

Nanoscale Carbon in Metals for Energy Applications

David R. Forrest¹, CAPT Lloyd Brown², Lourdes Salamanca-Riba³, Jennifer Wolk¹, Peter Joyce², Jie Zhang¹

Nanotechnology for Energy, Healthcare and Industry
MS&T 2011, Columbus, OH
19 Oct 2011

- ¹ Naval Surface Warfare Center, Bethesda, MD
- ² U.S. Naval Academy, Annapolis, MD
- ³ University of Maryland, College Park, MD

DISTRIBUTION A. Approved for public release: distribution unlimited.

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headquald be aware that notwithstanding a DMB control number.	tion of information. Send commen parters Services, Directorate for Inf	ts regarding this burden estimate formation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	his collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 19 OCT 2011		2. REPORT TYPE		3. DATES COVE 00-00-201	ERED 1 to 00-00-2011	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Nanoscale Carbon in Metals for Energy Applications				5b. GRANT NUMBER		
					5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)			5d. PROJECT NUMBER			
			5e. TASK NUMBER			
		5f. WORK UNIT NUMBER				
7. PERFORMING ORGANI Naval Surface War	ZATION NAME(S) AND AI fare Center,Bethes	* *		8. PERFORMING REPORT NUMB	G ORGANIZATION ER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
12. DISTRIBUTION/AVAIL Approved for publ	ABILITY STATEMENT ic release; distribut	ion unlimited				
13. SUPPLEMENTARY NO	TES					
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	27	REST ONSIBLE I ERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Acknowledgements

- Azzam Mansour, XPS and XAS, NSWCCD
- Angela Whitfield, SEM of Cu, NSWCCD
- Jie Zhang, SEM of 6061, NSWCCD
- Al Brandemarte, metallography, NSWCCD
- Matt Hayden, tensile testing, NSWCCD
- Greg Archer, heat treatment, NSWCCD
- Kui Jin / Austin Baker, electrical resistivity, U. Maryland
- > Jason Shugart, President, Third Millennium
- ONR Code 332, William Mullins
- NSWCCD Code 60 S&T Director, Dave Sudduth

Summary

- > There is a new class of materials: Covetic
 - Third Millennium Metals, LLC; 12-yr development
 - "Immortal" nanocarbon phase, 50-200 nm, to 6 wt. % C
 - Well-dispersed, not graphite/diamond/fullerene
- Chemically bound to metal in a way we still need to understand; probably a new nano-effect
- Combination of analytic methods needed for C
- Nanoscale carbon raises the melting point
- Lower density
- Higher as-worked strength
- Higher thermal conductivity
- Higher electrical conductivity

Focus of Talk

- Background
- > Form and distribution of carbon
- > Analytical methods
- Properties
 - AA6061
 - Copper
- Applications

Background

- > Third Millennium Metals, LLC
- Under development since 1999
- > Conversion occurs in melt
 - Al, Cu, Au, Ag, Zn, Sn, Pb and Fe
 - Carbon powder → nanoscale C
- > Stable after conversion
- Process development and scale up is ongoing
- ▶ Producing laboratory quantities now, 10-15 lb heats → 100-lb heat capacity soon

Examples of nanoscale effects between metals and C

Zhou, et al., "Copper Catalyzing Growth of Single-Walled Carbon Nanotubes on Substrates," *Nano Letters* 2006, Vol. 6, No. 12, p. 2987-2990

Schaper, et al., "Copper nanoparticles encapsulated in multi-shell carbon cages," *Applied Physics A: Materials Science & Processing*, v. 78, no. 1, p. 73-77 (2004).

Feng, et al., "Optical and structural studies of copper nanoparticles and microfibers produced by using carbon nanotube as templates," (Proceedings Paper), Nanophotonic Materials III, Zeno Gaburro; Stefano Cabrini, Editors, Proceedings Vol. 6321, 30 August 2006.

E K Athanassiou, R N Grass and W J Stark, "Large-scale production of carbon-coated copper nanoparticles for sensor applications," *Nanotechnology*, v. 17, no. 6, 28 March 2006.

E. A. Sutter and P. W. Sutter, "Giant Carbon Solubility in Au Nanoparticles," *Journal of Materials Science*, v. 46, p. 7090-7097 (2011).

