WE CLAIM:

1. A compound or pharmaceutically acceptable salt thereof having the formula

5

10

15

20

25

30

35

wherein,

 R_1 and R_2 are independently selected from the group consisting of: H, R, and ArR-, and where at least one of R_1 and R_2 is R and meither are ArR-, R_1 and R_2 together may optionally be a three to seven member ring;

 R_3 and R_4 are independently selected from the group consisting of: H, R, ArR-, and where at least one of R_3 and R_4 is R and neither are ArR- or Ar R_3 and R_4 together may optionally be a three to seven member ring;

 R_{s} is selected from the group consisting of: H, R, ArR-, and Ar;

 R_6 is selected from the group consisting of: H, R, and ArR-;

10

15

25

30

35

 R_7 and R_8 are independently selected from the group consisting of: H, R, and ArR-; and

R, is:\ Z-C-Y-;

and wherein,

R is defined as a saturated or unsaturated moiety having a linear, branched, or cyclic skeleton containing one to ten carbon atoms, zero to four nitrogen atoms, zero to four oxygen atoms, and zero to four sulfur atoms, and the carbon atoms are optionally substituted with: =0, =S, -OH, -OR₁₀, -O₂CR₁₀, -SH, -SR₁₀, -SOCR₁₀, -NH₂, -NHR₁₀, -N(R₁₀)₂, -NHCOR₁₀, -NR₁₀COR₁₀, 1, Br, -Ch, -F, -CN, -CO₂H, -CO₂R₁₀, -CHO, -COR₁₀, -CONH₂, -CONHR₁₀, -CON(R₁₀)₂, -COSH, -COSR₁₀, -NO₂, -SO₃H, -SOR₁₀, -SO₂R₁₀, wherein R₁₀ is a linear, branched or cyclic, one to ten carbon saturated or unsaturated alkyl group;

X is defined as a moiety selected from the group consisting of: -OH, -OR, =0, =5, -O₂CR, -SH, -SR, -SOCR, -NH₂, -NHR, -N(R)₂, -NHCOR, -NRCOR, -I, -Br, -Cl, -F, -CN, -CO₂H, -CO₂R, -CHO, -COR, -CONH₂, -CONHR, -CON(R)₂, -COSH, -COSR, -NO₂, -SO₃H, -SOR, and -SO₂R;

Ar is defined as an aromatic ring selected from the group consisting of: phenyl, naphthyl, anthracyl, phenanthryl, furyl, pyrrolyl, thiophenyl, benzofuryl, benzothiophenyl, quinolinyl, isoquinolyl, imidazolyl, thiazolyl, oxazolyl, and pyridiryl, optionally substituted with R or X;

Y is defined as a moiety selected from the group consisting of: a linear, saturated or unsaturated, one to six carbon alkyl group, optionally substituted with R, ArR-, or X; and,

10

- 33 -

Z is defined as a moiety selected from the group consisting of: -OH, -OR; -SH; -SR; -NH₂; -NHR; -N(R)₂; -NHCH(R₁₁) COOH; and -NRCH(R₁₁) COOH, wherein R₁₁ is a moiety having the formula: R, or -(CH₂) $_{n}NR_{12}R_{13}$, wherein n=1-4 and R₁₂ and R₁₃ are independently selected from the group consisting of: H; R; and -C(NH)(NH₂).

- 2. The compound of claim 1 wherein Ar is phenyl, naphthyl, anthracyl, or pyrrolyl.
- 3. The compound of claim 2 where R_s is phenyl, naphthyl, anthracyl, or pyrrolyl.
- 4. The compound of claim 1, 2 or 3 wherein R_3 and R_4 are independently selected from the group consisting of: methyl, ethyl, n-propyl and n-butyl; or, R_3 and R_4 together are selected from the group consisting of: β -cyclopropyl, β -cyclobutyl, β -cyclopentyl and β -cyclohexyl.
- 5. The compound of any of claims 1-4 wherein R₁ and R₂ are independently selected from the group consisting of: H, methyl, ethyl, propyl, n-butyl, acetyl; or, R₁ and R₂ are joined and form a moiety selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
 - 6. The compound of any of claims 1-4 wherein R_1 and R_2 are independently: H, CH, or acetyl.
 - 7. The compound of any of claims 1-4 wherein R_1 is H, and R_2 is $-CH_3$.
 - 8. The compound of any of claims 1-7 wherein Z is: OH, $-OCH_3$, $-NHCH(R_{11})COOH$, or, $-NCH_3CH(R_{11})COOH$, wherein R_{11} is R, or $-(CH_2)_nNHC(NH)(NH_2)$.

35

25

9. The compound of any of claims 1-7 wherein Z is OH or -OR₁₄, wherein R₁₄ is a linear or branched one to six carbon alkyl group.

5 10. The compound of any of claims 1-7 wherein R, has the formula:

 $-C-C=C \setminus R_{16} \cap C-OH$ R_{15}

10

wherein R_{15} is selected from the group consisting of: methyl, ethyl, n-propyl, isopropyl, tert-butyl, iso-butyl, and sec-butyl; and R_{10} is selected from the group consisting of: H, methyl, ethyl, propyl, iso-propyl, n-butyl,

iso-butyl and sec/butyl.

11. The compound of claim 10 wherein R_{15} is isopropyl and R_{16} is methyl.

6

12. The compound of any of claims 1-11 wherein R, is a three to six carbon, branched alkyl group.

A

13. The compound of any of claims 1-12 wherein R_6 and R_8 are independently: H, or CH_3 .

25

20

14. The compound of any of claims 1-11 wherein R_6 is H, R_7

is: $-C(CH)_3$, and R_0 is $-CH_3$.

W.

15. The compound of any of claims 1-14—wherein R₃ and R₄ are each R.

0-

16. The compound of any of claims 1 14 wherein R₃ and R₄ are each -CH₃.

35 17. The compound of claim 16 wherein Rs is phenyl.

25

30

18. The compound of claim 17 wherein R, has the formula:

-C+C=C(CH₃)C-OH

CH(CH₃)₂

19. A method of preparing a compound as described in claim 1 comprising the step of:

(a) coupling an amino acid having the formula:

 $\begin{array}{c|c}
R_3 & R_4 & O \\
\hline
R_5 & O \\
\hline
R_5 & O \\
\hline
Q & N & T
\end{array}$

in which R_3 - R_5 are as defined in claim 1 and Q and T are selected from the group consisting of: R_1 and R_2 as defined in claim 1, and a protecting group;

with a dipeptide having the formula:

in which R₆ - R₉ are as defined in claim 1;

and, where Q or T is a protecting group, the additional step of replacing the protecting group with R_1 or R_2 to form compound I; or,

(b) coupling a dipeptide having the formula:

in which R₃ - R₇ are as defined in claim 1 and Q and T are as defined above.

with an amino acid having the formula:

15

5 .

R₈ HN R₉

20

in which R, and R, are as defined in claim 1;

and, where Q or T is a protecting group, the additional step of replacing the protecting group with R₁ or R₂ to form compound I.

20. An amino acid suitable for use in the method of claim 19, having the formula:

30

$$R_3$$
 R_4
 Q
 OH
 Q
 N
 T

35

in which $R_3 \setminus R_5$, Q and T are as defined in claim 19.

21. A diperide suitable for use in the method of claim 19, having the formula:

5

10

15

in which R_3 - R_7 , Q and T are as defined in claim 19.

And the state of t