

TPE Procedure

TPE – Procedure

TPE - Step 1 - Sample f(x)

Evaluate f(x) at different values of the hyperparameters

In this example, 1 hyperparameter → x

TPE – Step 2 – Divide observations

Separate observations in 2 groups:

First group: observations with best scores, smallest values of f(x) (red)

Second group: the rest of the observations (blue)

TPE – Step 3 – Estimate distribution of x

Estimate the distributions of each hyperparameter and each group.

Distributions are estimated by **Parzen windows**, which is another name for kernel density estimation.

Thus, the name Parzen Estimators in TPE

TPE – Step 3 – Estimate distribution of x

Estimate the distributions of each group.

Distributions are estimated by Parzen windows, which is another name for kernel estimation.

Thus, the name Parzen Estimators in TPE

Parzen Windows

https://stats.stackexchange.com/questions/244012/ca n-you-explain-parzen-window-kernel-densityestimation-in-laymans-terms

TPE – Step 4 – Estimate El

Draw samples from L(x)

Determine El

Find maximum El

TPE – Step 4 – Estimate El

Draw samples from I(x)

Determine El
$$\propto \left(\gamma + \frac{g(x)}{\ell(x)}(1-\gamma)\right)^{-1}$$

Find maximum El

TPE – Step 4 – Estimate El

Draw samples from I(x)

Determine El
$$\propto \left(\gamma + \frac{g(x)}{\ell(x)}(1-\gamma)\right)^{-1}$$

Find maximum El

To maximize EI we would like points x (Hyperparams) with high probability under I(x) and low probability under g(x)

THANK YOU

www.trainindata.com