代数学方法-基础架构

李文威

2022年11月17日

第一章 范畴论基础

1.1 范畴与态射

概括地说,范畴是由对象及其间的态射组成的数学结构,从对象 X 到 对象 Y 的态射 f 习惯以箭头来描述

$X \xrightarrow{f} Y$

函子视作范畴间保持箭头结构的某种"映射",函子之间的关系由自然变换描述。

数学中考虑的范畴经常以一类特定的结构为对象,例如群,环,向量空间,偏序集,拓扑空间等,范畴中的态射经常是保结构的映射,如群同态,连续映射等。函子与自然变换在这种种结构之间搭起桥梁。范畴论的本意不止于研究它们各自的性质。

范畴视角的特色正在于重视关联甚于数学对象本身,并以同构代替严格等式。

实际上,范畴里的对象未必是建立在集合上的结构,而态射也未必是映射。

	拓扑学	量子物理	数理逻辑	计算机科学
	(配边理论)		(形式演绎系统)	(带类型的λ演算)
对象	流形	物理系统	命题	资料形态
态射	配边关系	过程	证明	程序

自然学科终归需要实践来检验。

实用中往往会考虑带有特殊结构的范畴。幺半范畴是最常见的结构之一,其中具有类似于乘法的操作。

集合的大小对范畴的性质有实在的影响。

定义 1.1.1 (范畴 C). 指:

- 1. 集合 Ob(C), 其元素称作 C 的 对象
- 2. 集合 Mor(C), 其元素称作 C 的 态射, 配上一对映射

$$\operatorname{Mor}(\mathcal{C}) \xrightarrow{s} \operatorname{Ob}(\mathcal{C})$$

其中 s,t 分别给出态射的来源和目标。对于 $X,Y \in \mathrm{Ob}(\mathcal{C})$,习惯记 $\mathrm{Hom}_{\mathcal{C}}(X,Y) := s^{-1}(X) \cap t^{-1}(Y)$ 或简记为 $\mathrm{Hom}(X,Y)$,称为 Hom -集,其元素称为从 X 到 Y 上的态射。

(从 X 出发的态射和到达 Y 的态射的交集)

- 3. 任意对象 X 给定元素 $\mathrm{id}_X \in \mathrm{Hom}_{\mathcal{C}}(X,X)$,称为 X 到自身的恒等态 射。
- 4. $\forall X, Y, Z \in Ob(C)$, 给定态射间的 合成映射

$$\circ: \operatorname{Hom}_{\mathcal{C}}(Y,Z) \times \operatorname{Hom}_{\mathcal{C}}(X,Y) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(X,Z)$$
$$(f,g) \longmapsto f \circ g$$

不致混淆时常将 $f \circ g$ 简记为 fg, 它满足

(a) 结合律: \forall 态射 $h, g, f \in \text{Mor}(\mathcal{C})$, 若合成 f(gh) 和 (fg)h 都有定义,则

$$f(qh) = (fq)h$$

(b) \forall 态射 $f \in \text{Hom}_{\mathcal{C}}(X,Y)$ 有

$$f \circ \mathrm{id}_X = f = \mathrm{id}_Y \circ f$$

注意 1. .

- 注意到 id_X 被其性质唯一确定。对象与态射集皆空的范畴称为空范畴,记为 0.
- 一般也将 $f \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$ 写作 $f: X \to Y$ 或 $X \xrightarrow{f} Y$,故态射有时又叫作箭头。态射的合成对应于箭头的头尾衔接。图表加箭头是讨论

1.1 范畴与态射 5

范畴的方便语言。其中最常用的是交换图表的概念,"交换"意指箭头的 合成殊途同归,例如:

的交换性分别等价于 gf = h 和 vu = yx。态射的名称 f,g 等自明或者不重要,则常可以从图表中省略。

- 对于态射 $f: X \to Y, \exists g: Y \to X \Rightarrow fg = \mathrm{id}_Y \land gf = \mathrm{id}_X$,则称 f 是 同构 (或称可逆,写作 $f: X \xrightarrow{\sim} Y$),g 称为 f 的递,从恒等态射的性质易见逆若存在则唯一。从 X 到 Y 的同构集记为 $\mathrm{Isom}_{\mathcal{C}}(X,Y)$.
- 记 $\operatorname{End}_{\mathcal{C}} := \operatorname{Hom}_{\mathcal{C}}(X,X), \operatorname{Aut}_{\mathcal{C}}(X) := \operatorname{Isom}_{\mathcal{C}}(X,X)$,分别称作 X 的 自同态集和自同构集。这些集合在二元运算。下封闭:用代数的语言来说, $\operatorname{End}(X)$ 是幺半群, $\operatorname{Aut}(X)$ 是群。

定义 1.1.2 (子范畴). 称 C' 是 C 的子范畴, 如果满足四条件:

- 1. $Ob(C') \subset Ob(C)$
- 2. $Mor(C') \subset Mor(C)$, 并保持恒等态射
- 3. 来源/目标映射 $\operatorname{Mor}(\mathcal{C}') \stackrel{s}{\Longrightarrow} \operatorname{Ob}(\mathcal{C}')$ 是由 \mathcal{C} 限制而来的
- 4. C' 中态射的合成也是由 C 限制而来的

简而言之,任意 \mathcal{C} 中的对象 X,Y,有包含关系 $\mathrm{Hom}_{\mathcal{C}'}(X,Y)\subset\mathrm{Hom}_{\mathcal{C}}(X,Y)$,它与态射的合成兼容。如果 $\mathrm{Hom}_{\mathcal{C}'}(X,Y)=\mathrm{Hom}_{\mathcal{C}}(X,Y)$ 则称 \mathcal{C}' 是全子范畴。

定义 1.1.3 (U-范畴, U-小范畴). .

