Overview of PerformanceAnalytics' Charts and Tables

Brian G. Peterson

Diamond Management & Technology Consultants Chicago, IL brian@braverock.com

R/Rmetrics User and Developer Workshop, 2007

Outline

Introduction

Set Up PerformanceAnalytics

Review Performance

Summary

Overview

- Utilize charts and tables to display and analyze data:
 - asset returns
 - compare an asset to other similar assets
 - compare an asset to one or more benchmarks
- Utilize common performance and risk measures to aid the investment decision
- Examples developed using data for six (hypothetical) managers, a peer index, and an asset class index
- Hypothetical manager data developed from real manager timeseries using accuracy and perturb packages to perturb data maintaining the statistical distribution properties of the original data.

Install PerformanceAnalytics.

- As of version 0.9.4, PerformanceAnalytics is available in CRAN
- Version 0.9.5 was released at the beginning of July
- Install with:
 - > install.packages("PerformanceAnalytics")
- ► Required packages include Hmisc, zoo, and Rmetrics packages such as fExtremes.
- Load the library into your active R session using:
 - > library("PerformanceAnalytics").

Load and Review Data.

- > data(managers)
- > head (managers)

```
HAM1 HAM2
                            намз
                                     HAM4 HAM5 HAM6 EDHEC LS EO SP500 TR
1996-01-31
            0.0074
                      NA
                          0.0349
                                   0.0222
                                            NA
                                                 NA
                                                              NA
                                                                    0.0340
1996-02-29 0.0193
                      NA
                          0.0351
                                   0.0195
                                            NA
                                                 NA
                                                              NA
                                                                    0.0093
1996-03-31
            0.0155
                      NA
                          0.0258 - 0.0098
                                            NA
                                                  NA
                                                                    0.0096
                                                              NA
1996-04-30 -0.0091
                          0.0449
                                                                    0.0147
                      NA
                                  0.0236
                                            NA
                                                 NA
                                                              NA
1996-05-31 0.0076
                      NA
                          0.0353
                                   0.0028
                                            NA
                                                  NΑ
                                                              NA
                                                                    0.0258
1996-06-30 -0.0039
                      NA -0.0303 -0.0019
                                                                    0.0038
                                            NA
                                                 NA
                                                              NA
           US 10Y TR US 3m TR
1996-01-31
             0.00380
                       0.00456
1996-02-29 -0.03532
                       0.00398
```

Set Up Data for Analysis.

```
> dim(managers)
[1] 132 10
> managers.length = dim(managers)[1]
> colnames (managers)
 [1] "HAM1"
                "HAM2"
                               "HAM3"
                                              "HAM4"
                                                            "HAM5"
 [6] "HAM6" "EDHEC LS EQ" "SP500 TR" "US 10Y TR" "US 3m TR
> manager.col = 1
> peers.cols = c(2,3,4,5,6)
> indexes.cols = c(7,8)
> Rf.col = 10
> #factors.cols = NA
> trailing12.rows = ((managers.length - 11):managers.length)
> trailing12.rows
 [1] 121 122 123 124 125 126 127 128 129 130 131 132
> trailing36.rows = ((managers.length - 35):managers.length)
> trailing60.rows = ((managers.length - 59):managers.length)
> #assume contiquous NAs - this may not be the way to do it na.contiqu
> frInception.rows = (length(managers[,1]) -
+ length (managers[,1][!is.na (managers[,1])]) + 1):length (managers[,1])
```

Draw a Performance Summary Chart.

- > charts.PerformanceSummary(managers[,c(manager.col,indexes.cols)],
- + colorset=rich6equal, lwd=2, ylog=TRUE)

Show Calendar Performance.

