

CET93 and CETPC: An Interim Updated Version of the NASA Lewis Computer Program for Calculating Complex Chemical Equilibria With Applications

Bonnie J. McBride
Lewis Research Center
Cleveland, Ohio

Martin A. Reno
Heidelberg College
Tiffin, Ohio

and

Sanford Gordon
Sanford Gordon and Associates
Cleveland, Ohio

National Aeronautics and Space Administration
Office of Management
Scientific and Technical Information Program
1994

(NASA-TM-4557) CET93 AND CETPC: AN
INTERIM UPDATED VERSION OF THE NASA
LEWIS COMPUTER PROGRAM FOR
CALCULATING COMPLEX CHEMICAL
EQUILIBRIA WITH APPLICATIONS
(NASA. Lewis Research Center) 34 p

N94-32948

Unclassified

H1/25 0009988

Contents

Introduction	1
Program Capabilities	1
Thermodynamic and Thermal Transport Mixture Properties	1
Rocket, Shock, and Detonation Problems	1
Initial Estimates, Iteration, and Convergence	2
General Input Instructions	2
Thermodynamic and Thermal Transport Mixture Properties	2
Outline of Input Preparation	3
Example Problems	6
Output	6
CETPC Version of CET93	6
Appendices	
A—Thermodynamic Data Species List	7
B—Example Problems	23
References	31

PRECEDING PAGE BLANK NOT FILMED

Introduction

For more than 40 years the NASA Lewis Research Center has been involved in developing methods and computer programs for calculating complex chemical equilibrium compositions and thermodynamic and transport properties of the equilibrium mixtures and for applying these properties to a number of problems. The latest version of these programs is documented in Gordon et al. (1976, 1984, 1988). Prior to this report the source code has been known most recently as CET89. Two new options have been added to CET89, and the thermodynamic data for many species have been updated. The code containing these changes is now called CET93. The CET93 code, with smaller arrays, has been compiled for use on an IBM or IBM-compatible personal computer and is called CETPC. The source code for CET93 and/or a CETPC diskette of the compiled PC code may be obtained for a fee from COSMIC, 382 E. Broad Street, University of Georgia, Athens, GA 30602 (Tel: 706-542-3265).

This report is intended to be primarily a users manual for CET93 and CETPC. It does not repeat the more complete documentation of the previously mentioned reports, which cover details of capabilities, assumptions, options, and mathematical equations for obtaining chemical equilibrium compositions, mixture properties, rocket performance, shock parameters, and Chapman-Jouguet detonations. However, a brief summary of some of these topics is given.

The discussion in this report covers primarily input and output files, the two new options (ONLY and comments), and implementation of CETPC. The ONLY option permits equilibrium composition calculations to be made that consider only those species which are specified in the input. The comments option permits the user to provide comments in the input and output. The thermodynamic data file includes updated data for many species, such as the reference elements (McBride et al., 1993a) and species in the carbon-hydrogen-oxygen-nitrogen (C-H-O-N) chemical system (McBride et al., 1993b). Input files for 13 example problems are also included with CET93 and CETPC for testing and illustrating some features of the program.

Program Capabilities

Thermodynamic and Thermal Transport Mixture Properties

Chemical equilibrium compositions are obtained by the method of free energy minimization. A thermodynamic state is characterized by two independent state variables, such as temperature and pressure. If pressure is one of the state variables, Gibbs energy is minimized. This is the case for the following combination of variables permitted to be assigned by the program: temperature and pressure (tp), enthalpy and pressure (hp), and entropy and pressure (sp). If volume (or density) is one of the state variables, Helmholtz energy is minimized. This is the case for the following combination of variables permitted by the program: temperature and volume (or density) (tv), internal energy and volume (or density) (uv), and entropy and volume (or density) (sv).

It is assumed that all gases are ideal and that interactions among phases can be neglected. An ideal-gas equation of state is used to represent the mixture and is assumed to be correct even when small amounts of condensed phases are present. Equilibrium properties of plasmas (mixtures containing ionized species) may also be calculated if the plasma is considered to be ideal, that is, if columbic interactions are not considered.

Thermodynamic properties of mixtures include the contribution of condensed as well as gaseous phases. However, thermal transport mixture properties include the contributions of gas-phase species only. If condensed phases are present, mole fractions for the gas-phase species are first normalized to gases only prior to calculating thermal transport mixture properties. The thermodynamic and thermal transport mixture properties calculated by the program are discussed in the section Output.

Rocket, Shock, and Detonation Problems

In addition to calculating equilibrium compositions and mixture properties for the assigned thermodynamic states

previously discussed, CETPC is capable of calculating theoretical rocket performance, shock parameters, and Chapman-Jouguet detonation parameters. Some input options for these application problems are given in the section General Input Instructions. The following is a brief summary of some additional aspects of these calculations.

Rocket performance.—Options are provided for two rocket models—one with an infinite-area combustor (IAC) and the other with a finite-area combustor (FAC) (Gordon et al., 1976, 1984). The IAC model permits both equilibrium and frozen performance. Equilibrium performance assumes that the combustion gases attain instantaneous chemical equilibrium as they flow through the nozzle. Frozen performance assumes that the combustion products remain constant after some specified station in the rocket, such as at the combustor, the throat, or some assigned exit point downstream of the throat. The FAC model permits equilibrium performance only.

Shock parameters.—Options are provided for calculating incident and reflected shocks in a constant-area duct, such as a shock tube. Reactants are limited to gas phase only. Options are also provided for the assumption of equilibrium or frozen composition during the flow of the shocked gases.

Chapman-Jouguet detonations.—Chapman-Jouguet detonations are characterized by the condition that the difference in flow velocity of the shock and flame fronts is the velocity of sound in the burned gases. Reactants are limited to gas phase only.

Initial Estimates, Iteration, and Convergence

Various iteration techniques are used for obtaining equilibrium compositions and solutions to the application problems. Iterations are continued until specified convergence criteria are met.

Equilibrium compositions.—An extremely simple method is used for estimating the first assigned point in any schedule of points. For all points after the first the results of a preceding point serve as initial estimates. A Newton-Raphson iteration procedure is used to obtain corrections to compositions. A control factor, based on several criteria, is used to limit the size of the corrections in order to avoid overcorrecting and ensure convergence. The maximum number of iterations permitted to obtain convergence is initially set by the number of possible species in the chemical system being considered. This maximum number may be modified during the calculations if singularities occur or if the TRACE option (to consider trace species) has been specified in the input. After each composition convergence the program checks for the possible addition or removal of condensed species.

Rocket performance.—Various iteration procedures are used to converge to assigned pressures (or pressure ratios), throat area, assigned area ratios, and, for the FAC model, to contraction ratios or mass flow rate per unit area. For each

condition special methods are used to obtain excellent initial estimates in order to minimize the number of iterations required for a solution. In addition, because of these excellent initial estimates, control factors are not needed to limit the size of the iteration corrections.

Shock parameters.—The shock problem in CETPC is limited to gaseous state reactants only. Special procedures are used to obtain excellent initial estimates of temperature and pressure for the incident shock conditions. A control factor is used to limit the size of the iteration corrections. The initial estimate for the reflected shock temperature is simply twice the incident shock temperature. The initial estimate for the reflected shock pressure is obtained from a special formula. Except for high Mach numbers, convergence is often obtained in three to five iterations.

Chapman-Jouguet detonations.—The detonation problem in CETPC is limited to gaseous state reactants only. Special procedures are used to obtain initial estimates for temperature and pressure. A recursion formula is used to improve these estimates in order to provide generally excellent initial estimates prior to the final iteration procedure.

General Input Instructions

Input consists of two general data files and a file for the set of particular problems to be solved. One of the general files contains thermodynamic data for reaction or reactant species (currently 1136 species). The other general file contains thermal transport mixture property data for some of the reaction species (currently 155 species). The thermodynamic and thermal transport data files are in text form for CET93. The program reads these data files and stores the data in binary form (unformatted). See the subsection Outline of Input Preparation for additional input information. For CETPC these data are already in binary form. Three binary files are linked to input/output (I/O) units with OPEN and PARAMETER statements in the source program: thermodynamic data are linked with I/O unit 4; thermal transport data are linked with I/O unit 8; I/O unit 3 is a scratch unit used in processing these data.

Thermodynamic and Thermal Transport Mixture Properties

The thermodynamic data are in the form of least-squares coefficients, which are generated by fitting heat capacity, enthalpy, and entropy simultaneously. Heat capacity is represented by a fourth degree polynomial in temperature. In addition to the coefficients for heat capacity, integration constants are provided to obtain enthalpy and entropy. The temperature range over which the data have been fitted is not the same for all species. For most of the gaseous species in the C-H-O-N

chemical system and for the noble gases the temperature range is 200 to 6000 K. For most of the other gaseous species the temperature range is 300 to 5000 K. The temperature range for each condensed species depends on where phase transitions occur for that species. The names of the 1136 species for which thermodynamic data are provided with the program are listed in appendix A. The sources for these data and a listing of their least-squares coefficients are given in McBride et al. (1993b). When using the ONLY, OMIT, or INSERT options, the names of the species appearing on these records must be exactly as given in appendix A. A maximum of 15 characters is permitted for the name of each species, resulting in the names of a few species being chopped off.

The thermal transport properties (viscosity and thermal conductivity) for the gaseous species are also in the form of least-squares coefficients. The temperature range for these properties is 300 to 5000 K. The equation used to represent the properties and the sources of the data are given in Gordon et al. (1984). The coefficients are given in McBride et al. (1993b).

Outline of Input Preparation

The program permits solving for chemical equilibrium compositions for assigned thermodynamic states, obtaining thermodynamic mixture properties, and applying these properties to the solution of problems such as rocket performance, shocks, and detonations. Some types of input are required for all problems, but other types depend on what options are specified. The following outline is intended to assist the user in preparing input data files. Thirteen example problems are given in appendix B that illustrate some of the many possible options presented in this outline.

I. Comments records

- A. A "#" is required in column 1.
- B. Length is limited to 80 characters.
- C. These records may appear anywhere except within namelist input.

II. Input code records

- A. An alphabetic variable is used to identify the input that follows it.
- B. Codes are all capital letters starting in column 1.
- C. Only the first four letters are checked by the program.
- D. Acceptable codes are as follows (input described more fully below):
 1. THERMO (or THER)—precedes formatted thermodynamic data file.
 2. TRANSPORT (or TRAN)—precedes formatted thermal transport property file.
 3. REACTANTS (or REAC)—precedes set of reactants data.
 4. INSERT (or INSE)—precedes set of names of

condensed combustion products to be considered with initial calculations.

- 5. ONLY—precedes set of names of species products to be considered. Other possible species in the thermodynamic data file will be ignored.
- 6. OMIT—precedes set of names of species to be omitted from consideration.
- 7. NAMELISTS (or NAME)—precedes namelist-directed input.

III. Order of input records

- A. For CET93, text files of thermodynamic and thermal transport properties must be read in first, either by themselves or just ahead of the individual problems. CET93 processes these data and stores the information in binary files. For CETPC this step is unnecessary because the binary files are already available.
- B. Problems start with a set of reactants records.
- C. If there are OMIT, ONLY, or INSERT records, they follow reactants.
- D. Namelist input is next and includes, in order, the NAMELISTS record and the "inpt2" namelist. This is followed by the "rktinp" namelist for rocket problems and the "shkinp" namelist for shock problems.
- E. The previous records may be followed by the input sets for any number of cases. If the reactants records are the same for two adjacent problems, the second set of reactants may be omitted.

IV. Thermodynamic data files

- A. Text (formatted) data are read by CET93 from standard input. The first record starts with "THER" and the final record starts with "END."
- B. The data file is converted by CET93 to binary (unformatted) data, which are stored on I/O unit 4.
- C. For any particular problem CET93 or CETPC selects the appropriate data from I/O unit 4.

V. Thermal transport property data files

- A. Text (formatted) data are read by CET93 from standard input. The first record starts with "TRAN" and the final record starts with "LAST."
- B. The data file is converted by CET93 to binary (unformatted) data, which are stored on I/O unit 8.
- C. For any particular problem CET93 or CETPC selects the appropriate data from I/O unit 8.

VI. Reactants data

- A. The first record starts with "REAC" and the final record is blank.
- B. After the first record, one record of information is required for each reactant according to the following format:

Column	Format	Contents
1–45	5(A2,F7.5)	Chemical formula. Symbols for chemical elements (two columns; first character upper case) start in columns 1, 10, 19, 28, and 37. The numerical values that follow must include decimal points. Note that zeros in columns 37 and 38 cause the program to calculate the enthalpy or internal energy of the species from the thermodynamic data file.
46–52	F7.5	Either number of moles or relative weight of total fuel or oxidant. (Note that all reactants must be either moles or relative weights)
53	A1	"M" if previous number refers to moles; blank if previous number refers to weight. (Reactants for the current problem must have either all blanks or all M's in this column.)
54–62	F9.5	Enthalpy (if "hp" or "rkt" problem) or internal energy (if "uv" problem) in units of calories per mole or joules per mole (see column 71).
63	A1	Phase of the reactant (e.g., "L" for liquid).
64–70	F7.0	Temperature in kelvin for previous enthalpy or internal energy. (Required for reactants with "00" in columns 37 and 38 and optional otherwise.)
71	A1	"J" if enthalpy or internal energy (columns 54–62) is in joules per mole.
72	A1	"O" if reactant is oxidant; "F" otherwise.

VII. INSERT record (or records)

- A. These records specify which condensed species are to be included as possible products for the first point. Species names must be exactly as given in the thermodynamic data file. The names are listed in appendix A.
- B. These records are usually optional but may be required to obtain convergence.
- C. "INSE" starts in column 1. Species names start in columns 16, 31, 46, and 61.

VIII. OMIT record (or records)

- A. These records specify which product species are to be omitted for the current problem. Species names must be exactly as given in the thermodynamic data file (appendix A).
- B. These records are optional. If no ONLY and no OMIT records are included in the input for the current problem, all species in the thermodynamic data file for the

chemical system of the problem will be included as possible products.

- C. "OMIT" starts in column 1. Species names start in columns 16, 31, 46, and 61.

IX. ONLY record (or records)

- A. These records specify the only species from the thermodynamic data file that are to be considered in the current problem. Species names must be exactly as given in the thermodynamic data file (appendix A).
- B. These records are optional. If no ONLY and no OMIT records are included in the input for the current problem, all species in the thermodynamic data file for the chemical system of the problem will be included as possible products.
- C. "ONLY" starts in column 1. Species names start in columns 16, 31, 46, and 61.

X. Namelist-directed input (note that the characters (e.g., &, \$, /) used to indicate the beginning and end of a namelist set vary with the Fortran compiler)

- A. Namelist "inpt2" (required for all problems)
 - 1. Logical variables (set appropriate ones to true)
 - (a) tp—Assigned-temperature-and-pressure problem.
 - (b) hp—Assigned-enthalpy-and-pressure problem.
 - (c) sp—Assigned-entropy-and-pressure problem.
 - (d) tv—Assigned-temperature-and-volume (or density) problem.
 - (e) uv—Assigned-internal-energy-and-volume (or density) problem.
 - (f) sv—Assigned-entropy-and-volume (or density) problem.
 - (g) rkt—Rocket problem.
 - (h) shock—Shock problem.
 - (i) detn—Detonation problem.
 - (j) ions—Ionized species are considered.
 - (k) trnspt—Thermal transport properties are calculated.
 - (l) of—Values in "mix" array are oxidant-to-fuel weight ratios.
 - (m) fa—Values in "mix" array are fuel-to-oxidant weight ratios.
 - (n) fpct—Values in "mix" array are percentage of fuel by weight.
 - (o) phi—Values in "mix" array are equivalence ratios defined as ratio of f/a to $(f/a)_{\text{stoich}}$.
 - (p) eratio—Values in "mix" array are equivalence ratios defined in terms of chemical valences.
 - (q) bar—Values in "p" array are in bars.
 - (r) atm—Values in "p" array are in atmospheres.

- (s) psia—Values in “p” array are in pounds per square inch absolute.
- (t) nsqm—Values in “p” array are in newtons per square meter.
- (u) mmhg—Values in “p” array are in millimeters of mercury.
- (v) inhg—Values in “p” array are in inches of mercury.
- (w) siunit—Output is printed in SI units.

2. Real variables

- (a) p—Assigned pressures (1–26 values); for “rkt” problems, assigned chamber pressures.
- (b) t—Assigned temperatures (1–26 values) in units of kelvin.
- (c) v—Assigned volumes (1–26 values) in units of cubic centimeters per gram.
- (d) rho—Assigned densities (1–26 values) in units of grams per cubic centimeter.
- (e) mix—Assigned reactant mixture ratios (1–26 values) corresponding to the logical variable set to true (of, fa, fpct, phi, or eratio).
- (f) trace—Option to print compositions of species with mole fractions greater than or equal to the assigned trace value.
- (g) hr—Assigned enthalpy divided by the universal gas constant R in units of kelvin per gram of mixture (overrides value from reactants records).
- (h) ur—Assigned internal energy/ R in units of kelvin per gram of mixture (overrides value from reactants records).
- (i) s0—Assigned entropy for “sv” problem in units of calories per gram degree kelvin.

