

Environmental Science and Technology Certification Program

Evaluation of Sampling and Sample Preparation Modifications for Soil Containing Metallic Residues

ER-0918

Jay L. Clausen, Thomas Georgian, Julie Richardson, Anthony Bednar, Nancy Perron, Andrew Bray, Patricia Tuminello, Larry Penfold, Diane Anderson, Gordon Gooch, Tommie Hall, William Jones, Shawna Tazik, and Ethan Butterfield January 2012

Evaluation of Sampling and Sample Preparation Modifications for Soil Containing Metallic Residues

ER-0918

Jay L. Clausen, Julie Richardson, Nancy Perron, Gordon Gooch, Tommie Hall, Ethan Butterfield

Cold regions Research and Engineering Laboratory, U.S. Army Engineer Research and Development Center 72 Lyme Road Hanover, NH 03755

Anthony Bednar, Andrew Bray, Patricia Tuminello, William Jones, and Shawna Tazik

Environmental Laboratory, U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Thomas Georgian

U.S. Army Corps of Engineers, Environmental and Munitions CX 1616 Capitol Avenue Omaha, NE 68102-9200

Larry Penfold

Test America 4955 Yarrow Street Arvada, CO 80002

Diane Anderson

APPL, Inc. 908 North Temperance Avenue Clovis, CA 93611

Final report

Approved for public release; distribution is unlimited

Prepared for Environmental Science and Technology Certification Program Arlington, VA 22203

ERDC TR-12-1 iii

Abstract:

Research over the last decade has revealed that releases of energetic constituents into the environment as a result of military training occur in extremely heterogeneous patterns. Traditional soil sampling and sample preparation methodologies are inadequate to address the level of contaminant heterogeneity observed. Consequently, research conducted identified a number of necessary changes to the accepted soil sampling and sample preparation procedures, which were adopted in a revised U.S. Environmental Protection Agency (USEPA) Method 8330B. Recently, there have questions regarding whether the issues observed for the deposition of energetic constituents also substantively apply to other constituents such as metals, semi-volatile organic compounds, and polychlorinated biphenyls. Preliminary data suggest metal constituents introduced into the environment as metal residues from small arms and pyrotechnic military training are heterogeneously distributed. As a result of these findings regulatory agencies are increasingly requiring the DOD to apply procedures developed for energetics under USEPA Method 8330B to the sampling and sample processing of soil samples from small arms ranges containing metals. However, there is no published research indicating whether changes to USEPA Method 3050B for metals are needed or warranted. This study assessed the procedures developed and adopted for energetics using USEPA Method 8330B and whether they are applicable to soils containing metals. The utility of multi-increment sampling versus traditional grab/discrete sampling was assessed and found to yield reproducible and more representative metals soil concentrations. In addition, changes to the soil digestion procedure, USEPA Method 3050B, were evaluated and included the following: 1) necessity of machining/grinding of the soil, appropriate type of grinding apparatus, and grinding interval; 2) assessment of the need to increase the digested mass and digestion interval; 3) optimum soil to acid ratio, i.e. digestion efficiency; 4) sub sampling to build the digestate sample; and 5) disposition of the oversize fraction, i.e. material larger than 2-mm.larger than 2-mm.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

Table of Contents

Abs	stract.			iii
Lis	t of Fig	gures ar	nd Tables	vi
No	mencl	ature		ix
D				
Pre	etace			X
Uni	it Conv	ersion l	Factors	xi
1	Intro	duction		1
2	Rack	graund		3
_	2.1	_	etics residue deposition	
	2.2	_	ling strategies for soils containing metallic residues	
	2.3	-	residue deposition	
	2.4		approach	
•	N.O 41	J		
3			O-marking	
	3.1		Sampling	
	3.2		atory sample preparation	
		3.2.1	Experiment 1—glass as a quality control medium	
		3.2.2 3.2.3	Experiment 2—Multi-increment vs. traditional discrete/grab sampling Experiment 3—number of increments per decision unit	
		3.2.3 3.2.4	Experiment 4—field splitting	
		3.2.4 3.2.5	Experiment 4—nela splitting Experiment 5—sample pulverization necessity	
		3.2.6	Experiment 6—grinder type evaluation	
		3.2.7	Experiment 7—grinding interval	
		3.2.8	Experiment 8—optimum digestion mass	
		3.2.9	Experiment 9—sensitivity to different digestion intervals	
	3.3	-	sis	
4	Doou	lto		20
4	4.1		bead	
	4.1		ble increment vs. grab (discrete) samples	
	4.3	-	per of increments per decision unit	
	4.4		splitting	
	4.5		le pulverization	
	4.6	-	g equipment	
	4.0	4.6.1	Mortar and pestle	
		4.6.2	Puck mill	
		4.6.3	Ball mill	
	4.7		g interval	
		_	Puck mill	55 55

		4.7.2 Ball mill	61
	4.8	Digestion mass	62
	4.9	Digestion time	68
5	Discu	ussion	72
	5.1	Multi-increment soil sampling	72
	5.2	Field splitting	78
	5.3	Milling	79
	5.4	Sample digestion	84
	5.5	Antimony	86
6	Conc	lusion	89
7	Reco	mmendations	91
Ref	ference	es	93
Apı	pendix	A: Analytical Results	99

ERDC TR-12-1 vi

List of Figures and Tables

Figures

Figure 1. Visible small arms metal debris (yellow circles) found on a small arms range at Camp Edwards, Massachusetts.	3
Figure 2. Example of multi-increment sampling using a systematic-random sampling design for collecting two separate 100-increment samples.	10
Figure 3. Small arms projectiles found on a range at Fort Lewis, Washington	14
Figure 4. Surface soil metal concentration for different types of training ranges at a number of different military installations	15
Figure 5. Schematic of decision unit sampled at Small Arms Range 4-3 at Camp Ethan Allen, VT.	18
Figure 6. Particle size analysis for soil from Small Arms Range 4-3 at Camp Ethan Allen, VT.	19
Figure 7. The CRREL Multi-Increment Sampling Tool	
Figure 8. Location of discrete samples collected on the berm face at Small Arms Range 4-3 at Camp Ethan Allen, Vermont.	20
Figure 9. Proposed experimental design.	21
Figure 10. Box and whisker plots of lead (mg/kg) for the unground and puck mill ground samples	48
Figure 11. Box and whisker plots for lead by type of milling equipment	52
Figure 12. Scatter plot of the standard deviation of lead (mg/kg) versus the puck mill grinding time	56
Figure 13. Scatter plot of the standard deviation (mg/kg) of antimony versus the puck mill grinding time.	56
Figure 14. Box and whisker plots for copper by puck mill grinding time	57
Figure 15. Box and whisker plots for zinc by puck mill grinding time	58
Figure 16. Box and whisker plots for iron by puck mill grinding time	59
Figure 17. Box and whisker plots for chromium by puck mill grinding time	59
Figure 18. Box and whisker plots for lead by puck mill grinding time	60
Figure 19. Box and whisker plots for antimony by puck mill grinding time	60
Figure 20. Scatter plots of the mean and median copper concentration versus the puck mill grinding time	61
Figure 21. Box and whisker plots for copper by digested soil mass	63
Figure 22. Box and whisker plots for lead by digested soil mass.	63
Figure 23. Box and whisker plots for antimony by digested soil mass	65
Figure 24. Box and whisker plots for zinc by digested soil mass	65
Figure 25. Scatter plot of the standard deviation for lead versus the digestion mass	66
Figure 26. Scatter plot of the standard deviation for antimony versus the digestion mass	66
Figure 27. Scatter plots of the mean and median lead concentrations versus the digestion mass.	67

ERDC TR-12-1 vii

Figure 28. Scatter plots of the mean and median antimony concentrations versus the	
digestion mass.	
Figure 29. Scatter plot of the standard deviation for copper versus the digestion mass	
Figure 30. Scatter plot of the standard deviation for zinc versus the digestion mass	68
Figure 31. Box and whisker plots for copper and lead concentrations for two digestion times	70
Figure 32. Box and whisker plots for antimony and zinc concentrations for two digestion times.	70
Figure 33. Scatter plots of antimony versus lead concentrations for the two digestion times.	71
Figure 34. Standard deviations of various metals vs. numbers of increments per multi-increment sample.	75
Figure 35. Standard deviations of copper, lead, antimony and zinc vs. number of increments per multi-increment sample	75
Figure 36. Whisker and box plots of copper results by number of field increments	76
Figure 37. Whisker and box plots of lead results by number of field increments	76
Figure 38. Box and whisker plots of antimony results by number of field increments	76
Figure 39. Box and whisker plots of zinc results by number of field increments	77
Figure 40. Normal probability plot for unground lead (replicates	79
Figure 41. Normal probability plot for ground lead replicates	80
Figure 42. Box and whisker plots for ground and unground copper replicates	80
Figure 43. Box and whisker plots for ground and unground lead replicates	80
Figure 44. Box and whisker plots for ground and unground antimony replicates	81
Figure 45. Box and whisker plots for ground and unground antimony results	81
Tables	
Table 1. Chronological summary of multi-increment sampling	4
Table 2. Schematic diagram of the multi-increment sampling methodology	5
Table 3. Variability of soil concentrations among 100 discrete samples collected within 10- x 10-m grids at various training range impact areas.	9
Table 4. Variability of soil concentrations among multi-increment samples collected from grids at different ranges	11
Table 5. Mean metal concentrations for different sampling methods at the Bravo Small Arms Range at Camp Edwards, Massachusetts	13
Table 6. Replication of metal results (mg/kg) for co-located individual discrete soil samples from Bravo Small Arms Range at Camp Edwards, Massachusetts	15
Table 7. Laboratory splitting error for an unground soil sample from a small arms range using a rotary splitter	24
Table 8. Unground and ground soil samples for a berm at Fort Wainwright, Alaska	26
Table 9. Metal content of puck mill bowl.	28
Table 10. Summary of metal levels for unground glass beads, unground washed glass beads, ground glass beads, and washed ground glass beads	34

lable 11. Impact of puck mill grinding interval on measured mean metal value of washed ground glass beads	35
Table 12. Statistical analysis summary for antimony, copper, lead, and zinc	37
Table 13. Grab samples from systematic-random sampling, biased grab samples and MI samples	38
Table 14. Mean metal concentrations for MI and grab samples	39
Table 15. Percent relative standard deviations for MI samples with varying number of increments collected	41
Table 15. Descriptive statistics for replicate MI samples by the number of increments collected	42
Table 16. Summary of results for 30 laboratory replicates for the 200-increment sample	43
Table 17. Summary of metal results for the cone-and-quartering experiment	45
Table 18. Statistical evaluation for the cone-and-quartering experiment using the KW test	46
Table 19. Summary of metal results for an unground sample and a ground sample	49
Table 20. Summary of metal results for 15 laboratory unground replicates analyzed by Test America.	50
Table 21. Relative standard deviations of unground and ground splits processed with different milling equipment	51
Table 22. Mean concentrations of unground splits and ground spits processed with various milling equipment.	51
Table 23. Descriptive statistics for 15 replicates processed with the mortar and pestle	53
Table 24. Percent relative standard deviations by different milling intervals with the puck mill.	56
Table 25. Comparison of mean values by different milling intervals with the puck mill	
Table 26. Comparison of percent RSD by different milling intervals with the ball mill	61
Table 27. Comparison of mean values by different milling intervals with the ball mill	62
Table 28. Summary of metal results by different digestion mass of sample ground 5 × 60 s in puck mill.	64
Table 29. Summary of metal results by different digestion time	69
Table 30. Mean concentrations of pooled grab samples and pooled MI samples for antimony, copper, lead, and zinc.	73
Table 31. Lead concentrations of five sets of duplicate surface soil samples from small arms range in Alaska; each pair was collocated within several centimeters	74
Table 32. Determination of number of sample increments needed to achieve a desired soil sample mass with CMIST corer	77
Table 33. Estimate of metal contribution from puck mill to sample	83
Table 34. Results of the KW test for differences between median of the 12 and 24 hr digestion times for various metals	85
Table 35. Antimony and lead recoveries with USEPA Method 3050B and a modification to USEPA Method 3005 for an unground soil	87
Table 36. Antimony and lead recoveries with USEPA Method 3050B and a modification to USEPA Method 3005 for soils ground with puck and ball mills	88

ERDC TR-12-1 ix

Nomenclature

BRAC Base Realignment and Closure

COC contaminant of concern

CRREL Cold Regions Research and Engineering Laboratory

CMIST CRREL Multi-Increment Sampling Tool

CSM Conceptual site model
DOD Department of Defense
DI De-ionized water
DQO Data quality objectives

DU Decision unit

EL Environmental Laboratory

FE Fundamental Error

FUDS Formerly Used Defense Sites

ICP-OES Inductively coupled plasma – optical emission spectrometry

IQRs Interquartile ranges KW Kruskal-Wallis test MI Multi-increment

MMRP Military Munition Response Program

RSD Relative standard deviation

SI Site Investigation
UCL Upper confidence limit

USACE U.S. Army Corps of Engineers

USEPA U.S. Environmental Protection Agency

USGS U.S. Geological Survey UXO Unexploded ordnance

Preface

This study was conducted for the Environmental Science and Technology Certification Program under Project ER-0918, *Demonstration of the Attributes of Multi-Increment Sampling and Proper Sample Processing Protocols for the Characterization of Metals on DoD Facilities*. The technical monitor was A. Leeson.

The work was performed by the Biogeochemical Science Branch (BSB) of the Research and Engineering Division, U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory (ERDC-CRREL). At the time of publication, Dr. T. Sobecki was Branch Chief, CEERD-RN, and Dr. J. Berman was Division Chief, CEERD-RN. The Deputy Director of ERDC-CRREL was Dr. Lance Hansen and the Director was Dr. Bert Davis.

COL Kevin J. Wilson was the Commander and Executive Director of ERDC, and Dr. Jeffery P. Holland was the Director.

ERDC TR-12-1 xi

Unit Conversion Factors

Multiply	Ву	To Obtain
acres	4,046.873	square meters (m ²)
cubic feet (ft3)	0.02831685	cubic meters (m ³)
cubic inches (in3)	1.6387064×10 ⁻⁵	cubic meters (m ³)
degrees Fahrenheit (°F) – 32	1/1.8	degrees Celsius (°C)
feet (ft)	0.3048	meters (m)
inches (in)	0.0254	meters (m)
microns (µm)	10-6	meters (m)
miles (U.S. statute) (mi)	1,609.347	meters (m)
mils	0.0254	millimeters (mm)
pounds (mass) (lb)	0.45359237	kilograms (kg)
square feet (ft2)	0.09290304	square meters (m²)
square inches (in2)	6.4516×10 ⁻⁴	square meters(m²)

1 Introduction

The U.S Army's Military Munitions Response Program (MMRP) was established under the Defense Environmental Restoration Program in 2001 to manage the environmental and health and safety issues associated with unexploded ordnance (UXO), discarded military munitions, and munitions constituents on non-operational ranges in active installations, Defense Base Realignment and Closure (BRAC) sites, and Formerly Used Defense Sites (FUDS). Under the MMRP, the Department of Defense (DoD) is required to: 1) inventory non-operational ranges that contain or are suspected to contain munitions-related material released before September 2002; 2) identify, characterize, track, and report data on MMRP sites and clean-up activities; and 3) develop a process to prioritize site cleanup and estimate costs. The Army completed their inventory of non-operational ranges in 2003 and began Site Investigations (SI) for these MMRP sites. Based on the SI findings, some ranges may require additional assessment under the Remedial Investigation process. In addition, established directives mandate all active DoD facilities implement procedures to assess environmental impacts from munitions on training and testing ranges (DoD Directive 4715.11 and DoD Instruction 4715.14).

Environmental studies of military training ranges have shown that energetic residues are heterogeneously distributed. To representatively sample military ranges where energetic residues have been introduced into the environment multi-increment (MI) sampling strategies are recommended (Hewitt et al. 2009). There is growing acceptance of incremental sampling and associated sample processing procedures for energetics by the environmental regulatory community (Hewitt et al. in press; ITRC 2011; Alaska 2009; Hawaii 2008). These changes are described in USEPA Method 8330B (USEPA 2006).

Because of the success of the MI sampling for energetics, members of the environmental community are considering its adoption for other hazardous particulate constituents such as metals (Hewitt et al. in press; ITRC 2011; Alaska 2009; Hawaii 2008). The approach is frequently used for SIs conducted under Formerly Used Defense Sites (FUDS). Several state and federal agencies now prefer MI sampling designs. These currently include the states of Alaska, Hawaii, Ohio, and the U.S Environmental Protection

Agency (USEPA) Region 6. For example, the *Technical Guidance Manual* for the Implementation of the Hawaii State Contingency Plan states:

The HEER [Hazardous Evaluation and Emergency Response] Office strongly encourages the use of Multi-increment sample collection strategies to enhance sample representativeness in the investigation of contaminated soil.

Similarly, the *Draft Guidance on Multi Incremental Soil Sampling* from the State of Alaska Department of Environmental Conservation states:

An MI approach, if systematically planned and implemented, can accurately determine an average concentration representative of the soil contained within a defined area, i.e. the "decision unit"... DEC initially encourage the use of MI at sites where soil is contaminated with petroleum hydrocarbons only. However, MI sampling may be applicable to contaminated sites with non-petroleum related contaminants...

The *Technical Guidance Compendium* from Ohio State EPA states:

With the inclusion of the MI sampling technique, an investigator can use a rigorous form of composite sampling to obtain a representative concentration for a chemical of concern (COC) without selecting the maximum concentration. If the site decision unit is represented by a single MI sample, the MI sample provides an estimate of central tendency concentrations and thus may eliminate the need for further statistical analysis of the data such as calculating the 95% UCL of the mean.

The current USEPA method for metals in soils is Method 3050B (USEPA 1996a). However, there is an absence of data demonstrating modifications to field sampling protocols and USEPA Method 3050B are warranted for analysis of soils containing metal residues. The working hypothesis is that the current field sampling and sample processing procedures for metals in soil do not yield representative and reproducible results for military sites where the metal is heterogeneously introduced into the environment as a solid residue.

2 Background

The development of MI methodology began with the realization in the mid 1990s that energetic residues were heterogeneously distributed and that the current sampling methodologies did not address this issue. Studies conducted in the early 2000s (Table 1) resulted in the development of a modified sample collection and processing methodology for energetic constituents. Anthropogenic metals are also heterogeneously distributed over active training ranges as particles of various sizes, shapes, and compositions (Fig. 1). To address the compositional and distributional heterogeneity (e.g., to obtain a representative and reproducible estimate of the mean concentration), the sampling strategy must acquire an adequate number of particles of the constituents of interest and these particles must be present in the sample in roughly the sample proportion as the Decision Unit (DU). The MI methodology is not limited to the laboratory sample processing; it also includes field sampling procedures and project planning (Table 2).

Figure 1. Visible small arms metal debris (yellow circles) found on a small arms range at Camp Edwards, Massachusetts.

Table 1. Chronological summary of multi-increment sampling.

Time Period	Activity	References
1960s-1990s	Recognition of the role of heterogeneity in distribution of metals in mining samples and development of methods to obtain representative samples	Duncan 1962, Johanson 1978 Elder et al. 1980 Gy 1982, 1999 Wallace et al. 1985 Pitard 1993 Leutwyler 1993, Studt 1995
Early 1990s-2004	Demonstration of presence of energetic residues on ranges	Racine et al. 1992 Jenkins et al. 1997a, b, 1998, 2001 Walsh and Collins 1993, Walsh et al. 1997 Thiboutot et al. 1998, 2000a, b, 2003 Ampleman et al. 2003a, b Clausen et al. 2004 Pennington et al. 2004 Taylor et al. 2004
1990s	Recognition of heterogeneity issues associated with environmental samples	Pitard 1993
Mid 1990s-Early 2000s	Recognition of heterogeneity issues for energetic constituents on military ranges	Racine et al. 1992 Jenkins et al. 1997a, b, 1999, 2000 Taylor et al. 2004 Walsh et al. 1993b, 1997
2001–2009	Development of sampling and sample processing methods for soils containing energetic constituents	Jenkins et al. 2001, 2004a,b, 2005,a 2006 Thiboutot et al. 2002 M. E. Walsh et al. 2002, 2003, 2005, 2006a, b Hewitt and M. E. Walsh 2003 Hewitt et al. 2005, 2007, 2009
2004-2007	Demonstration and comparison of multi-increment methodology with traditional grab sampling approach for soils with energetic constituents	Jenkins et al. 2004 M. E. Walsh et al. 2004 Hewitt et al. 2005 Nieman 2007
2007-2010	Demonstration of heterogeneous distribution of metals in soils from military ranges	Clausen et al. 2007, 2010 Clausen and Korte 2009a, b
2008-present	Adoption of multi-increment methodology for soils with metals	Hawaii 2008, Alaska 2009. ITRC 2011
2009-present	ESTCP ER-0918 Project	

Project Stage Specific Activity Conceptual Site Model **Determination of Investigation Objectives** Identification of Data Needs **Project Planning Decision Unit Identification** Determination of Sample Depth Interval Number of Increments per Sample Field Sample Tool Selection Implementation Collection of Soil Sample Air Drying Sieving Particle Size Reduction (Grinding) < 2 mm (examined) > 2 mm (archived) Splitting (if necessary) Sample Processing Subsampling Metals Digestion **Digestion Mass** Energetics Extraction Acid Mixtures Soil to Solution Ratios ICP-MS or ICP-OES **HPLC** Analysis

Table 2. Schematic diagram of the multi-increment sampling methodology.

The first component of the MI sampling methodology involves project planning to determine the 1) conceptual site model (CSM), 2) project's objectives, 3) data needs, 4) DU configuration, 5) sampling depth, and 6) number of increments per sample. The soil samples from DUs should be physically collected only after the planning phase has been completed.

In the field, the first step is to define the boundaries of the DU with markers (typically flags or stakes). Then, the next step is to determine the approximate spacing between increments (e.g., if they are collected using systematic random sampling) and the number of rows of increments needed to achieve the total number of increments for each MI sample. For materials distributed non-uniformly, this results in a sample of considerable mass (i.e., > 1 kg) composed of 30 or more increments from evenly spaced locations throughout the DU (Fig. 2). Traditionally, the analysis of metals in the environment has relied on much smaller samples. A "grab" or individual discrete sample of several hundred grams is typically collected in a 4-oz amber glass jar, from which only a small portion is removed; a 1-2 g aliquot is often scooped from the top of the jar for extraction (acid digestion) by Method 3050B or Method 3051A (USEPA 1996a,b). To reduce the influence of compositional and distributional heterogeneity when estimating the mean concentration of an analyte within a DU, Method

8330B recommends collecting 30 or more evenly spaced increments to build a sample with a total sample mass of >1 kg (Jenkins et al. 2004a,b, 2005a, 2006; Walsh et al. 2005; Hewitt et al. 2005, 2007). The objective of this sampling technique is to obtain a representative portion of every particle size, composition (antimony, copper, lead, zinc, etc.), and configuration (e.g., spheres or elongated particles), and to avoid over- or undersampling any portion of the DU.

Currently, if metal particles of as large as only 2 mm are present in the media being sampled, a large amount of uncertainty would be anticipated. This is based on the equation used to estimate the fundamental error (FE) (eq. 1, Pitard 1993).

$$FE^2 = \frac{Cd^3}{m_S} \tag{1}$$

where:

FE = Fundamental Error (relative variance)

 $C = constant (g/mm^3)$

d = diameter of largest particle (mm)

 $m_s = \text{mass of sample (g)}$

With an approximate value of 20 for *C*, for a maximum particle diameter (*d*) of 1.95 mm and subsample mass (m_s) of 2.0 g, the FE is about 30%. This constitutes an estimate of the smallest possible uncertainty introduced by the laboratory's sub-sampling procedure and accounts for only compositional heterogeneity; it does not take into account the additional uncertainty from distributional heterogeneity within the DU and sample preparation errors. Depending on the data quality objectives (DQOs), a minimum uncertainty of 30% may be unacceptably large. To estimate the total uncertainty (e.g., for estimating mean concentrations of munitions constituents), replicate MI samples must be collected within the same DU. If this step is not included in a sampling plan, the total uncertainty of the DU mean cannot be determined.

2.1 Energetics residue deposition

Projectiles fired into an impact area undergoing explosive detonations as designed are called "high-order" detonations. When a round detonates, but malfunctions, and the detonations are not completed, the rounds are

said to have detonated "low-order." A percentage of fired rounds detonate low-order and the number varies substantially from one munition type to another (Dauphin and Doyle 2000). Over the past two decades, studies at over 30 military ranges have demonstrated the presence of energetic compounds in surface soils (Clausen et al. 2004; Pennington et al. 2005; Taylor et al. 2004; Ampleman et al. 2003a b; Jenkins et al. 2001, 1998; Thiboutot et al. 2003, 2000a,b, 1998). Further, these studies have confirmed that under ideal conditions a large percentage of the energetic material is consumed during detonation. However, these studies have also demonstrated that field conditions are not always ideal and consequently not all munitions undergo a high-order detonation thereby consuming all of the explosive material. A low-order detonation results in the distribution of energetic material into the environment as particulate (or bigger; Walsh et al. 2010) residues (Taylor et al. 2004; Hewitt et al. 2003; Jenkins et al. 2002) in an extremely heterogeneous manner (Jenkins et al. 1999; 1997a,b, 1996). Research over the last decade has demonstrated that special field sampling and sample preparation procedures are necessary to obtain a representative and reproducible results (Hewitt et al. 2009, 2007, 2005; Walsh et al. 2006a,b, 2005, 2003, 2002; Jenkins et al. 2006, 2005, 2004a,b, 2001, 1999; Hewitt and Walsh 2003; Thiboutot et al. 2002).

2.2 Sampling strategies for soils containing metallic residues

Conventional soil sampling procedures for environmental investigations often entail collecting grabs using either systematic—random sampling or biased—judgmental sampling. The former may be described as a "grid-node" approach; the area of interest is divided into a number of individual grids (exposure areas), the size of each being a function of the total area to be assessed and the future land use envisioned. Within each grid, one discrete sample is collected and shipped to an off-site laboratory where samples are processed and analyzed. Under the judgment sampling approach, an arbitrary number of discrete samples are collected from the area of interest. Often the sampling locations are determined by regulatory officials based on visual observations.

The results for these samples are assumed represent concentrations within the area of interest, and the concentrations of the individual samples are often assumed to be normally distributed. The results are subsequently used to calculate the mean concentration of the study area. Geostatistical approaches such as kriging may also be used to characterize the spatial

distribution of contamination (e.g., the concentration gradient between grid sampling points is assumed to be linear). However, the assumption that these discrete samples are "representative" of analyte concentrations within the area of interest is generally not tested, even though the concentrations of the discrete samples collected from within the same grid often do not agree. If enough discrete samples are collected, anomalous results are often evident during the geospatial analysis of the data. Then various ad-hoc approaches are used to adjust the data, e.g., calculating the mean of co-located samples results, assigning a value of ½ the reporting limit to non-detect samples, etc.

Earlier research indicated that explosive concentrations in discrete samples can vary substantially even over short distances (Jenkins et al. 1999, 1997a,b) and energetic residues can be deposited at training ranges as discrete particles (Taylor *et al.* 2004). Studies within grids as small as 10×10 m using 100 discrete samples collected within a single 1- \times 1-m cell varied by two orders of magnitude and yielded percent Relative Standard Deviations (RSD) in excess of 100%; this demonstrates the short-range heterogeneity (Table 3). The reproducibility of a sample measurement is obtained by calculating the percent RSD of the samples,

$$\%RSD = 100 \times (s / \overline{x}) \tag{2}$$

where:

s = standard deviation (from variability of replicate multi-increment results)

 \overline{x} = sample mean (mean of replicate multi-increment results)

A RSD of less than 30% for three to five replicates collected within the same Decision Unit (DU) is often considered to be indicative of an acceptable level of variability. However, note that this is only a "rule of thumb," as decision errors actually depend on distribution of concentration measurements, as well as the magnitude of the differences between the concentration measurements and the levels of interest. As used in this document, the term DU (alternately termed "area of concern," "sampling area," "exposure unit," "contamination zone," "population," or "habitat") refers to the area that a sample is intended to represent.

Hewitt et al. (2009) suggest that if the %RSD is less than or equal to 30% for a set of replicate MI samples collected within the same DU, one could

assume a normal distribution and thus calculate a reliable upper confidence limit (UCL) for the DU mean. Although a <30% RSD cannot conclusively demonstrate that a distribution is normal, a larger %RSD would suggest deviations from normality and indicate that the field sampling design or laboratory processing, or both, were not adequate to control for the effects of heterogeneity in distribution or composition. Clearly, this is the case with the discrete samples shown in Table 3. The distributions for the discrete samples are non-Gaussian and positively skewed. Because the median concentrations are less than the mean, often much less, estimates of mean concentration from one or a few discrete samples nearly always underestimated the mean. Therefore, there is a concern about using discrete samples to represent the average concentrations in soil at firing points and impact areas. The extreme heterogeneity is ascribable to the presence of particles of energetic residues.

Table 3. Variability of soil concentrations among 100 discrete samples collected within 10- x 10-m grids at various training range impact areas from ERDC/CRREL TR-11-5 (Taylor et al. 2011).

				Concentration (mg/kg)			(%)		
Installation	Area*	Range type	Analyte	Max	Min	Median	Mean	Std dev.	RSD
Donnelly Training Area (AK) ¹	FP	Artillery	2,4-DNT	6.38	0.0007	0.65	1.06	1.17	110
CFB-Valcartier (QC) ²	FP	Antitank rocket	NG	2.94	0.02	0.281	0.451	0.494	110
CFB-Valcartier (QC) ²	IA	Antitank rocket	HMX	1150	5.8	197	292	290	99
Holloman AFB (NM) ³	IA	Bombing	TNT	778	0.15	6.36	31.8	87.0	274
Ft. Polk (LA) ⁴	IA	Mortar	RDX	2390	0.037	1.7	71.5	315	441
Cold Lake (AB) ⁵	IA	Bombing	TNT	289	0.38	6.57	16.2	32.3	199
Ft. Richardson (AK) ⁶	IA	Artillery	RDX	172	<0.04	<0.04	5.46	24.8	454
Ft. Richardson (AK) ⁷	IA	Mortar	RDX	4450	<0.04	<0.04	**	**	**

*Firing point (FP) or Impact Area (IA). ¹ M.E. Walsh et al. 2004, ² Jenkins et al, 2004b, ³ Jenkins et al. 2006b, ⁴ Jenkins et al, 2004a, ⁵ Ampleman et al. 2003, ⁶ M.E. Walsh et al. 2007. ⁷ Hewitt et al. 2009 (Note: results from 200 discrete samples).

**—Not computed

To obtain representative and reproducible results, the sampling strategy must address the heterogeneity in composition and distribution of the constituents of concern (Pitard 1993). Compositional heterogeneity is attributeble to soil sized particles within the population not all having the

tributable to soil-sized particles within the population not all having the same concentration. This heterogeneity is at a maximum when a portion of the contaminant is present as discrete particles.

Variability from compositional heterogeneity is called the Fundamental Error (FE) and is inversely related to the sample mass. Distributional heterogeneity is attributable to contaminant particles being scattered across the site unevenly, sometimes with a systematic component as well as a

short-range random component. Variability associated with distributional heterogeneity is inversely related to the number of individual increments used to build the sample. This type of variability is largest when a single discrete sample is used to estimate the mean of a large DU. To reduce the influence of distributional heterogeneity in the estimate of the mean concentration for a DU, the collection of 30 or more evenly spaced increments to form an individual soil sample has been recommended (Jenkins et al. 2006, 2005, 2004a,b; Hewitt et al. 2005; Walsh et al. 2005).

The objective of the MI approach (e.g., which typically uses systematic—random sampling) is to obtain a proportional amount of residue particles of every composition and shape. Instead of collecting and analyzing individual discrete samples and integrating the results over an area of interest (DU), or assuming that a single point represents the entire area, samples are prepared by combining a number of increments of soil from within the DU to obtain an approximately 1-kg sample. The increments can be collected using simple random sampling or systematic random sampling. For systematic random sampling, a random starting point is selected and evenly spaced increments are collected as the sampler walks back and forth from one corner of the decision unit to the opposite corner (Fig. 2).

Figure 2. Example of multi-increment sampling using a systematic-random sampling design for collecting two separate 100-increment samples.

Subsequent studies using the MI sampling approach revealed reduced sample replicate variability as compared the grid-node sampling approach

(Nieman 2007; Jenkins et al. 2006, 2004a; Hewitt et al. 2005; Walsh et al. 2005. In addition, MI samples provided much more reproducible estimates of mean concentrations within DUs at firing point and impact areas than one or a few discrete samples (Table 4). Experiments were conducted at a variety of active training ranges to investigate the use of MI samples to obtain estimates of mean concentrations in areas varying in size from $10 \times 100 \text{ m}(100 \text{ m}^2)$ to $100 \times 100 \text{ m}(10,000 \text{ m}^2)$ (Table 4). The MI samples were often taken from the same DUs and at the same time as the discrete sample results listed in Table 3. In all cases the variability among replicate MI samples was much lower than for discrete samples taken within the same sample grids. Although the RSD for the Fort Polk MI sample is larger than what is typically preferred, it is nevertheless smaller the RSD for the discrete samples Note, this particular MI sample consisted of 25 increments, suggesting that more increments were necessary to achieve a representative sample with an acceptable degree of variability.

Table 4. Variability of soil concentrations among multi-increment samples collected from grids at different ranges from ERDC/CRREL TR-11-5 (Taylor et al. 2011).

				Number	Grid			Conc	Concentration (mg/kg)			
Installation	Area	Range type	Increments/ Sample	of Samples	Size (m)	Analyte	Max	Min	Median	Mean	Std Dev	(%) RSD
Donnelly Training Area (AK) ¹	FP	Artillery	30	10	10 x 10	2,4-DNT	1.35	0.60	0.92	0.94	0.24	26
Holloman AFB (NM) ²	IA	Bombing	100	3	10 x 10	TNT	17.2	12.5	13.5	14.4	2.45	17
Ft. Polk (LA)3	IA	Mortar	25	10	10 x 10	RDX	290	4.6	25	54	86	159
29 Palms (CA) ⁴	IA	Artillery/ Bombing	100	6	100 x 100	RDX	9.4	3.9	4.8	5.6	2.1	38
Hill AFB (UT) ⁵	TTA	Thermal treatment	100	3	100 x 100	НМХ	4.26	3.96	4.16	4.13	0.15	4

^{*} Firing point (FP), Impact Area (IA), or Thermal Treatment Area (TTA). ¹ M.E. Walsh et al. 2004, ² Jenkins et al. 2006b, ³ Jenkins et al. 2004a, ⁴ Hewitt et al. 2005a, ⁵ Nieman personal communication

The studies comparing discrete and MI sampling strategies for characterizing military training activities discussed earlier have shown that the distributions of data obtained from discrete samples tend to be non-Gaussian and positively skewed, whereas MI data are often normally distributed (Jenkins et al. 2006, 2005, 2004a,b; Walsh et al. 2005), a result that is consistent with the Central Limit Theorem of statistics. Moreover, a single discrete sample or small set of discrete samples often results in a lower estimate of the mean concentration than MI samples. The differences between the means determined from the discrete and MI sampling schemes become less pronounced as the number of discrete samples approaches the total number of increments collected for the set of MI samples. How-

ever, in general, the MI sample concentrations will be consistently less variable than the discrete sample concentrations.

The MI sampling method has been adopted as the accepted USEPA method (Method 8330B) for documenting deposition of particulate energetic residues on DoD training and testing range soils (USEPA 2006). Regulatory agencies and installation managers are attempting to apply the MI sampling methodology to other analytes, including metals (ITRC 2011; Alaska 2009, Hawaii 2008). Collecting a large number of unbiased increments (e.g., 30–100) over the entire DU (e.g., using simple or systematic-random sampling) is central to the MI sampling approach. To estimate the total uncertainty of the mean concentration of a munitions constituent, replicate MI samples must be collected with the DU. The U.S Geological Survey (USGS) recommends that the entire field sample be dried, passed through a no. 10 (2-mm) sieve, and then mechanically pulverized to reduce the particle size to < 0.15 mm (USGS 1993). This step is necessary because, within the < 2-mm soil size class, particles of munitions constituents exist as a variety of sizes, densities, shapes, and compositions. The use of the no. 10 sieve targets those particles that more readily dissolve and is consistent with the classification of soil used in risk models for human exposure. Mechanical grinding of the sample to increase the number of particulate contaminants of interest in the sample is another essential part of the MI approach (ITRC 2011) to achieve a more homogenous analytical sample. It is also an important component of the energetics USEPA Method 8330B (USEPA 2006).

2.3 Metal residue deposition

Since the release of USEPA Method 8330B (USEPA 2006), a growing concern within the DoD, federal, and state agencies, has been that similar protocols should be adopted charactering metals on training ranges and at other locations. The military routinely fires projectiles in training that contain metal in the casing body, slug, or as metal salts in fuzes and pyrotechnic formulations. Like energetics, metals at military ranges are expected to be spatially very heterogeneous. A wide variety of metals are used for military munitions. For example, the casing materials for most artillery and mortar projectiles consist of iron and manganese; the predominant metal in the anti-tank rockets is aluminum. The metals of interest at small arms ranges are primarily antimony, copper, lead, zinc (Clausen and Korte 2009a) and, in some situations, tungsten (Clausen and Korte 2009b;

Clausen et al. 2010, 2007). Pyrotechnic devices contain metal constituents such as aluminum, antimony, barium, boron, cerium, chromium, copper, iron, lead, magnesium, manganese, potassium, sodium, strontium, titanium, tungsten, zirconium, and zinc (Clausen et al. in review).

Anthropogenic metals are heterogeneously distributed over active training ranges as particles of various sizes, shapes, and compositions. The impact of heterogeneity on measured metal concentrations was assessed by comparing compares results obtained using different sampling methods from the same berm at a small arms range at Massachusetts Military Reservation (Table 5). The means for the MI samples are generally larger than the means of the discrete samples.

Table 5. Mean metal concentrations for different sampling methods at the Bravo Small Arms Range at Camp Edwards, Massachusetts.

Туре		Discrete		Multi-increment			
Sample Design	Systematic Random	Biased	Large-mass	Biased	Systematic- Random	Systematic- Random	
Increments per sample	1	1	1	15	100	50	
Element			Concentrat	ion (mg/kg)		
Cr	<15	184	74	75	78	76	
Cu	462	1555	569	984	643	709	
Fe	6116	10,646	6686	7423	7392	7233	
Mn	51	79	43	51	46	46	
Pb	445	1182	952	945	339	357	
Sb	16.3	31.4	25.4	23.3	15.8	15.2	
W	666	1,479	581	1,247	787	783	
Zn	38	135	32	41	32	43	
Sample no.	8	8	1	1	2	2	

Shaded text represents known contaminants of interest.

As munitions containing metals are frequently used on Army training lands (Fig. 3), it is expected the metals deposited by these rounds may build up in the soils and may need to be sampled (Fig. 4). The deposition of metals from this type of training has only been studied on a limited basis. The sampling design must address compositional and distributional heterogeneity to obtain representative samples (e.g., reproducible estimates of the mean). The sampling design must allow for acquiring an adequate number of particles of the constituents of interest in each sample and must ensure that the proportions of the various particles of interest in the samples are similar to the proportions of these particles in the envi-

ronmental population (DU). Thus, the average contaminant concentrations in the samples will be similar to the average concentrations in the population sampled. In the case of materials distributed non-uniformly, this objective results in samples of considerable mass (i.e., greater than 1 kg), each composed of 30 or more increments from evenly spaced locations throughout the DU. Traditionally, the analysis of metals in the environment has relied on much smaller sample masses, from which only a small portion is removed for further processing; less than 2 g of the parent sample is typically subsampled and subsequently digested and analyzed (USEPA 1996a,b). This research will assess the uncertainty associated with this traditional approach and demonstrate an innovative sampling strategy and sample-processing protocol that results in more reproducible metal concentrations for study areas.

Figure 3. Small arms projectiles found on a range at Fort Lewis, Washington.

Figure 4. Surface soil metal concentration for different types of training ranges at a number of different military installations. Green line depicts the USEPA lead soil action level of 400 mg/kg.

Table 6. Replication of metal results (mg/kg) for co-located individual discrete soil samples from Bravo Small Arms Range at Camp Edwards, Massachusetts.

			Mean	Std. Dev.						
	B8-A	В9	B10	B11	B12	B13	B14	(mg/kg)	(mg/kg)	RSD (%)
Element		•	Concer	ntration (m	ng/kg)	•	•			
Al	4323	4202	5390	4983	4339	3605	5938	4676	801	17
Cu	84	257	430	2316	29	109	462	462	830	180
Fe	5691	5630	6811	6646	5628	4866	7774	611	999	16
Mg	602	793	962	974	733	723	1065	839	162	19
Mn	41	38	54	54	39	42	90	51	19	37
Pb	277	345	549	549	264	720	370	445	175	39
W	429	625	1374	1374	292	142	777	666	439	66
Zn	24.8	41.7	61.0	61.0	<15	16.5	35.4	37.7	15.9	42

Std. Dev. - standard deviation, Highlighted text indicates known contaminants of interest

Data from a limited study at the Bravo Small Arms Range at Camp Edwards, MA, using discrete samples and following the current sample processing methods yielded poor reproducibility of sample results, calling into question the representativeness of the data (Table 6). The samples were all collected within a $1-\times 1$ -m square to a depth of 5 cm. At the present time,

the applicability of the special sample processing steps developed for energetics to soil samples containing metals is an unknown.

2.4 Study approach

Environmental studies of military training ranges have shown that energetic residues are heterogeneously distributed (Jenkins et al. 1999, 1997a, b, 1996). To representatively sample military ranges during site or remedial investigation activities MI sampling strategies have been recommended for the characterization of energetic residues (Hewitt et al. 2009). Members of the environmental regulatory community have accepted incremental sampling and the associated sample processing procedures for energetics (ITRC 2011; Alaska 2009; Hawaii 2008). These changes are documented in USEPA Method 8330B (USEPA 2006).

Because of the success of the MI methodology for energetics, members of the environmental community are considering its adoption for other hazardous residue constituents such as metals (Hewitt et al. 2011; ITRC 2011; Alaska 2009; Hawaii 2008). The current USEPA method for metals in soils is Method 3050B (USEPA 1996a). This project addresses whether changes to USEPA Method 3050B are necessary and whether improved data quality can be achieved by coupling MI sampling with adequate sample processing for determining mass loading of metal constituents on military training ranges. The working hypothesis is that the current field sampling and sample processing procedures for metals in soil do not yield representative and reproducible results for military sites where metal contamination is heterogeneously introduced into the environment as solid residues.

With this hypothesis in mind, the project evaluated potential modifications to field sampling and sample processing procedures to obtain representative samples of soils containing metal residues. MI sampling and adequate sample processing was demonstrated for characterizing soils containing metal residues released because of military training activities. Comparisons were made with existing protocols to evaluate data quality improvements. The field issues studied included the need for MI samples versus the traditional grab/discrete sampling approach. The optimum number of increments per sample was evaluated as well. Sample processing issues studied included:

1. Necessity of machining or grinding of the soil sample to reduce the size and increase the number of contaminant particles in the sample to reduce composition heterogeneity.

- 2. Appropriateness of field splitting.
- 3. Appropriate type of grinding apparatus.
- 4. Appropriate grinding interval.
- 5. Assessment of the need to increase the digested mass and digestion interval.
- 6. Optimum soil to acid ratio, i.e., digestion efficiency.

The optimum field sampling and sample processing procedures will be identified and submitted to the USEPA as a proposed method modification to USEPA Method 3050B. This research will assess the uncertainty associated with this traditional approach and demonstrate an innovative sampling strategy and sample-processing protocol that results in reproducible metal concentrations.

3 Methods

Anthropogenic metals are heterogeneously distributed over active training ranges as particles of various sizes, shapes, and compositions. To address the compositional and distributional heterogeneity associated with this form of dispersion, i.e., to establish a representative (repeatable) mean concentration, the sampling strategy and design must allow for acquiring an adequate number of particles of the constituents of interest so as to maintain their proportion relative to that existing in the decision unit. More simply stated, the average concentration in the sample should mimic the average concentration in the population sampled. In the case of materials distributed non-uniformly, this objective leads to a sample of considerable mass (i.e., > 1 kg) composed of 30 or more increments from evenly spaced locations throughout the decision unit. Traditionally, the analysis of metals in the environment has relied on much smaller samples. Typically, soil is collected in a 4-oz jar and subsequently sent to an environmental testing laboratory for analysis. At the laboratory only a small fraction of the soil sample is actually processed for analysis. The laboratory usually scoops no more than 1–2 g of soil from the top of the jar for extraction (acid digestion) by Method 3050B or Method 3051(USEPA 1996a,b).

