

INDEX 2/BEFORE USING YOUR CALCULATOR 8 3/ABOUT POWER SUPPLIES 8 4/GENERAL GUIDE 9 5/HELPFUL HINTS FOR EASIER CALCULATIONS17 6/PERFORMING BASIC CALCULATIONS 19 7/PERFORMING BINARY, OCTAL, DECIMAL AND HEXADECIMAL CALCULATIONS 26 8/USING FUNCTIONS IN CALCULATIONS29 11/USING BUILT-IN FORMULAS FOR CALCULATIONS 48 12/USING PROGRAMMED CALCULATIONS 50 13/FORMULA LIBRARY 60 14/SPECIFICATIONS 87

1/MEET THE SCIENTIFIC CALCULATOR

The scientific calculator differs from the standard type in that it has many more keys and that each key has a number of different functions. In this section you will learn the general flow of basic operations for your scientific calculator. We recommend that you spend a few minutes reading through this section before continuing on to actual operation.

1. Reading the Key Function Indicators

As mentioned above, each key of the scientific calculator is capable of a variety of functions. For example, you would use a key such as the one illustrated below for: sin, sin-1, and HEX (what each of these markings means will be covered later in this manual.

sin

With this key, simply pressing it will perform the \sin function, pressing it following the $\boxed{80}$ key performs the \sin^4 function, while the HEX specification is performed when the key is pressed in the BASE-N mode (page 4). Besides these three, some keys are marked with other functions that can only be performed in the SD (standard deviation) mode (see page 4 for modes).

Of course all of this may sound a little hard to remember. To help you keep them

straight, the function markings that appear above and below the keys have been color coded and specially marked. Note the following:

sag

. 155 : 1020 - **(*)** 573

Marking	Meaning	
Orange	Press after SHT.	
Green	Perform in BASE-N mode.	andra, a maria da estador. As asseguistas estadores
[1]	Perform in SD mode and on	processing, a one

2. Understanding Modes

sineras i s^{tre} is

41100 1 1 1 1

Before you start your calculations on a scientific calculator, you must first tell it how to handle the information you are about to input. The condition that the calculator goes into at this time is called a mode.

Once you put the calculator into a mode, you may be required to make one or more further choices. The following illustration shows all of the modes possible, and their relationship with each other. with the run production was 2007/03/2004 19

-2⁻

LRN:	Learn	RAD:	Radians Macq Mod 2001
COMP:	Compute	GRAD:	Grads
IMP:	Impedance	FIX:	Number of decimal places
SD:	Standard deviation	scî:	Number of significant digits
DEG:	Degrees	-NORM:	Normal

You can change the mode of the calculator by pressing the weekey followed by a number. For your convenience, we have included a table of modes and the method you should use to specify them right under the calculator's display.

■ Operation Modes

| For a second content of the second conte

You should use this mode for manual calculations (those in which you manually press each key as needed) and to run programs. In this mode, you can execute the built-in formulas and scientific functions.

Use this mode to store and erase programs. The symbol LRN is shown on the display while the calculator is in this mode.

-3-

■ Calculation Modes

🚾 📵 😑 COMP-módé lappitiken laktoparkolaj, yita jaka intribititi

Use this mode for general calculations, including those that employ scientific functions. You should remember when using the COMP mode that the values you input are handled according to the current angle mode specification; even though the specification is not indicated on the display: https://documents.com/specification/spe

MODE 1 - BASE-N mode

Use the BASE-N mode for binary/octal/decimal/hexadecimal conversions and calculations, as well as for logical (Boolean) operations. The symbol BASE-N is shown on the display while the calculator is in this mode. The display while the calculator is in this mode, the display while the calculator is in this mode.

∞ 2 – IMP mode

Use the IMP mode for impedance calculations. The symbol IMP is shown on the Use the IMP mode for impedance concession.

display while the calculator is in this mode.

MODE 3 --- SD mode

Use the SD mode for standard deviation calculations. The symbol SD is shown on the display while the calculator is in this mode. It is not the smooth control of

And Arthrich Black and hope to be

* Only one calculation mode can be in effect at any time - they cannot be used in combination.

■ Angle Modes

Use this mode to calculate in degrees. The symbol 12 is shown on the display while the calculator is in this mode. The production of the control of t

■ RAD mode: The respective search of the control o

Use this mode to calculate in radians. The symbol @ is.shown on the display while the calculator is in this mode.

■ GRA mode | Trail the content of the other content of the conten

Use this mode to calculate in grads (100 grads = $\pi/2$ rad = 90°). The symbol G is shown on the display while the calculator is in this mode.

* The angle modes are used in combination with calculation modes (except for BASE-N). Here extract that the control of the contr

17 FIX mode to have once one of a reality on a diller bayers.

Use the FIX mode to specify the number of decimal places for the fractional part of a value. The symbol FIX is shown on the display while the calculator is in this

MORE B - SCI mode

Use the SCI mode to specify the number of significant digits for a value. The symbol SCI is shown on the display while the calculator is in this mode.

and their world for the

MORE 9 — NORM mode

Use the NORM mode to cancel specifications made in the FIX and SCI modes. No symbol is shown on the display while the calculator is in this mode.

 The display modes are used in combination with calculation modes (except for BASE-NI.

All these modes that are previously specified are retained even when the calculator is switched off by the Auto Power Off function.

3. Reading the Display

■ Symbols and Indicators

К

0

When you look at the display of the calculator, you can see various symbols and indicators. These tell you the status and mode of the calculator.

: Displayed when there is something stored in the independent memory.
: Remains on the display during constant calculations.
: Appears on the display when you press the lim key.

S : Appears on the display when you press the I key.

M : Appears on the display when you press the key.

hyp : Appears on the display when you press the key.

LRN : Displayed while the calculator is in the LRN mode.

BASE-N: Displayed while the calculator is in the BASE-N mode.

IMP : Displayed while the calculator is in the IMP mode.

SD : Displayed while the calculator is in the SD mode: Specific and Sp

: Displayed while degrees are specified as the angle unit.
: Displayed while radians are specified as the angle unit.

E : Displayed while grads are specified as the angle unit.

FIX : Displayed while the number of decimal places is specified.

SCI : Displayed while the number of significant digits is specified.

SCI : Displayed while the number of significant digits is specified.

Pro : Displayed while a program is being executed or when the computer is in the LRN mode.

Appears to indicate that the result of an impedance calculations contains both a real value and an imaginary value.

: Displayed while the imaginary value of an impedance calculation is displayed.

: Displayed while the calculator is standing by for data input during program execution.

■ Exponential Displays open a contain no containes of lead of a no color

The display can show values only up to 10 digits long. When calculation results are longer, the calculator automatically switches over to exponential notation. Values greater than 9,999,999,999 or less than 0.01(10⁻²) are displayed exponentially.

• Notes on Exponential Notation

A value that is expressed exponentially takes up much less space. To convert a positive value from exponential notation, look at the exponent for the number 10 in the exponential notation. Then move the decimal place of the value to the right, the same number of places, adding zeros as needed. For example:

1.2 11

Mantissa Exponent...

→ 1.2×10¹¹ → 120,000,000,000

1.2 Delete
00000000000 → 12000000000

11 digits
1.2×10①

Negative values are handled the same way, except that you move the decimal place to the left instead of the right. For example:

1.2-03

Mantissa Exponent

-6-

 $\rightarrow 1.2 \times 10^{-3} \rightarrow 0.0012$

day di neser indonésia. 192 di sestim 3 digits 1.2×10⁻³-

You can find further information on the use of exponential notation on page 11. See District main is 1 Charles and

Hexadecimal/Sexagesimal Display Formats

The hexadecimal display and angle in the sexagesimal scale are displayed as follows.

Todayan ili ji didayan ga budi sayibara da wana ka ili sayar abiyasti. Int

A B C D E F 1 2 in declaration of the control of th

ABCDEF12₁₆ (=-1412567278₁₀)

Degrees Minutes Seconds

(12°34′56.78°)

-7-

2/BEFORE USING YOUR CALCULATOR

Note the following safety precautions before using your calculator.

- Avoid damage to precision components by guarding your calculator against exposure to temperature extremes, high humidity, dust, sudden temperature changes, and strong impact. Low temperatures can slow down the display speed or even cause the display to fail completely. This is generally temporary, and normal operations should return at warmer temperatures.
- When the calculator is performing internal calculations, the display will clear and key operation will be impossible. Before entering data, check the display to confirm that the calculator is ready for further input.
- Never attempt your own maintenance or try to take the calculator apart.
- Never incinerate old batteries.
- Never use thinner, benzine or other volatile agents for cleaning. Clean the exterior of the calculator with a soft cloth that has been dampened with a solution of water and a mild neutral detergent.
- The manufacturer assumes no responsibility for claims from third parties for loss or damages arising through the use of this calculator.
- The manufacturer assumes no responsibility for any loss or damages arising from loss of data and/or programs incurred while using this calculator.

3/ABOUT POWER SUPPLIES

- Your scientific calculator is powered by the innovative C-POWER system. Unlike conventional solar power sources, the C-POWER system allows full operation even in total darkness.
- A 2-way power supply employs both an amorphous solar cell; as well as a lithium battery (GR927).
- Non-volatile memories retain memory contents even when the power of the calculator is switched off.
- The following symptoms indicate that the power of the lithium battery is low. Should you experience one or more of these symptoms, take your calculator to your dealer for replacement of the battery. Do not try to replace the battery by vourself.

The lithium battery should be replaced at least once every seven years, regardless of how much you have used your calculator.

- * Clearing of the independent or constant memory values to "0.".
- * Clearing of programs.
- * Dim display during calculations where lighting is weak.
- * Nothing shown on the display, even if you press the Me key.

Auto Power OFF function

This unit automatically switches OFF if not operated for approximately 6 minutes. Power can be restored by pressing the Monkey. Memory contents and mode setting are retained even when power is switched off.

-8-

4/GENERAL GUIDE

escala, che i le se con che escala giunti della considera di properti di considera di considera

-9-

Learning to making the conjugation was

Company of the state of the content.

Consequence of the consequence o

■ Internal Registers (1997) as Year Armed would be 1996 to be only been

The following illustration shows the different registers used by the calculator, as well as the data that is stored in each register; is a consistent to

- Arithmetic and scientific function calculations and to espher.
- Calculations that require prioritizing of arithmetic functions, terms contained in parentheses, etc. (see Particular de la moderna de la compansión de la compansió
- Independent memory (Min, MH, MH, MH)
- 19 1 12 Oct 110 Not 1 110 N Constant memories
- Data storage during impedance calculations
- Data accumulation during statistical calculations
- Storage of built-in formula data office of The Children Charles and Great and Children Children. The Art Children Carles and Great Great Art Children (1987) is a single control of the Art Children (1987).

SHIFT Shift key

Changes the function of a key to the function marked in orange above the key. When you press In the S symbol appears on the display. Pressing In again while S is you press well the ISI Symbol appears on the displayed cancels the shift and causes (S) to disappear from the display.

MODE Mode key

Press this key followed by @, ..., or 10 through 9 to set the mode or angle unit of the calculator. See page 2 for details on the modes available.

Following the m key, the numeric keys perform the following functions.

• SHIT . Internal rounding

Internal values (stored in the Y register) can be longer than those appears on the display, since the display has a 10-digit capacity. The above operation makes the internal value and the displayed value identical.

Values that fall within the range of $1 > x \ge .01$ are rounded off to 10 digits.

• ធ្លាក្រី - Random number generation

This operation generates pseudo-random numbers within the range of 0 to .999.

-10-

In the SD mode (3), the numeric keys perform the following functions.

• SWFT $\frac{\mathbf{q}}{\mathbf{q}} \leftarrow \overline{\mathbf{x}}$ (mean of \mathbf{x}) \mathbf{q} \mathbf{y} \mathbf{y}

• $\mathbb{H}^{\frac{2}{\sigma_n}} = \sigma_n$ (population standard deviation) and the property of the standard deviation and the standard deviation are standard deviation.

ি ্লা ্র — σ_n (sample standard deviation)

ে ক্র ্র — Σx^2 (sum of squares)

ে ক্র ্র — Σx (sum)

- লা ্র — n (number of data)

For details on these functions, see the section of this manual titled Performing Standard Deviation Calculations.

Exponent/Pi key

Press this key after entering the mantissa part of a value when you are using ex-

This key is also used to enter the value for pi. You can press this key (without see preceding it) if you have not yet entered any numeric value. Following entry of a numeric value, you can enter pi by first pressing in, following by in. any

Arithmetic operation keys

Arithmetic operations are entered by pressing the keys in the same sequence as the operation is written, from left to right. Then pressing the E key produces the result of the operation. Pressing any of the arithmetic key twice after entering a value makes that value a constant (see page 22 for details).

The arithmetic operation keys perform the following functions when they are pressed following the sift key: Control of the first

• আ∏ 🛗 🧺 Coordinate conversion (R→P)

Converts from polar coordinates to rectangular coordinates.

• ₩ = Power

Press to calculate x (entered value) to the yth (entered value) power.

● SHIFT 🖶 — Root

Press to calculate the yth (entered value) root of x (entered value).

• SHIFT 🚔 — Percent

Press for calculations involving regular percentages, add-ons, discounts, ratios and increase/decrease values.

garage a

and control of the following time of the firms of

Value of the fire section of a great contract of the contract an gradien wordt been eeus In besticht ee geleer van de eeus in bestern

Percent calculation cannot be performed in the IMP mode and BASE-N mode:

er natural sustain in the control of the control of

A motor care govern our concern action of contract action well as

-11-

C Clear/Program clear key

Use this key to clear wrong entries, to clear irregular result of function execution, or to clear intermediate results (produced by expressions contained in parentheses). This key clears the displayed value only (from the X register), while retaining previous intermediate results. This key can also be used to clear the "-L -" display (produced when a register overflow occurs for a mixed calculation or parenthetical calculation, again while retaining previous results.

