

The Unreasonable Effectiveness of Deep Features as a Perceptual Metric

GuoZemin 2018.06.13

The Unreasonable Effectiveness of Deep Features as a Perceptual Metric

Richard Zhang¹ Phillip Isola¹² Alexei A. Efros¹

¹UC Berkeley ²OpenAI

{rich.zhang, isola, efros}@eecs.berkeley.edu

Eli Shechtman³ Oliver Wang³

Adobe Research

{elishe,owang}@adobe.com

Motivation

- Want to assess the perceptual similarity like human way
- Maybe introducing perceptual distance is a good idea

VISION@OUC

3

Motivation

- The computer vision community has discovered that internal activations of deep CNNs can be used for a variety of tasks
- Build a new large-scale dataset of human judgements to evaluate questions perceptual similarity

Dataset

 Berkeley-Adobe Perceptual Similarity (BAPPS) dataset

- > Traditional distortions
- CNN-based distortions

Dataset

Berkeley-Adobe Perceptual Similarity (BAPPS) dataset

Sub-type	Distortion type					
Photometric	lightness shift, color shift, contrast, saturation					
	uniform white noise, Gaussian white, pink,					
Noise	& blue noise, Gaussian colored (between					
	violet and brown) noise, checkerboard artifact					
Blur	Gaussian, bilateral filtering					
Spatial	shifting, affine warp, homography,					
	linear warping, cubic warping, ghosting,					
	chromatic aberration,					
Compression	jpeg					

Parameter type	Parameters					
Input	null, pink noise, white noise,					
corruption	color removal, downsampling					
	# layers, # skip connections,					
Generator	# layers with dropout, force skip connection					
network	at highest layer, upsampling method,					
architecture	normalization method, first layer stride					
	# channels in 1^{st} layer, max # channels					
Discriminator	number of layers					
Loss/Learning	weighting on oixel-wise (ℓ_1) , VGG,					
	discriminator losses, learning rate					

Dataset	# Input Imgs/ Patches	Input Type	Num Distort.	Distort. Types	# Levels	# Distort. Imgs/Patches	# Judg- ments	Judgment Type
LIVE [51]	29	images	5	traditional	continuous	.8k	25k	MOS
CSIQ [29]	30	images	6	traditional	5	.8k	25k	MOS
TID2008 [46]	25	images	17	traditional	4	2.7k	250k	MOS
TID2013 [45]	25	images	24	traditional	5	3.0k	500k	MOS
BAPPS (2AFC–Distort)	160.8k	64×64 patch	425	trad + CNN	continuous	321.6k	349.8k	2AFC
BAPPS (2AFC-Real alg)	26.9k	64×64 patch	_	alg outputs	_	53.8k	134.5k	2AFC
BAPPS (JND-Distort)	9.6k	$\overline{64} \times \overline{64}$ patch	425	trad. + CNN	continuous	9.6k	28.8k	Same/Not same

Dataset

- Berkeley-Adobe Perceptual Similarity (BAPPS) dataset
 - Focused on perceptual similarity rather than quality assessment
 - > To evaluate different perceptual metrics, employs:
 - Two alternative forced choice (2AFC)
 - Just noticeable difference (JND)

Evaluate feature distance in different network

- For a convolution network, computer cosine distance in the channel dimension, and average across aptial dimension and layers of the network.
- > VGG
- AlexNet
- SqueezeNet

ION@OUC

 The figure and equation show how to obtain the distance between reference and distorted patches x, x0 with network F.

VISION@OUC

11

Loss Function:

$$d(x, x_0) = \sum_{l} \frac{1}{H_l W_l} \sum_{h, w} ||w_l \odot (\hat{y}_{hw}^l - \hat{y}_{0hw}^l)||_2^2$$

$$\mathcal{L}(x, x_0, x_1, h) = -h \log \mathcal{G}(d(x, x_0), d(x, x_1))$$
$$-(1 - h) \log(1 - \mathcal{G}(d(x, x_0), d(x, x_1)))$$

- Training data
 - lin
 - Keep pre-trained network weights F fixed, and learn weight w on top.
 - Constitute a perceptual calibration of a few parameters in an existing feature space.
 - tune
 - Initialize from a pre-trained classification model, and allow all weights to be finetuned.

Training data

- Scratch
 - Initialize the network from random Gaussian weithts and train it entirely on our judgements.

Distortions

Real algorithms

Experiments:

		D	istortio	ns	Real Algorithms					All
Subtype	Metric		CNN- Based	ΔH	Super- res		Color- ization		All	All
Oracle	Human	80.8	84.4	82.6	73.4	67.1	68.8	68.6	69.5	73.9
I and level	L2	59.9	77.8	68.9	64.7	58.2	63.5	55.0	60.3	63.2
	SSIM [58]	60.3	79.1	69.7	65.1	58.6	58.1	57.7	59.8	63.1
Low-level	FSIMc [62]	61.4	78.6	70.0	68.1	59.5	57.3	57.7	60.6	63.8
	HDR-VDP [34]	57.4	76.8	67.1	64.7	59.0	53.7	56.6	58.5	61.4
Net (Random)	Gaussian	60.5	80.7	70.6	64.9	59.5	62.8	57.2	61.1	64.3
Net (Unsupervised)	K-means [26]	66.6	83.0	74.8	67.3	59.8	63.1	59.8	62.5	66.6
	Watching [43]	66.5	80.7	73.6	69.6	60.6	64.4	61.6	64.1	67.2
Net (Self-supervised)	Split-Brain [64]	69.5	81.4	75.5	69.6	59.3	64.3	61.1	63.6	67.5
	Puzzle [40]	71.5	82.0	76.8	70.2	60.2	62.8	61.8	63.8	68.1
	BiGAN [13]	69.8	83.0	76.4	70.7	60.5	63.7	62.5	64.4	<i>68.4</i>
Net (Supervised)	SqueezeNet [20]	73.3	82.6	78.0	70.1	60.1	63.6	62.0	64.0	68.6
	AlexNet [27]	70.6	<u>83.1</u>	76.8	<u>71.7</u>	60.7	65.0	62.7	<i>65.0</i>	<u>68.9</u>
	VGG [52]	70.1	81.3	75.7	69.0	59.0	60.2	62.1	62.6	67.0
	Squeeze – lin	76.1	83.5	79.8	71.1	60.8	65.3	63.2	65.1	70.0
	Alex – lin	73.9	83.4	78.7	71.5	61.2	65.3	63.2	65.3	69.8
	VGG – lin	76.0	82.8	79.4	70.5	60.5	62.5	63.0	64.1	69.2
*LPIPS (Learned	Squeeze - scratch	74.9	83.1	79.0	71.1	60.8	63.0	62.4	64.3	69.2
Perceptual Image	Alex - scratch	77.6	82.8	80.2	71.1	61.0	<u>65.6</u>	<u>63.3</u>	65.2	70.2
Patch Similarity)	VGG - scratch	77.9	83.7	80.8	71.1	60.6	64.0	62.9	64.6	70.0
	Squeeze – tune	76.7	83.2	79.9	70.4	61.1	63.2	63.2	64.5	69.6
	Alex – tune	77.7	83.5	80.6	69.1	60.5	64.8	62.9	64.3	69.7
	VGG – tune	79.3	83.5	81.4	69.8	60.5	63.4	62.3	64.0	69.8