

Structure of the module

Two Parts

- Pattern recognition and Machine Learning
- Neural Networks and Deep Learning

Assessment

- 2 Class Test x 20% each = 40%
- Exam (Mid + Final) = 60%

Textbook

• Pattern Recognition & Machine Learning – Christopher M. Bishop

Getting started

- Some applications
- Some history
- Present day

Some applications

https://youtu.be/aaOB-ErYq6Y?t=117

Driverless car

Iris recognition

https://www.youtube.com/watch?v=LdQw8PSV2P8

You hum the song, we'll find it!

https://www.midomi.com/

Some history

Thomas Bayes: An obscure 18th century clergyman and statistician who published 2 minor works but who nowadays is "more important than Marx and Einstein put together"...

Telegraph Magazine, 3 February, 2001

Some history

Mike Lynch, the "Bayesian Millionaire", founded his company Autonomy in 1991.

Telegraph Magazine, 3 Feb 2001

Developed systems for •- matching fingerprints for the Essex police force •- reading car number plates

2001:

Autonomy has been estimated at £ 4.7 billion

2011:

In October 2011 Autonomy was sold to Hewlett-Packard for \$ 11 billion

Present day

26/09/2021

https://www.kaggle.com/competitions

Pattern Recognition / Machine Learning

- Questions to the human expert
- Related areas
- Basic concepts
- The pattern recognition cycle

Questions for the human expert

- 1. How do I describe the problem so that the machine understands it? (design a representation)
- 2. How do I classify/predict/make a decision? (verbalise or explicate in some way the algorithm)
- 3. Can I get the machine to learn the algorithm itself? (Pattern Recognition & Machine Learning)

Which other disciplines is pattern recognition related to?

Basic concepts

Classes and class labels

= groups of similar objects, $\Omega = \{\omega_1, ..., \omega_c\}$

We shall assume that the classes are *mutually exclusive*, i.e., each object belongs to one and only one class.

C classes

Features

= the measurements, attributes, descriptors $x_1, x_2, ... x_n$

n features

Objects

= the "things" that we classify instances, examples

N objects in a data set

Can you guess the classification rule?

objects

Round Blue Blue Square Green Blue Square Green Green Square Red Blue	
Square Green Blue Square Green Green Square Red Blue	Class label
Square Green Green Square Red Blue	1
Square Red Blue	1
	2
	1
Round Red Red	1
Square Blue Blue	2
Square Red Green	1
Round Green Red	2
Round Blue Green	2
Round Green Blue	2

Can you label this one?

The Pattern Recognition cycle

Example: SUPERVISED LEARNING (Classification)

Answers

Answers to the questions from slide 12:

- (1) Round and the same colour OR Square and different colour = class 1, else class 2
- (2) Class 2

Answer to the question from slide 17:

We can assign the new point to the nearest cluster. In this case it is class Green Square.