

Analyse und Implementierung des MD2-Algorithmus

Maha Marhag, Magdalena Papagianni, Alihan Sencan,

Technische Universität München
Lehrstuhl für Rechnerarchitektur und parallele Systeme
Grundlagepraktikum Rechnerarchitektur

München, 29 August 2022

Agenda

- Problemstellung
- Hashfunktionen
- Message-Digest 2
- Padding
- Checksum und Hashfunktion
- Korrektheit
- Performanzanalyse
- Optimierungen
- Lösungsalternativen

Problemstellung

- MD2 Hashfunktion analysieren und implementieren
- Lösungsalternativen
- Optimierungen
- Korrektheit
- Performanzanalyze

Hashfunktionen - Grundaufbau

Hashfunktionen - Sicherheitseigenschaften

Kryptographische Hashfunktionen zeichnen sich aus durch:

- Urbildresistenz
- 2. Zweite Urbildresistenz
- 3. Kollisionsresistenz

Message-Digest 2

- 1989 von Ronald Rivest entwickelte Hashfunktion
- für digitale Signaturen konzipiert
- · Gilt nicht mehr als sicher
- 2011 durch die IETF als "historisch" eingestuft

MD2 - Grundfunktionen

Padding

Checksum und Hashfunktion

Korrektheit und Beispiele

- Eine Reihe von Tests mit verschiedenen Eingabegrößen:
 - > 500, 1.000, 5.000, 10.000, 25.000 und 100.000 Zeichen
- Getestet wurde sowohl lokal als auch auf der Rechnerhalle
- Korrektheit mit Beispielen aus der RFC Dokumentation geprüft

Eingabe	Hash
Leere Datei	8350e5a3e24c153df2275c9f80692773
/ / /	c6dc54d633087cbe5046d25129e1467c
abc	da853b0d3f88d99b30283a69e6ded6bb
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789	da33def2a42df13975352846c30338cd

Performanzanalyse: nicht optimiertes Programm

Performanzanalyse

- Gemeßen mit MONOTONIC Clock
- Verschiedenen Eingabegrößen:
 - > von 500 bis 25.000 Zeichen
- Mehrfach lokal gemessen und Ergebnisse gemittelt

Eingabegröße (Anzahl der Zeichen)

Optimierungen

- Pad-Bytes werden nicht mehr iterativ kopiert, sondern mit MEMSET geschrieben
- Arrays werden auch mit MEMSET initialisiert
- Effizientere vektorisierte SIMD-XOR-Operationen werden eingesetzt

Performanzanalyse: optimiertes und nicht optimiertes Programm

Performanzanalyze nach den Optimierungen

Lösungsalternative

Verwendung von Struct: benutzerdefinierter Datentyp "MD2_HASH,"

Pros:

- + Kombination von Daten unterschiedlicher Typen
- + Vereinfacht den Aufbau des Quelltexts
- Lesbarkeit und Wartbarkeit des Programms

Cons:

Enspricht nicht der vorgegebenen Signatur

Zusammenfassung und Ausblick

- MD2 selbst zu implementieren war eine interessante und lehrreiche Erfahrung
- Tiefen Einblick in den Aufbau und die Einzelteile von Hashfunktionen erhalten
- Optimierungen wirken sich sehr auf die Laufzeit aus
- Ausblick: wir würden vermehrt SIMD-Operationen verwenden

Vielen Dank für Ihre Aufmerksamkeit!

Maha Marhag Magdalena Papagianni Alihan Sencan

