

Prof. Dr. Anne Frühbis-Krüger Dr. Bernd Schober

ÜBUNGSBLATT 3

Abgabe: 05.11.2019, bis 12 Uhr

Hinweis: Achten Sie auf eine saubere Form unter Verwendung von Voraussetzung/Behauptung/Beweis!

Aufgabe 3.1. Zeigen Sie, dass $(2\mathbb{Z}, +, \cdot)$ ein kommutativer Ring ohne Eins ist.

Erinnerung: Eine ganze Zahl $p \in \mathbb{Z}$ mit p > 1 nennt man eine Primzahl, falls aus p = ab mit $a, b \in \mathbb{Z}$ folgt, dass a oder b invertierbar ist.

Aufgabe 3.2. Sei K ein Körper. Wir bezeichnen mit $1_K \in K$ das neutrale Element bezüglich der Multiplikation in K. Für $n \in \mathbb{N}$ sei

$$n \cdot 1_K := \sum_{i=1}^n 1_K = \underbrace{1_K + \ldots + 1_K}_{n-\text{mal}} \in K$$

Gibt es ein $n \in \mathbb{N}$ mit $n \cdot 1_K = 0$, so heißt die kleinste natürliche Zahl $\kappa \in \mathbb{N}$ mit $\kappa \cdot 1_K = 0$ die Charakteristik von K und wird mit $\operatorname{char}(K)$ bezeichnet. Ist $n \cdot 1_K \neq 0$ for alle $n \in \mathbb{N}$, so setzt man $\operatorname{char}(K) = 0$. Zeigen Sie:

- (a). Ist $char(K) \neq 0$, so ist char(K) eine Primzahl.
- (b). Es ist genau dann $\operatorname{char}(K) = 0$, wenn die Abbildung $\psi : \mathbb{N}_0 \to K$, $n \mapsto n \cdot 1_K$ injektiv ist.
- (c). Welche Charakteristik hat der Körper aus Präsenzaufgabe 2.6?

Wiederholung aus der Vorlesung: Für $m \in \mathbb{N}$, bezeichnet $\mathbb{Z}/m\mathbb{Z}$ die Menge der Äquivalenzklassen $[x]_m$ der Äquivalenzrelation \equiv_m , welche durch

$$x \equiv_m y : \iff x - y \in m\mathbb{Z} \quad \text{(für } x, y \in \mathbb{Z}\text{)}$$

gegeben ist. Insbesondere ist

$$[x]_m := \{x + \ell m \mid \ell \in \mathbb{Z}\} \subseteq \mathbb{Z}$$

und es gilt zum Beispiel $[x]_m = [x - m]_m$, für alle $x \in \mathbb{Z}$. Aus der Definition folgt, dass $\mathbb{Z}/m\mathbb{Z}$ sich schreiben lässt als

$$\mathbb{Z}/m\mathbb{Z} = \{[0]_m, [1]_m, \dots, [m-1]_m\}.$$

Die Addition auf \mathbb{Z} induziert eine Addition auf $\mathbb{Z}/m\mathbb{Z}$ durch

$$[x]_m + [y]_m := [x + y]_m$$
, für alle $x, y \in \{0, \dots, m - 1\}$.

Ebenso haben wir eine Multiplikation, welche durch jene auf Z bestimmt wird,

$$[x]_m \cdot [y]_m := [x \cdot y]_m$$
, für alle $x, y \in \{0, \dots, m-1\}$.

Aufgabe 3.3. (a). Berechnen Sie in $\mathbb{Z}/6\mathbb{Z}$ folgende Summen und Produkte und geben Sie den jeweiligen Repräsentanten aus $\{0, 1, \dots, 5\}$ der resultierenden Klasse an:

(i)
$$[3]_6 \cdot [3]_6$$
, (ii) $[10]_6 + [5]_6$, (iii) $[-1]_6 + [3]_6 \cdot [2]_6$. (iv) $[6661]_6 \cdot [11999]_6$.