3.1 Field Sampling

Figure 5. Schematic of decision unit sampled at Small Arms Range 4-3 at Camp Ethan Allen, VT.

Soil samples were collected from the berm face of Small Arms Range 4-3 at Camp Ethan Allen, VT (Fig. 5). This material was used to evaluate the appropriateness of applying USEPA Method 8330B sample collection, and processing procedures to soils containing metal residues and to evaluate possible modifications necessary to Method 3050B to achieve reproducible

and representative results. The soil material from this range can be classified as loamy sand (Fig. 6).

Figure 6. Particle size analysis for soil from Small Arms Range 4-3 at Camp Ethan Allen, VT.

Both MI and discrete surface soil samples were collected from Small Arms Range 4-3 on 30 June 2010. At the time of sample collection, the environmental conditions were sunny with a light wind and temperatures about 60°F (15.6°C). All samples were collected using the CRREL Multi-

Increment Sampling Tool (CMIST) (Fig. 7; Walsh et al. 2009) with the ¾-in. (1.9-cm) corer diameter to a depth of 1 in. (2.5 cm) unless otherwise noted. The CMIST was be used to extract cylindrical soil cores referred to as "increments." Each individual increment typically weighed approximately 0.005 kg.

Figure 7. The CRREL Multi-Increment Sampling Tool. Coring tips are 2-, 3-, and 4-cm diameter (left to right). Corresponding disks are shown below the handle.

For discrete sample collection the berm face was gridded into 30 individual sample areas (Fig. 8) with a single increment collected from the center of each grid and placed into individual 4-oz amber glass jars. Forty-three MI samples were collected over the entire berm face (the DU).

30	27	24	21	18	15	12	9	6	3
29	26	23	20	17	14	11	8	5	2
28	25	22	19	16	13	10	7	4	1

Figure 8. Location of discrete samples collected on the berm face at Small Arms Range 4-3 at Camp Ethan Allen, Vermont.

The first sample consisted of our test material to evaluate the different sample preparation methods. Because a large volume of soil was needed, 200 increments were collected from the DU using a 1.5-in. (3.8-cm) diameter CMIST to a depth of 3 in. (7.6 cm). To evaluate the number of increments per DU, sets of replicate MI samples were prepared from 5, 10, 20, 30, 50, and 100 increments. Seven replicates were collected for each increment grouping.

3.2 Laboratory sample preparation

All soil samples were transported to CRREL in Hanover, NH. The purpose of the project was to compare the conventional discrete sampling approach with the MI sampling approach and evaluate changes to laboratory sample processing procedures that may be needed to improve the quality of the results. Figure 9 is a conceptual representation of the overall experimental design. Soil samples were transported to CRREL and air-dried on aluminum trays. Once air-dried, each sample was passed through a no. 10 (2mm) sieve. The weights of the < 2 mm and > 2 mm size fractions were recorded. The < 2mm size fraction was typically ground using a Lab Tech Essa chrome steel ring mill grinder (Model LM2, Belmont, Australia), except for those cases requiring an unground sample or the evaluation of different milling equipment. The chrome steel bowl and puck were cleaned after each grind by washing with soapy water, followed by an acetone rinse and air-drying. The digestion of the soil samples generally followed USEPA Method 3050B with various modifications tested and discussed in the following subsections.

Figure 9. Proposed experimental design.

3.2.1 Experiment 1—glass as a quality control medium

The suitability of glass beads as a quality control medium was evaluated (e.g., for the preparation of method blanks). Glass beads of 5-mm diameter

(Kimble Kontes, No. 13500-5) were used. The metal content of the glass beads was first determined using the soil digestion procedure USEPA Method 3050B. The glass beads were subsequently washed with aqua regia, a solution of 100 mL of hydrochloric acid and 300 mL of nitric acid (trace grade for each). The acid solution was added to a jar containing the glass beads and swirled for approximately 1 minute. The acid was then decanted and the glass beads rinsed with de-ionized (DI) water three times, decanting the DI water after each rinse. The washed glass beads were then ground in the puck mill and digested using USEPA Method 3050B. Glass beads were also ground in the puck or ball mill as a control and then washed, digested, and analyzed. This was followed by grinding of a soil sample and then grinding several batches of glass beads in sequential order to assess the possible cross-contamination from the grinding apparatus.

3.2.2 Experiment 2—Multi-increment vs. traditional discrete/grab sampling

This experiment evaluated the representativeness and reproducibility of soil sample results using the MI approach versus the traditional discrete/grab sampling approach. Three replicate systematic-random MI samples, consisting of 100 increments, were collected (Fig. 2 and 5). With a grid-node approach, 30 grab samples were also collected (Fig. 8) from the same DU from which the MI samples were collected and placed in an amber 4-oz container.

The objective of this experiment was to evaluate whether MI sampling results in better precision than discrete samples. This involved evaluating sample-to-sample variability using three multi-increment field replicates, and evaluating within sample variability using 15 laboratory replicates prepared from a single MI sample. The discrete samples were used to assess the variability between samples across the DU.

The standard procedure followed for sample preparation of the MI samples in this experiment and most of the subsequent experiments followed the description in Section 3.0. A sub sample of the < 2 mm ground material was prepared using 20 increments to build a 2-g digestion mass. The volume of each digestate (an aqueous solution of HNO $_3$ and HCl) was adjusted to 50 mL per USEPA Method 3050B (USEPA 1996a). The digestate

was analyzed using an inductively coupled plasma-optical emission spectrometer (ICP-OES) using USEPA Method 200.7 (USEPA 1994).

The discrete/grab samples were sent to CRREL and air dried and sieved with a no. 10 (2-mm sieve). The > 2-mm portion was set aside. The < 2 mm portion was ground using a mortar and pestle for 1 minute and then placed back in the 4-oz jar. Two grams of material were scooped off the top of the sample container for digestion, the typical sub-sampling procedure for commercial analytical laboratories. One of the 30 discrete samples was subsampled to prepare a set of 15 replicates by taking 15 individual scoops out of the same jar. Digestion and analysis followed the same procedures as used for the MI samples, with the exception that a single 2-g sample was obtained from the 4-oz jar.

3.2.3 Experiment 3—number of increments per decision unit

One of the questions about the MI sampling methodology is how many increments need to be collected for each MI sample. This issue has not been satisfactorily studied, even as part of CRREL's previous work with energetics (Jenkins et al. 2005; Walsh et al 2005). The general rule of thumb adopted by CRREL is that 100-increments should be collected. USEPA Method 8330B (USEPA 2006) and Hewitt et al. (2009) recommend a minimum of 30-increments be collected. However, the question of number of increments to collect is routinely raised in meetings with military installations, regulators, and consultants with a desire to decrease the number of increments collected.

The objective of this experiment was to determine the minimum appropriate number of increments per DU to obtain a representative sample (e.g., to determine if at least 30 increments are needed to obtain reproducible results) The performance criteria consisted of 30% RSD for samples having the same number of increments and a statistically significant decrease in variance at the 95% confidence level between the smallest number of increments and each subsequent increase in the number of increments.

The same sampling approach used in Experiment 1 was used to acquire samples for Experiment 2. However, seven replicate MI samples prepared from 5, 10, 20, 30, 50, and 100 increments were collected from within the DU. This resulted in six sets of seven MI replicates—one for each "increment class/grouping." In this case, sample mass was not controlled (as the

mass of each MI sample is proportional to the number of increments collected). Once collected, the MI samples were processed following the methodology in Section 3.0. Each subsample was obtain by randomly collecting 20 increments from the ground soil to build a 2-g mass. The subsamples were digested using 3050B. The final digestate volumes were 50 mL. The digestates were analyzed using an ICP-OES. One MI replicate for each increment class was subsampled to create 15 replicates.

3.2.4 Experiment 4—field splitting

One of the current issues with MI sampling is the large volume of soil collected and submitted to the analytical laboratory. Many analytical laboratories are not equipped to handle large volumes of soil. Some environmental companies recommend that samples be split in the field using coneand-quartering techniques or a riffle splitter to reduce the sample volume. However, the appropriateness of applying field splitting techniques is questionable (USEPA 2003) based on past work with energetic materials (Hewitt et al. 2009) and preliminary studies with metals (Table 7).

Table 7. Laboratory splitting error for an unground soil sample from a small arms range using a rotary splitter.

	Split 1		Split 2	
Replicate	Cu (mg/kg)	Pb (mg/kg)	Sb (mg/kg)	Cu (mg/kg)
1	2600	360	5.5	99
2	110	330	5	90
3	300	920	7.6	87
4	110	300	4.3	99
5	130	280	4.3	130
6	140	2,800	16	90
7	860	1600	12	88
8	540	330	4.6	99
9	1200	850	4.2	83
10	130	1500	4.5	98
11	1900	380	4.9	99
12	120	330	4.3	110
13	130	290	3.7	80
14	120	300	4.1	87
15	110	820	8.2	84

Table 7 presents results from a MI soil sample that was collected from a military small arms range. The sample (over 1 kg of soil) was air-dried and sieved. The < 2-mm unground portion was then divided into multiple splits using a sectorial splitter, a device known to outperform cone and quartering by a wide margin. Each split was then sampled using 20 increments to build 2-g subsamples. The subsamples were digested following USEPA Method 3050B (USEPA 1996a) and analyzed using an ICP-OES following USEPA Method 6010. Order of magnitude differences are evident in the data, suggesting that the results are neither reproducible nor representative of the metal content in the site soil. The USEPA action level for lead is 400 mg/kg. Depending on which split was selected different actions would be necessary—no action versus soil clean up.

A study was conducted to assess the impact of using cone-and-quartering to obtain representative and reproducible results prior to machining the sample, as this is a commonly used method in the environmental industry even though Gerlach and Nocerino (2003) and Pitard (1993) indicate that this method yields unacceptable results. The test soil for this experiment and all subsequent experiments (4–10) involves the collection of a 200increment soil sample yielding 25 kg of material from the small arms range berm at Camp Ethan Allen, VT. The test soil was collected and then split in the field using a cone-and-quartering technique. After splitting, each quarter was dried and then sieved with a no. 10 (2-mm) sieve. The > 2-mm size material was set aside. The < 2-mm portion of each quarter was ground separately in a puck mill for five 60-second intervals. Fifteen 2-g replicates from each quarter were collected through subsampling using 20 increments. The digestates were brought up to a 50 mL volume using HNO₃ and HCl per USEPA Method 3050B (USEPA 1996). The digestates were analyzed using an ICP-OES.

The objective of this experiment was determining if field splitting prior to machining is possible to reduce sample volume sent to the laboratory for processing. The performance criterion consists of 15% RSD for each quarter and no statistically significant difference between the means of each quarter at the 95% confidence level.

3.2.5 Experiment 5—sample pulverization necessity

One of the issues identified with energetic particle distribution was the high degree of heterogeneity observed in collected soil samples. Prelimi-

nary data indicate the issue of sample heterogeneity applies to situations where metal residues are deposited in the environment. Consequently, there may be a need to reduce the particle size of the sample to achieve a representative result. A limited study of a berm where small arms and 40-mm rocket-propelled grenades were fired into at Fort Wainwright, AK, suggests milling is necessary to reduce the impact of heterogeneity within the sample (Table 8). The Al and As constituents are associated with the grenade casing and Pb, Cu, and Zn with the small arms munitions.

To assess milling necessity the 200-increment sample was utilized. The sample was dried, sieved with no. 10 (2 mm) sieve, and the < 2-mm portion was split into two equal parts using a sectorial splitter. The > 2-mm size portion was set aside. One set of the < 2-mm samples was not ground and the other set ground 5×60 s in a puck mill. Then, 15 replicates were built by sub sampling each using 20 increments to build a 2-g digestion mass which, after digestion, was brought up to a final volume of 50-mL using HNO₃ and HCl per USEPA Method 3050B. The digestate was analyzed using an ICP-OES.

Table 8. Unground and ground soil samples for a berm at Fort Wainwright, Alaska.

			Analy	te (mg/k	g)	
	Statistic	Al	As	Cu	Pb	Zn
Unground	Mean	9730	8.7	337	4380	71
(n=7)	Std. Dev.	411	2.9	236	6660	29
	RSD (%)	4	33	70	152	40
Ground	Mean	12,000	8.1	420	1560	81
(n=7)	Std. Dev.	422	0.66	228	172	25
	RSD (%)	4	8	54	11	31

RSD - percent relative standard deviation

Std. Dev. - standard deviation

The objective of this set of experiments was to determine if milling is necessary to yield a representative sample. The performance criteria consisted of 15% RSD for each population and no statistically significant difference between the mean of the unground and ground populations at the 95% confidence level. The bias for the mean concentration of the ground samples should be < 30% of the mean of the unground samples.

One of the issues associated with pulverizing soil samples to reduce particle size with a metallic grinder was the introduction of metals from the grinder to the sample. The cross contamination issue was also assessed as part of the experiment discussed above. Following drying, sieving, and grinding, three separate aliquots of glass beads were ground following the procedures in Test 2 in sequential order, i.e., clean the bowl and puck using the normal CRREL procedure following the soil grinding and then grind 3 separate sets of glass beads. The objective of this experiment was to determine if metal carryover occurs using the puck mill. This same test was also conducted with the puck and ring mill and ball mill at Test America and the pulvisette at ERDC's Environmental Laboratory (EL). The ball mill and pulvisette both consist of non-metallic materials so they will act as a control for comparison with the puck and puck and ring mill grinders.

3.2.6 Experiment 6—grinder type evaluation

If sample pulverization was needed to address sample heterogeneity, appropriate grinding equipment was necessary. By use of the same 200-increment reference soil from the small arms range at Camp Ethan Allen, the sample was dried and then sieved with no. 10 (2-mm) sieve. A rotary splitter was used to separate the < 2-mm soil portion into seven different splits. One split consists of the unground sample (control). The other five splits were ground with the following:

- 1. Mortar and pestle (at CRREL).
- 2. Pulvisette at EL in Vicksburg, MS) with agate ball and bowl.
- 3. Roller (ball) mill (at Test America) with ceramic balls and polyethylene lined steel cans.
- 4. Ring and puck mill (at Test America).with chrome steel bowl, ring, and puck
- 5. Puck mill (at APPL Labs) with chrome steel bowl and puck.
- 6. Puck mill (CRREL) with chrome steel bowl and puck.

Each experiment used a grind interval of 5×60 s, except for the roller mill, which used an interval of 18 hours. At the end of each grind interval of 60 s the material was passed through a no. 120 (0.125 mm) sieve. The mass of the faction passing through the sieve and the mass of the remaining fraction on top of the sieve were recorded for each grinding device and split to support a qualitative assessment of the efficiency of the grinding process. Once the samples were ground, 15 replicates of each ground split

were collected by sub-sampling using 20 increments to build 2-g digestion masses. The samples were digested following the methodology in USEPA Method 3050B. The digestates were analyzed by ICP-OES.

The LM-2 puck mill used at CRREL to mill the < 2 mm soil fraction contains metallic components that are in contact with the soil being ground. The metal content of the bowl is summarized in the Table 9.

Metal	Concentration (mg/kg)*
Cr	1 × 10 ⁵
Cu	1990
Fe	5 × 10 ⁵
Mn	3700
Ni	3030
Pb	7
Sb	18
V	1140
W	1210
Zn	52

Table 9. Metal content of puck mill bowl.

The same puck mill brand and model was used by APPL Inc. The ring-and-puck mill used by Test America is a TM Engineering ring-and-puck mill grinder (Model TM/S). The ball mill grinder used by Test America is a US Stoneware roller mill (Model 803FVM), consisting of steel cans with ceramic grinding stones.

The objective of this experiment was to determine which grinding apparatus yields acceptable results. The performance criteria consist of 15% RSD for samples ground with the same apparatus and no statistically significant difference of the means, at the 95% confidence level, between the CRREL puck mill and the unground samples and the puck mill and other grinders. Additionally, the mean positive concentration bias for the ground population should be less than 30% of the unground mean.

3.2.7 Experiment 7—grinding interval

Under the assumption that milling is necessary to overcome sample heterogeneity, the question remains how long samples should be ground. Previ-

^{*} Values supplied by Land Tech Essa.

ous work with explosive residues indicated a grinding time of 60 s is necessary to reduce the particle size such that the sample yields reproducible results (Hewitt et al. 2009; Walsh et al. 2002, 2005, 2006a). Studies with propellant residues indicated longer grind intervals of 300 s are necessary (Walsh et al. 2006a). Because, the grinding process generates heat and some energetic analytics are susceptible to heat degradation, a cooling interval is used. The recommended grinding process involves a 5×60 s grind with a several minute cooling interval between grinds (Hewitt et al. 2009; USEPA 2006; Walsh et al. 2006a). Because firing point soils at small arms ranges contain both propellant and metal residues, a single grinding process is desired to address the heterogeneity issues for both residue constituents. The grinding interval optimization experiment was conducted with the puck mill at CRREL and the roller mill at Test America.

With the same 200-increment reference soil from the small arms range at Camp Ethan Allen being used, the sample was dried and then sieved with no. 10 (2-mm sieve). A rotary splitter was used to separate the < 2-mm soil fraction into 10 different splits. One < 2 mm split consists of the unground soil. Five splits were ground using intervals of 30, 60, 90, 120, and 300 s in the puck mill. The same procedures were used to prepare the samples prior to grinding with the roller mill. The grinding intervals evaluated with the roller mill were 8, 12, 16, and 20 hr. Once the samples were ground, 15 replicates of each sample were built by subsampling, using 20 increments to build 2-g digestion mass. The samples were digested following USEPA Method 3050B and analyzed by ICP-OES.

The objective of this experiment was to determine the optimum-grinding time for the puck and roller mills to yield reproducible results. The primary performance criteria consist of 15% RSD for samples of the same grinding interval and statistically significant decreases in variance at the 95% confidence between the unground sample and the shortest grind interval or between the shortest grind interval and each subsequent increase in grinding interval. A secondary performance criterion is identifying the grinding time that does not result in statistically significant increases in metal concentrations at the 95% confidence level when comparing the individual grind intervals. The optimum grinding interval may not be the same for all grinder devices, as well as for all small arms range metals or other types of military activity where metal residues are introduced to the

environment. Therefore some compromises may be necessary on the preferred grinding interval.

3.2.8 Experiment 8—optimum digestion mass

USEPA Method 3050B (USEPA 1996a) recommends a digestion mass of 1 to 2 g and USEPA Method 3051A and 3052 recommends a 0.5-g digestion mass (USEPA 1996b,c). Previous studies with energetic materials determined that an increase in extraction mass from the standard 2 to 10 g was necessary to decrease the sampling error (Hewitt et al. 2009; Walsh et al. 2002). As a consequence, the modified USEPA Method 8330B for energetics now specifies an extraction mass of 10 g (USEPA 2006). The thought was that the same issues observed with energetics may apply to metals. Therefore, a study was done to evaluate this issue. All of the sample collection and preparation procedures up to the subsampling to build the digestate discussed in the previous experiments were followed. Seven replicates were created by subsampling using 20 increments to yield masses of 0.5, 1, 2, 5, and 10 g. The acid ratio specified in Method 3050B was adjusted proportionally for the sample masses that were digested. The samples were digested following USEPA Method 3050B and analyzed by ICP-OES.

The objective of this experiment was to determine if the sampling error is reduced by increasing the digestion mass if all other conditions such as digestion efficiency and digestion mass remain the same and whether the existing USEPA Method 3050B recommendation of 1 to 2 g (USEPA 1996a) or 0.5 g, USEPA Methods 3051A or 3052 (USEPA 1996b, c), digestion mass is sufficient. This test assessed the combined effects of digestion mass and digestion efficiency. The primary performance criteria consist of 15% RSD for samples of the same digestion mass and a statistically significant decrease in variance at the 95% confidence when the digestion mass is increased. The primary performance criteria will be identifying the digestion mass that does not result in a statistically significant increase in metal concentration at the 95% confidence level when comparing the individual digestion masses.

3.2.9 Experiment 9—sensitivity to different digestion intervals

The current digestion procedure in USEPA Method 3050B (USEPA 1996a) typically requires a day to complete. However, in a production laboratory setting, it is not uncommon to have samples sit overnight in the digestion

block or even through a weekend. One of the issues raised was whether there was a significant increase in metal concentration with increasing digestion time. All of the sample collection and sample preparation procedures utilized in previous experiments were followed for Experiment 9 up to the digestion step. One set of 15 replicates of the same sample was digested in a day (12 hours). The other set of 15 replicates of the same soil were digested over 24-hr.

The objective of this experiment was to determine if digestion time significantly affects digestion efficiency (e.g., the effect of increasing the digestion time for the reported concentrations). The intent is to perform an initial assessment to determine if a more comprehensive study (e.g., using multiple digestion intervals) is likely needed. The null hypothesis is that increasing the digestion time was not result in a statistically significant increase in the mean concentration at the 95% confidence level.

3.3 Analysis

The digested soil samples were analyzed for metals at either EL or CRREL. EL used a Perkin Elmer Sciex ELAN 6000 inductively coupled plasma mass spectrometry (ICP-MS) instrument following USEPA Method 6020. CRREL used a Thermo Fischer ICAP 6300 Duo view ICP spectrometer equipped with a CETAC ASX-520 auto sampler per USEPA Method 6010. The operating conditions were set as follows: RF power at torch, 1150W; auxiliary gas flow rate 0.5 L/min, nebulizer gas flow rate, 0.7 L/min and pump flow rate of 50 rpm.

ICP/MS analysis of samples performed at Test America used an Agilent 7500 Series inductively-coupled plasma mass spectrometer in the collision-cell mode, with helium as the collision gas following USEPA Method 6020.

Samples were analyzed at APPL Inc, according to EPA 6020, using an ICP-MS (Agilent 7500cx ICP-MS equipped with an Agilent ASX-500 series ICP-MS auto sampler). The operating conditions were set as follows: RF power at torch = 1600 W, carrier gas flow = 1 L/min., auxiliary gas flow = 0.1 L/min., nebulizer flow = 0.4 mL/min., and pump flow rate = 0.1 rpm.

4 Results

4.1 Glass bead

There is a necessity for assessing the metal carryover from grinding equipment containing metal components when pulverizing soil and analyzing for metal content. Previous work by Clausen et al. (2010) established that Ottawa sand material was unsuitable as a quality control medium owing to the high metal content of the sand, inconsistent metal levels between different sand lots, and high degree of metal heterogeneity within a particular sand lot.

One possible material explored was commercially produced glass beads or soda glass obtained from crushing laboratory grade clear-glassware. The latter was explored by Test America (data not reported) and appears to be a suitable material. However, there is a potential safety issue during the process of crushing the glass to introduce into the puck mill. It is less of an issue if the glass is pulverized within a ball mill, as the intact glassware can be placed directly in the ball mill jar. The tests below discuss the use of 5-mm glass beads. One potential drawback for the use of glass beads is the cost, which could be significant for commercial laboratories when large numbers of soil samples are processed, requiring a large number of quality control samples (e.g., method blanks prepared from crushed glass).

A statistical summary of concentration of metal in unground unwashed glass beads, unground washed glass beads, ground unwashed glass beads, and ground washed glass beads is presented in Table 10. All of the analytical data are provided in Appendix A. The concentration of the metals of interest (Sb, Cu, Pb, and Zn) for the unground glass beads and washed beads was < 1 mg/kg, except for Cu. The mean Cu concentration for the unground glass beads was 1.20 mg/kg and the concentration of the washed material was 1.18 mg/kg. The metals with concentrations > 1 mg/kg were Al, Fe, Mg, and P. Tungsten was not detectable in any of the unground samples at the reporting limit of 0.16 mg/kg. The washing procedure for the glass beads is discussed in Section 3.2.1. The washing procedure reduced the metal content of the unground glass beads.

Next, the glass beads were ground in CRREL's puck mill and then analyzed for the metal content (Table 10). In all cases, the metal concentration in-

creased as a result of grinding, with Al, Cr, and Fe levels increasing substantially as compared to the unground samples. Tungsten was not detected in any of the ground glass samples. Lab Tech Essa indicates that the following metals are present in the alloy used to make the ring and bowl: Al, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V, W, and Zn. All four small arms range metals of interest are included in this list. Washing the ground glass reduced the metal content, with Ba, Cd, Co, Cu, Mg, Mn, Sb, Sr, and Zn levels comparable to the unground glass material. The Pb level of the washed glass was 0.470 mg/kg as compared to 1.93 mg/kg for the unwashed ground glass. The washed ground glass Pb level was slightly higher as compared to the unground glass (0.135 mg/kg) and the washed unground glass (0.063 mg/kg). Washing the ground glass substantially reduced the level of Al, Cr, and Fe, although the levels remain elevated above the unground glass material concentration.

The length of puck mill grinding interval and its impact on the metal concentration of washed ground glass beads were assessed (Table 11). The concentration of Al, Cr, Fe, Mg, Mn, K, and Na increased slightly with a longer grinding interval and Cu decreased slightly. The remainder of the metals were unchanged as result of milling.

Table 10. Summary of metal levels for unground glass beads, unground washed glass beads, ground glass beads, and washed ground glass beads.

	Sample							Cor	centrat	tion (mg	g/kg)						
Treatment	statistic	Al	Ba	Cd	Со	Cr	Cu	Fe	Mg	Mn	Ni	Р	Pb	Sb	Sr	٧	Zn
	n	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	Mean	2.84	0.153	ND	ND	0.020	1.20	2.87	7.21	0.075	0.033	2.25	0.135	0.045	0.078	ND	0.603
	Median	2.84	0.153	ND	ND	0.020	1.20	2.87	7.21	0.075	0.033	2.25	0.135	0.045	0.078	ND	0.603
Unground Glass	Min	2.45	0.140	ND	ND	0.010	1.16	2.55	6.48	0.075	0.020	1.96	0.085	0.030	0.075	ND	0.520
Giaco	Max	3.22	0.165	ND	ND	0.030	1.25	3.19	7.94	0.075	0.045	2.54	0.185	0.060	0.080	ND	0.685
	STD	0.544	0.018	ND	ND	0.014	0.064	0.453	1.03	0.000	0.018	0.414	0.071	0.021	0.004	ND	0.117
	RSD (%)	19	12	ND	ND	71	5	16	14	0	54	18	52	47	5	ND	19
	n	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	Mean	2.01	0.095	ND	ND	ND	1.18	1.84	5.38	0.023	ND	2.55	0.063	ND	0.050	ND	0.407
Unground	Median	1.93	0.100	ND	ND	ND	1.19	1.85	5.43	0.025	ND	2.49	0.065	ND	0.050	ND	0.445
Glass Washed	Min	1.87	0.085	ND	ND	ND	1.15	1.73	4.99	0.020	ND	2.40	0.055	ND	0.050	ND	0.225
Macrica	Max	2.22	0.100	ND	ND	ND	1.22	1.96	5.73	0.025	ND	2.77	0.070	ND	0.050	ND	0.550
	STD	0.189	0.009	ND	ND	ND	0.035	0.115	0.372	0.003	ND	0.193	0.008	ND	0.000	ND	0.166
	RSD (%)	9	9	ND	ND	ND	3	6	7	12	ND	8	12	ND	0	ND	41
	n	18	18	15	18	18	18	18	18	18	18	18	18	18	18	18	18
	Mean	128	0.660	0.042	0.129	60.9	1.86	456	8.42	3.64	0.700	2.36	1.93	0.827	0.187	0.045	0.985
	Median	126	0.658	0.040	0.119	56.9	1.90	424	8.32	3.45	0.618	2.06	1.92	0.710	0.185	0.045	0.911
Ground Glass	Min	104	0.595	0.035	0.100	51.1	1.71	380	7.53	3.10	0.495	1.84	1.19	0.580	0.165	0.035	0.610
Giass	Max	150	0.780	0.057	0.200	90.6	1.98	692	9.39	5.11	1.14	4.30	2.96	1.83	0.219	0.065	1.560
	STD	12.5	0.038	0.006	0.032	13.7	0.09	108	0.48	0.68	0.205	0.788	0.49	0.316	0.012	0.007	0.242
	RSD (%)	10	6	15	25	23	5	24	6	19	29	33	26	38	6	16	25
	n	18	18	15	18	18	18	18	18	18	18	18	18	18	18	18	18
	Mean	30.0	ND	0.03	ND	4.86	1.56	27	4.60	0.357	0.722	1.84	0.470	0.040	0.078	ND	0.408
Ground	Median	30.3	ND	0.03	ND	3.90	1.55	23	4.55	0.255	0.170	1.67	0.468	0.020	0.078	ND	0.393
Glass	Min	22.3	ND	0.02	ND	2.92	1.40	17	3.60	0.205	0.010	1.51	0.240	ND	0.065	ND	0.220
Washed	Max	37.5	ND	0.05	ND	10.4	1.96	52	5.40	0.900	3.74	2.93	0.780	0.175	0.095	ND	0.605
	STD	4.26	ND	0.01	ND	2.52	0.136	11.7	0.441	0.247	1.33	0.465	0.139	0.061	0.007	ND	0.103
	RSD (%)	14	ND	30	ND	52	9	44	10	69	184	25	30	154	9	ND	25
	1			1	1												

n - sample size (replicates), Min - minimum, Max -maximum, RSD - relative standard deviation, STD - standard deviation,

ND = Non-detects precluded calculation of summary statistics

Highlighted text represents those metals present in the chrome steel puck and bowl for the Lab Tech Essa puck mill

Table 11. Impact of puck mill grinding interval (s) on measured mean metal value (mg/kg) of washed ground glass beads.

								Ме	an C	oncen	tration (n	ng/kg	<u>s</u>)								
Grinding Interval	n	Al	Ва	Са	Cd	Со	Cr	Cu	Fe	Mg	Mn	Ni	Р	Pb	Sb	K	Na	s	٧	w	Zn
60	3	1.65	ND	0.581	ND	ND	1.39	0.116	10.7	0.118	ND	ND	ND	ND	ND	3.23	14.7	ND	ND	ND	ND
2 x 60	3	2.26	ND	0.527	ND	ND	2.43	0.111	18.5	0.121	0.150	ND	ND	ND	ND	4.30	20.8	ND	ND	ND	ND
3 x 60	12	2.74	ND	0.554	ND	ND	2.97	0.098	22.4	0.127	0.180	ND	ND	ND	ND	5.10	24.8	ND	ND	ND	ND
n – number, ND · Highlighted text ii										l bowl	and puck	for t	he L	_ab T	ech	Essa	Puck	MI	II		

4.2 Multiple increment vs. grab (discrete) samples

The standard sampling approach utilizing grab/discrete samples was compared with samples collected using the MI methodology. The different sampling approaches consisted of collection of 30 grab samples using a gridded systematic process, six biased grab samples, and seven 100-increment samples. The sampling and sample preparation methodology is discussed in Section 3.2.

Briefly, the grab surface soil samples were collected from the small arms range berm face at Range 4-3 DU located at Camp Ethan Allen, VT, with the CMIST and placed in 4-oz jars. Thirty individual grab soil samples were collected from 0 to 2 in. using a 1-in. CMIST corer following a gridnode sampling approach and six grab samples were collected using a biased sampling approach. Each of these samples consisted of approximately 200 g of material. The soil samples were air-dried, sieved to remove the > 2mm fraction; the < 2 mm was ground in a mortar and pestle for 1 minute. No further processing of the sample was done prior to digestion and they were placed back in the original 4-oz containers to scoop 2-g of soil off the top. The manner in which the grab samples were processed exceeds what commercial laboratories generally do; namely, they do not typically sieve and grind the samples prior to subsampling to obtain subsamples that are more representative. Commercial laboratories typically take the subsample directly from the 4-oz jars. The digestion procedures followed USEPA Method 3050B with no modification and then analysis was performed by ICP-OES using USEPA Method 6010.

The MI surface soil samples were collected from the same DU as the grab samples with 100 increments collected using the CMIST sampler following a systematic—random sampling approach. Each of the three field replicate samples consisted of approximately 1 kg of material. The multiple incre-

ment samples were air-dried and sieved. The < 2 mm size fraction was ground in the puck mill for 5 \times 60 s and then spread out onto an aluminum cookie sheet. Digestion generally followed USEPA Method 3050B with the following exceptions. Two grams of material were used for digestion and these subsamples were prepared by collecting 20 increments from the spread out material. Analysis was performed by ICP-OES using USEPA Method 6010. The data from each of the three sampling approaches are summarized in Table 12 with the raw data provided in Appendix A, Table A2.

The results for only Zn, Pb, Sb. and Cu were evaluated in depth as these metals are typically the major constituents of small arms ammunitions. Studies conducted to compare the grid-node discrete sampling technique with the MI methodology indicate that the MI approach significantly improved the quality of the Pb and Sb data. Observations for Pb and Sb are similar and indicate MI sampling followed by milling the samples in the laboratory with the puck mill normalizes the distribution, produces much smaller variances, and tends to increase mean/median concentrations relative to grab samples.

The differences (e.g., as measured by central tendency and dispersion) between the grab and incremental data sets are not very notable for Zn. All of the Zn data sets were normal. A statistical difference was identified for the Zn medians but it is not clear the difference is of practical significance; m_1 (the median for the set of grab samples) is only somewhat smaller than m_{100} (the median of the set of MI samples prepared from 100 increments each) but $m_1 \approx m_{30}$ and m_{50} (Table 12). Similarly, a statistical difference was identified for the variances; the standard deviation s_1 (for the grabs) is numerically larger than the standard deviations for the incremental data sets. However, as $s_1 \approx s_{100} > s_{30}$ and s_{50} , it does not appear this finding is of practical significance. On the basis of these results it appears that the incremental sampling approach did not significant improve the quality of the Zn results. It is suspected that significant differences between the grab and incremental data sets were not observed because the soil samples contained little or no metallic particles composed of Zn (e.g., brass casing fragments).

The incremental sampling approach did not seem to normalize the data or decrease their variability for Cu. A significant difference was not observed for the variances at the 95% level of confidence using Levene's test. How-

ever, the median Cu concentrations for the incremental sampling data sets were about 50–100% larger than the median for the grab data set. It appears that the MI approach produced larger average Cu concentrations; however, it is not clear if this is attributable to cross-contamination from the puck mill or increasing the surface area of the soil sample.

Metal	k¹	n²	Normal ³	KW ⁴	Levene's ⁵
Cu	1	30	Υ	p= 0.000	p= 0.172
	30	7	N	$m_{100}, m_{50}, m_{30} > m_1$	No difference
	50	7	Υ		
	100	7	Υ		
Pb	1	30	N	p = 0.024	p= 0.000
	30	7	Υ	$m_{100}, m_{50}, m_{30} > m_1$	S ₁ > S ₃₀ , S ₅₀ , S ₁₀₀
	50	7	Υ		
	100	7	Υ		
Sb	1	30	N	p = 0.121	p= 0.014
	30	7	Υ	$m_{100}, m_{50}, m_{30} > m_1$	S ₁ > S ₃₀ , S ₅₀ , S ₁₀₀
	50	7	Υ		
	100	7	Υ		
Zn	1	30	Υ	p = 0.047	p = 0.026
	30	7	Υ	$m_{100} > m_1, m_{30}, m_{50}$	S ₁ > S ₃₀ , S ₅₀ , S ₁₀₀
	50	7	Υ]	but S ₁ ≈ S ₁₀₀
	100	7	Υ	1	

Table 12. Statistical analysis summary for antimony, copper, lead, and zinc.

The grab sample RSDs for the metals of interest (Sb, Cu, Pb, and Zn) are generally greater than our performance criterion of < 30% (Table 13). The grab sample RSDs for Sb, Cu, Pb, and Zn are 427, 44, 285, and 27%, respectively. Although, the RSDs for Cu and Zn are acceptable (25 and 9%, respectively) for the biased grab sample they are not for Sb and Pb (74 and 62%, respectively). In contrast, the RSDs for Sb, Cu, Pb, and Zn for the MI samples are < 30%. These results indicate estimates of the mean using grab samples will possess significant uncertainty. This is evident when comparing the grab samples collected with the grid-node approach to the biased grab samples. The biased grab samples were collected in locations

^{1.} k = number of increments per sample; for grabs k = 1.

 $^{^{2}}$. n = number of replicates per DU.

^{3.} N = Not normal at 95% confidence level of confidence; Y = normality assumption not rejected.

^{4.} KW= two-tailed Kruskal-Wallis test p-value. m_k = median of data set with k increments. At least one median different with 95% confidence if $p \le 0.05$.

⁵. Levene's test for variances; p-values. At least one variance different with 95% confidence if p \leq 0.05. s_k denotes standard deviation of data set with k increments.

where the highest contaminant levels were expected. However, the mean and maximum values for Sb, Cu, Pb, and Zn for the biased grab samples were substantially lower than the mean and maximum values for the grabs collected using the grid node approach (Table 13).

Table 13. Grab samples from systematic-random sampling, biased grab samples and MI samples.

								-	Concer	tration	(mg/kg)							
Test type	Mass (g)	Al	Ва	Cd	Со	Cr	Cu	Fe	Mg	Mn	Ni	P	Pb	Sb	Sr	v	w	Zn
							Gı	rabs syste	ematic	samplii	ng							
n	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
Mean	144	4219	20.0	0.760	7.40	6.22	300	12381	1976	197	9.91	710	5060	87.8	12.9	11.2	0.799	66.1
Median	146	4231	17.4	0.735	7.44	6.19	270	12380	1967	195	10.0	722	1238	10.0	12.1	11.2	0.745	61.9
Min	122	3784	15.7	0.620	6.31	5.58	69.8	9975	1748	175	8.67	468	43.9	0.898	9.86	9.14	0.400	35.8
Max	159	4577	39.5	1.13	8.38	6.99	598	14700	2325	242	10.7	1043	79020	2072	22.8	15.4	1.37	111
STD	10.1	158	5.61	0.104	0.486	0.409	132	797	124	15.4	0.439	116	14438	375	2.72	1.17	0.266	17.6
RSD (%)	7	4	28	14	7	7	44	6	6	8	4	16	285	427	21	10	33	27
		•	•					Gral	bs bias	ed	•	•	•					
n	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Mean	149	4161	16.2	0.647	6.97	5.85	269	11602	1899	188	9.33	692	1161	10.9	11.9	10.0	0.658	59.4
Median	149	4158	16.0	0.590	6.87	5.77	250	11375	1928	185	9.11	726	1103	8.79	12.0	10.0	0.655	59.4
Min	139	3968	14.6	0.520	6.56	5.20	216	10800	1734	173	8.74	532	479	3.48	10.1	8.75	0.510	52.1
Max	156	4412	17.9	0.960	7.47	6.86	392	13180	2062	207	10.5	816	1930	24.1	14.3	12.4	0.800	67.0
STD	6.17	150	1.29	0.158	0.322	0.570	65.9	863	115	13.3	0.658	129	718	8.15	1.48	1.32	0.093	5.53
RSD (%)	4	4	8	24	5	10	25	7	6	7	7	19	62	74	12	13	14	9
		•	•					Multi-in	cremer	t 100	•	•	•	•				
n	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Mean	1539	6453	31.3	0.963	9.39	296	648	18242	2191	245	12.7	757	2929	22.8	25.3	16.6	0.256	81.8
Median	1419	6420	30.7	0.965	9.33	288	609	18390	2192	246	12.8	755	2638	20.7	25.5	16.7	0.250	78.2
Min	1177	6155	29.8	0.940	9.10	276	413	16980	2131	236	12.4	736	2490	19.5	24.3	16.0	0.140	65.2
Max	1992	6745	33.7	0.985	9.63	338	882	19200	2243	254	13.2	779	3595	28.9	26.7	17.3	0.420	95.9
STD	301	192	1.47	0.016	0.195	21.5	169	742	34.0	5.46	0.309	14.0	490	3.79	0.928	0.513	0.097	12.1
RSD (%)	20	3	5	2	2	7	26	4	2	2	2	2	17	17	4	3	38	15
n – sampl				-					deviati	on, STD	- stand	ard dev	iation			•		

Highlighted text indicates known contaminants of interest present

If the means of all the MI and grab samples for the project are compared, and the MI mean is assumed to be the more accurate estimate of the DU mean, it is evident that the grab samples either over or under estimate the DU mean (Table 14). In the case of Cu and Zn, the grab samples under estimate the mean, whereas the gridded grab sample over estimates the mean for Sb and Pb. Surprisingly, the biased grab sample under estimated

of the mean values for Sb and Pb. Even the naturally derived metals concentrations are under estimated with the grab sample as compared with MI samples consisting of 30 or more increments.

								Mean co	oncentra	tion (m	g/kg)						
Туре	n	Al	Ba	Cd	Co	Cr	Cu	Fe	Mg	Mn	Ni	Р	Pb	Sb	Sr	٧	Zn
Grab	30	4219	20.0	0.76	7.40	6.22	300	12381	1976	197	9.91	710	5060	87.8	12.9	11.2	66.1
Bias	6	4161	16.2	0.65	6.97	5.85	269	11602	1899	188	9.33	692	1161	10.9	11.9	10.0	59.4
MI-5	7	6230	29.1	1.16	8.85	262	539	17084	2088	220	12.4	727	2989	23.5	24.2	15.9	79.7
MI-10	7	4240	16.3	0.75	6.64	6.08	1277	12382	1987	192	9.30	721	2132	18.5	12.5	10.1	193
MI-20	7	5824	29.9	0.88	8.12	220	473	15005	2270	235	13.2	712	2689	23.1	17.9	14.3	80.7
MI-30	7	7224	31.2	1.30	9.56	395	573	17435	1992	228	13.5	792	2664	22.7	26.4	18.6	67.6
MI-50	7	6604	30.2	1.19	9.15	341	457	15946	2021	222	13.1	737	2156	17.6	23.1	16.9	67.2
MI-100	7	6453	31.3	0.96	9.39	296	648	18242	2191	245	12.7	757	2929	22.8	25.3	16.6	81.8
MI-200	1	5816	30.0	1.83	8.58	223	550	16752	2125	225	12.2	611	2717	22.6	22.0	15.2	77.2

Table 14. Mean metal concentrations (mg/kg) for MI and grab samples.

4.3 Number of increments per decision unit

One of the questions of performing MI sampling is how many increments are needed per sample. Although this issue is likely to be site specific for the activity taking place and soil type, samples were collected to assess this issue for the small arms range at Camp Ethan Allen. Soil samples from the berm face DU were collected and consisted of 5, 10, 20, 30, 50, and 100 increments. Seven field replicate samples were collected for each increment value evaluated. The sampling and sample preparation methodology is discussed in Section 3.3. Briefly the soil samples were collected using systematic random sampling from the same DU discussed in Section 4.3 using the CMIST sampler. After collection using a 1-in. (2.54-cm) corer, the soil samples were air-dried, sieved, ground and then digested following USEPA Method 3050B with several modifications. Two gram subsamples, each prepared from 20 increments of ground material, were digested and subsequently analyzed using USEPA Method 6010.

A sampling error of < 30 % was achieved when the number of increments exceeded 30 (Table 15), with the exception of W for the 100-increment sample. Although, tungsten was analyzed, a special digestion approach was not used, which Clausen et al. 2007 demonstrated was necessary to achieve acceptable recoveries. Therefore, the tungsten results are not presented. It was hypothesized that the RSD will, in general, decrease as the

number of increments is increased. However, the RSDs did consistently decrease with increasing number of increments. The inconsistency is attributed to the small number of replicate samples that were collected (*n* is only seven). To see obvious trends and to conduct statistical tests for difference in population, the number of replicate samples preferred is closer to 30. However, it was not practical to collect 30 replicates for each increment value being evaluated.

The mean concentrations of the individual increment populations varied and did not systematically increase or decrease with increasing or decreasing number of increment (Table 14). For example, the highest mean Cu value occurred with the 10-increment sample whereas the lowest mean value was observed with the 20-increment sample (Table 14) (which was still significantly higher than either of the grab samples). The expectation based on observations of working with energetic contaminated soil was that the mean contaminant concentration would increase with number of increments collected and stabilize at some increment threshold. Again, this is likely a function of the number of replicate samples collected per population, i.e., seven, and likely could be ameliorated if closer to 30 replicate samples had been collected per population. Also, concentrations, detection limits, and distribution have an effect on how good the data can possibly be.