> t(table.CalendarReturns(managers[,c(manager.col,indexes.cols)]))

```
1997 1998 1999 2000
                                     2001
                                          2002 2003 2004 2005
           1996
            0.7
                 2.1
                      0.6 - 0.9 - 1.0
                                     0.8
                                           1.4 - 4.1
                                                     0.5
                                                          0.0
                                                              6.9
Jan
Feb
            1.9
                 0.2
                      4.3
                           0.9
                               1.2
                                     0.8
                                          -1.2 - 2.5
                                                     0.0
                                                          2.1
                                                              1.5
Mar
            1.6
                 0.9
                      3.6
                           4.6
                               5.8
                                     -1.1
                                           0.6
                                                3.6
                                                     0.9 - 2.1
                                                              4.0
                1.3
                           5.1
Apr
           -0.9
                      0.8
                               2.0
                                    3.5 0.5 6.5 -0.4 -2.1 -0.1
            0.8 4.4 -2.3 1.6
                               3.4
                                     5.8
                                          -0.2 3.4
Mav
                                                     0.8
                                                         0.4 - 2.7
Jun
           -0.4 2.3
                     1.2
                           3.3
                               1.2
                                     0.2
                                          -2.4
                                                3.1
                                                     2.6
                                                          1.6 2.2
           -2.3 1.5 -2.1 1.0
                               0.5
                                     2.1
                                          -7.5 1.8
Jul
                                                     0.0
                                                         0.9 - 1.4
Aug
           4.0
                 2.4 - 9.4 - 1.7
                               3.9
                                     1.6
                                          0.8
                                                0.0
                                                     0.5
                                                          1.1
                                                              1.6
Sep
            1.5
                 2.2
                      2.5 - 0.4
                                0.1
                                     -3.1
                                          -5.8
                                                0.9
                                                     0.9
                                                          2.6
                                                              0.7
            2.9 - 2.1
                     5.6 -0.1 -0.8 0.1 3.0 4.8 -0.1 -1.9 4.3
Oct
Nov
            1.6 2.5
                     1.3 0.4
                               1.0
                                     3.4 6.6
                                                1.7
                                                     3.9
                                                         2.3
                                                              1.2
            1.8
                1.1
                     1.0
                          1.5 -0.7 6.8 -3.2
                                                2.8
                                                          2.6
Dec
                                                     4.4
                                                              1.1
           13.6 20.4
                      6.1 16.1 17.7
                                    22.4
                                          -8.0 23.7 14.9
                                                          7.8 20.5
HAM1
EDHEC LS EO
             NA 21.4 14.6 31.4 12.0
                                    -1.2
                                          -6.4 19.3
                                                    8.6 11.3 11.7
           23.0 33.4 28.6 21.0 -9.1 -11.9 -22.1 28.7 10.9 4.9 15.8
SP500 TR
```

Calculate Statistics.

> table.Stats(managers[,c(manager.col,peers.cols)])

	HAM1	HAM1 HAM2 HAN		HAM4	HAM5	HAM6
Observations	132.0000	125.0000	132.0000	132.0000	77.0000	64.0000
NAs	0.0000	7.0000	0.0000	0.0000	55.0000	68.0000
Minimum	-0.0944	-0.0371	-0.0718	-0.1759	-0.1320	-0.0404
Quartile 1	0.0000	-0.0098	-0.0054	-0.0198	-0.0164	-0.0016
Median	0.0112	0.0082	0.0102	0.0138	0.0038	0.0128
Arithmetic Mean	0.0111	0.0141	0.0124	0.0110	0.0041	0.0111
Geometric Mean	0.0108	0.0135	0.0118	0.0096	0.0031	0.0108
Quartile 3	0.0248	0.0252	0.0314	0.0460	0.0309	0.0255
Maximum	0.0692	0.1556	0.1796	0.1508	0.1747	0.0583
SE Mean	0.0022	0.0033	0.0032	0.0046	0.0052	0.0030
LCL Mean (0.95)	0.0067	0.0076	0.0062	0.0019	-0.0063	0.0051
UCL Mean (0.95)	0.0155	0.0206	0.0187	0.0202	0.0145	0.0170
Variance	0.0007	0.0013	0.0013	0.0028	0.0021	0.0006
Stdev	0.0256	0.0367	0.0365	0.0532	0.0457	0.0238
Skewness	-0.6588	1.4580	0.7908	-0.4311	0.0738	-0.2800
Kurtosis	2.3616	2.3794	2.6829	0.8632	2.3143	-0.3489

Compare Distributions.

> chart.Boxplot(managers[trailing36.rows, c(manager.col, peers.cols, + indexes.cols)], main = "Trailing 36-Month Returns")

Trailing 36-Month Returns

Compare Distributions.

```
> layout(rbind(c(1,2),c(3,4)))
> chart.Histogram(managers[,1,drop=F], main = "Plain", methods = NULL)
> chart.Histogram(managers[,1,drop=F], main = "Density", breaks=40,
+ methods = c("add.density", "add.normal"))
> chart.Histogram(managers[,1,drop=F], main = "Skew and Kurt", methods = c
+ ("add.centered", "add.rug"))
> chart.Histogram(managers[,1,drop=F], main = "Risk Measures", methods = c
+ ("add.risk"))
```


Show Relative Return and Risk.

```
> chart.RiskReturnScatter(managers[trailing36.rows,1:8], Rf=.03/12, ma
+ "Trailing 36-Month Performance", colorset=c("red", rep("black",5), "
+ "green"))
```


Calculate Statistics.

