

UNIVERSITÀ DEGLI STUDI DI SALERNO

Fondamenti di Informatica

Algebra di Boole e Circuiti Logici

Prof. Christian Esposito Corso di Laurea in Ingegneria Meccanica e Gestionale (Classe I) A.A. 2016/17

L'Algebra di Boole – 1/4

• Un po' di storia

- Il matematico inglese George Boole nel 1847 fondò un campo della matematica e della filosofia chiamato **logica simbolica**
- Shannon per primo applicò la logica simbolica ai circuiti nel 1939

L'algebra di Boole è caratterizzata da

- Variabili booleane (o binarie): variabili i cui valori possono essere 0 oppure 1
 - Ma anche: vero/falso, on/off, si/no
- Operazioni (o funzioni) booleane: funzioni i cui input ed output sono variabili booleane

Relazione con i circuiti logici

- Si studia l'algebra booleana poiché le sue funzioni sono isomorfe ai circuiti digitali: un circuito digitale può essere espresso tramite un'espressione booleana e viceversa
 - Le variabili booleane corrispondono a segnali
 - Le funzioni booleane corrispondono a circuiti

L'Algebra di Boole – 2/4

- Come variabili contempla solo due costanti: 0 e 1 (falso e vero)
 - Corrispondono a due stati che si escludono a vicenda
 - Possono descrivere lo stato di apertura o chiusura di un generico contatto o di un circuito a più contatti

- Sulle variabili booleane si definiscono le funzioni (od operazioni)
 AND, OR, NOT
 - Ed altre definite a partire da esse

L'Algebra di Boole – 3/4

- Le operazioni AND e OR sono operazioni binarie (agiscono su due operandi), l'operazione NOT è unaria
- Nella valutazione delle espressioni booleane esiste una relazione di precedenza fra gli operatori NOT, AND e OR, nell'ordine in cui sono stati elencati
- Per alterare tale relazione bisogna usare le parentesi
 - Talvolta usate solo per maggiore chiarezza

L'Algebra di Boole – 4/4

- Gli operatori dell'algebra booleana possono essere rappresentati e descritti in vari modi
 - Spesso sono descritti semplicemente come AND, OR e NOT
 - Tavole di verità
 - Nella descrizione dei circuiti appaiono sotto forma di porte logiche

Operatore (o funzione) OR

• Somma logica (OR): il valore della somma logica è il simbolo 1 se il valore di almeno uno degli operandi è il simbolo 1

	X ₁	<i>x</i> ₂	$F(x_1, x_2) = x_1 + x_2$
	0	0	0
Tavola di verità	0	1	1
verita	1	0	1
	1	1	1

• In generale, date n variabili binarie, la loro somma logica (OR) è data da

$$x_1 + x_2 + \dots + x_n = \begin{cases} \mathbf{1} \text{ se almeno una } x_i \text{ vale } \mathbf{1}, con \ 1 \le i \le n \\ \mathbf{0} \text{ se } x_1 = x_2 = \dots = x_n = \mathbf{0} \end{cases}$$

Operatore OR: Possibili Rappresentazioni

- x | y <- Usato in MATLAB
- or(x, y) <- Usato in MATLAB
- x # y
- x or y
- x + y
- $\mathbf{x} \cup \mathbf{y}$
- $\bullet x \lor y$

Operatore (o funzione) AND

 Prodotto logico (AND): il valore del prodotto logico è il simbolo 1 se il valore di tutti gli operandi è il simbolo 1

x ₁	x ₂	$F(x_1, x_2) = x_1 \times x_2$
0	0	0
0	1	0
1	0	0
1	1	1

• In generale, date *n* variabili binarie indipendenti, il loro prodotto logico (AND) è dato da

$$x_1 \times x_2 \times \dots \times x_n = \begin{cases} \mathbf{0} \text{ se almeno una } x_i \text{ vale } \mathbf{0}, con \ 1 \le i \le n \\ \mathbf{1} \text{ se } x_1 = x_2 = \dots = x_n = \mathbf{1} \end{cases}$$

Operatore AND: Possibili Rappresentazioni

- x & y <- Usato in MATLAB
- and(x, y) <- Usato in MATLAB
- x and y
- x ∧ y
- $\mathbf{x} \cap \mathbf{y}$
- $\bullet x \times y$
- x * y
- xy

Operatore (o funzione) NOT

- Operatore di negazione (NOT): inverte il valore della costante su cui opera
 - Noto anche come inverter

