Введение

В работе [1] о S -трансформации сказано, что выражение для неё вывел выведено Сиди в работе [2] (однако, Сиди не рассматривал S - трансформацию как трансформацию последовательности саму по себе [3]).

S -трансформация впервые была использована для суммирования бесконечных степенных рядов в работе [2]. Она также является мощным инструментом для суммирования расходящихся степенных рядов Стилтьеса [3], которые возникают в теории специальных функций и в стационарной теории возмущения в квантовой механике [3].

Наряду с S -трансформацией, другим эффективным методом ускорения сходимости и суммирования расходящихся рядов является \mathcal{L} -трансформация Левина [3, 6], которая нашла широкое применение в вычислительной физике и приборостроении [3].

Частные случаи d⁽¹⁾-трансформации

 $d^{(1)}$ -трансформация [4]. Заменим R_i^k в факториальном $d^{(m)}$ -преобразовании для бесконечных рядов на $R_l^{p_k}$ и для упрощения положим $\alpha=0$. При m=1 эти уравнения принимают вид:

$$A_{R_l} = d_n^{(1,j)} + \omega_{R_l} \sum_{i=0}^{n-1} \frac{\overline{\beta}_i}{R_l^i}, \qquad j \le l \le j+n; \ \omega_r = r^{\rho} a_r, \#(1)$$

где n — натуральное число, а ρ обозначает ρ_1 . Эти уравнения можно решить относительно $d_n^{(1,j)}$ (для произвольных R_l) очень просто и эффективно с помощью W-алгоритма из [5] следующим образом:

$$\begin{split} M_0^{(j)} &= \frac{A_{R_j}}{\omega_{R_j}}, \qquad N_0^{(j)} = \frac{1}{\omega_{R_j}}, \qquad j \geq 0, \qquad \omega_r = r^\rho a_r, \\ M_n^{(j)} &= \frac{M_{n-1}^{(j+1)} - M_{n-1}^{(j)}}{R_{j+n}^{-1} - R_j^{-1}}, \qquad N_n^{(j)} = \frac{N_{n-1}^{(j+1)} - N_{n-1}^{(j)}}{R_{j+n}^{-1} - R_j^{-1}}, \qquad j \geq 0, \qquad n \geq 1. \\ d_n^{(1,j)} &= \frac{M_n^{(j)}}{N_n^{(j)}}, \qquad j, n \geq 0. \end{split}$$

 \mathcal{L} —преобразование Левина и \mathcal{S} -преобразование Сиди - два важных метода экстраполяции - частные случаи $d^{(l)}$ -трансформации Эти методы являются нелинейными и предназначены для ускорения сходимости последовательностей, которые могут быть представлены в виде асимптотических рядов. Они особенно полезны для последовательностей, которые сходятся медленно или расходятся.

S –трансформация Сиди.

Если положить m=1 и $R_l=l+1$, а также заменить R_l^k на R_l^{0k} , то уравнения в факториальном $d^{(m)}$ -преобразовании для бесконечных рядов принимают вид:

$$A_r = d_n^{(1,j)} + \omega_r \sum_{i=0}^{n-1} \frac{\bar{\beta}_j}{(r)_i}, \quad J \le r \le J + n, \quad \omega_r = r^{\rho} a_r, \quad J = j + 1. \#(2)$$

Полученное факториальное $d^{(1)}$ -преобразование является S-преобразованием Сиди. Обозначим $d_n^{(1,j)}$ в (2) как $S_n^{(j)}$. Тогда $S_n^{(j)}$ имеет следующую известную явную формулу, приведённую в [8]:

$$S_{k}^{(j)} = \frac{\Delta^{n}\left((J)_{n-1}\frac{A_{J}}{\omega_{J}}\right)}{\Delta^{n}\left((J)_{n-1}\frac{1}{\omega_{J}}\right)} = \frac{\sum_{i=0}^{n} \frac{(-1)^{i}\binom{n}{i}(J+i)_{n-1}A_{J+i}}{\omega_{J+i}}}{\sum_{i=0}^{n} \frac{(-1)^{i}\binom{n}{i}(J+i)_{n-1}}{\omega_{J+i}}}; \quad J = j+1.\#(3)$$

Вывод формулы для S -трансформации. Приведём вывод S -трансформации из [2].

