모형의 성능 평가방법

- 1. 회귀문제 인 경우 MAE, MAPE, MSE, RMSE 등등. 계산 가능
- 2. 분류문제 인 경우 Precision, Recall 등등
- 3. ROC, AUC 등등

Ex) 나이에 따른 아기의 몸무게 예측

Age	Predicted Weight(\hat{y})	Actual Weight(y)
1	6.0	5.6
2	6.4	6.9
3	10.9	10.4
4	12.4	13.7
5	15.6	17.4
6	21.5	20.7
7	23.0	23.5

성능평가: 눈으로 보는 것 이외에도 적절한 기준(지표)이 필요 -> 간차($\hat{y} - y$) 활용

Age	Predicted Weight(\hat{y})	Actual Weight(y)
1	6.0	5.6
2	6.4	6.9
3	10.9	10.4
4	12.4	13.7
5	15.6	17.4
6	21.5	20.7
7	23.0	23.5

성능평가: 눈으로 보는 것 이외에도 적절한 기준(지표)이 필요 -> 간차($\hat{y} - y$) 활용

Age	Predicted Weight(\hat{y})	Actual Weight(y)	Residual $(\widehat{y}-y)$
1	6.0	5.6	0.4
2	6.4	6.9	-0.5
3	10.9	10.4	0.5
4	12.4	13.7	-1.3
5	15.6	17.4	-1.8
6	21.5	20.7	0.8
7	23.0	23.5	-0.5

성능지표 1: 평균오차(Average error)

실제 값에 비해 과대/과소 추정 여부를 판단 부호로 인해 잘못된 결론을 내릴 위험이 있음

Average error

$$= \frac{1}{n} \sum_{i=1}^{n} (\widehat{\boldsymbol{y}} - \boldsymbol{y})$$

$$= -0.342$$

Age	Predicted Weight(\hat{y})	Actual Weight(y)	Residual $(\widehat{y} - y)$
1	6.0	5.6	0.4
2	6.4	6.9	-0.5
3	10.9	10.4	0.5
4	12.4	13.7	-1.3
5	15.6	17.4	-1.8
6	21.5	20.7	0.8
7	23.0	23.5	-0.5

성능지표2: 평균 절대 오차(Mean absolute error ; MAE)

☑ 실제 값과 예측 값 사이의 절대적인 오차의 평균을 이용

₩ 단위(Scale)의 영향

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} |\hat{y} - y|$$

= 0.829

Age	Predicted Weight(\hat{y})	Actual Weight(y)	Residual $(\widehat{y} - y)$
1	6.0	5.6	0.4
2	6.4	6.9	-0.5
3	10.9	10.4	0.5
4	12.4	13.7	-1.3
5	15.6	17.4	-1.8
6	21.5	20.7	0.8
7	23.0	23.5	-0.5

🥞 성능지표3: 평균 절대 비율오차(Mean absolute percentage error ; MAPE)

☑ 실제 값 대비 얼마나 예측값이 차이가 있는지를 %로 표현

상대적인 오차를 추정

MAPE

$$=100\% \times \frac{1}{n} \sum_{i=1}^{n} \frac{|\widehat{\mathbf{y}} - \mathbf{y}|}{|\mathbf{y}|}$$

Age	Predicted Weight(\hat{y})	Actual Weight(y)	Residual $(\widehat{y} - y)$
1	6.0	5.6	0.4
2	6.4	6.9	-0.5
3	10.9	10.4	0.5
4	12.4	13.7	-1.3
5	15.6	17.4	-1.8
6	21.5	20.7	0.8
7	23.0	23.5	-0.5

飞 성능지표4&5 : (Root) Mean squared error : MSE & RMSE

☑ 부호의 영향을 제거하기 위해 절대값이 아닌 제곱을 취한 지표

MSE =
$$\frac{1}{n}\sum_{i=1}^{n}(\widehat{\mathbf{y}}-\mathbf{y})^2$$

= 0.926

RMSE =
$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(\widehat{y}-y)^2}$$

= 0.962

Age	Predicted Weight(\hat{y})	Actual Weight(y)	Residual $(\widehat{y} - y)$
1	6.0	5.6	0.4
2	6.4	6.9	-0.5
3	10.9	10.4	0.5
4	12.4	13.7	-1.3
5	15.6	17.4	-1.8
6	21.5	20.7	0.8
7	23.0	23.5	-0.5

