

Information Technology 化写代做 CS编程辅导

FIT1006 Business mation Analysis

WeChat: cstutorcs

Assignment Project Exam Help

Lecture 11 Email: tutorcs@163.com

Binomial and Poisson Distribution

https://tutorcs.com

Topics covered: 代写代做 CS编程辅导

- The Binomial Disable
- The Poisson Dis
- Poisson approximation to Binomial
- Probability calculations (manual of Ealen lators)

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com

Motivating problem代做 CS编程辅导

- A cosmetics retained as 60 of a particular lipstick during the year. The shop keeps one lipstick on the counter and no others in stock. Interlipstickteels it can be replaced prior to opening the next trading day. However if a second or third... customer tries to buy the lipstick on any given day they libseuthers ale 63.com
- What is the probability the retailer loses a sale because they are out of stock? https://tutorcs.com

https://flux.qa程序eeacode:多线像V)

Question 1 – Paragrating Problem

What is the prolition that the retailer loses a sale on a particular day because they are out of stock?

WeChat: cstutorcs

A. 0.002 Assignment Project Exam Help

✓ B. 0.02 Email: tutorcs@163.com

C. 0.2 QQ: 749389476

D. 0.5 https://tutorcs.com

E. None of these.

https://flux.qa程序eeacode:多线像V)

Question 2

Which of the follows: using a Binomial Description?

WeChat: cstutorcs

- A. A student guesses correct answers to a multiple choice test where eacht dreisno Expas Helphoices.
- B. Students in classifodayrin@datecwhether they are left or right-handed.
 00: 749389476
- ✓ C. I count the number of customers who visited Chadstone shopsing term remoday.
 - D. I count the number of bad eggs in a carton of 12.

The Binomial Distribution

- We use the Binor ibution to determine the 'number of successes', early in probability p of occurring in n independent trials.
- Typical questions WeChat: cstutorcs
 - A coin is tossed As@itimes.nwhatjiscthexaroldalijity that 22 heads will be tossed? What is the probability of more than 40 heads being tossed? at torcs @ 163.com
 - A machine produces bolks and from past experience it is known that there is a 0.01 probability that a bolt produced will be defective. If a box contains 100 bolts, what is the probability that there are less than 5 defectives in the box.

Formal Statement CS编程辅导

- The use of the all Distribution is valid under the following characters:
 - 1. Trials are independent estutores
 - 2. There are only two outcomes for each trial Assignment Project Exam Help
 - 3. The probability of success in each trial is constant Email: tutorcs@163.com

For n independent trials, each with a probability QQ: 749389476 p, of success, we define the number of successes X, as a Binomial Distribution with the following formula:

$$P(X = x) = {}^{n}C_{x}p^{x}(1-p)^{(n-x)}$$
 for $x = 0,1,2,3...n$

https://flux.qa程序eeacobe:多线像V)

Question 3

Which of the follows: Lations could not be modelled using a Binomial **Quarter** using a Binomial **Quarter** tion?

WeChat: cstutorcs

- A. A player tosses agonient ortigees and records the number of tails.
- Email: tutorcs@163.com

 B. The number of student Moodle access complaints each day is counted 9389476
 - C. Throwing 6 sixes (paraidie) oin a row.
 - D. Choosing 100 people at random and recording their gender.

Example

程序代写代做 CS编程辅导

A fair coin is to:

the number of the probability distribution for the number of heads thrown stutores

Using table	constructed in Excel	ct E

Probabilities for each x below.

n =	10
p =	0.50
0	0.0010
1	0.0098
2	0.0439
xam Hel <mark>p</mark>	0.1172
4	0.2051
om 5	0.2461
6	0.2051
7	0.1172
8	0.0439
9	0.0098
10	0.0010
sum =	1.0000

Calculating a程序代写代做 CS编程辅导 Calculating a Binomial Probability

• Example: A fair tossed 12 times and the number of head to the aring uppermost is counted. What is the probability that 8 heads are thrown?

