Name _ diswers

EE3032 - Dr. Durant - Quiz 9 Fall 2017, Week 9

- 1. (2 points) *Find* the Fourier transform, $X(\Omega)$, of $x(t) = 2\cos(3\pi t) + 5\sin(7\pi t)$.
- 2. (2 points) Sketch both the magnitude and the phase spectrum of x(t).
- 3. (1 point) *Sketch* $|H(\Omega)|$ for an ideal lowpass filter with a cutoff frequency of 4π .
- 4. (2 points) Assume it is possible to implement this ideal filter in a real-time system and that your implementation has a delay of 7 s. (It is not possible to do this exactly, but you can get quite close.) What is H(Ω) for this filter? (Note: Your answer will be a piecewise definition and you will need to use the time shift property.)
- 5. (1 point) Find $Y(\Omega) = H(\Omega) X(\Omega)$.
- 6. (2 points) Find y(t) by taking the inverse Fourier transform of $Y(\Omega)$.

(1)
$$\times (\Delta) = 2\pi \left[\delta(\Omega - 3\pi) + \delta(\Delta + 3\pi) \right] - 5j\pi \left[\delta(\Omega - 7\pi) - \delta(\Delta + 7\pi) \right]$$

(2) $\int_{\pi}^{2\pi} |x(\Omega)| \int_{\pi}^{2\pi} \frac{\partial}{\partial x} \frac$

(3)
$$|H(\Omega)|$$

$$\frac{1}{4\pi} \frac{1}{4\pi}$$
(9) $|H(\Omega)| = \left\{ \frac{12^{-7}\Omega}{0}, \frac{1}{2\pi} \right\} = \left[\frac{1}{2\pi} \left(\frac{1}{2\pi} \right) + \frac{1}{2\pi} \left$

(6)
$$y(t) = 2 \cos (3\pi (t - 7))$$

Linearity

Signals and constants

Basic Properties of Fourier Transform

		, , , , , , , , , , , , , , , , , ,		
Expansion/contraction in		$x(\alpha t), \alpha \neq 0$	$\frac{1}{ \alpha }X\left(\frac{\Omega}{\alpha}\right)$	
time				
Reflection		x(-t)	$X(-\Omega)$	
Parseval's energy relation		$E_x = \int_{-\infty}^{\infty} x(t) ^2 dt$	$E_{x} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) ^{2} d\Omega$	
Duality		X(t)	$2\pi x(-\Omega)$	
Time differentiation		$\left \frac{d^n x(t)}{dt^n}, n \ge 1, \text{ integer} \right $		
Frequency differentiation		-jtx(t)	$\frac{dX(\Omega)}{d\Omega}$	
Integration		$\int_{-\infty}^{t} x(t')dt'$	$\frac{X(\Omega)}{\beta\Omega} + \pi X(0)\delta(\Omega)$	
Time shifting		$x(t-\alpha)$	$e^{-j\alpha\Omega}X(\Omega)$	
Frequency shifting		$e^{i\Omega \sigma}x(t)$	$X(\Omega - \Omega_0)$	
Modulation		$x(t)\cos(\Omega_c t)$	$0.5[X(\Omega - \Omega_c) + X(\Omega + \Omega_c)]$	
Periodic signals		$x(t) = \sum_{k} X_{k} e^{ik \Omega_{k} t}$	$X(\Omega) = \sum_{k} 2\pi X_{k} \delta(\Omega - k\Omega_{0}) $	
Symmetry		x(t) real	$ X(\Omega) = X(-\Omega) $	
			$\angle X(\Omega) = -\angle X(-\Omega)$	
Convolution in time		z(t) = [x * y](t)	$Z(\Omega) = X(\Omega)Y(\Omega)$	
Windowing/Multiplication		x(t)y(t)	$\frac{1}{2\pi}[X*Y](\Omega)$	
Cosine transform		x(t) even	$X(\Omega) = \int_{-\infty}^{\infty} x(t) \cos(\Omega t) dt$, real	
Sine transform		x(t) odd	$X(\Omega) = -j \int_{-\infty}^{\infty} x(t) \sin(\Omega t) dt, \text{ imaging}$	na
	e 5.2 rier Transform F	Pairs	-	
	Function of Time		Function of Ω	
(1)			1	
(2)	$\delta(t-\tau)$		$e^{-j\Omega\tau}$	
(3)	u(t)		$\frac{1}{j\Omega} + \pi \delta(\Omega)$	
(4)	u(-t)		$\frac{-1}{j\Omega} + \pi\delta(\Omega)$	

Time Domain $x(t), y(t), z(t), \alpha, \beta$

 $\alpha x(t) + \beta y(t)$

Frequency Domain $X(\Omega), Y(\Omega), Z(\Omega)$

 $\alpha X(\Omega) + \beta Y(\Omega)$

<u>2</u> (5) sign(t) = 2[u(t) - 0.5] $2\pi A\delta(\Omega)$ (6) $A, -\infty < t < \infty$ $\frac{A}{j\Omega + a}$ $Ae^{-at}u(t), a > 0$ **(7)** (8) $Ate^{-at}u(t), a > 0$ $(j\Omega+a)^2$ $e^{-a|t|}, a > 0$ (9) $\pi[\delta(\Omega-\Omega_0)+\delta(\Omega+\Omega_0)]$ $\cos(\Omega_0 t), -\infty < t < \infty$ (10) $(11) |\sin(\Omega_0 t), -\infty < t < \infty$ $-j\pi[\delta(\Omega-\Omega_0)-\delta(\Omega+\Omega_0)]$ $2A\tau \frac{\sin(\Omega r)}{\Omega}$ (12) $|p(t)| = A[u(t+\tau) - u(t-\tau)], \tau > 0$ sin(Ω_Ot) $P(\Omega) = u(\Omega + \Omega_0) - u(\Omega - \Omega_0)$ (13)πι $x(t)\cos(\Omega_0 t)$ $0.5[X(\Omega - \Omega_0) + X(\Omega + \Omega_0)]$ (14)