Contents

PART ONE OVERVIEW

Chapter 1 Introduction

- 1.1 What Operating Systems Do 4
- 1.2 Computer-System Organization 7
- 1.3 Computer-System Architecture 15
- 1.4 Operating-System Operations 21
- 1.5 Resource Management 27
- 1.6 Security and Protection 33
- 1.7 Virtualization 34

- 1.8 Distributed Systems 35
- 1.9 Kernel Data Structures 36
- 1.10 Computing Environments 40
- 1.11 Free and Open-Source OperatingSystems 46Practice Exercises 53Further Reading 54

Chapter 2 Operating-System Structures

- 2.1 Operating-System Services 55
- 2.2 User and Operating-SystemInterface 58
- 2.3 System Calls 62
- 2.4 System Services 74
- 2.5 Linkers and Loaders 75
- 2.6 Why Applications AreOperating-System Specific 77
- 2.7 Operating-System Design and Implementation 79
- 2.8 Operating-System Structure 81
- 2.9 Building and Booting an OperatingSystem 92
- 2.10 Operating-System Debugging 95
- 2.11 Summary 100 Practice Exercises 101 Further Reading 101

PART TWO PROCESS MANAGEMENT

Chapter 3 Processes

- 3.1 Process Concept 106
- 3.2 Process Scheduling 110
- 3.3 Operations on Processes 116
- 3.4 Interprocess Communication 123
- 3.5 IPC in Shared-Memory Systems 125
- 3.6 IPC in Message-Passing Systems 127
- 3.7 Examples of IPC Systems 132
- 3.8 Communication in Client– Server Systems 145
- 3.9 Summary 153
 Practice Exercises 154
 Further Reading 156

Chapter 4 Threads & Concurrency 4.1 Overview 160 4.6 Threading Issues 188 4.2 Multicore Programming 162 4.3 Multithreading Models 166 4.4 Thread Libraries 168 4.5 Implicit Threading 176 Practice Exercises 197 Further Reading 198

Chapter 5 CPU Scheduling

Chapter 5 Cro Scheduling	
5.1 Basic Concepts 200	5.7 Operating-System Examples 234
5.2 Scheduling Criteria 204	5.8 Algorithm Evaluation 244
5.3 Scheduling Algorithms 205	5.9 Summary 250
5.4 Thread Scheduling 217	Practice Exercises 251
5.5 Multi-Processor Scheduling 220	Further Reading 254
5.6 Real-Time CPU Scheduling 227	

PART THREE PROCESS SYNCHRONIZATION

Chapter 6 Synchronization Tools

61	Background 257		67	Monitors	276	
	O .		-			
6.2	The Critical-Section Problem	260	6.8	Liveness 2	283	
6.3	Peterson's Solution 262		6.9	Evaluation	284	
6.4	Hardware Support for		6.10	Summary	286	
	Synchronization 265			Practice Exe	ercises	287
6.5	Mutex Locks 270			Further Rea	ding	288
6.6	Semaphores 272					

Chapter 7 Synchronization Examples

7.1 Classic Problems of	7.5 Alternative Approaches 311
Synchronization 289	7.6 Summary 314
7.2 Synchronization within the Kernel	295 Practice Exercises 314
7.3 POSIX Synchronization 299	Further Reading 315
7.4 Synchronization in Java 303	

Chapter 8 Deadlocks

0 4	0 . 11 010		0 (D 11 1 1 1 1 200
8.1	System Model 318		8.6 Deadlock Avoidance 330
8.2	Deadlock in Multithreaded		8.7 Deadlock Detection 337
	Applications 319		8.8 Recovery from Deadlock 341
8.3	Deadlock Characterization 321		8.9 Summary 343
8.4	Methods for Handling Deadlocks	326	Practice Exercises 344
8.5	Deadlock Prevention 327		Further Reading 346

PART FOUR MEMORY MANAGEMENT

Chapter 9 Main Memory

- 9.1 Background 349
- 9.2 Contiguous Memory Allocation 356
- 9.3 Paging 360
- 9.4 Structure of the Page Table 371
- 9.5 Swapping 376

- 9.6 Example: Intel 32- and 64-bit Architectures 379
- 9.7 Example: ARMv8 Architecture 383
- 9.8 Summary 384
 Practice Exercises 385
 Further Reading 387

Chapter 10 Virtual Memory

- 10.1 Background 389
- 10.2 Demand Paging 392
- 10.3 Copy-on-Write 399
- 10.4 Page Replacement 401
- 10.5 Allocation of Frames 413
- 10.6 Thrashing 419
- 10.7 Memory Compression 425

- 10.8 Allocating Kernel Memory 426
- 10.9 Other Considerations 430
- 10.10 Operating-System Examples 436
- 10.11 Summary 440
 Practice Exercises 441
 Further Reading 444

PART FIVE **STORAGE MANAGEMENT**

Chapter 11 Mass-Storage Structure

- 11.1 Overview of Mass-Storage
- 11.2 HDD Scheduling 457

Structure 449

- 11.3 NVM Scheduling 461
- 11.4 Error Detection and Correction 462
- 11.5 Storage Device Management 463
- 11.6 Swap-Space Management 467
- 11.7 Storage Attachment 469
- 11.8 RAID Structure 473
- 11.9 Summary 485
 - Practice Exercises 486
 - Further Reading 487

Chapter 12 I/O Systems

- 12.1 Overview 489
- 12.2 I/O Hardware 490
- 12.3 Application I/O Interface 500
- 12.4 Kernel I/O Subsystem 508
- 12.5 Transforming I/O Requests to Hardware Operations 516
- 12.6 STREAMS 519
- 12.7 Performance 521
- 12.8 Summary 524
 - Practice Exercises 525
 - Further Reading 526

