

S-INF: Towards Realistic Indoor Scene Synthesis via Scene Implicit Neural Field

Zixi Liang, Guowei Xu, Haifeng Wu, Ye Huang, Wen Li*, Lixin Duan

Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China

AAAI-25 / IAAI-25 / EAAI-25 | FEBRUARY 25 - MARCH 4, 2025 | PHILADELPHIA, USA

Abstract — Learning-based methods have become increasingly popular in 3D indoor scene synthesis (ISS), showing superior performance over traditional optimization-based approaches. These learning-based methods typically model distributions on simple yet explicit scene representations using generative models. However, due to the oversimplified explicit representations that overlook detailed information and the lack of guidance from multimodal relationships within the scene, most learning-based methods struggle to generate indoor scenes with realistic object arrangements and styles. In this paper, we introduce a new method, Scene Implicit Neural Field (SINF), for indoor scene synthesis, aiming to learn meaningful representations of multimodal relationships, to enhance the realism of indoor scene synthesis. S-INF assumes that the scene layout is often related to the object-detailed information. It disentangles the multimodal relationships into scene layout relationships and detailed object relationships, fusing them later through implicit neural fields (INFs). By learning specialized scene layout relationships and projecting them into S-INF, we achieve a realistic generation of scene layout. Additionally, S-INF captures dense and detailed object relationships through differentiable rendering, ensuring stylistic consistency across objects. Through extensive experiments on the benchmark 3D-FRONT dataset, we demonstrate that our method consistently achieves state-of-the-art performance under different types of ISS.

(a) Previous Methods

(b) Our Scene Implicit Neural Field (S-INF)

Figure 1: We enhance the implicit modeling process from the S-INF with scene layout relationships and detailed object relationships, to achieve more realistic generations.

 $\{b_i\}_{i=1}^n = \mathbf{D}_{RS}(z)$ $\{x_i\}_{i=1}^n = \{D_{IS}(b_i)\}_{i=1}^n$ (a) Previous Methods $f_b, l_b = \mathbf{D}_{RS}(z)$ $\{x_i\}_{i=1}^n = (\mathbf{D}_{IS} \circ f_b)(l_b)$ 1. Use **D**_{RS} to decouple Scene Layout Relationship into the layout l_b and Detailed Object Relationship into the INF f_b 2. Use D_{IS} to project the layout l_b into the INF f_h and obtains refined deformations at each points, applying a transformation to the spheres to generate the related shapes $\{x_i\}_{i=1}^n$.

To model the p(X) from

the Relation Decoder

Ground Truth Ground Truth Ours Ours **Ground Truth** Figure 3: Comparisons between ground truth (cols 1, 3, and 5) and our generated 3D indoor scenes (cols 2, 4, and 6).

		Bedroom					Living Room				Dining Room			
Met.	Re?	FID^{\downarrow}	KL^{\downarrow}	SCA∼	Div [↑]	FID [↓]	KL^{\downarrow}	SCA∼	Div [↑]	FID↓	KL^{\downarrow}	SCA∼	Div^{\uparrow}	
NN	×	161.39	0.2521	0.8832	0.7284	188.25	0.1455	0.8565	0.7354	203.34	0.4252	0.9163	0.7346	
Tr	\times	156.42	0.2082	0.8742	0.7271	156.48	0.1339	0.8583	0.7414	162.82	0.2528	0.8821	0.7456	
SP	×	164.70	0.2165	0.8596	0.7338	172.31	0.1357	0.8205	0.7390	168.85	0.2640	0.8812	0.7441	
Ours	×	131.47	0.1985	0.8393	0.7379	155.47	0.1334	0.8034	0.7431	157.93	0.2342	0.8476	0.7465	
SG		119.68	0.2403	0.8128	0.7083	179.32	0.2190	0.8669	0.7260	99.97	0.2866	0.7062	0.7146	
AT	\checkmark	118.38	0.2069	0.7632	0.7161	174.13	0.3024	0.8871	0.7320	131.16	0.2397	0.7802	0.7063	
NN	V	114.63	0.2521	0.7105	0.7072	81.34	0.1455	0.6455	0.7188	84.46	0.4252	0.6437	0.7174	
Tr	V	117.02	0.2082	0.7865	0.7161	85.46	0.1339	0.6582	0.7106	97.55	0.2528	0.7020	0.7094	
SP	V	110.74	0.2165	0.7994	0.7223	84.36	0.1357	0.6708	0.7269	131.20	0.2640	0.8792	0.7036	
ES	V	107.27	3 1	0.6994	0.7259	109.30	= 1	0.6792	0.7275	119.30	1 	0.7500	0.7208	
DS	V	84.40	0.2060	0.6319	0.7118	82.00	0.1771	0.6433	0.7319	86.28	0.2464	0.6533	0.7206	
IS	$\sqrt{}$	89.68	-	0.6202	0.7231	80.15	-	0.6435	0.7233	86.55	-	0.6706	0.7285	
Ours	\checkmark	79.52	0.1985	0.6128	0.7319	78.98	0.1334	0.6371	0.7322	79.95	0.2342	0.6236	0.7297	

Table 1: We conducted a quantitative comparison of our method with state-of-the-art approaches on the 3D-FRONT dataset, where our method consistently demonstrated superior performance. Note that since EchoScene (ES) and InstructScene (IS) are class-conditional, their category-KL divergence is excluded, "Re" is retreival and "~" in SCA indicates that 0.5 is optimal.

Figure 4: Realistic ISS from multimodal relationships

Figure 5: Style consistancy ISS from detailed object relationships.