بسمه تعالى

د کتر مازیار پالهنگ آزمایشگاه هوش مصنوعی دانشکدهٔ مهندسی برق و کامپیوتر دانشگاه صنعتی اصفهان

یادآوری

- مثال جهانگرد
- تدوین هدف و مسئله
- شرایط محیط برای یک عامل مسئله حل کن:
 - مشاهده پذیر، قطعی، شناخته شده
 - تدوین مسئله
- حالت اوليه، مجموعة اعمال ممكن، مدل انتقال، هدف، هزينة مسير
 - چند مثال:
- دنیای جارو، جورچین ۸، مسیریابی، گردشگری، فروشندهٔ دوره گرد
 - جستجو برای حل
 - ایجاد درخت، مجموعهٔ پیشگام
 - جستجوی بهترین نخست
 - جستجوی درختی
 - جستجوی گرافی
 - ساختمانهای داده برای جستجو
 - معیارهای ارزیابی استراتژیهای جستجو
 - کامل بودن، بهینه بودن، پیچیدگی فضا، پیچیدگی زمان

سط دادن کم عمق ترین گرهٔ بسط داده شده

مازيار يالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٢٠

سط دادن کم عمق ترین گرهٔ بسط داده شده

مازيار يالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٤٠١

سط دادن کم عمق ترین گرهٔ بسط داده شده

مازيار پالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٤٠١

- می توان از جستجوی بهترین نخست با f(n) برابر با عمق n استفاده کرد.
 - مى توان كارآئى بهترى داشت.
 - frontier یک صف FIFO می تواند باشد.

جستجوى بهترين نخست

```
Figure 3.7
```

```
function BEST-FIRST-SEARCH(problem,f) returns a solution node or failure
node ← Node(State=problem.Initial)
frontier ← a priority queue ordered by f, with node as an element
reached ← a lookup table, with one entry with key problem.Initial and value node
while not Is-EMPTY(frontier) do
node ← POP(frontier)
if problem.Is-GOAL(node.State) then return node
for each child in Expand(problem, node) do
s ← child.State
if s is not in reached or child.Path-Cost < reached[s].Path-Cost then
reached[s] ← child
add child to frontier
return failure
```

مازيار پالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٢٠١

```
Figure 3.9
function Breadth-First-Search(problem) returns a solution node or failure
  node \leftarrow Node(problem.INITIAL)
  if problem.IS-GOAL(node.STATE) then return node
  frontier \leftarrow a FIFO queue, with node as an element
  reached \leftarrow \{problem.\mathtt{INITIAL}\}
   while not IS-EMPTY(frontier) do
     node \leftarrow Pop(frontier)
     for each child in Expand(problem, node) do
        s \leftarrow child.STATE
        if problem.Is-GOAL(s) then return child
        if s is not in reached then
                                                فقط حالت به لست رسيده شده اضافه مي شود
          add s to reached
          add child to frontier
  return failure
```

- كامل
- بله اگر b محدود باشد
 - بهينه
- بله (اگر هزینه برای هر مرحله برابر باشد)

مازيار يالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٤٠١

- پیچیدگی زمان
- اگر گره هنگام ایجاد تست هدف نشود
- $1+b+b^2+b^3+...+b^d+b(b^d-1)=O(b^{d+1})$
 - اگر بعد از ایجاد تست هدف شود
 - $O(b^d)$
 - پیچیدگی فضا
 - اگر گره هنگام ایجاد تست هدف نشود
 - $O(b^{d+1})$
 - اگر بعد از ایجاد تست هدف شود
 - $O(b^d)$

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٢٠١

11

مازيار يالهنگ

Depth	Nodes	Time	Memory
2	110	.11 milliseconds	107 kilobytes
4	11,110	11 milliseconds	10.6 megabytes
6	10^{6}	1.1 seconds	1 gigabyte
8	10^{8}	2 minutes	103 gigabytes
10	10^{10}	3 hours	10 terabytes
12	10^{12}	13 days	1 petabyte
14	10^{14}	3.5 years	99 petabytes
16	10^{16}	350 years	10 exabytes

Figure 3.13 Time and memory requirements for breadth-first search. The numbers shown assume branching factor b=10; 1 million nodes/second; 1000 bytes/node.

