Multi-GPU training with TensorFlow on Piz Daint

Synchronous Distributed Training with TensorFlow and Horovod

Rafael Sarmiento and Henrique Mendonça ETHZürich / CSCS 7th-8th September 2020

Outline

- Stochastic Gradient Descent
- [lab] Simple Stochastic Gradient Descent
- Synchronous Distributed Stochastic Gradient Descent
- Ring Allreduce
- Horovod
- [lab] Simple Stochastic Gradient Descent with Horovod

We want to train a model on this data

We choose a model and a cost function

$$y = mx + n$$

$$L = \frac{1}{N} \sum_{i}^{N} (\hat{y}_i - y_i)^2$$

We choose a model and a cost function

$$y = mx + n$$

$$L = \frac{1}{N} \sum_{i}^{N} (\hat{y}_i - y_i)^2$$

$$L = \frac{1}{N} \sum_{i=1}^{N} (mx_i + n - y_i)^2$$

We choose a model and a cost function

$$y = mx + n$$

$$L = \frac{1}{N} \sum_{i}^{N} (mx_i + n - y_i)^2$$

We need to choose an optimizer

We need to choose an optimizer

• Evaluate the loss function $L=\frac{1}{N}\sum_{i}^{N}l(\hat{y}_{i},y_{i})$ for a batch of N samples $\{x,y\}$ (forward pass)

- Evaluate the loss function $L = \frac{1}{N} \sum_{i}^{N} l(\hat{y}_i, y_i)$ for a batch of N samples $\{x, y\}$ (forward pass)
- Compute the gradients of the loss function with respect to the parameters of the model $\frac{\partial L}{\partial W}\big|_{\{x,y\}}$ (backpropagation)

- Evaluate the loss function $L = \frac{1}{N} \sum_{i}^{N} l(\hat{y}_{i}, y_{i})$ for a batch of N samples $\{x, y\}$ (forward pass)
- Compute the gradients of the loss function with respect to the parameters of the model $\frac{\partial L}{\partial W}\big|_{\{x,y\}}$ (backpropagation)
- Update the parameters $W_t = W_{t-1} \eta \frac{\partial L}{\partial W} \big|_{\{x,y\}_{t-1}}$

Gradient
Descent
batch_size = training_set_size

Gradient
Descent
batch_size = training_set_size

0.100 0.100 0.100 0.100 0.100 0.100

Stochastic Gradient

Descent

batch_size = 1

Gradient
Descent
batch_size = training_set_size

Stochastic Gradient
Descent
batch_size = 1

Minibatch Stochastic Gradient

Descent

1 < batch_size < training_set_size

[lab] Simple Stochastic Gradient Descent

Let's run the notebook SGD/1-linear_regression_SGD_TF2-simple.ipynb. There we use an unidimensional linear model to understand the trajectories of the SGD minimization.

Try different batch sizes and see how the trajectory changes.

Gradient
Descent
batch_size = training_set_size

Stochastic Gradient
Descent
batch_size = 1

Minibatch Stochastic Gradient

Descent

1 < batch_size < training_set_size

• The batch size is a hyperparameter

- The batch size is a hyperparameter
- Large batches may not fit on the GPU memory

- The batch size is a hyperparameter
- Large batches may not fit on the GPU memory
- Splitting the training into multiple nodes/GPUs enables the use of large batches

- The batch size is a hyperparameter
- Large batches may not fit on the GPU memory
- Splitting the training into multiple nodes/GPUs enables the use of large batches
- Multiple nodes/GPUs does not necessarily mean more throughput or faster convergence

Distributing the training with data parallelism

Distributing the training with data parallelism

Distributing the training with data parallelism

The Allreduce operation

- The Allreduce name comes from the MPI standard.
- MPI defines the function MPI_Allreduce to reduce values from all ranks and broadcast the result of the reduction such that all processes have a copy of it at the end of the operation.
- Allreduce can be implemented in different ways depending on the problem.

65 18 20 21 40 11 50 5

10 36 1 34 6 17 9 1

Worker 2 2 32 7 5 10 3 12 45

- ullet Each of the N workers communicates only with other two workers 2(N-1) times.
- The values of the reduction are obtained with the first N-1 communications.
- The second N-1 communications are performed to update the reduced values on all workers.
- The total amount of data sent by each worker $\left[2(N-1)\frac{\text{array_size}}{N}\right]$ is virtually independent of the number of workers.

Communication between Cray XC50 Nodes on Piz Daint

- Aries interconnect with the Dragonfly topology
- Direct communications between nodes on the same electrical group (2 cabinets / 384 nodes)
- Communications between nodes on different electrical groups passes by switches (submit with option #SBATCH --switches=1 to make your job wait for a single-group allocation)
- More info on CSCS user portal

Horovod

Horovod is an open-source distributed training framework for TensorFlow, Keras, PyTorch, and MXNet developed by Uber. The goal of Horovod is to make distributed Deep Learning fast and easy to use.

Horovod

- Minimal code modification required
- Uses bandwidth-optimal communication protocols
- Seamless integration with Cray-MPICH and use of the NVidia Collective Communications Library (NCCL-2)
- Actively developed
- Growing community

NVIDIA Collective Communications Library (NCCL)

NCCL implements multi-GPU and multi-node collective communication primitives that are performance optimized for NVIDIA GPUs. NCCL provides routines such as Allgather, Allreduce and Broadcast, optimized to achieve high bandwidth over PCIe and NVLink high-speed interconnect.

