

ENPEP-BALANCE:Up and Down Pass

ENPEP-BALANCE Training CourseSingapore December 5-9, 2011

Guenter CONZELMANN

Center for Energy, Environmental, and Economic Systems Analysis Decision and Information Sciences Division (DIS)

ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue

Argonne, IL 60439

guenter@anl.gov; ++1-630-252-7173

ENPEP-BALANCE Determines the Equilibrium Supply/Demand Balance of the Energy System

INPUT

- Energy system structure
- Base year energy flows and prices
- Energy demand growth projections
- Technical and policy constraints

The Status of Iterations is Shown to the User as BALANCE Proceeds with Calculations

The Up and Down Pass Calculations to be Performed on a Simple Network

Up and Down Pass Sequences Used for Calculations

You Can View and Edit the Up and Down Pass Sequences

You usually need to edit the sequence only if you have cogeneration in the network. Also it may be necessary in some situations with the oil refinery.

Convergence Parameter Specifications

				_	
Run Parameters	Output Codes Non-electric Units Electric Units				
Convergence Parameters:					
		Relative To	lerance:	0.01	(Fraction)
Absolute Tolerance:			lerance:	1.000	(kBOE)
		Maximum Ite	erations:	10	(1-100)
	Low	er Bound Relaxation	Range:	0.100	
Upper Bound Relaxation Range:			0.900		

User-input Data for the Network (Base Year Values)

BASE YEAR: The First Up-Pass Is Performed to Determine Base Year Prices and Quantities on Every Network Link

YEAR 1, ITERATION 1: The First Up-Pass Is Performed to Determine Prices for the First Forecast Year

YEAR 1, ITERATION 1: The First Down-Pass Is Performed to Make an Initial Guess For Quantities For First Forecast Year

YEAR 1, ITERATION 1: Market Share Calculation

$$MS_{1} = \frac{Q_{1}}{Q_{1} + Q_{2}} = \frac{\left[\frac{1}{P_{1} \times PM_{1}}\right]^{\gamma}}{\left[\frac{1}{P_{1} \times PM_{1}}\right]^{\gamma} + \left[\frac{1}{P_{2} \times PM_{2}}\right]^{\gamma}}$$

γ price sensitivity for this decision process

MS: market share

P: price

PM: premium multiplier

Q: quantity

Initial market shares

MSL 1_{1,1} = 0.999 =
$$\frac{\begin{bmatrix} 1 \\ 20 \end{bmatrix}^{6} \quad g = 6}{\begin{bmatrix} 1 \\ 70 \end{bmatrix}^{6} + \begin{bmatrix} 1 \\ 20 \end{bmatrix}^{6}}$$

Market Shares are Adjusted for System Lags Using Lag Equation

YEAR 1, ITERATION 1: Prices and Quantities Have Changed from the Base Year

YEAR 1, ITERATION 1: BALANCE Checks for Convergence After the First Iteration

Convergence report:

$$Q1_{0,1} = 10000$$
 $Q1_{1,1} = 10969.4$ RERR = 9.7 % ABERR = +969.4 $Q2_{0,1} = 1000$ $Q2_{1,1} = 525.6$ RERR = -47.4 % ABERR = -474.4

Errors are relative to the base year (the quantity used to estimate the prices in Year 1 first uppass)

Errors exceed both convergence criteria of 1% and 1 kBOE

BALANCE makes quantity adjustments for the 2nd up pass:

$$Q1_{1,1,adj} = 10484.7 = (Q1_{0,1} + Q1_{1,1}) / 2$$

= (10000 + 10969.4) / 2

$$Q2_{1,1,adj} = 762.8 = (Q2_{0,1} + Q2_{1,1}) / 2$$

= (1000 + 525.6) / 2

As a 2nd guess, an average is used

YEAR 1, ITERATION 2: A Second Up-Pass Is Performed for the First Forecast Year

YEAR 1, ITERATION 2: A Second Down-Pass Is Performed to Re-compute Quantities for the First Forecast Year

