

MATHEMATICAL PROGRAMMING

SWARM INTELLIGENCE -2

(PARTICLE SWARM OPTIMIZATION)

CO - 4

Session - 24

Dr Lakshmi Ramani B Associate Professor

AIM`

1. To familiarise students to the fundamental principles of Particle Swarm Optimization and algorithm.

INSTRUCTIONAL OBJECTIVES

This session is designed to deliver:

- 1. Particle Swarm Optimization
 - a. Origin, Concept
 - b. Algorithm
 - c. Example

LEARNING OUTCOMES

At the end of this session, students will be able to know and apply:

1. Particle Optimization Algorithm to different applications

INTRODUCTION TO THE PSO: ORIGINS

• <u>Inspired from the nature</u> social behavior and dynamic movements with communications of insects, birds and fish

INTRODUCTION TO THE PSO: ORIGINS

• In 1986, Craig Reynolds described this process in 3 simple behaviors:

avoid crowding local flockmates

Alignment

move towards the average heading of local flockmates

Cohesion

move toward the average position of local flockmates

INTRODUCTION TO THE PSO: ORIGINS

- Application to optimization: Particle Swarm Optimization
- Proposed by James Kennedy & Russell Eberhart (1995)
- Combines <u>self-experiences</u> with <u>social experiences</u>

INTRODUCTION TO THE PSO: CONCEPT

•Uses a number of agents (**particles**) that constitute a swarm moving around in the search space looking for the best solution.

• Each particle in search space adjusts its "flying" according to its own flying experience as well as the flying experience of other particles.

CONTD....

- Collection of flying particles (swarm) Changing solutions
- Search area Possible solutions
- Movement towards a promising area to get the global optimum
- Each particle keeps track:
 - its best solution, personal best, <u>pbest</u>
 - the best value of any particle, global best, *gbest*

CONTD...

- Each particle adjusts its travelling speed dynamically corresponding to the flying experiences of itself and its colleagues
- Each particle modifies its position according to:
 - its current position
 - its current velocity
 - the distance between its current position and $p_{\underline{best}}$
 - the distance between its current position and $g_{\underline{best}}$

PSO ALGORITHM

Basic Algorithm of PSO

- 1. Initialize the swarm from the solution space.
- 2 Evaluate fitness of each particle.
- 3 Update individual and global bests.
- 4 Update velocity and position of each particle.
- 5 Go to step 2, and repeat until termination condition.

UPDATE VELOCITY AND POSITION OF EACH PARTICLE.

Velocity of particle

$$v(t+1) = \{V(t) + c_1 * r_1 * (P_{best} - x) + c_2 * r_2 * (G_{best} - x)\}$$

Where

x : particle's position, *v*: path direction

 $\mathbf{r}_1,\mathbf{r}_2$ are the random numbers in the range of (0,1)

 c_1 : weight of local information, c_2 : weight of global information

10

*p*_{best}: best position of the particle

*g*_{best}: best position of the swarm

Position of particle

$$x(t + 1) = x(t) + v(t + 1)$$

PSO ALGORITHM - PARAMETERS

- Number of particles usually between 10 and 50
- C_1 is the importance of personal best value
- C_2 is the importance of neighborhood best value
- Usually $C_1 + C_2 = 4$ (empirically chosen value)
- If velocity is too low \rightarrow algorithm too slow
- If velocity is too high \rightarrow algorithm too unstable

DEFINE THE PROBLEM

Find the maximum of the function

$$f(x) = -x^2 + 5x + 20$$

• with $-10 \le x \le 10$ using the PSO algorithm.

PROBLEM ANALYSIS

- 1 Size of a swarm.
- 2 How to generate initial particles with position and velocity.
- 3 Finding fitness function.
- 4 Finding P_{best} and G_{best}.
- 5 Updating Velocity. (values of C₁,C₂,W, etc.)
- 6 limits for velocity (Vmax,Vmin)
- 7 Updating position.
- 8 Terminating condition.
- 9

INITIALIZATION

• First we generate swarm of size 5 randomly using uniform distribution in the range (-10, 10).

