Sumário

Pr	efácio)	11
Pr	efácio	à Terceira Edição Revista	15
Pr	efácio	o à Quarta Edição Revista	17
1.	Noções Básicas de Probabilidade		
	1.1	Experimentos Aleatórios	19
	1.2	Espaço Amostral e Eventos	21
	1.3	Operações entre Eventos	24
	1.4	Definições Clássica, Frequentista e Subjetiva de	
		Probabilidade	26
	1.5	Métodos de Contagem	32
	1.6	Propriedades da Probabilidade	41
	1.7	Probabilidade Condicional	45
	1.8	Independência de Eventos	52
	1.9	Exercícios	56
2.	Variáveis Aleatórias e Distribuições de Probabilidade		
	2.1	Variáveis Aleatórias	63

	2.2	Distribuição de Probabilidade de Variáveis Aleatórias		
		Discretas		
	2.3	Densidades de Probabilidade 67		
	2.4	Função de Distribuição de uma Variável Aleatória 69		
	2.5	Esperança Matemática de Variáveis Aleatórias		
		Discretas		
	2.6	Esperança Matemática de Variáveis Aleatórias		
		Contínuas		
	2.7	Funções de Variáveis Aleatórias		
	2.8	Momentos e sua Função Geradora		
	2.9	Exercícios		
3.	Variáveis Aleatórias Discretas Multidimensionais			
	3.1	Distribuições de Probabilidade		
	3.2	Distribuições Marginais		
	3.3	Variáveis Aleatórias Independentes		
	3.4	Covariância e Coeficiente de Correlação		
	3.5	Distribuições Condicionais		
	3.6	Exercícios		
4.	Modelos Probabilísticos Discretos			
	4.1	Distribuição Binomial		
	4.2	Distribuição Hipergeométrica		
	4.3	Distribuição Geométrica		
	4.4	Distribuição de Poisson		
	4.5	Exercícios		
5.	Modelos Probabilísticos Contínuos			
	5.1	Distribuição Uniforme		
	5.2	Distribuição Normal		
	5.3	Modelos Probabilísticos para Tempos de Vida156		
	5.4	Exercícios		
6.	Variáveis Aleatórias Contínuas Multidimensionais173			
	6.1	Densidades de Probabilidade		
	6.2	Funções de Distribuição		
	6.3	Independência		
	6.4	Distribuições de Funções de Variáveis Aleatórias 185		

6.	5 Distribuições Condicionais	$\dots 197$			
6.	6 Variáveis N-Dimensionais	201			
6.	7 Exercícios	204			
7. Ti	ipos de Convergência e Teoremas Limite	213			
7.	1 Lei dos Grandes Números e Teorema do Limite				
	Central	214			
7.	2 Exercícios	219			
Apên	dice A. Tabelas	227			
Α.	.1 Distribuição Normal Reduzida, N(0,1)	227			
A.	.2 Distribuição de Poisson, $P(\alpha)$	229			
A.	.3 Distribuição Binomial	232			
Apên	dice B. Respostas dos Exercícios Propostos	235			
В.	.1 Capítulo 1	235			
В.	.2 Capítulo 2	241			
В.	.3 Capítulo 3	247			
В.	.4 Capítulo 4	255			
В.	.5 Capítulo 5	260			
В.					
В.	.7 Capítulo 7	272			
Biblio	ografia	277			
	Sobre o Autor				

APÊNDICE B

RESPOSTAS DOS EXERCÍCIOS PROPOSTOS

B.1 CAPÍTULO 1

- 1. a) $S = \{(i,j) : i,j \in \{1,2,3,4,5,6\}\} =$ = $\{(1,1),(1,2),...,(1,6);(2,1),(2,2),...,(2,6);...;(6,1),(6,2),...,(6,6)\}$
 - b) $S = \{0, 1, 2, 3, ...\}$
 - c) $S = \{MMMM, MMMF, MMFM, MFMM, FMMM, MMFF, MFMF, MFFM, FMMF, FMFM, FMFM, FFMM, MFFF, FMFF, FFMF, FFFM, FFFFF\} = \{M, F\}^4,$ onde M masculino e F feminino ($|S| = 2^4 = 16$).
 - d) $S = \{1, 0\}^{10}$, onde 1 denota que o proprietário tem a máquina e 0 denota que não tem a máquina ($|S| = 2^{10} = 1024$)
 - e) $S = \{FFF, FFMF, FMFF, MFFF, FFMMF, FMFMF, FMMFF, MFFMF, MFMFF, MMFFF, FFMMMF, FMFMMF, FMMFMF, FMMMFF, MMMFFF, MMFMFF, MMFMFF, MFMMFF, MFMMFF, MFMMFF, MFFMMF\}$
- 2. a) $A_1^c \cap A_2 = \{\overline{C}CC, \overline{C}C\overline{C}\}\$
 - b) $A_1^c \cup A_2 = \{\overline{C}CC, \overline{C}C\overline{C}, \overline{CC}C, \overline{CCC}, CCC, CC\overline{C}\}$
 - c) $(A_1^c \cap A_2^c)^c = \{CCC, CC\overline{C}, C\overline{C}C, \overline{C}CC, C\overline{C}\overline{C}, \overline{C}C\overline{C}\}$
 - d) $A_1 \cap (A_2 \cup A_3) = \{CCC, CC\overline{C}, C\overline{C}C\}$

- 3. Sejam S = [0,1], $A = \{x : 1/4 \le x \le 5/8\} = [1/4,5/8]$ e B = [1/2,7/8]. Assim,
 - a) $A^{c} = \{x \in S : x \notin A\} = [0, 1/4) \cup (5/8, 1]$
 - b) $A \cap B^c = \{x : 1/4 \le x \le 5/8\} \cap \{x \in S : x \notin B\} =$ = $[1/4, 5/8] \cap ([0, <1/2) \cup (7/8, 1]) = [1/4, 1/2)$
 - c) $A \cup B = [1/4, 7/8]$. Logo, $(A \cup B)^{c} = [0, 1/4) \cup (7/8, 1]$.
 - d) $A^{c} \cup B = ([0, 1/4) \cup (5/8, 1]) \cup [1/2, 7/8] = [0, 1/4) \cup [1/2, 1]$
- 4. a) Falsa (considere $\omega \in A^c \cap B \cap C$) b) Verdadeira
 - c) Falsa (considere $\omega \in A \cap B$)
 - d) Falsa (considere $\omega \in A^c \cap B^c \cap C^c$).
- 5. a) Somente A ocorre: $A \cap B^{c} \cap C^{c}$
 - b) Todos ocorrem: $A \cap B \cap C$
 - c) Ao menos dois eventos ocorrem: $(A \cap B \cap C^c) \cup (A \cap B^c \cap C) \cup (A^c \cap B \cap C) \cup (A \cap B \cap C)$
 - d) Exatamente dois ocorrem: $(A \cap B \cap C^c) \cup (A \cap B^c \cap C) \cup (A^c \cap B \cap C)$
 - e) Não mais do que dois ocorrem: $(A \cap B \cap C)^c = A^c \cup B^c \cup C^c$
 - f) $A \in B$ ocorrem, mas C não: $A \cap B \cap C^{c}$
 - g) Pelo menos um ocorre: $A \cup B \cup C$
 - h) Exatamente um ocorre: $(A \cap B \cap C^c) \cup (A \cap B^c \cap C) \cup (A^c \cap B \cap C)$
 - i) Nenhum dos eventos ocorre: $A^c \cap B^c \cap C^c$
- 6. a) Note que para cada subconjunto de r elementos extraído de um conjunto de n elementos fica especificado um único conjunto de n-r elementos (e vice-versa).
 - b) Para contar o número de subconjuntos de r elementos extraídos de um conjunto com n+1 elementos, considere, separadamente: 1) os conjuntos que possuem um elemento específico dos n+1 elementos e 2) os conjuntos que não possuem tal elemento.
- 7. A prova é feita pelo princípio da indução finita. Para n = 1,

$$\textstyle \sum_{k=0}^1 \binom{1}{k} \, a^k \, b^{1-k} = \binom{1}{0} \, a^0 \, b^{1-0} + \binom{1}{1} \, a^1 \, b^{1-1} = a+b.$$

Suponhamos que a igualdade seja verdadeira para n. Verifiquemos a validade da relação para n+1:

$$\begin{split} (a+b)^{n+1} &= (a+b)(a+b)^n = (a+b)\sum_{k=0}^n \binom{n}{k} \, a^k \, b^{n-k} = \\ &= \sum_{k=0}^n \binom{n}{k} \, a^{k+1} \, b^{n-k} + \sum_{k=0}^n \binom{n}{k} \, a^k \, b^{n-k+1} = \\ &= \sum_{k=1}^{n+1} \binom{n}{k-1} \, a^k \, b^{n+1-k} + \sum_{k=0}^n \binom{n}{k} \, a^k \, b^{n+1-k}. \end{split}$$

Considerando $\binom{u}{v} = 0$, se v < 0 ou u < v, segue que

$$(a+b)^{n+1} = \sum_{k=0}^{n+1} {n \choose k-1} a^k b^{n+1-k} + \sum_{k=0}^{n+1} {n \choose k} a^k b^{n+1-k} =$$

$$= \sum_{k=0}^{n+1} {n \choose k-1} + {n \choose k} a^k b^{n+1-k} = \sum_{k=0}^{n+1} {n+1 \choose k} a^k b^{n+1-k},$$

onde a última igualdade decorre do resultado do exercício 6(b).

- 8. a) Considere a = b = 1 no exercício 7. b) Similar ao item a.
 - c) Reescreva a primeira parcela da soma como $\binom{r+1}{0}$ e as demais usando a relação do exercício 6(a). Aplique então, sucessivamente, o resultado 6(b) n-r vezes.
 - d) Determine o número de subconjuntos com r elementos extraídos de um conjunto de m+n elementos, dos quais exatamente n possuem uma característica específica, calculando, para cada $k=0,1,\ldots,n$, quantos subconjuntos de r elementos possuem exatamente k elementos com a característica específica e r-k sem a característica.
 - e) Faca uso do item anterior. f) g) Utilize o exercício 8(a).
 - h) O resultado segue diretamente dos exercícios 8(a) e 8(b).
- 9. $P(A \cap B \cap C) = P(A|B \cap C) P(B|C) P(C) = 0.5 \cdot 0.4 \cdot 0.3 = 0.06$.
- 10. Basta escrever A e B como uniões disjuntas de conjuntos, a saber, $A = A \cap B \cup A \cap B^{c}$ e $B = B \cap A \cup B \cap A^{c}$, e aplicar o lema 1.6.2.
- 11. Como $A \cap B \subset A$ e $A \cap B \subset B$, pelo lema 1.6.4,

$$P(A \cap B) \le \min\{P(A), P(B)\} = 0.6.$$

Por outro lado, do lema 1.6.5, do lema 1.6.4 e da definção 1.4.2, resulta

$$P(A) + P(B) - P(A \cap B) = P(A \cup B) \le P(S) = 1 \Rightarrow$$

$$\Rightarrow P(A \cap B) \ge P(A) + P(B) - 1 = 0,3.$$

Assim, $0.3 \le P(A \cap B) \le 0.6$.

- 12. $\frac{\sqrt{5}-1}{9}$ (*Dica*: observe que se $A \cap B \cap C = \emptyset$, então $A \cap B \subset C^c$)
- 13. Verificamos que A e B^c são independentes:

$$P(A \cap B^{c}) = P(A) - P(A \cap B) = P(A) - P(A)P(B) = P(A)P(B^{c}).$$

Logo, $A \in B^{c}$ são independentes.

Os demais resultados são provados analogamente.

- 14. Avalie a probabilidade de $A \cup B$ nos dois casos: a) p = 0.3 b) p = 0.5.
- 15. a) Dos lemas 1.6.5 e 1.6.4 e da definição 1.4.2, resulta que

$$P(A) + P(B) - P(A \cap B) = P(A \cup B) \le P(S) = 1 \Rightarrow$$

$$\Rightarrow P(A \cap B) \ge P(A) + P(B) - 1 = 1 - P(A^c) + 1 - P(B^c) - 1 \Rightarrow$$

$$\Rightarrow P(A \cap B) \ge 1 - \alpha - \beta.$$

b)
$$P(A|B) \ge P(A) \Rightarrow \frac{P(A \cap B)}{P(B)} \ge P(A) \Rightarrow \frac{P(A \cap B)}{P(A)} \ge P(B) \Rightarrow P(B|A) \ge P(B)$$

- 16. Use o fato de que $E^c \cap F^c = (E \cup F)^c$ e os lemas 1.6.3 e 1.6.5.
- 17. A urna contém 2 bolas pretas e 2 brancas. Designe por *b* a ocorrência de bola branca e por *p* de bola preta. Em cada retirada resulta a ocorrência de branca ou preta. Em 4 retiradas o espaço amostral *S* tem 16 elementos, a saber *S* = {*bbbb*, *bbbp*, ..., *pppp*}. Expresse os eventos pedidos em termos do espaço amostral e calcule suas probabilidades.

Desse modo, obtemos as respostas: a) 1/2 b) 0 c) 1/6 d) 1/2.

- 18. a) 6/9 b) 5/9 c) 2/9.
- 19. Note que $A = \{3, 6, 9, 12, 15, 18\}$ e $B = \{2, 4, 6, ..., 18, 20\}$. Assim, $P(A \cap B) = P(\{6, 12, 18\}) = 3/20$. Analogamente, $P(A \cup B) = 13/20$ e $P(A \cap B^c) = 3/20$.
- 20. Item (a) do exercício 1: $P(\{(1,5), (2,4), (3,3), (4,2), (5,1)\}) = 5/36$. Item (c) do exercício 1: $P(\{MMMF, MMFM, MFMM, FMMM\}) = 4/16$.

As probabilidades desses 16 eventos são calculadas levando em conta a independência das devoluções dos produtos vendidos.

Assim, a probabilidade do evento de interesse é

$$P(\{DDNN, DNDN, DNND, NDDN, NDND, NNDD\}) = 6 \cdot (0.05)^2 \cdot (0.95)^2$$

- 22. P(HH) = 12/30, P(HM) = 8/30, P(MH) = 8/30, P(MM) = 2/30.
- 23. a) Seja *A* o evento "o habitante selecionado lê o jornal *A*".

 Analogamente, definimos os eventos *B* e *C*. Assim, do enunciado,

$$\begin{split} P(A \cup B \cup C) &= P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + \\ &\quad + P(A \cap B \cap C) = \\ &= \frac{12000}{30000} + \frac{8000}{30000} + \frac{6000}{30000} - \frac{7000}{30000} - \frac{4500}{30000} - \frac{1000}{30000} + \frac{500}{30000} = \frac{14}{30} \\ \text{b)} \ P(A \cap B^{\text{c}} \cap C^{\text{c}}) + P(A^{\text{c}} \cap B \cap C^{\text{c}}) + P(A^{\text{c}} \cap B^{\text{c}} \cap C) = \frac{1}{12}. \end{split}$$

- 24. a) 80/300 b) 98/300 c) 80/138.
- 25. Note que $H = M^c$ e $B = A^c$. Do enunciado, temos que
 - a) P(H) = 3/4, P(A|H) = 2/10 e P(B|H) = 1 P(A|H) = 1 2/10 = 8/10.
 - b) $P(A \cap H) = P(A|H)P(H) = (2/10)(3/4) = 15/100 \text{ e } P(A \cup H) = 37/40.$

c)
$$P(M|A) = \frac{P(A \cap M)}{P(A)} = \frac{P(A|M)P(M)}{P(A|M)P(M) + P(A|H)P(H)} = \frac{\frac{7}{10}\frac{1}{4}}{\frac{7}{10}\frac{1}{4} + \frac{2}{10}\frac{3}{4}} = \frac{7}{13}.$$

- 26. Seja A_k o evento "o indivíduo abre a porta na k-ésima tentativa": $P(A_k) = 1/n \text{ , para } k = 1 \dots, n.$
- 27. Seja A o evento "uma quina é sorteada". O número de subconjuntos de 5 elementos retirados do conjunto $\{00,01,\ldots,99\}$ de 100 elementos é $C_{100,5} = \binom{100}{5}$ e de um conjunto de 10 dezenas marcadas no volante é $C_{10,5} = \binom{10}{5}$. Assim,

$$P(A) = \frac{\binom{10}{5}}{\binom{100}{5}} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{100 \cdot 99 \cdot 98 \cdot 97 \cdot 96} = \frac{1}{298760}$$

- 28. a) $\frac{13}{52} \cdot \frac{12}{51}$ b) $2 \cdot \frac{13}{52} \cdot \frac{13}{51}$
- 29. Há 4! permutações dos assuntos matemática, química, física e dicionário. Para cada uma dessas permutações e considerando os livros distintos, há 4! permutações dos livros de matemática, 3! permutações dos livros de química, 2! dos livros de física e 1! do dicionário. Assim, pelo Princípio Fundamental da Contagem, resulta que o número de maneiras que podemos colocar os livros na estante de modo que os livros de mesmo assunto fiquem juntos é 4! · 4! 3! 2! 1! = 6912.

30.
$$\binom{10}{3}\binom{7}{5}\binom{2}{2} = \frac{10!}{3!5!2!} = 2520$$

- 31. Lembremos que uma mão de pôquer é formada por cinco cartas, isto é, por um subconjunto de 5 cartas extraído do conjunto de 52 cartas do baralho.
 - a) Note que há 4 subconjuntos de 5 cartas que constituem um *royal flush*. Assim , a probabilidade de um *royal flush* é $4/\binom{52}{5}$.
 - b) Há 13 subconjuntos de 4 cartas que são caracterizados por cartas de mesmo valor. Para cada um desses subconjuntos, podemos ter 48 mãos de pôquer com a adição de uma das cartas remanescentes do baralho (que não possui o mesmo valor das outras 4 cartas de mesmo valor). Assim, a probabilidade de que a mão de pôquer contenha quatro cartas de mesmo tipo é 13·48/(⁵²/₅).

$$c) \ \ \frac{13 \cdot 12 \cdot \binom{4}{2} \cdot \binom{4}{3}}{\binom{52}{5}} \quad d) \ \ \frac{9 \cdot 4^5}{\binom{52}{5}} \quad e) \ \ \frac{13 \cdot \binom{4}{3} \cdot 48 \cdot 44}{\binom{52}{5}} \quad f) \ \ \frac{\binom{13}{2} \cdot \binom{4}{2}^2 \cdot 44}{\binom{52}{5}} \quad g) \ \ \frac{13 \cdot \binom{4}{2} \cdot 48 \cdot 44 \cdot 40}{\binom{52}{5}}$$

- 32. Considere os resultados dos lançamentos independentes e que a probabilidade de cara em cada lançamento é 1/2. a) $\frac{1}{3}$ b) $\frac{2}{3}$
- 33. Vamos designar por F se uma parte falha e por N se não falha. O espaço amostral correspondente a 3 partes é:

 $S = \{FFF, FFN, FNF, NFF, FNN, NFN, NNF, NNN\}.$

As probabilidades desses 8 eventos são calculadas levando em conta a independência entre os funcionamentos das partes do dispositivo.

Assim, a probabilidade de falha do dispositivo é dada por

$$P(\{FFN, FNF, NFF, FFF\}) = 3 \cdot (0,1)^2 (0,9) + (0,1)^3 = 0.028.$$

- 34. Sejam os eventos D: "a peça selecionada é defeituosa" e C: "a peça foi produzida pela máquina C". Pela fórmula da probabilidade total, $P(D) = \frac{37}{1000}$. Pela fórmula de Bayes, $P(C \mid D) = \frac{10}{37}$.
- 35. Sejam *T*: "a porta está trancada a chave", *A*: "a chave escolhida abre a porta" e *E*: "o indivíduo entra na casa".

Do enunciado, P(T) = 3/5 e P(A|T) = 3/25. Assim,

$$P(E) = P(T^{c}) + P(T \cap A) = P(T^{c}) + P(A|T)P(T) = \frac{2}{5} + \frac{3}{25} \cdot \frac{3}{5} = 59/125.$$

- 36. 7/13
- 37. Sejam A: "o aluno sabe a resposta da questão" e D: "o aluno responde corretamente à questão". Do enunciado, P(A) = p e $P(D \mid A^c) = 1/m$. Pela fórmula de Bayes,

$$P(A^{c} \mid D) = \frac{P(D|A^{c})P(A^{c})}{P(D|A^{c})P(A^{c}) + P(D|A)P(A)} = \frac{\frac{1}{m} \cdot (1-p)}{\frac{1}{m} \cdot (1-p) + 1 \cdot p} = \frac{1-p}{1-p+mp}.$$

38.
$$n^r$$
; $\sum_{i=1}^n (-1)^{i+1} {n \choose i} \frac{1}{n^r} {r \choose 2} {r-2 \choose 2} \cdots {r-2(i-1) \choose 2} (n-1)^{r-2i}$; $\frac{1}{n^r} n \cdot (n-1) \cdots (n-(r-1))$

39. Seja S_1 o conjunto de todas as amostras sem reposição (não ordenadas) de tamanho r da população de tamanho n. Note que $|S_1| = {n \choose r}$. O número de amostras em S_1 que incluem o elemento específico é igual ao número de amostras de tamanho r-1 de uma população de tamanho n-1. Assim, a probabilidade de interesse é ${n-1 \choose r-1}/{n \choose r} = \frac{r}{n}$. Sob amostragem com reposição, a probabilidade de que um elemento fixado seja incluído pelo menos uma vez na amostra é igual a um menos a probabilidade de tal elemento não ser incluído na amostra. Definindo o evento A_i : "o i-ésimo elemento selecionado na amostra é o elemento fixado", $i=1,\dots r$, temos que

$$\begin{split} P(A_1 \cup \dots \cup A_r) &= 1 - P(A_1^\mathsf{c} \cap \dots \cap A_r^\mathsf{c}) = 1 - P(A_1^\mathsf{c}) \dots P(A_r^\mathsf{c}) = \\ &= 1 - \left(\frac{n-1}{n}\right) \dots \left(\frac{n-1}{n}\right) = 1 - \left(\frac{n-1}{n}\right)^r \end{split}$$

$$40. \quad \frac{1}{n^r} \binom{r}{r_1} \binom{r-r_1}{r_2} \cdots \binom{r-(r_1+\cdots+r_{n-2})}{r_{n-1}} = \frac{r!}{r_1!\cdots r_n!} \left(\frac{1}{n}\right)^r$$

41. Admitindo-se que as bolas são indistinguíveis, as r bolas podem ser distribuídas em n urnas numeradas de $\binom{r+n-1}{n-1}$ maneiras distintas. Assim, a probabilidade de interesse é $1/\binom{r+n-1}{n-1}$.

