$$F1=A \bullet B + \overline{A} \bullet C + \overline{A} \bullet B \bullet D$$

$$F2=\overline{A} \cdot B \cdot D + \overline{A} \cdot C + \overline{B} \cdot C \cdot D + A \cdot \overline{B} \cdot C \cdot \overline{D}$$

假定输出 F 的逻辑表达式为 $A \cdot B \cdot C \oplus D + \overline{A} + D$,画出对应的逻辑电路图,并将该逻辑表达式转换成与-或表达式后,画出对应的两级组合逻辑电路图。

异或运算的优先级高于或 运算,但低于与运算

输出 F 转换为与-或表达式为: $F=A \cdot B \cdot D + A \cdot C \cdot D$

6

假定一个优先权编码器的输入端为 I_0 , I_1 , …, I_7 , 输出端为 O_0 , O_1 , O_2 和 Z, 8 个输入端构成一个 8 位二进制数 $I_0I_1I_2I_3I_4I_5I_6I_7$, 3 个输出端 O_0 , O_1 , O_2 构成一个 3 位二进制数 $O_0O_1O_2$ 。若输入二进制数 $I_0I_1I_2I_3I_4I_5I_6I_7$ 为 0, 则输出二进制数 $O_0O_1O_2$ 为 0, Z 为 1; 否则,若输入二进制数 $I_0I_1I_2I_3I_4I_5I_6I_7$ 中最左边的 1 所在位为 I_i , 则输出二进制数 $O_0O_1O_2$ 的值为 i, Z 为 0。请用与非门设计该优先权编码器电路,并说明优先级顺序是什么。

根据题意,可画出真值表如下:

I_0	I_1	I_2	I_3	I_4	I_5	I_6	I_7	O_0	O_1	02	Z
1	X	Х	Х	Х	Х	Х	Х	0	0	0	0
0	1	Χ	X	Χ	Χ	X	X	0	0	1	0
0	0	1	Χ	Х	Х	Χ	Х	0	1	0	0
0	0	0	1	Х	Х	X	X	0	1	1	0
0	0	0	0	1	Х	Х	Х	1	0	0	0
0	0	0	0	0	1	Х	Х	1	0	1	0
0	0	0	0	0	0	1	Х	1	1	0	0
0	0	0	0	0	0	0	1	1	1	1	0
0	0	0	0	0	0	0	0	0	0	0	1

已知一个组合逻辑电路的功能可用如图所示的真值表来描述。分别用下列器件实现该电路。______

(1) 一个8路选择器。

(2) 一个4路选择器和一个非门。

AB=00时,F=C AB=01时,F=C~

0 0 0

(3) 一个2路选择器 和两个逻辑门。

0 0 0

\boldsymbol{A}	В	C	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

F

0

0

0

B

0

C

- · 已知一个组合逻辑电路的功能可用如图3.36所示的真值表来描述。要 求完成以下任务。
- (1) 利用无关项进行化简,并写出函数F的最简逻辑表达式。
- (2) 根据最简逻辑表达式,画出函数F对应的逻辑电路图。
- (3)对于(2)中的逻辑电路,请判断是否存在竞争冒险?若存在竞争冒险,则解释在什么情况下会出现毛刺,并画出发生毛刺时的时序图;若不存在竞争冒险,则分析说明其不存在竞争冒险的理由。

A	B	\boldsymbol{C}	D	F
0	0	0	0	X
0	0	0	1	X
0	0	1	0	X
0	0	1	1	0
0	1	0	0	0
0	1	0	1	X
0	1	1	0	0
0	1	1	1	X
1	0	0	0	1
1	0	0	1	0
1	0	1	0	X
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	X
1	1	1	1	1

红框里电路不存在竞争冒险,因为得到的最简逻辑表达式中,各乘积项不存在逻辑相反的变量(不考虑相反的变量(不考虑ABCD信号不能同时到达的情况)。

这两个都可能存在竞争冒险。 当ABC=110时,F=D+D~,或者, 当ACD=100时,F=B+B~,因而 输出F可能会出现毛刺。

11 根据表中给出的逻辑门的传输延迟Tpd和最小延迟Tcd,计算下图所示组合逻辑电路的传输延迟和最小延迟,并比较哪个电路的传输延迟最长,哪个电路的传输延迟最短。

逻辑门 7	pd [os) $T_{\rm cd}$
NOT	15	10
2 输入 OR	40	30
3 输入 OR	55	45
2输入AND	30	25
3 输入 AND	40	30
2输入NOR	30	25
3 输入 NOR	45	35
2输入NAND	20	15
3 输入 NAND	30	25
2输入XOR	60	40

- 电路(a)的传输延迟为40+55=95ps; 最小延迟为25ps。
- 电路(b)的传输延迟为40+15+15+55=125ps; 最小延迟为10+10+25=45ps。
- 电路(c)中,反向输入端与门是或非门的等效电路,**反向输入端或门是与非门的等效电路**,因此,传输延迟为30+30=60ps;最小延迟为10+25=35ps。
- 显然,上述电路中,电路(b)的传输延迟最长,(c)的传输延迟最短。