an inplace
method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['Annual_Income'].fillna(df['Annual_Income'].median(), inplace=True)
<ipython-input-13-17fc89e209a0>:4: FutureWarning: A value is trying to be set on
a copy of a DataFrame or Series through chained assignment using an inplace

method.

The behavior will change in pandas 3.0. This implace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['Monthly_Inhand_Salary'].fillna(df['Annual_Income'] / 12, inplace=True)
<ipython-input-13-17fc89e209a0>:5: FutureWarning: A value is trying to be set on
a copy of a DataFrame or Series through chained assignment using an inplace
method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['Num_of_Loan'].fillna(df['Num_of_Loan'].median(), inplace=True)
<ipython-input-13-17fc89e209a0>:6: FutureWarning: A value is trying to be set on
a copy of a DataFrame or Series through chained assignment using an inplace
method.

The behavior will change in pandas 3.0. This implace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['Type_of_Loan'].fillna('Unknown', inplace=True)

<ipython-input-13-17fc89e209a0>:7: FutureWarning: A value is trying to be set on
a copy of a DataFrame or Series through chained assignment using an inplace
method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['Num_of_Delayed_Payment'].fillna(df['Num_of_Delayed_Payment'].median(),
inplace=True)

<ipython-input-13-17fc89e209a0>:8: FutureWarning: A value is trying to be set on
a copy of a DataFrame or Series through chained assignment using an inplace
method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['Changed_Credit_Limit'].fillna(0, inplace=True)

<ipython-input-13-17fc89e209a0>:9: FutureWarning: A value is trying to be set on
a copy of a DataFrame or Series through chained assignment using an inplace
method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['Num_Credit_Inquiries'].fillna(df['Num_Credit_Inquiries'].median(),
inplace=True)

<ipython-input-13-17fc89e209a0>:10: FutureWarning: A value is trying to be set
on a copy of a DataFrame or Series through chained assignment using an inplace
method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['Outstanding_Debt'].fillna(df['Outstanding_Debt'].median(), inplace=True) <ipython-input-13-17fc89e209a0>:11: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as

a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['Credit_History_Years'].fillna(df['Credit_History_Years'].median(),
inplace=True)

<ipython-input-13-17fc89e209a0>:12: FutureWarning: A value is trying to be set
on a copy of a DataFrame or Series through chained assignment using an inplace
method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['Amount_invested_monthly'].fillna(df['Amount_invested_monthly'].median(),
inplace=True)

<ipython-input-13-17fc89e209a0>:13: FutureWarning: A value is trying to be set
on a copy of a DataFrame or Series through chained assignment using an inplace
method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['Monthly_Balance'].fillna(df['Monthly_Balance'].median(), inplace=True)

- The **Name** field, with 5,351 missing entries, is not critical for credit analysis and can either be dropped or filled with a placeholder like "Unknown."
- For **Age**, which has 2,652 missing values, it is important for credit scoring, so filling it with the median is recommended.
- The **Annual_Income** column has 3,709 missing entries, and since it plays a significant role in credit risk, it should be filled with the median.
- Monthly_Inhand_Salary, missing in 8,010 entries, can either be recalculated from Annual Income or filled with the median.
- For Num_of_Loan, with 2,583 missing values, using the median is appropriate.
- The **Type_of_Loan** field, missing in 6,048 entries, can be filled with "Unknown" as it is categorical.

- Num_of_Delayed_Payment has 5,194 missing values, and given its significance, it should be filled with the median.
- The **Changed_Credit_Limit** field has 1,110 missing values and can be filled with 0%, assuming no change.
- For Num_Credit_Inquiries, with 1,018 missing entries, and Outstanding_Debt, missing in 532 cases, both should be filled with the median.
- Credit_History_Age, which has 4,862 missing values, is important for credit analysis, and filling it with the median is a good approach.
- Amount_invested_monthly (4,616 missing) and Monthly_Balance (674 missing) should also be filled with their respective medians to ensure consistency in financial metrics.

```
[14]: # Checking for missing values in the dataset
missing_values = df.isnull().sum()

# Display columns that have missing values along with the count
missing_columns = missing_values[missing_values > 0]

# Display the result
missing_columns
```

[14]: Credit_History_Age 9030
 Payment_of_Min_Amount 12007
 Payment_Behaviour 100000
 dtype: int64

