Transformada de Fourier - Tabela e Propriedades

f(t)	$F(\omega), \ F = \mathcal{F}(f)$
$e^{-at} u(t)$	$\frac{1}{a+i\omega}, a>0$
$e^{-a t }$	$\frac{2a}{a^2+\omega^2}, a>0$
$\delta(t)$	1
1	$2\pi\delta(\omega)$
$\cos(at)$	$\pi \left[\delta(\omega-a) + \delta(\omega+a) ight]$
sen(at)	$\pi \left[\delta(\omega-a) - \delta(\omega+a) ight]$
u(t)	$\pi\delta(w)+rac{1}{i\omega}$
$\operatorname{sgn}(t)$	$\frac{2}{i\omega}$
$\operatorname{rect}\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}\left(\frac{\omega \tau}{2}\right)$
$\frac{\tau}{\pi}\operatorname{sinc}(\tau t)$	$\operatorname{rect}\left(\frac{\omega}{2\tau}\right)$
$\triangle\left(\frac{t}{\tau}\right)$	$\frac{\tau}{2}\mathrm{sinc}^2\left(\frac{\omega\tau}{4}\right)$
$\frac{\tau}{2\pi}$ sinc ² $\left(\frac{\tau t}{2}\right)$	$\triangle\left(rac{\omega}{2 au} ight)$
$e^{-t^2/2\sigma^2}$	$\sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$

Identidade de Parseval:

$$\|\,f\,\|_2^2 = \int_{\mathbb{R}} |\,f(x)\,|^2\,dx = \frac{1}{2\pi}\int_{\mathbb{R}} |\,F(\omega)\,|^2\,d\omega = \frac{1}{2\pi}\|\,F\,\|_2^2 = \text{ energia do sinal } f,F = \mathcal{F}(f)$$

f(t)	$F(\omega), \ F = \mathcal{F}(f)$	propriedade
F(t)	$2\pi f(-\omega)$	simetria
$f(at), a \in \mathbb{R}$	$\frac{1}{\mid a\mid}F\left(\frac{\omega}{a}\right)$	escalonamento
f(t-a)	$F(\omega) e^{-i\omega a}$	deslocamento no tempo
$e^{iat}f(t)$	$F(\omega-a)$	deslocamento na frequência
(f*g)(t)	$F(\omega) G(\omega)$	convolução no tempo
f(t) g(t)	$\frac{1}{2\pi} F(\omega) \star G(\omega)$	convolução na freqüência
$f^{(n)}(t)$	$i^n\omega^n F(\omega)$	derivação no tempo
$t^n f(t)$	$i^n F^{(n)}(\omega)$	derivação na freqüência
$\int_{-\infty}^{t} f(x) dx$	$\frac{F(\omega)}{i\omega} + \pi F(0) \delta(\omega)$	integração no tempo

Transformadas de Fourier

$$\hat{f}(\omega) \equiv F(\omega) \equiv \mathcal{F}\{f(t)\} \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(t) \; e^{-i\omega t} \; dt \qquad \begin{array}{c} \text{Transformada de Fourier} \\ \text{do dominio do tempo} \end{array}$$

$$f(t)\equiv \mathcal{F}^{-1}\{F(\omega)\}\stackrel{\text{\tiny def}}{=}\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)\;e^{i\omega t}\;d\omega ~~\omega\equiv 2\pi f \; \text{(Frequência angular)}$$

Forma Trigonométrica (senos e cossenos)

$$g(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(2\pi n f_0 t) + b_n \sin(2\pi n f_0 t),$$

$$a_n = \frac{\int_{t_1}^{t_1+T_0} g(t) \cos(2\pi n f_0 t) dt}{\int_{t_1}^{t_1+T_0} \cos^2(2\pi n f_0 t) dt} = \begin{cases} \frac{1}{T_0} \int_{t_1}^{t_1+T_0} g(t) dt, & n = 0\\ \frac{2}{T_0} \int_{t_1}^{t_1+T_0} g(t) \cos(2\pi n f_0 t) dt, & n = 1, 2, 3, \dots \end{cases}$$

$$b_n = \frac{\int_{t_1}^{t_1+T_0} g(t) \operatorname{sen}(2\pi n f_0 t) dt}{\int_{t_1}^{t_1+T_0} \operatorname{sen}^2(2\pi n f_0 t) dt} = \frac{2}{T_0} \int_{t_1}^{t_1+T_0} g(t) \operatorname{sen}(2\pi n f_0 t) dt, \quad n = 1, 2, 3, \dots$$

Fase e Magnitude:

$$C_n = \sqrt{a_n^2 + b_n^2}$$
 $\theta_n = -\arctan\left(\frac{b_n}{a_n}\right), n \ge 1$

Exponencial:

$$g(t) = \sum_{n=-\infty}^{\infty} D_n e^{j2\pi n f_0 t}$$

Tabela de Relações Trigonométricas

- motin de rivinge	es Trigonometricas
$01) \text{sen}^2 x + \cos^2 x = 1$	$02) 1 + tg^2 x = sec^2 x$
$03) 1 + \cot^2 x = \csc^2 x$	04) sen $(-x) = -\text{sen } x$
$05)\cos(-x) = \cos x$	06) $tg(-x) = -tg x$
$07) \operatorname{cosec} x = \frac{1}{\operatorname{sen} x}$	$08) \sec x = \frac{1}{\cos x}$
$09) \cot g x = \frac{1}{tg x}$	$10) \text{ tg } x = \frac{\text{sen } x}{\cos x}$
11) $\cot x = \frac{\cos x}{\sin x}$	12) sen (a ± b) = sen a cos b ± cos a sen b
13) $\cos(a \pm b) = \cos a \cdot \cos b \mp \sin a \cdot \sin b$	14) $tg(a + b) = \frac{tg a + tg b}{1 - tg a + tg b}$
15) $tg(a-b) = \frac{tg - tg b}{1 + tg - tg b}$	$16) \cos^2 x = \frac{1}{2} (1 + \cos 2x)$
17) $\sin^2 x = \frac{1}{2} (1 - \cos 2x)$	18) sen $2x = 2$ sen x.cos x
19) $\cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x =$ = $2 \cos^2 x - 1$	20) $tg 2x = \frac{2 tg x}{1 - tg^2 x}$
$21) \left \text{sen } \frac{x}{2} \right = \sqrt{\frac{1 - \cos x}{2}}$	$ \cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}} $
23) $tg \frac{x}{2} = \frac{1 - \cos x}{\sin x} = \frac{\sin x}{1 + \cos x}$	24) sen x.cos y = $\frac{1}{2}$ [sen (x - y) + sen (x + y)]
25) sen x sen y = $\frac{1}{2}$ [cos (x - y) - cos (x + y)]	26) $\cos x \cos y = \frac{1}{2} [\cos (x - y) + \cos (x + y)]$
27) $\cos x \cdot \sin y = \frac{1}{2} [\sin (x + y) - \sin (x - y)]$	28) $\operatorname{sen} x - \operatorname{sen} y = 2\operatorname{sen}\left(\frac{x - y}{2}\right) \cdot \cos\left(\frac{x + y}{2}\right)$
29) sen x. $\cos x = \frac{1}{2} \sin 2x$	30) $1 - \cos x = 2 \sin^2 \frac{x}{2}$
31) $1 + \cos x = 2 \cos^2 \frac{x}{2}$	32) 1 ± sen x = 1 ± cos $\left(\frac{\pi}{2} - x\right)$
33) $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$	

