Упражнение №1

Построение фигур Лиссажу с помощью xcos

Акопян Сатеник

Содержание

1	Цель работы	6
2	Теоретическое введение	7
3	Выполнение лабораторной работы	8
4	Выводы	29
Список литературы		30

Список таблиц

Список иллюстраций

3.1	модель функционирования двух источников синусоидального сиг-	
	нала	8
3.2	фигура Лиссажу с параметрами A = B = 1, a = 2, b = 2, δ = 0	9
3.3	фигура Лиссажу с параметрами A = B = 1, a = 2, b = 2, $\delta = \pi/4$	9
3.4	фигура Лиссажу с параметрами $A = B = 1$, $a = 2$, $b = 2$, $\delta = \pi/2$	10
3.5	модель для фигуры Лиссажу с параметрами $A = B = 1$, $a = 2$, $b = 2$, $\delta =$	
		10
3.6	фигура Лиссажу с параметрами $A = B = 1$, $a = 2$, $b = 2$, $\delta = 3\pi/4$	11
3.7	модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 2, δ = π	11
3.8	фигура Лиссажу с параметрами $A = B = 1$, $a = 2$, $b = 2$, $\delta = \pi$	12
3.9	модель для фигуры Лиссажу с параметрами $A = B = 1$, $a = 2$, $b = 4$, $\delta = 0$	12
3.10	фигура Лиссажу с параметрами $A = B = 1$, $a = 2$, $b = 4$, $\delta = 0$	13
3.11	фигура Лиссажу с параметрами $A = B = 1$, $a = 2$, $b = 4$, $\delta = \pi/4$	14
3.12	модель для фигуры Лиссажу с параметрами $A=B=1$, $a=2$, $b=4$, $\delta=\pi/2$	14
3.13	фигура Лиссажу с параметрами A = B = 1, a = 2, b = 4, δ = $\pi/2$	15
3.14	модель для фигуры Лиссажу с параметрами $A = B = 1$, $a = 2$, $b = 4$, $\delta =$	
	$3\pi/4$	15
3.15	фигура Лиссажу с параметрами A = B = 1, a = 2, b = 4, δ = $3\pi/4$	16
3.16	модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 4, δ = π	16
3.17	фигура Лиссажу с параметрами A = B = 1, a = 2, b = 4, δ = π	17
3.18	модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 6, δ = 0	17
3.19	модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 6, δ = 0	18
3.20	фигура Лиссажу с параметрами A = B = 1, a = 2, b = 6, δ = 0	18
3.21	модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 6, δ = $\pi/4$	19
		19
3.23	модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 6, δ = $\pi/2$	20
3.24	фигура Лиссажу с параметрами A = B = 1, a = 2, b = 6, δ = $\pi/2$	20
3.25	модель для фигуры Лиссажу с параметрами $A = B = 1$, $a = 2$, $b = 6$, $\delta =$	
	$3\pi/4$	21
3.26	фигура Лиссажу с параметрами A = B = 1, a = 2, b = 6, δ = $3\pi/4$	21
3.27	модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 6, δ = π	22
3.28	фигура Лиссажу с параметрами A = B = 1, a = 2, b = 6, δ = π	22
3.29	модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 3, δ = 0	23
	модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 3, δ = 0	23
		24
	модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 3, δ = $\pi/4$	
	фигура Писсаууу с параметрами $\Lambda - R - 1$ $a - 2$ $b - 3$ $8 - \pi/4$	

3.34 модель для фигуры Лиссажу с параметрами $A = B = 1$, $a = 2$, $b = 3$, $\delta = \pi/2$	25
3.35 фигура Лиссажу с параметрами A = B = 1, a = 2, b = 3, δ = $\pi/2$	26
3.36 модель для фигуры Лиссажу с параметрами $A = B = 1$, $a = 2$, $b = 3$, $\delta =$	
$3\pi/4$	26
3.37 фигура Лиссажу с параметрами A = B = 1, a = 2, b = 3, δ = $3\pi/4$	27
3.38 модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 3, δ = π	27
3.39 фигура Лиссажу с параметрами $A = B = 1$, $a = 2$, $b = 3$, $\delta = \pi$	28

1 Цель работы

Построить с помощью xcos фигуры Лиссажу с различными значениями параметров.

2 Теоретическое введение

Scilab — система компьютерной математики, предназначенная для решения вычис лительных задач.

Основное окно Scilab содержит обозреватель файлов, командное окно, обозрева тель переменных и журнал команд

Программа хсоз является приложением к пакету Scilab [5]. Для вызова окна хсоз необходимо в меню основного окна Scilab выбрать Инструменты, Визуальное моделирование хсоз.