3. Integer variables (optional)

- (a) kase—Case number to be printed on output tables (one to four digits).
- (b) idebug—Intermediate output to be printed for all points greater than or equal to assigned value.

B. Namelist “shkinp” (for shock problems; follows namelist “inpt2” input)

1. Logical variables (set true or false as required)
 - (a) incdeq—Calculate incident shock parameters assuming equilibrium compositions (default is true).
 - (b) incdfz—Calculate incident shock parameters assuming frozen compositions (default is true).
 - (c) refreq—Calculate reflected shock parameters assuming equilibrium compositions (default is false).
 - (d) reflfz—Calculate reflected shock parameters assuming frozen compositions (default is false).
 - (e) shkdbg—Print intermediate output for shock iteration procedure.
2. Real variables (assign values to only one of the following)
 - (a) u1—Shock velocity (1–13 values) in units of meters per second.
 - (b) mach1—Ratio of shock velocity to the velocity of sound in the shocked gas (1–13 values).
- C. Namelist “rktpinp” (for rocket problems; follows namelist “inpt2” input)

1. Logical variables (set true or false as required)
 - (a) eql—Calculate rocket performance assuming equilibrium composition during expansion (default is true).
 - (b) froz—Calculate rocket performance assuming frozen composition (not available when fac=true; default is true).
 - (c) fac—Calculate rocket performance assuming finite-area combustion chamber (default is “iac,” infinite-area combustion chamber).
 - (d) debugf—Print intermediate output for the “fac” chamber and throat iteration procedure.
2. Real variables
 - (a) pcp—Ratio of chamber pressure to exit pressure (not assignable for chamber and throat; 1–22 values).
 - (b) subar—Subsonic area ratios (1–13 values).
 - (c) supar—Supersonic area ratios (1–13 values).
 - (d) ma—ratio of mass flow rate (mdot) to chamber area in units of kilograms per square centimeter per second (set either “ma” or “acat” with fac=true).
 - (e) acat—Contraction ratio, ratio of finite chamber area to throat area (set either “ma” or “acat” with fac=true).
 - (f) ttest—Initial chamber temperature estimate in units of kelvin. The default value is 3800 K. (Setting this variable may be necessary only when a condensed species has been inserted on an INSERT record and 3800 K is outside its temperature range.)
3. Integer variable nfz—Option for freezing composition at throat ($nfz=2$) or a supersonic area ratio ($nfz>2$) when froz=true. The output table has

equilibrium properties through point nfz and frozen thereafter. If nfz>2, only ncol-nfz additional exit points are allowed (where ncol is 13 for CET93 and 7 for CETPC).

Example Problems

Thirteen examples are given in appendix B to illustrate various types of problems that can be handled by the program and to illustrate many of the possible input options. Each example starts with a number of comments records, which describe the type of problem being solved and give many details concerning the input. The first two examples are for assigned temperatures and pressures (tp=t); example 2 is for assigned temperatures and volumes (tv=t). The input value for volume in example 2 was calculated from the output of example 1. This was done as a check on the internal consistency of the program by verifying that the same output is obtained for examples 1 and 2 when different but consistent input is used. Note that if the thermodynamic data are changed, the results for the examples may vary. Thus, the input for the second example will have to be adjusted to match the output of the first example in order for the properties to match.

Examples 3 to 5 illustrate combustion problems. Example 3 is for constant-pressure combustion, which requires enthalpy and pressure to be assigned (hp=t). Example 4 is for constant-volume (or density) combustion, which requires internal energy and volume (or density) to be assigned (uv=t). As in the case of examples 1 and 2, examples 3 and 4 serve as a check on the internal consistency of the program. This is accomplished by using the example 3 output of density and internal energy as input for example 4. Some adjustment of units is required as explained in the comments records of example 4. Consistency is verified if the same output is obtained for examples 3 and 4 when different but consistent input is used. Example 5 is another constant-pressure combustion problem that is given to illustrate some additional input options.

Example 6 illustrates a Chapman-Jouguet detonation problem (detn=t); example 7 covers a shock problem (shock=t). Six examples of rocket performance calculations (rkt=t) are given in examples 8 to 13. Examples 8 to 10 are all for the same propellants and operating conditions. They permit comparison of results obtained from the assumptions of a finite-area combustor (examples 9 and 10; fac=t) and an infinite-area combustor (example 8). Examples 9 and 10 serve to further illustrate some additional input options. Additional information on these three examples can be found in Gordon and McBride (1988). Examples 11 and 12 illustrate some additional options, such as

the inclusion of ionized species in example 11 and freezing composition at the throat in example 12. Example 13 illustrates a special case (which rarely occurs) of a thermodynamic discontinuity at the nozzle throat due to the presence of two phases of the same species. Note that if the thermodynamic data are changed, the discontinuity may no longer occur at the throat for the same conditions. The details of the procedures used to solve this type of situation and a discussion of unusual derivative values, such as $\gamma_s < 1$ (where γ_s is the isentropic exponent), are given in Gordon (1970).

Output

Details of output are given in Gordon et al. (1976, 1984, 1988). For all problems these include headings, composition, thermodynamic and thermal transport mixture properties, thermodynamic derivatives, optional intermediate output covering details of various iteration procedures, and error messages. In addition, each application problem (rocket, shock, and detonation) has its own set of output parameters. Output files for the 13 example problems discussed in the previous section are provided with CET93 and CETPC for comparison and testing.

CETPC Version of CET93

CETPC was reduced in size relative to CET93 in order to run on basic IBM or IBM-compatible personal computers that have only 640K of random-access memory (RAM). The maximum number of possible reaction species that is permitted in any chemical system was reduced from 600 to 300, and the maximum number of condensed reaction species was reduced from 300 to 200. Experience has shown that these limits are sufficient for most practical chemical systems.

CETPC was developed and tested by using MS-DOS on a 386SX machine with 640K of RAM and no floating-point processor. The test cases ran satisfactorily on the minimum system using one floppy drive. The running time for all 13 test cases was 14 min. This time can be considerably reduced by using a faster processor, a floating-point processor, or a hard disk drive. The Fortran source code for CETPC was compiled by using Microsoft Fortran Version 4.1.

The compiled program and accompanying files are available on a 3.5-in. diskette that contains the following: the CETPC executable file, files for thermodynamic data (for 1136 species) and thermal transport mixture property data (for 155 species) in binary form, input and output files for the 13 example problems, and an instruction file for system operation.

Appendix A

Thermodynamic Data Species List

Species ID.	Code	Formula Used by CETPC			Phase	Temp.	Range	Mole. Wt.
Electron gas	L10/92	E 1.	0.	0.	0. G	200.000	6000.000	5.48579903-4
AL	J 6/83	AL 1.	0.	0.	0. G	200.000	6000.000	26.98154
AL+	J 6/83	AL 1.	E -1.	0.	0. G	298.150	6000.000	26.98099
AL-	J 6/83	AL 1.	E 1.	0.	0. G	298.150	6000.000	26.98269
ALB02	J 6/86	AL 1.	B 1.	0 2.	0. G	300.000	5000.000	59.79134
ALBr	J 9/79	AL 1.	BR 1.	0.	0. G	300.000	5000.000	106.88554
ALBr3	J 9/79	AL 1.	BR 3.	0.	0. G	300.000	5000.000	286.69354
ALC	J 6/63	AL 1.	C 1.	0.	0. G	300.000	5000.000	38.99254
ALCL	J 9/79	AL 1.	CL 1.	0.	0. G	300.000	5000.000	62.43424
ALCL+	J 6/76	AL 1.	CL 1.	E -1.	0. G	300.000	5000.000	62.43869
ALCLF	J 6/76	AL 1.	CL 1.	F 1.	0. G	300.000	5000.000	81.43264
ALCLF+	J 6/76	AL 1.	CL 1.	F 1.	E -1. G	300.000	5000.000	81.43269
ALCLF2	J 6/76	AL 1.	CL 1.	F 2.	0. G	300.000	5000.000	106.43105
ALCL2	J 6/76	AL 1.	CL 2.	0.	0. G	300.000	5000.000	97.88694
ALCL2+	J 6/76	AL 1.	CL 2.	E -1.	0. G	300.000	5000.000	97.88639
ALCL2-	J 6/76	AL 1.	CL 2.	E 1.	0. G	300.000	5000.000	97.88749
ALCL2F	J 6/76	AL 1.	CL 2.	F 1.	0. G	300.000	5000.000	116.88584
ALCL3	J 9/79	AL 1.	CL 3.	0.	0. G	300.000	5000.000	183.33964
ALF	J 9/79	AL 1.	F 1.	0.	0. G	300.000	5000.000	45.97994
ALF+	J 6/76	AL 1.	F 1.	E -1.	0. G	300.000	5000.000	45.97939
ALF2	J 6/76	AL 1.	F 2.	0.	0. G	300.000	5000.000	64.97835
ALF2+	J 6/76	AL 1.	F 2.	E -1.	0. G	300.000	5000.000	64.97780
ALF2-	J 6/76	AL 1.	F 2.	E 1.	0. G	300.000	5000.000	64.97889
ALF20	J 6/76	AL 1.	F 2.	0 1.	0. G	300.000	5000.000	88.97775
ALF20-	J 6/76	AL 1.	F 2.	0 1.	E 1. G	300.000	5000.000	88.97829
ALF3	J 9/79	AL 1.	F 3.	0.	0. G	300.000	5000.000	83.97675
ALF4-	J 6/76	AL 1.	F 4.	E 1.	0. G	300.000	5000.000	102.97578
ALH	J 6/63	AL 1.	H 1.	0.	0. G	300.000	5000.000	27.98948
ALI	J 9/79	AL 1.	I 1.	0.	0. G	200.000	6000.000	153.88601
ALI3	J 9/79	AL 1.	I 3.	0.	0. G	300.000	5000.000	407.69495
ALN	J12/79	AL 1.	N 1.	0.	0. G	300.000	5000.000	48.98828
ALO	J12/79	AL 1.	O 1.	0.	0. G	300.000	5000.000	42.98894
ALO+	J12/79	AL 1.	O 1.	E -1.	0. G	300.000	5000.000	42.98839
ALO-	J12/79	AL 1.	O 1.	E 1.	0. G	300.000	5000.000	42.98149
ALOCL	J 9/64	AL 1.	O 1.	CL 1.	0. G	300.000	5000.000	78.43364
ALOF	J12/75	AL 1.	O 1.	F 1.	0. G	300.000	5000.000	61.97934
ALOH	J12/67	AL 1.	O 1.	H 1.	0. G	300.000	5000.000	43.98888
ALOH+	J12/67	AL 1.	O 1.	H 1.	E -1. G	300.000	5000.000	43.98883
ALOH-	J12/67	AL 1.	O 1.	H 1.	E 1. G	300.000	5000.000	43.98943
ALO2	J12/79	AL 1.	O 2.	0.	0. G	300.000	5000.000	58.98034
ALO2-	J12/79	AL 1.	O 2.	E 1.	0. G	300.000	5000.000	58.98089
ALO2H	J12/68	AL 1.	O 2.	H 1.	0. G	300.000	5000.000	59.98028
ALS	J12/79	AL 1.	S 1.	0.	0. G	200.000	6000.000	59.54754
AL2	J 6/79	AL 2.	0.	0.	0. G	300.000	5000.000	53.96369
AL2Br8	J 9/79	AL 2.	BR 8.	0.	0. G	300.000	5000.000	533.38708
AL2CL6	J 9/79	AL 2.	CL 6.	0.	0. G	300.000	5000.000	286.67928
AL2F8	J 9/79	AL 2.	F 6.	0.	0. G	300.000	5000.000	167.95350
AL2I6	J 9/79	AL 2.	I 6.	0.	0. G	300.000	5000.000	815.38990
AL20	J12/79	AL 2.	O 1.	0.	0. G	300.000	5000.000	69.96248
AL20+	J12/79	AL 2.	O 1.	E -1.	0. G	300.000	5000.000	69.96193
AL202	J12/79	AL 2.	O 2.	0.	0. G	300.000	5000.000	85.96188
AL202+	J12/79	AL 2.	O 2.	E -1.	0. G	300.000	5000.000	85.96183
Ar	L 6/88	AR 1.	0.	0.	0. G	200.000	6000.000	39.94880
Ar+	L16/92	AR 1.	E -1.	0.	0. G	298.150	5000.000	39.94745
B	J 6/83	B 1.	0.	0.	0. G	200.000	6000.000	10.91100
B+	J 6/83	B 1.	E -1.	0.	0. G	298.150	5000.000	10.91045
B-	J 6/83	B 1.	E 1.	0.	0. G	298.150	5000.000	10.91155
BCL	J12/64	B 1.	CL 1.	0.	0. G	300.000	5000.000	46.26370
BCL+	J 6/68	B 1.	CL 1.	E -1.	0. G	300.000	5000.000	46.26315
BCLF	J12/64	B 1.	CL 1.	F 1.	0. G	300.000	5000.000	65.26210
BCL2	J 6/72	B 1.	CL 2.	0.	0. G	300.000	5000.000	81.71640
BCL2+	J12/70	B 1.	CL 2.	E -1.	0. G	300.000	5000.000	81.71585
BCL2-	J 6/72	B 1.	CL 2.	E 1.	0. G	300.000	5000.000	81.71695
BCL3	J12/64	B 1.	CL 3.	0.	0. G	300.000	5000.000	117.16910
BF	J12/64	B 1.	F 1.	0.	0. G	300.000	5000.000	29.88940
BF2	J 6/72	B 1.	F 2.	0.	0. G	300.000	5000.000	40.88781
BF2+	J12/70	B 1.	F 2.	E -1.	0. G	300.000	5000.000	40.88726
BF2-	J 6/72	B 1.	F 2.	E 1.	0. G	300.000	5000.000	40.88835
BF3	J 6/69	B 1.	F 3.	0 0.	0. G	300.000	5000.000	67.88621
BH	J12/64	B 1.	H 1.	0.	0. G	300.000	5000.000	11.81894

