Lecture 5
Tree walks
and tree representations
EECS-214

Remember trees?

Trees

 A tree is a graph in which any pair of nodes has exactly one path between them

Trees

 In computer science, we usually think of trees as having a distinguished node call the root

Rooted trees

- In computer science, we usually think of trees as having a distinguished vertex called the root
- And we draw it
 - With the root at the top
 - And other vertices
 arranged by their
 distance from the root

Children

 The nodes adjacent to a node, but at the next lower depth are called its children

Note: node and vertex are synonyms

Children

 The nodes adjacent to a node, but at the next lower depth are called its children

 And the nodes that are its children, children's children, etc., are called its descendants

Parents and ancestors

- The nodes above a node in the tree are its ancestors
- The node immediately above a node in the tree is its parent
 - All nodes have parents except the root
- Nodes with the same parent are called siblings

Data structures for trees

General representation of trees

- Each tree node is an object
 - (Red circles)
- Each node object contains
 - Parent
 - (Upward arrows)
 - List of children
 - (Grey boxes)
 - linked list, array, whatever
 - Anything else you want to remember about the node

Child list

Child lists

Using an array


```
class TreeNode {
    TreeNode parent;
    TreeNode[] children;
    ... other data ...
}
```

Using a linked list


```
class TreeNode {
    TreeNode parent;
    TreeNodeList children;
    ... other data ...
}

Class TreeNodeList {
    TreeNode node;
    TreeNodeList next;
}
```

Using a linked list

- Notice that we have exactly one linked list cell per node
 - (except the root)
- So we can just move the next pointer into the node itself

Moving the link into the node

- Notice that we have exactly one linked list cell per node
 - (except the root)
- So we can just move the next pointer into the node itself
- And remove the linked list cells

Moving the link into the node


```
class TreeNode {
    TreeNode parent;
    TreeNode firstChild;
    TreeNode nextSibling;
    ... other data ...
}
```

The CLR book calls this the left child/right sibling representation

- We generally don't talk about iterating through the nodes in a tree
- We talk about walking through them or traversing them
 - That's partly because tree walks are often written as recursions
 - And we think of iterations as being while and for loop, and recursions being something different

You can walk trees in different orders

• Breadth-first walks

- You can walk trees in different orders
- Breadth-first walks
 - Start with the root

- Breadth-first walks
 - Start with the root
 - Then do all the nodes at depth 1 (just one in this case)

- Breadth-first walks
 - Start with the root
 - Then do all the nodes at depth 1
 - Then depth 2

- Breadth-first walks
 - Start with the root
 - Then do all the nodes at depth 1
 - Then depth 2
 - Then depth 3

- Breadth-first walks
 - Start with the root
 - Then do all the nodes at depth 1
 - Then depth 2
 - Then depth 3
 - And so on …

A depth-first walk

- A depth-first walk
 - Goes through all the decedents of a node

- A depth-first walk
 - Goes through all the decedents of a node
 - Before moving to the node's sibling

A depth-first walk

- A depth-first walk
 - Starts with the root

- A depth-first walk
 - Starts with the root
 - Moves to its first child (in this case, the only child)

- A depth-first walk
 - Starts with the root
 - Moves to its first child
 - Then its first child

- A depth-first walk
 - Starts with the root
 - Moves to its first child
 - Then its first child
 - And so on

- A depth-first walk
 - Starts with the root
 - Moves to its first child
 - Then its first child
 - And so on
 - Until we hit a leaf

 (a node with no children)

- A depth-first walk
 - Starts with the root
 - Moves to its first child
 - Then its first child
 - And so on
 - Until we hit a leaf
 - Then moves to the leaf's sibling

A depth-first walk

- Starts with the root
- Moves to its first child
- Then its first child
- And so on
- Until we hit a leaf
- Then moves to the leaf's sibling
- Until we run out of siblings

- A depth-first walk
 - Then we try the parent's next sibling

- A depth-first walk
 - Then we try the parent's next sibling
 - But, tragically, it's an only child

- A depth-first walk
 - Then we try the parent's next sibling
 - But, tragically, it's an only child
 - So we move to its parent

A depth-first walk

- Then we try the parent's next sibling
- But, tragically, it's an only child
- So we move to its parent
- And select its next sibling

A depth-first walk

- Then we try the parent's next sibling
- But, tragically, it's an only child
- So we move to its parent
- And select its next sibling
- After which, we've walked the whole tree

Depth-first walks go
 subtree to subtree

 Breadth-first walks go level to level

- When depth-first comes to a node
 - It walks it's children immediately
- When breadth-first comes to a node
 - It remembers its children to be walked in the future

- Needs to remember
 - The children of nodes it's walked
 - But that haven't yet been walked themselves
- So it needs to store a collection of nodes
- What kind of collection?

