2.68. Человек, стоящий на неподвижной тележке, бросает в горизонтальном направлении камень массой m=2 кг. Тележка с человеком покатилась назад, и в первый момент бросания ее скорость была v=0.1 м/с. Масса тележки с человеком M=100 кг. Найти кинетическую энергию $W_{\rm k}$ брошенного камня через время t=0.5 с после начала движения.

Решение:

Обозначим v' — скорость камня в начальный момент времени, v_t — его скорость в момент времени t = 0.5 с. По закону сохранения импульса Mv = mv' — (1); $W_k = \frac{mv_t^2}{2}$ — (2); \overrightarrow{v}_{tt}

$$\vec{v}_{yt}$$
 \vec{v}_{t}
 \vec{v}_{t}

$$v_t^2 = v_{xt}^2 + v_{yt}^2$$
, где $v_{xt} = v'$; $v_{yt} = gt$. Из (1) $v' = \frac{Mv}{m_t}$, тогда

$$v_t^2 = \frac{M^2 v^2}{m^2} + g^2 t^2 = \frac{M^2 v^2 + m^2 g^2 t^2}{m^2}$$
 — (3). Подставив (3) в

(2), получим
$$W_k = \frac{M^2 v^2 + m^2 g^2 t^2}{2m}$$
; $W_k = 49$ Дж.

2.69. Тело массой $m_1 = 2$ кг движется навстречу второму телу массой $m_2 = 1,5$ кг и неупруго соударяется с ним. Скорости тел непосредственно перед ударом были $v_1 = 1$ м/с и $v_2 = 2$ м/с. Какое время t будут двигаться эти тела после удара, если коэффициент трения k = 0,05?

Решение:

Будем считать удар абсолютно неупругим. По закону сохранения импульса $m_1v_1-m_2v_2=\left(m_1+m_2\right)\cdot u$, отсюда

$$u = \frac{m_1 v_1 - m_2 v_2}{m_1 + m_2}$$
 — (1). С другой стороны, $u = at$ — (2), где

ускорение а можно выразить из второго закона Нью-

тона
$$F_{\rm TP} = (m_1 + m_2) \cdot a$$
; $k(m_1 + m_2) \cdot g = (m_1 + m_2) \cdot a$, откуда $a = kg$ — (3). Выразим из (2): $t = \frac{u}{a}$. Подставим в данное уравнение (1) и (3): $t = \frac{m_2 v_2 - m_1 v_1}{kg(m_1 + m_2)}$; $t = 0.58$ с.

2.70. Автомат выпускает пули с частотой $n = 600 \,\mathrm{Muh}^{-1}$. Масса каждой пули $m = 4 \,\mathrm{r}$, ее начальная скорость $v = 500 \,\mathrm{m/c}$. Найти среднюю силу отдачи \overline{F} при стрельбе.

Решение:

Среднюю силу отдачи можно найти по второму закону Ньютона $F = ma = m\frac{v}{t}$, где $t = \frac{1}{n}$ — время, за которое автомат выпускает одну пулю. По условию n = 600 мин $^{-1} = 10$ с $^{-1}$. Отсюда F = mvn; F = 20 H.

2.71. На рельсах стоит платформа массой $m_1 = 10$ т. На платформе закреплено орудие массой $m_2 = 5$ т, из которого производится выстрел вдоль рельсов. Масса снаряда $m_3 = 100$ кг, его скорость относительно орудия $v_0 = 500$ м/с. На какое расстояние s откатится платформа при выстреле, если: а) платформа стояла неподвижно; б) платформа двигалась со скоростью v = 18 км/ч и выстрел был произведен в направлении ее движения; в) платформа двигалась со скоростью v = 18 км/ч и выстрел был произведен в направлению противоположном направлению ее движения? Коэффициент трения платформы о рельсы k = 0.002.

Решение:

а) По закону сохранения импульса $m_3v_0=\left(m_1+m_2\right)\cdot u$, откуда $u=\frac{m_3v_0}{m_1+m_2}$ — (1). По второму закону Ньютона $F_{\rm up}=\left(m_1+m_2\right)\cdot a$ или $k\left(m_1+m_2\right)\cdot g=\left(m_1+m_2\right)\cdot a$, откуда 82

a = kg — (2). Расстояние, на которое откатится платформа, $s = ut - \frac{at^2}{2}$, где u = at — скорость платформы в первый момент после выстрела. $t = \frac{u}{a}$, тогда $s = \frac{u^2}{a} - \frac{au^2}{2a^2} = \frac{u^2}{2a}$. Подставив (1) и (2), получим,

б) По закону сохранения импульса $m_3v_0-(m_1+m_2)\times u=(m_1+m_2+m_3)\cdot v$, откуда $u=\frac{m_3v_0-(m_1+m_2+m_3)\cdot v}{m_1+m_2};$ u=-1.7 м/с и будет направлено в обратную сторону относительно v_0 и v. Расстояние, на которое откатится

 $s = \frac{m_3^2 v_0^2}{2(m_1 + m_2)^2 k a}$; s = 284 M.

платформа: $s = \frac{u^2}{2a} = \frac{u^2}{2ka}$; s = 73.7 м.

в) По закону сохранения импульса $(m_1 + m_2 + m_3) \cdot v =$ $= (m_1 + m_2) \cdot u - m_3 v_0$, откуда $u = \frac{(m_1 + m_2 + m_3) \cdot v + m_3 v_0}{m_1 + m_2}$; u = 8,4 м/с направление выбрано правильно. Пройденный платформой путь $s = \frac{u^2}{2 k \sigma}$; s = 1800 м.

2.72. Из орудия массой $m_1 = 5$ т вылетает снаряд массой $m_2 = 100$ кг. Кинетическая энергия снаряда при вылете $W_{\kappa 2} = 7.5$ МДж. Какую кинетическую энергию $W_{\kappa 1}$ получает орудие вследствие отдачи?

