Mushroom Data Set

Download: Data Folder, Data Set Description

Abstract: From Audobon Society Field Guide; mushrooms described in terms of physical characteristics; classification: poisonous or edible

Data Set Characteristics:	Multivariate	Number of Instances:	8124	Area:	Life
Attribute Characteristics:	Categorical	Number of Attributes:	22	Date Donated	1987- 04-27
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	165385

~						
5	n	11	r	n	Δ	
١,	.,			٠.	١,	•

Origin:

Mushroom records drawn from The Audubon Society Field Guide to North American Mushrooms (1981). G. H. Lincoff (Pres.), New York: Alfred A. Knopf

Donor:

Jeff Schlimmer (Jeffrey.Schlimmer '@' a.gp.cs.cmu.edu)

Data Set Information:

This data set includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family (pp. 500-525). Each species is identified as definitely edible, definitely poisonous, or of unknown edibility and not recommended. This latter class was combined with the poisonous one. The Guide clearly states that there is no simple rule for determining the edibility of a mushroom; no rule like ``leaflets three, let it be'' for Poisonous Oak and Ivy.

Attribute Information:

- 1. cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s
- 2. cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s
- 3. cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r,pink=p,purple=u,red=e,white=w,yellow=y
- 4. bruises?: bruises=t,no=f
- 5. odor: almond=a,anise=l,creosote=c,fishy=y,foul=f, musty=m,none=n,pungent=p,spicy=s
- 6. gill-attachment: attached=a,descending=d,free=f,notched=n
- 7. gill-spacing: close=c,crowded=w,distant=d
- 8. gill-size: broad=b,narrow=n
- 9. gill-color: black=k,brown=n,buff=b,chocolate=h,gray=g, green=r,orange=o,pink=p,purple=u,red=e, white=w,yellow=y
- 10. stalk-shape: enlarging=e,tapering=t
- 11. stalk-root: bulbous=b,club=c,cup=u,equal=e, rhizomorphs=z,rooted=r,missing=?
- 12. stalk-surface-above-ring: fibrous=f,scaly=y,silky=k,smooth=s
- 13. stalk-surface-below-ring: fibrous=f,scaly=y,silky=k,smooth=s
- 14. stalk-color-above-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o,pink=p,red=e,white=w,yellow=y
- 15. stalk-color-below-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o,pink=p,red=e,white=w,yellow=y
- 16. veil-type: partial=p,universal=u
- 17. veil-color: brown=n,orange=o,white=w,yellow=y
- 18. ring-number: none=n,one=o,two=t
- 19. ring-type: cobwebby=c,evanescent=e,flaring=f,large=l,

none=n,pendant=p,sheathing=s,zone=z

- 20. spore-print-color: black=k,brown=n,buff=b,chocolate=h,green=r, orange=o,purple=u,white=w,yellow=y
- 21. population: abundant=a,clustered=c,numerous=n, scattered=s,several=v,solitary=y
- 22. habitat: grasses=g,leaves=l,meadows=m,paths=p, urban=u,waste=w,woods=d

Relevant Papers:

Schlimmer, J.S. (1987). Concept Acquisition Through Representational Adjustment (Technical Report 87-19). Doctoral disseration, Department of Information and Computer Science, University of California, Irvine.

[Web Link]

Iba, W., Wogulis, J., & Langley, P. (1988). Trading off Simplicity and Coverage in Incremental Concept Learning. In Proceedings of the 5th International Conference on Machine Learning, 73-79. Ann Arbor, Michigan: Morgan Kaufmann.

[Web Link]

Duch W, Adamczak R, Grabczewski K (1996) Extraction of logical rules from training data using backpropagation networks, in: Proc. of the The 1st Online Workshop on Soft

Computing, 19-30.Aug.1996, pp. 25-30, [Web Link] [Web Link]

Duch W, Adamczak R, Grabczewski K, Ishikawa M, Ueda H, Extraction of crisp logical rules using constrained backpropagation networks - comparison of two new approaches, in: Proc. of the European Symposium on Artificial Neural Networks (ESANN'97), Bruge, Belgium 16-18.4.1997.

[Web Link]