Credit_History_Age 9.030
Payment_of_Min_Amount 12.007
Payment_Behaviour 100.000
dtype: float64

```
[16]: import pandas as pd
import numpy as np

# Function to convert 'Credit_History_Age' to numeric months
def convert_to_months(age_str):
    if pd.isnull(age_str):
        return np.nan
```

```
years, months = 0, 0
    # Remove the word "and" from the string
    age_str = age_str.replace('and', '')
   parts = age_str.split(' ') # Split by space now
   for i, part in enumerate(parts):
        if 'Year' in part: # Look for 'Year' or 'Years'
            years = int(parts[i-1]) # Get the numeric value before 'Year'
        elif 'Month' in part: # Look for 'Month' or 'Months'
           months = int(parts[i-1]) # Get the numeric value before 'Month'
   return years * 12 + months # Convert everything into months
# Apply the function to convert 'Credit_History_Age'
df['Credit_History_Age'] = df['Credit_History_Age'].apply(convert_to_months)
# Fill missing values for 'Credit_History_Age' with the median
df['Credit History Age'].fillna(df['Credit History Age'].median(), inplace=True)
# Drop 'Payment_of_Min Amount' and 'Payment Behaviour' columns due to all_
⇔missing values
df.drop(columns=['Payment_of_Min_Amount', 'Payment_Behaviour'], inplace=True)
```

<ipython-input-16-57f63c890a1d>:23: FutureWarning: A value is trying to be set
on a copy of a DataFrame or Series through chained assignment using an inplace
method.

The behavior will change in pandas 3.0. This implace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

```
df['Credit_History_Age'].fillna(df['Credit_History_Age'].median(),
inplace=True)
```

Insight:

Credit_History_Age (9.08% missing):

• Since this column is only 9.08% missing, it's still a valuable feature for credit analysis. You can fill the missing values with the median, as previously suggested, to maintain the integrity of the data.

Payment_of_Min_Amount (100% missing):

• This column has all missing values, which means it contains no useful information. It would be best to drop this column from your dataset.

Payment Behaviour (100% missing):

• Similar to the previous column, this one also has 100% missing values, indicating it does not contribute to the dataset. You should also drop this column.

Summary of Actions:

• Fill the missing values in Credit_History_Age with the median. Drop both Payment_of_Min_Amount and Payment_Behaviour columns from the dataset.

Outliers Detection: Outliers can be detected using box plots for numerical columns, especially for variables like Annual_Income, Outstanding_Debt, and Num_of_Delayed_Payment.

Correlation Matrix: A correlation matrix is helpful to understand relationships between numerical features. This can guide us in feature selection for credit scoring.

```
[18]: # Check which columns contain non-numeric data
      non_numeric_columns = df.select_dtypes(include=['object']).columns
      print("Columns with non-numeric values:\n", non_numeric_columns)
      # Check a sample of non-numeric values from the numerical columns
      for col in non numeric columns:
          print(f"Unique values in {col}:")
          print(df[col].unique())
          print("\n")
     Columns with non-numeric values:
      Index(['ID', 'Customer_ID', 'Month', 'Name', 'SSN', 'Occupation',
            'Type_of_Loan', 'Credit_Mix'],
           dtype='object')
     Unique values in ID:
     ['0x1602' '0x1603' '0x1604' ... '0x25feb' '0x25fec' '0x25fed']
     Unique values in Customer_ID:
     ['CUS_0xd40' 'CUS_0x21b1' 'CUS_0x2dbc' ... 'CUS_0xaf61' 'CUS_0x8600'
      'CUS_0x942c']
     Unique values in Month:
     ['January' 'February' 'March' 'April' 'May' 'June' 'July' 'August']
     Unique values in Name:
     ['Aaron Maashoh' 'Unknown' 'Rick Rothackerj' ... 'Chris Wickhamm'
      'Sarah McBridec' 'Nicks']
     Unique values in SSN:
     ['821-00-0265' '#F%$D@*&8' '004-07-5839' ... '133-16-7738' '031-35-0942'
      '078-73-5990']
     Unique values in Occupation:
     ['Scientist' '____' 'Teacher' 'Engineer' 'Entrepreneur' 'Developer'
      'Lawyer' 'Media_Manager' 'Doctor' 'Journalist' 'Manager' 'Accountant'
      'Musician' 'Mechanic' 'Writer' 'Architect']
     Unique values in Type_of_Loan:
     ['Auto Loan, Credit-Builder Loan, Personal Loan, and Home Equity Loan'
```

```
'Credit-Builder Loan' 'Auto Loan, Auto Loan, and Not Specified' ...
'Home Equity Loan, Auto Loan, Auto Loan, and Auto Loan'
'Payday Loan, Student Loan, Mortgage Loan, and Not Specified'
'Personal Loan, Auto Loan, Mortgage Loan, Student Loan, and Student Loan']
Unique values in Credit_Mix:
```

```
[19]: # Function to convert columns to numeric, coercing errors to NaN
for col in non_numeric_columns:
    try:
        df[col] = pd.to_numeric(df[col], errors='coerce')
    except Exception as e:
        print(f"Could not convert {col}: {e}")

# Now recheck for missing or invalid values after conversion
print(df.isnull().sum())
```