范畴 \mathcal{C} 对于 $\forall X,Y \in \mathrm{Ob}(\mathcal{C})$,集合 $\mathrm{Hom}_{\mathcal{C}}(X,Y)$ 都是 \mathcal{U} -小集(局部 \mathcal{U} -小范畴)。

如果态射集 Mor(C) 也是 U-小集,则称为 U-小范畴

注意 2. .

范畴 \mathcal{C} 是 \mathcal{U} -小范畴当且仅当它是 \mathcal{U} -范畴且 $\mathrm{Ob}(\mathcal{C})$ 是 \mathcal{U} -小集。因为 $X\mapsto id_X$ 将 $\mathrm{Ob}(\mathcal{C})$ 嵌入 $\mathrm{Mor}(\mathcal{C})$.

将群、环、空间等其它结构称为U-群(环、空间),如果它们作为集合是一个U-集合。不致混淆时,也简称作小集,小群等等。

约定 1 (). 选定宇宙后,若不另外说明,将略去符号 U 将集合、群等理解为 U-集(群)等。所论的范畴如不另外说明都是 U-范畴。

例 1.1.1 (几个基本的范畴的例子)...

1. 预序集等同于任意两个对象之间至多有一个态射的范畴: 对于预序集 (P, \leq) ,定义范畴使得其对象集为 P,而存在态射 $p \to p' \Leftrightarrow p \leq p'$,此时这样的态射唯一。特别地,根据对有限序数的递归定义,任意 $n \in \mathbb{Z}_{\geq 0}$ 视为序数等同于全序集 $\{0, ..., n-1\}$,而 $0 = \emptyset$ 。相应的范畴记为 \mathbf{n} ,其结构可以形象地表为

$$0 \rightarrow 1 \rightarrow ... \rightarrow (n-1)$$
(略去恒等态射)

特别地,0给出空范畴0,1给出恰有一个对象和一个态射的范畴1.

- 2. 令 Set 为所有集合构成的范畴,对象 X,Y 之前的态射定义为映射 $X \to Y$ 。态射的合成就是映射的合成,恒等态射就是映射的合成,恒等态射就是恒等映射。这是 \mathcal{U} -范畴。
- 3. 带基点的集合范畴 Set_{\bullet} 。对象是所有 (X,x),其中 X 是集合 $x \in X$ (基点),从 $(X,x) \to (Y,y)$ 的态射是满足 f(x) = y 的映射 $f: X \to Y$
- 4. 令 Grp 是所有群构成的范畴,对象之间的态射定义为群同态,态射的合成与恒等态射定义与 Set 相同。

$$f(xy) = f(x)f(y)$$

5. 令 Ab 为所有交换群 (Abel 群,二元运算用加法 +) 构成的范畴,态射与 Grp 的情形相同。它是 Grp 的全子范畴。注意到交换群的同态可以相加 (复合),因此对于任意两个交换群 X,Y,同态集 $\operatorname{Hom}(X,Y)$ 不仅是一个集合,它还具有交换群的结构 (G,+),这使得合成映射 $\operatorname{Hom}(Y,Z) \times \operatorname{Hom}(X,Y) \to \operatorname{Hom}(X,Z)$ 满足双线性:

$$(f+q)h = fh + gh, \quad h(f+q) = hf + hq$$

1.1 范畴与态射 7

这是 Ab-范畴的一个特殊情形。

$$(f+g)(xy) = f(g(x)g(y)) = f(g(x))f(g(y)) = (f+g)(x) \cdot (f+g)(y)$$

6. 令 Top 为所有拓扑空间构成的范畴,空间皆假定为 Hausdorff 的,态射定义为连续映射,合成与恒等态射的定义同上;类似的定义带基点的拓扑空间 Top_•。我们也希望赋予同态集 $\operatorname{Hom}(X,Y)$ 额外的结构,例如紧开拓扑,使得 $\operatorname{Hom}(Y,Z) \times \operatorname{Hom}(X,Y) \to \operatorname{Hom}(X,Z)$ 成为连续映射;更希望能有自然的同构

$$\operatorname{Hom}(X \times Y, Z) \xrightarrow{\sim} \operatorname{Hom}(X, \operatorname{Hom}(Y, Z))$$

相关的点集拓扑问题颇为棘手,为了在确保良好的范畴性质的同时容许充分广的拓扑空间,在同伦论里一般选用 Top 的一个子范畴 CGHaus, 称为紧生成 Hausdorff 空间范畴

- 7. 选定一个域 \mathbb{k} ,令 $\mathsf{Vect}(\mathbb{k})$ 为 \mathbb{k} 上的所有向量空间构成的范畴,态射为线性映射。类此定义有限维向量空间范畴 $\mathsf{Vect}_f(\mathbb{k})$,它是 $\mathsf{Vect}(\mathbb{k})$ 的全子范畴
- 8. 给定集合 S,定义相应的离散范畴 ${\sf Disc}(S)$: 其对象集为 S 而态射仅有恒等态射 $\{{\sf id}_x:x\in S\}$

