# Towards Forward Propagation of Reynolds Stress Model Uncertainty

## Todd A. Oliver Vikram Garg and Robert Moser

Center for Predictive Engineering and Computational Sciences Institute for Computational Engineering and Sciences The University of Texas at Austin

July 29, 2015





### Outline

- Introduction to RANS Uncertainty
- Sensitivities in UQ
- Application to RANS and Sensitivity Results
- 4 Future Directions and Conclusions

## Representing Model Inadequacy

#### Motivation

- Many engineering models known to be wrong, but used anyway
- RANS with eddy-viscosity-based closure is perfect example
- Impractical to always correct models prior to making predictions

#### Goal

Represent effects of inadequacy via uncertainty in predictions

## Source of Model Inadequacy in RANS

- Turbulence is chaotic, but statistics appear stable (predictable)
- · Means (e.g. heat flux, heat release) of primary interest
- Sufficient to solve for just the mean flow
- Mean conservation of momentum:

$$\partial_t U_i + \partial_j U_i U_j = -\partial_i P + \partial_j (\nu \partial_j U_i - \overline{u_i' u_j'})$$

- ▶ Where applicable, validity of RANS equations is NOT in doubt
- ▶ But,  $\overline{u_i'u_i'}$  is not known in terms of  $U_i$  (closure problem)
- Standard eddy-viscosity-based closure

$$-\overline{u_i'u_j'} = \tau_{ij} = 2\nu_t S_{ij} - \frac{2}{3}k\delta_{ij}$$

where  $S_{ij}$  is mean strain rate tensor

#### Model Inadequacy

Cannot recover exact  $\overline{u_i'u_i'}$  by changing typical model parameters

## Overview of Bayesian UQ Approach

#### Three Steps

• Model:

$$-\overline{u_i'u_j'} = 2\nu_t S_{ij} - \frac{2}{3}k\delta_{ij} + \zeta_{ij}$$

where  $\zeta_{ij}$  is random tensor field

- · Calibrate using DNS and/or experimental data
- Predict non-deterministic mean flow (forward propagation)

Hurdles to a practical, Bayesain model UQ capability for RANS:

- 1 Developing a plausible stochastic model of the Reynolds stress
- 2 Computational cost of traditional UQ algorithms

Oliver et al USNCCM 2015 7/29/2015

## Example Reynolds Stress Error Model

#### Motivation/Inspiration

- True Reynolds stress satisfies Reynolds stress transport equation
- Modeled Reynolds stress does not, but residual is not computable

$$\mathcal{R}(\tau) = \mathcal{R}(\tau^m + \zeta) = 0 \quad \Rightarrow \quad \mathcal{R}'[\tau^m](\zeta) \approx -\mathcal{R}(\tau^m)$$

#### The model (for channel flow case)

$$\underbrace{-C_p \frac{d\bar{u}}{dy} \zeta}_{\text{"Production"}} \underbrace{+C_p \frac{3}{2} \frac{\sqrt{\tau^m}}{y} \zeta}_{\text{"Dissipation"}} \underbrace{-\frac{d}{dy} \left( (\nu + C_\nu \nu_t(\bar{u})) \frac{d\zeta}{dy} \right)}_{\text{"Diffusion"}} = C_\sigma \underbrace{\sqrt{\frac{s^2}{\ell}} \frac{dW}{dy}}_{\text{"Residual"}}$$

where 
$$s=u_{\tau}^3$$
,  $\ell=u_{\tau}/(\partial u/\partial y)$ 

- · LHS: Simplistic modeling and dimensional analysis
- RHS: Don't know correct residual, so choose white noise
- Set parameters  $C_p$ ,  $C_{\nu}$ , and  $C_{\sigma}$  via Bayesian calibration

## Example Reynolds Stress Error Model





7/29/2015

- Forward propagate  $\zeta$  uncertainty to  $\langle u \rangle$  using posterior mean for  $C_p, C_\nu, C_\sigma$  obtained at  $Re_\tau = 1000$
- Resulting standard deviation of u shows good collapse with usual non-dimensionalizations
- Inner peak qualitatively similar to true error

## Derivative Enhanced UQ Techniques

#### Forward UQ

- Sensitivity Derivative Enhanced Monte Carlo (SDEMC) [Cao et al., 2006]
  - Linear surrogate using derivative at mean
- Local SDEMC (LSDEMC and LSHEMC) [Garg et al., 2013]
  - ▶ Piecewise linear surrogate at multiple samples
  - Can use derivative alone or derivative and hessian

#### Inverse Problems

- Stochastic Newton Method [Martin et al., 2012]
- Metropolis Adjusted Langevin algorithm [Roberts and Tweedie, 1996]
- Bayesian Optimal Maps [El Moselhy and Marzouk, 2012]