Distribution and Form of Carbon

SEM – Cu covetic, as-cast, 3.8% C

- > 50-200 nm diameter particles
- Well-dispersed
- Remain intact upon remelting and resolidification

Element	Wt %	At %
C K	03.78	16.65
O K	01.29	04.25
FeK	00.32	00.30
CuK	94.61	78.79

SEM – AA6061 as-extruded, 2.7% nanoC

- > 50-200 nm diameter particles
- Well-dispersed
- Remain intact upon remelting and resolidification
- ▶ Image analysis showed 1.1 2.6% C

Metallographically polished surface

6061 as-extruded, 2.7% nanoC Tensile fracture surface: ductile

SEM – AA6061 as-extruded, 2.7% nanoC Lourdes Salamanca-Riba

SEM — AA6061 as-extruded, 2.7% nanoC Lourdes Salamanca-Riba

SEM – AA6061 as-extruded, 2.7% C

Name:Date:10/6/2011 5:43:02 PMlmage size:700 x 525Mag:8000xHV:5.0kV

U. Maryland EELS Covetic Spectrum vs. Reference Spectrum of SWCNT

C Analysis in Cu Covetic

- Some techniques do not detect nanoscale C
- SEM-EDS and XPS best
- Standardization work needed

Method	Result (wt. %)
LECO	0.0016
DC-PES*	0.56
GDMS	0.0060
SEM-EDS	3.8
XPS (similar sample)	3.5
Density	< 4.3
% C reportedly added to the	5
heat in the conversion process	

^{*} Direct Current Plasma Emission Spectroscopy ASTM E1097 to detect Cu

6061 Covetic (wt. %)

- > Total carbon (3%) is detectable by EDS and XPS
- Unconverted carbon via LECO and GDMS
- > LECO measurement: 0.300 wt. % C

	6061-0	H-49 Covetic	ASTM B211
С	0.003	0.300	0.05 max
Si	0.72	0.71	0.4 - 0.8
Fe	0.25	0.24	0.7 max
Cu	0.18	0.18	0.15 – 0.40
Mn	0.061	0.064	0.15 max
Mg	0.99	1.03	0.8 – 1.2
Cr	0.054	0.057	0.04 - 0.35
Zn	0.080	0.084	0.25 max
Ti	0.088	0.099	0.15 max
V	0.0072	0.0074	0.05 max

Mechanical and Thermophysical Properties

Increased melting point (DTA)

AA6061 solidus: $582^{\circ}C \rightarrow 619^{\circ}C$

Copper: 1085°C → 1105°C

Density Naval Academy, CDR Lloyd Brown

As-cast Cu Covetic

Density = 7.92 g/cm³ covetic
 8.94 g/cm³ pure Cu

- Assuming ρ_{Cu} = 8.94 g/cm³ and ρ_{C} = 2.25 g/cm³, carbon content <= 4.33 wt%
- Roughly consistent with EDS measurement = 3.8%

Extruded 6061

- Density = 2.6729 g/cm^3 3% C 2.6775 g/cm^3 0% C
- Assuming $\rho_{\rm C}$ = 2.25 g/cm³, carbon content by density = 0.91 wt% vs 3

Covetic YS 30% higher as-extruded 400F

Tensile Curves: No difference in T6 condition

Electron Backscatter Diffraction (Wolk): Covetic resists grain coarsening

Electrical Conductivity, % IACS

0% C 6061 T6

3% C 6061 T6

Ш

3% C 6061 as-extruded

Electrical grade Al

47.4% Naval Academy

47.8% Naval Academy

67.3% Naval Academy

54% U. Maryland

61.8%

Anodic Polarization in Seawater

Factor of 5 increase in current in artificial seawater: Greater conductivity through the passive film?

Thermal conductivity

Khalid Lafdi (U. Dayton)

- Cold rolled copper
 - -0% nanoC 402 W/m-K
 - -3% nanoC 617 W/m-K in rolling direction
 - -3% nanoC 91 W/m-K orthogonal
- Normal 90Cu-10Ni: 71 W/m-K
 Covetic 90Cu-10Ni: 290 460 W/m-K

Energy Materials Testing Laboratory

- As-extruded Cu Covetic
 - 415 W/m-K in rolling direction vs. 402 annealed
 - -334 W/m-K orthogonal

Applications

- Lower density Cu with same electrical conductivity
 - Wiring, lightweight electrical motors
 - Ships, jets, helicopters, UAV's
- Anisotropic, high thermal conductivity Cu
 - Heat exchangers
 - Microelectronics
- High electrical conductivity aluminum
 - High tension lines
 - Electrodes and contacts

Summary

- There is a new class of materials: Covetic
 - Third Millennium Metals, LLC; 12-yr development
 - "Immortal" nanocarbon phase, 50-200 nm, to 6 wt. % C
 - Well-dispersed, not graphite/diamond/fullerene
- Chemically bound to metal in a way we still need to understand; probably a new nano-effect
- Combination of analytic methods needed for C
- Nanoscale carbon raises the melting point
- Lower density
- Higher as-worked strength
- Higher thermal conductivity
- Higher electrical conductivity