PUC Minas

Arquitetura de Computadores II

Relatório III

Aluno: Hyalen Neves Caldeira (Turno Manhã - 9292.1.01) e Vinícius Francisco da Silva (Turno

Tarde - 9781.1.01)*

Matrícula 576920

Disciplina: Arquitetura de Computadores II

Professor: Romanelli

Construção dos circuitos através do Logisim.

A imagem mostra o primeiro circuito construído, que é o da Meia Soma.

Utilizando dois circuitos de meia soma construímos o circuito de soma completa.

Utilizando dois circuitos completos fazemos a soma para 4 bits, recebendo um carry-in e trazendo de saída um carry-out.

Nesse circuitos fazemos um complemento de 2 para utilizarmos no subtrador.

Este é o circuito do subtrador, que é realizado através da soma de uma entrada A com o complemento da entrada B.

Aqui temos uma ULA que através das entradas op0 e op1 realizam ou uma soma de A com B ou uma subtração.

E aqui temos uma Unidade Lógica e Aritmética completa.

```
int bitA;
int bitB;
int soma;
int bitInvert = 0;
int resultadoAnd = 0;
int resultadoSomal = 0;
int resultadoSomal = 0;
int resultadoSoma2 = 0;
int operation[2] = {0,0};
int carryOut = 0;
int transporteSaida = 0;
int carryIn;
int subtracao;
 void setup(){
Serial.begin(9600);
             //AND(A,B)
pinMode(A0,OUTPUT);
//OR(A,B)
pinMode(A1,OUTPUT);
//SOMA(A,B)
              pinMode (A2,OUTPUT);
             //NOT(A)
pinMode(A3, OUTPUT);
//SOMA(A,-B);
pinMode(A4, OUTPUT);
 = int operacaoAnd(int bitA, int bitB){
    return bitA & bitB;
 int operacaoOr(int bitA, int bitB){
    return bitA | bitB;
  L<sub>}</sub>
 int orTransporteSaida(int bitA, int bitB, int bitC) {
   return bitA | bitB | bitC;
  //Negacao do bit A ou B

⊟int operacaoNot(int bit){

return !bit;
 l,
  ☐ int operacaoXor(int bitA, int bitB) {
    return bitA ^ bitB;
  L,
}
//Carry In ou 'Vem Um'
carryIn = Serial.parseInt();
             if(operation[0] == 0 && operation[1] == 0) {
    resultadoAnd = operacaoAnd(bitA,bitB);
} else if(operation[0] == 0 && operation[1] == 1) {
    resultadoOr = operacaoAnd(bitA,bitB);
} else if(operation[0] == 1 && operation[1] == 0) {
    resultadoNot = operacaoNot(bitA);
} else if(operation[0] == 1 && operation[1] == 1) {
    somador(bitA,bitB,bitInvert);
}
```

```
//AND
if(resultadoAnd == 1) digitalWrite(A0,HIGH);
    else digitalWrite(A0,LOW);
//OR
if(resultadoOr == 1) digitalWrite(A1,HIGH);
    else digitalWrite(A1,LOW);
//SORA
if(resultadoSomal == 1) digitalWrite(A2,HIGH);
    else digitalWrite(A2,LOW);
//SORA(A2, B3 digitalWrite(A3,LOW);
//SORA(A3, B3 digitalWrite(A3,LOW);
//SORA(A3, B3 digitalWrite(A3,LOW);
//SORA(A3, B3 digitalWrite(A4,LOW);
}
int operacaoSubtracao(int bitA, int bitB) {
    int operacaoSubtracao(int bitA, int bitB) {
        int operacaoSubtracao(int bitA, bitB);
        //soma-se normalments, come no somador completo
        int xorAux = operacaoAnd(c(bitA, bitB);
        //soma-se normalments, come no somador completo
        int andsub = operacaoAnd(bitA, bitB);
        int andsub = operacaoAnd(bitA, bitB);
        int andsub = operacaoAnd(bitA, bitB);
        int andsub = operacaoAnd(bitA, carry(In);
        subtracao = operacaoAnd(carry(In, xorAux);
        transporteSaids = orTransporteSaida(andSubl, andSub2, andSub3);
        return subtracao;
}

int operacaoSoma(int bitA, int bitB)(
        int worAux = operacaoAnd(carry(In, xorAux);
        carryOut =
```

Imagens do código feito no Arduino e abaixo consta as imagens dos testes realizados

Imagens dos testes realizados a partir do código para teste que está no relatório.

а	b	С	d	op1	op0	S
0	0	0	0	0	0	00
0	0	0	0	0	1	00
0	0	0	0	1	0	1
0	0	0	0	1	1	10

0	0	0	1	0	0	00
0	0	0	1	0	1	01
0	0	0	1	1	0	11
0	0	0	1	1	1	11
0	0	1	0	0	0	00
0	0	1	0	0	1	10
0	0	1	0	1	0	11
0	0	1	0	1	1	01
0	0	1	1	0	0	00
0	0	1	1	0	1	11
0	0	1	1	1	0	11
0	0	1	1	1	1	00
0	1	0	0	0	0	00
0	1	0	0	0	1	01
0	1	0	0	1	0	10
0	1	0	0	1	1	11
0	1	0	1	0	0	01
0	1	0	1	0	1	01
0	1	0	1	1	0	10
0	1	0	1	1	1	10
0	1	1	0	0	0	00
0	1	1	0	0	1	11
0	1	1	0	1	0	10
0	1	1	0	1	1	00
0	1	1	1	0	0	01
0	1	1	1	0	1	11
0	1	1	1	1	0	10
0	1	1	1	1	1	01
1	0	0	0	0	0	00
1	0	0	0	0	1	10
1	0	0	0	1	0	01
1	0	0	0	1	1	01
1	0	0	1	0	0	00
1	0	0	1	0	1	11
1	0	0	1	1	0	01
1	0	0	1	1	1	00
1	0	1	0	0	0	10
1	0	1	0	0	1	10
1	0	1	0	1	0	01
1	0	1	0	1	1	11
1	0	1	1	0	0	10
1	0	1	1	0	1	11
1	0	1	1	1	0	01
1	0	1	1	1	1	10
1	1	0	0	0	0	00

1	1	0	0	0	1	11
1	1	0	0	1	0	00
1	1	0	0	1	1	00
1	1	0	1	0	0	01
1	1	0	1	0	1	11
1	1	0	1	1	0	00
1	1	0	1	1	1	01
1	1	1	0	0	0	10
1	1	1	0	0	1	11
1	1	1	0	1	0	00
1	1	1	0	1	1	10
1	1	1	1	0	0	11
1	1	1	1	0	1	11
1	1	1	1	1	0	00
1	1	1	1	1	1	11

Α	В	Op1	Op0	S
Α	В	0	0	And(a,b)
Α	В	0	1	Or(a,b)
Α	В	1	0	Not(a)
Α	В	1	1	Soma(a,b)

• Tabela verdade adotada no projeto da Unidade Lógica e Aritmética com todas as saídas possíveis

• Imagens com a Unidade Lógica e Aritmética implementada no Simulador 97 e com todos os testes.

Instrução realizada	Binário (A,B,Op.code)	Valor em Hexa	Resultado em binário
And (a,b)	10 01 00	24	00
Or(a,b)	10 01 01	25	11
Soma(a,b)	10 01 11	27	00
Not(a)	11 01 10	36	00
And (a,b)	11 01 00	34	01

• Tabela de testes devidamente preenchida de acordo com as instruções e os valores