Пусть дана модельная последовательность:

$$S_n = S + \omega_n \sum_{j=0}^{k-1} \frac{c_j}{(n+\beta)_j}, \#(4)$$

где β — положительный параметр, чья область определения определена символом Почхаммера (влияние параметра не изучено до конца, зачастую β принимают равным 1).

Если нам известны значения $S_n, S_{n+1}, \dots, S_{n+k}$, то уравнение (4) задает систему с k+1 неизвестными: S, c_0, \dots, c_{k-1} . Используя метод Крамера, находим решение для неизвестной S:

$$S = \frac{\begin{vmatrix} S_n & \frac{\omega_n}{(n+\beta)_0} & \frac{\omega_n}{(n+\beta)_1} & \cdots & \frac{\omega_n}{(n+\beta)_{k-1}} \\ \vdots & \vdots & \ddots & \vdots \\ S_{n+k} & \frac{\omega_{n+k}}{(n+k+\beta)_0} & \frac{\omega_{n+k}}{(n+k+\beta)_1} & \cdots & \frac{\omega_{n+k}}{(n+k+\beta)_{k-1}} \end{vmatrix}}{\begin{vmatrix} 1 & \frac{\omega_n}{(n+\beta)_0} & \frac{\omega_n}{(n+\beta)_1} & \cdots & \frac{\omega_n}{(n+\beta)_{k-1}} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \frac{\omega_{n+k}}{(n+k+\beta)_0} & \frac{\omega_{n+k}}{(n+k+\beta)_1} & \cdots & \frac{\omega_{n+k}}{(n+k+\beta)_{k-1}} \end{vmatrix}}.\#(5)$$

Если последовательность $\{S_n,\dots,S_{n+k}\}$ удовлетворяют уравнению (4), то $S=\mathcal{S}_k^{(n)}(\beta,S_n,\omega_n).$

Данный способ вычисления громоздкий и не удобен для вычисления на ЭВМ, потому был найден альтернативный способ вычисления $\mathcal{S}_k^{(n)}$:

Из уравнения (4) следует, что

$$\frac{S_n - S}{\omega_n} = \sum_{j=0}^{k-1} \frac{c_j}{(n+\beta)_j}.\#(6)$$

Умножим обе части на $(n + \beta)_{k-1}$:

$$\frac{(n+\beta)_{k-1}[S_n-S]}{\omega_n} = (n+\beta)_{k-1} \sum_{j=0}^{k-1} \frac{c_j}{(n+\beta)_j}, \#(7)$$

$$\frac{(n+\beta)_{k-1}[S_n-S]}{\omega_n} = \sum_{j=0}^{k-1} c_j (n+j+\beta)_{k-j-1} . \#(8)$$

Применим к обоим частям оператор Δ^k , действующий на n:

$$\Delta^{k} \left(\frac{(n+\beta)_{k-1} [s_n - s]}{\omega_n} \right) = 0. \#(9)$$

Упрощая:

$$S = \frac{\Delta^k \left[\frac{(n+\beta)_{k-1} S_n}{\omega_n} \right]}{\Delta^k \left[\frac{(n+\beta)_{k-1}}{\omega_n} \right]} . \#(10)$$

Применяя формулу для оператора ⊿, получаем:

$$S = \frac{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \frac{(\beta + n + j)_{k-1}}{(\beta + n + j)_{k-1}} \frac{S_{n+j}}{\omega_{n+j}}}{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \frac{(\beta + n + j)_{k-1}}{(\beta + n + j)_{k-1}} \frac{1}{\omega_{n+j}}}. \#(11)$$

В итоге получаем репрезентацию $\mathcal{S}_k^{(n)}$ в виде отношения двух конечных сумм:

$$S_k^{(n)}(\beta, S_n, \omega_n) = \frac{\sum_{j=0}^k (-1)^j \binom{k}{j} \frac{(\beta+n+j)_{k-1}}{(\beta+n+k)_{k-1}} \frac{S_{n+j}}{\omega_{n+j}}}{\sum_{j=0}^k (-1)^j \binom{k}{j} \frac{(\beta+n+j)_{k-1}}{(\beta+n+k)_{k-1}} \frac{1}{\omega_{n+j}}}. \#(12)$$

Множитель $(\beta + n + k)_{k-1}$ был введён для того, чтобы уменьшить порядок слагаемых в сумме, так как иначе при вычислении на ЭВМ может легко произойти ошибка переполнения.

