MSO205A PRACTICE PROBLEMS SET 11 SOLUTIONS

<u>Question</u> 1. Let $X_i \sim Poisson(\lambda_i), i = 1, 2, \dots, n$ be independent RVs, with $\lambda_i > 0, \forall i$. Show that $X_1 + X_2 + \dots + X_n \sim Poisson(\sum_{i=1}^n \lambda_i)$.

(Note: A special case of this result is the following: If X_1, X_2, \dots, X_n be a random sample from $Poisson(\lambda)$ distribution, then $X_1 + X_2 + \dots + X_n \sim Poisson(n\lambda)$.)

Answer: Note that the MGF $M_{X_i}(t) = \exp(\lambda_i(e^t - 1)), \forall t \in \mathbb{R}$. Using independence of X_i 's, we have

$$M_{X_1+X_2+\dots+X_n}(t) = \prod_{i=1}^n M_{X_i}(t) = \exp\left(\sum_{i=1}^n \lambda_i(e^t - 1)\right), \forall t \in \mathbb{R}.$$

Since the MGF, if it exists, determines the distribution, we conclude $X_1 + X_2 + \cdots + X_n \sim Poisson(\lambda_1 + \lambda_2 + \cdots + \lambda_n)$.

<u>Question</u> 2. Let $X \sim Poisson(\lambda), Y \sim Poisson(\mu)$ be independent RVs. Find the conditional distribution of X given X + Y = k for $k = 0, 1, \cdots$.

Answer: We have $X + Y \sim Poisson(\lambda + \mu)$ (by problem 2 above). Then, for $k = 0, 1, \cdots$

$$\begin{split} \mathbb{P}(X = x | X + Y = k) &= \frac{\mathbb{P}(X = x \text{ and } X + Y = k)}{\mathbb{P}(X + Y = k)} \\ &= \frac{\mathbb{P}(X = x \text{ and } Y = k - x)}{\mathbb{P}(X + Y = k)} \\ &= \frac{\mathbb{P}(X = x)\mathbb{P}(Y = k - x)}{\mathbb{P}(X + Y = k)}, \text{ (using independence of } X \text{ and } Y) \\ &= \begin{cases} \frac{e^{-\lambda} \frac{\lambda^x}{x!} e^{-\mu} \frac{\mu^{k - x}}{(k - x)!}}{e^{-(\lambda + \mu)} \frac{(\lambda + \mu)^k}{k!}}, & \text{if } x \in \{0, 1, \cdots, k\}, \\ 0, \text{ otherwise.} \end{cases} \\ &= \begin{cases} \binom{k}{x} \left(\frac{\lambda}{\lambda + \mu}\right)^x \left(1 - \frac{\lambda}{\lambda + \mu}\right)^{k - x}, & \text{if } x \in \{0, 1, \cdots, k\}, \\ 0, \text{ otherwise.} \end{cases} \end{split}$$

Therefore, $X \mid X + Y = k \sim Binomial(k, \frac{\lambda}{\lambda + \mu})$.

<u>Question</u> 3. Let X, Y be RVs defined on the same probability space. Fix $a, b, c, d \in \mathbb{R}$ and set U = a + bX, V = c + dY. Express $\rho(U, V)$ in terms of $\rho(X, Y)$.

Answer: We have,

$$Cov(U, V) = Cov(a + bX, c + dY) = \mathbb{E}[(a + bX)(c + dY)] - \mathbb{E}(a + bX)\mathbb{E}(c + dY) = bdCov(X, Y)$$

and

$$Var(U) = \mathbb{E}[(a+bX) - (a+b\mathbb{E}X)]^2 = b^2 Var(X), Var(V) = d^2 Var(Y).$$

If b=0 or d=0, $\rho(U,V)$ is not defined. If $bd\neq 0$, then

$$\rho(U,V) = \frac{Cov(U,V)}{\sqrt{Var(U)Var(V)}} = \frac{bd}{|bd|}\rho(X,Y).$$

<u>Question</u> 4. Compute the factorial moments for Negative Binomial and Hypergeometric distribution.

