AMENDMENTS TO THE CLAIMS

The following listing of claims will replace all prior versions and listings of claims in the application.

LISTING OF CLAIMS

Claims 1-65 (cancelled)

66. (currently amended) A compound of the formula

$$A^{1}-Z^{2}-Z^{1}$$

$$R^{c}$$

$$X$$

$$X^{2}$$

$$X^{2$$

or a pharmaceutically acceptable salt thereof, wherein

is a 4-8 membered monocyclic ring or 7-12 membered bicyclic ring; which ring is optionally saturated or unsaturated, which ring is optionally substituted with one or more substituent selected from the group consisting of alkyl, haloalkyl, aryl, heteroaryl, halogen, alkoxyalkyl, aminoalkyl, hydroxy, nitro, alkoxy, hydroxyalkyl, thioalkyl, amino, alkylamino, arylamino, alkylsulfonamide, acyl, acylamino, alkylsulfone, sulfonamide, allyl, alkenyl, methylenedioxy, ethylenedioxy, alkynyl, carboxamide, cyano, and -(CH₂)_m COR;

m is 0 to 2;

R is hydroxy, alkoxy, alkyl or amino;

A¹ is a pyridinyl of the formula

$$R^{\underline{k}}$$
 $A^{\underline{l}}$

optionally substituted by one or more R^k selected from the group consisting of hydroxy, alkyl, alkoxy, alkoxyalkyl, thioalkyl, haloalkyl, cyano, amino, alkylamino, halogen, acylamino, sulfonamide and -COR;

R is hydroxy, alkoxy, alkyl or amino;

with respect to Z^1 and Z^2 :

Z¹ is selected from the group consisting of CH₂, O, N, CO, S, SO, SO₂, CH and NR_k;

R_k is selected from H or lower alkyl;

Z² is a 2 to 5 carbon linker optionally containing one or more heteroatom selected from the group consisting of O, S and N; or

 Z^1 - Z^2 contains a moiety selected from the group consisting of carboxamide, sulfone, sulfonamide, alkenylene, alkynylene, and acyl;

wherein the carbon and nitrogen atoms of Z^1 - Z^2 are optionally substituted by alkyl, alkoxy, thioalkyl, alkylsulfone, aryl, alkoxyalkyl, hydroxy, alkylamino, heteroaryl, alkenyl, alkynyl, carboxyalkyl, halogen, haloalkyl or acylamino;

wherein Z_2 - Z_1 is attached to the X_1 substituent;

at the para or meta position relative to

n is 0 to 2;

OH

R^c is selected from the group consisting of hydrogen; alkyl; halogen, hydroxy, nitro, alkoxy, amino, haloalkyl, aryl, heteroaryl, alkoxyalkyl, aminoalkyl, hydroxyalkyl, thioalkyl, alkylamino, arylamino, alkylsulfonylamino, acyl, acylamino, sulfonyl, sulfonamide, allyl, alkenyl, methylenedioxy, ethylenedioxy, alkynyl, alkynylalkyl, carboxy, alkoxycarbonyl, carboxamido, cyano, and -(CH₂)_m COR;

X¹ is selected from the group consisting of -O-, CO, SO₂, NR^m and (CHR^p)_a;

R^m is H or alkyl;

R^p is H, alkyl; alkoxy or hydroxy;

q is 0 or 1;

with respect to X, X² and Y:

X² is selected from the group consisting of -CHR^e-, CO, SO₂, O, NR^f and S;

Rf is H or alkyl;

Re is selected from the group consisting of H, alkyl, hydroxy and alkoxy;

X or Y are independently selected from the group consisting of -CR⁹- or -N-wherein R⁹ is selected from the group consisting of H, alkyl, haloalkyl, fluoro, alkoxyalkyl, alkynyl, aryl, heteroaryl, aralkyl, heteroaralkyl, alkylsulfone, hydroxyalkyl, hydroxy, alkoxy, and carboxyalkyl; or

the group X-X₂-Y contains a moiety selected from the group consisting of acyl, alkyl, amino, ether, thioether, sulfone and olefin;

 $\begin{pmatrix} B \\ \chi \end{pmatrix}$

^X² forms a cycloalkyl, optionally substituted with one or more substituent selected from the group consisting of alkyl, halogen, cyano, carboalkoxy, haloalkyl, alkoxyalkyl, alkylsulfone, aryl, heteroaryl, arakyl, hotoroarakyl, aralkyl, heteroarakyl, aralkyl, heteroarakyl, aralkyl, or alkoxy; and

 R^b is X_3 - R^h wherein X_3 is selected from the group consisting of O, S and NR^j wherein R^h and R^j are independently selected from the group consisting of H, alkyl, acyl, aryl, aralkyl and alkoxyalkyl.