42. a)
$$\sum_{i=1}^{n} (-1)^{i+1} \frac{1}{i!}$$
, b) $\sum_{i=0}^{n} (-1)^{i+1} \frac{1}{i!}$, (c) $\frac{1}{r!} \sum_{i=0}^{n-r} (-1)^{i+1} \frac{1}{i!}$

43. Considere o evento A_i : "a i-ésima bola é colocada na urna específica", $i=1,\ldots,r$. Seja E_k : "a urna específica contém exatamente k bolas", $k=0,1,\ldots r$. Nesse caso,

$$\begin{split} P(E_k) &= \sum_{I \subset \{1, \dots, r\}: |I| = k\}} P(\cap_{i \in I} A_i \cap_{j \in I^c} A_j^c) = \\ &= \sum_{I \subset \{1, \dots, r\}: |I| = k\}} \prod_{i \in I} P(A_i) \prod_{j \in I^c} P(A_j^c) = \\ &= \sum_{I \subset \{1, \dots, r\}: |I| = k\}} \prod_{i \in I} \left(\frac{1}{n}\right) \prod_{j \in I^c} \left(1 - \frac{1}{n}\right) = \\ &= \sum_{I \subset \{1, \dots, r\}: |I| = k\}} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{n-k} \Rightarrow P(E_k) = {r \choose k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{n-k}. \end{split}$$

B.2 CAPÍTULO 2

1. a)
$$P(T \ge 6) = P(T = 6) + P(T = 7) = \frac{1}{10} + \frac{1}{10} = \frac{2}{10}$$

b)
$$P(|T-4| > 2) = \frac{1}{10}$$
 c) $P(T \text{ ser um número primo}) = \frac{5}{10}$

2. a)
$$\frac{1}{9}$$
 b) $\frac{7}{8}$ c) $\frac{1}{39}$ d) $\frac{1}{3}$

3. a) Do enunciado, devemos impor que $c \ge 0$ e $\sum_{x=1}^{4} cx = 1$. Assim,

$$\sum_{x=1}^{4} cx = 1 \Rightarrow c \cdot (1+2+3+4) = 1 \Rightarrow c = \frac{1}{10}$$
b) Procedendo como em (a),

$$\sum_{x=1}^{N} c x = c \cdot (1 + 2 + \dots + N) = 1 \Rightarrow c = \frac{2}{N(N+1)}$$

c)
$$\frac{a(a+1)}{N(N+1)}$$
 d) $\frac{N+2}{2(N+1)}$, se N é par, e $\frac{N-1}{2N}$, se N é impar.

4. a)
$$P(X = x) = \frac{1}{36}(2x-1), x \in \{1, 2, 3, 4, 5, 6\}$$

b)
$$P(X = x) = \frac{1}{36} \min\{x - 1, 13 - x\}, x \in \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

c) X assume valores no conjunto $A = \{1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,30,36\}.$ Para cada $s \in A$, a probabilidade de X = s é obtida somando-se as probabilidades dos pontos do espaço amostral (x,y) tais que $x \cdot y = s$.

d)
$$P(X = 0) = \frac{1}{36} e P(X = x) = \frac{2}{36} (6 - x), x \in \{1, 2, 3, 4, 5\}.$$

5. a) Devemos ter $f(x) \ge 0$, para todo $x \in \mathbb{R}$, e $\int_{-\infty}^{\infty} f(x) dx = 1$. Assim,

$$\int_{-\infty}^{\infty} f(x) dx = 1 \Leftrightarrow \int_{-\infty}^{-1} 0 dx + \int_{-1}^{1} cx^{2} dx + \int_{1}^{\infty} 0 dx = 1 \Leftrightarrow$$
$$\Leftrightarrow \frac{1}{3} cx^{3} \Big|_{-1}^{1} = 1 \Leftrightarrow \frac{1}{3} c[1 - (-1)] = \frac{2}{3} c = 1 \Leftrightarrow c = \frac{3}{2}$$

b)
$$P(|X| > \frac{1}{2}) = \frac{7}{8}$$
 c) $\alpha = \sqrt[3]{-\frac{1}{2}}$

6. a) Basta calcular a integral em $(0, \infty)$. b) $P(X > 6) = e^{-6\lambda}$.

7. a) Devemos ter
$$f(x) \ge 0$$
, para todo $x \in \mathbb{R}$, e $\int_{-\infty}^{\infty} f(x) \, dx = 1$. Assim,
$$\int_{-\infty}^{\infty} f(x) \, dx = 1 \Leftrightarrow \int_{-\infty}^{0} 0 \, dx + \int_{0}^{\frac{1}{2}} cx \, dx + \int_{\frac{1}{2}}^{1} c(1-x) \, dx + \int_{1}^{\infty} 0 \, dx = 1 \Leftrightarrow \frac{1}{2} c x^{2} \Big|_{0}^{\frac{1}{2}} - \frac{1}{2} c (1-x)^{2} \Big|_{\frac{1}{2}}^{1} = \frac{2}{8} c = 1 \Leftrightarrow c = 4$$
c) $P(X > \frac{8}{10}) = \frac{8}{100}$ e $P(\frac{1}{4} < X < \frac{3}{4}) = \frac{3}{4}$.

8. a) Devemos ter
$$f(x) \ge 0$$
, para todo $x \in \mathbb{R}$, $e^{-1} \int_{-\infty}^{\infty} f(x) dx = 1$. Assim,
$$\int_{-\infty}^{\infty} f(x) dx = 1 \Leftrightarrow \int_{-\infty}^{\frac{\pi}{2}} 0 dx + \int_{\frac{\pi}{2}}^{\pi} c \cos(x) dx + \int_{\pi}^{\infty} 0 dx = 1 \Leftrightarrow c \sin(x) \Big|_{\frac{\pi}{2}}^{\pi} = -c = 1 \Leftrightarrow c = -1$$

b)
$$1 - \frac{\sqrt{2}}{2}$$

9. Ex1)
$$E(X) = \sum_{i=2}^{7} iP(X=i) = 2\frac{1}{10} + 3\frac{1}{10} + 4\frac{4}{10} + 5\frac{2}{10} + 6\frac{1}{10} + 7\frac{1}{10} = \frac{44}{10}$$
. Do mesmo modo, obtemos $E(X^2) = \sum_{i=2}^{7} i^2 P(X=i) = \frac{212}{10}$ e, portanto, $\operatorname{Var}(X) = E\left(X^2\right) - \left(E(X)\right)^2 = \frac{212}{10} - \left(\frac{44}{10}\right)^2 = \frac{184}{100}$ Ex2) $E(X) = \sum_{x=0}^{\infty} x \left(\frac{1}{2}\right)^{x+1} = \frac{1}{4} \sum_{x=1}^{\infty} x \left(\frac{1}{2}\right)^{x-1} = \frac{1}{4} h'\left(\frac{1}{2}\right)$, onde $h(t) = \sum_{x=0}^{\infty} t^x = 1/(1-t)$, $0 < t < 1$. Assim, $h'(t) = 1/(1-t)^2$ e, portanto, $E(X) = 1$. A partir de $h''(t)$, obtemos $E\left(X^2\right) = 3$ e $\operatorname{Var}(X) = E\left(X^2\right) - \left(E(X)\right)^2 = 3 - 1^2 = 2$. Ex3) $E(X) = \frac{1}{3}(2N+1)$, $\operatorname{Var}(X) = \frac{1}{18}(N^2+N-2)$ Ex4) $E(X) = \frac{161}{36}$, $\operatorname{Var}(X) = \frac{791}{36} - \left(\frac{161}{36}\right)^2$ Ex5) $E(X) = 0$, $\operatorname{Var}(X) = \frac{3}{5}$ Ex6) $E(X) = 1/\lambda$, $\operatorname{Var}(X) = 1/\lambda^2$ Ex7) $E(X) = \frac{1}{2}$, $\operatorname{Var}(X) = \frac{1}{24}$ Ex8) $E(X) = 1 + \frac{\pi}{2}$, $\operatorname{Var}(X) = \pi - 3$

- 10. Basta aplicar n-1 vezes (2.10) e n vezes (2.11) do lema 2.5.2 às variáveis $\alpha_1 X_1, \dots \alpha_n X_n$.
- 11. a) $E(X) = \int_{\{x:x \geq \alpha\}} x f(x) \, dx + \int_{\{x:x < \alpha\}} x f(x) \, dx = \int_{\{x:x \geq \alpha\}} x f(x) \, dx,$ onde a última igualdade decorre do fato que $P(X < \alpha) = 0$. Então, $E(X) = \int_{\{x:x \geq \alpha\}} x f(x) \, dx \geq \int_{\{x:x \geq \alpha\}} \alpha f(x) \, dx = \alpha P[X \geq \alpha] \Rightarrow E(X) \geq \alpha.$
 - b) Como $P[-X \geq -\beta] = 1,$ segue, de (a) e do lema 2.5.2, que $E(X) \leq \beta.$
 - c) Como $X \ge Y$, $P[X Y \ge 0] = 1$. O resultado segue de (a) e do lema 2.5.2.
- 12. a) Basta usar (2.23) e o resultado do exercício 10. b) $103\beta^2 + 80\beta + 16$.

13. a)
$$f(a) = E((X-a)^2) = E(X^2 - 2aX + a^2) = a^2 - 2E(X) a + E(X^2)$$
, onde a última igualdade decorre do lema 2.5.2. Como f é polinômio de grau 2, resulta neste caso que o ponto de mínimo de f é $a^* = E(X)$. b) $f(a^*) = f(E(X)) = E((X - E(X))^2) = Var(X)$

14.
$$Var(X) = Var(Y) = \frac{10}{36} e Var(Z) = \frac{16}{36}$$
.

Nesse caso, não é verdade que Var(X+Y) = Var(X) + Var(Y).

15.
$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{1}^{\infty} x \frac{2}{x^{3}} dx = \int_{1}^{\infty} \frac{2}{x^{2}} dx = \frac{-2}{x} \Big|_{1}^{\infty} = 2.$$

Além disso, $E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f(x) dx = 2\log x \Big|_{1}^{\infty} = \infty.$
Assim, $Var(X) = E(X^{2}) - (E(X))^{2} = \infty.$

16. a) No caso discreto, considere que existe $(a_n)_{n\geq 1}$, com $0 < a_n < a_{n+1}$, para todo $n\geq 1$, tal que $P[X\in\{...,-a_{n+1},-a_n,...,-a_1,a_1,...,a_n,a_{n+1},...\}]=1$. Note, do enunciado, que

$$\begin{split} P[X = a_n] &= P[X \ge a_n] - P[X \ge a_{n+1}] = \\ &= P[X \le -a_n] - P[X \le -a_{n+1}] = P[X = -a_n], \\ \text{para cada } n \ge 1, \text{ e que } E(|X|) = 2\sum_{n=1}^{\infty} a_n P[X = a_n] < \infty. \\ \text{Assim, } E(X) &= \sum_{n=1}^{\infty} a_n P[X = a_n] + \sum_{n=1}^{\infty} (-a_n) P[X = a_n] = 0. \end{split}$$

- b) Observe que $X \mu$ é simétrica e aplique o resultado em (a).
- 17. No exercício 5, $\phi_X(t) = \frac{3}{2t} \left(e^t e^{-t} \right) \frac{3}{t^2} \left(e^t + e^{-t} \right) + \frac{3}{t^3} \left(e^t e^{-t} \right)$ No exercício 6, temos:

$$\phi_X(t) = E\left(e^{tX}\right) = \int_{-\infty}^{\infty} e^{tx} f(x) \, dx = \int_{0}^{\infty} e^{tx} \, \lambda e^{-\lambda x} \, dx =$$

$$= \int_{0}^{\infty} \lambda e^{-(\lambda - t)x} \, dx \stackrel{t \le \lambda}{=} \frac{-\lambda e^{-(\lambda - t)x}}{\lambda - t} \Big|_{0}^{\infty} \Rightarrow \phi_X(t) = \lambda / (\lambda - t)$$

Assim,
$$\phi_X'(t) = \lambda/(\lambda - t)^2 e \phi_X''(t) = 2\lambda/(\lambda - t)^3$$
.

Logo,
$$E(X) = \phi_X'(0) = 1/\lambda$$
 e $E(X^2) = \phi_X''(0) = 2/\lambda^2$, de modo que $Var(X) = E(X^2) - (E(X))^2 = 1/\lambda^2$.

No exercício 7,
$$\phi_X(t) = \left(2\left(e^{t/2}-1\right)/t\right)^2$$

No exercício 8, $\phi_X(t) = \left(e^{\pi t/2} + te^{\pi t}\right)/\left(1 + t^2\right)$

18. a)
$$\phi_X(t) = \frac{1}{6} \left(e^t + 4 + e^{-t} \right)$$
 b) $\phi_X(t) = \frac{e^t}{2 - e^t}$ c) $\phi_X(t) = \frac{p e^t}{1 - (1 - p) e^t}$

19. a)
$$\varphi_X(t) = E\left(t^X\right) = E\left(e^{\log t^X}\right) = E\left(e^{X\log t}\right) = E\left(e^{(\log t)X}\right) = \varphi_X(\log t).$$
Temos, ainda, que $\varphi_X(t) = E\left(e^{tX}\right) = E\left(\left(e^{t}\right)^X\right) = \varphi_X\left(e^{t}\right).$

b) Sob as condições em que é possível permutar a integração em *x* e a derivação em *t*, segue que

$$\frac{d\varphi_X(t)}{dt} = \frac{dE(t^X)}{dt} = E\left(\frac{dt^X}{dt}\right) = E\left(Xt^{X-1}\right). \text{ Logo, } \left.\frac{d\varphi_X(t)}{dt}\right|_{t-1} = E(X).$$

c) Procedendo como em (b), obtemos que

$$\begin{aligned} \frac{d^{(n)}\varphi_{X}(t)}{dt^{(n)}} &= E\Big(X(X-1)\cdots(X-(n-1)\ t^{X-n}\Big) \\ &= \sum_{x=0}^{\infty} x(x-1)\cdots(x-n+1)\ t^{x-n}P[X=x] \\ &= \sum_{x=0}^{\infty} x(x-1)\cdots(x-n+1)t^{x-n}P[X=x]. \end{aligned}$$

No ponto t = 0, a última série é reduzida à parcela na qual x = n.

Assim,
$$\frac{d^{(n)}\varphi_X(t)}{dt(n)}\Big|_{t=0} = n! P(X=n)$$

- 20. Basta utilizar as igualdades do enunciado, a relação fundamental $\sec^2 x + \cos^2 x = 1$ e o fato de que, para uma variável aleatória U qualquer, $(E(U))^2 \le E(U^2)$.
- 21. $\phi_2(t) = E(e^{tY}) = E(e^{t(aX+b)}) = E(e^{taX+bt}) = e^{bt}E(e^{(at)X}) = e^{bt}\phi_1(at)$
- 22. Basta derivar a função c e fazer uso das relações (2.33) e (2.23).
- 23. a) Faça o gráfico e observe que $F(x) = P[X \le x]$ é contínua à direita.

b)
$$P\left[\frac{1}{2} \le X \le \frac{3}{2}\right] = F\left(\frac{3}{2}\right) - \lim_{x \uparrow \frac{1}{2}} F(x) = \frac{(3/2)}{2} - \frac{(1/2)}{3} = \frac{7}{12}$$

 $P\left[\frac{1}{2} \le X \le \frac{3}{2}\right] = \frac{7}{12}; P\left[\frac{1}{2} \le X \le 1\right] = \frac{2}{6}; P\left[\frac{1}{2} \le X < 1\right] = \frac{1}{6};$
 $P\left[1 < X < 2\right] = \frac{1}{2}; P\left[1 \le X \le 2\right] = \frac{2}{3}.$

- 24. i) a) $0 \le F(x) \le 1$ b) F(x) é não decrescente e contínua à esquerda c) $\lim_{x \to -\infty} F(x) = 0$ e $\lim_{x \to \infty} F(x) = 1$
 - ii) a) $0 \le F(x) \le 1$ b) F(x) é não crescente e contínua à direita c) $\lim_{x \to -\infty} F(x) = 1$ e $\lim_{x \to \infty} F(x) = 0$
 - iii) a) $0 \le F(x) \le 1$ b) F(x) é não crescente e contínua à esquerda c) $\lim_{x \to -\infty} F(x) = 1$ e $\lim_{x \to \infty} F(x) = 0$
- 25. a) $\alpha f_1(x) + (1 \alpha) f_2(x) \ge 0$, para todo $x \in \mathbb{R}$. Além disso, $\int_{-\infty}^{\infty} [\alpha f_1(x) + (1 - \alpha) f_2(x)] dx = \alpha \int_{-\infty}^{\infty} f_1(x) dx + (1 - \alpha) \int_{-\infty}^{\infty} f_2(x) dx = \alpha \cdot 1 + (1 - \alpha) \cdot 1 = 1.$

Logo, $\alpha f_1 + (1 - \alpha)f_2$ é função densidade de probabilidade.

- b) f_1+f_2 não é função densidade pois $\int_{-\infty}^{\infty} [f_1(x)+f_2(x)] dx = 2 \neq 1$.
- c) Proceder como no item (a).
- 26. $P(X = x) = {x-1 \choose 4} / {N \choose 5}, x = 5, ... N.$
- 27. Considerando as condições do enunciado, temos 2^N subconjuntos do conjunto de N elementos, dos quais exatamente $\binom{N}{i}$ possuem i elementos, $i=0,1,\ldots,N$. Assim, $P(X=i)=\frac{1}{2N}\binom{N}{i},\ i=0,1,\ldots,N$.

$$\begin{split} E(X) &= \sum_{i=0}^{N} i P(X=i) = \sum_{i=0}^{N} i \, \frac{1}{2^N} \binom{N}{i} = \frac{1}{2^N} \sum_{i=0}^{N} i \binom{N}{i} = \frac{1}{2^N} N \, 2^{N-1} = \frac{N}{2} \,, \\ \text{onde utilizou-se o exercício 8(f) do capítulo 1. Assim,} \end{split}$$

$$\begin{aligned} \operatorname{Var}(X) &= E\left(X^2\right) - \left(E(X)\right)^2 = \sum_{i=0}^{N} i^2 P[X=i] - \left(\frac{N}{2}\right)^2 \\ &= \sum_{i=0}^{N} i^2 \frac{1}{2^N} {N \choose i} - \left(\frac{N}{2}\right)^2 = \frac{1}{2^N} \sum_{i=0}^{N} i^2 {N \choose i} - \left(\frac{N}{2}\right)^2 \\ &= \frac{1}{2^N} N(N+1) 2^{N-2} - \frac{N^2}{4} = \frac{N}{4}, \end{aligned}$$

utilizando os exercícios 8(f) e (g) do capítulo 1. Logo,

$$\lim_{N \to \infty} \frac{1}{N} E(X) = \lim_{N \to \infty} \frac{1}{N} \frac{N}{2} = \frac{1}{2} \quad \text{e } \lim_{N \to \infty} \frac{1}{N} \operatorname{Var}(X) = \lim_{N \to \infty} \frac{1}{N} \frac{N}{4} = \frac{1}{4}.$$

- 28. a) $1/n^p$ b) $1-1/2^p$
- 29. a) Os possíveis resultados para a estratégia são:

$$V_1, V_1^{\tt c} \cap V_2 \cap V_3, V_1^{\tt c} \cap V_2 \cap V_3^{\tt c}, V_1^{\tt c} \cap V_2^{\tt c} \cap V_3^{\tt c}, V_1^{\tt c} \cap V_2^{\tt c} \cap V_3^{\tt c},$$

onde V_i denota a ocorrência de bola vermelha no giro i = 1, 2, 3.

Note que o ganho do apostador, X, pode assumir os seguintes valores: -3, -1 e 1. Assim, assumindo independência entre os resultados dos giros da roleta, temos que:

$$P[X>0] = P[X=1] = P[V_1] + P[V_1^c \cap V_2 \cap V_3] = \frac{18}{38} + \frac{20}{38} \left(\frac{18}{38}\right)^2 = 0,5918.$$

- b) Uma estratégia é vencedora se leva a E(X) > 0
- c) $E(X) = 1 \cdot P[X = 1] + (-1) \cdot P[X = -1] + (-3) \cdot P[X = -3] =$ $=\frac{18}{99}+\frac{20}{99}\left(\frac{18}{99}\right)^2-2\left(\frac{20}{99}\right)^2\frac{18}{99}-3\left(\frac{20}{99}\right)^3\Rightarrow E(X)=-0{,}1086$
- 30. a) μ b) $\mu + \mu^2 + \sigma^2$
- 31. a) É fácil ver que P[X > 0] = P[X > 1] = 1 e P[X > k] = 0, para k = N + 1,...Para k = 2, 3, ..., N, temos

$$P[X>k] = \frac{N}{N} \frac{N-1}{N} \cdots \frac{N-(k-1)}{N} \Rightarrow P[X>k] = \left(1 - \frac{1}{N}\right) \cdots \left(1 - \frac{(k-1)}{N}\right)$$
 Como X assume valores naturais, temos que

$$\begin{split} E(X) &= \sum_{k=1}^{\infty} k P[X=k] = \sum_{k=1}^{\infty} \left(\sum_{i=1}^{k} 1\right) P[X=k] \\ &= \sum_{k=1}^{\infty} \sum_{i=1}^{k} P[X=k] = \sum_{i=1}^{\infty} \sum_{k=i}^{\infty} P[X=k] \\ &= \sum_{i=1}^{\infty} P[X \geq i] = \sum_{i=0}^{\infty} P(X > i) \\ &= 1 + 1 + \sum_{k=2}^{N} \left(1 - \frac{1}{N}\right) \cdots \left(1 - \frac{(k-1)}{N}\right) \end{split}$$

- 32. $F_Y(t) = 0$, se t < 0; $F_Y(t) = t^2/R^2$, se $0 \le t \le R$; $F_Y(t) = 1$, se t > R.
- 33. Determinemos, inicialmente, a função de distribuição de X:

$$F(t) = P[X \le t] = 0$$
, se $t < 0$, e $F(t) = 1$, se $t > H$.

