# CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/02

Paper 2

October/November 2003

1 hour

Candidates answer on the Question Paper. No Additional Materials required

#### **READ THESE INSTRUCTIONS FIRST**

Write your name, centre number and candidate number in the spaces at the top of this page. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs, or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

#### Answer all questions.

The number of marks is given in brackets [ ] at the end of each question or part question. A copy of the Periodic Table is provided on page 20.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

| For Examiner's Use |  |  |
|--------------------|--|--|
| 1                  |  |  |
| 2                  |  |  |
| 3                  |  |  |
| 4                  |  |  |
| 5                  |  |  |
| 6                  |  |  |
| TOTAL              |  |  |

This document consists of 17 printed pages and 3 blank pages.



1 The diagrams show four methods of purifying substances.







- (a) Which of these methods, A,B,C or D, is best used for
  - (i) separating the different colours in a sample of ink?
  - (ii) separating two liquids with different boiling points?
  - (iii) separating mud from water?
  - (iv) making crystals of copper sulphate from copper sulphate solution?

    [4]

(b) State the name given to the method of separation shown in

(i) diagram **A**, .....

**(c)** Method A can be modified to separate petroleum into useful fractions. The diagram below shows the different fractions obtained from a fractionating column.



| (1) | which of these fractions has the lowest boiling point? |
|-----|--------------------------------------------------------|
|     |                                                        |
|     |                                                        |

(ii) State one use for each of the following fractions.

paraffin .....

bitumen ......[3]

(d) Petroleum is a mixture of organic compounds.
Which one of the following best describes the compounds found in petroleum?
Put a ring around the correct answer.

acids alcohols carbohydrates hydrocarbons [1]

| (e) | Before petroleum is fractionated, it is often heated to remove dissolved natural gas. Most of this natural gas is methane, CH <sub>4</sub> .  Draw a diagram to show how the electrons are arranged in methane.  show hydrogen electrons as show carbon electrons as × |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     | [2]                                                                                                                                                                                                                                                                    |  |
| (f) | Methane, ethane and propane belong to a particular homologous series of compounds. State the name of the homologous series to which these three compounds belong.                                                                                                      |  |
|     | [1]                                                                                                                                                                                                                                                                    |  |

2 The diagram below shows a modern landfill site for the disposal of waste materials.



The waste materials are broken down naturally in several stages.

| (a) | In the first stage, micro-organisms (mainly bacteria) break down some of the organi material in the waste to carbon dioxide.  What is the name given to the process by which organisms use food to produce carbo dioxide? |                                                                                                                        |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
|     |                                                                                                                                                                                                                           | [1]                                                                                                                    |  |  |
| (b) |                                                                                                                                                                                                                           | ne second stage, the micro-organisms break down organic substances to produce monia, hydrogen and more carbon dioxide. |  |  |
|     | (i)                                                                                                                                                                                                                       | Describe a test for hydrogen.                                                                                          |  |  |
|     |                                                                                                                                                                                                                           | test                                                                                                                   |  |  |
|     |                                                                                                                                                                                                                           | result                                                                                                                 |  |  |
|     | (ii)                                                                                                                                                                                                                      | The large volumes of hydrogen produced may be hazardous. Explain why hydrogen may be hazardous when mixed with air.    |  |  |
|     |                                                                                                                                                                                                                           |                                                                                                                        |  |  |
|     | (iii)                                                                                                                                                                                                                     | Ammonia is a base.  Describe a test for ammonia.                                                                       |  |  |
|     |                                                                                                                                                                                                                           | test                                                                                                                   |  |  |
|     |                                                                                                                                                                                                                           | result                                                                                                                 |  |  |
|     |                                                                                                                                                                                                                           | [5]                                                                                                                    |  |  |