For comparison, the 200-increment samples results are included in Tables 14 and 15. Only a single 200-increment sample was collected; however, 30 laboratory replicates were collected and analyzed. Thus, for Table 15, the reported RSD is for 30 laboratory replicates, whereas the remainder of results for this table represents an analysis of seven different field replicates (laboratory replicates were excluded in generating the statistical values). It is likely that the mean metal values for the 200-increment sample is nearest to the "true" mean of the small arms range berm DU.

Table 15. Percent relative standard deviations (RSD) for MI samples with varying number of increments collected.

					P	ercent r	elative	stan	dard d	eviatio	n (RS	D)				
k	Al	Ba	Cd	Co	Cr	Cu	Fe	Mg	Mn	Ni	Р	Pb	Sb	Sr	٧	Zn
5	3	4	7	4	10	22	4	4	4	3	10	25	25	31	6	9
10	8	5	26	3	6	162	4	1	4	4	16	32	63	10	5	154
20	27	49	34	22	121	26	22	8	18	26	4	30	50	33	32	15
30	3	3	7	4	7	15	10	2	4	3	6	14	15	5	6	6
50	3	7	4	3	15	21	10	1	2	4	4	11	11	6	6	10
100	3	5	2	2	7	26	4	2	2	2	2	17	17	4	3	15
200	6	7	2	2	3	18	4	6	5	2	4	4	7	7	1	11
k = nur		£ :			11	اماصنا السا			-I:4-					· · · · · · · · · · · · · · · · · · ·		

k = number of increments per MI sample, Highlighted text indicates known contaminants of interest present

A statistical summary of field replicate results by increment population is provided in Table 15 with all of the data provided in Appendix A, Table A3. Table 16 provides a statistical summary of the 200-increment laboratory replicate results where 30 samples were analyzed.

Table 15. Descriptive statistics for replicate MI samples by the number of increments collected.

								Co	oncentrat	tion (mg/	'kg)						
k	Statis tic	Al	Ва	Cd	Со	Cr	Cu	Fe	Mg	Mn	Ni	Р	Pb	Sb	Sr	v	Zn
	n	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
	Mean	6230	29.1	1.16	9	262	539	1708	2088	220	12.4	727	2989	23.5	24.2	15.9	79.7
5	Medi	6155	28.6	1.11	8.81	247	535	1695	2065	220	12.3	721	2797	21.1	21.0	15.7	83.2
5	Min	6040	27.7	1.08	8.42	235	323	1647	1990	208	12.0	593	2284	16.8	20.2	14.4	65.5
	Max	6485	30.7	1.27	9.41	290	650	1797	2196	234	13.1	814	4187	34.2	41.1	17.4	85.9
	STD	166	1.11	0.08	0.33	25.4	120	638	75.0	9.22	0.38	72.7	754	5.99	7.60	1.01	7.41
	RSD	3	4	7	4	10	22	4	4	4	3	10	25	25	31	6	9
	n	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
	Mean	4240	16.3	0.74	6.64	6.08	1277	1238	1987	192	9.30	721	2132	18.5	12.5	10.1	193
	Medi	4383	16.4	0.68	6.61	5.87	448	1252	1996	190	9.23	749	2103	15.5	12.8	9.9	77.8
10	Min	3673	15.2	0.57	6.33	5.77	287	1146	1931	180	8.82	563	1334	8.08	10.7	9.5	63.4
	Max	4619	17.7	1.04	6.97	6.64	5930	1313	2016	201	9.83	827	3067	41.5	14.6	11.0	865
	STD	351	0.75	0.19	0.19	0.34	2064	542	29.1	7.24	0.33	112	679	11.6	1.27	0.48	297
	RSD	8	5	26	3	6	162	4	1	4	4	16	32	63	10	5	154
	n	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
	Mean	5824	29.9	0.87	8.12	220	473	1500	2270	235	13.2	712	2689	23.1	17.9	14.3	80.7
	Medi	4667	19.1	0.67	6.79	22.4	431	1287	2142	211	14.5	713	2762	21.6	13.6	11.0	76.5
20	Min	4465	17.5	0.60	6.47	6.20	330	1171	2103	195	9.44	682	1103	5.83	12.8	10.1	66.3
	Max	7640	47.1	1.23	10.3	573	689	1913	2521	287	17.5	741	3587	43.6	24.9	19.7	97.4
	STD	1550	14.6	0.29	1.81	266	123	3249	187	42.5	3.47	27.4	820	11.5	5.85	4.64	12.1
	RSD	27	49	34	22	121	26	22	8	18	26	4	30	50	33	32	15
	n	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
	Mean	7224	31.2	1.30	9.56	395	573	1743	1992	228	13.5	792	2664	22.7	26.4	18.6	67.6
	Medi	7160	31.4	1.28	9.43	390	554	1698	1978	224	13.7	768	2728	23.5	26.3	17.9	67.8
30	Min	6960	29.6	1.18	9.15	345	518	1519	1940	220	12.9	742	1993	17.5	24.8	17.5	60.5
	Max	7510	32.4	1.41	9.94	442	763	2040	2036	240	14.0	847	3122	26.7	28.2	20.2	73.1
	STD	228	0.86	0.08	0.34	29.0	85.1	1744	34.3	8.58	0.36	44.4	367	3.33	1.28	1.13	3.97
	RSD	3	3	7	4	7	15	10	2	4	3	6	14	15	5	6	6
	n	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
	Mean	6604	30.2	1.19	9.15	341	457	1594	2021	222	13.1	737	2156	17.6	23.1	16.9	67.2
	Medi	6695	30.6	1.18	9.12	361	431	1516	2026	223	13.0	735	2037	17.0	22.9	17.0	65.5
50	Min	6130	26.0	1.15	8.73	228	349	1446	1995	216	12.1	689	1835	15.0	21.5	15.4	58.2
	Max	6790	32.0	1.29	9.74	373	583	1796	2050	227	13.7	783	2447	20.5	25.5	18.7	76.5
	STD	229	2.01	0.04	0.30	51.6	95.8	1549	18.4	3.44	0.52	32.1	243	1.87	1.36	0.99	6.54
	RSD	3	7	4	3	15	21	10	1	2	4	4	11	11	6	6	10

								Co	ncentrat	ion (mg/	kg)						
k	Statis tic	Al	Ва	Cd	Co	Cr	Cu	Fe	Mg	Mn	Ni	P	Pb	Sb	Sr	v	Zn
	n	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
	Mean	6453	31.3	0.96	9.39	296	648	1824	2191	245	12.7	757	2929	22.8	25.3	16.6	81.8
	Medi	6420	30.7	0.97	9.33	288	609	1839	2192	246	12.8	755	2638	20.7	25.5	16.7	78.2
100	Min	6155	29.8	0.94	9.10	276	413	1698	2131	236	12.4	736	2490	19.5	24.3	16.0	65.2
	Max	6745	33.7	0.99	9.63	338	882	1920	2243	254	13.2	779	3595	28.9	26.7	17.3	95.9
	STD	192	1.47	0.01	0.19	21.5	169	742	34.0	5.46	0.30	14.0	490	3.79	0.92	0.51	12.1
	RSD	3	5	2	2	7	26	4	2	2	2	2	17	17	4	3	15

k = number of increments, Min - minimum, Max - maximum, n - number, ND - not detected. RSD - relative standard deviation, Highlighted text indicates known contaminants of interest present

Table 16. Summary of results for 30 laboratory replicates for the 200-increment sample.

							(Concenti	ration (r	ng/kg)						
Statistic	Al	Ва	Cd	Со	Cr	Cu	Fe	Mg	Mn	Ni	Р	Pb	Sb	Sr	٧	Zn
n	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
Mean	11631	60.0	3.66	17.2	446	1100	33504	4250	450	24.4	1221	5433	45.1	44.1	30.4	15
Median	11690	60.1	3.64	17.1	447	1064	33840	4264	450	24.3	1221	5485	46.0	44.2	30.3	151
Min	11165	55.3	3.56	16.8	436	877	30305	4046	430	23.9	1185	4949	39.3	42.0	29.5	13
Max	12415	65.3	3.81	17.6	457	1449	35335	4390	463	25.3	1265	5724	50.5	47.4	31.1	18
STD	334	2.69	0.069	0.218	6.46	172	1243	95.7	9.30	0.326	23.4	224	2.73	1.45	0.458	15.
RSD (%)	3	4	2	1	1	16	4	2	2	1	2	4	6	3	2	10

n – number, Min – minimum, Max – maximum, RSD – relative standard deviation, ND – not detected. Highlighted text indicates known contaminants of interest present,

4.4 Field splitting

Experiment 4 evaluated the appropriateness of field splitting to potentially reduce the volume of soil removed from the field and brought back to the laboratory. For this experiment and all subsequent experiments, the soil used was obtained by sampling Range 4-3 using systematic—random sampling; a 4-in.-diameter CMIST corer was used to collect 200-increments from 0 to 2 in., resulting in a 20-kg MI soil sample. The sample was sent to CRREL and divided into 12 splits using a rotary splitter. Six of the 12 splits were recombined for this experiment. (The remaining six splits were set aside.) The recombined material was split into four fractions using cone-and-quartering. The splits were subsequently processed as discussed in Section 3.4; the same approach used in Experiment #3 (see Section 4.3). Except, that after grinding of each quarter fractions, 10 laboratory replicates were collected, processed, and analyzed (Table 17). This resulted in 4 sets of 10 replicates for each metal for statistical comparisons.

Table 17 presents a summary of the results for the 10 replicates for each quarter fraction; all of the results are shown in Appendix A, Table A4. To assess whether cone-and-quartering is an appropriate technique, the mean and median metal concentrations of the four quarters were statistically compared for each of the small arms metals Sb, Cu, Pb, and Zn. As all of the data sets are not normal or lognormal, the non-parametric Kruskal-Wallis (KW) test was used to compare the four cone-and-quartering data sets for each metal. Statistically significant differences at well over the 99% level of confidence were observed for all four metals. The Pb and Sb medians differ by a factor of about 2. The results are summarized in Table 18 and suggest that cone and quartering does generally result in splits of comparable concentrations.

Table 17. Summary of metal results for the cone-and-quartering experiment.

							Concent	ration (m	g/kg)							
	Al	Ba	Cd	Co	Cr	Cu	Fe	Mg	Mn	Ni	Р	Pb	Sb	Sr	٧	Zn
	•		•	•	•		Q	uarter 1	•	•	•		•	•		
n	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Mean	5863	29.0	0.573	7.87	194	450	Е	2144	223	10.9	665	3295	25.7	19.9	15.8	73.9
Median	5698	29.3	0.525	7.81	193	421	Е	2184	227	10.8	631	3216	25.8	19.1	15.8	73.4
Min	5480	26.7	0.500	7.66	187	366	Е	1946	203	10.5	625	3011	21.8	18.1	15.2	60.2
Max	6725	30.6	0.940	8.64	206	658	Е	2262	235	11.6	802	3614	28.8	23.5	16.5	107
STD	435	1.31	0.132	0.286	6	87	Е	110	11.3	0.365	61.4	213	2.17	1.87	0.380	13.2
RSD (%)	7	5	23	4	3	19	Е	5	5	3	9	6	8	9	2	18
		1		-U		1	Q	uarter 2								
n	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Mean	6111	27.9	0.739	7.71	172	345	10801	2224	224	10.5	728	1447	10.0	20.4	14.8	60.8
Median	6078	26.8	0.858	7.74	172	340	10648	2079	211	10.3	764	1420	9.5	20.6	14.7	59.2
Min	5500	24.8	0.490	7.29	161	303	10370	2036	201	9.83	563	1198	8.37	18.1	14.1	57.3
Max	6580	41.4	0.925	8.41	188	398	12195	3492	351	12.1	863	1756	12.7	22.1	15.9	71.2
STD	305	4.90	0.203	0.329	6.81	26	513	447	45	0.615	116	163	1.49	1.07	0.501	4.00
RSD (%)	5	18	27	4	4	7	5	20	20	6	16	11	15	5	3	7
		1		-U		1	Q	uarter 3								
n	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Mean	6687	26.1	0.910	7.92	177	467	15492	2080	207	10.6	988	1281	8.67	22.3	14.8	62.6
Median	6750	26.0	0.910	7.91	177	443	16538	2078	206	10.6	989	1264	8.71	22.6	14.9	60.9
Min	6440	24.8	0.900	7.82	174	368	10430	2023	201	10.4	868	1216	7.89	21.3	14.1	56.7
Max	6860	28.0	0.920	8.10	180	587	17175	2145	218	10.8	1073	1369	9.34	23.0	15.1	71.3
STD	160	0.924	0.007	0.083	2.08	73.5	2162	31.6	4.46	0.090	59.1	58.5	0.461	0.623	0.339	4.54
RSD (%)	2	4	1	1	1	16	14	2	2	1	6	5	5	3	2	7
		1		- N		-1	Q	uarter 4								
n	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Mean	6826	23.9	0.97	7.97	175	674	17155	2054	203	10.8	1253	3137	26.1	22.8	15.2	77
Median	6798	23.7	0.965	7.96	175	547	17680	2057	203	10.9	1254	3123	26.1	22.7	15.1	65.7
Min	6605	22.6	0.937	7.84	167	454	15180	2011	199	10.6	1193	2856	22.7	22.0	14.6	60.1
Max	7075	25.2	1.00	8.10	180	1190	17960	2085	206	11.0	1320	3505	29.2	23.8	15.8	120
STD	154	0.763	0.018	0.088	3.67	266	918	19.9	2.31	0.106	42.1	195	2.09	0.620	0.433	21.9
RSD (%)	2	3	2	1	2	39	5	1	1	1	3	6	8	3	3	29

E – error result outside calibration range, n – number, Min – minimum, Max – maximum, ND – not detected, RSD – percent relative standard deviation, STD – standard Highlighted text indicates known contaminants of interest present,

Metal	Group*	Median (mg/kg)	p-value for KW test
Cu	1	421	0.000
	2	340	
	3	443	
	4	547	
Pb	1	3220	0.000
	2	1420	
	3	1260	
	4	3120	
Sb	1	25.8	0.000
	2	9.55	
	3	8.71	
	4	26.1	
Zn	1	73.4	0.004
	2	59.2	
	3	60.9	
	4	65.7	

Table 18. Statistical evaluation for the cone-and-quartering experiment using the KW test.

4.5 Sample pulverization

One of the questions raised about the MI sample methodology is whether milling is necessary when the soil samples contain metal residues. To investigate this, laboratory replicates from an unground MI soil sample were compared with replicates from the same soil sample after it was milled.

The soil used for this experiment consists of the six splits that were set aside in Section 4.4. One of the splits was sieved with a no. 10 mesh sieve (the > 2mm fraction was set aside). One set of 15 laboratory replicates was obtained from the < 2 mm material by collecting 20 increment subsamples. The < 2-mm material was then milled using the puck mill at CRREL. Two sets of 15 replicate were then prepared from the ground material. Each replicate was prepared from 20 increments to build 2-g aliquots for digestion. The remainder of the sample preparation, digestion, and analysis procedures are the same as previously discussed in Sections 3.5 and 4.4.

The two ground sets of replicates were compared with one another as a "cross check" for the reproducibility of the ground results. The means and

^{*}Each group consists of n=30 laboratory subsamples

variances of the two data sets were statistically compared. As expected, statistically significant differences between the variances were not detected at the 95% level of confidence using Levene's test for any of the four metals. Statistically significant differences for the medians were observed for Cu, Sb, and Zn at the 95% level of confidence using the KW test. However, these differences did not appear to be of practical significance; the medians differed by no more than 15%, which is within the typical tolerance for laboratory analytical error for the metal analyses.

In contrast, large differences were observed between the ground and unground data sets for variances and medians. Statistically significant differences for the Pb and Sb variances were observed at well over the 99% level of confidence using Levene's test. The Pb and Sb standard deviation of the unground results was over five times larger than the standard deviations of the ground results. Similarly, although the median Pb and Sb concentrations of the two sets of ground samples were very similar, they were twice as large as the median Pb and Sb concentrations of the unground samples. This is very visually apparent from the box and whisker plots for Pb shown in Figure 10. The medians and interquartile ranges (IQRs) for the two ground data ("Ground-1" "Ground-2") are very similar. The interquartile range (the "length of the box") is a measure of variability (e.g., like the standard deviation); it is an interval in which the middle 50% of the results fall. The IQR of the unground data set is much larger than the IQRs of the two ground data sets. The medians of the ground data sets are also significantly larger than the medians of the unground data sets. The box and whisker plots also indicate that the distribution of the unground results is very positively skewed (e.g., there is a large outlier between 3000–3500 mg/kg). In contrast, the distributions of the ground results are relatively symmetrical (e.g., may be approximately normal).

Figure 10. Box and whisker plots of lead (mg/kg) for the unground and puck mill ground samples.

Statistically significant differences between the variances of the ground and unground results were not observed at the 95% level of confidence using Levene's test for Cu and Zn, but the unground Zn and Cu medians were consistently smaller than the ground Zn and Cu medians. The unground Cu median was about 30-40% smaller than the ground medians. The unground and ground means were within about 15% of one another.

From the RSDs for the unground and ground laboratory replicates samples, it is apparent that all of the ground samples met our target of 15% (Table 19). In contrast, the RSDs of the unground replicates for Sb, Cu, Pb, and Zn (the constituents of interest for small arms), generally exceed 15%. In all cases, the means for the ground results are larger than the means of the unground results (Table 19). A complete set of results for this experiment is provided in Appendix A, Table A5.

Table 19. Summary of metal results for an unground sample and a ground sample.

							Co	ncentrat	ion (mg	/kg)						
	Al	Ва	Cd	Co	Cr	Cu	Fe	Mg	Mn	Ni	Р	Pb	Sb	Sr	V	Zn
							Uı	nground								
n	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Mean	4124	17.1	1.08	6.48	6.12	357	9307	2018	201	9.09	559	1600	14.2	12.6	10.0	66.1
Median	4118	16.4	1.08	6.51	6.14	329	9325	2010	200	9.08	558	1432	10.9	12.7	10.0	63.7
Min	3954	15.2	1.04	6.26	5.72	312	9120	1983	197	8.85	548	1004	6.86	11.8	9.27	60.0
Max	4266	23.4	1.11	6.73	6.74	676	9455	2055	206	9.65	573	3340	44.3	13.7	10.8	107
STD	94.7	2.48	0.017	0.139	0.282	89.5	98.5	24.7	2.56	0.191	8.14	626	9.84	0.546	0.408	11.3
RSD (%)	2	15	2	2	5	25	1	1	1	2	1	39	69	4	4	17
							Grou	nd Group	1							
n	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Mean	5509	31.6	1.82	8.75	229	496	16676	2242	235	12.4	590	2760	21.8	20.6	15.2	81.0
Median	5505	31.5	1.82	8.75	230	492	16915	2255	235	12.4	589	2779	22.2	20.6	15.2	80.4
Min	5425	29.4	1.79	8.46	222	391	14775	2141	225	12.2	571	2509	18.9	20.1	14.7	67.0
Max	5615	34.8	1.86	8.94	236	636	17620	2290	240	12.6	610	2936	24.9	21.2	15.6	93.5
STD	57.6	1.31	0.024	0.110	4.52	74.3	700	41.1	4.00	0.098	10.3	120	1.45	0.323	0.230	7.79
RSD (%)	1	4	1	1	2	15	4	2	2	1	2	4	7	2	2	10
							Grou	nd Group	2							
n	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Mean	6123	28	1.8	8.4	217	605	16828	2008	215	12	631	2673	23	23	15	73
Median	6185	29	1.8	8.4	217	572	16925	2009	215	12	632	2706	24	24	15	71
Min	5740	26	1.8	8.3	214	486	15530	1905	205	12	615	2440	20	22	15	65
Max	6800	30	1.9	8.7	221	813	17715	2100	223	13	655	2788	26	26	16	93
STD	276	1.4	0.04	0.11	1.9	98	543	55	5.3	0.23	13	104	1.3	1.1	0.23	7.9
RSD (%)	5	5	2	1	1	16	3	3	2	2	2	4	5	5	2	11

n – number, Min – minimum, Max – maximum, ND – not detected, RSD – percent relative standard deviation, STD – standard deviation Highlighted text indicates known contaminants of interest present

4.6 Milling equipment

This experiment evaluated the effectiveness of different milling equipment in terms of the reduction of laboratory subsampling variability. With the same 200-increment reference soil from the small arms range at Camp Ethan Allen, the sample was dried and then sieved with a no. 10 (2-mm) sieve. A rotary splitter was used to separate the < 2-mm soil portion into seven different splits. Two splits (used as "controls") were not ground. The other splits were ground with the following equipment: 1) mortar and pestle (CRREL), 2) roller mill (Test America) with agate balls and polyethylene lined steel cans, 3) ring and puck mill (Test America), 5) puck mill (APPL Inc.) with steel bowl and puck, and 6) puck mill (CRREL). The soil splits for the puck mills were ground using five 60-s cycles. The split for the roller mill was ground for 18 hr. Fifteen laboratory replicates were analyzed for each split. Except for the milling equipment, each set of 15 replicates was processed (e.g., subsampled, digested, and analyzed) in the same manner. All of the sample results for this set of experiments are included in Appendix A, Table A6.

For comparison, replicates of the unground soil splits were analyzed by CRREL and Table 21 and 22 summarize the RSDs and means for all of the replicates (unground and ground). The results of the set of 15 replicates analyzed by Test America are also summarized in Table 20. Although Cd was analyzed, no detections were measured at a reporting limit of 0.16 mg/kg. The RSDs for Sb, Cu, Pb, and Zn were much greater than the 15% acceptance criterion; the RSDs were 116, 257, 61, and 162%, respectively. These results suggest that there is large heterogeneity for the unground material. Although, the RSDs for Sb, Cu, Pb, and Zn for the set of unground replicates analyzed by CRREL were smaller than those reported by Test America, they are still greater than the 15% acceptance criterion.

Table 20. S	ummary of	metal r	results for	15	laboratory	ungr	ound	repl	icates a	analyzed	by	Test Amer	ica.

					Conc	entration	(mg/kg)				
	Al	Ba	Co	Cr	Cu	Fe	Mn	Ni	Pb	Sb	٧	Zn
N	15	15	15	15	15	15	15	15	15	15	15	15
Mean	3538	11.9	4.37	4.47	1061	9173	179	7.45	2043	15.9	6.19	83.7
Median	3560	11.9	4.33	4.50	314	9210	180	7.40	1600	9.64	6.20	48.7
Min	3230	10.9	4.10	3.91	299	8320	161	6.90	1030	4.42	5.49	46.2
Max	3690	12.7	4.86	4.80	10900	9730	194	9.15	5190	60.9	6.58	574
STD	125	0.560	0.202	0.226	2726	327	7.54	0.53	1251	18.4	0.272	136
RSD (%)	4	5	5	5	257	4	4	7	61	116	4	162

 $n-number, \\ Min-minimum, \\ Max-maximum, \\ RSD-percent \\ relative \\ standard \\ deviation, \\ STD-standard \\ deviation \\ Highlighted \\ text \\ indicates \\ known \\ contaminants \\ of interest \\ present$

Table 21. Relative standard deviations (RSDs) of unground and ground splits processed with different milling equipment.

									Perc	ent rel	ative st	andar	d devi	ation (RSD)						
Machine Type	Lab	Al	Ba	Ca	Cd	Со	Cr	Cu	Fe	Mg	Mn	Ni	Р	Pb	Sb	Sr	K	Na	S	٧	Zn
Unground 1	TA	4	5	NA	ND	5	5	257	4	NA	4	7	NA	61	116	NA	NA	NA	NA	4	162
Unground 2	CRREL	2	15	NA	2	2	5	25	1	1	1	2	1	39	69	4	NA	NA	NA	NA	17
Mortar & pestle	CRREL	5	5	NA	ND	4	4	39	4	4	3	3	5	32	55	11	NA	NA	NA	4	28
Puck mill 1	APPL	5	6	NA	ND	4	4	10	4	4	4	4	3	15	21	4	NA	NA	NA	5	5
Puck mill 2	CRREL	1	4	NA	1	1	2	15	4	2	2	1	2	4	7	2	NA	NA	NA	2	10
Puck mill 3	CRREL	5	5	NA	2	1	1	16	3	3	2	2	2	4	5	5	NA	NA	NA	2	11
Puck & ring mill	TA	6	6	5	ND	5	5	5	4	5	5	5	5	5	8	NA	6	6	7	5	6
Ball mill	TA	1	1	1	ND	1	1	3	1	1	1	1	2	1	8	NA	1	2	12	1	2
NA-not analyzed, N	ID – not de	etected	d, Bold	ed val	ues > :	15%, F	lighligh	nted tex	t indic	ates kr	nown co	ntami	nants	of inte	rest pre	sent	•	•	•	•	

Table 22. Mean concentrations (mg/kg) of unground splits and ground spits processed with various milling equipment.

									Mea	n Conce	ntration	(mg/kg)1								
Machine Type	Lab	Al	Ba	Ca	Cd	Со	Cr	Cu	Fe	Mg	Mn	Ni	Р	Pb	Sb	Sr	К	Na	s	٧	Zn
Unground 1	TA	3538	11.9	NA	ND	4.37	4.47	1061	9173	NA	179	7.45	NA	2043	15.9	NA	NA	NA	NA	6.19	83.7
Unground 2	CRREL	4124	17.1	NA	1.08	6.48	6.12	357	9307	2018	201	9.09	559	1600	14.2	12.6	NA	NA	NA	NA	66.1
Mortar & pestle	CRREL	4173	17.3	NA	ND	6.31	6.26	372	13818	2025	184	8.37	596	1359	10.5	13.5	NA	NA	NA	10.3	71.5
Puck mill 1	APPL	2930	14.6	NA	ND	4.25	108	279	7702	1520	142	6.46	335	3041	11.2	8.80	NA	NA	NA	5.72	49.9
Puck mill 2	CRREL	5509	31.6	NA	1.82	8.75	229	496	16676	2242	235	12.4	590	2760	21.8	20.6	NA	NA	NA	15.2	81.0
Puck mill 3	CRREL	6123	28.4	NA	1.84	8.42	217	605	16828	2008	215	11.9	631	2673	23.4	23.4	NA	NA	NA	15.2	73.3
Puck & ring mill	TA	5707	40.6	3121	ND	6.92	353	346	14200	2144	221	13.2	384	2349	5.00	NA	1595	648	21.6	14.3	50.0
Ball mill	TA	4983	31.9	2709	ND	6.00	9.37	319	17240	2212	226	9.38	427	1687	3.47	NA	1225	331	16.8	10.8	51.6

Box and whisker plots for the Pb results are presented In Figure 11 for the sets of unground and ground replicates. The two sets of 15 replicates for CRREL puck mill were combined into single set of 30 replicates (denoted as "Puck-CRREL") as the results were similar.

Figure 11. Box and whisker plots for lead by type of milling equipment. BM = ball mill, MP = mortar and pestle, Puck = puck and ring mill, UG = unground, TA = Test America

As shown by Figure 11, the two unground data sets exhibit similar variability and are positively skewed. Statistically significant differences between the variances of the two unground data sets were not detected by the Levene's test at the 95% level of confidence for Cu, Pb, Sb, or Zn. Figure 11 suggests that the variances of the two unground data sets are larger than the variances of the ground data sets, as the unground data sets exhibit larger outliers and IQRs. The variances of the ground data sets tended to differ from one another. When Levene's test was used to compare the variances of the ground data sets BM-TA (*n*=15), MP-CRREL (*n*=15), Puck-APPL (n = 15), and Puck-CRREL (n = 30), statistically significant differences at the 95% level of confidence were observed for all four metals. The ball mill data possessed the smallest variance for Cu, Pb, Sb, and Zn. The ball mill standard deviations were at least two to five times smaller than the standard deviations of the puck mill and mortar and pestle data. The puck mills tended to produce better precision than the mortar and pestle but this was not consistently so for all four metals. Generalization about the mortar and pestle and the puck mill were problematic, as the two puck mills did not consistently produce comparable results. When Levene's test was used to compare the puck mill variances at the 95% level of confidence, the Puck-APPL Cu and Zn variances were larger than Puck-TA Cu

and Zn variances, while the Puck-APPL Pb variance was smaller than the Puck TA Pb variance. However, in terms controlling sub-sampling variability, the overall performance for the various milling equipment seemed to be as follows: ball mill > puck mill > Mortar Pestle > No Milling

4.6.1 Mortar and pestle

A mortar and pestle was used to assess the utility of processing soil samples with this apparatus. USEPA Method 3050B indicates, if appropriate, the sample be milled with a mortar and pestle. However, it is our observation from discussions with various commercial analytical laboratories that the mortar and pestle is not used unless the client specifically specifies such use. The mortar and pestle consists of ceramic components. The metals cadmium and tungsten were analyzed but none were detected in any of the 15 laboratory replicate samples at a reporting limit of 0.16 mg/kg. A comparison of RSD for the unground to the mortar and pestle results indicates a reduced total sample error. However, the RSD for the mortar pestle results (Table 21) are still above our laboratory acceptance criteria of < 15% error. The total errors for Sb, Cu, Pb, and Zn are 55, 39, 32, and 28%, respectively.

The mean Sb and Pb values determined from use of the mortar and pestle (Table 23) sample were generally lower than the means for the unground samples (Tables 20 and 22).

						Mea	an Conce	entration	n (mg/kg)						
	Al	Ba	Co	Cr	Cu	Fe	Mg	Mn	Ni	Р	Pb	Sb	Sr	٧	Zn
n	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Mean	4173	17.3	6.31	6.26	372	13818	2025	184	8.37	596	1359	10.5	13.5	10.3	71.5
Median	4111	17.4	6.37	6.27	329	14010	2032	185	8.41	598	1156	7.83	13.5	10.4	67.0
Min	3753	15.4	5.86	5.63	278	12665	1921	175	7.85	522	973	6.36	10.7	9.19	61.2
Max	4599	18.7	6.73	6.53	886	14470	2139	194	8.75	644	2371	26.7	16.9	10.7	142
STD	227	0.832	0.231	0.236	145	551	73.8	5.48	0.263	31.9	440	5.74	1.43	0.458	19.9
RSD (%)	5	5	4	4	39	4	4	3	3	5	32	55	11	4	28

Table 23. Descriptive statistics (mg/kg) for 15 replicates processed with the mortar and pestle.

n – number, Min – minimum, Max – maximum, RSD – percent relative standard deviation, STD – standard deviation Highlighted text indicates known contaminants of interest present

4.6.2 Puck mill

Three splits were milled with the puck mill, with 15 replicates laboratory samples collected and analyzed. Two of the samples were processed using the puck mill at CRREL and one sample at APPL laboratories. In each case, the samples were processed using an interval of 5×60 s with 1 mi-

nute of cooling between grinding. The sample digestion procedures were identical, with the exception that hydrochloric acid (HCl) was not added to the samples digested at APPL or Test America. The APPL and Test America samples that were analyzed with an ICP-MS and USEPA Method 3050B do not include the use of HCl. In comparison, the CRREL samples were analyzed with an ICP-OES, which requires digestion with HCl.

As indicated in Table 21, the CRREL and APPL puck mill replicates met the 15% acceptance criterion for the %RSD with a few exceptions that marginally exceed the limit. Although all three splits originate from the same bulk 20-kg field sample, the mean values for all metals were consistently lower for the APPL results. The means of the two CRREL puck mill splits ground were similar. The difference between the CRREL and APPL results may be ascribable to difference in the digestion and instrumental analyses (e.g., the different acids used to digest the replicates prior to the ICP-MS and ICP-OES analyses).

Test America also processed a sample using a puck and ring mill. The RSDs for this population of samples is very comparable to the puck mill results (Table 21). The means for the Cu and Pb results between the TA puck and ring mill are comparable to the CRREL puck mill results (Table 22). The mean Sb and Zn results for the TA puck and ring mill were lower than the CRREL results but comparable to the APPL puck mill values.

4.6.3 Ball mill

Another milling apparatus, a ball mill, was used to process a separate split sample of the original 20-kg bulk material. The container of the ball mill is a polyethylene can and ceramic balls are used to grind the soil so no metallic components come in contact with it. Again, the same sample preparation and digestion procedures were used for the ball mill samples following the grind as were used with the puck mill. Because the samples for the ball mill were analyzed by ICP-MS, HCl was not added to the sample during digestion. Unlike the puck mill, the soil samples were processed in the ball mill for 18 hr as compared to 5×60 s for the puck mill. The calculated RSD for the ball mill population of samples was very good with values less than 15% for the analytes of interest (Table 21). However, one difference noted is that the mean values for Sb and Pb obtained with the ball mill were lower than the values obtained from processing the soil with the puck mill (Table 22). The Cu and Zn values were comparable between the two milling devices.

4.7 Milling interval

The results presented in Section 4.6 indicate that the puck mill and ball mill are appropriate milling equipment for reducing the total sampling error to acceptable levels. The selection of a milling interval of 5×60 s for the puck mill is based on guidelines provided in USEPA Method 8330B for energetics. Because propellants are present at the firing point of small arms ranges, a milling interval appropriate for both energetics and metals is desired. However, the shortest milling interval, to reduce the error associated with heterogonous samples, is desired to facilitate rapid sample throughput. Therefore, for the puck mill a study was conducted evaluating milling intervals of 30, 60, 90, 120, and 360 s. The milling intervals evaluated with the ball mill were 8, 12, 16, and 20 hr.

The same 200-increment reference soil previously discussed was used for all tests. The approach for each piece of milling equipment was to grind the soil for the shortest time interval, pull 15 laboratory replicates, and then grind the soil for the next time interval with the process repeated until the last time interval was achieved. The digestion and analysis procedures were identical for all samples and have been previously discussed. All of the sample results for this set of experiments are included in Appendix A, Table A7.

4.7.1 Puck mill

To compare the effectiveness of the different milling intervals, the RSDs for each time were calculated for the 15 replicate samples (Table 24). The time interval of 0 s represents the unground control sample. The results suggest a milling interval of 60 s might be sufficient; however, the population of data for Cu has a RSD of 31% at 90 seconds. Our target criterion for inter-sample comparisons is 15%. It seems that 120 s of milling with the puck mill is adequate to achieve RSDs of < 15%, although the Cd seems anomalous given the low RSDs for all other time intervals. Clearly, the 5 \times 60 s milling interval is successful in achieving a low total sample error.

Laboratory sub-sampling variability for Pb and Sb decreased overall as the puck mill grinding time was increased from 0 to 300 seconds. This is shown qualitatively in the scatter plots of the standard deviation of Pb and Sb versus time; these plots are similar in appearance. (Fig. 12 and 13).

Table 24. Percent relative standard deviations by	v different milling	g intervals with the puck mill.

					P	ercent	Relativ	e Stan	dard D	eviatio	n (RS	SD)				
Time (s)	Al	Ba	Cd	Co	Cr	Cu	Fe	Mg	Mn	Ni	Р	Pb	Sb	Sr	٧	Zn
0	2	15	2	2	5	25	1	1	1	2	1	39	69	4	4	17
30	7	7	5	5	6	10	5	6	4	4	5	36	55	8	3	7
60	4	3	3	2	2	20	3	2	2	3	2	12	18	12	3	12
90	7	7	4	3	5	31	5	7	7	4	4	10	15	31	5	18
120	10	13	35	2	2	20	19	11	8	4	6	12	18	17	4	10
300	4	1	1	2	15	4	2	2	1	2	4	7	2	2	ND	10

ND - not detected, s - seconds Bold values > 15%,

Highlighted text indicates known contaminants of interest present

Figure 12. Scatter plot of the standard deviation of lead (mg/kg) versus the puck mill grinding time.

Figure 13. Scatter plot of the standard deviation (mg/kg) of antimony versus the puck mill grinding time.

The soil samples contained metallic fragments composed of Pb and Sb. Increasing the grinding time reduced the particle size of these fragments, resulting in corresponding decrease in fundamental errors.

However, there is no clear relationship between grinding time and the variability for Cu and Zn. The box and whisker plots shown below for Cu and Zn suggest that grinding for at least 120 s may be beneficial (Fig. 14 and 15). The IQRs of the Cu and Zn results tend to be variable and the distributions positively skewed when the grinding time is less than 120 s. Similarly, the Zn box and whisker plots exhibit large outliers when the grinding time is less than 120 s. In contrast, the Zn and Cu distributions the 120-and 300-s grinding times are relatively normal (the null hypothesis the distributions are normal is not rejected with 95% confidence); also, the variances of the results for 120- and 300-s grinding times are similar for both Cu and Zn (the null hypothesis that the variances are equal is not rejected with 95% confidence using either the F-test or Levene's test).

Figure 14. Box and whisker plots for copper (mg/kg) by puck mill grinding time.

Figure 15. Box and whisker plots for zinc (mg/kg) by puck mill grinding time.

One of the questions of using a puck mill is how much does this change the metal results. Table 25 compares the mean values (mg/kg) for each of the metals by milling time. Fifteen laboratory replicate samples were analyzed for each time interval. Time zero represents the unground control sample. It is apparent that milling the soil samples with a puck mill composed of metallic components results in an increase in most metal concentrations, although there is enough variability in results that clear positive trends are not apparent for all metals.

Table 25. Comparison of mean values by different milling intervals (s) with the puck mill.

							Conce	ntratio	n (mg	/kg)						
Time (s)	Al	Ва	Cd	Со	Cr	Cu	Fe	Mg	Mn	Ni	Р	Pb	Sb	Sr	٧	Zn
0	4124	17.1	1.08	6.48	6.12	357	9307	2018	201	9.09	559	1600	14.2	12.6	9.99	66.1
30	4754	19.6	0.813	6.71	74.7	357	14344	1848	183	9.09	739	2348	24.2	18.4	12.0	58.6
60	5378	29.3	0.928	8.04	135	430	15597	2187	224	10.2	576	2187	18.6	18.7	14.1	75.1
90	6518	24.7	1.05	7.69	162	646	16933	1824	196	11.0	570	2818	24.8	19.9	15.0	66.7
120	7156	26.8	0.89	8.01	233	538	16653	1873	200	12.5	629	2562	21.6	27.2	15.6	60.8
360	5509	31.6	1.82	8.75	229	496	16676	2242	235	12.4	590	2760	21.8	20.6	15.2	81.0
% Change ¹	16	61	124	30	207	39	16	21	28	37	-20	18	-10	12	27	38

¹Percent change from 30 to 360 seconds of milling. NA – not analyzed, ND – not detected, s – seconds Blue highlighted text indicates known metal constituents present in the bowl and puck of the puck mill Yellow highlighted text indicates known contaminants of interest present and constituents present in the bowl and puck of the puck mill

As expected, metals that are major constituents of the puck mill grinding surfaces (e.g., Fe and Cr) tended to increase as the grinding time increased. This is clearly evident in box and whisker plots that are shown for

Fe and Cr (Fig. 16 and 17). The median Fe and Cr concentrations appear to increase with time and then "level" at about 120 s.

Figure 16. Box and whisker plots for iron (mg/kg) by puck mill grinding time.

Figure 17. Box and whisker plots for chromium (mg/kg) by puck mill grinding time.

The metals Al, Mn, V, and Ni, which also are constituents of the puck mill, produce similar box and whisker plots (not shown) as Fe and Cr, though there was not a clear relationship between the grinding time and the median concentrations. The only appreciable increase in metal concentrations with grinding time for those metals known to be constituents of the puck and bowl was Cr (Table 25). In contrast, as shown by the box and whisker plots for Pb and Sb, the median Pb and Sb concentrations are not strongly

time dependent after the first 30 s of grinding (Fig. 18 and 19). Note that the puck mill contains no more than trace levels of these metals.

Figure 18. Box and whisker plots for lead (mg/kg) by puck mill grinding time.

Figure 19. Box and whisker plots for antimony (mg/kg) by puck mill grinding time.

The relations between the grinding time and median Cu concentrations are not as apparent. The box and whisker plots for Cu suggest (not shown) that the median Cu concentrations initially increase then "level" at about 90 s. This is also consistent with the median and mean Cu concentration scatter plots versus grinding time (Fig. 20). Cu is present in the puck-mill grinding surfaces at concentrations of the order of 1000 mg/kg, but per the reasons discussed in Section 5, it does not appear that the increase in Cu is attributable to contamination from the puck mill. The box and

whisker plots for Zn (not shown), which is present in the puck mill at trace levels only, indicate that the median Zn concentration does not appear to be correlated with grinding time.

Figure 20. Scatter plots of the mean and median copper concentration (mg/kg) versus the puck mill grinding time.

4.7.2 Ball mill

Table 26 presents the RSD for each of the metals by the milling interval with the ball mill. The population of data for time zero represents the unground control. Our RSD target criterion of 15% was met for the metals of interest (Sb, Cu, Pb, and Zn) within 12 hours of milling with the ball mill.

				Pe	rcent r	elative s	tandar	d devia	tion (F	RSD)			
Time (hr)	Al	Ва	Cd	Co	Cr	Cu	Fe	Mn	Ni	Pb	Sb	٧	Zn
0	5	NA	ND	5	5	257	4	4	7	61	116	NA	162
8	4	5	ND	3	9	4	8	2	4	13	23	8	8
12	5	10	ND	3	11	8	4	4	3	6	7	8	7
16	4	6	ND	1	6	6	2	2	1	6	14	5	3
20	4	6	ND	1	6	6	2	2	1	6	14	5	3

Table 26. Comparison of percent RSD by different milling intervals with the ball mill.

NA - not analyzed, ND - not detected, s - seconds

Highlighted text indicates known contaminants of interest present

As there are no metallic components exposed to the ball mill (ceramic balls with Teflon coated cans were used) the expectation is that the metal concentration should remain relatively constant with increasing milling time. However, the particular sample used in this experiment was an unsieved portion of the 20-kg bulk samples. Consequently, large chunks of metal

were present in the sample. This likely explains the observed metal concentration increase with increasing milling time (Table 27) as the particle size of the metal residue was reduced, thereby increasing the surface area of metal present. Visual observation of the samples, even after 20 hr of milling, showed visible metal particles present. It is likely that the metal concentrations would continue to increase until all of the metal has been reduced to a consistent particle size.

	Mean concentration (mg/kg)												
Time (hr)	Al	Ba	Cd	Co	Cr	Cu	Fe	Mn	Ni	Pb	Sb	٧	Zn
0	3538	11.9	ND	4.37	4.47	1061	9173	179	7.45	2043	15.9	NA	83.7
8	4283	20.2	ND	4.75	6.48	1021	11564	199	8.17	4798	35.0	7.57	69.4
12	4589	22.4	ND	4.93	7.68	1040	13336	194	8.78	5810	46.1	8.64	80.1
16	4764	26.4	ND	4.80	9.33	1179	13850	203	8.65	6375	44.9	7.78	91.4
20	5058	29.2	ND	4.84	10.4	1314	NA	209	NA	7153	55.2	8.47	93.4
% Change ¹	18	45	ND	2	60	29	NA	5	NA	49	58	12	35

Table 27. Comparison of mean values by different milling intervals (hr) with the ball mill.

¹Percent change from 30 to 360 s of milling., NA – not analyzed, ND – not detected Highlighted text indicates known contaminants of interest present

4.8 Digestion mass

A study was done to determine if increasing the digestion mass reduces laboratory subsampling variability. Studies for energetic residues that were done by CRREL indicated that increasing the extraction mass from 2 g to 10 g reduced sub-sampling variability (Hewitt et al. 2009; Walsh et al. 2006a, 2002). As result, USEPA Method 8330B for energetics now stipulates an extraction mass of 10 g. The USEPA Method 3050B for metals digestion specifies digestions of a 0.5- to 2-g samples. Therefore, an experiment was done to assess method performance for 3050B for different soil to solution mass ratios. The study assessed digestion of 0.5-, 1-, 2-, 5-, and 10-g samples. The same 200-increment reference soil previously discussed was used for all tests. The same sample preparation, digestion, and analytical methods as discussed previously were used. The digestion mass was the only parameter that was varied. All of the results of the results for this study are included in Appendix A, Table A8. Tungsten was not detected in any of the samples for this experiment.

Some descriptive statistics for the set of replicates that were analyzed for each digestion mass are presented in Table 28. The %RSDs were generally less than 15% for Sb, Pb, and Zn for each set of replicate digestion masses.

There were some values marginally greater than 15% for Cu for the digestion masses of 0.5, 1, and 5 g; however, 2 and 10 g met the 15% criteria.

The box and whisker plots for Cu, Pb, Sb, and Zn (Fig. 21–24) suggest that, overall, the digestion mass does not strongly affect method performance.

Figure 21. Box and whisker plots for copper by digested soil mass.

