

F-STABLE SUBMODULES OF TOP LOCAL COHOMOLOGY MODULES OF GORENSTEIN RINGS

MORDECHAI KATZMAN

ABSTRACT. This paper applies G. Lyubeznik's notion of F -finite modules to describe in a very down-to-earth manner certain annihilator submodules of some top local cohomology modules over Gorenstein rings. As a consequence we obtain an explicit description of the test ideal of Gorenstein rings in terms of ideals in a regular ring.

1. INTRODUCTION

Throughout this paper (R, \mathfrak{m}) will denote a regular local ring of characteristic p , and A will be a surjective image of R . We also denote the injective hull of R/\mathfrak{m} with E and for any R -module N we write $\text{Hom}_R(N, E)$ as N^\vee . We shall always denote with $f : R \rightarrow R$ the Frobenius map, for which $f(r) = r^p$ for all $r \in R$ and we shall denote the e th iterated Frobenius functor over R with $F_R^e(-)$. As R is regular, $F_R^e(-)$ is exact (cf. Theorem 2.1 in [K].)

For any commutative ring S of characteristic p , the skew polynomial ring $S[T; f]$ associated to S and the Frobenius map f is a non-commutative ring which as a left R -module is freely generated by $(T^i)_{i \geq 0}$, and so consists of all polynomials $\sum_{i=0}^n s_i T^i$, where $n \geq 0$ and $s_0, \dots, s_n \in S$; however, its multiplication is subject to the rule

$$Ts = f(s)T = s^p T \quad \text{for all } s \in S.$$

Any $A[T; f]$ -module M is a $R[T; f]$ -module in a natural way and, as R -modules, $F_R^e(M) \cong RT^e \otimes_R M$.

It has been known for a long time that the local cohomology module $H_{\mathfrak{m}A}^{\dim A}(A)$ has the structure of an $A[T; f]$ -module and this fact has been employed by many authors to study problems related to tight closure and to Frobenius closure. Recently R. Y. Sharp has described in [S] the parameter test ideal of F -injective rings in terms of certain $A[T; f]$ -submodules of $H_{\mathfrak{m}A}^{\dim A}(A)$ and it is mainly this work which inspired us to look further into the structure of these $A[T; f]$ -modules.

The main aim of this paper is to produce a description of the $A[T; f]$ -submodules of $H_{\mathfrak{m}A}^{\dim A}(A)$ in terms of ideals of R with certain properties. We first do this when A is a

complete intersection. The F -injective case is described by Theorem 3.5 and as a corollary we obtain a description of the parameter test ideal of A . Notice that for Gorenstein rings the test ideal the parameter test ideal coincide (cf. Proposition 8.23(d) in [HH1] and Proposition 4.4(ii) in [Sm1].) We then proceed to describe the parameter test ideal in the non- F -injective case (Theorem 5.3.) We generalise these results to Gorenstein rings in section 6.

2. PRELIMINARIES: F -FINITE MODULES

The main tool used in this paper is the notion of F -modules, and in particular F -finite modules. These were introduced in G. Lyubeznik's seminal work [L] and provide a very fruitful point of view of local cohomology modules in prime characteristic p .

One of the tools introduced in [L] is a functor $\mathcal{H}_{R,A}$ from the category of $A[T; f]$ -modules which are Artinian as A -modules to the category of F -finite modules. For any $A[T; f]$ -module M which is Artinian as an A -module the F -finite structure of $\mathcal{H}_{R,A}(M)$ is obtained as follows. Let $\gamma : RT \otimes_R M \rightarrow M$ be the R -linear map defined by $\gamma(rT \otimes m) = rTm$; apply the functor \vee to obtain $\gamma^\vee : M^\vee \rightarrow F_R(M)^\vee$. Using the isomorphism between $F_R(M)^\vee$ and $F_R(M^\vee)$ (Lemma 4.1 in [L]) we obtain a map $\beta : M^\vee \rightarrow F_R(M^\vee)$ which we adopt as a generating morphism of $\mathcal{H}_{R,A}(M)$.

We shall henceforth assume that the kernel of the surjection $R \rightarrow A$ is minimally generated by $\mathbf{u} = (u_1, \dots, u_n)$. We shall also assume until section 6 that A is a complete intersection. We shall write $u = u_1 \cdot \dots \cdot u_n$ and for all $t \geq 1$ we let $\mathbf{u}^t R$ be the ideal $u_1^t R + \dots + u_n^t R$.

To obtain the results in this paper we shall need to understand the F -finite module structure of

$$\mathcal{H}_{R,A} \left(H_{\mathfrak{m} A}^{\dim A}(A) \right) \cong H_{\mathbf{u} R}^{\dim R - \dim A}(R);$$

this has generating root

$$\frac{R}{\mathbf{u} R} \xrightarrow{u^{p-1}} \frac{R}{\mathbf{u}^p R}$$

(cf. Remark 2.4 in [L].)

