Höhere Mathematik I

G. Herzog, C. Schmoeger

Wintersemester 2016/17

Karlsruher Institut für Technologie

Inhaltsverzeichnis

1	Reelle Zahlen	3
2	Folgen und Konvergenz	14
3	Unendliche Reihen	33
4	Potenzreihen	46
5	q-adische Entwicklung	51
6	Grenzwerte bei Funktionen	55
7	Stetigkeit	60
8	Funktionenfolge und -reihen	70
9	Differentialrechnung	75
10	Das Riemann-Integral	91
11	Uneigentliche Integrale	106
12	Die komplexe Exponentialfunktion	111
13	Fourierreihen	118
14	Der Raum \mathbb{R}^n	125

1 Reelle Zahlen

Grundmenge der Analysis is die Menge \mathbb{R} , die Menge der **reellen Zahlen**. Diese führen wir **axiomatisch** ein, d.h. wir nehmen \mathbb{R} als gegeben an und **fordern** in den folgenden 15 **Axiomen** Eigenschaften von \mathbb{R} aus denen sich alle weiteren Rechenregeln herleiten lassen.

Körperaxiome: in \mathbb{R} seien zwei Verknüpfungen "+" und "·" gegeben, die jedem Paar $a, b \in \mathbb{R}$ genau ein $a+b \in \mathbb{R}$ und genau ein $ab := a \cdot b \in \mathbb{R}$ zuordnen. Dabei soll gelten:

(A1)
$$\forall a, b, c \in \mathbb{R} \ a + (b+c) = (a+b) + c \ (Assoziativgesetz)$$

$$(A5) \ \forall a, b, c \in \mathbb{R} \ a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

$$(A2) \exists 0 \in \mathbb{R} \text{ mit } \forall a \in \mathbb{R} : a + 0 = a \text{ (Null)}$$

$$(A6) \exists 1 \in \mathbb{R} \text{ mit } \forall a \in \mathbb{R} : a \cdot 1 = a \text{ und } 1 \neq 0 \text{ (Eins)}$$

$$(A3) \ \forall a \in \mathbb{R} \ \exists -a \in \mathbb{R} : a + (-a) = 0$$

$$(A7) \ \forall a \in \mathbb{R} \setminus \{0\} \ \exists a^{-1} \in \mathbb{R} : a \cdot a^{-1} = 1$$

(A4)
$$\forall a, b \in \mathbb{R} : a + b = b + a$$
 (Kommutativgesetz)

(A8)
$$\forall a, b \in \mathbb{R} : a \cdot b = b \cdot a$$
 (Kommutativgesetz)

(A9)
$$\forall a, b, c \in \mathbb{R} : a \cdot (b+c) = a \cdot b + a \cdot c$$
 (Distributivgesetz)

Schreibweisen: für $a, b \in \mathbb{R}$: a-b := a+(-b) und für $b \neq 0$: $\frac{a}{b} := a \cdot b^{-1}$.

Alle bekannten Regeln der Grundrechnungsarten lassen sich aus (A1)–(A9) herleiten. Diese Regeln seien von nun an bekannt.

Beispiele:

a) Beh.:
$$\exists_1 0 \in \mathbb{R} \text{ mit } \forall a \in \mathbb{R} \ a + 0 = a$$

Beweis. Sei $\tilde{0} \in \mathbb{R}$ mit $\forall a \in \mathbb{R} \ a + \tilde{0} = a$. Mit a = 0 folgt: $0 + \tilde{0} = 0$. Mit $a = \tilde{0}$ in (A2) folgt: $\tilde{0} + 0 = \tilde{0}$. Dann $0 = 0 + \tilde{0} \stackrel{\text{(A4)}}{=} \tilde{0} + 0 = \tilde{0}$

b) Beh.: $\forall a \in \mathbb{R} \ a \cdot 0 = 0$

Beweis. Sei $a \in \mathbb{R}$ und $b := a \cdot 0$. Dann: $b \stackrel{\text{(A2)}}{=} a(0+0) \stackrel{\text{(A9)}}{=} a \cdot 0 + a \cdot 0 = b + b$. $0 \stackrel{\text{(A3)}}{=} b + (-b) = (b+b) + (-b) \stackrel{\text{(A1)}}{=} b + (b+(-b)) = b + 0 \stackrel{\text{(A2)}}{=} b \square$

Anordnungsaxiome: in $\mathbb R$ ist eine Relation " \leq " gegeben.

Dabei sollen gelten:

(A10) für
$$a, b \in \mathbb{R}$$
 gilt $a \leq b$ oder $b \leq a$

(A11) aus
$$a \le b$$
 und $b \le a$ folgt $a = b$

(A12) aus
$$a \le b$$
 und $b \le c$ folgt $a \le c$

(A13) aus
$$a \leq b$$
 folgt $\forall c \in \mathbb{R} \ a + c \leq b + c$

(A14) aus
$$a \le b$$
 und $0 \le c$ folgt $ac \le bc$

Schreibweisen: $b \ge a \iff a \le b$; $a < b \iff a \le b \text{ und } a \ne b$; $b > a \iff a < b$

Aus (A1) - (A14) lassen sich alle Regeln für Ungleichungen herleiten. Diese Regeln seien von nun an bekannt.

Beispiele (ohne Beweis):

- a) aus a < b und 0 < c folgt ac < bc
- b) aus $a \le b$ und $c \le 0$ folgt $ac \ge bc$
- c) aus $a \le b$ und $c \le d$ folgt $a + c \le b + d$

Intervalle: Seien $a, b \in \mathbb{R}$ und a < b

$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$$
 (abgeschlossenes Intervall)

$$(a,b) \coloneqq \{x \in \mathbb{R} : a < x < b\}$$
 (offenes Intervall)

$$(a,b] \coloneqq \{x \in \mathbb{R} : a < x \le b\} \text{ (halboffenes Intervall)}$$

$$[a,b) \coloneqq \{x \in \mathbb{R} : a \le x < b\}$$
 (halboffenes Intervall)

$$[a,\infty) := \{x \in \mathbb{R} : x \ge a\}, (a,\infty) := \{x \in \mathbb{R} : x > a\}$$

$$(-\infty, a] := \{x \in \mathbb{R} : x \le a\}, (-\infty, a) := \{x \in \mathbb{R} : x < a\}$$

$$(-\infty,\infty)\coloneqq\mathbb{R}$$

Der Betrag

Für $a \in \mathbb{R}$ heißt $|a| \coloneqq \begin{cases} a, & \text{falls } a \ge 0 \\ -a, & \text{falls } a < 0 \end{cases}$ der Betrag von a.

Beispiele: |1| = 1, |-7| = -(-7) = 7.

Es ist
$$|-a| = |a| \text{ und } |a-b| = |b-a|$$

Regeln:

- a) $|a| \ge 0$
- b) $|a| = 0 \iff a = 0$
- c) |ab| = |a||b|

- $d) \pm a \le |a|$
- e) $|a+b| \le |a| + |b|$ (Dreiecksungleichung)
- f) $||a| |b|| \le |a b|$

Beweis.

- a) d) leichte Übung.
- e) Fall 1: $a+b \ge 0$. Dann: $|a+b| = a+b \stackrel{d)}{\le} |a| + |b|$. Fall 2: a+b < 0. Dann: $|a+b| = -(a+b) = -a + (-b) \stackrel{d)}{\le} |a| + |b|$.
- f) c := |a| |b|; $|a| = |a b + b| \stackrel{d)}{\leq} |a b| + |b|$ $\Rightarrow c = |a| - |b| \leq |a - b|$. Analog: $-c = |b| - |a| \leq |b - a| = |a - b|$ Also: $\pm c \leq |a - b|$.

Definition: Sei $\emptyset \neq M \subseteq \mathbb{R}$.

- a) M heißt nach oben beschränkt $\iff \exists \gamma \in \mathbb{R} \ \forall x \in M \ x \leq \gamma$ In diesem Fall heißt γ eine obere Schranke (OS)
- b) Ist γ eine obere Schranke von M und gilt $\gamma \leq \delta$ für jede weitere obere Schranke δ von M, so heißt γ das **Supremum** von M (kleinste obere Schranke von M)
- c) M heißt nach unten beschränkt $\iff \exists \gamma \in \mathbb{R} \ \forall x \in M \ \gamma \leq x$ In diesem Fall heißt γ eine untere Schranke (US)
- d) Ist γ eine untere Schranke von M und gilt $\gamma \geq \delta$ für jede weitere untere Schranke δ von M, so heißt γ das **Infimum** von M (größte untere Schranke von M)

Bez.: in dem Fall: $\gamma = \sup M$ bzw. $\gamma = \inf M$.

Aus (A11) folgt: ist sup M bzw. inf M vorhanden, so ist sup M bzw. inf M eindeutig bestimmt.

Ist sup M bzw. inf M vorhanden und gilt sup $M \in M$ bzw. inf $M \in M$, so heißt sup M das Maximum bzw. inf M das Minimum von M und wird mit max M bzw. min M bezeichnet.

Beispiele:

- a) M=(1,2). $\sup M=2\notin M$, $\inf M=1\notin M$. M hat kein Maximum und kein Minimum.
- b) M = (1, 2]. $\sup M = 2 \in M$, $\max M = 2$
- c) $M = (3, \infty)$. M ist nicht nach oben beschränkt, $3 = \inf M \notin M$.
- d) $M = (-\infty, 0]$. M ist nach unten unbeschränkt, $0 = \sup M = \max M$.

Vollständigkeitsaxiom:

(A15) Ist $\emptyset \neq M \subseteq \mathbb{R}$ und ist M nach oben beschränkt, so ist sup M vorhanden.

Satz 1.1: Ist $\emptyset \neq M \subseteq \mathbb{R}$ und ist M nach unten beschränkt, so ist inf M vorhanden.

Definition: Sei $\emptyset \neq M \subseteq \mathbb{R}$. M heißt beschränkt $\iff M$ ist nach oben und nach unten beschränkt ($\iff \exists c \geq 0 \ \forall x \in M \ |x| \leq c \iff \exists c \geq 0 \ \forall x \in M \ -c \leq x \leq c$)

Satz 1.2: Es sei $\emptyset \neq B \subseteq A \subseteq \mathbb{R}$

a) Ist A beschränkt $\Rightarrow \inf A \leq \sup A$

- b) Ist A nach oben bzw. unten beschränkt $\Rightarrow B$ ist nach oben beschränkt und sup $B \leq \sup A$ bzw. nach unten beschränkt und inf $B \geq \inf A$
- c) A sei nach oben beschränkt und γ eine obere Schranke von A. Dann:

$$\gamma = \sup A \iff \forall \varepsilon > 0 \ \exists x = x(\varepsilon) \in A : x > \gamma - \varepsilon$$

d) A sei nach unten beschränkt und γ eine untere Schranke von A. Dann:

$$\gamma = \inf A \iff \forall \varepsilon > 0 \; \exists x = x(\varepsilon) \in A : x < \gamma + \varepsilon$$

Beweis.

a) $A \neq \emptyset \Rightarrow \exists x \in \mathbb{R} : x \in A$. Dann inf $A \leq x, x \leq \sup A$ (A12)

$$\Rightarrow \inf A \le \sup A$$

b) Sei $x \in B$. Dann: $x \in A$, also $x \leq \sup A$. B ist also nach oben beschränkt und $\sup A$ ist eine obere Schranke von B

$$\Rightarrow \sup B \le \sup A$$

Analog der Fall für A nach unten beschränkt.

- c) "\(\iff \text{ Sei } \gamma = \sup A \) und $\(\varepsilon > 0\). Dann: <math>\gamma \varepsilon < \varepsilon$. $\gamma \varepsilon$ ist also keine obere Schranke von A. Also: $\exists x \in A : x > \gamma \varepsilon$ "\(\iff \text{"Sei } \tilde{\gamma} \leq \gamma. Annahme: $\gamma \neq \tilde{\gamma}$. Dann $\tilde{\gamma} < \gamma$, also $\varepsilon := \gamma \tilde{\gamma} > 0$. \xrightarrow{Vor} : $\exists x \in A : x > \gamma \varepsilon = \gamma (\gamma \tilde{\gamma}) = \tilde{\gamma}$. Widerspruch zu $x \leq \tilde{\gamma}$.
- d) Analog zu c)

Natürliche Zahlen

Definition:

a) $A \subseteq \mathbb{R}$ heißt eine Induktionsmenge (IM)

$$\iff \begin{cases} 1. & 1 \in A; \\ 2. & \text{aus } x \in A \text{ folgt stets } x + 1 \in A \end{cases}$$

Beispiele: \mathbb{R} , $[1, \infty)$, $\{1\} \cup [2, \infty)$ sind Induktionsmengen

b) $\mathbb{N} := \{x \in \mathbb{R} : x \text{ gehört zu jeder IM }\} = \text{Durchschnitt aller IMn.}$ Also: $\mathbb{N} \subseteq A$ für jede Induktionsmenge A.

Satz 1.3:

- a) N ist eine Induktionsmenge
- b) \mathbb{N} ist nicht nach oben beschränkt
- c) Ist $x \in \mathbb{R}$, so ex. ein $n \in \mathbb{N} : N > x$

Von nun an sei $\mathbb{N} = \{1, 2, 3, \dots\}$ bekannt.

1.4 Prinzip der vollständigen Induktion:

Ist $A \subseteq \mathbb{N}$ und A eine Induktionsmenge, so ist A = N.

Beweis.
$$A \subseteq \mathbb{N}$$
 (nach Vor.) und $\mathbb{N} \subseteq A$ (nach Def.), also $A = \mathbb{N}$

Beweisverfahren durch vollständige Induktion

A(n) sei eine Aussage, die für jedes $n \in \mathbb{N}$ definiert ist. Für A(n) gelte:

$$\begin{cases} (I) & A(1) \text{ ist wahr;} \\ (II) & \text{ist } n \in \mathbb{N} \text{ und } A(n) \text{ wahr, so ist auch A(n + 1) wahr;} \end{cases}$$

Dann ist A(n) wahr für **jedes** $n \in \mathbb{N}!$

Beweis. Sei $A := \{n \in \mathbb{N} : A(n) \text{ ist wahr } \}$. Dann: $A \subseteq \mathbb{N} \text{ und wegen } (I), (II) \text{ ist } A \text{ eine Induktionsmenge} \stackrel{1.4}{\Longrightarrow} A = \mathbb{N} \quad \Box$

Beispiel: Beh.:
$$\underbrace{1+2+\ldots+n=\frac{n(n+1)}{2}}_{A(n)}, \ \forall n \in \mathbb{N}$$

Beweis. (induktiv)

I.A.: $1 = \frac{1(1+1)}{2} \checkmark$, A(1) ist also wahr.

I.V.: Für ein $n \in \mathbb{N}$ gelte $1 + 2 + \ldots + n = \frac{n(n+1)}{2}$

I.S.: $n \curvearrowright n+1$:

$$1 + 2 + \ldots + n + (n+1) \stackrel{I.V.}{=} \frac{n(n+1)}{2} + (n+1)$$
$$= (n+1)\left(\frac{n}{2} + 1\right)$$
$$= \frac{(n+1)(n+2)}{2}$$

$$\Rightarrow A(n+1)$$
 ist wahr.

Definition:

- a) $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$
- b) $\mathbb{Z} := \mathbb{N}_0 \cup \{-n : n \in \mathbb{N}\}$ (ganze Zahlen)
- c) $\mathbb{Q} := \{\frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N}\}$ (rationale Zahlen)

Satz 1.5: Sind $x, y \in \mathbb{R}$ und $x < y \Rightarrow \exists r \in \mathbb{Q}$: x < r < y.

Beweis. i. d. Übungen.

Einige Definitionen und Formeln

- a) Für $a \in \mathbb{R}$, $n \in \mathbb{N}$: $a^n \coloneqq \underbrace{a \cdot \ldots \cdot a}_{n \text{ Faktoren}}$, $a^0 \coloneqq 1$ und ist $a \neq 0$: $a^{-n} \coloneqq \frac{1}{a^n}$ Es gelten die bekannten Rechenregeln.
- b) Für $n \in \mathbb{N} : n! \coloneqq 1 \cdot 2 \cdot \ldots \cdot n, \ 0! \coloneqq 1 \ (\textbf{Fakultäten})$
- c) Binomialkoeffizienten (BK): für $n \in \mathbb{N}_0, k \in \mathbb{N}_0$ und $k \leq n$:

$$\binom{n}{k} \coloneqq \frac{n!}{k!(n-k)!}$$

z.B. $\binom{n}{0} = 1 = \binom{n}{n}$. Es gilt (nachrechnen!):

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k} \quad \text{für } 1 \le k \le n$$

d) Für $a,b\in\mathbb{R}$ und $n\in\mathbb{N}$ gilt:

$$a^{n+1} - b^{n+1} = (a - b) \left(a^n + a^{n-1}b + a^{n-2}b^2 + \dots + ab^{n-1} + b^n \right)$$
$$= (a - b) \sum_{k=0}^{n} a^{n-k}b^k$$

- e) Binomischer Satz: $a, b \in \mathbb{R} \ \forall n \in \mathbb{N} : (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ Beweis. i. d. Übungen.
- f) Bernoullische Ungleichung: Sei $x \in \mathbb{R}$ und $x \ge -1$. Dann:

$$(1+x)^n \ge 1 + nx$$

Beweis. (induktiv)

I.A.: n = 1: $1 + x \ge 1 + x$

I.V.: Für ein $n \in \mathbb{N}$ gelte $(1+x)^n \geq 1 + nx$

I.S.: $n \curvearrowright n+1$: $\stackrel{I.V.}{\Longrightarrow} (1+x)^n \ge 1 + nx$ und da $1+x \ge 0$:

$$(1+x)^{n+1} \ge (1+nx)(1+x)$$

$$= 1+nx+x+\underbrace{nx^n}_{\ge 0}$$

$$\ge 1+nx+x$$

$$= 1+(n+1)x$$

Hilfssatz (HS): Für $x, y \ge 0$ und $n \in \mathbb{N}$ gilt: $x \le y \iff x^n \le y^n$.

Beweis. i. d. Übungen.

Satz 1.6: Sei $a \ge 0$ und $n \in \mathbb{N}$. Dann gibt es genau ein $x \ge 0$ mit: $x^n = a$.

Dieses x heißt **n-te Wurzel aus a**; Bez.: $x = \sqrt[n]{a}$. $(\sqrt[n]{a} =: \sqrt{a})$

Beweis. Existenz: später in §7.

Eindeutigkeit: seien $x, y \ge 0$ und $x^n = a = y^n \xrightarrow{HS} x = y$.

Bemerkungen:

- a) $\sqrt{2} \notin \mathbb{Q}$ (s. Schule).
- b) Für $a \ge 0$ ist $\sqrt[n]{a} \ge 0$. Bsp.: $\sqrt{4} = 2$, $\sqrt{4} \ne -2$. Die Gleichung $x^2 = 4$ hat zwei Lösungen: $x = \pm \sqrt{4} = \pm 2$.
- c) $\sqrt{x^2}|x| \ \forall x \in \mathbb{R}$.

Rationale Exponenten

a) Sei zunächst a>0 und $r\in\mathbb{Q}, r>0$. Dann ex. $m,n\in\mathbb{N}: r=\frac{m}{n}$. Wir wollen definieren:

$$a^r := \left(\sqrt[n]{a}\right)^m. \tag{*}$$

Problem: gilt auch noch $r = \frac{p}{q}$ mit $p, q \in \mathbb{N}$, gilt dann $(\sqrt[n]{a})^m = (\sqrt[q]{a})^p$?

Antwort: ja (d.h. obige Def. (*) ist sinnvoll).

Beweis. $x := (\sqrt[n]{a})^m$, $y := (\sqrt[q]{a})^p$, dann: $x, y \ge 0$ und mq = np, also

$$x^{q} = \left(\sqrt[n]{a}\right)^{mq} = \left(\sqrt[n]{a}\right)^{np} = \left(\left(\sqrt[n]{a}\right)^{m}\right)^{p} = a^{p}$$
$$= \left(\left(\sqrt[q]{a}\right)^{q}\right)^{p} = \left(\left(\sqrt[q]{a}\right)^{p}\right)^{q} = y^{q}$$

$$\stackrel{HS}{\Longrightarrow} x = y.$$

b) Sei $a>0, r\in\mathbb{Q}$ und r<0. $a^r\coloneqq\frac{1}{a^{-r}}$. Es gelten die bekannten Rechenregeln:

$$(a^r a^s = a^{r+s}, (a^r)^s = a^{rs}, \dots)$$

2 Folgen und Konvergenz

Definition: Es sei X eine Menge, $X \neq \emptyset$. Eine Funktion $a: \mathbb{N} \to X$ heißt eine **Folge in X**. Ist $X = \mathbb{R}$, so heißt a eine **reelle Folge**.

Schreibweisen: a_n statt a(n) (n-tes Folgenglied) (a_n) oder $(a_n)_{n=1}^{\infty}$ oder (a_1, a_2, \dots) statt a.

Beispiele:

- a) $a_n := \frac{1}{n} \ (n \in \mathbb{N}), \text{ also } (a_n) = (1, \frac{1}{2}, \frac{1}{3}, \dots).$
- b) $a_{2n} := 0$, $a_{2n-1} := 1$ $(n \in \mathbb{N})$, also $(a_n) = (1, 0, 1, 0, \dots)$.

Bemerkung: Ist $p \in \mathbb{Z}$ und $a: \{p, p+1, \dots\} \to X$ eine Funktion, so spricht man ebenfalls von einer Folge in X. Bez.: $(a_n)_{n=p}^{\infty}$. Meist p=0 oder p=1.

Definition: Sei X eine Menge, $X \neq \emptyset$.

- a) X heißt **abzählbar** $\iff \exists$ Folge (a_n) in $X: X = \{a_1, a_2, a_3, \dots\}$
- b) X heißt **überabzählbar** \iff X ist nicht abzählbar

Beispiele:

- a) Ist X endlich, so ist X abzählbar.
- b) \mathbb{N} ist abzählbar, denn $\mathbb{N} = \{a_1, a_2, a_3, \dots\}$ mit $a_n := n \ (n \in \mathbb{N})$.
- c) \mathbb{Z} ist abzählbar, denn $\mathbb{Z}=\{a_1,a_2,a_3,\dots\}$ mit $a_1\coloneqq 0,a_2\coloneqq 1,a_3\coloneqq -1,a_4\coloneqq 2,a_5\coloneqq -2,\dots$ also

$$a_{2n} \coloneqq n, \quad a_{2n+1} \coloneqq -n \quad (n \in \mathbb{N}).$$

Abbildung 2.1: Zum Beweis der Abzählbarkeit von \mathbb{Q} .

d) Q ist abzählbar! Durchnummerieren in Pfeilrichtung liefert:

$$\{x \in \mathbb{Q} : x > 0\} = \{a_1, a_2, a_3, \dots\}$$

 $b_1 := 0, b_{2n} := a_n, b_{2n+1} := -a_n \ (n \in \mathbb{N}). \text{ Dann:}$
 $\mathbb{Q} = \{b_1, b_2, b_3, \dots\}.$

e) \mathbb{R} ist überabzählbar (Beweis in §5).

Vereinbarung: Solange nichts anderes gesagt wird, seien alle vorkommenden Folgen stets Folgen in \mathbb{R} .

Die folgenden Sätze und Definitionen formulieren wir nur für Folgen der Form $(a_n)_{n=1}^{\infty}$. Sie gelten sinngemäß für Folgen der Form $(a_n)_{n=p}^{\infty}$ $(p \in \mathbb{Z})$.

Definition: Sei (a_n) eine Folge und $M := \{a_1, a_2, \dots\}$.

- a) (a_n) heißt nach oben beschränkt $\iff M$ ist nach oben beschränkt. I.d. Fall: $\sup_{n\in\mathbb{N}} a_n := \sup_{n=1}^{\infty} a_n := \sup M$.
- b) (a_n) heißt **nach unten beschränkt** $\iff M$ ist nach unten beschränkt. I.d. Fall: $\inf_{n\in\mathbb{N}} a_n := \inf_{n=1}^{\infty} a_n := \inf M$.
- c) (a_n) heißt **beschränkt** $\iff M$ ist beschränkt

$$\iff \exists c \ge 0 : |a_n| \le c \ \forall n \in \mathbb{N}$$

Definition: Sei A(n) eine für jedes $n \in \mathbb{N}$ definierte Aussage. A(n) gilt für fast alle (ffa) $n \in \mathbb{N} \iff \exists n_0 \in \mathbb{N} : A(n)$ ist wahr $\forall n \geq n_0$

Definition: Sei $a \in \mathbb{R}$ und $\varepsilon > 0$

$$U_{\varepsilon}(a) := (a - \varepsilon, a + \varepsilon) = \{x \in \mathbb{R} : |x - a| < \varepsilon\}$$

heißt ε -Umgebung von a.

Definition: Eine Folge (a_n) heißt konvergent

$$\iff \exists a \in \mathbb{R} : \begin{cases} \text{zu jedem } \varepsilon > 0 \text{ ex. } n_0 = n_0(\varepsilon) \in \mathbb{N} : \\ |a_n - a| < \varepsilon \ \forall n \ge n_0 \end{cases}$$

I. d. Fall heißt a Grenzwert (GW) oder Limes von (a_n) und man schreibt

$$a_n \to a \ (n \to \infty) \ \text{oder} \ a_n \to a \ \text{oder} \ \lim_{n \to \infty} a_n = a$$

Ist (a_n) nicht konvergent, so heißt (a_n) divergent. Beachte:

$$\begin{array}{ll} a_n \to a \ (n \to \infty) & \Longleftrightarrow \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : a_n \in U_\varepsilon(a) \ \forall n \ge n_0 \\ & \Longleftrightarrow \ \forall \varepsilon > 0 \ \mathrm{gilt} \colon a_n \in U_\varepsilon(a) \ \mathrm{ffa} \ n \in \mathbb{N} \\ & \Longleftrightarrow \ \forall \varepsilon > 0 \ \mathrm{gilt} \colon a_n \notin U_\varepsilon(a) \ \mathrm{für} \ \mathrm{h\"{o}chstens} \ \mathrm{endlich} \ \mathrm{viele} \ n \in \mathbb{N} \end{array}$$

Satz 2.1: (a_n) sei konvergent und $a = \lim a_n$.

- a) Gilt auch noch $a_n \to b$, so ist a = b.
- b) (a_n) ist beschränkt.

Beweis.

a) Annahme $a \neq b$. Dann ist $\varepsilon := \frac{|a-b|}{2} > 0$.

$$\exists n_0 \in \mathbb{N} : |a_{n_0} - a| < \varepsilon \quad \forall n \ge n_0 \text{ und } \exists n_1 \in \mathbb{N} : |a_n - b| < \varepsilon \quad \forall n \ge n_1$$

 $N := \max\{n_0, n_1\}$. Dann:

$$2\varepsilon = |a - b| = |a - a_N + a_N - b| \le |a_N - a| + |a_N - b| < 2\varepsilon$$

Widerspruch! Also a = b.

b) Zu $\varepsilon = 1 \ \exists n_0 \in \mathbb{N} : |a_n - a| < 1 \ \forall n \ge n_0$. Dann:

$$|a_n| = |a_n - a + a| \le |a_n - a| + |a| \le 1 + |a| \quad \forall n \ge n_0$$

$$c := \max\{1 + |a|, |a_1|, \dots, |a_{n_0-1}|\}$$
. Dann: $|a_n| \le \varepsilon \ \forall n \ge 1$.

Beispiele:

a) Sei $c \in \mathbb{R}$ und $a_n := c \ \forall n \in \mathbb{N}$. Dann:

$$|a_n - c| = 0 \quad \forall n \in \mathbb{N}$$

Also: $a_n \to c$.

b)
$$a_n := \frac{1}{n} \ (n \in \mathbb{N})$$
. Beh: $a_n \to 0 \ (n \to \infty)$.

Beweis. Sei $\varepsilon > 0$: $|a_n - 0| = |a_n| = \frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon}$

$$\xrightarrow{1.3 \ c} \exists n_0 \in \mathbb{N} : n_0 > \frac{1}{\varepsilon}$$

Für $n \ge n_0$ ist $n > \frac{1}{\varepsilon}$, also $\frac{1}{n} < \varepsilon$. Somit $|a_n - 0| < \varepsilon \ \forall n \ge n_0$.

c) $a_n := (-1)^n$. Es ist $\forall n \in \mathbb{N}$: $|a_n| = 1$, (a_n) ist also beschränkt. Behauptung: (a_n) ist divergent.

Beweis. Für alle $n \in \mathbb{N}$:

$$|a_n - a_{n+1}| = |(-1)^n - (-1)^{n+1}| = |(-1)^n|(1 - (-1)) = 2$$

Annahme: (a_n) konvergiert. Definiere $a := \lim a_n$, dann

$$\exists n_0 \in \mathbb{N} : |a_n - a| < \frac{1}{2} \quad \forall n \ge n_0$$

Für $n \ge n_0$ gilt dann aber:

$$2 = |a_n - a_{n+1}| = |a_n - a + a - a_{n+1}| \le |a_n - a| + |a_{n+1} - a| < \frac{1}{2} + \frac{1}{2} = 1$$
Widerspruch!

- d) $a_n := n \ (n \in \mathbb{N}). \ (a_n)$ ist nicht beschränkt $\xrightarrow{2.1 \ b)} (a_n)$ ist divergent.
- e) $a_n := \frac{1}{\sqrt{n}} (n \in \mathbb{N})$. Beh.: $a_n \to 0$

Beweis. Sei $\varepsilon > 0$.

$$|a_n - 0| = \frac{1}{\sqrt{n}} < \varepsilon \iff \sqrt{n} > \frac{1}{n} \iff n > \frac{1}{\varepsilon^2}$$

$$\xrightarrow{1.3 \ c} \exists n_0 \in \mathbb{N} : n_0 > \frac{1}{\varepsilon^2}. \text{ Ist } n \geq n_0 \Rightarrow n > \frac{1}{\varepsilon^2} \Rightarrow \frac{1}{\sqrt{n}} < \varepsilon \Rightarrow |a_n - 0| < \varepsilon$$

f)
$$a_n := \sqrt{n+1} - \sqrt{n}$$
.

Beweis.

$$a_n = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{\sqrt{n}}$$

 $\Rightarrow |a_n - 0| \le \frac{1}{\sqrt{n}} \ \forall n \in \mathbb{N}$. Sei $\varepsilon > 0$, nach Beispiel e) folgt:

$$\exists n_0 \in \mathbb{N} : \frac{1}{\sqrt{n}} < \varepsilon \quad \forall n \ge n_0 \Rightarrow |a_n - 0| < \varepsilon \quad \forall n \ge n_0$$

Also
$$a_n \to 0$$
.

Definition: (a_n) und (b_n) seien Folgen und $\alpha \in \mathbb{R}$.

$$(a_n) \pm (b_n) \coloneqq (a_n \pm b_n); \ \alpha(a_n) \coloneqq (\alpha a_n); \ (a_n)(b_n) \coloneqq (a_n b_n)$$

Gilt $\forall n \geq m \ b_n \neq 0$, so ist die Folge $\left(\frac{a_n}{b_n}\right)_{n=m}^{\infty}$ definiert.

