kilo bots picture doing the job

Controlling Torque of an Object Using a Swarm With Global Inputs

Shiva Shahrokhi and Aaron T. Becker

Abstract-Micro and nano robots are suited for targeted drug delivery and micro scale manufacturing because they are small enough to go toward the passageways of the body. But due to their small size robots cannot contain onboard processing for autonomy nor onboard power. Instead they are controlled by external signal such as a magnetic field. However, because each robot can only provide a small amount of force or transport a small amount of material, we need large swarms of robots, all controlled by the same external field. This work presents controllers and algorithms for steering such an under-actuated swarm. In our previous work, we showed that mean and variance of the swarm is controllable. We also showed that with controlling mean and variance we are able to manipulate objects, and for a challenging environments showed that covariance of the swarm is controllable. But one of the remaining challenges was controlling torque of the object. In some environments, we have narrow ways that we may need to not only control covariance of the swarm, but also control torque of the object to be able to pass those ways. This work first proves that torque control is possible, then presents algorithms to do the task. We conclude by showing the experiments with 100 real robots when they are manipulating a rectangle and discuss the future challenges.

I. INTRODUCTION

Micro- and nano-robots can be manufactured in large numbers. Our vision is for large swarms of robots remotely guided 1) through the human body, to cure disease, heal tissue, and prevent infection and 2) ex vivo to assemble structures in parallel. For each application, large numbers of micro robots are required to deliver sufficient payloads, but the small size of these robots makes it difficult to perform onboard computation. Instead, these robots are often controlled by a global, broadcast signal. The biggest barrier to this vision is a lack of control techniques that can reliably exploit large populations despite incredible under-actuation.

In previous work, we proved the mean position of a swarm is controllable and that, with an obstacle, the swarm's position variance orthogonal to rectangular boundary walls is also controllable (σ_x and σ_y for a workspace with axis-aligned walls). The usefulness of these techniques was demonstrated by several automatic controllers. One controller steered a swarm of robots to push a larger block through a 2D maze [1]. We also showed methods to control swarm's position covariance to be able to navigate the swarm through the workspaces with narrow corridors, but there is still another challenge remained. When the task is object manipulating, we need to control torque of the object also to successfully pass all the ways. This paper first discusses the ways that

S. Shahrokhi and A. Becker are with the Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204-4005 USA {sshahrokhi2, atbecker}@uh.edu

Fig. 1. How can we control torque of the object with a swarm of robots and a shared input?

Fig. 2. How can we control torque of the object with a swarm of robots and a shared input?

we can control torque of an object in Section III. Then it introduces algorithms for torque control in Section IV. We show that algorithms work in Section V on 100 kilobots.

II. RELATED WORK

Controlling the *shape*, or relative positions, of a swarm of robots is a key ability for a myriad of applications. Correspondingly, it has been studied from a control-theoretic perspective in both centralized, e.g. virtual leaders in [2], and decentralized approaches, e.g. control-Lyapunov functions gradient based decentralized controllers in [3]. Most approaches assume a level of intelligence and autonomy in the individual robots that exceeds the capabilities of current micro- and nano-robots [4], [5].

Instead, this paper focuses on centralized techniques that apply the same control input to each member of the swarm, as in [6].

Shear forces are unaligned forces that push one part of a body in one direction, and another part of the body in the opposite direction. These shear forces are common in fluid flow along boundaries, as described in introductory fluid dynamics textbooks [7]. Similarly, a swarm of robots under global control pushed along a boundary will experience shear forces. This is a position-dependent force, and so can be exploited to control the configuration or shape of the swarm. Physics-based swarm simulations have used these forces to disperse a swarm's spatial position for accomplishing coverage tasks [8].

More research has focused on generating artificial force-fields. Applications have included techniques to design shear forces to a single object for sensorless manipulation [9]. Vose et al. demonstrated a collection of 2D force fields generated by 6DOF vibration inputs to a rigid plate [10], [11]. This collection of force fields, including shear forces, could be used as a set of primitives for motion control for steering the formation of multiple objects.

III. THEORY

A. Controlling Torque

One of the features of an object is its orientation. When a swarm is manipulating an non-symmetric object, in narrow corridors orientation matters. We can control orientation by controlling torque of the object. Equation 1 shows the parameters that we should control.

$$\tau = F \times d \tag{1}$$

where d

IV. SIMULATION

V. EXPERIMENT

Our experiments are on centimeter-scale hardware systems called kilobots. These allows us to emulate a variety of dynamics, while enabling a high degree of control over robot function, the environment, and data collection. The kilobot, from [12], [13] is a low-cost robot designed for testing collective algorithms with large numbers of robots. It is available as an open source platform or commercially from [14]. Each robot is approximately 3 cm in diameter, 3 cm tall, and uses two vibration motors to move on a flat surface at speeds up to 1 cm/s. Each robot has one ambient light sensor that is used to implement phototaxis, moving towards a light source. In these experiments as shown in Fig. 3, we used n=97 kilobots, a 1.5 m \times 1.2 m whiteboard as the workspace, and eight 30W LED floodlights arranged 1.5 m above the plane of the table at the $\{N, NE, E, SE, S, SW, W, NW\}$ vertices of a 6 m square centered on the workspace. The lights were controlled using an Arduino Uno board connected to an 8-relay shield. Above the table, an overhead machine vision system tracks the position of the swarm.

