PRELIMINARY EXAM, SPRING 2004 (3 HOURS, 8 PROBLEMS COUNTED EQUALLY)

- 1. Suppose $f, g: A \to A$ are functions with $f \circ g$ injective.
 - a) Prove that g must be injective.
 - b) Give an example to show that f need not be injective.
- 2. a) Give the definition for a function $L: \mathbb{R}^n \to \mathbb{R}^m$ to be a linear transformation.
 - b) Prove that the kernel of a linear transformation $L: \mathbb{R}^n \to \mathbb{R}^m$ is a subspace of \mathbb{R}^n .
- 3. a) Define what it means for vectors $v_1, ..., v_n$ in a vector space V to be linearly independent.
 - b) Suppose that vectors $v_1, ..., v_n$ in a vector space V span V and that no proper subset of $\{v_1, ..., v_n\}$ spans V. Prove that $v_1, ..., v_n$ are linearly independent.
- 4. Diagonalize the matrix $A = \begin{bmatrix} 1 & 2 \\ 4 & -1 \end{bmatrix}$ and use the diagonal form of A to compute A^2 .
- 5. Suppose L is a real number and $f, g : \mathbb{R} \to \mathbb{R}$. Prove that if $\lim_{x\to 0} g(x) = L$ and f is continuous at L, then $\lim_{x\to 0} f(g(x))$ also exists.
- 6. Define a sequence (x_n) by $x_1 = 1$ and $x_{n+1} = \frac{1}{4}x_n^2 + 1$ for $n \in \mathbb{N}$.
 - a) Give an inductive proof that $x_n \leq 2$ for all $n \in \mathbb{N}$.
 - b) Prove that $x_{n+1} \ge x_n$ for each $n \in \mathbb{N}$. [Hint: Consider $x_{n+1} x_n$.]
- 7. Suppose f is a continuous function satisfying the equation $f(x) = 5 + \int_0^x 3f(t)dt$ for all real x. Argue that f must be differentiable and then find all such function(s) explicitly.
- 8. Provide examples of the following. [No justification is required.]
 - a) a true implication whose converse is false,
 - b) a function $f: \mathbb{R} \to \mathbb{R}$ which is continuous at 7, but not differentiable there,
 - c) a function $f: \mathbb{R}^2 \to \mathbb{R}$ which is continuous in each variable separately, but is not continuous at (0,0),
 - d) a bounded sequence which is not Cauchy,
 - e) a (real) power series whose domain of convergence is the closed interval [0,2].

ž