

DEUTSCHES PATENTAMT

(21) Aktenz ich n: P 35 25 623.0 (22) Anmeldetag: 18. 7. 85 (43) Offenlegungstag: 22. 1. 87 C 07 C 103/58

C 07 C 103/64
C 07 C 149/42
C 07 C 147/14
C 07 C 147/107
C 07 C 103/68
C 07 C 103/66
C 07 C 103/66
A 01 N 37/18
A 01 N 43/06
A 01 N 43/36
C 07 D 211/16

(5) Int. Cl. 4:

(7) Anmelder:

Celamerck GmbH & Co KG, 6507 Ingelheim, DE

@ Erfinder:

Curtze, Jürgen, Dr., 6222 Geisenheim, DE; Albert, Guido, Dipl.-Biol. Dr., 6551 Hackenheim, DE; Drandarevski, Christo, Dr., 6507 Ingelheim, DE; Pieper, Helmut, Dipl.-Chem. Dr.; Nickl, Josef, Dipl.-Chem. Dr., 7950 Biberach, DE

(5) Fungizid wirksame Acrylsäureamide

Die Erfindung betrifft neue Acrylsäureamide der Formel

in der A, B, R¹ und Q wie im Text definiert sind, Verfahren zu deren Herstellung sowie fungizide Mittel gekennzeichnet durch einen Gehalt an Verbindungen der Formel (I).

Patentansprüche

1) Acrylsäureamide der Formel: 5 =CR1--CO--O **(D)**. 10 R1 für Wasserstoff, Halogen, Cyano, gegebenenfalls substituiertes Alkyl oder gegebenenfalls substituiertes Alkoxyalkyl steht A für einen bis zu dreifach durch R2 substituierten Phenylrest steht, wobei im Falle doppelter oder dreifacher Substitution R² unabhängig voneinander gewählt werden kann 15 20 25 kfür 0,1,2 steht m für 0,1,2,3 steht, wobei R² unabhängig voneinander gewählt werden kann. X für CH2, O, S, NH oder N-Alkyl steht R2 für Halogen, Nitro, Hydroxy, Cyano, Carboxy, Alkoxycarbonyl, Carbamoyl, gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkoxy, gegebenenfalls substituiertes Alkyl-S(O), - mit p = 0,1,2, 30 gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenoxy, Amino, Monoalkylamino, Dialkylamino, gegebenenfalls substituiertes Phenyl-S(O), mit p = 0,1,2, gegebenenfalls substituiertes C₃--C₇-Cycloalkyl steht Q für 35 oder 40 R3 für Wasserstoff, gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Phenyl steht R4 für substituiertes Alkyl, substituiertes C3-C7 Cycloalkyl, substituiertes Alkenyl, substituiertes Phenyl, gegebenenfalls substituiertes Alkinyl, gegebenenfalls substituiertes Alkoxy, gegebenenfalls substituiertes 45 C5-C18-Alkyl $(CH_2)_{(q+1)}-R^6 \text{ oder } (CH)-R^8-(CH_2)_q-CO-R^7 \text{ (mit } q=0,1,2) \text{ steht}$ R⁶ für gegebenenfalls substituiertes Alkoxy, 50 für gegebenenfalls substituiertes Alkylthio, für gegebenenfalls substituiertes Alkylamino, für gegebenenfalls substituiertes Dialkylamino, für gegebenenfalls substituiertes Morpholino, für gegebenenfalls substituiertes C_3 — C_7 -Cycloalkyl für gegebenenfalls substituiertes C_6 — C_{10} -Alkyl 55 für gegebenenfalls substituiertes Phenyl, für gegebenenfalls substituiertes Dialkoxymethyl für gegebenenfalls substituiertes Dialkylthiomethyl für gegebenenfalls substituiertes 1,3-Dioxolan-2-yl 60 Halogen, Hydroxy, Amino, Mercapto steht R' für Wasserstoff, Hydroxy, gegebenenfalls substituiertes Alkyl, Amino, Monoalkylamino, Dialkylamino, Alkoxy, gegebenenfalls substituiertes Morpholino, gegebenenfalls substituiertes Piperazino, gegebenenfalls substituiertes Imidazo, g gebenenfalls substituiertes Piperidino steht

 R^3 und R^4 gemeinsam für eine $C_3 - C_5$ -Alkylenkette, die durch O, NH, N-Alkyl, S(O), mit p = 0.1.2 unterbrochen sein kann und in oder mehrfach mit Hal gen, Cyano, Nitro, Oxo, Hydroxy oder Mercapto substituiert

R⁸ für Wasserstoff, gegebenenfalls substituiertes Akyl steht,

65

ist, stehen.

R5 für einen an ein beliebiges Kohlenstoffatom des Imidazol gebundenen Rest aus der Gruppe Wasserst ff. oder gegebenenfalls substituiertes Alkyl steht, sowie gegebenenfalls die Salze der vorstehend definierten Verbindungen mit Säuren, Basen oder Komplexbildern. 2) Fungizides Mittel, enthaltend eine Verbindung nach Anspruch 1 3) Verfahren zur Bekämpfung von phyt path genen Pilzen, dadurch gekennzeichnet, daß man eine fungizid wirksame Menge einer Verbindung der Formel I gemäß Anspruch 1 auf die Pilze oder durch Pilzbefall bedrohte Flächen, Pflanzen oder Saatgüter einwirken läßt. 4) Verfahren zur Herstellung von Verbindungen der Formel I a) durch Umsetzung einer Acrylsäure der Formel 10 (III) =CR'--COOH 15 worin A, B und R! wie in Anspruch 1 definiert sind oder durch Umsetzung eines gegebenenfalls in situ hergestellten reaktionsfähigen Derivates von (II) mit einer Verbindung der Formel HQ (III) in der Q wie in Anspruch 1 definiert ist nach an sich bekannten Verfahren b) durch Umsetzung einer Acrylsäure der Formel (II) in der A, B und R¹ wie in Anspruch 1 definiert sind mit einem gewünschtenfalls substituierten Carbonyldiimidazol zu Verbindungen der Formel (I), in denen Q für ein gewünschtenfalls substituiertes Imidazolradikal steht, c) durch Umsetzung eines Ketons der Formel (IV) R'O **(I)** R'O 35 (XIV) (IV) mit einem Phosphonoessigsäurederivat der Formel (XIV), wobei A, B, R1 und Q wie in Anspruch 1 definiert sind und R' für eine niedere Alkylgruppe steht. 40 Beschreibung Die Erfindung betrifft neue Acrylsäureamide der Formel: $C = CR^1 - CO - Q$ **(I)** R1 für Wasserstoff, Halogen, Cyano, gegebenenfalls substituiertes Alkyl oder gegebenenfalls substituiertes Alkoxyalkyl steht A für einen bis zu dreifach durch R2 substituierten Phenylrest steht, wobei im Falle doppelter oder dreifacher 55 Substitution R² unabhängig voneinander gewählt werden kann B für 60 65

k für 0,1,2 steht

m für 0,1,2,3 steht, wobei R2 unabhängig voneinander gewählt werden kann.

X für CH2, O, S, NH oder N-Alkyl steht

R2 für Halogen, Nitro, Hydroxy, Cyano, Carboxy, Alkoxycarbonyl, Carbamoyl, gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkoxy, gegebenenfalls substituiertes Alkyl-S(O), - mit p = 0,1,2, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenoxy, Amino, Monoalkylamino, Dialkylamino, gegebenenfalls substituiertes Phenyl-S(O)_p mit p = 0,1,2, gegebenenfalls substituiertes $C_3 - C_7$ -Cycl alkyl steht

Q für

20

R³ für Wasserstoff, gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Phenyl steht R* für substituiertes Alkyl, substituiertes C3-C7 Cycloalkyl, substituiertes Alkenyl, substituiertes Phenyl, gegebenenfalls substituiertes Alkinyl, gegebenenfalls substituiertes Alkoxy, gegebenenfalls substituiertes C₅-C₁₈-Al-

 $(CH_2)_{\alpha+1}$ - R^6 oder $(CH)R^3$ - $(CH_2)_{\alpha}$ - $CO - R^7$ (mit q = 0,1,2) steht

R6 für gegebenenfalls substituiertes Alkoxy. für gegebenenfalls substituiertes Alkylthio, für gegebenenfalls substituiertes Alkylamino. für gegebenenfalls substituiertes Dialkylamino, für gegebenenfalls substituiertes Morpholino für gegebenenfalls substituiertes C3-C7-Cycloalkyl für gegebenenfalls substituiertes C6-C10-Alkyl

für gegebenenfalls substituiertes Phenyl für gegebenenfalls substituiertes Dialkoxymethyl für gegebenenfalls substituiertes Dialkylthiomethyl für gegebenenfalls substituiertes 1,3-Dioxolan-2-yl Halogen, Hydroxy, Amino, Mercapto steht

RI für Wasserstoff, Hydroxy, gegebenenfalls substituiertes Alkyl, Amino, Monoalkylamino, Dialkylamino, Alkoxy, gegebenenfalls substituiertes Morpholino, gegebenenfalls substituiertes Piperazino, gegebenenfalls substituiertes Imidazo, gegebenenfalls substituiertes Piperidino steht R⁸ für Wasserstoff, gegebenenfalls substituiertes Alkyl steht,

 R^3 und R^4 gemeinsam für eine C_3-C_5 -Alkylenkette, die durch O, NH, N-Alkyl, $S(O)_p$ mit p=0.1.2 unterbrochen sein kann und ein oder mehrfach mit Halogen, Cyano, Nitro Oxo, Hydroxy oder Mercapto substituiert ist, stehen. R⁵ für einen an ein beliebiges Kohlenstoffatom des Imidazol gebundenen Rest aus der Gruppe Wasserstoff, oder gegebenenfalls substituiertes Alkyl steht,

sowie gegebenenfalls die Salze der vorstehend definierten Verbindungen mit Säuren, Basen oder Komplexbil-

Im Rahmen der vorstehenden Definitionen können die Reste und Gruppen jeweils gleich oder verschieden

Mit Alkyl sind C₁--C₆-Alkylradikale die geradkettig oder verzweigt sein können gemeint, bevorzugt sind C₁—C₄-Alkyle wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, sek-Butyl, tert-Butyl oder Isobutyl.

