

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2021-11-09
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

단원 ISSUE

이 단원에서는 **변의 중점을 연결하여 길이를 구하는 문제, 삼각형** 의 무게중심을 이용하여 넓이를 구하는 문제 등이 자주 출제되며 유형이 다양한 단원이므로 되도록 많은 문제들을 학습합니다.

[단원 마무리]

다음 마름모 ABCD에서 각 변의 중점을 E, F,
 G, H라고 하자. AC = 12 cm 이고, □EFGH의 둘레의 길이가 34 cm일 때, BD의 길이는?

- ① 20 cm
- ② 22 cm
- ③ 24 cm
- 4 26 cm
- ⑤ 28 cm

[단원 마무리]

2. 다음 $\triangle ABC$ 에서 두 점 D, F, H와 두 점 E, G, I는 각각 \overline{AB} 와 \overline{AC} 의 사등분점이다. 이때 \overline{PQ} 의 길이는?

- ① 2 cm
- $\bigcirc \frac{5}{2}$ cm
- ③ 3 cm
- $\frac{7}{9}$ cm
- ⑤ 4 cm

[단원 마무리]

3. 다음 그림에서 점 G는 △ABC의 무게중심이다. PR // BC일 때, □GQCR의 둘레의 길이는?

- ① 21 cm
- ② 22 cm
- ③ 23 cm
- ④ 24 cm
- ⑤ 25 cm

[중단원 학습 점검]

4. 다음 그림에서 점 G는 $\triangle ABC$ 의 무게중심이다. $\frac{\triangle ABC}{\triangle GMN}$ 의 값은?

- 1 4
- 3 8
- **4** 9
- ⑤ 12

[중단원 학습 점검]

5. 다음 그림에서 \overline{AD} 는 $\triangle ABC$ 의 중선이고, 두 점 G, G'은 각각 $\triangle ABC$, $\triangle GBC$ 의 무게중심이다. $\overline{GG'}=5$ cm 일 때, \overline{AD} 의 길이는?

- ① 21 cm
- ② 21.5 cm
- ③ 22 cm
- (4) 22.5 cm
- ⑤ 23 cm

[중단원 학습 점검]

6. 다음 그림에서 점 G가 △ABC의 무게중심일 때, △BCF의 둘레의 길이는?

- ① 31 cm
- ② 32 cm
- ③ 33 cm
- ④ 34 cm
- ⑤ 35 cm

- [단원 마무리]
- **7.** 다음 그림에서 점 G와 점 G'은 각각 $\triangle ABC$ 와 $\triangle ACD$ 의 무게중심이다. 이때 $\overline{GG'}$ 의 길이는?

- ① 3 cm
- ② 4 cm
- ③ 6 cm
- 4 8 cm
- ⑤ 9 cm

- 실전문제
- **8.** 삼각형 ABC에서 $\overline{BD}=\overline{DC}$, $\overline{AE}=\overline{EF}=\overline{FC}$ 이 고 점 P는 \overline{DE} 와 \overline{BF} 의 교점이다. $\overline{PD}=1\,cm$ 일 때, \overline{EP} 의 길이는?

- ① 1.8 cm
- 2cm
- 32.2 cm
- (4) 2.4 cm
- \bigcirc 2.6 cm
- 9. $\triangle ABC$ 에서 두 점 D, F와 두 점 E, G는 각각 \overline{AB} 와 \overline{AC} 의 삼등분점이다. $\overline{PQ} = 6 \, \mathrm{cm}$ 일 때, $\overline{DE} + \overline{BC}$ 의 값은?

- ① 21 cm
- ② 22 cm
- ③ 23 cm
- 4 24 cm
- ⑤ 25 cm
- 10. $\triangle ABC$ 에서 \overline{AB} 의 삼등분점을 D, E, \overline{AC} 의 중점을 F라 하고, \overline{DF} 와 \overline{BC} 의 연장선의 교점을 G라하자. $\overline{EC} = 6 \, \mathrm{cm}$ 일 때, \overline{FG} 의 길이를 구하면?

- ① 6 cm
- ② 7 cm
- 3 8 cm
- 49 g cm
- ⑤ 10 cm

11. 그림에서 $\overline{AD}//\overline{EF}//\overline{BC}$ 이고, $\overline{DF}=\overline{FC}$ 이다. $\overline{BC}=25$, $\overline{DC}=20$, $\overline{EF}=21$ 일 때, $\triangle BDA$ 의 넓이는?

- ① 170
- ② 180
- ③ 190
- **4** 200
- (5) 210
- 12. 그림에서 점 G가 삼각형 ABC의 무게중심이고 \overline{AD} 와 \overline{EF} 의 교점을 H라 할 때 $\overline{AH}:\overline{HG}:\overline{GD}$ 는?

- ① 3:1:2
- ② 4:2:3
- 3 6:3:5
- ④ 7:3:5
- (5) 8:3:6
- **13.** $\triangle ABC$ 와 $\triangle GBC$ 의 무게중심이 각각 G, G'이 고 $\angle BGC = 90^{\circ}$, $\overline{GG'} = 4$ 일 때, \overline{BC} 의 길이는?

