1 Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Program-

The strong universal consistency of the kernel estimate & the k-NN estimate

— Seminar: Statistical Learning —

Valentin Pfisterer, Tobias Winkler

University of Tübingen

May 19, 2023

Where are we?

1 Quick reminder

2 Kernel Estimate:

3 k-NN Estimates

4 Comparison

	Partitioning	Kernel	k-NN
weak			
universal	✓	\checkmark	✓
consistency			
strong			
(universal)	✓	?	?
consistency			

Table of Contents

- 1 Quick reminder
- 2 Kernel Estimate
- 3 k-NN Estimates
- 4 Comparison
- 5 Program-

- 1 Quick reminder
- 2 Kernel Estimates
- 3 k-NN Estimates
- 4 Comparison
- 5 Programming part

1 Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Programming part

Quick reminder

Kernel & k-NN estimate

1 Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Program ming part

Definition (kernel estimate)

$$m_n(x) = \frac{\sum_{i=1}^n K(\frac{x - X_i}{h}) Y_i}{\sum_{i=1}^n K(\frac{x - X_i}{h})}$$

Definition (k-NN estimate)

$$m_n(x) = \frac{1}{k} \sum_{i=1}^k Y_{(i)}(x)$$

Strong (universal) consistency

- 1 Quick reminder
- 2 Kernel Estimates
- 3 k-NN Estimates
- 4 Comparisor
- 5 Programming part

Definition (Strong (universal) consistency)

Strong consistency

$$\lim_{n\to\infty}\int |m_n(x)-m(x)|^2\mu(\mathrm{d}x)=0\quad\text{with probability one.}$$

Strong universal consistency

$$\lim_{n\to\infty}\int |m_n(x)-m(x)|^2\mu(\mathrm{d}x)=0$$

for all distributions of (X, Y) with $\mathbb{E}(Y^2) < \infty$.

1 Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Programming part

Kernel Estimates

Regular kernels

l Quick

- 2 Kernel Estimates
- 3 k-NN Estimates
- 4 Comparison
- 5 Program-

Definition (regular kernels)

Kernel K regular: \iff

K is non-negative and \exists $B_r(0)$ with r>0 and b>0, such that

$$1 \geqslant K(x) \geqslant b \mathbb{1}_{\{x \in B_r(0)\}}$$

and

$$\int \sup_{u\in x+B_r(0)} K(u) \,\mathrm{d} x < \infty.$$

Strong consistency of the kernel estimate

1 Quick reminde

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Program-

Theorem 2.1 (strong consistency)

Let m_n be the kernel estimator of the regression function m with a regular kernel K. Assume $\exists L < \infty \colon P(|Y| \leqslant L) = 1$. If

$$h_n \to 0$$
 and $nh_n^d \to \infty$,

then the kernel estimate is **strongly consistent**.

Proof components (overview)

1 Quick reminde

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

l Quick eminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Programming part

Lemma 2.1 (Covering Lemma)

Kernel K is regular. \Longrightarrow

 $\exists \varrho \equiv \varrho(K) < \infty$, such that $\forall u \in \mathbb{R}^d$, h > 0 and probability measure μ

$$\int \frac{K_h(x-u)}{\int K_h(x-z)\mu(dz)}\mu(\mathrm{d}x) \leqslant \varrho.$$

Moreover, $\forall \delta > 0$

$$\lim_{n\to\infty}\sup_{u\in\mathbb{R}^d}\int\frac{K_h(x-u)\mathbb{1}_{\{\|x-u\|>\delta\}}}{\int K_h(x-z)\mu(dz)}\mu(\mathrm{d}x)=0.$$

1 Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

Figure: An example of a bounded overlap of \mathbb{R}^2 .

1 Quick reminde

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Programming part

Lemma 2.2

Let $1 \leqslant R < \infty$, $0 < h \leqslant R$, $B_R(0) \subseteq \mathbb{R}^d$ ball of Radius R.