Die vorstehende Definition gilt auch wenn das Alkylradikal substituiert und/oder Bestandteil einer Alkoxyalkyl-, Alkoxycarbonyl-, Carbomoyl-, Alkoxy-, Alkylthio-, Alkylsulfinyl-, Alkylsulfonyl-, Monoalkylamino-, Dialkoxymethyl-, Dialkylthiomethyl-, Dialkylaminogruppe ist oder das Alkylradikal als Substituent an ein aromatisches, heterocyclisches oder carbocyclisches System gebunden ist.

Unter substituiertem Alkyl sind Alkylradikale zu verstehen, die ein oder mehrfach mit Hydroxy, Alkoxy, Mercapto, Halogen, Alkylthio, Nitro, Cyano oder Amino substituiert sind. Bevorzugt sind Halogen, Hydroxy, Cyano; hervorzuheben ist die Trifluormethyl und die Trichlormethylgruppe.

Im Falle der Carbamoylgruppe ist die Carbamoylgruppe sowie die N,N-Dimethylcarbamoylgruppe bevor-

Halogene sind Fluor, Chlor, Brom und Jod, vorzugsweise Fluor, Chlor und Brom und in zweiter Linie Jod.

Die Substituenten in den für A und B angegebenen Resten sind insbesondere Halogen, Nitro, Amino, gegebenenfalls ein- oder mehrfach halogensubstituierte C1-C4-Alkyl- und -Alkoxygruppen, NH(C1-C4-Alkyl) und N(C1 C4-Alkyl)2, auch Phenoxy, Phenylthio, C1-C4-Alkylthio.

Der Rest A ist bevorzugt di- oder tri-substituiert, wobei zwei Substituenten, z. B. Methyl, Methoxy, Ethyl, Ethoxy, Fluor, Chlor, Brom, CHF₂O, CF₃, CF₂Cl, CF₃O, CH₃SO, CH₃SO₂, NH₂, NHCH₃, N(CH₃)₂, sich bevorzugt in 3,4-Stellung befinden.

Sind A und B in der Formel I verschieden, so k"nnen die Verbindungen der Formel I als cis-/trans-Isomere vorliegen. Die Formel I umfaßt in diesem Fall sowohl die einzelnen Isomeren als auch Gemische der cis- und der trans-Verbindung.

Des weiteren können die Reste A bzw. B in ihr r freien Drehbarkeit um die Achse der Einfachbindung aufgrund

sterischer oder sonstiger Sekundärwechselwirkungen beeinträchtigt sein; derartige Effekte können Atropisomerie hervorufen. Die Erfindung umfaßt somit auch die atropisomeren Strukturen von (I).

Der Substituent Q umfaßt offenkettige Amidstrukturen s wie die in der Definiti n angegebenen heterocyclischen Strukturen.

Im Falle Q = Imidaz 1 sind Verbindungen bevorzugt bei denen R1 v n Wasserstoff verschieden ist.

Man erhält die neuen Verbindungen nach an sich bekannten Verfahren durch:

a) Umsetzung einer Acrylsäure der Formel

$$C = CR^{1} - COOH$$
 (II)

worin A, B und R¹ wie zuvor definiert sind oder durch Umsetzung eines gegebenenfalls in situ hergestellten reaktionsfähigen Derivates von (II) mit einer Verbindung der Formel

HQ (III)

in der Q wie zuvor definiert ist.

Das Verfahren stellt somit die Acylierung einer Verbindung der Formel III mit einer Carbonsäure der Formel II dar, wobei die Umsetzung vorteilhaft in Gegenwart eines die Säure II aktivierenden oder eines wasserentziehenden Mittels oder aber mit reaktiven Derivaten der Carbonsäure II oder des Edukts III gearbeitet wird.

Als gegebenenfalls im Reaktionsgemisch hergestellte reaktive Derivate einer Carbonsäure der Formel II kommen beispielsweise ihre Alkyl-, Aryl-, Aralkylester oder -thioester wie der Methyl-, Ethyl-, Phenyl- oder Benzylester, ihre Imidazolide, ihre Säurehalogenide wie das Säurechlorid oder -bromid, ihre Anhydride, ihre gemischten Anhydride mit aliphatischen oder aromatischen Carbon-, Sulfen-, Sulfonsäuren oder mit Kohlensäureestern, z. B. mit der Essigsäure, der Propionsäure, der p-Toluolsulfonsäure oder der O-Ethylkohlensäure, oder ihre N-Hydroxyimidester in Betracht. Als gegebenenfalls im Reaktionsgemisch hergestellte reaktive Derivate eines Amins der Formel III eignen sich z. B. ihre "Phosphorazoderivate".

Als säureaktivierende und/oder wasserentziehende Mittel kommen beispielsweise ein Chlorameisensäureester wie Chlorameisensäureäthylester, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Carbonyldiimidazol oder N,N'-Thionyldiimidazol in Betracht.

Die Umsetzung wird zweckmäßigerweise in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Äther, Tetrahydrofuran, Dioxan, Benzol, Toluol, Acetonitril oder Dimethylformamid, gegebenenfalls in Gegenwart einer anorganischen Base wie Natriumcarbonat oder einer tertiären organischen Base wie Triethylamin oder Pyridin, welche gleichzeitig als Lösungsmittel dienen kann, und gegebenenfalls in Gegenwart eines säureaktivierenden Mittels bei Temperaturen zwischen —25°C und 150°C, vorzugsweise jedoch bei Temperaturen zwischen —10°C und der Siedetemperatur des Reaktionsgemisches, durchgeführt. Hierbei braucht ein gegebenenfalls im Reaktionsgemisch entstandenes reaktionsfähiges Derivat einer Verbindung der allgemeinen Formein II oder III nicht isoliert zu werden, ferner kann die Umsetzung auch in einem Überschuß der eingesetzten Verbindung der allgemeinen Formel III als Lösungsmittel durchgeführt werden.

Erfindungsgemäß erhaltene cis-/trans-Isomerengemische können gewünschtenfalls anschließend nach üblichen Methoden in die entsprechenden cis- und trans-Isomeren aufgetrennt werden. Das gleiche gilt für eventuelle Atropisomere.

b) Îm Falle der Substituentenbedeutung Q – Imidazolyl ist es zweckmäßig die freie Carbonsäure II mit einem gewünschtenfalls entsprechend substituierten Carbonyldiimidazol als reaktive Form des Edukts III zum gewüschten Acrylsäureimidazolid der Formel I direkt umzusetzen.

c) Verbindungen der Formel (I) sind auch darstellbar durch Umsetzung eines Ketons der Formel (IV) mit einem Posphonoessigsäurederivat der Formel (XIV) in der R' vorzugsweise für einen niederen Alkylrest steht, nach dem verfahren von

Wittig und Horner

Die Isomerentrennung erfolgt vorzugsweise durch fraktionierte Kristallisati n aus Methanol, Ethanol, Isopropanol, Methan I/Wasser oder Ethanol/Petrolether.

65

Verbindungen der Formel I mit basischen Gruppen können gewünschtenfalls in Säureadditionssalz übergeführt werden, vorzugsweise in Salze von Mineralsäuren wie Salzsäure, Br mwasserstoffsäure, Schwefelsäure, Phosphorsäure.

Die Acrylsäurederivate der Formel II sind bekannt oder können nach an sich bekannten Verfahren hergestellt werden.

Ausgangsstoffe der Formel II in denen die Reste A und B der Definition von Anspruch 1 entsprechen können ausgehend vom Keton der Formel IV nach zahlreichen an sich bekannten Verfahren hergestellt werden.

Durch Umsetzung von IV mit α-Halogencarbonsäureester V und anschließender Verseifung nach Ref rmatsky:

Durch Umsetzung von IV mit CH-aciden Komponenten nach Knoevenagel, hier erläutert anhand der Umsetzung von IV mit einem Nitril VI und anschließender Verseifung des Acrylnitrils VII zur Carbonsäure II.

Acrylsäuren der Formel II können auch nach Wittig-Horner ausgehend von Keton IV durch Umsetzung mit einer Phosphonessigsäureverbindung der Formel VIII und anschließender Verseifung des Esters IX hergestellt werden.

$$C = CR^{1} - COOR''' \longrightarrow (II)$$

$$(IX)$$

15

40

45

Verbindungen der Formel II, in denen B für den Rest

$$(R^2)_{\overline{m}}$$
 $(CH=CH)_{\overline{k}}$

steht und k von null verschieden ist können ebenfalls nach Horner Wittig ausgehend von dem Acetophenon X über den Methacrylsäureester XI durch Kondensation mit der Carbonylkomponente XII zu XIII und anschließende Verseifung zu II in einer mehrstufigen Reaktionsfolge hergestellt werden:

6

$$(XI) + B - (CH = CH)_{\overline{(k-1)}} CHO \longrightarrow C = CR^{1} - COOR'''$$

$$(XII) \qquad (XIII) \qquad (XIII)$$

Die Reste A, R^1 , R^2 , B und k haben die obige Bedeutung R', R" und R" ' stehen vorzugsweise für niedere Alkylreste.

