CS 320: Formal Semantics

Marco Gaboardi CDS 1019 gaboardi@bu.edu

Operational Semantics

- It is usually provided at a level of abstraction that is independent from the machine.
- The detailed characteristics of the particular computer would make actions difficult to describe/understand.
- Different formalism has been developed to describe the operational semantics in a machine-independent way.

We will look into formal rules and derivations.

Language for the Interpreter (simplified)

The language for the interpreter can be described by the following grammar:

```
<const> ::= int | name

com> ::= quit | <com> ; <com> ::= push <const> | pop | add | sub | mul | div
```

- A program is a sequence of commands followed by quit.
- A command is one the keywords above in the case of push this is followed by a constant.
- A (simplified) constant is either an int or a string.
- We will denote arbitrary programs with p,p',...

Operational semantics for the interpreter

$$(p/S) \rightarrow (p'/S')$$

Here (p/S) is a configuration where p is a program and S is a stack. We call these pairs configurations because we think in terms of an "abstract machine".

We can think about the stack as a list of values (denoted with ∇):

$$v_n$$
::...: v_2 :: v_1 ::[]

We say that from the configuration (p/S) we can step (or reduce) to the configuration (p'/S') in one step.

Summary of some rules:

Let's give to each rule a name.

```
(A) (push num;p/S) \rightarrow (p/num::S)

(B) (add;p/int(v<sub>2</sub>)::int(v<sub>1</sub>)::S) \rightarrow (p/int(v<sub>2</sub>+v<sub>1</sub>)::S)

(C) (add;p/v<sub>1</sub>::[]) \rightarrow Error

(D) (add;p\[]) \rightarrow Error

(E) (add;p/name(v)::S) \rightarrow Error

(F) (add;p/int(v<sub>1</sub>)::name(v<sub>2</sub>)::S) \rightarrow Error
```

Important: the rules do not have an order. We need to design them so that it is clear which one we can apply at each step.

Multiple steps of Operational semantics

We can be more precise and define a multistep semantics as:

$$(p,S) \rightarrow^k (p',S')$$

We say that from the configuration (p, S) we can step (or reduce) to the configuration (p',S') in k steps.

$$(p/S) \rightarrow 0 (p/S)$$

$$(p/S) \rightarrow (p'/S') \quad (p'/S') \rightarrow k \quad (p''/S'')$$

$$(p/S) \rightarrow k+1 \quad (p''/S'')$$

```
(add/int(4)::int(5)::S) \rightarrow (/int(4+5)::S) \quad (/int(4+5)::S) \rightarrow 0 \quad (/int(4+5)::S)
(push 4;add/int(5)::S) \rightarrow (add/int(4)::int(5)::S) \quad (add/int(4)::int(5)::S) \rightarrow 1 (/int(4+5)::S)
(push 5;push 4;add/S) \rightarrow (push 4;add/int(5)::S) \quad (push 4;add/int(5)::S) \rightarrow 2 (/int(4+5)::S)
```

```
(push 5; push 4; add/S) \rightarrow3 (/int(9)::S)
```

```
(push 5; push 4; add/S) \rightarrow (push 4; add/int(5)::S)
```

```
(push 5; push 4; add/S) \rightarrow (push 4; add/int(5)::S) \qquad (push 4; add/int(5)::S) \rightarrow 2(/int(4+5)::S)
```

```
(push 4; add/int(5)::S) \rightarrow (add/int(4)::int(5)::S)
(push 5; push 4; add/S) \rightarrow (push 4; add/int(5)::S) \qquad (push 4; add/int(5)::S) \rightarrow 2(/int(4+5)::S)
```

```
(push 4; add/int(5)::S) \rightarrow (add/int(4)::int(5)::S) \qquad (add/int(4)::int(5)::S) \rightarrow 1 (/int(4+5)::S)
(push 5; push 4; add/S) \rightarrow (push 4; add/int(5)::S) \qquad (push 4; add/int(5)::S) \rightarrow 2 (/int(4+5)::S)
```

```
(add/int(4)::int(5)::S) \rightarrow (/int(4+5)::S)
(push 4;add/int(5)::S) \rightarrow (add/int(4)::int(5)::S) \qquad (add/int(4)::int(5)::S) \rightarrow 1 (/int(4+5)::S)
(push 5;push 4;add/S) \rightarrow (push 4;add/int(5)::S) \qquad (push 4;add/int(5)::S) \rightarrow 2 (/int(4+5)::S)
```

```
(add/int(4)::int(5)::S) \rightarrow (/int(4+5)::S) \quad (/int(4+5)::S) \rightarrow 0 \quad (/int(4+5)::S)
(push 4;add/int(5)::S) \rightarrow (add/int(4)::int(5)::S) \quad (add/int(4)::int(5)::S) \rightarrow 1 (/int(4+5)::S)
(push 5;push 4;add/S) \rightarrow (push 4;add/int(5)::S) \quad (push 4;add/int(5)::S) \rightarrow 2 (/int(4+5)::S)
(push 5;push 4;add/S) \rightarrow 3 \quad (/int(9)::S)
```