注意 3. 如果不用约定 1 而直接考虑所有集合,所有群等等构成的范畴,则会面临悖论,因为所有集合的全体并不构成集合。常见的一种做法是区分类和集,并要求对象全体成一个类 Ob(C),而任一个态射集 $Hom_C(X,Y)$ 是集合。用 ZFC 来考虑较为迂回,而 NBG 集合论则特别适应与这个编发。将真类引入范畴论公理会造成不少麻烦,之后要讨论的函子范畴是一个例子。因此我们宁可引入宇宙的概念,并假设所考察的数学对象都是 U-小的。

单射和满射的概念有自然的范畴论推广

定义 1.1.4 (单态射,满态射). X,Y 为范畴 \mathcal{C} 中的对象, $f \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$

- 1. 单态射任何对象 Z 和任一对态射 $g,h:Z\to X$ 有 $fg=fh\Leftrightarrow g=h$ 左消去律;
- 2. 满态射任何对象 Z 和任一对态射 $g,h:Y\to Z$ 有 $gf=hf\Leftrightarrow g=h$ 右消去律;

如存在 g 使得 $gf = id_X$,则称 f 左可逆而 g 是它的一个左逆;类似的可以定义右逆。左可逆蕴含单,右可逆蕴含满。态射可逆当且仅当它左右皆可逆。

例 1.1.2 (常用范畴中的单性与满性)...

在范畴 Set, Grp, Vect(\Bbbk) 中,态射的单性与满性分别等价于集合论意义下的单射和满射,而且既单又满的态射恰好是同构。对其它范畴则略有区别。在 Top 中,态射 $f: X \to Y$ 有稠密的像便是满态射。而在复拓扑向量空间范畴 TopVect(\mathbb{C}) 中,存在许多连续线性映射 $f: V \to W$,使得 f 是双射而非开映射,这样的态射既单且满,却不是同构。

定义 1.1.5 (广群). 若一个范畴 C 中的所有态射都可逆,则称之为广群。

只有一个对象的范畴与幺半群一一对应:相应的幺半群是 End(X), x 是 唯一对象。群无非是只有一个对象的广群。由于广群里的箭头都是同构,它 适合用来表述数学对象的分类问题。???

例 1.1.3 (基本广群). 设 X 是拓扑空间,两点 x,y 之间的道路意指连续映射 $f:[0,1]\to X, f(0)=x, f(1)=y$. 道路的合成无非是头尾相接:对于 $x,y,z\in X$ 和道路 $f(x\to y),f'(y\to z)$,定义 $x\to z$ 的道路 f'' 为:

$$f''(t) = \begin{cases} f(2t), & 0 \le t \le \frac{1}{2} \\ f'(2t-1), & \frac{1}{2} < t \le 1 \end{cases}$$

两条 x,y 之间的道路 f,f' 称为 (定端) 同伦的,如果存在连续映射 $F:[0,1]^2\to X$ 使得对每个 $t\in[0,1],F(\cdot,t)$ 都是 x,y 之间的道路,而且 $F(\cdot,0)=f,F(\cdot,1)=f'$ 。同伦构成一个等价关系。易见道路的合成可以在 同伦类的层次定义。

空间 X 的基本广群 $\Pi_1(X)$ 定义为如下范畴,其对象是 X 中的点,对任意 $x,y\in X$,态射集 $\operatorname{Hom}(x,y)$ 定义为所有从 x 到 y 的道路类;态射的合成 定义为道路类的合成,而恒等态射 id_x 由静止道路 $\forall t,\operatorname{id}_x(t)=x$ 表示。对

于给定的态射 $f: x \to y$ (同伦类中的某个代表元),其逆可以取为反向道路 $f^{-1} := f(1-t), t \in [0,1]$ 。

可以验证这些操作都是良定的,并使得 $\Pi_1(X)$ 成为广群。注意到 $\operatorname{Aut}(X) = \operatorname{Hom}(x,x)$ 正好是以 x 为基点的基本群 $\pi_1(X,x)$.

基本群是拓扑学中重要的不变量,它为每个空间 X 指定一个相应的代数结构 (群)。基本广群可以视为再高一阶的不变量:它为 X 指定一个范畴。但是应当注意还有大量拓扑信息被 $\Pi_1(X)$ 的范畴结构遗漏了:除了道路的同伦类,还应该计入道路间的同伦等价,还可以设想同伦之间更有同伦,直至无穷。凡此种种都必须以更高阶的范畴语言反映。???

定义 1.1.6 (反范畴). 任意范畴 C, 其反范畴 C^{op} 定义为:

- $Ob(\mathcal{C}^{op}) = Ob(\mathcal{C})$
- $\forall X, Y \in \mathrm{Ob}(\mathcal{C}), \mathrm{Hom}_{\mathcal{C}^{\mathrm{op}}}(X, Y) := \mathrm{Hom}_{\mathcal{C}}(Y, X)$
- $f \in \operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(Y, Z), g \in \operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(X, Y)$ 在 $\mathcal{C}^{\operatorname{op}}$ 中的合成 $f \circ^{\operatorname{op}} g$ 定义为 \mathcal{C} 中的反向合成 $g \circ f$
- 恒等态射定义等同 C

容易验证 \mathcal{C}^{op} 满足范畴定义,且 $(\mathcal{C}^{\text{op}})^{\text{op}} = \mathcal{C}$ 。

简而言之, \mathcal{C}^{op} 的构造就是反转箭头,反转之后的范畴论公理依然成立,范畴论中的这种对称性也称作对偶原理。例如: \mathcal{C}^{op} 中的单态射无非是 \mathcal{C} 中的满态射。

1.2 函子与自然变换

定义 1.2.1 (函子). 设 C', C 为范畴。一个函子 $F: C' \to C$ 指:

