Consider interpolating a signal x[n] by repeating each value q times, as depicted in Fig.P4.50. That is, we define  $x_0 = x \left[ floor \left( \frac{n}{q} \right) \right]$ , where floor(z) is the greatest integer less than or equal to z. Let  $x_z[n]$  be derived from x[n] by inserting q-1 zeros between each value of x[n]; that is,

$$x_{z}[n] = \begin{cases} x \left[\frac{n}{q}\right], \frac{n}{q} \text{ interger} \\ 0, \text{ otherwise} \end{cases}.$$

We may now write  $x_0[n] = x_z[n] * b_0[n]$ , where

$$b_0[n] = \begin{cases} 1, 0 \le n \le q - 1 \\ 0, \text{ otherwise.} \end{cases}$$

Note that this is the discrete-time analog of the zero-order hold. The interpolation process is completed by passing  $x_0[n]$  through a filter with frequency response  $H(e^{j\Omega})$ .

a) Express  $X_0\left(e^{j\Omega}\right)$  in terms of  $X\left(e^{j\Omega}\right)$  and  $H_0\left(e^{j\Omega}\right)$ . Sketch

$$|X_0(e^{j\Omega})|$$
 if  $x[n] = \frac{\sin\left(\frac{3\pi}{4}n\right)}{\pi n}$ .

b) Assume that  $X(e^{j\Omega})$  is as shown in Fig.P4.49. Specify the constrains on  $H(e^{j\Omega})$  so that ideal interpolation is obtained for the following cases:

i. 
$$q = 2, W = \frac{3\pi}{4}$$

ii. 
$$q = 4, W = \frac{3\pi}{4}$$



FIGURE P4.50



FIGURE P4.49

The system shown in Fig.P4.51 is used to implement a band-pass filter. The frequency response of discrete-time filter is

$$H\left(e^{j\Omega}\right) = \begin{cases} 1, \, \Omega_a \leq |\Omega| \leq \Omega_b \\ 0, & \text{otherwise} \end{cases}$$

on  $-\pi < \Omega < \pi$ . Find the sampling interval  $T_s, \Omega_a, \Omega_b, W_1, W_2, W_3$ , and  $W_4$  so that the equivalent continuous-time frequency response  $G(j\omega)$  satisfies

$$0.9 < |G(j\omega)| < 1.1$$
, for  $100\pi < \omega < 200\pi$   
 $G(j\omega) = 0$  elsewhere

In solving this problem, choose  $W_1$  and  $W_3$  as small as possible, and choose  $T_s, W_2$ , and  $W_4$  as large as possible.



FIGURE P4.51