EORM-PTO-1390 (Rev. 12-29-99)

DEPARTMENT OF COMMI-TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371

001560-397 U.S. APPLICATION NO. (If known, see 37 C.F.R. 1.5) To be a Qian of 830

INTERNATIONAL APPLICATION NO. PCT/JP00/05722

INTERNATIONAL FILING DATE 24 August 2000

PRIORITY DATE CLAIMED 24 August 1999

TITLE OF INVENTION

(q

z 12

GENES ENCODING PROTEINS REGULATING THE pH OF VACUOLES APPLICANT(S) FOR DO/EO/US

Shigeru IIDA, Sachiko TANAKA, and Yoshishige INAGAKI

Applican	t herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:
1 🛛	This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.

This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.

This is an express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and the PCT Articles 22 and 39(1).

-AIT IN SHADEMARK OFFICE

A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.

A copy of the International Application as filed (35 U.S.C. 371(c)(2))

is transmitted herewith (required only if not transmitted by the International Bureau).

has been transmitted by the International Bureau.

is not required, as the application was filed in the United States Receiving Office (RO/US)

6. A translation of the International Application into English (35 U.S.C. 371(c)(2)).

7 1110 Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))

are transmitted herewith (required only if not transmitted by the International Bureau).

have been transmitted by the International Bureau.

have not been made; however, the time limit for making such amendments has NOT expired.

have not been made and will not be made.

8 = 0 A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).

An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).

A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5))

Items 11, to 16, below concern other document(s) or information included:

An Information Disclosure Statement under 37 CFR 1.97 and 1.98.

An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.

A FIRST preliminary amendment.

A SECOND or SUBSEQUENT preliminary amendment.

14. A substitute specification.

A change of power of attorney and/or address letter.

16. Other items or information:

International Search Report

Sequence Listing (paper copy) Japanese PCT Request Form

PCT Notice Informing the Applicant of the Communication of the International Application to the Designated Offices (Form PCT/IB/308) Cover page from published PCT international application (WO 01/14560)

J.S. APPLICATION NO. III kn	TY 7 8 3 (123	PCT/JF 2/05722	N NO.			EY'S DOCKET NUMBER 60-397	
, o bo acception				CAL	CULATIONS	PTO USE ONLY	
7. The following fees are submitted:							
Asic National Fee (37 CFR 1.492(a)(1)-(5)): Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO \$1,000.00 (960)							
International prelim USPTO but Interna							
International prelin but international se							
International prelin but all claims did r							
International prelin and all claims satis							
	ENTER	APPROPRIATE BASIC F	EE AMOUNT =	\$	860.00		
Surcharge of \$130.00 (154) for furnishing the oath or declaration later than 20 30 30 months from the earliest claimed priority date (37 CFR 1.492(e)).							
Claims	Number Filed	Number Extra	Rate				
otal Claims	51 -20 =	31	X\$18.00 (966)	\$	558.00		
dependent Claims	3 -3 =	0	X\$80.00 (964)	\$			
ultiple dependent clai	m(s) (if applicable)		+ \$270.00 (968)	\$			
		TOTAL OF ABOVE CA	LCULATIONS =	\$			
Reduction for 1/2 for filling by small entity, if applicable (see below).						-	
			SUBTOTAL =	\$	1,418.00		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
TOTAL NATIONAL FEE =				\$	1,418.00		
- 1 U Fee för recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 (581) per property +					40.00		
Fall		TOTAL FE	S ENCLOSED =	\$	1,458.00		
					Amount to be: refunded	\$	
					charged	\$	
a. Small entit	y status is hereby claimed.						
	the amount of \$ 1,458.00						
is enclosed	Please charge my Deposit Account No. <u>02-4800</u> in the amount of \$ to cover the above fees. A duplicate copy of this sheet is enclosed.						
d. The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 02-4800. A duplicate copy of this sheet is enclosed.							
NOTE: Where a must be filed an	n appropriate time limit under d granted to restore the applic	37 CFR 1.494 or 1.495 has r ation to pending status.	ot been met, a petitio	n to r	evíve (37 CFR 1	.137(a) or (b))	
SEND ALL CORRESPONDENCE TO:							
Ronald L Burns, D P.O. Box	Grudziecki Joane, Swecker & MATHI: < 1404	/ 0	NATURE		· /		
	ria, Virginia 22313-1404	NA	nna M. Meuth ME				
	2001		,607				
April 24, 2001 REGISTRATION NUMBER							

Patent Attorney's Docket No. <u>001560-397</u>

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of)
Shigeru IIDA et al) Group Art Unit: To be assigned
Application No.: To be assigned (National Stage of PCT International Appln. No. PCT/JP00/05722 filed August 24, 2000)	Examiner: To be assigned)
Filed: April 24, 2001)
For: GENES ENCODING PROTEINS REGULATING THE pH OF VACUOLES)))

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

Prior to examination of the above-identified application on the merits, please amend the application as follows:

IN THE SPECIFICATION

Kindly replace the paragraph beginning at page 5, line 15, with the following:

-- The present invention also provides a plant in which said gene or said vector has been introduced or a progeny thereof having the same property as said plant, or a tissue thereof.--

Kindly replace the paragraph beginning at page 5, line 19, with the following:

-- The present invention also provides a cut flower of the above plant or a progeny thereof.--

Please add the paper copy of the Sequence Listing included herewith to the application, after page 19 and before the Claims on page 20.

Please renumber the pages accordingly.

IN THE CLAIMS

Please replace claims 7, 9, and 11-14 as follows:

- 7. (Amended) A vector comprising the gene according to claim 1.
- 9. (Amended) A protein encoded by the gene according to claim 1.
- 11. (Amended) A plant in which the gene according to claim 1 has been introduced or a progeny thereof having the same property as said plant, or a tissue thereof.
- 12. (Amended) A cut flower of the plant according to claim 11 or a progeny thereof having the same property as said plant.
- 13. (Amended) A method of regulating the pH of vacuoles comprising introducing the gene according to claim 1 into a plant or plant cells and then allowing said gene to be expressed in said plant or plant cells.
- 14. (Amended) A method of controlling the flower color of a plant comprising introducing the gene according to claim 1 into a plant or plant cells and then allowing said gene to be expressed in said plant or plant cells.

Please add new claims 15-51 as follows:

- -15. A vector comprising the gene according to claim 2.
- 16. A vector comprising the gene according to claim 3.
- 17. A vector comprising the gene according to claim 5.
- 18. A vector comprising the gene according to claim 6.
- 19. A host cell transformed with the vector according to claim 15.
- 20. A host cell transformed with the vector according to claim 16.
- 21. A host cell transformed with the vector according to claim 17.
- 22. A host cell transformed with the vector according to claim 18.
- 23. A protein encoded by the gene according to claim 2.
- 24. A protein encoded by the gene according to claim 3.
 - 25. A protein encoded by the gene according to claim 5.
 - 26. A protein encoded by the gene according to claim 6.
- 27. A method of producing a protein that has an activity of regulating the pH of vacuoles, said method comprising culturing or growing the host cell according to claim 19 and then harvesting said protein from said host cell.
- 28. A method of producing a protein that has an activity of regulating the pH of vacuoles, said method comprising culturing or growing the host cell according to claim 20 and then harvesting said protein from said host cell.

- 29. A method of producing a protein that has an activity of regulating the pH of vacuoles, said method comprising culturing or growing the host cell according to claim 21 and then harvesting said protein from said host cell.
- 30. A method of producing a protein that has an activity of regulating the pH of vacuoles, said method comprising culturing or growing the host cell according to claim 22 and then harvesting said protein from said host cell.
- 31. A plant in which the gene according to claim 2 has been introduced or a progeny thereof having the same property as said plant, or a tissue thereof.
- 32. A plant in which the gene according to claim 3 has been introduced or a progeny thereof having the same property as said plant, or a tissue thereof.
- 33. A plant in which the gene according to claim 5 has been introduced or a progeny thereof having the same property as said plant, or a tissue thereof.
- 34. A plant in which the gene according to claim 6 has been introduced or a progeny thereof having the same property as said plant, or a tissue thereof.
- 35. A cut flower of the plant according to claim 31 or a progeny thereof having the same property as said plant.
- 36. A cut flower of the plant according to claim 32 or a progeny thereof having the same property as said plant.
- 37. A cut flower of the plant according to claim 33 or a progeny thereof having the same property as said plant.

- 38. A cut flower of the plant according to claim 34 or a progeny thereof having the same property as said plant.
- 39. A method of regulating the pH of vacuoles comprising introducing the gene according to claim 2 into a plant or plant cells and then allowing said gene to be expressed in said plant or plant cells.
- 40. A method of regulating the pH of vacuoles comprising introducing the gene according to claim 3 into a plant or plant cells and then allowing said gene to be expressed in said plant or plant cells.
- 41. A method of regulating the pH of vacuoles comprising introducing the gene according to claim 5 into a plant or plant cells and then allowing said gene to be expressed in said plant or plant cells.
- 42. A method of regulating the pH of vacuoles comprising introducing the gene according to claim 6 into a plant or plant cells and then allowing said gene to be expressed in said plant or plant cells.
- 43. A method of controlling the flower color of a plant comprising introducing the gene according to claim 2 into a plant or plant cells and then allowing said gene to be expressed in said plant or plant cells.
- 44. A method of controlling the flower color of a plant comprising introducing the gene according to claim 3 into a plant or plant cells and then allowing said gene to be expressed in said plant or plant cells.

- 45. A method of controlling the flower color of a plant comprising introducing the gene according to claim 5 into a plant or plant cells and then allowing said gene to be expressed in said plant or plant cells.
- 46. A method of controlling the flower color of a plant comprising introducing the gene according to claim 6 into a plant or plant cells and then allowing said gene to be expressed in said plant or plant cells.
- 47. A method of controlling the flower color of a plant comprising suppressing expression of the gene according to claim 1 in a plant or plant cells.
- 48. A method of controlling the flower color of a plant comprising suppressing expression of the gene according to claim 2 in a plant or plant cells.
- 49. A method of controlling the flower color of a plant comprising suppressing expression of the gene according to claim 3 in a plant or plant cells.
- 50. A method of controlling the flower color of a plant comprising suppressing expression of the gene according to claim 5 in a plant or plant cells.
- 51. A method of controlling the flower color of a plant comprising suppressing expression of the gene according to claim 6 in a plant or plant cells.—

REMARKS

Prior to examination, entry of the foregoing is respectfully requested.

Claims 7, 9, and 11-14 have been amended simply to delete multiple dependencies in the claims and correct claim dependencies. Minor amendments relating to matters of form only have also been made.

New claims 15-51 have been added, directed to preferred embodiments of the invention in view of the deletion of multiple dependent claims. Support for these additional claims may be found at the very least in original claims 1-14 and at page 19, lines 12-24. No new matter has been added.

In the event that there are any questions relating to this Preliminary Amendment, or to the application in general, it would be appreciated if the Examiner would telephone the undersigned attorney at (508) 339-3684 concerning such questions so that prosecution of this application may be expedited.

Early and favorable action in the form of a Notice of Allowance is respectfully requested and believed to be in order.

Respectfully submitted,

Donna M. Meuth

Registration No. 36,607

BURNS, DOANE, SWECKER & MATHIS, L.L.P.

P.O. Box 1404 Alexandria, Virginia 22313-1404

(703) 836-6620

Date: April 24, 2001

(11/00)

Attachment to Preliminary Amendment dated April 24, 2001

Marked-up Copy

Page 5, Paragraph Beginning at Line 15

The present invention also provides a plant in which said gene or said vector has been introduced or [an] a progeny thereof having the same property as said plant, or a tissue thereof.

Attachment to Preliminary Amendment dated April 24, 2001

Marked-up Copy

Page 5, Paragraph Beginning at Line 19

The present invention also provides a cut flower of the above plant or [an] \underline{a} progeny thereof.

Attachment to Preliminary Amendment dated April 24, 2001

Marked-up Claims 7, 9, and 11-14

- (Amended) A vector comprising the gene according to <u>claim 1</u> [any one of the claims 1 to 6].
- (Amended) A protein encoded by the gene according to <u>claim 1</u> [any one of claims 1 to 6].
- 11. (Amended) A plant in which the gene according to claim 1 [any one of claims 1 to 6 or the vector according to claim 7] has been introduced or a [an] progeny thereof having the same property as said plant, or a tissue thereof.
- 12. (Amended) A cut flower of the plant according to claim 11 or a [an] progeny thereof having the same property as said plant.
- 13. (Amended) A method of regulating the pH of vacuoles comprising introducing the gene according to <u>claim 1</u> [any one of claims 1 to 6 or the vector according to claim 7] into a plant or plant cells and then allowing said gene to be expressed <u>in said</u> plant or plant cells.
- 14. (Amended) A method of controlling the flower color of a plant [plants] comprising introducing the gene according to claim 1 [any one of claims 1 to 6 or the vector according to claim 7] into a plant or plant cells and then allowing said gene to be expressed in said plant or plant cells.

JC18 Rec'd PCT/PTO 2 4 APR 2001 STY-H794

15

20

25

3.0

35

- 1 -

DESCRIPTION

GENES ENCODING PROTEINS REGULATING THE PH OF VACUOLES

5 Technical Field

The present invention relates to genes encoding proteins that regulate the pH of vacuoles, and the uses thereof.

10 Background Art

In the flower industry, the development of novel or varied cultivars of flowering plants is important, and flower color is one of the most important traits of flowers. Although cultivars of various colors have been bred using conventional breeding by crossing, it is rare that a single plant species has cultivars of all colors. Thus, there is a need for the development of cultivars having a variety of colors.

The main components of flower color are a group of flavonoid compounds termed anthocyanins. It is known that a variety of anthocyanins occur in plants, and the structure of many of them have already been determined. The color of anthocyanins depends partly on their structures. Progress has been made in the study on the enzymes and genes involved in the biosynthesis of anthocyanins, and in some studies molecular biological techniques and gene introductions into plants were used to change the structure of anthocyanins, leading to changes in the color of flowers (Holton and Cornish, Plant Cell, 7:1071 (1995); Tanaka et al., Plant Cell Physiol. 39:1119 (1998)). The color of anthocyanins also depends on the pH of the aqueous solution, and the same anthocyanin may appear blue when the pH of the aqueous solution is neutral to weakly alkaline (Saito and Honda, Genda Kadaku (Chemistry Today), May 1998, pp. 25).

It is also known that since anthocyanins are present in the vacuole of the cell, the pH of vacuoles has a

10

15

20

25

30

35

great impact on the color of flowers (Holton and Cornish, Plant Cell, 7 (1995); Mol et al., Trends Plant Sci. 3:212 (1998)). For example, in morning glory (Ipomea tricolor), it is known that the reason why red-purple buds bloom into blue flowers is that the pH of vacuoles in petal epithelium rises from 6.6 to 7.7 (Yoshida et al., Nature 373:291 (1995)).

It is thought that the vacuole of plant cells is regulated by vacuolar proton-transporting ATPase and vacuolar proton-transporting pyrophosphatase (Leigh et al., The Plant Vacuole (1997), Academic Press), but the mechanism of how these proton pumps are involved in the color of flowers has not been elucidated. It was also known that a sodium ion-proton antiporter (hereinafter referred to as Na⁺-H⁺ antiporter) exits in plant vacuoles and that the Na⁺-H⁺ antiporter transports sodium ions into vacuoles, depending on the proton concentration gradient between the outside and the inside of vacuoles, whereupon protons are transported outside of vacuoles resulting a reduced proton concentration gradient.

Furthermore, the Na⁺-H⁺ antiporter is thought to be a protein with a molecular weight of about 170,000. However, there are many unknown factors involved in the regulation of pH of vacuoles, and the mechanism of regulating the pH of vacuoles, in particular the petal vacuoles, is uncertain (Leigh et al., The Plant Vacuole (1997), Academic Press). The pH of plant vacuoles has never been artificially raised, nor have any industrially useful traits been obtained, and its association with flower color is unknown.

It is known that the Na*-H* antiporter gene, with a molecular weight of about 70,000, has been cloned from Arabidopsis, and a yeast into which this gene was introduced has acquired salt tolerance (Gaxiola et al., Proc. Natl. Acad. Sci. USA 96:1480-1485 (1999)), but it is not known how this antiporter regulates the pH of vacuoles in plant cells or how it is associated with

TOURSE OF THE STA

10

15

20

25

flower color.

On the other hand, in petunias, seven loci are known to be involved in the pH regulation of petal vacuoles, and it has been proposed that the pH of petal vacuoles increases when one of them turns homozygously recessive (van Houwelingen et al., Plant J. 13:39 (1998); Mol et al., Trends Plant Sci. 3:212 (1998)). One of them, Ph6, has already been cloned and was found to be a kind of transcription regulating factor (Chuck et al., Plant Cell 5:371 (1993)), but the actual biochemical mechanism involved in the pH regulation of vacuoles is unknown.

In morning glory (Ipomea nil), the analysis of mutants revealed that a number of loci are associated with the color and shape of leaves and flowers and that 19 of them are highly mutable (Iida et al., Shokubutsu Saibo Koqaku Series (Plant Cell Engineering Series) 5 (1996) pp. 132, Shujunsha; Iida et al., Annal. New York Acad. Sci. (1999) pp. 870). Among them, the one locus defined by the recessive mutation that results in purple flowers instead of blue flowers is termed the Purple locus (T. Hagiwara, The genetics of flower colours in Phrarbitis nil. J. Coll. Agr. Imp. Univ. Tokyo 51:241-262 (1931); Y. Imai, Analysis of flower colour in Pharbitis nil. J. Genet. 24:203-224 (1931)), and one allele of mutable mutation that results in flowers that produce blue sectors in purple petals was termed purple-mutable (pr-m) (Imai, J. Coll. Agric. Imp. Univ. Tokyo 12:479 (1934)). The gene derived from the Purple locus is termed Purple gene.

The blue portion is believed to be derived from somatic reverse mutation from the recessive purple, and germ cell revertants can also be separated. An allele produced from the reverse mutation of these revertants are termed herein Purple-revertant (Pr-r). Such a classical method of genetic analysis had been performed on this Purple gene, but the identity of the Purple gene and its association etc. with the pH regulation of petal

30

vacuoles were totally unknown.

It is believed that if the pH of vacuoles could be modified, for example if the pH of vacuoles could be raised, flower color could be turned blue.

Representative plant species that lack blue colors include roses, chrysanthemums, carnations, gerberas and the like, which are very important cut flowers. Though the importance of modifying pH of vacuoles has been recognized, the identities of proteins that regulate the pH of petal vacuoles are unknown and therefore the isolation of genes encoding them has been in great demand.

Disclosure of the Invention

The present invention provides a gene of a protein that regulates the pH of vacuoles in plant cells, preferably a gene of a protein that transports protons in vacuoles, more preferably a Na^+-H^+ antiporter gene. By introducing the gene of the present invention into a plant and allowing it to be expressed, flower color can be controlled and, preferably, can be turned blue.

Thus, the present invention provides a gene encoding a protein that regulates the pH of vacuoles. This gene is, preferably, a gene encoding a Na*-H* antiporter, for example a gene encoding a protein that has the amino acid sequence as set forth in SEQ ID NO: 2, or a gene encoding a protein that has an amino acid sequence modified by the addition or deletion of one or a plurality of amino acids and/or substitution with other amino acids in the amino acid sequence as set forth in SEO ID NO: 2 and that has an activity of regulating the pH of vacuoles; a gene encoding a protein that has an amino acid sequence having a identity of 20% or more with the amino acid sequence as set forth in SEQ ID NO: 2 and that has an activity of regulating the pH of vacuoles; or, a gene that hybridizes to part or all of a nucleic acid having a nucleotide sequence encoding the amino acid sequence as set forth in

25

3.0

35

10

15

10

15

20

25

35

SEQ ID NO: 2 under a stringent condition, and that encodes a protein having an activity of regulating the pH of vacuoles.

The present invention also provides a vector comprising the above gene.

The present invention also provides a host cell transformed with the above vector.

The present invention also provides a protein encoded by the above gene.

The present invention further provides a method of producing a protein that has an activity of regulating the pH of vacuoles, said method comprising culturing or growing the above host cell and then harvesting said protein from said host cell .

The present invention also provides a plant in which said gene or said vector has been introduced or an progeny thereof having the same property as said plant, or a tissue thereof.

The present invention also provides a cut flower of the above plant or an progeny thereof.

The present invention further provides a method of regulating the pH of vacuoles comprising introducing the above gene or the above vector into a plant or plant cells and then allowing it to be expressed.

The present invention further provides a method of controlling the flower color of plants comprising introducing the above gene or the above vector into a plant or plant cells and then allowing said gene to be expressed.

30

Brief Explanation of the Drawings

Fig. 1 is a drawing showing the structure of plasmid $\ensuremath{\mathsf{pSPB607}}.$

Fig. 2 is a drawing showing the structure of plasmid $\ensuremath{\mathsf{pSPB608}}\xspace.$

Fig. 3 is a drawing showing the structure of plasmid pINA145.

Fig. 4 is a drawing showing the structure of plasmid pINA147.

Best Mode for Carrying Out the Invention

The color of the petal of morning glory is blue when the locus Purple is dominant, and the blue petal turns purple when it is homozygously recessive. It is clear that the locus is associated with flower color but the mechanism thereof is unknown.

First, the chemical analysis of the pigments in the petal of the pr-m mutant and a revertant thereof detected no difference in the composition of the pigments. The change in flower color of the blue-colored morning glory from the reddish purple buds to the blue flowers accompanied by flowering is believed, as mentioned above, to be caused by pH changes in the vacuole of petal cells.

In the pr-m mutant, flowering is not associated with a color change to blue, and the pH of vacuoles of petal cells of flowers that bloomed was lower in the pr-m mutant than in Pr-r. Thus, the Purple gene is considered to be a gene that regulates the pH of vacuoles of petal cells during flowering and thereby controls flower color. Accordingly, using a pr-m mutant, and a revertant thereof, by the transposon display method, fragments of genomic DNA containing the Purple gene sequence specifically present in pr-m were identified and then the Purple gene was identified. Surprisingly, the Purple gene thus obtained had a homology with the Na*-H* antiporter from Arabidopsis etc., and, in the pr-m mutation, a transposon had been inserted in the 5'-untranslated region the Purple gene.

As the gene of the present invention, there can be mentioned, for example, one that encodes the amino acid sequence as set forth in SEQ ID NO: 2. It is known, however, that proteins having an amino acid sequence modified by the addition or deletion of one or a plurality of amino acids and/or substitution with other

5

10

20

30

35

THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON

10

15

20

25

30

35

amino acids also retain an activity equal to that of the original protein. Thus in accordance with the present invention, a protein that has an amino acid sequence modified by the addition or deletion of one or a plurality of amino acids and/or substitution with other amino acids in the amino acid sequence as set forth in SEQ ID NO: 2, and a gene encoding said protein, are encompassed in the present invention as long as the protein is a protein that has an activity of regulating the pH of vacuoles.

The present invention also relates to a gene that hybridizes to the nucleotide sequence as set forth in SEQ ID NO: 1, a nucleotide sequence encoding the amino acid sequence as set forth in SEQ ID NO: 2, or a nucleotide sequence encoding part of these nucleotide sequences at a stringent condition, for example at 5 x SSC and 50°C, and that encodes a protein having an activity of regulating the pH of vacuoles. As used herein, a suitable hybridization temperature varies with the nucleotide sequence and the length of the nucleotide sequence, and when, for example, a DNA fragment comprising 18 bases encoding 6 amino acids is used as a probe, a temperature of 50°C or lower is preferred.

Genes selected, based on such hybridization, include those obtained from nature, for example from plants such as petunia and torenia, but a gene derived from sources other than plants may be used. Genes selected based on hybridization may be cDNA or genomic DNA.

The Na'-H' antiporter genes form a superfamily (Debrov et al., FEBS Lett. 424:1 (1998)), and have an amino acid homology of 20% or more (Orlowski et al., J. Biol. Chem. 272:22373 (1997)).

Thus, the present invention relates to a gene encoding a protein that has an amino acid sequence with a homology of about 20% or more, preferably 50% or more, for example 60% or 70% or more, and that has an activity of regulating the pH of vacuoles.

THOUSE WE WAS A PROPERTY

5

10

15

2.0

25

3.0

35

A gene having an intact nucleotide sequence is obtained, as specifically illustrated in Examples, by, for example, screening cDNA libraries. DNA encoding a protein having a modified amino acid sequence can be synthesized by commonly used site-directed mutagenesis or the PCR method based on DNA having an intact nucleotide sequence. For example, a DNA fragment that is to be modified may be obtained by restriction enzyme treatment of the intact cDNA or genomic DNA, which is used as a template in the site-directed mutagenesis, or by the PCR method using primers in which desired mutation has been introduced to obtain a DNA fragment in which the desired modification has been introduced. Thereafter, the mutated DNA fragment may be ligated to a DNA fragment encoding another portion of the enzyme of interest.

Alternatively, in order to obtain DNA encoding a protein comprising a shortened amino acid sequence, an amino acid sequence longer than the amino acid sequence of interest, for example, DNA encoding the full-length amino acid sequence, may be cleaved with a desired restriction enzyme, and when the resultant DNA fragment was found not to encode the entire amino acid sequence of interest, a DNA fragment comprising the sequence of the lacking portion may be synthesized and ligated thereto.