Die erfindungsgemäßen Verbindungen zeigen eine starke Wirkung besonders gegen phytopathogene Pilze, vor allem gegen echten Mehltau, falschen Mehltau (etwa Plasmopara und Phytophthora), Schorf, Grauschimmel, Rostpilze. Wegen ihrer nur sehr geringen Phytotoxizität können die neuen Verbindungen in praktisch allen Nutz- und Zierpflanzenkulturen eingesetzt werden, beispielsweise in Getreide, etwa Mais, Weizen, Roggen, Hafer in Reis, in Tomaten, Gurken, Bohnen Kartoffeln, Rüben im Wein- und Obstbau, in Rosen, Nelken und Chrysanthemen.

Die neuen Verbindungen zeigen Blattwirkung und systemische Wirkung. So wird mit zahlreichen erfindungsgemäßen Verbindungen bei der Blattbehandlung gegen Plasmopara mit einer Wirkstoffkonzentration zwischen 20 und 100 ppm eine vollständige Abtötung der Pilze erreicht. Bei der Bekämpfung von Phytophthora genügen im allgemeinen Wirkstoffkonzentrationen von 100 ppm, zum Teil weniger, für eine ausreichende Wirkung.

im allgemeinen Wirkstoffkonzentrationen von 100 ppm, zum Teil weniger, für eine ausreichende Wirkung. In manchen Fällen ist es günstig, die erfindungsgemäßen Verbindungen mit bekannten fungiziden Wirkstoffen zu kombinieren. Dabei geht die Wirkung der Kombinationen z. T. deutlich über die rein additive Wirkung hinaus. Kombinationspartner 25 Manganethylenbisdithiocarbamat (Maneb) Mangan-Zinkethylenbisdithiocarbamat (Mancozeb) Zinkethylenbisdithiocarbamat (Zineb) N-Trichlormethylthio-tetrahydrophthalimid (Captan) N-Trichlormethylthiophthalimid (Folpet) 30 N-(1,1,2,2-Tetrachlorethylthio)tetrahydrophthalimid (Captafol) 2,3-Dicyano-1,4-dithiaanthrachinon (Dithianon) Zink-(N,N'-propylen-bisdithiocarbamat (Propineb) Kupferoxychlorid Natrium-4-dimethylaminobenzoldiazoldiazosulfonat (Fenaminosulf) 35 Triphenylzinnacetetat (Fentinacetat) Triphenylzinnhydroxid (Fentinhydroxyd) Eisendimethyldithiocarbamat (Ferbam) N-(2-Furoyl)-N-(2,6-xyly)-DL-alanin (Furalaxyl) 3-(Dimethylamino)propylcarbamat (Propamocarb) 40 N-Ethyl-N-(3-dimethylamino)thiocarbamat (Prothiocarb) Tetramethylthiuramidsulfid (Thiram) N-Dichlorfluormethylthio-N,N'-dimethyl-N-p-tolylsulfamid (Tolylfluamid) N-(2-Methoxyacetyl)-N-(2,6-xylyl)alanin (Metalaxyl) Zinkdimethylthiocarbamat (Ziram) 45 N-Dichlorfluormethylthio-N',N'-dimethyl-N-phenylsulfamid (Dichlorfluanid) 3-Trichlormethyl-5-ethoxy-1,2,4-thiadiazol (Etridazol) Tri/aminzink-ethylenbis(dithiocarbamat)/tetrahydro-1,24,7-dithiadiazocin-3-8-dithion polymer (Metiram) Aluminotris-(O-ethylphosphat) (Phosethyl) 2-Cyano-N-(ethylcarbamoyl)-2-methyloximino)-acetamid (Cymocanil) 50 N-(3-Chlorphenyi)-N-(tetrahydrofuran-2-on-3-yi)-cyclopropancarbonamid (Cyprofuran) Tetrachlor-isophthalodinitril (Chlorothalonil) 6-Methyl-2-oxo-1,3-dithio[4,5-b]-chinoxalin (Chinomethionat) 4-Cyclododecyl-2,6-dimethylmorpholin (Dodemorph) 1-Dodecylguanidiniumacetat (Dodin) 55 Diisopropyl-5-nitroisophthalat (Nitrothal-isopropyl) 2.4-Dichlor-α-(pyrimidin-5-yl)benzhydrylalkohol (Fenarimol) 1-(β-Allyloxy-2,4-dichlorphenethyl)imidazol (Imazalil) 3-(3,5-Dichlorpenyl)-N-isopropyl-2,4-dioxoimidazolidin-1-carboxamid (Iprodion) 60 2.3-Dihydro-6-methyl-5-phenylcarbamoyl-1,4-oxythiin-4,4-dioxid (Oxycarboxin) N-(3,5-Dichlorphenyl)-1,2-dimethylcyclopropan-1,2-dicarboximid (Procymidon) 6-Ethoxycarbonyl-5-methylpyrazolo/1,5-/pyrimidin-2-yl-0,0-dimethyl-phosphorthioat (Pyrazophos) 2-(Thiazol-4-yl-benzimidazol (Thiabendazol)

65

1-(4-Chlorphenoxy-3,3-dimethyl-1-(1,2,4-triazol-1-yl-2-butanon (Triadimefon) 1-(4-Chlorphenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl-butanol (Triadimenol)

3-(3.5-Dichlorphenyl)-5-methyl-5-vinyloxyzolidin-2,4-dion (Vinclozolin)

Methylbenzimidazol-2-ylcarbamat (Carbendazin)

2,4,5-Trimethyl-N-phenyl-3-furancarboxamid (Methfuroxam) β-/1,1-Biphenyl/-4-yl-oxy)- -(1,1-dimethylethyl)-1H-1,24-triazol-1-ethanol (Bitertanol) 2-(2-Furyl)benzimidaz 1 (Fuberidazol) 5-Butyl-2-ethylamino-6-methylpyrimidin-4-ol (Ethirim I) 2-Methyl-3-furanilid (Fenfuram) Bis-(8-guanidino-octyl)amin (Guazatin) N-Cyclohexyl-N-methoxy-2,5-dimethylfuran-3-carbonsäureamid (Furmecyclox) 2-Chlor-4'-fluor--(pyrimidin-5-yl)benzhydrylalkohol (Nuarimol) Methyl-1-(butylcarbamoyl)benzimidazolcarbamat (Benomyl) 0,0-Diethylphthalimidophosphonathioat (Dithalin) 7-Brom-5-chlorchinolin-8-yl-acrylat (Halacrimat) 1-/2-(2,4-Dichlorphenyl)4-propyl-1,3-dioxolan-2-yl-methyl/1H-1,2,4-triazol (Propiconazol) Diemethyl-4,4'--(o-phenylen)bis(3-thioallophanat) (Thiophanat-methyl) 1,4-Bis(2,2,2-trichlor-1-formamidoethyl)piperzin (Triforine) 2,6-Dimethyl-4-tridecylmorpholin (Tridemorph) 4-/3-/4-(1,1-Dimethyl-ethyl)phenyl/-2-methyl/-propyl-2,6(cis-dimethylmorpholin (Fenpropemorph) 1-/2-(2,4-Dichlorphenyl)-4-ethyl-1,3-dioxolan-2-ylmethyl/iH-1,2,4-trizol (Etaconazol) 1-/1-(2,4-Chlorphenyl)-4,4-dimethyl-3-hydroxy-2-pentyl/1,2,4-triazol (Diclobutrazol) 2,4-Dichlor-6-(2-chloranilino-1,3,5-triazin (Anilazin) 2-Jodo-N-phenyibenzamid (Benodanil) 2-sec.-butyl-4,6-dinitrophenyl-3-methylcrotonate (Binapacryl) 5-Butyl-2-(ethylamino)-6-methyl-4-pyrimidinyl dimethyl-sulfonat (Buprimat) 2,4-Dinitro-6-octylphenylcrotinat (Dinocap) 5,6-Dihydro-2-methyl-1,4-oxathiin-3-carbanilid (Carboxin) N-Propyl-N-/(2,4,6-trichlorphenoxy)-2-ethyl/-imidazol-1-carbonamid (Prochloraz)

Für die Anwendung im Pflanzenschutz werden die neuen Verbindungen in üblicher Weise mit Hilfs- und/oder Trägerstoffen zu gebräuchlichen Formen von Schädlingsbekämpfungsmitteln verarbeitet, z.B. zu Lösungen, Emulsions- bzw. Lösungskonzentraten, Suspensionspulvern, Stäuben. Soweit Kombinationen mit anderen Wirkstoffen zur Anwendung gelangen sollen, kann dies in Form gemeinsamer Formulierungen oder z.B. in Form von Tankmischungen geschehen.

Die Konzentrate werden vor der Anwendung gegebenenfalls mit Wasser verdünnt, so daß Spritzbrühen mit einem Wirkstoffgehalt zwischen etwa 0,001 und 1 Gewichtsprozent erhalten werden. Bei der Anwendung als Low-volume- oder Ultra-Low-volume-Formulierung kann der Wirkstoffgehalt auch erheblich höher sein (bis ca. 20 bzw. bis ca. 90 Gewichtsprozent).

