Εργασία στη Ρομποτική 2023

Τμήμα Α

0.7 0.6 0.5 N 0.4 0.3 0.2 0.1 -0.5 (C) Y

0.5

Σχήμα 1:

Σχήμα 2:

Έστω ο βραχίονας ur10e 6 βαθμών ελευθερίας, του οποίου το κινηματικό μοντέλο δίνεται για το robotics toolbox χρησιμοποιώντας τη συνάρτηση

$$robot = mdl_ur10e()$$

Οι αρχικές τιμές των αρθρώσεων είναι

$$q_0 = \begin{bmatrix} -0.140 & -1.556 & -1.359 & 1.425 & -1.053 & -1.732 \end{bmatrix} rad$$

οπως φαίνεται στο Σ χήμα 1. Ο βραχίονας δέχεται εντολές ταχύτητας αρθρώσεων $\dot{q}_r \in \mathbb{R}^6$ με το αδρανειακό πλαίσιο $\{0\}$ στη βάση του και $\{E\}$ το πλαίσιο του άκρου. Η μέγιστη επιτρεπόμενη απόλυτη ταχύτητα των αρθρώσεων είναι:

$$\dot{q}_{r,max} = \begin{bmatrix} 120 & 120 & 180 & 180 & 180 & 180 \end{bmatrix}^{o}/sec$$

ενώ η μέγιστη επιτάχυνση είναι $250rad/s^2$.

Έστω το πλαίσιο μιας σταθερής κάμερας $\{C\}$ το οποίο είναι τοποθετημένο στη θέση $p_{0C} = \begin{bmatrix} 0.4 & 0 & 0.2 \end{bmatrix}^T$ με προσανατολισμό $R_{0C} = I_3$ όπου I_3 ο μοναδιαίος πίνακας διάστασης 3 όπως φαίνεται στο Σχήμα 2.

Στον χώρο εργασίας του βραχίονα κινείται μια σφαίρα ακτίνας r=2cm λόγω του βάρους της πάνω στην καμπυλωτή τσουλήθρα που βρίσκεται στο επίπεδο x=0.4 του $\{0\}$ όπως φαίνεται στο Σχήμα 2. Τοποθετούμε το πλαίσιο επαφής $\{B\}$ στο σημείο επαφής της σφαίρας με την τσουλήθρα έτσι ώστε ο άξονας \bar{z} του πλαισίου $\{B\}$ να είναι κάθετος στην επιφάνεια επαφής και ο \bar{y} εφαπτόμενος όπως φαίνεται στο Σχήμα 2. Την χρονική στιγμή t=0 ο άξονας \bar{y} του $\{B\}$ βρίσκεται στην κατέυθυνση $\begin{bmatrix}0&0.9351&-0.3543\end{bmatrix}^T$.

Η θέση $p_{CB}(t) \in \mathbb{R}^3$, η μεταφορική και η γωνιακή ταχύτητα $v_{CB}(t)$, $\omega_{CB}(t) \in \mathbb{R}^3$ αντίστοιχα, του πλαισίου $\{B\}$ δίνονται κάθε χρονική στιγμή ως προς το πλαίσιο μιας κάμερας $\{C\}$. Η κίνηση της σφαίρας προσομοιώνεται μέσω της κλάσης Wspace. Πιο συγκεκριμένα χρησιμοποιώντας την συναρτηση

```
[ p_cb, v_cb , w_cb] = Wspace.sim_ball( Ts)
```

προσομοιώνουμε την κίνηση της σφαίρας για ένα κύκλο ελέγχου. Η συνάρτηση επιστρέφει τη θέση p_cb , τη μεταφορική ταχύτητα v_cb και τη γωνιακή ταχύτητα w_cb του πλαισίου $\{B\}$ ως προς το πλαίσιο της κάμερας $\{C\}$ για τη χρονική στιγμή $t+T_s$. Καλώντας την παραπάνω συνάρτηση με όρισμα $T_s=0$ παίρνουμε την αρχική θέση και ταχύτητα του πλαισίου $\{B\}$.

- 1. Βρείτε τη θέση και τον προσανατολισμό του άκρου του ρομποτικού βραχίονα για τις αρχικές τιμές των αρθρώσεων q_0 .
- 2. Σχεδιάστε κατάλληλο σήμα ελέγχου \dot{q}_r ώστε το άκρο του βραχίονα να παρακολουθεί την κινούμενη σφαίρα με προσανατολισμό $R_{BE}={\rm Rot}(y,180^o)$ και θέση $p_{BE}=\begin{bmatrix}0&0&0.45\end{bmatrix}^T$. Προσομοιώστε κινηματικά το ρομποτικό σύστημα σε περιβάλλον Matlab χρησιμοποιώντας το robotics toolbox, με σταθερό βήμα $T_s=2ms$.

Για να αποφύγετε την υπέρβαση των ορίων ταχύτητας των αρθρώσεων $\dot{q}_{r,max}$ χρησιμοποιείστε συνάρτηση κορεσμού στο σήμα \dot{q}_r ενώ για να αποφύγετε την υπέρβαση των ορίων επιτάχυνσης χρησιμοποιείστε κατάλληλο χαμηλοπερατό φίλτρο για το \dot{q}_r .

Παραδοτέα εργασίας

- 1. Αναλυτική αναφορά (.doc, .pdf) που να περιέχει τη θεωρητική ανάλυση, γραφήματα και σχολιασμό για όλα τα παραπάνω. (θα γίνονται δεκτές μόνο εργασίες γραμμένες στον υπολογιστή).
- 2. Κατάλληλο m-file script το οποίο θα υλοποιεί όλα τα παραπάνω και στο τέλος θα εμφανίζει την κίνηση. Επίσης θα πρέπει να εμφανίζονται τα εξής διαγράμματα συναρτήσει του χρόνου: Η θέση του άκρου του βραχίονα p_{BE} ως προς το πλαίσιο $\{B\}$, ο προσανατολισμός R_{BE} σε μορφή ισδύναμου άξονα/γωνίας, οι αποκρίσεις θέσης, ταχύτητας και επιτάχυνσης των αρθρώσεων.

Μπορείτε να βρείτε το robotics toolbox καθώς και το εγχειρίδιο χρήσης του στον συνδεσμο https://petercorke.com/toolboxes/robotics-toolbox/