- Multi-omics Mendelian randomisation using expression, splicing
- 2 and protein quantitative trait loci: identification of novel drug
- 3 targets for gliomagenesis
- 4 Authors and Affiliations
- 5 Zak A Thornton, ¹²³* Lily J Andrews, ¹²³ Huiling Zhao, ¹Jie Zheng, ¹⁴⁵ Lavinia Paternoster, ¹²⁶ Jamie
- 6 W Robinson, ¹† and Kathreena M Kurian ¹²³⁷*†
- 7 MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, BS8
- 8 1QU, United Kingdom
- 9 Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- 10 ³ Cancer Research Integrative Cancer Epidemiology Programme, University of Bristol, Bristol, UK
- 11 ⁴ Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic
- 12 Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- 13 Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine
- 14 and Metabolic Diseases of the National Health Commission of the PR China. Shanghai Key Laboratory
- 15 for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong
- 16 University School of Medicine, Shanghai, China
- 17 ⁶ NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation
- 18 Trust and University of Bristol
- ⁷ Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, UK
- 20 † Co-senior author
- 21 Contact Information
- 22 * Corresponding authors: Mr Zak Thornton zak,thornton@bristol.ac.uk; Professor Kathreena
- 23 Kurian <u>kathreena.kurian@bristol.ac.uk</u>

Abstract

24

25 Background: Genetic variants associated with molecular traits that are also associated with liability 26 to glioma can provide causal evidence for the prioritisation of these traits as candidate drug targets. 27 Methods: We performed two-sample Mendelian randomisation and genetic colocalisation of a large 28 panel of molecular traits on glioma. Molecular data were taken from studies of expression 29 quantitative trait loci (QTL) [11,985 genes]; splicing QTL [13,285 genes] and protein QTL [7,376 30 proteins] derived from 15 brain tissues. Glioma summary-level data was extracted from a genome-31 wide association meta-analysis of 12,496 cases and 18,190 controls. 32 Results: Our MR analysis showed evidence for a causal effect of 85 molecular traits on glioma – 37 33 were robust according to colocalisation and Steiger filtering. We found causal evidence for 10 genes 34 previously associated with glioma risk. We identified one novel genetic locus with strong causal 35 evidence in the gene expression analysis: HBEGF (5q31.3) in all glioma [OR 1.36 (95%Cl 1.19 to 1.55); 36 $P = 4.41 \times 10^{-6}$]. We also identified three novel genetic loci with strong causal evidence in the splicing variation analysis: CEP192 (18p11.21) in glioblastoma [OR 4.40 (95%CI 2.28 to 8.48); $P = 9.78 \times 10^{-4}$]; 37 FAIM (3q22.3) in all glioma [OR 2.72 to 3.43; $P = 1.03 \times 10^{-5}$ to 1.09 x 10^{-5}] and SLC8A1 (2p22.1) in all 38 glioma [OR 0.37 (95%Cl 0.24 to 0.56; $P = 5.72 \times 10^{-6}$]. 39 40 Conclusions: We provide robust causal evidence for genes previously associated with glioma risk in 41 genome-wide association studies, as well as four novel genes. 42 Keywords: glioma, Mendelian randomisation, quantitative trait loci, molecular traits

Introduction

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Glioma is the most common (~80%) primary malignant brain and central nervous system (CNS) tumour group, with age-standardised incidence rates ranging from 4.67 to 5.73 per 100.000. ^{1,2} Malignant brain tumours are responsible for the greatest years of potential life lost of all cancers (~20 years), with a comparatively shorter 5-year relative survival rate (34.9%) compared to other malignancies. 3,4 In the 2016 World Health Organisation (WHO) guidelines for diagnosis of brain tumours, histological markers formed a sufficient basis to classify CNS tumours; however, this was expanded in the latest 2021 edition, which suggests molecular profiling as a means of stratifying tumour types. ^{5,6} The reason for this change is to emphasise the shift in how glioma, and brain tumours in general, are now classified in the clinic. One key example is the use of MGMT methylation as a tool to stratify patients in clinical trials. ^{7,8} However, the molecular landscape of glioma remains complex and heterogeneous, highlighting an area of unmet research need to improve diagnosis, patient stratification and, hopefully, treatment. One approach to elucidating novel molecular markers comes from the field of genetic epidemiology in the way of genome-wide association studies (GWAS) and transcriptome-wide association studies (TWAS), two study designs which leverage large-scale human genotyping of genetic variation to determine which genes are associated with a phenotype of interest. To date, previous studies have identified 27 genetic loci associated with glioma risk, implicating a total of approximately 50 genes; however, further analysis is required to determine both which genes these genetic variants map to, and whether such variation is causally implicated in gliomagenesis, or simply an observational association. 9-14 Furthermore, genotyping of large cohorts has been performed to link disease-associated genetic variants to gene regulatory mechanisms to improve understanding of disease aetiology. 15 Such genetic variants associated with these molecular traits are known as quantitative trait loci (QTL), and

examples of these include measuring relative gene expression levels (eQTLs), splicing variation (sQTLs) and protein abundance (pQTLs). Integrating multi-dimensional omics data can further our understanding of the aetiology of complex traits by providing functional and mechanistic insight into these layered molecular relationships. ¹⁶⁻¹⁸

Mendelian randomisation (MR) is an established statistical method which utilises genetic predictors of an exposure to assess the causal relationship between this exposure and an outcome. ¹⁹ The main advantage MR has over traditional observational epidemiological methods is that MR can determine causality between an exposure and an outcome as it is less liable to common epidemiological biases, such as confounding and reverse causality. When combined with other sensitivity analyses such as genetic colocalisation, MR can provide strong evidence of an unbiased causal relationship between genes and traits of interest. ²⁰

In this study, we leveraged multi-dimensional QTL data derived in bulk brain tissues in a combined MR-colocalisation framework, with the aim to identify causal evidence for aetiologically important genes for gliomagenesis.

Methods

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

A diagram of the workflow described in this section can be found in Figure 1. Study Datasets We used QTL summary statistics from genome-wide association studies (GWAS) of gene expression, protein abundance and alternative splicing levels in various brain tissues described below. Overviews of these datasets are given in Supplementary Table S1. Gene expression data were taken from MetaBrain, a meta-analysis of 14 eQTL datasets derived from 3,659 samples from 2,683 individuals of European ancestry in five CNS tissues: the basal ganglia (n=208), cerebellum (n=492), cortex (n=2,683), hippocampus (n=168), and spinal cord (n=108)(Supplementary Table S1). 21 The sQTL data were taken from GTEx Portal (v8 release). We used sGenes provided by GTEx, generated using their QC protocol, from a primarily European-American (85.3%) population. sQTL were extracted from 13 regions of the CNS: amygdala (n=129), anterior cingulate cortex (BA24) (n=147), caudate (n=194), cerebellar hemisphere (n=175), cerebellum (n=209), cortex (n=205), frontal cortex (BA9) (n=175), hippocampus (n=165), hypothalamus (n=170), nucleus accumbens (n=202), putamen (n=170), spinal cord (n=126), and substantia nigra (n=114) (Supplementary Table S1). 22 Finally, we included pQTL data retrieved from BrainQTL, derived from European ancestry individuals in the religious orders study and memory and ageing projects. ^{23,24} pQTL were extracted from the dorsolateral pre-frontal cortex of 330 individuals (Supplementary Table S1). 25 Glioma summary-level data were derived from a meta-analysis of eight constituent glioma GWAS consisted of 6,191 glioblastoma (GB) cases, 5,819 non-GB cases, 12,496 combined cases and 18,190 controls. 9 We therefore used three outcomes throughout our analyses: the GB-only case load, the

non-GB-only case load, and the combined case load (defined as 'all glioma'). Although glioma is