Para $0 \le t \le H$, temos

$$F(t) = P[X \le t] = 1 - P[X > t] = 1 - \frac{2}{BH} \frac{1}{2} B \frac{(H-t)}{H} (H-t) = \frac{2Ht - t^2}{H^2}.$$

Assim,
$$f(t) = F'(t) = 0$$
, se $t < 0$ ou $t > H$, e $f(t) = F'(t) = \frac{2(H-t)}{H^2}$, para $0 < t < H$.

34. Sejam: U o ponto escolhido no intervalo (0,1) e X=X(U) o comprimento do maior pedaço.

Assim,
$$X = 1 - U$$
, se $U \le \frac{1}{2}$ e $X = U$, se $U > \frac{1}{2}$.
Então, $E(X) = E(X(U)) = \int_0^{\frac{1}{2}} (1 - u) \, du + \int_{\frac{1}{2}}^1 u \, du = \frac{3}{4}$

35. Observe que $P[X \in \{0,5\} \cup (1,3)] = 1$. Assim, $F_Y(t) = 0$, se t < 0.

Para
$$t \in [0,1)$$
, $F_Y(t) = P[Y \le t] = P[Y = 0] = P[X \le 1] = \frac{1}{5}$.
Para $1 \le t \le 3$, $F_Y(t) = P[Y = 0] + P[1 \le X \le t] = \frac{1}{5} + \frac{t-1}{5} = \frac{t}{5}$.
Para $3 < t < 5$, $F_Y(t) = F_Y(3) = \frac{3}{5}$. Por fim,

para $t \ge 3$, $F_Y(t) = F_Y(3) = \frac{1}{5}$. For finit, para $t \ge 3$, $F_Y(t) = P[Y \le 3] + P[Y = 5] = F_Y(3) + P[X \ge 3] = \frac{3}{5} + \frac{2}{5} = 1$.

Note que *Y* é uma variável aleatória mista.

36. a)
$$F_Y(t) = t$$
, se $\frac{1}{2} \le t \le 1$, $F_Y(t) = 1$, se $t > 1$, e $F_Y(t) = 0$, se $t < \frac{1}{2}$.
b) $F_Y(t) = 1 - e^{-\lambda t}$, se $t \ge \lambda$, e $F_Y(t) = 0$, se $t < \lambda$.

37. Para $m \in \{0, 1, 2, ...\}$, temos que

$$P[Y = m] = P[m < X \le m+1] = \int_{m}^{m+1} \lambda e^{-\lambda x} dx = -e^{-\lambda x} \Big|_{m}^{m+1} =$$
$$= -e^{-\lambda (m+1)} + e^{-\lambda m} = e^{-\lambda m} (1 - e^{-\lambda}); \quad (p = e^{-\lambda})$$

38.
$$365 \binom{n}{k} \left(\frac{1}{365}\right)^k \left(\frac{364}{365}\right)^{n-k}$$

39. a) Seja X o número de tentativas até abrir a porta.

Temos que
$$P[X = 1] = \frac{1}{n}$$
.

Para
$$j = 2, ..., n, P[X = j] = \frac{n-1}{n} \cdots \frac{n-(j-1)}{n-(j-2)} \frac{1}{n-(j-1)} = \frac{1}{n}.$$

Assim,
$$E(X) = \sum_{j=1}^{n} j P[X = j] = \sum_{j=1}^{n} j \frac{1}{n} = \frac{1}{2} (n+1)$$
, e

$$E(X^2) = \sum_{i=1}^{n} j^2 P[X = j] = \frac{1}{6} (n+1)(2n+1).$$

Logo,
$$Var(X) = E(X^2) - (E(X))^2 = \frac{1}{12}(n^2 - 1).$$

b) No segundo caso, temos E(X) = n e Var(X) = n(n-1).

40.
$$\min\left\{i \ge 0 : P(X \le i) \ge \frac{B}{B+L}\right\}$$

Dica: defina, para $i \ge 0$, o lucro esperado estocando i unidades, $E(L_i(X))$, e avalie a diferença $E(L_{i+1}(X)) - E(L_i(X))$, $i \ge 0$.

41. Dada a distribuição da demanda X, para cada $i \in \{0,1,2,3\}$, avaliamos o lucro esperado com a venda de flores partindo de um estoque de i flores, $E(L_i) = E(L_i(X))$. Note que

$$L_i(X) = (1,5-0,5)i = i$$
, se $X \ge i$, e

$$L_i(X) = 1.5 X - 0.5 i$$
, se $X < i$.
Para $i = 0$, $L_0(x) = 0$, para todo $x \in \{0, 1, 2, 3\}$.

Assim, $E(L_0(X)) = 0$.

$$\begin{split} \text{Para } i = 1, \, E(L_1(X)) &= -0, 5 \cdot P[X = 0] + 1 \cdot P[X \ge 1] = -0, 5 \frac{1}{10} + \frac{9}{10} = \frac{17}{20}. \\ \text{Para } i = 2, \, E(L_2(X)) &= (0 - 1) \cdot P[X = 0] + (1, 5 - 1) \cdot P[X = 1] + 2 \cdot P[X \ge 2] \\ &= -\frac{1}{10} + 0, 5 \frac{4}{10} + 2 \frac{5}{10} = \frac{11}{10}. \end{split}$$

Do mesmo modo, para i = 3, $E(L_3(X)) = \frac{9}{10}$.

Como para todo $i\neq 2$, $E(L_2(X))>E(L_i(X))$, o florista deve estocar 2 flores.

42. p*

CAPÍTULO 3 B.3

1. a) Considerando equiprováveis todos os subconjuntos de três elementos do conjunto de 12 bolas,

$$P(X = x, Y = y) = \frac{\binom{3}{x}\binom{4}{y}\binom{5}{3-x-y}}{\binom{12}{5}}, \ x, y \in N \ (\text{com} \ \binom{a}{b} = 0 \ \text{se} \ a < b).$$

b)
$$P(X = x) = \sum_{y=0}^{3-x} P(X = x, Y = y) = \sum_{y=0}^{3-x} \frac{\binom{3}{x}\binom{4}{y}\binom{3}{5}\binom{5}{2-x-y}}{\binom{12}{5}}$$

= $\frac{\binom{3}{x}}{\binom{12}{5}} \sum_{y=0}^{3-x} \binom{4}{y}\binom{5}{3-x-y}$

Do exercício 8(d) do capítulo 1, resulta que $P(X = x) = \frac{\binom{3}{3}\binom{9}{3-x}}{l^{12}}$.

Procedendo do mesmo modo, obtemos $P(Y = y) = \frac{\binom{4}{y}\binom{8}{3-y}}{\binom{12}{2}}$.

c)
$$P(X = Y) = P(X = Y = 0) + P(X = Y = 1) = \frac{\binom{3}{0}\binom{4}{0}\binom{5}{3}}{\binom{12}{5}} + \frac{\binom{3}{1}\binom{4}{1}\binom{5}{1}}{\binom{12}{5}} = \frac{7}{22}$$

- 2. a) Para $x, y \in \{1, 2, 3, 4, 5, 6\},\$ $P(X = x, Y = y) = \frac{x}{36}$, se x = y, e $P(X = x, Y = y) = \frac{1}{36}$, se x < y.
 - b) Para $x, y \in \{1, 2, 3, 4, 5, 6\}$ com $x \le y$, $P(X = x, Y = y) = \frac{1}{36}$, se x = y, e $P(X = x, Y = y) = \frac{2}{36}$, se x < y.
 - c) Para x = 1, 2, 3, 4, 5, 6 e $y = x + 1, \dots 2x$, $P(X = x, Y = y) = \frac{1}{36}$, so y = 2x, e $P(X = x, Y = y) = \frac{2}{36}$, so $y \neq 2x$.
- 3. O evento $\{N_1 = N_2 = 1\}$ ocorre se os dois primeiros transistores testados são exatamente os transistores defeituosos. Assim,

$$P(N_1 = 1, N_2 = 1) = \frac{2}{5} \cdot \frac{1}{4} = \frac{1}{10}.$$

Para y = 2, 3, 4, o evento $\{N_1 = 1, N_2 = y\}$ ocorre se o primeiro transistor testado é defeituoso, os seguintes y – 1 são não defeituosos e, finalmente, o (y+1)-ésimo transistor é defeituoso. Assim,

$$\begin{split} &P(N_1=1,N_2=y) = \frac{2}{5} \cdot \frac{3}{4} \cdots \frac{(3-(y-2))}{(4-(y-2))} \cdot \frac{1}{(4-(y-2)-1)} = \frac{2}{5} \cdot \frac{3}{4} \cdots \frac{5-y}{6-y} \cdot \frac{1}{5-y} = \frac{1}{10}. \\ &\text{Procedendo analogamente, obtemos, para } x = 1,2,3,4 \text{ e } y = 1,...,5-x, \\ &P(N_1=x,N_2=y) = \frac{1}{10}. \end{split}$$

- 4. a) Para $x, y \in \{1, 2, 3\}$ com $x \neq y$, $P(X = x, Y = y) = \frac{1}{6}$ b) $P(X < Y) = \frac{1}{2}$
- 5. Dos lemas 1.6.2 e 1.6.3,

$$\begin{split} P(X > x, Y > y) &= P(X > x) - P(X > x, Y \le y) \\ &= 1 - P(X \le x) - [P(Y \le y) - P(X \le x, Y \le y)] \\ &= 1 - F_X(x) - F_Y(y) + F(x, y) \end{split}$$

6.
$$1 - \frac{\binom{3}{0}\binom{9}{3}}{\binom{12}{3}} - \frac{\binom{4}{0}\binom{8}{3}}{\binom{12}{3}} + \frac{\binom{3}{0}\binom{4}{0}\binom{5}{3}}{\binom{12}{3}} = \frac{9}{22}$$

7. a)
$$P(XY \le 3) = 1P(XY > 3) = 1 - P(X = 2, Y = 2) = 1 - \frac{1}{2} = \frac{1}{2}$$

 $P(X + Y > 2) = 1 - P(X + Y \le 2) = 1 - P(X = 1, Y = 1) = 1 - \frac{1}{8} = \frac{7}{8}$

b)
$$P(X = 1) = P(X = 1, Y = 1) + P(X = 1, Y = 2) = \frac{1}{8} + \frac{1}{4} = \frac{3}{8}$$
.
Analogamente, $P(Y = 1) = \frac{1}{4}$.
Como $P(X=1, Y=1) \neq P(X=1) \cdot P(Y=1)$, $X \in Y$ $n\tilde{a}o$ são independentes.

- 8. a) $Cov(X,Y) = -\frac{9}{44}$
 - b) Como P(X=3)P(Y=3) > P(X=3,Y=3)=0, $X \in Y$ $n\tilde{a}o$ são independentes.
- 9. a) Como X,Y são variáveis aleatórias assumindo valores em $\{0,1\}$, a variável aleatória XY também assume valores em $\{0,1\}$ e $XY=1 \Leftrightarrow X=Y=1$. Assim, $E(XY)=1 \cdot P(XY=1)+0 \cdot P(XY=0)=P(X=1,Y=1)=\frac{1}{3}$. Além disso, $E(X)=1 \cdot P(X=1)+0 \cdot P(X=0)=P(X=1)=\frac{2}{3}$. Analogamente, $E(Y)=\frac{1}{2}$. Logo, $\operatorname{Cov}(X,Y)=\frac{1}{3}-\frac{2}{3}\cdot\frac{1}{2}=0$. b) Note que $P(X=1,Y=1)=P(X=1)\cdot P(Y=1)$. Do exercício 13 do
 - capítulo 1, resulta que X e Y são independentes.
- 10. a) Cov(X,Y)=0 b) X e Y $n\tilde{ao}$ são independentes (observe, por exemplo, que P(X=1,Y=1)=0, mas P(X=1)>0 e P(Y=1)>0).
- 11. a) Para $x \in \{0, 1, ..., 10\}$ e $y \in \{-x, -x+1, ..., 0, ..., x-1, x\}$, temos que $P(X = x, Y = y) = P(X = x)P(Y = y | X = x) = \frac{1}{11} \cdot \frac{1}{2x+1}$ b) Para $y \in \{-10, -9, ..., 0, ..., 9, 10\}$, $P(X = x, Y = y) > 0 \Leftrightarrow x \in \{|y|, ..., 10\}$. $P(Y = y) = \sum_{x=|y|}^{10} P(X = x, Y = y) = \sum_{x=|y|}^{10} \frac{1}{11} \cdot \frac{1}{2x+1} = \frac{1}{11} \sum_{x=|y|}^{10} \frac{1}{2x+1}$

- c) Note que P(X = 9, Y = 10) = 0, $P(X = 9) = \frac{1}{11}$ e $P(Y = 10) = \frac{1}{11} \cdot \frac{1}{21}$. Como $P(X = 9, Y = 10) \neq P(X = 9) P(Y = 10)$, $X \in Y$ $n\tilde{a}o$ são independentes.
- 12. a) Para verificar que $F^n(\cdot)$ é a função de distribuição de Y, considere, para cada $t \in \mathbb{R}$, a equivalência $\{Y \le t\} \Leftrightarrow \{X_1 \le t, \dots, X_n \le t\}$.
 - b) Para verificar que $1 [1 F(\cdot)]^n$ é a função de distribuição de Z, considere, para cada $t \in \mathbb{R}$, a equivalência $\{Z > t\} \Leftrightarrow \{X_1 > t, ..., X_n > t\}$.
- 13. Admitindo que E[g(X)] e E[f(Y)] são finitas, temos,

$$\begin{split} E[g(X)f(Y)] &= \sum_{x} \sum_{y} g(x)f(y)P(X=x,Y=y) \\ &= \sum_{x} \sum_{y} g(x)f(y)P(X=x)P(Y=y) \\ &= \sum_{x} \sum_{y} [g(x)P(X=x)]f(y)P(Y=y) \\ &= \sum_{x} [g(x)P(X=x)] \sum_{y} f(y)P(Y=y) \\ &= E[g(X)]E[f(Y)] \end{split}$$

- 14. a) Imediato b) Imediato
 - c) $\operatorname{Cov}(aX,Y) = E((aX)Y) E(aX)E(Y) =$ = $aE(XY) - aE(X)E(Y) = a\operatorname{Cov}(X,Y)$.

Provamos, analogamente, que Cov(X, aY) = aCov(X, Y)

- d) O resultado segue diretamente utilizando duas vezes o resultado (c).
- 15. a) $\operatorname{Cov}(\sum_{i=1}^{n} X_{i}, Y_{j}) = E((\sum_{i=1}^{n} X_{i})Y_{j}) E(\sum_{i=1}^{n} X_{i})E(Y_{j}) =$ $= E(\sum_{i=1}^{n} X_{i}Y_{j}) (\sum_{i=1}^{n} E(X_{i}))E(Y_{j}) =$ $= \sum_{i=1}^{n} E(X_{i}Y_{j}) \sum_{i=1}^{n} E(X_{i})E(Y_{j}) =$ $= \sum_{i=1}^{n} [E(X_{i}Y_{j}) E(X_{i})E(Y_{j})] = \sum_{i=1}^{n} \operatorname{Cov}(X_{i}Y_{j})$
 - b) Basta usar os resultados dos exercícios 14(a) e 15(a).
 - c) Basta utilizar os resultados dos exercícios 15(a), 15(b) e 14(d).
- 16. A expressão segue dos exercícios 14(b) e 15(c):

$$\begin{split} \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) &= \operatorname{Cov}(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{n} X_{j}) == \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}(X_{i}, X_{j}) = \\ &= \sum_{i=1}^{n} \operatorname{Cov}(X_{i}, X_{i}) + \sum_{i=1}^{n} \sum_{j \neq i} \operatorname{Cov}(X_{i}, X_{j}) = \\ &= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i=1}^{n} \sum_{j \neq i} \operatorname{Cov}(X_{i}, X_{j}) \end{split}$$

17. a) Do exercício 16, Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y). Usando (2.23) do capítulo 2, obtemos

$$\begin{aligned} & \operatorname{Var}(X) = \frac{45}{44} - \left(\frac{3}{4}\right)^2 = \frac{81}{176} \text{ e } \operatorname{Var}(Y) = \frac{17}{11} - (1)^2 = \frac{6}{11}. \\ & \operatorname{Assim}, \operatorname{Var}(X + Y) = \frac{81}{176} + \frac{6}{11} + 2 \cdot \left(-\frac{9}{44}\right) = \frac{105}{176} \end{aligned}$$

b)
$$Var(3-(X+Y)) = Var(X+Y) = \frac{105}{176}$$

- 18. a) Basta escrever $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ e usar os exercícios 15(c) e 14(b).
 - b) *Dica*: Defina $\mu = E(X)$ e verifique que

$$\textstyle \sum_{i=1}^{n} \left(X_{i} - \bar{X} \right)^{2} = \sum_{i=1}^{n} \left(X_{i} - \mu + \mu - \bar{X} \right)^{2} = \sum_{i=1}^{n} \left(X_{i} - \mu \right)^{2} - n \left(\bar{X} - \mu \right)^{2}.$$

19.
$$\operatorname{Cov}(X - \rho Y, Y) = \operatorname{Cov}(X, Y) - \rho \operatorname{Cov}(Y, Y) =$$

$$= \rho(X, Y) \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)} - \rho \operatorname{Var}(Y) = \rho \sqrt{1 \cdot 1} - \rho = 0$$

20. a)
$$(X_1, X_2)$$
 b) (X_2, X_4) c) (X_3, X_4) d) $-1/5\sqrt{140}$

21.
$$E((Y-\hat{Y}(X))^2) = E((Y-(a+bX))^2) = E(Y^2-2Y(a+bX)+(a+bX)^2) = E(Y^2)-2aE(Y)-2bE(XY)+a^2+2abE(X)+b^2E(X^2).$$

Derivando a expressão acima em relação a a e igualando a zero, obtemos a = E(Y) - E(X)b (*).

Tomando a derivada parcial em relação a b, obtemos

$$E(X^{2})b = E(XY) - E(X)a \qquad (**)$$

Do sistema de equações (*) e (**), obtemos

$$b = \frac{\text{Cov}(X,Y)}{\text{Var}(X)} \text{ e } a = E(Y) - bE(X).$$

- 22. Os resultados seguem diretamente da definição de valor esperado e da extensão do lema 2.7.1(b) para variáveis aleatórias multidimensionais.
- 23. a) A partir da definição das variáveis $I_i(k)$, temos que $X_i = \sum_{k=1}^n I_i(k)$, $i=1,\ldots,r$. Assim,

$$\begin{split} E(X_i) &= E(\sum_{k=1}^n I_i(k)) = \sum_{k=1}^n E(I_i(k)) = \sum_{k=1}^n P(I_i(k) = 1) = \\ &= \sum_{k=1}^n p_i = n p_i \end{split}$$

b) Dos exercícios 16 e 22, temos que

$$\begin{split} \operatorname{Var}(X_i) &= \operatorname{Var}(\sum_{k=1}^n I_i(k)) = \\ & \sum_{k=1}^n \operatorname{Var}(I_i(k)) + \sum_{k=1}^n \sum_{j \neq k} \operatorname{Cov}(I_i(k), I_i(j)). \end{split}$$

Como $I_i(k)$ e $I_i(j)$ são independentes para $j \neq k$, temos

$$Cov(I_i(k), I_i(j)) = 0.$$

Assim, a variância é reduzida a

$$\mathrm{Var}(X_i) = \sum_{k=1}^n \mathrm{Var}(I_i(k)) = \sum_{k=1}^n p_i (1-p_i) = n p_i (1-p_i).$$

c) Dos exercícios 15(c) e 22 e da independência entre $I_i(k)$ e $I_j(l)$, para $l \neq k$, temos:

$$\begin{split} \operatorname{Cov}(X_i, X_j) &= \sum_{k=1}^n \sum_{l=1}^n \operatorname{Cov}(I_i(k), I_j(l)) = \sum_{k=1}^n \sum_{l=1}^n \{P(I_i(k) = I_j(l) = 1) - P(I_i(k) = 1)P(I_j(l) = 1)\} = \\ &= \sum_{k=1}^n \{P(I_i(k) = I_j(k) = 1) - P(I_i(k) = 1)P(I_j(k) = 1)\} = \\ &= \sum_{k=1}^n \{0 - p_i p_j\} = -n p_i p_j. \end{split}$$

24. a)
$$P(Y = y | X = x) = {4 \choose y} {5 \choose 3-x-y} / {9 \choose 3-x}$$
, $y = 0, \dots, 3-x$.
b) $E(Y | X = x) = {4 \over 9} (3-x)$ c) $E(Y) = 1$