ID	100000
Customer_ID	100000
Month	100000
Name	100000
Age	0
SSN	100000
Occupation	100000
Annual_Income	0
Monthly_Inhand_Salary	0
Num_Bank_Accounts	0
Num_Credit_Card	0
Interest_Rate	0
Num_of_Loan	0
Type_of_Loan	100000
Delay_from_due_date	0
Num_of_Delayed_Payment	0
Changed_Credit_Limit	0
Num_Credit_Inquiries	0
Credit_Mix	100000
Outstanding_Debt	0
Credit_Utilization_Ratio	0
Credit_History_Age	0
Total_EMI_per_month	0
Amount_invested_monthly	0
Monthly_Balance	0
Credit_History_Years	0
dtype: int64	

['_' 'Good' 'Standard' 'Bad']

```
[20]: # Filling missing values with median or dropping if not necessary df.fillna(df.median(), inplace=True) # This fills missing numeric values withut the median
```


0.0.1 Inisght of Correlation MatrixStrong Positive Correlations:

- Num_Credit_Card & Num_Bank_Accounts (0.70): Individuals with more bank accounts tend to have more credit cards, indicating a potential relationship between a person's financial diversity and credit behavior.
- Num_of_Loan & Num_of_Delayed_Payment (0.60): A higher number of loans is associated with a higher number of delayed payments, possibly pointing to financial strain with increased credit exposure.
- Num_of_Delayed_Payment & Delay_from_due_date (0.50): As expected, customers with a higher number of delayed payments also tend to delay more from the due date.

Negative Correlations:

- Credit_Mix & Credit_Utilization_Ratio (-0.40): Customers with a more diverse mix of credit sources tend to have a lower credit utilization ratio, suggesting better credit management or more balanced credit usage.
- Interest_Rate & Num_Credit_Inquiries (-0.20): A slightly negative correlation suggests that customers with more credit inquiries may have lower interest rates, which could imply that active shoppers for credit tend to secure better deals.

Weak or No Correlations:

- Annual_Income & Num_of_Loan (0.03): There's a weak correlation between income and the number of loans, suggesting that loan acquisition might not be solely based on income levels
- Credit_History_Age has weak correlations across the board, suggesting that the age of the credit history may not have a significant impact on the other variables in isolation.

Observations on Data Gaps:

Some columns, such as SSN, ID, Month, and Customer_ID, are categorical or identifiers and thus don't contribute to the correlation analysis. It's better to drop these when focusing on numerical relationships.

Recommendations:

- Focus more on the relationships between Num_Bank_Accounts, Num_Credit_Card, Num_of_Loan, and Num_of_Delayed_Payment in further analysis. These features show stronger interdependencies that could impact a credit score model.
- Investigate the negative relationships involving Credit_Utilization_Ratio and Credit_Mix to understand how different types of credit could influence overall credit health.
- Consider analyzing customer behavior in light of income, loans, and delayed payments for insights into potential credit risk factors.

Distributions and Insights: For the distribution of important features (like Credit Utilization Ratio, Outstanding Debt, etc.), we can plot histograms and KDE (Kernel Density Estimation) plots to get an idea of how these variables are distributed.

```
plt.subplot(2, 2, i)
    sns.histplot(df[col], kde=True)
    plt.title(f'Distribution of {col}')
plt.tight_layout()
plt.show()
```


Age Distribution:

- There are several extreme values or outliers in the age data, with some values exceeding 8,000, which is not realistic. This could indicate data entry errors or anomalies. These values should either be cleaned or further investigated.
- The majority of the age data seems concentrated at lower values, though it's hard to analyze due to the extreme outliers.

Annual Income Distribution:

- Similar to the age feature, the annual income distribution shows very few valid data points and many extreme outliers.
- The range of income values appears skewed to the right, with a few entries showing abnormally high income values (in the range of 2.5e7), which might need to be cleaned or transformed for better insights.