Definition 2.1. Define $\mathcal{I}(R, \mathbf{u})$ to be the set of all ideals $I \subseteq R$ containing $(u_1, \dots, u_n)R$ with the property that

$$u^{p-1} (I + \mathbf{u} R) \subseteq I^{[p]} + \mathbf{u}^p R.$$

Lemma 2.2. Consider the F_R -finite F -module $M = H_{\mathbf{u} R}^n(R)$ with generating root

$$\frac{R}{\mathbf{u} R} \xrightarrow{u^{p-1}} \frac{R}{\mathbf{u}^p R}.$$

(a) For any $I \in \mathcal{I}(R, \mathbf{u})$ the F_R -finite module with generating root

$$\frac{I + \mathbf{u}R}{\mathbf{u}R} \xrightarrow{u^{p-1}} \frac{I^{[p]} + \mathbf{u}^p R}{\mathbf{u}^p R} \cong F_R \left(\frac{I + \mathbf{u}R}{\mathbf{u}R} \right)$$

is an F -submodule of M and every F_R -finite F -submodule of M arises in this way.

(b) For any $I \in \mathcal{I}(R, \mathbf{u})$ the F_R -finite module with generating morphism

$$\frac{R}{I + \mathbf{u}R} \xrightarrow{u^{p-1}} \frac{R}{I^{[p]} + \mathbf{u}^p R} \cong F_R \left(\frac{R}{I + \mathbf{u}R} \right)$$

is an F -module quotient of M and every F_R -finite F -module quotient of M arises in this way.

Proof. (a) For any $I \in \mathcal{I}(R, \mathbf{u})$, the map

$$\frac{I + \mathbf{u}R}{\mathbf{u}R} \xrightarrow{u^{p-1}} \frac{I^{[p]} + \mathbf{u}^p R}{\mathbf{u}^p R}$$

is well defined and is injective; now the first statement follows from Proposition 2.5(a) in [L]. If N is any F_R -finite F -submodule of M , the root of N is a submodule of the root of M , i.e., the root of N has the form $(I + \mathbf{u}R)/\mathbf{u}R$ for some ideal $I \subseteq R$ (cf. [L], Proposition 2.5(b)) and the structure morphism of N is induced by that of M , i.e., by multiplication by u^{p-1} , so we must have $u^{p-1}I \subseteq I^{[p]} + \mathbf{u}^p R$, i.e., $I \in \mathcal{I}(R, \mathbf{u})$.

(b) For any $I \in \mathcal{I}(R, \mathbf{u})$, the map

$$\frac{R}{I + \mathbf{u}R} \xrightarrow{u^{p-1}} \frac{R}{I^{[p]} + \mathbf{u}^p R} \cong F_R \left(\frac{R}{I + \mathbf{u}R} \right)$$

is well defined and we have the following commutative diagram with exact rows

$$(1) \quad \begin{array}{ccccccc} 0 & \longrightarrow & \frac{I + \mathbf{u}R}{\mathbf{u}R} & \longrightarrow & \frac{R}{\mathbf{u}R} & \longrightarrow & \frac{R}{I + \mathbf{u}R} \longrightarrow 0 \\ & & \downarrow u^{p-1} & & \downarrow u^{p-1} & & \downarrow u^{p-1} \\ 0 & \longrightarrow & F_R \left(\frac{I + \mathbf{u}R}{\mathbf{u}R} \right) & \longrightarrow & F_R \left(\frac{R}{\mathbf{u}R} \right) & \longrightarrow & F_R \left(\frac{R}{I + \mathbf{u}R} \right) \longrightarrow 0 \\ & & \downarrow u^{p(p-1)} & & \downarrow u^{p(p-1)} & & \downarrow u^{p(p-1)} \\ & & \vdots & & \vdots & & \vdots \end{array}$$

Taking direct limits of the vertical maps we obtain an exact sequence $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ which establishes the first statement of (b).

Conversely, if M'' is a F -module quotient of M , say, $M'' \cong M/M'$ for some F -submodule M' of M use (a) to find a generating root of M' of the form

$$\frac{I + \mathbf{u}R}{\mathbf{u}R} \xrightarrow{u^{p-1}} \frac{I^{[p]} + \mathbf{u}^p R}{\mathbf{u}^p R}$$

for some $I \in \mathcal{I}(R, \mathbf{u})$. Looking again at the direct limits of the vertical maps in (1) we establish the second statement of (b).

□

Definition 2.3. For all $I \in \mathcal{I}(R, \mathbf{u})$ we define $\mathcal{N}(I)$ to be the F -module quotient of $H_{\mathbf{u}R}^n(R)$ with generating morphism

$$\frac{R}{I + \mathbf{u}R} \xrightarrow{u^{p-1}} \frac{R}{I^{[p]} + \mathbf{u}^p R} \cong F_R \left(\frac{R}{I + \mathbf{u}R} \right).$$

Lemma 2.4. *Assume that R is complete. Let H be an Artinian $A[T; f]$ -module and write $M = \mathcal{H}_{R,A}(H)$. Let N be a homomorphic image of M with generating morphism N_0 . Then N_0^\vee is an $A[T; f]$ -submodule of H and $N \cong \mathcal{H}_{R,A}(N_0^\vee)$.*

Proof. Notice that M (and hence N) are F -finite modules (cf. [L], Theorems 2.8 and 4.2). Let N_0 be root of N and M_0 a root of M so that we have a commutative diagram with exact rows

$$\begin{array}{ccccccc} M_0 & \longrightarrow & N_0 & \longrightarrow & 0 \\ \downarrow \mu & & \downarrow \nu & & & & \\ F_R(M_0) & \longrightarrow & F_R(N_0) & \longrightarrow & 0 \end{array}$$

where the vertical arrows are generating morphisms. Apply the functor $\text{Hom}(-, E)$ to the commutative diagram above to obtain the following commutative diagram with exact rows

$$\begin{array}{ccccccc} 0 & \longrightarrow & F_R(N_0)^\vee & \longrightarrow & F_R(M_0)^\vee & & \\ & & \downarrow \nu^\vee & & \downarrow \mu^\vee & & \\ 0 & \longrightarrow & N_0^\vee & \longrightarrow & M_0^\vee & & \end{array}$$

and recall that M_0 is isomorphic to H^\vee (cf. [L], Theorem 4.2). Since R is complete, $(H^\vee)^\vee \cong H$ and we immediately see that N_0^\vee is a R -submodule of H . We now show that N_0^\vee is an $A[T; f]$ submodule of H by showing that $TN_0^\vee \subseteq N_0^\vee$.

