Perception in Snow Covered Environments

Project Summary

- Develop perception model which can enable an autonomous vehicle to "see" in snowy environments
- Fusion of RGB camera + LiDAR data
- Drivable path detection
- Object detection and tracking

Motivation

- Snow is a challenging weather condition for autonomous vehicles
 - > Traditional visual cues such as lane markers are not visible and cannot be used
- Sensor accuracy decreases in snow:
 - Camera has decreased visibility, glare, and contrast
 - LiDAR has signal scattering, attenuation, and absorption
 - Radar can detect objects but not classify them correctly

Goals

Provide ego vehicle with roadway boundaries

Robust to broad range of snow conditions and environments

Identify objects in the vicinity of the ego vehicle

Sensor fusion with LiDAR and RGB camera

Use Cases

Safety

Decrease the number of accidents due to snow, thereby preventing death or bodily injury

Feasibility

Increase the geographical range of autonomous vehicles

Industry

Make clearing snow from roadways more efficient and cost-effective

Inclement weather is the 5th most common cause of accidents in the U.S.

~70% of the lower 48 states in the U.S. receive snow each year States are struggling to find enough people willing to become snowplow operators

Datasets

- DENSE
 - Labels: Drivable path
 - ➤ LIDAR: HDL64-S3
 - > 13k frames
 - ➤ 64 channels -> 32 channels

- Canadian Adverse Driving Conditions
 - > Labels: Detected objects
 - ➤ LIDAR: VLP-32C
 - > 7k frames
 - > 32 channels

Methodology

♦ Goal 1: Drivable Path Detection

Dataset: DENSE

➤ Models:

RGB

LIDAR

RGB + LIDAR - CNN based fusion

- RGB + LIDAR Multi-headed cross-attention based fusion
- > Metric: Pixel Accuracy, Mean IOU
- Non-functional requirement:
 - Efficiency

Methodology

- ♦ Goal 1: Drivable Path Detection
 - Compare with baseline (code not available)
 - Verify results on CADC dataset + label it.
 - Can the RGB camera and LIDAR make use of the different cues?
 - Road boundaries and surfaces
 - Curbs
 - Tire tracks
 - Vegetation
 - Poles
 - Depth difference

Methodology

- Goal 2: Object Detection and Tracking (Extra Credit)
 - Dataset: CADC
 - Models:
 - RGB
 - LIDAR
 - RGB + LIDAR Fusion based on results from Goal 1
 - Metric: IOU

DENSE Baseline - RGB + LIDAR + RADAR

Our Approach - RGB + LIDAR + Multi-headed cross attention for Drivable Path Detection

Proof of concept - MSF3DDETR

Development Milestones

Demonstration Sequences

Work Partitioning

01	Swathi	 Downsample DENSE dataset Implement CNN model using DENSE RGB images Add multi-headed cross attention to model Implement object detection model using CADC RGB images
02	Lakshay	 Implement CNN model using LiDAR Add multi-headed cross attention to model Implement object detection model using CADC LiDAR Fuse semantic segmentation + object detection on CADC dataset
03	Leah	 Implement CNN model using RGB images + LiDAR Add multi-headed cross attention to model Apply CNN model to CADC dataset Fuse semantic segmentation + object detection on CADC dataset

^{*}all team members will be participate in report writing, presentation development, and final model tuning

Conclusion

- Determine driveable path
- Detect and track objects
- Experiment with fusion techniques for RGB & LIDAR
- Generate drivable pathlabels for CADC

References

- Rawashdeh, Nathir & Bos, Jeremy & Abu-Alrub, Nader. (2021). <u>Drivable path detection using CNN</u> <u>sensor fusion for autonomous driving in the snow.</u> 5. 10.1117/12.2587993.
- Pitropov, Matthew & Garcia, Danson & Rebello, Jason & Smart, Michael & Wang, Carlos & Czarnecki, Krzysztof & Waslander, Steven. (2020). <u>Canadian Adverse Driving Conditions dataset.</u> The International Journal of Robotics Research. 40. 027836492097936. 10.1177/0278364920979368.
- Yasuno, T., Sugawara, H., Fujii, J. (2022). Road
 Surface Translation Under Snow-Covered and
 Semantic Segmentation for Snow Hazard Index. In:
 , et al. Advances in Artificial Intelligence. JSAI
 2021. Advances in Intelligent Systems and
 Computing, vol 1423. Springer, Cham.
 https://doi.org/10.1007/978-3-030-96451-1_8
- 4. <u>DENSE Dataset</u>. Universitat Ulm. https://www.uni-ulm.de/in/iui-drive-u/projekte/dense-datasets/.
- 5. Erabati, Gopi Krishna & Araujo, Helder. (2022).

 MSF3DDETR: Multi-Sensor Fusion 3D Detection

 Transformer for Autonomous Driving. Institute of
 System and Robotics, University of Coimbra,
 Portugal. https://arxiv.org/pdf/2210.15316.pdf.

Thank you!

Q & A