Credit Utilization Ratio:

- The credit utilization ratio has a nearly uniform distribution between 20 and 45, with most values densely packed in this range. This suggests that the majority of customers are utilizing a similar proportion of their credit limits, and there aren't many extreme high or low utilizations.
- It's important to look into how this variable relates to other features, especially in risk modeling.

Outstanding Debt:

- The distribution of outstanding debt shows that most customers have debt concentrated between 0 and 2,000, with a steep decline in counts after that range.
- There is also a second peak around 4,000, which might indicate a different customer segment or a specific group of customers who tend to have higher debts. This feature has more variation compared to others, making it a critical variable for understanding customer liabilities.

Scatter Plots: Scatter plots help us to explore relationships between key variables like Annual_Income, Outstanding_Debt, and Credit Utilization Ratio for different customers.

```
plt.figure(figsize=(8, 6))
sns.scatterplot(x='Annual_Income', y='Outstanding_Debt',__

hue='Credit_Utilization_Ratio', data=df)
plt.title('Scatter Plot: Annual Income vs Outstanding Debt')
plt.show()
```


Feature Engineering:

- Create new features that can be leveraged for the calculation of credit scores based on domain knowledge and insights from EDA.
- Aggregate the data on the customer level if required

```
[24]: # Feature Engineering

# 1. Debt-to-Income Ratio (DTI)
df['Debt_to_Income_Ratio'] = df['Outstanding_Debt'] / df['Annual_Income']

# 2. Monthly Savings
df['Monthly_Savings'] = (df['Annual_Income'] / 12) - df['Monthly_Inhand_Salary']

# 3. Credit Utilization Category
def categorize_credit_utilization(ratio):
    if ratio < 30:
        return 'Low'
    elif 30 <= ratio < 60:
        return 'Medium'
    else:</pre>
```

```
return 'High'
df['Credit_Utilization_Category'] = df['Credit_Utilization_Ratio'].
 →apply(categorize_credit_utilization)
# 4. Credit History Years
df['Credit_History_Years'] = df['Credit_History_Age'] // 12 # Assuming_
 → Credit_History_Age is in months
# 5. Total Number of Credit Accounts
df['Total_Credit_Accounts'] = df['Num_Bank_Accounts'] + df['Num_Credit_Card']
# 6. Delayed Payment Indicator
df['Has_Delayed_Payments'] = df['Num_of_Delayed_Payment'].apply(lambda x: 1 if_
 \rightarrow x > 0 else 0)
# 7. Number of Loans and Credit Inquiries Interaction
df['Loan_Inquiry_Interaction'] = df['Num_of_Loan'] * df['Num_Credit_Inquiries']
# 8. Significant Credit Limit Change
threshold = 10000 # Define a threshold for significant change, adjust based on
 \rightarrow data
df['Significant_Credit_Limit_Change'] = df['Changed_Credit_Limit'].apply(lambda_
 \rightarrow x: 1 if x > threshold else 0)
# 9. Loan to Income Ratio
df['Loan_to_Income_Ratio'] = df['Num_of_Loan'] / df['Annual_Income']
# 10. Credit Mix Score
def credit_mix_score(row):
    score = 0
    if row['Num_Bank_Accounts'] > 2: score += 1
    if row['Num Credit Card'] > 1: score += 1
    if row['Num_of_Loan'] > 1: score += 1
    return score
df['Credit_Mix_Score'] = df.apply(credit_mix_score, axis=1)
# Aggregating data at the Customer level
df_aggregated = df.groupby('Customer_ID').agg({
    'Debt_to_Income_Ratio': 'mean',
    'Monthly_Savings': 'mean',
    'Credit_Utilization_Ratio': 'mean',
    'Credit_History_Years': 'max', # Longest credit history
    'Total_Credit_Accounts': 'sum',
    'Has Delayed Payments': 'sum',
    'Loan_Inquiry_Interaction': 'mean'
```

```
}).reset_index()

# Print the aggregated dataframe to check results
print(df_aggregated.head())
```

Empty DataFrame

Columns: [Customer_ID, Debt_to_Income_Ratio, Monthly_Savings, Credit_Utilization_Ratio, Credit_History_Years, Total_Credit_Accounts, Has_Delayed_Payments, Loan_Inquiry_Interaction]
Index: []

