EAMB7004-CAMADAS-LIMITE NATURAIS E TRANSPORTE DE POLUENTES (45 h, 3 Créditos) (3º Trimestre de 2021)

Prof. Nelson Luís Dias

HORÁRIO: 3^{as} e 5^{as}, 07:30-09:10

LOCAL: PF-16

EMENTA: Ementa: Revisão das equações de Navier-Stokes e das equações de transporte para temperatura e para um escalar passivo ou ativo; simplificações e soluções analíticas de problemas laminares, incluindo escoamento sob pressão em tubos, e escoamento com superfície livre em canal unidimensional. As equações de camada-limite de Blasius: soluções numéricas para escoamentos laminares. Turbulência: o conceito estatístico de escala turbulenta; escala integral; micro-escalas de Kolmogorov; micro-escala de Taylor; as equações de Reynolds de ordem 1 e 2; modelos de fechamento. Camadas-limite turbulentas: transferência convectiva de momentum, calor e massa. Transferência de calor por radiação. Escoamentos turbulentos em tubos: obtenção semi-analítica das equações de perda de carga (Diagrama de Moody). Escoamentos em canais: obtenção semi-analítica da equações de perda de carga (Manning). A Camada-Limite Atmosférica e a Camada-Limite Oceânica: efeitos de flutuabilidade, número de Richardson e comprimento de estabilidade de Obukhov.

CRITÉRIO PARA NOTA: Conceito final baseado em 3 provas, aproximadamente mensais.

BIBLIOGRAFIA: N. L. Dias, "Mecânica da Turbulência", notas de aula (nldias.github.io), 2021; G. K. Batchelor, "Introduction to Fluid Dynamics", Cambridge University Press, Cambridge, 1967; H. Schlichting, K. Gersten, "Boundary Layer Theory", Springer, 2000; Kundu, "Fluid Mechanics", Academic Press, San Diego, 1990.

H. Tenekees, J. L. Lumley "A First Course in Turbulence", MIT Press, Cambridge, 1975;

A. A. Townsend, "The structure of turbulent shear flow", Cambridge University Press, Cambridge, 1976:

P. A. Davidson, "Turbulence – An Introduction for Scientists and Engineers", Oxford University Press, Oxford, 2004.

Bird, Lightfoot e Stewart. "Transport Phenomena", Wiley, 2007.

PROGRAMAÇÃO TENTATIVA

Aula	GRAMAÇAO TE Data	Conteúdo	Progresso
1	14/09/21	I. Introdução: variáveis aleatórias, valores esperados, processos estocásticos, decomposição de Reynolds.	
2	16/09/21	2. Equações diferenciais de transporte: notação indicial, continuidade, misturas	
3	21/09/21	2. Equações diferenciais de transporte: quantidade de movimento, vorticidade.	
4	23/09/21	2. Equações diferenciais de transporte: vorticidade.	
5	28/09/21	2. Equações diferenciais de transporte: energia e dissipação viscosa.	
6	30/09/21	3. Macro e micro escalas da turbulência: definições formais.	
7	05/10/21	3. Macro e micro escalas da turbulência: A cascata de energia, gradientes microscópicos. P1	
7	07/10/21	4. Equações para o escoamento médio e a aproximação de Boussinesq: o estado hidrostático de referência, estado de referência na atmosfera, flutuações de densidade	
	12/10/21	Feriado: N. S. de Aparecida	
8	14/10/21	4. Equações para o escoamento médio e a aproximação de Boussinesq: conservação de massa e de quantidade de movimento.	
9	19/10/21	4. Equações para o escoamento médio e a aproximação de Boussinesq: correlação pressãotemperatura, e ordens de grandeza para a equação da temperatura.	
10	21/10/21	5. As equações de ordem 2: a dedução das equações de ordem 2.	
11	26/10/21	5. As equações de ordem 2: a equação para a energia cinética da turbulência.	
12	28/10/21	5. As equações de ordem 2: As ordens de grandeza de todos os termos.	
	02/11/21	Feriado: Finados	
13	04/11/21	5. Modelos de fechamento para as equações de ordem 2. P2	
14	09/11/21	6. Soluções laminares das equações de Navier-Stokes: soluções clássicas	
15	11/11/21	6. Soluções laminares das equações de Navier-Stokes: solução de Blasius.	
16	16/11/21	7. Camadas-limite turbulentas: escoamento em dutos.	
17	18/11/21	7. Camadas-limite turbulentas: escoamento em dutos (parede rugosa)	
18	23/11/21	7. Camadas-limite turbulentas: escoamento em dutos (regime de transição)	
19	25/11/21	7. Camadas-limite turbulentas: a fórmula de Manning.	
20	30/11/21	7. Camadas-limite turbulentas: a fórmula de Manning.	
21	02/12/21	8. Espectros: definição e a Teoria de Kolmogorov	
22	07/12/21	8. Espectros: A cascata de energia revisitada	
23	09/12/21	8. Espectros: As relações de isotropia.	