

WHAT IS SPAM?

- Spam is unsolicited and unwanted junk email sent out in bulk to indiscriminate recipient lists, either for publicity or as an attempt to scam people.
- This menace increases on a yearly basis: it is responsible for over 77% of the whole global e-mail traffic and has resulted in financial loss to many users who have fallen for the scams.

CONTENT BASED FILTERING TECHNIQUE

1. The Solution: Filters

Big tech companies such as Google (for Gmail) and Apple (for iMessage) have developed an intense need for the development of machine learning-based spam filters.

Thought there are several email spam filtering methods in existence, the most widely used is the **Content Based Filtering Technique**.

2. Content-Based:

This method analyses words, the occurrence, and distributions of words and phrases in the content of emails and used then use generated rules to filter the incoming email spams

GOAL OF THE PROJECT:

How can we recognize spam, and what would be the best method for doing so?

SPAMBASE DATASET CHARACTERISTICS

Data Set Characteristics:	Multivariate	Number of Instances:	4601	Area:	Computer
Attribute Characteristics:	Integer, Real	Number of Attributes:	57	Date Donated	1999-07-01
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	709002

Mail origin

Spam mail: individuals who had filed spam.

Non-spam mail: filed work and personal e-mails (indicated by 'George' and '650')

Attribute	Definition
48 continuous real [0,100] attributes of type word_freq_WORD	percentage of words in the e-mail that match WORD
6 continuous real [0,100] attributes of type char_freq_CHAR]	percentage of characters in the e-mail that match CHAR
1 continuous real [1,] attribute of type capital_run_length_average	average length of uninterrupted sequences of capital letters
1 continuous integer [1,] attribute of type capital_run_length_longest	length of longest uninterrupted sequence of capital letters
1 continuous integer [1,] attribute of type capital_run_length_total	total number of capital letters in the e-mail
1 nominal {0,1} class attribute of type spam	denotes whether the e-mail was considered spam (1) or not (0), i.e. unsolicited commercial e-mail.

VISUALIZATION: LINK BETWEEN DATA AND TARGET

Raw Data: Spam/Not spam

Class columns

0 = Not spam (2788)

1 = Spam (1812)

Does the average of the explanatory values change, when grouped by spam/not spam?

'our', 'free', 'you, 'your' and '!' occurrences increase when mail is considered spam.

	0.0 🗸	3 1.0 🗡
word_freq_you	1.27	2.26
word_freq_your	0.44	1.38
word_freq_free	0.07	0.52
word_freq_our	0.18	0.51
char_freq_!	0.11	0.51

What does this mean?

- Bayes thm : Probability of these words ONCE mail considered spam.
- Interpretation:

'Our', 'you', 'your' → Marketing tactic, get the recipients to trust by feeling concerned. (cf. Jupyter, use of 'George') COMMON WORDS, interesting because wouldn't be counted as 'spam features' generally (that's the .)

 $'!' \rightarrow Use of urgency for marketing purposes$

'Free' \rightarrow obvious reasons

Link between Variables and Target

- Aggregation: necessary when there are more features than records
- Reduce minor observation errors (here, by averaging)
- We are ROUNDING the data
- Intervals
- Probabilities

Binning/Bucketing and Aggregating

Scatter plotting raw explanatory variable column data / raw Class column data:

VS

Scatter plotting Binned / Bucketed data, aggregation by average, word_freq_order:

Variable Correlation

Plotted heatmap

- Correlation/Dependance: statistical relationships
- Overfitting DETECTION method (precedes the overfitting AVOIDANCE method: PCA)

PRINCIPAL COMPONENT ANALYSIS FOR REDUCING DIMENSIONALITY OF DATA

- Principal components capture the most variation in a dataset
- Two cluster configuration, variability in different directions
- Very separable data

Two clusters: $is_spam = 0$ or = 1

This heatmap and the color bar represent the correlation between the various feature and the principal component itself:

LOGISTIC REGRESSION MODEL: GRIDSEARCH

Accuracy:

0.9255434782608696

LOGISTIC REGRESSION MODEL: RECURSIVE FEATURE ELIMINATION (RFE)

Model

Feature selection approach fits a model and eliminates the weakest feature/features until the desired amount of features is attained.

Observation: a small portion of the features are relevant to our model.

Confusion Matrix

Accuracy: 0.8766304347826087

K-NEAREST NEIGHBOR:

Model

Assigns a value to the latest data point based on how closely it resembles the points in the training set.

Accuracy: 0.8130434782608695

DECISION TREE

Model

Piecewise constant approximation.

Accuracy: 0.9163043478260869

GRADIENT BOOSTING CLASSIFICATION:

Model

Produces a prediction model in the form of an ensemble of weak prediction models.

Learning rate: 1 Accuracy score (training): 0.926 Accuracy score (validation): 0.917

Random Forest

Model

Builds decision trees

Average => Classification

Majority vote => Regression

Accuracy: 0.9521739130434783

low false positive and false negative accuracy of ~95%

Model

XGBoost is an open-source software library that implements optimized distributed gradient boosting machine learning algorithms under the Gradient Boosting framework.

F Score

plot_importance: most important features in the dataset, currently capital_run_length which influences the most the output

XGBOOST

- word_freq_remove
- 2. char_freq_\$
- 3. char_freq_!

Boxplotting the most impacting features.

How did we improve our models?

We:

- 1. Optimized the hyperparameters
- 2. Limited our use to impactful data
- 3. Prioritized cross-validation methods

Our Answer

How can we recognize spam?