For every probability measure μ ,

$$\int_{B_R(0)} \frac{1}{\sqrt{\mu(B_h(x))}} \mu(\mathrm{d}x) \leqslant \left(1 + \frac{R}{h}\right)^{d/2} c_d,$$

where c_d depends upon the dimension d only.

1 Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

1 Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Programming part

Definition (modificated estimate)

Define

$$m_n^*(x) := \frac{\sum_{i=1}^n Y_i K_{h_n}(x - X_i)}{n \mathbb{E}(K_{h_n}(x - X))}.$$

Lemma 2.3

Under the conditions of Theorem 1,

$$\lim_{n\to\infty}\int \mathbb{E}(|m(x)-m_n^*(x)|)\,\mu(\mathrm{d}x)=0.$$

1 Quick

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Programming part

Definition (modificated kernel-function)

Define

$$K_n(x,z) := \frac{K(\frac{x-z}{h_n})}{\int K(\frac{x-u}{h_n})\mu(\mathrm{d}u)}.$$

Theorem of Banach-Steinhaus

- (i) $\exists c > 0 \ \forall n$: $\int |K_n(x,z)| \mu(\mathrm{d}x) \leqslant c$ for μ -almost all z
- (ii) $\exists D \geqslant 1 \ \forall n, x : \ \int |K_n(x, z)| \mu(\mathrm{d}z) \leqslant D.$
- (iii) $\forall a > 0$, $\lim_{n \to \infty} \int \int |K_n(x,z)| \mathbb{1}_{\{\|x-z\|>a\}} \mu(\mathrm{d}z) \mu(\mathrm{d}x) = 0$.
- (iv) $\lim_{n\to\infty} \operatorname{ess\,sup} |\int K_n(x,z)\mu(\mathrm{d}z) 1| = 0.$
- $\Longrightarrow \forall m \in L_1(\mu)$:

$$\lim_{n\to\infty}\int |m(x)-\int K_n(x,z)m(z)\mu(\mathrm{d}z)|\mu(\mathrm{d}x)=0.$$

1 Quick

2 Kernel Estimates

3 k-NN Estimates

4 Comparisor

5 Programming part

Lemma 2.4

For n large enough:

$$\mathbb{P}\bigg(\int |m(x)-m_n^*(x)|\mu(\mathrm{d}x)>\varepsilon\bigg)\leqslant e^{-n\varepsilon^2/(8L\varrho)^2}.$$

Theorem (McDiarmid's Inequality)

Let $Z_1,...,Z_n \in A$ be indep. RV and assume for $f:A^n \to \mathbb{R}$:

$$\sup_{z_1,...,z_n,\hat{z}_i\in A} |f(z_1,...,z_n) - f(z_1,...,z_{i-1},\hat{z}_i,z_{i-1},...,z_n)| \leqslant c_i.$$

Then, $\forall \varepsilon > 0$,

$$\mathbb{P}(f(Z_1,...,Z_n) - \mathbb{E}(f(Z_1,...,Z_n)) \geqslant \varepsilon) \leqslant e^{-2\varepsilon^2/\sum_{i=1}^n c_i^2}.$$

Proof components 5 ✓

1 Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

$$\int |m_{n}(x) - m(x)|\mu(\mathrm{d}x)$$

$$\leqslant \underbrace{\int |m_{n}(x) - \mathbf{m}_{n}^{*}(\mathbf{x})|\mu(\mathrm{d}x)}_{\downarrow\downarrow} + \underbrace{\int |\mathbf{m}_{n}^{*}(\mathbf{x}) - m(x)|\mu(\mathrm{d}x)}_{Lemma \ 4 \ \checkmark}$$

$$= \left| \frac{\sum_{i} Y_{i}K_{h_{n}}(x-X_{i})}{n\mathbb{E}(K_{h_{n}}(x-X_{i}))} - \frac{\sum_{i} Y_{i}K_{h_{n}}(x-X_{i})}{\sum_{i} K_{h_{n}}(x-X_{i})} \right| \quad \text{(by definition)}$$