Language for the Interpreter (simplified)

The language for the interpreter can be described by the following grammar:

```
<const> ::= int | name

const> ::= <com> | <com>;  add | sub | mul | div
```

What is the form of a program?

```
<com>; <com>; ...; <com>
```

Is this the common way we write programs?

Arithmetical expressions: shape of expressions

Let us consider this simple language for expressions

```
<expr> ::= <expr> <addop> <expr> | nat
<addop>::= add | sub
```

What are the challenges here?

What is the form of a program?

nat(add|sub)nat(add|sub)nat...

Do we need a stack here?

Operational semantics for basic arithmetical expressions

$$e \rightarrow e'$$

Here the expression e is itself a configuration. We already have all the information we need to execute it.

Some rules

$$v_1$$
 add $v_2 \rightarrow v_1 + v_2$

$$v_1$$
 sub $v_2 \rightarrow v_1 - v_2$

What can we do when we have expressions instead of a values v_1 v_2 ?

Contextual rules

$$e_1 \rightarrow e_1'$$
 $e_1 \text{ add } e_2 \rightarrow e_1' \text{ add } e_2$

We can use the fact that e_1 is recursive and hypothetical reasoning.

Contextual rules

$$e_2 \rightarrow e_2'$$
 $v_1 \text{ add } e_2 \rightarrow v_1^2 \text{ add } e_2'$

We can use the fact that e₂ is recursive and hypothetical reasoning.

Summing up

```
v_1 add v_2 \rightarrow v_1 + v_2
v_1 sub v_2 \rightarrow v_1 - v_2
e_1 \rightarrow e_1'
e_1 add e_2 \rightarrow e_1' add e_2
e_2 \rightarrow e_2'
v_1 add e_2 \rightarrow v_1 add e_2'
e_1 \rightarrow e_1'
e_1 sub e_2 \rightarrow e_1' sub e_2
e_2 \rightarrow e_2'
v_1 sub e_2 \rightarrow v_1 sub e_2'
```

Are we done?

Multiple steps of Operational semantics

We can define a multistep semantics as:

$$e \rightarrow^k e'$$

$$e \rightarrow 0 e$$

$$\frac{e \rightarrow e' \qquad e' \rightarrow k \ e''}{e \rightarrow k+1 \ e''}$$

Summing up

$$v_1$$
 add $v_2 \rightarrow v_1 + v_2$
 v_1 sub $v_2 \rightarrow v_1 - v_2$
 $e_1 \rightarrow e_1'$
 e_1 add $e_2 \rightarrow e_1'$ add e_2
 $e_2 \rightarrow e_2'$
 v_1 add $e_2 \rightarrow v_1$ add e_2'
 $e_1 \rightarrow e_1'$
 e_1 sub $e_2 \rightarrow e_1'$ sub e_2
 $e_2 \rightarrow e_2'$
 v_1 sub $v_2 \rightarrow v_1$ sub $v_2 \rightarrow v_1$

$$e \rightarrow 0 e$$
 (s0)

$$\frac{e \rightarrow e' \qquad e' \rightarrow k \ e''}{e \rightarrow k+1 \ e''} (s1)$$

$$\begin{array}{c}
\hline
2 \text{ add } 3 \rightarrow 5 \\
\hline
2 \text{ add } 3 \text{ add } 4 \rightarrow 5 \text{ add } 4
\end{array}$$

$$\begin{array}{c}
\text{(+e1)} \\
\text{2 add } 3 \text{ add } 4 \rightarrow 5 \text{ add } 4
\end{array}$$

$$\begin{array}{c}
\text{5 add } 4 \rightarrow 1 \quad 9 \\
\text{(s1)}
\end{array}$$

Is this the only derivation?

Another example:

Can we decrease the number of rules in our semantics?

