14 Complément d'intégration

I - Primitive des fonctions logarithme & exponentielle

Les fonctions logarithme et exponentielle étant connues, on peut compléter le tableau des primitives usuelles en y ajoutant les lignes suivantes.

f est définie sur I par	une primitive F est donnée par
$f(x) = e^x$	$F(x) = e^x$
$f(x) = \frac{1}{x}$	$F(x) = \ln(x)$
$f = u'e^u$	$F = e^u$
$f = \frac{u'}{u}$	$F = \ln(u)$

Remarque 14.1 – On pourra retenir en particulier que la primitive d'une fonction de la forme $f(x) = e^{ax}$ (avec $a \neq 0$) est donnée par

$$F(x) = \frac{1}{a}e^{ax}.$$

Exemple 14.2 – Calculer les primitives des fonctions suivantes.

$$1. \ f(x) = e^{2x}$$

$$2. \ f(x) = \frac{2}{x}$$

3.
$$f(x) = e^{3x} - e^{-x}$$

4.
$$f(x) = \frac{x}{x^2 + 1}$$

$$5. \ f(x) = xe^{x^2}$$

II - Formule d'intégration par parties

Proposition 14.3

Soient u et v deux fonctions dérivables et soient a et b deux réels. Alors

$$\int_a^b u'(t)v(t) dt = \left[u(t)v(t)\right]_a^b - \int_a^b u(t)v'(t) dt.$$

Remarque 14.4 -

• On peut résumer la formule d'intégration par parties de la manière suivante :

$$\int u'v = [uv] - \int uv'.$$

• La formule d'intégration par parties permet de calculer des intégrales lorsque l'on ne sait pas trouver de primitive de la fonction à intégrer. Il faut alors choisir les fonctions u et v adéquates.

Pour des intégrales impliquant la fonction exponentielle, on choisira souvent la fonction exponentielle pour la fonction à intégrer (i.e., u').

Inversement, pour des intégrales impliquant la fonction logarithme, on choisira la fonction logarithme pour la fonction à dériver (i.e., v).

Exemple 14.5 – Calculer les intégrales suivantes.

$$1. I_1 = \int_0^1 t e^t \, \mathrm{d}t$$

2.
$$I_2 = \int_1^2 x \ln(x) dx$$

3.
$$I_3 = \int_1^e \ln(x) dx$$

III - Intégrales et inégalités

On suppose dans cette partie que $a \le b$.

Proposition 14.6 - Positivité de l'intégrale

- Si f est continue et positive sur [a; b], alors $\int_a^b f(t) dt \ge 0$.
- Si f est continue et positive sur [a;b] et que $\int_a^b f(t) dt = 0$, alors f est la fonction nulle sur [a;b].

Remarque 14.7 – En particulier, si f est continue, positive et non-identiquement nulle sur [a;b], alors $\int_a^b f(t) dt > 0$.

Proposition 14.8 – Croissance de l'intégrale

Soient f et g deux fonctions continues sur [a;b] telles que $\forall t \in [a;b], f(t) \leq g(t)$. Alors

$$\int_{a}^{b} f(t) dt \leqslant \int_{a}^{b} g(t) dt.$$

Exemple 14.9 – On considère la suite $(u_n)_{n \in \mathbb{N}^*}$ définie par

$$u_n = \int_0^1 \frac{x^n}{(1+x^2)^2} \, \mathrm{d}x.$$

1. Calculer u_1 .

2. Montrer que pour tout $x \in [0;1]$ et pour tout $n \in \mathbb{N}^*$, on a

$$0 \leqslant \frac{x^n}{\left(1 + x^2\right)^2} \leqslant x^n.$$

3. En déduire que

$$\forall n \in \mathbf{N}^*, \quad 0 \leqslant u_n \leqslant \frac{1}{n+1}.$$

4. Étudier la convergence de la suite $(u_n)_{n \in \mathbb{N}^*}$.