Álgebra 1 - Turma C $-1^{o}/2020$

Lista de Exercícios – Semana 03

Prof. José Antônio O. Freitas

Observação: A notação $A \subsetneq B$ significa que $A \subset B$ e $A \neq B$.

Exercício 1: Determinar os elementos dos conjuntos $A, B \in E$ tais que:

$$A \cap B = \{b, c\}, \quad C_E(A) = \{d, e, f\} \quad \text{e} \quad C_E(B) = \{a, e, f\}.$$

Exercício 2: Dados os conjuntos $A = \{a, b, c, d\}, B = \{c, d, e, f\}, C = \{d, e, f, g\},$ determine:

a)
$$A - (B - C)$$
 e $(A - B) - C$

b)
$$(A \cap B) - (B \cup C)$$
 e $(A \cup C) - (A \cup B)$

c)
$$A \cap (B - C)$$
 e $(A \cap B) - C$

d)
$$A - (B \cup C)$$
 e $(A - B) \cap (B - C)$

Exercício 3: Dados os conjuntos $E = \{1, 2, 3, 4, 5, a, b, c, d\}$, $A = \{1, 2, 4, d\}$ e $B = \{a, 2, 4, b, 5\}$, determine:

a) $A \cup B$

c) $C_E(A) \cup B$

b) $A \cup C_E(B)$

d) $C_E(A \cup B)$

Exercício 4: Dados os conjuntos $A = \{3, 6, 9, 12, 15, 18\}, B = \{2, 3, 5, 7, 11, 13, 17, 19\}$ e $C = \{1, 2, 3, 4, 5, \dots, 20\}$ calcule:

a) A - B

- d) (A B) C
- g) $A (B \cap C)$

b) A - C

- e) A (B C)
- h) $(A \cup C) B$

c) B-C

- f) $(A \cup B) C$
- i) $(B \cap C) A$

Exercício 5: Determine os conjuntos E, A e B se:

$$C_E(A) = \{2, 5, 9, 13, 18, 20\}$$

$$C_E(B) = \{2, 6, 18, 20\}$$

$$A \cup B = \{1, 5, 6, 9, 13, 14\}.$$

Exercício 6: Demonstre que:

a) Se
$$A \subseteq B$$
 e $C = B - A$, então $A = B - C$.

b) Se
$$A \cap B = \emptyset$$
 e $A \cup B = C$, então $A = C - B$.

c) Se
$$A \cup B = E$$
, então $C_E(A) \subseteq B$. (Aqui suponha que $A, B \subseteq E$.)

d) Se
$$A \cap B = \emptyset$$
, então $A \cup C_E(B) = C_E(B)$. (Aqui suponha que $A, B \subseteq E$.)

e)
$$A = B$$
 se, e somente se, $A - B = B - A$.

f)
$$A \subseteq B$$
 se, e somente se, $A - B = \emptyset$.

g)
$$C_E(A) \subseteq C_E(B)$$
 se, e somente se, $A \cup B = A$. (Aqui suponha que $A, B \subseteq E$.)

h)
$$C_E(A) \subseteq C_E(B)$$
 se, e somente se, $A \cap B = B$. (Aqui suponha que A, $B \subseteq E$.)

Exercício 7: Demonstre as seguintes igualdades.

a)
$$A \cup (C_E(A) \cap B) = A \cup B$$
. (Aqui suponha que A, $B \subseteq E$.)

b)
$$A \cap (C_E(A) \cup B) = A \cap B$$
. (Aqui suponha que $A, B \subseteq E$.)

c)
$$(A - B) - C = A - (B \cup C)$$
.

d)
$$A \cup (B - C) = (A \cup B) - (C - A)$$
.

e)
$$A \cap (B - C) = (A \cap B) - (A \cap C)$$
.

f)
$$A - (B \cup C) = (A - B) \cap (A - C)$$
.

g)
$$A - (B \cap C) = (A - B) \cup (A - C)$$
.

h)
$$(A \cup B) - C = (A - C) \cup (B - C)$$
.

i)
$$(A \cap B) - C = (A - C) \cap (B - C)$$
.

