UNIVERSIDADE FEDERAL DA PARAÍBA - UFPB CENTRO DE INFORMÁTICA - CI DEPARTAMENTO DE COMPUTAÇÃO CIENTÍFICA - DCC DISCIPLINA: Métodos Matemáticos I

Aluno(a):

Lista de Exercícios - Transformações Lineares e Matrizes.

- 01. Data a transformação \mathbf{T} , verifique se a mesma é linear. Se for, determine a matriz \mathbf{A} de \mathbf{T} em relação as bases canônicas dos respectivos espaços. Em seguida determine a matriz transposta \mathbf{A}^t e a **expressão** da transformação linear \mathbf{T}^* adjunta de \mathbf{T} . Por fim, determine os subespaços nulos das matrizes \mathbf{A} e \mathbf{A}^t , ou seja, determine o conjunto dos vetores X tais que $\mathbf{A}X = \mathbf{0}$ e o conjunto de vetores Y tais que $A^tY = \mathbf{0}$. Há alguma relação entre estes dois conjuntos (subespaços)?
 - (a) $\mathbf{T}: \mathbb{R}^3 \to \mathbb{R}^2$ tal que $\mathbf{T}(x, y, z) = (x + y, y + z)$
 - (b) $\mathbf{T}: \mathbb{R}^2 \to \mathbb{R}^3$ tal que $\mathbf{T}(x,y) = (x-y, x+y, \frac{1}{2}(x+y))$
 - (c) $\mathbf{T}: \mathbb{M}_{2\times 2} \to \mathbb{R}$ tal que $\mathbf{T}(M) = m_{11} + m_{22} = \mathbf{Traço}(M)$ em que M tem entradas m_{11}, m_{12}, m_{21} e m_{22} .
 - (d) $\mathbf{T}: \mathbb{M}_{2\times 2} \to \mathbb{R}$ tal que $\mathbf{T}(M) = m_{11} m_{22}$ em que M tem entradas m_{11}, m_{12}, m_{21} e m_{22} .
 - (e) $\mathbf{T}: \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$ tal que $\mathbf{T}(a_0 + a_1 x + a_2 x^2) = a_1 + a_2 x + a_0 x^2$
 - (f) $\mathbf{T}: \mathbb{M}_{2\times 2} \to \mathbb{M}_{2\times 2}$ tal que $\mathbf{T}(M) = M M^t$, em que M tem entradas m_{11}, m_{12}, m_{21} e m_{22} .
 - (g) $\mathbf{T}: \mathbb{M}_{2\times 2} \to \mathbb{M}_{2\times 2}$ tal que $\mathbf{T}(M) = M + M^t$, em que M tem entradas m_{11}, m_{12}, m_{21} e m_{22} .

Referências.

- [1] J. L. Boldrini, S. R. Costa, V. L. Figueiredo, H. G. Wetzler; Álgebra Linear, 3a edição, editora HARBRA, 1986.
- [2] E. L. Lima; Álgebra Linear, Coleção Matemática Universitária, 6a edição, 2003.
- [3] S. Lipschutz, M. Lipson; Álgebra Linear, tradução da 4a edição norte americana "Schaum's outline of theory and problems of linear algebra", Bookman, 2011.
- [4] G. Strang; Algebra Linear e suas aplicações, tradução da 4a edição norteamericana "Linear algebra and its application", Cengage Learning, 2014.