FUNZIONI

Dati A e B insiemi di numeri reoli,
una FONZIONE de A in B e una legge de
ed agni elemento di A fa consispondere uno
ed un solo elemento di B.

f: A --->B

A dominio o iusieme oli ologinisione

A(A) CODOMINIO

y = f(x) (=) ad agric elemento $x \in A$, consignable transite Gfusione f, ℓ elements $g = f(x) \in B$

- Volgoma le sequenti:

-
$$f$$
 vi dice INIETTIVA se,
 $X \times 1, \times_2 \in A$ $\times_2 \neq \times_2 = 7$ $f(x_1) \neq f(x_2)$.
Esempi - $f: \mathbb{R}$ $\longrightarrow \mathbb{R}^6$ $f(x) = x^2$
 $y = x^2$ mom = imiettiva.

mon é imiettiva e mon é suriettiva.

$$g(x) = x^2$$

e i mettiva e suriettiva

in xi = 0 e x = T see0 = seuT = 0

uau é iniettiva, uau é suriettivor

$$h: \left[-\frac{1}{2}, \frac{1}{2}\right] \longrightarrow \left[-1, 1\right]$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

Consider A ER e h/A e la restritique une risulta enere iniettiva e suriettiva.

- he furiaire si dice BIUNIVOCA se è suriettiva ed inietiva.

Déficirique - f. A - B biunivoca. La Surrace INVERSA A-1:B-7A e la fusione une od agui y eB pa consignablere C'unico X EA t.c. P(x)=y. $f^{-1}(f(x)) = x \forall x \in A$ Esempio- La Gusiane F(x) = x2 e invertibile per x 20 $f(x) = x^2$ f: [0,+20]-)[0,+10] e la sua inversa e $f^{-1}(x) = \sqrt{x}$.

definita in 2 x ER: x 20 }

Définitione f si dice MONOTONA i'm un insieme A, se verifica una delle sequenti constitioni: Xxx, Xz eA - f strettamente crescente X1<X2 => f(X1)<f(X2) - f crescente $\times_1 < \times_2 = 7 f(x_1) < f(x_2)$ - f strettomente olecrescente $x_1(x_2) = f(x_1) / f(x_2)$ $\times_1 < \times_2 = \rightarrow f(x_1) \geq f(x_2)$ _ f olevrescente CRITERIO DI MVERTIBILITA_ A la stre Homeuto monotona, ollera e auche invertibile. y=mx+9 FWZIONE LINEARE _m e il coefficiente augstore - le m=0, nisulta y=9 costante

FUNZIONE POTENZA

m=h M=3

/ M=2

/ M=

 $y = x^{M}, x \geq 0$

-strettomente crescente per $x \ge 0$, cioè: $0 \le x_1 \le x_2 = 0 \times (x_1 < x_2)$

- e qui udi invertibile e l'inversa e

$$f^{-1}(x) = \sqrt{x} = x m, x \ge 0$$

$$y = \sqrt{x}$$

$$m = 1$$

$$m = 2$$

$$m = 3$$

$$y = \sqrt{x}$$

strettomente crescente

strettemente decrescente

esempio y= Coge X

|x|= } x se x 30

FUNZIONE VALORA ASSOUTO

- 1x| EL (=) -1 EX EL
- 1x1+x215|x11+|x21 xx1, x2

FUNZIONI TRICO NOTETRICHE

- . _ 1 S seex S 1 _ 1 5 COSX S 1
- · Seu²x + cos²x = 1

- É interessonte vedere la combinazione di gravioni elementari.

Cauridenomo la Prusiane:

$$f(\pi) = \frac{\text{Seux}}{X}$$
, definita $x \in \mathbb{R} \setminus \{0\}$

- et une fresique PARI, cire

$$f(x)=f(-x) \forall x \in DDDWD$$
(simmetrica rispetto osse y),

FUNZIONE DISPARI &
$$f(-x)=-f(x)$$
 $\forall x \in DONINIO$ (xcmmetrica rispetto ollorigine) -

Esempio

$$f(x) = \frac{see x}{x}$$
 et pori, la disegnosus per x 20

. Osse wionno dre -1 = seux =1 XxER e olividendo

y = sux sna compresa tra i due romi oli iperboli per X >0:

- per x>0, $y=\frac{\text{Sex}}{x}$ ha co stesso segno oli Seux.

- lan é définite per X=0 Cosa succèse per X

(1 VICIND A ZERO?

