Universidade Regional de Blumenau - FURB Centro de Ciências Exatas e Naturais – CCEN Departamento de Sistemas e Computação - DSC

SISTEMAS DISTRIBUÍDOS

MARCOS RODRIGO MOMO marcos.rodrigomomo@gmail.com

Blumenau, outubro 2024

- RPC/RMI é inadequado para comunicação em alguns cenários de aplicação
 - Cliente e Servidor precisam estar ativos durante a comunicação
 - Implica em espera para estabelecer o sincronismo entre cliente e servidor
 - Overhead para manter conexão / sessão
 - Falha de uma das partes impede comunicação
 - Paradigma se limita à comunicação 1->1

- Paradigma de comunicação por mensagens
 - Evita alguns problemas comuns em sistemas baseados em RPC/RMI
 - Outras questões podem ser resolvidas adotando um suporte computacional para comunicação através de mensagens
 - Vários nomes são utilizados para se referir a esse tipo de suporte: Serviço / sistema / barramento / middleware de mensagens / eventos / filas / mailboxes
 - Convencionou-se chamar esse suporte de Middleware Orientado a Mensagens (MOM)

Definição

"Middleware Orientado a Mensagens (MOM) provê suporte para comunicação persistente assíncrona. Esses sistemas oferecem capacidade de armazenamento temporário para mensagens, não exigindo que o emissor e o receptor estejam ativos durante a transmissão da mensagem. Diferentemente de sockets, suportam trocas de mensagens que podem levar vários minutos em vez de alguns segundos ou milissegundos."

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms

Definição

"Middleware Orientado a Mensagens (MOM) provê a abstração de uma fila de mensagens que pode ser acessada através da rede. É uma generalização do mecanismo de Mailbox presente em sistemas operacionais. Apresenta flexibilidade em relação a como programas podem depositar e retirar mensagens da fila. Produtores oferecem filas com persistência, replicação ou desempenho de tempo real."

> David E. Bakken, Encyclopedia of Distributed Computing

- Tecnologias Relacionadas
 - APIs de comunicação por mensagens (ex.: Sockets)
 - Mecanismos de mailbox
 - Sistemas publish/subscribe
 - Serviços de comunicação por eventos
 - Sistemas de gerenciamento de filas de mensagens

Vantagens

- O paradigma de comunicação por mensagens é simples, natural e fácil de entender
- A reconfiguração de sistemas é simplificada,
 pois os participantes não precisam conhecer os endereços uns dos outros - basta saberem onde é mantida a fila de mensagens
- Participantes da comunicação não precisam se sincronizar para trocar dados, o que reduz o tempo ocioso durante a comunicação
- Participantes não precisam estar permanentemente conectados à rede - basta conectar para enviar/receber mensagens

- Limitações
 - Exigência de um elemento central responsável pelo gerenciamento das filas de mensagens
 - Problemas: ponto único de falha; gargalo na comunicação
 - Solução: replicar esse elemento
 - A comunicação assíncrona pode retardar a entrega de mensagens
 - Problema para aplicações com requisitos de desempenho
 - Solução: filas com prioridades de entrega

Aplicações

- Disseminação de informação, em casos nos quais a comunicação síncrona seja inadequada
 - Cotações de ações, status de encomendas, ordens de compra, condições do trânsito, dados meteorológicos, integração da cadeia de produção, auditoria de sistemas, etc.
- Dispositivos que não possam ficar conectados à rede permanentemente
 - Sensores, celulares, PDAs, RFID, etc.

- Aplicações
 - Integração de Sistemas Legados
 - MOM permite a troca de dados sem que haja forte acoplamento entre os sistemas
 - Exige alterações mínimas nos sistemas legados para enviar/receber mensagens
 - O impacto da comunicação no desempenho é mínimo, devido ao assincronismo
 - Sistemas com interações mais complexas que aquelas permitidas com RPC/RMI
 - Comunicação de grupo (1->N ou M->N)
 - Interação conversacional

- Características Principais
 - A unidade de comunicação é uma mensagem, semelhante ao que é chamado de evento em mecanismos de eventos
 - Comunicação ocorre de forma assíncrona
 - Um elemento centralizador, possivelmente replicado, gerencia as filas de mensagens

- Primitivas de Comunicação
 - PUT: adiciona uma mensagem a uma determinada fila
 - GET: obtém uma mensagem de uma certa fila, bloqueando caso a mesma esteja vazia
 - POLL: verifica a fila sem bloquear, obtendo uma mensagem caso a fila não esteja vazia
 - NOTIFY: fornece handler para ser chamado quando uma mensagem for colocada em uma determinada fila

