1 Naive Computation of Inconsistency Explanations in MCS

Similar as for the computation of diagnoses, we use dlvhex to compute all inconsistency explanations. Using a saturation technique, this is easily achieved. As dlhex uses the FLP-reduct semantics, we can allow negation-as-failure in the check-part of our saturation encoding, so we may reuse & con_out_i from the diagnosis computation.

On the other hand, however, we have to ensure that the external atom also holds for the saturated guess which is tricky as, input beliefs of a context also depend on bridge rule applicability which is ignored in the saturated case. Therefore we inform the external atom whether saturation is the case; we do this by adding the saturation atom "spoil" as input to &con_out_i. Technically, to avoid having to redo every external-atom, we use a meta-atom that will internally use &con_out_i.

The full encoding for an MCS M with bridge rules br_M , contexts con(M), and OUT_i , resp., IN_i being the output-, resp. input-projected beliefs of context $i \in con(M)$: is as follows:

```
% guess an explanation candidate, \forall r \in br_M:
e1(r) v ne1(r).
e2(r) v ne2(r).
:- e1(r), ne1(r).
:- e2(r), ne2(r).
% guess a subset of the candidate explanation
% for which holds that E1 \subseteq r1 \subseteq br_M
\% and r2 \subseteq br_M \setminus E2:
r1(R) :- e1(R).
r1(R) \ v \ nr1(R) := ne1(R).
r2(R) \ v \ nr2(R) :- ne2(R).
\% guess a belief state, every a \in OUT_i
\% is either present or absent:
pres_i(a) \ v \ abs_i(a).
% derive applicable rule heads, \forall r \in br_M,
% of form r = (i:b) \leftarrow (i_1:b_1), \dots, (i_{k-1}:b_{k-1}), not(i_k:b_k), \dots, not(i_m:b_m).
% with i_j \in con(M), and b_j \in OUT_j
\operatorname{in}_{-i}(b) := \operatorname{rl}(r), \operatorname{pres}_{-i_1}(b_1), \dots, \operatorname{pres}_{-i_{k-1}}(b_{k-1}), \operatorname{abs}_{-k}(b_k), \dots, \operatorname{abs}_{-i_m}(b_m).
% derive heads of unconditional rules, \forall r \in br_M with
\% r = (i:b) \leftarrow \dots
in_{-}i(b) :- r2(r).
```

% inform external atom about which beliefs to use for output projection,

```
\% i.e. OUT_i, so \forall o \in OUT_i add
\operatorname{out}_{-i}(o).
% spoil if the guessed belief state is no equilibrium
% of the guessed MCS, \forall i \in con(M) where the mcs-master file
% specifies a
% #context(i,"external_atom","param").
spoil :- not
      &saturation_meta_context["external_atom", spoil, i, pres_i, in_i, out_i, "param"].
% #context(2," dlv_asp_context_acc","./medExample/kb2.dlv").
\% therefore becomes
\% \ spoil :- \ not \ \& saturation\_meta\_atom \ ["\ dlv\_asp\_context\_acc", spoil \ ,
            2, pres_2, in_2, out_2, "./medExample/kb2.dlv"].
% spoil if our guesses are wrong by themselves, \forall r \in br_M, a \in OUT_i:
spoil :- r1(r), rr1(r).
spoil :- r2(r), nr2(r).
spoil :- pres_i(a), abs_i(a).
\% saturate the guesses, i.e., subsets, belief states, and derived rule heads
\% \ \forall r \in br_M, a \in OUT_i, b \in IN_i:
r1(r) := spoil.
r2(r) := spoil.
nr1(r) :- spoil.
nr2(r) :- spoil.
\mathrm{abs}_{\text{-}}i(a) :- spoil.
pres_i(a) :- spoil.
in_{-}i(b) := spoil.
% ensure saturation
:- not spoil.
```