$$j) (A \cap B) \cap (A - B) = (A - B) \cap (B - A) = \emptyset.$$

k)
$$(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$$
.

$$1) A - (A - B) = A \cap B.$$

m)
$$(A - B) - (B - C) = A - B$$
.

n)
$$(A - B) - B = A - B$$
.

o)
$$A \cup (B \cap (A \cup C)) = A \cup (B \cap C)$$
.

p)
$$C_E(A \cap [B \cup C]) = C_E(A) \cup [C_E(B) \cap C_E(C)]$$
. (Aqui suponha que A, B, C \subseteq E.)

q)
$$C_E(A \cap B \cap C) = C_E(A) \cup C_E(B) \cup C_E(C)$$
. (Aqui suponha que A, B, $C \subseteq E$.)

r)
$$C_E(A \cup B \cup C) = C_E(A) \cap C_E(B) \cap C_E(C)$$
. (Aqui suponha que A, B, $C \subseteq E$.)

Exercício 8: Dados conjuntos $A \in B$, defina:

$$A\Delta B = (A - B) \cup (B - A).$$

Agora considerando os conjuntos $A,\,B$ e C verifique se as seguintes propriedades são verdadeiras:

a)
$$A\Delta A = \emptyset$$

b)
$$A\Delta B = B\Delta A$$

c)
$$A\Delta\emptyset = \emptyset\Delta A = A$$

d)
$$A\Delta(A\Delta B) = B$$

e)
$$B\Delta(A\Delta B) = B$$

f)
$$(A\Delta B)\Delta C = A\Delta (B\Delta C)$$

g)
$$A \cup (B\Delta C) = (A \cup B)\Delta(A \cup C)$$

h)
$$A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$$

i)
$$A\Delta B = (A \cap B) - (A \cup B)$$

$$j) \ A\Delta B = (A \cup B) - (A \cap B)$$

Exercício 9: Dados os conjuntos $A = \{1, 2, 3, r, s\}, B = \{r, s, 2, 3, 4\}, C = \{s, t, 4, 5\}$ e $D = \{s, t, 5, 6\},$ determine:

a)
$$(A \times A) \cap (B \times B)$$

b)
$$A^2 \times C^2$$

c)
$$(A-B) \times (C-D)$$

d)
$$(A \cap B) \times (C \cap B)$$

e)
$$(A \cup B) \times (B \cup D)$$

f)
$$(A \times B) - (C \times D)$$

g)
$$(A - B) \times (C \cap D)$$

h)
$$(A-C) \times (B-D)$$

i)
$$(A - (C - D)) \times ((D - B) \cup A)$$

j)
$$(A\Delta B) \times (D\Delta B)$$

Exercício 10: Determine conjuntos $A, B \subseteq E$ tais que:

$$A\Delta B = \{2, 4, 5, 8, 9, 10\}$$

$$A \cap B = \{1, 3\}$$

$$C_E(A) = \{5, 6, 7, 9, 10\}$$

$$E = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$$

Exercício 11: Sejam A, B, C e D conjuntos. Prove que:

a) Se
$$A \subseteq C$$
 e $B \subseteq D$, então $A \times B \subseteq C \times D$.

b)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

c)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

d)
$$A \times B = \emptyset$$
 se, e somente se, $A = \emptyset$ ou $B = \emptyset$.

Exercício 12: Sejam $A, B, C \in D$ conjuntos.

- a) Mostre que A e B são disjuntos se, e somente se, para todo conjunto não vazio C, $A \times C$ e $B \times C$ são disjuntos.
- b) Suponha $A \neq \emptyset$ e $C \neq \emptyset$, com $A \neq C$. Mostre que $A \subseteq B$ e $C \subseteq D$ se, e somente se, $A \times C \subseteq B \times D$.

 Exercício 13: Sejam $X_1,\ X_1,\ Y_1$ e Y_2 subconjuntos contidos num conjunto E. Suponha que $X_1 \cup X_2 = E, Y_1 \cap Y_2 = \emptyset, X_1 \subseteq Y_1$ e $X_2 \subseteq Y_2$. Prove que $X_1 = Y_1$ e $X_2 = Y_2$.