Práctica 4 -SLAM con Filtro de Partículas (FASTSLAM)

Robótica Móvil - Un enfoque probabilístico

Prof. Dr. Ignacio Mas

30 de octubre de 2017

Fecha límite de entrega: 10/11/17, 10hs.

Modo de entrega: Enviar por correo electrónico a imas@fi.uba.ar el código (.m) comentado y los gráficos (.jpg ó .pdf) y/o animaciones.

1. Implementación de algoritmo FASTSLAM

En este ejercicio se implementará el algoritmo FASTSLAM basado en landmarks. Se asume que los landmarks son identificables por lo que el problema de asociación de datos está resuelto. El punto de partida es una estructura de código provista por la cátedra.

1.1. Notas preliminares

La estructura provista contiene los distintos componentes del algoritmo FASTLAM, para que el esfuerzo del desarrollo sea en los detalles de la implementación del algoritmo propiamente dicho. El archivo comprimido que se provee incluye las carpetas:

- data contiene la descripción del mundo y las lecturas del sensor
- matlab contiene la estructura del algoritmo FASTLAM con secciones para ser completadas
- plots guarda los gráficos generados como resultado

Para ejecutar el algoritmo, desde la carpeta *matlab* correr el archivo fastslam.m. Mientras que corre, los gráficos se van guardando en la carpeta *plots*. El algoritmo inicialmente está incompleto y no correrá correctamente. La estructura hace uso de la librería *librobotics*, escrita por Kai Arras (ASL-EPFL) para la visualización. Todas las funciones están definidas en la estructura de código.

Adicionalmente, se provee un archivo textit.pdf con detalles de la implementación del algoritmo FASTSLAM para usarse como guía.

Algunos consejos adicionales:

- Desactivar la visualización comentando la línea plot_state(...) en el script fastslam.m para acelerar la ejecución.
- Para probar el filtro sólo con algunos pasos, cambiar el tiempo final en el bucle for principal con, por ejemplo, for t = 1:50.

1.2. Paso de corrección FASTSLAM

Implementar el paso de corrección en el archivo correction_step.m. Asumir que el ruido de medición está caracterizado por la matriz diagonal cuadrada de 2×2 Q_t :

$$Q_t = \begin{pmatrix} 0.1 & 0 \\ 0 & 0.1 \end{pmatrix}$$

Nota: Con el comando *ffmpeg* (si está instalado en tu sistema operativo) se puede generar una animación de los gráficos de la carpeta *plots* de la siguiente manera:

ffmpeg -r 10 -i fastslam_%03d.png fastslam.mp4