Решение:

Согласно закону сохранения импульса $m_1v_1 = m_2v_2$ — (1). Кинетическая энергия орудия сразу после выстрела

$$W_{\kappa 1} = \frac{m_1 v_1^2}{2}$$
 — (2). Кинетическая энергия снаряда $W_{\kappa 2} = \frac{m_1 v_2^2}{2}$ — (3). Из (1) $v_1 = \frac{m_2 v_2}{m_1}$; из (3) $v_2^2 = \frac{2W_{\kappa 2}}{m_2}$, тогда $v_1^2 = \frac{m_2^2 \cdot 2W_{\kappa 2}}{m_1^2 \cdot m_2} = \frac{2m_2 W_{\kappa 2}}{m_1^2}$ — (4). Подставив (4) в (2), получим $W_{\kappa 1} = \frac{m_1 2m_2 W_{\kappa 2}}{2m_1^2} = \frac{m_2}{m_1} W_{\kappa 1}$; $W_{\kappa 1} = 150 \,\mathrm{кДж}$.

2.73. Тело массой $m_1 = 2$ кг движется со скоростью $v_1 = 3$ м/с и нагоняет тело массой $m_2 = 8$ кг, движущееся со скоростью $v_2 = 1$ м/с. Считая удар центральным, найти скорости u_1 и u_2 тел после удара, если удар а) неупругий; б) упругий.

Решение:

Считаем, что движение пронсходит вдоль горизонтальной оси в одном направлении. а) По закону сохранения импульса $m_1v_1+m_2v_2=\left(m_1+m_2\right)\cdot u$, где u — общая скорость двух тел после неупругого удара. Отсюда $u=\frac{m_1v_1+m_2v_2}{m_1+m_2}$; $u_1=u_2=u=1,4$ м/с*. б) Запишем закон сохранения импульса и закон сохранения энергии: $m_1v_1+m_2v_2=m_2u_2+m_1u_1$ — (1); $\frac{m_1v_1^2}{2}+\frac{m_2v_2^2}{2}=\frac{m_1u_1^2}{2}+\frac{m_2v_2^2}{2}=\frac{m_1u_1^2}{2}+\frac{m_2u_2^2}{2}$ — (2). Из (2) получим $m_1v_1^2+m_2v_2^2=m_1u_1^2+\frac{m_2u_2^2}{2}$ — (3). Преобразовав (1) и (3), решим систему уравнений: $\begin{cases} m_1(v_1-u_1)=m_2(u_2-v_2), \\ m_1(v_1^2-u_1^2)=m_2(u_2^2-v_2^2). \end{cases}$ Разделив первое

^{*} Ответ в данной задаче не совпадает с ответом первоисточника: a) $u_1 = u_2 = 1.8$ м/c; б) $u_1 = 0.6$ м/c, $u_2 = 2.6$ м/c.

уравнение на второе, получим: $\frac{v_1-u_1}{v_1^2-u_1^2}=\frac{u_2-v_2}{u_2^2-v_2^2}, \text{ откуда}$ $v_1+u_1=u_2+v_2 \quad \text{или} \quad u_2=v_1+u_1-v_2 \qquad (4). \quad \text{Тогда} \quad \text{из} \quad (1)$ $u_1=\frac{m_1v_1+m_2v_2-m_2\left(v_1+u_1-v_2\right)}{m_1}; \qquad u_1\left(1+\frac{m_2}{m_1}\right)=v_1+\frac{m_2}{m_1}\times \left(2v_2-v_1\right); \quad u_1=\frac{v_1+m_2\left(2v_2-v_1\right)/m_1}{1+m_2/m_1} \qquad (5). \quad \text{Подставляя}$ числовые данные в (5) и (4), получим $u_1=-0.2 \text{ м/c};$ $u_2=1.8 \text{ м/c}.$

2.74. Каково должно быть соотношение между массами m_1 и m_2 тел предыдущей задачи, чтобы при упругом ударе первое тело остановилось?

Решение:

Воспользовавшись формулой, полученной в предыдущей задаче, и приравняв скорость первого тела после удара u_1 к нулю, найдем соотношение масс m_1 и m_2 . Имеем $u_1 = \frac{v_1 + m_2 \left(2v_2 - v_1\right)/m_1}{1 + m_2/m_1} = 0$. Следовательно, $v_1 + \frac{m_2}{m_1} \times \left(2v_2 - v_1\right) = 0$; $\frac{m_2}{m_1} = \frac{v_1}{v_1 - 2v_2}$, откуда $\frac{m_2}{m_1} = \frac{3}{3 - 2} = 3$ или $m_2 = 3m_1$.

2.75. Тело массой $m_1 = 3$ кг движется со скоростью $v_1 = 4$ м/с и ударяется о неподвижное тело такой же массы. Считая удар центральным и неупругим, найти количество теплоты Q, выделившееся при ударе.

Решение:

Первое тело до удара обладало кинетической энергией $W_{\kappa} = \frac{m_1 v^2}{m_1 + m_2} \,.$ После удара оба тела начали двигаться с

общей скоростью $u = \frac{m_1 v}{m_1 + m_2}$. Кинетическая энергия обоих тел после удара стала $W_{\kappa}' = \frac{(m_1 + m_2) \cdot u^2}{2}$; $W'_{\kappa} = \frac{m_1^2 v^2}{2(m_1 + m_2)}$. Разность $W_{\kappa 1} - W'_{\kappa}$ равна количеству теплоты Q, выделившемуся при ударе: $Q = (m_1 v^2 / 2)$ — $-\frac{m_1^2 v^2}{2(m_1+m_2)}$; Q=12Дж.

2.76. Тело массой $m_1 = 5 \, \text{кг}$ ударяется о неподвижное тело массой $m_2 = 2.5 \,\mathrm{kr}$, которое после удара начинает двигаться с кинетической энергией $W'_{k2} = 5$ Дж. Считая удар центральным и упругим, найти кинетическую энергию $W_{\kappa l}$ и $W'_{\kappa l}$ первого тела до и после удара.

