

Model design and Gale

Introduction to Lithospheric Geodynamic Modelling

Contents

- Gale
 - Physics
 - Some numerical implementations
 - Particle-in-cell
 - Non-linear iterations
- Model design
 - Things to plan
 - Model size, boundary / initial conditions, material properties
 - Simple "colliding plates" lithosphere scale model
- Gale input file, running Gale

- https://geodynamics.org/cig/software/gale
- Finite element code for long-term tectonic models
- Solves the equations for conservation of heat, mass and momentum
 - Thermo-mechanical code
 - Body forces (gravity) related to density
 - Density related to temperature
 - Flow driven by body forces and/or boundary conditions

Gale

- Gale uses FEM From user's point of view, the concepts of grid and boundary/initial conditions apply like in finite differences
 - "Grid" → "Mesh"
 - Elements between grid points
- In Gale, different material and field variables are defined using two different meshes
 - Velocity mesh (incl. strain rate)
 - → Pressure mesh
 - Again, not so relevant from user's point of view
- The mesh is deformable

Gale - particle-in-cell method

- Flow implies advection ...
 - ... of heat
 - ... of material
- Heat advection solved within the heat equation
- Material advection
 - Not relevant if the whole model consists of one material that has homogeneous inherent density, viscosity and other material parameters
 - ... which often is not the case

inherent & effective material properties

Gale – material advection

- Material properties in Gale
 - Diffusivity (heat eq.)
 - Density (stokes eq.)
 - Rheological parameters viscosity, cohesion, internal angle of friction, ... (stokes eq.)
 - Constants that describe how these are affected by pressure and/or temperature
- (simplified) lithology of the model

Gale – material advection

- Particle-in-cell method, marker-in-cell method, tracer method ("swarm" in Gale)
- Large number of particles "injected" into the whole model domain
 - Each carries information about its material and thus about its material parameters
- Velocity field solution from stokes equation
 - Flow velocity known at grid points
 - → Interpolated to calculate velocity of each particle
 - → Once moved, material information from particle is interpolated to mesh for use in heat/stokes equation

Solver methods

- Conservation laws are discretized into a set of linear equations
 - Can be solved directly or iteratively
 - At least once per time step
- Further iterations needed for non-linear rheologies

•
$$\eta_{\text{eff}} = \frac{\tau_s}{\dot{\epsilon}_s} = A_{\text{eff}}^{\frac{1}{n}} \dot{\epsilon}_s^{\frac{1}{n}-1}$$

- Solving stokes equation gives new velocity field → new strain rate values → new effective viscosity values → solution of the stokes equation changes
- Convergence and tolerance

- Choose
 - Model geometry
 - Size and shape, locations of boundaries
 - Internal structure: initial material boundaries, immobile regions, etc.
 - Physical material parameters
 - Initial condition (temperature, velocity)
 - Boundary conditions (temperature, velocity)
 - Resolution, run time

Model design – model geometry

- Model geometry
 - Size and shape, locations of boundaries
 - Scale of the problem (intrusion, crust, lithosphere, upper mantle)
 - Internal structure: initial material boundaries, immobile regions, etc.
 - Resolution of the model: Smallest interesting feature vs element size (distance between grid points)
 - Complexity (models are replicas of nature)

- Choose
 - Physical material parameters
 - Literature; de facto standards
 - Often need simplification (cf geometry)
 - Does the model software support them? (e.g. plasticity, temperature dependent rheology or diffusivity)

- Choose
 - Boundary conditions (temperature, velocity)
 - "Active" vs "passive"
 - A driving force of the model (e.g. basal heating, horizontal tectonic movement, ...) u described, T > T_{ini} described or dT/dx > 0 described
 - Boundaries necessary only to keep model size finite, effect on processes inside model domain as small as possible.
 Described du/dx or dT/dx = 0
 - Ensure compatibility with each other

- Choose
 - Initial condition (temperature, velocity)
 - Make sure they are compatible with boundary conditions (e.g. $T > T_{ini}$ implies active heating)
 - Stability / steady-state

- Choose
 - Resolution, run time
 - How good resolution is needed to observe the wanted features?
 - How long does the model have to run (model time), 1000 yrs, 1 Myrs, 100 Myrs?
 - How good computer you have got
 - How long (wall clock time) you are prepared to wait for the results

Example model: Colliding plates

- Two colliding plates
 - Old cratonic lithosphere ("craton") colliding with younger plate ("tecton") at rate 1 cm/a
 - Craton older, cooler and thus stronger than the tecton
 - What kind of large-scale structures form in the crust?
- Simplifications:
 - Plate boundary vertical and linear
 - Lithology: Crusts of tecton and craton (visco-plastic) and the lithospheric mantle (viscous)
 - Heat diffusion not regarded

Example model: Colliding plates

Example model: Colliding plates

- Material properties
 - Density: 2800 kg/m³ for crust, 3200 kg/m³ for mantle
 - Rheology
 - Linearly viscous mantle, $\eta = 10^{23}$
 - Brittle-viscous crust:
 - Tecton $\eta = 10^{26}$, C = 20 MPa, $\phi = 15^{\circ} \rightarrow 1.5^{\circ}$
 - Craton $\eta = 10^{26}$, C = 30 MPa, $\phi = 30^{\circ} \rightarrow 20^{\circ}$

Gale input file

- [something].json
- Formed of blocks
 - EulerDeform: Define mesh deformation
 - velocityBCs: Boundary condition definitions
 - components:
 - "Moving parts" inside the model domain
 - Especially material definitions
 - Single variables outside any block:
 - e.g. Model dimensions, number of timesteps, etc.

Gale material definitions

- Shapes define areas (volumes) to which materials can be assigned. Not all shapes have to be used in the final model.
- Each material is assigned with a rheology

Running Gale

- Command line arguments
 - Input file name [something].json
 - For direct solver, use
 - -ksp_type preonly -pc_type lu

Scaling of variables

- Viscosities: ~10²⁰ Pa s
- Velocities: ~10⁻¹⁰
- Calculate 10²⁰+10⁻¹⁰
- In Python:
 - 1e20 + 1e-10
 - 1e20 + 1e-10 + 1e-10 + 1e-10 + ...
- → Problems in finding the solution for the system of linear equations

Scaling of variables

- We need to scale the physical parameters so that they will be of same magnitude software used
- In Gale: Choose η_{ref} (10²¹)
 - When giving input values
 - Time: $s \to 10^{21} s$; (mass: $kg \to 10^{42} s$)
 - Viscosity: $\eta \rightarrow \eta / \eta_{ref}$
 - When reading output
 - Time: $s \to 10^{-21} s$; (mass: $kg \to 10^{-42} s$)
 - Viscosity: $\eta \rightarrow \eta * \eta_{ref}$