		실제 정답	
		Positive	Negative
시스 경기	Positive	True Positive	False Positive (Type I error)
실험 결과	Negative	False Negative (Type II error)	True Negative

true/false & positive/negative true/false는 예측한 결과가 맞는지/틀린지를 의미 positive/negative는 분류기가 예측(분류)한 범주를 의미

		실제 정답	
		Positive	Negative
	Positive	True Positive	False Positive (Type I error)
실험 결과	Negative	False Negative (Type II error)	True Negative

true/false & positive/negative true/false는 예측한 결과가 맞는지/틀린지를 의미 positive/negative는 분류기가 예측(분류)한 범주를 의미

예) positive로 예측을 했는데 실제 negative인 경우(틀린 경우) : ~~~ positive -> 예측이 틀렸으니까 False Positive(FP)

		실제 정답	
		Positive	Negative
	Positive	True Positive	False Positive (Type I error)
실험 결과	Negative	False Negative (Type II error)	True Negative

true/false & positive/negative true/false는 예측한 결과가 맞는지/틀린지를 의미 positive/negative는 분류기가 예측(분류)한 범주를 의미

예) negative로 예측을 했는데 실제 negative인 경우(맞은 경우) : ~~~ negative -> 예측이 맞았으니까 True Negative(TN)

		실제 정답	
		Positive	Negative
	Positive	True Positive	False Positive (Type I error)
실험 결과	Negative	False Negative (Type II error)	True Negative

다시 한 번 강조하지만 Positive/Negetive는 예측한 결과이다. 앞에서 살펴본 False Positive, True Negative 모두 '실제 정답'은 Negative이다.

처음에는 헷갈릴 수 있으니 그때마다 자료를 찾아보자.

		실제	정답
		Positive	Negative
.141 -4-1	Positive	True Positive	False Positive (Type I error)
실험 결과	Negative	False Negative (Type II error)	True Negative

		질병여부		
		유	무	
~~ / L~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	양성(질병)	а	b	
검사결과	음성(정상)	С	d	

정밀도(Precision) =
$$\frac{True\ Positive}{(predicted\ positive)} = \frac{TP}{TP+FP} = \frac{a}{a+b}$$

예측이 positive인 것의 개수 중 : a+b 실제로 positive 한 것의 개수 : a

: 질병이 있다고 예측한 것 중 실제 질병이 있는 경우

		실제 정답	
		Positive	Negative
실험 결과	Positive	True Positive	False Positive (Type I error)
	Negative	False Negative (Type II error)	True Negative

		질병	여부
		유	무
	양성(질병)	а	b
검사결과	음성(정상)	c	d

재현율(Recall) =
$$\frac{True\ Positive}{(actually\ positive)} = \frac{TP}{TP+FN} = \frac{a}{a+c}$$

= True Positive Rate = 민감도(Sensitivity)

실제로 positive인 것의 개수 중 : a+c positive로 예측한 것의 개수 : a

:실제 질병이 있는 경우 실시한 검사에서 질병이 있다고 판정할 수 있는 능력

		실제 정답	
		Positive	Negative
실험 결과	Positive	True Positive	False Positive (Type I error)
5유 5파	Negative	False Negative (Type II error)	True Negative

		질병여부		
		0	무	
검사결과	양성(질병)	а	b	
	음성(정상)	С	d	

특이도(Specificity)=
$$\frac{True\ Negative}{(actually\ negetive)} = \frac{TN}{FP+TN} = \frac{d}{b+d}$$
= True Negative Rate

실제로 negative인 것의 개수 중: b+d negative로 예측한 것의 개수 : d

:실제 질병이 없는 경우 실시한 검사에서 질병이 없다고 판정할 수 있는 능력

		실제 정답	
		Positive	Negative
Positive	True Positive	False Positive (Type I error)	
실험 결과	Negative	False Negative (Type II error)	True Negative

		질병여부	
		유	무
	양성(질병)	а	b
검사결과	음성(정상)	С	d

특이도(Specificity)=
$$\frac{True\ Negative}{(actually\ negetive)} = \frac{TN}{FP+TN} = \frac{d}{b+d}$$
= True Negative Rate

1-(Specificity) =
$$\frac{FP}{(negetive)}$$
 = $\frac{FP}{FP+TN}$ = $\frac{b}{b+d}$ = False Positive Rate

		실제 정답	
		Positive	Negative
Positive	True Positive	False Positive (Type I error)	
실험 결과	Negative	False Negative (Type II error)	True Negative

