Some Essential Linear Algebra

In these lectures $\langle x,y\rangle$ defines an inner product between vectors x,y of equal length such that $\langle x,y\rangle=y^Tx$ if x and y are both real and $\langle x,y\rangle=y^*x$, otherwise.

In these lectures $\langle x,y\rangle$ defines an inner product between vectors x,y of equal length such that $\langle x,y\rangle=y^Tx$ if x and y are both real and $\langle x,y\rangle=y^*x$, otherwise.

The Cauchy-Schwarz inequality: Given any $x, y \in \mathbb{C}^n$,

$$|\langle x, y \rangle| \leq ||x||_2 ||y||_2$$

with equality holding if and only if $\{x, y\}$ is a linearly dependent set.

In these lectures $\langle x,y\rangle$ defines an inner product between vectors x,y of equal length such that $\langle x,y\rangle=y^Tx$ if x and y are both real and $\langle x,y\rangle=y^*x$, otherwise.

The Cauchy-Schwarz inequality: Given any $x, y \in \mathbb{C}^n$,

$$|\langle x, y \rangle| \le ||x||_2 ||y||_2$$

with equality holding if and only if $\{x, y\}$ is a linearly dependent set.

If $x, y \in \mathbb{R}^n$, then by the Cauchy-Schwarz inequality

$$-1 \leq \frac{\langle x, y \rangle}{\|x\|_2 \|y\|_2} \leq 1.$$

Hence $\theta = \arccos \frac{\langle x, y \rangle}{\|x\|_2 \|y\|_2}$ is called the angle between x and y.

In these lectures $\langle x,y \rangle$ defines an inner product between vectors x,y of equal length such that $\langle x,y \rangle = y^Tx$ if x and y are both real and $\langle x,y \rangle = y^*x$, otherwise.

The Cauchy-Schwarz inequality: Given any $x, y \in \mathbb{C}^n$,

$$|\langle x, y \rangle| \le ||x||_2 ||y||_2$$

with equality holding if and only if $\{x, y\}$ is a linearly dependent set.

If $x, y \in \mathbb{R}^n$, then by the Cauchy-Schwarz inequality

$$-1 \leq \frac{\langle x, y \rangle}{\|x\|_2 \|y\|_2} \leq 1.$$

Hence $\theta = \arccos \frac{\langle x, y \rangle}{\|\|x\|_2 \|\|y\|_2}$ is called the angle between x and y.

Two vectors $x, y \in \mathbb{C}^n$ are said to be mutually orthogonal if $\langle x, y \rangle = 0$.

Let S be any nonempty subset of \mathbb{F}^n where $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$. Then the orthogonal complement of S is defined by

$$S^{\perp} := \{ x \in \mathbb{F}^n : \langle x, y \rangle = 0 \text{ for all } y \in S \}.$$

Let S be any nonempty subset of \mathbb{F}^n where $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$. Then the orthogonal complement of S is defined by

$$S^{\perp} := \{ x \in \mathbb{F}^n : \langle x, y \rangle = 0 \text{ for all } y \in S \}.$$

Examples:

- 1. In \mathbb{C}^3 , $\{e_3\}^{\perp} = \text{span}\{e_1, e_2\}$.
- 2. In \mathbb{R}^4 , $\{e_2 + e_4\}^{\perp} = \text{span}\{e_1, e_3, e_2 e_4\}$.

Let S be any nonempty subset of \mathbb{F}^n where $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$. Then the orthogonal complement of S is defined by

$$S^{\perp} := \{ x \in \mathbb{F}^n : \langle x, y \rangle = 0 \text{ for all } y \in S \}.$$

Examples:

- 1. In \mathbb{C}^3 , $\{e_3\}^{\perp} = \text{span}\{e_1, e_2\}$.
- 2. In \mathbb{R}^4 , $\{e_2 + e_4\}^{\perp} = \text{span}\{e_1, e_3, e_2 e_4\}$.

Exercise: Let *S* be any nonempty subset of \mathbb{F}^n . Prove that

- 1. S^{\perp} is always a *subspace* of \mathbb{F}^n .
- 2. $S^{\perp\perp} = \operatorname{span} S$.

Let S be any nonempty subset of \mathbb{F}^n where $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$. Then the orthogonal complement of S is defined by

$$S^{\perp} := \{ x \in \mathbb{F}^n : \langle x, y \rangle = 0 \text{ for all } y \in S \}.$$

Examples:

- 1. In \mathbb{C}^3 , $\{e_3\}^{\perp} = \text{span}\{e_1, e_2\}$.
- 2. In \mathbb{R}^4 , $\{e_2 + e_4\}^{\perp} = \text{span}\{e_1, e_3, e_2 e_4\}$.