The construction of the functor $\mathcal{H}_{R,A}(-)$ is such that for any $h \in H \cong M_0^\vee$, Th is the image of $T \otimes_R h$ under the map

$$F_R(M_0)^\vee \xrightarrow{\mu^\vee} M_0^\vee$$

and so for $h \in N_0^\vee$, Th is the image of $T \otimes_R h$ under the map

$$F_R(N_0)^\vee \xrightarrow{\nu^\vee} N_0^\vee$$

and hence $Th \in N_0^\vee$.

Now the fact that $N \cong \mathcal{H}_{R,A}(N_0^\vee)$ follows the construction of the functor $\mathcal{H}_{R,A}(-)$. □

Notation 2.5. Let M be a left $A[T, f]$ -module. We shall write $AT^\alpha M$ for the A -module generated by $T^\alpha M$. Note that $AT^\alpha M$ is a left $A[T, f]$ -module. We shall also write $M^\star = \bigcap_{\alpha \geq 0} AT^\alpha M$.

Lemma 2.6. Assume that R is complete. Let H be an $A[T, f]$ -module and assume that H is T -torsion-free. Let $I, J \subseteq A$ be ideals. If, for some $\alpha \geq 0$,

$$AT^\alpha \operatorname{ann}_H IA[T, f] = AT^\alpha \operatorname{ann}_H JA[T, f]$$

then $\operatorname{ann}_H IA[T, f] = \operatorname{ann}_H JA[T, f]$.

Proof. Both $AT^\alpha \operatorname{ann}_H IA[T, f]$ and $AT^\alpha \operatorname{ann}_H JA[T, f]$ are left $A[T, f]$ -submodules. Now for every T -torsion-free $A[T, f]$ -module M , and every ideal $K \subseteq A$, if

$$\left(\bigoplus_{i \geq 0} KT^i \right) AT^\alpha M = \left(\bigoplus_{i \geq 0} KT^{i+\alpha} \right) M$$

vanishes then so does

$$\left(\bigoplus_{i \geq 0} K^{[p^\alpha]} T^{i+\alpha} \right) M = \left(\bigoplus_{i \geq 0} T^\alpha KT^i \right) M = T^\alpha \left(\bigoplus_{i \geq 0} KT^i \right) M$$

and since M is T -torsion-free,

$$\left(\bigoplus_{i \geq 0} KT^i \right) M = 0.$$

We deduce that $\operatorname{gr-ann} AT^\alpha M = \operatorname{gr-ann} M$. Now

$$\operatorname{gr-ann} AT^\alpha (\operatorname{ann}_H IA[T, f]) = \operatorname{gr-ann} \operatorname{ann}_H IA[T, f],$$

$$\operatorname{gr-ann} AT^\alpha (\operatorname{ann}_H JA[T, f]) = \operatorname{gr-ann} \operatorname{ann}_H JA[T, f]$$

and Lemma 1.7 in [S] shows that $\operatorname{ann}_H IA[T, f] = \operatorname{ann}_H JA[T, f]$. \square

3. THE $A[T, f]$ MODULE STRUCTURE OF TOP LOCAL COHOMOLOGY MODULES OF

F-INJECTIVE GORENSTEIN RINGS

Definition 3.1. As in [Sm1] we say that an ideal $I \subseteq A$ is an F -ideal if $\operatorname{ann}_{H_{\mathfrak{m}A}^{\dim(A)}(A)} I$ is a left $A[T, f]$ -module, i.e., if $\operatorname{ann}_{H_{\mathfrak{m}A}^{\dim(A)}(A)} I = \operatorname{ann}_{H_{\mathfrak{m}A}^{\dim(A)}(A)} IA[T, f]$.

Theorem 3.2. Assume that R is complete. Consider the F_R -finite F -module $M = H_{\mathbf{u}R}^n(R)$ with generating root

$$\frac{R}{\mathbf{u}R} \xrightarrow{u^{p-1}} \frac{R}{\mathbf{u}^p R}$$

and consider the Artinian $A[T, f]$ module $H = H_{\mathfrak{m}A}^{\dim(A)}(A)$. Let N be a homomorphic image of M .

(a) $M = \mathcal{H}_{R,A}(-)(H)$ and has generating root $H^\vee \cong R/\mathbf{u}R \xrightarrow{u^{p-1}} R/\mathbf{u}^p R \cong F_R(H^\vee)$.
 (b) If N has generating morphism

$$\frac{R}{I + \mathbf{u}R} \xrightarrow{u^{p-1}} \frac{R}{I^{[p]} + \mathbf{u}^p R}$$

then IA is an F -ideal, $N \cong \mathcal{H}_{R,A}(\text{ann}_H IA[T; f])$. If, in addition, H is T -torsion free then $\text{gr-ann ann}_H IA[T; f] = IA[T; f]$ and I is radical.