Решение:

Система тел m_1 и m_2 замкнута в проекции на горизонтальную ось. В соответствии с условием движение происходит также вдоль горизонтальной оси. Согласно закону сохранения импульса в проекции на $m_1 v_1 = m_1 v_1' + m_2 v_2'$ — (1), где v_1' и v_2' — скорости первого и второго тела после удара. Часть своей кинетической энергин первое тело в момент удара передает второму телу. $W_{\kappa l} = W'_{\kappa l} + W'_{\kappa 2}$ — (2); $\frac{m_l v_l^2}{2} = \frac{m_l (v'_l)^2}{2} + W'_{\kappa 2}$ $m_1 v_1^2 = m_1 (v_1')^2 + 2W_{\kappa 2}'$ — (3). Кинетическая энергия второго тела после удара $W_{\kappa 2}' = \frac{m_2(v_2')^2}{2}$, откуда $(v_2')^2 = \frac{2W_{\kappa 2}'}{m}$ — (4).

Подставив (4) в (1), получим
$$m_1 v_1 = m_1 v_1' + m_2 \sqrt{\frac{2W_{\kappa 2}'}{m_2}} =$$

$$=m_1v_1'+\sqrt{2m_2W_{\kappa2}'}$$
, отсюда $v_1=\frac{m_1v_1'+\sqrt{2m_2W_{\kappa2}'}}{m_1}$ — (5). Подставив (5) в (3), найдем скорость первого тела после удара. $m_1\frac{\left(m_1v_1'+\sqrt{2m_2W_{\kappa2}'}\right)^2}{m_1^2}=m_1(v_1')^2+2W_{\kappa2}'$; $\left(m_1v_1'+\sqrt{2m_2W_{\kappa2}'}\right)^2=$ $=(m_1v_1')^2+2m_1W_{\kappa2}'$; $\left(m_1v_1'\right)^2+2m_1v_1'\sqrt{2m_2W_{\kappa2}'}+2m_2W_{\kappa2}'=$ $=(m_1v_1')^2+2m_1W_{\kappa2}'$, откуда $v_1'=\frac{2W_{\kappa2}'(m_1-m_2)}{2m_1\sqrt{2m_2W_{\kappa2}'}}=$ $=\frac{\sqrt{W_{\kappa2}'}(m_1-m_2)}{m_1\sqrt{2m_2}}$. Поскольку $W_{\kappa1}'=\frac{m_1(v_1')^2}{2}$, то

 $W'_{\kappa 1} = \frac{m_1 W'_{\kappa 2} (m_1 - m_2)^2}{4 m_1^2 m_2} = \frac{W'_{\kappa 2} (m_1 - m_2)^2}{4 m_1 m_2}; \qquad W'_{\kappa 1} = 0.62 \,\text{Дж}.$

Тогда из (2) $W_{\kappa l} = 5,62 \, \text{Дж}.$

2.77. Толо массой $m_1 = 5$ кг ударяется о неподвижное тело массой $m_2 = 2.5$ кг. Кинетическая энергия системы двух тел непосредственно после удара стала $W_{\kappa}' = 5$ Дж. Считая удар центральным и неупругим, найти кинетическую энергию $W_{\kappa 1}$ первого тела до удара.

Решение:

Движение осуществляется вдоль горизонтальной оси. Согласно закону сохранения импульса $m_1v_1=(m_1+m_2)\cdot u$ — (1), где v_1 — скорость первого тела до удара, u — скорость системы двух тел после удара. Кинетическая энергия первого тела до удара $W_{\kappa 1}=\frac{m_1v_1^2}{2}$ — (2). Из (1) $v_1=\frac{(m_1+m_2)\cdot u}{m_1}$. Найдем u из выражения для кинетической энергии системы двух тел после удара.

2.78. Два тела движутся навстречу друг другу и соударяются неупруго. Скорости тел до удара были $v_1 = 2$ м/с и $v_2 = 4$ м/с. Общая скорость тел после удара u = 1 м/с и по направлению совпадает с направлением скорости v_1 . Во сколько раз кинетическая энергия $W_{\kappa 1}$ первого тела была больше кинетической энергии $W_{\kappa 2}$ второго тела?

Решение:

Отношение кинетических энергий первого и второго тела до удара можно выразить следующим образом: $\frac{W_{\kappa l}}{W_{\kappa 2}} = \frac{m_1 v_1^2}{2} \cdot \frac{2}{m_2 v_2^2} = \frac{m_1 v_1^2}{m_2 v_2^2} \quad - \quad (1). \quad \text{Согласно закону со- хранения импульса } m_1 v_1 - m_2 v_2 = \left(m_1 + m_2\right) \cdot u \quad \text{или } m_1 \left(v_1 - u\right) = m_2 \left(u + v_2\right), \quad \text{откуда } \frac{m_1}{m_2} = \frac{u + v_2}{v_2 - u} \quad - \quad (2). \quad \text{Подста-вив (2) в (1), получим } \frac{W_{\kappa l}}{W_{\kappa l}} = \frac{v_1^2 \left(u + v_2\right)}{v_2^2 \left(v_2 - u\right)}; \quad \frac{W_{\kappa l}}{W_{\kappa l}} = 1,25.$

2.79. Два шара с массами $m_1=0.2~\rm kr$ и $m_2=0.1~\rm kr$ подвешены на нитях одинаковой длины так, что они соприкасаются. Первый шар отклоняют на высоту $h_0=4.5~\rm cm$ и отпускают. На какую

высоту h поднимутся шары после удара, если удар: a) упругий; 6) неупругий?

Решение:

Систему шаров будем считать замкнутой. а) Упругий удар. Пусть v_1 — скорость первого шара в момент удара, v_1' и v_2' — скорости первого и второго шаров непосредственно после удара. Согласно закону сохранения импульса $m_1v_1=m_1v_1'+m_2v_2'$ — (1).