The present invention is not limited to a gene encoding a protein that has an activity of regulating the pH of vacuoles derived from morning glory, but the sources may be plants, animals, or microorganisms, and all they need is to have a topology that pumps protons out of the vacuole.

By expressing the obtained gene using a gene expression system in Escherichia coli or yeast and determining the activity, it can be confirmed that the gene obtained encodes a protein that has an activity of regulating the pH of vacuoles. Furthermore, by expressing said gene, a protein, the gene product, having an activity of regulating the pH of vacuoles can be

THE RESIDENCE THE SAME AS A SAME WHEN AND ANY AND ANY AND ANY AND ANY

obtained. Alternatively, a protein can also be obtained that has an activity of regulating the pH of vacuoles using an antibody against the amino acid sequence as set forth in SEQ ID NO: 2, and a protein that has an activity of regulating the pH of vacuoles derived from other organisms can be cloned using an antibody.

Thus, the present invention also relates to a recombinant vector comprising the above-mentioned gene, specifically an expression vector, and a host cell transformed with said vector. As a host, there can be used a prokaryotic or eukaryotic organism. As a prokaryotic organism, for example, there can be used such a common host as a bacterium belonging to the genus Escherichia such as Escherichia coli, a bacterium belonging to the genus Bacillus such as Bacillus subtilis, and the like. As a eukaryotic host, there can be used a lower eukaryotic organism, for example an eukaryotic microorganism such as a fungus, a yeast or a mold.

As yeast, there can be mentioned a microorganism belonging to the genus Saccharomyces such as Saccharomyces cerevisiae, and as a mold, there can be mentioned a microorganism belonging to the genus Aspergillus such as Aspergillus oryzae and Aspergillus niger, and a microorganism belonging to the genus Penicillium. Furthermore, animal cells or plant cells can be used: as animal cells, there can be used cell lines derived from mouse, hamster, monkey, human and the like. Insect cells such as silkworm cells or adult silkworms per se can also be used as hosts.

The vectors of the present invention may contain expression regulatory regions such as a promoter, a terminator, an origin of replication, and the like, depending on the type of the host into which said vector is to be introduced. As promoters for bacterial expression vectors, there can be used commonly used promoters such as trc promoter, tac promoter, lac

14

5

1.0

15

25

20

30

DOOTED BLEET

5

10

15

2.0

25

30

35

promoter, and the like; as promoters for yeasts, there can be used the glyceraldehyde-3-phosphate dehydrogenase promoter, PHO5 promoter, and the like; and as mold promoters, there can be used amylase promoter, trpC promoter, and the like.

As promoters for animal cell hosts, there can be used viral promoters such as SV40 early promoter, SV40 late promoter, and the like. The construction of expression vectors may be performed according to conventional methods using restriction enzymes, ligase, etc. The transformation of host cells can also be performed according to conventional methods.

Host cells transformed with the above expression vectors may be cultured, cultivated or bred, and from the culture the desired protein can be recovered and purified according to conventional methods such as filtration, centrifugation, cell disruption, gel filtration chromatography, ion exchange chromatography, and the like.

The present invention also relates to a plant or its progenies or tissues thereof of which hue of color has been controlled by introducing a gene encoding a protein that has an activity of regulating the pH of the vacuoles, specifically a Na⁺-H⁺ antiporter gene. They may be cut flowers in shape. Using a gene encoding a protein that has an activity of regulating the pH of vacuoles obtained by the present invention, the pumping of proton into the cytoplasm from the vacuole and the pumping of sodium ion into the vacuole can be performed, so that anthocyanins accumulated in the vacuole can be turned blue and, as a result, the flower color can be turned blue.

It is also possible to lower the pH of vacuoles by suppressing the expression of the gene of the present invention. With the state-of-the-art technology, it is possible to introduce a gene into plants, and allow the gene to be expressed in a constitutive or tissue-specific

1.0

15

20

25

30

35

manner, and also to suppress the expression of the gene of interest by the antisense method or the co-suppression method.

Examples of plants that can be transformed include, but not limited to, roses, chrysanthemums, carnations, snapdragons, cyclamens, orchids, lisianthus, freesias, gerberas, gladioluses, gypsophilas, kalanchoes, lilies, pelargoniumas, geraniums, petunias, torenias, tulips, rice, barley, whieat, rapeseeds, potatoes, tomatoes, poplars, bananas, eucalyptuses, sweet potatoes, soy beans, alfalfas, lupins, corns, and the like.

Examples

The present invention will now be explained in further details with reference to the following Examples. Molecular biological techniques used were performed according to Molecular Cloning (Sambrook et al., 1989), unless otherwise specified.

Example 1. Obtaining a germ cell revertant

Obtaining a germ cell revertant has already been reported (Iida et al., Shokubutsu Saibo Kogaku Series (Plant Cell Engineering Series) 5 (1996) pp. 132, Shujunsha; Iida et al., Annal. New York Acad. Sci. (1999) pp. 870; Inagaki et al., Plant Cell, 6:375 (1994); Inagaki et al., Theor. Appl. Genet. 92:499 (1996)).

Morning glory having the genotype (Pr-r/pr-m) (Iida et al., pp. 870; Inagaki et al., Plant Cell, 6:375 (1994); Inagaki et al., Theor. Appl. Genet. 92:499 (1996)) was subjected to self-fertilization and the seeds of the progeny were planted. The flowers of the self-fertilized progeny were observed to select individuals that bloom with blue flowers by back mutation. Furthermore, in this self-fertilized progeny of the germ cell revertant, it was proved whether it is homozygous or heterozygous based on whether or not isolates that bloom with purple flowers can be obtained. Those having the genotype (Pr-r/Pr-r) and (pr-m/pr-m) were selected.

Example 2. Anthocyanins in the petals of revertants

Anthocyanins contained in morning glory are mainly heavenly blue anthocyanin and several other anthocyanins (Lu et al., Phytochemistry 31:659 (1992)). When the open petals of the Pr-r/Pr-r strain and the pr-m/pr-m strain obtained in Example 1 were similarly analyzed, the anthocyanins contained in both of them were almost identical.

A cellophane tape was stuck to the front side of a petal and then peeled off to recover one layer of epithelium, from which the cell liquid was scraped with a scalpel etc., which was then centrifuged to obtain juice. The pH of the juice was measured using the Horiba B212 pH meter (Horiba Seisakusho). pH of the petal epithelium of the Pr-r/Pr-r strain was about 7.1 whereas that of the pr-m/pr-m strain was about 6.5. This result indicates that the change in flower color by mutation of purple was not due to the structure of anthocyanins but to the change of vacuolar pH.

Example 3. Isolation of a genome fragment specifically present in pr-m

For the isolation of a gene, the transposon display method (Frey et al., Plant J. 13:717 (1998); Van den Broeck et al., Plant J. 13:121 (1998)) or a similar method (Dosho et al., Shokubutsu Saibo Kogaku Series (Plant Cell Engineering Series) 7 (1997) pp. 144, Shujunsha) was used to search for DNA bands that were present in the pr-m/pr-m strain and the Pr-w/pr-m strain but not in the Pr-r/Pr-r strain or in the wild strain. Since Tpnl-related transposon is thought to be mainly associated with mutability in morning glory, special note was given to the Tpnl-related transposon.

Specifically, chromosomal DNA was extracted from the pr-m/pr-m strain, and 125 ng of it was digested with MseI in 20 μ l. To the digested DNA was added 80 pmole of MseI adaptor (obtained by annealing 5'-GACGATGAGTCCTGAG-3' (SEQ ID NO: 3) and 5'-TACTCAGGACTCAT-3' (SEQ ID NO: 4))

700 15

5

10

25

20

30

TIODIAND BULLINA

in 25 μ l at 20°C for 2 hours. After keeping it at 75°C for 10 minutes, it was stored at -20°C. After diluting this ten-fold, 2 μ l was used as a template, which was PCR-amplified using 4.8 pmole of TIR primer (5'-TGTGCATTTTCTTGTAGTG-3' (SEQ ID NO: 5), this includes the inverted terminal repeat of the transposon Tpn1) and 4.8 pmole of MseI primer (5'-GATGAGTCCTGAGTAA-3') (SEQ ID NO: 6) in 20 μ l.

PCR was performed with Taq polymerase (Takara Shuzo) for 20 cycles with one cycle comprising 94°C for 0.5 minute, 56°C for 1 minute, and 72°C for 1 minute, and the volume was diluted ten-fold. Two µl of it was used as a template in a PCR using 4.8 pmole of TIR+N primer (5'-TGTGCATTTTCTTGTAGN-3' (SEQ ID NO: 7) N=A, C, G or T. Four different species were synthesized instead of a mixture) and 4.8 pmole of MseI+N primer (5'-GATGAGTCCTGAGTAAN-3' (SEQ ID NO: 8) N=A, C, G or T. Four different species were synthesized instead of a mixture. The 5'-end was labeled with fluorescein (using Amersham Pharmacia Biotek, Vistra fluorescence 5'-oligo labeling kit)) in 20 µl.

Reactions were performed for combinations of primers to a total of 16 reactions. PCR was performed for 13 cycles with one cycle comprising 94°C for 0.5 minute, 65°C (with a decrement of 0.7°C for each cycle) for 1 minute, and 72°C for 1 minute, and further for 13 cycles with one cycle comprising 94°C for 0.5 minute, 56°C for 1 minute, and 72°C for 1 minute. A similar procedure was performed for chromosomal DNA obtained from the Pr-r/Pr-r strain, subjected to electrophoresis using a sequence gel of the DNA Sequencer 377 (PE Biosystems Japan), and the bands were detected using FMBIOII (Takara Shuzo).

When bands derived from the Pr-r/Pr-r strain and the pr-m/pr-m strain were compared, an about 130 bp DNA fragment was specifically expressed in the strain having

10

5

30

35

1.0

15

20

25

pr-m. The 130 bp DNA fragment was recovered, and amplified by PCR (for 30 cycles with one cycle comprising 94°C for 0.5 minute, 56°C for 1 minute, and 72°C for 1 minute) using 20 pmole TIR primer and 20 pmole MseI primer, which was then subcloned into the pGEM-T vector (Promega Corporation), and then the nucleotide sequence was determined. The sequence was

5'-TGAGCATTTTCTTGTAGTG CTGAGATTTTCCTCCATTTGTCTGAAGCTCTTCAACCC
TACCCCCAGATCTCACCTTTCAAG GTCCAATCTTTATCATTCATCT TTACTCAGGACTCATCGTC-3'

(SEQ ID NO: 9) (the single-underlined portion corresponds to a used primer, the double-underlined portion corresponds to an exon, and the rest corresponds to an intron). After the sequence as set forth in SEQ ID NO: 9 was used as a probe in Northern analysis, a transcription product of about 2.3 kb was found in the bud of morning glory having Pr-r, but a corresponding transcription product was not found in the pr-m/pr-m strain. Thus, it can be seen that this 2.3 kb transcription product corresponds to the Purple gene.

Example 4. Isolation of cDNA

About 6 million clones of a cDNA library (Inagaki et al., Plant Cell 6:375 (1994)) derived from the wild strain morning glory (Pr-w/Pr-w) were screened using the 130 bp DNA fragment as a probe, with a result that two positive clones were obtained. One of these clones had a 2237 bp cDNA, among which a 1626 bp-long open reading frame was observed (SEQ ID NO: 1). The predicted amino acid sequence had an identity of 29.3% and 73.4% with the Na'-H' antiporter of yeast and Arabidopsis, respectively (Nhx1 and AtNhx1, respectively, Gaxiola et al., Proc. Natl. Acad. Sci. USA 96:1480-1485 (1999)).

The result revealed that the Purple gene of morning glory encodes a Na'-H' antiporter. Incidentally, although the Na'-H' antiporter obtained from Arabidopsis is attracting attention as a protein that gives salt resistance to yeast, this is the first time that an association of the Na'-H' antiporter with flower color

35

10

1.5

25

30

35

was observed.

Example 5. Complementation experiment of yeast Na*-H* antiporter

The predicted amino acid sequence encoded by the Purple gene of morning glory has a homology with those of the Na^{*}-H^{*} antiporters of yeast and Arabidopsis. Thus, in order to confirm whether the Purple gene product of morning glory can function as a Na^{*}-H^{*} antiporter protein, a complementation experiment was performed using a yeast Na^{*}-H^{*} antiporter mutant.

First, the following two DNA fragments were synthesized:

CBSC1-Linker (22 mer) 5'-CGA TAG ATC TGG GGG TCG ACA T-3' (SEQ ID NO: 12)

CSBD2-Linker (22 mer) 5'-CGA TGT CGA CCC CCA GAT CTA T-3' (SEQ ID NO: 13)

From these two fragments, a linker having

restriction enzyme sites ClaI-BglII-SalI-ClaI is formed. A plasmid pINA145 (Fig. 3) was constructed by inserting the above linker according to a standard method into the ClaI site of the pYES2 vector (Invitrogen Corporation) so that the BqlII site is located at the URA3 gene side. A plasmid pINA147 (Fig. 4) was constructed by ligating a 2 kb DNA fragment obtained by digesting plasmid pJJ250 (Jones and Prakash, Yeast 6:363-366 (1990)) with BamHI and SalI to plasmid pINA145 digested with BglII and SalI. Plasmid pIAN151 was constructed by ligating Purple cDNA thereto under the control of the GAL 1 promoter of plasmid pINA147. pINA147 and pIAN151 were transformed respectively to the yeast R101 strain which is a mutant strain of the $\mathrm{Na}^{\scriptscriptstyle{+}}\mathrm{-H}^{\scriptscriptstyle{+}}$ antiporter. Due to the mutation of the Na+-H+ antiporter, the yeast R101 strain cannot grow on a 400 mM NaCl-added APG medium (Nass et al., J. Biol. Chem. 272:26145 (1997); Gaxiola et al., 96:1480-1485 (1999)). The pINA147-transformed R101 strain could not grow either, and only the pIAN151-transformed R101 strain

could grow on the 400 mM NaCl-added APG medium.

10

15

2.0

25

30

35

result has shown that the gene product of the morning glory Purple gene has the Na*-H* antiporter function.

Example 6. Construction of an expression vector in plants

With 10 ng of morning glory Purple cDNA as template, PCR was performed using synthetic primers PR-5 (5'-GGGATCCAACAAAATGGCTGTCGGG-3') (SEQ ID NO: 10) and PR-3 (5'-GGGTCGACTAAGCATCAAAACTAGAGCC-3') (SEQ ID NO: 11). The polymerase used was Taq polymerase (Toyoboseki), and the reaction was performed, after reaction at 95°C for 45 seconds, for 25 cycles with one cycle comprising 95°C for 45 seconds, 50°C for 45 seconds, and 72°C for 45 seconds, and then further reacted at 72°C for 10 minutes. An about 1.6 kb DNA fragment obtained was ligated to pCR2.1-Topo (Clontech) to make pCR-purple. It was confirmed that there were no errors due to PCR in the nucleotide sequence of Purple cDNA on this plasmid.

pBE2113-GUS (Mitsuhara et al., Plant Cell Physiol. 37:49 (1996)) was digested with SacI and blunt-ended. Then a XhoI linker (Toyoboseki) was inserted thereto, and the plasmid obtained was termed pBE2113-GUSX. This was digested with EcoRI and HindIII to obtain an about 2.7 kb DNA fragment, which was ligated to the HindIII and EcoRI digest of pBinPLUS, and the plasmid obtained was termed pBEXP.

On the other hand, an about 1.2 kb DNA fragment obtained by digesting pCGP484 (Kohyo (National Publication of Translated Version) No. 8-511683) with HindIII and XbaI, an about 1.6 kb DNA fragment obtained by digesting pCR-purple with XbaI and SalI, and an about 13 kb DNA fragment obtained by digesting pEEXP with HindIII and XhoI were ligated to obtain pSPB607 (Fig. 1). This plasmid is a binary vector for use in the Agrobacterium-mediated transformation of plants, and on this plasmid Purple cDNA is under the control of a chalcone synthase promoter derived from snapdragon and a nopaline synthase terminator derived from Agrobacterium.

30071433 CHERT

An about 0.8 kb DNA fragment obtained by digesting pCGP669 (Kohyo (National Publication of Translated Version) No. 8-511683) with HindIII and BamHI, an about 1.6 kb DNA fragment obtained by digesting pCR-purple with BamHI and SalI, and an about 13 kb DNA fragment obtained by digesting pBEXP with HindIII and XhoI were ligated to obtain pSPB608 (Fig. 2). This plasmid is a binary vector for use in the Agrobacterium-mediated transformation of plants, and on this plasmid Purple cDNA is under the control of a chalcone synthase promoter derived from petunia and a nopaline synthase terminator derived from Agrobacterium.

By transforming plants using the expression vectors thus obtained, the pH of vacuoles can be regulated and thereby flower color can be controlled. Example 7. Isolation of a homologs of the Purple gene

cDNA libraries derived from the petals of petunia (Petunia hybrida cv. Old Glory Blue), Nierembergia (Nierembergia hybrida cv. NB17), and Torenia (Torenia hybrida cv. Summerwave Blue) were each constructed using the cDNA synthesis kit (Stratagene, USA). The method of construction was as recommended by the manufacturer. About 200,000 clones each were screened according to a standard method. For washing the membrane, an aqueous solution of 5 \times SSC and 0.1% SDS was used and the incubation was performed three times at 50°C for 10 minutes. Among the positive clones obtained, the nucleotide sequence of the longest clone was determined for each clone. The nucleotide sequence of the clone of Petunia and the corresponding amino acid sequence are shown in SEQ ID NO: 14 and 15, the nucleotide sequence of the clone of Nierembergia and the corresponding amino acid sequence are shown in SEQ ID NO: 16 and 17, and the nucleotide sequence of the clone of Torenia and the corresponding amino acid sequence are shown in SEQ ID NO: 18 and 19. Homologs of the Purple gene of Petunia, Nierembergia, and Torenia had an identity on the amino

5

10

15

20

25

30

5

15

20

25

30

35

acid level of 75%, 76%, and 71%, respectively, with the morning glory Purple gene.

Since the amino acid sequence of the Na*-H* antiporter encoded by the morning glory Purple gene and that of the Na*-H* antiporter encoded by Arabidopsis AtNhx 1 are about 73% identical, the homologs of the Purple gene of Petunia, Nierembergia, and Torenia obtained are judged to encode the Na*-H* antiporter. Example 8. Isolation of the clone of morning glory

10 Purple chromosome

After chromosomal DNAs of a mutant morning glory (pr-m/pr-m) and a revertant morning glory (Pr-r/Pr-r) were cleaved with BglII, they were electrophoresed on a 0.8% agarose gel, and were subjected to genomic Southern analysis with cDNA of morning glory Purple as a probe. As a result, an about 7.5 kb band that was not present in the mutant morning glory was detected in the revertant morning glory.

After 50 µg of chromosomal DNA of the wild type morning glory (Pr-w/Pr-w, the KKZSK2 strain) was digested with BglII, it was electrophoresed on a 0.8% agarose gel. An about 7-9 kb fragmently was recovered, from which DNA was extracted using the GENECLEAN III KIT (B10101). This DNA was ligated to the \(\lambda\) Zap express vector (Stratagene, USA), which was screened with cDNA of morning glory Purple as a probe. The determination of nucleotide sequences of positive clones obtained revealed that, on this about 7.5 kb DNA fragment, there was a region from about 6.3 kb upstream of the Purple promoter to midway in exon 3. For this sequence, a sequence up to the initiation codon of the Purple gene is shown in SEQ ID NO: 20.

It has been demonstrated that the expression of the Purple gene is strongly induced only at about 24 hours before the flowering of morning glory, and that the expression of the Purple gene is suppressed by insertion

of a transposon into the 5'-untranslated region. From this, it is clear that the promoter region of the Purple gene obtained contains a factor needed for the expression of the Purple gene in a developmental stage-specific and organ-specific manner in the petals of morning glory. By placing the gene of interest downstream of this promoter region, the expression of the gene of interest can be regulated in a developmental stage-specific and organ-specific manner.

10 Industrial Applicability

The gene obtained in the present invention was found, for the first time, to be involved in controlling the pH of vacuoles and flower color. By expressing the gene of the present invention on the flower petals, the pH of vacuoles can be increased and thereby the flower color can be turned blue. Furthermore, by suppressing the expression of the gene of the present invention, the pH of vacuoles can be lowered and thereby flower color can be turned red. As the gene encoding a protein that regulates the pH of vacuoles, there can be used not only those derived from morning glory obtained in the present invention but also similar genes derived from other organisms.

THE PARTY OF THE PARTY OF THE PARTY.

5

15

15

20

25

CLAIMS

- 1. A gene encoding a protein that has an activity of regulating the pH of vacuoles in plant cells.
- 2. A gene encoding a protein that has the amino acid sequence as set forth in SEQ ID NO: 2 and that has an activity of regulating the pH of vacuoles in plant cells.
- 3. A gene encoding a protein that has an amino acid sequence modified by the addition or deletion of one or a plurality of amino acids and/or substitution with other amino acids in the amino acid sequence as set forth in SEQ ID NO: 2 and that has an activity of regulating the pH of vacuoles.
- 4. The gene according to claim 1 encoding a protein that has an amino acid sequence having a identity of 20% or more with the amino acid sequence as set forth in SEQ ID NO: 2 and that has an activity of regulating the pH of vacuoles.
- 5. The gene according to claim 1 encoding a protein that has an amino acid sequence having a identity of 70% or more with the amino acid sequence as set forth in SEQ ID NO: 2 and that has an activity of regulating the pH of vacuoles.
- 6. The gene according to claim 1 that hybridizes to a part or all of a nucleic acid having a nucleotide sequence encoding the amino acid sequence as set forth in SEQ ID NO: 2 under a stringent condition, and that encodes a protein having an activity of regulating the pH of vacuoles.
- 30 7. A vector comprising the gene according to any one of the claims 1 to 6.
 - 8. A host cell transformed with the vector according to claim 7.
- 9. A protein encoded by the gene according to any $\,$ one of the claims 1 to 6.
 - $10.\,\,$ A method of producing a protein that has an activity of regulating the pH of vacuoles, said method

comprising culturing or growing the host cell according to claim 8 and then harvesting said protein from said host cell.

- 11. A plant in which the gene according to any one of the claims 1 to 6 or the vector according to claim 7 has been introduced or an progeny thereof having the same property as said plant, or a tissue thereof.
- 12. A cut flower of the plant according to claim 11 or an progeny thereof having the same property as said plant.
- 13. A method of regulating the pH of vacuoles comprising introducing the gene according to any one of the claims 1 to 6 or the vector according to claim 7 into a plant or plant cells and then allowing said gene to be expressed.
- 14. A method of controlling the flower color of plants comprising introducing the gene according to any one of the claims 1 to 6 or the vector according to claim 7 into a plant or plant cells and then allowing said gene to be expressed.

THE PERSON AND ASSESSMENT OF THE PERSON OF T

5

10

15

Fig.3

Fig.4

f1 ori PGAL1 CYC1 TT pMB1 ori

SalI

URA3

January 1

URA3

January 1

Declaration and Power of Attorney For Patent Application

特許出願宣言書及び委任状

Japanese Language Declaration

日本語宣言書

下での氏名の発明者として、私は以下の通り宣言します。	As a below named inventor, I hereby decla: "hat:
私の住所、私杏布、国籍は下記の私の氏名の後に記載された通りです。	My residence, post office address and citizenship are as stated next to my name.
下記の名称の発明に関して請求範囲に記載され、特許出類 している発明内容について、私が最初かつ唯一の発明者(下 歌の氏名が一つの場合)もしくは最初かつ共同発明者である	I believe I am the original, first and sole inventor (if only one nar is listed below) or an original, first and joint inventor (if in names are listed below) of the subject matter which is claimed ar
と (下記の名称が複数の場合) 信じています。	for which a patent is sought on the invention entitled
	GENES ENCODING PROTEINS REGULATING
1 de 1	THE PH OF VACUOLES
ŧ.	
** : 記念明の明細古 (下記の欄でx印がついていない場合は、 本部に抵付) は、	the specification of which is attached hereto unless the followin box is checked:
	was filed on August 24, 2000
[↑] (接当する場合) に訂正されました。	as United States Application Number or PCT International Application Number PCT/JP00/05722 and was amended on (if applicable).
払は、特許請求範囲を含む上記訂正後の明細書を検討し、 内容を理解していることをここに表明します。	I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, a amended by any amendment referred to above.
私は、連邦規則法典第37編第1条56項に定義されると おり、特許資格の有無について重要な情報を開示する義務が あることを認めます。	I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations Section 1.56.
	1 of 4

п

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Japanese Language Declaration (日本語宣言書)

私は、米国独角党35個119条(a)-(d) 項又は365条 (b) 質に高き下記の、米国以外の国の少なくとも一ち四を指 定している行評拡力条約365(a) 質に蓋すく国際出額、 以は外国での特許出類もしくは契明/在級出版についての外国 歴光様をことに報子などとない。歴光様と呼ばている。 本出類の前に出額された行許または発明有版の外国出類を以 下に、枠内を一クラなるとで、売しています。

Prior Foreign Application(s)

-236800 (Pat Appln.)	Japan
(Number)	(Country)
(番号)	(国名)
(Number)	(Country)
(Number)	

私よ、第35編米国法典119条(e)項に基いて下記の米国特許出類規定に記載された権利をここに主任いたします。

貸 (Application No.) (Filing Date) (出版日)

14 私は、下記の米配接点第35編120条に並いて下記の米 随特許川順に記載された後刊。又は米固を指定している特許 協力条約365条(c)に基づく機利をここに主張します。 活、木川駅の各市本範囲の内容が米関地共第35編112条 第1項又は特別金条約で設定された方法で大行13米国 時代開示されていない疑り、その太行米国川観古規出日 場底で木川観舎の月末国内または特許協力条約国際提出日宝 での期間中に入手された、連邦接関が第37編1条56円 液養務があることを認義しています。

(Application No.) (Filing Date) (出版音号) (出版日)

(Application No.) (Filing Date) (出版音号) (出版目)

私は、私科会の知識に基小いて本宣言書中で私が行なう姿 野が真気であり、かつ起の入土して横準を私の作じるところ に基づく崇明が全て真実であると信じづいること、さらに故 窓になされた成体の姿明及びそれと同かの行為は上海医典第 18 相解 10 1条に基づき、形金または物際、もしくはこ の同方により起記されること、そしてそのような故意による 成体の声明を行なえば、出版した、又以既に許可された特別 の有効性が失われることを接張し、よってここに上記のごと く監督を敬します。 I hereby claim foreign priority under Tike 15, Unifed States Code, Section 115 (a)-(d) or 365(b) of any foreign application(s) for patent or inventors' certificate, or 365(a) of any PCT international application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT international application having a filing date before that of the application on which priority is claimed.

