Goodwillie Calculus

Jinyi Wang

Tsinghua University

Autumn 2024

Outline

- 1 Conventions and notations
- 2 An analogy to differential calculus
- 3 Linear functors and the first derivative
 - Linear functors
 - Differential and 1-jet
- 4 The Taylor tower
 - Excisive functors

Conventions and notations

Whenever I say · · ·	I mean · · ·
category	category with equivalences, or $\infty\text{-category}$
functor	homotopy functor, or $\infty\text{-functor}$
(co)limit	homotopy (co)limit, or ∞ -(co)limit
(co)fiber	homotopy (co)fiber

Conventions and notations

Notation	Meaning
Тор	the category of (unbased) spaces, or any topos
$Top_{/X}$	the category of spaces over \boldsymbol{X} , or the slice topos over \boldsymbol{X}
Top_*	the category of based spaces
$\mathcal{S}p$	the category of spectra

Conventions and notations

We use the following notion of connectedness, which is off by one from tradition.

Definition (connectedness of a map)

A map $f\colon Y\to X$ between spaces is n-connected if the following equivalent condition holds:

- For all $y \in Y$ the map $\pi_*(Y,y) \to \pi_*(X,f(y))$ is an isomorphism on degrees $\leq n$ and an epimorphism on degree n+1;
- **E**very fiber of f is n-connected.

This notion has the following merits:

- A space Y is n-connected iff $Y \rightarrow *$ is n-connected.
- A map $f: Y \to X$ is n-connected iff it is n-connected as an object of $\mathsf{Top}_{/X}$. Connectedness of an object is defined by connectedness of mapping spaces into it.

Section 1

An analogy to differential calculus

Goodwillie describes his theory of functor calculus as

Goodwillie, The Differential Calculus of Homotopy Functors (1991)

- a kind of deformation theory, ... to describe the *infinitesimal change* in A(X) produced by an *infinitesimal* change in X. (A small change in X is a highly connected map $Y \to X$.)
 - Fundamental notion: small = highly connected.
 - lacksquare A map Y o X is a small change iff its fibers are small.

- Basic fact: suspension increases connectivity of spaces.
- If we keep suspending a space, it gets smaller and smaller.
- Sanity check: suspension also increases connectivity of maps, i.e. for a map $f \colon A \to B$, the map $Sf \colon SA \to SB$ is more connected than f. (Gooswillie's article uses this fact without proof. Proof by passing to slice topos?)
- Sanity check: if $f: A \to B$ is n-connected and $g: B \to C$ is m-connected, the composition gf is $\min(m, n)$ -connected.

■ We will also consider the relative (fiberwise) version of suspension $S_X : \mathsf{Top}_{/X} \to \mathsf{Top}_{/X}$ defined by the following pushout.

$$\begin{array}{ccc} Y & \longrightarrow & X \\ \downarrow & & \downarrow \\ X & \longrightarrow & S_X Y \end{array}$$

Note that pushouts in $\mathsf{Top}_{/X}$ are just pushouts in Top , and X is the terminal object of $\mathsf{Top}_{/X}$.

■ Fact: fiberwise suspension increases connectivity of objects of Top_{/X} (i.e. connectivity of maps $Y \to X$).

- Trivial observation: the loop-space functor decreases connectivity of spaces by 1.
- If suspension is like multiplying by a small quantity, then taking the loop space is like dividing by this small quantity.

Homotopy theory	calculus
{pointed spaces}	ring of formal power series $k[[x]]$
circle	x
suspension	multiplication by x
loopspace	division by x
{pointed connected spaces}	ideal $J = xk[[x]]$
$\{pointed n-connected spaces\}$	ideal $J^{n+1} = x^{n+1}k[[x]]$

The analogy goes on.

Blakers-Massey Theorem

Theorem (Blakers–Massey)

Given a pushout diagram in Top

$$\begin{array}{ccc}
A & \stackrel{f}{\longrightarrow} & B \\
\downarrow g & & \downarrow \\
C & \longrightarrow & D
\end{array}$$

where f is m-connected and g is n-connected, the map $A \to B \times_D C$ is (m+n)-connected.