Если принять за нулевой уровень потенциальной энергии положение равновесия, то при отклонении первого шара он приобрел потенциальную энергию m_1gh_0 , которая после удара распределилась между двумя шарами, сначала перейдя в кинетическую энергию, а затем, когда они отклонились на высоту h_1 — первый и h_2 — второй, — в потенциальную: $m_1gh_0 = m_1gh_1 + m_2gh_2$ — (2);

в потенциальную:
$$m_1gh_0 = m_1gh_1 + m_2gh_2$$
 — $m_1gh_0 = \frac{m_1v_1^2}{2}$ — (3); $m_1gh_1 = \frac{m_1(v_1')^2}{2}$ — (4);

$$m_2gh_2=\frac{m_2(v_2')^2}{2}$$
 — (5); Из уравнения (2) $m_1h_0=m_1h_1+$

$$+m_2h_2$$
, откуда $h_2=\frac{m_1}{m_2}(h_0-h_1)$ — (6). Из уравне-

ний (3) и (4) выразим скорости шаров:
$$v_1 = \sqrt{2gh_0}$$
; $v_1' = \sqrt{2gh_1}$; $v_2' = \sqrt{2gh_2}$. Подставив полученные выра-

жения в (1), произведем преобразования:
$$m_1\sqrt{2gh_0} = m_1\sqrt{2gh_1} + m_2\sqrt{2gh_2}$$
; $m_1\sqrt{h_0} = m_1\sqrt{h_1} + m_2\sqrt{h_2}$

или с учетом (6);
$$m_1\sqrt{h_0}=m_1\sqrt{h_1}+m_2\sqrt{\frac{m_1}{m_2}(h_0-h_1)}$$
;

$$m_{1}\left(\sqrt{h_{0}}-\sqrt{h_{1}}\right) = \sqrt{m_{2}m_{1}(h_{0}-h_{1})}; \qquad m_{1}^{2}\left(\sqrt{h_{0}}-\sqrt{h_{1}}\right)^{2} = m_{2}m_{1} \times (h_{0}-h_{1}); \quad m_{1}^{2}\left(\sqrt{h_{0}}-\sqrt{h_{1}}\right)^{2} = m_{2}m_{1}(h_{0}-h_{1}); \quad m_{1}\left(\sqrt{h_{0}}-\sqrt{h_{1}}\right) = m_{2}m_{1}(h_{0}-h_{1}); \quad m_{2}\left(\sqrt{h_{0}}-\sqrt{h_{1}}\right) = m_{2}m_{1}(h_{0}-h_{1}); \quad m_{2}\left$$

$$= m_2 \left(\sqrt{h_0} - \sqrt{h_1} \right); \qquad \sqrt{h_0} \left(m_1 - m_2 \right) = \sqrt{h_1} \left(m_1 + m_2 \right); \qquad \sqrt{h_1} =$$

$$= \frac{\sqrt{h_0} \left(m_1 - m_2 \right)}{m_1 + m_2}, \quad \text{отсюда} \quad h_1 = h_0 \left(\frac{m_1 - m_2}{m_1 + m_2} \right)^2; \quad h_1 = 0,005 \text{ м.}$$

Тогда из уравнения (6) $h_2 = 0.08 \,\mathrm{m}$. б) Неупругий удар. Потенциальная энергия первого шара при прохождении положения равновесия перешла в кинетическую энергию.

 $m_1gh_0 = \frac{m_1v^2}{2}$ — (1), где v — скорость первого шара в нижней точке. После соударения шаров по закону сохранения импульса $m_1v = (m_1 + m_2) \cdot u$ — (2), где u — скорость системы двух шаров непосредственно после удара. Кинетическая энергия системы после отклонения шаров на высоту h перешла в потенциальную энергию. $\frac{(m_1 + m_2) \cdot u^2}{2} = (m_1 + m_2) \cdot gh$ — (3). Выразим из (1) v и

 $\frac{1}{2}$ = $(m_1 + m_2) \cdot gn$ — (3). Выразим из (1) v и подставим в (2) $v = \sqrt{2gh_0}$; $m_1\sqrt{2gh_0} = (m_1 + m_2) \cdot u$, откуда

 $u = \frac{m_1 \sqrt{2gh_0}}{m_1 + m_2}$. Подставив полученное выражение в (3),

получим $\frac{\left(m_1+m_2\right)m_1^2\cdot 2gh_0}{2\left(m_1+m_2\right)}=\left(m_1+m_2\right)\cdot gh\,,\qquad \text{отсюда}$

$$h = \frac{m_1^2 h_0}{(m_1 + m_2)^2}$$
; $h = 0.02$ M.

2.80. Пуля, летящая горизонтально, попадает в шар, подвешенный на невесомом жестком стержне, и застревает в нем. Масса пули в 1000 раз меньше массы шара. Расстояние от центра шара до точки подвеса стержня l=1 м. Найти скорость ν пули, если известно, что стержень с шаром отклонился от удара пули на угол $\alpha=10^{\circ}$.

Решение:

Силу сопротивления воздуха не учитываем, следовательно, систему «пуля — шар» можно считать замкнутой. Запишем закон сохранения импульса и закон сохранения энергии для данной системы: $mv = (m+M) \cdot u$ — (1), где u — скорость шара вместе с пулей после удара. В результате взаимо-

действия шара с пулей, он приобрел кинетическую энергию, которая после отклонения стержня на $\angle \alpha$ перешла в

потенциальную энергию
$$\frac{(m+M)\cdot u^2}{2} = (m+M)\cdot gh$$
 — (2).

Из (1) выразим
$$u: u = \frac{mv}{m+M}$$
, или $u = \frac{mv}{1001m} = \frac{v}{1001}$. Из

(2) получим:
$$\frac{u^2}{2} = gh$$
, $\frac{v^2}{2 \cdot (1001)^2} = gh$. Найдем h :

$$BM = l\cos\alpha$$
, $h = l - BM$; $h = l - l\cos\alpha = l(1 - \cos\alpha)$, тогда $v = 1001\sqrt{2gl(1 - \cos\alpha)}$, $v \approx 550$ м/с.