_ TENDE A SERO

LIENDE AU MPINIO

- TENDE AD UN VALORE INTERTREDIO?

lua formulotique nigorosa del comportomento oli una funtione f(x), per x "vicino" ad un punto X_D , in questo coso $X_D = D$,

e quello di considerore una generica Successione Xn che convege ed Xo

(
$$x_{M} e^{-\frac{1}{2}}$$
'vicino" ad x_{0} se m e' "aranoe") e la consispondente successione yn costituite doi valori ossunti dolla funtione $f(x)$

($y_{M} = f(x_{M})$, $f(x_{M})$

Tormondo del esempio di $f(x) = \frac{See x}{x}$, colcolo

Cive $f(xn) = \text{Cive} \frac{\text{See } \times n}{n-7+8} = \frac{2}{xn}$

con xy ->0 xx+> 4m =) e il limite notevole per le successioni, une soppionus volere s.

$$= \frac{1}{2} Cin + \frac{1}{2} (xn) = Cin + \frac{1}{2} (xn) = \frac{1}{2} (xn)$$

$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \frac{\sec x}{x} = 1$$

DEFINIZIONE DI CUTITE Sia A rue intervollo, o
unisone finita di suterrolli e ria Xo EA (anche
oll estremo).
Si dice che f(x) ha limite ugusle col l' (tende o
converge est C) per x dre tensle a x5, se,
quoluque sue la successione XII -> xo, con
Luca e xu xxo, xu, risu la
$f(xm) \rightarrow c$
_ hi dimostra de que ste definizione et equivolente ocla sequente:
Cim f(x)= & => XE>0, 350: x-xolc8
1f(x)_e/<\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
× + ו
(=) C-E <f(x)<c+e +.c.<="" 12="" td="" x="9" xxea=""></f(x)<c+e>
Xo-S < X < X= + S).

ラ

TEORETA (CECATIE TRA LITITI OI FUNZIONI E UTITI DI SUCCESSIONI).

- Le seguenti relozioni somo fra Coro equivolenti (xo, (\in R).
- · YXM-JXO XMEA \{XS YMEN =) A(XM) -> C
- · HEDO IS: XGA, O = 1x-xd < S => 1f(x)-C/<E X+X
- Volgons ondre le olefinizioni con i Cimiti infiniti:
- · $\lim_{x\to \infty} f(x) = +\infty \iff X \times \mu \to X_0, x \mu \in A \cdot \{x \le y \le x \in N\}$ $= \Rightarrow f(x \mu) \to +\infty$
 - (=) 4170 350: f(a) >17, 4x6A:
 - $0 \neq |x x_0| < S$
- · Cim $f(x) = C \rightleftharpoons \chi \chi_m \rightarrow +\infty, \chi_m \in A, \chi_m \in A$ $\chi \rightarrow +\infty$ $= \chi_m \rightarrow +\infty, \chi_m \in A, \chi_m \in A$ $= \chi_m \rightarrow +\infty, \chi_m \in A, \chi_m \in A$

(=) XE2, 3K: 1/(x)-014E

XxeA; X>K

- · Cim $f(x) = +\infty$ (=) $\forall xn \rightarrow +\infty$, $xn \in A$, $\forall n \in N$ $x\rightarrow +\infty$ =) $f(xn) \rightarrow +\infty$ (=) $\forall \Pi > 0$, $\exists u: f(x) > 0$, $\forall x \in A: x > \kappa$
- OSS: et utile considerate il LITTE DESTRO $(x-7x^{-1})$ e il cutte sivistro $(x-7x^{-1})$, quando ci si ovicina el punto xo per voloni oli $x \in A$ nispettivamente solo maggioni oli x, o solo mimori.
- $\lim_{x \to x^+} f(x) = \ell = 1$ $\forall \epsilon \geq 0$, $\exists \leq 0$: $|f(x) \ell| < \epsilon$ $\forall x \in X$ $\forall 0 < x - x_0 < S$ $\forall x \in X$ $\forall 0 < x < x_0 + \delta$
- . Cim f(x) = l = 1 $\forall s > 0$, $\exists d > 0$: |f(x) l| < 8 x 3 x = 5 $\forall x \in X S < x x < 0$

Esempio Cina Seux NON ESISTE X-7+20 Se en sterre C= Cinu seux x-7+20 dorneurs overe: f(xm)=Sele xn -> E quolènque six la successière xn-7+00 Consider often $\times m = 2\pi M = 1$ Ser $\times m = 2\pi M = 0 \rightarrow 0$ $\times m \rightarrow +\infty$) $\times m = 2\pi M = 1$ $\times m \rightarrow +\infty$ $\times m \rightarrow +\infty$ Xme Xm olivergons a + so, ma seu xm e seu xn? tendons a Civiti diversi.