- 1. 对象间的映射 $F: Ob(\mathcal{C}') \to Ob(\mathcal{C})$
- 2. 态射间的映射 $F: Mor(\mathcal{C}') \to Mor(\mathcal{C})$ 使得
 - F 的来源和目标映射可交换 sF = Fs, tF = Ft,等价的说法是 $\forall X, Y \in \text{Ob}(\mathcal{C}')$ 都有映射 $F : \text{Hom}_{\mathcal{C}'}(X, Y) \to \text{Hom}_{\mathcal{C}}(FX, FY)$
 - $F(q \circ f) = F(q) \circ F(f); F(\mathrm{id}_X) = \mathrm{id}_{FX}$

对于 $F: \mathcal{C}_1 \to \mathcal{C}_2, G: \mathcal{C}_2 \to \mathcal{C}_3$,合成函子 $G \circ F: \mathcal{C}_1 \to \mathcal{C}_3$ 的定义是显然的: 取合成映射

$$Ob(\mathcal{C}_1) \xrightarrow{F} Ob(\mathcal{C}_2) \xrightarrow{G} Ob(\mathcal{C}_3)$$
$$Mor(\mathcal{C}_1) \xrightarrow{F} Mor(\mathcal{C}_2) \xrightarrow{G} Mor(\mathcal{C}_3)$$

旧文献常将上述函子称为 \mathcal{C}' 到 \mathcal{C} 的共变函子,形如 $F:(\mathcal{C}')^{\mathrm{op}}\to\mathcal{C}$ 的函子为反变函子。

注意 4. 从 \mathcal{C}' 到 \mathcal{C} 和从 $(\mathcal{C}')^{\mathrm{op}}$ 到 $\mathcal{C}^{\mathrm{op}}$ 的函子是一回事。为区分,对于函子 $F:\mathcal{C}'\to\mathcal{C}$,反范畴间的相应函子记为 $F^{\mathrm{op}}:(\mathcal{C}')^{\mathrm{op}}\to\mathcal{C}^{\mathrm{op}}$

定义 1.2.2 (函子的满性, 忠实性, 全性). 对于函子 $F: \mathcal{C}' \to \mathcal{C}$

- 1. 本质满的: 若 C 中任一对象都同构于某个 FX
- 2. 忠实的: 若 $\forall X, Y \in \mathrm{Ob}(\mathcal{C}')$, 映射 $\mathrm{Hom}_{\mathcal{C}'}(X,Y) \to \mathrm{Hom}_{\mathcal{C}}(FX,FY)$ 都 是单射
- 3. 全的: 上述映射对 $\forall X, Y \in Ob(\mathcal{C}')$ 都是满射

例 1.2.1 (函子). .

- 1. 子范畴 $\mathcal{C}'\subset\mathcal{C}$ 给出一个包含函子 $\iota:\mathcal{C}'\hookrightarrow\mathcal{C};$ 包含函子总是忠实的,它是全函子当且仅当 \mathcal{C}' 是全子范畴。取 $\mathcal{C}'=\mathcal{C}$ 就得到恒等函子 $\mathrm{id}_{\mathcal{C}}:\mathcal{C}\to\mathcal{C}$
- 2. 考虑群范畴 $Grp. \forall$ 群 G,总是可以忘掉 G 的群结构而视之为集合,群 同态当然也可以视为集合间的映射,此程序给出忘却函子 $Grp \to Set$ 。 类似地给出忘却其它结构的忘却函子 $Top \to Set$ (忘却空间的拓扑结构), $Vect(\Bbbk) \to Ab$ (忘掉 &-向量空间 V 的纯量乘法,只看它的加法群 (V,+)) 等等。这类函子显然忠实而非全。
- 3. 考虑域 \mathbb{L} 上的向量空间范畴 $\mathsf{Vect}(\mathbb{L})$ 。对于任意 \mathbb{L} -向量空间 V,定义 其对偶空间

$$V^{\vee} := \operatorname{Hom}_{\Bbbk}(V, \Bbbk) = \{ \Bbbk - 线性映射V \to \Bbbk \}$$

任一线性映射 $f: V_1 \rightarrow V_2$ 诱导对偶空间的反向映射

$$f^{\vee}: V_2^{\vee} \to V_1^{\vee}$$

$$[\lambda: V_2 \to \Bbbk] \mapsto \lambda \circ f$$

易见 $D: V \mapsto V^{\vee}, f \mapsto f^{\vee}$ 定义了函子 $D: \mathsf{Vect}(\Bbbk)^{\mathrm{op}} \to \mathsf{Vect}(\Bbbk)$,可以验证 D 是忠实的。根据反函子的定义合成函子 $DD^{\mathrm{op}}: \mathsf{Vect}(\Bbbk) \to \mathsf{Vect}(\Bbbk)$

将 D 限制于有限维向量空间,得到函子 $D: \mathsf{Vect}_f(\Bbbk)^{\mathrm{op}} \to \mathsf{Vect}_f(\Bbbk)$ 和 $DD^{\mathrm{op}}: \mathsf{Vect}_f(\Bbbk) \to (Vect)_f(\Bbbk)$,分别称为对偶和双对偶函子。