 $\mathcal{S}_k^{(n)}$ можно также вычислить, используя рекуррентное отношение, полученное из выведенной формулы.

Числитель и частное $S_k^{(n)}(\beta, s_n, \omega_n)$ имеют форму:

$$Q_{k}^{(n)} = \Delta^{k} Y_{k}^{(n)},$$

$$Y_{k}^{(n)}(\beta) = \begin{cases} (n+\beta)^{k-1} \frac{S_{n}}{\omega_{n}} \\ (n+\beta)^{k-1} \frac{1}{\omega_{n}} \end{cases}$$

$$Y_{k}^{(n)}(\beta) = (\beta+n+k-2)Y_{k-1}^{(n)}(\beta), \quad k \ge 1, \quad n \ge 0,$$

$$Q_{k}^{(n)}(\beta) = \Delta^{k} Y_{k}^{(n)}(\beta) = \{kE + (n+\beta+k-2)\Delta\}^{k-1} Y_{k-1}^{(n)}(\beta) = \{kE + (n+\beta+k-2)\Delta\}Q_{k-1}^{(n)}(\beta) = \{kE + (n+\beta+k-2)Q_{k-1}^{(n)}(\beta) = (\beta+n+2k-2)Q_{k-1}^{(n+1)}(\beta) - (\beta+n+k-2)Q_{k-1}^{(n)}(\beta).$$

Такое соотношение работает для:

$$S_k^{(n)}(\beta, S_n, \omega_n) = \frac{\sum_{j=0}^k (-1)^j \binom{k}{j} (\beta + n + k)_{k-1} \frac{S_{n+j}}{\omega_{n+j}}}{\sum_{j=0}^k (-1)^j \binom{k}{j} (\beta + n + j)_{k-1} \frac{1}{\omega_{n+j}}}.$$

Если же используется более численно стабильная версия, то есть

$$S_k^{(n)} = \frac{Q_k^{(n)}}{(\beta + n + k)_{k-1}}.$$

То есть рекуррентное отношение принимает вид:

$$S_{k+1}^{(n)} = S_k^{(n+1)} - \frac{(\beta + n + k)(\beta + n + k - 1)}{(\beta + n + 2k)(\beta + n + 2k - 1)} S_{k-1}^{(n)}. \#(13)$$

S –преобразование впервые было использовано для суммирования бесконечных степенных рядов. Сравнительное исследование Гротендорста [9] показало, что этот метод является одним из наиболее эффективных для суммирования широкого класса всюду расходящихся степенных рядов.

\mathcal{L} – трансформация Левина.

Это преобразование основано на идее устранения главных членов асимптотического разложения последовательности, чтобы улучшить точность оценки её предела. Если выбрать $R_l = l + 1$ в факториальном $d^{(m)}$ -преобразовании для бесконечных рядов, то получим [4]:

$$A_r = d_n^{(1,j)} + \omega_r \sum_{j=0}^{n-1} \frac{\bar{\beta}_j}{r^i}, \quad J \le r \le J+n, \quad \omega_r = r^{\rho} a_r, \quad J = j+1.\#(14)$$

Полученное $d^{(l)}$ -преобразование совпадает с известными t- и u- преобразованиями Левина, где ρ =0 и ρ =1 соответственно. Обозначим $d_n^{(1,j)}$ в (14) как $\mathcal{L}_n^{(j)}$. Тогда $\mathcal{L}_n^{(j)}$ имеет следующий явный вид, приведённый в [6]:

$$\mathcal{L}_{n}^{(j)} = \frac{\Delta^{n} \left(J^{n-1} \frac{A_{J}}{\omega_{J}} \right)}{\Delta^{n} \left(J^{n-1} \frac{1}{\omega_{J}} \right)} = \frac{\sum_{i=0}^{n} \frac{(-1)^{i} \binom{n}{i} (J+i)^{n-1} A_{J+i}}{\omega_{J+i}}}{\sum_{i=0}^{n} \frac{(-1)^{i} \binom{n}{i} (J+i)^{n-1}}{\omega_{J+i}}}; \quad J = j+1.\#(15)$$

Вывод формулы для \mathcal{L} -трансформации. Он аналогичен выводу формулы \mathcal{S} -трансформации. В итоге получаем:

$$\mathcal{L}_{k}^{(n)}(\beta, S_{n}, \omega_{n}) = \frac{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \frac{(\beta + n + j)^{k-1}}{(\beta + n + k)^{k-1}} \frac{S_{n+j}}{\omega_{n+j}}}{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \frac{(\beta + n + j)^{k-1}}{(\beta + n + k)^{k-1}} \frac{1}{\omega_{n+j}}}, #(16)$$

где $(\beta + n + j)^{k-1}$ — множитель, введённый в формулу чтобы уменьшить магнитуду слагаемых числителя и знаменателя чтобы понизить риск возникновения ошибки переполнения.