- 25. Do exercício 2(c) e do exercício 4(b) do capítulo 2, temos, para y ímpar, $P(X = x | Y = y) = \frac{1}{\min\{6, y-1\} - \frac{1}{2}(y-1)}, \text{ para } x \in \left\{\frac{1}{2}(y+1), \dots, \min\{6, y-1\}\right\}.$ Se $y \in \{2, 12\}$, $P(X = \frac{1}{2}y | Y = y) = 1$. Para demais valores de y, temos $P(X = \frac{1}{2}y | Y = y) = \frac{1}{\min\{y - 1, 13 - y\}} P(X = x | Y = y) = \frac{2}{\min\{y - 1, 13 - y\}},$ para $x = \frac{1}{2}y + 1, \dots, \min\{6, y - 1\}.$
- 26. a) $P(Y = 1 \mid X = 1) = \frac{1}{3}$, $P(Y = 2 \mid X = 1) = \frac{2}{3}$; e $P(Y = 1 \mid X = 2) = \frac{1}{5}$, $P(Y = 2 \mid X = 2) = \frac{4}{5}$. b) $E(Y|X=1) = \frac{5}{2}$ e $E(Y|X=2) = \frac{9}{5}$ c) $E(Y) = \frac{7}{4}$
- 27. Do enunciado, vimos que $Y \mid X=x \sim \text{Uniforme}\{-x,...,0,...,x\}$ e, como tal distribuição é simétrica, temos que E(Y|X=x)=0, para todo $x=0,1,\ldots,10$. Além disso, para $y \in \{-10, ..., 0, ..., 10\}$ e $x \in \{|y|, ..., 10\}$, temos $P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{\frac{1}{2x+1}}{\sum_{x=|y|}^{10} \frac{1}{2x+1}}, \ x = |y|, \dots, 10.$ $E(X \mid Y = y) = \sum_{x=|y|}^{10} x \cdot P(X = x \mid Y = y) = \frac{\sum_{x=|y|}^{10} \frac{x}{2x+1}}{\sum_{y=1}^{10} \frac{1}{2x+1}}$
- 28. Y: número de dias até que o prisioneiro consiga sair da cela, E(Y) = 7. Dica: Considere a variável X dada por: X = i se, e só se, o prisioneiro escolhe a *i*-ésima porta na primeira tentativa, i = 1, 2, 3, e use o lema 3.5.1.
- 29. Seja X o número de pessoas que entram na loja e S_i a quantia gasta pelo *i*-ésimo consumidor a entrar na loja, i = 1,...,X. Seja Y a quantia em dinheiro gasta na loja num determinado dia. Temos, pelo lema 3.5.1, $E(Y) = E(E(Y|X)) = \sum_{x=0}^{\infty} E(Y|X = x) P(X = x) = \sum_{x=0}^{\infty} 50x \cdot P(X = x),$ onde a última igualdade decorre do fato de que $E(Y \mid X = x) = E(\sum_{i=1}^{X} S_i \mid X = x) = E(\sum_{i=1}^{x} S_i \mid X = x) = \sum_{i=1}^{x} E(S_i \mid X = x) =$ $= \sum_{i=1}^{x} E(S_i) = x \cdot 50.$ Assim, $E(Y) = 50 \sum_{x=0}^{\infty} x \cdot P(X = x) = 50 E(X) = 2500.$
- 30. A primeira parte é imediata da independência entre X e Y. A segunda é obtida tomando-se as somas em y na igualdade e verificando-se que E(XY) = E(X)E(Y).
- 31. Da definição de distribuição condicional, é imediato que $E(X_1 + \dots + X_n \mid X_1 + \dots + X_n = x) = x.$ Pela linearidade da esperança, temos que

$$\begin{split} &E(X_1 \big| X_1 + \dots + X_n = x) + \dots + E(X_n \big| X_1 + \dots + X_n = x) = x \Rightarrow \\ &\Rightarrow nE(X_1 \big| X_1 + \dots + X_n = x) = x \Rightarrow E(X_1 \big| X_1 + \dots + X_n = x) = \frac{x}{n}, \text{ pois} \\ &E(X_j \big| X_1 + \dots + X_n = x) = E(X_1 \big| X_1 + \dots + X_n = x), j = 1, \dots, n. \\ &\text{Essa última igualdade decorre da independência e equidistribuição das variáveis } X_1, \dots, X_n. \end{split}$$

- As três igualdades seguem das definições de distribuição e esperança condicional.
- 33. a) Seja $X_i = 1$, se a *i*-ésima árvore derrubada esconde ouro e $X_i = 0$, caso contrário, i = 1, ..., n. Desse modo, $X = \sum_{i=1}^{n} X_i$. Assim,

$$E(X) = E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) = \sum_{i=1}^{n} P(X_i = 1) = \sum_{i=1}^{n} \frac{M}{N} = \frac{nM}{N},$$
 pois

$$P(X_i=1) = \sum_{j=0}^{i-1} \frac{\binom{M}{j}\binom{N-M}{i-1-j}}{\binom{N}{i-1}} \cdot \frac{M-j}{N-(i-1)} = \frac{M}{N} \sum_{j=0}^{i-1} \frac{\binom{M-1}{j}\binom{N-M}{i-1-j}}{\binom{N-1}{i-1}} = \frac{N}{M}.$$

O resultado acima para $P(X_i=1)$ é obtido através do lema 1.7.2 condicionando no número de árvores com ouro derrubadas até a (i-1)-ésima árvore derrubada.

b) Notemos que a variável Y assume valor no conjunto $\{r, ..., N - (M-r)\}$. O evento $\{Y = t\}$ ocorre se, e só se, r-1 árvores com ouro são derrubadas nas t-1 primeiras derrubadas e a t-ésima árvore derrubada esconde ouro. Assim, para $t \in \{r, ..., N - (M-r)\}$,

$$P(Y=t) = \frac{\binom{M}{r-1}\binom{N-M}{t-1-(r-1)}}{\binom{N}{t-1}} \cdot \frac{M-(r-1)}{N-(t-1)} = \frac{\binom{t-1}{r-1}\binom{N-t}{M-r}}{\binom{N}{M}},$$

donde segue que $\sum_{t=r}^{N-M+r} {t-1 \choose r-1} {N-t \choose M-r} = {N \choose M}$. Enfim,

$$E(Y) = \sum_{t=r}^{N-M+r} t P(Y=t) = \sum_{t=r}^{N-M+r} t \frac{\binom{t-1}{r}\binom{N-t}{M-r}}{\binom{N}{M}} = r \sum_{t=r}^{N-M+r} \frac{\binom{t}{r}\binom{N-t}{M-r}}{\binom{N}{M}}.$$

Fazendo t' = t+1 e r' = r+1 na soma acima, obtemos

$$E(Y) = \frac{r}{\binom{N}{M}} \sum_{t'=r'}^{N-M+r'} \binom{t'-1}{r'-1} \binom{N+1-t'}{M+1-r'} = \frac{r}{\binom{N}{M}} \binom{N+1}{M+1} \Rightarrow E(Y) = \frac{r(N+1)}{M+1}.$$

34. a)
$$E(T_R | T_{R-1}) = 1 + T_{R-1} + (1-p)E(T_R)$$
 b) $E(T_R) = \frac{1}{p} + \frac{1}{p}E(T_{R-1})$ c) $E(T_1) = \frac{1}{p}$ d) $E(T_R) = \frac{(1/p)^{R+1} - (1/p)}{(1/p) - 1}$

35.
$$E(X) = \sum_{x < a} x P(X = x) + \sum_{x \ge a} x P(X = x)$$

$$= \sum_{x < a} x P(X = x, X < a) + \sum_{x \ge a} x P(X = x, X \ge a)$$

$$= \sum_{x < a} x P(X = x | X < a) P(X < a) + \sum_{x \ge a} x P(X = x | X \ge a) P(X \ge a)$$

$$= \left\{ \sum_{x} x P(X = x | X < a) \right\} P(X < a) + \left\{ \sum_{x} x P(X = x | X \ge a) \right\} P(X \ge a)$$

$$= E(X | X < a) P(X < a) + E(X | X \ge a) P(X \ge a)$$

36. Suponhamos $E(X^2) < \infty$. Faremos a verificação no caso discreto. Seja $p_y = P(Y=y)$. Da relação (2.23), das definições de valor esperado e variância condicionais e do lema 3.5.1, temos

$$\begin{split} E(\operatorname{Var}(X|Y)) + \operatorname{Var}(E(X|Y)) &= \\ &= E(\operatorname{Var}(X|Y)) + E((E(X|Y))^2) - (E(E(X|Y)))^2 = \\ &= \sum_{y} \operatorname{Var}(X|Y = y) p_y + \sum_{y} (E(X|Y = y))^2 p_y - (E(X))^2 = \\ &= \sum_{y} \{E(X^2|Y = y) - (E(X|Y = y))^2\} p_y + \sum_{y} (E(X|Y = y))^2 p_y - (E(X))^2 = \\ &= \sum_{y} E(X^2|Y = y) p_y - (E(X))^2 = E(E(X^2|Y)) - (E(X))^2 = \\ &= E(X^2) - (E(X))^2 \\ &= \operatorname{Var}(X) \end{split}$$

- 37. a) Pode-se verificar que $E(X_n | X_{n-1} = t) = \mu t$, para cada $t \in N$. Assim, $E(X_n | X_{n-1}) = \mu X_{n-1}$ $e E(X_n) = E(E(X_n | X_{n-1})) = E(\mu X_{n-1}) = \mu E(X_{n-1}).$
 - b) Do resultado do item (a), temos $E(X_n) = \mu E(X_{n-1}) = \mu E(\mu X_{n-2}) = \mu^2 E(X_{n-2}).$ Repetindo o procedimento acima n-2 vezes, obtemos $E(X_n) = \mu^n E(X_0) = \mu^n$
 - c) Procedendo como no item (a), pode-se verificar que

$$Var(X_n | X_{n-1} = t) = \sigma^2 t, t = 0, 1, 2,$$

Assim,
$$Var(X_n | X_{n-1}) = \sigma^2 X_{n-1}$$
.

Do exercício 36 e do item anterior, temos que

$$\begin{split} \operatorname{Var}(X_n) &= E\left(\operatorname{Var}(X_n \,\middle|\, X_{n-1})\right) + \operatorname{Var}(E\left(X_n \,\middle|\, X_{n-1}\right)) = \\ &= E\left(\sigma^2 X_{n-1}\right) + \operatorname{Var}(\mu X_{n-1}) \\ &= \sigma^2 \mu^{n-1} + \mu^2 \operatorname{Var}(X_{n-1}). \end{split}$$

Procedendo como no item (b), obtemos

$$Var(X_n) = \sigma^2(\mu^{n-1} + \dots + \mu^{2n-3}) + \mu^{2n-2}Var(X_1).$$

Como $Var(X_1) = \sigma^2$, resulta que

$$\mathrm{Var}(X_n) = \sigma^2(\mu^{n-1} + \dots + \mu^{2n-2}) = \sigma^2\mu^{n-1}(1 + \dots + \mu^{n-1}).$$

- 38. A propriedade decorre diretamente da condição (b) e do lema 3.5.1.
- 39. Do enunciado, temos que

$$Y_n = Y_n(X_1, \dots, X_n) = \frac{b + R \sum_{i=1}^n X_i}{b + p + nR}.$$

Evidentemente, $0 < Y_n < 1$ e, portanto, $E(|Y_n|) < \infty$.

Para $x_i = 0, 1, i = 1, ..., n$,

$$E(Y_{n+1} \mid X_1 = x_1, \dots, X_n = x_n) = E\left(\frac{b + R \sum_{i=1}^{n+1} X_i}{b + p + (n+1)R} \mid X_1 = x_1, \dots, X_n = x_n\right) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \left(\frac{b + R \sum_{i=1}^{n+1} X_i}{b + p + (n+1)R} \mid X_1 = x_1, \dots, X_n = x_n\right) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \left(\frac{b + R \sum_{i=1}^{n+1} X_i}{b + p + (n+1)R} \mid X_1 = x_1, \dots, X_n = x_n\right) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \left(\frac{b + R \sum_{i=1}^{n+1} X_i}{b + p + (n+1)R} \mid X_1 = x_1, \dots, X_n = x_n\right) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \left(\frac{b + R \sum_{i=1}^{n+1} X_i}{b + p + (n+1)R} \mid X_1 = x_1, \dots, X_n = x_n\right) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \left(\frac{b + R \sum_{i=1}^{n+1} X_i}{b + p + (n+1)R} \mid X_1 = x_1, \dots, X_n = x_n\right) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \left(\frac{b + R \sum_{i=1}^{n+1} X_i}{b + p + (n+1)R} \mid X_1 = x_1, \dots, X_n = x_n\right) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \left(\frac{b + R \sum_{i=1}^{n} X_i}{b + p + (n+1)R} \mid X_1 = x_1, \dots, X_n = x_n\right) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \left(\frac{b + R \sum_{i=1}^{n} X_i}{b + p + (n+1)R} \mid X_1 = x_1, \dots, X_n = x_n\right) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \left(\frac{b + R \sum_{i=1}^{n} X_i}{b + p + (n+1)R} \mid X_1 = x_1, \dots, X_n = x_n\right)$$

$$\begin{split} &= E\Big(\frac{b + R\sum_{i=1}^{n}x_{i} + RX_{n+1}}{b + p + (n+1)R} \, \big| \, X_{1} = x_{1}, \ldots, X_{n} = x_{n} \Big) = \\ &= \frac{b + R\sum_{i=1}^{n}x_{i} + R}{b + p + (n+1)R} \cdot \frac{b + R\sum_{i=1}^{n}x_{i}}{b + p + Rn} + \frac{b + R\sum_{i=1}^{n}x_{i}}{b + p + (n+1)R} \cdot \frac{p + R\left(n - \sum_{i=1}^{n}x_{i}\right)}{b + p + Rn}, \end{split}$$

onde a última igualdade decorre do fato que

$$\begin{split} X_{n+1} \, \big| \, X_1 &= x_1, \dots, X_n = x_n \sim \text{ Ber}\Big(\frac{b + R \sum_{i=1}^n x_i}{b + p + R n}\Big). \\ \text{Logo, } E(Y_{n+1} \, \big| \, X_1 = x_1, \dots, X_n = x_n) &= \frac{b + R \sum_{i=1}^n x_i}{b + p + R n} = y_n. \end{split}$$

Portanto, $E(Y_{n+1} | X_1, ..., X_n) = Y_n$, concluindo a prova.

Do exercício anterior, segue que $E(Y_{20}) = E(Y_1) = \frac{b}{b+p}$.

- 40. a) $1 (1 p)^k$
 - b) $\left[\frac{N}{k}\right] \cdot \left(1 + k(1 (1 p)^k)\right)$, se N é múltiplo de k; caso contrário $\left[\frac{N}{k}\right] \cdot \left(1 + k(1 (1 p)^k)\right) + 1 + \left(N \left[\frac{N}{k}\right]k\right) \cdot \left(1 (1 p)^{N \left[\frac{N}{k}\right]k}\right)$,

onde [x] denota o maior inteiro menor ou igual a x.

41. Seja *T* a variável aleatória que descreve o tempo de vida de uma pessoa. Consideremos, do enunciado,

$$P_x = P(T > x + 1 | T > x)$$
 e ${}_tP_x = P(X > x + t | X > x)$ (note que $P_x = {}_1P_x$). Assim,

$$\begin{split} _{t+\mu}P_x &= P(T>x+t+\mu \big|\, X>x) = P(T>x+t+\mu, T>x+t \big|\, X>x) = \\ &= P(T>x+t+\mu \big|\, T>x+t, X>x) P(T>x+t \big|\, X>x) = \\ &= P(T>x+t+\mu \big|\, T>x+t) P(T>x+t \big|\, X>x) = (_{\mu}P_{x+t}) (_{t}P_{x}) \end{split}$$

Quando n é inteiro, temos, aplicando sucessivamente o resultado obtido acima, que

$$\begin{split} _tP_x &= _nP_x = _{1+(n-1)}P_x = _1P_x \cdot _{n-1}P_{x+1} = P_x \cdot _{1+(n-2)}P_{x+1} = \\ &= P_x \cdot _1P_{x+1} \cdot _{n-2}P_{x+2} = P_x \cdot P_{x+1} \cdot _{n-2}P_{x+2} = \cdots = \\ &= P_x \cdot P_{x+1} \cdots P_{x+n-2} \cdot _1P_{x+n-1} \\ &= P_x \cdot P_{x+1} \cdots P_{x+n-1} \end{split}$$

Finalmente, da definição de L_x , temos que

$$\frac{L_{x+t}}{L_x} = \frac{L_{0\ x} + tP_0}{L_{0\ x} P_0} = \frac{L_{0\ x} P_{0t} P_x}{L_{0\ x} P_0} = {}_t P_x.$$

42. *Dica*: Escreva λ_{x+t} como soma de variáveis aleatórias indicadoras e verifique que $E(\lambda_{x+t}) = L_{xt}P_x = L_{x+t}$.

43. a) (i)
$$F_{X_{(1)}}(x) = P(X_{(1)} \le x) = 1 - P(X_{(1)} > x) = 1 - P(\bigcap_{i=1}^{n} (X_i > x)) = 1 - \prod_{i=1}^{n} P(X_i > x) = 1 - \prod_{i=1}^{n} [1 - F(x)] = 1 - [1 - F(x)]^n$$

(ii)
$$F_{X_{(n)}}(x) = P(X_{(n)} \le x) = P(\cap_{i=1}^{n} (X_i \le x))$$

= $\prod_{i=1}^{n} P(X_i \le x) = \prod_{i=1}^{n} [F(x)] =$
= $[F(x)]^n$

b)
$$\begin{split} F_{(X_{(1)},X_{(n)})}(a,b) &= P(X_{(1)} \leq a, X_{(n)} \leq b) = \\ &= P(X_{(n)} \leq b) - P(X_{(1)} > a, X_{(n)} \leq b) \\ &= [F(b)]^n - P(\cap_{i=1}^n (a < X_i \leq b)) = \\ &= [F(b)]^n - \prod_{i=1}^n P(a < X_i \leq b) \\ &= [F(b)]^n - [F(b) - F(a)]^n \end{split}$$

- 44. a) $E(X_n | X_{n-1}) = \frac{1}{k} + \frac{k-2}{k} \cdot X_{n-1}$. Do lema 3.5.1, $E(X_n) = \frac{1}{2} + \left(\frac{k-2}{k}\right)^n \cdot \left(X - \frac{1}{2}\right)$
 - b) Imediato a partir do resultado do item (a).

B.4 CAPÍTULO 4

1. a) Seja X o número de parafusos com defeito num pacote de dez parafusos. Suponhamos $X \sim \text{Binomial}(10;0,01)$. Assim:

$$\begin{split} P(X \geq 2) &= 1 - P(X < 2) = 1 - P(X = 0) - P(X = 1) = \\ &= 1 - \binom{10}{0}(0.01)^0(0.99)^{10 - 0} - \binom{10}{1}(0.01)^1(0.99)^{10 - 1} = 0.0043. \end{split}$$

b) Seja Y o número de pacotes adquiridos que possuem dois ou mais parafusos defeituosos. Suponhamos $Y \sim \text{Binomial}(10;0,0043)$. O cliente terá que retornar à companhia se Y > 0. Logo,

$$P(Y>0) = 1 - P(Y \le 0) = 1 - P(Y=0) = 1 - (0.9957)^{10} = 0.0422.$$

2. a)
$$\frac{1}{2!}e^{-\frac{1}{2}}(\frac{1}{2})^2 = 0.0758$$
 b) $1 - e^{-\frac{1}{2}} = 0.3935$ c) $e^{-100} \approx 0$

3. A proposta do estudante não está correta. Note, por exemplo, que $P(X=7)=(1-p)^2p^5+p(1-p)p^5\neq (1-p)^2p^5.$

4.
$$\binom{4}{3} \left(\frac{3}{4}\right)^3 \left(\frac{1}{4}\right)^{4-3} = \frac{27}{64}$$

Seja X o número de itens defeituosos na amostra.
 Pela distribuição exata de X.

$$P(X \leq 1) = {10 \choose 0} (0,1)^0 (0,9)^{10-0} + {10 \choose 1} (0,1)^1 (0,9)^{10-1} = 0,7361.$$

Pela distribuição Poisson (aproximada), $\lambda = 10 \cdot 0, 1 = 1$,

$$P(X \le 1) \cong \frac{e^{-1}1^0}{0!} + \frac{e^{-1}1^1}{1!} = 0,7358.$$

6.
$$\frac{\binom{6}{4}\binom{44}{2}}{\binom{50}{6}} + \frac{\binom{6}{5}\binom{44}{1}}{\binom{50}{6}} + \frac{\binom{6}{6}\binom{44}{0}}{\binom{50}{6}} \cong 0,00091$$

7. Do exercício anterior, considere a probabilidade de obter algum prêmio num dado sorteio p=0,0009. Considerando que os sorteios são semanais e que há 52 sorteios num ano, suporemos que a variável aleatória X: número de concursos nos quais o acusado ganhou algum prêmio é distribuída segundo o modelo binomial com n=52 e p=0,0009. Assim, $P(X \ge 12) = \sum_{i=19}^{52} {52 \choose i} (0,00091)^i (1-0,00091)^{52-i} \cong 6,4 \times 10^{-26}$.

Essa probabilidade dá sustentação à acusação, evidenciando que o fato é, realmente, muito raro.

