

浙江大学伊利诺伊大学厄巴纳香槟校区联合学院 Zhejiang University-University of Illinois at Urbana Champaign Institute

ECE 448: Artificial Intelligence Lecture 18: Hidden Markov Models

Prof. Hongwei Wang hongweiwang@intl.zju.edu.cn

Prof. Mark Hasegawa-Johnson jhasegaw@illinois.edu

Probabilistic reasoning over time

- So far, we've mostly dealt with episodic environments
 - Exceptions: games with multiple moves, planning
- In particular, the Bayesian networks we've seen so far describe static situations
 - Each random variable gets a single fixed value in a single problem instance
- Now we consider the problem of describing probabilistic environments that evolve over time
 - Examples: robot localization, human activity detection, tracking, speech recognition, machine translation,

Outline

- 1. Hidden Markov Models
- 2. Sum-Product Algorithm for HMMs
- 3. HMM inference tasks
- 4. Applications of HMMs

Outline

- 1. <u>Hidden Markov Models</u>
- 2. Sum-Product Algorithm for HMMs
- 3. HMM inference tasks
- 4. Applications of HMMs

- At each time slice t, the state of the world is described by an unobservable variable X_t and an observable evidence variable E_t
- Transition model: distribution over the current state given the whole past history:

$$P(X_t \mid X_0, ..., X_{t-1}) = P(X_t \mid X_{0:t-1})$$

• Observation model: $P(E_t \mid X_{0:t}, E_{1:t-1})$

Hidden Markov Models

- Markov assumption (first order)
 - The current state is conditionally independent of all the other states given the state in the previous time step
 - What does $P(X_t \mid \mathbf{X}_{0:t-1})$ simplify to? $P(X_t \mid \mathbf{X}_{0:t-1}) = P(X_t \mid X_{t-1})$
- Markov assumption for observations
 - The evidence at time t depends only on the state at time t
 - What does $P(E_t \mid X_{0:t}, E_{1:t-1})$ simplify to? $P(E_t \mid X_{0:t}, E_{1:t-1}) = P(E_t \mid X_t)$

Observation model

An alternative visualization

Transition probabilities

	$R_t = T$	$R_t = F$
$R_{t-1} = T$	0.7	0.3
$R_{t-1} = F$	0.3	0.7

Observation (emission) probabilities

	U _t = T	U _t = F
R _t = T	0.9	0.1
$R_t = F$	0.2	0.8

Another example

- States: X = {home, office, cafe}
- **Observations:** E = {sms, facebook, email}

Transition Probabilities

	home	office	cafe
home	0.2	0.6	0.2
office	0.5	0.2	0.3
cafe	0.2	0.8	0.0

Emission Probabilities

	sms	facebook	email
home	0.3	0.5	0.2
office	0.1	0.1	8.0
cafe	0.8	0.1	0.1

Slide credit: Andy White

The Joint Distribution

- Transition model: $P(X_t \mid X_{0:t-1}) = P(X_t \mid X_{t-1})$
- Observation model: $P(E_t \mid X_{0:t}, E_{1:t-1}) = P(E_t \mid X_t)$
- How do we compute the full joint $P(X_{0:t}, E_{1:t})$?

$$P(X_{0:t}, E_{1:t}) = P(X_0) \prod_{i=1}^{t} P(X_i | X_{i-1}) P(E_i | X_i)$$

Outline

- 1. Hidden Markov Models
- 2. <u>Sum-Product Algorithm for HMMs</u>
- 3. HMM inference tasks
- 4. Applications of HMMs

Review: Bayes net inference

• Inference:

- Trees: Sum-Product Algorithm (Textbook: "Variable Elimination" Algorithm)
- Other Nets: Junction Tree Algorithm (Textbook: "Join Tree" Algorithm)
- In General: NP-Complete, because clique size = graph size in general

Parameter learning

- Fully observed: Count # times each event occurs
- Partially observed: Expectation-Maximization algorithm
 - Estimate Probability of each event at each time
 - E[# times event occurs] = sum_t(Probability event occurs at time t)

Sum-Product Algorithm for HMMs

- An HMM is a tree!
- For example, suppose we want to find P(X3 | E1,E2,E3)
- Product: P(X0,X1,E1)=P(X0)P(X1|X0)P(E1|X1)
- Sum: P(X1|E1)=P(X1,E1)/P(E1)
- Product: P(X1,X2,E2 | E1)=P(X1 | E1)P(X2 | X1)P(E2 | X2)
- Sum: P(X2 | E1,E2)=P(X2,E2 | E1)/P(E2 | E1)
- ...