Species ID.	Code	Formula Used by CETPC					Phase	Temp.	Range	Mole. Wt.
BHF2	J12/65	B 1.	H 1.	F 2.	0.	G	300.000	5000.000	49.8157E	
BH2	J12/64	B 1.	H 2.	0.	0.	G	300.000	5000.000	12.8288E	
BH3	J12/64	B 1.	H 3.	0.	0.	G	300.000	5000.000	13.8348E	
BN	J 6/65	B 1.	N 1.	0.	0.	G	300.000	5000.000	24.8177E	
BO	J 6/68	B 1.	O 1.	0.	0.	G	300.000	5000.000	26.8104E	
BOCL	J12/65	B 1.	O 1.	CL 1.	0.	G	300.000	5000.000	62.2631E	
BOF	J12/65	B 1.	O 1.	F 1.	0.	G	200.000	6000.000	45.8888E	
BOF2	J12/66	B 1.	O 1.	F 2.	0.	G	300.000	5000.000	64.8072E	
BO2	J 6/68	B 1.	O 2.	0.	0.	G	300.000	5000.000	42.8098E	
BO2-	J12/68	B 1.	O 2.	E 1.	0.	G	300.000	5000.000	42.8103E	
BS	J 6/72	B 1.	S 1.	0.	0.	G	300.000	5000.000	42.8770E	
B2	J 3/79	B 2.	0.	0.	0.	G	200.000	6000.000	37.6214E	
B20	J 6/65	B 2.	O 1.	0.	0.	G	300.000	5000.000	53.6208E	
B202	J12/64	B 2.	O 2.	0.	0.	G	300.000	5000.000	69.6262E	
B203	J 6/71	B 2.	O 3.	0.	0.	G	300.000	5000.000	186.7893E	
B303CL3	J 3/65	B 3.	O 3.	CL 3.	0.	G	300.000	5000.000	137.4264E	
B303F3	J 3/65	B 3.	O 3.	F 3.	0.	G	300.000	5000.000	83.4550E	
B303H3	J 3/65	B 3.	O 3.	H 3.	0.	G	200.000	6000.000	137.3270E	
Ba	J12/70	BA 1.	0.	0.	0.	G	300.000	5000.000	217.2310E	
BaBr	J12/74	BA 1.	BR 1.	0.	0.	G	300.000	5000.000	297.1850E	
BaBr2	J12/74	BA 1.	BR 2.	0.	0.	G	300.000	5000.000	172.7797E	
BaCL	J12/72	BA 1.	CL 1.	0.	0.	G	300.000	5000.000	208.2324E	
BaCL2	J12/72	BA 1.	CL 2.	0.	0.	G	300.000	5000.000	156.3254E	
BaF	J12/72	BA 1.	F 1.	0.	0.	G	300.000	5000.000	156.3248E	
BaF+	J12/72	BA 1.	F 1.	E -1.	0.	G	300.000	5000.000	175.3238E	
BaF2	J12/72	BA 1.	F 2.	0.	0.	G	300.000	5000.000	154.3343E	
BaOH	J12/75	BA 1.	O 1.	H 1.	0.	G	300.000	5000.000	154.3337E	
BaOH+	J 6/76	BA 1.	O 1.	H 1.	E -1.	G	300.000	5000.000	171.3416E	
BaO2H2	J12/75	BA 1.	O 2.	H 2.	0.	G	300.000	5000.000	169.3930E	
BaS	J 9/77	BA 1.	S 1.	0.	0.	G	300.000	5000.000	9.8121E	
Be	J 9/83	BE 1.	0.	0.	0.	G	200.000	6000.000	9.8116E	
Be+	J 9/83	BE 1.	E -1.	0.	0.	G	298.150	6000.000	51.8219E	
BeB02	J 6/66	BE 1.	B 1.	0	2.	G	300.000	5000.000	88.9161E	
BeBr	J 6/75	BE 1.	BR 1.	0.	0.	G	300.000	5000.000	168.8201E	
BeBr2	J 6/75	BE 1.	BR 2.	0.	0.	G	300.000	5000.000	44.4643E	
BeCL	J 9/66	BE 1.	CL 1.	0.	0.	G	300.000	5000.000	44.4643E	
BeCL+	J 6/68	BE 1.	CL 1.	E -1.	0.	G	300.000	5000.000	63.4632E	
BeCLF	J 6/65	BE 1.	CL 1.	F 1.	0.	G	300.000	5000.000	79.9175E	
BeCL2	J 6/65	BE 1.	CL 2.	0.	0.	G	300.000	5000.000	28.8105E	
BeF	J12/71	BE 1.	F 1.	0.	0.	G	300.000	5000.000	47.8899E	
BeF2	J 6/70	BE 1.	F 2.	0.	0.	G	300.000	5000.000	16.8201E	
BeH	J 3/63	BE 1.	H 1.	0.	0.	G	300.000	5000.000	16.8195E	
BeH+	J 9/66	BE 1.	H 1.	E -1.	0.	G	300.000	5000.000	135.9166E	
BeI	J12/75	BE 1.	I 1.	0.	0.	G	300.000	5000.000	262.8211E	
BeI2	J12/75	BE 1.	I 2.	0.	0.	G	300.000	5000.000	23.8189E	
BeN	J 6/63	BE 1.	N 1.	0.	0.	G	300.000	5000.000	25.8115E	
BeO	J12/74	BE 1.	O 1.	0.	0.	G	200.000	6000.000	26.8195E	
BeOH	J12/75	BE 1.	O 1.	H 1.	0.	G	300.000	5000.000	26.81897	
BeOH+	J12/75	BE 1.	O 1.	H 1.	E -1.	G	300.000	5000.000	43.8268E	
BeO2H2	J12/75	BE 1.	O 2.	H 2.	0.	G	300.000	5000.000	41.8781E	
BeS	J 9/77	BE 1.	S 1.	0.	0.	G	300.000	5000.000	79.9846E	
Be20	J 9/63	BE 2.	O 1.	0.	0.	G	300.000	5000.000	34.8227E	
Be20F2	J 6/66	BE 2.	O 1.	F 2.	0.	G	300.000	5000.000	72.82657	
Be202	J 9/63	BE 2.	O 2.	0.	0.	G	300.000	5000.000	56.8231E	
Be303	J 9/63	BE 3.	O 3.	0.	0.	G	300.000	5000.000	75.8347E	
Be404	J 9/63	BE 4.	O 4.	0.	0.	G	300.000	5000.000	106.8463E	
Br	J 6/82	BR 1.	0.	0.	0.	G	200.000	6000.000	159.8898E	
Br2	TPIS89	BR 2.	0.	0.	0.	G	200.000	6000.000	12.8110E	
C	L11/88	C 1.	0.	0.	0.	G	298.150	6000.000	12.8104E	
C+	L 7/88	C 1.	E -1.	0.	0.	G	298.150	6000.000	12.8115E	
C-	TPIS91	C 1.	E 1.	0.	0.	G	298.150	6000.000	47.4637E	
CCL	J12/69	C 1.	CL 1.	0.	0.	G	298.150	6000.000	104.4589E	
CCLF3	L12/77	C 1.	CL 1.	F 3.	0.	G	300.000	5000.000	82.9164E	
CCL2	J12/68	C 1.	CL 2.	0.	0.	G	298.150	5000.000	120.9132E	
CCL2F2	L12/77	C 1.	CL 2.	F 2.	0.	G	300.000	5000.000	118.3691E	
CCL3	J 6/70	C 1.	CL 3.	0.	0.	G	298.150	5000.000	137.3675E	
CCL3F	L12/77	C 1.	CL 3.	F 1.	0.	G	298.150	5000.000	153.8218E	
CCL4	L12/81	C 1.	CL 4.	0.	0.	G	298.150	5000.000	31.8894E	
CF	J 6/70	C 1.	F 1.	0.	0.	G	300.000	5000.000	31.8888E	
CF+	J12/70	C 1.	F 1.	E -1.	0.	G	200.000	6000.000	50.8878E	
CF2	J 6/70	C 1.	F 2.	0.	0.	G	300.000	5000.000	50.8872E	
CF2+	J12/70	C 1.	F 2.	E -1.	0.	G	300.000	5000.000	69.8862E	
CF3	J 6/69	C 1.	F 3.	0.	0.	G	300.000	5000.000	69.8856E	
CF3+	J12/71	C 1.	F 3.	E -1.	0.	G	300.000	5000.000	88.8846E	
CF4	L 6/83	C 1.	F 4.	0.	0.	G	200.000	6000.000	88.8846E	

Species ID.	Code	Formula Used by CETPC						Phase	Temp. Range	Mole. Wt.
CH	TPIS79	C 1.	H 1.	0.	0.	G	200.000	6000.000	13.01894	
CH+	TPIS91	C 1.	H 1.	E -1.	0.	G	298.150	6000.000	13.01835	
CHCL	TPIS79	C 1.	H 1.	CL 1.	0.	G	298.150	5000.000	49.47164	
CHCLF2	L12/77	C 1.	H 1.	CL 1.	F 2.	G	298.150	5000.000	86.46845	
CHCL2F	L12/77	C 1.	H 1.	CL 2.	F 1.	G	298.150	5000.000	102.92274	
CHCL3	X 6/81	C 1.	H 1.	CL 3.	0.	G	298.150	5000.000	119.37754	
CHF3	L 6/81	C 1.	H 1.	F 3.	0.	G	298.150	5000.000	76.01415	
CH2	L11/89	C 1.	H 2.	0.	0.	G	200.000	6000.000	14.02686	
CH2CLF	L12/77	C 1.	H 2.	CL 1.	F 1.	G	298.150	5000.000	68.47795	
CH2CL2	L12/81	C 1.	H 2.	CL 2.	0.	G	298.150	5000.000	94.93226	
CH2F2	L 6/81	C 1.	H 2.	F 2.	0.	G	298.150	5000.000	52.02365	
CH3	L11/89	C 1.	H 3.	0.	0.	G	200.000	6000.000	15.04845	
CH3CL	L12/81	C 1.	H 3.	CL 1.	0.	G	298.150	5000.000	56.48755	
CH3F	L 6/81	C 1.	H 3.	F 1.	0.	G	298.150	5000.000	34.03322	
CH20H	L12/92	C 1.	H 3.	0 1.	0.	G	200.000	6000.000	31.03422	
CH3O	L10/92	C 1.	H 3.	0 1.	0.	G	200.000	6000.000	31.03423	
CH4	L 8/88	C 1.	H 4.	0.	0.	G	200.000	6000.000	16.04276	
CH3OH	L 8/88	C 1.	H 4.	0 1.	0.	G	200.000	6000.000	32.04216	
CN	TPIS91	C 1.	N 1.	0.	0.	G	200.000	6000.000	26.01774	
CN+	TPIS91	C 1.	N 1.	E -1.	0.	G	298.150	6000.000	26.01715	
CN-	L10/92	C 1.	N 1.	E 1.	0.	G	298.150	6000.000	26.01825	
CNN	L12/89	C 1.	N 2.	0.	0.	G	200.000	6000.000	46.02446	
CO	TPIS79	C 1.	O 1.	0.	0.	G	200.000	6000.000	28.01042	
CO+	TPIS91	C 1.	O 1.	E -1.	0.	G	298.150	6000.000	28.00985	
COCL	J12/65	C 1.	O 1.	CL 1.	0.	G	300.000	5000.000	68.46312	
COCLF	J 6/61	C 1.	O 1.	CL 1.	F 1.	G	300.000	5000.000	82.46156	
COCL2	TPIS91	C 1.	O 1.	CL 2.	0.	G	200.000	6000.000	98.01582	
COF	J12/65	C 1.	O 1.	F 1.	0.	G	300.000	5000.000	47.00886	
COF2	TPIS91	C 1.	O 1.	F 2.	0.	G	200.000	6000.000	66.00721	
COS	J 3/61	C 1.	O 1.	S 1.	0.	G	300.000	5000.000	66.07545	
C02	L 7/88	C 1.	O 2.	0.	0.	G	200.000	6000.000	44.00985	
C02+	L10/92	C 1.	O 2.	E -1.	0.	G	298.150	6000.000	44.00925	
COOH	TPIS91	C 1.	O 2.	H 1.	0.	G	200.000	6000.000	45.01774	
CP	L 9/93	C 1.	P 1.	0.	0.	G	200.000	6000.000	42.08476	
CS	J12/76	C 1.	S 1.	0.	0.	G	300.000	5000.000	44.07705	
CS2	J12/76	C 1.	S 2.	0.	0.	G	300.000	5000.000	76.14304	
C2	TPIS91	C 2.	0.	0.	0.	G	200.000	6000.000	24.02206	
C2+	TPIS91	C 2.	E -1.	0.	0.	G	298.150	6000.000	24.02145	
C2-	TPIS91	C 2.	E 1.	0.	0.	G	298.150	6000.000	24.02255	
C2CL2	J12/65	C 2.	CL 2.	0.	0.	G	300.000	5000.000	94.02746	
C2CL4	L10/87	C 2.	CL 4.	0.	0.	G	298.150	5000.000	165.03286	
C2CL6	L10/87	C 2.	CL 6.	0.	0.	G	298.150	5000.000	235.73826	
C2F2	J12/67	C 2.	F 2.	0.	0.	G	300.000	5000.000	62.01881	
C2F4	J 6/69	C 2.	F 4.	0.	0.	G	300.000	5000.000	100.01581	
C2H	L 1/91	C 2.	H 1.	0.	0.	G	200.000	6000.000	25.02994	
C2HCL	TPIS91	C 2.	H 1.	CL 1.	0.	G	298.150	5000.000	68.48254	
C2HF	J12/67	C 2.	H 1.	F 1.	0.	G	300.000	5000.000	44.02834	
CHC0,ketyl	L 6/89	C 2.	H 1.	O 1.	0.	G	200.000	6000.000	41.02934	
C2H2	L 1/91	C 2.	H 2.	0.	0.	G	200.000	6000.000	26.03786	
C2H2,vinyllidene	L12/89	C 2.	H 2.	0.	0.	G	200.000	6000.000	26.03788	
CH2C0,ketene	L 5/96	C 2.	H 2.	O 1.	0.	G	200.000	6000.000	42.03728	
C2H3,vinyl	L 2/92	C 2.	H 3.	0.	0.	G	200.000	6000.000	27.04582	
CH3CN	L12/92	C 2.	H 3.	N 1.	0.	G	200.000	6000.000	41.05256	
CH3C0,acetyl	BUR 84	C 2.	H 3.	O 1.	0.	G	300.000	5000.000	43.04522	
C2H4	L 1/91	C 2.	H 4.	0.	0.	G	200.000	6000.000	28.05376	
C2H40,ethylen o	L 8/88	C 2.	H 4.	O 1.	0.	G	200.000	6000.000	44.05316	
CH3CHO,ethanal	L 8/88	C 2.	H 4.	O 1.	0.	G	200.000	6000.000	44.05316	
CH3C00H	L 8/88	C 2.	H 4.	O 2.	0.	G	200.000	6000.000	66.05256	
(HC00H)2	BUR 92	C 2.	H 4.	O 4.	0.	G	300.000	5000.000	92.05136	
C2H5	L12/92	C 2.	H 5.	0.	0.	G	200.000	6000.000	29.00176	
C2H6	L 8/88	C 2.	H 6.	0.	0.	G	200.000	6000.000	36.00964	
CH3N2CH3	L 8/88	C 2.	H 6.	N 2.	0.	G	200.000	6000.000	58.00312	
CH30CH3	L12/92	C 2.	H 6.	O 1.	0.	G	200.000	6000.000	46.00904	
C2H50H	L 8/88	C 2.	H 6.	O 1.	0.	G	200.000	6000.000	46.00904	
CCN	L12/92	C 2.	N 1.	0.	0.	G	200.000	6000.000	38.02874	
CNC	TPIS91	C 2.	N 1.	0.	0.	G	200.000	6000.000	38.02874	
C2N2	TPIS79	C 2.	N 2.	0.	0.	G	200.000	6000.000	52.03548	
C20	L12/89	C 2.	O 1.	0.	0.	G	200.000	6000.000	40.02146	
C3	TPIS79	C 3.	0.	0.	0.	G	200.000	6000.000	36.03302	
C3H3,propargyl	BUR 92	C 3.	H 3.	0.	0.	G	200.000	6000.000	39.05682	
C3H4,allene	L12/92	C 3.	H 4.	0.	0.	G	200.000	6000.000	40.06476	
C3H4,propyne	L12/92	C 3.	H 4.	0.	0.	G	200.000	6000.000	40.06476	
C3H4,cyclo-	L 5/90	C 3.	H 4.	0.	0.	G	200.000	6000.000	40.06476	
C3H5,allyl	BUR 92	C 3.	H 5.	0.	0.	G	200.000	6000.000	41.07276	
C3H6,propylene	L 7/90	C 3.	H 6.	0.	0.	G	200.000	6000.000	42.00864	

