Topics in Macro 2

Week 3 - TD 6 and TD 7

Oscar Fentanes oscar.fentanes@tse-fr.eu

TSE

Tuesday (17:00-18:30)

TD First Part: Inequality (6 Weeks)

What's going on?

- Exercise 1: The Height of Inequality (Week 1)
- Exercise 2: Skilled biased technological change and wage dispersion (Week 2)
- Exercise 3: Top wages and incomes (Week 3)

How do we measure it?

- Exercise 4: Interdecile ratios of income (Week 3)
- Exercise 5: Lorenz curve and Gini basics (Week 3)

What do we do?

- Exercise 6: Taxes, consumption and inequality (Week 4)
- Exercise 7: Variance based inequality indicators (Week 4)
- Exercise 8: Social Welfare Function and inequality aversion (Week 5)
- Exercise 9: The Atkinson inequality index (Week 5-6)

Recall Gini Index

5 Steps

- Put income in increasing order (for Lorenz curve).
- Compute the mean income:

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Ompute the absolute difference of all pairs of income:

$$M = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{i=1}^{n} |y_i - y_j|$$

Compute the relative mean absolute difference:

$$RMAD = \frac{M}{\bar{Y}}$$

Gini is half the RMAD:

$$Gini = \frac{1}{2}RMAD$$

Relationship area and Gini formula

Cumulative population: x_i . Cumulative wealth: $L(x_i)$. Lorenz curve: $(x_i, L(x_i))$.

With n=2, incomes are $\{y_1, y_2\}$: $x_1 = \frac{1}{1+1} = 0.5$ and $L(x_1) = \frac{y_1}{y_1+y_2}$. Gini = 2A = 1 - 2B.

$$Gini = 2A = 1 - 2(B_1 + B_2 + B_3)$$

$$B_1 = (1/2) * x_1 * L(x_1) = (1/2) * (1/2) * L(x_1)$$

$$B_2 = (x_2 - x_1) * (L(x_1) - L(x_2)) = (1 - 1/2) * L(x_1)$$

$$B_3 = (1/2) * (x_2 - x_1) * (L(x_1) - L(x_2)) = (1/2) * (1 - 1/2) * (1 - L(x_1))$$

$$B = B_1 + B_2 + B_3 = 1/4 + (1/2) * L(x_1)$$

$$Gini = 1 - 2[1/4 + (1/2) * L(x_1)]$$

$$= 1/2 - L(x_1)$$

Relationship area and Gini formula

$$Gini = (1/2) * M/\bar{Y} = (1/2) * (1/\bar{Y}) * \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} |y_i - y_j|$$

For n=2:

$$Gini = (1/2) * \frac{2}{y_1 + y_2} * (1/4) * [|y_1 - y_2| + |y_2 - y_1|]$$

$$= \frac{1}{y_1 + y_2} * \frac{y_2 - y_1}{2}$$

$$= \frac{1}{2} * \left(\frac{y_2}{y_1 + y_2} - \frac{y_1}{y_1 + y_2}\right)$$

$$= \frac{1}{2} * \left(1 - \frac{y_1}{y_1 + y_2} - \frac{y_1}{y_1 + y_2}\right)$$

$$= 1/2 - L(x_1)$$

4 Principles of an Inequality Index

Suppose the following distribution of income:

$$y = (y_1, y_2, ..., y_i, ..., y_k, ..., y_n)$$

• 1. Weak principle of transfers.

$$y^* = (y_1, y_2, ..., y_i + \delta, ..., y_k - \delta, ..., y_n)$$

 $I(y^*) < I(y)$

2. Decomposability.

$$y = (g_1(y_1, ..., y_i), g_2(y_{i+1}, ..., y_j), ..., g_m(y_{k+1}, ..., y_n))$$

$$I(y) = I(g_1(.)) + I(g_2(.)) + ... + I(g_m(.))$$

3. Scale invariance.

$$y = (y_1, y_2, ..., y_n)$$

 $y^* = (\lambda y_1, \lambda y_2, ..., \lambda y_n)$
 $I(y^*) = I(y)$

• 4. The principle of population.

$$y = (y_1, y_2, ..., y_n)$$

$$y^* = (y_1, y_1, y_2, y_2, ..., y_n, y_n)$$

$$I(y^*) = I(y)$$

Exercise 6. Taxes, consumption and inequality

Question 1. Define disposable income.

Hint: Income net of taxes. $y_i - \tau_i$. Lump-sum or proportional.

Suppose we have the following 10 individuals.