- 4. 对于任意群 G,定义导出子群 G_{der} 为子集 $\{xyx^{-1}: x,y\in G\}$ 生成的 正规子群。商群 G/G_{der} 是交换群,称作 G 的 Abel 化。对于任意群 同态 $\varphi:G\to H$,从定义可以看出 $\varphi(G_{\operatorname{der}})\subset H_{\operatorname{der}}$,因此 φ 诱导出交 换群的同态 $\bar{\varphi}:G/G_{\operatorname{der}}\to H/H_{\operatorname{der}}$ 。容易验证 $G\mapsto G/G_{\operatorname{der}},\varphi\mapsto\bar{\varphi}$ 定义了 Abel 化函子 $\operatorname{Grp}\to\operatorname{Ab}$ 。Abel 化函子不是忠实函子。
- 5. 对任意带点拓扑空间 (X,x) 指定基本群 $\pi_1(X,x)$,给出了函子 $\mathsf{Top}_{\bullet} \to \mathsf{Grp}$ 。代数拓扑学中还有许多例子,例如空间的同调群 $X \mapsto H_n(X;Z)$ 给出了一族函子 $H_n: \mathsf{Top} \to \mathsf{Ab}$,其中 $n \in \mathbb{Z}_{\geq 0}$,上同调群给出函子 $H^n: \mathsf{Top}^{\mathsf{op}} \to \mathsf{Ab}$ 。

定义 1.2.3 (自然变换,或函子间的态射). 函子 $F,G:\mathcal{C}'\to\mathcal{C}$ 之间的自然 变换 θ 是一族态射

$$\theta_X \in \operatorname{Hom}_{\mathcal{C}}(FX, GX), X \in \operatorname{Ob}(\mathcal{C}')$$

使得下图所有 C' 中的态射交换

$$\begin{array}{ccc} FX & \xrightarrow{\theta_X} GX \\ Ff \downarrow & & \downarrow Gf \\ FY & \xrightarrow{\theta_Y} GY. \end{array}$$

上述自然变换写作 $\theta: F \to G$, 或图解为

上述带有双箭头 \Rightarrow 的图表有时也被称为 2-胞腔,一种兴许更有益的看法是设想 θ 为从 F 到 G 的一个同伦。

约定 2. . 我们也将自然变换 $\theta: F \to G$ 称为从函子 F 到 G 的态射。实用中经常会省略严格的范畴论框架,只说态射 $\theta_X: FX \to GX$ 对于变元 X 是自然的,典范的,或称满足函子性。实践中经常把自然同构直接写成等号=。

几种自然变换的操作,包括纵、横两种合成

• 纵合成: 考虑 \mathcal{C}' 到 \mathcal{C} 的三个函子间的态射 $\theta: F \to G, \psi: G \to H$ 。纵合成 $\psi \circ \theta := \{\psi_X \circ \theta_X : X \in \mathrm{Ob}(\mathcal{C})\}$,图解:

• 横合成: 考虑函子 C'' $\overbrace{F_2}^{F_1}$ C' $\overbrace{G_2}^{G_1}$ C 及态射 $\theta: F_1 \to F_2, \psi: G_1 \to G_2$ 。现定义横合成 $\psi \circ \theta: G_1 \circ F_2 \to G_2 \circ F_2$ 。注意到对所有 $X \in \mathrm{Ob}(\mathcal{C}'')$,根据 ψ 的自然性,图表

$$G_1F_1(X) \xrightarrow{\psi_{F_1X}} G_2F_1(X)$$

$$G_1(\theta_X) \downarrow \qquad \qquad \downarrow G_2(\theta_X)$$

$$G_1F_2(X) \xrightarrow{\psi_{F_2X}} G_2F_2(X)$$

交换。对角合成 \searrow 记作 $(\psi \circ \theta)_X : G_1F_1(X) \to G_2F_2(X)$,此即所求的横合成,我们马上会证明它的自然性。图解:

$$C''$$
 f_1
 f_2
 f_3
 f_4
 f_5
 f_6
 f_7
 f_7
 f_8
 f_8
 f_9
 f_9

• 横合成的特例

对左边三项: $\theta H: FH \to GH$ 简记横合成 $\theta \circ \mathrm{id}_H$; 具体地说, $(\theta H)_X = \theta_{HX}: FH(X) \to GH(X)$; 类似地处理右三项: $K\theta: KF \to KG$ 为横合成 $\mathrm{id}_K \circ \theta$, 我们有 $(K\theta)_X = K(\theta_X): KF(X) \to KG(X)$

注意 5. 这里使用了同一个符号。表示纵横合成,如有混淆之虞将另作说明

引理 1.2.1. 横纵合成 $\{(\psi \circ \theta)_X\}_X$ 都是函子间的态射,而且各自满足严格结合律 $(\phi \circ \psi) \circ \theta = \phi \circ (\psi \circ \theta)$ 。横纵合成之间满足关系:对于图表

以下的互换律成立

$$\begin{pmatrix} \psi' \circ \theta' \end{pmatrix} \circ \begin{pmatrix} \psi \circ \theta \end{pmatrix} = \begin{pmatrix} \psi' \circ \psi \end{pmatrix} \circ \begin{pmatrix} \theta' \circ \theta \end{pmatrix}$$

证明. 证明横合成是函子间的态射。对于 C'' 中的态射 $f: X \to Y$, 图表

$$G_1F_1(X) \xrightarrow{G_1\theta_X} G_1F_2(X) \xrightarrow{\psi_{F_2X}} G_2F_2(X)$$

$$G_1F_1f \downarrow \qquad \qquad \downarrow_{G_1F_2f} \qquad \downarrow_{G_2F_2f}$$

$$G_1F_1(Y) \xrightarrow{G_1\theta_Y} G_1F_2(Y) \xrightarrow{\psi_{F_2Y}} G_2F_2(Y)$$

