Logica e Modelli Computazionali

Automi a Pila

Marco Console

Ingegneria Informatica e Automatica (Sapienza, Università di Roma)

Capacità e Limiti dei Linguaggi Regolari

- Definizione. Un linguaggio \mathcal{L} è detto regolare se esiste un ASFD A tale che $L(A) = \mathcal{L}$
 - Un linguaggio è regolare se e solo se esiste un ASFD che lo riconosce
- Teorema 1. Il linguaggio L(A) riconosciuto da un ϵ -ASFND A è regolare
- Corollario. Il linguaggio L(A) riconosciuto da un ASFND A è regolare
 - Non-determinismo e ϵ -transizioni non sono sufficiente a definire macchine più potente
- Teorema 2. Esiste almeno un linguaggio £ che non è regolare
 - Tutti quelli che non rispettano la proprietà definita dal Pumping Lemma
 - Esempio. Parentesi ben formate, ad esempio
- Intuitivamente, quello agli ASFD mancano due caratteristiche
 - 1. La possibilità di leggere più volte lo stesso simbolo dell'input e ..
 - 2. Una forma più evoluta di memoria

Automi (con Memoria) a Pila

- Supponiamo di voler riconoscere il linguaggio delle parentesi ben formate
 - **Definizione**. Una stringa s sull'alfabeto $\Sigma = \{(,)\}$ è una stringa di parentesi ben formata se
 - s = () oppure
 - s = (p) e p è una stringa ben formata
- Potremmo implementare il seguente algoritmo
 - 1. Leggi il prossimo carattere c della stringa dell'input
 - 1. Se c è il simbolo (Allora metti c in memoria
 - 2. Se c è il simbolo) Allora rimuovi un simbolo dalla memoria
 - 2. Se non ci sono più simboli nell'input da leggere Allora
 - 1. Se la memoria è vuota Allora accetta l'input
 - 2. Altrimenti rigetta l'input

Con quale modello computazionale possiamo implementarlo??

- 1. Leggi il prossimo carattere c della stringa dell'input
 - 1. Se c è il simbolo (Allora metti c in memoria
 - 2. Se c è il simbolo) Allora rimuovi un simbolo dalla memoria
- 2. Se non ci sono più simboli nell'input da leggere Allora
 - 1. Se la memoria è vuota Allora accetta l'input
 - 2. Altrimenti rigetta l'input

MEMORIA CORRENTE

Memoria

- 1. Leggi il prossimo carattere c della stringa dell'input
 - 1. Se c è il simbolo (Allora metti c in memoria
 - 2. Se c è il simbolo) Allora rimuovi un simbolo dalla memoria
- 2. Se non ci sono più simboli nell'input da leggere Allora
 - 1. Se la memoria è vuota Allora accetta l'input
 - 2. Altrimenti rigetta l'input

MEMORIA CORRENTE

Memoria (

- 1. Leggi il prossimo carattere c della stringa dell'input
 - 1. Se c è il simbolo (Allora metti c in memoria
 - 2. Se c è il simbolo) Allora rimuovi un simbolo dalla memoria
- 2. Se non ci sono più simboli nell'input da leggere Allora
 - 1. Se la memoria è vuota Allora accetta l'input
 - 2. Altrimenti rigetta l'input

MEMORIA CORRENTE

Memoria ((

- 1. Leggi il prossimo carattere c della stringa dell'input
 - 1. Se c è il simbolo (Allora metti c in memoria
 - 2. Se c è il simbolo) Allora rimuovi un simbolo dalla memoria
- 2. Se non ci sono più simboli nell'input da leggere Allora
 - 1. Se la memoria è vuota Allora accetta l'input
 - 2. Altrimenti rigetta l'input

MEMORIA CORRENTE

Memoria (

- 1. Leggi il prossimo carattere c della stringa dell'input
 - 1. Se c è il simbolo (Allora metti c in memoria
 - 2. Se c è il simbolo) Allora rimuovi un simbolo dalla memoria
- 2. Se non ci sono più simboli nell'input da leggere Allora
 - 1. Se la memoria è vuota Allora accetta l'input
 - 2. Altrimenti rigetta l'input