8. Considerando que X: número de partículas alfa emitidas por segundo é distribuído, aproximadamente, pelo modelo Poisson de média 3,2: $P(X \le 2) \cong \frac{1}{01}e^{-3,2}(3,2)^0 + \frac{1}{11}e^{-3,2}(3,2)^1 + \frac{1}{01}e^{-3,2}(3,2)^2 = 0,3799$

9. Seja
$$X$$
 o número de componentes não defeituosos na amostra de tama-
nho 3 extraída do lote de 10 componentes. Seja Y o número de compo-
nentes defeituosos no lote adquirido. Note que X , dado $Y=4$, é distri-
buído segundo o modelo hipergeométrico com parâmetros $M=6$, $N=10$

e n = 3. Assim, a proporção de lotes rejeitados é

$$\begin{split} P(X<3) &= 1 - \{P(X=3 \, \big| \, Y=4) \, P(Y=4) + P(X=3 \, \big| \, Y=1) \, P(Y=1) \} = \\ &= 1 - \left\{ \frac{\binom{6}{3}\binom{4}{0}}{\binom{10}{3}} \cdot \frac{3}{10} + \frac{\binom{9}{3}\binom{1}{0}}{\binom{10}{3}} \cdot \frac{7}{10} \right\} = \frac{46}{100}. \end{split}$$

- 10. Sob a suposição de independência entre os resultados dos sorteios, os dois amigos têm a mesma probabilidade de ganhar algum prêmio.
- 11. Considere X=1, se o réu é culpado, e X=0, caso contrário. Seja Y o número de jurados que julgam o réu culpado. Seja D o evento "o júri toma decisão correta". Assim, $D=\{X=1,Y\geq 8\}\cup\{X=0,Y\leq 7\}$. A probabilidade de D é:

$$\begin{split} P(D) &= P(X=1,Y\geq 8) + P(X=0,Y\leq 7) = \\ &= P(Y\geq 8 \, \big| \, X=1) P(X=1) + P(Y\leq 7 \, \big| \, X=0) P(X=0) = \\ &= \sum_{\gamma=8}^{10} \binom{10}{\gamma} \theta^{\gamma} (1-\theta)^{10-\gamma} \cdot \alpha + \sum_{\gamma=0}^{7} \binom{10}{\gamma} (1-\theta)^{\gamma} \theta^{10-\gamma} \cdot (1-\alpha) \end{split}$$

- 12. O jornaleiro deve estocar 3 jornais.
- 13. Sejam $X \sim \text{Binomial}(5,p)$ e $Y \sim \text{Binomial}(3,p)$. O avião com cinco motores é preferível ao avião com três motores se, e só se, $P(X \ge 3) > P(Y \ge 2)$:

$${5 \choose 3} p^3 (1-p)^2 + {5 \choose 4} p^4 (1-p) + p^5 > {3 \choose 2} p^2 (1-p) + p^3 \Leftrightarrow p > \frac{1}{2}.$$

14.
$$\alpha \cdot \sum_{j=k}^{N} \binom{N}{j} p_1^j (1-p_1)^{N-j} + (1-\alpha) \cdot \sum_{j=k}^{N} \binom{N}{j} p_2^j (1-p_2)^{N-j}$$

15. Seja X uma variável com distribuição hipergeométrica de parâmetros n, 2n e n. Para k = 0, 1, ..., n, temos que

$$P(X = k) = \frac{\binom{n}{k}\binom{n}{n-k}}{\binom{2n}{n}} = \frac{\binom{n}{k}^2}{\binom{2n}{n}}. \text{ Assim,}$$

$$\sum_{k=0}^{n} P(X = k) = \sum_{k=0}^{n} \frac{\binom{n}{k}^2}{\binom{2n}{n}} = 1 \Rightarrow \sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$

16. Ver exercício 31 do capítulo 2.

$$\begin{split} 17. \quad & \sum_{i=0}^{\infty} i P(N > i) = \sum_{i=0}^{\infty} i \left(\sum_{j=i+1}^{\infty} P(N = j) \right) = \sum_{i=0}^{\infty} \sum_{j=i+1}^{\infty} i P(N = j) = \\ & = \sum_{j=1}^{\infty} \sum_{i=0}^{j-1} i P(N = j) = \sum_{j=1}^{\infty} P(N = j) \left(\sum_{i=0}^{j-1} i \right) = \\ & = \sum_{j=1}^{\infty} P(N = j) \frac{1}{2} j (j-1) = \\ & = \frac{1}{2} \left(E(N^2) - E(N) \right). \end{split}$$

18. a)
$$E(Y) = 0$$
 b) $Var(Y) = 1$

19. Seja X variável aleatória com distribuição hipergeométrica de parâmetros N, M e n. Para i = 1, ..., M, definimos a variável $X_i = 1$, se o i-ésimo elemento do tipo I pertence a amostra e X_i = 0, caso contrário. Assim, $X = \sum_{i=1}^{M} X_i$. Logo,

$$\begin{aligned} & \operatorname{Var}(X) = \operatorname{Var}(\sum_{i=1}^{M} X_i) = \sum_{i=1}^{M} \operatorname{Var}(X_i) + \sum_{i=1}^{M} \sum_{j \neq i} \operatorname{Cov}(X_i, X_j) = \\ & = \sum_{i=1}^{M} \frac{n}{N} \left(1 - \frac{n}{N} \right) + \sum_{i=1}^{M} \sum_{j \neq i} \left(\frac{n(n-1)}{N(N-1)} - \left(\frac{n}{N} \right)^2 \right) = \\ & = M \frac{n}{N} \left(1 - \frac{n}{N} \right) + M \left(M - 1 \right) \left(\frac{n(n-1)}{N(N-1)} - \left(\frac{n}{N} \right)^2 \right) = \\ & = \frac{nM}{N} \left(\frac{N-n}{N} - (M-1) \frac{N-n}{N(N-1)} \right) = n \frac{M}{N} \frac{(N-n)(N-M)}{N(N-1)} = \\ & = n \frac{M}{N} \frac{N-M}{N-N} \frac{N-n}{N-1} \end{aligned}$$

20. Basta reescrever a expressão dada como
$$\binom{n}{k}\frac{M!}{(M-k)!}\frac{(N-M)!}{[(N-M)-(n-k)]!}\frac{(N-n)!}{N!}=\binom{n}{k}\frac{M\cdots(M-k+1)(N-M)\cdots(N-M-(n-k)+1)}{N(N-1)\cdots(N-n+1)}$$
 e tomar limites em N e M como no enunciado.

O resultado estabelece que, sob as condições do enunciado, a distribuição hipergeométrica é aproximada por uma adequada distribuição binomial.

21. Para obter o ponto de máximo da função de probabilidade para o modelo Poisson, estudamos o crescimento (decrescimento) da função de probabilidade avaliando a expressão em pontos consecutivos. Para $k \in N$,

$$P(X=k) \leq P(X=k+1) \Leftrightarrow \frac{e^{-\lambda} \lambda^k}{k!} \leq \frac{e^{-\lambda} \lambda^{k+1}}{(k+1)!} \Leftrightarrow k \leq \lambda - 1$$

Assim, para $k \le \lambda - 1$, P(X = k) é não decrescente e, para $k \ge \lambda - 1$, P(X = k)é não crescente. Logo, se $\lambda \in N$, λ e $\lambda - 1$ são pontos de máximo de P(X = k). Caso contrário, o ponto de máximo é $[\lambda]$.

- 22. Basta proceder como no exercício 21.
- 23. $P(X \in A) = \sum_{i \in A} \frac{1}{i!} e^{-\lambda} \lambda^{i}$. Note que $\sum_{i=0}^{\infty} \frac{1}{i!} e^{-\lambda} (-\lambda)^{i} = \sum_{i \in A} \frac{1}{i!} e^{-\lambda} \lambda^{i} \sum_{i \notin A} \frac{1}{i!} e^{-\lambda} \lambda^{i} = P(A) P(A^{c}) \Rightarrow e^{-2\lambda} = 2P(A) 1 \Rightarrow P(A) = \frac{1}{2} \left(1 + e^{-2\lambda}\right)$
- 24. a) $E[X^n] = \sum_{x=1}^{\infty} x^n \frac{e^{-\lambda} \lambda^x}{x!} = \lambda \sum_{x=1}^{\infty} x^{n-1} \frac{e^{-\lambda} \lambda^{x-1}}{(x-1)!} = \lambda \sum_{y=0}^{\infty} (y+1)^{n-1} \frac{e^{-\lambda} \lambda^y}{y!}$ = $\lambda E[(X+1)^{n-1}]$
 - b) $\lambda^4 + 6\lambda^3 + 7\lambda^2 + \lambda$ c) $\frac{e^{-\lambda}}{1-\lambda}$ d) $1 e^{-4\lambda}$
- 25. Sejam X o número de eventos que ocorrem num intervalo de tempo e Y o número de eventos (dentre as ocorrências) contados. Do enunciado, $Y \mid X = x \sim \text{Binomial}(x, p)$. Assim, para $y \in N$, temos

$$\begin{split} P(Y = y) &= \sum_{x = 0}^{\infty} P(X = x, Y = y) = \sum_{x = 0}^{\infty} P(X = x) P(Y = y \, | \, X = x) = \\ &= \sum_{x = y}^{\infty} \frac{1}{x!} e^{-\lambda} (\lambda)^{x} {x \choose y} p^{y} (1 - p)^{x - y} = \frac{1}{y!} e^{-\lambda} (\lambda p)^{y} \sum_{x = y}^{\infty} \frac{[\lambda (1 - p)]^{x - y}}{(x - y)!} = \\ &= \frac{1}{y!} e^{-\lambda} (\lambda p)^{y} e^{\lambda (1 - p)} = \frac{1}{y!} e^{-\lambda p} (\lambda p)^{y}. \end{split}$$

Portanto, Y é Poisson (λp) .

26.
$$\frac{(M-x)(n-x)}{(x+1)(N-m-n+x+1)}$$

- 27. Vamos verificar que $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$. Para $t \in N$, temos $P(X + Y = t) = \sum_{x=0}^{t} P(X = x, Y = t x) = \sum_{x=0}^{t} \frac{1}{x!} e^{-\lambda_1} \lambda_1^x \cdot \frac{1}{(t-x)!} e^{-\lambda_2} \lambda_2^{t-x} = \frac{1}{t!} e^{-\lambda_1 \lambda_2} \sum_{x=0}^{t} \binom{t}{x} \lambda_1^x \lambda_2^{t-x} = \frac{1}{t!} e^{-(\lambda_1 + \lambda_2)} (\lambda_1 + \lambda_2)^t.$
- 28. Procedendo como no exercício 27, obtemos $X + Y \sim \text{Binomial}(n + m, p)$.
- 29. Vamos verificar que $X \mid X+Y=n \sim \text{Binomial}\left(n,\frac{\lambda_1}{\lambda_1+\lambda_2}\right)$.

 Como X e Y são inteiras não negativas, $P(X=x \mid X+Y=n)=0$ para x>n.

 Para $x=0,\ldots,n$, temos

$$P(X = x | X + Y = n) = \frac{P(X = x, Y = n - x)}{P(X + Y = n)} = \frac{\frac{e^{-\lambda_1} \lambda_1^x}{x!} \cdot \frac{e^{-\lambda_2} \lambda_2^{n - x}}{(n - x)!}}{\frac{e^{-(\lambda_1 + \lambda_2)} (\lambda_1 + \lambda_2)^n}{n!}}$$
$$= \binom{n}{x} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^x \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^{n - x} \cdot \frac{n!}{n!}$$

- 30. $P(X=x|X+Y=t)=\binom{n}{x}\binom{m}{t-x}\Big/\binom{n+m}{t}$, $x=0,\ldots,t$ (proceder como no exercício 29).
- 31. Procedendo como nos exercícios 29 e 30,

$$P(X = x | X + Y = n) = \frac{P(X = x)P(Y = n - x)}{P(X + Y = n)} = \frac{(1 - p)^x p}{\sum_{t=0}^n (1 - p)^t p (1 - p)^{n-x} p}$$
$$= \frac{(1 - p)^n p^2}{\sum_{t=0}^n (1 - p)^n p^2} = \frac{1}{n+1}, x = 0, 1, \dots, n.$$

32.
$$P(X = x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, \quad x = r, r+1, \dots$$

- 33. Do enunciado, $X = \sum_{i=1}^{R} Y_i, Y_1, \dots, Y_R$ independentes. De (4.12) e (4.13), resulta que $E(Y_i) = \frac{1-p}{p} + 1 = \frac{1}{p}$ e $\text{Var}(Y_i) = \frac{1-p}{p^2}$, $i = 1, \dots R$. Assim, $E(X) = \sum_{i=1}^{R} E(Y_i) = \sum_{i=1}^{R} \frac{1}{p} = \frac{R}{p} \quad \text{e}$ $\text{Var}(X) = \sum_{i=1}^{R} \text{Var}(Y_i) = \sum_{i=1}^{R} \frac{1-p}{p^2} = \frac{R(1-p)}{p^2}.$
- 34. $\sum_{j=R}^{R+M-1} {R+M-1 \choose j} p^j (1-p)^{R+M-1-j}$ Dica: Considere X: número de sucessos nos primeiros R+M-1 ensaios.
- 35. Seja X_i o número de envelopes adquiridos após a obtenção da i-ésima figurinha inédita até encontrar a próxima, (i+1)-ésima, $i=1,\ldots,N-1$. Observe que vale $X=1+\sum_{i=1}^{N-1}X_i$ e, portanto, $E(X)=1+\sum_{i=1}^{N-1}E(X_i)$. Note ainda que $X_i\sim \text{Geometrica}\left(\frac{N-i}{N}\right)$, isto é, $P(X_i=j)=\left(\frac{i}{N}\right)^{j-1}\frac{N-i}{N}$, $j=1,\ldots$
 - a) Como X não corresponde à soma finita de variáveis independentes e identicamente distribuídas segundo o modelo geométrico, X não é binomial negativa.

b)
$$E(X) = 1 + \sum_{i=1}^{N-1} E(X_i) = 1 + \sum_{i=1}^{N-1} \frac{1}{\frac{N-i}{N}} = \sum_{i=0}^{N-1} \frac{N}{N-i}$$

- 36. a) p/(2-p) b) $1/(3-3p+p^2)$ c) $1/(2-p)^2$
- 37. Numa sucessão de ensaios de Bernoulli com probabilidade de sucesso comum p, há a seguinte equivalência de eventos: a ocorrência do R-ésimo sucesso se dá após o n-ésimo ensaio se, e só se, nos primeiros n ensaios ocorrem menos de R sucessos. Definindo as variáveis X: número de ensaios até a ocorrência do R-ésimo sucesso e Y: número de sucesso nos primeiros n ensaios, temos que $X \sim \text{BinNegativa}(R,p)$ e $Y \sim \text{Binomial}(n,p)$. Da equivalência de eventos descrita acima, resulta a igualdade P(X > n) = P(Y < R).
- 38. Basta usar o exercício 24(a), (4.16) e a relação $Var(X) = E(X^2) (E(X))^2$.
- 39. $P(X = n) = p^n$ é crescente no intervalo [0, 1] e, portanto, P(X = n) atinge valor máximo em p = 1. Analogamente, $P(X = 0) = (1 p)^n$ é decrescente e atinge valor máximo em p = 0.

Para $k=1,\ldots,n-1,$ $f_k(p)=P(X=k)=\binom{n}{k}p^k(1-p)^{n-k}$ é diferenciável em (0,1). Assim,

$$\begin{split} f_k'(p) &= \binom{n}{k} \left\{ k p^{k-1} (1-p)^{n-k} + p^k (n-k) (1-p)^{n-k-1} (-1) \right\} = \\ &= \binom{n}{k} p^{k-1} (1-p)^{n-k-1} \{ k - n p \} \\ f_k'(p) &> 0 \Leftrightarrow k - n p > 0 \Leftrightarrow p < \frac{k}{n} \ . \end{split}$$

Logo, f_k é crescente se $p < \frac{k}{n}$. Analogamente, verifica-se que f_k é decrescente se $p > \frac{k}{n}$. Portanto, $f_k(p) = P(X = k)$ atinge valor máximo em $p = \frac{k}{n}$.

- 40. Procedendo como no exercício anterior, P(X=k) é maximizada em $\lambda = k$.
- 41. a) Do enunciado, $h_i(N) = P(X = i) = \frac{\binom{m}{i}\binom{N-m}{n-i}}{\binom{N}{i}}, N \ge \max\{n, m+n-i\}.$
 - b) Para obter o ponto de máximo de h_i , estudamos o crescimento (decrescimento) da função avaliando a expressão em pontos consecutivos. Para $N \ge \max\{n, m+n-i\}$,

$$\begin{split} h_i(N) & \leq h_i(N+1) \Leftrightarrow \frac{\binom{N-m}{n-i}}{\binom{N}{n}} \leq \frac{\binom{N+1-m}{n-i}}{\binom{N+1}{n}} \Leftrightarrow 1 \leq \frac{\frac{N-m+1}{N-m-n+i+1}}{\frac{N+1}{N-n+1}} \Leftrightarrow \\ & \Leftrightarrow (N+1)(N-m-n+i+1) \leq (N-m+1)(N-n+1) \Leftrightarrow iN \leq mn-i. \end{split}$$

Assim, se i > 0, para $N \leq \frac{mn}{i} - 1$, $h_i(N)$ é não decrescente e, para $N \ge \frac{nm}{i} - 1$, $h_i(N)$ é não crescente. Logo, se $\frac{nm}{i}$ é inteiro, $\frac{nm}{i}$ e $\frac{nm}{i} - 1$ são pontos de máximo de $h_i(N)$.

Caso contrário, o ponto de máximo é $\lfloor \frac{nm}{i} \rfloor$.

CAPÍTULO 5 **B.5**

- 1. Como $X \sim U(0,20)$, $f(x) = \frac{1}{20}$, se 0 < x < 20, e f(x) = 0, caso contrário.
 - a) $P(X < 3) = \int_{-\infty}^{3} f(x) dx = \int_{0}^{3} \frac{1}{20} dx = \frac{3}{20}$. b) $\frac{2}{5}$ c) $\frac{7}{20}$
 - d) $P(|X-3|<4) = P(-1 < X < 7) = + \int_0^7 \frac{1}{20} dx = \frac{7}{20}$
- b) 0,8413 2. a) 0,3779
- 3. a) Para t < -3, $F(t) = P(X \le t) = 0$. Para $-3 \le t \le 7$, $F(t) = \int_{-3}^{t} \frac{1}{10} dx = \frac{t+3}{10}$ Para t > 7, $F(t) = \int_{-\infty}^{7} \frac{1}{10} dx = 1$.
 - b) $\frac{4}{10}$ c) $\frac{4}{10}$
- 4. a) $\frac{1}{2}$ b) $\frac{1}{2}$
- 5. Seja X o número de caras observadas em 40 lançamentos da moeda honesta. Admitindo independência entre os resultados dos lançamentos sucessivos da moeda, temos que $X \sim \text{Binomial}(40, 1/2)$,

$$P(X = 20) = {40 \choose 20} \left(\frac{1}{2}\right)^{40} = 0,1254.$$

Utilizando a aproximação Normal para a Binomial, X é, aproximadamente, distribuída pelo modelo Normal (40(1/2), 40(1/2)(1-1/2)), isto é, $X \sim N(20, 10)$. Assim,

$$\begin{split} P(X=20) &\cong P(19,5 < X \leq 20,5) = P\left(\frac{19,5-20}{\sqrt{10}} < \frac{X-20}{\sqrt{10}} \leq \frac{20,5-20}{\sqrt{10}}\right) = \\ &= P\left(\frac{19,5-20}{\sqrt{10}} < Z \leq \frac{20,5-20}{\sqrt{10}}\right) = P(-0,16 < Z \leq 0,16) = 0,1271, \end{split}$$

onde $Z \sim N(0,1)$. Os valores obtidos são bem próximos.

6. a)
$$e^{-1} = 0.3679$$
 b) $e^{-1} - e^{-2} = 0.2326$

7. Seja X o número de pacientes que apresentaram nível de colesterol reduzido após a conclusão do período de dieta. Sob a hipótese de que a dieta não tem efeito algum sobre o nível de colesterol, suporemos X ~ Bin(100,1/2), E(X) = 50, Var(X) = 25. Assim,

$$P(X \ge 65) = \sum_{i=65}^{100} {100 \choose i} \left(\frac{1}{2}\right)^{100} = 0,0018.$$

X é, aproximadamente, distribuída pelo modelo N(50,25). Assim,

$$P(X \geq 65) \cong P(X \geq 64, 5) = P\left(\frac{X - 50}{\sqrt{25}} \geq \frac{64, 5 - 50}{\sqrt{25}}\right) = 1 - P(Z \leq 2, 9) = 0,0019.$$

A aproximação normal produz resultado bem satisfatório neste caso.

8.
$$(-2)(1-e^{-0.9})+3e^{-0.9}=0.033$$

- 9. Seja X o ponto escolhido no segmento de reta de comprimento L. Suporemos que $X \sim \mathrm{U}(0,L)$. A probabilidade de interesse é dada por $P\left(X < \frac{L}{2}, \frac{X}{L-X} < \frac{1}{4}\right) + P\left(X > \frac{L}{2}, \frac{L-X}{X} < \frac{1}{4}\right) = P\left(X < \frac{L}{5}\right) + P\left(X > \frac{4L}{5}\right) = \frac{2}{5}$
- 10. Sim. Atualmente, a distância esperada entre o local de avaria e a estação de reparo mais próxima é de 12,5 quilometros, ao passo que sob a nova proposta tal distância média seria reduzida para 9,375 quilometros.
- 11. Seja X o número de itens defeituosos na amostra de tamanho 1000. Admitindo independência entre os funcionamentos dos componentes, com a confiabilidade de 0,95, $X \sim \text{Bin}(1000,0,05) \approx \text{N}(50,47,5)$. Assim, $P(X \ge 30) \cong P(X \ge 29,5) = P\left(\frac{X-50}{\sqrt{47.5}} \ge \frac{29,5-50}{\sqrt{47.5}}\right) = P(Z \le 2,97) = 0,9985$.
- 12. Admitindo independência entre as quantidades de chuva anuais, definimos Y como o número de anos necessários para se registrar uma quantidade de chuva anual maior que 50. $Y \sim \text{Geo}(p)$, onde p = P(X > 50), $X \sim \text{N}(40,4)$. Assim, $P(Y > 10) = (0.9938)^{10} = 0.9396$.
- 13. $E(|X-a|) = \frac{1}{A} \int_0^a (a-x) dx + \frac{1}{A} \int_a^A (x-a) dx = \frac{1}{2A} (2a^2 2Aa + A^2).$ O ponto de mínimo de E(|X-a|) é $a^* = \frac{1}{2}A.$

14. a)
$$e^{-1} = 0.3679$$
 b) $e^{-1} = 0.3679$

15. Sejam X_A o tempo para a ocorrência de algum defeito grave num carro tipo A e $L_A(X_A)$, o ganho com a venda de um carro tipo A. Do mesmo

modo, definimos X_B e $L_B(X_B)$. Vamos avaliar os valores esperados de $L_A(X_A)$ e $L_B(X_B)$.

$$\begin{split} E\left(L_A(X_A)\right) &= 1\,000\,P\left(L_A(X_A) = 1\,000\right) + (-3\,000)\,P\left(L_A(X_A) = -3\,000\right) = \\ &= 1\,000\,P\left(X_A > 6\right) + (-3\,000)\,P\left(X_A \le 6\right) = \\ &= 1\,000\,P\left(Z > -\frac{3}{2}\right) + (-3\,000)\,P\left(Z \le -\frac{3}{2}\right) = 732,16. \end{split}$$

Analogamente,

$$\begin{split} E(L_B(X_B)) &= 2\,000 P(L_B(X_B) = 2\,000) + (-8\,000) P(L_B(X_B) = -8\,000) = \\ &= 2\,000\,P(X_B > 6) + (-8\,000)\,P(X_B \le 6) = \\ &= 2\,000\,P(Z > -2) + (-8\,000)P(Z \le -2) = 1\,772,\!50. \end{split}$$

Como $E(L_B(X_B)) > E(L_A(X_A))$, a recomendação é incentivar a venda de carros tipo B.

16. a)
$$\sum_{i=3}^{5} {5 \choose i} e^{-i} (1-e^{-1})^{5-i} = 0.2636$$
 b) $5e^{-2} = 0.68$

17. Para t > 0, seja $I_t(X)$ o custo da inspeção programada para t horas após o início de operação da máquina. Vamos determinar $E(I_t(X))$.

Do enunciado, $I_t(X) = B$, se t < X, e $I_t(X) = C(t - X)$, caso contrário.

Assim,
$$E(I_t(X)) = \int_0^t C(t-x) \frac{1}{10} e^{-\frac{x}{10}} dx + \int_t^\infty B \frac{1}{10} e^{-\frac{x}{10}} dx$$

= $C(t-10) + (10C+B) e^{-\frac{t}{10}}$.

Note que $E(I_t(X))$ é diferenciável em $(0, \infty)$,

$$\frac{d}{dt}E(I_t(X)) = C - \left(C + \frac{B}{10}\right)e^{-\frac{t}{10}}.$$

Observe que $\lim_{t\to 0^+}\frac{d}{dt}E(I_t(X))=-\frac{B}{10}<0, \lim_{t\to\infty}\frac{d}{dt}E(I_t(X))=C>0$ e que $\frac{d}{dt}E(I_t(X))$ é crescente em $(0,\infty)$.