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

highly heterogeneous, we did this to increase our statistical power by using larger sample sizes. The non-GB cases analysed in this meta-analysis were not explicitly classified but consists mainly of astrocytoma and oligodendroglioma diagnosed patients (Supplementary Table S1). This study uses previously published summary-level data and thus contains no patient identifiable data. Ethical approval and informed consent from each participant were given and can be found where the dataset was initially described. All procedures performed in studies involving human participants were done in accordance with the ethical standards of the institutional or national research committee and with 1964 Helsinki declaration. Instrument Selection We identified cis-acting (within 1Mb of the gene coding region) QTLs which met genome-wide significance ($P < 5x10^{-8}$). Trans-acting QTLs were excluded from the analysis because of the increased likelihood of horizontal pleiotropy, due to their distant location from the gene whose variation they alter. Instruments were selected to be in linkage disequilibrium ($R^2 < 0.001$) to ensure independence. Two Sample Mendelian Randomisation We used a two-sample MR framework to estimate the causal effect of genetically proxied gene expression, protein abundance and alternative splicing on genetic liability to glioma risk. MR estimates were generated using the Wald ratio method for instruments consisting of single SNPs and inverse variance weighted (IVW) method for instruments comprising of multiple SNPs. 26 MR estimates were transformed and presented throughout as odds ratios (OR) and were scaled to reflect one standard deviation increase in the respective molecular trait. Following MR analysis, the results had to meet a Bonferroni-corrected P value threshold (0.05/number of tests performed) to adjust for multiple testing. MR has three assumptions which must hold to produce an unbiased estimate. Firstly, the genetic instrument must associate with the exposure ('relevance'). We tested this by generating the F-

statistic for each instrument, where an F-statistic > 10 is evidence against weak instrument bias, and filtering out instruments which did not surpass this threshold. ^{27,28} The second assumption is that the genetic instrument does not share a common cause with the outcome ('independence'). We tested this assumption partly by using genetic colocalisation, which determines whether the molecular trait and glioma share the same causal variant, a necessary (though not sufficient) condition for causality. Using colocalisation in this way has been posited to at least eliminate some unreliable associations when standard follow up sensitivity analyses to evaluate the presence of horizontal pleiotropy (such as MR-Egger) are unavailable. ^{27,29} The final assumption is that the genetic instrument affects the outcome only through the effect of the exposure of interest ('exclusion restriction'). This assumption, also known as horizontal pleiotropy, is difficult to assess with single SNP instruments, as is common for 'omic' variables. This was tested by investigating whether there was causal evidence linking the molecular trait of interest with putative risk factors for glioma. The presence of an association between the molecular trait and glioma risk factors may then be evidence of potential horizontal pleiotropy (Figure 2). 27 For brevity, we refer to our MR results as causal genes (or causal proteins); however, we recognise that further studies and evidence will be required to validate our results.

Colocalisation

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

We tested for colocalisation between the loci of each molecular trait and glioma subtype which had an MR result that passed the Bonferroni-corrected P value threshold. We extracted *cis*-regions consisting of all SNPs within a 1Mb window around the gene coding regions. ²⁰ Colocalisation requires the *cis*-region of the molecular trait to be richly genotyped. If there were not enough SNPs to perform colocalisation, we used LDCheck to measure the pairwise LD between the QTL and *cis*-SNPs in the glioma data at a more lenient threshold ($P < 5 \times 10^{-6}$). If the SNPs were in high LD ($R^2 > 0.8$), then we took this as proxy, albeit weak, evidence for colocalisation. This method has been described and used previously when full genome-wide statistics were not available. ³⁰

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

Steiger Filtering For causal effects which had strong evidence of colocalisation, we applied Steiger filtering to test for the presence of reverse causation, where the instrument explains more of the variance in the outcome than the exposure. ²⁹ Results of Steiger filtering are presented as a one of three categorical variables; "pass" if Steiger P < 0.05 and the instrument explains more of the variance in the outcome than the exposure, "fail" if Steiger P < 0.05 and the instrument explains more of the variance in the exposure than the outcome, and "uncertain" if $P \ge 0.05$. Evidence thresholds for multi-omic analyses Our main results comprised of those which passed the Bonferroni correction P value, had strong colocalisation evidence (H₄ ≥ 80%) and passed Steiger filtering sensitivity analysis, as they have the most robust evidence. Since Steiger filtering is sensitive to sample sizes, the analysis may be liable to false negatives if one dataset is better powered than the other; therefore, given the relatively small samples in the QTL datasets, we included results which had "uncertain" evidence but with the caveat that these results may be less robust. Overlap in signals between molecular traits To determine whether there was any potential overlap in signals between molecular traits, we looked at all MR results for our molecular traits with robust evidence in all tissues, regardless of P value. We then filtered these results using a more lenient Bonferroni correction P value (similarly, by using 0.05/number of tests performed) to determine whether any were potentially overlapping signals which failed to pass due to insufficient statistical power. Specificity Analysis To annotate the potential causal pathway between the molecular trait and glioma, we used two different approaches: exploring PheWAS data, and risk factors with pre-existing evidence in the literature. To perform a broad search for potential causal pathways, we used the IEU OpenGWAS

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

project PheWAS tool and PhenoScanner V2 to search for phenotypes which were strongly associated $(P < 5 \times 10^{-8})$ with lead SNPs used to instrument the robust causal effects. ³¹⁻³³ We then performed a specificity analysis to determine whether the robust causal effects were being caused by nonspecific effects or driven through a putative risk factor for glioma. We investigated risk factors with genetic liability to allergies, asthma, altered low-density lipoprotein cholesterol (LDLc) levels and alcohol consumption. These risk factors were selected based on potential evidence linking that risk factor to glioma in the literature, if there was data available for that risk factor in the IEU OpenGWAS project database, and whether those data were available for use in an MR analysis. 34 Differential expression in molecular traits We explored whether there was differential expression in the genes for which there was robust evidence that expression had a causal effect on at least one glioma subtype, between subtypes of glioma and control patients using the GlioVis resource. 35 We investigated the differences in the expression of splicing variants in tissue types in the genes for which there was evidence that gene-splicing had a causal effect on at least one glioma subtype, using the GTEx portal. 22 Annotation of 'druggability' We annotated robust results which passed sensitivity analyses with evidence of 'druggability', i.e. how likely a gene and its gene product are to be a valid drug target, to build evidence for the prioritisation of genes and proteins as candidate targets. We used the Open Targets platform, a large-scale database that uses genetic and genomic data for systematic drug target identification and prioritisation, to search for gene ontology terms, pathways, and gene interactions. ^{36,37} We also used Drug Gene Interaction Database (DGIdb) to search for drug-gene interactions and genome 'druggability'. 38

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

Software We used the TwoSampleMR R package to implement the MR analyses and Steiger filtering. ³⁹⁻⁴¹ We performed genetic colocalisation using Pair Wise Conditional Analysis and Colocalisation (PWCoCo), a method which combines Conditional and Joint Analysis (GCTA-COJO) and colocalisation (Coloc R package) to ensure the single causal variant assumption of colocalisation holds. 20,42,43 Results Estimating the causal effects of gene expression on glioma risk Of the 10,488 genes for which expression could be instrumented, 10,006 (95.4%) had the relevant SNPs available in the glioma GWAS and therefore MR could be performed. We found 29 genes with evidence for a causal effect ($P < 5.00 \times 10^{-6}$) on all glioma, GB, or non-GB in at least one of the tissues tested, resulting in 80 causal effects in total; 40 causal effects in cortex, 30 in cerebellum, 6 in basal ganglia, 3 in hippocampus and 1 in spinal cord (Supplementary Figure S1). In the follow-up sensitivity analyses of the unique 80 expression causal effects, we found that 30 (38%) had strong evidence of colocalisation ($H_4 > 80\%$), 11 (14%) had moderate evidence of colocalisation ($80\% > H_4 > 50\%$) and 39 (49%) had weak evidence of colocalisation (H₄ < 50%). The 30 causal effects (in 10 genes) with strong evidence for colocalisation were then tested for the potential of reverse causality using Steiger filtering; 29 causal effects passed this test, whilst one result was uncertain according to Steiger Pvalue (P > 0.05, Table 1). Three genes (GALNT6, HEATR3, PICK1) with robust evidence of a causal effect were identified in multiple tissues, with different lead SNPs, but all SNPs were in high LD (R² > 0.7). ³⁰ Two genes (JAK1) and PICK1) with robust evidence had a causal effect in only one subtype (non-GB and GB, respectively) whereas all other genes (CDKN2B, EGFR, GALNT6, HBEGF, HEATR3, MDM4, RAVER2 and TERT) had a causal effect on all glioma, or more than one outcome tested (Table 1).

