

features of the input than the earlier layers.

Correct

The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.

4. Vectorization allows you to compute forward propagation in an *L*-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers I=1, 2, ...,L. True/False?

True

False

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines $(a^{[2]}=g^{[2]}(z^{[2]}),$ $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]},\ldots)$ in a deeper network, we cannot avoid a for loop iterating over the layers: $(a^{[l]}=g^{[l]}(z^{[l]}),z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]},\ldots).$

5. Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x$, 4,3,2,1]. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

1 / 1 point

```
1 * for(i in range(1, len(layer_dims)/2)):
2    parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) *
0.01
3    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

Correct

6. Consider the following neural network.

How many layers does this network have?

The number of layers ${\cal L}$ is 4. The number of hidden layers is 3.

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers. The number of layers L is 3. The number of hidden layers is 3. The number of layers L is 4. The number of hidden layers is 4. The number of layers L is 5. The number of hidden layers is 4. 7. During forward propagation, in the forward function for a layer $\it l$ you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False? True Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative. False $8. \quad \text{There are certain functions with the following properties:} \\$ (i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False? True Correct False Consider the following 2 hidden layer neural network: $x_1^{(i)}$ $(a_{_{1}}^{_{[1]}}$ $a_1^{[2]}$ $x_{2}^{(i)}$ $\hat{\mathbf{v}}^{(i)}$ $\left(a_1^{[3]}\right)$ $a_{2}^{[2]}$ $a_3^{[1]}$ $x_{3}^{(i)}$ $a_3^{[2]}$ $a_4^{[1]}$ $x_4^{(i)}$ Which of the following statements are True? (Check all that apply). $W^{[1]}$ will have shape (4, 4) Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$. $b^{[1]}$ will have shape (4, 1) Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $W^{[1]}$ will have shape (3, 4)

