Differential Encoding

b_k	$0 \ (b_k)$	0	1	1	0	1	1	0
d_k	$\begin{pmatrix} 1 \\ (d_k) \end{pmatrix}$	1	0	1	1	0	1	1

$$d_k = b_k \oplus d_{k-1}$$

Differential Decoding Assuming Correct Reception

$\widehat{d_k}$	1	1	1	0	1	1	0	1	1
$\widehat{b_k}$		0	0	1	1	0	1	1	0

$$\widehat{b_k} = \widehat{d_k} \oplus \widehat{d_{k-1}}$$

Differential Decoding Assuming Bit Reversal (Polarity Inversion)

$\widehat{d_k}$	0	0	0	1	0	0	1	0	0
$\widehat{m{b}_{k}}$		0	0	1	1	0	1	1	0

$$\widehat{b_k} = \widehat{d_k} \oplus \widehat{d_{k-1}}$$

