APPLICATION CERTIFICATION

On Behalf of Origin Electronics Machinery Co., Ltd.

Transmitter
Model No.: RF_MFX600_F, RF_MFX600_J, RF_MFX600_H

FCC ID: YQ4RF-MFX600

Prepared for : Origin Electronics Machinery Co., Ltd.

Address : Rooms 1318-19, 13F, Hollywood Plaza, 610 Nathan

Road, Mongkok, Kowloon, Hong Kong, China

Prepared by : ACCURATE TECHNOLOGY CO. LTD

Address : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20101717

Date of Test : September 1-4, 2010 Date of Report : September 7, 2010

TABLE OF CONTENTS

Description	Page
1	\mathcal{C}

Test R	leport (Certif	ication
--------	----------	--------	---------

1.	GE	ENERAL INFORMATION	5
	1.1.	Description of Device (EUT)	5
	1.2.	Description of Test Facility	6
	1.3.	Measurement Uncertainty	6
2.	\mathbf{M}	EASURING DEVICE AND TEST EQUIPMENT	7
3.	OF	PERATION OF EUT DURING TESTING	8
	3.1.	Operating Mode	8
	3.2.	Configuration and peripherals	
4.	TE	EST PROCEDURES AND RESULTS	
5.		DB BANDWIDTH TEST	
•	5.1.	Block Diagram of Test Setup	
	5.2.	The Requirement For Section 15.247(a)(1)	
	5.3.	EUT Configuration on Measurement	
	5.4.	Operating Condition of EUT	
	5.5.	Test Procedure	11
	5.6.	Test Result	11
6.	CA	ARRIER FREQUENCY SEPARATION TEST	15
	6.1.	Block Diagram of Test Setup	
	6.2.	The Requirement For Section 15.247(a)(1)	
	6.3.	EUT Configuration on Measurement	
	6.4.	Operating Condition of EUT	
	6.5.	Test Procedure	
	6.6.	Test Result	16
7.	NU	UMBER OF HOPPING FREQUENCY TEST	
7.	NU 7.1.	UMBER OF HOPPING FREQUENCY TEST	20
7.		Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii)	
7.	7.1. 7.2. 7.3.	Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement	
7.	7.1. 7.2. 7.3. 7.4.	Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT	
7.	7.1. 7.2. 7.3. 7.4. 7.5.	Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT Test Procedure	
	7.1. 7.2. 7.3. 7.4. 7.5. 7.6.	Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result	
7.8.	7.1. 7.2. 7.3. 7.4. 7.5. 7.6.	Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result WELL TIME TEST	
	7.1. 7.2. 7.3. 7.4. 7.5. 7.6. DV 8.1.	Block Diagram of Test Setup	
	7.1. 7.2. 7.3. 7.4. 7.5. 7.6. DV 8.1. 8.2.	Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result WELL TIME TEST Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii)	
	7.1. 7.2. 7.3. 7.4. 7.5. 7.6. DV 8.1. 8.2. 8.3.	Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result WELL TIME TEST Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement	
	7.1. 7.2. 7.3. 7.4. 7.5. 7.6. DV 8.1. 8.2. 8.3. 8.4.	Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result WELL TIME TEST Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT	
	7.1. 7.2. 7.3. 7.4. 7.5. 7.6. DV 8.1. 8.2. 8.3. 8.4. 8.5.	Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result WELL TIME TEST Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT Test Procedure	20 20 20 20 20 20 21 21 21 25 25 25 25
8.	7.1. 7.2. 7.3. 7.4. 7.5. 7.6. DV 8.1. 8.2. 8.3. 8.4. 8.5. 8.6.	Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result WELL TIME TEST Block Diagram of Test Setup. The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result	20 20 20 20 20 20 21 21 25 25 25 26
	7.1. 7.2. 7.3. 7.4. 7.5. 7.6. DV 8.1. 8.2. 8.3. 8.4. 8.5. 8.6.	Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result WELL TIME TEST Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Procedure Test Result AXIMUM PEAK OUTPUT POWER TEST	20 20 20 20 20 20 21 21 21 25 25 25 25 26 26 30
8.	7.1. 7.2. 7.3. 7.4. 7.5. 7.6. DV 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. MA	Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii). EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result WELL TIME TEST Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Procedure Test Result AXIMUM PEAK OUTPUT POWER TEST Block Diagram of Test Setup	20 20 20 20 20 20 21 21 25 25 25 25 26 26 30
8.	7.1. 7.2. 7.3. 7.4. 7.5. 7.6. DV 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. M 9.1. 9.2.	Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result WELL TIME TEST Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Procedure Test Result AXIMUM PEAK OUTPUT POWER TEST Block Diagram of Test Setup The Requirement For Section 15.247(b)(1)	20 20 20 20 20 20 21 21 25 25 25 26 26 30 30
8.	7.1. 7.2. 7.3. 7.4. 7.5. 7.6. DV 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. M 9.1. 9.2. 9.3.	Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result WELL TIME TEST Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Procedure Test Result AXIMUM PEAK OUTPUT POWER TEST Block Diagram of Test Setup. The Requirement For Section 15.247(b)(1) EUT Configuration on Measurement	20 20 20 20 20 20 21 21 21 25 25 25 25 26 26 30 30
8.	7.1. 7.2. 7.3. 7.4. 7.5. 7.6. DV 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. M 9.1. 9.2.	Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result WELL TIME TEST Block Diagram of Test Setup The Requirement For Section 15.247(a)(1)(iii) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Procedure Test Result AXIMUM PEAK OUTPUT POWER TEST Block Diagram of Test Setup The Requirement For Section 15.247(b)(1)	20 20 20 20 20 20 21 21 21 25 25 25 25 26 26 30 30 30 30

