Faculté des Sciences exactes Département de Maths 1ère Année PSA

Série d'exercices

Exercice 1

Six individus sont mesurés par trois variables. Les résultats sont données dans le tableau X suivant :

$$\begin{pmatrix} \frac{1}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & 0 \\ 0 & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} & 0 & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & 0 \end{pmatrix}$$

On munie \mathbb{R}^3 et \mathbb{R}^6 des métriques usuelles I_3 et I_6 respectivement.

On note par X_i la ième ligne du ta bleau X et par X^j la jème colonne pour $i=\overline{1,3}$ et $j=\overline{1,6}$

1- Calculer les normes de ${}^{t}X_{i}$ et X^{j} .

On effectue une AFG du tableau de X.

- 2- Donner la dimension du nouveau tableau réduit noté Y.
- 3- Donner Y.

Exercice 2

Trois caractères ont été mesuré sur six plantes aquatiques, les résultats obtenus sont donnés ci-aprés

$$X = \begin{pmatrix} 7 & 1 & 1 \\ 3 & 6 & 6 \\ 5 & 8 & 8 \\ 9 & 4 & 8 \\ 7 & 2 & 6 \\ 1 & 3 & 7 \end{pmatrix}$$

- 1. Sur quel espace il est préférable de se placer pour effectuer une ACP du tableau X?
- 2. Donner la matrice à diagonaliser, lorsqu'on se place sur l'espace choisi.
- 3. Que représente cette matrice notée V?
- 4. Vérifier que les vecteurs $u_1 = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$ et $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ sont deux vecteurs propres associés aux deux valeurs propres λ_1 et λ_2 de V.
- 5. Endéduire la troisième valeurs propres.
- 6. Donner le tableau réduit et sa dimension.

7. Interpréter et conclure.

Exercice 3

Etude des critères de performances des micros portables décris par six variables. Les résultats de l' ACP normée sont données si aprés

Tab.1 : Matrice de données

	CPU	DD	RAM	CG	DVB	ECR
HP	1.86	160	2	256	180	15.4
Toshiba	1.6	120	2	256	180	15.4
Acer	1.5	80	1	64	120	15.4
Samsung	1.8	250	2	512	180	17
Sony	2	250	3	1024	240	17
Ibm	1.73	140	1	128	180	15
Siemens	1.63	120	1	128	120	15
Zala	1.4	80	1	64	90	14

Tab.2 : Matrice des corrélations

$$\begin{pmatrix} 1 & 0.8775 & 0.79102 & 0.81598 & 0.95583 & 0.77402 \\ 1 & 0.79764 & 0.88341 & 0.85792 & 0.90232 \\ & 1 & 0.87067 & 0.81969 & 0.78633 \\ & 1 & 0.83684 & 0.83553 \\ & & 1 & 0.79321 \\ & & & 1 \end{pmatrix}$$

valeurs propres: 5.201, 0.31044, 0.25509, 0.1262, 0.073959, 0.033343

Tab.3: Projections des Micro-portables, contributions absolues et relatives

Table 1 To Jeothern des 1,11010 portables, contents delen descendes et						
Micro-port	Proj	$C_a(1,2)$ (%)	$C_r(1,2)$ (%)			
HP	(0.7238, 0.7129)	21.72	81.08			
Toshiba	(-0.4862, -0.2045)	02.25	29.77			
Acer	(-1.8172, -0.4092)	14.68	90.96			
Samsung	(2.1012, -0.6361)	26.90	86.96			
Sony	(4.2101, -0.1100)	43.08	97.75			
Ibm	(-0.5204, 0.9556)	37.42	79.37			
Siemens	(-1.3757, 0.0430)	04.62	89.37			
Zala	(-2.8356, -0.3516)	24.30	94.07			

Tab.4: Projections des caractéristiques, contributions absolues et relatives

caractéristiques	Proj	$C_a (1,2)(\%)$	$C_r(1,2)$ (%)
CPU	(0.9342, 0.3272)	51.27	97.99
DD	(0.9527, -0.0720)	19.12	91.21
RAM	(0.9058, -0.1198)	20.40	83.49
CG	(0.9385, -0.1568)	24.86	90.55
DVB	(0.9428, 0.2873)	43.69	97.15
ECR	(0.9110, -0.2769)	40.65	90.66

Questions

- 1. Donnez l'espace des individus et l'espace des variables.
- $2. \ \, {\rm Interpr\'eter} \,\, {\rm le} \,\, {\rm tableau} \,\, 2.$

- 3. Sur quel espace il est préférable de se placer? Donnez l'expression matricielle de la matrice à diagonaliser, sa dimension et sa trace.
- 4. Quelle sera la dimension du nouveau tableau réduit. Expliquer.
- 5. Donnez les moyennes et les variances des nouvelles variables.
- 6. Donner les deux vecteurs propres associés aux deux plus grandes valeurs propres.
- 7. Donnez les correlations entres les variables initiales et les deux nouvelles variables. Tracez le cercle des correlations.
- 8. Interpretez les résultats de cette analyse. Conclure.

