• Équations différentielles : cours

1 Equations différentielles du premier ordre : exemple sans condition initiale

Exemple 1 On considère le bac de stockage cylindrique représenté ci-dessous. À l'instant t, en seconde (s), on note h(t) la hauteur d'eau, en mètre (m), dans le bac, $Q_e(t)$ le débit d'entrée, en $m^3 s^{-1}$, et $Q_v(t)$ le débit de vidange, en $m^3 s^{-1}$.

À l'instant y = 0, le bac est vide, donc :

$$h(0) = 0$$
.

La conservation de la matière et des approximations permettent d'écrire, pour tout $t \geqslant 0$:

$$Q_e(t) = 8h'(t) + 2h(t)$$

où S est l'aire de la base du bac, exprimée en m^2 , et h' la fonction dérivée de h.

On a donc: $8h'(t) + 2h(t) = Q_e(t)$.

On veut que la hauteur d'eau h(t) atteigne $10\,$ cm, soit $0,1\,$ m. Pour cela, on agit sur le débit d'entrée $Q_e(t)$.

On va supposer que pour $t \ge 0$: $Q_e(t) = 0,2$.

La fonction h est donc solution sur l'intervalle $[0; +\infty[$ de l'équation différentielle :

$$8y' + 2y = 0,2$$
 (E)

- **1. a.** Donner les solutions sur l'intervalle $[0; +\infty[$ de l'équation différentielle : 8y' + 2y = 0 (E_0) .
 - **b.** Déterminer une solution particulière constante $y_0: t \mapsto c$, avec c constante réelle. de l'équation différentielle (E).
 - **c.** Donner les solutions sur l'intervalle $[0; +\infty[$ de l'équation différentielle (E).
- **2.** L'une des quatre expressions ci-dessous est celle de h(t), pour tout réel $t \ge 0$. Laquelle? Justifier la réponse.

$$A \ h(t) = -0.1e^{-0.25t} + 0.2$$
 $C \ h(t) = -0.1e^{-4t} + 0.1$
 $B \ h(t) = -0.1e^{-0.25t} + 0.1$ $D \ h(t) = -0.2e^{-0.25t} + 0.1$

- **3.** a. Quelle est la limite de h(t) quand t tend vers $+\infty$? Justifier brièvement.
 - **b.** Estimer au bout de combien de temps h(t) atteint 95 % de 0,1 m. Indiquer la démarche suivie.

2 Résumé et méthode

2.1 Équations homogènes

$$(E_0): y'(t) + ay(t) = 0$$

Les solutions sont de la forme $f_0(t) = Ke^{-at}$ avec K un nombre réel dont la valeur dépend des conditions initiales.

Si jamais l'équation est de la forme :

$$(E_0)$$
: $cy'(t) + dy(t) = 0$ avec $c \neq 0$

on se ramène au cas précédent en divisant par c :

$$(E_0): y'(t) + \frac{d}{c}y(t) = 0$$

2.2 Équations avec second membre

$$(E): y'(t) + ay(t) = s(t)$$

1. Premier cas: s(t) est une constante α et une solution particulière est $g(t) = \frac{\alpha}{a}$.

Soit on donne la réponse directement, soit il peut arriver qu'on nous demande de trouver cette solution par le biais d'une démonstration.

Dans ce cas, on procède de la sorte :

- ightharpoonup On appelle g(t) = C la solution constante.
- \implies g'(t) = 0.
- $g'(t) + ag(t) = \alpha \Leftrightarrow 0 + a \times C = \alpha \Leftrightarrow C = \frac{\alpha}{a}$
- **2.** <u>Deuxième cas</u>: s(t) n'est pas une constante et on vérifie que g(t) donné dans l'énoncé est une solution particulière.

On calcule g'(t) puis g'(t) + ag(t) et on doit trouver s(t).

Les solutions de (*E*) sont de la forme :

$$f(t) = f_0(t) + h(t)$$

où $f_0(t)$ est la solution de (E_0) .

Si jamais l'équation est de la forme :

$$(E_0): cy'(t) + dy(t) = s(t) \text{ avec } c \neq 0$$

on se ramène au cas précedent en divisant par c:

$$(E_0): y'(t) + \frac{d}{c}y(t) = \frac{s(t)}{c}$$

3 Équation complète avec condition initiale

On donne une information supplémentaire sur la fonction f solution de l'équation différentielle (E): f(0) = b.

On demande alors de déterminer la solution de (E) : cela revient à déterminer la

valeur de K.

Pour le faire, on doit résoudre cette équation du premier ordre, d'inconnue K:

$$f(0) = b \Leftrightarrow Ke^{-a \times 0} + h(0) = b \Leftrightarrow K = b - h(0)$$

La suite de la résolution dépend de la valeur de h(0).

Exemple 2 On considère l'équation différentielle (E): $y'-4y=2e^{3t}$ où l'inconnue y est une fonction de la variable réelle t et y' sa dérivée.

- 1. Résoudre l'équation différentielle (E_0) : y'-4y=0. \longrightarrow Il n'y a pas à transformer l'équation puisqu'il y a 1 devant y'. Devant y, il y a -4 donc les solutions de (E_0) sont de la forme Ke^{+4t} avec $K \in \mathbb{R}$.
- **2.** Déterminer une solution particulière h de (E) sous la forme $h(t) = ae^{3t}$ où a est une constante réelle à déterminer.
 - \longrightarrow La fonction h est une solution de (E), donc on l'égalité suivante :

$$h'(t) - 4h(t) = 2e^{3t}$$

$$\Leftrightarrow (ae^{3t})' - 4ae^{3t} = 2e^{3t}$$

$$\Leftrightarrow a(e^{3t})' - 4ae^{3t} = 2e^{3t}$$

$$\Leftrightarrow a \times 3e^{3t} - 4ae^{3t} = 2e^{3t}$$

$$\Leftrightarrow -ae^{3t} = 2e^{3t}$$

$$\Leftrightarrow a = \frac{2e^{3t}}{-e^{3t}} = -2$$

Finalement, $h(t) = -2e^{3t}$.

- 3. En déduire les solutions de (E).

 Les solutions de (E) sont donc de la forme : $f(t) = Ke^{+4t} 2e^{3t}$.
- 4. Déterminer la solution f de (E) vérifiant la condition initiale f (0) = 0.
 → On remplace t par 0 dans l'expression de f précédemment exprimée : f (0) = K-2.

Cette expression doit être égale à 0 donc K = 2 et par conséquent $f(t) = 2e^{4t} - 2e^{3t}$.