## Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

## SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 08.07.2011

Arbeitszeit: 120 min

| Name:              |                                           |          |          |                  |                 |         |              |      |
|--------------------|-------------------------------------------|----------|----------|------------------|-----------------|---------|--------------|------|
| Vorname(n):        |                                           |          |          |                  |                 |         |              |      |
| Matrikelnumme      | r:                                        |          |          |                  |                 |         | No           | ote: |
|                    |                                           |          |          |                  |                 |         |              |      |
|                    |                                           |          |          |                  |                 |         |              |      |
|                    | Aufgabe                                   | 1        | 2        | 3                | 4               | Σ       | ]            |      |
|                    | erreichbare Punkte                        | 10       | 10       | 10               | 10              | 40      |              |      |
|                    | erreichte Punkte                          |          |          |                  |                 |         |              |      |
|                    |                                           |          |          |                  |                 |         |              |      |
|                    |                                           |          |          |                  |                 |         |              |      |
|                    |                                           |          |          |                  |                 |         |              |      |
|                    |                                           |          |          |                  |                 |         |              |      |
|                    |                                           |          |          |                  |                 |         |              |      |
|                    |                                           |          |          |                  |                 |         |              |      |
|                    |                                           |          |          |                  |                 |         |              |      |
|                    |                                           |          |          |                  |                 |         |              |      |
|                    |                                           |          |          |                  |                 |         |              |      |
| $\mathbf{Bitte}\;$ |                                           |          |          |                  |                 |         |              |      |
| tragen Sie         | Name, Vorname und                         | Matrik   | ælnumr   | ner auf          | dem I           | )eckbla | tt ein,      |      |
| rechnen S          | ie die Aufgaben auf se                    | parate   | n Blätte | ern, <b>ni</b> c | c <b>ht</b> auf | dem A   | angabeblatt, |      |
| beginnen           | Sie für eine neue Aufg                    | abe im   | mer au   | ch eine          | neue S          | Seite,  |              |      |
| geben Sie          | auf jedem Blatt den I                     | Vamen    | sowie d  | lie Mat          | rikelnu         | mmer a  | an,          |      |
| begründer          | n Sie Ihre Antworten a                    | usführ   | lich und | d                |                 |         |              |      |
|                    | ie hier an, an welchen<br>ntreten können: | n der fo | olgende  | n Term           | nine Sie        | e nicht | zur mündlich | hen  |
|                    | □ Fr., 15.07.201                          | 1        |          | $\square$ M      | lo., 18.0       | 07.2011 |              |      |

1. Abbildung 1 zeigt ein Modell, mit dessen Hilfe die Kippbewegung eines Fahrrades um die x-Achse (Kippwinkel  $\Theta$ ) dargestellt werden kann. Die gyroskopischen Kräfte, die auf der Kreiselbewegung der Räder beruhen, werden als vernachlässigbar klein angenommen. Der Steuerkopfwinkel  $\lambda$  wird als Null angenommen, so dass die Punkte V und V' zusammenfallen. Der Abstand des Massenschwerpunktes M zur x-Achse betrage h, der Abstand zur z-Achse sei mit a gegeben. Dabei befindet sich der Ursprung des mitbewegten Koordinatensystems xyz im Auflagepunkt H des Hinterrades.



Abbildung 1: Prinzipskizzen der Fahrradgeometrie.

Nehmen Sie für die Modellierung ein Ersatzsystem nach Abbildung 1c an, bei dem die in y-Richtung wirkende Kraft zu  $F_y = -m \left(\frac{av_0}{b} \frac{1}{\cos^2 \beta} \dot{\beta} + \frac{v_0^2}{b} \tan \beta\right)$  gegeben ist. In z-Richtung wirkt die Gewichtskraft. Dabei bezeichnet m die Masse des Fahrrades mit Fahrer, b den Radstand,  $v_0 > 0$  die Geschwindigkeit des Rades in x-Richtung und  $\beta(t)$  den Lenkwinkel. Das Trägheitsmoment von Rad und Fahrer für eine Drehung um die x-Achse sei mit  $J_p$  gegeben. Es wird angenommen, dass auf die Lenkung mit dem Trägheitsmoment  $J_1$  und dem Lenkwinkel  $\beta(t)$  das Lenkmoment  $M_1(t)$  wirkt. Berücksichtigen Sie dabei eine auf die Lenkung wirkende viskose Dämpfung mit der Dämpfungskonstanten  $d_1$ .