9.6.	Test Result	31
10. B	AND EDGE COMPLIANCE TEST	35
10.1.	Block Diagram of Test Setup	35
10.2.		
10.3.	EUT Configuration on Measurement	35
10.4.	Operating Condition of EUT	36
10.5.		36
10.6.	Test Result	37
11. R	ADIATED SPURIOUS EMISSION TEST	42
11.1.	Block Diagram of Test Setup	42
11.2.	The Limit For Section 15.247(d)	43
11.3.	Restricted bands of operation	43
11.4.	Configuration of EUT on Measurement	44
11.5.	Operating Condition of EUT	44
11.6.		
11.7.	The Field Strength of Radiation Emission Measurement Results	45
12. A	NTENNA REQUIREMENT	66
12.1.	The Requirement	66
12.2.	Antenna Construction	66

Test Report Certification

Applicant : Origin Electronics Machinery Co., Ltd.

Manufacturer : Origin Electronics Machinery Co., Ltd.

EUT Description: Transmitter

(A) MODEL NO.: RF_MFX600_F, RF_MFX600_J, RF_MFX600_H

(B) SERIAL NO.: N/A

(C) POWER SUPPLY: DC 9.6V(Li-ion battery 1×)

Measurement Procedure Used:

D-4- - CT--4 .

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.4: 2003

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

C - - 4 - - - 1 - - - 1 - 4 - 2010

Date of Test:	September 1-4, 2010
Prepared by :	9.0
_	(Engineer)
Approved & Authorized Signer:	Lemb
	(Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Transmitter

Model Number : RF_MFX600_F, RF_MFX600_J, RF_MFX600_H

(Note: These samples are identical except the appearance is different.

Therefore only model RF_MFX600_F is tested.)

Frequency Band : 2402MHz-2480MHz

Number of Channels : 79

Antenna Gain 3dBi

Power Supply : DC 9.6V(Li-ion battery $1\times$)

Applicant : Origin Electronics Machinery Co., Ltd.

Address : Rooms 1318-19, 13F, Hollywood Plaza, 610 Nathan

Road, Mongkok, Kowloon, Hong Kong, China

Manufacturer : Origin Electronics Machinery Co., Ltd.

