

## R3.08 - Probabilités TD 3 - Variables aléatoires infinies



## A. Ridard

### Exercice 1 (Dimensionner un tableau).

On doit dimensionner un tableau qui est une ressource pour un ensemble de processus.

Un processus qui s'exécute a besoin d'une entrée dans le tableau.

Si aucune entrée n'est disponible, alors il est mis en attente dans une file.

En moyenne, 5 processus s'exécutent en même temps.

En supposant que le nombre X de processus à traiter en même temps suive une loi de Poisson, comment dimensionner le tableau pour que la probabilité qu'un processus (au moins) soit mis en attente ne dépasse pas 10%.

#### Exercice 2 (Taux de défaillance).

Le taux de défaillance d'un matériel informatique évolue dans le temps de la manière suivante :



On va négliger les effets de bord c'est à dire ne considérer que la période de fonctionnement normal. La v.a. T égale à l'instant de première défaillance suit alors une loi exponentielle (pourquoi?).

- 1. On considère un matériel informatique dont la fiche technique mentionne une MTBF [1] égale à 30 000 heures.
  - (a) Déterminer le paramètre  $\lambda$  de la loi exponentielle suivie par T.
  - (b) Déterminer la probabilité que l'instant de première défaillance intervienne après 15 000 heures.
  - (c) Déterminer la probabilité que l'instant de première défaillance intervienne après 30 000 heures.
  - (d) Déterminer la probabilité que le matériel fonctionne encore après 30 000 heures sachant qu'il a déjà fonctionné 15 000 heures.
- 2. On considère maintenant un routeur R et un ordinateur O indépendants et placés en série. Le routeur R a une MTBF égale à 30 000 heures et l'ordinateur O une MTBF égale à 15 000 heures.
  - (a) Déterminer la probabilité que l'instant de première défaillance intervienne après 10 000 heures.
  - (b) Remplir le tableau suivant :

| Probabilité de fonctionnement | R | 0 | Système (R, O) en série |
|-------------------------------|---|---|-------------------------|
| après 10 000 heures           |   |   |                         |
| après 30 000 heures           |   |   |                         |

- 3. Une entreprise de gestion de bases de données utilise plusieurs serveurs, alimentés par 2 alimentations  $A_1$ ,  $A_2$  indépendantes et placées en parallèle. Chaque alimentation a une MTBF égale à 100 000 heures.
  - (a) Déterminer la probabilité que le système fonctionne encore après 1 an.
  - (b) Déterminer la probabilité que le système tombe en panne avant *n* années.
  - (c) Au bout de combien d'année faut-il changer le système pour que le risque de panne n'excède pas 10%?

## Exercice 3 (Dissipation thermique).

Nous pouvons considérer qu'un transistor a une dissipation thermique de  $1.5 \times 10^{-6}$  °C mais sa valeur réelle n'est pas exactement celle-là. En fait, la dissipation thermique d'un transistor peut être modélisée par une loi normale de moyenne  $1.5 \times 10^{-6}$  et dont l'écart-type dépend de la qualité du transistor.

- 1. On considère ici une certaine qualité de transistor, on note X la dissipation thermique et on suppose l'écart-type égal à  $10^{-6}$ .
  - (a) Déterminer la loi de X.
  - (b) Déterminer la probabilité que la dissipation thermique d'un transistor soit inférieure à  $2,67 \times 10^{-6}$  °C.
  - (c) Déterminer la probabilité que la dissipation thermique d'un transistor soit supérieure à  $2 \times 10^{-6}$  °C.
  - (d) Déterminer la probabilité que la dissipation thermique d'un transistor soit inférieure à  $0.24 \times 10^{-6}$  °C.
  - (e) Déterminer la probabilité que la dissipation thermique d'un transistor soit supérieure à  $0.48 \times 10^{-6}$  °C.
  - (f) Déterminer la probabilité que la dissipation thermique d'un transistor soit comprise entre  $0.5 \times 10^{-6}$  °C et  $2 \times 10^{-6}$  °C.
- 2. Les processeurs Pentium 4 (année 2000) comptaient 42 millions de transistors supposés indépendants et de même qualité. On note S la dissipation thermique d'un tel processeur.
  - (a) Déterminer [2] la loi de S.
  - (b) En considérant la même qualité de transistor que précédemment c'est à dire un écart-type égal à  $10^{-6}$ , déterminer la probabilité que la dissipation thermique d'un processeur Pentium 4 soit supérieure à 80 °*C*.
  - (c) Recalculer cette probabilité avec des transistors de moindre qualité à savoir un écart-type égal à  $10^{-3}$ .
  - (d) En conservant cette dernière qualité de transistor, déterminer un intervalle centré sur E(S) et contenant S avec une probabilité égale à 95%.
  - (e) Comment peut-on exploiter ce dernier résultat pour prévoir un ventilateur adapté?

