Bounding Volumes & Culling

CS 385 - Class 12 3 March 2022

Bounding Volumes

Bounding Volumes

- A simple shape that entirely encloses an object
- Used in place of the (potentially) complex geometry of an object
- Usage scenarios:
 - extent computations
 - object collisions
 - culling
 - ray tracing

Bounding Sphere

- Enclose the entire object in a sphere
- Required parameters: (four values)
 - (x, y, z) coordinates of center of volume
 - radius (or diameter) of the sphere
- Advantages
 - simple representation / easy to generate
 - object orientation independent
 - easy intersection tests
- Disadvantages
 - update volume if object changes size or position
 - potentially inflated volume
 - increased false positives

Axis-Aligned Bounding Box (AABB)

- Enclose the entire object in box with sides aligned to coordinate axes
- Required parameters: (six values)
 - \cdot (x, y, z) coordinates of center of volume
 - (x, y, z) extents in coordinate axes directions
 - alternatively, opposite corners of the box
- Advantages
 - simple representation / simplest to generate
 - simplest intersection tests
- Disadvantages
 - update volume if object changes size, position, or orientation
 - potentially inflated volume

Image from CGAL documentation

Object-Oriented Bounding Box (OOBB)

- Enclose the entire object in box with sides aligned to object's axes
- Required parameters: (twelve values)
 - \cdot (x, y, z) coordinates of center of volume
 - (x, y, z) vectors in principal directions of object
- Advantages
 - minimizes enclosing volume
 - fewest false positives
- Disadvantages
 - more challenging to compute
 - more complex intersections
 - update volume if object changes size, position, or orientation

Image from CGAL documentation

AABB Generation

- Simply determine the minimum and maximum values for each dimension
- return as the coordinates of the corners of the volume

```
positions = [ [x, y, z], [x, y, z], ... ];
function GenerateAABB(p) {
  var min = [...p[0]];
  var max = [...p[0]];
  for (var i = 0; i < p.length; ++i) {</pre>
    for (var j = 0; p[i].length; ++j) {
      min[j] = Math.min(min[j], p[i][j]);
      max[j] = Math.max(max[j], p[i][j]);
  return { min: min, min: max };
```

Sphere Generation

- Determine the AABB of the object
- Derive the center and radius from AABB extents

```
positions = [ [x, y, z], [x, y, z], ... ];
function GenerateBoundingSphere(p) {
  var corners = GenerateAABB(p);
  var extents = [];
  var dist = 0.0;
  for (var i = 0; i < corners[i].length; ++i) {</pre>
    extents.push(corners.min[i] - corners.max[i]);
    dist += extents[i] * extents[i];
    extents[i] /= 2.0;
  dist = Math.sqrt(dist);
  return { center: extents, radius: list };
```

OOBB Generation

- Determine the principal axes of the object
- Compute the center

But First, Some Math

Remember Our Friend, the Line

This form of a line is useful if you know x or
 y, and want to find the other value

Remember Our Friend, the Line

This form of a line is useful if you know x or
 y, and want to find the other value

A Different Problem

- Suppose we have a point (x, y) and want to know its relation to the line
- For example, suppose we want to know which side of the line (x, y) is
- What does that even mean?

A Little Algebra

$$mx+b=y$$
 $x+rac{b}{m}=rac{y}{m}$
 $x-rac{y}{m}+rac{b}{m}=0$
 $(x,y)\cdot(1,-rac{1}{m})+D=0\quad (ext{define }D=rac{b}{m})$

And this helps how?

 \vec{p} A point named p

$$(x,y) \qquad \bullet \qquad \left(1,-\frac{1}{m}\right)$$

 \overrightarrow{p}

 $\hat{\boldsymbol{n}}$

A normalized vector named n

Aside: Vector Length

 $\cdot ||\overrightarrow{v}||$ is the notation for that length

$$ec{v} = (x,y) \hspace{1cm} (2\mathrm{D})$$
 $||ec{v}|| = \sqrt{x^2 + y^2}$

$$ec{v} = (x, y, z)$$
 (3D)
 $||ec{v}|| = \sqrt{x^2 + y^2 + z^2}$

Normal Vectors

- Just means the vector's length is equal to one
 - often called unit vectors
- Put a *hat* on our vector to indicate it's a unit vector: \hat{v}
- We'll use normal vectors a lot:
 - GLSL has a built-in normalize() function
 - MV.js defines the function as well

$$\hat{v} = \frac{\vec{v}}{|\vec{v}|}$$

$$(x,y) \quad \bullet \quad \left(1, -\frac{1}{m}\right) \quad + \quad D \quad = \quad 0$$

$$\downarrow \downarrow \quad \downarrow \downarrow \quad \downarrow \downarrow \quad \downarrow$$

$$\vec{p} \quad \bullet \quad \hat{n} \quad + \quad D \quad = \quad 0$$

yippee. So what?

A Different Line Equation

- As compared to y = mx + b, which tells you y for a specific x
- \overrightarrow{p} \hat{n} + D tells you the distance \overrightarrow{p} is from the line
 - zero indicates \overrightarrow{p} lies on the line
 - any other value tells you two things:
 - the distance from the line
 - the sign of the value tells you which "side" of the line \overrightarrow{p} is on
- $\overrightarrow{p} \cdot \hat{n} + D = 0$ is called the *implicit form* of a line

What's Really Cool About This!

- $\overrightarrow{p} \cdot \hat{n} + D = 0$ holds true for problems in any dimension!
- We'll use this technique most often in 3D
 - · and in particular for our next topic, culling
 - · we'll test points against our viewing frustum

Computing \hat{n} and D

- \hat{n} for 3D can often be computed simply (no, really)
 - If you know two vectors in the "plane", we can use the cross product to get the perpendicular vector
 - GLSL and MV.js have a cross () function
 - · If you know a point \overrightarrow{p} on the plane, then $D = \overrightarrow{p} \cdot \hat{n}$
 - If the plane passes through the origin, then D=0
 - · if the plane is perpendicular to coordinate axis, then D is \overrightarrow{p} 's coordinate in that dimension
 - See Appendix for these slides for computing these values for a line
 - since most of our work is in 3D, that's more relevant, but 2D is kinda fun

$$\hat{n} = \frac{\overrightarrow{u} \times \overrightarrow{v}}{||\overrightarrow{u} \times \overrightarrow{v}||}$$

Culling

Culling

- Drawing stuff you can't see is wasteful!
 - recall that geometry outside of the viewing frustum will be clipped out and not rasterized
 - for primitives entirely outside, no fragments are generated
 - However, your program is still
 - sending vertices to GPU through WebGL
 - executing the vertex shader for each of those vertices
 - having the rasterizer determine if any fragments should be generated