2.81. Пуля, летящая горизонтально, попадает в шар, подвешенный на невесомом жестком стержне, и застревает в нем. Масса пули $m_1 = 5$ г, масса шара $m_2 = 0.5$ кг. Скорость пули $v_1 = 500$ м/с. При каком предельном расстоянии l от центра шара до точки подвеса стержня шар от удара пули поднимется до верхней точки окружности?

Решение:

См. рисунок к задаче 2.80. Запишем закон сохранения мпульса и закон сохранения энергии для данной системы.

$$m_1 v_1 = (m_1 + m_2) \cdot v_2 - (1); \frac{(m_1 + m_2) \cdot v_2^2}{2} = (m_1 + m_2)gh - (2),$$

где v_2 — скорость шара с пулей после удара. Высота, на

которую поднимется шар h=2l. Из (2) $\frac{v_2^2}{2}=2gl$, откуда $l=\frac{v_2^2}{4g}$. Из (1) $v_2=\frac{m_1v_1}{m_1+m_2}$, тогда $l=\frac{m_1^2v_1^2}{\left(m_1+m_2\right)^2\cdot 4g}$; l=0.64 м.

2.82. Деревянным молотком, масса которого $m_1 = 0.5$ кг, ударяют о неподвижную стенку. Скорость молотка в момент удара $v_1 = 1$ м/с. Считая коэффициент восстановления при ударе молотка о стенку k = 0.5, найти количество теплоты Q, выделившееся при ударе. (Коэффициентом восстановления материала тела называют отношение скорости после удара к его скорости до удара.)

Решение:

По условию $\frac{v_2}{v_1} = k$. Количество теплоты, выделившееся при ударе, равно убыли кинетической энергии молотка $Q = W_{\kappa l} - W_{\kappa 2}$, где $W_{\kappa l} = \frac{m_l v_l^2}{2}$; $W_{\kappa 2} = \frac{m_l v_2^2}{2}$. Т.к. $v_2 = k v_1$, то $Q = \frac{m_l v_l^2}{2} - \frac{k^2 m_l v_l^2}{2} = \frac{m_l v_l^2 \left(1 - k^2\right)}{2}$; Q = 0.188 Дж.

2.83. В условиях предыдущей задачи найти импульс силы $F\Delta t$, полученный стенкой за время удара.

Решение:

Согласно закону изменения импульса $F\Delta \vec{t} = m_1 \vec{v}_2 - m_1 \overline{v}_1$ в проекции на горизонтальную ось $F\Delta t = m_1 v_1 - (-m_1 v_2) = m_1 (v_1 + v_2)$. Учитывая, что $v_2 = k v_1$, $F\Delta t = m_1 (v_1 + k v_1) = m_1 v_1 (1 + k)$; $F\Delta t = 0.75 \, \mathrm{H\cdot c.}$

2.84. Деревянный шарик массой m = 0,1 кг падает с высоты $h_1 = 2$ м. Коэффициент восстановления при ударе шарика о пол k = 0,5. Найти высоту h_2 , на которую поднимется шарик после ўдара о пол, и количество теплоты Q, выделившееся при ударе.

Решение:

Потенциальная энергия-шарика mgh_1 в момент удара о пол переходит в кинетическую энергию: $mgh_1 = \frac{mv_1^2}{2}$ — (1), где v_1 — скорость шарика в момент удара. Когда шарик отскакивает от пола, он обладает кинетической энергией $\frac{mv_2^2}{2}$, которая переходит в потенциальную $mgh_2 = \frac{mv_1^2}{2}$. По условию $v_2 = kv_1$, тогда $mgh_2 = \frac{k^2mv_1^2}{2}$ — (2). Из уравнения (1) $g = \frac{v_1^2}{2h_1}$, из уравнения (2) $g = \frac{k^2v_1^2}{2h_2}$. Прирав-

няв правые части уравнений, получим $\frac{v_1^2}{2h_1} = \frac{k^2v_1^2}{2h_2}$, откуда

 $h_2 = k^2 h_1$; $h_2 = 0.25 \cdot 2 = 0.5$ м. Количество теплоты, выделившееся при ударе, равно убыли потенциальной энсргии $Q = W_{\rm n1} - W_{\rm n2} = mgh_1 - mgh_2 = mg(h_1 - h_2)$; Q = 1.47 Дж.

2.85. Пластмассовый шарик, падая с высоты $h_1 = 1$ м несколько раз отскакивает от пола. Найти коэффициент восстановления k при ударе шарика о пол, если с момента падения до второго удара о пол прошло время t = 1,3 с.

Решение:

Падая с высоты h_1 , шарик подлетает к полу со скоростью v_1 , а отскакивает от него со скоростью $v_2 = kv_1$. Согласно

закону сохранения механической энергии $mgh_1=\frac{mv_1^2}{2}$ и $mgh_2=\frac{mv_2^2}{2}$, откуда $v_1=\sqrt{2gh_1}$, а $v_2=\sqrt{2gh_2}$. После почленного деления получим $\frac{v_2}{v_1}=\frac{kv_1}{v_1}=\frac{\sqrt{h_2}}{\sqrt{h_1}}$, т.е. $h_2=k^2h_1$. Промежуток времени с момента падения шарика до второго удара о пол $t=t_1+2t_2$, где t_1 — время падения шарика с высоты h_1 и t_2 — время падения шарика с высоты h_2 . Так как $t_1=\sqrt{\frac{2h_1}{g}}$ и $t_2=\sqrt{\frac{2h_2}{g}}=k\sqrt{\frac{2h_1}{g}}$, то $t=\sqrt{\frac{2h_1}{g}}$ 0, то $t=\sqrt{\frac{2h_1}{g}}$ 1, отсюда $t=\sqrt{\frac{2h_1}{g}}$ 3, к = 0,94.

