Tableau Bivariate Map Skill

Purpose: This demo shows how to create a Bivariate Map in Tableau. The Bivariate Map is useful when you want to create a map that is color coded based off multiple variables.

Question Addressed: Is there a correlation between average household income, and the total costs of visits in each state?

Dataset: HeathcareData.xlsx

Goal: Display the association between the average household income and the total amount of visit costs in each state. Below is a picture of what the completed chart looks like, giving you an idea of what our end goal is in this demo.

For a Bivariate Map, we need to identify two variables that we want to compare on a map simultaneously. If we only have one variable that we would like to see, then we can just make a regular choropleth map.

First, we must identify two variables that we would like to compare.

Picking our Variables

The Healthcare dataset has a measure called "Visit Cost," which provides us with the total cost of each visit. This is an easy variable to measure and assess. For our second variable, I had to add to the dataset, as unsurprisingly, the other measure variables of copay and wait time had no variance from visit cost on a state-by-state basis. Thus, I created an income variable and randomly generated a household income value for every row in the set. This gives us a good variable to compare to visit cost in the dataset.

Prior to creating our map, we must do some manipulation to our variables.

Picking a Scale

Bivariate Maps can have different scales such as qualitative (variable that is not measured), binary (i.e. yes or no), diverging (i.e. above average, average, and below average), and sequential (i.e. high, medium, low). You must decide what scale represents your variable the best. For us, we are going to use a sequential scale for both of our variables.

Since our variables are currently in a numerical format, we are going to have to assign them a sequential value.

Calculation #1

We need to assign a sequential value, so we must figure out what our breaks will be for each value. We can do this by adding the "Visit Cost" variable into the worksheet, adding "Clinic State" as the detail, and sorting in descending order.

Clinic State Visit Cost 🗐

Cillic State	VISIT COST :	
CA	2,387,998	Abc
PA	2,155,110	Abc
NY	2,146,913	Abc
TX	2,144,705	Abc
FL	1,647,573	Abc
IL	1,548,710	Abc
OH	1,412,583	Abc
MI	1,232,192	Abc
KY	1,215,437	Abc
NC	1,109,891	Abc
VA	1,011,679	Abc
WA	916,167	Abc
GA	903,707	Abc
TN	887,066	Abc
MO	816,623	Abc
IN	805,281	Abc
WI	784,010	Abc
AL	748,358	Abc
MN	699,676	Abc
MD	627,025	Abc
LA	615,585	Abc
WV	610,383	Abc
IA	582,331	Abc
OK	575,688	Abc
SC	543,660	Abc
CO	538,382	Abc
AZ	510,087	Abc
NV	487,360	Abc
NJ	479,969	Abc
AR	471,730	Abc
OR	443,735	Abc
MS	439,407	Abc
ME	364,873	Abc
NE	339,245	Abc
MA	295,982	Abc
UT	281,018	Abc
MT	213,298	Abc
SD	176,507	Abc
ND	176,395	Abc
NH	158,777	Abc
CT	142,843	Abc
AK	95,146	Abc

Now we can create our breaks based off this chart. Since we are going to evaluate our data on a state level, making this calculation a fixed level of detail will make our lives much easier later.

Now we can see that each state has been given a value based off their total visit costs.

We will then repeat the exact same process for our second variable, Household Income.

Calculation #2

Repeat the same process as calculation #1, but using average instead of sum:

Clinic State	Avg. Household Inc	
ND	211,343.14221219	
СО	210,301.068081991	
CT	209,891.569637883	
NV	209,539.296492659	
MO	209,265.070875665	
NJ	208,764.470204082	
MA	208,694.871485944	
MS	208,570.62962963	
IA	208,231.587618403	
OK	208,092.778126088	
VA	207,966.226525822	
OR	207,686.323712256	
WA	207,636.565564917	
FL	207,609.695641734	
MI	207,037.251762821	
MN	206,858.613416714	
KY	206,848.906794851	
TN	206,706.947274352	
PA	206,229.870044053	
IL	206,229.111537969	
NH	206,149.030864198	
MT	206,137.887841659	
TX	206,090.863657301	
NY	206,016.915011547	
SC	205,966.411850236	
ME	205,957.687770563	
LA	205,862.542570411	
CA	205,392.606459131	
GA	205,352.603105183	
WV	205,300.665692008	
IN	205,271.495093229	
AZ	205,054.070243149	
ОН	204,952.165735828	
AR	204,495.269086358	
AL	204,162.599149389	
WI	203,968.309127584	
SD	203,627.595105673	
NE	203,534.772063121	
UT	203,372.256822953	
MD	203,047.701384519	
NC	202,921.268733392	
AK	200,189.741414141	

Now that we have sequential values for our variables, we can combine the two variables to make one.

Combining Variables

Combining variables is very simple and can be done even if we had not used a fixed LOD in our calculation. We will simply create a string variable that consists of the two sequential values.

Resulting in a set of variables (below) that are assigned to each state.

HIGH - HIGH HIGH - LOW HIGH - MEDIUM LOW - HIGH LOW - LOW LOW - MEDIUM MEDIUM - HIGH MEDIUM - LOW MEDIUM - MEDIUM

Now that our variables are combined, we can create our map.

Creating the Bivariate Map

In a new worksheet, we will create the map, just like we would a regular choropleth map. Put the generated Latitude and Longitude on the Rows and Columns respectively. Then drag our combined variable, "Cost -> Income" on to colors, and "Clinic State" on to detail. You should get a bivariate map that looks similar to the one below:

You can make the map dark by selecting dark in themes under Map -> Background Layers. An important part to creating a good bivariate map is to choose a good color scheme. The colors need to match up with the variables represented in the map, and also contrast each other. Here, blue and pink contrast each other so I used the two to represent the contrasting variables, and put it on the dark theme so that the "Low-Low" states would not get confused for empty states.

Now, our Bivariate Map is complete. However, there is one more visual feature that will improve your map. The default legend for a Bivariate Map looks like this:

This is fine, but we can create our own legend that is far more visually appealing.

Bonus

Note: We can only create this other legend if we created our "Income Rate" and "Visit Cost Rate" variables as fixed LODs. If we did not, then we will be unable to create this legend.

Creating a Legend

In a new worksheet, we will put our "Income Rate" and "Visit Cost Rate" on the Columns and Rows, and put "Cost -> Income" on the colors. This should put our sequential variables in a 3x3 grid:

Select the colors for your color scheme for each square. Make sure "square" is selected in the marks section.

We now have a legend that is much more visually appealing and applicable to our map, making it worth it to create the fixed LOD. We can use this legend when we put out Bivariate Map on a dashboard. The result should look something like this:

Make sure to select "floating" on the legend so that you can place it on top of the map and select "Cost -> Income" under Highlight to make your legend interactive allowing users to click on the legend to highlight sections of the map.

