Eine interaktive Einführung in LATEX

Teil 1: Grundlagen (basierend auf den Folien von Dr. John D. Lees-Miller)

Stefan Müller

15. August 2016

Warum LATEX?

- ► Es erstellt wunderschöne Dokumente
 - Insbesondere mathematische Formeln
- Erstellt von Wissenschaftlern für Wissenschaftler
 - Eine große und aktive Community
- ► Es ist leistungsfähig und Du kannst es erweiteren
 - ▶ Erweiterungen für Papers, Präsentationen, Poster, Lebensläufe,

. . .

Wie funktioniert LATEX?

- ► Schreibe das Dokument in plain text mit Befehlen, die die Struktur und Bedeutung definieren.
- ▶ latex verarbeitet den Text und die Befehle und erstellt wundervoll formatierte Dokumente.

```
\LaTeX{} ist ein \emph{hilfreiches} Programm.
```

h LATEX ist ein hilfreiches Programm.

Weitere Beispiele für Befehle und deren Ergebnis...

```
        \begin{itemize}
        ▶ Tee

        \item Milch
        ▶ Milch

        \item Kekse
        ▶ Kekse

        \end{itemize}
        ▶
```

```
\begin{figure}
\includegraphics{kueken}
\end{figure}
```



```
\label{eq:alpha} $$  \alpha + \beta + 1 $$  \alpha +
```

Bild basierend auf http://www.andy-roberts.net/writing/latex/importing_images.

Anpassung der Grundhaltung

- Nutze die Befehle, um zu beschrieben "was ist", nicht "wie es aussieht".
- ► Fokussiere Dich auf den Inhalt.
- ► Lass LATEX den Rest machen.

Erste Schritte

Ein Minimalbeispiel:

```
\documentclass{article}
\begin{document}
Hallo Welt % hier kommt Dein Inhalt hin...
\end{document}
```

- ▶ Befehle starten mit einem *Backslash* () .
- ▶ Jedes Dokument beginnt mit einem \documentclass-Befehl.
- ► Ein Argument in geschweiften Klammern () zeigt LATEX, welche Art von Dokument es erstellen soll: in diesem Fall einen Artikel (article).
- ► Ein Prozentzeichen startet einen Kommentar LATEX ignoriert den Rest der Zeile.

Erste Schritte mit **Overleaf**

- Overleaf ist eine Website zur Erstellung von Dokumenten in \text{LTEX}.
- Es kompiliert Dein Dokument automatisch und zeigt Dir das Resultat.

Klicke hier, um ein Beispiel-Dokument in **Overleaf** zu öffnen

Google Chrome oder eine neuere Version von Firefox garantieren die besten Ergebnisse.

- Während wir durch die Folien gehen, probiere die Beispiele in Overleaf aus.
- Wirklich, Du solltest die Befehle selber durchführen!

Textsatz

- Tippe Deinen Text zwischen \begin{document} und \end{document}.
- ▶ Meistens kannst Du den Text ganz normal eingeben.

En Wort wird durch ein oder mehrere Leerzeichen getrennt.	En Wort wird durch ein oder mehrere Leerzeichen getrennt.
Ein Absatz wird durch eine oder mehrere leere Zeilen vom letzten Absatz getrennt.	Ein Absatz wird durch eine oder mehrere leere Zeilen vom letzten Absatz getrennt.

► Abstände in der Quelldatei werden im gesetzten Dokument entfernt.

	ist	wirklich	LATEX ist wirklich extrem
extrem	hilfreich.		hilfreich.

Textsatz: Einschränkungen

► Einige gebräuchliche Zeichen haben eine besondere Bedeutung in ŁEX:

%	Prozent
#	Raute
&	"Und-Zeichen"
$\widetilde{\mathbb{S}}$	Dollar

Wenn Du diese Zeichen benutzt, erscheint womöglich eine Fehlermeldung. Wenn Du das tatsächliche Symbol nutzen willst, musst Du einen Gegenschrägstrich (Backslash) vor das Zeichen setzen.