WeChat: cstutorcs We have n = 12, p = 0.5 and x = 8thus Assignment Project Exam Help

Email: tutorcs@1,63.com
$$P(x) = {}^{n}C_{x}p^{x}(1-p)^{(n)}$$

$$P(8) \stackrel{QQ}{=} {}^{749389476}_{80.5}(1-0.5)^{(12-8)}$$

$$= \frac{1}{4\times3\times2\times1} \times 0.5^{8} \times 0.5^{4}$$

$$= 0.1208$$

Binomial Tabfes (同生体2)编程辅导

			■		Re	call:	n=12	2, p =	0.5 ar	nd x =	8
Table gives P(X=x) for X = Bi(n,p)											
n =	12		(k) [■			V					
p =	0.05	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	0.95
0	0.5404	0.2824	0.0687	0.0138	0.0022	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000
1	0.3413	0.3766	0.206	V 6. 62 ha	ito.ast	utones	0.0003	0.0000	0.0000	0.0000	0.0000
2	0.0988	0.2301	0.2835	0.1678	0.0639	0.0161	0.0025	0.0002	0.0000	0.0000	0.0000
3	0.0173	0.0852	0.2362	0.2397	0,1419	D 0.0537	0. <mark>0</mark> 125	.Q.0 <u>01</u> 5	1.0.0001	0.0000	0.0000
4	0.0021	0.0213	0.1329	0.2311	0.2128	0.1208	0.0420	0.0078	0.0005	0.0000	0.0000
5	0.0002	0.0038	0.0532	0.1585	0.2270	0.1934	0.1009	0.0291	0.0033	0.0000	0.0000
6	0.0000	0.0005	0.015 <mark>5</mark>	maile	tutor	SO(225)6(53.76 1	11 0.0792	0.0155	0.0005	0.0000
7	0.0000	0.0000	0.0033	0.0291	0.1009	0.1934	0.2270	0.1585	0.0532	0.0038	0.0002
8	0.0000	0.0000	0.0005	Q .00 7 8	O-90 6 28	0 .1208	0.2128	0.2311	0.1329	0.0213	0.0021
9	0.0000	0.0000	0.0001	0.0015	0.0125	0.0537	0.1419	0.2397	0.2362	0.0852	0.0173
10	0.0000	0.0000	0.0000	0.0002	0.0025	0.0161	0.0639	0.1678	0.2835	0.2301	0.0988
11	0.0000	0.0000	0.000	ttp@oo/	tutege 3	S 0.0029	0.0174	0.0712	0.2062	0.3766	0.3413
12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0022	0.0138	0.0687	0.2824	0.5404

Cumulative Pfobabilities编程辅导

• Example: A fair tossed 12 times and the number of head! The aring uppermost is counted. What is the probability: that up to and including 8 heads are thrown?

Assignment Project Exam Help

Use the table of cumulative probabilities!
 Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com

Cumulative Binomial Table 辅导

Table give	s P(X <x) fo<="" th=""><th>or X = Bi(n</th><th>,p)</th><th>国際流</th><th>XIO</th><th></th><th></th><th></th><th></th><th></th><th></th></x)>	or X = Bi(n	,p)	国際流	XIO						
n =	12			*							
p =	0.05	0.10	0.20	Tutor CS	0.40	0.50	0.60	0.70	0.80	0.90	0.95
0	0.5404	0.2824	0.0687		0022	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000
1	0.8816	0.6590	0.2749	0.0850	0.0196	0.0032	0.0003	0.0000	0.0000	0.0000	0.0000
2	0.9804	0.8891	0.5583	0.2528	ρ.0834	0.0193	0.0028	0.0002	0.0000	0.0000	0.0000
3	0.9978	0.9744	0.7946	0.4925	0:2253	0.0730	0.0153	0.0017	0.0001	0.0000	0.0000
4	0.9998	0.9957	0.9274	0.7237	0.4382	0.1938	0.0573	0.0095	0.0006	0.0000	0.0000
5	1.0000	0.9995	0.9806	Aggiq1	nment	P1387E	Ct.1582	1100386	p .0039	0.0001	0.0000
6	1.0000	0.9999	0.9961	0.9614	0.8418	0.6128	0.3348	0.1178	0.0194	0.0005	0.0000
7	1.0000	1.0000	0.9994	_ 0.9905		0 2063	6.5618	0.2763	0.0726	0.0043	0.0002
8	1.0000	1.0000	0.9999	0.9983	0.9847	0.9270	0.7747	0.5075	0.2054	0.0256	0.0022
9	1.0000	1.0000	1.0000	0.9998	0.9972	0.9807	0.9166	0.7472	0.4417	0.1109	0.0196
10	1.0000	1.0000	1.0000	0000	49.9987	40/968	0.9804	0.9150	0.7251	0.3410	0.1184
11	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9978	0.9862	0.9313	0.7176	0.4596
12	1.0000	1.0000	1.0000	11.0000 111.0000	/41,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Binomial Probabilities in EXCEL