Answer: Suppose X follows Negative Binomial(r, p) distribution. Then for any non-negative integer k,

$$\begin{split} &\mathbb{E}X(X-1)\cdots(X-k+1) \\ &= \sum_{j=0}^{\infty} j(j-1)\cdots(j-k+1) \binom{j+r-1}{j} p^r (1-p)^j \\ &= \sum_{j=k}^{\infty} j(j-1)\cdots(j-k+1) \binom{j+r-1}{j} p^r (1-p)^j \\ &= p^r (1-p)^k r(r+1)\cdots(r+k-1) \sum_{j=k}^{\infty} \binom{j+r-1}{j-k} (1-p)^{j-k} \\ &= p^r (1-p)^k r(r+1)\cdots(r+k-1) \sum_{j=0}^{\infty} \binom{j+k+r-1}{j} (1-p)^j \\ &= r(r+1)\cdots(r+k-1) p^{-k} (1-p)^k. \end{split}$$

Suppose X follows the Hypergeometric distribution with parameters N, M and n. Then for any non-negative integer k,

$$\mathbb{E}X(X-1)\cdots(X-k+1) = \sum_{j=\max\{0,n-(N-M)\}}^{\min\{n,M\}} j(j-1)\cdots(j-k+1) \frac{\binom{M}{j}\binom{N-M}{n-j}}{\binom{N}{n}}$$

The above factorial moment is zero for all $k > \min\{n, M\}$. For $1 \le k \le \min\{n, M\}$,

$$\begin{split} &\mathbb{E}X(X-1)\cdots(X-k+1)\\ &=\frac{M(M-1)\cdots(M-k+1)}{\binom{N}{n}}\sum_{j=\max\{k,n-(N-M)\}}^{\min\{n,M\}}\binom{M-k}{j-k}\binom{N-M}{n-j}\\ &=\frac{M(M-1)\cdots(M-k+1)}{\binom{N}{n}}\binom{N-k}{n-k} \end{split}$$

<u>Question</u> 5. Suppose a pair of fair die are rolled seven times independently. Find the probability that the sum of the dots obtained is 12 once and 8 twice.

Answer: Let X_1 and X_2 denote the number of times 12 and 8 appear in the seven rolls, respectively.

Since the die are fair, the probability that 12 appears in a roll is $\frac{1}{36}$ (the only favourable event being (6,6)) and the corresponding probability for 8 is $\frac{5}{36}$ (favourable events being (2,6), (3,5), (4,4), (5,3), (6,2)). Hence, (X_1, X_2) follows the Multinomial distribution with parameters 7 and $\frac{1}{36}$, $\frac{5}{36}$, $\frac{36-1-5}{36}$. Therefore, the required probability is

$$\mathbb{P}(X_1 = 1, X_2 = 2) = \frac{7!}{1!2!4!} \left(\frac{1}{36}\right)^1 \left(\frac{5}{36}\right)^2 \left(\frac{5}{6}\right)^4 = \frac{5 \times 6 \times 7}{2} \frac{5^6}{6^8} = \frac{7}{2} \frac{5^7}{6^7}.$$

<u>Question</u> 6. If X_1, X_2, \dots, X_n are i.i.d. Geometric(p) RVs, for some p > 0, then find the distribution of $X_1 + X_2 + \dots + X_n$.

Answer: First consider the case n = 2. Recall that Geometric(p) distribution is the same as the negative Binomial(1, p) distribution.

Consider any two independent RVs X and Y with distributions negative Binomial(m, p) and negative Binomial(n, p) respectively. Since the support of X and Y are exactly the set of non-negative integers, X + Y is also discrete with the support contained in the set of non-negative integers. Now for any non-negative integer k, using the independence of X and Y, we have

$$\mathbb{P}(X+Y=k) = \sum_{j=0}^{k} \mathbb{P}(X=j, Y=k-j)$$

$$= \sum_{j=0}^{k} \mathbb{P}(X=j) \mathbb{P}(Y=k-j)$$

$$= \sum_{j=0}^{k} \binom{j+m-1}{j} \binom{k-j+n-1}{k-j} p^{m+n} (1-p)^{k}$$

$$= \binom{k+m+n-1}{k} p^{m+n} (1-p)^{k},$$

i.e. X + Y follows the negative Binomial(m + n, p) distribution. In the setting of the hypothesis, $X_1 + X_2$ follows negative Binomial(2, p) distribution.

Consider the case n = 3. Here, $X_1 + X_2$ and X_3 are independent. Hence, using the above case $X_1 + X_2 + X_3$ follows the negative Binomial(3, p) distribution.