Seja $t^* = 10\log\left(1 + \frac{B}{10C}\right)$ a única raíz de $\frac{d}{dt}E(I_t(X))$. Assim, $\frac{d}{dt}E(I_t(X)) < 0$, se $t < t^*$, e $\frac{d}{dt}E(I_t(X)) > 0$, se $t > t^*$. Logo, $E(I_t(X))$ é contínua, decrescente em $(0,t^*)$ e crescente em (t^*,∞) , donde resulta que $E(I_t(X))$ atinge valor mínimo em $t^* = 10\log\left(1 + \frac{B}{10C}\right)$.

- 18. Supondo independência e probabilidade de 0,95, n = 2401. Se $p \le 0,2$, n = 1537.
- 19. Para t > 0 natural, vale que $\Gamma(t) = (t-1)!$. Da definição, $h(x) = \frac{f(x)}{1 F(x)}$. Para determinar 1 F(x) = P(X > x), faremos a integração por partes. $P(X > x) = \int_{-\infty}^{\infty} \frac{1}{(t-1)!} \lambda^t u^{t-1} e^{-\lambda u} du =$

$$\begin{split} P(X>x) &= \int_{x}^{\infty} \frac{1}{(t-1)!} \lambda^{t} u^{t-1} e^{-\lambda u} \, du = \\ &= \frac{1}{(t-1)!} \lambda^{t} u^{t-1} \left(-\frac{e^{-\lambda u}}{\lambda} \right) \Big|_{x}^{\infty} - \frac{1}{(t-1)!} \int_{x}^{\infty} \lambda^{t} (t-1) u^{t-2} \left(-\frac{e^{-\lambda u}}{\lambda} \right) du = \\ &= \frac{1}{(t-1)!} e^{-\lambda x} (\lambda x)^{t-1} + \frac{1}{(t-2)!} \int_{x}^{\infty} \lambda^{t-1} u^{t-2} e^{-\lambda u} \, du. \end{split}$$

Procedendo como na linha acima, obtemos

$$P(X>x) = \frac{e^{-\lambda x}(\lambda x)^{t-1}}{(t-1)!} + \frac{e^{-\lambda x}(\lambda x)^{t-2}}{(t-2)!} + \frac{1}{(t-3)!} \int_x^\infty \lambda^{t-2} u^{t-3} e^{-\lambda u} \ du,$$

e, assim, sucessivamente, obtemo

$$P(X > x) = \frac{e^{-\lambda x}(\lambda x)^{t-1}}{(t-1)!} + \frac{e^{-\lambda x}(\lambda x)^{t-2}}{(t-2)!} + \dots + \frac{e^{-\lambda x}(\lambda x)^0}{0!} = e^{-\lambda x} \sum_{i=0}^{t-1} \frac{1}{i!} (\lambda x)^i.$$
 Substituindo na expressão de h , resulta $h(x) = \frac{\lambda^t x^{t-1}}{(t-1)!} \sum_{i=0}^{t-1} \frac{1}{i!} (\lambda x)^i.$

- 20. h(x) = 1/(a-x), 0 < x < a.
- 21. Sejam f_1 e F_1 as funções densidade e de distribuição (acumulada) para o tempo de vida de pessoas fumantes. Do mesmo modo, sejam f_2 e F_2 as correspondentes funções para não fumantes. Seja $h_i = \frac{f_i}{1-E}$, i = 1,2. Do enunciado, temos, para cada x, $h_1(x) = 2h_2(x)$, ou seja: $\frac{f_1(x)}{1 - F_1(x)} = 2 \frac{f_2(x)}{1 - F_2(x)} \Rightarrow \frac{d}{dx} \log(1 - F_1(x)) = 2 \frac{d}{dx} \log(1 - F_2(x)) \Rightarrow$ $\Rightarrow \log(1 - F_1(x)) = 2\log(1 - F_2(x)) \Rightarrow 1 - F_1(x) = (1 - F_2(x))^2.$ A afirmação implica que a probabilidade de um fumante sobreviver à idade x é o quadrado (e não a metade) da probabilidade de um não fumante sobreviver à mesma idade.
- 22. Basta proceder como no caso discreto de variáveis inteiras não negativas (exercício 16 do capítulo 4) considerando integrais ao invés de somas.
- 23. a) Consideremos o caso em que T é contínua. Obtemos, inicialmente, a distribuição de T - t dado $T \ge t$, t > 0.

Para
$$u < 0$$
, $P(T - t \le u \mid T \ge t) = 0$.
Para $u \ge 0$, $P(T - t \le u \mid T \ge t) = \frac{P(T \le u + t, T \ge t)}{P(T \ge t)} = \frac{P(t \le T \le u + t)}{1 - F(t)} = \frac{F(u + t) - F(t)}{R(t)}$.
Como F é diferenciável, a densidade condicional de $T - t$ é:

 $f(u|T \ge t) = \frac{f(u+t)}{R(t)}, u > 0$. Usando o resultado do exercício anterior,

$$\begin{split} m(t) &= E\left(T - t \right| \geq t\right) = \int_0^\infty \left[\int_x^\infty \frac{f(u + t)}{R(t)} \ du \right] dx = \int_0^\infty \left[\int_{t + x}^\infty \frac{f(z)}{R(t)} \ dz \right] dx = \\ &= \int_0^\infty \frac{P(T > x + t)}{R(t)} \ dx = \int_t^\infty \frac{P(T > y)}{R(t)} \ dy = \frac{1}{R(t)} \int_t^\infty R(y) \ dy. \end{split}$$

b)
$$m(t) = \frac{1}{e^{-\lambda t}} \int_{t}^{\infty} e^{-\lambda x} dx = \frac{1}{\lambda}$$
 c) $m(t) = \frac{1}{\frac{A-t}{A}} \int_{t}^{A} \frac{A-x}{A} dx = \frac{A-t}{2}, 0 < t < A$

24.
$$\phi(t) = \frac{e^{tb} - e^{ta}}{t(b-a)}$$
, se $t \neq 0$, e $\phi(0) = 1$

25. a) $E(X) = \int_0^1 x \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)} dx = \frac{\int_0^1 x^{\alpha+1-1}(1-x)^{\beta-1} dx}{B(\alpha,\beta)} = \frac{B(\alpha+1,\beta)}{B(\alpha,\beta)} = \frac{\alpha}{\alpha+\beta}$ (a última igualdade decorre do fato de que $\frac{\Gamma(u+1)}{\Gamma(u)} = u, \ u > 0$). Analogamente,

$$\begin{split} E(X^2) &= \frac{B(\alpha + 2, \beta)}{B(\alpha, \beta)} = \frac{\alpha(\alpha + 1)}{(\alpha + \beta)(\alpha + \beta + 1)} \\ \mathrm{Var}(X) &= \frac{\alpha(\alpha + 1)}{(\alpha + \beta)(\alpha + \beta + 1)} - \left(\frac{\alpha}{\alpha + \beta}\right)^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}. \end{split}$$

b) Procedendo como no exercício 39 do capítulo 4, $x^* = \frac{\alpha - 1}{\alpha + \beta - 9}$.

26.
$$F(x) = \frac{1}{9}e^{\lambda x}$$
, se $x < 0$, e $F(x) = 1 - \frac{1}{9}e^{-\lambda x}$, se $x \ge 0$.

- 27. Para t < 0, $F_V(t) = P(Y \le t) = 0$. Para t > 0, $F_Y(t) = P(Y \le t) = P(-\log X \le t) = P(X \ge e^{-t}) = 1 - e^{-t}$. Logo, $Y \sim \text{Exponencial}(1)$.
- 28. $Y \sim \text{Exponencial}(\lambda/c)$
- 29. a) $F(m) = \frac{1}{2} \Leftrightarrow \frac{m-a}{b-a} = \frac{1}{2} \Leftrightarrow m = \frac{1}{2}(a+b)$ b) Pela simetria de $X, m = \mu$. c) $F(m) = \frac{1}{9} \Leftrightarrow 1 - e^{-\lambda m} = \frac{1}{9} \Leftrightarrow m = \frac{1}{2} \log 2$
- 30. a) Todo $x \in [a, b]$ é moda de X b) μ c) 0
- 31. Para t > 0, $F_Y(t) = P(Y \le t) = P\left(\left(\frac{X}{\alpha}\right)^{\beta} \le t\right) = P\left(X \le \alpha t^{1/\beta}\right) = F_X\left(\alpha t^{1/\beta}\right)$. Assim, $f_Y(t) = \frac{dF_Y(t)}{dt} = \frac{d}{dt}F_X(\alpha t^{1/\beta}) = \frac{\alpha}{\beta}t^{1/\beta-1}f_X(\alpha t^{1/\beta}) = e^{-t}$. Logo $Y \sim \text{Exponencial}(1)$. Analogamente, provamos que $X \sim \text{Exponencial}(1) \Rightarrow Y = \alpha X^{1/\beta} \sim \text{Weibull}(\alpha, \beta).$
- 32. $\alpha = 1/(b-a)$ e $\beta = -a/(b-a)$
- 33. Verificamos o resultado no caso em que F é inversível, com inversa F^{-1} . Para t < 0, $F_V(t) = P(Y \le t) = P(F(X) \le t) = 0$. Para t > 1, $F_V(t) = 1$. Para $0 \le t \le 1$, $F_Y(t) = P(Y \le t) = P(F(X) \le t) = P(X \le F^{-1}(t)) = F(F^{-1}(t)) = t$.
- 34. $f_Y(y) = 1$, se $0 \le y \le 1$, e $f_Y(y) = 0$, caso contrário. Assim, $Y \sim U(0,1)$.
- 35. Considere A > 0. Note que $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \Rightarrow -A \le R \le A$. Assim, para r < -A, $F_R(r) = P(R \le r) = 0$, e para r > A, $F_R(r) = 1$. Para $-A \le r \le A$, $F_R(r) = P(R \le r) = P(A \operatorname{sen} \theta \le r) = P\left(\theta \le \operatorname{arcsen}\left(\frac{r}{A}\right)\right) = \frac{1}{\pi}\left(\operatorname{arcsen}\left(\frac{r}{A}\right) + \frac{\pi}{2}\right).$ Como F_R é diferenciável em (-A,A), $\frac{dF_R(r)}{dr} = f_R(r) = 1/A\pi\sqrt{1-(r/A)^2}$. Para A < 0, obtemos, analogamente, $f_R(r) = -1/A\pi\sqrt{1 - (r/A)^2}$.
- 36. Para determinar E(X) e $E(X^2)$, basta usar $\int_{B}^{\infty} \frac{1}{x^{a+1}} dx = \frac{1}{aB^a}$, se a > 0.
- 37. a) Para t < 0, $F_X(t) = P(X \le t) = P(e^Y \le t) = 0$. Para t > 0, $F_X(t) = P(X \le t) = P(\log X \le \log t) = P(Y \le \log t) = \Phi\left(\frac{\log t \mu}{\sigma}\right)$, onde Φ é a função de distribuição do modelo N(0,1). Derivando F_X em relação a t, obtemos $f_X(t) = \frac{1}{2\pi^2} \exp\left\{-\frac{1}{2\sigma^2} (\log t - \mu)^2\right\}.$ b) $E(X) = \int_0^\infty t \frac{1}{\sigma t \sqrt{2\pi}} e^{-\frac{1}{2\sigma^2} (\log t - \mu)^2} dt = \frac{1}{\sigma \sqrt{2\pi}} \int_0^\infty e^{-\frac{1}{2\sigma^2} (\log t - \mu)^2} dt =$ $= \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2\sigma^2} (y-\mu)^2} e^{y} dy = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{y^2 - 2\mu y + \mu^2 - 2\sigma^2 y}{2\sigma^2}} dy$

265

$$E(X) = e^{-\frac{\mu^2}{2\sigma^2}} e^{\frac{(\mu + \sigma^2)^2}{2\sigma^2}} \int_{-\infty}^{\infty} \frac{1}{\sigma^{\sqrt{2\sigma}}} e^{-\frac{y^2 - 2(\mu + \sigma^2)y + (\mu + \sigma^2)^2}{2\sigma^2}} dy = e^{\mu + \frac{1}{2}\sigma^2}.$$

Analogamente, obtemos $E(X^2)=e^{2\mu+2\sigma^2}$ e, consequentemente, ${\rm Var}(X)=e^{2\mu+\sigma^2}(e^{\sigma^2}-1)$.

38. a)
$$f_Y(t) = \frac{1}{\sqrt{2\pi}} t^{\frac{1}{2}-1} e^{-\frac{t}{2}}$$
, para $t > 0$, e $f_Y(t) = 0$, caso contrário.

b)
$$E(Y) = 1 \text{ e Var}(Y) = 2.$$

39. Para
$$z < 0$$
, $F_Z(z) = P(Z \le z) = P(2\beta X \le z) = P\left(X \le \frac{z}{2\beta}\right) = 0$. Para $z > 0$, $F_Z(z) = P(Z \le z) = P(2\beta X \le z) = P(X \le \frac{z}{2\beta}) = F_X(\frac{z}{2\beta})$. Então,
$$f_Z(z) = \frac{dF_Z(z)}{dz} = \frac{1}{2\beta} f_X\left(\frac{z}{2\beta}\right) = \frac{1}{2\beta} \frac{\beta^\alpha}{\Gamma(\alpha)} \left(\frac{z}{2\beta}\right)^{\alpha-1} e^{-\beta\left(\frac{z}{2\beta}\right)} = \frac{\left(\frac{1}{2}\right)^\alpha z^{\alpha-1} e^{-\frac{z}{2}}}{\Gamma(\alpha)}$$
 Ou seja, Z é Gama $\left(\alpha, \frac{1}{2}\right)$. Se $\alpha = \frac{1}{2}$, Z possui distribuição qui-quadrado 1.

40.
$$f_Y(y) = \frac{\alpha^{\alpha} \beta^{\beta} y^{\alpha-1}}{B(\alpha,\beta)(\beta+\alpha y)^{\alpha+\beta}}$$
, para $y > 0$, e $f_Y(y) = 0$, caso contrário.

- 41. a) O conjunto *D* depende do parâmetro *A*. Assim, o modelo não pertence à família exponencial uniparamétrica.
 - b) Para $x \in \mathbb{R}$,

$$f(x,\mu) = \frac{1}{\sqrt{8\pi}} e^{-\frac{1}{8}(x-\mu)^2} = \frac{1}{\sqrt{8\pi}} e^{-\frac{1}{8}(x^2 - 2x\mu + \mu^2)} = \frac{e^{-\frac{1}{8}x^2}}{\sqrt{8\pi}} e^{-\frac{1}{8}\mu^2} e^{\frac{1}{4}x\mu}.$$

Tomando $S(x)=\frac{1}{\sqrt{8\pi}}e^{-\frac{1}{8}x^2}$, $T(\mu)=e^{-\frac{1}{8}\mu^2}$, $a(x)=\frac{x}{4}$ e $b(\mu)=\mu$, concluímos que o modelo Normal $(\mu,4)$ pertence à família exponencial.

B.6 CAPÍTULO 6

1. a)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1 \Leftrightarrow \int_{0}^{2} \int_{0}^{1} c y^{2} \, dx \, dy = c \left(\left. x \right|_{0}^{2} \right) \left(\left. \frac{1}{3} y^{3} \right|_{0}^{1} \right) = \frac{2}{3} c \Leftrightarrow c = \frac{3}{2}$$

b)
$$P(X+Y>2) = \int_{1}^{2} \int_{2-x}^{1} \frac{3}{2} y^{2} dx dy = \int_{1}^{2} \frac{1}{2} [1 - (2-x)^{3}] dx = \frac{3}{8}$$

c)
$$P(X \le 1) = \int_0^1 \int_0^1 \frac{3}{2} y^2 dx dy = \frac{1}{2}$$

d)
$$P(X = 2Y) = 0$$
, pois o conjunto $\{X = 2Y\}$ tem área nula.

2. a) Sim. b)
$$f_X(x) = \frac{6}{7}(2x^2 + x)$$
, se $0 < x < 1$, e $f_X(x) = 0$, c.c. c) $\frac{15}{56}$

3. a) A região corresponde ao interior do triângulo de vértices (0,0), (2,-2) e (2,2).

b)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \ dx \ dy = \int_{0}^{2} \left[\int_{-x}^{x} \frac{1}{8} x (x - y) \ dy \right] dx = \int_{0}^{2} \frac{1}{4} x^{3} \ dx = 1$$

c)
$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{-x}^{x} \frac{1}{8} x(x - y) dy = \frac{1}{4} x^3$$
, se $0 < x < 2$, e $f_X(x) = 0$, c.c.

Do mesmo modo, temos: $f_Y(y) = 0$, se y < -2 ou y > 2.

Para
$$0 < y < 2$$
, $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_{y}^{2} \frac{1}{8} x(x - y) dy = \frac{1}{48} (16 - 12y + y^3)$.
Analogamente, obtemos, para $-2 < y < 0$, $f_Y(y) = \frac{1}{48} (16 - 12y + 5y^3)$.

4.
$$E(X) = \int_0^\infty \left[\int_0^\infty x \frac{1}{y} e^{-(y + \frac{x}{y})} dx \right] dy = 1, E(Y) = \int_0^\infty \left[\int_0^\infty y \frac{1}{y} e^{-(y + \frac{x}{y})} dx \right] dy = 1 e$$

 $E(XY) = \int_0^\infty \left[\int_0^\infty x y \frac{1}{y} e^{-(y + \frac{x}{y})} dx \right] dy = 2. \text{ Logo, Cov}(X, Y) = 2 - 1 \cdot 1 = 1.$

5.
$$\operatorname{Cov}(X,Y) = E(XY) - E(X)E(Y) =$$

$$= \int_0^\infty \left[\int_0^x xy \frac{2e^{-2x}}{x} dy \right] dx - \left(\int_0^\infty dx \int_0^x x \frac{2e^{-2x}}{x} dy \right) \left(\int_0^\infty dx \int_0^x y \frac{2e^{-2x}}{x} dy \right) = \frac{1}{8}.$$

- 6. b) $\frac{21}{4}$ c) $\frac{3}{20}$
- 7. Sejam X e Y os instantes de chegada de Paulo e Pedro, respectivamente. Consideremos o tempo em minutos e que X e Y são distribuídos segundo o modelo Uniforme (0,60). Assim, o primeiro a chegar esperará mais do que 10 minutos se |X - Y| > 10. Assim,

$$\begin{split} P(|X-Y| > 10) &= P(Y > X + 10) + P(Y < X - 10) = \\ &= \int_0^{50} \left[\int_{10+x}^{60} \frac{1}{3600} \, dy \right] dx + \int_{10}^{60} \left[\int_0^{x-10} \frac{1}{3600} \, dy \right] dx \\ &= \int_0^{50} \frac{50-x}{3600} \, dx + \int_{10}^{60} \frac{x-10}{3600} \, dx = \frac{25}{36}. \end{split}$$

8. a) A densidade de Z é:

$$f_Z(z) = 1 - e^{-z}$$
, se $0 < z < 1$, $f_Z(z) = e^{-z}(e - 1)$, se $z > 1$, e $f_Z(z) = 0$, c.c.

b)
$$f_W(w) = 1 - e^{-\frac{1}{w}} - \frac{1}{w} e^{-\frac{1}{w}}$$
, se $w > 0$, e $f_W(w) = 0$, c.c.

9. a) Obtemos, inicialmente, a função de distribuição de Z:

$$\begin{split} F_Z(z) &= 0, \text{ se } z < 0. \text{ Para } z > 0, \\ F_Z(z) &= P(Z \leq z) = P(X + Y \leq z) = \int_0^z \left[\int_0^{z-x} \lambda e^{-\lambda x} \lambda e^{-\lambda y} dy \right] dx = \\ &= \int_0^z \lambda e^{-\lambda x} \left[1 - e^{-\lambda (z-x)} \right] dx = \int_0^z \lambda (e^{-\lambda x} - e^{-\lambda z}) dx = 1 - (1 + \lambda z) e^{-\lambda z}. \\ \text{Assim, } f_Z(z) &= \frac{dF_Z(z)}{dz} = \lambda^2 z \, e^{-\lambda z}, \, z > 0. \text{ Note que } Z \neq 0. \end{split}$$

b) Para $w < 0, F_W(w) = 0$. Para $w > 1, F_W(w) = 1$. Para 0 < w < 1, temos

$$\begin{split} F_W(w) &= P\big(\frac{X}{X+Y} \leq w\big) = P\big(Y \geq \frac{1-w}{w}X\big) = \int_0^\infty \big[\int_{\frac{1-w}{w}x}^{\infty} \lambda e^{-\lambda x} \lambda e^{-\lambda y} dy\big] dx = \\ &= \int_0^\infty \lambda e^{-\lambda x} e^{-\lambda \frac{1-w}{w}x} \, dx = \int_0^\infty \lambda e^{-\frac{\lambda}{w}x} \, dx = w. \end{split}$$

Logo, para 0 < w < 1, $f_W(w) = \frac{dF_W(w)}{dw} = 1$, e $f_W(w) = 0$, caso contrário. Assim, W é Uniforme(0,1).

- 10. $f_Z(z) = z+1$, se -1 < z < 0, $f_Z(z) = 1-z$, se 0 < z < 1, e $f_Z(z) = 0$, caso contrário, e, assim, f_Z não depende de θ .
- 11. a) Obteremos a distribuição de X+Y construindo as variáveis Z=X+Y e W=X, obtendo a conjunta de Z e W e, por fim, a marginal de Z.