Данная формула (16) удобна, так как из неё легко выводится рекуррентное отношение.

Пусть

$$X_{k}^{(n)}(\beta) = \begin{cases} (n+\beta)^{k-1} \frac{S_{n}}{\omega_{n}} \\ (n+\beta)^{k-1} \frac{1}{\omega_{n}} \end{cases}$$

$$X_{k}^{(n)}(\beta) = (\beta+n)X_{k-1}^{(n)}(\beta), \quad k \ge 1, \quad n \ge 0,$$

$$\Delta^{k}(\beta+n) - (\beta+n)\Delta^{k} = kE\Delta^{k-1},$$

$$P_{k}^{(n)}(\beta) = \Delta^{k}X_{(k)}^{(n)}(\beta) = \{kE + (\beta+n)\Delta\}^{k-1}X_{k-1}^{(n)}(\beta) =$$

$$= \{kE + (\beta+n)\Delta\}P_{k-1}^{(n)}(\beta) =$$

$$= (\beta+n+k)P_{k-1}^{(n+1)}(\beta) - (\beta+n)P_{k-1}^{(n)}(\beta).$$

Для стабильности лучше вычислять уменьшенные значения

$$\mathcal{L}_k^{(n)}(\beta) = \frac{p_k^{(n)}(\beta)}{(\beta + n + k)^{k-1}}.$$

Числитель и частное $S_k^{(n)}(\beta, S_n, \omega_n)$ имеет форму:

Используя уменьшенные значения, получается рекуррентное отношение формы:

$$\mathcal{L}_{k+1}^{(n)} = \mathcal{L}_k^{(n+1)} = \frac{(\beta+n)(\beta+n+k)^{k-1}}{(\beta+n+k+1)^k} \mathcal{L}_k^{(n)}. \#(17)$$

Алгебраические свойства [4]:

1) Если положить $\omega_m = ma_m$ (*u*-преобразование) в (15), то можно заметить, что:

$$\mathcal{L}_{n}^{(j)} = \frac{\Delta^{n} \left(J^{n-2} \frac{A_{J}}{\omega_{J}} \right)}{\Delta^{n} \left(J^{n-2} \frac{1}{\omega_{J}} \right)} = \frac{\Delta^{n} \left(J^{n-2} \frac{A_{J}}{\Delta A_{J}} \right)}{\Delta^{n} \left(J^{n-2} \frac{1}{\Delta A_{J}} \right)}; \qquad J = j+1, \#(18)$$

где второе равенство выполняется при $n \geq 2$. Из (16) видно, что $\mathcal{L}_2^{(j)} = W_j(\{A_s\})$, где $\{W_j(\{A_s\})\}$ — последовательность, полученная с помощью преобразования Лубкина.

2) Следующая теорема касается ядра u-преобразования, а также, как частный случай, ядра преобразования Лубкина. Теорема: пусть $\mathcal{L}_n^{(j)}$ получено с помощью u-преобразования на последовательности $\{A_m\}$. Тогда $\mathcal{L}_n^{(j)} = A$ для всех j = 0, 1, ..., и фиксированного n, если и только если A_m имеет вид:

$$A_m = A + C \prod_{k=2}^{n} \frac{P(k) + 1}{P(k)'}, \qquad P(k) = \sum_{i=0}^{n-1} \beta_i k^{1-i}, \#(19)$$

где $C \neq 0, \beta_0 \neq 1, P(k) \neq 0, -1$ для всех k = 2, 3

3) Смит и Форд [7] показали, что семейство последовательностей частичных сумм ряда Эйлера содержится в ядре u-преобразования. Теорема: пусть $A_m = \sum_{k=1}^m k^\mu z^k$, где $m=1,2,...,\mu$ — неотрицательное целое число, а $z\neq 1$, пусть $\mathcal{L}_n^{(j)}$ — результат применения u-преобразования к последовательности $\{A_m\}$. Если $n\geq \mu+2$, то для всех j выполняется равенство $\mathcal{L}_n^{(j)}=A$, где $A=\left(z\frac{d}{dz}\right)^\mu\frac{1}{1-z}$.