- inctions in EXCEL to calculate We can use the *** binomial probatities. Number of successes in trials

• For X = Bi(n,p) WeChat: cstutores

P(X = x) = BINOMDIST(x, n, p, false)Assignment Project Exam Helprobability of SUCCESS

The cumulative probability is given by

Email: tutorcs@163.com

 $P(X \le x) = BINOMDIST(x, n, p, true)$ QQ: 749389476

https://tutorcs.com
... or learn to use your calculator for these.

Number of trials

Problem

程序代写代做 CS编程辅导

- A farmer prod process is 0.05. What is the probability that a carton will contain more than one defective egg.
- Now, n = 12, Assignment Project Exam Help

 We want $P(x \text{Enhail}: \text{Resorch}) + \dots P(x=12)$
- A quicker way Q u \$490 89476 wledge of complementary events. *
 https://tutorcs.com
- P(x > 1) = 1 [P(x = 0) + P(x = 1)]

$$= 1 - 0.5404 - 0.3413 = 0.1183$$

https://flux.qa程序经看它的ES编号(S)

Question 4

Which of the follcut ations could not be modelled using a Poisson dist

- A. The number of mutations in a strand of DNA.
- ✓ B. The number of damaged books in a box of 50.
 - C. The number of mailthur week 163 cuming in the Pacific Rim during 2013: 749389476
 - D. The number of hail stones landing on a 1m² area during a storm.

The Poisson Distribution

- We use the Poiss bution to determine the number of occurrences of the space.
- Typical Poisson Distributions typical Poisson Distributions:
 - On average 100 Acustomeratperoject Visitamper pular shop. What is the probability that 10 customers enter the shop over one hour? Email: tutorcs@163.com
 - A fabric is known to: have 3894a Werage, one defect per 10 meters. What is the probability that 5 meters of fabric will have two defects: https://tutorcs.com
 - We may also use the Poisson distribution as an approximation to the Binomial distribution.

Formal State都是代写代做 CS编程辅导

- The use of the Po stribution is valid under the following condition
 - 1. Trials record the number of occurrences of a random event distribute we ceratimet wo space.
 - 2. The number of accurring with an average rate λ , Email: tutores @ 163.com the mean number of occurrences over a period or area t is given by $\mu = \lambda t$. The number of occurrences over the time or period x. It is a period x. It is given by $\mu = \lambda t$. The number of occurrences over the time or period x. It is a period x is a period x. It is a period x is a period x is a period x is a period x. It is a period x is

$$P(X = x) = \frac{e^{-\mu}\mu^x}{x!}$$
 for $x = 0,1,2,3...\infty$

More Poissore然為所的的 SS编程辅导

From Wikipedia: http://ellipide.org/wiki/Poisson_distribution

- Electrical system example: It is arriving in a system.
- Astronomy example: photol
- Biology example: the number of mutations on a strand of DNA per unit length.
- Management example: custome(s) argiving at lateouter or call centre.
- Civil engineering example: cars arriving at a traffic light.
- Finance and insurance exampsignment Brojectain and Insurance exampsion an
- Radioactivity Example: Decay of a radioactive nucleus.
- The number of soldiers killed by horse-kicks each year in each corps in the Prussian cavalry.
- The number of yeast cells used when brewing Gunness beer. This example was made famous by William Sealy Gosset (1876–1937).
- The number of goals in sponting teams.
- The number of deaths per year in a given age group.
- The number of jumps in a stock price in a given time interval.