Nesse caso, a inversa é dada por X = W e Y = Z - W e o jacobiano por:

$$J = \begin{vmatrix} \frac{\partial x}{\partial z} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial z} & \frac{\partial y}{\partial w} \end{vmatrix} = \begin{vmatrix} 0 & 1 \\ 1 & -1 \end{vmatrix} = -1.$$

Assim, para 0 < w < z,

$$\begin{split} f_{(Z,W)}(z,w) &= f_{(X,Y)}(x(z,w),y(z,w)) \big| J \big| \\ &= \frac{\lambda^{\alpha}}{\Gamma(\alpha)} w^{\alpha-1} e^{-\lambda w} \frac{\lambda^{\beta}}{\Gamma(\beta)} (z-w)^{\beta-1} e^{-\lambda (z-w)} \end{split}$$

Então

$$f_Z(z) = \int_{-\infty}^{\infty} f_{(Z,W)}(z,w) \; dw = \int_0^z \frac{\lambda^{\alpha+\beta}}{\Gamma(\alpha)\Gamma(\beta)} e^{-\lambda z} w^{\alpha-1} (z-w)^{\beta-1} \; dw.$$

Fazendo a mudança de variável $t = \frac{w}{z}$, obtemos

$$f_Z(z) = \frac{\lambda^{\alpha+\beta}}{\Gamma(\alpha+\beta)} z^{\alpha+\beta-1} e^{-\lambda z}, z > 0.$$

- b) O resultado é provado por indução. O item (a) assegura o resultado para n=2. Pela hipótese de indução, suponha que $Z_n=\sum_{i=1}^n X_i$ é Gama $(\sum_{i=1}^n \alpha_i,\ \lambda)$ e seja X_{n+1} com distribuição Gama (α_{n+1},λ) . Defina $Z_{n+1}=\sum_{i=1}^n X_i+X_{n+1}$ e $W_{n+1}=X_{n+1}$. Procedendo como em (a), obtemos que $\sum_{i=1}^{n+1} X_i$ é Gama $(\sum_{i=1}^n \alpha_i+\alpha_{n+1},\lambda)$.
- 12. Dica: Proceder como no exercício 11.
- 13. a) Note que $F_W(w) = 0$, se w < 0, e $F_W(w) = 1$, se w > 1. Para 0 < w < 1,

$$\begin{split} F_W(w) &= P(W \leq w) = P(RI^2 \leq w) = P\left(R \leq w/I^2\right) = \\ &= \int_0^{\sqrt{w}} \left[\int_0^1 6 \, x (1-x) 2y dy \right] dx + \int_{\sqrt{w}}^1 \left[\int_0^{w/x^2} 6 \, x (1-x) 2y dy \right] dx \\ &= 3 \, w^2 - 8 \, w^{3/2} + 6 \, w \end{split}$$

Logo,
$$f_W(w) = \frac{dF_W(w)}{dw} = 6 w - 12 \sqrt{w} + 6$$
, se $0 < w < 1$, e $f_W(w) = 0$, c.c.

b)
$$E(W) = \frac{1}{5}$$
 c) $P(W > \frac{1}{2}) = \frac{8\sqrt{2}-11}{4} = 0.0784$

- 14. A densidade de $I \in f_I(t) = e^{-\sqrt{1/t}} \left(1/t + 2\sqrt{1/t} + 2 \right) e^{-\sqrt{2/t}} \left(2/t + 2\sqrt{2/t} + 2 \right)$, para t > 0, e $f_I(t) = 0$, se t < 0.
- 15. a) Para t < 2, $F_S(t) = 0$. Para t > 12, $F_S(t) = 1$.

 Para $t \in (2,12)$, F_S é determinada em 4 casos:

 para 2 < t < 4, $F_S(t) = P(A \cdot B \le t) = P(B \le t/A) =$ $= \int_1^{\frac{t}{2}} \left[\int_2^{\frac{t}{x}} (x-1) \frac{1}{2} dy \right] dx = \frac{t^2}{8} \frac{1}{2} \frac{t}{2} \log \frac{t}{2};$ para 4 < t < 6, $F_S(t) = P(B \le t/A) =$ $= \int_1^{\frac{t}{4}} \left[\int_2^4 (x-1) \frac{1}{2} dx \right] dy + \int_{\frac{t}{4}}^2 \left[\int_2^{\frac{t}{x}} (x-1) \frac{1}{2} dy \right] dx + \int_2^{\frac{t}{2}} \left[\int_2^{\frac{t}{x}} (3-x) \frac{1}{2} dy \right] dx =$ $= \frac{9}{2} \frac{3}{16} t^2 + 2t \log t \frac{9}{2} t \log 2; \text{ analogamente,}$ para 6 < t < 8, $F_S(t) = \frac{t}{9} \log t + \frac{3}{9} t \log 3 \frac{1}{16} t^2 3t \log 2;$

e, para
$$8 < t < 12$$
, $F_S(t) = \frac{1}{16}t^2 - 8 + \frac{3}{2}t\log 3 - \frac{3}{t}\log t + 3t\log 2$.

- b) Como A e B são independentes, $E(S) = E(A \cdot B) = E(A)E(B) = 2 \cdot 3 = 6$
- c) Do item (a), $P(S > 10) = 1 F_S(10) = \frac{11}{4} 15\log\frac{6}{5} = 0.0152$

16.
$$f_Y(y) = \frac{\left(\frac{1}{2}\right)^{\frac{1}{2}}}{\Gamma\left(\frac{3}{2}\right)\sigma^3} y^2 e^{-\frac{y^2}{2\sigma^2}}$$
, se $y > 0$, e $f_Y(y) = 0$, se $y < 0$.

17. A transformação inversa é dada por X = V - 2U e Y = 3U - V. O jacobiano dessa transformação é dado por: $J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} -2 & 1 \\ 3 & -1 \end{vmatrix} = -1.$ Para v - 2u > 0 e 3u - v > 0.

$$f_{(U,V)}(u,v) = f_{(X,Y)}(x(u,v),y(u,v))|J| = e^{-(v-2u)}e^{-(3u-v)} = e^{-u}$$
, isto é $f_{(U,V)}(u,v) = e^{-u}$, se $2u < v < 3u$, e $f_{(U,V)}(u,v) = 0$, caso contrário.

A densidade de U é $f_U(u) = \int_{2u}^{3u} e^{-u} dv = ue^{-u}$, se u > 0, e $f_U(u) = 0$, se u < 0.

Além disso, $f_V(v) = \int_{\frac{1}{v}}^{\frac{1}{2}v} e^{-u} du = e^{-\frac{1}{3}v} - e^{-\frac{1}{2}v}$, se v > 0, e $f_V(v) = 0$, se v < 0. Como não vale $f_{(U,V)}(u,v) = f_U(u) \cdot f_V(v)$, $U \in V$ não são independentes.

- 18. $f_{(U,V)}(u,v) = \frac{1}{2}e^{-\frac{1}{2}u}\frac{1}{\pi(1+v^2)}$, para u>0, e $f_{(U,V)}(u,v)=0$, caso contrário. U e V são independentes.
- 19. Do exercício 18, podemos escrever $R = \sqrt{U}$ e $\theta = \operatorname{arctg} V$. Essa transformação é inversível com inversa dada por $U = R^2$ e $V = \operatorname{tg} \theta$, cujo jacobiano é:

$$J = \begin{vmatrix} \frac{\partial u}{\partial r} & \frac{\partial u}{\partial \theta} \\ \frac{\partial v}{\partial r} & \frac{\partial v}{\partial \theta} \end{vmatrix} = \begin{vmatrix} 2r & 0 \\ 0 & \frac{1}{\cos^2 \theta} \end{vmatrix} = \frac{2r}{\cos^2 \theta}. \text{ Para } r > 0 \text{ e} -\frac{\pi}{2} < \theta < \frac{\pi}{2},$$

$$f_{(R,\Theta)}(r,\theta) = f_{(U,V)}(u(r,\theta), v(r,\theta)) |J| = \frac{1}{2}e^{-\frac{1}{2}r^2} \frac{1}{\pi(1+\operatorname{tg}^2\theta)} \frac{2r}{\cos^2\theta} = \frac{1}{\pi}re^{-\frac{1}{2}r^2}$$

$$e f_{(R,\Theta)}(r,\theta) = 0, \text{ caso contrário.}$$

- 20. $f_{(U,V)}(u,v) = \frac{\lambda^{\alpha+\beta}}{\Gamma(\alpha+\beta)} u^{\alpha+\beta-1} e^{-\lambda u} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} v^{\alpha-1} (1-v)^{\beta-1}, \text{ se } u > 0 \text{ e}$ 0 < v < 1, e $f_{(U,V)}(u,v) = 0$, caso contrário. U e V são independentes.
- 21. No exercício 1, $f(x, y) = \frac{3}{9}y^2$, se 0 < x < 2 e 0 < y < 1. A densidade de *X* é $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{0}^{1} \frac{3}{9} y^2 dy = \frac{1}{9}$, se 0 < x < 2. A densidade de Y é $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_{0}^{2} \frac{3}{2} y^2 dx = 3y^2$, se 0 < y < 1. Como $f(x, y) = f_X(x) \cdot f_Y(y)$, resulta que X e Y são independentes. No exercício 2, $f(x, y) = \frac{6}{7}(x^2 + \frac{1}{2}xy)$, se 0 < x < 1 e 0 < y < 2. X e Y não são independentes pois $f_X(x) \cdot f_Y(y) = \frac{6}{7} (\frac{1}{3} + \frac{y}{4}) \cdot \frac{6}{7} (2x^2 + x) \neq f(x, y).$

No exercício 3, $f_X(x) \cdot f_Y(y) = \frac{1}{4}x^3 \cdot \frac{1}{48} \left(16 - 12y + 3y^3 - 2|y|^3\right) \neq f(x,y)$ e, portanto, X e Y não são independentes.

Nos exercícios 4, 5 e 6, X e Y não são independentes.

- 22. Usar o método do jacobiano. Inversa: $U = \operatorname{arctg}(Y/X)$, $Z = \frac{1}{2}(X^2 + Y^2)$.
- 23. a) $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{0}^{\infty} 2xe^{-y} dy = 2x$, se 0 < x < 1. $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_{0}^{1} 2xe^{-y} dx = e^{-y}$, se y > 0. Como $f(x, y) = f_X(x) \cdot f_Y(y)$, resulta que X e Y são independentes.
 - b) X e Y não são independentes. c) X e Y não são independentes.
- 24. a) $f(u, v) = u/(1+v)^2$, se 0 < v < 1 e 0 < u < 1+v ou se v > 1 e 0 < u < (1+v)/v; f(u, v) = 0, caso contrário.
 - b) $f(u, v) = u/v^2$, se v > 0 e $0 < u < \min\{1, v\}$; f(u, v) = 0, c.c.
 - c) f(u, v) = u, se 0 < v < 1 e $0 < u < \min\{1/v, 1/(1-v)\}$; f(u, v) = 0, c.c.
- 25. a) Seja $X=(X_1,...,X_n)$ um vetor aleatório com densidade f. Definindo $Y_i=\sum_{j=1}^n a_{ij}X_j,\ i=1,...,n$, podemos escrever $Y=(Y_1,...,Y_n)=XA^t$. Como A é inversível, com inversa $A^{-1}=\left(a_{ij}^{(-1)}\right)$, a tranformação é inversível com inversa $X=Y(A^t)^{-1}=Y(A^{-1})^t$, de modo que, para i=1,...,n, $X_i=\sum_{j=1}^n a_{ij}^{(-1)}Y_j$. Além disso, $\frac{\partial x_i}{\partial y_j}=a_{ij}^{(-1)},\ i,j=1,...,n$, e $J=\det A^{-1}$. Logo,

$$\begin{split} f_Y(y) &= f(x(y)) \big| J \big| = f(y(A^{-1})^t) \big| \det A^{-1} \big| = \\ &= \frac{1}{|\det A|} f(\sum_{j=1}^n a_{1j}^{(-1)} y_j, \dots, \sum_{j=1}^n a_{nj}^{(-1)} y_j). \end{split}$$

b) Sejam $Y_1 = X_1, Y_2 = X_2 - X_1, ..., Y_n = X_n - X_{n-1}$. Note que $Y = X \left(A^{-1}\right)^t$, onde $A^{-1} = \left(a_{ij}^{(-1)}\right)$ com $a_{ii}^{-1} = 1$, i = 1, ..., n, $a_{ij}^{-1} = -1$, se i = 1, ..., n-1 e j = i+1, e $a_{ij}^{-1} = 0$, caso contrário. Nesse caso det $A^{-1} = 1$. Do resultado em (a), obtemos a função densidade de X

$$\begin{split} &f_X(x_1,\ldots,x_n) = f_Y(y_1(x_1,\ldots,x_n),\ldots,y_n(x_1,\ldots,x_n)) \big| \det A^{-1} \big| = \\ &= f_{Y_1}(x_1) \cdot f_{Y_2}(x_2 - x_1) \cdots f_{Y_n}(x_n - x_{n-1}) = \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} e^{-\frac{1}{2}\left(x_1^2 + \sum_{i=1}^{n-1}(x_{i+1} - x_i)^2\right)} \end{split}$$

- 26. a) Na integral, faça a mudança de variáveis: $U = \frac{X \mu_x}{\sigma_x}$, $V = \frac{Y \mu_y}{\sigma_y}$. b) 0
- 27. a) Sejam X e Y as idades da mãe e do pai, respectivamente. Nesse caso, $P(X > 30) = \int_{30}^{\infty} f_X(x) \, dx = \int_{30}^{\infty} \left[\int_{-\infty}^{\infty} f(x,y) \, dy \right] dx.$ Fazendo $U = \frac{X \mu_M}{\sigma_M}$ e $V = \frac{Y \mu_P}{\sigma_P}$, e denotando $u_{30} = \frac{30 \mu_M}{\sigma_M}$, $P(X > 30) = \int_{u_{30}}^{\infty} \left[\int_{-\infty}^{\infty} \frac{1}{2\pi \sqrt{1 \rho^2}} \exp\left\{ -\frac{1}{2(1 \rho^2)} (u^2 2\rho uv + v^2) \right\} dv \right] du =$

$$\begin{split} &= \int_{u_{30}}^{\infty} \frac{du}{\sqrt{2\pi}} \exp\left\{-\frac{u^2 - u^2 \rho^2}{2(1 - \rho^2)}\right\} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi(1 - \rho^2)}} \exp\left\{-\frac{(v - \rho u)^2}{2(1 - \rho^2)}\right\} dv = \\ &= \int_{u_{30}}^{\infty} \frac{du}{\sqrt{2\pi}} \exp\left\{-\frac{u^2 - u^2 \rho^2}{2(1 - \rho^2)}\right\} = \int_{u_{30}}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} u^2\right\} du = 1 - F_{\mathrm{N}}(u_{30}), \end{split}$$

onde F_N é a função de distribuição da Normal (0,1).

b) Procedendo como em (a), com
$$u_{25} = \frac{25 - \mu_M}{\sigma_M}$$
 e $v_{25} = \frac{25 - \mu_P}{\sigma_P}$, $P(X < 25, Y < 25) = \int_{-\infty}^{u_{25}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} F_{\text{N}} \left(\frac{v_{25} - \rho u}{\sqrt{1 - \rho^2}} \right) du$.

- 28. a) Dica: Note que $E[(tX+Y)^2] \ge 0$, $\forall t \in R$.
 - b) Defina U = 1, se $X \le x$, e U = 0 se X > x, V de modo similar e use (a).

29. a)
$$F_{(X_{(1)},X_{(n)})}(u,v) = P(X_{(1)} \le u, X_{(n)} \le v) = P(X_{(n)} \le v)$$
, se $u > v$.

Para u < v.

$$\begin{split} F_{(X_{(1)},X_{(n)})}(u,v) &= P(X_{(n)} \leq v) - P(X_{(1)} > u,X_{(n)} \leq v) = \\ &= P(\cap_{i=1}^n \{X_i \leq v\}) - P(\cap_{i=1}^n \{u < X_i \leq v\}) = \\ &= \prod_{i=1}^n P(X_i \leq v) - \prod_{i=1}^n P(u < X_i \leq v) = \\ &= F^n(v) - [F(v) - F(u)]^n. \end{split}$$

$$f_{(X_{(1)},X_{(n)})}(u,v) = \frac{\partial^2}{\partial u \partial v} F_{(X_{(1)},X_{(n)})}(u,v) =$$

$$= n(n-1)f(u)f(v)[F(v) - F(u)]^{n-2}$$

b) Para a < 0, $F_A(a) = 0$. Para a > 0,

$$\begin{split} F_A(a) &= P(A \leq a) = P(X_{(n)} \leq a + X_{(1)}) = \\ &= \int_{-\infty}^{\infty} du \int_{u}^{u + a} n(n - 1) f(u) f(v) [F(v) - F(u)]^{n - 2} dv = \\ &= \int_{-\infty}^{\infty} du \, n f(u) \left[F(v) - F(u) \right]^{n - 1} \Big|_{u}^{u + a} = \\ &= \int_{-\infty}^{\infty} n f(u) [F(u + a) - F(u)]^{n - 1} du \end{split}$$

30. a)
$$E[F(X_{(1)})] = \frac{1}{n+1}$$
 $E[F(X_{(n)})] = \frac{n}{n+1}$

b)
$$f_A(a) = n(n-1)a^{n-2}(1-a)$$
, se $0 < a < 1$, e $f_A(a) = 0$, caso contrário.

c)
$$\rho(X_{(1)}, X_{(n)}) = \frac{1}{n}$$

31. a) Para t < 0, $F_{X_{(1)}}(t) = 0$. Para t > 0,

$$F_{X_{(1)}}(t) = P(X_{(1)} \le t) = 1 - P(X_{(1)} > t) = 1 - P(\cap_{i=1}^{n} \{X_i > t\}) = 1 - \prod_{i=1}^{n} P(X_i > t) = 1 - \prod_{i=1}^{n} e^{-\lambda_i t} = 1 - e^{-\sum_{i=1}^{n} \lambda_i t}.$$
Logo, $Y_{X_i} \in \text{Expression}(\sum_{i=1}^{n} \lambda_i)$

Logo, $X_{(1)}$ é Exponencial $(\sum_{i=1}^{n} \lambda_i)$.

b)
$$P(X_{(1)} = X_k) = P(\bigcap_{i \neq k} \{X_k \leq X_i\}) =$$

$$= \int_0^\infty \int_{x_k}^\infty \cdots \int_{x_k}^\infty \prod_{i=1}^n \lambda_i e^{-\lambda_i x_i} dx_1 \dots dx_n =$$

$$= \int_0^\infty dx_k \lambda_k e^{-\lambda_k x_k} \int_{x_k}^\infty \cdots \int_{x_k}^\infty \prod_{i \neq k} \lambda_i e^{-\lambda_i x_i} dx_1 \dots dx_n =$$

$$= \int_0^\infty \lambda_k e^{-\lambda_k x_k} e^{-\sum_{i=1}^n \lambda_i x_k} dx_k =$$

$$= \lambda_k \int_0^\infty e^{-\sum_{i=1}^n \lambda_i x_k} dx_k = X_k / (\lambda_1 + \dots + \lambda_n)$$

32. Seja M a mediana da amostra e, para cada $t \in (0,1)$, considere a variável aleatória Y_t: número de variáveis na amostra com valor menor ou igual a t. Note que Y_t é Binomial(2n+1,t) e que $M \le t \Leftrightarrow Y_t \ge n+1$. Assim,

$$\begin{split} F_M(t) &= P(M \leq t) = P(Y_t \geq n+1) = \sum_{i=n+1}^{2n+1} {2n+1 \choose i} t^i (1-t)^{2n+1-i}, \\ f_M(t) &= \frac{dF_M(t)}{dt} = (2n+1) \left\{ \sum_{i=n}^{2n} {2n \choose i} t^i (1-t)^{2n-i} - \sum_{i=n+1}^{2n+1} {2n \choose i} t^i (1-t)^{2n-i} \right\} = \\ &= (2n+1) {2n \choose n} t^n (1-t)^n \end{split}$$

- 33. $P(X_{(n)} \ge 0.99) = 1 P(X_{(n)} < 0.99) = 1 (0.99)^n \ge 0.95 \Leftrightarrow (0.99)^n \le 0.05$ $n \ge \frac{\log 0.05}{\log 0.99} = 298.07$. Portanto, o menor valor de $n \in 299$.
- 34. Exercício 1

a)
$$f(y|x) = 3y^2$$
, se $0 < y < 1$; $f(x|y) = \frac{1}{2}$, se $0 < x < 2$

b)
$$E(Y | X = x) = \frac{3}{4}$$
; $E(X | Y = y) = 1$

Exercício 3

a)
$$f(y|x) = \frac{x-y}{2x^2}$$
, se $-x < y < x$; $f(x|y) = \frac{6x(x-y)}{16-12y+3y^3-2|y|^3}$, se $|y| < x < 2$

b)
$$E(Y|X=x) = -\frac{1}{3}x$$
 $E(X|Y=y) = \frac{48-32y-3y^4+4y^3|y|}{32-24y+6y^3-4y^2|y|}$

Exercicio 5

a)
$$f(y|x) = \frac{1}{x}$$
, se $0 < y < x$;
 $f(x|y) = \frac{2e^{-2x}}{xf_Y(y)}$, se $x > y$, onde $f_Y(y) = \int_y^\infty \frac{2e^{-2x}}{x} dx$, para $y > 0$.

b)
$$E(Y|X=x) = \frac{1}{2}x$$
; $E(X|Y=y) = \frac{e^{-2y}}{f_Y(y)}$

35. a)
$$f_Y(y) = \int_0^y \frac{e^{-y}}{y} dx = e^{-y}$$
, para $y > 0$. Isto é, $Y \sim \text{Exponencial}(1)$.
$$f(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{1}{y}, \text{ se } 0 < x < y. \text{ Logo, } X \mid Y = y \sim \text{U}(0,y) \text{ e } E(X \mid Y = y) = \frac{1}{2}y.$$

b)
$$Cov(X,Y) = E(XY) - E(X)E(Y) = E(E(XY|Y)) - E(E(X|Y))E(Y) =$$

= $E(YE(X|Y)) - E(\frac{1}{2}Y)E(Y) =$
= $E(\frac{1}{2}Y^2) - E(\frac{1}{2}Y)E(Y) = 1 - \frac{1}{2} = \frac{1}{2}$

36.
$$f_Y(y) = -\log(1-y)$$
, para $0 < y < 1$, e $f_Y(y) = 0$, caso contrário.

37. a) Para
$$t < 0$$
, $F_{Y/X^2}(t) = P\left(Y/X^2 \le t\right) = 0$. Para $t > 1$, $F_{Y/X^2}(t) = 1$.
Para $0 < t < 1$, $F_{Y/X^2}(t) = P(Y/X^2 \le t) = \int_0^\infty dx \int_0^{tx^2} \frac{1}{2} e^{-\frac{1}{2}x} \frac{1}{x^2} \, dy = t$.
Assim, $\frac{Y}{X^2} \sim \mathrm{U}(0,1)$.

b)
$$E(X) = 2$$
, $E(Y) = E(E(Y|X)) = E(\frac{1}{2}X^2) = 4$ e $E(XY) = E(E(XY|X)) = E(XE(Y|X)) = E(\frac{1}{2}X^3) = \int_0^\infty \frac{x^3}{2} \frac{1}{2}e^{-\frac{x}{2}} dx = 24$. Logo, $Cov(X, Y) = 16$.

