常用电子仪器的使用

院 系: 自动化系

班 级: 自02班

学 号: 2020011075

目录

1	实验目的	2
2	预习任务	2
3	实验任务	4
	3.1 用示波器通道 1 测量 Demo2 波形	4
	3.2 用示波器通道 1 测量信号发生器产生的矩形脉冲波	4
	3.3 测量 3.2 中矩形脉冲波的上升/下降时间	4
	3.4 用示波器通道 2 观察并测量产生波形的直流偏移	5
	3.5 示波器的 YT 和 XY 模式	6
	3.6 研究示波器探头 ×1 和 ×10 档对于测量结果的影响	. 7
	3.7 测量正弦交流电压的相位差	7
4	实验总结	9
5	思考题	11
6	原始数据	12

2021 年 10 月 20 日 2020011075

1 实验目的

1. 了解示波器、函数信号发生器、数字万用表等常用电子仪器的基本功能和主要技术指标。

- 2. 熟悉 DSO-X 2012A 示波器使用方法。
- 3. 掌握 TFG6920A 型函数信号发生器的使用方法。

2 预习任务

- 1. 阅读《数字示波器用户指南》和《函数发生器用户指南》,完成以下内容:
 - (1) 了解示波器、信号发生器的基本功能与用途。
 - (2) 阅读《数字示波器用户指南》P27 和 P35, 熟悉示波器的前面板和屏幕显示信息定义。
 - (3) 阅读《数字示波器用户指南》P43 P44, 了解示波器 XY 模式测量相位差的方法。
- 2. 阅读网络学堂中《几种函数波形的主要电参数及其测量方法》,完成以下内容:
 - (1) 了解函数波形的幅度、周期、相位差等主要电参数的测试点及其测量方法。
 - (2) 画出矩形脉冲波、锯齿波和正弦波,并根据实验任务要求在波形上标注待测电参数的测试点。

图 1: 绘图

3.	写出选做任务	1	输入	、信号 v _{I1}	和 v_{I2}	的类型、	幅度和频率,	并设计数据记录表格。
ο.			41HI / 1		7H 012		PH / X / 1 H / J / X - 1 + 1	/ VX V XX J/D V AX TU 0

	类型	幅度/V	频率/Hz
v_{I1}	正弦交流波	1	1×10^{5}
v_{I2}	正弦交流波	1	5×10^5

实验记录表格设计如下:

输入信号	探头	输出信号测量结果			
潮八百 万		V_O	周期 T	频率 <i>f</i>	
21	×1 档				
v_{I1}	×10 档				
	×1 档				
v_{I2}	×10 档				

4. 写出选做任务 2 输入信号 v_I 的类型、幅度和频率,计算图 7 电路中 v_I 与 v_O 的相位差及 v_O 的幅度。

	类型	幅度/V	频率/Hz
v_I	正弦交流波	2	1×10^4

下计算图 7 中 v_I 和 v_O 的相位差以及 v_O 的幅度:

$$\begin{array}{c|c}
R_1 \\
\hline
v_1 & C_1 \\
\hline
3300 \text{pF}
\end{array}$$

图 2: 选做任务 2 电路

$$\begin{array}{rcl} \dot{U} & = & \sqrt{2} \ \angle{0^{\circ}} \\ \dot{I} & = & \frac{\dot{U}}{R_{1} + \frac{1}{j\omega C}} \\ & = & \frac{\sqrt{2} \ \angle{0^{\circ}}}{5100 + \frac{1}{i \times 10^{4} \times 3300 \times 10^{-12}}} \\ & = & 2.01 \times 10^{-4} \angle{43.4^{\circ}} \\ \dot{U}_{0} & = & \dot{I} \cdot X_{C1} \\ & = & 2.01 \times 10^{-4} \angle{43.4^{\circ}} \times \frac{1}{i \times 10^{4} \times 3300 \times 10^{-12}} \\ & = & 0.97 \angle{-46.6^{\circ}} \\ \Delta \varphi & = & \varphi_{1} - \varphi_{0} = 46.6^{\circ} \\ U_{0max} & = & \sqrt{2}U_{m} = \sqrt{2} \times 0.97 = 1.37V \end{array}$$

即 v_I 和 v_O 的相位差为 $46.6^\circ, v_O$ 的幅度为 1.37V。

3 实验任务

3.1 用示波器通道 1 测量 Demo2 波形

数据记录:

10114	
示波器的触发源	CH1
示波器的水平定标	$500.1 \mu \mathrm{s/DIV}$
Demo2 的周期 T	$0.9989~\mathrm{ms}$
Demo2 的脉宽 t_w	$0.5001~\mathrm{ms}$
示波器的垂直定标	0.500 V/DIV
Demo2 的幅度 V_m	2.51 V

