Data Compression Fall 2022 Part 3-Lecture 3 JPEG

Dr. Mona Soliman IT Dept.

JPEG

4-JPEG: ENCODING

- 1. DC encoding
- 2. ZigZag order
- 3. AC encoding

DCTERM OF DCT COEFFICIENTS

- •The first element in each transformed block is the DC coefficient Term
- •DC term is a measure of the average of spatial block values (e.g. luminance)
- The changes in DC coefficients values of consecutive blocks is small
- ■The DC coefficients are coded separately from the AC ones.
- Differential encoding (DPCM) is applied on all DC coefficients

DIFFERENTIAL ENCODING OF DCTERMS

ZIGZAG SCAN OF DCT COEFFICIENTS

Transform Coefficients

■AC coefficients

The DC coefficient and lower-frequency AC coefficients, both horizontal and vertical, are scanned first

HOW TO READ ZIGZAG ORDER?? EXAMPLE

ENCODING OF AC COEFFICIENTS

•The remaining 63 values in the vector are the AC coefficients

Run Lenght Coding (RLE) followed by Entrpy Coding "Huffman" is applied on the Accoefficients.

 In RLE, AC coefficients are divided into pairs; each pair is made up of (skip, value) where skip is the number of zeros in the run and value is the next Non-Zero Value.

{#-zeros-to-skip , next non-zero value}.

Encoding of AC Coefficients "Steps"

1. Read AC coefficients in Zigzag order

2. Apply Run Length Code (Use category number from category table not number it self)

3. Apply Huffman coding on output of Run Length Code

4. Coding using Huffman code and additional bits

RLE, CATEGORIES TABLE

Note:	MSB of -ive "Additional Bits" is "0" MSB of +ive "additional Bits" is "1"	-ive +ive -7 -6 -5 -4 4 5 6 7	
Category	AC coefficient values	Additional Bits	
1	-1,1	0,1	
2	-3,-2,2,3	00,01,10,11	
3	-74,47		
4	158,815		
5	-3116,1631	0000,0001,0010, 0011,	
6	-6332,3263		
7	-12733,33127		
8	-255128,128255		
9	-511256,256511		
10	-1023512,5121023		

RLE- HUFFMAN ENCODING FOR JPEG

Example:

Apply RLE

Apply Huffman on Descriptors

P(2/2)=3	P(2/2)=3	P(0/2, 2/1)=4	P(1/1,EOB,2/2)=6
P(0/2)=2	P(1/1,EOB)=3	P(2/2)=3	P(0/2,2/1)=4
P(2/1)=2	P(0/2)=2	P(1/1,EOB)=3	
P(1/1)=2	P(2/1)=2		
P(EOB)=1			

RLE- HUFFMAN ENCODING FOR JPEG

Encoding

Huffman Table

0/2	10
1/1	010
2/1	11
2/2	00
EOB	011

Compressed Size =37 Bits

RLE- HUFFMAN ENCODING FOR JPEG

COMPRESSED/DECOMPRESSED IMAGE

Figure 2 – Peppers

Figure 6 – Quality 50 – 84% Zeros

Figure 3 – DCT of Peppers

Figure 7 – Quality 20 – 91% Zeros

Figure 4 – Quantized DCT of Peppers

Figure 8 – Quality 10 – 94% Zeros

The Encoder model of JPEG compression standard