Satz 2.2: $(a_n), (b_n), (c_n)$ und (α_n) seien Folge und $a, b, \alpha \in \mathbb{R}$.

a)
$$a_n \to a \iff |a_n - a| \to 0$$

b) Gilt
$$|a_n - a| \le \alpha_n$$
 ffa $n \in \mathbb{N}$ und $\alpha_n \to 0$, so gilt $a_n \to a$

c) Es gelte
$$a_n \to a$$
 und $b_n \to b$. Dann:

(i)
$$|a_n| \to |a|$$

(ii)
$$a_n + b_n \rightarrow a + b$$

(iii)
$$\alpha a_n \to \alpha a$$

(iv)
$$a_n b_n \to ab$$

(v) ist
$$a \neq 0$$
, so ex. ein $m \in \mathbb{N}$:

$$a_n \neq 0 \ \forall n \geq m$$
 und für die Folge $\left(\frac{1}{a_n}\right)_{n=m}^{\infty}$ gilt: $\frac{1}{a_n} \to \frac{1}{a}$

- d) Es gelte $a_n \to a$, $b_n \to b$ und $a_n \le b_n$ ffa $n \in \mathbb{N} \Rightarrow a \le b$
- e) Es gelte $a_n \to a$, $b_n \to a$ und $a_n \le c_n \le b_n$ ffa $n \in \mathbb{N}$. Dann $c_n \to a$.

Beispiele:

a) Sei $p \in \mathbb{N}$ und $a_n := \frac{1}{n^p}$. Es ist $n \leq n^p \ \forall n \in \mathbb{N}$. Dann:

$$0 \le a_n \le \frac{1}{n} \ \forall n \in \mathbb{N} \xrightarrow{2.2 \ e)} a_n \to 0, \text{ also } \frac{1}{n^p} \to 0.$$

b)
$$a_n := \frac{5n^2 + 3n + 1}{4n^2 - n + 2} = \frac{5 + \frac{3}{n} + \frac{1}{n^2}}{4 - \frac{1}{n} + \frac{2}{n^2}} \xrightarrow{2.2} \frac{5}{4}$$

Beweis. (von 2.2)

- a) folgt aus der Definition der Konvergenz.
- b) $\exists m \in \mathbb{N} : |a_n a| \le \alpha_m \ \forall n \ge m$. Sei $\varepsilon > 0$

$$\exists n_1 \in \mathbb{N} : \alpha_n < \varepsilon \quad \forall n \ge n_1.$$

 $n_0 := \max\{m, n_1\}$. Für $n \ge n_0$: $|a_n - a| \le \alpha_n < \varepsilon$.

- c) (i) $||a_n| |a|| \stackrel{\S 1}{\leq} |a_n a| \ \forall n \in \mathbb{N} \xrightarrow{a),b} |a_n| \to |a|$
 - (ii) Sei $\varepsilon > 0$. $\exists n_1, n_2 \in \mathbb{N}$; $|a_n a| < \frac{\varepsilon}{2} \ \forall n \ge n_1$, $|b_n b| < \frac{\varepsilon}{2} \ \forall n \ge n_2$ $n_0 \coloneqq \max\{n_1, n_2\}$. Für $n \ge n_0$:

$$|a_n+b_n-(a+b)| = |a_n-a+b_n-b| \le |a_n-a|+|b_n-b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

(iii) Übung.

(iv)
$$c_k := |a_n b_n - ab|$$
. z. z.: $c_n \to 0$

$$c_n = |a_n b_n - a_n b + a_n b - ab| = |a_n (b_n - b) + (a_n - a)b|$$

$$\leq |a_n||b_n - b| + |b||a_n - a|$$

 $\xrightarrow{2.1 \ b}$ $\exists c \geq 0 : |a_n| \leq c \ \forall n \in \mathbb{N} \text{ und } c \geq |b|. \text{ Dann:}$

$$c_n \le c(|b_n - b| + |a_n - a|) =: \alpha_n \xrightarrow[c){(ii),c)(iii)} \alpha_n \to 0$$

Also: $|c_n - 0| = c_n \le \alpha_n \ \forall n \in \mathbb{N} \ \text{und} \ \alpha_n \to 0 \stackrel{b)}{\Rightarrow} c_n \to 0.$ (v) $\varepsilon := \frac{|a|}{2}$; aus (i): $|a_n| \to |a| \Rightarrow \exists n \in N$:

$$|a_n| \in U_{\varepsilon}(|a|) = (|a| - \varepsilon, |a| + \varepsilon) = (\frac{|a|}{2}, \frac{3}{2}|a|) \quad \forall n \ge m$$

 $\Rightarrow |a_n| > \frac{|a|}{2} > 0 \ \forall n \ge m \Rightarrow a_n \ne 0 \ \forall n \ge m$. Für $n \ge m$.

$$\left| \frac{1}{a_n} - \frac{1}{a} \right| = \frac{|a_n - a|}{|a_n||a|} \le \frac{2|a_n - a|}{|a|^2} =: \alpha_n$$

$$\alpha_n \to 0 \stackrel{b)}{\Rightarrow} \frac{1}{a_n} \to \frac{1}{a}.$$

d) Annahme
$$b < a, \varepsilon := \frac{a-b}{2} > 0.$$
 $U_{\varepsilon}(b)$ $U_{\varepsilon}(a)$

Dann: $x < y \ \forall x \in U_{\varepsilon}(b) \ \forall y \in U_{\varepsilon}(a)$.

$$\exists n_0 \in \mathbb{N} : b_n \in U_{\varepsilon}(b) \ \forall n \ge n_0$$

$$\exists m \in \mathbb{N} : a_n \leq b_n \ \forall n \geq m$$

 $m_0 := \max\{n_0, m\}$. Für $n \ge m_0$: $a_n \le b_n < b + \varepsilon$, also $a_n \notin U_{\varepsilon}(a)$. Widerspruch!

e) $\exists m \in \mathbb{N} : a_n \leq c_n \leq b_n \ \forall n \geq m$. Sei $\varepsilon > 0$. $\exists n_1, n_2 \in \mathbb{N}$:

$$a - \varepsilon < a_n < a + \varepsilon \quad \forall n \ge n_1$$

 $a - \varepsilon < b_n < a + \varepsilon \quad \forall n \ge n_2$

 $n_0 := \max\{n_1, n_2, m\}$. Für $n \ge n_0$:

$$a - \varepsilon < a_n \le c_n \le b_n < a + \varepsilon$$

Also: $|a_n - a| < \varepsilon \ \forall n \ge n_0$.

Definition:

a) (a_n) heißt monoton wachsend $\iff a_{n+1} \ge a_n \ \forall n \in \mathbb{N}.$

b) (a_n) heißt streng monoton wachsend $\iff a_{n+1} > a_n \ \forall n \in \mathbb{N}$.

c) Entsprechend definiert man monoton fallend und streng monoton fallend.

d) (a_n) heißt **monoton** \iff (a_n) ist monoton wachsend oder monoton fallend.

2.3 Monotoniekriterium:

a) (a_n) sei monoton wachsend und nach oben beschränkt. Dann ist (a_n) konvergent und

$$\lim_{n \to \infty} a_n = \sup_{n=1}^{\infty} a_n$$

b) (a_n) sei monoton fallend und nach unten beschränkt. Dann ist (a_n) konvergent und

$$\lim_{n \to \infty} a_n = \inf_{n=1}^{\infty} a_n$$

Beweis. $a := \sup_{n=1}^{\infty} a_n$. Sei $\varepsilon > 0$. Dann ist $a - \varepsilon$ keine obere Schranke von $\{a_1, a_2, \dots\}$, also existiert ein $n_0 \in \mathbb{N} : a_{n_0} > a - \varepsilon$. Für $n \ge n_0$:

$$a - \varepsilon < a_{n_0} \le a_n \le a \le a + \varepsilon$$

also
$$|a_n - a| \le \varepsilon \ \forall n \ge n_0$$
.

Abbildung 2.2: Zum Beweis des Monotonie-Kriteriums.

Beispiel: $a_1 := \sqrt[3]{6}$, $a_{n+1} := \sqrt[3]{6 + a_n}$ $(n \ge 2)$.

$$a_1 = \sqrt[3]{6} < \sqrt[3]{8} = 2;$$

$$a_2 = \sqrt[3]{6+a_1} < \sqrt[3]{6+2} = 2;$$

$$a_2 = \sqrt[3]{6 + a_1} < \sqrt[3]{6} = a_1;$$

Behauptung: $0 < a_n < 2$ und $a_{n+1} > a_n \ \forall n \in \mathbb{N}$

Beweis. (induktiv)

I.A.: s.o.

I.V.: Sei $n \in \mathbb{N}$ und $0 < a_n < 2$ und $a_{n+1} > a_n$.

$$n \curvearrowright n+1$$
: $a_{n+1} = \sqrt[3]{6+a_n} >_{I.V.} 0$

$$a_{n+1} = \sqrt[3]{6 + a_n} <_{I.V.} \sqrt[3]{6 + 2} = 2;$$
 $a_{n+2} = \sqrt[3]{6 + a_{n+1}} >_{I.V.} \sqrt[3]{6 + a_n} = a_{n+1}$

Also: (a_n) ist nach oben beschränkt und monoton wachsend. $\stackrel{2.3}{\Longrightarrow} (a_n)$ ist konvergent. $a := \lim a_n, a_n \ge 0 \ \forall n \stackrel{2.2}{\Longrightarrow} a \ge 0$. Es ist

$$a_{n+1}^3 = 6 + a_n \quad \forall n \in \mathbb{N}$$

$$\stackrel{2.2}{\Longrightarrow} a^3 = 6 + a \Rightarrow 0 = a^3 - a + 6 = (a - 2)(\underbrace{a^2 - 2a + 3}_{\geq 3}) \Rightarrow a = 2. \quad \Box$$

Wichtige Beispiele:

Vorbemerkung: Seien $x, y \ge 0$ und $p \in \mathbb{N}$: es ist (s. §1)

$$x^{p} - y^{p} = (x - y) \sum_{k=0}^{p-1} x^{p-1-k} y^{k}$$

$$\Rightarrow |x^p - y^p| = |x - y| \sum_{k=0}^{p-1} x^{p-1-k} y^k \ge y^{p-1} |x - y|$$

Beispiel 2.4: Sei $a_n \geq 0 \ \forall n \in \mathbb{N}$: $a_n \to a \geq 0 \ \text{und} \ p \in \mathbb{N}$. Dann $\sqrt[p]{a_n} \to \sqrt[p]{a}$

Beweis.

Fall 1: a = 0. Sei $\varepsilon > 0$, $\exists n_0 \in \mathbb{N} : |a_n| < \varepsilon^p \ \forall n \ge n_0$. Daraus folgt:

$$|\sqrt[p]{a_n} = \sqrt[p]{|a_n|} < \varepsilon \quad \forall n \ge n_0$$

Also $\sqrt[p]{a_n} \to 0$.

Fall 2: $a \neq 0$.

$$|a_n - a| = |\underbrace{(\sqrt[p]{a_n})^p}_{=:x} - |\underbrace{\sqrt[p]{a}}_{=:y}|^p| = |x^p - y^p|$$

$$\geq_{s.o.} \underbrace{y^{p-1}}_{:=c} |x - y| = c|\sqrt[p]{a_n} - \sqrt[p]{a}|, \quad c > 0$$

$$\Rightarrow |\sqrt[p]{a_n} - \sqrt[p]{a}| \le \frac{1}{c}|a_n - a| =: \alpha_n. \ \alpha_n \to 0 \Rightarrow \sqrt[p]{a_n} \to \sqrt[p]{a}$$

Beispiel 2.5: Für $x \in \mathbb{R}$ gilt (x^n) ist konvergent $\iff x \in (-1,1]$, i. d. Fall:

$$\lim_{n \to \infty} x^n = \begin{cases} 1, & \text{falls } x = 1\\ 0, & \text{falls } x \in (-1, 1) \end{cases}$$

Beweis.

Fall 1: x = 0. Dann $x^k \to 0$. Fall 2: x = 1. Dann $x^k \to 1$.

Fall 3: x = -1. Dann $(x^k) = ((-1)^k)$, ist divergent.

Fall 4: |x| > 1. $\exists \delta > 0 : |x| = 1 + \delta \Rightarrow |x^k| = |x|^k = (1 + \delta)^k \ge 1 + n\delta \ge 1 + n\delta$

 \Rightarrow ist nicht beschränkt $\stackrel{2.1}{\Longrightarrow}$ (x^k) ist divergent. Fall 5: $0 < |x| < 1 \Rightarrow$ $\frac{1}{|x|} > 1 \Rightarrow \exists \eta > 0 : \frac{1}{|x|} = 1 + \eta.$

$$\Rightarrow \left|\frac{1}{x^n}\right| = \left(\frac{1}{|x|}\right)^n = (1+\eta)^n \ge 1 + n\eta \ge n\eta$$

$$\Rightarrow |x^n| \le \frac{1}{\eta} \cdot \frac{1}{n} \Rightarrow x^n \to 0.$$

Beispiel 2.6: Sei $x \in \mathbb{R}$ und $s_n := 1 + x + x^n + \dots + x^n = \sum_{k=0}^n x^k$.

Fall 1: x = 1. Dann: $x_n = n + 1$, (s_n) ist also divergent. Fall 2: $x \neq 1 \Rightarrow s_n = \frac{1 - x^{n+1}}{1 - x}$. Aus 2.5:

$$(s_n)$$
 konvergent \iff $|x| < 1$

i.d. Fall: $\lim s_n = \frac{1}{1-x}$.

Beispiel 2.7: Behauptung: $\sqrt[n]{n} \to 1$.

Beweis. Es ist $\sqrt[n]{n} \ge 1 \ \forall n \in \mathbb{N}$, also $a_n := \sqrt[n]{n} - 1 \ge 0 \ \forall n \in \mathbb{N}$. Z. z.:

$$a_n \to 0$$
.

Für $n \ge 2$:

$$n = \left(\sqrt[n]{n}\right)^n = (a_n + 1)^n \stackrel{\S 1}{=} \sum_{k=0}^n \binom{n}{k} a_n^k \ge \binom{n}{2} a_n^2 = \frac{n(n-1)}{2} a_n^2$$

$$\Rightarrow \frac{n-1}{2} a_n^2 \le 1. \text{ Also } \xrightarrow{a_n \ge 0} 0 \le a_n \le \frac{\sqrt{2}}{\sqrt{n-1}} (n \ge 2). \Rightarrow a_n \to 0.$$

Beispiel 2.8: Sei c > 0. Beh.: $\sqrt[n]{c} \to 1$.

Beweis. Fall 1: $c \ge 1$. $\exists m \in \mathbb{N} : 1 \le c \le m$. Daraus folgt:

$$1 \le c \le n \ \forall n \ge m \Rightarrow 1 \le \sqrt[n]{c} \le \sqrt[n]{n} \quad \forall n \ge m$$

 \Rightarrow Beh.

Fall 2:
$$0 < c < 1 \Rightarrow \frac{1}{c} > 1 \Rightarrow \sqrt[n]{c} = \frac{1}{\sqrt[n]{\frac{1}{c}}} \xrightarrow{Fall_1} 1(n \to \infty) \Rightarrow \text{Beh.} \quad \Box$$

Beispiel 2.9: $a_n := \left(1 + \frac{1}{n}\right)^n$; $b_n := \sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \ldots + \frac{1}{n!}$ Beh.: (a_n) und (b_n) sind konvergent und $\lim a_n = \lim b_n$

Beweis. I. d. gr. Übungen wird gezeigt: $2 \le a_n < a_{n+1} < 3 \ \forall n \in \mathbb{N}$ $\stackrel{2.3}{\Longrightarrow} (a_n)$ konvergiert, $a := \lim a_n$

Es ist $b_n > 0$ und $b_{n+1} = b_n + \frac{1}{(n+1)!} > b_n$. (b_n) ist also monoton wachsend. Für n > 3:

$$b_{n} = 1 + 1 + \frac{1}{2} + \underbrace{\frac{1}{2 \cdot 2}}_{<(\frac{1}{2})^{2}} + \underbrace{\frac{1}{2 \cdot 3 \cdot 4}}_{<(\frac{1}{2})^{3}} + \dots + \underbrace{\frac{1}{2 \cdot \dots \cdot n}}_{<(\frac{1}{2})^{n-1}}$$

$$< 1 + \left(1 + \frac{1}{2} + (\frac{1}{2})^{2} + \dots + (\frac{1}{2})^{n-1}\right) = 1 + \frac{1 - \left(\frac{1}{2}\right)^{n}}{1 - \frac{1}{2}}$$

$$< 1 + \frac{1}{1 - \frac{1}{2}} = 3 \quad \forall n \in \mathbb{N}$$

 $\stackrel{\textbf{2.3}}{\Longrightarrow}(b_n)$ konvergiert. $b:=\lim b_n$. Für $n\geq 2$:

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n} \stackrel{\S 1}{=} \sum_{k=0}^{n} n \binom{n}{k} \frac{1}{n^{k}}$$

$$= 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \frac{n!}{(n-k)!} \frac{1}{n^{k}} = 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \frac{n(n-1) \cdot \dots \cdot (n-(k-1))}{n \cdot n \cdot \dots \cdot n}$$

$$= 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \underbrace{\left(1 - \frac{1}{n}\right) \underbrace{\left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right)}_{<1}}_{<1}$$

$$\leq 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} = b_{n}$$

Also $a_n \leq b_n \ \forall n \geq 2$. Z. z.: $\Rightarrow a \leq b$ Sei $j \in \mathbb{N}, j \geq 2$ (zunächst fest). Für $n \in \mathbb{N}, n \geq j$:

$$a_n \stackrel{s.o.}{=} 1 + 1 + \sum_{k=2}^n \frac{1}{k!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) \cdot \dots \cdot (1 - \frac{k-1}{n})$$

$$\geq 1 + 1 + \sum_{k=2}^j \frac{1}{k!} \underbrace{(1 - \frac{1}{n})}_{\to 1} \underbrace{(1 - \frac{2}{n})}_{\to 1} \cdot \dots \cdot \underbrace{(1 - \frac{k-1}{n})}_{\to 1}$$

$$\to 1 + 1 + 1 \sum_{k=2}^j \frac{1}{k!} = b_j \quad (n \to \infty)$$

Also
$$a \ge b_j \ \forall j \ge 2 \xrightarrow{j \to \infty} a \ge b$$
.

Definition: Die Konstante

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \ (= \lim_{n \to \infty} \sum_{k=0}^n \frac{1}{k!})$$

heißt Eulersche Zahl. Übung: $2 < e < 3 \ (e \approx 2,718...)$.

Definition: Sei (a_n) eine Folge und (n_1, n_2, n_3, \dots) eine Folge in \mathbb{N} mit $n_1 < n_2 < n_3 < \dots$ Für $k \in \mathbb{N}$ setze

$$b_k \coloneqq a_{n_k}$$

also $b_1 = a_{n_1}, b_2 = a_{n_2}, \dots$ Dann heißt $(b_k) = (a_{n_k})$ eine **Teilfolge** (TF) von (a_n) .

Beispiele:

- a) $(a_2, a_4, a_6, ...)$ ist eine Teilfolge von (a_n) ; hier: $n_k = 2k$
- b) $(a_1, a_4, a_9, ...)$ ist eine Teilfolge von (a_n) ; hier: $n_k = k^2$
- c) $(a_2, a_6, a_4, a_{10}, a_8, a_{14}, ...)$ ist keine Teilfolge von (a_n) .

Definition: (a_n) sei eine Folge und $\alpha \in \mathbb{R}$. α heißt ein **Häufungswert** (HW) von (a_n)

$$\iff$$
 \exists Teilfolge (a_{n_k}) von $(a_n): a_{n_k} \to \alpha \ (k \to \infty)$

 $H(a_n) := \{ \alpha \in \mathbb{R} : \alpha \text{ ist ein Häufungswert von } (a_n) \}.$

Satz 2.10: $\alpha \in \mathbb{R}$ ist ein Häufungswert von (a_n)

$$\iff \forall \epsilon > 0 : a_{n_k} \in U_{\epsilon}(\alpha) \quad (*)$$

für unendlich viele $n \in \mathbb{N}$.

Beweis.

" \Rightarrow " Sei (a_{n_k}) eine Teilfolge mit $a_{n_k} \to \infty$. Sei $\epsilon > 0 \exists k_0 \in \mathbb{N} : a_{n_k} \in U_{\epsilon}(\alpha)$ für $k \geq k_0 \Rightarrow (*)$.

" \Leftarrow " $\exists n_1 \in \mathbb{N} : a_{n_1} \in U_1(\alpha)$. $\exists n_2 \in \mathbb{N} : a_{n_2} \in U_{\frac{1}{2}}(\alpha)$ und $n_2 > n_1$. $\exists n_3 \in \mathbb{N} : a_{n_3} \in U_{\frac{1}{3}}(\alpha)$ und $n_3 > n_2$. Etc. ... Man erhält eine Teilfolge (a_{n_k}) von (a_n) mit

$$a_{n_k} \in U_{\frac{1}{k}}(\alpha) \ \forall k \in \mathbb{N}, \text{ also } |a_{n_k} - \alpha| < \frac{1}{k} \quad \forall k$$

Somit: $a_{n_k} \to \alpha$.

Beispiele:

- a) $a_n = (-1)^n$, $a_{2k} = 1 \to 1$, $a_{2k+1} \to -1$, also $1, -1 \in H(a_n)$. Sei $\alpha \in \mathbb{R}, \alpha \neq 1, \alpha \neq -1$ Wähle $\epsilon > 0$ so, dass $1, -1 \notin U_{\epsilon}(\alpha)$. Dann $a_n \in U_{\epsilon}(\alpha)$ für kein $n \in \mathbb{N} \xrightarrow{2.10} \alpha \notin H(a_n)$. Fazit: $H(a_n) = \{1, -1\}$.
- b) $a_n = n$. Ist $\alpha \in \mathbb{R}$ und $\epsilon > 0$, so gilt: $a_n \in U_{\epsilon}(\alpha)$ für höchstens endlich viele n, also $\alpha \notin H(a_n)$. Fazit: $H(a_n) = \emptyset$.
- c) \mathbb{Q} ist abzählbar. Sei (a_n) eine Folge mit $Q = \{a_1, a_2, a_3, \dots\}$. Sei $\alpha \in \mathbb{R}$ und $\epsilon > 0 \stackrel{1.5}{\Longrightarrow} U_{\epsilon}(\alpha) = (\alpha \epsilon, \alpha + \epsilon)$ enthält unendlich viele verschiedene rationale Zahlen $\stackrel{2.10}{\Longrightarrow} \alpha \in H(a_n)$. Fazit: $H(a_n) = \mathbb{R}$.

Folgerung: Ist $x \in \mathbb{R}$, so existieren Folgen (r_m) in $\mathbb{Q}: r_n \to \alpha$.

Satz 2.11: (a_n) sei konvergent, $a := \lim a_n$ und (a_{n_k}) eine Teilfolge von (a_n) . Dann:

$$a_{n_k} \to a \quad (k \to \infty)$$

Insbesondere: $H(a_n) = \{\lim a_n\}.$

Beweis. Sei $\epsilon > 0$. Dann: $a_n \in U_{\epsilon}(a)$ ffa $n \in \mathbb{N}$, also auch $a_{n_k} \in U_{\epsilon}(a)$ ffa $k \in \mathbb{N}$. Somit: $a_{n_k} \to \alpha$.

Definition: Sei (a_n) eine Folge.

- a) $m \in \mathbb{N}$. m heißt **niedrig** (für (a_n)) $\iff a_n \geq a_m \ \forall n \geq m$
- b) $m \in \mathbb{N}$ heißt nicht niedrig $\iff \exists n \geq m : a_n < a_m \Rightarrow n > m : a_n < a_m$

Hilfssatz (HS): (a_n) sei eine Folge. Dann enthält (a_n) eine monotone Teilfolge.

Beweis.

Fall 1: es existieren höchstens endlich viele niedrige Indizes. Also existiert $n_1 \in \mathbb{N}$: jedes $n \geq n_1$ ist nicht niedrig.

 n_1 nicht niedrig $\Rightarrow \exists n_2 > n_1 : a_{n_2} < a_{n_1}$

 n_2 nicht niedrig $\Rightarrow \exists n_3 > n_2 : a_{n_3} < a_{n_2}$

Etc...

Wir erhalten so eine streng monoton fallende Teilfolge (a_{n_k}) .

Fall 2: es existieren unendlich viele niedrige Indizes n_1, n_2, \ldots , etwa $n_1 < n_2 < \ldots$

 n_1 ist niedrig und $n_2 > n_1 \rightarrow a_{n_2} \ge a_{n_1}$

 n_2 nicht niedrig $\Rightarrow \exists n_3 > n_2 : a_{n_3} \geq a_{n_2}$

Etc...

Wir erhalten so eine monoton wachsende Teilfolge (a_{n_k}) .

Satz 2.12 (Bolzano-Weierstraß):

 (a_n) sei beschränkt, dann: $H(a_n) \neq \emptyset$. (a_n) enthält also eine konvergente Teilfolge.

Beweis. $\exists c \geq 0 : |a_n| \leq c \ \forall n \in \mathbb{N}. \stackrel{HS}{\Longrightarrow} (a_n)$ enthält eine monotone Teilfolge (a_{n_k}) . Dann: $|a_{n_k}| \leq c \ \forall k \in \mathbb{N}, (a_{n_k})$ ist also beschränkt. $\stackrel{2.3}{\Longrightarrow} (a_{n_k})$ ist konvergent. Also $\lim_{k \to \infty} a_{n_k} \in H(a_n)$.

Satz 2.13: (a_n) sei beschränkt (nach 2.12 gilt damit $H(a_n) \neq \emptyset$).

- a) $H(a_n)$ ist beschränkt.
- b) $\sup H(a_n)$, $\inf H(a_n) \in H(a_n)$; es existieren also

$$\max H(a_n), \min H(a_n).$$

Definition: Ist (a_n) beschränkt, so nennen wir

- a) $\limsup_{n\to\infty} a_n := \limsup a_n := \overline{\lim} a_n := \max H(a_n)$ heißt **Limes** superior oder oberer Limes von (a_n) .
- b) $\liminf_{n\to\infty} a_n := \liminf a_n := \underline{\lim} a_n := \min H(a_n)$ heißt **Limes** inferior oder unterer Limes von (a_n) .

Beweis.

a) $\exists c \geq 0 : |a_n| \leq c \ \forall n \in \mathbb{N}$. Sei $\alpha \in H(a_n)$. Es existiert eine Teilfolge (a_{n_k}) mit $a_{n_k} \to \alpha \ (k \to \infty)$. Es ist

$$|a_{n_k}| \le c \quad \forall k, \text{ also } -c \le a_{n_k} \le c \quad \forall k$$

 $\Rightarrow -c \leq \alpha \leq c$. Also $|\alpha| \leq c \forall \alpha \in H(a_n)$.

b) ohne Beweis.

Satz 2.14: (a_n) sei beschränkt.

- a) $\liminf a_n \le \alpha \le \limsup a_n \ \forall \alpha \in H(a_n)$.
- b) Ist (a_n) konvergent $\Rightarrow \limsup a_n = \liminf a_n = \lim a_n$.
- c) $\limsup (\alpha a_n) = \alpha \limsup a_n \ \forall \alpha \ge 0.$
- d) $\limsup(-a_n) = -\liminf a_n$.

Beweis. a) klar, b) folgt aus 2.11, c) und d) Übung.

Motivation: (a_n) sei konvergent und $\lim a_n =: a$. Sei $\epsilon > 0$,

$$\exists n_0 \in \mathbb{N} : |a_n - a| < \frac{\epsilon}{2} \quad \forall n \ge n_0$$

Für $n, m \ge n_0$:

$$|a_n - a_m| = |a_n - a + a - a_m| \le |a_n - a| + |a_m - a| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

D.h.: (a_n) hat die folgende Eigenschaft:

$$\forall \epsilon > 0 \exists n_0 = n_0(\epsilon) \in \mathbb{N} : |a_n - a_m| < \epsilon \quad \forall n, m \ge n_0$$
 (c)

$$(\iff \forall \epsilon > 0 \ \exists n_0 = n_0(\epsilon) \in \mathbb{N} : |a_n - a_{n+k}| < \epsilon \quad \forall n \ge n_0 \ \forall k \in \mathbb{N})$$

Definition: Eine Folge (a_n) heißt eine **Cauchyfolge** (CF)

$$\iff$$
 (a_n) hat die Eigenschaft (c)

Konvergente Folgen sind also Cauchy-Folgen!

2.15 Cauchykriterium: (a_n) ist konvergent \iff (a_n) ist eine Cauchyfolge.

Beweis. " \Rightarrow " s.o. " \Leftarrow " ohne Beweis.

Beispiel: $a_1 := 1, a_{n+1} := \frac{1}{1+a_n}$ $(n \in \mathbb{N})$. Mit Induktion folgt:

1) $0 < a_n \le 1 \ (n \in \mathbb{N})$ Damit:

$$2) \ a_n \ge \frac{1}{2} \ (n \in \mathbb{N})$$

Für $n \geq 2, k \in \mathbb{N}$ gilt daher:

$$|a_{n+k} - a_n| = \left| \frac{1}{1 + a_{n+k-1}} - \frac{1}{1 - a_{n-1}} \right| = \frac{|a_{n-1} - a_{n+k-1}|}{(1 + a_{n+k-1})(1 + a_{n-1})}$$

$$\leq \frac{1}{(1 + \frac{1}{2})^2} |a_{n+k-1} a_{n-1}| = \frac{4}{9} |a_{n+k-1} - a_{n-1}|$$

$$\leq \left(\frac{4}{9}\right)^2 |a_{n-k-2} - a_{n-2}| \leq \dots \leq \left(\frac{4}{9}\right)^{n-1} |a_{k+1} - a_1|$$

$$\leq \left(\frac{4}{9}\right)^{n-1} (|a_{k+1}| + |a_1|) \leq 2 \left(\frac{4}{9}\right)^{n-1}$$

 $\exists n_0 \in \mathbb{N} \setminus \{1\}: 2\left(\frac{4}{9}\right)^{n-1} < \epsilon \ (n \ge n_0).$ Damit:

$$|a_{n+k} - a_n| < \epsilon \quad (n \ge n_0, k \in \mathbb{N}).$$

Also ist (a_n) eine Cauchyfolge. $a := \lim_{n \to \infty} a_n$. Klar:

$$a \ge \frac{1}{2} \text{ und } a = \frac{1}{1+a}$$

Also $a^2 + a - 1 = 0 \iff a = -\frac{1}{2} \pm \frac{\sqrt{5}}{2}$. Wegen $a \ge \frac{1}{2}$ folgt $a = \frac{\sqrt{5}-1}{2}$.

3 Unendliche Reihen

Definition: (a_n) sei eine Folge.

