

Project Summary

Problem statement:

 Communicating information is very important in almost every military operation. However, sometimes sending information through traditional methods is not feasible.

Solution proposal:

- A solution to this issue is to develop an acoustic ultrasonic radio.
 - Acoustic waves and lower frequencies will limit electromagnetic radiation
- This radio will allow for communications over relatively short distances.
- Communication will be slower than devices using electromagnetic waves

Project/Subsystem Overview

- •Input microphone covers human voice frequencies (100 Hz to 3 kHz)
- Voice is translated into an electrical signal
- •Signal is amplified and filtered to enhance quality and eliminate unwanted noise
- •Modulated to ultrasonic frequencies for transmission, with optional additional filtering
- •Modulated signal goes through a power amplifier to achieve required gain
- •Signal travels to receiving microphone for filtering and amplification for demodulation
- •After demodulation, signal is filtered and output through a speaker within the human hearing range

Project Timeline

Subsystem	Integration of	Integration of	Final	System Test	Validation	Demo and
Designs and	transmitter	receiver	Integration	(to complete	(to complete	Report
Testing	Testing subsystems subsystems		(to complete by 3/25)		by 4/8)	(to complete
(To complete	(to complete	(to complete	by 3/4)			by 4/15)
by 2/9)	by 2/26)	by 2/26)				

Signal Amplifier & High Freq Filter (Receiver)

Accomplishments since last presentation 18 hrs of effort	Ongoing progress/problems and plans until the next presentation
 Verified issues with circuit Simulated multiple ideal models Created and ordered PCB 	 Solder and test functionality Will integrate with the demodulator with tests to be performed on the joint system

Signal Amplifier & High Freq Filter (Receiver)

Demodulator (Receiver)

Accomplishments since last presentation 4 hrs of effort	Ongoing progress/problems and plans until the next presentation
Successfully tested and runs as expected since 403	 Work on implementing this with the Signal Amp & Filter Run tests to ensure integration process is successful

Demodulator (Receiver)

- On the scope screen the two square waves are stable (this indicates that they are locked)
- Voltage of the square wave is shifted approximately 90 degrees with respect to the reference frequency.

Signal Amplifier (Transmitter)

Nathan Cinocca

Accomplishments since 403 7 hrs of effort • Resoldered entire PCB • Tested system responses on multimeter Ongoing progress/problems and plans until the next presentation • Begin integration with other transmitter subsystems

Signal Amplifier (Transmitter)

- Signal amplifier had a peak gain of around 26 dBs centered at 1k Hz with 3 dB frequencies at 3.1k Hz and 300 Hz
- The gain and operational frequencies are correctly placed according to simulations

Low Frequency Filter (Transmitter)

Accomplishments since 403 7 hrs of effort	Ongoing progress/problems and plans until the next presentation
 Resoldered entire PCB Retested system response on multimeter 	 Continue testing and attempting to determine circuit issues Order a new PCB if unable to fix issues

Low Frequency Filter (Transmitter)

- Frequency response of the low frequency filter shows a much lower gain than anticipated with a shape that does not resemble a filter.
- The response is also very noisy
- These issues indicate that there may still be some part of the PCB incorrectly soldered

Power Amplifier (Transmitter)

Accomplishments since 403 7 hrs of effort	Ongoing progress/problems and plans until the next presentation
 Resoldered entire PCB Tested system responses on multimeter 	Begin integration with other transmitter subsystems

Power Amplifier (Transmitter)

- The power amplifier has a maximum gain of about 68 dBs centered at 45 kHz
- The amplifier has 3 dB frequencies at approximately 60k Hz and 35 kHz
- The operation of the power amplifer is within expectation according to simulations

Frequency Modulator (Transmitter)

Accom 403	plishments since 3 hrs of effort	Ongoing progress/problems and plans until the next presentation
• Tes	soldered entire PCB ted system responses on timeter	Begin integration with other transmitter subsystems

Frequency Modulator (Transmitter)