You can also use this key following em in the LRN mode (emes) to clear a program.

Use this key to clear the entire machine except the independent memory (M register), constant memories (K registers) and program contents.

Pressing this key following set clears the constant memories.

You can also use this key to restore power that has been cut off by the Auto Power OFF functions (page 8). The last of the state of the last of the l

ENG Engineering key

Each press of this key shifts the decimal of the displayed value three decimal places to the right.

This in effect results in conversion of the value from one metric unit to another such as 10^{-3} milliseconds = 10^{-6} microseconds = 10^{-12} picoseconds.

Example: 12.3456

equipment of the second

resident to encountry of the air	12.3456	grand and the great control of
over and dy his felt fai lst 🕮		
2nd 🍱	12345.6 -03	and the state of t
ng OFFine Chair a 3rd 🕮		PICLARY WORK STARTER IS
4th Em	1234560006	(No change)

and the second

When this key is pressed following III the decimal point is shifted to the left, for such metric conversions as 10^3 kilohertz = 10^6 megahertz = 10^9 gigahertz.

pie. 12.345	to the first transfer of the second	an Namaso in Laurence, Julius Aren
	12.345	1
1st SHIFT	≅ 0.012345 ⁰³	in areas no professional materials
2nd [96]	0.000012345 %	in twee Extension op toer Buy selection of Toerge (Steel)
3rd SHFT		The District Assets the
4th MIT	0.00000012 ³³	((Noichange) ++ V = 103 11011

-12-

Logarithm/Antilogarithm key

Press this key to determine the common logarithm (base 10) of a value. Following press to calculate the antilogarithm (xth power of 10)

Natural Logarithm/Exponential key

international and a second of the

Use this key to calculate the natural logarithm (base e=2.7182818.....) of a value. Following \blacksquare , press to calculate the xth power of e.

Built-in Formula Recall/ALPHA key

Press this key following entry of a value from 1 to 27 to recall a built-in formula. In the LRN mode ([60] [97]), press this key prior to entering a variable name ([A] - [F]).

Square root/Square key

Press this key to calculate the square root of the displayed value. To square the displayed value, first press 🞟 and then this key.

Decimal ↔ Sexagesimal Conversion key

When inputting a sexagesimal value, press this key after each part (hour, minute, second) of the value. To enter 14°25'36", press: 14 - 25 - 36 -Pressing this key after will converts a displayed decimal value to its sexagesimal equivalent.

This key obtains the corresponding hyperbolic functions when it is pressed before the 阃 (sinh), 📾 (cosh), and 📾 (tanh) keys. Following 🕮 (as in 🕮 👦), this key obtains the inverse hyperbolic functions for (sinh-1), (cosh-1), and (and cosh-1)

In the BASE-N mode ([10]), this key is used to enter decimal values, and to convert non-decimal values to decimal.

Sine/Arc sine key and the result of the same and the same This key returns the sine of the displayed value. Following [1977], pressing this key determines the arc sine of the value. In the BASE-N mode (), this key is used to enter hexadecimal values and to convert non-hexadecimal values to hexadecimal,

Cosine/Arc cosine key (1991)

This key returns the cosine of the displayed value. Following [987], pressing this key determines the arc cosine of the value. In the BASE-N mode ([week 1]), this key is used to enter binary values and to convert non-binary values-to-binary, a capacity of the total of the second

Fhis key returns the tangent of the displayed value and head of the land of th Following IIII, pressing this key determines the arc tangent of the value in the In the BASE-N mode ([608] 11), this key is used to enter octal values and to convert non-octal values to octal. It is the end of a grant of a spherical arratence or control of a grant octal control of a grant octal oc

This key is used for impedance calculations for parallel circuits in the IMP mode (www. 2), COMP mode (wee 0), and SD mode (wee 3).

In the IMP mode, this key is also used following it to enter the displayed value as an imaginary number.

This key is also used to enter the alphabetic character A in the BASE-N mode (hexadecimal value A₁₆) and LRN mode (variable name A).

Coil/Inverse Number key

In the IMP mode ([100] [2]), this key calculates impedance, regarding the displayed value as the coil inductance L'[H].

and a supplementation of the first

In the COMP mode (wo 0) and SD mode (w 3), press this key to return the inverse number of the displayed value. The inverse number can also be determined in the IMP mode by pressing this key after III.

This key is also used to enter the alphabetic character B in the BASE-N mode (hexadecimal value B₁₆) and LRN mode (variable name B).

Capacitance/Constant Memory Input key

In the IMP mode ([60] 2), this key calculates capacitance, regarding the displayed value as the electrostatic capacitance of a capacitor.

In the COMP mode () and SD mode () press this key to input values into constant memories 1 through 6 (K registers). To enter 12.3 into constant memory 3, for example, press: 12.3 Kin 3.

Values can also be input to the constant memories in the BASE-N mode () by pressing we before this key in the above sequence. (Constant memories cannot be used in the IMP mode.) as the companies of all (Dis-

This key is also used to enter the alphabetic character C in the BASE-N mode (hexadecimal value C16) and LRN mode (variable name C).

The state of the s

-.14-

-13-

(a) Angle of Deviation/Constant Memory Output key

in the IMP mode (IME), this key calculates angle of deviation for a displayed complex number (composite impedance).

In the COMP mode (@@ 0) and SD mode (@@ 3), press this key to recall values stored in constant memories 1 through 6 (K registers). To recall a value stored in constant memory 5, for example, press: @ 5.

Values can also be output from the constant memories in the BASE-N mode (
) by pressing @ before this key in the above sequence. (Constant memories cannot be used in the IMP mode.)

This key is also used to enter the alphabetic character D in the BASE-N mode (hexadecimal value D_{16}) and LRN mode (variable name D).

[Z] Absolute Value/Angular Frequency key

In the IMP mode (2), press this key to determine the absolute value of the displayed complex number (composite impedance). Following (in the IMP mode), pressing this key returns the angular frequency of an entered frequency. This key is also used to enter the alphabetic character E in the BASE-N mode (hex-

adecimal value E₁₆) and LRN mode (variable name E).

Fig. Frequency Input/Frequency Output key.
Use this key in the IMP mode (②) to enter a displayed value as a frequency.
Following (in the IMP mode), press this key to display a frequency that you have already entered.

This key is also used to enter the alphabetic character F in the BASE-N mode (hexadecimal value F_{16}) and LRN mode (variable name F).

(f/-) Sign Change/Cube Root/Negative key

Press this key to change the sign of the displayed value from positive to negative,

Pressing this key following the

key changes the sign of the exponent of the displayed value. Following

this key returns the cube root of the displayed value. In the BASE-N mode (

Real 1), this key returns the negative (two's complement) of the displayed value.

Backspace/Real Number ↔ Imaginary Number Switch key

When entering values, press this key to backspace one digit to the left. This effectively deletes an entry one digit at a time, and it is useful for correction of input errors. In the IMP mode (@@ 2), each press of this key switches the displayed value between its real part and imaginary part. Note that the symbol "--" will be displayed if an impedance calculation produces a result with both a real and imaginary part.

Open Parenthesis/Register Exchange key

Press this key to enter an open parenthesis. Following [887], pressing this key exchanges the contents of the X register (displayed value) with those of the Y register (value being used internally by the calculator for an operation).

Close Parenthesis/Register Exchange key

Press this key to enter a close parenthesis. Following @ , pressing this key exchanges the contents of the X register (displayed value) with those of a K register (constant memory). An example of the operation for register exchange would be:

MR Memory Recall/Memory In key

Press this key to display the value stored in the independent memory (M register), without changing the register's contents. Following (M register) this key stores the displayed value (X register) in the independent memory (M register). At this time, any value previously stored in the independent memory is lost (i.e. replaced with the new value).

M+ Memory Plus/Memory Minus/Data Input/Data Delete key

Press this key to add a value to the contents of the independent memory. The value added to the independent memory can either be entered, or it can be the result of an arithmetic operation finalized using this key (in place of). After , this key subtracts the value from the contents of the independent memory.

In the SD mode (@@3), pressing this key following a data item enters it. Following @m, this key deletes the data item specified. For example:

DATA A DATA B DATA C M enters data items A, B, and C. Next, DATA B M Galetes data item B.

Run/Entry/Halt key

Press this key to execute (run) a built-in formula.

This key is also used to resume execution of a programmed calculation that has been interrupted.

In the LRN mode (), this key is used to enter the specification that program execution should pause in order to allow input of data. Following (in the LRN mode), this key specifies that program execution should halt in order to display an intermediate result.

-16-

5/HELPFUL HINTS FOR EASIER CALCULATIONS

The information given in this section should help you to understand the internal workings of the calculator, to help you enter data in the most efficient manner.

■ Order of Operations and Levels

Operations are performed in the following order of precedence: ① Functions ② x', x^{1} , $R \rightarrow P$, $P \rightarrow R$ Except in BASE-N mode

③ ×, ÷, ∥

Operations with the same precedence are performed from left to right, with operations enclosed in parentheses performed first. If parentheses are nested, the operations enclosed in the innermost set of parentheses are performed first.

Registers L₁ through L₆ are provided to store operations of lower precedence (including parenthetical operations). Since six registers are provided, calculations up to six levels can be retained (3 levels in the IMP mode).

Since each level can contain up to three open parentheses, parentheses can be nest ed up to 18 times (9 maximum in the IMP mode).

Example (4 levels, 5 nested parentheses)

Operation

2 (((((3+4)((5+4))=3))) 1 level 1 level 1 level A

₽501**±**901**=**

Register contents at point A.

x	4	1.6724 344		14.5		international designation and the second sec
J°L∈		And a town	1000	11 11 1	A^{-3D}	$ \sigma^*\Gamma_{\alpha} , \sigma = V_{\alpha} \circ \zeta_{\alpha} \circ \gamma_{\alpha}$
Lz	4×		÷			oli Norodeatena Totalia eteläisi
L3	0003+					
L	2×					
Ls						
Le						

■ Making Corrections

If you notice an input mistake before you press the arithmetic operation key, simply press C to clear the value and enter it against profit section (1997)

In a series of calculations, you can correct errors in intermediate results by recalculating correctly when the error appears and then continuing with the original series from where you interrupted it.

You can also use the E key to backspace through an entered value until you reach the digit you wish to change and then make any necessary corrections. For example:

To change entry of 123 to 124

124] 4 : 1247 Feb. 1 : meg etc. Hercigioco. - House alto 1:2: Polymorphy is the particular victor and in the high 3 01 8V (123.88) =0(4.00000)

If you make a mistake by pressing the wrong key when entering 🚼, 🖃, 🔀, 🖼 or I simply press the appropriate key to correct. In this case, the most recently pressed key operation is used, but it retains the order of precedence of the original operation entered. 1.000 69 69 69 69 00 m = 1 m Unit \$400 69 690 10

The property of the second

 $(-1)^{2} = (-1)^{2} \cdot \left(\sum_{i=1}^{n} X_{i} \cdot \sum_{i=1}^{n} X_{i}^{2} \cdot \sum_{i=1}$

■ About Overflows and Errors of the total section of the section

When predetermined calculation ranges are exceeded, the calculator will display the indicator "-E-" or "-L-" at the right of the display and disable any further calculation. This will occur in the following cases: 197.198 mg

- If an intermediate result (arithmetic, scientific functions, statistical) or a value stored in a memory exceeds ± (9.999999999 × 10⁹⁹). Values stored in memory prior to the overflow are retained. in print all office and in a fernancial
- If a function calculation exceeds the input range shown on page 87.
- If an error is made in operation during standard deviation calculation (i.e. calculation of \tilde{x} or σn when $\tilde{n}=0$). 10000#357
- If the ranges for any of the number systems used in the BASE-N mode are exceeded. a 15 to be considered as a marketic manner of the SI fraggree of *In these cases above, the "—E—" symbol appears. Press the 🚾 key to clear
 - the error and start again from the beginning.
- If the cumulative number of parentheses levels, arithmetic levels (including x^y and x^{t_y}) exceeds 6, or if the number of open parentheses exceeds 18.

 *In this case, the "- Γ -" symbol appears on the display. Press the Γ key to
 - clear the error and display the value immediately preceding generation of the error, actual
 - Continue operation using a calculation that doesn't cause a level overflow. Another method for clearing such an error is to press the 🚾 key and start again from the beginning. 80 × 8 122 - 8000

-18-

-17-

6/PERFORMING BASIC CALCULATIONS

You can perform basic calculations in the RUN mode (on and the COMP mode (well 0) if the control of the fine of the control of the control

and the state of

Enter arithmetic operations just as they are written, from left to right and many

Example	Operation	Display
23+4.5-53=-25.5	23₩4.5₩53₩	
$56 \times (-12) \div (-2.5) = 268.8$	56×12∰÷2.5₩=	268.8
* To enter a negative value, press	🗷 after you enter the value.	
12369×7532×74103=	12369×7532×	
6.903680613×10 ¹²	74103■	6.90368061312
(=6903680613000)	क्षेत्र रहे हैं। है जिल्हा ने पूर्व है क	and the state of t
1.23÷90÷45.6=; ::::::::::::::::::::::::::::::::::::	1.23₩90₩45.6₽	2.997076023 ^{-M}
$2.997076023 \times 10^{-4} (=0.000$ *Exponential notation is used (100-million) or greater, or less than	for values that are 1010	ration of homes longs - Distriction
$(4.5\times10^{75})\times(-2.3\times10^{-78})=4.$	5₽75 ¥ 2.3₩₽78₩ ≡	-0.01035
$-0.01035 = -10.35 \times 10^{-3}$	(Exponential notation)	-10.35-03
*Exponential notation is not used 10 ⁻² and 10 ¹⁰ . Use the Rekey (p fy scientific notation.		Li gradinagani sa Mili. Amara ka musikadi Kilimani shensaya
$(3\times10^5)^{\frac{1}{2}}7=42857.14286$	gera dag - 201 <mark>3 (m5 = 7 =</mark> National dag - 2010 september 1980	42857.14286
(3×10 ⁵)÷7-42857=0.1428571	(Continuing) 42 857 2	0.1428571
* Calculations are performed using a The original 12 digits, however,	a 12-digit mantissa, and results are is retained internally. In the case 993 ~ 999 are rounded up, mear	e of 10, 11, and:12-digit

ing abhasasa nda asasa ni na separa baha in na san.