Figure 22. Box and whisker plots for lead by digested soil mass.

Table 28. Summary of metal results by different digestion mass of sample ground 5 × 60 s in puck mill.

							Co	ncentrati	on (mg/k	(g)						
	Al	Ba	Cd	Co	Cr	Cu	Fe	Mg	Mn	Ni	Р	Pb	Sb	Sr	V	Zn
		•	•	•			Half gram	sample			•	•				
n	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Mean	5116	28.6	0.96	8.55	219	466	15629	2120	229	11.2	725	2848	24.6	19.4	13.9	79.0
Median	5099	28.6	0.97	8.53	216	443	15560	2115	229	11.2	732	2816	23.6	19.5	13.8	77.7
Min	4827	25.7	0.93	8.32	210	370	14000	2047	221	10.5	688	2483	21.2	18.2	13.2	70.9
Max	5383	31.0	0.99	8.96	229	637	16590	2213	239	11.8	770	3287	30.6	20.6	15.0	100
STD	162	1.67	0.018	0.206	6.50	94.6	731	47.6	4.92	0.354	28.4	236	2.85	0.746	0.594	7.99
RSD (%)	3	6	2	2	3	20	5	2	2	3	4	8	12	4	4	10
							One gram	sample								
n	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Mean	5550	28.6	0.58	7.74	225	610	16851	2160	227	11.9	922	2913	23.3	21.2	14.6	83.4
Median	5610	28.8	0.58	7.74	225	511	16745	2173	226	11.9	914	2923	23.1	21.4	14.6	79.2
Min	5085	26.5	0.55	7.52	221	415	16040	2091	222	11.5	854	2545	18.9	19.1	13.6	70.4
Max	5916	30.1	0.61	8.02	230	1140	17680	2212	232	12.2	998	3202	28.3	23.2	15.3	112
STD	237	1.17	0.017	0.146	2.86	221	530	41.2	3.06	0.179	48.0	203	2.72	1.11	0.555	12.5
RSD (%)	4	4	3	2	1	36	3	2	1	2	5	7	12	5	4	15
							Two gram	sample								
n	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
Mean	5816	30	2	9	223	550	16752	2125	225	12	611	2717	23	22	15	77
Median	5678	30	2	9	221	543	16920	2121	224	12	612	2718	23	22	15	76
Min	5425	26	2	8	214	391	14775	1905	205	12	571	2440	19	20	15	65
Max	6800	35	2	9	236	813	17715	2290	240	13	655	2936	26	26	16	94
STD	368.6	2.1	0.0	0.2	7.1	101.6	620.6	128.	11.1	0.3	23.9	118.7	1.6	1.6	0.2	8.7
RSD (%)	6	7	2	2	3	18	4	6	5	2	4	4	7	7	1	11
							Five gram	sample								
n	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Mean	5311	28.3	0.67	7.98	222	526	16727	2140	227	12.3	627	2815	21.7	20.6	14.8	81.2
Median	5280	27.7	0.51	7.81	222	485	16885	2119	226	12.2	587	2776	21.2	20.6	14.9	78.6
Min	5090	27.0	0.485	7.66	216	434	15485	2060	221	11.9	579	2649	19.5	19.6	14.3	71.6
Max	5625	33.4	1.15	8.64	232	916	17285	2352	244	13.1	750	3079	25.9	21.9	15.1	122
STD	157.5	1.57	0.289	0.380	4.30	119	585.7	73.9	6.20	0.405	71.4	141	2.06	0.622	0.280	12.1
RSD (%)	3	6	43	5	2	23	4	3	3	3	11	5	9	3	2	15
							Ten gram	sample								
n	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Mean	5538	27.4	0.484	7.41	214	555	16492	2014	211	11.6	581	2622	16.7	22.0	14.5	75.3
Median	5484	27.9	0.485	7.42	215	538	16500	2035	213	11.6	581	2611	16.8	21.8	14.5	75.0
Min	5245	25.4	0.465	7.24	209	480	15455	1896	200	11.3	571	2554	15.5	20.6	13.9	66.1
Max	5900	28.7	0.495	7.57	218	686	17315	2104	218	11.8	598	2720	18.3	23.4	14.9	83.1
STD	224.1	1.18	0.010	0.118	3.16	62.7	466.1	74.6	6.18	0.149	7.81	54.2	0.791	0.990	0.341	5.01
RSD (%)	4	4	2	2	1	11	3	4	3	1	1	2	5	5	2	7
Change (%) ¹	8	-4	-50	-13	-2	19	6	-5	-8	3	-20	-8	-32	13	4	-5
1Donroconto nos															t rolotivo ot	

¹Represents percent change between 0.5 and 10 g of material digested. *n* – number, Min – minimum, Max – maximum, ND – not detected, RSD – percent relative standard Highlighted text indicates known contaminants of interest present deviation, STD – standard deviation

Figure 23. Box and whisker plots for antimony by digested soil mass.

Figure 24. Box and whisker plots for zinc by digested soil mass.

However, Levene's test detected statistically significant differences in the variances at the 95% level of confidence for Pb and Sb. Increasing the digestion mass resulted in modest overall decreases in the variances for Pb and Sb. The non-parametric correlation coefficient Kendal's tau is equal to -0.80 for both the Pb and Sb scatter plots (Fig. 25 and 26) and indicates that the negative correlation between the digestion mass and standard deviation is significant at over the 90% level of confidence.

Figure 25. Scatter plot of the standard deviation for lead (mg/kg) versus the digestion mass.

Figure 26. Scatter plot of the standard deviation for antimony (mg/kg) versus the digestion mass.

Increasing the digestion mass also seemed to introduce a small negative bias for both Pb and Sb. However, the mean and median concentrations of Pb and Sb appear to be negatively correlated with the digestion mass (Fig. 27 and 28). The KW test detected statistically significant difference in the medians for Pb and Sb at well over the 99% level of confidence.

Figure 27. Scatter plots of the mean and median lead concentrations (mg/kg) versus the digestion mass.

Figure 28. Scatter plots of the mean and median antimony concentrations (mg/kg) versus the digestion mass.

The scatter plots of the standard deviation versus the digestion mass for Cu and Zn (Fig. 29 and 30) do not show clear downward trends with increasing digestion mass. Levene's test did not detected statistically significant differences in the variances at the 95% level of confidence for these two metals.

Figure 29. Scatter plot of the standard deviation for copper (mg/kg) versus the digestion mass.

Figure 30. Scatter plot of the standard deviation for zinc (mg/kg) versus the digestion mass.

4.9 Digestion time

The effect of increasing the digestion time from 12 to 24 hr was assessed. The same 200-increment reference soil previously discussed was used for all tests. The same sample preparation, digestion, and analytical methods as discussed previously were used. The only parameter that was varied was the digestion time. All of the sample results for this set of experiments are included in Appendix A, Table A9.

A set of 30 replicates analyzed for the shorter digestion time and a set of 14 replicates was analyzed for the longer digestion time. Some descriptive

statistics for these two sets of results are presented in Table 29. The box and whisker plots for Cu and Pb (Fig. 31) and Sb and Zn (Fig. 32) suggest that increasing the digestion time does not strongly affect results. The median and IQR ranges for the two time intervals are similar for all four metals. Levene's test did not detect differences in the variances with 95% confidence for the two digestion times for any of the four metals. The KW test did not detected differences between the medians with 95% confidence for either Zn or Cu. However, the KW test did detect differences for the Pb and Sb medians with well over 99% confidence. These differences were relatively small; the medians for the two digestion times differ by less than 10%. Increasing the digestion time may have slightly increased the recovery of Pb and slightly decreased the recovery of Sb. The scatter plot (Fig. 33) shows that Pb and Sb are highly correlated, but the Sb concentrations decrease relative to the Pb concentrations when the digestion time is increased. Therefore, doubling the digestion time for 2-g masses, at best, only nominally affects method performance.

Table 29. Summary of metal results by different digestion time.

	Concentration (mg/kg)															
	Al	Ва	Cd	Со	Cr	Cu	Fe	Mg	Mn	Ni	Р	Pb	Sb	Sr	٧	Zn
	12-hour digestion interval															
n	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
Mean	5816	30	2	9	223	550	16752	2125	225	12	611	2717	23	22	15	77
Median	5678	30	2	9	221	543	16920	2121	224	12	612	2718	23	22	15	76
Min	5425	26	2	8	214	391	14775	1905	205	12	571	2440	19	20	15	65
Max	6800	35	2	9	236	813	17715	2290	240	13	655	2936	26	26	16	94
STD	368.6	2.1	0.0	0.2	7.1	101.6	620.6	128.6	11.1	0.3	23.9	118.7	1.6	1.6	0.2	8.7
RSD (%)	6	7	2	2	3	18	4	6	5	2	4	4	7	7	1	11
			•	III	I	24	l-hour dige	stion inte	rval						1	.1.
n	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Mean	5957	31.2	1.02	8.79	240	504	17065	2204	238	11.5	704	2865	20.6	23.3	16.0	80.2
Median	6075	32.1	1.05	8.94	242	498	17293	2259	243	11.7	630	2893	20.6	23.8	16.3	79.9
Min	5740	25.9	1.77	8.30	214	486	15530	1905	205	11.8	615	2440	20.3	21.9	14.7	64.7
Max	6215	33.7	1.09	9.06	248	726	17955	2303	248	11.9	910	3132	23.3	24.5	17.0	107
STD	438	2.51	0.068	0.477	11.0	116	984	165	16.8	0.77	163	231	1.34	1.80	0.95	12.4
RSD (%)	7	8	7	5	5	23	6	8	7	7	23	8	7	8	6	15
% Change ¹	8	-1	-44	0	5	2	2	-2	1	-8	19	4	-5	13	6	-1

¹Represents percent change between 24 and 48 hr. Min – minimum, Max – maximum, ND – not detected, RSD – percent relative standard deviation, STD – standard deviation, Highlighted text indicates known contaminants of interest present

Figure 31. Box and whisker plots for copper and lead concentrations for two digestion times.

Figure 32. Box and whisker plots for antimony and zinc concentrations for two digestion times.

Figure 33. Scatter plots of antimony versus lead concentrations (mg/kg) for the two digestion times.

5 Discussion

The central question for this study is whether the current surface soil sampling and sample preparation procedures are appropriate for metal residues or whether modifications are necessary to the accepted standards. Soils are typically sampled by collecting discrete (grab) samples using either judgmental, simple random, or systematic—random sampling designs. Previous studies involving residue deposition of energetic compounds found that the accepted standard surface soil sampling and sample preparation techniques led to non-representative results and typically an underprediction of the contaminant concentrations in the area of interest (Nieman 2007; Hewitt et al. 2005; Jenkins et al. 2004; Walsh et al. 2004). A preliminary study for metals, Table 5, shows the high degree of variability for grab samples from a military small arms range. Therefore, this study was conducted to compare the performance of the standard accepted surface soil sampling approach for the analysis of metals with multi-increment sampling.

The accepted standard soil preparation technique principally involves digestion of a subsample following USEPA Method 3050B. However, preliminary studies involving the collection of multi-increment surface soil samples from small arms ranges where metal residue deposition occurred indicated multi-increment field sampling was insufficient by itself to overcome the total sampling error (see Section 2.3). Therefore, changes to USEPA Method3050B were evaluated including milling of the sample to reduce the particles to a uniform size.

5.1 Multi-increment soil sampling

The only direct means of determining the concentration representative of the entire DU would be to remove all of the soil and to digest/extract this material. In reality, it is impractical to perform this analysis, so the accuracy of the mean is generally unanswerable. One approach taken to attempt addressing the question of accuracy was to pool the entire MI sample data from the DU processed in similar manner. All of the MI sampling data from the same DU for samples with more than 30 increments and digestion masses of 2 g or more were pooled to estimate the "true" DU mean, resulting in a total of 22 field samples and 80 laboratory replicate analysis

(Table 30). Comparing the pooled MI sample results with the grab sample results indicates an under estimation of the DU grab sample mean relative to the MI samples.

A comparison of the mean and median values for the grab samples indicate a strong positive skew for the Cu, Pb and Sb data, whereas the mean and median values are very close to each other for the pooled data (Table 30). Large variability and positive skewed distributions is expected for discrete samples when soil contains a small number of metallic fragments containing these metals. The lack of a large positive skew for the Zn data suggests that the soil did not contain a significant number of metallic fragments composed of Zn.

Table 30. Mean concentrations of pooled grab samples and pooled MI samples for antimony, copper, lead, and zinc.

	Co	ncentratio	on (mg/kg	()
	Cu	Pb	Sb	Zn
Pooled MI sample size (n)	102	102	102	87
MI grand mean	546	2651	20.7	76.4
MI grand median	535	2679	20.9	75.6
Pooled grab sample size (n)	30	30	30	30
Grab grand mean	300	5060	87.8	66.1
Grab grand median	270	1238	10.0	61.9
Grab biased (n)	6	6	6	6
Grab biased mean	269	1161	10.9	59.4
Grab biased median	250	1103	8.79	59.4
MI-100 (n)	7	7	7	7
MI-100 mean	648	2929	22.8	81.8
MI-100	609	2638	20.7	78.2

MI - multi-increment sample

As the mean of the DU is unknown, the representativeness of a set of samples is primarily assessed in terms of the reproducibility of the results, which is measured by descriptive statistics such as the variance and relative standard deviation. As noted by Gerlach and Nocerino (2004), sampling can be the major source of error, particularly for soils containing heterogeneously distributed metal residues. The difference in soil concentrations from adjacent locations on a small arms range may be extreme. Table 31 presents the concentrations of lead for five co-located (within several centimeters) grab duplicates that were taken from a military small arms range in Alaska. The results indicate that there is large spatial heterogeneity possible. It is clear the fundamental error associated with compo-

sitional and distributional heterogeneity is not adequately addressed with analysis of a few number of grab samples. The error associated with the grab samples is sufficiently large that reliable estimates of the mean would be problematic.

To overcome the heterogeneity in soil samples from a small arms range, at least 30 grabs would likely be needed to obtain reliable estimates of mean metal concentrations. However, results of at least comparable quality can be achieved by collecting several replicate multi-increment samples consisting of at least 30 or more increments. Multi-increment field sampling resulted in lower RSDs than grab samples collected using a "grid-node approach" (i.e., systematic sampling) and often resulted in higher estimates of the mean. (Refer to Section 4.2 the discussion of for surface soil samples collected from the small arms range DU.) Replicate soil samples using the multi-increment sampling methodology resulted in RSDs of less than 30% (Section 4.2), suggesting that distributional heterogeneity was reasonably controlled.

Table 31. Lead concentrations of five sets of duplicate surface soil samples from small arms range in Alaska; each pair was collocated within several centimeters.

Sample number	Lead (mg/kg) field replicate 1	Lead (mg/kg) field replicate 2	%RSD
1	68	72	6
2	246	446	58
3	73	347	130
4	978	528	60
5	1010	79	171

Gy's theory indicates that to obtain a representative sample it is necessary to reduce the fundamental error of a sample by increasing the sample mass and number of increments collected per sample. Although the number of increments necessary per sample will be site dependent, the data from this study indicate the variance decreases for all metal analytes once 30 or more increments are collected (Fig. 34 and 35). The lack of a consistent trend is owing to the small number of replicate samples collected. Only a set of seven replicate multi-increment soil samples was collected for each per increment population. If a larger number of replicate samples, > 30, had been collected for each increment population, a clearer trend of increased precision with increasing number of increments is expected.

The box and whisker plots for Cu, Pb, Sb, and Zn show overall decreases in the IQRs and range of values (Fig. 36–39). The reduction in variability with increasing number of increments per sample is similar to the observations for MI soil samples containing energetic residues (Jenkins et al. 2006a, 2005, 2004a,b; Hewitt et al. 2005a; Walsh et al. 2005). Although the findings from this study are only representative for the site evaluated, the similarity of findings with the energetic work (Hewitt et al. 2009) strongly suggests 30 or more increments are warranted for soils (Gerlach and Nocerino 2004) expected to contain metallic residues. Because the fundamental error can only be estimated prior to sampling, Gy's formula highly recommends that 50 to 100 increments be collected when evaluating soils from military small arms ranges.

Figure 34. Standard deviations (mg/kg) of various metals vs. numbers of increments per multi-increment sample.

Figure 35. Standard deviations (mg/kg) of copper, lead, antimony and zinc vs. number of increments per multi-increment sample.

Figure 36. Whisker and box plots of copper results by number of field increments.

Figure 37. Whisker and box plots of lead results by number of field increments.

Figure 38. Box and whisker plots of antimony results by number of field increments.

Figure 39. Box and whisker plots of zinc results by number of field increments.

Table 32. Determination of number of sample increments needed to achieve a desired soil sample mass with CMIST corer knowing the diameter of the corer, a sampling depth of 2.5 cm and a soil density of 1.5 g/cm³ (Walsh 2009).

		S	ample Mass*	(g)	
	500	750	1000	1500	,000
Corer Diameter (cm)	Number of i	ncrements to I	reach sample	mass (g)	
1.00	170	255	340	509	679
1.25	109	163	217	326	435
1.50	75	113	151	226	302
1.75	55	83	111	166	222
2.00	42	64	85	127	170
2.25	34	50	67	101	134
2.50	27	41	54	81	109
2.75	22	34	45	67	90
3.00	19	28	38	57	75
3.25	16	24	32	48	64
3.50	14	21	28	42	55
3.75	12	18	24	36	48
4.00	11	16	21	32	42
4.25	9	14	19	28	38
4.50	8	13	17	25	34
4.75	8	11	15	23	30
5.00	7	10	14	20	27
* Assumed: Dry	bulk soil dens	ity = 1.50 g/cr	m³, increment	core length =	2.5 cm

Having addressed the number of increments needed per sample the question is how much sample mass is needed to reduce the fundamental error

to acceptable levels. Although this specific issue was not addressed in this study, previous work with energetics suggests a minimum of 1 kg of material is appropriate minimum (Hewitt et al. 2009). Table 32 provides a means to estimate the number of increments needed with a given CMIST corer diameter to achieve a given mass of soil. For example, using a 2.0 cm corer to a depth of 2.5 cm requires 85 increments to achieve a sample mass of 1 kg.

5.2 Field splitting

Many commercial environmental laboratories are not equipped to handle the large sample volumes that result from multi-increment sampling. Unfortunately, owing to heterogeneity, the volume of a sample shipped to a laboratory for processing and analysis cannot readily be reduced in the field in a manner that does not compromise the quality of the original sample. As shown in Section 4.4, field splitting using the cone-and quartering techniques (prior to laboratory sample preparation) gives variable results for the four splits, especially when soil contain metal fragments.

Although rotary splitters tend to produce results that are more representative than other splitting techniques such as cone and quarter (Petersen et al. 2004; Gerlach and Nocerino 2003), even rotary splitters may not adequately control sample heterogeneity when soils contain metallic fragments. Table 7 presents results for two samples obtained from a military small arms range where the samples were split with a rotary splitter prior to milling and digestion following USEPA Method 3050B. The rotary splitter addresses the distributional heterogeneity within the sample by collecting very large number of increments. In this example, a 25-kg sample was used so the splits had adequate mass for the individual samples. Sample 1, split 1 has a copper concentration of 2600 mg/kg whereas split 3 of the same sample has a concentration of 110 mg/kg. Without analyzing each sample split multiple times, it may not be obvious which value is more representative of site conditions. Therefore, simple field splitting techniques such cone-and-quartering will likely be ineffective for controlling heterogeneity relative to laboratory sampling processing techniques (e.g., milling). Petersen et al. (2004) states:

...all grab sampling and shoveling methods must be totally avoided: indeed grab sampling should never be used in practice—with the singular exception for thoroughly homogenized fine powders.

5.3 Milling

To evaluate whether milling was appropriate for soil samples from small arms ranges a comparison was made between an unground sample and a sample milled with a puck mill (Section 4.5). The results for Cu, Pb, Sb, and Zn were evaluated in depth, as these metals are typically the major constituents of small arms ammunition. Milling normalized the distributions and increased median metal concentrations. Figures 40 and 41 are probability distributions for lead for the unground and ground replicate samples, respectively. Note that the p-value for the normality test for the set of unground replicates (n = 15) is < 0.001, indicating the null hypothesis that the distribution is a normal distribution can be rejected with over 99.9% confidence. The p-value for the set of ground replicates (n = 30) is > 0.1 (i.e., the normality assumption cannot be rejected with at least 90% confidence).

Milling nearly doubled the estimated mean concentration of Pb and Sb. The mean Cu concentration increased by 50% and the mean concentration of Zn by 20% (Fig. 42 and 43). However, milling decreased the variability of Pb and Sb significantly (Fig. 44 and 45). Statistically significant differences in the variances of the mean were not observed for Cu and Zn at the 95% level of confidence.

Figure 40. Normal probability plot for unground lead (replicates.

Figure 41. Normal probability plot for ground lead replicates.

Figure 42. Box and whisker plots for ground (G) and unground (UG) copper (mg/kg) replicates.

Figure 43. Box and whisker plots for ground (G) and unground (UG) lead (mg/kg) replicates.

Figure 44. Box and whisker plots for ground (G) and unground (UG) antimony (mg/kg) replicates.

Figure 45. Box and whisker plots for ground (G) and unground (UG) antimony (mg/kg) results.

Because the samples were milled using the puck mill (which contains metal components) and ball mill, one question is how much does crosscontamination from the milling equipment contribute to the increased metal values. The metal content of the puck and bowl used is known and a calculation was used to assess the metal contribution to the sample (Table 33). The approach attempts to estimate the increase in metal concentration owing to the puck's mill grinding surfaces. As a "worst-case" scenario, it was assumed that 1 mg of the bowl and puck abraded and released into soil sample during grinding. Lab Tech Essa provides information on the approximate metal composition of the bowls and puck it sells. The device used at CRREL consisted of bowls and puck made of chrome steel. Assuming a soil concentration of 1 mg/kg a calculation was made on the amount of metal increase coming from the bowl. Table 32 indicates that the potential exists for a significant increase in Cr, Mn, Ni, and V concentrations as

a result of cross-contamination from a metallic puck and bowl. However, the potential impact on the metals of interest Sb, Cu, Pb, and Zn is minimal. Further the cross-contamination issue becomes less important as the metal concentration of the sample increases. For Sb, Cu, Pb, and Zn the potential concentration increase from cross-contamination is < 5 mg/kg. Small arms range soils often have Pb levels, typically the principal metal of interest, in the 100 to 100,000 mg/kg range.

One thought to assess the contribution of metal to the sample from milling is through careful recording of the soil weight pre- and post-milling. However, these measurements typically indicate a metal loss from pre to post milling instead of a gain. This is primarily due to the inability to contain the entire sample upon opening the bowl and transferring it to the sample container. Some of the particle sizes are very small and become airborne during the transfer step resulting in a sample loss. Given the contribution from the puck and bowl is likely very small the mass contributed is immeasurable.

Another comparison was made between unground and ground glass as discussed in Section 4.1, which indicate that metals such as Al, Cr, and Fe are contributed to the sample as part of the grinding process. However, as shown in Table 9 the cross-contamination of the sample is minimal for Cu, Pb, Sb, and Zn.

A mortar and pestle, which only disaggregates a sample, reduced laboratory sub-sampling variability compared relative to processing without any milling, but the %RSDs of laboratory replicates, did not generally meet the 15% performance criterion. The %RSDs for Sb, Cu, Pb and Zn are 55, 39, 32, and 28%, respectively (Table 18). It is possible that the variability can be reduced by additional grinding with the mortar and pestle. However, as manual grinding using a mortar and pestles is very labor-intensive, this approach will likely be impractical for processing large numbers of samples (e.g., given that grinding a large number of MI soils samples can rather labor-intensive even when done using a puck mill). Therefore, the mortar and pestle is not recommended when for milling soil samples that are expected to contain metallic particles.

Table 33. Estimate of metal contribution from puck mill to sample

	Al	Ва	Cd	Co	Cr	Cu	Fe	Mg	Mn	Ni	Р	Pb	Sb	Sr	V	W	Zn
Mean unground (mg/kg)	4124	17	1	6	6	357	9307	2018	201	9	559	1600	14	13	10	ND	66
Ground (mg/kg)	5509	32	2	9	229	496	16676	2242	235	12	590	2760	22	21	15	ND	81
Concentration increase unground to ground (mg/kg)	1384	14	1	2	223	139	7369	225	34	3	31	1160	8	8	5	ND	15
% change unground to ground	34	85	69	35	3641	39	79	11	17	37	5	73	53	64	52	NA	23
Max bowl metal concentration (mg/kg)	U	NA	NA	NA	1×10 ⁵	1990	5×10 ⁵	NA	3700	3030	NA	7	18.4	NA	1140	1210	52
Calculated soil concentration (mg/kg) ¹	NA	NA	NA	NA	225	5	999	NA	8	7	NA	1	1	NA	3	3	1
Mean% Metal Contribution from puck mill	NA	NA	NA	NA	99	4	14	NA	24	47	NA	<1	14	NA	63	ND	7

¹Assumes 1 mg of material of erosion from bowl and puck and 500 mg of soil milled with the metal concentration of the soil being 1 mg/kg.

NA - not applicable, ND - not determined, U - unknown

Blue highlighted text indicates known metal constituents present in the bowl and puck of the puck mill

Yellow highlighted text indicates known contaminants of interest present and constituents present in the bowl and puck of the puck mill

Therefore, milling of a soil samples containing small arms range metals in particulate form is appropriate with either the ball mill or puck mill. Note, however, that a ball mill is not appropriate for milling soil samples that contain propellant fibers. Therefore, soil samples collected from a small arms range firing point that may contain metallic and propellant residues would require use of the puck mill.

A prior unpublished study investigated the performance of a ceramic disc grinder for milling but the device produced poor results, and was virtually impossible to thorough decontaminate to avoid significant sample cross-contamination. Research using a pulvisette for milling is ongoing. Preliminary results with an unsieved soil (unpublished), yielded poor reproducibility but his may have been a function of the large metal residues present in the sample. Additional work using sieved soil is planned.

The necessity of milling depends on a number of factors that need to be evaluated on a project-by-project basis, which typically include the expected soil concentrations of the metals of interest, how close these value are to the regulatory thresholds or cleanup levels and the decisions the data will support. The expected metal concentration, principally lead, for soil from the berm face of a military small arms range may be well above the USEPA Preliminary Remediation Goal (PRG) of 400 mg/kg. Milling may not be necessary to determine whether the mean Pb concentration exceeds this value. The large variability of the unground soil may not affect decisions (Clausen et al. 2010). However, milling may be necessary if sampling is being done after cleanup to verify residual contamination is less than the cleanup goal. Similarly, the sampling of the range floor and firing points is likely to result in a lower lead concentration. Better precision is typically needed as the mean contaminant concentrations approach the project's decision limits.

5.4 Sample digestion

The digestion mass of the sample and the digestion interval were two variables assessed during the sample preparation process following USEPA Method 3050B. It was expected that increasing the digestion mass would decrease the sample error. Overall decreases for the variance were observed for Sb and Pb as the digestion mass was increased. Based on a visual examination of the whisker and scatter plots (the standard deviation versus the digestion mass) in Section 4.8, laboratory sub-sampling precision improves overall as the digestion mass increases but the changes

seem nominal when the digestion masses ≥ 2 g. The sample sizes may have been too small to consistently detect statistical differences in variances, especially for the larger digestion masses. The scatter plots of the standard deviation for Pb and Sb versus the digestion mass are similar in appearance and all exhibit downward trends. However, the variability was too large for Zn and Cu to observe a clear downward trend.

Our recommendation is to digest a minimum of 2-g of material and where practical to digest a larger mass, especially precision is important consideration. However, it is noted that digestion masses ≥ 10 g are not viable possible using standard-size digestion blocks and require digestions using larger sample vessels on hotplates. It is also cautioned that even 2–5 g digestion masses may cause problems for digester blocks because of analyte losses owing to foaming after acid additions

Table 34. Results of the KW test for differences between median of the 12 and 24 hr digestion times for various metals.

Metal	KW p-value	M_{12} (mg/kg)	M ₂₄ (mg/kg)
Al	0.082	5678	6075
Ва	0.036	30.29	32.09
Cd	0.000	1.825	1.050
Со	0.000	8.60	8.935
Cr	0.000	221.2	242.1
Cu	0.236	542.5	498.2
Fe	0.014	16920	17293
Mg	0.015	2121	2259
Mn	0.000	223.9	242.8
Ni	0.000	12.24	11.67
Р	0.049	612.3	630.0
Pb	0.000	2718	2893
Sb	0.000	22.61	20.59
Sr	0.002	21.51	23.80
V	0.000	15.14	16.32
Zn	0.241	75.80	79.88

 M_{12} = Median of results for 12-hr digestion

 M_{24} = Median of results for 24-hr digestion

KW = Kruskal-Wallis Test

Largest median bolded if p-value < 0.05 (i.e., medians significantly differ at 95% level of confidence).

The length of the digestion interval had a slight affect on the measured metal concentrations. The median concentrations tended to increase when

the digestion time was doubled. Statistically significant differences at the 95% level of confidence were reported from the KW test for 13 of the 16 metals (Table 34). For the four small arms metals Cu, Pb, Sb and Zn, statistically significant differences were observed for Sb and Pb only. Increasing the digestion time increased the Pb median and decreased the Sb median. The lower Sb concentrations are presumably owing to volatilization losses, an occurrence that is well documented (Nash et al. 2001; Hewitt and Cragin 1991; Kimbrough, 1989). However, the amount of concentration increase was small, generally less than 10%. Therefore, the recommendation is that no changes be made to the digestion time for USEPA Method 3050B.

5.5 Antimony

The concentrations of both Pb and Sb seem to decrease with increasing sample mass (Section 4.8). The mechanism responsible for this decline is unknown. However, USEPA Method 3050B often yields poor Sb recoveries, typically < 50% (Nash et al. 2001; Hewitt and Cragin 1991; Kimbrough, 1989). This is primarily because some of the Sb is insoluble as a result of passivation and chemical bonding with the soil particles.

The following digestion option (described in a footnote for Sb in USEPA Method 3005) was investigated:

- Weigh out 1.0 to 1.2 g of the soil sample into the digestion vessel using sub-sampling.
- Add 2.5-mL concentrated HNO3 and 2.5 mL concentrated HCl to the sample.
- Cover with a watch glass and reflux on hot block set at 95°C (covered container of water) for 15 minutes.
- Filter through Ahlstrom 55 into 100-mL vessel while still hot.
- Rinse with hot 1.25mls (~95°C) concentrated HCl.
- Rinse 3× with hot (95°C) reagent water (5 mL rinses).
- Place the filter paper and soil residue back into the original sample digestion vessel. Then add 2.5 mL concentrated HCl, cover and reflux on hot block for 20 minutes or until paper dissolves.
- Filter digestion solution through Ahlstrom 55 adding to the original filtrate. Rinse 3 times with reagent grade water. (5 mL rinses.).
- Bring to final volume of 100 mL with reagent grade water.

This is also the routine procedure that produces acceptable results in the USDOE MAPEP proficiency-testing program. Preliminary testing of this method on the unground (control) sample yielded improved Pb and Sb recoveries and significantly reduces the total sampling error as calculated with the percent RSD (Table 35). The difference in mean values was evaluated with a t-test at p=0.05 for n=15 and the results indicate the difference in Pb levels is not statistically significant. However, the differences in mean values for Sb are statistically significant.

Table 35. Antimony and lead recoveries with USEPA Method 3050B and a modification to USEPA Method 3005 for an unground soil.

		Mean ((mg/kg)	
	Lead Method 3050B	Lead Method 3005 modified	Antimony Method 3050B	Antimony Method 3005 modified
n	15	15	15	15
Mean	2043	2110	16	45
Median	1600	2000	10	38
Min	1030	1330	4	25
Max	5190	3370	61	92
STD	1251	605	18	19
RSD (%)	61	29	116	42

Min – minimum, Max. – maximum

STD – standard deviation

RSD - percent relative standard deviation

A similar analysis was done for an unsieved sample ground with the puck mill and ball mill (Table 36). In this case, there was no difference between the mean Sb and Pb concentrations with the two methods based on a t-test analysis. However, the calculated RSDs were lower with the Modified Method 3005 procedure resulting in a more precise estimate of the mean. Therefore, if Sb is a contaminant of concern and the measured soil concentration is expected near the regulatory threshold the modified USEPA Method 3005 should be considered.

Table 36. Antimony and lead recoveries with USEPA Method 3050B and a modification to USEPA Method 3005 for soils ground with puck and ball mills.

		Mean (mg/kg)	
	Lead Method 3050B	Lead Method 3005 modified	Antimony Method 3050B	Antimony Method 3005 modified
Puck and ring	22336	22320	186	185
Ball mill - 8 hr	4798	4787	35.0	34.9
Ball mill - 12 hr	5810	5800	46.1	45.9
Ball mill - 16 hr	6375	6380	44.9	45.1
Ball mill - 20 hr	7153	7153	55.2	55.2
	Relative s	tandard dev	iation (%)	
Puck and ring	37	5	39	9
Ball mill - 8 hr	13	10	23	20
Ball mill - 12 hr	6	4	7	7
Ball mill - 16 hr	6	1	14	7
Ball mill - 20 hr	1	1	1	2

Another option explored by the Swiss involves the addition of citric acid to the nitric acid allowing Sb to form stable complexes and oxyacids that are soluble.

6 Conclusion

Field studies of active small arms ranges where metal residues are deposited indicate that metals concentrations in soils exhibit large spatial heterogeneity. Traditional grab sampling and laboratory preparation procedures for soils containing metal residues are not sufficient to give representative or reproducible results for the characterization of anthropogenic metal contamination.

The multi-increment sampling approach provides reproducible for soils containing metal residues from the firing of small arms weapon systems. Distributional heterogeneity is addressed by collected at least 30-100 increments over the entire DU using systematic or simple random sampling. Owing to the large number of increments collected within a DU, multi-increment sampling tends to result in better spatial coverage and larger (and therefore more representative) sample masses for laboratory analysis than conventional grab sampling designs, which typically entail a comparative small number of grabs (e.g., n = 10-20). However, multi-increment field sampling is insufficient in of itself to overcome the distributional and compositional heterogeneity in the soil samples. Modifications to laboratory sample preparation procedures are also necessary to reduce variability owing to sample heterogeneity.

One of the issues to arise with the multi-increment soil sampling is the large volume of soils collected and then shipped to the analytical laboratory. Field processing using a splitting technique such as cone-and-quartering to reduce soil volume yields non-representative results, i.e., the concentration of metal in the different quarters is not the same. Although, collecting many increments randomly of a DU reduces the total variability, this alone is not sufficient in of itself to overcome heterogeneity. Therefore, field splitting to reduce sample volume is not an acceptable approach. Other processing steps that are best done in controlled environment of an environmental laboratory are necessary before sample splitting can occur. If metal residues are present in the sample it is necessary to mill the sample to reduce the size of the metal fragments present in the soil to a common particle size. Without milling, there will usually be large variability, resulting in unreliable estimates of anthropogenic metal concentrations. Two types of milling equipment yielded satisfactory results 1) ball mill and

2) puck mill. Milling for 5×60 s with a puck mill is sufficient to reduce the total sampling error to <30% for field replicates and < 15% for laboratory replicates. Similar levels of total sampling error were associated with milling using the ball mill for 18 hr.

One issue to be aware of when using a puck mill, which contains metallic components, is cross-contamination of the soil sample. The principal metals identified comings off the puck mill are Al, Cr, and Fe. However, metal cross-contamination is not a particular concern for the small arms range metals (Sb, Cu, Pb, and Zn). If metal residues composed of Al, Cr, and Fe are expected then use of the ball mill would be preferred or the puck mill with an agate bowl and puck. Use of the puck mill with metallic components would require studies using control materials to quantify the amount of metal contribution from the bowl and puck to the soil sample.

Other sample processing changes during the digestion step evaluated such as digestion mass and digestion interval had little bearing on the measured metal values. However, it was noted that Sb recoveries were poor with guidance provided in USEPA Method 3050B and therefore an alternative method was recommended to improve sample recoveries.

7 Recommendations

For small arms ranges it is desirable to treat the firing points and berm face as separate DUs. In most cases, it is not necessary to sample the range floor located between the firing point and berm face because most projectiles do not land in this area. Previous studies have verified that little metal is contributed to the range floor.

To reduce the influence of distributional heterogeneity in the estimate of the mean concentration for a decision unit, it is recommended that at least 50 evenly spaced increments are collected to form a multi-increment sample that weighs between 1 and 2 kg. The objective of collecting multi increment samples using a random systematic design is to obtain a proportional amount of contamination particles of every composition and shape to what exists within the selected decision unit and not to over or under sample any portion of the decision unit. The depth interval of the sample should be several inches or centimeters. Our recommendation is to collect a minimum of 3 replicate samples from the DU.

Once the MI sample has been collected it needs to be processed. This involves air-drying, sieving, machine grinding, and sub-sampling the multi-increment sample before a portion of it is digested and analyzed. The entire field-moist multi-increment sample is spread onto an aluminum-foil-lined tray and air-dried at room temperature (<25°C). The time required to thoroughly air-dry a sample depends on the relative humidity and the initial soil moisture content. Generally, 2 to 3 days are required.

For unvegetated or sparsely vegetated soil samples work the air-dried sample through a no. 10 sieve. The no. 10 sieve has a mesh with 2-mm openings, the size division between course sand and gravel (USDA 1993). A stainless steel spoon is used to break soil aggregates and dried vegetation such as moss or grass while sieving. Each size fraction is weighed, the < 2-mm fraction is processed further as described below, and the oversize (>2-mm) fraction is saved in the original sample bag for further study if desired. Sieving should be done in an exhaust hood to control dust.

The preferred method of milling soil samples for energetics and metals uses a ring-mill (also called a puck mill) grinder that works for crystalline

explosives, propellants, and metals. A ball mill may be appropriate when the focus is solely on metals. Under the metals only scenario, 18 hr of milling appears to be sufficient for most soil samples from a military small arms range when metal residues are expected. The ball mill is not appropriate for firing point samples when energetics and metals are planned to be analyzed. Soils from ranges that contain propellant residues (i.e., firing points, disposal areas, rocket impact ranges) should be ground in a puck mill for five 60-s periods with a 5 minute cooling time between each grind. The extra grinding time is needed to pulverize the propellant fibers, because these are mainly composed of nitrocellulose, a wood-like substance, and the cooling times are to avoid overheating and volatilizing the energetics. For metals the 5 minute grind times used for propellant have also been found to be effective. Grinding reduces the particle size of the course soil to the texture of flour ($<75 \mu m$). The ground multi-increment sample should appear and feel uniform when portions of the ground soil are pinched and rolled between the thumb and index finger. There should be no un-ground grains or fibers. If needed, the soil should be ground for an additional 60 to 90 seconds. If the puck mill is used with metallic components and Al, Cr, and Fe are contaminants of concern then studies should be conducted to quantify the cross-contamination.

During weighing out the 2 to 10 g of milled < 2mm soil for digestion a susampling approach involving a minimum of 20 increments is recommended. For the most part collecting a multi-increment field sample and milling of the soil will reduce the total sampling error to acceptable levels for most metals. However, in some cases, metal residues, such as Cu, may remain in the soil thus resulting in a less precise estimate of the mean. Sub-sampling during digestion preparation will result in a more representative sample.

Finally, it is recommended that all of the previous discussion be incorporated into a revision of USEPA Method 3050B including an Appendix to discuss multi-increment field sampling. Inclusion of an Appendix to discuss the multi-increment sampling methodology was the approach utilized when modifying the energetics extraction procedure, USEPA Method 8330B.

References

Alaska. 2009. *Draft Guidance on MULTI INCREMENT Soil Sampling*. Alaska Department of Environmental Conservation, Division of Spill Preventions and Response, Contaminated Sites Program.

- Ampleman, G., S. Thiboutot, J. Lewis, A. Marois, S. Jean, A. Gagnon, M. Brouchard, R. Martel, R. Lefebvre, C. Gauthier, J. M. Ballard, T.A. Ranney, and T.F. Jenkins. 2003a. *Evaluation of the Impacts of Live Fire Training at CFB Shilo.* TR-2003-066. Defence Research Establishment Valcartier. Valcartier: Quebec, Canada.
- Ampleman, G., S. Thiboutot, J. Lewis, A. Marois, S. Jean, A. Gagnon, M. Brouchard, T. Jenkins, A. Hewitt, J. C. Pennington, and T. A. Ranney. 2003b. *Evaluation of the Contamination by Explosives in Soils, Biomass and Surface Water at Cold Lake Air Weapons Range (CLAWR), Alberta, Phase 1 Report.* DRDC-Valcartier-TR-2003-208-Annex. Defence Research Establishment Valcartier. Valcartier, Quebec, Canada.
- ASTM. 2009. Standard Guide for Conducting Terrestrial Plant Toxicity Tests. E 1963-09.
- ASTM. 2004. Standard Guide for Conducting Laboratory Soil Toxicity or Bioaccumulation Tests with the Lumbricid Earthworm *Eisenia fetida* and the Enchytraeid Potworm *Enchytraeus albidus*. E 1676-04.
- Baumann, Z., and N. S. Fisher. 2011. Relating the sediment phase speciation of As, Cd, and Cr with their bioavailability for the deposit-feeding polychaete Nereis succinea. *Environmental Toxicology and Chemistry* **30**: 747-756.
- Clausen, J. L., J. Richardson, N. Korte, G. Gooch, T. Hall, N. Perron, E. Butterfield, M. Walsh, and S. Taylor. 2011(in preparation). *Metal Residue Deposition from Military Pyrotechnic Devices and Field Sampling Guidance.* ERDC TR-11-xx. U.S. Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, NH.
- Clausen, J.L., J. Kaste, M. Ketterer, and N. Korte. 2010. Sample preparation and digestion considerations for determining metal deposition at small arms ranges. *International Journal of Environmental Analytical Chemistry.* **90**(12): 903–921.
- Clausen, J., and N. Korte. 2009a. The distribution of metals in soils and pore water at three U.S. military training facilities. *Soil and Sediment Contamination Journal:* An International Journal **18**(5): 546–563.
- Clausen, J. L.. and N. Korte. 2009b. Environmental fate of tungsten from military use. *The Science of the Total Environment.* **407**(8):2887-2893.
- Clausen, J. L., A. Bednar, D. Lambert, R. Bailey, M. Kuhlbrush, S. Taylor, and S. Bigl. 2010. *Phase II Tungsten Fate-and-Transport Study for Camp Edwards.* ERDC-CRREL TR-10-3. US Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory. Hanover, NH. http://acwc.sdp.sirsi.net/client/default
- Clausen, J., S. Taylor, S. Larson, A. Bednar, M. Ketterer, C. Griggs, D. Lambert, A. Hewitt, C. Ramsey, S. Bigl, R. Bailey, and N. Perron. 2007. *Fate and Transport of Tungsten at Camp Edwards Small Arms Ranges*. ERDC-CRREL TR-07-05. US Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory. Hanover, NH. http://acwc.sdp.sirsi.net/client/default
- Clausen, J. L., J. Robb, D. Curry, and N. Korte. 2004. A case study of contaminants on military ranges: Camp Edwards, Massachusetts, USA. *Environmental Pollution*. **129**: 13–21.
- DoD Directive 4715.11 http://www.dtic.mil/whs/directives/corres/pdf/471511p.pdf.

