Exercice 3: (5 pts)

Toutes les propositions suivantes sont vraies. Justifier-les en rédigeant soigneusement votre raisonnement et en vous aidant d'un dessin lorsqu'il aidant d'un dessin lorsqu'il s'agit d'un ensemble de points.

- 1. Si $z = \frac{-\sqrt{3}-i}{2e^{i\frac{5\pi}{12}}}$ alors pour tout naturel n, z^{4n} est un réel.
- 2. Dans un repère orthonormé, le triangle ABC formé par les points A(3+i), B(5-2i) et C(2)A(3+i), B(5-2i) et C(8) est rectangle isocèle.
- 3. L'ensemble des points M(z) tels que : |z+1-3i|=2 est un cercle.
- 4. L'ensemble des points M(z) tels que : $\frac{z}{1-z}$ parallèle à l'axe des imaginaires purs
- 5. L'ensemble des points M(z) tels que : (π) est un segment privé d'un point.
- 6. L'équation $z^2 + 2\cos\left(\frac{\pi}{7}\right)z + 1 = 0$ admet deux racines complexes chacune de module 1
- 7. f est la fonction définie sur $]0; +\infty[$ par $f(x) = \frac{-1}{\sqrt{x}.e^{\sqrt{x}}}$. Si $x_F = x_C$ et $x_E = x_D$, alors l'aire du domaine hachuré est égale à l'aire du triangle OAB,

reponse non justifiée ne sera pas notée. ue la question et la lettre de la réponse qui lui convient ne reponse, indiquer-la et en donner une Questions L'ensemble solution de l'inéquation : Réponse A $2e^{-x} \ge 6e^x + 1 \text{ est}:$ Réponse B Réponse C $]-\infty;-\ln(2)]$ $[-\ln(2);+\infty[$ $A = \int_{\ln(\frac{1}{\pi})}^{\ln(\pi)} (e^x - e^{-x}), \sin^2(\pi x) dx =$ $\frac{1}{2} \left(\pi - \frac{1}{\pi} \right)$ L'ensemble solution de l'inéquation : $\ln^2(x-4) + \ln(4-x)^2 - 8 \ge 0$ est : $]0;4+e^{-4}]\cup[4+e^2;+\infty[$ $B = \int_{1}^{e} \frac{\ln(x)}{x, (\ln^{2}(x) + 1)^{3}} dx =$ L'ensemble solution de l'équation : $e^x - e^3 = 1 - e^{3-x}$ est : $S = \{3; e^3\}$ $S = \{0; e^2\}$ $S = \{0; 3\}$ $C = \int_0^{\frac{\pi}{4}} \frac{x}{\cos^2(x)} dx = 0$ $\frac{\pi}{4} + \frac{1}{2} \ln{(2)}$ $\frac{\pi^2}{8} + \ln(2)$ $\frac{\pi}{4} - \frac{1}{2} \ln{(2)}$

Exercice 4: (2,5 pts)

Dans chacun des cas suivants, déterminer l'ensemble des points M(z) et représenter-le dans un déterminer l'ensemble des points Dans charge M(z) et représenter-le dans un repère orthonormé.

- a) $arg(-i\bar{z} + 2 i) = \frac{\pi}{4}(2\pi)$.
- b) |z-3+2i| > 3

c) |z-3+2i| > 3 et $\arg(-z+3-2i) = \frac{\pi}{3} (\pi)$. $avec \frac{\pi}{4} \le \theta < \frac{3\pi}{4}$.

Exercice 5: (2 pts)

Sur un site web on lit l'article suivant :

« Le téléphone portable Samsung Galaxy Note 8 de l'entreprise Samsung est produit par deux sous-traitants \$1 et \$2. Chez le sous-traitant \$1, qui assure une partie de la production totale, 4% des téléphones sont défectueux. Chez le sous-traitant S2, qui assure le reste de la production totale, 3% des téléphones sont défectueux.