- a) $s_n := a_1 + a_2 + \dots a_n$ $(n \in \mathbb{N})$ (also $a_1 = a_1, a_2 = a_1 + a_2, \dots$). (s_n) heißt (unendliche) Reihe und wird mit $\sum_{n=1}^{\infty} a_n$ bezeichnet. Weitere Bezeichnungen: $a_1 + a_2 + a_3 + \dots$
- b) s_n heißt **n-te Teilsumme** von $\sum_{n=1}^{\infty} a_n$.
- c) $\sum_{n=1}^{\infty} a_n$ heißt konvergent bzw. divergent \iff (s_n) ist konvergent bzw. divergent.
- d) Ist $\sum_{n=1}^{\infty} a_n$ konvergent, so heißt $\lim s_n$ der Reihenwert und wird ebenfalls mit $\sum_{n=1}^{\infty} a_n$ bezeichnet (schlecht, aber so üblich).

Bemerkung: Ist $p \in \mathbb{Z}$ und $(a_n)_{n=p}^{\infty}$ eine Folge, so definiert man entsprechend

$$s_n = a_p + a_{p+1} + \ldots + a_n \quad (n \ge p)$$

und $\sum_{n=p}^{\infty} a_n$ (meist: p=1 oder p=0).

Die folgenden Sätze und Definitionen formulieren wir nun für Reihen der Form $\sum_{n=1}^{\infty} a_n$. Diese Sätze und Definitionen gelten entsprechend für Reihen der Form $\sum_{n=p}^{\infty} a_n \ (p \in \mathbb{Z})$.

Beispiele:

a) Sei $x \in \mathbb{R}$. $\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots$ heißt **geometrische Reihe**. $s_m = 1 + x + \dots x^m \stackrel{2.6}{\Longrightarrow} (s_n)$ konvergiert $\iff |x| < 1$ und $\lim s_n = \frac{1}{1-x}$ für |x| < 1. Also: $\sum_{n=0}^{\infty} x^n$ konvergent $\iff |x| < 1$ und $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ für |x| < 1.

b)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
; $a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$

$$\Rightarrow s_n = a_1 + \dots + a_n$$

$$= (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \dots + (\frac{1}{n-1} - \frac{1}{n}) + (\frac{1}{n} - \frac{1}{n+1})$$

$$= 1 - \frac{1}{n+1} \to 1$$

Also $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ konvergent und $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$.

- c) $\sum_{n=0}^{\infty} \frac{1}{n!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots$; $s_n = 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!} \xrightarrow{2.9} s_n \to e$. Also: $\sum_{n=0}^{\infty} \frac{1}{n!}$ konvergiert und $\sum_{n=1}^{\infty} \frac{1}{n!} = e$.
- d) Die harmonischen Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$. Dann ist $s_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$,

$$s_{2n} = 1 + \frac{1}{2} + \ldots + \frac{1}{n} + \frac{1}{n+1} + \ldots + \frac{1}{2n} = s_n + \underbrace{\frac{1}{n+1}}_{\geq \frac{1}{2n}} + \ldots + \underbrace{\frac{1}{2n}}_{\geq \frac{1}{2n}} \geq s_n + \frac{1}{2}$$

Annahme: (s_n) ist konvergent. $s := \lim s_n$

$$\stackrel{\textbf{2.11}}{\Longrightarrow} s_{2n} \to s \Rightarrow s \ge s + \frac{1}{2} \to 0 \ge \frac{1}{2}.$$

Widerspruch! Also: $\sum_{n=1}^{\infty} \frac{1}{n}$ ist divergent!

Satz 3.1: (a_n) sei eine Foge und $s_n = a_1 + \ldots + a_n$.

- a) Monotoniekriterium: Sind alle $a_n \ge 0$ und ist (s_n) beschränkt, so ist $\sum_{n=1}^{\infty} a_n$ konvergent.
- b) Cauchykriterium: $\sum a_n$ konvergiert $\iff \forall \epsilon > 0 \exists n_0 = n_0(\epsilon) \in \mathbb{N}$:

$$\left| \sum_{k=n+1}^{m} a_k \right| < \epsilon \quad \forall m > n \ge n_0$$

- c) Ist $\sum_{n=1}^{\infty} a_n$ konvergent $\Rightarrow a_n \to 0$.
- d) $\sum_{n=1}^{\infty} a_n$ sei konvergent. Dann ist für jedes $\nu \in \mathbb{N}$ die Reihe $\sum_{n=\nu+1}^{\infty} a_n$ konvergent und für $r_{\nu} \coloneqq \sum_{n=\nu+1}^{\infty} a_n$ gilt: $r_{\nu} \to 0$.

Beweis.

- a) $s_{n+1} = a_1 + \ldots + a_n + a_{n+1} = s_n + a_{n+1} \ge s_n$. (s_n) ist also wachsend und beschränkt $\stackrel{2.3}{\Longrightarrow} (s_n)$ konvergent.
- b) Für $m > n : |s_m s_n| = |a_1 + \ldots + a_n + a_{n+1} + \ldots + a_m (a_1 + \ldots + a_n)| = |a_{n+1} + \ldots + a_m| = |\sum_{k=n+1}^m a_k|$. Behauptung folgt aus 2.15.
- c) $s_{n+1} s_n = a_{n+1}$. Ist (s_n) konvergent, so folgt $a_{n+1} \to 0$
- d) ohne Beweis!

Bemerkung: Ist (a_n) eine Folge und gilt $a_n \not\to 0$, so ist $\sum a_n$ divergent!

Satz 3.2: Die Reihen $\sum a_n$ und $\sum b_n$ seien konvergent und es seien $\alpha, \beta \in \mathbb{R}$. Dann konvergiert

$$\sum (\alpha a_n + \beta b_n)$$

und $\sum (\alpha a_n + \beta b_n) = \alpha \sum a_n + \beta \sum b_n$

Beweis. 2.2

3.3 Leibnitzkriterium: Sei (b_n) eine Folge mit:

 $b_n \geq 0 \ \forall n \in \mathbb{N}, (b_n)$ ist monoton fallend und $b_n \to 0$

Dann ist $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ konvergent.

Beispiel: Aus 3.3 folgt:

Die alternierende harmonische Reihe $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ ist konvergent.

Beweis. (von 3.3)
$$a_n := (-1)^{n+1}b_n$$
,
 $s_n := a_1 + \ldots + a_n$. $s_{2n+2} = s_{2n} + a_{2n+1} + a_{2n+2} = s_{2n} + \underbrace{b_{2n+1} - b_{2n+2}}_{\geq 0} \geq s_{2n}$.

 (s_{2n}) ist also monoton fallend. Es gilt:

$$\forall n \in \mathbb{N} : s_{2n} = s_{2n-1} - a_{2n} = s_{2n-1} - b_{2n} \le s_{2n-1} \tag{*}$$

Also:

$$s_2 \le s_4 \le \ldots \le s_{2n} \le s_{2n-1} \le \ldots \le s_3 \le s_1$$

 (s_{2n}) und (s_{2n+1}) sind also beschränkt $\stackrel{2.3}{\Longrightarrow}$ (s_{2n}) und (s_{2n+1}) sind konvergent. $s := \lim s_{2n} \stackrel{(*)}{\Longrightarrow} s = \lim s_{2n+1}$. Sei $\epsilon > 0$:

$$\begin{cases} s_{2n} \in U_{\epsilon}(s) \text{ ffa } n \in \mathbb{N} \\ s_{2n-1} \in U_{\epsilon}(s) \text{ ffa } n \in \mathbb{N} \end{cases} \Rightarrow s_n \in U_{\epsilon}(s) \text{ ffa } n \in \mathbb{N}$$

Also:
$$s_n \to s$$
.

Definition: $\sum a_n$ heißt **absolut konvergent** $\iff \sum |a_n|$ ist konvergent.

Beispiel: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ ist konvergent, aber nicht absolut konvergent.

Satz 3.4: $\sum a_n$ sei absolut konvergent. Dann:

- a) $\sum a_n$ ist konvergent
- b) $|\sum_{n=1}^{\infty} a_n| \leq \sum_{n=1}^{\infty} |a_n|$ (\triangle -Ungleichung für Reihen)

Beweis.

a) Seien $m, n \in \mathbb{N}, m > n$

$$\left| \underbrace{\sum_{k=n+1}^{m} a_k}_{=:\sigma_{m,n}} \right| \le \underbrace{\sum_{k=n+1}^{m} |a_k|}_{=:\tau_{m,n}} \tag{*}$$

Sei $\epsilon > 0$, Voraussetzung nach 3.1 b) $\Rightarrow \exists n_0 \in \mathbb{N} : \tau_{m,n} < \epsilon$ für $m > n > n_0 \stackrel{(*)}{\Longrightarrow} \sigma_{m,n} < \epsilon$ für $m > n \geq n_0 \stackrel{\text{3.1 b}}{\Longrightarrow} \sum a_n$ konvergiert.

b) Sei $s_k := a_1 + \ldots + a_k$, $s := \lim s_n$, $\sigma_k := |a_1| + \ldots |a_k|$ und $\sigma = \lim \sigma_n$. Dann: $|s_n| \to |s|$ und

$$|s| \le \sigma \quad \forall n$$

 $\Rightarrow |s| \le \sigma \Rightarrow \triangle$ -Ungleichung.

Satz 3.5:

- a) Majorantenkriterium: Gilt $|a_n| \leq b_n$ ffa $n \in \mathbb{N}$ und ist $\sum b_n$ konvergent, so ist $\sum a_n$ absolut konvergent.
- b) **Minorantenkriterium**: Gilt $a_n \ge b_n \ge 0$ ffa $n \in \mathbb{N}$ und ist $\sum b_n$ divergent, so ist $\sum a_n$ divergent.

Beweis.

a) $\exists j \in \mathbb{N}: |a_n| \leq b_n \ \forall n \geq j$. Sei $m > n \geq j$, dann

$$\underbrace{\sum_{k=n+1}^{m} |a_n|}_{=:\sigma_{m,n}} \le \underbrace{\sum_{k=n+1}^{m} b_k}_{=:\tau_{m,n}}$$

Sei $\epsilon > 0$ Voraussetzung nach 3.1 b) $\Rightarrow \exists n_0 \in \mathbb{N} : n_0 \geq j$ und $\tau_{m,n} < \epsilon$ für $m > n \geq n_0$. Dann: $\sigma_{m,n} < \epsilon$ für $m > n \geq n_0$ $\xrightarrow{3.1 \ b)} \sum |a_n|$ konvergiert.

b) Annahme: $\sum a_n$ konvergent $\stackrel{a)}{\Rightarrow} \sum b_n$ konvergent. Widerspruch.

Beispiele:

a) $\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$, $\forall n \in \mathbb{N}$:

$$a_n = \frac{1}{(n+1)^2} = |a_n| = \frac{1}{n^2 + 2n + 1} \le \frac{1}{n^2 + 2n} \le \frac{1}{n(n+1)} =: b_n$$

Bekannt: $\sum b_n$ konvergiert $\xrightarrow{3.5 \ a)} \sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$ konvergiert.

- b) Aus Beispiel a): $\sum_{n=1}^{\infty} \frac{1}{n^2}$ ist konvergent.
- c) Sei $\alpha > 0$ und $\alpha \in \mathbb{Q}$: Betrachte: $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$. Fall 1: $\alpha \in (0, 1]$.

$$\forall n \in \mathbb{N}: \ \frac{1}{n^{\alpha}} \ge \frac{1}{n} \ge 0 \xrightarrow{3.5 \ b)} \sum \frac{1}{n^{\alpha}} \text{ divergient.}$$

Fall 2: $\alpha \geq 2$:

$$\forall n \in \mathbb{N}: \ 0 \leq \frac{1}{n^{\alpha}} \leq \frac{1}{n^2} \xrightarrow{3.5 \ a)} \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \text{ konvergiert.}$$

Fall 3: $\alpha \in (1,2)$: vgl. Übungsblatt, $\sum \frac{1}{n^{\alpha}}$ konvergiert.

Fazit: Ist $\alpha > 0$ und $\alpha \in \mathbb{Q}$, so gilt $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ konvergiert $\Leftrightarrow \alpha > 1$

- d) $\sum_{n=1}^{\infty} (-1)^n \frac{n^2+2}{n^3+1}$; $|a_n| = \frac{n+2}{n^3+1} \le \frac{n+2}{n^3} \le \frac{2n}{n^3} = \frac{2n}{n^2} =: b_n$. Für $n \ge 2$ $\sum b_n$ konvergiert $\xrightarrow{3.5 \ a} \sum a_n$ konvergiert absolut.
- e) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}$; $a_n = |a_n| = \frac{\sqrt{n}}{n+1} \ge \frac{\sqrt{n}}{2n} = \frac{1}{2} \cdot \frac{1}{\sqrt{n}} = \underbrace{\frac{1}{2} \cdot \frac{1}{n^{\frac{1}{2}}}}_{>0} =: b_n$.

 $\sum b_n$ divergiert $\xrightarrow{3.5 \ b}$ $\sum a_n$ divergiert.

Bemerkung: Ist später später (in §7) die allgemeine Potenz a^x ($a > 0, x \in \mathbb{R}$) eingeführt, so zeigt man analog:

Für
$$\alpha > 0$$
 gilt: $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ konvergiert $\iff \alpha > 1$

Hilfssatz (HS): (c_n) sei beschränkt

- a) Ist $\alpha := \limsup c_n$ und $x > \alpha$, so gilt: $c_n < x$ ffa n
- b) Ist $\alpha := \liminf c_n \text{ und } x < \alpha, \text{ so gilt: } c_n > x \text{ ffa } n$
- c) Ist $c_n \geq 0 \ \forall n \in \mathbb{N} \ \text{und } \limsup c_n = 0, \text{ so gilt } c_n \to 0$

Beweis.

- b) Sei $\epsilon > 0$. $x := \epsilon \stackrel{a)}{\Rightarrow} -\epsilon < 0 \le c_n < \epsilon$ ffa $n \in \mathbb{N}$, also $c_n \in U_{\epsilon}(0)$ ffa n.
- a) Annahme: $c_n \geq x$ für unendlich viele n, etwa für n_1, n_2, n_3, \ldots mit $n_1 < n_2 < n_3 < \ldots$ Die Teilfolge (c_{n_k}) ist beschränkt $\stackrel{2.11}{\Longrightarrow} (c_{n_k})$ enthält eine konvergente Teilfolge $(c_{n_{k_j}})$. $\beta \coloneqq \lim_{j \to \infty} c_{n_{k_j}}$. Es ist $c_{n_{k_j}} \geq x \ \forall j \Rightarrow \beta \geq x > \alpha$; $(c_{n_{k_j}})$ ist eine Teilfolge von $(c_n) \Rightarrow \beta \in H(a_n) \Rightarrow \beta \leq \alpha$, Widerspruch.

3.6 Wurzelkriterium (WK): Sei (a_n) eine Folge, $c_n := \sqrt[n]{|a_n|}$.

- a) Ist (c_n) unbeschränkt, so ist $\sum_{n=1}^{\infty} a_n$ divergent.
- b) Sei $(c_n \text{ beschränkt und } \alpha := \limsup_{n \to \infty} c_n$
 - (i) Ist $\alpha < 1$, so ist $\sum a_n$ absolut konvergent.
 - (ii) Ist $\alpha > 1$, so ist $\sum a_n$ divergent.

Im Falle $\alpha = 1$ ist keine allgemeine Aussage möglich.

Beweis.

- a) (c_n) unbeschränkt $\Rightarrow c_n \ge 1$ für unendlich viele $n \Rightarrow |a_n| \ge 1$ für unendlich viele $n \Rightarrow a_n \to 0 \xrightarrow{3.1 c}$ Beh.
- b) (i) Sei $\alpha < 1$, sei $x \in (\alpha, 1) \xrightarrow{HS} c_n \le x$ ffa $n \Rightarrow |a_n| \le x^n$ ffa n. $\sum x^n$ konvergiert $\xrightarrow{3.5 \ a)} \sum a_n$ konvergiert absolut.
 - (ii) Sei $\alpha > 1$, wähle $\epsilon > 0$ so, dass $\alpha \epsilon > 1$. Es gilt $c_n U_{\epsilon}(\alpha)$ für unendlich viele n. Dann: $c_n > \alpha \epsilon > 1$ für unendlich viele n. Wie bei a): $\sum a_n$ divergiert.

Beispiele:

a) $a_n := \frac{1}{n}$; $c_n = \sqrt[n]{|a_n|} = \frac{1}{\sqrt[n]{n}} \to 1$, also $\alpha = 1$ und $\sum a_n$ divergiert.

b) $a_n := \frac{1}{n^2}$; $c_n = \sqrt[n]{|a_n|} = \frac{1}{(\sqrt[n]{n})^2} \to 1$, also $\alpha = 1$ und $\sum a_n$ konvergiert.

c) Sei $x \in \mathbb{R}$ und $a_n := \begin{cases} \frac{1}{2^n}, & \text{falls } n = 2k \\ nx^n, & \text{falls } n = 2k - 1 \end{cases}$

Frage: Wann ist $\sum a_n$ (abs.) konvergent? Es ist

$$c_n = \sqrt[n]{|a_n|} = \begin{cases} \frac{1}{2}, & \text{falls } n = 2k\\ \sqrt[n]{n}|x|, & \text{falls } n = 2k - 1 \end{cases}$$

 (c_n) ist also beschränkt, $H(c_n) = \{\frac{1}{2}, |x|\}.$

Fall 1: |x| < 1. Dann: $\alpha = \limsup c_n < 1$, also ist $\sum a_n$ absolut konvergent.

Fall 2: |x| > 1. Dann: $\alpha = \limsup c_n < 1$, also ist $\sum a_n$ divergent.

Fall 3: |x| = 1. Dann: $\alpha = \limsup c_n = 1$. Es ist $|a_n| = n$ falls n = 2k - 1. Also: $a_n \not\to 0$. $\sum a_n$ ist also divergent.

3.7 Quotientenkriterium (QK): Es sei $a_n \neq 0 \ \forall n \in \mathbb{N}$ und definiere $c_n := \left| \frac{a_{n+1}}{a_n} \right| \ (n \in \mathbb{N}).$

- a) Ist $c_n \geq 1$ ffa $n \in \mathbb{N}$, so ist $\sum a_n$ divergent.
- b) Sei (c_n) beschränkt, $\alpha := \limsup c_n$ und $\beta := \liminf c_n$.
 - (i) Ist $\alpha < 1$, so ist $\sum a_n$ absolut konvergent.
 - (ii) Ist $\beta > 1$, so ist $\sum a_n$ divergent.

Folgerung 3.8: (a_n) und (c_n) seien wie in 3.7, (c_n) sei konvergent und $\alpha := \lim c_n$.

$$\sum a_n \text{ ist } \begin{cases} \text{absolut konv.,} & \text{falls } \alpha < 1 \\ \text{divergent,} & \text{falls } \alpha > 1 \end{cases}$$

Im Falle $\alpha = 1$ ist keine allg. Aussage möglich.

Beispiele:

- a) $a_n = \frac{1}{n}, \left| \frac{a_{n+1}}{a_n} \right| = \frac{n}{n+1} \to 1, \sum a_n$ divergiert.
- b) $a_n = \frac{1}{n^2}, \left| \frac{a_{n+1}}{a_n} \right| = \frac{n^2}{(n+1)^2} \to 1, \sum a_n$ konvergiert.
- 3.9 Die Exponentialreihe: Für $x \in \mathbb{R}$ betrachte die Reihe

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Frage: für welche $x \in \mathbb{R}$ konvergiert die Reihe (absolut). Klar, die Reihe konvergiert für x = 0. Sei $x \neq q$ und $a_n := \frac{x^n}{n!}$.

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n}\right| = \frac{|x|}{n+1} \to 0 \quad (n \to \infty)$$

Aus 3.8 folgt:

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 konv. absolut für jedes $x \in \mathbb{R}$

Damit ist auf \mathbb{R} eine Funktion $E \colon \mathbb{R} \to \mathbb{R}$ definiert:

$$E(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 Exponential funktion

Es ist E(0) = 1, $E(1) \stackrel{\S 2}{=} e$.

Später zeigen wir: $E(r) = e^r$ für $r \in \mathbb{Q}$. Des Weiteren definieren wir später $e^x := E(X)$ für $x \in \mathbb{R} \setminus \mathbb{Q}$. Dann: $e^x = E(x)$ $(x \in \mathbb{R})$.

Definition: Sei (a_n) eine Folge und $\varphi \colon \mathbb{N} \to \mathbb{N}$ eine Bijektion. Setze $b_n \coloneqq a_{\varphi(n)} \ (n \in \mathbb{N})$. Also

$$b_1 = a_{\varphi(1)}, b_2 = a_{\varphi(2)}, \dots$$

Dann heißt (b_n) eine **Umordnung** von (a_n) .

Beispiel: $(a_2, a_4, a_1a_3, a_6, a_8, a_5, a_7, \dots)$ ist eine Umordnung von (a_n) .

Satz 3.10: (b_n) sei eine Umordnung von (a_n) .

- a) Ist (a_n) konvergent, so ist (b_n) konvergent und $\lim b_n = \lim a_n$.
- b) Ist $\sum a_n$ absolut konvergent, so ist $\sum b_n$ absolut konvergent und

$$\sum a_n = \sum b_n$$

Beweis.

a) $a := \lim a_n$; Sei $\epsilon > 0$. $\exists n_0 \in \mathbb{N} : |a_n - a| < \epsilon \ \forall n \ge n_0$. Dann: $|a_{\varphi(n)} - a| < \epsilon \text{ ffa } n \in \mathbb{N}$.

b) ohne Beweis.

Bemerkung (ohne Beweis): $\sum a_n$ sei konvergent, aber nicht absolut konvergent.

- a) Ist $s \in \mathbb{R}$, so existiert eine Umordnung $\sum b_n$ von $\sum a_n$ mit: $\sum b_n$ ist konvergent und $\sum b_n = s$.
- b) Es existiert eine Umordnung $\sum c_n$ von $\sum a_n$ mit: $\sum c_n$ ist divergent.

Definition: Gegeben seien die Reihen $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$. Setze für $n \in \mathbb{N}$:

$$c_n := \sum_{k=0}^{\infty} a_k b_{n-k}$$
, also:
 $c_n = a_0 b_n + a_1 b_{n-1} + \ldots + a_n b_0$

Die Reihe $\sum_{n=0}^{\infty} c_n$ heißt das **Cauchyprodukt** (CP) von $\sum a_n$ und $\sum b_n$.

Satz 3.11 (ohne Beweis): $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ seien absolut konvergent. Für ihr Cauchyprodukt $\sum_{n=0}^{\infty} c_n$ gilt dann:

$$\sum_{n=0}^{\infty} c_n \text{ ist absolut konvergent und } \sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n)$$

Beispiel: Sei $x \in \mathbb{R}$ und |x| < 1. Bekannt: $\sum_{n=0}^{\infty} x^n$ konvergiert absolut und $\sum_{k=0}^{\infty} x^n = \frac{1}{1-x}$. Also

$$\frac{1}{(1-x)^2} = (\sum_{n=0}^{\infty} x^n)(\sum_{n=0}^{\infty} x^n) \stackrel{\text{3.11}}{=} \sum_{n=0}^{\infty} c_n$$

mit $c_n = \sum_{k=0}^n x^k x^{n-k} = (n+1)x^n$. Also:

$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^n \quad (|x| < 1)$$

z.B.: $(x = \frac{1}{2}) : 4 = \sum_{n=0}^{\infty} \frac{(n+1)}{2^n}$. Weiter:

$$\frac{x}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^{n+1} = \sum_{n=1}^{\infty} nx^n$$

z.B.: $(x = \frac{1}{2}) : 2 = \sum_{n=1}^{\infty} \frac{n}{2^n}$, also $1 = \sum_{n=1}^{\infty} \frac{n}{2^{n+1}}$.

3.12 Exponential function: $E(X) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \ (x \in \mathbb{R})$

a)
$$E(0) = 1, E(1) = e$$

b)
$$E(x+y) = E(x)E(y) \ \forall x, y \in \mathbb{R}$$

c)
$$E(x_1 + \ldots + x_m) = E(x_1) \cdot \ldots \cdot E(x_m) \ \forall x_1, \ldots, x_m \in \mathbb{R}$$

d)
$$E(x) > 1 \ \forall x > 0; \ E(X) > 0 \ \forall x \in \mathbb{R}; \ E(-x) = E(x)^{-1} \ \forall x \in \mathbb{R}$$

e)
$$E(rx) = E(x)^r \ \forall x \in \mathbb{R}, \forall r \in \mathbb{Q}$$

f)
$$E(r) = e^r \ \forall r \in \mathbb{Q}$$

g) E ist auf \mathbb{R} streng monoton wachsend, d.h. aus x < y folgt stets E(x) < E(y).

Beweis.

a) klar.

b)
$$E(x)E(y) = (\sum_{n=0}^{\infty} \frac{x^n}{n!})(\sum_{n=0}^{\infty} \frac{y^n}{n!}) \stackrel{3.11}{=} \sum_{n=0}^{\infty} c_n$$
, wobei

$$c_n = \sum_{k=0}^{\infty} \frac{x^k}{k!} \cdot \frac{y^{n-k}}{(n-k)!} = \frac{1}{n!} \sum_{k=0}^n \underbrace{\frac{n!}{k!(n-k)!}} x^k y^{n-k} \stackrel{\S 1}{=} \frac{1}{n!} (x+y)^n$$

Also:
$$E(x)E(y) = \sum_{n=0}^{\infty} \frac{(x+y)^n}{n!} = E(x+y).$$

c) folgt aus b).

d) Für
$$x > 0$$
: $E(x) = 1 + \underbrace{x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots}_{>0} > 1$

$$1 = E(x + (-x)) \stackrel{b)}{=} E(x)E(-x) \ \forall x \in \mathbb{R}$$

Insb.:
$$E(x) > 0$$
 $(x < 0)$ und $E(-x) = E(x)^{-1}$.

e) Sei $x \in \mathbb{R}$. Für $n \in \mathbb{N}$:

$$E(nx) = E(x + \dots + x) \stackrel{c)}{=} E(x)^n$$

$$E(x) = (En(\frac{x}{n}) = E(\frac{x}{n})^n, \text{ also } E(\frac{1}{n}x) = E(x)^{\frac{1}{n}}. \text{ Für } m, n \in \mathbb{N}:$$

 $E(\frac{m}{n}x) = E(m\frac{x}{n}) = E(\frac{x}{n})^m = (E(x)^{\frac{1}{n}})^m = E(x)^{\frac{m}{b}}.$

Also $E(rx) = E(x)^r \ \forall r \in \mathbb{Q}$ mit r > 0. Sei $r \in Q$ und r < 0. Dann: -r > 0, also

$$\underbrace{E(-rx)}_{\stackrel{d)}{=} \frac{1}{E(rx)}} = e(x)^{-r} = \frac{1}{E(x)^r}$$

Also $E(rx) = E(x)^r$.

- f) folgt aus d) mit x = 1.
- g) Sei $x < y \Rightarrow y x > 0 \stackrel{d)}{\Rightarrow} E(y x) > 1$

$$\Rightarrow 1 < E(y - x) \stackrel{b)}{=} E(y)E(-x) \stackrel{d)}{=} \frac{E(y)}{E(x)} \stackrel{d)}{\Rightarrow} E(x) < E(y)$$

4 Potenzreihen

Definition: $(a_n)_{n=0}^{\infty}$ sei eine Folge in \mathbb{R} und $x_0 \in \mathbb{R}$. Eine Reihe der Form

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots$$

heißt **Potenzreihe** (PR).

Frage: für welche $x \in \mathbb{R}$ konvergiert die Potenzreihe (absolut)? Klar: die Potenzreihe konvergiert absolut für $x = x_0$.

Beispiele:

- a) $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. Hier: $a_n = \frac{1}{n!}, x_0 = 0$. Bekannt: die Potenzreihe konvergiert absolut in jeden $x \in \mathbb{R}$.
- b) $\sum_{n=0}^{\infty} (x-x_0)^n$. Hier: $a_n = 1$. Setze $q := x-x_0$. Bekannt: $\sum_{n=0}^{\infty} q^n$ konvergiert absolut $\iff |q| < 1$. D.g. die Potenzreihe konvergiert absolut $\iff |x-x_0| < 1$.
- c) $\sum_{n=0}^{\infty} n^n (x-x_0)^n$. Hier: $a_n = n^n$. Sei $x \neq x_0$ und $b_n := n^n (x-x_0)^n$; $\sqrt[n]{|b_n|} = n|x-x_0| \xrightarrow{x\neq x_0} \left(\sqrt[n]{|b_n|}\right)$ ist unbeschränkt $\stackrel{3.6}{\Longrightarrow} \sum n^n (x-x_0)^n$ ist divergent.

Also: $\sum_{n=0}^{\infty} n^n (x-x_0)^n$ konvergiert nur für $x=x_0$.

Definition: $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ sei eine Potenzreihe. Setze

$$\rho := \begin{cases} \infty, & \text{falls } \left(\sqrt[n]{|b_n|} \right) \text{ unbeschränkt;} \\ \limsup \sqrt[n]{|b_n|}, & \text{falls } \left(\sqrt[n]{|b_n|} \right) \text{ beschränkt} \end{cases}$$

und

$$r \coloneqq \begin{cases} 0, & \text{falls } \rho = \infty \\ \infty, & \text{falls } \rho = 0 \\ \frac{1}{\rho}, & \text{falls } \rho \in (0, \infty) \end{cases}$$

(kurz: " $r = \frac{1}{\rho}$ "). r heißt der **Konvergenzradius** (KR) der Potenzreihe.

Satz 4.1: $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ sei eine Potenzreihe und ρ und r seien wie oben.

- a) Ist r=0, so konvergiert die Potenzreihe nur für $x=x_0$.
- b) Ist $r = \infty$, so konvergiert die Potenzreihe absolut für jedes $x \in \mathbb{R}$.
- c) Ist $r \in (0, \infty)$, so konvergiert die Potenzreihe absolut für $x \in \mathbb{R}$ mit $|x x_0| < r$, sie divergiert für $x \in \mathbb{R}$ mit $|x x_0| > r$. Für $x = x_0 \pm r$ ist keine allg. Aussage möglich.

Beweis. Für $x \in \mathbb{R}$ sei $b_n := a_n(x - x_0)^n \ (n \in \mathbb{N}_0)$. Damit: $\sqrt[n]{|b_n(x)|} = \sqrt[n]{|a_n|}|x - x_0|$

- a) Sei $x \neq x_0$. $r = 0 \iff \rho = 0 \iff (\sqrt[n]{|b_n(x)|})$ unbeschränkt $\stackrel{3.6}{\Longrightarrow} \sum b_n(x)$ divergiert.
- b) $r = \infty \iff \rho = 0 \iff \limsup \sqrt[n]{|b_n(x)|} = 0 \ \forall x \in \mathbb{R} \stackrel{3.6}{\Longrightarrow} \text{Beh.}$
- c) $\limsup \sqrt[b]{|b_n(x)|} = \limsup \sqrt[n]{|a_n|}|x x_0| = \rho|x x_0| = \frac{1}{r}|x x_0| < 1$ $\iff |x - x| < r$

Analog für |x - x| > r. Behauptung folgt aus 3.6.