67. (previously presented) A compound according to claim 66 wherein

A¹ is selected from the group consisting of

$$Z^a \stackrel{\text{II}}{=} N$$
 and $R^{1} \stackrel{\text{H}}{=} N$ Z^a

Z^a is selected from the group consisting of H, alkyl, alkoxy, hydroxy, amine, alkylamine, dialkylamine, carboxyl, alkoxycarbonyl, hydroxyalkyl, halogen and haloalkyl; and

R¹ is selected from the group consisting of H, alkyl, alkoxyalkyl, acyl, haloalkyl, alkoxycarbonyl, pyridylamino, imidazolylamino, morpholinopyridine, tetrahydronaphthyridine, oxazolylamino, thiazolylamino, pyrimidinylamino, quinoline, isoquinoline, tetrahydroquinoline, imidazopyridine, benzimidazole, pyridone, and quinolone.

68. (currently amended) A compound according to claim 66 wherein

$$X_4$$
 NH_{χ_6} $R^{79}HN$ N X_5 and X_6 X_5

A¹ is selected from the group consisting of

X⁴ is selected from the group consisting of H, alkyl, branched alkyl, alkylamino, aloxyalkylamino, alkoxyalkylamino, haloalkyl, thioalkyl, halogen, amino, alkoxy, aryloxy, alkoxyalkyl, hydroxy, cyano and acylamino;

X⁵ is selected from the group consisting of H, alkyl, branched alkyl, alkylamino, aloxyalkylamino, alkoxyalkylamino, haloalkyl, thioalkyl, halogen, amino, alkoxy, aryloxy, alkoxyalkyl, hydroxy, cyano and acylamino;

 X^6 is selected from the group consisting of H, alkyl, halogen, alkoxy, hydroxy, and haloalkyl; and

R⁷⁹ is selected from the group consisting of hydroxy, alkoxy, alkyl and amino.

69. (currently amended) A compound according to the claim 66 wherein

the moiety A¹-Z² is selected from the group consisting of

X⁴ is selected from the group consisting of H, alkyl, branched alkyl, alkylamino, alexyalkylamino, alkoxyalkylamino, haloalkyl, thioalkyl, halogen, amino, alkoxy, aryloxy, alkoxyalkyl, hydroxy, cyano and acylamino;

R⁸⁰ is selected from the group consisting of hydroxy, alkoxy, alkyl and amino; R⁸¹ is selected from the group consisting of hydroxy, alkoxy, alkyl and amino; and R⁸² is selected from the group consisting of hydroxy, alkoxy, alkyl and amino.

70. (previously presented) A compound according to claim 66 wherein

 X_1 is $(CHR^p)_q$; wherein q = 0;

B is a 3-, 4-, or a 5-membered cycloalkyl obtained by combining X-X₂-Y; A is a phenyl ring substituted with R^c; and

n = 1.

71. (previously presented) A compound according to claim 70,

$$A^1-Z_2-Z_1$$
 R^g
 CO_2H

wherein the ring B is a cyclopropyl;

 $Y = CR^g$:

wherein R^g is selected from the group consisting of H, alkyl, haloalkyl, alkoxyalkyl, alkynyl, aryl, heteroaryl, aralkyl, heteroaralkyl, alkylsulfone, hydroxyalkyl, hydroxy, alkoxy, and carboxyalkyl;

A is a phenyl ring substituted with R^c ; and $R^b = OH$.

