

Calcolo differenziale — Scheda di esercizi n. 1 2 Ottobre 2023 — Compito n. 00234

 $\label{eq:local_continuous_continuous} \textbf{Istruzioni} : \text{le prime due caselle } (\mathbf{V} \ / \ \mathbf{F}) \\ \text{permettono di selezionare la risposta vero/falso.} \\ \text{La casella "C" serve a correggere eventuali errori invertendo la risposta data.}$

Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes o \bigcirc).

Nome:				
Cognome:				
Cognome.				
Matricola:				

1) Sia

 $E = \{ \text{multipli interi di 5} \}.$

- **1A)** Il numero x = 26 appartiene ad E.
- **1B)** Se x appartiene ad E, allora x+15 appartiene ad E.
- **1C)** Non esiste il minimo di E.
- **1D)** L'insieme $\mathbb{N} \setminus E$ è limitato superiormente.
- **2)** Sia

$$E = \{x \in \mathbb{R} : |x - 7| \le 7\} \setminus \{0\}.$$

- **2A)** L'insieme E non è un intervallo.
- **2B)** Il numero reale x = 8 non appartiene ad E.
- **2C)** L'insieme E è limitato inferiormente.
- **2D)** L'insieme E non ha massimo.

3) Sia

$$E = \{x \in \mathbb{R} : x^2 - 16x + 39 \le 0\}.$$

- **3A)** L'insieme E non è vuoto.
- **3B)** L'insieme E è un intervallo.
- **3C)** L'insieme $E \setminus \{8\}$ è un intervallo.
- **3D)** L'insieme E ha minimo.
- **4)** Sia

$$E = \{x \in \mathbb{Q} : |x| \le \sqrt{13}\}.$$

- **4A)** Il numero $x = \sqrt{13}$ appartiene ad E.
- **4B)** Il numero x = -1 appartiene ad E.
- **4C)** L'insieme E non è limitato.
- **4D)** Esiste il minimo di E.

\mathbf{T}				
1)	O	CE	n	t.e

☐ Garroni [A, F] ☐ Orsina [G, Z]

Cognome	Nome	Matricola	Compito 00234
---------	------	-----------	---------------

$$E = \left\{x \in \mathbb{R} : -6 \le x \le 11\right\} \setminus \left\{0\right\}.$$

- a) Dimostrare che l'insieme ${\cal E}$ non è un intervallo.
- b) Dimostrare che l'insieme E è limitato superiormente ed inferiormente, esibendo un maggiorante ed un minorante di E. c) Dimostrare che non esiste il minimo di $E \cap [0,9]$.
- \mathbf{d}) Dimostrare che non esiste il minimo dell'insieme

$$F=\{x^2,\ x\in E\}\,.$$

Cognome	Nome	Matricola	Compito 00234
---------	------	-----------	---------------

$$E = \{x \in \mathbb{R} : (x - 7)(x - 8)(x - 9) \le 0\}.$$

- a) Dimostrare che x = 0 appartiene ad E.
- b) Risolvendo la disequazione che definisce E, scrivere E come unione di intervalli. c) Dimostrare che $E \cap [0, +\infty)$ è un insieme limitato.
- d) Dimostrare che l'insieme $E\cap \mathbb{Q}$ ha massimo, e che l'insieme $E\cap \mathbb{N}$ ha minimo.

Soluzioni del compito 00234

1) Sia

$$E = \{ \text{multipli interi di 5} \}.$$

1A) Il numero x = 26 appartiene ad E.

Falso: Il numero x = 26 non appartiene ad E dato che non è un multiplo di 5; infatti, dividendo x per 5 si ottiene come resto 1 (e non 0).

1B) Se x appartiene ad E, allora x + 15 appartiene ad E.

Vero: Se x appartiene ad E, x è un multiplo intero di 5; esiste quindi un intero k tale che x = 5k. Dato che $15 = 3 \cdot 5$, si ha quindi

$$x + 15 = 5k + 3 \cdot 5 = (k+3) \cdot 5$$
,

e quindi x+15 appartiene ad E perché è un multiplo intero di 5.

