2022-2023 MP2I

À chercher pour lundi 27/03/2023, corrigé

Exercice 1.

1) On a
$$H = \begin{cases} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n / x_1 = -\sum_{k=2}^n x_k \end{cases}$$
. On a donc :
$$H = \begin{cases} \begin{pmatrix} -x_2 - \dots - x_n \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, x_2, \dots, x_n \in \mathbb{R} \end{cases}$$

$$= \begin{cases} \begin{cases} x_1 \\ x_2 \\ x_1 \end{cases} + x_3 \begin{pmatrix} -1 \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -1 \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots + x_n \begin{pmatrix} -1 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}, x_2, \dots, x_n \in \mathbb{R} \end{cases}$$

$$= \text{Vect} \begin{pmatrix} -1 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} -1 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$

2) On va raisonner par analyse/synthèse.

Analyse: soit
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$
. On suppose que $X = Y + Z$ où $Y \in H$ et $Z \in \text{Vect} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$. Il existe donc $\lambda \in \mathbb{R}$ tel que $Z = \lambda \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$. On en déduit donc que :
$$\begin{pmatrix} x_1 = y_1 + \lambda \\ x_2 = y_2 + \lambda \end{pmatrix}$$

$$\begin{cases} x_1 = y_1 + \lambda \\ x_2 = y_2 + \lambda \\ \dots \\ x_n = y_n + \lambda \end{cases}$$

Or, on a aussi $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in H$ donc $\sum_{k=1}^n y_k = 0$. En sommant les différentes lignes du système, on

obtient donc que $\sum_{k=1}^{n} x_k = 0 + n\lambda$. On en déduit que :

$$\lambda = \frac{1}{n} \sum_{k=1}^{n} x_k$$

et que $\forall k \in [1, n], y_k = x_k - \lambda$.

On ne trouve donc qu'une possibilité pour Y et Z.

Synthèse: Réciproquement, si $X \in \mathbb{R}^n$, on définit λ et Y comme précisé dans l'analyse et on pose donc $Z = \lambda \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$. On a clairement que $Z \in \text{Vect} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ et que X = Y + Z. Il ne reste plus qu'à vérifier que $Y \in H$, ce qui est direct car :

$$\sum_{k=1}^{n} y_k = \sum_{k=1}^{n} (x_k - \lambda) = \sum_{k=1}^{n} x_k - n\lambda = 0.$$

On a donc bien $\mathbb{R}^n = H \oplus \operatorname{Vect} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ (l'analyse prouve que la somme est directe et la synthèse que

$$\mathbb{R}^n = H + \text{Vect} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}).$$

Exercice 2. E est un espace vectoriel puisqu'il contient la fonction nulle et est stable par combinaison linéaire (une combinaison linéaire de fonctions C^1 est C^1). On procède de même pour les deux autres :

 $F \subset E$, f est non vide car il contient la fonction nulle et si $f, g \in F$ et $\lambda, \mu \in \mathbb{R}$, alors on a $(\lambda f + \mu g)(0) = \lambda f(0) + \mu g(0) = 0$ et $(\lambda f + \mu g)'(0) = \lambda f'(0) + \mu g'(0) = 0$ donc $\lambda f + \mu g \in F$.

De même, on a $G \subset E$ car les fonctions affines sont C^1 , la fonction nulle est bien affine (prendre a = b = 0) et si $f, g \in G$ et $\lambda, \mu \in \mathbb{R}$, alors on a que $f : x \mapsto a_1x + b_1$ et $g : x \mapsto a_2x + b_2$ avec $a_1, b_1, a_2, b_2 \in \mathbb{R}$. On a alors :

$$\lambda f + \mu g : x \mapsto (\lambda a_1 + \mu a_2)x + \lambda b_1 + \mu b_2.$$

On a donc $\lambda f + \mu g \in G$. Au final, on a bien que F et G sont des sevs de E.

Pour montrer qu'ils sont supplémentaires, on commence par montrer que $F \cap G = \{0_E\}$. L'inclusion \supset est toujours vraie car $F \cap G$ est un espace vectoriel. Réciproquement, si $f \in F \cap G$, alors il existe $a, b \in \mathbb{R}$ tels que $f : x \mapsto ax + b$. On a alors f(0) = b et f'(0) = a. Puisque $f \in F$, on a donc a = b = 0 soit $f = 0_E$, ce qu'il fallait montrer. La somme est donc directe.