$$= \left| \sum_{i} Y_{i}K_{h_{n}}(x-X_{i}) - \frac{1}{n\mathbb{E}(K_{h_{n}}(x-X_{i}))} - \frac{1}{\sum_{i} K_{h_{n}}(x-X_{i})} \right|$$

$$\leqslant L \left| \sum_{i} K_{h_{n}}(x-X_{i}) \right| \left| \frac{1}{n\mathbb{E}(K_{h_{n}}(x-X_{i}))} - \frac{1}{\sum_{i} K_{h_{n}}(x-X_{i})} \right| \quad \text{(by } |Y| \leqslant L)$$

$$= L \left| \frac{\sum_{i} Y_{i}K_{h_{n}}(x-X_{i})}{n\mathbb{E}(K_{h_{n}}(x-X_{i}))} - 1 \right| = L|M_{n}^{*}(x) - 1|,$$
where M_{n}^{*} is a special form of $m_{n}^{*}(x)$ for $(X, 1)$.
(in this case: $M(x) = \mathbb{E}(1|X=x) = 1 \ \forall x \in \mathbb{R}^{d}$ with $Y \equiv 1$) \square

Strong universal consistency of the kernel estimate

1 Quick

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Programming part

Theorem 2.2 (strong universal consistency)

Let
$$K(x)=\mathbb{1}_{\{\|x\|\leqslant 1\}}$$
 and let h_n satisfy

$$h_{n-1} \neq h_n$$
 at most for the indices $n = n_1, n_2, ...,$

where $n_{k+1} \geqslant Dn_k$ for fixed D > 1. Additionally let

$$h_n \to 0$$
 and $nh_n^d \to \infty$,

e.g., $h_n = ce^{-\gamma \lfloor q \log n \rfloor / q}$ with c > 0, $0 < d\gamma < 1$ and q > 0. Then m_n is **strongly universally consistent**.

Sequence of bandwidths

1 Quick

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Program-

Let
$$q=1$$
, $c=d=1000$ and $\gamma=1/5000$.
$$\Rightarrow h_n=1000\cdot e^{-\frac{1}{5000}\lfloor\log n\rfloor}.$$

1 Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Program-

Theorem A

- (i) m_n local averaging estimate with subprobability weights
- (ii) m_n strongly universal consistent with bounded Y
- (iii) $\exists c < \infty : \forall Y \text{ with } \mathbb{E}(Y^2) < \infty :$

$$\limsup_{n\to\infty}\sum_{i=1}^n Y_i^2\int \alpha_{n,i}(x)\mu(\mathrm{d} x)\leqslant c\mathbb{E}\left(Y^2\right) \ \mathbb{P}\text{-a.s.}$$

Then m_n is strongly universally consistent.

1 Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Programming part

k-NN Estimates

Strong consistency of the k-NN estimate

1 Quick reminde

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Programming part

Theorem 3.1 (strong consistency)

- (1) $\exists L < \infty$ s.t. $|Y| \leqslant L$ \mathbb{P} -a.s.
- (2) $\forall x \in \mathbb{R}^d$: ||X x|| absolutely continuous. If

$$k_n \to \infty$$
 and $k_n/n \to 0$,

 $\implies k_n$ -NN regression function estimate is strongly consistent.

Proof components (overview)

- 1 Quick reminder
- 2 Kernel Estimates
- 3 k-NN Estimates
- 4 Comparison
- 5 Programming part

Reminder

1 Quick

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Programming part

Remembering the cone property

$$||u|| < ||u'|| \implies ||u - u'|| < ||u'||$$

Some useful sets

- 1 Quick reminder
- 2 Kernel Estimates
- 3 k-NN Estimates
- 4 Comparison
- 5 Programming part

Definition (A_i)

Let A_i be the collection of all $x \in \mathbb{R}^d$, s.t. X_i is one of its k_n nearest neighbors of x in $\{X_1, \ldots, X_n\}$.

