```
In [178]: # Import relevant packages
import numpy as np
import cvxpy as cp
import matplotlib.pyplot as plt
import pandas as pd

In [179]: # Load the data
data = pd.read_csv('data.csv')
# Process the data
for i in range(len(data)):
    if data.iloc[i, 1] == 'M':
        data.iloc[i, 1] = 1
    else:
        data.iloc[i, 1] = 0
# Take a look at the data
data.head()
```

Out[179]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
0	842302	1	17.99	10.38	122.80	1001.0	0.118
1	842517	1	20.57	17.77	132.90	1326.0	0.084
2	84300903	1	19.69	21.25	130.00	1203.0	0.109
3	84348301	1	11.42	20.38	77.58	386.1	0.142
4	84358402	1	20.29	14.34	135.10	1297.0	0.100

5 rows × 33 columns

```
In [180]: # Divide the dataset into training and test set
X = np.array(data.iloc[:350, 2:32])
Y = np.array(data.iloc[:350, 1])
X_test = np.array(data.iloc[:350:, 2:32])
Y_test = np.array(data.iloc[:350:, 1])

# Dimension of training set, 350 observations and 30 independent variables
m = 30
n = 350
# Number of lambdas
N = 100
```

Logistic Regression

```
# Formulate the optimization problem
In [181]:
          def logistic(Y, X, m, n, lamb):
              # Define variables
              beta = cp.Variable(m)
              s = cp.Variable(m)
              # Log-likelihood function
              log likelihood = cp.sum(
                   cp.multiply(Y, X @ beta) - cp.logistic(X @ beta)
              # Minimize the negate of the log-likelihood
              objective = cp.Minimize(-log likelihood/m + lamb * cp.sum(s))
              # Constraints for slack variable
              constraints = [beta \leq s, beta \geq -s, s \geq 0]
              # Formulate the problem
              problem = cp.Problem(objective, constraints)
              # Get the optimal value
              return problem.solve(), beta.value
```

```
In [182]: # Predict the labels
          def pred(beta, X):
              # Product between X and beta
              ls = X @ beta
              for i in range(len(ls)):
                  # Benign if negative
                  if ls[i] <= 0:
                      ls[i] = 0
                  # Malignant if positive
                  else:
                      ls[i] = 1
              return ls
          # Error test
          def regression error(pred, actual):
              # If prediction is wrong, the difference between it and actual label
          is either -1 or 1
              # Get the percentage of wrong predictions
              return np.sum(np.abs(pred - actual)) / float(np.size(actual))
```

```
# Simulation with different lambdas
In [194]:
          def logistic sim(m, n, N, X, Y, X test, Y test):
              # Store the results
              error train = []
              error test = []
              lambda_ = np.logspace(-2, 0, N)
              beta vals = []
              outcome ls = []
              for i in range(N):
                  # Run logistic regression
                  outcome, beta = logistic(Y, X, m, n, lambda [i])
                  beta vals.append(beta)
                  outcome ls.append(outcome)
                  # Run predictions
                  predict train = pred(beta, X)
                  predict_test = pred(beta, X_test)
                  # Run accuracy test
                  train err = regression error(predict train, Y)
                  error train.append(train err)
                  test err = regression error(predict test, Y test)
                  error test.append(test err)
              return beta_vals, outcome_ls, error_train, error_test
```

```
In [195]: beta_vals_log, outcome_ls_log, error_train_log, error_test_log = logisti
c_sim(m, n, N, X, Y, X_test, Y_test)
```

Training error for the first 20 lambdas is [0.03428571428571429, 0.03428571428571429, 0.03428571428571429, 0.03428571428571429, 0.0371428571428571429, 0.03428571428571429, 0.03428571428571429, 0.03428571428571429, 0.03428571428571429, 0.03428571428571429, 0.03428571428571429, 0.03428571428571429, 0.0371428571429, 0.0371428571429, 0.0371428571428571429, 0.037142857142857142, 0.037142857142857142, 0.037142857142857142, 0.037142857142857142, 0.037142857142857144, 0.037142857142857144, 0.037142857142857144]
Test error for the first 20 lambdas is [0.0502283105022831, 0.045662100456621, 0.04566210045662100456621]

```
In [196]: # Error plot w.r.t lambda
    lambda_ls = np.logspace(-2, 0, N)
    plt.figure()
    plt.plot(lambda_ls, error_train_log, label='Train')
    plt.plot(lambda_ls, error_test_log, label='Test')
    plt.title('Error of logistic regression w.r.t regularization constant')
    plt.xlabel('Lambda')
    plt.ylabel('Error')
    plt.legend()
```

Out[196]: <matplotlib.legend.Legend at 0x822154710>


```
In [201]: # Maximum log-likelihood w.r.t lambda
    plt.figure()
    plt.plot(lambda_ls, -np.array(outcome_ls_log))
    plt.title('Maximum log-likelihood w.r.t regularization constant')
    plt.xlabel('Lambda')
    plt.ylabel('Max log-likelihood')
```