Address : Rooms 1318-19, 13F, Hollywood Plaza, 610 Nathan

Road, Mongkok, Kowloon, Hong Kong, China

Date of sample received: August 27, 2010

Date of Test : September 1-4, 2010

1.2.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.3. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Type	S/N	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 9, 2011
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 9, 2011
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 9, 2011
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 9, 2011
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 9, 2011
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 9, 2011
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 9, 2011
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 9, 2011
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 9, 2011
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 9, 2011

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: Transmitting mode

Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

Hopping

3.2. Configuration and peripherals

Setup: Transmitting mode

(EUT: Transmitter)

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

5.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1.Transmitter (EUT)

Model Number : RF_MFX600_F

Serial Number : N/A

Manufacturer : Origin Electronics Machinery Co., Ltd.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX(Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

5.5.Test Procedure

- 5.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 30kHz and VBW to 100kHz.
- 5.5.3.The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

5.6.Test Result

PASS.

Date of Test:September 2, 2010Temperature:25°CEUT:TransmitterHumidity:50%Model No.:RF_MFX600_FPower Supply:DC 9.6V(Li-ion battery 1×)Test Mode:TXTest Engineer:Joe

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Limit (MHz)
Low	2402	0.414	
Middle	2441	0.414	
High	2480	0.342	

The spectrum analyzer plots are attached as below.

Date: 2.SEP.2010 09:50:40

Date: 2.SEP.2010 09:46:59

Date: 2.SEP.2010 09:41:25

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

(EUT: Transmitter)

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.3.1.Transmitter (EUT)

Model Number : RF_MFX600_F

Serial Number : N/A

Manufacturer : Origin Electronics Machinery Co., Ltd.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

6.5.Test Procedure

- 6.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz. Adjust Span to 3 MHz.
- 6.5.3. Set the adjacent channel of the EUT maxhold another trace.
- 6.5.4. Measurement the channel separation

6.6.Test Result

PASS.

Date of Test:September 2, 2010Temperature:25°CEUT:TransmitterHumidity:50%Model No.:RF_MFX600_FPower Supply:DC 9.6V(Li-ion battery 1×)Test Mode:HoppingTest Engineer:Joe

	Channel Frequency	Channel separation	
Channel			Limit
	(MHz)	(MHz)	
Low	2402	1.002	> 25 kHz or two-thirds of the 20 dB
LOW	2402	1.002	bandwidth (whichever is greater)
Middle	2441	1.002	> 25 kHz or two-thirds of the 20 dB
Middle	2 44 1	1.002	bandwidth (whichever is greater)
High	2490	1.002	> 25 kHz or two-thirds of the 20 dB
High	2480	1.002	bandwidth (whichever is greater)

The spectrum analyzer plots are attached as below.

Date: 2.SEP.2010 11:43:37

Date: 2.SEP.2010 11:45:56

Date: 2.SEP.2010 11:48:40

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

(EUT: Transmitter)

7.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.3.1.Transmitter (EUT)

Model Number : RF_MFX600_F

Serial Number : N/A

Manufacturer : Origin Electronics Machinery Co., Ltd.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2.Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

7.5.Test Procedure

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as Span=30MHz, RBW=300kHz, VBW=300kHz.
- 7.5.3.Max hold, view and count how many channel in the band.

7.6.Test Result

PASS.

Date of Test: September 2, 2010

EUT: Transmitter

Model No.: RF_MFX600_F

Test Mode: Hopping

Temperature: 25°C

Humidity: 50%

Power Supply: DC 9.6V(Li-ion battery 1×)

Test Engineer: Joe

Total number of	Measurement result (CH)	Limit (CH)
hopping channel	79	>15

The spectrum analyzer plots are attached as below.

Date: 2.SEP.2010 10:47:39

Date: 2.SEP.2010 10:49:12

Date: 2.SEP.2010 10:50:48

8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

(EUT: Transmitter)

8.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.3.1.Transmitter (EUT)

Model Number : RF_MFX600_F

Serial Number : N/A

Manufacturer : Origin Electronics Machinery Co., Ltd.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

8.5.Test Procedure

- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=100kHz, VBW=300kHz, Span=0Hz, Adjust Sweep=1s. Get the burst (in 1 sec.).
- 8.5.4.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=2ms. Get the pulse time.
- 8.5.5.Repeat above procedures until all frequency measured were complete.