• In generale, la negazione di una variabile x è

$$\bar{x} = \mathbf{0}$$
 se $x = \mathbf{1}$
 $\bar{x} = \mathbf{1}$ se $x = \mathbf{0}$

- L'elemento $\bar{x} = NOT(x)$ viene detto **complemento** di x
 - Il complemento è unico

Operatore NOT: Possibili Rappresentazioni

- y = ~x <- Usato in MATLAB
- y = not(x) <- Usato in MATLAB</pre>
- y = !x
- y = not x
- y = x'
- $y = \neg x$
- $y = \overline{x}$

Algebra di Boole: Alcune Identità

Funzione AND	Funzione OR	Funzione NOT
$0 \times 0 = 0$	0 + 0 = 0	$\mathbf{x} + \bar{\mathbf{x}} = 1$
$0 \times 1 = 0$	0 + 1 = 1	$\mathbf{x} \times \bar{\mathbf{x}} = 0$
$1 \times 0 = 0$	1 + 0 = 1	$\bar{\bar{x}} = x$
$1 \times 1 = 1$	1 + 1 = 1	
$x \times 0 = 0$	x + 0 = x	
$0 \times x = 0$	0 + x = x	
$x \times 1 = x$	x + 1 = 1	Legge
$1 \times x = x$	1 + x = 1	dell'idempotenza
$x \times x = x$	x + x = x	

Algebra di Boole: Proprietà e Leggi

Proprietà Commutativa

$$x_1 x_2 = x_2 x_1 x_1 + x_2 = x_2 + x_1$$

γ.

$$x_1 + x_1 x_2 = x_1$$

 $x_1(x_1 + x_2) = x_1$

Proprietà Distributiva

$$x_1(x_2 + x_3) = x_1x_2 + x_2x_3$$

$$x_1 + (x_2x_3) = (x_1 + x_2) + (x_1 + x_3)$$

Leggi di De Morgan

Leggi di Assorbimento

$$\overline{x_1 + x_2} = \overline{x_1} \times \overline{x_2}$$
$$\overline{x_1} \times \overline{x_2} = \overline{x_1} + \overline{x_2}$$

Proprietà Associativa

$$x_1(x_2x_3) = (x_1x_2)x_3$$

 $x_1 + (x_2 + x_3) = (x_1 + x_2) + x_3$

Altre Note

$$x_1 + \overline{x_1}x_2 = x_1 + x_2$$

 $x_1(\overline{x_1} + x_2) = x_1x_2$

Leggi di De Morgan – 1/4

- Il complemento di una somma di variabili è uguale al prodotto dei complimenti delle variabili
 - Il complemento di due o più variabili poste in OR è uguale all'AND dei complimenti delle singole variabili

$$x_1(x_2 + x_3) - x_1x_2 + x_2x_3$$

$$x_1 + (x_2x_3) = (x_1 + x_2) + (x_1 + x_3)$$

.eggi di Assorbiillelito

$$x_1 + x_1 x_2 = x_1$$
$$x_1(x_1 + x_2) = x_1$$

Leggi di De Morgan

$$\overline{x_1 + x_2} = \overline{x_1} \times \overline{x_2}$$
$$x_1 \times x_2 = \overline{x_1} + \overline{x_2}$$

Proprietà Associativa

$$x_1(x_2x_3) = (x_1x_2)x_3$$

$$x_1 + (x_2 + x_3) = (x_1 + x_2) + x_3$$

Altre Note

$$x_1 + \overline{x_1}x_2 = x_1 + x_2$$

 $x_1(\overline{x_1} + x_2) = x_1x_2$

Leggi di De Morgan – 2/4

- Il complemento di un prodotto di variabili è uguale alla somma dei complimenti delle variabili
 - Il complemento di due o più variabili poste in AND è equivalente all'OR dei complimenti delle singole variabili

$$x_1(x_2 + x_3) - x_1x_2 + x_2x_3$$

$$x_1 + (x_2x_3) = (x_1 + x_2) + (x_1 + x_3)$$

Proprietà Associativa

$$x_1(x_2x_3) = (x_1x_2)x_3$$

 $x_1 + (x_2 + x_3) = (x_1 + x_2) + x_3$

eggi di Assorbimento.