Folgerung: $\lim_{n\to\infty} \frac{1}{\sqrt[n]{n!}} = 0$.

Beweis. $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ hat den Konvergenzradius $r = \infty$; $a_n = \frac{1}{n!} \stackrel{4.1}{\Longrightarrow} \rho = 0$, also

$$\limsup \sqrt[n]{|a_n|} = 0.$$

Hilfssatz vor $3.6 \Rightarrow \lim \sqrt[n]{|a_n|} = 0.$

Beispiele:

- a) $\sum_{n=0}^{\infty} x^n$; $a_n = 1$ $(n \in \mathbb{N}_0)$, $x_0 = 1$; $\rho = 1, r = 1$. Die Potenzreihe konvergiert für |x| < absolut; sie divergiert für |x| > 1. |x| = 1: die Potenzreihe divergiert.
- b) $\sum_{n=1}^{\infty} \frac{x^n}{n}$, $a_0 = 0$, $a_n = \frac{1}{n}$ $(n \ge 1)$, $x_0 = 0$; $\sqrt[n]{|a_n|} = \frac{1}{\sqrt[n]{n}} \to 1 \Rightarrow \rho = 1 \Rightarrow r = 1$. Die Potenzreihe konvergiert absolut für |x| < 1 und sie divergiert für |x| > 1. x = 1: $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert; x = -1: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ konvergiert.
- c) $\sum \frac{x^n}{n^2}$; $a_0 = 0$, $a_n = \frac{1}{n^2}$ $(n \ge 1)$, $x_0 = 0$; $\sqrt[n]{|a_n|} \to 1 \Rightarrow \rho = 1 \Rightarrow r = 1$. Die Potenzreihe konvergiert absolut für |x| < 1, sie divergiert für |x| > 1. x = 1: $\sum \frac{1}{n^2}$ konvergiert absolut; x = -1: $\sum \frac{(-1)^n}{n^2}$ konvergiert absolut.

4.2 Cosinus: Betrachte die Reihe

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$

hier: $x_0 = 0, a_{2n+1} = 0, a_{2n} = \frac{(-1)^n}{(2n)!}$ $(n \in \mathbb{N})$. Mit $\sqrt[n]{|a_n|} \le \frac{1}{\sqrt[n]{n!}}$ folgt

$$\sqrt[2n]{|a_{2n}|} = \frac{1}{\sqrt[2n]{(2n)!}} \to 0$$
 Folgerung nach 4.1

Also $H(\sqrt[n]{|a_n|}) = \{0\}$. Also: $\limsup \sqrt[n]{|a_n|} = 0 \stackrel{4.1}{\Longrightarrow}$ obige Potenzreihe hat den Konvergenzradius $r = \infty$, konvergiert also absolut in jedem $x \in \mathbb{R}$

Cosinus:
$$\begin{cases} \cos \colon \mathbb{R} \to \mathbb{R} \\ \cos x \coloneqq \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \end{cases}$$

4.3 Sinus: Ähnlich wie bei **4.2** sieht man: die Potenzreihe

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

konvergiert absolut für jedes $x \in \mathbb{R}$.

Sinus:
$$\begin{cases} \sin \colon \mathbb{R} \to \mathbb{R} \\ \sin x \coloneqq \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \end{cases}$$

Klar: $\sin 0 = 0, \cos 0 = 1, \sin(-x) = -\sin(x), \cos(-x) = \cos(x) \ \forall x \in \mathbb{R}.$

Ähnlich wie in 3.12 zeigt man (mit Cauchyprodukt) die **Additiostheoreme**, dassfüraööe $x, y \in \mathbb{R}$:

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$
$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

Für $x \in \mathbb{R}$:

$$1 = \cos(0) = \cos(x + (-x)) = \cos x \cos(-x) - \sin x \sin(-x) = \cos^2 x + \sin^2 x$$

Für alle $x \in \mathbb{R}$ ist $\cos^2 x \le \cos^2 x + \sin^2 x = 1$, also $|\cos x| \le 1$ und $\sin^2 x \le \cos^2 x + \sin^2 x = 1$, also $|\sin x| \le 1$.

Satz 4.4: Es ist $a_n \neq 0$ ffa $n \in \mathbb{N}$, die Folge $\left(\left|\frac{a_n}{a_{n+1}}\right|\right)$ sei konvergent und $L := \lim \left|\frac{a_n}{a_{n+1}}\right|$. Dann hat die Potenzreihe $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ den Konvergenzradius L.

Beweis. Sei $x \in \mathbb{R}$, $x \neq x_0$ und $b_n := a_n(x - x_0)^n$. Dann:

$$\left| \frac{b_{n+1}}{b_n} \right| = \left| \frac{a_{n+1}}{a_n} \right| |x - x_0| \tag{*}$$

Fall 1:
$$L = 0$$
. $|x - x_0| > 0 \Rightarrow \frac{|a_n|}{|a_{n+1}|} \le |x - x_0|$ ffa n

$$\stackrel{(*)}{\Longrightarrow} \left| \frac{b_{n+1}}{b_n} \right| \ge \text{ ffa } n \stackrel{3.7}{\Longrightarrow} \sum b_n \text{ divergient}$$

Die Potenzreihe konvergiert also nur für $x=x_0$, also r=0=L. Fall 2: L>0. $\stackrel{(*)}{\Longrightarrow} \lim \left|\frac{b_{n+1}}{b_n}\right| = \frac{1}{L}|x-x_0|$

$$\xrightarrow{3.8} \begin{cases} \text{Die Potenzreihe konv. absolut für } |x-x_0| < L \\ \text{Die Potenzreihe divergiert für } |x-x_0| > L \end{cases}$$

$$\stackrel{4.1}{\Longrightarrow} r = L.$$

5 q-adische Entwicklung

Definition: Sei $x \in \mathbb{R}$. Dann existiert genau eine Zahl $k \in \mathbb{Z}$: $k \le x < k+1$;

$$[x] := k = \text{gr\"oßte ganze Zahl } \leq x$$

Vereinbarung: In diesem \S sei stets $a \geq 0, q \in \mathbb{N}$ und q > 1.

Setze $z_0 := [a]$, dann: $z_0 \le a < z_0 + 1$.

Setze $z_1 := [(a - z_0)q]$, dann: $z_1 \le aq - z_0q < z_1 + 1$.

Also

$$z_0 + \frac{z_1}{q} \le a < z_0 + \frac{z_1}{q} + \frac{1}{q}$$

Es ist $z_1 \in \mathbb{N}_0$: Annahme: $z_1 \geq 1 \Rightarrow \frac{z_1}{q} \geq 1$

$$\Rightarrow z_0 + 1 \le z_0 + \frac{z_1}{q} \le a < z_0 + 1$$

Widerspruch! Also: $z_1 \in \{0, 1, \dots, q-1\}$.

Setze $z_2 := [(a - z_0 - \frac{z_1}{q})q^2]$, dann (wie oben)

$$z_0 + \frac{z_1}{q} + \frac{z_2}{q^2} \le a < z_0 + \frac{z_1}{q} + \frac{z_2}{q^2} + \frac{1}{q^2}$$

und $z_2 \in \{0, 1, \dots, q-1\}.$

Allgemein (induktiv): sind z_0, \ldots, z_n schon definiert, so setze

$$z_{n+1} := \left[(a - z_0 - \frac{z_1}{q} - \dots - \frac{z_n}{q^n}) q^{n+1} \right]$$

Wir erhalten so eine Folge $(z_n)_{n=0}^{\infty}$ mit:

$$\begin{pmatrix}
z_0 \in \mathbb{N}_0, z_n \in \{0, 1, \dots, q - 1\} \ \forall n \ge 1 \\
\text{und} \\
z_0 + \frac{z_1}{q} + \dots + \frac{z_n}{q^n} \le a < \underbrace{z_0 + \frac{z_1}{q} + \dots + \frac{z_n}{q^n} + \frac{1}{q^n}}_{=S_n + \frac{1}{q^n}}$$

In den großen Übungen wird gezeigt:

Satz 5.1: Ist $(\tilde{z}_n)_0^{\infty}$ eine weitere Folge mit den Eigenschaften in (*), so gilt:

$$z_n = \tilde{z}_n \quad \forall n \in \mathbb{N}_0$$

Es ist

$$0 \le \frac{z_n}{q^n} \le \frac{q-1}{q^n} \ \forall n \in \mathbb{N} \quad \text{und} \quad \sum_{n=1}^{\infty} \frac{q-1}{q^n} \text{ konvergiert.}$$

 $\xrightarrow{3.5 \ a)} \sum_{n=0}^{\infty} \sqrt{z_n} q^n$ konvergiert. Also ist (s_n) konvergent.

$$\stackrel{(*)}{\Longrightarrow} a = \lim s_n = \sum_{n=0}^{\infty} \frac{z_n}{q^n}$$

Dafür schreibt man: $a = z_0, z_1 z_2 z_3 \dots$ (**q-adische Entwicklung von** a)

q=10: Dezimalentwicklung; q=2: Dualentwicklung; (Gilt mit einem $m \in \mathbb{N}$: $z_n=0 \ \forall n>m$, so schreibt man auch: $a=z_0,z_1\ldots z_m$).

Beispiele:

a)
$$q = 10, a = 1.$$
 $z_0 = 1, z_1 = [(a - z_0)q] = 0;$
 $z_2 = [(a - z_0 - \frac{z_1}{q})q^2] = 0, \dots \text{ allg.: } z_n = 0 \ \forall n \ge 1.$
Also $1 = 1,000...$

b)
$$q = 10, a = \frac{1}{2}$$
. $z_0 = 0, z_1 = [(a - z_0)q] = [\frac{1}{2}10] = 5;$
 $z_2 = [(a - z_0 - \frac{z_1}{q})q^2] = [(\frac{1}{2} - \frac{5}{10})100] = 0, \dots \text{ allg.: } z_n = 0 \ \forall n \ge 2.$
Also $\frac{1}{2} = 0,5000 \dots = 0,5$

Definition: Sei $b \in \mathbb{R}$ und b < 0. Weiter sei

$$-b = z_0, z_1 z_2 \dots$$

die q-adische Entwicklung von -b. Dann ist $b = -z_0, z_1 z_2 \dots$ die q-adische Entwicklung von b.

Satz 5.2: Sei $a=z_0,z_1z_2z_3\ldots$ die q-adische Entwicklung von a. Dann ist $z_n=q-$ ffa $n\in\mathbb{N}$ nicht möglich.

Beweis. Annahme: $\exists m \in \mathbb{N}: z_n = q-1 \ \forall n \geq m$. Dann

$$a = \sum_{n=0}^{\infty} \frac{z_n}{q^n} = \underbrace{\sum_{n=0}^{m-1} \frac{z_n}{q^n}}_{=S_{m-1}} + \sum_{n=m}^{\infty} \frac{q-1}{q^n}$$

und damit

$$\sum_{n=m}^{\infty} \frac{q-1}{q^m} = (q-1) \left(\frac{1}{q^m} + \frac{1}{q^{m+1}} + \dots \right)$$

$$= \frac{q-1}{q^m} \left(1 + \frac{1}{q} + \frac{1}{q^2} + \dots \right)$$

$$= \frac{q-1}{q^m} \frac{1}{1 - \frac{1}{q}} = \frac{1}{q^{m-1}}$$

Also $a = S_{m-1} + \frac{1}{q^{m-1}} \stackrel{(*)}{>} a$. Widerspruch!

Satz 5.3: \mathbb{R} ist überabzählbar.

Beweis. es genügt zu zeigen: [0,1) ist überabzählbar. Annahme [0,1) abzählbar, also $[0,1)=\{a_1,a_2,\dots\}$. Für $j\in\mathbb{N}$ sei

$$a_j = 0, z_1^{(j)} z_2^{(j)} z_3^{(j)} \dots$$

die 3-adische Entwicklung von a_j , also $z_k^{(j)} \in \{0, 1, 2\}$. Setze

$$z_k := \begin{cases} 1, & \text{falls } z_k^{(k)} = 0 \text{ oder } z_k^{(k)} = 2\\ 0, & \text{falls } z_k^{(k)} = 1 \end{cases}$$

Dann: $z_k \neq z_k^k \ \forall k \in \mathbb{N} \ (**)$. Setze $a := \sum_{n=1}^{\infty} \frac{z_n}{3^n}$, dann:

$$0 \le a \le \sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{1}{2}$$
, also $a \in [0, 1)$.

Übung: $0, z_1 z_2 z_3 \dots$ ist die 3-adische Entwicklung von $a.a \in [0,1) \Rightarrow \exists m \in \mathbb{N} : a = a_m,$ also

$$0, z_1 z_2 z_3 \dots = 0, z_1^{(m)} z_2^{(m)} \dots$$

und
$$z_j = z_j^{(m)} \ \forall j \in \mathbb{N} \xrightarrow{j=m} z_m = z_m^{(m)}$$
. Widerspruch zu (**).

6 Grenzwerte bei Funktionen

Definition: Sei $D \subseteq \mathbb{R}$ und $x_0 \in \mathbb{R}$. x_0 heißt ein **Häufungspunkt** (HP) von $D \iff \exists$ Folge (x_n) in $D \setminus \{x_0\}$ mit $x_n \to x_0$.

Beispiele: a) D = (0, 1] x_0 ist Häufungspunkt von $D \iff x_0 \in [01]$

- b) $D = \{\frac{1}{n} : n \in \mathbb{N}\}$ D hat genau einen Häufungspunkt: $x_0 = 0$.
- c) Ist D endlich, so hat D keine Häufungspunkte.

Hilfssatz 6.1: Sei $D \subseteq \mathbb{R}$ und $x_0 \in \mathbb{R}$. x_0 ist Häufungspunkt von $D \iff \forall \epsilon > 0 : U_{\epsilon}(x_0) \cap (D \setminus \{x_0\}) \neq \emptyset$.

Beweis.

" \Rightarrow " \exists Folge (x_n) in $D \setminus \{x_0\} : x_n \to x_0$. Sei $\epsilon > 0$:

$$\exists n_0 \in \mathbb{N} : x_n \in U_{\epsilon}(x_0) \cap (D \setminus \{x_0\}) \ \forall n \geq n_0.$$

" \Leftarrow " $\exists x_1 \in U_1(x_0) \cap (D \setminus \{x_0\})$, also $|x_1 - x_0| < 1$; $\exists x_2 \in U_{\frac{1}{2}}(x_0 \cap (D \setminus \{x_0\}))$, also $|x_2 - x_0| < \frac{1}{2}$; etc. Wir erhalten eine Folge (x_n) in $D \setminus \{x_0\}$ mit

$$|x_n - x_0| < \frac{1}{n} \quad \forall n \in \mathbb{N},$$

also $x_n \to x_0$.

Vereinbarung: ab jetzt sei stets in den §en:

- $\bullet \ \emptyset \neq D \subseteq \mathbb{R}, x_0$ ein Häufungspunkt von D und
- $f := D \to \mathbb{R}$ eine Funktion

Bezeichnung:

- a) $D_{\delta}(x_0) := U_{\delta}(x_0) \cap (D \setminus \{x_0\})$
- b) Sei $M \subseteq D$ und $g: D \to \mathbb{R}$ eine weitere Funktion mit $f \leq g$ auf $M \iff f(x) \leq g(x) \ \forall x \in M$.

Definition: $\lim_{x\to x_0} f(x)$ existiert $\iff \exists a \in \mathbb{R}$: für jede Folge (x_n) in $D \in \{x_0\}$ mit $x_n \to x_0$ gilt: $f(x_n) \to a$. In diesem Fall ist a eindeutig bestimmt und wir schreiben:

$$\lim_{x \to x_0} f(x) = a \text{ oder } f(x) \to a \ (x \to x_0)$$

Bemerkung: sollte $x_0 \in D$ sein, so ist der Wert $f(x_0)$ in obiger Definition nicht relevant. Relevant ist allein das Verfahren von f in das "Nähe" von x_0 .

Beispiele:

a) $D := [0, \infty), p \in \mathbb{N}; f(x) := \sqrt[p]{x}$. Sei $x_0 \in D$ (dann ist x_0 eine Häufungspunkt von D). Sei (x_n) eine Folge in $D \setminus \{x_0\}$ und $x_n \to x_0 \stackrel{2.4}{\Longrightarrow} \sqrt[p]{x_n} \to \sqrt[p]{x_0}$. Also

$$\lim_{x \to x_0} f(x) = \sqrt[p]{x_0}$$

b)
$$D = (0, 1]$$

$$f(x) \coloneqq \begin{cases} x^2, & 0 < x < \frac{1}{2} \\ \frac{1}{2}, & x = \frac{1}{2} \\ 1, & \frac{1}{2} < x < 1 \\ 0, & x = 1 \end{cases}$$

Klar: $\lim_{x\to 0} f(x)$, $\lim_{x\to 1} f(x) = 1$

$$x_n := \frac{1}{2} - \frac{1}{n}, z_n := \frac{1}{2} + \frac{1}{n} \quad (n \ge 3)$$

Dann: $x_n \to \frac{1}{2}, z_n \to \frac{1}{2}$, aber $f(x) = (\frac{1}{2} - \frac{1}{n})^2 \to \frac{1}{4} \neq 1 \leftarrow f(z_n)$. D.h. $\lim_{x \to \frac{1}{2}} f(x)$ existiert nicht, aber $\lim_{x \to \frac{1}{2}} f(x) = \frac{1}{4}$, dafür

schreibt man

$$\lim_{x \to \frac{1}{2} - 0} f(x) = \frac{1}{4} \text{ (linksseitiger Grenzwert)}$$

Analog:

$$\lim_{\substack{x \to \frac{1}{2} \\ x \in (\frac{1}{2}, \infty)}} f(x) = 1 \text{ (rechtsseitiger Grenzwert)}$$

c)
$$D = \mathbb{R}$$
, $f = E$, also $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$; $x_0 = 0$. Sei $|x| \le 1$

$$|E(x) - E(0)| = |E(x) - 1| = |x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots|$$

$$= |x| \left| 1 + \frac{x}{2!} + \frac{x^2}{3!} + \dots \right|$$

$$\le |x| \left(1 + \frac{|x|}{2!} + \frac{|x|^2}{3!} + \dots \right)$$

$$\le |x| \left(1 + \frac{1}{2!} + \frac{1}{3!} + \dots \right)$$

$$= |x|(e-1)$$

Sei (x_n) Folge in \mathbb{R} : $x_n \to 0$. $\exists n_0 \in \mathbb{N} : |x_n| \le 1 \ \forall n \ge n_0 \Rightarrow |E(x_n) - | \le |x_n|(e-1) \ \forall n \ge n_0 \Rightarrow E(x_n) \to 1$ Also: $\lim_{x\to 0} E(x) = 1 = E(0)$. Somit: $\lim_{x\to 0} \sum_{n=0}^{\infty} \frac{x^n}{n!} = \sum_{n=0}^{\infty} \left(\lim_{x\to 0} \frac{x^{1n}}{n!}\right)$.

Satz 6.2:

a)
$$\lim_{x \to x_0} f(x) = a \iff \forall \epsilon > 0 \ \exists \delta > 0 \ (\delta = \delta(\epsilon)) :$$

$$|f(x) - a| < \epsilon \quad \forall x \in D_{\delta}(x_0) \tag{*}$$

b) $\lim_{x\to x_0} f(x)$ existiert

 \iff für jede Folge (x_n) in $D\setminus\{x_0\}$ mit $x_n\to x_0$ ist $(f(x_n))$ konvergent.

c) Cauchykriterium: $\lim_{x\to x_0} f(x)$ existiert

$$\iff \forall \epsilon > 0 \; \exists \delta = \delta(\epsilon) > 0 : |f(x_1) - f(x_2)| < \epsilon \; \forall x_1, x_2 \in D_{\delta}(x_0)$$

Satz 6.3: $f, g, h: D \to \mathbb{R}$ seien Funktionen. (Erinnerung: $D_{\delta}(x_0) := U_{\delta}(x_0) \cap (D \setminus \{x_0\})$). Es seien $a, b \in \mathbb{R}$ und es gelte $f(x) \to a, g(x) \to b$ $(x \to x_0)$. Dann:

- a) $\alpha f(x) + \beta g(x) \to \alpha a + \beta b$; $f(x)g(x) \to ab$, $|f(x)| \to |a| \ (x \to x_0)$
- b) Ist $a \neq 0$, so existiert ein $\delta > 0$: $f(x) \neq 0 \ \forall x \in D_{\delta}(x_0)$. Für $\frac{1}{f}: D_{\delta}(x_0) \to \mathbb{R}$ gilt: $\frac{1}{f(x)} \to \frac{1}{a} \ (x \to x_0)$.
- c) Für ein $\delta > 0$ gelte: $f \leq g$ auf $D_{\delta}(x_0)$. Dann: $a \leq b$
- d) Für ein $\delta > 0$ gelte: $f \leq h \leq g$ auf $D_{\delta}(x_0)$. Ist a = b, so gilt: $h(x) \to a \ (x \to x_0)$.

Beweis. z. B.: c) Sei (x_n) eine Folge in $D \setminus \{x_0\}$ und $x_n \to x_0$. $\exists n_0 \in \mathbb{N}$:

$$x_n \in D_\delta(x_0) \ \forall n \ge n_0$$

Dann: $f(x_n) \le g(x_n) \ \forall n \ge n_0 \stackrel{2.2}{\Longrightarrow} a = \lim f(x_n) \le \lim g(x_n) = b.$

Definition:

a) Sei (x_n) eine Folge in \mathbb{R} .

$$x_n \to \infty \iff \forall c > 0 \ \exists n_0 = n_0(c) \in \mathbb{N} : x_n > c \quad \forall n \ge n_0$$

$$x_n \to -\infty \iff \forall c < 0 \ \exists n_0 = n_0(c) \in \mathbb{N} : x_n < c \quad \forall n \ge n_0$$
Übung: $x_n \to \infty \iff x_n > 0 \text{ ffa } n \in \mathbb{N} \text{ und } \frac{1}{x_n} \to 0 \text{ und}$

$$x_n \to -\infty \iff x_n < 0 \text{ ffa } n \in \mathbb{N} \text{ und } \frac{1}{x_n} \to 0$$

- b) Sei $D \subseteq \mathbb{R}$, x_0 Häufungspunkt von D und $f: D \to \mathbb{R}$ eine Funktion $\lim_{x \to x_0} f(x) = \infty \iff \forall (x_n) \text{ in } D \setminus \{x_0\} \text{ mit } x_n \to x_0 \text{ gilt: } f(x_n) \to \infty$ $\lim_{x \to x_0} f(x) = \infty \iff \forall (x_n) \text{ in } D \setminus \{x_0\} \text{ mit } x_n \to x_0 \text{ gilt: } f(x_n) \to -\infty$
- c) D sei nicht nach oben beschränkt, $f: D \to \mathbb{R}$ sei eine Funktion und $a \in \mathbb{R} \cup \{\infty, -\infty\}$.

$$\lim_{x \to \infty} f(x) = a \iff \forall (x_n) \text{ in } D \text{ mit } x_n \to \infty \text{ gilt: } f(x_n) \to a$$

d) D sei nicht nach unten beschränkt, $f: D \to \mathbb{R}$ sei eine Funktion und $a \in \mathbb{R} \cup \{\infty, -\infty\}$.

$$\lim_{x \to -\infty} f(x) = a \iff \forall (x_n) \text{ in } D \text{ mit } x_n \to -\infty \text{ gilt: } f(x_n) \to a$$

Beispiel 6.4: $\frac{1}{x} \to \infty \ (x \to 0+0), \frac{1}{x} \to -\infty \ (x \to 0-0), \frac{1}{x} \to 0 \ (x \to \pm \infty)$

6.5 Exponentialfunktionen: $E(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ Sei $p \in \mathbb{N}_0$: für x > 0:

$$E(x) = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^{p+1}}{(p+1)!} + \ldots \ge \frac{x^{p+1}}{(p+1)!}$$

Also: $\forall x > 0$: $\frac{E(x)}{x^p} > \frac{x}{(p+1)!}$. Somit:

$$\frac{E(x)}{r^p} \to \infty \ (x \to \infty)$$

Insbes. (p=0): $E(x) \to \infty$ $(x \to \infty)$. Es ist $E(-x) = \frac{1}{E(x)} \to 0$ $(x \to \infty)$, also: $(x) \to 0$ $(x \to -\infty)$.

Abbildung 6.1: Exponentialfunktion.

7 Stetigkeit

Definition: Sei $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$ eine Funktion und $x_0 \in D$.

- a) f heißt **in** x_0 **stetig** \iff für jede Folge (x_n) in D mit $x_n \to x_0$ gilt: $f(x_n) \to f(x_0)$.
- b) f heißt **auf D stetig** \iff f ist in jedem $x \in D$ stetig.

Beispiele: a) $D = [0\infty), p \in \mathbb{N}, f(x) = \sqrt[p]{x}$. Bekannt: ist (x_n) eine Folge in D mit $x_n \to x_0 \in D$, so gilt $f(x_n) \to f(x_0)$. Also: $f \in C([0,\infty])$

b)
$$D = [0, 1] \cup \{2\}, f(x) := \begin{cases} x^2, & 0 \le x < 1 \\ 0, & x = 1 \\ 1, & x = 2 \end{cases}$$

Klar: f ist stetig in jedem $x \in [0, 1)$.

- $x_0 := 1, x_n := 1 \frac{1}{n}$. Dann ist (x_n) eine Folge in D mit $x_n \to 1$, aber $f(x_n) = x_n^2 \to 1 \neq 0 = f(1)$. f ist also in $x_0 = 1$ nicht stetig.
- $x_0 := 2$, sei (x_n) eine Folge in D mit $x_n \to 2$. Dann: $x_n = 2$ ffa n, also $f(x_n) = 1$ ffa n. Somit: $f(x_n) \to 1 = f(2)$. f ist also in $x_0 = 2$ stetig.

Satz 7.1: $D \subseteq \mathbb{R}, f \colon D \to \mathbb{R}$ eine Funktion, $x_0 \in D$.

a) f ist in x_0 stetig $\iff \forall \epsilon > 0 \ \exists \delta = \delta(\epsilon) > 0$:

$$|f(x) - f(x_0)| < \epsilon \quad \forall x \in D_{\delta}(x_0)$$

b) Ist x_0 Häufungspunkt von D, so gilt:

$$f$$
 ist in x_0 stetig $\iff \lim_{x \to x_0} f(x) = f(x_0)$

Beweis.

- a) fast wörtlich wie bei 6.2.
- b) Übung.

Satz 7.2:

a) $f, g: D \to \mathbb{R}$ seien stetig in $x_0 \in D$ und es seien $\alpha, \beta \in \mathbb{R}$. Dann sind stetig in x_0 :

$$\alpha f + \beta g, fg \text{ und } |f|$$

Ist $x_0 \in \tilde{D} := \{x \in D : f(x) \neq 0\}$, so ist $\frac{1}{f} : \tilde{D} \to \mathbb{R}$ stetig in x_0 .

b) Sind $f, g \in C(D)$ und $\alpha, \beta \in \mathbb{R}$, so gilt:

$$\alpha f + \beta g, fg \text{ und } |f| \in C(D)$$

Beweis. a) Mit 2.2; b) folgt aus a).

Satz 7.3: Es seien $D, D_0 \subseteq \mathbb{R}, f: D \to \mathbb{R}, g: D_0 \to \mathbb{R}$ Funktionen, $f(D) \subseteq D_0, x_0 \in D$ und $y_0 := (x_0)$. Ist f in x_0 stetig und ist g in y_0 stetig, so ist

$$q \circ f \colon D \to \mathbb{R}$$

stetig in x_0 , wobei $(g \circ f)(x) := g(f(x))$.

Beweis. Sei (x_n) eine Folge in D mit $x_n \to x_0$. f stetig in $x_0 \Rightarrow f(x_n) \to f(x_0) = y_0$. g stetig in $y_0 \Rightarrow \underbrace{g(f(x_n))}_{=(g \circ f)(x_n)} \to g(x_0) = g(f(x_0)) = (g \circ f)(x_0)$

Satz 7.4: $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ sei eine Potenzreihe mit Konvergenzradius r > 0. Es sei $D := (x_0 - r, x_0 + r)$. falls $r < \infty$ und $D := \mathbb{R}$ falls $r = \infty$. Weiter sei

$$f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n \ (x \in D)$$

Dann: $f \in C(D)$.

Beweis. später, nach 8.3.

Beispiele: Exponentialfunktionen, Sinus und Cosinus sind also auf \mathbb{R} stetig.

Beispiel 7.5: Beh.: $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

Beweis. Für $x \neq 0$:

$$\frac{\sin x}{x} = \frac{1}{x} \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - + \dots \right) = \underbrace{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - + \dots}_{\text{PR mit KR } r = \infty} \xrightarrow{7.4} 1 \left(x \to 0 \right)$$

Beispiel 7.6: Beh.: $\lim_{x\to 0} \frac{E(x)-1}{x} = 1$.

Beweis. Für $x \neq 0$:

$$\frac{E(x) - 1}{x} = \frac{1}{x} \left((1 + x + \frac{x^2}{2!} + \dots) - 1 \right) = \underbrace{1 + \frac{x}{2!} + \frac{x^2}{3!} + \dots}_{\text{PR mit KR } r = \infty} \xrightarrow{\text{7.4}} 1 (x \to 0)$$

Folgerung: Für alle $x_0 \in \mathbb{R}$ gilt $\lim_{h\to 0} \frac{E(x_0+h)-E(x_0)}{h} = E(x_0)$.

Beweis.
$$\frac{E(x_0+h)-E(x_0)}{h} = \frac{E(x_0)E(h)-E(x_0)}{h} = E(x_0)\frac{E(h)-1}{h} \xrightarrow{7.6} E(x_0) (h \to 0)$$

7.7 Zwischenwertsatz: Seien $a, b \in \mathbb{R}, a < b, f \in C([a, b])$ und y_0 zwischen f(a) und f(b).

Dann existiert ein $x_0 \in [a, b] : f(x_0) = y_0$.

Beweis. Fall 1: $f(a) = y_0$ oder $f(b) = y_0$, fertig.

Fall 2: $f(a) \neq y_0 \neq f(b)$. o.B.d.A.: f(a) < f(b), also $f(a) < y_0 < f(b)$.

$$M \coloneqq \{x \in [a, b] : f(x) < y_0\}$$

 $a \in M \Rightarrow M \neq \emptyset; M \subseteq [a,b] \Rightarrow M$ ist beschränkt $\stackrel{\text{(A15)}}{\Longrightarrow} \exists x_0 := \sup M \in [a,b]$. Ist $n \in \mathbb{N}$, so ist $x_0 - \frac{1}{n}$ keine obere Schranke von M, also ex. $x_n \in M$:

$$x_n > x_0 - \frac{1}{n}.$$

Also: $\forall n \in \mathbb{N}: x_0 - \frac{1}{n} < x_n \leq x_n$. Somit $x_n \to x_0$, f stetig in $x_0 \Rightarrow f(x_n) \to f(x_0) \xrightarrow{\text{Def. von } M} \forall n \in \mathbb{N}: f(x_n) \leq y_0 \Rightarrow f(x_0) \leq y_0$.

