Claims

What is claimed is:

1	1.	A computer-implemented method for generating graphical warps or deformations
2		through transformation of an undeformed model to a deformed model, said
3		computer-implemented method comprising:
4		receiving said undeformed model and a set of feature specifications each of said set
5		of feature specifications comprising a source feature, a target feature, and related
6		deformation parameters;
7		receiving a set of transformations corresponding to said set of feature specifications
8		and for mapping said source feature to said target feature in each of said set of
9		feature specifications;
0		receiving a set of strength fields corresponding to said set of feature specifications
1		and defined over said undeformed model for scaling the magnitude of each of said
2		set of transformations, establishing a set of scaled transformations;
3		receiving a set of weighting fields corresponding to said set of feature specifications
4		and defined over said undeformed model for determining the relative influence of
5		said set of scaled transformations;
6		computing a sum of said set of scaled transformations weighted by said set of
7		weighting fields, for deforming said undeformed model to generate said deformed
8		model; and
9		returning said deformed model.
1	2.	The computer-implemented method according to claim 1 wherein at least one of
2		said set of feature specifications is continuous and has corresponding parameterized
3		strength field, transformation, and weighting field, and further comprising:
4		receiving a sampling function for discretizing said parameterized transformation
5		and sampling said strength field and said weighting field;
6		computing a discretized transformation, a sampled strength field, and a sampled

7		weighting field with said sampling function; and wherein said step of computing an
8		sum of said set of scaled transformations employs said discretized transformation,
9		said sampled strength field, and said sampled weighting field.
1	3.	The computer-implemented method according to claim 2 wherein said set of feature
2		specifications, said set of transformations, said set of strength fields, said set of
3		weighting fields, and said sampling function are received by a combined function
4		that computes said discretized transformation, said sampled strength field, and said
5		sampled weighting field.
1	4.	The computer-implemented method according to claim 1 wherein:
2		said set of feature specifications comprises a plurality of line segment features;
3		said set of transformations corresponding to said plurality of line segment features
4		map source coordinate frames to target coordinate frames; and
5		said set of weighting fields corresponding said plurality of line segment features fall
6	٠	off with distance.
1	5.	The computer-implemented method according to claim 4 wherein:
2		said set of weighting fields give influence to line segment features in said plurality of
3		line segment features in relation to their length.
1	6:	The computer-implemented method according to claim 4 wherein:
2		said source coordinate frames comprise a constrained basis vector and an
3		unconstrained basis vector and wherein said unconstrained basis vector is selected
4		responsive to a weighted sum of the vectors perpendicular to the constrained basis
5		vector for each of said target coordinate frames.

said set of feature specifications comprises control points in an at least two

The computer-implemented method according to claim 1 wherein:

7.

1

2

4		coordinate system;
	*	
5		said set of weighting fields corresponding to said control points comprise Bernstein
6 7		polynomials with arguments comprising points of said undeformed model represented in said local coordinate system.
′		
1	8.	The computer-implemented method according to claim 1 wherein:
2		said set of feature specifications comprises an oriented point in an least two
3	•	dimensional lattice; said at least two dimensional lattice having an associated local
4		coordinate system;
5		the transformation in said set of transformations corresponding to said oriented
6		maps a source coordinate frame to a target coordinate frames; and
7		said set of weighting fields corresponding to said oriented points comprise
8 .		Bernstein polynomials with arguments comprising points of said undeformed
9		model represented in said local coordinate system.
1	9.	The computer-implemented method according to claim 1 wherein:
2 .		said set of transformations comprises a geometrically parameterized transformation
1	10.	The computer-implemented method according to claim 9 wherein:
2		said set of transformations comprises plural geometrically parameterized
3		transformations; and
4		said set of strength fields modulate said plural geometrically parameterized
5		transformations.
1	11.	The computer-implemented method according to claim 10 wherein:
2		said set of weighting fields blend said plural geometrically parameterized
3		transformations.

1	12.	The computer-implemented method according to claim 1 wherein:
2		at least one of said set of feature specifications comprises a source curve and a
3		target curve;
4		corresponding members of said set of transformations comprise a composition of a
5		translation from points along said source curve to points along said target curve, a
6		rotation taking the tangent at said points along said source curve to the tangent at
7		said points along said target curve, and a scale centered at said points along said
8		source curve;
9		corresponding members of said set of strength fields comprise a falloff function
0		having a domain and a range and monotonically decreasing over said range, and
1		wherein over at least a portion of said domain arguments of said falloff function
12		comprise a distance between points of said undeformed model and point along said
13		source curve and a rate of falloff for said distance.
14		corresponding members of said set of weighting fields comprise a scaled
15		displacement function having a domain and a range, wherein for at least a portion
16		of said domain said scaled displacement function comprises a power of the
17		displacement of elements of said undeformed model by said corresponding
18		members of said set of transformations.
1	13.	The computer-implemented method according to claim 12 wherein said scaled
2		displacement function comprises a power of the displacement of elements of said
3		undeformed model by said corresponding members of said set of transformations
4		for the entirety of said domain.
1	14.	The computer-implemented method according to claim 1 wherein:
2		said undeformed model comprises control vertices of a fine surface model; and

at least one of said set of feature specifications comprise:

4	a source position and a target position of one or more vert	ices of a coarse
5	deformation mesh configured for deformation of said fine	surface model, and
6	a set of edges incident on said one or more vertices.	•
1	15. The computer-implemented method according to claim 14 who	erein:
2	corresponding members of said set of transformations comprise a	composition of:
3	a translation mapping said source position to said target pe	osition, and
4 5	at least an approximation of a mapping of said set of edge model to said deformed model.	s in said undeformed
1	16. The computer-implemented method according to claim 15 who	erein:
2	corresponding members of said set of weighting fields comprise a	ı falloff function, said
3	falloff function substantially zero at a distal end of each of said se	t edges incident on
4	said one or more vertices, and said falloff function substantially a	t its maximum value
5	for arguments proximate to said source positions of said control v	ertices.
1	17. The computer-implemented method according to claim 1 when	ein:
2	said undeformed model comprises control vertices of a surface	for deformation,
3	wherein source and target features are parameterized as a funct	ion that returns a
4	tuple comprising a point and a vector normal to said point;	
5	at least one of said set of feature specifications comprises:a.sou	irce region and a
6	target region;	
7	corresponding members of said set of transformations compris	e a composition of:
8	a translation mapping points on said source region to points on	said target region,
g.	and	

10	a rotation	aking said vector normal to said points on said source region to said
11	vector nor	mal to said points on said target region of said surface.
1	18. The comp	nter-implemented method according to claim 17 wherein corresponding
2	members o	of said set of strength fields localize the effect of said set of
3	transforma	tions around said source surface region.
1	19. The comp	nter-implemented method according to claim 18 wherein:
2	correspondin	g members of said set of weighting fields decrease monotonically with
3	correspondin	s members of said set of strength fields and wherein said set of weighting
4	fields decreas	e responsive to:
5	a distance	between control vertices of said surface for deformation and said point
6	on said sur	face, and
7	a range for	limiting the region of said weighting field, and
8	a rate for c	ontrolling the rate of decrease of said weighting field.
1	20. The comp	nter-implemented method according to claim 1 wherein:
2	one of said se	t of feature specifications act with substantially full strength across said
3	undeformed 1	nodel and corresponding the member of said set of weighting fields
4	dominates we	ighting contributions of other members of said set of weighting fields.