Particle Number	Position Vector (x)
I	-6.2
2	8.3
3	-1.1
4	0.6
5	2.6

$$\gg x = -10 + rand(5, 1) * (10 + 10)$$

 $x =$
6.2945
8.1158
-7.4603
8.2675
2.6472

PARTICLE VELOCITY INITIALIZATION

15

• Similarly the velocity vector is generated uniformly in the range (0, 1)

Particle Number	Position Vector (x)	Velocity Vector (v)
1	-6.2	0.4752
2	8.3	0.7797
3	-1.1	0.4141
4	0.6	0.6183
5	2.6	0.2530

$\gg v = rand(5,1)$	
v =	
0.0975	
0.2785	
0.5469	
0.9575	
0.9649	

EVALUATE FITNESS OF EACH PARTICLE

Particle Number	Position Vector (x)	Velocity Vector (v)	Fitness Vector (f(x))
1	-6.2	0.4752	-49.44
2	8.3	0.7797	-7.39
3	-1.1	0.4141	13.29
4	0.6	0.6183	22.64
5	2.6	0.2530	26.24

$$\gg f = -(x.*x) + 5*x + 20$$

 $f = 11.8518$
 -5.2872
 -72.9576

-7.0141

26.2283

UPDATE INDIVIDUAL AND GLOBAL BESTS

Particle Number	Position Vector (x)	Velocity Vector (v)	Fitness Vector (f(x))	Pbest
1	-6.2	0.4752	-49.44	-6.2
2	8.3	0.7797	-7.39	8.3
3	-1.1	0.4141	13.29	-1.1
4	0.6	0.6183	22.64	0.6
5	2.6	0.2530	26.24	2.6

Particle Number	Position Vector (x)	Velocity Vector (v)	Fitness Vector (f(x))	Pbest	Gbest
1	-6.2	0.4752	-49.44	-6.2	
2	8.3	0.7797	-7.39	8.3	
3	-1.1	0.4141	13.29	-1.1	
4	0.6	0.6183	22.64	0.6	
5	2.6	0.2530	26.24	2.6	Gbest

$\gg [v p] = sort(f)$	
v =	
-72.9576	
-7.0141	
-5.2872	
11.8518	
26.2283	
p =	
3	
4	
2	
1	
5	
$\gg Pbest_value = v(p(5),:)$	
Pbest_value =	
26.2283	
$\gg Pbest = x(p(5),:)$	
Pbest =	
2.6472	

UPDATE VELOCITY AND POSITION OF EACH PARTICLE

Particle Number	Position Vector (x)	Velocity Vector (v)	Fitness Vector (f(x))	Pbest	Gbest
1	-6.2	0.4752	-49.44	-6.2	
2	8.3	0.7797	-7.39	8.3	
3	-1.1	0.4141	13.29	-1.1	
4	0.6	0.6183	22.64	0.6	
5	2.6	0.2530	26.24	2.6	Gbest

$$v(t+1) = \{V(t) + c_1 * r1 * (P_{best} - x) + c_2 * r_2 * (G_{best} - x)\}\$$
 $v_1 = \{0.4752 + 2 * 0.6669 * (-6.2 - (-6.2)) + 2 * 0.4547 * (2.6 - (-6.2))\} =$
8.4779
 $x(t+1) = x(t) + v(t+1)$
 $x_1 = -6.2 + 8.4779 =$ **2.2779**

Particle Number	Position Vector (x)	Velocity Vector (v)	Fitness Vector (f(x))	Pbest	Gbest
1	-6.2	0.4752	-49.44	-6.2	
2	8.3	0.7797	-7.39	8.3	
3	-1.1	0.4141	13.29	-1.1	
4	0.6	0.6183	22.64	0.6	
5	2.6	0.2530	26.24	2.6	Gbest

$$v_2 = \{0.7797 + 2*0.8109*(8.3 - 8.3) + 2*0.4845*(2.6 - 8.3)\} = -4.7436$$

 $x_2 = 8.3 - 4.7436 = 3.5564$
 $v_3 = \{0.4141 + 2*0.7567*(-1.1 - (-1.1)) + 2*0.4170*(2.6 - (-1.1))\} = 3.4999$
 $x_3 = -1.1 + 3.4999 = 2.3999$

