Reed-Muller Codes Achieve Capacity on Erasure Channels

Shrinivas Kudekar, Santhosh Kumar, Marco Mondelli, Henry D. Pfister, Eren Şaşŏglu, Rüdiger Urbanke

Project presentation, E2 207 - Concentration Inequalities[†]

January 18, 2018

[†] presented by K. R. Sahasranand, Dept. of Electrical Communication Engg., IISc.

Proof Outline

- Preliminaries
- Key ingredients
 - Reed Muller codes are doubly transitive
 - ► Symmetric monotone sets have sharp thresholds
 - ► EXIT[†] functions satisfy the area theorem
- Conclusion

[†]EXtrinsic Information Transfer

Binary Erasure Channel (BEC) and MAP decoder

Figure: Denoted BEC(p). If X_i is transmitted over BEC(p_i), referred to as BEC(\underline{p})

- $D_i: \mathcal{Y}^N \to \mathcal{X} \cup \{e\}$: bit-MAP decoder for bit *i*.
- Erasure probability for bit $i \in [N]$, $P_{b,i} \triangleq \mathbb{P}[D_i(\underline{Y}) \neq X_i]$. Average bit erasure probability, $P_b \triangleq \frac{1}{N} \sum_{i=1}^{N} P_{b,i}$.
- If bit *i* is recovered given \underline{y} , $H(X_i|\underline{Y}=\underline{y})=0$. Otherwise, uniform codeword assumption $\Rightarrow H(X_i|\underline{Y}=\underline{y})=1$. Thus, $P_{b,i}=H(X_i|\underline{Y})$ and, $P_b=\frac{1}{N}\sum_{i=1}^N H(X_i|\underline{Y})$.

MAP EXIT functions

The vector EXIT function associated with bit i of the (uniformly randomly chosen) codeword

$$h_i(\underline{p}) \triangleq H(X_i|\underline{Y}_{-i}(\underline{p}_{-i})).$$

The average vector EXIT function is defined by

$$h(\underline{p}) \triangleq \frac{1}{N} \sum_{i=1}^{N} h_i(\underline{p}).$$

Scalar EXIT functions defined by choosing $p = (p, p, \dots, p)$.

$$H(X_i|\underline{Y}) = \mathbb{P}(Y_i = e)H(X_i|\underline{Y}_{-i}, Y_i = e) + \mathbb{P}(X_i = Y_i)H(X_i|\underline{Y}_{-i}, Y_i = X_i)$$

= $\mathbb{P}(Y_i = e)H(X_i|\underline{Y}_{-i}).$

Therefore, $P_{b,i}(p) = ph_i(p)$ and $P_b(p) = ph(p)$ (3)

More definitions

Definition 2 - Consider a code \mathcal{C} and the *indirect recovery* of X_i from the subvector \underline{Y}_{-i} (i.e., the bit-MAP decoding of Y_i from \underline{Y} when $Y_i = e$). For $i \in [N]$, the set of erasure patterns that prevent indirect recovery of X_i under bit-MAP decoding is given by

$$\Omega_i \triangleq \{A \subseteq [N] \setminus \{i\} : \exists B \subseteq [N] \setminus \{i\}, B \cup \{i\} \in \mathcal{C}, B \subseteq A\}.$$

For distinct $i, j \in [N]$, the set of erasure patterns where the j-th bit is pivotal for the indirect recovery of X_i is given by

$$\partial_j \Omega_i \triangleq \{ A \subseteq [N] \setminus \{i\} : A \setminus \{j\} \notin \Omega_i, A \cup \{j\} \in \Omega_i \}$$

These are the erasure patterns where X_i can be recovered from \underline{Y}_{-i} iff $Y_i \neq e$.

Proposition 4

For a code $\mathcal C$ and transmission over a BEC, we have the following properties for the EXIT functions.

(a) The EXIT function associated with bit i satisfies

$$h_i(p) = \sum_{A \in \Omega_i} p^{|A|} (1-p)^{N-1-|A|}.$$

(b) For $j \in [N] \setminus \{i\}$, the partial derivative satisfies

$$\left. \frac{\partial h_i(\underline{p})}{\partial p_j} \right|_{\underline{p}=(p,p,\ldots,p)} = \sum_{A \in \partial_j \Omega_i} p^{|A|} (1-p)^{N-1-|A|}.$$

(c) The average EXIT function satisfies the area theorem

$$\int_0^1 h(p)dp = \frac{K}{N}.$$

Permutations of linear codes

 S_N , the symmetric group on N elements. The permutation group of a code is defined as the subgroup of S_N whose group action on the bit ordering preserves the set of codewords.

