

MGM's College of Engineering and Technology

Kamothe, Navi Mumbai

Approved by AICTE, Recognized by Govt. of Maharashtra & Affiliated to University of Mumbal

MINI-PROJECT:

INVERSE LAPLACE TRANSFORM

SUBMITTED BY:

- PRAGATI CHANDRA-06
- CHAUDHARY IRSHAD ALI-07
- CHAVAN PRATIK VIJAY-09
- KIRTI CHAVAN-10

UNIVERSITY OF MUMBAI 2024-2025 ACADEMIC YEAR 2024-25 PROF. NARHARI WARADE (HEAD OF DEPANTMENT)

>TOPIC TO BE COVERED

- 1. Linearity Property
- 2. First Shifting Theorem (Time Shifting Property)
- 3. Multiplication by power of t
- 4. Second Shifting Theorem (Frequency Shifting Property)
- 5. Convolution Theorem
- 6. Method of Convolution Corrollary

First property

 $L^{-1}(kf(t)) = kL^{-1}(f(t))$, where k is a constant.

2nd property - Linearity property

If c_1 and c_2 are any two constants while $f_1(s)$ & $f_2(s)$ are the functions with Inverse Laplace transforms $F_1(t)$ & $F_2(t)$ respectively, then

$$L^{-1}(c_1f_1(s) + c_2f_2(s)) = c_1L^{-1}(f_1(s)) + c_2L^{-1}(f_2(s))$$
$$= c_1F_1(t) + c_2F_2(t)$$

3rd property -Translation or Shifting property

If
$$L^{-1}(f(s)) = F(t)$$
 then $L^{-1}(f(s-a)) = e^{at}F(t)$

4th property - Multiplication by power of t

If
$$L^{-1}(f(s)) = F(t)$$
, and $F(0) = F'(0) = \dots F^{(n-1)}(0) = 0$
then $L^{-1}\left(\frac{d^n}{ds^n}f(s)\right) = (-1)^n t^n F(t)$, where $n = 1, 2, 3...$

Convolution Property

If F(t) and G(t) are the inverse transforms of f(s) and g(s), respectively, the inverse transform of the product f(s)g(s) is the convolution of F(t) and G(t), written (F * G)(t) and defined by

$$(F * G)(t) = \int_0^1 F(t - u) \ G(u) \ du$$

i.e.,

$$L^{-1}(f(S)g(s)) = (F * G)(t) = \int_{0}^{1} F(t - u) \ G(u) \ du$$

Corrollary

Putting t - u = v in the above integral, we obtain,

$$(F * G)(t) = -\int_{t}^{0} F(v) G(t - v) du$$
$$= \int_{0}^{t} G(t - v)F(v) du$$
$$= (G * F)(t)$$

STANDARD FORMULAE

PROBLEMS:-

INVERSE LAPLACE TRANSFORMS BY USING THE STANDARD FORMULAE

Q.1. Find
$$L^{-1} \left(\frac{1-\sqrt{s}}{s^2}\right)^2$$

$$L^{-1} \left(\frac{1-\sqrt{s}}{s^2}\right)^2 = L^{-1} \left\{\frac{1-2\sqrt{s}+s}{s^4}\right\}$$

$$= L^{-1} \left(\frac{1}{s^4}\right) - 2L^{-1} \left(\frac{1}{s^7}\right) + L^{-1} \left(\frac{1}{s^3}\right)$$

$$= \frac{t^3}{3!} - 2\frac{t^{5/2}}{\Gamma^{7/2}} + \frac{t^2}{2!}$$

$$= \frac{t^3}{6} - \frac{16}{15\sqrt{\pi}} t^{5/2} + \frac{t^2}{2} \qquad \text{Ans.}$$

Q.2. Find
$$L^{-1} \left[\frac{3s+4}{s^2+16} \right]$$

$$L^{-1} \left[\frac{3s+4}{s^2+16} \right] = L^{-1} \left[\frac{3s}{s^2+16} \right] + L^{-1} \left[\frac{4}{s^2+16} \right] = 3L^{-1} \left[\frac{s}{s^2+4^2} \right] + 4L^{-1} \left[\frac{1}{s^2+4^2} \right]$$

$$= 3\cos 4t + 4x + \sin 4t$$

$$= 3\cos 4t + \sin 4t$$
Ans.