按定义,水平方向箭头合成后上下分别是 $(\psi \circ \theta)_X$ 和 $(\psi \circ \theta)_Y$ 。因为 θ 是自然变换而 G_1 是函子,左方块交换;由于 ψ 是自然变换,右方块交换。将箭头分段作合成,可知整个大方块交换,此即 $\psi \circ \theta$ 所需性质。

现证明横合成的结合律:考虑函子间的态射

$$\mathcal{C}''' \underbrace{ \left(\begin{array}{c} F_1 \\ \theta \end{array} \right) \mathcal{C}'' \left(\begin{array}{c} G_1 \\ \psi \end{array} \right) \mathcal{C}' \left(\begin{array}{c} H_1 \\ \phi \end{array} \right) \mathcal{C}$$

对任意 $X \in \text{Ob}(\mathcal{C}''')$ 考虑图表

$$H_1G_1F_1(X) \longrightarrow H_1G_2F_1(X) \xrightarrow{H_1G_2F_2(X)} H_2G_2F_2(X)$$

 ψ 的自然性 $G_2F_1(X) \to G_2F_2(X)$ 可知菱形部分交换。按 _________ 合成给出 $(\phi \circ (\psi \circ \theta))_X$ 。按 ___________ 合成则给出 $((\phi \circ \psi) \circ \theta)_X$ 。这里仍须用上交换图表,结合律证毕。

任意函子 F 到自身有恒等态射 $\mathrm{id}_F: F \to F$ 。给定函子间的态射 $\theta: F_1 \to F_2$,若态射 $\psi: F_2 \to F_1$ 满足 $\psi \circ \theta = \mathrm{id}_{F_1}, \theta \circ \psi = \mathrm{id}_{F_2}$,则称 ψ 是 θ 的逆。可逆的态射称为函子间的同构,写作 $\theta: F_1 \overset{\sim}{\to} F_2$ 。由定义,若 θ 的逆存在则唯一,记为 θ^{-1} ,它无非是在范畴中"逐点地"取 $\dot{\mathcal{C}}: (\theta^{-1})_X := (\theta_X)^{-1}: F_2X \overset{\sim}{\to} F_1X$ 。态射 θ 可逆当且仅当每个 θ_X 都可逆。易见同构的横纵合成仍是同构。函子间同构 $\theta: F_1 \overset{\sim}{\to} F_2$ 的等价说法是称 $\theta_X: F_1X \overset{\sim}{\to} F_2X$ 对变元 X 是自然同构或典范同构。

定义 1.2.4 (等价). 如果一对函子 $C_1 \overset{F}{\underset{G}{\longleftarrow}} C_2$ 满足性质:存在函子之间的同构 $\theta: FG \xrightarrow{\sim} \mathrm{id}_{C_2}, \psi: GF \xrightarrow{\sim} \mathrm{id}_{C_1}$ 则称 $G \not\in F$ 的拟逆函子,并称 F 是范畴 C_1 到 C_2 的等价。

进一步,如果有 $FG=\mathrm{id}_{\mathcal{C}_2},GF=\mathrm{id}_{\mathcal{C}_1}$,则称 F 是范畴间的同构,G 是 F 的逆。

容易证明,等价的合成仍是等价。

例 1.2.2 (CHaus). 令 CHaus 为紧 Hausdorff 拓扑空间范畴, C^* – CommAlg 为含幺元的交换 C^* -代数所成的范畴(态射为保幺元的 *- 同态)。交换版本的 Gelfand-Naimark 定理断言函子

CHaus
$$\longrightarrow$$
 C^* — CommAlg $X \longmapsto C(X)$: 连续复值函数空间

 \mathfrak{M}_A : 极大理想空间 \longleftarrow A

互为拟逆: Gelfand 变换 $a \mapsto \hat{a}$ 给出自然同构 $A \xrightarrow{\sim} C(\mathfrak{M}_A)$ 。

命题 1.2.1. 若 G, G' 是函子 $F: \mathcal{C}_1 \to \mathcal{C}_2$ 的拟逆,则存在函子的同构 $G \simeq G'$ 证明. 自然变换的横合成给出 $G \xrightarrow{\psi' \circ \mathrm{id} G} (G'F)G = G'(FG) \xleftarrow{\mathrm{id} G' \circ \theta} G'$

注意 6. 我们业已对对象间的态射和函子间的态射 (自然变换) 定义了逆的概念,由此导出对象和自然变换同构的概念,若逆存在则唯一。对于函子亦

可定义逆的概念,逆函子若存在则唯一;相较之下,拟逆函子之间则可以差一个同构。实践表明范畴的同构概念不甚实用,等价的概念则处处出现。这体现了范畴论的一条经验准则:在函子层次,同构(如之前的 $\theta: FG \xrightarrow{\sim} id$)几乎总是比严格相等(如之前的 FG = id)来得管用。然而同构也不是任意的,所需的条件一般称为融贯性:以等价为例,拟逆的概念有些松散,后面给出定理给出称为伴随等价的一种细化。

定义 1.2.5 (骨架,骨架范畴). 称一个全子范畴 $\mathcal{C}' \subset \mathcal{C}$ 是 \mathcal{C} 的一副骨架。 如果对 \mathcal{C} 的每个对象 X 都存在同构 $X \xrightarrow{\sim} Y \in \mathrm{Ob}(\mathcal{C}')$,且此同构中的像 $Y \in \mathrm{Ob}(\mathcal{C}')$ 是唯一的。