مازيار پالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٤٠١

جستجوی هزینه یکنواخت یا دایسترا

- رأس بسط داده نشده با کم ترین هزینه (از ریشه تا این رأس $\mathfrak{g}(n)$) را بسط بده
 - frontier صفی است که برحسب هزینه مرتب شده است.
 - اگر همهٔ هزینه های مراحل مساوی باشند این الگوریتم مشابه عرض نخست است.
- در این روش، گره هنگام انتخاب از صف تست هدف می شود نه هنگام ایجاد شدن و قبل از داخل صف رفتن.
 - چون ممکن است بعداً گره ای با هزینهٔ کمتر یافت شود.

در این مثال در واقع جستجو بصروت گرافی انجام شده و حالات تکراری در نظر گرفته نشده است. هوش مصنوعی - نیمسال دوّم ۰۲-۱۴۰۱

در این مثال در واقع جستجو بصروت گرافی انجام شده و حالات تکراری در نظر گرفته نشده است. هوش مصنوعی - نیمسال دوّم ۰۲-۱۴۰۱

در این مثال در واقع جستجو بصروت گرافی انجام شده و حالات تکراری در نظر گرفته نشده است. 16

در این مثال در واقع جستجو بصروت گرافی انجام شده و حالات تکراری در نظر گرفته نشده است. 17

در این مثال در واقع جستجو بصروت گرافی انجام شده و حالات تکراری در نظر گرفته نشده است. هوش مصنوعی - نیمسال دوّم ۲۰-۱۴۰۱

function UNIFORM-COST-SEARCH(*problem*) **returns** a solution node, or *failure* **return** BEST-FIRST-SEARCH(*problem*, PATH-COST)

مازيار يالهنگ

هوش مصنوعي - نيمسال دوّم ٢٠-١٤٠١

- کامل؟
- بله اگر هزینهٔ هر مرحله بزرگتر یا مساوی ٤ باشد.
- اگر هزینه صفر باشد در حلقهٔ بی نهایت قرار می گیرد.
 - زمان:
- چون با هزینهٔ مسیر هدایت می شود نه با عمق تحلیل مقداری پیچیده
 - در بدترین حالت:
- تعداد رئوس با 𝔞 هزینهٔ حل بهینه (هزینهٔ هر مرحله حداقل 𝔞 و 𝔞 هزینهٔ حل بهینه)

$$O(b^{1+\left\lfloor C^*/\varepsilon \right
floor})$$

مازيار يالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٢٠١

فضا: تعداد رئوس با ۶ کوچکتر یا مساوی با هزینهٔ حل بهینه

$$O(b^{1+\left\lfloor C^*/\varepsilon \right\rfloor})$$

- بهینه: در صورت افزایشی بودن هزینهٔ مراحل بله
- در صورتی که هزینهٔ مراحل یکسان باشد جستجوی هزینه یکنواخت همانند جستجوی عرض نخست است.

بسط عمیق ترین گرهٔ رسیده شده

مازيار يالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٤٠١

بسط عمیق ترین گرهٔ رسیده شده

مازيار يالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٤٠١

سط عمیق ترین گرهٔ رسیده شده

مازيار يالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٤٠١

بسط عمیق ترین گرهٔ رسیده شده

مازيار يالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٤٠١

سط عمیق ترین گرهٔ رسیده شده

مازيار يالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٢٠

سط عمیق ترین گرهٔ رسیده شده

مازيار يالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٢٠

بسط عمیق ترین گرهٔ رسیده شده

مازيار يالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٢٠

بسط عمیق ترین گرهٔ رسیده شده

مازيار يالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٤٠١

بسط عمیق ترین گرهٔ رسیده شده

مازيار يالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٤٠١

بسط عمیق ترین گرهٔ رسیده شده

مازيار يالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٤٠١

سط عمیق ترین گرهٔ رسیده شده

مازيار يالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٤٠١

سط عمیق ترین گرهٔ رسیده شده

مازيار پالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٤٠١

- می تواند از جستجوی بهترین نخست استفاده کرد با f(n) برابر منفی عمق n
 - frontier یک صف LIFO یک صف
 - کامل:
 - نه ممکن است در حلقهٔ بی نهایت قرار گیرد
 - بهينه:
 - نه

- زمان: (O(b^m)
- فضا: (O(bm

مازيار پالهنگ

هوش مصنوعي - نيمسال دوّم ١٤٠١-١٤٠١

خلاصه

- جستجوی عرض نخست
- جستجوى هزينه يكنواخت
 - جستجوى عمق نخست

هوش مصنوعی - نیمسال دوّم ۲۰-۱۴۰۱ مازیار پالهنگ