Exhibit 37

PEEK TECHNICAL REVIEW

Wed. 5/25/94, 10:00am, Training Room B Santa Clara

AGENDA

I.	a) b) c) d)	and Overview Project objective - target chara Material options screened General description of PEEK Other medical device application Biocompatibility of PEEK Effect of radiation on PEEK PEEK shaft tubing properties * comparison to other polymer	ons of PEEK
II.	PEEK OTW a)	Catheter Performance Summary of performance of PE * heart model and physician in	Dan Cox - 15 min. EEK OTW catheters iput
III.	PEEK Supp a) b)	ly Resin from ICI * list of PEEK grades and AC * ICI supply to medical application Acutech * ACS experience (tubing costs) * agreement status	cations - status
IV.	PEEK Extru a) b) c) d)	sion (in-house) process characteristics process optimization plans equipment needs for production cost estimate of tubing in prod	Steve Schaible - 20 min. n process uction
V .	Post Proces a) b) c)	sing expanding/necking process description/consistency equipment needs for production	Larry Wasicek - 10 min. y n process
VI.	Joining a) b) c)	lap joint design adhesives and process selection testing results	<i>Pat Urasake - 10 min.</i> n
VII.	Action Items a) b) c) d) e)	extrusion optimization/qualificatubing source decision plan supplier agreements plans for necessary equipment effect of radiation sterilization other	acquisitions

PEEK TECHNICAL REVIEW

5/25/94

- . Overview
- PEEK OTW Catheter Performance
- 3. PEEK Supply
- PEEK In-house Extrusion
- Post Extrusion Processing
- Joining / Bonding
- Action Items

Pat Urasaki, Dave Young, Jeong Lee Bob Ainsworth, Dan Cox, Steve Schaible, Larry Wasicek,

OVERVIEW

- **Project Objectives**
- Initial Material Options
- PEEK Description
- PEEK Biocompatibility
 PEEK Radiation Resistance
- **Comparative Mechanical Properties**

PROJECT OBJECTIVES

A PROXIMAL SHAFT MATERIAL WITH:

- 1. High Stiffness for Catheter Push
- High Strength for thin wall Low Profile Shafts
- 3. Good Kink Resistance
- Low Cost (Readily Extrudable)
- **Good Post Extrusion Processing Characteristics** (Acceptable Elongation and Bondability for CatheterAssembly Processes)

INITIAL MATERIAL OPTIONS

- 1. POLYIMIDE (Thermoset)
- 2. POLYIMIDE WITH WIRE REINFORCEMENT (Steve polyimide) Levin evaluation of braid and axial wire reinforced
- 3. POLYETHERETHERKETONE (VICTREX® PEEK)
- 4. POLYETHERIMIDE (ULTEM® PEI)
- 5. POLYETHERSULFONE (RADEL® PES)
- 6. POLYARYLETHERKETONE (ULTRAPEK® PAEK)
- 7. POLYPHENYLENE SULFIDE (PPS)

PEEK (polyetheretherketone)

- High Temperature Thermoplastic
- (m.p.: 633º F, process temp.: 700-750º F)
- Melt Stable (>1 hr at 752º F)
- Semicrystalline (max. crystallinity: 48%)
- Victrex® 381g grade from Victrex Corp.
- Biocompatible
- Radiation Resistant
- High Strength, Stiffness, Moderate Elongation and Kink Resistance

PEEK Biocompatibility

- Other Medical Device Applications
- Orthopedic Bone Plates (investigational)
- Orthopedic Hip Implant (investigational)
- In-Vitro Biocompatibility (literature)
- Negligible cellular response
- Muscle Implant Biocompatibility (literature) Response similar to control PE
- ACS Cytotoxicity passed
- ACS Hemolysis passed

PEEK RADIATION RESISTANCE

- After 1000 Mrads E-Beam, amorphous PEEK:
- Modulus increased by 2.5%
- Yield Strength decreased by 13%
- Tensile Strength decreased by 20%
- Elongation decreased by 22%
- PEEK was ranked more resistant than polyamide, less resistant than polyimide
- from: POLYMER, Vol. 26, July 1985, pp. 1039-1045

MECHANICAL PROPERTIES

PEEK (SC)	Nylon 12	PVDF (Kynar)	PET	PEBAX 7233	Hytrel 8238	HDPE (X- Mndrl)	Material
422 ksi.	144 ksi.	246 ksi.	291 ksi.	104 ksi.	72 ksi.	180 ksi.	Modulus
262%	206%	125%	# # # *	285%	278%	150%	Elongation
ယ	ယ	1 1 1 1	N	ζī	G I	4	Kink

MECHANICAL PROPERTIES

Cobraid	Polyimide TS	PAEK (Ultrapek)	PEI (Ultem)	PES	PPS	PEEK (Wtr cooled)	PEEK (Air cooled)	PEEK (Acutech)	Material
679 ksi.	470 ksi.	*	346 ksi.	323 ksi.	279 ksi.	370 ksi.	422 ksi.	415 ksi.	Modulus
ļ	70%	1 4 8 1 1	151%	150%	!	283%	262%	69%	Elongation
N	N	1 1 2 1	ω	ω	<u> </u>	ω	ω	ယ	Kink Res.