	질병여부		여부
		유	무
	양성(질병)	α	b
검사결과	음성(정상)	С	d

재현율, 민감도, TPR

(Sensitivity, True Positive Rate, Recall, Hit Rate) = a/(a+c)

제2종 오류(Type II error, False Negative Rate) = c/(a+c)

		실제 정답	
		Positive	Negative
Positive	True Positive	False Positive (Type I error)	
실험 결과	Negative	False Negative (Type II error)	True Negative

		질병여부		
		0	무	
	양성(질병)	α	b	
검사결과	음성(정상)	С	d	

민감도(Sensitivity, **True Positive Rate**, Recall, Hit Rate) = a/(a+c) 제2종 오류(Type II error, False Negative Rate) = c/(a+c)

특이도(Specificity, True Negative Rate) = d/(b+d) 제1종 오류(Type I error, **False Positive Rate**) = b/(b+d)

		실제 정답	
		Positive	Negative
실험 결과	Positive	True Positive	False Positive (Type I error)
5유 5파	Negative	False Negative (Type II error)	True Negative

		질병여부	
		유	무
	양성(질병)	а	b
검사결과	음성(정상)	С	d

오분류율(Misclassification error) = (b+c)/(a+b+c+d)

정분류율(Accuracy = 1 - misclassification error) = (a+d)/(a+b+c+d)

이 외에도 성능을 평가하는 여러 가지 기준들이 있다.

(경우 1) 실제 positive인 경우를 민감하게 positive라고 예측하면 좋은가?

(경우 1) 실제 positive인 경우를 민감하게 positive라고 예측하면 좋은가?

-> True Positive Rate(Sensitivity, Recall)가 높을수록 좋은 모형인가?

(경우 1) 실제 positive인 경우를 민감하게 positive라고 예측하면 좋은가?

- -> True Positive Rate(Sensitivity, Recall)가 높을수록 좋은 모형인가?
- -> No! (반드시 그렇지는 않다.)

(경우 1) 실제 positive인 경우를 민감하게 positive라고 예측하면 좋은가?

- -> True Positive Rate(Sensitivity, Recall)가 높을수록 좋은 모형인가?
- -> No! (반드시 그렇지는 않다.)

(반례 1) 주어진 모든 환자들을 암으로 예측하는 엉터리 분류기가 있는 경우

(경우 1) 실제 positive인 경우를 민감하게 positive라고 예측하면 좋은가?

- -> True Positive Rate(Sensitivity, Recall)가 높을수록 좋은 모형인가?
- -> No! (반드시 그렇지는 않다.)

(반례 1) 주어진 모든 환자들을 암으로 예측하는 엉터리 분류기가 있는 경우

-> 모든 환자를 암환자로 분류하기 때문에, 모든 암환자를 100% 잡아낸다.

- (경우 1) 실제 positive인 경우를 민감하게 positive라고 예측하면 좋은가?
- -> True Positive Rate(Sensitivity, Recall)가 높을수록 좋은 모형인가?
- -> No! (반드시 그렇지는 않다.)
- (반례 1) 주어진 모든 환자들을 암으로 예측하는 엉터리 분류기가 있는 경우
- -> 모든 환자를 암환자로 분류하기 때문에, 모든 암환자를 100% 잡아낸다.
- -> 단점: 암이 아닌 환자들도 모두 암으로 잘못 예측(False Positive)

(반례 1) 주어진 모든 환자들을 암으로 예측하는 엉터리 분류기가 있는 경우이 경우 True Positive Rate = 1, False Positive Rate = 1

		질병여부	
		유	다
ار المام ال	양성(질병)	а	b
검사결과	음성(정상)		0

$$TPR = \frac{a}{a+0} = 1$$

$$FPR = \frac{b}{b+0} = 1$$

비슷하게 주어진 모든 환자들이 암환자가 아니라고 분류하는 경우, True Positive Rate = 0 , False Positive Rate = 0

		질병여부	
		4 0	무
	양성(질병)	0	0
검사결과	음성(정상)	С	d

$$TPR = \frac{0}{0+c} = 0$$

$$FPR = \frac{0}{0+d} = 0$$

비슷하게 주어진 모든 환자들이 암환자가 아니라고 분류하는 경우, True Positive Rate = 0 , False Positive Rate = 0

바람직한 분류기는 어떤 분류기일까?