Out[201]: Text(0,0.5,'Max log-likelihood')


```
In [193]: # Beta values w.r.t lambda
    plt.figure()
    for i in range(m):
        plt.plot(lambda_ls, [each[i] for each in beta_vals_log])
    plt.title('Components of beta w.r.t regularization constant')
    plt.xscale('log')
    plt.xlabel('Lambda')
    plt.ylabel('Value')
```

Out[193]: Text(0,0.5,'Value')

SVM

```
In [202]: # Formulate the optimization problem
          def svm(Y, X, m, n, lamb):
              # Define the variables
              beta = cp.Variable((m,1))
              v = cp.Variable()
              s = cp.Variable((m, 1))
              # Loss function
              loss = cp.sum(cp.pos(1 - cp.multiply(Y, X*beta - v)))
              # Minimize loss
              objective = cp.Minimize(loss/n + lamb*cp.sum(s))
              # Constraints for slack variable
              constraints = [beta \leq s, beta \geq -s, s \geq 0]
              # Formulate the problem
              problem = cp.Problem(objective, constraints)
              # Get optimal values
              return problem.solve(), beta.value, v.value
```

```
In [203]:
          # Predict the labels
          def pred svm(beta, X, v):
              f = X @ beta
              ls = np.array([each[0] for each in f]) - v
              for i in range(len(ls)):
                   # Benign if negative
                   if ls[i] <= 0:
                       ls[i] = -1
                   # Malignant if positive
                  else:
                       ls[i] = 1
              return ls
          # Error of SVM
          def svm error(pred, actual):
              actual = [each[0] for each in actual]
              # -1 and 1 are indicators, hence if predict and actual are differen
          t, their sum is zero
              return len(np.where(pred + actual == 0)[0]) / float(np.size(actual))
In [204]: # Simulate SVM with different lambdas
          def svm sim(m, n, N, X, Y, X test, Y test):
              # Process data
              for i in range(len(Y_test)):
                   if Y test[i] == 0:
                       Y_{test[i]} = -1
              Y_test = np.array([[each] for each in Y_test])
              for i in range(len(Y)):
                   if Y[i] == 0:
                       Y[i] = -1
              Y = np.array([[each] for each in Y])
              # Store the outcomes
              error_train = []
              error test = []
              lambda_ = np.logspace(-2, 0, N)
              beta vals = []
              v vals = []
              outcome ls = []
              for i in range(N):
                   # Run SVM
                  outcome, beta, v = svm(Y, X, m, n, lambda [i])
                  beta vals.append(beta)
                  v vals.append(v)
                  outcome ls.append(outcome)
                   # Run predictions
                  predict train = pred svm(beta, X, v)
                  predict test = pred svm(beta, X test, v)
                   # Run error test
                  train_err = svm_error(predict_train, Y)
                  error train.append(train err)
```

```
In [205]: beta_vals_svm, outcome_ls_svm, error_train_svm, error_test_svm = svm_sim
   (m, n, 100, X, Y, X_test, Y_test)
```

return beta vals, outcome ls, error train, error test

test_err = svm_error(predict_test, Y_test)

error_test.append(test_err)
actual = [each[0] for each in Y]

```
In [206]: print('Training error for the first 20 lambdas: {}'.format(error_train_s
    vm[:20]))
    print('Test error for the first 20 lambdas: {}'.format(error_test_svm[:2
    0]))
```

Training error for the first 20 lambdas: [0.04285714285714286, 0.042857 14285714286, 0.04285714285714286, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.037142857142857144, 0.037142857142857144, 0.037142857142857144, 0.037142857142857144, 0.037142857142857144]
Test error for the first 20 lambdas: [0.0730593607305936, 0.07305936073 05936, 0.0730593607305936, 0.0776255707762557, 0.0776255707762557, 0.0776255707762557, 0.0776255707762557, 0.0776255707762557, 0.0684931506849315, 0.0

```
In [207]: # Error plot w.r.t lambda
lambda_ls = np.logspace(-2, 0, N)
plt.figure()
plt.plot(lambda_ls, error_train_svm, label='Train')
plt.plot(lambda_ls, error_test_svm, label='Test')
plt.title('Error of SVM w.r.t regularization constant')
plt.xlabel('Lambda')
plt.ylabel('Error')
plt.legend()
```

Out[207]: <matplotlib.legend.Legend at 0x822637080>

15068493151


```
In [209]: # Loss function w.r.t lambda
    plt.figure()
    plt.plot(lambda_ls, outcome_ls_svm)
    plt.title('Loss function w.r.t regularization constant')
    plt.xlabel('Lambda')
    plt.ylabel('Loss')
```

Out[209]: Text(0,0.5,'Loss')


```
In [210]: # Beta values w.r.t lambda
plt.figure()
for i in range(m):
    plt.plot(lambda_ls, [each[i] for each in beta_vals_svm])
plt.title('Components of beta w.r.t regularization constant')
plt.xscale('log')
plt.xlabel('Lambda')
plt.ylabel('Value')
```

Out[210]: Text(0,0.5,'Value')


```
In [ ]:
```