Priority Not Claimed

(出版年月日)

I hereby claim the benefit under Title 35, United States Code, Section 119(e) of any United States provisional application(s) listed below.

(Application No.) (Filing Date) (出類音号) (出類目)

i hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s), or 356(c) of any PCT International application designating the United States, listed below and, insolar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose Information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.58 which became available between the filling date of the prior application and the national or PCT International filling date of application.

(Status: Patented, Pending, Abandoned) (现況:特許許可簽、係属中、故棄簽)

> (Status: Patented, Pending, Abandoned) (現況: 特許許可濟、保属中、数案済)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that wilful faise statements and the like so made are punishable by fine or impaisonment, or both, under Section 1001 of Title 18 of the United States Code and that such wilfullir faise statements may jeopardize the validity of the application or any patent issued thereon.

PTO/SB/106 (6-96)
Approved for use through 9/30/98, OMB 0551-0032
Palent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Japanese Language Declaration (日本語宣言書)

委任状: 私は下記の発明者として、本出額に関する一切の 子続きを米特許商標局に対して遂行する弁理士または代理人 として、下記の者を指名いたします。(弁護士、または代理 人の氏名及び登録番号を明記のこと)

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith (list name and registration number)

Villiam L. Mathis 17,337 - teter H. Smolka 15,913 - tobert S. Sweeker 19,885 - talon N. Mandros 22,124 - tenon S. Duffett, Ir. 2,2030 - tesph R. Magnone 24,239 - toman H. Stepno 24,239 - tenor S. Duffett Jr. 2,2030 - tesph R. Magnone 10,200 - tesph R. Magnone 24,239 - tesph R. Magnone 24,239 - tesph R. Magnone 24,239 - tesph R. Magnone 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,	Robert G. Mukai George A. Hovance, Jr. James A. LaBarre E. Joseph Gess R. Danny Hunfington Eric H. Weisblatt James W. Peterson Tereas Stanek Rea Robert E. Krebs William C. Rowland T. Gene Dillahunty Patrick C. Keane Eruce J. Bogga, Jr.	28,531 28,223 28,632 28,510 27,903 30,505 26,657 30,427 25,885 30,888 25,423 32,858 32,344	William H. Benz Peter K. Skiff Richard J. McGrath Matthew L. Schneider Michael G. Savage Gerald F. Swiss Michael J. Ure Charles F. Wieland III Bruce T. Wieder Todd R. Walters	25,952 31,917 29,195 32,814 32,596 30,113 33,089 33,089 33,086 34,040
に 高頻磁化丸 位 は は に に に に に に に に に に に に に	Roi Bu	Correspondence to nald L. Grudziec RNS, DOANE, SW D. Box 1404 Exandria, Virgini	ki ECKER & MATHIS, L.L.P.	
- 			: (name and telephone number)	
10		Ronald L	. Grudziecki	
ore		at (703) 836-6620	
<u> </u>	20.000			
織一または第一発明者名		ame of sole or first inv geru Iida	entor I-W	
発明者の署名 日付		lor's signature	1 April 16.	2001
住所	Resid Oka	zaki-shi, A	CIVA	3
网接	Сніге	nship anese		
私古符		Office Address -1-3-21, Tat	sumi-minami,	
	Oka:	zaki-shi, Ai	lchi 444-0874, Japa	ın
第二共同発明者		ame of second joint in hiko Tanaka	ventor, If any	W
第二共同発明者 目付	Secon	nd inventor's signature 田中学子	April 16, 200	01
住所	Resid Oka	Mence nzaki-shi, A	ichi, Japan	λ
国格	cuze Jag	nship Danese		
私杏箱		office Address , Gohonmatsu	, Miai-cho, Okazak	i-shi,
	Aic	chi 444-0802	, Japan	

(第三以降の共同発明者についても同様に記載し、署名をす ること)

(Supply similar information and signature for third and subsequent joint inventors.)

ST

ST

第	三共同発明者		Full name of third joint inventor, Yoshishige Inagaki	if any U
第三	三共同発明者	日付	Third inventor's signature	Date 16, 2001
住	所		Residence Okazaki-shi, Aichi Japan	2 <u>V</u>
玉	籍	•	Citizenship Japanese	
私	書箱		Post Office Address Jonanhaitsu 105, 2, Miyashita, K	ugosaki-cho,
			Okazaki-shi, Aichi 444-0851, Jap	an
第四	9共同発明者		Full name of fourth joint inventor,	if any
第四	9共同発明者	日付	Fourth inventor's signature	Date
住	所		Residence	
围	籍		Citizenship	-
私書	學箱		Post Office Address	
第王	1共同発明者		Full name of fifth joint inventor, i	f any
第五	1共同発明者	日付	Fifth inventor's signature	Date
住	所		Residence	
国	籍		Citizenship	
私書	詳箱		Post Office Address	
第六	共同発明者		Full name of sixth joint inventor, i	fany
第六	共同発明者	日付	Sixth inventor's signature	Date
住	所		Residence	
国	籍		Citizenship	
私書	持箱	-	Post Office Address	
(90	1上川阪の井戸で	旧老ならいでも同せい	(0)	
記	載し、署名をする	明者についても同様に ること)	(Supply similar information and sig seventh and subsequent joint inven	nature for tors.)

Page 4 of 4

SEQUENCE LISTING

	<110	>	SU	INTOF	RY LI	MITE	D										
	<120	>		ene e acuol		ling	for	prot	eins	reç	rulat	ing	the	рн с	of		
	<130	 >	99	94020)												
	<160	>	20)													
	<210	 >	1														
	<211			237													
(<212	>	ומ	ΝA													
1	 <213	}>	I	ome	a nil	-											
11																	
100	<223	}>	N	ıcled	otide	sec	quenc	e of	E DNA	enc	odir	ng fo	or pr	ote:	in		
15			r	egula	ating	g the	Hq e	of v	zacuo	oles							
1	J																
10	<400)>	1														
4	,2															gagaca	60
-	gaga	aaca	aga i	aaaa	gagag	ga gt	cac	gtta	a tco	ctgag	gatt	ttcc	ctcca	att ·	tgtct	gaagc	120
6.	1															tcggg	180
•					-	-	-	-	-							agattt	240
				-												caaaa	299
	_				-			-				-	-	-	ttc		347
		Ala	Phe	Gly		Ser	Ser	Leu	Leu		Asn	Ser	Asp	Leu	Phe	Thr	
	1				. 5					10					15	-14	205
		-		-		-		-	-						ttg		395
	ser	Asp	HIS	Ala 20	ser	val	val	ser	Met 25	Asn	ьeu	Fue	val	A1a 30	Leu	ьeu	
	+ 00	~~~	+		a++	a++	~~~	an+		atc	an-c	a 2 c	22+		+ a a	a+a	443
			-											-	tgg Trp		447
	Cys	ATG	35	тте	val	ьeu	сту	40	пеп	Leu	GIU	GIU	45	Arg	111	val	
			33					40					40				

	gaa				-					_	-					491
Asn	Glu	Ser	Ile	Thr	Ala	Leu	Ile	Ile	Gly	Leu	Cys	Thr	Gly	Val	Val	
	50					55					60					
att	ttg	ctc	ctt	agc	gga	gga	aag	agt	tca	cat	ctt	ctc	gtc	ttt	agc	539
Ile	Leu	Leu	Leu	Ser	Gly	Gly	Lys	Ser	Ser	His	Leu	Leu	Val	Phe	Ser	
65					70					75					80	
gaa	gat	ctt	ttc	ttt	ata	tat	ctc	ctg	cca	cct	ata	ata	ttc	aat	gcg	587
Glu	Asp	Leu	Phe	Phe	Ile	Tyr	Leu	Leu	Pro	Pro	Ile	Ile	Phe	Asn	Ala	
				85					90					95		
ggg	ttt	caa	gtg	aaa	aag	aag	cag	ttt	ttc	gtg	aac	ttc	atg	aca	att	635
Gly	Phe	Gln	Val	Lys	Lys	Lys	Gln	Phe	Phe	Val	Asn	Phe	Met	Thr	Ile	
			100					105					110			
	ctg	ttt	gga	gct	att	ggc	aca	ctt	att	agc	tgt	tct	att	ata	tca	683
Met	Leu	Phe	Gly	Ala	Ile	Gly	Thr	Leu	Ile	Ser	Cys	Ser	Ile	Ile	Ser	
(C		115					120					125				
ttt	ggt	gcg	gtc	aaa	att	ttc	aag	cac	tta	gac	att	gac	ttt	ctg	gat	731
A Phe	Gly	Ala	Val	Lys	Ile	Phe	Lys	His	Leu	Asp	Ile	Asp	Phe	Leu	Asp	
14	130					135					140					
, ttt	gga	gat	tat	tta	gca	att	ggt	gcg	ata	ttt	gct	gca	acc	gat	tct	779
1 Phe	Gly	Asp	Tyr	Leu	Ala	Ile	Gly	Ala	Ile	Phe	Ala	Ala	Thr	Asp	Ser	
145					150					155					160	
# gtt	tgc	aca	ttg	cag	gtg	ctc	agt	cag	gat	gag	acg	ccc	cta	ctt	tac	827
Val	Cys	Thr	Leu	Gln	Val	Leu	Ser	Gln	Asp	Glu	Thr	Pro	Leu	Leu	Tyr	
3				165					170				175			
agt	ctc	gtg	ttt	gga	gaa	ggg	gtc	gtc	aat	gat	gct	aca	tct	gtg	gtc	875
Ser	Leu	Val	Phe	Gly	Glu	Gly	Val	Val	Asn	Asp	Ala	Thr	Ser	Val	Val	
			180				185						190			
ctt	ttt	aat	gct	att	caa	agt	ttt	gac	atg	act	agt	ttt	gat	cca	aaa	923
Leu	Phe	Asn	Ala	Ile	Gln	Ser	Phe	Asp	Met	Thr	Ser	Phe	Asp	Pro	Lys	
		195					200					205				
att	ggg	ctt	cat	ttc	att	gga	aac	ttc	ttg	tat	tta	ttt	ctc	tcg	agc	971
Ile	Gly	Leu	His	Phe	Ile	Gly	Asn	Phe	Leu	Tyr	Leu	Phe	Leu	Ser	Ser	
	210					215					220					
act	ttt	ttg	ggc	gtg	gga	att	gga	ctg	ctt	tgt	gct	tat	att	atc	aaa	1019
Thr	Phe	Leu	Gly	Val	Gly	Ile	Gly	Leu	Leu	Cys	Ala	Tyr	Ile	Ile	Lys	
225					230					235					240	

aag	cta	tac	ttt	ggc	agg	cac	tca	acc	gat	cgt	gag	gtt	gcc	ctt	atg	1067
Lys	Leu	Tyr	Phe	Gly	Arg	His	Ser	Thr	Asp	Arg	Glu	Val	Ala	Leu	Met	
				245					250					255		
atg	ctc	atg	tct	tac	ttg	tct	tat	ata	atg	gcc	gag	tta	ttc	tat	cta	1115
Met	Leu	Met	Ser	Tyr	Leu	Ser	Tyr	Ile	Met	Ala	Glu	Leu	Phe	Tyr	Leu	
			260					265					270			
agc	ggc	ata	ctt	act	gta	ttc	ttc	tgt	gga	att	gtc	atg	tct	cat	tat	1163
Ser	Gly	Ile	Leu	Thr	Val	Phe	Phe	Cys	Gly	Ile	Val	Met	Ser	His	Tyr	
		275					280					285				
acc	tgg	cac	aat	gtt	acc	gag	agc	tca	agg	gtc	act	act	agg	cat	tcc	1211
Thr	${\tt Trp}$	His	Asn	Val	Thr	${\tt Glu}$	Ser	Ser	Arg	Val	Thr	Thr	Arg	His	Ser	
	290					295					300					
ttt	gca	act	ctg	tca	ttt	gtc	gca	gag	aca	ttt	atc	ttc	ctc	tat	gtt	1259
Phe	Ala	Thr	Leu	Ser	Phe	Val	Ala	Glu	Thr	Phe	Ile	Phe	Leu	Tyr	Val	
្នី305					310					315					320	
Ųggt	atg	gat	gcc	ttg	gat	atc	gag	aaa	tgg	aaa	ttt	gtg	aaa	aat	agt	1307
Gly	Met	Asp	Ala	Leu	Asp	Ile	Glu	Lys	Trp	Lys	Phe	Val	Lys	Asn	Ser	
Ų				325					330					335		
cag	gga	cta	tca	gtt	gca	gtg	agc	tca	ata	ttg	gta	ggc	cta	atc	tta	1355
Gln	Gly	Leu	Ser	Val	Ala	Val	Ser	Ser	Ile	Leu	Val	Gly	Leu	Ile	Leu	
Fi II			340					345					350			
gta	ggc	aga	gct	gcg	ttc	gta	ttc	ccc	ttg	tcg	ttt	tta	tcc	aac	tta	1403
Val	${\tt Gly}$	Arg	Ala	Ala	Phe	Val	Phe	Pro	Leu	Ser	Phe	Leu	Ser	Asn	Leu	
		355					360					365				
gca	aag	aaa	aac	tct	tcg	gac	aag	ata	tcc	ttt	agg	caa	caa	ata	ata	1451
Ala	Lys	Lys	Asn	Ser	Ser	Asp	Lys	Ile	Ser	Phe	Arg	Gln	Gln	Ile	Ile	
	370					375					380					
att	tgg	tgg	gct	ggc	cta	atg	aga	ggc	gcc	gtc	tca	ata	gca	ctt	g c g	1499
Ile	${\tt Trp}$	Trp	Ala	Gly	Leu	Met	Arg	Gly	Ala	Val	Ser	Ile	Ala	Leu	Ala	
385					390					395					400	
tat	aat	aag	ttt	aca	acc	tcg	ggg	cat	acg	tca	ttg	cac	gag	aac	gca	1547
Tyr	Asn	Lys	Phe	Thr	Thr	Ser	${\tt Gly}$	His	Thr	Ser	Leu	His	Glu	Asn	Ala	
				405					410					415		
ata	atg	att	aca	agt	act	gtt	acg	gtt	gtt	ctg	ttc	agc	aca	gtt	gta	1595
Ile	Met	Ile	Thr	ser	Thr	Val	Thr	Val	Val	Leu	Phe	Ser	Thr	Val	Val	
			420					425					430			

ttc	ggg	ttg	atg	acg	aag	cct	ctg	ata	aac	ctt	ctg	cta	ccc	ccg	cac	1643
Phe	${\tt Gly}$	Leu	Met	Thr	Lys	Pro	Leu	Ile	Asn	Leu	Leu	Leu	Pro	Pro	His	
		435					440					445				
aag	cag	atg	cca	agc	ggt	cat	tcg	tca	atg	aca	aca	tcc	gaa	ccc	agt	1691
Lys	Gln	Met	Pro	Ser	Gly	His	Ser	Ser	Met	Thr	Thr	Ser	Glu	Pro	Ser	
	450					455					460					
agt	ccg	aag	cac	ttc	acg	gtg	cca	ctc	ctg	gac	aac	caa	cct	gac	tca	1739
Ser	Pro	Lys	His	Phe	Thr	Val	Pro	Leu	Leu	Asp	Asn	Gln	Pro	Asp	Ser	
465					470					475					480	
gaa	agc	gat	atg	ata	acc	gga	cct	gag	gtt	gct	cga	cca	act	gcc	ttg	1787
Glu	Ser	Asp	Met	Ile	Thr	Gly	Pro	Glu	Val	Ala	Arg	Pro	Thr	Ala	Leu	
				485					490					495		
cgc	atg	ctg	cta	agg	acg	cca	acc	cac	acc	gtg	cac	cgc	tac	tgg	cgt	1835
Arg	Met	Leu	Leu	Arg	Thr	Pro	Thr	His	Thr	Val	His	Arg	Tyr	Trp	Arg	
(0			500					505					510			
daag	ttt	gat	gat	tcg	ttt	atg	cgt	ccc	gtg	ttt	ggc	ggg	cgg	gga	ttc	1883
Lys	Phe	Asp	Asp	Ser	Phe	Met	Arg	Pro	Val	Phe	${\tt Gly}$	Gly	Arg	Gly	Phe	
10		515					520					525				
gtt	ccg	ttt	gtc	gcg	ggc	tca	cca	gtt	gag	cag	agc	cct	aga	tga		1928
[]Val	Pro	Phe	Val	Ala	Gly	Ser	Pro	Val	Glu	Gln	Ser	Pro	Arg			
Ü	530					535					540					
0.00															atagtt	
i etc															aggttg	
catt														-	ttagg	
															tatgaa	
			ctgaa	ttat	c aa	atttç	ggcto	tat	gttt	tga	tgct	tagt	aa a	aaaa	aaaaa	
aaaa	aaaa	aa														2237
<210		2	_													
<211		54	_													
<212	?>	PF	Y.T.													

<213> Ipomea nil

<223> Amino acid sequence of protein regulating the pH of vacuoles

<40	0>	2													
Met	Ala	Phe	Gly	Leu	Ser	Ser	Leu	Leu	Gln	Asn	Ser	Asp	Leu	Phe	Thr
1				5					10					15	
Ser	Asp	His	Ala	Ser	Val	Val	Ser	Met	Asn	Leu	Phe	Val	Ala	Leu	Leu
			20					25					30		
Cys	Ala	Cys	Ile	Val	Leu	Gly	His	Leu	Leu	Glu	Glu	Asn	Arg	Trp	Val
		35					40					45			
Asn	Glu	Ser	Ile	Thr	Ala	Leu	Ile	Ile	Gly	Leu	Cys	Thr	Gly	Val	Val
	50					55					60				
Ile	Leu	Leu	Leu	Ser	${\tt Gly}$	Gly	Lys	Ser	Ser	His	Leu	Leu	Val	Phe	Ser
65					70					75					80
Glu	Asp	Leu	Phe	Phe	Ile	Tyr	Leu	Leu	Pro	Pro	Ile	Ile	Phe	Asn	Ala
				85					90					95	
OGly	Phe	Gln	Val	Lys	Lys	Lys	Gln	Phe	Phe	Val	Asn	Phe	Met	Thr	Ile
Ö			100					105					110		
WMet	Leu	Phe	Gly	Ala	Ile	Gly	Thr	Leu	Ile	Ser	Cys	Ser	Ile	Ile	Ser
p. de		115					120					125			
UPhe		Ala	Val	Lys	Ile	Phe	Lys	His	Leu	Asp	Ile	Asp	Phe	Leu	Asp
6	130					135					140				
Phe	Gly	Asp	Tyr	Leu		Ile	Gly	Ala	Ile		Ala	Ala	Thr	Asp	Ser
F145					150					155					160
Val	Cys	Thr	Leu		Val	Leu	Ser	Gln		Glu	Thr	Pro	Leu	Leu	Tyr
13	_			165			_		170					175	
Ser	Leu	val		Gly	Glu	Gly	Val		Asn	Asp	Ala	Thr		Val	Val
	5 1		180			_		185					190		
Leu	Phe	195	Ата	TTE	GIN	ser		Asp	Met	Thr	ser		Asp	Pro	Lys
Tlo	C1**		77.6 ~	Db -	-1-	G3	200	D1:	-	_	_	205	_	_	_
iie	Gly 210	Leu	HIS	Pne	TTE		ASI	Pne	Leu	Tyr		Pne	Leu	ser	Ser
	210					215					220				
Thr	Phe	Leu	Glv	Val	Glv	Tle	G1 17	T.017	Len	Cvc	- ר מ	mar.	т1 с	Tle	T
225	1110	шей	GIY	vai	230	116	GIY	пеп	ьеи	235	Ala	TAT	тте	тте	Lys 240
	Leu	Tvr	Phe	Glv		Hie	Ser	Thr	Aen		Glu	17 a 1	Δla	Ten	
-1-				245	9		201		250	-1- 9	Jiu	Val	******	255	1160
Met	Leu	Met	Ser		Leu	Ser	Tvr	Tle		Ala	Glu	T.e.	Phe		T.e.11
			260	-		_	4 -	265					270	-1-	

	Ser	Gly	Ile	Leu	Thr	Val	Phe	Phe	Cys	Gly	Ile	Val	Met	Ser	His	Tyr
			275					280					285			
	Thr	Trp	His	Asn	Val	Thr	Glu	Ser	Ser	Arg	Val	Thr	Thr	Arg	His	Ser
		290					295						300			
	Phe	Ala	Thr	Leu	Ser	Phe	Val	Ala	Glu	Thr	Phe	Ile	Phe	Leu	Tyr	Val
	305					310					315					320
	Gly	Met	Asp	Ala	Leu	Asp	Ile	Glu	Lys	Trp	Lys	Phe	Val	Lys	Asn	Ser
					325					330					335	
	Gln	Gly	Leu		Val	Ala	Val	Ser	Ser	Ile	Leu	Val	Gly	Leu	Ile	Leu
				340					345					350		
	Val	Gly		Ala	Ala	Phe	Val		Pro	Leu	Ser	Phe	Leu	Ser	Asn	Leu
			355					360					365			
9.2			Lys	Asn	Ser	Ser		Lys	Ile	Ser	Phe	-	Gln	Gln	Ile	Ile
0)	370					375					380				
	Ile	Trp	Trp	Ala	Gly		Met	Arg	Gly	Ala		Ser	Ile	Ala	Leu	
	385					390					395					400
	Tyr	Asn	Lys	Phe		Thr	Ser	Gly	His		Ser	Leu	His	Glu		Ala
and and					405					410					415	
18	Ile	Met	Ile	Thr	Ser	Thr	Val	Thr		Val	Leu	Phe	Ser		Val	Val
A LIVE				420					425					430		
1	1	C1	T	M-+	m1	-	5				_	_	_	_	_	
A Sport	Phe	GIY	435	мет	Thr	ьуs	Pro		TIE	Asn	Leu	Leu		Pro	Pro	His
100		Cln		Dwo		C1	77.2	440			m1	m)	445	~ 1	_	_
	пуъ	450	Met	PLO	ser	GIY	455	ser	ser	Met	Thr		ser	Glu	Pro	ser
	Sor		T.v.e	Hic	Dhe	Thr		Dro	T 011	Leu	7.00	460	C1 =	D===		0
	465	110	пур	1115	FIIC	470	Val	PIO	пеп	Leu	475	ASII	GIII	PIO	Asp	480
		Ser	Asp	Met	Tle		Glv	Dro	Glu	Val		Ara	Bro	mb r	712	
			1101		485		GLY	110	Giu	490	AIG	ALG	FIO	1111	495	пец
	Ara	Met.	Leu	Leu		Thr	Pro	Thr	Hie	Thr	17a l	ніс	Ara	Фил		λrα
	-			500	5				505		, 41		211 g	510	TTP	AL 9
	Lvs	Phe	Asp	Asp	Ser	Phe	Met	Ara		Val	Pho	Glv	Glv		Gly	Dho
	-		515	- 2				520				o Ly	525	y	Cly	1 116
	Val	Pro		Val	Ala	Glv	Ser		Va]	Glu	Gln	Ser		Ara		
		530				1	535				J =	540	-10	-11 9		

```
<210> 3
 <211>
          16
 <212>
          DNA
         Artificial sequence
 <213>
 <220>
 <221>
 <222>
 <223>
          MseI adaptor
 <400>
            3
 gacgatgagt cctgag
                                                                        16
[]<210>
√0
(0<211>
           14
14<212>
           DNA
()
%±<213>
        Artificial sequence
111
(L)<220>
(3<221>
:E<222>
[2223
[2223>
          MseI adaptor
****<400>
 tactcaggac tcat
                                                                        14
 <210>
            5
 <211>
           20
 <212>
          DNA
 <213>
        Artificial sequence
 <220>
 <221>
 <222>
```

