Practical Activity Classification using SVM

1 Practical Activity

1.1 Classi ication Using Support Vector Machines

This notebook is an exercise for developing a SVM classifier for predicting customer attrition. We apply the concepts discussed in Week 8. We walk through SVM Classifier in this practical and will use SVM regression model in the next practical activity.

Note: this activity is unmarked. It develops your skills for predictive model development using SVM.

2 ATH LEAPS Bank Data

In this task, we will predict which customers in the future is more likely to churn or to stop availing the banks' services. Once an adequate prediction model is developed, the bank will be better informed on how to develop strategies to retain customers or at least lose less customers in the future.

This practical will build Suport Vector Machine in predicting customer attrition using the bank data set.

Data source: https://www.kaggle.com/gianancheta/predictive-analysis-of-bank-churners/data

According to the dataset description - "PLEASE IGNORE THE LAST 2 COLUMNS (NAIVE BAYES CLAS...). I SUGGEST TO RATHER DELETE IT BEFORE DOING ANYTHING"

'Contacts_Count_12_mon', 'Credit_Limit', 'Total_Revolving_Bal', 'Avg_Open_To_Buy', 'Total_Amt_Chng_Q4_Q1', 'Total_Trans_Amt',

```
'Total_Trans_Ct', 'Total_Ct_Chng_Q4_Q1', 'Avg_Utilization_Ratio',
    'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mo
n_Dependent_count_Education_Level_Months_Inactive_12_mon_1',
    'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mo
n_Dependent_count_Education_Level_Months_Inactive_12_mon_2'],
    dtype='object')
```

After loading the dataset, we remove the unwanted columns. In this case, we will remove the last two columns and the client number (CLIENTNUM) columns.

```
[3]: df = df.iloc[:, 1:-2]

#remove the client num attribute

#df = df.iloc[:, 1:]
```

[4]: df.head()

[4]:		Attrition_Flag	Customer_Age	Gender	Dependent_count	Education_Level	\
	0	Existing Customer	45	M	3	High School	
	1	Existing Customer	49	F	5	Graduate	
	2	Existing Customer	51	M	3	Graduate	
	3	Existing Customer	40	F	4	High School	
	4	Existing Customer	40	M	3	Uneducated	
		Marital_Status Inco	me_Category Ca	ard_Cate	gory Months_on_b	oook \	

	Marital_Status	Income_Category	Card_Category	Months_on_book	\
0	Married	\$60K - \$80K	Blue	39	
1	Single	Less than \$40K	Blue	44	
2	Married	\$80K - \$120K	Blue	36	
3	Unknown	Less than \$40K	Blue	34	
4	Married	\$60K - \$80K	Blue	21	

	Total_Relationship_Count	Months_Inactive_12_mon	Contacts_Count_12_mon	\
0	5	1	3	
1	6	1	2	
2	4	1	0	
3	3	4	1	
4	5	1	0	

	Credit_Limit	Total_Revolving_Bal	Avg_Open_To_Buy	Total_Amt_Chng_Q4_Q1	\
0	12691.0	777	11914.0	1.335	
1	8256.0	864	7392.0	1.541	
2	3418.0	0	3418.0	2.594	
3	3313.0	2517	796.0	1.405	
4	4716.0	0	4716.0	2.175	

Total_Trans_Amt Total_Trans_Ct Total_Ct_Chng_Q4_Q1 Avg_Utilization_Ratio 0 1144 42 1.625 0.061

1	1291	33	3.714	0.105
2	1887	20	2.333	0.000
3	1171	20	2.333	0.760
4	816	28	2.500	0.000

Now we check the variable types.