$$x_1 + x_1 x_2 = x_1$$
$$x_1(x_1 + x_2) = x_1$$

Leggi di De Morgan

$$\overline{x_1 + x_2} = \overline{x_1} \times \overline{x_2}$$

$$\overline{x_1 \times x_2} = \overline{x_1} + \overline{x_2}$$

Altre Note

$$x_1 + \overline{x_1}x_2 = x_1 + x_2$$

 $x_1(\overline{x_1} + x_2) = x_1x_2$

Leggi di De Morgan – 3/4

- Osservazione: $\bar{\bar{x}} = x$ (Eq. 1)
- Legge 1 di De Morgan: $\overline{x_1 + x_2} = \overline{x_1} \times \overline{x_2}$ (Eq. 2)
- Utilizzando (Eq. 1) posso scrivere (Eq. 2) come segue: $\overline{x_1 + x_2} = \overline{x_1} \times \overline{x_2}$
- Utilizzando ancora (Eq. 1) ottengo che $x_1 + x_2 = \overline{x_1} \times \overline{x_2}$
- L'OR fra x₁ e x₂ può essere espresso in termini delle sole operazioni AND e NOT
 - Ogni volta che in un'espressione booleana troviamo un OR, lo possiamo sostituire con la appropriata combinazione di AND e NOT
 - Ogni espressione può essere espressa in termini delle sole due operazioni logiche AND e NOT

Leggi di De Morgan – 4/4

- Osservazione: $\bar{\bar{x}} = x$ (Eq. 1)
- Legge 2 di De Morgan: $\overline{x_1 \times x_2} = \overline{x_1} + \overline{x_2}$ (Eq. 3)
- Utilizzando (Eq. 1) posso scrivere (Eq. 3) come segue: $\overline{x_1 \times x_2} = \overline{x_1} + \overline{x_2}$
- Utilizzando ancora (Eq. 1) ottengo che $x_1 \times x_2 = \overline{x_1} + \overline{x_2}$
- L'AND fra x_1 e x_2 può essere espresso in termini delle sole operazioni OR e NOT
 - Ogni volta che in un'espressione booleana troviamo un AND, lo possiamo sostituire con la appropriata combinazione di OR e NOT
 - Ogni espressione può essere espressa in termini delle sole due operazioni logiche OR e NOT

Alcune Osservazioni

- Identità, proprietà e leggi viste fino ad ora sono generalmente applicate nelle trasformazioni di funzioni booleane in altre equivalenti, ma di più facile realizzazione circuitale
- Dalle leggi di De Morgan si evince che la scelta delle funzioni OR, AND e NOT, come funzioni primitive, è ridondante

Funzioni Logiche (o Booleane) – 1/5

- Date n variabili booleane indipendenti $x_1, x_2, ..., x_n$, queste possono assumere 2^n configurazioni distinte
 - Ad esempio per n = 3 si hanno 8 configurazioni
- Ogni riga (in rosso) mostra il valore restituito a partire da una particolare configurazione dell'input
- Una configurazione specifica è individuata univocamente da un AND di tutte le variabili, dove quelle corrispondenti ai valori 0 compaiono negate
 - Prodotto fondamentale o prodotto minimo (minterm)

x ₁	x ₂	X ₃	F(x ₁ , x ₂ , x ₃)	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	
$010 \longleftrightarrow \overline{x}_1 x_2 \overline{x}_3$				

Funzioni Logiche (o Booleane) – 2/5

Configurazioni	x ₁	X ₂	X ₃	F(x ₁ , x ₂ , x ₃)
$\overline{x}_1 \overline{x}_2 \overline{x}_3$	0	0	0	0
$\overline{x_1} \ \overline{x_2} \ x_3$	0	0	1	0
$\overline{x_1} x_2 \overline{x_3}$	0	1	0	0
$\overline{x_1} x_2 x_3$	0	1	1	1
$x_1 \overline{x_2} \overline{x_3}$	1	0	0	0
$x_1 \overline{x_2} x_3$	1	0	1	1
$x_1 x_2 \overline{x_3}$	1	1	0	1
$x_1 x_2 x_3$	1	1	1	1

- 011 indica tra le 2^3 =8 configurazioni possibili, quella in cui x_1 vale 0, x_2 vale 1 e x_3 vale 1
- Questa configurazione si scrive semplicemente con il prodotto $\overline{x_1} x_2 x_3$
- Se in una configurazione una variabile compare con 1, si assume il valore diretto, se invece compare con uno 0, si assume il valore negato