1 6

- 2 8
- 3 10
- ④ 12
- (5) 14
- .0 4
- **©** 10

14. 다음 그림에서 점 G는 \triangle ABC의 무게중심이고, 점 G'은 \triangle GBC의 무게중심이다. \triangle ABC의 넓이가 36일 때, \triangle G'BD의 넓이는?

1 1

② 2

3 3

(4) 4

- **⑤** 5
- **15.** 다음 그림의 □ABCD는 직사각형이고, 점 M은 BC의 중점이다. △PQR=4cm²일 때, 옳지 않은 것은?

- ① $\square QBCR = 32 cm^2$
- \bigcirc $\overline{QR}//\overline{BC}$

- $\bigcirc \overline{BQ} : \overline{QP} = 2 : 1$

@

정답 및 해설

1) [정답] ②

[해설]
$$\overline{EH} = \overline{FG} = \frac{1}{2}\overline{BD}$$
, $\overline{EF} = \overline{HG} = \frac{1}{2}\overline{AC} = 6$ (cm) 따라서 $\Box EFGH$ 의 둘레의 길이가 34 cm 이므로 $2 \times \left(\frac{1}{2}\overline{BD} + 6\right) = 34$ (cm)에서 $\overline{BD} = 22$ (cm)

2) [정답] ⑤

[해설]
$$\overline{DE} / \overline{FG}$$
이므로 $\overline{FG} = 2\overline{DE} = 8 \, \text{cm}$ $\overline{FG} / \overline{BC}$ 이므로 $\overline{BC} = 2\overline{FG} = 16 \, \text{cm}$ ΔFBC 에서 $\overline{HQ} = \frac{1}{2}\overline{BC} = 8 \, \text{(cm)}$ ΔFBG 에서 $\overline{PH} = \frac{1}{2}\overline{FG} = 4 \, \text{(cm)}$ 따라서 $\overline{PQ} = \overline{HQ} - \overline{HP} = 8 - 4 = 4 \, \text{(cm)}$

3) [정답] ③

[해설]
$$\overline{AG}: \overline{GQ}=2:1$$
이므로 $12:\overline{GQ}=2:1$, $\overline{GQ}=6$ (cm) $\overline{GR}:\overline{CQ}=\overline{AG}:\overline{AQ}$ 이므로 $\overline{GR}:6=2:3$, $\overline{GR}=4$ (cm) $14:\overline{AC}=2:3$, $\overline{AC}=21$ (cm)이므로 $\overline{CR}=21-14=7$ (cm) 따라서 $\Box GQCR$ 의 둘레의 길이는 $6+6+4+7=23$ cm

4) [정답] ⑤

5) [정답] ④

[해설]
$$\overline{GG'}$$
: $\overline{G'D}$ =2:1이므로 \overline{GD} = $\frac{3}{2}\overline{GG'}$ = $\frac{15}{2}$ (cm) \overline{AG} : \overline{GD} =2:1이므로 \overline{AD} = $3\overline{GD}$ = $\frac{45}{2}$ =22.5 (cm)

6) [정답] ①

[해설]
$$\overline{\text{CD}} = \overline{\text{BD}} = 7 \text{ cm}, \ \overline{\text{BC}} = 14 \text{ cm}$$
 $\overline{\text{BF}} = \overline{\text{AF}} = 8 \text{ cm}$
 $\overline{\text{CG}} : \overline{\text{CF}} = 2 : 3$ 이므로
 $6 : \overline{\text{CF}} = 2 : 3, \ \overline{\text{CF}} = 9 \text{ cm}$
따라서 $\triangle \text{BCF의 둘레의 길이는}$
 $14 + 8 + 9 = 31 \text{ cm}$

7) [정답] ②

[해설] 두 점 E, F는 각각
$$\overline{BC}$$
, \overline{CD} 의 중점이므로 $\overline{EF} = \overline{EC} + \overline{CF} = \frac{1}{2}\overline{BC} + \frac{1}{2}\overline{CD} = \frac{1}{2}\overline{BD} = 6(cm)$ $\triangle AGG'$ 과 $\triangle AEF$ 에서 $\overline{AG}: \overline{AE} = \overline{AG}': \overline{AF} = 2:3$, $\angle A$ 는 공통 이므로 $\triangle AGG' \hookrightarrow \triangle AEF$ (SAS 닮음)이다. $\triangle AEF$ 에서 $\overline{GG}': \overline{EF} = \overline{AG}: \overline{AE}$ 이므로 $\overline{GG}': 6 = 2:3$, $\overline{GG}' = 4$ (cm)

8) [정답] ②

[해설]
$$\triangle BEC$$
에서 $\overline{CF} = \overline{EF}$, $\overline{CD} = \overline{BD}$ 이므로 $2\overline{DF} = \overline{BE}$ $\therefore \overline{BE} : \overline{DF} = 2:1$ $\overline{BE}//\overline{DF}$ 이므로 $\overline{BE} : \overline{DF} = \overline{EP} : \overline{PD} = 2:1$ $\therefore \overline{EP} = 2\overline{PD} = 2cm$

