TP4 MST

Nicolas Brunel, Anastase Charantonis, Christian Kahindo

April 2019

Test de Student

Simuler un échantillon i.i.d $S_n = (x_1, ..., x_n)$ de taille n = 20, et dont la loi commune est une loi normale $\mathcal{N}(\mu, \sigma^2)$ avec $\mu = 1$ et $\sigma^2 = 2$ (on rappelle que la fonction R pour simuler rnorm).

- 1. Nous voulons tester si la moyenne de l'échantillon μ est égale à $\mu_0 = 1$, ou plutôt égale à $\mu_1 = 1.5$. On suppose que la variance σ^2 est inconnue. Pour répondre à cette question, on va faire un test statistique avec un niveau de significativité $\alpha = 5\%$ (appelé encore risque de 1ère espèce).
 - (a) Les hypothèses du test sont $H_0: \mu = \mu_0$ et $H_1: \mu = \mu_1$. Rappeler la définition de α et à quoi il correspond.
 - (b) Donner la forme de la zone de rejet W, pour $\alpha = 5\%$ (on pourra utiliser le lemme de Neyman-Pearson, vu en cours).
 - (c) Programmer la règle de décision associée $\delta(S_n, \alpha, \mu_0, \mu_1)$ (écrire une fonction R paramétrée par les moyennes, α , et S_n).
- 2. Simuler N = 100 échantillons S_n^1, \ldots, S_n^N (toujours tel que $\mathcal{N}(\mu, \sigma^2)$, avec $\mu = 1$ et $\sigma^2 = 2$).
 - (a) On rappellera la loi de la variable aléatoire $\delta(\mathcal{S}_n, \alpha, \mu_0, \mu_1)$. Appliquer la règle de décision du test de Student sur $S_n^i, i=1,\ldots,100$. Qu'observez vous? .
 - (b) Faire varier $\alpha=0.2,0.1,0.05,0.01$: comment la zone de rejet est-elle modifiée ?
 - (c) Pour $\alpha = 0.2, 0.1, 0.05, 0.01$, appliquer la règle de décision $\delta(S_n^i, \alpha, \mu_0, \mu_1)$, $i = 1, \dots, N$.
- 3. On va simuler N=100 échantillons $\mathcal{S}_n^{'1},\ldots,\mathcal{S}_n^{'N}$, mais qui suivent maintenant une loi $\mathcal{N}(\mu,\sigma^2)$, avec $\mu=1.5$ et $\sigma^2=2$.
 - (a) On rappellera la loi de la variable aléatoire $\delta(\mathcal{S}_n^{'i}, \alpha, \mu_0, \mu_1)$. Appliquer la règle de décision du test de Student sur $\mathcal{S}_n^{'i}$, $i = 1, \ldots, 100$. Qu'observez vous?

- (b) Rappeler la définition et calculer théoriquement la puissance du test β , en fonction de α , μ_0 , μ_1 .
- (c) On fixe $\alpha=0.05$, et on fait varier l'hypothèse alternative $H_1: \mu=\mu_1$. Simuler N=100 échantillons $\mathcal{S}_n^{'1},\ldots,\mathcal{S}_n^{'N}$ en faisant varier la moyenne $\mu=\mu_1\in\{1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0\}$ et appliquer la règle de décision $\delta(\mathcal{S}_n^{'i},\alpha,\mu_0,\mu_1), i=1,\ldots,N$. Tracer en fonction de μ_1 le pourcentage de bonne décision et comparer avec les résultats de la question précédente.
- 4. On va utiliser la fonction R t.test qui permet de faire le test d'une hypothèse simple $H_0: \mu = \mu_0$, contre une hypothèse multiple (ou composite) $H_1: \mu > \mu_0$ (ou $\mu \neq \mu_0$).
 - (a) Pour un échantillon $S_n = (x_1, \ldots, x_n)$ de la question 2, utiliser la fonction t.test pour faire le test vu ci-dessus. On lira attentivement l'aide de la fonction pour comprendre les inputs et outputs : à quoi correspond la valeur "t". A quoi correspond df?
 - (b) Si on note $x\mapsto F_{n-1}^T(x)$, la fonction de répartition d'une loi de Student à n-1 degrés de libertés, alors la p-value donnée par la fonction t.test est égale à $p-value=1-F_{n-1}^T(t)$, où t est la valeur donnée précédemment. En se rappelant la forme de la zone de rejet W, et le caractère monotone d'une fonction de répartition, expliquer comment la p-value permet de prendre une décision au niveau $\alpha=0.05$.
 - (c) Reprendre les N échantillons de la question 2, et utiliser la p-value pour étudier l'impact de α variant dans $\alpha = 0.2, 0.1, 0.05, 0.01$.
 - (d) La fonction t.test permet de calculer l'intervalle de confiance au niveau $1-\alpha$. Rappeler comment l'intervalle de confiance. Sur les N échantillons de la question 2, dans combien de cas 1 est dans l'intervalle de confiance. Est ce normal ?