WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 97/16446

C07D 403/14, A61K 31/495

(43) International Publication Date:

9 May 1997 (09.05.97)

(21) International Application Number:

PCT/GB96/02624

(22) International Filing Date:

28 October 1996 (28,10,96)

(30) Priority Data:

9522473.9 2 November 1995 (02.11.95) GB 9523907.5 22 November 1995 (22.11.95) GB

(71) Applicant (for all designated States except US): MERCK SHARP & DOHME LIMITED [GB/GB]; Hertford Road, Hoddesdon, Herfordshire EN11 9BU (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): CHAMBERS, Mark, Stuart [GB/GB]; Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR (GB). HOBBS, Sarah, Christine [GB/GB]; Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR (GB). STREET, Leslie, Joseph [GB/GB]; Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR (GB).
- (74) Agent: THOMPSON, John; Merck & Co., Inc., European Patent Dept., Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(-

(54) Title: BICYCLIC HETEROARYL-ALKYLENE-(HOMO)PIPERAZINONES AND THIONE ANALOGUES THEREOF, THEIR PREPARATION AND THEIR USE AS SELECTIVE AGONISTS OF 5-HT1-LIKE RECEPTORS

(57) Abstract

A class of piperazinones, homopiperazinones and their thione analogues of formula (I), or salt or prodrug thereof: wherein Z represents hydrogen, halogen, cyano, nitro, trifluoromethyl, -OR⁵, -OCOR⁵, -OCOR⁵, -OCOR⁵, -OCH₂CN, -OCH₂CONR⁵R⁶, -SR⁵, -SOR⁵, -SO₂NR⁵R⁶, -NR⁵R⁶, -NR⁵COR⁶, -NR⁵CO₂R⁶, -NR⁵SO₂R⁶, -COR⁵, -CO₂R⁵, -CONR⁵R⁶, or a group of formula (Za), (Zb), (Zc) or (Zd) in which the asterisk * denotes a chiral centre; or Z represents an optionally substituted five-membered heteroaromatic ring selected from furan, thiophene, pyrrole, oxazole, thiazole, isoxazole, isothiazole, imidazole, pyrazole, oxadiazole, thiadiazole, triazole and tetrazole; X represents oxygen, sulphur, -NH- or methylene; Y¹ represents oxygen or sulphur, E represents a chemical bond or a straight or branched alkylene chain containing from 1 to 4 carbon atoms; Q represents a straigth or branched alkylene chain containing from 1 to 6 carbon atoms, optionally substituted in any

$$Z - R \underbrace{ \begin{array}{c} Q - N \\ T \\ \end{array} }_{V} U$$

position by one or more substituents selected from fluoro and hydroxy; T represents nitrogen or CH: U represents nitrogen or C-R²; V represents oxygen, sulphur or N-R³; G represents a group of formula (Ga), (Gb), (Gc) or (Gd) in which Y² represents oxygen or sulphur, R¹ represents C₃₋₆ alkenyl, C₃₋₆ alkynyl, aryl(C₁₋₆)alkyl or heteroaryl (C₁₋₆) and y of which groups may be optionally substituted; R², R³ and R⁴ independently represent hydrogen or C₁₋₆ alkyl; and R⁵ and R⁶ independently represent hydrogen, C₁₋₆ alkyl, trifluoromethyl, hentyl, methylphenyl, or an optionally substituted aryl(C₁₋₆)alkyl group; or R⁵ and R⁶, when linked through a nitrogen atom, together represent the residue of an optionally substituted azetidine, pyrrolidine, piperidine, morpholine or piperazine ring, are selective agonists of 5-HT₁-like receptors, being potent agonists of the human 5-HT_{1D0} receptor subtype whilst possessing at least a 10-fold selective affinity for the 5-HT₁-like receptor subtype relative to the 5-HT₁-like associated uith the treatment and/or prevention of clinical conditions, in particular migraine and associated disorders, for which a subtype-selective agonist of 5-HT₁-like receptors is indicated, whilst eliciting fewer side-effects, notably adverse cardiovascular events, than those associated with non-subtype-selective 5-HT₁-like receptor agonists.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	(E	Ireland	NZ	New Zealand
BG	Bulgaria	1T	haly	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	ū	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovskia	LT	Lithuania	TD	Chad
cz	Czech Republic	LÜ	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	17	Trinidad and Tobago
_		MD	Republic of Moldova	UA	Ukraine
EE	Estonia	MG	Madagascar	UG	Uganda
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	Prance	MR	Mauritania	VN	Vict Nam
GA	Gabon	MIK	Water Halling	***	

- 1 -

BICYCLIC HETEROARYL-ALKYLENE-(HOMO)PIPERAZINONES AND THIONE ANALOGUES THEREOF, THEIR PREPARATION AND THEIR USE AS SELECTIVE AGONISTS OF 5-HT1-LIKE RECEPTORS

The present invention relates to a class of substituted piperazinones, homopiperazinones and thione analogues thereof which act on 5-hydroxytryptamine (5-HT) receptors, being selective agonists of so-called "5-HT₁-like" receptors. They are therefore useful in the treatment of clinical conditions for which a selective agonist of these receptors is indicated.

5

10

15

20

25

30

It has been known for some time that 5-HT₁-like receptor agonists which exhibit selective vasoconstrictor activity are of use in the treatment of migraine (see, for example, A. Doenicke et al., The Lancet, 1988, Vol. 1, 1309-11; and W. Feniuk and P.P.A. Humphrey, Drug Development Research, 1992, 26, 235-240).

The human 5-HT₁-like or 5-HT_{1D} receptor has recently been shown by molecular cloning techniques to exist in two distinct subtypes. These subtypes have been termed 5-HT_{1D $_{\alpha}$} (or 5-HT_{1D-1}) and 5-HT_{1D $_{\beta}$} (or 5-HT_{1D-2}), and their amino acid sequences are disclosed and claimed in WO-A-91/17174.

The 5-HT_{1Da} receptor subtype in humans is believed to reside on sensory terminals in the dura mater. Stimulation of the 5-HT_{1Da} subtype inhibits the release of inflammatory neuropeptides which are thought to contribute to the headache pain of migraine. The human 5-HT_{1DB} receptor subtype, meanwhile, is located predominantly on the blood vessels and in the brain, and hence may play a part in mediating constriction of cerebral and coronary arteries, as well as CNS effects.

Administration of the prototypical 5-HT_{1D} agonist sumatriptan (GR43175) to humans is known to give rise at therapeutic doses to certain adverse cardiovascular events (see, for example, F. Willett *et al.*, *Br. Med. J.*, 1992, 304, 1415; J.P. Ottervanger *et al.*, *The Lancet*, 1993, 341, 861-2; and D.N. Bateman, *The Lancet*, 1993, 341, 221-4). Since sumatriptan

- 2 -

barely discriminates between the human 5-HT_{1Da} and 5-HT_{1Dβ} receptor subtypes (cf. WO-A-91/17174, Table 1), and since it is the blood vessels with which the 5-HT_{1Dβ} subtype is most closely associated, it is believed that the cardiovascular side-effects observed with sumatriptan can be attributed to stimulation of the 5-HT_{1Dβ} receptor subtype. It is accordingly considered (cf. G.W. Rebeck *et al.*, *Proc. Natl. Acad. Sci. USA*, 1994, 91, 3666-9) that compounds which can interact selectively with the 5-HT_{1Da} receptor subtype, whilst having a less pronounced action at the 5-HT_{1Dβ} subtype, might be free from, or at any rate less prone to, the undesirable cardiovascular and other side-effects associated with non-subtype-selective 5-HT_{1D} receptor agonists, whilst at the same time maintaining a beneficial level of anti-migraine activity.

5

10

15

20

25

30

The compounds of the present invention, being selective 5-HT₁-like receptor agonists, are accordingly of benefit in the treatment of migraine and associated conditions, e.g. cluster headache, chronic paroxysmal hemicrania, headache associated with vascular disorders, tension headache and paediatric migraine. In particular, the compounds according to this invention are potent agonists of the human 5-HT_{1D α} receptor subtype. Moreover, the compounds in accordance with this invention have been found to possess at least a 10-fold selective affinity for the 5-HT_{1D α} receptor subtype relative to the 5-HT_{1D α} subtype, and they can therefore be expected to manifest fewer side-effects than those associated with non-subtype-selective 5-HT_{1D} receptor agonists.

Several distinct classes of substituted five-membered heteroaromatic compounds are described in published European patent applications 0438230, 0494774 and 0497512, and published International patent applications 93/18029, 94/02477 and 94/03446. The compounds described therein are stated to be agonists of 5-HT₁-like receptors, and accordingly to be of particular use in the treatment of migraine and associated conditions. None of these publications, however, discloses nor

- 3 -

even suggests the substituted piperazinone and related heterocyclic derivatives provided by the present invention.

In EP-A-0548813 is described a series of alkoxypyridin-4-yl and alkoxypyrimidin-4-yl derivatives of indol-3-ylalkylpiperazines which are alleged to provide treatment of vascular or vascular-related headaches, including migraine. There is, however, no disclosure nor any suggestion in EP-A-0548813 of replacing the substituted piperazine moiety with a differently substituted piperazinone or related heterocyclic moiety.

WO-A-91/18897 describes a class of tryptamine derivatives substituted by various five-membered rings, which are stated to be specific to a particular type of "5-HT₁-like" receptor and thus to be effective agents for the treatment of clinical conditions, particularly migraine, requiring this activity. A further class of tryptamine derivatives with alleged anti-migraine activity is disclosed in WO-A-94/02460. However, neither WO-A-91/18897 nor WO-A-94/02460 discloses or suggests the substituted piperazinone and related heterocyclic derivatives provided by the present invention.

10

15

20

25

30

Moreover, nowhere in the prior art mentioned above is there any disclosure of a subtype-selective 5-HT_{1D} receptor agonist having a 5-HT_{1D α} receptor binding affinity (IC₅₀) below 50 nM and at least a 10-fold selective affinity for the 5-HT_{1D α} receptor subtype relative to the 5-HT_{1D α} subtype.

The compounds according to the present invention are subtype-selective 5-HT_{1D} receptor agonists having a human 5-HT_{1D $_{\alpha}$} receptor binding affinity (IC₅₀) below 50 nM, typically below 10 nM and preferably below 1 nM; and at least a 10-fold selective affinity, typically at least a 50-fold selective affinity and preferably at least a 100-fold selective affinity, for the human 5-HT_{1D $_{\alpha}$} receptor subtype relative to the 5-HT_{1D $_{\beta}$} subtype. Moreover, the compounds in accordance with this invention possess interesting properties in terms of their efficacy and/or bioavailability.

The present invention provides a compound of formula I, or a salt or prodrug thereof:

$$Z-E$$
 V
 U
 V
 U
 V
 V

5

10

15

20

wherein

Z represents hydrogen, halogen, cyano, nitro, trifluoromethyl, -OR5, -OCOR5, -OCONR5R6, -OCH₂CN, -OCH₂CONR5R6, -SR5, -SOR5, -SO₂R5, -SO₂NR5R6, -NR5R6, -NR5COR6, -NR5CO₂R6, -NR5SO₂R6, -COR5, -CO₂R5, -CONR5R6, or a group of formula (Za), (Zb), (Zc) or (Zd):

$$(Za) \qquad (Zb) \qquad (Zc) \qquad (Zd)$$

in which the asterisk * denotes a chiral centre; or

Z represents an optionally substituted five-membered heteroaromatic ring selected from furan, thiophene, pyrrole, oxazole, thiazole, isoxazole, isothiazole, imidazole, pyrazole, oxadiazole, thiadiazole, triazole and tetrazole;

X represents oxygen, sulphur, -NH- or methylene;

Y¹ represents oxygen or sulphur;

E represents a chemical bond or a straight or branched alkylene chain containing from 1 to 4 carbon atoms;

Q represents a straight or branched alkylene chain containing from 1 to 6 carbon atoms, optionally substituted in any position by one or more substituents selected from fluoro and hydroxy;

T represents nitrogen or CH;

U represents nitrogen or C-R2;

V represents oxygen, sulphur or N-R3;

G represents a group of formula (Ga), (Gb), (Gc) or (Gd):

10

15

20

25

5

in which

Y² represents oxygen or sulphur;

 R^1 represents $C_{3\cdot 6}$ alkenyl, $C_{3\cdot 6}$ alkynyl, aryl($C_{1\cdot 6}$)alkyl or heteroaryl($C_{1\cdot 6}$)alkyl, any of which groups may be optionally substituted:

R², R³ and R⁴ independently represent hydrogen or C₁₋₆ alkyl; and

R⁵ and R⁶ independently represent hydrogen, C₁₋₆ alkyl, trifluoromethyl, phenyl, methylphenyl, or an optionally substituted aryl(C₁₋₆)alkyl or heteroaryl(C₁₋₆)alkyl group; or R⁵ and R⁶, when linked through a nitrogen atom, together represent the residue of an optionally substituted azetidine, pyrrolidine, piperidine, morpholine or piperazine ring.

The present invention also provides a compound of formula I as defined above, or a salt or prodrug thereof, wherein Q represents a straight or branched alkylene chain containing from 1 to 6 carbon atoms, optionally substituted in any position by a hydroxy group; and R^5 and R^6 independently represent hydrogen, $C_{1\cdot 6}$ alkyl, trifluoromethyl, phenyl, methylphenyl, or an optionally substituted aryl($C_{1\cdot 6}$)alkyl or heteroaryl($C_{1\cdot 6}$)alkyl group.

10

15

20

Where Z in the compounds of formula I above represents a fivemembered heteroaromatic ring, this ring may be optionally substituted by one or, where possible, two substituents. As will be appreciated, where Z represents an oxadiazole, thiadiazole or tetrazole ring, only one substituent will be possible; otherwise, one or two optional substituents may be accommodated around the five-membered heteroaromatic ring Z. Examples of suitable substituents on the five-membered heteroaromatic ring Z include C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, aryl, aryl(C₁₋₆)alkyl, C₃₋₇ heterocycloalkyl, heteroaryl, heteroaryl(C₁₋₆)alkyl, C₁₋₆ alkoxy, C_{1.6} alkylthio, amino, C_{1.6} alkylamino, di(C_{1.6})alkylamino, halogen, cyano and trifluoromethyl.

The group R1 may be optionally substituted by one or more substituents, as also may the groups R5 or R6 where these represent $aryl(C_{1-6})alkyl$ or heteroaryl $(C_{1-6})alkyl$. Where R^1 , R^5 or R^6 represents aryl(C1.6)alkyl or heteroaryl(C1.6)alkyl, any optional substitution will suitably be on the aryl or heteroaryl moiety thereof, although substitution on the alkyl moiety thereof is an alternative possibility. Examples of optional substituents thereon include halogen, cyano, trifluoromethyl, triazolyl, tetrazolyl, C1-6 alkyl-tetrazolyl, hydroxy, C1-6 alkoxy, C1-6 alkylthio, C2-6 alkoxycarbonyl, C2-6 alkylcarbonyl, C1-6 alkylsulphonyl, arylsulphonyl, amino, C1-6 alkylamino, di(C1-6)alkylamino, di(C₁₋₆)alkylaminomethyl, C₂₋₆ alkylcarbonylamino, arylcarbonylamino, C₂₋₆ alkoxycarbonylamino, N-(C₁₋₆)alkyl-N-(C₂₋₆)alkoxycarbonylamino. C₁₋₆ alkylsulphonylamino, arylsulphonylamino, C1-6 alkylsulphonylaminomethyl, aminocarbonylamino, C1-6 25 alkylaminocarbonylamino, di(C1-6)alkylaminocarbonylamino, mono- or diarylaminocarbonylamino, pyrrolidinylcarbonylamino, piperidinylcarbonylamino, aminocarbonyl, C1-6 alkylaminocarbonyl, di(C₁₋₆)alkylaminocarbonyl, aminosulphonyl, C₁₋₆ alkylaminosulphonyl, di(C1-6) alkylaminosulphonyl, aminosulphonylmethyl, C1-6 30 alkylaminosulphonylmethyl and di(C1.6)alkylaminosulphonylmethyl.