|       |                                                                                                                     | [1]                                                                                                                                                                                                                                                                                                                                                                        |
|-------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In th | he fourth stage, carbon dioxide reacts with hydrogen to form methane and ox                                         | ygen.                                                                                                                                                                                                                                                                                                                                                                      |
| (i)   | Complete the equation for this reaction.                                                                            |                                                                                                                                                                                                                                                                                                                                                                            |
|       | $CO_2 + \dots \longrightarrow CH_4 + O_2$                                                                           |                                                                                                                                                                                                                                                                                                                                                                            |
| (ii)  | State one use of methane.                                                                                           |                                                                                                                                                                                                                                                                                                                                                                            |
|       |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                            |
| (iii) | Methane is a gas. Which <b>two</b> of the following statements about gas molecules are true? Tick <b>two</b> boxes. |                                                                                                                                                                                                                                                                                                                                                                            |
|       | The molecules are far apart.                                                                                        |                                                                                                                                                                                                                                                                                                                                                                            |
|       | The molecules are not moving.                                                                                       |                                                                                                                                                                                                                                                                                                                                                                            |
|       | The molecules are randomly arranged.                                                                                |                                                                                                                                                                                                                                                                                                                                                                            |
|       | The molecules are arranged in a regular manner.                                                                     | [4]                                                                                                                                                                                                                                                                                                                                                                        |
|       | In t (i) (ii)                                                                                                       | <ul> <li>CO<sub>2</sub> + → CH<sub>4</sub> + O<sub>2</sub></li> <li>(ii) State one use of methane.</li> <li>(iii) Methane is a gas.         Which two of the following statements about gas molecules are true?         Tick two boxes.         The molecules are far apart.         The molecules are not moving.         The molecules are randomly arranged.</li> </ul> |

**(e)** The list below shows some of the substances which are found in the liquid which drains through the waste.

aluminium
calcium carbonate
iron
lead
magnesium
nickel
sodium sulphate
zinc

| F | rom | this | list | cho   | OSE |
|---|-----|------|------|-------|-----|
|   |     | шы   | пог  | CH IC | いって |

| (i)   | a metal used to galvanise iron.                                      |     |
|-------|----------------------------------------------------------------------|-----|
| /ii\  | a transition metal.                                                  |     |
| (11)  | a transition metal.                                                  |     |
| (iii) | a metal which is in Group IV of the periodic table                   |     |
| (iv)  | a substance which will release carbon dioxide when an acid is added. |     |
|       |                                                                      |     |
| (v)   | a metal which is used to make aircraft bodies                        |     |
|       |                                                                      | [5] |

0620/2/O/N/03 **[Turn over** 

[2]

3 One way of making lime from limestone (calcium carbonate) is shown in the diagram.



The limestone is mixed with coke and dropped into the limekiln. The coke is burnt and releases heat.

| (a) | State <b>one</b> use of limestone, other than in making lime.                                                                                                       |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | [1]                                                                                                                                                                 |
| (b) | Coke is mainly carbon. Write a symbol equation for the burning of carbon.                                                                                           |
|     |                                                                                                                                                                     |
|     | [2]                                                                                                                                                                 |
| (c) | State the name of the type of reaction which releases heat energy.                                                                                                  |
|     | [1]                                                                                                                                                                 |
| (d) | The heat produced by the burning coke causes thermal decomposition of the limestone. Complete the word equation for the thermal decomposition of calcium carbonate. |
|     | calcium carbonate $\rightarrow$ +                                                                                                                                   |
|     |                                                                                                                                                                     |

| (e) | (i)                                                                     | Complete the following equation for the reaction of calcium carbonate whydrochloric acid.              | with |  |  |
|-----|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------|--|--|
|     |                                                                         | $CaCO_3 + \dots  HCl \to CaCl_2 + CO_2 + H_2O$                                                         |      |  |  |
|     | (ii)                                                                    | Describe how you would test for the gas given off in this reaction.                                    |      |  |  |
|     |                                                                         | test                                                                                                   |      |  |  |
|     |                                                                         | result                                                                                                 |      |  |  |
|     |                                                                         |                                                                                                        | [3]  |  |  |
| (f) | Qui                                                                     | cklime, CaO, is a product of the thermal decomposition of calcium carbonate.                           |      |  |  |
|     | When quicklime is heated strongly with coke, calcium carbide is formed. |                                                                                                        |      |  |  |
|     | $CaO + 3C \rightarrow CaC_2 + CO$                                       |                                                                                                        |      |  |  |
|     | (i)                                                                     | What type of reaction is the conversion of C to CO? Explain your answer.                               |      |  |  |
|     |                                                                         |                                                                                                        |      |  |  |
|     |                                                                         |                                                                                                        |      |  |  |
|     | (ii)                                                                    | When water is added to calcium carbide, ${\rm CaC_2}$ , acetylene is formed. State a use of acetylene. |      |  |  |
|     |                                                                         |                                                                                                        | [3]  |  |  |