8.6.Test Result

PASS.

Date of Test:September 2-3, 2010Temperature:25°CEUT:TransmitterHumidity:50%Model No.:RF_MFX600_FPower Supply:DC 9.6V(Li-ion battery 1×)Test Mode:HoppingTest Engineer:Joe

A period transmit time = $0.4 \times 79 = 31.6$						
Dwell time = p	ulse time × burst (in 31	.6 sec.)				
Channel	Channel Frequency	Pulse Time	Burst	Dwell Time	Limit	
	(MHz)	(ms)	(in 31.6 sec.)	(ms)	(ms)	
Low	2402	4.30	20	86.0	400	
Middle	2441	4.32	20	86.4	400	
High	2480	4.32	20	86.4	400	

The spectrum analyzer plots are attached as below.

Date: 3.SEP.2010 09:23:41

Date: 2.SEP.2010 11:30:30

Date: 3.SEP.2010 09:25:16

Date: 2.SEP.2010 11:31:25

Date: 3.SEP.2010 09:26:16

Date: 2.SEP.2010 11:38:53

9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

(EUT: Transmitter)

9.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.3.1.Transmitter (EUT)

Model Number : RF_MFX600_F

Serial Number : N/A

Manufacturer : Origin Electronics Machinery Co., Ltd.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

9.5.Test Procedure

- 9.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz.
- 9.5.3. Measurement the maximum peak output power.

9.6.Test Result

PASS.

Date of Test:September 2, 2010Temperature:25°CEUT:TransmitterHumidity:50%Model No.:RF_MFX600_FPower Supply:DC 9.6V(Li-ion battery 1×)Test Mode:TXTest Engineer:Joe

Channel	Frequency (MHz)	Peak Output Power (dBm)	Peak Output Power (mW)	Limits dBm / W
Low	2402	9.53	8.974	30 dBm / 1 W
Middle	2441	8.63	7.295	30 dBm / 1 W
High	2480	7.50	5.623	30 dBm / 1 W

The spectrum analyzer plots are attached as below.

Date: 2.SEP.2010 10:04:51

Date: 2.SEP.2010 10:10:55

Date: 2.SEP.2010 10:14:33

10.BAND EDGE COMPLIANCE TEST

10.1.Block Diagram of Test Setup

10.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.3.1.Transmitter (EUT)

Model Number : RF_MFX600_F

Serial Number : N/A

Manufacturer : Origin Electronics Machinery Co., Ltd.

10.4. Operating Condition of EUT

- 10.4.1. Setup the EUT and simulator as shown as Section 10.1.
- 10.4.2. Turn on the power of all equipment.
- 10.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

10.5.Test Procedure

- 10.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 10.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.
- 10.5.3. The band edges was measured and recorded.

10.6.Test Result

Pass

Date of Test:September 2, 2010Temperature:25°CEUT:TransmitterHumidity:50%Model No.:RF_MFX600_FPower Supply:DC 9.6V(Li-ion battery 1×)Test Mode:TX (Hopping off)Test Engineer:Joe

Conducted test

Frequency	Result of Band Edge (dBc)	Limit of Band Edge (dBc)
(MHz)		
2402	38.02	> 20dBc
2480	42.18	> 20dBc

Date of Test:September 2, 2010Temperature:25°CEUT:TransmitterHumidity:50%Model No.:RF_MFX600_FPower Supply:DC 9.6V(Li-ion battery 1×)Test Mode:TX (Hopping on)Test Engineer:Joe

Conducted test

Frequency	Result of Band Edge (dBc)	Limit of Band Edge (dBc)
(MHz)	, , ,	, ,
2402	45.31	> 20dBc
2480	45.84	> 20dBc