Species ID.	Code	Formula Used by CETPC						Phase	Temp. Range	Mole. Wt.
C3H6,cyclo-	L 1/93	C 3.	H 6.	O			G	200.000	6000.000	42.08064
C3H60	L 6/90	C 3.	H 6.	O 1.			G	200.000	6000.000	58.08004
C3H7,n-propyl	L 6/90	C 3.	H 7.	O			G	200.000	6000.000	43.08858
C3H7,l-propyl	L 9/85	C 3.	H 7.	O			G	200.000	6000.000	43.08858
C3H8	L 6/90	C 3.	H 8.	O			G	200.000	6000.000	44.09552
C3H80,1propanol	L 9/88	C 3.	H 8.	O 1.			G	200.000	6000.000	60.09592
C3H80,2propanol	L 9/88	C 3.	H 8.	O 1.			G	200.000	6000.000	68.03180
C8D2	L 7/88	C 3.	O 2.	O			G	200.000	6000.000	48.04400
C4	L 7/88	C 4.	O 2.	O			G	200.000	6000.000	58.05988
C4H2	L 2/93	C 4.	H 2.	O			G	200.000	6000.000	52.07576
C4H4,1,3-cyclo-	L 5/90	C 4.	H 4.	O			G	200.000	6000.000	54.09164
C4H6,butadiene	X10/92	C 4.	H 6.	O			G	200.000	6000.000	54.09164
C4H6,2-butyne	X10/88	C 4.	H 6.	O			G	200.000	6000.000	54.09164
C4H8,cyclo-	L 5/90	C 4.	H 8.	O			G	200.000	6000.000	56.10752
C4H8,1-butene	X 4/88	C 4.	H 8.	O			G	200.000	6000.000	56.10752
C4H8,clis2-butene	X 4/88	C 4.	H 8.	O			G	200.000	6000.000	56.10752
C4H8,tr2-butene	X 4/88	C 4.	H 8.	O			G	200.000	6000.000	56.10752
C4H8,isobutene	X 4/88	C 4.	H 8.	O			G	200.000	6000.000	56.10752
C4H8,cyclo-	L 5/90	C 4.	H 8.	O			G	200.000	6000.000	120.10512
(CH3CD0H)2	L 6/90	C 4.	H 8.	O 4.			G	200.000	6000.000	57.11546
C4H9,n-butyl	X10/84	C 4.	H 9.	O			G	200.000	6000.000	57.11546
C4H9,l-butyl	X10/84	C 4.	H 9.	O			G	200.000	6000.000	57.11546
C4H9,s-butyl	L 1/93	C 4.	H 9.	O			G	200.000	6000.000	57.11546
C4H9,t-butyl	L 1/93	C 4.	H 9.	O			G	200.000	6000.000	58.12340
C4H10,isobutane	L 6/90	C 4.	H 10.	O			G	200.000	6000.000	78.05748
C4H10,n-butane	L 6/90	C 4.	H 10.	O			G	200.000	6000.000	60.05500
C4N2	J 3/61	C 4.	N 2.	O			G	200.000	6000.000	66.10264
C5	L 7/88	C 5.	O.	O			G	200.000	6000.000	68.11852
C6H6,1,3cyclo-	L 5/90	C 5.	H 6.	O			G	200.000	6000.000	70.13448
C5H8,cyclo-	L 1/93	C 5.	H 8.	O			G	200.000	6000.000	70.13448
C5H10,1-pentene	X 4/87	C 5.	H 10.	O			G	200.000	6000.000	70.13448
C5H10,cyclo-	L 6/90	C 5.	H 10.	O			G	200.000	6000.000	71.14234
C5H11,pentyl	X10/84	C 5.	H 11.	O			G	200.000	6000.000	71.14234
C5H11,t-pentyl	L 1/93	C 5.	H 11.	O			G	200.000	6000.000	72.15628
C5H12,n-pentene	X10/85	C 5.	H 12.	O			G	298.150	5000.000	72.15628
C5H12,1-pentene	X10/85	C 5.	H 12.	O			G	298.150	5000.000	72.15628
CH3C(CH3)2CH3	X10/85	C 5.	H 12.	O			G	298.150	5000.000	74.06188
C6H2	L 2/93	C 6.	H 2.	O			G	200.000	6000.000	77.10570
C6H5,phenyl	L 1/91	C 6.	H 5.	O			G	200.000	6000.000	82.13651
C6D5	L12/84	C 6.	D 5.	O			G	300.000	6000.000	93.05110
C6H50,phenoxy	L 6/90	C 6.	H 5.	O 1.			G	200.000	6000.000	78.11364
C6H6	L 1/91	C 6.	H 6.	O			G	200.000	6000.000	84.15061
C6D6	L12/84	C 6.	D 6.	O			G	300.000	6000.000	94.11384
C6H50H,phenol	L 6/90	C 6.	H 6.	O 1.			G	200.000	6000.000	82.14540
C6H10,cyclo-	L 1/93	C 6.	H 10.	O			G	200.000	6000.000	84.16128
C6H12,1-hexene	X 4/87	C 6.	H 12.	O			G	200.000	6000.000	85.16922
C6H12,cyclo-	L 6/90	C 6.	H 12.	O			G	200.000	6000.000	91.13258
C6H13,n-hexyl	X10/83	C 6.	H 13.	O			G	200.000	6000.000	92.14552
C7H7,benzyl	L 1/93	C 7.	H 7.	O			G	200.000	6000.000	108.13992
C7H8	L 1/93	C 7.	H 8.	O	1.		G	200.000	6000.000	98.18816
C7H80,cresol mx	L 1/93	C 7.	H 8.	O 1.			G	200.000	6000.000	99.19616
C7H14,1-heptene	X 4/87	C 7.	H 14.	O			G	200.000	6000.000	100.20454
C7H15,n-heptyl	X10/83	C 7.	H 15.	O			G	200.000	6000.000	104.15152
C7H16,n-heptane	X10/85	C 7.	H 16.	O			G	200.000	6000.000	106.16748
C8H8,styrene	X 4/89	C 8.	H 8.	O			G	200.000	6000.000	112.21564
C8H10,ethylbenz	X10/86	C 8.	H 10.	O			G	200.000	6000.000	113.22298
C8H16,1-octene	X 4/87	C 8.	H 16.	O			G	200.000	6000.000	114.23092
C8H17,n-octyl	X10/83	C 8.	H 17.	O			G	200.000	6000.000	114.23092
C8H18,isoctane	X 4/85	C 8.	H 18.	O			G	200.000	6000.000	114.23092
C8H18,n-octane	X 4/85	C 8.	H 18.	O			G	200.000	6000.000	127.24986
C9H19,n-nonyl	X10/83	C 9.	H 19.	O			G	200.000	6000.000	128.17352
C10H8,naphthalene	L 8/93	C 10.	H 8.	O			G	298.150	5000.000	141.27674
C10H21,n-decyl	X10/83	C 10.	H 21.	O			G	200.000	6000.000	153.20346
C12H9,o-biphenyl	L12/84	C 12.	H 9.	O			G	300.000	5000.000	162.25892
O-C12D9	L12/84	C 12.	D 9.	O			G	200.000	6000.000	154.21148
C12H18,biphenyl	L12/84	C 12.	H 10.	O			G	300.000	5000.000	164.27302
C12D18	L12/84	C 12.	D 10.	O			G	273.150	5000.000	167.31462
Jet-A(g)	L 6/88	C 12.	H 23.	O			G	200.000	6000.000	40.07800
Ca	L 3/93	CA 1.	O.	O.			G	298.150	6000.000	40.07745
Ca+	J 9/83	CA 1.	E -1.	O.			G	300.000	5000.000	119.98200
CaBr	J12/74	CA 1.	BR 1.	O.			G	300.000	5000.000	199.88600
CaBr2	J 6/74	CA 1.	BR 2.	O.			G	300.000	5000.000	75.53076
CaCL	J 6/70	CA 1.	CL 1.	O.			G	300.000	5000.000	110.98340
CaCL2	J 6/70	CA 1.	CL 2.	O.			G	300.000	5000.000	

Species ID.	Code	Formula Used by CETPC			Phase	Temp.	Range	Mole. Wt.
CaF	J12/68	CA 1.	F 1.	0.	G	300.000	5000.000	59.07640
CaF2	J12/68	CA 1.	F 2.	0.	G	300.000	5000.000	78.07481
CaI	J 6/74	CA 1.	I 1.	0.	G	300.000	5000.000	166.98247
CaI2	J 6/74	CA 1.	I 2.	0.	G	300.000	5000.000	293.88694
CaO	J12/74	CA 1.	O 1.	0.	G	300.000	5000.000	56.07740
CaOH	J12/75	CA 1.	O 1.	H 1.	E -1.	300.000	5000.000	57.08534
CaOH+	J12/75	CA 1.	O 1.	H 1.	G	300.000	5000.000	57.08479
CaO2H2	J12/75	CA 1.	O 2.	H 2.	G	300.000	5000.000	74.09268
CaS	J 9/77	CA 1.	S 1.	0.	G	298.150	5000.000	72.14400
Ca2	J 9/83	CA 2.	0.	0.	G	200.000	5000.000	86.15600
CL	J 6/82	CL 1.	0.	0.	G	200.000	5000.000	35.45270
CL+	J 6/82	CL 1.	E -1.	0.	G	298.150	5000.000	35.45215
CL-	J 6/82	CL 1.	E 1.	0.	G	298.150	5000.000	35.45325
CLCN	J 6/66	CL 1.	C 1.	N 1.	G	300.000	5000.000	61.47644
CLF	J 6/77	CL 1.	F 1.	0.	G	300.000	5000.000	54.45110
CLF3	J 9/65	CL 1.	F 3.	0.	G	300.000	5000.000	92.44791
CL0	J 6/61	CL 1.	O 1.	0.	G	300.000	5000.000	51.45215
CL02	L 7/93	CL 1.	O 2.	0.	G	200.000	5000.000	67.45150
CL2	TPIS89	CL 2.	0.	0.	G	200.000	5000.000	70.98540
CL20	J12/65	CL 2.	O 1.	0.	G	300.000	5000.000	86.98480
Cr	J 6/79	CR 1.	0.	0.	G	200.000	5000.000	51.99610
CrN	J12/73	CR 1.	N 1.	0.	G	300.000	5000.000	66.06284
CrO	J12/73	CR 1.	O 1.	0.	G	300.000	5000.000	67.99550
CrO2	J12/73	CR 1.	O 2.	0.	G	300.000	5000.000	83.99490
CrO3	J12/73	CR 1.	O 3.	0.	G	300.000	5000.000	99.99430
Cs	L 3/93	CS 1.	0.	0.	G	200.000	5000.000	132.98543
Cs+	J12/83	CS 1.	E -1.	0.	G	298.150	5000.000	132.98480
CsCL	J 6/68	CS 1.	CL 1.	0.	G	300.000	5000.000	168.35813
CsF	J 6/68	CS 1.	F 1.	0.	G	300.000	5000.000	161.98383
CsO	J12/68	CS 1.	O 1.	0.	G	300.000	5000.000	148.98483
CsOH	J 6/71	CS 1.	O 1.	H 1.	E -1.	300.000	5000.000	149.91277
CsOH+	J12/71	CS 1.	O 1.	H 1.	G	300.000	5000.000	149.91222
Cs2	J12/83	CS 2.	0.	0.	G	200.000	5000.000	265.81586
Cs2CL2	J 6/68	CS 2.	CL 2.	0.	G	300.000	5000.000	336.71626
Cs2F2	J 6/68	CS 2.	F 2.	0.	G	300.000	5000.000	363.88767
Cs20	J12/68	CS 2.	O 1.	0.	G	300.000	5000.000	281.81626
Cs2O2H2	J 6/71	CS 2.	O 2.	H 2.	G	300.000	5000.000	299.82554
Cs2S04	J 6/79	CS 2.	S 1.	O 4.	G	300.000	5000.000	361.87446
Cu	J 9/84	CU 1.	0.	0.	G	200.000	5000.000	68.54600
Cu+	J 9/84	CU 1.	E -1.	0.	G	298.150	5000.000	68.54545
CuCL	J 3/68	CU 1.	CL 1.	0.	G	300.000	5000.000	98.99870
CuF	J12/77	CU 1.	F 1.	0.	G	300.000	5000.000	82.54440
CuF2	J12/77	CU 1.	F 2.	0.	G	300.000	5000.000	161.54281
CuO	J12/77	CU 1.	O 1.	0.	G	300.000	5000.000	79.54540
Cu2	J 9/66	CU 2.	0.	0.	G	300.000	5000.000	127.09260
Cu3CL3	J 3/68	CU 3.	CL 3.	0.	G	300.000	5000.000	296.99810
D	J 3/62	D 1.	0.	0.	G	200.000	5000.000	2.01410
D+	J 3/82	D 1.	E -1.	0.	G	298.150	5000.000	2.01355
D-	J 3/62	D 1.	E 1.	0.	G	298.150	5000.000	2.01465
DCL	J 6/77	D 1.	CL 1.	0.	G	300.000	5000.000	37.46680
DF	J 6/77	D 1.	F 1.	0.	G	300.000	5000.000	21.01251
DOCL	J 3/79	D 1.	O 1.	CL 1.	G	300.000	5000.000	53.46620
D2	TPIS89	D 2.	0.	0.	G	200.000	5000.000	4.02820
D2+	J 9/77	D 2.	E -1.	0.	G	300.000	5000.000	4.02766
D2-	J 9/77	D 2.	E 1.	0.	G	300.000	5000.000	4.02875
D20	J 6/77	D 2.	O 1.	0.	G	300.000	5000.000	25.02760
D2S	J 6/77	D 2.	S 1.	0.	G	300.000	5000.000	36.09420
F	J 6/82	F 1.	0.	0.	G	200.000	5000.000	18.99840
F+	J 6/82	F 1.	E -1.	0.	G	298.150	5000.000	18.99785
F-	J 6/82	F 1.	E 1.	0.	G	298.150	5000.000	18.99895
FCN	J 6/69	F 1.	C 1.	N 1.	G	300.000	5000.000	45.01614
F0	J12/66	F 1.	O 1.	0.	G	300.000	5000.000	34.09780
F02	J 9/66	F 1.	O 2.	0.	G	300.000	5000.000	50.09720
F2	TPIS89	F 2.	0.	0.	G	200.000	5000.000	37.09681
F20	J12/69	F 2.	O 1.	0.	G	300.000	5000.000	53.09621
FS2F, fluorodisu	J 6/76	F 2.	S 2.	0.	G	200.000	5000.000	102.11681
Fe	J 3/78	FE 1.	0.	0.	G	200.000	5000.000	55.04700
Fe+	J 6/84	FE 1.	E -1.	0.	G	298.150	5000.000	55.04645
Fe-	J 6/84	FE 1.	E 1.	0.	G	298.150	5000.000	55.04755
FeC505	J 3/78	FE 1.	C 5.	O 5.	G	300.000	5000.000	195.89900
FeCL	J 6/65	FE 1.	CL 1.	0.	G	300.000	5000.000	91.29970
FeCL2	J12/70	FE 1.	CL 2.	0.	G	300.000	5000.000	126.75240
FeCL3	J 6/65	FE 1.	CL 3.	0.	G	300.000	5000.000	162.20510
FeO	J 9/66	FE 1.	O 1.	0.	G	300.000	5000.000	71.04640

Species ID.	Code	Formula Used by CETPC				Phase	Temp.	Range	Mole. Wt.
Fe(OH)2	J12/66	FE 1.	O 2.	H 2.		G	200.000	6000.000	89.06168
Fe2CL4	J12/70	FE 2.	CL 4.		G.	G	300.000	5000.000	253.58488
Fe2CL6	J 6/65	FE 2.	CL 6.		G.	G	200.000	5000.000	324.41028
H	L 5/93	H 1.		G.		G	200.000	5000.000	1.00794
H+	L 7/88	H 1.	E -1.		G.	G	298.150	5000.000	1.00738
H-	L 7/88	H 1.	E 1.		G.	G	298.150	5000.000	1.00848
HALO	J 3/64	H 1.	AL 1.	O 1.		G	300.000	5000.000	43.98688
HBO	J12/75	H 1.	B 1.	O 1.		G	300.000	5000.000	27.81778
HBO+	J12/75	H 1.	B 1.	O 1.	E -1.	G	300.000	5000.000	27.81888
HBO-	J12/75	H 1.	B 1.	O 1.	E 1.	G	300.000	5000.000	43.88774
HBO2	J12/64	H 1.	B 1.	O 2.		G	300.000	5000.000	43.88494
HBS	J12/75	H 1.	B 1.	S 1.		G	300.000	5000.000	43.88438
HBS+	J12/75	H 1.	B 1.	S 1.	E -1.	G	300.000	5000.000	86.91194
HB+	J 9/65	H 1.	BR 1.	G.		G	300.000	5000.000	27.02568
HCN	L 7/88	H 1.	C 1.	N 1.		G	200.000	6000.000	29.01834
HCO	L12/89	H 1.	C 1.	O 1.		G	200.000	6000.000	29.01778
HCO+	J12/76	H 1.	C 1.	O 1.	E -1.	G	300.000	6000.000	39.03668
HCCN	TPIS91	H 1.	C 2.	N 1.		G	200.000	5000.000	36.46864
HCL	J 9/64	H 1.	CL 1.	G.		G	300.000	5000.000	3.02204
HD	J 6/77	H 1.	D 1.	G.		G	300.000	5000.000	3.02148
HD+	J 9/77	H 1.	D 1.	E -1.		G	300.000	5000.000	3.02258
HD-	J 9/77	H 1.	D 1.	E 1.		G	300.000	5000.000	19.02144
HDO	J 6/77	H 1.	D 1.	O 1.		G	300.000	5000.000	20.00634
HF	J 6/77	H 1.	F 1.	G.		G	300.000	5000.000	127.91241
HI	J 9/61	H 1.	I 1.	G.		G	300.000	5000.000	27.02568
HNC	L11/92	H 1.	N 1.	C 1.		G	200.000	6000.000	43.02508
HNC0	J12/70	H 1.	N 1.	C 1.	O 1.	G	200.000	6000.000	31.01468
HNO	L12/89	H 1.	N 1.	O 1.		G	200.000	6000.000	47.01348
HNO2	TPIS89	H 1.	N 1.	O 2.		G	200.000	6000.000	63.01288
HNO3	L 4/96	H 1.	N 1.	O 3.		G	200.000	6000.000	52.46864
HOCL	J 3/79	H 1.	O 1.	CL 1.		G	300.000	5000.000	36.00574
HOF	J12/72	H 1.	O 1.	F 1.		G	300.000	5000.000	33.00674
H02	L 5/89	H 1.	O 2.	G.		G	200.000	6000.000	100.07054
HSO3F	J 6/72	H 1.	S 1.	O 3.	F 1.	G	300.000	5000.000	2.01588
H2	TPIS78	H 2.	G.	G.		G	200.000	6000.000	2.01588
H2+	TPIS78	H 2.	E -1.	G.		G	298.150	5000.000	2.01643
H2-	J 9/77	H 2.	E 1.	G.		G	300.000	5000.000	30.02628
HCHO, formaldehy	L 8/88	H 2.	C 1.	O 1.		G	200.000	6000.000	46.02568
HCOOH	L 8/88	H 2.	C 1.	O 2.		G	200.000	5000.000	46.01268
H2F2	J 6/77	H 2.	F 2.	G.		G	200.000	5000.000	18.01528
H2O	L 8/89	H 2.	O 1.	G.		G	200.000	5000.000	18.01478
H2O+	TPIS89	H 2.	O 1.	E -1.		G	298.150	5000.000	34.01468
H2O2	L 2/93	H 2.	O 2.	G.		G	200.000	5000.000	34.008188
H2S	J 6/77	H 2.	S 1.	G.		G	200.000	5000.000	98.07948
H2SO4	J 9/77	H 2.	S 1.	O 4.		G	300.000	5000.000	131.45322
H3B3O6	J12/64	H 3.	B 3.	O 6.		G	300.000	5000.000	60.01963
H9F3	J 6/77	H 3.	F 3.	G.		G	200.000	5000.000	19.02267
H3O+	TPIS89	H 3.	O 1.	E -1.		G	298.150	5000.000	92.05138
(HCOOH)2	L 8/88	H 4.	C 2.	O 4.		G	200.000	6000.000	80.02537
H4F4	J 6/77	H 4.	F 4.	G.		G	200.000	5000.000	100.03172
H5F5	J 6/77	H 5.	F 5.	G.		G	300.000	5000.000	120.03866
H6F6	J 6/77	H 6.	F 6.	G.		G	300.000	5000.000	140.04440
H7F7	J 6/77	H 7.	F 7.	G.		G	300.000	5000.000	4.00268
He	L10/96	HE 1.	G.	G.		G	200.000	6000.000	4.00205
He+	L10/92	HE 1.	E -1.	G.		G	200.000	6000.000	200.59000
Hg	J 9/84	HG 1.	G.	G.		G	200.000	6000.000	360.39800
HgBr2	J 3/82	HG 1.	BR 2.	G.		G	200.000	5000.000	126.90447
I	J 6/82	I 1.	G.	G.		G	200.000	6000.000	253.00894
I2	TPIS89	I 2.	G.	G.		G	200.000	6000.000	39.00838
K	L 4/93	K 1.	G.	G.		G	200.000	6000.000	39.00775
K+	J12/83	K 1.	E -1.	G.		G	298.150	5000.000	81.00818
KB02	J 6/71	K 1.	B 1.	O 2.		G	300.000	5000.000	65.11604
KCN	J 3/66	K 1.	C 1.	N 1.		G	300.000	5000.000	74.55100
KCL	J 3/66	K 1.	CL 1.	G.		G	300.000	5000.000	56.09670
KF	J 6/69	K 1.	F 1.	G.		G	300.000	5000.000	77.09585
KF2-	J12/68	K 1.	F 2.	E 1.		G	300.000	5000.000	40.10624
KH	J 3/63	K 1.	H 1.	G.		G	300.000	5000.000	55.09770
KO	J12/67	K 1.	O 1.	E 1.		G	300.000	5000.000	55.09825
KO-	J12/67	K 1.	O 1.	H 1.		G	300.000	5000.000	66.10564
KOH	J12/70	K 1.	O 1.	H 1.	E -1.	G	300.000	5000.000	56.10559
KOH+	J12/71	K 1.	O 1.	H 1.	E -1.	G	300.000	5000.000	78.19668
K2	J12/63	K 2.	G.	G.		G	200.000	6000.000	130.23208
K2C2N2	J 3/66	K 2.	C 2.	N 2.	G	G	300.000	5000.000	