[5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10127 entries, 0 to 10126
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
		40405	
0	Attrition_Flag	10127 non-null	object
1	Customer_Age	10127 non-null	int64
2	Gender	10127 non-null	object
3	Dependent_count	10127 non-null	int64
4	Education_Level	10127 non-null	object
5	Marital_Status	10127 non-null	object
6	Income_Category	10127 non-null	object
7	Card_Category	10127 non-null	object
8	Months_on_book	10127 non-null	int64
9	Total_Relationship_Count	10127 non-null	int64
10	Months_Inactive_12_mon	10127 non-null	int64
11	Contacts_Count_12_mon	10127 non-null	int64
12	Credit_Limit	10127 non-null	float64
13	Total_Revolving_Bal	10127 non-null	int64
14	Avg_Open_To_Buy	10127 non-null	float64
15	${\tt Total_Amt_Chng_Q4_Q1}$	10127 non-null	float64
16	Total_Trans_Amt	10127 non-null	int64
17	Total_Trans_Ct	10127 non-null	int64
18	Total_Ct_Chng_Q4_Q1	10127 non-null	float64
19	Avg_Utilization_Ratio	10127 non-null	float64
dtyp	es: float64(5), int64(9),	object(6)	

[6]: df.shape

[6]: (10127, 20)

This dataset is larger than the datasets we used in the previous weeks. Let us now check the class distributions.

[7]: df.Attrition_Flag.value_counts()

[7]: Existing Customer 8500 Attrited Customer 1627

memory usage: 1.5+ MB

```
Name: Attrition_Flag, dtype: int64
```

We observe that, we have more samples of the "Attrited Customer" than "Existing Customer". This means the model we will train using this dataset is expected to be baised towards the "Existing Customer" which means the model will predict most of the test instances as "Existing Customer". We will test this in the last part of the excercise.

2.1 Note

We have 19 features in this dataset. Using all the features will take a long time to train the model. Therefore, we will select a subset of the features to train our model. Ideally, we will measure correlations and chi^2 or other statistics to find the best set of variables to use. However, for this practical we select the following variables: - Customer_Age (int64) - Income_Category (object) - Credit Limit (float64) - Total Revolving Bal (int64) - Total Trans Amt (int64)

Among our selected variables, Income category is a categorical variable, we need to encode this.

3 Feature scaling

```
[10]: from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

X_scaled = scaler.fit_transform(df[features])

#reverting back to df
X = pd.DataFrame(X_scaled)

X['target'] = df['en_Attrition_Flag']
```

4 Building a SVM classifier

We will explore three types of kernels in this practical, linear, polynomial and rbf.

```
[11]: from sklearn.model_selection import train_test_split

train, test = train_test_split(X, test_size = 0.3, stratify = X['target'])

X_train = train.drop('target', axis=1)
y_train = train['target']

X_test = test.drop('target', axis = 1)
y_test = test['target']
```

```
[12]: import numpy as np import matplotlib.pyplot as plt from sklearn import svm
```

```
[13]: C = 1.0 # SVM regularization parameter

svc = svm.SVC(kernel='linear', C=C).fit(X_train, y_train)
```

4.1 Evaluate

```
[14]: from sklearn.metrics import accuracy_score

predictions = svc.predict(X_test)
acc = accuracy_score(y_test, predictions)

print(f'Accuracy of the model is {acc}')
```

Accuracy of the model is 0.8394208621256992

```
[15]: X_test.shape
```

```
[15]: (3039, 5)
```

The model is almost 84% accurate which seems to be a good model at the first attmept without tuning any params. However, as we mentioned earlier, we have an imbalanced dataset and the model should be biased towards the majority class, in this case, "Existing Customer" which is encoded as 1.

We now inspect the predictions of the model. We can print the predictions. We have 3039 test samples i.e., the predictions array is too big. We can also count the number of 0s and 1s in the predictions array. To count the elements in predictions, we need to use python collections library.

```
[16]: #print(predictions.tolist()) uncomment and check the array.
import collections

counter = collections.Counter(predictions.tolist())
print(counter)
```

Counter({1: 3039})

Interestingly, we observe that the model has predicted all the test samples as instances of class 1 i.e., it does not predict class 0 at all. Still it has an accuracy of 84%.

The above shows the problem with imbalanced dataset and the problem of accuracy measure.

