Random Variables and Probability Distributions

B39AX — Fall 2023

Heriot-Watt University

Random variables

Often *indirect* outcomes of an experiment are more interesting than direct outcomes.

Example: profits in the stock market (indirect) vs stock values (direct)

Random variable: a function from sample space Ω to \mathbb{R}

Random variables

<u>Unfortunate term</u>: random variables (RVs) are functions, not variables

Convention: write RVs in upper case, numbers in its range in lower case

Example: Let RV X represent total number of heads in 10 flips of a coin

Random variables

Another Example:

Consider the value of 20 stocks $\Omega = (\mathbb{R}_+, \mathbb{R}_+, \dots, \mathbb{R}_+)$, e.g., (Open Al, Amazon, Meta, Google, . . .)

I invested $\pounds 5000$ in 1 Open AI, 30 Amazon, and 5 Meta stocks

My profit/loss on day t: $X_t(\omega) = \omega_1 + 30 \omega_2 + 5 \omega_3 - 5000$

When day t is over, my profit/loss on day t is $x_t = X_t(\omega^{\rm act}).$ $\big|_{\ensuremath{\textit{Tyche}}}$

Discrete and continuous RVs

Discrete random variable

It takes values in a countable subset $\{x_1, x_2, \ldots\}$ of $\mathbb R$

Continuous random variable

It takes values in a continuous (uncountable) subset of ${\mathbb R}$

Discrete and continuous RVs

Examples:

• X : total number of heads in 10 flips of a coin

$$X: \Omega \to \{0, 1, \dots, 10\}$$

$$|_{\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\}}$$

discrete

ullet Y : length of the tallest tree on campus

$$Y:\,\Omega\to\mathbb{R}_{++}=\{x\,:\,x>0\}$$

continuous

But how do we characterize/describe a random variable?

Exercise

Consider the random experiment of tossing 2 dice independently.

$$\Omega = \Big\{ (1,1), (1,2), \dots, (2,1), \dots, (6,5), (6,6) \Big\}$$
 36 events

We are interested not in the values of the dice, but only in their sum.

Define the random variable (RV) X as the sum of both dice.

Compute
$$\mathbb{P}(X=x)$$
, for $x=2,3,\ldots,12$.

Ans:
$$\mathbb{P}(X = x) = (6 - |x - 7|)/36$$

PMF, PDF, and CDF

Probability mass function (pmf) of a discrete RV X:

$$p_X(x) := \mathbb{P}(X = x)$$
, for x in a countable set.

Probability density function (pdf) of a **continuous** RV X is f_X s.t.

$$\mathbb{P}(a \le X \le b) = \int_a^b \mathbf{f}_X(t) dt, \quad \text{for any } a \le b.$$

Cumulative distribution function (cdf) of any RV X is the function

$$F_X(x) = \mathbb{P}\big(X \leq x\big) = \left\{ \begin{array}{ll} \displaystyle \sum_{i \leq x} p_X(i) & \text{, if X is discrete} \\ \\ \displaystyle \int_{-\infty}^x f_X(t) \, dt & \text{, if X is continuous.} \end{array} \right.$$

Discrete RV

Continuous RV

$$\mathbb{P}(a \le X \le b) = F_X(b) - F_X(a)$$
$$= \int_a^b f_X(x) dx$$

Properties

Because $\mathbb{P}(X \in \mathbb{R}) = \mathbb{P}(\omega \in \Omega) = 1$,

- $\bullet \sum_{x=-\infty}^{+\infty} p_X(x) = 1$
- $\bullet \ \int_{-\infty}^{+\infty} f_X(x) \, dx = 1 \quad \text{(for continuous RVs)}$
- $F_X(\infty) = \mathbb{P}(X \le +\infty) = 1$ (for both discrete and continuous RVs)

Example: Bernoulli random variable

X is a Bernoulli random variable if it takes only two values:

- 1 (success) with probability p, i.e., $p_X(1) = \mathbb{P}(X=1) = p$
- 0 (failure) with probability 1-p, i.e., $p_X(0)=\mathbb{P}(X=0)=1-p$

We also say that X has Bernoulli distribution, and write

$$X \sim \mathrm{Ber}(p)$$

It is a valid probability distribution, because

$$\sum_{k} p_X(k) = \sum_{k=0}^{1} p_X(k) = p_X(0) + p_X(1) = (1-p) + p = 1$$

Example:

