第四章

不定积分

第一节

第四章

不定积分的概念与性质

- 一、原函数与不定积分的概念
- 二、基本积分表
- 三、不定积分的性质

一、原函数与不定积分的概念

引例: 一个质量为 m 的质点, 在变力 $F = A \sin t$ 的作

下沿直线运动,试求质点的运动速度 v(t).

根据牛顿第二定律,加速度
$$a(t) = \frac{F}{m} = \frac{A}{m} \sin t$$

因此问题转化为: 已知 $v'(t) = \frac{A}{m} \sin t$, 求 v(t) = ?

定义 1. 若在区间 I 上定义的两个函数 F(x) 及 f(x)

满足
$$F'(x) = f(x)$$
 或 $dF(x) = f(x) dx$, 则称 $F(x)$ 为 $f(x)$

在区间 / 上的一个原函数.

如引例中,
$$\frac{A}{m}\sin t$$
 的原函数有 $-\frac{A}{m}\cos t$, $-\frac{A}{m}\cos t + 3$,...

问题:

- 1. 在什么条件下, 一个函数的原函数存在?
- 2. 若原函数存在, 它如何表示?

定理1. 若函数 f(x) 在区间I 上连续,则 f(x) 在I 上存在原函数. (下章证明)

初等函数在定义区间上连续

初等函数在定义区间上有原函数

定理 2. 若 F(x) 是 f(x)的一个原函数,则 f(x)的所有原函数都在函数族 F(x)+C (C 为任意常数) 内 .

证: 1)
$$:: (F(x) + C)' = F'(x) = f(x)$$

 $:: F(x) + C \stackrel{\cdot}{=} f(x)$ 的原函数

2) 设 $\Phi(x)$ 是f(x)的任一原函数,即

$$\Phi'(x) = f(x)$$

又知

$$F'(x) = f(x)$$

$$\therefore [\Phi(x) - F(x)]' = \Phi'(x) - F'(x) = f(x) - f(x) = 0$$

故
$$\Phi(x) = F(x) + C_0 (C_0$$
为某个常数)

即
$$\Phi(x) = F(x) + C_0$$
 属于函数族 $F(x) + C$.

定义 2. f(x) 在区间 I 上的原函数全体称为 f(x) 在 I上的不定积分,记作 $\int f(x) dx$,其中

$$\int -$$
 积分号; $f(x) -$ 被积函数;

x — 积分变量; f(x)dx — 被积表达式.

若
$$F'(x) = f(x)$$
,则

$$\int f(x)dx = F(x) + C_{\bullet,\bullet}(C)$$
 为任意常数)

例如,
$$\int e^x dx = e^x + C$$
$$\int x^2 dx = \frac{1}{3}x^3 + C$$

$$\int \sin x \mathrm{d}x = -\cos x + C$$

C称为积分常数

不可丢!

不定积分的几何意义:

f(x) 的原函数的图形称为f(x) 的积分曲线.

 $\int f(x) dx$ 的图形 —— f(x) 的所有积分曲线组成的平行曲线族.

例1. 设曲线通过点(1,2),且其上任一点处的切线 斜率等于该点横坐标的两倍,求此曲线的方程.

$$x' = 2x$$

$$\therefore y = \int 2x dx = x^2 + C$$

所求曲线过点(1,2),故有

$$2 = 1^2 + C$$

$$\therefore C=1$$

因此所求曲线为 $y = x^2 + 1$

例2. 质点在距地面 x_0 处以初速 v_0 垂直上抛,不计阻力,求它的运动规律.

解: 取质点运动轨迹为坐标轴, 原点在地面, 指向朝上, 质点抛出时刻为 t = 0,此时质点位置为 x_0 ,初速为 v_0 . 设时刻 t 质点所在位置为 x = x(t),则

$$\frac{dx}{dt} = v(t)$$
 (运动速度)
$$x = x(t)$$
 再由此求 $x(t)$
$$\frac{d^2 x}{dt^2} = \frac{dv}{dt} = -g$$
 (加速度)
$$x_0 = x(0)$$
 先由此求 $x(t)$