- Taking B=C=*, we have $D\simeq SA$, and we get Freudenthal Suspension Theorem. This implies that suspension increases connectivity of spaces.
- Taking B = C and f = g, we have $D \simeq S_B A$. This implies that fiberwise suspension increases connectivity of maps.
- "In a small neighborhood a pushout diagram is nearly a pullback."
 → notion of linear functors

An analogy to differential calculus

■ The differential of a function $f \colon \mathbb{R} \to \mathbb{R}$ is a linear function that describes

$$f(y) - f(x)$$

up 2k-th order when y-x is k-th order infinitesimal.

 \blacksquare The differential of a functor $F \colon \mathsf{Top} \to \mathsf{Top}_*$ is a linear functor that describes

$$fiber(F(Y) \to F(X))$$

up to 2k-homotopy type when $Y \to X$ is k-connected.

Section 2

Linear functors and the first derivative

Linear functors

Definition (linear functors)

A functor $L \colon \mathsf{Top} \to \mathsf{Top}_*$ is *linear* if

- L is excisive, i.e. L takes coCartesian (pushout) squares to Cartesian (pullback) squares;
- L is reduced, i.e. $L(*) \simeq *$.
- Every functor F gives a reduced functor $\overline{F} := \operatorname{fiber}(F(-) \to F(*))$.
- If F is excisive, then \overline{F} is linear. This is analogous to the fact that for a first-degree function f, f(-) f(0) is a linear function.
- The term *excisive* comes from the *axiom of excision* in homology theory.

Linear functors

We will also consider the "relative" (fiberwise) notion of linear functors.

Definition (linear functors out of $\mathsf{Top}_{/X}$)

A functor $L \colon \mathsf{Top}_{/X} \to \mathsf{Top}_*$ is *linear* if

- *L* is *excisive*, i.e. *L* takes coCartesian (pushout) squares to Cartesian (pullback) squares;
- L is reduced, i.e. $L(id_X) \simeq *$.
- $\blacksquare \text{ Every functor } F \text{ gives a reduced functor } \overline{F} := \mathrm{fiber}(F(-) \to F(X)).$
- lacksquare If $L\colon \mathsf{Top} o \mathsf{Top}_*$ is linear, then for any space X, the functor

$$\operatorname{fiber}(L(-) \to L(X)) \colon \mathsf{Top}_{/X} \to \mathsf{Top}_*$$

is also linear. This is analogous to the following property of linear functions: if $\ell\colon\mathbb{R}\to\mathbb{R}$ is linear, then $y\mapsto\ell(x+y)-\ell(x)$ is also linear. The proof uses the fact that pullbacks in $(\mathsf{Top}_*)_{/L(X)}$ are just pullbacks in Top_* , and taking fiber preserves pullbacks.

Linear functors and Ω -spectra

Proposition (linear functors induce Ω -spectra)

For a linear functor L and a space Y, the square (1) is a pushout, so the square (2) is a pullback, giving $L(Y) \simeq \Omega L(SY)$.

$$\begin{array}{cccc} Y & \longrightarrow & * & L(Y) & \longrightarrow L(*) \\ \downarrow & & \downarrow & & \downarrow & \downarrow \\ * & \longrightarrow SY & L(*) & \longrightarrow L(SY) \end{array}$$

$$(1) \qquad (2)$$

In particular, $\{L(S^i)\}$ have the structure of an Ω -spectrum, called the coefficient spectrum of L.

• Fact: this gives the equivalence between linear functors and spectra.

Nonlinear functors and sequential spectra

Remark (nonlinear functors induce prespectra)

For a reduced functor $F \colon \mathsf{Top} \to \mathsf{Top}_*$ and a space Y, the diagram

$$\begin{array}{ccc} F(Y) & \longrightarrow * \\ \downarrow & & \downarrow \\ * & \longrightarrow F(SY) \end{array}$$

gives a map $F(Y) \to \Omega F(SY)$. In particular we have a prespectrum (also called a sequential spectrum) $\{F(S^i)\}$ with structure maps $F(S^i) \to \Omega F(S^{i+1})$, which we call the coefficient prespectrum of F. Also note that, if F is linear, this prespectrum is an Ω -spectrum.