# Table de la loi de Poisson

|     | λ  | 0,1    | 0,2    | 0,3    | 0,4    | 0,5    | 6,0          | 0,7    | 8,0    | 0,9    | 1      |
|-----|----|--------|--------|--------|--------|--------|--------------|--------|--------|--------|--------|
| r   | 0  | 0,9048 | 0,8187 | 0,7408 | 0,6703 | 0,6065 | 0,5488       | 0,4966 | 0,4493 | 0,4066 | 0,3679 |
| 100 | 1  | 0,0905 | 0,1637 | 0,2222 | 0,2681 | 0,3033 | 0,3293       | 0,3476 | 0,3595 | 0,3659 | 0,3679 |
|     | 2  | 0,0045 | 0,0164 | 0,0333 | 0,0536 | 0,0758 | 0,0988       | 0,1217 | 0,1438 | 0,1647 | 0,1839 |
|     | 3  | 0,0002 | 0,0011 | 0,0033 | 0,0072 | 0,0126 | 0,0198       | 0,0284 | 0,0383 | 0,0494 | 0,0613 |
|     | 4  |        | 0,0001 | 0,0003 | 0,0007 | 0,0016 | 0,0030       | 0,0050 | 0,0077 | 0,0111 | 0,0153 |
|     | 5  | 9      | 8      | 0,0000 | 0,0001 | 0,0002 | 0,0004       | 0,0007 | 0,0012 | 0,0020 | 0,0031 |
|     | 6  | *      | *      | -      |        | 0,0000 | 0,0000       | 0,0001 | 0,0002 | 0,0003 | 0,0005 |
|     | 7  |        | ii ii  | 7      |        | 7 V2   | <del>-</del> | 0,0000 | 0,0000 | 0,0000 | 0,0001 |
|     | 8  | Ĭ.     |        |        |        | Ŷ      |              |        |        | 7 10   | 0,0000 |
|     | λ  | 1,1    | 1,2    | 1,3    | 1,4    | 1,5    | 1,6          | 1,7    | 1,8    | 1,9    | 2      |
| r   | 0  | 0,3329 | 0,3012 | 0,2725 | 0,2466 | 0,2231 | 0,2019       | 0,1827 | 0,1653 | 0,1496 | 0,1353 |
|     | 1  | 0,3662 | 0,3614 | 0,3543 | 0,3452 | 0,3347 | 0,3230       | 0,3106 | 0,2975 | 0,2842 | 0,2707 |
|     | 2  | 0,2014 | 0,2169 | 0,2303 | 0,2417 | 0,2510 | 0,2584       | 0,2640 | 0,2678 | 0,2700 | 0,2707 |
|     | 3  | 0,0738 | 0,0867 | 0,0998 | 0,1128 | 0,1255 | 0,1378       | 0,1496 | 0,1607 | 0,1710 | 0,1804 |
|     | 4  | 0,0203 | 0,0260 | 0,0324 | 0,0395 | 0,0471 | 0,0551       | 0,0636 | 0,0723 | 0,0812 | 0,0902 |
|     | 5  | 0,0045 | 0,0062 | 0,0084 | 0,0111 | 0,0141 | 0,0176       | 0,0216 | 0,0260 | 0,0309 | 0,0361 |
|     | 6  | 0,0008 | 0,0012 | 0,0018 | 0,0026 | 0,0035 | 0,0047       | 0,0061 | 0,0078 | 0,0098 | 0,0120 |
|     | 7  | 0,0001 | 0,0002 | 0,0003 | 0,0005 | 0,0008 | 0,0011       | 0,0015 | 0,0020 | 0,0027 | 0,0034 |
|     | 8  | 0,0000 | 0,0000 | 0,0001 | 0,0001 | 0,0001 | 0,0002       | 0,0003 | 0,0005 | 0,0006 | 0,0009 |
|     | 9  | 0      | 8      | 0,0000 | 0,0000 | 0,0000 | 0,0000       | 0,0001 | 0,0001 | 0,0001 | 0,0002 |
|     | 10 |        |        | 6      |        |        | 0,0000       | 0,0000 | 0,0000 | 0,0000 | 0,0000 |
|     | 11 |        | i i    | 7      |        |        |              | 700    |        | 0,0000 | 0,0000 |
|     | λ  | 2,1    | 2,2    | 2,3    | 2,4    | 2,5    | 2,6          | 2,7    | 2,8    | 2,9    | 3      |
| 4   |    |        |        |        |        |        |              |        |        |        |        |
| r   | 0  | 0,1225 | 0,1108 | 0,1003 | 0,0907 | 0,0821 | 0,0743       | 0,0672 | 0,0608 | 0,0550 | 0,0498 |