Mixed Arithmetic Calculations of reasons of the second according to the second of the second according to the second of the seco

Multiplication and division are given precedence over addition and subtraction.

Example	Operation	Display
3+5×6≡33	10 cm 5 cm 2 cm 5 cm 5 cm 6 cm 3	
$\frac{7\times8}{1}-\frac{4\times5}{1}=36$	7×8=4×5=	graniquel est ave 36.
$1+2-3\times4\div5+6=6.6$	1#2 3 ×4#5#6 =	6.6.

■ Specifying the Number of Decimal Places and the Number of Significant Digits per ranger set of the property of the set of seed are reserved are of

Specify the number of decimal places (FIX) by the operation [17], where n is a value from 0 through 9.

Specify the number of significant digits (SCI) by the operation [60] [8] [7], where n is a value from 0 through 9. In the case of the SCI, 0 is regarded as 10.

The specifications you make for FIX and SCI are retained until you change them

with a new specification, or you clear them by ee 1.

No matter what you specify for FIX and SCI, calculations within the calculator are

always performed using a 12-digit mantissa. If you want to make internal and displayed value equal, press set set ...

You can also move the decimal place of a displayed value three places to the left

ind right by using the 🖼	key.			6.8) = VX (8.6-1)
Example	* KIE.	Operation	136	Display
100÷6=16.66666666		100€6	16.	6666667
(Sp	ecifies 4 dec	cimal places) 100174	ger refer	16,6667
i i	Clears th	e specification.) MINE 9	16.	66666667
(Spe	 cifies 5 signi	ficant digits.) III 85		1.66670
	(Clears the	e specification.) 🐠 9	16.	66666667
*Both the FIX and SCI specifi time, even during a calculat				dirəyaddi Avvoluksiya
(Sp		imal places:) IIIII 73	1	0.000
200÷7×14=400	5 1 d*6	200₩7■	i bu aya s	28.571
	ne internal 1	2-digit value) 🕱 14 🗖		400.000
Rounds off the inte	ernal value t	the FIX specification.	100	1.00
		200 🗗 7 🗖	H .	28.571
1.5	(Internal rou	nding) 11 14 =		399.994
1	(Clears th	e specification.) MIRE 9	1	399.994
123 m × 456 = 56088 m		123⊠456≣	1	56088.

-20-

78 🗙 0.96 🗖

SHIFT ENG

=56.088km

=0.07488kg

 $78g \times 0.96 = 74.88g$

56.08803

74.88

 0.07488^{03}

■ Using Parentheses.

Parentheses can be nested up to 6 levels, 18 pairs (page 17).

Example	Operation	Display
$100 - (2+3) \times 4 = 80$	ani a 100-02+3 0	- Somaker - Joya 5. i
Table Linding Commence of the	(Continuing) 🔀 4 🖃	80.
$(2+3)\times(4+5)=45$	- 2 + 30×04 + 5 =	45.
You may omit the first open parenthesis immediately precei		en in the section of
$ 10- 2+7\times(3+6) =-55$	10=@2#7×@3#6=	
$(2+3)\times 4-(5+6)\times 3$	2#3DX4#	State of the second second
×2=-26	((5#6)×3)×2≡	-26.
$\frac{2 \times 3 + 4}{5} = (2 \times 3 + 4) \div 5 = 2$	2×3+4D+5=	***
* In the above example, pressing to those obtained by 11.	produces results identical	
$\frac{2}{3} \left(\frac{8}{10} - \frac{1}{2} \right) = 0.2$	2 = 3 X	0.2
5×6+6×8	((5 x6 +6 x 8₽+	
$\frac{5 \times 6 + 6 \times 8}{15 \times 4 + 12 \times 3} = 0.8125$	(15 × 4 + 12 × 3 D =	0.8125
$= (5 \times 6 + 6 \times 8) \div (15 \times 4 +$	-12×3)	
 For complex fractions, distinguing the denominator by including all 		
$(1.2\times10^{19})-\{(2.5\times10^{20})$	1.2 IP 19 ■ U2.5 IP 20 🗷	
$\times \frac{3}{100} \mid =4.5 \times 10^{18}$	3₩10001≡	4.5 ¹⁸
$\frac{6}{4 \times 5} = 0.3$	4×5÷6 WH (=)=	0.3
400	Register exchange	ļ
* Another operation: 6 🚼 🔣 4		

■ Using Constants

Pressing any of the arithmetic operation keys twice (or any other even number of times) registers the currently displayed value as a constant. Then, each press of the key performs the arithmetic operation using the constant.

Example :	Operation /	Display
12 <u>+23</u> =35	23##12	35.
45 <u>+23</u> =68	45	68.
(-78) + 23 = -55	78₩■	-55
a i je a trobu kaj espiri servis. La la la la la	one sale Aleman artu.	leur a labharach a 1996 Tan a leadh a leanna
7 <u>-5.6</u> =1.4	5.6₽₽7目	
2.9 - 5.6 = -2.7	2.9 ■	-2.7
$(8.5 \times 10^3) - 5.6 = 8494.4$	8.5₽3■	8494.4
	5.0	27.6
$2.3 \times 12 = 27.6$	12🗆 2.3	[4] S. Carriero (S. Carriero (S
$(-4.56) \times 12 = -54.72$	್ರಕ್ಷ 4.56₩.■	₃₀₌₆₄₃₃ −54.72
0.6 <u>×12</u> =7.2	0.6	7.2
78 <u>÷9.6</u> =8.125	9.6₽₽78目	8.125
$(1.2 \times 10^{15}) \div 9.6 = 1.25 \times 10^{14}$	1.2015	1.2514
$45 \div 9.6 = 4.6875$	45■	4.6875
$\underline{3\times6\times9}=162$	3×6××9=	'∰, ':: 1 62.
3×6×8=144		144.
$\underline{3\times6\times}(5+6)=198$	(5 + 6))=	198.
17+17+17+17=68	1700000	68.
50-3.6-3.6-3.6=39.2	3.68850888	39.2
$\{(1.1^3)^2\}^2 = 3.138428377$	1.18888	1.331
		3.138428377
$\frac{15.56}{4\times(2+3)} = 2.8$	4×((2+3)+÷ 56=	.∷2; ; x(r - 3 20. 2.8
* and have the same refunction (page 21).	· 	

■ Performing Memory Calculations

Your scientific calculator is equipped with a single independent memory that is controlled using the Im, Im, and Im keys. It also has six constant memories that are controlled using the Kin, Keet, and 1 ~ 6 keys.

Both the independent and constant memories are non-volatile, which means that they retain their contents even when the calculator is switched off by the Auto Power OFF function. (C) 4 (D) 42 (M)

20159,280

10-=15-(3(-)

■ Using the Independent Memory

The independent memory is extremely handy when you wish to accumulate the results of different multiple operations.

Example	Operation	Display
23+9=32	23 + 9=SHITMin	1
53-6=47	53 ⊟ 6₩+	47.
$-)45 \times 2 = 90$	45 ▼ 2 MFT M-	90.
99÷3=33	99₩3₩	
(Total) 22	MR	1 14 14 22.
"Use I i io input the first value Also, as in the above example, tion of the key, besides accurrent the operation I is identicated the second in the peration I is identicated the second in the secon	H and P perform the func- amulating values in memory.	Booking Promotion (1)
$7+7+7+(2\times3)+(2\times3)$	7 MB MM M+2 ≥ 3 M+M+	impulés:
$+(2\times3)-(2\times3)=33$	M+) SXIFT)(M-) (MR)	%≓ 3 <u>×.</u> 33.
45 <u>×6</u> =270	6××45= WITH	270.
$-)12\underline{\times 6} = 72$	1 2 SHFT M-	59, 3 (3) 33 34 72.
78 <u>×6</u> =468	.78 ⊪	55 75 FB 1468.
(Total) 666	,945, 778 j : :::::	666.
7×4× <u>12.3</u> =344.4	7 🛘 4 🗗 1 2, 3 🛲 🖷 🚍	344.4
$-12.3 \times (8+5) = -159.9$	### ** (18 + 5)) =	-159.9
$(12.3+6)\times 9=164.7$		164.7

■ Using Constant Memories

The six constant memories are identified as K₁ through K₆. These memories can be used to store such values as data, constants and results, page 200 You can perform arithmetic operations within a K register by pressing Kin, followed by the desired arithmetic operation, and then a register specification ($(1 \sim B)$). • Constant memories can be used in the BASE-N mode by pressing 🖾 after the だっか 『佐藤山 』 されば 「10110 』

• Constant memories cannot be used in the IMP mode.

culation using the contents of the memories.

	· ·	The state of the s	A second of the contract of th
	Example	Operation	Display
	193.2÷23=8.4	193.2[h] +23 =	nigno na la pogo (<mark>8,4</mark>
٠,			
	$193.2 \div 42 = 4.6$	Kud 1 ÷ 42 ≡	309/6/10 00 cm 4.6
	*The above example can use t 193-2@@@£23 . ##£28	he independent memory. BE. ME42E - Programmer	Afficial appears
	9×6+3	98653560	

07**-23×8-11**2 Kout 1 - Kout 2 -*The above example separates (9 imes 6 + 3) and (7 - 2) imes8 into their own memories, and then performs the final cal-

7 Kin 1 × 8 Kin 2 × 9 Kin 3 = SMFFMin 504. $7\times8\times9=504$ yd tiu nei4×5×6=120caz ag 4 Kin + 1 × 5 Kin + 2 × 6 Kin + 3 Ht - 1 20: $3\times6\times9=162$ 3 Kin + 1 × 6 Kin + 2 × 9 Kin + 3 M+ 162. . 14. Total 14 19 24 786 Kori 1 Korl 2 19. Adds to constant memory 4. പാടുട്ട **(oat 3**) 24. $f \mapsto (\tilde{X} + \alpha)^* (x \cdot \alpha) (x \cdot (\alpha + 1) \cdot (\alpha + 1))$ 786. * █, █, and █ can also be used within the K registers in the

63.4 ·12×(<u>2⋅3+3.4</u>)−5=63.4⋅ |--12**|**X((2⋅3+3⋅4))||||1||=5|= 30×4.5 Kir + 1 Mil 1x-k 1 $30 \times (2.3 + 3.4 + 4.5) - 15 \times$ 4.5 = 238.5

To exchange the displayed number (4.5) with the contents of constant memory, 1. **■**15×**[m]** 238.5

.04

Graph Notes (in policiale)

40.

-24-

■ Entering Engineering Exponents

You can enter engineering exponents in the COMP mode ([600] 0) and the IMP mode (E). Note the following:

Operation	Unit	Unit Symbol	Operation	Unit	Unit Symbol
 90 (1) (MI) (2)	10 ⁻¹² 10 ⁻⁹	,	SHET &	10 ⁻³ 10 ³	m (Milli) ,yest (se k (Kilo) nestoe (M*(Mega)

If you specify an engineering exponent after you have already entered an exponent or after you have previously entered a different engineering exponents, only the exponent value changes. 1011 1011 103

Example

7 (6+3 7 (5):13 (1:12E If you enter an engineering exponent immediately following the Me key or while a calculation result is displayed, a mantissa of 1 is automatically used. The state of the s

Example

- Conference of the conference Immediately after you have entered an engineering exponent, you can change it by simply entering the new exponent. 901 max 5 1-3

the to get upon the brook or daily

6 (continuing from above.) 07→5.07

You can enter engineering exponents even in a program.

Example	Operation	(c Display
123×456×7.8m(Milli)	12324562	56088.
=437.4864	7.8¶∏ ₄ ¯	7.8-03
5.1.21 		437.4864
100k (Kilo)×5μ (Micro) =0.5	100 Mn 3 2 5 Mn 3 E	0.5

-25-

7 / PERFORMING BINARY, OCTAL, DECIMAL AND HEXADECIMAL CALCULATIONS

You can perform binary, octal, decimal, and hexadecimal calculations and conversions in the RUN mode (and) and the BASE-N mode (). You can specify the type of value you are entering by using m for binary, for octal, for decimal, this of helps and and for hexadecimal

Calculation Ranges | 1985

Note the following limitations for each of the number systems:

Positive: $0 \le x \le 2147483647$ Negative: $-2147483648 \le x \le -13$ Decimal (10 digits)

Hexadecimal (8 digits) Positive : $0 \le x \le 7FFFFFFF$

Negative: $80000000 \le x \le \text{FFFFFFF} \text{Matrix}_{0 \le 0 \le 1 \le 0 \le 1}$

Numbers Used in Each System

The following shows the numbers you can use with each number system. You will not be able to even enter any other number (i.e. it is impossible to enter a 5 when using binary). In hexadecimal, the letters B and D will appear on the display in lower case to avoid confusion with similar looking values.

2012/10/2014

0.000

BOOK W. LAW.

