Automates et Langages

Logique propositionnelle

Exercice 1

Vous décidez d'acheter un billet de tombola. Le buraliste vous en présente cinq, de 1 à 5, et vous déclare :

- Si 5 est perdant, 1 est gagnant.
- Si 4 est perdant, 2 est gagnant.
- Si 3 est perdant, 5 aussi.
- Si 1 est gagnant, 2 aussi.
- Si 3 est gagnant, 4 est perdant.

Quel billet choisissez-vous? Établissez une preuve de la déduction naturelle qui démontre que votre choix est correct.

Exercice 2

Donner une preuve de $(A \lor B \to C) \to (A \to C) \lor (B \to C)$.

Exercice 3

- **Q.1** Donner une preuve de $A \to \neg \neg A$ en logique intuitionniste (i.e. sans la règle (RAA)).
- **Q.2** Donner une preuve de $\neg \neg A \rightarrow A$ en logique classique;
- **Q.3** Donner une preuve de $A \vee \neg A$ en logique classique.

Exercice 4

Montrer que $(A \to B) \to (\neg B \to \neg A)$ est prouvable sans les règles $(\bot E)$ et (RAA).

Exercice 5

On s'interesse ici à l'équivalence $(\neg A \lor B) \equiv (A \to B)$.

- **Q.1** Prouver la formule $(\neg A \lor B) \to (A \to B)$ en logique intuitionniste.
- **Q.2** Prouver la formule $(A \to B) \to (\neg A \lor B)$ en logique classique.

Exercice 6

Montrer que la relation \equiv est une relation d'équivalence (rappel : $A \equiv B$ ssi toute valuation qui satisfait A satisfait également B et vice-versa).

Exercice 7

Montrer que l'implication n'est pas associative.

Exercice 8

Mettre sous forme normale disjonctive les formules suivantes :

- $-\neg(A\wedge(B\to A))$
- $-((A \lor B) \to C) \land ((A \to B) \land (A \to B)$
- $(A \lor (B \to C)) \to ((A \lor B) \to C)$

Exercice 9

On définit le connecteur < par sa table de vérité :

A	B	A < B
0	0	0
0	1	1
1	0	0
1	1	0

Le système $\{<,\rightarrow\}$ est-il un système complet? Justifier.

Exercice 10

On défini les connecteurs \oplus ("ou exclusif") et \leftrightarrow ("équivalence") par leur table de vérité :

A	B	$A \oplus B$	$A \leftrightarrow B$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

- **Q.1** Trouver une formule équivalente à $A \leftrightarrow B$ qui n'utilise que les connecteur \neg et \oplus .
- **Q.2** Trouver une formule équivalente $A \vee B$, n'utilisant que les connecteurs \wedge et \oplus .
- **Q.3** Peut-on trouver, pour toute formule n'utilisant que \neg et \oplus une formule équivalente n'utilisant que \leftrightarrow et \oplus ?
- **Q.4** Peut-on trouver une formule équivalente à $A \leftrightarrow B$ n'utilisant que les connecteurs \land et \oplus ?
- **Q.5** On considère l'ensemble E des formules construites en n'utilisant que la variable propositionnelle p, les parenthèses et le connecteur \oplus . Trouver deux formules du calcul propositionnel A et B telles que toute formule de E soit équivalente à A ou à B.
- **Q.6** Peut-on trouver, pour toute formule du calcul propositionnel une formule équivalente n'utilisant que les connecteurs \leftrightarrow et \oplus ? Justifier.