Mikhail Hushchyn

Feature Engineering

Feature engineering, importance and selection

2021

Outline

- Feature engineering
- Feature importance
- Feature selection

Feature Engineering

- Consider a binary classification problem in 2D with a Logistic Regression classifier
- Classes are concentric circles and the classifier can not separate them using only features X₁ and X₂

Let's create the new feature X_3 :

$$X_3 = X_1^2 + X_2^2$$

- This feature helps to separate the circles by a straight line
- Now, Logistic Regression can solve the classification problem ideally using all three features: X_1 , X_2 and X_3

Consider an example where two classes are separated by the surface:

$$X_2 - X_1 = 0$$

- Such surfaces are difficult for Decision
 Tree classifier
- It requires larger depth of the tree to separate the classes properly

The new feature X_3 helps the classifier:

$$X_3 = X_2 - X_1$$

- Now, the classes are separated using just one predicate $X_3 > 0$
- It requires a Decision Tree with depth = 1 to solve the problem ideally

Advantages of FE

Creating new features can:

- Improve quality of a model
- Reduce complexity of a model (shorter decision trees)
- Speed up model training
- Reduce dimensionality of a problem by removing less informative features $(X_1, X_2 \text{ in previous examples})$

Principles

Key principals in feature engineering:

- Use any information about a problem (classes are circles)
- Create features with physical meaning $(\sqrt{X_1^2 + X_2^2})$ is radius)
- Remove limitations of a model (like with decision tree in example 2)

Typical examples

The commonly used feature combinations:

- X_i^p
- X_1X_2
- $X_1^2 \pm X_2^2$
- $X_1 \pm X_2$
- \triangleright $\sin X_1$, $\cos X_1$

Feature Importance

Intuition

- Not all features are equally useful for a problem
- Some of them are more informative than others
- In the example, X_1 is uninformative for the classification problem
- The goal is to measure importance of each feature

Methods

The main feature importance estimation methods:

- Using correlation
- Using probabilistic distance
- Decision tree based
- Linear model based
- General method

Correlation

For a feature f calculate correlation with target y:

$$\rho(f,y) = \frac{\sum_{i} (f_i - \overline{f})(y_i - \overline{y})}{\sqrt{\sum_{i} (f_i - \overline{f})^2 \sum_{i} (y_i - \overline{y})^2}}$$

 y_i - labels in binary classification or target in regression for the i-th object f_i - the feature value for the i-th object $\rho(f,y)$ - the feature importance Imp(f)

Correlation

- Easy to compute
- But captures only linear dependencies

Probabilistic distance

Feature importance Imp(f) as total variation (distance) between two distributions:

$$Imp(f) = \int |p(f|y=1) - p(f|y=0)|df$$

Decision tree based

Decision tree recap:

- Each node t has two children
- $lacktriangleright n_t$ the number of objects in this node
- I(t) impurity function (gini, crossentropy, MSE) value for the node

Decision tree based

Let T(f) be the set of all nodes which use feature f to make a split. Then, feature importance of f:

$$Imp(f) = \sum_{t \in T(f)} n_t \Delta I(t)$$

$$\Delta I(t) = I(t) - \sum_{c \in children(t)} \frac{n_c}{n_t} I(c)$$

Linear model based

Consider a linear model with regularization (L_1 or L_2 penalty):

$$\hat{y} = w_0 + w_1 f_1 + w_2 f_2 + \dots + w_k f_k$$

If features are normalized (have the same ranges), feature importance of f_i is equal to:

$$Imp(f_i) = |w_i|$$

General method

- Train your model
- ightharpoonup Calculate quality measure Q_0 on validation set
- ► For a feature *f* :
 - Replace given values with random values from the same distribution
 - Or perform random shuffling
 - Calculate quality measure Q_f on validation set
 - Estimate feature importance: $Imp(f) = Q_0 Q_f$

General method (modification)

- Train your model on the full set of features
- ightharpoonup Calculate quality measure Q_0 on validation set
- For a feature f:
 - Retrain your model without this feature
 - Calculate quality measure Q_f on validation set
 - Estimate feature importance: $Imp(f) = Q_0 Q_f$

Shapley values

- There are many other approaches to estimate feature importance
- One of the most interesting method is based on Shapley values: https://christophm.github.io/interpretable-ml-book/shapley.html
- ► With its implementation on python: https://github.com/slundberg/shap

Feature Selection

Feature selection

The goal is to reduce the number of features with minimal loss of model quality.

Examples:

- Keep the best K of D features
- Remove as much features as possible, but keep quality $Q \ge Q_{min}$

Methods

The most popular feature selection approaches:

- Filter method
- Embedded methods
- Recursive feature elimination

Filter method

- Estimate importance for individual features (correlation, probability distance): $Imp(f_1), Imp(f_2), ..., Imp(f_D)$
- Select the required number of features with the highest importance
- Simple to implement
- Quite fast
- Bad for correlated features, it takes many redundant ones

Embedded methods

- Based on feature importance of a model
- Linear models:
 - Select the best features using weights of the model (see feature importance section)
 - Use L_1 regularization
- Decision Trees
 - Select the best features using their importance (see feature importance section)
- Widely used
- Takes into account correlations between the features

Recursive feature elimination

Recursive feature elimination

- Train a model on the full set of features
- Estimate feature importance based on the model
- Remove the least important feature or several features
- Repeat

In combination with the general method for feature importance estimation, this is one of the most powerful methods

Summary

Summary

- Feature engineering
- Feature importance
 - Correlation and probabilistic distance
 - Decision tree and linear model based
 - General method
- Feature selection
 - Filter method
 - Embedded methods
 - Recursive feature elimination