Individual	1	2	3	4	5	6	7	8	9	10
Income	10	15	25	35	60	130	160	200	230	400

For simplicity, we will assume that y_i is the only income of our agents and that there are no other capital income or transfers. We also assume that the government has a constant and exogenous level of **public spending** G. For now, G = 50. To pay for its spending, the government levies **taxes** T and always has a **balanced budget** such that T = G.

Question 2. We first assume that the government levies a **lump-sum tax** \bar{T} on all individuals. Compute the **level** of this tax and the resulting disposable income. Is the level of inequality higher, lower or identical before and after the taxes? Construct the disposable income **Lorenz curve** and the disposable income **Gini coefficient**. Comment.

Individual	1	2	3	4	5	6	7	8	9	10
Income	10	15	25	35	60	130	160	200	230	400
After Tax										

Hint: G = 50 = T. $\overline{T} = 5$. Higher inequality.

Gini: from 0.5008 to 0.5214

12 / 25

Question 3. We now assume that the government levies a **proportional tax** τ on all individuals. Compute the resulting **tax rate** and disposable income. Is the level of inequality higher, lower or identical before and after the taxes? Construct the disposable income **Lorenz curve** and the disposable income **Gini coefficient**. Comment.

Individual	1	2	3	4	5	6	7	8	9	10
Income	10	15	25	35	60	130	160	200	230	400
After Tax										

Hint: $\mathcal{T} = 50 = \tau * Y = \tau * 1,265 \rightarrow \tau = 0.0395$. Same inequality.

Gini=0.5008 for both.

14/25

Finally, we look at consumption and abstract from taxes. We assume that agents have a constant marginal propensity to consume \bar{c} their income y_i . On top of that, we assume that there can also be a constant non proportional consumption \bar{C} in each period such that individual consumption c_i : $c_i = \bar{c}y_i + \bar{C}$

Question 4. Compute the **consumption distribution** in this economy when $\bar{c}=0.85$ and $\bar{C}=3$. Is the level of inequality higher, lower or identical between the income distribution and the consumption distribution? Construct the consumption **Lorenz curve** and the consumption **Gini** coefficient. Comment.

Individual	1	2	3	4	5	6	7	8	9	10
Income	10	15	25	35	60	130	160	200	230	400
Consumption										

Hint: Lower inequality. Reason: transfer as progressive redistribution.

Gini from 0.5008 to 0.4871975

Exercise 7. Variance based inequality indicators

We consider a population with discrete income distribution $\{y_1, y_2, ..., y_n\}$ ordered such that $y_1 \le y_2 \le y_3 ... \le y_n$.

Question 1. Define the variance V of an income distribution.

Hint: classic definition $V = \frac{1}{n} \sum_{i=1}^{n} [y_i - \bar{y}]^2$.

Question 2. We consider the variance V as an inequality indicator. Derive an **experiment** that show that V is not a good inequality indicator.

Hint: Multiplicative transformation.

Question 3. We consider a new inequality indicator derived from the variance: $c = \frac{\sqrt{V}}{\bar{y}}$. We call c the **coefficient of variation**. Is it a better inequality indicator than the variance?

Hint: Yes. Satisfies scale invariance.

We now consider the following (discrete) income distribution:

Individual	1	2	3	4	5	6	7	8	9	10
Gross Income	1	5	11	35	40	45	50	90	95	100

Question 4. Compute the **coefficient of variation** for this income distribution.

Hint: $\bar{y} = 47.1$, V = 1241.69, and $c = \frac{\sqrt{V}}{\bar{y}} = 0.7481448$.

Question 5. The government considers 3 alternative transfer schemes. The first scheme is to take 1 from the agent earning y_{10} to give it to the agent earning y_{8} . The second scheme is to do the same between y_{7} and y_{5} . And the last scheme is to do the same between y_{3} and y_{1} . According to the coefficient of variation, which policy reduces inequality the most? Comment.

Individual	1	2	3	4	5	6	7	8	9	10
Gross Income	1	5	11	35	40	45	50	90	95	100
Scheme 1	1	5	11	35	40	45	50	91	95	99
Scheme 2	1	5	11	35	41	45	49	90	95	100
Scheme 3	2	5	10	35	40	45	50	90	95	100

Hint: c = 0.74381 for every scheme (principle of transfers).

Question 6. We consider the same transfer policies as in the previous question but now we want to **evaluate the change in inequality** level using the Gini index. Compare the policies using the Gini index.

Hint: Same Gini = 0.41568 (principle of transfers).