(c) Assume that H is T -torsion free (i.e., $H_r = H$ in the terminology of [L]). For any ideal $J \subset R$, the F -finite module $\mathcal{H}_{R,A}(\text{ann}_H JA[T; f])$ has generating morphism

$$\frac{R}{I + \mathbf{u}R} \xrightarrow{u^{p-1}} \frac{R}{I^{[p]} + \mathbf{u}^p R}$$

for some ideal $I \in \mathcal{I}(R, \mathbf{u})$ with $\text{ann}_H IA[T; f] = \text{ann}_H JA[T; f]$.

Proof. The first statement is a restatement of the discussion at the beginning of section 2.

Notice that Lemma 2.2 implies that N must have a generating morphism of the form given in (b) for some $I \in \mathcal{I}(R, \mathbf{u})$.

Since A is Gorenstein, H is an injective hull of $A/\mathfrak{m}A$ which we denote \overline{E} . Lemma 2.4 implies that $N \cong \mathcal{H}_{R,A}(L)$ where $L = \left(\frac{R}{I + \mathbf{u}R}\right)^\vee$ is a $A[T; f]$ -submodule of $H = \overline{E}$. But

$$\begin{aligned} \left(\frac{R}{I + \mathbf{u}R}\right)^\vee &= \text{ann}_E(I + \mathbf{u}R) \\ &= \text{ann}_{(\text{ann}_{\mathbf{u}R} E)} I \\ &= \text{ann}_{\overline{E}} I. \end{aligned}$$

But L is a $A[T; f]$ -submodule of \overline{E} and so IA is an F -ideal and $L = \text{ann}_{\overline{E}} IA[T; f]$. Also,

$$\begin{aligned} (0 :_R \text{ann}_{\overline{E}} IA[T; f]) &= (0 :_R \text{ann}_E I) \\ &= (0 :_R (R/I)^\vee) \\ &= (0 :_R (R/I)) \\ &= I \end{aligned}$$

(where the third equality follows from 10.2.2 in [BS]) If H is T -torsion free, Proposition 1.11 in [S] implies that $I = \text{gr-ann ann}_{\overline{E}} IA[T; f]$ and Lemma 1.9 in [S] implies that I is radical.

To prove part (c) we recall Lemma 2.2 which states that $\mathcal{H}_{R,A}(\text{ann}_H JA[T; f])$ has generating morphism

$$\frac{R}{I + \mathbf{u}R} \xrightarrow{u^{p-1}} \frac{R}{I^{[p]} + \mathbf{u}^p R}$$

for some $I \in \mathcal{I}(R, \mathbf{u})$ and we need only show that $\text{ann}_H IA[T; f] = \text{ann}_H JA[T; f]$.

Part (b) implies that $\mathcal{H}_{R,A}(\text{ann}_H JA[T; f]) = \mathcal{H}_{R,A}(\text{ann}_H IA[T; f])$ for some $I \in \mathcal{I}(R, \mathbf{u})$ and Theorem 4.2 (iv) in [L] implies

$$\bigcap_{i=0}^{\infty} AT^i(\text{ann}_H JA[T; f]) = \bigcap_{i=0}^{\infty} AT^i(\text{ann}_H IA[T; f])$$

and since H is Artinian there exists an $\alpha \geq 0$ for which $AT^\alpha(\text{ann}_H JA[T; f]) = AT^\alpha(\text{ann}_H IA[T; f])$ and the result follows from Lemma 2.6. \square

Remark 3.3. Theorem 3.2 can provide an easy way to show that $H = H_{mA}^{\dim(A)}(A)$ is not T -torsion free. As an example consider $R = \mathbb{K}\llbracket x, y, a, b \rrbracket$, $u = x^2a - y^2b$ and $A = R/uR$. Its easy to verify that $(x, y, a^2)R \in \mathcal{I}(R, x^2a - y^2b)$ when \mathbb{K} has characteristic 2, and we deduce that $H_{(x,y,a,b)A}^3(A)$ is not T -torsion free.

Theorem 3.4. *Assume that R is complete and that $H_{mA}^{\dim(A)}(A)$ is T -torsion free.*

(a) *For all $A[T; f]$ -submodules L of $H_{mA}^{\dim(A)}(A)$,*

$$L^\star = \bigcap_{i=0}^{\infty} AT^i L$$

has the form $AT^\alpha M$ where $\alpha \geq 0$ and M is a special annihilator submodule in the terminology of [S].

(b) *The set $\{\mathcal{N}(I) \mid I \in \mathcal{I}(R, \mathbf{u})\}$ is finite.*

Proof. (a) Let L be a $A[T; f]$ -submodule of $H_{mA}^{\dim(A)}(A)$. Pick a $I \in \mathcal{I}(R, \mathbf{u})$ such that $\mathcal{N}(I) = \mathcal{H}_{R,A}(L)$. Now use part (b) of Theorem 3.2 and deduce that $\mathcal{N}(I) \cong \mathcal{H}_{R,A}(\text{ann}_H IA[T; f])$. Now the result follows from Theorem 4.2 (iv) in [L].