Beispiele für erfindungsgemäße Formulierungen:

1. Suspensionspulver 20 Gew.-Teile einer Verbindung der Formel I 20 Gew.-Teile Kaolin 5 Gew.-Teile Natriumsulfat 2 Gew.-Teile Schlämmkreide 9 Gew.-Teile Calciumligninsulfonat 1 Gew.-Teil Diisobutylnaphthalinnatrimsulfonat 43 Gew.-Teile Kieselkreide Die Bestandteile werden vermahlen. Das Mittel wird für die Anwendung in so viel Wasser suspendiert, daß die

2. Emulsionskonzentrat 15 Gew.-Teile einer Verbindung der Formel 1

10 Gew.-Teile Dodecylbenzolsulfonsäuretriethylaminsalz

Wirkstoffkonzentration etwa 0,001 bis 0,5 Gewichsprozent beträgt.

75 Gew.-Teile Dimethylformamid

35

65 .

Die nachstehenden Beispiele sollen die erfindungsgemäßen Herstellungsverfahren näher erläutern.

Beispiel 1 (Verfahren a)

3-(3,4-Dimethoxyphenyl)-3-phenyl-acrylsäureN-(but-1-in-3-yl)-N-methylamid Zu einer Lösung von 3-(3,4-Dimethoxyphenyl)-3-phenyl-acrylsäure (5,7 g) und Triethylamin (3,5 ml) in THF (THF = Tetrahydofuran) (40 ml) wird unter Rühren und Kühlen bei etwa 5°C Innentemperatur Chlorkohlensäureethylester (2,1 ml in 5 ml THF) getropft. Nach 15 min. wird 1-Methylamino-1-methylprop-2-in (1,8 g in 5 ml THF) zugegeben, 15 min. bei Raumtemperatur nachgerührt und dann 1 h zum Sieden erhitzt. Nach Abdestillieren des Lösungsmittels wird mit Toluol/Wasser ausgeschüttelt und die eingeengte organische Phase mit Toluol/ Aceton an Kieselgel gereinigt. Man erhält die Titelverbindung (3,5 g) als zähes Öl mit einem Rf = 0,65 (Kieselgel mit Toluol/Aceton = 7:3). Das Verhältnis der E/Z-Isomere wird 'H-NMR-spektrokopisch mit etwa 1:1 bestimmt

Beispiel 2 (Verfahren a)

3-(3,4-Dimethoxyphenyl)-3-phenylacrylsäure-4-chloranilid.

Ausgehend v n 3-(3,4-Dimethoxyphenyl)-3-phenylacrylsäure (7,1 g) und 4-Chl ranilin (3,2 g) erhält man anal g Beispiel 1 die Titelverbindung (7,2 g) als langsam kristallisierendes Öl mit einem Rf = 0,70 (Kieselgel mit Toluol/Aceton = 7:3) und E/Z-Isomerenverhältnis = 1:1.

Beispiel 3 (Verfahren b)

3-(3,4-Chlorphenyl)-3-(3,4-dimethoxyphenyl)-2-methyl-acrylsäureimidazolid

Zu einer Lösung von 3-(4-Chlorphenyi)-3-(3,4-dimethoxyphenyi)-2methylacrylsäure (8,3 g) in THF (40 ml) wird N,N'-Carbonyldiimidazol (4,85 in kleinen Protionen eingetragen. Nach Beendigung der CO₂-Entwicklung wird 15 min. zum Sieden erhitzt und dann im Vakuum eingedampft. Der Rückstand wird mit Toluol/Wasser ausgeschützeit

Aus der organischen Phase isoliert man die Titelverbindung (8,5 g) als zähes Öl mit einem Rf = 0,46 (Kieselgel mit Toluol/Aceton = 7.3) und einem E/Z-Isomerenverhältnis von etwa 1:1 ('H-NMR).

Analog zu den in den Beispielen 1 bis 3 beschriebenen Verfahrensvarianten a) b) und c) können die in nachstehender Tabelle angegebenen Verbindungen dargestellt werden, wobei Verfahren b) entweder zur Synthese der Imidazolide (z. B. Verb. No. 28, 29 oder 30) angewendet werden kann, oder aber die zunächst nach Verfahren b) erhältlichen Imidazolide in einer Folgereaktion mit dem gewünschten Amin der Formel (III) zu Produkten der Formel (I) weiter umgesetzt werden.

Tabelle I betrifft Verbindungen der Formel

$$C = CR^{1} - CO - Q$$
B
25

Diese Verbindungen fallen meist als Öl an. Zur Charakterisierung der Substanzen wird meistens der Rf-Wert angegeben, der in einem der folgenden Systemen bestimmt wird:

30

35

40

50

55

60

65

1)Kieselgel mit Toluol/Aceton = 7/3

2)Kieselgel mit Toluol/Aceton = 8/2

3)Kieselgel mit Toluol/Aceton = 6/4

4)Kieselgel mit Essigester/Isopropanol = 8/2

5)Kieselgel mit Toluol/Aceton = 9/1

6)Kiselgel mit Isopropylether

7)Kiselgel mit Essigester/Isopropanol = 1/1

8)Kieselgel mit Essigester

5	•	physikalische Daten	Ği						$Rf = 0,60^3$)						Ö				Fp: 133-136°C				$Rf = 0,70^{1}$			$Rf = 0,76^1$
10			13)	I,}	13,	(°)	13,7	13)											ૡૢ	4 (5)	45	(<u>3</u>)				
15			CH ₁ —N—CH ₂ CH ₂ —N(CH ₃)	CH ₃ -N-CH ₂ CH ₂ -N(CH ₃)	CH,-N-CH,CH,-N(CH,)	CH ₃ —N—CH ₂ CH ₂ —N(CH ₃)	CH ₃ —N—CH ₂ CH ₂ —N(CH ₃)	CH ₃ —N—CH ₂ CH ₂ —N(CH ₃)	CH3-N-CH2CH3-C6H5	CH,-N-CH,CH,-C,H,	CH3-N-CH3CH3-C4H3	CH,—N—CH,CH,—C,H,	CH ₃ —N—CH ₂ CH ₂ —C ₆ H ₅	CH,-N-CH,CH,-C,H,	NH—CH ₂ CH ₃ —N(C ₂ H ₃)	NH—CH ₂ CH ₂ —N(C ₂ H ₅),	NH—CH,CH,—N(C,H,h	NH—CH,CH,—N(C,Hsh	NH—CH1CH1CH1—N(CH1)	NH—CH,CH,CH,—N(CH,)	NH—CH2CH2CH3—N(CH3)	NH—CH,CH,CH,—N(CH,)	,H,)	(*H*)	,4H4)	,4H,)
20			√—CH2	Z-CH2	N-CH2	Z-CH2	N-CH	N-CH2	N-CH2	N-CH2	N-CH	N-CH	N-CH	N-CH	CH,CH,-	CH2CH2-	CH,CH,	CH,CH,-	CH,CH,	CH,CH,	сн,сн,	сн,сн,	NH(4-C1C,H,)	NH-(4-C1-C,H,)	NH-(4-C1-C,H,)	NH—(3-CI—C,H)
: 25	•	ð	CH ₃ —1	CH_3-1	$CH_{3}-1$	CH_3-1	CH ₃ —]	CH ₃ —]	CH3—	CH ₃ —]	CH ₃ —]	CH ₃ —	CH ₃ —	CH3	NH—()—HN	HN	NH—	NH-	NH—	NH	NH—	NH-	HN	HN	NH-
30		~	Н	H	Ħ	H	C,H,	H	Н	H	н	H	Ħ	Ħ	H	CH,	Ħ	×	H	H	H	н	H	H	Ħ	Ħ
35							H,																			
40			C,H,	2,4-C1,—C,H,	3-CH ₃ 0—C ₄ H ₄	4-СН,0СН,—С,Н,	4(4-C1	-C ₆ H ₄	C,H,	3,4(CH ₃),—C,H,	4-со,сн,—с,н,	,tH,	-C,H,	C ₆ H ₄	C,H,	3,4-C1C,H3	'H'	4-C ₂ H ₅ S—C ₆ H ₄	C,H,	3-Dibenzofuryl	4-CH;SO—C,H	4C3H10—C6H5		C,H,	4-C,H,SO,—C,H,	
45 -		83	4-C1—C,H,	2,4-Cl ₂ -	3-CH30	4-CH30	4(4-CI-	4-CF ₃ C ₆ H ₄	4-Cl—C,H	3,4(CH	4-CO ₂ C	2-F-C,H,	3-CH3—C,H4	3-C1-C,H	4-C1C4H4	3,4-C1-	4-I-C,H	4-C ₂ H ₅	4-C!—C,H	3-Diber	4-CH ₃ S	4-C ₃ H ₇	$C_{s}H_{s}$	3-C1C4H	4-C,H	C ₆ H ₅
50						_						,H3													£	
55			C,H3	-C,H	-C ₆ H ₃	3-Br., 4-(CH3),N-C,H3	C,H,	C,H,	C,H,	3,5-С1, 4-СН,0—С,Н,	—C,H,	3-С,Н,О, 4-СН,О—С,Н,	-C,H	3-NH2, 4-CH,0-C,H,	-C,H,	-C,H3	-C ₆ H ₃	,0C,H,	-C ₆ H ₃	H,	-C ₆ H ₃		-C,H,	<u>.</u>	3-С,Н, 4-СН,О—С,Н,	-C _t H ₃
<i>y</i> *			3,4(CH,0),—C,H	3-Br. 4-CH,S-C,H,	3-Br, 4-NO2-C,H3	4-(CH ₃) ₂	3,4(CH ₃ O) ₂ —C ₆ H ₃	3,4(C,H,),—C,H,	3,4(CH,0),—C,H,	h, 4-CH	3-CI, 4-CH,0-C,H,	1,0, 4-C	3-Br, 4-CH,0—C,H,	2, 4-CH3	3,4(CH,0),—C,H,	3,4(CH,0),—C,H,	3-C1, 4-CH ₃ OC ₆ H ₃	3-C,H, 4-CH,OC,H,	3,4(CH,0),—C,H,	3,4(CH ₃ O) ₂ C ₆ H ₃	2,5(CH,0),—C,H,	3,5-Ch-Ch	3,4(CH ₃ O) ₂ —C ₆ H ₃	3,4-C1,-C,H3	3, 4-CH	3,4(CH ₃ 0) ₂ —C ₆ H ₃
60		٧	3,4(C	3-Br.,	3-Br-,	3-Br-,	3,4(C	3,4(C	3,4(C	3,5-C	3-C1,	3-C3H	3-Br,	3-NH	3,4(C	3,4(C	3-CJ,	3-C2F	3,4(0	3,4(C	2,5-((3,5-C	3,4((3,4-C	3-C ₂ I	3,4((
65 .	Tabelle 1	Verb. Nr.		7	٣	4	۰	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	70	21	22	. 23	24

