COMPETING RISKS

INTRODUCTION THROUGH EXAMPLES

Medical Example

- Cancer researcher finds a medicine that cures cancer.
- Run a medical study where you follow 100 patients for 5 years after giving them cancer cure to see how many die.
- In year 4, 7 of these patients travel together to Iceland and die in a volcano accident.
- The other 93 patients made it to the end of five years without passing away.

Medical Example

- Cancer researcher finds a medicine that cures cancer.
- Run a medical study where you follow 100 patients for 5 years after giving them cancer cure to see how many die.
- In year 4, 7 of these patients travel together to Iceland and die in a volcano accident.
- The other 93 patients made it to the end of five years without passing away.

WHAT IS THE MORTALITY RATE?

Medical Example

- Cancer researcher finds a medicine that cures cancer.
- Run a medical study where you follow 100 patients for 5 years after giving them cancer cure to see how many die.
- In year 4, 7 of these patients travel together to Iceland and die in a volcano accident.
- The other 93 patients made it to the end of five years without passing away.

WHAT IS THE MORTALITY RATE?

DOES 7% FEEL RIGHT?

Customer Example

- Observe customers over the past year to try and analyze voluntary churn.
- Of the 1000 customers in the data set, 240 left voluntarily, while 60 left involuntarily.

WHAT IS THE CUSTOMER CHURN RATE?

Customer Example

- Observe customers over the past year to try and analyze voluntary churn.
- Of the 1000 customers in the data set, 240 left voluntarily, while 60 left involuntarily.

WHAT IS THE CUSTOMER CHURN RATE?

DOES 30% FEEL RIGHT?

Fixed vs. Random Censoring

- **Fixed censoring** censoring only occurs at the end of the study ($C_i = c$ is known in advance).
 - Recidivism data: Not arrested in 52 weeks is censored by design because that is when study ended.
- Random censoring $-C_i$ may vary between subjects for reasons beyond the investigator's control.
 - Recidivism data: No arrest within first 30 weeks, but lose contact with subject for whatever reason.
 - Recidivism data: Study done only for one year, but people can have delayed entry into the study (as they were released).

COMPETING RISKS

Multiple Event Types

- All of the models used so far have been for studying the time until one event occurs.
- All of the models used so far can be extended to studying multiple events or multiple types of events.

Competing Risks

- Examples:
 - Death from cancer in medical study vs. other causes of death.
 - Leaving job due to retirement, injury, or being fired.
 - Pump failure due to jamming, flooding, motor failure, or surge.
- In all of the above cases there are multiple, mutually exclusive causes of failure.
- These are examples of a competing risks problem, where each subject can experience only one of several possible events.

Independence Again...

- Assume T_i and C_i are independent subjects censored at time t were randomly selected to be censored from all subjects still in the risk set at t.
- **IF** this is true, then fixed vs. random censoring is mathematically equivalent.
- What does independence "mean" here?
 - In competing risks, independence implies that a censored observation and an uncensored observation have the same risk of the event, regardless of the reason for censoring.

Independence Again...

Example:

 By treating other failure types as censored, we're essentially implying once a pump fails due to jamming, we still don't know when it would fail due to flooding – we assume that the event types are independent.

NO TEST FOR THIS!

- Decide independent or not based on context of problem.
- In other words, are observations with a high risk of one event equally likely to experience the other events?

ESTIMATION

World Leaders Data Set

- Compiled by Bienen and van de Walle in 1991.
- Primary leaders of all countries between 1960 and 1987.
- Number of years the leader was in power and the manner they lost power.

