Exercises: Vector Basics

Problem 1. For each of the following directed segments, give the vector of which the directed segment is an instantiation:

- 1. (1,2),(2,3)
- 2. (10,20),(11,21)
- 3. (1,-2),(2,3)
- 4. (1,-2,0),(2,3,10)

Problem 2. Give the default instantiations and the norms of the following vectors:

- 1. [1, 2]
- 2. [1, 2, 3]
- 3. [1, -2, 3]

Problem 3. Give the results of a + b and a - b for each of the following:

- 1. $\boldsymbol{a} = [1, 2], \boldsymbol{b} = [2, 5]$
- 2. $\boldsymbol{a} = [1, 2, 3], \boldsymbol{b} = [2, 5, -7]$
- 3. $\mathbf{a} = 10\mathbf{i} 209\mathbf{j} + 32\mathbf{k}, \mathbf{b} = [2, 5, -7]$

Problem 4. Give the results of ca for each of the following:

- 1. $\boldsymbol{a} = [1, 2], c = 5$
- 2. $\mathbf{a} = [1, 2, 3], c = -5$
- 3. $\mathbf{a} = 10\mathbf{i} 209\mathbf{j} + 32\mathbf{k}, c = 10$

Problem 5. Indicate whether a and b have the same directions in each of the following cases:

- 1. $\boldsymbol{a} = [1, 1], \boldsymbol{b} = [2, 2]$
- 2. $\boldsymbol{a} = [1, 2, 3], \boldsymbol{b} = [20, 40, 60]$
- 3. $\boldsymbol{a} = [1, 2, 3], \boldsymbol{b} = [2, -4, 6]$

Problem 6. Let a and b be 2d vectors such that a + b = [3, 5], and a - b = [4, 6]. What are a and b?

Problem 7. Let a be a vector and c a scalar. Prove: |ca| = |c||a|.

Problem 8. Let A, B, C, D be 4 points in \mathbb{R}^d . Suppose that $\overrightarrow{A, B}, \overrightarrow{B, C}$, and $\overrightarrow{C, D}$ are instantiations of a, b, and c, respectively; see Figure 1. Prove that $\overrightarrow{A, D}$ is an instantiation of a + b + c.

Problem 9. Let A, B, C, D be 4 points in \mathbb{R}^d . Suppose that $\overrightarrow{A, B}, \overrightarrow{C, B}$, and $\overrightarrow{C, D}$ are instantiations of a, b, and c, respectively; see Figure 2. Give the vector of which $\overrightarrow{A, D}$ is an instantiation.

1

Figure 1: Problem 8

Figure 2: Problem 9