Verb. Nr.	٧	В	~	0	physikalische Daten
25	3,4(CH ₃ 0),—C ₆ H ₃	3,4(CH,0),—C,H,	Ħ	NH —(3-C1—C,H4)	
26	4-NO2-C6H4	3,5-Cl ₂ , 4-OHC ₆ H ₂	н	NH —(3-C1—C,H,)	
27	3,4(CH,0),—C,H,	C,H,	н	NH—(2-C1—C,H4)	Rf = 0,81 ¹)
28	3-CH ₃	С,Н,	н	(_z)	F = 120-123°C
29	4-Cl—C ₆ H ₄	4-C1—C,H,	СН		
30	4Cl—C ₆ H ₃	2-ClC,H,	C ₂ H ₅		
31	3,4(CH ₃ 0) ₂ —C ₄ H ₃	C,H,	н	CH3NCH2CH2-O-CH3	Rf = 0,29¹)
32	3,5-C1, 4NH2-C6H2	4-C,H,—C,H,	Ħ	CH,NCH,CH,—0—CH,	
33	3,4,5(CH ₃ O)—C ₆ H ₂	4-C ₂ H ₅ —C ₆ H ₄	Н	CH,NCH,CH,—0—CH,	
34	4(CH ₃),N—C,H,	4(CH ₁),CH—C,H,	H	CH,NCH,CH,—0—CH,	
35	3-CH ₃ —4-CH ₃ 0—C ₆ H ₃	C,H,	н	0	Fp: 150~154°C
36	3-NH ₂ , 4-CH ₃ O—C ₆ H ₃	4-Cyclohexyl-C ₆ H ₄	Ħ	o z	
37	3-Cl, 4-CH ₃ 0C ₆ H ₃	4-C,H3SC,H4	H	O Z	
38	3-CH ₃ O, 4-CH ₃ —C ₆ H ₃	2-Benzofuryl	Ħ	٥	
	3-CH ₃ —4-CH ₃ 0—C ₆ H ₃	C,H,	Ħ	HO—OH	Fp: 64°C
65	55	40 45	30	15 20 25	S

	5	5	o	0 5	5
Fortsetzung					
Verb. Nr.	Y	В	×	ò	physikalische Daten
40	3-C ₂ H ₂ O, 4-CH ₃ O — C ₆ H ₃	4-CH ₃ SO ₂ —C ₆ H ₄	н	но	
41	3,4(CH,0),—C,H,	2-Fluorenyl	н	но-Он	
42	3-Br, 4-NH ₂ —C ₆ H ₃	3-CH ₃ 0C ₆ H ₄	H	но-Он	
. 43	3,5-B ₅ , 4-NH ₂ —C ₆ H ₂	4(сн, денос, н,	Ħ	HO	$Rf = 0.28^{1}$
45	3-CN, 4-CH3-C6H3	3-F	H	$\bigcirc_{\mathbf{z}}$	
94	3-СН3, 4-С2Н50 — С6Н3	3-C1, 4-F		° Z	
47	3,4(CH,0),—C,H,	C,H,	H	NH—CH ₂ CH ₂ —0—CH ₃	$Rf = 0,3^1$
48	3-Br, 4-C ₂ H ₃ — 0 — C ₆ H ₃	4(CH ₃) _N — C ₆ H ₄		NH—CH ₂ CH ₂ —0—CH ₃	
49	3-CH ₃ —4-CH ₃ 0—C ₆ H ₃	C,H,	н	NH—CH,CH,—O—CH,	$Rf = 0,33^{1}$
8	3-CH ₃ , 4-CH ₃ CO ₂ —C ₆ H ₃	4-C ₂ H ₅ —C ₆ H ₄		NH—CH ₂ CH ₂ —0—CH ₃	
51	3,4(CH ₃ O),—C ₆ H ₃	C,H,	H	NH—(CH2)—OH	Rf = 0,594)
52	3-CH3, 4-CF,HOC4H3	4(CH ₃),—C ₆ H ₄	H	NH—(CH ₂),—OH	٠
53	3-Br, 4-CH ₃ O—C ₆ H ₃	4-CF30-C,H,	CH3	NH—(CH ₂),—OH	
. 54	3-C ₂ H ₃ O, 4-CH ₃ O—C ₆ H ₃	3-N0,C,H,	Ħ	NH—(CH3)—OH	
. 22	3,4(CH ₃ O ₂ —C ₆ H ₃	C,H,	н	HO—OH	$Rf=0,1^1)$
. 26	3-Br, 4-CH ₃ 0C ₆ H ₃	2-Furyl	Ħ	ноОн	

Fortsetzung					
Verb. Nr.	А	В	x	O	physikalische Daten
57	3-C1, 4-NH ₂ —C ₆ H ₃	3-Br – C ₆ H ₄	Н	но—См	
288	3-СН, 4-СН,0С,Н,	4-C,H50C,H4	Ħ	N—OH	
65	3-CH34-CH3OC6H3	C,H,	æ)	Fp: 95-110°C
09	3,4(CH ₃),C ₆ H ₃	2-Thienyl	Ħ		
61	3,5-Cl ₂ —C ₆ H ₃	4-CH ₃ OC ₆ H ₄	н		
62	3-CH,—4-CH,0—C,H,	C,H,	Ħ	NHCH,COOC,H,	$Rf = 0.58^5$)
63	3-C1, 4-CH ₃ 0—C ₆ H ₃	3,4-Cl ₂ —C ₆ H ₃	Н	NHCH,COOC,H,	
2	3-Br, 4(CH ₃) _k N—C ₆ H ₃	3-CH ₃ —C ₆ H ₄	Н	NHCH,COOC,H,	
99	3,5{CH ₃ h, 4-CH ₃ O—C ₆ H ₃	4N0,—C,H,	н	NHCH,COOC,H,	
99	3-CH ₃ —4-CH ₃ O—C ₆ H ₃	C,H,	H	NH — C ₁₂ H ₂₅	$Rf=0,42^6)$
<i>L</i> 9	3,5-C1, 4-NH ₂ C ₆ H ₂	C,H,	Н	NH—C ₁₂ H ₂₃	
89	4CH ₃ 0—C ₆ H ₄	2-CIC,H,	CH,	NH—C ₁₂ H ₂₅	
69	3-CH ₃ -4-CH ₃ 0-C ₆ H ₃	C,H,	H	CH,-N-OCH,	$Rf = 0.31^7$
٠	-				
65	55 55	40 45	30	10 15 20	3