- DoD Instruction 4715.14 http://www.dtic.mil/whs/directives/corres/pdf/471514p.pdf.
- Dauphin, L., and C. Doyle. 2000. *Study of Ammunition Dud and Low-Order Detonation Rates*. US Army Environmental Center. Report SFIM-ACE-ET-CR-200049. Aberdeen Proving Ground, MD.
- Gerlach R. W., and J. M. Nocerino. 2003. Guidance for Obtaining Representative Laboratory Analytical Subsamples from Particulate Laboratory Samples. US Environmental Protection Agency. EPA/600/R-03/027. Washington, DC.
- Hawaii. 2008 (in prep). *Technical Guidance Manual*. Hawaii Department of Health, Office of Hazard Evaluation and Emergency Response. http://www.hawaiidoh.org/.
- Hewitt, A. D., and M.E. Walsh. 2003. *On-site homogenization and sub sampling of surface samples for analysis of explosives*. ERDC/CRREL TR 03-14. US Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory. Hanover, NH. http://acwc.sdp.sirsi.net/client/default
- Hewitt A. D., T. F. Jenkins, S. R. Bigl, J. L. Clausen, H. Craig, M. E. Walsh, R. Martel, and K. Nieman. 2011 (In Press). Site Characterization for Munitions Constituents.
 EPA-xxx-R-10-xx. US. Environmental Protection Agency, Solid Waste and Emergency Response, Federal Facilities Forum Issue. Washington, DC.
- Hewitt, A. D., T. F. Jenkins, M. E. Walsh, S. R. Bigl, and S. Brochu. 2009. *Validation of Sampling Protocol and the Promulgation of Method Modifications for the Characterization of Energetic Residues on Military Testing and Training Ranges.* ERDC/CRREL TR-09-6. US Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory. Hanover, NH. http://acwc.sdp.sirsi.net/client/default
- Hewitt, A. D., T. F. Jenkins, M. E. Walsh, M. R. Walsh, S. R. Bigl, and C. A. Ramsey. 2007. Protocols for Collection of Surface Soil Samples at Military Training and Testing Ranges or the Characterization of Energetic Munition Constituents. ERDC/CRREL TR-07-10. US Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory. Hanover, NH. http://acwc.sdp.sirsi.net/client/default
- Hewitt, A. D., T. F. Jenkins, C. A. Ramsey, K. L. Bjella, T. A. Ranney, and N. Perron. 2005. *Estimating Energetic Residue Loading on Military Artillery Ranges: Large Decision Units.* ERDC/CRREL TR-05-7. US Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory. Hanover, NH. http://acwc.sdp.sirsi.net/client/default
- Hewitt, A. D., T. F. Jenkins, T. A. Ranney, J. Stark, M. E. Walsh, S. Taylor, M. Walsh, D. Lambert, N. Perron, and N. Collins. 2003. *Estimates for Explosives Residue Deposition from the Detonation of Army Munitions.* ERDC/CRREL TR-03-16. US Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory. Hanover, NH. http://acwc.sdp.sirsi.net/client/default
- Hewitt, A. D., and J. H. Cragin. 1991. Environ. Sci. Technol. 25:985.
- ITRC. 2011 (draft). *Technical and Regulatory Guidance: Incremental Sampling Methodology*. March 2011. Interstate Technology and Regulatory Council, Incremental Sampling Methodology Team. Washington, DC.
- Jenkins, T. F., A. D. Hewitt, C. A. Ramsey, K. L. Bjella, S. R. Bigl, and D. J. Lambert. 2006. *Sampling Studies at an Air Force Live-Fire Bombing Range Impact Area.* ERDC/CRREL TR-06-2. US Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory. Hanover, NH. http://acwc.sdp.sirsi.net/client/default
- Jenkins, T. F., A. D. Hewitt, M. E. Walsh, T. A. Ranney, C. A. Ramsey, C. L. Grant, and K. L. Bjella. 2005. Representative sampling for energetic compounds at military training ranges. *Environmental Forensics* **6**: 45–55.

Jenkins, T. F., T. A. Ranney, A. D. Hewitt, M. E. Walsh, and K. L. Bjella. 2004a. Representative Sampling for Energetic Compounds at an Antitank Firing Range. ERDC/CRREL TR-04-7. US Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory. Hanover, NH. http://www.crrel.usace.army.mil/library/technicalreports/TR04-7.pdf.

- Jenkins, T. F., A. D. Hewitt, T. A. Ranney, C. A. Ramsey, D. J. Lambert, K. L. Bjella, and N. M. Perron. 2004b. *Sampling Strategies Near a Low-Order Detonation and a Target at an Artillery Impact Area*. ERDC/CRREL TR-04-14. US Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory. Hanover, NH. http://acwc.sdp.sirsi.net/client/default
- Jenkins, T. F., M. E. Walsh, P. H. Miyares, A. D. Hewitt, N. H. Collins, and T. A. Ranney. 2002. Evaluation of the use of snow-covered ranges to estimate the explosives residues that result from high order detonations of army munitions. *Thermochim. Acta.* **384**: 173–185.
- Jenkins, T. F.; J. C. Pennington, T. A. Ranney, T. E. Berry, P. H. Miyares, M. E. Walsh, A. D. Hewitt, N. M. Perron, L. V. Parker, C. A. Hayes, and E. G. Wahlgren. 2001. *Characterization of Explosives Contamination at Military Firing Range*. ERDC TR-01-5. US Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory. Hanover, NH. http://acwc.sdp.sirsi.net/client/default
- Jenkins, T. F., C. L. Grant, M. E. Walsh, P. G. Thorne, S. Thiboutot, G. Ampleman, and T. A. Ranney. 1999. Coping with Spatial Heterogeneity Effects on Sampling and Analysis at an HMX Contaminated Antitank Firing Range. Field Analytical Chemistry Technology 3: 19–28.
- Jenkins, T. F., M. E. Walsh, P. G. Thorne, P. H. Miyares, T. A. Ranney, C. L. Grant, and J. R. Esparza. 1998. Site Characterization for Explosives Contamination at a Military Firing Range Impact Area. CRREL Special Report 98-9. US Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory. Hanover, NH. http://acwc.sdp.sirsi.net/client/default
- Jenkins, T. F., M. E. Walsh, P. G. Thorne, S. Thiboutot, G. Ampleman, T. A. Ranney, and C. L. Grant. 1997a. *Assessment of Sampling Error Associated with the Collection and Analysis of Soil Samples at a Firing Range Contaminated with HMX.*CRREL Special Report 97-22. US Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory. Hanover, NH. http://acwc.sdp.sirsi.net/client/default
- Jenkins, T. F., C. L. Grant, G. S. Brar, P. G. Thorne, P. W. Schumacher, and T. A. Ranney. 1997b. Sampling Error Associated with Collection and Analysis of Soil Samples at TNT Contaminated Sites. *Field Analytical Chemistry Technology* 1: 151–163.
- Jenkins, T. F., C. L. Grant, G. S. Brar, P. G. Thorne, T. A. Ranney., and P. W. Schumacher. 1996. Assessment of Sampling Error Associated with Collection and Analysis of Soil Samples at Explosives-Contaminated Sites. CRREL Special Report 96-15. US Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory. Hanover, NH. http://acwc.sdp.sirsi.net/client/default
- Kimbrough, D. E., and J. R. Wakakuwa. 1991. Acid digestion for sediments, sludges, soils. Ad solid wastes. A proposed alternative to EPA SW 846 Method 3050Environmental Science and Technology **23**: 89–900.
- Nash, M. J., J. E. Maskall, and S. J. Hill. 2000. Methodologies for determination of antimony in terrestrial environmental samples. Journal of Environmental Monitoring **2**: 97–109.

Nieman, K. C. 2007. Select Engineering Services, 75 CEG/CEVC, Hill Air Force Base, UT, Personal communication.

- Pennington, J. C., T. F. Jenkins, A. D. Hewitt, J. A. Stark, D. Lambert, N. M. Perron, S. Taylor, G. Ampleman, S. Thiboutot, J. Lewis, A. Marois, C. Gauthier, P. Brousseau, R. Martel, R. Lefebvre, J. Ballard, S. Brochu, J. Clausen, J. E. Delaney, M. A. Hollander, H. Q. Dinh, I. Davis, T. A. Ranney, and C. A. Hayes. 2005. *Distribution and Fate of Energetics on DoD Test and Training Ranges: Interim Report 4.* ERDC TR-04-4. Strategic Environmental Research and Development Program. Arlington, VA.
- Petersen, L., C. K. Dahl, K. H. Esbensen. 2004. Representative mass reduction in sampling-critical survey of techniques and hardware. Chemometrics and Intelligent Laboratory Systems **74**: 95–114.
- Pitard, F. 1993. *Pierre Gy's Sampling Theory and Sampling Practice*. 2nd Edition. Boca Raton, Florida: CRC Press.
- Racine, C. H., M. E. Walsh, C. M. Collins, D. J. Calkins, B. D. Roebuck, and L. Reitsma. 1992. Waterfowl Mortality in Eagle River Flats, Alaska: The Role of Munition Residues. CRREL Report 92-5. Cold Regions Research and Engineering Laboratory. Hanover, NH.
- Rodriguez, R. R., N. T. Basta, S. W. Casteel, and L. W. Pace. 1999. An in virto gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. *Environmental Science and Technology* **33**: 642–649.
- Ruby, M. V., A. Davis, R. Schoof, S. Eberle, and C. M. Sellstone. 1996. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. *Environmental Science and Technology* **30**: 422–430.
- Ruby, M. V., R. Schoof, W. Brattin, M. Goldade, G. Post, M. Harnois, D. E. Mosby, S. W. Casteel, W. Berti, M. Carpenter, D. Edwards, D. Cragin, and W. Chappell. 1999. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. *Environmental Science and Technology* 33: 3697–3705.
- Taylor, S., T. F. Jenkins, H. Rieck, S. Bigl, A. D. Hewitt, M. E. Walsh and M. R. Walsh. 2011. MMRP Guidance Document for Soil Sampling of Energetics and Metals. ERDC/CRREL TR 11-15. US Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory. Hanover, NH. http://acwc.sdp.sirsi.net/client/default
- Taylor, S., A. Hewitt, J. Lever, C. Hayes, L. Perovich, P. Thorne and C. Daghlian. 2004. TNT particle size distributions from detonated 155-mm howitzer rounds. *Chemosphere* **55**: 357–367.
- Thiboutot, S., G. Ampleman, J. Lewis, D. Faucher, A. Marois, R. Martel, J. M. Ballard, S. Downe, T. F. Jenkins, A. Hewitt. 2003. *Environmental Conditions of Surface Soils and Biomass Prevailing in the Training Area at CFB Gagetown, New Brunswick.* DREV-TR-2003-152; Defence Research Establishment Valcartier. Valcartier, Quebec, Canada.
- Thiboutot, S., G. Ampleman, and A. D. Hewitt. 2002. Guide for Characterization of Sites Contaminated with Energetic Materials. ERDC/CRREL Technical Report TR-02-1. US Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory. Hanover, NH.
- Thiboutot, S., G. Ampleman, A. Gagnon, and A. Marois. 2000a. *Characterization of an Unexploded Ordinance Contaminated Range (Tracadie Range) for Potential Contamination by Energetic Materials.* DREV-TR-2000-102. Defence Research Establishment Valcartier: Valcartier, Quebec, Canada,

Thiboutot, S., G. Ampleman, P. Dube, C. Dubois, R. Martel, R. Lefebvre, M. Mailloux, G. Sunahara, P. Y. Roubidoux, and J. Hawari. 2000b. *Characterization of DND Training Ranges Including Anti-Tank Firing Ranges and Ecotoxicological Assessment.* Defence Research Establishment – Valcartier. Valcartier, Quebec, Canada.

- Thiboutot, S., G. Ampleman, A. Gagnon, A. Marois, T. F. Jenkins, M. E. Walsh, P. G. Thorne, and T. A. Ranney. 1998. *Characterization of Antitank Firing Ranges at CDB Valcartier, WATC Wainwright and CFAD Dundurn.* Defence Research Establishment Valcartier. Valcartier, Quebec, Canada.
- USEPA. 2006. Method 8330B: Nitroaromatics, nitramines, and nitrate esters by high performance liquid chromatography (HPLC). In *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods*, US Environmental Protection Agency, Office of Solid Waste and Emergency Response. SW-846. Washington, DC: http://www.epa.gov/epawaste/hazard/testmethods/pdfs/8330b.pdf.
- USEPA. 2003. Guidance for Obtaining Representative Laboratory Analytical Subsamples from Particulate Laboratory Samples. Ed. R. W. Gerlach and J. M. Nocerino. EPA/600/R-03/027. US Environmental Protection Agency. Washington, DC.
- USEPA. 2000. Administrative Order for Massachusetts Military Reservation Training and Impact Area Response Actions. EPA Docket No. SDWA-1-2000-0014. U.S. Environmental Protection Agency Region 1. Boston, Massachusetts.
- USEPA. 1996a. SW-846 Method 3050B: Acid Digestion of Sediments, Sludges, and Soils. In *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods*. US Environmental Protection Agency, Office of Solid Waste and Emergency Response. Washington, DC. http://www.epa.gov/osw/hazrad/testmethods/sw846/pdfs/3050b.pdf
- USEPA. 1996b. SW-846 Method 3051A: Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. In *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods*. US Environmental Protection Agency, Office of Solid Waste and Emergency Response. Washington, DC.
- USEPA. 1996c. SW-846 Method 3052: Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices: In *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods*. US Environmental Protection Agency, Office of Solid Waste and Emergency Response. Washington, DC.
- USEPA. 1994. Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry. Revision 4.4, EMMC Version. In *Methods for the Determination of Metals in Environmental Samples, Supplement 1. EPA*/600-R-94-111. US Environmental Protection Agency, Office of Solid Waste and Emergency Response. Washington, DC.
- USGS. 1993. Soil sample preparation, Chapter 3, In: *Analytical Methods for Chemical Analysis of Geologic and Other Materials.* Open File Report 02-223-A3. US Geological Survey. http://pubs.usgs.gov/of/2002/ofr-02-0223/.
- Walsh, M. R. 2009. *User's Manual for the CRREL Multi-Increment Sampling Tool.*ERDC/CRREL SR-09-1. US Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory. Hanover, NH. http://acwc.sdp.sirsi.net/client/default
- Walsh, M. E., C. A. Ramsey, S. Taylor, A. D. Hewitt, K. Bjella, C. M. Collins. 2006a. Sub sampling Variance for 2,4-DNT in Firing Point Soils. *Soil and Sediment Contamination: an International Journal* **16**(5): 459–472.

Walsh M. E. and D. Lambert. 2006b. Extraction Kinetics of Energetic Compounds from Training Range and Army Ammunition Plant Soils: Platform Shaker versus Sonic Bath Methods. ERDC/CRREL TR-06-6. US Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory. Hanover, NH. http://acwc.sdp.sirsi.net/client/default

- Walsh, M. E., C. A. Ramsey, C. M. Collins, A. D. Hewitt, M. R. Walsh, K. Bjella, D. Lambert, and N. Perron. 2005. Collection methods and laboratory processing of samples from Donnelly Training Area Firing Points Alaska 2003. ERDC/CRREL TR-05-6. US Army Corps of Engineers, Environmental Research and Development Center, Cold Regions Research and Engineering Laboratory. Hanover, NH. http://www.crrel.usace.army.mil/techpub/CRREL_Reports/reports/TR05-6.pdf.
- Walsh, M. E., C. M. Collins, T. F. Jenkins, A. D. Hewitt, J. Stark, and K. Myers. 2003. Sampling for Explosives-Residues at Ft. Greely. *Soil and Sediment Contamination* **12**: 631–645.
- Walsh, M. E., C. A. Ramsey, and T. F. Jenkins. 2002. The Effect of Particle Size Reduction on Sub sampling Variance for Explosives Residues in Soil. *Chemosphere*. **49**: 1265–1271.
- Walsh, M. E., C. M. Collins, R. N. Bailey, and C. L. Grant. 1997. Composite Sampling of Sediments Contaminated with White Phosphorus. CRREL Special Report 97-30.
 US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory. Hanover, NH.
- Walsh, M. E., and C.M. Collins. 1993. Distribution of White Phosphorus in Residues from the Detonation of 81 mm Mortar WP Smoke Rounds. CRREL Special Report 93-18. US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory. Hanover, NH.
- Walsh, M. E., T. F. Jenkins, P. H. Miyares, P. S. Schnitker, J. W. Elwell, and M. H. Stutz. 1993. *Evaluation of SW846 Method 8330 for Characterization of Sites Contaminated with Residues of High Explosives.* CRREL Report 93-5. US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory. Hanover, NH.

Appendix A: Analytical Results

Table A1. Experiment 1—Glass bead metal results.

Experiment ID	Lab Replicate	Unground	Grinder Type	Ground Time (sec)	Al (mg/kg)		Ba (mg/kg)		Ca (mg/kg)	Cd (mg/kg)		Co (mg/kg)		Cr (mg/kg)		Cu (mg/kg)	
B38-6	1	х	NA	NA	2.45	J	0.140	U	NA	-0.125	U	-0.005	U	0.030	U	1.25	J
B38-7	2	х	NA	NA	3.22	J	0.165	U	NA	-0.185	U	-0.035	U	0.010	U	1.16	J
B38-8	3	х	NA	NA	6.48	J	0.160	U	NA	-0.190	U	-0.055	U	0.005	U	1.23	J
B38-9	1	NA	Puck	1x60	142		0.655		NA	-0.125	U	0.200		89.5		1.91	
B38-10	2	NA	Puck	1x60	134		0.650		NA	-0.125	U	0.200		90.6		1.89	
B38-11	3	NA	Puck	1x60	150		0.660		NA	-0.115	U	0.190		90.6		1.98	
B38-12	1	х	NA	NA	2.22	J	0.100	U	NA	-0.205	U	-0.045	U	-0.015	U	1.22	J
B38-13	2	х	NA	NA	1.87	J	0.100	U	NA	-0.205	U	-0.040	U	-0.005	U	1.19	J
B38-14	3	х	NA	NA	1.93	J	0.085	U	NA	-0.200	U	-0.050	U	-0.025	U	1.15	J
B38-15	1	NA	Puck	1x60	37.5		0.205	U	NA	-0.190	U	0.000	U	10.3		1.41	J
B38-16	2	NA	Puck	1x60	34.1		0.190	U	NA	-0.195	U	0.000	U	10.4		1.40	J
B38-17	3	NA	Puck	1x60	30.4		0.200	U	NA	-0.195	U	0.000	U	9.91		1.43	J
B45-6	1	NA	Puck	1x60	128		0.685	J	NA	0.057	J	0.118	J	58.2		1.93	
B45-7	2	NA	Puck	1x60	142		0.680	J	NA	0.045	J	0.125	J	57.0		1.83	
B45-8	3	NA	Puck	1x60	144		0.780	J	NA	0.036	J	0.102	J	52.9		1.93	
B45-9	4	NA	Puck	1x60	104		0.595	J	NA	0.050	J	0.120	J	51.1		1.77	
B45-10	5	NA	Puck	1x60	114		0.640	J	NA	0.040	J	0.125	J	57.3		1.93	
B45-11	6	NA	Puck	1x60	127		0.660	J	NA	0.050	J	0.110	J	52.0		1.71	
B45-12	7	NA	Puck	1x60	125		0.665	J	NA	0.040	J	0.125	J	59.1		1.81	
B45-13	8	NA	Puck	1x60	131		0.680	J	NA	0.040	J	0.120	J	57.3		1.96	
B45-14	9	NA	Puck	1x60	118		0.641	J	NA	0.040	J	0.111	J	52.5		1.72	
B45-15	10	NA	Puck	1x60	121		0.630	J	NA	 0.040	J	0.120	J	55.5		1.92	

Experiment ID	Lab Replicate	Unground	Grinder Type	Ground Time (sec)	AI (mg/kg)	Ba (mg/kg)		Ca (mg/kg)	Cd (mg/kg)		Co (mg/kg)		Cr (mg/kg)	Cu (mg/kg)
B45-16	11	NA	Puck	1x60	138	0.650	J	NA	0.035	J	0.110	J	51.4	1.79
B45-17	12	NA	Puck	1x60	125	0.660	J	NA	0.040	J	0.115	J	56.8	1.96
B45-18	13	NA	Puck	1x60	110	0.615	J	NA	0.040	J	0.115	j	52.9	1.77
B45-19	14	NA	Puck	1x60	126	0.670	J	NA	0.035	J	0.115	J	57.1	1.91
B45-20	15	NA	Puck	1x60	119	0.655	J	NA	0.035	J	0.100	j	53.8	1.78
B45-21	1	NA	Puck	1x60	28.6	0.220	U	NA	0.035	J	-0.010	U	4.04	1.64
B45-22	2	NA	Puck	1x60	36.0	0.280	J	NA	0.030	J	0.000	U	5.08	1.59
B45-23	3	NA	Puck	1x60	30.8	0.245	U	NA	0.025	J	-0.005	U	4.09	1.66
B45-24	4	NA	Puck	1x60	30.2	0.195	U	NA	0.015	J	-0.015	U	2.92	1.53
B45-25	5	NA	Puck	1x60	27.8	0.225	U	NA	0.020	J	-0.010	U	3.68	1.64
B45-26	6	NA	Puck	1x60	25.4	0.215	U	NA	0.020	J	-0.005	U	3.33	1.49 J
B45-27	7	NA	Puck	1x60	26.4	0.205	U	NA	0.030	J	-0.005	U	3.57	1.67
B45-28	8	NA	Puck	1x60	22.3	0.200	U	NA	0.025	J	-0.005	U	3.02	1.52
B45-29	9	NA	Puck	1x60	30.3	0.245	U	NA	0.030	J	0.000	U	4.37	1.58
B45-30	10	NA	Puck	1x60	36.9	0.230	U	NA	0.015	J	-0.005	U	4.01	1.44 J
B45-31	11	NA	Puck	1x60	28.3	0.210	U	NA	0.045	J	0.000	U	3.79	1.63
B45-32	12	NA	Puck	1x60	25.2	0.195	U	NA	0.020	J	0.000	U	3.08	1.45 J
B45-33	13	NA	Puck	1x60	26.1	0.220	U	NA	0.030	J	-0.005	U	3.57	1.66
B45-34	14	NA	Puck	1x60	30.6	0.205	U	NA	0.025	J	-0.005	U	3.52	1.51
B45-35	15	NA	Puck	1x60	32.7	0.235	U	NA	0.025	J	0.005	U	4.96	1.96
B51-3	1	NA	Puck	1x60	0.31	<0.0400		0.447	<0.0400		<0.0400		<0.0400	0.112
B51-4	2	NA	Puck	1x60	0.351	<0.0400		0.464	<0.0400		<0.0400		<0.0400	0.1
B51-5	3	NA	Puck	1x60	0.332	<0.0400		0.426	<0.0400		<0.0400		<0.0400	0.0977

Experiment ID	Lab Replicate	Unground	Grinder Type	Ground Time (sec)	AI (mg/kg)	Ba (mg/kg)	Ca (mg/kg)	Cd (mg/kg)	Co (mg/kg)	Cr (mg/kg)	Cu (mg/kg)
B51-6	4	NA	Puck	1x60	0.304	<0.0400	0.428	<0.0400	<0.0400	<0.0400	0.0923
B51-7	5	NA	Puck	1x60	0.232	<0.0400	0.46	<0.0400	<0.0400	<0.0400	0.0737
B51-8	6	NA	Puck	1x60	0.304	<0.0400	0.491	<0.0400	<0.0400	<0.0400	0.0727
B51-9	7	NA	Puck	1x60	0.42	<0.0400	0.432	<0.0400	<0.0400	0.0462	0.0636
B51-10	8	NA	Puck	1x60	0.297	<0.0400	0.433	<0.0400	<0.0400	<0.0400	0.0664
B51-11	9	NA	Puck	1x60	0.252	<0.0400	0.393	<0.0400	<0.0400	<0.0400	0.0616
B51-13	11	NA	Puck	1x60	<1.00	<0.400	<1.00	1.4	1.29	3.55	15.5
B51-14	12	NA	Puck	1x60	<1.00	3.9	1.11	<0.400	<0.400	<0.400	<0.400
B51-15	1	NA	Puck	1x60	1.76	<0.400	<1.00	<0.400	<0.400	1.37	<0.400
B51-16	2	NA	Puck	1x60	1.59	<0.0400	0.584	<0.0400	<0.0400	1.4	0.118
B51-17	3	NA	Puck	1x60	1.6	<0.0400	0.577	<0.0400	<0.0400	1.39	0.114
B51-18	1	NA	Puck	2x60	2.23	<0.0400	0.501	<0.0400	<0.0400	2.77	0.119
B51-19	2	NA	Puck	2x60	2.27	<0.0400	0.547	<0.0400	<0.0400	2.22	0.109
B51-20	3	NA	Puck	2x60	2.29	<0.0400	0.534	<0.0400	<0.0400	2.31	0.104
B51-21	1	NA	Puck	3x60	2.74	<0.0400	0.571	<0.0400	<0.0400	3.03	0.104
B51-22	2	NA	Puck	3x60	2.76	<0.0400	0.506	<0.0400	<0.0400	3.04	0.101
B51-23	3	NA	Puck	3x60	2.78	<0.0400	0.506	<0.0400	<0.0400	3.05	0.0987
B51-24	4	NA	Puck	3x60	2.69	<0.0400	0.482	<0.0400	<0.0400	2.93	0.0917
B51-25	5	NA	Puck	3x60	2.78	<0.0400	0.487	<0.0400	<0.0400	2.98	0.127
B51-26	6	NA	Puck	3x60	2.73	<0.0400	0.564	<0.0400	<0.0400	2.99	0.108
B51-27	7	NA	Puck	3x60	2.73	<0.0400	0.48	<0.0400	<0.0400	2.9	0.0975
B51-28	8	NA	Puck	3x60	2.74	<0.0400	0.548	<0.0400	<0.0400	2.95	0.0971

Experiment ID	Lab Replicate	Unground	Grinder Type	Ground Time (sec)	AI (mg/kg)	Ba (mg/kg)	Ca (mg/kg)	Cd (mg/kg)	Co (mg/kg)	Cr (mg/kg)	Cu (mg/kg)
B51-29	9	NA	Puck	3x60	2.74	<0.0400	0.639	<0.0400	<0.0400	2.98	0.0934
B51-30	10	NA	Puck	3x60	2.78	<0.0400	0.523	<0.0400	<0.0400	2.96	0.089
B51-31	11	NA	Puck	3x60	2.72	<0.0400	0.482	<0.0400	<0.0400	2.93	0.0835
B51-32	12	NA	Puck	3x60	2.73	<0.0400	0.86	<0.0400	<0.0400	2.95	0.0851

Fe (mg/kg)	Mg (mg/kg)		Mn (mg/kg)		Ni (mg/kg)		P (mg/kg)		Pb [mg/kg)		Sb (mg/kg)		K (mg/kg)	Na (mg/kg)		S (mg/kg)	Sr (m	r ng/kg)	\	V (mg/kg)		W (mg/kg)		Zn (mg/kg)		Comment
3.19	6.48		0.075	U	0.045	U	1.96		0.185	J	0.030	U	NA	NA	-	NA NA	-	.080 J	+	0.020	U	0.215	U	0.685	+	Inground Glass
2.55	7.94		0.075	U	0.020	U	2.54	С	0.085	U	0.060	U	NA	NA	1	NA	0.	.075 J	-	0.020	U	0.100	U	0.520	L	Inground Glass
3.66	11.5		0.060	U	0.015	U	3.06	С	0.045	U	0.020	U	NA	NA		NA	0.	.070 J	-	0.025	U	0.075	U	1.28	ι	Inground Glass
684	9.36		5.10		1.14	J	3.92	1	1.50		1.83		NA	NA	Ī	NA	0.	.195	(0.045	J	0.070	U	1.15	G	Ground Glass
690	9.17		5.11		1.11	J	3.91	1	1.47	J	1.28	J	NA	NA	Ī	NA	0.	.190	C	0.045	J	0.035	U	1.56	G	Ground Glass
692	9.39		5.05		1.13	J	4.30	1	1.64		1.29	J	NA	NA	ſ	NA	0.	.195	C	0.065	J	0.705	J	1.39	G	Ground Glass
1.96	5.73		0.025	U	-0.005	U	2.49	С	0.070	U	0.030	U	NA	NA	ſ	NA	0.	.050 J	-	-0.035	U	0.305	U	0.225	L	Inground Glass, Washed
1.85	5.43		0.020	U	0.005	U	2.77	С	0.065	U	0.015	U	NA	NA	Ī	NA	0.	.050 J	-	-0.030	U	0.220	U	0.445	L	Inground Glass, Washed
1.73	4.99		0.025	U	-0.005	U	2.40	С	0.055	U	-0.010	U	NA	NA	ſ	NA	0.	.050 J	-	0.025	U	0.105	U	0.550	L	Inground Glass, Washed
50.6	5.09		0.900		3.63		2.77	С	0.325	J	0.140	J	NA	NA	ſ	NA	0.	.080 J	-	-0.025	U	0.075	U	0.350	G	Ground Glass, Washed
51.7	4.84		0.900		3.74		2.83	С	0.275	J	0.175	J	NA	NA	Ī	NA	0.	.080 J	-	-0.010	U	0.065	U	0.355	G	Ground Glass, Washed
49.5	5.40		0.860		3.43		2.93	С	0.240	J	0.135	J	NA	NA	ſ	NA	0.	.085 J	-	-0.015	U	0.070	U	0.500	G	Ground Glass, Washed
433	8.44	J	3.44		0.603	J	1.88	2	2.08		0.793	J	NA	NA	ſ	NA	0.	.201	C	0.041	J	-0.103	U	0.912	G	Ground Glass
426	8.33	J	3.51		0.680	J	1.93	2	2.79		0.690	J	NA	NA	7	NA	0.	.190	(0.045	J	-0.145	U	0.830	G	Ground Glass
400	8.39	J	3.33		0.607	J	1.90	2	2.96		0.699	J	NA	NA		NA	0.	.219	(0.036	J	-0.179	U	0.770	G	Ground Glass

Fe (mg/kg)	Mg (mg/kį	š)	Mn (mg/kg)		Ni (mg/kg)		P (mg/kg)	Pb (mg/kg)		Sb (mg/kg)		K (mg/kg)	Na (mg/kg)	S (mg/kg)	Sr (mg/kg)	V (r	ng/kg)		W (mg/kg)		Zn (mg/kg)	Comment
380	8.24	J	3.10		0.610	J	1.84	1.19 J	ı	0.625	J	NA	NA	NA	0.165	0	.045	J	-0.160	U	0.610	Ground Glass
427	8.09	J	3.50		0.770	J	1.89	1.58	C	0.765	J	NA	NA	NA	0.180	0	.040	J	-0.175	U	0.765	Ground Glass
390	7.53	J	3.17		0.545	J	1.97	2.17	C	0.720	J	NA	NA	NA	0.180	0	.035	J	0.115	U	0.860	Ground Glass
435	8.36	J	3.59		0.610	J	2.01	1.95	C	0.750	J	NA	NA	NA	0.185	0	.055	J	-0.025	U	0.860	Ground Glass
422	8.18	J	3.49		0.495	J	2.02	2.12	C	0.700	J	NA	NA	NA	0.200	0	.045	J	-0.090	U	1.265	Ground Glass
389	8.06	J	3.19		0.606	J	1.99	1.74	C	0.692	J	NA	NA	NA	0.182	0	.035	J	-0.126	U	1.21	Ground Glass
412	8.11	J	3.43		0.625	J	2.09	1.89	C	0.695	J	NA	NA	NA	0.175	0	.045	J	-0.130	U	1.005	Ground Glass
391	8.31	J	3.19		0.645	J	2.16	2.67	C	0.580	J	NA	NA	NA	0.185	0	.045	J	-0.185	U	0.785	Ground Glass
430	8.81	J	3.52		0.650	J	2.23	2.02	C	0.720	J	NA	NA	NA	0.185	0	.040	J	-0.170	U	0.985	Ground Glass
390	8.43	J	3.20		0.585	J	2.10	1.33 J	J (0.690	J	NA	NA	NA	0.175	0	.045	J	-0.145	U	0.910	Ground Glass
426	8.14	J	3.47		0.545	J	2.14	1.96	C	0.720	J	NA	NA	NA	0.185	0	.050	J	-0.165	U	1.00	Ground Glass
399	8.24	J	3.25		0.640	J	2.15	1.65	C	0.660	J	NA	NA	NA	0.180	0	.050	J	-0.160	U	0.885	Ground Glass
24.0	4.89	J	0.260	J	0.040	U	1.51	0.520 J	J (0.075	U	NA	NA	NA	0.080 J	0	.010	J	0.100	U	0.450	Ground Glass, Washed
31.7	5.22	J	0.350	J	0.185	J	1.70	0.515 J	J (0.060	U	NA	NA	NA	0.095 J	0	.010	J	0.010	U	0.435	Ground Glass, Washed
25.5	4.83	J	0.280	J	0.100	J	1.59	0.425 J	J (0.035	U	NA	NA	NA	0.085 J	0	.000	U	-0.080	U	0.385	Ground Glass, Washed
16.9	4.72	J	0.210	J	0.200	J	1.62	0.720 J	J (0.000	U	NA	NA	NA	0.075 J	0	.000	U	-0.130	U	0.515	Ground Glass, Washed
21.2	4.56	J	0.245	J	0.050	U	1.55	0.490 J	J (0.065	U	NA	NA	NA	0.080 J	-C	0.005	U	-0.120	U	0.605	Ground Glass, Washed
18.4	4.03	J	0.220	J	0.220	J	1.59	0.405 J	J (0.015	U	NA	NA	NA	0.070 J	-C	0.010	U	-0.140	U	0.360	Ground Glass, Washed
20.0	4.54	J	0.230	J	0.075	U	1.66	0.465 J	J -	0.010	U	NA	NA	NA	0.075 J	0	.005	U	-0.115	U	0.390	Ground Glass, Washed
16.9	4.41	J	0.210	J	0.180	J	1.56	0.365 J	J -	0.010	U	NA	NA	NA	0.070 J	-0	0.010	U	-0.170	U	0.595	Ground Glass, Washed
25.2	4.49	J	0.295	J	0.370	J	1.68	0.390 J	J (0.015	U	NA	NA	NA	0.075 J	0	.010	U	-0.180	U	0.390	Ground Glass, Washed
23.3	4.50	J	0.255	J	0.090	J	1.71	0.780 J	ı	0.050	U	NA	NA	NA	0.080 J	0	.005	U	-0.200	U	0.420	Ground Glass, Washed
21.9	4.33	J	0.255	J	0.010	J	1.74	0.495 J	J	0.015	U	NA	NA	NA	0.075 J	0	.020	J	0.110	U	0.260	Ground Glass, Washed

Fe (mg/kg)	Mg (mg/kg)		Mn (mg/kg)		Ni (mg/kg)		P (mg/kg)	- 1	Pb mg/kg)		Sb (mg/kg)		K (mg/kg)	Na (mg/kg)	S (mg/kg)		Sr (mg/kg)	V (mg/kg)	- 1	N mg/kg)		Zn (mg/kg)	Comment
16.9	3.60	J	0.205	J	0.160	J	1.64	С).455	J	-0.020	U	NA	NA	NA		0.065 J	-0.005 U	1	0.055	U	0.220	Ground Glass, Washed
20.2	4.18	J	0.225	J	0.230	J	1.74	С).470	J	0.025	U	NA	NA	NA		0.075 J	0.010 J	-	0.090	U	0.275	Ground Glass, Washed
19.6	4.33	J	0.210	J	0.140	J	1.63	С).645	J	-0.065	U	NA	NA	NA		0.070 J	0.000 U	1	0.120	U	0.435	Ground Glass, Washed
30.2	4.94	J	0.320	j	0.150	J	1.78	С).480	j	0.015	U	NA	NA	NA		0.085 J	0.000 U	Ц	0.110	U	0.395	Ground Glass, Washed
0.0957	<0.100		<0.0400		<0.0400		<0.0400	<	<0.0400		<0.0400		0.59	3.03	<0.0400)	NA	<0.0400	<	<0.0400		<0.0400	Ground 60s, Washed
0.0973	<0.100		<0.0400		<0.0400		<0.0400	<	<0.0400		<0.0400		0.65	3.41	<0.0400)	NA	<0.0400	<	<0.0400		0.0673	Ground 60s
0.124	<0.100		<0.0400		<0.0400		<0.0400	<	<0.0400		<0.0400		0.581	3.21	<0.0400)	NA	<0.0400	<	<0.0400		<0.0400	Ground 60s
0.109	<0.100		<0.0400		<0.0400		<0.0400	<	<0.0400		<0.0400		0.613	3	<0.0400)	NA	<0.0400	<	<0.0400		<0.0400	Ground 60s
0.0627	<0.100		<0.0400		<0.0400		<0.0400	<	<0.0400		<0.0400		0.404	2.07	<0.0400)	NA	<0.0400	<	<0.0400		<0.0400	Ground 60s
0.155	<0.100		<0.0400		<0.0400		<0.0400	<	<0.0400		<0.0400		0.552	2.92	<0.0400)	NA	<0.0400	<	<0.0400		<0.0400	Ground 60s
0.108	<0.100		<0.0400		<0.0400		<0.0400	<	<0.0400		<0.0400		0.768	4.29	<0.0400)	NA	<0.0400	<	<0.0400		<0.0400	Ground 60s
0.113	<0.100		<0.0400		<0.0400		<0.0400	<	<0.0400		<0.0400		0.583	2.82	<0.0400)	NA	<0.0400	<	<0.0400		<0.0400	Ground 60s
0.0618	<0.100		<0.0400		<0.0400		<0.0400	<	<0.0400		<0.0400		0.394	2.3	<0.0400)	NA	<0.0400	<	<0.0400		<0.0400	Ground 60s
<0.400	<1.00		<0.400		1.33		3.15	<	<0.400		2.22		1.34	3.09	69.3		NA	0.706	8	38.3		4.28	Ground 60s
<0.400	<1.00		<0.400		<0.400		<0.400	2	2.28		<0.400		1.35	3.29	<0.400		NA	<0.400	<	<0.400		<0.400	Ground 60s
10.5	<1.00		<0.400		<0.400		<0.400	1	1.26		<0.400		3.62	14.8	<0.400		NA	<0.400	<	<0.400		<0.400	Ground 60s, washed
10.8	0.119		0.09		<0.0400		<0.0400	<	<0.0400		<0.0400		3.02	14.6	<0.0400)	NA	<0.0400	<	<0.0400		0.0497	Ground 60s, washed
10.8	0.116		0.0902		<0.0400		<0.0400	<	<0.0400		<0.0400		3.05	14.7	0.0419		NA	<0.0400	<	<0.0400		0.0497	Ground 60s, washed
21.2	0.121		0.172		<0.0400		<0.0400	<	<0.0400		<0.0400		4.24	20.3	<0.0400)	NA	<0.0400	<	<0.0400		0.0479	Ground 2x60s, washed
16.9	0.126		0.137		<0.0400		<0.0400	<	<0.0400		<0.0400		4.31	20.8	0.0443		NA	<0.0400	<	<0.0400		0.0457	Ground 2x60s, washed
17.4	0.115		0.14		<0.0400		<0.0400	<	<0.0400		<0.0400		4.36	21.2	<0.0400		NA	<0.0400	<	<0.0400		0.0443	Ground 2x60s, washed
22.8	0.135		0.183		<0.0400		<0.0400	<	<0.0400		<0.0400		5.11	24.9	<0.0400)	NA	<0.0400	<	<0.0400		0.0598	Ground 3x60s, washed

Fe (mg/kg)	Mg (mg/kg)	Mn (mg/kg)	Ni (mg/kg)	P (mg/kg)	Pb (mg/kg)	Sb (mg/kg)	K (mg/kg)	Na (mg/kg)		S (mg/kg)	Sr (mg/kg)	V (r	ng/kg)	W (m	ig/kg)	Zn (mg/kg)		Comment
23	0.123	0.186	<0.0400	<0.0400	<0.0400	<0.0400	5.11	25		<0.0400	NA	<	0.0400	<0	0.0400	0.042	(Ground 3x60s, washed
23.1	0.121	0.184	<0.0400	<0.0400	<0.0400	<0.0400	5.19	24.9		<0.0400	NA	<	0.0400	<0	.0400	<0.0400	(Ground 3x60s, washed
22.5	0.122	0.18	<0.0400	<0.0400	<0.0400	<0.0400	4.96	24.1		<0.0400	NA	<	0.0400	<0	.0400	<0.0400	(Ground 3x60s, washed
22.4	0.131	0.181	<0.0400	<0.0400	<0.0400	<0.0400	5.15	25.1	ŀ	<0.0400	NA	<	0.0400	<0	.0400	0.0479	(Ground 3x60s, washed
22.3	0.125	0.179	<0.0400	<0.0400	<0.0400	<0.0400	5.09	24.7		<0.0400	NA	<	0.0400	<0	.0400	0.0402	(Ground 3x60s, washed
22	0.119	0.177	<0.0400	<0.0400	<0.0400	<0.0400	5.09	24.6		<0.0400	NA	<	0.0400	<0	.0400	0.0428	(Ground 3x60s, washed
22.2	0.124	0.178	<0.0400	<0.0400	<0.0400	<0.0400	5.14	24.9		<0.0400	NA	<	0.0400	<0	.0400	0.0419	(Ground 3x60s, washed
22.1	0.126	0.177	<0.0400	<0.0400	<0.0400	<0.0400	5.1	24.9		<0.0400	NA	<	0.0400	<0	.0400	0.0416	(Ground 3x60s, washed
22.2	0.129	0.179	<0.0400	<0.0400	<0.0400	<0.0400	5.21	25.2		<0.0400	NA	<	0.0400	<0	.0400	0.0409	(Ground 3x60s, washed
22.3	0.122	0.178	<0.0400	<0.0400	<0.0400	<0.0400	5.07	24.7		<0.0400	NA	<	0.0400	<0	.0400	0.0411	(Ground 3x60s, washed
22.4	0.147	0.181	0.0439	<0.0400	<0.0400	<0.0400	5.01	24.3		<0.0400	NA	<	0.0400	<(.0400	0.0582	(Ground 3x60s, washed

Table A2. Experiment 2—Grab sample and 10 –increment MI metal results.