先求
$$v(t)$$
. 由 $\frac{\mathrm{d}v}{\mathrm{d}t} = -\mathrm{g}$,知 $x = x(t)$ $v(t) = \int (-\mathrm{g}) \, \mathrm{d}t = -\mathrm{g}t + C_1$ $x = x(t)$ $x =$

从不定积分定义可知:

(2)
$$\int F'(x) dx = F(x) + C \quad \text{ if } \int dF(x) = F(x) + C$$

二、基本积分表

利用逆向思维

(1)
$$\int k dx = kx + C \qquad (k 为常数)$$

(2)
$$\int x^{\mu} dx = \frac{1}{\mu+1} x^{\mu+1} + C \quad (\mu \neq -1)$$

(3)
$$\int \frac{\mathrm{d}x}{x} = \ln|x| + C$$

$$x < 0 \text{ by}$$

$$(\ln|x|)' = [\ln(-x)]' = \frac{1}{x}$$

(4)
$$\int \frac{\mathrm{d}x}{1+x^2} = \arctan x + C \quad \vec{\mathbf{x}} - \operatorname{arc}\cot x + C$$

(5)
$$\int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \arcsin x + C \quad \vec{\mathbf{x}} - \arccos x + C$$

(6)
$$\int \cos x dx = \sin x + C$$

$$(7) \quad \int \sin x dx = -\cos x + C$$

(8)
$$\int \frac{\mathrm{d}x}{\cos^2 x} = \int \sec^2 x \, \mathrm{d}x = \tan x + C$$

(9)
$$\int \frac{\mathrm{d}x}{\sin^2 x} = \int \csc^2 x \, \mathrm{d}x = -\cot x + C$$

(10)
$$\int \sec x \tan x dx = \sec x + C$$

$$(11) \int \csc x \cot x dx = -\csc x + C$$

$$(12) \quad \int e^x \, \mathrm{d}x = e^x + C$$

$$(13) \quad \int a^x dx = \frac{a^x}{\ln a} + C$$

$$(14) \quad \int \operatorname{sh} x \mathrm{d}x = \operatorname{ch} x + C$$

$$(15) \quad \int \operatorname{ch} x \, \mathrm{d}x = \operatorname{sh} x + C$$

$$\sin x = \frac{e^x - e^{-x}}{2}$$

$$ch x = \frac{e^x + e^{-x}}{2}$$

例3. 求
$$\int \frac{\mathrm{d}x}{x\sqrt[3]{x}}$$
.

解: 原式 =
$$\int x^{-\frac{4}{3}} dx = \frac{x^{-\frac{4}{3}+1}}{-\frac{4}{3}+1} + C$$

$$= -3x^{-\frac{1}{3}} + C$$

例4. 求 $\int \sin \frac{x}{2} \cos \frac{x}{2} dx$.

解: 原式=
$$\int \frac{1}{2} \sin x \, dx = -\frac{1}{2} \cos x + C$$

三、不定积分的性质

1.
$$\int k f(x) dx = k \int f(x) dx \quad (k \neq 0)$$

2.
$$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$$

推论: 若
$$f(x) = \sum_{i=1}^{n} k_i f_i(x)$$
,则

$$\int f(x) dx = \sum_{i=1}^{n} k_i \int f_i(x) dx$$

例5. 求 $\int 2^x (e^x - 5) dx$.

解: 原式 =
$$\int [(2e)^x - 5 \cdot 2^x) dx$$

$$= \frac{(2e)^x}{\ln(2e)} - 5\frac{2^x}{\ln 2} + C$$

$$=2^x \left\lceil \frac{e^x}{\ln 2 + 1} - \frac{5}{\ln 2} \right\rceil + C$$

例6. 求 $tan^2 x dx$.

解: 原式 =
$$\int (\sec^2 x - 1) dx$$

= $\int \sec^2 x dx - \int dx = \tan x - x + C$

例7. 求
$$\int \frac{1+x+x^2}{x(1+x^2)} dx$$
.

解: 原式 =
$$\int \frac{x + (1 + x^2)}{x(1 + x^2)} dx$$

= $\int \frac{1}{1 + x^2} dx + \int \frac{1}{x} dx$
= $\arctan x + \ln|x| + C$

例8. 求 $\int \frac{x^4}{1+x^2} dx$.