VI. CONCLUSION AND FUTURE WORK

This paper presented techniques for controlling the shape of a swarm of robots using global inputs and interaction with boundary friction forces. The paper provided algorithms for precise position control, as well as demonstrations of efficient

Fig. 3. Hardware platform: table with 1.5×1.2 m workspace, surrounded by eight remotely triggered 30W LED floodlights, with an overhead machine vision system.

covariance control. Future efforts should be directed toward improving the technology and tailoring it to specific robot applications.

With regard to technological advances, this includes designing controllers that efficiently regulate σ_{xy} , perhaps using Lyapunov-inspired controllers as in [16], [17]. Additionally, this paper assumed that wall friction was nearly infinite. The algorithms require retooling to handle small μ_f friction coefficients. It may be possible to rank controllability as a function of friction. In hardware, friction could be modified by outfitting the kilobots with a round skirt to avoid the almost infinite friction due to the triangular leg arrangement. The wall friction can be varied by laser-cutting boundary walls with different of profiles.

REFERENCES

- S. Shahrokhi and A. T. Becker, "Stochastic swarm control with global inputs," in *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, Sep. 2015, p. tbd.
 M. Egerstedt and X. Hu, "Formation constrained multi-agent control,"
- [2] M. Egerstedt and X. Hu, "Formation constrained multi-agent control," IEEE Trans. Robotics Automat., vol. 17, pp. 947–951, 2001.
- [3] M. A. Hsieh, V. Kumar, and L. Chaimowicz, "Decentralized controllers for shape generation with robotic swarms," *Robotica*, vol. 26, no. 05, pp. 691–701, 2008.
- [4] S. Martel, "Magnetotactic bacteria for the manipulation and transport of micro-and nanometer-sized objects," *Micro-and Nanomanipulation Tools*, 2015.
- [5] X. Yan, Q. Zhou, J. Yu, T. Xu, Y. Deng, T. Tang, Q. Feng, L. Bian, Y. Zhang, A. Ferreira, and L. Zhang, "Magnetite nanostructured porous hollow helical microswimmers for targeted delivery," *Advanced Functional Materials*, vol. 25, no. 33, pp. 5333–5342, 2015. [Online]. Available: http://dx.doi.org/10.1002/adfm.201502248
- [6] A. Becker, G. Habibi, J. Werfel, M. Rubenstein, and J. McLurkin, "Massive uniform manipulation: Controlling large populations of simple robots with a common input signal," in *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, Nov. 2013, pp. 520–527.

- [7] B. R. Munson, A. P. Rothmayer, T. H. Okiishi, and W. W. Huebsch, Fundamentals of Fluid Mechanics, 7th ed. Wiley, 2012.
- [8] D. Spears, W. Kerr, and W. Spears, "Physics-based robot swarms for coverage problems," *The international journal of intelligent control* and systems, vol. 11, no. 3, 2006.
- [9] A. Sudsang and L. E. Kavraki, "A geometric approach to designing a programmable force field with a unique stable equilibrium for parts in the plane," in *Proceedings of The 2001 IEEE International Conference* on Robotics and Automation (ICRA 2001), vol. 2, IEEE Press. Seoul, Korea: IEEE Press, May 2001, inproceedings, pp. 1079–1085, this paper was a finalist for best conference paper award.
- [10] T. Vose, P. Umbanhowar, and K. Lynch, "Friction-induced velocity fields for point parts sliding on a rigid oscillated plate," *The International Journal of Robotics Research*, vol. 28, no. 8, pp. 1020–1039, 2009. [Online]. Available: http://ijr.sagepub.com/content/ 28/8/1020.abstract
- [11] T. H. Vose, P. Umbanhowar, and K. M. Lynch, "Sliding manipulation of rigid bodies on a controlled 6-dof plate," *The International Journal* of Robotics Research, vol. 31, no. 7, pp. 819–838, 2012.
- [12] M. Rubenstein, C. Ahler, and R. Nagpal, "Kilobot: A low cost scalable robot system for collective behaviors," in *IEEE Int. Conf. Rob. Aut.*, May 2012, pp. 3293–3298.
- [13] M. Rubenstein, A. Cornejo, and R. Nagpal, "Programmable self-assembly in a thousand-robot swarm," *Science*, vol. 345, no. 6198, pp. 795–799, 2014.
- [14] K-Team, "Kilobot, www.k-team.com/mobile-robotics-products/kilobot," 2015.
- [15] S. Shahrokhi and A. T. Becker, ""Wall-Friction Swarm Shape Control", https://github.com/aabecker/swarmcontrolsandbox/ tree/master/papers/icra2016," Aug. 2015.
- [16] A. Becker, Y. Ou, P. Kim, M. Kim, and A. Julius, "Feedback control of many magnetized tetrahymena pyriformis cells by exploiting phase inhomogeneity," in *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, Nov. 2013, pp. 3317–3323.
- [17] A. Becker, O. Felfoul, and P. E. Dupont, "Simultaneously powering and controlling many actuators with a clinical MRI scanner," in *Intelligent Robots and Systems (IROS 2014)*, 2014 IEEE/RSJ International Conference on. IEEE, 2014, pp. 2017–2023.