WHAT IS CLAIMED IS:

1	1.	A method of optimizing network routing and load distribution in a virtual
2	private network, comprising:	
3		obtaining geographical coordinates for a user device;
4		determining an optimal network server for the user device based on the
5	geographical	coordinates; and
6		connecting the user device to the virtual private network through the
7	optimal netwo	ork server.
1	2.	The method according to claim 1, wherein the step of determining
2	comprises the	e user device automatically selecting the optimal network server based on
3	the geographi	cal coordinates.
1	3.	The method according to claim 1, wherein the step of determining
2	comprises the	e user device sending the geographical coordinates to an authentication
3	server for sele	ecting the optimal network server based on the geographical coordinates.
	•	
1	4.	The method according to claim 1, wherein the optimal network server is
2	selected based	d on proximity to the user device.

The method according to claim 1, wherein the optimal network server is

selected based on load distribution.

5.

1

2

- 1 6. The method according to claim 1, further comprising authenticating the
- 2 user device before allowing it to be connected to the virtual private network.

I	7. A user device capable of automatically connecting to an optimal network	
2	server in a virtual private network, comprising:	
3	location reporting equipment connected to the user device and configured	
4	to provide geographical coordinates for a location of the user device;	
5	a central processing unit connected to the location reporting equipment;	
6	and	
7	a storage unit connected to the central processing unit, the storage unit	
8	storing a virtual private network client thereon that is capable of:	
9	obtaining geographical coordinates for the user device from the	
10	location reporting equipment;	
11	determining an optimal network server for the user device based on	
12	the geographical coordinates; and	
13	connecting the user device to the virtual private network through	
14	the optimal network server.	
1	8. The user device according to claim 7, wherein the location reporting	
2	equipment is a GPS module.	
1	9. The user device according to claim 7, wherein the virtual private network	
2	client determines the optimal network server by selecting it from a list of network servers	
3	based on the geographical coordinates.	

Patent Application Docket No. 2003-0104 61922-00008USPT

- 1 10. The user device according to claim 7, further comprising a network access
- 2 device connected to the central processing unit, the network access device capable of
- 3 establishing a broadband connection between the user device and the virtual private
- 4 network.
- 1 The user device according to claim 7, further comprising a network access
- 2 device connected to the central processing unit, the network access device capable of
- 3 establishing a narrowband connection between the user device and the virtual private
- 4 network.

1	12. A virtual private network, comprising:
2	a plurality of network servers; and
3	an authentication server connected to the network servers, the
4	authentication server having a virtual private network host executing thereon and
5	configured to:
6	receive geographical coordinates for a user device requesting
7	access to the network servers;
8	determine an optimal network server for the user device based on
9	the geographical coordinates; and
10	send identifying information for the optimal network server to the
11	user device.
1	13. The virtual private network according to claim 12, further comprising a
2	remote access server capable of connecting the user device to the virtual private network
3	and also to the Internet.
1	14. The virtual private network according to claim 12, wherein at least one of
2	the network servers is a tunnel server.