OVERVIEW

+ zero Padding (1)

Monday, September 26, 2016 6:33 PM

Stochastic aption

nar-convex loss fr

backprop

Monday, May 2, 2016 5:55 PM

eg: compute $\frac{\partial f}{\partial x}$

and $\frac{\partial f}{\partial x}$

SAME FOR ALL STEP 1 have a variable dependency
graph

A

$\sqrt{}$	Sant 1.
when $f(x,y)$	$=\frac{x+\sigma(y)}{1-x^2}$

$\frac{\partial x}{\partial x} _{x=x_o} \qquad \frac{\partial x}{\partial y} _{y=y_o} \qquad \frac{\partial x}{\partial y} _{y=y_o} \qquad \frac{\partial x}{\partial y} _{y=y_o}$				
forward		backward		
		DONE		
1	$\sigma_y = \sigma(y) = \frac{1}{1 + e^{-y}}$	8 (*)	$dy \leftarrow dy + d\sigma_y \cdot \frac{\partial \sigma_y}{\partial y} = dy + \left(1 - \sigma_y\right)\sigma_y$	
2	$g(x,\sigma_y) = x + \sigma_y$	7 (*)	$dx \leftarrow dx + dg \cdot \frac{\partial g}{\partial x} = dx + dg$ $d\sigma_y = \frac{\partial f}{\partial \sigma_y} = dg \cdot \frac{\partial g}{\partial x} = dg$	
3 (*)	$\sigma_x = \sigma(x) = \frac{1}{1 + e^{-x}}$	6 (*)	$dx \leftarrow dx + d\sigma_x \cdot \frac{\partial \sigma_x}{\partial x} = dx + (1 - \sigma_x)\sigma_x$	
4 (*)	p(x,y) = x + y	5 (*)	$dx = \frac{\partial f}{\partial x} \leftarrow dp \cdot \frac{\partial p}{\partial x} = dp$ $dy = \frac{\partial f}{\partial y} \leftarrow dp \cdot \frac{\partial p}{\partial y} = dp$	
5	$s(p) = p^2$	4	$dp = \frac{\partial f}{\partial p} = ds \cdot \frac{\partial s}{\partial p} = ds \cdot 2p$	
6	$h(\sigma_x,s) = \sigma_x + s$	3	$d\sigma_{x} = \frac{\partial f}{\partial \sigma_{x}} = dh \cdot \frac{\partial h}{\partial \sigma_{x}} = dh$ $ds = \frac{\partial f}{\partial s} = dh \cdot \frac{\partial h}{\partial s} = dh$	
7	$k(h) = \frac{1}{h}$	2	$dh = \frac{\partial f}{\partial h} = dk \cdot \frac{\partial k}{\partial h} = dk \cdot \left(-\frac{1}{h^2}\right)$	
8	$f(g,k) = g \cdot k$	1	$dg = \frac{\partial f}{\partial g} = k$ $dk = \frac{\partial f}{\partial k} = g$	
DONE				

Backprop intuitions: passing the messages http://cs231n.github.io/optimization-2/

multivariable chain-rule: gradients add up at forks (*)

 $\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u}$

 $\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$

ANALOGY TO

FNN:

of() = less junction

other variables

= W, b at each layer

Multi-label learning strategy

Monday, September 26, 2016 6:47 PM

MLMC

OVA