WHAT IS CLAIMED IS:

1	1.	A process for realizing microchannels buried in an integrated structure comprising	
2	a monocrystalline silicon substrate, comprising:		
3		forming in said substrate at least a trench; and	
4		obtaining said microchannels starting from a deep cavity characterized by a small	
5	surface port of	btained through anisotropic etching of said at least one trench, said microchannels	
6	being nearly o	entirely buried in said substrate in a completely monocrystalline structure.	
1	2.	The process according to claim 1:	
2		wherein forming comprises:	
3		depositing a mask above said substrate;	
4		opening of windows having a convenient width; and	
5		plasma etching which uses said mask to form said trenches having side	
6	walls being es	ssentially orthogonal to the surface of said substrate; and	
7		wherein obtaining comprises:	
8		wet anisotropic etching to form, starting from said trenches, said	
9	microchannel	s, said anisotropic etching step providing different etching speeds due to different	
10	atom coordina	ation.	
1	3.	The process according to claim 2, wherein plasma etching is performed with a	

TMAH or KOH solution.

2

- 1 4. The process according to claim 2, wherein opening the windows having a convenient width is performed through photolitographraphy and subsequent plasma etching.
- 1 5. The process according to claim 2, wherein deposition of a mask above said substrate comprises a silicon nitride deposition through the CVD deposition.
- 1 6. The process according to claim 2, wherein deposition of a mask above said substrate comprises a heavily doped monocrystalline layer deposition.
- 7. The process according to claim 6, wherein the heavily doped monocrystalline layer has a dopant concentration higher than 10¹⁹ atoms/cm³.
 - 8. The process according to claim 1, further comprising a convenient epitaxial new growing operation effective to close an upper part of said microchannels and completely bury the microchannels in monocrystalline silicon.
- 9. The process according to claim 1, further comprising an oxide, polysilicon or nitride deposition effective to close an upper part of said microchannels and completely bury the microchannels.

1

2

3

- 1 10. The process according to claim 1, wherein the wet anisotropic etching step turns 2 said side walls of said trenches into a pair of rotated v-grooves orthogonal to a surface of said 3 substrate and defining rombohedron-shaped microchannels.
- 1 11. The process according to claim 1, further comprising depositing a layer of 2 material having a low etching speed.
- 1 12. The process according to claim 11, further comprising plasma etching effective to 2 open a region at a trench base.
- 1 13. The process according to claim 11, further comprising removing of said layer and 2 in an etching of said substrate in a lower part of said trenches before said plasma etching step.

Ţ	14.	An integrated structure, comprising:
2		at least a monocrystalline silicon substrate wherein at least one microchannel is
3	formed which	n is nearly entirely buried inside said substrate.
1	15.	The integrated structure according to claim 14, wherein the microchannel has a
2	generally rho	mbohedral cross-sectional shape.
1	16.	The integrated structure according to claim 14, further comprising an epitaxially
2	grown silicon	n layer above the silicon substrate to completely enclose the microchannel in
3	monocrystalli	ne silicon.
1	17.	The integrated structure according to claim 14, further comprising a layer above
2	the silicon sul	bstrate to close completely enclose the microchannel.
		·
1	18.	The integrated structure according to claim 17, wherein the layer is an oxide,
2	polysilicon o	r nitride deposition effective to close an upper part of said microchannel and
3	completely by	ary the microchannel.

1	19.	A method for forming microchannels, comprising:
2		forming a narrow elongated trench in a monocrystalline silicon substrate;
3		performing an anisotropic wet etch of the narrow elongated trench to form a
4	microchannel	structure having a generally rhombohedral cross-sectional shape with a top port
5	substrate surf	ace opening; and
6		closing the top port substrate surface opening of the microchannel structure to
7	entirely enclo	se the microchannel structure.
1	20.	The method of claim 19 wherein closing comprises epitaxially growing
2	monocrystalli	ne silicon on a surface of the substrate to entirely enclose the microchannel
3	structure in m	onocrystalline silicon.
	•	
1	21.	The method of claim 19 wherein the anisotropic wet etch is made using a TMAH
2	solution.	
1	22.	The method of claim 19 wherein the anisotropic wet etch is made using a KHOH
2	solution.	
1	23.	The method of claim 19 wherein forming comprises defining a mask with an
2	opening there	in at the location of the trench and plasma etching though the mask opening to form
3	the narrow eld	ongated trench.

- 1 24. The method of claim 19 wherein the narrow elongated trench has a width at the 2 surface of the substrate of about 1 micrometer.
- 1 25. The method of claim 24 wherein the narrow elongated trench has a depth from the 2 surface of the substrate of about 9 micrometers.
- 1 26. The method of claim 19 wherein closing comprises depositing a layer of material 2 to close the top port substrate surface opening.
- 1 27. The method of claim 26 wherein layer of material is a material taken from the 2 group consisting of a polysilicon, a nitride or an oxide.

1	28.	A method for forming microchannels, comprising:	
2		forming a monocrystalline silicon layer over a monocrytalline silicon substrate;	
3		forming a narrow elongated trench through the monocrystalline layer and into the	
4	monocrystalline silicon substrate;		
5		performing an etching of a base region of the narrow elongated trench to form a	
6	microchannel	structure having a top port opening; and	
7		closing the top port opening of the microchannel structure to entirely enclose the	
8	microchannel structure.		
1	29.	The method of claim 28 wherein closing comprises growing monocrystalline	
2	silicon to close the top port opening in trench above the formed microchannel structure and		
3	produce the n	nicrochannel structure enclosed completely in monocrystalline silicon.	
1	30.	The method of claim 28 wherein performing comprises anisotropically wet	
2	etching the base region to define the microchannel structure with a generally rhombohedral		
3	cross-sectional shape.		
1	31.	The method of claim 30 wherein the anisotropic wet etch is made using a TMAH	
2	solution.		
1	32.	The method of claim 30 wherein the anisotropic wet etch is made using a KHOH	
2	solution		

- 1 33. The method of claim 28 wherein forming the narrow elongated trench comprises
- 2 defining a mask with an opening therein at the location of the trench and plasma etching though
- 3 the mask opening to form the narrow elongated trench.
- 1 34. The method of claim 28 wherein closing comprises depositing a layer of material
- 2 to close the top port opening.
- 1 35. The method of claim 34 wherein layer of material is a material taken from the
- 2 group consisting of a polysilicon, a nitride or an oxide.