Exercise: Let *S* be any nonempty subset of \mathbb{F}^n . Prove that

- 1. S^{\perp} is always a *subspace* of \mathbb{F}^n .
- 2. $S^{\perp\perp} = \operatorname{span} S$.

Exercise: Given any $n \times n$ matrix A prove that $N(A)^{\perp} = R(A^T)$ where

$$N(A) = \{x \in \mathbb{F}^n : Ax = 0\}$$

$$R(A^T) = \{A^Tx : x \in \mathbb{F}^n\}$$

with $\mathbb{F}=\mathbb{R}$ if A is real and $\mathbb{F}=\mathbb{C}$ if A is complex.

Sum of two subspaces: Given any two subspaces U, W of \mathbb{F}^n ,

$$\mathbb{F}^n = U + W$$

if for every $x \in \mathbb{F}^n$, there exist $x_1 \in U$ and $x_2 \in W$ such that $x = x_1 + x_2$.

Sum of two subspaces: Given any two subspaces U, W of \mathbb{F}^n ,

$$\mathbb{F}^n = U + W$$

if for every $x \in \mathbb{F}^n$, there exist $x_1 \in U$ and $x_2 \in W$ such that $x = x_1 + x_2$.

Examples:

- 1. $\mathbb{R}^4 = \text{span} \{e_1, e_3, e_2 + e_4\} + \{[\alpha, 0, -\alpha, 0]^T : \alpha \in \mathbb{R}\}.$
- 2. $\mathbb{C}^4 = \text{span}\{e_1, e_1 + e_3, e_2 e_4\} + \text{span}\{e_2, e_3\}.$

Sum of two subspaces: Given any two subspaces U, W of \mathbb{F}^n ,

$$\mathbb{F}^n = U + W$$

if for every $x \in \mathbb{F}^n$, there exist $x_1 \in U$ and $x_2 \in W$ such that $x = x_1 + x_2$.

Examples:

- 1. $\mathbb{R}^4 = \text{span} \{e_1, e_3, e_2 + e_4\} + \{[\alpha, 0, -\alpha, 0]^T : \alpha \in \mathbb{R}\}.$
- 2. $\mathbb{C}^4 = \operatorname{span} \{e_1, e_1 + e_3, e_2 e_4\} + \operatorname{span} \{e_2, e_3\}.$

Theorem Let U and W be two subspaces of \mathbb{F}^n . such that $\mathbb{F}^n = U + W$. Then

$$\dim U + \dim W - \dim (U \cap W) = n,$$

and span $(U \cup W) = U + W$.

Direct sum of two subspaces: Let U and W be subspaces of \mathbb{F}^n . Then \mathbb{F}^n is the *direct* sum of U and W denoted by

$$\mathbb{F}^n = U \oplus W \tag{1}$$

if for every $x \in \mathbb{F}^n$, there exist *unique* $x_1 \in U$ and $x_2 \in W$ such that $x = x_1 + x_2$. The equation (1) is called a diect sum decomposition of \mathbb{F}^n .

Direct sum of two subspaces: Let U and W be subspaces of \mathbb{F}^n . Then \mathbb{F}^n is the *direct* sum of U and W denoted by

$$\mathbb{F}^n = U \oplus W \tag{1}$$

if for every $x \in \mathbb{F}^n$, there exist *unique* $x_1 \in U$ and $x_2 \in W$ such that $x = x_1 + x_2$. The equation (1) is called a diect sum decomposition of \mathbb{F}^n .

Direct sum of two subspaces: Let U and W be subspaces of \mathbb{F}^n . Then \mathbb{F}^n is the *direct* sum of U and W denoted by

$$\mathbb{F}^n = U \oplus W \tag{1}$$

if for every $x \in \mathbb{F}^n$, there exist *unique* $x_1 \in U$ and $x_2 \in W$ such that $x = x_1 + x_2$. The equation (1) is called a diect sum decomposition of \mathbb{F}^n .

