Algèbre linéaire, application aux processus de Markov

Gabriel Pallier

INSPÉ de l'académie de Paris, Sorbonne université Cours de M1 MEEF Second degré, UE mixte Algèbre linéaire

Octobre 2021

Notion de chaîne de Markov

Définition

Un processus de Markov discret (ou chaîne de Markov) est la donnée d'une suite de variables aléatoires $X_1, \ldots X_n, \ldots$ à valeur dans un même ensemble E dit espace d'états telle que

$$P(X_{n+1} = x \mid X_1, ..., X_n) = P(X_{n+1} = x \mid X_n).$$

On dit de plus que le processus est homogène si cette quantité ne dépend pas de $n \in \mathbf{N}$. On dit que la chaîne de Markov est finie si E est fini.

Pour nous ici les chaînes de Markov seront homogènes et finies.

Chaîne de Markov

Les processus de Markov sont très généraux.

- **A.** Si (X_n) est une suite de variables aléatoires indépendantes, c'est un processus de Markov (homogène si identiquement distribuées).
- **D.** Si X_0 est une variable aléatoire, puis $X_{n+1} = f_n(X_n)$ où f est une fonction, c'est une chaîne de Markov (homogène si f_n est toujours la même fonction f).
- **M.** Soit (Z_n) une suite de variables i.i.d à valeurs dans **Z**. La suite

$$\left(X_n = \sum_{k=0}^n Z_k \text{ modulo } 2\right)_n$$

est un processus de Markov homogène et fini.

A et **D** sont des caricatures opposées (aléatoire, resp. déterministe). Ce qu'on va dire est utile quand on se situe quelque part entre les deux : X_n nous donne un peu d'information sur X_{n+1} , mais pas trop.

Matrice de transition

Définition

Soit (X_j) une chaîne de Markov homogène finie d'espace d'états E. La matrice de transition de (X_j) est la matrice indexée par E dont le coefficient en position (u, v) est

$$P(X_1 = v \mid X_0 = u).$$

La matrice de transition d'une chaîne de Markov finie a la propriété d'être **stochastique**, c'est à dire que la somme des coefficients situés sur chaque ligne est égale à 1. Inversement, à toute matrice stochastique est associée une chaîne de Markov.

Exemple

Une **matrice de permutation** est stochastique. La chaîne de Markov qui lui est associée est déterministe.

Graphe associé à une chaîne de Markov

On associe à une chaîne de Markov homogène et finie un **graphe orienté** sur l'espace des états. Les arêtes portent les probabilités de transition. (On omet les arêtes de probabilité nulle.)

NB : la somme des arêtes sortantes est toujours 1.

Modéliser

Théo fait la lessive. Où vont les chaussettes?

Récapitulons

Trois modes de représentations d'un même objet.

Changer de mode de représentation

Soit (Z_n) une suite de variables i.i.d à valeurs dans **Z**. On suppose $P(Z_0 \text{ est pair}) = 2/3 \text{ et } P(Z_0 \text{ est impair}) = 1/3.$

Transition aléatoire vs. déterministe, version graphe

Transitions : p = 1/7

Transitions : p = 0, 1

Transition aléatoire vs. déterministe, version matrice

Irréductibilité

Définition

Une matrice $A \in \mathcal{M}_n(\mathbf{C})$ est dite réductible s'il existe $J \subsetneq \{1, \dots, n\}$ telle que $J \neq \emptyset$ et

$$\forall j \in J, \forall i \in \{1,\ldots,n\} \setminus J, a_{i,j} = 0.$$

Dans le cas contraire, *A* est dite irréductible. On dit qu'une chaîne de Markov est **irréductible** si sa matrice de transition est irréductible.

Une matrice est irréductible si parmi tous les $2^n - 2$ sous-espaces engendrés par la base canonique qui ne sont ni réduit à 0 ni total, aucun n'est stable.

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 1/2 & 1/2 \\ 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

réductible irréductible irréductible

Question flash : A quelle condition sur $\sigma \in \mathcal{S}_n$ la matrice P_{σ} est-elle irréductible ?

