Topic 1 Simple Linear Regression

1. A sample of 6 pairs of values (x_i, y_i) is given in the table below.

\mathcal{X}_{i}	8	10	12	14	16	18
y_i	9	14	15	13	19	18

- (a) Draw a scatter diagram for *X* and *Y*.
- (b) Fit a simple regression model to the data.
- (c) Draw the regression line in the scatter diagram. Does the regression line pass through the centroid (\bar{x}, \bar{y}) ?
- (d) Estimate the variance of the error terms.
- 2. A sample of 10 pairs of values (x_i, y_i) which will be represented by the following model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i.$$

The summaries of the data are:

$$\sum_{i=1}^{10} x_i = 100; \ \sum_{i=1}^{10} y_i = 200; \quad \sum_{i=1}^{10} x_i y_i = 2000; \quad \sum_{i=1}^{10} x_i^2 = 2000; \ \sum_{i=1}^{10} y_i^2 = 5000$$

Calculate the least squares estimate of β_0 and β_1 .

3. The number of pounds of steam used per month at a plant is thought to be related to the average monthly ambient temperature. Last year's usage Y (in 1000 pounds) and temperatures X (in $^{\circ}F$) were studied, the summaries of the data is given below.

$$\sum_{i=1}^{12} x_i = 558; \ \sum_{i=1}^{12} y_i = 5062.34; \ \sum_{i=1}^{12} x_i y_i = 265869.63; \ \sum_{i=1}^{12} x_i^2 = 29256; \ \sum_{i=1}^{12} y_i^2 = 2416234.61;$$
$$\sum_{i=1}^{12} (x_i - \bar{x})^2 = 3309; \ \sum_{i=1}^{12} (y_i - \bar{y})^2 = 280627.4204; \ \sum_{i=1}^{12} (y_i - \hat{y}_i)^2 = 37.8547.$$

- (a) (i) Fit a simple regression model to the data. State one of the assumptions made in this model. Interpret the meaning of $\hat{\beta}_1$ found.
 - (ii) State the mean and variance for the least square estimator of β_1 .
 - (iii) State the relationship between the correlation coefficient and the slope, and hence find the correlation coefficient and interpret its meaning.
- (b) Plant management believes that an increase in average ambient temperature of $1^{\circ}F$ will increase average monthly steam usage by $9100\,lb$. Do the data support this statement, use the significance level, $\alpha = 0.01$?
- (c) Construct a 99% prediction interval on y_h with $x_h = 58^{\circ} F$. Interpret the interval obtained.
- 4. A sample of 20 pairs of values (x_i, y_i) which will be represented by the following model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i.$$

The summaries of the data are:

$$\hat{\beta}_0 = 138.561; \quad \hat{\beta}_1 = -1.104; \quad \sum (x_i - \bar{x})^2 = 10.668; \quad \sum (y_i - \bar{y})^2 = 20.838;$$

$$\sum e_i^2 = \sum (y_i - \hat{y})^2 = 7.832; \quad \bar{x} = 2$$

- a) Construct a 99% confidence interval for the mean per capita consumption of natural gas ($E(Y_h)$) for all gas stations with the prices of natural gas at \$2.11.
- b) Construct a 99% prediction interval for the per capita consumption of natural gas Y_h for a gas stations with the prices of natural gas at \$2.11.
- 5. A sample of 10 pairs of values (x_i, y_i) which will be represented by the following model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i.$$

The summaries of the data are:

$$\sum_{i=1}^{10} (x_i - \overline{x})^2 = 400; \quad \sum_{i=1}^{10} (y_i - \overline{y})^2 = 425; \quad \sum_{i=1}^{10} (\hat{y}_i - \overline{y})^2 = 225$$

Calculate the *t*-statistic used for testing the hypothesis $H_0: \beta_1 = 0$.

6. A sample of 10 pairs of values (x_i, y_i) which will be represented by the following model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i.$$

The summaries of the data are:

$$\sum_{i=1}^{10} y_i = 30; \quad \sum_{i=1}^{10} y_i^2 = 690; \quad R^2 = 0.6. \text{ Calculate } MS_E.$$

7. A sample of 20 pairs of values (x_i, y_i) which will be represented by the following model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
.

F-ratio for testing the hypothesis $H_0: \beta_1 = 0$ is equal to 12. Calculate R^2 .

8. A sample of 8 pairs of values (x_i, y_i) which will be represented by the following model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
.

The summaries of the data are:

$$\hat{\beta}_1 = -35.69$$
; $\sum (x_i - \bar{x})^2 = 1.62$; $\sum (y_i - \bar{y})^2 = 2394$

Determine the 90% confidence interval for β_1 .

9. In a medical survey, the weight X (in pounds) and systolic blood pressure Y of 26 randomly selected males in the age group 25-30 are recorded and the summaries are given below.

$$\sum_{i=1}^{26} x_i = 4743; \ \sum_{i=1}^{26} y_i = 3786; \ \sum_{i=1}^{26} x_i y_i = 697076; \ \sum_{i=1}^{26} x_i^2 = 880545; \ \sum_{i=1}^{26} y_i^2 = 555802;$$

$$\sum_{i=1}^{26} (x_i - \bar{x})^2 = 15312.35; \ \sum_{i=1}^{26} (y_i - \bar{y})^2 = 4502.15; \ \sum_{i=1}^{26} (y_i - \hat{y}_i)^2 = 1808.5726$$

- (a) Test if there is a linear correlation between X and Y with $\alpha = 0.05$.
- (b) Fit a simple regression model to the data.
- (c) Find a 99% confidence interval on the slope. Interpret the interval obtained.
- (d) Construct the ANOVA table and test for significance of regression by using the significance level, $\alpha = 0.05$.
- (e) Construct a 95% confidence interval on the mean response with $x_h = 180 lb$. Interpret the interval obtained.
- (f) Find the coefficient of determination and explain what it means.