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

In summary, we found 10 genes for which there was robust evidence that expression had a causal effect on at least one glioma subtype in at least one brain region (30 causal effects in total, Figure 3). Three genes (CDKN2B, RAVER2, TERT) had strong causal effects (OR <0.5 or >2). For six genes, increased expression was causally related to increased odds of glioma. All results for all eQTL sensitivity analyses are described in Supplementary Table S1. Estimating the causal effects of alternative splicing on glioma risk Of the 6,200 genes for which alternative splicing could be instrumented, 4,496 (72.5%) had the relevant SNPs available in the glioma GWAS are therefore MR could be performed. We found 10 genes with evidence for a causal effect ($P < 1.11 \times 10^{-5}$) on glioma, GB or non-GB in at least one of the thirteen tissues tested, resulting in 71 causal effects in total; five in amygdala, four in anterior cingulate cortex, seven in caudate, six in cerebellar hemisphere, nine in cerebellum, six in cortex, four in frontal cortex, seven in hippocampus, seven in hypothalamus, nine in nucleus accumbens, six in putamen and one in substantia nigra (Supplementary Figure S2). We applied the same sensitivity analysis pipeline. We found that 47 (66%) had strong evidence of colocalisation ($H_4 > 80\%$), five (7%) had moderate evidence of colocalisation (80% $> H_4 > 50\%$) and 19 (27%) had weak evidence of colocalisation (H₄ < 50%). The 47 causal effects with strong evidence for colocalisation were then tested for the potential of reverse causality using Steiger filtering; 24 (51%) passed this test, however all of these results were uncertain according to Steiger P-value (P > 0.05. Table 2). Three genes (FAIM, PHLDB1, RTEL1) had robust evidence of a causal effect on glioma risk within multiple tissues, with different lead SNPs, but all were in high LD ($R^2 > 0.7$). ³⁰ One gene (*CEP192*) with robust evidence of a causal effect on GB, whereas all other genes (FAIM, HEATR3, PHLDB1, SLC8A1 and RTEL1) had a causal effect on all glioma, or more than one outcome tested (Table 2). In summary, we found six genes for which there was robust evidence that splicing had a causal effect on at least one glioma subtype in at least one brain region (24 causal effects in total, Figure 4). All results for all sQTL sensitivity analyses are described in Supplementary Table S1.

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

Estimating the causal effects of protein abundance on glioma risk Of the 618 proteins that could be instrumented, all (100%) had the relevant SNPs available in the glioma GWAS are therefore MR could be performed. We only found one protein with evidence for a causal effect on GB in DLPFC ($P < 8.09 \times 10^{-5}$), SCFD1 (OR 0.17 (95%Cl 0.07 to 0.40); $P = 6.67 \times 10^{-5}$), Supplementary Figure S3). We applied the same sensitivity pipeline but there was not sufficient SNPs in the cis-region of SCFD1 to perform colocalisation. We used LDCheck (see methods) to determine weak proxy evidence of colocalisation. However, none of the SCFD1 SNPs in the glioma dataset reached our most lenient threshold of P < 5 x 10^{-6} . Therefore, we could not conclude that this pQTL had sufficient causal evidence to be associated with glioma. In summary, there were no proteins with robust causal evidence from the MR and sensitivity analyses. All results for causal pQTL sensitivity analysis are described in Supplementary Table S1. Novel genes From our multi-omic analysis, we found robust evidence for four genes that not been implicated with glioma risk in previous genetic studies: CEP192 (18p11.21), FAIM (3q22.3), HBEGF (5q13.3) and SLC8A1 (2p22.1). We found that increased HBEGF expression in the cortex is causal for all glioma (OR 1.36 (95%CI 1.19) to 1.55); P = 4.41 x 10^{-6}). We found there was also increased risk of glioma in the GB and non-GB subtypes in the cortex, but they did not meet our Bonferroni-corrected P value threshold (P = 5.53 x 10^{-6} and 2.01×10^{-2} , respectively) (Table 1, Figure 5). We found that FAIM isoforms in four tissues were causal for all glioma (OR 2.72 to 3.43; P = 1.03 x 10^{-5} to 1.09 x 10^{-5}). There was also an increased risk of glioma in the GB and non-GB subtypes in these tissues, but they failed to meet our Bonferroni-corrected P value threshold (P = 4.36 x 10⁻⁵ to 9.64×10^{-3}). We found that *CEP192* splicing in the cerebellar hemisphere is causal for GB (OR 4.40)

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

 $(95\%\text{Cl }2.28 \text{ to } 8.48; \text{P} = 9.78 \times 10^{-6})$. There was also an increased risk of glioma in all glioma (but not non-GB), but this failed to meet the Bonferroni-corrected P value ($P = 1.74 \times 10^{-3}$) (Table 2, Figure 6). We found that SLC8A1 splicing in the substantia nigra was protective for all glioma (OR 0.37 (95%CI 0.24 to 0.56); P = 5.72 x 10^6). There was also a decreased risk of glioma in the GB and non-GB subtypes in this tissue, but they failed to meet our Bonferroni-corrected P value threshold (P = 5.67 x 10⁻⁴ and 1.81 x 10⁻⁴, respectively) (Table 2, Figure 6). Overlap in signals between molecular traits We analysed all 16 robust molecular traits that we identified in our analysis in each tissue type across all three datasets, regardless of P value. We performed 104 tests, of which 82 molecular traits had passed the Bonferroni corrected P value in the primary analysis. Of the 22 other molecular traits, 12 passed the more lenient Bonferroni-corrected P value ($P = 4.81 \times 10^{-4}$), of which only FAIM in the cerebellum in all glioma ($P = 6.93 \times 10^{-5}$) showed potential overlap between molecular traits (gene expression and alternative splicing). Additionally, we found that the effect of HEATR3 appears to be eQTL-specific ($P = 1.95 \times 10^{-10}$ to 6.74 x 10^{-12}) despite finding a robust causal effect in the alternative splicing analysis (P = 1.29 x 10⁻¹⁰, Supplementary Table S2). The causal effect is likely driven through expression of the canonical gene isoform, which is incorrectly measured as an alternative splice isoform due to the way in which eQTL and sQTL are measured (see discussion). Specificity analysis To annotate the potential causal pathways between the robust molecular traits and glioma, we used PheWAS data, and known glioma risk factors with pre-existing evidence. HBEGF is commonly linked with other cancer types so we wanted to explore this putative oncogene further. 44 Similarly, RTEL1 is linked with telomere length which has been previously implicated in observational and MR studies to have an association with glioma risk. Additionally, the considerable number of tissues in which we found a causal effect warranted further analyses. 45-47