Examples:

- 1. $\mathbb{R}^4 = \text{span} \{e_1, e_3, e_2 + e_4\} \oplus \{[\alpha, 0, -\alpha, 0]^T : \alpha \in \mathbb{R}\}.$
- 2. However $\mathbb{C}^4 = \operatorname{span} \{e_1, e_1 + e_3, e_2 e_4\} + \operatorname{span} \{e_2, e_3\}$ is a sum that is not a direct sum.
- 3. Given any subspace U of \mathbb{F}^n , $\mathbb{F}^n = U \oplus U^{\perp}$.

Direct sum of two subspaces: Let U and W be subspaces of \mathbb{F}^n . Then \mathbb{F}^n is the *direct* sum of U and W denoted by

$$\mathbb{F}^n = U \oplus W \tag{1}$$

if for every $x \in \mathbb{F}^n$, there exist *unique* $x_1 \in U$ and $x_2 \in W$ such that $x = x_1 + x_2$. The equation (1) is called a diect sum decomposition of \mathbb{F}^n .

Examples:

- 1. $\mathbb{R}^4 = \text{span} \{e_1, e_3, e_2 + e_4\} \oplus \{[\alpha, 0, -\alpha, 0]^T : \alpha \in \mathbb{R}\}.$
- 2. However $\mathbb{C}^4 = \operatorname{span} \{e_1, e_1 + e_3, e_2 e_4\} + \operatorname{span} \{e_2, e_3\}$ is a sum that is not a direct sum.
- 3. Given any subspace U of \mathbb{F}^n , $\mathbb{F}^n = U \oplus U^{\perp}$.

Theorem Suppose U, W are subspaces of \mathbb{F}^n such that $\mathbb{F}^n = U + W$. Then $\mathbb{F}^n = U \oplus W$ if and only if u + w = 0 for $u \in U, w \in W$, implies that u = w = 0.

Direct sum of two subspaces: Let U and W be subspaces of \mathbb{F}^n . Then \mathbb{F}^n is the *direct* sum of U and W denoted by

$$\mathbb{F}^n = U \oplus W \tag{1}$$

if for every $x \in \mathbb{F}^n$, there exist *unique* $x_1 \in U$ and $x_2 \in W$ such that $x = x_1 + x_2$. The equation (1) is called a diect sum decomposition of \mathbb{F}^n .

Examples:

- 1. $\mathbb{R}^4 = \text{span} \{e_1, e_3, e_2 + e_4\} \oplus \{[\alpha, 0, -\alpha, 0]^T : \alpha \in \mathbb{R}\}.$
- 2. However $\mathbb{C}^4 = \operatorname{span} \{e_1, e_1 + e_3, e_2 e_4\} + \operatorname{span} \{e_2, e_3\}$ is a sum that is not a direct sum.
- 3. Given any subspace U of \mathbb{F}^n , $\mathbb{F}^n = U \oplus U^{\perp}$.

Theorem Suppose U, W are subspaces of \mathbb{F}^n such that $\mathbb{F}^n = U + W$. Then $\mathbb{F}^n = U \oplus W$ if and only if u + w = 0 for $u \in U, w \in W$, implies that u = w = 0.

Projections

A linear map $P : \mathbb{F}^n \mapsto \mathbb{F}^n$ is called a *projection* if $P^2 = P$.

Projections

A linear map $P : \mathbb{F}^n \mapsto \mathbb{F}^n$ is called a *projection* if $P^2 = P$.

Example:
$$x \mapsto Ax$$
 for all $x \in \mathbb{R}^3$ where $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$.

In fact, any $n \times n$ idempotent matrix, ie., $A^2 = A$ defines a projection on \mathbb{F}^n .

Projections

A linear map $P : \mathbb{F}^n \mapsto \mathbb{F}^n$ is called a *projection* if $P^2 = P$.

Example:
$$x \mapsto Ax$$
 for all $x \in \mathbb{R}^3$ where $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$.

In fact, any $n \times n$ idempotent matrix, ie., $A^2 = A$ defines a projection on \mathbb{F}^n .

Exercises:

- 1. Given any projection P on \mathbb{F}^n , prove the following.
 - (a) $\mathbb{F}^n = N(P) \oplus R(P)$.
 - (b) I P is also a projection.
 - (c) N(P) = R(I P) and R(P) = N(I P).
- 2. If U and V are subspaces of \mathbb{F}^n such that $\mathbb{F}^n = U \oplus V$ then $P : \mathbb{F}^n \mapsto \mathbb{F}^n$ defined by $Px = x_1$ where $x = x_1 + x_2, x_1 \in U, x_2 \in V$, is a projection onto U, that is, R(P) = U.