Species ID.	Code	Formula Used by CETPC				Phase	Temp.	Range	Mole. Wt.
K2CL2	J 3/66	K 2.	CL 2.	S.	S.	G	300.000	5000.000	149.16206
K2F2	J 6/69	K 2.	F 2.	S.	S.	G	300.000	5000.000	116.19341
K2O2H2	J12/70	K 2.	O 2.	H 2.	S.	G	300.000	5000.000	112.21126
K2S04	J 6/78	K 2.	S 1.	O 4.	S.	G	300.000	5000.000	174.26026
Kr	L10/90	KR 1.	S.	S.	S.	G	200.000	5000.000	83.00000
Kr+	L10/92	KR 1.	E -1.	S.	S.	G	298.150	5000.000	83.79945
Li	J12/83	LI 1.	S.	S.	S.	G	200.000	5000.000	6.94166
Li+	J12/83	LI 1.	E -1.	S.	S.	G	298.150	5000.000	6.94045
LiALF4	J12/79	LI 1.	AL 1.	F 4.	S.	G	300.000	5000.000	169.91615
LIB02	J 6/71	LI 1.	B 1.	O 2.	S.	G	300.000	5000.000	49.75000
LiCL	J 6/62	LI 1.	CL 1.	S.	S.	G	300.000	5000.000	42.39374
LiF	J12/68	LI 1.	F 1.	S.	S.	G	300.000	5000.000	25.93946
LiFO	J 9/65	LI 1.	F 1.	O 1.	S.	G	300.000	5000.000	41.98882
LiF2-	J12/68	LI 1.	F 1.	O 1.	S.	G	300.000	5000.000	44.98835
LiH	J 9/67	LI 1.	H 1.	S.	S.	G	300.000	5000.000	7.94894
LiN	J12/66	LI 1.	N 1.	S.	S.	G	300.000	5000.000	26.94774
LiO	J 3/64	LI 1.	O 1.	S.	S.	G	300.000	5000.000	22.94846
LiO-	J12/67	LI 1.	O 1.	E 1.	S.	G	300.000	5000.000	22.94895
LiOH	J 6/71	LI 1.	O 1.	H 1.	S.	G	300.000	5000.000	23.94834
LiOH+	J12/71	LI 1.	O 1.	H H 1.	E -1.	G	300.000	5000.000	23.94775
LiON	J 9/66	LI 1.	O 1.	N 1.		G	300.000	5000.000	36.94714
Li2	J12/83	LI 2.	S.	S.	S.	G	200.000	5000.000	13.88206
Li2CL2	J 6/62	LI 2.	CL 2.	S.	S.	G	300.000	5000.000	84.78746
Li2F2	J12/68	LI 2.	F 2.	S.	S.	G	300.000	5000.000	51.87861
Li20	J 3/64	LI 2.	O 1.	S.	S.	G	300.000	5000.000	29.86146
Li202	J 3/64	LI 2.	O 2.	S.	S.	G	300.000	5000.000	45.88882
Li202H2	J 6/71	LI 2.	O 2.	H 2.	S.	G	300.000	5000.000	47.89665
Li2S04	J12/78	LI 2.	S 1.	H 2.	S.	G	300.000	5000.000	169.94566
Li3CL3	J 6/62	LI 3.	CL 3.	S.	S.	G	300.000	5000.000	127.18116
Li3F3	J12/68	LI 3.	F 3.	S.	S.	G	300.000	5000.000	77.81821
Mg	J 9/83	MG 1.	S.	S.	S.	G	200.000	6000.000	24.38504
Mg+	J 9/83	MG 1.	E -1.	S.	S.	G	298.150	6000.000	24.38445
MgBr	J 6/75	MG 1.	BR 1.	S.	S.	G	300.000	5000.000	164.20906
MgBr2	J 6/74	MG 1.	BR 2.	S.	S.	G	300.000	5000.000	184.11382
MgCL	J 3/66	MG 1.	CL 1.	S.	S.	G	300.000	5000.000	59.75776
MgCL+	J 6/68	MG 1.	CL 1.	E -1.	S.	G	300.000	5000.000	59.75716
MgCLF	J 3/66	MG 1.	CL 1.	F 1.	S.	G	200.000	5000.000	78.75616
MgCL2	J12/69	MG 1.	CL 2.	S.	S.	G	300.000	5000.000	95.21646
MgF	J 6/76	MG 1.	F 1.	S.	S.	G	300.000	5000.000	43.38346
MgF+	J12/75	MG 1.	F 1.	E -1.	S.	G	300.000	5000.000	43.38286
MgF2	J 6/75	MG 1.	F 2.	S.	S.	G	300.000	5000.000	62.38181
MgF2+	J12/75	MG 1.	F 2.	E -1.	S.	G	300.000	5000.000	62.38126
MgH	J12/66	MG 1.	H 1.	S.	S.	G	300.000	5000.000	25.31294
MgI	J12/74	MG 1.	I 1.	S.	S.	G	200.000	5000.000	151.26947
MgI2	J12/74	MG 1.	I 2.	S.	S.	G	300.000	5000.000	278.11394
MgN	J 3/64	MG 1.	N 1.	S.	S.	G	300.000	5000.000	38.81174
MgO	J12/74	MG 1.	O 1.	S.	S.	G	300.000	5000.000	40.38446
MgOH	J12/75	MG 1.	O 1.	H 1.	S.	G	300.000	5000.000	41.31234
MgOH+	J12/75	MG 1.	O 1.	H 1.	E -1.	G	300.000	5000.000	41.31176
MgO2H2	J12/75	MG 1.	O 2.	H 2.	S.	G	300.000	5000.000	58.81966
MgS	J 9/77	MG 1.	S 1.	S.	S.	G	300.000	5000.000	56.37106
Mg2	J 9/83	MG 2.	S.	S.	S.	G	200.000	6000.000	48.51000
Mg2F4	J12/75	MG 2.	F 4.	S.	S.	G	300.000	5000.000	124.68381
Mo03	TPIS82	MO 1.	O 3.	S.	S.	G	298.150	5000.000	143.93826
Mo206	TPIS82	MO 2.	O 6.	S.	S.	G	298.150	5000.000	287.87646
Mo309	TPIS82	MO 3.	O 9.	S.	S.	G	298.150	5000.000	431.81466
Mo4012	TPIS82	MO 4.	O 12.	S.	S.	G	298.150	5000.000	575.78286
Mo5015	TPIS82	MO 5.	O 15.	S.	S.	G	298.150	5000.000	719.69166
N	L 6/88	N 1.	S.	S.	S.	G	200.000	6000.000	14.58674
N+	L 7/88	N 1.	E -1.	S.	S.	G	298.150	6000.000	14.58616
N-	L 7/88	N 1.	E 1.	S.	S.	G	298.150	6000.000	14.58726
NCO	L12/89	N 1.	C 1.	D 1.	S.	G	200.000	6000.000	42.01714
ND	J 6/77	N 1.	D 1.	S.	S.	G	298.150	5000.000	15.02684
ND2	J 6/77	N 1.	D 2.	S.	S.	G	298.150	5000.000	18.03494
ND3	J 6/77	N 1.	D 3.	S.	S.	G	298.150	5000.000	20.04906
NF	TPIS89	N 1.	F 1.	S.	S.	G	200.000	6000.000	33.00514
NF2	TPIS78	N 1.	F 2.	S.	S.	G	298.150	5000.000	52.00356
NF3	L12/86	N 1.	F 3.	S.	S.	G	298.150	5000.000	71.00196
NH	L11/89	N 1.	H 1.	S.	S.	G	200.000	6000.000	15.01466
NH+	L 2/89	N 1.	H 1.	E -1.	S.	G	298.150	6000.000	15.01416
NHF	TPIS78	N 1.	H 1.	F 1.	S.	G	298.150	5000.000	34.01366
NHF2	TPIS78	N 1.	H 2.	S.	S.	G	200.000	6000.000	16.02266
NH2	L12/89	N 1.	H 2.	F 2.	S.	G	298.150	5000.000	53.01146
NH2F	TPIS78	N 1.	H 2.	F 1.	S.	G	298.150	5000.000	35.02106

Species ID.	Code	Formula Used by CETPC				Phase	Temp. Range		Mole. Wt.			
NH3	TPIS89	N	1.	H	3.	0.	0.	G	200.000 6000.000	17.03056		
NH2OH	TPIS89	N	1.	H	3.	0	1.	0.	G	200.000 6000.000	33.02996	
NH4+	TPIS89	N	1.	H	4.	E	-1.	0.	G	298.150 6000.000	16.03795	
NO	TPIS89	N	1.	O	1.	0.	0.	0.	G	298.150 6000.000	36.00614	
NO+	TPIS89	N	1.	O	1.	E	-1.	0.	G	298.150 5000.000	36.00559	
NOCL	L12/86	N	1.	O	1.	CL	1.	0.	G	298.150 5000.000	65.45884	
NOF	TPIS78	N	1.	O	1.	F	1.	0.	G	298.150 5000.000	49.00454	
NOF3	TPIS78	N	1.	O	1.	F	3.	0.	G	298.150 5000.000	87.00135	
NO2	L 7/88	N	1.	O	2.	0.	0.	0.	G	200.000 6000.000	46.00509	
NO2-	TPIS89	N	1.	O	2.	E	1.	0.	G	298.150 5000.000	81.45824	
NO2CL	L12/86	N	1.	O	2.	CL	1.	0.	G	298.150 5000.000	65.00394	
NO2F	L12/86	N	1.	O	2.	F	1.	0.	G	200.000 6000.000	62.00494	
NO3	J12/84	N	1.	O	3.	0.	0.	0.	G	298.150 6000.000	62.00549	
NO3-	TPIS89	N	1.	O	3.	E	1.	0.	G	298.150 5000.000	81.00334	
NO3F	L12/86	N	1.	O	3.	F	1.	0.	G	200.000 6000.000	28.01248	
N2	TPIS78	N	2.	0.	0.	0.	0.	0.	G	200.000 6000.000	28.01293	
N2+	TPIS89	N	2.	E	-1.	0.	0.	0.	G	298.150 6000.000	28.01463	
N2-	J 9/77	N	2.	E	1.	0.	0.	0.	G	200.000 6000.000	46.02448	
NCN	L12/89	N	2.	C	1.	0.	0.	0.	G	200.000 6000.000	32.04160	
cis-N2D2	J 8/77	N	2.	D	2.	0.	0.	0.	G	298.150 5000.000	66.01029	
N2F2	L12/86	N	2.	F	2.	0.	0.	0.	G	298.150 5000.000	104.00709	
N2F4	L12/86	N	2.	F	4.	0.	0.	0.	G	200.000 6000.000	30.02936	
N2H2	L 5/90	N	2.	H	2.	0.	0.	0.	G	200.000 6000.000	62.02816	
NH2NO2	TPIS89	N	2.	H	2.	0	2.	0.	G	200.000 6000.000	32.04524	
N2H4	L 5/90	N	2.	H	4.	0.	0.	0.	G	200.000 6000.000	44.01288	
N2O	L 7/88	N	2.	O	1.	0.	0.	0.	G	298.150 6000.000	44.01233	
N2O+	J12/76	N	2.	O	1.	E	-1.	0.	G	200.000 6000.000	76.01168	
N2O3	L 4/90	N	2.	O	3.	0.	0.	0.	G	200.000 6000.000	92.01188	
N2O4	TPIS89	N	2.	O	4.	0.	0.	0.	G	200.000 6000.000	108.01048	
N2O5	L 4/90	N	2.	O	5.	0.	0.	0.	G	200.000 6000.000	42.02622	
N3	TPIS89	N	3.	0.	0.	0.	0.	0.	G	200.000 6000.000	43.02816	
N3H	L 7/88	N	3.	H	1.	0.	0.	0.	G	200.000 6000.000	22.98977	
Na	L 4/93	NA	1.	0.	0.	0.	0.	0.	G	298.150 6000.000	22.98922	
Na+	J12/83	NA	1.	E	-1.	0.	0.	0.	G	300.000 5000.000	125.96492	
NaALF4	J12/79	NA	1.	AL	1.	F	4.	0.	G	300.000 5000.000	65.79957	
NaBO2	J 6/71	NA	1.	B	1.	O	2.	0.	G	300.000 5000.000	102.89377	
NaBr	J 9/84	NA	1.	BR	1.	0.	0.	0.	G	300.000 5000.000	49.00751	
NaCN	J3/86	NA	1.	C	1.	N	1.	0.	G	300.000 5000.000	58.44247	
NaCL	J12/64	NA	1.	CL	1.	0.	0.	0.	G	200.000 6000.000	41.98817	
NaF	J12/68	NA	1.	F	1.	0.	0.	0.	G	300.000 5000.000	66.98712	
NaF2-	J12/68	NA	1.	F	2.	E	1.	0.	G	300.000 5000.000	23.99771	
NaH	J 3/63	NA	1.	H	1.	0.	0.	0.	G	300.000 5000.000	149.89424	
NaI	L 6/72	NA	1.	I	1.	0.	0.	0.	G	300.000 5000.000	38.98917	
NaO	J12/67	NA	1.	O	1.	0.	0.	0.	G	300.000 5000.000	38.98972	
NaO-	J12/67	NA	1.	O	1.	E	1.	0.	G	300.000 5000.000	39.99711	
NaOH	J12/70	NA	1.	O	1.	H	1.	0.	G	300.000 5000.000	39.99656	
NaOH+	J12/71	NA	1.	O	1.	H	1.	E	-1.	0.	300.000 6000.000	45.97954
Na2	J12/83	NA	2.	0.	0.	0.	0.	0.	G	300.000 5000.000	98.01582	
Na2C2N2	J 3/66	NA	2.	C	2.	N	2.	0.	G	300.000 5000.000	116.80494	
Na2CL2	J12/64	NA	2.	CL	2.	0.	0.	0.	G	300.000 5000.000	83.97634	
Na2F2	J12/68	NA	2.	F	2.	0.	0.	0.	G	300.000 5000.000	61.97894	
Na2O	L10/74	NA	2.	O	1.	0.	0.	0.	G	300.000 5000.000	79.99422	
Na2O2H2	J12/70	NA	2.	O	2.	H	2.	0.	G	300.000 5000.000	142.84314	
Na2SO4	J 6/76	NA	2.	S	1.	O	4.	0.	G	300.000 5000.000	92.98638	
Nb	J12/73	NB	1.	0.	0.	0.	0.	0.	G	300.000 5000.000	108.98578	
Nb0	J12/73	NB	1.	O	1.	0.	0.	0.	G	300.000 5000.000	124.98518	
Nb02	J12/73	NB	1.	O	2.	0.	0.	0.	G	300.000 5000.000	26.17978	
Ne	L10/90	NE	1.	0.	0.	0.	0.	0.	G	200.000 6000.000	26.17915	
Ne+	L10/92	NE	1.	E	-1.	0.	0.	0.	G	298.150 6000.000	58.69340	
NI	J12/76	NI	1.	0.	0.	0.	0.	0.	G	300.000 5000.000	94.14618	
NICL	J 9/77	NI	1.	CL	1.	0.	0.	0.	G	300.000 5000.000	129.59888	
NICL2	J 9/77	NI	1.	CL	2.	0.	0.	0.	G	300.000 5000.000	74.89286	
NIO	L 2/84	NI	1.	O	1.	0.	0.	0.	G	300.000 5000.000	90.75946	
NIS	J12/76	NI	1.	S	1.	0.	0.	0.	G	200.000 6000.000	15.99948	
O	L 1/90	O	1.	0.	0.	0.	0.	0.	G	298.150 6000.000	15.99985	
O+	L 1/90	O	1.	E	-1.	0.	0.	0.	G	298.150 6000.000	15.99995	
O-	TPIS89	O	1.	E	1.	0.	0.	0.	G	300.000 5000.000	18.01352	
OD	J 6/77	O	1.	D	1.	0.	0.	0.	G	200.000 6000.000	17.00734	
OH	TPIS78	O	1.	H	1.	0.	0.	0.	G	298.150 6000.000	17.00675	
OH+	TPIS78	O	1.	H	1.	E	-1.	0.	G	298.150 6000.000	17.00678	
OH-	L 3/93	O	1.	H	1.	E	1.	0.	G	200.000 6000.000	31.99882	
O2	TPIS89	O	2.	0.	0.	0.	0.	0.	G	298.150 6000.000	31.99825	
O2+	TPIS89	O	2.	E	-1.	0.	0.	0.	G	298.150 6000.000	31.99935	
O2-	L 4/99	O	2.	E	1.	0.	0.	0.	G	200.000 6000.000		

