

Experimental and model-based investigation of twin screw granulation

Ashish Kumar

Lab Meeting, FFW 18 August 2014

LABORATORY OF PHARMACEUTICAL PROCESS ANALYTICAL TECHNOLOGY

FACULTY OF PHARMACEUTICAL SCIENCES

BIOMATH, DEPARTMENT OF MATHEMATICAL MODELLING, STATISTICS AND BIOINFORMATICS

FACULTY OF BIOSCIENCE ENGINEERING

Continuous manufacturing line

twin-screw granulator

Fluid bed dryer

2

At appropriate time-scales and conditions, granulation is in steady state

Two key implications

- 1. Fluxes are roughly constant (Dynamics are transient)
- 2. If feed is constant, product quality is consistent!

Twin-Screw Granulator applies High Shear Wet Granulation

Twin-screw granulation process development

Areas under study:

- Granulation time and mixing.
- Aggregation and breakage rates.

Twin-screw granulation process development

Areas under study:

- Granulation time and mixing.
- Aggregation and breakage rates.

Consigma[™]-1 system

(GEA pharma systems, Collette)

Open barrel of a twin screw granulator

Consigma[™]- 1 experiments

Lactose/PVP (97.5/2.5) premix was granulated with distilled water

Factors:

Parameters	Low	High
Throughput	10 Kg/h	25 Kg/h
Liquid-solid ratio	4.58 %	6.52%
Screw speed	500 RPM	900 RPM

Responses: Particle cha

Particle characterization by Dynamic Image Analysis (Location 1, 3, 5)

Average Feret diameter vs Aspect ratio

Comparing average Feret diameter

Granulation is result of particle population dynamics

Granule Size Distribution

Population balance equation

$$\frac{\partial n(t,x)}{\partial t} = \frac{Q_{in}}{\tilde{V}} n_{in}(x) - \frac{Q_{out}}{\tilde{V}} n_{out}(x)$$
 GSD balance

$$+\frac{1}{2}\int_{0}^{x}\beta(t,x-\varepsilon,\varepsilon)n(t,x-\varepsilon)n(t,\varepsilon)d\varepsilon$$

$$-n(t,x)\int_{0}^{\infty}\beta(t,x,\varepsilon)n(t,\varepsilon)d\varepsilon$$

$$+\int_0^\infty b(x,\varepsilon)S(\varepsilon)n(t,\varepsilon)\,d\varepsilon$$

$$-S(x)n(t,x)$$

 β = aggregation rate

S = selection rate

b = breakage function

20

Experimental and simulated data have a good agreement

Particle population dynamics during granulation

Experimental and simulated data have a good agreement

Including effect of granulator design on granule size distribution

IS IT EYECON RESULTS USEABLE?

Comparison of PSD analysis methods

- Sieve analysis
- 3D imaging techniques (Eyecon[™])

Process settings for the runs

	Run 1	Run 2	Run 3	Run 4
Throughput (kg/h)	25	10	10	25
Liquid addition (%)	9	9	8	9
Screw	1x6	1x6	2x6	2x6
Screw Speed (RPM)	500	900	900	900
Stagger angle (°)	60	60	60	60
Temperature (°C)	25	25	25	25
Binder Addition	Wet	Wet	Wet	Wet

Difference between Eyecon before dryer

3

Difference between Eyecon before dryer and sieve after dryer

Difference between Eyecon before dryer

Fluid bed dryer

Difference between Eyecon before dryer and sieve before dryer

More granules in sieve before dryer measurement

Difference between sieve before dryer

Difference between sieve before dryer and sieve after dryer

Conclusions

Along with experimental study, an improved insight can be obtained by model-based analysis.

High throughput processing can be achieved by increasing the liquid-solid ratio and screw speed.

PBM requires further development to include screw geometry effect and validation.

Eyecon is showing some promising results, and can be used for studies in future.

Aknowledgements

Prof. Thomas De Beer

Prof. Ingmar Nopens

Prof. Krist V. Gernaey

Jurgen Vercruysse Fien De Leersnyder

Laboratory of Pharmaceutical Process Analytical Technology

Ashish.Kumar@UGent.be