Differential at *

Definition (differential of a reduced functor at *)

For a reduced functor $F \colon \mathsf{Top} \to \mathsf{Top}_*$, define the $\mathit{differential}$ of F at * to be

$$D_*F \colon \mathsf{Top} \to \mathsf{Top}_*, \quad Y \mapsto \mathrm{colim}_{k \to +\infty} \Omega^k F(S^k Y).$$

- If F is linear, then $\Omega^k F(S^k Y)$ is independent of k, and $D_* F \simeq F$.
- For a reduced functor F, the coefficient spectrum of D_*F is $\{D_*F(S^i)\}=\{\operatorname{colim}_{k\to+\infty}\Omega^kF(S^{k+i})\}$, which is the Ω -spectrification of the coefficient prespectrum of F. In analogy to differential calculus, this spectrum is sometimes called the *derivative* of F at *.
- Example. The differential of id_{Top_*} is $Y \mapsto \Omega^{\infty} \Sigma^{\infty} Y = \mathrm{colim}_{k \to +\infty}$.

1-jet at *

Definition (1-jet of a functor at *)

For a functor $F \colon \mathsf{Top} \to \mathsf{Top}_*$, define its $1\text{-}\mathit{jet}$ at * to be

$$P_*F \colon \mathsf{Top} \to \mathsf{Top}_*, \quad Y \mapsto \mathrm{colim}_{k \to +\infty} \, \Omega^k_{F(*)} F(S^k Y),$$

where $\Omega_{F(*)}$ denotes the "loop-space functor" on $(\mathsf{Top}_*)_{/F(*)}$, i.e. $\Omega_{F(*)}F(SY)$ is the following pullback.

$$\Omega_{F(*)}F(SY) \to F(*)$$

$$\downarrow \qquad \qquad \downarrow$$

$$F(*) \longrightarrow F(SY)$$

Denote the functor $Y \mapsto \Omega_{F(*)}F(SY)$ by TF, then the definition of P_*F can be written as $Y \mapsto \operatorname{colim}_k T^k F(Y)$.

¹It might not be a functor, but rather a syntactic sugar designed for better analogy to the reduced case.

Differential at *

Proposition-definition (differential of a general functor at *)

For a functor $F \colon \mathsf{Top} \to \mathsf{Top}_*$, there is an equivalence of functors

$$P_*\overline{F}\to \overline{P_*F}$$

and we define it to be the differential D_*F .

■ There is a pullback diagram

$$P_*\overline{F}(Y) \longrightarrow P_*F(Y)$$

$$\downarrow \qquad \qquad \downarrow$$

$$P_*\overline{F}(*) \longrightarrow P_*F(*)$$

where $P_*\overline{F}(*) \simeq *$.

1-jet and differential at X

Definition (1-jet and differential of a functor at X)

For a functor $F \colon \mathsf{Top}_{/X} \to \mathsf{Top}_*$, define the $1\text{-}\mathit{jet}$ of F at X to be

$$P_XF\colon \mathsf{Top}_{/X}\to \mathsf{Top}_*, \quad Y\mapsto \mathrm{colim}_{k\to +\infty}\, \Omega^k_{F(X)}F(S^k_XY).$$

Define the differential $D_X F$ of F at X to be $P_X \overline{F} \simeq \overline{P_X F}$.

- We always have $P_X F(X) \simeq F(X)$.
- If F is excisive, then $F \simeq P_X F$.
- If F is linear, then $F \simeq D_X F$.

First order approximation

Definition (two functors agreeing to first order)

Two functors $F,G\colon \mathsf{Top}_{/X}\to \mathsf{Top}_*$ are said to agree to first order via a natural transformation $\alpha\colon F\to G$ if the following condition holds for some constants $c,\kappa\colon$

- Whenever $Y \to X$ is k-connected and $k \ge \kappa$, the map $\alpha \colon F(Y) \to G(Y)$ is (2k-c)-connected.
- "Whenever $Y \to X$ is sufficiently connected, $\alpha \colon F(Y) \to G(Y)$ is about twice as connected."
- This is analogous to functions agreeing to first order: whenever y-x is a k-th order infinitesimal, f(y)-g(y) is of 2k-th order.
- lacksquare Here $\mathsf{Top}_{/X}$ is analogous to a neighborhood centered at X.

First order approximation

- We want a functor $F \colon \mathsf{Top}_{/X} \to \mathsf{Top}_*$ to agree to first order with its 1-jet $P_X F$. Specifically, if $Y \to X$ is sufficiently connected, then we want the natural map $F(Y) \to P_X F(Y)$ to be about twice as connected.
- This is implied by a condition called *stable excision*, which is satisfied by most functors in practice.

