

Using Machine Learning to Predict Length of Stay and Discharge Destination for Hip-Fracture Patients

Mahmoud Elbattah, Owen Molloy mahmoud.elbattah@nuigalway.ie

Background: Hip Fracture Care in Ireland

Our Focus: Hip Fracture Care in Ireland

Figure 1. Elderly Patient Journey

Study Objectives

Questions of Interest

- 1) How to predict the inpatient length of stay (LOS)?
- 2) How to predict the patient's discharge destination?

Significance of the Study

Why predicting inpatient LOS and discharge destination is important?

LOS:

- A significant measure of patient outcomes [1-3].
- A valid proxy to measure the consumption of hospital resources.
- Reported as the main component of the overall cost of hip fracture care [4].

Discharge Destination:

 Having a strategic importance in order to estimate the needed capacity of long-stay care facilities such as nursing homes.

Significance of the Study: A Bigger Picture

Patient-Focused Perspective

Machine Learning

Predict LOS and Discharge Destination

Simulation Modeling

Modeling Projected Flow of Elderly Patients

Methodology

Overview

- Training a regression model for predicting the LOS.
- Training a multi-class classifier for predicting the discharge destination.

Data Description

- Irish Hip Fracture Database (IHFD).
- Patient records in the year 2013.
- Patients aged 60 and over.
- 38 data fields such as gender, age, type of fracture, date of admission, and LOS.

Data Anomalies: Outliers

Figure 2. Histogram and probability density of the LOS variable. The outliers can be observed when the LOS becomes longer than 40 days.

Data Anomalies: Imbalances

Figure 3. The imbalanced training samples, where figures (a) and (b) plot histograms of inpatient LOS and discharge destination respectively.

Feature Selection

LOS Regression Model:

- Hospital Admitted to
- Age
- ICD-10 Diagnosis
- Fracture Type
- Patient Gender
- Fragility History

Discharge Destination Classifier:

- Hospital Admitted to
- Age
- LOS
- Residence Area
- Patient Gender

* The features were decided based on the permutation importance method [5]

Learning Algorithm: Random Forests

Paying Tribute to Leo Breiman (1928-2005)

Learning Algorithm: Random Forests

• A Random Forest is a classifier consisting of a collection of tree-structured classifiers $\{h(x, \Theta_k), k = 1,...\}$ where the $\{\Theta_k\}$ are independent identically distributed random vectors and each tree casts a unit vote for the most popular class at input x.

• The common element in all of these procedures is that for the kth tree, a random vector Θ_k is generated, independently of the past random vectors $\Theta_1, ..., \Theta_{k-1}$ but with the same distribution; and a tree is grown using the training set and Θ_k , resulting in a classifier $h(\mathbf{x}, \Theta_k)$ where \mathbf{x} is an input vector.

Learning Algorithm: Random Forests

$$p(c|v) = \frac{1}{T} \sum_{t=1}^{T} p_t(c|v)$$

, where $p_t(c|v)$ denotes the posterior distribution obtained by the t-th tree.

Experimental Results

Experimental Results: Regression Accuracy Based on 10-Fold Cross-Validation (LOS)

Algorithm	Relative Absolute Error (≈)	
Random Forests	0.26	
Boosted Decision Tree	0.34	
Neural Network	0.55	
Linear Regression	0.93	

Experimental Results:Classification Accuracy Based on 10-fold Cross-Validation (Discharge Destination)

Algorithm	Precision (≈)	Recall (≈)	Overall Classification Accuracy (≈)
Random Forest	0.88	0.87	0.88
Neural Network	0.71	0.72	0.72
Logistic Regression	0.61	0.60	0.62

Full-Text Paper

Conference Paper

Full-text available

Using Machine Learning to Predict Length of Stay and Discharge Destination for Hip-Fracture Patients

September 2016

DOI: 10.1007/978-3-319-56994-9_15

Conference: Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016 · At: London,

United Kingdom

Project: Machine Learning Applied to the Irish Hip Fracture Database (IHFD)

Mahmoud Elbattah · Owen Molloy

- https://www.researchgate.net/publication/319198340_Using_Machine_Learni ng to Predict Length of Stay and Discharge Destination for Hip-Fracture Patients
- https://link.springer.com/chapter/10.1007/978-3-319-56994-9_15

References

- 1. O'Keefe, G.E., Jurkovich, G.J. and Maier, R.V., 1999. Defining excess resource utilization and identifying associated factors for trauma victims. Journal of Trauma and Acute Care Surgery, 46(3), pp.473-478.
- 2. Englert, J., Davis, K.M. and Koch, K.E., 2001. Using clinical practice analysis to improve care. Joint Commission Journal on Quality and Patient Safety, 27(6), pp.291-301.
- 3. Guru, V., Anderson, G.M., Fremes, S.E., O'Connor, G.T., Grover, F.L., Tu, J.V. and Consensus, C.C.S.Q.I., 2005. The identification and development of Canadian coronary artery bypass graft surgery quality indicators. The Journal of thoracic and cardiovascular surgery, 130(5), pp.1257-e1.
- Johansen, A., Wakeman, R., Boulton, C., Plant, F., Roberts, J. and Williams, A., 2013. National Hip Fracture Database: National Report 2013. Clinical Effectiveness and Evaluation Unit at the Royal College of Physicians.
- 5. Altmann, A., Toloşi, L., Sander, O. and Lengauer, T., 2010. Permutation importance: a corrected feature importance measure. Bioinformatics, 26(10), pp.1340-1347.
- 6. Breiman, L., 2001. Random forests. *Machine learning*, 45(1), pp.5-32.
- 7. Brailsford, S. and Vissers, J., 2011. OR in healthcare: A European perspective. *European journal of operational research*, 212(2), pp.223-234.

THANK YOU!

mahmoud.elbattah@nuigalway.ie