3. Considere o seguinte problema de programação linear:

max
$$2x_1 - x_2 + 3x_3$$

suj. $2x_1 - x_2 + 3x_3 \le 40$
 $x_1 \le 1$
 $x_1, x_2, x_3 \ge 0$

- a) Determine a solução óptima do problema.
- b) O espaço de soluções é limitado ou ilimitado? Justifique.
- c) Existem soluções óptimas alternativas? O valor da solução óptima é limitado ou ilimitado?
 Justifique.
- d) Diga o que se pode concluir em relação ao espaço de soluções e ao valor do óptimo.
- e) (R) Determine a expressão analítica (das coordenadas dos pontos) do raio de soluções óptimas alternativas.

max
$$2x_1 - x_2 + 3x_3$$

suj. $2x_1 - x_2 + 3x_3 \le 40$
 $x_1 \le 1$
 $x_1, x_2, x_3 \ge 0$

a) Determine a solução óptima do problema.

	Z	x1	x2	х3	s1	s2		
s1	0	2	-1	3	1	0	40	
s2	0	1	0	0	0	1	1	
Z	1	-2	1	-3	0	0	0	
	Z	x1	x2	х3	s1	s2		
х3	0	2/3	-1/3	1	1/3	0	40/3	Será que esta é a solução óptima?
s2	0	1	0	0	0	1	1	
Z	1	0	0	0	1	0	40	

a) Determine a solução óptima do problema.

	Z	x1	x2	х3	s1	s2	
х3	0	2/3	-1/3	1	1/3	0	40/3
s2	0	1	0	0	0	1	1
Z	1	0	0	0	1	0	40

Esta é a solução óptima.

$$(x1,x2,x3,s1,s2)T = (0,0,40/3,0,1)T$$

Não há variáveis não básicas que, ao aumentarem de valor, aumentem o valor da função objectivo.

Isso também acontece com, por exemplo, x2, que tem um coeficiente 0 na linha da função objectivo:

$$x3 = 40/3 - 2/3 x1 + 1/3 x2 - 1/3 s1$$

 $s2 = 1 - 1 x1$
 $z = 40 - s1$

Quando x2 aumenta (mantendo-se as outras variáveis não básicas, x1 e s1, iguais a 0), o valor da função objectivo não aumenta.

b) O espaço de soluções é limitado ou ilimitado? Justifique.

	Z	x1	x2	х3	s1	s2		
х3	0	2/3	-1/3	1	1/3	0	40/3	
s2	0	1	0	0	0	1	1	:
Z	1	0	0	0	1	0	40	

$$x3 = 40/3 - 2/3 x1 + 1/3 x2 - 1/3 s1$$

 $s2 = 1 - 1 x1$
 $z = 40 - s1$

Por exemplo, quando x2 aumenta (mantendo-se as outras variáveis não básicas, x1 e s1, iguais a 0), não há nenhuma variável que decresça de valor.

O espaço de soluções é ilimitado, porque a coluna de x2 não tem elementos positivos no corpo central do quadro (elementos a vermelho).

Como todas as variáveis têm valores nãonegativos (>=0) à medida que x2 aumenta, todas as soluções são admissíveis (até ao infinito).

Há um raio que tem origem no vértice (x1,x2,x3,s1,s2)T = (0,0,40/3,0,1)T

1000	istem ique.	soluç	ões õp	timas	alterr	ativas	s? O v	alor da s	solução óptima é limitado ou ilimitado?
ALC:		Z	x1	x2	х3	s1	s2		
	х3	0	2/3	-1/3	1	1/3	0	40/3	x3 = 40/3 - 2/3 x1 + 1/3 x2 - 1/3 s1
	s2	0	1	0	0	0	1	1	$s2 = 1 - 1 \times 1$ z = 40 - s1
	Z	1	0	0	0	1	0	40	
									Todas as soluções são admissíveis ao longo do raio.
									Todas as soluções têm o mesmo valor de função
									objectivo, 40.
									O valor do óptimo é finito.
									Isso não é de estranhar, porque a função envolvida na restrição é exactamente igual à função objectivo, e
									portanto a função objectivo não pode exceder 40.
									$\max 2x_1 - x_2 + 3x_3$
									suj. $2x_1 - x_2 + 3x_3 \le 40$
									$x_1 \le 1$
									$x_1, x_2, x_3 \ge 0$
									1, 2, 3

d) Diga o que se pode concluir em relação ao espaço de soluções e ao valor do óptimo.

	Z	x1	x2	x3	s1	s2		2 40
х3	0	2/3	-1/3	1	1/3	0	40/3	x3 = 40 $s2 = 3$
s2	0	1	0	0	0	1	1	z = 4
Z	1	0	0	0	1	0	40	

$$x3 = 40/3 - 2/3 x1 + 1/3 x2 + 1/3 s1$$

 $s2 = 1 - 1 x1$
 $z = 40 - s1$

O domínio é ilimitado e o valor do óptimo é finito.

e) (R) Determine a expressão analítica (das coordenadas dos pontos) do raio de soluções óptimas alternativas.

	Z	x1	x2	x3	s 1	s2		x3 = 40/3 - 2/3 x1 + 1/3 x2 + 1/3 s1
х3	0	2/3	-1/3	1	1/3	0	40/3	$s2 = 1 - 1 \times 1$ z = 40 - s1
s2	0	1	0	0	0	1	1	2 = 40 - 51
Z	1	0	0	0	1	0	40	Pista: identificar o vértice e a direcç
								do raio.

O raio é definido pelo vértice óptimo, dado pelo quadro simplex, e pela direcção, que pode ser determinada analisando como variam os valores das variáveis básicas quando a variável não básica x_2 , com custo reduzido nulo, aumenta e as outras variáveis não básicas permanecem nulas. As coordenadas dos pontos do raio são:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 40/3 \\ 0 \\ 1 \end{bmatrix} + \theta \begin{bmatrix} 0 \\ 0 \\ 1/3 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ \theta \\ 40/3 + 1/3\theta \\ 0 \\ 0 \end{bmatrix}, \forall \theta \ge 0$$

É fácil verificar que qualquer ponto do raio (*i.e.*, $\forall \theta \ge 0$):

- obedece às restrições do modelo;
- tem um valor de função objectivo igual a 40.

Pista: Para identificar a direcção, ver como variam as variáveis quando x2 aumenta.

direcção

Os coeficientes assinados a vermelho são derivados da seguinte forma: quando x2 aumenta θ unidades, x3 aumenta 1/3 θ unidades.

As outras variáveis não têm os seus valores alterados.