PEEK Performance Evaluations Completed

May 1993 - Heart Model vs Elastinite, PEEK was too small

1994 - Several heart models evaluating coaxial designs, transitions, PEEK inner member and elliptical distal shafts

March '94 - Heart model comparing elastinite and PEEK in both elliptical and coaxial versions

April '94 - Showed to Dr. Kent to compare PEEK and elastinite

April '94 - Heart model with Dr. Stone comparing PEEK and elastinite

May '94 - Perfused human heart with Dr. Hartzler - no results due to difficulties with model

No animal studies or human use to date

dlc/5-23-94

PEEK Performance Results

Internal heart models

PEEK performed very well
Significantly better push than Edge
Better push than Cobra because of less abrupt transition
Guidewire movement equivalent to Edge and Cobra
None of the PEEK devices had any kink problems
Elastinite had slightly better guidewire movement

Dr. Kent

Did not see major difference between PEEK and elastinite

Dr. Stone

PEEK transition better than elastinite, less abrupt
Likes very stiff proximal shafts - thought elastinite had slightly
better longitudinal stiffness than PEEK
Push of elastinite & PEEK is equivalent, both better than Cobre

Push of elastinite & PEEK is equivalent, both better than Cobra Guidewire movement torque in elastinite is slightly more one to one than in PEEK

Track of both better than Edge, not quite as good as Cobra

dlc/5-23-94

Elastinite vs PEEK Performance Differences

Transmits push from back end to distal tip

Elastinite is stiffer and feels somewhat more pushable PEEK is much stiffer than PE and has very good push The difference between PEEK and elastinite is small

Smooth guidewire movement

PEEK design uses graphite/HDPE inner member Coating and straightness makes elastinite a little better PEEK design is acceptable

Balloon catheter shaft doesn't kink during use

PEEK is more kink resistant than current Edge Elastinite is more kink resistant than PEEK Elastinite design can kink at transition and outer shaft Overall kink resistance of designs is equivalent

Good visualization during proximal injections

Elastinite can be made .001"-.002" smaller than PEEK PEEK design has adequate visualization

Can use smaller guiding catheters

PEEK performs better than Edge due to smaller size Small difference between PEEK and elastinite

Customer Complaints

PEEK should virtually eliminate Edge shaft problems with RHV Elastinite would not eliminate this problem

dlc/5-23-94

OTW OPTIONS	Weighting	Edge	Edge w/ HC	Edge w/ HC, SLP	PEEK W/ HC, SLP	ACX V w/ HC, SLP	Cobra	Steek	Future Competitor
Balloon And Catheter Performance		23	26	31	34	34	27	35	38
Slides through Tortous Artery Without Resistance	6.40	3	4	4.5	5	5	3	5	5.5
Crosses Difficult Distal Lesions	6.39	3	3.5	4.5	4.5	4.5	3.5	5.5	5.5
Transmits Push from Back end to Distal tip.	5.86	3	3	3	4	4.5	4	3	4.5
Atraumatic Tip	5.80	3	3	4	4	4	3.5	5	5
Crosses Second Lesion after Inflation	5.59	3	3.5	4.5	4.5	4.5	3.5	4.5	4.5
Bailoon Behavior During Inflation		20	20	22	22	22	17	21	22
Predictable Balloon Size during Inflation	5.84	3	3	3	3	3	2	3	3
Predictable Balloon Rupture Pressure	5.64	3	3	3	3	3	2	3	. 3
Ability to Dilate at Higher Pressures	5.20	3	3	4	4	4	3	5	5
Balloon doesn't straighten the Artery	4.93	3	3	3.5	3.5	3.5	3	2.5	2.5
Can Achieve Nominal Balloon Size at Low Pressure	4.70	3	3	3	3	3	3	2.5	3
Guide Wire Concerns		23	23	23	23	24	23	21	23
Smooth Guide Wire Movement	6.15	3	3	3	3	3.5	3	1.5	3
Simple Guide Wire Exchange	5.51	3	3	3	3	3	3	3	3
Balloon Catheter doesn't cause G.W. to Kink in Anatomy	5.24	3	3	3	3	3	3	3	3
Balloon Catheter doesn't cause G.W. to Kink during Exch.	5.00	3	3	3	3	3	3	3	3
Easy-to-Load Guide Wire	4.49	3	3	3	3	3	3	3	3
Compatible with .018 Guide Wires	3.95	3	3	3	3	3	3	3	3
Operator Convenience Issues		15	15	15	15	15	15	16	16
Simple Balloon Catheter Exchange	5.45	3	3	3	3	3	3	3	3
Balloon Catheter Shaft doesn't Kink during use.	5.41	3	3	3	3.5	3.5	3.5	3.5	3.5
Good Inflation / Deflation Times	4.79	3	3	3	2.5	2.5	2.5	3	3
Minimum Blood Loss at RHV	4.12	3	3	3	3	3	3	3	3
Downsizing Systems		14	14	14	16	17	17	16	17
Sood Visualization during Proximal Injections	5.41	3	3	3	3.5	4	4	3.5	4
Can use Smaller Guiding Catheters	4.85	3	3	3	4	4	4	3.5	4
Can use Two Balloon Catheters in a Guiding Catheter	4.50	3	3	3	3.5	3.5	3.5	3.5	3.5
Can be used in Angiographic Catheters	3.49	3	3	3	3	3	3	3	3
Cath Lab Staff Needs		5	5	5	5	4.6	5	5	5
asy to Flush G.W. Lumen	3.69	3	3	3	3	3	3	3	3
itores well on Table	2.87	3	3	3	3	2.5	3	3	3
		100		110		117		114	