Accetta la Stringa di Input

- 1. Leggi il prossimo carattere c della stringa dell'input
 - 1. Se c è il simbolo (Allora metti c in memoria
 - 2. Se c è il simbolo) Allora rimuovi un simbolo dalla memoria
- 2. Se non ci sono più simboli nell'input da leggere Allora
 - 1. Se la memoria è vuota Allora accetta l'input
 - 2. Altrimenti rigetta l'input

MEMORIA CORRENTE

Memoria

- 1. Leggi il prossimo carattere c della stringa dell'input
 - 1. Se c è il simbolo (Allora metti c in memoria
 - 2. Se c è il simbolo) Allora rimuovi un simbolo dalla memoria
- 2. Se non ci sono più simboli nell'input da leggere Allora
 - 1. Se la memoria è vuota Allora accetta l'input
 - 2. Altrimenti rigetta l'input

MEMORIA CORRENTE

Memoria

- 1. Leggi il prossimo carattere c della stringa dell'input
 - 1. Se c è il simbolo (Allora metti c in memoria
 - 2. Se c è il simbolo) Allora rimuovi un simbolo dalla memoria
- 2. Se non ci sono più simboli nell'input da leggere Allora
 - 1. Se la memoria è vuota Allora accetta l'input
 - 2. Altrimenti rigetta l'input

MEMORIA CORRENTE

Memoria ((

- 1. Leggi il prossimo carattere c della stringa dell'input
 - 1. Se c è il simbolo (Allora metti c in memoria
 - 2. Se c è il simbolo) Allora rimuovi un simbolo dalla memoria
- 2. Se non ci sono più simboli nell'input da leggere Allora
 - 1. Se la memoria è vuota Allora accetta l'input
 - 2. Altrimenti rigetta l'input

MEMORIA CORRENTE

Memoria (((

- 1. Leggi il prossimo carattere c della stringa dell'input
 - 1. Se c è il simbolo (Allora metti c in memoria
 - 2. Se c è il simbolo) Allora rimuovi un simbolo dalla memoria
- 2. Se non ci sono più simboli nell'input da leggere Allora
 - 1. Se la memoria è vuota Allora accetta l'input
 - 2. Altrimenti rigetta l'input

- 1. Leggi il prossimo carattere c della stringa dell'input
 - 1. Se c è il simbolo (Allora metti c in memoria
 - 2. Se c è il simbolo) Allora rimuovi un simbolo dalla memoria
- 2. Se non ci sono più simboli nell'input da leggere Allora
 - 1. Se la memoria è vuota Allora accetta l'input
 - 2. Altrimenti rigetta l'input

Rifiuta la Stringa di Input

Automi (con Memoria) a Pila – Intuizione

- Procediamo ad introdurre un nuovo modello computazionale in grado di eseguire la computazione che abbiamo descritto informalmente nei lucidi precedenti
- Le macchine di tale modello continuano a non poter leggere più volte i simboli della stringa di input
 - Come per gli Automi a Stati Finiti un simbolo letto viene "consumato" dalla computazione
- Ma queste macchine hanno accesso ad una forma di memoria strutturata come una Pila
 - Stack o Last-In First-Out (LIFO) Queue
- La funzione di transizione che definisce il comportamento di tali macchine dipende da
 - Lo stato corrente della macchina (come gli ASF)
 - Il simbolo corrente della stringa in input (come gli ASF)
 - Il simbolo affiorante dalla Pila della memoria (non presente negli ASF)

Automa a Pila (Non Deterministico)

- Definizione. Un automa a pila non deterministico (d'ora in poi semplicemente automa a pila) è una 6-tupla M della forma $M = < \Sigma, \Gamma, Q, q_0, F, \delta >$, dove:
 - 1. Σ è l'alfabeto di input
 - 2. Γ è un insieme finito di simboli, chiamato l'insieme dei simboli della pila
 - 3. Q è un insieme finito e non vuoto di stati
 - 4. $q_0 \in Q$ è lo stato iniziale
 - 5. $F \subseteq Q$ è l'insieme degli stati finali
 - 6. $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \rightarrow P(Q \times (\Gamma \cup \{\epsilon\}))$ è la funzione di transizione