YEAR 1, ITERATION 2: Market Share Calculation

$$MS_{1} = \frac{Q_{1}}{Q_{1} + Q_{2}} = \frac{\begin{bmatrix} 1 \\ P_{1} \times PM_{1} \end{bmatrix}^{\gamma}}{\begin{bmatrix} \frac{1}{P_{1} \times PM_{1}} \end{bmatrix}^{\gamma} + \begin{bmatrix} \frac{1}{P_{2} \times PM_{2}} \end{bmatrix}^{\gamma}}$$

price sensitivity for this decision process

MS: market share

PM: premium multiplier

quantity

Initial market shares

Market Shares are Adjusted for System Lags Using Lag Equation

MSL
$$1_{1,1} = 0.9540 = 0.90909 + ((0.9989 - 0.90909) * 0.5))$$
 MSL $2_{1,1} = 0.0460 = 0.09091 + ((0.001 - 0.09091) * 0.5))$
Lag = 0.5

YEAR 1, ITERATION 2: Prices and Quantities Have Changed from the First Pass

YEAR 1, ITERATION 2: BALANCE Checks for Convergence after the Second Iteration

Convergence report:

Errors exceed both convergence criteria of 1% and 1 kBOE but are smaller than in the 1st pass

$$Q1_{1,1,adj} = 10484.7$$
 $Q1_{1,2} = 10966.6$ RERR = 4.6 % ABERR = 481.9 $Q2_{1,1,adj} = 762.8$ $Q2_{1,2} = 528.4$ RERR + -30.7 % ABERR = -234.4

Errors are relative to the 1st pass adjusted quantities (the quantity used to estimate the prices in the up-pass)

BALANCE makes quantity adjustments for the 3nd up pass:

$$Q1_{1,2,adj} = 10918.4 = (Q1_{1,1}^{*} 0.1) + (Q1_{1,2}^{*} 0.9)$$

= (10484.7* 0.1) + (10966.6 * 0.9)

$$Q2_{1,2,adj} = 551.9 = (Q2_{1,1}^{*} 0.1) + (Q2_{1,2}^{*} 0.9)$$
$$= (762.8^{*} 0.1) + (528.4^{*} 0.9)$$

Lower relaxation

Upper relaxation

in Forecast Year 1 Pass

YEAR 1, ITERATION 3: A Third Up-Pass Is Performed for the First Forecast Year

YEAR 1, ITERATION 3: A Third Down-Pass Is Performed to Re-compute Quantities for the First Forecast Year

YEAR 1, ITERATION 3: Prices and Quantities Have Changed from the Second Pass

YEAR 1, ITERATION 3: BALANCE Checks for Convergence after the Third Iteration

Convergence report:

Errors for at least one resource exceed both convergence criteria of 1% and 1 kBOE but are smaller than in the 2nd pass

$$Q1_{1,2,adj} = 10918.4$$
 $Q1_{1,3} = 10961.3$ RERR = 0.4 % ABERR = 42.9 $Q2_{1,2,adj} = 551.9$ $Q2_{1,3} = 533.7$ ERROR = -3.2 % ABERR = -18.2

Errors are relative to the 2nd pass adjusted quantities

BALANCE makes quantity adjustments for the 3rd up pass:

$$Q1_{1,3,adj} = 10957.0 = (Q1_{1,2} * 0.1) + (Q1_{1,3} * 0.9)$$

= (10918.4* 0.1) + (10961.3 * 0.9)

$$Q2_{1,3,adj} = 535.5 = (Q2_{1,2} * 0.1) + (Q2_{1,3} * 0.9)$$
$$= (551.9 * 0.1) + (533.7 * 0.9)$$

Lower relaxation

Upper relaxation

YEAR 1, ITERATION 4: A Fourth Up-Pass Is Performed for the First Forecast Year

YEAR 1, ITERATION 4: A Fourth Down-Pass Is Performed to Re-compute Quantities for the First Forecast Year

YEAR 1, ITERATION 4: Quantities Have Converged but Prices Changed from the Third Pass

YEAR 1, ITERATION 4: BALANCE Checks for Convergence after the Third Iteration

Convergence report:

Errors are relative to the 3rd pass adjusted quantities

Errors on all resources meet at least one convergence criteria, in this case, the relative convergence criteria of 1%

YEAR 1, ITERATION 4: After Convergence, One Last Up-Pass is Performed to Compute Final Energy Prices

Year 1: Network Results for First Forecast Year

Evolution of Energy Quantities on Link 2

Evolution of Energy Prices on Link 2

The Simulation Status Folder Displays the Evolution of Quantities

Detailed Results of the Iterations Can be Found in the BALANCE SUM.out File

You Can Find All SUM.OUT Files Using the Explorer and Notepad or WordPad