2.86. Стальной шарик, падая с высоты $h_1 = 1.5$ м на стальную плиту, отскакивает от нее со скоростью $v_2 = 0.75 \cdot v_1$, где v_1 скорость, с которой он подлетает к плите. На какую высоту h_2 он поднимется? Какое время t пройдет с момента падения до второго удара о плиту?

Решение:

Рассуждая как в задаче 2.84, запишем $mgh_1 = \frac{mv_1^2}{2}$ — (1); $mgh_2 = \frac{mv_2^2}{2} = \frac{0.75^2 \, mv_1^2}{2}$ — (2). Из уравнения (1) имеем $gh_1 = \frac{v_1^2}{2}$ — (3). Из уравнения (2) $\frac{gh_2}{0.56} = \frac{v_1^2}{2}$ — (4). Тогда $\frac{gh_2}{0.56} = gh_1$, откуда $h_2 = 0.56h_1$; $h_2 = 0.56 \cdot 1.5 = 0.84 \, \mathrm{M}$. Время t можно разложить на три составляющие: t_1 — время от 94

начала падения до первого удара о плиту; t_2 — время от первого удара о плиту до подъема на высоту h_2 ; t_3 — время от начала падения с высоты h_2 до второго удара о плиту. $t=t_1+t_2+t_3$. Скорости шарика на этих участках: $v_1=gt_1$, откуда $t_1=\frac{\sqrt{2gh_1}}{g}=\sqrt{\frac{2h_1}{g}}$, с учетом (3); $v_2=gt_2$, откуда $t_2=0.75t_1$, т.к. по условию $v_2=0.75v_1$; $v_3=v_2=gt_3$, следовательно, $t=t_1+2\cdot0.75t_1=2.5t_1=2.5\sqrt{\frac{2h_1}{g}}$; t=1.4 с.

2.87. Металлический шарик, падая с высоты $h_1 = 1$ м на стальную плиту, отскакивает от нее на высоту $h_2 = 81$ см. Найти коэффициент восстановления k при ударе шарика о плиту.

Решение:

Воспользуемся уравнением (3) из задачи 2.84 $h_2=k^2h_1$, отсюда $k=\sqrt{\frac{h_2}{h_1}}$; k=0.9 .

2.88. Стальной шарик массой $m=20\,\mathrm{r}$, падая с высоты $h_1=1\,\mathrm{m}$ на стальную плиту, отскакивает от нее на высоту $h_2=81\,\mathrm{cm}$. Найти импульс силы $F\Delta t$, полученный плитой за время удара, и количество теплоты Q, выделившееся при ударе.

Решение:

Рассуждая аналогично 2.84, запишем
$$mgh_1 = \frac{mv_1^2}{2}$$
 — (1); $mgh_2 = \frac{mv_2^2}{2}$ — (2). Тогда из (1) $v_1 = \sqrt{2gh_1}$ — (3), из (2) соответственно $v_2 = \sqrt{2gh_2}$ — (4). Согласно закону изменения импульса $F\Delta \vec{t} = m_1 \vec{v}_2 - m_1 \vec{v}_1$ или в проекции на

горизонтальную ось: $F\Delta t = m\Delta v = m(v_1 - (-v_2)) = m(v_1 + v_2)$. Подставляя (3) в (4) получим $F\Delta t = m(\sqrt{2gh_1} + \sqrt{2gh_2})$; $F\Delta t = 0.17 \,\mathrm{H\cdot c}$. Количество выделившейся теплоты равно убыли потенциальной энергии $Q = mgh_1 - mgh_2 = mg \times (h_1 - h_2)$; $Q = 37.2 \,\mathrm{MДж}$.

2.89. Движущееся тело массой m_1 ударяется о неподвижное тело массой m_2 . Считая удар неупругим и центральным, найти, какая часть кинетической энергии $W_{\kappa 1}$ первого тела переходит при ударе в тепло. Задачу решить сначала в общем виде, а затем рассмотреть случаи: а) $m_1 = m_2$; б) $m_1 = 9m_2$.

Решение:

Кинетическая энергия первого тела до удара $W_{\kappa l} = \frac{m_l v^2}{2}$; кинетическая энергия второго тела до удара $W_{\kappa 2} = 0$. После удара кинетические энергии обоих тел $W_{\kappa}' = \frac{\left(m_l + m_2\right) \cdot u^2}{2}$, где $u = \frac{m_l v}{m_l + m_2}$ — общая скорость тел.

Следовательно, $W_{\kappa}' = \frac{m_1^2 v^2}{2(m_1 + m_2)}$. Тогда кинетическая энер-

гия, перешедшая при ударе в тепло: $W_{\kappa l} - W_{\kappa}' = \frac{m_l v^2}{2}$ —

$$-\frac{m_1^2 v^2}{2(m_1 + m_2)} = \frac{m_1 v^2}{2} \left(1 - \frac{m_1}{m_1 + m_2} \right).$$
 Искомое отношение:

$$\frac{W_{\kappa 1} - W'_{\kappa}}{W_{\kappa 1}} = 1 - \frac{m_1}{m_1 + m_2} = \frac{m_2}{m_1 + m_2}$$
. a) Если $m_1 = m_2$, то

$$\frac{W_{\kappa 1} - W_{\kappa}'}{W} = 0.5$$
; б) Если $m_1 = 9m_2$, о $\frac{W_{\kappa 1} - W_{\kappa}'}{W} = 0.1$.

2.90. Движущееся тело массой m_1 ударяется о неподвижное тело массой m_2 . Считая удар упругим и центральным, найти, какую часть кинетической энергии $W_{\kappa 1}$ первое тело передает второму при ударе. Задачу решить сначала в общем виде, а затем рассмотреть случаи: а) $m_1 = m_2$; б) $m_1 = 9m_2$.