\\$\%\&\#!	 \$%&#!</th><th></th></tr></tbody></table>
------------	--

Fehler beheben

- LATEX kann unübersichtlich werden, wenn es Dein Dokument kompiliert. Falls es einen Fehler meldet, musst Du diesen beheben, bevor das Dokument erstellt werden kann.
- Beispiel: wenn Du \meph statt \emph schreibst, wird LATEX mit dem Fehler "undefined control sequence" stoppen, da "meph" kein gültiger Befehl ist.

Empfehlungen zur Fehlerbehebung

- 1. Keine Panik! Fehler passieren.
- 2. Behebe sie umgehend falls der Fehler durch Deine letzten Schritte aufgetreten ist, starte dort mit der Fehlersuche.
- 3. Falls mehrere Fehler gemeldet werden, beginne mit dem ersten.

Typesetting-Übung 1

Schreibe und setzte den folgenden Text in LATEX:1

1982 wuchs das Bruttoinlandsprodukt um zwei Prozent; im Laufe der achtjährigen Amtszeit Reagans wuchs es um 31%. Während Präsident Bill Clintons Amtszeit wuchs das BIP noch einmal um 38%. Zum Ende seiner Amtszeit bemaß sich die gesamtwirtschaftliche Produktion auf 9,8 Billionen US-\$.

Klicke hier, um die Übung in ${\bf Overleaf}$ zu öffnen

- ► Hinweis: Überprüfe Zeichen mit besonderer Bedeutung!
- ► Nachdem Du die Übung beendet hast, klicke hier für mein Lösung .

¹https:

Mathematische Zeichen, Symbole und Gleichungen: Dollar-Zeichen

► Warum sind Dollar-Zeichen 🚯 besonders? Wir nutzen sie, um Mathematik im Text zu setzen.

```
% nicht so gut:

a und b sind positive Integrale,

und c = a - b + 1.

% viel besser:

$a$ und $b$ sind positive Integrale,

und $c = a - b + 1$.

a und b sind positive Integrale, und c = a - b + 1.

a = a - b + 1.
```

- ► Nutze Dollar-Zeichen immer (!) vor und nach dem mathematischen Ausdruck.
- ► Leerzeichen Leerzeichen automatisch; es ignoriert Deine Leerzeichen.

Mathematische Zeichen, Symbole und Gleichungen: Notation

 Nutze Circumflex für hochgestellte Zeichen und Unterstriche for tiefgestellte Zeichen.

$$y = c_2 x^2 + c_1 x + c_0$$

▶ Nutze geschwungene Klammern () (), um den Bereich für hoch- und tiefgestellte Zeichen zu definieren.

```
$F_n = F_n-1 + F_n-2$ % Hups! F_n = F_n - 1 + F_n - 2
$F_n = F_{n-1} + F_{n-2}$ % OK! F_n = F_{n-1} + F_{n-2}
```

Es gibt Befehle für griechische Buchstaben und gebräuchliche Notation.

```
$\mu = A e^{Q/RT}$  \mu = Ae^{Q/RT}  $\Omega = \sum_{k=1}^{n} \omega_k$  \Omega = \sum_{k=1}^{n} \omega_k
```

Mathematische Zeichen, Symbole und Gleichungen: Gleichungen

Gleichungen können in einer eigenen Umgebung gesetzt werden, indem Du \begin{equation} und \end{equation} nutzt.

Achtung: LATEX ignoriert Leerzeichen in der Mathematik-Umgebung, aber es kann keine Leerzeilen in Gleichungen händeln – also keine leeren Zeilen in die Gleichung einfügen.

Exkurs: Umgebungen (Environments)

- equation ist eine Umgebung (environment).
- Ein Befehl kann verschiedene Outputs je nach Umgebung produzieren.

```
Wir schreiben im Text
$ \Omega = \sum_{k=1}^{n} \omega_k $
im Text schreiben, oder wir schreiben
\begin{equation}
  \Omega = \sum_{k=1}^{n} \omega_k
\end{equation}
und zeigen es in einer Gleichung an.
```

Wir schreiben im Text $\Omega = \sum_{k=1}^{n} \omega_k$ im Text schreiben, oder wir schreiben

$$\Omega = \sum_{k=1}^{n} \omega_k \tag{3}$$

und zeigen es in einer Gleichung an.

Achte darauf, wie Σ größer in der equation-Umgebung ist und wie die tief- und hochgestellten Zeichen die Position ändern, obowohl wir genau den selben Befehl genutzt haben.

