

Data Advanced

Hoofdstuk 1

Combinatieleer

DE HOGESCHOOL MET HET NETWERK

Hogeschool PXL – Elfde-Liniestraat 24 – B-3500 Hasselt www.pxl.be - www.pxl.be/facebook

Inhoud

- 1. Inleiding
- 2. Soorten groeperingen
 - 1. Variatie
 - 2. Permutatie
 - 3. Herhalingsvariatie
 - 4. Combinatie
- 3. Samenvatting

1. Inleiding

- Elementen in een verzameling tellen
- Nodig in meerdere domeinen
 - Kansrekening

— ...

2.1 Variaties

Voetbalwedstrijden: 4 ploegen

 Definitie: variatie van p elementen uit n is een geordend p – tal van p verschillende elementen

2.1 Variaties

Voetbalwedstrijden: 20 ploegen

Definitie

 V_n^p is het aantal variaties van p verschillende elementen uit n elementen en

$$V_n^p = n(n-1)(n-2)\dots(n-p+1) = \frac{n!}{(n-p)!}$$
 met $V_n^n = n!$ en $V_n^0 = 1$

Voorbeeld 3: pg 4

2.2 Permutaties

Voetbalwedstrijden: 4 ploegen: uitslag

ABCD	ABDC	ACBD	ACDB	ADBC	ADCB
BACD	BADC	BCAD	BCDA	BDAC	BDCA
CABD	CADB	CBAD	CBDA	CDAB	CDBA
DABC	DACB	DBAC	DBCA	DCAB	DCBA

Definitie

Een permutatie van n elementen is een variatie van n elementen uit n elementen.

 P_n is het aantal permutaties uit n elementen en is gelijk aan:

$$P_n = V_n^n = \frac{n!}{(n-n)!} = \frac{n!}{0!} = n!$$

Voorbeeld 5 – 6 pg 6

2.3 Herhalingsvariaties

Definitie

Een herhalingsvariatie van p elementen uit n elementen is een geordend p - tal van elementen gekozen uit een gegeven verzameling van n elementen; waarbij hetzelfde element meermaals gekozen mag worden.

 \overline{V}_{n}^{p} is het aantal herhalingsvariaties van p elementen uit n en is gelijk aan

$$\overline{V_n}^p = n^p \quad \text{met} \quad \overline{V_n}^0 = n^0 = 1$$

Voorbeeld 8 – 9 pg 8

2.4 Combinaties

Definitie

Een combinatie van p elementen uit n elementen $(p \le n)$ is een deelverzameling van p verschillende elementen gekozen uit een gegeven verzameling van n elementen waarbij de volgorde niet van belang is.

 C_n^p is het aantal combinaties van p elementen uit n en is gelijk aan

$$C_n^p = \frac{n!}{p!(n-p)!}$$
 met $C_n^0 = 1$ en $C_n^n = 1$.

Voorbeeld 10 – 11 pg 9 - 10

3. Samenvatting

Soort	# gekozen	Volgorde	Elementen ≠	Berekening
Groepering	elementen	van belang?	of niet	
	uit n		noodzakelijk	
Variatie	p≤n	ja	≠	$V_n^p = \frac{n!}{(n-p)!}$
Permutatie	n	ja	≠	$P_n = n!$
Herh. variatie	p willekeurig	ja	niet noodzakelijk ≠	$\overline{V}_n^p = n^p$
Combinatie	<i>p</i> ≤ <i>n</i>	neen	≠	$C_n^p = \frac{n!}{p!(n-p)!}$

4. Oefeningen