Problems 11 to 20

Shiv Shankar Dayal

August 25, 2019

11. Show that the seuquence $9, 12, 15, 18, \ldots$ is an A.P. Find its 16^{th} term and the general term.

Solution: Since 12-9=15-12=18-15=3, which is a constant, therefore given sequence is an A.P. having common difference as 3 and first term as 9. $t_{16}=a+(16-1)d=9+15.3=54$

12. Show that the sequence $\log a, \log(ab), \log(ab^2), \log(ab^3), \ldots$ is an A.P. Find its n^{th} term.

Solution: We have,

$$\log(ab) - \log a = \log\left(\frac{ab}{a}\right) = \log b$$
$$\log(ab^2) - \log(ab) = \log\left(\frac{ab^2}{ab}\right) = \log b$$

$$\log(ab^3) = \log(ab^3) = \log(ab^3)$$

$$\log(ab^3) - \log(ab^2) = \log\left(\frac{ab^3}{ab^2}\right) = \log b$$

Since the difference of a term and the preceding term is alwyas same, therefore the given sequence is an A.P. Now.

$$t_n = a + (n-1)d = \log a + (n-1)\log b = \log(ab^{n-1})$$

13. Find the sum to n terms of the sequence $\langle t_n \rangle$, where $t_n = 5 - 6n, n \in N$

Solution: $t_{n+1}-t_n=5-6(n+1)-5+6n=-6 \forall n\in N$ which is constant, therefore the given sequence is an A.P. Putting n=1, we get $t_1=5-6.1=-1$, so the sum S_n to n term is given by $S_n=\frac{n}{2}[t_1+t_n]=\frac{n}{2}[-1+5-6n]=n(2-3n)$

14. How many terms are there in the A.P. $3,7,11,\ldots,407?$

Solution: From first three terms we have a=3, d=7-3=11-7=4 Formula for general term is $t_n=a+(n-1)d\Rightarrow 407=3+(n-1)4\Rightarrow n=102$

15. If a, b, c, d, e are in A.P. find the value of a - 4b + 6c - 4d + e.

Solution: Let p be the first term and q be the common difference. Then we have, p=a, p+q=b, p+2q=c, p+3q=d, p+4q=e Thus, we see that a+e=2c, b+d=2c Now, a-4b+6c-4d+e=(a+e)-4(b+d)+6c=2c-8c+6c=0

16. In a certain A.P. 5 times the 5^{th} term is equal to 8 times the 8^{th} term, then prove that 13^{th} term is zero.

Solution: Given $5.t_5=8.t_8$ 5(a+4d)=8(a+7d), where a is the first term and d is the common difference. $\Rightarrow a+12d=0 \Rightarrow t_{13}=0$

17. Find the term of the series $25, 22\frac{3}{4}, 20\frac{1}{2}, 18\frac{1}{4}, \dots$ which is numerically smallest positive number.

Solution: The given series is an A.P. with
$$a=25, d=-9/4$$
 $t_n=25+(n-1)\frac{-9}{4}=\left(25+\frac{9}{4}\right)-\frac{9}{4}n$ $\Rightarrow t_n=\frac{109}{4}-\frac{9}{4}n$ Now t_n will be negative if $\frac{109}{4}-\frac{9}{4}n<0$ or $n>12\frac{1}{9}$ Hence, t_{12} will be smallest positive number. $t_{12}=\frac{1}{4}$

18. A person was appointed in the pay scale of Rs. 700 - 40 - 1500. Find in how many years he will reach the maximum of the scale.

Solution: Given, $t_n = 1500, a = 700, d = 40$

 $\therefore t_n = a + (n-1)d$

$$\therefore 1500 = 700 + (n-1)40 \Rightarrow n = 21$$

Hence, he will reach the maximum scale in 20 years because his pay in 20 years will be $a + 20d = 21^{st}$ term 1500

19. Find the A.P. whose 7^{th} and 13^{th} terms are respectively 34 and 64.

Solution: Let a be the first term and d be the c.d. $t_7=a+6d=34$ $t_{13}=a+12d=64$ Subtracting we get, $6d=30\Rightarrow d=5$ Substituting for t_7 we get, $a+30=34\Rightarrow a=4$ Thus, our A.P.is $4,9,14,19,\ldots$

20. Is 55 a term of the sequence $1,3,5,7,\ldots$? If yes, find which term it is.

Solution: Clearly, a=1 and d=3-1=5-3=7-5=2Let 55 be the n^{th} term of the series. Then we have 55=1+(n-1)2 $\Rightarrow 55=1+2n-2=2n-1$ $\Rightarrow 56=2n \Rightarrow n=28$ Since n is an integer 55 is a member of A.P. and it is 28^{th} term of the A.P.