10

15

20

25

When R⁵ and R⁶, when linked through a nitrogen atom, together represent the residue of an azetidine, pyrrolidine, piperidine, morpholine or piperazine ring, this ring may be unsubstituted or substituted by one or more substituents. Examples of suitable substituents include C₁₋₆ alkyl, aryl(C₁₋₆)alkyl, C₁₋₆ alkoxy, C₂₋₆ alkoxycarbonyl and C₁₋₆ alkylaminocarbonyl. Typical substituents include methyl, benzyl, methoxy, methoxycarbonyl, ethoxycarbonyl and methylaminocarbonyl. In particular, where R⁵ and R⁶ together represent the residue of a piperazine ring, this ring is preferably substituted on the distal nitrogen atom by a C₂₋₆ alkoxycarbonyl moiety such as methoxycarbonyl or ethoxycarbonyl.

As used herein, the expression " C_{1-6} alkyl" includes methyl and ethyl groups, and straight-chained or branched propyl, butyl, pentyl and hexyl groups. Particular alkyl groups are methyl, ethyl, n-propyl, isopropyl and tert-butyl. Derived expressions such as " C_{1-6} alkoxy", " C_{1-6} alkylthio" and " C_{1-6} alkylamino" are to be construed accordingly.

The expression "C_{2.6} alkenyl" as used herein refers to straightchained and branched alkenyl groups containing from 2 to 6 carbon atoms. Typical examples include vinyl, allyl, dimethylallyl and butenyl groups.

The expression "C₂₋₆ alkynyl" as used herein refers to straightchained and branched alkynyl groups containing from 2 to 6 carbon atoms. Typical examples include ethynyl and propargyl groups.

Typical C₃₋₇ cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

Typical aryl groups include phenyl and naphthyl.

The expression "aryl(C_{1-6})alkyl" as used herein includes benzyl, phenylethyl, phenylpropyl and naphthylmethyl.

Suitable heterocycloalkyl groups include azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl and morpholinyl groups.

Suitable heteroaryl groups include pyridinyl, quinolinyl,
30 isoquinolinyl, pyridazinyl, pyrimidinyl, pyrazinyl, pyranyl, furyl,
benzofuryl, dibenzofuryl, thienyl, benzthienyl, pyrrolyl, indolyl, pyrazolyl,

- 8 -

indazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, benzimidazolyl, oxadiazolyl, thiadiazolyl, triazolyl and tetrazolyl groups.

The expression "heteroaryl($C_{1.6}$)alkyl" as used herein includes furylmethyl, furylethyl, thienylmethyl, thienylethyl, oxazolylmethyl, oxazolylethyl, thiazolylmethyl, imidazolylmethyl, imidazolylmethyl, imidazolylmethyl, imidazolylmethyl, imidazolylmethyl, thiadiazolylmethyl, thiadiazolylmethyl, triazolylmethyl, triazolylmethyl, tetrazolylmethyl, tetrazolylmethyl, tetrazolylmethyl, pyridinylmethyl, pyridinylmethyl, pyrimidinylmethyl, pyrazinylmethyl, quinolinylmethyl and isoquinolinylmethyl.

5

10

15

20

25

30

The term "halogen" as used herein includes fluorine, chlorine, bromine and iodine, especially fluorine.

For use in medicine, the salts of the compounds of formula I will be pharmaceutically acceptable salts. Other salts may, however, be useful in the preparation of the compounds according to the invention or of their pharmaceutically acceptable salts. Suitable pharmaceutically acceptable salts of the compounds of this invention include acid addition salts which may, for example, be formed by mixing a solution of the compound according to the invention with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, sulphuric acid, methanesulphonic acid, fumaric acid, maleic acid, succinic acid, acetic acid, benzoic acid, oxalic acid, citric acid, tartaric acid, carbonic acid or phosphoric acid.

Furthermore, where the compounds of the invention carry an acidic moiety, suitable pharmaceutically acceptable salts thereof may include alkali metal salts, e.g. sodium or potassium salts; alkaline earth metal salts, e.g. calcium or magnesium salts; and salts formed with suitable organic ligands, e.g. quaternary ammonium salts.

The present invention includes within its scope prodrugs of the compounds of formula I above. In general, such prodrugs will be functional derivatives of the compounds of formula I which are readily convertible in vivo into the required compound of formula I. Conventional procedures for the selection and preparation of suitable prodrug

-9-

derivatives are described, for example, in *Design of Prodrugs*, ed. H. Bundgaard, Elsevier, 1985.

Where the compounds according to the invention have at least one asymmetric centre, they may accordingly exist as enantiomers. Where the compounds according to the invention possess two or more asymmetric centres, they may additionally exist as diastereoisomers. For example, the compounds of formula I above wherein Z represents a group of formula (Zb) or (Zc) have a chiral centre denoted by the asterisk \star , which may accordingly be in the (R) or (S) configuration. It is to be understood that all such isomers and mixtures thereof in any proportion are encompassed within the scope of the present invention.

Where E and Q, which may be the same or different, represent straight or branched alkylene chains, these may be, for example, methylene, ethylene, 1-methylethylene, propylene, 2-methylpropylene or butylene. In addition, the alkylene chain Q may be substituted in any position by one or more substituents selected from fluoro and hydroxy giving rise, for example, to a 2-hydroxypropylene, 2-hydroxymethylpropylene, 2-fluoropropylene or 2-fluoromethyl-propylene chain Q. Moreover, E may represent a chemical bond such that the moiety Z is attached directly to the central fused bicyclic heteroaromatic ring system containing the variables T, U and V.

Suitably, E represents a chemical bond or a methylene linkage.

Representative alkylene chains for Q include propylene, butylene, 2-hydroxypropylene, 2-hydroxymethyl-propylene, 2-fluoropropylene or 2-

fluoromethyl-propylene, especially propylene.

The compound of formula I in accordance with the present invention is suitably an indole, benzofuran or benzthiophene derivative of formula IA, an indazole derivative of formula IB, or a pyrrolo[2,3-c]pyridine derivative of formula IC:

5

10

15

20

25

$$Z-E \xrightarrow{Q-N} N-R^{1}$$

$$V$$
(IA)

$$Z-E \longrightarrow N \longrightarrow N-R^{1}$$

$$N \longrightarrow N$$

$$R^{3}$$
(IB)

$$Z-E \xrightarrow{Q-N} N-R^{1}$$

$$N \xrightarrow{N} R^{2}$$
(IC)

wherein Z, E, Q, V, G, R¹, R² and R³ are as defined above. Preferably, the compounds according to the invention are indole or pyrrolo[2,3-c]pyridine derivatives of formula ID:

$$Z-E \xrightarrow{Q} \stackrel{G}{\underset{N}{\bigvee}} R^2$$

$$(1D)$$

wherein Z, E, Q, T, G, R^1 , R^2 and R^3 are as defined above, in particular wherein R^2 and R^3 are both hydrogen.

Suitable values for the substituent R¹ include allyl, dimethylallyl, butenyl, propargyl, benzyl, phenylethyl, phenylpropyl, furylmethyl, thienylmethyl, imidazolylmethyl and pyridylmethyl, any of which groups

10

15

20

25

may be optionally substituted by one or more substituents selected typically from halogen, cyano, triazolyl, tetrazolyl, C₁₋₆ alkyl-tetrazolyl, C₁₋₆ alkoxy, amino, di(C₁₋₆)alkylamino, di(C₁₋₆)alkyl-aminomethyl, C₂₋₆ alkylcarbonylamino, C₂₋₆ alkoxycarbonylamino, N-(C₁₋₆)alkyl-N-(C₂₋₆)alkoxycarbonylamino, C₁₋₆ alkylsulphonylamino, aminocarbonyl, C₁₋₆ alkylaminocarbonyl, di(C₁₋₆)alkylaminocarbonyl, aminosulphonyl and C₁₋₆ alkylaminosulphonylmethyl.

Particular values of R¹ include allyl, dimethylallyl, butenyl, propargyl, benzyl, fluorobenzyl, difluorobenzyl, cyanobenzyl, tetrazolylbenzyl, methyltetrazolyl-benzyl, methoxybenzyl, aminobenzyl, dimethylaminomethyl-benzyl, acetylamino-benzyl, aminocarbonyl-benzyl, methylaminocarbonyl-benzyl, dimethylaminocarbonyl-benzyl, aminosulphonyl-benzyl, phenylethyl (including 1-phenylethyl and 2-phenylethyl), fluoro-phenylethyl, difluoro-phenylethyl, cyano-phenylethyl, triazolyl-phenylethyl, amino-phenylethyl, dimethylamino-phenylethyl, acetylamino-phenylethyl, methoxycarbonylamino-phenylethyl, (N-methyl-N-methoxycarbonyl)amino-phenylethyl, aminocarbonylamino-phenylethyl, phenylpropyl (including 2-phenylpropyl and 3-phenylpropyl), furylmethyl, thienylmethyl, imidazolylmethyl, pyridylmethyl and amino-pyridylmethyl.

More particularly, R¹ may suitably represent benzyl, 1-phenylethyl, 2-phenylethyl, fluoro-phenylethyl, difluoro-phenylethyl or 2-phenylpropyl.

Suitably, R^2 and R^3 independently represent hydrogen or methyl, especially hydrogen.

Suitably, R⁴ represents hydrogen or methyl, especially hydrogen.

Suitably, R⁵ and R⁶ are independently selected from hydrogen,
methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, trifluoromethyl,
phenyl, methylphenyl (especially 4-methylphenyl), benzyl and phenethyl.

Suitably, the substituent Z represents hydrogen, fluoro, cyano,

hydroxy, methoxy, ethoxy, benzyloxy, methylamino-carbonyloxy, cyanomethoxy, aminocarbonyl-methoxy, methylsulphonyl, aminosulphonyl,

- 12 -

N-methylamino-sulphonyl, N,N-dimethylamino-sulphonyl, amino, formylamino, acetylamino, trifluoromethyl-carbonylamino, benzyloxy-carbonylamino, methyl-sulphonylamino, ethyl-sulphonylamino, methylphenyl-sulphonylamino, N-methyl-(N-methylsulphonyl)-amino, N-methyl-(N-ethylsulphonyl)-amino, N-methyl-(N-trifluoromethylsulphonyl)-amino, N-ethyl-(N-methylsulphonyl)-amino, N-benzyl-(N-methylsulphonyl)-amino, N-benzyl-(N-ethylsulphonyl)-amino, acetyl, methoxycarbonyl, ethoxycarbonyl, aminocarbonyl, methylaminocarbonyl, ethylaminocarbonyl, propylaminocarbonyl, butylaminocarbonyl, benzylaminocarbonyl or phenethyl-aminocarbonyl; or a group of formula (Za), (Zb), (Zc) or (Zd) as defined above; or an optionally substituted five-membered heteroaromatic ring as specified above.

In a particular embodiment, Z represents -SO₂NR⁵R⁶ in which R⁵ and R⁶ are as defined above. In a subset of this embodiment, R⁵ and R⁶ independently represent hydrogen or C₁₋₆ alkyl, especially hydrogen or methyl. Particular values of Z in this context include aminosulphonyl, N-methylamino-sulphonyl and N,N-dimethylamino-sulphonyl, especially N-methylamino-sulphonyl.

15

20

25

In another embodiment, Z represents a group of formula (Zb) in which R⁴ is hydrogen or methyl. In a subset of this embodiment, X and Y¹ both represent oxygen. In a particular aspect of this subset, the chiral centre denoted by the asterisk * is in the (S) configuration.

When the group Z represents an optionally substituted five-membered heteroaromatic ring, this is suitably a 1,3-oxazole, 1,3-thiazole, imidazole, 1,2,4-oxadiazole, 1,3,4-oxadiazole, 1,2,4-thiadiazole, 1,3,4-thiadiazole, 1,2,3-triazole, 1,2,4-triazole or tetrazole ring. Preferably, the ring is a 1,3-oxazole, 1,3-thiazole, 1,2,4-oxadiazole, 1,2,4-thiadiazole or 1,2,4-triazole ring, in particular a 1,2,4-triazol-1-yl or 1,2,4-triazol-4-yl moiety.

Suitably, the five-membered heteroaromatic ring Z is unsubstituted. Examples of optional substituents which may typically be attached to the moiety Z include methyl, ethyl, benzyl and amino.

Suitably, the moiety G represents a group of formula (Ga) or (Gb) as defined above, especially (Ga).

Suitably, Y² is oxygen.

A particular sub-class of compounds according to the invention is represented by the compounds of formula IIA, and salts and prodrugs thereof:

10

15

25

5

$$\begin{array}{c}
N \\
\downarrow \\
A = B
\end{array}$$

$$\begin{array}{c}
N \\
\downarrow \\
N \\
\end{array}$$

$$\begin{array}{c}
Q^{1} \\
\downarrow \\
N
\end{array}$$

$$\begin{array}{c}
N \\
\downarrow \\
N \\
\end{array}$$

$$\begin{array}{c}
N$$

wherein

m is zero, 1, 2 or 3, preferably zero or 1;

p is zero, 1 or 2;

Q¹ represents a straight or branched alkylene chain containing from 2 to 5 carbon atoms, optionally substituted in any position by a hydroxy group;

T represents nitrogen or CH;

20 A represents nitrogen or CH;

B represents nitrogen or C-R8;

R⁷ and R⁸ independently represent hydrogen, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₃₋₇ cycloalkyl, aryl, aryl(C₁₋₆)alkyl, C₃₋₇ heterocycloalkyl, heteroaryl(C₁₋₆)alkyl, C₁₋₆ alkoxy, C₁₋₆ alkylthio, amino, C₁₋₆ alkylamino, di(C₁₋₆)alkylamino, halogen, cyano or trifluoromethyl;

W represents a group of formula (Wa), (Wb) or (Wc):

5 in which

10

15

20

25

W1 represents CH or nitrogen;

W² represents oxygen, sulphur, NH or N-methyl;

 R^9 represents hydrogen, halogen, cyano, trifluoromethyl, triazolyl, tetrazolyl, C_{1-6} alkyl-tetrazolyl, C_{1-6} alkoxy, C_{2-6} alkylcarbonyl, amino, C_{1-6} alkylamino, di(C_{1-6})alkylamino, di(C_{1-6})alkylaminomethyl, C_{2-6} alkylcarbonylamino, C_{1-6} alkylaminocarbonylamino, aminocarbonylamino, C_{1-6} alkylaminocarbonyl, aminosulphonyl or C_{1-6} alkylaminosulphonylmethyl; and

R¹⁰ represents hydrogen or C_{1.3} alkyl.

Suitably, Q¹ represents a straight or branched 3 or 4 carbon alkylene chain, optionally substituted in any position by a hydroxy group. Particular alkylene chains for Q¹ include propylene, butylene, 2-hydroxypropylene and 2-(hydroxymethyl)-propylene, especially propylene.

Particular values of R^7 and R^8 include hydrogen, methyl, ethyl, benzyl and amino, especially hydrogen.

Particular values of R⁹ include hydrogen, fluoro, cyano, triazolyl, tetrazolyl, methyl-tetrazolyl, methoxy, amino, dimethylaminomethyl, acetylamino, aminocarbonylamino, methylaminocarbonyl and aminosulphonyl, especially hydrogen and fluoro.

Particular values of R10 include hydrogen and methyl.