Es ist $x_0 < b$ (andernfalls: $x_0 = b \Rightarrow f(b) = f(x_0) \le y_0 < f(b)$, Wid!). $z_n := x_0 + \frac{1}{n}$. Es gilt $z_n \in [a, b]$ ffa $n \in \mathbb{N}$. $z_n > x_0 \Rightarrow z_n \notin M \Rightarrow f(z_n) > y_0$. $z_n \to x_0$, f stetig $\Rightarrow f(z_n) \to f(x_0) \Rightarrow f(x_0) \ge y_0$.

Folgerung (vgl. 1.6): Ist $\alpha > 0$ und $n \in \mathbb{N}$, so existiert ein $x_0 > 0$: $x_0^n = \alpha$.

Beweis. $b := 1 + \alpha, f(x) := x^n \ (x \in [a, b]).$

Dann:
$$f \in C[a, b], f(0) = 0 < \alpha, f(b) = (1 + \alpha)^n \stackrel{BK}{\geq} 1 + n\alpha > \alpha \stackrel{7.7}{\Longrightarrow} \exists x_0 \in [a, b] : f(x_0) = \alpha, \text{ also } x_0^n = \alpha. \text{ Klar: } x_0 > 0, \text{ denn } \alpha > 0.$$

Bemerkung: Erst jetzt ist 1.6 vollständig bewiesen!

Aus 7.7 folgt mit $y_0 = 0$:

7.8 Nullstellensatz von Bolzano: Ist $f \in C([a, b])$ und $f(a)f(b) \le 0$, so existiert ein $x_0 \in [a, b]$: $f(x_0) = 0$.

7.9 Exponentialfunktion: $E(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$. Beh.: $E(\mathbb{R}) = (0, \infty)$.

Beweis. $\stackrel{3.12}{\Longrightarrow} \forall x \in \mathbb{R}E(x) > 0$, also $E(\mathbb{R}) \subseteq (0, \infty)$. Sei $y_0 \in (0, \infty)$.

$$\stackrel{\textbf{6.5}}{\Longrightarrow} E(x) \to \infty (x \to \infty) \Rightarrow \exists b > 0 : E(b) > y_0$$

$$\stackrel{\textbf{6.5}}{\Longrightarrow} E(x) \to 0 (x \to -\infty) \Rightarrow \exists a < 0 : E(a) < y_0$$

 $\xrightarrow{7.7} \exists x_0 \in [a, b] : E(x_0) = y_0. \text{ Also: } y_0 \in E(\mathbb{R}). \text{ Somit: } (0, \infty) \in E(\mathbb{R}).$

Definition: Sei $D \subseteq \mathbb{R}$.

- a) D heißt **abgeschlossen** \iff für jede konvergente Folge (x_n) in D gilt $\lim x_n \in D$.
- b) D heißt **kompakt** \iff jede Folge (x_n) in D enthält eine konvergente Teilfolge (x_{n_k}) mit $\lim_{k\to\infty} x_{n_k} \in D$.

Satz 7.10: Sei $D \subseteq \mathbb{R}$.

- a) D ist abgeschlossen \iff jeder Häufungspunkt von D gehört zu D.
- b) D ist kompakt $\iff D$ ist beschränkt und abgeschlossen.

c) Ist D kompakt und $D \neq \emptyset$, so existieren max D und min D.

Beispiele:

- a) [a, b] ist kompakt, also auch abgeschlossen.
- b) endliche Mengen sind kompakt.
- c) $[a, \infty), (-\infty, a], \mathbb{R}$ sind abgeschlossen, aber nicht kompakt.
- d) \emptyset ist abgeschlossen.
- e) (a, b], [a, b), (a, b) sind nicht abgeschlossen.

Beweis. (7.10)

- a) i. d. großen Übung.
- b) " \Leftarrow " Folgt direkt aus 2.12, " \Rightarrow " Übung.
- c) Sei $s := \sup D$.

$$\forall n \in \mathbb{N} \ \exists x_n \in D : x_n > s - \frac{1}{n}, \ \text{also} \ \forall n \in \mathbb{N} : s - \frac{1}{n} < x_n \le s.$$

Somit: $x_n \to s \stackrel{b)}{\Rightarrow} D$ ist abgeschlossen $\Rightarrow s \in D \Rightarrow s = \max D$. Analog zeigt man: inf $D \in D$.

Definition: $f: D \to \mathbb{R}$ heißt beschränkt $\iff f(D)$ ist **beschränkt**

$$(\iff \exists x \geq : |f(x) \leq c \ \forall x \in D)$$

Satz 7.11: Sei $D \subseteq \mathbb{R}$ kompakt und $f \in C(D)$. Dann ist f(D) kompakt. Insbesondere ist f beschränkt und es ex. $x_1, x_2 \in D$:

$$f(x_1) \le f(x) \le f(x_0) \ \forall x \in D$$

Beweis. Sei (y_n) eine Folge in f(D). \exists Folge (x_n) in D: $\forall n \in \mathbb{N}$ $f(x_n) = y_n$. D kompakt $\Rightarrow (x_n)$ enthält eine konvergente Teilfolge (x_{n_k}) mit $x_0 := \lim_{k \to \infty} x_{n_k} \in D$. f stetig

$$\Rightarrow y_{n_k} = f(x_{n_k}) \to f(x_0) \in f(D)$$

Satz 7.12:

- a) Ist $I \subseteq \mathbb{R}$ ein Intervall ($I = \mathbb{R}$ ist zugelassen!) und $f \in C(I)$, so ist f(I) ein Intervall.
- b) Sei $f \in C([a, b]), A := \lim_{a \to b} f([a, b])$ und $B := \max_{a \to b} f([a, b])$ (7.11!), so ist f[a, b]) = [A, b].

Beweis. a) ohne Beweis. b) folgt aus a) und 7.7.

Definition:

- a) $f: D \to \mathbb{R}$ heißt monoton wachsend \iff aus $x_1, x_2 \in D$ und $x_1 < x_2$ folgt stets $f(x_1) \le f(x_2)$. $f: D \to \mathbb{R}$ heißt streng monoton wachsend \iff aus $x_1, x_2 \in D$ und $x_1 < x_2$ folgt stets $f(x_1) < f(x_2)$.
- b) Entsprechend definiert man (streng) monoton fallend.
- c) f heißt (streng) monoton $\iff f$ ist (streng) monoton wachsend oder (streng) monoton fallend.

Sei $I \subseteq \mathbb{R}$ ein Intervall $(I = \mathbb{R} \text{ ist zugelassen})$ und $f: I \Rightarrow \mathbb{R}$ streng monoton wachsend bzw. fallend. Dann ist f auf I injektiv, es existiert also die **Umkehrfunktion** $f^{-1}: F(I) \Rightarrow I \subseteq \mathbb{R}$ und f^{-1} ist streng monoton wachsend bzw. fallend.

Es gilt $\forall x \in I$: $f^{-1}(f(x)) = x$ und $\forall y \in F(I)$: $f(f^{-1}) = y$

Bemerkung: f(I) ist i.A. kein Intervall.

Satz 7.13: Sei $I \subseteq \mathbb{R}$ ein Intervall, $f \in C(I)$ und f sei auf I streng monoton. Dann:

$$f^{-1} \in C\left(f(I)\right)$$

7.14 Der Logarithmus: Bekannt: E ist auf \mathbb{R} streng monoton wachsend und $E(\mathbb{R}) = (0, \infty)$. Es existiert also $E^{-1} : (0, \infty) \to \mathbb{R}$.

$$\log x := \ln x := E^{-1}(x) \quad (x \in (0, \infty))$$

Logarithmus.

Eigenschaften:

- a) $\log 1 = 0$, $\log e = 1$
- b) log: $(0, \infty) \to \mathbb{R}$ ist stetig und streng monoton wachsend
- c) $\log((0,\infty)) = \mathbb{R}$
- d) $\log x \to \infty \ (x \Rightarrow \infty), \log x \to -\infty \ (x \to 0)$
- e) $\log x + \log y = \log(xy) \ \forall x, y > 0$
- f) $\log\left(\frac{x}{y}\right) = \log x \log y \ \forall x, y > 0$

Beweis.

- a) klar
- b) folgt aus 7.13
- c) $E(\mathbb{R}) = (0, \infty) \Rightarrow \text{Beh.}$
- d) folgt aus $E(x) \to \infty \ (x \to \infty)$ bzw. $E(x) \to 0 \ (x \to -\infty)$.

e) $z := \log x + \log y$. Dann: $E(z) = E(\log x + \log y) = E(\log x)E(\log y) = xy \Rightarrow \log(xy) = \log E(z) = z \Rightarrow \text{Beh.}$

f) Analog.

Motivation: $\xrightarrow{3.12} E(rx) = E(x)^r \ \forall x \in \mathbb{R} \ \forall r \in \mathbb{Q}.$ Sei a > 0. Mit $x := \log a$:

$$\forall r \in \mathbb{Q} : E(r \log a) = E(\log a)^r = a^r$$

7.15 Die allgemeine Potenz: Sei a > 0:

$$a^x := E(x \log a) \ (x \in \mathbb{R})$$

Ist speziell a = e: $e^x = E(x \log e) = E(x) \ \forall x \in \mathbb{R}$. Also:

$$a^x = e^{x \log a} \ (x \in \mathbb{R}, a > 0).$$

Eigenschaften: Sei a > 0 und $x, y \in \mathbb{R}$.

- a) $a^x > 0 \ \forall x \in \mathbb{R}$.
- b) Die Funktion $x \mapsto a^x$ ist auf \mathbb{R} stetig.
- c) $a^{x+y} = e^{(x+y)\log a} = e^{x\log a + y\log a} = e^{x\log a}e^{y\log a} = a^x a^y$
- d) $a^{-x} = e^{-x \log a} = \frac{1}{e^x \log a} = \frac{1}{a^x}$
- e) $\log(a^x) = \log(e^{x \log a}) = x \log a$
- f) $(a^x)^y = e^{y \log a^x} \stackrel{e}{=} e^{xy \log a} = a^{xy}$.
- g) Ist x > 0, so ist $a^{x^y} := a^{(x^y)}$.

Erinnerung an 7.1: Sei $f \in C(D)$, $x_0 \in D$ und $\epsilon > 0$. Dann ex. $\delta = \delta(\epsilon, x_0) > 0$:

$$|f(x) - f(x_0)| < \epsilon \ \forall x \in D \ \text{mit} \ |x - x_0| < \delta$$

 δ hängt i.A. von ϵ und x_0 ab!

Definition: $f: D \to \mathbb{R}$ heißt auf D gleichmäßig stetig $\iff \forall \epsilon > 0 \ \exists \delta = \delta(\epsilon) > 0 : |f(x) - f(z)| < \epsilon \ \forall x, z \in D : |x - z| < \delta.$

Klar: f gleichmäßig stetig $\Rightarrow f$ stetig. (" \Leftarrow " ist i.A. falsch!). Ohne Beweis.

Satz 7.16: Ist $D \subseteq \mathbb{R}$ kompakt und $f \in C(D)$, so ist f auf D gleichmäßig stetig.

Definition: $f: D \to \mathbb{R}$ heißt auf D **Lipschitz-stetig** $\iff \exists L \geq 0$:

$$|f(x) - f(y)| \le L|x - y| \ \forall x, y \in D$$

Übung: f Lips.-stetig $\Rightarrow f$ glm. stetig.

Beispiel: $D = [0, 1], f(x) = x^2$.

$$|f(x) - f(y)| = |x^2 - y^y| = |(x+y)(x-y)| = |x+y||x-y|$$

$$\leq (|x|+|y|)|x-y| \leq 2|x-y| \quad \forall x, y \in [0,1]$$

Bemerkung: $g: \mathbb{R} \to \mathbb{R}, g(x) = x^2$ ist nicht glm. stetig, insbesondere nicht Lips.-stetig.

8 Funktionenfolge und -reihen

I. d. §en sei stets: $\emptyset \neq D \subseteq \mathbb{R}$, (f_n) eine Folge von Funktionen $f_n : D \to \mathbb{R}$ und $s_n := f_1 + f_n + \cdots + f_n \ (n \in \mathbb{N})$

Definition:

- a) Die Funktionenfolge (f_n) heißt **auf D punktweise konvergent** \iff für jedes $x \in D$ ist die Folge $(f_n(x))$ konvergent. In diesem Fall setze $f(x) := \lim f_n(x)$ $(x \in D)$. Die Funktion $f: D \to \mathbb{R}$ heißt die **Grenzfunktion** von (f_n) .
- b) Die Funktionenreihe $\sum_{n=1}^{\infty} f_n$ heißt **auf D punktweise konvergent** \iff für jedes $x \in D$ ist die Folge $(s_n(x))$ konvergent. In diesem Fall setze $f(x) := \sum_{n=1}^{n \to \infty} f_n(x) \ (x \in D)$. Die Funktion $f: D \to \mathbb{R}$ heißt die **Summenfunktion** von (f_n) .

Beispiele:

a) $D = [0, 1], f_n(x) := x^n$

$$f(x) := \lim_{n \to \infty} f_n(x) = \begin{cases} 0, & 0 \le x < 1 \\ 1, & x = 1 \end{cases}$$

- (f_n) konvergiert auf [0,1] punktweise gegen f.
- b) Sei $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ eine Potenzreihe mit dem Konvergenzradius r>0 und $D:=(x_0-r,x_0+r)$ $(D:=\mathbb{R}, \text{ falls } r=\infty)$. Hier: $f_n(x)=a_n(x-x_0)^n \stackrel{4.1}{\Longrightarrow} \sum_{n=0}^{\infty} f_n$ konvergiert auf D punktweise gegen $f(x):=\sum_{n=0}^{\infty} a_n(x-x_0)^n$.
- c) $D = [0, \infty, f_n(x)] := \frac{nx}{1+n^2x^2} = \frac{\frac{x}{n}}{\frac{1}{n}+x^2} \to 0 \ (n \to \infty)$. Also konvergiert (f_n) auf D punktweise gegen $f \equiv 0$. Es ist $f_n(\frac{1}{n}) = \frac{1}{2}$. Punktweise Konvergenz von (f_n) auf D gegen f bedeutet: ist $\epsilon > 0$ und $x \in D$, so existiert eine $n_0 0 n_0(\epsilon, x) \in \mathbb{N}$:

$$|f_n(x) - f(x)| < \epsilon \quad \forall n \ge n_0$$

Definition:

a) (f_n) konvergiert auf D gleichmäßig (glm) gegen $f: D \to \mathbb{R} \iff \forall \epsilon > 0 \ \exists n_0 = n_0(\epsilon) \in \mathbb{N}$:

$$|f_n(x) - f(x)| < \epsilon \quad \forall n \ge n_0 \text{ und } \forall x \in D.$$

b) $\sum_{n=1}^{\infty} f_n$ konvergiert auf D gleichmäßig (glm) gegen $f: D \to \mathbb{R} \iff \forall \epsilon > 0 \ \exists n_0 = n_0(\epsilon) \in \mathbb{N}$:

$$|s_n(x) - s(x)| < \epsilon \quad \forall n \ge n_0 \text{ und } \forall x \in D.$$

Klar: gleichmäßige Konvergenz \Rightarrow punktweise Konvergenz (" \Leftarrow " ist i. A. falsch, siehe Beispiele unten).

Anschaulich: (f_n) konvergiert auf D gleichmäßig gegen f bedeutet: zu $\epsilon > 0$ existiert ein $n_0 = n_0(\epsilon) \in \mathbb{N}$: für $n \geq n_0$ liegt der Graph von f_n im " ϵ -Schlauch" um f.

Beispiele:

a) Sei $D = [0, 1], f_n(x) = x^n$. (f_n) konvergiert punktweise gegen

$$f(x) = \begin{cases} 0, & \text{falls } x \in [0, 1], \\ 1, & \text{falls } x = 1 \end{cases}$$

Sei $0 < \epsilon < \frac{1}{2}$. Es ist $f_n(x) = \frac{1}{2} \iff x = \frac{1}{\sqrt[n]{2}}$ und damit

$$|f_n(\frac{1}{\sqrt[n]{2}}) - f(\frac{1}{\sqrt[n]{2}}) = \frac{1}{2} > \epsilon \quad \forall n \in \mathbb{N}$$

 (f_n) konvergiert also nicht gleichmäßig auf [0,1] gegen f.

b) $\sum_{n=0}^{\infty} x^n$, D = (-1, 1),

$$s_n(x) = 1 + x + \ldots + x^n = \frac{1 - x^{n+1}}{1 - x} \to \frac{1}{1 - x} =: f(x) \quad \forall x \in D.$$

Beh.: $\sum_{n=0}^{\infty} x^n$ konvergiert auf D nicht gleichmäßig gegen f.

Bew.: Annahme: $\sum_{n=0}^{\infty} x^n$, also (s_n) konvergiert auf D gleichmäßig gegen f. Zu $\epsilon = 1$ existiert dann ein $n_0 \in \mathbb{N}$:

$$|s_n(x) - f(x)| = \frac{|x|^{n+1}}{1x} < 1 \quad n \ge n_n, \quad \forall x \in D$$

Aber: $\frac{|x|^{n+1}}{1-x} \to \infty$ $(x \to 1-)$, Widerspruch!

c) $D = [0, \infty), f_n(x) = \frac{nx}{1 + n^2 x^2}. f_n(x) \to 0 := f(x) (n \to \infty).$ Sei $0 < \epsilon < \frac{1}{2}$:

$$|f_n(\frac{1}{2}) - f(\frac{1}{2})| = \frac{1}{2} \ \forall n \in \mathbb{N}.$$

 (f_n) konvergiert also auf D nicht gleichmäßig gegen f.

Satz 8.1:

a) (f_n) konvergiere auf D punktweise gegen $f: D \to \mathbb{R}$. Weiter sei (α_n) eine Folge, $\alpha_n \to 0$, $m \in \mathbb{N}$ und

$$|f_n(x) - f(x)| \le \alpha_n \quad \forall n \ge m \ \forall x \in D$$

Dann konvergiert (f_n) auf D gleichmäßig gegen f.

b) Kriterium von Weierstraß: Sei $m \in \mathbb{N}$, (c_n) eine Folge in $[0, \infty)$, $\sum_{n=1}^{\infty} c_n$ konvergent und

$$|f_n(x)| \le c_n \quad \forall n \ge m \ \forall x \in D$$

Dann konvergiert $\sum_{n=1}^{\infty} f_n$ auf D gleichmäßig.

Beweis.

a) Sei $\epsilon > 0 \; \exists n_0 = n_0(\epsilon) \geq m$: $\alpha_n < \epsilon \; \forall n \geq n_0$. Dann:

$$|f_n(x) - f(x)| < \epsilon \quad \forall n \ge n_0 \ \forall x \in D$$

b) Sei $x \in D$. $|f_n(x)| \le c_n \ \forall n \ge m \xrightarrow{3.5 \ a)} \sum_{n=1}^{\infty} f_n(x)$ konvergiert (absolut).

Satz 8.2: $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ sei eine Potenzreihe mit Konvergenzradius r > 0, es sei $D := (x_0 - r, x_0 + r)$ $(D := \mathbb{R}, \text{ falls } r = \infty)$. Ist $[a, b] \subseteq D$, so konvergiert die Potenzreihe auf [a, b] gleichmäßig.

Beweis. Sei o. B. d. A. $x_0 = 0$ Wähle $\delta > 0$ so, dass $-r < -\delta < a < b < \delta < r$. Sei $x \in [a, b]$. Dann $|x| \le \delta$, also

$$|a_n x^n| = |a_n||x|^n \le |a_n|\delta^n := c_n \tag{*}$$

 $\stackrel{4.1}{\Longrightarrow} \sum_{n=0}^{\infty} a_n \delta^n$ konvergiert absolut; also ist $\sum_{n=0}^{\infty} c_n$ konvergent. Aus (*) und 8.1 b) folgt die Behauptung.

Satz 8.3: (f_n) bzw. $\sum_{n=1}^{\infty} f_n$ konvergiere auf D gleichmäßig gegen $f: D \to \mathbb{R}$

- a) Sind alle f_n in $x_0 \in D$ stetig, so ist f in x_0 stetig.
- b) Sind alle $f_n \in C(D)$, so ist $f \in C(D)$.

Folgerungen:

- a) Konvergiert (f_n) auf D punktweise gegen $f: D \to \mathbb{R}$ und gilt $f_n \in C(D) \ \forall n$ aber $f \notin C(D)$, so ist Konvergenz nicht gleichmäßig!
- b) Voraussetzung wie in 8.3 a); x_0 sei Häufungspunkt von D. Dann:

$$\lim_{x \to x_0} \left(\lim_{n \to \infty} f_n(x) \right) = \lim_{x \to x_0} f(x) \stackrel{\text{8.3 a)}}{=} f(x_0) = \lim_{n \to \infty} f_n(x_0)$$
$$= \lim_{n \to \infty} \left(\lim_{x \to x_0} f_n(x) \right)$$

Beweis. (von 8.3) b) folgt aus a)

a) Sei $\epsilon > 0$. $\exists m \in \mathbb{N} : |f_m(x) - f(x)| < \frac{\epsilon}{3} \ \forall x \in D$. f_m stetig in $x_0 \stackrel{7.1}{\Longrightarrow} \exists \delta > 0 : |f_m(x) - f_m(x_0)| < \frac{\epsilon}{3} \ \forall x \in D \cap U_{\delta}(x_0)$. Für $x \in U_{\delta}(x_0) \cap D$:

$$|f(x) - f(x_0)| = |f(x) - f_m(x) + f_m(x) - f_m(x_0) + f_m(x_0) - f(x_0)|$$

$$\leq |f(x) - f_m(x)| + |f_m(x) - f_m(x_0)| + |f_m(x_0) - f(x_0)|$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

 $\stackrel{7.1}{\Longrightarrow}$ Beh.

Beweis. (von 7.4) $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ sei eine Potenzreihe mit Konvergenzradius r>0, $D\coloneqq (x_0-r,x_0+r)$ $(D=\mathbb{R}, \text{ falls } r=\infty)$ und $f(x)\coloneqq \sum_{n=0}^{\infty} a_n(x-x_0)^n$ $(x\in D)$.

Sei $z_0 \in D$. Wähle $a, b \in \mathbb{R}$ so, dass $z_0 \in (a, b) \subseteq [a, b] \subseteq D \stackrel{8.2}{\Longrightarrow}$ die Potenzreihe konvergiert auf [a, b] gleichmäßig $\stackrel{8.3}{\Longrightarrow} f \in C([a, b])$. f ist also in z_0 stetig. $z_0 \in D$ beliebig $\Rightarrow f \in C(D)$.

8.4 Identitätssatz für Potenzreihen: $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ sei eine Potenzreihe mit Konvergenzradius r > 0, $D := (x_0 - r, x_0 + r)$ $(D := \mathbb{R}, \text{ falls } r = \infty)$ und $f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n$ $(x \in D)$.

Weiter sei (x_k) eine Folge in $D \setminus \{x_0\}$ mit $x_k \to x_0$ und $f(x_k) = 0 \ \forall k \in \mathbb{N}$. Dann:

$$a_n = 0 \quad \forall n \in \mathbb{N}_0.$$

9 Differentialrechnung

I.d. §en sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine Funktion.

Definition: f heißt in $x_0 \in I$ differenzierbar (db) \iff es existiert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

und ist $\in \mathbb{R}$ (\iff es existiert $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ und ist $\in \mathbb{R}$).

I.d. Fall heißt obiger Grenzwert die **Ableitung von** f in x_0 und wir mit $f'(x_0)$ bezeichnet.

Ist f in jedem $x \in I$ differenzierbar, so heißt f auf I differenzierbar und die Ableitung f' von f auf I gegeben durch $x \mapsto f'(x)$.

Beispiele:

- a) Sei $x \in \mathbb{R}$ und f(x) := c $(x \in \mathbb{R})$. Dann ist f auf \mathbb{R} differenzierbar und $f' \equiv 0$.
- b) $I = \mathbb{R}, f(x) = |x|, x_0 = 0$

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{|x|}{x} = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$$

f ist also in $x_0 = 0$ nicht differenzierbar.

c) $I = \mathbb{R}, f(x) = x^n \ (x \in \mathbb{N}).$ Sei $x_0 \in \mathbb{R}, x \neq x_0.$

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{x^n - x_0^n}{x - x_0}$$

$$\stackrel{\S}{=} \frac{(x - x_0)(x^{n-1} + x^{n-2}x_0 + \dots + xx_0^{n-2} + x_0^{n-1})}{x - x_0}$$

$$= x^{n-1} + x^{n-2}x_0 + \dots + xx_0^{n-2} + x_0^{n-1} \to nx_0^{n-1} \ (x \to x_0)$$

Also f ist auf \mathbb{R} differenzierbar und $f'(x) = nx^{n-1}$, kurz:

$$(x^n)' = nx^{n-1}$$
 auf \mathbb{R} .

d) $I = \mathbb{R}$, $f(x) = e^x$. Sei $x_0 \in \mathbb{R}$ und $x \neq x_0$.

$$\frac{f(x_0+h)-f(x_0)}{h} = \frac{e^{x_0+h}-e^{x_0}}{h} \xrightarrow{7.6} e^{x_0} (h \to 0).$$

Also: f ist auf \mathbb{R} differenzierbar und $f'(x) = e^x$, kurz:

$$(e^x)' = e^x$$
 auf \mathbb{R}

Satz 9.1: Ist f in $x_0 \in I$ differenzierbar, so ist f in x_0 stetig.

Beweis. Sei $x \in I$, $x \neq x_0$

$$f(x) - f(x_0) = \frac{f(x) - f(x_0)}{x - x_0}(x - x_0) \to f'(x) \cdot 0 = 0 \ (x \to x_0)$$

Also: $\lim_{x\to x_0} f(x) = f(x_0)$.

- **9.2 Differentiationsregeln:** $g: I \to \mathbb{R}$ sei eine weitere Funktion. f, g seien differenzierbar in $x_0 \in I$.
 - a) Für $\alpha, \beta \in \mathbb{R}$ ist $\alpha f + \beta g$ differenzierbar in x_0 und

$$(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0)$$

b) fg ist differenzierbar in x_0 und

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

c) Ist $g(x_0) \neq 0$, so existiert ein $\delta > 0$ mit $g(x) \neq 0$ ($x \in J := I \cap U_{\delta}(x_0)$). Die Funktion $\frac{f}{g} : J \to \mathbb{R}$ ist differenzierbar in x_0 und

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}.$$

Beweis.

- a) leichte Übung.
- b) Übung (man orientiere sich an c)).
- c) g stetig in x_0 (s. 9.1). $g(x_0) \neq 0 \xrightarrow{6.3 \ b)} \exists \delta > 0$:

$$g(x) \neq 0 \quad \forall x \in I \cap U_{\delta}(x_0) =: J.$$

 $h := \frac{f}{g}$. Für $x \neq x_0$ mit $x \to x_0$:

$$\frac{h(x) - h(x_0)}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0} \frac{1}{g(x)} - f(x_0) \frac{\frac{1}{g(x_0)} - \frac{1}{g(x)}}{x - x_0} \\
= \underbrace{\frac{1}{g(x)g(x_0)}}_{\xrightarrow{\frac{1}{g(x_0)^2}}} \left(\underbrace{\frac{f(x) - f(x_0)}{x - x_0}}_{\xrightarrow{f'(x_0)}} g(x_0) - f(x_0) \underbrace{\frac{g(x) - g(x_0)}{x - x_0}}_{\xrightarrow{g'(x_0)}} \right)$$

Satz 9.3: Es sei $f \in C(I)$ streng monoton, in $x_0 \in I$ differenzierbar und es sei $f'(x_0) \neq 0$. Dann ist

$$f^{-1}: f(I) \to \mathbb{R}$$
 differenzierbar in $y_0 := f(x_0)$

und

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))} = \frac{1}{f'(x_0)}$$

Beweis. $\stackrel{\textbf{7.12}}{\Longrightarrow} f(I)$ ist ein Intervall; sei (y_n) eine Folge in f(I) mit $y_n \to y_0$ und $y_n \neq y_0 \ \forall n. \ x_n \coloneqq f^{-1}(y_n) \stackrel{\textbf{7.13}}{\Longrightarrow} x_n \to x_0 = f^{-1}(y_0)$, also

$$\frac{f^{-1}(y_n) - f^{-1}(y_0)}{y_n - y_0} = \frac{x_n - x_0}{f(x_n) - f(x_0)} \to \frac{1}{f'(x_0)} \quad (x \to x_0)$$

9.4 Kettenregel: $J \subseteq \mathbb{R}$ sei ein weiteres Intervall, $g: J \to \mathbb{R}$ eine Funktion und $f(I) \subseteq J$. f sei in $x_0 \in I$ differenzierbar und g sei in $y_0 := f(x_0)$ differenzierbar. Dann ist

$$g \circ f \colon I \to \mathbb{R}$$
 differenzierbar in x_0

und

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

Beweis. Für $y \in J$:

$$\tilde{g}(y) \coloneqq \begin{cases} \frac{g(y) - g(y_0)}{y - y_0}, & y \neq y_0 \\ g'(y_0), & y = y_0 \end{cases}$$

g ist differenzierbar in $y_0 \Rightarrow \tilde{g}$ ist stetig in y_0 d.h. $\tilde{g}(y) \rightarrow \tilde{g}(y_0) = g'(y_0) = g'(f(x_0)) \ (y \rightarrow y_0)$

$$\Rightarrow \tilde{g}(f(x)) \rightarrow g'(f(x_0)) \quad (x \rightarrow x_0).$$

Es ist $g(y) - g(y_0) = \tilde{g}(y)(y - y_0) \ \forall y \in J$, daraus folgt:

$$\frac{g(f(x)) - g(f(x_0))}{x - x_0} = \tilde{g}(f(x)) \frac{f(x) - f(x_0)}{x - x_0} \to g'(f(x_0)) f'(x_0) \quad (x \to x_0)$$

Beispiele:

a) Sei a > 0 und $h(x) := a^x = e^{x \log a} = g(f(x))$, wobei $g(x) = e^x$ und $f(x) = x \log a$. Dann: $h'(x) = g'(f(x))f'(x) = e^{x \log a} \cdot \log a = a^x \log a$. Kurz:

$$(a^x)' = a^x \log a \quad (x \in \mathbb{R})$$

b) $f(x) = e^x$, $f^{-1}(y) = \log y$ $(y > 0) \stackrel{9.3}{\Longrightarrow} f^{-1}$ ist auf $(0, \infty)$ differenzierbar und

$$(f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{e^x} = \frac{1}{y}$$

Kurz: $(\log x)' = \frac{1}{x}$ auf $(0, \infty)$.

c) Sei $\alpha \in \mathbb{R}$ und $f(x) = x^{\alpha} = e^{\alpha \log x}$ (x > 0).

$$f'(x) = e^{\alpha \log x} (\alpha \log x)' = x^{\alpha} \alpha \frac{1}{x} = \alpha x^{\alpha - 1}$$

Kurz: $(x^{\alpha})' = \alpha x^{\alpha - 1}$ auf $(0, \infty)$.

d) aus Bsp. c): $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$ auf $(0, \infty)$.