72. (currently amended) A compound according to claim 71 wherein ${\sf R}^{\sf g}$ is selected from the group consisting of

 \longrightarrow R⁹¹ and CH₂R⁹²;

 R^{83} is selected from the group consisting of H, alkyl, OMe, OH, and halogen; X^7 is selected from the group consisting of CH2 and O;

R⁸⁴ is selected from the group consisting of H, alkyl, OMe, OH, and halogen; R⁸⁵ is selected from the group consisting of H, alkyl, OMe, OH, and halogen; X⁸ is selected from the group consisting of NH, NMe, O, and S;

R⁸⁶ is selected from the group consisting of H and Me;

R⁸⁷ is selected from the group consisting of H and Me;

R⁸⁸ is selected from the group consisting of H, alkyl, OMe, OH, and halogen;

R⁸⁹ is selected from the group consisting of H and Me;

B¹ is selected from the group consisting of O, SO2, S and CO;

R⁹⁰ is selected from the group consisting of alkyl and aryl;

R⁹¹ is selected from the group consisting of alkyl and aryl; and

R⁹² is selected from the group consisting of aryl and heteroaryl.

73. (previously presented) A compound according to claim 71 wherein

A¹ is selected from the group consisting of

X⁹ is selected from the group consisting of H, alkyl, and acyl; R⁹³ is selected from the group consisting of H, Me, OH and alkoxyalkyl; and

 ${\sf R}^{93}$ is selected from the group consisting of H, Me, OMe, and OH.

74. (previously presented) A compound according to claim 71 wherein

ring A is a phenyl ring; and

 Z_1 - Z_2 and X_1 -X are connected para to each other.

75. (previously presented) A compound according to claim 74 wherein the phenyl ring is optionally substituted with one or more substituents selected from the group consisting of alkyl; halogen, hydroxy, alkoxy, haloalkyl, aryl, heteroaryl, alkoxyalkyl, sulfonamide, methylenedioxy, ethylenedioxy, alkynyl, and alkynylalkyl.

76. (previously presented) A compound according to claim 74 wherein Z_1 is selected from the group consisting of CH_2 , O, NR_k , CO, S, SO, and SO_2 .

77. (previously presented) A compound according to claim 74 wherein A¹ is selected from the group consisting of

78. (previously presented) A compound according to the claim 66,

$$A^{1}-Z_{2}-Z_{1}$$

wherein

 X^1 is $(CHR^p)_q$; wherein q = 0;

A is a phenyl ring substituted with Rc

B is a cyclopropyl obtained by combining X-X₂-Y;

n = 1; and

 R_m and R_n are selected from the group consisting of H, alkyl, halogen, alkoxy, haloalkyl, alkoxyalkyl, alkylsulfone, cyano, carboalkoxy, aryl, heteroaryl, aralkyl and heteroaralkyl; or

 R_m and R_n form a spirocyclic ring system.

79. (previously presented) A compound according to the claim 78 wherein A¹ is

$$X^{9}$$
 and X^{9} X^{9}

selected from the group consisting of

R⁹⁴ is selected from the group consisting of H, Me, OH, and alkoxyalkyl; R⁹⁴ is selected from the group consisting of H, Me, OMe, and OH; and

 X^9 is selected from the group consisting of H, alkyl, and acyl.

- 80. (previously presented) A compound according to claim 66 selected from the group consisting of:
- 2-[4-[3-(2-pyridinylamino)propoxy]phenyl]cyclopropaneacetic acid;
- 2-[4-[3-(2-pyridinylamino)propoxy]phenyl] cyclopentaneacetic acid;
- 3-[4-[3-(2-pyridinylamino)propoxy]phenyl] cyclopentaneacetic acid;
- 2,2-difluoro-3-[4-[3(2-pyridinylamino)propoxy]phenyl]cyclopropane-acetic acid
- (2-{4-[2-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-phenyl}-cyclopropyl)-acetic acid;
- 2-[3-methyl-4-[3-(2-pyridinylamino)propoxy]phenyl]cyclopropane-acetic acid;
- 2-[2-methoxy-4-[3-(2-pyridinylamino)propoxy]phenyl]cyclopropane-acetic acid;
- 2-[2-methyl-4-[3-(2-pyridinylamino)propoxy]phenyl]cyclopropane-acetic acid;
- 2-[3-fluoro-4-[3-(2-pyridinylamino)propoxy]phenyl]cyclopropaneacetic acid;
- 2-[2-fluoro-4-[3-(2-pyridinylamino)propoxy]phenyl]cyclopropaneacetic acid;
- 2-[4-[2-[6-(methylamino)-2-pyridinyl]ethoxy]phenyl]cyclopropane-acetic acid;
- 2-[4-[2-(3,4-dihydro-2*H*-pyrido[3,2-*b*]-1,4-oxazin-6-yl)ethoxy]phenyl]-cyclopropaneacetic acid;
- 3-[4-[3-(2-pyridinylamino)propoxy]phenyl]cyclobutaneacetic acid;
- (2-{2-Methoxy-4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (2-{2-Fluoro-4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (2-{2-Acetoxy-4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (1-Methyl-2-{4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (1-Methoxymethyl-2-{4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (1-Methanesulfonylmethyl-2-{4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (1-Pyridin-3-yl-2-{4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (1-Benzo[1,3]dioxole-5-yl-2-{4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;