Another sub-class of compounds according to the invention is represented by the compounds of formula IIB, and salts and prodrugs thereof:

$$\begin{array}{c|c}
R^{5} & & & & & & \\
R^{6} & N & S & (CH_{2})_{m} & & & & & \\
N & & & & & \\
N & & & & \\
N & & &$$

wherein

5

10

15

m, p, \mathbf{Q}^1 , T, W and \mathbf{R}^{10} are as defined with reference to formula IIA above; and

R⁵ and R⁶ are as defined with reference to formula I above.

Particular values of R^5 and R^6 in relation to formula IIB above include hydrogen and $C_{1\cdot 6}$ alkyl, especially hydrogen or methyl. Suitably, one of R^5 and R^6 represents hydrogen and the other represents hydrogen or methyl.

A further sub-class of compounds according to the invention is represented by the compounds of formula IIC, and salts and prodrugs thereof:

20

wherein the asterisk * denotes a chiral centre;

m, p, Q^1 , T, W and R^{10} are as defined with reference to formula IIA above; and

R4 and Y1 are as defined with reference to formula I above.

Particular values of R⁴ in relation to formula IIC include hydrogen and methyl, especially hydrogen.

Preferably, Y1 in formula IIC is oxygen.

Preferably, the chiral centre denoted by the asterisk * in formula IIC is in the (S) configuration.

In a particular aspect of the compounds of formulae IIA, IIB and IIC above, the substituent R^{10} represents hydrogen.

Specific compounds within the scope of the present invention include:

 $1-benzyl-4-[3\cdot(5\cdot(1,2,4-triazol-4-yl)-1H-indol-3-yl)propyl] piperazin-2-one;\\$

15 1-(2-phenylethyl)-4-[3-(5-(1,2,4-triazol-4-yl)-1H-indol-3-yl)propyl]piperazin-2-one;

1-[2-(3-fluorophenyl)ethyl]-4-[3-(5-(1,2,4-triazol-4-yl)-1H-indol-3-yl)propyl] piperazin-2-one;

20 yl)propyl]piperazin-2-one;

1-benzyl-4-[3-(5-(1,2,4-triazol-4-yl)-1H-indol-3-yl)propyl]piperazin-2-thione;

1-(2-phenylpropyl)-4-[3-(5-(1,2,4-triazol-4-yl)-1*H*-indol-3-yl)propyl]piperazin-2-one;

25 1-(1-phenylethyl)-4-[3-(5-(1,2,4-triazol-4-yl)-1*H*-indol-3-yl)propyl]piperazin-2-one;

1-(2-phenylpropyl)-4-[3-(5-(1,2,4-triazol-4-yl)-1*H*-indol-3-yl)propyl]piperazin-3-one; and salts and prodrugs thereof.

The invention also provides pharmaceutical compositions comprising one or more compounds of this invention in association with a

10

15

20

25

30

pharmaceutically acceptable carrier. Preferably these compositions are in unit dosage forms such as tablets, pills, capsules, powders, granules, sterile parenteral solutions or suspensions, metered aerosol or liquid sprays, drops, ampoules, auto-injector devices or suppositories; for oral, parenteral, intranasal, sublingual or rectal administration, or for administration by inhalation or insufflation. For preparing solid compositions such as tablets, the principal active ingredient is mixed with a pharmaceutical carrier, e.g. conventional tableting ingredients such as corn starch, lactose, sucrose, sorbitol, talc, stearic acid, magnesium stearate, dicalcium phosphate or gums, and other pharmaceutical diluents, e.g. water, to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention, or a pharmaceutically acceptable salt thereof. When referring to these preformulation compositions as homogeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules. This solid preformulation composition is then subdivided into unit dosage forms of the type described above containing from 0.1 to about 500 mg of the active ingredient of the present invention. Typical unit dosage forms contain from 1 to 100 mg, for example 1, 2, 5, 10, 25, 50 or 100 mg, of the active ingredient. The tablets or pills of the novel composition can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permits the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol and cellulose acetate.

10

15

20

25

The liquid forms in which the novel compositions of the present invention may be incorporated for administration orally or by injection include aqueous solutions, suitably flavoured syrups, aqueous or oil suspensions, and flavoured emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil or peanut oil, as well as elixirs and similar pharmaceutical vehicles. Suitable dispersing or suspending agents for aqueous suspensions include synthetic and natural gums such as tragacanth, acacia, alginate, dextran, sodium carboxymethylcellulose, methylcellulose, polyvinyl-pyrrolidone or gelatin.

In the treatment of migraine, a suitable dosage level is about 0.01 to 250 mg/kg per day, preferably about 0.05 to 100 mg/kg per day, and especially about 0.05 to 5 mg/kg per day. The compounds may be administered on a regimen of 1 to 4 times per day.

The compounds according to the invention may be prepared by a process which comprises attachment of the R¹ moiety to a compound of formula III:

$$Z-E \bigvee_{T} U \bigvee_{V'} U$$
(III)

wherein Z, E, Q, T, U, V and G are as defined above; by conventional means including N-alkylation.

Attachment of the R¹ moiety to the compounds of formula III may conveniently be effected by standard alkylation techniques. One example thereof comprises treatment with an alkenyl halide such as 4-bromobut-1-ene, 4-bromo-2-methylbut-2-ene or allyl bromide, an alkynyl halide such as propargyl bromide, or an aryl(C₁₋₆)alkyl or heteroaryl(C₁₋₆)alkyl halide

such as benzyl iodide, typically under basic conditions, e.g. sodium hydride in N,N-dimethylformamide.

Where G in the compounds of formula I represents a group of formula (Gc) or (Gd) as defined above, the R¹ moiety may conveniently be attached by reductive alkylation. This approach suitably comprises treating the required compound of formula III with the appropriate aldehyde, e.g. 2-phenylpropionaldehyde, in the presence of a reducing agent such as sodium cyanoborohydride.

The compounds of formula III above wherein T represents CH, U represents $C-R^2$ and V represents $N-R^3$, corresponding to the indole derivatives of formula ID as defined above wherein T represents CH and R^1 is hydrogen, may be prepared by a process which comprises reacting a compound of formula IV:

15

5

10

wherein Z and E are as defined above; with a compound of formula V, or a carbonyl-protected form thereof:

$$Q - N \qquad N - R^{p}$$

20

25

wherein Q, G and R² are as defined above, and R² represents an aminoprotecting group; followed, where required, by N-alkylation by standard methods to introduce the moiety R³; with subsequent removal of the amino-protecting group R².

PCT/GB96/02624

5

10

15

20

The reaction between compounds IV and V, which is an example of the well-known Fischer indole synthesis, is suitably carried out by heating the reagents together under mildly acidic conditions, e.g. 4% sulphuric acid at reflux.

Suitable carbonyl-protected forms of the compounds of formula V include the dimethyl acetal or ketal derivatives.

The protecting group RP in the compounds of formula V, especially those compounds wherein G represents a group of formula (Gc) or (Gd), is suitably a carbamoyl moiety such as t-butoxycarbonyl (BOC), which can conveniently be removed as necessary by treatment under mildly acidic conditions. Indeed, the acidic conditions of the Fischer indole synthesis reaction will generally suffice to remove the BOC group.

The Fischer reaction between compounds IV and V may be carried out in a single step, or may proceed via an initial non-cyclising step at a lower temperature to give an intermediate of formula VI:

$$Z-E$$

$$N = Q - N - R'$$

$$R^{2}$$

$$(VI)$$

wherein Z, E, Q, G, R² and R^p are as defined above; followed by cyclisation using a suitable reagent, e.g. a polyphosphate ester.

The intermediates of formula V, or carbonyl-protected forms thereof, may be prepared by reacting a compound of formula VII, or a carbonyl-protected form thereof, with a compound of formula VIII:

- 21 -

Q-L¹

$$H-N N-R^{i}$$
(VIII)

wherein Q, G, R^2 and R^p are as defined above, and L^1 represents a suitable leaving group.

The leaving group L¹ is suitably a halogen atom, e.g. chlorine or bromine.

5

10

15

Where L¹ represents a halogen atom, the reaction between compounds VII and VIII is conveniently effected by stirring the reactants under basic conditions in a suitable solvent, for example sodium carbonate in 1,2-dimethoxyethane, typically in the presence of sodium iodide.

The compounds according to the invention wherein T represents CH, U represents C-R² and V represents N-R³ - i.e. the indole derivatives of formula ID as defined above wherein T represents CH - may alternatively be prepared by a process which comprises reacting a compound of formula IV as defined above with a compound of formula IX, or a carbonyl-protected form thereof:

$$\begin{array}{c}
O \\
R^2
\end{array}
\qquad Q - N \qquad N - R^1$$
(IX)

wherein Q, G, R¹ and R² are as defined above; under conditions analogous to those described above for the reaction between compounds IV and V: followed, where required, by N-alkylation by standard methods to introduce the moiety R³.

As for the compounds of formula V, suitable carbonyl-protected
forms of the compounds of formula IX include the dimethyl acetal or ketal derivatives. Where the alkylene chain Q is substituted by a hydroxy

group, this group may condense with the carbonyl moiety in compounds V and IX, whereby the carbonyl moiety is protected in the form of a cyclic hemiacetal.

As with that between compounds IV and V, the Fischer reaction between compounds IV and IX may be carried out in a single step, or may proceed via an initial non-cyclising step at a lower temperature to give an intermediate of formula X:

$$Z-E$$

$$N = Q - N - R^{1}$$

$$H$$

$$(X)$$

10

15

5

wherein Z, E, Q, G, R¹ and R² are as defined above; followed by cyclisation using a suitable reagent, e.g. a polyphosphate ester.

The intermediates of formula IX, or carbonyl-protected forms thereof, may be prepared by reacting a compound of formula VII as defined above, or a carbonyl-protected form thereof, with a compound of formula XI:

$$H - N \longrightarrow N - R^1$$
(XI)

20

wherein G and R¹ are as defined above; under conditions analogous to those described above for the reaction between compounds VII and VIII.

In an alternative procedure, the compounds of formula III above may be prepared by a process which comprises reacting a compound of formula VIII as defined above with a compound of formula XII:

PCT/GB96/02624

WO 97/16446

5

10

15

20

- 23 -

$$Z-E$$
 T
 U
 U

(XII)

wherein Z, E, Q, T, U and V are as defined above, and L² represents a suitable leaving group; followed by removal of the amino-protecting group R².

Similarly, the compounds of formula I as defined above may be prepared by a process which comprises reacting a compound of formula XI as defined above with a compound of formula XII as defined above.

The leaving group L² is suitably an alkylsulphonyloxy or arylsulphonyloxy group, e.g. methanesulphonyloxy (mesyloxy) or p-toluenesulphonyloxy (tosyloxy).

Where L² represents an alkylsulphonyloxy or arylsulphonyloxy group, the reaction between compound XII and compound VIII or XI is conveniently carried out in a suitable solvent such as 1.2-dimethoxyethane or isopropyl alcohol, optionally in the presence of a cosolvent such as acetonitrile, typically in the presence of a base such as sodium carbonate or potassium carbonate, and optionally with the addition of sodium iodide.

In one representative approach, the compounds of formula XII wherein T and U both represent CH, V represents NH and L² represents a mesyloxy or tosyloxy group may be prepared by the sequence of steps illustrated in the following reaction scheme (cf. Larock and Yum, J. Am. Chem. Soc., 1991, 113, 6689):

10

15

20

$$Z-E$$
 NH_2
 NH_2
 NH_2
 $(XIII)$
 $(Z-E)$
 NH_2
 $(Z-E)$
 NH_2

wherein Z, E and Q are as defined above, L³ represents mesyloxy or tosyloxy, and TES is an abbreviation for triethylsilyl.

In Step 1 of the reaction scheme, the aniline derivative XIII is treated with iodine monochloride, typically in methanol or acetonitrile, in order to introduce an iodine atom ortho to the amine moiety. Step 2 involves a palladium-mediated coupling reaction with the protected acetylene derivative TES-C=C-Q-OTES, typically using palladium acetate and triphenylphosphine in the presence of lithium chloride and sodium carbonate, suitably in N,N-dimethylformamide at an elevated temperature. This is followed in Step 3 by removal of the TES moiety, typically by treatment with hydrochloric acid; followed in turn by mesylation or tosylation, suitably by using mesyl chloride or tosyl chloride respectively in the presence of a base such as triethylamine or pyridine, typically in dichloromethane/acetonitrile.

In another representative approach, the compounds of formula XII wherein T and U both represent CH, V represents NH, Q represents a propylene chain and L² represents a mesyloxy or tosyloxy group may be prepared by reacting 3,4-dihydro-2*H*-pyran with a compound of formula IV as defined above or a salt thereof, under a variant of the Fischer reaction conditions as described above for the reaction between compounds IV and V; followed by mesylation or tosylation of the 3-hydroxypropyl-indole derivative thereby obtained, typically by treatment with mesyl chloride or tosyl chloride under standard conditions.

10

15

20

The Fischer reaction with 3,4-dihydro-2*H*-pyran is suitably brought about by heating the hydrazine derivative IV or an acid addition salt thereof, typically the hydrochloride salt, in an inert solvent such as dioxan, advantageously in the presence of a mineral acid such as hydrochloric acid or a Lewis acid such as zinc chloride, at the reflux temperature of the solvent.

In a further procedure, the compounds of formula III above wherein T represents CH, U represents nitrogen and V represents N-R³, corresponding to the indazole derivatives of formula IB as defined above wherein R¹ is hydrogen, may be prepared by a process which comprises cyclising a compound of formula XIV:

$$Z = Q - N \qquad N - R^{P}$$

$$NH_{2} \qquad N - D^{1}$$

(XIV)

wherein Z, E, Q, G and R^p are as defined above, and D¹ represents a readily displaceable group; followed, where required, by N-alkylation by standard methods to introduce the moiety R³; with subsequent removal of the amino-protecting group R^p.

Similarly, the compounds of formula I wherein T represents CH, U represents nitrogen and V represents N-R³ - i.e. the indazole derivatives of formula IB as defined above - may be prepared by a process which comprises cyclising a compound of formula XV:

PCT/GB96/02624

$$Z \xrightarrow{E} Q \xrightarrow{Q - N} N - R^{1}$$

$$N \xrightarrow{Q - N} 1$$

(XV)

in which Z, E, Q, G, R¹ and D¹ are as defined above; followed, where required, by N-alkylation by standard methods to introduce the moiety R³.

The cyclisation of compounds XIV and XV is conveniently achieved in a suitable organic solvent at an elevated temperature, for example in a mixture of *m*-xylene and 2,6-lutidine at a temperature in the region of 140°C.

The readily displaceable group D^1 in the compounds of formula XIV and XV suitably represents a C_{1-4} alkanoyloxy group, preferably acetoxy. Where D^1 represents acetoxy, the desired compound of formula XIV or XV may be conveniently prepared by treating a carbonyl compound of formula XVI:

$$Z = Q - N - R^{T}$$

$$(XVI)$$

15

20

5

10

wherein Z, E, Q and G are as defined above, and R^x corresponds to the group R¹ as defined above, or R^x represents an amino-protecting group as defined for R^p; or a protected derivative thereof, preferably the N-formyl protected derivative; with hydroxylamine hydrochloride, advantageously in pyridine at the reflux temperature of the solvent; followed by acetylation with acetic anhydride, advantageously in the presence of a

catalytic quantity of 4-dimethylaminopyridine, in dichloromethane at room temperature.

The N-formyl protected derivatives of the intermediates of formula XVI may conveniently be prepared by ozonolysis of the corresponding indole derivative of formula XVII:

wherein Z, E, Q, G and R^z are as defined above; followed by a reductive work-up, advantageously using dimethylsulphide.