Q.3. Find $L^{-1}\left[\frac{s}{(s-2)^6}\right]$

$$\begin{split} L^{-1} \left[\frac{s}{(s-2)^6} \right] &= L^{-1} \left[\frac{(s-2)+2}{(s-2)^6} \right] = L^{-1} \left[\frac{s-2}{(s-2)^6} \right] + L^{-1} \left[\frac{2}{(s-2)^6} \right] \\ &= L^{-1} \left[\frac{1}{(s-2)^5} \right] + 2 \ L^{-1} \left[\frac{1}{(s-2)^6} \right] = e^{2t} L^{-1} \left[\frac{1}{s^5} \right] + 2 \ e^{2t} L^{-1} \left[\frac{1}{s^6} \right] \\ &= e^{2t} \frac{t^4}{4!} + 2 e^{2t} \frac{t^5}{5!} = e^{2t} \frac{t^4}{24} + e^{2t} \frac{t^5}{60} \end{split} \qquad \text{Ans.}$$

Find
$$L^{-1}\{\frac{s+1}{s^2-4}\}$$

$$\frac{s+1}{s^2-4} = \frac{s+1}{(s+2)(s-2)} = \frac{A}{s+2} + \frac{B}{s-2}$$

$$S+1 = A(s-2) + B(s+2)$$

Let s=2, 3= Bx4
$$\Longrightarrow B = \frac{3}{4}$$

Let s=-2, -1= Ax-4
$$\Rightarrow$$
 $A = \frac{1}{4}$

$$L^{-1}\frac{s+1}{s^2-4} = L^{-1}\frac{1/4}{s+2} + L^{-1}\frac{3/4}{s-2} = \frac{1}{4}L^{-1}\frac{1}{s+2} + \frac{3}{4}L^{-1}\frac{1}{s-2}$$

$$=\frac{1}{4}e^{-2t}+\frac{3}{4}e^{2t}=\frac{1}{4}(e^{-2t}+3e^{2t})$$
 Ans.

Find
$$L^{-1} \frac{3s+1}{(s+1)(s^2+2)}$$

$$\frac{3s+1}{(s+1)(s^2+2)} = \frac{A}{s+1} + \frac{Bs+C}{s^2+2}$$

$$3s+1 = A(s^2 + 2) + (Bs + C)(s + 1)$$

Let s=-1, -2=
$$3A \Rightarrow A = -2/3$$

Let s= 0, 1= 2A +C
$$\Longrightarrow$$
 $C = 1 - 2A \Longrightarrow$ $C = 7/3$

Let s=1, 4 = 3A+(B+C)2 \Longrightarrow B = 2/3 (substitute the values of A & C)

$$L^{-1} \frac{3s+1}{(s+1)(s^2+2)} = L^{-1} \frac{-(\frac{2}{3})}{s+1} + L^{-1} \frac{(\frac{2}{3})s+(\frac{7}{3})}{s^2+2}$$

$$L^{-1} F(s) = \frac{-1}{t} L^{-1} [F'(s)] \& L^{-1} [F'(s)] = -t L^{-1} [F(s)]$$

Find
$$L^{-1}\log\{\frac{s+a}{s+b}\}$$

$$L^{-1}\log\{\frac{s+a}{s+b}\} = \frac{-1}{t}L^{-1}\{\frac{d}{ds}\left[\log\left(\frac{s+a}{s+b}\right)\right]\}$$

$$= \frac{-1}{t}L^{-1}\{\frac{d}{ds}\left[\log(s+a) - \log(s+b)\right]\}$$

$$= \frac{-1}{t}L^{-1}\{\frac{1}{s+a} - \frac{1}{s+b}\}$$

$$= \frac{-1}{t}\{e^{-at} - e^{-bt}\}$$
 Ans.