- Frequency modulator modulates a 1k Hz signal to around 40k Hz
- This frequency is within expectations from simulations

Execution Plan

	January	February	February	February	February	March	March	March	April	April	April
	29th	5th	12th	19th	26th	4th	18th	25th	1st	8th	15th
Finish Validating and Testing all Subsystems											
(ALL)											
Order New PCB if Needed (ALL)											
Order Ultrasonic Microphones and											
Speakers (ALL)											
(Transmitter End) Connect/Validate Signal											
Amplifier and Filter (NC)											
(Transmitter End) Connect/Validate Power											
Amplifier With Other Transmission											
Subsystems (NC)											
(Transmitter End) Connect/Validate											
Frequency Modulator With Other											
Transmission Subsystems (NC)											
(Receiver End) Connect/Validate Signal											
Amplifier and Filter (JR)											
Connect/Validate Both Transmitter and											
Receiver Parts of Radio (ALL)											
Final Validation and Testing of Radio (ALL)											

■ Completed Pending Not Started Behind Schedule

Validation Plan

Paragraph # Test Name		Success Criteria	Methodology	Status	Responsible
					Engineer(s)
3.2.1.1			Test gain with an oscilloscope at the output node of the	UNTESTED	Full Team
	Noise Ratio	receiver should have >= 60 dB signal to noise ratio	receiver		
3.2.1.2	Transmission	The signal should be able to transmit and be	Send the signal and measure the maximum distance with	UNTESTED	Full Team
	Distance	received at 15 meters or more	a tape measure		
3.2.1.3	Total	The output signal should have a total harmonic	Test the output total harmonic distortion at the output	UNTESTED	Jacob Ralls
	Harmonic	distortion less than or equal to 5%	node of the radio with an oscilloscope		
	Distortion				
3.2.2.1	Mass	Have the entire ultrasonic radio be less than or	Weigh all PCBs that make up the radio on a scale	UNTESTED	Full Team
		equal to 10 kilograms			
3.2.3.1.1	Power	The maximum peak power of the system shall not	Use multimeter to check power consumption of	UNTESTED	Full Team
	Consumption	exceed 4.5 watts	ultrasonic radio		
3.2.3.1.2	Input Voltage	The input voltage level for the ultrasonic radio shall	Use multimeter to check voltage levels of ultrasonic radio	UNTESTED	Full Team
	Level	be +5 VDC			
3.2.3.1.3	·		Use multimeter to check current levels of ultrasonic radio	UNTESTED	Full Team
	Level	exceed 900 mA			
3.2.3.1.4	Voice Input	The ultrasonic radio shall take user voice input that	Test input microphone with different voice frequency	UNTESTED	Nathan
		operates from 100 Hz to 3 kHz	recording within the 100 – 3kHz range		Cinocca
3.2.3.2.1	Voice Output	The ultrasonic radio shall output the voice input up	Test output speaker with different voice frequency	UNTESTED	Jacob Ralls
		to 15 meters away at frequencies 100 Hz to 3 kHz	recording within the 100 – 3kHz range		
3.2.4.1	Pressure	The ultrasonic radio may be able to operate up to	Use ultrasonic radio in a container with higher pressure	UNTESTED	Full Team
	(Altitude)	2.5 atm of pressure			
3.2.4.2	Thermal	The ultrasonic radio may be able to operate at	Use ultrasonic radio outside or in a temperature-	UNTESTED	Full Team
	thermal temperatures ranging from 55 degrees		controlled area such as oven		
		Fahrenheit to 95 degrees Fahrenheit			
3.2.4.3	Humidity	The ultrasonic radio should be able to function in 0-	Use a container with controlled humidity to test	UNTESTED	Full Team
		95% relative humidity	ultrasonic radio		
3.2.5.1	Recovery	The Ultrasonic radio should provide a way to reset	Test reset button to see if it turns off and resets the	UNTESTED	Full Team
		the entire system	ultrasonic radio		

Thank you for your attention. Any questions?