3 A bar magnet was suspended from a wooden retort stand as shown.

The magnet lined up with the magnetic field of the Earth.

The magnet was given a small angular displacement from its equilibrium position and oscillated in a horizontal plane about the string as shown.

(a) Describe how the time period of these oscillations should be measured to make the readings as accurate as possible.

(3)

(b) A loop of wire was placed vertically around the centre of the oscillating magnet as shown.

When the switch was closed, there was a current I in the loop of wire and the time period T of the oscillations decreased.

A student predicted that the relationship between T and I is

$$T = I^n$$

where n is a constant.

(i) State an additional component required in the circuit that would allow this relationship to be investigated.

(1)

(ii) Explain why plotting a graph of log *T* against log *I* would test the validity of this relationship.

(2)

(c) The student processed his results and produced the table below.

T/s	I/A	
0.813	1.20	
0.754	1.40	
0.706	1.60	
0.663	1.80	
0.631	2.00	
0.593	2.20	

(i) Plot a graph of $\log T$ against $\log I$ on the grid opposite. Use the additional columns in the table to record your processed data.

(6)

(ii) Use your graph to determine a value for n.

(3)

 	 	 	• • • •	 	 	• • •	 	 • • • •	 																								

 $n = \dots$

(iii)	After plotting the graph,	the student modified his prediction. He suggested tha
	the relationship between	T and I is

$$T = kI^n$$

where k is a constant.

Justify this suggestion.

(4)

(Total for Question 3 = 19 marks)