自为骨架的范畴称为骨架范畴

引理 1.2.2. 任意范畴 \mathcal{C} 总有一副骨架 \mathcal{C}' ,而且包含函子 $\iota: \mathcal{C}' \hookrightarrow \mathcal{C}$ 是等价。骨架范畴间的全忠实,本质满函子都是同构。

证明. • 任意范畴必有骨架

使用选择公理在 $Ob(\mathcal{C})$ 的每个同构类中选定代表元,由这些代表元构成的全子范畴记作 \mathcal{C}' 。同理,对每个 $X \in Ob(\mathcal{C})$ 可以选定同构 $\theta_X: X \xrightarrow{\sim} \kappa(X)$,其中 $\kappa(X) \in Ob(\mathcal{C}')$ 。假设对每个 $X \in Ob(\mathcal{C}')$ 有 $\theta_X = \mathrm{id}_X$ 。存在唯一一种方法将 $\kappa: Ob(\mathcal{C}) \to Ob(\mathcal{C}')$ 延拓为函子并使 得 $\theta: \mathrm{id}_{\mathcal{C}} \xrightarrow{\sim} \iota \kappa:$ 令

$$\kappa(f) := \theta_Y \circ f \circ \theta_X^{-1} \in \operatorname{Hom}_{\mathcal{C}'}(\kappa(X), \kappa(Y)), f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$$

另一方面,我们有函子的等式 $\kappa \iota = \mathrm{id}_{\mathcal{C}'}$ 。因此 $\kappa \not\in \iota$ 的拟逆函子。

• 骨架范畴间的全忠实,本质满函子都是同构

设 $F: \mathcal{C}_1 \to \mathcal{C}_2$ 是骨架范畴间的全忠实,本质满函子。对任意 \mathcal{C}_2 中的对象 Z,存在 X 使得 $Z \simeq FX$,因此 Z = FX。这样的 X 是唯一的,因为全忠实性和 $FX \simeq FX'$ 蕴含 $X \simeq X'$ 。于是 F 在对象集上是双射,由此可定义其逆函子 G。

定理 1.2.1. 对于函子 $F: \mathcal{C}_1 \to \mathcal{C}_2$,以下叙述等价

- 1. F 是范畴等价
- 2. F 是全忠实,本质满函子

证明. 假设 F 是范畴等价,取拟逆函子 $G: \mathcal{C}_2 \to \mathcal{C}_1$ 和 $GF \overset{\psi}{\sim} \mathrm{id}_{\mathcal{C}_1}, FG \overset{\phi}{\sim} \mathrm{id}_{\mathcal{C}_2}$ 。对于 \mathcal{C}_2 中的任何对象 Z 都有 $\phi_Z: F(GZ) \overset{\sim}{\to} Z$ 故 F 本质满,同理 G 本质满。

 $\operatorname{Hom}(X,Y) \overset{F}{\to} \operatorname{Hom}(FX,FY) \overset{G}{\to} \operatorname{Hom}(GF(X),GF(Y)) \overset{\sim}{\to} \operatorname{Hom}(X,Y)$

$$f \longmapsto Ff \longmapsto GF(f) \longmapsto \psi_Y GF(f)\psi_X^{-1}$$

合成为恒等映射,故图中的第一个箭头 F 左可逆,第二个箭头 G 右可逆。调换 F,G 的角色可知当 X,Y \in Ob(\mathcal{C}_1) 属于 G 的像时,Hom(X,Y) $\stackrel{F}{\to}$ Hom(FX,FY) 右可逆。然而 \mathcal{C}_1 中每个对象都同构于 G 的某个像,综上 F 是全忠实函子。

反向的,以引理 1.2.2取骨架 $\iota_i: \mathcal{C}'_i \to \mathcal{C}_i$ 及其拟逆函子 κ_i 。函子 $F':=\kappa_2 \circ F \circ \iota_1: \mathcal{C}'_1 \to \mathcal{C}'_2$ 仍是全忠实本质满函子,因此知 F' 是范畴的同构。设 $G:=\iota_1 \circ F'^{-1} \circ \kappa_2$ 则

$$GF = \iota_1 F'^{-1} \kappa_2 F \simeq F'^{-1} \underbrace{\kappa_2 F \iota_1}_{=F'} \kappa_1 = \iota_1 \kappa_1 \simeq \mathrm{id}_{\mathcal{C}_1}$$
$$FG = F \iota_1 F'^{-1} \kappa_2 \simeq \iota_2 \underbrace{\kappa_2 F \iota_1}_{=F'} F'^{-1} \kappa_2 = \iota_2 \kappa_2 \simeq \mathrm{id}_{\mathcal{C}_2}$$

这里用到了自然变换的横合成。

例 1.2.3. 考虑域 & 上的向量空间范畴 $\mathsf{Vect}(\&)$ 及其子范畴 $\mathsf{Vect}_f\&$ 。已经定义了双对偶函子 $DD^{\mathrm{op}}:\mathsf{Vect}(\&)\to\mathsf{Vect}(\&)$ 。对于任意向量空间 V 都有求值映射

ev :
$$V \longrightarrow DD^{op}V = (V^{\vee})^{\vee}$$

 $v \longmapsto [\lambda \mapsto \lambda(v)]$

对于任意线性映射 $f: V \to W$, 从 f^{\vee} 的定义可以得到下图表

$$V \xrightarrow{\text{ev}} DD^{\ \ } \sqrt{V}$$

$$f \downarrow \qquad \qquad \downarrow DD^{\text{op}} f$$

$$W \xrightarrow{\text{ev}} DD^{\text{op}} W$$

是交换的,于是有 ev:id $\to DD^{\rm op}$. 容易看出 ev: $V \to DD^{\rm op}V$ 总是单射,事实上可以证明 ev 是双射当且仅当 V 是有限维。一切限制到全子范畴 ${\sf Vect}_f(\Bbbk)$ 上,有同构

$$\operatorname{ev}:\operatorname{id}_{\mathsf{Vect}_f(\Bbbk)} \xrightarrow{\sim} D^{\operatorname{op}}D$$