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

We used the IEU OpenGWAS project PheWAS tool and PhenoScanner v2 to conduct a broad search for phenotypes which were strongly associated with the lead SNP(s) for HBEGF (rs4150197) and RTEL1 (rs6062302, rs2297440, rs2315009, rs3208007, rs2777941) at genome-wide significance (P < 5 \times 10⁻⁸). ^{31,33} We found that rs4150197 was associated with anthropometric traits such as hip circumference and weight, and various image-derived phenotypes from diffuse MRI (Supplementary Table S2). We found that rs6062302 and rs2297440 were already associated with glioblastoma (P = 1.00×10^{-13} and P = 4.00×10^{-46} , respectively) and rs2297440 was associated with glioma (P = 2.00×10^{-13} 10⁻⁴²). We also found significant associations with phenotypes associated with the immune system such as dermatitis, eczema, Crohn's disease, inflammatory bowel disease and allergic rhinitis (Supplementary Table S2). For the 16 molecular traits that had strong evidence for a causal effect on glioma, we performed a follow-up ad hoc analysis to determine whether these molecular traits also had causal evidence with putative glioma risk factors. We found that of the molecular traits with robust causal evidence, only HBEGF showed no evidence for non-specific effects with any of the traits we identified. The trait that was associated with the most potential glioma genes was LDLc, which was associated (P < 0.05) with seven genes (CDKN2B, FAIM, GALNT6, HEATR3, PHLDB1, PICK1, RTEL1). (Supplementary Table S2). Differential expression in molecular traits We searched for differential expression of HBEGF using the Rembrandt and TCGA studies, found in the GlioVis tool. We found no significant differences (P < 0.05) between non-tumour samples and any of the glioma subtypes but did find differential expression between GB and non-GB subtypes (P = 3.10×10^{-5} to 1.90×10^{-10}) (Supplementary Figure S4A&B). ⁴⁸ Additionally, we searched for differences in isoform expression of RTEL1 using the GTEx portal tool. ²² We found that isoform expression was significantly lower between wild-type (CC) and the homozygous variant (TT) in our lead SNPs ($P = 6.64 \times 10^{-18}$ to 4.23×10^{-75}). We found that the cerebellum had the highest isoform (ENST00000425905.5) expression (3.17 transcripts per million

(TPM)), one of the tissues in which we found our results, followed by the cerebellar hemisphere (2.96 TPM) and testes (1.31 TPM). ²²

Annotation of 'druggability'

We used OpenTargets and DGIdb to gather evidence of 'druggability' for molecular traits with robust evidence. ³⁶⁻³⁸ We found that 4/10 (40%) of the molecular traits identified in the expression analysis, and none of the molecular traits identified in the gene-splicing analysis were categorised as being part of the 'druggable genome'. One novel result, *HBEGF*, had three drug-gene interactions (cetuximab, panitumumab and KHK-2866), the latter being an anti-HBEGF antibody which was trialled for use in advanced solid tumours and ovarian cancer. However, the study was discontinued after 22 months due to patients experiencing reversible neuropsychiatric toxicity, although the aetiology was not understood (Supplementary Table S2). ⁴⁹

Discussion

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

In this study, we used a combined MR-colocalisation framework to estimate the causal effect of genetically proxied gene expression, alternative splicing and protein abundance levels on genetic liability of glioma risk. We found robust evidence that causally implicated 16 molecular traits with glioma risk; ten gene expression evidence levels and six alternative splicing events (one gene shared both expression and splicing causal effects on glioma). Assessing different 'omics' data sources can be beneficial to understand the development of complex traits and for drug target-related analyses; each QTL provides an insight into different molecular processes. 16,17 For 11 of the genes that we found robust evidence for here, the loci have been previously implicated in GWAS/TWAS of glioma risk. 9,10 However, these studies did not establish causality of all these genes, as we have. Additionally, we found four genes that not been implicated in previous genetic studies: CEP192 (18p11.21), FAIM (3q22.3), HBEGF (5q13.3) and SLC8A1 (2p22.1). For brevity, we discuss RTEL1 and a novel result, HBEGF. RTEL1 (Regulator of telomere elongation helicase 1) is a gene which encodes for a DNA helicase responsible for the elongation of telomeres, and is known to interact with the telosome complex, a group of proteins which protect the telomere caps of DNA. 50 RTEL1 has previously been identified as a risk factor for glioma, and studies have tried to identify whether telomere length has an established causative effect on the risk of glioma, although no definitive conclusion has been reached. 12,14, 45-47 RTEL1-associated sQTLs were associated with an exon-skipping event (GTEx intron ID: 63689132:63689750:clu 27064) present only in RTEL1 transcript ENST00000425905 (P = 4.23 x 10⁻⁷⁵ to 6.64 x 10⁻¹⁸). Therefore, it may be the case that previous conflicting evidence on the directionality of the effect of RTEL1 expression on glioma risk may be confounded due to noncanonical transcript variants; though, further studies would be required to ascertain if this is the case. Furthermore, we observed that RTEL1 sQTLs rs6063202 and rs2297440, were found to be strongly associated to glioblastoma (P = 1.00×10^{-13} and 4.00×10^{-46} , respectively) and with allergy-

iongly associated to gliobiastoma (i Tioo x 10 and 1100 x 10) respectively, and with allergy

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

related traits (P = 4.78×10^{-8} to 7.84×10^{-19} , Supplementary Table S2). These results beget further study and could help to understand the links between allergies, glioma risk and RTEL1. HBEGF (Heparin-binding epidermal growth factor) is a member of the EGF family of growth factors which is involved in the MAPK, STAT and PI3K/AKT pathways. 44,51 These molecular pathways have roles in regulating biological processes, such as positive regulation of cell growth, migration, and proliferation. ⁵² The role of HBEGF in the CNS is well characterised: it is highly expressed throughout; has roles in both the developing and adult brain, with studies indicating HBEGF contributes to glial and stem cell proliferation and is a ligand for EGFR. 53,54 Furthermore, expression of HBEGF has been shown to be increased significantly in many human cancer types, and HBEGF mRNA expression has been shown to be increased two- to five-fold in glioblastoma cell lines compared to control brain tissue. 55 We found no significant differences between control and any glioma subtypes but did find differential expression between GB and non-GB subtypes in two independent datasets (Supplementary Figure S4A&B). ^{48,56} We also found that the instrumented *HBEGF* eQTL (rs4150197) had no associations with cancer risk or any putative risk factors for glioma (Supplementary Table S2). Unlike RTEL1, we observed no evidence for an effect through non-canonical transcripts or proteins. Altogether, our causal evidence implicates the expression of HBEGF in the brain as a potentially novel biomarker, though more research would be required to ascertain its role. Given that there are drugs which target HBEGF, glioma and HBEGF may make for an interesting target-indication pair for future studies. Strengths We aimed to identify molecular traits with the most robust evidence for causal roles in glioma risk, by combining strong MR evidence with colocalisation and Steiger filtering. To test if the causal effects were driven via putative glioma risk factors, we tested for potential pleiotropic effects in

known risk factors for glioma: allergies, asthma, altered low-density lipoprotein cholesterol (LDLc)

levels and alcohol consumption. This may provide evidence of horizontal pleiotropy, which may

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

make it harder to draw decisive conclusions of causality ^{27,29} However, this would require follow up studies to investigate which could lead to potentially elucidating how these putative risk factors and molecular traits are linked to glioma. Limitations Despite using relatively large datasets, our analyses are still likely to suffer from limited statistical power due to restricted sample sizes, particularly in the sQTL dataset (n = 114 to 209). This might lead to some important causal effects not being identified. All three QTL datasets were derived from a mixture of case and control samples. However, the cases were derived from individuals whose disease (e.g. Alzheimer's disease in BrainQTL) have no known link to glioma risk. Additionally, as we used the GTEx sGenes, only the top splice event per gene was measured, and therefore there were many splice events which were not tested in our MR analysis. Most of the MR analyses used a single SNP instrument, which restricts the type of sensitivity analyses that could be performed; however, this is a common phenomenon observed when conducting MR with molecular traits. 29 SNPs can act via multiple molecular QTL pathways and are not mutually exclusive; SNPs affecting gene expression can also be associated with alternative gene splicing of the same genes. As eQTL and sQTL are both measured by quantifying mRNA levels, this was not unexpected. 57 These SNPs may be legitimately affecting both gene expression and alternative splicing, however if a particular splice variant alters the ability of a gene to be efficiently measured, it appears that gene expression is altered, and the effect is driven by the splicing event. ⁵⁸ Furthermore, some probes for mRNA will detect commonly splice variants as canonical transcripts, which are included in 'bulk tissue' eQTL analysis. This can lead to the false assumption that both expression and splicing events are driving the causal effect, when this is not the case. 59

