Partições e Números de Stirling

Samuel Lopes

M2007-Algoritmos em Matemática Discreta

2 de outubro de 2019

Sumário:

Partições de um conjunto e blocos de uma partição. Exemplos. Números de Stirling de segunda espécie S(n,k) e números de Bell B(n). Relação de recorrência para os números de Stirling de segunda espécie. Cálculo de S(n,k) e B(n) para $n,k \leq 6$.

Explicação da notação B^A para o conjunto das funções de A em B. Cardinal deste conjunto. Função característica de um subconjunto de um conjunto dado. Cardinal do conjunto das partes de um conjunto finito dado. Multiconjuntos.

Partições de conjuntos

Uma partição de um conjunto S é um conjunto (não é uma lista, i.e., é uma partição não etiquetada) de subconjuntos não vazios e dois-a-dois disjuntos de S cuja reunião é S. Cada um desses subconjuntos diz-se um bloco.

```
Exemplo: As partições de [4] são:

1 bloco: {{1,2,3,4}}

2 blocos: {{1}, {2,3,4}}, {{2}, {1,3,4}}, {{3}, {1,2,4}}, {{4}, {1,2,3}}, {{1,2}, {3,4}}, {{1,3}, {2,4}}, {{1,4}, {2,3}}

3 blocos: {{1,2}, {3}, {4}}, {{1,3}, {2}, {4}}, {{1,4}, {2}, {3}}, {{2,3}, {1}, {4}}, {{2,4}}, {{1,4}, {2}, {3}}, {{3,4}, {1}, {4}}, {{2,4}, {1}, {3}}, {{3,4}, {1}, {2}}

4 blocos: {{1}, {2}, {3}, {4}}
```

Sage Math Cell

```
sage: C = SetPartitions([1,2,3, 4]); C
Set partitions of \{1, 2, 3, 4\}
sage: C.cardinality()
15
sage: C.list()
[\{\{1, 2, 3, 4\}\}, \{\{1, 2, 3\}, \{4\}\},
 \{\{1, 2, 4\}, \{3\}\}, \{\{1, 2\}, \{3, 4\}\},
 \{\{1, 2\}, \{3\}, \{4\}\}, \{\{1, 3, 4\}, \{2\}\},
 \{\{1, 3\}, \{2, 4\}\}, \{\{1, 3\}, \{2\}, \{4\}\},
 \{\{1, 4\}, \{2, 3\}\}, \{\{1\}, \{2, 3, 4\}\},
 \{\{1\}, \{2, 3\}, \{4\}\}, \{\{1, 4\}, \{2\}, \{3\}\},
 \{\{1\}, \{2, 4\}, \{3\}\}, \{\{1\}, \{2\}, \{3, 4\}\},
 {{1}, {2}, {3}, {4}}]
```

Números de Stirling de 2^a espécie

 $S(n, k) = n^{\circ}$ de partições do conjunto [n] com k blocos

Os números S(n, k) designam-se por números de Stirling de 2^a espécie.

Exemplo:

$$S(4,1) = 1,$$
 $S(4,2) = {4 \choose 1} + \frac{1}{2} {4 \choose 2} = 7$
 $S(4,3) = {4 \choose 2} = 6,$ $S(4,4) = 1$

Números de Stirling de 2^a espécie: relação de recorrência

Seja $P = \{B_1, \dots, B_k\}$ uma partição de [n] em k blocos. Há duas hipóteses mutuamente exclusivas:

- $\{n\}$ é um dos blocos de P Neste caso, retirando esse bloco a P obtemos uma partição P' de [n-1] com k-1 blocos. Há S(n-1,k-1) partições nestas condições e as partições de [n] em k blocos em que $\{n\}$ é um dos blocos obtêm-se destas adicionando-lhes o bloco $\{n\}$.
- n pertence a um bloco de P com pelo menos 2 elementos Neste caso, retirando n a esse bloco obtemos uma partição de [n-1] com k blocos. Há S(n-1,k) partições nestas condições e as partições de [n] em k blocos em que n não está isolado obtêm-se destas adicionando n a algum dos k blocos. Há portanto k possibilidades , para cada uma das S(n-1,k) partições possíveis.

Números de Stirling de 2^a espécie: relação de recorrência (cont.)

Teorema

Os números de Stirling satisfazem a relação de recorrência

$$S(n,k) = S(n-1,k-1) + kS(n-1,k),$$
 (*)

com condições iniciais S(n,0) = 0 = S(0,k), se $n, k \ge 1$ e S(0,0) = 1.