波形绘制:

图 3: Demo2 波形

3.2 用示波器通道 1 测量信号发生器产生的矩形脉冲波

数据记录:

信号源设置	示波器设置		示波器测量	量波形参数	
偏移 / 低电平	通道 1 菜单: 耦合方式	幅度 V_{m}	周期 T	脉宽 t_w	占空比 q
$0.0~\mathrm{mVdc}$ /-2.50 Vdc	直流 DC	5.03 V	1.00 ms	$200.1 \mu s$	20.01 %

3.3 测量 3.2 中矩形脉冲波的上升/下降时间

数据记录:

(1) 测量 V_{m1} 信号的上升时间 t_r :

示波器的水平定标	上升时间 t _r	触发源	触发斜率
14.5 ns/DIV	18.8 ns	CH2	上升沿

(2) 测量上升时间时的波形:

图 4: V_{m1} 上升时间测量波形

(3) 测量 V_{m1} 信号的下降时间 t_f :

示波器的水平定标	下降时间 t _r	触发源	触发斜率
14.5 ns/DIV	18.1 ns	CH2	下降沿

3.4 用示波器通道 2 观察并测量产生波形的直流偏移

数据记录:

(1) 示波器观测 $V_{\rm m2}$

V m₂ 的高电平	4.98 V
$V_{\mathrm{m}2}$ 的低电平	$-50 \mathrm{mV}$
示波器的输入耦合方式	直流 DC
示波器的触发源	CH2

(2) 绘制 V_{m2} 波形

图 5: 锯齿波 V_{m2} 波形

2021 年 10 月 20 日 2020011075

(3) 改变耦合方式为 AC, 观察实验现象。

波形并未发生明显改变,但是零电平点位置从波形最低值点移动至波形中部,波形关于零电平点对称,电压最大值变为 2.41V, 电压最低值变为 2.49V, 峰-峰值几乎没有改变, 说明直流偏置被阻碍。

(4) 恢复耦合方式为 DC,调节信号源波形对称度,观察波形变化。

随着对称度的调节,锯齿波幅度周期均未改变,而同一周期内电压上升时间和下降时间的比例 改变,即占空比发生改变。

3.5 示波器的 YT 和 XY 模式

测试电路图如图所示, v_I 是由函数信号发生器输出 $100{\rm Hz}$ 、 $0~5{\rm V}$ 、对称性 50% 的锯齿波。将示波器通道一接入 v_I ,通道二接入 v_O 。

图 6: 实验五电路

数据记录:

(1) 时基模式为"标准"(YT)模式下的波形

图 7: YT 波形

(2) 时基模式为 "XY" 模式下的波形

图 8: XY 波形

(3) 对照两种波形分析对应关系

XY 模式下 V_{NL} 区域对应着 YT 模式下输出信号的低电平, V_{NH} 区域对应着 YT 模式下输出信号的低电平;中间 V_{th} 表示阈值电压;输入噪声容限为 V_{NL} 和 V_{NH} ; V_{NL} 表示当 $V_{I} \leq 2.5V$ 时,输出高电平, V_{NH} 表示当 $V_{I} \geq 2.5V$ 时,输出低电平,这与 YT 模式的波形以及与非门特性相符合。

3.6 研究示波器探头×1 和×10 档对于测量结果的影响

数据记录:

输入信号	探头	输出信号测量结果		
1		V_O	周期 T	频率 ƒ
	×1 档	478mV	$9.9950 \mu s$	100.05kHz
v_{I1}	×10 档	519mV	$10.008 \mu s$	99.92kHz
21	×1 档	267mV	$1.9995 \mu s$	500.1kHz
v_{I2}	×10 档	482mV	$2.0020 \mu s$	499.5kHz

总结示波器输入电容对测量结果的影响以及如何正确使用探头 ×1 档和 ×10 档:

电容的容抗公式为: $X_c = \frac{1}{j\omega C}$, 我们知道示波器存在输入电阻和电容, 当频率增大时, 电容的容抗明显减小, 电容和电阻并联电路的分压降低, 而 ×1 档电容大于 ×10 档, 所以 ×1 档分压降低得更多导致测得的电压幅度减小。