 Estados possíveis durante a comunicação

- Formato das mensagens
 - Mensagens podem ter os mais diversos formatos, podendo seguir um formato padrão (string, XML, ...) ou ter formato livre (binário)
 - Essa flexibilidade contrasta com RPC/RMI, onde os parâmetros são em geral tipados
 - Cada fila pode adotar um formato próprio
 - Mensagens podem ter um assunto/tópico, que pode ser usado por clientes para filtragem
 - Regras de conversão podem ser aplicadas às mensagens antes de serem colocadas na fila

- Suporte de Comunicação
 - O MOM pode ser construído sobre os mais diversos mecanismos de comunicação, desde os de mais baixo nível (ex.: Sockets) até os de mais alto nível (ex.: RMI/RPC, Web Services)
 - Os participantes da comunicação utilizam uma
 API simples para enviar/receber mensagens
 - O elemento principal envolvido na comunicação é o Message Broker/Provider, que intermedia a interação entre os participantes e gerencia as filas de mensagens

 Arquitetura de um Message Broker/Provider

- Confiabilidade
 - Requisitos de confiabilidade podem ser impostos no envio de mensagens
 - Protocolos de entrega confiável de mensagens podem ser usados
 - Acordo e ordenação podem ser observados na entrega das mensagens a grupos de destinatários
 - Coordenação é efetuada pelo Message
 Broker

- Confidencialidade e controle de acesso
 - Mensagens podem ser criptografadas, de modo a impedir acesso nãoautorizado
 - Filas podem ter controle de acesso, impondo restrições quanto a quem pode produzir e consumir mensagens
 - Controle é feito pelo Message Broker

Gerenciamento de Filas

- A principal função do Message Broker é gerenciar filas de mensagens
 - Filas podem não ter ordem definida ou ter ordem FIFO, LIFO (pilha), por prioridade, ...
 - Filas podem ser persistentes ou não
 - Quando lidas, as mensagens podem ser mantidas ou retiradas da fila
 - Mensagens podem ter um 'prazo de validade'

Gerenciamento de Filas

- Semelhanças entre Message Brokers e SGBDs
 - Armazena persistentemente mensagens/dados
 - Permite a criação de filas/tabelas
 - Executa transações para adição/remoção de mensagens/dados das filas/tabelas
 - Efetua indexação para agilizar o acesso às mensagens/dados
 - Provê mecanismos avançados de busca
 - Dispara gatilhos quando uma mensagem/dado for adicionado a uma fila

Gerenciamento de Filas

- Filtragem por tópicos
 - O receptor pode filtrar as mensagens que recebe com base em tópicos/assuntos
 - Benefícios:
 - Reduz o tráfego na rede
 - Elimina a necessidade de tratar mensagens que n\u00e3o interessam ao receptor
 - Processo de filtragem é efetuado pelo broker com base nos parâmetros de filtragem especificados pelos receptores

- Java Message Service (JMS)
 - Padrão de interface para acesso a MOMs
 - Independente de fornecedor, mas não de linguagem
 - Suportado por diversos MOMs e por grande parte dos servidores de aplicação
 - Elementos
 - Provedor JMS
 - Clientes JMS
 - Produtores
 - Consumidores

- Java Message Service (JMS)
 - Modelo de comunicação ponto-a-ponto: mensagem é endereçada a uma fila e é lida por apenas um consumidor (dentre vários)

- Java Message Service (JMS)
 - Modelo de comunicação
 Publish/Subscribe: mensagens são
 associadas a um tópico, e podem ser
 lidas por vários assinantes que optarem
 por receber mensagens sobre o referido
 tópico

- Advanced Message Queuing Protocol (AMQP)
 - Proposto pelo AMQP Working Group, que reúne grandes instituições financeiras (Credit Suisse, JPMorgan, Goldman Sachs, etc.) e empresas da área de informática (Cisco, Novell, Red Hat, etc.)
 - Define o comportamento do provedor de mensagens e de seus clientes
 - Permite que implementações de diferentes fabricantes interoperem
 - Independente de linguagem e de plataforma

IBM MQ

- Middleware de suporte à sistemas de mensagens
- Muito utilizando no mercado
- Sistemas operacionais suportados: AIX, i5/
 OS, HP UX, Linux, Solaris, Windows, z/OS.
- Linguagens suportadas:
 - Java através da interface JMS C, C++ e C# via Multi-Language Message Service (XMS) C, COBOL e Assembly via MQ Interface
- Integração com:
 - HTTP / AJAX (Web 2.0)
 - SOAP / Web Services

- Apache ActiveMQ
- BEA WebLogic JMS
- JBoss Messaging
- Microsoft Message Queue Server (MSMQ)
- Oracle Advanced Queueing (AQ)
- Sun Java System Message Queue (SJS MQ)
- •

Referências

 Prof. Frank Siqueira, Departamento de Informática e Estatística, UFSC.

 http://www.coderpanda.com/jmsexample-using-apache-activemq/