4

| Bro | Bromine is an element in Group VII of the Periodic Table.                                         |                    |                 |                                                                   |                     |     |
|-----|---------------------------------------------------------------------------------------------------|--------------------|-----------------|-------------------------------------------------------------------|---------------------|-----|
| (a) | State the name given to the Group VII elements.                                                   |                    |                 |                                                                   |                     |     |
|     | [1]                                                                                               |                    |                 |                                                                   |                     |     |
| (b) | Bromine has two isotopes.  The nucleon (mass) number of bromine-79 is 79 and of bromine-81 is 81. |                    |                 |                                                                   |                     |     |
|     | (i)                                                                                               | What i             | s the meaning   | of the term isotopes                                              | ?                   |     |
|     |                                                                                                   |                    |                 |                                                                   |                     |     |
|     | (ii)                                                                                              |                    | of bromine-79   | o show the numbers<br>and bromine-81. A                           |                     |     |
|     |                                                                                                   |                    | number of       | bromine-79                                                        | bromine-81          |     |
|     |                                                                                                   |                    | electrons       |                                                                   |                     |     |
|     |                                                                                                   |                    | neutrons        |                                                                   |                     |     |
|     |                                                                                                   |                    | protons         |                                                                   |                     |     |
| (c) | Wh                                                                                                | en chlo<br>nge-red | rine is bubbled | n seawater by treatmed through a solution ou about the reactivity | of potassium bromid |     |
|     | (ii)                                                                                              | Write a            | a word equatio  | on for this reaction.                                             |                     | [2] |
|     |                                                                                                   |                    |                 |                                                                   |                     | [   |

(d) In order to get the maximum yield of bromine from seawater, acid is added during the extraction procedure.

The graph shows how the yield of bromine changes with pH.



(i) What is the highest pH at which the yield of bromine is 100%?

.....

(ii) The pH scale is used to measure acidity. Some pH values are given below.

pH 3

pH 5

pH 7

pH9

pH 11

From this list of pH values choose

the pH which is most acidic.

the pH of a neutral solution.

[3]

**(e)** Bromine water can be used to distinguish between ethane and ethene.



Describe what you would observe when bromine water is added to ethene.

0620/2/O/N/03

[1]

[2]

- 5 When fuels are burnt, carbon dioxide and water are formed.
  - (a) Complete the equation for the burning of propane.

|    | $C_3H_8 + \dots O_2 \rightarrow 3CO_2 + 4H_2O$                                           | [1] |
|----|------------------------------------------------------------------------------------------|-----|
| b) | Describe a chemical test for water.                                                      |     |
|    | test                                                                                     |     |
|    | result                                                                                   | [2] |
| c) | In which <b>two</b> of the following is carbon dioxide produced.  Tick <b>two</b> boxes. |     |
|    | a car driven by a petrol engine                                                          |     |
|    | magnesium carbonate reacting with an acid                                                |     |
|    | sodium reacting with water                                                               |     |
|    | zinc reacting with hydrochloric acid                                                     |     |

(d) The diagram shows a water heater.