<223>

TIR primer

```
<400>
 tgtgcatttt tcttgtagtg
                                                                     20
 <210>
           6
 <211>
          16
 <212>
           DNA
 <213> Artificial sequence
 <220>
 <221>
 <222>
 <223>
        MseI primer
(2<400>
gatgagtcct gagtaa
                                                                     16
113
(3 <210>
|| <211>
          19
(1) <212>
           DNA
       Artificial sequence
(3<213>
<220>
(221>
<222>
 <223>
          TIR+N primer
 <400>
           7
 tgtgcatttt tcttgtagn
                                                                     19
 <210>
 <211>
          17
 <212>
          DNA
          Artificial sequence
 <213>
 <220>
 <221>
```

```
<222>
  <223>
             MseI+N primer
  <400>
  gatgagtcct gagtaan
                                                                                 17
 <210>
             9
 <211>
             130
 <212>
             DNA
         Artificial sequence
 <213>
 <220>
 <221>
(3<222>
<sup>1</sup><223>
<400>
##tgagcatttt tcttgtagtg ctgagatttt cctccatttg tctgaagctc ttcatccttc
aacactaccc ccacatctca cctttcaagg tccaatcttt atcattcatc tttactcagg
                                                                               120
()actcatcgtc
                                                                                130
<210>
             10
12<211>
             26
<sup>1</sup>/<sub>2</sub> <sup>1</sup>/<sub>2</sub> < 212 >
            DNA
 <213>
         Artificial sequence
 <220>
 <221>
 <222>
 <223>
            PR-5 primer
 <400>
             10
 gggatccaac aaaaatggct gtcggg
                                                                                 26
 <210>
             11
```

<211>

```
<212>
            DNA
  <213>
          Artificial sequence
 <220>
 <221>
 <222>
 <223>
          PR-3 primer
 <400>
            11
 gggtcgacta agcatcaaaa catagagcc
                                                                       29
 <210>
           12
 <211>
           22
<212>
           DNA
(0<213>
          Artificial sequence
⟨□<220>
|U<221>
[년<222>
(5<223>
           CBSC1-linker
(400>
           12
Cgatagatct gggggtcgac at
                                                                       22
 <210>
          13
 <211>
           22
 <212>
           DNA
 <213>
          Artificial sequence
 <220>
 <221>
 <222>
 <223>
           CBSC2-linker
 <400>
           13
```

22

cgatgtcgac ccccagatct at

<21	1>	2	423													
<21	2>	D	NA													
<21	3>	P	etun	ia h	ybri	da										
<22	3>	N	ucle	otid	e se	quen	ce o	f DN.	A en	codi	ng f	or p	rote	in		
		r	egul	atin	g th	е рн	of '	vacu	oles							
<40	0>	1	4													
att	gcgc	ttc	gtat	ttta	ct g	ctga	atga	a at	cgtg	tttt	ttt	attc	agt	tcgt	tgttat	6
taa	tttc	aga	gttt.	tttt	ta t	taaa	ggtg.	t gt	ttgg	ttga	agaa	aatt	gta	tttg	ctgaat	120
															tttcca	180
100															tagggc	240
\$1.5															agg gg a	300
aac	ttta	ttg	tgat	attt	tc a	caag	tatt	t gg	tgaa	ttca	ggt	tatt	gag	a at	g gct	35
W 13															t Ala	
ttt									-	-			-			405
Phe	Asp		Gly	Thr	Leu	Leu		Asn	Val	Asp	Arg	Leu	Ser	Thr	Ser	
ă.		5					10					15				
gat											-	-			-	453
Asp		GIn	Ser	Val	Val		Ile	Asn	Leu	Phe		Ala	Leu	Ile	Cys	
	20					25					30					
gcg																50
35	cys	ile	val	TIE		HIS	Leu	Leu	GIu		Asn	Arg	Trp	Met		
	+00	2+0	20+		40					45					50	
														gtt		549
GIU	ser	тте	THE	55	Leu	vaı	тте	GIY		Cys	Thr	GLY	Ile	Val	Ile	
C+ a	c+a	2+2	2 a+	-	~~~	224			60					65		
														agt Ser		597
200	10 ca	110	70	GLY	Giy	Бур	ASII	75	пть	TIE	Leu	Val	80	ser	GIU	
gat	ctt	ttc		at+	tac	c++	c++	_	CC a	2+0	2++	+++		qct	aaa	645
														Ala		043
-		85			-1-		90			-10		95	11011	-ara	CIY	
												,,				

<210>

ttc	cag	gtg	aaa	aag	aaa	tcg	ttc	ttc	cgc	aat	ttc	agc	act	atc	atg	693
Phe	Gln	Val	Lys	Lys	Lys	Ser	Phe	Phe	Arg	Asn	Phe	Ser	Thr	Ile	Met	
	100					105					110					
ctc	ttt	ggg	gca	ctt	ggc	acc	ttg	ata	tca	ttc	att	att	ata	tca	tta	741
Leu	Phe	Gly	Ala	Leu	Gly	Thr	Leu	Ile	Ser	Phe	Ile	Ile	Ile	Ser	Leu	
115					120					125					130	
ggt	gcc	att	ggc	att	ttc	aag	aaa	atg	aat	att	gga	agc	ctt	gaa	att	789
Gly	Ala	Ile	Gly	Ile	Phe	Lys	Lys	Met	Asn	Ile	Gly	Ser	Leu	Glu	Ile	
				135					140					145		
gga	gat	tac	ctt	gca	att	ggg	gca	atc	ttc	tct	gct	aca	gat	tct	gta	837
Gly	Asp	Tyr	Leu	Ala	Ile	Gly	Ala	Ile	Phe	Ser	Ala	Thr	Asp	Ser	Val	
			150					155					160			
tgc	acc	tta	caa	gtg	ctt	aat	cag	gat	gaa	aca	ccc	tta	ttg	tac	agt	885
Cys	Thr	Leu	Gln	Val	Leu	Asn	Gln	Asp	Glu	Thr	Pro	Leu	Leu	Tyr	Ser	
14		165					170					175				
cta	gtt	ttt	ggg	gaa	ggt	gtt	gtg	aat	gat	gcc	aca	tct	gta	gtt	ctg	933
Leu	Val	Phe	${\tt Gly}$	Glu	Gly	Val	Val	Asn	Asp	Ala	Thr	Ser	Val	Val	Leu	
i.	180					185					190					
jttc	aat	gct	atc	cag	aac	ttt	gac	tta	tct	cac	atc	gac	acg	ggc	aaa	981
Phe	Asn	Ala	Ile	Gln	Asn	Phe	Asp	Leu	Ser	His	Ile	Asp	Thr	Gly	Lys	
195					200					205					210	
gct	atg	gaa	tta	gtt	gga	aac	ttt	cta	tac	ttg	ttt	gcc	tca	agc	act	1029
Ala	Met	Glu	Leu	Val	Gly	Asn	Phe	Leu	Tyr	Leu	Phe	Ala	Ser	Ser	Thr	
				215					220					225		
gcc	cta	gga	gtt	gct	gct	ggc	cta	ctg	agc	gcc	tat	att	att	aaa	aaa	1077
Ala	Leu	Gly	Val	Ala	Ala	Gly	Leu	Leu	Ser	Ala	Tyr	Ile	Ile	Lys	Lys	
			230					235					240			
	tac															1125
Leu	Tyr	Phe	Gly	Arg	His	Ser	Thr	Asp	Arg	Glu	Val	Ala	Ile	Met	Ile	
		245					250					255				
	atg															1173
Leu	Met	Ala	Tyr	Leu	Ser	Tyr	Met	Leu	Ala	Glu	Leu	Phe	Tyr	Leu	Ser	
	260					265					270					

yca	acc	CLC	act	geg	ttt	ttc	tet	ggg	atc	gtg	atg	tct	cac	tac	acc	1221
Ala	Ile	Leu	Thr	Val	Phe	Phe	Ser	Gly	Ile	Val	Met	Ser	His	Tyr	Thr	
275					280					285					290	
tgg	cat	aat	gtg	act	gag	agc	tcg	aga	gtc	act	acc	aag	cac	act	ttt	1269
Trp	His	Asn	Val	Thr	Glu	Ser	Ser	Arg	Val	Thr	Thr	Lys	His	Thr	Phe	
				295					300					305		
gct	aca	tta	tca	ttt	att	gct	gaa	ata	ttc	ata	ttc	ctt	tat	gtt	ggt	1317
Ala	Thr	Leu	Ser	Phe	Ile	Ala	Glu	Ile	Phe	Ile	Phe	Leu	Tyr	Val	Gly	
			310					315					320			
atg	gat	gct	ttg	gac	att	gag	aag	tgg	aag	ttt	gta	agc	gac	agc	cct	1365
Met	Asp	Ala	Leu	Asp	Ile	Glu	Lys	Trp	Lys	Phe	Val	Ser	Asp	Ser	Pro	
		325					330					335				
gga	ata	tca	gtt	cag	gtt	agc	tca	ata	ttg	ctg	ggt	ctt	gtt	ttg	gtt	1413
[]Gly	Ile	Ser	Val	Gln	Val	Ser	Ser	Ile	Leu	Leu	Gly	Leu	Val	Leu	Val	
۱۵ (d	340					345					350					
l gga	aga	gca	gca	ttt	gtt	ttc	cca	ttg	tca	ttc	ttg	tcc	aac	ttg	acc	1461
Gly	Arg	Ala	Ala	Phe	Val	Phe	Pro	Leu	Ser	Phe	Leu	Ser	Asn	Leu	Thr	
ພູ 355					360					365					370	
aag	aaa	act	cca	gag	gcg	aaa	att	agt	ttt	aac	cag	cag	gtt	aca	ata	1509
Lys																
2 T				375					380					385		
tgg	tgg	gct	gga	ctt	atg	aga	ggt	gcc	gtt	tct	atg	gcc	ctt	gct	tat	1557
Trp	${\tt Trp}$	Ala	Gly	Leu	Met	Arg	Gly	Ala	Val	Ser	Met	Ala	Leu	Ala	Tyr	
14			390					395					400			
aat	cag	ttt	acc	agg	gga	ggt	cat	act	cag	tta	cgc	gca	aat	gca	ata	1605
Asn	Gln	Phe	Thr	Arg	Gly	Gly	His	Thr	Gln	Leu	Arg	Ala	Asn	Ala	Ile	
		405					410					415				
atg	atc	aca	agt	act	atc	act	gtt	gtc	ctt	ttc	agc	aca	gtc	gtg	ttt	1653
Met	Ile	Thr	Ser	Thr	Ile	Thr	Val	Val	Leu	Phe	Ser	Thr	Val	Val	Phe	
	420					425					430					
ggg	ttg	atg	aca	aaa	cct	ttg	att	aga	ata	ttg	cta	ccc	tca	cac	aaa	1701
Gly	Leu	Met	Thr	Lys	Pro	Leu	Ile	Arg	Ile	Leu	Leu	Pro	Ser	His	Lys	
435					440					445					450	
cac	ttg	agc	aga	atg	atc	tct	tct	gaa	cca	acg	acc	cca	aaa	tcc	ttc	1749
His	Leu	Ser	Arg	Met	Ile	Ser	Ser	Glu	Pro	Thr	Thr	Pro	Lys	Ser	Phe	
				455					460					465		

att gtg cca ctt ctt gac agc aca caa gac tca gaa gct gat ctg gaa 1797 Ile Val Pro Leu Leu Asp Ser Thr Gln Asp Ser Glu Ala Asp Leu Glu 470 480 cgc cat gta ccc cgt ccc cac agt ttg cgg atg ctc ctt tca acc cca 1845 Arg His Val Pro Arg Pro His Ser Leu Arg Met Leu Leu Ser Thr Pro 485 490 495 tct cat aca gtg cat tat tac tgg aga aag ttt gac aat gca ttc atg 1893 Ser His Thr Val His Tyr Tyr Trp Arg Lys Phe Asp Asn Ala Phe Met 500 505 cgt cca gtt ttc ggt gga cga ggt ttt gta cct ttt gct cca gga tca 1941 Arg Pro Val Phe Gly Gly Arg Gly Phe Val Pro Phe Ala Pro Gly Ser 515 520 525 ccq aca gac cca gtt ggt gga aat ttg caa tgatggagat acagattgca 1991 Pro Thr Asp Pro Val Gly Gly Asn Leu Gln 535 540 Waaaagtggtc ttggtgaggg aagagggcag ttttttggta atgaggttcc gttttcttta 2051 atgttaatag caagtgtggt taaaaagggg ttgtctagtt tataggtttt gcagatctca 2111 magtatattca tttgggtgat catgttttca gctcagttat tgcttttggt cattgctgac 2171 deatcaatttc tgtggggaat tcctataggt tttctcccta acagttcttt tcttcatctt 2231 intttgcaattt atcgaaacac caaatgggtg tatattctgt aagcttgtgg catagctagc 2291 Fttaattgtct tgtaaaattt cctacaggtt agagattggt tcttgatatg tagatttcat 2351 atgattgtaa cattcccatt tctcagaaaa gaaactataa tataaaattt ctggtggctg 2411 (Itegeceqtqc te 2423 14 <210> 15 <211> 540 <212> PRT <213> Petunia hybrida <223> Amino acid sequence of protein regulating the pH of vacuoles <400> 15 Met Ala Phe Asp Phe Gly Thr Leu Leu Gly Asn Val Asp Arg Leu Ser

10

15

Thr	Ser	Asp		Gln	Ser	Val	Val		Ile	Asn	Leu	Phe	Val	Ala	Leu
			20					25					30		
Ile	Cys		Cys	Ile	Val	Ile	Gly	His	Leu	Leu	Glu	Glu	Asn	Arg	Trp
		35					40					45			
Met		Glu	Ser	Ile	Thr	Ala	Leu	Val	Ile	Gly	Ser	Cys	Thr	Gly	Ile
	50					55					60				
Val	Ile	Leu	Leu	Ile	Ser	Gly	Gly	Lys	Asn	Ser	His	Ile	Leu	Val	Phe
65					70					75					80
Ser	Glu	Asp	Leu	Phe	Phe	Ile	Tyr	Leu	Leu	Pro	Pro	Ile	Ile	Phe	Asn
				85					90					95	
Ala	Gly	Phe	Gln	Val	Lys	Lys	Lys	Ser	Phe	Phe	Arg	Asn	Phe	Ser	Thr
			100					105					110		
Ile	Met	Leu	Phe	${\tt Gly}$	Ala	Leu	Gly	Thr	Leu	Ile	Ser	Phe	Ile	Ile	Ile
0		115					120					125			
Ser	Leu	Gly	Ala	Ile	Gly	Ile	Phe	Lys	Lys	Met	Asn	Ile	Gly	Ser	Leu
iu	130					135					140				
Glu	Ile	${\tt Gly}$	Asp	Tyr	Leu	Ala	Ile	Gly	Ala	Ile	Phe	Ser	Ala	Thr	Asp
10145					150					155					160
Ser	Val	Cys	Thr	Leu	Gln	Val	Leu	Asn	Gln	Asp	Glu	Thr	Pro	Leu	Leu
13				165					170					175	
Tyr	Ser	Leu	Val	Phe	${\tt Gly}$	Glu	Gly	Val	Val	Asn	Asp	Ala	Thr	Ser	Val
644 6 45			180					185					190		
Uval	Leu	Phe	Asn	Ala	Ile	Gln	Asn	Phe	Asp	Leu	Ser	His	Ile	Asp	Thr
and a		195					200					205			
Gly	Lys	Ala	Met	Glu	Leu	Val	${\tt Gly}$	Asn	Phe	Leu	Tyr	Leu	Phe	Ala	Ser
	210					215					220				
Ser	Thr	Ala	Leu	Gly	Val	Ala	Ala	Gly	Leu	Leu	Ser	Ala	Tyr	Ile	Ile
225					230					235					240
Lys	Lys	Leu	${\tt Tyr}$	Phe	Gly	Arg	His	Ser	Thr	Asp	Arg	Glu	Val	Ala	Ile
				245					250					255	
Met	Ile	Leu	Met	Ala	Tyr	Leu	Ser	Tyr	Met	Leu	Ala	Glu	Leu	Phe	Tyr
			260					265					270		
Leu	Ser	Ala	Ile	Leu	Thr	Val	Phe	Phe	Ser	Gly	Ile	Val	Met	Ser	His
		275					280					285			
Tyr	Thr	Trp	His	Asn	Val	Thr	Glu	Ser	Ser	Arg	Val	Thr	Thr	Lys	His
	290					295					200				

Thr	Phe	Ala	Thr	Leu	Ser	Phe	Ile	Ala	Glu	Ile	Phe	Ile	Phe	Leu	Tyr
305					310					315					320
Val	Gly	Met	Asp	Ala	Leu	Asp	Ile	Glu	Lys	Trp	Lys	Phe	Val	Ser	Asp
				325					330					335	
Ser	Pro	Gly	Ile	Ser	Val	Gln	Val	Ser	Ser	Ile	Leu	Leu	Gly	Leu	Val
			340					345					350		
Leu	Val	Gly	Arg	Ala	Ala	Phe	Val	Phe	Pro	Leu	Ser	Phe	Leu	Ser	Asn
		355					360					365			
Leu		Lys	Lys	Thr	Pro	Glu	Ala	Lys	Ile	Ser	Phe	Asn	Gln	Gln	Val
	370					375					380				
		Trp	Trp	Ala	Gly	Leu	Met	Arg	Gly	Ala	Val	Ser	Met	Ala	Leu
385					390					395					400
(JAla	Tyr	Asn	Gln	Phe	Thr	Arg	Gly	Gly	His	Thr	Gln	Leu	Arg	Ala	Asn
(0				405					410					415	
[]Ala	Ile	Met	Ile	Thr	Ser	Thr	Ile	Thr	Val	Val	Leu	Phe	Ser	Thr	Val
944			420					425					430		
[UVal	Phe		Leu	Met	Thr	Lys	Pro	Leu	Ile	Arg	Ile	Leu	Leu	Pro	Ser
\$1.J		435					440					445			
(]His		His	Leu	Ser	Arg	Met	Ile	Ser	Ser	Glu	Pro	Thr	Thr	Pro	Lys
,E	450					455					460				
Ser	Phe	Ile	Val			Leu	Asp	Ser	Thr	Gln	Asp	Ser	Glu	Ala	Asp
(1465	_				170					475					480
Leu	GIu	Arg	His	Val	Pro	Arg	Pro	His		Leu	Arg	Met	Leu	Leu	Ser
	_			485					490					495	
rnr	Pro	Ser		Thr	Val	His	Tyr		Trp	Arg	Lys	Phe		Asn	Ala
			500					505					510		
Dho	Ma+		D	**- 1	-1			_							
PHE	Met	515	Pro	Val	Phe	GLY		Arg	Gly	Phe	Val		Phe	Ala	Pro
C1**	802		mh	D	D	** - 7	520		_	_		525			
GIY	530	PIO	THE	ASP	Pro		GIY	GIY	Asn	Leu					
	550					535					540				
<210)>	16													
<211			553												
<212	>	DN													

<213> Nierembergia hybrida

85

<223> Nucleotide sequence of DNA encoding for protein regulating the pH of vacuoles

<40	0>	1	6													
aat	tatt	att	attt	ctct	cc a	actc	tcat	t tc	tcag	tttg	ttg	tgac	ttt	ttca	gagctt	60
gaa	gttc	agt	taat	tcat	tt t	ccaa	tata	t tg	attg	t ttt	cat	ttga	gcg	cgag	aggatt	120
tcg	tctt	ctc	aatc	tgct	tt d	caaat	cctt	t tt	gttt	gtga	tat	tcga	tat	tatt	cactca	180
gtt	tacc	tta	atat	ttcc	tc q	gcact	ttct	g aa	ttcg	agtg	ctt	tgaa	gtg	tgtt	ggattt	240
cga	aaag	cgg	aaga	aaat	tc a	agcaa	aaac	g ct	gttg	ctga	att	tgca	gca	gttt	gagttt	300
ttg	ctaa	ata	gcta	agat	ct ç	gattg	aatt	t tt	cact	ggtg	ctt	atag	gga	aatt	cgacgt	360
															tgaaat	
Ottg	aatg	taa	ggtt	gtca	ta ç	gcttt	gcca	c to	ggaa	atac	agt	cagt	gag	aaag	aaaaa	480
aac	tgtg	tag	tgtt	tttt	cc a	caag	tatt	t gg	tgaa	ttga	ggt	tctt	gaa	atg	gcg	536
10														Met 1		
						g ctg										584
[UPhe	Asp		Gly	Thr	Leu	Leu	Gly	Lys	Met	Asn	Asn	Leu	Thr	Thr	Ser	
[4] s		5					10					15				
gat																632
- Asp		Gln	Ser	Val	Val	Ser	Val	Asn	Leu	Phe	Val	Ala	Leu	Ile	Cys	
2 04	20					25					30					
gcg	tgt	att	gtg	atc	ggt	cat	tta	ttg	gag	gaa	aac	aga	tgg	atg	aat	680
P≜Ala	Cys	Ile	Val	Ile	Gly	His	Leu	Leu	Glu	Glu	Asn	Arg	Trp	Met	Asn	
35					40					45					50	
						gtg										728
Glu	Ser	Ile	Thr		Leu	Val	Ile	Gly		Cys	Thr	Gly	Val	Ile	Ile	
				55					60					65		
						aag										776
Leu	Leu	ше		GIY	Gly	Lys	Asn		His	Ile	Leu	Val	Phe	Ser	Glu	
			70					75					80			
						ctt										824
ASP	ьeu	rne	Pne	IIe	Tyr	Leu	Leu	Pro	Pro	Ile	Ile	Phe	Asn	Ala	Gly	

95

τ	tc	cag	gtg	aaa	aag	aaa	tca	ttc	ttc	cgc	aat	ttc	agt	act	atc	atg	872
P	he	Gln	Val	Lys	Lys	Lys	Ser	Phe	Phe	Arg	Asn	Phe	Ser	Thr	Ile	Met	
		100					105					110					
C	tc	ttt	ggg	gca	gtt	ggc	acc	ttg	ata	tcg	ttc	att	att	ata	tca	gcg	920
L	eu	Phe	Gly	Ala	Val	Gly	Thr	Leu	Ile	Ser	Phe	Ile	Ile	Ile	Ser	Ala	
1	15					120					125					130	
g	gt	gct	att	ggc	att	ttc	aag	aaa	atg	gat	att	gga	cac	ctt	gaa	att	968
G	ly	Ala	Ile	Gly	Ile	Phe	Lys	Lys	Met	Asp	Ile	Gly	His	Leu	Glu	Ile	
					135					140					145		
g	ga	gat	tac	ctt	gca	att	gga	gca	atc	ttt	gct	gca	aca	gat	tct	gta	1016
G	ly	Asp	Tyr	Leu	Ala	Ile	Gly	Ala	Ile	Phe	Ala	Ala	Thr	Asp	Ser	Val	
				150					155					160			
t	gc	acc	tta	caa	gtg	ctt	aat	cag	gaa	gaa	aca	ccg	tta	ttg	tac	agt	1064
C	ys	Thr	Leu	Gln	Val	Leu	Asn	Gln	Glu	Glu	Thr	Pro	Leu	Leu	Tyr	Ser	
ŭ O			165					170					175				
į ci	ta	gtg	ttt	gga	gaa	ggt	gtt	gtg	aat	gat	gcc	aca	tct	gta	gtg	ctg	1112
Le	eu	Val	Phe	${\tt Gly}$	Glu	Gly	Val	Val	Asn	Asp	Ala	Thr	Ser	Val	Val	Leu	
Į.		180					185					190					
4tt	tc	aat	gct	gtc	cag	aac	ttt	gac	tta	tct	cat	atc	agc	aca	ggc	aaa	1160
Pł	he	Asn	Ala	Val	Gln	Asn	Phe	Asp	Leu	Ser	His	Ile	Ser	Thr	Gly	Lys	
-19	95					200					205					210	
go	ct	ctg	caa	tta	att	gga	aac	ttt	cta	tac	ttg	ttt	gcc	tcg	agc	act	1208
JA.	la	Leu	Gln	Leu	Ile	Gly	Asn	Phe	Leu	Tyr	Leu	Phe	Ala	Ser	Ser	Thr	
zên.					215					220				225			
tt	tc	cta	ggg	gtt	gct	gtt	ggc	cta	cta	agt	gcc	ttt	ata	att	aag	aaa	1256
Pł	ne	Leu	Gly	Val	Ala	Val	Gly	Leu	Leu	Ser	Ala	Phe	Ile	Ile	Lys	Lys	
				230				235					240				
									gat								1304
Le	∍u	Tyr	Phe	Gly	Arg	His	Ser	Thr	Asp	Arg	Glu	Val	Ala	Ile	Met	Ile	
			245					250					255				
ct	cc	atg	gcg	tac	cta	tca	tac	atg	ctt	gct	gaa	tta	ttc	tat	tta	agt	1352
Le			Ala	Tyr	Leu	Ser	Tyr	Met	Leu	Ala	Glu	Leu	Phe	Tyr	Leu	Ser	
		260					265					270					
gç	ga	atc	ctc	act	gtg	ttt	ttc	tgt	ggg	atc	gtg	atg	tct	cac	tat	acc	1400
		Ile	Leu	Thr	Val		Phe	Cys	Gly	Ile	Val	Met	Ser	His	Tyr	Thr	
27	75					280					285					290	