비슷하게 주어진 모든 환자들이 암환자가 아니라고 분류하는 경우, True Positive Rate = 0 , False Positive Rate = 0

바람직한 분류기는 어떤 분류기일까?

-> 실제 질병이 있으면 질병이 있다고 예측 실제 질병이 없으면 질병이 없다고 예측

비슷하게 주어진 모든 환자들이 암환자가 아니라고 분류하는 경우, True Positive Rate = 0 , False Positive Rate = 0

바람직한 분류기는 어떤 분류기일까?

- -> 실제 질병이 있으면 질병이 있다고 예측 실제 질병이 없으면 질병이 없다고 예측
- -> True Positive Rate가 1에 가깝고(= Sensitivity가 1에 가까운), False Positive Rate가 0에 가까운(= Specificity가 1에 가까운) 분류기

바람직한 분류기는 어떤 분류기일까?

-> (True Positive Rate) ≈ 1 , (False Positive Rate) ≈ 0

바람직한 분류기는 어떤 분류기일까?

-> (True Positive Rate) ≈ 1 , (False Positive Rate) ≈ 0

현실적으로 둘 다 만족하기 힘들 수 있다.

-> 극단적이지 않게 '적당히' Positive, Negative를 예측하고 기준에 따라 판단

바람직한 분류기는 어떤 분류기일까?

-> (True Positive Rate) ≈ 1 , (False Positive Rate) ≈ 0

현실적으로 둘 다 만족하기 힘들 수 있다.

- -> 극단적이지 않게 적당히 Positive, Negative를 예측하고 기준에 따라 판단
- -> 기준 1) 문제 상황에 맞게 우선순위를 두기
 - 기준 2) 오분류율 등을 이용
 - 기준 3) AUC(AUROC) 이용

기준 1) 문제 상황에 맞게 우선순위를 두기

예 1) 암과 같은 중요도가 높은 질병의 경우 True Positive Rate가 중요 일단 병이 있다고(양성,positive) 진단하고 추후에 정밀진단을 하면 됨

- 민감도(Sensitivity) = True Positive Rate 진짜 암 환자 중 검사로 얼마나 암 환자를 잘 골라내는가?
- 1-특이도(1-Specificity) = False Positive Rate
 진짜 정상인 사람 중 검사로 얼마나 암 환자로 오진했는가?

기준 1) 문제 상황에 맞게 우선순위를 두기

예 2) 살인 사건의 용의자에게 선고를 하는 경우 False Positive Rate가 중요 무죄인 사람을 처벌하는 경우 평생 고통받을 것이고, 돌이킬 수 없음

- 민감도(Sensitivity) = True Positive Rate 진짜 범인 중 검사로 얼마나 범인을 잘 골라내는가?
- 1-특이도(1-Specificity) = False Positive Rate 진짜 무죄인 사람 중 검사로 얼마나 범인으로 오진했는가?

기준 2) 오분류율, F1-measure 등을 이용

		실제 정답	
		Positive	Negative
실험 결과	Positive	True Positive	False Positive (Type I error)
	Negative	False Negative (Type II error)	True Negative

		질병여부	
		유	무
	양성(질병)	а	b
검사결과	음성(정상)		d

- 오분류율(Misclassification error) = (b+c)/(a+b+c+d)
- 정분류율(Accuracy = 1 misclassification error) = (a+d)/(a+b+c+d)

• 위 지표는 True Positive, False Positive를 동시에 고려

기준 3) ROC, AUC(AUROC) 이용

• 일반적인 분류기는 특정 범주에 속할 확률(probability)이나 가능도를 생성

 동일한 확률값 하에서도 Cut-off를 어떻게 설정하는지에 따라 분류 성능이 크게 좌우되는 상황이 발생할 수 있다.

• receiver operating characteristic(ROC) curve 등이 성능 평가 기준으로 사용된다.

(뒤 예시를 통해 확인)

🕙 예시: 성별 분류

체지방률이 θ 보다 크면 여성(positive)으로, 작으면 남성(negative)으로 분류

No.	체지방률	성별
1	28.6	여자
2	25.4	남자
3	24.2	여자
4	23.6	여자
5	22.7	여자
6	21.5	남자
7	19.9	여자
8	15.7	남자
9	10.0	남자
10	8.9	남자

🕙 예시: 성별 분류

체지방률이 θ 보다 크면 여성(positive)으로, 작으면 남성(negative)으로 분류

No.	체지방률	성별
1	28.6	여자
2	25.4	남자
3	24.2	여자
4	23.6	여자
5	22.7	여자
6	21.5	남자
7	19.9	여자
8	15.7	남자
9	10.0	남자
10	8.9	남자