Решение:

Кинетическая энергия первого тела до удара $W_{\kappa l} = \frac{m_l v^2}{2}$; кинетическая энергия второго тела до удара $W_{\kappa 2} = 0$. После удара второе тело приобрело кинетическую энергию $W'_{\kappa 2} = \frac{m_2 u^2}{2}$, где $u = \frac{2m_l v}{m_l + m_2}$. Таким образом, первое тело передало второму телу кинетическую энергию $W'_{\kappa 2} = \frac{m_2}{2} \left(\frac{2m_l v}{m_l + m_2}\right)^2$. Искомое отношение: $\frac{W'_{\kappa 2}}{W_{\kappa l}} = \frac{4m_l m_2}{(m_l + m_2)^2}$. а) Если $m_l = m_2$, то $\frac{W'_{\kappa 2}}{W_{\kappa l}} = 1$; б) если $m_l = 9m_2$, то $\frac{W'_{\kappa 2}}{W_{\kappa l}} = 0.36$.

2.91. Движущееся тело массой m_1 ударяется о неподвижное тело массой m_2 . Каким должно быть отношение масс m_1/m_2 , чтобы при центральном упругом ударе скорость первого тела уменьшилась в 1,5 раза? С какой кинетической энергией $W'_{\kappa 2}$ начинает двигаться при этом второе тело, если первоначальная кинетическая энергия первого тела $W_{\kappa 1} = 1$ кДж?

Решение:

Из условия следует, что движение происходит вдоль горизонтальной оси. Система тел m_1 и m_2 замкнута в проекции на горизонтальную ось. Запишем закон сохранения импульса и закон сохранения энергии для данного 4-3268

взаимодействия:
$$m_1v_1=m_1u_1+m_2u_2$$
 — (1); $\frac{m_1v_1^2}{2}=\frac{m_1u_1^2}{2}+\frac{m_2u_2^2}{2}$ — (2). Умножив (2) на 2 и учитывая, что $v_1=1.5u_1$, получим $m_1\cdot 1.5u_1=m_1u_1+m_2u_2$; $m_1\cdot 2.25u_1^2=m_1u_1^2+m_2u_2^2$ или $m_1\cdot 0.5u_1=m_2u_2$ — (3); $m_1\cdot 1.25u_1^2=m_2u_2^2$ — (4). Выразим u_2 из (3) $u_2=\frac{0.5m_1u_1}{m_2}$ — (5). Подставим это выражение в (4): $1.25m_1u_1^2=m_2\left(\frac{0.5m_1u_1}{m_2}\right)^2$; $1.25=\frac{0.25m_1}{m_2}$. Отсюда $\frac{m_1}{m_2}=5$. После столкновения первоначальная кинетическая энергия первого тела перераспределилась между первым и вторым телом, которые стали двигаться со скоростями u_1 и u_2 соответственно. $W_{\kappa 1}=W_{\kappa 1}'+W_{\kappa 2}'$, где $W_{\kappa 1}'=\frac{m_1u_1^2}{2}$; $W_{\kappa 2}'=\frac{m_2u_2^2}{2}$; $u_2'=\frac{1.25m_1u_1^2}{2}$. По условию $W_{\kappa 1}=\frac{m_1v_1^2}{2}=\frac{m_1\cdot 2.25u_1^2}{m_2}$, откуда $u_1^2=\frac{2W_{\kappa 1}}{2.25m_1}$. Из (5) найдем $u_2'=\frac{1.25m_1\cdot 2W_{\kappa 1}}{m_2\cdot 2.25m_1}=\frac{2.5W_{\kappa 1}}{2.25m_2}$. Тогда $W_{\kappa 2}'=\frac{m_2\cdot 2.5\cdot W_{\kappa 1}}{2\cdot 2.25\cdot m_2}=\frac{0.5\cdot W_{\kappa 1}}{0.9}=\frac{5}{9}W_{\kappa 1}$; $W_{\kappa 2}'=\frac{5}{9}$ кДж.

2.92. Нейтрон (масса m_0) ударяется о неподвижное ядро атома углерода ($m=12m_0$). Считая удар центральным и упругим, найти, во сколько раз уменьшится кинетическая энергия W_{κ} нейтрона при ударе.

Решение:

Кинетическая энергия нейтрона до и после удара выражается следующими соотношениями: $W_{\kappa l} = \frac{m_0 v_l^2}{2}$ — (1); $W_{\kappa 2} = \frac{m_0 v_2^2}{2}$ — (2), откуда $\frac{W_{\kappa 1}}{W} = \frac{v_1^2}{v_2^2}$. По закону сохранения энергии $W_{\kappa 1} = W_{\kappa 2} + W'_{\kappa}$ — (3), где W'_{κ} — киядра атома углерода после энергия нетическая взаимодействия, $W'_{\kappa} = \frac{12m_0u^2}{2}$ — (4). Решая совместно уравнения (1) — (4), получим $m_0 v_1^2 = m_0 v_2^2 + 12 m_0 u^2$, откуда $v_1^2 = v_2^2 + 12u^2$ — (5). Согласно закону сохранения импульса $m_0v_1 = m_0v_2 + 12m_0u$, откуда $v_1 = v_2 + 12u$ $u = \frac{v_1 - v_2}{12}$ — (6). Подставим (6) в (5) и произведем преобразования: $v_1^2 = v_2^2 + 12 \cdot \left(\frac{v_1 - v_2}{12}\right)^2$; $v_1^2 = v_2^2 + \frac{(v_1 - v_2)^2}{12}$; $v_1^2 - v_2^2 = \frac{(v_1 - v_2)^2}{12}$; $v_1 + v_2 = \frac{v_1 - v_2}{12}$; $12\left(\frac{v_1}{v_1} + 1\right) = \frac{v_1}{v_2} - 1$; $11\frac{v_1}{v} = -13$. Отсюда $\frac{v_1^2}{v_2^2} = 1.4$, т.е. $\frac{W_{\kappa 1}}{W_{\kappa}} = 1.4$.

2.93. Нейтрон (масса m_0) ударяется о неподвижное ядро: **a**) атома углерода $(m=12m_0)$; б) атома урана $(m=235m_0)$. Считая удар центральным и упругим, найти, какую часть скорости v потеряет нейтрон при ударе.