World Leaders Data Set

- Manner how the leader reached power (0: constitutional, 1: non-constitutional)
- Start year of entry to power
- Military background of leader (1: military, 0: civilian)
- Age age at time of entry
- Conflict level of ethnic conflict (1: medium/high, 0:low)
- LogInc log of GNP per capita
- Growth avg. annual growth rate of GNP
- Pop population in millions
- Land land area in 1000 km²
- Literacy literacy rate (unknown year)
- Region 0: Middle East, 1: Africa, 2: Asia, 3: Latin America
- Years length of time leader was in power (in years)

Review

- Two major functions in survival analysis:
- Survival Function probability of surviving beyond time t:

$$S(t) = P(T > t) = 1 - F(t)$$

Hazard Function – conditional failure rate in an interval:

$$h(t) = \lim_{\Delta t \to 0} \frac{P(t < T < t + \Delta t \mid T > t)}{\Delta t}$$

Cause-Specific Hazard Function

- When there are multiple event types, the hazard function contains two variables – T and J (time til event occurs or is censored and which event type it belongs to).
- The cause/type specific hazard function is as follows:

$$h_{i,j}(t) = \lim_{\Delta t \to 0} \frac{P(t \le T_i < t + \Delta t, J_i = j \mid T_i \ge t)}{\Delta t}$$

$$h_i(t) = \sum_j h_{i,j}(t)$$

The interpretation stays the same, just type specific.

Cause-Specific Hazard Function

- When there are multiple event types, the hazard function contains two variables – T and J.
- The cause/type specific hazard function is as follows:

$$h_{i,j}(t) = \lim_{\Delta t \to 0} \frac{P(t \le T_i < t + \Delta t) J_i = j}{\Delta t} T_i \ge t$$

$$h_i(t) = \sum_j h_{i,j}(t)$$

The interpretation stays the same, just type specific.

CAUSE-SPECIFIC HAZARD MODEL

Modeling Type-Specific Events

 Type-Specific events can be modeled with both proportional hazard models ...

$$\log h_k(t) = \log h_{0,k}(t) + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k}$$

... and accelerated failure time (AFT) models :

$$\log T_{i,k} = \beta_0 + \beta_1 x_{i,1} + \dots + \sigma e_i$$

Cox Regression Competing Risks

- Typical modeling approach for competing risks is to use separate Cox regression models for each cause, treating all other events as censored.
- Essentially, modeling the effects of predictors on the cause-specific hazard:

$$\log h_k(t) = \log h_{0,k}(t) + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k}$$

Cox Competing Risks – R

Cox Competing Risks – R

```
## Call:
## coxph(formula = Surv(years, lost == "Natural") ~ manner + start +
      military + age + conflict + loginc + growth + pop + land +
##
##
      literacy + factor(region), data = leaders)
##
##
    n= 438, number of events= 27
     (34 observations deleted due to missingness)
##
##
                      coef exp(coef) se(coef) z Pr(>|z|)
##
            3.747e-01 1.455e+00 6.633e-01 0.565 0.572
## manner
              -5.403e-02 9.474e-01 3.386e-02 -1.596 0.111
## start
## military -3.646e-01 6.945e-01 7.409e-01 -0.492 0.623
## age
             7.386e-02 1.077e+00 1.840e-02 4.015 5.95e-05 ***
## conflict -2.609e-01 7.704e-01 4.720e-01 -0.553 0.580
## loginc
          3.285e-01 1.389e+00 2.673e-01 1.229 0.219
## growth 8.817e-02 1.092e+00 8.518e-02 1.035 0.301
             1.991e-03 1.002e+00 2.138e-03 0.931
                                                      0.352
## pop
## land
          -3.969e-05 1.000e+00 1.781e-04 -0.223 0.824
## literacy -8.796e-03 9.912e-01 1.260e-02 -0.698 0.485
## factor(region)1 -6.427e-01 5.259e-01 8.360e-01 -0.769
                                                      0.442
## factor(region)2 -7.776e-01 4.595e-01 9.031e-01 -0.861
                                                      0.389
## factor(region)3 6.591e-01 1.933e+00 7.852e-01 0.839
                                                       0.401
## ---
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

Cox Competing Risks – R

