Darian Irani – irani2

Problem 1 (30 points). Is $0 \le v(t) \le v_0$ an invariant of A? No need to write a complete proof; a two sentence argument would suffice.

Case 1:
$$v(t) \leq V_0$$
 because $V_1(0) = V_0$ and car decreases speed /stops if $s(t) = 1$ and maintains current speed if $s(t) = 0$.

(ase $d: V_1(t) \geq 0$ —7 if $s(t) = 1$ and $v_1(t) < ab$ then $v_1(t+1) = 0$ and if $s(t) = 0$ then car maintains current speed.

These cases imply $0 \leq V_1(t) \leq V_0$ at all times $i = 0 \leq V_1(t) \leq V_0$ is an invariant of A

Problem 2 (30 points). Is timer(t) $\leq v_0/a_b$ an invariant of A? Explain why. Can we use the induction method to prove this invariant? If so, present your proof.

Hint: You may find the usage of other invariants handy in your proof.

2	Proof by induction of times (t) & Vo/ab invoriance for automaten A:
	Need to prove: $timer(t+1) \leq \frac{V_0}{a_b}$. Induction assumption: $timer(t) \leq \frac{V_0}{a_b}$
	Case 1: If $d(t) \leq D_{\text{sense}}$ and $V_1(t) \geq ab$ then timer $(t+1) = \text{timer } (t) + 1$
	given timer (t) +1 \leq $\frac{V_0}{a_b}$ +1 $\frac{V_1}{t}$ decreases by $\frac{a_b}{t}$ at every time increment. timer will increment $\frac{V_0}{a_b}$ times. When $\frac{V_1}{t} < \frac{a_b}{t}$ will not increment.
	Case 2: timer (+1) = timer (+) for all other conditions
	times $(t+1) \leq \frac{V_0}{a_b}$ is true for induction assumption.
	: times $(t+1) < \frac{V_0}{a_b}$ is an invariant of A .

Problem 3 (40 points). Let us now introduce some delay in the sensing-computation-actuation pipeline, say T_{react} . This could model cognitive delay of a human driver or processing delay in electronics and computers. Assume we have exactly T_{react} seconds delay between the sensing of the pedestrian and the application of the brakes (the **start** of the deceleration). Moreover, let us also introduce acceleration to the vehicle: whenever the vehicle is outside the sensing distance, the vehicle undergoes constant acceleration a_s . Rewrite the new updated model with the sensing delay and vehicle acceleration.

3 Simple Car (Dianse, Vo,
$$x_1, x_2, a_6$$
), x_{20}, x_{10}

Thirtially: $x_1(0) = x_{10}$, $x_2(0) = x_{20}$, $v_1(0) = v_0$, $v_2(0) = 0$
 $s(0) = 0$, times $s(0) = 0$, times $s(0) = 0$
 $s(0) = 0$, times $s(0) = 0$, times $s(0) = 0$
 $s(0) = 0$, times $s(0) = 0$, times $s(0) = 0$
 $s(0) = 0$, times $s(0) = 0$, times $s(0) = 0$
 $s(0) = 0$, times $s(0) = 0$, times $s(0) = 0$
 $s(0) = 0$, times $s(0) = 0$, times $s(0) = 0$
 $s(0) = 0$, $s(0) = 0$
 $s(0) = 0$, $s(0) = 0$
 $s(0) = 0$, $s(0) = 0$
 $s(0) = 0$
 $s(0) = 0$, $s(0) = 0$
 $s(0) = 0$
 $s(0) = 0$, $s(0) = 0$
 $s(0) = 0$
 $s(0) = 0$, $s(0) = 0$
 $s(0) = 0$
 $s(0) = 0$, $s(0) = 0$
 $s(0) = 0$
 $s(0) = 0$, $s(0) = 0$
 $s(0) = 0$
 $s(0) = 0$, $s(0) = 0$
 $s(0) = 0$
 $s(0) = 0$, $s(0) = 0$
 $s(0) = 0$
 $s(0) = 0$, $s(0) = 0$
 $s(0) = 0$
 $s(0) = 0$, $s(0) = 0$
 $s(0) = 0$
 $s(0) = 0$, $s(0) = 0$
 $s(0) = 0$
 $s(0) = 0$, $s(0) = 0$
 $s(0) =$

else

$$s(t+1) = 0$$

$$v_1(t+1) = v_1(t) + a_s$$

$$timer(t+1) = timer(t)$$

$$timer(t+1) = timer(t) + 1$$

$$x_1(t+1) = x_1(t) + v_1(t)$$