3,4% des téléphones Samsung Galaxy Note 8 sont défectueux. »

L'enseignante de SG propose le défi suivant à ses élèves :

« Un client achète un téléphone Samsung Galaxy Note 8 choisi au hasard dans les stocks de l'entreprise Samsung et constate qu'il est défectueux, quelle est la probabilité qu'il provienne du sous-traitant S1 ? »

Andrew un élève de SG relève le défi et répond : c'est environ 47%. A-t-il raison? Expliquer sa démarche et commentez.

Exercice 6: (1 pt)

À tout point M d'affixe z, on associe le point N d'affixe z^2 et le point Pd'affixe z^3 avec z différent de 0, 1 et -1.

Montrer que le triangle MNP est rectangle en P si, et seulement si, Mappartient au cercle de centre le point d'affixe $-\frac{1}{2}$ et de rayon $\frac{1}{2}$.

2. Si $arg(z) = -\frac{\pi}{2} (2\pi)$ alors:

c) |z - i| = 1 + |z|

- 3. On donne les points A(-2+3i), B(4-i) et C(8+5i). Alors le triangle ABCb) rectangle isocèle en B. c) semi-équilatéral.
- 4. Si |z-2+i| = |8-6i| et soit A(2-i) et B(8-6i) alors l'ensemble des points it des points M d'affixe z est :

 - b) le cercle d'équation $(x + 2)^2 + (y 1)^2 = 100$,
 - c) le cercle d'équation $z = 2 i + 10e^{i\theta}$ avec $\theta \in IR$,
- 5. Si $|z+1-2i| \le 2$ et |z+1-4i| = |z-1-2i| alors l'ensemble des o un segment. points M d'affixe z est : b) une droite. a) une demi-droite.

On désigne par f une fonction dérivable sur \mathbb{R} et par f' sa fonction dérivée

Ces fonctions vérifient les propriétés suivantes :

- (1) pour tout nombre réel x, $[f'(x)]^2 [f(x)]^2 = 1$.
- (2) f'(0) = 1.
- (3) la fonction f' est dérivable sur \mathbb{R} .
- 1. a. Démontrer que, pour tout nombre réel x, $f'(x) \neq 0$.
- 2. En dérivant chaque membre de l'égalité de la proposition (1), démontrer que f''(x) = f(x) où f'' désigne la dérivée seconde de la fonction f.
- 3. On désigne par u = f' + f et v = f' f.
 - a. Calculer u(0) et v(0).
 - b. Démontrer que u' = u et v' = -v,
 - c. En déduire les fonctions u et v.
 - d. En déduire que pour tout réel x, $f(x) = \frac{e^x e^{-x}}{2}$.
- a. Déterminer les limites de f en $+\infty$ et en $-\infty$.

5. Soit m un nombre réel.

a. Démontrer que l'équation f(x) = m admet une unique solution α

b. En déduire que $(e^2)^{\alpha} - 2m$, $e^{\alpha} - 1 = 0$.

Exercice 4: (7 pts)

On considère la fonction f définie sur \mathbb{R} par f(x) = ln(1)On note (C_f) sa courbe représentative dans le plan muni d'un orthogonal.

Partie A:

1. a. Déterminer la limite de la fonction

b. Montrer que la droite (D) d'équation y =courbe (C_f) . z est asymptote à la

c. Étudier la position relative de (D) et de (C_f) .

d. Montrer que pour tout réel x, $f(x) = ln(e^x + 1) - \frac{2}{3}x$. e. En déduire la limite de f en - ∞.

2. a. On note f'la fonction dérivée de la fonction

Montrer que pour tout x réel, $f'(x) = \frac{e^x - 2}{3(e^x + 1)}$

b. En déduire les variations de la fonction .

Partie B

Soit n un entier naturel non nul.