Binary : 0, 1 Octal (d = 0.94), 2/3, 4/5/6/7 d = beneal, see the construction of the c

Hexadecimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

1 300 - 002 0 - EC1.40

■ Performing Binary/Octal/Decimal/Hexadecimal Conversions

Example	Operation	Display
econo ena respensa se esta 22 ₁₀ conversion to binary ;	BASE-N specification	กระบาน เกลา การ การ การ การ การ การ การ การ การ กา
conversion to octal	. (807)	has manual in 26.03
conversion to hexadecia	i mal promine a praciny said:	ost na 2 poštaka ti6. Pri na posepaljana krajaka
513 ₁₀ conversion to binary	MC5139₩	_E-
* Sometimes it is impossible to co with a smaller range.	onvert from a number system wi	th a large range to a system
7FFFFF ₁₆ conversion to decimal	@40000000@	(Minty (N) 1 / Mina -536870912.4
4000000008 conversion to decimal	[1348] @4000000000@ [1348] 0 : videos	run R. Or alinerabilitätti.
123 ₁₀ conversion to octal	:	173.°
1100110 ₂ conversion to decimal sections	(M) 1100110 (EE)	
The Control of State and S	eist ein seinum mitt. Absch byr Clary, Ganett Abne joudo	Brander y St. 100 and to s. Procedure y mail (1966)

■ Expressing Negative Values

You can convert the currently displayed value to its negative equivalent by pressing the key. Negatives for binary, octal, and hexadecimal are expressed using their two's complement.

Consider an interest of femula days are employed of the School of

Example	Operation	Display
•	MORE 1 BASE-N specification	
Negative of 1010 ₂	III 1010 III	1111110110.
Conversion to decimal	DEC	-10.d
Negative of 12	BIN 1 KEB	1111111111
Negative of 2 ₈	0012 MES	77777 77 7776.°
Negative of 34 ₁₆	W34 W	FFFFFCC."

■ Performing Binary/Octal/Decimal/Hexadecimal Calculations

You can use memory calculations, parenthetical operations, and constants for calculations in any of the number systems.

Example	Operation	Display
	MODE 1 BASE-N specification	คอาณสากับ ชาย จลอบร
101112+110102=1100012	®10111 ⊞ 11010 ⊟	110001.
1238×ABC16=37AF416	@123 X @ABC■	37AF4 ^H
=228084 ₁₀	and the second	228084.d
1F2D ₁₆ - 100 ₁₀ = 7881 ₁₀	®1F2D■®100■	.008c 7881.⁴
=1EC9 ₁₆	NEX .	1EC9.*
$7654_{8} \div 12_{10} = 334.3 \cdots _{10}$	654≘ €12	51 (1.68°s) == 1334.
ar a day 1=516 ₈ 90 €350 90		comparance is 516.9
*Decimal portions are cut off.	reason to princte a not obtain that	
110 ±456 ∨78 - ±1∆	M110 + 6 456 ×	# 70 82 8560 30 0 080150.0
$110_2 + 456_8 \times 78_{10} \div 1 \text{ A}_{16}$		390,"
=390 ₁₆	@78 ₽ @1A ₽	6.0 = '5: '912'd'
-91210	AEC	
 Multiplication and division are tion and subtraction in mixed 	given precedence over addi-	
(44	1 - 1 - 1 - 1	System Celefolder 1785.9 15604.
$BC_{16} \times (14_{10} + 69_{10}) = 15604_1$	1	15004.
=3CF4 ₁	6 i . WEX	To Salat Late Week
23 ₈ + 963 ₁₀ = 982 ₁₀	@23\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	982.4
$23_8 + 101011_2 = 111110_2$	Ⅲ ₩₩101011	301003603.4 1 1/1 1 0. *
$2A56_{16} \times 23_8 = 32462_{16}$	Landersin 2A56 × ® ≡	381 2 32462. 8
1		
2B ₁₆ ×CD ₁₆ =226F ₁₆	®2BXXCD■	
2B ₁₆ ×58 ₁₀ =2494 ₁₀		2494.
2B ₁₆ ×63 ₈ =4221 ₈		, Timorra 0 4 221 .º
described on page 22:	elculations are performed as S	S134166 +

-28:-

8/USING FUNCTIONS IN CALCULATIONS

You can perform function calculations in the RUN mode ((EEE)) and the COMP mode ((EEE)). Function calculations are performed by first entering a value and pressing the key for the desired function.

Function calculations can be used in series with other functions and arithmetic operations, and with parentheses.

See page 87 for details on input pages and accuracy.

■ Using Trigonometric and Inverse Trigonometric Functions

Example	Operation	Display
14°25'36"=14.42666667"	14-25-36-	14.42666667
12.3456°=12°20'44.16"	12.3456 MITI	12-20-44.16

If the total number of digits required for degrees, minutes and seconds exceed eight, the higher order digits (degrees and minutes) are displayed, while the lower order (right side) digits are not. The entire value is retained internally as a decimal value.

The entire value is retained inter-	nally as a decimal value.	era kila sinci ekster irili, ta
sin63°52'41"= 0.897859012	635241晌	0.897859012
$\cos\left(\frac{\pi}{3}\text{rad}\right) = 0.5$	10015→"R" ##3=103	0.5
tan(-35grad)=-0.612800788	100E6→"G" 351/-[an	-0.612800788
2*sin45°×cos65°= 0.597672477	"D" 2 X 45 ≤ X 65 ∞ 3 3	0.597672477
sin-10.5=30°	" D "	30. 143 - 143 - 1782 - 178
$\cos^{-1}\frac{\sqrt{2}}{2} = 0.785398163$ rad	"R" 2√÷2=31166	0.785398163
$\frac{\pi}{4} \text{rad}$	こうこう (Continuing) 🔁 値 🖃	_ 0.25
$\tan^{-1}0.741 = 36.53844577^{\circ}$	" D "	36.53844577
=36°32′18.4″	(Continuing) (MIFT) 🏭	36º 32º 18.4
$2.5 \times (\sin^{-1}0.8 - \cos^{-1}0.9)$	"D" 2.5¥€ 8976	*\$5. == 0. 1 <u>.,41</u> ?
=68°13′13.53°		68º13º13.53

■ Using Logarithmic and Exponential Functions

Example	Operation	Display
$\log 1.23 (= \log_{10} 1.23) = 0.0$	9905111 1.23	0.089905 _. 111
In 90(=log _e 90)=4.49980	90 in	4.49980967
log456÷In 456=0.434294	181 456 SHIT WIN 109 - MA In =	0.434294481
auth 1 Nothern Co	en Tille Tiller i State i Med	Ali suma
10 ^{1,23} =16,98243652 (To determine the an-	1. 23 SHT(0)	693 0 scontinguetas 16.98243652
tilogarithm of common logarithm 1.23)		The activismostics (PRC)
$e^{4.5} = 90.0171313$ (To determine the antilogarithm of natural	4.5 (SNFT)e*	90.0171313
logarithm 4.5)		
422.5878	4 \$\text{\$\text{MFT} 00^1 \times 4 \text{\$\text{\$\text{MFT} 00^1 \times 4 \$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{	422.5878667
		22.00.000.
$5.6^{2.3} = 52.58143837$	5.6 SHT 2.3 ■	52.58143837
\$6,787980800 ja	e de la companya della companya della companya de la companya della companya dell	2011 Cacha R= 3.50 + 3
$123\overline{7} (= \sqrt[7]{123}) = 1.988647$	795 123 SHFF 🖃	1.988647795
38 201 FET 6		$\hat{\mathbf{g}}_{i}\hat{\mathbf{g}} = \hat{\mathbf{g}}_{i}\hat{\mathbf{g}} + \hat{\mathbf{g}}_{i}\hat{\mathbf{g}}$ (1)
32 30 0	2.5 SHFT (x') SHFT (x') 4 =	32.
$0.16^{2.5} = 0.01024$	te durete Jir	0.01024
$9^{2.5} = 243$	9 目	243.
the same procedures as	and $x^{1/2}$ are performed using hose used for the arithmetic	LENSOTT IN LIGHT OF
(78-23) -12=		Patan ye (film i s
1.305111829×10	²¹ (078 = 23)))	1.305111829-21
$2 + 3 \times \frac{64^{\frac{1}{3}}}{64^{\frac{1}{3}}} - 4 = 10$	2+3×64 mm@3-4=	14 17 12 15 16 16 16 16 16 16 16 16 16 16 16 16 16
2 ² ±3 ³ +4 ⁴ =287 2 \$\text{SHFT}	 	18 1 1 100 5 18 25 10 cm 2

-30-

$10^{5.1} + 9^{5.1} + e^{5.1} =$	5.1 SHIFT # SHIFT # 10 =	
199615.7293	SHFF Min 9 M+1 SHFF @ M+1 MR	199615.7293
(The above is identical to 5.18	### + 9 ### # 5.1 + 5.1 ## € =)
$2 \times 3 \cdot 4^{(5+6.7)} = 3306232.001$	2 × 3.4 967€ €5 ± 6.7	læ(30. j.m. tornik arad -
VACCOSHONIA LA	DE	3306232.001
log sin40°+log cos35°	MODE 4 → "D"	approximate to pr
=-0.278567983	40 sin log # 35 cos log =	-0.278567983
Antilogarithm is 0.526540784	(Continuing) SHFI 10°	0.526540784
(Calculation of the logarithm of sin40° × cos35°)	Second Control of the	no, and a look ladible of a common of a superior of the common of the co
- Marking to the		Maria Maria Same A

■ Using Hyperbolic and Inverse Hyperbolic Functions

N. 1	the state of the s	344.3
Example Example	Operation	Display
sinh3,6=18.28545536	3.6 m sin	18.28545536
orbuch said		18.6 Person 63.43007
tanh2.5=0.986614298	2.5 hypitan	0.986614298
REVERSION OF SEC.	PAG	ayyar yaşayın Mistir
cosh2.5—sinh2.5=0.082084998	2.5 SHIFT Min byo cos	6.13228948
$=e^{-2.5}$	MR (arg (sin)	0.082084998
$\{Proof of cosh^{X} \pm singh x =$	(Continuing) [In]	1900 at2.5
$e^{\pm x}$).	: -	Site of
sinh ⁻¹ 30=4,094622224	30 SHF (1986)	4.094622224
5 55 17. 00 10 22	residential and a second control of	in an above seed at 980
$\cosh^{-1}\left(\frac{20}{15}\right) = 0.795365461$	20 🖶 15 🗖 🖼 🗓	0.795365461
To calculate x when tanh 4 x = 0.88	$\mathbb{N}_{\mathcal{C}}(G_{\mathcal{C}_{\mathcal{A}}}(G_{\mathcal{C}_{\mathcal{A}}}), G_{\mathcal{C}_{\mathcal{A}}}(G_{\mathcal{C}_{\mathcal{A}}}) = \mathbb{N}_{\mathcal{C}_{\mathcal{A}}}(G_{\mathcal{C}_{\mathcal{A}}}(G_{\mathcal{C}_{\mathcal{A}}}), G_{\mathcal{C}_{\mathcal{A}}}(G_{\mathcal{C}_{\mathcal{A}}}))$	al more all
$x = \frac{\tanh^{-1}0.88}{4} = 0.343941914$	·88 WIT 1 1 2 4 =	0.343941914
sinh-12×cosh-11.5=	2 (MIT) MIT M	
1.389388923	1.5 Տոր հունա 🖨	1.389388923

-31-

■ Other Functions (√, 16, 2, 3√, RAN#) model as refinered operated.

Example	Operation	Display
$\sqrt{2} + \sqrt{5} = 3.65028154$	2 /+ 5 /=	3.65028154
$\frac{1}{3} - \frac{1}{4} = 12$	3 6 - 4 6 - 6	12.
$2^2+3^2+4^2+5^2=54$	2 (MF) x 3 (MF) x 4 (aat inflatora indius. 54.
$3\sqrt{36\times42\times49}=42$	(36×42×49)∭∏€	42.
Random number generation (pse the range of 0 \sim 0.999)	udo-random number in SHIFT RANG	(Ex.) 0.570
$\sqrt{13^2 - 5^2} + \sqrt{3^2 + 4^2} = 17$ (C)	1,3 mm x = 5 mm x n / =	. 65 og 35 s ig 35 s . 1,2. 201 deed ad alig o 1.7 ,
√1-sin²40°=0.766044443	"D" 1 = 40 5b 5HF1 z 1	iffyn 16
=cos40°		0.766044443
(Proof of $\cos \theta = \sqrt{1 - \sin^2 \theta}$)	(Continuing) (SIIF)	140.

20.7 Medatas

11.70 mg

[-188] [6085]

Elegantina au

1000/2008

-32-

la co**lculare** o lencion numero e le 25 cm² e l 562

r one i vistimise i l Pitas 8 ft - i n dw

■ Using Coordinate Conversion (R→P, P→R)

Polar coordinates

The value of θ in R \rightarrow P can be determined in the range of $-180^{\circ} < \theta \le 180^{\circ}$. The same true for both radians and grads.