Semantics 1

$$v_1$$
 add $v_2 \rightarrow v_1 + v_2$
 v_1 sub $v_2 \rightarrow v_1 - v_2$
 $e_2 \rightarrow e_2'$
 v_1 add $e_2 \rightarrow v_1$ add e_2'
 v_1 sub $v_2 \rightarrow v_1$ sub $v_2 \rightarrow v_2$
 v_1 add $v_2 \rightarrow v_2$
 $v_2 \rightarrow v_2 \rightarrow v_2$
 $v_1 \rightarrow v_2 \rightarrow v_2 \rightarrow v_2$

$$e \rightarrow 0 e$$
 (s0)

$$\frac{e \rightarrow e' \qquad e' \rightarrow k \ e''}{e \rightarrow k+1 \ e''} (s1)$$

Semantics 2

$$v_{1} \text{ add } v_{2} \rightarrow v_{1}+v_{2}$$

$$v_{1} \text{ sub } v_{2} \rightarrow v_{1}-v_{2}$$

$$e_{1} \rightarrow e_{1}'$$

$$e_{1} \text{ add } e_{2} \rightarrow e_{1}' \text{ add } e_{2}$$

$$e_{1} \rightarrow e_{1}'$$

$$e_{1} \text{ sub } e_{2} \rightarrow e_{1}' \text{ sub } e_{2}$$

$$(+e)$$

$$e \rightarrow e' \qquad e' \rightarrow k \ e''$$

$$e \rightarrow k+1 \ e''$$

Grammar vs operational semantics

 We can use the shape of programs to choose the "right" semantics:

```
<expr> ::= nat <addop> <expr> | nat
<addop>::= add | sub
```

Boolean expressions

Let us consider this simple language for Boolean expressions

```
<bexpr> ::= <const> <bop> <bexpr> | <const>
  <bop>::= and | or | eq
  <const>::= bool | int
```

What are the challenges here?

Operational semantics for basic boolean expressions

 $e \rightarrow ?$

Here the expression e is itself a configuration. We already have all the information we need to execute it.

What can? be?

Operational semantics for basic boolean expressions

$$e \rightarrow ?$$

Here the expression e is itself a configuration. We already have all the information we need to execute it.

What can? be?

$$e \rightarrow e'$$
 $e \rightarrow err$

Rules

 v_1 v_2 different type v_1 eq $v_2 \rightarrow err$ v_1 v_2 same type $v_1 eq v_2 \rightarrow v_1 = v_2$ v_1 v_2 bool v_1 and $v_2 \rightarrow v_1 / \ v_2$ $v_1 v_2$ bool v_1 or $v_2 \rightarrow v_1 \setminus / v_2$ $e_1 \rightarrow e_1' \qquad e_1' \neq Err$ e_1 bop $e_2 \rightarrow e_1'$ bop e_2 $e_2 \rightarrow e_2' \qquad e_2' \neq Err$ v_1 bop $e_2 \rightarrow v_1$ bop e_2'

c here is a configuration, either an expression e or err

$$c \rightarrow 0 c$$

$$c \rightarrow c' \qquad c' \rightarrow k c''$$

$$c \rightarrow k+1 c''$$

$$v_1 \quad v_2 \quad \text{not bool}$$

$$v_1 \quad \text{and} \quad v_2 \rightarrow \text{err}$$

$$v_1 \quad v_2 \quad \text{not bool}$$

$$v_1 \quad \text{or} \quad v_2 \rightarrow \text{err}$$

$$e_1 \rightarrow \text{err}$$

$$e_1 \rightarrow \text{err}$$

$$e_2 \rightarrow \text{err}$$

$$v_1 \quad \text{bop} \quad e_2 \rightarrow \text{err}$$

$$v_1 \quad \text{bop} \quad e_2 \rightarrow \text{err}$$

What can we do to have a more efficient semantics for boolean expressions?

What can we do to have a more efficient semantics for boolean expressions?

What if we know that one of the elements of an or is true or one of the elements of an and is false?

More efficient rules

$$e_2 \rightarrow e_2'$$
 $v_1 \text{ bop } e_2 \rightarrow v_1 \text{ bop } e_2'$

We could change this rule:

true or
$$e_2 \rightarrow true$$

$$e_2 \rightarrow e_2'$$
false or $e_2 \rightarrow false$ or e_2'

Are the two semantics equivalent?

What if we want to check the second branch first?