Space Conditioner {capstone design}

1조

김준식 · 남중훈 · 박보영 · 박조은 · 홍혜림

background

Content of study

Progress

Final model

Significance/ limitations

Research Background

- The average fine dust level in Seoul is more than doubled compared to other countries.
- → Fine dust in our country gets worse day by day
- The size of South Korea's smart home market is growing
- Increasing demand for Smart Home-related products and services

"A system fine dust/temperature/humidity in the room is required"

Project Topic

Research Background

Content of study

Progress

Final model

Significance/ limitations

"Space Conditioner according to Real-time Weather Data"

- Communication with outside
- Real-time Weather Data Processing (fine dust)

- Monitoring Current State
- Make a Decision
- The Hub

- Window Opening / Closing
- Indoor Condition Sensing

2020 capstone design

As a Capstone Project

Research Background

Content of study

Progress

Final model

Significance/ limitations

Computer Engineering

- System Design with Raspberrypi
 → Automatic Space Condition Control
- Further Research (Application..)

Industrial Engineering

- Real-time fine dust Data Processing
 → Data Analysis, Data Science
- Project Managing
 - → Data Visualization

Electronic & Electrical Engineering (HW)

- Hardware Component Design with Arduino
 - → Sensors, home appliances
 - → Prototyping

Electronic & Electrical Engineering (SW)

- Interfacing between HW & SW
 - → Raspberrypi Arduino
- Signal Processing

Content of study

Smart window

 Producing a smart window that opens and closes according to real-time fine dust concentration

Research Background

Content of study

Progress

Final model

Significance/ limitations

 Using real-time fine dust data provided by the public data portal

 Coding data with Python using Raspberrypi

python"

 Checked data in Arduino and operated servo-motor to open and close windows

2020 capstone design

Content of study

Indoor control

Research Background

Content of study

Progress

Final model

- Simplified IDE
- Various OS environment
- Cheap price
- Many open sources

- Quick results check
- Easy usability
- DHT11

Content of study

Indoor control

Research Background

Content of study

Progress

Final model

2020 capstone design

Total model

Research Background

Content of study

Progress

Final model

	좋음	보통	나쁨	매우나쁨
미세먼지	0~30	31~80	81~150	150 이상
초미세먼지	0~15	16~50	51~100	101 이상

	매우높음	높음	보통	낮음
불쾌지수	80 이상	75~80	68~75	68 미만

Smart window

Air purifier

Display

Electric heater

ventilator

Display

Air conditioner

Content of study

Progress

Final model

Content of study

Progress

Final model

```
ser = serial.Serial("/dev/ttyACM0",9600) → start - 값을 넘겨줄 아두이노의 port number
M = '&numOfRows=1&pageNo=1&stationName=마모구&dataTerm=DAILY&ver=1.3'
key =
'baHQwL7PU9aOA15VEMy8uEvanZj%2F9NkUstZkCki%2FJDskKLQymF%2FRLMEBg2KXwCAKxQ6BkMVE8nFBpMHei1nNMQ%3D%3D'
url =
'http://openapi.airkorea.or.kr/openapi/services/rest/ArpltnInforInqireSvc/getMsrstnAcctoRltmMesureDnsty
?serviceKey=' + key + M
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser") → BeautifulSoup 이용하여 text 형태로 미세먼지 data 추출
ItemList = soup.findAll('item')
for item in ItemList:
   a = item.find('datatime').text
   g = item.find('pm10value').text
   i = item.find('pm25value').text
   s = item.find('pm10grade1h').text
   t = item.find('pm25grade1h').text
   print('측정소: 마포구')
   print('측정시간:' + a)
   print('미세먼지 농도:' + g + 'ሥg/m' ( ' + s + ' )')
   print('초미세먼지 농도:'+i+'ሥሬ/㎡ ('+t+')')
   print('( 좋음: 1 ),( 보통: 2 ),( 나쁨: 3 ),( 매우나쁨: 4)' )
                         → open_or_close는 창문을 on off 여부를 결정하는 변수
open or close = '0'
if (s <= '2' and t <= '2'):
                         → open_or_close가 1이면 on, 1이 아니면 off
   open or close = '1'
                         → 미세먼지 상태가 좋음 또는 보통일 경우 open_or_close = '1'
else:
                         → 미세먼지 상태가 나쁨 또는 매우나쁨일 경우 open_or_close != '1'
   open_or_close = '3'
ser.write(open_or_close.encode()) → 아두이노에 open or close 값을 넘겨줌
```