- (1-(2,3-Dihydro-benzofuran-6-yl)-2-{4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (1-Isoxazol-3-yl-2-{4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (1-Isoxazol-5-yl-2-{4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (1-Oxazol-5-yl-2-{4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (2-{4-[3-(Pyridin-2-ylamino)-propoxy]-phenyl}-1-thiazol-5-yl-cyclopropyl)-acetic acid;
- (1-Pyridin-3-yl-2-{4-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-phenyl}-cyclopropyl)-acetic acid;
- (1-Methyl-2-{4-[2-(6-methylamino-pyridin-2-yl)-ethoxy]-phenyl}-cyclopropyl)-acetic acid;
- (2-{4-[2-(6-Ethylamino-pyridin-2-yl)-ethoxy]-phenyl}-1-methyl-cyclopropyl)-acetic acid;
- [2-(4-{2-[6-(2-Methoxy-ethylamino)-pyridin-2-yl]-ethoxy}-phenyl)-1-methyl-cyclopropyl]-acetic acid;
- [2-(4-{2-[6-(3-Methoxy-propylamino)-pyridin-2-yl]-ethoxy}-phenyl)-1-methyl-cyclopropyl]-acetic acid;
- (2-{4-[2-(6-Acetylamino-pyridin-2-yl)-ethoxy]-phenyl}-1-methyl-cyclopropyl)-acetic acid;
- [1-Methyl-2-(4-{2-[6-(2,2,2-trifluoro-ethylamino)-pyridin-2-yl]-ethoxy}-phenyl)-cyclopropyl]-acetic acid;
- (2-{4-[2-(6-Ethylamino-pyridin-2-yl)-ethoxy]-phenyl}-cyclopropyl)-acetic acid [2-(4-{2-[6-(2-Methoxy-ethylamino)-pyridin-2-yl]-ethoxy}-phenyl)-cyclopropyl]-acetic acid;
- [2-(4-{2-[6-(2,2,2-Trifluoro-ethylamino)-pyridin-2-yl]-ethoxy}-phenyl)-cyclopropyl]-acetic acid;
- [2-(4-{2-[6-(3-Methoxy-propylamino)-pyridin-2-yl]-ethoxy}-phenyl)-cyclopropyl]-acetic acid; and

- (2-{4-[2-(6-Acetylamino-pyridin-2-yl)-ethoxy]-phenyl}-cyclopropyl)-acetic acid.
- 81. (previously presented) A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 66 and a pharmaceutically acceptable carrier.
- 82. (previously presented) A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 70 and a pharmaceutically acceptable carrier.
- 83. (previously presented) A method for treating conditions mediated by the $\alpha_V \beta_3$ integrin in a mammal in need of such treatment comprising administering an effective $\alpha_V \beta_3$ inhibiting amount of a compound of Claim 66.
- 84. (currently amended) A method for treating conditions mediated by the $\alpha_V \beta_3$ integrin in a mammal in need of such treatment compirising comprising administering an effective $\alpha_V \beta_3$ inhibiting amount of a compound of Claim 70.
- 85. (previously presented) The method according to Claim 83 wherein the condition treated is tumor metastasis.
- 86. (previously presented) The method according to Claim 84 wherein the condition treated is tumor metastasis.
- 87. (previously presented) The method according to Claim 83 wherein the condition treated is solid tumor growth.
- 88. (previously presented) The method according to Claim 84 wherein the condition treated is solid tumor growth.

