Università di Trieste

Laurea in ingegneria elettronica e informatica

Enrico Piccin - Corso di Analisi matematica II - Prof. Franco Obersnel ${\bf Anno~Accademico~2022/2023-3~Ottobre~2022}$

Indice

1 Introduzione		
2	Serie numeric	a
	2.1 Convergen	za, divergenza e indeterminatezza di una serie
	2.1.1 Co	nvergenza di una serie
	2.1.2 Div	vergenza di una serie
	2.1.3 Ind	leterminatezza di una serie
	2.2 Serie geom	netrica

1 Introduzione

Considerando un foglio di carta, dividendolo in due metà esatte, si ottiene $\frac{1}{2}$ del profilo quadrato di partenza. Considerando una delle due metà, e suddividendola ancora in due, si ottiene $\frac{1}{4}$ del profilo quadrato di partenza. Ripetendo questo procedimento, si otterranno le seguenti frazioni del profilo quadrato originario: $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$, $\frac{1}{64}$, Sommando tutte le frazioni di profilo quadrato, alla fine si otterrà il profilo quadrato di partenza, ossia la frazione 1. Ecco quindi che, contrariamente a quanto voleva sostenere **Parmenide**, **Zenone** scoprì che

$$\boxed{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \dots = 1 \to \sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^n = 1}$$

Ciò non risulta essere banale: una somma di **infinite quantità positive** produce una quantità finita. Quello che si è ottenuto è una **serie (numerica) geometrica di ragione** $\frac{1}{2}$.

2 Serie numerica

Di seguito si espone la definizione di **serie numerica**:

SERIE NUMERICA

Data una successione $(a_n)_n$ con valori nel campo complesso $a_n \in \mathbb{C}$. Si consideri una nuova successione $(s_n)_n$ definita **per ricorrenza** come segue

$$s_{n+1} = s_n + a_{n+1}$$
 posto $s_0 = a_0$

Ciò significa che

- $s_0 = a_0$
- $s_1 = a_0 + a_1$
- $s_2 = a_0 + a_1 + a_2$
- e via di seguito...

La serie $a_0 + a_1 + a_2 + ...$ è la **coppia ordinata** delle due successioni, come mostrato di seguito

$$((a_n)_n,(s_n)_n)$$

ove la successione $(a_n)_n$ prende il nome successioni dei termini generali, mentre la successione $(s_n)_n$ si chiama successione delle ridotte o delle somme parziali della serie.

Esempio: Posto $a_1 = \frac{1}{2}$ e il termine generale $a_n = \left(\frac{1}{2}\right)^n$, la ridotta sarà

$$s_n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^n}$$

osservando bene di partire da n = 1 e non da 0.

2.1 Convergenza, divergenza e indeterminatezza di una serie

Data una serie, ossia data una coppia di successioni, è possibile ora andare a studiare il comportamento della successione delle ridotte.

2.1.1 Convergenza di una serie

Di seguito si espone la definizione di convergenza di una serie:

CONVERGENZA DI UNA SERIE

Se la successione delle ridotte di una serie è convergente, si dice che la serie è convergente e il limite della successione delle ridotte prende il nome di **somma della serie**. In altre parole, se **esiste finito** il

$$\lim_{n \to +\infty} s_n = s \in \mathbb{C}$$

allora la serie si dice convergente e il limite s si dice somma della serie e si scrive

$$\sum_{n=0}^{+\infty} a_n = s$$

Attenzione: Molto spesso si utilizza la notazione sopra esposta per indicare sia la serie stessa, sia la sua somma, per cui può essere fuorviante. Lo si può capire dal contesto: una serie potrebbe non essere convergente, e quindi non avere una somma.

Esempio: Se si considera $a_n = 1, \forall n$, per cui

$$1 + 1 + 1 + \dots = \sum_{n=0}^{n} 1$$

allora la somma parziale è $s_n = n + 1$, ovvero una successione divergente a $+\infty$:

$$\lim_{n \to +\infty} s_n = +\infty$$

Ciò significa che la serie non converge, ma è divergente, per cui non ha nemmeno una somma.