Species ID.	Code	Formula Used by CETPC			Phase	Temp.	Range	Mole. Wt.
O3	L 5/90	O 3.	0.	0.	S. G	200.000	5000.000	47.99920
P	J 6/62	P 1.	0.	0.	S. G	300.000	5000.000	30.97376
P+	L12/66	P 1.	E -1.	0.	S. G	300.000	5000.000	30.97321
PCL3	J 6/70	P 1.	CL 3.	0.	S. G	300.000	5000.000	137.33186
PF	J 6/77	P 1.	F 1.	0.	S. G	300.000	5000.000	49.97217
PF+	J 6/77	P 1.	F 1.	E -1.	S. G	300.000	5000.000	49.97162
PF-	J 6/77	P 1.	F 1.	E 1.	S. G	300.000	5000.000	49.97271
PF2	J 6/77	P 1.	F 2.	0.	S. G	300.000	5000.000	68.97057
PF2+	J 6/77	P 1.	F 2.	E -1.	S. G	300.000	5000.000	68.97062
PF3	J12/69	P 1.	F 3.	0.	S. G	300.000	5000.000	87.96897
PF5	J12/69	P 1.	F 5.	0.	S. G	300.000	5000.000	125.96578
PH	J 6/67	P 1.	H 1.	0.	S. G	300.000	5000.000	31.98176
PH3	J 6/62	P 1.	H 3.	0.	S. G	300.000	5000.000	33.99758
P0	J 6/71	P 1.	O 1.	0.	S. G	300.000	5000.000	46.97316
P02	J 9/62	P 1.	O 2.	0.	S. G	300.000	5000.000	62.97256
P2	J 6/61	P 2.	0.	0.	S. G	300.000	5000.000	61.94752
P4	J 6/61	P 4.	0.	0.	S. G	300.000	5000.000	123.89585
P4010	J12/65	P 4.	O 10.	0.	S. G	300.000	5000.000	283.88965
Pb	J 3/83	PB 1.	0.	0.	S. G	200.000	5000.000	207.26866
PbBr	J12/73	PB 1.	BR 1.	0.	S. G	300.000	5000.000	287.16466
PbBr2	J12/73	PB 1.	BR 2.	0.	S. G	300.000	5000.000	367.06866
PbBr4	J12/73	PB 1.	BR 4.	0.	S. G	300.000	5000.000	526.81666
PbCL	J 6/73	PB 1.	CL 1.	0.	S. G	300.000	5000.000	242.65276
PbCL+	J 6/73	PB 1.	CL 1.	E -1.	S. G	300.000	5000.000	242.65215
PbCL2	J 6/73	PB 1.	CL 2.	0.	S. G	300.000	5000.000	278.16546
PbCL2+	J 6/73	PB 1.	CL 2.	E -1.	S. G	300.000	5000.000	278.16465
PbCL4	J12/73	PB 1.	CL 4.	0.	S. G	300.000	5000.000	349.61086
PbF	J12/73	PB 1.	F 1.	0.	S. G	300.000	5000.000	226.19846
PbF2	J12/73	PB 1.	F 2.	0.	S. G	300.000	5000.000	245.19681
PbF4	J12/73	PB 1.	F 4.	0.	S. G	300.000	5000.000	283.19381
PbI	J12/73	PB 1.	I 1.	0.	S. G	300.000	5000.000	334.16447
PbI2	J12/73	PB 1.	I 2.	0.	S. G	300.000	5000.000	461.66894
PbI4	J12/73	PB 1.	I 4.	0.	S. G	300.000	5000.000	714.81786
PbO	J12/71	PB 1.	O 1.	0.	S. G	300.000	5000.000	223.19946
PbS	J 6/73	PB 1.	S 1.	0.	S. G	300.000	5000.000	239.26666
Pb2	J 9/63	PB 2.	0.	0.	S. G	300.000	5000.000	414.46666
S	J 9/82	S 1.	0.	0.	S. G	200.000	5000.000	32.66666
S+	J 9/82	S 1.	E -1.	0.	S. G	298.150	6000.000	32.66545
S-	J 9/82	S 1.	E 1.	0.	S. G	298.150	6000.000	32.66655
SCL	J 6/78	S 1.	CL 1.	0.	S. G	300.000	5000.000	67.51876
SCL2	J 6/78	S 1.	CL 2.	0.	S. G	300.000	5000.000	162.97146
SCL2+	J 6/78	S 1.	CL 2.	E -1.	S. G	300.000	5000.000	162.97085
SD	J 6/77	S 1.	D 1.	0.	S. G	300.000	5000.000	34.66616
SF	J 6/76	S 1.	F 1.	0.	S. G	300.000	5000.000	51.66446
SF+	J 6/76	S 1.	F 1.	E -1.	S. G	300.000	5000.000	51.66385
SF-	J12/76	S 1.	F 1.	E 1.	S. G	300.000	5000.000	51.66495
SF2	J 6/76	S 1.	F 2.	0.	S. G	300.000	5000.000	70.66281
SF2+	J12/76	S 1.	F 2.	E -1.	S. G	300.000	5000.000	70.66226
SF2-	J12/76	S 1.	F 2.	E 1.	S. G	300.000	5000.000	70.66335
SF3	J 6/77	S 1.	F 3.	0.	S. G	300.000	5000.000	89.66121
SF3+	J12/76	S 1.	F 3.	E -1.	S. G	300.000	5000.000	89.66566
SF3-	J12/76	S 1.	F 3.	E 1.	S. G	300.000	5000.000	89.66176
SF4	J 6/76	S 1.	F 4.	0.	S. G	300.000	5000.000	168.65961
SF4+	J12/76	S 1.	F 4.	E -1.	S. G	300.000	5000.000	168.65966
SF4-	J12/76	S 1.	F 4.	E 1.	S. G	300.000	5000.000	168.66516
SF5	J12/77	S 1.	F 5.	0.	S. G	300.000	5000.000	127.65862
SF5+	J12/77	S 1.	F 5.	E -1.	S. G	300.000	5000.000	127.65747
SF5-	J12/77	S 1.	F 5.	E 1.	S. G	300.000	5000.000	127.65856
SF6	J 6/78	S 1.	F 6.	0.	S. G	300.000	5000.000	146.65842
SF6-	J 6/77	S 1.	F 6.	E 1.	S. G	300.000	5000.000	146.65697
SH	J 6/77	S 1.	H 1.	0.	S. G	300.000	5000.000	33.67394
SN	J 6/61	S 1.	N 1.	0.	S. G	300.000	5000.000	46.67274
SO	J 6/77	S 1.	O 1.	0.	S. G	300.000	5000.000	48.66540
SOF2	J 6/72	S 1.	O 1.	F 2.	S. G	300.000	5000.000	86.66221
SO2	J 6/61	S 1.	O 2.	0.	S. G	300.000	5000.000	64.66486
SO2CLF	J 6/71	S 1.	O 2.	CL 1.	F 1. G	300.000	5000.000	118.51598
SO2CL2	J 6/71	S 1.	O 2.	CL 2.	F 1. G	300.000	5000.000	134.97020
SO2F2	J 6/71	S 1.	O 2.	F 2.	F 1. G	300.000	5000.000	102.66161
SO3	J 9/65	S 1.	O 3.	0.	S. G	300.000	5000.000	80.66420
S2	J 9/77	S 2.	0.	0.	S. G	300.000	5000.000	64.13206
S2CL	J 6/78	S 2.	CL 1.	0.	S. G	200.000	6000.000	99.58476
S2CL2	L 4/93	S 2.	CL 2.	0.	S. G	200.000	6000.000	135.63746
S2F2,thiothiony	J 6/76	S 2.	F 2.	0.	S. G	200.000	6000.000	162.12861
S20	J 9/65	S 2.	O 1.	0.	S. G	300.000	5000.000	80.13146

Species ID.	Code	Formula Used by CETPC			Phase	Temp.	Range	Mole. Wt.
S8	J 9/77	S 8.	0.	0.	0. G	200.000	5000.000	256.52860
SI	J 3/83	SI 1.	0.	0.	0. G	200.000	5000.000	28.08550
SI+	J 3/83	SI 1.	E -1.	0.	0. G	298.150	5000.000	28.08495
SiBr	J12/76	SI 1.	BR 1.	0.	0. G	300.000	5000.000	107.98950
SiBr2	J12/77	SI 1.	BR 2.	0.	0. G	300.000	5000.000	107.89350
SiBr3	J12/77	SI 1.	BR 3.	0.	0. G	300.000	5000.000	267.79750
SiBr4	J12/76	SI 1.	BR 4.	0.	0. G	300.000	5000.000	347.70150
SIC	J 3/67	SI 1.	C 1.	0.	0. G	300.000	5000.000	48.09650
SIC2	J 3/67	SI 1.	C 2.	0.	0. G	300.000	5000.000	52.10750
SIC4H12	J12/68	SI 1.	C 4.	H 12.	0. G	298.150	5000.000	88.22430
SICL	J12/76	SI 1.	CL 1.	0.	0. G	300.000	5000.000	63.53820
SICL2	J12/77	SI 1.	CL 2.	0.	0. G	300.000	5000.000	98.99090
SICL3	J12/77	SI 1.	CL 3.	0.	0. G	300.000	5000.000	134.44360
SICL4	J12/76	SI 1.	CL 4.	0.	0. G	300.000	5000.000	169.89630
SIF	J12/76	SI 1.	F 1.	0.	0. G	300.000	5000.000	47.08390
SIF2	J12/77	SI 1.	F 2.	0.	0. G	300.000	5000.000	66.08231
SIF3	J12/77	SI 1.	F 3.	0.	0. G	300.000	5000.000	85.08071
SIF4	J 6/76	SI 1.	F 4.	0.	0. G	300.000	5000.000	104.07911
SIH	J12/76	SI 1.	H 1.	0.	0. G	300.000	5000.000	29.09344
SIH+	J12/71	SI 1.	H 1.	E -1.	0. G	300.000	5000.000	29.09289
SiHBr3	J12/76	SI 1.	H 1.	BR 3.	0. G	300.000	5000.000	268.00544
SiHCL3	J12/76	SI 1.	H 1.	CL 3.	0. G	300.000	5000.000	135.45154
SiHF3	J 6/76	SI 1.	H 1.	F 3.	0. G	300.000	5000.000	86.08865
SiHI3	J12/76	SI 1.	H 1.	I 3.	0. G	300.000	5000.000	409.80685
SiH2	TPIS79	SI 1.	H 2.	0.	0. G	298.150	5000.000	30.10138
SiH2Br2	J12/76	SI 1.	H 2.	BR 2.	0. G	300.000	5000.000	189.90938
SiH2CL2	J12/76	SI 1.	H 2.	CL 2.	0. G	300.000	5000.000	101.00678
SiH2F2	J 6/76	SI 1.	H 2.	F 2.	0. G	300.000	5000.000	68.09819
SiH2I2	J12/76	SI 1.	H 2.	I 2.	0. G	300.000	5000.000	283.91032
SiH3	TPIS79	SI 1.	H 3.	0.	0. G	298.150	5000.000	31.10932
SiH3Br	J12/76	SI 1.	H 3.	BR 1.	0. G	300.000	5000.000	111.01332
SiH3CL	J12/76	SI 1.	H 3.	CL 1.	0. G	300.000	5000.000	66.55202
SiH3F	J 6/76	SI 1.	H 3.	F 1.	0. G	300.000	5000.000	50.10772
SiH3I	J12/76	SI 1.	H 3.	I 1.	0. G	300.000	5000.000	158.01379
SiH4	J 6/76	SI 1.	H 4.	0.	0. G	300.000	5000.000	32.11726
SII	J12/76	SI 1.	I 1.	0.	0. G	300.000	5000.000	154.08997
SII2	J12/77	SI 1.	I 2.	0.	0. G	200.000	5000.000	281.09444
SIN	J 3/67	SI 1.	N 1.	0.	0. G	300.000	5000.000	42.09224
SI0	J 9/67	SI 1.	O 1.	0.	0. G	300.000	5000.000	44.08498
SI02	J 9/67	SI 1.	O 2.	0.	0. G	300.000	5000.000	66.08436
SIS	J12/71	SI 1.	S 1.	0.	0. G	300.000	5000.000	68.15158
SI2	J 3/67	SI 2.	0.	0.	0. G	300.000	5000.000	56.17100
SI2C	J 3/67	SI 2.	C 1.	0.	0. G	300.000	5000.000	68.18200
SI2N	J 3/67	SI 2.	N 1.	0.	0. G	300.000	5000.000	70.17774
SI3	J 3/67	SI 3.	0.	0.	0. G	300.000	5000.000	84.25656
Sr	L 4/93	SR 1.	0.	0.	0. G	200.000	5000.000	87.02005
SrBr	J12/74	SR 1.	BR 1.	0.	0. G	300.000	5000.000	167.52400
SrCL	J12/72	SR 1.	CL 1.	0.	0. G	300.000	5000.000	123.07270
SrCL2	J12/72	SR 1.	CL 2.	0.	0. G	300.000	5000.000	158.52540
SrF	J12/72	SR 1.	F 1.	0.	0. G	300.000	5000.000	166.01846
SrF+	J12/72	SR 1.	F 1.	E -1.	0. G	300.000	5000.000	186.01785
SrF2	J12/72	SR 1.	F 2.	0.	0. G	300.000	5000.000	125.01681
SrI2	J 6/74	SR 1.	I 2.	0.	0. G	300.000	5000.000	341.42894
SrO	J 6/74	SR 1.	O 1.	0.	0. G	300.000	5000.000	153.01940
SrOH	J12/75	SR 1.	O 1.	H 1.	0. G	300.000	5000.000	104.02734
SrOH+	J 6/76	SR 1.	O 1.	H 1.	E -1. G	300.000	5000.000	104.02679
SrO2H2	J12/75	SR 1.	O 2.	H 2.	0. G	300.000	5000.000	121.02468
SrS	J 9/77	SR 1.	S 1.	0.	0. G	300.000	5000.000	119.08600
Ta	J12/72	TA 1.	0.	0.	0. G	300.000	5000.000	186.04798
Ta0	J12/73	TA 1.	O 1.	0.	0. G	300.000	5000.000	196.04738
Ta02	J12/73	TA 1.	O 2.	0.	0. G	300.000	5000.000	212.04670
TI	J 6/79	TI 1.	0.	0.	0. G	200.000	5000.000	47.08000
TI+	J 3/84	TI 1.	E -1.	0.	0. G	298.150	5000.000	47.07945
TI-	J 3/84	TI 1.	E 1.	0.	0. G	298.150	5000.000	47.08055
TiCL	J12/68	TI 1.	CL 1.	0.	0. G	300.000	5000.000	83.33270
TiCL2	J12/68	TI 1.	CL 2.	0.	0. G	300.000	5000.000	118.70540
TiCL3	J12/68	TI 1.	CL 3.	0.	0. G	300.000	5000.000	154.23810
TiCL4	J12/67	TI 1.	CL 4.	0.	0. G	300.000	5000.000	189.09080
TIO	J12/73	TI 1.	O 1.	0.	0. G	300.000	5000.000	63.07940
TIOCL	J 9/63	TI 1.	O 1.	CL 1.	0. G	300.000	5000.000	99.33210
TIOCL2	J 9/63	TI 1.	O 1.	CL 2.	0. G	300.000	5000.000	134.78480
TI02	J12/73	TI 1.	O 2.	0.	0. G	300.000	5000.000	79.07680
V	J 6/73	V 1.	0.	0.	0. G	300.000	5000.000	56.04150
VCL4	L 2/76	V 1.	CL 4.	0.	0. G	300.000	5000.000	192.75230