Orthogonal projections

A linear map $P : \mathbb{F}^n \mapsto \mathbb{F}^n$ is called an *orthogonal projection* if $P^2 = P$ and $P^T = P$.

Orthogonal projections

A linear map $P : \mathbb{F}^n \mapsto \mathbb{F}^n$ is called an *orthogonal projection* if $P^2 = P$ and $P^T = P$.

Example:
$$x \mapsto Ax$$
 for all $x \in \mathbb{R}^3$ where $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

In fact, any $n \times n$ idempotent symmetric matrix, defines an orthogonal projection on \mathbb{F}^n .

Orthogonal projections

A linear map $P : \mathbb{F}^n \mapsto \mathbb{F}^n$ is called an *orthogonal projection* if $P^2 = P$ and $P^T = P$.

Example:
$$x \mapsto Ax$$
 for all $x \in \mathbb{R}^3$ where $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

In fact, any $n \times n$ idempotent symmetric matrix, defines an orthogonal projection on \mathbb{F}^n .

Exercises:

- 1. Given any orthogonal projection P on \mathbb{F}^n , prove the following.
 - (a) I P is also an orthogonal projection.
 - (b) $N(P) = R(P)^{\perp}$.
 - (c) $\mathbb{F}^n = R(P) \oplus R(P)^{\perp}$.
- 2. If U is a subspace of \mathbb{F}^n such that $\mathbb{F}^n = U \oplus U^{\perp}$ then $P : \mathbb{F}^n \mapsto \mathbb{F}^n$ defined by $Px = x_1$ where $x = x_1 + x_2, x_1 \in U, x_2 \in U^{\perp}$, is an orthogonal projection onto U, that is R(P) = U.

A nonempty subset $\{v_1,\ldots,v_m\}$ of \mathbb{R}^n or \mathbb{C}^n is said to be an *orthonormal set* if

$$\langle v_i, v_j \rangle = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

A nonempty subset $\{v_1, \ldots, v_m\}$ of \mathbb{R}^n or \mathbb{C}^n is said to be an *orthonormal set* if

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \left\{ \begin{array}{ll} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{array} \right.$$

Examples:

▶ The canonical basis $\{e_1, \ldots, e_n\}$ of \mathbb{R}^n or \mathbb{C}^n where e_i is the i^{th} column of I_n .

$$\blacktriangleright \; \left\{ \left[\begin{array}{c} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{array} \right], \left[\begin{array}{c} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right] \right\} \text{ in } \mathbb{R}^3 \text{ or } \mathbb{C}^3.$$

A nonempty subset $\{v_1, \ldots, v_m\}$ of \mathbb{R}^n or \mathbb{C}^n is said to be an *orthonormal set* if

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \left\{ \begin{array}{ll} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{array} \right.$$

Examples:

▶ The canonical basis $\{e_1, \ldots, e_n\}$ of \mathbb{R}^n or \mathbb{C}^n where e_i is the i^{th} column of I_n .

An orthonormal set is always a linearly independent set.

A nonempty subset $\{v_1, \ldots, v_m\}$ of \mathbb{R}^n or \mathbb{C}^n is said to be an *orthonormal set* if

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \left\{ \begin{array}{ll} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{array} \right.$$

Examples:

▶ The canonical basis $\{e_1, \ldots, e_n\}$ of \mathbb{R}^n or \mathbb{C}^n where e_i is the i^{th} column of I_n .

$$\qquad \qquad \left\{ \left[\begin{array}{c} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{array} \right], \left[\begin{array}{c} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right] \right\} \text{ in } \mathbb{R}^3 \text{ or } \mathbb{C}^3.$$

An orthonormal set is always a linearly independent set.

An *orthonormal basis* of \mathbb{R}^n or \mathbb{C}^n is an orthonormal set with n elements.

A nonempty subset $\{v_1, \ldots, v_m\}$ of \mathbb{R}^n or \mathbb{C}^n is said to be an *orthonormal set* if

$$\langle v_i, v_j \rangle = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

Examples:

▶ The canonical basis $\{e_1, \ldots, e_n\}$ of \mathbb{R}^n or \mathbb{C}^n where e_i is the i^{th} column of I_n .

$$\qquad \qquad \left\{ \left[\begin{array}{c} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{array} \right], \left[\begin{array}{c} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right] \right\} \text{ in } \mathbb{R}^3 \text{ or } \mathbb{C}^3.$$

An orthonormal set is always a linearly independent set.

