Exploitation des procédés

Section 1.5

Modélisation des procédés chimiques

- Dans un procédé chimique, il y a **transformation** de la matière;
- Le procédé est réalisé dans un *réacteur*, l'espace physique dans lequel la transformation prend place
 - Par exemple : une cuve, une section de conduite, un bassin, un réservoir, une chambre de combustion, etc.
 - Il peut y avoir plusieurs réacteurs (en série, en parallèle)

Réacteur

Réactifs et produits

• Les substances qui **entrent** dans le réacteur sont les *réactifs*

• Les substances qui **sortent** du réacteur sont les **produits**

Le procédé en cuvée

- Le procédé est exploité séquentiellement : une série d'opérations, comme l'ajout des réactifs, sont réalisées dans un ordre défini;
 - Les réactifs sont mesurés
 - En **volume** (m³)
 - En masse (kg)
- À la fin de la séquence, les produits sont extraits du réacteur (qui est maintenant vidé), et on peut reprendre la séquence depuis le début.

Schéma du procédé en cuvée

- Séquence d'opérations :
 - Ajouter une quantité d'un réactif
 - Mélanger
 - Chauffer (jusqu'à une certaine température)
 - Attendre (un certain temps)
 - Laisser refroidir (jusqu'à une certaine température)
 - ...
 - Extraire les produits

Le procédé en continu

- L'alimentation des réactifs vers le réacteur est ininterrompue :
 - Liquide s'écoulant d'une vanne (robinet)
 - Solide en poudre s'écoulant d'une trémie
 - Solide granulaire convoyé sur un tapis roulant
 - ...
- La transformation se fait dans le réacteur pendant que les substances y séjournent
- Les produits sont soutirés en continu

Schéma du procédé en continu

• Pour décrire l'alimentation et l'extraction continues, on recourt à de nouvelles grandeurs physiques qui mettent en relation les quantités et le **temps** :

Les *débits*

Définitions

- Débit volumique : $Q = \frac{volume}{temps}$; unités $\frac{m^3}{s}$
- Débit massique : $\dot{m} = \frac{masse}{temps}$; unités $\frac{kg}{s}$
- On utilise souvent d'autres unités de temps (heures *h*, jours *d*, minutes *min*).

Exemple : chloration de l'eau potable

Condition d'écoulement stationnaire

- La manière la plus simple d'exploiter un procédé en continu est sous condition d'écoulement stationnaire
 - Il n'y a pas de variation de l'emmagasinement dans le réacteur
- Puisque la masse se conserve lors de transformations chimiques, cette condition s'exprime mathématiquement par :

$$\sum_{entrant} \dot{m} = \sum_{sortant} \dot{m}$$

• L'exploitant régule les paramètres (pompes, ouvertures de vannes, etc.) de telle sorte que cette condition soit respectée.

Cas particulier : les réactifs et produits des liquides

• Lorsque réactifs et produits sont à l'état liquide et à masse volumique constante, on peut écrire la condition d'écoulement stationnaire avec les débits volumiques :

$$\sum_{entrant} Q = \sum_{sortant} Q$$

• On n'utilise pas cette formulation pour les solides (poudres, grains), ni les gaz. Dans ces cas, il faut utiliser l'expression générale utilisant les débits massiques.

Hypothèses de modélisation

- On cherche à modéliser la transformation qui a lieu à l'intérieur du réacteur.
- Pour modéliser (mathématiquement) un procédé chimique, on pose en général des hypothèses pour décrire ce qui se passe.
- Deux hypothèses courantes :
 - L'écoulement piston;
 - Le réacteur complètement mélangé.

L'écoulement piston

entrée (réactifs) la transformation s'effectue en traversant

- Les réactifs entrent à une extrémité et cheminent à travers le réacteur jusqu'à l'extrémité opposée;
- Plus on s'éloigne de l'entrée, on se rapproche de la sortie, plus la transformation est avancée;
- La composition dans le réacteur est différente selon l'endroit.

Le réacteur complètement mélangé

- Lorsque les réactifs entrent dans le réacteur, ils sont complètement dispersés dans l'ensemble du volume du réacteur;
- La composition est homogène dans le réacteur;
- La composition dans le réacteur est celle des produits soutirés.