Content of study

Progress

Final model

```
pinMode(led air,OUTPUT);
 pinMode(led Tmotor,OUTPUT);
 pinMode(led heater,OUTPUT);
void servofunc() {
   char in data;
   in_data = Serial.read(); → serial port를 통해 라즈베리파이로 부터 받은 값을 in_data로 저장
   if(in data == '1')
                               → open_or_close가 1이면
                                 서보모터 90° → 창문 열기
     angle = 90;
                                 led off → 공기청정기 끄기
     digitalWrite(led_air,LOW);
   else
                               → open_or_close가 1이 아니면
                                 서보모터 0° → 창문 닫기
     angle = 0;
                                 led on → 공기청정기 켜기
     digitalWrite(led_air,HIGH);
   servo.write(angle);
```

Content of study

Progress

Final model

Content of study

Progress

Final model

Content of study

Progress

Final model

Content of study

Progress

Final model

```
if (Temp > 30 & Temp <= 32)
                                                          if (Humi >60 & Humi <= 80)
                                                                                   → 습도가 60%~ 80%일 때
                                                                                     환풍기(Hmotor) 작동
  analogWrite(Tmotor, 200);
                              → 기온이 28℃ ~ 32 ℃일 때
                                                           analogWrite(Hmotor,200);
  digitalWrite(led Tmotor, HIGH);
                                에어컨(Tmotor) 작동
  digitalWrite(led heater,LOW);
                                                          else if (Humi > 80)
                                                                                   → 습도가 80% 초과일 때
                                                                                     환풍기를 더 세게 작동
else if (Temp > 32)
                                                          analogWrite(Hmotor,255);
  analogWrite(Tmotor,255);
                              → 기온이 32 ℃ 초과일 때
                                                          else
  digitalWrite(led Tmotor, HIGH);
                                                                                   → 적정 습도
                                에어컨을 더 세게 작동
  digitalWrite(led heater,LOW);
                                                          analogWrite(Hmotor,0);
                                →모터에 더 높은 전압을 입력
else if (Temp < 10)
  digitalWrite(led Tmotor,LOW);
                              → 기온이 10 ℃ 미만일 때
  digitalWrite(led heater,HIGH);
                                전기난로 작동
else
                              → 적정 온도
  analogWrite(Tmotor,0);
  digitalWrite(led Tmotor,LOW);
  digitalWrite(led heater,LOW);
                                                    "각 가전제품의 작동 여부는 LED로 확인 가능"
```

Content of study

Progress

Final model

Significance/ limitations

```
void loop(){
                                                       index = 1.8*Temp-0.55*(1-Humi/100)*(1.8*Temp-26)+32;
                                                                                                      → 불쾌지수 계산
  if((err=dht11.read(Humi, Temp))==0)
                                                       lcd.setCursor(0,0);
                                                       lcd.print("Discomfort index");
                                                                                     → LCD 패널에 불쾌지수 값과 등급 표시
                                                       lcd.setCursor(0,1);
   lcd.setCursor(0,0);
   lcd.print("Temp : ");
                                                       lcd.print(": ");
                          → LCD 패널에 센서가
                                                       lcd.print(index);
   lcd.print(Temp);
                          측정한 온/습도 표시
                                                       if(index < 68)
   lcd.print(" C ");
                                                        lcd.setCursor(7,1);
   lcd.setCursor(0,1);
                                                        lcd.print(" Good ");
    lcd.print("Humi : ");
   lcd.print(Humi);
                                                       else if(index > 68 && index < 75)
    lcd.print(" % ");
                                                        lcd.setCursor(7,1);
                                                        lcd.print(" Normal ");
  else
                                                       else if(index >= 75 && index <80)
   lcd.setCursor(0,0);
                                                        lcd.setCursor(7,1);
   lcd.print("ERROR NO.: dht11");
                                                        lcd.print(" Bad ");
   lcd.setCursor(0,1);
                             ");
   lcd.print("
                                                       else
                                                                 lcd.setCursor(7,1);
                                                                 lcd.print(" Too Bad ");
   int i;
   for(i=0; i < 30; i++)
                          → 센서 측정 주기보다 큰 주기로
                          자동 제어 실행을 위한 delay
   servofunc();
                                                               for(i=0; i < 30; i++)
    delay(100);
```

servofunc();
delay(100);

Indoor control

Circuit diagram

Research Background

Content of study

Progress

Final model

Content of study

Progress

Final model

Content of study

Progress

Final model

Content of study

Progress

Final model

2020 capstone design

Significance/ limitations

Research Background

Content of study

Progress

Final model

Significance/ limitations

Significance

- The rise of environmental problems & wellness trend
 - → Market size & growth
- Potential High consumer interest

Limitations

• Fine dust data is not real-time because it does not use sensors and receives data values from monitoring stations.

Further research

- Create Application → Customization, Remote Control
- Building an iot environment with actual home appliances → wifi

Thank you