

Протокол Telnet (TErminaL NETwork) (основное RFC -- RFC 854) реализует концепцию NVT (Network Virtual Terminal), уходящую корнями в UNIX-системы.

Первые UNIX-системы были «большими» и строились согласно модели сильносвязанных КС. Физические терминалы в таких системах подключались по выделенным каналам (расстояние могло быть несколько десятков метров) и поэтому их стали называть TTYs (TeleTYpes), хотя по сути они были локальными в современном понимании.

Виртуальные терминалы, то есть NVTs, представляют собой удаленные от хоста программные эмуляторы физических терминалов, связь с которыми «протянута» через СПД.

Изначально терминалы были текстовыми.

Текстовые терминалы различают исходя из набора поддерживаемых клавиш (основной набор, расширенный и так далее), текстового разрешения (основное -- 80х25) и некоторых других характеристик.

NVTs эмулируют основные виды текстовых терминалов.

Наиболее распространенными были следующие текстовые терминалы (выпускалось множество аналогов): DEC VT100, VT220, VT420, VT520 и IBM TN3270.

Worldwide

North American

DEC VT420 [DEC]

Почти все современные терминалы -- графические.

Соответственно, графические терминалы различают в основном исходя из графического разрешения.

Удаленные графические терминалы UNIX-систем подключают по протоколу XDMCP (X Display Manager Control Protocol).

UNIX-программа Xterm -- стандартный эмулятор текстового терминала на графическом (на одном графическом терминале можно эмулировать сразу несколько текстовых).

Следует отметить, что хост-терминальные системы не «вымерли», а их до сих пор достаточно широко применяют, особенно где беспроводные подключения не подходят по соображениям безопасности.

Усовершенствованные, значительно более компактные физические терминалы сейчас называют тонкими клиентами (thin clients).

HP t520 [HP]

Telnet базируется на клиент-серверной модели и использует транспорт TCP.

Задействуется одно соединение.

Стандартный номер программного порта Telnet-сервера -- 23.

Основная задача протокола Telnet заключается в обеспечении корректной транспортировки символов потока ввода-вывода между NVT и хостом.

Используется буферизация, в том числе чтобы излишне не загружать СПД.

В режиме по умолчанию «набранные» символы отсылаются незамедлительно.

B режиме linemode (RFC 1184) символы отсылаются после нажатия Enter.

10.2.2.1

Команды самого протокола Telnet «накладываются» на основной поток ввода-вывода путем вставки в него управляющих метасимволов.

Команды могут исходить как от Telnet-клиента, так и от Telnet-сервера.

Часть команд предназначена для выполнения и на Telnet-сервере, и на Telnet-клиенте, часть -- только для выполнения на Telnet-сервере.

Некоторые команды являются запросами и поэтому зависят от команд, являющихся подтверждениями.

Признаком Telnet-команды является метасимвол <IAC> (байт со значением 255). Далее следуют код команды (один байт) и аргументы. Если необходимо переслать равный <IAC> байт, то <IAC> повторяется два раза (байт-стаффинг).

10.2.2.2

Важной частью протокола Telnet является возможность согласования параметров NVT (например, текстового разрешения).

Эти параметры выражаются в нескольких десятках Telnet-опций (под код опции так же отведен один байт).

Изучать Telnet-опции в настоящее время смысла не имеет.

10.2.2.3a

Код	Название	Описание
240	SE	Конец согласуемой Telnet-опции
241	NOP	Холостая Telnet-команда
242	Data Mark	Принудительно синхронизировать NVT с хостом с помощью экстренных TCP-данных (выполнить буферизированные Telnet-команды)
243	Break	Прервать текущий процесс (альтернатива ctrl-c)
244	Interrupt Process	Прервать текущий Telnet-процесс на Telnet- сервере (завершить сеанс)
245	Abort Output	Прервать поток вывода на NVT
246	Are You There	Послать уведомление о получении данной команды («Вы на связи?»)
247	Erase Character	Удалить предыдущий символ (альтернатива Васкѕрасе и Delete)
248	Erase Line	Удалить предыдущую строку
249	Go Ahead	Ожидается следующая Telnet-команда
250	SB	Начало согласуемой Telnet-опции (далее должны следовать код опции и аргументы)
251	WILL	Два варианта. Предложение начать согласование Telnet- опции. Подтверждение начала согласования Telnet- опции. (Далее должен следовать код Telnet-опции)
252	WON'T	Два варианта. Предложение не начинать согласование Telnet- опции. Отказ начать согласование Telnet-опции. (Далее должен следовать код Telnet-опции)
253	DO	Два варианта. Начать согласование Telnet-опции. Ожидается согласование Telnet-опции. (Далее должен следовать код Telnet-опции)
254	DON'T	Два варианта. Не начинать согласование Telnet-опции. Не ожидается согласование Telnet-опции. (Далее должен следовать код Telnet-опции) Экранированный символ 255 в потоке
233		Экранированный символ 255 в потоке

Telnet-команды

10.2.3.1

Наиболее серьезным из недостатков Telnet является полная незащищенность соединения от несанкционированного доступа.

Данные, в том числе и пароли, пересылаются в виде открытого текста (plain text). В современных условиях это не может устраивать любую организацию, даже некоммерческую.

Стандарты в области защиты информации фактически запрещают применение Telnet.

Поэтому на смену Telnet пришел SSH (Secure SHell) -- идея та же, но соединение полноценно защищено.

В свое время предпринимались попытки доработать Telnet, но это направление оказалось тупиковым.

10.2.4.1

C<-S: <IAC> <DO> <NAWS>

C->S: <IAC> <WILL> <NAWS>

C->S: <IAC> <SB> <NAWS> 0 80 0 24 <IAC> <SE>

Пример согласования текстового разрешения (Telnet-опция NAWS)