4.2 classification_report

sklearn provides a detailed classification performance results as https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html

```
[17]: from sklearn.metrics import classification_report

target_names = ['Attrited Customer', 'Existing Customer']
print(classification_report(y_test, predictions, target_names=target_names))
```

	precision	recall	f1-score	support
Attrited Customer	0.00	0.00	0.00	488
Existing Customer	0.84	1.00	0.91	2551
accuracy			0.84	3039
macro avg	0.42	0.50	0.46	3039
weighted avg	0.70	0.84	0.77	3039

C:\Users\islmy008\Anaconda3\lib\site-

packages\sklearn\metrics_classification.py:1221: UndefinedMetricWarning:
Precision and F-score are ill-defined and being set to 0.0 in labels with no
predicted samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, msg_start, len(result))

The classification report shows that we have 488 instances of attrited customer in our test set and the model failed to predict any of them.

4.3 Dealing with imbalanced dataset

The simplest thing we can do is to balance the dataset by sampling the majority class to make the distribution equal.

```
[21]: (1627, 6)
     df_major and df_minor has same number of samples. We need to merge them together and use
     for training.
[22]: df_sub = df_major.append(df_minor)
     df_sub.head()
[22]:
                 0
                                    2
                                             3
                                                         target
                           1
     4692 -0.165406 1.419670 -0.651930 0.776966 -0.096288
                                                              1
     9043 1.830498 -1.238799 -0.710247 0.203922 0.775079
                                                              1
           0.832546 0.090436 2.848054 1.661686 -0.862267
     668
                                                              1
     166
           1
     7288 0.333570 1.419670 -0.670085 -0.383846 0.167183
[23]: df_sub.shape
[23]: (3254, 6)
[24]: # shuffle the dataset. In the current version first 1627 are of class 1 and 1
      \rightarrow last 1627 are of class 0
     df_sub = df_sub.sample(frac=1)
     df sub.head()
[24]:
                 0
                                    2
                                                         target
     7249 -0.539638 0.755053 -0.649949
                                      1.572109 0.165122
     0
           0.333570 0.755053 -0.638836 1.113184 -0.994738
     318
                                                              1
     2691 1.082034 -1.238799 -0.612539 -1.426858 -0.259080
                                                              1
     9687 0.707802 -1.238799 -0.418774 -1.426858 1.230780
                                                              0
[25]: #training model
     train, test = train_test_split(df_sub, test_size = 0.3, stratify = __

→df_sub['target'])
     X_train = train.drop('target', axis=1)
     y_train = train['target']
     X_test = test.drop('target', axis = 1)
     y_test = test['target']
```

svc = svm.SVC(kernel='linear', C=1).fit(X_train, y_train)

```
[26]: #evaluate model
predictions = svc.predict(X_test)
acc = accuracy_score(y_test, predictions)

print(f'Accuracy of the new model is {acc}')
```

Accuracy of the new model is 0.72978505629478

```
[27]: counter = collections.Counter(predictions.tolist())
print(counter)
```

Counter({1: 497, 0: 480})

Predicted both 0 and 1 classes.

```
[28]: print(classification_report(y_test, predictions, target_names=target_names))
```

	precision	recall	f1-score	support
Attrited Customer	0.73	0.72	0.73	488
Existing Customer	0.73	0.74	0.73	489
accuracy			0.73	977
macro avg	0.73	0.73	0.73	977
weighted avg	0.73	0.73	0.73	977

Though our new model predicts both classes, the performance is not probimising. Let us use other types of kernels and compare their performances.

```
[29]: rbf_svc = svm.SVC(kernel='rbf', gamma=0.7, C=C).fit(X_train, y_train) poly_svc = svm.SVC(kernel='poly', degree=4, C=C).fit(X_train, y_train)
```

Accuracy of the model with rbf kernel is 0.8065506653019447 Accuracy of the model with poly kernel is 0.7553735926305015

We observe that rbf kernel gives the most promising model for our dataset. We can also find the support vectors.

```
[31]: rbf_svc.n_support_
```

[31]: array([599, 633])

In the above, rbf_svc.n_support_ shows that the model has learned 588 support vectors for class 0 and 633 support vectors for class 1.

rbf svc.support vectors shows the support vectors for each class.