(b) Theorem 3.2(b) implies that

$$\{\mathcal{N}(I) \mid I \in \mathcal{I}(R, \mathbf{u})\} = \left\{ \mathcal{H}_{R,A} \left(\text{ann}_{H_{mA}^{\dim(A)}(A)} IA[T; f] \right) \mid I \in \mathcal{I}(R, \mathbf{u}) \right\};$$

now Corollary 3.11 and Proposition 1.11 in [S] imply that the set on the right is finite. \square

The following Theorem reduces the problem of classifying all F -ideals of A (in the terminology of [Sm1]) or all special $H_{mA}^{\dim(A)}(A)$ -ideals (in the terminology of [S]) in the case where A is an F -injective complete intersection, to problem of determining the set $\mathcal{I}(R, \mathbf{u})$.

Theorem 3.5. *Assume $H := H_{mA}^{\dim(A)}(A)$ is T -torsion free and let \mathcal{B} be the set of all H -special A -ideals (cf. §0 in [S])*

(a) *The map $\Psi : \mathcal{I}(R, \mathbf{u}) \rightarrow \mathcal{B}$ given by $\Psi(I) = IA$ is a bijection.*

- (b) *There exists a unique minimal element τ in $\{I \mid I \in \mathcal{I}(R, \mathbf{u}), \text{ht } IA > 0\}$ and that τ is a parameter-test-ideal for A .*
- (c) *A is F -rational if and only if $\mathcal{I}(R, \mathbf{u}) = \{0, R\}$.*

Proof. (a) Assume first that R is complete. Theorem 3.2(b) implies that Ψ is well defined, i.e., $\Psi(I) \in \mathbf{B}$ for all $I \in \mathcal{I}(R, \mathbf{u})$, and, clearly, Ψ is injective. The surjectivity of Ψ is a consequence of Theorem 3.2(c).

Assume now that R is not complete, denote completions with $\widehat{}$ and write $\widehat{H} = H_{\mathfrak{m}\widehat{A}}^{\dim(\widehat{A})}(\widehat{A})$. If I is a \widehat{H} -special \widehat{A} -ideal, i.e., if there exists an $\widehat{A}[T; f]$ -submodule $N \subseteq \widehat{H}$ such that $\text{gr-ann } N = I\widehat{A}[T; f]$ then $I = (0 :_{\widehat{A}} N)$ (cf. Definition 1.10 in [S]). But recall that $\widehat{H} = H$ and N is a $A[T; f]$ -submodule of H ; now $I = (0 :_{\widehat{A}} N) = (0 :_A N)\widehat{A}$. If we let $\widehat{\mathcal{B}}$ be the set of $H_{\mathfrak{m}\widehat{A}}^{\dim(\widehat{A})}(\widehat{A})$ -special \widehat{A} -ideals, we have a bijection $\Upsilon : \mathcal{B} \rightarrow \widehat{\mathcal{B}}$ mapping I to $I\widehat{A}$. This also shows that all ideals in $\mathcal{I}(\widehat{R}, \mathbf{u})$ are expanded from R , and now since \widehat{R} is faithfully flat over R , we deduce that all ideals in $\mathcal{I}(\widehat{R}, \mathbf{u})$ have the form $I\widehat{R}$ for some $I \in \mathcal{I}(R, \mathbf{u})$. We now obtain a chain of bijections

$$\mathcal{I}(R, \mathbf{u}) \longleftrightarrow \mathcal{I}(\widehat{R}, \mathbf{u}) \longleftrightarrow \widehat{\mathcal{B}} \longleftrightarrow \mathcal{B}.$$

- (b) This is immediate from (a) and Corollary 4.7 in [S].
- (c) If A is F -rational, $H_{\mathfrak{m}A}^{\dim(A)}(A)$ is a simple $A[T; f]$ -module (cf. Theorem 2.6 in [Sm2]) and the only H -special A -ideals must be 0 and A . The bijection established in (a) implies now $\mathcal{I}(R, \mathbf{u}) = \{0, R\}$.

Conversely, if $\mathcal{I}(R, \mathbf{u}) = \{0, R\}$, part (b) of the Theorem implies that $1 \in A$ is a parameter-test-ideal, i.e., for all systems of parameters $\mathbf{x} = (x_1, \dots, x_d)$ of A , $(\mathbf{x}A)^* = (\mathbf{x}A)^F = \mathbf{x}A$ where the second equality follows from the fact that $H_{\mathfrak{m}A}^{\dim(A)}(A)$ is T -torsion free.

□

4. EXAMPLES

Throughout this section \mathbb{K} will denote a field of prime characteristic.

Example 4.1. Let R be the localization of $\mathbb{K}[x, y]$ at (x, y) , $u = xy$ and $A = R/uR$. Then $H_{xyR}^1(R) = \mathcal{H}_{R, A}(H_{xA+yA}^1(A))$ ought to have four proper F -finite F -submodules corresponding to the elements $0, xR, yR$ and $xR + yR$ of $\mathcal{I}(R, xy)$.

We verify this by giving an explicit description the $A[T; f]$ -module structure of

$$H := H_{xA+yA}^1(A) \cong \varinjlim \left(\frac{A}{(x-y)A} \xrightarrow{x-y} \frac{A}{(x-y)^2A} \xrightarrow{x-y} \frac{A}{(x-y)^3A} \xrightarrow{x-y} \dots \right)$$

First notice that in H , for all $n \geq 1$ and $0 < \alpha \leq n$, $x^\alpha + (x - y)^n A = x + (x - y)^{n-\alpha+1}$ and $y^\alpha + (x - y)^n A = y + (x - y)^{n-\alpha+1}$ so H is the \mathbb{K} -span of $\{x + (x - y)A\} \cup X \cup Y \cup U$ where

$$\begin{aligned} X &= \{x + (x - y)^n A \mid n \geq 2\}, \\ Y &= \{y + (x - y)^n A \mid n \geq 2\}, \\ U &= \{1 + (x - y)^n A \mid n \geq 1\} \end{aligned}$$

and notice also that the action of the Frobenius map f on H is such that $T(x^\alpha + (x - y)^n A) = x^{\alpha p} + (x - y)^{np} A$ and $T(y^\alpha + (x - y)^n A) = y^{\alpha p} + (x - y)^{np} A$ for all $\alpha \geq 0$.