Our analysis is limited to individuals with European ancestry; therefore, it will be important to extend these analyses to individuals of alternative ancestries as such data becomes available. 60 Previous GWAS and observational studies in non-European cohorts have found novel associations which we did not find in our study e.g., GSTP1, which may illustrate that the loci appear to be population specific, or may be observational, and not causal. 61,62 The nature of glioma can result in variation in inter-patient, intra-tumoural, subtype and spatiotemporal heterogeneity, which can lead to variation in tissue recovery at biopsy. 63,64 These factors can result in deviation in the profile of disease, which can make our results more generalisable and less specific to one subtype of glioma. To make our analysis more precise, we would require more granular tissue and cell-specific data.

407

408

409

410

411

412

413

414

415

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

Conclusion We conducted a robust multi-omic causal analysis for gene and protein molecular traits in brain tissue on glioma risk. We used tissue-specific molecular data and glioma subtype information to explore the nature of the causal relationships identified. Here, we combined MR with colocalisation and Steiger filtering to ensure the robustness of our results. We provide robust multi-omic causal evidence for 11 previously implicated genes which affect the risk of glioma. We also present novel evidence for a causal effect of increased HBEGF expression in cortex on increased risk of all glioma, and present novel evidence for causal effects of CEP192, FAIM and SLC8A1 splicing in multiple tissues on variable risk of all glioma and GB. Additionally, we show evidence for the causal effect of increased HEATR3 expression and alternative splicing on increased risk of all glioma, although we propose that this effect is eQTL-specific. We did not identify any causal proteins for glioma risk, likely due to the limited sample size of the currently available brain pQTL data. We focussed on the causal effects of increased HBEGF expression and alternative splicing of RTEL1 and use multiple investigate methods to provide evidence to understand the biological mechanisms that these genes may play in the risk of glioma.

Abbreviation List 434 435 CNS - Central nervous system 436 **DGIdb** – Drug gene interaction database 437 eQTL - Expression quantitative trait loci 438 GB - Glioblastoma 439 **GWAS** – Genome-wide association study 440 LD – Linkage disequilibrium 441 **LDLc** – Low-density lipoprotein cholesterol 442 MR - Mendelian randomisation 443 OR - Odds ratio 444 **pQTL** – Protein quantitative trait loci 445 QTL - Quantitative trait loci 446 sQTL - Splicing quantitative trait loci 447 **TPM** – Transcripts per Million 448 WHO – World Health Organisation

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

Declarations Ethics approval and consent to participate This study uses previously published summary-level data and thus contains no patient identifiable data. Ethical approval and informed consent from each participant were given and can be found where the dataset was initially described. All procedures performed in studies involving human participants were done in accordance with the ethical standards of the institutional or national research committee and with 1964 Helsinki declaration. Consent for publication Not applicable Availability of data and materials The MetaBrain meta-analyses eQTL data can be accessed at https://www.metabrain.nl/. The GTEx sQTL v8 data can be accessed at https://gtexportal.org/home/datasets. The BrainQTL pQTL data can be found at https://www.synapse.org/#!Synapse:syn24172458.The glioma data may be accessed under the European Genome-phenome Archive accession number EGAD00010001657 (https://www.ebi.ac.uk/ega/datasets/EGAD00010001657). Competing interests The authors declare they have no competing interests. **Funding** ZAT, LIA, LP and JWR receive support from the UK Medical Research Council Integrative Epidemiology Unit at the University of Bristol (MC_UU_00011/4, MC_UU_00011/1). ZAT receives funding from Southmead Hospital Charitable Funds: Brain tumour bank and research fund 8036. LJA and KMK are funded by Cancer Research UK (grant number C30758/A29791). JWR received funding from Biogen for unrelated projects. KMK is funded by Innovate (grant number 10027624). This study

was supported by the National Institute for Health and Care Research Bristol Biomedical Research

Centre (NIHR203315) and Cancer Research UK (grant number C18281/A29019 and C18281/A30905).

The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.

Authors' contributions

ZAT wrote the manuscript, performed all statistical analysis and interpreted results; LJA and HZ revised the manuscript; JZ advised on statistical methodology; LP substantially revised the manuscript and assisted with statistical analysis; JWR substantially revised the manuscript, assisted with statistical analysis and interpreted results and designed the study; KMK designed the study. All authors have approved the submitted version of the manuscript.

Acknowledgements

We would like to acknowledge all patients who provided data that made this work possible.

References

484

508

485 1. Goodenberger, M.L., and Jenkins, R.B. (2012). Genetics of adult glioma. Cancer Genet. 205, 486 613-621. 10.1016/j.cancergen.2012.10.009. 487 2. Ostrom, Q.T., Bauchet, L., Davis, F.G., Deltour, I., Fisher, J.L., Langer, C.E., Pekmezci, M., 488 Schwartzbaum, J.A., Turner, M.C., Walsh, K.M., et al. (2014). The epidemiology of glioma in 489 adults: a "state of the science" review. Neuro-Oncology 16, 896-913. 490 10.1093/neuonc/nou087. 491 3. Rouse, C., Gittleman, H., Ostrom, Q.T., Kruchko, C., and Barnholtz-Sloan, J.S. (2016). Years of 492 potential life lost for brain and CNS tumors relative to other cancers in adults in the United 493 States, 2010. Neuro-Oncology 18, 70-77. 10.1093/neuonc/nov249. 494 4. Ostrom, Q.T., Gittleman, H., Liao, P., Vecchione-Koval, T., Wolinsky, Y., Kruchko, C., and 495 Barnholtz-Sloan, J.S. (2017). CBTRUS Statistical Report: Primary brain and other central 496 nervous system tumors diagnosed in the United States in 2010-2014. Neuro-Oncology 19, 497 V1-V88. 10.1093/neuonc/nox158. 498 5. Louis, D.N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, 499 W.K., Ohgaki, H., Wiestler, O.D., Kleihues, P., and Ellison, D.W. (2016). The 2016 World 500 Health Organization Classification of Tumors of the Central Nervous System: a summary. 501 Acta Neuropathol. 131, 803-820. 10.1007/s00401-016-1545-1. 502 6. Louis, D.N., Perry, A., Wesseling, P., Brat, D.J., Cree, I.A., Figarella-Branger, D., Hawkins, C., 503 Ng, H.K., Pfister, S.M., Reifenberger, G., et al. (2021). The 2021 WHO Classification of Tumors 504 of the Central Nervous System: a summary. Neuro-Oncology 23, 1231-1251. 505 10.1093/neuonc/noab106. 506 7. Butler, M., Pongor, L., Su, Y.T., Xi, L.Q., Raffeld, M., Quezado, M., Trepel, J., Aldape, K., 507 Pommier, Y., and Wu, J. (2020). MGMT Status as a Clinical Biomarker in Glioblastoma. Trends

Cancer 6, 380-391. 10.1016/j.trecan.2020.02.010.

