

Valutazione del danno alluvionale mediante strumenti di Statistica Multivariata e Machine Learning

Simone Montanari^(a), Christian Natale Gencarelli^(b), Simone Sterlacchini^(b), Maurizio Vichi^(C)

- a) Tesista triennale Dipartimento Scienze Statistiche, La Sapienza, Roma Volontario Information Management Team, Croce Rossa Italiana
- b) CNR Istituto Geologia Ambientale e Geoingegneria, Milano
- c) Dipartimento Scienze Statistiche, La Sapienza, Roma

Presentazione

Chi sono

Simone Montanari

- ➤ laureando triennale in Scienze Statistiche presso l'Università di Roma La Sapienza SAPIENZA UNIVERSITA DI ROMA
- volontario per InformationManagement Team di CroceRossa Italiana

Perché questo lavoro

Il progetto nasce grazie a un'intesa tra il laboratorio LARGE del CNR-IGAG e Croce Rossa Italiana

Di cosa stiamo parlando?

Alluvione del 19 gennaio 2014 nei comuni di Bastiglia e Bomporto (Modena)

- 52 km² invasi da 37 milioni di m³ d'acqua in meno di 30 ore
- Circa 1500 sfollati
- Circa 500 milioni di euro di danni

Fonte: Amadio et al., Improving flood damage assessment models in Italy, 2016

I dati

COMUNE DI BASTIGLIA

COMUNE DI BASTIGLIA n. progressivo scheda B: 76 SCHEDA B Ricognizione del fabbisogno per il ripristino del patrimonio edilizio privato, dei beni mobili e dei beni mobili registrati REGIONE EMILIA ROMAGNA EVENTI ALLUVIONE DEL _____ 19/____01_ / 2014 SEGNALAZIONE E QUANTIFICAZIONE DEL DANNO (Autocertificazione ai sensi del D.P.R. 445/2000) PROVINCIA MO COMUNE DI BASTIGLIA Il sottoscritto residente a BASTIGLIA CAP 41030 Indirizzo Tel. ; Cell. ___ consapevole delle conseguenze penali previste dall'art.76 del D.P.R. 445/2000 per le falsità in atti e le dichiarazioni mendaci DICHIARA SOTTO LA PROPRIA RESPONSABILITA' 1) che l'immobile è ubicato in n. civico: via / viale / piazza CAP 41030 località: BASTIGLIA L'immobile è X di proprietà | | in comproprietà (nome del comproprietario: altro diritto reale di godimento (specificare:___

I dati

A	В	С	D	E	F	G	Н	1
altezza dell'acqua	distanza dal fiume	dislivello rispetto gli argini	tipologia strutturale	superficie	area edifici	# edifici	valore dell'immobile	danno relativo
0.39	1106.13	10.58	muratura	58.00	2222.00	7.00	68150.00	0.00
0.39	1106.13	10.58	muratura	70.00	2222.00	7.00	82250.00	0.00
0.55	1103.58	10.99	muratura	40.00	1155.00	6.00	47000.00	0.23
0.44	1113.50	10.76	muratura	30.00	2409.00	5.00	35250.00	0.18
0.55	1109.58	10.61	cemento	200.00	1155.00	6.00	235000.00	0.03
0.77	900.32	10.80	muratura	110.00	2135.00	9.00	129250.00	0.26
0.67	979.88	11.00	cemento	120.00	1041.00	5.00	141000.00	0.11
0.73	901.15	10.81	cemento	150.00	1695.00	8.00	176250.00	0.02
0.81	992.80	11.14	cemento e muratura	60.00	2771.00	7.00	70500.00	0.00
0.59	951.41	10.80	muratura	84.00	2098.00	10.00	98700.00	0.00
0.59	951.41	10.80	cemento	50.00	2098.00	10.00	58750.00	0.01
0.59	951.41	10.80	muratura	80.00	2098.00	10.00	94000.00	0.01
0.59	951.41	10.80	cemento e muratura	80.00	2098.00	10.00	94000.00	0.01

Analisi descrittiva

Correlazioni

Valori anomali (288 su 1366)

Regressione: RF vs XGBoost

Decision Tree

Gradient Boosted Tree

Regressione: Risultati

85%

15%

\mathbb{R}^2	Random Forest	XGBoost	
Train set	0,78	0,75	
Test set	0,64	0,67	

Regressione: Variabili

Importanza delle variabili nei due modelli

Regressione: Regole decisionali

Distanza fiume <= 4.360 mt & dislivello <= 11 mt & area > 495 mq & edifici > 1,50 & valore immobile > 53.400 €

Previsione: 0,08

1,05 mt < altezza acqua <= 1,30 mt & dislivello > 11 mt

Previsione: 0,88

XGBoost

Superficie <= 220 mq & 30.500 € < valore immobile <= 370.000 €

Previsione: 0,10

Superficie <= 68,5 mg & altezza acqua > 0,13 mt & area <= 85 mg

Previsione: 0,86

Esempio di interpretazione:

Gli alberi del modello Random Forest che rispettano la prima condizione restituiscono come output una previsione in media pari a 0,08, ossia un danno pari all' 8% del valore dell'immobile

Regressione: PDP

Il Partial Dependence Plot (PDP) mostra l'effetto marginale di una variabile sul risultato previsionale medio di un modello di machine learning

Clustering

Approccio

Gerarchico Agglomerativo

Metrica

Metodo di Ward (minimizzazione varianza intra-cluster)

Risultato

8 Cluster

Fonte: Wikipedia

Clustering: Mappa

Clustering: Impatto variabili

	Varianza nei cluster (WSS)	Varianza tra cluster (GSS)	Pseudo F*	
Distanza fiume	286	1079	731	
Dislivello	293	1072	711	
Altezza acqua	548	817	289	<u>ノ</u>
Valore immobile	726	639	171	
Superficie	822	543	128	
Area edifici intorno	964	401	81	
Numero edifici intorno	1034	331	62	<u>ノ</u>

234

40

1131

Danno

*Pseudo
$$F = \frac{gss/(k-1)}{wss/(n-k)} = \frac{gss}{wss} \frac{n-k}{k-1}$$
,
 $k = \#cluster$, $n = \#osservazioni$

Variabili legate alla posizione dell'edificio

Variabili legate alle caratteristiche urbane

Conclusioni: Risultati

Conclusioni: E ora?

Schede di danno compilate da esperti

Creazione database unico a livello nazionale

Integrare nuove variabili

Approfondimento valori anomali

Miglioramento modelli ad albero

Modelli più avanzati

Analisi PDP avanzata

Approfondimento Pseudo-F

Grazie dell'attenzione!

Simone Montanari

simonemontanar@gmail.com