By the principle of Mathematical Induction, $X_1 + X_2 + \cdots + X_n$ follows the negative Binomial(n, p) distribution.

<u>Question</u> 7. Let X be a continuous RV with p.d.f. f_X . If X is symmetric about $\mu \in \mathbb{R}$ and if $\mathbb{E}X$ exists, show that

$$\mathbb{E}X = \mu = m = \frac{\mathfrak{z}_{0.25} + \mathfrak{z}_{0.75}}{2},$$

where $m, \mathfrak{z}_{0.25}, \mathfrak{z}_{0.75}$ denotes the median, the lower and upper quartiles respectively. Assume that these are unique.

Answer: Let f_X and F_X denote the p.d.f. and the DF of X, respectively. Since, $X - \mu \stackrel{d}{=} \mu - X$, we have $\mathbb{E}(X - \mu) = \mathbb{E}(\mu - X)$, which implies $\mathbb{E}X = \mu$.

Now, $F_{X-\mu}(x) = F_{\mu-X}(x), \forall x \in \mathbb{R}$. But, $F_{X-\mu}(x) = \mathbb{P}(X - \mu \leq x) = \mathbb{P}(X \leq \mu + x)$ and $F_{\mu-X}(x) = \mathbb{P}(\mu - X \leq x) = \mathbb{P}(X \geq \mu - x)$. In particular, putting x = 0, we have $\mathbb{P}(X \leq \mu) = \mathbb{P}(X \geq \mu) = 1 - \mathbb{P}(X \leq \mu) = 1 - \mathbb{P}(X \leq \mu)$, since, $\mathbb{P}(X = \mu) = 0$ by continuity of F_X and therefore, $F_X(\mu) = \frac{1}{2}$. Hence, $m = \mu$.

Now, $\mathbb{P}(X \leq \mathfrak{z}_{0.75}) = 0.75$ gives $\mathbb{P}(X - \mu \leq \mathfrak{z}_{0.75} - \mu) = 0.75$ or $\mathbb{P}(\mu - X \leq \mathfrak{z}_{0.75} - \mu) = 0.75$, since $X - \mu \stackrel{d}{=} \mu - X$. Therefore, $\mathbb{P}(X \geq 2\mu - \mathfrak{z}_{0.75}) = 0.75$. Using the continuity of F_X , $\mathbb{P}(X \leq 2\mu - \mathfrak{z}_{0.75}) = 1 - 0.75 = 0.25$. Therefore, $\mathfrak{z}_{0.25} = 2\mu - \mathfrak{z}_{0.75}$, which completes the proof.

<u>Question</u> 8. Let X be an RV with $\mathbb{E}|X| < \infty$. Consider the function $g : \mathbb{R} \to \mathbb{R}$ defined by $g(x) := \mathbb{E}|X - x|, x \in \mathbb{R}$. Show that $g(m) \leq g(x), \forall x \in \mathbb{R}$, where m is the median of X. (Note: This shows that the mean deviation is minimized at the median).

Answer: Let X be a continuous RV with p.d.f. f_X . Note that $\int_{-\infty}^m f_X(t) dt = \int_m^\infty f_X(t) dt = \frac{1}{2}$. If x < m, then

$$\begin{split} g(x) - g(m) \\ &= \int_{-\infty}^{\infty} |t - x| f_X(t) \, dt - \int_{-\infty}^{\infty} |t - m| f_X(t) \, dt \\ &= \int_{-\infty}^{x} (x - t) f_X(t) \, dt + \int_{x}^{m} (t - x) f_X(t) \, dt + \int_{m}^{\infty} (t - x) f_X(t) \, dt - \int_{-\infty}^{m} (m - t) f_X(t) \, dt - \int_{m}^{\infty} (t - m) f_X(t) \, dt \\ &= \int_{-\infty}^{x} (x - m) f_X(t) \, dt + \int_{x}^{m} (2t - x - m) f_X(t) \, dt + \int_{m}^{\infty} (m - x) f_X(t) \, dt \\ &\geq (m - x) [\mathbb{P}(X \ge m) - \mathbb{P}(X \le x)] + (2x - x - m) \mathbb{P}(x \le X \le m) \\ &= (m - x) [\mathbb{P}(X \ge m) - \mathbb{P}(X \le m)] \\ &= 0. \end{split}$$

A similar argument shows $g(x) \ge g(m)$ if x > m. This proves the case when X is continuous with a p.d.f. f_X .