534 Splicing in Developing Human Brain Informs Disease Mechanisms. Cell 179, 750-+. 535 10.1016/j.cell.2019.09.021. 536 Eales, J.M., Jiang, X., Xu, X.G., Saluja, S., Akbarov, A., Cano-Gamez, E., McNulty, M.T., Finan, 17. 537 C., Guo, H., Wystrychowski, W., et al. (2021). Uncovering genetic mechanisms of 538 hypertension through multi-omic analysis of the kidney. Nature Genetics 53, 630-+. 539 10.1038/s41588-021-00835-w. 540 18. Sun, Y.V., and Hu, Y.J. (2016). Integrative Analysis of Multi-omics Data for Discovery and 541 Functional Studies of Complex Human Diseases. In Advances in Genetics, Vol 93, T. 542 Friedmann, J.C. Dunlap, and S.F. Goodwin, eds. (Elsevier Academic Press Inc.), pp. 147-190. 543 10.1016/bs.adgen.2015.11.004. 544 19. Smith, G.D., and Ebrahim, S. (2003). 'Mendelian randomization': can genetic epidemiology 545 contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1-546 22. 10.1093/ije/dyg070. 547 20. Giambartolomei, C., Vukcevic, D., Schadt, E.E., Franke, L., Hingorani, A.D., Wallace, C., and 548 Plagnol, V. (2014). Bayesian Test for Colocalisation between Pairs of Genetic Association 549 Studies Using Summary Statistics. PLoS Genet. 10, 15, e1004383. 550 10.1371/journal.pgen.1004383. 551 21. de Klein, N., Tsai, E.A., Vochteloo, M., Baird, D., Huang, Y.F., Chen, C.Y., van Dam, S., Oelen, 552 R., Deelen, P., Bakker, O.B., et al. (2023). Brain expression quantitative trait locus and 553 network analyses reveal downstream effects and putative drivers for brain-related diseases. 554 Nature Genetics, 24. 10.1038/s41588-023-01300-6. 555 22. Aguet, F., Barbeira, A.N., Bonazzola, R., Brown, A., Castel, S.E., Jo, B., Kasela, S., Kim-556 Hellmuth, S., Liang, Y.Y., Parsana, P., et al. (2020). The GTEx Consortium atlas of genetic 557 regulatory effects across human tissues. Science 369, 1318-1330. 10.1126/science.aaz1776. 558 23. Bennett, D.A., Schneider, J.A., Arvanitakis, Z., and Wilson, R.S. (2012). Overview and Findings 559 from the Religious Orders Study. Curr. Alzheimer Res. 9, 628-645.

- 560 24. Bennett, D.A., Schneider, J.A., Buchman, A.S., Barnes, L.L., Boyle, P.A., and Wilson, R.S.
- 561 (2012). Overview and Findings from the Rush Memory and Aging Project. Curr. Alzheimer
- 562 Res. 9, 646-663.
- 563 25. Robins, C., Liu, Y., Fan, W., Duong, D.M., Meigs, J., Harerimana, N.V., Gerasimov, E.S.,
- Dammer, E.B., Cutler, D.J., Beach, T.G., et al. (2021). Genetic control of the human brain
- proteome. Am. J. Hum. Genet. 108, 400-410. 10.1016/j.ajhg.2021.01.012.
- 566 26. Burgess, S., Small, D.S., and Thompson, S.G. (2017). A review of instrumental variable
- estimators for Mendelian randomization. Stat. Methods Med. Res. 26, 2333-2355.
- 568 10.1177/0962280215597579.
- 569 27. Lawlor, D.A., Harbord, R.M., Sterne, J.A.C., Timpson, N., and Smith, G.D. (2008). Mendelian
- randomization: Using genes as instruments for making causal inferences in epidemiology.
- 571 Stat. Med. 27, 1133-1163. 10.1002/sim.3034.
- 572 28. Staiger, D., and Stock, J.H. (1997). Instrumental variables regression with weak instruments.
- 573 Econometrica *65*, 557-586. 10.2307/2171753.
- 574 29. Hemani, G., Bowden, J., and Smith, G.D. (2018). Evaluating the potential role of pleiotropy in
- 575 Mendelian randomization studies. Hum. Mol. Genet. 27, R195-R208. 10.1093/hmg/ddy163.
- 576 30. Machiela, M.J., and Chanock, S.J. (2015). LDlink: a web-based application for exploring
- 577 population-specific haplotype structure and linking correlated alleles of possible functional
- variants. Bioinformatics *31*, 3555-3557. 10.1093/bioinformatics/btv402.
- 579 31. Elsworth, B.L., Lyon, M.S., Alexander, T., Liu, Y., Matthews, P., Hallett, J., Bates, P., Palmer, T.,
- 580 Haberland, V., Smith, G.D., et al. (2020). The MRC IEU OpenGWAS data infrastructure.
- 581 bioRxiv. 10.1101/2020.08.10.244293.
- 582 32. Mitchell, R., Elsworth, B.L., Mitchell, R., Raistrick, C.A., Paternoster, L., Hemani, G., and
- Gaunt, T. (2019). MRC IEU UK Biobank GWAS pipeline version 2.
- 584 33. Kamat, M.A., Blackshaw, J.A., Young, R., Surendran, P., Burgess, S., Danesh, J., Butterworth,
- A.S., and Staley, J.R. (2019). PhenoScanner V2: an expanded tool for searching human

586 genotype-phenotype associations. Bioinformatics 35, 4851-4853. 587 10.1093/bioinformatics/btz469. 588 34. Howell, A.E., Robinson, J.W., Wootton, R.E., McAleenan, A., Tsavachidis, S., Ostrom, Q.T., 589 Bondy, M., Armstrong, G., Relton, C., Haycock, P., et al. (2020). Testing for causality between 590 systematically identified risk factors and glioma: a Mendelian randomization study. Bmc Cancer 20, 11. 10.1186/s12885-020-06967-2. 591 592 35. Bowman, R.L., Wang, Q.H., Carro, A., Verhaak, R.G.W., and Squatrito, M. (2017). GlioVis data 593 portal for visualization and analysis of brain tumor expression datasets. Neuro-Oncology 19, 594 139-141. 10.1093/neuonc/now247. 595 36. Ochoa, D., Hercules, A., Carmona, M., Suveges, D., Gonzalez-Uriarte, A., Malangone, C., 596 Miranda, A., Fumis, L., Carvalho-Silva, D., Spitzer, M., et al. (2021). Open Targets Platform: 597 supporting systematic drug-target identification and prioritisation. Nucleic Acids Res. 49, 598 D1302-D1310. 10.1093/nar/gkaa1027. 599 37. Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-Carter, F., Campbell, 600 N.H., Chavali, G., Chen, C., del-Toro, N., et al. (2014). The MIntAct project-intAct as a 601 common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42, 602 D358-D363. 10.1093/nar/gkt1115. 603 38. Freshour, S.L., Kiwala, S., Cotto, K.C., Coffman, A.C., McMichael, J.F., Song, J.J., Griffith, M., 604 Griffith, O.L., and Wagner, A.H. (2021). Integration of the Drug-Gene Interaction Database 605 (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 49, D1144-D1151. 606 10.1093/nar/gkaa1084. 607 39. Hemani, G., Zhengn, J., Elsworth, B., Wade, K.H., Haberland, V., Baird, D., Laurin, C., Burgess, 608 S., Bowden, J., Langdon, R., et al. (2018). The MR-Base platform supports systematic causal 609 inference across the human phenome. eLife 7, 29, e34408. 10.7554/eLife.34408. 610 40. RCoreTeam (2021). R: A Language and Environment for Statistical Computing. 611 https://www.R-project.org/.

