ECE4880J — Computer Vision

Guest Lecture on 3D Vision

Prof. He Wang

About Me

· 王鶴

- Assistant Professor in Center on Frontiers of Computing Studies (CFCS)
- Joined PKU in September, 2021
- Received Ph.D. from Stanford in 2021
- Received Bachelor from Tsinghua in 2014
- Our lab: Embodied Perception and InteraCtion (EPIC) Lab
- Research interest: 3D vision, Robotics
- Homepage: https://hughw19.github.io/

Why 3D Vision?

Monocular Vision

Issue of 2D Vision

- We don't know true distance between pixels.
- Depth scale ambiguity

Courtesy side S. Lazebnik

Binocular Vision and Stereopsis

Human eyes are binocular.

 Senses distances through stereopsis

Human stereo geometry

http://webvision.med.utah.edu/space_perception.html

S. Brothfield, Chimson Univ., ECE 847,

Computing Depth

$$u - u' = \frac{B \cdot f}{z} = \text{disparity}$$

[Eq. 1]

Note: Disparity is inversely proportional to depth

Disparity Maps

Disparity map / depth map

Disparity map with occlusions

Where are 3D Data from?

3D Data: from Sensors or Graphics

Real 3D data acquired by 3D sensing

Synthetic 3D data

Depth Sensors

- Depth sensors are a form of 3D range finder
- Measure multi-point distance information across a wide Field-of-View (FoV)

https://www.terabee.com/depth-sensors-precision-personal-privacy

Stereo Sensor

Compute disparity and turn into depth.

Stereolabs Zed

Occipital Structure Core

Stereo Vision

- Advantage:

 1. Robust to the illumination of direct sunlight
- 2. Low implementation cost

Drawback:

is hard and erroneous Finding correspondences along $Image_L$ and $Image_R$

Failure of correspondence search

Occlusions, repetition

Textureless surfaces

Non-Lambertian surfaces, specularities

Structured Light

- Belongs to active stereoscopic approaches
- One camera replaced by an infrared projection unit
- Generates a pattern by projecting on the imaged surface

Advantage

- 1. Simplify the correspondence problem Drawback:
- 1. Near field
- 2. Indoor

Time-of-Flight

Microsoft Kinect v2 (2013)

Microsoft Azure Kinect (2020)

iPad Pro 2019 LiDAR

iToF vs. dToF

- dToF (the future)
- Direct time-of-flight
- Pulse wave
- Long range
- Theoretically higher precision but currently lower resolution
- Expensive (needs SPAD)

- iToF (Classic 3D imaging)
- Indirect time-of-flight
- Sin wave and solve for phase shift
- Lower range
- Lower precision but higher resolution
- Cheaper

LiDAR in Autonomous Driving Cars

- A ToF sensor (mostly dToF) + a rotating scanner
- High laser intensity that supports sensing up to 200 meters and more
- Currently pretty low resolution (32 beams are common)

Summary of Different Depth Sensors

Medium	Limited	Range
Medium		
	Low	Power Consumption
Weak	Good	Bright-Light Performance
Good	Weak	Low-Light Performance
High	Low	Depth Accuracy
Slow	Medium	Response Time
High	Low	Compactness
High	Low	Material Cost
Medium	High	Software Complexity
STRUCTURED-LIGHT	STEREO VISION	CONSIDERATIONS
	STRUCTURED-LIGHT Medium High High	EO VISION

CAD Models from Graphics Community

- CAD: computer-aided design models
- Widely used in
- Graphics applications, including games, movies, animations, etc.
- 3D printing and fabrications
- •

https://www.cadnav.com/3d-models.model-49123.html

https://www.ptc.com/-/media/Images/CAD-Blog/2018/June/materialise/3d-printer.png?sc_lang=en

How to Obtain CAD Models

- Modeling by designers
- 3D shape synthesis algorithm
- Procedural modeling
- Generative models
- Acquired by 3D scans