Definition 5 - The permutation group ${\mathcal G}$ of a code ${\mathcal C}$ is defined to be

$$\mathcal{G} = \{ \pi \in \mathcal{S}_{\mathcal{N}} : \pi(A) \in \mathcal{C} \text{ for all } A \in \mathcal{C} \}.$$

Definition 6 - Suppose ${\cal G}$ is a permutation group. Then,

- (a) \mathcal{G} is *transitive* if, for any $i, j \in [N]$, there exists a permutation $\pi \in \mathcal{G}$ such that $\pi(i) = j$, and
- (b) \mathcal{G} is doubly transitive if, for any distinct $i, j, k \in [N]$, there exists a $\pi \in \mathcal{G}$ such that $\pi(i) = i$ and $\pi(j) = k$.

Proposition 7

Suppose the permutation group $\mathcal G$ of a code $\mathcal C$ is transitive. Then, for any $i\in[N]$,

$$h(p) = h_i(p)$$
 for $0 \le p \le 1$.

Proposition 8

Suppose the permutation group \mathcal{G} of a code \mathcal{C} is doubly transitive. Then, for distinct $i, j, k \in [N]$, and any $0 \le p \le 1$,

$$\left. \frac{\partial h_i(\underline{p})}{\partial p'_j} \right|_{\underline{p}=(p,p,\ldots,p)} = \left. \frac{\partial h_i(\underline{p})}{\partial p'_k} \right|_{\underline{p}=(p,p,\ldots,p)}.$$

Capacity achieving codes and the EXIT function

Definition: Suppose $\{\mathcal{C}_n\}$ is a sequence of codes with rates $\{r_n\}$ where $r_n \to r$ for $r \in (0,1)$. $\{\mathcal{C}_n\}$ is said to be capacity achieving on the BEC under bit-MAP decoding, if for any $p \in [0,1-r)$, the average bit-erasure probabilities satisfy

$$\lim_{n\to\infty} P_b^{(n)}(p) = 0.$$

Proposition 10

Let $\{C_n\}$ be a seq. of codes with rates $\{r_n\}$, $r_n \to r$ for $r \in (0,1)$. TFAE -

- S1: $\{C_n\}$ is capacity achieving on the BEC under bit-MAP decoding.
- S2: The sequence of average EXIT functions satisfies

$$\lim_{n \to \infty} h^{(n)}(p) = \begin{cases} 0 \text{ if } 0 \le p < 1 - r \\ 1 \text{ if } 1 - r < p \le 1. \end{cases}$$

S3: For any $0 < \epsilon \le 1/2$,

$$\lim_{n\to\infty}p_{1-\epsilon}^{(n)}-p_{\epsilon}^{(n)}=0.$$

Proof:

- S2 \Rightarrow S1 : $P_b(p) = ph(p)$.
- S1 \Rightarrow S2 : $P_b(p) = ph(p)$ and Area Theorem (Proposition 4).
- S2 \Rightarrow S3 : $p_{1-\epsilon}^{(n)} p_{\epsilon}^{(n)} \sim h^{(n)}$ transitions from ϵ to 1ϵ .
- S3 \Rightarrow S2 : Suffices to show, $\lim_{n\to\infty} p_{\epsilon}^{(n)} = \lim_{n\to\infty} p_{1-\epsilon}^{(n)} = 1-r$. Use Area Theorem.