55 60	50	40 45 E	30 PK	20 0	10	physikalische Daten
3,5(CH ₃);—C,H, 3-NO ₂ —C,H,	3-NO ₂ —(C,H,	Ŧ	CH,—N—OCH,		
3-No, 4-CH ₃ OC,H ₃ 3-CF ₃ C ₆ H ₄	3-CF3-C	2,8H4	Ħ	CH ₃ —N—OCH ₃		
3-CH ₃ 4-CH ₃ OC ₆ H ₃ C ₆ H ₃	C,H,		H	N(C,H,X3,4(CH,0),C,H,		Fp: 227°C
3-F, 4-CH ₃ 0—C ₆ H ₃ 4-C ₄ H ₃ —C ₆ H ₄	4-C,H,9-	-C,H,	Н	N(C,H,X3,4(CH,0),C,H,		
3-CH ₃ O, 4-C ₂ H ₃ OC ₆ H ₃ 4-C ₄ H ₃ O	4-C,H,0	4-C,H,O—C,H,	Ħ	N(C,H,X3,4(CH,O),C,H,		
33, 4-СH ₃ 0—С ₄ H ₃ 3-СH ₃ S—С ₄ H ₄	3-CH3S-	-C ₆ H ₄	H	N(C,H,)(3,4(CH,O),C,H,		
3,4(CH ₃ 0),—C ₆ H ₃ 4-CI—C ₆ H ₄	4-CI—C	,6H4	Ħ	N(C,H ₅)		
3-CH3, 4-NH2-C4H3 4-F-C4H4	4-F-C	Ħ,	H	N(C,H,h		
2,4(CH ₃ O),—C ₆ H ₃ 3-C1—C ₆ H ₄	3-CI—C	,¢H4	H	N(C,H,)		
3-CH ₃ , 4-NO ₂ C ₆ H ₃ 4-CF ₂ HO	4-CF,HO	C,H,	H	N(C,H ₃),		
3-C ₂ H ₅ , 4-CH ₃ O C ₆ H ₃ 2-Naphthyl	2-Naphth	yl .	H	N(C,H,)		
3-C ₃ H ₂ (n), 4-CH ₃ O C ₆ H ₃ 2-Benzothienyl	2-Benzotl	hienyl	H	N(C,H,)		
3,4(CH ₃ 0),C ₆ H ₃ 4-Br—C ₆ H ₄	4-Br—C	,H,	Ħ	CH,NCH,—H		
3,4(CH ₁ 0) ₂ —C ₆ H ₁ 4-C ₁ —C ₆ H ₄	4-CI	2,6H4	H	$NH - C(CH_3) - C = CH$		Fp: 157°C
3,4(CH ₃ 0),C ₆ H ₃ 4-C ₆ H ₃ -	4-C ₆ H ₅ -	4-C,H,0C,H,	н	NH-C(CH ₃)-C=CH		
3-CH ₃ , 4-CH ₃ 0—C ₆ H ₃ 3,4-Cl ₂ —C ₆ H ₃	3,4-Cl2-	-C,H,	н	NH—C(CH ₃)—C=CH		
3-Br, 4-CH ₃ OC ₆ H ₃ 3-NO ₂ C ₆ H ₄	3-NO ₂	C,H,	н	NH—C(CH ₁)—C=CH		
3-Cl, 4-CH ₃ 0—C ₆ H ₃ 4-NO ₂ —C ₆ H ₄	4-NO ₂ -	-C,H,	н	NH—C(CH ₁)—C=CH		
3,4(CH,0),—C,H, 4-Cl—C,H,	4-CI—C	,4H,	н	CH,—N—CH,—C=CH		$Rf = 0.51^3$)
3,4(CH ₃ 0) ₂ C ₆ H ₃ 4-C ₆ H ₅ —C ₆ H ₄	4-C,H3-	-C,H,	H	CH ₃ —N—CH ₃ —C≡CH		
3-CH,0, 4-CH,—C,H, 4-CI—C,H,	4-CI-	C'H'	H	CH,—N—CH,—C≡CH		
3-Br, 4-CH ₂ OC ₆ H ₃ 4-C ₄ H ₅ C ₆ H ₄	4-C,H,C	,tH,	H	CH ₃ —N—CH ₂ —C≡CH		

A B R 3-CH, 4-C,H,0—C,H, 3-CH,—C,H, 4-C,H,00,—C,H, 4-C,H,4-C,H, 4-C,H,4-C,H, 4-C,H,4-C,H, C,H, 4-F—C,H, 4-F—C,H, 4-F—C,H, 4-F—C,H, 4-F—C,H, 4-C,H,4-C,H, 4-C,H,4-C,H, 4-C,H,4-C	Fortsetzung						
3-CH ₁ , 4-C ₁ H ₂ O - C ₁ H ₃ 3,4(CH ₂ O) ₁ - C ₂ H ₄ 4-Cl - C ₂ H ₄ 4-Cl - C ₂ H ₄ 4-Cl - C ₂ H ₄ 2-Cl - C ₂ H ₄ 3,4-Cl ₂ - C ₂ H ₃ 3,4-Cl ₂ - C ₂ H ₄ 3,4-CH ₃ O) ₂ C ₂ H ₃ 4-Cl ₃ - C ₄ H ₄ 3,4-CH ₃ O) ₂ C ₂ H ₃ 4-Cl ₃ - C ₄ H ₄ 3,4-CH ₃ O) ₂ C ₂ H ₃ 4-Cl ₃ - C ₄ H ₄ 3-Cl - C ₄ H	Verb. Nr.	¥	В	R		ð	physikalische Daten
3,4(CH,0),—C ₆ H ₁ 4,Cl—C ₆ H ₄ 2,Cl—C ₆ H ₄ 3,4(CH,0),—C ₆ H ₄ 3,4(CH,0),—C ₆ H ₄ 3,4(CH,0),C ₆ H ₃ 4,Cl,1—C ₆ H ₄ 3,4(CH,0),C ₆ H ₃ 4,Cl,1—C ₆ H ₄ 3,4(CH,0),C ₆ H ₃ 4,Cl,1—C ₆ H ₄ 4,Cl,1—C	92	3-CH3, 4-C2H50-C4H3	3-CH3-C6H4	H		CH,—N—CH,—C≡CH	
4-Cl-C ₆ H ₄ 2-Cl-C ₆ H ₄ Cl(CH ₃) A-F-C ₆ H ₄ 2-F-C ₆ H ₄ C(CH ₃) 3-4-C ₁ H ₄ 4-C ₁ H ₄ 4-C ₁ H ₄ 4-C ₁ H ₄ 3-4-C ₁ H ₄ 3-6-C ₂ H ₄ 3-6	93	3,4(CH ₃ 0),—C ₆ H ₃	4-C1C6H4	O	2Hs	~ ×	$\mathbf{Rf} = \mathbf{0,50^{1}}$
2.F—C,H, 2.F—C,H, 2.F—C,H, 2.F—C,H, 3,4-ChC,H, 3,4-ChC,H, 3,4-ChC,H, 4.ClC,H, 4.ClC,H, 4.ClC,H, 4.ClC,H, 4.Cl_H,-C,H, 4.	46	4-C1C ₆ H ₄	2-C1—C ₆ H ₄	o	3H,	\ _z\	
$2 \cdot F - C_4 H_4 \qquad C(CH_3)_1 \qquad N \\ N$	95	4-F—C ₆ H ₄	2,4-Cl ₂ C ₆ H ₃	0	;н(сн;)	,	
3,4-C ₁ ,—C ₆ H ₃ 3,4-C ₁ ,—C ₆ H ₄ 3,4-(CH ₃ O),C ₆ H ₃ 4-C ₁ H ₂ —C ₆ H ₄ 4-C ₁ H ₂ —C ₆ H ₄ 3,4-(CH ₃ O),C ₆ H ₃ 4-C ₁ H ₂ —C ₆ H ₄ 4-C ₁ H ₂ —C ₆ H ₄ 3-B ₁ 4-C ₁ H ₂ O ₂ C—C ₆ H ₄ 3-B ₁ 4-C ₁ H ₂ O ₂ C—C ₆ H ₄ 3-B ₁ 4-C ₁ H ₂ O ₂ C—C ₆ H ₄ 3-B ₁ 4-C ₁ H ₂ O ₂ C—C ₆ H ₄ 3-B ₁ 4-C ₁ H ₂ O ₂ C—C ₆ H ₄ 4-C ₁ H ₂ O ₂ C—C ₆ H ₄ 3-B ₁ 4-C ₁ H ₂ O ₂ C—C ₆ H ₄ 4-C ₁ H	96	2-F—C,H,	4-F		χ(СН₃),	'\ /	
3,4(CH,0),—C ₆ H ₃ 4,4(CH,0),C ₆ H ₃ 4,4(C	76	3,4-Cl ₂ —-C ₆ H ₃	Br—C,H,	0	,4H,		
3,4(CH ₃ OhC ₆ H ₃ 3,4(CH ₃ OhC ₆ H ₃ 4,CCH ₃ —C ₆ H ₄ 4,CCH ₃ —C ₆ H ₄ 3-Br, 4-CH ₃ O—C ₆ H ₃ 3-Br, 4-(CH ₃ h)C ₆ H ₃ 3-Br, 4-(CH ₃ h)C ₆ H ₃ 3-Br, 4-(CH ₃ h)C ₆ H ₃ 3-Cl-C ₆ H ₄ 4-Ch ₃ O ₂ C—C ₆ H ₄ Ch ₃ NCH ₂ Ch ₃ NCH ₂ Ch ₃ NCH ₂ Ch ₃ NCH ₂ Ch ₃ NCH ₃ Ch ₃ NCH ₃ Ch ₃ NCH ₂ Ch ₃ NCH ₃ Ch ₃	86	3,4(CH ₃ 0),C ₆ H ₃	4-ClC ₆ H ₄	II	ı	1	$Rf = 0.31^2$)
3-Br, 4-CH ₃ OhC ₆ H ₃ 3-Br, 4-CH ₃ O—C ₆ H ₄ 3-Br, 4-CH ₃ O—C ₆ H ₄ 3-Br, 4-(CH ₃ h ₃ NC ₆ H ₃ 3-Br, 4-(CH ₃ h ₃ NC ₆ H ₃ 3-Cl—C ₆ H ₄ H CH ₃ NCH ₃ C CH ₃ NCH ₃ C CH ₃ NCH ₃ C C C C C C C C C C C C C	86	3,4(CH,0),C,H,	4-C,H,-C,H,	#	-		
3-Br, 4-CH ₃ O—C ₆ H ₃ 3-Br, 4-CH ₃ O—C ₆ H ₄ 3-Br, 4-(CH ₃) ₂ NC ₆ H ₃ 3-C1—C ₆ H ₄ H CH ₃ NCH ₃ C C C CH ₃ NCH ₃ C C C C C C C C C C C C C	100	3,4(CH,0),C,H,	4-CH ₃ C ₆ H ₄			CH ₃ NCH ₃	
3-Br, 4-(CH ₃),NC ₆ H ₃ 3-Cl-C ₆ H ₄ H CH ₃ NCH ₂ C C CH ₃ NCH ₂ C C C CH ₃ NCH ₂ C C C C C C C C C C C C C	101	3-Br, 4-CH,0—C,H,	4-C ₂ H ₅ O ₂ C —C		-	CH ₃ NCH ₃	
2: 3: 4: 4: 5:	102	3-Br, 4-(CH ₃) ₂ NC ₆ H ₃	3-C1-C,H,	#	+		
5	65	55 55	45	. 35	30	15 20 25	5