|     | 1  | 0,1083 | 0,2438 | 0,2306 | 0,2177 | 0,2052 | 0,1931       | 0,1815 | 0,1703 | 0,1596 | 0,1494 |
|     | 2  | 0,0053 | 0,2681 | 0,2652 | 0,2613 | 0,2565 | 0,2510       | 0,2450 | 0,2384 | 0,2314 | 0,2240 |
|     | 3  | 0,0000 | 0,1966 | 0,2033 | 0,2090 | 0,2138 | 0,2176       | 0,2205 | 0,2225 | 0,2237 | 0,2240 |
|     | 4  | 0,0000 | 0,1082 | 0,1169 | 0,1254 | 0,1336 | 0,1414       | 0,1488 | 0,1557 | 0,1622 | 0,1680 |
|     | 5  | 0,0000 | 0,0476 | 0,0538 | 0,0602 | 0,0668 | 0,0735       | 0,0804 | 0,0872 | 0,0940 | 0,1008 |
|     | 6  | 0,0000 | 0,0174 | 0,0206 | 0,0241 | 0,0278 | 0,0319       | 0,0362 | 0,0407 | 0,0455 | 0,0504 |
|     | 7  | 0,0000 | 0,0055 | 0,0068 | 0,0083 | 0,0099 | 0,0118       | 0,0139 | 0,0163 | 0,0188 | 0,0216 |
|     | 8  | 0,0000 | 0,0015 | 0,0019 | 0,0025 | 0,0031 | 0,0038       | 0,0047 | 0,0057 | 0,0068 | 0,0081 |
|     | 9  |        |        | 0,0005 | 0,0007 | 0,0009 | 0,0011       | 0,0014 | 0,0018 | 0,0022 | 0,0027 |
|     | 10 |        |        |        |        |        | 0,0003       | 0,0004 | 0,0005 | 0,0006 | 8000,0 |
|     | 11 | 2      | 0      |        |        | 2      | 0,0001       | 0,0001 | 0,0001 | 0,0002 | 0,0002 |
|     | 12 |        |        |        |        |        | 0,0000       | 0,0000 | 0,0000 | 0,0000 | 0,0001 |
|     | 13 | 0.5    | _      |        |        | _      |              | -      | -      | 0,0000 | 0,0000 |
|     | λ  | 2,5    | 3      | 0.0400 | 4,5    | 5      | 5,5          | 6      | 7      | 8      | 9      |
| r   | 0  | 0,0821 | 0,0498 | 0,0183 | 0,0111 | 0,0067 | 0,0041       | 0,0025 | 0,0009 | 0,0003 | 0,0001 |
|     | 1  | 0,2052 | 0,1494 | 0,0733 | 0,0500 | 0,0337 | 0,0225       | 0,0149 | 0,0064 | 0,0027 | 0,0011 |
|     | 2  | 0,2565 | 0,2240 | 0,1465 | 0,1125 | 0,0842 | 0,0618       | 0,0446 | 0,0223 | 0,0107 | 0,0050 |
|     | 3  | 0,2138 | 0,2240 | 0,1954 | 0,1687 | 0,1404 | 0,1133       | 0,0892 | 0,0521 | 0,0286 | 0,0150 |
|     | 4  | 0,1336 | 0,1680 | 0,1954 | 0,1898 | 0,1755 | 0,1558       | 0,1339 | 0,0912 | 0,0573 | 0,0337 |
|     | 5  | 0,0668 | 0,1008 | 0,1563 | 0,1708 | 0,1755 | 0,1714       | 0,1606 | 0,1277 | 0,0916 | 0,0607 |
|     | 6  | 0,0278 | 0,0504 | 0,1042 | 0,1281 | 0,1462 | 0,1571       | 0,1606 | 0,1490 | 0,1221 | 0,0911 |
|     | 7  | 0,0099 | 0,0216 | 0,0595 | 0,0824 | 0,1044 | 0,1234       | 0,1377 | 0,1490 | 0,1396 | 0,1171 |
|     | 8  | 0,0031 | 0,0081 | 0,0298 | 0,0463 | 0,0653 | 0,0849       | 0,1033 | 0,1304 | 0,1396 | 0,1318 |
|     | 9  | 0,0009 | 0,0027 | 0,0132 | 0,0232 | 0,0363 | 0,0519       | 0,0688 | 0,1014 | 0,1241 | 0,1318 |
|     | 10 | 0,0002 | 0,0008 | 0,0053 | 0,0104 | 0,0181 | 0,0285       | 0,0413 | 0,0710 | 0,0993 | 0,1186 |
|     | 11 | 0,0000 | 0,0002 | 0,0019 | 0,0043 | 0,0082 | 0,0143       | 0,0225 | 0,0452 | 0,0722 | 0,0970 |
|     | 12 |        | 0,0001 | 0,0006 | 0,0016 | 0,0034 | 0,0065       | 0,0113 | 0,0263 | 0,0481 | 0,0728 |
|     | 13 | 9      | 0,0000 | 0,0002 | 0,0006 | 0,0013 | 0,0028       | 0,0052 | 0,0142 | 0,0296 | 0,0504 |