Example

程序代写代做 CS编程辅导

■ A certain fabric has bability of 0.05 that a given metre will have a defection that a 10m length will have 3 defects. Per metre

We have
$$t = 10$$
, $\lambda \text{We 6.05 this tytore } 0.5$

Assignment Project Exam Help $P(x) = \frac{e^{-\mu}}{e^{-\mu}}$

Émail: tutorcs@163.com

$$PQQ:=749389476^{-0.5}$$
3!

10 x 0.05

Poisson Tables代写代做 CS编程辅导

Table give	s P(X=x) fo	or X = Poi(ı	mu)	444 (4)	: I						
14510 8110	.5 1 (// //) 10		······/ [<u>-</u>	1,20,710							
mu	0.5	1.0	- 1		4.0	5.0	6.0	7.0	8.0	9.0	10.0
0	0.6065	0.3679	0.13	Tutor CS	7183	0.0067	0.0025	0.0009	0.0003	0.0001	0.0000
1	0.3033	0.3679	0.27		D733	0.0337	0.0149	0.0064	0.0027	0.0011	0.0005
2	0 .07 58	0.1839	0.27	0.2240	J.1465	0.0842	0.0446	0.0223	0.0107	0.0050	0.0023
3	0.0126	0.0613	0.1804	0.2240	0.1954	0.1404	0.0892	0.0521	0.0286	0.0150	0.0076
4	0.0016	0.0153	0.0902	7.04780	0.1954	0,1,7,55	0.1339	0.0912	0.0573	0.0337	0.0189
5	0.0002	0.0031	0.0361	0.1008	0.1563	0.1755	0.1606	0.1277	0.0916	0.0607	0.0378
6	0.0000	0.0005	0.0120	0.0504	0.1042	0.1462	0.1606	0.1490	0.1221	0.0911	0.0631
7	0.0000	0.0001	0.0034	c@6216	196595	0.1044	e 8.13 7	x 0 1490	10-1396	0.1171	0.0901
8	0.0000	0.0000	0.0009	0.0081	0.0298	0.0653	0.1033	0.1304	0.1396	0.1318	0.1126
9	0.0000	0.0000	0.0002	0.0027	0.0132	0.0363	0.0688	0.1014	0.1241	0.1318	0.1251
10	0.0000	0.0000	0.000 0	179.2908	tapper	.C020(18)1	0.6416	O 710	0.0993	0.1186	0.1251
11	0.0000	0.0000	0.0000	0.0002	0.0019	0.0082	0.0225	0.0452	0.0722	0.0970	0.1137
12	0.0000	0.0000	0.0000	0.0001	0.0006	0.0034	0.0113	0.0263	0.0481	0.0728	0.0948
13	0.0000	0.0000	0.0000	0.0000	+ 7.0002	14.00B	0.0052	0.0142	0.0296	0.0504	0.0729
14	0.0000	0.0000	0.0000	0.0000	0.0001	0.0005	0.0022	0.0071	0.0169	0.0324	0.0521
15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0009	0.0033	0.0090	0.0194	0.0347
16	0.0000	0.0000	0.00	LL 9.0000/	69000	0.0000	.0003	0.0014	0.0045	0.0109	0.0217
17	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0006	0.0021	0.0058	0.0128
18	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0009	0.0029	0.0071
19	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0004	0.0014	0.0037
20	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0006	0.0019

Cumulative 程序代写代做.CS编程辅导

- Customers enter that an average rate of one per minute. What is the bility that in a 10 minute period more than 7 customers will enter?
- Now, $\lambda = 1$, t = 10 Washingstutores
- We want P(x > 7) As sPg non-east Project 193 atm. Help
- P(x > 7) = 1 P(x + 70)it. Rulto re 600-163. c P(x = 0)

QQ: 749389476

- (we can use the table of cumulative probabilities here)
- P(x > 7) = 1 0.2202 = 0.7798

