Notes of Multivariate Statistical Analysis

Xie Zejian

2021-03-02

Contents

1	Random Vectors		
	1.1	Covariance Matrix	2
	1.2	Multivariate summary statistics	2
	1.3	Exercises	ç

Chapter 1

Random Vectors

1.1 Covariance Matrix

Covariance matrix of random vector \mathbf{x} with mean μ is defined as

$$\Sigma := \operatorname{Cov} [\mathbf{x}, \mathbf{x}] = \mathbb{E}(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})' = \mathbb{E} \mathbf{X} \mathbf{X}' - (\mathbb{E} \mathbf{X})(\mathbb{E} \mathbf{X})'$$

1. $\Sigma \geq 0$ and equality fail to hold when $|\Sigma| \neq 0$ 2. $Cov[\mathbf{A}\mathbf{x}, \mathbf{B}\mathbf{y}] = \mathbf{A} Cov[\mathbf{x}, \mathbf{y}] \mathbf{B}'$

The correction matrix of \mathbf{x} is defined as

$$oldsymbol{
ho} = \sqrt{\operatorname{diag}(oldsymbol{\Sigma})^{-1} oldsymbol{\Sigma} \operatorname{diag}(oldsymbol{\Sigma})^{-1}}$$

1.2 Multivariate summary statistics

Suppose $(\mathbf{x}_i)_1^N$ be random sample from a multivariate distribution with mean μ , variance Σ and correction ρ . Then the sample mean and sample covariance is define as:

$$\hat{\boldsymbol{\mu}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i, \hat{\boldsymbol{\Sigma}} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x_i} - \overline{\mathbf{x}})(\mathbf{x} - \overline{\mathbf{x}})'$$

Alternatively, arranging the observation vectors as the columns of a matrix, so that,

$$\mathbf{X'} = \begin{bmatrix} \mathbf{x_1} & \mathbf{x_2} & \dots & \mathbf{x_N} \end{bmatrix}$$

then

$$\hat{\boldsymbol{\mu}} = \frac{\mathbf{X'e}}{\mathbf{e'e}}, \hat{\boldsymbol{\Sigma}} = \frac{\mathbf{X}(\mathbf{I} - \mathbf{P_e})\mathbf{X'}}{N-1}$$

and the sample correction matrix is $\hat{\boldsymbol{\rho}} = \sqrt{\operatorname{diag}(\hat{\boldsymbol{\Sigma}})^{-1}\,\hat{\boldsymbol{\Sigma}}\,\operatorname{diag}(\hat{\boldsymbol{\Sigma}})^{-1}}$

Proposition 1.1. Those estimator are unbiased:

1.
$$\mathbb{E}\,\hat{\boldsymbol{\mu}} = \boldsymbol{\mu}, \operatorname{Var}\hat{\boldsymbol{\mu}} = \frac{1}{N}\boldsymbol{\Sigma}$$

2.
$$\mathbb{E} \hat{\Sigma} = \Sigma$$

Proof. Mean. Direct algebra yields:

$$\mathbb{E}\,\hat{\boldsymbol{\mu}} = \mathbb{E}\,\frac{\mathbf{X'e}}{\mathbf{e'e}} = \frac{1}{\mathbf{e'e}}\,\mathbb{E}\,\mathbf{X'e} = \frac{1}{\mathbf{e'e}}\boldsymbol{\mu}\mathbf{e'e} = \boldsymbol{\mu}$$

and

$$\operatorname{Var} \hat{\boldsymbol{\mu}} = \frac{1}{N^2} \operatorname{Var} \sum_{i=1}^{N} \mathbf{x_i} = \frac{1}{N^2} N \operatorname{Var} \mathbf{x_i} = \frac{1}{N} \boldsymbol{\Sigma}$$

Sample covariance. Note

$$\mathbb{E}\,\hat{\boldsymbol{\Sigma}} = \frac{1}{N-1}\,\mathbb{E}\,\mathbf{X}(\mathbf{I} - \mathbf{P_e})\mathbf{X'}$$

1.3 Exercises