Date: 2.SEP.2010 12:02:02

Date: 2.SEP.2010 12:16:22

Date: 2.SEP.2010 11:54:21

Date: 2.SEP.2010 11:51:39

11. RADIATED SPURIOUS EMISSION TEST

11.1.Block Diagram of Test Setup

11.1.1.Block diagram of connection between the EUT and simulators

Setup: Transmitting mode

(EUT: Transmitter)

11.1.2.Semi-Anechoic Chamber Test Setup Diagram

(EUT: Transmitter)

11.2.The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.Restricted bands of operation

11.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

permitted in any of the frequency bands listed below:								
MHz	MHz	MHz	GHz					
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15					
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46					
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75					
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5					
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2					
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5					
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7					
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4					
6.31175-6.31225	123-138	2200-2300	14.47-14.5					
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2					
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4					
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12					
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0					
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8					
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5					
12.57675-12.57725	322-335.4	3600-4400	$(^2)$					
13.36-13.41								

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

²Above 38.6

11.4.Configuration of EUT on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4.1.Transmitter (EUT)

Model Number : RF_MFX600_F

Serial Number : N/A

Manufacturer : Origin Electronics Machinery Co., Ltd.

11.5. Operating Condition of EUT

11.5.1.Setup the EUT and simulator as shown as Section 11.1.

11.5.2. Turn on the power of all equipment.

11.5.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

11.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 120kHz in 30-1000MHz, and set at 1MHz in above 1000MHz.

The frequency range from 30MHz to 25000MHz is checked.

The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

11.7. The Field Strength of Radiation Emission Measurement Results **PASS.**

Date of Test: September 1, 2010

EUT: Transmitter

Model No.: RF_MFX600_F

Test Mode: TX (2402MHz)

Temperature: 25°C

Humidity: 50%

Power Supply: DC 9.6V(Li-ion battery 1×)

Test Engineer: Joe

For 30MHz-1000MHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading	Factor	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP	(dB)	QP	QP	QP	
-	-	1	-	-	-	Vertical
-	-	-	_	-	-	Horizontal

For 1GHz-25GHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequenc	Reading	(dBµV/m) Factor		Result(c	Result($dB\mu V/m$) Limit($dB\mu V/m$)			Margin(dBμV/m)	Polarizati
y (MHz)	AV	PEAK	Corr. (dB)	AV	PEAK	AV	PEAK	AV	PEAK	on
2400.00	41.21	44.60	-7.46	33.75	37.14	54	74	-20.25	-36.86	Vertical
2402.010	106.91	110.34	-7.45	99.46	102.89	-	-	-	-	Vertical
*4804.017	50.33	53.74	-0.30	50.03	53.44	54	74	-3.97	-20.56	Vertical
7206.024	43.44	46.88	2.97	46.41	49.85	54	74	-7.59	-24.15	Vertical
2400.00	40.72	44.04	-7.46	33.26	36.58	54	74	-20.74	-37.42	Horizontal
2402.010	105.18	108.60	-7.45	97.73	101.15	ı	-	-	-	Horizontal
*4804.016	49.90	53.33	-0.30	49.60	53.03	54	74	-4.40	-20.97	Horizontal
7206.024	42.67	46.19	2.97	45.64	49.16	54	74	-8.36	-24.84	Horizontal

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. *: Denotes restricted band of operation.

Date of Test: September 1, 2010 Temperature: 25°C

EUT: Transmitter Humidity: 50%

Model No.: RF_MFX600_F Power Supply: DC 9.6V(Li-ion battery 1×)

