(c, f)
$$f: G \times G \to G$$

(a, b) \mapsto ab

 $f(a, b) = Qb$

* i) Demigrups: $\forall a, b, c \in G$, $Q(bc) = (ab)c$

(i) $\exists e \in G$; $\forall a \in G$, $a = e = a = a$ (monoida)

iv) $\forall a \in G$, $\exists a' \in G$; $Q(a') = a' = e = e = e$

Exercise: $Q(a) = e = e$
 $Q(a) = e = e = e = e$

Exercise: $Q(a) = e = e = e = e$
 $Q(a) = e = e = e = e = e$

Exercise: $Q(a) = e = e = e = e = e$

Exercise: $Q(a) = e = e = e = e$
 $Q(a) = e = e = e = e = e$

Exercise: $Q(a) = e = e = e = e$
 $Q(a) = e = e = e = e = e$
 $Q(a) = e = e = e = e = e$
 $Q(a) = e = e = e = e = e$
 $Q(a) = e = e = e = e = e$
 $Q(a) = e = e = e = e = e$
 $Q(a) = e = e = e = e = e$
 $Q(a) = e = e = e = e = e$
 $Q(a) = e = e = e = e = e$
 $Q(a) = e = e = e = e = e$
 $Q(a) = e = e = e = e = e$
 $Q(a) = e = e = e = e = e$
 $Q(a) = e = e = e = e$
 $Q(a) = e = e = e = e$
 $Q(a) = e = e = e = e$
 $Q(a) = e = e = e = e$
 $Q(a) = e = e = e = e$
 $Q(a) = e = e = e = e$
 $Q(a) = e = e = e = e$
 $Q(a) = e = e = e = e$
 $Q(a) = e = e = e = e$
 $Q(a) = e = e$
 $Q(a) = e = e = e$
 $Q(a) = e$
 $Q(a) = e = e$
 $Q(a) = e$

Den:
$$\exists 6 \in G$$
, $a = 6 = 6 = 6$
 $a^{-1} = 6$
 $a^{-1} = (6a)a^{-1} = 6(aa^{-1}) = 6c = 6$

$$tom: (a^{-1})(a^{-1})^{-1} = C$$

$$a((a^{-1})(a^{-1})^{-1}) = (aa^{-1})(a^{-1})^{-1} = (a^{-1})^{-1} = ae$$

V)
$$\forall a, b \in G$$
, $(ab)^{-1} = b^{-1}a^{-1}$

Pom: $(ab)(ab)^{-1} = e$
 $a^{-1}[(ab)(ab)^{-1}] = a^{-1} \cdot e = a^{-1}$
 $(a^{-1}(a)b)(ab)^{-1} = a^{-1}$
 $(ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1}$

Coaldiano.

 $(ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1}$

Coaldiano.

 $(ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1}$

Coaldiano.

 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$

Coaldiano.

 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$

Coaldiano.

 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$
 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$

Coaldiano.

 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$
 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$

Coaldiano.

 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$
 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$

Coaldiano.

 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$
 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$
 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$

Coaldiano.

 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$
 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$

Coaldiano.

 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$

Coaldiano.

 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$

Coaldiano.

 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$
 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$

Coaldiano.

 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$

Coaldiano.

 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$

Coaldiano.

 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^{-1}$
 $(ab)^{-1} = a^{-1}a^{-1} = a^{-1}b^$

(G, f)
$$f := f$$
 (R, t)

 $a + 6 = b + a$

Notaco:

 $a = a + ... + a$

* De 6 i um gurpo e a e 6, então

para todo $m, n \in \mathbb{Z}$:

i) $a^m a^n = a^{m+n}$

ii) $(a^n)^n = a^{m+n}$

ii) $(a^n)^n = a^{m+n}$

ii) $(a^n)^n = a^n + a$

ii) $(a^n)^n = a^n + a$

iii) $(a^n)^n = a^n + a$

iv) $(a^n)^n = a^n + a$

iv)

Ex: De $a^2 = e$, $\forall a \in G$, ent \overline{a} b e' abeliano. $a = a^{-1} \quad \forall \forall a, b \in G, ab = ba$ $ab = (ab)^{-1} = b^{-1}a^{-1} = b \cdot a$

Exercicios:

- 1) De Gé exupe, a, b EG e 6ab-1 = ar para algum v EN, ento biab-1 = ar para todo j EN. (Dica: use induçõe)
- 2) Prove es equivalencias que sobraram acima.
- 3) De |G| = 2n, n > 0 e G finite. Ent 50, G contém um elemento $a \neq e$ tal que $a^2 = e$. Di ca: Ou $g^2 = e$, ou $g^2 \neq e$, $\forall g \in G$