Some useful sets

l Quick reminder

2 Kernel Estimate

3 k-NN Estimates

4 Comparison

5 Programming part

Definition $(C_{i,j})$

Let C_j be a cone of radius $\pi/3$, s.t. $C_1, \ldots, C_{\gamma_d}$ covers \mathbb{R}^d . We define $C_{i,j} := X_i + C_j \quad \forall i \in \{1, \ldots, n\} \ \forall j \in \{1, \ldots, \gamma_d\}$.

Definition $(B_{i,j})$

Let $B_{i,j}$ be the subset of $C_{i,j}$ consisting of all $x \in C_{i,j}$ that are among the k_n nearest neighbors of X_i in the set

$$\{X_1,\ldots,X_{i-1},X_{i+1},\ldots,X_n,x\}\cap C_{i,j}.$$

Equivalently $B_{i,j}$ is the subset of $C_{i,j}$ consisting of all x that are closer to X_i than the k_n -th nearest neighbor of X_i in $\{X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n\} \cap C_{i,j}$.

Some useful sets

Example of $B_{i,j}$ and $C_{i,j}$ with $k_n = 2, i = 1$.

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

Strong universal consistency of the k-NN estimate

l Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Programming part

Lemma 3.2 (k-NN covering)

If $x \in A_i$, then $x \in \bigcup_{j=1}^{\gamma_d} B_{i,j}$, and thus

$$\mu(A_i) \leqslant \sum_{j=1}^{\gamma_d} \mu(B_{i,j}).$$

Proof idea: Cone property!

Take $X_l \in C_{i,j}$ that is k_n -NN of X_i Then $\|X_l - X_i\| < \|x - X_i\| \implies \|X_l - x\| < \|X_i - x\|$ $x \in A_i \implies X_l \ k_n$ -NN of $x \implies$ there can exist at most $k_n - 1$ points $X_l \in C_{i,j}$ closer to X_i than $x \implies x \in B_{i,j}$

Strong universal consistency of the k-NN estimate

1 Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Programming part

Lemma 3.3 (k-NN upper bound for $B_{i,j}$)

If $k_n/\log(n) \to \infty$ and $k_n/n \to 0$, $\forall x \in \mathbb{R}^d$: ||X - x|| absolutely continuous

$$\implies \limsup_{n \to \infty} \frac{n}{k_n} \max_{1 \leqslant i \leqslant n} \mu(B_{i,j}) \leqslant 2 \quad \mathbb{P}\text{-a.s.} \quad \forall j \in \{1, \dots, \gamma_d\}$$

Proof idea: Borel-Cantelli Lemma

Show that
$$\sum_{n=1}^{\infty} \mathbb{P}\left(\frac{n}{k_n} \max_{1 \leqslant i \leqslant n} \mu(B_{i,j}) > 2\right) < \infty$$

Strong universal consistency of the k-NN estimate

1 Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Programming part

Theorem 3.2 (strong universal consistency)

 $\forall x \in \mathbb{R}^d$: $\|X - x\|$ absolutely continuous.

$$k_n/\log n \to \infty$$
 and $k_n/n \to 0$

 $\implies k_n$ -NN regression function estimate is strongly universally consistent

l Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Programming part Only thing to show:

Theorem A

- (i) m_n local averaging estimate with subprobability weights
- (ii) m_n strongly universal consistent with bounded Y
- (iii) $\exists c < \infty : \forall Y \text{ with } \mathbb{E}(Y^2) < \infty :$

$$\limsup_{n\to\infty}\sum_{i=1}^n Y_i^2\int \alpha_{n,i}(x)\mu(\mathrm{d} x)\leqslant c\mathbb{E}\big(Y^2\big)\ \mathbb{P}\text{-a.s.}$$

Then m_n is strongly universally consistent.