Osservazione: Si osservi che la divergenza a $+\infty$ di una serie ha significato solamente quando i termini generali sono sul campo reale: se una serie ha termine generico nel campo complesso, non può essere divergente a $+\infty$, in quanto non esiste un limite infinito nel campo complesso (a meno che non si consideri il modulo).

2.1.2 Divergenza di una serie

Di seguito si espone la definizione di divergenza di una serie:

DIVERGENZA DI UNA SERIE

Se la successione delle ridotte di una serie (a termine generale reale) è divergente, si dice che la serie è divergente; in questo caso, la serie non presenta una somma. In altre parole, se data $a_n \in \mathbb{R}, \forall n$, e posto

$$\lim_{n \to +\infty} s_n = +\infty \text{ o } -\infty$$

la serie si dice divergente.

Esempio: Se $a_n = a \in \mathbb{R}$ costante, allora la serie con termine generale a_n

$$a_0 + a_1 + a_2 + \dots$$

è necessariamente

- divergente a $+\infty$ se a > 0
- divergente a $-\infty$ se a < 0
- convergente, con somma 0, se a=0

Attenzione: se $a \neq 0$, ma $a \in \mathbb{C} - \mathbb{R}$, si dice semplicemente che la serie **non converge** (non ha senso parlare di divergenza).

2.1.3 Indeterminatezza di una serie

Di seguito si espone la definizione di **serie indeterminata**:

SERIE INDETERMINATA

Una serie si dice **indeterminata** se non converge e non diverge.

Esempio 1: Per quello che si è visto, una serie a termine generale costante, complesso e non reale, è indeterminata.

Esempio 2: Un esempio di serie a termini reali, ma indeterminata, è la serie di Grandi, definita così:

$$\sum_{n=0}^{+\infty} (-1)^n$$

per cui $s_0 = (-1)^0 = 1$ e $s_1 = a_0 + a_1 = 1 + (-1)^1 = 0$. Pertanto si ha che

- $s_n = 1$ se n è pari
- $s_n = 0$ se n è dispari

Per cui si ha che

$$\lim_{n \to +\infty} s_0 = ? \text{ non esiste}$$

E per dimostrare che non esiste, si può semplicemente dimostrare che due sotto-successioni della successione delle somme parziali convergono a limiti diversi (ossia la sotto-successioni degli indici pari e quella dei dispari); infatti:

- $\bullet \lim_{k \to +\infty} s_{2k} = 1$
- $\bullet \lim_{k \to +\infty} s_{2k+1} = 0$

per cui sono state ottenute due sotto-successioni che presentano limite differente: per il teorema dell'unicità del limite e il teorema del limite delle sotto-successioni di una successione, si conclude che la successione delle somme parziali è indeterminata.

Osservazione: La serie di Grandi è una serie che può essere usata per dimostrare l'esistenza di Dio, in quanto commutando fra di loro i differenti termini può essere fatta convergere a qualsiasi (o quasi) numero finito.

Se, infatti, si considerano le somme

- $(1-1) + (1-1) + (1-1) + \dots = 0$
- $1 + (-1 + 1) + (-1 + 1) + \dots = 1$
- (1+1) + (-1+1) + (-1+1) = 2

si ottengono serie che convergono a qualunque valore (tranne uno). In generale, infatti, se una serie è indeterminata, si possono commutare gli addendi della stessa e ottenere la convergenza a qualunque numero.

2.2 Serie geometrica

Si è osservato che

$$\sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^n = 1$$

per cui è ovvio che partendo con n = 0, si ottiene

$$\sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n = 2$$

Più in generale, si fornisce di seguito la definizione di serie geometrica:

SERIE GEOMETRICA

Si dice serie geometrica di ragione $z \in \mathbb{C}$ la serie del tipo

$$1 + z + z^2 + z^3 + \dots \to \sum_{n=0}^{+\infty} z^n$$

che, tuttavia, palesa un problema di fondo: se si sceglie z=0, naturalmente si incorre nell'ambiguità

$$0^0 + 0^1 + \dots$$

ma 0^0 è una scrittura che non ha significato. Tuttavia, in questo particolare caso, si considera $0^0 = 1$, in modo tale da essere coerenti con la scrittura $1 + z + z^2 + z^3 + \dots$ impiegata in precedenza.

