UNIVERSITY OF INFORMATION TECHNOLOGY Faculty of Information Systems

FINAL EXAMINATION
Semester II

Academic year: 2022-2023 Subject: Data mining

During: 90 minutes

Code: 1

- Students are allowed to use 1 A4 paper of material
- The exam has 2 pages

Question 1: (2.0 scores) Select ONE of the following questions:

- 1. Present basic architecture of artificial neural network. Show advantages and disadvantages of artificial neural network.
- 2. Compare classification with clustering. Take examples to show the differences.
- 3. Give one example of data mining application in the field of *healthcare* or *human resource*. Based on your example, what kind of data, and data mining method you can use?

Question 2: (6.0 scores)

Suppose that a *Departure information for domestic flights* from Ho Chi Minh city as in the following table (Let *Result* be the decision attribute).

Note: Students can use abbreviations (for example: R for **Result**) to present the examination.

1.	Carrier Airline (CA)	То	Flight date [mm.yyyy] (FD)	Scheduled departure time [hh:mm] (SDT)	Result (R)
1	Vietjet	Da Lat	6.2023	17:25	Late
2	Vietnam	Phu Quoc	5.2023	5:40	On time
3	Vietjet	Ha Noi	5.2023	9:30	Late
4	Pacific	Da Nang	4.2023	10:10	On time
5	Vietnam	Da Lat	6.2023	17:25	On time
6	Vietjet	Phu Quoc	6.2023	9:30	Late
7	Vietnam	Ha Noi	5.2013	10:10	Late
8	Vietjet	Da Nang	4.2023	9:30	Late
9	Bamboo	Da Lat	6.2023	5:40	On time
10	Pacific	Da Nang	5.2023	17:25	On time

- 1. *Let min_sup=25% and min_conf=75%.* Using Apriori, find all frequent itemsets. Select ONE maximal frequent set, then list all association rules. *(1.75 scores)*
- 2. Suppose B = {*To, Flight date*}, X={1, 3, 6, 7, 8} (*Result* = "*Late*"). Use rough set to compute: upper approximation, lower approximation, and quality coefficient (*1.0 score*)
- 3. Determine the root of Decision Tree using Gini Index. (1.75 scores)
- 4. Given a sample X={Carrier Airline="Vietjet", To="Phu Quoc", Flight date="6.2023", Scheduled departure time="9:30"}, what would a Naïve Bayesian classification using Laplacican correction of the **Result** for sample X be? (1.5 scores)

Question 3: (2.0 scores)

Suppose that 8 points as: $x1=\{3, 8\}$, $x2=\{2, 7.5\}$, $x3=\{3, 7\}$, $x4=\{4, 7\}$, $x5=\{8, 3\}$, $x6=\{7, 2.5\}$, $x7=\{8, 2\}$. And the matrix U0 is:

U0	x1	x2	х3	x4	x5	х6	x7	x8
C1	1	0	0	0	0	0	0	0
C2	0	1	0	0	0	0	0	0
C3	0	0	1	1	1	1	1	1

Cluster the data to 3 clusters using K_means algorithm and Euclidean distance.

Note: Only show 3 steps:

- Step 1: calculate center of each cluster

- Step 2: calculate distances

- Step 3: show matrix U1

END

June 15th, 2023 Lecturer

Faculty of Information Systems

Question and Course Learning Outcome table.

	0			
Question		Course Learning Outcome		
	1	G1		
	2	G2, G4		
	3	G2, G4		

UNIVERSITY OF INFORMATION TECHNOLOGY Faculty of Information Systems

Semester II

Academic year: 2022-2023 Subject: Data mining

FINAL EXAMINATION

During: 90 minutes

Code: 2

- Students are allowed to use 1 A4 paper of material
- The exam has 2 pages

Question 1: (2.0 scores) Select ONE of the following questions:

- 1. Present basic architecture of artificial neural network. Show advantages and disadvantages of artificial neural network.
- 2. Compare classification with clustering. Take examples to show the differences.
- 3. Give one example of data mining application in the field of *healthcare* or *human resource*. Based on your example, what kind of data, and data mining method you can use?

Question 2: (6.0 scores)

Suppose that a *Departure information for domestic flights* from Ho Chi Minh city as in the following table (Let *Result* be the decision attribute).

Note: Students can use abbreviations (for example: R for **Result**) to present the examination.

	Carrier Airline (CA)	То	Flight date [mm.yyyy] (FD)	Scheduled departure time [hh:mm] (SDT)	Result (R)
1	Vietnam	Phu Quoc	5.2023	5:40	On time
2	Vietjet	Ha Noi	5.2023	9:30	Late
3	Vietnam	Da Lat	6.2023	17:25	On time
4	Vietnam	Ha Noi	5.2013	10:10	Late
5	Pacific	Da Nang	5.2023	17:25	On time
6	Vietjet	Da Lat	6.2023	17:25	Late
7	Pacific	Da Nang	4.2023	10:10	On time
8	Vietjet	Da Nang	4.2023	9:30	Late
9	Vietjet	Phu Quoc	6.2023	9:30	Late
10	Bamboo	Da Lat	6.2023	5:40	On time

- 1. Let min_sup=25% and min_conf=75%. Using Apriori, find all frequent itemsets. Select ONE maximal frequent set, then list all association rules. (1.75 scores)
- 2. Suppose $B = \{To, Flight \, date\}$, $X = \{1, 3, 5, 7, 10\}$ (*Result* = "On time"). Use rough set to compute: upper approximation, lower approximation, and quality coefficient (1.0 score)
- 3. Determine the root of Decision Tree using Gini Index. (1.75 scores)
- 4. Given a sample $X=\{Carrier\ Airline="Vietnam",\ To="Da\ Lat",\ Flight\ date="6.2023",\ Scheduled\ departure\ time="17:25"\}$, what would a Naïve Bayesian classification using Laplacican correction of the **Result** for sample X be? (1.5 scores)

Question 3: (2.0 scores)

Suppose that 8 points as $x1 = \{3, 8\}$, $x2 = \{3, 7.5\}$, $x3 = \{3, 7\}$, $x4 = \{4, 7\}$, $x5 = \{8, 3\}$, $x6 = \{9, 2.5\}$, $x7 = \{8, 2\}$. And the matrix U0 is:

U0	x1	x2	х3	x4	x5	х6	x7	х8
C1	1	0	0	0	0	0	0	0
C2	0	1	0	0	0	0	0	0
C3	0	0	1	1	1	1	1	1

Cluster the data to 3 clusters using K_means algorithm and Euclidean distance.

Note: Only show 3 steps:

- Step 1: calculate center of each cluster

- Step 2: calculate distances

- Step 3: show matrix U1

END

Faculty of Information Systems

June 15th, 2023 Lecturer

Question and Course Learning Outcome table.

Question	Course Learning Outcome			
1	G1			
2	G2, G4			
3	G2, G4			