解: 原式 =
$$\int \frac{(x^4 - 1) + 1}{1 + x^2} dx$$

= $\int \frac{(x^2 - 1)(x^2 + 1) + 1}{1 + x^2} dx$
= $\int (x^2 - 1) dx + \int \frac{dx}{1 + x^2}$
= $\frac{1}{2}x^3 - x + \arctan x + C$

内容小结

- 1. 不定积分的概念
 - 原函数与不定积分的定义
 - 不定积分的性质
 - 基本积分表
- 2. 直接积分法:

利用恒等变形, 积分性质 及 基本积分公式进行积分.

常用恒等变形方法~加项减项

分项积分

、利用三角公式,代数公式,…

思考与练习

1. 证明 $\frac{1}{2}e^{2x}$, $e^x \sinh x$, $e^x \cosh x$ 都是 $\frac{e^x}{\cosh x - \sinh x}$ 的原函数.

提示:
$$\operatorname{ch} x = \frac{e^x + e^{-x}}{2}$$
, $\operatorname{sh} x = \frac{e^x - e^{-x}}{2}$

2. 若 e^{-x} 是 f(x)的原函数,则

$$\int x^2 f(\ln x) \, \mathrm{d} \, x = \frac{-\frac{1}{2}x^2 + C}{2}$$

提示:
$$f(x) = (e^{-x})' = -e^{-x}$$

$$f(\ln x) = -e^{-\ln x} = -\frac{1}{x}$$

3. 若 f(x) 是 e^{-x} 的原函数,

$$\int \frac{f(\ln x)}{x} dx = \frac{1}{x} + C_0 \ln|x| + C$$

提示: 已知 $f'(x) = e^{-x}$

$$f(\ln x) = -e^{-x} + C_0$$

$$f(\ln x) = -\frac{1}{x} + C_0$$

$$\frac{f(\ln x)}{x} = -\frac{1}{x^2} + \frac{C_0}{x}$$

4. 若f(x) 的导函数为 $\sin x$, 则 f(x) 的一个原函数

是(B).

(A)
$$1 + \sin x$$
; (B) $1 - \sin x$;

(C)
$$1 + \cos x$$
; (D) $1 - \cos x$.

提示: 已知 $f'(x) = \sin x$

求
$$(?)' = f(x)$$

即
$$(?)'' = \sin x$$

或由题意 $f(x) = -\cos x + C_1$, 其原函数为

$$\int f(x) \, \mathrm{d}x = -\sin x + C_1 x + C_2$$

5. 求下列积分:

(1)
$$\int \frac{dx}{x^2(1+x^2)}$$
; (2) $\int \frac{dx}{\sin^2 x \cos^2 x}$.

提示:

(1)
$$\frac{1}{x^2(1+x^2)} = \frac{(1+x^2)-x^2}{x^2(1+x^2)} = \frac{1}{x^2} - \frac{1}{1+x^2}$$

(2)
$$\frac{1}{\sin^2 x \cos^2 x} = \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x}$$
$$= \sec^2 x + \csc^2 x$$

6. 求不定积分 $\int \frac{e^{3x}+1}{e^x+1} dx$.

##:
$$\int \frac{e^{3x} + 1}{e^x + 1} dx$$

$$= \int \frac{(e^x + 1)(e^{2x} - e^x + 1)}{e^x + 1} dx$$

$$= \int (e^{2x} - e^x + 1) dx$$

$$= \frac{1}{2}e^{2x} - e^x + x + C$$

7. 已知
$$\int \frac{x^2}{\sqrt{1-x^2}} \, dx = Ax\sqrt{1-x^2} + B \int \frac{dx}{\sqrt{1-x^2}}$$

求 \overline{A} , B.

解: 等式两边对x求导,得

$$\frac{x^2}{\sqrt{1-x^2}} = A\sqrt{1-x^2} - \frac{Ax^2}{\sqrt{1-x^2}} + \frac{B}{\sqrt{1-x^2}}$$
$$= \frac{(A+B)-2Ax^2}{\sqrt{1-x^2}}$$

$$\therefore \begin{cases} A+B=0 \\ -2A=1 \end{cases} \longrightarrow \begin{cases} A=-\frac{1}{2} \\ B=\frac{1}{2} \end{cases}$$

作业

P195 3, 4, 5, 6, 9