-99	cuc	uuc	gug	acc	yay	ayc	tCa	aya	900	act	acc	aag	cac	acg	ttt	1448
Trp	His	Asn	Val	Thr	Glu	ser	Ser	Arg	Val	Thr	Thr	Lys	His	Thr	Phe	
				295					300					305		
gct	aca	tta	tca	ttt	att	gct	gaa	ata	ttc	ata	ttc	ctt	tat	gtt	ggt	1496
Ala	Thr	Leu	Ser	Phe	Ile	Ala	Glu	Ile	Phe	Ile	Phe	Leu	Tyr	Val	Gly	
			310					315					320			
atg	gat	gct	ttg	gac	att	gag	aag	tgg	aag	ttt	gta	agc	gac	agc	ccc	1544
Met	Asp	Ala	Leu	Asp	Ile	Glu	Lys	Trp	Lys	Phe	Val	Ser	Asp	Ser	Pro	
		325					330					335				
gga	aca	tca	att	aag	gtc	agc	tca	att	ctg	cta	ggt	ctt	gtt	ttg	gtt	1592
Gly	Thr	Ser	Ile	Lys	Val	Ser	Ser	Ile	Leu	Leu	Gly	Leu	Val	Leu	Val	
	340					345					350					
gga	agg	gga	gcc	ttt	gtt	ttc	ccc	ttg	tca	ttc	ttg	tcc	aac	ttg	acc	1640
Gly	Arg	Gly	Ala	Phe	Val	Phe	Pro	Leu	Ser	Phe	Leu	Ser	Asn	Leu	Thr	
355					360					365					370	
aag	aaa	aat	cct	gag	gac	aag	att	agc	ttt	aac	cag	cag	gtt	aca	ata	1688
Lys	Lys	Asn	Pro	Glu	Asp	Lys	Ile	Ser	Phe	Asn	Gln	Gln	Val	Thr	Ile	
Ų				375					380					385		
[∐] tgg	tgg	gct	ggg	ctt	atg	cga	ggt	gct	gtt	tct	atg	gcc	ctt	gct	tat	1736
Trp	Trp	Ala	Gly	Leu	Met	Arg	Gly	Ala	Val	Ser	Met	Ala	Leu	Ala	Tyr	
			390					395					400			
aat																1784
Asn	Gln		Thr	Arg	Gly	Gly	His	Thr	Gln	Leu	Arg	Ala	Asn	Ala	Ile	
		405					410					415				
								gtc								1832
Met		Thr	Ser		Ile	Thr	Val	Val	Leu	Phe	Ser	Thr	Val	Val	Phe	
	420			425							430					
								cta								1880
	Leu	Met	Thr	Lys		Leu	Ile	Leu	Leu	Leu	Leu	Pro	Ser	Gln	Lys	
435					440					445					450	
								gaa								1928
His	Leu	Ile	Arg		Ile	Ser	Ser	Glu	Pro	Met	Thr	Pro	Lys	Ser	Phe	
				455					460					465		
								caa								1976
тте	vaı	Pro		Leu	Asp	Ser	Thr	Gln	Asp	Ser	Glu	Ala		Leu	Gly	
			470					475					480			

	cga	cat	gta	ccc	cgt	CCC	cac	agt	ttg	cgg	atg	ctc	ctg	tca	acc	cca	2024
															Thr		
			485					490					495				
	tct	cac	acg	gta	cat	tac	tac	tgg	aga	aaa	ttt	gac	aat	gca	ttc	atg	2072
															Phe		
		500				505						510					
(gt	cct	gtt	ttc	ggt	gga	cga	ggt	ttt	gta	cct	ttt	gtt	cca	gga	tca	2120
2	Arg	Pro	Val	Phe	Gly	Gly	Arg	Gly	Phe	Val	Pro	Phe	Val	Pro	Gly	Ser	
	515				520						525				_	530	
(cct	act	gaa	ccg	gtc	gaa	ccg	acc	gaa	cca	aga	cca	gcc	gaa	tca	aga	2168
1	Pro	Thr	Glu	Pro	Val	Glu	Pro	Thr	Glu	Pro	Arg	Pro	Ala	Glu	Ser	Arq	
					535					540					545	,	
(cca	acc	gaa	cca	act	gat	gag	tga-	ttaca	act o	gatg	gagat	g ca	aggti	tgcad	:	2219
()1				Pro											-		
(0				550													
	aaa	gtco	ca	ctggc	ctt	gg ag	gaag	gacga	a ago	gcagt	tttt	ttgc	gttt	ga d	aqttt	tgttt	2279
17	ctg	rttaa	ıta ç	gtttt	cgaa	at gt	ggtt	aaaa	a aaq	gggti	gtc	tagt	tttt	at a	atata	ggtcg	2339
iuc	aga	taco	rta a	attto	agct	c ag	jttco	cga	g gt	gaaco	cct	taga	ıggtt	tt o	cttcc	tgacg	2399
والما	ıttt	ttct	tc t	tttt	tgta	a tt	tato	aaaa	a aca	accaa	aatg	ggto	tata	itt o	ttta	agctt	2459
1119	ıtag	ctta	at t	acct	tata	a go	atgt	ggta	a gc	jttc	gtgt	aata	itgta	ıaa a	attto	cattg	2519
10				aactt									-			_	2553
-	210	>	17	7													
} ± <	211	>	55	3													
	212		PF	Р													
<	213	>	Ni	erem	berg	ria h	ybri	.da									
<	223	>	Απ	nino	acid	seq	uenc	e of	pro	teir	reg	ulat	ing	the	рН		
			of	vac	uole	s											
	400		17														
М	et.	Ala	Phe	Asp		Gly	Thr	Leu	Leu	Gly	Lys	Met	Asn	Asn	Leu	Thr	
		_			5					10					15		
Т	nr	ser	Asp		Gln	Ser	Val	Val		Val	Asn	Leu	Phe	Val	Ala	Leu	
				20					25					30			

	Ile	Cys		Cys	Ile	Val	Ile		His	Leu	Leu	Glu	Glu	Asn	Arg	Trp
			35					40					45			
	Met	Asn	Glu	Ser	Ile	Thr	Ala	Leu	Val	Ile	Gly	Ser	Cys	Thr	Gly	Val
		50					55					60				
	Ile	Ile	Leu	Leu	Ile	Ser	Gly	Gly	Lys	Asn	Ser	His	Ile	Leu	Val	Phe
	65					70					75					80
	Ser	Glu	Asp	Leu	Phe	Phe	Ile	Tyr	Leu	Leu	Pro	Pro	Ile	Ile	Phe	Asn
					85					90					95	
	Ala	Gly	Phe	Gln	Val	Lys	Lys	Lys	Ser	Phe	Phe	Arg	Asn	Phe	Ser	Thr
				100					105					110		
	Ile	Met	Leu	Phe	Gly	Ala	Val	Gly	Thr	Leu	Ile	Ser	Phe	Ile	Ile	Ile
			115					120					125			
	Ser	Ala	Gly	Ala	Ile	Gly	Ile	Phe	Lys	Lys	Met	Asp	Ile	Gly	His	Leu
1,00		130					135					140		-		
10	Glu	Ile	Gly	Asp	Tyr	Leu	Ala	Ile	Gly	Ala	Ile	Phe	Ala	Ala	Thr	Asp
4	145					150					155					160
Se Se	Ser	Val	Cys	Thr	Leu	Gln	Val	Leu	Asn	Gln	Glu	Glu	Thr	Pro	Leu	Leu
					165					170					175	
The same	Ī															
7007	Tyr	Ser	Leu	Val	Phe	Gly	Glu	Gly	Val	Val	Asn	Asp	Ala	Thr	Ser	Val
100				180					185			-		190		
100	Val	Leu	Phe	Asn	Ala	Val	Gln	Asn	Phe	Asp	Leu	Ser	His	Ile	Ser	Thr
1 200	l .		195					200					205			
- Page	Gly	Lys	Ala	Leu	Gln	Leu	Ile	Gly	Asn	Phe	Leu	Tyr	Leu	Phe	Ala	Ser
		210					215					220				
	Ser	Thr	Phe	Leu	Gly	Val	Ala	Val	Gly	Leu	Leu	Ser	Ala	Phe	Ile	Ile
	225					230					235					240
	Lys	Lys	Leu	Tyr	Phe	Gly	Arg	His	Ser	Thr	Asp	Arg	Glu	Val	Ala	Ile
					245					250		_			255	
	Met	Ile	Leu	Met	Ala	Tyr	Leu	Ser	Tyr	Met	Leu	Ala	Glu	Leu	Phe	Tvr
				260					265					270		-
	Leu	Ser	Gly	Ile	Leu	Thr	Val	Phe	Phe	Cys	Gly	Ile	Val	Met	Ser	His
			275					280					285			
	Tyr	Thr	Trp	His	Asn	Val	Thr	Glu	Ser	Ser	Arg	Val	Thr	Thr	Lys	His
		290					295					300			-	

Thr	Phe	Ala	Thr	Leu	Ser	Phe	Ile	Ala	Glu	Ile	Phe	Ile	Phe	Leu	Tyr
305					310					315					320
Val	Gly	Met	Asp	Ala	Leu	Asp	Ile	Glu	Lys	Trp	Lys	Phe	Val	Ser	Asp
				325					330					335	
Ser	Pro	Gly	Thr	Ser	Ile	Lys	Val	Ser	Ser	Ile	Leu	Leu	Gly	Leu	Val
			340					345					350		
Leu	Val	Gly	Arg	Gly	Ala	Phe	Val	Phe	Pro	Leu	Ser	Phe	Leu	Ser	Asn
		355					360					365			
Leu	Thr	Lys	Lys	Asn	Pro	Glu	Asp	Lys	Ile	Ser	Phe	Asn	Gln	Gln	Val
	370					375					380				
Thr	Ile	Trp	Trp	Ala	Gly	Leu	Met	Arg	Gly	Ala	Val	Ser	Met	Ala	Leu
385					390			_	-	395					400
DAla	Tyr	Asn	Gln	Phe	Thr	Arg	Gly	Glv	His		Gln	Leu	Ara	Ala	
10				405		_	-	-	410				9	415	
\⊍Ala	Ile	Met	Ile	Thr	Ser	Thr	Ile	Thr		Val	Leu	Phe	Ser		Val
13			420					425					430		, 41
// Val	Phe	Gly	Leu	Met	Thr	Lvs	Pro		Ile	Leu	T.e11	T.eu		Pro	Sor
£U.		435					440					445	Leu	110	Del
Gln	Lys	His	Leu	Ile	Arq	Met		Ser	Ser	G111	Pro		Thr	Pro	T.17 C
1 200	450				-	455					460			110	1175
Ser	Phe	Ile	Val	Pro	Leu	Leu	Asp	Ser	Thr	G1n		Ser	Glu	Ala	Asn
11465				47			-		47				014		30
Leu	Gly	Arg	His	Val	Pro	Arg	Pro	His	Ser	Leu	Ara	Met.	Leu	Leu	Ser
				485		-			490		5			495	
Thr	Pro	Ser	His	Thr	Val	His	Tvr	Tvr	Tro	Ara	T.VS	Phe	Asn	Asn	Δla
			500				-	505		5	-10		510	11.511	2114
Phe	Met	Arg	Pro	Val	Phe	Glv	Glv		Glv	Phe	Val	Pro		Val	Pro
		515				-	520	,	2			525	- 110		
Gly	Ser	Pro	Thr	Glu	Pro	Val		Pro	Thr	Glu	Pro		Pro	Ala	Glu
	530					535					540	9	-10	niu	GIU
Ser	Arg	Pro	Thr	Glu	Pro	Thr	Asp	Glu			5.0				
545					550										
<210)>	18	3												
<211	.>	23	61												

~21	2-	L	MM													
<21	3>	I	oren	ia h	ybri	.da										
<22	3>		ucle egul								.ng f	or p	rote	ein		
< 40	0>	1	.8													
gtt	ggag	att	ccga	gctg	ca g	catc	acct	t gc	ttat	gtaa	gct	ttaa	aaq	tato	agaat	t 60
															gtttg	
															gcgac	
															tgtct	
															gccca	
															aagat	
gaa																413
10										Met	Gly	Phe	Glu	Ser	Val	
[1]														5		
att	aag	cta	gcg	gca	agt	gaa	act	gac	aat	ttg	tgg	agc	tct	ggt	cac	461
(UIle	Lys	Leu	Ala	Ala	Ser	Glu	Thr	Asp	Asn	Leu	Trp	Ser	Ser	Gly	His	
4.5			10					15				20				
agt																509
Gly	Ser		Val	Ala	Ile	Thr	Leu	Phe	Val	Thr	Leu	Leu	Cys	Thr	Cys	
,E		25					30					35				
[]ata	gtg	att	ggt	cat	ctt	ctg	gag	gaa	aac	cgt	tgg	atg	aat	gaa	tct	557
i*Ile	Val	TTE	GTĀ	His	Leu		Glu	Glu	Asn	Arg		Met	Asn	Glu	Ser	
240	40					45					50					
ate	att	gcc	ctc	ata	att	ggt	tta	gcc	acg	gga	gtt	ata	atc	ctg	tta	605
55	TTE	Ата	Leu	TTE		Gly	Leu	Ala	Thr		Val	Ile	Ile	Leu	Leu	
	200				60					65					70	
Tlo	cor	ggt	gga	aaa	agc	tcc	cat	ctc	ttg -	gtg	ttc	agt	gag	gat	ctt	653
TIE	ser	GTĀ	Gly		Ser	ser	His	Leu		Val	Phe	Ser	Glu		Leu	
				75					80					85		
ttc	++c	a+c	+ = +	aac	a+ c											
Phe	Pho	Tla	tat	ycg N1a	tou	cca	cca	atc	att	ttt -	aat	gcg	aaa	ttc	caa	701
1116	1116	-T6	Tyr 90	urg	ьеи	Pro	Pro		TTE	Phe	Asn	Ala		Phe	Gln	
			90					95					100			

_							. cgc	uuc	CCC	. yca	act	aca	aty	aty	LLL	/45
Val	Lys	Lys	Lys	Ser	Phe	Phe	Arg	Asn	Phe	Ala	Thr	Ile	Met	Met	Phe	
		105					110					115				
gga	gca	gtt	ggt	acc	ttg	ata	tcc	ttc	ato	ato	att	tca	ctc	ggt	aca	797
															Thr	
	120					125					130			-		
att	gca	ttc	ttc	ccc	aaa	atg	aac	atg	aga	ctt	gga	gtt	gga	gat	tat	845
								Met								
135					140					145			_	_	150	
ctt	gct	att	gga	gct	att	ttt	gct	gca	aca	gac	tca	gtt	tgc	aca	tta	893
								Ala								
				155					160				_	165		
cag	gtg	cta	agc	cag	gac	gaa	aca	cca	ctg	ttg	tac	agt	cta	gtg	ttt	941
Gln																
o o			170					175					180			
ggc	gag	ggt	gtt	gta	aat	gac	gcg	act	tca	gtg	gtc	cta	ttt	aat	gca	989
Gly	Glu	Gly	Val	Val	Asn	Asp	Ala	Thr	Ser	Val	Val	Leu	Phe	Asn	Ala	
¥		185					190					195				
[⊍] gta	cag	aac	ttc	gac	ctg	cct	cat	atg	tct	act	gct	aaa	gct	ttc	gag	1037
_Val	Gln	Asn	Phe	Asp	Leu	Pro	His	Met	Ser	Thr	Ala	Lys	Ala	Phe	Glu	
	200					205					210					
ctt	gtt	gga	aac	ttc	ttt	tat	tta	ttt	gct	aca	agc	act	gtg	ctg	ggt	1085
Leu	Val	Gly	Asn	Phe	Phe	Tyr	Leu	Phe	Ala	Thr	Ser	Thr	Val	Leu	Gly	
215				220						225					230	
								tac								1133
Val	Leu	Thr	Gly	Leu	Leu	Ser	Ala	Tyr	Ile	Ile	Lys	Lys	Leu	Tyr	Phe	
				235					240					245		
gga	agg	cac	tcc	act	gat	cgc	gag	gtt	gcc	ata	atg	ata	ctc	atg	gct	1181
Gly	Arg	His	Ser	Thr	Asp	Arg	Glu	Val	Ala	Ile	Met	Ile	Leu	Met	Ala	
			250					255					260			
								tta								1229
Tyr	Leu		Tyr	Met	Leu	Ala	Glu	Leu	Phe	Asp	Leu	Ser	Gly	Ile	Leu	
		265					270					275				
acc	gtg	ttc	ttc	tgt	gga	att	gtg	atg	tcg	cac	tat	aca	tgg	cac	aat	1277
Thr		Phe	Phe	Cys	Gly		Val	Met	Ser	His	Tyr	Thr	Trp	His	Asn	
	280					285					290					

gto	act	gaa	aac	tca	aga	gtt	acc	acc	aag	cat	aca	ttt	gcg	aca	ttq	1325
	Thr															
295					300					305					310	
tca	ttt	gtt	gct	gaa	ata	ttt	ata	ttt	ctg	tat	gtt	ggc	atq	gat	qct	1373
	Phe															
				315					320	-		-		325		
tta	gac	att	gag	aaa	tgg	aga	ttc	gta	agc	qqc	agc	atq	aca	aca	tct	1421
	Asp															
			330					335		-			340			
gca	gCt	gtc	agt	gca	act	ctq	ctq	qqa	tta	att	tta	ctc	t.ca	aga	gca	1469
Ala	Ala	Val	Ser	Ala	Thr	Leu	Leu	Glv	Leu	Val	Leu	Leu	Ser	Ara	Ala	-103
		345					350					355	001	9		
gcc	ttt	qta	ttc	cct	tta	tca		ctc	tee	aat	C+a		222	aar	tcc	1517
Ala																1317
NU.	360					365				*****	370		2,0	Lys	DCI	
(Q (U cca	ctc	gaa	aaa	atc	agt		add	cad	caa	2++		2+2	+ ~ ~	+ ~ ~	~~+	1565
Pro	Leu	Glu	Lvs	Ile	Ser	Leu	Ara	Gln	Gln	Tle	Tle	Tle	Trn	Trn	712	1565
[U 375			-1-		380	Dea	1119	OIII	GIII	385	116	TTE	пр	пр	390	
ggt	ctt	ato	cac	aaa		a++	+cc	a+~	ac+		aat	+ 2.0				1613
Gly	Leu	Met	Ara	Glv	Ala	Val	Ser	Mo+	Ala Ala	Ton	yc.	m	aag	cag	77.	1613
Part I			9	395	nia	val	per	nec	400	теп	Ald	Tyr	ьys		Pne	
Wact.	aga	αаа	aat		aca	a+a	~~~	aa+		204				405		
act	Ara	Glu	Glu	LOU	Thr	1721	gaa Clu	n	gaa	aat	gcc	ata	ttc	atc	acc	1661
100	9	O_u	410	пец	TIII	vaı	GIU	415	GIU	Asn	Ala	ше		TTE	Thr	
agt	aca	2+0		2++	~+~	a+a							420			
Ser	aca Thr	Tlo	Thr	Tlo	y Ly	Tou	Db.	age	act	gtg	gtg	ttt -	ggt	ttg	atg	1709
DCI	Thr	425	TIIL	TTE	Val	ьец	430	ser	Thr	Val	Val		GLy	Leu	Met	
aca	224		a+a	2+4								435				
Thr	aag	Pro	TOU	Tlo	aat aar	Tan		ata	-	tca	cca	aag	ctt	aac	aga	1757
	Lys	110	пец	TTE	ASII		Leu	тте	Pro	ser		Lys	Leu	Asn	Arg	
+00		+	± m n			445					450					
Com	gtc	0	cca	gaa	ccg	ctg	act	cca	aac	tcc	atc	aca	atc	cca	ctt	1805
	Val	ser	ser	GIu		Leu	Thr	Pro	Asn		Ile	Thr	Ile	Pro	Leu	
455					460					465					470	
CEC	ggg	gaa	agt	cag	gac	tct	gtg	gcc	gaa	cta	ttc	agc	atc	aga	ggt	1853
Leu	Gly	GLu	ser		Asp	Ser	Val	Ala		Leu	Phe	Ser	Ile	Arg	Gly	
				475					480					485		

	caa	act	tca	caa	ggt	ggc	gaa	CCC	gtt	gct	cga	ccg	agc	ago	cta	cqc	1901
			Ser														
				490					495					500		,	
	atg	tta	ctc	aca	aag	ccc	act	cat	acg	gtg	cac	tat	tat	tgg	aga	aaa	1949
	Met	Leu	Leu	Thr	Lys	Pro	Thr	His	Thr	Val	His	Tyr	Tyr	Trp	Ara	Lvs	
			505					510				-	515	-		-	
	ttc	gac	aat	gct	ttt	atg	cgt	ccg	gtc	ttt	ggt	ggg	cqt	qqc	ttt	qta	1997
	Phe	Asp	Asn	Ala	Phe	Met	Arg	Pro	Val	Phe	Gly	Gly	Arg	Gly	Phe	Val	
		520					525					530		-			
	cca	tat	gtt	ccc	ggt	tca	ccg	act	gaa	cga	agc	gtt	cgc	aac	tgg	gaa	2045
	Pro	Tyr	Val	Pro	Gly	Ser	Pro	Thr	Glu	Arg	Ser	Val	Arg	Asn	Trp	Glu	
	535					540					545				-	550	
	gaa	gag	acc	aaa	cag	taaa	aaag	att t	tctt	gtgt	gaa	tgat	ggt	a a	gaga [.]	ttag	2100
	Glu		Thr												-	-	
10					555												
Ęų	attetttgga tattegtttt tettatttet aatgtgteac etgggaagtt gttgaatgaa 216														2160		
12	att	atat	tat o	gtc	tggtt	t to	gact	ttgc	gat	tgtg	gaa	ggaa	itatt	tc	ttct	ggattt	2220
21	tgc	attatattat cgtctggttt togactttgc gottgtggaa ggaatattto ttotggai tgcatggaaa cotcaatgat agggggtgtg atatttttgt tagaaactga gtogttt											ttgat	2280			
i.	gtatattgtt ggtaatgcag ctgggttttg ttttgtatgt atagtcatca agtg										gtatt	2340					
100	tat	tcata	att o	gtta	tgcag	jt c										,	2361
111																	
10	<210	0>	19)													
	<21		5.5	55													
1 =	<212	2>	PF	PΤ													
	<213	3>	To	reni	ia hy	brid	la										
	<223	3>	An	ino	acid	seq	uenc	e of	pro	tein	reg	ulat	ing	the	рН		
			of	vac	cuole	s											
	<400		19														
	Met	Gly	Phe	Glu		Val	Ile	Lys	Leu	Ala	Ala	Ser	Glu	Thr	Asp	Asn	
					5					10					15		
	Leu	Trp	Ser		Gly	His	Gly	Ser	Val	Val.	Ala	Ile	Thr	Leu	Phe	Val	
		_	_	20					25					30			
	rhr	Leu	Leu	Cys	Thr	Cys	Ile	Val	Ile	Gly :	His :	Leu	Leu	Glu	Glu	Asn	
			35					40					45				

Arg			Asn	Glu	Ser	Ile	Ile	Ala	Leu	Ile	Ile	Gly	Leu	Ala	Thr
	50					55					60				
Gl	v Val	Ile	lle	Leu	Leu	Ile	Ser	Gly	Gly	Lys	Ser	Ser	His	Leu	Lev
65	;				70					75					80
Val	. Phe	Ser	Glu	Asp	Leu	Phe	Phe	Ile	Tyr	Ala	Leu	Pro	Pro	Ile	Ile
				85					90					95	
Ph∈	Asn	Ala	Gly	Phe	Gln	Val	Lys	Lys	Lys	Ser	Phe	Phe	Arg	Asn	Phe
			100					105					110		
Ala	Thr	Ile	Met	Met	Phe	Gly	Ala	Val	Gly	Thr	Leu	Ile	Ser	Phe	Ile
		115					120		-			125			
Ile	Ile	Ser	Leu	Gly	Thr	Ile	Ala	Phe	Phe	Pro	Lys	Met	Asn	Met	Ara
	130					135					140				,
Leu	Gly	Val	Gly	Asp	Tyr	Leu	Ala	Ile	Gly	Ala	Ile	Phe	Ala	Ala	Thr
13 145					150					155					160
Asp	Ser	Val	Cys	Thr	Leu	Gln	Val	Leu	Ser	Gln	Asp	Glu	Thr	Pro	Leu
10				165					170					175	
Leu	Tyr	Ser	Leu	Val	Phe	Gly	Glu	Glv	Val	Val	Asn	Asp	Ala	Thr	Ser
10			180			-		185					190		DOL
Wal	Val	Leu	Phe	Asn	Ala	Val	Gln	Asn	Phe	Asp	Leu	Pro	His	Met	Ser
17		195					200					205		1100	DCI
Thr	Ala	Lys	Ala	Phe	Glu	Leu	Val	Glv	Asn	Phe	Phe		T.en	Phe	Δla
112	210					215		-			220	-2-			
Thr	Ser	Thr	Val	Leu	Gly	Val	Leu	Thr	Glv	Leu		Ser	Ala	Tvr	Tle
1-225					230				-	235				-1-	240
Ile	Lys	Lys	Leu	Tyr	Phe	Gly	Arg	His	Ser		Asp	Ara	Glu	Val	
				245		-	_		250			5	O.L.u	255	mu
														233	
Ile	Met	Ile	Leu	Met	Ala	Tyr	Leu	Ser	Tvr	Met.	Leu	Ala	Glu	T.e.11	Dho
			260			-		265	-1-				270	Leu	1 110
Asp	Leu	Ser	Gly	Ile	Leu	Thr	Val		Phe	Cvs	Glv	Tle		Mo+	Sor
		275	-				280			2,3	3-1	285	· 41	.160	Set
His	Tyr	Thr	Trp	His	Asn	Val		Glu	Asn	Ser	Ara		Thr	Thr	Larc
	290		-			295					300	٧٩٢	-111	* ***	пуs
His	Thr	Phe	Ala	Thr	Leu		Phe	Val	Ala	Glu		Dhe	Tle	Phe	Tou
305					310					315	-16	1116	-TG	EIIG	320