> table.Stats(managers[,c(manager.col,peers.cols)])

	HAM1	HAM2	HAM3	HAM4	HAM5	HAM6
Observations	132.0000	125.0000	132.0000	132.0000	77.0000	64.0000
NAs	0.0000	7.0000	0.0000	0.0000	55.0000	68.0000
Minimum	-0.0944	-0.0371	-0.0718	-0.1759	-0.1320	-0.0404
Quartile 1	0.0000	-0.0098	-0.0054	-0.0198	-0.0164	-0.0016
Median	0.0112	0.0082	0.0102	0.0138	0.0038	0.0128
Arithmetic Mean	0.0111	0.0141	0.0124	0.0110	0.0041	0.0111
Geometric Mean	0.0108	0.0135	0.0118	0.0096	0.0031	0.0108
Quartile 3	0.0248	0.0252	0.0314	0.0460	0.0309	0.0255
Maximum	0.0692	0.1556	0.1796	0.1508	0.1747	0.0583
SE Mean	0.0022	0.0033	0.0032	0.0046	0.0052	0.0030
LCL Mean (0.95)	0.0067	0.0076	0.0062	0.0019	-0.0063	0.0051
UCL Mean (0.95)	0.0155	0.0206	0.0187	0.0202	0.0145	0.0170
Variance	0.0007	0.0013	0.0013	0.0028	0.0021	0.0006
Stdev	0.0256	0.0367	0.0365	0.0532	0.0457	0.0238
Skewness	-0.6588	1.4580	0.7908	-0.4311	0.0738	-0.2800
Kurtosis	2.3616	2.3794	2.6829	0.8632	2.3143	-0.3489

Examine Performance Consistency.

```
> charts.RollingPerformance(managers[, c(manager.col, peers.cols,
+ indexes.cols)], Rf=.03/12, colorset = c("red", rep("darkgray",5), "o
+ "green"), lwd = 2)
```


Display Relative Performance.

```
> chart.RelativePerformance(managers[ , manager.col, drop = FALSE],
+ managers[ , c(peers.cols, 7)], colorset = tim8equal[-1], lwd = 2, le
+ = "topleft")
```

Relative Performance

Compare to a Benchmark.

```
> chart.RelativePerformance(managers[ , c(manager.col, peers.cols) ],
+ managers[, 8, drop=F], colorset = rainbow8equal, lwd = 2, legend.loc
+ "topleft")
```

Relative Performance

Compare to a Benchmark.

> table.CAPM(managers[trailing36.rows, c(manager.col, peers.cols)], managers[trailing36.rows

	HAM1	to	SP500	TR	HAM2	to	SP500	TR	намз	to	SP500	TR
Alpha			0.00	051	0.0020					0.0	020	
Beta			0.62	267			0.3	223			0.6	320
Beta+			0.82	227			0.4	176			0.8	240
Beta-			1.12	218			-0.0	483			0.8	291
R-squared			0.38	329			0.10	073			0.4	812
Annualized Alpha			0.0	531			0.02	247			0.0	243
Correlation			0.63	188			0.3	276			0.6	937
Correlation p-value			0.00	001			0.0	511			0.0	000
Tracking Error			0.0	504			0.0	790			0.0	517
Active Premium			0.03	384			-0.02	260			-0.0	022
Information Ratio			0.63	363			-0.3	295			-0.0	428
Treynor Ratio			0.1	741			0.1	437			0.1	101
	HAM4	to	SP500	TR	HAM5	to	SP500	TR	намб	to	SP500	TR
Alpha			0.00	009			0.0	002			0.0	022
Beta			1.12	282			0.8	755			0.8	150
Beta+			1.8	130			1.0	985			0.9	993
Beta-			1.22	223			0.52	283			1.1	320
R-squared			0.3	144			0.52	209			0.4	757
Annualized Alpha			0.0	109			0.0	080			0.0	271
Correlation			0.58	368			0.72	218			0.6	897
Correlation p-value			0.00	002			0.0	000			0.0	000
Tracking Error			0.10	073			0.0	583			0.0	601
Active Premium			0.0	154			-0.00	770			0.0	138
Information Ratio			0.14	133			-0.1	319			0.2	296
Treynor Ratio			0.0	7.00			0.0	724			0.1	015

table.CAPM underlying techniques

Return.annualized — Annualized return using

$$prod(1+R_a)^{\frac{scale}{n}}-1=\sqrt[n]{prod(1+R_a)^{scale}}-1$$
 (1)

TreynorRatio — ratio of asset's Excess Return to Beta β of the benchmark

$$\frac{(\overline{R_a - R_f})}{\beta_{a,b}} \tag{2}$$

- ActivePremium investment's annualized return minus the benchmark's annualized return
- Tracking Error A measure of the unexplained portion of performance relative to a benchmark, given by

TrackingError =
$$\sqrt{\sum \frac{(R_a - R_b)^2}{len(R_a)\sqrt{scale}}}$$
 (3)

InformationRatio — ActivePremium/TrackingError

Compare to a Benchmark.