1C) Non esiste il minimo di E.

Falso: Dato che E è un sottoinsieme non vuoto di \mathbb{N} , E ammette minimo per il principio di buon ordinamento. Un altro modo per dimostrare che E ha minimo è osservare che

$$E = \{0, 5, 10, 15, 20, \ldots\},\$$

e quindi il minimo di E esiste ed è 0.

1D) L'insieme $\mathbb{N} \setminus E$ è limitato superiormente.

Falso: Se $\mathbb{N} \setminus E$ fosse limitato superiormente, esisterebbe N in \mathbb{N} tale che se x appartiene a $\mathbb{N} \setminus E$, allora x < N. Pertanto, x = N appartiene ad E. Ma se N appartiene ad E, allora N + 1 non vi appartiene (perché dividendo N per 5 si ottiene come resto 1, e quindi N + 1 non è divisibile per 5). Abbiamo dunque un assurdo: tutti i numeri di $\mathbb{N} \setminus E$ sono strettamente minori di N, ma N + 1 > N appartiene a $\mathbb{N} \setminus E$. Ne segue quindi che $\mathbb{N} \setminus E$ non è limitato.

$$E = \{x \in \mathbb{R} : |x - 7| \le 7\} \setminus \{0\}.$$

Si ha

$$|x-7| \le 7 \iff -7 \le x - 7 \le 7 \iff 0 \le x \le 14$$
,

cosicché

(1)
$$E = [0, 14] \setminus \{0\} = (0, 14].$$

2A) L'insieme E non è un intervallo.

Falso: Per la (1), si ha che E = (0, 14] è un intervallo.

2B) Il numero reale x = 8 non appartiene ad E.

Falso: Dalla (1) segue che x = 8 appartiene ad E.

2C) L'insieme E è limitato inferiormente.

Vero: Per la (1), l'insieme E è limitato inferiormente.

2D) L'insieme E non ha massimo.

Falso: Per la (1), l'insieme E ha M=14 come massimo.

$$E = \{x \in \mathbb{R} : x^2 - 16x + 39 \le 0\}.$$

Si ha

$$x^2 - 16x + 39 = 0$$
 \iff $x = 3, 13.$

Pertanto,

$$x^2 - 16x + 39 \le 0$$
 \iff $3 \le x \le 13$ \iff $x \in [3, 13]$.

Si ha quindi

(1)
$$E = [3, 13].$$

3A) L'insieme E non è vuoto.

Vero: Per la (1), l'insieme E non è vuoto.

3B) L'insieme E è un intervallo.

Vero: Per la (1), l'insieme E è un intervallo.

3C) L'insieme $E \setminus \{8\}$ è un intervallo.

Falso: Per la (1) si ha

$$E \setminus \{8\} = [3, 8) \cup (8, 13],$$

che non è un intervallo.

3D) L'insieme E ha minimo.

Vero: Per la (1), l'insieme E ha m=3 come minimo.

$$E = \{x \in \mathbb{Q} : |x| \le \sqrt{13}\}.$$

Sia ha

$$|x| \leq \sqrt{13}$$

$$\iff$$

$$-\sqrt{13} \le x \le \sqrt{13}$$

$$\iff$$

$$x \in \left[-\sqrt{13}, \sqrt{13}\right],$$

da cui segue che

$$E = [-\sqrt{13}, \sqrt{13}] \cap \mathbb{Q}.$$

4A) Il numero $x = \sqrt{13}$ appartiene ad E.

Falso: Dato che $x = \sqrt{13}$ non è un numero razionale, x non appartiene ad E.

4B) Il numero x = -1 appartiene ad E.

Vero: Dato che x = -1 è un numero razionale, e che si ha

$$-\sqrt{13} \le -1 \le \sqrt{13} \,,$$

il numero x = 1 appartiene ad E.

4C) L'insieme E non è limitato.

Falso: Dalla (1) segue che

$$E \subset [-\sqrt{13}, \sqrt{13}],$$

e quindi E è un insieme limitato dato che è contenuto in un insieme limitato.