Test Mode: TX (2441MHz) Test Engineer: Joe

For 30MHz-1000MHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading	Factor	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP	(dB)	QP	QP	QP	
-	-	1	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequenc	Reading	(dBµV/m)	Factor	Result(c	lBμV/m)	Limit(d	BμV/m)	Margin(dBμV/m)	Polarizati
y (MHz)	AV	PEAK	Corr. (dB)	AV	PEAK	AV	PEAK	AV	PEAK	on
2441.011	106.90	110.35	-7.35	99.55	103.00	1	-	-	-	Vertical
*4882.018	50.01	53.45	0.14	50.15	53.59	54	74	-3.85	-20.41	Vertical
*7323.026	42.70	46.16	3.24	45.94	49.40	54	74	-8.06	-24.60	Vertical
2441.011	105.34	108.81	-7.35	97.99	101.46	-	-	-	-	Horizontal
*4882.018	49.47	52.92	0.14	49.61	53.06	54	74	-4.39	-20.94	Horizontal
*7323.026	42.23	45.66	3.24	45.47	48.90	54	74	-8.53	-25.10	Horizontal

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. *: Denotes restricted band of operation.

Date of Test: September 1, 2010 Temperature: 25°C

EUT: Transmitter Humidity: 50%

Model No.: RF_MFX600_F Power Supply: DC 9.6V(Li-ion battery 1×)

Test Mode: TX (2480MHz) Test Engineer: Joe

For 30MHz-1000MHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequency	Reading	Factor	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP	(dB)	QP	QP	QP	
-	-	1	-	-	1	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequency (MHz)	Reading(dBµV/m		(dBμV/m Factor Corr. (dB)		Result(dBμV/m) Lin		Limit(dBµV/m)		Margin(dBμV/m)		
(1/1112)	AV	PEAK		AV	PEAK	AV	PEAK	AV	PEAK		
2480.012	106.89	110.32	-7.37	99.52	102.95	ı	ı	-	-	Vertical	
2483.500	41.16	44.71	-7.37	33.79	37.34	54	74	-20.21	-36.66	Vertical	
*4960.018	49.62	53.08	0.52	50.14	53.60	54	74	-3.86	-20.40	Vertical	
*7440.025	42.42	45.85	3.69	46.11	49.54	54	74	-7.89	-24.46	Vertical	
2480.012	105.06	108.54	-7.37	97.69	101.17	-	-	-	-	Horizontal	
2483.500	40.63	44.06	-7.37	33.26	36.69	54	74	-20.74	-37.31	Horizontal	
*4960.018	49.07	52.54	0.52	49.59	53.06	54	74	-4.41	-20.94	Horizontal	
*7440.025	41.83	45.27	3.69	45.52	48.96	54	74	-8.48	-25.04	Horizontal	

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. *: Denotes restricted band of operation.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: joe #691

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Transmitter
Mode: TX 2402MHz

Model: RF_MFX600_F

Manufacturer: Origin Electronics Machinery Co., Ltd.

Note: Sample No.:101952 Report No.:ATE20101717

Polarization: Horizontal Power Source: DC 9.6V

Date: 2010/09/01 Time: 8:41:06

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: joe #690

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Transmitter
Mode: TX 2402MHz

Model: RF_MFX600_F
Manufacturer: Origin Electronics Machinery Co., Ltd.

Note: Sample No.:101952 Report No.:ATE20101717

Polarization: Vertical
Power Source: DC 9.6V

Date: 2010/09/01 Time: 8:37:33

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: joe #709

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Transmitter
Mode: TX 2402MHz

Model: RF_MFX600_F

Manufacturer: Origin Electronics Machinery Co., Ltd.

Note: Sample No.:101952 Report No.:ATE20101717

Polarization: Horizontal Power Source: DC 9.6V

Date: 2010/09/01 Time: 10:18:17

Engineer Signature: Joe

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2400.000	44.04	-7.46	36.58	74.00	-37.42	peak				
2	2400.000	40.72	-7.46	33.26	54.00	-20.74	AVG				
3	2402.010	108.60	-7.45	101.15	≅	172	peak				
4	2402.010	105.18	-7.45	97.73	==	172	AVG				
5	4804.017	53.33	-0.30	53.03	74.00	-20.97	peak				
6	4804.017	49.90	-0.30	49.60	54.00	-4.40	AVG				
7	7206.024	46.19	2.97	49.16	74.00	-24.84	peak				
8	7206.024	42.67	2.97	45.64	54.00	-8.36	AVG				