Synthetic Datasets for 3D Objects

Large-scale Synthetic Objects: ShapeNet

ModelNet: absorbed by ShapeNet

Chang et al., "ShapeNet: An Information-Rich 3D Model Repository", *arXiv* Wu et al., "3D ShapeNets: A deep representation for volumetric shapes", *CVPR 2015* Choi et al., "A Large Dataset of Object Scans", *arXiv*

Datasets for Indoor 3D Scenes

Large-scale Synthetic Scenes: SceneNet

3D meshes 5M Photorealistic Images

Ankur et al., "Understanding RealWorld Indoor Scenes with Synthetic Data", CVPR 2016

McCormac et al., "SceneNet RGB-D: Can 5M Synthetic Images Beat Generic ImageNet Pre-training on Indoor Segmentation?", ICCV 2017

Datasets for Indoor 3D Scenes

Large-scale Scanned Real Scenes: ScanNet

2.5 M Views in 1500 RGBD scans3D camera posessurface reconstructionsInstance-level semantic segmentations

Dai et al., "ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes", CVPR 2017

Datasets for Outdoor 3D Scenes

KITTI: LiDAR data, labeled by 3D bboxes

Semantic KITTI: LiDAR data, labeled per point

Waymo Open Dataset: LiDAR data, labeled by 3D b.boxes

3D Representations

2D Image Representations

 $H \times W \times 3$

Multiple 3D Representations

Regular form

Irregular form

Multi-view images

Depth

Volumetric

Surface Mesh

Point Cloud

Implicit representation

Multi-View Images

- Multiple images from different viewpoints
- Contain 3D information
- Indirect, not a true 3D representation

Depth Image

 A single-channel image filled by depth values
 A 2.5D representation

True 3D representation should enable distance measurement between two points.

Voxels

Voxels

- $H \times W \times D$
- Can be indexed
- An expensive geometry representation
- Not a surface representation
- Where is the surface?

How to upsample?

30

Irregular 3D Representation

Mesh

Point Cloud

Implicit representation

- Irregular representation
- Model the 3D via capturing the surface or something on the surface

Mesh

Surface Mesh

- A piece-wise Linear Surface Representation
- Both a geometry and surface representation

Mesh of Stanford Bunny

Different Kinds of Mesh in Different Resolutions

Triangle mesh at different resolutions

Quad mesh

Triangle Mesh

- Mesh essentially is a graph: {vertex, edge}
- Faces are triangles

$$V = \{v_1, v_2, ..., v_n\} \subset \mathbb{R}^3$$

 $E = \{e_1, e_2, ..., e_k\} \subseteq V \times V$
 $F = \{f_1, f_2, ..., f_m\} \subseteq V \times V \times V$

http://graphics.stanford.edu/data/3Dscanrep/stanford-bunny-cebal-ssh.jpg http://www.stat.washington.edu/wxs/images/BUNMID.gif

Data Structure for Mesh

- What information should be stored?
- Geometry: 3D coordinates
- Topology
- Attributes
- Normal, color, texture coordinates
- Per vertex, face, edge

Simple Data Structure: Triangle List

- STL format (used in CAD)
- Stored information
- Face: 3 positions
- No connectivity information

Indexed Face Set

- Used in formats
- OBJ, OFF, WRL
- Stored information
- Vertex: position

Face: vertex indices

 Convention is to save vertices in counterclockwise order (right hand rule) for normal direction (pointing out)

:	6	5	4	2	2	≤	8	Ver
:	×	×	×4	×з	x2	×	×o	Vertices
:	У6	У5	у4	У3	у2		У0	SS
:	20	25	z4	z3	22	21	20	

:	ದ	72	ユ	to	Tria
Ė	ν5	٧2	v0	ν0	Triangles
:	٧2	٧4	٧1	V1	Se
:	46	٧3	₹3	٧2	

Point Cloud

Point Cloud

Point Cloud

- Irregular and orderless data
- A light-weight geometric representation
- Compact to store
- Easy to understand and generally easy to build algorithms

Limitations of Point Cloud

Point Cloud

- Point cloud is not a surface representation
- where is the surface?
- Point cloud = surface + sampling
- How to sample point clouds from a mesh surface?