The indole derivatives of formula XVII may be prepared by methods analogous to those described in the accompanying Examples, or by procedures well known from the art.

In a still further procedure, the compounds of formula III above wherein T represents CH, U represents C-R² and V represents oxygen or sulphur, corresponding to the benzofuran or benzthiophene derivatives of formula IA wherein V is oxygen or sulphur respectively and R¹ is hydrogen, may be prepared by a process which comprises cyclising a compound of formula XVIII:

10

15

5

$$Z-E \longrightarrow Q-N \longrightarrow N-R^{p}$$
(XVIII)

10

15

20

wherein Z, E, Q, G, R^2 and R^p are as defined above, and V^1 represents oxygen or sulphur; followed by removal of the amino-protecting group R^p .

Similarly, the compounds of formula I wherein T represents CH, U represents C-R² and V represents oxygen or sulphur - i.e. the benzofuran or benzthiophene derivatives of formula IA above - may be prepared by a process which comprises cyclising a compound of formula XIX:

$$Z-E \longrightarrow Q-N \longrightarrow N-R^{1}$$

$$(XIX)$$

wherein Z, E, Q, G, R1, R2 and V1 are as defined above.

The cyclisation of compounds XVIII and XIX is conveniently effected by using polyphosphoric acid or a polyphosphate ester, advantageously at an elevated temperature.

The compounds of formula XVIII and XIX may be prepared by reacting a compound of formula XX with a compound of formula XXI:

$$Z - E$$

$$V^{1} - H$$

$$(XX)$$

$$Q - N$$

$$R^{2}$$

$$(XXI)$$

wherein Z, E, Q, G, R^2 , V^1 and R^x are as defined above, and Hal represents a halogen atom.

The reaction is conveniently effected in the presence of a base such as sodium hydroxide.

The hydroxy and mercapto derivatives of formula XX may be prepared by a variety of methods which will be readily apparent to those skilled in the art. One such method is described in EP-A-0497512.

The hydrazine derivatives of formula IV above may be prepared by methods analogous to those described in EP-A-0438230, EP-A-0497512, EP-A-0548813 and WO-A-91/18897, as also may the aniline derivatives of formula XIII.

Where they are not commercially available, the starting materials of formula VII, VIII, XI and XXI may be prepared by methods analogous to those described in the accompanying Examples, or by standard procedures well known from the art.

5

10

15

20

25

30

It will be understood that any compound of formula I initially obtained from any of the above processes may, where appropriate, subsequently be elaborated into a further compound of formula I by techniques known from the art. For example, a compound of formula I wherein R1 is benzyl initially obtained may be converted by catalytic hydrogenation to the corresponding compound of formula III, which in turn may be converted into a further compound of formula I using standard N-alkylation techniques as described above. Furthermore, a compound of formula I initially obtained wherein the R1 moiety is substituted by nitro or cyano may be converted by catalytic hydrogenation to the corresponding amino- or aminomethyl-substituted compound respectively. Additionally, a compound of formula I wherein the R1 moiety is substituted by hydroxy, possibly obtained by lithium aluminium hydride reduction of a precursor alkoxycarbonyl derivative, may be mesylated under standard conditions, and the mesyl group subsequently displaced by an amino moiety by treatment with the desired amine in a sealed tube at an elevated temperature. The amine derivative resulting from any of these procedures may then, for example, be N-acylated using the appropriate acyl halide, e.g. acetyl chloride; or aminocarbonylated, using potassium isocyanate, to the corresponding urea derivative; or converted to a 1,2,4-triazol-4-yl derivative using N,N-dimethylformamide azine; or reductively alkylated by treatment with the appropriate aldehyde or ketone in the presence of sodium cyanoborohydride. If desired, the amine

15

20

25

30

derivative may also be carbamoylated by treatment with the requisite alkyl chloroformate. A compound of formula I initially obtained wherein the R1 moiety is substituted by cyano may be converted, by treatment with sodium azide, to the corresponding tetrazole derivative, which in turn may be alkylated on the tetrazole ring by treatment with an alkyl halide under standard conditions. By way of additional illustration, a compound of formula I initially obtained wherein the R1 moiety is substituted by an alkoxycarbonyl moiety may be saponified, by treatment with an alkali metal hydroxide, to the corresponding carboxy-substituted compound, which in turn may be converted to an amide derivative by treatment with the appropriate amine, advantageously in the presence of 1-(3dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and 1hydroxybenzotriazole. Moreover, a compound of formula I wherein R3 is hydrogen initially obtained may be converted into a compound of formula I wherein R3 represents C1-6 alkyl by standard alkylation techniques, for example by treatment with an alkyl iodide, e.g. methyl iodide, typically under basic conditions, e.g. sodium hydride in dimethylformamide, or triethylamine in acetonitrile.

Where the above-described processes for the preparation of the compounds according to the invention give rise to mixtures of stereoisomers, these isomers may be separated by conventional techniques such as preparative chromatography. The novel compounds may be prepared in racemic form, or individual enantiomers may be prepared either by enantiospecific synthesis or by resolution. The novel compounds may, for example, be resolved into their component enantiomers by standard techniques such as preparative HPLC, or the formation of diastereomeric pairs by salt formation with an optically active acid, such as (-)-di-p-toluoyl-d-tartaric acid and/or (+)-di-p-toluoyl-l-tartaric acid, followed by fractional crystallization and regeneration of the free base. The novel compounds may also be resolved by formation of diastereomeric

10

15

20

25

30

esters or amides, followed by chromatographic separation and removal of the chiral auxiliary.

During any of the above synthetic sequences it may be necessary and/or desirable to protect sensitive or reactive groups on any of the molecules concerned. This may be achieved by means of conventional protecting groups, such as those described in *Protective Groups in Organic Chemistry*, ed. J.F.W. McOmie, Plenum Press, 1973; and T.W. Greene & P.G.M. Wuts, *Protective Groups in Organic Synthesis*, John Wiley & Sons, 1991. The protecting groups may be removed at a convenient subsequent stage using methods known from the art.

The following Examples illustrate the preparation of compounds according to the invention.

The compounds in accordance with the present invention potently and selectively bind to the 5-HT_{1D α} receptor subtype, inhibit forskolinstimulated adenylyl cyclase activity, and stimulate [35S]-GTP γ S binding to membranes from clonal cell lines expressing human cloned receptors.

5-HT_{1Da}/5-HT_{1D6} Radioligand Binding

Chinese hamster ovary (CHO) clonal cell lines expressing the human 5-HT_{1Da} and 5-HT_{1Dβ} receptors were harvested in PBS and homogenised in ice cold 50 mM Tris-HCl (pH 7.7 at room temperature) with a Kinematica polytron and centrifuged at 48,000g at 4°C for 11 min. The pellet was then resuspended in 50 mM Tris-HCl followed by a 10 min incubation at 37°C. Finally the tissue was recentrifuged at 48,000g, 4°C for 11 min and the pellet resuspended, in assay buffer (composition in mM: Tris-HCl 50, pargyline 0.01, CaCl₂ 4; ascorbate 0.1%; pH 7.7 at room temperature) to give the required volume immediately prior to use (0.2 mg protein/ml). Incubations were carried out for 30 min at 37°C in the presence of 0.02-150 nM [³H]-5-HT for saturation studies or 2-5 nM [³H]-5-HT for displacement studies. The final assay volume was 1 ml. 5-HT (10

μM) was used to define non-specific binding. The reaction was initiated by the addition of membrane and was terminated by rapid filtration through Whatman GF/B filters (presoaked in 0.3% PEI/ 0.5% Triton X) followed by 2 x 4 ml washings with 50 mM Tris-HCl. The radioactive filters were then counted on a LKB beta or a Wallac beta plate counter. Binding parameters were determined by non-linear, least squares regression analysis using an iterative curve fitting routine, from which IC₅₀ (the molar concentration of compound necessary to inhibit binding by 50%) values could be calculated for each test compound. The IC₅₀ values for binding to the 5-HT_{1Dα} receptor subtype obtained for the compounds of the accompanying Examples were below 50 nM in each case. Furthermore, the compounds of the accompanying Examples were all found to possess a selective affinity for the 5-HT_{1Dα} receptor subtype of at least 10-fold relative to the 5-HT_{1Dβ} subtype.

15

20

25

30

5

10

5-HT_{1Da}/5-HT_{1DB} Adenylyl Cyclase Assay

Studies were performed essentially as described in J. Pharmacol. Exp. Ther., 1986, 238, 248. CHO clonal cell lines expressing the human cloned 5-HT_{1Dα} and 5-HT_{1Dβ} receptors were harvested in PBS and homogenised, using a motor driven teflon/glass homogeniser, in ice cold Tris HCl-EGTA buffer (composition in mM: Tris HCl 10, EGTA 1, pH 8.0 at room temperature) and incubated on ice for 30-60 min. The tissue was then centrifuged at 20,000g for 20 min at 4°C, the supernatant discarded and the pellet resuspended in Tris HCl-EDTA buffer (composition in mM: Tris HCl 50, EDTA 5, pH 7.6 at room temperature) just prior to assay. The adenylyl cyclase activity was determined by measuring the conversion of α-[33P]-ATP to [33P]-cyclic AMP. A 10 μl aliquot of the membrane suspension was incubated, for 10-15 min, in a final volume of 50 μl, at 30°C, with or without forskolin (10 μM), in the presence or absence of test compound. The incubation buffer consisted of 50 mM Tris HCl (pH 7.6 at

room temperature), 100 mM NaCl, 30 µM GTP, 50 µM cyclic AMP, 1 mM dithiothreitol, 1 mM ATP, 5 mM MgCl₂, 1 mM EGTA, 1 mM 3-isobutyl-1methylxanthine, 3.5 mM creatinine phosphate, 0.2 mg/ml creatine phosphokinase, 0.5-1 μCi α-[33P]-ATP and 1 nCi [3H]-cyclic AMP. The incubation was initiated by the addition of membrane, following a 5 min preincubation at 30°C, and was terminated by the addition of 100 µl SDS (composition in mM: sodium lauryl sulphate 2%, ATP 45, cyclic AMP 1.3, pH 7.5 at room temperature). The ATP and cyclic AMP were separated on a double column chromatography system (Anal. Biochem., 1974, 58, 541). Functional parameters were determined using a least squares curve 10 fitting programme ALLFIT (Am. J. Physiol., 1978, 235, E97) from which Emax (maximal effect) and EC50 (the molar concentration of compound necessary to inhibit the maximal effect by 50%) values were obtained for each test compound. Of those compounds which were tested in this assay, the EC₅₀ values for the 5-HT_{1D α} receptor obtained for the compounds of the 15 accompanying Examples were below 500 nM in each case. Moreover, the compounds of the accompanying Examples which were tested were all found to possess at least a 10-fold selectivity for the 5-H $T_{1D_{\alpha}}$ receptor subtype relative to the 5-H T_{1D_8} subtype.

20

25

30

5-HT_{1Dα}/5-HT_{1Dβ} GTPγS Binding

Studies were performed essentially as described in Br. J. Pharmacol., 1993, 109, 1120. CHO clonal cell lines expressing the human cloned 5-HT_{1D α} and 5-HT_{1D β} receptors were harvested in PBS and homogenised using a Kinematica polytron in ice cold 20 mM HEPES containing 10 mM EDTA, pH 7.4 at room temperature. The membranes were then centrifuged at 40,000g, 4°C for 15 min. The pellet was then resuspended in ice cold 20 mM HEPES containing 0.1 mM EDTA, pH 7.4 at room temperature and recentrifuged at 40,000g, 4°C for 15-25 minutes. The membranes were then resuspended in assay buffer (composition in

10

15

20

mM: HEPES 20, NaCl 100, MgCl₂ 10, pargyline 0.01; ascorbate 0.1%; pH 7.4 at room temperature) at a concentration of 40 µg protein/ml for the 5-HT_{1D_R} receptor transfected cells and 40-50 µg protein/ml for the 5-HT_{1D_R} receptor transfected cells. The membrane suspension was then incubated, in a volume of 1 ml, with GDP (100 μM for 5-HT_{1Da} receptor transfected cells, 30 μM for the 5-HT_{1DB} receptor transfected cells) and test compound at 30°C for 20 min and then transferred to ice for a further 15 min. [35S]-GTPyS was then added at a final concentration of 100 pM and the samples incubated for 30 min at 30°C. The reaction was initiated by the addition of membrane and was terminated by rapid filtration through Whatman GF/B filters and washed with 5 ml water. The radioactive filters were then counted on a LKB beta counter. Functional parameters were determined by a non-linear, least squares regression analysis using an iterative curve fitting routine, from which Emax (maximal effect) and EC₅₀ (the molar concentration of compound necessary to inhibit the maximal effect by 50%) values were obtained for each test compound. Of those compounds which were tested in this assay, the EC50 values for the $5-HT_{1D_{\alpha}}$ receptor obtained for the compounds of the accompanying Examples were below 500 nM in each case. Moreover, the compounds of the accompanying Examples which were tested were all found to possess at least a 10-fold selectivity for the 5-HT $_{1D_{lpha}}$ receptor subtype relative to the 5-HT $_{1D_{\beta}}$ subtype.

EXAMPLE 1

25

30

1-Benzyl-4-[3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl]piperazin-2-one.

1.3 Hydrogen Oxalate

Intermediate 1: 4-(tert-Butyloxycarbonyl)piperazin-2-one

A solution of ethyl chloroacetate (20g, 0.16mol) in EtOH (50mL) was added to a stirred solution of ethylenediamine (65mL, 0.98mol) in EtOH

10

15

20

25

30

(300mL) at 0°C. After addition the cooling bath was removed and the mixture warmed to room temperature. After 5h a solution of sodium methoxide in MeOH (3.7g Na dissolved in 20mL MeOH) was added and the mixture stirred for 16h. The mixture was filtered and the filtrate evaporated in vacuo. The residue was dissolved in EtOH (200mL) and heated at reflux for 4h. After this time the solvent was removed by evaporation and the residue partitioned between CH2Cl2 (200mL) and water (200mL). The aqueous layer was separated, dried (Na₂SO₄) and evaporated. The residue was dissolved in CH2Cl2, di-tert-butyldicarbonate (106.6g, 0.49mol) was added and the mixture stirred for 1h. The solution was then washed with water (300mL) and the organic layer separated, dried (Na₂SO₄) and evaporated. The residue was triturated in petrol and the undissolved solid collected by filtration. The solid was chromatographed on silica gel, eluting with CH2Cl2:MeOH (97:3), to afford 4-(tert-butyloxycarbonyl)piperazin-2-one (10.8g, 33%) as a colourless solid. mp. 158-161°C. ¹H NMR (250MHz, CDCl₃) δ 1.48 (9H, s), 3.40 (2H, m), 3.63 (2H, m), 4.10 (2H, s), 6.42 (1H, br s).

Intermediate 2: 3-[5-(1,2,4-Triazol-4-yl)-1H-indol-3-vl]propan-1-ol

A solution of 4-(1,2,4-triazol-4-yl)phenylhydrazine (prepared as described in WO 94/03446, Example 1) (25g, 143mmol) in dioxan (250ml) was treated with dihydropyran (24g, 286mmol) followed by 1M hydrochloric acid (150ml) and heated at reflux for 18 hours. The reaction mixture was evaporated with toluene then reevaporated. Inorganic solids were removed by treating the residue with a mixture of methanol and acetonitrile. The mother liquors were purified by column chromatography on silica using dichloromethane:methanol (9:1 \rightarrow 4:1) as the eluant. The compound was recrystallised from acetonitrile to afford the title compound as a white solid (10.24g, 30%), mp 205-207°C. δ (360 MHz, d₆-DMSO) 1.81 (2H, quintet, J=7Hz, CH₂), 2.75 (2H, t, J=8Hz, CH₂), 3.46 (2H, dt, J₁=6Hz, J₂=5Hz, CH₂), 4.43 (1H, t, J=5Hz, OH), 7.26 (1H, d, J=2Hz, Ar-H), 7.29

15

20

25

30

(1H, dd, J_1 =9Hz, J_2 =2Hz, Ar-H), 7.47 (1H, d, J=9Hz, Ar-H), 7.77 (1H, d, J=2Hz, Ar-H), 9.01 (2H, s, Triazole-H), 11.05 (1H, br s, indole NH). MS, CI+, m/z for (M+H)+=243.