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: joe #708

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Transmitter
Mode: TX 2402MHz

Model: RF_MFX600_F

 $\label{thm:manufacturer: Origin Electronics Machinery Co., Ltd.} \\$

Note: Sample No.:101952 Report No.:ATE20101717

Date: 2010/09/01 Time: 10:14:05

Engineer Signature: Joe

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2400.000	44.60	-7.46	37.14	74.00	-36.86	peak			
2	2400.000	41.21	-7.46	33.75	54.00	-20.25	AVG			
3	2402.010	110.34	-7.45	102.89	=	-	peak			
4	2402.010	106.91	-7.45	99.46	=	-	AVG			
5	4804.017	53.74	-0.30	53.44	74.00	-20.56	peak			
6	4804.017	50.33	-0.30	50.03	54.00	-3.97	AVG			
7	7206.024	46.88	2.97	49.85	74.00	-24.15	peak			
8	7206.024	43.44	2.97	46.41	54.00	-7.59	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: joe #714

Standard: FCC Class B 3M Radiated

Test item: Radiation Test
Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Transmitter

Mode: TX 2402MHz Model: RF_MFX600_F

Manufacturer: Origin Electronics Machinery Co., Ltd.

Note: Sample No.:101952 Report No.:ATE20101717

Polarization: Horizontal Power Source: DC 9.6V

Date: 2010/09/01 Time: 10:43:09

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: joe #715

Standard: FCC Class B 3M Radiated

Test item: Radiation Test
Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Transmitter
Mode: TX 2402MHz

Model: RF_MFX600_F

Manufacturer: Origin Electronics Machinery Co., Ltd.

Note: Sample No.:101952 Report No.:ATE20101717

Polarization: Vertical Power Source: DC 9.6V

Date: 2010/09/01 Time: 10:46:43

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: joe #692

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Transmitter
Mode: TX 2441MHz

Model: RF_MFX600_F

Manufacturer: Origin Electronics Machinery Co., Ltd.

Note: Sample No.:101952 Report No.:ATE20101717

Date: 2010/09/01 Time: 8:45:10

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: joe #693

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Transmitter
Mode: TX 2441MHz

Model: RF_MFX600_F

Manufacturer: Origin Electronics Machinery Co., Ltd.

Note: Sample No.:101952 Report No.:ATE20101717

Polarization: Vertical Power Source: DC 9.6V

Date: 2010/09/01 Time: 8:48:45

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: joe #710

Standard: FCC Class B 3M Radiated

Test item: Radiation Test
Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Transmitter
Mode: TX 2441MHz

Model: RF_MFX600_F

 $\label{thm:manufacturer: Origin Electronics Machinery Co., Ltd.} \\$

Note: Sample No.:101952 Report No.:ATE20101717

Polarization: Horizontal Power Source: DC 9.6V

Date: 2010/09/01 Time: 10:23:20

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: joe #711

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Transmitter
Mode: TX 2441MHz

Model: RF_MFX600_F

Manufacturer: Origin Electronics Machinery Co., Ltd.

Note: Sample No.:101952 Report No.:ATE20101717

Polarization: Vertical Power Source: DC 9.6V

Date: 2010/09/01 Time: 10:27:27

Engineer Signature: Joe

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2441.011	110.35	-7.35	103.00	=	72	peak			
2	2441.011	106.90	-7.35	99.55	2		AVG			
3	4882.018	53.45	0.14	53.59	74.00	-20.41	peak			
4	4882.018	50.01	0.14	50.15	54.00	-3.85	AVG			
5	7323.026	46.16	3.24	49.40	74.00	-24.60	peak			
6	7323.026	42.70	3.24	45.94	54.00	-8.06	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: joe #717

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Transmitter
Mode: TX 2441MHz

Model: RF_MFX600_F

Manufacturer: Origin Electronics Machinery Co., Ltd.