Recurrent features, here being:

- 'Remove': virus scanning apps / virus removal scams
- '\$': fraudulent activities perpetrated by hackers, spread by spam
- '!': symbolizes excitement, urgency in marketing

What is the best method to do so?

MODEL ACCURACY COMPARISON:

	3
random forest	0.9521739130434783
XGBoost	0.95
logistic regression with gridsearch	0.9255434782608696
decision tree	0.9179347826086957
gradient boosting	0.917
Logistic Regression RFE	0.9163043478260869
KNN	0.8010869565217391

Random Forest + XGBoost

GET

/api/predict/result/<upload_id>

1. Get the files using the upload id

2. Get the training files

3. Initialize each of our models

```
def __init__(self, X_train, y_train, X_test, y_test):
    self.X_train = X_train
    self.y_train = y_train
    self.y_test = X_test
    self.y_test = y_test

# convert y_train and y_test to int
    self.y_train = self.y_train.astype(int)
    self.y_test = self.y_test.astype(int)

self.model = neighbors.KNeighborsRegressor(n_neighbors=5)
    self.model = self.model.fit(self.X_train, self.y_train)
```

4. Get their score

- 5. Get their prediction and save it in a file
 - We create a result folder with the same id as the upload id
 - We write a csv file for each model's predictions

GET

/api/predict/result/<upload_id>

- 6. Get their accuracy
- 7. Get their confusion matrix, then we plot it and save it as a base64 image

```
# Get the confusion matrix
model_logreg_rfe_confusion_matrix = model_logreg_rfe.confusion_matrix_base64()
model_logreg_grid_confusion_matrix = model_logreg_grid.confusion_matrix_base64()
model_knn_confusion_matrix = model_knn.confusion_matrix_base64()
model_decision_tree_confusion_matrix = model_decision_tree.confusion_matrix_base64()
model_xg_boost_confusion_matrix = model_xg_boost.confusion_matrix_base64()
model_gradient_boosting_confusion_matrix = model_gradient_boosting.confusion_matrix_base64()
```

8. Decode each base64 images and sent it to the result page template with all the other variables

```
return render_template('results.html',
                      logreg_rfe_confusion_matrix_base64=model_logreg_rfe_confusion_matrix.decode(
                           'utf8'),
                       logreg_grid_confusion_matrix_base64=model_logreg_grid_confusion_matrix.decode(
                           'utf8'),
                      knn_confusion_matrix_base64=model_knn_confusion_matrix.decode(
                           'utf8'),
                      dt_confusion_matrix_base64=model_decision_tree_confusion_matrix.decode(
                      xgb_confusion_matrix_base64=model_xg_boost_confusion_matrix.decode(
                      gb_confusion_matrix_base64=model_gradient_boosting_confusion_matrix.decode(
                      logreg_grid_accuracy=model_logreg_grid_accuracy,
                       logreg_rfe_accuracy=model_logreg_rfe_accuracy,
                      knn_mae=knn_mae,
                      knn_mse=knn_mse.
                      knn_rmse=knn_rmse,
                      knn_score=model_knn_score,
                      dt_score=model_decision_tree_score,
                      xgb_score=model_xg_boost_score,
                      gb_score=model_gradient_boosting_score,
                      logreg_grid_prediction_url=f'/api/uploads/{upload_id}/logreg_grid',
                      logreg_rfe_prediction_url=f'/api/uploads/{upload_id}/logreg_rfe',
                      knn_prediction_url=f'/api/uploads/{upload_id}/knn',
                      dt_prediction_url=f'/api/uploads/{upload_id}/decision_tree',
                      xgb_prediction_url=f'/api/uploads/{upload_id}/xg_boost',
                      gb_prediction_url=f'/api/uploads/{upload_id}/gradient_boosting',
```

```
e('results.html',
 logreg_rfe_confusion_matrix_base64=model_logreg_rfe_confusion_matrix.decode(
  logreg_grid_confusion_matrix_base64=model_logreg_grid_confusion_matrix.decode
   'utf8')
 knn_confusion_matrix_base64=model_knn_confusion_matrix.decode(
      'utf8'),
 dt_confusion_matrix_base64=model_decision_tree_confusion_matrix.decode(
      'utf8'),
 xqb_confusion_matrix_base64=model_xq_boost_confusion_matrix.decode(
      'utf8'),
 qb_confusion_matrix_base64=model_gradient_boosting_confusion_matrix.decode(
  Logreg_grid_accuracy=model_logreg_grid_accuracy,
 Logreg_rje_accuracy=modet_togreg_rfe_accuracy,
 knn_mae=knn_mae,
 knn_mse=knn_mse,
 knn_rmse=knn_rmse,
 knn_score=model_knn_score,
 dt_score=model_decision_tree_score,
 xgb_score=model_xg_boost_score,
 gb_score=model_gradient_boosting_score,
 logreg_grid_prediction_url=f'/api/uploads/{upload_id}/logreg_grid',
 Logreg_rje_prediction_url=f'/api/uploads/{upload_id}/logreg_rte',
 knn_prediction_url=f'/api/uploads/{upload_id}/knn',
 dt_prediction_url=f'/api/uploads/{upload_id}/decision_tree',
 xgb_prediction_url=f'/api/uploads/{upload_id}/xg_boost',
 gb_prediction_url=f'/api/uploads/{upload_id}/gradient_boosting',
```


Logistic Regression model : GridSearch

THANK YOU!

Chloé DEPERTHES, Victoria GAUTHIER, Rémi KALBE