## LSDEMC Surrogate Construction

- Random parameters: ξ
- Qol:  $Q(\boldsymbol{\xi})$
- Associate each sample  $\{\xi_i\}_{i=1}^{N_s}$  with a Voronoi cell  $\{R_i\}_{i=1}^{N_s}$
- Draw another set of samples  $\{\boldsymbol{\xi}_i\}_{i=1}^{N_{ss}}$  where  $N_{ss}>>N_s$
- Discontinuous piecewise linear surrogate for *ξ*<sub>i</sub> ∈ R<sub>i</sub>:

$$Q_1(\xi_i) = Q(\xi_i) + Q'(\xi_i)(\xi_i - \xi_i)$$



Figure: 2-d Voronoi diagram

#### **Bias Correction**



#### Unbiased estimator for the mean

$$\frac{1}{N_R} \sum_{r=1}^{N_R} \left( \frac{1}{N_{ss}} \sum_{l=1}^{N_{ss}} Q_{r,1}(\boldsymbol{\xi}_l) + \frac{1}{N_s - \frac{N_s}{N_R}} \sum_{c=1}^{N_s - \frac{N_s}{N_R}} \left( Q(\boldsymbol{\xi}_c) - Q_{r,1}(\boldsymbol{\xi}_c) \right) \right)$$

## Results for Toy Problem



- Can prove LSDEMC converges asymptotically faster than MC
- Benefit decays as dimensionality grows
- Potential to overcome this decay by incorporating Hessian information (Vikram, is this a reasonable statement? Could I strengthen it?)

## Adjoint-Based Sensitivities

- High dimensional inputs ⇒ use adjoints to evaluate sensitivities
- Discrete Case
  - Forward model:  $R(U;\zeta)=0$  where R is governing eqns, U is solution vector, and  $\zeta$  is parameter vector
  - ▶ Quantity of interest:  $q = Q(\zeta) = J(U(\zeta); \zeta)$
  - Quantity of intersest sensitivity:

$$\frac{dQ}{d\zeta} = \frac{\partial \mathcal{J}}{\partial \zeta} - Z^T \frac{\partial R}{\partial \zeta}$$

where  $\varphi$  is the adjoint vector, defined by

$$\frac{\partial R}{\partial U}^T Z = \frac{\partial J}{\partial U}$$

Can extend results to the continuous setting

Oliver et al USNCCM 2015 7/29/2015 12 / 20

## Adjoint-Based Sensitivities for RANS

#### **General Case**

For a Reynolds stress perturbation field  $\zeta_{ii}$ :

$$\Delta Q = \underbrace{\int_{\Omega} \frac{\partial \varphi_{u_i}}{\partial x_j} \zeta_{ji}}_{\text{From momentum eqns}} + \underbrace{\int_{\Omega} \varphi_{turb}^T r'_{turb}[\zeta]}_{\text{From turbulence model eqns}}$$

- In following, we use Spalart-Allmaras (SA) turbulence model
- SA model equation has no direct dependence on Reynolds stress:

$$\Delta Q = \int_{\Omega} \frac{\partial \varphi_{u_i}}{\partial x_j} \zeta_{ji}$$

- Momentum adjoint gradient encodes everything about Qol sensitivity!
- Gives insight into what's important about model to the Qol

Oliver et al 7/29/2015 13 / 20

#### Results: Case Overview

- Incompressible RANS w/ SA turbulence model
- $Re = 6 \times 10^6$ ,  $\alpha = 0.16^\circ$
- GRINS Code (https://github.com/GRINSfem/GRINS)



#### Results: Case Overview

- Incompressible RANS w/ SA turbulence model
- $Re = 6 \times 10^6$ ,  $\alpha = 0.16^\circ$
- GRINS Code (https://github.com/GRINSfem/GRINS)



## Results: Adjoint Gradient

$$\alpha=0,\, \mathrm{QoI}=\mathrm{Drag}$$



• All plots show  $\log\left(\left|\frac{\partial \varphi_{u_i}}{\partial x_j}\right|+1\right)$ 

## Results: Adjoint Gradient

$$\alpha=16$$
, Qol = Drag





## Results: Adjoint Gradient

$$\alpha=16^{\circ}$$
, QoI = Lift





## Summary

By computing QoI sensitivity w.r.t. Reynolds stress, we hope to

- Improve forward propagation efficiency for random Reynolds stress
- Gain insight regarding modeled features most important to Qol

#### **Future Work**

- Further develop stochastic Reynolds stress inadequacy models
- Use LSDEMC to propagate Reynolds stress uncertainty
- Incorporate Hessian information (LSHEMC)
- Mine Reynolds stress sensitivities to understand critical features

## Bibliography I

- Cao, Y., Hussaini, M., Zang, T., and Zatezalo, A. (2006). A variance reduction method based on sensitivity derivatives. *Applied numerical mathematics*, 56(6):800–813.
- El Moselhy, T. A. and Marzouk, Y. M. (2012).

  Bayesian inference with optimal maps.

  Journal of Computational Physics, 231(23):7815–7850.
- Garg, V., R.H., S., and Willcox, K. (2013). Local sensitivity derivative enhanced monte carlo. SIAM CSE, Boston.
  - Martin, J., Wilcox, L. C., Burstedde, C., and Ghattas, O. (2012).

    A stochastic newton mcmc method for large-scale statistical inverse problems with application to seismic inversion.

SIAM Journal on Scientific Computing, 34(3):A1460–A1487.

## Bibliography II

Roberts, G. O. and Tweedie, R. L. (1996). Exponential convergence of langevin distributions and their discrete approximations.

Bernoulli, pages 341-363.