

| Carrera  | Ingeniería en Informática     |
|----------|-------------------------------|
| Catedra  | Introducción a la Informática |
| Clase N° | 8                             |

\_\_\_\_\_

## Cálculos de Velocidades

| Unidades de Medida de la Informática |         |                       |
|--------------------------------------|---------|-----------------------|
| Almacenamiento Transferencia         |         | Velocidad Componentes |
| Byte (B)                             | Bit (b) | Hertz (Hz)            |

| Tabla de Medidas de Almacenamiento |            |              |
|------------------------------------|------------|--------------|
| Medida                             | Simbología | Equivalencia |
| 1 Byte                             | В          | 8 bits (b)   |
| 1 Kilobyte                         | KB         | 1024 B       |
| 1 Megabyte                         | MB         | 1024 KB      |
| 1 Gigabyte                         | GB         | 1024 MB      |
| 1 Terabyte                         | TB         | 1024 GB      |
| 1 Petabyte                         | PB         | 1024 TB      |
| 1 Exabyte                          | EB         | 1024 PB      |
| 1 Zetabyte                         | ZB         | 1024 EB      |
| 1 Yottabyte                        | YB         | 1024 ZB      |
| 1 Brontobyte                       | BB         | 1024 YB      |
| 1 Geopbyte                         | GB         | 1024 BB      |

|                       | Tabla de Medida de Transferencia (bits) |    |              |  |
|-----------------------|-----------------------------------------|----|--------------|--|
| Medida Simbología Equ |                                         |    | Equivalencia |  |
|                       | 1 Kilobit                               | Kb | 1000 b       |  |
|                       | 1 Megabit                               | Mb | 1000 Kb      |  |
|                       | 1 Gigabit                               | Gb | 1000 Mb      |  |

subir,

TB=TeraBytes dividir

GB=GigaBytes

MB=MegaBytes

KB=KiloBytes

B = Bytes

Bit

multiplicar

Aclaración: 1 Byte (B) = 8 Bits (b)

Regla de 3 Simple: Es una operación que nos ayuda a resolver rápidamente problemas de proporcionalidad. Para hacer una regla de 3 simple necesitamos 3 datos: dos magnitudes proporcionales entre sí, y una tercera magnitud. A partir de estos, averiguaremos el cuarto término de la proporcionalidad.

Colocaremos en una tabla los 3 datos (a los que llamamos "A", "B" y "C") y la incógnita, es decir, el dato que queremos averiguar (que llamaremos "X"). Después, aplicaremos la siguiente fórmula:

| $A \rightarrow B$   | Formula | $X = \underline{C * B}$ |
|---------------------|---------|-------------------------|
| $C \rightarrow X$ ? |         | А                       |

<u>Ejemplo</u>: Suponiendo que un DVD pesa 4,3 GB, y un archivo MP3 pesa promedio estándar 4 MB. ¿Cuántos archivos MP3 entran en un DVD? Resolver utilizando regla de 3 simple.

1024 MB  $\rightarrow$  1 GB x MB  $\rightarrow$  4,3 GB

4403,2 MB / 4 MB = 1100,8 archivos.



| Carrera  | Ingeniería en Informática     |
|----------|-------------------------------|
| Catedra  | Introducción a la Informática |
| Clase N° | 8                             |

<u>Consigna en Clase</u>: ¿Cuánto tiempo se requiere para descargar un archivo de 500 MB si dispongo de 1 velocidad de descarga de 7 Megabit por segundo (Mb/s o Mbps)? Recuerde que de la velocidad de descarga solo el 75% es neto.

## Desarrollo paso a paso

• 1°, calculemos el tiempo neto de la velocidad de descarga.

7 Mb  $\rightarrow$  1 s

• 2°, utilizaremos la tabla de referencia para pasar los 500 MB a Mb.

| 1 GB | $\rightarrow$ | 1024 MB |
|------|---------------|---------|
| 1 MB | $\rightarrow$ | 1024 KB |
| 1 KB | $\rightarrow$ | 1024 B  |
|      | 1             | В       |

| 1 Gb | $\rightarrow$ | 1000 Mb |
|------|---------------|---------|
| 1 Mb | $\rightarrow$ | 1000 Kb |
| 1 Kb | $\rightarrow$ | 1000 b  |
| 8 b  |               |         |

$$1024 \text{ KB} \rightarrow 1 \text{ MB}$$
 $x = \frac{500 \text{ MB} * 1024 \text{ KB}}{1 \text{ MB}} = 512000 \text{ KB}$ 
 $1024 \text{ B} \rightarrow 1 \text{ KB}$ 
 $x = \frac{512000 \text{ KB} * 1024 \text{ B}}{1 \text{ KB}} = 524288000 \text{ B}$ 
 $1024 \text{ B} \rightarrow 1 \text{ KB}$ 
 $x = \frac{512000 \text{ KB} * 1024 \text{ B}}{1 \text{ KB}} = 4194304000 \text{ B}$ 
 $1 \text{ KB} \rightarrow 1 \text{ B}$ 
 $x = \frac{524288000 \text{ B} * 8 \text{ b}}{1 \text{ B}} = 4194304000 \text{ b}$ 
 $1 \text{ Kb} \rightarrow 1000 \text{ B}$ 
 $x = \frac{4194304000 \text{ b} * 1 \text{ Kb}}{1000 \text{ b}} = 4194304 \text{ Kb}$ 
 $1 \text{ Mb} \rightarrow 1000 \text{ Kb}$ 
 $x = \frac{4194304 \text{ Kb} * 1 \text{ Mb}}{1000 \text{ Kb}} = 4194304 \text{ Mb}$ 
 $1 \text{ Mb} \rightarrow 1000 \text{ Kb}$ 
 $x = \frac{4194304 \text{ Kb} * 1 \text{ Mb}}{1000 \text{ Kb}} = 4194304 \text{ Mb}$ 

Entonces 500 MB = 4194,304 Mb



| Carrera  | Ingeniería en Informática     |
|----------|-------------------------------|
| Catedra  | Introducción a la Informática |
| Clase N° | 8                             |

• 3°, finalmente calculamos el tiempo, y lo expresamos en minutos y segundos.

 $x s \rightarrow 4194,304 \text{ Mb}$  5,25 Mb

 $1 \text{ m} \rightarrow 60 \text{ s}$   $x = \frac{798,915 \text{ s} * 1 \text{ m}}{1 \text{ m}} = 13,31 \text{ m}$ 

 $x m \to 798,915 s$  60 s

 $60 \text{ s} \rightarrow 1 \text{ m}$  x = 0.31 m \* 60 s = 18.6 s

 $x s \rightarrow 0.31 m$  1 m

Entonces el tiempo definitivo es de 13 min y 18,6 s.