- 38. Basta desenvolver $f(w | x_1, ..., x_n) = \frac{f(x_1, ..., x_n | w) f(w)}{f(x_1, ..., x_n)}$.
- 39. Para $y \in (0,1)$,

$$\begin{split} f(y | X_1 = x_1, \dots, X_n = x_n) &= \frac{P(X_1 = x_1, \dots, X_n = x_n | y) f(y)}{P(X_1 = x_1, \dots, X_n = x_n)} = \\ &= \frac{\prod_{i=1}^n P(X_i = x_i | y) \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} y^{\alpha - 1} (1 - y)^{\beta - 1}}{\int_0^1 \prod_{i=1}^n P(X_i = x_i | t) \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} t^{\alpha - 1} (1 - t)^{\beta - 1} dt} = \\ &= \frac{y^{\sum_{i=1}^n x_i} (1 - y)^{n - \sum_{i=1}^n x_i} y^{\alpha - 1} (1 - y)^{\beta - 1}}{\int_0^1 t^{\sum_{i=1}^n x_i} (1 - t)^{n - \sum_{i=1}^n x_i}} \end{split}$$

$$\begin{split} f(y \, \big| \, X_1 &= x_1, \dots, X_n = x_n) = \\ &= \frac{\Gamma(\alpha + \beta + n)}{\Gamma(\alpha + \sum_{i=1}^n x_i) \Gamma(\beta + n - \sum_{i=1}^n x_i)} \ y^{\alpha + \sum_{i=1}^n x_i - 1} \ (1 - y)^{\beta + n - \sum_{i=1}^n x_i - 1} \end{split}$$

- 40. $E(Y) = 2/\lambda \quad Var(Y) = \infty$
- 41. Para $x \in N$,

$$P(X=x) = \int_0^\infty P(X=x \,|\, Y=y) f_Y(y) \,\, dy = \int_0^\infty \frac{e^{-y} y^x}{x!} e^{-y} \,\, dy = \int_0^\infty \frac{y^x e^{-2y}}{x!} \,\, dy = \left(\frac{1}{2}\right)^{x+1}$$

42. a)
$$f(y_1,...,y_n) = \frac{e^{-y_{(n)}}}{n!}$$
, se $y_i > 0$, $i = 1,...,n$, onde $y_{(n)} = \max\{y_1,...,y_n\}$, e $f(y_1,...,y_n) = 0$, caso contrário.

b)
$$f(x|y_1,...,y_n) = e^{-(x-y_{(n)})}$$
, se $x > y_{(n)}$, e $f(x|y_1,...,y_n) = 0$, c.c.

B.7 CAPÍTULO 7

1.
$$E(X) = \sum_{x \ge 0} xP(X = x) = \sum_{0 \le x < 14} xP(X = x) + \sum_{x \ge 14} xP(X = x) \ge 0 + \sum_{x \ge 14} 14P(X = x) = 14P(X \ge 14) = 2$$

2. Note que
$$\left\{X \leq \frac{\lambda}{2}\right\} \subseteq \left\{|X - \lambda| \geq \frac{\lambda}{2}\right\}$$
 e $\{X \geq 2\lambda\} \subseteq \{|X - \lambda| \geq \lambda\}$

 A demonstração é baseada na Desigualdade de Markov, provada abaixo no caso contínuo: para X variável aleatória não negativa e a > 0,

$$E(X) = \int_{\{x \ge a\}} x f(x) \, dx + \int_{\{x < a\}} x f(x) \, dx \ge \int_{\{x \ge a\}} a f(x) \, dx = a P(X \ge a)$$

$$\Rightarrow P(X \ge a) \le \frac{1}{a} E(X).$$

Para t > 0, temos, usando a Desigualdade de Markov, que

$$P(X \geq x_0) = P(tX \geq tx_0) = P\left(e^{tX} \geq e^{tx_0}\right) \leq \frac{E\left(e^{tX}\right)}{e^{tx_0}} = \frac{\phi_X(t)}{e^{tx_0}}.$$

- 4. Basta utilizar a dica tomando $t^* > 0$ como especificado no enunciado.
- 5. Se E(X) > 0, temos, pela Desigualdade de Markov, $P(X \ge 2\mu) \le \frac{E(X)}{2\mu} = \frac{1}{2}$. A probabilidade de uma variável não negativa qualquer distar do seu valor esperado ao menos a média não excede $\frac{1}{9}$.
- 6. Proceder como no exerício 5 usando a Desigualdade de Tchebyschev.
- 7. Note que $Y \sim \text{Gama}(m+1,1)$, de modo que E(Y) = Var(Y) = m+1. Assim, $P(0 \le Y \le 2(m+1)) = P(|Y - (m+1)| \le m+1) = 1 - P(|Y - E(Y)| > m+1) \ge$ $\geq 1 - \frac{\operatorname{Var}(Y)}{(m+1)^2} = \frac{m}{m+1}$ (a última desigualdade segue da Desigualdade de Tchebyschev).
- 8. a) $P(X > 100) \le \frac{1}{9}$ (exercício 5) b) $P(X > 100) \le \frac{1}{50}$ (exercício 6) O conhecimento da variância da variável Y permite estabelecer um majorante melhor (mais fino) para tal probabilidade.
- 9. a) Se $\epsilon > 1$, $P(|Y_n 1| \ge \epsilon) = 0$, $\forall n \ge 1$, e, portanto, $\lim_{n \to \infty} P(|Y_n 1| \ge \epsilon) = 0$. Para $0 < \epsilon \le 1$, $P(|Y_n - 1| \ge \epsilon) = P(Y_n \le 1 - \epsilon) = P(\cap_{i=1}^n \{X_i \le 1 - \epsilon\})$ $= \prod_{i=1}^{n} P(X_i \le 1 - \epsilon) = (1 - \epsilon)^n.$ Além disso, $\lim_{n\to\infty} (1-\epsilon)^n = 0$. Logo, para todo $\epsilon > 0$, $\lim_{n \to \infty} P(|Y_n - 1| \ge \epsilon) = 0$ e, portanto, $X_n \xrightarrow{p} 1$.
 - b) Como no item anterior, se $\epsilon > 1$, $\lim_{n \to \infty} P(|Y_n| \ge \epsilon) = \lim_{n \to \infty} 0 = 0$. Para $0 < \epsilon \le 1$, $P(|Y_n| \ge \epsilon) = P(Y_n \ge \epsilon) = P(\cap_{i=1}^n \{X_i \ge \epsilon\}) = (1 - \epsilon)^n$ Assim, para todo $\epsilon > 0$, $\lim_{n \to \infty} P(|Y_n - 0| \ge \epsilon) = 0$ e, portanto, $X_n \stackrel{p}{\longrightarrow} 0$.
- 10. A sequência $(nY_n)_{n\geq 1}$ converge em distribuição para a exponencial de parâmetro 1.
- 11. Como $X_1, X_2, ...$ é sequência de variáveis i.i.d. Poisson(λ), mostre que Y_1, Y_2, \dots são variáveis i.i.d. com $E(Y_1)=E(X_1^2)=\operatorname{Var}(X_1)+(E(X_1))^2=\lambda+\lambda^2<\infty.$ Pela Lei Fraca dos Grandes Números, $Y_n = \frac{1}{n}(X_1^2 + \dots + X_n^2) \xrightarrow{p} E(X_1^2) = \lambda + \lambda^2$
- 12. Para t < 0, $F_{Y_n}(t) = P(Y_n \le t) = 0$ e $\lim_{n \to \infty} F_{Y_n}(t) = 0$ nesse caso. Para $t \ge 0$, $F_{Y_n}(t) = P(Y_n \le t) = P(n[1 - F(M_n)] \le t) = P(F(M_n) \ge 1 - \frac{t}{n}) = 0$ $=1-P(F(M_n) \le 1-\frac{t}{n})=1-P(M_n \le F^{-1}(1-\frac{t}{n}))=$ $=1-(F(F^{-1}(1-\frac{t}{n})))^n=1-(1-\frac{t}{n})^n.$

Logo,
$$\lim_{n\to\infty} F_{Y_n}(t) = \lim_{n\to\infty} 1 - (1 - \frac{t}{n})^n = 1 - e^{-t}$$
.
Logo, $Y_n \stackrel{d}{\longrightarrow} Y$, onde $Y \sim \text{Exponencial}(1)$.

- $\begin{array}{ll} \text{13. Para } t < 0, \, F_{Z_n}(t) = P(Z_n \le t) = 0 \text{ e } \lim_{n \to \infty} F_{Z_n}(t) = 0 \text{ nesse caso. Para } t \ge 0, \\ F_{Z_n}(t) = P(Z_n \le t) = P(\frac{X_n}{n} \le t) = P(X_n \le nt) = \sum_{i=0}^{\lfloor nt \rfloor} \left(1 \frac{\lambda}{n}\right)^i \frac{\lambda}{n} = \\ &= 1 (1 \frac{\lambda}{n})^{1 + \lfloor nt \rfloor}, \text{ onde } \lfloor nt \rfloor \text{ denota o maior inteiro } \le nt. \\ \text{Como } nt 1 < \lfloor nt \rfloor \le nt, \text{ resulta que} \\ &1 (1 \frac{\lambda}{n})^{nt} \le 1 (1 \frac{\lambda}{n})^{1 + \lfloor nt \rfloor} \le 1 (1 \frac{\lambda}{n})^{1 + nt}. \\ \text{Como } \lim_{n \to \infty} 1 (1 \frac{\lambda}{n})^{nt} = \lim_{n \to \infty} 1 (1 \frac{\lambda}{n})^{1 + nt} = 1 e^{-\lambda t}, \text{ segue que} \\ \lim_{n \to \infty} F_{Z_n}(t) = 1 e^{-\lambda t}. \text{ Logo, } Z_n \xrightarrow{d} Z. \end{array}$
- 14. *Dica*: Mostre que $(X_n)_{n\geq 1}$ é sequência de variáveis i.d. com a mesma ditribuição de X e que, para cada $n\geq 1$, $P(|X_n-X|>\frac{1}{2})=\frac{2}{3}$.
- A resolução deste exercício envolve conceitos de Análise Real. A prova completa do resultado pode ser encontrada em James (ver bibliografia).
- 16. Verificar que $E(X_1) = 1 + \theta$ e aplicar a Lei Fraca dos Grandes Números.
- 17. A função geradora de momentos de Z_n é $\phi_{Z_n}(t) = \phi_{\frac{X_n}{n}}(t) = \phi_{X_n}(\frac{t}{n}) = \int_0^\infty e^{\frac{t}{n}x} \frac{\beta^n}{\Gamma(n)} x^{n-1} e^{-\beta x} \, dx = \\ = \frac{\beta^n}{\Gamma(n)} \int_0^\infty x^{n-1} e^{-(\beta \frac{t}{n})x} \, dx = \left(\frac{\beta}{\beta \frac{t}{n}}\right)^n = \left(1 \frac{t}{\beta^n}\right)^{-n}, \text{ para } n > \frac{t}{\beta}.$ Logo, $\lim_{n \to \infty} \phi_{Z_n}(t) = e^{\frac{t}{\beta}} = \phi_Z(t)$, onde Z é uma variável tal que $P(Z = \frac{1}{\beta}) = 1. \text{ Pelo teorema } 7.1.1, Z_n \xrightarrow{d} Z.$
- 18. $X_n \xrightarrow{d} X$, onde $X \sim \text{Uniforme}(0,1)$.
- 19. Como X_1, X_2, \ldots é sequência de v.i.i.d. Normal $(\mu, \sigma^2), Y_1, Y_2, \ldots$ é sequência de v.i.i.d. com $E(Y_1) = E(X_1^2) = \mathrm{Var}(X_1) + (E(X_1))^2 = \sigma^2 + \mu^2 < \infty$. Pela Lei Fraca dos Grandes Números, $Y_n = \frac{1}{n}(X_1^2 + \cdots + X_n^2) \stackrel{p}{\longrightarrow} E(X_1^2) = \mu^2 + \sigma^2$.
- 20. Faça $P(|X_n-\alpha| \geq \epsilon) = P((X_n-\alpha)^2 \geq \epsilon^2)$ e use a Desigualdade de Markov.
- 21. $\operatorname{Para} \epsilon > 1$, $P(|X_n| \ge \epsilon) = 0$, $\forall n \ge 1$. $\operatorname{Para} 0 < \epsilon \le 1$, $P(|X_n| \ge \epsilon) = P(X_n = 1) = \frac{1}{n}$. $\forall \epsilon > 0$, $\lim_{n \to \infty} P(|X_n| \ge \epsilon) \le \lim_{n \to \infty} \frac{1}{n} = 0$. Logo , $X_n \stackrel{p}{\longrightarrow} 0$
- 22. Não. Sob a hipótese de moeda honesta, a probabilidade de ao menos $6\,400$ caras seria muito próxima de zero porque $6\,400 = E + 28\sigma$.
- 23. Seja X_i a duração da *i*-ésima lâmpada, $i=1,\dots,36$. Supondo X_1,\dots,X_{36} independentes com mesma distribuição Exponencial de média 3, pelo teorema 7.1.2

275

onde Z é distribuída segundo o modelo N(0,1).

- 24. 0,9545 (basta ultilizar o Teorema do Limite Central)
- 25. Do exercício (a) (b) do capítulo 6, X corresponde à soma de n variáveis X_1, \ldots, X_n independentes e com mesma distribuição $\operatorname{Gama}(n, \lambda)$ (ou Exponencial(λ)). Para n grande, a distribuição de X é bem aproximada por uma distribuição Normal. Com efeito, para x > 0,

$$P(X \leq x) = P(\sum_{i=1}^n X_i \leq x) = P\left(\frac{\sum_{i=1}^n X_i - n/\lambda}{\sqrt{n/\lambda^2}} \leq \frac{x - n/\lambda}{\sqrt{n/\lambda^2}}\right) \cong P\left(Z \leq \frac{x - n/\lambda}{\sqrt{n/\lambda^2}}\right),$$

onde Z é distribuída segundo o modelo Normal padrão.

- 26. a) 3458 (Dica: $p \le 0, 1 \Rightarrow p(1-p) \le (0,1)(0,9)$) b) 9604
- 27. Seja T o número de lançamentos até a obtenção da centésima cara. Note que $T = \sum_{i=1}^{100} X_i$, onde X_i é o número de lançamentos necessários para obter a i-ésima cara após a obtenção da (i-1)-ésima cara. X_i , $i=1,\ldots,100$, é Geométrica com parâmetro $\frac{1}{2}$. Pelo Teorema do Limite Central,

$$\begin{split} P(T \geq 220) &= P\left(\sum_{i=1}^{100} X_i \geq 220\right) = P\left(\frac{T-200}{\sqrt{200}} \geq \frac{220-200}{\sqrt{200}}\right) \cong P(Z \geq \sqrt{2}) \approx \\ 0.0793. \end{split}$$

- 28. a) 0,9991 b) 0,9821
- 29. Seja Y_n uma variável aleatória com distribuição Gama(n,1).

Note que $\lim_{n\to\infty} \frac{1}{(n-1)!} \int_0^n t^{n-1} e^{-t} dt = \lim_{n\to\infty} P(Y_n \le n)$.

Procedendo como no exercício 25.

$$\begin{split} \lim_{n\to\infty} \frac{1}{(n-1)!} \int_0^n t^{n-1} e^{-t} \, dt &= \lim_{n\to\infty} P(Y_n \le n) = \\ &= \lim_{n\to\infty} P\left(\frac{Y_n - n}{\sqrt{n}} \le \frac{n-n}{\sqrt{n}}\right) = \lim_{n\to\infty} P\left(\frac{Y_n - n}{\sqrt{n}} \le 0\right) = P(Z \le 0) = \frac{1}{2} \end{split}$$

- 30. 0,9525
- 31. Seja T o tempo total de operação dos 30 dispositivos. Note que $T = \sum_{i=1}^{30} X_i$, onde X_i , com distribuição exponencial de média 10, é o tempo de vida do i-ésimo dispositivo, $i = 1, \dots, 30$. Pelo Teorema do Limite Central, $P(T > 350) = P\left(\frac{T 30 \cdot 10}{\sqrt{30 \cdot 100}} > \frac{350 30 \cdot 10}{\sqrt{30 \cdot 100}}\right) \cong P(Z > \sqrt{5/6}) = 0,1814$.

32. a)
$$E(X_1^2) = \sigma^2$$
, $\operatorname{Var}(X_1^2) = 2\sigma^4$ b) $F_{\mathbf{N}}\left(\frac{x - n\sigma^2}{\sqrt{2n\sigma^4}}\right)$

33. Seja Y_i o número de carros que passam pelo jornaleiro até a venda do i-ésimo exemplar depois da venda do (i-1)-ésimo jornal, $i=1,\ldots,90$.

Assim, $Y = \sum_{i=1}^{90} Y_i$. Y_i é Geométrica com parâmetro $\frac{1}{3}$, $E(Y) = 90 \cdot 3 = 270$ e Var(T) = 90.6 = 540. Como consequência do Teorema do Limite Central, Y tem distribuição aproximadamente Normal (270,540).

34. 0.3483 (utilize o Teorema do Limite Central).

$$\begin{array}{ll} 35. \ \ a) \ \ P\left(\left|\frac{1}{n}S_n-p\right| \geq 0{,}025\right) = 1 - P\left(-0{,}025 < \frac{1}{n}S_n-p\right| < 0{,}025\right) = \\ &= 1 - P\left(\frac{-0{,}025}{\sqrt{\frac{p(1-p)}{n}}} < \frac{\frac{S_n}{n}-p}{\sqrt{\frac{p(1-p)}{n}}} < \frac{0{,}025}{\sqrt{\frac{p(1-p)}{n}}}\right) \cong 1 - P\left(\frac{-0{,}025}{\sqrt{\frac{p(1-p)}{n}}} < Z < \frac{0{,}025}{\sqrt{\frac{p(1-p)}{n}}}\right) = \\ &= 1 - 2P\left(0 < Z < \frac{0{,}025}{\sqrt{\frac{p(1-p)}{n}}}\right) \ . \end{array}$$

Note que σ é desconhecida. Um limitante superior para essa probabilidade é obtido substituindo-se p por $\frac{1}{2}$. Para n = 900, tal limitante $\acute{e} 1 - 2P (0 < Z < 1,5) = 0,1336.$

$$\begin{split} \text{b)} \ \ P\left(\left|\frac{1}{n}S_n - p\right| \geq 0,025\right) &= 1 - 2P\Big(0 < Z < \frac{0,025}{\sqrt{(1/4)/n}}\Big) = 0,01 \Leftrightarrow \\ &\Leftrightarrow P\Big(0 < Z < \frac{0,025}{\sqrt{(1/4)/n}}\Big) = 0,495 \Leftrightarrow \frac{0,025}{\sqrt{(1/4)/n}} = 2,58 \Leftrightarrow n = \left(\frac{2,58}{0,025}\right)^2 \frac{1}{4} = 2\,663. \end{split}$$

- 36. Utilize a sugestão e proceda como no exercício 29.
- 37. Seja $(X_n)_{n\geq 1}$ uma sequência de v.i. com distribuição comum Poisson (λ) .

Seja
$$S_n = \sum_{i=1}^n X_i$$
, cuja distribuição é Poisson $(n\lambda)$, $n \ge 1$.

$$\lim_{n \to \infty} e^{-n\lambda} \sum_{k=0}^n \frac{(n\lambda)^k}{k!} = \lim_{n \to \infty} P(S_n \le n) = \lim_{n \to \infty} P(\frac{1}{n}S_n \le 1) = \lim_{n \to \infty} F_{\frac{1}{n}S_n}(1).$$

Pela Lei Fraca dos Grandes Números, $\frac{1}{n}\sum_{i=1}^{n}X_{i}\stackrel{p}{\longrightarrow}\lambda$, e, pelo exercício 15, $\frac{1}{n}\sum_{i=1}^{n}X_{i}\overset{d}{\longrightarrow}\lambda$. Seja F_{X} a função de distribuição da variável X tal que $P(X = \lambda) = 1$. Como $\lambda \neq 1$, 1 é ponto de continuidade de F_X e, da definição de convergência em distribuição, resulta que

$$\lim_{n\to\infty}e^{-n\lambda}\sum_{k=0}^n\frac{(n\lambda)^k}{k!}=\lim_{n\to\infty}F_{\frac{1}{n}S_n}(1)=F_X(1). \text{ Assim, se } 0<\lambda<1,$$

$$\lim_{n\to\infty}e^{-n\lambda}\sum_{k=0}^n\frac{(n\lambda)^k}{k!}=1, \text{ e, se } \lambda>1, \lim_{n\to\infty}e^{-n\lambda}\sum_{k=0}^n\frac{(n\lambda)^k}{k!}=0.$$

- 38. Para assegurar que a média das medições não difira da distância verdadeira por mais de $\frac{1}{2}$ ano-luz com probabilidade de 0,95, o astrônomo deve fazer n = 62 medições.
- 39. a) Do enunciado, segue que S_n é Poisson(n). Assim, $P(S_n = n) = \frac{1}{n!}e^{-n}n^n$.

$$\begin{split} \text{b)} \ \ P(S_n = n) &= P\left(\, n - \frac{1}{2} < S_n \le n + \frac{1}{2}\,\right) = P\left(\, -\frac{1}{2\sqrt{n}} < \frac{S_n - n}{\sqrt{n}} \le \frac{1}{2\sqrt{n}}\,\right) = \\ &= P\left(\, -\frac{1}{2\sqrt{n}} < Z \le \frac{1}{2\sqrt{n}}\,\right) = 2P\left(\, -\frac{1}{2\sqrt{n}} < Z \le 0\,\right) \cong \\ &\cong \frac{2}{\sqrt{2\pi}} \int_{-\frac{1}{2\sqrt{n}}}^0 e^{-\frac{1}{2}x^2} dx \cong \frac{2}{\sqrt{2\pi}} \frac{1}{2\sqrt{n}} = \frac{1}{\sqrt{2\pi n}}. \end{split}$$

c) De (a) e (b), temos que
$$\frac{1}{n!}e^{-n}n^n \cong \frac{1}{\sqrt{2\pi n}}$$
, donde $n! \cong \sqrt{2\pi}e^{-n}n^{n+\frac{1}{2}}$.