Some Comments for Distributed SDCA

Mingrui Liu

April 28, 2017

Abstract

In this note, we will give some comments for Tianbao's nips 2013 paper: trading compututation with communication: distributed SDCA.

Suggestions

Reading section 3.1 of the paper before going into this note is highly recommended. For intuitive explanations, please refer to the page 104 of Tianbao's tutorial:

https://homepage.cs.uiowa.edu/tyng/kdd15-tutorial.pdf.

Notations for the Algorithms

In this section, the detailed comments for the Algorithm **SDCA-mR** and the Algorithm **IncDual** are provided.

For SDCA-mR

SDCA-mR is an algorithm that should be implemented on the k-th machine, where k can be taken value from $1, \ldots, K$.

- \bullet *n* is the total number of samples.
- ullet For the input part, m examples are processed on the k-th machines.
- n_k is a number which is less than or equal to m. Normally choose $n_k = m$.
- The choice of g in the procedure **SDCA-mR**:

$$g(w) = \frac{1}{2} ||w||^2,$$

We may not need to consider a general g. g being a quadratic function is actually the same with the original SDCA paper (Shai Shalev-Shwartz and Tong Zhang).

• g^* is the convex conjugate of g, which is defined as

$$g^*(x) = \sup_{y} (x^{\mathsf{T}} y - g(y)).$$

You can take the derivate with respect to y and set it to be zero to get the closed form solution of g^* . Actually, in our project, if $g(x) = \frac{1}{2}||x||^2$, then $g^*(x) = \frac{1}{2}||x||^2$, and $\nabla g^*(x) = x$. (Note that x is a column vector instead of a scalar.)

- Note that both $\alpha_{k,i}^{(t)}$ and $\triangle \alpha_{k,i}$ are scalars.
- The inner loop iteration for $j=1,\ldots,m$ ends before the **Reduce** step.
- At the **Reduce** step, add the sum part, which is $\frac{1}{\lambda n} \sum_{j=1}^{m} \triangle \alpha_{k,i_j} x_{k,i_j}$ of each process to v^{t-1} . More formally,

$$\boldsymbol{v}^t \leftarrow \boldsymbol{v}^{t-1} + \sum_{k=1}^K \frac{1}{\lambda n} \sum_{j=1}^m \triangle \alpha_{k,i_j} \boldsymbol{x}_{k,i_j}$$

After finishing the update, broadcast the updated value to all K processes until the T-th iteration.

For IncDual

Option I at the Routine IncDual(w, scl):

For Hinge Loss:

$$\Delta \alpha_{k,i} = y_{k,i} \max(0, \min(1, \frac{1 - x_{k,i}^{\mathsf{T}} w^{t-1} y_i}{scl \|x_{k,i}\|^2 / \lambda n} + \alpha_{k,i}^{t-1} y_{k,i})) - \alpha_{k,i}^{t-1}$$

More options

You can also consider the practical variant (at Figure 2) of distributed SDCA, which may be faster in practice.