Section 16.5 Curl and Divergence

There are two more operations that can be performed on vector fields, called divergence and curl, which are measures of how fluid/flow (or whatever the vector field represents) is behaving at a point (x, y, z) in the vector field.

The **del operator**, denoted by ∇ , is defined as $\nabla = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle$.

Note that this is **not** the same as the gradient.

If $\mathbf{F} = \langle P, Q, R \rangle$ is a a vector field and the partial derivatives of P, Q, and R all exist, then the **divergence** of F is defined as $\nabla \cdot \mathbf{F}$.

$$\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \left\langle \frac{\partial}{\partial x}, \ \frac{\partial}{\partial y}, \ \frac{\partial}{\partial z} \right\rangle \cdot \left\langle P, \ Q, \ R \right\rangle \ = \ \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

The divergence of a vector field \mathbf{F} is a measurement of how much fluid/flow enters the neighborhood around a point P compared to how much fluid/flow exits the neighborhood around P. In other words, it is a measure of the *net change* in fluid/flow entering and exiting.

If more fluid/flow leaves the neighborhood around P than enters it, the divergence will be positive.

If the same amount of fluid/flow leaves the neighborhood as enters it, the divergence will be zero.

If less fluid/flow leaves the neighborhood around P than enters it, the divergence will be negative.

Find the divergence of $\mathbf{F} = \langle x^2 y^2, xz, yz^3 \rangle$.

Find the divergence of $\mathbf{F} = \langle e^z \cos y, 0, \sin(xy) \rangle$.

If $\mathbf{F} = \langle P, Q, R \rangle$ is a a vector field and the partial derivatives of P, Q, and R all exist, then the **curl** of \mathbf{F} is defined by $\nabla \times \mathbf{F}$.

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

The curl measures the tendency of the fluid/flow to rotate in a neighborhood around a point.

Find the curl of $\mathbf{F} = \langle e^z \cos y, \ x^2 y z^2, \ \sin(xy) \rangle$.

Theorem: If **F** is a vector field defined on all of \Re^3 whose component functions have continuous partial derivatives, then **F** is conservative if and only if and curl **F** = **0**.

Determine if the vector field $\mathbf{F} = \langle 2xy, x^2 + z^3, 3yz^2 \rangle$ is conservative.

Section 16.6 Parametric Surfaces and their Areas

Recall that a *curve* can be parameterized with ONE parameter, which we usually called t. However, to parameterize a *surface*, we need TWO parameters, which we usually call u and v (but could be anything). So, x, y, and z can all be expressed in terms of two parameters/variables.

Parameterize the paraboloid $z = 9 - x^2 - y^2$.

Parameterize the cone $x = \sqrt{y^2 + z^2}$.

Parameterize the cylinder $x^2 + y^2 = 4$.

Given a parametrically-defined surface $\mathbf{r}(u,v)$, the tangent plane to the surface at any point has normal vector given by $\mathbf{r}_u \times \mathbf{r}_v$.

Find the tangent plane to the surface given by $\mathbf{r}(u,v) = \langle u^2 + 1, v^3 + 1, u + v \rangle$ at the point where u = 2 and v = 1.

In the case where z can be written in terms of x and y, then $\mathbf{r}_x \times \mathbf{r}_y = \langle -f_x, -f_y, 1 \rangle$.

Find the tangent plane to the paraboloid $z = 9 - x^2 - y^2$ at the point (1, 1, 7).

Surface Area

We learned in Chapter 15 that given a surface, z = f(x, y), its surface area is given by

$$\iint\limits_{D} \sqrt{1 + f_x^2 + f_y^2} \ dA$$

For parametrically-defined surfaces in which z cannot be written explicitly as a function of x and y, we can use the following.

