0.1 Addisjon

Oppstilling

Denne metoden baserer seg på plassverdisystemet, der ein trinnvis rekner ut summen av einarane, tiarane, hundrerane, o.l.

Eksempel 1

Eksempel 2

Eksempel 3

Eksempel 4

Eksempel 1 (forklaring)

- a) Vi legg saman einarane: 4 + 2 = 6
- b) Vi legg saman tiarane: 3 + 1 = 4
- c) Vi legg saman hundra: 2+6=8

Eksempel 2 (forklaring)

- a) Vi legg saman einarane: 3+6=9
- b) Vi legg saman tiarane: 7+8=15. Sidan 10 tiarar er det same som 100, legg vi til 1 på hundreplassen, og skriv opp dei resterande 5 tiarane på tiarplassen.
- c) Vi legg saman hundra: 1 + 2 = 3.

Språkboksen

Det å skrive 1 på neste sifferplass kallast "å skrive 1 i mente".

Tabellmetoden

Denne metoden tar utgangspunkt i det éine leddet, og summerer fram til det andre leddet er nådd. Det som i starten kan vere litt rart med denne metoden, er at du sjølv velg fritt kva tall du skal legge til, så lenge du når det andre leddet til slutt.

Eksempel 1
$$273 + 86 = 359$$

$$\begin{array}{r|rrr} & 273 \\ \hline 6 & 6 & 279 \\ 30 & 36 & 309 \\ 50 & 86 & 359 \\ \end{array}$$

Eksempel 1 (forklaring)

		273			273	
6 30	6 36	279 309	6	6	279	
30	36	309	30 50	36	309	
			50	86	279 309 359	
(c)			(d)			

- (a) Vi startar med det leddet vi sjølv ønsker, ofte er det lurt å starte med det største leddet.
- (b) Vi legg til 6. Da har vi totalt lagt til 6, og vidare er 273 + 6 = 279.
- (c) Vi legg til 30. Da har vi så totalt lagt til 36, og vidare er 279 + 30 = 309.
- (d) Vi legg til 50. Da har vi totalt lagt til 86, altså har vi nådd det andre leddet, og vidare er 309 + 50 = 359.

Oppstilling versus tabellmetoden

Ved første augekast kan kanskje tabellmetoden sjå ut som ein innvikla måte å rekne addisjon på samanlikna med oppstilling, men med øving vil mange oppdage at tabellmetoden betrer evnen til hoderekning.

0.2Subtraksjon

Oppstilling

Subtraksjon med oppstilling baserer seg på plassverdisystemet, der ein trinnvis rekner differansen mellom einarane, tiarane, hundra, o.l. Metoden tar også utgangspunkt i eit mengdeperspektiv, og tillet derfor ikkje differansar med negativ verdi (sjå forklaringa til Eksempel 2).

Eksempel 2

Eksempel 3

Eksempel 4

Eksempel 1 (forklaring)

- (a) Vi finn differansen mellom einarane: 9-4=5
- (b) Vi finn differansen mellom tiarane: 8-2=6.
- (c) Vi finn differansen mellom hundra: 7 3 = 4.

Eksempel 2 (forklaring)

- (a) Vi merker oss at 7 er større enn 3, derfor tar vi 1 tiar frå dei 8 på tiarplassen. Dette markerer vi ved å sette ein strek over 8. Så finn vi differansen mellom einarane: 13-7=6
- (b) Sidan vi tok 1 frå dei 8 tiarane, er der no berre 7 tiarar. Vi finn differansen mellom tiarane: 7-6=1.

Tabellmetoden

Tabellmetoden for subtraksjon tek utgangspunkt i at subtraksjon er ein omvend operasjon av addisjon. For eksempel, svaret på spørsmålet "Kva er 789 - 324?" er det same som svaret på spørsmålet "Kor mykje må eg legge til på 324 for å få 789?". Med tabellmetoden følg du ingen spesiell regel underveis, men velg sjølv talla du meiner passar best for å nå målet.

Eksempel 2
$$83 - 67 = 16$$

$$\begin{array}{r|rrrr}
 & 67 \\
\hline
 & 3 & 70 \\
\hline
 & 13 & 83 \\
\hline
 & 16 & \\
\end{array}$$

Eksempel 3

$$564 - 478 = 86$$

	478
2	480
20	500
64	564
86	

$$206,1 - 31,7 = 174,4$$

	31,7
0,3	32
70	102
104,1	206,1
174,4	

Eksempel 1 (forklaring)

$$789 - 324 = 465$$

(b)

	324				
6	330				
70	400				
(c)					

	324		
6	330		
70	400		
389	789		
(d)			

	324			
6	330			
70	400			
389	789			
465				
(e)				

- (a) Vi startar med 324.
- (b) Vi legg til 6, og får 324 + 6 = 330
- (c) Vi legg til 70, og får 70 + 330 = 400
- (d) Vi legg til 389, og får 389 + 400 = 789. Da er vi framme på 789.

