Reações Orgânicas

Fábio Lima

Fábio Lima 1 (22)

Sumário

- 1 Reações Orgânicas
- 2 Alcanos
- 3 Alcenos
- 4 Alcinos

Fábio Lima 2 (22)

Reações Orgânicas

Reações Orgânicas

Reações orgânicas são formas de transformação de moléculas orgânicas em outras moléculas orgânicas. São tipos de reações orgânicas:

- Reações de adição
- Substituição
- Oxidação
- Redução
- Eliminação.

Fábio Lima 4 (22)

Alcanos

- Carbono e hidrogênio têm eletronegatividades bem semelhantes, logo, a ligação C - H é basicamente apolar.
- Conseqüentemente, compostos contendo ligações C C e C H são estáveis e apresentam uma tendência muito baixa para reagir com outras substâncias.
- A adição de grupos funcionais (por exemplo, C-O-H) introduz reatividade às moléculas orgânicas.
- Suas reações envolvem a formação de radicais, formados em altas temperaturas ou na presença de radiação UV.

Fábio Lima 6 (22)

Formação de Radicais

Radicais: espécies químicas que apresentam um elétron desemparelhado.

$$R_3C-X \longrightarrow R_3C \cdot + \cdot X$$
 {1]

Fábio Lima 7 (22)

Halogenação

- Sob condições adequadas sofrem reação de substituição com halogênios.
- A substituição de um H por um halogênio é denominada halogenação.

Cloração do Metano $CH_4 + C\ell_2(excesso) \xrightarrow{\Delta ou} CH_3C\ell + CH_2C\ell_2 + CHC\ell_3 + CC\ell_4 + HC\ell$

Fábio Lima 8 (22)

Mecanismo de cloração do Metano $\Delta H^{*} = -242.7 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$ (1) Propagação $\begin{cases} \mathsf{C}\ell \cdot + \mathsf{CH_4} \longrightarrow \cdot \mathsf{CH_3} + \mathsf{HC}\ell & \Delta H^* = -3.4 \, \mathsf{kJ} \, \mathsf{mol}^{-1} \\ \cdot \mathsf{CH_2} + \mathsf{C}\ell_2 \longrightarrow \mathsf{CH_3}\mathsf{C}\ell + \cdot \mathsf{C}\ell & \Delta H^* = -106.7 \, \mathsf{kJ} \, \mathsf{mol}^{-1} \end{cases}$ (2)

Fábio Lima 9 (22)

- Todos os outros alcanos reagem com os halogênios da mesma maneira que o metano.
- O Quanto maior o número de carbonos, maior será o número de possíveis compostos mono e polialogenados formados.

Fábio Lima 10 (22)

Oxidação

Os alcanos e outros hidrocarbonetos queimam na presença O_2 , sendo tal reação de oxidação denominada combustão.

Fábio Lima 11 (22)

Reação de pirólise

O Pirólise é um tipo de reação de decomposição ou análise, em que uma substância é decomposta em outras, pela ação do calor do fogo.

fábir Lima 12 (22)

Reação de isomerização

Fábio Lima

Reação de adição

Os alcenos participam de reações de adição, nas quais os fragmentos da quebra de pequenas moléculas, tais como, H_2 , $C\ell_2$, $HC\ell$ e H_2O , se adicionam aos carbonos que estabeleciam ligação dupla e que após a reação, passam a estabelecer ligação simples.

Fábio Lima 15 (22)

 O termo carbocátion foi sugerido por George A. Olah para designar qualquer espécie catiônica do carbono. Os carbocátions têm deficiência de elétrons, com apenas 6 elétrons na camada de valência e, por causa disto, são ácidos de Lewis.

Adição de hidrogênio ou higrodenação catalítica

- Consiste na reação do alceno com gás H₂, que é catalisada por níquel (Ni), platina (Pt) ou paládio (Pd).
- Atuação do catalisador na hidrogenação: adsorve tanto as moléculas de H₂ como do alceno, provocando o enfraquecimento das ligações, tornando a reação mais fácil.

Fábio Lima 17 (22)

Adição de halogênios

Fábio Lima 18 (22)

Adição de haletos de hidrogênio (HX)

Fábio Lima 19 (22)

Adição de água

Fábio Lima 20 (22)

Regra de Markovnikov

Fábio Lima 21 (22)

