

Etude d'un robot industriel 3 axes

Soit le robot industriel 3 axes ci-contre II est composé des éléments suivants :

- l'ensemble (0) est fixe, c'est le bâti lié au repère R_0 ($0, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}$)
- l'ensemble (1) lié au repère R_1 ($O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}$) translate et tourne autour de l'axe $O \overrightarrow{y_0}$ par rapport au bâti (0) avec : $\alpha = (\overrightarrow{x_0}, \overrightarrow{x_1})$ et $\overrightarrow{OA} = R \overrightarrow{x_1}$
- l'ensemble (2) lié au repère R_2 ($A, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2}$) tourne autour de l'axe $A \overrightarrow{z_1}$ par rapport à

l'ensemble (1) avec : $\theta = (\overrightarrow{x_1}, \overrightarrow{x_2})$ et $\overrightarrow{AB} = a. \overrightarrow{x_2}$

- l'ensemble (3) lié au repère R_3 ($B, \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3}$) tourne autour de l'axe $B \overrightarrow{x_2}$ par rapport à l'ensemble (2) avec : $\phi = (\overrightarrow{z_2}, \overrightarrow{z_3})$ et $\overrightarrow{BC} = c. \overrightarrow{z_3}$

(le point C est à la périphérie de (3))

- 1) Représenter les figures des rotations planes (changements de repères)
- 2) Exprimez $\ \overrightarrow{\Omega}_{R_1/R_0}$; $\ \overrightarrow{\Omega}_{R_2/R_1}$, $\ \overrightarrow{\Omega}_{R_3/R_2}$, $\ \overrightarrow{\Omega}_{R_2/R_0}$ et $\ \overrightarrow{\Omega}_{R_3/R_0}$
- 3) Exprimez $\vec{V}_{A\,1/0}$ par dérivation . Vous l'exprimerez dans la base $(\vec{x_1}, \vec{y_1}, \vec{z_1})$
- 4) Exprimez $\vec{V}_{B\ 2/0}$ par changement de point . *Vous l'exprimerez dans la base* $(\vec{x_1}, \vec{y_1}, \vec{z_1})$
- 5) Exprimez $\vec{V}_{B\ 2/0}$ par dérivation. . Vous l'exprimerez dans la base $(\vec{x_1}, \vec{y_1}, \vec{z_1})$
- 6) Exprimez $\vec{V}_{C\ 3/0}$ par changement de point . . Vous l'exprimerez dans la base ($\vec{x_1}, \vec{y_1}, \vec{z_1}$)
- 7) Exprimez $\vec{V}_{C\ 3/0}$ par dérivation . . Vous l'exprimerez dans la base $(\vec{x_1}, \vec{y_1}, \vec{z_1})$
- 8) Exprimez $\vec{T}_{B\ 2/0}$, . . Vous l'exprimerez dans la base $(\vec{x_1}, \vec{y_1}, \vec{z_1})$

Etude d'un système came-poussoir

La came (1) de rayon R est liée au bâti par une liaison pivot de centre O_0 et d'axe z_0

Le poussoir (2) est lié au bâti par une liaison glissière d'axe x_0 Le repère (R_1) est lié à la came (1)

Le repère (R₂) est lié au poussoir (2)

I est le point de contact came/poussoir

A est un point appartenant au poussoir à l'intersection des axes x_0 et y_2

La came (1) a un mouvement de rotation de vitesse angulaire ω

On pose : $O_0O_1 = e \text{ et } \Theta = (\overrightarrow{x_0}, \overrightarrow{x_1})$

- 1) Ecrire le vecteur $\overrightarrow{O_0A}$ en fonction de R, Θ et e
- 2) Déterminer la vitesse $\overline{V_{A \, 2/0}}$ en fonction de R, Θ , ω et e
- 3) Déterminer l'accélération $\overline{\Gamma_{\!\!A\ 2/0}}$ en fonction de R, Θ , ω et e
- 4) Déterminer la vitesse $\overrightarrow{V_{I2/0}}$ en fonction de R, Θ , ω et e