Sercitio Militronto la depuirione di livite reificane che Cim Cosx =1 x-00 - deux reilique une 450, 2570: 1/(x)-e/ce, $\forall x \in X \quad 0 < |x - x_0| < \delta.$ Voluto qui mois 1 cosx - 11. One, per la Brun le oli PROSTAFERESI: 1002x - coso 1 p=x 9=0 cosp_cosp_ -2. Seu $\frac{P+9}{2}$. Sue $\frac{P-9}{2}$ $= \int |\cos x - 1| = 2 \sin^2 \frac{x}{2} \le 2 \frac{x^2}{2} = \frac{x^2}{2}$

 $(=)(\cos x - 1/\varsigma \varepsilon (=) \frac{x^2}{2} - \varepsilon (=) x^2 < \varepsilon (=)$

(=) |x < \(\sigma 2\)E |x_xd 102x-1/ce

pourendo S= VZE risulte che /xl S, implica 1 cosx-2/CE. #

Escuiro. Utilizaondo Ca definizione di Cimite, verificare ene:

 $\lim_{x\to 70} \frac{1}{x^2} = +\infty$

-dero verificare che 4770, 3500 t, c.

1(x) > 17, * x e x: 0 < [x x] < S

Quindi $\frac{1}{x^2} > \pi \iff x^2 < \frac{1}{\pi} \iff |x| < \frac{1}{\pi}$

Quinolise $S = \frac{1}{\sqrt{n}} = > f(x) > \Pi(\frac{1}{x^2} > \Pi).$

Somma, difference, produtto, quotiente di due gentioni, è rispettivouvente aquale olla somma, difference, produtto, quotiente (se il denominatore è divers da rero) des due limiti, persore mon sie ma dere forme condete minote

$$(1^{+\infty}, 1^{-\infty}, (+\infty)^{\circ}, 0^{\circ})$$

LIDITI NOTEVOLI

Volgono: Pinniti notendi visti per le successioni

$$\begin{array}{c}
\cdot & \text{lim} \ \alpha \times = \\
\times - 3 + \infty
\end{array} = \begin{array}{c}
+ \infty \quad \alpha > 1 \\
0 \quad 0 < \alpha < 1
\end{array}$$

in perticolope
$$\lim_{x \to +\infty} e^{x} = +\infty$$
 e^{x}

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$

$$\lim_{x \to +\infty} e^{x} = 0$$

In gurevole:
$$(1+f(x))^{\frac{1}{f(x)}}$$
 = $($

. Cim
$$\frac{\text{Sem} \times}{\text{X} \to \infty} = 1$$
 de $\frac{1}{\text{Cos}}$ in $\frac{1 - \text{Cos} \times}{\text{X}} = \frac{1}{2}$ de $\frac{1}{\text{Cos}}$ in $\frac{1 - \text{Cos} \times}{\text{X}^2} = \frac{1}{2}$ in $\frac{1 - \text{Cos} \times}{\text{X}^2} = \frac{1 - \text{Cos} \times}{\text{X}^2} = \frac{1}{2}$ in $\frac{1 - \text{Cos} \times}{\text{X}^2} = \frac{1 - \text{Co$

LIPITI DI FONZIONI COTROSTE_ Siomo g: X - ye f: y - y due Presioni toli che:

lim g(x) = y e lim f(y) = l x - y > 0eol existe S > 0 tale the risult $p(x) \neq y$

eol existe S>0 tale che risulti $g(x) \pm y_0$ per egni $x \pm x_0$ deri intervollo $(x_0 - 8, x_0 + 8)$.

Allore:

si he $\lim_{x \to \infty} f(g(x)) = 0$

Applianiero il precedente risultato:

eim
$$\times \log \left(1 + \frac{1}{x}\right) = 1$$

per le propriete dei Cogonitmi

$$\times \log \left(1 + \frac{1}{x}\right) = \log \left(1 + \frac{1}{x}\right) \longrightarrow \log e$$

de cui peneudo
$$y = \frac{1}{x}$$
, seque i $(y - 70)$

CITITE NOTEVOLE:

•
$$eim = \frac{eog(1+9)}{9-3} = 1$$

Si può servere ouche
$$1+y=t$$
, $y=t-1$ $y-y=t$

$$\lim_{t\to 1} \frac{\cos t}{t-1} = 1$$

Verifichions de:

$$\begin{array}{c} c \times 1 \\ \times - > 0 \end{array}$$

con la sostitutione
$$y = e^{x} - 1$$
, otherwords
$$e^{x} - 1$$

$$e^{x} - 1$$

$$= e^{x} - 1$$

quinoli il limite e verificato dato dre

Eserciti:

$$x - 20$$
 $(1 - \cos x)^3$

$$\frac{\sin x}{x^{-7}} = \frac{\sin x}{x^{-7}}$$

$$\frac{\sin x}{x^{-7}} = \frac{\sin x}{x^{-7}}$$

$$\frac{1}{x^{-7}} = \frac{1}{x^{-7}}$$

$$= \lim_{x \to \infty} \frac{\sin x^6}{x^6} - \frac{x^6}{(1-\cos x)^3} - \frac{1}{2}$$

$$= \lim_{x \to \infty} \left(\frac{x^2}{1 - \cos x} \right)^{\frac{3}{2}}$$

$$\frac{2 \operatorname{en}\left(\frac{x}{5}\right)}{x-3} = \frac{1}{x}$$

$$\frac{x-3}{5} = \frac{x^2-25}{x^2-25}$$

$$\frac{2 \operatorname{en}\left(\frac{x}{5}\right)}{x^2-25} = \frac{1}{x^2-25}$$

$$= \lim_{x \to 5} 2 \left(\frac{x}{5} \right) = \lim_{x \to 5} 2 \left(\frac{x}{5} \right)$$

$$= \lim_{x \to 5} 2 \left(\frac{x}{5} \right) = \lim_{x \to 2} 2 \left(\frac{x}{5} \right)$$

$$= \lim_{x \to 5} 2 \left(\frac{x}{5} \right) = \lim_{x \to 2} 2 \left(\frac{x}{5} \right)$$

$$=\lim_{x\to 5} 2 \cdot \frac{1}{5} \frac{x-5}{(x-5)(x+5)} = \frac{1}{25}$$

$$= \lim_{x \to +\infty} \frac{x^2}{5^x} \cdot \operatorname{sen} x = 0$$

In generale, olote
$$f(x)$$
 e $g(x)$ furtionic
toli une $f(x)$ sie Cimitote (cise $\exists \Pi + c$.
 $(f(x)| \subseteq \Pi)$ e $g(x) \longrightarrow$

$$= \gamma - \pi \leq f(x) \leq \pi$$

$$- \frac{1}{2} - \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \frac{1}{$$

OS. Poidre vole ondre il Teorema dei

Construction. Dote f(x), g(x), h(x) t.c. $f(x) \leq g(x) \leq h(x)$

e
$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} h(x) = 0$$

$$=) \lim_{x \to x_0} g(x) = e, \quad \pm$$

Point
$$\frac{x^{4} \cos \frac{x}{x}}{e^{x}-1}$$
 $e^{x}-1$
 e^{x}

$$f(x) = -sele^2 \times e f(x) \rightarrow 0$$

$$\overline{}$$

$$eim (cos^2x)$$
 $=$ $x\rightarrow 0$

$$= \lim_{x \to \infty} \left(1 + f(x) \right)$$

$$= \lim_{x \to \infty} \left(1 + f(x) \right)$$

$$= \lim_{x \to \infty} \left(1 + f(x) \right)$$

Cim
$$f(x)$$
 = Cim $\frac{\text{seu}^2(x)}{\text{seu}^2x} = -1$

$$\begin{pmatrix} x^{2} + 2\sqrt{\chi} \\ -2\sqrt{\chi} \end{pmatrix} = 1$$

$$\chi^{2} + 2\sqrt{\chi} + \chi$$

$$\chi^{3} + 2\sqrt{\chi} + \chi$$

$$\frac{x^{3}+2\sqrt{x}}{x^{3}+sux^{2}+x} = 1 + f(x)$$

$$=) f(x) = \frac{x^3 + 2\sqrt{x}}{x^3 + \sec x^2 + x} - 1 =$$

$$= \frac{x^{3}+2\sqrt{x}-x^{2}}{x^{3}+8uex^{2}+x}$$

$$= \frac{2\sqrt{x} - \sec x^2 - x}{x^2 + \sec x^2 + x}$$

$$= \frac{2\sqrt{x} - \sec x^2 + x}{pex}$$

$$= \frac{2\sqrt{x} - \sec x^2 - x}{pex}$$

$$\left(\frac{x^{3}+2\sqrt{x}}{x^{2}+3eeex^{2}+x}\right) = \left(\frac{3+f(x)}{f(x)}\right)^{\frac{1}{2}}$$

e suponatonemente il limite dell'exprente

$$\lim_{x \to +\infty} x \cdot \frac{2\sqrt{x} - \sec x^2 - x}{x^3 + \sec x^2 + x} = 0$$