

ปัญญาประดิษฐ์เพื่อการประเมินการกัดกร่อน ในบรรยากาศและแผนที่การกัดกร่อน: ความยั่งยืนและความปลอดภัยของโครงสร้างเหล็กกล้า

Al in Atmospheric Corrosion Assessment and Corroison Map: Steel Infrastructure Safety and Sustainability

การกัดกร่อนของเหล็กกล้าโครงสร้างใน บรรยากาศขึ้นอยู่กับปัจจัยสภาพอากาศและ สภาพแวดล้อม เอ็มเทค ศึกษาการกัดกร่อน ในบรรยากาศประเทศไทย เพื่อสร้างฐาน ข้อมูลวัสดุกลุ่มเหล็ก โดยการทดสอบชิ้นงาน ตัวแทน และเก็บข้อมูลอากาศ พร้อมกับ ข้อมูลการกัดกร่อนผ่านเซนเซอร์วัดกระแส ไฟฟ้า และนำผลการวิจัยมาจัดทำระบบเว็บ

แอพพลิเคชั่นแสดงข้อมูลแผนที่การกัดกร่อนเป็นครั้งแรกในประเทศไทย

ปัจจุบันได้ประยุกต์ใช้ปัญญาประดิษฐ์กับข้อมูลเซนเซอร์ภายใต้โครงการความร่วมมือระหว่าง CAS-NSTDA ในการทำนายอัตราการกัดกร่อนของเหล็กกล้าทนบรรยากาศด้วยข้อมูลจากจังหวัดสงขลา ได้ผลการทำนายอัตรา การกัดกร่อนที่แม่นยำ และทราบอิทธิพลของตัวแปรที่สำคัญ ได้แก่ ระยะเวลาใช้งาน อุณหภูมิ ความชื้น และ ความเร็วลม สามารถต่อยอดเป็นแผนที่การกัดกร่อนแบบ Al ทั่วประเทศได้เมื่อมีการเก็บข้อมูลในบรรยากาศ ประเทศไทยเพิ่มเติม

ประโยชน์ และการนำไปใช้

วิศวกรสามารถนำข้อมูลอัตราการกัดกร่อนจากแผนที่การ กัดกร่อนในปัจจุบันไปออกแบบโครงสร้างให้ทนต่อสภาพอากาศ ที่ใช้งานและวางแผนซ่อมบำรุงเพื่อความยั่งยืนและปลอดภัยของ โครงสร้างเหล็กกล้า

ยกตัวอย่างเช่น จังหวัดภูเก็ต บริเวณติดทะเลทิศตะวันออกเฉียง ใต้ของเกาะ จะมีอัตราการกัดกร่อนของเหล็กกล้าคาร์บอน 222 ไมครอน ต่อปี (CX) วิศวกรควรคาดการณ์ความเร่งด่วนในการซ่อมบำรุง ประกอบกับข้อมูลด้านความแข็งแรงของโครงสร้าง ในเชิงเศรษฐศาสตร์ อาจต้องคำนวณค่าบำรุงรักษาในระยะยาว เช่น เหล็กกล้าชุบสังกะสีผสม อะลูมิเนียมหนา 60 ไมครอน จะมีอัตราการกัดกร่อนที่ช้าลง และยืดอายุ การใช้งานได้ราว 60 ปี เป็นต้น

กลุ่มเป้าหมาย

วิศวกรโยธา สถาปนิก ผู้ผลิตสีป้องกันสนิม ผู้ผลิตโครงสร้าง เหล็ก และเหล็กชุบสังกะสี อุตสาหกรรมก่อสร้าง งานซ่อมบำรุง โครงสร้างพื้นฐาน เช่น การรถไฟ กรมทางหลวง การไฟฟ้า โรงงานอุตสาหกรรมบริเวณใกล้ชายทะเล

สถานการณ์วิจัย

- ทีมวิจัยเทคโนโลยีการกัดกร่อน พัฒนาเทคโนโลยีอย่างต่อเนื่อง เพื่อการซ่อมบำรุงแบบคาดการณ์ (predictive maintenance) มุ่งเน้นการออกแบบโครงสร้างเหล็กที่ยั่งยืนและปลอดภัย โดย อาศัยข้อมูลจากแผนที่การกัดกร่อน
- การนำ machine learning มาประยุกต์ใช้ เพื่อช่วยในการเรียนรู้ ชุดข้อมูลเซนเซอร์การกัดกร่อนและเซนเซอร์วัดสภาพอากาศ ทำให้ เข้าใจอิทธิพลของตัวแปรต่าง ๆ ในเชิงลึกมากขึ้น เพื่อปรับปรุง แผนที่อัตราการกัดกร่อนให้แม่นยำมากยิ่งขึ้น
- เทคนิคการติดตามการกัดกร่อนและปัจจัยที่เกี่ยวข้องด้วยเซนเซอร์ ร่วมกับการใช้ machine learning สามารถต่อยอดไปสู่บริบท อื่น ๆ ในภาคอุตสาหกรรมได้ ทีมวิจัยมีความพร้อมให้คำปรึกษา ร่วมวิจัย และให้บริการแก่ภาคเอกชนหรือหน่วยงานที่มีความสนใจ

(#) ติดต่อสอบถาม

ดร.วนิดา พงศ์ศักดิ์สวัสดิ์ ทีมวิจัยเทคโนโลยีการกัดกร่อน (CTT) กลุ่มวิจัยเทคโนโลยีระบบรางและการขนส่งสมัยใหม่ (RMT) ศูนย์เทคโนโลยีโลหะและวัสดุแห่งชาติ (MTEC) เบอร์โทรศัพท์: 025646500 ต่อ 4756 E-mail: wanida.pon@mtec.or.th