Species ID.	Code	Formula Used by CETPC					Phase	Temp.	Range	Mole. Wt.
VN	J12/73	V 1.	N 1.	0.	0.	0.	G	300.000	5000.000	64.94824
VO	J12/73	V 1.	O 1.	0.	0.	0.	G	300.000	5000.000	65.94896
VO2	J12/73	V 1.	O 2.	0.	0.	0.	G	300.000	5000.000	62.94036
Xe	L12/91	XE 1.	0.	0.	0.	0.	G	200.000	6000.000	131.29000
Xe+	L10/92	XE 1.	E -1.	0.	0.	0.	G	298.150	6000.000	131.28948
Zn	L 7/93	ZN 1.	0.	0.	0.	0.	G	200.000	6000.000	65.39002
Zn+	L 7/93	ZN 1.	E -1.	0.	0.	0.	G	200.000	6000.000	65.38948
Zn-	J12/70	ZN 1.	E 1.	0.	0.	0.	G	200.000	6000.000	65.39858
Zr	L 7/93	ZR 1.	0.	0.	0.	0.	G	200.000	6000.000	91.22400
ZrN	J 6/63	ZR 1.	N 1.	0.	0.	0.	G	200.000	6000.000	105.23074
ZrO	L 7/93	ZR 1.	O 1.	0.	0.	0.	G	200.000	6000.000	107.22348
ZrO2	J12/65	ZR 1.	O 2.	0.	0.	0.	G	300.000	5000.000	123.22286
AL(cr)	CODA89	AL 1.	0.	0.	0.	0.	C	200.000	933.610	26.98154
AL(L)	CODA89	AL 1.	0.	0.	0.	0.	C	933.610	6000.000	26.98154
ALBr3(s)	J 9/79	AL 1.	BR 3.	0.	0.	0.	C	300.000	370.600	266.69354
ALBr3(L)	J 9/79	AL 1.	BR 3.	0.	0.	0.	C	370.600	5000.000	266.69354
ALCL3(s)	J 9/79	AL 1.	CL 3.	0.	0.	0.	C	300.000	465.700	133.33964
ALCL3(L)	J 9/79	AL 1.	CL 3.	0.	0.	0.	C	465.700	5000.000	133.33964
ALF3(a)	J 9/79	AL 1.	F 3.	0.	0.	0.	C	300.000	728.000	83.97676
ALF3(b)	J 9/79	AL 1.	F 3.	0.	0.	0.	C	728.000	2523.000	83.97676
ALF3(L)	J 9/79	AL 1.	F 3.	0.	0.	0.	C	2523.000	5000.000	83.97676
ALI3(s)	J 9/79	AL 1.	I 3.	0.	0.	0.	C	300.000	484.140	467.69496
ALI3(L)	J 9/79	AL 1.	I 3.	0.	0.	0.	C	484.140	5000.000	467.69496
ALN(s)	J12/79	AL 1.	N 1.	0.	0.	0.	C	300.000	3000.000	40.98826
AL203(s)	J12/79	AL 2.	O 3.	0.	0.	0.	C	300.000	2327.000	161.96126
AL203(L)	J12/79	AL 2.	O 3.	0.	0.	0.	C	2327.000	6000.000	161.96126
AL2S105(an)	J 9/67	AL 2.	SI 1.	0 5.	0.	0.	C	300.000	3000.000	162.04556
AL6S12013(s)	J 9/67	AL 6.	SI 2.	0 13.	0.	0.	C	300.000	3000.000	426.05243
B(b)	J 6/83	B 1.	0.	0.	0.	0.	C	200.000	2350.000	10.81100
B(L)	J 6/83	B 1.	0.	0.	0.	0.	C	2350.000	6000.000	10.81100
BN(s)	J 6/86	B 1.	N 1.	0.	0.	0.	C	200.000	6000.000	24.81774
B203(L)	J 6/71	B 2.	O 3.	0.	0.	0.	C	300.000	5000.000	59.62026
B303H3(cr)	J 3/65	B 3.	O 3.	H 3.	0.	0.	C	298.150	2000.000	83.45562
Ba(cr)	SRD 93	BA 1.	0.	0.	0.	0.	C	298.150	1000.000	137.32704
Ba(L)	SRD 93	BA 1.	0.	0.	0.	0.	C	1000.000	6000.000	137.32704
BaBr2(s)	J12/74	BA 1.	BR 2.	0.	0.	0.	C	300.000	1130.000	297.13500
BaBr2(L)	J12/74	BA 1.	BR 2.	0.	0.	0.	C	1130.000	5000.000	297.13500
BaCL2(a)	J12/72	BA 1.	CL 2.	0.	0.	0.	C	300.000	1198.000	208.23246
BaCL2(b)	J12/72	BA 1.	CL 2.	0.	0.	0.	C	1198.000	1235.000	208.23246
BaCL2(L)	J12/72	BA 1.	CL 2.	0.	0.	0.	C	1235.000	5000.000	208.23246
BaF2(a)	J12/72	BA 1.	F 2.	0.	0.	0.	C	300.000	1480.000	175.32381
BaF2(b,c)	J12/72	BA 1.	F 2.	0.	0.	0.	C	1480.000	1641.000	175.32381
BaF2(L)	J12/72	BA 1.	F 2.	0.	0.	0.	C	1541.000	5000.000	175.32381
BaO(s)	J 6/74	BA 1.	O 1.	0.	0.	0.	C	300.000	2286.000	153.32646
BaO(L)	J 6/74	BA 1.	O 1.	0.	0.	0.	C	2286.000	5000.000	153.32646
BaO2H2(s)	J12/75	BA 1.	O 2.	H 2.	0.	0.	C	2296.000	5000.000	171.34168
BaO2H2(L)	J12/75	BA 1.	O 2.	H 2.	0.	0.	C	300.000	681.150	171.34168
BaS(s)	J 9/77	BA 1.	S 1.	0.	0.	0.	C	300.000	3000.000	169.39306
Be(a)	SRD 93	BE 1.	0.	0.	0.	0.	C	298.150	1543.000	9.01218
Be(b)	SRD 93	BE 1.	0.	0.	0.	0.	C	1543.000	1563.000	9.01218
Be(L)	SRD 93	BE 1.	0.	0.	0.	0.	C	1563.000	6000.000	9.01218
BeAL204(s)	J12/79	BE 1.	AL 2.	0 4.	0.	0.	C	300.000	2146.000	126.97286
BeAL204(L)	J12/79	BE 1.	AL 2.	0 4.	0.	0.	C	2146.000	5000.000	126.97286
BeBr2(s)	J 6/75	BE 1.	BR 2.	0.	0.	0.	C	300.000	1500.000	168.82018
BeCL2(s)	J 6/65	BE 1.	CL 2.	0.	0.	0.	C	300.000	688.000	79.91758
BeCL2(L)	J 6/65	BE 1.	CL 2.	0.	0.	0.	C	688.000	5000.000	79.91758
BeF2(Lqz)	J 6/70	BE 1.	F 2.	0.	0.	0.	C	300.000	500.000	47.00899
BeF2(hqz)	J 6/70	BE 1.	F 2.	0.	0.	0.	C	500.000	825.000	47.00899
BeF2(L)	J 6/70	BE 1.	F 2.	0.	0.	0.	C	825.000	2000.000	47.00899
Bei2(s)	J12/75	BE 1.	I 2.	0.	0.	0.	C	300.000	753.000	262.82112
Bei2(L)	J12/75	BE 1.	I 2.	0.	0.	0.	C	753.000	5000.000	262.82112
BeO(a)	J 6/75	BE 1.	O 1.	0.	0.	0.	C	200.000	2373.001	25.01150
BeO(b)	J 6/75	BE 1.	O 1.	0.	0.	0.	C	2373.001	2821.220	25.01150
BeO(L)	J 6/75	BE 1.	O 1.	0.	0.	0.	C	2821.220	6000.000	25.01150
BeO2H2(b)	J12/75	BE 1.	O 2.	H 2.	0.	0.	C	300.000	1000.000	43.02686
BeS(s)	J 9/77	BE 1.	S 1.	0.	0.	0.	C	300.000	3000.000	41.07818
Be2C(s)	BAR 73	BE 2.	C 1.	0.	0.	0.	C	300.000	2400.000	30.03536
Be2C(L)	BAR 73	BE 2.	C 1.	0.	0.	0.	C	2400.000	5000.000	30.03536
Br2(cr)	L 1/93	BR 2.	0.	0.	0.	0.	C	200.000	265.900	159.80000
Br2(L)	L 1/93	BR 2.	0.	0.	0.	0.	C	265.900	332.503	159.80000
Br2(L)	L 1/93	BR 2.	0.	0.	0.	0.	C	332.503	5000.000	159.80000
C(gr)	X 4/83	C 1.	0.	0.	0.	0.	C	200.000	5000.000	12.01100
C6H6(L)	X10/86	C 6.	H 6.	0.	0.	0.	C	278.600	500.000	78.11364
C7H8(L)	X10/86	C 7.	H 8.	0.	0.	0.	C	178.150	500.000	92.14052

Species ID.	Code	Formula Used by CETPC				Phase	Temp.	Range	Mole. Wt.
C8H18(L),n-octa	X10/76	C 8.	H 18.	0.	0.	C	220.000	300.000	114.23092
Jet-A(L)	L 6/88	C 12.	H 23.	0.	0.	C	220.000	550.000	167.31462
Ca(s)	SRD 93	CA 1.	0.	0.	0.	C	298.150	716.000	46.07800
Ca(b)	SRD 93	CA 1.	0.	0.	0.	C	716.000	1115.000	46.07800
Ca(L)	SRD 93	CA 1.	0.	0.	0.	C	1115.000	6000.000	46.07800
CaBr2(s)	J 6/74	CA 1.	BR 2.	0.	0.	C	300.000	1015.000	199.88600
CaBr2(L)	J 6/74	CA 1.	BR 2.	0.	0.	C	1015.000	5000.000	199.88600
CaCO3(cal)	BAR 89	CA 1.	C 1.	0 2.	0.	C	298.15	1200.000	160.06720
CaCL2(s)	J 6/76	CA 1.	CL 2.	0.	0.	C	300.000	1845.000	110.98348
CaCL2(L)	J 6/76	CA 1.	CL 2.	0.	0.	C	1845.000	5000.000	110.98348
CaF2(s)	J12/68	CA 1.	F 2.	0.	0.	C	300.000	1424.000	78.07481
CaF2(b)	J12/68	CA 1.	F 2.	0.	0.	C	1424.000	1691.000	78.07481
CaF2(L)	J12/68	CA 1.	F 2.	0.	0.	C	1691.000	6000.000	78.07481
CaO(s)	J 6/73	CA 1.	O 1.	0.	0.	C	300.000	3200.000	56.07740
CaO(L)	J 6/73	CA 1.	O 1.	0.	0.	C	3200.000	5000.000	56.07740
CaO2H2(s)	J12/75	CA 1.	O 2.	H 2.	0.	C	300.000	1000.000	74.09268
CaS(s)	J 9/77	CA 1.	S 1.	0.	0.	C	300.000	3000.000	72.14466
CaSO4(s)	BAR 73	CA 1.	S 1.	0 4.	0.	C	300.000	5000.000	136.14160
Cr(cr)	J 6/73	CR 1.	0.	0.	0.	C	200.000	311.500	51.99610
Cr(cr)	J 6/73	CR 1.	0.	0.	0.	C	311.500	2130.000	51.99610
Cr(L)	J 6/73	CR 1.	0.	0.	0.	C	2130.000	6000.000	51.99610
CrN(s)	J12/73	CR 1.	N 1.	0.	0.	C	300.000	2500.000	66.06284
Cr2N(s)	J12/73	CR 2.	N 1.	0.	0.	C	300.000	2500.000	117.99894
Cr203(s)	J12/73	CR 2.	O 3.	0.	0.	C	300.000	2603.000	151.99646
Cr203(L)	J12/73	CR 2.	O 3.	0.	0.	C	2603.000	5000.000	151.99646
Cs(cr)	CODA89	CS 1.	0.	0.	0.	C	100.000	361.500	132.90543
Cs(L)	CODA89	CS 1.	0.	0.	0.	C	361.500	2000.000	132.90543
CsCL(a)	J 6/68	CS 1.	CL 1.	0.	0.	C	300.000	743.000	168.35813
CsCL(b)	J 6/68	CS 1.	CL 1.	0.	0.	C	743.000	918.000	168.35813
CsCL(L)	J 6/68	CS 1.	CL 1.	0.	0.	C	918.000	5000.000	168.35813
CsF(s)	J 6/68	CS 1.	F 1.	0.	0.	C	300.000	976.000	151.90383
CsF(L)	J 6/68	CS 1.	F 1.	0.	0.	C	976.000	5000.000	151.90383
CsOH(a)	J 6/71	CS 1.	O 1.	H 1.	0.	C	298.150	410.000	149.91277
CsOH(b)	J 6/71	CS 1.	O 1.	H 1.	0.	C	410.000	493.000	149.91277
CsOH(c)	J 6/71	CS 1.	O 1.	H 1.	0.	C	493.000	588.000	149.91277
CsOH(L)	J 6/71	CS 1.	O 1.	H 1.	0.	C	588.000	6000.000	149.91277
Cs2S04(II)	J 6/79	CS 2.	S 1.	O 4.	0.	C	300.000	945.000	361.87446
Cs2S04(I)	J 6/79	CS 2.	S 1.	O 4.	0.	C	945.000	1278.000	361.87446
Cs2S04(L)	J 6/79	CS 2.	S 1.	O 4.	0.	C	1278.000	5000.000	361.87446
Cu(cr)	CODA89	CU 1.	0.	0.	0.	C	200.000	1358.000	63.54660
Cu(L)	CODA89	CU 1.	0.	0.	0.	C	1358.000	6000.000	63.54660
CuF(s)	J12/77	CU 1.	F 1.	0.	0.	C	300.000	2000.000	82.54446
CuF2(s)	J12/77	CU 1.	F 2.	0.	0.	C	300.000	1100.000	161.54281
CuF2(L)	J12/77	CU 1.	F 2.	0.	0.	C	1100.000	5000.000	161.54281
CuO(s)	J12/77	CU 1.	O 1.	0.	0.	C	300.000	2500.000	79.54546
CuO2H2(s)	J 6/66	CU 1.	O 2.	H 2.	0.	C	300.000	1500.000	97.56668
CuSO4(s)	J 6/66	CU 1.	S 1.	O 4.	0.	C	300.000	2000.000	159.66960
Cu20(s)	J12/77	CU 2.	O 1.	0.	0.	C	300.000	1518.720	148.89146
Cu20(L)	J12/77	CU 2.	O 1.	0.	0.	C	1518.720	5000.000	148.89146
Cu20SS(s)	J 6/66	CU 2.	O 5.	S 1.	0.	C	300.000	1500.000	239.15560
Fe(s)	J 3/78	FE 1.	0.	0.	0.	C	200.000	1642.000	55.84760
Fe(s)	J 3/78	FE 1.	0.	0.	0.	C	1642.000	1184.000	55.84760
Fe(c)	J 3/78	FE 1.	0.	0.	0.	C	1184.000	1665.000	55.84760
Fe(d)	J 3/78	FE 1.	0.	0.	0.	C	1665.000	1869.000	55.84760
Fe(L)	J 3/78	FE 1.	0.	0.	0.	C	1869.000	6000.000	55.84760
FeC505(L)	J 3/78	FE 1.	C 5.	0 5.	0.	C	300.000	5000.000	195.89900
FeCL2(s)	J12/70	FE 1.	CL 2.	0.	0.	C	300.000	950.000	128.75240
FeCL2(L)	J12/70	FE 1.	CL 2.	0.	0.	C	950.000	5000.000	128.75240
FeCL3(s)	J 6/65	FE 1.	CL 3.	0.	0.	C	200.000	577.000	162.26510
FeCL3(L)	J 6/65	FE 1.	CL 3.	0.	0.	C	577.000	6000.000	162.26510
FeO(s)	J 6/65	FE 1.	O 1.	0.	0.	C	300.000	1650.000	71.84640
FeO(L)	J 6/65	FE 1.	O 1.	0.	0.	C	1650.000	5000.000	71.84640
Fe(OH)2(s)	J 6/66	FE 1.	O 2.	H 2.	0.	C	300.000	1500.000	89.86168
Fe(OH)3(s)	J 6/66	FE 1.	O 3.	H 3.	0.	C	300.000	1500.000	106.86902
FeS(a)	J 9/77	FE 1.	S 1.	0.	0.	C	300.000	411.000	87.91300
FeS(b)	J 9/77	FE 1.	S 1.	0.	0.	C	411.000	598.000	87.91300
FeS(c)	J 9/77	FE 1.	S 1.	0.	0.	C	598.000	1463.000	87.91300
FeS(L)	J 9/77	FE 1.	S 1.	0.	0.	C	1463.000	5000.000	87.91300
FeS04(s)	J 6/66	FE 1.	S 1.	O 4.	0.	C	300.000	2000.000	151.91060
FeS2(s)	J 9/77	FE 1.	S 2.	0.	0.	C	300.000	1400.000	119.97900
Fe203(s)	J 6/65	FE 2.	O 3.	0.	0.	C	300.000	2500.000	159.69220
Fe2S3012(s)	J 6/66	FE 2.	S 3.	O 12.	0.	C	300.000	2000.000	399.88480
Fe304(s)	J 6/65	FE 3.	O 4.	0.	0.	C	300.000	5000.000	231.53860
H2O(s)	L 8/89	H 2.	O 1.	0.	0.	C	200.000	273.150	18.01528