Irréductibilité

Définition

Une matrice $A \in \mathcal{M}_n(\mathbf{C})$ est dite réductible s'il existe $J \subsetneq \{1, \dots, n\}$ telle que $J \neq \emptyset$ et

$$\forall j \in J, \forall i \in \{1, \ldots, n\} \setminus J, a_{i,j} = 0.$$

Dans le cas contraire, *A* est dite irréductible. On dit qu'une chaîne de Markov est **irréductible** si sa matrice de transition est irréductible.

Une matrice est irréductible si parmi tous les 2^n-2 sous-espaces engendrés par la base canonique qui ne sont ni réduit à 0 ni total, aucun n'est stable.

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 1/2 & 1/2 \\ 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

réductible irréductible irréductible

Question flash: A quelle condition sur $\sigma \in \mathcal{S}_n$ la matrice P_{σ} est-elle irréductible? Si et seulement si σ est une permutation **circulaire**.

Distributions et transition

Si (X_n) est une chaîne de Markov finie à valeurs dans E, la loi de X_n peut être encodée par une suite de matrices lignes indexées par E. Cette suite est notée (Π_n) .

Proposition

 Π_n vérifie l'identité

$$\Pi_{n+1} = \Pi_n A$$

(transition)

où A est la matrice de transition.

Par conséquent $\Pi_n = \Pi_0 A^n$.

Démonstration.

C'est une application de la formule des probabilités totales :

$$P(X_{n+1} = v) = \sum P(X_{n+1} = v \mid X_n = u)P(X_n = u).$$

Probabilité invariante

Étant donné une matrice stochastique A, on appelle **probabilité invariante** un vecteur ligne π tel que $\pi A = \pi$.

Théorème de Perron-Frobenius

Toute chaîne de Markov finie irréductible admet une unique probabilité invariante. De plus, cette probabilité invariante est strictement positive.

- C'est « le » théorème de ce mini-cours. (En fait, la version ici est un corollaire du théorème de Perron-Frobenius.) Preuve : voir notes de cours.
- ▶ Il n'est pas au programme de Terminale maths expertes, mais se manifeste très souvent dans les problèmes (exercices de la fiche). Certains l'admettent dans des cas particuliers.

De manière équivalente : soit M une matrice stochastique irréductible. Alors tM possède un vecteur propre de coordonnées strictement positives pour la valeur propre 1, **unique** à multiple scalaire positif près. (En fait, quelque chose d'un peu plus fort est vrai.)

Remarques sur les probabilités invariantes

Les propriétés de la probabilité invariante

- ► Existence
- ▶ Unicité
- Stricte positivité

En fait, l'existence ne requiert pas que A soit irréductible. L'unicité et la stricte positivité, si.

Détermination de la probabilité invariante

Si A est la matrice de transition, cela revient à déterminer le vecteur propre de tA associé à la valeur propre 1. C'est-à-dire à **résoudre un système linéaire**. En particulier si les coefficients de A sont **rationnels**, ceux de la probabilité invariante le seront aussi.

Un critère d'irréductibilité

Étant donnée une matrice stochastique, il n'est pas toujours évident a priori qu'elle est irréductible (cela se « voit » encore moins sur le graphe).

Proposition

Soit A une matrice stochastique. S'il existe p > 0 tel que A^p a tous ses coefficients strictements positifs, alors A est irréductible.

Démonstration.

Supposons que A est irréductible et soit $J \subsetneq \{1,\ldots,n\}$ non vide telle que $\text{vect}(e_j:j\in J)$ est A-stable. Alors $\text{vect}(e_i:j\in J)$ est encore A^p -stable; mais alors A^p possède un coefficient nul en position $(i,j)\in \overline{J}\times J$.

Attention, la proposition ne donne pas de condition nécessaire. On pourra penser à

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Exemple et interprétation

La chaîne de Markov « Lessive de Théo ».

taie d'oreiller
$$\begin{pmatrix} 1/4 & 1/2 & 1/4 \\ 1/6 & 1/2 & 1/3 \\ 1/12 & 1/6 & 3/4 \end{pmatrix}$$
.

- $ightharpoonup \pi = (5/38, 12/38, 21/38) \simeq (0.13, 0.32, 0.55)$ est la probabilité invariante.
- ► A est irréductible (car strictement positive). À la fin de la lessive, Théo retrouve 32% de ses chaussettes dans la housse de couette et 13% dans la taie d'oreiller.

Merci pour votre attention.