X = "Randomly selected student scores ≥ 90 in exam", $X \sim \text{Ber}(0.1)$

Joint PMF, PDF, and CDF

Joint pmf of two **discrete** RVs X and Y is the function

$$p_{XY}(x, y) := \mathbb{P}(X = x, Y = y) = \mathbb{P}(\{X = x\} \cap \{Y = y\})$$

Joint pdf of a *continuous* RVs X and Y is $f_{XY}(x, y)$ such that

$$\mathbb{P}(a \le X \le b, c \le Y \le d) = \int_{c}^{d} \int_{a}^{b} f_{XY}(x, y) dx dy$$

Joint cdf of any RVs X and Y is the function

$$F_{XY}(x, y) = \mathbb{P}(X \le x, Y \le y)$$

Example

Let X = "Sunny today", Y = "Sunny tomorrow"

The joint PMF can be given in tabular form:

$$X = \begin{array}{|c|c|c|c|c|c|c|c|}\hline S & NS \\ \hline S & \frac{1}{100} & \frac{9}{100} & \frac{1}{10} \\ \hline NS & \frac{9}{100} & \frac{81}{100} & \frac{9}{10} \\ \hline & \frac{1}{10} & \frac{9}{10} & 1 \\ \hline \end{array} \quad \mathbb{P}(X = \mathsf{S}, Y = \mathsf{S}) + \mathbb{P}(X = \mathsf{S}, Y = \mathsf{NS}) = \mathbb{P}(X = \mathsf{NS}) \\ \hline = \mathbb{P}(X = \mathsf{NS}, Y = \mathsf{S}) + \mathbb{P}(X = \mathsf{NS}, Y = \mathsf{NS}) = \mathbb{P}(X = \mathsf{NS})$$

Marginal PMFs:

$$p_X(x) = \sum_y p_{XY}(x, y) \qquad p_Y(y) = \sum_x p_{XY}(x, y)$$

Independence of random variables

The random variables X and Y are **independent** if the events $\{X \leq x\}$ and $\{Y \leq y\}$ are independent for all x and y.

Equivalently, for all x and y,

- X and Y are independent if $F_{XY}(x, y) = F_X(x) \cdot F_Y(y)$
- X and Y (discrete) are independent if $p_{XY}(x, y) = p_X(x) \cdot p_Y(y)$
- ullet X and Y (continuous) are independent if $f_{XY}(x,\,y)=f_X(x)\cdot f_Y(y)$

Are X and Y in the previous example independent?

Expected value

Expectation summarizes all possible outcomes of a RV into one number.

Examples

Expected returns from the stock market, expected # of students in class

Expected value of RV X is represented as $\mathbb{E}[X]$.

If X is discrete,

$$\mathbb{E}[X] = \sum_{k} k \cdot p_X(k)$$

If X is continuous,

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx$$

Expected value

Example: Let $X \sim \mathsf{Ber}(p)$.

$$p_X(k) = \begin{cases} 1 - p & , k = 0 \\ p & , k = 1 \end{cases}$$

Then,

$$\mathbb{E}[X] = \sum_{k=0}^{1} k \cdot p_X(k) = 0 \cdot (1-p) + 1 \cdot p = p$$

Expected value of a function

$$\left\{ \begin{array}{ll} X \text{ is a RV} \\ & \Longrightarrow & g(X): \text{ is also a RV} \\ g: \mathbb{R} \to \mathbb{R} \text{ is a generic function} \end{array} \right.$$

Expected value of q(X):

• If X is discrete and has pmf $p_X(k)$,

$$\mathbb{E}[g(X)] = \sum_{k=-\infty}^{+\infty} g(k) \cdot p_X(k)$$

• If X is continuous and has pdf $f_X(x)$,

$$\mathbb{E}[g(X)] = \int_{-\infty}^{+\infty} g(x) \cdot f_X(x) \, dx$$

Properties of the expected value

• The expected value is a linear operator: for any $a,b\in\mathbb{R}$,

$$\mathbb{E}\big[a\,X+b\big] = a\,\mathbb{E}[X] + b$$

ullet For any RVs X and Y,

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

ullet If X and Y are independent,

$$\mathbb{E}[X\cdot Y] = \mathbb{E}[X]\cdot \mathbb{E}[Y]$$

Proofs at the end of the slides

Variance

Variance of RV
$$X$$
: $Var(X) = \mathbb{E}\Big[\big(X - \mathbb{E}[X]\big)^2\Big]$