Funzioni Logiche (o Booleane) – 3/5

• Una variabile y è **funzione** delle n variabili indipendenti $x_1, x_2, ..., x_n$, quando esiste un criterio che fa corrispondere in modo univoco ad ognuna delle 2^n configurazioni di x un determinato valore y (ovviamente 0 o 1)

$$y = F(x_1, x_2, ..., x_n)$$

• Una rappresentazione esplicita di una funzione è la tavola di verità, in cui si elencano tutte le possibili combinazioni di $x_1, x_2, ..., x_n$, con associato il valore di y

$$y = x_1 + x_2$$

$$0 \quad 0 \quad 0$$

$$0 \quad 1 \quad 1$$

$$1 \quad 0 \quad 1$$

$$1 \quad 1 \quad 1$$

Funzioni Logiche (o Booleane) – 4/5

- Si può specificare l'output di ogni funzione booleana esprimendo, tramite un'espressione booleana, quali combinazioni delle variabili di input determinano l'output 1
- Più precisamente, per passare dalla rappresentazione mediante tavola di verità alla notazione tramite espressione booleana è necessario
 - 1. Identificare tutte le righe della tavola di verità che danno 1 in output
 - Per ogni riga con un 1 in output, scrivere la configurazione delle variabili che la definiscono
 - 3. Collegare tramite OR tutte le configurazioni ottenute

X ₁	X ₂	X ₃	F(x ₁ , x ₂ , x ₃)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$\bar{x_1} x_2 x_3 + x_1 \bar{x_2} x_3 + x_1 x_2 \bar{x_3} + x_1 x_2 x_3$$

Funzioni Logiche (o Booleane) – 5/5

•
$$F(x_1, x_2, x_3) = \overline{x_1} x_2 x_3 + x_1 \overline{x_2} x_3 + x_1 x_2 \overline{x_3} + x_1 x_2 x_3$$

- Con l'uso dei minterm possiamo determinare l'espressione algebrica di una funzione booleana a partire dalla tavola di verità
- L'espressione algebrica trovata si chiama forma canonica della funzione e si ottiene con uno sviluppo in minterm
 - Una somma (OR) di prodotti (AND)
- Se un minterm assume valore 1 anche la funzione F assume il valore 1

x ₁	X ₂	X ₃	F(x ₁ , x ₂ , x ₃)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Esempio 1: la Funzione Exclusive OR (XOR) – 1/2

- Il **comportamento** della funzione **Exclusive OR** può essere descritto come segue
 - F = "L'output deve essere 1 (vero) se solo uno dei suoi input è 1, ma non se entrambi gli input sono 1"
- Questo può essere rifrasato come segue
 - $F = \text{``L'output'} \ e' \ 1 \ se' \ (x_1 \ OR \ x_2) \ e' \ 1$, AND $se' \ (x_1 \ AND \ x_2) \ sono \ NOT \ 1 \ (falso)''$
- Che può essere scritto come
 - $F = (x_1 + x_2) \times \overline{(x_1 x_2)}$

Esempio 1: la Funzione Exclusive OR (XOR) – 2/2

• La funzione XOR verifica la disuguaglianza di due variabili

x_1	x_2	XOR
0	0	0
0	1	1
1	0	
1	1	0

Si può scrivere la funzione come somma logica (OR) delle configurazioni corrispondenti agli 1

• L'espressione come somma di prodotti è quindi

$$XOR(x_1,x_2) = \overline{x_1} \times x_2 + x_1 \times \overline{x_2}$$

Forma canonica: somma di prodotti (OR di AND)

N.B. tutte le funzioni logiche si possono scrivere in questa forma

Esempio 2: dalla Tavola di Verità alla Funzione

X	у	Z	F	• Problema: date tre variabili booleane			
0	0	0	0	(x, y, z), si scriva la funzione F che vale 1 quando solo due di esse hanno valore 1			
0	0	1	0	quantae sere dae ar esse namie valore i			
0	1	0	0				
0	1	1	1	Si può scrivere la funzione come			
1	0	0	0	somma logica (OR) delle configurazioni corrispondenti agli 1			
1	0	1	1				
1	1	0	1				
1	1	1	0				
$F(x,y,z) = \bar{x}yz + x\bar{y}z + xy\bar{z}$							
Forma canonica: somma di prodotti (OR di AND)							

Forma canonica: somma di prodotti (OR di AND)

N.B. tutte le funzioni logiche si possono scrivere in questa forma

Esempio 3: dalla Tavola di Verità alla Funzione

Forma canonica: somma di prodotti (OR di AND)

N.B. tutte le funzioni logiche si possono scrivere in questa forma

Esempio 4: dalla Funzione alla Tavola di Verità

 Vediamo un esempio per la funzione

•
$$F = x \times (\overline{y+z})$$

X	у	Ζ	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Circuito Logico

- Il cuore di un sistema digitale è il circuito logico digitale
 - Progettato a partire da porte logiche
 - Collegate tra loro per formare circuiti più grandi
 - Combinati per realizzare circuiti di grande importanza pratica nell'architettura del computer

