Японский: буквенные n-граммы для распознавания Контроль НИР

Куликов А.В., гр. 397 *Руководитель:* Андрианов А.И.

ABBYY-MIPT

Москва, 2017

- Japanese kanji/kana OCR.
- Существуют путающиеся символы, например:

 Цель работы: построить и сравнить различные эвристики для исправления ошибок OCR, используя буквенную n-граммную модель японского языка.

Overview

- 1 Обработка корпуса, buckets
- 2 Сбор статистики по n-граммам
- **3** Шум как имитация ошибок OCR
- 4 Модели оценки зашумлённого текста
- 5 Результаты работы моделей
- 6 Эксперимент

Обработка корпуса

Частоты символов в корпусе (всего 5.6E+8). Размер алфавита $|\Sigma|=7047$. Это 33% от Unicode CJK диапазона.

Голова этого графика.

Buckets

Отбросим хвост с частотами ≤ 1000 (< 0, 12% корпуса, $|\Sigma^*| = 2600$). Заменим эти символы на �.

Границу можно изменять.

Сбор статистики по n-граммам

- Храним статистику в боре (trie).
- Библиотека pygtrie даёт удобный функционал.
- $n_{max} = 7$.
- Размер бора 5GB.
- Учёт невстреченных символов: Good-Turing, •

Trie stats

n	Различных n-грамм
1	4430
2	482607
3	3436987
4	10025503
5	19051342
6	28679559
7	37723274

Шум как имитация ошибок OCR

- Ошибки OCR имитируются искусственным случайным зашумлением текста.
- Рандом зафиксирован.
- Новые списки путающихся символов:
 - Ка-ga (диакритика) (КаGа);

Halfwidth-fullwidth forms (HFW);

Микс (Mix).

Модели оценки

- 2-gram, 3-gram;
- Katz backoff (KBO) n = 7;

$$P_{b0}\left(w_{i}\big|w_{i-n+1}...w_{i-1}\right) =$$

$$\begin{cases} d_{w_{i-n+1}\dots w_i} \frac{C(w_{i-n+1}\dots w_i)}{C(w_{i-n+1}\dots w_{i-1})} & \text{if } C(w_{i-n+1}\dots w_i) > k \\ \alpha_{w_{i-n+1}\dots w_{i-1}} P_{b0} \left(w_i \middle| w_{i-n+2}\dots w_{i-1}\right) & \text{otherwise} \end{cases}$$

• Stupid backoff (SBO) n = 7.

$$d_{w_{i-n+1}...w_i} = const$$

$$\alpha_{w_{i-n+1}...w_{i-1}} = const$$

Результаты работы моделей

Число – процент угаданных предложений в тексте.

Модель/Шум	KaGa	HFW	Mix
3-gram	82.3%	90.2%	83.7%
Stupid BO	87.8%		89.2%
Katz BO	93.1%		93.9%

В ВО моделях есть возможность дальнейшей доводки параметров.

Эксперимент с Zipf

Эксперимент с Zipf

- Как размер корпуса влияет на хвост распределения?
- Как мы можем имитировать большой корпус?
- Попробуем стохастически его уменьшать и посмотреть на графики.

Планы на будущее

- Тоньше настроить модель Katz BackOff.
- Попробовать имитировать больший корпус.
- Лучше визуализировать результаты.
- Писать текст.

Список литературы

- Foundations of Statistical Natural Language Processing / C. D. Manning, H. Schutze.
- Efficient In-memory Data Structures for N-Grams Indexing / D. Robenek, J. Platos, V. Snasel

Спасибо