PEEK TECHNICAL OVERVIEW

5/25/94

PEEK SUPPLY

- A) RESIN FROM VICTREX USA (previously ICI)
 - * VARIOUS GRADES (see list)
 - * ACS SELECTION CRITERIA

ACUTECH GRADE

* VICTREX USA RESIN SUPPLY FOR MEDICAL APPLICATIONS

DENNIS HARRISON IS WORKING ON AGREEMENT

- B) ACUTECH
 - * TUBING COSTS

\$0.09 - \$0.11 / FT

* CONSISTENCY

TOLERANCE +/- .0015"

* AGREEMENT STATUS

CONFIDENTIALITY AGREEMENT IS SIGNED

VICTREX® PEEK

GRADE 150 P	TYPE Powder	NOTE Low viscosity for extrusion compounding
450 P	Powder	Standard viscosity for extrusion compounding
150 PF	Fine Powder	Low viscosity for blending & powder coating
450 PF	Fine Powder	Standard viscosity for compression molding, blending, and powder coating
150 G	Granules	Easy flow for injection molding of thin sections and complex parts
450 G	Granules	General purpose for injection molding and extrusion
150 GL 30	Glass Filled	Easy flow, 30% glass fiber reinforced for injection molding and extrusion
450 GL 30	Glass Filled	General purpose, 30% glass fiber reinforced for injection molding and extrusion
150 CA 30	Carbon Filled	Easy flow, 30% carbon fiber reinforced for injection molding
450 CA 30	Carbon Filled	Standard viscosity, 30% carbon fiber reinforced for injection molding
150 FC 30	Lubricated	Easy flow, 30% carbon/PTFE filler combination for injection molding
450 FC 30	Lubricated	Standard viscosity, 30% carbon/PTFE filler combination for injection molding
381 G	Depth Filtered	Grade for wire coating, film and monofilament

PEEK EXTRUSION (IN-HOUSE)

- A) PROCESS CHARACTERISTICS
 - * HIGH TEMPERATURE (750 800°F MELT)
 - * RELATIVELY HIGH PRESSURE (2800 PSI HEAD)
 - * HIGH DRYING TEMPERATURE (350°F)

B) PROCESS OPTIMIZATION

* DOE	<u>factors</u>	<u>responses</u>
	melt temp	tensile modulus
	addr	ultimate strain
	air gap	crystallinity
	<u> </u>	kink resistance
		dimensional stability

- C) EQUIPMENT NEEDS FOR PRODUCTION PROCESS
 - * HEAD INSULATION JACKETS
 - * HIGHER TEMPERATURE DRYING OVENS
- D) COST ESTIMATE OF TUBING IN PRODUCTION

SITUATION	<u>BREAKDOWN</u>	COST/FT
CURRENT (PE)	MATERIAL RESOURCES	\$0.005 - 0.01 \$0.18 - 0.185
	TOTAL	\$0.19
NEXT .014 (PEEK)	MATERIAL RESOURCES	\$0.25 - 0.55 \$0.18 - 0.185
	TOTAL	\$0.43 - 0.74

^{*} RESOURCES (equipment depreciation, tooling, engineering)

^{*} RESIN COST (PE = \$1/LB, PEEK = \$55/LB)

UNTREATED PEGOO

UNTREATED

PEEK

CONTACT AN

ARGON PLASMA PEEK