Next notice that any $A[T, f]$ -submodule M of H which contains an element $1 + (x - y)^n A \in U$ must coincide with H : for $1 \leq m < n$ we have $(x - y)^{n-m}(1 + (x - y)^n A) = (x - y)^{n-m} + (x - y)^n A = 1 + (x - y)^m A$, whereas for $m > n$, pick an $e \geq 0$ such that $np^e > m$, write

$$T^e(1 + (x - y)^n A) = 1 + (x - y)^{np^e} A \in M$$

and use the previous case ($m < n$) to deduce that $1 + (x - y)^m A \in M$. Since now $U \subseteq M$, we see that $M = H$.

We now show that there are only three non-trivial $A[T, f]$ -submodules of H , namely $\text{Span}_{\mathbb{K}} X$ and $\text{Span}_{\mathbb{K}} Y$, and $\text{Span}_{\mathbb{K}} \{x + (x - y)A\} \cup X$. By symmetry, it is enough to show that, if M is an $A[T, f]$ -submodule of H and $x + (x - y)^n A \in M$ for some $n \geq 2$, then $X \subset M$. If $1 \leq m < n$,

$$x^{n-m}(x + (x - y)^n A) = x^{n-m+1} + (x - y)^n A = x + (x - y)^{n-(n-m)} A = x + (x - y)^m A$$

whereas, if $m > n \geq 2$, pick an $e \geq 0$ such that $np^e - p^e + 1 > m$ and write

$$T^e(x + (x - y)^n A) = x^{p^e} + (x - y)^{np^e} A = x + (x - y)^{np^e - p^e + 1} A \in M$$

and using the previous case ($m < n$) we deduce that $x + (x - y)^m A \in M$.

Example 4.2. Let R be the localization of $\mathbb{K}[x, y, z]$ at $\mathfrak{m} = (x, y, z)$, $u = x^2y + xyz + z^3$ and $A = R/uR$. Fedder's criterion (cf. Proposition 2.1 in [F]) implies that A is F -pure, and Lemma 3.3 in [F] implies that the $A[T; f]$ module $H_{\mathfrak{m}A}^1(A)$ is T -torsion-free.

Here $\mathcal{J}(R, u)$ contains the ideals 0 , $xR + zR$ and $xR + yR + zR$. We deduce that A is not F -rational and that its parameter-test-ideal is $xR + zR$. Also, Theorem 3.5(b) implies that the only proper ideals in $\mathcal{J}(R, u)$ are the ones listed above.

Example 4.3. Let R be the localization of $\mathbb{K}[x, y, z]$ at $\mathfrak{m} = (x, y, z)$ and assume that \mathbb{K} has characteristic 2. Let $u = x^3 + y^3 + z^3 + xyz$ and $A = R/uR$. Notice that we can factor

$u = (x + y + z)(x^2 + y^2 + z^2 + xy + xz + yz)$. Fedder's criterion implies that A is F -pure, and Lemma 3.3 in [F] implies that the $A[T; f]$ module $H_{\mathfrak{m}A}^1(A)$ is T -torsion-free.

Here

$$\begin{aligned} \mathcal{I}(R, u) \supseteq & \{0, (x + y + z)R, (x^2 + y^2 + z^2 + xy + xz + yz)R, \\ & (x + z, y + z)R, (x + y + z, y^2 + yz + z^2)R, \\ & (x, y, z)R\}. \end{aligned}$$

The images in A of the first three ideals have height zero while the images in A of the fourth and fifth ideals have height 1. Using 3.5(b) we conclude that the parameter test-ideal of A is a sub-ideal of

$$J = (x + z, y + z)A \cap (x + y + z, y^2 + yz + z^2)A = (x^2 + yx, y^2 + xz, z^2 + xy)A.$$

But this ideal defines the singular locus of A and Theorem 6.2 in [HH2] implies that the parameter test-element of A contains J , so J is the parameter test-ideal of A .

5. THE NON- F -INJECTIVE CASE

In this section we extend the results of the previous section to the case where A is not F -injective. First we produce a criterion for the F -injectivity of A .

Definition 5.1. Define

$$\mathcal{I}_0(R, \mathbf{u}) = \left\{ L \in \mathcal{I}(R, \mathbf{u}) \mid u^{(p-1)(1+p+\dots+p^{e-1})} \in L^{[p^e]} + \mathbf{u}^{p^e}R \text{ for some } e \geq 1 \right\}.$$

Proposition 5.2. (a) For any $L \in \mathcal{I}(R, \mathbf{u})$, $\mathcal{N}(L) = 0$ if and only if $L \in \mathcal{I}_0(R, \mathbf{u})$.
(b) $H_{\mathfrak{m}A}^{\dim(A)}(A)$ is T -torsion free if and only if $\mathcal{I}_0(R, \mathbf{u}) = \{R\}$.