Stable excision

Definition (stable excision)

A functor F is said to be *stably excisive* if the following condition holds for some constants c, κ :

■ If $A \to B$ and $A \to C$ are respectively k_1 -, k_2 -connected and $k_1, k_2 \ge \kappa$, and D is the pushout on the left,

$$\begin{array}{ccc} A \longrightarrow B & & F(A) \longrightarrow F(B) \\ \downarrow & \downarrow & & \downarrow & \downarrow \\ C \longrightarrow D & & F(C) \longrightarrow F(D) \end{array}$$

then the square on the right is (k_1+k_2-c) -Cartesian, meaning that $F(A)\to F(B)\times_{F(D)}F(C)$ is (k_1+k_2-c) -connected.

- Blakers–Massey Theorem tells us that id_{Top} is stably excisive.
- The smaller the constants c, κ , the closer F is to being excisive.

First order approximation

The key lemma to first order approximation is the following.

Lemma

Stable excision for F implies stable excision for the new functor $Y \mapsto \Omega_{F(X)}F(S_XY)$, with improved (smaller) constants c, κ .

The proof uses the following facts.

- lacksquare S_X preserves cocartesian squares.
- S_X increases connectivity of maps, i.e. for a k_1 -connected map $Y \to Y_1$, the map $S_X Y \to S_X Y_1$ is $(k_1 + 1)$ -connected.
- $lackbox{ } \Omega_X$ preserves connectivity of maps.

First order approximation

Proposition

If $F \colon \mathsf{Top}_{/X} \to \mathsf{Top}_*$ is stably excisive, then

- P_XF : Top_{/X} \to Top_{*} is excisive;
- $D_X F \colon \mathsf{Top}_{/X} \to \mathsf{Top}_*$ is linear;
- F agrees to first order with $P_X F$;
- $lackbox{}\overline{F}$ agrees to first order with D_XF .

Section 3

The Taylor tower

Cubes

Definition (cube)

Let P(S) denote the poset of subsets of a finite set S. An S-cube in a category $\mathcal C$ is a functor

$$X \colon P(S) \to \mathcal{C}$$
.

A face of an S-cube is its restriction to a sub-poset $\{V \mid U \subset V \subset W\}$ for some $U \subset W \subset S$, which can be regarded as a $(W \setminus U)$ -cube.

Cubes

- Point of view: an (n+1)-dimensional cube is a map between n-dimensional cubes.
- The notion of k-connectivity of a map can be generalized to cubes in two ways: k-Cartesian and k-coCartesian cubes.

(co)Cartesian cubes

Definition (Cartesian cube)

An S-cube $X\colon P(S)\to \mathcal{C}$ is called *Cartesian* if X is a limit diagram, where $X(\varnothing)$ is a limit of the rest of the cube, $X|_{P(S)\setminus\{\varnothing\}}$. The cube is called k-Cartesian if the gap map $X(\varnothing)\to \lim X|_{P(S)\setminus\{\varnothing\}}$ is k-connected.

Definition (coCartesian cube)

An S-cube $X\colon P(S)\to \mathcal{C}$ is called $\operatorname{coCartesian}$ if X is a colimit diagram, where X(S) is a colimit of the rest of the cube, $X|_{P(S)\setminus\{S\}}$. The cube is called k-coCartesian if the cogap map $\operatorname{colim} X|_{P(S)\setminus\{S\}}\to X(S)$ is k-connected.

- lacktriangle A \varnothing -cube (an object) is (co)Cartesian iff it is a final (initial) object.
- lacksquare A $\{0\}$ -cube (a morphism) is (co)Cartesian iff it is an equivalence.

Strongly coCartesian cubes

Definition (strongly coCartesian cube)

An n-cube $X \colon P(\{1,\cdots,n\}) \to \mathcal{C}$ is called *strongly coCartesian* if the following equivalent conditions hold:

- lacktriangle every 2-dimensional face of X is coCartesian;
- every face of dimension ≥ 2 is coCartesian;
- \blacksquare X is a left Kan extension of $X|_{\{\varnothing,\{1\},\cdots,\{n\}\}}.$
- The Kan extension condition translates to: a map from X to another cube is completely determined by its restriction on $X|_{\{\varnothing,\{1\},\cdots,\{n\}\}}$.
- \blacksquare Particularly, X can be recovered from $X|_{\{\varnothing,\{1\},\cdots,\{n\}\}}$ by repeated pushouts.
- Example. Every $\{0\}$ -cube is strongly coCartesian (because it has no 2-dim. faces). A $\{0,1\}$ -cube is strongly coCartesian iff it is coCartesian.

