CTA200H - Assignment 3

Louis Branch

May 2022

1 Mandelbrot Set

Display a Mandelbrot set by iterating over:

$$f(z) = z^2 + c$$

Where c is a complex value in the form of c = x + yi.

The maldenbrot_set function accepts two inputs: the number of points between -2 and 2, and the maximum number of iterations to test for the boundary conditions. Higher values for both create a sharper image.

The implementation uses numpy.array for the computation and masking to plot the complex plane with colors based on the number of iterations.

1.a Low Resolution

With 100 points, iterating to a maximum of 20 times we get a low resolution image:

1.b High Resolution

With 5000 points, iterating to a maximum of 50 times we get a crispier image:

2 Lorenz Equations

Solve a system of ordinary differential equations simulating chaotic effect in the atmosphere with initial conditions W in a time frame of 60 seconds.

Lorenz used the following constants:

$$\sigma = 10$$
$$\beta = \frac{8}{3}$$

$$\rho = 28$$

and initial conditions W = [0, 1, 0].

2.a **Y**(t)

Display 3 plots as Y as a function of time for half of the period (30 s). Each plot spans 1000 iterations and an iteration is defined as $\frac{time}{\Delta t}$.

$2.b \quad Z(Y), \, X(Y), \, Z(X)$

Using a subset of the initial space, display Z as a function of Y:

X as a function of Y, the X-axis is inverted to match the graph on the original paper:

And for the famous "Butterfly Effect", Z as a function of X:

2.c Different initial conditions

Using different initial conditions W' = [0, 1.00000001, 0], display a semi-log plot with the absolute distance between W and W' over time.