 ${\sf Var}(X)$ measures the dispersion of the distribution of X around $\mathbb{E}[X]$:

Standard deviation of RV X: $\sigma_X = \sqrt{\text{Var}(X)}$ (same units as X)

Properties of the variance

- $\bullet \ \operatorname{Var}(X) \geq 0 \quad \text{for any RV } X$
- $\bullet \ \operatorname{Var}(X) = \mathbb{E} \Big[\big(X \mathbb{E}[X] \big)^2 \Big] = \mathbb{E} \big[X^2 \big] \Big(\mathbb{E}[X] \Big)^2$
- $Var(aX + b) = a^2 Var(X)$, for any $a, b \in \mathbb{R}$
- $\bullet \ \, \text{If} \,\, X \,\, \text{and} \,\, Y \,\, \text{are independent,} \,\, \mathsf{Var}(X+Y) = \mathsf{Var}(X) + \mathsf{Var}(Y)$

Proofs at the end of the slides

X has **Gaussian** or **normal distribution**, $X \sim \mathcal{N}(\mu, \sigma^2)$, if its pdf is

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

It can be shown that

- $\bullet \int_{-\infty}^{\infty} f_X(x) \, dx = 1$
- $\mathbb{E}[X] = \mu$
- $Var(X) = \sigma^2$

X has **standard normal distribution** if $X \sim \mathcal{N}(0,1)$; its cdf is $\Phi(z)$

 $X \sim \mathcal{N}(0,1)$ arises "everywhere", because of the central limit theorem

Normality is preserved under linear transformations

If $X \sim \mathcal{N}(\mu, \sigma^2)$ and $a \neq 0$ and b are scalars, then

$$Y = aX + b$$

is also normal with

$$\mathbb{E}[Y] = a\,\mu + b \qquad \qquad \mathsf{Var}(Y) = a^2\sigma^2$$

That is,

$$Y \sim \mathcal{N}\left(a\,\mu + b, \, a^2\sigma^2\right)$$

Let $X \sim \mathcal{N}(\mu, \sigma^2)$

 $\mathbb{P}(a \leq X \leq b)$ can be computed using tables for $Z \sim \mathcal{N}(0,1)$

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830

The values of this table give
$$\Phi(z):=\mathbb{P}(Z\leq z)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^z e^{-\frac{t^2}{2}}\,dt$$

For example, $\Phi(0.42) = 0.6628$

Procedure for computing $\mathbb{P}(a \leq X \leq b)$ for $X \sim \mathcal{N}(\mu, \sigma^2)$

- Transform X into $Z = \frac{X \mu}{\sigma} \sim \mathcal{N}(0, 1)$
- Use symmetry of Z around the origin to compute $\Phi((a-\mu)/\sigma)$ and $\Phi((b-\mu)/\sigma)$ from the tables (draw the pdf of Z)
- $\mathbb{P}(a \le X \le b) = \Phi((b-\mu)/\sigma) \Phi((a-\mu)/\sigma)$

Justification:

$$\mathbb{P}(a \le X \le b) = \mathbb{P}\left(\frac{a-\mu}{\sigma} \le \frac{X-\mu}{\sigma} \le \frac{b-\mu}{\sigma}\right)$$
$$= \mathbb{P}\left(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$

Exercise

The number new students in EEE at HW each year is modeled as a normal RV with mean 60 and standard deviation 20. What is the probability that next year we will have more than 80 new students?

Ans: $\simeq 0.1587$

Binomial distribution

Perform n independent Bernoulli trials X_1, \ldots, X_n , where $X_i \sim \text{Ber}(p)$ Total # of successes $Y = X_1 + \cdots + X_n$ has binomial distribution

$$Y \sim \mathsf{Bin}(n, p)$$

•
$$p_Y(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

 $k = 0, 1, \dots, n$

$$\bullet \sum_{k=0}^{n} p_Y(k) = 1$$

- $\mathbb{E}[Y] = np$
- Var(Y) = np(1-p)