5 Step 1: 1-Benzyl-4-(tert-butyloxycarbonyl)piperazin-2-one

To a stirred solution solution of Intermediate 1 (1.5g, 7.5mmol) in DMF (30mL) at 0°C, under nitrogen, was added sodium hydride (330mg of a 60% dispersion in mineral oil, 8.3mmol). The solution was stirred for 90 min before benzyl bromide (1.16mL, 9.8mmol) was added. The solution was heated at 60°C for 3h then the solvent was removed in vacuo. The residue was partitioned between EtOAc (2x50mL) and water (50mL). The combined organic phases were dried (Na₂SO₄) and evaporated. The residue was chromatographed on silica, eluting with petrol:EtOAc (1:1), to afford the title amide (2.11g, 97%) as a colourless solid. m.p. 85-88°C. ¹H NMR (250MHz, CDCl₃) δ 1.46 (9H, s), 3.23-3.28 (2H, m), 3.56-3.61 (2H, m), 4.16 (2H, s), 4.63 (2H, s), 7.24-7.35 (5H, m).

Step 2: 1-Benzyl-4-[3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl]piperazin-2-one. 1.3 Hydrogen Oxalate

To a stirred solution of 1-benzyl-4-(tert-butyloxycarbonyl)piperazin-2-one (628mg, 2.2mmol) in CH₂Cl₂ (30mL) was added trifluoroacetic acid (3mL) and the solution stirred for 4h. After this time the solvent was removed in vacuo and the residue azeotroped with toluene (20mL). The residue was partitioned between EtOAc (2x20mL) and K₂CO₃ (sat., 20mL). The combined organic phases were dried (Na₂SO₄) and evaporated. The resultant piperazinone (262mg) was isolated as a pale yellow oil and used crude in the subsequent reaction.

To a stirred solution of Intermediate 2 (150mg, 0.62mmol) in THF (80mL) at room temperature was added methanesulphonyl chloride (95µl, 1.23mmol) and triethylamine (171µl, 1.23mmol). After 3h more triethylamine (85µl, 0.62mmol) followed by methanesulphonyl chloride

30

(47µl, 0.62mmol) was added. After stirring for a further 30 min more triethylamine (40µl, 0.29mmol) followed by methanesulphonyl chloride (24µl, 0.29mmol) was added. The mixture was stirred for a further 30 min whereupon the mixture was filtered and the filtrate removed in vacuo. The crude mesylate was dissolved in iso-propanol (25mL), and K₂CO₃ 5 (297mg, 1.43mmol), sodium iodide (93mg, 0.62mmol) and the piperazinone (262mg) prepared from above were added to the solution. The mixture was heated at reflux, in the dark, for 24h. After cooling to room temperature the mixture was filtered and the filtrate evaporated. The residue was partitioned between CH2Cl2 (2x30mL) and water (30mL). The 10 combined organic layers were dried (Na₂SO₄) and evaporated. The residue was chromatographed on silica gel, eluting with CH2Cl2:MeOH (93:7), to afford the title piperazinone (107mg, 42%) as a colourless oil, as the free base. The hydrogen oxalate salt was prepared. m.p. 129°C. C₂₄H₂₆N₆O. $1.3(C_2H_2O_4)$ requires: C, 60.11; H, 5.42; N, 15.81%. Found: C, 60.31; H, 15 5.55; N, 15.66%. ¹H NMR (360MHz, d₆-DMSO) δ 1.83-1.95 (2H, m), 2.59 (2H, t, J=7.2Hz), 2.74 (2H, t, J=7.3Hz), 2.80-2.88 (2H, m), 3.25 (2H, t, J=5.9Hz), 3.29 (2H, s), 4.53 (2H, s), 7.23-7.37 (7H, m), 7.49 (1H, d, J=8.7Hz), 7.79 (1H, d, J=1.9Hz), 9.01 (2H, s), 11.10 (1H, br s). MS (ES+) 20 (415, M+1).

EXAMPLE 2

1-(2-Phenylethyl)-4-(3-[5-(1.2.4-triazol-4-yl)-1H-indol-3-yl]propyl)piperazin-2-one. 1.25 Hydrogen Oxalate

Step 1: 2-(Phenylethylamino)ethyl carbamic acid tert-butyl ester

A solution of phenylethylamine hydrochloride (2.88g, 0.018mol) and 2-bromo-N-tert-butyloxycarbonylethylamine (4.1g, 0.018mmol) in DMF (50mL), containing K₂CO₃ (5.0g, 0.036mol), was heated at 60°C for 4h. The solution was filtered, evaporated and the residue partitioned between

15

20

25

30

CH₂Cl₂ (2x100mL) and water (100mL). The combined organic layers were dried (Na₂SO₄) and evaporated. The residue was chromatographed on silica gel, eluting with CH₂Cl₂:MeOH (90:10), to afford the title compound (1.44g, 30%) as a colourless oil. ¹H NMR (250MHz, CDCl₃) δ 1.44 (9H, s), 2.74 (2H, t, J=6.0Hz), 2.79 (2H, m), 2.88 (2H, m), 3.19 (2H, m), 4.87 (1H, br s), 7.19-7.22 (3H, m), 7.26-7.31 (2H, m). MS (ES⁺) (265, M+1).

Step 2: 2-[(Bromoacetyl)(2-phenylethyl)aminolethyl carbamic acid tertbutyl ester

To a solution of bromoacetyl bromide (0.25mL, 2.92mmol) in CH₂Cl₂ (10mL) at -10°C was added a solution of 2-(phenylethylamino)ethyl carbamic acid *tert*-butyl ester (0.7g, 2.65mmol) and triethylamine (0.41mL, 2.92mmol) in CH₂Cl₂ (10mL) dropwise. The mixture was stirred at -10°C for 30min, before removal of the solvent *in vacuo*. The residue was partitioned between EtOAc (2x30mL) and water (30mL). The combined organic layers were dried (Na₂SO₄) and evaporated. The residue was chromatographed on silica gel, eluting with petrol:EtOAc (2:1 \rightarrow 1:1), to afford the title amide (0.81g, 79%) as a colourless oil. ¹H NMR (250MHz. CDCl₃) δ 1.44 (9H, s), 2.86-2.94 (2H, m), 3.10-3.94 (8H, m), 4.59 and 4.92 (1H, 2 x br s), 7.15-7.37 (5H, m). MS (ES+) (385/387, M+).

Step 3: 1-(2-Phenylethyl)piperazin-2-one

To a solution of 2-[(bromoacetyl)(2-phenylethyl)amino]ethyl carbamic acid tert-butyl ester (0.81g, 2.1mmol) in CH₂Cl₂ (25mL) was added trifluoroacetic acid (2.5mL) and the mixture stirred for 1 h. The solvent was removed in vacuo and the residue azeotroped with toluene (10mL) and CH₂Cl₂ (2x10mL). The crude amine (1.1g) was isolated as its trifluoroacetate salt, as a pale yellow oil and used crude in the subsequent reaction.

The crude amine trifluoroacetate (1.1g) was dissolved in EtOH (50mL), K₂CO₃ (0.58g, 4.2mmol) was added, and the mixture heated at

15

20

25

30

reflux for 20h. The mixture was cooled to room temperature, filtered and the filtrate evaporated. The residue was partitioned between CH₂Cl₂ (4x30mL) and water (30mL). The combined organic layers were dried (Na₂SO₄) and evaporated. The residue was chromatographed on silica gel, eluting with CH₂Cl₂:MeOH:NH₃ (90:10:0→90:10:1), to afford the title compound (0.36g, 84%) as a colourless solid. mp 75-78°C. ¹H NMR (250MHz, CDCl₃) δ 2.89 (2H, t, J=7.1Hz), 2.97 (2H, m), 3.14 (2H, m), 3.51 (2H, s), 3.59 (2H, t, J=7.2Hz), 7.19-7.33 (5H, m). MS (ES+) (205, M+1).

10 Step 4: 1-(2-Phenylethyl)-4-(3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl)piperazin-2-one. 1.25 Hydrogen Oxalate

To a suspension of Intermediate 2 (150mg, 0.62mmol) in THF (80mL) was added triethylamine (172µL, 1.23mmol) and methanesulphonyl chloride (96µL, 1.23mmol). The mixture was stirred at room temperature for 90min before more triethylamine (86µL, 0.62mmol) and methanesulphonyl chloride (48µL, 0.62mmol) were added. The mixture was stirred for a further 1h, then filtered and the filtrate evaporated. The crude mesylate was dissolved in iso-propanol (20mL), and K₂CO₃ (257mg, 1.9mmol), sodium iodide (93mg, 0.62mmol) and 1-(2phenylethyl)piperazin-2-one (348mg, 1.7mmol) were added. The mixture was heated at reflux, in the dark, for 20h. After cooling the mixture was filtered and the filtrate evaporated. The residue was partitioned between CH₂Cl₂ (2x50mL) and water (50mL). The combined organic layers were dried (Na₂SO₄) and evaporated. The residue was chromatographed on silica gel, eluting with CH2Cl2:MeOH (90:10), to afford the title compound (149mg, 56%) as the free base as a pale yellow foam. The hydrogen oxalate salt was prepared. mp 97°C (dec.). $C_{25}H_{28}N_6O \cdot 1.25(C_2H_2O_4) \cdot H_2O$ requires: C, 59.08; H, 5.86; N, 15.03%. Found: C, 59.10; H, 5.79; N, 15.15%. ¹H NMR (360MHz, d₆-DMSO) δ 1.82-1.94 (2H, m), 2.51-2.63 (2H, m), 2.71-2.80 (6H, m), 3.19 (2H, s), 3.22-3.30 (2H, m), 3.48 (2H, t, J=7.4Hz, 7.19-7.31 (7H, m), 7.48 (1H, d, J=8.6Hz), 7.78 (1H, d, J=1.9Hz), 9.01 (2H, s), 11.10 (1H, br s). MS (ES+) (429, M+1).

EXAMPLE 3

5

10

15

20

25

30

1-(2-(3-Fluorophenyl)ethyl)-4-(3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl)piperazin-2-one. Hydrogen Oxalate

Step 1: 2-[(3-Fluorophenyl)acetylamino]ethyl carbamic acid tert-butyl ester

To a solution of 3-fluorophenylacetic acid (1.93g, 12.5mmol) in CH₂Cl₂ (50mL) was added *tert*-butyl-N-(2-aminoethyl)carbamate (2.0g, 12.5mmol), 4-dimethylaminopyridine (1.53g, 12.5mmol) and 1-[3-(dimethylamino)propyl]-3-ethyl carbodiimide hydrochloride (2.4g, 12.5mmol). The mixture was stirred at room temperature for 16h then washed with water (50mL) and citric acid (10%, 2x50mL). The organic layer was separated, dried (Na₂SO₄) and evaporated. The residue was chromatographed on silica gel, eluting with CH₂Cl₂:MeOH (95:5→90:10), to afford the title amide (3.7g, 100%) as a colourless solid. mp 125-128°C. ¹H NMR (250MHz, CDCl₃) δ 1.43 (9H, s), 3.18-3.40 (4H, m), 3.53 (2H, s). 4.82 (1H, br s), 6.23 (1H, br s), 6.94-7.06 (3H, m), 7.26-7.40 (2H, m). MS (ES+) (297, M+1).

Step 2: 2-[2-(3-Fluorophenyl)ethylaminolethyl carbamic acid tert-butyl ester

To a solution of the amide (0.5g, 1.7mmol) in THF (25mL) at 0°C, under nitrogen, was added LiAlH₄ (5.1mL of a 1.0M solution in ether, 5.1mmol) dropwise. The cooling bath was removed and the mixture stirred at room temperature for 16h. After this time more LiAlH₄ (1.7mL of a 1.0M solution in ether, 1.7mmol) was added dropwise and the mixture stirred for a further 5h. After this time Na₂SO₄ (sat., 6.8mL) was added dropwise at 0°C and the mixture stirred for a further 15min. The

20

25

30

resultant solid was removed by filtration, the filtrate evaporated, and the residue chromatographed on silica gel, eluting with CH₂Cl₂:MeOH (90:10). The amine (140mg, 29%) was isolated as a pale yellow oil. ¹H NMR (250MHz, CDCl₃) δ 1.44 (9H, s), 2.74-2.95 (6H, m), 3.19-3.25 (2H, m), 4.91 (1H, br s), 6.90-6.99 (3H, m), 7.21-7.30 (2H, m). MS (ES+) (283, M+1).

Step 3: 2-[(Bromoacetyl)(2-[3-fluorophenyl]ethyl)aminolethyl carbamic acid tert-butyl ester

Prepared in the same manner as that described in Example 2, Step 2, using 2-[2-(3-fluorophenyl)ethylamino]ethyl carbamic acid tert-butyl ester (713mg, 2.53mmol), bromoacetyl bromide (0.24mL, 2.78mmol), triethylamine (0.39mL, 2.78mmol) and CH₂Cl₂ (10mL). The bromide (855mg, 84%) was isolated as a yellow oil. ¹H NMR (360MHz, CDCl₃) δ 1.44 (9H, s), 2.87-2.95 (2H, m), 3.26-3.39 (3H, m), 3.46-3.92 (5H, m), 4.62 and 4.90 (1H, 2 x br s), 6.89-7.02 (3H, m), 7.20-7.30 (2H, m). MS (ES+) (403/405, M+).

Step 4: 1-[2-(3-Fluorophenyl)ethyl]piperazin-2-one

Prepared in the same manner as that described in Example 2. Step 3 using 2-[(bromoacetyl)(2-[3-fluorophenyl]ethyl)amino]ethyl carbamic acid tert-butyl ester (0.85g, 2.1mmol), trifluoroacetic acid (2.5mL) and CH₂Cl₂ (25mL), followed by K₂CO₃ (0.58g, 4.2mmol) and EtOH (50mL). The piperazinone (351mg, 75%) was isolated as a pale yellow oil. ¹H NMR (250MHz, CDCl₃) & 2.90 (2H, t, J=7.1Hz), 2.97-3.01 (2H, m), 3.14-3.18 (2H, m), 3.52 (2H, s), 3.58 (2H, t, J=7.2Hz), 6.89-7.03 (3H, m), 7.22-7.31 (2H, m). MS (ES⁺) (223, M+1).