PART SIX FILE SYSTEM

Chapter 13 File-System Interface

13.1	File Concept 529
13.2	Access Methods 539
13.3	Directory Structure 541

13.4 Protection 550

13.5 Memory-Mapped Files 555

13.6 Summary 560

Practice Exercises 560 Further Reading 561

Chapter 14 File-System Implementation

14.1	File-System Structure	564

14.2 File-System Operations 566

14.3 Directory Implementation 568

14.4 Allocation Methods 570

14.5 Free-Space Management 578

14.6 Efficiency and Performance 582

14.7 Recovery 586

14.8 Example: The WAFL File System 589

14.9 Summary 593 Practice Exercises 594 Further Reading 594

Chapter 15 File-System Internals

15.1 File Systems 597

15.2 File-System Mounting 598

15.3 Partitions and Mounting 601

15.4 File Sharing 602

15.5 Virtual File Systems 603

15.6 Remote File Systems 605

15.7 Consistency Semantics 608

15.8 NFS 610

15.9 Summary 615

Practice Exercises 616

Further Reading 617

PART SEVEN SECURITY AND PROTECTION

Chapter 16 Security

16.1 The Security Problem 621

16.2 Program Threats 625

16.3 System and Network Threats 634

16.4 Cryptography as a Security Tool 637

16.5 User Authentication 648

16.6 Implementing Security Defenses 653

16.7 An Example: Windows 10 662

16.8 Summary 664

Further Reading 665

Chapter 17 Protection

17.1 Goals of Protection 667

17.2 Principles of Protection 668

17.3 Protection Rings 669

17.4 Domain of Protection 671

17.5 Access Matrix 675

17.6 Implementation of the Access Matrix 679

17.7 Revocation of Access Rights 682

17.8 Role-Based Access Control 683

17.9 Mandatory Access Control

(MAC) 684

17.10 Capability-Based Systems 685

17.11 Other Protection Improvement

Methods 687

17.12 Language-Based Protection 690

17.13 Summary 696

Further Reading 697

PART EIGHT ■ ADVANCED TOPICS

Chapter 18 Virtual Machines

- 18.1 Overview 701
- 18.2 History 703
- 18.3 Benefits and Features 704
- 18.4 Building Blocks 707
- 18.5 Types of VMs and Their Implementations 713
- 18.6 Virtualization and Operating-System Components 719
- 18.7 Examples 726
- 18.8 Virtualization Research 728
- 18.9 Summary 729 Further Reading 730

Chapter 19 Networks and Distributed Systems

- 19.1 Advantages of Distributed Systems 733
- 19.2 Network Structure 735
- 19.3 Communication Structure 738
- 19.4 Network and Distributed Operating Systems 749
- 19.5 Design Issues in DistributedSystems 753

- 19.6 Distributed File Systems 757
- 19.7 DFS Naming and Transparency 761
- 19.8 Remote File Access 764
- 19.9 Final Thoughts on Distributed File Systems 767
- 19.10 Summary 768
 Practice Exercises 769
 Further Reading 770

PART NINE **CASE STUDIES**

Chapter 20 The Linux System

- 20.1 Linux History 775
- 20.2 Design Principles 780
- 20.3 Kernel Modules 783
- 20.4 Process Management 786
- 20.5 Scheduling 790
- 20.6 Memory Management 795
- 20.7 File Systems 803

- 20.8 Input and Output 810
- 20.9 Interprocess Communication 812
- 20.10 Network Structure 813
- 20.11 Security 816
- 20.12 Summary 818
 - Practice Exercises 819
 - Further Reading 819

Chapter 21 Windows 10

- 21.1 History 821
- 21.2 Design Principles 826
- 21.3 System Components 838
- 21.4 Terminal Services and Fast User Switching 874
- 21.5 File System 875
- 21.6 Networking 880
- 21.7 Programmer Interface 884
- 21.8 Summary 895
 - Practice Exercises 896
 - Further Reading 897

PART TEN **APPENDICES**

Chapter A Influentia Operating Systems

A.1 Feature Migration 1
A.2 Early Systems 2
A.3 Atlas 9
A.4 XDS-940 10
A.5 THE 11
A.6 RC 4000 11

A.7 CTSS 12 A.8 MULTICS 13

A.9 IBM OS/360 13

A.10 TOPS-20 15

A.11 CP/M and MS/DOS 15

A.12 Macintosh Operating System and

Windows 16

A.13 Mach 16

A.14 Capability-based Systems—Hydra and

CAP 18

A.15 Other Systems 20 Further Reading 21

Chapter B Windows 7

B.1 History 1

B.2 Design Principles 3

B.3 System Components 10

B.4 Terminal Services and Fast User Switching 34

B.5 File System 35

B.6 Networking 41

B.7 Programmer Interface 46

B.8 Summary 55

Practice Exercises 55 Further Reading 56

Chapter C BSD UNIX

C.1 UNIX History 1

C.2 Design Principles 6

C.3 Programmer Interface 8

C.4 User Interface 15

C.5 Process Management 18

C.6 Memory Management 22

C.7 File System 25

C.8 I/O System 33

C.9 Interprocess Communication 36

C.10 Summary 41

Further Reading 42

Chapter D The Mach System

D.1 History of the Mach System 1

D.2 Design Principles 3

D.3 System Components 4

D.4 Process Management 7

D.5 Interprocess Communication 13

D.6 Memory Management 18

D.7 Programmer Interface 23

D.8 Summary 24

Further Reading 25

Credits 963

Index 965