Proof. (a) Recall that the F -finite module $\mathcal{N}(L)$ has generating morphism

$$\frac{R}{L + \mathbf{u}R} \xrightarrow{u^{p-1}} \frac{R}{L^{[p]} + \mathbf{u}^pR} \cong F_R \left(\frac{R}{L + \mathbf{u}R} \right).$$

Proposition 2.3 in [L] implies that $\mathcal{N}(L) = 0$ if and only if for some $e \geq 1$ the composition

$$\frac{R}{L + \mathbf{u}R} \xrightarrow{u^{p-1}} \frac{R}{L^{[p]} + \mathbf{u}^pR} \xrightarrow{u^{(p-1)p}} \frac{R}{L^{[p]} + \mathbf{u}^{p^2}R} \cdots \xrightarrow{u^{(p-1)p^{e-1}}} \frac{R}{L^{[p]} + \mathbf{u}^{p^e}R}$$

vanishes, i.e., if and only if $u^{(p-1)(1+p+\dots+p^{e-1})} \in L^{[p^e]} + \mathbf{u}^{p^e}R$ for some $e \geq 1$.

(b) Write $H = H_{\mathfrak{m}A}^{\dim(A)}(A)$. If H is T -torsion free, the existence of the bijection described in Theorem 3.5(a) implies that for any non-unit $L \in \mathcal{I}_0(R, \mathbf{u})$, $\text{ann}_H LA[T; f] \neq \text{ann}_H A[T; f] = 0$. Theorem 3.2(b) implies $\mathcal{N}(L) \cong \mathcal{H}_{R,A}(\text{ann}_H LA[T; f])$ so $\mathcal{H}_{R,A}(\text{ann}_H LA[T; f]) = 0$. But Theorem 4.2(ii) in [L] now implies that $\text{ann}_H LA[T; f]$ is nilpotent, a contradiction.

Assume now that H is not T -torsion free, i.e., $H_n \neq 0$. The short exact sequence

$$0 \rightarrow H_n \rightarrow H \rightarrow H/H_n \rightarrow 0$$

yields the short exact sequence

$$0 \rightarrow (H/H_n)^\vee \rightarrow \frac{R}{\mathbf{u}R} \rightarrow H_n^\vee \rightarrow 0.$$

Notice that as the functor $\text{Hom}(-, E)$ is faithful, $H_n^\vee \neq 0$, and so $H_n^\vee \cong R/I$ for some ideal $\mathbf{u}R \subseteq I \subsetneq R$. Now $\mathcal{H}_{R,A}(H_n)$ is the F -finite quotient of H with generating morphism

$$\frac{R}{I} \xrightarrow{u^{p-1}} \frac{R}{I^{[p]}}$$

and this vanishes because of Theorem 4.2(ii) in [L], i.e., $I \in \mathcal{J}_0(R, \mathbf{u})$. \square

We now describe the parameter test ideal of A . Henceforth we shall always denote $\text{H}_{\mathfrak{m}A}^{\dim(A)}(A)$ with H .

Theorem 5.3. *Assume that R is complete. The parameter test ideal of A is given by*

$$\bigcap \{I \in \mathcal{J}(R, \mathbf{u}) \mid \text{ht } IA > 0\}.$$

Proof. Write $\bar{\tau}$ for the parameter test ideal of A and let τ be its pre-image in R . Recall that $\bar{\tau}$ is an F -ideal (Proposition 4.5 in [Sm1],) i.e., $\text{ann}_H \bar{\tau}$ is an $A[T; f]$ -submodule of H , and $\mathcal{H}_{R,A}(\text{ann}_H \bar{\tau})$ has generating morphism

$$(\text{ann}_H \bar{\tau})^\vee \xrightarrow{u^{p-1}} F_R((\text{ann}_H \bar{\tau})^\vee).$$

But

$$(\text{ann}_H \bar{\tau})^\vee \cong ((A/\bar{\tau})^\vee)^\vee \cong R/(\tau + \mathbf{u}R)$$

so the generating morphism of $\mathcal{H}_{R,A}(\text{ann}_H \bar{\tau})$ is

$$R/(\tau + \mathbf{u}R) \xrightarrow{u^{p-1}} R/(\tau^{[p]} + \mathbf{u}^p R)$$

and so we must have $\tau \in \mathcal{J}(R, \mathbf{u})$.

As A is Cohen-Macaulay, $\bar{\tau} = (0 :_A 0_H^*)$ (cf. Proposition 4.4 in [Sm1].)

By Theorem 3.2(b), for each $I \in \mathcal{J}(R, \mathbf{u})$, the ideal IA is an F -ideal and, if $\text{ht } I > 0$, $\text{ann}_H IA = \text{ann}_H IA[T; f] \subseteq 0_H^*$ and so

$$\bar{\tau} = (0 :_A 0_H^*) \subseteq \bigcap \{(0 :_A \text{ann}_H IA) \mid IA \in \mathcal{J}(R, \mathbf{u}), \text{ht } IA > 0\}.$$

But H is an injective hull of $A/\mathfrak{m}A$ so

$$(0 :_A \text{ann}_H IA) = (0 :_A \text{Hom}(A/IA, H)) = (0 :_A A/IA) = IA$$

and

$$\bar{\tau} \subseteq \bigcap \{IA \mid IA \in \mathcal{I}(R, \mathbf{u}), \text{ht } IA > 0\}.$$

But as $\bar{\tau}$ is one of the ideals in this intersection, we obtain $\bar{\tau} = \bigcap \{IA \in \mathcal{I}(R, \mathbf{u}) \mid \text{ht } IA > 0\}$. \square

6. THE GORENSTEIN CASE

In this section we generalise the results so far to the case where A is Gorenstein.