Note: Sample No.:101952 Report No.:ATE20101717

Polarization: Horizontal Power Source: DC 9.6V

Date: 2010/09/01 Time: 10:55:00

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: joe #716

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Transmitter
Mode: TX 2441MHz

Model: RF_MFX600_F

Manufacturer: Origin Electronics Machinery Co., Ltd.

Note: Sample No.:101952 Report No.:ATE20101717

Time: 10:51:19 Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: joe #695

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Transmitter
Mode: TX 2480MHz

Model: RF_MFX600_F

Manufacturer: Origin Electronics Machinery Co., Ltd.

Note: Sample No.:101952 Report No.:ATE20101717

Polarization: Horizontal Power Source: DC 9.6V

Date: 2010/09/01 Time: 8:56:26

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: joe #694

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Transmitter Mode: TX 2480MHz

Model: RF_MFX600_F

Manufacturer: Origin Electronics Machinery Co., Ltd.

Note: Sample No.:101952 Report No.:ATE20101717

Power Source: DC 9.6V Date: 2010/09/01 Time: 8:52:51 Engineer Signature: Joe

Polarization: Vertical

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: joe #713

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Transmitter
Mode: TX 2480MHz

Model: RF_MFX600_F

Manufacturer: Origin Electronics Machinery Co., Ltd.

Note: Sample No.:101952 Report No.:ATE20101717

Polarization: Horizontal Power Source: DC 9.6V

Date: 2010/09/01 Time: 10:36:35

Engineer Signature: Joe

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2480.012	108.54	-7.37	101.17	72	92	peak			
2	2480.012	105.06	-7.37	97.69	72	-	AVG			
3	2483.500	44.06	-7.37	36.69	74.00	-37.31	peak			
4	2483.500	40.63	-7.37	33.26	54.00	-20.74	AVG		Ì	
5	4960.018	52.54	0.52	53.06	74.00	-20.94	peak			
6	4960.018	49.07	0.52	49.59	54.00	-4.41	AVG			
7	7440.025	45.27	3.69	48.96	74.00	-25.04	peak			
8	7440.025	41.83	3.69	45.52	54.00	-8.48	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: joe #712

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Transmitter
Mode: TX 2480MHz

Model: RF_MFX600_F

Manufacturer: Origin Electronics Machinery Co., Ltd.

Note: Sample No.:101952 Report No.:ATE20101717

Date: 2010/09/01 Time: 10:32:34

Engineer Signature: Joe

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2480.012	110.32	-7.37	102.95	12	12	peak				
2	2480.012	106.89	-7.37	99.52		12	AVG				
3	2483.500	44.71	-7.37	37.34	74.00	-36.66	peak				
4	2483.500	41.16	-7.37	33.79	54.00	-20.21	AVG				
5	4960.018	53.08	0.52	53.60	74.00	-20.40	peak				
6	4960.018	49.62	0.52	50.14	54.00	-3.86	AVG				
7	7440.025	45.85	3.69	49.54	74.00	-24.46	peak				
8	7440.025	42.42	3.69	46.11	54.00	-7.89	AVG				

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: joe #718

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Transmitter
Mode: TX 2480MHz

Model: RF_MFX600_F

Manufacturer: Origin Electronics Machinery Co., Ltd.

Note: Sample No.:101952 Report No.:ATE20101717

Polarization: Horizontal Power Source: DC 9.6V

Date: 2010/09/01 Time: 10:59:21

Engineer Signature: Joe

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: joe #719

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: Transmitter
Mode: TX 2480MHz

Model: RF_MFX600_F

Manufacturer: Origin Electronics Machinery Co., Ltd.

Note: Sample No.:101952 Report No.:ATE20101717

Polarization: Vertical Power Source: DC 9.6V

Date: 2010/09/01 Time: 11:03:08

Engineer Signature: Joe

12.ANTENNA REQUIREMENT

12.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

12.2.Antenna Construction

The antenna used with Reverse Polarity SMA connector, no consideration of replacement other than that furnished by the responsible party. Therefore, the equipment complies with the antenna requirement of Section 15.203.

Antenna