SDML Final - HW2 Extension

B04902016曾奕青、B04902103蔡昀達、B04902105戴培倫

Abstract

- Data Problems
- Analysis
- Models

Data Problems

- 1. Not next day: 170 users
- 2. Incomplete training data: 2280 users

Testing data

Training data

```
2015-01-27,85,247

2015-01-27,85,291

2015-01-27,85,217

2015-01-27,85,19

2015-01-27,85,42

2015-01-27,85,81

2015-01-28,85,97

2015-01-28,85,39

2015-01-28,85,39

2015-01-28,85,1315

2014-09-15,86,382

2014-09-15,86,34
```

```
2015-03-12,82,81
2015-03-12.82.125
2015-01-28,85,39
2015-01-28,85,217
2015-01-28,85,1669
2015-02-01,85,19
2015-02-01,85,42
2015-02-01,85,42
2015-02-01,85,943
2015-02-01,85,1682
2015-02-01,85,228
2015-02-01,85,224
2015-02-01,85,1700
2015-02-01,85,39
2015-02-01,85,1451
2015-02-01,85,39
2015-02-01,85,39
2015-02-01,85,42
2015-02-02,85,228
2015-02-02,85,1682
```

Kaggle answer

85 {1682, 19, 1700, 39, 228, 224, 42, 1451, 943}

The answer is the food eaten on 2015/02/01, which is not the next day of 2015/01/28.

	All users	Next day	Not next day
Baseline	0.36164	0.36551	0.30603
RNN	0.29445	0.29661	0.26352

	Original	Complete
Baseline	0.35121	0.36164
RNN	0.29101	0.29445

plt.scatter(missing_percentage, np.array(baseline_new_score) - np.array(baseline_old_score))

<matplotlib.collections.PathCollection at 0x7fa2798ae4e0>

plt.scatter(missing_percentage, np.array(rnn_new_score) - np.array(rnn_old_score))

<matplotlib.collections.PathCollection at 0x7fa278557518>

plt.scatter(baseline_new_score, rnn_new_score)

plt.scatter(baseline_old_score, rnn_old_score)

<matplotlib.collections.PathCollection at 0x7fa27 <matplotlib.collections.PathCollection at 0x7fa2786b79e8>


```
plt.hist(np.array(baseline_new_score) - np.array(| a = plt.hist(np.array(rnn_new_score) - np.array(rnn_old_score)
plt.show()
                                                        plt.show()
                                                         350
 500
                                                         300
 400
                                                         250
 300
                                                         200
                                                         150
 200
                                                         100
100
                                                          50
                                                                                                      0.4
                                                                                  0.0
                                                                                            0.2
                                                             -0.4
                                                                      -0.2
                         0.00
           -0.50 -0.25
                               0.25
                                             0.75
    -0.75
                                      0.50
```

Metrics

	MAP@20	MRR@20	Recall@20	Find_all
Baseline	0.36164	0.79332	0.53795	0.0099
RNN	0.29445	0.76185	0.45176	0.0086

Remove some data

	Original		
RNN	0.294		

Remove some data

	Original	Remove 3	Remove 5	
RNN	0.294	0.291	0.292	

Remove some data

	Original	Remove 3	Remove 5	Remove 5, Keep recent
RNN	0.294	0.291	0.292	0.287

Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations

Food Features

58 columns

整理後→19 class + 10 ingredients

Performance

My performance

→加入feature後穩定下降0.01

Method	Recall@20	MRR@20
Item-kNN	0.6263	0.3740
ID only ID only (200) Feature only Concatenated	0.6831 (+9.07%) 0.6963 (+11.17%) 0.5367 (-14.30%) 0.6766 (+8.03%)	0.3847 (+2.85%) 0.3881 (+3.77%) 0.3065 (-18.05%) 0.3850 (+2.94%)
Parallel (sim) Parallel (alt) Parallel (res) Parallel (int)	0.6765 (+8.01%) 0.6874 (+9.76%) 0.7028 (+12.21%) 0.7040 (+12.41%)	0.4014 (+7.34%) 0.4331 (+15.81%) 0.4440 (+18.72%) 0.4361 (+16.60%)
Shared-W (sim) Shared-W (alt) Shared-W (res) Shared-W (int)	0.6681 (+6.66%) 0.6804 (+8.63%) 0.6425 (+2.58%) 0.6658 (+6.31%)	0.4007 (+7.13%) 0.4035 (+7.88%) 0.3541 (-5.31%) 0.3715 (-0.66%)
Int. model (sim) Int. model (alt) Int. model (res) Int. model (int)	0.6751 (+7.78%) 0.6847 (+9.32%) 0.6749 (+7.76%) 0.6843 (+9.25%)	0.3998 (+6.90%) 0.4104 (+9.74%) 0.4098 (+9.56%) 0.4040 (+8.02%)

Model Comparison

MAP@k, k in [1, 100]

Model Comparison

- MAP@k, k in [1, 100]
- Ans = foods eaten in next k days

Model Comparison

- MAP@k, k in [1, 100]
- Ans = foods eaten in next k days
- Predict on different day

RNN vs Baseline Model

A: correct foods in RNN

B: correct foods in Baseline Model

RNN vs Baseline Model

A: correct foods in RNN

B: correct foods in Baseline Model

MF+RNN+GAN model

MF+RNN+GAN model