1.3 函子范畴 17

同一式子在相反范畴中诠释为

$$\operatorname{id}_{\operatorname{Vect}_f(\Bbbk)^{\operatorname{op}}} \xrightarrow{\sim} D^{\operatorname{op}} D$$

故函子 $D: \mathsf{Vect}_f(\Bbbk)^{\mathrm{op}} \to \mathsf{Vect}_f(\Bbbk)$ 是范畴间的等价,而 $D^{\mathrm{op}}: \mathsf{Vect}_f(\Bbbk) \to \mathsf{Vect}_f(\Bbbk)^{\mathrm{op}}$ 则是它的拟逆。

例 1.2.4. 选定域 \mathbb{k} ,定义范畴 Mat 如下:其对象是 $\mathbb{Z}_{\geq 0}$,对任意对象 $n, m \in \mathbb{Z}_{\geq 0}$,定义 $\mathrm{Hom}(n,m) := M_{m \times n}(\mathbb{k})$ 为域 \mathbb{k} 上的全体 $m \times n$ 矩阵 $A = (a_{i,j})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$ 所构成的集合。约定 $M_{0 \times n}(\mathbb{k}) = M_{m \times 0}(\mathbb{k}) := \{0\}$ 。态射的合成定义为寻常的矩阵乘法

$$\operatorname{Hom}(n,m) \times \operatorname{Hom}(m,k) \longrightarrow \operatorname{Hom}(n,k)$$

 $(A,B) \longmapsto BA.$

定义函子 $F: \mathsf{Mat} \to \mathsf{Vect}_f(\Bbbk)$ 如下: 令 $F(n) = \Bbbk^{\oplus n} := M_{n \times 1}(\Bbbk)$,而对 $A \in \mathsf{Hom}(n,m)$,线性映射 $FA: \Bbbk^{\oplus n} \to \Bbbk^{\oplus m}$ 是矩阵乘法 $v \mapsto Av$ 。我们断言 F 是范畴等价。以上内容只是另一种形式的线性代数。

注意到 $F: \operatorname{Hom}(n,m) \to \operatorname{Hom}_{\Bbbk}(\Bbbk^{\oplus n}, \Bbbk^{\oplus m})$ 是双射,这无非是线性映射的矩阵表达。其次从 $V \simeq \Bbbk^{\oplus \operatorname{dim} V}(V$ 是 \Bbbk -向量空间)可知 F 是全忠实本质满的,由定理 1.2.1可知它是范畴等价。

1.3 函子范畴

首先对范畴定义积和余积 (无交并) 的概念,这对陈述一些范畴性质格外有用。

定义 1.3.1 (积范畴,余积 (无交并)). 设 I 为 U-集, $\{C_i : i \in I\}$ 是一族范畴。

积范畴 ∏_{i∈I} C_i 定义如下:

$$\operatorname{Ob}(\prod_{i \in I} \mathcal{C}_i) := \prod_{i \in I} \operatorname{Ob}(\mathcal{C}_i)$$
$$\operatorname{Hom}_{\prod_{i \in I} \mathcal{C}_i}((X_i)_i, (Y_i)_i) := \prod_{i \in I} \operatorname{Hom}_{\mathcal{C}_i}(X_i, Y_i)$$

其中我们以 $(X_i)_i$ 表示 $\prod_{i\in I} \mathrm{Ob}(\mathcal{C}_i)$ 的元素。态射的合成是逐个分量定义的。

余积 (无交并) 范畴 ∐_{i∈I} C_i 定义如下:

$$\mathrm{Ob}(\coprod_{i \in I} \mathcal{C}_i) := \coprod_{i \in I} \mathrm{Ob}(\mathcal{C}_i)$$

$$\mathrm{Hom}_{\coprod_{i \in I} \mathcal{C}_i}(X_j, X_k) := \begin{cases} \mathrm{Hom}_{\mathcal{C}_j}(X_j, X_k) & j = k \\ \emptyset & j \neq k \end{cases}$$

其中对每个 $j \in I, X_j \in \mathrm{Ob}(\mathcal{C}_j)$ 。态射的合成是在各个 \mathcal{C}_i 中个别定义的。

由于 I 已经假定是 U-集,新生成的范畴仍然是 U-范畴;如果每个 C_i 都是 U-小范畴,则它们的积和余积亦然。

我们有一族投影函子 $\operatorname{pr}_j:\prod_{i\in I}\mathcal{C}_i\to\mathcal{C}_j$,它将 $(X_i)_i$ 映至 X_j ,则态射 层面也是类似地投影到 j 分量。同理定义一族包含函子 $\iota_j:\mathcal{C}_j\to\coprod_{i\in I}\mathcal{C}_i$,将 \mathcal{C}_i 以自明的方式嵌入为全子范畴。

特别地,取 I 为有限集便能定义 $C_1 \times \cdots \times C_n$ 和 $C_1 \sqcup \cdots \sqcup C_n$ 。

- 1.4 泛性质
- 1.5 可表函子
- 1.6 伴随函子
 - 1.7 极限
 - 1.8 完备性
 - 1.9 习题