Particle Number	Position Vector (x)	Velocity Vector (v)	Fitness Vector (f(x))	Pbest	Gbest
1	-6.2	0.4752	-49.44	-6.2	
2	8.3	0.7797	-7.39	8.3	
3	-1.1	0.4141	13.29	-1.1	
4	0.6	0.6183	22.64	0.6	
5	2.6	0.2530	26.24	2.6	Gbest

$$v_4 = \{0.6183 + 2 * 0.9717 * (0.6 - 0.6) + 2 * 0.9879 * (2.6 - 0.6)\} = 4.5699$$

$$x_4 = 0.6 + 4.5699 = 5.1699$$

$$v_5 = \{0.2530 + 2 * 0.8641 * (2.6 - 2.6) + 2 * 0.3888 * (2.6 - 2.6)\} = 0.2530$$

$$x_5 = 2.6 + 0.2530 = 2.853$$

Particle Number	(x)	(v)	(f(x))	Pbest	Gbest	New (x)	New (v)
1	-6.2	0.4752	-49.44	-6.2		2.2779	8.4779
2	8.3	0.7797	-7.39	8.3		3.5564	-4.7436
3	-1.1	0.4141	13.29	-1.1		2.3999	3.4999
4	0.6	0.6183	22.64	0.6		5.1699	4.5699
5	2.6	0.2530	26.24	2.6	Gbest	2.853	0.2530

EVALUATE FITNESS OF EACH PARTICLE

Fitness function is $f(x) = -x^2 + 5x + 20$

(x)	(v)	(f(x))	Pbest	Gbest	New (x)	New (v)	New f(x)
-6.2	0.4752	-49.44	-6.2		2.2779	8.4779	26.20
8.3	0.7797	-7.39	8.3		3.5564	-4.7436	25.13
-1.1	0.4141	13.29	-1.1		2.3999	3.4999	26.24
0.6	0.6183	22.64	0.6		5.1699	4.5699	19.12
2.6	0.2530	26.24	2.6	Gbest	2.853	0.2530	26.12

CATEGORY 1

UNIVERSITY

UPDATE INDIVIDUAL AND GLOBAL BESTS.

(x)	(v)	f(x)	P best	G best	New (x)	New (v)	New f(x)	P best	G best
-6.2	0.47	-49.44	-6.2		2.27	8.48	26.20	2.27	
8.3	0.77	-7.39	8.3		3.55	-4.74	25.13	3.55	
-1.1	0.41	13.29	-1.1		2.39	3.5	26.24	2.39	G best
0.6	0.61	22.64	0.6		5.17	4.57	19.12	0.6	151×3157/1
2.6	0.25	26.24	2.6	G best	2.85	0.25	26.12	2.6	

Table: Iteration number =2

Particale Number	Position Vector (x)	Velocity Vector (v)	Pbest	
1	2.2779	8.4779	2.2779 3.5564 2.3999	
2	3.5564	-4.7436		
3	2.3999	3.4999		
4	5.1699	4.5699	0.6	
5	2.853	0.2530	2.6	

```
G_{hest} = 2.3999
v(t+1) = \{V(t) + c_1 * r1 * (P_{best} - x) + c_2 * r_2 * (G_{best} - x)\}
v_1 = \{8.4779 + 2 * 0.2466 * (2.2779 - 2.2779) + 2 * 0.7844 * (2.3999 - 2.2779)\} = 8.6692
v_2 = \{-4.7436 + 2 * 0.8828 * (3.5564 - 3.5564) + 2 * 0.91375 * (2.3999 - 3.5564)\} = -6.8571
v_3 = \{3.4999 + 2 * 0.5582 * (2.3999 - 2.3999) + 2 * 0.5988 * (2.399 - 2.399)\} = 3.4999
v_4 = \{4.5699 + 2 * 0.1488 * (0.6 - 5.1699) + 2 * 0.8997 * (2.399 - 5.1699)\} = -2.1342
w_5 = \{2.853 + 2 * 0.4503 * (2.6 - 2.853) + 2 * 0.2056 * (2.399 - 2.6)\} = 2.5425
x(t+1) = x(t) + v(t+1)
x_1 = 2.2779 + 8.6692 = 10.9471
                                                      x_2 = 3.5564 - 6.8571 = -3.3007
x_3 = 2.3999 + 3.4999 = 5.8998
                                                    x_4 = 5.1699 - 2.1342 = 3.0357
x_5 = 2.853 + 2.5425 = 5.3955
```