612 41. RStudioTeam (2020). RStudio: Integrated Development for R. http://www.rstudio.com/. 613 42. Robinson, J.W., Hemani, G., Babaei, M.S., Huang, Y., Baird, D.A., Tsai, E.A., Chen, C.-Y., 614 Gaunt, T.R., and Zheng, J. (2022). An efficient and robust tool for colocalisation: Pair-wise 615 Conditional and Colocalisation (PWCoCo). BioRxiv. 616 https://doi.org/10.1101/2022.08.08.503158 617 43. Yang, J., Ferreira, T., Morris, A.P., Medland, S.E., Madden, P.A.F., Heath, A.C., Martin, N.G., 618 Montgomery, G.W., Weedon, M.N., Loos, R.J., et al. (2012). Conditional and joint multiple-619 SNP analysis of GWAS summary statistics identifies additional variants influencing complex 620 traits. Nature Genetics 44, 369-U170. 10.1038/ng.2213. 621 44. Medicine, N.C.f.B.I.N.L.o. HBEGF. https://www.ncbi.nlm.nih.gov/gene/1839. 622 45. Walsh, K.M., Codd, V., Smirnov, I.V., Rice, T., Decker, P.A., Hansen, H.M., Kollmeyer, T., 623 Kosel, M.L., Molinaro, A.M., McCoy, L.S., et al. (2014). Variants near TERT and TERC 624 influencing telomere length are associated with high-grade glioma risk. Nature Genetics 46, 625 731-735. 10.1038/ng.3004. 626 46. Walsh, K.M., Wiencke, J.K., Lachance, D.H., Wiemels, J.L., Molinaro, A.M., Eckel-Passow, J.E., 627 Jenkins, R.B., and Wrensch, M.R. (2015). Telomere maintenance and the etiology of adult 628 glioma. Neuro-Oncology 17, 1445-1452. 10.1093/neuonc/nov082. 629 47. Chen, Y.B., Wu, Y.S., Huang, X.J., Qu, P., Li, G., Jin, T.B., Xing, J.L., and He, S.M. (2015). 630 Leukocyte telomere length: a novel biomarker to predict the prognosis of glioma patients. J. 631 Cancer Res. Clin. Oncol. 141, 1739-1747. 10.1007/s00432-015-1938-x. 632 Gusev, Y., Bhuvaneshwar, K., Song, L., Zenklusen, J.C., Fine, H., and Madhavan, S. (2018). The 48. 633 REMBRANDT study, a large collection of genomic data from brain cancer patients. Sci. Data 634 5, 9, 180158. 10.1038/sdata.2018.158. 635 49. Sarantopoulos, J., Mita, M.M., Birrer, M.J., Cranmer, L.D., Campos, L.T., Zhang, X.P., Bristow, 636 P., Kaito, H., Strout, V., and Camacho, L.H. (2016). Phase 1 Study of Monotherapy with

KHK2866, an Anti-Heparin-Binding Epidermal Growth Factor-Like Growth Factor Monoclonal

Figures

687

Figure 1. Flowchart showing the pipeline used in the multi-omic analysis.

Figure 2. Directed Acyclic Graph (DAG) showing a visual representation of potential causal relationships. This DAG also shows the three assumptions of Mendelian randomisation. (1) The genetic variant(s) being used as an instrument is associated robustly with the exposure. (2) The instrument is independent of measured and unmeasured confounding factors of the association between exposure and outcome. (3) There must be no independent pathway between the instrument and outcome other than through the exposure.

Mendelian randomisation results by subtype for the ten genes of interest in five brain tissues (eQTLs)

Odds ratio (95% CI) for subtype risk per standard deviation change in gene expression

696 697

Figure 3. Forest plot showing Mendelian randomisation results by subtype (all glioma, GB and non-GB) for the ten genes of interest in five brain tissues in the gene expression analysis. Results have strong evidence of colocalization ($H_4 \ge 80\%$) and correct Steiger directionality.

Mendelian randomisation results by phenotype for the six genes of interest in 12 brain tissues (sQTLs)

699

700

Figure 4. Forest plot showing Mendelian randomisation results by subtype (all glioma, GB and non-GB) for the six genes of interest in 12 brain tissues in the gene-splicing analysis. Results have strong evidence of colocalization ($H_4 >= 80\%$) and correct Steiger directionality.

Mendelian randomisation results by subtype for HBEGF in cortex tissue (eQTLs)

702

703

704

Odds ratio (95% CI) for phenotype risk per standard deviation change in gene expression

Figure 5. Forest plot showing Mendelian randomisation results by subtype (all glioma, GB and non-GB) for HBEGF in cortex tissue in the gene expression analysis. All subtypes show an increased risk of developing glioma, but only all glioma surpassed our Bonferroni-corrected P value threshold ($P = 5.00 \times 10^6$).

Mendelian randomisation results by phenotype for the three genes of interest in six brain tissues (sQTLs)

Figure 6. Forest plot showing Mendelian randomisation results by subtype (all, GB and non-GB) for CEP192, FAIM and SLC8A1 in six tissues in the gene-splicing analysis. All subtypes showed the same direction of effect on glioma risk within tissues, but not all passed our Bonferroni-corrected P value threshold $(P = 1.11 \times 10^5)$

710 Tables

711

Table 1. Results of the MR analysis investigating the effects of genetically proxied gene expression levels on genetic liability to glioma subtype.

Tissue	Gene	Subtype	Method	No. of SNPs	P Value	Odds Ratio (95% CI) H4 (%)		Steiger Direction	Steiger P Value	Steiger Flag
Cortex	CDKN2B	All	Wald ratio	1	7.17E-43	1.36 (1.19 - 1.55)	93	TRUE	TRUE 2.32E-19	
Cortex	CDKN2B	GB	Wald ratio	1	6.22E-44	1.14 (1.08 - 1.21)	97	TRUE	3.19E-15	TRUE
Cortex	CDKN2B	Non-GB	Wald ratio	1	1.59E-14	1.22 (1.15 - 1.29)	92	TRUE	2.91E-21	TRUE
Cerebellum	EGFR	All	Wald ratio	1	1.07E-25	1.22 (1.14 - 1.32)	96	TRUE	2.16E-10	TRUE
Cerebellum	EGFR	GB	Wald ratio	1	2.89E-31	0.67 (0.63 - 0.73)	97	TRUE	4.29E-09	TRUE
Cerebellum	EGFR	Non-GB	Wald ratio	1	1.60E-07	0.58 (0.53 - 0.64)	98	TRUE	2.65E-11	TRUE
Basal Ganglia	GALNT6	All	Wald ratio	1	3.14E-06	0.5 (0.46 - 0.55)	100	TRUE	4.78E-09	TRUE
Basal Ganglia	GALNT6	GB	Wald ratio	1	9.08E-08	0.43 (0.38 - 0.48)	100	TRUE	1.23E-08	TRUE
Cerebellum	GALNT6	All	Wald ratio	1	3.14E-06	1.2 (1.12 - 1.28)	100	TRUE	7.94E-25	TRUE
Cerebellum	GALNT6	GB	Wald ratio	1	9.08E-08	1.2 (1.12 - 1.29)	100	TRUE	1.76E-23	TRUE
Cortex	GALNT6	GB	Inverse variance weighted	2	1.53E-07	1.19 (1.13 - 1.25)	100	TRUE	6.87E-130	TRUE
Hippocampus	GALNT6	All	Wald ratio	1	4.17E-06	6.89 (5.60 - 8.47)	99	TRUE	5.29E-08	TRUE
Hippocampus	GALNT6	GB	Wald ratio	1	2.15E-07	1.87 (1.50 - 2.34)	100	TRUE	1.09E-07	TRUE
Spinal Cord	GALNT6	GB	Wald ratio	1	8.40E-07	2.71 (2.16 - 3.40)	99	TRUE	6.88E-07	TRUE
Cortex	HBEGF	All	Wald ratio	1	4.41E-06	1.17 (1.12 - 1.23)	99	TRUE	8.18E-17	TRUE
Basal Ganglia	HEATR3	All	Wald ratio	1	1.50E-10	0.77 (0.69 - 0.85)	93	TRUE	7.61E-11	TRUE
Basal Ganglia	HEATR3	GB	Wald ratio	1	1.55E-11	0.60 (0.53 - 0.68)	95	TRUE	2.58E-11	TRUE
Cerebellum	HEATR3	All	Wald ratio	1	3.93E-11	1.15 (1.09 - 1.23)	96	TRUE	6.45E-54	TRUE
Cerebellum	HEATR3	GB	Wald ratio	1	6.74E-12	1.17 (1.11 - 1.24)	97	TRUE	1.25E-51	TRUE
Cortex	HEATR3	All	Wald ratio	1	1.95E-10	1.26 (1.18 - 1.34)	97	TRUE	1.15E-139	TRUE