If some of the air holes become blocked, a poisonous gas is produced.

| (i)  | State the name of this poisonous gas.           |  |
|------|-------------------------------------------------|--|
| (ii) | Explain how this poisonous gas has been formed. |  |
|      |                                                 |  |

0620/2/O/N/03 **[Turn over** 

(e) The table below compares the amounts of carbon dioxide and sulphur dioxide formed when 1 kilogram of different fuels are burnt.

| fuel | mass of carbon<br>dioxide produced/g | mass of sulphur<br>dioxide produced/g |
|------|--------------------------------------|---------------------------------------|
| oil  | 2900                                 | 5.0                                   |
| gas  | 2500                                 | 0.1                                   |
| coal | 2500                                 | 11.0                                  |

| (i)   | Which fuel is <b>least</b> polluting?                                                                                                    |
|-------|------------------------------------------------------------------------------------------------------------------------------------------|
| (ii)  | Which fuel when burnt, contributes most to the formation of acid rain?                                                                   |
| (iii) | State two harmful effects of acid rain.                                                                                                  |
|       |                                                                                                                                          |
| (iv)  | When acid rain falls on the ground, it can react with insoluble aluminium compounds in the soil. A solution of aluminium ions is formed. |
|       | Describe what you would observe when aqueous sodium hydroxide is added to a solution containing aluminium ions.                          |
|       |                                                                                                                                          |
|       | [6]                                                                                                                                      |

6 Aluminium is extracted from its ore, bauxite.
The bauxite is purified to give aluminium oxide.
Electrolysis is then used to extract the aluminium from aluminium oxide dissolved in cryolite.



The melting point of pure aluminium oxide is 2070 °C. The melting point of the mixture of aluminium oxide and cryolite is about 1000 °C.

| (a) | Suggest why electrolysis is used to extract aluminium from aluminium oxide rather than reduction using carbon.                                |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|
|     | [1]                                                                                                                                           |
| (b) | How is the electrolyte of aluminium oxide and cryolite kept molten?                                                                           |
| (c) | What property of graphite makes it suitable for use as electrodes?                                                                            |
| (d) | State the name given to the negative electrode.                                                                                               |
| (e) | The melting point of steel is about 1500 °C.                                                                                                  |
|     | Suggest <b>two</b> reasons why molten aluminium oxide is not used by itself in this electrolysis.                                             |
|     | [2]                                                                                                                                           |
| (f) | During the electrolysis, hot oxygen is formed at the positive electrodes. Suggest why the positive electrodes have to be replaced frequently. |
|     |                                                                                                                                               |

[3]

| 10                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                      |
| $Al^{3+} + \dots \rightarrow$                                      | Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [1]                                                                                                                                                                                                                                                                                                                                                                                  |
| Why do aluminium ions move towards the ne                          | gative electrode?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [1]                                                                                                                                                                                                                                                                                                                                                                                  |
| A sample of bauxite ore had the following cor                      | mposition:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                      |
| aluminium oxide<br>iron(III) oxide<br>silica<br>titanium(IV) oxide | 120g<br>30g<br>40g<br>10g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                      |
| Calculate the percentage of aluminium oxide                        | in this sample of bauxite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                      |
| Aluminium is a metal in Group III of the Perio                     | odic Table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [1]                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                    | Aluminium is formed at the negative electrod Complete the following equation for the react $Al^{3+} + \ldots \rightarrow Al^{3+} $ | Aluminium is formed at the negative electrode. Complete the following equation for the reaction at the negative electrode. $Al^{3+}+\ldots\ldots\to Al$ Why do aluminium ions move towards the negative electrode? $A \text{ sample of bauxite ore had the following composition:}$ $aluminium \text{ oxide} \qquad 120g \\ iron(III) \text{ oxide} \qquad 30g \\ silica \qquad 40g$ |

1 ......

2 .....

3 .....

State three physical properties which are typical of most metals.

