Normal Distribution (a.k.a. Gaussian Distribution)

Before we dive into the details, let's understand two key concepts related to normal distribution, mean, and standard deviation.

1. What is Mean?

$$\mu = \frac{1 + 2 + 4 + 7 + 9}{5}$$

The mean (or average) of a dataset is the sum of all values divided by the number of values. $\mathcal{L} = \frac{\sum_{i=1}^{n} \chi_{i}}{n} = \frac{\chi_{1} + \chi_{2} + \dots + \chi_{n}}{n}$

Formula:

mean =
$$(x1 + x2 + x3 + ... + xn) / n$$

It represents the central value of the data.

What is Standard Deviation?

The **standard deviation** measures how spread out the numbers are from the mean.

Steps to calculate standard deviation:

. 1. Find the mean

2. Subtract the mean from each value and square the result

3. Take the average of these squared differences (this is the variance)

Formula:

standard deviation (sigma) =
$$sqrt((1/n) * sum((xi - mean)^2))$$

A smaller standard deviation means the data points are close to the mean. A larger standard deviation means the data is more spread out.

What is Normal Distribution?

A normal distribution is a continuous probability distribution that is bellshaped and symmetric around the mean.

It describes variables where:

- Most values cluster around the average (mean).
 - Extreme values (very high or low) are rare.

Think of:

- Heights of people
- ✓ Test scores
- Measurement errors

All tend to follow a normal curve.

Key Properties:

Mean (μ): Center of the distribution

This is the famous 68-95-99.7 Rule

• Standard Deviation (σ): Spread of the distribution

Shape of the Curve:

10

70+20 = 90] 70-20 = 50]

- Bell-shaped
- Symmetrical
- Peaks at the mean
- $\mu \pm 16$ $70 + 1 \times 10 = 80$ 70 10 = 60• About 68% of the data lies within $\pm 1\sigma$, 95% within $\pm 2\sigma$, 99.7% within $\pm 3\sigma \rightarrow$

70 + 30 100 70 - 30 to

Formula (Plain Text):

```
f(x) = (1/(\sigma * sqrt(2\pi))) * e^{-(x-\mu)^2/(2\sigma^2)}
Where:
PDf = \frac{1}{6\sqrt{2\pi}} \times e^{-\frac{(x-\mu)^2}{26^2}}
```

- μ = mean
- σ = standard deviation
- e = Euler's number (≈ 2.718)
- $\pi = pi (\approx 3.14159)$

This gives the **probability density** for a given value x.

You don't need to memorize this formula — but understanding its shape and behavior is essential.

In Python:

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
# Generate values
x = np.linspace(-4, 4, 1000)
mean = 0
std_dev = 1
# Get the probability density
y = norm.pdf(x, loc=mean, scale=std_dev)
# Plot
plt.plot(x, y)
plt.title("Standard Normal Distribution (\mu=0, \sigma=1)")
plt.xlabel("x")
plt.ylabel("Probability Density")
```

```
plt.grid(True)
plt.show()
```

Summary

Property	Value
Туре	Continuous
Shape	Bell curve
Key parameters	Mean (μ), Std. Dev (σ)
Formula	$f(x) = (1 / (\sigma \sqrt{2\pi})) * e^{(-(x - \mu)^2 / 2\sigma^2)}$
Python	scipy.stats.norm.pdf(x, μ , σ)