Cortex	HEATR3	GB	Wald ratio	1	8.20E-11	1.14 (1.1 - 1.19)	97	TRUE	3.76E-125	TRUE
Cerebellum	JAK1	GB	Wald ratio	1	9.28E-09	1.14 (1.08 - 1.20)	89	TRUE	2.68E-38	TRUE
Cerebellum	MDM4	All	Wald ratio	1	9.54E-07	1.18 (1.11 - 1.26)	91	TRUE	2.10E-08	TRUE
Cortex	PICK1	GB	Wald ratio	1	1.92E-09	1.19 (1.13 - 1.26)	91	TRUE	2.14E-31	TRUE
Hippocampus	PICK1	GB	Wald ratio	1	3.95E-09	4.43 (3.74 - 5.25)	81	TRUE	1.65E-06	TRUE
Cortex	RAVER2	All	Wald ratio	1	3.19E-08	0.80 (0.73 - 0.87)	94	TRUE	8.11E-06	TRUE
Cortex	RAVER2	GB	Wald ratio	1	7.92E-10	0.86 (0.81 - 0.90)	98	TRUE	1.42E-04	TRUE
Cortex	TERT	All	Wald ratio	1	2.32E-66	1.27 (1.17 - 1.37)	100	TRUE	3.55E-03	TRUE
Cortex	TERT	GB	Wald ratio	1	6.92E-75	1.39 (1.25 - 1.55)	100	TRUE	1.18E-01	UNCERTAIN
Cortex	TERT	Non-GB	Wald ratio	1	6.69E-18	2.35 (1.79 - 3.08)	100	TRUE	3.26E-05	TRUE

Results presented are those which were deemed the most robust, i.e., met the Bonferroni-correct P value threshold ($P = 5.00 \times 10^{-6}$) for the MR analysis, had

strong evidence of colocalisation (H4 > 80%) and correctly orientated Steiger filtering direction.

712

713

Table 2. Results of the MR analysis investigating the effects of genetically proxied gene splicing levels on genetic liability to glioma subtype.

Tissue	Gene (Splice Junction)	Subtype	Method	No. of SNPs	P Value	Odds Ratio (95% CI)	Н4 (%)	Steiger Direction	Steiger P Value	Steiger Flag
Amygdala	FAIM Splice Junction 5	All	Wald ratio	1	1.03E-05	2.72 (1.74 - 4.25)	97	TRUE	6.91E-01	UNCERTAIN
Amygdala	RTEL1 Splice Junction 32	All	Wald ratio	1	4.38E-40	12.83 (8.80 - 18.72)	100	TRUE	9.68E-01	UNCERTAIN
Amygdala	RTEL1 Splice Junction 32	Non-GB	Wald ratio	1	8.36E-10	4.61 (2.83 - 7.51)	98	TRUE	7.34E-01	UNCERTAIN
Anterior Cingulate Cortex	RTEL1 Splice Junction 32	All	Wald ratio	1	3.89E-33	0.09 (0.06 - 0.13)	94	TRUE	9.46E-01	UNCERTAIN
Anterior Cingulate Cortex	RTEL1 Splice Junction 32	Non-GB	Wald ratio	1	2.39E-08	0.23 (0.14 - 0.39)	92	TRUE	7.24E-01	UNCERTAIN
Caudate	FAIM Splice Junction 5	All	Wald ratio	1	1.09E-05	3.01 (1.84 - 4.92)	97	TRUE	6.83E-01	UNCERTAIN
Caudate	RTEL1 Splice Junction 32	Non-GB	Wald ratio	1	1.56E-10	7.13 (3.91 - 13.02)	100	TRUE	8.68E-01	UNCERTAIN
Cerebellar Hemisphere	CEP192 Splice Junction 60	GB	Wald ratio	1	9.78E-06	4.40 (2.28 - 8.48)	97	TRUE	7.79E-01	UNCERTAIN
Cerebellar Hemisphere	RTEL1 Splice Junction 32	GB	Wald ratio	1	1.58E-45	19.1 (12.7 - 28.72)	100	TRUE	7.79E-01	UNCERTAIN
Cerebellar Hemisphere	RTEL1 Splice Junction 32	All	Wald ratio	1	4.38E-40	9.52 (6.82 - 13.28)	100	TRUE	8.87E-01	UNCERTAIN
Cerebellar Hemisphere	RTEL1 Splice Junction 32	Non-GB	Wald ratio	1	8.36E-10	3.85 (2.51 - 5.93)	95	TRUE	6.23E-01	UNCERTAIN
Cerebellum	HEATR3 Splice Junction 1	All	Wald ratio	1	1.29E-10	9.64 (4.83 - 19.24)	91	TRUE	9.38E-01	UNCERTAIN

	T				1				1	1
Cerebellum	RTEL1 Splice Junction 32	Non-GB	Wald ratio	1	2.32E-10	5.21 (3.13 - 8.68)	99	TRUE	7.43E-01	UNCERTAIN
Cortex	RTEL1 Splice Junction 32	GB	Wald ratio	1	4.42E-47	52.42 (30.59 - 89.81)	100	TRUE	6.97E-01	UNCERTAIN
Frontal Cortex	RTEL1 Splice Junction 32	Non-GB	Wald ratio	1	2.00E-10	5.28 (3.16 - 8.82)	99	TRUE	7.94E-01	UNCERTAIN
Hippocampus	FAIM Splice Junction 5	All	Wald ratio	1	1.09E-05	2.76 (1.76 - 4.34)	97	TRUE	6.64E-01	UNCERTAIN
Hippocampus	PHLDB1 Splice Junction 5	All	Wald ratio	1	7.83E-09	0.11 (0.05 - 0.24)	87	TRUE	9.29E-01	UNCERTAIN
Hippocampus	RTEL1 Splice Junction 32	Non-GB	Wald ratio	1	8.36E-10	5.05 (3.01 - 8.46)	96	TRUE	8.08E-01	UNCERTAIN
Hypothalamus	PHLDB1 Splice Junction 3	All	Wald ratio	1	8.40E-15	13.29 (6.92 - 25.55)	99	TRUE	9.94E-01	UNCERTAIN
Hypothalamus	RTEL1 Splice Junction 32	Non-GB	Wald ratio	1	2.00E-10	6.02 (3.46 - 10.47)	99	TRUE	8.12E-01	UNCERTAIN
Nucleus Accumbens	FAIM Splice Junction 5	All	Wald ratio	1	1.03E-05	3.43 (1.98 - 5.93)	97	TRUE	7.29E-01	UNCERTAIN
Nucleus Accumbens	RTEL1 Splice Junction 32	Non-GB	Wald ratio	1	2.32E-10	5.92 (3.41 - 10.25)	99	TRUE	8.16E-01	UNCERTAIN
Putamen	RTEL1 Splice Junction 32	Non-GB	Wald ratio	1	1.56E-10	5.35 (3.2 - 8.93)	100	TRUE	7.66E-01	UNCERTAIN
Substantia Nigra	SLC8A1 Splice Junction 7	All	Wald ratio	1	5.72E-06	0.37 (0.24 - 0.56)	98	TRUE	7.01E-01	UNCERTAIN

Results presented here are those which were deemed the most robust, i.e., met the Bonferroni-correct P value threshold (1.11 x 10^{-5}) for the MR analysis, had strong evidence of colocalisation (H4 > 80%) and correctly orientated Steiger filtering direction.