In our case:

- 1 Quick reminder
- 2 Kernel Estimates
- 3 k-NN Estimates
- 4 Comparison
- 5 Programming part

$$\begin{split} &\sum_{i=1}^{n} Y_{i}^{2} \int \alpha_{n,i}(x) \mu(\mathrm{d}x) \\ &= \frac{1}{k_{n}} \sum_{i=1}^{n} Y_{i}^{2} \int \mathbb{1}_{\{X_{i} \text{ is among the } k_{n} \text{ NNs of } x\}} \mu(\mathrm{d}x) \\ &= \frac{1}{k_{n}} \sum_{i=1}^{n} Y_{i}^{2} \int \mathbb{1}_{\{x \in A_{i}\}} \mu(\mathrm{d}x) \\ &= \frac{1}{k_{n}} \sum_{i=1}^{n} Y_{i}^{2} \mu(A_{i}) \end{split}$$

3

- 1 Quick reminder
- 2 Kernel Estimates
- 3 k-NN Estimates
- 4 Comparison
- 5 Programming part

$$\frac{1}{k_n} \sum_{i=1}^n Y_i^2 \mu(A_i) \leqslant \left(\frac{n}{k_n} \max_{1 \leqslant i \leqslant n} \mu(A_i)\right) \frac{1}{n} \sum_{i=1}^n Y_i^2$$

Utilizing the k-NN covering Lemma

- 1 Quick reminder
- 2 Kernel Estimates
- 3 k-NN Estimates
- 4 Comparison
- 5 Programming part

$$\limsup_{n \to \infty} \frac{n}{k_n} \max_{1 \leqslant i \leqslant n} \mu(A_i)$$

$$\leqslant \limsup_{n \to \infty} \frac{n}{k_n} \max_{1 \leqslant i \leqslant n} \sum_{j=1}^{\gamma_d} \mu(B_{i,j})$$

$$\leqslant \limsup_{n \to \infty} \frac{n}{k_n} \sum_{j=1}^{\gamma_d} \max_{1 \leqslant i \leqslant n} \mu(B_{i,j})$$

$$= \sum_{j=1}^{\gamma_d} \limsup_{n \to \infty} \frac{n}{k_n} \max_{1 \leqslant i \leqslant n} \mu(B_{i,j})$$

1 Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Programming part

With our second Lemma:

$$\sum_{j=1}^{\gamma_d} \limsup_{n \to \infty} \frac{n}{k_n} \max_{1 \leqslant i \leqslant n} \mu(B_{i,j}) \leqslant \sum_{j=1}^{\gamma_d} 2 = 2\gamma_d$$

1 Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Programming part And finally by the strong law of large numbers

$$\limsup_{n\to\infty} \left(\frac{n}{k_n} \max_{1\leqslant i\leqslant n} \mu(A_i)\right) \frac{1}{n} \sum_{i=1}^n Y_i^2 \leqslant 2\gamma \mathbb{E}\left(Y^2\right) \mathbb{P}\text{-a.s.}$$

and we are done.

 Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Programming part

Comparison

Where are we?

1 Quick reminder

2 Kernel Estimate

3 k-NN Estimates

4 Comparison

	Partitioning	Kernel	k-NN
weak			
universal	✓	✓	✓
consistency			
strong			
(universal)	✓	✓	✓
consistency			

Comparison: Strong vs. weak (universal) consistency

1 Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

KERNEL ESTIMATE				
boxed	regular	naive		
$h_n o 0$				
$nh_n^d o\infty$				
_	$ Y \leqslant L \text{ in } \mathbb{P}$	$h_n \neq h_{n+1}$		
$\overline{}$	\	\		
weak universal	strong	strong universal		
consistency	consistency	consistency		

Comparison: Strong vs. weak (universal) consistency

1 Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

K-NN ESTIMATE					
k _n -	$k_n/\log(n) \to \infty$				
$k_n/n o 0$					
$\mathbb{P}(\mathit{ties}) = 0$					
_	$ Y \leqslant L$ a.s.	_			
_	X - x abs. continuous				
$\overline{\qquad}$	\	\			
weak universal	strong	strong universal			
consistency	consistency	consistency			

1 Quick reminder

2 Kernel Estimates

3 k-NN Estimates

4 Comparison

5 Programming part