Computazione di Automi a Pila – Intuizione

- La definizione degli Automi a Pila segue la nostra intuizione di macchine in grado di utilizzare una forma di memoria definita come una Pila
- Intuizione. Ad ogni passo, a partire dallo stato attuale, dal carattere letto dalla stringa di input e dal carattere affiorante dalla memoria, l'automa
 - 1. Consuma il simbolo corrente della stringa di input oppure fa un passo ϵ
 - 2. Sostituisce il simbolo affiorante dalla memoria con un altro simbolo (non necessariamente diverso dall'attuale)
 - 3. Modifica lo stato attuale con un nuovo stato (non necessariamente diverso dall'attuale)
- Intuizione. Stiamo definendo una forma di ϵ -ASFND aggiungendo l'accesso a una Pila

Esecuzioni di un Automa a Pila – Preliminari

- Sia *s* una stringa sull'alfabeto Σ tale che $\epsilon \notin \Sigma$ e T $\subseteq \Sigma$ un alfabeto.
- Definizione. La restrizione di s ad Σ' ($s_{|T}$) è la stringa ottenuta eliminando da s tutti i simboli $c \notin T$
- **Definizione**. Una ϵ -estensione di s è una stringa s' sull'alfabeto $\Sigma \cup \{\epsilon\}$ tale che $s'_{|\Sigma} = s$
 - La restrizione di s' su Σ coincide con s
 - In altre parole, s' può aggiungere solamente il simbolo ϵ ad s ma un numero arbitrario di volte
- Esempio. La restrizione $s_{|T}$ della stringa s = "asd" su $\Sigma = \{a, s, d\}$ all'alfabeto $T = \{a, d\}$ è la stringa "ad"
- **Esempio**. La stringa $s' = "a \epsilon s \epsilon d"$ è una ϵ -estensione di s = "asd" su $\Sigma = \{a, s, d\}$ $s'|_{\Sigma} = s$
- **Esempio**. La stringa s'' = "aessed" non è una e-estensione di s = "asd" su $\Sigma = \{a, s, d\}$ $s''_{|\Sigma} = "assd"$

Esecuzioni di un Automa a Pila

- Siano $M = <\Sigma, \Gamma, Q, I, F, \delta > \text{un Automa a Pila e } s = "c_1 c_2 \dots c_n" \in \Sigma^* \text{ una stringa con } |s| = n$
- Definizione. Una esecuzione di A su S è una sequenza $(q_0, ..., q_k) \in Q^{k+1}$ di k+1 elementi di Q tale che esiste una ϵ -estensione " $x_1x_2 ... x_k$ " di s e una sequenza di stringhe $t_1, t_2, ..., t_k$ sull'alfabeto Γ^* con le seguenti proprietà
 - 1. $q_1 = I$ e $t_1 = \epsilon$ (l'esecuzione parte sempre dallo stato iniziale e dalla memoria vuota)
 - 2. $(q_{i+1}, g') \in \delta(q_i, k_1, g)$ con $t_i = g k e t_{i+1} = g'k per i = 1, ..., k$ (l'esecuzione è coerente con δ)

• Definizione. Una esecuzione di $(q_0, ..., q_k)$ di A su S è accettante se il suo stato finale q_n è in F

Esecuzioni di un Automa a Pila – Intuizione

- Una esecuzione è una sequenza di stati che richiede
 - 1. Una ϵ -estensione dell'input coerente (per accomodare i passi ϵ com per gli ϵ -ASFND)
 - 2. Una sequenza di stringhe che rappresentano gli stati della memoria
- Il primo di ogni esecuzione è quello iniziale e la prima configurazione della memoria di ogni esecuzione è la stringa vuota
 - La macchina parte "dall'inizio" con memoria inalterata
- Ad ogni passo, la macchina
 - aggiorna lo stato interno,
 - rimuove il simbolo affiorante g dalla pila [pop]
 - aggiunge g' [push g']
- Se $g = \epsilon$, l'effetto sulla memoria è solo l'aggiunta di g' [push g']
- Se $g' = \epsilon$, l'effetto sulla memoria è solo la rimozione del simbolo affiorante g [pop]

Linguaggio Riconosciuto da un Automa a Pila

- Definizione. Dato un Automa a Pila $M = < \Sigma, \Gamma, Q, I, F, \delta > e$ una stringa $x \in \Sigma^*$
 - x è accettata da A se esiste almeno una esecuzione accettante di A su x
 - Altrimenti, x è rifiutata