Continuous uniform distribution

X has continuous uniform distribution in [a,b], $X \sim \mathcal{U}(a,b)$, if

$$f_X(x) = \begin{cases} \frac{1}{b-a} &, x \in [a,b] \\ 0 &, x \notin [a,b] \end{cases}$$

$$\bullet \int_{-\infty}^{+\infty} f_X(x) \, dx = 1$$

$$\bullet \ \mathbb{E}[X] = \frac{a+b}{2}$$

•
$$Var(X) = \frac{(b-a)^2}{12}$$

Discrete uniform distribution

X has discrete uniform distribution between $a \in \mathbb{N}$ and $b \in \mathbb{N}$, if

$$p_X(x) = \begin{cases} \frac{1}{b-a+1} &, a \le x \le b \\ 0 &, \text{ otherwise} \end{cases}$$

$$\bullet \sum_{k=a}^{b} p_X(k) = 1$$

•
$$\mathbb{E}[X] = \frac{a+b}{2}$$

•
$$Var(X) = \frac{(b-a+1)^2-1}{12}$$

Poisson distribution

X has Poisson distribution with parameter λ , $X \sim \mathsf{Poisson}(\lambda)$, if

$$p_X(k) = \frac{\lambda^k e^{-\lambda}}{k!}, \qquad k = 0, 1, \dots$$

$$\bullet \sum_{k=0}^{+\infty} p_X(k) = 1$$

- $\mathbb{E}[X] = \lambda$
- $Var(X) = \lambda$

Exponential distribution

X has exponential distribution with parameter λ , $X \sim \mathsf{Exp}(\lambda)$, if

$$f_X(x) = \lambda e^{-\lambda x}$$
, for $x \ge 0$

- $\bullet \int_0^{+\infty} f_X(x) \, dx = 1$
- $\mathbb{E}[X] = \frac{1}{\lambda}$
- $\operatorname{Var}(X) = \frac{1}{\lambda^2}$

Cauchy distribution

X has standard Cauchy distribution, if

$$f_X(x) = \frac{1}{\pi(1+x^2)}$$

$$\bullet \int_{-\infty}^{+\infty} f_X(x) \, dx = 1$$

•
$$\mathbb{E}[X] = \infty$$

•
$$Var(X) = \infty$$

Proofs

Proofs: Properties of the expected value

Proofs just for continuous RVs; for discrete RVs it's similar

$$\mathbb{E}\big[a\,X+b\big] = a\,\mathbb{E}[X] + b$$

Proof

$$\mathbb{E}[a X + b] = \int (a x + b) f_X(x) dx = a \underbrace{\int x f_X(x) dx}_{\mathbb{E}[X]} + b \underbrace{\int f_X(x)}_{1} dx$$
$$= a \mathbb{E}[X] + b,$$

where we used the linearity of the integral, the definition of expected value, and the fact that $f_X(x)$ is a pdf.

Proofs: Properties of the expected value

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

Proof

$$\mathbb{E}[X+Y] = \int \int (x+y)f_{XY}(x,y) \, dx \, dy$$

$$= \int \int x \, f_{XY}(x,y) \, dx \, dy + \int \int y \, f_{XY}(x,y) \, dx \, dy$$

$$= \int x \left(\underbrace{\int f_{XY}(x,y) \, dy}_{f_X(x)}\right) dx + \int y \left(\underbrace{\int f_{XY}(x,y) \, dx}_{f_Y(y)}\right) dy$$

$$= \int x f_X(x) \, dx + \int y f_Y(y) \, dy$$

$$= \mathbb{E}[X] + \mathbb{E}[Y],$$

where we used Fubini's theorem and computed marginal pdfs.

Proofs: Properties of the expected value

If X and Y are independent, then $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Proof

$$\mathbb{E}[X \cdot Y] = \int \int x \, y \, f_{XY}(x, y) \, dx \, dy$$

$$= \int \int x \, y \, f_X(x) \, f_Y(y) \, dx \, dy$$

$$= \int y \left(\underbrace{\int x \, f_X(x) \, dx}_{\mathbb{E}[X]} \right) f_Y(y) \, dy$$

$$= \mathbb{E}[X] \int y \, f_Y(y) \, dy$$

$$= \mathbb{E}[X] \cdot \mathbb{E}[Y],$$

where we used the independence of X and Y in the 2nd equality, and the fact that $\mathbb{E}[X]$ is a number in the 4th equality.