Osservazione: Data la serie seguente

$$\sum_{n=0}^{+\infty} z^n$$

per cui la ridotta è

$$s_n = 1 + z + z^2 + \dots + z^n$$

che può anche essere riscritto come

$$s_n = 1 + z + z^2 + \dots + z^n = 1 + z \cdot (1 + z + \dots + z^{n-1})$$

dove $1 + z + ... + z^{n-1} = s_{n-1}$. Da cui si evince che, sommando e sottraendo per la medesima quantità z^n , si ottiene

$$s_n = 1 + z \cdot \left(\underbrace{1 + z + \dots + z^{n-1} + z^n}_{s_n} - z^n\right)$$

che diviene, quindi:

$$s_n = 1 + z \cdot s_n - z^{n+1}$$
 \rightarrow $s_n - z \cdot s_n = 1 - z^{n+1}$ \rightarrow $s_n \cdot (1-z) = 1 - z^{n+1}$ \rightarrow $s_n = \frac{1 - z^{n+1}}{1 - z}$

posto $z \neq 1$ (ma il caso z = 1 è facilmente risolubile, per quanto osservato nel caso di una serie a termine generale costante).

Di seguito si espone, quindi, il comportamento della serie geometrica a seconda della sua ragione z:

5

Per quanto osservato in precedenza, si ha che:

$$\sum_{n=0}^{+\infty} z^n = \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \frac{1 - z^{n+1}}{1 - z}$$

posto $z \neq 1$, che diviene

- $\frac{1}{1-z}$ se |z| < 1.
- non converge se |z| > 1, tuttavia, si può dire che
 - $\text{ se } z \in \mathbb{R} \text{ e } z > 1$, diverge a $+\infty$
 - se $z \in \mathbb{C}$ e $|z| \ge 1$ (ovvero può essere anche un numero negativo), posto $z \notin]1,+\infty[$ (ossia diverso dal caso precedente), nel caso di n pari si sommano quantità positive, nel caso di n dispari si sommano quantità negative, per cui la serie oscilla e quindi è indeterminata.

Osservazione: Si osservi che la serie geometrica è l'unica per cui si riesce a calcolare la somma, in quanto è l'unica di cui è possibile esprimere la ridotta in modo generale. Altrimenti, gestire le ridotte diviene molto complesso.

Esempio: Si consideri la seguente serie

$$\sum_{n=2}^{+\infty} \cos^n(1)$$

che è una serie geometrica di ragione $\cos(1)$, ove $|\cos(1)| < 1$, per cui converge. La somma di tale serie, quindi, è facilmente determinabile secondo quanto visto in precedenza, tenendo conto che n parte da 2, per cui bisogna sottrarre $\cos^0(1) = 1$ e $\cos^1(1) = \cos(1)$. Da ciò si evince che la serie converge a

$$\frac{1}{1 - \cos(1)} - 1 - \cos(1) = \frac{1 - 1 + \cos(1) - \cos(1) + \cos^2(1)}{1 - \cos(1)} = \frac{\cos^2(1)}{1 - \cos(1)}$$

Osservazione: La somma della serie geometrica di ragione $z \in \mathbb{C}$ è indeterminata se |z| > 1, per quanto già visto.

Inoltre si ha che la serie

$$\sum_{n=1}^{+\infty} \left(\frac{2i+x}{4} \right)^n$$

è convergente se

$$\left|\frac{2i+x}{4}\right| < 1$$

ma ricordando come si calcola il modulo di un numero complesso si ottiene

$$|2i+x| = \sqrt{4+x^2}$$

e quindi

$$\sqrt{4+x^2} < 4 \quad \rightarrow \quad 4+x^2 < 16 \quad \rightarrow \quad x^2 < 12 \quad \rightarrow \quad |x| < \sqrt{12} \quad \rightarrow \quad |x| < 2\sqrt{3}$$

E poi, ovviamente, la serie di Grandi è il tipico esempio di serie indeterminata, per cui la sua somma non può essere definita.

6