• Definizione. Sia $M = < \Sigma, \Gamma, Q, I, F, \delta >$ un Automa a Pila. Il linguaggio riconosciuto da M è il linguaggio L(M) sull'alfabeto Σ tale che

$$L(M) = \{x \in \Sigma^* \mid x \text{ è accettata da } M\}$$

- Domanda. È vero che ogni linguaggio riconosciuto da un Automa a Pila è regolare?
 - Ovvero, possiamo sempre definire un ASFD equivalente a un Automa a Pila?
 - Ovvero, l'aggiunta della memoria a pila aumenta davvero il potere computazionale degli automi?

Linguaggi NON Regolari e Automi a Pila

- Proposizione 1. Il linguaggio $\mathcal{L} = \{a^m b^m \mid m \ge 1\}$ non è regolare
- Prova. Applicando la proprietà definita dal Pumping Lemma (vedi lucidi precedenti)
- Proposizione 2 . Esiste un Automa a Pila M tale che $L(M) = \mathcal{L}$
- Prova. Implementiamo con un Automa a Pila un algoritmo in tre fasi
 - 1. Fase 1. Leggi a e aggiungi un simbolo alla pila, Se leggi un b passa alla Fase 2.
 - 2. Fase 2. Leggi *b* e rimuovi un simbolo dalla pila. Se la stringa finisce o la pila finisce passa alla Fase 3
 - 3. Fase 3. Se la stringa e la pila sono entrambe vuote accetta, altrimenti rifiuta
- Definiamo il seguente Automa a Pila $M = < \Sigma, \Gamma, Q, I, F, \delta >$ come segue
- $\Sigma = \{a, b\}; \Gamma = \{0,1\}; Q = \{q_0, q_1, q_2, q_3, q_4\}; I = q_0; F = \{q_3\}$
- δ è definita dalla tabella successiva. Ogni cella rappresenta l'insieme $\delta(q, c, g)$ per una qualche combinazione di $q \in Q, c \in \Sigma, g \in \Gamma$

Linguaggi NON Regolari e Automi a Pila

$\delta(q,c,g)$									
q	c = a; $g = 0$	c = a; $g = 1$	$c = a; g = \epsilon$	c = b; g = 0	c = b; $g = 1$	$c = b; g = \epsilon$	$c = \epsilon; g = 0$	$c = \epsilon$; $g = 1$	$c = \epsilon; g = \epsilon$
q_0	Ø	Ø	$\{(q_1,0)\}$	Ø	Ø	Ø	Ø	Ø	Ø
q_1	Ø	Ø	$\{(q_1,1)\}$	$\{(q_3,\epsilon)\}$	$\{(q_2,\epsilon)\}$	Ø	Ø	Ø	Ø
q_2	Ø	Ø	Ø	$\{(q_3,\epsilon)\}$	$\{(q_2,\epsilon)\}$	Ø	Ø	Ø	Ø
q_3	Ø	Ø	$\{(q_4,\epsilon)\}$	Ø	Ø	$\{(q_4,\epsilon)\}$	Ø	Ø	Ø
q_4	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