The proof for the discrete case goes in an analogus manner.

<u>Question</u> 9. Let X and Y be i.i.d. N(0,1) RVs. Identify the distribution of $\frac{X}{Y}$ and $\frac{X}{|Y|}$.

Answer: Since, $Y^2 \sim \chi_1^2$, using the independence of X and Y^2 , we have

$$\frac{X}{|Y|} = \frac{X}{\sqrt{\frac{Y^2}{1}}} \sim t_1.$$

Note that $\mathbb{P}(Y=0)=0$. For $z\in\mathbb{R}$,

$$\mathbb{P}\left(\frac{X}{Y} \leq z\right) = \mathbb{P}\left(\frac{X}{Y} \leq z, Y > 0\right) + \mathbb{P}\left(\frac{X}{Y} \leq z, Y < 0\right) = \mathbb{P}\left(\frac{X}{|Y|} \leq z, Y > 0\right) + \mathbb{P}\left(-\frac{X}{|Y|} \leq z, Y < 0\right)$$

Using the symmetry $(X,Y) \stackrel{d}{=} (-X,Y)$,

$$\mathbb{P}\left(-\frac{X}{|Y|} \le z, Y < 0\right) = \mathbb{P}\left(\frac{X}{|Y|} \le z, Y < 0\right)$$

and hence

$$F_{\frac{X}{Y}}(z) = \mathbb{P}\left(\frac{X}{Y} \leq z\right) = \mathbb{P}\left(\frac{X}{|Y|} \leq z, Y > 0\right) + \mathbb{P}\left(\frac{X}{|Y|} \leq z, Y < 0\right) = \mathbb{P}\left(\frac{X}{|Y|} \leq z\right).$$

So, $\frac{X}{Y} \sim t_1$.

<u>Question</u> 10. Let $X \sim F_{m,n}$. Identify the distribution of $\frac{n}{n+mX}$.

Answer: Let $Y_1 \sim \chi_m^2$ and $Y_2 \sim \chi_n^2$ be independent RVs. Then $X \stackrel{d}{=} \frac{n}{m} \frac{Y_1}{Y_2} \sim F_{m,n}$. Therefore,

$$\frac{n}{n+mX} \stackrel{d}{=} \frac{Y_2}{Y_1 + Y_2}.$$

Since $Y_1 \sim Gamma(\frac{m}{2}, 2)$ and $Y_2 \sim Gamma(\frac{n}{2}, 2)$ are independent, using Question 5 of Problem set 10 we have

$$\frac{n}{n+mX} \stackrel{d}{=} \frac{Y_2}{Y_1+Y_2} \sim Beta\left(\frac{n}{2},\frac{m}{2}\right).$$

<u>Question</u> 11. Let X and Y be i.i.d. Exponential(λ) RVs, for some $\lambda > 0$. Identify the distribution of $\frac{X}{Y}$.

Answer: Since $X \sim Exponential(\lambda) = Gamma(1, \lambda)$, we have $\frac{2X}{\lambda} \sim Gamma(1, 2) = \chi_2^2$. Similarly, $\frac{2Y}{\lambda} \sim \chi_2^2$. Then,

$$\frac{X}{Y} = \left(\frac{\frac{2X}{\lambda}}{2}\right) \left(\frac{\frac{2Y}{\lambda}}{2}\right)^{-1} \sim F_{2,2}.$$

Question 12. Verify that for a discrete RV X with the DF

$$F_X(x) := \begin{cases} 0, & \text{if } x < 0, \\ \frac{1}{2}, & \text{if } 0 \le x < 1, \\ 1, & \text{if } x \ge 1, \end{cases}$$

the median is not unique. Given $p \in (0,1)$, construct an example of discrete RV X (by specifying the DF F_X or the p.m.f. f_X) such that the quantile of order p is not unique.

Answer: For any $x \in (0,1)$, we have $F_X(x) = \frac{1}{2}$ and $\mathbb{P}(X=x) = 0$. Hence the inequality $\frac{1}{2} \leq F_X(x) \leq \frac{1}{2} + \mathbb{P}(X=x)$ is satisfied. Therefore, any $x \in (0,1)$ is a median for X.