> #source("PerformanceAnalytics/R/Return.excess.R")
> charts.RollingRegression(managers[, c(manager.col, peers.cols), drop
+ FALSE], managers[, 8, drop = FALSE], Rf = .03/12, colorset = redfocut
+ 2)

Calculate Downside Risk.

> table.DownsideRisk(managers[,1:6],Rf=.03/12)

	HAM1	HAM2	НАМЗ	HAM4	HAM5	
Semi Deviation	0.0191	0.0201	0.0237	0.0395	0.0324	
Gain Deviation	0.0169	0.0347	0.0290	0.0311	0.0313	
Loss Deviation	0.0211	0.0107	0.0191	0.0365	0.0324	
Downside Deviation (MAR=10%)	0.0178	0.0164	0.0214	0.0381	0.0347	
Downside Deviation (Rf=3%)	0.0154	0.0129	0.0185	0.0353	0.0316	
Downside Deviation (0%)	0.0145	0.0116	0.0174	0.0341	0.0304	
Maximum Drawdown	0.1518	0.2399	0.2894	0.2874	0.3405	
Historical VaR (95%)	-0.0258	-0.0294	-0.0425	-0.0799	-0.0733	_
Historical ES (95%)	-0.0513	-0.0331	-0.0555	-0.1122	-0.1023	_
Modified VaR (95%)	-0.0342	-0.0276	-0.0368	-0.0815	-0.0676	_
Modified ES (95%)	-0.0610	-0.0614	-0.0440	-0.1176	-0.0974	-

Semivariance and Downside Deviation

 Downside Deviation as proposed by Sharpe is a generalization of semivariance which calculates bases on the deviation below a Minimumn Acceptable Return(MAR)

$$\delta_{MAR} = \sqrt{\frac{\sum_{t=1}^{n} (R_t - MAR)^2}{n}}$$
 (4)

- Downside Deviation may be used to calculate semideviation by setting MAR=mean(R) or may also be used with MAR=0
- ▶ Downside Deviation (and its special cases semideviation and semivariance) is useful in several performance to risk ratios, and in several portfolio optimization problems.

Value at Risk

- Value at Risk (VaR) has become a required standard risk measure recognized by Basel II and MiFID
- traditional mean-VaR may be derived historically, or estimated parametrically using

$$z_c = q_p = qnorm(p) (5)$$

$$VaR = \bar{R} - z_c \cdot \sqrt{\sigma} \tag{6}$$

- even with robust covariance matrix or Monte Carlo simulation, mean-VaR is not reliable for non-normal asset distributions
- for non-normal assets, VaR estimates calculated using GPD (as in VaR.GPD) or Cornish Fisher perform best
- modified Cornish Fisher VaR takes higher moments of the distribution into account:

$$z_{cf} = z_c + \frac{(z_c^2 - 1)S}{6} + \frac{(z_c^3 - 3z_c)K}{24} + \frac{(2z_c^3 - 5z_c)S^2}{36}$$
 (7)

$$modVaR = \bar{R} - z_{cf}\sqrt{\sigma}$$
 (8)

 modified VaR also meets the definition of a coherent risk measure per Artzner,et.al.(1997)

Risk/Reward Ratios in PerformanceAnalytics

 SharpeRatio — return per unit of risk represented by variance, may also be annualized by

$$\frac{\sqrt[n]{prod(1+R_a)^{scale}}-1}{\sqrt{scale}\cdot\sqrt{\sigma}}$$
 (9)

 Sortino Ratio — improvement on Sharpe Ration utilizing downside deviation as the measure of risk

$$\frac{(\overline{R_a - MAR})}{\delta_{MAR}} \tag{10}$$

- Calmar and Sterling Ratios ratio of annualized return (Eq. 1) over the absolute value of the maximum drawdown
- Sortino's Upside Potential Ratio upside semdiviation from MAR over downside deviation from MAR

$$\frac{\sum_{t=1}^{n} (R_t - MAR)}{\delta_{MAR}} \tag{11}$$

 Favre's modified Sharpe Ratio — ratio of excess return over Cornish-Fisher VaR

$$\frac{(\overline{R_a - R_f})}{modVaR_{R_a,p}} \tag{12}$$

 NOTE: The newest measures such as modified Sharpe and Sortino's UPR are far more reliable than older measures, but everyone still seems to look at older measures.

Summary

- Performance and Risk analysis are greatly facilitated by the use of charts and tables.
- The display of your infomation is in many cases as important as the analysis.
- The observer should have gained a working knowledge of how specific visual techniques may be utilized to aid investment decision making.
- Further Work
 - Additional parameterization to make charts and tables more useful.
 - Pertrac or Morningstar-style sample reports.
 - Functions and graphics for more complicated topics such as factor analysis and optimization.

