The above discussion suggests that it might be useful to know when an alternating tensor is simple (decomposable). We will show in Section 34.7 that for tensors $\alpha \in \bigwedge^2(V)$, $\alpha \wedge \alpha = 0$ iff α is simple.

A general criterion for decomposability can be given in terms of some operations known as *left hook* and *right hook* (also called *interior products*); see Section 34.7.

It is easy to see that $\bigwedge(V)$ satisfies the following universal mapping property.

Proposition 34.13. Given any K-algebra A, for any linear map $f: V \to A$, if $(f(v))^2 = 0$ for all $v \in V$, then there is a unique K-algebra homomorphism $\overline{f}: \bigwedge(V) \to A$ so that

$$f = \overline{f} \circ i$$
,

as in the diagram below.

$$V \xrightarrow{i} \bigwedge(V)$$

$$\downarrow_{\overline{f}}$$

$$A$$

When E is finite-dimensional, recall the isomorphism $\mu \colon \bigwedge^n(E^*) \longrightarrow \operatorname{Alt}^n(E;K)$, defined as the linear extension of the map given by

$$\mu(v_1^* \wedge \cdots \wedge v_n^*)(u_1, \ldots, u_n) = \det(v_j^*(u_i)).$$

Now, we have also a multiplication operation $\bigwedge^m(E^*) \times \bigwedge^n(E^*) \longrightarrow \bigwedge^{m+n}(E^*)$. The following question then arises:

Can we define a multiplication $\mathrm{Alt}^m(E;K) \times \mathrm{Alt}^n(E;K) \longrightarrow \mathrm{Alt}^{m+n}(E;K)$ directly on alternating multilinear forms, so that the following diagram commutes?

$$\bigwedge^{m}(E^{*}) \times \bigwedge^{n}(E^{*}) \xrightarrow{\wedge} \bigwedge^{m+n}(E^{*})$$

$$\downarrow^{\mu_{m} \times \mu_{n}} \qquad \downarrow^{\mu_{m+n}}$$

$$\operatorname{Alt}^{m}(E; K) \times \operatorname{Alt}^{n}(E; K) \xrightarrow{\wedge} \operatorname{Alt}^{m+n}(E; K)$$

As in the symmetric case, the answer is yes! The solution is to define this multiplication such that, for $f \in Alt^m(E; K)$ and $g \in Alt^n(E; K)$,

$$(f \wedge g)(u_1, \dots, u_{m+n}) = \sum_{\sigma \in \text{shuffle}(m,n)} \operatorname{sgn}(\sigma) f(u_{\sigma(1)}, \dots, u_{\sigma(m)}) g(u_{\sigma(m+1)}, \dots, u_{\sigma(m+n)}), \quad (**)$$

where shuffle(m, n) consists of all (m, n)-"shuffles;" that is, permutations σ of $\{1, \ldots m + n\}$ such that $\sigma(1) < \cdots < \sigma(m)$ and $\sigma(m+1) < \cdots < \sigma(m+n)$. For example, when m = n = 1, we have

$$(f \wedge g)(u, v) = f(u)g(v) - g(u)f(v).$$