Date:
Karya Vinoy Thataparambil
Karya Vinoy Thatiparambil 20211110
BATCH-4
Fato
TUTORIAL PRESENTATION PROBLEM
This problem explores the working of a Gieger-Muller tube, a device used in radiation detection. des
This is an originally concieved question, with inspiration taken
from Grifiths: Introduction to Electrodynamics,
and Resnick et al: Fundamentals of Physics
mes mix ci me junicament nes of jugates
A Gerger Müller tube is a device used in radiation detectors,
to detect the frequency of incoming radiation. It consists of
a conducting cylindrical tube (the cathode) and a metal wire
suspended along its central axis (the anode). They are hald
at a high potential difference, and the space between them
is filled with argon gas at a low pressure.
When good
b=radius of tube
ba = radius of wire
L= length of tube
TAK /
Two T
LC = countaing device
When radiation incidents on an argon atom, it gets ionized.
sending the electron accelerating towards the amode at the center
sending the electron accelerating towards the anode at the center Conder the Influence of the electric field). When the electron gets
chain reaction called electron avalanche when the large
chain reaction called electron avalanche when the large

Page No.

of aurent, which is then picked up by a counting device.

The changed particles then neutralize via the connecting wires, and the tube is ready to pick up another count.

- a) Given that the battery maintaining the potential difference supplies 500 V, and the radii of the cylinder and tube are $b = 10^{-2}$ m and $a = 10^{-4}$ m, find the charge per length of the inner wire.
- b) Use the result of the previous part to find how many levels of the electron avalanche occurs, if the initial electron was jonised close to the outer tube (i.e., at a distance b from the center). Given: the first ionisation energy of argon is 1520.6 J/mol

ANSWERS

Given: AV = Va - Vb = 500V

 $a = 10^{-4} \, \text{m}, \, b = 10^{-2} \, \text{m}$

Need to find the charge per length (1) of the inner wire

We start with taking a Guassian surface as:

According to Guass Law, \(\vec{E} \). $d\vec{a} = \frac{2 \text{ enc}}{\varepsilon_0}$ Here, \vec{E} is always parallel to $d\vec{a}$ on the owned surface, and is equal in magnitude by symmetry

Date:

And, it it perpendicular to da on the flat circular surfaces

TITITIES !

Hence, the equation becomes:
$$E(2\pi r L) = \lambda L/\epsilon$$
from this we get
$$\overline{E} = \frac{\lambda}{2\pi \epsilon_0} \frac{1}{r}$$

Now, since we know the potential difference

$$-\frac{\lambda}{2\pi\epsilon_0} \frac{\hat{r}}{r} \cdot dr = dV$$

$$\frac{\lambda}{2\pi\epsilon_0} \int \frac{1}{r} dr = \int dV$$

$$S_0$$
, $\lambda = (V_a - V_b)$ (2 $\pi t \varepsilon_0$)
$$\ln (b/a)$$

Substituting:
$$\lambda = \frac{500 \text{ V}}{\ln \left(\frac{10^{-2}}{10^{-4}}\right)}$$

We get,
$$\lambda = 6.03 \times 10^9$$
 C/m

6) Given: lonization energy, E, of Argon = 1520.6 × 103 J/mol

We assume that the ionized free eletron start accelerating from hest. When it reaches a distance y from the center, we can find its kinetic energy:

Since $\Delta E = q \cdot \Delta V$ $= e \left(-\frac{\lambda}{2\pi \epsilon_0} \ln \left(\frac{b_y}{y} \right) \right)$

And if the electron is to somize another atom, its energy must egual the Ex of one Argon atom:

 $\frac{-e\lambda}{2\pi\epsilon} \ln\left(\frac{b}{2}\right) = \frac{E_i(Ar)}{N_A} \text{ per atom}$

 $ln(y_b) = \frac{E_i(Ar).2TE_0}{N_A e \lambda}$

Substituting: $\ln \left(\frac{4}{5}\right) = \frac{1.5206 \times 10^6}{2000 \times 6.28 \times 8.85 \times 10^{-12}}$ 6.022 x 1023 x 1.6 x 10-19 x 6.03 x 10-9

 $\ln (\%) = -0.1454$ So $\% = e^{-0.1454} = 0.865$

This is an interesting result: that the distance that the electron has to trave before affairing ionization energy, is a fixed fraction of its distance from the center.

We can use this fact to take the same fraction of the remaining distance each after each ionization.