(b). Bestimmen Sie die Einheiten und Nullteiler von $\mathbb{Z}/6\mathbb{Z}$.

- (c). Sei $m \in \mathbb{N}$ beliebig, aber fest gewählt. Bestimmen Sie die Einheiten und die Nullteiler von $\mathbb{Z}/m\mathbb{Z}$. Hinweis: Sie dürfen folgende Aussage verwenden (ohne sie beweisen zu müssen): Sind $x, y \in \mathbb{Z}$ zwei teilerfremde ganze Zahlen, so gibt es $a, b \in \mathbb{Z}$ mit der Eigenschaft ax + by = 1.
- (d). Für welche $m \in \mathbb{N}$ ist $\mathbb{Z}/m\mathbb{Z}$ ein Körper?

Aufgabe 3.4. (a). Welche der folgenden Mengen sind Untergruppen der Gruppe ($\mathbb{Z}/12\mathbb{Z}, +$):

(i)
$$A_1 := \{\}$$
 (ii) $A_2 := \{[0]_{12}, [4]_{12}, [8]_{12}\}$

(iii)
$$A_3 := \{[6]_{12}\}$$
 (iv) $A_4 := \{[0]_{12}, [3]_{12}, [6]_{12}, [9]_{12}\}$

(b). Welche der folgenden Mengen sind Untergruppen der Gruppe $(\mathbb{R}, +)$:

(i)
$$B_1 := \{a + b\sqrt{2} \mid a \in \mathbb{Q}, b \in \mathbb{R}\}$$
 (ii) $B_2 := \mathbb{R} \setminus \mathbb{Q}$

(iii)
$$B_3 := \{x \in \mathbb{R} \mid 5x + 1 = 0\}$$
 (iv) $B_4 := \{2x \mid x \in \mathbb{Z}\}$

Präsenzaufgabe 3.5. Betrachten Sie die folgenden Matrizen mit reellen Einträgen:

$$M_1 = \begin{pmatrix} 1 & 3 \\ -3 & -1 \end{pmatrix}, \ M_2 = \begin{pmatrix} 1 & 2 \\ 3 & -1 \\ -3 & -2 \end{pmatrix}, \ M_3 = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 3 & -1 \\ -3 & -2 & 0 \end{pmatrix}, \ M_4 = \begin{pmatrix} -1 & 0 & -2 \\ 0 & -3 & 1 \\ 3 & 2 & 0 \end{pmatrix}.$$

Welche der folgenden Ausdrücke sind definiert:

(a)
$$M_1 + M_2$$

(b)
$$M_1 \cdot M_2$$

(c)
$$M_2 \cdot M_1$$

(d)
$$(M_3 - M_4)M_5$$

(e)
$$2M_4 + 3M_3^2 + \frac{1}{2}$$

(d)
$$(M_3 - M_4)M_2$$
 (e) $2M_4 + 3M_3^2 + \frac{1}{2}$ (f) $(M_3 - M_4)(M_4 + M_3)$

Präsenzaufgabe 3.6. Sei $n \in \mathbb{N}$ mit $n \geq 2$. Seien A, B, C invertierbare $n \times n$ Matrizen mit reellen Einträgen, welche die folgende Gleichheit erfüllen:

$$(C+D)A = A(A-B^3)^2$$

Berechnen Sie $(A - B^3)^2$ und schreiben Sie D als Ausdruck in den Matrizen A, B, C und gegebenfalls deren Inversen.

Präsenzaufgabe 3.7. Sei $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$. Bestimmen Sie die Matrix A und den Vektor \vec{b} , sodass $A\vec{x} = \vec{b}$

dem folgenden Gleichungssystem entspricht:

$$\begin{cases} 3x_1 - 2x_2 + x_5 &= -1\\ x_3 + 2x_2 + x_5 &= \frac{1}{2}\\ \sqrt{\pi}x_4 &= 3i \end{cases}$$

2