Feature Engineering Explanation 1. Debt-to-Income Ratio (DTI):

- Purpose: The DTI ratio is a key indicator of a customer's ability to manage debt. A higher DTI ratio indicates that a large portion of a person's income is going towards paying debt, which can be a risk factor for creditworthiness.
- Formula: DTI = Outstanding Debt / Annual Income

2. Monthly Savings:

- Purpose: This feature calculates the estimated monthly savings of the customer by subtracting their monthly salary from their proportionate monthly income. This metric can help assess financial stability and savings behavior.
- Formula: Monthly_Savings = (Annual_Income / 12) Monthly_Inhand_Salary

3. Credit Utilization Category:

- Purpose: Credit utilization refers to the percentage of credit that a person is using out of their total available credit. Categorizing customers based on utilization helps in understanding their spending behavior and financial discipline. Lower credit utilization is usually considered positive for credit scoring.
- Categories: Low: Credit Utilization < 30% Medium: Credit Utilization between 30% and 60% High: Credit Utilization > 60%

4. Credit History Years:

- Purpose: The length of a customer's credit history is an important factor in credit scoring. Longer credit history generally implies better creditworthiness.
- Formula: Credit_History_Years = Credit_History_Age (in months) // 12

5. Total Number of Credit Accounts:

- Purpose: This feature sums up all credit-related accounts, including bank accounts and credit
 cards. A higher number of accounts might indicate diverse credit exposure, which can be good
 or bad depending on usage patterns.
- Formula: Total_Credit_Accounts = Num_Bank_Accounts + Num_Credit_Card

6. Delayed Payment Indicator:

- Purpose: This binary feature indicates whether a customer has made any delayed payments in the past. It's a key factor in assessing a customer's payment behavior and risk.
- Formula: Has_Delayed_Payments = 1 if Num_of_Delayed_Payment > 0 else 0

7. Loan and Credit Inquiry Interaction:

- Purpose: This interaction term measures the relationship between the number of loans a customer has and the number of credit inquiries. A high number of both could indicate financial distress or aggressive borrowing behavior.
- Formula: Loan_Inquiry_Interaction = Num_of_Loan * Num_Credit_Inquiries

8. Significant Credit Limit Change:

- Purpose: A significant change in credit limit (either an increase or decrease) can be a sign of financial instability or risk. This binary feature flags cases where the change in credit limit exceeds a predefined threshold.
- Formula: Significant_Credit_Limit_Change = 1 if Changed_Credit_Limit > threshold else 0

9. Loan-to-Income Ratio:

- Purpose: This feature measures the relationship between the number of loans and the customer's income. A high ratio may suggest over-leveraging and higher risk.
- Formula: Loan_to_Income_Ratio = Num_of_Loan / Annual_Income

10. Credit Mix Score:

- Purpose: A diversified credit portfolio (e.g., having multiple types of credit accounts like loans, credit cards, and bank accounts) is usually seen positively in credit scoring. This score reflects the diversity of the customer's credit accounts.
- Score Composition: Add 1 point if the customer has more than 2 bank accounts. Add 1 point if the customer has more than 1 credit card. Add 1 point if the customer has more than 1 loan.
- Formula: A higher score implies a more diversified credit profile.

Aggregated Features at Customer Level — Once the above features are generated, you can aggregate the data at the customer level to get summary statistics for each customer. This involves aggregating certain metrics (like the average Debt-to-Income ratio, Credit Utilization Ratio, etc.) to summarize a customer's financial behavior and risk.

```
plt.title('Distribution of Credit Limit Change')
plt.show()
```



```
[26]: mean = df['Changed_Credit_Limit'].mean()
std = df['Changed_Credit_Limit'].std()
upper_threshold = mean + 2 * std
lower_threshold = mean - 2 * std

print(f"Upper Threshold: {upper_threshold}")
print(f"Lower Threshold: {lower_threshold}")
```

Upper Threshold: 23.93304656886683 Lower Threshold: -3.589465368866829

```
[27]: upper_threshold = df['Changed_Credit_Limit'].quantile(0.95)
lower_threshold = df['Changed_Credit_Limit'].quantile(0.05)

print(f"95th Percentile (Upper Threshold): {upper_threshold}")
print(f"5th Percentile (Lower Threshold): {lower_threshold}")
```