Туг	· Val	. Gly	Met	Asp 325		Leu	Asp	Ile	Glu 330		Trp	Arg	Phe	Val	
Gly	Ser	Met	Thr	Thr	Ser	Ala	Ala	Val	Ser	Ala	Thr	Leu	Leu 350	Gly	
Val	Leu	Leu 355		Arg	Ala	Ala	Phe	Val	Phe	Pro	Leu	Ser	Phe		Ser
Asn	Leu 370		Lys	Lys	Ser	Pro 375	Leu	Glu	Lys	Ile	Ser 380	Leu	Arg	Gln	Gln
385				Trp	390					395					400
				Gln 405					410					415	
523			420	Ile				425					430		
Val		435					440					445			
U U U	Pro 450	Lys	Leu	Asn	Arg	Ser 455	Val	Ser	Ser	Glu	Pro 460	Leu	Thr	Pro	Asn
Ser - 465					470					475					400
Leu (J				485					490	Gly				495	Ala
^{1≜} Arg	Pro	Ser	Ser 500	Leu	Arg	Met	Leu	Leu 505	Thr	Lys	Pro	Thr	His	Thr	Val
		515		Arg			520					525			
	530			Phe		535					Ser 540	Pro	Thr	Glu	Arg
Ser 545	Val	Arg	Asn	Trp	Glu 550	Glu	Glu	Thr	Lys	Gln 555					
<210	1>	20													
<211															
	<212>		A												
<213>		Ipomea nil													

<223> Nucleotide sequence of promoter region of gene encoding for protein regulating the pH of vacuoles

<400> 20 60 gatctcagtc tgtggatgtc ctagagacat tcatatttga agttgagagt tagctaaata 120 gaaaggtaaa gacaattgga tcatataaag gtgatgagta ttatgggaaa ccatcaaaag 180 ttgggcaaat tcccgtccca tttaagaaat tcctcgaatc taaaggcatt tgtgcataat acacaatgtc aggcacacca caacaaaatg gtgtggaaga aaggtgaaat cgtactctaa 240 300 gggaaatggt taggagttag gtaaataatt gtacattgct tgtttcattg tggatatatg 360 cattaaaaac aacagcatac ttactcaata gggttcctag taaggttgtt ttttaaaaca ccttatgaac tgtggacaag aaggaaacct agtttgagac atcttcacat tcagggttgt 420 480 caagctggag tgatgatata taatccacat gaaaataaat tatggatatc cagaaccatt 540 aatggttatt tcattggata tccagaaagg tctaaaggta catgtttatt gtcctaatca # taagtacgag gattgttgag tctggtaatg ctcgcttcat ttaaaatggc gaagtcagtg 600 660 ggagtgtggg agctcgtaat gttaaaatta aggagtcatt gatggttcta gattcatcaa 📮 gtgatccttt tttcctgttg ttgttcctat tgttgcagtg cagtgtagcc ttatggaaat 720 ili actttggaac aacagcaact agatgctcaa attccacatg aggaagctat tgtaaatgaa 780 🔱 gatgaggttg aaactcaaga tgatgatcaa gtgaaatctc agcaggaagt gacattaagg 840 aggtctacta tagatagaaa agatcaacca ttcttgatga ctatattgtt tatacacttg 900 🖟 agcattgata attatccagt ctcatttaac caagccatac aggataataa ttctccttga 960 ggattatttt ggttttggtg gctcattctg ttcttgagct ccaccaaatg gttgttaaaa 1020 ttacctttct gaatggtaaa ttaaaagagg aagtatacat ggattagccg taaggcttca 1080 † tggccacagg aaaggaaaat ctggtatgta gattgaagat gtcgatctat ggattaaaac 1140 atgettetag acaatggtae ttgagattgt catttggttt tgtagagate actgttgate 1200 ggtgtatcca cataaaggtt taatggaagc aagtttgtaa tcctagtatt acatgttaac 1260 gacattette ttgetgetaa taataaaagg gatgttgegt gatgttaagg aatagettte 1320 taagaacttt gaaatgaagg atatgggtga gacttcatat gtgattggaa taagaaatat 1380 tccgtaatag atcacatggg attttaggtt catcctagaa gactcacatt aacaaagttt 1440 tagaaagata caaactggaa atctgcaaag agggtcctgt gatacttaca aggcactaag 1500 gaccacatgc tcacctataa aatgaacgaa taacctagag gttataggtt attcggattc 1560 agactatgcc ggatgtttgg atacccgaaa atccacattc gaatatattt ttccacttgc 1620 tcgtggagca atatcttgga tgagtgtgaa ggagcctgtc attgctactt ccactataag 1680 ggcagaattt gtagcatgct ttgaggctag tagacactat aaaaattggc tgccttgtgc 1740 caacatcatt tgcatccage tataagcatc tccattttcg aacatcattc gattcttata 1800

gctggatgaa gatgattcac tgcactttgg ttgcatattg aagctgcgat tgctatcgaa 1860

aacaaataac ctatctatat aaaacaaacg acttagattt agggaataag aaggaagata 1920 cttttttaa aatcccaaaa ttacctttta ggtttgacct gcaaataaca ctttaagatc 1980 aaatcagata aaatgtcata atcaatgatc aaattgaata attttagtag tcgaggatca 2040 aattggtaaa atccccatag tcgagggact aaaccagtaa ttttctcgcg tttgaacgtt 2100 tgtccgaaaa ttggcattag cgatagctta attgagtttt tcaattctct aattttttaa 2160 attttgtttc ttcataaaat ccttcacttt ttcactttgc taatattttg ccgaatttat 2220 aatatttcca atttctaaag tagcagaacc ccagacgttg aactgccaat ttttttttt 2280 gtttttgttt tttgtttttt tatttcctta tccctccacc tcattttgaa qttaattatt 2340 attattaatt cattaatttt taaaatagag agactgcatt aacacaaaat tagccaatta 2400 ggtagcagaa ttaaatttaa acaaacaagt tggtttaatg taatttttgt caatttaatt 2460 tctctatttt tggacaaaaa ttaggtagac ttattaaatt aaataaacat gtttgtttaa 2520 ttttacttct tctacctaag tttgtgtcaa ttcagtctct ctattttata aattaatgaa 2580 tggttaaata taacttataa gtgcattgtg tccaaatgat cacaagagtt aggccaactt 2640 ficttttttcat ataggtgatt cttttttcga gtattacgta cacttcagtc ttgtcaacta 2700 acacttagaa tttagttgtc attttcgaac ataggtgtca actaagtttg gtatccacta 2760 ii tatagcacat gtattccaag agatttaatc tcattcatca tgacaacttc tctaccaatt 2820 ctttgctcaa tcttttagtt agcgaattcg ctatattatc ctataacttt cagtatagtc 2880 👫 tatgtetaga ettacegtta tacatattae taatttaeta tatgteette caattgegaa 3000 attgactatcg taatgcatac atattggaga tatatatttt ttctaggggt aaatgcaggt 3060 #tggatcgacc cattaggcct gccccaacgc aaactttttt tqtcqqqctt ttqcqqaccq 3120 gettgegggt tagaaaatac acageecaag eeegteeatg egggetegeg ggeettattt 3180 Caaaaaaaaa aaaaatacta cgtattattc tattatttta tattcaaata gtctaatata 3240 aataaataaa aaaatcgtgt ttgaaaatta ctttttttt tatatatatt ttttaaaatt 3300 atatatatat atatatata attatttata ttatttatat ttatgtttat atttaaatac 3420 gggcatggct cgtcggctgg tccgttaggt ccgctctttt qtaqqccatt tttttqtqtq 3480 accetaaate gteteacege gggacaagta tagggeaget tgeggaette ggteeatttt 3540 gacatatata tatatata tatatatat tatatatata tatatata tatatatat tatatatata 3600 tatatatata taacattaaa atttaaaaaa tatagatttt ttttaaacat gaaaaaaatt 3660 ggctggtcca taaaagcccg taaaaagaat acgttggggt tggcctaatg gaccgatcca 3780 accegeattg acacecatag gaaaaacate tateteeaat ttgtatgeat tacaatagte 3840 aatttgcaat tggaagagca tatagtaatt agtaatatgt ataacggtaa gtctagacat 3900 attgaacatg tacataatac tattaaatag cttcttgcaa taggttttat ttttgttgac 3960

tatacatgaa gttataggat aatatagcga attcacaaac taaaagattg agcaatgagt 4020

tagtagaaaa gttgtcatga tggatgagat taaatctctt ggaatacatg tgctagtgga 4080 taccaaactt agctgacacc tatgttcgaa aatgacaact aaattctact acgtaagtgt 4140 tagttgacaa agtagagtgt actgaatact cgaaaaaaaga atcagttatg tgaaaaaaaa 4200 aagttggcct aactcttgtg atcattttag acacaatgca cttataagtt atactagtat 4260 tttttatgcg cgatgcacaa aaaatagttg cacaatatta atacattata ttaaaatttt 4320 aaatttattt agattttaga tatttaaatt gttctaacta ataatactaa taataataat 4380 gtaaataatt tttataaatt tcagatttat atttaggtaa taattaacat ataactcaaa 4440 tatataatgt gtatatatta ttattaaggg aaaatgacac tttttttccc tgagttatat 4500 accacttttt ttcccttgag ttatttaagt ggctcttttc cccctaaaat gttaaatgga 4560 aaattattac tataatttgg ttcaaaccaa acagatacta tagcaaccaa accaaaatat 4680 tccaattaca atttagaatc aaaacgcgat atttaaagtt tattaaaatt gcaaatcgga 4740 atggtcggtt catgttccga actgaaaaaa taaaatacat ttattgttga atttagacta 4800 #ttttaaaata aaaaataaaa caaaatttta aaataaagac ggttcaaaat cgcgaaccga 4860 atcoggaacc googgttcac ggttcatgat ccagtttttt tggttcataa aatttaataa 4920 attgaaatct aaatattgga ttctagatct gaatcataac cgaaaacttt taattcgatt 4980 actatagtgt coggttcagt togaaccgaa cogtggtcat tgctacatat acacaataat 5040 ttgttggaga aattaaataa ataaaatgtt tactttaagg gtagaaatgt caatttaata 5100 #tttcgggggg aaaaccacca cttttaaatt aattgagggg gctaatgtgc ttatataaat 5160 ataattgagg ggaaaaagtg gtataagtat ataacttagg gggaaaaaat gtcattttcc 5220 Ectattattaa tgaagaagat aagaaaatat atggtgaatg catgtgcctt tatagcataa 5280. tgtacaaaaa aaacttaacg aaaaaaacaa acataaataa ggggtataac tttcattcac 5340 acttattatg tttttagatt agatttaacc atacatgcat taatttgtaa aatagcgaga 5400 👫 gtgaattaac acaaaattag gtagaagaag taaaattaaa caaacatgtt tatttaattt 5460 aacaagtcca cctaattttt gtccaaaaat agagaaatta aattgacaaa aattacatta 5520 aacaaacttg tttgtttaaa ttgaattctt ctacctaatt ggctaatttt gtgttaatgc 5580 agtctctcta ttttaaaaaat taatgaatta ataataataa ttaacttcaa aatgaggtgg 5640 agggataagg aaataaaaaa acaaaaaaca aaaacaaaaa aaaaaaattg gcagttcaac 5700 gtctggggtt ctgctacttt aaatactgat aggagagttg tcgttcattt tacaagtatt 5760 aaggatgtac acgtattgag aatgtaggct acagaaattt tcagacagat agatacataa 5820 atccgtataa tagagacaga gaaacagaaa aagagagagt cacgttaatc ctgagatttt 5880 cetecattty tetgaagete tteateette aacactaeee ceacatetea eettteaagg 5940 tecaatettt ateatteate tttaatttee agetetatet tgggatttge atgtaaattt 6000 tatttatttt tcgggtttct gtttccgatc ttatgctttt gttccaaagg gtatttgatt 6060 tcatatatta tgagttttgc atgcattttc tcttttgtaa aatgaaagaa aatttgagat 6120 attggtgggt ttgatctgaa agtttgtttg tttgcagtga tttgtatgtt ttcgggaggg 6180

attggaatgg gcaaccogga tatgtgaaca gaaaccacga cattgggaaa agatttattg 6240 caaaaattgt tttgattgtt ttggatttg tggtagaaaa aggggaagaa caaaaatg 6298

001560-397.ST25

87 AUG 2001

SEQUENCE LISTING

<110> Iida, Shigeru Tanaka, Sachiko Inagaki, Yoshishige <120> Genes Encoding Proteins Regulating the pH of Vacuoles <130> 001560-397 <140> 09/830,123 <141> 2001-04-24 <150> PCT/JP00/05722 <151> 2000-08-24 <150> JP 11/236800 <151> 1999-08-24 <160> 20 <170> PatentIn version 3.1 <210> 1 <211> <212> DNA <213> Ipomoea nil <220> <221> misc feature <222> (1) ... (2237) <223> Nucleotide sequence of DNA encoding for protein regulating the pH of vacuoles <400> 1 agaatgtagg ctacagaaat tttcagacag atagatacat aaatccgtat aatagagaca gagaaacaga aaaagagaga gtcacgttaa teetgagatt tteeteeatt tgtctgaage tetteateet teaacactae coccacatet cacettteaa gtgatttgta tgtttteggg 180 agggattgga atgggcaacc cggatatgtg aacagaaacc acgacattgg gaaaagattt 240 attgcaaaaa ttgttttgat tgttttggat tttgtggtag aaaaagggga agaacaaaa 299 atg gcg ttc ggg ttg tct tct ttg ctc caa aat tcg gat ttg ttc acg 347 Met Ala Phe Gly Leu Ser Ser Leu Leu Gln Asn Ser Asp Leu Phe Thr

tgc gca tgc att gtt ctt ggc cat cta ctc gag gag aat cgc tgg gtg 443 Cys Ala Cys Ile Val Leu Gly His Leu Leu Glu Glu Asn Arg Trp Val 45

395

tot gat cat got too gtt gtg tog atg aac ote ttt gtg gog ttg ott Ser Asp His Ala Ser Val Val Ser Met Asn Leu Phe Val Ala Leu Leu

40

aac Asn	gaa Glu 50	tcc Ser	att Ile	act Thr	gcc Ala	ctt Leu 55	ata Ile	att Ile	ggt Gly	ttg Leu	tgc Cys 60	acc Thr	gga Gly	gtt Val	gta Val	491
att Ile 65	ttg Leu	ctc Leu	ctt Leu	agc Ser	gga Gly 70	gga Gly	aag Lys	agt Ser	tca Ser	cat His 75	ctt Leu	ctc Leu	gtc Val	ttt Phe	agc Ser 80	539
gaa Glu	gat Asp	ctt Leu	ttc Phe	ttt Phe 85	ata Ile	tat Tyr	ctc Leu	ctg Leu	cca Pro 90	cct Pro	ata Ile	ata Ile	ttc Phe	aat Asn 95	gcg Ala	587
ggg Gly	ttt Phe	caa Gln	gtg Val 100	aaa Lys	aag Lys	aag Lys	cag Gln	ttt Phe 105	ttc Phe	gtg Val	aac Asn	ttc Phe	atg Met 110	aca Thr	att Ile	635
atg Met	ctg Leu	ttt Phe 115	gga Gly	gct Ala	att Ile	ggc Gly	aca Thr 120	ctt Leu	att Ile	agc Ser	tgt Cys	tct Ser 125	att Ile	ata Ile	tca Ser	683
ttt Phe	ggt Gly 130	gcg Ala	gtc Val	aaa Lys	att Ile	ttc Phe 135	aag Lys	cac His	tta Leu	gac Asp	att Ile 140	gac Asp	ttt Phe	ctg Leu	gat Asp	731
ttt Phe 145	gga Gly	gat Asp	tat Tyr	tta Leu	gca Ala 150	att Ile	ggt Gly	gcg Ala	ata Ile	ttt Phe 155	gct Ala	gca Ala	acc Thr	gat Asp	tct Ser 160	779
gtt Val	tgc Cys	aca Thr	ttg Leu	cag Gln 165	gtg Val	ctc Leu	agt Ser	cag Gln	gat Asp 170	gag Glu	acg Thr	ccc Pro	cta Leu 175	ctt Leu	tac Tyr	827
agt Ser	ctc Leu	gtg Val	ttt Phe 180	gga Gly	gaa Glu	ggg Gly	gtc Val 185	gtc Val	aat Asn	gat Asp	gct Ala	aca Thr	tct Ser 190	gtg Val	gtc Val	875
ctt Leu	ttt Phe	aat Asn 195	gct Ala	att Ile	caa Gln	agt Ser	ttt Phe 200	gac Asp	atg Met	act Thr	agt Ser	ttt Phe 205	gat Asp	cca Pro	aaa Lys	923
att Ile	ggg Gly 210	ctt Leu	cat His	ttc Phe	att	gga Gly 215	Asn	ttc Phe	ttg Leu	tat Tyr	tta Leu 220	ttt Phe	ctc Leu	tog Ser	agc Ser	971
act Thr 225	Phe	ttg Leu	ggc Gly	gtg Val	gga Gly 230	Ile	gga Gly	ctg Leu	ctt Leu	tgt Cys 235	Ala	tat Tyr	att	atc Ile	aaa Lys 240	1019
aag Lys	cta Leu	tac Tyr	ttt Phe	ggc Gly 245	Arg	cac	tca Ser	acc Thr	gat Asp 250	Arg	gag Glu	gtt Val	gcc Ala	ctt Leu 255	atg Met	1067
atg Met	ctc Leu	atg Met	tct Ser 260	Tyr	ttg Leu	tct Ser	tat	ata Ile 265	Met	gcc Ala	gag Glu	tta Leu	ttc Phe 270	Tyr	cta Leu	1115
ago	gac	ata	ctt	act	gta	ttc	ttc	tgt	gga	att	gto	atg	tct	cat	tat	1163

Ser	Gly	Ile 275	Leu	Thr	Val	Phe	Phe 280	Cys	Gly	Ile	Val	Met 285	Ser	His	Tyr	
				gtt Val												1211
ttt Phe 305	gca Ala	act Thr	ctg Leu	tca Ser	ttt Phe 310	gtc Val	gca Ala	gag Glu	aca Thr	ttt Phe 315	atc Ile	ttc Phe	ctc Leu	tat Tyr	gtt Val 320	1259
				ttg Leu 325												1307
cag Gln	gga Gly	cta Leu	tca Ser 340	gtt Val	gca Ala	gtg Val	agc Ser	tca Ser 345	ata Ile	ttg Leu	gta Val	ggc Gly	cta Leu 350	atc Ile	tta Leu	1355
gta Val	ggc Gly	aga Arg 355	gct Ala	gcg Ala	ttc Phe	gta Val	ttc Phe 360	ccc Pro	ttg Leu	tcg Ser	ttt Phe	tta Leu 365	tcc Ser	aac Asn	tta Leu	1403
gca Ala	aag Lys 370	aaa Lys	aac Asn	tct Ser	tcg Ser	gac Asp 375	aag Lys	ata Ile	tcc Ser	ttt Phe	agg Arg 380	caa Gln	caa Gln	ata Ile	ata Ile	1451
				ggc Gly												1499
tat Tyr	aat Asn	aag Lys	ttt Phe	aca Thr 405	acc Thr	tcg Ser	ggg Gly	cat His	acg Thr 410	tca Ser	ttg Leu	cac His	gag Glu	aac Asn 415	gca Ala	1547
ata Ile	atg Met	att Ile	aca Thr 420	agt Ser	act Thr	gtt Val	acg Thr	gtt Val 425	gtt Val	ctg Leu	ttc Phe	agc Ser	aca Thr 430	gtt Val	gta Val	1595
ttc Phe	ggg Gly	ttg Leu 435	atg Met	acg Thr	aag Lys	cct Pro	ctg Leu 440	ata Ile	aac Asn	ctt Leu	ctg Leu	cta Leu 445	ccc Pro	ccg Pro	cac His	1643
aag Lys	cag Gln 450	atg Met	cca Pro	agc Ser	ggt Gly	cat His 455	tcg Ser	tca Ser	atg Met	aca Thr	aca Thr 460	tcc Ser	gaa Glu	ccc Pro	agt Ser	1691
agt Ser 465	Pro	aag Lys	cac	ttc Phe	acg Thr 470	gtg Val	cca Pro	ctc Leu	ctg Leu	gac Asp 475	aac Asn	caa Gln	cct Pro	gac Asp	tca Ser 480	1739
gaa Glu	agc Ser	gat Asp	atg Met	ata Ile 485	acc Thr	gga Gly	cct	gag Glu	gtt Val 490	Ala	cga Arg	cca Pro	act Thr	gcc Ala 495	ttg Leu	1787
cgc Arg	atg Met	ctg Leu	cta Leu	agg Arg	acg Thr	cca Pro	acc Thr	cac His	acc Thr	gtg Val	cac	cgc Arg	tac Tyr	tgg Trp	cgt Arg	1835

505 510 1883 aag ttt gat gat tog ttt atg ogt ooc gtg ttt ggc ggg ogg gga ttc Lys Phe Asp Asp Ser Phe Met Arg Pro Val Phe Gly Gly Arg Gly Phe gtt cog ttt gtc geg ggc tca cca gtt gag cag agc cct aga tga 1928 Val Pro Phe Val Ala Gly Ser Pro Val Glu Gln Ser Pro Arg ggtacaaagt acaaacaaga cactgttgct gggtgaaata gtgtaagttg tatcatagtt 1988 gattctggtt gcccctctta tgaaatgggc tgggtgaaag tcttctcact agctaggttg 2048 cattgcattg ctacttcata aatgttttat tttattttgt aaatgttggt gcattttagg 2108 tacttgtatt aacacctcat ttgtagcata ttatttggta cagagtattt tttttatgaa 2168 2237 aaaaaaaaa <210> <211> 542 <212> PRT <213> Ipomea nil <220> <221> peptide <222> (1)..(542) Amino acid sequence of protein regulating the pH of vacuoles <223> <400> 2 Met Ala Phe Gly Leu Ser Ser Leu Leu Gln Asn Ser Asp Leu Phe Thr Ser Asp His Ala Ser Val Val Ser Met Asn Leu Phe Val Ala Leu Leu Cys Ala Cys Ile Val Leu Gly His Leu Leu Glu Glu Asn Arg Trp Val Asn Glu Ser Ile Thr Ala Leu Ile Ile Gly Leu Cys Thr Gly Val Val Ile Leu Leu Ser Gly Gly Lys Ser Ser His Leu Leu Val Phe Ser Glu Asp Leu Phe Phe Ile Tyr Leu Leu Pro Pro Ile Ile Phe Asn Ala Gly Phe Gln Val Lys Lys Gln Phe Phe Val Asn Phe Met Thr Ile