Cumulative Poisson Tables 辅导

Table give	s P(X<=x) 1	for X = Poi	(mu) =								
	,		2		dia 💮						V
mu	0.5	1.0	19		4.0	5.0	6.0	7.0	8.0	9.0	10.0
0	0.6065	0.3679	0.13	Tutor CS	0183	0.0067	0.0025	0.0009	0.0003	0.0001	0.0000
1	0.9098	0.7358	0.40		1 0916	0.0404	0.0174	0.0073	0.0030	0.0012	0.0005
2	0.9856	0.9197	0.67	0.4252	2381	0.1247	0.0620	0.0296	0.0138	0.0062	0.0028
3	0.9982	0.9810	0.8571	0.6472	0.4335	0.2650	0.1512	0.0818	0.0424	0.0212	0.0103
4	0.9998	0.9963	0.9473	7.Q8113	0.6288	0.4405	0.2851	0.1730	0.0996	0.0550	0.0293
5	1.0000	0.9994	0.9834	0.9161	0.7851	0.6160	0.4457	0.3007	0.1912	0.1157	0.0671
6	1.0000	0.9999	0.9955	0.9665	0.8893	0.7622	0.6063	0.4497	0.3134	0.2068	0.1301
7	1.0000	1.0000	0.998	C6:9881	1792489	D .8666	e 8.7440	🗙 🕅 ५१९७७	1024539	0.3239	0.2202
8	1.0000	1.0000	0.9998	0.9962	0.9786	0.9319	0.8472	0.7291	0.5925	0.4557	0.3328
9	1.0000	1.0000	1.0000	0.9989	0.9919	0.9682	0.9161	0.8305	0.7166	0.5874	0.4579
10	1.0000	1.0000	1.000	110,2997	tq.pegg	C&26(8)3	0.9574	() (7.9 () 15	0.8159	0.7060	0.5830
11	1.0000	1.0000	1.0000	0.9999	0.9991	0.9945	0.9799	0.9467	0.8881	0.8030	0.6968
12	1.0000	1.0000	1.0000	1.0000	0.9997	0.9980	0.9912	0.9730	0.9362	0.8758	0.7916
13	1.0000	1.0000	1.0000	2.0000	+ 1.9969	14 .9938	0.9964	0.9872	0.9658	0.9261	0.8645
14	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9986	0.9943	0.9827	0.9585	0.9165
15	1.0000	1.0000	1.0000	1.0000	/	0.9999	0.9995	0.9976	0.9918	0.9780	0.9513
16	1.0000	1.0000	1.0000	LL 50000/	1410000	P.0909	.9998	0.9990	0.9963	0.9889	0.9730
17	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9996	0.9984	0.9947	0.9857
18	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9993	0.9976	0.9928
19	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9989	0.9965
20	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9996	0.9984

Poisson Probabilities in EXCEL

• We can use the Poisson probabil

nctions in EXCEL to calculate

• For X = Poi(mu) WeChat: cstutorcs

$$P(X = x) = P(SSSON(m) + rojects Exam Help$$

Email: tutorcs@163.com
 The cumulative probability is given by

$$QQ: 749389476$$

 $P(X \le x) = POISSON(mu, x, true)$
https://tutorcs.com

• ... or learn to use your calculator for these.

Poisson Approximation輔b the Binomial 果認識!

• When n is larg μ is small let $\mu = np$.

■ The graph below silows this for n = 20, p = 0.1.

Poisson Approximation to the Binomial | Bi

- A farmer produces the eggs which are collected, graded and packaged into (12. The probability that a defective egg gets through the packaging process is 0.05. What is the probability that a carton white ontains the probability that a carton which are collected, graded and packaged into (12. The probability that a defective egg.
- Now, n = 12, p = 0.05signment Project Exam Help
- When n is large and misismallows to 163 CBA
- P(X = x) = Poi(0.6) QQ: 749389476 $\mu = 12 \times 0.05 = 0.6$
- P(x > 1) = 1 P(x = 0) P(x = 1) *

 https://tutorcs.com

 = 1 0.5488 0.3293 = 0.1219
- Using a Poisson approximation to the Binomial Distribution