On appelle d_n , l'aire, en unités d'aire, du domaine du plan délimité par la courbe (C_f) , la droite (D) d'équation $y = \frac{1}{3}x$ et les droites d'équations x = 0 et x = n,

1. Justifier que pour tout entier naturel n non nul,

Examen de Mathématiques : (Décembre 2017)

h ht s

La qualité de la rédaction, la clarté et la précision dans le raisonnement entreront pour une bonne part dans l'appréciation de la copie.

Exercice 1 : (3 pts) Questions indépendantes

1) Résoudre :

a)
$$e^{2\ln(x-3)} = \ln(e^{x+17})$$
.

b)
$$e^x - 6e^{-x} \ge -1$$
.

c)
$$\ln(2x+1) + \ln(x+4) \le 2\ln 2$$

d)
$$3\ln^2(x-1) - 2\ln(x-1)^2 + 1 = 0$$

2) Calculer chacune des intégrales suivantes

$$I = \int_{e}^{e^{2}} \frac{\ln x - 1}{x \ln x} dx$$

$$I = \int_{e}^{e^{2}} \frac{\ln x - 1}{x \ln x} dx$$

$$I = \int_{e}^{e^{2}} \frac{\cos(\pi \ln x)}{x} dx$$

$$K = \int_{-\ln 4}^{-\ln 3} \frac{e^{2x} + 2}{e^{2x} + 1} dx$$

Exercice 2: (3,5 pts) Questions à Choix Multiples

Pour chacune des questions suivantes, il y a **une seule** bonne réponse. Indiquer la, en justifiant.

Toute réponse non justifiée ne sera pas notée.

Soit z un nombre complexe :

1. Si
$$z = \frac{1 - i\sqrt{3}}{-\sqrt{3} + i\sqrt{3}}$$
 alors $\arg(z) =$

a)
$$\frac{13\pi}{12}$$
 (2 π)

b)
$$\frac{11\pi}{12}$$
 (2 π)

c)
$$\frac{5\pi}{12}$$
 (2 π)

Exercice 4: (5 pts) Logarithme népérien et suite. 1.a) Montrer que pour tout réel $x \ge 0$ on a : $\ln(1+x) \le x$,

- b) Montrer que pour tout réel $x \ge 0$ on a : $x \frac{1}{2}x^2 \le \ln(1+x)$. c) En déduire que, pour tout réel $x \ge 0$ on a : $x - \frac{1}{2} x^2 \le \ln(1 + x) \le x$
- 2. Montrer, à l'aide d'un raisonnement par récurrence, que pour tout
- entier $n \ge 1$:

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

3. Soit la suite $(u_n)_{n\in\mathbb{N}}$ donnée par :

$$u_n = \left(1 + \frac{1}{n^2}\right), \left(1 + \frac{2}{n^2}\right) \dots \left(1 + \frac{n-1}{n^2}\right), \left(1 + \frac{n}{n^2}\right)$$

En utilisant les questions 1.c) et 2), montrer que, pour tout entier naturel

$$\frac{1}{2}\left(1+\frac{1}{n}\right) - \frac{(n+1)(2n+1)}{12n^3} \le v_n \le \frac{1}{2}\left(1+\frac{1}{n}\right),$$

- 4. En déduire la limite de la suite $(v_n)_{n\in\mathbb{N}}$.
- 5. En déduire la limite de la suite $(u_n)_{n\in\mathbb{N}}$.

Exercice 5: (2 pts) Prise d'initiative

On note j le nombre complexe de module 1 et dont $\frac{2\pi}{3}$ est un argument.

- 1) a. Donner une forme exponentielle de j.
 - b. Vérifier que $j^2 = \bar{j}$
 - c. En déduire que $1 + j + j^2 = 0$.
 - d. Calculer j3.
- 2) Dans cette question, toute trace de recherche, même incomplète ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation Soit trois points A B et C deux à deux distincts, d'affixes respectives a b et c.

Montrer que le triangle ABC est équilatéral direct si, et seulement si a $bj + cj^2 = 0.$