因此在测量时, 当测量不是很小的信号时使用 ×10 探头为宜, 可使结果更准确。当信号的频率和幅值均较小时使用 ×1 探头进行测量。

3.7 测量正弦交流电压的相位差

输入信号 $v_I = 2sin(2\pi \times 10 \times 10^3 t)V$

图 9: 选做任务 2 电路

(1) 时基模式为"标准"(YT)模式下的数据以及波形

$$\Delta x = 12.40 \mu s$$

$$T = 99.96 \mu s$$

$$\Delta \phi = \frac{\Delta x}{T} \times 360 \circ = 44.66^{\circ}$$

图 10: YT 波形

v_I 幅度	vo 幅度	相位差 $\Delta\phi$
2.05	1.49	44.66°

(2) 时基模式为"XY"模式下的数据以及波形

$$D=1.52V$$

$$C=1.06V$$

$$\Delta\phi=\arcsin\frac{C}{D}=44.22^{\circ}$$

v_I 幅度	v_O 幅度	相位差 $\Delta\phi$
2.10	1.52	44.22°

图 11: XY 波形

4 实验总结

1. 示波器测量各波形参数的方法:

电压测量:

 S_Y 表示示波器垂直定标旋钮的位置; k 表示示波器探头的倍增系数; H 表示待测电压在屏幕上 y 方向占据的格数; 那么有 $V=S_Y \times H \times k$ 。

对于正余弦交流电或者带直流偏量的正余弦交流电,我们可以利用上述方法测得电压幅度和直流偏置。要注意的是,测量无偏置正余弦交流电时耦合方式选择 AC,测量有偏置正余弦交流电时耦合方式选择 DC,否则直流偏置会消失。同理,在测量有直流分量的锯齿波时也要采用 DC 的耦合方式。

周期测量:

W 表示示波器水平定标旋钮的位置, L_X 表示两个方向相同的过零点之间的距离,则有: $T=W\times L_X$ 。

对于比较特别的脉冲波,我们需要测量他的以下参数: 脉冲周期 T: 两个相邻脉冲之间的时间间隔; 脉冲幅度 Vm: 脉冲电压的最大变化幅度; 脉冲宽度 t_W : 从脉冲前沿到达 0.5Vm 起,到脉冲后沿到达 0.5Vm 止的一段时间; 上升时间 t_r : 脉冲上升沿从 0.1Vm 上升到 0.9Vm 所需的时间; 下降时间 t_f : 脉冲下降沿从 0.9Vm 下降到 0.1Vm 所需的时间; 占空比 q: 脉冲宽度与脉冲周期的比值,亦即 q=t W/T。

图 12: 脉冲波参数测量位置

其中比较特殊的是上升时间和下降时间的测量:首先调节垂直定标旋钮,使脉冲波形占满整数大格之间;触发斜率选择上升沿触发;调节水平定标旋钮展开波形;读取上升沿从10%Vm上升到90%Vm所需时间。同理,将触发斜率改为下降沿触发,读取下降时间。

图 13: 上升时间的测量

相位测量:

在示波器的 YT 模式下,若 ϕ 表示相位差, L_X 表示两信号同一相位点之间的距离,则有: $\phi = \frac{L_{\pi}}{2} \times 360^{\circ}$ 。

也可以采用示波器的 XY 模式测量相位差, XY 模式图形如下, 则有 $sin\theta = \frac{C}{D} = \frac{A}{B}$.

图 14: XY 模式测量相位差所需参数

2. 根据必做任务 4, 归纳总结选取示波器"通道菜单"中输入耦合方式(DC/AC)的原则。

纯直流信号,输入耦合方式选择 DC; 纯交流信号,输入耦合方式选择 AC。有直流偏移的交流信号,可先用 AC 分离出交流信号分量,再用 DC 观察整体信号从而得到直流偏置。

- 3. 通过此次实验, 其他需要总结的测试方法、注意事项或解决方案等。
 - 1. 观察输出波形时触发源通道一定要与输入电压通道对应,否则会出现如实验四时遇到的脉冲波上升曲线变为直线的奇怪情况;
 - 2. 记录波形时将波形移动至屏幕中央,调节适当的高度和周期数后再做记录;
 - 3. 示波器探头倍增系数调整时,要记得在面板上做相应的设置调整,否则测量值会和实际值出现倍数差异;

 2021 年 10 月 20 日 2020011075

- 4. 搭建面包板时,接线要简洁美观实用,杜绝导线相压的情况发生;
- 5. CMOS 集成电路芯片不用的输入端不能悬空, 而应该接地(或者接低电平);
- 6. 通过使用 measure 按键提供的快照功能可以准确迅速的读出绝大多数待测量值;
- 7. 所有实验仪器和电路要共地。

5 思考题

1. 能否用带宽为 100MHz 的示波器准确观测到 100MHz 的矩形脉冲信号?如不行,请推荐所用示波器的带宽。

根据方波的傅里叶展开可知,方波实际上是由无数奇数次谐波叠加而成,而除了第一项以外,奇数次谐波的频率均大于脉冲信号频率 100Mhz, 故会被同样带宽的示波器过滤掉。根据查阅,了解到示波器的"五倍法则",即为保证测试精度,建议示波器带宽至少为正弦波的 5 倍。同时根据下图,我们可以发现,在 n=5 时波形大致拟合成功, 故可以采用带宽为 500MHz 的示波器, 当然带宽更高的示波器效果可能更好。

图 15: 方波的拟合

2. 在电子电路实验中,为什么电子仪器要与被测电路共地?