```
##
                 exp(coef) exp(-coef) lower .95 upper .95
                    1,4546
                               0.6875
                                       0.39644
                                                  5.337
## manner
                              1.0555 0.88657
                    0.9474
                                                  1.012
## start
## military
                    0.6945
                              1.4400
                                       0.16255
                                                  2.967
## age
                    1.0767
                              0.9288
                                       1.03853
                                                  1.116
## conflict
                    0.7704
                              1.2980
                                       0.30548
                                                  1.943
                    1.3889
                                       0.82251
## loginc
                              0.7200
                                                  2.345
## growth
                    1.0922
                              0.9156
                                       0.92423
                                                  1.291
## pop
                    1.0020
                              0.9980
                                       0.99780
                                                  1.006
## land
                    1.0000
                               1.0000
                                       0.99961
                                                  1.000
## literacy
                    0.9912
                               1.0088
                                       0.96707
                                                  1.016
## factor(region)1
                    0.5259
                               1.9015
                                       0.10217
                                                  2.707
## factor(region)2
                    0.4595
                              2.1763
                                       0.07827
                                                  2.698
## factor(region)3
                    1.9330
                               0.5173
                                       0.41484
                                                  9.007
##
## Concordance= 0.819 (se = 0.046)
                                          p=0.002
## Likelihood ratio test= 32.42 on 13 df,
## Wald test
                      = 29.47 on 13 df,
                                          p=0.006
## Score (logrank) test = 33.21 on 13 df,
                                          p=0.002
```

AFT Models with Competing Risks

- Accelerated Failure Time models have a similar structure to Cox regression models when dealing with competing risks.
- With AFT Models, distributions need to be evaluated for all types of failure!

CONDITIONAL PROCESSES

Independent Events?

- The cause-specific hazard method for competing risks presumes that each event type has its own hazard that governs **both** the occurrence and timing of events of that type.
- They are assumed to be independent processes acting in parallel with each other.
- Example:
 - Death due to natural causes vs. forcible removal from power.

Conditional Processes

- What if independence DOES NOT seem reasonable?
- Conditional processes occur when these events are NOT independent of each other – conditional on each other.
- Fine-Gray Model

FINE-GRAY MODEL

Cumulative Incidence Function

- The cumulative incidence function (CIF) is marginal probability for each competing risk
- The CIF is the product of two estimates

Hazard at time t_f:

$$\hat{h}_c(t_f) = \frac{m_{cf}}{n_f}$$

Where m_{cf} denotes the number of events for risk c at time t_f and n_f is the number of subjects at that time

$$\hat{S}(t_{f-1})$$

Where S(t) denotes the OVERALL survival function (not cause specific survival function)

CIF

 In other words, the product of surviving the previous time periods and the cause specific hazard at time t_f

$$\hat{I}_c(t_f) = \hat{S}(t_{f-1})\hat{h}_c(t_f)$$

 Fine and Gray proposed a proportional hazards model for the CIF with covariates (censoring times and event times no longer need to be independent)

Estimating the CIF's – R

Cumulative incidence functions

Fine-Gray Model – R

```
gray.natural=crr(tenure, status.leaders, x, failcode="Natural")
  summary(gray.natural)
```

Fine-Gray Model – R

Competing Risks Regression

Call: crr(ftime = tenure, fstatus = status.leaders, cov1 = x, failcode = "Natural")

	coef	exp(coef)	se(coef)	Z	p-value
manner	-7.32e-02	0.929	0.562617	-0.13007	0.9000
start	-8.33e-02	0.920	0.026453	-3.14757	0.0016
Military	-2.51e-01	0.778	0.549101	-0.45674	0.6500
age	4.75e-02	1.049	0.018127	2.62190	0.0087
conflict	-2.13e-03	0.998	0.440003	-0.00484	1.0000
loginc	5.55e-01	1.741	0.261591	2.11995	0.0340
growth	9.80e-02	1.103	0.128218	0.76408	0.4400
pop	2.41e-03	1.002	0.002784	0.86500	0.3900
land	-8.76e-05	1.000	0.000189	-0.46445	0.6400
Literacy	-6.71e-03	0.993	0.011000	-0.60956	0.5400
africa	4.44e-01	1.559	0.710063	0.62578	0.5300
asia	-6.97e-01	0.498	0.821035	-0.84936	0.4000
latin	1.22e-01	1.129	0.625890	0.19434	0.8500