```
In [1]:
         import numpy as np
         import pandas as pd
         from sklearn.model_selection import train_test_split
         from sklearn.linear_model import LinearRegression
         import matplotlib.pyplot as plt
         # Loading CSV data
         data = pd.read_csv("Salary.csv")
         exp = data["YearsExperience"]
         salary = data["Salary"]
         data.head()
```

```
Out[1]:
             YearsExperience Salary
          0
                        1.1 39343
          1
                        1.3 46205
          2
                             37731
          3
                             43525
                        2.0
          4
                        2.2 39891
```

```
In [2]:
         data.describe()
```

Out[2]

:	YearsExperience		Salary
	count	35.000000	35.000000
	mean	6.308571	83945.600000
	std	3.618610	32162.673003
	min	1.100000	37731.000000
	25%	3.450000	57019.000000
	50%	5.300000	81363.000000
	75 %	9.250000	113223.500000
	max	13.500000	139465.000000

```
In [3]:
         ax = data.plot(x="YearsExperience", y="Salary")
```



```
In [4]:
         X = np.array(exp).reshape(-1, 1)
         y = np.array(salary).reshape(-1, 1)
         # Splitting data for test and train
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25)
         # Initializing LinearRegression object
         regr = LinearRegression()
         # Fitting Regression Line with train data
         regr.fit(X_train, y_train)
         # Printing the Accuracy Score with test data
         print(f"Accuracy Score: {(regr.score(X_test, y_test) * 100):.2f}%")
         # Predicting the values with test data
         y_pred = regr.predict(X_test)
         # Plotting the Regression Line
         fig, ax = plt.subplots()
         ax.scatter(X_test, y_test, color ='b')
         ax.plot(X_test, y_pred, color ='k')
ax.set_xlabel("Experience")
         ax.set_ylabel("Salary")
         # plt.show()
         # Converting the predicted 2D array to 1D array
         pre = [i[0] for i in y_pred]
         # Creating Dataframe Table to show the difference
         pred = pd.DataFrame({
         "Actual Value": [i[0] for i in y_test],
         "Predicted": pre
         # Predicted Value
         pred
```

Out[4]:

Accuracy Score: 95.03%

	Actual Value	Predicted
0	127345	130119.621464
1	128765	140311.305711
2	135675	145870.406209
3	122391	121780.970716
4	61111	68042.999233
5	109431	106956.702721
6	39343	36541.429744
7	139465	151429.506707

Loss Formula:

 $Loss[f] = \frac{1}{n} \sum_{i=1}^{n} (f(x^i) - y^i) = Squaredloss$

where Loss[f] is the model, $f(x^i)$ is a predicted value, y^i is a actual value, x^i or y^i is a n^{th} vector.