Física de Partículas Elementales (G71)

4 Curso - Grado de Física - Primer parcial

Cuestión 1. El CERN produce un haz de neutrinos muónicos que es detectado en el experimento OPERA (Grand Saso, Italia). El haz de neutrinos se produce a través del decaimiento del pión cargado ($\pi^+ \to \mu^+ + \nu_\mu$). Si la energía de los piones es de 10 GeV y los muones que son detectados a un ángulo dado tienen una energía de 6 GeV, ¿Qué ángulo forman los neutrinos con la dirección de los muones?. Considera la masa de los neutrinos despreciable, y $m(\pi^+) = 0.140 \text{ GeV}$ y $m(\mu^+) = 0.106 \text{ GeV}$. (2 **Puntos**).

Cuestión 2. Define los siguientes conceptos indicando si se trata de magnitudes invariantes bajo transformaciones de Lorentz: tasa de transición, sección eficaz, densidad de estados, elemento de matriz T_{if} . (2 **Puntos**).

Cuestión 3. Prueba las siguientes relaciones de las matrices γ (1 **Punto**):

1.
$$\gamma_{\mu}\gamma^{\mu} = 4I$$

2.
$$\gamma_{\mu}\gamma_{\nu}a^{\nu}\gamma^{\mu} = -2\gamma_{\nu}a^{\nu}$$

Cuestión 4. Demuestra que cada una de las componentes de los espinores de Dirac cumple la ecuación de Klein-Gordon $(\partial_{\mu}\partial^{\mu}+m^2)\psi_i=0$. Para ello multiplica a la ecuación de Dirac por $(i\gamma^{\nu}\partial_{\nu}+m)$ y opera sabiendo que $\gamma^{\nu}\gamma^{\mu}a_{\mu}a_{\nu}=\frac{1}{2}(\gamma^{\nu}\gamma^{\mu}+\gamma^{\mu}\gamma^{\nu})a_{\mu}a_{\nu}$. (1 **Punto**).

Cuestión 5. Definir el concepto de helicidad. ¿Por qué se dice que el momento angular orbital no es una buena magnitud para estudiar las soluciones de la ecuación de Dirac? (1 **Punto**).

Cuestión 6. ¿A qué llamamos operador conjugación de carga y cómo se relaciona con la interacción electromagnética?. Demuestra que si aplicamos el operador conjugación de carga a los espinores de partícula en **??**, obtenemos los espinores de antipartícula. (**1 Punto**).

Cuestión 7. Usando el espinor para una partícula de helicidad negativa, demuestra que su cuadricorriente de probabilidad asociada es $j^{\mu}=2p$. Para ello ayúdate de las matrices de Dirac (??) y recuerda que la normalización de los spinores viene dada por $N=\sqrt{E+m}$. (2 **Puntos**).

$$u_{\uparrow} = N \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) \\ e^{i\phi} \sin\left(\frac{\theta}{2}\right) \\ \frac{|\vec{p}|}{E+m} \cos\left(\frac{\theta}{2}\right) \\ \frac{|\vec{p}|}{E+m} e^{i\phi} \sin\left(\frac{\theta}{2}\right) \end{pmatrix} \qquad u_{\downarrow} = N \begin{pmatrix} -\sin\left(\frac{\theta}{2}\right) \\ e^{i\phi} \cos\left(\frac{\theta}{2}\right) \\ \frac{|\vec{p}|}{E+m} \sin\left(\frac{\theta}{2}\right) \\ -\frac{|\vec{p}|}{E+m} e^{i\phi} \cos\left(\frac{\theta}{2}\right) \end{pmatrix} \qquad v_{\downarrow} = N \begin{pmatrix} \frac{|\vec{p}|}{E+m} e^{i\phi} \cos\left(\frac{\theta}{2}\right) \\ \frac{|\vec{p}|}{E+m} e^{i\phi} \cos\left(\frac{\theta}{2}\right) \\ -\sin\left(\frac{\theta}{2}\right) \\ e^{i\phi} \cos\left(\frac{\theta}{2}\right) \end{pmatrix} \qquad v_{\downarrow} = N \begin{pmatrix} \frac{|\vec{p}|}{E+m} \cos\left(\frac{\theta}{2}\right) \\ \frac{|\vec{p}|}{E+m} e^{i\phi} \sin\left(\frac{\theta}{2}\right) \\ \cos\left(\frac{\theta}{2}\right) \\ e^{i\phi} \sin\left(\frac{\theta}{2}\right) \end{pmatrix}$$

Figura 0.1: Espinores solución a la ecuación de Dirac y autoestados del operador helicidad.

$$\gamma^0 = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & -1 & 0 \ 0 & 0 & 0 & -1 \end{pmatrix}, \qquad \gamma^1 = egin{pmatrix} 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & -1 & 0 & 0 \ -1 & 0 & 0 & 0 \ 0 & i & 0 & 0 \ -i & 0 & 0 & 0 \end{pmatrix}, \qquad \gamma^3 = egin{pmatrix} 0 & 0 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 & -1 \ -1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \end{pmatrix}$$

Figura 0.2: Matrices de Dirac.