Step 5: 1-(2-(3-Fluorophenyl)ethyl)-4-(3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl)piperazin-2-one. Hydrogen Oxalate

In the same manner as that described in Example 2, Step 4, using Intermediate 2 (150mg, 0.62mmol), triethylamine (172µL. 1.24mmol),

10

15

25

30

methanesulphonyl chloride (96μl, 1.24mmol) and THF (80mL), followed by more triethylamine (86μl, 0.62mmol) and methanesulphonyl chloride (48μl, 0.62mmol). The resultant crude mesylate was then treated with 1-[2-(3-fluorophenyl)ethyl]piperazin-2-one (341mg, 1.55mmol), K_2CO_3 (257mg, 1.9mmol), sodium iodide (93mg, 0.62mmol) and iso-propanol (25mL). The title compound (159mg, 58%) was isolated as the free base as a colourless foam. The hydrogen oxalate salt was prepared. mp 88°C (dec.). $C_{25}H_{27}N_6OF$. $C_2H_2O_4$. H_2O requires: C, 58.48; H, 5.63; N, 15.15%. Found: C, 58.58; H, 5.77; N, 15.01%. ¹H NMR (360MHz, d₆-DMSO) δ 1.84-1.96 (2H, m), 2.55 (2H, t, J=7.6Hz), 2.74 (2H, t, J=7.3Hz), 2.78-2.82 (4H, m), 3.19 (2H, s), 3.24-3.28 (2H, m), 3.51 (2H, t, J=7.9Hz), 7.00-7.09 (3H, m), 7.29-7.36 (3H, m), 7.48 (1H, d, J=8.6Hz), 7.79 (1H, d, J=1.9Hz), 9.01 (2H, s), 11.10 (1H, br s). MS (ES+) (447, M+1).

EXAMPLE 4

1-[2-(3,4-Difluorophenyl)ethyl]-4-(3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl)piperazin-2-one. 1.3 Hydrogen Oxalate

20 Step 1: 2-[2-(3,4-Difluorophenvl)ethylamino]ethyl carbamic acid tert-butyl ester

To a solution of tert-butyl-N-(2-aminoethyl)carbamate (718mg, 4.5mmol) in MeOH (40mL) at 0°C, under nitrogen, was added (3,4-difluorophenyl)acetaldehyde (0.7g, 4.5mmol) in MeOH (10mL), acetic acid (0.78mL, 13.5mmol) and sodium cyanoborohydride (564mg, 9.0mmol). After stirring at 0°C for 15min the cooling bath was removed and the mixture stirred at room temperature for 3h. Saturated K₂CO₃ solution (50mL) was added and the mixture stirred for a further 15min. The solvents were removed in vacuo and the residue partitioned between water (50mL) and EtOAc (2x50mL). The combined organic layers were dried (Na₂SO₄), and evaporated. The residue was chromatographed on silica gel.

WO 97/16446 PCT/GB96/02624

- 43 -

eluting with CH₂Cl₂:MeOH:NH₃ (90:10:1) to give the amine (473mg, 35%) as a yellow oil. ¹H NMR (250MHz, CDCl₃) δ 1.44 (9H, s), 2.72-2.78 (4H, m), 2.83-2.90 (2H, m), 3.18-3.28 (2H, m), 4.87 (1H, br s), 6.87-7.13 (3H, m). MS (ES+) (301, M+1).

5

10

Step 2: 2-[(Bromoacetyl)(2-(3,4-difluorophenyl)ethyl)amino]ethyl carbamic acid tert-butyl ester

Prepared in the same manner as that described in Example 2, Step 2 using 2-[2-(3,4-difluorophenyl)ethylamino]ethyl carbamic acid tert-butyl ester (473mg, 1.6mmol), bromoacetyl bromide (0.15mL, 1.7mmol), triethylamine (0.24mL, 1.7mmol) and CH₂Cl₂ (10mL). The bromide (549mg, 83%) was isolated as a yellow oil. ¹H NMR (250MHz, CDCl₃) δ 1.43 (9H, s), 2.81-2.93 (2H, m), 3.17-3.40 (3H, m), 3.46-3.95 (5H, m), 4.66 and 4.90 (1H, 2 x br s), 6.93-7.19 (3H, m). MS (ES*) (421/423, M*).

15

Step 3: 1-[2-(3,4-Difluorophenyl)ethyl]piperazin-2-one

In the same way as that described in Example 2, Step 3 using 2-[(bromoacetyl)(2-(3,4-difluorophenyl)ethyl)amino]ethyl carbamic acid tert-butyl ester (549mg, 1.3mmol), trifluoroacetic acid (2.5mL) and CH₂Cl₂ (25mL), followed by K₂CO₃ (0.36g, 2.6mmol) and EtOH (50mL). The piperazinone (286mg, 91%) was isolated as a yellow oil. ¹H NMR (250MHz, CDCl₃) δ 2.85 (2H, t, J=7.3Hz), 2.99-3.03 (2H, m), 3.17-3.21 (2H, m), 3.52 (2H, s), 3.56 (2H, t, J=7.3Hz), 6.90-7.16 (3H, m). MS (ES⁺) (241, M+1).

25

30

20

Step 4: 1-[2-(3,4-Difluorophenyl)ethyl]-4-(3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl)piperazin-2-one, 1.3 Hydrogen Oxalate

In the same manner as that described in Example 2, Step 4, using Intermediate 2 (150mg, 0.62mmol), triethylamine (172 μ L, 1.24mmol), methanesulphonyl chloride (96 μ L, 1.24mmol) and THF (80mL), followed by more triethylamine (86 μ L, 0.62mmol) and methanesulphonyl chloride

(48μL, 0.62mmol). The resultant crude mesylate was then treated with 1-[2-(3,4-difluorophenyl)ethyl]piperazin-2-one (285mg, 1.2mmol), K_2CO_3 (257mg, 1.9mmol), sodium iodide (93mg, 0.62mmol) and iso-propanol (20mL). The crude product was chromatographed on silica gel, eluting with CH₂Cl₂:MeOH (93:7), to afford the title compound (113mg, 39%) as a yellow foam. The hydrogen oxalate salt was prepared. mp. 102°C (dec.). $C_{25}H_{26}N_6OF_2$. 1.3 ($C_2H_2O_4$). 0.5 (H_2O) requires: C, 56.13; H, 5.05; N, 14.23%. Found: C, 56.19; H, 5.02; N, 14.30%. ¹H NMR (360MHz, d₆-DMSO) δ 1.82-1.95 (2H, m), 2.50-2.59 (2H, m), 2.68-2.83 (6H, m), 3.15 (2H, s), 3.23-3.29 (2H, m), 3.49 (2H, t, J=7.9Hz), 7.05-7.10 (1H, m), 7.28-7.34 (4H, m), 7.48 (1H, d, J=8.6Hz), 7.78 (1H, s), 9.01 (2H, s), 11.09 (1H, br s). MS (ES⁺) (465, M+1).

EXAMPLE 5

15

20

10

1-Benzyl-4-[3-[5-(1,2,4-triazol-4-vl)-1H-indol-3-yl]propyl]piperazin-2-thione

Step 1: 1-Benzyl-4-(tert-butyloxycarbonyl)piperazin-2-thione

A mixture of 1-benzyl-4-(*tert*-butyloxycarbonyl)piperazin-2-one (1.0g, 3.4mmol) and 2,4-bis(4-methoxyphenyl)-1,3-dithia-2.4-diphosphetane-2,4-disulphide (Lawesson's Reagent) (837mg, 2.1mmol) were heated at 90°C in toluene (10mL), under nitrogen for 45 min. The mixture was cooled then partitioned between EtOAc (3x50mL) and water (50mL). The combined organic layers were dried (Na₂SO₄) and evaporated. The residue was chromatographed on silica gel, eluting with CH₂Cl₂:EtOAc (100:0→95:5→90:10) to afford the title compound (853mg, 82%) as a colourless solid. mp. 126-129°C. ¹H NMR (250MHz, CDCl₃) δ 1.47 (9H, s), 3.40-3.44 (2H, m), 3.60-3.65 (2H, m), 4.67 (2H, s), 5.31 (2H, s), 7.31-7.39 (5H, m). MS (ES+) (307, M+1).

25

10

15

Step 2: 1-Benzylpiperazin-2-thione

To a solution of 1-benzyl-4-(tert-butyloxycarbonyl)piperazin-2-thione (925mg, 3.02mmol) in CH₂Cl₂ (25mL) was added trifluoroacetic acid (2.5mL). The mixture was stirred at room temperature, under nitrogen, for 2h. The solvent was evaporated and the residue azeotroped with toluene (2x10mL). The residue was partitioned between CH₂Cl₂ (2x50mL) and Na₂CO₃ solution (10% (w/v), 40mL). The combined organic layers were dried (Na₂SO₄) and evaporated. The residue was chromatographed on silica, eluting with CH₂Cl₂:MeOH (95:5) to afford the title compound (539mg, 87%) as a pale orange solid. mp. 70-73°C. ¹H NMR (250MHz, CDCl₃) δ 3.11-3.16 (2H, m), 3.29-3.33 (2H, m), 4.10 (2H, s), 5.31 (2H, s), 7.30-7.37 (5H, m). MS (ES⁺) (207, M+1).

Step 3: 1-Benzyl-4-[3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl)propyl]piperazin-2-thione

In the same way as that described in Example 2, Step 4, using Intermediate 2 (150mg, 0.62mmol), methanesulphonyl chloride (96µL, 1.24mmol), triethylamine (172µL, 1.24mmol) and THF (80mL), followed by more triethylamine (86µL, 0.62mmol) and methanesulphonyl chloride (48µL, 0.62mmol). The resultant crude mesylate was then treated with 1-20 benzylpiperazin-2-thione (255mg, 1.24mmol), K2CO3 (257mg, 1.9mmol), sodium iodide (93mg, 0.62mmol) and iso-propanol (20mL). The crude product was chromatographed on silica gel, eluting with $CH_2Cl_2:MeOH:NH_3$ (95:5:1), to give the title compound (104mg) as a pale yellow foam, contaminated with some 1-benzylpiperazin-2-thione. The 25 mixture of thioamides (104mg) was dissolved in CH2Cl2 (25mL) and treated with di-tert-butyldicarbonate (50mg, 0.23mmol). The mixture was stirred at room temperature for 2h then the solvent removed in vacuo. The residue was chromatographed on silica gel, eluting with CH₂Cl₂:MeOH (95:5), to afford the title compound (47mg, 18%) as a 30 colourless solid. mp. (MeOH) 201-203°C. $C_{24}H_{26}N_6S$. 0.3(H_2O) requires: C.

25

30

66.12; H, 6.15; N, 19.28%. Found: C, 66.09; H, 5.92; N, 19.23%. ¹H NMR (360MHz, d₆-DMSO) δ 1.81-1.92 (2H, m), 2.42 (2H, t, J=7.1Hz), 2.70-2.76 (4H, m), 3.37-3.42 (2H, m), 3.61 (2H, s), 5.24 (2H, s), 7.27-7.38 (7H, m), 7.47 (1H, d, J=8.6Hz), 7.77 (1H, s), 9.01 (2H, s), 11.07 (1H, br s). MS (ES⁺) (431, M+1).

EXAMPLE 6

1-(2-Phenylpropyl)-4-(3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl)piperazin-2-one. 1.4 Hydrogen Oxalate

Step 1: 2-[2-Phenylpropylamino]ethyl carbamic acid tert-butyl ester

In the same way as that described in Example 4, Step 1, using tert-butyl-N-(2-aminoethyl)carbamate (1.6g, 10mmol), 215 phenylpropionaldehyde (1.32mL, 10mmol), MeOH (100mL), acetic acid (1.72mL, 30mmol) and sodium cyanoborohydride (1.26g, 20mmol). The crude residue was chromatographed on silica gel, eluting with CH₂Cl₂:MeOH (90:10), to give the amine (1.56g, 56%) as a colourless oil.

1H NMR (250MHz, CDCl₃) δ 1.26 (3H, d, J=6.9Hz), 1.42 (9H, s), 2.70-2.81 (4H, m), 2.90-3.00 (1H, m), 3.14-3.24 (2H, m), 4.89 (1H, br s), 7.19-7.35 (5H, m).

Step 2: 2-[(Bromoacetyl)(2-phenylpropyl)amino]ethyl carbamic acid tertbutyl ester

Prepared in the same manner as that described in Example 2, Step 2 using 2-[2-phenylpropylamino]ethyl carbamic acid *tert*-butyl ester (1.56g, 5.6mmol), bromoacetyl bromide (0.52mL, 5.96mmol), triethylamine (0.83mL, 5.96mmol) and CH₂Cl₂ (60mL). The bromide (1.64g, 73%) was isolated as a colourless oil. ¹H NMR (250MHz, CDCl₃) δ 1.28 and 1.35 (3H, 2 x d, J=6.9Hz each), 1.42 and 1.43 (9H, 2 x s), 2.84-3.98 (9H, m), 4.50 and 4.87 (1H, 2 x br s), 7.15-7.36 (5H, m).

- 47 -

Step 3: 1-(2-Phenylpropyl)piperazin-2-one

In the same way as that described in Example 2, Step 3, using 2-[(bromoacetyl)(2-phenylpropyl)amino]ethyl carbamic acid *tert*-butyl ester (1.64g, 4.11mmol), trifluoroacetic acid (4mL) and CH₂Cl₂ (40mL), followed by K₂CO₃ (1.1g, 8.2mmol) and EtOH (100mL). The piperazinone (668mg, 75%) was isolated as a colourless oil. ¹H NMR (250MHz, CDCl₃) δ 1.28 (3H, d, J=6.8Hz), 2.72-2.93 (3H, m), 3.04-3.26 (3H, m), 3.28 (1H, d, J=17.3Hz), 3.52 (1H, d, J=17.3Hz), 3.85-3.93 (1H, m), 7.19-7.35 (5H, m).

10

15

20

5

Step 4: 1-(2-Phenylpropyl)-4-(3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl)piperazin-2-one. 1.4 Hydrogen Oxalate

In the same manner as that described in Example 2, Step 4, using Intermediate 2 (150mg, 0.62mmol), triethylamine (172 μ L, 1.24mmol), methanesulphonyl chloride (96 μ L, 1.24mmol) and THF (75mL), followed by more triethylamine (172 μ L, 1.24mmol) and methanesulphonyl chloride (96 μ L, 1.24mmol). The resultant crude mesylate was then treated with 1-(2-phenylpropyl)piperazin-2-one (332mg, 1.52mmol), K₂CO₃ (197mg, 1.42mmol), sodium iodide (93mg, 0.62mmol) and iso-propanol (25mL). The crude product was chromatographed on silica gel. eluting with CH₂Cl₂:MeOH (90:10), to afford the title compound (94mg, 34%) as a colourless foam. The hydrogen oxalate salt was prepared. mp. 140°C. C₂₆H₃₀N₆O. 1.4(C₂H₂O₄). 0.3(H₂O) requires: C, 60.26; H, 5.87; N, 14.64%. Found: C, 60.57; H, 6.26; N, 14.65%. ¹H NMR (360MHz, d₆-DMSO) δ 1.16 (3H, d, J=6.9Hz), 1.80-1.92 (2H, m), 2.69-2.73 (4H, m), 3.00-3.06 (1H, m), 3.07-3.30 (6H, m), 3.61 (2H, m), 7.17-7.31 (7H, m), 7.47 (1H, d, J=8.5Hz), 7.76 (1H, d, J=2.0Hz), 9.01 (2H, s), 11.09 (1H, br s). MS (ES+) (443, M+1).

25

10

15

20

25

EXAMPLE 7

1-(1-Phenylethyl)-4-(3-[5-(1,2,4-triazol-4-yl)-1H-indol-3vl]propyl)piperazin-2-one. Hydrogen Oxalate

Step 1: 1-(1-Phenylethyl)-4-(tert-butyloxycarbonyl)piperazin-2-one

In the same way as that described in Example 1, Step 1, using Intermediate 1 (500mg, 2.5mmol), sodium hydride (110mg of a 60% dispersion in mineral oil, 2.8mmol), (1-bromoethyl)benzene (0.44mL, 3.25mmol) and DMF (12mL). The title piperazinone (677mg, 89%) was isolated as a colourless oil, which solidified on standing at 0°C. mp. 62-64°C. ¹H NMR (250MHz, CDCl₃) & 1.40 (9H, s), 1.53 (3H, d, J=7.2Hz), 2.80-2.90 (1H, m), 3.14-3.36 (2H, m), 3.56-3.71 (1H, m), 4.07 (1H, d, J=18.2Hz), 4.22 (1H, d, 18.2Hz), 6.08 (1H, q, J=7.2Hz), 7.28-7.39 (5H, m).

