Carvana Image Masking Challenge: Implementing a U-net

Jiawei Yu Feb. 22, 2019

Kaggle task link:

https://www.kaggle.com/c/carvana-image-masking-challenge

Outline

- Task overview
- U-net
- Data preprocessing & generation
- Implementing & tweaking a U-net
- Data augmentation
- Results analyses & visualization

1. Task Overview

Training/testing data visualization, train/val/test split plan.

Training data

Image

Mask

Image information

JPG format

RGB mode (3 channels)

'uint8' data ranging from 0 to 255

Size of 1918 × 1280 pixels

Mask information

GIF format

INDEX mode (1 channel)

'uint8' data with 0 and 1.

Size of 1918 × 1280 pixels

Train data w label (mask)

Total **5088** images/masks.

318 unique cars, each has **16** images taken from 16 different angles.

Test data w/o label

Total **100064** images/masks.

6254 unique cars, each has **16** images taken from 16 different angles.

Train data w label (mask)

Total **5088** images/masks.

318 unique cars, each has **16** images taken from 16 different angles.

Data leakage alert! Images of a same car with different angles should NOT be split into different pools (train/validation/test)

Meta data

	id	year	make	model	trim1	trim2
0	0004d4463b50	2014.0	Acura	TL	TL	w/SE
1	00087a6bd4dc	2014.0	Acura	RLX	RLX	w/Tech
2	000aa097d423	2012.0	Mazda	MAZDA6	MAZDA6	i Sport
3	000f19f6e7d4	2016.0	Chevrolet	Camaro	Camaro	SS
4	00144e887ae9	2015.0	Acura	TLX	TLX	SH-AWD V6 w/Advance Pkg

U-net architecture

3. Data preprocessing

& generation

Image resize, train/val/test split and data generator

Resize the image & train/val/test split

Contains all unique car names as a list.

Data generator

```
print('X_train_raw shape is ', np. shape(X_train_raw))
print('y_train_raw shape is ', np. shape(y_train_raw))
print('X_train_raw size is ', X_train_raw.nbytes/1024/1024, 'Mb')

X_train_raw shape is (3040, 128, 128, 3)
y_train_raw shape is (3040, 128, 128)
X_train_raw size is 142.5 Mb
```

Large data size: use a data generator to grab and train the batch on the fly.

4.

Implementing & tweaking a U-net

Tackling input size & neural network hyperparameters

Loss function & metrics

Loss function:

Binary cross entropy =
$$-(y \log(p) + (1-y) \log(1-p))$$

Evaluation metric:

dice coefficient

$$DSC = rac{2|X \cap Y|}{|X| + |Y|} = rac{2*y*round(p)}{y + round(p)}$$

$$= rac{2TP}{2TP + FP + FN}.$$

$$IoU = \frac{TP}{TP + FP + FN}$$

Compile and train the model

Total params: 120,965 Trainable params: 120,965 Non-trainable params: 0

Make a prediction

Use a larger U-net

Total params: 485,957 Trainable params: 485,957 Non-trainable params: 0

Increase the image size

Image size = 512

```
1  score = model.evaluate_generator(test_generator)
2  print ("Test loss = ", score[0])
3  print ("Test dice_coef = ", score[1])
```

Test loss = 0.00861717724183Test dice coef = 0.993911107071

5. Data augmentation

Generate more training data to train a larger U-net

Random rotation & horizontal flip

- Random rotation (<25 degree)
- 50% chance to be flipped horizontally.

Set mode='symmetric' to eliminate the black triangles.

Performance drops after implementing augmentation, indicating that model with data augmentation underfits the data.

train

Training images w/o augmentation share the same studio background with that of the test images. It will be easier for nn to learn these simple features and make a better prediction.

Possible solution: use **batch norm** to reduce the "covariance" of different layers in nn.

6. Results analyses &

visualization

Model evaluation, results analyses and feature map visualization

Model summary

Model evaluation: Good predictions

	Im_names_test	scores
113	2267f4aa0d2c_02.jpg	0.997615
114	2267f4aa0d2c_03.jpg	0.997280
502	9ab2a45de8c7_07.jpg	0.997027
127	2267f4aa0d2c_16.jpg	0.996976
126	2267f4aa0d2c_15.jpg	0.996976

Target mask

Predicted mask

Bad predictions

	lm_names_test	scores
104	1390696b70b6_09.jpg	0.982636
256	ae296a20fdd9_01.jpg	0.983955
103	1390696b70b6_08.jpg	0.984998
471	61060ada97c9_08.jpg	0.985197
920	28109f18d9d4_09.jpg	0.985368

Input image

Target mask

Predicted mask

	Im_names_test	scores
256	ae296a20fdd9_01.jpg	0.983955
103	1390696b70b6_08.jpg	0.984998
	Targot mack	

Input image

Input image

Target mask

Target mask

Predicted mask

Predicted mask

Visualization of Feature map

And finally...a prediction!

Here is what I learnt...

U-net

A powerful CNN architecture for semantic segmentation tasks.

Data Generator

Train NN on the fly. Practiced OOP.

Keras

Awesome API to implement CNN in a few lines of codes.

Data Augmentation

Generate enormous data to train a large NN.

Visualization

Plot results for a better analyse and evaluation.

Feature map

"Look into" the deep NN and see what it is learning.

Thanks!

Any questions?

Appendix

Some useful stuff..

Upsampling: interpolation

Transposed convolution

Trans Conv

Convolution By Matrix Multiplication

Source: https://towardsdatascience.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

Transposed convolution