Misclassification error: (FN+FP)/(전체)

(Accuracy: (TP+TN)/(전체))

True Positive Rate = TP/(TP+FN)

False Positive Rate = FP/(FP+TN)

🕙 분류 알고리즘의 Cut-off 설정

다양한 Cut-off에 따른 분류 성능 비교

	No.	체지방률	성별
	1	28.6	여자
女	2	25.4	남자
	3	24.2	여자
	4	23.6	여자
	5	22.7	여자
	6	21.5	남자
	7	19.9	여자
男	8	15.7	남자
_	9	10.0	남자
	10	8.9	남자
	10	8.9	

If $\theta = 24$,

Misclassification error: 4/10=0.4

(Accuracy: 0.6)

True Positive Rate = 2/(2+3)=2/5=0.4

False Positive Rate = 1/(1+4)=4/5=0.2

🕙 분류 알고리즘의 Cut-off 설정

다양한 Cut-off에 따른 분류 성능 비교

	No.	체지방률	성별
	1	28.6	여자
女	2	25.4	남자
	3	24.2	여자
	4	23.6	여자
	5	22.7	여자
	6	21.5	남자
	7	19.9	여자
男	8	15.7	남자
	9	10.0	남자
	10	8.9	남자
	. •		— Н

		Observed				
	(女	Positive		Negative	男
Dradiatad	女 Positive		4		1	
Predicted	男 Negative		1		4	
			P=5		N=5	_

If $\theta = 22$,

Misclassification error: 2/10=0.2

(Accuracy: 0.8)

True Positive Rate = 4/(4+1)=4/5=0.8

False Positive Rate = 1/(1+4)=4/5=0.2

🕙 분류 알고리즘의 Cut-off 설정

다양한 Cut-off에 따른 분류 성능 비교

	No.	체지방률	성별
	1	28.6	여자
女	2	25.4	남자
	3	24.2	여자
	4	23.6	여자
	5	22.7	여자
	6	21.5	남자
	7	19.9	여자
男	8	15.7	남자
	9	10.0	남자
	10	8.9	남자

If $\theta = 18$,

Misclassification error: 2/10=0.2

(Accuracy: 0.8)

True Positive Rate = 5/(5+0)=5/5=1

False Positive Rate = 2/(2+3)=2/5=0.4

☑ X축이 False Positive Rate, Y축이 True Positive Rate가 되는 2차원 그래프

☑ X축이 False Positive Rate, Y축이 True Positive Rate가 되는 2차원 그래프

☑ X축이 False Positive Rate, Y축이 True Positive Rate가 되는 2차원 그래프

☑ X축이 False Positive Rate, Y축이 True Positive Rate가 되는 2차원 그래프

이상적 분류기의 ROC Curve일반적인 알고리즘의 ROC Curverandom 분류기의 ROC Curve

♥ 이상적 분류기: True Positive Rate ≈ 1 , False Positive Rate ≈ 0

이상적 분류기의 ROC Curve일반적인 알고리즘의 ROC Curverandom 분류기의 ROC Curve

☑ 랜덤 분류기: 실제 positive, negative 비율만 판단 근거로 해서 임의로(randomly) positive, negative 판단

Area Under ROC curve (AUC, AUROC)

- ☑ ROC curve 아래의 면적, **cut-off value에 무관**하게 구할 수 있는 값
- ☑ 이상적 분류기는 1, Random 분류기는 0.5의 값을 가짐

🦈 로지스틱 회귀분석에서의 ROC Curve

로지스틱 회귀분석을 비롯한 많은 분류분석기는 $\hat{y}_i = 0.1$ 을 직접 산출하지 않는다. 대신에 [0,1] 구간 사이의 값을 가진 예측 확률값 $\hat{p_i}$ 을 계산한다.

이처럼 예측이 성공확률 값으로 주어졌을 때 분계점(threshold, cutoff)을 바꿔감에 따라 다른 최종 예측값을 얻게 된다. 즉, 다음처럼 계산한다.

$$\hat{y}_i = 1$$
, if $\hat{p}_i > 분계점$

$$\widehat{y}_i = 0$$
, if $\widehat{p}_i \leq$ 분계점

ROC Curve는 이처럼 분계점을 바꿔하면서 TPR과 FPR을 그린 곡선이다.