Step 2: 1-(1-Phenylethyl)piperazin-2-one

Prepared in the same manner as that described in Example 5, Step 2, using 1-(1-phenylethyl)-4-(tert-butyloxycarbonyl)piperazin-2-one (673mg, 2.2mmol), trifluoroacetic acid (4mL) and CH₂Cl₂ (40mL). The crude product was chromatographed on silica gel, eluting with CH₂Cl₂:MeOH (90:10), to afford the amine (307mg, 68%) as a colourless oil. ¹H NMR (250MHz, CDCl₃) & 1.53 (3H, d, J=7.2Hz), 2.75-2.94 (2H, m), 2.98-3.07 (1H, m), 3.12-3.21 (1H, m), 3.62 (2H, s), 6.13 (1H, q, J=7.2Hz), 7.24-7.39 (5H, m).

Step 3: 1-(1-Phenvlethyl)-4-(3-[5-(1,2,4-triazol-4-vl)-1H-indol-3-yl]propyl)piperazin-2-one. Hydrogen Oxalate

In the same way as that described in Example 5, Step 3, using

Intermediate 2 (150mg, 0.62mmol), triethylamine (172µL, 1.24mmol),

methanesulphonyl chloride (96µL, 1.24mmol) and THF (75mL), followed

10

15

30

by more triethylamine (172µL, 1.24mmol) and methanesulphonyl chloride (96µL, 1.24mmol). The resultant crude mesylate was then treated with 1-(1-phenylethyl)piperazin-2-one (302mg, 1.48mmol), K₂CO₃ (197mg, 1.42mmol), sodium iodide (93mg, 0.62mmol) and iso-propanol (25mL). The crude product was chromatographed on silica gel, eluting with CH₂Cl₂:MeOH (93:7), to afford the title compound (77mg), as a colourless oil, contaminated with a small amount of 1-(1-phenylethyl)piperazin-2one. This mixture was then dissolved in CH2Cl2 (10mL) and treated with di-tert-butyldicarbonate (8mg, 0.04mmol). The mixture was stirred at room temperature for 2h, then the solvent removed in vacuo. The residue was chromatographed on silica gel, eluting with CH2Cl2:MeOH (93:7), to give the title piperazinone (50mg, 19%) as a colourless oil. The hydrogen oxalate salt was prepared. mp. 140°C (dec.). C25H28N6O. C2H2O4. H2O requires: C. 60.44; H. 6.01; N. 15.66%. Found C. 60.44; H. 5.94; N. 15.58%. ¹H NMR (360MHz, d₆-DMSO) δ 1.45 (3H, d, J=7.2Hz), 1.82-1.95 (2H, m), 2.54-2.62 (2H, m), 2.63-2.90 (6H, m), 3.22-3.38 (3H, m), 5.80 (1H, q, J=7.2Hz), 7.26-7.38 (7H, m), 7.48 (1H, d, J=8.5Hz), 7.78 (1H, d, J=1.9Hz), 9.00 (2H, s), 11.09 (1H, br s). MS (ES+) (429, M+1).

20 EXAMPLE 8

1-(2-Phenylpropyl)-4-(3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl)piperazin-3-one. Hydrogen Oxalate

25 Step 1: 2-[(3-[5-(1,2,4-Triazol-4-yl)-1H-indol-3-yllpropyl)aminolethyl carbamic acid tert-butyl ester

To a suspension of Intermediate 2 (0.8 g, 3.3 mmol) in THF (250 ml) was added triethylamine (0.51 ml, 6.6 mmol) and methanesulphonyl chloride (0.92 ml, 6.6 mmol). The mixture was stirred at room temperature for 90 min. After this time the mixture was filtered and the

filtrate evaporated. The crude mesylate was used directly without further purification.

The crude mesylate was dissolved in iso-propanol (130 ml) and K₂CO₃ (1.37 g, 9.9 mmol), sodium iodide (496 mg, 3.3 mmol) and tert-butyl-N-(2-aminoethyl)carbamate (1.32 g, 8.3 mmol) were added. The mixture was heated at reflux, in the dark, for 9h. Afer cooling the mixture was filtered and the filtrate evaporated. The residue was partitioned between water (100 ml) and CH₂Cl₂ (2 x 100ml). The combined organic layers were dried (Na₂SO₄) and evaporated. The residue was chromatographed on silica gel, eluting with CH₂Cl₂:MeOH:NH₃ (90:10:1), to afford the title compound (0.42 g, 33%) as a pale yellow foam. ¹H NMR (250MHz, CDCl₃) δ 1.44 (9H, s), 1.84-1.96 (2H, m), 2.68-2.85 (6H, m), 3.16-3.26 (2H, m), 4.91 (1H, br s), 7.13-7.17 (2H, m), 7.48 (1H, d, J=8.6Hz), 7.56 (1H, d, J=2.1Hz), 8.48 (2H, s), 8.53 (1H, br s). MS (ES+) (385, M+1).

15

20

25

30

10

5

Step 2: 2-[(Phenylmethyl)(3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl)aminolethyl carbamic acid tert-butyl ester

To a solution of 2-[(3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl)amino]ethyl carbamic acid tert-butyl ester (0.42 g. 1.1 mmol) in methanol (10 ml) at 0°C was added benzaldehyde (133 μl, 1.3 mmol), acetic acid (189 μl, 3.3 mmol) and sodium cyanoborohydride (137 mg, 2.2 mmol). After addition the cooling bath was removed and the mixture stirred for 4h. After this time more benzaldehyde (110 μl, 1.1 mmol) was added and the mixture stirred for 18h. More benzaldehyde (110 μl, 1.1 mmol) was added and the mixture stirred for a further 10 min. The solvents were evaporated and the residue partitioned between EtOAc (2 x 50ml) and water (50 ml). The combined organic layers were dried (Na₂SO₄) and evaporated. The residue was chromatographed on silica gel, eluting with CH₂Cl₂:MeOH:NH₃ (95:5:1), to give the desired product (0.44 g, 85%) as a pale yellow foam. ¹H NMR (360MHz, CDCl₃) δ 1.41 (9H, s), 1.84-1.96 (2H.

m), 2.52-2.58 (4H, m), 2.75 (2H, t, J=7.5Hz), 3.12-3.20 (2H, m), 3.58 (2H, s), 4.78 (1H, br s), 7.03 (1H, s), 7.14 (1H, dd, J=8.5 and 2.0Hz), 7.21-7.36 (5H, m), 7.45 (1H, d, J=8.5Hz), 7.51 (1H, d, J=2.0Hz), 8.29 (1H, br s), 8.45 (2H, s). MS (ES+) (475, M+1).

5

10

15

Step 3: N-(Phenylmethyl)-N-(3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl)ethylenediamine

A solution of 2-[(phenylmethyl)(3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl)amino]ethyl carbamic acid *tert*-butyl ester (440 mg, 0.93 mmol) and trifluoroacetic acid (3 ml) in CH₂Cl₂ (20 ml) was stirred at room temperature for 5h. After this time the solvent was evaporated and the residue azeotroped with CH₂Cl₂ (20 ml) and toluene (20 ml). The residue was partitioned between CH₂Cl₂ (2 x 30 ml) and K₂CO₃ (10%; 20 ml). The combined organic layers were dried (Na₂SO₄) and evaporated. The amine (287 mg, 83%), which was isolated as a colourless foam was used without further purification. ¹H NMR (250MHz, CDCl₃ + d₄-MeOH) δ 1.83-1.99 (2H, m), 2.44-2.59 (4H, m), 2.61-2.79 (4H, m) 3.58 (2H, s), 7.07 (1H, s), 7.11 (1H, dd, J=8.6 and 2.1Hz), 7.20-7.32 (5H, m), 7.48 (1H, d, J=8.6Hz), 7.51 (1H, d, J=2.1Hz), 8.49 (2H, s).

20

25

30

Step 4: Ethyl 2-[(phenylmethyl)(3-[5-(1,2,4-triazol-4-vl)-1H-indol-3-yl]propyl)aminolethylamino acetate

To a solution of N-(phenylmethyl)-N-(3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl)ethylenediamine (125 mg, 0.33 mmol) in DMF (10 ml) containing K₂CO₃ (46 mg, 0.33 mmol), was added ethyl bromoacetate (37 μl, 0.33 mmol) at 0°C. The mixture was stirred at 0°C for 4h then the solvent was evaporated and the residue partitioned between CH₂Cl₂ (2 x 20 ml) and water (20 ml). The combined organic layers were dried (Na₂SO₄) and evaporated. The residue was chromatographed on silica gel, eluting with CH₂Cl₂:MeOH (90:10), to give the ester (94 mg, 62%) as a colourless oil. ¹H NMR (250MHz, CDCl₃) δ 1.23 (3H. t. J=7.2Hz), 1.84-1.99

WO 97/16446 PCT/GB96/02624

- 52 -

(2H, m), 2.52-2.80 (6H, m), 3.31 (2H, s), 3.60 (2H, s), 4.15 (2H, q, J=7.2Hz), 7.01 (1H, s), 7.14 (1H, dd, J=8.5 and 2.1Hz), 7.21-7.30 (5H, m), 7.45 (1H, d, J=8.5Hz), 7.58 (1H, d, J=2.1Hz), 8.35 (1H, br s), 8.48 (2H, s). MS (ES+) (461, M+1).

5

10

15

20

Step 5: 1H-4-(3-[5-(1,2,4-Triazol-4-yl)-1H-indol-3-yl]propyl)piperazin-3-one

A solution of ethyl 2-[(phenylmethyl)(3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl)amino]ethylamino acetate (94 mg, 0.25 mmol) in EtOH (20 ml) containing 1M HCl (2 ml) and palladium on carbon (121 mg (10% Pd)) was hydrogenated at 40 psi for 3h. After this time the catalyst was removed by filtration. The filtrate was evaporated and the residue azeotroped with ethanol (20 ml). The amine hydrochloride was isolated as a colourless foam and used directly in the subsequent reaction.

The amine hydrochloride prepared above was dissolved in EtOH (8 ml) and heated at reflux for 2h in the presence of K₂CO₃ (56 mg, 0.41 mmol). The solvent was then evaporated and the residue partitioned between CH₂Cl₂ (20 ml) and water (20 ml). The aqueous layer was then extracted with BuOH (3x15 ml) and the combined BuOH layers evaporated. The residue was chromatographed on silica gel, eluting with CH₂Cl₂:MeOH:NH₃ (60:8:1), to afford the title piperazinone (42 mg, 40%) as a colourless oil. ¹H NMR (250MHz, CDCl₃) & 1.94-2.07 (2H, m), 2.80 (2H, t, J=7.2Hz), 3.02 (2H, t, J=5.7Hz), 3.31-3.37 (2H, m), 3.41-3.45 (4H, m), 7.13 (1H, dd, J=8.6 and 2.1Hz), 7.23 (1H, s), 7.49 (1H, d, J=8.6Hz), 7.58 (1H, d, J=2.1Hz), 8.60 (2H, s). MS (ES⁺) (325, M+1).

25

30

Step 6: 1-(2-Phenylpropyl)-4-(3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl)piperazin-3-one. Hydrogen Oxalate

To a stirred solution of 1H-4-(3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl)piperazin-3-one (42 mg, 0.13 mmol) in MeOH (7 ml) containing acetic acid (22 μ l, 0.39 mmol) was added 2-phenylpropionaldehyde (17 μ l, 0.13 mmol) followed by sodium cyanoborohydride (16 mg, 0.26 mmol).

WO 97/16446 PCT/GB96/02624

- 53 -

After stirring for 2h K₂CO₃ (sat., 4 ml) was added and the mixture stirred for 10 min. The solvent was then evaporated and the residue partitioned between CH₂Cl₂ (2 x 20 ml) and water (20 ml). The combined organic layers were dried (Na₂SO₄) and evaporated. The residue was chromatographed on silica gel, eluting with CH₂Cl₂ (90:10), to give the title compound (49 mg, 86%) as a colourless oil. The hydrogen oxalate salt was prepared. m.p. 135°C. C₂₆H₃₀N₆O. 1.3(C₂H₂O₄). 0.5(H₂O) requires: C, 60.41; H, 5.96; N, 14.78%. Found: C, 60.15; H, 6.13; N, 14.70%. ¹H NMR (360MHz, d₆-DMSO) δ 1.18 (3H, d, J=6.9Hz), 1.82-1.92 (2H, m), 2.60 (2H, d, J=7.4Hz), 2.68 (2H, t, J=7.6Hz), 2.70-2.80 (2H, m), 2.86-3.05 (1H, m), 3.10 (2H, s), 3.26-3.30 (2H, m), 3.33-3.38 (2H, m), 7.16-7.32 (7H, m), 7.48 (1H, d, J=8.5Hz), 7.77 (1H, d, J=2.0Hz), 9.02 (2H, s), 11.09 (1H, br s). MS (ES*) (443, M+1).

CLAIMS:

1. A compound of formula I, or a salt or prodrug thereof:

$$Z-E \bigvee_{T \bigvee_{(I)}} Q - \bigwedge_{V} \bigcap_{N-R^1} Q - \bigwedge_{V} \bigcap_{N-R^1} Q - \bigcap_{N-R^1$$

5

20

wherein

Z represents hydrogen, halogen, cyano, nitro, trifluoromethyl, -OR5, -OCOR5, -OCONR5R6, -OCH₂CN, -OCH₂CONR5R6, -SR5, -SOR5, -SO₂R5, -SO₂NR5R6, -NR5R6, -NR5COR6, -NR5CO₂R6, -NR5SO₂R6, -COR5, -CO₂R5, -CONR5R6, or a group of formula (Za), (Zb), (Zc) or (Zd):

15 in which the asterisk * denotes a chiral centre; or

Z represents an optionally substituted five-membered heteroaromatic ring selected from furan, thiophene, pyrrole, oxazole, thiazole, isoxazole, isothiazole, imidazole, pyrazole, oxadiazole, thiadiazole, triazole and tetrazole;

X represents oxygen, sulphur, -NH- or methylene;

Y1 represents oxygen or sulphur;

E represents a chemical bond or a straight or branched alkylene chain containing from 1 to 4 carbon atoms;

Q represents a straight or branched alkylene chain containing from 1 to 6 carbon atoms, optionally substituted in any position by one or more substituents selected from fluoro and hydroxy;

T represents nitrogen or CH;

U represents nitrogen or C-R2;

V represents oxygen, sulphur or N-R3;

G represents a group of formula (Ga), (Gb), (Gc) or (Gd):

10

15

20

25

5

in which

Y² represents oxygen or sulphur;

 R^1 represents $C_{3\cdot 6}$ alkenyl, $C_{3\cdot 6}$ alkynyl, aryl($C_{1\cdot 6}$)alkyl or heteroaryl($C_{1\cdot 6}$)alkyl, any of which groups may be optionally substituted:

 $R^2,\,R^3$ and R^4 independently represent hydrogen or $C_{1\cdot 6}$ alkyl; and

R⁵ and R⁶ independently represent hydrogen, C_{1.6} alkyl. trifluoromethyl, phenyl, methylphenyl, or an optionally substituted aryl(C_{1.6})alkyl or heteroaryl(C_{1.6})alkyl group; or R⁵ and R⁶, when linked through a nitrogen atom, together represent the residue of an optionally substituted azetidine, pyrrolidine, piperidine, morpholine or piperazine ring.