Алгоритмы вычисления

 \mathcal{S} -преобразование Сиди. Алгоритмы вычисления $S_n^{(j)}$:

- 1) Прямое использование формулы (3);
- 2) Рекуррентный алгоритм Венигера [4], состоит из следующих шагов:
 - а) инициализация (для j = 0,1,...):

$$P_0^{(j)} = \frac{A_J}{\omega_J}, \ Q_0^{(j)} = \frac{1}{\omega_J}, \ J = j + 1;$$

- b) рекуррентное вычисление (для $j=0,1,\dots$ и $n=1,2,\dots$): $U_n^{(j)}=U_{n-1}^{(j+1)}-\frac{(j+n-1)(j+n)}{(j+2n-2)(j+2n-1)}U_{n-1}^{(j)},$ где $U_n^{(j)}$ обозначает $P_n^{(j)},$ либо $Q_n^{(j)};$
- с) финальное вычисление:

$$S_n^{(j)} = \frac{P_n^{(j)}}{Q_n^{(j)}}.$$

3) Модификация Венигера. Венигер предложил расширение \mathcal{L} преобразования, заменив r^i в (14) на $(r+\alpha)^i$ для некоторого
фиксированного α . Это приводит к замене множителей J^{n-1} и $(J+i)^{n-1}$ в
числителе и знаменателе (15) на $(J+\alpha)^{n-1}$ и $(J+\alpha+i)^{n-1}$ соответственно.
Влияние параметра α на точность аппроксимаций требует
дополнительного исследования.

 \mathcal{L} –преобразование Левина. Для вычисления преобразований $\mathcal{L}_n^{(j)}$ можно использовать следующие подходы:

- 1) Прямое применение формулы (15);
- 2) Поскольку \mathcal{L} -преобразование является GREP⁽¹⁾, для его вычисления удобно использовать W-алгоритм, для этого необходимо задать: $t_l = (l+1)^{-1}$, $\alpha(t_l) = A_{l+1}$, $\varphi(t_l) = \omega_{l+1}$, где l = 0, 1, ...;
- 3) Рекуррентный алгоритм HURRY, включающий следующие шаги:
 - а) инициализация (для j = 0,1,...):

$$P_0^{(j)} = \frac{A_J}{\omega_J}, \ Q_0^{(j)} = \frac{1}{\omega_J}, \ J = j + 1.$$

b) рекуррентное вычисление (для $j=0,1,\dots$ и $n=1,2,\dots$): $U_n^{(j)}=U_{n-1}^{(j+1)}-\frac{J}{J+n}\Big(\frac{J+n-1}{J+n}\Big)^{n-2}U_{n-1}^{(j)},$ где $U_n^{(j)}$ обозначает $P_0^{(j)},$ либо $O_n^{(j)}.$

с) финальное вычисление:

$$\mathcal{L}_n^{(j)} = rac{P_n^{(j)}}{Q_n^{(j)}}$$
, при этом $P_n^{(j)} = rac{arDelta^n \left(J^{n-1}A_J/\omega_J
ight)}{(J+n)^{n-1}}$, $Q_n^{(j)} = rac{arDelta^n \left(J^{n-1}/\omega_J
ight)}{(J+n)^{n-1}}$,

такая нормализация предотвращает чрезмерный рост значений $P_n^{(j)}$ и $Q_n^{(j)}$ при увеличении n;

4) Модификация Венигера. Венигер предложил расширение \mathcal{L} преобразования, заменив r^i в (14) на $(r+\alpha)^i$ для некоторого
фиксированного α . Это приводит к замене
множителей J^{n-1} и $(J+i)^{n-1}$ в числителе и знаменателе (15)
на $(J+\alpha)^{n-1}$ и $(J+\alpha+i)^{n-1}$ соответственно. Влияние параметра α на
точность аппроксимаций требует дополнительного исследования.

ω_n и его значимость при ускорении сходимости.

Сравнительное исследование Смита и Форда [7], [2] показало, что преобразования Левина исключительно эффективны для суммирования широкого класса бесконечных рядов $\sum_{k=1}^{\infty} a_k$, где $\{a_n\}_{n=1}^{\infty} \in b^{(1)}$.

