HW1 Solutions

Problem 1

Classical outputs	Quantum outputs	Probability
00	$ 00\rangle$	1/2
01	$ 01\rangle$	1/16
10	$ 10\rangle$	1/4
11	$ 11\rangle$	3/16

Problem 2

If $j_1 = 1$ and $j_2 = 0$ then the state of qubits 3 and 4 is:

$$-\frac{2}{\sqrt{7}}|10\rangle+\frac{\sqrt{3}i}{\sqrt{7}}|11\rangle$$

Problem 3

$$U_S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \implies$$

$$\begin{array}{c|c} & & & \\ \hline \alpha|0>+\beta|1> & & & \\ \hline \alpha|0>+i\beta|1> & & \\ \end{array}$$

Problem 4

$$U_{\text{Toffoli}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Problem 5

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$|\psi_0\rangle = \frac{1}{\sqrt{2}}\alpha|0\rangle (|01\rangle - |10\rangle) + \frac{1}{\sqrt{2}}\beta|1\rangle (|01\rangle - |10\rangle)$$
$$= \frac{1}{\sqrt{2}}(\alpha|001\rangle - \alpha|010\rangle + \beta|101\rangle - \beta|110\rangle)$$

$$|\psi_1\rangle = \frac{1}{\sqrt{2}} (\alpha|001\rangle - \alpha|010\rangle + \beta|111\rangle - \beta|100\rangle)$$
$$= \frac{1}{\sqrt{2}} [\alpha|0\rangle (|01\rangle - |10\rangle) + \beta|1\rangle (|11\rangle - |00\rangle)]$$

$$\begin{aligned} |\psi_{2}\rangle &= \frac{1}{2} \left[\alpha \left(|0\rangle + |1\rangle \right) \left(|01\rangle - |10\rangle \right) + \beta \left(|0\rangle - |1\rangle \right) \left(|11\rangle - |00\rangle \right) \right] \\ &= \frac{1}{2} \left[|00\rangle \left(\alpha |1\rangle - \beta |0\rangle \right) + |01\rangle \left(-\alpha |0\rangle + \beta |1\rangle \right) + |10\rangle \left(\alpha |1\rangle + \beta |0\rangle \right) + |11\rangle \left(-\alpha |0\rangle - \beta |1\rangle \right) \right] \end{aligned}$$

	Quantum outputs	
Assignment	Project Ex	am/Help
01	$ 01\rangle (-\alpha 0\rangle + \beta 1\rangle)$	1/4
https://t	$ \begin{array}{c c} 10\rangle\rangle(lpha 1\rangle+eta 0\rangle) \\ \mathbf{U} \mathbf{LQLQ} \mathbf{S}.\mathbf{CQM} \end{array} $	$\frac{1/4}{1/4}$

Wife of Manta	BSULLENGS Sperator
00	ZX
01	Z
10	X
11	I_4
	I .