Write $\delta = \dim R - \dim A$ and $\bar{E} = E_A(A/\mathfrak{m}A)$. Local duality implies $\text{Ext}_R^\delta(A, R) = H_{\mathfrak{m}}^{\dim A}(A)^\vee \cong \text{Hom}(H_{\mathfrak{m}A}^{\dim A}(A), \bar{E})$ and since A is Gorenstein this is just $A = R/\mathbf{u}R$.

Now $\text{Ext}_R^\delta(R/\mathbf{u}R, A) \cong R/\mathbf{u}R$, $\text{Ext}_R^\delta(R/\mathbf{u}^p R, A) \cong R/\mathbf{u}^p R$ and $\mathcal{H}_{R,A}(H_{\mathfrak{m}A}^{\dim A}) = H_{\mathfrak{m}}^\delta(R)$ has generating morphism $R/\mathbf{u} \rightarrow R/\mathbf{u}^p R$ given by multiplication by some element of R which we denote $\varepsilon(\mathbf{u})$ (this is unique up to multiplication by a unit.) Unlike the complete intersection case, the map $R/\mathbf{u} \xrightarrow{\varepsilon(\mathbf{u})} R/\mathbf{u}^p R$ may not be injective, i.e., this generating morphism of $H_{\mathfrak{m}}^\delta(R)$ is not a *root*. However, if define

$$K_{\mathbf{u}} := \bigcup_{e \geq 0} (\mathbf{u}^{p^{e+1}} R :_R \varepsilon(\mathbf{u})^{1+p+\dots+p^e})$$

we obtain a root $R/K_{\mathbf{u}} \xrightarrow{\varepsilon(\mathbf{u})} R/K_{\mathbf{u}}^{[p]}$ (cf. Proposition 2.3 in [L].)

We now extend naturally our definition of $\mathcal{I}(R, \mathbf{u})$ when A is Gorenstein as follows.

Definition 6.1. If $A = R/\mathbf{u}R$ is Gorenstein we define $\mathcal{I}(R, \mathbf{u})$ to be the set of all ideals I of R containing $K_{\mathbf{u}}$ for which $\varepsilon(\mathbf{u})I \subseteq I^{[p]}$.

Now a routine modification of the proofs of the previous sections gives the following two theorems.

Theorem 6.2. Assume A is Gorenstein and that $H_{\mathfrak{m}A}^{\dim A}(A)$ is T -torsion-free.

- (a) The map $I \mapsto IA$ is a bijection between $\mathcal{I}(R, \mathbf{u})$ and the A -special $H_{\mathfrak{m}A}^{\dim A}(A)$ -ideals.
- (b) There exists a unique minimal element τ in $\{I \mid I \in \mathcal{I}(R, \mathbf{u}), \text{ht } IA > 0\}$ and that τ is a parameter-test-ideal for A .
- (c) A is F -rational if and only if $\mathcal{I}(R, \mathbf{u}) = \{0, R\}$.

Theorem 6.3. Assume that R is complete and that A is Gorenstein. The parameter test ideal of A is given by

$$\bigcap \{I \in \mathcal{I}(R, \mathbf{u}) \mid \text{ht } IA > 0\}.$$

ACKNOWLEDGEMENT

My interest in the study of local cohomology modules as modules over skew polynomial rings was aroused by many interesting conversations with Rodney Sharp, during one of which I learnt about Example 4.1.

REFERENCES

- [BS] M. P. Brodmann and R. Y. Sharp. *Local cohomology: an algebraic introduction with geometric applications*. Cambridge Studies in Advanced Mathematics, **60**. Cambridge University Press, Cambridge, 1998.
- [F] R. Fedder. *F-purity and rational singularity*. Transactions of the AMS, **278** (1983), no. 2, pp. 461–480.
- [HH1] M. Hochster and C. Huneke. *Tight closure, invariant theory, and the Brianon-Skoda theorem*. Journal of the AMS **3** (1990), no. 1, 31–116.
- [HH2] M. Hochster and C. Huneke. *F-regularity, test elements, and smooth base change*. Transactions of the AMS, **346** (1994), no. 1, pp. 1–62.
- [K] E. Kunz. *Characterizations of regular local rings for characteristic p*. American Journal of Mathematics **91** (1969), pp. 772–784.
- [L] G. Lyubeznik. *F-modules: applications to local cohomology and D-modules in characteristic p > 0*. J. Reine Angew. Math. **491** (1997), pp. 65–130.
- [S] R. Y. Sharp. *Graded annihilators of modules over the Frobenius skew polynomial ring, and tight closure*. Preprint.
- [Sm1] K. E. Smith. *Test ideals in local rings*. Transactions of the AMS **347** (1995), no. 9, pp. 3453–3472.
- [Sm2] K. E. Smith. *F-rational rings have rational singularities*. American Journal of Mathematics **119** (1997), no. 1, pp. 159–180.

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF SHEFFIELD, HICKS BUILDING, SHEFFIELD S3 7RH,
UNITED KINGDOM, *Fax number*: +44-(0)114-222-3769

E-mail address: M.Katzman@sheffield.ac.uk