Sampling Strategy: Uniform Sampling

- 1. Compute the areas of each individual face
- 2. Compute the probability of each face and use it as weight
- 3. Independent identically distributed weights (i.i.d.) sample faces according to the
- 4. For each sampled face, uniformly sample from one triangle face

Uniform Sampling Points in a Triangle

- Special case: for a triangle with one vertex at the origin and the others at positions v_1 and v_2 :
- To pick points uniformly distributed inside the triangle, we can do $x=a_1v_1+a_2v_2$, where a_1 and a_2 are uniform variates in the interval
- This gives points uniformly distributed in a quadrilateral. The points not in the triangle interior can then be transformed into the corresponding point inside the triangle.

Uniform Sampling Points in a Triangle

- General case: for a triangle with vertices ν_1, ν_2, ν_3 :
- $x = v_3 + a_1(v_1 v_3) + a_2(v_2 v_3) = a_1v_1 + a_2v_2 + (1 a_1 a_2)v_3$, where a_1 and a_2 are uniform variates in the interval $\left[0,1\right]$
- If $a_1 + a_2 \le 1$, then x will be inside the triangle (or on the edges);
- If $a_1 + a_2 > 1$, then x can be mapped back to the triangle interior via

$$x = (1 - a_1)\nu_1 + (1 - a_2)\nu_2 + (a_1 + a_2)\nu_3$$

Alternative Approach

$$x = (1 - \sqrt{r_1})\nu_1 + \sqrt{r_1}(1 - r_2)\nu_2 + \sqrt{r_1}r_2\nu_3$$

• Here $r_1, r_2 \sim U(0,1)$.

- Proof:
- If this is true for one triangle, it is true for all triangles, as we can find an affine transformation between them
- Use $v_1 = (0,0), v_2 = (1,0), v_3 = (0,1)$
- Prove x is always inside the triangle.
- Show that the probability to be within an area of (0,x) imes(0,y) is always

Sampling Strategy: Uniform Sampling

- Usually the easiest to implement
- Issue: Irregularly spaced sampling

Farthest Point Sampling (FPS)

- Goal: Sampled points are far away from each other
- NP-hard problem
- What is a greedy approximation method?

Iterative Furthest Point Sampling

Step 1: Over sample the shape by any fast method (e.g., uniformly sample N=10,000 i.i.d. samples)

Iterative Furthest Point Sampling

Step 2: Iteratively select K points

```
U is the initial big set of points S = \{\}
                       for i=1 to K find a point u \in U with the largest distance to S
                                                                                                 add a random point from U to S
add u to S
```

Visualization: Uniform Sampling vs. FPS

• FPS

Uniform sampling

With the same number of sampled points.

Wang et al. Rethinking Sampling in 3D Point Cloud Generative Adversarial Networks.

How to measure the distance between two point clouds?

Chamfer distance We define the Chamfer distance be-

tween
$$S_1, S_2 \subseteq \mathbb{R}^3$$
 as:
$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2$$

A Point Set Generation Network for 3D Object Reconstruction from a Single Image, CVPR 2016

tween $S_1, S_2 \subseteq \mathbb{R}^3$ as: Chamfer distance We define the Chamfer distance be-

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2$$

size $s = |S_1| = |S_2|$. The EMD between A and B is defined Earth Mover's distance Consider $S_1, S_2 \subseteq \mathbb{R}^3$ of equal

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} ||x - \phi(x)||_2$$

where $\phi: S_1 \to S_2$ is a bijection.

A Point Set Generation Network for 3D Object Reconstruction from a Single Image, CVPR 2016

tween $S_1, S_2 \subseteq \mathbb{R}^3$ as: Chamfer distance We define the Chamfer distance be-

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2$$

size $s = |S_1| = |S_2|$. The EMD between A and B is defined Earth Mover's distance Consider $S_1, S_2 \subseteq \mathbb{R}^3$ of equal

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} ||x - \phi(x)||_2$$

where $\phi: S_1 \to S_2$ is a bijection.