Outline

- 1. Hidden Markov Models
- 2. Sum-Product Algorithm for HMMs
- 3. **HMM inference tasks**
- 4. Applications of HMMs

- **Filtering:** what is the distribution over the current state X_t given all the evidence so far, $e_{1:t}$?
 - The forward algorithm = sum-product algorithm for Xt given e1:t

- **Filtering:** what is the distribution over the current state X_t given all the evidence so far, $e_{1:t}$?
- **Smoothing:** what is the distribution of some state X_k given the entire observation sequence $\mathbf{e}_{1:t}$?
 - The forward-backward algorithm = sum-product algorithm for Xk given e1:t,
 when 1 < k < t
 - Xk = query variable, unknown, need to consider all its possible values
 - E1:t = evidence variables, known, only need to consider the given values

- **Filtering:** what is the distribution over the current state X_t given all the evidence so far, $e_{1:t}$?
- **Smoothing:** what is the distribution of some state X_k given the entire observation sequence $\mathbf{e}_{1:t}$?
- Evaluation: compute the probability of a given observation sequence $\mathbf{e}_{1:t}$

- Filtering: what is the distribution over the current state X_t given all the evidence so far, $e_{1:t}$
- Smoothing: what is the distribution of some state X_k given the entire observation sequence $e_{1:t}$?
- Evaluation: compute the probability of a given observation sequence $\mathbf{e}_{1:t}$
- **Decoding:** what is the most likely state sequence $X_{0:t}$ given the observation sequence $e_{1:t}$?
 - The Viterbi algorithm

HMM Learning and Inference

- Inference tasks
 - Filtering: what is the distribution over the current state X_t given all the evidence so far, $\mathbf{e}_{1:t}$
 - **Smoothing:** what is the distribution of some state X_k given the entire observation sequence $\mathbf{e}_{1:t}$?
 - Evaluation: compute the probability of a given observation sequence $\mathbf{e}_{1:t}$
 - **Decoding:** what is the most likely state sequence $X_{0:t}$ given the observation sequence $e_{1:t}$?
- Learning
 - Given a training sample of sequences, learn the model parameters (transition and emission probabilities)
 - EM algorithm

Outline

- 1. Hidden Markov Models
- 2. Sum-Product Algorithm for HMMs
- 3. HMM inference tasks
- 4. Applications of HMMs

Applications of HMMs

- Speech recognition HMMs:
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)

- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options

- Robot tracking:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)

Source: Tamara Berg

Applications of HMMs: Speech recognition

"Noisy channel" model of speech

Speech feature extraction

Speech feature extraction

- Phones: speech sounds
- **Phonemes:** groups of speech sounds that have a unique meaning/function in a language (e.g., there are several different ways to pronounce "t")

Phonetic model

IPA	ARPAbet		IPA	ARPAbet
Symbol	Symbol	Word	Transcription	Transcription
[p]	[p]	parsley	[ˈparsli]	[paarsliy]
[t]	[t]	<u>t</u> arragon	[ˈtærəgan]	[t ae r ax g aa n]
[k]	[k]	<u>c</u> atnip	[ˈkætnɨp]	[k ae t n ix p]
[b]	[b]	<u>b</u> ay	[beɪ]	[b ey]
[d]	[d]	<u>d</u> ill	[dɪl]	[d ih l]
[g]	[g]	garlic	[ˈgɑrlɨk]	[g aa r l ix k]
[m]	[m]	mint	[mmt]	[m ih n t]
[n]	[n]	<u>n</u> utmeg	[ˈnʌtmɛg]	[n ah t m eh g
[ŋ]	[ng]	ginseng	[ˈdʒmsɨŋ]	[jh ih n s ix ng]
[f]	[f]	<u>f</u> ennel	[ˈfɛnl̩]	[f eh n el]
[v]	[v]	clo <u>v</u> e	[kloʊv]	[k l ow v]
[0]	[th]	<u>th</u> istle	[ˈθɪsl̞]	[th ih s el]
[ð]	[dh]	hea <u>th</u> er	[ˈhɛðəʲ]	[h eh dh axr]
[s]	[s]	<u>s</u> age	[seɪdʒ]	[s ey jh]
[z]	[z]	ha <u>z</u> elnut	[ˈheɪzl̩nʌt]	[h ey z el n ah t]
[ʃ]	[sh]	squa <u>sh</u>	[skwa∫]	[s k w a sh]
[3]	[zh]	ambro <u>s</u> ia	[æmˈbroʊʒə]	[ae m b r ow zh ax]
[tʃ]	[ch]	<u>ch</u> icory	[ˈtʃɪkə⁴i]	[ch ih k axr iy]
[dʒ]	[jh]	sage	[seɪdʒ]	[s ey jh]
[1]	[1]	licorice	[ˈlɪkə ·i ʃ]	[l ih k axr ix sh]
[w]	[w]	ki <u>w</u> i	[ˈkiwi]	[k iy w iy]
[r]	[r]	parsley	[ˈpɑrsli]	[p aa r s l iy]
[j]	[y]	yew	[yu]	[y uw]
[h]	[h]	horseradish	[ˈhɔrsrædɪʃ]	[h ao r s r ae d ih sh]
[?]	[q]	uh-oh	[3v3on]	[q ah q ow]
[1]	[dx]	bu <u>tt</u> er	['pvts,]	[b ah dx axr]
[ř]	[nx]	wintergreen	[wɪɾ̃əgrin]	[w ih nx axr g r i n]
[j]	[el]	thist <u>le</u>	[ˈθɪsl̩]	[th ih s el]

Figure 4.1 IPA and ARPAbet symbols for transcription of English consonants.