Moreover, $\frac{1}{2} = F_X(0) \le \frac{1}{2} + \mathbb{P}(X = 0)$ and hence 0 is also a median for X. Therefore, the median is not unique in this case.

Given $p \in (0,1)$, consider the RV Y given by the DF F_Y (or equivalently, the p.m.f. f_Y)

$$F_Y(x) := \begin{cases} 0, & \text{if } x < 0, \\ p, & \text{if } 0 \le x < 1, \\ 1, & \text{if } x \ge 1. \end{cases}, \quad f_Y(x) = \begin{cases} p, & \text{if } x = 0, \\ 1 - p, & \text{if } x = 1, \\ 0, & \text{otherwise.} \end{cases}$$

Similar to above argument for X, the quantile of order p for Y is not unique.

Question 13. Verify that for a continuous RV X with the DF

$$F_X(x) := \begin{cases} 0, & \text{if } x < 0, \\ \frac{x}{2}, & \text{if } 0 \le x < 1, \\ \frac{1}{2}, & \text{if } 1 \le x < 2, \\ \frac{x-1}{2}, & \text{if } 2 \le x < 3, \\ 1, & \text{if } x \ge 3, \end{cases}$$

the median is not unique. Given $p \in (0, 1)$, construct an example of continuous RV X (by specifying the DF F_X or the p.d.f. f_X) such that the quantile of order p is not unique.

Answer: For a continuous RV X, a median x is a solution to the equation $F_X(x) = \frac{1}{2}$. In this case, this equation is solved by all $x \in [1, 2]$. Hence, the median is not unique in this case.

Given $p \in (0,1)$, consider the RV Y given by the DF F_Y (or equivalently, the p.d.f. f_Y)

$$F_Y(x) = \begin{cases} 0, & \text{if } x < 0, \\ xp, & \text{if } 0 \le x < 1, \\ p, & \text{if } 1 \le x < 2, \\ p(3-x)+x-2, & \text{if } 2 \le x < 3, \end{cases}, \quad f_Y(x) = \begin{cases} p, \forall x \in [0,1) \\ 1-p, \forall x \in [2,3) \\ 0, & \text{otherwise.} \end{cases}$$

Similar to above argument for X, the quantile of order p for Y is not unique.

Question 14. Consider the set

$$A := \left\{ t = (t_1, t_2, \dots, t_p) \in \mathbb{R}^p : \mathbb{E}\left(e^{\sum_{i=1}^p t_i X_i}\right) < \infty \right\}$$

for a given random vector $X=(X_1,X_2,\cdots,X_p)$ and look at $\Psi_X(t):=\ln M_X(t), t\in A$. Verify that

$$\left[\frac{\partial^2}{\partial t_i \partial t_j} \Psi_X(t)\right]_{(t_1,t_2...t_p)=(0,...,0)} = Cov(X_i,X_j).$$

Answer: For $i \neq j$ with $i, j \in \{1, \dots, p\}$, we have

$$\begin{split} &Cov\left(X_{i},X_{j}\right)\\ &=\mathbb{E}\left(X_{i}X_{j}\right)-\mathbb{E}\left(X_{i}\right)\mathbb{E}\left(X_{j}\right)\\ &=\left[\frac{\partial^{2}}{\partial t_{i}\partial t_{j}}M_{X}(t)\right]_{(t_{1},t_{2}...t_{p})=(0,...,0)}-\left[\frac{\partial}{\partial t_{i}}M_{X}(t)\right]_{(t_{1},t_{2}...t_{p})=(0,...,0)}\left[\frac{\partial}{\partial t_{j}}M_{X}(t)\right]_{(t_{1},t_{2}...t_{p})=(0,...,0)}\\ &=\left[\frac{\partial^{2}}{\partial t_{i}\partial t_{j}}\Psi_{X}(t)\right]_{(t_{1},t_{2}...t_{p})=(0,...,0)}, \end{split}$$

where the last equality follows from the one-dimensional case.

When i = j, we have $Cov(X_i, X_j) = Var(X_i) = \mathbb{E}(X_i^2) - (\mathbb{E}X_i)^2 = \left[\frac{\partial^2}{\partial t_i^2} \Psi_X(t)\right]_{(t_1, t_2 \dots t_p) = (0, \dots, 0)}$, also similar to the one-dimensional case.