Sum of the closest distances Insensitive to sampling

Sum of the matched closest distances
Sensitive to sampling

Implicit Field

Implicit Shape

SDF

- Both an implicit geometry and surface representation
- Can convert into mesh
- Signed distance function, unsigned distance function, occupancy network

Signed Distance Function (SDF)

Interior: F(x, y, z) < 0Exterior: F(x, y, z) > 0Surface: F(x, y, z) = 0 (zero set, zero iso-surface)

Example implementation:

- SDF: F(x, y, z) = distance to the surface

3D Deep Learning

Outline

- Point Networks
- PointNet
- PointNet++
- Voxel Networks
- Networks for other representations
- SDF
- Mesh

Straightforward Ways of Processing Point Clouds

Unordered Inputs

Point cloud: N orderless points, each represented by a D dim coordinate

Unordered Inputs

Point cloud: N orderless points, each represented by a D dim coordinate

Desired Properties of a Point Cloud Network

Point cloud: N orderless points, each represented by a D dim coordinate

Deep net needs to be invariant to N! permutations

Permutation Invariance

Fully connected network

1D convolutional network

Permutation Invariance — Sorting?

lexsorted
$$(1,2,3) \qquad (1,1,1) \\ (1,1,1) \qquad (1,2,3) \qquad MLP \qquad (2,3,2) \qquad MLP \qquad (2,3,4) \qquad (2,3,4)$$

Not a good idea! Adding one point will change the order dramatically!

Permutation Invariance: Symmetric Function

$$f(x_1,x_2,...,x_n) \equiv f(x_{\pi_1},x_{\pi_2},...,x_{\pi_n}), x_i \in \mathbb{R}^D$$

Permutation Invariance: Symmetric Function

$$f(x_1,x_2,...,x_n) \equiv f(x_{\pi_1},x_{\pi_2},...,x_{\pi_n}), x_i \in \mathbb{R}^D$$

Examples:

$$f(x_1,x_2,...,x_n) = \max\{x_1,x_2,...,x_n\}$$
$$f(x_1,x_2,...,x_n) = x_1 + x_2 + ... + x_n$$

Permutation Invariance: Symmetric Function

$$f(x_1,x_2,...,x_n) \equiv f(x_{\pi_1},x_{\pi_2},...,x_{\pi_n}), x_i \in \mathbb{R}^D$$

Examples:

$$f(x_1,x_2,...,x_n) = \max\{x_1,x_2,...,x_n\}$$

 $f(x_1,x_2,...,x_n) = x_1 + x_2 + ... + x_n$

:

How can we construct a universal family of symmetric functions by neural networks?

Construct Symmetric Functions by Neural Networks

Simplest form: directly aggregate all points with a symmetric operator gJust discovers simple extreme/aggregate properties of the geometry.

Construct Symmetric Functions by Neural Networks

$$f(x_1,x_2,...,x_n) = \gamma \circ g(h(x_1),...,h(x_n))$$
 is symmetric if g is symmetric

Construct Symmetric Functions by Neural Networks

$$f(x_1,x_2,...,x_n) = \gamma \circ g(h(x_1),...,h(x_n))$$
 is symmetric if g is symmetric

Reflection: assuming g is a max operation, construct a function h where geometric details get kept after applying g.

Spatial Hashing Function

input points

nx3

Extension to Segmentation

Extension to Segmentation

PointNet is Light-Weight and Fast

PointNet is Light-Weight and Fast

Robustness to Data Corruption

- Many challenges
- Resolution
- Occlusion
- Noise
- Registration

Noise→Poor detail reproduction

Low resolution further obscures detail

Occlusion→ Interiors not captured

Robustness to Data Corruption

classification accuracy (%) dataset: ModelNet40; metric: 40-class

Original Shape:

Critical Point Set:

Original Shape:

Critical Point Set:

Limitation of PointNet

Hierarchical feature learning Multiple levels of abstraction

3D CNN (Wu et al.)

Global feature learning Either one point or all points

PointNet (vanilla) (Qi et al.)

- No local context for each point
- Global feature depends on absolute coordinate. Hard to generalize to unseen scene configurations!