5	physikalische Daten		Isomer 2 F = 134°C						H	H	H	H
20 .	Ò	⟨¬z⟩	z	z	Z ^z	$\langle z \rangle$	$\left\langle \begin{array}{c} z \\ z \end{array} \right\rangle$	СН, ИСНСН, — С≡СН	CH,—N—CHCH,C≡CH	CH,—N—CHCH,C≡CH	CH3-N-CHCH3C≡CH	CH'-N-CHCH'C =CH
30	æ	ж	I	СН(СН)	C,H,	C ₂ H ₅	C,H,	н	Ħ	H	Ħ	7
40 45	.	4-Cl—C,H,	4-C1—C,H,	2,4-Cl ₂ —C ₆ H ₂	4-C1—C ₆ H ₄	4-C,H5C,H4	4-Br-— C ₆ H ₄		C,H _s		4-CI—C ₆ H,	3-BC,H,
50 55 60	V	3,4(CH,0),—C,H,	3,4(CH ₃ O),—C ₆ H ₃	4-CH ₃ —C ₆ H ₄	4-C ₂ H ₅ O — C ₆ H ₄	2,4(CH ₃),—C ₆ H ₄	2,4-Ch	3,4(CH ₃ O),C ₆ H ₃	3,4(CH ₃ O) ₂ —C ₆ H ₃	3,4(CH ₁ O),C ₆ H ₁	3,5-Cl ₂ , 4-NH ₂ —C ₆ H ₂	2.C.H. 4.CH.OC.H.
S. Fortsetzung	Verb. Nr.	103	40	105	901	107	. 108	601	110	111	112	113

Fortsetzung						
Verb. Nr.	4		8	æ	ð	physikalische Daten
115	3,5{CH ₃), 4-CH ₃ O—C ₆ H ₂	[2	4-C ₅ H ₁₁ 0 — C ₆ H ₄	Н	CH,—N—CHCH,C≡CH	-
116	3,4(CH,0),—C,H,		4C1—C6H4	H	0	$Rf=0,5^3)$
					$CH_{3}-N-CH_{2}-CH$	
117	3-CH3, 4-CH30—C6H3		4-Br C ₆ H ₄	Ħ	00)	
					CH_1-N-CH_2-CH	
118	3-Br, 4-CH,0-C,H,		3,4-Cl ₂ C ₆ H ₃	Ħ	00	
					CH_3-N-CH_2-CH	
119	3-Cl, 4-CH,0—C,H,		4-F-C,H,	Ħ	00)	
			·		CH_1-N-CH_1-CH	
120	3-C,Hs, 4-CH,OC,H,		4-C,H,C,H,	Ξ	00	
					CH_1-N-CH_2-CH	
121	3-CH30, 4-CH3—C6H3		4(CH3)N C6H4	H	00	
					CH_3-N-CH_2-CH	
122	3,5-Cl, 4-NH ₂ —C ₆ H ₂		C ₆ H ₅	H	00	
					CH_3-N-CH_2-CH	
123	3,4(CH ₃ O),—C ₆ H ₃		4-CI—C,H,	I	O CH ₃ —N—CH ₂ CN	$Rf = 0,35^3$)
124	3,4(CH ₃ O) ₂ —C ₆ H ₃		$-CH = CH - 4 \cdot CI - C_6H_4$	H	CH3-N-CH2CN	
125	3,4(CH ₃ O) ₂ —C ₆ H ₃		-CH=CH-C,H	Ħ	CH,—N—CH,CN	
126	3-Br, 4-CH ₃ 0 C ₆ H ₃		4-(CH ₃),C — C ₆ H ₄	H	CH3-N-CH3CN	
65	60	50	35 40 45	30	10	5

65	60	55	50	45	35 40	3Ò	25	20	15	10	5
Fortsetzung										•	~
Verb. Nr.	٧		-	В		~	ð				physikalische Daten
	3-C1, 4-CH30—C4H3)—C ₆ H ₃		4-CH ₃ —C ₆ H ₄	و.	Н	CH ₁ —	CH,-N-CH,CN	7		
	3,4(CH,0),C,H,	-C ₆ H ₃	-	4-C1C,H4		Ħ			OCH	-	$Rf = 0.51^3$)
							CH ₃ —	CH,-N-CH,-CH	СН		
									OCH		
	3-Br, 4-NH ₂ —C ₆ H ₃	-C,H3		4-C,H,O—C,H	,4H4	H			осн	_ _c	
	-						CH3—	CH3-N-CH3-	_CH_		
									OCH,	<u>.</u> -:	
	3,4(CH ₃ O)—C ₆ H ₃	-C ₆ H ₃		2-Furyl		H			ОСН	<u></u>	
							CH ₃ —	CH ₃ —N—CH ₂ —	-CH		
									OCH,	 -	
	3-C3H3, 4-CH3O—C6H3	H,0—C,H,		2-Thienyl		Ħ			осн		
					-		CH ₃ -	CH3-N-CH2-	-CH		
									OCH,	Ŧ.	
	3,5-(CH ₃),—C ₆ H ₃	C,H,		4-NO ₂ —C ₆ H ₄	H,	H			осн	F	
							CH ₃ -	CH ₃ -N-CH ₂ -	-CH		
									OCH,	ı .	
	3,4(CH ₃ O ₂ —C ₆ H ₃	-C,H		4-C1C,H4	_	Ħ		CH,			
			*				CH3-	CH ₃ -N-CH-	CH-C=CH		
	3,4(CH ₃ O),—C ₆ H ₃	—C ₆ H ₃		—CH=C]	-CH=CH-4CI-C,H	H		CH,			
							CH3-	CH3−N−CH−C≡CH	-С≡СН		

Fortsetzung					
Verb. Nr.	A	В	æ	٥	physikalische Daten
135	3,4(CH ₃ O) ₂ C ₆ H ₃	4-C ₆ H ₅ C ₆ H ₄	н	ĊH³	
				CH3—N—CH—C≡CH	•
136	3-СН, 4-СН,0С,Н,	4-CF ₃ O — C ₆ H ₄	H	ĊH,	
				CH3—N—CH—C≡CH	•••
137	3,4(CH,0),—C,H3	4-C1-C,H,	н	CH ₃	
				CH3-N-CH-C=CH	
138	3,4(CH ₃ O), C ₆ H ₃	4-BrC ₆ H ₄	CH,	CH,	Rf = 0,511)
				CH ₃ —N—CH—C=CH	
139	3-C,H,O, 4-CH,OC,H,	4-CH ₃ C ₆ H ₄	н	CH,	
				CH,—N—CH—C=CH	
140	4-C1C4H4	3,5-Cl ₂ , 4-NH ₂ —C ₆ H ₂	H	CH,	-
				CH3—N—CH—C=CH	
141	3,4(CH ₃ O),—C ₆ H ₃	4-C1C,H,	H	NH—CH ₂ —COOC ₂ H ₃	Ģ
142	3,4(CH,0),C,H,	4-C,H,—C,H,	H	NH—CH ₁ —COOC ₂ H ₃	
143	3,4(CH,0),C,H,	4-C,H,-0-C,H,	H	NH—CH ₂ —COOC ₂ H ₅	
14	3,4(CH,0),C,H,	4-C,H,C,H,	H	NHCH ₂ COOC ₂ H ₅	
145	3-Br, 4-CH ₃ 0C ₆ H ₃	4-CH ₃ S—C ₃ H ₄	H	NH—CH ₂ —COOC ₂ H ₅	
146	3-C1, 4-CH,0C6H,	C,H,	н	NH—CH ₂ —COOC ₂ H ₅	
147	3,4(CH,0),—C,H,	4-C1C4H4	H	NH-CH2-CO-NO	Fp = 58-65°C
148	3,4(CH,0),C,H,	4(4-CiC,H,S)—C,H,	m .	$NH-CH_2-CO-N$	
65	55	40 45	30	15 20 25	5