9) [정답] ④

[해설]
$$\triangle AFG$$
에서 $\overline{AD} = \overline{DF}$, $\overline{AE} = \overline{EG}$ 이므로 $\overline{DE}//\overline{FG}$ $\triangle BDE$ 에서 $\overline{FP}//\overline{DE}$, $\overline{BF} = \overline{DF}$ 이므로 $\overline{FP} = \frac{1}{2}\overline{DE}$, $\overline{FP} = acm$ 라 하면 $\overline{DE} = 2acm$ $\triangle CDE$ 에서 $\overline{GQ}//\overline{DE}$, $\overline{CG} = \overline{EG}$ 이므로 $\overline{DQ} = \overline{QC}$, $\overline{GQ} = \frac{1}{2}\overline{DE}$ $\therefore \overline{GQ} = acm$ $\triangle AFG$ 에서 $\overline{DE} = \frac{1}{2}\overline{FG}$ 이므로 $2a = \frac{1}{2}(\overline{FP} + \overline{PQ} + \overline{GQ})$ $2a = \frac{1}{2}(2a + 6)$, $2a = a + 3$ $\therefore a = 3$ 따라서 $\overline{DE} = 2a = 6cm$ $\triangle DBC$ 에서 $\overline{DF} = \overline{FB}$, $\overline{DQ} = \overline{QC}$ 이므로 $\overline{FQ} = \frac{1}{2}\overline{BC}$ 이고 $\overline{FQ} = \overline{FP} + \overline{PQ} = 9cm$ 이므로 $\overline{BC} = 18cm$ 따라서 $\overline{DE} + \overline{BC} = 24cm$ 이다.

10) [정답] ④

[해설] 두 점 D, F가 각각 \overline{AE} , \overline{AC} 의 중점이므로 $\overline{DF}//\overline{EC}$ 이고 $\overline{DF}=\frac{1}{2}\overline{EC}=3$ 또한 점 E가 \overline{BD} 의 중점이고 $\overline{EC}//\overline{DG}$ 이므로 $\overline{DG}=2\overline{EC}=12$

$$\therefore \overline{FG} = 12 - 3 = 9$$

11) [정답] ①

[해설] \overline{BD} 와 \overline{EF} 의 교점을 점 M이라 하면 $\triangle DBC$ 에서 $\overline{DF} = \overline{FC}$, $\overline{MF}//\overline{BC}$ 이므로 $\overline{DM} = \overline{BM}$, $2\overline{MF} = \overline{BC} = 25$ $\therefore \overline{MF} = \frac{25}{2}$

$$\overline{EM} = 21 - \frac{25}{2} = \frac{17}{2} \circ | \vec{J}$$

 $\triangle BAD$ 에서 $\overline{EM}//\overline{AD}$, $\overline{BM} = \overline{DM}$ 이므로

$$2\overline{EM} = \overline{AD}$$
 $\therefore \overline{AD} = 2 \times \frac{17}{2} = 17$

따라서 $\triangle BDA = \frac{1}{2} \times 17 \times 20 = 170$

12) [정답] ①

[해설] 점 G는 $\triangle ABC$ 의 무게중심이므로 \overline{AG} : \overline{GD} = 2:1

또, \overline{AH} : \overline{HD} =1:1이므로 \overline{AH} : \overline{HG} : \overline{GD} =3:1:2

13) [정답] ④

 $\triangle GBC$ 에서 $\overline{GG}:\overline{GD}=2:1$ 이므로 $\overline{GD}=2$ $\angle BGC=90^\circ$, $\overline{BD}=\overline{CD}$ 이므로 점 D는 $\triangle GBC$ 의 외심이다. 즉, $\overline{GD}=\overline{BD}=\overline{CD}=6$

 $\therefore \overline{BC} = \overline{BD} + \overline{DC} = 6 + 6 = 12$

14) [정답] ②

[해설]
$$\triangle GBC = \frac{1}{3} \triangle ABC = 12$$

 $\therefore \triangle GBD = \frac{1}{6} \triangle GBC = 2$

15) [정답] ③

[해설] 점 P가 \overline{AC} 의 중점이므로 두 점 Q, R은 각각 $\triangle ABC$, $\triangle DBC$ 의 무게중

심이다.

따라서 $\overline{PQ}: \overline{PB} = \overline{PR}: \overline{PC} = 1:3$ 에서

 $\bigcirc \overline{QR}//\overline{BC}$

이때 두 삼각형 $\triangle PQR$, $\triangle PBC$ 는 1:3닮음이다.

따라서 넓이의 비는 $1^2:3^2=1:9$ 이므로

 $\triangle PBC = 9\triangle PQR = 36cm^2$

- ① $\square QBCR = 36 4 = 32cm^2$
- \bigcirc $\Box ABCD = 4\triangle PBC = 4\times 36 = 144cm^2$
- ④ $\overline{CP}: \overline{PR} = 3:1$ 인데 $\overline{CP} = \overline{AP}$ 이므로

 $\overline{AP}: \overline{PR} = 3:1$

⑤ 점 Q가 $\triangle ABC$ 의 무게중심이므로

 $\overline{BQ}: \overline{QP} = 2:1$