46100600.0 - 65455 s

Principle authors in territors (gazius), ale worde of $\theta = 0.950$

Example	Segar	Operation	Display
To calculate r and θ° when $x = 14$ and $y =$	"D"	14 SWF) 🔂 20.7 🖹	6: 24 .98979 7 92
20.7	erriena (Cor	ntinuing) (SHET) (I—Y) (SHET) (III)	55955942.2 (degrees, minutes, seconds)
To calculate r and $ heta$ rad	" a "	7.5 🗯 🛱 10 📆 📮	12.5(i)
when $x = 7.5$ and $y = -10$		(Continuing) SHFT I+Y	-0.927295218
			(rad)
To calculate x and y when $r = 25$ and $\theta =$	"⋑"	25 SHIT = 56 =	13.97982259
56°			(x)
36		(Continuing) SKFT X→Y	20.72593931
			(y)
To calculate x and y	" G "	4.5 🕮 🛎 🛈 2 🕏	
when $r = 4.5$ and $\theta = 2/2 - red$		3 🗷 🚠 🛈 🗖	-2.25(x)
$2/3\pi$ rad		. (Continuing) SMFT (X+Y)	3.897114317(2)

■ Performing Percent Calculations

Percent calculations cannot be performed in the BASE-N mode and IMP mode.

Example	Operation	Display
Percent To calculate 17% of 1,500	collys [1881	Larley oppliedly in a
$1500 \times \frac{17}{100} = 255 (cc)$	1500 🗷 17 🕅 🖀	255 255
• Add-on To calculate 620g increase	 dîby 15%: pebriodis a avor 	ent folkspagen er Boat bleverer
$620+620\times\frac{15}{100}=713(g)$	620⊠15∭∄ 🗗	713
To calculate 7.53V decrease	Lun des énongias satisfis are v. g00000 es bohas ai sed by 4%.	effore yalingup of
7.53-7.53 $\times \frac{4}{100}$ =7.2288() • Ratio	V) _{>(1} 7.53⊠4∭ ≜ ⊟ .	ng say care 7,2288 .g080
To calculate what percent	of 9.6m is 7.8m.	
$\frac{7.8}{9.6} \times 100 = 81.25(\%)$	(13) Hooff o Letter é journe 7.8 ⊞9 .6 ⊞∄ 101	55 GH (cc)461 (5 df) 81:25
Rate of change To calculate what percent of ing quantity if 300g is add	the original is the result-	
$\frac{300+500}{500} \times 100 = 160(\%)$	300₩500₩∏	160
To calculate the percent incr from 40°C to 46°C.	i ease if temperature rises	
$\frac{46-40}{40} \times 100 = 15(\%)$	46 🚍 40 🖼	15

Percent Constants		-	
To calculate 15% of 150	=		Section 225.4
To calculate 23% of 15	OOg (Continuing	23 🖼 👛	345.
To calculate what perce			940 Te
	192	30 🕮 🛅	15.625
To calculate what perce	nt of 192g is 12g.	: (10/681 - []] - 180(c)
		1 2 SHFT 🛅	6.25
To calculate what percening quantity if 600g is a	added to 1200g.		'
d V		300 SHF 📸	5 - A profes 1 50.
To calculate what percening quantity if 510g is a	ddad to 1200a		\$ 10-MARCA ***
· · · · · · · · · · · · · · · · · · ·	4 4 4 4	510 📟 🛅	142.5
To calculate the percent 138g.	age decrease from 1	150g to	Application of the
	1.50	138 💷 🛅	-8.
To calculate the percent	age increase from 1	50g to	
168g.			December 1
•		168 🕮 📤	12.
	Artion call of feeliges	vited earliest	ne i jako in

i júdě as bostas kiptoti i již nem

9/PERFORMING STATISTICAL CALCULATIONS

Perform statistical calculations in the RUN mode (IIII). Before entering the statistical data, you should clear the memory by pressing 🗐 🚾 . Remember, the memories are not cleared when the calculator is switched off by the Auto Power OFF function. Color agreement parties of the real operations of the parties of t

■ Performing Standard Deviation Calculations

Press [3] and confirm that the "SD" indicator is shown on the display. Enter each data item, using the following operation:

DATA 🕮 - Enter negative values using 🖳

Repeat as many times as necessary to input all of the data.

Example: 50 🗷 🖾 (inputs - 50 as data)

You can also enter identical data items by pressing the makey repeatedly, or by using a multiplication operation. umen coup du la Linu

specified and peterbacist

Example: Data: 41, 41

41 DATA DATA

Data: 57, 57, 57, 57, 57, 57, 57, 57

57 **X** 8 **M** 10 0 10 10 1 10 1

● Standard Deviation Formulas (12)

The following formulas are used for standard deviation:

$$\sigma_n = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}} = \sqrt{\frac{\sum x^2 - (\sum x)^2/n}{n}}$$

(For population standard deviation when all of the data for a limited population

$$\sigma_{n-1} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}} = \sqrt{\frac{\sum x^2 - (\sum x)^2 / n}{n - 1}} = \sqrt{\frac{\sum x^2 - (\sum x)^2 / n}{n - 1}} = \frac{1}{n - 1} = \frac{1}$$

(For sample standard deviation using a sample from a population to estimate the standard deviation for the entire:population.) And may see the control of a fit of the control formula of the cont

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{\sum x_i}{n}$$

-36-

	1.	Example	•		Operation	Display	
Data: 55, 54, 51, 55, 53, 53, 53, 54, 52 * The same results can be obtained no matter in what sequence they are recalled.					INTERPORT STATE STATE		
				9	(Sum of squares Σx^2) [\mathfrak{sul}]	ee tve e •22805.	
au Va er	ariance nce be		e differ- ne mean		(Continuing) 阿克斯克 阿子 日日 55日 54日 51日	Unbiased 1.982142857 variance 1.625(55-x) 0.625(54-x) -2.375(51-x)	
	/hat is \bar{x} wing ta		or the fol-		SHIFT KAS 1 1 O 🔀 1 O DAYA	All (11 de 110.	
CI	lass No.	Class Value	Frequency		130 × 31 DATA	noom to part 1.30.	
	1 2 3	110 130 150	10 31 24		170MAMA 190MAMAMA 190MAMAMA	150. 170. 170. 190. 70.	
:	4 5	170 190	. 2 3			137.7/142857 18.42898069	

■ Correcting and Deleting Entered Data

- 1) To delete 50 mm which you have just entered: mm mm \square
- To delete 49 which you previously entered: 49 will consider a second
- To clear 51 X which you have just entered: 60: odv ibs in a next piece deta
- To clear 120 X 31 which you have just entered: AG
- To clear 120 X 30 M which you previously entered: 120 X 30 M M

10/PERFORMING IMPEDANCE CALCULATIONS

Enter the impedance calculation (IMP) mode by pressing [2], causing the indicator "IMP" to appear on the display. Entering the IMP mode automatically clears the contents of all of the constant memories.

You should note here that these memories cannot be used for constants in the IMP

The IMP mode makes it possible for you to perform complex number calculations and composite impedance calculations. When the result of a calculation in the IMP mode is a complex number, the real part will be displayed along with the symbol "--". This symbol indicates that an imaginary part also exists.

When you wish to view the imaginary part of the result, you press 🛱 or 🎟 🛱 . The indicator "j" will be on the display when the imaginary part of the result is shown. To go back to the real part of the result, press 🖶 or 💷 🛱 again.

When the result of the calculation is a pure imaginary number (real part is zero), the imaginary part is displayed immediately.

■ Composite Impedance Calculations

If you press the finkey immediately after you enter a value, the value you entered is treated as a frequency. Keep this in mind, because if you then try to perform complex number calculations, you will only get an error.

Next, if you press [37], the frequency will be recalled from memory.

■ Calculating Coil Impedance by the content of the

If you press the key after entering a value, or at some point during a calculation, the calculation proceeds assuming that the displayed value represents inductance (L[H]). If you try to perform this calculation on a complex number, you will get an

Calculation for the @ key is performed according to the formula f ($2\pi f$ L), so the result is an imaginary number.

-37-

To determine the composite impedance between a and b when f=50Hz.

MODE 2 (IMP mode)

50 (fin)

(To input as a frequency) · 1 🖘 31.41592654

+ • 2 🚳 62.83185307

o

50.

■ Calculating Capacitor Impedance

If you press the 14 key after entering a value, or at some point during a calculation, the calculation proceeds assuming that the displayed value represents electrostatic capacitance (C[F]). You cannot perform this calculation for a complex number. Calculation for the lacktriangledown key is performed according to the formula $^{1}\!\!\!/\!\!\!/$ $(2\pi fC)$, so the result is an imaginary number.

Example:

a C R b
$$Z=I/j\omega C+R$$
 $20\mu F$ 5Ω

To determine the composite impedance between a and b when $f = 60 \mathrm{Hz}$.

IMP mode)

60 📶 (To input as a frequency)

4 132.6291192 **+**5= ||-||-||-

132.6291192 lmaginary

IMP

ø 60.

20.

■ Calculating Parallel Circuit Impedance

If you press the // key after entering a value, or at some point during a calculation, the calculation proceeds assuming that the displayed value represents capacitance of a parallel circuit. In this case, you can perform this calculation for both real and imaginary numbers.

The // key can be used in both the COMP mode and SD mode.

Entering $a \parallel b \bowtie$ calculates $\frac{a \times b}{a + b}$

$$2 \text{ // } 3 \text{ } \Rightarrow \frac{2 \times 3}{2 \times 3} = \frac{6}{5} = 1.2$$

 $Z = (R_1 + j\omega L)//(R_2 + 1/j\omega C)$

To determine the composite impedance between a and b when f = 50Hz.

-39-

■ Using Complex Numbers in Calculations

Arithmetic operations, memory calculations, constant calculations and parenthetical calculations are all possible with complex numbers.

■ Using Complex Numbers in Arithmetic Operations

Input arithmetic operations as they are written, from left to right. When entering complex numbers, however, you should use the format "x + yj", where x is the real part and y is the imaginary part. In this case, enter "j" using the operations \blacksquare 2

Example	Operation	Display
	[2 (IMP)	
(2+3j)+(4+5j) 2	#39FFJ#4#59FFJ#	6.~
=6+8j	lt. ▶	8.~
(5+4j)-(7-2j)	5 4 4 387 7 4 0 7 2 2	$\label{eq:condition} S_{ij}\rangle = \frac{1}{\sqrt{2\pi}} \left(\frac{1}{2\pi} \left(\frac{1}{2\pi} \right) \right)$
=-2+6j		−2 .~
fa.	: :	. Γ. β. #. (6. 7
$(2+j)\times(2-j)$	((2 + 1 %)(7)) × ((2	
=5	- 1 SHF 7 D =	5.
$(-3+j)\div(1+2j)$	(3+4-1 SHFT) D ÷	
=-0.2+1.4j	(1 + 2 (III)) =	-0.2 [~]
· · · · · · · · · · · · · · · · · · ·	h-1	1.4~

■ Using Complex Numbers in Memory Calculations

You can add complex numbers to the independent memory using each and subtract them using each. The symbol "M" appears on the display whenever the independent memory contains both or either of the real part and the imaginary part. If you enter 0 using each, both the real and imaginary parts are cleared from memory.

You can recall values stored in memory using the Me key. Even when you recall a value from memory, it is still retained, so you can recall it as many times as you wish. An error is generated whenever the value stored in memory exceeds the allowable range. Even though an error occurs, the contents of the memory are retained. When you change from the IMP mode to any other mode, the imaginary part of the value stored in memory is cleared, but the real part is retained. Remember, you can only use the independent memory in the IMP mode. You cannot use the constant memories.

Example Operation		Display	
(6+4j)+(2-3j)	MODE (IMP)	4 * 1 × 60 1 × 60 4 ×	
=8+j	AC SHET MID 6 + 4 SHET [] + 2		
\$ p	3 (iii)	8.~	
	SHIFT Min the state of the stat	1.7 3 1 0 0 0 1 1 1 1 7 2 2 2	
(-3+2j)-(3+j)	(3#- + 2#170 - ()	-	
=-6-j	3 + 1 (MF) (7)) =	-6. 1.	
$-)(2+3j)\times(5-4j)$	((2+3987))×((5		
=22+7 j	- 4 SHIT J 33 =	22.	
	SHIFT (M-) 1:="	. 201	
$(4+2j) \div (1+j)$	1.0	istoriet i Stanisch d 1984 i Politika i Tärjenkooret	
i komuninada dha di ≘3 ⊯ajis	a - 11 a a a a a a + 1 (MFT J) = 1	97 27. """ - 3. 7. 19 3. "	
······	M+ It-ha	-1.	
(Total) -17-6 j		-	

■ Using Complex Numbers in Constant Calculations

diameters and restricted the Immediate conditions and the condi-

Though the constant memories are not available in the IMP mode, you can still perform one type of constant calculations. Just as with standard arithmetic calculations, pressing an arithmetic operation keys twice (or some other even number dimes) makes the displayed value a constant. You should note, however, that complex numbers do not have an power calculation function, so if you try to used 2 and 3 in constant calculations, you will generate an error.

where $x\in \mathbb{N}$, where $x\in \mathbb{N}$ is a substitution of the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ in the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ in the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and $x\in \mathbb{N}$ and $x\in \mathbb{N}$ are the $x\in \mathbb{N}$ and x

the product and the control of the control of the control of

-45-

Example	Operation	Dîsplay
(2+3j)+(5+4j)	(2 + 3 MII / D) + + ((5	14 1 2 to 14 5 5 5
=7+7	j	7.~
• •		7'
(2+3j)+(-4+2j)	((4 1/- 1 2 11/- 1 7 11/- 1	-2.
=-2+5	j Mila v odaju 🖺	(3 tv - 1 3 57
(2+3j)+(7-3j)	(17 3 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.
= 9		

■ Other Complex Number Calculations

In the IMP mode, parentheses can be used up to three levels and nine pairs. Pressing IMP exchanges the contents of the X register with those of the Y register. If you enter IMP (IMP), the calculator will produce the inverse of the displayed complex number.

Example:

Inverse of 1 - 2j

Whenever you change the sign of a complex number, it is changed for both the real and imaginary parts.