Anwendung 9.5: Sei $a \in \mathbb{R}$ und o.B.d.A. $a \neq 0$. $f(t) := \log(1+t)$ (t > -1). Dann: $f'(t) = \frac{1}{1+t}$

$$\lim_{t \to 0} \frac{\log(1+t)}{t} \lim_{t \to 0} \frac{f(t) - f(0)}{t - 0} = f'(0) = 1$$

$$\Rightarrow 1 = \lim_{x \to \infty} \frac{\log(1 + \frac{a}{x})}{\frac{a}{x}} = \frac{1}{a} x \log(1 + \frac{a}{x}) = \frac{1}{a} \log(1 + \frac{a}{x})^x$$

 $\Rightarrow \log(1 + \frac{a}{x})^x \to a \ (x \to \infty) \Rightarrow \lim_{x \to \infty} (1 + \frac{a}{x})^x = e^a$

Definition: Sei $\emptyset \neq M \subseteq \mathbb{R}$ und $g \colon M \to \mathbb{R}$ eine Funktion

- a) $x_0 \in M$ heißt ein **innerer Punkt von M** $\iff \exists > 0 : U_{\delta}(x_0) \subseteq M$
- b) g hat in $x_0 \in M$ eine **relatives Maximum** $\iff \exists \delta > 0$ $g(x) \leq g(x_0) \ \forall x \in U_{\delta}(x_0) \cap M$.
- c) g hat in $x_0 \in M$ eine **relatives Minimum** $\iff \exists \delta > 0 : g(x) \ge g(x_0) \ \forall x \in U_{\delta}(x_0) \cap M$.

relatives Extremum = relative Max. oder Min.

Satz 9.6: $f: I \to \mathbb{R}$ habe in x_0 ein relatives Extremum und sei in $x_0 \in I$ differenzierbar. Ist x_0 ein innerer Punkt von I, so ist $f'(x_0) = 0$.

Beweis. Sei o.B.d.A. x_0 ein relatives Maximum von Funktion f. $\exists \delta > 0 : U_{\delta}(x_0) \subseteq I$ und $f(x) \leq f(x_0)$ $(x \in U_{\delta}(x_0))$

$$D(x) := \frac{f(x) - f(x_0)}{x - x_0} \begin{cases} \le 0, x > x_0 \\ \ge 0, x < x_0 \end{cases} \quad (x \in U_{\delta}(x_0) \setminus \{x_0\})$$

Also: $f'(x_0) = \lim_{x \to x_0 +} D(x) \le 0$ und $f'(x_0) = \lim_{x \to x_0 -} D(x) \ge 0$. \square

9.7 Mittelwertsatz: (MWS) der Differentialrechnung.

Es sei $f \in C[a, b]$ und f sei auf (a, b) differenzierbar. Dann existiert ein $\xi \in (a, b)$:

$$\frac{f(b) - f(a)}{b - a} = f'(\xi).$$

Beweis. $g(x) := f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$ $(x \in [a, b])$. Dann: $g \in C[a, b]$, g ist differenzierbar auf (a, b), g(a) = g(b) = 0 und

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a} \ (x \in (a, b)).$$

Z.z.: $\exists \xi \in (a, b) : g'(\xi) = 0.$

Fall 1: $q \equiv 0$

Fall 2: $g \not\equiv 0 \xrightarrow{7.11} \exists x_1, x_2 \in [a, b] : g(x_1) \leq g(x) \leq g(x_2) \ (x \in [a, b]).$

Da $g \not\equiv 0 : x_1 \in (a, b)$ oder $x_2 \in (a, b) \stackrel{9.6}{\Longrightarrow} g'(x_1) = 0$ oder $g'(x_2) = 0$. \square

Folgerung 9.8: $f: I \to \mathbb{R}$ sei differenzierbar auf I. f ist auf I konstant $\iff f' \equiv 0$ auf I.

Beweis. " \Rightarrow " \checkmark , " \Leftarrow " Seien $x_1, x_2 \in I, x_1 < x_2 \xrightarrow{MWS} \exists \xi \in (x_1, x_2)$:

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) = 0,$$

also $f(x_1) = f(x_2)$.

Anwendung 9.9: $f: I \to \mathbb{R}$ sei differenzierbar. Dann:

$$f' = f \text{ auf } I \iff \exists c \in \mathbb{R} : f(x) = ce^x \ (x \in I)$$

Beweis. " \Rightarrow " \checkmark , " \Leftarrow " $g(x) := \frac{f(x)}{e^x}$. Dann:

$$g'(x) = \frac{f'(x)e^x - e^x f(x)}{e^{2x}} = 0 \quad \forall x \in I.$$

$$\stackrel{9.8}{\Longrightarrow} \exists c \in \mathbb{R} : g(x) = c \ \forall x \in I \Rightarrow \text{Beh.}$$

Satz 9.10: $f, g: I \to \mathbb{R}$ seien auf I differenzierbar.

- a) Ist f' = g' auf I, so $\exists c \in \mathbb{R} : f = g + c$ auf I.
- b) Ist $' \ge 0$ auf I, so ist f monoton wachsend auf I. Ist f' > 0 auf I, so ist f streng monoton wachsend auf I.
- c) Ist $' \leq 0$ auf I, so ist f monoton fallend auf I. Ist f' < 0 auf I, so ist f streng monoton wachsend auf I.

Beweis.

- a) (f g')' = 0 auf $I \stackrel{9.8}{\Longrightarrow}$ Beh.
- b) Sei $g' \ge 0$ auf I. Seien $x_1, x_2 \in I$ und $x_1 < x_2 \xrightarrow{MWS} \exists \xi \in (x_1, x_2)$: $f(x_2) f(x_1) = \underbrace{f'(\xi)}_{\ge 0} (x_2 x_1) \ge 0$, also $f(x_1) \le f(x_2)$.
- c) Analog zur b).

Ohne Beweis:

9.11 Die Regeln von de l'Hospital: Es sei I=(a,b), wobei $a=-\infty$ oder $b=\infty$ zugelassen ist. $f,g\colon I\to\mathbb{R}$ seien auf I differenzierbar und $g'(x)\neq 0 \ \forall x\in I.$

a) Es existiere

$$L := \lim_{x \to a} \frac{f'(x)}{g'(x)} \quad (L \in \mathbb{R} \cup \{-\infty, \infty\})$$

Gilt (I) $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ oder (II) $\lim_{x\to a} g(x) = \pm \infty$,

so ist

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L.$$

b) Es existiere

$$L := \lim_{x \to b} \frac{f'(x)}{g'(x)} \quad (L \in \mathbb{R} \cup \{-\infty, \infty\})$$

Gilt (I) $\lim_{x\to b} f(x) = \lim_{x\to b} g(x) = 0$ oder (II) $\lim_{x\to b} g(x) = \pm \infty$, so ist

$$\lim_{x \to b} \frac{f(x)}{g(x)} = L.$$

Beispiele:

- a) a, b > 0. $\lim_{x \to 0} \frac{a^x b^x}{x} = \lim_{x \to 0} \frac{a^x \log a b^x \log b}{1} = \log a \log b$.
- b) $\lim_{x\to\infty} \frac{\log x}{x} = \lim_{x\to\infty} \frac{\frac{1}{x}}{1} = 0.$
- c) $\lim_{x\to 0} x \log x = \lim_{x\to 0} \frac{\log x}{\frac{1}{x}} = \lim_{x\to 0} \frac{\frac{1}{x}}{\frac{1}{x^2}} = \lim_{x\to 0} (-x) = \epsilon.$
- d) $\lim_{x\to 0+0} x^x = \lim_{x\to 0} e^{x\log x} \stackrel{c)}{=} e^0 = 1.$

Satz 9.12: Es sei $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ eine Potenzreihe mit Konvergenzradius r > 0, $I = (x_0 - r, x_0 + r)$ $(I = \mathbb{R}, \text{ falls } r = \infty)$ und $f(x) := \sum_{n=0}^{\infty} a_n (x-x_0)^n$ $(x \in I)$.

- a) Die Potenzreihe $\sum_{n=1}^{\infty} na_n(x-x_0)^{n-1}$ hat den Konvergenzradius r.
- b) f ist auf I differenzierbar und

$$f'(x) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1} \quad \forall x \in I$$

Beweis.

- a) $\sum [n]n|a_n| = \underbrace{\sqrt[n]{n}}_{\to 1} \sqrt[n]{|a_n|}; \ r > 0 \stackrel{4.1}{\Longrightarrow} \sqrt[n]{|a_n|} \text{ ist beschränkt} \Rightarrow \sqrt[n]{n|a_n|}$ ist beschränkt $\Rightarrow \limsup \sqrt[n]{n|a_n|} = \limsup \sqrt[n]{|a_n|}, \ \operatorname{da} H(\sqrt[n]{|a_n|}) = H(\sqrt[n]{|na_n|}) \Rightarrow \operatorname{Beh}.$
- b) später, nach 10.18.

9.13 Sinus/Cosinus: $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \xrightarrow{9.12} \sin$ ist auf \mathbb{R} differenzierbar und

$$(\sin x)' = \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)x^{2n}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = \cos x$$

Analog: cos ist auf \mathbb{R} differenzierbar und $(\cos x)' = -\sin x$.

9.14 Definition von π :

a) Für $x \in (0,2)$ ist

$$\sin x = \underbrace{\left(x - \frac{x^3}{3!}\right)}_{>0} + \underbrace{\left(\frac{x^5}{5!} - \frac{x^7}{7!}\right)}_{>0} + \underbrace{\left(\frac{x^9}{9!} - \frac{x^{11}}{11!}\right)}_{>0} + \dots > x - \frac{x^3}{3!} > 0$$

Speziell: $\sin 1 > 1 - \frac{1}{6} = \frac{5}{6}$.

b) $\exists \xi_0 \in (0,2)$: $\cos \xi_0 = 0$ und $\cos x > 0 \ \forall x \in [0,\xi_0)$

Beweis. $\cos 0 = 1 > 0$;

$$\cos 2 = \cos(1+1) \stackrel{4.3}{=} \cos^2 1 - \sin^2 1 = \cos^2 1 + \sin^2 - 2\sin^2 1$$
$$= 1 - 2\sin^2 1 \le 1 - 2\frac{25}{36} < 0$$

 $\xrightarrow{7.7} \exists \xi_0 \in (0,2) : \cos \xi_0 = 0. \text{ Auf } (0,2):$

$$(\cos x)' = -\sin x \stackrel{a)}{<} 0 \Rightarrow \cos x > 0 \ \forall x \in [0, \xi_0)$$

c) Sei ξ_0 wie in b). $\pi := 2\xi_0$ (Pi).

$$\xi_0 \in (0,2) \Rightarrow \pi \in (0,4) \quad (\pi \approx 3, 14...)$$

 $\frac{\pi}{2} = \xi_0$, also $\cos \frac{\pi}{2} = 0$.

$$\sin^2\frac{\pi}{2} = 1 - \cos^2\frac{\pi}{2} = 1 \Rightarrow |\sin\frac{\pi}{2}| = 1 \stackrel{a)}{\Rightarrow} \sin\frac{\pi}{2} = 1$$

cos hat in $\left[0,\frac{\pi}{2}\right]$ genau eine Nullstelle.

Abbildung 9.1: Sinus und Cosinus.

9.15 Weitere Eigenschaften von Sinus und Cosinus:

a) Aus 4.3:

$$\sin(x + \frac{\pi}{2}) = \sin x \cos \frac{\pi}{2} + \cos x \sin \frac{\pi}{2} = \cos x$$

Analog:

$$\cos(x + \frac{\pi}{2}) = -\sin x$$

$$\sin(x + \pi) = -\sin x, \cos(x + \pi) = -\cos x$$

$$\sin(x + 2\pi) = \sin x, \cos(x + 2\pi) = \cos x$$

- b) cos hat in $[0, \pi]$ genau eine Nullstelle.
- c) I. d. gr. Übungen:

$$\cos x = 0 \iff x \in \{(2k+1)\frac{\pi}{2} : k \in \mathbb{Z}\}$$

$$\sin x = 0 \iff x \in \{k\pi : k \in \mathbb{Z}\}$$

Definition: $\tan : \mathbb{R} \setminus \{(2k+1)\frac{\pi}{2} : k \in \mathbb{Z}\} \to \mathbb{R}; \tan x \coloneqq \frac{\sin x}{\cos x}$ Tangens

$$(\tan x)' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} > 0$$

tan ist also auf $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ streng wachsend.

Übung: $tan((-\frac{\pi}{2}, \frac{\pi}{2})) = \mathbb{R}$. Es ex. also

$$\arctan := \tan^{-1} \colon \mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2})$$

Arkustangens.

I.d. Übungen wird gezeigt: $(\arctan x)' = \frac{1}{1+x^2}$ auf \mathbb{R} .

Ohne Beweis:

- **9.16 Abelscher Grenzwertsatz:** $\sum_{n=0}^{\infty} a_n (x x_0)^n$ sei eine Potenzreihe mit Konvergenzradius r > 0 und $r < \infty$.
 - a) Die Potenzreihe konvergiere auch noch in $x_0 + r$. Es sei

$$f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n \text{ für } x \in [x_0 - r, x_0 + r)$$

Dann ist f stetig in $x_0 + r$.

b) Die Potenzreihe konvergiere auch noch in $x_0 - r$. Es sei

$$f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n \text{ für } x \in [x_0 - r, x_0 + r)$$

Dann ist f stetig in $x_0 - r$.

Anwendungen 9.17:

a) $f(x) := \log(1+x)$ für $x \in (-1,1) =: I$. Dann:

$$f'(x) = \frac{1}{1+x} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-x)^n = \sum_{n=0}^{\infty} (-1)^n x^n \quad \forall x \in I.$$

 $g := \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$ für $x \in (-1,1] \xrightarrow{9.12} g$ ist differenzierbar auf I und

$$g'(x) = \sum_{n=1}^{\infty} (-1)^{n+1} x^{n-1} = \sum_{n=1}^{\infty} (-1)^{n-1} x^{n-1} = f'(x) \quad \forall x \in I$$

Damit ex. $c \in \mathbb{R}$: $f(x) = g(x) + c \ \forall x \in I$. Mit x = 0 folgt: c = 0. Also

$$f(x) = g(x) \quad \forall x \in I$$

 $g(x) = \frac{9.16}{x \to 1} f(x) = g(x) \ \forall x \in (-1, 1].$ Fazit:

$$\log(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} \quad \forall x \in (-1,1]$$

Für x = 1: $\log(2) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.

b) Vgl. Übungsblatt:

$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} \quad \forall x \in [-1, 1]$$

Speziell: $\arctan 1 = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$

$$\cos \frac{\pi}{4} = \cos(-\frac{\pi}{4}) \stackrel{9.15}{=} \sin(\frac{\pi}{2} - \frac{\pi}{4}) = \sin \frac{\pi}{4} \Rightarrow \tan \frac{\pi}{4} = 1 \Rightarrow \arctan 1 = \frac{\pi}{4}$$
$$\Rightarrow \frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

Definition:

a) $f: I \to \mathbb{R}$ sei auf I differenzierbar. Ist f' in $x_0 \in I$ differenzierbar, so heißt f in x_0 zweimal differenzierbar und

$$f''(x_0) := (f')'(x_0)$$
 die 2. Ableitung von f in x_0 .

b) Ist f' auf I differenzierbar, so heißt f auf I zweimal differenzierbar und

$$f'' := (f')'$$

die 2. Ableitung von f auf I. Entsprechend definiert man, falls vorhanden:

$$f'''(x_0), f^{(4)}(x_0), \dots$$
 und $f''', f^{(4)}, \dots$

c) $C^0(I) := C(I); f^0 := f;$ Sei $n \in \mathbb{N}$. f heißt **auf** I **n-mal stetig differenzierbar** \iff f ist auf I n-mal differenzierbar $f, f', \ldots, f^{(n)} \in C(I)$.

$$C^{\infty} := \bigcap_{n \ge 0} C^n(I).$$

Beispiele:

a)
$$(e^x)'' = e^x$$
, $(\sin x)'' = (\cos x)' = -\sin x$

b)
$$f(x) := x|x|$$

Für
$$x > 0$$
: $f(x) = x^2$, $f'(x) = 2x$

Für
$$x < 0$$
: $f(x) = -x^2$, $f'(x) = -2x$

Für
$$x = 0$$
: $\frac{f(x) - f(0)}{x - 0} = |x| \to 0 \ (x \to 0)$

f ist also auf \mathbb{R} differenzierbar und f'(x) = 2|x| ($x \in \mathbb{R}$). f ist also in $x_0 = 0$ nicht zweimal differenzierbar.

Beispiel 9.18:
$$f(x) := \begin{cases} x^{\frac{3}{2}} \sin \frac{1}{x}, & x \in (0,1] \\ 0, & x = 0 \end{cases}$$

Auf (0, 1]:

$$f'(x) = \frac{3}{2}\sqrt{x}\sin\frac{1}{x}x^{\frac{3}{2}}\cos\frac{1}{x}(-\frac{1}{x^2})$$

Für $x_0 = 0$ betrachte:

$$\frac{f(x) - f(0)}{x - 0} = \underbrace{\sqrt{x}}_{\text{beschr.}} \underbrace{\sin \frac{1}{x}}_{\text{beschr.}} \to 0$$

f ist also auf [0, 1] differenzierbar (f'(0) = 0). $x_n := \frac{1}{n\pi}$. Dann: $x_n \to 0$,

$$f'(x_n) = \sqrt{n\pi} \cos(n\pi) = \sqrt{n\pi} (-1)^{n+1} \not\to 0 = f'(0).$$

D.h.: f ist auf [0,1] differenzierbar, aber $f \notin C^1[0,1]$. $|f'(x_n)| = \sqrt{n\pi} \Rightarrow f'$ ist auf [0,1] nicht beschränkt.

Aus 9.12 folgt (induktiv):

Satz 9.19: Sei $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ eine Potenzreihe mit Konvergenzradius r > 0, $I := (x_0 - r, x_0 + r)$ $(I = \mathbb{R}, \text{ falls } r = \infty)$ und

$$f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n \quad (x \in I).$$

Dann: $f \in C^{\infty}(I)$ und

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1) \cdot a_n(x-x_0)^{n-k} \quad \forall x \in I \ \forall k \in \mathbb{N}_0$$

Insbes.: $(x = x_0)$: $f^{(k)}(x_0) = k! \cdot a_k$, also

$$a_k = \frac{f^{(k)}(x_0)}{k!} \quad \forall k \in \mathbb{N}_0.$$

Ohne Beweis:

Satz 9.20: Sei $n \in \mathbb{N}_0$ und sei f auf I (n+1)-mal differenzierbar (insb. $f \in C^n(I)$), $x, x_0 \in I$ und $x \neq x_0$. Dann existiert ein ξ zwischen x und $x_0, x \neq \xi \neq x_0$:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \ldots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1}$$

Bemerkung: Im Fall n = 0 vgl. MWS.

Satz 9.21: Sei $n \geq 2$, $f \in C^n(I)$, $x_0 \in I$ sei ein innerer Pinkt von I und

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$
 und $f^{(n)}(x_0) \neq 0$

- a) Ist n gerade und $f^{(n)}(x_0) < 0$, so hat f in x_0 ein relatives Maximum.
- b) Ist n gerade und $f^{(n)}(x_0) > 0$, so hat f in x_0 ein relatives Minimum.
- c) Ist n ungerade, so hat f in x_0 kein relatives Extremum.

Beweis. $f^{(n)}(x_0) \neq 0$, $f^{(n)}$ stetig $\Rightarrow \exists \delta > 0 : U_{\delta}(x_0) \subseteq I$. Sei $x \in U_{\delta}(x_0) \setminus \{x_0\} \xrightarrow{9.20} \exists \xi$ zwischen x und x_0 :

$$f(x) = \underbrace{\sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k}_{=f(x_0)} + \underbrace{\frac{f^{(n)}(\xi)}{n!} (x - x_0)^n}_{=:R(x)}$$

- a) Sei $f^{(n)}(x_0) < 0 \stackrel{(*)}{\Longrightarrow} f^n(\xi) < 0$, $n \text{ gerade} \Rightarrow (x x_0)^n > 0$. Also: R(x) < 0; somit: $f(x) < f(x_0)$.
- b) Sei $f^{(n)}(x_0) > 0 \stackrel{(*)}{\Longrightarrow} f^n(\xi) > 0$, $n \text{ gerade} \Rightarrow (x x_0)^n > 0$. Also: R(x) > 0; somit: $f(x) > f(x_0)$.
- c) Sei o.B.d.A. $f^{(n)}(x_0 > 0 \stackrel{(*)}{\Longrightarrow} f^{(n)}(\xi) > 0, n$ ungerade

$$\Rightarrow (x - x_0)^n \begin{cases} > 0, & x > x_0 \\ < 0, & x < x_0 \end{cases}$$

$$\Rightarrow R(x) \begin{cases} > 0, & x > x_0 \\ < 0, & x < x_0 \end{cases} \Rightarrow f(x) \begin{cases} > f(x_0), & x > x_0 \\ < f(x_0), & x < x_0 \end{cases}$$

10 Das Riemann-Integral

Vereinbarung: I. d. §en sei stets a < b, $f: [a, b] \to \mathbb{R}$ eine Funktion und f beschränkt auf [a, b]; $m := \inf f([a, b]), M := \sup f([a, b])$.

 $Z := \{x_0, x_1, \dots, x_n\}$ heißt eine **Zerlegung** von $[a, b] \iff a = x_0 < x_1 < \dots < x_n = b$. $\mathcal{J} := \{Z : Z \text{ ist eine Zerlegung von } [a, b]\}$. Sei $Z = \{x_0, \dots, x_n\} \in \mathcal{J}$. Definiere $I_j := [x_{j-1}, x_j], |I_j| := x_j - x_{j-1}$ "Länge" von I_j und $m_j := \inf f(I_j), M_j := \sup f(I_j)$ $(j = 1, \dots, n)$

$$s_f(Z) \coloneqq \sum_{j=1}^n m_j |I_j| \mathbf{Untersumme} \text{ von } f \text{ bzgl. } Z.$$

 $S_f(Z) \coloneqq \sum_{j=1}^n M_j |I_j| \mathbf{Obersumme} \text{ von } f \text{ bzgl. } Z.$

Es ist $m \leq m_j \leq M_j \leq M$, also $m|I_j| \leq m_j|I_j| \leq M_j|I_j| \leq M|I_j|$, somit

$$\sum_{j=1}^{n} |I_j| \le s_f(Z) \le S_f(Z) \le M \sum_{j=1}^{n} |I_j| = M(b-a) \tag{*}$$

Definition: Seien $Z_1, Z_2 \in \mathcal{J}$. Z_2 heißt eine Verfeinerung von $Z_1 \iff Z_1 \subseteq Z_2$.

Ohne Beweis:

Satz 10.1: Seien $Z_1, Z_2 \in \mathcal{J}$.

- a) $s_f(Z_1) \le S_f(Z_2)$
- b) Ist $Z_1 \leq Z_2$ so gilt: $s_f(Z_1) \leq s_f(Z_2)$ und $S_f(Z_1 \geq S_f(Z_2))$. Aus (*) folgt: es existieren

$$s_f := \sup\{s_f(Z) \colon Z \in \mathcal{J}\}$$

und

$$S_f := \inf\{S_f(Z) \colon Z \in \mathcal{J}\}.$$

Aus (*) und 10.1 a) mit $Z \in \mathcal{J}$:

$$m(b-a) \le s_f \le S_f(Z) \le S_f \le M(b-a). \tag{**}$$

Definition: f heißt (Riemann-)**integrierbar** (ib) über $[a, b] \iff s_f = S_f$. I. d. Fall heißt

$$\int_a^b f dx := \int_a^b f(x) dx := S_f(=s_f)$$

das (Riemann-)**Integral** von f über [a,b] und wir schreiben: $f \in R[a,b]$.

Beispiele:

- a) Sei $c \in \mathbb{R}$ und f(x) = c $(x \in [a, b]) \xrightarrow{(**)} c(b a) \leq s_f \leq S_f \leq c(b a) \Rightarrow f \in R[a, b]$ und $\int_a^b c dx = c(b a)$.
- b) Sei $Z = \{x_0, \dots, x_n\}$ eine Zerlegung von [0, 1]. definiere

$$f(x) := \begin{cases} 1, & x \in [0,1] \cap \mathbb{Q} \\ 0, & x \in [0,1] \setminus \mathbb{Q} \end{cases}.$$

 m_j, M_j seien wie immer, dann: $m_j = \inf f(I_j) = 0, M_j = \sup f(I_j) = 1$; $s_f(Z) = 0, S_f(Z) = 1$. Also: $s_f = 0 \neq 1 = S_f$; $f \notin R[0, 1]$.

Satz 10.2: Es seien $f, g \in R[a, b]$.

a) Ist $f \leq g$ auf [a, b], so ist $\int_a^b f dx \leq \int_a^b g dx$.

b) Für $\alpha, \beta \in \mathbb{R}$ ist $\alpha f + \beta g \in R[a, b]$ und

$$\int_{a}^{b} (\alpha f + \beta g) dx = \alpha \int_{a}^{b} f dx + \beta \int_{a}^{b} g dx.$$

Beweis. nur a) (b) Übung): Sei $Z = \{x_0, \dots x_n\} \in \mathcal{J}$, I_j und m_j wie immer. $\tilde{m}_j := \int g(I_j) \ (j = 1, \dots, n)$. $f \leq g$ auf I_j

$$\Rightarrow m_j \le \tilde{m_j} \Rightarrow s_f(Z) \le s_g(Z) \le s_g \stackrel{Vor.}{=} \int_a^b g dx$$

$$\Rightarrow s_f \le \int_a^b g dx \stackrel{Vor.}{\Longrightarrow} Beh.$$

10.3 Riemannsches Integrabilitätskriterium: $f \in R[a, b]$

$$\iff \forall \epsilon > 0 \ \exists Z = Z(\epsilon) \in \mathcal{J} : S_f(Z) - s_f(Z) < \epsilon.$$

Satz 10.4: Ist f auf [a, b] monoton, so ist $f \in R[a, b]$.

Beweis. Sei $\epsilon > 0$. Wähle $n \in \mathbb{N}$ so, dass

$$\frac{b-a}{n}(f(b)-f(a)) < \epsilon.$$

Für j = 0, ..., n sei $x_j := a + j \frac{b-a}{n}$ und $Z := \{x_0, ..., x_n\} \in \mathcal{J}$. Seien I_j, m_j und M_j wie immer, dann $|I_j| = \frac{b-a}{n}, m_j = f(x_{j-1}), M_j = f(x_j)$. Also:

$$S_f(Z) - s_f(Z) = \sum_{j=1}^n (M_j - m_j)|I_j|$$

$$= \frac{b-a}{n} \sum_{j=1}^n (f(x_j) - f(x_{j-1}))$$

$$= \frac{b-a}{n} (f(b) - f(a)) < \epsilon$$

$$\stackrel{10.3}{\Longrightarrow}$$
 Beh.

Satz 10.5: $C[a,b] \subseteq R[a,b]$.

Beweis. Sei $f \in C[a, b]$ und $\epsilon > 0 \stackrel{7.16}{\Longrightarrow} \exists \delta > 0$:

$$|f(t) - f(s)| < \frac{\epsilon}{b-a} \quad \forall t, s \in [a, b] \text{ mit } |t - s| < \delta.$$
 (*)

Sei $Z = \{x_0, \ldots, x_n\} \in \mathcal{J}, I_j, M_j, m_j$ wie immer und Z sei so gewählt, dass $|I_j| < \delta \ (j = 1, \ldots, n)$. Betrachte I_j :

$$\xrightarrow{7.11} \exists \xi, \eta \in I_j : f(\xi) = m_j, f(\eta) = M_j$$

$$|I_j| < \delta \Rightarrow |\xi - \eta| < \delta \stackrel{(*)}{\Longrightarrow}$$

$$M_j - m_j = f(\eta) - f(\xi) = |f(\eta) - f(\xi)| < \frac{\epsilon}{b - a}$$

Dann:
$$S_f(Z) - s_f(Z) = \sum_{j=1}^n (M_j - m_j)|I_j| < \frac{\epsilon}{b-a} \sum_{j=1}^n |I_j| = \epsilon \stackrel{10.3}{\Longrightarrow}$$
 Beh.

Definition: $I \subseteq \mathbb{R}$ sei ein Intervall und $G, g: I \to \mathbb{R}$ Funktionen. G heißt eine **Stammfunktion** von g auf $I \iff G$ ist auf I differenzierbar und G' = g auf I.

Beachte: Sind G, H Stammfunktionen von g auf $I \Rightarrow G' = g = H'$ auf $I \stackrel{9.10}{\Longrightarrow} \exists c \in \mathbb{R} : G = H + c$ auf I.

10.6 1. Hauptsatz der Differential- und Integralrechnung: Ist $f \in R[a, b]$ und besitzt f auf [a, b] eine Stammfunktion F, so ist

$$\int_{a}^{b} f(x)dx = F(b) - F(a) =: F(x) \Big|_{a}^{b} =: [F(x)]_{a}^{b}$$

Beweis. Sei $Z = \{x_0, \ldots, x_n\} \in \mathcal{J}, I_j, m_j, M_j$ wie immer.

$$F(x_j) - f(x_{j-1}) \stackrel{MWS}{=} F'(\xi_j)(x_j - x_{j-1}) = f(\xi_j) \underbrace{(x_j - x_{j-1})}_{=|I_i|}$$

mit $\xi_j \in (x_{j-1}, x_j)$. $m_j \leq f(\xi_j) \leq M_j \Rightarrow m_j |I_j| \leq f(\xi_j) |I_j| \leq M_j |I_j| \Rightarrow$

$$s_f(Z) \le \sum_{j=1}^n f(\xi_j)|I_j|$$

$$= \sum_{j=1}^n (F(x_j) - F(x_{j-1}))$$

$$= F(b) - F(a)$$

$$\le S_f(Z)$$

Also:
$$s_f(Z) \leq F(b) - F(a) \leq S_f(Z) \ \forall Z \in \mathcal{J}$$
.
 $f \in R[a, b] \Rightarrow \int_a^b f dx = s_f \leq F(b) - F(a) \leq S_f = \int_a^b f dx$.