Sample ID	Exp. ID	# Inc.	Sampling Approach	Grid Location	Total Mass (g)	< 2mm Mass (g)	> 2mm Mass (g)	Field Rep.	Lab Rep.	Unground	Grinder Type	Ground Time (sec)	Digestion Mass (g)	AI (mg/kg)	Ba (mg/kg)	Cd (mg/kg)	Co (mg/kg)
1D-1	B36-7	1	Grab GN	Grid 1	122.7	NA	NA	NA	1	Х	NA	NA	1.00	4373	18.93	0.63	6.73
1D-2	B36-8	1	Grab GN	Grid 1	122.7	NA	NA	NA	2	Х	NA	NA	1.00	4357	18.51	0.63	6.66
1D-3	B36-9	1	Grab GN	Grid 1	122.7	NA	NA	NA	3	Х	NA	NA	1.00	4383	21.13	0.64	6.86
1D-4	B36-10	1	Grab GN	Grid 1	122.7	NA	NA	NA	4	Х	NA	NA	2.00	4260	16.745	0.855	6.335
1D-5	B36-11	1	Grab GN	Grid 1	122.7	NA	NA	NA	5	Х	NA	NA	2.00	4418	16.69	0.855	6.475
2D	B36-12	1	Grab GN	Grid 2	133.0	NA	NA	NA	NA	Х	NA	NA	1.00	3784	20.16	1.13	6.31
3D	B36-13	1	Grab GN	Grid 3	137.0	NA	NA	NA	NA	Х	NA	NA	1.00	4176.9	22.848	0.7038	7.0584
4D	B36-14	1	Grab GN	Grid 4	133.6	NA	NA	NA	NA	Х	NA	NA	1.00	4066.26	17.4326	0.6868	6.7872
5D	B36-15	1	Grab GN	Grid 5	158.9	NA	NA	NA	NA	Х	NA	NA	1.00	4214	20.37	0.78	7.76
6D	B36-16	1	Grab GN	Grid 6	147.3	NA	NA	NA	NA	Х	NA	NA	1.00	4449	39.45	0.73	7.17
7D	B36-17	1	Grab GN	Grid 7	151.5	NA	NA	NA	NA	Х	NA	NA	1.00	4117	30.73	1	8.38
8D	B36-18	1	Grab GN	Grid 8	157.1	NA	NA	NA	NA	Х	NA	NA	1.00	4087	26.64	0.68	6.77
9D	B36-19	1	Grab GN	Grid 9	144.5	NA	NA	NA	NA	Х	NA	NA	1.00	4224	21.25	0.68	7.33
10D	B36-20	1	Grab GN	Grid 10	150.6	NA	NA	NA	NA	Х	NA	NA	1.00	4158	17.01	0.78	7.1
11D	B36-21	1	Grab GN	Grid 11	157.2	NA	NA	NA	NA	Х	NA	NA	1.00	4360	19.44	0.81	7.42
12D	B36-22	1	Grab GN	Grid 12	139.6	NA	NA	NA	NA	Х	NA	NA	1.00	4115	17.03	0.83	7.64
13D	B36-23	1	Grab GN	Grid 13	143.6	NA	NA	NA	NA	х	NA	NA	1.00	4255.13	17.1801	0.6565	7.0498
14D	B36-24	1	Grab GN	Grid 14	144.2	NA	NA	NA	NA	Х	NA	NA	1.00	4283	27.22	0.82	7.63
15D	B36-25	1	Grab GN	Grid 15	146.6	NA	NA	NA	NA	Х	NA	NA	1.00	4328	18.03	0.85	7.8
16D	B36-26	1	Grab GN	Grid 16	151.9	NA	NA	NA	NA	х	NA	NA	1.00	4087	31.1	0.67	6.88
17D	B36-27	1	Grab GN	Grid 17	149.1	NA	NA	NA	NA	Х	NA	NA	1.00	4417	18.42	0.79	7.97
18D	B36-28	1	Grab GN	Grid 18	141.9	NA	NA	NA	NA	х	NA	NA	1.00	4173	17.31	0.72	7.71
19D	B36-29	1	Grab GN	Grid 19	147.4	NA	NA	NA	NA	Х	NA	NA	1.00	4103	15.75	0.69	7.02
20D	B36-30	1	Grab GN	Grid 20	148.8	NA	NA	NA	NA	Х	NA	NA	1.00	4296	17.86	0.76	7.41
21D	B36-31	1	Grab GN	Grid 21	140.0	NA	NA	NA	NA	Х	NA	NA	1.00	4253	17.17	0.76	7.76
22D	B36-32	1	Grab GN	Grid 22	147.0	NA	NA	NA	NA	Х	NA	NA	1.00	4058	15.99	0.73	7.47
23D	B36-33	1	Grab GN	Grid 23	154.0	NA	NA	NA	NA	Х	NA	NA	1.00	4324	17.33	0.71	7.69
24D	B36-34	1	Grab GN	Grid 24	151.7	NA	NA	NA	NA	Х	NA	NA	1.00	4238	15.72	0.74	7.46
25D	B36-35	1	Grab GN	Grid 25	142.2	NA	NA	NA	NA	Х	NA	NA	1.00	3940	16.34	0.62	6.97
26D	B36-36	1	Grab GN	Grid 26	139.7	NA	NA	NA	NA	Х	NA	NA	1.00	4577	17.91	0.82	8.11

Sample ID	Exp. ID	# Inc.	Sampling Approach	Grid Location	Total Mass (g)	< 2mm Mass (g)	> 2mm Mass (g)	Field Rep.	Lab Rep.	Unground	Grinder Type	Ground Time (sec)	Digestion Mass (g)	Al (mg/kg)	Ba (mg/kg)	Cd (mg/kg)	Co (mg/kg)
27D	B36-37	1	Grab GN	Grid 27	125.9	NA	NA	NA	NA	Х	NA	NA	1.00	4321	16.96	0.68	7.73
28D	B36-38	1	Grab GN	Grid 28	132.1	NA	NA	NA	NA	Х	NA	NA	1.00	4202	16.1	0.67	7.77
29D	B36-39	1	Grab GN	Grid 29	121.5	NA	NA	NA	NA	х	NA	NA	1.00	4275	17.01	0.75	7.93
30D	B36-40	1	Grab GN	Grid 30	158.0	NA	NA	NA	NA	Х	NA	NA	1.00	4278	17.1	0.71	7.3
31D	B36-41	1	Grab BR	Grid 15	156.4	NA	NA	NA	NA	Х	NA	NA	1.00	4412	17.86	0.96	7.47
32D	B36-42	1	Grab BR	Grid 22	149.7	NA	NA	NA	NA	Х	NA	NA	1.00	4131	16.02	0.52	6.56
33D	B36-43	1	Grab BR	Grid 30	147.3	NA	NA	NA	NA	Х	NA	NA	1.00	4184	16.03	0.64	7.21
34D	B36-44	1	Grab BR	Grid 7	153.7	NA	NA	NA	NA	Х	NA	NA	1.00	4065	14.6	0.58	6.83
35D	B36-45	1	Grab BR	Grid 6	146.9	NA	NA	NA	NA	Х	NA	NA	1.00	4206	17.58	0.58	6.84
36D	B36-46	1	Grab BR	Grid 23	138.7	NA	NA	NA	NA	Х	NA	NA	1.00	3968	15.2	0.6	6.9
38-R1	B43-7	100	MI SR	NA	1176.6	1153.9	21.8	1	1	NA	Puck	5x60	2.00	6055	34.05	0.89	9.535
38-R2	B43-8	100	MI SR	NA	1176.6	1153.9	21.8	1	2	NA	Puck	5x60	2.00	6385	34.485	0.91	9.61
38-R3	B43-9	100	MI SR	NA	1176.6	1153.9	21.8	1	3	NA	Puck	5x60	2.00	6595	33.72	0.965	9.625
39	B43-10	100	MI SR	NA	1295.1	1264.6	28.8	2	NA	NA	Puck	5x60	2.00	6745	32.875	0.98	9.625
40	B43-11	100	MI SR	NA	1361.4	1340.0	20.2	3	NA	NA	Puck	5x60	2.00	6540	31.325	0.985	9.46
41	B43-12	100	MI SR	NA	1419.3	1393.8	24.3	4	NA	NA	Puck	5x60	2.00	6380	30.17	0.94	9.31
42	B43-13	100	MI SR	NA	1991.6	1948.6	41.2	5	NA	NA	Puck	5x60	2.00	6335	29.765	0.95	9.26
43	B43-14	100	MI SR	NA	1801.3	1750.7	47.9	6	NA	NA	Puck	5x60	2.00	6155	30.72	0.955	9.095
44	B43-15	100	MI SR	NA	1725.4	1679.2	45.3	7	NA	NA	Puck	5x60	2.00	6420	30.52	0.965	9.33

Cr (mg/kg)	Cu (mg/kg)	Fe (mg/kg)	Mg (mg/kg)	Mn (mg/kg)	Ni (mg/kg)	P (mg/kg)	Pb (mg/kg)	Sb (mg/kg)		Sr (mg/kg)	V (mg/kg)	W (mg/kg)		Zn (mg/kg)
5.84	210.9	11340	1966	192.6	9.1	520.8	1276	9.14		8.76	9.78	0.64	U	60.45
5.96	223.1	11340	2011	192.9	9.59	559	1136	9.36		8.92	9.74	0.55	U	60.29
5.74	223.3	11350	1989	188.9	9.17	544.5	1417	9.67		9.13	10.08	1.26	J	60.18
5.8	248.1	9880	1909.5	183.95	9.06	635.5	4146.5	47.03		9.67	10.03	0.825	J	59
5.83	218.3	9975	1968.5	183.7	9.125	582	1263.5	7.865		9.97	9.975	0.685	J	57.4
6.1	473.4	11590	2025	194.8	10.06	467.8	79020	2072		16.31	9.14	0.89	J	82.16
6.0384	135.762	11954.4	2324.58	224.706	10.0062	497.454	43.9212	0.8976	J	22.7766	9.843	0.59	U	44.676

Cr (mg/kg)	Cu (mg/kg)	Fe (mg/kg)	Mg (mg/kg)	Mn (mg/kg)	Ni (mg/kg)		P (mg/kg)		Pb (mg/kg)	Sb (mg/kg)		Sr (mg/kg)	V (mg/kg)	W (mg/kg)		Zn (mg/kg)
5.6863	262.903	11948.3	1752.35	177.154	9.6152		781.639		2349.26	21.6544		9.9687	11.1403	0.7	U	56.8428
6.65	453.6	12860	2128	204.3	10.41		582.8		5328	73.72		13.16	11.84	0.91	J	92.56
6.28	208.7	12200	2257	221.4	10.22		586.2		691.8	5.26		16.9	10.15	0.62	U	60.59
6.99	247.5	14700	1877	196.6	9.93		1043		4858	27.81		11.38	15.35	0.6	U	60.7
6.04	514.5	11790	1997	190.2	10.12		576.6		9235	82.46		13.36	9.97	0.81	J	90.24
5.67	316.4	11930	2026	241.8	9.63		623.4		1213	10.13		12.15	10.34	1.37	J	69.35
6.26	349.5	12720	1953	192.1	9.8		744.6		2840	30.55		10.1	11.45	1.09	J	73.9
6.88	597.7	12610	2032	214.3	10.72		685.6		3537	30.33		13.46	11.68	1.21	J	110.5
6.25	534.4	12720	1954	184.4	10.09		816.6		1767	12.95		12.06	12.05	1.02	J	91.62
5.8479	357.237	11806.9	2047.27	190.284	9.8576		661.348		986.366	7.2215		10.7969	10.2818	0.7777	U	70.9929
6.35	413.5	13130	1997	201.1	10.31		726.2		1952	18.08		11.59	11.63	0.82	J	79.83
6.91	360.6	13520	1999	197.3	10.25		832.1	ĺ	2623	23.55		11.37	12.91	0.74	U	74.61
5.7	225.5	11930	1815	177.4	9.08		724.7		808.6	5.61		10.55	10.94	0.56	U	55.1
6.84	325.6	12850	2076	204.4	10.25		718.3		1060	8.24		16.02	11.71	0.7	U	70.72
6.06	69.82	12230	1965	197.5	10.01		724.1		217	1.97	J	13.05	10.58	0.4	U	35.81
5.85	211.1	12000	1815	183.3	9.63		690.2		1977	30.28		9.86	10.35	1.19	J	53.99
6.13	454.3	12440	1914	198.6	9.95		681.7		19038	75.97		10.34	11.29	1.18	J	89.66
6.28	243.6	12600	2040	220	10.15		720.5		2868	24.69		14.27	11.94	0.8	J	60.43
6.09	251.8	12630	1882	178.4	9.28		734.4		1204	9.89		11.99	11.81	0.75	U	60.41
6.36	162.5	12320	1871	193.4	9.75		813.4		318.9	2.69	J	11.6	11.47	0.49	U	47.61
6.11	313.4	12590	1937	186.7	9.94		757.9	ĺ	1061	7.55		12.02	11.47	0.67	U	65.29
5.58	162	11500	1748	174.8	8.67		766.3		351.5	2.41	J	11.26	10.63	0.49	U	43.52
6.37	277.2	13460	2036	206.6	10.5		865.8		2307	13.95		15.07	12.81	0.63	U	63.12
6.77	225.2	12090	1961	187.3	10.04		687.9		867.5	8.26		13.31	10.79	0.58	U	54.05
6.47	92.87	12140	1934	194.9	9.79		741.3		126.9	1.43	J	15.45	10.98	0.43	U	38.4
6.55	317.6	12710	2001	201.1	10.26		834.9		938	7.83		14.17	11.7	1.35	J	72.09
5.59	217.3	12490	1960	196	9.96		622.5		950.5	9.26		12.45	10.98	0.92	U	55.74
6.86	270	13180	2062	207	10.47		803.7		1930	16.39		12.23	12.38	0.8	J	63.38
5.58	224.4	10800	1934	179.4	9.29	İ	546.1		500.9	3.48		10.09	8.75	0.66	U	57.6
5.95	215.5	11810	1937	199.8	9.7	İ	668.4	Ī	555.3	4.17		11.86	10.04	0.64	U	55.02
5.97	280	11090	1805	173.2	8.87	1	783.2		1650	11.9		10.7	9.88	0.65	U	61.2

Cr (mg/kg)	Cu (mg/kg)	Fe (mg/kg)		Mg (mg/kg)	Mn (mg/kg)	Ni (mg/kg)		P (mg/kg)	Pb (mg/kg)	Sb (mg/kg)		Sr (mg/kg)	V (mg/kg)		W (mg/kg)		Zn (mg/kg)
5.2	392.1	11070		1922	 189.9	8.92	\dashv	532.1	1851	24.06		14.33	8.85		0.69	U	67.04
5.56	229.3	11660		1734	178.5	8.74		815.9	478.6	5.68		12.45	10.35		0.51	U	52.1
337.6	551	17840	D	2257	248.2	12.865		721	2406	19.605	:	23.26	16.675	_	0.315	U	86.35
340.45	467.25	17760	D	2251.5	251.05	12.84		733	2529	20.355	:	24.69	17.13		0.26	U	71.8
337.8	552.5	16980	D	2201	247.35	12.785		736	2489.5	19.755	:	25.74	17.275		0.205	U	74.9
311.3	412.5	19200	D	2243	254.1	12.98		748.5	2538.5	19.545	:	26.17	17.03		0.185	U	65.2
292.95	739	18850	D	2188.5	245.75	12.785		779	3594.5	28.855	:	25.515	16.84		0.345	U	94.8
281.7	528.5	18515	D	2130.5	236.1	12.35		767.5	2638	20.17	:	24.54	16.71		0.14	U	72.3
275.8	814.5	18390	D	2191.5	245.9	12.545		762	3108.5	24.04		24.475	15.95		0.25	U	91.15
288	881.5	17695	D	2205.5	242.25	13.175		754.5	3564	26.89	:	24.31	15.985		0.42	J	95.9
286.25	609	18067	D	2175	243.4	12.37		751	2569	20.655	:	26.695	16.34		0.25	U	78.2

Table A3. Experiment 3—Multi-increment sample metal results.

Sample ID	Exp ID	# Inc	Total Mass	< 2mm Mass (g)	> 2mm Mass (g)	Field Rep	Lab Rep	Al (mg/kg)	Ba (mg/kg)	Cd (mg/kg)	Co (mg/kg)	Cr (mg	/kg)	Cu (mg/kg)
45	B37-7	5	1100.9	1059.7	40.5	1	NA	6250	30.035	1.205	8.99	237	7.5	323.2
46	B37-10	5	875.0	848.7	25.2	2	NA	6425	30.715	1.26	9.41	290	0.3	456.35
47	B37-11	5	872.9	861.5	10.8	3	NA	6040	28.565	1.11	8.655	284	1.8	639.5
48	B37-12	5	1033.6	1004.1	28.4	4	NA	6120	28.585	1.075	8.805	247	7.3	641
49	B37-13	5	1068.8	1040.5	25.4	5	NA	6135	27.65	1.095	8.605	247	'.3	534.5
50	B37-14	5	1209.8	1143.5	63.2	6	NA	6155	28.37	1.085	8.42	234	1.95	526
51	B37-15	5	1331.6	1277.3	51.5	7	NA	6485	29.975	1.265	9.075	290	0.1	649.5
52	B37-16	50	622.6	616.7	5.5	1	NA	6550	30.18	1.18	9.135	370)	352.5
53	B37-17	50	643.5	631.0	10.0	2	NA	6730	31.625	1.17	9.035	358	3.25	408.7
54	B37-18	50	630.9	621.6	6.9	3	NA	6770	32.045	1.145	9.055	372	2.75	349.1
55-Rep 1	B37-19	50	345.7	333.8	6.0	4	1	6790	30.965	1.205	9.255	365	5.25	558
55-Rep 2	B37-20	50	345.7	333.8	6.0	4	2	6785	30.905	1.185	9.265	368	3.5	509.5
55-Rep 3	B37-21	50	345.7	333.8	6.0	4	3	6780	31.045	1.21	9.32	366	5.1	444.05
56	B37-22	50	372.9	366.6	4.1	5	NA	6560	30.61	1.2	9.12	329	9.65	431.3
57	B37-23	50	344.0	337.3	4.4	6	NA	6130.2	25.9743	1.1526	8.7312	228	3.327	582.93
58	B37-24	50	609.5	593.2	13.7	7	NA	6695	29.875	1.29	9.74	361	L.1	516
59	B37-25	30	320.4	309.3	8.9	1	NA	6960	30.89	1.18	9.145	345	5.25	518
60	B37-26	30	305.2	291.8	11.2	2	NA	7160	31.5	1.26	9.43	441	L.85	557
61	B37-27	30	303.3	299.0	2.1	3	NA	7105	31.095	1.22	9.355	389	9.65	554
62	B37-28	30	304.7	295.2	7.7	4	NA	7370	31.37	1.41	9.85	389	9.5	532
63	B37-29	30	274.1	264.3	7.6	5	NA	7510	32.41	1.39	9.925	398	3.75	762.5

Sample ID	Exp ID	# Inc	Total Mass	< 2mm Mass (g)	> 2mm Mass (g)	Field Rep	Lab Rep	Al (mg/kg)	Ba (mg/kg)	Cd (mg/kg)	Co (mg	/kg)	C (r	er mg/kg)		Cu (mg/kg)
64	B37-30	30	277.1	264.0	10.9	6	NA	7475	31.7	1.37	9.94	4	4	11.55	İ	527.5
65-Rep 1	B37-31	30	351.8	332.1	13.6	7	1	6985	29.6	1.28	9.24	45	3	888.3		562
65-Rep 2	B37-32	30	351.8	332.1	13.6	7	2	6573.9	38.4183	1.071	9.5	523	4	26.411		471.138
65-Rep 3	B37-33	30	351.8	332.1	13.6	7	3	6630	38.165	1.11	9.5	5	4	32.55		560
66	B37-35	20	194.9	183.9	9.0	1	NA	7580	47.11	1.21	10.2	2	5	513		529.5
67	B37-36	20	198.9	195.8	1.2	2	NA	7640	46.845	1.23	10.2	29	5	72.5		688.5
68	B37-37	20	242.5	239.4	1.1	3	NA	7200	42.165	1.12	9.6	45	4	15		539.5
69	B37-38	20	128.3	125.2	1.0	4	NA	4659.5	18.915	0.63	6.79	9	2	22.395		330.4
70	B37-39	20	143.3	138.1	3.4	5	NA	4666.5	19.065	0.67	6.76	3	6	6.615		426.1
71	B37-40	20	137.9	128.6	7.2	6	NA	4465	17.46	0.6	6.47	7	6	5.29		363.2
72	B37-41	20	157.7	154.9	0.8	7	NA	4559	17.5	0.665	6.69	9	6	5.2		430.9
73	B37-42	10	88.6	86.4	0.4	1	NA	4337	16.46	0.57	6.6	1	5	5.865		447.8
74	B37-43	10	104.4	98.9	3.6	2	NA	4443.12	16.5546	0.6324	6.58	392	6	6.3903		405.807
75-Rep 1	B37-44	10	83.4	76.4	1.0	3	1	4619	17.665	0.705	6.96	65	6	5.64		591.5
75-Rep 2	B37-45	10	83.4	76.4	1.0	3	2	4439	16.375	0.65	6.74	15	6	5.18		416.6
75-Rep 3	B37-46	10	83.4	76.4	1.0	3	3	4465	16.405	0.635	6.7	75	6	5.43		431.35
76	B37-47	10	154.1	150.8	1.3	4	NA	4400.5	16.355	0.685	6.69	9	5	5.85		5930
77	B37-48	10	171.9	168.9	1.1	5	NA	4383	15.85	0.595	6.5	â	5	5.815		326.5
78	B38-18	10	150.4	147.5	1.0	6	NA	3821.5	15.88	1.035	6.74	1 5	6	5.215		287.45
79	B38-19	10	92.6	90.2	0.4	7	NA	3673	15.24	1.02	6.3	25	5	5.765		948
CEA37	B39-26	200	20846.8	20408	438.9	NA	1	5490	32.02	1.845	8.76	65	2	232.9		503
CEA37	B39-27	200	20846.8	20408	438.9	NA	2	5545	33.3	1.85	8.8	4	2	232.45		492

Sample ID	Exp ID	# Inc	Total Mass	< 2mm Mass (g)	> 2mm Mass (g)	Field Rep	Lab Rep	AI (mg/kg)	Ba (mg/kg)	Cd (mg/kg)	Co (mg/kg)	Cr (mg/kg)		Cu (mg/kg)
CEA37	B39-28	200	20846.8	20408	438.9	NA	3	5585	32.12	1.86	8.935	229	\dashv	391.25
CEA37	B39-29	200	20846.8	20408	438.9	NA	4	5605	32.305	1.835	8.81	228.75	_	540.5
CEA37	B39-30	200	20846.8	20408	438.9	NA	5	5505	31.695	1.8	8.82	224.8	\dashv	416.75
CEA37	B39-31	200	20846.8	20408	438.9	NA	6	5505	31.835	1.8	8.74	231.05	\dashv	517
CEA37	B39-32	200	20846.8	20408	438.9	NA	7	5425	31.32	1.795	8.79	229.95	_	573.5
CEA37	B39-33	200	20846.8	20408	438.9	NA	8	5450	31.465	1.8	8.715	231.65		472.5
CEA37	B39-34	200	20846.8	20408	438.9	NA	9	5435	31.165	1.785	8.72	227.45		635.5
CEA37	B39-35	200	20846.8	20408	438.9	NA	10	5485	31.485	1.835	8.835	223.2		424.9
CEA37	B39-36	200	20846.8	20408	438.9	NA	11	5485	30.395	1.835	8.75	233.3		585.5
CEA37	B39-37	200	20846.8	20408	438.9	NA	12	5475	30.325	1.83	8.67	236.25		570
CEA37	B39-38	200	20846.8	20408	438.9	NA	13	5520	30.275	1.815	8.75	232.65		461.5
CEA37	B39-39	200	20846.8	20408	438.9	NA	14	5505	29.42	1.815	8.635	221.6		457.85
CEA37	B39-40	200	20846.8	20408	438.9	NA	15	5615	34.8	1.785	8.455	221.65		394.25
CEA37	B40-8	200	20846.8	20408	438.9	NA	16	5840	30.46	1.8	8.66	218.85		601
CEA37	B40-9	200	20846.8	20408	438.9	NA	17	5770	30.3	1.8	8.575	220.85		544.5
CEA37	B40-10	200	20846.8	20408	438.9	NA	18	5740	29.53	1.77	8.405	218.4		485.75
CEA37	B40-11	200	20846.8	20408	438.9	NA	19	5850	29.465	1.805	8.455	218.55		564
CEA37	B40-12	200	20846.8	20408	438.9	NA	20	6010	29.305	1.825	8.48	217.15		540
CEA37	B40-13	200	20846.8	20408	438.9	NA	21	6045	29.125	1.8	8.365	216.4		802
CEA37	B40-14	200	20846.8	20408	438.9	NA	22	6065	28.62	1.82	8.36	216.55		703.5
CEA37	B40-15	200	20846.8	20408	438.9	NA	23	6235	28.82	1.865	8.565	218.4		813
CEA37	B40-16	200	20846.8	20408	438.9	NA	24	6205	28.41	1.83	8.39	218		517.5

Sample ID	Exp ID	# Inc	Total Mass	< 2mm Mass (g)	> 2mm Mass (g)	Field Rep	Lab Rep	AI (mg/kg)	Ba (mg/kg)	Cd (mg/kg)	Co (mg/kg)	Cr (mg/kg)	Cu (mg/kg)
CEA37	B40-17	200	20846.8	20408	438.9	NA	25	6195	27.45	1.86	8.38	215.95	551.5
CEA37	B40-18	200	20846.8	20408	438.9	NA	26	6185	27.59	1.835	8.325	216.1	636
CEA37	B40-19	200	20846.8	20408	438.9	NA	27	6250	27.135	1.87	8.365	214.75	572
CEA37	B40-20	200	20846.8	20408	438.9	NA	28	6195	28.16	1.825	8.295	213.9	535
CEA37	B40-21	200	20846.8	20408	438.9	NA	29	6455	26.025	1.895	8.325	213.95	592.5
CEA37	B40-22	200	20846.8	20408	438.9	NA	30	6800	25.92	1.945	8.315	216.1	611.5

Fe (mg/kg)		Mg (mg/kg)	Mn (mg/kg)	Ni (mg/kg)	P (mg/kg)	Pb (mg/kg)	Sb (mg/kg)	Sr (mg/kg)	V (mg/kg)	W (mg/kg)		Zn (mg/kg)	
16470	D	2166.5	225.6	12.315	814	2368.5	20.5	20.15	16.16	0.755	J	65.5	
17970	D	2114.5	234.35	13.12	774	2902	23.19	21.24	17.395	0.81	J	75.35	
16470	D	1989.5	208.3	12.3	695.5	2496	19.985	20.76	15.69	0.915	J	85.8	
16955	D	2060.5	215.8	11.96	711	2284	16.845	20.635	15.46	1.165	J	83.15	
17075	D	2023	210.5	12.075	721	2796.5	21.05	20.995	15.515	1	J	78.1	
16705	D	2196	219.95	12.195	593	3885.5	28.94	41.11	14.4	1.005	J	84	
17945	О	2064.5	225.25	12.57	778.5	4187	34.18	24.805	17	0.985	J	85.9	
17845	D	2007	220.75	13.26	735	2346.5	19.56	21.535	16.35	0.74	J	62.35	
16790	D	2010.5	222.5	12.91	714	2003.5	16.965	22.925	17.055	0.77	J	64.25	
14895	D	2032	224.35	12.91	689	1834.5	15.015	23.58	16.955	0.705	J	58.15	
17965	D	2049.5	226.95	13.495	738	2005	16.53	23.64	17.405	0.77	J	73.9	

Fe		Mg	Mn	Ni		Р	Pb	Sb	Sr			w		Zn	
(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)	4	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		V (mg/kg)	(mg/kg)		(mg/kg)	_
17530	D	2064	228.15	13.23		740.5	1954	16.725	23.58		17.37	0.865	J	78.7	
17740	D	2046.5	226.85	13.27		747.5	1986.5	16.44	23.76		17.455	0.77	J	70.15	<u> </u>
14465	D	2026	223.75	12.955		730.5	2036.5	16.815	22.94		16.795	1	J	65.45	<u></u>
14499.3	D	2028.78	216.495	12.1023		771.63	2421.48	18.0591	21.5577		15.402	0.9639	J	76.5	<u></u>
15160	D	1994.5	219.55	13.735		783	2446.5	20.45	25.47		18.655	0.935	J	70	
17650	D	1977.5	220.5	12.885		767.5	2727.5	23.53	24.795		17.575	0.905	J	69.15	
16910	D	1975	223.5	13.675		742	2646.5	22.32	25.545		17.865	0.835	J	70	
16980	D	1977.5	223.2	13.35		761	2784	24.355	25.28		17.93	0.905	J	73.1	
16060	D	2036	237.4	13.775		837	3122	26.71	27.04		19.355	0.83	J	65.4	
20405	D	2030	239.5	13.79		831.5	2435	19.055	27.625		20.2	0.805	J	67.75	
18845	D	2008.5	235.3	13.95		847	2939	25.155	28.235		19.785	0.88	J	67.15	
15195	D	1940	219.65	13.33		758	1993	17.465	26.335		17.53	0.73	J	60.45	
15728.4	D	2419.44	270.198	14.484		680.34	2255.73	17.2329	20.6907		17.0748	0.3417	U	75.531	
17005	D	2412	271.25	14.505		687.5	2174	16.36	20.67		17.335	0.23	U	83.4	
19130	D	2520.5	283.7	15.735		682	3586.5	29	24.285		19.6	0.24	U	91.7	
18785	D	2476	286.75	15.86		683.5	2786	22.885	24.88		19.73	0.16	U	97.4	
17300	D	2401	267.2	14.465		690	2476.5	20.48	23.135	ı	18.39	0.16	U	88.95	
11715	D	2109.5	196	17.505		712.5	1102.5	5.825	13.575		11.005	0.215	U	66.3	
12870	D	2141.5	202.7	9.73		740	3491	43.645	13.56		10.88	0.53	J	76.15	
12640	D	2137	194.9	9.435		738.5	2761.5	21.645	12.93		10.095	0.255	U	68.1	
12595	D	2102.5	210.55	9.685		740.5	2620	17.89	12.795		10.465	0.265	U	76.45	
11915	D	2008	189.7	9.135		724.5	2102.5	19.54	12.215		9.535	0.165	U	77.75	

Fe		Mg	Mn	Ni	P	Pb	Sb	Sr			w		Zn	
(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		V (mg/kg)	(mg/kg)		(mg/kg)	
12663.3	D	1995.63	197.166	9.3891	804.27	1441.26	8.1396	12.9897		10.4652	0.2346	U	74.052	
13135	D	2016	198.7	9.59	827	2219	13.415	12.795		10.965	0.15	U	95	
12810	D	2003.5	192.6	9.32	776.5	1917	14.56	11.535		10.6	0.14	U	72	
13540	D	2003.5	193.75	9.455	827.5	1431	7.35	12.375		10.745	0.14	U	72.4	
12580	D	1970.5	200.6	9.825	748.5	3067	23.165	14.59		9.915	-0.025	U	865	
12390	D	1983.5	188.3	9.115	808.5	1814.5	15.475	12.86		9.97	0.2	U	64.2	
12525	D	2004.5	187.85	9.225	563	1333.5	8.075	11.325		9.81	0.32	U	63.35	
11465	D	1931	180.45	8.82	568	2947.5	41.48	10.655		9.78	0.375	U	109.3	
16565	D	2269.5	237.45	12.405	570.5	2779	21.8	20.635		15.255	0.54	J	83.7	
16120	D	2283.5	239.65	12.425	578	2818	22.675	20.98		15.42	0.35	U	80.35	
16955	D	2289.5	239.8	12.475	588.5	2775.5	22.2	20.885		15.595	0.32	U	72.15	
16475	D	2286	239.85	12.41	580.5	2699	20.55	21.15		15.495	0.29	U	83.35	
16095	D	2242	234.9	12.32	583	2859	22.885	20.625		15.315	0.275	U	74.45	
16650	D	2256.5	235.15	12.395	584	2818	22.72	20.535		15.285	0.28	U	85.1	
16995	D	2249.5	234.2	12.43	587	2657	20.905	20.33		15.08	0.31	U	92.85	
17175	D	2255.5	235.75	12.57	590.5	2606.5	20.855	20.305		15.12	0.235	U	80.1	
16150	D	2255	234.35	12.415	589	2779	22.32	20.1		14.995	0.245	U	90.45	
17620	D	2265	237.6	12.49	599.5	2936	22.2	20.305		15.385	0.215	U	74.7	
17165	D	2233.5	234.5	12.48	591	2689.5	21.025	20.505		15.07	0.37	U	85.2	
17170	D	2219.5	234.4	12.52	600	2678.5	19.89	21.17		15.085	0.41	J	93.5	
14775	D	2214.5	233.5	12.42	602	2865.5	22.61	20.605		15.16	0.275	U	78.5	
16915	D	2176	229	12.325	610	2927	24.92	20.59	Ī	14.925	0.305	U	73.85	

Fe (mg/kg)		Mg (mg/kg)	Mn (mg/kg)	Ni (mg/kg)	P (mg/kg)	Pb (mg/kg)	Sb (mg/kg)	Sr (mg/kg)	V (mg/kg)	W (mg/kg)		Zn (mg/kg)	
17320	D	2141	224.9	12.155	597	2509	18.905	20.96	14.73	0.21	U	67	
16565	D	2080.5	221.6	11.95	614.5	2487.5	20.345	22.325	15.54	0.285	U	76.5	
16230	D	2100	222.85	11.995	621	2648.5	22.48	21.855	15.275	0.265	U	83.2	
17135	D	2064	220.3	11.88	614.5	2738	22.415	22.015	15.065	0.24	U	70.6	
16925	D	2061.5	220.6	11.89	618.5	2788	23.785	22.285	15.375	0.5	J	75.5	
16505	D	2009	217.2	11.835	623.5	2439.5	21.58	23.175	15.47	0.3	U	69.2	
16505	D	2017	215.1	11.81	621.5	2706.5	24.045	22.975	15.045	0.295	U	82.65	
16725	D	1995.5	214.1	11.89	623.5	2674	23.9	23.41	15.09	0.27	U	76.1	
15530	D	2009	216.5	12.08	631.5	2779	23.655	23.735	15.36	0.31	U	92.65	
17170	D	1987	213.4	11.815	634	2751	24.44	23.745	15.315	0.235	U	65.65	
17505	D	1970.5	211.65	12.71	643.5	2546	22.615	23.96	14.995	0.215	U	67.55	
17080	D	1994	212.75	11.94	637.5	2682	23.81	23.7	14.955	0.16	U	70.55	
17715	D	1966	210.8	11.99	646	2705.5	23.83	23.91	14.99	0.23	U	72.55	
16605	D	2029	217.9	11.755	634.5	2752.5	23.955	23.59	14.725	0.195	U	65.3	
17285	D	1925.5	206.25	11.855	650	2729.5	24.19	24.715	14.99	0.395	U	67.15	
16940	D	1904.5	205	11.815	655	2671.5	25.545	26.25	15.3	0.3	U	64.65	

Table A4. Experiment 4—Cone-and-quartering metal results.

Sample ID	Exp ID	Lab Rep	Al (mg/kg)	Ba (mg/kg)	Cd (mg/kg)	Co (mg/kg)	Cr (mg/kg)	Cu (mg/kg)
CEA 1-36, Quarter 1	B49-28	1	6615	26.665	0.59	7.66	187.4	421.4
CEA 1-36, Quarter 1	B49-29	2	6725	26.94	0.58	7.66	188.15	421.3
CEA 1-36, Quarter 1	B49-30	3	5710	30.625	0.94	8.635	206.4	392.1
CEA 1-36, Quarter 1	B49-31	4	5590	30.5	0.52	7.995	199.85	658
CEA 1-36, Quarter 1	B49-32	5	5480	29.275	0.525	7.785	193.3	365.6
CEA 1-36, Quarter 1	B49-33	6	5610	29.335	0.525	7.825	196.25	419.9
CEA 1-36, Quarter 1	B49-34	7	5685	29.31	0.5	7.845	195.1	436.9
CEA 1-36, Quarter 1	B49-35	8	5665	29.525	0.525	7.755	192.15	528
CEA 1-36, Quarter 1	B49-36	9	5750	29.42	0.515	7.865	192.55	476.35
CEA 1-36, Quarter 1	B49-37	10	5802.45	28.7345	0.51005	7.72145	192.4555	381.5275
CEA 1-36, Quarter 2	B49-38	1	5940	28.165	0.49	7.29	160.75	329.7
CEA 1-36, Quarter 2	B49-39	2	6060	27.66	0.49	7.315	169.6	334.3
CEA 1-36, Quarter 2	B49-40	3	6005	27.445	0.49	7.64	169	345.15
CEA 1-36, Quarter 2	B49-41	4	6580	41.44	0.555	8.405	188.05	398.1
CEA 1-36, Quarter 2	B49-42	5	5500	26.91	0.845	7.775	172.7	302.75
CEA 1-36, Quarter 2	B49-43	6	5905	26.645	0.87	7.85	176.1	328.1
CEA 1-36, Quarter 2	B49-44	7	6095	25.835	0.895	7.695	171.05	335.45
CEA 1-36, Quarter 2	B49-45	8	6370	25.14	0.925	7.825	171.3	361.8
CEA 1-36, Quarter 2	B49-46	9	6345	24.82	0.91	7.86	172.5	355.35
CEA 1-36, Quarter 2	B49-47	10	6305	25.045	0.92	7.4	172.45	357.35
CEA 1-36, Quarter 3	B49-48	1	6560	24.82	0.91	7.87	178.3	428
CEA 1-36, Quarter 3	B50-6	2	6440	28.01	0.91	8.095	179.85	367.5

Sample ID	Exp ID	Lab Rep	Al (mg/kg)	Ba (mg/kg)	Cd (mg/kg)	Co (mg/kg)	Cr (mg/kg)	Cu (mg/kg)
CEA 1-36, Quarter 3	B50-7	3	6515	26.58	0.9	7.875	175.55	413.05
CEA 1-36, Quarter 3	B50-8	4	6840	26.695	0.905	8.03	178.65	559.5
CEA 1-36, Quarter 3	B50-9	5	6790	26.065	0.905	7.93	176.6	439.4
CEA 1-36, Quarter 3	B50-10	6	6790	25.935	0.915	7.935	177.25	543
CEA 1-36, Quarter 3	B50-11	7	6860	26.53	0.92	7.915	176.6	487.3
CEA 1-36, Quarter 3	B50-12	8	6525	25.285	0.9	7.82	174.55	447.5
CEA 1-36, Quarter 3	B50-13	9	6710	25.745	0.915	7.91	179.7	586.5
CEA 1-36, Quarter 3	B50-14	10	6840	25.195	0.915	7.855	173.75	402.4
CEA 1-36, Quarter 4	B50-15	1	6796.5	23.67275	0.93725	8.10175	174.34	879.75
CEA 1-36, Quarter 4	B50-16	2	7075	25.17	0.965	8.09	179.05	454.25
CEA 1-36, Quarter 4	B50-17	3	7065	24.935	1	8.035	180.1	1189.5
CEA 1-36, Quarter 4	B50-18	4	6860	24.32	0.965	7.94	176.9	456.8
CEA 1-36, Quarter 4	B50-19	5	6605	23.745	0.95	7.84	173.1	459.35
CEA 1-36, Quarter 4	B50-20	6	6660	23.75	0.965	7.945	176.8	597
CEA 1-36, Quarter 4	B50-21	7	6800	23.645	0.96	7.975	174.05	493.9
CEA 1-36, Quarter 4	B50-22	8	6780	23.88	0.975	7.92	173.25	1017
CEA 1-36, Quarter 4	B50-23	9	6730	22.645	0.98	7.86	167	699.5
CEA 1-36, Quarter 4	B50-24	10	6885	23.1	0.985	7.965	175.1	496.55

I	Fe (mį	g/kg)	Mg (mg/kg)	Mn (mg/kg)	Ni (mg/kg)	P (mg/kg)	Pb (mg/kg)	Sb (mg/kg)	Sr (mg/kg)	V (mg/kg)		W (mg/kg)	Zn (mg/kg)	
I	E 1	.946	202.8	11.48	717	3153	24.935	23.155	16.265	0.24	U	60.65		
ı	E 1	.953	203.25	11.63	726	3093.5	25.51	23.47	16.47	0.22	U	60.2		

Fe	(mg/kg)	Mg (mg/kg)	Mn (mg/kg)	Ni (mg/kg)	P (mg/kg)	Pb (mg/kg)	Sb (mg/kg)	Sr (mg/kg)	V (mg/kg)		W (mg/kg)	Zn (mg/kg)
Е	2194	230	10.82	801.5	3170	23.64	19.05	16.19	0	U	76.7	
Ε	2261.5	234.75	10.84	627.5	3381.5	26.075	18.68	15.955	0.74	J	107.1	
Ε	2246	232.3	10.47	629	3550.5	28.78	18.095	15.18	0.32	U	68.8	
Ε	2195.5	228.5	10.905	627.5	3613.5	27.86	18.845	15.62	0.36	U	74.4	
Ε	2175.5	226.4	10.76	629.5	3010.5	21.765	19.15	15.74	0.31	U	76.1	
Ε	2160	224.65	10.585	625	3225.5	25.99	19.085	15.6	0.275	U	75.95	
Ε	2193	228.85	11.02	631.5	3207	24.27	19.445	15.76	0.24	U	72.35	
Ε	2115.4 45	220.7355	10.7969	636.805	3544.595	28.07295	19.7354	15.6651	0.2424	U	66.508 5	
Ε	2071.5	215	9.83	563	1197.5	8.365	20.205	15	0.165	U	57.9	
Ε	2055.5	210.6	10.6	576	1439.5	9.765	20.88	14.965	0.125	U	57.25	
Ε	2064	212.75	10.43	597	1582	10.895	20.455	14.95	0.17	U	61.1	
Ε	3492	351.2	12.11	674	1755.5	12.655	22.085	15.93	0.48	J	71.2	
Е	2156	215.75	10.32	758.5	1472	11.55	18.075	14.4	-0.12	U	62.2	
Е	2126	211.85	10.14	770	1399.5	9.33	19.365	14.535	-0.15	U	61.75	
Ε	2086.5	209.1	10.27	807	1291	8.595	20.19	14.575	-0.015	U	59.15	
Ε	2058	204.35	10.23	821	1346	8.92	21.095	14.765	-0.14	U	59.1	
Ε	2098.5	207.75	10.385	854.5	1382.5	8.49	20.68	14.515	-0.055	U	58.9	
Ε	2035.5	201.35	10.25	862.5	1599.5	11.025	20.805	14.065	-0.125	U	59.15	
Ε	2103.5	206.45	10.75	867.5	1219	7.89	21.295	14.05	-0.095	U	60.6	
D	2144.5	217.6	10.595	947	1215.5	8.38	21.635	15.08	-0.045	U	59.95	
D	2092.5	209.05	10.495	950	1368.5	9.24	21.775	14.725	-0.09	U	60.25	
D	2087	207.75	10.435	976	1347	9.34	22.8	15.095	-0.055	U	69.75	
D	2058.5	204.1	10.525	983	1267.5	8.695	22.885	15.1	-0.045	U	61.95	

Fe	(mg/kg)	M	lg (mg/kg)	Mn (mg/kg)	Ni (mg/kg)	P (mg/kg)	Pb (mg/kg)	Sb (mg/kg)	Sr (mg/kg)	V (mg/kg)		W (mg/kg)	Zn (mg/kg)
D	2071	2	205.45	10.6	994	1259.5	8.595	22.805	15.01	-0.07	U	63.6	
D	2077.5	2	205.4	10.645	1011.5	1235	8.795	22.975	15.005	-0.075	U	60.8	
D	2023	2	201.2	10.555	1028	1308	8.985	21.795	14.505	0	U	61.05	
D	2078.5	2	205.6	10.67	1052.5	1238.5	8.105	22.39	14.85	0.025	U	71.3	
D	2064	2	203.15	10.59	1073	1354.5	8.72	22.745	14.605	-0.08	U	56.65	
D	2010.7 75	1	199.41	10.76975	1192.55	2856.025	22.747	22.931	15.48475	-0.0345	U	78.43	
D	2063.5	2	205.3	10.755	1210	3257	27.28	23.795	15.78	-0.085	U	60.1	
D	2056.5	2	204.85	10.87	1215	3043	26.63	23.72	15.815	0.14	U	119.9	
D	2058	2	203.6	10.875	1228.5	3318.5	29.155	22.92	15.49	-0.025	U	61.05	
D	2064.5	2	204.55	10.68	1245.5	3185.5	24.535	21.955	14.64	-0.08	U	61.55	
D	2046	2	203.05	10.835	1263	3504.5	29.21	22.01	14.855	-0.085	U	67.95	
D	2070	2	203.3	10.88	1273.5	3059.5	25.535	22.53	15.055	-0.07	U	63.4	
D	2084.5	2	205.7	10.895	1277	3212.5	26.945	22.555	14.915	0.225	U	111.15	
D	2043	1	199.6	10.985	1305.5	2952	24.68	22.445	14.675	0.055	U	81.8	
D	2044.5	2	200.8	10.64	1320	2980	24.75	22.845	15.205	0.02	U	61.6	

Table A5. Experiment 5—Unground and puck mill metal results.

