MODEL MATEMATIKA MITIGASI DARI POTENSI PERUBAHAN IKLIM PADA EKOSISTEM PESISIR

Kelompok II Matematika 2020 D

Ahmad Taufik Hamzah Ayatulloh Afurqon Muhammad Arif Hunaifi (20030214005) (20030214011) (20030214015)

INFORMASI ARTIKEL UTAMA

JUDUL ARTIKEL: MODELING THE OPTIMAL MITIGATION OF POTENTIAL IMPACT OF CLIMATE CHANGE ON COASTAL ECOSYSTEMS

Judul Jurnal: Heliyon

Penulis : Sajib Mandal , Md. Sirajul Islam, Md. Haider Ali Biswas , Sonia Akter a

Indeks Scopus: Q1

Tahun terbit: 2021

Alamat artikel: https://doi.org/10.1016/j.heliyon.2021.e07401

JUDUL ARTIKEL: MODELING THE POTENTIAL
IMPACT OF CLIMATE CHANGE ON LIVING BEINGS
NEAR COASTAL AREAS

Judul Jurnal : Modeling Earth Systems and Environment

Penulis : Sajib Mandal, Md Sirajul Islam, Md Haider Ali Biswas

Indeks Scopus: Q1

Tahun terbit: 2020

Alamat artikel : https://doi.org/10.1007/s40808-020-00897-5

LATAR BELAKANG

MOTIVASI

Mari kita pelihara alam agar masa depan lebih baik

PERMASALAHAN UTAMA

Pemanasan global berdampak buruk pada sistem iklim bumi karena emisi gas rumah kaca (GHGs) yang cepat.

TUJUAN DAN MANFAAT

Meminimalkan pemanasan global dan menyerap GHGs dengan cara tertentu terhadap perubahan iklim di ekosistem pesisir.

MODEL MATEMATIKA

Mempertimbangkan nilai awal variabel dinamis adalah Go = 0.04, To = 0.07, Ho = 1.1, Fo = 8,75 dan simulasi waktu Tp = 50 tahun.

DIAGRAM KOMPARTEMEN

PARAMETER

Parameter	Nilai Parameter	Satuan	Deskripsi
a_1	0.0015	Kg km⁻²	Laju konsentrasi gas rumah kaca
δ_1	0.025	Kg km ⁻²	Tingkat produksi gas rumah kaca oleh populasi manusia
δ_2	0.0023	Kg km ⁻²	Laju penyerapan CO2 oleh ekosistem hutan
δ_3	0.0005	Kg km ⁻²	Laju konsentrasi Gas rumah kaca setelah bencana alam
α_2	0.1	°C	Tingkat pertumbuhan alami suhu atmosfer
$ heta_1$	0.67	°C	Laju pertumbuhan suhu atmosfer akibat gas rumah kaca
$ heta_2$	0.0055	°C	Laju peningkatan suhu atmosfer oleh populasi manusia
$ heta_3$	0.0225	°C	Tingkat penyerapan suhu atmosfer oleh ekosistem hutan
α_3	0.000015	Ribuan⁻¹	Tingkat pertumbuhan alami populasi manusia
ψ_1	0.58	Ribuan⁻¹	Laju penurunan populasi manusia akibat GRK yang berbahaya
ψ_2	0.29	Ribuan⁻¹	Laju penghambatan populasi manusia karena pemanasan global
ψ_3	0.00956	Ribuan⁻¹	Laju peningkatan populasi manusia karena ekosistem hutan
α_4	0.05	km⁻²	Laju pertumbuhan alami ekosistem hutan di dekat wilayah pesisir
$arepsilon_1$	0.095	km⁻²	Laju deforestasi yang disebabkan oleh manusia
$arepsilon_2$	0.00122	km⁻²	Laju pertumbuhan ekosistem hutan dengan bantuan CO2
$arepsilon_3$	0.0513	km⁻²	Laju penurunan ekosistem hutan akibat pemanasan global 🔑
а	0.01		Konstantata saturasi
k_1	1000	km⁻²	Daya dukung populasi manusia
k ₂	100000	km⁻²	Daya dukung ekosistem hutan

S R

RE-SIMULASI DAN EKSPERIMEN

S

R

RE-SIMULASI DAN EKSPERIMEN

(d)

Growth rate of forest ecossystem

S K E N

R

RE-SIMULASI DAN EKSPERIMEN

RE-SIMULASI DAN EKSPERIMEN

DISKUSI & TEMUAN

Dalam skenario 1 digunakan desulfurasi (yaitu x = 0, $y \ne 0$) dalam sistem sebagai variabel kontrol untuk mengurangi emisi G, T, sedangkan untuk H dan F meningkat. Dari hal tersebut dapat diketahui bahwa desulfurasi dapat dijadikan solusi untuk mengatasi perubahan iklim.

DISKUSI & TEMUAN

Dalam skenario 2 digunakan desulfurasi dan sabuk hijau (yaitu $x \neq 0$ dan $y \neq 0$) dalam sistem sebagai variabel kontrol untuk mengurangi emisi G, T sedangkan untuk H dan F meningkat.

Jadi berdasarkan diskusi ditemui bahwa desulfurasi dan ruang terbuka hijau (x dan y) dapat meminimalisir efek negatif dari perubahan iklim di ekosistem pesisir.

SIMPULAN DAN SARAN

Skenario II merupakan strategi terbaik untuk meminimalkan konsentrasi GHGs dan pemanasan global. Secara keseluruhan, hasil menunjukkan bahwa jalur hijau pesisir dan desulfurisasi industri memiliki potensi perbaikan lingkungan yang baik.

Karena studi ini menjelaskan strategi efektif untuk pengelolaan lingkungan atmosfer dan pesisir yang lebih baik, masyarakat berkewajiban untuk merancang program sekarang dan di masa depan untuk menyelamatkan ekosistem planet ini.

DAFTAR PUSTAKA

01

Mandal, S., Islam, M. S., Biswas, M. H. A., & Akter, S. (2021). Modeling the optimal mitigation of potential impact of climate change on coastal ecosystems. *Heliyon* (Vol. 7, Issue 7, hlm. 2405-8440). Elsevier BV. https://doi.org/10.1016/j.heliyon.2021.e07401

02

Mandal, S., Islam, M. S., & Biswas, M. H. A. (2020). Modeling the potential impact of climate change on living beings near coastal areas. *Modeling Earth Systems and Environment* (Vol. 7, Issue 3, hlm. 1783–1796). Springer Science and Business Media LLC. https://doi.org/10.1007/s40808-020-00897-5

https://drive.google.com/drive/folders/1F01yeCl91zbz1TurKgM9sh9QTqO zbCo6?usp=sharing