Example:

Pressing @ @ causes both the real and imaginary parts stored internally (Y register) to be cut off so as to be equal to the displayed value.

The following is a list of functions that will produce an error if you try to use them with complex numbers (though they are valid for the real part only).

sin cos tan
$$\sin^{-1}$$
 \cos^{-1} \tan^{-1} sinh cosh tanh \sinh^{-1} \cosh^{-1} \tanh^{-1} log in 10^x e^x x^y x^{y} $\sqrt{}$ $\sqrt{}$

11/USING BUILT-IN FORMULAS FOR CALCULATIONS

Your scientific calculator comes with 27 preprogrammed, built-in formulas. Just enter a number in the RUN mode (@#) and COMP mode (@#), and the formula you need appears.

Example:

8 FMU

To call up Formula 8 — Closed loop gain of operational amplifier inverting feed back circuit.

Clears variable contents

(Calls up Formula 8)

Formula number selected appears on the display for about 0.5 second.

un besond in the land gain grown if

Input standby display.

If you simply press the we key without entering a formula number, the formula you last called up will be recalled. An error will occur if the value you enter for the formula number is not within the range of 1 through 27.

* Once execution of a formula begins, the data you enter for the variables are stored in the constant memories (K registers). Because of this, you should make it a habit to clear the constant memories by Im to clear the constant memories by Impulsion to clear the constant memories are constant memories.

* You cannot perform built-in formula calculations in the BASE-N, SD, or IMP mode.
You must use the COMP mode (IMM 10).

age villagen in de leggischt ist varanden ist installation in der dan ein ein jedeckt versch

the company profession and the control of the control of the form of the

-48-

Once you call up a formula, prompts will appear in succession on the display to guide you through the input. Enter the required values to get the result.

Closed loop gain of operational amplifier non-inverting feed back circuit.

ணி க் 9 இடி (Calls up Formula 9)	Z'?	0. (10.00)
·10@65	Z'?	10.03
(Assigns 2 × 10 ³ to variable Zf)	Z?	0.
1 師()	Z?	10.03
(Assigns 10 \times 10 ³ [Ω] to variable Z)	U?	0.
The second secon	FM.A. □	1.
(Assigns 1 [V] to variable V}	U ₁ =	11. April and

Re-executing formulas

American Solo and Sol Once you execute a formula that you have called up, you can execute it again by simply pressing 🕮 or 📾 . On the second execution, the values that you entered the first time for the variables are still assigned. You can change these variables as they appear, and then press the M key to re-execute the formula with the new values.

ly first adj

Interrupting Formula Execution

Press the to interrupt execution of a formula. At this time, the display will clear and the calculator will switch to the normal calculation mode.

Clearing Errors Generated During Formula Execution

If an error occurs while you are entering values for a variables, press & followed by [III], and start again from the beginning. Note, however, that values that were successfully entered before the error are not cleared. If you wish to clear all of these values, press 🗺 🛗 and then 👊.

Should the error occur after all values are entered and actual calculations begin, first press (a) to clear the error condition. Next, Press (a) to start from the beginning. Again, values assigned to variables are not cleared by this operation.

globom V.S. Shara Toph Live Have 187

• Reading the Display of Formula Results & A Some series when we are not arrige

Once execution of the formula is complete, the results appear on the display in the format: "variable = value". If more than one results were produced, you will have to press the we key to advance to the next variable.

12/USING PROGRAMMED CALCULATIONS

Your scientific calculator has a 30-step capacity for storage of calculation formulas entered by you. Only one user formula can be contained in memory at any time. Entering your programmed calculation is as easy as performing the calculation in the LRN mode (). Once you do this, the calculator remembers the formula and you can recall it any time you like in the RUN mode (@]. Just as with builtin formulas, the calculator will ask you for the necessary data and perform the calculation for you automatically.

■ Programming a Formula

To determine impedance Z between a and b in a serial circuit, for each of the values given for resistor R, inductance L, electrostatic capacitance C, and frequency f in the table below.

Resistor R Electrostatic capacitance [μF]		Inductance L [H]	Frequency f	
p 10 5 5	5000 5 72 5-2	0.02	50	
5	30	0.03	60	

-50-

-49-

The following shows that key sequence required to input the required formula.

50 № 10 **1**5 ₪ 5 € 0.02 ®

Value of Nalue of R Value of C Value of L

 $\blacksquare \to Z$ (real part) $\blacksquare \to Z$ (imaginary part) $\blacksquare \to Z$ (imaginary part) $\blacksquare \to Z$ (operate the above sequence in the LRN mode ($\blacksquare \blacksquare \blacksquare$). Note that $\blacksquare \blacksquare$ must be pressed prior to data entry (the values of f, R, L and C in this case).

Operation	. situati eta anti eritten Henolid	in Ligher No sealch	Disp		erik Gereka diken Gereka diken	neil cerep en el Technico
(Enter LRN mode)	its fro toy	LRN	Vidi	. D.	Pro	1 124 min o
	AC MODE EXP				Ö.	Ì
(Enter IMP	node) ME 2	LAN	IMP	0	Pro O.	
The state of the s	19750 ∫ 10	LRN	IMP		50.	Little Alley Indicates and A Local of Paracola
The control of the second of the control of the con	III 10	LRN	JO.	, 1 9 77.,	1 O. 📾	, ik av je ida; de modiljeni
sabe in the second of the	·	D LRN	IMP 1		Pro :	Commission of the property of the commission of
	MT5	LRN	IMP		Pro 5. m	ik in than address dagt
	SHFT 3	LRN	. IMP	. 🗈	506	in any Ser
ed in the care mayor	. •	-63	мр 6.6.1			Politica de Nacionación de
Service Appellance (Appellance Service)	· · · · · · · · · · · · · · · · · · ·	LRN	IMP /		Pro ~. 1 ℃.	version de l'inchi Virendini (n. 1841)
•	⊞0.02	LRN	(MP	. O.	Pro 02 @	
		ERN 6.2	™ 2831	853	07	
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	8	LAN	IMP	0	Pro ~ 1 O	Result (real part)
Çir		-63	_{імР} 0.33	658	Pro ~ <i>i</i>	Result (imaginary

 \bullet Sample execution using the programmed formula $+i\chi\chi_{\rm eff}$, $\chi_{\rm eff}^{\rm obs}$

(Enter RUN mode) Pro AUN 0. 🖂 300 Pro :60 RUN 60.ඎ @ Pro 58UN 5. m Pro ~ 30 **@ 3** @ 5. 📼 Result Pro 0.03 (real part) Result (imaginary 77.10967928 part)

Example 2

To determine impedance Z between a and b in a parallel circuit, for each of the values given for resistor R, inductance L, electrostatic capacitance C, and frequency f in the table below.

19.5			
Resistor R [Ω]	Electrostatic capacitance [µF]	Inductance L [H]	Frequency f [Hz]
47		0.03	60
4	100	0.01	60

Formula $Z=R/I/j\omega C/J\omega L$ The state of the

• The following shows that key sequence required to input the required formula.

 $\begin{array}{c} 60 \text{ fin } 47 \text{ /// 1 SWF1 s} \text{ --- // 0.03} \\ \uparrow & \uparrow \\ \text{Value of } \text{ } \text{Value of } \text{ } \text{C} \end{array} \\ \text{Value of } \text{L}$

☐ → Z (real part)

F → Z (imaginary part)

Operation	Display
(Enter LRN mode)	LRN D Pro
(Enter IMP mode) 10082	£RN IMP □ Pro O.
60 Fin	LRN IMP ® Pro 60.
1 47	LRN IMP 19 Pro 47. ₁₉₃₁
#	LRN IMP © Pro
ET 1	LRN IMP D Profit there is a larger than the la
. Shift 3	LRN IMP © Pro 1-06
· -	LRN IMP © Pro / -2652.582385
	LRN IMP B Pro- 46.98524907
80 0.03	LRN IMP © Pro
·	LRN MP S Pro / 11.30973355
. 8	LRN MP © Pro~ Result (real part)
SHIFI (HLT)	LRN IMP 10 Pro~) Result (imaginary
	part)

• Sample execution using the programmed formula of the programmed formula (Enter RUN mode) : (E. C. offo) orbit positioners in quitarin in self-union specific in 9000 - 19 **Mp**.13 **0**10 u. 1 MODE • AC 0. oteral of the second sector of the se Na alike graped trabiti it kris 🎟 The area of a control only in the mini-Pro umma e 💎 a dinama mune 60 🞟 60. _E a sacialistical D Pro 4 RIN 4. Chimpion, C. D. C. Pro-100 SHF 3 RUN 3.911064<u>09</u> IMP, 1 D Pro~ 0.01 2.187548966 (real part) Result AUN

■ About Program Steps

Harle The table below illustrates how the program data entered for Example 2 is stored by the calculator.

1.991186929

(imaginary part)

	•		
Step	Contents	Step	Contents
1	MODE 2	7	-11-
2	ENT	. 8	11
3	f in $^{+}$	9	ENT
4	ENT	10	. 484
5		11	=
6	ENT	12	HLT
	16.3	13	Re⇔lm

The program can have up to 30 steps, and only one program can be stored at one time. If you try to store more than 30 steps, an error will occur ("-E-" appears on the display), and further input will become impossible. At this time, press to clear the error.

Once you begin to execute a programmed calculation, it follows the sequence you programmed without stopping, until it reaches the end of the program. If you want to input variable data or check an intermediate result, you have to stop program execution using EMI or SMIT MII.

-54-

Note that each step contains one *function*. This means that a step can have multiple key operations that make up a function. The following keys of the calculator are all counted as one step (one function).

■ About Variable Names ---

When you are programming a calculation, you can enter the alphabetic letters A through F instead of to act as variables. Then when you execute the calculation the calculator will prompt you for values for smoother calculations. Remember, however, that you cannot use variables in the IMP mode.

Example:

To determine the composite impedance between a and b in the circuit shown here, when A = 10 Ω , B = 5 Ω , C = 8 Ω , and D = 20 Ω .

standing to have their holders by switting in the Pr

and the street court are

Solve of Souther

man and with the street care of

Operation	l· ·		isplay	
(Enter the LRN and COMP modes)		LRN	0	Pro O.
		ERN ⊖?	.0	Pro O.
(A) (finish		B?	Ø	ν. Ο.
		C?	0	O.
		D.S.	O O	O. Pro
events for the second s) i 20	LAN	5 0. Tu	O.

Variable names A through F correspond to constant memories K₁ through K₆. Therefore, any values stored in the constant memories will appear on the display when executions reaches the corresponding variable name. If a value appears, just change it to the value you wish to use in the execution.

■ Erasing program

To erase a program without entering a new program, enter the LRN mode using , and then press 魇. Then you can return to the RUN mode by ①. You can also enter the LRN mode and simply begin to program a new calculation. This will automatically erase any program that may already be there.

■ Specifying the Calculation Mode in the LRN Mode

Besides functions, you can also include binary, octal, decimal and hexadecimal calculations, in addition to standard deviation within programmed calculations. To do this, however, you must also specify the correct calculation mode within the program. To do this, perform the following operation:

The other modes can be specified using the same procedure.

-55-

in the lewalks as a first of a first way regard use about an interdiscover and

all warms in the element of the flow his order energy

The state of the contract of the second of the contract of the

■ Looping a Programmed Calculation

You can make execution of the programmed calculation loop back to the beginning and repeatedly execute by using a return instruction.

1. Unconditional return to the first step of program: RTN Write the sequence of em em at the end of a program to execute it repeatedly.

Calculate the surface areas (S) of regular octahedrons whose ridges are respectively 10, 7 and 15 cm long.

Formula: $S = 2\sqrt{3} a^2$

Ridge length (a)	Surface area
10 cm	(346.41) cm ²
7	(169.74) ₍₃₀₆)
15	(779.42)

• The following sequence of key operations. Values enclosed with parenrealizes a mathematical procedure of the theses are to be obtained. above formula.

Operation:

	Step	Instruction	Flowchart Company
Fr Taphouella	ga đại i	ands ENT	🔄 u i liuman (v.) Start) sironoi acualed
into de loradotaria Internacional pristo	2	SHIFT x2	A decidence in the second sector of the manager of the control of
	3	×	Summer of the state of the stat
	. 4	. 2	Processing
	5	×	Substitute 14 Contracts
	6	3	RTN
ĺ	7,	SHIFT √	
	8		fina <mark>ma MARRAO</mark> (vincinia)
	9	SHIFT RTN	Fig. politica positivo qui noti i che e divente e le la ligita.

-57-

Diaplay Operation 16 - (Enter RUN mode) AC MODE • 0. RUK 0. (When a = 7) 169.7409791 📠 15 AUN (When a = 15). 779.4228634 🖽

- * If a program includes an RTN instruction but neither ENT nor HLT, the program will, once started, not stop in an endless loop. To stop the program in such a case, press ...
- 2. Return to the first step of program depending on the condition of the contents of the X register (display): x>0, x≦M
- x>0: Return to the first step of program if the contents of the X register is greater than zero and go to the next step otherwise.
- x≤M: Return to the first step of program if the contents of the X register is equal to or smaller than the contents of the M register and otherwise go to the next step.

To determine the largest value among the following: 456, 852, 321, 753, 369, 741, 684, 643

MODE EXP

EHT SKIFT ≠≤M SHIFT MIN SHIFT RTH

-59:-

13/FORMULA LIBRARY

1 Frequency of Electric Oscillation $f_0 = \frac{1}{2\pi\sqrt{LC}} \quad (L, C>0) \qquad \text{ if } C = \frac{L \log C}{0000} \quad R$ L is self-inductance, C is electric capacity f_0 is indicated as f_1 on the display.