IPA	ARPAbet		IPA	ARPAbet
Symbol	Symbol	Word	Transcription	Transcription
[i]	[iy]	lily	[ˈlɪli]	[l ih l iy]
[1]	[ih]	l <u>i</u> ly	[ˈlɪli]	[l ih l iy]
[eɪ]	[ey]	d <u>ai</u> sy	[ˈdeɪzi]	[d ey z i]
[ε]	[eh]	poinsettia	[pomˈsɛriə]	[p oy n s eh dx iy ax]
[æ]	[ae]	<u>a</u> ster	[ˈæstəʲ]	[ae s t axr]
[a]	[aa]	<u>ро</u> рру	[ˈpapi]	[p aa p i]
[c]	[ao]	<u>o</u> rchid	[ˈɔrkɨd]	[ao r k ix d]
[ប]	[uh]	w <u>oo</u> druff	[ˈwʊdrʌf]	[w uh d r ah f]
[00]	[ow]	lotus	['lourəs]	[l ow dx ax s]
[u]	[uw]	t <u>u</u> lip	[ˈtulɨp]	[t uw l ix p]
[Λ]	[uh]	b <u>u</u> tterc <u>u</u> p	[ˈbʌɾəʰˌkʌp]	[b uh dx axr k uh p]
[3,]	[er]	b <u>ir</u> d	[ˈbæd]	[b er d]
[aɪ]	[ay]	<u>i</u> ris	[ˈaɪrɨs]	[ay r ix s]
[av]	[aw]	sunfl <u>ow</u> er	[ˈsʌnflaʊəʰ]	[s ah n f l aw axr]
[oɪ]	[oy]	poinsettia	[pomˈsɛriə]	[p oy n s eh dx iy ax]
[ju]	[y uw]	feverfew	[fivæfju]	[f iy v axr f y u]
[e]	[ax]	woodr <u>u</u> ff	[ˈwʊdrəf]	[w uh d r ax f]
[a-]	[axr]	heath <u>er</u>	[ˈhɛðəʲ]	[h eh dh axr]
[i]	[ix]	t <u>u</u> lip	[ˈtulɨp]	[t uw l ix p]
[u]	[ux]			

Figure 4.2 IPA and ARPAbet symbols for transcription of English vowels

HMM states in most speech recognition systems correspond to *subsegments* of *triphones*

- <u>Triphone</u>: the /b/ in "about" (ax-b+aw) sounds different from the /b/ in "Abdul" (ae-b+d). There are around 60 phones and as many as 60³ context-dependent *triphones*.
- <u>Subsegments</u>: /b/ has three subsegments: the closure, the silence, and the release. There are 3×60^3 subsegments of triphones.

Figure 7.11 An example of the context-dependent triphone b(ax,aw) (the phone [b] preceded by a [ax] and followed by a [aw], as in the beginning of *about*, showing its left, middle, and right subphones.

Figure 7.5 Pronunciation networks for the words *I*, *on*, *need*, and *the*. All networks (especially *the*) are significantly simplified.

Putting words together

• Given a sequence of acoustic features, how do we find the corresponding word sequence?

The Viterbi Algorithm

$$\max_{X_{0:t}} P(X_{0:t}, E_{0:t})$$

$$= \max_{X_t} P(E_t | X_t) \max_{X_{t-1}} P(X_t | X_{t-1}) P(E_{t-1} | X_{t-1}) \max_{X_{t-2}} \dots$$

Complexity changes from O{N^T} to O{TN^2}

Decoding with the Viterbi algorithm

Figure 7.10 The entries in the individual state columns for the Viterbi algorithm. Each cell keeps the probability of the best path so far and a pointer to the previous cell along that path. Backtracing from the successful last word (the), we can reconstruct the word sequence I need the.

For more information

- CS 447: Natural Language Processing
- ECE 417: Multimedia Signal Processing
- ECE 594: Mathematical Models of Language
- Linguistics 506: Computational Linguistics
- D. Jurafsky and J. Martin, "Speech and Language Processing," 2nd ed.,
 Prentice Hall, 2008