Linguaggi NON Regolari e Automi a Pila

Significato $x, y \rightarrow z$

- Leggi x dall'input
- Leggi y dalla pila
- Metti z in memoria

INPUT

MEMORIA CORRENTE

Memoria

MEMORIA CORRENTE

Memoria

0

MEMORIA CORRENTE

Memoria

0

1

MEMORIA CORRENTE

Memoria

0

MEMORIA CORRENTE

Memoria

MEMORIA CORRENTE

Memoria

INPUT

a a b b

Esecuzione Accettante

INPUT

a a b

MEMORIA CORRENTE

Memoria

a a b

MEMORIA CORRENTE

Memoria

0

MEMORIA CORRENTE

Memoria

0

1

INPUT

a a b

MEMORIA CORRENTE

a a b

MEMORIA CORRENTE

Memoria

0

1

INPUT

a a b

Esecuzione NON Accettante

INPUT

a b b b

MEMORIA CORRENTE

Memoria

a b b

MEMORIA CORRENTE

Memoria

0

MEMORIA CORRENTE

Memoria

0

MEMORIA CORRENTE

Memoria

0

a b b b

NON esiste una esecuzione accettante

Linguaggi Non Contestuali

Automa a Pila – Utilizzo Pratico

- Abbiamo definito gli Automi a Pila, un modello computazionale che estende gli ASF con una forma di limitata di memoria interna
 - Memoria a Pila
- Abbiamo mostrato un linguaggio che Automi a Pila riconosco e che non è un regolare
 - Ce ne sono moltissimi in realtà
- Definizione. Un Linguaggio Non-Contestuale è un linguaggio riconosciuto da un Automa a Pila
- Proposizione. Ogni Linguaggio Regolare è un Linguaggio Non-Contestuale
 - La dimostrazione è banale e consiste nell'osservare che ogni ASFD può essere implementato come un Automa a Pila (che non usa la Pila ☺)
- I Linguaggi Non-Contestuale sono molto usati per definire linguaggi di programmazione e linguaggi formali perché ammetto una rappresentazione semplice e compatta denominata Grammatica Non-Contestuale
 - Che non ha nulla a che fare con un Automa a Pila ©

Grammatiche Non Contestuali

- Definizione. Una grammatica non contestuale (context free) è una 4-upla (V, Σ, R, S) dove
 - V è un insieme di simboli detti non-terminali
 - $-\Sigma \operatorname{con} \Sigma \cap V = \emptyset$ è un insieme di simboli detti **terminali**
 - R è un insieme finito di coppie (v,R) con $v \in V$ e $R \in (\Sigma \cup V)^*$ detto insieme di regole
 - R è una stringa sull'alfabeto $(\Sigma \cup V)$
 - $-S \in V$ è detto simbolo iniziale
- Esempio. Intuitivamente, una grammatica non contestuale rappresenta tutte le stringhe di simboli terminali che si possono produrre a partire dal simbolo iniziale *S* applicando le regole in *R*

Grammatiche Non Contestuali

Esempio. La seguente è una grammatica non contestuale

```
- \Sigma = \{(,), +, -, \times, \div, 0, 1\}
- S = formula
- R contiene le seguenti regole

• formula \rightarrow (formula + formula)

• formula \rightarrow (formula - formula)

• formula \rightarrow (formula \times formula)

• formula \rightarrow (formula \times formula)

• formula \rightarrow (formula \div formula)

• formula \rightarrow 0

• formula \rightarrow 1
```

 $-V = \{formula\}$

 Tale grammatica rappresenta il linguaggio delle espressioni algebriche che utilizzano i simboli +, -,×,÷, 0, 1

Grammatiche Non Contestuali – Linguaggio Generato

• Definizione 1. Data una Grammatica Non Contestuale $G = \langle V, \Sigma, R, S \rangle$ diciamo che la stringa $c_1 \dots c_{k-1} c_k c_{k+1} \dots c_n \in (\Sigma \cup V)^*$ genera la stringa $c_1 \dots c_{k-1} s_1 \dots s_m c_{k+1} \dots c_n$ in G e esiste una regola $(c_k, s_1 \dots s_m)$ in G e esiste una

$$c_1 \dots c_{k-1} c_k c_{k+1} \dots c_n \Rightarrow_G c_1 \dots c_{k-1} s_1 \dots s_m c_{k+1} \dots c_n$$

• **Definizione 2.** Data una Grammatica Non Contestuale $G = \langle V, \Sigma, R, S \rangle$ diciamo che la stringa $s_0 \in (\Sigma \cup V)^*$ deriva la stringa $s_n \in (\Sigma \cup V)^*$ in G se esiste una sequenza $s_0, s_1, l_2, ..., s_n$ tale che $s_i \Rightarrow_G s_{i+1}$, per ogni i = 0, n-1 e scriviamo

$$s_0 \Rightarrow_G^* s_n$$

- Definizione 3. Data una Grammatica Non Contestuale $G = \langle V, \Sigma, R, S \rangle$, il linguaggio L(G) riconosciuto da G è definito come $L(G) = \{ w \mid S \Rightarrow_G^* w \}$
 - -L(G) è il linguaggio di tutte le stringhe che derivano dal simbolo iniziale S di G