a) Geben Sie die Modellgleichungen des nichtlinearen Systems in der Form

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x} = \mathbf{f}(\mathbf{x}, u)$$
$$y = g(\mathbf{x}, u)$$

4 P.

an. Wählen Sie dabei den Zustand  $\mathbf{x} = \left[\Theta, \dot{\Theta}, \beta, \dot{\beta}\right]$ , den Eingang  $u = M_1$  und den Ausgang  $y = \Theta$ .

- b) Bestimmen Sie allgemein die Ruhelage  $(\mathbf{x}_R, u_R)$  des Systems. Welche Bahnkur- 3 P. ven des Fahrrades sind demnach ohne Änderung des Lenkwinkels möglich und wie muss das Fahrrad hierzu jeweils gekippt sein?
- c) Linearisieren Sie das System um eine allgemeine Ruhelage  $(\mathbf{x}_R, u_R)$  und geben 3 P.| Sie es in der Form

$$\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} + \mathbf{b} \Delta u$$
$$\Delta y = \mathbf{c}^T \Delta \mathbf{x}$$

an.

 $Hinweis: \frac{d}{dx} \tan(x) = 1 + \tan^2(x)$ 

- 2. Bearbeiten Sie die nachfolgenden voneinander unabhängigen Aufgabenstellungen: 5 P.
  - a) Gegeben ist das System

$$\dot{\mathbf{x}} = \begin{bmatrix} -1/T_1 & 0 \\ -1 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1/T_1 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \mathbf{x}.$$

- i. Definieren Sie die Erreichbarkeit eines Systems und zeigen Sie, dass das System vollständig erreichbar ist.
- ii. Entwerfen Sie mithilfe der Polvorgabe  $\lambda = -0.3 \pm I0.3$  für  $T_1 = 2$  einen Zustandsregler für das System mit der Rückführung  $u = \mathbf{k}^T \mathbf{x} + gr$ . Geben Sie den Rückführvektor  $\mathbf{k} = [k_1, k_2]^T$  an.
- b) Gegeben ist das nachfolgende System. Ist das System vollständig beobachtbar? 1.5 P.|

$$\dot{\mathbf{x}} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 1 \\ 4 & 2 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}.$$

c) Gegeben ist die Übertragungsfunktion

sfunktion 
$$3.5 \,\mathrm{P.}|$$

$$G(s) = \frac{s}{s + \ln(2)}.$$

i. Bestimmen Sie die Übertragungsfunktion 
$$G(z)$$
.

ii. Was lässt sich bei Verwendung der Tustin-Transformation vom z-Bereich in den q-Bereich über die Anzahl der Pole und Nullstellen sagen?

## 3. Gegeben ist die Strecke

$$G(s) = \frac{1}{\frac{s^2}{100} + \frac{s}{10}} \ .$$

- a) Skizzieren Sie das Bode-Diagramm der Streckenübertragungsfunktion anhand 2 P.| der Asymptoten. Verwenden Sie dafür die beiliegende Vorlage.
- b) Entwerfen Sie für die Strecke G(s) mit dem Frequenzkennlinienverfahren einen 3 P.| Regler R(s) mit dem der geschlossene Regelkreis folgende Spezifikationen erfüllt:
  - Anstiegszeit  $t_r = 0.15 \,\mathrm{s}$
  - Prozentuelles Überschwingen  $\ddot{u} = 25\%$
  - Bleibende Regelabweichung  $e_{\infty} = \lim_{t \to \infty} e(t)|_{r(t) = \sigma(t)} = 0$
  - i. Geben Sie die Anforderungen an den offenen Kreis an.
  - ii. Welches Übertragungsglied benötigen Sie für den Regler, um diesen Anforderungen gerecht zu werden? Berechnen Sie die Reglerkoeffizienten.