- Needs to finish current level of tree
 - Before moving to nodes in the next level
- So the nodes that get walked first
 - Are the nodes that are added first to the collection

 So we walk the nodes in the order that they're added to the collection

That sounds like a queue!

Pseudocode:

```
BreadthFirst(root) {
    q = empty queue
    q.Enqueue(root)
    while q not empty {
        node = q.Dequeue()
        for each child c of node
        q.Enqueue(c)
    }
}
```


Queue

empty

Start with empty queue

Queue

-

Add the root

Queue

1

Now repeat until the queue is empty:

Queue

empty

Dequeue the next node

Queue

2

Add its children to queue

Queue

3 4

Enqueue children

Queue

4

Enqueue children

Queue

4

Enqueue children

(of course, there aren't any)

Queue

6 7

Add children

Queue

7

Add children (none)

Queue

empty

Add children (none)

Queue

empty

Dequeue – queue empty

Queue

empty

Finished

What happens if we change the queue to a stack?

```
StackWalk(root) {
    s = empty stack
    s.Push(root)
    while s not empty {
        node = s.Pop()
        for each child c of node
        s.Push(c)
    }
}
```


empty

Start with empty stack

Push the root

1

Repeat until stack empty:

Pop node

Push children

Push children

5 3

Push children

7 6 3

Push children

6 3

6 3

Push children (none)

Push children (none)

Push children (none)

Pop node – stack empty

Finished

Depth-first walk

- Substituting a stack for a queue gives us depth-first traversal instead of breadth-first
- Although in this case, it visited the children right to left instead of left to right
 - If we cared, we could just push the children on the stack in reverse order

Depth-first walk

- Of course, we already have a perfectly good stack
- The execution stack
 - Every procedure call pushes the execution stack
 - Every return pops it
- Why not just use that stack?

Recursive depth-first walk

Pseudocode:

DepthFirst(node)
for each child c of node
DepthFirst(c)

- Most of the time it's easier and clearer to write depth-first traversals as recursions
- And you thought recursion always made things more complicated!

Specialized tree representations

- Small, fixed branching factor
 - Put child pointers directly in nodes
 - Usually uses only for trees with a branching factor of 2 or 3

- Restricted information in nodes
 - No parent pointer
 - Used if you never need to find the parent of a node
 - Example: lists in lisp and scheme
 - No child pointers
 - Used in disjoint set representation
- Heaps
 - We'll talk about these later

Binary trees

- Common case
- Fixed branching factor of 2
 - Every node has at most 2 children
 - Referred to as the left child and right child

Optimized binary tree representation


```
class BTNode {
   BTNode parent;
   BTNode leftChild;
   BTNode rightChild;
}
```

- Don't even bother with an array or linked list
 - Just put pointers in the node for both children
 - Leave them null if they aren't used

Why are binary trees popular?

Left child/right sibling is technically a binary tree


```
class TreeNode {
    TreeNode parent:
    leftChild
    TreeNode firstChild;
    TreeNode nextightChild;
    ... other data ...
}
```

The CLR book calls this the left child/right sibling representation

Scheme lists are binary trees

(without parent pointers)

Decision trees

- A decision tree is a binary tree in which
 - The leaf nodes are decisions
 - The interior nodes are yes/no questions for deciding between decisions

A very bad decision tree for classifying lifeforms

Depth-first traversals of binary trees

- Suppose you want to print all the nodes in a binary tree
 - You could use a depthfirst traversal
 - But there are actually three different DFTs you could use
- We call these three versions the preorder, postorder, and inorder traversals of the tree

```
Preorder(node) {
 print node
 Preorder(node.leftChild)
 Preorder(node.rightChild)
Postorder(node) {
 Postorder(node.leftChild)
 Postorder(node.rightChild)
 print node
Inorder(node) {
  Inorder(node.leftChild)
 print node
 Inorder(node.rightChild)
```

Preorder traversal

```
Preorder(node) {
    print node
    Preorder(node.leftChild)
    Preorder(node.rightChild)
}
```

Output:

Preorder traversal

```
Preorder(node) {
    print node
    Preorder(node.leftChild)
    Preorder(node.rightChild)
}

Output:
1 2 3 4 5 6 7
```


Postorder traversal

```
Postorder(node) {
    Postorder(node.leftChild)
    Postorder(node.rightChild)
    print node
}
```

Output:

Postorder traversal

```
Postorder(node) {
    Postorder(node.leftChild)
    Postorder(node.rightChild)
    print node
}
```

Output: 3 6 7 5 4 2 1

Inorder traversal

```
Inorder(node) {
    Inorder(node.leftChild)
    print node
    Inorder(node.rightChild)
}
```

Output:

Inorder traversal

```
Inorder(node) {
    Inorder(node.leftChild)
    print node
    Inorder(node.rightChild)
}
```

Output:

1326574

Reading

 CLRS chapter 10, section 4 "Representing rooted trees"