Решение:

а) Запишем закон сохранения импульса и закон сохранения энергии данной системы тел. $m_0 v = -m_0 (v - \Delta v) + 12 m_0 u$ — (1). Знак «—» указывает на изменение направ-

ления скорости нейтрона на противоположный. $\frac{m_0 v^2}{2} = \frac{m_0 (v - \Delta v)^2}{2} + \frac{12 m_0 u^2}{2} - (2).$ Скорость нейтрона после удара $v - \Delta v$; u — скорость ядра атома углепосле удара. Разделив (1) на m_0 , полурода чим $v = -(v - \Delta v) + 12u$, откуда $u = \frac{2(v - \Delta v)}{12}$. Подставим в уравнение (2) выражение для u и преобразуем ero: $v^2 = (v - \Delta v)^2 + 12u^2$, $v^2 = (v - \Delta v)^2 + 12\left(\frac{2v - \Delta v}{12}\right)^2$, $v^2 - (v - \Delta v)^2 = \frac{(2v - \Delta v)^2}{12}$, $\Delta v(2v - \Delta v) = \frac{(2v - \Delta v)^2}{12}$, $12\Delta v =$ $= 2v - \Delta v$, $13 \frac{\Delta v}{v} = 2$ и получаем $\frac{\Delta v}{v} = \frac{2}{13}$. б) Рассуждая аналогично случаю а), запишем: $m_0 v = -m_0 (v - \Delta v) + 235 m_0 u$, $m_0 v^2 / 2 = m_0 (v - \Delta v)^2 / 2 +$ $+\frac{235m_0u^2}{2}$, $2v-\Delta v=235u$ и $u=\frac{2v-\Delta v}{235}$. Подставляя в формулу (2) новые значения и преобразуя ее, получим: $v^2 = (v - \Delta v)^2 + 235u^2$, $v^2 - (v - \Delta v)^2 = \frac{(2v - \Delta v)^2}{225}$, $235\Delta v = 2v - \Delta v$; $235\Delta v = 2v - \Delta v$, $236\Delta v = 2v$ и $\frac{\Delta v}{v} = \frac{1}{118}$.

2.94. На какую часть уменьшится вес тела на экваторе вследствие вращения Земли вокруг оси?

Решение:

На экваторе на тело действует сила тяготения $F = G \frac{mM}{R^2}$ — (1) (M — масса Земли, m — масса тела, R — радиус Земли, G — гравитационная постоянная) и сила реакции опоры N, при этом тело, участвуя в 100

радиусом R. Составим уравнение на основании второго закона Ньютона $F-N=m\omega^2R$, где $\omega=\frac{2\pi}{\tau}$ — угловая скорость; Т — период вращения Земли вокруг своей оси: . $T=86400\,\mathrm{c}$. Тогда $F-N=m\cdot\left(rac{2\pi}{T}
ight)^2R$, откуда N=F- $-\frac{4\pi^2 mR}{T^2}$ — (2). По третьему закону Ньютона вес тела на экваторе $P_3 = N$ — (3). Вес покоящегося тела для любой точки Земли численно равен силе тяжести: P = mg — (4). Относительное изменение веса тела $\delta = \frac{P - P_3}{P}$ — (5). совместно уравнения (1) — (3), получим $P_3 = G \frac{mM}{R^2} - \frac{4\pi^2 mR}{T^2}$ — (6). Подставляя (4) и (6) в (5), получим $\delta = 1 - \frac{GM}{\sigma R^2} + \frac{4\pi^2 R}{\sigma T^2}$ — (7). Примем ускорение **св**ободного падения $g = 9.8 \text{ м/c}^2$. Подставляя числовые данные в (7), получим $\delta = 0.34\%$.

суточном вращении Земли, движется по окружности

2.95. Какой продолжительности T должны были бы быть сутки на Земле, чтобы тела на экваторе не имели веса.

Решение:

Вес тела на экваторе $P_3 = G \frac{mM}{R^2} - \frac{4\pi^2 mR}{T^2}$ (см. задачу 2.94). По условию $P_3 = 0$, тогда $\frac{GM}{R^2} = \frac{4\pi^2 R}{T^2}$. Отсюда $T = \sqrt{\frac{4\pi^2 R^3}{GM}}$. Подставляя числовые данные, получим $T = 5056 \, \mathrm{c} = 1 \, \mathrm{u} \, 24 \, \mathrm{muh}$.

2.96. Трамвайный вагон массой m = 5 т идет по закруглению радиусом R = 128 м. Найти силу бокового давления F колес на рельсы при скорости движения v = 9 км/ч.

Решение:

При равномерном движении по окружности $a_{\tau}=0$ и $a=a_{\eta}$. Тогда второй закон Ньютона запишется в виде:

$$F = ma_n = m \frac{v^2}{R}$$
, отсюда $F = 245 \,\text{H}$.

2.97. Ведерко с водой, привязанное к веревке длиной l=60 см, равномерно вращается в вертикальной плоскости. Найти наименьшую скорость ν вращения ведерка, при которой в высшей точке вода из него не выливается. Какова сила натяжения веревки T при этой скорости в высшей и низшей точках окружности? Масса ведерка с водой m=2 кг.

Решение:

Поскольку вращение вокруг оси О является равномерным, то $a = a_n = \frac{v^2}{l}$. На воду в ведерке в высшей точке действует центробежная сила равная $m\frac{v^2}{l}$, направленная вверх и сила тяжести mg, направленная вниз. Вода

не будет выливаться из ведерка при условии, что $m\frac{v^2}{l}=mg$ или $g=\frac{v^2}{l}$, откуда $v=\sqrt{lg}$; $v=2,43\,\mathrm{m/c}$. В проекции на ось y уравнение движения ведра с водой в верхней точке: ma=mg+T, в нижней точке ma=T-mg. Учитывая, что $g=\frac{v^2}{l}=a_n$, получим: в верхней точке T=0, в нижней точке $T=2mg=39,2\,\mathrm{H}$.