The property ${\sf Var}(X) \geq 0$ follows from the definition by observing that the expected value of a nonnegative RV is always nonnegative:

$$\operatorname{Var}(X) = \mathbb{E}\Big[\underbrace{\big(X - \mathbb{E}(X)\big)^2}_{>0}\Big] \ge 0.$$

For example, for a continuous RV, if $Y \ge 0$, then

$$\mathbb{E}[Y] = \int \underbrace{y \cdot f_Y(y)}_{>0} dy \ge 0.$$

$$\mathsf{Var}(X) = \mathbb{E}\big[X^2\big] - \big(\mathbb{E}[X]\big)^2$$

Proof

$$\begin{aligned} \mathsf{Var}(X) &= \mathbb{E}\Big[\big(X - \mathbb{E}[X]\big)^2\Big] \\ &= \mathbb{E}\Big[X^2 - 2X \cdot \mathbb{E}[X] + \big(\mathbb{E}[X]\big)^2\Big] \\ &= \mathbb{E}\big[X^2\big] - 2\mathbb{E}[X] \cdot \mathbb{E}[X] + \big(\mathbb{E}[X]\big)^2 \\ &= \mathbb{E}\big[X^2\big] - \big(\mathbb{E}[X]\big)^2 \,, \end{aligned}$$

where the third equality uses the linearity of the expectation and fact that $\mathbb{E}[X]$ is a constant, i.e., $\mathbb{E}\big[\mathbb{E}[X]\big] = \mathbb{E}[X]$.

For any scalars a and b, $Var(aX + b) = a^2 Var(X)$.

Proof

$$\begin{aligned} \operatorname{Var}(a\,X+b) &= \mathbb{E}\Big[\Big(a\,X+b-\mathbb{E}[a\,X+b]\Big)^2\Big] \\ &= \mathbb{E}\Big[\Big(a\,X+b-a\,\mathbb{E}[X]+b\Big)^2\Big] \\ &= \mathbb{E}\Big[a^2\,\big(X-\mathbb{E}[X]\big)^2\Big] \\ &= a^2\,\mathbb{E}\Big[\big(X-\mathbb{E}[X]\big)^2\Big] \\ &= a^2\operatorname{Var}(X)\,. \end{aligned}$$

In the second and fourth equalities, we used the linearity of the expectation.

If X and Y are independent, then $\mathrm{Var}(X+Y)=\mathrm{Var}(X)+\mathrm{Var}(Y)$ Proof

$$\begin{split} \mathsf{Var}(X+Y) &= \mathbb{E}\Big[\big(X+Y-\mathbb{E}[X]-\mathbb{E}[Y]\big)^2 \Big] \\ &= \mathbb{E}\Big[\big((X-\mathbb{E}[X])+(Y-\mathbb{E}[Y])\big)^2 \Big] \\ &= \mathsf{Var}(X)+\mathsf{Var}(Y)+2\mathbb{E}\Big[\big(X-\mathbb{E}[X]\big)\cdot \big(Y-\mathbb{E}[Y]\big) \Big] \\ &= \mathsf{Var}(X)+\mathsf{Var}(Y)+2\mathbb{E}\big[\big(X-\mathbb{E}[X]\big) \big]\cdot \mathbb{E}\big[\big(Y-\mathbb{E}[Y]\big) \big] \\ &= \mathsf{Var}(X)+\mathsf{Var}(Y)+2 \big(\mathbb{E}[X]-\mathbb{E}[X]\big)\cdot \big(\mathbb{E}[Y]-\mathbb{E}[Y]\big) \\ &= \mathsf{Var}(X)+\mathsf{Var}(Y)\,. \end{split}$$

In the fourth equality we used the fact that if X and Y are independent, so are X-a and Y-b, for any constants a and b (see next page). \Box

Proof that if X and Y are independent, so are X-a and Y-b:

$$\begin{split} \mathbb{E}[(X-a)\cdot(Y-b)] &= \mathbb{E}\big[XY-bX-aY+ab\big] \\ &= \mathbb{E}[XY]-b\cdot\mathbb{E}[X]-a\cdot\mathbb{E}[Y]+ab \\ &= \mathbb{E}[X]\cdot\mathbb{E}[Y]-b\cdot\mathbb{E}[X]-a\cdot\mathbb{E}[Y]+ab \\ &= \mathbb{E}[X]\cdot\big(\mathbb{E}[Y]-b\big)-a\cdot\big(\mathbb{E}[Y]-b\big) \\ &= \big(\mathbb{E}[X]-a\big)\cdot\big(\mathbb{E}[Y]-b\big)\,, \end{split}$$

where in the second equality we used the linearity of the expectation, and in the third equality the fact that X and Y are independent.