Übungsblatt 9 Turing Maschinen

Theoretische Informatik Studiengang Angewandte Informatik Wintersemester 2015/2016 Prof. Barbara Staehle, HTWG Konstanz

Aufgabe 9.1

Aufgabe 9.1.1

 $T_2 = (\{s_0, s_1, s_2, s_3\}, \{1\}, \{1, \square\}, \delta, s_0, \square.s_3)$ mit $\delta =$

 $(s_0, 1) = (s_0, 1, \rightarrow)$ Einsen durchlaufen

 $(s_0, \square) = (s_1, \square, \leftarrow)$ Endzeichen lesen und zurück

 $(s_1,\square)=(s_3,\square,\circlearrowleft)$ für f(0)

 $(s_1,1)=(s_2,\square,\leftarrow)$ lösche letzte 1

 $(s_2, 1) = (s_3, \square, \leftarrow)$ lösche vorletzte 1 und gehe in Endzustand

$ \delta $	1	
s_0	$(s_0,1,\rightarrow)$	$(s_1, \square, \leftarrow)$
$ s_1 $	$(s_2, \square, \leftarrow)$	$(s_3,\square,\circlearrowleft)$
$ s_2 $	$(s_3, \square, \leftarrow)$	_
$\mid s_3 \mid$	_	_

Aufgabe 9.1.2

```
1. w = \epsilon
   \vdash (\Box, s_0, \Box) Start
   \vdash (\Box\Box, s_1, \Box) Leerzeichen gefunden, laufe links und wechsele Zustand
   \vdash (\Box, s_3, \Box) Endkonfiguration
2. w = 1
   (\square, s_0, 1) Start
   \vdash (\Box 1, s_0, \Box) 1 gefunden laufe nach rechts
   \vdash (\Box 1, s_1, \Box) Leerzeichen gefunden laufe nach links
   \vdash (\Box\Box, s_3, \Box) Leerzeichen gefunden schreibe \Box und gehe in Endzustand
3. w = 11
   (\square, s_0, 11) Start
   \vdash (\Box 1, s_0, 1) 1 gefunden laufe nach rechts
   \vdash (\Box 11, s_0, \Box) 1 gefunden laufe nach rechts
   \vdash (\Box 11, s_1, \Box) Leerzeichen gefunden laufe nach links
   \vdash (\Box\Box 1, s_2, \Box) Leerzeichen gefunden schreibe \Box
   \vdash (\Box\Box\Box, s_3, \Box) Leerzeichen gefunden schreibe \Box und gehe in Endzu-
   stand
4. w = 111
   (\Box, s_0, 111) Start
   \vdash (\Box 1, s_0, 11) 1 gefunden laufe nach rechts
   \vdash (\Box 11, s_0, 1) 1 gefunden laufe nach rechts
   \vdash (\Box 111, s_0, 1) 1 gefunden laufe nach rechts
   \vdash (\Box\Box 11, s_1, \Box) Leerzeichen gefunden laufe nach links
   \vdash (\Box\Box\Box, s_2, 1) 1 gefunden schreibe \Box und gehe links
   \vdash (\Box\Box\Box\Box, s_3, 1) 1 gefunden schreibe \Box und gehe in Endzustand
```

Aufgabe 9.1.3

Die Idee bei T_m wäre, dass man so viele Einsen löscht, wie das m groß ist, also bei T_2 wurden 2 Einsen von Hinten gelöscht

Aufgabe 9.2

Aufgabe 9.2.1

Zahl	n	n+1
0	000	001
1	001	010
2	010	011
3	011	100
4	100	101
5	101	110
6	110	111
7	111	1000
8	1000	1001
9	1001	1010
10	1010	1011
11	1011	1100
12	1100	1101
13	1101	1110
14	1110	1111
15	1111	10000

Aufgabe 9.2.2

Die Zahlen 0 und 1 werden invertiert, dann wird die erste Zahl ganz links alleine invertiert.

Aufgabe 9.2.3

- $(s_0,0)=(s_1,1,\leftarrow)$
- $(s_0,1)=(s_0,0,\leftarrow)$
- $(s_0,\square)=(s_2,1,\circlearrowleft)$
- $(s_1,0)=(s_1,0,\leftarrow)$
- $(s_1, 1) = (s_1, 1, \leftarrow)$
- $(s_1, \square) = (s_2, \square, \rightarrow)$ $(s_2, 0) = (s_2, 0, \circlearrowleft)$
- $(s_2,1)=(s_2,1,\circlearrowleft)$
- $(s_2, \square) = (s_2, \square, \circlearrowleft)$

 $T_{n+1} = (\{s_0, s_1, s_2\}, \{0, 1\}, \{0, 1, \square\}, \delta, s_0, \square, s_2)$ mit $\delta =$

δ	0	1	
s_0	$(s_1,1,\leftarrow)$	$(s_0, 0, \leftarrow$	$(s_2,1,\circlearrowleft)$
s_1	$(s_1,0,\leftarrow$	$(s_1,1,\leftarrow)$	$(s_2, \square, \rightarrow)$
s_2	$(s_2,0,\circlearrowleft)$	$(s_2,1,\circlearrowleft)$	$(s_2,\square,\circlearrowleft)$

Aufgabe 9.2.4

- 1. $w = \epsilon$
- 2. w = 0 $(\Box, s_0, 000)$ Start $\vdash (\Box, s_2, 001)$
- 3. w = 1 $(\Box, s_0, 001)$ Start $\vdash (\Box, s_2, 011)$
- 4. w = 111 $(\Box, s_0, 111)$ Start $\vdash (\Box, s_2, 1000)$