## **BLANK PAGE**

## **BLANK PAGE**

## **BLANK PAGE**

The volume of one mole of any gas is  $24\,\mathrm{dm^3}$  at room temperature and pressure (r.t.p.).

|       | 4.0        |
|-------|------------|
|       | ţ          |
|       | e          |
|       | Elements   |
|       | ø          |
|       | Ш          |
| _     | <u>e</u>   |
| SHEET | of the     |
| Ψ     | of         |
| 숬     | ē          |
|       | able       |
| DATA  | <u>_</u> @ |
| ⋖     | Ë          |
| Ц     | dic        |
|       |            |

|                                    |       | 0        | 4 | Не | Helium        | 20 | Ne            |                | 40       | Ā                | Argon           | 84          | Ż             | Krypton         | 131           | Xe             |                  |                 | Ru            | Radon             |           |     |                  | 175                      | ב                       | Lutetium<br>I      |                          | בֿ                | Lawrencium<br>103          |               |  |    |                   |
|------------------------------------|-------|----------|---|----|---------------|----|---------------|----------------|----------|------------------|-----------------|-------------|---------------|-----------------|---------------|----------------|------------------|-----------------|---------------|-------------------|-----------|-----|------------------|--------------------------|-------------------------|--------------------|--------------------------|-------------------|----------------------------|---------------|--|----|-------------------|
|                                    |       | _        |   |    | N             | _  |               | rine 10        | 2        | 1                | rine 18         | _           | _             | 36              | 7             |                | ne 54            |                 | _             | tine 86           |           |     |                  | 3                        |                         | 7                  |                          |                   |                            |               |  |    |                   |
|                                    |       | II/      |   |    |               | 16 | ш             | Fluorine<br>9  | 35.5     | CI               | Chlorine<br>17  | 80          | Ā             | Bromine<br>35   | 127           |                | lodine<br>53     |                 | Αŧ            | Astatine<br>85    |           |     |                  | 173                      | ₽<br>V                  | Ytterbium<br>70    |                          |                   | Nobelium<br>102            |               |  |    |                   |
|                                    |       | <b> </b> |   |    |               | 16 | 0             | Oxygen 8       | 32       | ဟ                | Sulphur<br>16   | 79          | Se            | Selenium<br>34  | 128           | <u>e</u>       | Tellurium<br>52  |                 | 8             | Polonium<br>84    |           |     |                  | 169                      | Ē                       | Thulium<br>69      |                          | Md                | Mendelevium<br>101         |               |  |    |                   |
|                                    |       | >        |   |    | 14            | z  | Nitrogen<br>7 | 31             | <b>_</b> | Phosphorus<br>15 | 75              | As          | Arsenic<br>33 | 122             | Sb            | Antimony<br>51 | 500              | Ξ               | Bismuth<br>83 |                   |           |     | 167              | ш                        | Erbium<br>68            |                    | Fm                       | Fermium<br>100    |                            |               |  |    |                   |
|                                    |       | N        |   |    |               |    |               |                |          | 12               | ပ               | Carbon<br>6 | 28            | Si              | Silicon<br>14 | 73             | Зe               | Germanium<br>32 | 119           | Sn                | Tin<br>50 | 207 | Pb               | Lead<br>82               |                         |                    |                          | 165               | 웃                          | Holmium<br>67 |  | Es | Einsteinium<br>99 |
|                                    |       | =        |   |    |               | 1  | Ω             | Boron<br>5     | 27       | Αſ               | Aluminium<br>13 | 70          | Са            | Gallium<br>31   | 115           | In             | Indium<br>49     | 204             | 11            | Thallium<br>81    |           |     |                  | 162                      | ò                       | Dysprosium<br>66   |                          | ₽                 | Californium<br>98          |               |  |    |                   |
| ts                                 |       |          |   |    |               |    |               |                |          |                  |                 | 65          | Zu            | Zinc<br>30      | 112           | ဦ              | Cadmium<br>48    | 201             | Hg            | Mercury<br>80     |           |     |                  | 159                      |                         | Terbium<br>65      |                          | BK                | Berkelium<br>97            |               |  |    |                   |
| Elemen                             |       |          |   |    |               |    |               |                |          |                  |                 | 25          | Cn            | Copper<br>29    | 108           | Ag             |                  | 197             | Αn            | Gold<br>79        |           |     |                  | 157                      | g                       | Gadolinium<br>64   |                          | Cm                | Curium<br>96               |               |  |    |                   |