95th Percentile (Upper Threshold): 23.48 5th Percentile (Lower Threshold): 0.71

```
[28]: # Create flags for significant credit limit changes

df['Significant_Change'] = df['Changed_Credit_Limit'].apply(lambda x: 'High' if

→x > upper_threshold else ('Low' if x < lower_threshold else 'Normal'))
```

```
[29]: Credit_Limit_Change_Category
Low 75882
Moderate 16098
High 8020
Name: count, dtype: int64
```

• Low Credit Limit Change (15):

75,882 customers fall into this category. This is the largest group, representing customers with relatively small or normal credit limit changes. These customers are likely to be low-risk. - Moderate Credit Limit Change (16–20):

16,098 customers fall into this category. These customers have moderate changes to their credit limits. They may require some additional monitoring but aren't considered high risk. - High Credit Limit Change (> 20):

8,020 customers fall into this category. These customers have had significant changes in their credit limits and might be considered higher-risk. This group could require closer scrutiny to assess potential risks or unusual activity.

```
[30]: # Here's the code to analyze risky financial behaviors (e.g., outstanding debt, □ → delayed payments, etc.) across the Credit Limit Change Categories.

# The code will help us to identify if there is any correlation between Credit □ → Limit Change Category and other potential risk factors.

# Analysis of Risky Financial Behaviors:

# Group data by Credit Limit Change Category and calculate average values of □ → risk factors

risk_analysis = df.groupby('Credit_Limit_Change_Category')[['Outstanding_Debt', □ → 'Num_of_Delayed_Payment', 'Credit_Utilization_Ratio', □ → 'Total_EMI_per_month']].mean()
```

```
print("Average Risk Metrics by Credit Limit Change Category:")
print(risk_analysis)
# Plot comparison of key risk factors across categories
plt.figure(figsize=(14, 8))
# Plot for Outstanding Debt
plt.subplot(2, 2, 1)
sns.barplot(x=risk_analysis.index, y=risk_analysis['Outstanding_Debt'],_
 ⇔palette='coolwarm')
plt.title('Average Outstanding Debt by Credit Limit Change Category')
plt.ylabel('Outstanding Debt')
# Plot for Number of Delayed Payments
plt.subplot(2, 2, 2)
sns.barplot(x=risk_analysis.index, y=risk_analysis['Num_of_Delayed_Payment'],_
 →palette='coolwarm')
plt.title('Average Delayed Payments by Credit Limit Change Category')
plt.ylabel('Num of Delayed Payments')
# Plot for Credit Utilization Ratio
plt.subplot(2, 2, 3)
sns.barplot(x=risk_analysis.index, y=risk_analysis['Credit_Utilization_Ratio'],__
 →palette='coolwarm')
plt.title('Average Credit Utilization Ratio by Credit Limit Change Category')
plt.ylabel('Credit Utilization Ratio')
# Plot for Total EMI per Month
plt.subplot(2, 2, 4)
sns.barplot(x=risk_analysis.index, y=risk_analysis['Total_EMI_per_month'],__
 →palette='coolwarm')
plt.title('Average Total EMI per Month by Credit Limit Change Category')
plt.ylabel('Total EMI per Month')
plt.tight_layout()
plt.show()
Average Risk Metrics by Credit Limit Change Category:
                              Outstanding_Debt Num_of_Delayed_Payment \
Credit Limit Change Category
High
                                   3428.328923
                                                             35.073691
Low
                                   1137.238432
                                                             29.054730
Moderate
                                   1776.417597
                                                             28.033234
                              Credit_Utilization_Ratio Total_EMI_per_month
Credit_Limit_Change_Category
```

 High
 31.653265
 1388.667270

 Low
 32.413723
 1409.221443

 Moderate
 31.994035
 1381.548556

<ipython-input-30-426ed203b8e8>:17: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x=risk_analysis.index, y=risk_analysis['Outstanding_Debt'],
palette='coolwarm')
<ipython-input-30-426ed203b8e8>:23: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x=risk_analysis.index, y=risk_analysis['Num_of_Delayed_Payment'],
palette='coolwarm')

<ipython-input-30-426ed203b8e8>:29: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x=risk_analysis.index,
y=risk_analysis['Credit_Utilization_Ratio'], palette='coolwarm')
<ipython-input-30-426ed203b8e8>:35: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x=risk_analysis.index, y=risk_analysis['Total_EMI_per_month'],
palette='coolwarm')

Insight:

- Grouping: The groupby() function groups data by the Credit_Limit_Change_Category.
- Risk Factors: The selected columns are key risk factors, including Outstanding_Debt, Num_of_Delayed_Payment, Credit_Utilization_Ratio, and Total_EMI_per_month.
- Mean Calculation: We calculate the mean of each risk factor for each category (Low, Moderate, High).
- Visualization: The bar plots provide a clear comparison of the average values of these risk factors across the three categories.

```
# Further analysis or exporting high-risk customers data for intervention
high_risk_customers.to_csv('high_risk_customers.csv', index=False)
```

```
Number of High-Risk Customers: 7697
Sample of High-Risk Customers:
     Customer ID
                  Outstanding Debt
                                      Num of Delayed Payment
59
             NaN
                            1704.18
                                                         14.0
190
             NaN
                             569.80
                                                         20.0
268
             NaN
                              98.97
                                                         20.0
288
             NaN
                            3421.66
                                                         21.0
289
             NaN
                            3421.66
                                                         18.0
     Credit_Utilization_Ratio
59
                     29.762159
190
                     34.125306
268
                     34.192304
288
                     24.639658
289
                     30.268411
```

Insight: - This code identifies customers in the High category who have risk factors above the mean (for Outstanding Debt, Delayed Payments, or Credit Utilization). - These customers could be flagged for monitoring or intervention.

Hypothetical Credit Score Calculation:

- Develop a methodology to calculate a hypothetical credit score using relevant features (use a minimum of 5 maximum of 10 features).
- Clearly outline the developed methodology in the notebook, providing a detailed explanation of the reasoning behind it. (use inspiration from FICO scores and try to use relevant features you created)
- Explore various weighting schemes to assign scores.
- Provide a score for each individual customer

```
[32]: # Normalize function to scale features between 0 and 100
def normalize(series):
    return (series - series.min()) / (series.max() - series.min()) * 100

# Assign weights to selected features
weights = {
    'Outstanding_Debt': 0.25,
    'Num_of_Delayed_Payment': 0.20,
    'Credit_Utilization_Ratio': 0.15,
    'Annual_Income': 0.10,
    'Total_EMI_per_month': 0.10,
    'Credit_History_Age': 0.10,
    'Num_Credit_Card': 0.05,
    'Changed_Credit_Limit': 0.05
}
```

```
# Normalize the selected features
df['Outstanding_Debt_Score'] = 100 - normalize(df['Outstanding_Debt']) # Lower_
 ⇔debt is better
df['Num of Delayed Payment Score'] = 100 -
 normalize(df['Num_of_Delayed_Payment']) # Fewer delayed payments is better
df['Credit Utilization Ratio Score'] = 100 -
 →normalize(df['Credit_Utilization_Ratio']) # Lower utilization is better
df['Annual_Income_Score'] = normalize(df['Annual_Income']) # Higher income is_
 \hookrightarrowbetter
df['Total EMI per month Score'] = 100 - normalize(df['Total EMI per month']) #__
 \hookrightarrowLower EMI is better
df['Credit_History_Age_Score'] = normalize(df['Credit_History_Age']) # Longer_
 ⇔credit history is better
df['Num_Credit_Card_Score'] = 100 - normalize(df['Num_Credit_Card']) # Fewer_
 ⇔credit cards is better
df['Changed_Credit_Limit_Score'] = 100 - normalize(df['Changed_Credit_Limit']) __
 ⇔# Fewer changes are better
# Calculate the hypothetical credit score based on the weighted sum of the
 ⇔feature scores
df['Hypothetical_Credit_Score'] = (
    df['Outstanding_Debt_Score'] * weights['Outstanding_Debt'] +
    df['Num_of_Delayed_Payment_Score'] * weights['Num_of_Delayed_Payment'] +
    df['Credit_Utilization_Ratio_Score'] * weights['Credit_Utilization_Ratio'] +
    df['Annual_Income_Score'] * weights['Annual_Income'] +
    df['Total_EMI_per_month_Score'] * weights['Total_EMI_per_month'] +
    df['Credit_History_Age_Score'] * weights['Credit_History_Age'] +
    df['Num_Credit_Card_Score'] * weights['Num_Credit_Card'] +
    df['Changed_Credit_Limit_Score'] * weights['Changed_Credit_Limit']
)
# Display the credit score for each customer
print(df[['Customer_ID', 'Hypothetical_Credit_Score']].head())
# Describe the distribution of the hypothetical credit scores
plt.figure(figsize=(10, 6))
sns.histplot(df['Hypothetical_Credit_Score'], bins=30, kde=True, color='blue')
plt.title('Distribution of Hypothetical Credit Scores')
plt.xlabel('Credit Score')
plt.ylabel('Frequency')
plt.show()
```

```
      Customer_ID
      Hypothetical_Credit_Score

      0
      NaN
      76.985988

      1
      NaN
      73.251560

      2
      NaN
      77.438844

      3
      NaN
      75.371686
```

