

Silicon Schottky Diode

- General-purpose diode for high-speed switching
- Circuit protection
- Voltage clamping
- High-level detecting and mixing
- Pb-free (RoHS compliant) package
- Qualified according AEC Q101¹)

BAS140W BAS40-02L

BAS40-04

BAS40-05 BAS40-05W

BAS40-06 BAS40-06W

BAS40

BAS40-07 BAS40-07W

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Туре	Package	Configuration	Marking
BAS140W	SOD323	single	white 4
BAS40	SOT23	single	43s
BAS40-02L*	TSLP-2-1	single, leadless	FF
BAS40-04	SOT23	series	44s
BAS40-05	SOT23	common cathode	45s
BAS40-05W	SOT323	common cathode	45s
BAS40-06	SOT23	common anode	46s
BAS40-06W	SOT323	common anode	46s
BAS40-07	SOT143	parallel pair	47s
BAS40-07W	SOT343	parallel pair	47s

^{1*} BAS40-02L is not qualified according AEC Q101

Maximum Ratings at T_A = 25 °C, unless otherwise specified

Parameter	Symbol	Value	Unit
Diode reverse voltage	V_{R}	40	V
Forward current	I _F	120	mA
Non-repetitive peak surge forward current	I _{FSM}	200	
<i>t</i> ≤ 10ms			
Total power dissipation	P _{tot}		mW
BAS140W, <i>T</i> _S ≤ 113°C		250	
BAS40, BAS40-07, <i>T</i> _S ≤ 81°C		250	
BAS40-02L, $T_S \leq 127^{\circ}C$		250	
BAS40-04, BAS40-06, $T_{S} \le 56^{\circ}\text{C}$		250	
BAS40-06W, $T_S \leq 106^{\circ}C$		250	
BAS40-05, <i>T</i> _S ≤ 31°C		250	
BAS40-05W, $T_S \leq 98^{\circ}C$		250	
BAS40-07W, $T_{S} \le 118^{\circ}C$		250	
Junction temperature	T _j	150	°C
Operating temperature range	T_{op}	-55150	
Storage temperature	T _{stg}	-55150	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R _{thJS}		K/W
BAS140W		≤ 150	
BAS40, BAS40-07		≤ 275	
BAS40-02L		≤ 90	
BAS40-04, BAS40-06		≤ 375	
BAS40-06W		≤ 175	
BAS40-05		≤ 475	
BAS40-05W		≤ 205	
BAS40-07W		≤ 125	

 $^{^{1}}$ For calculation of R_{thJA} please refer to Application Note AN077 (Thermal Resistance Calculation)

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics	1		1	1	
Breakdown voltage	$V_{(BR)}$	40		-	V
$I_{(BR)} = 10 \ \mu A$					
Reverse current	I_{R}	-	-	1	μΑ
<i>V</i> _R = 30 V					
Forward voltage	V_{F}				mV
I _F = 1 mA		250	310	380	
<i>I</i> _F = 10 mA		350	450	500	
<i>I</i> _F = 40 mA		600	720	1000	
Forward voltage matching ¹⁾	ΔV _F	-	-	20	
<i>I</i> _F = 10 mA					
AC Characteristics		<u> </u>			
Diode capacitance	c_{T}	-	3	5	pF
$V_{R} = 0$, $f = 1 \; MHz$					
Differential forward resistance	R _F	-	10	-	Ω
$I_{\rm F}$ = 10 mA, f = 10 kHz					
Charge carrier life time	τ _{rr}	-	-	100	ps
<i>I</i> _F = 25 mA					

 $^{^{1}\!\}Delta V_{\mathrm{F}}$ is the difference between lowest and highest V_{F} in a multiple diode component.

Diode capacitance $C_T = f(V_R)$

f = 1MHz

Forward resistance $r_f = f(I_F)$

f = 10 kHz

Reverse current $I_R = f(T_A)$

 V_{R} = Parameter

Reverse current $I_R = f(V_R)$

 T_A = Parameter

Forward Voltage $V_F = f(T_A)$

 I_{F} = Parameter

Forward current $I_F = f(V_F)$

 T_A = Parameter

Forward current $I_F = f(T_S)$

BAS140W

Forward current $I_F = f(T_S)$

BAS40, BAS40-07

Forward current $I_F = f(T_S)$

BAS40-02L

Forward current $I_F = f(T_S)$

BAS40-04, BAS40-06

Forward current $I_F = f(T_S)$

BAS40-06W

Forward current $I_F = f(T_S)$

BAS40-05

Forward current $I_F = f(T_S)$

BAS40-05W

Forward current $I_F = f(T_S)$

BAS40-07W

Permissible Puls Load $R_{thJS} = f(t_p)$ BAS140W

Permissible Pulse Load

 $I_{\text{Fmax}}/I_{\text{FDC}} = f(t_{\text{p}})$ BAS140W

Permissible Puls Load $R_{thJS} = f(t_p)$ BAS40-02L

Permissible Puls Load $R_{thJS} = f(t_p)$ BAS40-06W

Permissible Pulse Load

 $I_{\text{Fmax}}/I_{\text{FDC}} = f(t_{\text{p}})$ BAS40-02L

Permissible Pulse Load

 $I_{\text{Fmax}}/I_{\text{FDC}} = f(t_{\text{p}})$ BAS40-06W

Permissible Puls Load $R_{thJS} = f(t_p)$ BAS40-05W

Permissible Pulse Load

$$I_{\text{Fmax}}/I_{\text{FDC}} = f(t_{\text{p}})$$

BAS40-05W

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

1) Lead width can be 0.6 max. in dambar area

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

1) Dimension applies to plated terminal

Foot Print

For board assembly information please refer to Infineon website "Packages"

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 15.000 Pieces/Reel Reel ø330 mm = 50.000 Pieces/Reel (optional)

Edition 2009-11-16

Published by Infineon Technologies AG 81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.