| The Periodic Table of the Elements | Group |          |   |    |               |    |               |                |          |                  |                 | 59          | Z             | Nickel<br>28    | 106           | Pd             | Palladium<br>46  | 195             | 풉             | Platinum<br>78    |           |     |                  | 152                      | Ē                       | Europium<br>63     |                          | Am                | Americium<br>95            |               |  |    |                   |
| odic Tab                           |       |          |   |    |               | 1  |               |                |          |                  |                 | 69          | ပိ            | Cobalt<br>27    | 103           | R              | Rhodium<br>45    | 192             | ľ             | Iridium<br>77     |           |     |                  | 150                      | Sm                      | Samarium<br>62     |                          | Pu                | Plutonium<br>94            |               |  |    |                   |
| he Peric                           |       |          | - | I  | Hydrogen<br>1 |    |               |                |          |                  |                 | 56          | Бe            | Iron<br>26      | 101           | Bu             | Ruthenium<br>44  | 190             | Os            | Osmium<br>76      |           |     |                  |                          | Pm                      | Promethium<br>61   |                          | Ν                 | Neptunium<br>93            |               |  |    |                   |
| _                                  |       |          |   |    |               |    |               |                |          |                  |                 | 55          | Mn            | Manganese<br>25 |               | ဥ              | Technetium<br>43 | 186             | Re            | Rhenium<br>75     |           |     |                  | 144                      |                         | Neodymium<br>60    | 238                      | ⊃                 | Uranium<br>92              |               |  |    |                   |
|                                    |       |          |   |    |               |    |               |                |          |                  |                 | 52          | င်            | Chromium<br>24  | 96            | Mo             | Molybdenum<br>42 | 184             | >             | Tungsten<br>74    |           |     |                  | 141                      | ፈ                       | Praseodymium<br>59 |                          | Ра                | Protactinium<br>91         |               |  |    |                   |
|                                    |       |          |   |    |               |    |               |                |          |                  |                 | 51          | >             | Vanadium<br>23  | 93            | qN             | Niobium<br>41    | 181             | Б             | Tantalum<br>73    |           |     |                  | 140                      | S                       | Cerium<br>58       | 232                      | ┖                 | Thorium<br>90              |               |  |    |                   |
|                                    |       |          |   |    |               |    |               |                |          |                  |                 | 48          | F             | Titanium<br>22  | 91            | Ż              | Zirconium<br>40  | 178             | Ξ             | Hafnium<br>72     |           |     |                  |                          |                         |                    | nic mass                 | pol               | nic) number                |               |  |    |                   |
|                                    |       |          |   |    |               |    |               |                |          |                  |                 | 45          | လွ            | Scandium<br>21  | 88            | >              | Yttrium<br>39    | 139             | Гa            | Lanthanum<br>57 * | 227       | Ac  | Actinium<br>89 † | Series                   | Series                  |                    | a = relative atomic mass | X = atomic symbol | b = proton (atomic) number |               |  |    |                   |
|                                    |       | =        |   |    |               | 6  | Be            | Beryllium<br>4 | 24       | Mg               | Magnesium<br>12 | 40          | Ca            | Calcium<br>20   | 88            | ഗ്             | Strontium<br>38  | 137             | Ва            | Barium<br>56      | 226       | Ва  | Radium<br>88     | *58-71 Lanthanoid series | +90-103 Actinoid series |                    | а                        | ×<br>×            | 9                          |               |  |    |                   |
|                                    |       | _        |   |    |               | 7  | =             | Lithium<br>3   | 23       | Na               | Sodium<br>11    | 39          | ¥             | Potassium<br>19 | 85            | Rb             | Rubidium<br>37   | 133             | Cs            | Caesium<br>55     |           | ŗ   | Francium<br>87   | 58-711                   | 90-103                  | 8                  |                          | Key               | ٩                          |               |  |    |                   |
| Į                                  |       |          |   |    |               |    |               |                |          |                  |                 | 1           |               | 0620/2          | /O/N          | /03            |                  |                 |               |                   |           |     |                  | *                        | +                       | -                  |                          | ¥                 |                            |               |  |    |                   |

20