This equation is used to determine the harmonic oscillation frequency of a circuit
when the self-inductance and electric capacity of the condensor are known.

AND A Stanfactor is the decrease in all the

Example

Determine the harmonic oscillation frequency of a circuit with self-inductance $L=60mH~(60\times10^{-3}H)$; and an electric capacity of $C=90\mu F~(90\times10^{-12}F)$.

(Recall frequency of electric oscillation.)

(Enter value for C.)

-60-

2 Change in Terminal Voltage of R in RC Series Circuit $V_R = V \cdot e^{-t/CR}$ (C, R>0, t>0) C is electrostatic capacity, R is resistance, t is time V_R is indicated as V_t on the display.

ullet This equation is used to determine voltage of terminal V_R in an RC series circuit at time t when the resistance and condenser capacity are known.

na sentra de la compania del compania de la compania del compania de la compania del la compania de la compania de la compania de la compania de la compania del la compania de la compania de la compania del la compania de la compania del la compania

Example

Determine the voltage at terminal R in an RC circuit at time t=10s when R=1M ohm $(1\times10^6$ ohms), $C=8\mu F$ $(8\times10^{-6}F)$, and V=90V. (When t=0s, voltage of terminal $V_R=0V$)

	Operation	Display
(Recall; change; in terminal to of R in RC series circuit.)	voltage SHIFT 12 FILL	₩? Ση πεωθε Ενώ Ο. -
(Enter value for V.)	90 RUN	t?
(Enter value for t.)	10 RUN	C.S
(Enter value for C.)	8 SHIFT 3 AVA	R? 0.02
(Enter value for R.)	and the figure	U ₁₌ 25.78543172

3 Time Constant for an RC Series Circuit

$$t = -CR \ln \frac{V_R}{V}$$
 $\left(\frac{V_R}{V} > 0, C > 0, R > 0\right)$

C is electrostatic capacitance, R is resistance, V_R is terminal voltage of R, V is terminal voltage between R and C. V_R is indicated as V_1 on the display.

 This equation is used to determine the time constant for an RC series circuit when the terminal voltage of R, resistance value and condenser capacitance are known.

Example

Determine the time constant for a series circuit when resistance $R=1M\Omega$ (1× $10^{-6}\Omega$), electrostatic capacitance $C=8\mu F$ (8×10⁻⁶F), and terminal voltage of V=90V, and VR=30V).

arrowed by the bull writing a control of a control of the bulleting of the

to the other than the	1000	Operation	: Display	11 1
(Recall time constant for an RC series circuit.)			C3 0).
(Enter value for C)		8 SHFT 3 RUN	R?).
(Enter value for R)		1 (SHIFT) & FUN	U? C).
and the state of the state of the	adjeto.	30	U? C).
(Enter value for V)	13.37	90®	t= 8.78889830	9

• This equation is used to convert from a Δ connection to a Y connection.

• A B A A Francisco to the first convert to the connection as a connection to the first connection of the connection

Example

Determine the R_4 , R_5 , R_6 values for a Y connection based upon a Δ connection of R_1 = 35 ohms, R_2 = 90 ohms, R_3 = 50 ohms.

	Opera	tion	Display	3.00m. 3.2.00
(Recall $\Delta \rightarrow Y$ convers	ion.) SHIFT AG 4	FMLA	() (100 3.49) (')	0.
(Enter value for R ₁ .)	35	D RUN	L ₁ .5	Õ.
(Enter value for R ₂ .)	90) RÜN	L .	o. ***
(Enter value for R ₃ .)	<u>. 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>		R =	.v 18.
		RUH	R' ₌ 25.71428	571
		AUN [R=	10.

 $R_1,\ R_2$ and R_3 are indicated as $r,\ r'$ and r respectively, $R_4,\ R_5$ and R_6 are indicated as $R,\ R'$ and R respectively,

where the second connection to a Δ connection. The equation is used to convert from a Y connection to a Δ connection.

Example

Control of the South

Determine the $R_1,\,R_2,\,R_3$ values for a Δ connection based upon a Y connection of R_4 = 20 ohms, R_5 = 30 ohms, R_6 = 50 ohms.

tourn dynamic

Market Commencer of the	Operation	'.' Display:
(Recall $Y \to \Delta$ conversion.)	SHIFT #6 5 FMLA	R ? 0.
(Enter value for R ₄ .)	20 AUN	R'? 6.
(Enter value for R_5 .)	30 RUH	R? 0.
(Enter value for R_{6} .)	50 RUM	r = 103.3333333
	RUN	r' ₌ 62.
	AUN	r = 155.

• This equation is used to determine R and R' to match Z and Z' with minimum loss. we consider the most of the observation of the solution of th

Determine the R and R' when Z = 500 ohms and Z' = 200 ohms.

10 y 10 f 40 c 11	* * * * *		Operation	Display
Recall resistance of i	matched	SHIFT	6 FMLA	Z? 0.
(Enter value for Z.)	J- 4	11 111111 2 3 411	500m	Z,3 08 N start # 00%
(Enter value for Z'.)		:		FOID O
·		19800	RON	R= 258.1988897
(L is a dummy.)		A Section	RUN	L= 7.44253053

- This equation is used to determine the power factor and lag angle * for an AC circuit when its resistance and impedance are known.
- * lag angle: expresses phase delay of electric current in relation to electromotive force.

ness geasons as with the engine of the boundary of those and shape. I ample on short shifted the country of the boundary as a mass geal which entress as a

Determine the lag angle for an AC circuit with a resistance of R = 12 ohms and impedance of Z = 16 ohms.

tij of lande fijt		у браном детног станов. Ч <u>в</u> "ninfo d cd Displaÿ сопобыр
	MODE 4	
(Recall power-factor.) -	SHIFT AS 7 FMLA	R? III O
(Enter value for R.)	12RW	Z?, 0.
(Enter value for 7-)	was a final contract of the co	θ ₌ 41.40962211

-.65:-

-66-

Closed Loop Gain of an Operational Amplifier Inverting Feed Back Circuit

$$v_0 = -\frac{Z_f}{Z_1} v \qquad \left(\frac{Z_f}{Z_1} > 0\right)$$

 Z_1 is input impedance, Z_f is output impedance, v is input voltage, vo is output voltage Z_1 , v_0 , Z_f are indicated as Z, v_1 , Z'respectively on the display.

· This equation is used to determines the output voltage for an inverting feed back circuit when the input impedance, output impedance, and input voltage are known.

Example

Determine output voltage v_0 when input impedance $Z_f = 10 \text{ k}$ ohm, output impedance Z = 100 k ohm, and input voltage ν = 1V.

	Operation	Display
(Recall closed loop gain of an operational amplifier invarting feed back circuit.)	SHIFT KAS 8 FMLA	Z'? O.
(Enter value for Z _f)	100 SKIFT = 1800	z? 0.
(Enter value for Z ₁)	1 O SHIFT 5 RUN	∨? 0.
(Enter value for ν)		V₁= −10

Closed Loop Gain of an Operational Amplifier Non-inverting Feed Back Circuit

Z₁ is input impedance, Z_f is output impedance, v is input voltage, v_0 is output voltage

 Z_1 , v_0 , Z_f are indicated as Z, v_1 , Z'respectively on the display.

• This equation is used to determines the output voltage for a non-inverting feed back circuit when the input impedance, output impedance, and input voltage are known.

Example

Determine output voltage v_0 when input impedance $Z_f = 1$ k ohm, output impedance Z = 10 k ohm, and input voltage v = 10 V.

of an algorithm of the copies to the entransmission of a property of

<u> </u>	Operation		Display
(Recall closed loop gain of an- operational amplifier non-inverting feed back circuit.)	SHIFT KAG 9 FMLA	Z"?	иж о О.
(Enter value for Z _f)	10 SHIFT E RUN	Z?	0. <u>, </u>
(Enter value for Z_1)	1 SHIFT BUN	V? .	0.
(Enter value for v)	10	V:=	110.

-R is resistor, C is electrostatic capacitance, ω is angular frequency, f is frequency

 This equation is used to determines the angular frequency and frequency for a primary filter when resistor and electrostatic capacitance are known.

Example

Determine angular frequency ω and frequency f when resistor R=10 k ohm, and electrostatic capacitance $C=0.002~\mu F$.

		Operation	o de la comp	isplay
(Recall primary filter	.).	SHIFT MAC 1 O FML)	R3000	លាង ០ 0. វភា
(Enter-value for R)		1 OSHFT STRUM	C? ;	<u>еил</u> ⊙ О.
(Enter value for C)		0.002\\f	ω =	50000.
ji Tirangan sa	- <u>-</u> Ma	RUN)	f = 7957.	747155
		P .		医异性 医线线管

$$G(dB) = 20 \log_{10} \left(\frac{E'}{E}\right) (dB) \text{ (E/E > 0)}$$

E is input voltage, E' is output voltage $|_{\{0,0\}\in G_{\mathbb{R}^n}}$, by the red output $\{0,1\}$

• This equation is used to determine the voltage gain of an amplifier circuit when the input voltage and output voltage are known.

Example

Determine the voltage gain, for an input voltage, of E=15M and an output voltage of E'=36V.

	Operation	Display
(Recall voltage gain.)	SHIT AT 1 1 FALA	E'? ************************************
(Enter value for E'.)	36 RUN	E? - 10 10 - 4.000 (1)
(Enter value for E.)	15. January 15. 11. 11.	G=7.604224834

12 Power Gain

$$G(dB) = 10 \log_{10} \left(\frac{P'}{P}\right) (dB)^{(A)} \qquad (P/P > 0)$$

P is input power, P' is output power

 This equation is used to determine the power gain of an amplifier circuit when the input power and output power are known.

Example

Determine the power gain for an input power of P=40mW ($40\times10^{-3}W$) and an output power of P'=5W.

<u>, in 1986</u>	(Manney 13	Operation	Display
(Recall power gain.)	SHIFT	12 MU	P' 0.
(Enter value for P'.)	41.12°C	5 NK	Р 0.
(Enter value for P.)	. 40	SHIFT (4") RUN	G=20.96910013

13 Resistance of a Conductor

$$R = \rho \frac{\ell}{S} \qquad (S, \ell, \rho > 0)$$

lis length of conductor, S is cross sectional area of conductor, p is resistance of material from which conductor is formed

This equation is used to determine the resistance of a conductor when the length and cross sectional area, as well as the resistance of the material from which the conductor is made are known as yield a prairie of the as

Example

Determine the resistance of copper wire for a length of $\ell=20m$ and cross sectional area of $S=1.6mm^2$ (1.6 x $10^{-6}m^2$). (The resistance of copper wire is $\rho=1.72\times 10^{-8}$ ohm • m.)

	Operation	Display
#1 <u>\$ 1</u>	an Israelyfi	
(Recall resistance of a cond		p?
		DEMON (c)
(Enter value for p.)-	1.72即8分剛	1?
1 259	Calsulausgo	FMUA D
(Enter value for (.)	20 800	5? 0.
L A Mai		IMIA O
(Enter value for S.)	1.6EP6#-RK	R ₌ 0.215
-1-0068.50V53.N.O.	(4.35%) AND [4]	The Markette Court of

14 Electrostatic Capacity between Parallel Plates

e is dielectric constant, S is area of parallel plates, d is distance between parallel plates

 This equation is used to determine the electrostatic capacity stored between parallel plates when the dielectric constant of the material used in the plates, the area of parallel plates and the distance between the plates are known

Example

Determine the electrostatic capacity stored between parallel plates with a dielectric constant of 2, when the area of the plates is $S=50\text{cm}^2$ ($50\times10^{-4}\text{m}^2$), and the distance between the two plates is d=2 cm. ($2\times10^{-2}\text{m}$). Permittivity of vacuum (ϵ_0) = $8.854187818\times10^{-12}\text{Fm}^{-1}$

and the second s	Operation	Display	
(Recall electrostatic capacity between parallel plates.)	SHIFT AC 14 FMLA	E?	0.
(Enter value for €.) 2 ≥ 8.8541878	1817121-W	5?	0.
(Enter value for S.)	50 EP 4 1/- RW	d? Œao	0.
(Enter value for d.)	2 EF 2 #- RW	C=4.4270939	09-12

15 Coulomb's Law

$$F = \frac{1}{4\pi\epsilon_0} \frac{Qq}{r^2} \qquad (r > 0) \qquad \begin{array}{c} \text{electric charge electric charge} \\ & \\ & \\ Q(c) \\ & \\ & \\ q(c) \end{array}$$

Q and q are sizes of two electric charges, r is distance between charges, ε_0 is permittivity.

minimum pritting in the said of the said of the

 This equation is used to determine the motive force between two electric charges when the size of the charges and the distance between them are known.

Example

Determine the motive force between two electric charges of sizes $Q = 3 \times 10^{-5}$ C (Coulombs) and $q = 2 \times 10^{-5}$ C, with a distance of r = 0.5m between the charges.

		Operation	Display
	2133 6 7		The signal of the diggs of
(Recall Coulom	b's law.)	SHIFT 66 15 FHLA	Q? O.
(Enter value fo	r Q.)	3 EXP 5 1/- RUN	q? <u>(m)</u> 0
(Enter value fo	г <i>q.</i>)	2\$P5 15 15 18 18 18	r? 0.
(Enter value fo	r <i>r.</i>)	0.5 NW	F ₌ 21.57012429

16 Joule's La	aw (1)
---------------	--------

V is potential difference, L is current which we are in the relative $\{A_i,A_j\}$

innyepa lehitaulti

• This equation is used to determine the Joule's heat generated by a wire when the potential difference of the wire and the current are known M. P. Sandari, M. Sandari, S. Sandari,

Example

Determine the Joule's heat generated when a voltage of $V\!=\!100V$ and current of I = 4 amperes are applied to an electric heater which some section of some section

	egiana i karak sa terhatik da a kara	Operation	
(Enter-value for V) 100 W I? O.	(Recall Joule's law (1).)		U? 0.
	(Enter value for V)	100₩	I? O.
(England 1912)	(Enter value for I)	4 RUN	P. 400.