При моделировании с использованием хсоз реализуется принцип визуального программирования, в соответствии с которым пользователь на экране из палитры блоков создаёт модель и осуществляет расчёты

3 Выполнение лабораторной работы

1. Строим модель функционирования двух источников синусоидального сигнала, позволяющая в зависимости от задаваемых параметров построить различные фигуры Лиссажу

Рис. 3.1: модель функционирования двух источников синусоидального сигнала

2. Строим с помощью хсоз фигуры Лиссажу со следующими параметрами:

\$ A = B = 1, a = 2, b = 2,
$$\delta$$
 = 0; $\pi/4$; $\pi/2$; $3\pi/4$; π \$ 2.1 δ = 0:

Рис. 3.2: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 2, $\delta = 0$

$2.2 \delta = \pi/4$:

Рис. 3.3: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 2, $\delta = \pi/4$

 $2.3 \delta = \pi/2$:

Рис. 3.4: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 2, $\delta = \pi/2$

$2.4 \delta = 3\pi/4$:

Рис. 3.5: модель для фигуры Лиссажу с параметрами A=B=1, a=2, b=2, $\delta=3\pi/4$

Рис. 3.6: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 2, $\delta = 3\pi/4$

$2.5 \delta = \pi$:

Рис. 3.7: модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 2, δ = π

Рис. 3.8: фигура Лиссажу с параметрами A=B=1, a=2, b=2, $\delta=\pi$

3. Строим с помощью хсоз фигуры Лиссажу со следующими параметрами:

\$ A = B = 1, a = 2, b = 4,
$$\delta$$
 = 0; $\pi/4$; $\pi/2$; $3\pi/4$; π \$ 3.1 δ = 0:

Рис. 3.9: модель для фигуры Лиссажу с параметрами A=B=1, a=2, b=4, $\delta=0$

Рис. 3.10: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 4, $\delta = 0$

 $3.2 \delta = \pi/4$:

Рис. 3.11: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 4, δ = $\pi/4$

3.3 $\delta = \pi/2$:

Рис. 3.12: модель для фигуры Лиссажу с параметрами A=B=1, a=2, b=4, $\delta=\pi/2$

Рис. 3.13: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 4, $\delta = \pi/2$

$3.4 \delta = 3\pi/4$:

Рис. 3.14: модель для фигуры Лиссажу с параметрами A=B=1, a=2, b=4, $\delta=3\pi/4$

Рис. 3.15: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 4, $\delta = 3\pi/4$

$3.5 \delta = \pi$:

Рис. 3.16: модель для фигуры Лиссажу с параметрами A=B=1, a=2, b=4, $\delta=\pi$

Рис. 3.17: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 4, $\delta = \pi$

4. Строим с помощью хсоз фигуры Лиссажу со следующими параметрами:

\$ A = B = 1, a = 2, b = 6,
$$\delta$$
 = 0; $\pi/4$; $\pi/2$; $3\pi/4$; π \$ 4.1 δ = 0:

Рис. 3.18: модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 6, δ = 0

Рис. 3.19: модель для фигуры Лиссажу с параметрами A=B=1, a=2, b=6, $\delta=0$

Рис. 3.20: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 6, $\delta = 0$

 $4.2 \delta = \pi/4$:

Рис. 3.21: модель для фигуры Лиссажу с параметрами A=B=1, a=2, b=6, $\delta=\pi/4$

Рис. 3.22: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 6, $\delta = \pi/4$

 $4.3 \delta = \pi/2$:

Рис. 3.23: модель для фигуры Лиссажу с параметрами A=B=1, a=2, b=6, $\delta=\pi/2$

Рис. 3.24: фигура Лиссажу с параметрами A=B=1, a=2, b=6, $\delta=\pi/2$

 $4.4 \delta = 3\pi/4$:

Рис. 3.25: модель для фигуры Лиссажу с параметрами A=B=1, a=2, b=6, $\delta=3\pi/4$

Рис. 3.26: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 6, $\delta = 3\pi/4$

 $4.5 \delta = \pi$:

Рис. 3.27: модель для фигуры Лиссажу с параметрами A=B=1, a=2, b=6, $\delta=\pi$

Рис. 3.28: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 6, $\delta = \pi$

5. Строим с помощью хсоз фигуры Лиссажу со следующими параметрами:

\$ A = B = 1, a = 2, b = 3,
$$\delta$$
 = 0; $\pi/4$; $\pi/2$; $3\pi/4$; π \$ 5.1 δ = 0:

Рис. 3.29: модель для фигуры Лиссажу с параметрами A=B=1, a=2, b=3, $\delta=0$

Рис. 3.30: модель для фигуры Лиссажу с параметрами A=B=1, a=2, b=3, $\delta=0$

Рис. 3.31: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 3, $\delta = \pi$

5.2 $\delta = \pi/4$:

Рис. 3.32: модель для фигуры Лиссажу с параметрами A=B=1, a=2, b=3, $\delta=\pi/4$

Рис. 3.33: фигура Лиссажу с параметрами A=B=1, a=2, b=3, $\delta=\pi/4$

5.3 $\delta = \pi/2$:

Рис. 3.34: модель для фигуры Лиссажу с параметрами A=B=1, a=2, b=3, $\delta=\pi/2$

Рис. 3.35: фигура Лиссажу с параметрами A=B=1, a=2, b=3, $\delta=\pi/2$

$5.4 \delta = 3\pi/4$:

Рис. 3.36: модель для фигуры Лиссажу с параметрами A=B=1, a=2, b=3, $\delta=3\pi/4$

Рис. 3.37: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 3, $\delta = 3\pi/4$

$5.5 \delta = \pi$:

Рис. 3.38: модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 3, δ = π

Рис. 3.39: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 3, δ = π

4 Выводы

В результате данной лабораторной работы было выполнено упражнение с помощью хсоз фигуры Лиссажу с различными значениями параметров.

Список литературы