Outline

- Point Networks
- PointNet
- PointNet++
- Voxel Networks
- Networks for other representations
- SDF
- Mesh

PointNet++

Basic idea: Recursively apply pointnet at local regions.

- √ Hierarchical feature learning
- ✓ Local translation invariance
- ✓ Permutation invariance

Charles R. Qi, Li Yi, Hao Su, Leonidas Guibas. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space (NIPS'17)

k points in local coordinates (u,v)

Set Abstraction: farthest point sampling + grouping + pointnet

PointNet++ for Classification

PointNet++ for Segmentation

PointNet++: Classificiation

assification	Table 1: MNIST digit classification
0.51	Ours
0.78	PointNet [20]
1.30	PointNet (vanilla) [20]
0.47	Network in Network [13]
0.80	LeNet5 [11]
1.60	Multi-layer perceptron [24]
Error rate (%)	Method

		į
	3	1
	7	1
Ċ	Þ	
	t	٠
	,	
THE CHAPTER	5	2
4	4	9
ζ	1	ŝ
۲		3
Ē	3	
ľ	9	ġ
Ξ	=	л
_	3	
-	71011	
Class	200	
0.000	70000	
CIGORILE	71999	
	20017	10.00
	20001100110	
	20001100110	

Ours pc Ours (with normal) pc	PointNet [20] pc	[20]			Method Input
90.7 91.9	89.2	87.2	90.1	89.2	Accuracy (%)

Table 2: ModelNet40 shape classification.

256 points

PointNet++: Segmentation

Outline

- Point Networks
- PointNet
- PointNet++
- Voxel Networks
- Networks for other representations
- SDF
- Mesh

Voxelization

Represent the occupancy of regular 3D grids

3D CNN on Volumetric Data

3D convolution uses 4D kernels

Complexity Issue

AlexNet, 2012

Input resolution: 224x224

224x224=50176

3DShapeNets, 2015

Input resolution: 30x30x30

224×224=27000

Complexity Issue

Information loss in voxelization

One Idea: Learn to Project

Idea: "X-ray" rendering + Image (2D) CNNs very low #param, very low computation

Many other works in autonomous driving use **bird's eye view** for object detection

More Principled: Sparsity of 3D Shapes

Store only the Occupied Grids

- Store the sparse surface signals
- Constrain the computation near the surface

Sparse Convolution

Sparse Convolution

Implementation

- SparseConvNet
- https://github.com/facebookresearch/ SparseConvNet
- Uses ResNet architecture
- Takes time to train
- MinkowskiEngine
- TorchSparse
- Tensorflow3D

Summary of Sparse Conv

Pros:

- A way higher efficiency than dense conv
- Regular grid that supports indexing
- Similarly expressive compared to 2D Conv
- Translation equivariance similar to 2D Conv

Cons:

Discretization error

Sparse Conv vs. Point Cloud Networks

- Sparse Conv:
- +: Kernels are spatial anisotropic
- +: More efficient for indexing and neighbor query
- +: suitable for large-scale scenes
- -: limited resolutions
- Point cloud networks:
- +: high resolution
- +: easier to use and can be the first choice for a quick try
- -: slightly lower performance
- -: slower if performing FPS and ball query

Outline

- Point Networks
- PointNet
- PointNet++
- Voxel Networks
- Networks for other representations
- SDF
- Mesh

Deep SDF

- (a) use the network to overfit a single shape
- network can be used for multiple shapes (b) use a latent code to represent a shape, so that the

Park et al., "DeepSDF: Learning continuous signed distance functions for shape representation.", CVPR 2019

Convolution on Mesh/Graph

Message passing: The output of EdgeConv at the i-th vertex is thus given by

$$\mathbf{x}_{i}' = \prod_{j:(i,j)\in\mathcal{E}} h_{\mathbf{\Theta}}(\mathbf{x}_{i}, \mathbf{x}_{j}). \tag{1}$$

Wang, et.al., Dynamic Graph CNN for Learning on Point Clouds, ToG 2019

Thank you!