Beispiele:

a) 0 < a < b, $f(x) := \frac{1}{x}$; $f \in C[a, b] \xrightarrow{10.5} f \in R[a, b]$. $F(x) := \log x$; $F(x) := \log x$ and $F(x) := \log x$; $F(x) := \log x$; F(x) :

$$\stackrel{10.6}{\Longrightarrow} \int_a^b \frac{1}{x} dx = \log x \Big|_a^b = \log b - \log a.$$

b) Sei a < b. $\int_a^b \cos x dx = \sin b - \sin a$.

Warnungen:

- a) Es gibt integrierbare Funktionen, die keine Stammfunktion besitzen!
- b) Es gib nicht integrierbare Funktionen, die Stammfunktionen besitzen!

Beispiele:

a)
$$f(x) = \begin{cases} 1, & x \in (0,1] \\ 0, & x = 0 \end{cases}$$
. f ist monoton $\stackrel{10.4}{\Longrightarrow} f \in R[0,1]$.

Annahme: f besitzt auf [0,1] eine Stammfunktion F. Dann:

$$F'(x) = f(x) \ \forall x \in [0, 1] \Rightarrow F'(x) = 1 = (x)' \text{ auf } (0, 1]$$

 $\xrightarrow{9.10} \exists c \in \mathbb{R} : F(x) = x + c \text{ auf } (0,1]. F \text{ ist differenzierbar in } 0 \Rightarrow F$ stetig in $0 \xrightarrow{x \to 0} F(0) = c$. Also: $F(x) = x + c \ \forall x \in [0,1]$. Aber:

$$0 = f(0) = F'(0) = \lim_{x \to 0} \frac{F(x) - F(0)}{x - 0} = \lim_{x \to 0} \frac{x + c - c}{x} = 1,$$

Widerspruch!

b) $F(x) := \begin{cases} x^{\frac{3}{2}} \sin \frac{1}{x}, & x \in (0,1] \\ 0, & x = 0 \end{cases} \xrightarrow{\textbf{9.18}} F \text{ ist auf } [0,1] \text{ differenzierbar};$ $f := F'. \text{ Dann ist } F \text{ eine Stammfunktion von } f \text{ auf } [0,1] \xrightarrow{\textbf{9.18}} f \text{ ist auf } [0,1] \text{ nicht beschränkt, also } f \notin R[a,b].$

Ohne Beweis:

Satz 10.7: Sei $c \in (a, b)$.

$$f \in R[a, b] \iff f \in R[a, c] \text{ und } f \in R[c, b]$$

I. d. Fall: $\int_a^b f dx = \int_a^c f dx + \int_c^b f dx$.

Motivation: Für $n \geq 2$ sei

$$f_n \colon [0,1] \to \mathbb{R}, f_n(x) = \begin{cases} n^2 x, & x \in [0, \frac{1}{n}), \\ n - (x - \frac{1}{n})n^2, & x \in [\frac{1}{n}, \frac{2}{n}) \\ 0, & x \in [\frac{2}{n}, 1] \end{cases}$$

 $f_n \in C[0,1] \xrightarrow{10.5} f_n \in R[0,1] \xrightarrow{10.6} \int_0^1 f_n dx = 1 \ \forall n \ge 2.$

Übung: (f_n) konvergiert auf [0,1] punktweise gegen $f \equiv 0$. Aber:

$$\lim_{n \to 0} \int_0^1 f_n dx = 1 \neq 0 \int_0^1 f dx = \int_0^1 \left(\lim_{n \to \infty} f_n(x) \right) dx.$$

Ohne Beweis:

Abbildung 10.1: f_n für n = 5.

Satz 10.8: Sei (f_n) eine Folge in R[a,b] und f_n konvergiert auf [a,b] gleichmäßig gegen $f:[a,b] \to \mathbb{R}$. Dann: $f \in R[a,b]$ und

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b \left(\lim_{n \to \infty} f_n(x) \right) dx.$$

Satz 10.9: $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ sei eine Potenzreihe mit Konvergenzradius r > 0, $I := (x_0 - r, x_0 + r)$ $(I := \mathbb{R}, \text{ falls } r = \infty)$ und

$$g(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n \quad (x \in I)$$

Dann hat die Potenzreihe $\sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-x_0)^{n+1}$ den Konvergenzradius r und für

$$G(x) := \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x - x_0)^{n+1} \quad (x \in I)$$
 (*)

gilt G' = g auf I.

Beweis. Sei \tilde{r} der Konvergenzradius der Potenzreihe in $(*) \stackrel{9.12}{\Longrightarrow} r = \tilde{r}$ und G' = g auf I.

Satz 10.10: Es seien $f, g \in R[a, b]$.

a) Sei $D \coloneqq f([a,b])$ und mit einem $L \ge 0$ gelte für $h \colon D \to \mathbb{R}$:

$$|h(s) - h(t)| \le L|s - t| \quad \forall t, s \in D$$

Dann: $h \circ f \in R[a, b]$.

- b) $|f| \in R[a,b]$ und $|\int_a^b f(x)dx| \le \int_a^b |f(x)|dx$ (\triangle -Ungleichung für Integrale).
- c) $fg \in R[a,b]$.
- d) Ist $g(x) \neq 0 \ \forall x \in [a,b]$ und $\frac{1}{g}$ auf [a,b] beschränkt, so ist $\frac{1}{g} \in R[a,b]$.

Beweis.

- a) c) und d) ohne Beweis.
- b) $D := f([a, b]); h(t) := |t| (t \in D)$. Dann: $|f| = h \circ f$. Für $t, s \in D$:

$$|h(t) - h(s)| = ||t| - |s|| \stackrel{\S 1}{=} |t - s|.$$

Aus a): $|f| \in R[a,b]$. Es ist $\pm f \leq |f|$ auf [a,b]

$$\stackrel{10.2}{\Longrightarrow} \pm \int_a^b f dx \le \int_a^b |f| dx$$

 $\Rightarrow \triangle$ -Ungleichung.

Definition: Sei $f \in R[a, b]$ und $\alpha, \beta \in [a, b]$. $\int_{\alpha}^{\alpha} f(x) dx =: 0$. Sei $\alpha < \beta \stackrel{10.7}{\Longrightarrow} f \in R[\alpha, \beta]$.

$$\int_{\beta}^{\alpha} f(x)dx := -\int_{\alpha}^{\beta} f(x)dx.$$

10.11 2. Hauptsatz der Differential- und Integralrechnung: Sei $f \in R[a,b]$ und

$$F(x) := \int_{a}^{x} f(t)dt \quad (x \in [a, b]).$$

Dann gilt:

- a) $F(y) F(x) = \int_x^y f(t)dt \ \forall x, y \in [a, b].$
- b) $F \in C[a, b]$.
- c) Ist $f \in C[a, b]$, so ist $F \in C^1[a, b]$ und F' = f auf [a, b].

Beweis.

a) Seien $x, y \in [a, b]$. Fall 1: $x \le y$

$$F(y) - F(x) = \int_a^y f(t)dt - \int_a^x f(t)dt$$

$$\stackrel{10.7}{=} \int_a^x f(t)dt + \int_x^y f(t) - \int_a^x f(t)dt$$

$$= \int_x^y f(t)dt$$

Fall 2: x > y:

$$F(y) - F(x) = -(F(x) - F(y)) \stackrel{Fall1}{=} -\int_{y}^{x} f(t)dt = \int_{x}^{y} f(t)dt.$$

b) $L \coloneqq \sup\{|f(t)| : t \in [a,b]\}$. Seien $x,y \in [a,b]$. O.B.d.A.: $x \le y$, dann:

$$|F(y) - F(x)| \stackrel{a)}{=} |\int_{x}^{y} f(t)dt| \stackrel{10.10}{\leq} \int_{x}^{<} |f(t)|dt \stackrel{10.2}{\leq} \int_{x}^{y} Ldt$$
$$= L(y - x) = L|y - x|.$$

c) Wir zeigen für $x_0 \in [a, b)$:

$$\lim_{h \to 0+0} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0),$$

(analog zeigt man für $x_0 \in (a, b]$: $\lim_{h\to 0-0} \frac{F(x_0+h)-F(x_0)}{h} = f(x_0)$). Sei also $x_0 \in [a, b), h > 0$ und $x_0 + h \in [a, b]$. Es ist

$$\frac{1}{h} \int_{x_0}^{x_0+h} f(x_0) dt = f(x_0)$$

und

$$\frac{F(x_0+h) - F(x_0)}{h} \stackrel{a)}{=} \frac{1}{h} \int_{x_0}^{x_0+h} f(t)dt.$$

Dann:

$$L(h) := \left| \frac{F(x_0 + h) - F(x_0)}{h} - f(x_0) \right|$$

$$= \frac{1}{h} \left| \int_{x_0}^{x_0 + h} (f(t) - f(x_0)) dt \right|$$

$$\stackrel{10.10}{\leq} \frac{1}{h} \int_{x_0}^{x_0 + h} |f(t) - f(x_0)| dt.$$

 $\xrightarrow{7.11} \exists \xi_h \in [x_0, x_0 + h]: |f(t) - f(x_0)| \le |f(\xi_h) - f(x_0)| \ \forall t \in [x_0, x_0 + h]. \text{ Dann:}$

$$L(h) \le \frac{1}{h} \int_{x_0}^{x_0+h} |f(\xi_h) - f(x_0)| dt = |f(\xi_h) - f(x_0)|.$$

Für $h \to 0$: $\xi_h \to x_0$; f stetig $\Rightarrow f(\xi_h) \to f(x_0)$. Also: $L(h) \to 0$ $(h \to 0)$.

Aus 10.10 folgt (Übung):

Folgerung 10.12: Sei $I \subseteq \mathbb{R}$ ein Intervall, $g \in C(I)$ und $\xi \in I$ (fest). Definiere $G: I \to \mathbb{R}$ durch

$$G(x) := \int_{\xi}^{x} f(t)dt.$$

Dann: $G \in C^1(I)$ und G' = g auf I.

Definition: Sei $I \subseteq \mathbb{R}$ ein Intervall. Besitzt $g: I \to \mathbb{R}$ auf I eine Stammfunktion, so schreibt man für eine solche auch $\int g(x)dx$ (**unbestimmtes Integral**).

Beispiel 10.13: $\int \cos x dx = \sin x (+c) \ (c \in \mathbb{R}).$

10.14 Partielle Integration: Sei $I \subseteq \mathbb{R}$ ein Intervall und $f, g \in C^1(I)$. Dann:

a)
$$\int f'gdx = fg - \int fg'dx$$
 auf I .

b) Ist
$$I = [a, b], \int_a^b f'g dx = fg \Big|_a^b - \int_a^b fg' dx.$$

Beweis. $(fg)' = f'g + fg' \Rightarrow f'g = (fg)' - fg' \Rightarrow a)$, sowie

$$\int_{a}^{b} f'gdx = \int_{a}^{b} (fg)'dx - \int_{a}^{b} fg'dx \underset{1.HS}{\overset{10.6}{=}} fg\Big|_{a}^{b} - \int_{a}^{b} fg'dx.$$

Beispiele:

a) $\int \sin^2 x dx = \int \underbrace{\sin x}_{f'} \underbrace{\sin x}_{g} dx = -\cos x \sin x - \int -\cos^2 x dx$ $= -\cos x \sin x + \int \cos^2 x dx$ $= -\cos x \sin x + \int (1 - \sin^2 x) dx$ $= x - \cos x \sin x - \int \sin^2 x dx$

$$\Rightarrow \int \sin^2 x dx = \frac{1}{2}(x - \cos x \sin x).$$

b) $\int \underbrace{x}_{f'} \underbrace{e^x}_{g} dx = \frac{1}{2} x^x e^x - \int \frac{1}{2} x^2 e^x dx \to \text{komplizierter}$ $\int \underbrace{x}_{g} \underbrace{e^x}_{f'} = x e^x - \int e^x dx = x e^x - e^x.$

c)
$$\int \log x dx = \int \underbrace{1}_{f'} \underbrace{\log x}_{g} dx = x \log x - \int x \frac{1}{x} dx = x \log x - x$$
.

Bez.: Seien $\alpha, \beta \in \mathbb{R}$ und $\alpha \neq \beta$.

$$\langle \alpha, \beta \rangle := \begin{cases} [\alpha, \beta], & \text{falls } \alpha < \beta \\ [\beta, \alpha], & \text{falls } \alpha > \beta \end{cases}$$

10.15 Substitutionsregeln: I und J seien Intervalle in \mathbb{R} , es sei $f \in C(I)$, $g \in C^1(J)$ und $g(J) \subseteq I$.

- a) $\int f(g(t))g'(t)dt = \int f(x)dx\Big|_{x=q(t)}$ auf J.
- b) Sei $g'(t) \neq 0 \ \forall t \in J \ (\Rightarrow g' > 0 \ \text{auf} \ J \ \text{oder} \ g' < 0 \ \text{auf} \ J \Rightarrow g \ \text{ist}$ streng monoton). Dann:

$$\int f(x)dx = \int f(g(t))g'(t)dt\Big|_{t=g^{-1}(x)} \text{ auf } I$$

c) Ist $I = \langle a, b \rangle$, $J = \langle \alpha, \beta \rangle$, $g(\alpha) = a$ und $g(\beta) = b$, so gilt

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(g(t))g'(t)dt.$$

Beweis. $\stackrel{10.2}{\Longrightarrow} f$ hat auf I eine Stammfunktion F. G(t) := F(g(t)) $(t \in J)$. Kettenregel $\Rightarrow G \in C^1(J)$ und

$$G'(t) = F'(g(t))g'(t) = f(g(t))g'(t) \quad \forall t \in J.$$

a)
$$\int f(g(t))g'(t)dt = \int G'(t)dt = G(t) = F(x)\Big|_{x=g(t)}$$
.

b)
$$\int f(g(t))g'(t)dt\Big|_{t=g^{-1}(x)} = G(g^{-1}(x)) = F(g(g^{-1}(x))) = F(x).$$

c)
$$\int_{\alpha}^{\beta} f(g(t))g'(t)dt \stackrel{\text{10.6}}{=} G(\beta) - G(\alpha) = F(g(\beta)) - F(g(\alpha))$$
$$= F(b) - F(a) \stackrel{\text{10.6}}{=} \int_{a}^{b} f(x)dx.$$

Merkregel: Ist y=y(x) eine differenzierbare Funktion, so schreibt man für y' auch $\frac{dy}{dx}$.

Zu 10.15: substituiere x = g(t), fasse also x als Funktion von t auf. Dann: $\frac{dx}{dt} = g'(t)$, also

"
$$dx = g'(t)dt$$
"

Beispiele:

a)
$$\int_0^1 \frac{e^{2x} + 1}{e^x} dx = \begin{cases} x = \log t, e^x = t \\ \frac{dx}{dt} = \frac{1}{t}, dx = \frac{1}{t} dt \\ x = 0 \Rightarrow t = 1, x = 1 \Rightarrow t = e \end{cases}$$
$$= \int_1^e \frac{t^2 + 1}{t} \cdot \frac{1}{t} dt = \int_1^e \frac{t^2 + 1}{t^2} = \int_1^e (1 + \frac{1}{t^2}) dt$$
$$= \left[t - \frac{1}{t} \right]_1^e = e - \frac{1}{e} - (1 - 1) = e - \frac{1}{e}.$$

b) Berechne
$$\beta := \int_0^1 \sqrt{1 - x^2} dx = \begin{cases} x = \sin t, t \in [0, \frac{\pi}{2}] \\ \frac{dx}{dt} = \cos t, dx = \cos t dt \end{cases}$$

$$= \int_0^{\frac{\pi}{2}} \sqrt{1 - \sin^2 t} \cos t dt = \int_0^{\frac{\pi}{2}} \sqrt{\cos^2 t} \cos t dt$$

$$= \int_0^{\frac{\pi}{2}} |\cos t| \cos t dt = \int_0^{\frac{\pi}{2}} \cos^2 t dt = \int_0^{\frac{\pi}{2}} (1 - \sin^2 t) dt$$

$$\stackrel{s.o.}{=} \left[t - \frac{1}{2} (t - \cos t \sin t) \right]_0^{\frac{\pi}{2}} = \frac{\pi}{4}.$$

Ohne Beweis:

Satz 10.16: $f, g: [a, b] \to \mathbb{R}$ seien beschränkt.

- a) Ist $\{x \in [a, b] : f \text{ ist in } x \text{ nicht stetig } \}$ höchstens endlich, so ist $f \in R[a, b]$.
- b) Sei $f \in R[a,b]$ und $M := \{x \in [a,b] : f(x) \neq g(x)\}$ höchstens endlich, so ist $g \in R[a,b]$ und

$$\int_{a}^{b} f(x) = \int_{a}^{b} g(x) dx.$$

Satz 10.17: Es seien $f, g \in R[a, b], g \ge 0$ auf $[a, b], m := \inf f([a, b])$ und $M := \sup f([a, b])$.

- a) $\exists \mu \in [m, M]: \int_a^b fg dx = \mu \int_a^b g dx.$
- b) $\exists \mu \in [m, M]: \int_a^b f dx = \mu(b a).$

Ist $f \in C[a, b]$, so existiert ein $\xi \in [a, b]$: für die Zahl μ in a) bzw. b): $\mu = f(\xi)$.

Beweis.

a) $g \ge 0$ auf $[a, b] \Rightarrow mg \le fg \le Mg$ auf [a, b]

$$\xrightarrow{10.2} m \underbrace{\int_a^b g dx}_{=:A} \le \underbrace{\int_a^b f g dx}_{=:B} \le M \int_a^b g dx.$$

Also: $mA \leq B \leq MA$.

Fall 1: A = 0. Dann ist B = 0 und jedes $\mu \in [m, M]$ leistet das Verlangte.

Fall 2: $A \neq 0$. $g \geq 0 \stackrel{10.2}{\Longrightarrow} A > 0 \Rightarrow m \leq \frac{B}{A} \leq M$. $\mu := \frac{B}{A}$.

b) folgt aus a) mit $g \equiv 1$. Der Zusatz folgt aus 7.7 und 7.11.

Satz 10.18: Sei (f_n) eine Folge mit:

- i) $f_n \in C^1[a, b] \ \forall n \in \mathbb{N},$
- ii) $(f_n(a))$ ist konvergent und
- iii) (f'_n) konvergiert auf [a,b] gleichmäßig gegen $g:[a,b] \to \mathbb{R}$.

Dann konvergiert (f_n) auf [a, b] gleichmäßig und für $f(x) := \lim_{x \to \infty} f_n(x)$ $(x \in [a, b])$ gilt:

$$f \in C^1[a, b]$$
 und $g' = g$ auf $[a, b]$

Also: $\lim_{n\to\infty} f'_n(x) = g(x) = f'(x) = (\lim_{n\to\infty} f_n(x))'$ auf [a,b].

Beweis. $\alpha_n := \int_a^b |f'_n(t) - g(t)| dt \stackrel{iii)}{\Longrightarrow} (|f'_n - g|)$ konvergiert auf [a, b] gleichmäßig gegen $0 \stackrel{10.8}{\Longrightarrow} \alpha_n \to 0$. o.B.d.A. $(f_n(a))$ ist eine Nullfolge. Für $n \in \mathbb{N}$ und $x \in [a, b]$:

$$f_n(x) \stackrel{\text{10.6}}{=} \underbrace{f_n(a)}_{\to 0} + \int_a^x f'_n(t)dt \xrightarrow{\text{10.8}} \int_a^x g(t)dt =: f(x).$$

Also: (f_n) konvergiert auf [a, b] punktweise gegen f.

$$\xrightarrow{8.3 \ a)} g \in C[a, b] \xrightarrow{10.11} f \in C^1[a, b] \text{ und } f' = g.$$

Noch zu zeigen: (f_n) konvergiert auf [a,b] gleichmäßig gegen f.

$$|f_{n}(x) - f(x)| = |f_{n}(x) - f_{n}(a) - \int_{a}^{x} g(t)dt + f_{n}(a)|$$

$$\stackrel{10.6}{=} |\int_{a}^{x} (f'_{n}(t) - g(t))dt + f_{n}(a)|$$

$$\leq \int_{a}^{x} |f'_{n}(t) - g(t)|dt + |f_{n}(a)|$$

$$\leq \int_{a}^{b} |f'_{n}(t) - g(t)|dt + |f_{n}(a)|$$

$$= \underbrace{\alpha_{n} + |f_{n}(a)|}_{\rightarrow 0} \quad \forall x \in [a, b].$$

^{8.1}→ Gleichmäßige Konvergenz.

Bemerkung: Der Beweis von 9.12 folgt aus 10.18.

11 Uneigentliche Integrale

Vereinbarung: Ist $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine Funktion, so soll stets gelten: $f \in R(J)$ für jedes kompakte Intervall $J \subseteq I$.

Definition:

a) Sei $a \in \mathbb{R}, \beta \in \mathbb{R} \cup \{\infty\}, a < \beta \text{ und } f : [a, \beta) \to \mathbb{R}$ eine Funktion. Das **uneigentliche Integral** $\int_a^\beta f(x) dx$ heißt **konvergent** \iff der Grenzwert

$$\lim_{t \to \beta - 0} \int_{a}^{t} f(x) dx$$

existiert und ist $\in \mathbb{R}$. In diesem Fall:

$$\int_{a}^{\beta} f(x)dx := \lim_{t \to \beta - 0} \int_{a}^{t} f(x)dx.$$

b) Sei $b \in \mathbb{R}, \alpha \in \mathbb{R} \cup \{\infty\}, \alpha < b \text{ und } f : (\alpha, b] \to \mathbb{R}$ eine Funktion. Das **uneigentliche Integral** $\int_{\alpha}^{b} f(x) dx$ heißt **konvergent** \iff der Grenzwert

$$\lim_{t \to \alpha + 0} \int_t^b f(x) dx$$

existiert und ist $\in \mathbb{R}$. In diesem Fall:

$$\int_{\alpha}^{b} f(x)dx := \lim_{t \to \alpha + 0} \int_{t}^{b} f(x)dx.$$

Ein nicht konvergentes uneigentliches Integral heißt divergent.

Beispiele:

a)
$$\int_{1}^{\infty} \frac{1}{x^{\gamma}} dx \ (\gamma > 0) \ (a = 1, \beta = \infty)$$
. Sei $t > 1$,

$$\int_{1}^{t} \frac{1}{x^{\gamma}} dx = \begin{cases} \log t, & \text{falls } \gamma = 1\\ \frac{1}{1-\gamma} (t^{1-\gamma} - 1), & \text{falls } \gamma \neq 1. \end{cases}$$

Also: $\int_1^\infty \frac{1}{x^{\gamma}} dx$ konvergiert $\iff \gamma > 1$. In diesem Fall:

$$\int_{1}^{\infty} \frac{1}{x^{\gamma}} dx = \frac{1}{\gamma - 1}$$

b) $\int_0^\infty \frac{1}{1+x^2} dx \ (a=0, \beta=\infty).$

$$\int_0^t \frac{1}{1+x^2} dx = \arctan t \to \frac{\pi}{2} \ (t \to \infty).$$

Also ist $\int_0^\infty \frac{1}{1+x^2} dx$ konvergent und $= \frac{\pi}{2}$.

c) $\int_0^1 \frac{1}{x^{\gamma}} dx$ $(\gamma > 0)$ $(\alpha = 0, b = 1)$. Wie in Beispiel a) sieht man:

$$\int_0^1 \frac{1}{r^{\gamma}} dx$$
 konvergiert $\iff \gamma < 1$

d) $\int_{-\infty}^{0} \frac{1}{1+x^2} dx$ ($\alpha = -\infty, b = 0$). Wie in Beispiel b) sieht man:

$$\int_{-\infty}^{0} \frac{1}{1+x^2} dx \text{ konvergiert und } = \frac{\pi}{2}.$$

e) $\int_0^\infty \sin x dx$. Sei $t_n := (2n+1)\pi \ (n \in \mathbb{N})$.

$$\int_0^{t_n} \sin x dx = -\cos \Big|_0^{t_n} = 1 - \cos t_n = 1 - \cos(2n\pi + \pi) = 1 - \cos \pi = 2$$

Definiere $s_n := 2n\pi$, dann:

$$\int_0^{s_n} \sin x dx = -\cos x \Big|_0^{s_n} = 1 - \cos s_n = 0$$

 $\int_0^\infty \sin x dx$ ist also divergent.

Definition: Sei $\alpha < \beta$, $\alpha \in \mathbb{R} \cup \{-\infty\}$, $\beta \in \mathbb{R} \cup \{\infty\}$ und $f: (\alpha, \beta) \to \mathbb{R}$ eine Funktion.

Das uneigentliche Integral $\int_{\alpha}^{\beta} f(x)dx$ ist konvergent $\iff \exists c \in (\alpha, \beta): \int_{\alpha}^{c} f(x)dx$ und $\int_{c}^{\beta} f(x)dx$ sind beide konvergent. In diesem Fall:

$$\int_{\alpha}^{\beta} f(x)dx := \int_{\alpha}^{c} f(x)dx + \int_{c}^{\beta} f(x)dx$$

(divergent = nicht konvergent).

Übung: obige Definition ist unabhängig von $c \in (\alpha, \beta)$!

Beispiele:

- a) $\int_{-\infty}^{\infty} x dx$ ist divergent, denn $\int_{0}^{\infty} x dx$ ist divergent. (Aber: $\lim_{t\to\infty} \int_{-t}^{t} x dx = 0$).
- b) Sei $\gamma > 0$. Obige Beispiele a) und c) zeigen:

$$\int_0^\infty \frac{1}{x^\gamma} dx \text{ ist divergent.}$$

c) Obige Beispiele b) und d) zeigen:

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx \text{ ist konvergent und} = \pi.$$

Die folgenden Definitionen und Sätze formulieren wir nur für Funktionen

$$f: [a, \beta) \to \mathbb{R}$$

(wie in der ersten Definition dieses Kapitels). Diese Definitionen und Sätze gelten sinngemäß auch für die beiden anderen Typen uneigentlicher Integrale.

Beachte: Für $t \in (a, \beta)$: $g(t) := \int_a^t f(x) dx$. Dann:

$$\int_{a}^{\beta} f(x)dx \text{ konvergiert } \iff \lim_{t \to \beta} g(t) \text{ existiert.}$$

Aus 6.2 c) folgt:

11.1 Cauchykriterium: $\int_a^\beta f(x)dx$ konvergiert

$$\iff \forall \epsilon > 0 \ \exists c \in (a, \beta) : |\int_{u}^{v} f(x) dx| < \epsilon \quad \forall u, v \in (c, \beta).$$

Beispiel: Beh.: $\int_1^\infty \frac{\sin x}{x} dx$ konvergiert.

Beweis. Seien $c \le u < v$.

$$|\int_{u}^{v} \frac{\sin x}{x} dx| = |\int_{u}^{v} \underbrace{\frac{1}{x}}_{g} \underbrace{\sin x}_{f'} dx|$$

$$= |\left[-\frac{\cos x}{x} \right]_{v}^{u} - \int_{u}^{v} -\frac{1}{x^{2}} (-\cos x) dx|$$

$$= |\frac{\cos v}{v} - \frac{\cos u}{u} - \int_{u}^{v} \frac{\cos x}{x^{2}} dx|$$

$$\leq \frac{1}{v} + \frac{1}{u} + \int_{u}^{v} \frac{1}{x^{2}} dx = \frac{2}{u}$$

(für $\epsilon > 0$: $\frac{2}{u} < \epsilon \iff u > \frac{2}{\epsilon}$). Sei $\epsilon > 0, c \coloneqq \frac{2}{\epsilon}$. Seien $\frac{2}{\epsilon} < u < v$. Dann:

$$\left| \int_{u}^{v} \frac{\sin x}{x} dx \right| \le \frac{2}{u} < \epsilon$$

 $\stackrel{11.1}{\Longrightarrow}$ Beh.

Definition: $\int_a^\beta f(x)dx$ heißt **absolut konvergent** \iff $\int_a^\beta |f(x)|dx$ ist konvergent.

Den folgenden Satz beweist man mit 11.1 ähnlich wie bei Reihen:

Satz 11.2:

a) Ist $\int_a^\beta f(x)d$ absolut konvergent, so ist $\int_a^\beta f(x)dx$ konvergent und

$$\left| \int_{a}^{\beta} f(x) dx \right| \le \int_{a}^{\beta} \left| f(x) \right| dx.$$

- b) **Majorantenkriterium**: Ist $|f| \le h$ auf $[a, \beta)$ und $\int_a^\beta h(x) dx$ konvergiert, so ist $\int_a^\beta f(x) dx$ konvergent.
- c) **Minorantenkriterium**: Ist $f \geq h \geq 0$ auf $[a, \beta)$ und $\int_a^{\beta} h(x) dx$ divergiert, so ist $\int_a^{\beta} f(x) dx$ divergent.

Beispiele:

a)
$$\int_1^\infty \underbrace{\frac{x}{\sqrt{1+x^5}}}_{=:f(x)} dx$$
. $|f(x)| = f(x) \le \frac{x}{\sqrt{x^5}} = \frac{1}{x^{\frac{3}{2}}} =: g(x)$.

$$\int_{1}^{\infty} g(x)dx$$
 konvergiert $\Rightarrow \int_{1}^{\infty} f(x)dx$ konvergiert.

b)
$$\int_{1}^{\infty} \underbrace{\frac{x}{x^2 + 7x}}_{=:f(x)} dx, g(x) := \frac{1}{x}; \frac{f(x)}{g(x)} = \frac{x^2}{x^2 + 7x} \to 1 \ (x \to \infty).$$

$$\Rightarrow \exists c \geq 1: \frac{f(x)}{g(x)} \geq \frac{1}{2} \ \forall x \geq c \Rightarrow f(x) \geq \frac{1}{2}g(x) \ \forall x \geq c.$$

 $\int_c^\infty g(x)dx$ divergiert $\Rightarrow \int_1^\infty g(x)dx$ divergiert $\Rightarrow \int_1^\infty f(x)dx$ divergiert.

12 Die komplexe Exponentialfunktion

Sei $z = x + iy \in \mathbb{C} \ (x, y \in \mathbb{R}).$

 $|z| \coloneqq \sqrt{x^2 + y^2}$ Betrag von z.

 $\overline{z} \coloneqq x - iy.$

 $z \cdot \overline{z} = |z|^2$.

 $|z \cdot w| = |z| \cdot |w| \ (z, w \in \mathbb{C}).$

 $e^z := e^x(\cos y + i\sin y).$

Ist $z = x \in \mathbb{R}$: $e^z = e^x$; ist z = it $(t \in \mathbb{R})$: $e^{it} = \cos t + i \sin t$.

Satz 12.1: Es gilt $\sum_{k=0}^{n} z^k = \frac{1-z^{k+1}}{1-z}, z \neq 1$.

- a) $e^{z+w} = e^z e^w \ \forall z, w \in \mathbb{C}$.
- b) $|e^{it}| = 1 \ \forall t \in \mathbb{R}, \ e^{-it} = \overline{e^{it}} \ \forall t \in \mathbb{R}.$
- c) $e^{i\pi} + 1 = 0$.
- d) $e^{z+2k\pi i} = e^z \ \forall k \in \mathbb{Z}, z \in \mathbb{C}.$
- e) Für $t \in \mathbb{R}$: $\cos t = \frac{1}{2} (e^{it} + e^{-it})$, $\sin t = \frac{1}{2i} (e^{it} e^{-it})$.

