

Berufsmaturitätsprüfungen 2017 Technik, Architektur, Life Sciences

Mathematik 4: Schwerpunkt

Lösungen

1. Exponential-, Logarithmusgleichungen

	Lösung(en)	Punkte	Hinweise
a)	$1'400'000(1+0.03)^x = 2'000'000$	1/2	
	x = 12.066	1/2	
	Das Kapital muss mindestens 13 Jahre angelegt werden.	1/2	
b)	Geburtenrate Zunahme $p = \frac{86559}{85287} = 1.0149$ Todesfälle Zunahme $p = \frac{67606}{63938} = 1.057$ $86559 \cdot \left(\frac{86559}{85287}\right)^x = 67606 \cdot \left(\frac{67606}{63938}\right)^x$	1/2	
	x = 6.03	1/2	
	Im 7. Jahr nach 2015, im Jahr 2022	1/2	

2. Polynomfunktion

	Lösung(en)	Punkte	Hinweise
a)	$y = f(x) = \frac{-2}{3}\pi x^3 + 5.2\pi x^2$	1	Teilpunkte möglich
b)	$0 \le x \le 2.6 \text{ m}$	1	Nullstellen berechnen
c)	1.87 m und 5.71 m	1/2	
d)	$x \cong 4.13 \text{ m}$	1/2	

Version 2 Seite 1

3. Polynomialgleichungen

	Lösung(en)	Punkte	Hinweise
a)	E(x) = 3x	1/2	
b)	Stückzahlen zwischen 10 und 20	1	Teilpunkte möglich
c)	Mit 16 Kugelschreiber ist der Gewinn am grössten	1/2	
d)	Wenn man weniger als 10 Stücke und mehr als 20 Stücke produziert.	1	Teilpunkte möglich

4. Vektoren

	Lösung(en)	Punkte	Hinweise
a)	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix} + t \begin{pmatrix} a \\ 1 \\ a \end{pmatrix} \qquad \Rightarrow t = -5, \ a = \frac{1}{5}$	1	½ P: t korrekt
b)	$ \begin{pmatrix} a \\ 1 \\ a \end{pmatrix} \circ \begin{pmatrix} 2 \\ 1 \\ -6 \end{pmatrix} = 0 $	1	Keine Teilpunkte möglich
c)	$ \begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} a \\ 1 \\ a \end{pmatrix} = \begin{pmatrix} -4 \\ -2 \\ -4 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ 1 \\ -6 \end{pmatrix} $ $ \Rightarrow s = 0 $ $ t = -7 $ Schnittpunkt $ \begin{pmatrix} -4 \\ -2 \\ -4 \end{pmatrix} $	1	½ P: t korrekt ½ P: Schnittpunkt

5. Exponential- und Logarithmusgleichungen

	Lösung(en)	Punkte	Hinweise
a)	$A = f(u) = \frac{u}{4} \cdot e^{-u}$	1	Teilpunkte möglich
b)	für $u=1$	1	Teilpunkte möglich
c)	$A_{max} = \frac{1}{4e}$	1	Teilpunkte möglich

Version 2 Seite 2

6. Stereometrie

Lösung(en)	Punkte	Hinweise
$k = \frac{7}{8} \text{ somit}: k^3 = \left(\frac{7}{8}\right)^3 = \frac{343}{512}$ V ist Gesamtvolumen somit $V_1 = \frac{343}{512}V$	1	Teilpunkte möglich
$V_2 = V - V_1 = \left(1 - \frac{343}{512}\right)V = \frac{169}{512}V$ $\frac{4\pi}{3}R^3 = \frac{169}{512}V$ $V = \frac{1}{3}\pi r^2 \cdot r\sqrt{3} = \frac{1}{3}\pi r^3\sqrt{3}$	1	Teilpunkte möglich
Oben einsetzen und auflösen: $R^3 = \frac{169\sqrt{3}}{2048} \cdot r^3$ $R = \sqrt[3]{\frac{169\sqrt{3}}{2048}} \cdot r = 0.523 \cdot r$	1	Teilpunkte möglich

Version 2 Seite 3