If a smooth parametric surface S is given by $\mathbf{r}(u, v)$, and S is covered just once as (u, v) ranges throughout the parametric domain D, then the **surface area** of S is

$$A(S) = \iint\limits_{D} |\mathbf{r}_{u} \times \mathbf{r}_{v}| \ dA$$

Recall from spherical coordinates, a sphere with radius ρ can be parameterized as

$$x = \rho \sin \phi \cos \theta$$
, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$

So, $\mathbf{r}(\theta, \phi) = \langle \rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi \rangle$. Note that this is a function of two parameters, θ and ϕ . The value of ρ IS the radius of the sphere because we are on the *surface* of the sphere, not within it.

$$\mathbf{r}_{\phi} \times \mathbf{r}_{\theta} = \left\langle \rho^2 \sin^2 \phi \cos \theta, \rho^2 \sin^2 \phi \sin \theta, \rho^2 \sin \phi \cos \phi \right\rangle$$
$$|\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}| = \rho^2 \sin \phi$$

Find the surface area of the part of the sphere $x^2 + y^2 + z^2 = 16$ that lies above the cone $z = \sqrt{x^2 + y^2}$.

Section 16.7 Surface Integrals

Suppose we want to integrate a function f(x, y, z) over a surface S given by $\mathbf{r}(u, v)$. Then the **surface** integral of f over S is

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(\mathbf{r}(u, v)) |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA$$

If the surface S is explicitly given as z = g(x, y), then this can be simplified to

$$\iint_{S} f(x, y, g(x, y)) dS = \iint_{D} f(x, y, g(x, y)) \sqrt{1 + g_x^2 + g_y^2} dA$$

Evaluate $\iint_S (2y+z) dS$ where S is defined by $\mathbf{r}(u,v) = \langle 3u+v, u-2v, 3-u+v \rangle, 0 \le u \le 1$ and $0 \le v \le 2$.

Evaluate $\iint_S (x^2 + y^2) dS$ where S is the part of the paraboloid $z = 4 - x^2 - y^2$ that lies above the xy-plane.

Evaluate $\iint_S yz^2 dS$ where S is the part of the cone $y = \sqrt{x^2 + z^2}$, with $0 \le y \le 2$.

Reminder: For a sphere of radius ρ :

$$\mathbf{r}_{\phi} \times \mathbf{r}_{\theta} = \left\langle \rho^2 \sin^2 \phi \cos \theta, \rho^2 \sin^2 \phi \sin \theta, \rho^2 \sin \phi \cos \phi \right\rangle$$
$$|\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}| = \rho^2 \sin \phi$$

Evaluate $\iint_S z \, dS$ where S is the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the cone $z = \sqrt{x^2 + y^2}$.

Flux: Surface Integrals through Vector Fields

When dealing with surfaces in vector fields, we must have an orientation for the surface because we are looking at two-sided surfaces. The normal vectors to the surface provide this orientation, but there are always two normal vectors!

The usual orientation we choose is the upward orientation where the \mathbf{k} components of the normal vector is positive. If the problem doesn't state the orientation, assume upward. However, if the problem says to use downward orientation, we want to have a negative \mathbf{k} component.

For closed surfaces, we use the normal vectors that point *outward* from the surface. This is called the positive orientation of a closed surface.

Suppose $\mathbf{F} = \langle P, Q, R \rangle$ is a vector field that contains the surface S where S is given by $\mathbf{r}(u, v)$. The amount of fluid/flow that passes through the surface S is called the flux of \mathbf{F} across the surface S and is given by

$$\iint\limits_{S} \mathbf{F} \cdot d\mathbf{S} = \iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iint\limits_{D} \mathbf{F}(\mathbf{r}(u, v)) \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) \, dA$$

If the surface can be written as z = f(x, y), remember that $\mathbf{r}_x \times \mathbf{r}_y = \langle -f_x, -f_y, 1 \rangle$, which has upward orientation.

Find the flux of the vector field $\mathbf{F}=\langle x,y,-2x\rangle$ across the surface S where S is the part of the cone $z=\sqrt{x^2+y^2}$ that lies below the sphere $x^2+y^2+z^2=8$ and has downward orientation.