	- ,								· - · · · ·				•	- —					
. · 5		physikalische Daten				$Fp = 72 - 90^{\circ}C$					$Rf = 0.25^2$)								
10											7	7	7	7.	z	z	z	°)	(°)
15			$\binom{\circ}{z}$	$\binom{\circ}{2}$		нос	НОС	НОС	НОС	Нос	-CH,-C	-CH'-C	.—сн [,] —с	-CH2-CI	-CH'-CI	,—CH,—C	2—CH2—C	1-CO-N	2-CO-N
20			NH—CH2—CO-	NH	NHCH2CO-N	NH—СН,—СООН	NH-CH2-COOH	NH—СН ₂ —СООН	NH-CH ₂ -COOH	NH-CH1-C00H	CH3-N-CH3-CH2-CN	CH ₃ -N-CH ₂ -CH ₂ -CN	CH3-N-CH2-CH2-CN	CH3-N-CH2-CH2-CN	CH ₃ -N-CH ₂ -CH ₃ -CN	CH,-N-CH,-CH,-CN	CH3-N-CH2-CH3-CN	CH ₃ -N-CH ₂ -CO-N	CH3-N-CH2-CO-N
25	•	0	HZ	HN	HZ	HZ	HZ	HN	ΞZ	Z	E	CE	Ö	Ö	ວ	ีวี	Ö	5	5
30		R	н	#	Ħ	H	н	C_2H_5	CH,	n-C ₃ H,	Ħ	H	æ	Ħ	Н	H	н	Ħ	Ħ
35																			•
40			Ť.	C,H,	C,H,	,H,	-C,H,		,tH2,	4-CH,0CH,—C,H,	,4H,	-C,H,	>	4-CO,CH,—C,H,	-C,H,	=CH—C,H	-C ₆ H ₄	, H,	-C,H,
45		æ	4-Br—C ₆ H ₄	4-CH ₃ —C ₆ H ₄	3-CH3—C6H4	4-C1—C,H,	4-CH ₃ O — C ₆ H ₄	C,H,	4-CI-C.H.	4-CH ₃ 0(4-C1—C,H,	4-CH,0—C,H,		4-C0,C	3,4-Ch.—C.H.	—CH==CH-	4-C,H,-C,H,	4-C1—C ₆ H ₄	4-C,H3C,H4
50											÷								
55			3-CH,0, 4-CH,—C,H,	,0—C,H,	3-Cl, 4-C,H,	h—C ₆ H ₃	ьс,н,	CH,OC,H,	I,OC,H,	H,OC,H,),—C,H,),C,H,	, С ₆ Н,	C,H,),—C,H),—C,H,	3-Br, 4-(CH3),N-C,H3)h—C ₆ H ₃) _k C ₆ H ₃
60		<	3-CH30, 4-	3-Br, 4-CH,0—C,H	3-C1, 4-C ₂ 1	3,4(CH ₃ O) ₂ —C ₆ H ₃	3,4(CH,0),C,H,	3-CH3, 4-CH3OC6H3	3-C1, 4-CH3OC,H3	3-C1, 4-C2H50C6H3	3,4(CH ₃ O) ₂ —C ₆ H ₃	3,4(CH,0),C,H,	3,4(CH,0),C,H,	3,4(CH ₃₎ C ₆ H ₃	3,4(CH,0),—C,H,	3,4(CH,0),—C,H,	3-Br, 4(C)	3,4(CH ₃ O) ₂ —C ₆ H ₃	3,4(CH,O),C,H,
65	Fortsetzung	Verb. Nr.	149	150	151	152	153	154	155	156	157	158	159	91	191	162	163	164	165

Verb. Nr.	A		В	24	o		physikalische Daten
166	3,4(CH ₃ O),—C ₆ H ₃		4(CH ₃),C—C ₆ H ₄	н	CH ₃ —N—	CH ₁ -N-CH ₂ -CO-N	
167	3,4(CH ₃ O) ₂ —C ₆ H ₃		4-C,H,SO,C,H,	五	CH ₃ —N—	CH_3-N-CH_2-CO-N	
168	3,4(CH,0),—C,H,		4-C1—C,H,	Ħ	CH ₃ -N-	CH ₃ —N—CH ₂ —CO—N(CH ₃)C ₂ H ₅	
169	3-CH3, 4-CH30-C6H3		4-Br C,H,	H	CH ₃ —N—	CH ₃ —N—CH ₂ —CO—N(CH ₃)C ₂ H ₅	
170	3-Br, 4-CH ₃ 0C ₆ H ₃		4-(CH ₃), CH-C ₆ H ₄	I	CH3-N-	$CH_3 - N - CH_2 - CO - N(CH_3)C_2H_5$	
171	3-C1, 4-CH ₃ OC ₆ H ₃		4 H Co.H,	н	CH ₃ -N-	CH ₃ —N—CH ₂ —CO—N(CH ₃)C ₂ H ₅	
172	4-Br		3,5-C1, 4-NH2-C6H2	H	CH, -N-	$CH_1-N-CH_1-CO-N(CH_3)C_2H_3$	
173	3,4-(CH,O),C,H,		. 4-C1C,H4	H		° CH	
					CH ₁ —N—	$CH_1-N-CH_2-C-N-CH(CH_3)$	~
174	3,4(CH,0),C,H,		3,4-Cl ₂ —C ₆ H ₄	н		O CH3	
					CH_3-N-CH_1-	$CH_1-C-N-CH(CH_3)$	~
175	3,4(CH ₃ O) ₂ C ₆ H ₃	٠	C,H,	H		0 CH3	
					CH ₃ —N—	$CH_1-N-CH_2-C-N-CH(CH_3)$	
176	3,4(CH ₃),—C ₆ H ₃		3,4-0CH ₂ 0—C ₆ H ₄	H		O CH,	
	٠				CH,-N-	$CH_1-N-CH_2-C-N-CH(CH_3)$	n
177	3,4(CH ₃ O) ₂ —C ₆ H ₃		4-C1C,H,	H	NH—CH ₂ -	NH-CH ₁ -CO-NH-CH(CH ₃)	Fp = 95-111°C
178	3,4(CH,0),C,H,		4-(CH ₃) ₂ NSO ₂ —C ₆ H ₄	I	NH—CH2-	NH-CH ₂ -CO-NH-CH(CH ₃)	
179	3,4(CH ₃ O) ₂ C ₆ H ₃		3-CH3—C,H4	H	NH—CH2-	NH—CH ₂ —CO—NH—CH(CH ₃),	
	3-CH3, 4-CH3OC6H3		4-FC ₆ H ₄	Ħ	NH—CH2	NH-CH ₂ -CO-NH-CH(CH ₃)	
65	55	50	40	30	25	15	3

								-	 .		٠				•					
5		physikalische Daten	Fp = 76-89°C				Rf = 0,30 ⁸)			$Rf = 0,28^8)$					$F_p = 134 - 148^{\circ}C$		Fp = 182			
10											÷									
15			O—NHC,H,	J-NHC ₃ H ₇	О—НСИ,Н,	J—HCH ₃ H,	$\left(\begin{array}{c} z \\ z \\ 0 \end{array}\right)$		O N O	$0-N(C_2H_5)$	0-N(C2H5)	$O-N(C_2H_5)$	сн,	нсн,	O-NHCH,	0-NHCH		ЮН	3H3	30—CH,
20			NH—CH,—CO—NHC,H,	NH-CH ₂ -CO-NHC ₃ H ₇	NH-CH2-CO-HCH3H,	NH-CH,-CO-HCH,H,	NH-CH ₂ -CO-N	NH-CH2-CO-N	NH—CH ₂ —CO—N	NH-CH ₂ -CO-N(C ₂ H ₃)	NH—CH ₁ —CO—N(C ₁ H ₃)	NH-CH ₂ -CO-N(C ₂ H ₃)	CH3NCH2CONCH3	CH,NCH,CONHCH,	NH-CH ₂ -CO-NHCH ₃	NH-CH ₂ -CO-NHCH ₃	CH,	N(CH3)CH2CH2OH	NНСН₁—СОСН ₃	N(CH ₃)CH ₂ —CO—CH ₃
25		ď	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	ပ	ပ	Z	Z		Z	Z	Z
30		~	Н	Ħ	н	Ħ	H	H	H	н	H	H	н	н	Н	н	I	Ħ	Ħ	н
33 40			,H ₄	-	4CH ₂ =CHCH ₃ 0-C ₆ H ₄	4-CON(CH ₃),—C ₆ H ₄	,H4	C,H,	4-(CH ₃),CH — C ₆ H ₄	, H,	-С,Н,	$h-C_6H_3$,—C,H,	C,H,	,6H4	4(4-C ₂ H ₃ C ₆ H ₄)C ₆ H ₄	,6H ₄	,6H4	,6H4	2,H4
45	•	æ	4-CI C ₆ H ₄	4-CNC,H	4-CH ₂ =	4-CON(C	4-C1—C,H,	4-C,H,O — C,H,	4(CH ₃₎	4-C1—C,H	3,4-Ch—C,H	3,4(CH ₂),—C,H ₃	3,4-(CH ₂),—C ₆ H ₃	$4CF_3-C_6H_4$	4-C1C,H	4-(4-C,H	4-C1—C,H,	4C1—C,H	4-C1—C,H,	4-C1-C,H,
50	;								·											
55 60		¥	3,4(CH ₃ O),—C ₆ H ₃	3,4(CH,0),C,H,	3,4(CH,0),C,H,	3,4(CH,0),C,H,	3,4{CH ₃ },—C ₆ H ₃	3,4(CH,O),C6H,	3-В., 4-СН ₃ ОС ₆ Н ₃	3,4(CH,0),—C,H,	3-СН,, 4-СН,ОС,Н,	3,4(CH,0),C,H,	3,4(CH,O),C,H,	3,4(CH,0),C,H,	3,4(CH ₃ O) ₂ —C ₆ H ₃	3,4(CH ₃ O) ₂ C ₆ H ₃	3,4(CH,0),C,H,	3,4-(CH ₃ O) ₂ C ₆ H ₃	3,4(CH ₃ O) ₂ —C ₆ H ₃	3,4(CH ₃ O),—C ₆ H ₃
b5	Fortsetzung	Verb. Nr.	181	182	183	184	185	186	187	188	189	190	191	. 192	193	194	195	196	197	198