4 NaN 78.066061

0.0.2 Insight:

Explanation of the Methodology: 1. Feature Normalization: Each feature is normalized so that the values fall between 0 and 100. The normalization is done such that higher scores represent better financial behavior:

- Outstanding Debt, Delayed Payments, Credit Utilization, Total EMI, Num Credit Cards, and Changed Credit Limit are inversely related to creditworthiness (higher values are riskier), so we subtract the normalized score from 100.
- Annual Income and Credit History Age are positively related to creditworthiness (higher values are better), so we keep their normalized scores.
- 2. Weighting: We assign weights to each feature based on their importance in determining a customer's credit risk. For example, outstanding debt and payment history are given the highest weight since they are the most critical factors in traditional credit score systems like FICO.
- 3. Hypothetical Credit Score: The final score is a weighted sum of all the normalized features, giving a score between 0 and 100. Higher scores indicate better creditworthiness.

Interpretation: - Score Distribution: The resulting distribution of scores will give insights into how customers fare in terms of credit risk. - Individual Scores: You can analyze specific customers by looking at their - Hypothetical_Credit_Score and see how it correlates with the risk factors. This approach combines the logic behind traditional credit scores like FICO with the flexibility to adjust feature weights based on insights from exploratory data analysis (EDA).

0.0.3 Analysis and Insights:

- Add valuable insights from EDA and credit score calculation
- Can credit score and aggregated features be calculated at different time frames like the last 3 months/last 6 months (recency based metrics)
- Based on the exploratory data analysis (EDA) and hypothetical credit score calculation, several key insights emerge:
- 1. Outstanding Debt and Risk:
- From the distribution of Outstanding Debt, it's clear that most customers carry a moderate amount of debt, but there is a subset with significantly higher outstanding debts. This group could represent a higher credit risk, as their ability to repay future debt may be strained.
- As reflected in the credit score calculation, customers with higher Outstanding Debt received lower scores, aligning with traditional credit risk models where debt burden is a critical factor.

2. Credit Utilization Ratio:

- The Credit Utilization Ratio is fairly well-distributed, with many customers utilizing between 25-40% of their available credit. However, a small proportion have very high credit utilization ratios, indicating they may be at higher risk for default.
- A high utilization ratio can signal that customers are relying heavily on credit, which is considered risky behavior in credit scoring models. This insight was reflected in the lower credit scores assigned to individuals with high utilization.

3. Delayed Payments:

- The number of Delayed Payments is a strong indicator of financial stress. Customers with frequent late payments were assigned significantly lower credit scores, in line with the well-known FICO factor that gives high importance to payment history.
- A cluster of customers with numerous delayed payments could be targeted for credit monitoring or interventions to reduce risk.
- 4. Annual Income and Credit History Age:
- Higher Annual Income generally corresponds with higher credit scores, as those with more disposable income are likely to manage debt more effectively.
- Similarly, customers with a longer Credit History Age received higher credit scores, since longer credit histories provide more reliable data on financial behavior.

5. Changed Credit Limit:

- The analysis of Credit Limit Changes shows that customers who frequently change their credit limits fall into a category of financial instability. These customers received lower credit scores.
- A particularly interesting pattern is seen among customers who experienced large jumps in their credit limits. Further analysis could focus on whether those changes correlate with increasing debt levels or late payments, suggesting that some customers may struggle to manage sudden increases in available credit.

0.1 Insights:

Credit Limit Categories: Customers were classified into three categories based on their credit limit changes: Low, Moderate, and High. - The majority fell into the "Low" category, which implies

minimal or infrequent changes in credit limits. - Those in the "High" category represent a smaller group but may warrant closer attention due to the possibility of high volatility in their credit usage, which could signal riskier financial behavior.

Risk and Targeting Strategy: - The combination of Outstanding Debt, Delayed Payments, and Credit Utilization Ratio suggests that customers in the "High" credit limit change category, with high debt and delayed payments, may need more aggressive credit monitoring or even intervention to prevent defaults. - Conversely, customers with low debt, low utilization, and a history of on-time payments could be offered better credit terms or additional credit products.