

Universidad Tecnológica de la Mixteca

Clave DGP: 110506

Maestría en Modelación Matemática

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Introducción a la teoría de optimización

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE LIGRAS
	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Optativa	221510OA	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Obtener las bases teóricas de la teoría de optimización de funciones, que dan sustento a diversos métodos de solución de problemas sin y con restricciones. Conocer las ventajas que aporta la convexidad de los problemas, en particular la solución completa de los programas lineales.

TEMAS Y SUBTEMAS

1. Conjuntos convexos

- 1.1. Conjuntos convexos. Definición y ejemplos.
- 1.2. Cápsula convexa.
- 1.3. Separación de conjuntos convexos. Soporte de un conjunto convexo.
- 1.4. Puntos y direcciones extremas. Conjuntos poliédricos.
- 1.5. Programación Lineal, método simplex.
- 1.6. Dualidad en programación lineal

2. Funciones convexas

- 2.1. Definición y ejemplos.
- 2.2. Subgradientes de funciones convexas.
- 2.3. Funciones convexas diferenciables.
- 2.4. Optimización de problemas convexos.

3. Condiciones de optimalidad para problemas diferenciables

- 3.1. Condiciones de optimalidad para problemas sin restricciones.
- 3.2. Condición de Lagrange
- 3.3. Condiciones de Karush-Kuhn-Tucker
- 3.4. Suficiencia de las condiciones de optimalidad para el problema convexo.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por parte del profesor, poniendo énfasis en los resultados y en las técnicas de demostración. Los estudiantes acudirán a asesorías extra clase. Solución de problemas relacionados con el tema.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Se aplican por lo menos tres exámenes parciales cuyo promedio equivale al 50% de la calificación final, el 50% restante se obtiene de un examen final. Otras actividades que se consideran para la evaluación son las participaciones en clase, asistencias a clases y el cumplimiento de tareas.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- 1. Nonlinear programming theory and algorithms, Mokhtar S. Bazaraa, Hanif D. Sherali and C.M. Shetty, Wiley-Interscience, Third Edition, 2006.
- 2. Nonlinear Programming, Dimitri P. Bertsekas, Athena Scientific; 2nd edition, 1999.

Consulta:

- 1. Numerical Optimization, Jorge Nocedal, Stephen Wright, Springer Series in Operations Research and Financial Engineering, Springer, 2nd edition, 2006.
- 2. Programación lineal y no lineal, David E. Luemberguer, Adiison-Wesley Iberoamericana, 2010.
- 3. An Introduction to optimization, Edwin K.P. Chong, Stanislaw H. Zak, Wiley Interscience series in Discrete Mathematics and Optimization, second Edition, 1996.

PERFIL PROFESIONAL DEL DOCENTE

Estudios mínimos de Maestría en Matemáticas, en Modelación Matemática o en Matemáticas Aplicadas.

DIVISION DE ESTUDIOS Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILAR DE POSGRADO

JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

DR. AGUSTÍN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO

VICE-RECTORIA **ACADÉMICA**