Exercice 4.

On a rassemblé les résultats de 15 enfants de 10 ans à 6 subtests du WISC (scores 0 à 5). Les variables observées sont : CUB (Cubes de Kohs), PUZ (Assemblage d'objets), CAL (Calcul mental), MEM (Mémoire immédiate des chiffres), COM (Compréhension de phrases), VOC (Vocabulaire). Le protocole observé est le suivant :

WISC	CUB	PUZ	CAL	MEM	COM	VOC
I1	5	5	4	0	1	1
I2	4	3	3	2	2	1
I3	2	1	2	3	2	2
I4	5	3	5	3	4	3
I5	4	4	3	2	3	2
I6	2	0	1	3	1	1
I7	3	3	4	2	4	4
I8	1	2	1	4	3	3
I9	0	1	0	3	1	0
I10	2	0	1	3	1	0
I11	1	2	1	1	0	1
I12	4	2	4	2	1	2
I13	3	2	3	3	2	3
I14	1	0	0	3	2	2

On traite ces données par une analyse en composantes principales normée. Les principaux résultats de cette ACP sont indiqués ci-dessous :

$$\begin{pmatrix} 1 & 0,7320 & 0,9207 & -0,4491 & 0,3086 & 0,2735 \\ 0,7320 & 1 & 0,7510 & -0,6143 & 0,2814 & 0,2850 \\ 0,9207 & 0,7510 & 1 & -0,3685 & 0,4077 & 0,4869 \\ -0,4491 & -0,6143 & -0,3685 & 1 & 0,3032 & 0,2023 \\ 0,3086 & 0,2814 & 0,4077 & 0,3032 & 1 & 0,7819 \\ 0,2735 & 0,2850 & 0,4869 & 0,2023 & 0,7819 & 1 \end{pmatrix}$$

Valeurs propres: 3,2581; 1,8372; 0,4430; 0,2538; 0,1679; 0,0400

Inds	Proj1	Proj2	$C_a^1 \%$	C_a^2 %	\mathbf{C}_r^1	C_r^2
I1	-2,5616	3,0568	13,43	33,91	0,4078	0,5807
I2	-0,9661	0,9370	1,91	3,19	0,3907	0,3676
I3	0,6765	-0,6624	0,94	1,59	0,4446	0,4263
I4	-2,7969	-1,4636	16,01	7,77	0,7160	0,1961
I5	-1,8423	0,1211	0,05	6,95	0,8142	0,0035
I6	1,8891	0,1350	7,30	0,07	0,8426	0,0043
I7	-2,3396	-1,5487	11,20	8,70	0,6028	0,2641
I8	0,7275	-2,2054	1,08	17,65	0,0816	0,7499
I9	2,8400	0,5423	16,50	1,07	0,8745	0,0319
I10	2,1733	0,6117	9,66	1,36	0,7433	0,0589
I11	1,2940	2,0373	3,43	15,06	0,2256	0,5592
I12	-0,9947	0,8181	2,02	2,43	0,3120	0,2110
I13	-0,6099	-0,8730	0,76	2,77	0,1949	0,3994
I14	2,0150	-0,9470	8,31	3,25	0,7548	0,1667
I15	0,4957	-0,5591	0,50	1,13	0,1151	0,1464
Vars	Proj1	Proj2	C_a^1 %	C_a^2 %		
CUB	-0,8970	0,2018	0,25	0,02	7	
PUZ	-0,8652	0,2883	0,23	0,05	7	
CAL	-0,9458	0,0390	0,27	0,00		
MEM	0,4449	-0,7861	0,06	0,34		
COM	-0,5382	-0,7627	0,09	0,32		

VOC - Questions

1. Donnez l'espace des individus et l'espace des variables.

-0,5683 -0,7156 0,10

2. Sur quel espace il est préférable de se placer? Donnez l'expression matricielle de la matrice à diagonaliser, sa dimension et sa trace.

0,28

- 3. Quelle sera la dimension du nouveau tableau réduit. Expliquer.
- 4. Donnez les moyennes et les variances des nouvelles variables.
- 5. Donner les deux vecteurs propres associés aux deux plus grandes valeurs propres.
- 6. Donnez les correlations entres les variables initiales et les deux nouvelles variables. Tracez le cercle des correlations.
- 7. Interpretez les résultats de cette analyse. Conclure