- Met Leu Phe Gly Ala Ile Gly Thr Leu Ile Ser Cys Ser Ile Ile Ser 115 120 125
- Phe Gly Ala Val Lys Ile Phe Lys His Leu Asp Ile Asp Phe Leu Asp 130 135
- Val Cys Thr Leu Gln Val Leu Ser Gln Asp Glu Thr Pro Leu Leu Tyr 165 170 175
- Ser Leu Val Phe Gly Glu Gly Val Val Asn Asp Ala Thr Ser Val Val 180 185 190
- Leu Phe Asn Ala Ile Gln Ser Phe Asp Met Thr Ser Phe Asp Pro Lys 195 200
- Ile Gly Leu His Phe Ile Gly Asn Phe Leu Tyr Leu Phe Leu Ser Ser 210 215 220
- Thr Phe Leu Gly Val Gly Ile Gly Leu Leu Cys Ala Tyr Ile Ile Lys 225 230 235 240
- Lys Leu Tyr Phe Gly Arg His Ser Thr Asp Arg Glu Val Ala Leu Met 245 250 250
- Met Leu Met Ser Tyr Leu Ser Tyr Ile Met Ala Glu Leu Phe Tyr Leu 260 270
- Ser Gly Ile Leu Thr Val Phe Phe Cys Gly Ile Val Met Ser His Tyr
- Thr Trp His Asn Val Thr Glu Ser Ser Arg Val Thr Thr Arg His Ser 290 295 300
- Phe Ala Thr Leu Ser Phe Val Ala Glu Thr Phe Ile Phe Leu Tyr Val 305 310 315
- Gly Met Asp Ala Leu Asp Ile Glu Lys Trp Lys Phe Val Lys Asn Ser
- Val Gly Arg Ala Ala Phe Val Phe Pro Leu Ser Phe Leu Ser Asn Leu 365
- Ala Lys Lys Asn Ser Ser Asp Lys Ile Ser Phe Arg Gln Gln Ile Ile
- Ile Trp Trp Ala Gly Leu Met Arg Gly Ala Val Ser Ile Ala Leu Ala 385 \$390\$
- Tyr Asn Lys Phe Thr Thr Ser Gly His Thr Ser Leu His Glu Asn Ala 405 410 415

```
Ile Met Ile Thr Ser Thr Val Thr Val Val Leu Phe Ser Thr Val Val
 Phe Gly Leu Met Thr Lys Pro Leu Ile Asn Leu Leu Pro Pro His
 Lys Gln Met Pro Ser Gly His Ser Ser Met Thr Thr Ser Glu Pro Ser
 Ser Pro Lys His Phe Thr Val Pro Leu Leu Asp Asn Gln Pro Asp Ser
                    470
 Glu Ser Asp Met Ile Thr Gly Pro Glu Val Ala Arg Pro Thr Ala Leu
            485
 Arg Met Leu Leu Arg Thr Pro Thr His Thr Val His Arg Tyr Trp Arg
                                505
 Lys Phe Asp Asp Ser Phe Met Arg Pro Val Phe Gly Gly Arg Gly Phe
         515 520
Val Pro Phe Val Ala Gly Ser Pro Val Glu Gln Ser Pro Arg
                        535
   530
<210> 3
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> MseI adaptor
<400> 3
                                                                     16
gacgatgagt cctgag
 <210> 4
 <211> 14
<212> DNA
 <213> Artificial Sequence
 <220>
 <223> MseI adaptor
 <400> 4
                                                                     14
 tactcaggac tcat
 <210> 5
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> TIR primer
```

```
<400> 5
                                                                       20
tgtgcatttt tcttgtagtg
<210> 6
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> MseI primer
<400> 6
                                                                       16
gatgagtcct gagtaa
<210> 7
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> TIR+N primer
<220>
<221> misc feature
<222> (19)..(19)
<223> Nucleotide 19 = "n" wherein "n" = any nucleotide
<400> 7
                                                                       19
tgtgcatttt tcttgtagn
<210> 8
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> MseI+N primer
 <220>
<221> misc_feature
<222> (17)..(17)
 <223> Nucleotide 17 = "n" wherein "n" - any nucleotide
<400> 8
 gatgagtcct gagtaan
<210> 9
<211> 130
<212> DNA
 <213> Artificial Sequence
 <220>
```

Ü

13

14

11

10

,E

<223>	MseI+N primer	
<400> tgagcat	9 httt tottgtagtg otgagattit cotocattig totgaagoto ticatcotto	60
aacacta	acce ceacatetea cettteaagg tecaatettt ateatteate tttaeteagg	120
actcato	egte	130
<210> <211> <212> <213>	26	
<220> <223>	PR-5 primer	
<400> gggatco	10 caac aaaaatggct gtcggg	26
<211> <212>	11 29 DNA Artificial Sequence	
<220> <223>	PR-3 primer	
<400> gggtcg	11 acta agcatcaaaa catagagcc	29
<210> <211> <212> <213>	22	
<220> <223>	CBSC1-linker	
	12 patot gggggtogac at	22
<210> <211> <212> <213>	22	
<220> <223>	CBSC2-linker	
	13	22

```
<210> 14
<211> 2423
<212> DNA
<213> Petunia hybrida
<220>
<221> misc feature
<222> (1)..(2423)
<223> Nucleotide sequence of DNA encoding for protein regulating the
       pH of vacuoles
<400> 14
attgcgcttc gtattttact gctgaatgaa atcgtgtttt tttattcagt tcgttgttat
                                                                    60
taatttcaga gtttttttta ttaaaggtgt gtttggttga agaaattgta tttgctgaat
tttgcagaag tttttgagtt tttgctaaac tattgtgaga tctgattttg aatttttcca
                                                                   180
qtqqtqtttt aagctcaatt cgacgtcgtt tttactggaa ttctgatcag taaatagggc
                                                                   300
tattttqatq taaqqttqtq aaaqtttaca gtttggaagt tgagttagtg aaaaagggga
                                                                   357
aactttattq tqatattttc acaaqtattt qqtqaattca ggttattqag a atg gct
ttt gat ttt ggg acg ttg ttg gga aat gta gac agg tta tcg aca tct
                                                                   405
Phe Asp Phe Gly Thr Leu Leu Gly Asn Val Asp Arg Leu Ser Thr Ser
gat cat caa toa gtt gtg tog ata aac tta ttc gtt gct ctt att tgc
                                                                   453
Asp His Gln Ser Val Val Ser Ile Asn Leu Phe Val Ala Leu Ile Cys
gcg tgt att gtg atc ggt cat ttg ttg gaa gaa aac aga tgg atg aat
Ala Cys Ile Val Ile Gly His Leu Leu Glu Glu Asn Arg Trp Met Asn
                     40
gag too ata act goo tta gtg att ggt tot tgt act gga atc gtt att
                                                                    549
Glu Ser Ile Thr Ala Leu Val Ile Gly Ser Cys Thr Gly Ile Val Ile
                                                                    597
cta ctg ata agt gga gga aag aac tot cat att tta gtg tto agt gaa
Leu Leu Ile Ser Gly Gly Lys Asn Ser His Ile Leu Val Phe Ser Glu
                                                                    645
gat ctt ttc ttc att tac ctt ctt ccg cca atc att ttt aat gct ggg
Asp Leu Phe Phe Ile Tyr Leu Leu Pro Pro Ile Ile Phe Asn Ala Gly
                                                                    693
ttc cag gtg aaa aag aaa tcg ttc ttc cgc aat ttc agc act atc atg
Phe Gln Val Lys Lys Ser Phe Phe Arg Asn Phe Ser Thr Ile Met
ctc ttt ggg gca ctt ggc acc ttg ata tca ttc att att ata tca tta
                                                                    741
Leu Phe Gly Ala Leu Gly Thr Leu Ile Ser Phe Ile Ile Ser Leu
```

ggt Gly	gcc Ala	att Ile	ggc Gly	att Ile 135	t t c Phe	aag Lys	aaa Lys	atg Met	aat Asn 140	att Ile	gga Gly	agc Ser	ctt Leu	gaa Glu 145	att Ile	789
gga Gly	gat Asp	tac Tyr	ctt Leu 150	gca Ala	att Ile	ggg Gly	gca Ala	atc Ile 155	ttc Phe	tct Ser	gct Ala	aca Thr	gat Asp 160	tct Ser	gta Val	837
tgc Cys	acc Thr	tta Leu 165	caa Gln	gtg Val	ctt Leu	aat Asn	cag Gln 170	gat Asp	gaa Glu	aca Thr	ccc Pro	tta Leu 175	ttg Leu	tac Tyr	agt Ser	885
cta Leu	gtt Val 180	ttt Phe	ggg Gly	gaa Glu	ggt Gly	gtt Val 185	gtg Val	aat Asn	gat Asp	gcc Ala	aca Thr 190	tct Ser	gta Val	gtt Val	ctg Leu	933
ttc Phe 195	aat Asn	gct A l a	atc Ile	cag Gln	aac Asn 200	ttt Phe	gac Asp	tta Leu	tct Ser	cac His 205	atc Ile	gac Asp	acg Thr	ggc Gly	aaa Lys 210	981
gct Ala	atg Met	gaa Glu	tta Leu	gtt Val 215	gga Gly	aac Asn	ttt Phe	cta Leu	tac Tyr 220	ttg Leu	ttt Phe	gcc Ala	tca Ser	agc Ser 225	act Thr	1029
gcc Ala	cta Leu	gga Gly	gtt Val 230	gct Ala	gct Ala	ggc Gly	cta Leu	ctg Leu 235	agc Ser	gcc Ala	tat Tyr	att Ile	att Ile 240	aaa Lys	aaa Lys	1077
ctc Leu	tac Tyr	ttt Phe 245	gga Gly	agg Arg	cac His	tca Ser	act Thr 250	gac Asp	cgt Arg	gag Glu	gtt Val	gct Ala 255	ata Ile	atg Met	ata Ile	1125
ctc Leu	atg Met 260	Ala	tac Tyr	cta Leu	tct Ser	tac Tyr 265	atg Met	ctt Leu	gct Ala	ga a Glu	tta Leu 270	Phe	tat Tyr	tta Leu	agt Ser	1173
gca Ala 275	Ile	ctc	act Thr	gt g Val	ttt Phe 280	Phe	tct Ser	ggg Gly	atc	gtg Val 285	Met	tct Ser	cac	tac Tyr	acc Thr 290	1221
tgg Trp	cat	aat Asn	gtg Val	act Thr 295	Glu	agc Ser	tcg Ser	aga Arg	gto Val 300	Thr	Thr	aag Lys	cac His	act Thr 305	Phe	1269
gct Ala	aca Thr	tta Leu	tca Ser 310		att	gct Ala	gaa Glu	ata Ile 315	Phe	ata Ile	tto Phe	ctt Leu	tat Tyr 320	Val	ggt Gly	1317
atg Met	gat Asp	gct Ala 325	Let	gac Asp	att Ile	gag Glu	aag Lys 330	Trp	aaç Lys	ttt Phe	gta Val	ago Ser 335	: Asp	ago Ser	cct Pro	1365
gga Gly	ata / Ile 340	Se:	gtt Val	cag Gln	gtt Val	ago Ser 345	: Ser	ata : Ile	tto Lev	cto Let	ggt Gly 350	/ Let	gtt Val	tto Leu	gtt Val	1413
gga	a aga	a gca	a gca	a ttt	gtt	t tto	coa	ttg	, tca	tto	tto	g tco	aac	tto	acc	1461

Gly 355	Arg	Ala	Ala	Phe	Val 360	Phe	Pro	Leu	Ser	Phe 365	Leu	Ser	Asn	Leu	Thr 370	
														aca Thr 385		1509
tgg Trp	tgg Trp	gct Ala	gga Gly 390	ctt Leu	atg Met	aga Arg	ggt Gly	gcc Ala 395	gtt Val	tct Ser	atg Met	gcc Ala	ctt Leu 400	gct Ala	tat Tyr	1557
														gca Ala		1605
atg Met	atc Ile 420	aca Thr	agt Ser	act Thr	atc Ile	act Thr 425	gtt Val	gtc Val	ctt Leu	ttc Phe	agc Ser 430	aca Thr	gtc Val	gtg Val	ttt Phe	1653
														cac His		1701
														tcc Ser 465		1749
														ctg Leu		1797
														acc Thr		1845
														ttc Phe		1893
														gga Gly		1941
								ttg Leu		tga	tgga	gat	acag	attg	Ca .	1991
aaa	agtg	gtc	ttgg	tgag	gg a	agag	ggca	g tt	tttt	ggta	atg	aggt	tac	gttt	tcttta	2051
atg	ttaa	tag	caag	tgtg	gt t	aaaa	aggg	g tt	gtota	agtt	tat	aggt	ttt.	gcag	atctca	2111
agt	atat	tca	tttg	ggtg	at c	atgt	ttto	a gc	tcag	ttat	tgc	tttt	ggt	catt.	gctgac	2171
cat	caat	ttc	tgtg	ggga	at t	ccta	tagg	t tt	tete	ccta	aca	gttc	ttt	tctt	catctt	2231
ttt	gcaa	ttt.	atcg	aaac	ac c	aaat	gggt	g ta	tatt	ctgt	aag	cttg	tgg	cata	gctagc	2291

ttaattgtot tgtaaaattt octacaggtt agagattggt tottgatatg tagatttoat 2351 atgattgtaa cattoccatt totcagaaaa gaaactataa tataaaattt otggtggotg 2411 tegeoogtge to 2423

<210> 15 <211> 540

<211> 340 <212> PRT

<213> Petunia hybrida

<220>

<221> peptide

<222> (1)..(540)

<223> Amino acid sequence of protein regulating the pH of vacuoles

<400> 15

Met Ala Phe Asp Phe Gly Thr Leu Leu Gly Asn Val Asp Arg Leu Ser 10 15

Thr Ser Asp His Gln Ser Val Val Ser Ile Asn Leu Phe Val Ala Leu 20 25 30

Ile Cys Ala Cys Ile Val Ile Gly His Leu Leu Glu Glu Asn Arg Trp \$35\$

Met Asn Glu Ser Ile Thr Ala Leu Val Ile Gly Ser Cys Thr Gly Ile $50 \hspace{1cm} 55 \hspace{1cm} 60 \hspace{1cm}$

Ser Glu Asp Leu Phe Phe Ile Tyr Leu Leu Pro Pro Ile Ile Phe Asn $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Ala Gly Phe Gln Val Lys Lys Lys Ser Phe Phe Arg Asn Phe Ser Thr $100 \,$ $\,$ $105 \,$

Ile Met Leu Phe Gly Ala Leu Gly Thr Leu Ile Ser Phe Ile Ile Ile 115 120 125

Ser Leu Gly Ala Ile Gly Ile Phe Lys Lys Met Asn Ile Gly Ser Leu 130 135 140

Glu Ile Gly Asp Tyr Leu Ala Ile Gly Ala Ile Phe Ser Ala Thr Asp 145 \$150\$

Ser Val Cys Thr Leu Gln Val Leu Asn Gln Asp Glu Thr Pro Leu Leu 165 \$170\$

Val Leu Phe Asn Ala Ile Gln Asn Phe Asp Leu Ser His Ile Asp Thr 195 200 205

Gly Lys Ala Met Glu Leu Val Gly Asn Phe Leu Tyr Leu Phe Ala Ser 210 215 220

Ser Thr Ala Leu Gly Val Ala Ala Gly Leu Leu Ser Ala Tyr Ile Ile 225 230 235

Lys Lys Leu Tyr Phe Gly Arg His Ser Thr Asp Arg Glu Val Ala Ile $245 \hspace{1.5cm} 250 \hspace{1.5cm} 250$

Met Ile Leu Met Ala Tyr Leu Ser Tyr Met Leu Ala Glu Leu Phe Tyr 260 265 270

Leu Ser Ala Ile Leu Thr Val Phe Phe Ser Gly Ile Val Met Ser His 275 280 285

Tyr Thr Trp His Asn Val Thr Glu Ser Ser Arg Val Thr Thr Lys His 290 295 300

Thr Phe Ala Thr Leu Ser Phe Ile Ala Glu Ile Phe Ile Phe Leu Tyr 305 \$310\$ \$315

Val Gly Met Asp Ala Leu Asp Ile Glu Lys Trp Lys Phe Val Ser Asp 325 330 335

Ser Pro Gly Ile Ser Val Gln Val Ser Ser Ile Leu Leu Gly Leu Val $340 \hspace{1.5cm} 345 \hspace{1.5cm} 345 \hspace{1.5cm} 350 \hspace{1.5cm}$

Leu Val Gly Arg Ala Ala Phe Val Phe Pro Leu Ser Phe Leu Ser Asn $355 \hspace{1.5cm} 360 \hspace{1.5cm} 365$

Leu Thr Lys Lys Thr Pro Glu Ala Lys Ile Ser Phe Asn Gln Gln Val $_{\rm 370}$ $_{\rm 370}$

Thr Ile Trp Trp Ala Gly Leu Met Arg Gly Ala Val Ser Met Ala Leu 385 \$390\$

Ala Tyr Asn Gln Phe Thr Arg Gly Gly His Thr Gln Leu Arg Ala Asn 405 410 415

Ala Ile Met Ile Thr Ser Thr Ile Thr Val Val Leu Phe Ser Thr Val 420 425 430

Val Phe Gly Leu Met Thr Lys Pro Leu Ile Arg Ile Leu Leu Pro Ser 435 440 445

His Lys His Leu Ser Arg Met Ile Ser Ser Glu Pro Thr Thr Pro Lys 450 455

Ser Phe Ile Val Pro Leu Leu Asp Ser Thr Gln Asp Ser Glu Ala Asp 465 470475

Leu Glu Arg His Val Pro Arg Pro His Ser Leu Arg Met Leu Leu Ser 485 490 495

Thr Pro Ser His Thr Val His Tyr Tyr Trp Arg Lys Phe Asp Asn Ala Phe Met Arg Pro Val Phe Gly Gly Arg Gly Phe Val Pro Phe Ala Pro Gly Ser Pro Thr Asp Pro Val Gly Gly Asn Leu Gln <210> 16 <211> 2553 <212> DNA <213> Nierembergia hybrida <221> misc feature <222> (1)..(2553) <223> Nucleotide sequence of DNA encoding for protein regulating the pH of vacuoles <400> 16 aattattatt atttctctcc aactctcatt tctcagtttg ttgtgacttt ttcagagctt 60 qaaqttcagt taattcattt tocaatatat tgattgtttt catttgagcg cgagaggatt togtottoto aatotgottt caaatoottt ttgtttgtga tattogatat tattoactoa 180 gtttacctta atatttcctc gcactttctg aattcgagtg ctttgaagtg tgttggattt 240 300 cgaaaagcqq aagaaaattc agcaaaaacg ctgttgctga atttgcagca gtttgagttt ttgctaaata gctaagatct gattgaattt ttcactggtg cttataggga aattcgacgt 360 cgttttgact gcaatatttg tccgtgattc ggactttgtt gaaattttgc tatttgaaat ttgaatgtaa ggttgtcata gctttgccac tcggaaatac agtcagtgag aaagaaaaaa 480 536 aactgtgtag tgttttttcc acaagtattt ggtgaattga ggttcttgaa atg gcg

gat cat caa tca gtg gtg tcg gta aac ttg ttt gtt gca ctt att tgc Asp His Gln Ser Val Val Ser Val Asn Leu Phe Val Ala Leu Ile Cys 20 25

gcg tgt att gtg atc ggt cat tta ttg gag gaa aac aga tgg atg aat Ala Cys Ile Val Ile Gly His Leu Leu Glu Glu Asn Arg Trp Met Asn 35 40 50

gag tcc ata act gcc ctt gtg att ggt agt tgc act gga gtc atc att Glu Ser Ile The Ala Leu Val Ile Gly Ser Cys Thr Gly Val Ile Ile 55 60 65

ttt gac ttt ggg act ctg ctg gga aag atg aac aac tta aca act tct Phe Asp Phe Gly Thr Leu Leu Gly Lys Met Asn Asn Leu Thr Thr Ser

cta Leu	cta Leu	ata Ile	agt Ser 70	gga Gly	gga Gly	aag Lys	aac Asn	tca Ser 75	cat His	att Ile	tta Leu	gtg Val	ttc Phe 80	agc Ser	gaa Glu	776
				att Ile												824
ttc Phe	cag Gln 100	gtg Val	aaa Lys	aag Lys	aaa Lys	tca Ser 105	ttc Phe	ttc Phe	cgc Arg	aat Asn	ttc Phe 110	agt Ser	act Thr	atc Ile	atg Met	872
ctc Leu 115	ttt Phe	ggg Gly	gca Ala	gtt Val	ggc Gly 120	acc Thr	ttg Leu	ata Ile	tcg Ser	ttc Phe 125	att Ile	att Ile	ata Ile	tca Ser	gcg Ala 130	920
ggt Gly	gct Ala	att Ile	ggc Gly	att Ile 135	ttc Phe	aag Lys	aaa Lys	atg Met	gat Asp 140	att Ile	gga Gly	cac His	ctt Leu	gaa Glu 145	att Ile	968
gga Gly	gat Asp	tac Tyr	ctt Leu 150	gca Ala	att Ile	gga Gly	gca Ala	atc Ile 155	ttt Phe	gct Ala	gca Ala	aca Thr	gat Asp 160	tct Ser	gta Val	1016
				gtg Val												1064
cta Leu	gtg Val 180	ttt Phe	gga Gly	gaa Glu	ggt Gly	gtt Val 185	gtg Val	aat Asn	gat Asp	gcc Ala	aca Thr 190	tct Ser	gta Val	gtg Val	ctg Leu	1112
				cag Gln												1160
gct Ala	ctg Leu	caa Gln	tta Leu	att Ile 215	gga Gly	aac Asn	ttt Phe	cta Leu	tac Tyr 220	ttg Leu	ttt Phe	gcc Ala	tcg Ser 225	agc Ser	act Thr	1208
ttc Phe	cta Leu	ggg Gly	gtt Val 230	gct Ala	gtt Val	ggc Gly	cta Leu 235	cta Leu	agt Ser	gcc Ala	ttt Phe	ata Ile 240	att Ile	aag Lys	aaa Lys	1256
				agg Arg												1304
ctc Leu	atg Met 260	gcg Ala	tac Tyr	cta Leu	tca Ser	tac Tyr 265	atg Met	ctt Leu	gct Ala	gaa Glu	tta Leu 270	ttc Phe	tat Tyr	tta Leu	agt Ser	1352
gga Gly 275	atc Ile	ctc Leu	act Thr	gtg Val	ttt Phe 280	ttc Phe	tgt Cys	ggg Gly	atc Ile	gtg Val 285	atg Met	tct Ser	cac His	tat Tyr	acc Thr 290	1400
tgg	cat	aat	gtg	act	gag	agc	tca	aga	gtc	act	acc	aag	cac	acg	ttt	1.448

Trp	His	Asn	Val	Thr 295	Glu	Ser	Ser	Arg	Val 300	Thr	Thr	Lys	His	Thr 305	Phe	
gct Ala	aca Thr	tta Leu	tca Ser 310	ttt Phe	att Ile	gct Ala	gaa Glu	ata Ile 315	ttc Phe	ata Ile	ttc Phe	ctt Leu	tat Tyr 320	gtt Val	ggt Gly	1496
atg Met	gat Asp	gct Ala 325	ttg Leu	gac Asp	att Ile	gag Glu	aag Lys 330	tgg Trp	aag Lys	ttt Phe	gta Val	agc Ser 335	gac Asp	agc Ser	ccc Pro	1544
gga Gly	aca Thr 340	tca Ser	att Ile	aag Lys	gtc Val	agc Ser 345	tca Ser	att Ile	ctg Leu	cta Leu	ggt Gly 350	ctt Leu	gtt Val	ttg Leu	gtt Val	1592
gga Gly 355	agg Arg	gga Gly	gcc Ala	ttt Phe	gtt Val 360	ttc Phe	ccc Pro	ttg Leu	tca Ser	ttc Phe 365	ttg Leu	tcc Ser	aac Asn	ttg Leu	acc Thr 370	1640
aag Lys	aaa Lys	aat Asn	cct Pro	gag Glu 375	gac Asp	aag Lys	att Ile	agc Ser	ttt Phe 380	aac Asn	cag Gln	cag Gln	gtt Val	aca Thr 385	ata Ile	1688
tgg Trp	tgg Trp	gct Ala	ggg Gly 390	ctt Leu	atg Met	cga Arg	ggt Gly	gct Ala 395	gtt Val	tct Ser	atg Met	gcc Ala	ctt Leu 400	gct Ala	tat Tyr	1736
aat Asn	cag Gln	ttt Phe 405	acc Thr	agg Arg	gga Gly	ggt Gly	cat His 410	act Thr	cag Gln	tta Leu	cgt Arg	gcc Ala 415	aat Asn	gca Ala	ata Ile	1784
atg Met	atc Ile 420	acg Thr	agt Ser	act Thr 425	atc Ile	act Thr	gtt Val	gtc Val	ctt Leu	ttc Phe	agc Ser 430	aca Thr	gtg Val	gta Val	ttt Phe	1832
ggg Gly 435	ttg Leu	atg Met	aca Thr	aaa Lys	cct Pro 440	tta Leu	att Ile	cta Leu	tta Leu	ttg Leu 445	Leu	ccc Pro	tca Ser	caa Gln	aaa Lys 450	1880
cac His	ttg Leu	atc Ile	aga Arg	atg Met 455	atc Ile	tcc Ser	tct Ser	gaa Glu	ccg Pro 460	atg Met	act Thr	cca Pro	aaa Lys	tcc Ser 465	ttc Phe	1928
att	gtg Val	cca Pro	ctt Leu 470	ctt Leu	gac Asp	agc Ser	aca Thr	caa Gln 475	gac Asp	tca Ser	gaa Glu	gct Ala	gat Asp 480	ctg Leu	ggc Gly	1976
cga Arg	cat His	gta Val 485	ccc Pro	cgt Arg	ccc Pro	cac His	agt Ser 490	ttg Leu	cgg Arg	atg Met	ctc Leu	ctg Leu 495	Ser	acc Thr	cca Pro	2024
tct Ser	cac His 500	Thr	gta Val	cat His	tac Tyr 505	Tyr	tgg Trp	aga Arg	aaa Lys	ttt Phe	gac Asp 510	Asn	gca Ala	ttc Phe	atg Met	2072
cgt Arg	cct	gtt Val	ttc Phe	ggt Gly	gga Gly	cga Arg	ggt Gly	ttt Phe	gta Val	cct Pro	ttt Phe	gtt Val	cca Pro	gga Gly	tca Ser	2120