电子仪器要与被测电路共地,使得他们有公共的电势基准点,减小测量误差,同时将基准点与 大地相连可以减少外界干扰,并起到保护作用。

3. 示波器"通道菜单"的输入耦合方式分为直流 (DC) 耦合和交流 (AC) 耦合。试写出如测量图 (a)、(b)、(c) 三种波形,各应选择哪种输入耦合方式?

(a) 图采用直流耦合输入(DC); (b) 图采用交流耦合输入(AC); (c) 图中若想观测完整波形 采用直流耦合 (DC), 若只观测交流分量则采用交流耦合 (AC)。

原始数据 6

1. 用示波器通道 1 测量 Demo2 波形

(1) 观测波形并记录以下数据。

μS/DIV Demo2 的周期 T 0.9989 mS 示波器的垂直定标 0.500 V/DIV Demo2 的幅度 V_m _ 2.5 |

(2) 记录 Demo2 波形于图 1 中,并标出所测 V_m 、T、 I_W 的测试点和零电平指示的位置。

2. 用示波器通道 1 测量信号发生器产生的矩形脉冲波

调节信号发生器(以下简称信号源),使其输出矩形脉冲波 V_{ml} ,幅度为5V、频率为1kHz。用示 波器测量波形参数,记录仪器菜单的设置和数据于表 1 中。测试中注意观察零电平位置及示波器的相 关设置。

表1 矩形脉冲波 Vml

2.50 V / 0 V	DC	5.03V	1.00ms	200.1/45	20.01%
偏移 / 低电平	通道 菜单: 耦合方式	幅度 V _m	周期 T	脉宽 tw	占空比。
信号源设置	示波器设置		示波器测	量波形参数	

3. 测量 2.中矩形脉冲波的上升/下降时间

(1) 用示波器测量 V_{ml} 信号的上升时间 t_r , 记录以下数据及单位。

水平定标 14.50 ns/DIV 上升时间 tr 18.8 nS

触发源 CH2 (trigger 菜单) 上刊沒 (trigger 菜单) 触发斜率

- (2) 记录测量 t_r时的波形于图 2 中,标出 t_r的测量点。
 - 图 2 V_{ml} 上升时间 t_r 的测试

触发斜率 **下降光** (trigger菜单)

4. 用示波器通道 2 观察并测量波形的直流偏移

(3) 测量 V_{ml} 信号的下降时间 t_f

调节信号源使之产生100Hz、 $0\sim5$ V (即低电平0V、高电平5V) 锯齿波 V_{m2} 。

(1) 用示波器观测 V_{m2} , 记录以下数据及单位。

Vm2 的高电平 4.98 V Vm2 的低电平 _- 50 m V

输入耦合方式 DC (通道2菜单) → (trigger 菜単)

- 低值和零电平指示的位置。 (3)改变示波器通道 2 菜单中的输入耦合方式为"AC", 观察实验现象。以文字说明或图片形式记录实验现象。
- (4)恢复"DC"耦合方式之后,调节信号源的输出波形【对称度】,观察波形的变化。以文字说 明或图片形式记录实验现象。

洗妆好多1:

65 1 62 EL	15.28	输出值号测量结果		
输入信号	探头	V_O)約別7	頻率 f
v_{I1}	×1 档	478 mV	9.9950 MS	100.05KHZ
	×10 档	519 mV	10.008 US	99.92KHZ
v_{I2}	×1 档	267mV	1.9995MS	500.1KHZ
	×10 档	482 mV	2.0020 NS	4995KHZ

选做化多L:

v, 幅	直	vo 輻值	相位差 Δφ
2.05	1	1.49 V	44.66

$$\Delta \phi = \frac{\Delta X}{T} \times 360^{\circ} = 44.66^{\circ}$$

♡/ 鰯笛	vo 幅值	相位差 Δφ
2.10 V	1.52 V	44.22°

$$\Delta \phi = \arcsin \frac{C}{D} = 44.22^{\circ}$$