4D) Esiste il minimo di E.

Falso: Il "candidato minimo" di E è $x=-\sqrt{13}$, che però non appartiene ad E dato che non è un numero razionale. Ne segue che non esiste il minimo di E.

$$E = \{x \in \mathbb{R} : -6 \le x \le 11\} \setminus \{0\}.$$

- a) Dimostrare che l'insieme E non è un intervallo.
- b) Dimostrare che l'insieme E è limitato superiormente ed inferiormente, esibendo un maggiorante ed un minorante di E.
- c) Dimostrare che non esiste il minimo di $E \cap [0, 9]$.
- d) Dimostrare che non esiste il minimo dell'insieme

$$F = \{x^2, x \in E\}.$$

Soluzione:

a) Si ha

(1)
$$E = [-6, 11] \setminus \{0\} = [-6, 0) \cup (0, 11],$$

che non è un intervallo.

b) Dalla (1) segue che (ad esempio) x = 11 è un maggiorante di E, e che (ad esempio) x = -6 è un minorante di E. Si ha infatti che

$$\overline{M}(E) = \{x \in \mathbb{R} : x \ge 11\} = [11, +\infty), \qquad \underline{m}(E) = \{x \in \mathbb{R} : x \le -6\} = (-\infty, -6].$$

c) Si ha, per la (1),

$$E \cap [0,9] = ([-6,0) \cup (0,11]) \cap [0,9] = (0,9],$$

che è un insieme che non ha minimo.

d) Se x appartiene ad E, allora

$$-6 \le x \le 11$$
, $x \ne 0$.

Se x > 0, si ha

$$0 < x \le 11 \qquad \Longrightarrow \qquad 0 < x^2 \le 121 \,,$$

mentre se x < 0, si ha

$$-6 \le x < 0 \qquad \Longrightarrow \qquad 0 < x^2 \le 36.$$

Si ha quindi che se x appartiene ad E, allora

$$0 < x \le \max(36, 121) = 121$$
,

e quindi

$$F = \{ y \in \mathbb{R} : 0 < y \le 121 \} = (0, 121],$$

che è un insieme che non ha minimo.

$$E = \{x \in \mathbb{R} : (x - 7)(x - 8)(x - 9) \le 0\}.$$

- a) Dimostrare che x = 0 appartiene ad E.
- b) Risolvendo la disequazione che definisce E, scrivere E come unione di intervalli.
- c) Dimostrare che $E \cap [0, +\infty)$ è un insieme limitato.
- d) Dimostrare che l'insieme $E \cap \mathbb{Q}$ ha massimo, e che l'insieme $E \cap \mathbb{N}$ ha minimo.

Soluzione:

a) Se x = 0, si ha

$$(x-7)(x-8)(x-9) = (0-7)(0-8)(0-9) = -504 \le 0$$

e quindi (per definizione) x = 0 appartiene ad E.

b) Consideriamo i segni dei tre fattori che determinano la disequazione che definisce E; si ha

$$x-7 \ge 0 \quad \iff \quad x \ge 7, \qquad x-8 \ge 0 \quad \iff \quad x \ge 8,$$

 \mathbf{e}

$$x - 9 \ge 0 \iff x \ge 9$$
.

Graficamente, quindi, si ha

7	8 !	9	
 +	+	+	
 _	+	+	
 _	_	+	
 +	_	+	

e quindi

$$E = (-\infty, 7] \cup [8, 9]$$
.

c) Dalla (1) si ha che

$$E \cap [0, +\infty) = [0, 7] \cup [8, 9],$$

che è un insieme limitato (superiormente da 9 e inferiormente da 0).

d) Dato che dalla (1) segue che il massimo di E è M=9, che è anche un numero razionale, allora il massimo di $E\cap\mathbb{Q}$ è M=9. Sempre dalla (1) segue che

$$E \cap \mathbb{N} = \{0, 1, \dots, 7, 8, 9\},\$$

che ha come minimo m=0.