Левин рассмотрел три различных варианта выбора ω_m и определил три различных преобразования последовательностей:

- 1) $\omega_n = a_n$ (*t*-преобразование);
- 2) $\omega_n = na_n$ (*u*-преобразование);
- 3) $\omega_n = a_n a_{n+1}/(a_{n+1} a_n)$ (*v*-преобразование).

Левин в своей статье [6], а также Смит и Форд в [7] и [2] (где они представили исчерпывающее сравнительное исследование методов ускорения) пришли к выводу, что u- и v-преобразования эффективны для всех трёх типов последовательностей, тогда как t-преобразование эффективно только для линейных и факториальных последовательностей. [На самом деле, все три преобразования являются наилучшими методами ускорения сходимости для знакопеременных рядов $\Sigma_{k=1}^{\infty}(-1)^k|a_k|$ с $\{a_n\}\in b^{(1)}$.]

Выбор весов ω_n и сравнение \mathcal{S} - с \mathcal{L} -преобразованием. Параметры ω_n в \mathcal{S} -преобразовании выбираются аналогично \mathcal{L} -преобразованию. Получающиеся преобразования последовательностей обладают схожими с t-, u- и v-преобразованиями численными свойствами, за исключением их меньшей эффективности для логарифмических последовательностей. Для последовательностей из классов линейных и факториальных \mathcal{S} - преобразование демонстрирует высокую эффективность по сравнению с \mathcal{L} -преобразованием. Однако для знакопеременных рядов вида $\sum_{k=1}^{\infty} (-1)^k c_k$, $c_k > 0$ \mathcal{L} -преобразование остаётся оптимальным выбором.

Оценки сходимости

Для \mathcal{L} - и \mathcal{S} -трансформаций можно дать оценки сходимости, однако лишь для определённых последовательностей.

Рассмотрим ряд $\sum_{i=0}^{\infty} a_n$ удовлетворяющий следующим условиям:

(S-0) Члены последовательности $\{S_n\}$ частичных сумм бесконечного ряда, который либо сходиться к некоторому лимиту S, либо расходиться с антипределом S.

(S-1) Элементы последовательности $\{\omega_n\}$ строго чередуют знак.

(S-2) Для всех п отношение $\frac{S_n-S}{\omega_n}$ может быть выражено в виде либо факториального ряда, т.е. $\frac{S_n-S}{\omega_n} = \sum_{j=0}^{\infty} \frac{c_j}{(\beta+n)_j}$, либо степенного ряда, т.е. $\frac{S_n-S}{\omega_n} = \sum_{j=0}^{\infty} \frac{c_j}{(\beta+r)^j}$,

тогда верны следующие теоремы.

Теорема об оценке сходимости \mathcal{L} -трансформации.

Пусть последовательности $\{S_n\}$ и $\{\omega_n\}$ удовлетворяют (S-0), (S-1) и (S-2), и $\mathcal{L}_k^{(n)}$ последовательность трансформаций над $\{S_n\}$. Тогда для больших значений n и для фиксированного k справедливо:

$$\frac{\mathcal{L}_k^{(n)}(\beta, S_n, \omega_n) - s}{S_n - S} = O(n^{-2k}), n \to \infty.$$

Теорема об оценки сходимости $\mathcal S$ -трансформации.

Пусть последовательности $\{S_n\}$ и $\{\omega_n\}$ удовлетворяют условиям (S-0)–(S-2) и что последовательность преобразований $S_k^{(n)}(\beta, S_n, \omega_n)$ над $\{S_n\}$. Тогда мы получим для фиксированной величины k и для всех n следующую оценку для ошибки:

$$|\mathcal{S}_k^{(n)}(\beta, \mathcal{S}_n, \omega_n) - \mathcal{S}| \le \left| \frac{\omega_n}{(\beta + n)_{2k}} \sum_{j=0}^{\infty} \frac{\overline{\beta}_{i_{k+j}}(j+1)_k}{(\beta + n + 2k)_j} \right|.$$

Для фиксированного kи для больших значений n справедливо:

$$\frac{S_k^{(n)}(\beta, S_n, \omega_n) - S}{S_n - S} = O(n^{-2k}), n \to \infty.$$

Из вышеперечисленных теорем видно, что трансформации сравнимы при ускорении знакочередующихся рядов.