Sample Calculations CS编程辅导

■ For the previous $\mu = 0.05*12 = 0.6$

$$P(x) = \frac{e^{-\mu} \mu^{x}}{x!}$$
 WeChat: cstutorcs

$$P(0) = \frac{e^{-0.6} \times 0.6^{0} \text{Assignment Project Exam}}{0!} \underbrace{\frac{e^{-0.6} \times 0.6^{0} \text{Assignment Project Exam}}{1!}}_{0!} \underbrace{\frac{1!}{2!}}_{2!} = \underbrace{\frac{0.5488 \times 1}{1}}_{0} \underbrace{\frac{e^{-0.6} \times 0.6^{0}}{2}}_{0} = \underbrace{\frac{0.5488 \times 0.36}{2}}_{0} = \underbrace{\frac{0.5488 \times 0.36}_{0}}_{0} = \underbrace{\frac{0.5488 \times 0.36}{2}}_{0} = \underbrace{\frac{0.5488 \times 0.36}_{0}}_{0} = \underbrace{\frac{$$

Mean and V程序代写代做 CS编程辅导

The table below search as a summary of the formula for each distribution as the mean and variance of each.

WeChat: cstutorcs

Distribution	Formula .	Mean	Variance
Binomial	$P(X = x) = {}^{n}C_{x}p^{x}(1-p)^{(n-x)}$	np	np(1-p)
Poisson	Email: tutoros@163.com $P(X = x) = {}$ QQ: 749389476	μ	μ

Know how to calculate Binthout and Poisson probabilities with your calculator.

Binomial vs 译序式写代做 CS编程辅导 Number of trials

Series — Continuous

Finite – Maximum known

Random Variable Studies number of successes in fixed number of trials Assignment Project Exam Help

■ Poisson: 1 parameten: #uttoreem) 63.com

Discrete (0,7149389476

Maximum theoretically infinite https://tutorcs.com

Random variable – count number of independent arrivals or independent events

Motivating problem代做 CS编程辅导

- A cosmetics retailed list 18 60 of a particular lipstick during the year in the sopicion of the shop keeps one ilpstick on the counter and no others in stock. Webselpstick sells it can be replaced prior to opening the next trading day. However if a second or third... customer tries to buy the lipstick on any given day they lipstick of selles.com
- What is the probability 38947 the retailer loses a sale because they are out of stock? https://tutorcs.com

https://flux.qa程序经看它的ES多线像V)

Question 5 - 果意識 ating Problem

The probability Tretailer loses a sale because they are out of stock: WeChat: cstutorcs

Assignment Project Exam Help A. has a Binomial distribution.

✓ B. has a Poisson distribution.

QQ: 749389476

https://tutorcs.com

Solution to the motivating problem:

		$\mu = 60/300 = 0.2$
$e^{-\mu}u^x$	mand =	60
$P(x) = \frac{e^{-\mu}\mu^{x}}{x!}$ $P(0) = \frac{e^{-0.2} \times 0.5^{0}}{0!}$	/ear =	300
$e^{-0.2} \times 0.5^{\circ}$	aily demand =	0.2
$P(0) = {0!}$	Distribution =	Poisson
= 0.8187	WeChat: cstutorcs	
Daily Demand	Probability	Lost Sale
0	Assignment Project Ex	xam Help -
1	0.1637 Email: tutores@163.co	-
2	Email: tutores@163.co	<mark>0.0164</mark>
3	0.0011	0.0011
4	QQ: 7493.89476	0.0001
5	https://tutorcs.com	0.0000
	nups.//tutores.com	
Total		0.0175

Reading/Questions CS编程辅导

- Reading:
 - 7th Ed. Section 7.2, 7.6, 7.7.
- Questions: WeChat: cstutorcs
- Th Ed. Questions 7.50, 7.53, 7.54, 7.56, 7.58, 7.60, Assignment Project Exam Help 7.62, 7.64, 7.63, 7.68, 7.69.

Email: tutorcs@163.com

Also file: Propability Distributions.xls

https://tutorcs.com