Abbildung 2: Regelkreis mit einem Freiheitsgrad.

c) Auf den Eingang der Strecke aus Abbildung 2 wirkt eine Störung der Form 3 P.

$$d(t) = 0.25\sigma(t) + 0.5\sin(5t).$$

Bestimmen Sie die eingeschwungene Lösung des Ausgangs y(t) für r(t) = 0 mit der gegebenen Strecke G(s) und dem berechneten Regler R(s) aus Aufgabe b). Hinweis: Die numerischen Endergebnisse müssen NICHT explizit berechnet werden!

d) Der Regler 2P.

$$R(s) = \frac{s-1}{s}$$

und die Strecke

$$G(s) = \frac{s+3}{s^2 + s - 2}$$

werden in einem einfachen Regelkreis nach Abbildung 2 verwendet.

- i. Ist die Führungsübertragungsfunktion  $T_{r,y}$  des geschlossenen Regelkreises BIBO-stabil?
- ii. Ist der geschlossene Regelkreis intern stabil?

Begründen Sie Ihre Aussagen.

- 4. Bearbeiten Sie die nachfolgenden voneinander unabhängigen Aufgabenstellungen.
  - a) Asymptotische Stabilität

5 P.

- i. Wie ist asymptotische Stabilität definiert?
- ii. Die Impulsantwort eines Systems mit den Parametern a und  $\omega_0$  laute

$$y(t) = e^{-at}cos(w_0t)$$

Für welche Werte von a und  $\omega_0$  ist das System stabil, für welche instabil?

iii. Gegeben ist eine  $PT_2$ -Strecke mit I-Regler. Nachfolgend ist die Gleichung für den geschlossenen Kreis dargestellt.

$$T_{r,y}(s) = \frac{K_0}{T_1 T_2 s^3 + (T_1 + T_2) s^2 + s + K_0}$$

 $T_1$  und  $T_2$  der Verzögerungsglieder seien bekannt und größer als 0. Bestimmen Sie nach Hurwitz den Wertebereich von  $K_0$ , für welchen der Regelkreis asymptotisch stabil ist.

b) Gegeben ist ein zeitdiskretes LTI-System

2 P.|

$$\mathbf{x}_{k+1} = \mathbf{\Phi} \mathbf{x}_k$$
.

Die Transitionsmatrix des Systems hat die Form

$$\Psi(k) = \begin{bmatrix} \left(\frac{1}{c}\right)^k & d^{k-1} - 1\\ a - 0.5 & b^{3k-3} \end{bmatrix}.$$

- i. Wie lauten die Eigenschaften der Transitionsmatrix?
- ii. Bestimmen Sie die konstanten Parameter  $a,b,c,d\in\mathbb{R}$  so, dass Sie als Dynamikmatrix des Systems die Matrix

$$\mathbf{\Phi} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

erhalten.

c) Die folgende Abbildung zeigt die Impulsantwortfolge  $(g_k)$  eines linearen zeitin- 3 P.| varianten Abtastsystems.



i. Bestimmen Sie aus den gegebenen Übertragungsfunktionen  $G_i(z)$ ,  $i=1,\ldots,4$ , die zu der dargestellten Impulsantwortfolge passende. Begründen Sie für jede der drei verbliebenen Übertragungsfunktionen, warum diese nicht zu der Impulsantwortfolge passen.

$$G_1(z) = \frac{-2z^3 + 4z^2 + z + 4}{(z-1)^3}$$

$$G_2(z) = \frac{-2z^3 + 4z^2 + z + 4}{z^3}$$

$$G_3(z) = \frac{-4z^2 + z + 4}{z^2}$$

$$G_4(z) = \frac{-4z^2 + z + 4}{z^3}$$

ii. Geben Sie den Grenzwert  $\lim_{k\to\infty}(y_k)$  der Ausgangsfolge des Systems auf Anregung mit einem Einheitssprung  $(u_k)=(1,1,1,1,\ldots)$  an, falls dieser existiert.

