What is Relational Algebra

Table \equiv Set of tuples

Why do we use Relational Algebra?

The operation we will see:

Basic operators

- 1. Select σ
- 2. Projection Π
- 3. Product \times
- 4. Set operations (Union, difference)
- 5. Rename ρ

Additional operators

- 1. Natural Join ⋈
- 2. Theta Join \bowtie_{θ}

First operator: Select $\sigma_{Condition} Table$

University			
Name	City	capacity	

First operator: Select $\sigma_{Condition} Table$

Applied to one table to give rows (tubles)

- 1. Find the movies tuples before 1980
- 2. Find rating tuples with 5 stars

Second operator: Projection $\Pi_{A_1...A_k}$ Table

Second operator: Projection $\Pi_{A_1...A_k}$ Table

Applied to one table to give columns (tubles)

- 1. Find the movies names before 1980
- 2. Find movies IDs with 5 stars with the date of rating

3rd operator: Product ×

$R_1 imes R_2$					
A_1	A_2	A_3	B_1	B_2	B_3

3rd operator: Product $Table_1 \times Table_2$

Applied to one table to give columns (tubles)

- 1. Find all years that have a movie that received a rating of 4 or 5
- 2. Find the titles of all movies not reviewed by Chris Jackson.

4rd operator: Union ∪

Condition: $\#columnsR_1 = \#columnsR_2$

	R_1			R_2	
A_1	A_2	A_3	B_1	B_2	B_3

4th operator: Union $Table_1 \cup Table_2$

- 1. Find the list of directors union reviewers.
- 2. Find the list of rIDs union mIDs

5th operator: Difference —

Condition: $\#columnsR_1 = \#columnsR_2$

	R_1	
A_1	A_2	A_3

5th operator: Difference $Table_1 - Table_2$

1. Find the list movies not rated by Sarah Martinez

Intersection ?? $Table_1 \cap Table_2$

Natural join ⋈

1. A list shou that, for each rating, the name of reviewers with the names of the movie and the number of stars.

Theta join \bowtie_{θ}

1. List of rIDs and mIDs that have at least two different ratings

The operation we will see:

Basic operators

- 1. Select σ
- 2. Projection Π
- 3. Product \times
- 4. Set operations (Union, difference)
- 5. Rename ρ

Additional operators

- 1. Natural Join ⋈
- 2. Theta Join \bowtie_{θ}

Exercise:

Α	В	C
1	2	5
33	4	1
3	1	0
1	10	12

D	В
12	15
О	1
4	1
11	10

Find:

- 1. $R_1 \bowtie R_2$
- 2. $R_1 \bowtie_{R_1.C=R_2.D} R_2$

Designing Database

UML Data Modeling

How to represent data for application

- 1. Relational model (tables)
- 2. XML
- 3. Graphes
 - (a) Entity-Relationship Model (E/R)
 - (b) Unified Modeling Language (UML)

Both can be translated to relations automatically (or semi-automatically)

Unified Modeling Language (UML)

- 1. Classes
- 2. Associations
- 3. Association Classes
- 4. Subclasses
- 5. Composition & Aggregation

Classes

Name, attributes, methods For data modeling: add primary key, delete methods

Unified Modeling Language (UML)

- 1. Classes
- 2. Associations
- 3. Association Classes
- 4. Subclasses
- 5. Composition & Aggregation

Associations

Relationships between objects of two classes

Multiplicity of Associations

Each object of class C_1 is related to at least m and at most n objects of class C_2

```
special m \dots * 0 \dots * 1 \dots 1 (default)
```

Unified Modeling Language (UML)

- 1. Classes
- 2. Associations
- 3. Association Classes
- 4. Subclasses
- 5. Composition & Aggregation

UML Data Modeling: Association Classes

Relationships between objects of two classes, with attributes on relationships