Il reste à montrer que F+G=E, l'inclusion \subset étant toujours vraie car F et G sont des sevs de E. Réciproquement, soit $h\in E$.

Analyse: si h = f + g avec $f \in F$ et $g \in G$, alors en notant $g : x \mapsto ax + b$, on a h(0) = f(0) + b = b et on a h'(0) = f'(0) + a = a.

Synthèse: on pose $g: x \mapsto ax + b$ où b = h(0) et a = h'(0) et f = h - g. On a alors directement que h = g + f et que $g \in G$. Il reste à vérifier que $f \in F$, ce qui est direct car f(0) = h(0) - b = 0 et f'(0) = h'(0) - a = 0. On a donc bien montrer que $E \subset F + G$, ce qu'il fallait montrer.

Au final, on a bien que $F \oplus G = E$.

Exercice 3. Soient
$$\lambda_0, \ldots, \lambda_n \in \mathbb{K}$$
 tels que $\sum_{k=0}^n \lambda_k P_k(X) = 0$.

1) La famille est échelonnée en degré et est donc libre.

2) On évalue
$$\sum_{k=0}^{n} \lambda_k P_k(X) = 0$$
 en $X = k_0$ où $k_0 \in [0, n]$. On remarque alors que $P_k(k_0) = 0$ si $k \neq k_0$ et que $P_{k_0}(k_0) = \prod_{i=0}^{n} (k_0 - i) \neq 0$. On a donc :

$$k \neq k_0$$
 et que $P_{k_0}(k_0) = \prod_{i=0, i \neq k_0}^n (k_0 - i) \neq 0$. On a donc :
$$\sum_{k=0}^n \lambda_k P_k(k_0) = 0 \Leftrightarrow \lambda_{k_0} \prod_{i=0, i \neq k_0}^n (k_0 - i) = 0 \Leftrightarrow \lambda_{k_0} = 0.$$

Au final, on a bien $\lambda_0 = \lambda_1 = \ldots = \lambda_n = 0$ donc la famille est bien libre.

3) On a cette fois en échangeant les sommes :

$$\begin{split} \sum_{k=0}^{n} \lambda_k P_k(X) &= 0 &\Leftrightarrow & \sum_{k=0}^{n} \sum_{i=k}^{n} \lambda_k X^i \\ &\Leftrightarrow & \sum_{i=0}^{n} \left(\sum_{k=0}^{i} \lambda_k\right) X^i. \end{split}$$

Puisque la famille $(1, X, ..., X^n)$ est libre, on a alors que pour tout $i \in [0, n]$, $\sum_{k=0}^{i} \lambda_k = 0$. En i = 0, on obtient que $\lambda_0 = 0$, en i = 1, on obtient $\lambda_0 + \lambda_1 = 0$, soit $\lambda_1 = 0$. En continuant par récurrence forte, on obtient que tous les λ_i sont nuls et donc que la famille est libre.

4) On évalue la relation $\sum_{k=0}^{n} \lambda_k X^k (X-1)^{n-k} = 0$ en X = 0. On obtient alors que $\lambda_0 (-1)^n + 0 = 0$, soit que $\lambda_0 = 0$. On en déduit en factorisant par X que :

$$\sum_{k=0}^{n} \lambda_k X^k (X-1)^{n-k} = \sum_{k=1}^{n} \lambda_k X^k (X-1)^{n-k}$$

$$= X \sum_{k=1}^{n} \lambda_k X^{k-1} (X-1)^{n-k}$$

$$= X \sum_{k=0}^{n-1} \lambda_{k+1} X^k (X-1)^{n-k-1}.$$

Puisque X est différent du polynôme nul et que tout ce polynôme est nul, on a alors que $\sum_{k=0}^{n-1} \lambda_{k+1} X^k (X-1)^{n-k-1} = 0$. En évaluant en X = 0, on obtient que $\lambda_1 = 0$. On recommence en factorisant et simplifiant par X. On obtient finalement par récurrence forte que tous les λ_i sont nuls et donc que la famille est libre.