				DVR	
	Simple DVR				Drop
Lambda	Average Hopcount	Drop Rate	Lambda	Average Hopcount	Rate
0.01	1.63	0	0.01	1.49	0
0.05	1.67	0	0.05	2.356322	13
0.1	1.4375	52	0.1	2.126984	37
0.25	1.393939	67	0.25	1.045455	34
0.5	1.074074	73	0.5	1.029412	66
0.8	1	92	0.8	0.933333	85

D1 /D

Here is our comparison chart for network layer assignment.

As we can see simple DVR has more drop rate then DVR algorithm. Because when a router goes down simple DVR goes to count to infinity problem and it takes more time to update to the whole network topology. In that time we lose more packet than in DVR.

Another thing to notice is change of drop rate as lambda increases. When lambda increases there is more router state change. As a result, more router goes offline and consequently more packet gets dropped.

Submitted by: Akib Jawad Nafis 1405112,(B2)