Exp ID	Lab Rep	Unground	Grinder Type	Ground Time (s)	Al (mg/kg)	Ba (mg/kg)	Cd (mg/kg)	Co (mg/kg)	Cr (mg/kg)	Cu (mg/kg)
B39-8	1	Х	NA	0	3972	15.3	1.04	6.34	5.92	312
B39-9	2	х	NA	0	4020	15.7	1.07	6.38	5.88	357
B39-10	3	х	NA	0	4102	23.4	1.09	6.26	5.88	313
B39-11	4	х	NA	0	4078	16.4	1.07	6.42	6.16	676
B39-12	5	х	NA	0	4210	16.6	1.08	6.55	5.72	327
B39-13	6	х	NA	0	4214	16.5	1.09	6.62	6.74	329
B39-14	7	х	NA	0	4145	16.7	1.07	6.54	6.22	349
B39-15	8	х	NA	0	4079	16.0	1.07	6.36	6.16	351
B39-16	9	х	NA	0	3954	15.2	1.10	6.73	6.52	319
B39-17	10	х	NA	0	4118	16.4	1.09	6.51	5.93	322
B39-18	11	х	NA	0	4137	17.3	1.07	6.41	6.14	344
B39-19	12	х	NA	0	4218	22.8	1.08	6.56	5.99	323
B39-20	13	х	NA	0	4266	16.2	1.07	6.52	6.41	327
B39-21	14	х	NA	0	4118	15.8	1.08	6.35	5.88	360
B39-22	15	х	NA	0	4237	16.3	1.11	6.72	6.32	344
B39-26	1	NA	Puck	5x60	5490	32.0	1.85	8.77	233	503
B39-27	2	NA	Puck	5x60	5545	33.3	1.85	8.84	232	492
B39-28	3	NA	Puck	5x60	5585	32.1	1.86	8.94	229	391
B39-29	4	NA	Puck	5x60	5605	32.3	1.84	8.81	229	541
B39-30	5	NA	Puck	5x60	5505	31.7	1.80	8.82	225	417
B39-31	6	NA	Puck	5x60	5505	31.8	1.80	8.74	231	517
B39-32	7	NA	Puck	5x60	5425	31.3	1.80	8.79	230	574

Exp ID	Lab Rep	Unground	Grinder Type	Ground Time (s)	Al (mg/kg)	Ba (mg/kg)	Cd (mg/kg)	Co (mg/ka	g)	Cr (mg/kg	3)	Cu (mg/kg	()
B39-33	8	NA	Puck	5x60	5450	31.5		1.80	8.72		232		473	
B39-34	9	NA	Puck	5x60	5435	31.2		1.79	8.72		227		636	
B39-35	10	NA	Puck	5x60	5485	31.5		1.84	8.84		223		425	
B39-36	11	NA	Puck	5x60	5485	30.4		1.84	8.75		233		586	
B39-37	12	NA	Puck	5x60	5475	30.3		1.83	8.67		236		570	
B39-38	13	NA	Puck	5x60	5520	30.3		1.82	8.75		233		462	
B39-39	14	NA	Puck	5x60	5505	29.4		1.82	8.64		222		458	
B39-40	15	NA	Puck	5x60	5615	34.8		1.79	8.46		222		394	

Fe (mg/kg)		vlg mg/kg)	Mn (mg/k	g)	Ni (mg/kg)	P (mg/kg	<u>s</u>)	Pb (mg/kg)	Sb (mg/kg	g)	Sr (mg/k	g)	V (mg/kg	<u>3</u>)	W (mg/kg))	Zn (mg/kg)
9205	2	2004	199		8.91		570		1187		7.78		11.8		9.265		0.280	U	63.3
9340	1	L983	201		9.09		558		2194		23.0		12.2		9.38		0.295	U	65.5
9405	2	2041	206		8.93		557		3340		44.3		11.9		10.0		0.230	U	61.9
9255	2	2010	198		9.12		557		1129		8.12		11.9		9.82		0.395	U	107
9270	2	2005	201		9.08		553		1287		10.0		12.7		10.1		0.205	U	62.4
9428	1	L999	201		9.07		569		1890		12.5		12.7		10.8		0.247	U	62.3
9255	1	L991	197		8.97		548		1004		6.86		13.7		9.83		0.205	U	64.2
9325	2	2030	202		9.08		567		1505		13.7		12.9		9.88		0.210	U	64.1
9455	2	2041	200		9.65		562		1432		11.2		12.1		9.72		0.365	U	65.1
9400	2	2047	206		9.18		549		1183		7.82		12.1		9.96		0.265	U	63.7
9315	2	2055	200		9.07		563		1802		18.3		12.7		9.9		0.295	U	64.2

Fe (mg/kg)		Mg (mg/kg)	Mn (mg/k	g)	Ni (mg/kg)	P (n	ng/kg)	Pb (mg/kg)	Sb (mg/kg	()	Sr (mg/k	g)	V (mg/k	g)	W (mg/kg))	Zn (mg/kg)
9353		2055	202		8.85	57	73	1440		10.9		12.9		10.5		0.393	U	60.7
9120		2010	200		9.14	55	52	1140		8.35		12.8		10.1		0.215	U	60.0
9150		1988	198		8.93	55	51	2307		22.6		13.1		9.99		0.240	U	65.0
9330		2008	199		9.25	56	66	1159		8.08		13.0		10.5		0.245	U	62.6
16565	D	2270	237		12.4	57	71	2779		21.8		20.6		15.3		0.540	J	83.7
16120	D	2284	240		12.4	57	78	2818		22.7		21.0		15.4		0.350	U	80.4
16955	D	2290	240		12.5	58	39	2776		22.2		20.9		15.6		0.320	U	72.2
16475	D	2286	240		12.4	58	31	2699		20.6		21.2		15.5		0.290	U	83.4
16095	D	2242	235		12.3	58	33	2859		22.9		20.6		15.3		0.275	U	74.5
16650	D	2257	235		12.4	58	34	2818		22.7		20.5		15.3		0.280	U	85.1
16995	D	2250	234		12.4	58	37	2657		20.9		20.3		15.1		0.310	U	92.9
17175	D	2256	236		12.6	59	91	2607		20.9		20.3		15.1		0.235	U	80.1
16150	D	2255	234		12.4	58	39	2779		22.3		20.1		15.0		0.245	U	90.5
17620	D	2265	238		12.5	60	00	2936		22.2		20.3		15.4		0.215	U	74.7
17165	D	2234	235		12.5	59	91	2690		21.0		20.5		15.1		0.370	U	85.2
17170	D	2220	234		12.5	60	00	2679		19.9		21.2		15.1		0.410	J	93.5
14775	D	2215	234		12.4	60	02	2866		22.6		20.6		15.2		0.275	U	78.5
16915	D	2176	229		12.3	62	10	2927		24.9		20.6		14.9		0.305	U	73.9
17320	D	2141	225		12.2	59	97	2509		18.9		21.0		14.7		0.210	U	67.0`

Table A6. Experiment 6—Results for comparison of different milling equipment.

Experiment ID	Grinder Type	Ground Time (s)	Lab	Al (mg/kg)	Ba (mg/kg)	Ca (mg/k	g)	Cd (mg/kg	g)	Co (mg/kg)) (Cr (mg/kg)	Cu (mg/kg)
UN-0-2	Unground	0	TA	3560	11.60	NA		0.08	U	4.30	4	4.80	313
UN-0-4	Unground	0	TA	3560	12.10	NA		0.08	U	4.17	4	4.42	872
UN-0-6	Unground	0	TA	3590	11.90	NA		0.08	U	4.64	4	4.50	10900
UN-0-8	Unground	0	TA	3490	11.90	NA		0.08	U	4.33	4	4.27	299
UN-0-10	Unground	0	TA	3670	12.50	NA		0.08	U	4.32	4	4.71	339
UN-0-12	Unground	0	TA	3540	12.10	NA		0.08	U	4.10	4	4.55	323
UN-0-14	Unground	0	TA	3310	10.90	NA		0.08	U	4.20	4	4.24	301
UN-0-16	Unground	0	TA	3690	12.70	NA		0.08	U	4.86	4	4.62	368
UN-0-18	Unground	0	TA	3650	12.70	NA		0.08	U	4.33	4	4.45	309
UN-0-20	Unground	0	TA	3620	11.80	NA		0.08	U	4.43	4	4.55	336
UN-0-22	Unground	0	TA	3550	12.60	NA		0.08	U	4.22	4	4.36	301
UN-0-24	Unground	0	TA	3520	11.80	NA		0.08	U	4.55	4	4.72	333
UN-0-26	Unground	0	TA	3500	11.60	NA		0.08	U	4.42	4	4.34	314
UN-0-28	Unground	0	TA	3230	10.90	NA		0.08	U	4.17	3	3.91	306
UN-0-30	Unground	0	TA	3590	12.00	NA		0.08	U	4.44	4	4.58	299
AY27878	Puck	5x60	APPL	3251	17.09	NA		0.065		4.604		115.6	356.3
AY27879	Puck	5x60	APPL	3073	15.4	NA		0.048		4.411	2	116.4	281
AY27880	Puck	5x60	APPL	2905	14.59	NA		0.048		4.154		106.7	267.1
AY27881	Puck	5x60	APPL	2942	14.8	NA		0.056		4.335	2	107.8	278.1
AY27882	Puck	5x60	APPL	2836	13.68	NA		0.048		4.067		106.4	265.3
AY27883	Puck	5x60	APPL	2948	14.95	NA		0.047		4.277	-	108.4	256.2
AY27884	Puck	5x60	APPL	3079	14.94	NA		0.053		4.455	2	112.3	287.6

Experiment ID	Grinder Type	Ground Time (s)	Lab	Al (mg/kg))	Ba (mg/kg)	Ca (mg/kg)	Cd (mg/kg)	(Co (mg/kg))	Cr (mg/kg)	Cu (mg/kg)
AY27885	Puck	5x60	APPL	2918		14.74		NA	0.049	4	4.21		106.9	324.9
AY27886	Puck	5x60	APPL	2797		14.62		NA	0.046	4	4.108		102.4	282
AY27887	Puck	5x60	APPL	2944		14.39		NA	0.051	4	4.211		107.6	285.7
AY27888	Puck	5x60	APPL	2897		14.28		NA	0.053	4	4.225		107.1	261.6
AY27889	Puck	5x60	APPL	2942		13.82		NA	0.045	4	4.228		102.8	271.2
AY27890	Puck	5x60	APPL	2756		13.71		NA	0.048	4	4.15		102.4	259.4
AY27891	Puck	5x60	APPL	2934		14.34		NA	0.046	4	4.361		108.1	263.9
AY27892	Puck	5x60	APPL	2727		13.33		NA	0.048	• •	3.91		103.5	242.2
B49-6	MP	5x60	CRREL	4128		18.655		NA	0.495	(6.375		6.43	324.95
B49-7	MP	5x60	CRREL	3752.5		17.125		NA	0.37	į	5.855		6.065	278.15
B49-8	MP	5x60	CRREL	4054.5		17.2		NA	0.415	(6.5		6.23	327.15
B49-9	MP	5x60	CRREL	3985.5		18.065		NA	0.41	(6.5		6.245	353.25
B49-10	MP	5x60	CRREL	4041		17.64		NA	0.41	(6.14		6.27	352.25
B49-11	MP	5x60	CRREL	4110.5		17.955		NA	0.43	(6.495		6.515	355.75
B49-12	MP	5x60	CRREL	4034		17.885		NA	0.4	(6.14		6.37	328.55
B49-13	MP	5x60	CRREL	4044		17.505		NA	0.405	(6.29		6.45	319.55
B49-14	MP	5x60	CRREL	4246.5		18.01		NA	0.445	(6.475		6.38	885.5
B49-15	MP	5x60	CRREL	4234		17.32		NA	0.42	(6.405		6.225	319.7
B49-16	MP	5x60	CRREL	4047.5		15.37		NA	0.39	į	5.965		5.625	309.4
B49-17	MP	5x60	CRREL	4358		16.185		NA	0.42	(6.115		6.06	319.95
B49-18	MP	5x60	CRREL	4500.5		17.36		NA	0.415	(6.725		6.065	387.45
B49-19	MP	5x60	CRREL	4467		16.49		NA	0.415	(6.355		6.445	371
B49-20	MP	5x60	CRREL	4598.5		16.885		NA	0.43	(6.37		6.525	346.5

Experiment ID	Grinder Type	Ground Time (s)	Lab	Al (mg/kg)	Ba (mg/kg))	Ca (mg/kg)	Cd (mg/kg)	Co (mg/kg)	Cr (mg/kg)	Cu (mg/kg)
B39-8	Unground	NA	CRREL	3971.5	15.325		NA	1.035	6.34	5.92	312.1
B39-9	Unground	NA	CRREL	4019.5	15.675		NA	1.065	6.375	5.88	357.25
B39-10	Unground	NA	CRREL	4101.5	23.385		NA	1.085	6.255	5.875	312.55
B39-11	Unground	NA	CRREL	4078	16.37		NA	1.065	6.42	6.16	675.5
B39-12	Unground	NA	CRREL	4210	16.585		NA	1.075	6.545	5.72	327.05
B39-13	Unground	NA	CRREL	4214.2	16.458		NA	1.0908	6.6155	6.7418	328.96
B39-14	Unground	NA	CRREL	4145	16.715		NA	1.07	6.535	6.22	349.1
B39-15	Unground	NA	CRREL	4079	16.035		NA	1.065	6.36	6.155	351.25
B39-16	Unground	NA	CRREL	3954	15.205		NA	1.1	6.725	6.52	319.4
B39-17	Unground	NA	CRREL	4117.5	16.36		NA	1.09	6.51	5.925	322.1
B39-18	Unground	NA	CRREL	4137	17.315		NA	1.065	6.41	6.14	343.9
B39-19	Unground	NA	CRREL	4218.2	22.7511		NA	1.0812	6.5586	5.9925	323.44
B39-20	Unground	NA	CRREL	4265.5	16.23		NA	1.065	6.515	6.405	326.85
B39-21	Unground	NA	CRREL	4117.5	15.835		NA	1.08	6.345	5.88	360
B39-22	Unground	NA	CRREL	4236.5	16.28		NA	1.105	6.715	6.32	343.75
B39-26	Puck	5x60	CRREL	5490	32.02		NA	1.845	8.765	232.9	503
B39-27	Puck	5x60	CRREL	5545	33.3		NA	1.85	8.84	232.45	492
B39-28	Puck	5x60	CRREL	5585	32.12		NA	1.86	8.935	229	391.25
B39-29	Puck	5x60	CRREL	5605	32.305		NA	1.835	8.81	228.75	540.5
B39-30	Puck	5x60	CRREL	5505	31.695		NA	1.8	8.82	224.8	416.75
B39-31	Puck	5x60	CRREL	5505	31.835		NA	1.8	8.74	231.05	517
B39-32	Puck	5x60	CRREL	5425	31.32		NA	1.795	8.79	229.95	573.5
B39-33	Puck	5x60	CRREL	5450	31.465		NA	1.8	8.715	231.65	472.5

Experiment ID	Grinder Type	Ground Time (s)	Lab	Al (mg/kg)	Ba (mg/kg)	Ca (mg/kg)	Cd (mg/kg)	Co (mg/kg)	Cr (mg/kg)	Cu (mg/kg)
B39-34	Puck	5x60	CRREL	5435	31.165	NA	1.785	8.72	227.45	635.5
B39-35	Puck	5x60	CRREL	5485	31.485	NA	1.835	8.835	223.2	424.9
B39-36	Puck	5x60	CRREL	5485	30.395	NA	1.835	8.75	233.3	585.5
B39-37	Puck	5x60	CRREL	5475	30.325	NA	1.83	8.67	236.25	570
B39-38	Puck	5x60	CRREL	5520	30.275	NA	1.815	8.75	232.65	461.5
B39-39	Puck	5x60	CRREL	5505	29.42	NA	1.815	8.635	221.6	457.85
B39-40	Puck	5x60	CRREL	5615	34.8	NA	1.785	8.455	221.65	394.25
B40-8	Puck	5x60	CRREL	5840	30.46	NA	1.8	8.66	218.85	601
B40-9	Puck	5x60	CRREL	5770	30.3	NA	1.8	8.575	220.85	544.5
B40-10	Puck	5x60	CRREL	5740	29.53	NA	1.77	8.405	218.4	485.75
B40-11	Puck	5x60	CRREL	5850	29.465	NA	1.805	8.455	218.55	564
B40-12	Puck	5x60	CRREL	6010	29.305	NA	1.825	8.48	217.15	540
B40-13	Puck	5x60	CRREL	6045	29.125	NA	1.8	8.365	216.4	802
B40-14	Puck	5x60	CRREL	6065	28.62	NA	1.82	8.36	216.55	703.5
B40-15	Puck	5x60	CRREL	6235	28.82	NA	1.865	8.565	218.4	813
B40-16	Puck	5x60	CRREL	6205	28.41	NA	1.83	8.39	218	517.5
B40-17	Puck	5x60	CRREL	6195	27.45	NA	1.86	8.38	215.95	551.5
B40-18	Puck	5x60	CRREL	6185	27.59	NA	1.835	8.325	216.1	636
B40-19	Puck	5x60	CRREL	6250	27.135	NA	1.87	8.365	214.75	572
B40-20	Puck	5x60	CRREL	6195	28.16	NA	1.825	8.295	213.9	535
B40-21	Puck	5x60	CRREL	6455	26.025	NA	1.895	8.325	213.95	592.5
B40-22	Puck	5x60	CRREL	6800	25.92	NA	1.945	8.315	216.1	611.5
CEA37-LP3-6	Puck & Ring	5x60	TA	5760	40.9	3100	<2.00	6.88	355	333

Experiment ID	Grinder Type	Ground Time (s)	Lab	Al (mg/kg)	Ba (mg/kg)	Ca (mg/kg)	Cd (mg/kg)	Co (mg/kg)	Cr (mg/kg)	Cu (mg/kg)
CEA37-LP3-7	Puck & Ring	5x60	TA	5870	42	3150	<2.00	7.05	362	367
CEA37-LP3-8	Puck & Ring	5x60	TA	5970	42.5	3240	<2.00	7.16	367	347
CEA37-LP3-9	Puck & Ring	5x60	TA	5690	40.5	3100	<2.00	6.89	352	340
CEA37-LP3-10	Puck & Ring	5x60	TA	5630	39.9	3170	<2.00	6.93	357	357
CEA37-LP3-11	Puck & Ring	5x60	TA	6020	42.9	3250	<2.00	7.17	362	362
CEA37-LP3-12	Puck & Ring	5x60	TA	6150	43.6	3350	<2.00	7.46	379	368
CEA37-LP3-13	Puck & Ring	5x60	TA	5120	36.4	2810	<2.00	6.3	317	308
CEA37-LP3-14	Puck & Ring	5x60	TA	5360	38.1	2990	<2.00	6.67	338	332
CEA37-LP3-15	Puck & Ring	5x60	TA	5500	39.1	3050	<2.00	6.68	344	341
S5-01	Ball Mill	18 hrs	TA	4980	31.8	2710	<2.00	5.96	9.38	316
S5-02	Ball Mill	18 hrs	TA	5040	32.7	2730	<2.00	6.04	9.51	315
S5-03	Ball Mill	18 hrs	TA	5030	31.9	2710	<2.00	5.95	9.4	317
S5-04	Ball Mill	18 hrs	TA	4960	31.8	2690	<2.00	5.94	9.38	318
S5-05	Ball Mill	18 hrs	TA	4990	31.8	2690	<2.00	5.95	9.34	318
S5-06	Ball Mill	18 hrs	TA	5060	32.4	2750	<2.00	5.98	9.42	349
S5-07	Ball Mill	18 hrs	TA	5000	32	2710	<2.00	6.02	9.36	313
S5-08	Ball Mill	18 hrs	TA	5030	32.1	2730	<2.00	5.98	9.38	325
S5-09	Ball Mill	18 hrs	TA	5020	31.5	2710	<2.00	6.08	9.54	320
S5-10	Ball Mill	18 hrs	TA	5000	32.2	2700	<2.00	6	9.34	314
S5-11	Ball Mill	18 hrs	TA	4950	31.8	2680	<2.00	5.98	9.25	320
S5-12	Ball Mill	18 hrs	TA	4920	31.6	2730	<2.00	5.96	9.28	313
S5-13	Ball Mill	18 hrs	TA	4970	31.8	2720	<2.00	6.1	9.4	314
S5-14	Ball Mill	18 hrs	TA	4960	31.9	2720	<2.00	6.07	9.38	328

Experiment ID	Grinder Type	Ground Time (s)	Lab	AI (mg/kg)) E	Ba (mg/kg))	Ca (mg/k	g)	Cd (mg/kg))	Co (mg/kg)	Cr (mg/kg)	Cu (mg/kg	3)
S5-15	Ball Mill	18 hrs	TA	4840		31.1		2660		<2.00		5.93		9.19	309	

Fe (mg/kg)	Mg (mg/kg)	Mn (mg/k	g)	Ni (mg/kg)	P (mg/kg)	Pb (mg/kg)		Sb (mg/kg)	Sr (mg/kg)	Sr (mg/kg)		- 1	Na (mg/kg)		S (mg/kg)	V (ı	mg/kg)	W (mg/kg)	2	Zn (mg/kg)
9260	NA	178		7.20	J	NA	2280		16.90	NA		NA		NA	ı	NA	6.3	39	NA	4	48.20
9210	NA	182		7.20	J	NA	1340		7.12	NA		NA		NA	ı	NA	6.3	32	NA	4	49.00
9310	NA	180		9.15		NA	1060		4.42	NA		NA		NA	ı	NA	5.9	91	NA	í	574.00
9070	NA	172		7.10	J	NA	1800		11.50	NA		NA		NA	ı	NA	6.1	L4	NA		46.80
9470	NA	183		7.50	J	NA	1600		7.74	NA		NA		NA	ı	NA	6.5	50	NA	4	49.70
9100	NA	179		7.20	J	NA	1170		5.38	NA		NA		NA	ı	NA	6.3	32	NA		48.90
8670	NA	169		7.00	J	NA	1330		7.37	NA		NA		NA	ı	NA	5.9	92	NA	4	46.60
9730	NA	185		7.80		NA	1920		14.00	NA		NA		NA	ı	NA	6.5	58	NA	í	52.70
9290	NA	182		7.40	J	NA	4760		60.90	NA		NA		NA	ı	NA	6.1	L5	NA	4	49.50
9350	NA	183		7.60		NA	1970		10.30	NA		NA		NA	ı	NA	6.3	30	NA	í	50.50
9120	NA	180		7.20	J	NA	1030		5.18	NA		NA		NA	ı	NA	6.4	10	NA	4	47.90
9200	NA	182		7.50	J	NA	2130		11.00	NA		NA		NA	ı	NA	6.1	L3	NA	4	48.50
9170	NA	179		7.40	J	NA	1570		7.23	NA		NA		NA	ı	NA	6.0)9	NA	4	48.70
8320	NA	161		6.90	J	NA	5190		60.20	NA		NA		NA	ı	NA	5.4	19	NA	4	46.20
9330	NA	194		7.55		NA	1490		9.64	NA		NA		NA	ı	NA	6.2	20	NA	4	48.20
8325	1668	155.2		6.984		364.9	2500		8.908	9.597		NA		NA	ı	NA	6.1	L35	NA	Ę	54.17
8086	1578	145.3		6.735		348.1	2540		7.931	9.294		NA		NA	ı	NA	6.1	L24	NA		48.35
7665	1526	141.3		6.375		330.8	3780		13.99	8.85		NA		NA	ı	NA	5.6	645	NA	4	49.07

Fe (mg/kg)		Mg (mg/kg)	Mn (mg/kg)	Ni (mg/kg)	P (mg/kg)	Pb (mg/kg)	Sb (mg/kg)	Sr (mg/kg)	K (mg/kg)	Na (mg/kg)	S (mg/kg)	V (mg/kg)	W (mg/kg)	Zn (mg/kg)
7717		1498	141.8	6.424	335.1	3840	15.9	8.612	NA	NA	NA	5.702	NA	50.1
7477		1468	139.2	6.251	328.2	3110	10.47	8.463	NA	NA	NA	5.385	NA	48.6
7788		1541	142.6	6.489	329.7	2800	10.34	9.044	NA	NA	NA	5.987	NA	49.88
7973		1598	148.9	6.759	346.1	2930	11.7	9.201	NA	NA	NA	5.947	NA	52.63
7762		1503	141.6	6.385	342.8	3830	15.49	8.764	NA	NA	NA	5.783	NA	55.27
7411		1462	136.5	6.254	326.3	2990	10.34	8.443	NA	NA	NA	5.6	NA	49.79
7614		1516	142.1	6.377	330.7	2800	10.87	8.847	NA	NA	NA	5.754	NA	51.47
7693		1518	141.5	6.365	329.9	2660	9.201	8.738	NA	NA	NA	5.646	NA	49.17
7554		1502	142.8	6.486	331.5	3060	11.97	8.652	NA	NA	NA	5.67	NA	48.08
7406		1448	136	6.289	321.6	2680	9.227	8.375	NA	NA	NA	5.48	NA	48.85
7739		1503	142.8	6.61	337.1	3030	10.92	8.68	NA	NA	NA	5.788	NA	48.08
7317		1470	134.5	6.103	318.8	3060	10.28	8.38	NA	NA	NA	5.166	NA	45.73
14025	D	2118	193.8	8.41	586.5	2241	18.565	12.62	NA		NA	10.73	0.285	69.65
12665	D	1993	175.2	7.845	521.5	973	6.36	10.73	NA	NA	NA	9.46	0.195 l	61.95
13900	D	2139	190.25	8.455	598	1163.5	7.08	12.215	NA	NA	NA	10.12	0.195 l	68.2
13850	D	2058	187.1	8.23	565.5	1259	7.82	12.93	NA	NA	NA	10.405	0.225	69.9
13280	D	2078	185.3	8.26	550	1071.5	7.095	12.8	NA	NA	NA	10.115	0.235 l	72.65
14295	D	2109.5	188.85	8.655	598	1025	7.185	13.635	NA	NA	NA	10.6	0.49	73.9
14105	D	2064.5	186.15	8.09	593.5	2370.5	26.74	12.91	NA	NA	NA	10.58	0.31	67.25
13575	D	2032	184.85	8.035	596.5	1155.5	7.65	13.475	NA	NA	NA	10.43	0.305	J 67
14470	D	2068	188	8.45	644	1750	12.79	14.08	NA	NA	NA	10.64	0.765	141.95
13335	D	2023.5	184.1	8.285	608.5	1425.5	9.92	13.93	NA	NA	NA	10.315	0.235 เ	J 65
12905	D	1939.5	176.75	8.245	605	1559.5	15.775	12.965	NA	NA	NA	9.185	0.195 l	62.4

Fe (mg/kg)		Mg (mg/kg)	Mn (mg/kg)	N	li (mg/kg)	P (mg/kg)	Pb (mg/kg)	Sb (mg/kg)	Sr (mg/kg)	K (mg/kg)	Na (mg/kg)	5	S (mg/kg)	١	/ (mg/kg)	w	(mg/kg)		Zn (mg/kg)
14125	D	1946.5	177.2	8.	3.655	596.5	1026	6.815	13.85	NA	NA	١	NA	ç	9.965	0.:	215	U	63.25
14335	D	1924	183.35	8.	3.41	639	1117	7.83	15.16	NA	NA	١	NA	1	10.475	0.:	215	U	64.2
14390	D	1921	176.75	8.	3.72	608.5	1155	8.28	14.86	NA	NA	١	NA	1	10.675	0.:	155	U	64.6
14010	D	1957	183.2	8.	3.75	627	1095	7.94	16.935	NA	NA	١	NA	1	10.68	0.:	205	U	61.2
9205		2004	199.1	8.	3.91	570	1187	7.78	11.815	NA	NA	١	NA	ć	9.265	0.:	28	U	63.3
9340		1983	200.65	9.	.09	557.5	2193.5	23.045	12.23	NA	NA	١	NA	Ó	9.38	0.:	295	U	65.5
9405		2040.5	206.05	8.	3.925	556.5	3340	44.265	11.87	NA	NA	١	NA	1	10.005	0.:	23	U	61.9
9255		2010	198.45	9.	.12	556.5	1128.5	8.12	11.945	NA	NA	١	NA	ç	9.815	0.3	395	U	106.55
9270		2004.5	201.3	9.	.08	553	1287	10.01	12.65	NA	NA	١	NA	-	10.135	0.:	205	U	62.35
9428.4		1998.8	200.94	9.	.0698	568.63	1889.7	12.509	12.721	NA	NA	١	NA	1	10.817	0.:	2475	U	62.267
9255		1991	196.65	8.	3.97	548	1003.5	6.86	13.73	NA	NA	١	NA	Ç	9.825	0.:	205	U	64.2
9325		2030	201.55	9.	.08	566.5	1504.5	13.74	12.91	NA	NA	١	NA	Ç	9.88	0.:	21	U	64.05
9455		2040.5	200.45	9.	.65	562	1432	11.215	12.07	NA	NA	١	NA	ć	9.72	0.3	365	U	65.05
9400		2046.5	205.5	9.	.18	548.5	1182.5	7.82	12.055	NA	NA	١	NA	ç	9.955	0.:	265	U	63.7
9315		2055	199.9	9.	.065	562.5	1801.5	18.345	12.65	NA	NA	١	NA	Ç	9.9	0.:	295	U	64.2
9353.4		2054.8	201.5	8.	3.8485	573.24	1439.7	10.858	12.929	NA	NA	١	NA	1	10.521	0.3	3927	U	60.741
9120		2009.5	200.35	9.	.14	552	1140	8.345	12.755	NA	NA	١	NA	-	10.13	0.:	215	U	60
9150		1988	197.5	8.	3.925	551	2306.5	22.56	13.075	NA	NA	١	NA	Ç	9.99	0.:	24	U	64.95
9330		2007.5	198.95	9.	.25	565.5	1159	8.075	12.985	NA	NA	١	NA	1	10.515	0.:	245	U	62.55
16565	D	2269.5	237.45	1	.2.405	570.5	2779	21.8	20.635	NA	NA	١	NA	1	15.255	0.	54	J	83.7
16120	D	2283.5	239.65	1:	.2.425	578	2818	22.675	20.98	NA	NA	١	NA	1	15.42	0.3	35	U	80.35
16955	D	2289.5	239.8	1:	2.475	588.5	2775.5	22.2	20.885	NA	NA	١	NA	-	15.595	0.3	32	U	72.15
16475	D	2286	239.85	1:	.2.41	580.5	2699	20.55	21.15	NA	NA	١	NA		15.495	0.:	29	U	83.35

Fe (mg/kg) Mg		Mg (mg/kg)		Mn (mg/kg)	ľ	Ni (mg/kg)		P (mg/kg)	Pb (mg/kg)		Sb (mg/kg)	Sr (mg/kg)		K (mg/kg)		Na (mg/kg)		S (mg/kg)		V (mg/kg)		(mg/kg)		Zn (mg/kg)	
16095	D	2242		234.9		12.32		583	2859		22.885	20.625		NA		NA	١	NA		15.315	0.2	275	U	74.45	
16650	D	2256.5		235.15		12.395		584	2818		22.72	20.535		NA		NA	١	NA		15.285	0.2	28	U	85.1	
16995	D	2249.5		234.2		12.43		587	2657		20.905	20.33		NA		NA	١	NA		15.08	0.3	31	U	92.85	
17175	D	2255.5		235.75	-	12.57		590.5	2606.5		20.855	20.305		NA		NA	١	NA		15.12	0.2	235	U	80.1	
16150	D	2255		234.35	-	12.415		589	2779		22.32	20.1		NA		NA	١	NA		14.995	0.2	245	U	90.45	
17620	D	2265		237.6	-	12.49		599.5	2936		22.2	20.305		NA		NA	١	NA		15.385	0.2	215	U	74.7	
17165	D	2233.5		234.5	-	12.48		591	2689.5		21.025	20.505		NA		NA	١	NA		15.07	0.3	37	U	85.2	
17170	D	2219.5		234.4	-	12.52		600	2678.5		19.89	21.17		NA		NA	١	NA		15.085	0.4	41 .	J	93.5	
14775	D	2214.5		233.5	-	12.42		602	2865.5		22.61	20.605		NA		NA	١	NA		15.16	0.2	275	U	78.5	
16915	D	2176		229	-	12.325		610	2927		24.92	20.59		NA		NA	١	NA		14.925	0.3	305	U	73.85	
17320	D	2141		224.9	-	12.155		597	2509		18.905	20.96		NA		NA	١	NA		14.73	0.2	21	U	67	
16565	D	2080.5		221.6		11.95		614.5	2487.5		20.345	22.325		NA		NA	١	NA		15.54	0.2	285	U	76.5	
16230	D	2100		222.85	-	11.995		621	2648.5		22.48	21.855		NA		NA	١	NA		15.275	0.2	265	U	83.2	
17135	D	2064		220.3	-	11.88		614.5	2738		22.415	22.015		NA		NA	١	NA		15.065	0.2	24	U	70.6	
16925	D	2061.5		220.6	-	11.89		618.5	2788		23.785	22.285		NA		NA	١	NA		15.375	9.0	5 .	J	75.5	
16505	D	2009		217.2	-	11.835		623.5	2439.5		21.58	23.175		NA		NA	١	NA		15.47	0.3	3	U	69.2	
16505	D	2017		215.1	-	11.81		621.5	2706.5		24.045	22.975		NA		NA	١	NA		15.045	0.2	295	U	82.65	
16725	D	1995.5		214.1	-	11.89		623.5	2674		23.9	23.41		NA		NA	١	NA		15.09	0.2	27	U	76.1	
15530	D	2009		216.5	-	12.08		631.5	2779		23.655	23.735		NA		NA	١	NA		15.36	0.3	31	U	92.65	
17170	D	1987		213.4	-	11.815		634	2751		24.44	23.745		NA		NA	١	NA		15.315	0.2	235	U	65.65	
17505	D	1970.5		211.65		12.71		643.5	2546		22.615	23.96		NA		NA	١	NA		14.995	0.2	215	U	67.55	
17080	D	1994		212.75	ź	11.94		637.5	2682		23.81	23.7		NA		NA	١	NA	:	14.955	0.3	16	U	70.55	
17715	D	1966		210.8	-	11.99		646	2705.5		23.83	23.91		NA		NA	١	NA		14.99	0.2	23	U	72.55	

Fe (mg/kg))	Mg (mg/kg)	١	Mn (mg/kg)	Ni (mg/kg)	P (mg/kg)	Pb (mg/kg)	Sb (mg/kg)	Sr	(mg/kg)	K	(mg/kg)	1	la mg/kg)	S (mg/kg)	,	V (mg/kg)	W	V (mg/kg)		Zn (mg/kg)
16605 D)	2029	1	217.9	11.755	634.5	2752.5	23.955	23	3.59	N.	A	Ν	IA	NA		14.725	0	.195	U	65.3
17285 D)	1925.5	1	206.25	11.855	650	2729.5	24.19	24	.715	N.	A	Ν	IA	NA		14.99	0	.395	U	67.15
16940 D)	1904.5	-	205	11.815	655	2671.5	25.545	26	5.25	N.	А	Ν	IA	NA		15.3	0	.3	U	64.65
14100		2130	1	219	13.2	382	2330	5.26	NA	4	10	600	6	663	23.4		14.3	N	IA		49.1
14400		2190		226	13.5	393	2410	5.4	NA	٨	10	650	6	376	22.7		14.7	Ν	IA		53
14600		2240		229	13.7	401	2430	4.51	NA	٨	10	670	6	578	22.2		14.7	N	IA		54.9
14100		2120		218	13.1	383	2340	5.18	NA	٨	1	590	6	348	21.8		14.3	N	IA		49.8
14000		2160	:	223	13.2	383	2350	4.91	NA	٨	1	600	6	640	22.3		14.5	Ν	IA		50.2
14900		2220	:	228	13.6	400	2400	5.14	NA	٨	1	660	6	85	22.3		14.8	Ν	IA		52.2
15300		2320	:	238	14.2	413	2550	5.53	NA	٨	1	720	6	92	22.8		15.4	N	IA		53.4
13200		1930		199	12	345	2110	5.93	NA	١	1	420	5	79	18.6		13.1	Ν	IA		45
13700		2050	:	212	12.8	369	2260	5.33	NA	٨	1	510	6	601	19.5		13.8	Ν	IA		47.2
13700		2080	:	214	12.8	371	2310	4.77	NA	٨	1	530	6	315	20.1		13.7	Ν	IA		50
17200		2220	:	226	9.42	409	1690	3.46	NA	٨	1:	230	3	32	19.1		10.7	Ν	IA		52.2
17400		2220	:	227	9.44	425	1700	4.02	NA	٨	1:	250	3	37	19.1		11	N	IA		52.1
17300		2210	:	224	9.39	420	1700	3.54	NA	٨	1:	210	3	30	18.4		10.7	Ν	IA		52
17100		2180	:	223	9.31	422	1680	3.85	NA	٨	1:	210	3	327	17.6		10.8	N	IA		51
17100		2220	:	227	9.32	427	1670	3.34	NA	١	1:	230	3	334	18.5		10.6	Ν	IA		51.4
17500		2260	:	229	9.41	430	1690	3.71	NA	٨	1:	250	3	38	19		10.8	Ν	IA		53.8
17300		2200	ŀ	225	9.43	434	1680	3.54	NA	١	1:	220	3	31	17.8		10.8	Ν	IA		51
17200		2210	<u> </u> :	226	9.44	437	1710	3.43	NA	٨	1:	220	3	30	18		10.7	Ν	IA		53.7
17400		2270	ŀ	232	9.53	438	1710	3.69	NA	١	1:	220	3	345	17.7		11	Ν	IA		52.8
17200		2200		225	9.4	428	1700	3.18	NA	A	1:	220	3	329	15.2		10.8	N	IA		50.9

Fe (mg/kg) Mg (mg/l	(g)	Mn (mg/kg)	Ni (mg/kg)	P (mg/kg)	Pb (mg/kg))	Sb (mg/kg)	Sr (mg/kg)	K (mg/kg)	Na (mg/kg)	S (mg/kg)	,	/ (mg/kg)	W (mg/kg)	Zn (mg/k	(g)
17100	2210		227		9.3	428	1680		3.47	NA	1230	329	15.3		10.7	NA	50.9	
17100	2200		225		9.23	426	1680		3.19	NA	1230	328	13.9		10.9	NA	51.6	
17400	2230		229		9.46	433	1690		3.37	NA	1240	329	14.2		11	NA	50.1	
17300	2190		226		9.41	429	1680		3.17	NA	1220	326	14.5		11	NA	51.2	
17000	2160		223		9.22	423	1640		3.14	NA	1200	318	14.1		10.6	NA	49.9	

Table A7. Experiment 7—Results comparing different milling intervals for the puck mill and ball mill (concentrations in mg/kg).

Exp ID	Lab Rep	Grinder Type	Ground Time (s)	Al	Ba	Cd	Со	Cr	Cu	
B47-29	1	Puck	30	4345	21.4	0.785	6.93	71.5	321	
B47-30	2	Puck	30	4416	21.3	0.780	6.98	79.9	315	
B47-31	3	Puck	30	4296	21.3	0.770	7.44	74.6	302	
B47-32	4	Puck	30	4399	20.5	0.800	6.75	78.6	330	
B47-33	5	Puck	30	4435	20.2	0.790	6.77	77.9	328	
B47-34	6	Puck	30	4497	19.9	0.765	6.66	72.8	340	
B47-35	7	Puck	30	4680	19.9	0.785	6.90	77.2	367	
B47-36	8	Puck	30	5135	20.8	0.870	6.80	84.1	406	
B47-37	9	Puck	30	4777	19.2	0.785	6.47	73.9	350	
B47-38	10	Puck	30	4893	18.6	0.790	6.25	69.4	360	
B47-39	11	Puck	30	5225	19.4	0.855	6.70	73.7	385	
B47-40	12	Puck	30	5290	18.6	0.855	6.64	70.8	395	
B47-41	13	Puck	30	5100	19.1	0.865	6.77	78.6	401	
B47-42	14	Puck	30	4841	17.1	0.830	6.44	68.7	349	
B47-43	15	Puck	30	4981	17.0	0.865	6.22	69.6	411	
B48-7	1	Puck	60	5630	29.7	0.965	8.17	137	408	
B48-8	2	Puck	60	5420	27.5	0.955	7.80	133	604	
B48-9	3	Puck	60	5425	28.0	0.930	8.03	131	474	
B48-10	4	Puck	60	5860	29.6	0.970	8.15	139	421	
B48-11	5	Puck	60	5590	29.6	0.960	8.05	137	504	
B48-12	6	Puck	60	5070	30.6	0.904	7.97	132	521	

Exp ID	Lab Rep	Grinder Type	Ground Time (s)	Al	Ва	Cd	Co	Cr	Cu
B48-13	7	Puck	60	5295	30.2	0.915	8.09	136	362
B48-14	8	Puck	60	5165	29.3	0.905	7.87	132	366
B48-15	9	Puck	60	5255	29.2	0.925	8.20	138	376
B48-16	10	Puck	60	4886	27.3	0.885	7.73	131	350
B48-17	11	Puck	60	5305	29.2	0.935	8.09	136	363
B48-18	12	Puck	60	5355	29.6	0.915	8.09	134	355
B48-19	13	Puck	60	5475	30.4	0.925	8.30	139	380
B48-20	14	Puck	60	5545	29.9	0.920	8.11	138	577
B48-21	15	Puck	60	5390	28.9	0.910	8.01	135	388
B48-24	1	Puck	90	5360	25.0	0.955	7.49	156	493
B48-25	2	Puck	90	6105	27.3	1.00	7.72	159	444
B48-26	3	Puck	90	6145	26.0	1.01	7.59	157	426
B48-27	4	Puck	90	7205	28.4	1.16	8.34	180	487
B48-28	5	Puck	90	6790	25.0	1.06	7.68	162	508
B48-29	6	Puck	90	6865	24.1	1.07	7.63	157	1123
B48-30	7	Puck	90	7070	26.0	1.10	8.01	173	610
B48-31	8	Puck	90	6845	24.2	1.07	7.60	160	553
B48-32	9	Puck	90	6195	25.0	1.07	7.99	168	938
B48-33	10	Puck	90	6340	24.1	1.04	7.62	165	817
B48-34	11	Puck	90	6620	23.6	1.05	7.69	167	616
B48-35	12	Puck	90	6515	22.8	1.03	7.45	152	750
B48-36	13	Puck	90	6435	24.2	1.04	7.59	163	578
B48-37	14	Puck	90	6715	23.2	1.05	7.63	161	512

	Lab	Grinder	Ground						
Exp ID	Rep	Туре	Time (s)	Al	Ba	Cd	Co	Cr	Cu
B48-38	15	Puck	90	6570	22.0	1.05	7.41	155	835
B48-41	1	Puck	120	7350	23.3	1.13	7.86	230	557
B48-42	2	Puck	120	8240	23.9	1.21	8.17	238	644
B48-43	3	Puck	120	7660	23.6	1.15	8.05	233	628
B48-44	4	Puck	120	7705	24.5	1.17	8.05	234	559
B48-45	5	Puck	120	7700	23.9	1.20	8.13	235	771
B48-46	6	Puck	120	7605	24.3	1.18	8.12	235	589
B48-47	7	Puck	120	7695	24.0	1.16	8.06	235	564
B48-48	8	Puck	120	7790	23.5	1.18	8.04	229	666
B49-21	9	Puck	120	5875	33.2	0.56	8.09	234	417
B49-22	10	Puck	120	6440	32.2	0.57	8.36	249	399
B49-23	11	Puck	120	6205	30.0	0.55	7.83	231	404
B49-24	12	Puck	120	6295	28.6	0.58	7.79	227	451
B49-25	13	Puck	120	6755	28.5	0.57	7.84	226	441
B49-26	14	Puck	120	7000	29.0	0.58	7.93	231	511
B49-27	15	Puck	120	7020	29.1	0.58	7.92	233	475
B39-26	1	Puck	5x60	5490	32.0	1.85	8.77	233	503
B39-27	2	Puck	5x60	5545	33.3	1.85	8.84	232	492
B39-28	3	Puck	5x60	5585	32.1	1.86	8.94	229	391
B39-29	4	Puck	5x60	5605	32.3	1.84	8.81	229	541
B39-30	5	Puck	5x60	5505	31.7	1.80	8.82	225	417
B39-31	6	Puck	5x60	5505	31.8	1.80	8.74	231	517
B39-32	7	Puck	5x60	5425	31.3	1.80	8.79	230	574

	Lab	Grinder	Ground								
Exp ID	Rep	Туре	Time (s)	Al	Ba	Cd		Со	Cr	Cu	
B39-33	8	Puck	5x60	5450	31.5	1.80		8.72	232	473	
B39-34	9	Puck	5x60	5435	31.2	1.79		8.72	227	636	
B39-35	10	Puck	5x60	5485	31.5	1.84		8.84	223	425	
B39-36	11	Puck	5x60	5485	30.4	1.84		8.75	233	586	
B39-37	12	Puck	5x60	5475	30.3	1.83		8.67	236	570	
B39-38	13	Puck	5x60	5520	30.3	1.82		8.75	233	462	
B39-39	14	Puck	5x60	5505	29.4	1.82		8.64	222	458	
B39-40	15	Puck	5x60	5615	34.8	1.79		8.46	222	394	
BM-8-2	1	Ball Mill	28800	4170	19.60	0.08	U	4.56	6.33	898	
BM-8-4	2	Ball Mill	28800	4190	19.30	0.08	U	4.78	6.35	999	
BM-8-6	3	Ball Mill	28800	4290	20.10	0.08	U	4.75	6.50	947	
BM-8-8	4	Ball Mill	28800	4380	20.40	0.08	U	4.85	6.61	1030	
BM-8-10	5	Ball Mill	28800	4350	20.50	0.08	U	4.89	6.62	1060	
BM-8-12	6	Ball Mill	28800	4330	20.30	0.08	U	4.80	6.48	1040	
BM-8-14	7	Ball Mill	28800	4300	20.30	0.08	U	4.78	6.42	997	
BM-8-16	8	Ball Mill	28800	4220	20.20	0.08	U	4.72	6.67	1140	
BM-8-18	9	Ball Mill	28800	4250	19.80	0.08	U	4.60	6.40	1030	
BM-8-20	10	Ball Mill	28800	4190	20.00	0.08	U	4.71	6.25	964	
BM-8-22	11	Ball Mill	28800	4250	20.10	0.08	U	4.71	6.48	1010	
BM-8-24	12	Ball Mill	28800	4320	20.20	0.08	U	4.77	6.53	1040	
BM-8-26	13	Ball Mill	28800	4310	20.80	0.08	U	4.75	6.42	1030	
BM-8-28	14	Ball Mill	28800	4240	19.90	0.08	U	4.62	6.38	963	
BM-8-30	15	Ball Mill	28800	4340	20.50	0.08	U	4.78	6.59	1050	