Horovod: 1. Import and initialize the library (tf.keras)

import horovod.tensorflow.keras as hvd

hvd.init()

Horovod: 2. Sync the initial state of the workers (tf.keras)

```
initial_sync = hvd.callbacks.BroadcastGlobalVariablesCallback(0)
model.fit(dataset, ..., callbacks=[initial_sync])
```


Horovod: 3. Wrap the optimizer with Horovod's one (tf.keras)

```
opt = tf.keras.optimizers.SGD(learning_rate)
opt = hvd.DistributedOptimizer(opt)
```


Horovod: 4. Checkpoints

```
# Save checkpoints for the worker of rank 0.
# This will prevent all workers from corrupting a
# single checkpoint file.
if hvd.rank() == 0:
```


Benchmarks results on Piz Daint (CNNs on Imagenet)

num layers : 347 num weights: 44,601,832

num layers : 313 num weights: 23,817,352

num layers : 23 num weights: 138.357.544

Running TensorFlow + Horovod on Piz Daint

```
#!/bin/bash -l
#SBATCH -- iob-name=tf hvd
#SBATCH --time=00:15:00
#SBATCH --nodes=2
#SBATCH --ntasks-per-core=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=12
#SBATCH --hint=nomultithread
#SBATCH --constraint=gpu
module load daint-gpu
module load Horovod/0.19.1-CrayGNU-19.10-tf-2.2.0
export OMP NUM THREADS=$SLURM CPUS PER TASK
export NCCL_DEBUG=INFO
export NCCL IB HCA=ipogif0
export NCCL IB CUDA SUPPORT=1
srun python my_script.py
```


Some additional considerations

- Data must be split equally by workers to avoid load imbalance.
- If applicable, data can be split such that each worker does not need to read all files.
- Dataset splits resulting in non-homogeneous datasets may harm the convergence.
- Consider scaling the learning rate (learning_rate * hvd.size())

$$L = \frac{1}{N} \sum_{i}^{N} l(\hat{y}_i, y_i)$$

$$W_{t+1}^{\,\mathrm{SGD}} = \left.W_t^{\,\mathrm{SGD}} - \eta rac{\partial L}{\partial W}
ight|_{\{x,y\}_t}$$

$$\begin{split} L &= \tfrac{1}{N} \sum_{i}^{N} l(\hat{y}_{i}, y_{i}) \\ W^{\text{SGD}}_{t+1} &= W^{\text{SGD}}_{t} - \eta \tfrac{\partial L}{\partial W}\big|_{\{x,y\}_{t}} \\ W^{\text{SGD}}_{t+1} &= W^{\text{SGD}}_{t} - \tfrac{\eta}{N} \sum_{i \in t}^{N} \tfrac{\partial l}{\partial W}\big|_{\{x,y\}_{i}} \end{split}$$

$$W_{t+k}^{ ext{SGD}} = \left. W_t^{ ext{SGD}} - rac{\eta}{N} \sum_j^k \sum_{i \in t_j}^N rac{\partial l}{\partial W}
ight|_{\{x,y\}_i}$$

$$W_{t+k}^{\mathrm{SGD}} = \left. W_t^{\mathrm{SGD}} - \frac{\eta}{N} \sum_{j}^{k} \sum_{i \in t_j}^{N} \frac{\partial l}{\partial W} \right|_{\{x,y\}_i}$$

$$W_{t+1}^{\text{distrSGD}} = \left.W_t^{\text{distrSGD}} - \frac{\eta}{kN} \sum_{i \in t}^{kN} \frac{\partial l}{\partial W}\right|_{\{x,y\}_i}$$

$$W_{t+k}^{\mathrm{SGD}} = \left.W_{t}^{\mathrm{SGD}} - rac{\eta}{N}\sum_{j}^{k}\sum_{i \in t_{j}}^{N}rac{\partial l}{\partial W}
ight|_{\{x,y\}_{i}}$$

$$W_{t+1}^{\text{distrSGD}} = \left.W_t^{\text{distrSGD}} - \frac{\eta}{kN} \sum_{i \in t}^{kN} \frac{\partial l}{\partial W}\right|_{\{x,y\}_i}$$

$$W_{t+1}^{ ext{distrSGD}} = \left. W_t^{ ext{distrSGD}} - rac{k\eta}{kN} \sum_{i=t}^{kN} rac{\partial l}{\partial W}
ight|_{\{x,y\}_i}$$

TensorFlow's distribution strategy

- TensorFlow includes support for synchronous distributed training using Ring Allreduce through tf.distribute.
- tf.distribute support training over multiple nodes with Slurm through MultiWorkerMirroredStrategy and SlurmClusterResolver.

[lab] Simple Stochastic Gradient Descent with Horovod

The notebook SGD/2-exercise-linear_regression_SGD_TF2-horovod.ipynb uses the same model that we saw before. We will addapt it to Horovod and we will run it with 2 workers.

Visualize the trajectories before and after adding each Horovod modification. Try to understand why each line of Horovod is needed.

[lab] CNN on MNIST: Horovod and tf.distribute

Let's edit SGD/mnist/01-mnist.ipynb to run the training in 2 nodes. Let's start first with the Horovod implementation. After that we will introduce TensorFlow's solution.

Thank you for your attention!