-75-

Joule's Law (2)

 $P = RI^2$

(R > 0) $\rightarrow \phi - g \tau$

R is resistance, I is current; \mathbb{R}^{n} and undirection of the second of \mathbb{R}^{n}

· This equation is used to determine the Joule heat generated by a conductor when the resistance of the conductor and the current are known.

Example

Determine the Joule heat generated when an electric current of I=20 amperes flows through a copper wire of resistance $R = 1.7 \times 10^{-4}$ ohms. Tugged to be before the

· 	Operation	Display
(Recall Joule's law (2).)	SHIFT AS 17 FALL	R? 0.
(Enter value for R.)	1.7 EXP 4 +/- RUN	I?
(Enter value for I.)	120 m	P= 0.068

18 Joule's Law (3)

$$P = \frac{V^2}{R}$$

(R > 0

V is electric potential difference, R is resistance and a second

 This equation is used to determine the Joule heat generated by a conductor when its resistance and electric potential difference are known.

Example

Determine the Joule heat generated when an electric potential difference of V=100V is applied to a copper wire of resistance $R=1.1\times 10^{-2}$ ohms.

	Operation	Display
(Recall Joule's law (3).)	SHIFT AND 18 PMLA	U?
(Enter value for V.)	, 100 RUN	R?
(Enter value for R.)	1.1 EF2 #-100	P=909090.9091

19 Energy Stored in Electrostatic Capacity (1)

$$W = \frac{1}{2}QV$$

Q is capacity of electricity, V is potential difference

 This equation is used to determine the energy stored in a conductor when the capacity of electricity stored in the conductor and the potential difference are known.

Example

Determine the energy stored in a conductor with for a capacity of electricity $Q=1.2\times 10^{-5}C$ and potential difference of V=70V.

· 25	activiscons	Operation	Display
(Recall energy stored in electrostatic capacity.	(1).}	19 ML	Q? madin terrore O.h
(Enter value for Q.)	. 1.:	2 EXP 5 17-190N	U? 0.
(Enter value for V.)		70 RUN	W= 4.2 ⁻⁹⁴

20 Energy Stored in Electrostatic Capacity (2)

$$W = \frac{1}{2}CV^2$$

C is electrostatic capacity, V is electric potential difference

This equation is used to determine the energy stored in a conductor when the electrostatic capacity and electric potential difference of the conductor are known.

Example

Determine the energy stored in a conductor with an electrostatic capacity of $C=6\mu F$, and an electric potential difference of V=700V.

, .		Operation	Display
(Recall energy stored in electrostatic capacity (2).)		SHF	C?
(Enter value for C.)	11114	6 \$\text{HFT} = \text{RUM}	U?
(Enter value for V.)	, (° 5	700 RM	W= 1.47-

21 Energy Stored in Electrostatic Capacity (3)

$$W = \frac{1}{2} \frac{Q^2}{C} \qquad (C > 0)$$

C is electrostatic capacity, Q is quantity of electricity

authoritant in dispret in the translated beautiful and a disposition of

This equation is used to determine the energy stored in a conductor when the quantity of electricity stored in the conductor and the electrostatic capacity are known.

in culanti esa a ultir esta chana en lambianale lulla luce esteu elle luc. El abote su culantifaci en la lucation, per l'estre el su luce estame lambian.

Example

Same 1

Determine the energy stored in a conductor for a quantity of electricity $Q=4\times10^{-7}C$ and electrostatic capacity of $C=1.6\mu F$.

r of all the second	A CONTRACTOR OF STATE OF
1 ML Q?	0.51 (MIX 0:
#/- RON	···· O.
Jan Mar	1200 6 11 466 469 47 5 5. -08
	+/- RUN?

-79-

• This equation is used to determine the motive force for a current flowing in a conductor which is caused within a magnetic field of uniform magnetic flux density.

Participation of the section

Determine the motive force of a conductor when a current of I=4A flows through a conductor of length ℓ = 1.2m. The angle between the conductor and a uniform magnetic field with a magnetic flux density of B = 0.7 T is θ = 30 degrees.

	Operation	Display
(Degree)	MODE 4	<u> </u>
(Recall magnetic force.)	SHIFT AC 22 FMLA	I? O.
(Enter value for I.)	4 RUN	B? 0.
(Enter value for B.)	O.7 RUM	1? 0.
(Enter value for £.)	1.2 RUN	8? O.
(Enter value for θ .)	30 RUN	F ₌ 1.68

• This equation is used to determine induced electromotive force when the velocity, magnetic flux of the magnetic field and conductor length are known when the conductor is moved within a magnetic field.

stoja

Example of the solution of the state of the solution of the so Determine the electric potential difference generated at both ends of a conductor of length $\ell=1m$ when the conductor is moved through a magnetic field of $B=0.2\times 10^{-4}\,\frac{N}{Am}$ at a speed of $\nu=12m/s$.

	Operation	Con Display has been well.
(Recall induced electro	omotive SHITI AS 23 FMLA	V? • • • • • • • • • • • • • • • • • • •
(Enter value for v.)	12 W	B? 0.
(Enter value for B.)	0.214 1/811	1? O.
(Enter value for ℓ .)	1 AVA	V ₌ 2.4 ⁻⁰⁴

24 Lorentz Force

 $F = Bqv \qquad (B > 0)$

B is magnetic flux density, q is electronic charge, v is velocity

This equation is used to determine the Lorentz force at which particles are moving within a magnetic field when the magnetic flux density of the field, as well as the electronic charge and velocity of the particles are known.

gasper later N.C. turber have

and a side reage of a model to the correction of the submersion

 $4-8.3~\rm ja^{9}Re^{-2}~M_{\odot}~\rm s$

Example

Determine the Lorentz force when particles with an electronic charge of $q=1.602\times 10^{-19} \text{C}$ are moving at a velocity of $v=1\times 10^6 \text{m/s}$ through a magnetic field with a magnetic flux density of $B=0.5 \text{Wb/m}^2$.

Of the first after a tip :	Operation	Display
(Recall Lorentz force.)	SHIFT ACC 24 FMLA	B? 0.
(Enter value for B)	0.5	1930 0. 201
(Enter value for q)	1.602EF19#-NH	V? 0
(Enter value for v)	A STATE OF S	F = 8.01-14

25 Force Exerting on Magnetic Pole

F = mH

(m, H>0)

m is magnetic charge, H is magnetic field strength: $a_{m,n} = a_{m,n} + a_{m,n}$

This equation is used to determine the strength of a magnetic pole when the magnetic charge and magnetic field strength are known.

Example

Determine the strength of a magnetic pole for a magnetic charge of m=2 ampereturn/m, and a magnetic field strength of $H=3\times 10^{-3}$ Wb (Weber). The constraint of the strength of the stre

	Operati	ion	Display
(Recall force exerting opole.)	on magnetic	MLA M2	TRUE O
(Enter value for m.)		RUK H?	0.
(Enter value for H.)	30731	RUN F=	6. ⁻⁰³

-83-

26

Energy Density Stored in Electrostatic Field

$$w = \frac{1}{2} \varepsilon E^2 .$$

E is electric field, E is permittivity

 This equation is used to determine the electric energy in a system which includes. an electric substance when permittivity of the dielectric substance and the strength of the electric field are known.

Example

to the specific region of the contracting top with a facility of the ma-Determine the electric energy density for mice with permittivity of $\varepsilon=6.2\times10^{-11}$. F/m within an electric field of E = 200 V/m.

	Operation		Display
(Recall energy density stored in electrostatic field.)	SHIFT 🎊 26 FMLA	ε?	741 1
(Enter-value for ε.)	6.2EP11#-	E?	O.
(Enter-value for-E.)	200 RUN	Wニ	1.24-06

Magnetic Energy of Inductance

$$W = \frac{1}{2}LI^2$$

L is self-inductance of coil, I is current flowing in coil

• This equation is used to determine the electromagnetic energy stored in a coil when the self-inductance of the coil and current are known, missing the self-inductance of the coil and current are known,

with the contract of the second of the second of the second seco

Example

Consider the second of the sec Determine the electromagnetic energy stored in a coil when a current of I = 6A flows to a coil with a self-inductance of L=0.07H.

e, es	n Dide Canabile automore digitables Literation (accept Operation (ages	Display
(Recall magnetic energy o inductance.)	f SHIT MAG 27 FMLA 27	699 D: O.
(Enter value for L.)	0.07 RM I?	ила о О.
(Enter value for I.)	6 RW W =	1.26

-85

-86-

No from John State Communication of the Communicati was the perfect of laws the Hotel, a September 11.3

14/SPECIFICATIONS

m Basic features

•Basic operations: 4 basic calculations, constants for $+/-/\times/\div/x^y/x^{1/y}$, and parenthesis calculations.

Built-in functions: trigonometric/inverse trigonometric functions (with angle in degrees, radians or grads), hyperbolic/inverse hyperbolic functions, logarithmic/ exponential functions, reciprocals, square roots, powers, roots, decimal ↔ sexagesimal conversion, conversion of co-ordinate system (R \rightarrow P, P \rightarrow R), random number, π , percentages, and binary/octal/decimal/hexadecimal calculations.

•Statistical functions: population standard deviation, sample standard deviation, arithmetic mean, sum of square value, sum of value and number of data.

 Impedance calculation function: composite impedance for AC circuits (parallel / serial/mixed) that include registors, coils, and condensers. Absolute value and deviation angle of composite impedance.

Number of built-in formulas: 27

Memory: 1 independent memory and 6 constant memories.

Input range 1.24 2.34 Oütpüt: 3% Capacity: accuracy 🦠 10-digit mantissa, or 10-digit mantissa Entry/basic plus 2-digit exponent up to $10^{\pm 99}$. calculations: Scientific functions: $|x| < 9 \times 10^9$ degrees ±1 in the $\sin x/\cos x/\tan x$ 10th digit $(5 \times 10^7 \pi, 1 \times 10^{10} \text{ grad})$ $\sin^{-1}x/\cos^{-1}x$ $|x| \leq 1$ - ,, - $|x| < 1 \times 10^{100}$ $\tan^{-1}x$ nul err Him — ved x ≤ 230.2585092 **- ..** ⇒ sinhx/coshx $|x| < 1 \times 10^{100}$ tanh x $sinh^{-1} 1x$ $cosh^{-1} x$ - ... - $|x| < 5 \times 10^{99}$ $1 \le x < 5 \times 10^{99}$ tanh⁻¹x |x| < 1|x| < 1 $1 \times 10^{-99} \le x \le 10^{100}$ log x / ln x $-10^{100} < x \le 230.2585092$ $-10^{100} < x < 100$ 10^x $(x>0 \to -1 \times 10^{100} < y \cdot \log x < 100)$ $x=0\rightarrow y>0$ $x < 0 \rightarrow y$: integer or $\pm 1/2n + 1$ (n: integer) $(x>0 \rightarrow -10^{100} < 1/y \cdot \log x < 100)$ $x^{1/y} \left(\sqrt[y]{x} \right)$ $x=0\rightarrow v>0$ $\bigcup x < 0 \rightarrow y$: odd number or $\pm 1/n$ (n: natural number) $0 \le x < 1 \times 10^{100}$ $|x| < 1 \times 10^{100}$ _ ,, _ $|x| < 1 \times 10^{50}$ -87-

```
|x| < 1 \times 10^{100}, x \ne 0
1/x
                               |x| < 1 \times 10^{100}, x \ne 0

|\theta| < 9 \times 10^9 degrees

(5 \times 10^7 \pi, 1 \times 10^{10} grad), 0 \le r < 10^{100}

\sqrt{x^2 + y^2} < 1 \times 10^{100}
POL→REC
REC → POL
                               up to second
0 1 11
\pi
                               10 digits
Binary
                      Positive:
                                        0 \le x \le 1111111111
                                        100000000000 \le x \le 11111111111
                       Negative:
                                        0≤x≤377777777
4000000000≤x≤777777777
Octal
                      Positive:
                      Negative:
Decimal
                      Positive:
                                        0≤x≤2147483647
                                         -2147483648≤x<0
                      Negative:
Hexadecimal
```

Positive: 0*≤x≤* 7FFFFFF Negative: 80000000 ≤ x ≤ FFFFFFF

*Errors are cumulative with such internal continuous calculations as x^y , $x^{1/y}$, $\sqrt[3]{}$. so accuracy may be adversely affected.

*In tanx, $|x| \neq 90^{\circ} \times (2n+1)$, $|x| \neq \pi/2$ rad $\times (2n+1)$, $|x| \neq 100$ gra $\times (2n+1)$ (n is an

integer.) *With sinh x and tanh x, errors are cumulative and adversely affected when x=0.

■ Programmable features:

•Total number of steps: up to 30 (1 step performs a function).

•Jump: Unconditional jump (RTN), conditional jump $(x>0, x \le M)$.

•Number of programs storable: 1

■ Decimal point: Full floating with underflow.

■ Read-out: Liquid crystal display

■ Power source: Amorphous silicon solar cell, Lithium battery (GR927)

■ Lithium battery life: 7 years with GR927 (1-hour daily use).

■ Ambient temperature range: 0°C-40°C (32°F-104°F)

■ Dimensions: 8.5mmH x 73mmW x 140mmD $(5/16"H \times 2^7/8"W \times 5^1/2"D)$

■ Weight: 68 g (2,4 oz)