515 530 cet act gaa eeg gte gaa eeg ace gaa eea aga eea gee gaa tea aga 2168 Pro Thr Glu Pro Val Glu Pro Thr Glu Pro Arg Pro Ala Glu Ser Arg cca acc gaa cca act gat gag tgattacact gatggagatg caggttgcac 2219 Pro Thr Glu Pro Thr Asp Glu 550 taaagtccca ctggccttgg agaaggacga aggcagtttt ttgggtttga ggttttgttt 2279 actqttaata qttttcqaat qtggttaaaa aagggttgtc tagtttttat atataggtcg 2339 cagatacgta atttcagctc agttcccgag gtgaacccct tagaggtttt cttcctgacg 2399 gtttttcttc ttttttgtaa tttatcaaaa acaccaaatg ggtgtatatt ctttaagctt 2459 gtagettaat tacettataa geatgtggta gegttegtgt aatatgtaaa attteeattg 2519 2553 ccagaaaaga aacttccata caatatttct gccg <210> 17 <211> 553 <212> PRT <213> Nierembergia hybrida <220> <221> peptide (1)..(553) <223> Amino acid sequence of protein regulating the pH of vacuoles <400> 17 Met Ala Phe Asp Phe Gly Thr Leu Leu Gly Lys Met Asn Asn Leu Thr Thr Ser Asp His Gln Ser Val Val Ser Val Asn Leu Phe Val Ala Leu Ile Cys Ala Cys Ile Val Ile Gly His Leu Leu Glu Glu Asn Arg Trp Met Asn Glu Ser Ile Thr Ala Leu Val Ile Gly Ser Cys Thr Gly Val Ile Ile Leu Leu Ile Ser Gly Gly Lys Asn Ser His Ile Leu Val Phe 65 Ser Glu Asp Leu Phe Phe Ile Tyr Leu Leu Pro Pro Ile Ile Phe Asn Ala Gly Phe Gln Val Lys Lys Ser Phe Phe Arg Asn Phe Ser Thr 100 Ile Met Leu Phe Gly Ala Val Gly Thr Leu Ile Ser Phe Ile Ile Ile

120 125 Ser Ala Gly Ala Ile Gly Ile Phe Lys Lys Met Asp Ile Gly His Leu Glu Ile Gly Asp Tyr Leu Ala Ile Gly Ala Ile Phe Ala Ala Thr Asp 155 Ser Val Cys Thr Leu Gln Val Leu Asn Gln Glu Glu Thr Pro Leu Leu 170 Tyr Ser Leu Val Phe Gly Glu Gly Val Val Asn Asp Ala Thr Ser Val 185 Val Leu Phe Asn Ala Val Gln Asn Phe Asp Leu Ser His Ile Ser Thr Gly Lys Ala Leu Gln Leu Ile Gly Asn Phe Leu Tyr Leu Phe Ala Ser Ser Thr Phe Leu Gly Val Ala Val Gly Leu Leu Ser Ala Phe Ile Ile Lys Lys Leu Tyr Phe Gly Arg His Ser Thr Asp Arg Glu Val Ala Ile Met Ile Leu Met Ala Tyr Leu Ser Tyr Met Leu Ala Glu Leu Phe Tyr Leu Ser Gly Ile Leu Thr Val Phe Phe Cys Gly Ile Val Met Ser His 280 Tyr Thr Trp His Asn Val Thr Glu Ser Ser Arg Val Thr Thr Lys His Thr Phe Ala Thr Leu Ser Phe Ile Ala Glu Ile Phe Ile Phe Leu Tyr Val Gly Met Asp Ala Leu Asp Ile Glu Lys Trp Lys Phe Val Ser Asp Ser Pro Gly Thr Ser Ile Lys Val Ser Ser Ile Leu Leu Gly Leu Val Leu Val Gly Arg Gly Ala Phe Val Phe Pro Leu Ser Phe Leu Ser Asn Leu Thr Lys Lys Asn Pro Glu Asp Lys Ile Ser Phe Asn Gln Gln Val Thr Ile Trp Trp Ala Gly Leu Met Arg Gly Ala Val Ser Met Ala Leu Ala Tyr Asn Gln Phe Thr Arg Gly Gly His Thr Gln Leu Arg Ala Asn

410

Ala	Ile	Met	Ile 420	Thr	Ser	Thr	Ile	Thr 425	Val	Val	Leu	Phe	Ser 430	Thr	Val	
Val	Phe	Gly 435	Leu	Met	Thr	Lys	Pro 440	Leu	Ile	Leu	Leu	Leu 445	Leu	Pro	Ser	
Gln	Lys 450	His	Leu	Ile	Arg	Met 455	Ile	Ser	Ser	Glu	Pro 460	Met	Thr	Pro	Lys	
Ser 465	Phe	Ile	Val		Leu 70	Leu	Asp	Ser		Gln 75	Asp	Ser	Glu		Asp 30	
Leu	Gly	Arg	His	Val 485	Pro	Arg	Pro	His	Ser 490	Leu	Arg	Met	Leu	Leu 495	Ser	
Thr	Pro	Ser	His 500	Thr	Val	His	Tyr	Tyr 505	Trp	Arg	Lys	Phe	Asp 510	Asn	Ala	
Phe	Met	Arg 515	Pro	Val	Phe	Gly	Gly 520	Arg	Gly	Phe	Val	Pro 525	Phe	Val	Pro	
Gly	Ser 530	Pro	Thr	Glu	Pro	Val 535	Glu	Pro	Thr	Glu	Pro 540	Arg	Pro	Ala	Glu	
Ser 545	Arg	Pro	Thr	Glu	Pro 550	Thr	Asp	Glu								
<210 <211 <211 <211	1> . 2> .	18 2361 DNA Tore	nia :	hybr:	ida											
<22 <22 <22 <22	1> : 2> 3> :	misc (1). Nucl	.(23 eoti	61) de s		nce	of Di	NA e	ncod	ing	for	prot	ein	regu	lating	the
	0> 1 ggag		ccga	gctg	ca g	catc	acct:	t gc	ttat	gtaa	gct	ttaa	aag	tatc	agaatt	60
gaa	tatc	gac	cact	ggaa	ag t	gttt	tagg	a ct	tgga	ttot	tat	ctat	tga	gctt	gtttga	120
agg	tgaa	aaa	aggc	toga	tc t	cgtt	cctc	t at	agtt	ggtt	ttc	tgga	gtt	gcaa	gcgact	180
cta	ctcg	gaa	tctc	tttc	cg c	ctta	ttgg	a ag	ctct	gctt	tac	taaa	aaa	agtt	tgtctt	240
ttt	atct	ctg.	attc	atca	ta a	aatc	tgcg	g ga	gatt	caga	agc	ggag	atc	tggt	gcccag	300
agc	agga	gtt	tcaa	cttt	ga g	cccg	ttta	t at	ttat	aaac	aaa	ttcc	gag	tcca	aagatt	360
gaa	cttt	gaa	ataa	tcaa	at a	atca	agca.	a gc						tct Ser		413

att aag cta geg gea agt gaa act gae aat ttg tgg age tet ggt eac 461

Ile	Lys	Leu	Ala 10	Ala	Ser	Glu	Thr	Asp 15	Asn	Leu	Trp	Ser 20	Ser	Gly	His	
				gct Ala												509
				cat His												557
				ata Ile												605
				aaa Lys 75												653
ttc Phe	ttc Phe	atc Ile	tat Tyr 90	gcg Ala	ctg Leu	cca Pro	cca Pro	atc Ile 95	att Ile	ttt Phe	aat Asn	gcg Ala	ggg Gly 100	ttc Phe	caa Gln	701
				tca Ser												749
				acc Thr												797
				ccc Pro												845
				gct Ala 155												893
cag Gln	gtg Val	cta Leu	agc Ser 170	cag Gln	gac Asp	gaa Glu	aca Thr	cca Pro 175	ctg Leu	ttg Leu	tac Tyr	agt Ser	cta Leu 180	gtg Val	ttt Phe	941
				gta Val												989
				gac Asp												1037
				ttc Phe 220												1085
gtt	ctg	act	gga	ttg	ctt	agt	gca	tac	atc	ata	aaa	aag	ctc	tat	ttt	1133

Val	Leu	Thr	Gly	Leu 235	Leu	Ser	Ala	Tyr	Ile 240	Ile	Lys	Lys	Leu	Tyr 245	Phe	
gga Gly	agg Arg	cac His	tcc Ser 250	act Thr	gat Asp	cgc Arg	gag Glu	gtt Val 255	gcc Ala	ata Ile	atg Met	ata Ile	ctc Leu 260	atg Met	gct Ala	1181
				atg Met												1229
				tgt Cys												1277
				tca Ser												1325
tca Ser	ttt Phe	gtt Val	gct Ala	gaa Glu 315	ata Ile	ttt Phe	ata Ile	ttt Phe	ctg Leu 320	tat Tyr	gtt Val	ggc Gly	atg Met	gat Asp 325	gct Ala	1373
				aaa Lys												1421
				gca Ala												1469
				cct Pro												1517
				atc Ile												1565
				gga Gly 395												1613
				ctc Leu												1661
				att Ile												1709
				atc Ile												1757
				gaa Glu												1805

455	460	405	470
		465	470
ctc ggg gaa agt Leu Gly Glu Ser	cag gac tct gtg Gln Asp Ser Val 475	gcc gaa cta ttc agc a Ala Glu Leu Phe Ser : 480	atc aga ggt 1853 Tle Arg Gly 485
caa act tca caa Gln Thr Ser Gln 490	Gly Gly Glu Pro	gtt gct cga ccg agc a Val Ala Arg Pro Ser 8 495	ago ota ogo 1901 Ser Leu Arg 500
atg tta ctc aca Met Leu Leu Thr 505	aag ccc act cat Lys Pro Thr His 510	acg gtg cac tat tat t Thr Val His Tyr Tyr 1 515	gg aga aaa 1949 Prp Arg Lys
ttc gac aat gct Phe Asp Asn Ala 520	ttt atg cgt ccg Phe Met Arg Pro 525	gto ttt ggt ggg cgt g Val Phe Gly G ly A rg (530	gc ttt gta 1997 Sly Phe Val
cca tat gtt ccc Pro Tyr Val Pro 535	ggt tca ccg act Gly Ser Pro Thr 540	gaa oga ago gtt ogo a Glu Arg Ser Val Arg <i>F</i> 545	ac tgg gaa 2045 sn Trp Glu 550
gaa gag acc aaa Glu Glu Thr Lys	cag taaaaagatt t Gln 555	tettgtgtg aatgatggtg	aagagattag 2100
attotttgga tatto	cgtttt tcttatttct	aatgtgtcac ctgggaagt	t gttgaatgaa 2160
attatattat cgtc	tggttt tcgactttgc	gcttgtggaa ggaatattt	c ttctggattt 2220
		atatttttgt tagaaacto	
gtatattgtt ggtaa	atgcag ctgggttttg	ttttgtatgt atagtcatc	a agtgtgtatt 2340
tattcatatt gtta			2361
<210> 19 <211> 555 <212> PRT <213> Torenia B	nybrida		
<220> <221> peptide <222> (1)(555) <223> Amino aci		otein regulating the	pH of vacuoles
<400> 19			
Met Gly Phe Glu	Ser Val Ile Lys 1	Leu Ala Ala Ser Glu T 10	hr Asp Asn 15
Leu Trp Ser Ser 20	Gly His Gly Ser	Val Val Ala Ile Thr I 25	eu Phe Val 30
Thr Leu Leu Cys 35	Thr Cys Ile Val :	(le Gly His Leu Leu G 45	lu Glu Asn

FILLER CONTROL CONTROL OF THE CONTRO

Arg Trp Met Asn Glu Ser Ile Ile Ala Leu Ile Ile Gly Leu Ala Thr Gly Val Ile Ile Leu Leu Ile Ser Gly Gly Lys Ser Ser His Leu Leu Val Phe Ser Glu Asp Leu Phe Phe Ile Tyr Ala Leu Pro Pro Ile Ile 85 90 95 Phe Asn Ala Gly Phe Gln Val Lys Lys Ser Phe Phe Arg Asn Phe Ala Thr Ile Met Met Phe Gly Ala Val Gly Thr Leu Ile Ser Phe Ile Ile Ile Ser Leu Gly Thr Ile Ala Phe Phe Pro Lys Met Asn Met Arg Leu Gly Val Gly Asp Tyr Leu Ala Ile Gly Ala Ile Phe Ala Ala Thr Asp Ser Val Cys Thr Leu Gln Val Leu Ser Gln Asp Glu Thr Pro Leu 165 170 175 Leu Tyr Ser Leu Val Phe Gly Glu Gly Val Val Asn Asp Ala Thr Ser Val Val Leu Phe Asn Ala Val Gln Asn Phe Asp Leu Pro His Met Ser Thr Ala Lys Ala Phe Glu Leu Val Gly Asn Phe Phe Tyr Leu Phe Ala Thr Ser Thr Val Leu Gly Val Leu Thr Gly Leu Leu Ser Ala Tyr Ile 225 230 240 Ile Lys Lys Leu Tyr Phe Gly Arg His Ser Thr Asp Arg Glu Val Ala Ile Met Ile Leu Met Ala Tyr Leu Ser Tyr Met Leu Ala Glu Leu Phe

Asp Leu Ser Gly Ile Leu Thr Val Phe Phe Cys Gly Ile Val Met Ser

His Tyr Thr Trp His Asn Val Thr Glu Asn Ser Arg Val Thr Thr Lys

His Thr Phe Ala Thr Leu Ser Phe Val Ala Glu Ile Phe Ile Phe Leu

Tyr Val Gly Met Asp Ala Leu Asp Ile Glu Lys Trp Arg Phe Val Ser

Gly Ser Met Thr Thr Ser Ala Ala Val Ser Ala Thr Leu Leu Gly Leu 345

Val Leu Leu Ser Arg Ala Ala Phe Val Phe Pro Leu Ser Phe Leu Ser Asn Leu Ala Lys Lys Ser Pro Leu Glu Lys Ile Ser Leu Arg Gln Gln Ile Ile Ile Trp Trp Ala Gly Leu Met Arg Gly Ala Val Ser Met Ala Leu Ala Tyr Lys Gln Phe Thr Arg Glu Gly Leu Thr Val Glu Arg Glu Asn Ala Ile Phe Ile Thr Ser Thr Ile Thr Ile Val Leu Phe Ser Thr Val Val Phe Gly Leu Met Thr Lys Pro Leu Ile Asn Leu Leu Ile Pro 435 Ser Pro Lys Leu Asn Arg Ser Val Ser Ser Glu Pro Leu Thr Pro Asn Ser Ile Thr Ile Pro Leu Leu Gly Glu Ser Gln Asp Ser Val Ala Glu Leu Phe Ser Ile Arg Gly Gln Thr Ser Gln Gly Gly Glu Pro Val Ala Arg Pro Ser Ser Leu Arg Met Leu Leu Thr Lys Pro Thr His Thr Val His Tyr Tyr Trp Arg Lys Phe Asp Asn Ala Phe Met Arg Pro Val Phe Gly Gly Arg Gly Phe Val Pro Tyr Val Pro Gly Ser Pro Thr Glu Arg 530 540 Ser Val Arg Asn Trp Glu Glu Glu Thr Lys Gln <210> 20 <211> 6298 <212> DNA <213> Ipomea nil <220> <221> misc_feature <222> (1)..(6298) <223> Nucleotide sequence of promoter region of gene encoding for protein regulating the pH of vacuoles

<400> 20
gatotcagto tgtggatgto ctagagacat toatatttga agttgagagt tagotaaata 6
gaaaggtaaa gacaattgga toatataaag gtgatgagta ttatgggaaa coatcaaaag 12
ttgggcaaat toccgtocca tttaagaaat toctcgaato taaaggcatt tgtgcataat 18

acacaatgtc aggcacacca caacaaaatg gtgtggaaga aaggtgaaat cgtactctaa 240 gggaaatggt taggagttag gtaaataatt gtacattgct tqtttcattg tqqatatatq cattaaaaac aacagcatac ttactcaata qqqttcctaq taaqqttqtt ttttaaaaca 360 ccttatgaac tgtggacaag aaggaaacct agtttgagac atcttcacat tcagggttgt 420 caagetggag tgatgatata taatecacat gaaaataaat tatggatate cagaaccatt 480 aatggttatt toattggata tooagaaagg totaaaggta catgtttatt gtootaatca 540 taagtacqaq qattqttqaq totqqtaatq otcqcttcat ttaaaatqqc qaagtcaqtq 600 ggagtgtggg agctcgtaat gttaaaatta aggagtcatt gatggttcta gattcatcaa 660 gtgatccttt tttcctgttg ttgttcctat tgttgcagtg cagtgtagcc ttatggaaat 720 actttggaac aacagcaact agatgctcaa attccacatg aggaagctat tgtaaatgaa 780 gatgaggttg aaactcaaga tgatgatcaa gtgaaatctc agcaggaagt gacattaagg 840 aggtetacta tagatagaaa agateaacca ttettgatga etatattgtt tatacaettg 900 agcattgata attatccagt ctcatttaac caagccatac aggataataa ttctccttga 960 qqattatttt qqttttqqtq qctcattctq ttcttqaqct ccaccaaatq qttqttaaaa 1020 ttacctttct gaatggtaaa ttaaaagagg aagtatacat ggattagccg taaggcttca 1080 tqqccacaqq aaaqqaaaat ctqqtatqta qattqaaqat qtcqatctat qqattaaaac 1140 atgcttctag acaatggtac ttgagattgt catttggttt tgtagagatc actgttgatc 1200 ggtgtatcca cataaaggtt taatggaagc aagtttgtaa tootagtatt acatgttaac 1260 gacattette ttgetgetaa taataaaagg gatgttgegt gatgttaagg aatagettte 1320 taagaacttt gaaatgaagg atatgggtga gacttcatat gtgattggaa taagaaatat 1380 teegtaatag ateacatggg attttaggtt catectagaa gacteacatt aacaaagttt 1440 tagaaaqata caaactggaa atctgcaaag agggtcctgt gatacttaca aggcactaag 1500 gaccacatgc tcacctataa aatgaacgaa taacctagag gttataggtt attcggattc 1560 agactatgcc ggatgtttgg atacccqaaa atccacattc gaatatattt ttccacttgc 1620 togtggagca atatottgga tgagtgtgaa ggagcotgto attgctactt ccactataag 1680 ggcagaattt gtagcatgct ttgaggctag tagacactat aaaaattggc tgccttgtgc 1740 caacatcatt tgcatccagc tataagcatc tccattttcg aacatcattc gattcttata 1800 gotgqatqaa qatqattcac tqcactttqq ttqcatattq aaqctqcqat tqctatcqaa 1860

aacaaataac ctatctatat aaaacaaacg acttagattt agggaataag aaggaagata 1920

ctttttttaa aatoocaaaa ttacotttta ggtttgacct gcaaataaca ctttaagato 1980 aaatcagata aaatgtcata atcaatgatc aaattgaata attttagtag tcgaggatca 2040 aattggtaaa atccccatag tcgagggact aaaccagtaa ttttctcgcg tttgaacgtt 2100 tgtccgaaaa ttggcattag cgatagctta attgagtttt tcaattctct aattttttaa 2160 attttgtttc ttcataaaat ccttcacttt ttcactttqc taatattttg ccqaatttat 2220 aatatttcca atttctaaag tagcagaacc ccagacgttg aactgccaat ttttttttt 2280 gtttttgttt tttgttttt tatttcctta tccctccacc tcattttgaa gttaattatt 2340 attattaatt cattaatttt taaaatagag agactgcatt aacacaaaat tagccaatta 2400 ggtagcagaa ttaaatttaa acaaacaagt tggtttaatg taatttttgt caatttaatt 2460 tototattit tggacaaaaa ttaggtagac ttattaaatt aaataaacat gtttgtttaa 2520 ttttacttct tctacctaag tttgtgtcaa ttcagtctct ctattttata aattaatgaa 2580 tggttaaata taacttataa gtgcattgtg tccaaatgat cacaagagtt aggccaactt 2640 cttttttcat ataggtgatt cttttttcga gtattacgta cacttcagtc ttgtcaacta 2700 acacttagaa tttagttqtc attttcqaac ataggtqtca actaagtttq gtatccacta 2760 tatagcacat gtattccaag agatttaatc tcattcatca tgacaacttc tctaccaatt 2820 ctttgctcaa tcttttagtt agcgaattcg ctatattatc ctataacttt cagtatagtc 2880 tatgictaga ettacegita tacatattae taatttacta tatgicette caattgegaa 3000 ttgactatcg taatgcatac atattggaga tatatatttt ttctaggggt aaatgcaggt 3060 tggatcgacc cattaggcct gccccaacgc aaactttttt tgtcgggctt ttgcggaccg 3120 gcttgcgggt tagaaaatac acagcccaag cccgtccatg cgggctcgcg ggccttattt 3180 caaaaaaaaa aaaaatacta cgtattattc tattatttta tattcaaata gtctaatata 3240 aataaataaa aaaatogtgt ttgaaaatta otttttttt tatatatatt ttttaaaatt 3300 gggcatggct cgtcggctgg tccgttaggt ccgctctttt gtaggccatt tttttgtgtg 3480 accetaaate gteteacege gggacaagta tagggcaget tgeggactte ggteeatttt 3540 tatatatata taacattaaa atttaaaaaa tatagatttt ttttaaacat gaaaaaaatt 3660

ggctggtcca taaaaaqcccq taaaaaqaat acgttggggt tggcctaatg gaccgatcca 3780 accogcattg acacccatag gaaaaacatc tatctccaat ttgtatgcat tacaatagtc 3840 aatttgcaat tggaagagca tatagtaatt agtaatatgt ataacqqtaa qtctagacat 3900 attgaacatg tacataatac tattaaatag cttcttgcaa taggttttat ttttgttgac 3960 tatacatgaa gttataggat aatatagcga attcacaaac taaaagattg agcaatgagt 4020 tagtagaaaa gttgtcatga tggatgagat taaatctctt qqaatacatg tgctagtgga 4080 taccaaactt agctgacacc tatgttcgaa aatgacaact aaattctact acgtaagtgt 4140 tagttgacaa agtagagtgt actgaatact cgaaaaaaaga atcagttatg tgaaaaaaaa 4200 aagttqqcct aactcttqtq atcattttag acacaatqca cttataagtt atactagtat 4260 tttttatgcg cgatgcacaa aaaatagttg cacaatatta atacattata ttaaaatttt 4320 aaatttattt agattttaga tatttaaatt gttctaacta ataatactaa taataataat 4380 gtaaataatt tttataaatt tcagatttat atttaggtaa taattaacat ataactcaaa 4440 tatataatgt gtatatatta ttattaaggg aaaatgacac tttttttccc tgagttatat 4500 accaettttt tteeettgag ttatttaagt ggetetttte eecetaaaat gttaaatgga 4560 aaattattac tataatttgg ttcaaaccaa acagatacta tagcaaccaa accaaaatat 4680 tocaattaca atttagaato aaaacgegat atttaaagtt tattaaaatt gcaaatcgga 4740 atggtcggtt catgttccqa actgaaaaaa taaaatacat ttattgttga atttagacta 4800 ttttaaaata aaaaataaaa caaaatttta aaataaagac ggttcaaaat cgcgaaccga 4860 atcoggaacc googgttcac ggttcatgat coagtttttt tqqttcataa aatttaataa 4920 attgaaatct aaatattgga ttctagatct gaatcataac cgaaaacttt taattcgatt 4980 actatagtgt coggttcagt togaacogaa cogtggtcat tgctacatat acacaataat 5040 ttqttqqaqa aattaaataa ataaaatqtt tactttaaqq qtaqaaatqt caatttaata 5100 tttcgggggg aaaaccacca cttttaaatt aattgagggg gctaatgtgc ttatataaat 5160 ataattgagg ggaaaaagtg gtataagtat ataacttagg gggaaaaaat gtcattttcc 5220 ctattattaa tgaaqaaqat aagaaaatat atggtgaatg catgtgcctt tatagcataa 5280 tgtacaaaaa aaacttaacg aaaaaaacaa acataaataa ggggtataac tttcattcac 5340

acttattatg tttttagatt agatttaacc atacatgcat taatttgtaa aatagcgaga 5400

gtgaattaac acaaaattag gtagaagaag taaaattaa caacaattt tattaattt 5520
aacaaacttg tttgtttaaa ttgaattot ctacctaatt ggctaattt gtgttaatgc 5580
agtctctcta tttaaaaaa taatgaatta ataataaa ttaacttcaa aatgaggtgg 5640
agggataagg aaataaaaaa acaaaaacaa aaaacaaaaa aaaaaaattg gcagttcaac 5700
gtctggggtt ctgctacttt aaatactgat aggaggttg tcgttcattt tacaagtatt 5700
aaggatgaac acgtattgag aatgaaggct acagaaattt tcagacagat agatacataa 5820
atccgtataa tagagacaga gaaacagaaa aagaagaggt cacgttaatc ctgagattt 5880
cctccatttg tctgaagctc ttcatccttc aacataccc cacatctaa ctttaagtt 5940
tccaatcttt atcattcatc tttaatttcc agctctatct tgggatttg atgtaaatt 6000
tatttatttt tcgggtttc gtttccgatc ttatgcttt gttccaaagg gtatttgat 6060
tcatatatta tgagttttg atgtatttt tttggatttt tttggatttg tttggaaca gaaacacaga cattgggaaa agattattg 6240
caaaaattgt tttgattgtt ttggattttg tggtagaaaa aggggaagaa caaaaatg 6298