Find $L^{-1}[2 \tanh^{-1} s]$

$$\begin{split} L^{-1}[2\tanh^{-1}s] &= L^{-1}\{2*\frac{1}{2}\log[\frac{1+s}{1-s}]\} = L^{-1}\{\log[\frac{1+s}{1-s}]\} \\ &= \frac{-1}{t}L^{-1}\left\{\frac{d}{ds}\log\left(\frac{1+s}{1-s}\right)\right\} \\ &= \frac{-1}{t}L^{-1}\left\{\frac{d}{ds}[\log(1+s) - \log(1-s)]\right\} = \frac{-1}{t}L^{-1}\left\{\frac{1}{1+s} - \frac{1*(-1)}{(1-s)}\right\} \\ &= \frac{-1}{t}L^{-1}\left\{\frac{1}{(s+1)} - \frac{1}{(s-1)}\right\} \\ &= \frac{-1}{t}\{e^{-t} - e^{t}\} \\ &= \frac{2}{t}\left\{\frac{e^{t} - e^{-t}}{2}\right\} = \frac{2}{t}\sinh t \end{split} \qquad \text{Ans.}$$

INVERSE LAPLACE TRANSFORMS BY USING INTEGRATION OF F(s)

- $L^{-1}\frac{1}{s}F(s) = \int_0^t L^{-1}F(s)du$
- •

Find
$$L^{-1} \frac{1}{s^2(s+1)}$$

$$L^{-1}\frac{1}{s^2(s+1)}=L^{-1}\frac{1}{s}\left(\frac{1}{s(s+1)}\right)$$

Consider
$$L^{-1}\left(\frac{1}{s(s+1)}\right)$$
. Here $F(s) = \left(\frac{1}{(s+1)}\right)$

$$L^{-1}\frac{1}{s}\left(\frac{1}{(s+1)}\right) = \int_0^t L^{-1}\left[\frac{1}{s+1}\right] du = \int_0^t e^{-u} du = \{-e^{-u}\}_0^t = 1 - e^{-t} \quad -----(1)$$

$$L^{-1}\frac{1}{s}\left(\frac{1}{s(s+1)}\right) = \int_0^t L^{-1}\left[\frac{1}{s(s+1)}\right] du = \int_0^t \left[1 - e^{-u}\right] du$$
 {Using (!), The

variables t & u can be interchanged}

$$= \{u - (-e^{-u})\}_0^t$$
$$= \{t + e^{-t} - 1\}$$

Ans.

Find $L^{-1}\frac{1}{s(s+1)}$

Let
$$F_1(s) = \frac{1}{s+1}$$
 & $F_2(s) = \frac{1}{s}$
 $L^{-1}F_1(s) = e^{-t} = f_1(t)$ & $L^{-1}F_2(s) = 1 = f_2(t)$

By convolution theorem, $L^{-1}\{\frac{1}{(s+1)} \ \frac{1}{s}\} = \int_0^t e^{-u} * 1 \ du$

$$= \left[\frac{e^{-u}}{-1}\right]_0^t = \{-[e^{-t} - 1]\} = (1 - e^{-t}) \text{ Ans.}$$

Find
$$L^{-1}[\frac{1}{s(s^2+4)}]$$

Let
$$F_1(s) = \frac{1}{s^2 + 4}$$
 & $F_2(s) = \frac{1}{s}$
 $L^{-1}F_1(s) = \frac{1}{2}Sin\ 2t = f_1(t)$ & $L^{-1}F_2(s) = 1 = f_2(t)$

By convolution theorem , $L^{-1}\left[\frac{1}{s(s^2+4)}\right] = \frac{1}{2}\int_0^t Sin\ 2u\ *\ 1\ du$

$$= \frac{1}{2} \left(\frac{-\cos 2u}{2} \right)_0^t = \frac{-1}{4} \left(\cos 2t - 1 \right)$$
$$= \frac{1}{4} \left(1 - \cos 2t \right)$$
 Ans.