Assignment 1 - Unit 3

Introduction to Mathematical Thinking-2, 13 April 2020

1. Check that the following sets form a group. Mention the binary operation that has been used.

```
a. 2\mathbb{Z} = \{m|m = 2n, n \in \mathbb{Z}\}
b. 3\mathbb{Z} = \{m|m = 3n, n \in \mathbb{Z}\}
c. S = \{a + b\sqrt{2}|a, b \in \mathbb{Z}\}
d. S = \{a + b\sqrt{2}|a, b \in \mathbb{Q}\} = \mathbb{Q}(\sqrt{2})
e. S = \{a + b\sqrt{2}|a, b \in \mathbb{R}\}
f. S = \{a + ib|a, b \in \mathbb{Z}\}
```

- 2. Show that in $\mathbb{Q}(\sqrt{2})$, every non zero element has multiplicative inverse.
- 3. Let $S_n = \{z | z^n = 1, z \in \mathbb{C}\}$. Show that S is a group under multiplication. Show that the union of all S_n is also a group.
- 4. Show that $\forall a, b \in G$, $(ab)^{-1} = b^{-1}.a^{-1}$, where G is a group.
- 5. Recall the definition of \mathbb{Z}_m is the collection of congruence classes mod m. There are two possible group operations, addition and multiplication.
 - a. Check that this forms a group under addition. What is the identity element here?
 - b. When does \mathbb{Z}_m form a group?. Hint- Check for m prime and m composite. Write down the table for small m to see what is going on.
- 6. Is \mathbb{Z}_{20} a group under multiplication? Look at subset $\{\bar{1}, \bar{3}, \bar{7}, \bar{9}\}$. Is it a group? Check the following subsets. $\{\bar{1}\bar{9}, \bar{1}3, \bar{1}7\}$. $\{\bar{1}.\bar{3}, \bar{7}, \bar{9}, \bar{1}1, \bar{1}3, \bar{1}7, \bar{1}9\}$. Now study the set \mathbb{Z}_{14} . Is it a group under multiplication?. What about its subset $\{\bar{1}, \bar{3}, \bar{5}\}$, $\{\bar{1}, \bar{3}, \bar{5}, \bar{7}\}$, $\{\bar{1}, \bar{7}, \bar{1}3\}$
- 7. Let G be a group. We define order of a, 0(a) as the smallest n such that if $a^n = e$, where e is the identity of the group. Show that the order of any element a and its inverse are the same. Also show that ab and ba have the same order.
- 8. Let G be a group. Let o(a)=m, o(b)=n and ab=ba. Show that o(ab)=mn.

- 9. If o(a)=18. That is 18 is the smallest natural number such that $a^{18} = e$. What is the order of the following elements: a^2 , a^3 , a^4 ...? What is the pattern here?
- 10. Show that $a^k = e$ if and only if $(bab^{-1})^k = e$.
- 11. G is said to be an abelian group if all the elements commute with each other, that is ab=ba for all elements a, b in G. The set of integers, rational, reals are all abelian under addition. Let G be a finite abelian group $\{g_1,g_n\}$. Show that the product of these elements $g = g_1.g_2....g_n$ has order 2.
- 12. Let G be a group. Show the following. a. The identity element is unique. b.Every element has a unique inverse. c. $\left(a^{-1}\right)^{-1}=a$.
- 13. Make a Cayley table to show the group structure of a set with three elements, $\{e, a, b\}$. Also make the Cayley table for the group \mathbb{Z}_3 , under addition. Are the two table same or different. If they are same, in what sense?
- 14. Make Cayley table and show that there are two different groups of order 4. What is the method you used to distinguish these two groups?
- 15. Let G be a group. If a, b are in G, then there exists a unique element in the group say x, such that a.x = b. Similarly there exists a unique y such y.a = b.
- 16. Let G be a group and for all a, b in G we have $(ab)^2 = a^2 \cdot b^2$. Then show that G is abelian. Also show that if G is abelian, then $(ab)^n = a^n \cdot b^n$.