BG.b – Resolução Teste 2020-2021

Felipe B. Pinto 61387 – MIEQB

11 de abril de 2023

Conteúdo

Questao 4	2	Questao 13							6
Questão 7	3	Questão 14							7
Questão 10	4	Questão 15							8
Questão 11	5	Questão 20							9

O par D-Glucosa e D-Mannosa são:

- (a) Anomeros
- (b) Epímeros
- (c) Um par aldosa-cetosa
- (d) Um par cetosa-cetosa

Resposta

Epimeros:

• Dois esterioisômeros que diferem em apenas um carbono quiral.

Anomeros:

- na forma de anel um epímero é chamado de anômero
- Um tipo especial de epimero
- um dos dois tipos de estereoisomeros de um sacarídeo cíclico

Rs: (a)

Escolha a opção correta

- 1. Os D-monossacáridos são típicamente aldoses, enquanto os L-sacáridos são cetoses
- 2. Os D-monossacáridos tem sempre cinco ou mais átomos de carbono
- 3. Os D-monossacáridos como o carbono anomerio live são redutores
- 4. Tosos os D-polissacaridos são polímero lineares de unidades sacáridos identicas

Os monossacaridos são os compostos mais simples de carboidrato, possuindo de 3 a 7 carbonos

RS:

Glicogenio é a forma de reserva de energia (glucose em animais). O glicogenio tem um lado reativo e redutor e outro lado não redutor.

Onde se produz a rapida mobilização metabólica da glucose quando precisamos de energia?

- (a) No lado reativo e redutor
- (b) No lado não reativo
- (c) Na zona média do glicogenio
- (d) Nas cadeias laterais α1-4

RS: (b

A rotação específica dos anomeros puros alpha e beta da D-glucosa é $+112^{\circ}$ e $+18.7^{\circ}$ respectivamente. Quando um cristal puro de α -D glucopyranose é dissolvido em agua a rotação específica diminui em 112° a um valor de equilibrio de 52.7° . Quais a proporções dos anomeros alpha e beta no equilíbrio.

	lpha/%	eta/%
(a)	36	67
(b)	64	36
(c)	36	64
(d)	67	33

$$52.7 = \lambda_{\alpha} 112 + \lambda_{\beta} 18.7 \implies 0.36 * 112 + 0.64 * 18.7 \cong 52.29$$

RS: (c)

Diga qual a afirmação verdadeira O sacarído αD (glucopiranósido)-1, 4–D (glucopiranósido)

- 1. É um monosacárido em que o carbono anomérico tem configuração alpha
- 2. É um dissacárido de glucose em que a ligação glicsídica é alpha 1-4
- 3. É um dissacárido de glucose e galactose em que a ligação envolve o carbono anomérico da unidade glucose e o átomo de carbono C4 da unidade galactose
- 4. É um oligossacárido de glucose com quatro unidades constituintes

Suponha que uma proteína tem 3 sítios diferentes para fazer ligações glicosídicas tipo N. quantas prteínas diferentes poderemos ter?

(não tenha em consideração o tipo de carbohidrato que se poderia ligar).

Ligações Glicosidicas

• São ligações que ligam um grupo carbohidrato (açucar) a um outro grupo que pode ou não ser outro carbohidrato

N-Glícosidicas

- É uma ligação glicosídica onde o Oxigenio é substuido por um Nitrogenio
- Substancias contendo esse tipo de ligação são conhecidas por glicosilaminas

Carbono Anomérico

• Carbono proximo de algo que não é um carbono em uma cadeia organica que tem a tendencia a ligar a um novo grupo (rever definição)

Diga qual das afirmações é falsa:

- 1. Os carbohidratos tambem designados por sacáridos, são aldeídos ou caetona com multiplos grupos —OH
- 2. Os carbohidratos, tambem designados por sacaridos, tem capacidade para ciclização interna dando origem a furanosidos ou piranosidos
- 3. Muitos carboxilos

Quantos fosfolipideos ha num mm² de uma bicamada lipidica? Suponha que cada fsofoípido ocupa 70 Ų (1 Å = 1 E -10 m)

$$1 \,\mu\text{m}^2 * \left(\frac{1 \,\text{Å}}{1 \,\text{E} - 10 \,\text{m}}\right)^2 * \frac{\text{lipideos}}{70 \,\text{Å}^2} * 2 = \\ = (1 \,\text{E} - 12 * 1 \,\text{E} + 20 * 2/70) \text{lipideos} = 2.86 \,\text{E6} \,\text{lipideos}$$