인공지능기초응용 II

9 주차 과제

인공지능응용

K2025029 금동환

목차

- 1. 문서벡터 구성의 문제점
- 2. 워드임베딩이란
- 3. word2vec, fastText, GloVe 특징 및 차이점
- 4. <u>ELMo 와 BERT 의 특징 및 차이점</u>

1. 문서벡터 구성의 문제점

- A. 문서 벡터를 구성할 때 키워스가 수심만~수백만개로 늘어나면서 메모리, 저장 공간문제가 발생하며, 연산효율이 떨어짐
 - → 저장 공간의 문제
- B. PCA, LDA, LSA 등의 차원 축소 기법을 활용하여 고차원 데이터를 저차원으로 투영해야 함.
 - → 무엇을 feature 로 할것인가, feature selection 문제

2. 워드임베딩이란

- 단어를 고차원 벡터가 아닌 저차원 밀집 벡터로 표현하는 기법

3. word2vec, fastText, GloVe 특징 및 차이점

- A. word2vec 의 특정
 - i. CBOW
 - → 좌우 문맥으로부터 현재 단어 예측
 - → 학습속도 빠름, 대규모 학습말뭉치에 적합
 - ii. Continuous skip-gram
 - → 빈도가 높은 단어 벡터를 잘 표현
 - → 학습속도 느림
- B. fastText 의 특징
 - i. 단어응 서브워드(subword, 문자 n-gram) 단위로 분해하여 벡터를 구성
 - → 학습되지 않은 단어(OOV, Out of Vocabulary)를 효과적으로 처리
 - ii. 형태소가 풍부한 교착어에 강점, 새로운 단어나 희귀 단어의 의미를 보다 잘 반영
- C. GloVe 의 특정
 - i. 전체 말뭉치의 행렬을 기반으로 하는 행렬 분해 방식
 - ii. 단어 간의 관계를 더욱 포괄적으로 표현 가능

D. 차이점

기법	학습 방법	장점	단점
word2vec	로컬 문맥 기반	학습속도 빠름, 간단한	OOV 처리 한계
		구조	
fastText	서브워드 단위	형태소 언어 강점,	모델의 크기 증가,
			학습속도 느림
GloVe	글로벌 행렬	단어의 관계 반영 우수	메모리 사용 증가, 계산
			복잡성

4. ELMo 와 BERT 의 특징 및 차이점

- A. ELMo 의 특징
 - i. 랭귀지 모델을 좌>우로 반영
- B. BERT 의 특정
- i. 랭귀지 모델을 양항뱡으로 반영

C. 차이점

기법	학습 방법	장점	단점
ELMo	LSTM 기반 동적 언어	문맥별로 동적인 의미	긴 문장 처리 시 속도
	모델	포착, 형태학적 특징	느림, 순차적 연산으로
		활용 우수	병렬처리 제한
BERT	Transformer 기반	양방향으로 깊은 문맥	모델의 크기, 자원 소모
	Masked Language	이해 가능, 다양한 NLP	큼. 사전 학습과
	Model, Next Sentence	작업에서 높은 성능	파인튜닝에 자원 소모
	Prediction		큼.