Также существует оценка для \mathcal{L} -трансформации при ускорении последовательностей с логарифмической сходимостью.

Теорема.

Пусть элементы последовательности $\{S_n\}$, которые сходятся логарифмически к некоторому лимиту s, и удовлетворяют:

$$S_n = S + n^{-\alpha} [b_0 + O(n^{-1})], b_0 \neq 0, \alpha \in \mathbb{R}_+, n \to \infty.$$

Пусть также элементы $\{\omega_n\}$ могут быть выбраны таким образом, что:

$$\omega_n = n^{-\alpha} [d_0 + O(n^{-1})], b_0 \neq 0, n \to \infty.$$

И что отношение $\frac{S_n-S}{\omega_n}$ может быть расширено для всех n в степенной ряд следующего вида:

$$\frac{s_n - s}{\omega_n} = \sum_{j=0}^{\infty} \frac{c_j}{(\beta + n)^j}.$$

Если трансформация \mathcal{L} используется для ускорения сходимости $\{S_n\}$, получаем, что для фиксированного k и для $n \to \infty$ справедливо:

$$\frac{\mathcal{L}(\beta, S_n, \omega_n) - s}{S_n - S} = O(n^{-k}), n \to \infty$$

К сожалению, такой оценки для \mathcal{S} -трансформации не удалось найти, но многочисленные численные эксперименты показывают, что \mathcal{S} -трансформация намного хуже справляется с ускорением логарифмической сходимости.

Приведём вывод о применимости S - и L - трансформации из [4]:

- 1) Для ускорения последовательностей из $b^{(1)}/LOG$ лучше всего подойдёт \mathcal{L} трансформации с $\omega_m = ma_m$;
- 2) \mathcal{L} и \mathcal{S} трансформации отлично справляются с ускорением последовательностей из $b^{(1)}/LIN/FAC$;
- 3) \mathcal{S} трансформация очень эффективна для последовательностей из $b^{(1)}/FACD$;
- 4) \mathcal{L} и \mathcal{S} трансформации бесполезны на последовательностях из $b^{(m)}$ приm>1;
- 5) Если последовательность состоит из суммы последовательностей, состоящих в различных классах $b^{(1)}$, то \mathcal{L} и \mathcal{S} трансформации работают неэффективно;
- 6) \mathcal{L} и \mathcal{S} трансформации применимы на последовательностях и не из класса $b^{(1)}$, однако их результат будет сложно предугадать.

Заключение

 ${\cal S}$ -трансформация является одним из представителей Левино-подобных преобразований, хотя её эффективность уступает ${\cal L}$ -трансформации, она остаётся одним из наилучших методов для суммирования расходящихся степенных рядов Стилтьеса.

Обычная трансформация Левина сходится быстрее, чем рекурсивная версия, и в отличие от многих других методов, Левин может эффективно обрабатывать знакопеременные ряды, что расширяет его применимость и делает его особо ценным для разнообразных вычислительных задач.хъ

Список литературы

- 1. Mathematical properties of a new Levin-type sequence transformation introduced by Čížek, Zamastil, and Skála. I. // Algebraic theory. J. Math. Phys. // E. J. Weniger. 2004. P. 1209-1246.
- 2. A new method for deriving Pade approximants for some hypergeometric functions // J. Comp. Appl. Math. // A. Sidi. 1981. P. 37-40.
- 3. Nonlinear Sequence Transformations for the Acceleration of Convergence and the Summation of Divergent Series // Computer Physics Reports // E. J. Weniger. 2003.
- 4. Practical Extrapolation Methods: Theory and Applications // Cambridge University Press // A. Sidi 2003. P. 121-157, 238-250, 253-261, 363-371.
- 5. An algorithm for a special case of a generalization of the Richardson extrapolation process // Numer. Math. // A. Sidi. 1982. P. 223-233.
- 6. Development of non-linear transformations for improving convergence of sequences // Math. Comp. // D. Levin. 1975. P. 371-388, 1331-1345.
- 7. Numerical comparisons of nonlinear convergence accelerators // Math. Comp. // D. A. Smith, W. F. Ford. 1982. P. 481-499.
- 8. A Maple package for transforming sequences and functions // Comput. Phys. Comm. // J. Grotendorst. 1991. P. 325-342.
- 9. A Levin-type algorithm for accelerating the convergence of Fourier series // Numer. Algorithms // H. H. H. Homeier. 1992. P. 245-254.