6

(e) Vi summerer tala vi har lagt til: 6 + 70 + 389 = 465

0.3 Ganging

Ganging med 10, 100, 1000 osv.

0.1 Å gonge heiltal med 10, 100 osv.

- Når ein gongar eit heiltal med 10, får ein svaret ved å legge til sifferet 0 bak heiltalet.
- Når ein gongar eit heiltal med 100, får ein svaret ved å legge til sifra 00 bak heiltalet.
- Det same mønsteret gjelder for talla 1000, 10000 osv.

Eksempel 1

$$6 \cdot 10 = 60$$

$$79 \cdot 10 = 790$$

$$802 \cdot 10 = 8020$$

Eksempel 2

$$6 \cdot 100 = 600$$

$$79 \cdot 100 = 7900$$

$$802 \cdot 100 = 80\,200$$

Eksempel 3

$$6 \cdot 1000 = 6000$$

$$79 \cdot 10\,000 = 790\,000$$

$$802 \cdot 100\,000 = 80\,200\,000$$

0.2 Å gonge desimaltal med 10, 100 osv.

- Når ein gongar eit desimaltal med 10, får ein svaret ved å flytte komma en plass til høgre.
- Når ein gongar eit heiltal med 100, får ein svaret ved å flytte komma to plasser til høgre.
- Det same mønsteret gjelder for tallene 1000, 10000 osv.

Eksempel 1

$$7.9 \cdot 10 = 79. = 79$$

$$38.02 \cdot 10 = 380.2$$

$$0.57 \cdot 10 = 05.7 = 5.7$$

$$0.194 \cdot 10 = 01.94 = 1.94$$

Eksempel 2

$$7.9 \cdot 100 = 790, = 790$$

$$38,02 \cdot 100 = 3802, = 3802$$

$$0.57 \cdot 100 = 057 = 57$$

$$0,194 \cdot 100 = 019,4 = 19,4$$

Eksempel 3

$$7.9 \cdot 1000 = 7900, = 7900$$

$$38,02 \cdot 10\,000 = 38020, = 38\,020$$

$$0.57 \cdot 100\,000 = 05.7 = 57000, = 57\,000$$

Merk

regel 0.1 er berre eit spesialtilfelle av regel 0.2. For eksempel, å bruke regel 0.1 på reknestykket $7 \cdot 10$ gir same resultat som å bruke regel 0.2 på reknestykket $7,0 \cdot 10$.

Å gonge tall med 10, 100 osv. (forklaring)

Titalsystemet baserer seg på grupper av ti, hundre, tusen osv., og tidelar, hundredelar og tusendelar osv. (sjå regel ??). Når ein gongar eit tall med 10, vil alle einarane i talet bli til tiarar, alle tiarar bli til hundra osv. Kvart siffer forskyvast altså éin plass mot venstre. Tilsvarende forskyvast kvart siffer to plassar mot venstre når ein gongar med 100, tre plassar når ein gongar med 1000 osv.

Utvida form

Gonging på utvida form bruker vi for å rekne multiplikasjon mellom fleirsifra tall. Metoden baserer seg på distributiv lov (sjå regel??).

Eksempel 1

Eksempel 2

$$279 \cdot 34 = 9486$$

Eksempel 1 (forklaring)

24 kan skrivast som 20 + 4, altså er

$$24 \cdot 3 = (20+4) \cdot 3$$

Vidare er

$$(20+4) \cdot 3 = 20 \cdot 3 + 4 \cdot 3$$

= $60 + 12$
= 72

Eksempel 2 (forklaring)

Vi har at

$$279 = 200 + 70 + 9$$
$$34 = 30 + 4$$

Altså er

$$279 \cdot 34 = (200 + 70 + 9) \cdot (30 + 4)$$

Vidare er

$$(200 + 70 + 9) \cdot (30 + 4) = 200 \cdot 30 + 70 \cdot 30 + 9 \cdot 30 + 200 \cdot 4 + 70 \cdot 4 + 9 \cdot 4$$

= 9486

Kompaktmetoden

Kompaktmetoden bygger på dei same prinsippa som gonging på utvida form, men har ein skrivemåte som gjer utrekninga kortare.