Exemplo: Partições de [4] com 3 blocos

{4} é um dos blocos → partições de [3] com 2 blocos:

$$\{\{1\},\{2,3\}\}, \quad \{\{2\},\{1,3\}\}, \quad \{\{3\},\{1,2\}\}$$

Logo obtemos as partições:

$$\{\{1\}, \{2,3\}, \{4\}\}, \quad \{\{2\}, \{1,3\}, \{4\}\}, \quad \{\{3\}, \{1,2\}, \{4\}\}$$

{4} não é um dos blocos → partições de [3] com 3 blocos:

$$\left\{ \left\{ 1\right\} ,\left\{ 2\right\} ,\left\{ 3\right\} \right\}$$

E escolher o bloco onde fica o 4:

$$\left\{ \left\{ 1,4\right\} ,\left\{ 2\right\} ,\left\{ 3\right\} \right\} ,\quad \left\{ \left\{ 1\right\} ,\left\{ 2,4\right\} ,\left\{ 3\right\} \right\} ,\quad \left\{ \left\{ 1\right\} ,\left\{ 2\right\} ,\left\{ 3,4\right\} \right\}$$

O triângulo dos números de Stirling de 2ª espécie

Assim, usando a relação de recorrência (*) e as respetivas condições iniciais, podemos obter a seguinte tabela

Triângulo dos números de Stirling de 2ª espécie

n^{k}	0	1	2	3	4	5	6	7
0	1	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0
2	0	1	1	0	0	0	0	0
3	0	1	3	1	0	0	0	0
4	0	1	7	6	1	0	0	0
5	0	1	15	25	10	1	0	0
6	0	1	31	90	65	15	1	0
7	0	1	63	301	350	140	21	1

Números de Bell

Pelo que vimos, o número total de partições de um conjunto com *n* elementos é

$$B(n) = \sum_{k=0}^{n} S(n,k) = S(n,0) + S(n,1) + \cdots + S(n,n-1) + S(n,n).$$

Este número é designado por número de Bell de ordem n e obtém-se somando a linha n do triângulo dos números de Stirling de 2^a espécie.

n k	0	1	2	3	4	5	6	7	B(n)
0	1	0	0	0	0	0	0	0	B(0) = 1
1	0	1	0	0	0	0	0	0	B(1) = 1
2	0	1	1	0	0	0	0	0	B(2) = 2
3	0	1	3	1	0	0	0	0	B(3) = 5
4	0	1	7	6	1	0	0	0	B(4) = 15
5	0	1	15	25	10	1	0	0	B(5) = 52
6	0	1	31	90	65	15	1	0	B(6) = 203
7	0	1	63	301	350	140	21	1	B(6) = 877

OEIS

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES®

Funções

Notação 2/10/2019

 \mathbb{N} ou $\mathbb{Z}_{\geq 0}$ = conjunto dos inteiros não negativos

$$B^A = \{\text{funções } f : A \longrightarrow B\}$$

Exemplo: Se
$$A = [n]$$
 então $f \in B^{[n]} \iff (f(1), f(2), \dots, f(n)) \in B^n$

Teorema

Se A e B são conjuntos finitos, então $\left|B^A\right| = |B|^{|A|}$.

Prova: Usar a regra do produto.

Exemplo: $A = \{ \heartsuit, \diamondsuit, \clubsuit, \spadesuit \}, g \in \mathbb{N}^A, g = (7, 5, 9, 0).$

Note-se que g NÃO ESTÁ BEM DEFINIDA! porque não é possível determinar com esta informação e.g. qual o elemento $x \in A$ tal que g(x) = 5.

É necessário explicitar primeiro uma ordem em A. Por exemplo, se definirmos $\heartsuit < \diamondsuit < \clubsuit < \spadesuit$, então $g(\diamondsuit) = 5$, mas se definirmos $\diamondsuit < \spadesuit < \heartsuit < \clubsuit$, então $g(\spadesuit) = 5$.

Sucessões e subconjuntos

Exemplo:

$$\mathbb{R}^{\mathbb{N}} \leftrightarrow \text{sucess\~oes reais}$$
 $f \mapsto (f_n)_{n \geq 0} \text{ onde } f_n = f(n)$

Teorema

Seja X um conjunto finito e $\mathcal{P}(X)$ o conjunto dos subconjuntos de X. Então

$$|\mathcal{P}(X)| = |\{0,1\}^X| = 2^{|X|}$$

Prova: Dado $A\subseteq X$, seja $\chi_A:X\to\{0,1\}$ a respetiva função característica definida por $\chi_A(x)=\begin{cases} 1 & \text{se } x\in A \\ 0 & \text{se } x\notin A \end{cases}$ A correspondência

é bijetiva, logo
$$|\mathcal{P}(X)|=\left|\{0,1\}^X\right|=2^{|X|}$$
.

Multiconjuntos 2/10/2019

Seja X um conjunto. Um multiconjunto cujos elementos pertencem a X corresponde a uma lista $(m(x))_{x\in X}$ das multiplicidades dos elementos $x\in X$ no multiconjunto.

Logo:

$$\begin{array}{ccc} \text{multiconjuntos cujos} & \text{funções} \\ \text{elementos pertencem a } X & & & m: X \stackrel{\text{funções}}{\longrightarrow} \mathbb{Z}_{\geq 0} \in \left(\mathbb{Z}_{\geq 0}\right)^X \end{array}$$

Exemplo:

Os multiconjuntos de elementos de X nos quais cada elemento tem multiplicidade não superior a k correspondem às funções em $\{0,1,\ldots,k\}^X$, e como tal há exatamente

$$|\{0,1,\ldots,k\}^X|=(k+1)^{|X|}$$

multiconjuntos nestas condições.