Porte Logiche

- Building block utilizzati per creare circuiti digitali
- Qualsiasi circuito può essere implementato usando solo porte logiche elementari (AND, OR e NOT)
 - Le cose si fanno complicate quando si hanno numerosi input ed output
- Dispositivi elettronici che implementano semplici funzioni booleane
- Ciascuna porta ha il proprio simbolo logico che permette a funzioni complesse di essere rappresentate mediante un diagramma logico
- La funzione di ciascuna porta può essere rappresentata da una tabella di verità o utilizzando la notazione booleana

Funzione OR: Tavola di Verità e Porta Logica

<i>X</i> ₁	<i>X</i> ₂	$x_1 OR x_2$
0	0	0
0	1	1
1	0	1
1	1	1

Funzione AND: Tavola di Verità e Porta Logica

x_1	<i>X</i> ₂	$x_1 AND x_2$
0	0	0
0	1	0
1	0	0
1	1	1

Funzione NOT: Tavola di Verità e Porta Logica

X	NOT x
0	1
1	1

Porta NAND

(a) Circuit symbol

A	В	C
0	0	1
0	1	1
1	0	1
1	1	0

(b) Truth table

$$C = \overline{A \cdot B}$$

(c) Boolean expression

Porta NOR

(a) Circuit symbol

A	В	С
0	0	1
0	1	0
1	0	0
1	1	0

(b) Truth table

$$C = \overline{A + B}$$

(c) Boolean expression

Porta XOR

(a) Circuit symbol

A	В	C
0	0	0
0	1	1
1	0	1
1	1	0

(b) Truth table

$$C = A \oplus B$$

(c) Boolean expression

Porta Exclusive NOR

(a) Circuit symbol

A	В	C
0	0	1
0	1	0
1	0	0
1	1	1

(b) Truth table

$$C = \overline{A \oplus B}$$

(c) Boolean expression

Esempio 5: dalla Funzione al Circuito

$$X = A + B\overline{C}$$

$$A = A + B\overline{C}$$

$$B = \overline{C}$$

$$C = \overline{C}$$

Esempio 6: dalla Funzione al Circuito

Esempio 7: dalla Funzione al Circuito

$$X = \overline{A} \overline{B}C + A\overline{B}C + AB\overline{C}$$

Esempio 8: dalla Funzione al Circuito

Esempio 9: dal Circuito alla Funzione – 1/2

Esempio 9: dal Circuito alla Funzione – 2/2

 Procedere progressivamente dagli input verso l'output aggiungendo a turno le espressioni logiche all'output di ciascuna porta logica

Esempio 10: Funzione => Tavola di Verità => Circuito

• Si consideri la seguente funzione: A(B + C)

Α	В	С	B + C	A(B+C)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Ricapitolando...

- Abbiamo visto che una funzione logica (ma anche un circuito logico) può essere espressa in due modi
 - Tavola di Verità
 - Porte Logiche
- Perché abbiamo bisogno di tutte queste diverse rappresentazioni?
 - Alcune sono più facili di altre per cominciare a progettare un circuito
 - Di solito si comincia con la tavola di verità
 - Si deriva un'espressione booleana da essa (magari esemplificata)
 - Si trasforma l'espressione booleana in un circuito

Esercizio 1: determinare la funzione espressa dalla seguente tavola di verità

Α	В	С	X
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Esercizio 2: trovare l'output del seguente circuito (tavola di verità e funzione)

Esercizio 3: trovare l'output del seguente circuito (tavola di verità e funzione)

Esercizio 4: trovare l'output del seguente circuito (tavola di verità e funzione)

Esercizio 5: trovare l'output del seguente circuito (tavola di verità e funzione)

Esercizio 6: progettare il circuito per ciascuna delle seguenti espressioni

- $\bar{x} + y$
- $\bullet \overline{(x+y)}x$
- Scrivere la funzione XOR usando AND, OR e NOT

Riferimenti

- Libro di testo
 - Capitolo 3
 - Paragrafo 4

Altri riferimenti

- http://www.di.unito.it/~piccolo/teach/AA1516/Lezioni/Lezione2.pdf
- http://liceocuneo.it/basteris/wp-content/uploads/sites/3/CIRCUITI20DIGITALI1.pdf
- http://bias.csr.unibo.it/maltoni/arc/Dispense/LogicaDigitale.pdf
- http://people.unipmn.it/bobbio/DIDATTICA/ARCH1_00/ALDISP_00/varbol00.pdf