An *orthonormal basis* of \mathbb{R}^n or \mathbb{C}^n is an orthonormal set with n elements.

The canonical basis in \mathbb{R}^n or \mathbb{C}^n is a classic example of an orthonormal basis.

A nonempty subset $\{v_1, \ldots, v_m\}$ of \mathbb{R}^n or \mathbb{C}^n is said to be an *orthonormal set* if

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \left\{ \begin{array}{ll} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{array} \right.$$

Examples:

▶ The canonical basis $\{e_1, \ldots, e_n\}$ of \mathbb{R}^n or \mathbb{C}^n where e_i is the i^{th} column of I_n .

$$\left\{ \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \text{ in } \mathbb{R}^3 \text{ or } \mathbb{C}^3.$$

An orthonormal set is always a linearly independent set.

An *orthonormal basis* of \mathbb{R}^n or \mathbb{C}^n is an orthonormal set with n elements.

The canonical basis in \mathbb{R}^n or \mathbb{C}^n is a classic example of an orthonormal basis.

Any linearly independent subset of \mathbb{R}^n or \mathbb{C}^n may be converted to an orthonormal set via the process of Gram-Schmidt orthonormalisation.

Classical Gram Schmidt Orthonormalisation

Let $\{v_1, \ldots, v_m\}$ be an ordered set of linearly independent vectors in \mathbb{R}^n . The Classical Gram Schmidt (CGS) process finds an ordered orthonormal set of vectors $\{q_1, \ldots, q_m\}$ in \mathbb{R}^n such that

$$span\{v_1,...,v_k\} = span\{q_1,...,q_k\}, k = 1,...,m.$$

Classical Gram Schmidt Orthonormalisation

Let $\{v_1,\ldots,v_m\}$ be an ordered set of linearly independent vectors in \mathbb{R}^n . The Classical Gram Schmidt (CGS) process finds an ordered orthonormal set of vectors $\{q_1,\ldots,q_m\}$ in \mathbb{R}^n such that

$$span\{v_1,...,v_k\} = span\{q_1,...,q_k\}, \ k = 1,...,m.$$

Classical Gram Schmidt (CGS):

Step 1: $q_1 := v_1/\|v_1\|_2$.

Step 2:
$$q_2 := \underbrace{(v_2 - (v_2^T q_1)q_1)}_{=:\hat{q}_2} / \|v_2 - (v_2^T q_1)q_1\|_2.$$

Step k: Assuming that q_1, \ldots, q_{k-1} are calculated as above,

$$q_k = \underbrace{(v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i)}_{=:\hat{q}_k} / ||v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i||_2.$$

Classical Gram Schmidt Orthonormalisation

Let $\{v_1,\ldots,v_m\}$ be an ordered set of linearly independent vectors in \mathbb{R}^n . The Classical Gram Schmidt (CGS) process finds an ordered orthonormal set of vectors $\{q_1,\ldots,q_m\}$ in \mathbb{R}^n such that

$$span\{v_1,...,v_k\} = span\{q_1,...,q_k\}, \ k = 1,...,m.$$

Classical Gram Schmidt (CGS):

Step 1:
$$q_1 := v_1/\|v_1\|_2$$
.

Step 2:
$$q_2 := \underbrace{(v_2 - (v_2^T q_1)q_1)}_{=:\hat{q}_2} / \|v_2 - (v_2^T q_1)q_1\|_2.$$

Step k: Assuming that q_1, \ldots, q_{k-1} are calculated as above,

$$q_k = \underbrace{(v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i)}_{-\hat{q}_i} / ||v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i||_2.$$

Exercise: Show that CGS applied to the basis $\{e_1 + e_2, e_2, e_2 + e_3\}$ in \mathbb{R}^3 produces the ordered orthonormal basis

$$\{(e_1+e_2)/\sqrt{2},(e_2-e_1)/\sqrt{2},e_3\}.$$

Unitary matrices are square matrices such that $Q^* = Q^{-1}$. A real unitary matrix is called an orthogonal matrix.

Unitary matrices are square matrices such that $Q^* = Q^{-1}$.

A real unitary matrix is called an orthogonal matrix.

Evidently, a square matrix Q is unitary (orthogonal) if and only if its columns form an orthonormal basis of \mathbb{R}^n (\mathbb{C}^n).

Unitary matrices are square matrices such that $Q^* = Q^{-1}$.

A real unitary matrix is called an orthogonal matrix.

