Práctico 6

1. Para las siguientes funciones calcular los polinomios de Taylor de órdenes 1 y 2 en el punto indicado.

a)
$$f(x,y) = \text{sen}(x) \text{ sen}(y)$$
 en $(0,0)$ b) $f(x,y) = \sqrt{5x+2y}$ en $(1,1)$ c) $f(x,y) = e^{x^2+y(y+1)}$ en $(0,0)$

2. Para las siguientes funciones calcular los polinomios de Taylor de órden n (arbitrario) en el punto indicado.

a)
$$f(x, y, z) = xyz$$
 en $(1, -1, 0)$ b) $f(x, y) = e^{x+y}$ en $(0, 0)$ y $(1, 0)$.

3. Calcular los siguientes límites:

a)
$$\lim_{(x,y)\to(0,0)} \frac{xy-\sin(x)\sin(y)}{x^2+y^2}$$
 b) $\lim_{(x,y)\to(0,0)} \frac{e^{x^2+y(y+1)}-(1+y)}{x^2+y^2}$.

4. Hallar y clasificar los puntos críticos. En caso de que existan, hallar el máximo y el mínimo absolutos:

a)
$$f(x,y) = x^4 + y^2 + y^4$$
.

b)
$$f(x,y) = 1 - y^2 - x^4$$
.

c)
$$f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$$
.

d)
$$f(x,y) = (ax^2 + by^2)e^{-(x^2+y^2)}$$
.

e)
$$f(x,y) = (x^2 + y^2 - 2x + 1)/(x^2 + y^2 + 2x - 2y + 3)$$
.

$$f) \ f(x,y,z) = x^2 + 3y^2 + 2z^2 - 2xy + 3xz.$$

g)
$$f(x,y) = (3-x)(3-y)(x+y-3)$$
.

h)
$$f(x,y) = xy(1-x^2-y^2)$$
 en $[0,1]^2$.

$$i) \ \ f:\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R} \ \text{definida mediante} \ f(x,y)=\langle x,x\rangle-\langle y,y\rangle, \ \text{con} \ x\in\mathbb{R}^n, \ y\in\mathbb{R}^m.$$

5. Hallar y clasificar los puntos críticos de las siguientes funciones:

a)
$$f(x,y) = x^2 + (y-1)^2$$
.

b)
$$f(x,y) = 1 - y^2 + x^2$$
.

c)
$$f(x,y) = (x-y-1)^2$$
.

d)
$$f(x,y) = x^3 - 3xy^2 + y^3$$
.

e)
$$f(x,y) = x^3 + y^3 - 3xy$$
.

$$f(x,y) = \sin(x)\sin(y)\sin(x+y)$$
, solamente para los puntos que estén en $[0,2\pi] \times [0,2\pi]$.

g)
$$f(x,y,z) = x^2 + y^2 - z^2$$

- h) $f(x,y,z) = x^4 + y^4 + z^4 4xyz$
- i) $f(x,y) = (x^2 + y^2)e^{x^2 y^2}$, en $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$.
- j) $f(x,y) = x^4 + 2x^2y 2y^2 3x^2 + 1$, en $D = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 2, 0 \le y \le x^2\}$.
- 6. Hallar $a, b \in \mathbb{R}$ para que el valor de la integral $\int_{-1}^{1} (x^2 ax b)^2 dx$ sea mínimo.
- 7. Dada $\varphi:(a,b)\to\mathbb{R}$ derivable, definimos $f:(a,b)\times(a,b)\to\mathbb{R}$ poniendo $f(x,y)=\int_x^y \varphi(t)dt$.
 - a) Hallar los puntos críticos de f, y determinar la condición para que sean no degenerados.
 - b) Para $\varphi(t) = 3t^2 1$, hallar y clasificar los puntos críticos.
- 8. Sean I un intervalo abierto en \mathbb{R} y $f: I \times [a,b] \subset \mathbb{R}^2 \to \mathbb{R}$ una función continua tal que existe y es continua $\frac{\partial f}{\partial x}: I \times [a,b] \to \mathbb{R}$.
 - a) Se define $G:(a,b)^2\times I\subset\mathbb{R}^3\to\mathbb{R}$ mediante $G(u,v,x)=\int_u^v f(x,y)dy$. Calcular $\frac{\partial G}{\partial u}, \frac{\partial G}{\partial v}$ y $\frac{\partial G}{\partial x}$.
 - b) Sea $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \int_0^x \sin(xy) dy$. Sin calcular la integral, probar que

$$f'(x) = \operatorname{sen}(x^2) + \int_0^x y \cos(xy) dy$$

9. Regresión lineal. Dados $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^2$, hallar una función afín $f : \mathbb{R} \to \mathbb{R}$, es decir, tal que f(x) = ax + b, $\forall x \in \mathbb{R}$, que minimice el error cuadrático E(a, b), dado por $E(x, y) = \sum_{i=1}^{n} (f(x_i) - y_i)^2$.

Ejercicios optativos

- 1. Sea $f: \mathbb{R}^n \to \mathbb{R}$ continua, con $n \geq 2$. Si para algún $c \in \mathbb{R}$ el conjunto de nivel $f^{-1}(c)$ es compacto, mostrar que entonces f posee al menos un extremo absoluto (máximo o mínimo). Notar que para n = 1 esto no es cierto.
- 2. Si $\mathbf{r_1}$ y $\mathbf{r_2}$ son las distancias desde un punto (x,y) de una elipse a sus focos, demostrar que la ecuación $\mathbf{r_1} + \mathbf{r_2} = \text{constante}$ (que satisfacen esas distancias) implica la relación $T \cdot \nabla(\mathbf{r_1} + \mathbf{r_2}) = 0$, siendo T el vector unitario tangente a la elipse en (x,y). Interpretar geométricamente este resultado, y con ello demostrar que la tangente forma ángulos iguales con las rectas que unen (x,y) a los focos.