More definitions

Define

$$[\phi_i(A)] = \left\{ \begin{array}{l} \mathbf{1}_A(I) \text{ if } I < i \\ \mathbf{1}_A(I+1) \text{ if } I \ge i. \end{array} \right.$$

Now define

$$\Omega_i' \triangleq \{\phi_i(A) \in \{0, 1\}^{N-1} : A \in \Omega_i\}
\partial_j \Omega_i' \triangleq \{\phi_i(A) \in \{0, 1\}^{N-1} : A \in \partial_j \Omega_i\}.$$
(8)

Consider the space $\{0,1\}^M$ with a measure μ_p such that

$$\mu_{p}(\Omega) = \sum_{\mathbf{x} \in \Omega} p^{|\underline{\mathbf{x}}|} (1-p)^{M-|\underline{\mathbf{x}}|}, \text{ for } \Omega \subseteq \{0,1\}^{M},$$

where the weight $|\underline{x}| = x_1 + x_2 + \ldots + x_M$ is the number of 1's in \underline{x} . Using proposition 4, $h_i(p) = \mu_p(\Omega_i')$ with M = N - 1.

Invoking something we learnt..

Theorem 16

Let Ω be a monotone set and suppose that, for all $0 \le p \le 1$, the influences of all bits are equal $I_1^{(p)}(\Omega) = \ldots = I_M^{(p)}(\Omega)$. Then, for any $0 < \epsilon \le 1/2$,

$$p_{1-\epsilon} - p_{\epsilon} \le \frac{2\log\frac{1-\epsilon}{\epsilon}}{C\log(N-1)},$$

where $p_t = \inf\{p \in [0,1] : \mu_p(\Omega) \ge t\}$ is well defined because $\mu_p(\Omega)$ is strictly increasing in p with $\mu_0(\Omega) = 0$ and $\mu_1(\Omega) = 1$.

Proof: Using Russo's lemma.

Theorem 17

Let $\{\mathcal{C}_n\}$ be a sequence of codes where the blocklengths satisfy $N_n \to \infty$, the rates satisfy $r_n \to r$, and the permutation group $\mathcal{G}(n)$ (of \mathcal{C}_n) is doubly transitive for each n. If $r \in (0,1)$, then $\{\mathcal{C}_n\}$ is capacity achieving on the BEC under bit-MAP decoding.

Proof:

Let the average EXIT function of C_n be $h^{(n)}$. Fix some $i \in [N]$. Since G is transitive, from Proposition 7,

$$h(p) = h_i(p)$$
 for all $p \in [0,1]$.

Consider the sets Ω_i' from Definition 2 and Equation (8), and let M=N-1.

Proof of Theorem 17 (contd.)

Observe that, from Proposition 4,

$$h_i(p) = \mu_p(\Omega_i'), \qquad \qquad I_j^p(\Omega_i') = \frac{\partial h_i(\underline{p})}{\partial p_j'} \bigg|_{\underline{p}=(p,p,\ldots,p)}$$

where j' is given by

$$j' = \left\{ \begin{array}{l} j \text{ if } j < i \\ j+1 \text{ if } j \ge i. \end{array} \right.$$

Since $\mathcal G$ is doubly transitive, from Proposition 8,

$$I_j^p(\Omega_i') = I_k^p(\Omega_i')$$
 for all $j, k \in [N-1]$.

Proof of Theorem 17 (contd.)

Using Theorem 16, we have

$$p_{1-\epsilon} - p_{\epsilon} \le \frac{2\log\frac{1-\epsilon}{\epsilon}}{C\log(N-1)},$$

where p_t is the functional inverse of h as in Theorem 16. Since $N \to \infty$ from the hypothesis,

$$\lim_{n\to\infty}(p_{1-\epsilon}-p_{\epsilon})=0.$$

Now, using Proposition 10, $\{C_n\}$ is capacity achieving on the BEC under bit-MAP decoding.

References

- (1) S. Kumar and H. D. Pfister, Reed-Muller codes achieve capacity on erasure channels, 2015, [Online]. Available: http://arxiv.org/abs/1505.05123v2.
- (2) S. Kudekar, M. Mondelli, E. Şaşŏglu, and R. Urbanke, Reed-Muller codes achieve capacity on the binary erasure channel under MAP decoding, 2015, [Online]. Available: http://arxiv.org/abs/1505.05831v1.
- (3) ≡ (1) ∪ (2) S. Kudekar, S. Kumar, M. Mondelli, H. D. Pfister, E. Şaşŏglu, and R. Urbanke, Reed-Muller codes achieve capacity on erasure channels, 2016, [Online]. Available: http://arxiv.org/abs/1601.04689v1.

What people think about during your conference talk

Thank You!