 $279 \cdot 34 = 9486$

Eksempel 1

Eksempel 1 (forklaring)

Vi startar med å gonge sifra i 279 enkeltvis med 4:

- $9 \cdot 6 = 36$, da skriv vi 6 på einarplassen og 3 i mente.
- $7 \cdot 4 = 28$, da skriv vi8 på tiarplassen og 2 i mente.
- $2 \cdot 4 = 8$, da skriv vi 8 på hundrerplassen.

Så gongar vi sifra i 279 enkeltvis med 30. Dette kan forenklast til å gonge med 3, så lenge vi plasserer sifra én plass forskyvde til venstre i forhold til da vi gonga med 4:

- $9 \cdot 3 = 27$, da skriv vi 7 på tiarplassen og 2 i mente.
- $7 \cdot 3 = 21$, da skriv vi1 på hundrerplassen og 2 i mente.
- $2 \cdot 3 = 6$, da skriv vi 6 på tusenplassen.

0.4 Divisjon

Deling med 10, 100, 1000 osv.

0.3 Deling med 10, 100, 1000 osv.

- Når ein deler eit desimaltal med 10, får ein svaret ved å flytte komma en plass til venstre.
- $\bullet\,$ Når ein deler eit desimaltal med 10, får ein svaret ved å flytte komma to plasser til venstre.
- Det same mønsteret gjelder for tallene 1000, 10000 osv.

Eksempel 1

$$200: 10 = 200,0: 10$$

$$= 20,00$$

$$= 20$$

$$45: 10 = 45,0: 10$$

$$= 4,50$$

=4.5

Eksempel 2

$$200: 100 = 200,0: 100$$

$$= 2,000$$

$$= 2$$

$$45: 100 = 45,0: 100$$

$$= 0,450$$

$$= 0,45$$

Eksempel 3

$$143,7:10=14,37$$

$$143,7:100=1,437$$

$$143.7:1000 = 0.1437$$

$$93,6:10=9,36$$

$$93.6:100 = 0.936$$

$$93.6:1000 = 0.0936$$

Deling med 10, 100, 1000 osv. (forklaring)

Titalsystemet baserer seg på grupper av ti, hundre, tusen osv., og tideler, hundredeler og tusendeler osv (sjå regel ??). Når ein deler eit tall med 10, vil alle einare i tallet bli til tidelar, alle tiarar bli til einarar osv. Kvart siffer forskyvast altså éin plass mot høgre. Tilsvarande forskyvast kvart siffer to plassar mot høgre når ein deler med 100, tre plassar når ein deler med 1000 osv.

Oppstilling

Divisjon med oppstilling baserer seg på divisjon tolka som inndeling av mengder (sjå s.??)

Eksempel 1 (forklaring)

Figuren over illustrerer mengda 76, som vi skal dele inn i 4 like store grupper.

• Vi startar med å fordele så mange av tiarane som mogleg. Av dei 7 tiarane, kan kvar gruppe få 1. Da har vi totalt tatt vekk 4 tiarar.

Tabellmetoden

Tabellmetoden baserer seg på divisjon som omvend operasjon av gonging. For eksempel er svaret på spørsmålet "Kva er 76 : 4" det same som svaret på spørsmålet "Kva tal må eg gonge 4 med for å få 76?". På same vis som for tabellmetoden ved subtraksjon er det opp til ein sjølv å velge passande tal for å nå målet.

Eksempel 3

894:3=298

$\cdot 3$		
300	900	900
-2	-6	894
298		

Merk: same reknestykke som i Eksempel 2, men ei anna utrekning.

0.5 Primtalsfaktorisering

Merk: Primtala mellom 1-100 finn du på side 17.

Eksempel 1 (forklaring)

- (a) Sidan 2 er det første primtallet, undersøker vi om 84 er deleleg med 2. Det er det, fordi 84:2=42.
- (b) Vi undersøker om også 42 er deleleg med 2. Det er det, fordi42:2=21.
- (c) Vi undersøker om også 21 er deleleg med 2. Det er det ikkje, fordi 21:2=10,5. Derfor går vi over til neste primtall, som er 3. 21 er deleleg med 3 fordi 21:3=7.

Sidan 7 er eit primtal, er vi komme i mål.

91	92	93	94	95	96	97	98	99	100
81	82	83	84	85	86	87	88	89	90
71	72	73	74	75	76	77	78	79	80
61	62	63	64	65	66	67	68	69	70
51	52	53	54	55	56	57	58	59	60
41	42	43	44	45	46	47	48	49	50
31	32	33	34	35	36	37	38	39	40
21	22	23	24	25	26	27	28	29	30
11	12	13	14	15	16	17	18	19	20
1	2	3	4	5	6	7	8	9	10