Beweis.

- a) Übung (Add. von e-Funktionen, sin, cos).
- b) $e^{it} = \cos t + i \sin t \Rightarrow |e^{it} = (\cos^2 t + \sin^2 t)^{\frac{1}{2}} = 1,$ $e^{-it} = \cos(-t) + i \sin(-t) = \cos t - i \sin t = \overline{\cos t + i \sin t} = \overline{e^{it}}.$
- c) $e^{i\pi} = \cos \pi + i \sin \pi = -1$.

d)
$$e^{2k\pi i} = \cos(2k\pi) + i\sin(2k\pi) = 1 \stackrel{a)}{\Rightarrow} \text{Beh.}$$

e)
$$e^{it} + e^{-it} = 1\cos t$$
.

Definition: Für $z \in \mathbb{C}$:

$$\cos z \coloneqq \frac{1}{2} \left(e^{iz} + e^{-iz} \right), \quad \sin z \coloneqq \frac{1}{2i} \left(e^{iz} - e^{-iz} \right).$$

Übung: $\forall z, w \in \mathbb{C}$:

$$\sin(z + w) = \sin z \cos w + \sin w \cos z$$
$$\cos(z + w) = \cos z \cos w - \sin z \sin w$$

Satz 12.2: Sei $z = x + iy \in \mathbb{C}$ $(x, y \in \mathbb{R})$.

$$e^z = 1 \iff \exists k \in \mathbb{Z} : z = 2k\pi i$$

Beweis. " \Leftarrow ": 12.1 d).

"⇒" Sei $e^z = 1$, also $1 = e^x(\cos y + i\sin y) = e^x\cos y + ie^x\sin y \Rightarrow e^x\cos y = 1, e^x\sin y = 0 \Rightarrow \sin y = 0 \Rightarrow \exists j \in \mathbb{Z} : y = j\pi \Rightarrow \cos y = (-1)^j \text{ somit } 1 = e^x(-1)^j \Rightarrow j = 2k \ (k \in \mathbb{Z}) \text{ und } x = 0. \text{ Also: } z = 2k\pi i.$

Polarkoordinaten: Sei $z = x + iy \in \mathbb{C}$, $x, y \in \mathbb{R}$ und $z \neq 0$.

$$r := |z| = (x^2 + y^2)^{\frac{1}{2}}$$

Die Gerade durch 0 und z schließt mit der positiven x-Achse einen Winkel $\varphi \in (-\pi, \pi]$ ein.

 φ heißt das **Argument von** z; $\phi = \arg z$. Es ist

$$\cos \varphi = \frac{x}{r}, \sin \varphi = \frac{y}{r},$$

also

$$z = x + iy = r\cos\varphi + ir\varphi = re^{i\varphi} = |z|e^{i\varphi} = |z|e^{i\arg z}$$

Ist weiter $w \in \mathbb{C}$ und $\psi \coloneqq \arg w$, so gilt:

$$zw = |z|e^{i\varphi}|w|e^{i\psi} = |z||w|e^{i(\varphi+\psi)}$$

Seien $z, w \in \mathbb{C}$ und $n \in \mathbb{N} \xrightarrow{12.1} (e^z)^n = e^{nz}$; Es gilt:

$$\begin{aligned} e^z &= e^w \iff e^z e^{-w} = e^w e^{-w} \\ &\iff e^{z-w} = e^{w-w} = e^0 = 1 \\ &\stackrel{12.2}{\Longleftrightarrow} \exists k \in \mathbb{Z} : z = w + 2k\pi i \end{aligned}$$

Ohne Beweis:

12.3 Fundamentalsatz der Algebra: Sei $p(z) = a_0 + a_1 z + \ldots + a_n z^n$ ein Polynom mit $n \geq 1, a_0, \ldots, a_n \in \mathbb{C}$ und $a_n \neq 0$. Dann existieren $z_1, \ldots, z_n \in \mathbb{C}$ (eind. bestimmt) mit $p(z) = a_n(z - z_1) \cdot \ldots \cdot (z - z_n)$ ($z \in \mathbb{C}$). z_1, \ldots, z_n sind genau die Nullstellen von p.

Definition: Sei $a \in \mathbb{C} \setminus \{0\}$ und $n \in \mathbb{N}$. Jedes $z \in \mathbb{C}$ mit $z^n = a$ heißt eine **n-te Wurzel aus** a.

 $\sqrt[n]{a}$ bez. eine n-te Wurzel aus a (n=2kurz: Wurzel)

Satz 12.4: Sei $a \in \mathbb{C} \setminus \{0\}$, $n \in \mathbb{N}$, r := |a| und $\varphi := \arg a$. (also $a = |a|e^{i\varphi} = re^{i\varphi}$). Für $k = 0, 1, \ldots, n-1$ sei

$$z_k \coloneqq \sqrt[n]{r}e^{i\frac{l4\varphi+2k\pi}{n}}$$

Dann:

- a) $z_j \neq z_k$ für $j \neq k$.
- b) z ist eine n-te Wurzel aus $a \iff z \in \{z_0, z_1, \dots, z_{k-1}\}.$

Beweis.

a) Seien $j, k \in \{0, \ldots, n-1\}, z_j = z_k \text{ und } k \geq j$. Also: $e^{i\frac{\varphi+2j\pi}{n}} \stackrel{s.o.}{\Longrightarrow} \exists l \in \mathbb{Z}$:

$$i\frac{\varphi + 2k\pi}{n} = i\frac{\varphi + 2j\pi}{n} + 2e\pi i \Rightarrow \frac{\varphi}{2\pi} + k = \frac{\varphi}{2\pi} + j + ln$$

$$\Rightarrow \frac{k - j}{n} = l \Rightarrow |l| = \frac{|k - j|}{n} = \frac{k - j}{n} \le \frac{k}{n} \le \frac{n - 1}{n} = 1 - \frac{1}{n} < 1$$

$$\Rightarrow l = 0 \Rightarrow k = j.$$

b) $p(z) \coloneqq z^n - a$. Dann: z ist eine n-te Wurzel aus $a \iff p(z) = 0$. Es gilt

$$z_k^n \stackrel{s.o.}{=} re^{i(\varphi+2k\pi)} = re^{i\varphi}e^{2k\pi i} = re^{i\varphi} = a.$$

Also: $p(z_k) = 0$ (k = 0, ..., n - 1). Aus a) und 12.3 folgt die Beh.

Bezeichnung: Ist a=1, so heißen die Zahlen z_0,\ldots,z_{n-1} aus 12.4 die **n-ten Einheitswurzeln**. Also $z_k=e^{\frac{2k\pi i}{n}}$ $(k=0,\ldots,n-1)$.

Bemerkung: $z^n - 1 = \prod_{k=0}^{n-1} (z - z_k)$.

Beispiele:

- a) Im Rahmen ist $\sqrt{4}=2$; Im Komplexen sind die Wurzeln aus 4: 2,-2.
- b) Die 4. Wurzeln aus 16 sind 2, -2, 2i, -2i.
- c) Die 4. Einheitswurzel sind 1, -1, i, -i.

Beispiel: Man kann $\sqrt{-3+4i}$ mittels verschiedener Ansätze berechnen:

1. Möglichkeit: w = u + iv, $w^2 = u^2 - v^2 + 2iuv = -3 + 4i$ $\iff u^2 - v^2 = -3, 2uv = 4$

Löse Gleichungssystem.

- 2. Möglichkeit: z=3+4i. Bestimme $|z|, \varphi=\arg z$. Dann sind $\pm \sqrt{|z|}=e^{i\frac{\arg z}{z}} \text{ die Wurzeln von z.}$
- 3. Möglichkeit: Ist $z \in (-\infty, 0]$, so sind $w = \pm \sqrt{-z}$ die Wurzeln von z. Ist $z \in \mathbb{C} \setminus (-\infty, 0]$, so sind

$$w = \pm \sqrt{|z|} \frac{z + |z|}{|z + |z||}$$

die Wurzeln von z; Beweis:

Beweis. Betrachte:

$$\left(\sqrt{|z|}\frac{z+|z|}{|z+|z||}\right)^2 = |z|\frac{(z+|z|)(z+|z|)}{(z+|z|)(\overline{z}+|z|)} = |z|\frac{(z+|z|)}{(\overline{z}+|z|)}$$
$$= \frac{(|z|z+z\overline{z})}{(\overline{z}+|z|)} = z\frac{(|z|+\overline{z})}{(\overline{z}+|z|)} = z$$

Also: $\sqrt{-3+4i} = \pm \sqrt{5} \frac{-3+4i+5}{|-3+4i+5|} = \sqrt{5} \frac{2+4i}{\sqrt{20}} = \pm (1+2i).$

Satz 12.5: Seien $p, q \in \mathbb{C}$. Für $z \in \mathbb{C}$:

$$z^2 + pz + q = 0 \iff z = -\frac{p}{2} \pm \underbrace{\sqrt{\frac{p^2}{4} - q}}_{\text{doppeldeutig!}}.$$

Beweis. "←" nachrechnen. Rest mit 12.3.

Beispiel 12.6: Löse $z^2 + (1-2i)z - 2i = 0$ (*).

$$z = \frac{2i-1}{2} \pm \sqrt{\frac{(2i-1)^2}{4} + 2i} = i - \frac{1}{2} \pm \sqrt{\frac{-4-4i+1}{4} + 2i}$$
$$= i - \frac{1}{2} \pm \sqrt{-3-3i+8i} = i - \frac{1}{2} \pm \sqrt{12\sqrt{-3+4i}}.$$

Also sind

$$z_1 = i - \frac{1}{2} + \frac{1}{2}(1+2i) = 2i$$

und

$$z_2 = i - \frac{1}{2} + \frac{1}{2}(-1 - 2i) = -1$$

die Lösungen von (*). Es gilt $z^2 + (1-2i)z - 2i = (z-z_1)(z-z_2) = (z-2i)(z+1)$.

Definition: Sei $w \in \mathbb{C} \setminus \{0\}$. Jedes $z \in \mathbb{C}$ mit $e^z = w$ heißt ein **Logarithmus von** w.

Satz 12.7: Sei $w \in \mathbb{C} \setminus \{0\}$, r := |w| und $\varphi = \arg w$, also $w = re^{i\varphi}$. Sei $z \in \mathbb{C}$.

z ist ein Logarithmus von $w \iff \exists k \in \mathbb{Z} : z = \underbrace{\log |w|}_{\log \text{ in } \mathbb{R}} + i\varphi + 2k\pi i.$

Beweis. " \Leftarrow " $e^z = e^{\log |w|} e^{i\varphi} e^{2k\pi i} = |w| e^{i\varphi} = w$. " \Rightarrow " Sei z = x + iy $(x, y \in \mathbb{R})$ und $w = e^z = e^x e^{iy} \Rightarrow |w| = e^x \Rightarrow x = \log |w|$. Es ist

$$|w|e^{i\varphi} = w = e^z = e^x e^{iy} = |w|e^{iy}$$

 $\Rightarrow e^{i\varphi} = e^{iy} \stackrel{s.o.}{\Longrightarrow} \exists k \in \mathbb{Z} : iy = i\varphi + 2k\pi i \Rightarrow z = \log|w| + i\varphi + 2k\pi i. \square$

Beispiele:

- a) $w=-1; |w|=1, \arg w=\pi.$ Alle Logarithmen von -1: $i\pi+2k\pi i \quad (k\in\mathbb{Z}).$
- b) $w=1; \ |w|=1, \arg w=0.$ Alle Logarithmen von 1: $2k\pi i \quad (k\in \mathbb{Z}).$
- c) w=1+i; $|w|=\sqrt{2},$ $\arg w=\frac{\pi}{4}.$ Alle Logarithmen von 1+i: $\log \sqrt{2}+i\frac{\pi}{4}+2k\pi i \quad (k\in\mathbb{Z}).$

13 Fourierreihen

I. d. \S -en sei $f : \mathbb{R} \to \mathbb{R}$ eine Funktion mit:

(V)
$$\begin{cases} f \in R[-\pi, \pi] \text{ und } f \text{ ist auf } \mathbb{R} \text{ } 2\pi\text{-periodisch}, \\ \text{d.h. } f(x+2\pi) = f(x) \text{ } \forall x \in \mathbb{R}. \end{cases}$$

Definition: Es seien $(a_n)_{n=0}^{\infty}$ und $(b_n)_{n=1}^{\infty}$ Folge in \mathbb{R} . Eine Reihe der Form

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right)$$

heißt eine trigonometrische Reihe (TR).

Fragen: Wann ist f durch eine trigonometrisch Reihe darstellbar? Wie hängt dann f mit (a_n) , (b_n) zusammen?

Satz 13.1:

- a) Ist $a \in \mathbb{R}$, so gilt: $f \in R[a, a + 2\pi]$ und $\int_a^{a+2\pi} f(x) dx = \int_{-\pi}^{\pi} f(x) dx$.
- b) **Orthogonalitätsrelationen**: für $k, n \in \mathbb{N}$:

$$\int_{-\pi}^{\pi} \sin(nx)\cos(kx)dx = 0$$

und

$$\int_{-\pi}^{\pi} \sin(nx)\sin(kx)dx = \int_{-\pi}^{\pi} \cos(nx)\cos(kx)dx = \begin{cases} \pi, & k = n\\ 0, & k \neq n. \end{cases}$$

Beweis. Übung.

Motivation: Es seien $(a_n)_{n=0}^{\infty}$ und $(b_n)_{n=1}^{\infty}$ Folgen und es gelte

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right) \quad \forall x \in \mathbb{R}.$$

Weiter sei diese trigonometrisch Reihe auf \mathbb{R} gleichmäßig konvergent. Sei $k \in \mathbb{N}$, dann:

$$f(x)\sin(kx) = \frac{a_0}{2}\sin(kx) + \sum_{n=1}^{\infty} \left(a_n\cos(nx)\sin(kx) + b_n\sin(nx)\sin(kx)\right) \quad \forall x \in \mathbb{R}.$$

Übung: die letzte Reihe konvergiert auf \mathbb{R} ebenfalls gleichmäßig.

$$\frac{10.8}{\longrightarrow} \int_{-\pi}^{\pi} f(x) \sin(kx) dx = \frac{a_0}{2} \underbrace{\int_{-\pi}^{\pi} \sin(kx) dx}_{=0} \underbrace{\sum_{n=1}^{\infty} a_n \underbrace{\int_{-\pi}^{\pi} \cos(nx) \sin(kx) dx}_{13.1}}_{=10} + \underbrace{\sum_{n=1}^{\infty} b_n \underbrace{\int_{-\pi}^{\pi} \sin(nx) \sin(kx) dx}_{13.1}}_{=10} + \underbrace{\sum_{n=1}^{\infty} b_n \underbrace{\int_{-\pi}^{\pi} \cos(nx) \sin(kx) dx}_{13.1}}_{=10.1}}_{=10.1} + \underbrace{\sum_{n=1}^{\infty} b_n \underbrace{\int_{-\pi}^{\pi} \cos(nx) dx}_{13.1}}_{=10.1}}_{=10.1}}_{=10.1} + \underbrace{\sum_{n=1}^{\infty} b_n \underbrace$$

Also:

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx \quad \forall k \in \mathbb{N}.$$

Analog zeigt man:

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx \quad \forall k \in \mathbb{N}_0.$$

d.h.
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{a_0}{2} dx$$
.

Definition: f erfülle (V). Setze

$$a_n := \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx \text{ für } n \in \mathbb{N}_0.$$

und

$$b_n := \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$
 für $n \in \mathbb{N}$.

Die Zahlen a_n , b_n heißen die **Fourierkoeffizienten** (FK) von f und die mit a_n und b_n gebildete Fourierreihe heißt **die zu** f **gehörenden Fourierreihe**. Man schreibt:

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)).$$

Frage: wann, bzw. für welche $x \in \mathbb{R}$ konvergiert die zu f gehörige Fourierreihe gegen f(x)?

Satz 13.2: Für f gelte (V).

a) Ist f gerade, also $f(x) = f(-x) \ \forall x \in \mathbb{R}$, so gilt für die Fourierkoeffizienten von f:

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx) dx$$
 und $b_n = 0$

b) Ist f ungerade, also $f(x) = -f(-x) \ \forall x \in \mathbb{R}$, so gilt für die Fourierkoeffizienten von f:

$$a_n = 0$$
 und $b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx$

Beweis. Übung.

Definition:

- a) Sei $x_0 \in \mathbb{R}$, $\delta > 0$ und $g: (x_0, x_0 + \delta) \to \mathbb{R}$ eine Funktion $g(x_0+) := \lim_{x \to x_0+0} g(x), \text{ falls dieser Grenzwert existiert und } \in \mathbb{R} \text{ ist.}$
- b) Sei $x_0 \in \mathbb{R}, \delta > 0$ und $g: (x_0 \delta, x_0) \to \mathbb{R}$ eine Funktion $g(x_0 -) := \lim_{x \to x_0 0} g(x), \text{ falls dieser Grenzwert existiert und } \in \mathbb{R} \text{ ist.}$

Definition: Für f gelte (V). f heißt **stückweise glatt** \iff es existiert eine Zerlegung $\{t_0, t_1, \ldots, t_n\}$ von $[-\pi, \pi]$ (also $-\pi = t_0 < t_1 < \ldots < t_{n-1} < t_n = \pi$) mit:

- i) $f \in C^1((t_{i-1}, t_i))$ (j = 1, ..., n).
- ii) Es existieren die folgenden Grenzwerte:

$$f(\pi -), f'(\pi -), f(-\pi +), f'(-\pi +)$$

und

$$f(t_i+), f'(t_i+), f(t_i-), f'(t_i-) \quad (j=1,\ldots,n-1)$$

Beachte:

- a) In den Punkten t_j muss f nicht stetig sein (aber: $f(t_0) = f(-\pi) = f(-\pi + 2\pi) = f(\pi) = f(t_n)$)
- b) $f(2\pi\text{-per} \Rightarrow f(x-), f(x+))$ existiert in jedem $x \in \mathbb{R}$.

$$s_f(x) := \frac{f(x+) + f(x-)}{2} \quad (x \in \mathbb{R})$$

Ohne Beweis:

Satz 13.3: Für f gelte (V) und f sei stückweise glatt. Dann konvergiert die Fourierreihe von f in jedem $x \in \mathbb{R}$ gegen $s_f(x)$. Ist in diesem Fall f in $x \in \mathbb{R}$ stetig, so konvergiert die Fourierreihe von f also gegen f(x).

Beispiel 13.4: $f: \mathbb{R} \to \mathbb{R}$ sei 2π -periodisch und auf $(-\pi, \pi]$ definiert durch

$$f(x) \coloneqq \begin{cases} x, & x \in (-\pi, \pi) \\ 0, & x = \pi \end{cases}$$

 $\xrightarrow{10.16} f \in R[-\pi, \pi], f \text{ erfüllt also } (V). f \text{ ist stückweise glatt und } s_f(x) = f(x) \ \forall x \in \mathbb{R}. f \text{ ist ungerade} \xrightarrow{13.2} a_n = 0 \ \forall n \in \mathbb{N}_0 \text{ und}$

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx \stackrel{\text{10.16}}{=} \frac{2}{\pi} \int_0^{\pi} x \sin(nx) dx \stackrel{\text{Übung}}{=} (-1)^{n+1} \frac{2}{n} \quad \forall n \in \mathbb{N}.$$

$$\stackrel{13.3}{\Longrightarrow} f(x) = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx) \ \forall x \in \mathbb{R}.$$

$$\Rightarrow \frac{x}{2} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx) \quad \forall x \in (-\pi, \pi).$$

$$x = \frac{\pi}{2}$$
: $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$ (vgl. 9.17 b)).

Beispiel 13.5: $f: \mathbb{R} \to \mathbb{R}$ sei 2π -periodisch und auf $[-\pi, \pi]$ definiert durch $f(x) = x^2$.

Klar: f erfüllt (V), f ist stückweise glatt, f ist gerade und $f(x) = s_f(x) \ \forall x \in \mathbb{R}$.

$$\xrightarrow{13.2} b_n = 0 \ \forall n \in \mathbb{N}, \quad a_n = \frac{2}{\pi} \int_0^{\pi} x^2 \cos(nx) dx = \begin{cases} \frac{2\pi^2}{3}, & n = 0\\ 4\frac{(-1)^n}{n^2}, & \text{sonst} \end{cases}$$

Aus der Rechnung in 13.3 folgt:

$$f(x) = \frac{\pi^2}{3} - 4\left(\frac{\cos x}{1^2} - \frac{\cos(2x)}{2^2} + \frac{\cos(3x)}{3^2} - + \dots\right) \quad \forall x \in \mathbb{R}.$$

$$\Rightarrow x^2 = \frac{\pi^2}{3} - 4\left(\frac{\cos x}{1^2} - \frac{\cos(2x)}{2^2} + \frac{\cos(3x)}{3^2} - + \dots\right) \ \forall x \in [-\pi, \pi].$$

$$x = 0:$$
 $\frac{\pi^2}{12} = 1 - \frac{1}{x^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ (1)

$$x = \pi:$$
 $\frac{\pi^2}{6} = 1 + \frac{1}{x^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^2}$ (2)

Addition von (1), (2): $\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^n}$.

Ohne Beweis:

Satz 13.6: Es gelte (V), es sei $f \in C(\mathbb{R})$ und f sei stückweise glatt.

- a) Die Fourierreihe von f konvergiert in jedem $x \in \mathbb{R}$ absolut.
- b) Die Fourierreihe von f konvergiert auf \mathbb{R} gleichmäßig (gegen f).
- c) Sind a_n, b_n die Fourierkoeffizienten von f, so konvergieren die Reihen

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right)$$

die zu g gehörige Fourierreihe.

Definition: Sei $g \in R[-\pi, \pi]$. Setze

$$a_n := \frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \cos(nx) dx \quad (n \in \mathbb{N}_0)$$

und

$$b_n := \frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \sin(nx) dx \quad (n \in \mathbb{N}).$$

Auch in diesem Fall heißen die Zahlen a_n, b_n die Fourierkoeffizienten von g und die Reihe

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right)$$

die zu g gehörige Fourierreihe.

Satz 13.7: g, a_n und b_n seien wie in der obigen Definition.

- a) $\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$ ist konvergent.
- b) $\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \le \frac{1}{\pi} \int_{-\pi}^{\pi} g(x)^2 dx$ Besselsche Ungleichung.

c)
$$a_n \to 0, b_n \to 0.$$

Beweis. Für $n \in \mathbb{N}$ und $x \in [-\pi, \pi]$:

$$s_n(x) := \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos(kx) + b_k \sin(kx))$$

Dann:

$$0 \le \int_{-\pi}^{\pi} (g(x) - s_n(x))^2 dx = \int_{-\pi}^{\pi} (g(x)^2 - 2g(x)s_n + s_n(x)^2) dx$$

$$\stackrel{13.1}{\underset{nachr.}{=}} \int_{-\pi}^{\pi} g(x)^2 dx - \pi \left(\frac{a_0^2}{2} + \sum_{k=1}^{n} (a_k^2 + b_k^2) \right)$$

$$\Rightarrow \alpha_n := \frac{a_0^2}{2} + \underbrace{\sum_{k=1}^b (a_k^2 + b_k^2)}_{=:\beta_n} \le \frac{1}{\pi} \int_{-\pi}^{\pi} g(x)^2 dx =: \alpha.$$

Also ist (α_n) monoton und beschränkt, somit ist (α_n) konvergent. Damit ist (β_n) konvergent \Rightarrow (1).

$$\alpha_n \le \alpha \ \forall n \in \mathbb{N} \Rightarrow (2).$$

(3)
$$a_n^2 \le a_n^2 + b_n^2$$
. Aus (1) und 3.1: $a_n^2 + b_n^2 \to 0 \Rightarrow a_n^2 \to 0 \Rightarrow a_n \to 0$. Genauso: $b_n \to 0$.

13.8 Satz von Riemann-Lebesgue: Seien $a, b \in \mathbb{R}$ und a < b und $g \in R[a, b]$. Dann:

$$\int_{a}^{b} g(x)\sin(nx)dx \to 0 \text{ und } \int_{a}^{b} g(x)\cos(nx)dx \to 0 \quad (n \to \infty)$$

Ohne Beweis. Für $[a, b] = [-\pi, \pi]$ vgl. 13.7 c).

14 Der Raum \mathbb{R}^n

Es sei $n \in \mathbb{N}$. $\mathbb{R}^n := \{(x_1, \dots, x_n) : x_1, \dots, x_n \in \mathbb{R}\}$. \mathbb{R}^n ist mit der bekannten Addition und Skalarmultiplikation ein Vektorraum über \mathbb{R} , dim $\mathbb{R}^n = n$.

Einheitsvektoren:

 $e_1 := (1, 0, \dots, 0), e_2 := (0, 1, 0, \dots, 0), \dots, e_n := (0, \dots, 0, 1)$ $\{e_1, \dots, e_n\}$ ist ein Basis des \mathbb{R}^n . Ist $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, so ist

$$x = x_1 e_1 + \ldots + x_n e_n.$$

Definition: Seien $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{R}^n$.

- a) $xy := x \cdot y := x_1y_1 + \ldots + x_ny_n$ Skalarprodukt oder Innenprodukt von x und y. Beachte: $xy \in \mathbb{R}$.
- b) $||x|| := \sqrt{x \cdot x} = (x_1^2 + \ldots + x_n^2)^{\frac{1}{2}}$ **Norm** oder Länge von x. Beachte: $||x||^2 = x \cdot x$ (Im Fall n = 1 : ||x|| = |x|).
- c) ||x y|| heißt Abstand von x und y. Beachte: ||x y|| = ||y x||.

Beispiele:

- a) $(1,2,-1) \cdot (1,3,4) = 1+6-4=3$.
- b) $\|(1,2,-1)\| = (1+4+1)^{\frac{1}{2}} = \sqrt{6}$.
- c) $||e_j|| = 1$ (j = 1, ..., n).

Satz 14.1: Seien $x = (x_1, \ldots, x_n), y, z \in \mathbb{R}^n$ und $\alpha \in \mathbb{R}$.

- a) $(x+y) \cdot z = x \cdot z + y \cdot y$; $x \cdot y = y \cdot x$.
- b) $(\alpha x) \cdot y = \alpha(x \cdot y) = x \cdot (\alpha y)$.
- c) $||x|| \ge 0$; $||x|| = 0 \iff x = 0 = (0, \dots, 0)$.

d)
$$\|\alpha x\| = |\alpha| \|x\|$$
.

e)
$$||x \cdot y|| \le ||x|| ||y||$$
 Cauchy-Schwarz Ungleichung (CSU).

f)
$$||x + y|| \le ||x|| + ||y||$$
 Dreiecksungleichung.

g)
$$||x|| - ||y||| \le ||x - y||$$
.

h) Für
$$j \in \{1, ..., n\}: |x_j| \le ||x|| \le \sum_{k=1}^n |x_k|$$

Beweis. a) - d): Nachrechnen.

e) o.B.d.A. $y \neq 0$, also ||y|| > 0. $A := ||x||^2 = x \cdot x$, $B := x \cdot y$, $C := ||y||^2 = y \cdot y$, $\alpha := \frac{B}{C}$. Dann:

$$0 \le \sum_{j=1}^{n} (x_j - \alpha y_j)^2 = \sum_{j=1}^{n} (x_j^2 - 2\alpha x_j y_j + \alpha^2 y_j^2)$$
$$= A - 2\alpha B + \alpha^2 C = A - 2\frac{B^2}{C} + \frac{B^2}{C} = A - \frac{B^2}{C}$$

$$\Rightarrow B^2 \le AC \Rightarrow (x \cdot y)^2 \le ||x||^2 ||y||^2.$$

f) $||x+y||^2 = (x+y) \cdot (x+y) = x \cdot x + 2x \cdot y + y \cdot y = ||x||^2 + 2x \cdot y + ||y||^2$. Damit:

$$||x+y||^2 \le ||x||^2 + 2|x \cdot y| + ||y||^2 \stackrel{e}{=} ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2.$$

g) Übung.

h) Es ist $|x_j|^2 = x_j^2 \le x_1^2 + \ldots + x_n^2 = ||x||^2 \Rightarrow |x_j| \le ||x||$. Es ist $x = x_1 e_1 + \ldots + x_n e_n \Rightarrow ||x|| \frac{d}{f} ||x_1|| ||e_1|| + \ldots + |x_n|| ||e_n|| = |x_1| + \ldots + |x_n|.$

Definition: Seien $l, m, n \in \mathbb{N}$ und $A \coloneqq \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$ eine reelle $m \times n$ -Matrix.

$$\|A\| \coloneqq \left(\sum_{j=1}^m \sum_{k=1}^n a_{jk}^2\right)^{\frac{1}{2}}$$
 Norm von A

Sei B eine reelle $n \times l$ -Matrix, dann existiert AB. Übungsblatt:

$$||AB|| \le ||A|| ||B||. \tag{*}$$

Sei $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$.

$$Ax \coloneqq A \cdot x^T = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad (\textbf{Matrix-Vektorprodukt})$$

Aus (*) folgt: $||Ax|| \le ||A|| ||x||$.

Definition: Sei $x_0 \in \mathbb{R}^n$ und $\epsilon > 0$.

- a) $U_{\epsilon}(x_0) := \{x \in \mathbb{R}^n : ||x x_0|| < \epsilon\}$ heißt offene Kugel um x_0 mit Radius ϵ .
- b) $\overline{U_{\epsilon}(x_0)} := \{x \in \mathbb{R}^n : ||x x_0|| \le \epsilon\}$ heißt **abgeschlossene Kugel** um x_0 mit Radius ϵ .

 $U_{\epsilon}(x_0)$ heißt auch ϵ -Umgebung von x_0 .

Definition: Sei $A \subseteq \mathbb{R}^n$.

- a) A heißt **beschränkt** $\iff \exists c \geq 0 : ||a|| \leq c \ \forall a \in A.$
- b) A heißt offen $\iff \forall a \in A \ \exists \epsilon = \epsilon(a) > 0 : U_{\epsilon}(a) \subseteq A.$

- c) A heißt **abgeschlossen** $\iff \mathbb{R}^n \setminus A$ ist offen.
- d) A heißt **kompakt** \iff A ist beschränkt und abgeschlossen.

Beispiele:

- a) Offene Kugeln sind offen, abgeschlossene Kugeln sind nicht offen.
- b) \mathbb{R}^n ist offen, \emptyset ist offen, \mathbb{R}^n ist abgeschlossen, \emptyset ist abgeschlossen.
- c) Abgeschlossene Kugeln sind kompakt.
- d) $A = \{(x, y) \in \mathbb{R}^2 : y = x^2\}$. A ist nicht beschränkt, also auch nicht kompakt. A ist nicht offen, aber A ist abgeschlossen.
- e) $A = \{(x, y) \in \mathbb{R}^2 : y \ge 0, x > 0\}$. A ist nicht offen und auch nicht abgeschlossen.