	Lab	Grinder	Ground								
Exp ID	Rep	Туре	Time (s)	Al	Ba	Cd		Co	Cr	Cu	
BM-12-2	1	Ball Mill	43200	4580	22.30	0.08	U	4.87	7.69	1030	
BM-12-4	2	Ball Mill	43200	4430	21.60	0.08	U	4.69	7.54	1030	
BM-12-6	3	Ball Mill	43200	4690	22.90	0.08	U	4.96	7.82	1080	
BM-12-8	4	Ball Mill	43200	4660	22.60	0.08	U	5.04	7.73	1060	
BM-12-10	5	Ball Mill	43200	4590	22.80	0.08	U	4.99	7.68	1070	
BM-12-12	6	Ball Mill	43200	4720	23.20	0.08	U	5.17	7.88	1060	
BM-12-14	7	Ball Mill	43200	4650	22.70	0.08	U	5.02	8.14	1020	
BM-12-16	8	Ball Mill	43200	4610	22.40	0.08	U	4.91	7.66	1010	
BM-12-18	9	Ball Mill	43200	4700	23.20	0.08	U	4.88	7.78	1060	
BM-12-20	10	Ball Mill	43200	4670	22.90	0.08	U	5.01	7.87	1080	
BM-12-22	11	Ball Mill	43200	4660	22.60	0.08	U	4.97	7.78	1080	
BM-12-24	12	Ball Mill	43200	4610	22.30	0.08	U	5.06	7.72	1050	
BM-12-26	13	Ball Mill	43200	4590	22.30	0.08	U	4.90	7.72	988	
BM-12-28	14	Ball Mill	43200	3980	19.40	0.08	U	4.50	6.52	939	
BM-12-30	15	Ball Mill	43200	4680	22.90	0.08	U	4.89	7.74	1030	
BM-16-2	1	Ball Mill	57600	4730	26.00	0.08	U	4.77	9.15	1240	
BM-16-4	2	Ball Mill	57600	4900	27.20	0.08	U	4.91	9.44	1200	
BM-16-6	3	Ball Mill	57600	4820	26.80	0.08	U	4.72	9.26	1120	
BM-16-8	4	Ball Mill	57600	4830	26.60	0.08	J	4.79	9.47	1200	
BM-16-10	5	Ball Mill	57600	4860	26.90	0.08	J	4.77	9.43	1220	
BM-16-12	6	Ball Mill	57600	4730	25.90	0.07	J	4.78	9.22	1200	
BM-16-14	7	Ball Mill	57600	4810	26.30	0.08	U	4.79	9.42	1150	
BM-16-16	8	Ball Mill	57600	4830	26.70	0.08	U	4.77	9.47	1180	

Exp ID	Lab Rep	Grinder Type	Ground Time (s)	Al	Ва	Cd		Со	Cr	Cu	
BM-16-18	9	Ball Mill	57600	4820	26.70	0.08	U	4.87	9.41	1200	_
BM-16-20	10	Ball Mill	57600	4650	25.80	0.08	U	4.80	9.23	1200	_
BM-16-22	11	Ball Mill	57600	4810	26.60	0.08	U	4.87	9.42	1180	
BM-16-24	12	Ball Mill	57600	4790	26.90	0.08	U	4.83	9.27	1150	
BM-16-26	13	Ball Mill	57600	4710	25.90	0.08	U	4.79	9.40	1220	_
BM-16-28	14	Ball Mill	57600	4510	25.10	0.08	U	4.65	8.91	1120	
BM-16-30	15	Ball Mill	57600	4620	25.90	0.08	U	4.82	9.29	1160	
BM-20-2	1	Ball Mill	72000	5060	29.10	0.08	U	4.84	10.50	1330	
BM-20-4	2	Ball Mill	72000	5030	29.10	0.08	U	4.88	10.40	1340	
BM-20-6	3	Ball Mill	72000	5100	29.50	0.08	U	4.88	10.50	1330	
BM-20-8	4	Ball Mill	72000	4990	28.70	0.08	U	4.77	10.20	1300	
BM-20-10	5	Ball Mill	72000	5000	29.10	0.08	U	4.76	10.20	1330	
BM-20-12	6	Ball Mill	72000	5180	29.50	0.08	U	4.84	10.40	1340	
BM-20-14	7	Ball Mill	72000	5270	30.50	0.08	U	4.97	10.70	1330	
BM-20-16	8	Ball Mill	72000	5040	29.30	0.08	U	4.83	10.40	1330	
BM-20-18	9	Ball Mill	72000	4990	28.70	0.08	U	4.74	10.20	1260	
BM-20-20	10	Ball Mill	72000	5070	29.20	0.08	U	4.85	10.40	1300	
BM-20-22	11	Ball Mill	72000	5010	29.00	0.08	U	4.84	10.30	1330	
BM-20-24	12	Ball Mill	72000	5100	29.60	0.08	U	4.91	10.50	1320	
BM-20-26	13	Ball Mill	72000	5050	28.90	0.08	U	4.82	10.40	1280	
BM-20-28	14	Ball Mill	72000	5020	29.00	0.08	U	4.84	10.40	1300	
BM-20-30	15	Ball Mill	72000	4960	28.70	0.08	U	4.83	10.50	1310	

					_		_						
Fe	-	Mg	Mn	Ni	Р	Pb	Sb	Sr	٧	W		Zn	$igdate{}$
14675	D	2005	192	8.72	724	2596	24.9	16.5	12.3	0.480	J	64.4	
14820	D	1989	192	9.17	712	3113	29.9	17.1	12.2	0.485	J	62.4	
13205	D	1973	188	8.66	727	2274	17.6	16.6	11.8	0.700	J	61.8	
14335	D	2021	197	8.95	737	1439	9.84	16.2	11.8	0.595	J	64.6	
14275	D	1840	182	8.86	716	2005	19.0	18.4	12.1	0.540	J	60.0	
14790	D	1829	184	8.83	715	2452	25.5	17.2	11.8	0.500	J	58.2	
14470	D	1822	181	8.87	711	1872	18.0	18.1	11.9	0.490	J	59.6	
15125	D	1913	192	9.70	791	4381	53.3	20.3	12.6	0.545	J	61.5	
13720	D	1754	175	8.77	698	1528	12.8	18.2	11.9	0.455	J	55.4	
13215	D	1729	173	8.92	709	3031	40.0	19.2	11.7	0.425	J	52.0	
14815	D	1799	180	9.38	764	1821	20.4	20.4	12.3	0.420	J	55.5	
15125	D	1744	177	9.46	747	1761	12.6	20.4	12.2	0.480	J	53.7	
14945	D	1893	188	9.99	825	1726	14.8	19.3	12.2	0.625	J	60.1	
14100	D	1741	176	9.09	754	1724	15.0	18.7	11.5	0.480	J	53.9	
13545	D	1673	170	9.04	763	3504	48.8	19.5	11.3	0.505	J	55.6	
15540	D	2232	231	10.6	586	1961	15.3	21.5	14.6	1.62	J	71.0	
15415	D	2195	226	10.4	591	2543	21.2	20.8	13.5	1.86	J	80.8	
15370	D	2120	220	10.3	569	2711	24.5	21.3	13.8	1.74	J	72.5	
15160	D	2176	227	10.6	597	2494	24.3	23.2	14.7	1.60	J	70.0	
15220	D	2207	228	10.4	583	2003	15.8	21.7	14.5	1.78	J	70.9	
15316	D	2215	224	9.74	552	2138	18.6	17.5	13.9	0.970	J	95.9	
15620	D	2230	226	10.1	575	1746	13.5	17.6	14.2	0.610	J	72.2	
15410	D	2159	221	9.70	557	2121	18.0	17.0	14.0	0.535	J	71.1	

Fe		Mg	Mn	Ni	Р	Pb	Sb	Sr	٧	w		Zn	
16335	D	2220	225	10.2	585	2233	20.2	17.0	14.1	0.535	J	73.2	
14720	D	2149	216	10.2	560	1934	15.3	15.8	13.1	0.490	J	70.9	
15685	D	2181	224	10.4	571	2156	16.7	17.2	14.1	0.510	J	70.7	
16270	D	2170	222	9.93	571	2287	20.1	17.2	14.2	0.515	J	70.0	
15800	D	2243	228	10.6	588	1980	14.7	17.8	14.6	0.515	J	72.5	
16120	D	2175	225	10.1	581	2330	22.0	17.3	14.6	0.765	J	95.6	
15970	D	2139	219	10.3	574	2176	19.0	16.9	14.2	0.460	J	70.2	
16315	D	1989	207	10.2	565	2566	22.0	14.5	13.5	0.510	J	68.9	
16900	D	1958	210	10.6	562	2515	22.1	15.5	15.2	0.425	J	60.8	
16485	D	1885	203	10.7	547	2988	26.8	14.7	14.9	0.415	J	57.4	
18515	D	2039	224	11.7	624	2474	20.9	16.0	16.7	0.500	J	62.5	
16210	D	1836	200	11.1	574	3491	34.3	14.0	15.6	0.380	U	56.7	
16885	D	1786	193	10.7	559	2917	27.0	13.2	15.4	0.830	J	99.1	
16920	D	1906	208	11.4	609	2435	21.9	14.6	16.1	0.485	J	63.9	
17700	D	1825	196	11.0	580	2898	27.7	13.5	15.2	0.390	U	58.3	
18170	D	1944	205	11.8	608	2991	25.2	24.3	14.8	0.170	U	86.1	
17545	D	1752	189	10.9	564	2569	19.3	25.7	14.9	0.075	U	68.3	
15980	D	1716	185	11.3	548	2826	24.6	26.8	14.8	0.090	U	60.2	
17125	D	1664	178	10.8	540	2985	24.7	26.4	14.5	0.115	U	63.5	
17170	D	1745	188	11.1	561	2702	22.2	26.2	15.0	0.120	U	63.9	
16185	D	1685	183	11.1	558	2744	23.9	27.3	14.9	0.065	U	54.0	
15885	D	1632	177	11.2	562	3176	29.3	26.6	14.3	0.110	U	76.7	
16710	D	1669	184	12.6	586	2295	19.2	29.6	14.5	0.155	U	54.5	

Fe		Mg	Mn	Ni	Р	Pb	Sb	Sr	٧	w		Zn	
18745	D	1703	187	13.1	609	2391	20.6	33.2	15.6	0.225	U	57.0	
18425	D	1693	186	12.8	596	2581	21.8	31.0	14.9	0.120	U	55.0	
18950	D	1714	189	12.9	589	2832	25.7	31.3	15.3	0.155	U	53.9	
18785	D	1683	187	12.8	593	3071	28.6	31.1	15.4	0.155	U	68.3	
17960	D	1727	190	13.1	600	3104	27.8	30.6	15.2	0.080	U	56.1	
18215	D	1709	188	12.9	595	2748	24.7	31.2	15.3	0.050	U	54.8	
17928	D	1681	185	12.8	594	2535	23.1	31.4	15.1	0.165	U	58.3	
17995	D	2278	230	11.6	651	2482	18.5	20.3	16.2	0.510	J	71.9	
18650	D	2183	225	12.2	693	1956	14.5	22.5	16.9	0.405	J	68.8	
17315	D	2080	215	11.9	655	2509	19.4	21.6	15.9	0.290	U	63.1	
17720	D	2033	209	11.9	668	2558	20.5	21.7	15.2	0.275	U	65.1	
10770	Ε	1975	206	12.0	660	2732	22.6	23.6	15.9	0.285	U	60.9	
10750	Ε	1988	209	12.4	673	2478	19.5	24.8	16.4	0.285	U	62.3	
10870	Ε	1977	209	12.3	676	2162	17.0	24.9	16.6	0.255	U	62.1	
16565	D	2270	237	12.4	571	2779	21.8	20.6	15.3	0.540	J	83.7	
16120	D	2284	240	12.4	578	2818	22.7	21.0	15.4	0.350	U	80.4	
16955	D	2290	240	12.5	589	2776	22.2	20.9	15.6	0.320	U	72.2	
16475	D	2286	240	12.4	581	2699	20.6	21.2	15.5	0.290	U	83.4	
16095	D	2242	235	12.3	583	2859	22.9	20.6	15.3	0.275	U	74.5	
16650	D	2257	235	12.4	584	2818	22.7	20.5	15.3	0.280	U	85.1	
16995	D	2250	234	12.4	587	2657	20.9	20.3	15.1	0.310	U	92.9	
17175	D	2256	236	12.6	591	2607	20.9	20.3	15.1	0.235	U	80.1	
16150	D	2255	234	12.4	589	2779	22.3	20.1	15.0	0.245	U	90.5	

Fe		Mg	Mn	Ni	Р	Pb	Sb	Sr	٧	w		Zn	
17620	D	2265	238	12.5	600	2936	22.2	20.3	15.4	0.215	U	74.7	
17165	D	2234	235	12.5	591	2690	21.0	20.5	15.1	0.370	U	85.2	
17170	D	2220	234	12.5	600	2679	19.9	21.2	15.1	0.410	J	93.5	
14775	D	2215	234	12.4	602	2866	22.6	20.6	15.2	0.275	U	78.5	
16915	D	2176	229	12.3	610	2927	24.9	20.6	14.9	0.305	U	73.9	
17320	D	2141	225	12.2	597	2509	18.9	21.0	14.7	0.210	U	67.0	
11400		NA	196	7.98	NA	4630	33.10	NA	7.37	NA		66.30	
11400		NA	195	8.05	NA	4410	29.80	NA	7.25	NA		69.20	
11500		NA	197	8.11	NA	4520	33.50	NA	7.56	NA		66.60	
11800		NA	203	8.28	NA	4990	34.20	NA	7.78	NA		69.70	
11700		NA	201	8.38	NA	4530	31.90	NA	7.77	NA		71.60	
11700		NA	199	8.17	NA	4680	32.00	NA	7.70	NA		66.90	
11500		NA	200	8.05	NA	4590	32.00	NA	7.61	NA		67.90	
11400		NA	198	8.31	NA	4650	32.50	NA	7.50	NA		76.40	
11600		NA	199	8.08	NA	4630	32.20	NA	7.62	NA		66.70	
11200		NA	197	8.03	NA	4910	34.50	NA	7.16	NA		70.20	
11600		NA	196	8.03	NA	4850	36.50	NA	7.52	NA		68.40	
11700		NA	201	8.28	NA	4580	33.30	NA	7.78	NA		70.00	
11700		NA	200	8.20	NA	4740	33.90	NA	7.66	NA		69.50	
11400		NA	197	8.06	NA	6420	59.10	NA	7.34	NA		69.30	
11700		NA	202	8.31	NA	4670	34.30	NA	7.70	NA		69.20	
13300		NA	193	8.75	NA	5670	43.60	NA	8.59	NA		78.90	
12900		NA	187	8.42	NA	5470	41.70	NA	8.44	NA		76.20	

Fo	Mar	Ma	NI:	Р	Dh	Ch	C.	V	14/	70
Fe	Mg	Mn	Ni		Pb	Sb	Sr	V	W	Zn
13700	NA	197	8.90	NA	5750	45.40	NA	9.00	NA	81.70
13500	NA	197	8.85	NA	5900	45.70	NA	8.91	NA	81.00
13300	NA	195	8.76	NA	5500	43.90	NA	8.74	NA	80.50
13700	NA	200	8.99	NA	6030	47.30	NA	8.92	NA	82.70
13500	NA	197	9.02	NA	6090	48.40	NA	8.77	NA	81.00
13400	NA	194	8.74	NA	5790	46.00	NA	8.77	NA	78.70
13700	NA	198	8.90	NA	6240	55.00	NA	8.98	NA	82.00
13500	NA	198	8.95	NA	6010	48.20	NA	8.88	NA	81.40
13500	NA	197	8.90	NA	5770	44.10	NA	8.70	NA	81.10
13400	NA	195	8.89	NA	5610	42.50	NA	8.61	NA	82.10
13300	NA	194	8.79	NA	5650	43.80	NA	8.62	NA	80.40
11700	NA	169	8.04	NA	-	E	NA	6.90	NA	71.70
13600	NA	196	8.78	NA	5720	47.00	NA	8.78	NA	81.20
13800	NA	199	8.48	NA	6450	47.80	NA	7.42	NA	90.60
14100	NA	205	8.67	NA	6550	46.10	NA	7.69	NA	92.00
13900	NA	199	8.46	NA	6250	46.40	NA	7.67	NA	89.00
14000	NA	203	8.77	NA	6430	45.50	NA	7.88	NA	91.10
14000	NA	202	8.72	NA	6420	46.60	NA	7.72	NA	91.20
13800	NA	201	8.55	NA	6320	43.80	NA	7.66	NA	89.90
14000	NA	204	8.65	NA	6360	43.10	NA	7.82	NA	91.60
14000	NA	206	8.74	NA	6450	54.10	NA	8.03	NA	92.50
14000	NA	205	8.76	NA	6450	42.20	NA	7.81	NA	92.80
13700	NA	202	8.66	NA	6300	42.10	NA	7.73	NA	90.60

Fe		Mg	Mn	Ni		P	Pb	Sb	Sr		v	w		Zn	
	-	_								-			-		
14000		NA	204	8.77		NA	6310	42.40	NA		7.91	NA	1	90.50	
13800		NA	203	8.61		NA	6440	44.00	NA		7.72	NA		90.00	
13800		NA	202	8.63		NA	6300	42.80	NA		7.75	NA		98.20	
13200		NA	196	8.37		NA	6240	44.70	NA		7.55	NA		87.90	
13600		NA	204	8.68		NA	6430	45.30	NA		7.91	NA		92.10	
	E	NA	210		E	NA	7150	56.10	NA		8.59	NA		93.60	
_	E	NA	211	_	E	NA	7180	56.70	NA		8.51	NA		93.10	
_	Ε	NA	212	_	E	NA	7340	57.50	NA		8.52	NA		93.90	
_	Ε	NA	206	_	E	NA	7060	53.30	NA		8.36	NA		92.30	
_	Ε	NA	206	_	E	NA	7070	55.70	NA		8.38	NA		92.00	
_	Ε	NA	209	_	E	NA	7160	54.40	NA		8.52	NA		91.90	
_	Ε	NA	214	_	E	NA	7280	54.90	NA		8.77	NA		92.40	
_	Ε	NA	209	_	E	NA	7120	55.40	NA		8.59	NA		93.30	
_	E	NA	205	_	E	NA	7030	54.10	NA		8.34	NA		91.90	
_	E	NA	209	_	E	NA	7180	54.40	NA		8.25	NA		94.00	
_	E	NA	208	_	E	NA		54.20	NA		8.35	NA		93.70	
	E	NA	211		E	NA		56.10	NA		8.50	NA		96.70	
	E	NA	208		E	NA		54.30	NA		8.50	NA		93.60	
	E	NA	210		E	NA		55.00	NA		8.60	NA		94.10	
	E	NA	208	_	E	NA		56.10	NA		8.39	NA		94.30	

Table A8. Experiment 8—Results by digestion mass.

Sample ID	Lab Rep	Digestion Mass (g)	Al (mg/kg)	Ba (mg/kg)	Cd (mg/k	g)	Co (mg/kg)	Cr (mg/kg)	Cu (mg/kg)
B40-8	16	2.00	5840	30.46	1.8		8.66	218.85	601
B40-9	17	2.00	5770	30.3	1.8		8.575	220.85	544.5
B40-10	18	2.00	5740	29.53	1.77		8.405	218.4	485.75
B40-11	19	2.00	5850	29.465	1.805		8.455	218.55	564
B40-12	20	2.00	6010	29.305	1.825		8.48	217.15	540
B40-13	21	2.00	6045	29.125	1.8		8.365	216.4	802
B40-14	22	2.00	6065	28.62	1.82		8.36	216.55	703.5
B40-15	23	2.00	6235	28.82	1.865		8.565	218.4	813
B40-16	24	2.00	6205	28.41	1.83		8.39	218	517.5
B40-17	25	2.00	6195	27.45	1.86		8.38	215.95	551.5
B40-18	26	2.00	6185	27.59	1.835		8.325	216.1	636
B40-19	27	2.00	6250	27.135	1.87		8.365	214.75	572
B40-20	28	2.00	6195	28.16	1.825		8.295	213.9	535
B40-21	29	2.00	6455	26.025	1.895		8.325	213.95	592.5
B40-22	30	2.00	6800	25.92	1.945		8.315	216.1	611.5
B41-6	1	1.00	5305	28.595	0.61		7.62	222.05	511
B41-7	2	1.00	5085	26.56	0.565		7.58	222.2	415.45
B41-8	3	1.00	5475	28.845	0.58		7.74	223.15	889
B41-9	4	1.00	5385	28.7	0.57		7.515	221.35	511
B41-10	5	1.00	5720	29.965	0.595		7.98	228.8	657
B41-11	6	1.00	5610	29.76	0.565		7.785	226.1	576

	Lab	Digestion							
Sample ID	Rep	Mass (g)	Al (mg/kg)	Ba (mg/kg)	Cd (m	g/kg)	Co (mg/kg)	Cr (mg/kg)	Cu (mg/kg)
B41-12	7	1.00	5675	30.055	0.6		8.015	229.05	531
B41-13	8	1.00	5445	29.365	0.58		7.815	222.35	501.5
B41-14	9	1.00	5275	26.805	0.55		7.545	223.3	485.7
B41-15	10	1.00	5355	26.455	0.565		7.675	224.95	579
B41-16	11	1.00	5740	29.105	0.58		7.79	227.45	431.45
B41-17	12	1.00	5745	29	0.575		7.86	226.5	1140
B41-18	13	1.00	5916	29.0292	0.571	2	7.7826	230.418	443.241
B41-19	14	1.00	5805	28.05	0.61		7.735	223.7	998.5
B41-20	15	1.00	5720	28.08	0.575		7.675	224.8	478.75
0.5-R1	1	0.50	5119	30.06	0.97		8.48	221.3	382.4
0.5-R2	2	0.50	5199	29.98	0.97		8.61	221.6	423.8
0.5-R3	3	0.50	5096	29.35	0.98		8.43	218.6	474.9
0.5-R4	4	0.50	5363.16	30.9876	0.989	4	8.8842	228.174	595.272
0.5-R5	5	0.50	5276	30.39	0.97		8.62	224.9	370.4
0.5-R6	6	0.50	5255	29.52	0.99		8.77	228.7	634.9
0.5-R7	7	0.50	5383.04	30.7528	0.967	2	8.9648	228.384	401.336
0.5-R8	8	0.50	5049	28.02	0.96		8.32	214.5	446.5
0.5-R9	9	0.50	4961	28.58	0.95		8.33	215.6	509.4
0.5-R10	10	0.50	4859	27.03	0.94		8.32	214.3	372.7
0.5-R11	11	0.50	4827	25.73	0.96		8.65	209.9	636.8
0.5-R12	12	0.50	5099	27.44	0.98		8.59	213.9	529.3
0.5-R13	13	0.50	5117	27.24	0.96		8.33	214.2	390.4

Sample ID	Lab Rep	Digestion Mass (g)	Al (mg/kg)	Ba (mg/kg)	Cd (mg/k	g)	Co (mg/kg)	Cr (mg/kg)	Cu (mg/kg	<u>(</u>)
0.5-R14	14	0.50	5078	27.17	0.94		8.42	213.8	380	
0.5-R15	15	0.50	5061	26.69	0.93		8.53	210.7	443.3	
B42-4	1	5.00	5430	27.335	1.135		8.515	227.1	479.35	
B42-5	2	5.00	5510	27.035	1.125		8.595	226	915.5	
B42-6	3	5.00	5625	27.95	1.115		8.6	231.5	554.5	
B42-7	4	5.00	5530	27.56	1.15		8.635	227.7	603	
B42-8	5	5.00	5155	33.405	0.515		7.81	223.95	589	
B42-9	6	5.00	5095	28.84	0.5		7.83	222.85	450.9	
B42-10	7	5.00	5205	28.525	0.505		7.815	223.15	444.3	
B42-11	8	5.00	5230	28.265	0.495		7.8	221.9	535	
B42-12	9	5.00	5275	29.495	0.51		7.815	221.85	494.6	
B42-13	10	5.00	5280	27.69	0.5		7.72	219.3	485.25	
B42-14	11	5.00	5285	27.405	0.505		7.755	220.05	434.35	
B42-15	12	5.00	5375	27.685	0.51		7.655	217.8	477.8	
B42-16	13	5.00	5265	27.605	0.49		7.765	217.95	461.75	
B42-17	14	5.00	5315	27.655	0.485		7.795	219.75	496.65	
B42-18	15	5.00	5090	27.31	0.495		7.66	215.6	466.5	
B42-21	1	10.00	5325	28.745	0.495		7.54	217	531.5	
B42-22	2	10.00	5265	28.42	0.475		7.505	216.2	479.5	
B42-23	3	10.00	5400	28.585	0.47		7.53	217.3	539	
B42-24	4	10.00	5484.3	28.58805	0.4949		7.56995	217.857	482.881	
B42-25	5	10.00	5410	28.29	0.47		7.46	215.2	600.5	

Sample ID	Lab Rep	Digestion Mass (g)	Al (mg/kg)	Ba (mg/kg)	Cd (mg/k	(g)	Co (mg/kg)	Cr (mg/kg)	Cu (mg/kg)
B42-26	6	10.00	5410	28.67	0.485		7.505	214.95	530.5
B42-27	7	10.00	5560	27.94	0.495		7.505	217	685
B42-28	8	10.00	5325	28.135	0.485		7.415	216.85	550.5
B42-29	9	10.00	5245	26.79	0.465		7.27	209	518.5
B42-30	10	10.00	5565	26.905	0.495		7.405	214.65	546.5
B42-31	11	10.00	5780	26.445	0.485		7.345	213.25	686
B42-32	12	10.00	5825	26.375	0.48		7.29	211.15	518.5
B42-33	13	10.00	5755	25.89	0.49		7.275	209.2	537.5
B42-34	14	10.00	5815	26.11	0.495		7.26	211.15	599
B42-35	15	10.00	5900	25.395	0.485		7.235	210.1	514

Fe (mg/kg))	Mg (mg/kg)	Mn (mg/kg)	Ni (mg/kg)	P (mg/kg)	Pb (mg/kg)	Sb (mg/kg))	Sr (mg/kg)	V (mg/kg)	W (mg/kg))	Zn (mg/kg)
16565	D	2080.5	221.6	11.95	614.5	2487.5	20.345		22.325	15.54	0.285	U	76.5
16230	D	2100	222.85	11.995	621	2648.5	22.48		21.855	15.275	0.265	U	83.2
17135	D	2064	220.3	11.88	614.5	2738	22.415		22.015	15.065	0.24	U	70.6
16925	D	2061.5	220.6	11.89	618.5	2788	23.785		22.285	15.375	0.5	J	75.5
16505	D	2009	217.2	11.835	623.5	2439.5	21.58		23.175	15.47	0.3	U	69.2
16505	D	2017	215.1	11.81	621.5	2706.5	24.045		22.975	15.045	0.295	U	82.65
16725	D	1995.5	214.1	11.89	623.5	2674	23.9		23.41	15.09	0.27	U	76.1
15530	D	2009	216.5	12.08	631.5	2779	23.655		23.735	15.36	0.31	U	92.65
17170	D	1987	213.4	11.815	634	2751	24.44		23.745	15.315	0.235	U	65.65

Fe (mg/kg	g)	Mg (mg/kg)	Mn (mg/kg)	Ni (mg/kg)	P (mg/kg)	Pb (mg/kg)	Sb (mg/kg)	Sr (mg/kg)	V (mg/kg)	W (mg/kg	g)	Zn (mg/kg)
17505	D	1970.5	211.65	12.71	643.5	2546	22.615	23.96	14.995	0.215	U	67.55
17080	D	1994	212.75	11.94	637.5	2682	23.81	23.7	14.955	0.16	U	70.55
17715	D	1966	210.8	11.99	646	2705.5	23.83	23.91	14.99	0.23	U	72.55
16605	D	2029	217.9	11.755	634.5	2752.5	23.955	23.59	14.725	0.195	U	65.3
17285	D	1925.5	206.25	11.855	650	2729.5	24.19	24.715	14.99	0.395	U	67.15
16940	D	1904.5	205	11.815	655	2671.5	25.545	26.25	15.3	0.3	U	64.65
16730	D	2194	228.15	11.945	858.5	3030.5	25.145	19.81	14.03	0.235	U	79.2
16575	D	2172	225.8	11.945	871.5	2746.5	22.08	19.135	13.635	0.21	U	73.6
17465	D	2175	226.1	11.835	862	2641.5	20.36	20.66	14.605	0.205	U	101.05
16415	D	2103	222.5	11.495	853.5	2544.5	18.875	20.84	14.61	0.195	U	75.85
16040	D	2202.5	231.6	12.145	895.5	2921.5	23.105	22.005	15.34	0.17	U	87.4
16085	D	2212	231.4	11.885	897.5	3180	28.31	21.42	14.785	0.205	U	90.1
17680	D	2203.5	230.3	11.955	914	2692.5	19.605	21.68	15.32	0.425	J	79.1
16370	D	2179	225.7	11.88	907.5	2936	22.555	20.475	14.47	0.29	U	79.55
16795	D	2129	224.6	11.83	949	3045.5	23.78	20.29	13.775	0.29	U	76.4
17340	D	2200.5	229.05	12.24	998	3201.5	26.43	20.175	13.685	0.245	U	83.85
16860	D	2172.5	228.5	12.01	967.5	3055	23.93	21.9	14.795	0.495	U	71.85
16670	D	2136.5	225.05	12.09	946.5	2747	21.775	22.055	15.06	0.19	U	111.75
17498.1	D	2127.21	227.664	11.9289	973.59	2879.46	22.6083	23.154	15.0246	0.1836	U	70.38
17490	D	2104.5	222.25	11.805	965.5	3149.5	27.53	22.175	14.69	0.24	U	100.6
16745	D	2091	223	11.71	968	2923	23.81	22.32	14.645	0.18	U	71.05
14690	D	2158	231.5	11.61	688	2727	23.55	19.49	14.12	0.51	U	73.49

Fe (mg/kg	g)	Mg (mg/kg)	Mn (mg/kg)	Ni (mg/kg)	P (mg/kg)	Pb (mg/kg)	Sb (mg/kg)	Sr (mg/kg)	V (mg/kg)	W (mg/kg	g)	Zn (mg/kg)
16590	D	2149	231.3	11.36	693	2516	21.89	19.68	14.49	0.47	U	73.35
16320	D	2103	227.1	11.21	690.4	2896	23.5	19.67	14.03	0.47	U	77.73
15167.4	D	2194.02	238.068	11.7606	713.286	2748.9	23.5314	20.5734	14.9532	0.4692	U	85.2822
16270	D	2157	233.1	11.32	693.1	2886	24.15	20.13	14.57	0.37	U	71.83
16150	D	2136	230.6	11.06	734.4	3229	29.67	19.95	14.72	0.53	U	99.7
14799.2	D	2213.12	238.68	11.5648	735.8	3077.36	27.508	20.1968	14.6432	0.2808	U	75.7744
15530	D	2115	227.6	11.45	712.4	3017	26.07	18.77	13.24	0.36	U	82.89
15560	D	2123	227.7	10.91	699.6	2694	21.6	18.7	13.59	0.7	U	80.33
15910	D	2088	224.9	11.18	731.9	2610	21.19	18.42	13.2	0.43	U	71.58
16300	D	2071	228.6	10.48	766	2815	25.7	18.15	13.78	0.45	U	89.52
15450	D	2097	230	10.69	770.3	2924	25.34	19.17	13.41	0.32	U	81.59
14000	D	2066	223.8	10.85	743.1	3287	30.55	19.94	13.58	0.28	U	72.38
15470	D	2047	221.4	11.28	746.8	2816	23.46	18.94	13.52	0.32	U	70.85
16230	D	2087	224.2	11.03	755.7	2483	21.85	18.47	13.39	0.32	U	79.02
17150	D	2099	230.3	12.885	734	3079	25.94	20.935	14.3	0.66	J	78.55
15485	D	2060	227.65	12.955	740	2993	24.255	21.075	14.42	0.965	J	122.05
17195	D	2077	231.1	12.945	740.5	2937.5	23.645	21.85	14.705	0.635	J	79.95
15930	D	2089	232.55	13.07	749.5	3065	25.07	21.31	14.345	0.655	J	83.45
17040	D	2352	243.8	12.28	579	2659	19.575	19.775	15.06	0.455	J	89.15
16205	D	2225.5	231.65	12.21	586.5	2823	21.235	19.555	15.015	0.31	U	80.85
17185	D	2203.5	229.9	12.18	586	2777.5	21.06	20.105	15.055	0.22	U	76.1
17230	D	2167	226.2	12.295	586.5	2843.5	21.495	20.275	15.055	0.22	U	81.45

Fe (mg/kg)	Mg (mg/kg)	Mn (mg/kg)	Ni (mg/kg)	P (mg/kg)	Pb (mg/kg)	Sb (mg/kg)	Sr (mg/kg)	V (mg/kg)	W (mg/kg)	Zn (mg/kg)	
16870	D	2145.5	224.2	12.1	586	2753	19.78	20.44	15.08	0.145	U	77.35	
16515	D	2124.5	222.8	12.075	584	2705	20.375	20.74	15.06	0.235	U	79.55	
17285	D	2118.5	221.85	12.165	591	2775.5	21.815	20.515	14.775	0.07	U	71.55	
16875	D	2097.5	221.95	11.91	582.5	2734.5	21.41	20.975	14.98	0.11	U	73.9	
15860	D	2103.5	221.2	12.005	583	2648.5	19.515	20.64	14.925	0.08	U	72.85	
17195	D	2114	222.15	12.105	592.5	2683	19.76	20.73	14.93	0.1	U	76.1	
16885	D	2125	221.35	11.935	582	2751	21.13	19.775	14.6	0.235	U	75.5	
16605	D	2101	217	11.735	572.5	2560	15.45	20.945	14.715	0.215	U	77.75	
16000	D	2103.5	218	11.71	571	2668	16.63	20.75	14.685	0.185	U	79.2	
15455	D	2084	217.4	11.735	577.5	2595.5	15.915	21.38	14.85	0.145	U	77.8	
17028.6	D	2078.58	217.0995	11.7665	579.235	2693.67	16.766	21.816	14.88235	0.06565	U	73.4775	
16455	D	2059	214.85	11.6	572	2642	16.975	21.55	14.645	0.15	U	80.7	
17315	D	2053.5	214.95	11.605	573	2619	16.23	21.385	14.75	0.055	U	74.95	
16830	D	2034.5	213.35	11.65	582	2573.5	17.675	22.12	14.935	0.155	U	83.05	
16500	D	2075	213.05	11.655	586	2719.5	16.065	20.95	14.21	0.34	U	79.95	
16390	D	2025.5	210	11.465	574.5	2553.5	15.55	20.6	13.865	0.18	U	73.6	
16805	D	1996.5	209.5	11.625	590.5	2697.5	18.275	22.1	14.41	0.15	U	73.7	
15920	D	1931	204.2	11.495	583.5	2646	16.78	23.075	14.545	0.17	U	80.3	
16240	D	1918.5	203.5	11.3	580.5	2597.5	17.345	23.37	14.37	0.075	U	69.35	
16765	D	1934.5	205.35	11.44	587.5	2592	17.515	22.79	14.035	0.07	U	69.05	
16375	D	1921	202.75	11.36	587.5	2555	16.91	23.125	14.31	0.11	U	70.85	
16700	D	1895.5	199.75	11.395	597.5	2611	16.775	23.435	14.01	-0.005	U	66.1	

Table A9. Experiment 9—Results by digestion interval; concentrations in mg/kg.

Exp ID	Lab Rep	Digestion Time (hrs)	Al	Ba	Cd	Co	Cr	Cu	
	•	, ,							_
B40-8	16	12	5840	30.46	1.8	8.66	218.85	601	_
B40-9	17	12	5770	30.3	1.8	8.575	220.85	544.5	
B40-10	18	12	5740	29.53	1.77	8.405	218.4	485.75	
B40-11	19	12	5850	29.465	1.805	8.455	218.55	564	
B40-12	20	12	6010	29.305	1.825	8.48	217.15	540	
B40-13	21	12	6045	29.125	1.8	8.365	216.4	802	
B40-14	22	12	6065	28.62	1.82	8.36	216.55	703.5	
B40-15	23	12	6235	28.82	1.865	8.565	218.4	813	
B40-16	24	12	6205	28.41	1.83	8.39	218	517.5	
B40-17	25	12	6195	27.45	1.86	8.38	215.95	551.5	
B40-18	26	12	6185	27.59	1.835	8.325	216.1	636	
B40-19	27	12	6250	27.135	1.87	8.365	214.75	572	
B40-20	28	12	6195	28.16	1.825	8.295	213.9	535	
B40-21	29	12	6455	26.025	1.895	8.325	213.95	592.5	
B40-22	30	12	6800	25.92	1.945	8.315	216.1	611.5	
B44-6	1	24	6215	33.35	1.005	9.045	244.2	618.5	
B44-7	2	24	6130	32.69	0.985	8.94	242.4	573	
B44-8	3	24	6060	32.32	0.98	8.855	243.7	419.95	
B44-9	4	24	6155	32.635	1	8.94	239.25	661	
B44-10	5	24	6130	32.725	0.96	8.93	241.1	394.2	
B44-11	6	24	6181	33.673	1.081	9.065	247.55	520.15	
B44-12	7	24	6055	33.275	1.055	8.995	245.1	421.95	

Exp ID	Lab Rep	Digestion Time (hrs)	Al	Ва	Cd	Co	Cr	Cu	
B44-13	8	24	6070	31.865	1.09	9.015	246.55	507	
B44-14	9	24	4479	24.25	0.835	7.175	202.8	288.3	
B44-16	11	24	5855	29.855	1.065	8.96	241.7	556	
B44-17	12	24	6115	30.785	1.065	8.865	242.55	489.35	
B44-18	13	24	5870	29.08	1.055	8.77	237.1	416.9	
B44-19	14	24	6080	30.07	1.075	8.75	241.7	462.9	
B44-20	15	24	6005	29.64	1.045	8.71	240.2	725.5	

Fe		Mg	Mn	Ni	Р	Pb	Sb	Sr	v	w		Zn	
16565	D	2080.5	221.6	11.95	614.5	2487.5	20.345	22.325	15.54	0.285	U	76.5	
16230	D	2100	222.85	11.995	621	2648.5	22.48	21.855	15.275	0.265	U	83.2	
17135	D	2064	220.3	11.88	614.5	2738	22.415	22.015	15.065	0.24	U	70.6	
16925	D	2061.5	220.6	11.89	618.5	2788	23.785	22.285	15.375	0.5	J	75.5	
16505	D	2009	217.2	11.835	623.5	2439.5	21.58	23.175	15.47	0.3	U	69.2	
16505	D	2017	215.1	11.81	621.5	2706.5	24.045	22.975	15.045	0.295	U	82.65	
16725	D	1995.5	214.1	11.89	623.5	2674	23.9	23.41	15.09	0.27	U	76.1	
15530	D	2009	216.5	12.08	631.5	2779	23.655	23.735	15.36	0.31	U	92.65	
17170	D	1987	213.4	11.815	634	2751	24.44	23.745	15.315	0.235	U	65.65	
17505	D	1970.5	211.65	12.71	643.5	2546	22.615	23.96	14.995	0.215	U	67.55	
17080	D	1994	212.75	11.94	637.5	2682	23.81	23.7	14.955	0.16	U	70.55	
17715	D	1966	210.8	11.99	646	2705.5	23.83	23.91	14.99	0.23	U	72.55	
16605	D	2029	217.9	11.755	634.5	2752.5	23.955	23.59	14.725	0.195	U	65.3	

Fe		Mg	Mn	Ni	Р	Pb	Sb	Sr	٧	w		Zn	
17285	D	1925.5	206.25	11.855	650	2729.5	24.19	24.715	14.99	0.395	U	67.15	
16940	D	1904.5	205	11.815	655	2671.5	25.545	26.25	15.3	0.3	U	64.65	
17705	D	2291.5	244.55	11.665	900	2865	19.9	24.055	17.045	0.795	J	86.9	
16885	D	2277	243.05	11.825	909.5	3011.5	21.015	24.085	16.69	0.73	J	85.75	
17720	D	2289.5	242.8	11.675	908.5	2708.5	18.31	23.59	16.36	0.62	J	75.5	
17955	D	2259	242.7	11.475	897	2870.5	20.03	24.005	16.71	0.84	J	92.9	
16750	D	2259	241.1	11.61	900	3030	21.19	23.81	16.76	0.63	J	73	
17584.1	D	2303.3	247.75	11.706	591.4	3020.9	21.432	24.452	16.958	0.975	J	84.94	
17360	D	2288.5	246.05	11.535	595	2878.5	20.04	23.755	16.515	0.79	J	73.65	
17200	D	2268	244.9	11.665	608.5	2865	20.165	23.725	16.275	0.83	J	84.8	
13965	D	1652.5	180.7	8.83	415.5	2163.5	18.78	17.265	13.43	0.415	J	52.35	
17525	D	2230.5	243.55	11.765	631	2983.5	21.64	22.83	15.515	0.685	J	83.45	
17225	D	2214	241.2	11.875	620	2907	21.005	23.785	15.805	0.665	J	76.3	
17435	D	2176	237.8	11.495	629.5	2919	22.18	22.965	15.31	0.585	J	73.35	
16400	D	2167.5	235.55	11.425	630.5	3131.5	23.265	24.08	15.655	0.635	J	73.1	
17200	D	2176.5	236.15	11.785	622.5	2751	19.355	24.065	15.425	0.89	J	106.8	

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) January 2012	2. REPORT TYPE Final	3. DATES COVERED (From - To)				
4. TITLE AND SUBTITLE	Tillai	5a. CONTRACT NUMBER				
Evaluation of Sampling and Sampl Metallic Residues	5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER					
6. AUTHOR(S)		5d. PROJECT NUMBER				
Jay L. Clausen, Thomas Georgian, Perron, Andrew Bray, Patricia Tun	5e. TASK NUMBER					
Gooch, Tommie Hall, William Jon	es, Shawna Tazik, and Ethan Butterfield	5f. WORK UNIT NUMBER				
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER				
U.S. Army Engineer Research and De 72 Lyme Road Hanover, NH 03755	velopment Center	ERDC TR-12-1				
9. SPONSORING / MONITORING AGENC Environmental Science and Technolog	10. SPONSOR/MONITOR'S ACRONYM(S)					
Arlington, VA 22203		11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
		ER-0918				
12. DISTRIBUTION / AVAILABILITY STAT	EMENT					

Approved for public release; distribution is unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Research over the last decade has revealed that energetic constituents are released into the environment as a result of military training in extremely heterogeneous patterns. Traditional soil sampling and sample preparation methodologies are inadequate to address this level of heterogeneity. Consequently, a number of necessary changes to the accepted soil sampling and sample preparation procedures, which were adopted in a revised U.S. Environmental Protection Agency (USEPA) Method 8330B are identified. Recently, there have questions about whether the above questions also substantively apply to other constituents, such as metals, semi-volatile organic compounds, and polychlorinated biphenyls. Preliminary data suggest metal residues from small arms and pyrotechnic military training are heterogeneously distributed. As a result, regulatory agencies are increasingly requiring the DOD to apply USEPA Method 8330B to the sampling and processing of soils from small arms ranges containing metals. However, there is no published research indicating whether changes to USEPA Method 3050B for metals are needed or warranted. This study assessed USEPA Method 8330B and whether it is applicable to soils containing metals. The utility of multi-increment sampling versus traditional grab/discrete sampling was assessed and found to yield reproducible and more representative metals soil concentrations. In addition, changes to the soil digestion procedure, USEPA Method 3050B, were evaluated and included the following: 1) necessity of machining or grinding of the soil, appropriate type of grinding apparatus and grinding interval; 2) assessment of the need to increase the digested mass and digestion interval; 3) optimum soil to acid ratio, i.e., digestion efficiency; 4) sub-sampling to build the digestate sample; and 5) disposition of the oversize fraction, i.e., material larger than 2 mm.

15. SUBJECT TERM	3	Metals		Samp	ing methods				
Energetic constitue	nts	Metals pollution		Soil samples					
Machining or grind	ing soil samples	Military training la	nds						
16. SECURITY CLAS	SIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON				
a. REPORT	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER (include				
U	U	U	U	170	area code)				