实验十三 移相器单元实验

实验数据处理 $\omega = 2\pi f$

F/kHz	1	4	10	
$ arphi_1 _{oldsymbol{arphi}_2}$ (逆)	380us	48us	8us	
	136.8°	69.1°	28.8°	
$ arphi_1 _{oldsymbol{arphi}_2}$ (順)	90us	-66us	40us	
	32.4°	-95.04°	-144°	

(注:表格中数据正表示 φ_1 滞后于 φ_2)

思考题

(1) 根据实验结果,可以知道移相器的移相受什么影响。

答: 频率

(2) 移相器的放大倍数大致为多少。

答: 大约一倍, 具体原因在(3)的答中解答

(3) 根据移相器的电路图(见附录),分析其工作原理。

答:对第一个运放:

$$\begin{split} U_{+} &= \frac{R_{3}}{\frac{1}{j\omega C_{1}} + R_{3}} U_{i} \\ &\frac{U_{o} - U_{-}}{R_{2}} = \frac{U_{-} - U_{i}}{R_{1}} \\ &\Rightarrow U_{o} = \frac{j\omega C_{1}R_{3} - \frac{R_{2}}{R_{1}}}{j\omega C_{1}R_{3} + 1} U_{i} \end{split}$$

对第二个运放:

$$U_{+} = \frac{\frac{1}{j\omega C_2}}{\frac{1}{i\omega C_2} + R_W} U_i$$

$$\frac{U_o - U_-}{R_5} = \frac{U_- - U_i}{R_4}$$

$$\Rightarrow U_o = \frac{1 - j\omega C_2 R_w \frac{R_3}{R_4}}{j\omega C_2 R_w + 1} U_i$$

于是:

$$U_o = \frac{j\omega C_1 R_3 - \frac{R_2}{R_1}}{j\omega C_1 R_3 + 1} \cdot \frac{1 - j\omega C_2 R_w \frac{R_3}{R_4}}{j\omega C_2 R_w + 1} U_i$$

由于
$$\frac{R_2}{R_1} = \frac{R_3}{R_4} = 1$$
,故

于是放大倍数为1

移相器的工作原理便是电容的移相作用,通过调节 R_w 可以调整移相大小。

实验十四 相敏检波器单元实验

实验数据处理

1. 图 16:

当参考电压为正时,输入和输出同相, 当参考电压为负时,输入和输出反相,此电路的放大倍数为1倍。 实验效果图如下:

2. 图 17:

$V_{p-p}(V)$	0.5	1	2	4	8	16.2
$V_{\circ}(V)$	-0.20	-0.44	-0.87	-1.70	-3.57	-6.51

3.图 18:

V _{p-p} (V)	0.5	1	2	4	8	16.2
$V_{\circ}(V)$	-0.22	-0.41	-0.86	-1.68	-3.54	-6.67

(当电压幅值为 16.2V 时,发生比较大的抖动,造成对应的电压表示数偏差较大)

思考题:

(1) 根据实验结果,可以知道相敏检波器的作用是什么。移相器在实验线路中的作用 是什么(即参考端输入波形相位的作用)。

答: 相敏检波器具有鉴别调制信号相位和选频的作用。

移相器具有调整输入信号相位的作用。

(2) 在完成第五步骤后,将示波器两根输入线分别接至相敏检波器的输入端 4 和附加观察端 2 和 3,观察波形来回答相敏检波器中的整形电路的作用是什么,是将什么波转换成什么波,使得相敏检波器中的整形电路的电子开关能正常工作。

答:整形电路的作用是将信号进行修真或变换。将正弦波转换成方波。

(3) 当相敏检波器的输入与开关信号同相时,输出是什么极性的什么波,电压表的读数是什么极性的最大值。

答:输出是相同极性的正弦波,电压表读数是相反极性的最大值。