Excisive functors

Definion (*n*-excisive functor)

A functor F is called n-excisive if it sends strongly coCartesian $\{0,1,\cdots,n\}$ -cubes to Cartesian cubes.

- A (-1)-excisive functor sends every object to the final object.
- A 0-excisive functor is essentially a constant functor.
- A 1-excisive functor is an excisive functor defined above.
- An n-excisive functor is analogous to a polynomial of order $\leq n$.

Taylor approximation

Proposition (Taylor approximation of functors)

Denote by $\operatorname{Exc}^n(\mathcal{C},\mathcal{D})$ the category of n-excisive functors $\mathcal{C} \to \mathcal{D}$. The inclusion $\operatorname{Exc}^n(\mathcal{C},\mathcal{D}) \to \operatorname{Fun}(\mathcal{C},\mathcal{D})$ has a left adjoint

$$P_n \colon \operatorname{Fun}(\mathcal{C}, \mathcal{D}) \to \operatorname{Exc}^n(\mathcal{C}, \mathcal{D}).$$

In other words, a functor $F \colon \mathcal{C} \to \mathcal{D}$ has a "best approximation" $F \to P_n(F)$ to some n-excisive functor $P_n(F)$.

- The construction of $P_n(F)$ is by a colimit very similar to $P_1(F)$ which we described.
- Moreover, the functor P_n preserves finite limits. This makes P_n examples of *left exact localizations*. In the case where \mathcal{D} is a topos, we see that $\operatorname{Exc}^n(\mathcal{C},\mathcal{D})$ is again a topos.

Taylor approximation

(-1)-th order approximation

For a functor $F \colon \mathcal{C} \to \mathcal{D}$, the functor $P_{-1}(F)$ sends everything to the final object of \mathcal{D} ; it is a (-1)-excisive functor.

0-th order approximation

For a functor $F: \mathcal{C} \to \mathcal{D}$, the functor $P_0(F)$ sends everything to F(*), where * is the final object of \mathcal{C} ; it is a 0-excisive functor.

first-order approximation

For a functor $F \colon \mathcal{C} \to \mathcal{D}$, the functor $P_1(X)$ is the 1-jet, or the first-order approximation we have constructed; it is a 1-excisive functor.

The Taylor tower

Observation (Taylor tower)

The excisive approximations for a functor ${\cal F}$ form a tower

$$F \to \cdots \to P_2(F) \to P_1(F) \to P_0(F) \to P_{-1}(F).$$

The "difference" between successive terms

$$D_n(F) = \operatorname{fiber}(P_n(F) \to P_{n-1}(F))$$

may be thought of as the "n-th term of the Taylor series".

The Taylor Tower

A factorization system

A morphism $F \to G$ in $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ is called

- **a** P_n -local morphism, if $P_{>n}(F) \to P_{>n}(G)$ is an equivalence, where $P_{>n}(F)$ denotes the fiber of $F \to P_n(F)$;
- lacksquare an P_n -equivalence, if $P_n(F) o P_n(G)$ is an equivalence.

Theorem

The pair (P_n -equivalence, P_n -local morphisms) is a factorization system, i.e. every morphism in $\operatorname{Fun}(\mathcal{C},\mathcal{D})$ can be factored as a P_n -equivalence followed by a P_n -local morphism.

■ This situation is similar to the (*n*-connected, *n*-truncated) factorization for spaces. This is the theory of *modalities in topoi*.

References

- Goodwillie, T. (2003). *Calculus III: Taylor Series*. arXiv:math/0310481 [math.AT]
- nLab authors. (2024). *Goodwillie calculus*. https://ncatlab.org/nlab/show/Goodwillie+calculus
- Haine, P. (2017). An Introduction to Goodwillie Calculus.
- Anel, M., Biedermann, G., Finster, E., and Joyal, A. *Goodwillie's Calculus of Functors and Higher Topos Theory*. https://arxiv.org/abs/1703.09632v2