1. Considereu les següents reaccions, que es donen a través de la interacció forta:

(a)
$$\pi^- + p \to \Lambda + K^0$$

(b)
$$\pi^0 + p \to \Lambda + K^+$$

(c)
$$\pi^- + p \to \Sigma^0 + K^0$$

(d)
$$\pi^- + p \to \Sigma^- + K^+$$

(e)
$$\pi^+ + p \to \Sigma^+ + K^+$$

(f)
$$\pi^- + p \to \Xi^- + K^0 + K^+$$

(g)
$$\pi^- + p \to \Xi^0 + K^0 + K^0$$

(h)
$$\pi^+ + p \to \Xi^0 + K^+ + K^+$$

(i)
$$\pi^- + p \to n + K^+ + K^-$$

(j)
$$\pi^- + p \to n + K^0 + \bar{K}^0$$

Sabent que, per conveni, es pren $S(p) = S(n) = S(\pi) = 0$, i $S(K^+) = 1$, deduïu els valors de l'estranyesa de les altres partícules presents.

- 2. Trobeu el contingut en quarks de totes les partícules que apareixen al diagrames de L'octava via de Gell-Mann.
- 3. Cadascuna de les reaccions que hi ha a continuació no és permesa. Determineu la llei de conservació que es viola en cada cas.

(a)
$$p + \overline{p} \rightarrow \mu^+ + e^-$$

(b)
$$\pi^- + p \to p + \pi^+$$

(c)
$$p+p \to p+p+n$$

(d)
$$p+p \rightarrow p+\pi^+$$

(e)
$$\gamma + p \to n + \pi^0$$

4. Les següents reaccions involucren neutrins o antineutrins. Afegiu els que calguin.

(a)
$$\pi^- \to \mu^- + ?$$

(b)
$$K^+ \to \mu^+ + ?$$

(c)
$$? + p \to n + e^+$$

(d)
$$? + n \to p + e^{-}$$

(e)
$$? + n \rightarrow p + \mu^- + ?$$

(f)
$$\mu^- \to e^- + ? + ?$$

- 5. Considereu les reaccions següents:
 - (a) $\bar{p} + p \to \pi^+ + \pi^- + \pi^0$
 - (b) $p + K^- \to \Sigma^+ + \pi^- + \pi^0$
 - (c) $p + K^- \to n + K^+ + \pi^-$
 - (d) $\bar{\nu}_{\mu} + p \to \mu^{+} + n$
 - (e) $\bar{\nu}_e + p \rightarrow e^+ + \Lambda$
 - (f) $\tau^- \rightarrow \nu_\tau + K^-$
 - (g) $\pi^0 \to \gamma + \gamma$
 - (h) $e^+ + e^- \to \pi^+ + \pi^-$

Comproveu si es conserven els nombres quàntics rellevants. Indiqueu si la reacció és possible, i quina interacció (forta, electromagnètica o feble) la produeix.

- 6. Trobeu la partícula que falta en cadascuna de les reaccions següents.
 - (a) $p + \overline{p} \rightarrow n + ?$
 - (b) $p + p \rightarrow p + \Lambda^0 + ?$
 - (c) $\pi^0 + p \to \Sigma + ?$
 - (d) $K^- + n \to \Lambda^0 + ?$
 - (e) $\tau^+ \to e^+ + \nu_e + ?$
 - (f) $\overline{\nu}_e + p \to n+$?
- 7. Decidiu si cada reacció és possible i quina interacció la governa.
 - (a) $\pi^+ + p \rightarrow \Delta^{++}$
 - (b) $\Omega^{-} \to \Xi^{0} + \pi^{-}$
 - (c) $\Omega^- \to \Lambda^0 + K^-$
 - (d) $\mu^- \to e^- + \nu_e + \nu_\mu$
 - (e) $\Lambda^0 \to n + \pi^0$
 - (f) $\Sigma^- \to n + \pi^-$
 - (g) $\pi^+ + p \to p + p + \overline{n}$

8. Considereu els següents hadrons encant	tats:	:
---	-------	---

- (a) D^{+}
- (b) D^{-}
- (c) D^0
- (d) \bar{D}^0
- (e) Λ_c^+ (és un barió)

Trobeu el seu contingut en quarks sabent que no tenen estranyesa i que no contenen cap altre quark pesant.

9. Considereu els següents hadrons amb bellesa:

- (a) B^{+}
- (b) B^{-}
- (c) B^0
- (d) \bar{B}^{0}
- (e) Λ_b^0 (és un barió)

Trobeu el seu contingut en quarks sabent que no tenen estranyesa i que no contenen cap altre quark pesant.