Evidently, a square matrix Q is unitary (orthogonal) if and only if its columns form an orthonormal basis of \mathbb{R}^n (\mathbb{C}^n).

They play a very important role in matrix computations due to their nice properties. In the following let Q be an $n \times n$ unitary matrix.

Unitary matrices are square matrices such that $Q^* = Q^{-1}$.

A real unitary matrix is called an orthogonal matrix.

Evidently, a square matrix Q is unitary (orthogonal) if and only if its columns form an orthonormal basis of \mathbb{R}^n (\mathbb{C}^n).

They play a very important role in matrix computations due to their nice properties. In the following let Q be an $n \times n$ unitary matrix.

- $||Qx||_2 = ||x||_2.$
- ▶ $||QB||_2 = ||B||_2$ for any $B \in \mathbb{C}^{n \times m}$.
- $||Q||_2 = 1$ and $||Q||_F = \sqrt{n}$.
- ▶ $\kappa_2(Q) = 1$.
- $ightharpoonup Q^*AQ$ is Hermitian if A is Hermitian.
- ▶ If A is real symmetric and Q is orthogonal, then Q^TAQ is also real symmetric.
- ▶ In the presence of rounding errors, fl(QA) = Q(A + E) where $||E||_2/||A||_2$ is O(u).

Unitary matrices are square matrices such that $Q^* = Q^{-1}$.

A real unitary matrix is called an orthogonal matrix.

Evidently, a square matrix Q is unitary (orthogonal) if and only if its columns form an orthonormal basis of \mathbb{R}^n (\mathbb{C}^n).

They play a very important role in matrix computations due to their nice properties. In the following let Q be an $n \times n$ unitary matrix.

- ▶ $\langle Qx, Qy \rangle = \langle x, y \rangle$ for all $x, y \in \mathbb{C}^n$.
- $||Qx||_2 = ||x||_2.$
- ▶ $||QB||_2 = ||B||_2$ for any $B \in C^{n \times m}$.
- $||Q||_2 = 1$ and $||Q||_F = \sqrt{n}$.
- $\kappa_2(Q) = 1.$

▶ Q*AQ is Hermitian if A is Hermitian.

- ▶ If A is real symmetric and Q is orthogonal, then Q^TAQ is also real symmetric.
- ▶ In the presence of rounding errors, fl(QA) = Q(A + E) where $||E||_2/||A||_2$ is O(u).

Prove these properties!

Isometry

A matrix $Q \in \mathbb{C}^{n \times m}$, or $\mathbb{R}^{n \times m}$ with n > m, is said to be an isometry if $Q^*Q = I_m$.

Isometry

A matrix $Q \in \mathbb{C}^{n \times m}$, or $\mathbb{R}^{n \times m}$ with n > m, is said to be an isometry if $Q^*Q = I_m$.

Clearly a matrix Q with more rows than columns is an isometry if and only if its columns form an orthonormal set in \mathbb{R}^n or \mathbb{C}^n .

Isometry

A matrix $Q \in \mathbb{C}^{n \times m}$, or $\mathbb{R}^{n \times m}$ with n > m, is said to be an isometry if $Q^*Q = I_m$.

Clearly a matrix Q with more rows than columns is an isometry if and only if its columns form an orthonormal set in \mathbb{R}^n or \mathbb{C}^n .

Isometries have properties very similar to that of unitary matrices. Given an $n \times m$ isometry $Q = [q_1 \cdots q_m]$,

- $||Qx||_2 = ||x||_2.$
- ▶ $||QB||_2 = ||B||_2$ for any $B \in \mathbb{C}^{n \times m}$.
- $||Q||_2 = 1$ and $||Q||_F = \sqrt{m}$.
- ▶ $\kappa_2(Q) = 1$.
- ▶ In the presence of rounding errors, fI(QA) = Q(A + E) where $||E||_2/||A||_2$ is O(u).
- ▶ QQ^* is the orthogonal projection onto span $\{q_1, \ldots, q_m\}$, that is, $QQ^*v = v$ for all $v \in \text{span}\{q_1, \ldots, q_m\}$ and $QQ^*w = 0$ for all $w \in \{q_1, \ldots, q_m\}^{\perp}$. Prove this!

Suggested resources for further study

- ► G. Strang, Linear Algebra and Its Applications, Cengage Learning, 4th Edition, 2006.
- ▶ J. Gilbert and L. Gilbert, Linear Algebra and Matrix Theory, Academic Press, 1995.
- ▶ MIT OCW on Linear Algebra.