Section 11.2 Solutions

31,63

31)
$$f(x) = x^{4} - 24x^{2}$$

 $f(x) = 4x^{3} - 48x$
 $f(x) = 12x^{2} - 48 = 12(x^{2} - 4) = 12(x + 2)(x - 2)$
 $f'(x) = 0$ at $x = -2, 2$

Intervals
$$(x+1)(x-1)$$

 $(-0,-2)$ - = + Concave up
 $(-2,2)$ + - = - 11 down
 $(2,0)$ + + = + 11 up

$$f(-2) = 16 - 96 = -80$$

 $f(2) = 16 - 96 = -80$

Inflection points que (-2,-80, and (2,-80)

63)
$$f(x) = (x^2 - 4)^2$$
 $f(x) = 0$ at $x = -2$, 2
 $f(x) = 2(x^2 - 4) 2x = 4x(x^2 - 4) = 4x^3 - 16x$
 $f(x) = 0$ at $x = -2$, 0, 2 $f(0) = 16$
 $f'(x) = 12x^2 - 16 = 12(x^2 - \frac{4}{3})$
 $f''(x) = 0$ at $x = -\frac{2}{\sqrt{3}}$, $\frac{2}{\sqrt{3}}$
Sign C4 $f(-\frac{2}{\sqrt{3}}) = f(\frac{2}{\sqrt{3}}) = (-\frac{8}{3})^{\frac{2}{3}} = \frac{64}{9}$