2. A compound as claimed in claim 1 wherein Q represents a straight or branched alkylene chain containing from 1 to 6 carbon atoms. optionally substituted in any position by a hydroxy group; and R^5 and R^6 independently represent hydrogen, C_{1-6} alkyl, trifluoromethyl, phenyl, methylphenyl, or an optionally substituted aryl(C_{1-6})alkyl or heteroaryl(C_{1-6})alkyl group.

3. A compound as claimed in claim 1 or claim 2 represented by formula IIA, and salts and prodrugs thereof:

$$\begin{array}{c}
N \\
N \\
A = B
\end{array}$$

$$\begin{array}{c}
N \\
T \\
N \\
H
\end{array}$$

$$\begin{array}{c}
Q^{1} \\
N \\
N \\
M
\end{array}$$

$$\begin{array}{c}
N \\
N \\
M
\end{array}$$

$$\begin{array}{c}
N \\
M \\
M
\end{array}$$

(IIA)

wherein

5

15

20

m is zero, 1, 2 or 3;

p is zero, 1 or 2;

Q¹ represents a straight or branched alkylene chain containing from 2 to 5 carbon atoms, optionally substituted in any position by a hydroxy group;

T represents nitrogen or CH;

A represents nitrogen or CH;

B represents nitrogen or C-R8;

R⁷ and R⁸ independently represent hydrogen, C_{1.6} alkyl, C_{2.6} alkenyl, C_{3.7} cycloalkyl, aryl, aryl(C_{1.6})alkyl, C_{3.7} heterocycloalkyl, heteroaryl, heteroaryl(C_{1.6})alkyl, C_{1.6} alkoxy, C_{1.6} alkylthio, amino, C_{1.6} alkylamino, di(C_{1.6})alkylamino, halogen, cyano or trifluoromethyl;

W represents a group of formula (Wa), (Wb) or (Wc):

in which

5

10

15

20

W1 represents CH or nitrogen;

W² represents oxygen, sulphur, NH or N-methyl;

 R^9 represents hydrogen, halogen, cyano, trifluoromethyl, triazolyl, tetrazolyl, C_{1-6} alkyl-tetrazolyl, C_{1-6} alkoxy, C_{2-6} alkylcarbonyl, amino, C_{1-6} alkylamino, di(C_{1-6})alkylamino, di(C_{1-6})alkylaminomethyl, C_{2-6} alkylcarbonylamino, C_{1-6} alkylsulphonylamino, aminocarbonylamino, C_{1-6} alkylaminocarbonyl, aminosulphonyl or C_{1-6} alkylaminosulphonylmethyl; and

R¹⁰ represents hydrogen or C₁₋₃ alkyl.

4. A compound as claimed in claim 1 or claim 2 represented by formula IIB, and salts and prodrugs thereof:

$$\begin{array}{c|c}
R^{5} & & & & & \\
R^{6} & N & & & & & \\
N & & & & & \\
N & &$$

wherein

m, p, Q¹, T, W and R¹⁰ are as defined in claim 3; and R⁵ and R⁶ are as defined in claim 1.

5. A compound as claimed in claim 1 or claim 2 represented by formula IIC, and salts and prodrugs thereof:

wherein the asterisk * denotes a chiral centre;

m, p, Q¹, T, W and R¹⁰ are as defined in claim 3; and R⁴ and Y¹ are as defined in claim 1.

- 6. A compound as claimed in any one of claims 3 to 5 wherein R^{10} represents hydrogen or methyl.
- 7. A compound as claimed in claim 6 wherein R¹⁰ is hydrogen.
 - 8. A compound selected from:

 1-benzyl-4-[3-(5-(1,2,4-triazol-4-yl)-1*H*-indol-3-yl)propyl]piperazin-2-one:

 1-(2-phenylethyl)-4-[3-(5-(1,2,4-triazol-4-yl)-1*H*-indol-3-yl)propyl]piperazin-
- 2-one; 1-[2-(3-fluorophenyl)ethyl]-4-[3-(5-(1,2,4-triazol-4-yl)-1*H*-indol-3-yl)propyl]piperazin-2-one;

and salts and prodrugs thereof.

- 9. A compound selected from:

 1-[2-(3,4-difluorophenyl)ethyl]-4-[3-(5-(1,2,4-triazol-4-yl)-1*H*-indol-3-yl)propyl]piperazin-2-one;

 1-benzyl-4-[3-(5-(1,2,4-triazol-4-yl)-1*H*-indol-3-yl)propyl]piperazin-2-thione;
- 25 1-(2-phenylpropyl)-4-[3-(5-(1,2,4-triazol-4-yl)-1*H*-indol-3-yl)propyl]piperazin-2-one;

WO 97/16446 PCT/GB96/02624

- 59 -

 $1-(1-\text{phenylethyl})-4-[3-(5-(1,2,4-\text{triazol-}4-\text{yl})-1H-\text{indol-}3-\text{yl})\text{propyl}] \text{piperazin-}\\ 2-\text{one};\\ \text{and salts and prodrugs thereof.}$

- 5 10. A compound selected from:

 1-(2-phenylpropyl)-4-[3-(5-(1,2,4-triazol-4-yl)-1*H*-indol-3-yl)propyl]piperazin-3-one;
 and salts and prodrugs thereof.
- 11. A pharmaceutical composition comprising a compound of formula I as defined in claim 1 or a pharmaceutically acceptable salt thereof or a prodrug thereof in association with a pharmaceutically acceptable carrier.
- 15 12. A compound as claimed in any one of claims 1 to 10 for use in therapy.
- 13. The use of a compound as claimed in any one of claims 1 to 10 for the manufacture of a medicament for the treatment and/or prevention
 20 of clinical conditions for which an agonist of 5-HT_{1D} receptors selective for the 5-HT_{1Da} subtype is indicated.
 - 14. A process for the preparation of a compound as claimed in claim 1, which comprises:

25

(A) attachment of the R1 moiety to a compound of formula III:

WO 97/16446 PCT/GB96/02624

$$Z-E \bigvee_{T \bigvee_{V'} U} Q - \bigwedge_{V} Q - N$$
(III)

wherein Z, E, Q, T, U, V and G are as defined in claim 1; or

(B) reacting a compound of formula IV:

wherein Z and E are as defined in claim 1; with a compound of formula IX, 10 or a carbonyl-protected form thereof:

$$\mathbb{R}^{2} \xrightarrow{\mathbb{Q} - \mathbb{N}} \mathbb{N} - \mathbb{R}^{1}$$
(IX)

wherein Q, G, R¹ and R² are as defined in claim 1; followed, where

required, by N-alkylation by standard methods to introduce the moiety R³;

or

(C) reacting a compound of formula XI:

$$H - N \longrightarrow N - R'$$

5

wherein G and R¹ are as defined in claim 1; with a compound of formula XII:

$$Z-E$$
 T
 U
 U

(XII)

wherein Z, E, Q, T, U and V are as defined in claim 1, and L² represents a suitable leaving group; or

10 (D) cyclising a compound of formula XV:

$$Z = Q - N \qquad N - R^{1}$$

$$NH_{2} \qquad N - D^{1}$$

(XV)

in which Z, E, Q, G and R¹ are as defined in claim 1, and D¹ represents a readily displaceable group; followed, where required, by N-alkylation by standard methods to introduce the moiety R³; or

(E) cyclising a compound of formula XIX:

PCT/GB96/02624

$$Z-E \longrightarrow Q-N \longrightarrow N-R^1$$

$$V^1 \longrightarrow R^2$$

(XIX)

wherein Z, E, Q, G, R^1 and R^2 are as defined in claim 1, and V^1 represents oxygen or sulphur; and

- 5 (F) subsequently, where required, converting a compound of formula I initially obtained into a further compound of formula I by conventional methods.
- 15. A method for the treatment and/or prevention of clinical conditions for which an agonist of 5-HT_{1D} receptors selective for the 5-HT_{1Dα} subtype thereof is indicated, which method comprises administering to a patient in need of such treatment an effective amount of a compound of formula I as defined in claim 1, or a pharmaceutically acceptable salt thereof or a prodrug thereof.

Intern and Application No PCT/GB 96/02624

			90/02024
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C07D403/14 A61K31/495		-
According to	o International Patent Classification (IPC) or to both national class	ification and IPC	
	SEARCHED		
Musimum d IPC 6	ocumentation searched (classification system followed by classifica CO7D	con symbols)	
Documental	tion searched other than minimum documentation to the extent that	such documents are included in the field	ds searched
Electronic d	lets base consulted during the international search (name of data ba	use and, where practical, search terms us	ed)
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
X	GB.A.944 443 (STERLING DRUG INC. December 1963 see formula XIa; page 8 see formula XVIa; page 10) 11	1,2,14
P,Y	WO,A,95 32196 (MERCK SHARP & DOH LIMITED) 30 November 1995 see the whole document	1-14	
P,Y	WO,A,96 16056 (MERCK SHARP & DOH LIMITED) 30 May 1996 see the whole document	ME	1-14
P,Y	WO,A,96 23785 (MERCK SHARP & DOH LIMITED) 8 August 1996 see the whole document	ME	1-14
		-/	
X Fur	ther documents are listed in the continuation of box C.	Patent family members are lis	ned in annex.
'A' docum	ategories of cited documents; ment defining the general state of the art which is not dered to be of particular relevance of december but published on or after the international	T later document published after the or priority date and not in conflic- cited to understand the principle invention.	rt with the application but or theory underlying the
filing 'L' docum which		"X" document of particular relevance; cannot be considered novel or ex- involve an inventive step when the "Y" document of particular relevance; cannot be considered to involve a	nnot be considered to se document is taken alone the claimed invention
.O. qocras otres	nent referring to an oral disclosure, use, exhibition or means sent published prior to the international filing date but than the priority date claimed	document is combined with one of ments, such combination being of in the art. *&* document member of the same pr	or more other such docu- brious to a person skilled
	e actual completion of the international search	Date of mailing of the internation	
1	17 December 1996		22.01.97
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Risswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Authorized officer Hartrampf. G	

Form PCT/ISA/218 (recond sheet) (July 1992)

1

Inter. onal Application No PCT/GB 96/02624

		PCT/GB 96/02624
C.(Continu	DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	GB,A,1 075 156 (ISTITUTO LUSO FARMACO D'ITALIA S.R.L.) 12 July 1967 see the whole document	1-14
A	EP,A,O 438 230 (MERCK SHARP & DOHME LTD.) 24 July 1991 cited in the application see claims 1-4,6-9	1-14
A	WO,A,91 18897 (THE WELLCOME FOUNDATION LIMITED) 12 December 1991 cited in the application see claims 1,2,6-16	1-14
A	EP.A.0 494 774 (MERCK SHARP & DOHME LTD.) 15 July 1992 cited in the application see claims 1-4,7-9	1-14
A	EP,A,O 497 512 (MERCK SHARP & DOHME LTD.) 5 August 1992 cited in the application see claims 1-5,7-9	1-14
A	WO.A.92 17475 (PFIZER INC.) 15 October 1992 see page 5, paragraph 3; claim 1; example 25	1-14
A	EP.A.O 548 813 (BRISTOL-MYERS SQUIBB COMPANY) 30 June 1993 cited in the application see the whole document	1-14
A	WO.A.94 21630 (MERCK SHARP & DOHME LIMITED) 29 September 1994 see the whole document	1-14
P,A	WO,A,95 29911 (MERCK SHARP & DOHME LIMITED) 9 November 1995 see claims 1-4,7,9	1-14

1

national application No.
PCT/GB 96/02624

		_
Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	_
This Int	ternational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
ı. <u> </u>	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Although claim 15 is directed to a method of treatment of (diagnostic method practised on) the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.	
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such because they relate to parts of the International Search can be carried out, specifically: an extent that no meaningful International Search can be carried out, specifically:	
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box (1	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This In	ternational Searching Authority found multiple inventions in this international application, as follows:	
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.	
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:	
4. [No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
Remari	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	

Information on patent family members

PCT/GB 96/02624

Patent document sited in search report	Publication date	Patent family member(s)		Publication date	
GB-A-944443		DE-A-	1445151	09-01-69	
CFFFFC-N-QD		SE-B-	342627	14-02-72	
		US-A-	3188313	08-06-65	
WO-A-9532196	30-11-95	AU-A-	2529695	18-12-95	
WO-A-9616056	30-05-96	AU-A-	3875095	17-06-96	
WO-A-9623785	08-08-96	AU-A-	4493496	21-08-96	
GB-A-1075156		NONE			
EP-A-438230	24-07-91	AU-A-	6944091	25-07-91	
Ft - 4-430530	L , v ,	CA-A-	2034189	18-07-91	
		CN-A-	1053429	31-07-91	
		JP-A-	6100558	12-04-94	
WO-A-9118897	12-12-91	AU-B-	646871	10-03-94	
NO // 722007/		AU-A-	7957091	31-12-91	
		CA-A-	2064815	08-12-91	
		EG-A-	19650	30-09-95	
		EP-A-	0486666	27-05-92	
		EP-A-	0636623	01-02-95	
		FI-A-	960155	12-01-96	
		HR-A-	940524	30-06-96 30-10-95	
		HU-A-	9500532	19-01-95	
		IL-A-	98392 5502679	13-05-93	
		JP-T-	5502079 419	25-11-94	
		LT-A,B LV-B-	10274	20-04-95	
		NZ-A-	238424	23-12-93	
		NZ-A- PL-B-	166214	28-04-95	
		US-A-	5466699	14-11-95	
		US-A-	5399574	21-03-95	
EP-A-494774	15-07-92	CA-A-	2058805	12-07-92	
B1 41 70 177 1		JP-B-	2539127	02-10-96	
		JP-A-	5039290	19-02-93	
		US-A-	5208248	04-05-93	

toto consi Application No PCT/GB 96/02624

Patent document Publication		Patent	Patent family	
cited in search report	Publication date	member(s)		Publication date
EP-A-497512		AU-B-	644939	23-12-93
		AU-A-	1068092	96- 08-92
		CA-A-	2060139	02 - 08-92
		CN-A-	1064485	16-09-92
		HU-A-	9500500	30-10-95
		IL-A-	100756	19-01-96
		JP-B-	2500280	29-05-96
		JP-A-	5140151	08-06-93
		NZ-A-	241394	27-04-94
		SI-A-	9210101	31-08-96
		US-A-	5451588	19-09-95
		US-A-	5298520	29-03-94
WO-A-9217475	15-10-92	AU-B-	658194	06-04-95
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		AU-A-	1878292	02-11-92
		AU-A-	2178895	07-09-95
		BR-A-	9205811	28-06-94
		CA-A-	2107105	29-09-92
	•	CN-A-	1065267	14-10-92
		CZ-A-	9203958	13-04-94
		EP-A-	0646115	05-04-95
		HU-A-	68357	28-06-95
		JP-T-	6500794	27-01-94
		NZ-A-	242151	26-10-94
		NZ-A-	248946	27-04-95 27-09-93
		ZA-A-	9202239	2/-03-33
EP-A-548813	30-06-93	AU-B-	661527	27-07-95
		AU-A-	3003492	24-03-94
		CA-A-	2084531	20-06-93
		CZ-A-	9203592	19-01-94
		JP-A-	5262762	12-10-93
		NZ-A-	245439	26-07-95
		US-A-	5434154	18-07-95
		ZA-A-	9209445	12-07-93
		CN-A-	1085556	20-04-94
WO-A-9421630	29-09-94	AU-A-	6214094	11-10-94
		CA-A-	2156838	29-09-94
		EP-A-	0689539	03-01-96

Information on patent family members

Inter. onal Application No PCT/GB 96/02624

				90/02024
Patent document cited in search report	Publication date	Patent i	family er(s)	Publication date
WO-A-9529911	09-11-95	AU-A-	2314195	29-11-95
•			•	
		•		
				•