Wir könnten \$...\$ auch schreiben als \begin{math}...\end{math}.

Exkurs: Umgebungen (Environments)

- ▶ Die \begin- und \end-Befehle werden genutzt, um Umgebungen zu definieren.
- ▶ Die itemize- und enumerate-Umgebungen erstellen Listen.

```
\begin{itemize} % Spiegelstriche
\item Kekse
\item Tee
\end{itemize}

\begin{enumerate} % Nummern
\item Kekse
\item Tee
\end{enumerate}

2. Tee
```

Exkurs: Erweiterungen

- ► Alle Befehle und Umgebungen, die wir bislang genutzt haben, sind in LATEX standardmäßig vorhanden.
- ► Erweterungen (packages) sind Dateien mit weiteren Befehlen und Umgebungen. Es gibt tausende frei zugängliche Packages.
- Wir müssen jedes Package, das wir nutzen, mit dem \usepackage-Befehl in die Präambel (preamble) laden.
- Beispiel: amsmath von der American Mathematical Society.

```
\documentclass{article}
\usepackage{amsmath} % Präambel
\begin{document}
% Nun können wir die Befehle von amsmath hier nutzen
\end{document}
```

Mathematische Zeichen, Symbole und Gleichungen: Beispiele mit amsmath

▶ Nutze equation* für nicht-numerierte Gleichungen.

```
\label{eq:constraints} $$ \operatorname{longga} = \sum_{k=1}^n \omega_k $$ \operatorname{longga}_k $$ \Omega = \sum_{k=1}^n \omega_k $$ \operatorname{longga}_k $$
```

► LATEX behandelt aufeinanderfolgende Buchstaben als Variablen, die multipliziert werden. Das ist jedoch nicht immer gewollt. amsmath definiert Befehle für viele gebräuchliche mathematische Operatoren.

▶ Du kannst \operatorname for andere Operatoren nutzen.

Mathematische Zeichen, Symbole und Gleichungen: Beispiele mit amsmath

Gleiche eine Sequenz von Gleichungen an das "Gleich-Zeichen" an, indem Du die align*-Umgebung nutzt.

$$(x+1)^3 = (x+1)(x+1)(x+1)$$
$$= (x+1)(x^2+2x+1)$$
$$= x^3 + 3x^2 + 3x + 1$$

```
\begin{align*}
(x+1)^3 &= (x+1)(x+1)(x+1) \\
&= (x+1)(x^2 + 2x + 1) \\
&= x^3 + 3x^2 + 3x + 1
\end{align*}
```

- ► An "Und-Zeichen" & trennt die linke Spalte (vor dem =) von der rechten Spalte (nach dem =).
- ► Mit einem doppelten Gegenschrägstrich 🕦 🕦 beginnt einen neue Zeile.

Typesetting-Übung 1

Schreibe/setze das folgende in LATEX:

Lasse X_1, X_2, \ldots, X_n eine Sequenz von unabhängigen und identisch verteilten zufälligen Variablen mit $E[X_i] = \mu$ und $Var[X_i] = \sigma^2 < \infty$ sein, und lasse

$$S_n = \frac{1}{n} \sum_{i=1}^{n} X_i$$

deren Mittelwert darstellen. Wenn sich n der Unendlichkeit annähert, folgen die zufälligen Variablen $\sqrt{n}(S_n - \mu)$ einer Normalverteilung mit $N(0, \sigma^2)$.

Klicke hier, um ein Beispiel-Dokument in Overleaf zu öffnen

- ▶ Hinweis: der Befehl für ∞ ist \infty.
- Nachdem Du die Übung beendet hast, klicke hier für meine Lösung.

Ende von Teil 1 (Grundlagen)

- Glückwunsch! Du hast bereits gelernt wie man...
 - ► Text in LATEX setzt.
 - einige gebräuchliche Befehle nutzt.
 - ▶ Fehler behebt, wenn sie auftreten.
 - wunderschöne mathematische Gleichungen setzt.
 - verschiedenen Umgebungen nutzt.
 - packages lädt.
- ▶ In Teil 2 Iernen wir, wie man LaTEX nutzt, um in strukturierten Dokumente Kapitel, Querverweise, Grafiken, Tabellen und ein Literaturverzeichnis erstellt.