Proprietà delle Grammatiche Non Contestuali

- Possiamo dimostrare una equivalenza fra le grammatiche contestuali e gli automi a pila
- Teorema. Un linguaggio S è non contestuale se e solo è esiste una grammatica non contestuale G tale che S = L(G)
- Corollario. Un linguaggio è riconosciuto da un automa a pila se e solo se è generato da una grammatica non contestuale
- Non vedremo la prova di questo teorema (è sul libro) ma ci dice che gli automi a pila possono essere utilizzati per riconoscere una grandissima famiglia di linguaggi
 - Praticamente tutti i linguaggi di programmazione moderni
 - Praticamente tutti i linguaggi logici

Grammatiche Non Contestuali – Esempio

- La grammatica non contestuale G seguente genera le formule della logica proposizionale
 - Non-Terminali : {formula, variabile},
 - Terminali $\Sigma = \{(,), \land, \lor, \neg, V_1, V_2, ..., V_n\}$
 - Simbolo Iniziale formula
 - *G* contiene le seguenti regole
 - formula → variabile
 - $formula \rightarrow (formula \land formula)$
 - $formula \rightarrow (formula \lor formula)$
 - $formula \rightarrow \neg (formula)$
 - $formula \rightarrow (formula \div formula)$
 - $variabile \rightarrow V_1$
 - $variabile \rightarrow V_2$
 - •
 - $variabile \rightarrow V_n$

Grammatiche Non Contestuali – Esempio

- La grammatica non contestuale G precedente ci fa concludere quanto segue
- Proposizione 1. Il linguaggio delle formule della logica proposizionale è un linguaggio contestuale
 - Vedi la grammatica precedente
- Corollario. Esiste un Automa a Pila M tale che L(M) è il linguaggio delle formule proposizionali
 - A causa dell'equivalenza che abbiamo definito in precedenza.

- **Domanda.** Esiste un linguaggio \mathcal{L} che non è non contestuale?
 - In altre parole, esiste un linguaggio che non può essere riconosciuto da un automa a pila
 - Ovvero che non può essere generato da una grammatica non contestuale

Pumping Lemma Per Linguaggi Non Contestuali

- Anche per i linguaggi non contestuali possiamo dimostrare una forma di Pumping Lemma
 - Stringhe lunghe esibiscono una struttura ricorrente che ci permette di fare Pumping e ottenere altre stringhe nel linguaggio
- Lemma. [Pumping lemma per linguaggi non contestuali] Per ogni linguaggio non contestuale \mathcal{L} di cardinalità infinita esiste una costante n tale che: se $z \in L$ e $|z| \ge n$, allora possiamo scrivere z = uvwxy, con $|vx| \ge 1$ e $|vwx| \le n$, e ottenere che $uv^iwx^iy \in L$ per ogni $i \ge 0$
- Non vediamo i dettagli della prova (è sul libro). L'intuizione è simile a quella del Pumping Lemma per I linguaggi regolari: il numero di simboli non terminali nella grammtica che genera il linguaggio ci permette di concludere la una struttura ricorrente

Linguaggi NON Non Contestuali

- Proposizione. Il linguaggio $L = \{a^m b^m c^m | m \ge 1\}$ non è non contestuale
- Dobbiamo dimostrare che: per ogni costante n, esiste una stringa $z \in L$ con $|z| \ge n$ tale che, per ogni possible suddivisione uvwxy di z con $|vx| \ge 1$ e $|vwx| \le n$, abbiamo che esiste un $i \ge 0$ tale per cui $uv^iwx^iy \notin L$
- Dimostrazione: Fissiamo una qualunque stringa z tale che z ∈ L e |z| = n.
 Considera ogni possibile suddivisione uvwxy di z con |vx| ≥ 1 e |vwx| ≤ n. Abbiamo due casi possibili:
 - 1. Uno tra v ed x contiene almeno due simboli diversi. In questo caso, si deriva che la stringa uv^2wx^2y non appartiene ad L perché rompe l'ordine dei simboli
 - 2. Se v ed x contengono un solo simbolo, allora la stringa uv^2wx^2y non appartiene ad L perché la cardinalità delle sotto-stringhe di a, b e c è diversa