- 89. (previously presented) The method according to Claim 83 wherein the condition treated is angiogenesis.
- 90. (previously presented) The method according to Claim 84 wherein the condition treated is angiogenesis.
- 91. (previously presented) The method according to Claim 83 wherein the condition treated is osteoporosis.
- 92. (previously presented) The method according to Claim 84 wherein the condition treated is osteoporosis.
- 93. (previously presented) The method according to Claim 83 wherein the condition treated is humoral hypercalcemia of malignancy.
- 94. (previously presented) The method according to Claim 84 wherein the condition treated is humoral hypercalcemia of malignancy.
- 95. (previously presented) The method according to Claim 83 wherein the condition treated is smooth muscle cell migration.
- 96. (previously presented) The method according to Claim 84 wherein the condition treated is smooth muscle cell migration.
- 97. (previously presented) The method according to Claim 83 wherein restenosis is inhibited.
- 98. (previously presented) The method according to Claim 84 wherein restenosis is inhibited.

- 99. (previously presented) The method according to Claim 83 wherein atheroscelorosis is inhibited.
- 100. (previously presented) The method according to Claim 84 wherein atheroscelorosis is inhibited.
- 101. (previously presented) The method according to Claim 83 wherein macular degeneration is inhibited.
- 102. (previously presented) The method according to Claim 84 wherein macular degeneration is inhibited.
- 103. (previously presented) The method according to Claim 83 wherein retinopathy is inhibited.
- 104. (previously presented) The method according to Claim 84 wherein retinopathy is inhibited.
- 105. (previously presented) The method according to Claim 83 wherein arthritis is inhibited.
- 106. (previously presented) The method according to Claim 84 wherein arthritis is inhibited.
- 107. (previously presented) A method for treating conditions mediated by the $\alpha_V \beta_5$ integrin in a mammal in need of such treatment comprising administering an effective $\alpha_V \beta_5$ inhibiting amount of a compound of Claim 66.
- 108. (previously presented) A method for treating conditions mediated by the $\alpha_V \beta_5$ integrin in a mammal in need of such treatment comprising administering an effective $\alpha_V \beta_5$ integrin inhibiting amount of a compound of Claim 70.

- 109. (previously presented) The method according to Claim 107 wherein the condition treated is $\alpha_V \beta_5$ integrin mediated-tumor metastasis.
- 110. (previously presented) The method according to Claim 108 wherein the condition treated is $\alpha_V \beta_5$ integrin mediated-tumor metastasis.
- 111. (previously presented) The method according to Claim 107 wherein the condition treated is $\alpha_V \beta_5$ integrin mediated-solid tumor growth.
- 112. (previously presented) The method according to Claim 108 wherein the condition treated is $\alpha_V \beta_5$ integrin mediated-solid tumor growth.
- 113. (previously presented) The method according to Claim 107 wherein the condition treated is angiogenesis.
- 114. (previously presented) The method according to Claim 108 wherein the condition treated is angiogenesis.
- 115. (previously presented) The method according to Claim 107 wherein the condition treated is osteoporosis.
- 116. (previously presented) The method according to Claim 108 wherein the condition treated is osteoporosis.
- 117. (previously presented) The method according to Claim 107 wherein the condition treated is humoral hypercalcemia of malignancy.
- 118. (previously presented) The method according to Claim 108 wherein the condition treated is humoral hypercalcemia of malignancy.

- 119. (previously presented) The method according to Claim 107 wherein the condition treated is smooth muscle cell migration.
- 120. (previously presented) The method according to Claim 108 wherein the condition treated is smooth muscle cell migration.
- 121. (previously presented) The method according to Claim 107 wherein restenosis is inhibited.
- 122. (previously presented) The method according to Claim 108 wherein restenosis is inhibited.
- 123. (previously presented) The method according to Claim 107 wherein atheroscelorosis is inhibited.
- 124. (previously presented) The method according to Claim 108 wherein atheroscelorosis is inhibited.
- 125. (previously presented) The method according to Claim 107 wherein macular degeneration is inhibited.
- 126. (previously presented) The method according to Claim 108 wherein macular degeneration is inhibited.
- 127. (previously presented) The method according to Claim 107 wherein retinopathy is inhibited.
- 128. (previously presented) The method according to Claim 108 wherein retinopathy is inhibited.

129. (previously presented) The method according to Claim 107 wherein arthritis is inhibited.

130. (previously presented) The method according to Claim 108 wherein arthritis is inhibited.