

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA DEPARTAMENTO DE CIENCIA DE LA COMPUTACION

Tópicos Avanzados en Teoría de la Computación - IIC3810 Tarea 4 Fecha de entrega: Martes 8 de octubre

Responda dos de las siguientes tres preguntas.

- 1. Construya una p-relacion R tal que Exists(R) es NP-completo y f_R no es #P-completo bajo reducciones parsimoniosas.
- 2. Sea $R_{\rm GP}$ la siguiente p-relación:

$$R_{\mathrm{GP}} = \{(G, C) \mid G \text{ es un grafo plano y } C \in \{1, 2, 3, 4\}^* \text{ es una 4-coloración de G} \}.$$

En particular, si el conjunto de nodos de G es $\{1, \ldots, n\}$, entonces $C = c_1 \cdots c_n$, donde $c_i \in \{1, 2, 3, 4\}$ indica el color del nodo i para cada $i \in \{1, \ldots, n\}$. Nótese que Exists $(R_{\rm GP}) \in P$ puesto que un grafo plano siempre puede ser pintado con 4 colores. Demuestre que la relación $R_{\rm GP}$ no es auto-reducible.

- 3. Dada una clase de complejidad \mathcal{C} de problemas de decisión, considera la definición de la clase de complejidad $\# \cdot \mathcal{C}$ de problemas de conteo dada en el siguiente artículo:
 - Lane A. Hemaspaandra, Heribert Vollmer: The satanic notations: counting classes beyond #P and other definitional adventures. SIGACT News 26(1):2–13 (1995).

En particular, bajo esta definición se tiene que $\#P = \# \cdot P$ y $\#P \subseteq \# \cdot NP$.

Además, considere la clase UP de problemas de decisión tal que un lenguaje L sobre un alfabeto Σ está en UP si y sólo si existe una máquina de Turing no determinista M que funciona en tiempo polinomial tal que para todo $x \in \Sigma^*$:

- lacktriangle Si $x\in L$, entonces existe exactamente una ejecución de M con entrada x que se detiene en un estado final
- Si $x \notin L$, entonces no existe una ejecución de M con entrada x que se detiene en un estado final.

Vale decir, M acepta los elementos de L de manera no ambigua. Claramente se tiene que UP \subseteq NP, y se conjetura que UP está contenida en forma propia en NP.

En esta pregunta usted debe demostrar que $\#P = \# \cdot NP$ si y sólo si UP = NP.