Species ID.	Code	Formula Used by CETPC						Phase	Temp. Range	Molar Wt.
H2O(L)	L 8/89	H 2.	O 1.	O.	O.	C	273.150	600.000	18.01528	
H2SO4(L)	J 9/77	H 2.	S 1.	O 4.	O.	C	300.000	1000.000	98.07948	
Hg(cr)	J12/61	HG 1.	O.	O.	O.	C	200.000	234.290	200.59868	
Hg(L)	J12/61	HG 1.	O.	O.	O.	C	234.290	2000.000	200.59868	
HgBr2(s)	J 3/82	HG 1.	BR 2.	O.	O.	C	300.000	514.000	360.39868	
HgBr2(L)	J 3/82	HG 1.	BR 2.	O.	O.	C	514.000	5000.000	360.39868	
HgO(s)	J 6/62	HG 1.	O 1.	O.	O.	C	300.000	1000.000	216.58948	
I2(cr)	TPIS89	I 2.	O.	O.	O.	C	200.000	386.750	253.86894	
I2(L)	TPIS89	I 2.	O.	O.	O.	C	300.750	6000.000	253.86894	
K(cr)	CODA89	K 1.	O.	O.	O.	C	200.000	336.860	39.09830	
K(L)	CODA89	K 1.	O.	O.	O.	C	336.860	2200.000	39.09830	
KCN(s)	J 3/66	K 1.	C 1.	N 1.	O.	C	300.000	895.000	65.11684	
KCN(L)	J 3/66	K 1.	C 1.	N 1.	O.	C	895.000	5000.000	65.11684	
KCL(s)	J 3/66	K 1.	CL 1.	O.	O.	C	300.000	1044.000	74.55160	
KCL(L)	J 3/66	K 1.	CL 1.	O.	O.	C	1044.000	5000.000	74.55160	
KF(s)	J 6/69	K 1.	F 1.	O.	O.	C	300.000	1131.000	58.09670	
KF(L)	J 6/69	K 1.	F 1.	O.	O.	C	459.850	511.950	78.10305	
KHF2(a)	J 6/71	K 1.	H 1.	F 2.	O.	C	511.950	5000.000	78.10305	
KHF2(b)	J 6/71	K 1.	H 1.	F 2.	O.	C	300.000	516.000	56.10564	
KHF2(L)	J 6/71	K 1.	H 1.	F 2.	O.	C	516.000	679.000	56.10564	
KOH(a)	J12/70	K 1.	O 1.	H 1.	O.	C	679.000	5000.000	56.10564	
KOH(b)	J12/70	K 1.	O 1.	H 1.	O.	C	300.000	516.000	56.10564	
KOH(L)	J12/70	K 1.	O 1.	H 1.	O.	C	516.000	679.000	56.10564	
KO2(s)	J 6/71	K 1.	O 2.	O.	O.	C	300.000	1500.000	71.89710	
K2CO3(s)	J 3/66	K 2.	C 1.	O 3.	O.	C	300.000	1174.000	138.26580	
K2CO3(L)	J 3/66	K 2.	C 1.	O 3.	O.	C	1174.000	5000.000	138.26580	
K2O(s)	J 6/63	K 2.	O 1.	O.	O.	C	298.150	2000.000	94.19600	
K2O2(s)	J 9/63	K 2.	O 2.	O.	O.	C	298.150	2000.000	116.19548	
K2S(1)	J 3/78	K 2.	S 1.	O.	O.	C	300.000	1050.000	116.26260	
K2S(2)	J 3/78	K 2.	S 1.	O.	O.	C	1050.000	1160.000	116.26260	
K2S(3)	J 3/78	K 2.	S 1.	O.	O.	C	1050.000	1160.000	116.26260	
K2S(L)	J 3/78	K 2.	S 1.	O.	O.	C	1160.000	1221.000	116.26260	
K2SO4(a)	J 6/78	K 2.	S 1.	O 4.	O.	C	300.000	857.000	174.26020	
K2SO4(b)	J 6/78	K 2.	S 1.	O 4.	O.	C	857.000	1342.000	174.26020	
K2SO4(L)	J 6/78	K 2.	S 1.	O 4.	O.	C	1342.000	5000.000	174.26020	
Li(cr)	TPIS82	LI 1.	O.	O.	O.	C	200.000	453.690	6.94160	
Li(L)	TPIS82	LI 1.	O.	O.	O.	C	453.690	3000.000	6.94160	
LiAlO2(s)	J12/79	LI 1.	AL 1.	O 2.	O.	C	300.000	1973.000	65.92134	
LiAlO2(L)	J12/79	LI 1.	AL 1.	O 2.	O.	C	1973.000	5000.000	65.92134	
LiCl(s)	J 6/62	LI 1.	CL 1.	O.	O.	C	300.000	883.000	42.39370	
LiCl(L)	J 6/62	LI 1.	CL 1.	O.	O.	C	883.000	2000.000	42.39370	
LiF(s)	J12/68	LI 1.	F 1.	O.	O.	C	300.000	1121.300	25.93940	
LiF(L)	J12/68	LI 1.	F 1.	O.	O.	C	1121.300	5000.000	25.93940	
LiH(s)	J 9/67	LI 1.	H 1.	O.	O.	C	300.000	961.000	7.94894	
LiH(L)	J 9/67	LI 1.	H 1.	O.	O.	C	961.000	5000.000	7.94894	
LiOH(s)	J 6/71	LI 1.	O 1.	H 1.	O.	C	300.000	744.300	23.94834	
LiOH(L)	J 6/71	LI 1.	O 1.	H 1.	O.	C	744.300	5000.000	23.94834	
Li2O(s)	J 3/64	LI 2.	O 1.	O.	O.	C	300.000	1843.000	29.88140	
Li2O(L)	J 3/64	LI 2.	O 1.	O.	O.	C	1843.000	5000.000	29.88140	
Li2SO4(a)	J12/78	LI 2.	S 1.	O 4.	O.	C	200.000	848.000	169.94560	
Li2SO4(b)	J12/78	LI 2.	S 1.	O 4.	O.	C	848.000	1132.000	169.94560	
Li2SO4(L)	J12/78	LI 2.	S 1.	O 4.	O.	C	1132.000	5000.000	169.94560	
Li3N(s)	J 3/78	LI 3.	N 1.	O.	O.	C	300.000	1300.000	34.82974	
Mg(cr)	SRD 93	MG 1.	O.	O.	O.	C	298.150	923.000	24.30500	
Mg(L)	SRD 93	MG 1.	O.	O.	O.	C	923.000	5000.000	24.30500	
MgAl2O4(s)	J12/79	MG 1.	AL 2.	O 4.	O.	C	300.000	2400.000	142.26560	
MgAl2O4(L)	J12/79	MG 1.	AL 2.	O 4.	O.	C	2400.000	5000.000	142.26560	
MgBr2(s)	J 6/74	MG 1.	BR 2.	O.	O.	C	300.000	984.000	184.11300	
MgBr2(L)	J 6/74	MG 1.	BR 2.	O.	O.	C	984.000	5000.000	184.11300	
MgC03(s)	J12/66	MG 1.	C 1.	O 3.	O.	C	300.000	1000.000	64.31420	
MgCL2(s)	J12/65	MG 1.	CL 2.	O.	O.	C	300.000	987.000	95.21040	
MgCL2(L)	J12/65	MG 1.	CL 2.	O.	O.	C	987.000	5000.000	95.21040	
MgF2(s)	J 6/75	MG 1.	F 2.	O.	O.	C	300.000	1536.000	62.30181	
MgF2(L)	J 6/75	MG 1.	F 2.	O.	O.	C	1536.000	5000.000	62.30181	
MgI2(s)	J12/74	MG 1.	I 2.	O.	O.	C	300.000	907.000	278.11394	
MgI2(L)	J12/74	MG 1.	I 2.	O.	O.	C	907.000	5000.000	278.11394	
MgO(s)	J12/74	MG 1.	O 1.	O.	O.	C	300.000	3105.000	40.30440	
MgO(L)	J12/74	MG 1.	O 1.	O.	O.	C	3105.000	5000.000	40.30440	
MgO2H2(s)	J12/75	MG 1.	O 2.	H 2.	O.	C	300.000	1000.000	58.31968	
MgS(s)	J 9/77	MG 1.	S 1.	O.	O.	C	300.000	3000.000	56.37100	
MgSO4(s)	L 7/76	MG 1.	S 1.	O 4.	O.	C	300.000	1400.000	120.36860	
MgSO4(L)	L 7/76	MG 1.	S 1.	O 4.	O.	C	1400.000	5000.000	120.36860	
MgSiO3(I)	J12/67	MG 1.	SI 1.	O 3.	O.	C	300.000	903.000	100.38870	
MgSiO3(II)	J12/67	MG 1.	SI 1.	O 3.	O.	C	903.000	1258.000	100.38870	

Species ID.	Code	Formula Used by CETPC							Phase	Temp.	Range	Mole. Wt.
MgSiO3(III)	J12/67	MG 1.	SI 1.	0 3.	0.	C	1258.000	1850.000	180.38872			
MgSiO3(L)	J12/67	MG 1.	SI 1.	0 3.	0.	C	1850.000	5000.000	180.38872			
MgTiO3(s)	J 6/67	MG 1.	TI 1.	0 3.	0.	C	300.000	1953.000	120.18328			
MgTiO3(L)	J 6/67	MG 1.	TI 1.	0 3.	0.	C	1953.000	5000.000	120.18328			
MgTi2O5(s)	J 6/67	MG 1.	TI 2.	0 5.	0.	C	300.000	1963.000	200.66208			
MgTi2O5(L)	J 6/67	MG 1.	TI 2.	0 5.	0.	C	1963.000	5000.000	200.66208			
Mg2SiO4(s)	J12/67	MG 2.	SI 1.	0 4.	0.	C	300.000	2171.000	140.69318			
Mg2SiO4(L)	J12/67	MG 2.	SI 1.	0 4.	0.	C	2171.000	5000.000	140.69318			
Mg2TiO4(s)	J 6/67	MG 2.	TI 1.	0 4.	0.	C	300.000	2013.000	160.48768			
Mg2TiO4(L)	J 6/67	MG 2.	TI 1.	0 4.	0.	C	2013.000	5000.000	160.48768			
Mo(cr)	J 3/78	MO 1.	0.	0.	0.	C	200.000	2896.000	95.94088			
Mo(L)	J 3/78	MO 1.	0.	0.	0.	C	2896.000	6000.000	95.94088			
NH4CL(a)	BAR 73	N 1.	H 4.	CL 1.	0.	C	298.150	458.000	53.49128			
NH4CL(b)	BAR 73	N 1.	H 4.	CL 1.	0.	C	458.000	793.200	53.49128			
Na(cr)	CODA89	NA 1.	0.	0.	0.	C	200.000	371.010	22.98977			
Na(L)	CODA89	NA 1.	0.	0.	0.	C	371.010	2300.000	22.98977			
NaAlO2(s)	J 3/63	NA 1.	AL 1.	0 2.	0.	C	300.000	740.000	81.97011			
NaAlO2(b)	J 3/63	NA 1.	AL 1.	0 2.	0.	C	740.000	8000.000	81.97011			
NaBr(s)	J 9/64	NA 1.	BR 1.	0.	0.	C	300.000	1620.000	102.89377			
NaBr(L)	J 9/64	NA 1.	BR 1.	0.	0.	C	1620.000	5000.000	102.89377			
NaCN(s)	J 3/66	NA 1.	C 1.	N 1.	0.	C	300.000	835.000	49.00751			
NaCN(L)	J 3/66	NA 1.	C 1.	N 1.	0.	C	835.000	5000.000	49.00751			
NaCl(s)	J 9/64	NA 1.	CL 1.	0.	0.	C	300.000	1073.000	58.44247			
NaCl(L)	J 9/64	NA 1.	CL 1.	0.	0.	C	1073.000	5000.000	58.44247			
NaF(s)	J12/68	NA 1.	F 1.	0.	0.	C	300.000	1269.000	41.98817			
NaF(L)	J12/68	NA 1.	F 1.	0.	0.	C	1269.000	3500.000	41.98817			
NaI(s)	J 9/63	NA 1.	I 1.	0.	0.	C	300.000	933.000	149.89424			
NaI(L)	J 9/63	NA 1.	I 1.	0.	0.	C	933.000	5000.000	149.89424			
NaOH(a)	J12/70	NA 1.	O 1.	H 1.	0.	C	300.000	596.000	39.99711			
NaOH(L)	J12/70	NA 1.	O 1.	H 1.	0.	C	596.000	2500.000	39.99711			
NaO2(s)	J 6/63	NA 1.	O 2.	0.	0.	C	300.000	2000.000	54.98857			
Na2CO3(1)	J 8/66	NA 2.	C 1.	0 3.	0.	C	300.000	723.150	105.98874			
Na2CO3(2)	J 8/66	NA 2.	C 1.	0 3.	0.	C	723.150	1123.150	105.98874			
Na2CO3(L)	J 3/66	NA 2.	C 1.	0 3.	0.	C	1123.150	5000.000	105.98874			
Na2O(2)	J 6/68	NA 2.	O 1.	0.	0.	C	300.000	1243.200	61.97894			
Na2O(a)	J 6/68	NA 2.	O 1.	0.	0.	C	1243.200	1405.200	61.97894			
Na2O(L)	J 6/68	NA 2.	O 1.	0.	0.	C	1405.200	5000.000	61.97894			
Na2O2(a)	J 6/68	NA 2.	O 2.	0.	0.	C	300.000	785.000	77.97834			
Na2O2(b)	J 6/68	NA 2.	O 2.	0.	0.	C	785.000	5000.000	77.97834			
Na2S(1)	J 3/78	NA 2.	S 1.	0.	0.	C	300.000	1276.000	78.64554			
Na2S(2)	J 3/78	NA 2.	S 1.	0.	0.	C	1276.000	1445.000	78.64554			
Na2S(L)	J 3/78	NA 2.	S 1.	0.	0.	C	1445.000	5000.000	78.64554			
Na2SO4(V)	J 6/78	NA 2.	S 1.	0 4.	0.	C	200.000	458.000	142.84314			
Na2SO4(IV)	J 6/78	NA 2.	S 1.	0 4.	0.	C	458.000	514.000	142.84314			
Na2SO4(I)	J 6/78	NA 2.	S 1.	0 4.	0.	C	514.000	1157.000	142.84314			
Na2SO4(L)	J 6/78	NA 2.	S 1.	0 4.	0.	C	1157.000	5000.000	142.84314			
Na3ALF6(a)	J12/79	NA 3.	AL 1.	F 6.	0.	C	300.000	836.000	209.94126			
Na3ALF6(b)	J12/79	NA 3.	AL 1.	F 6.	0.	C	836.000	1285.000	209.94126			
Na3ALF6(L)	J12/79	NA 3.	AL 1.	F 6.	0.	C	1285.000	5000.000	209.94126			
Na5Al3F14(s)	J12/79	NA 5.	AL 3.	F 14.	0.	C	300.000	1610.000	461.87110			
Na5Al3F14(L)	J12/79	NA 5.	AL 3.	F 14.	0.	C	1610.000	5000.000	461.87110			
Nb(cr)	J12/73	NB 1.	0.	0.	0.	C	200.000	2750.000	92.90638			
Nb(L)	J12/73	NB 1.	0.	0.	0.	C	2750.000	6000.000	92.90638			
NbO(s)	J12/73	NB 1.	O 1.	0.	0.	C	300.000	2210.000	108.90578			
NbO(L)	J12/73	NB 1.	O 1.	0.	0.	C	2210.000	5000.000	108.90578			
NbO2(I)	J12/73	NB 1.	O 2.	0.	0.	C	200.000	1090.000	124.90518			
NbO2(II)	J12/73	NB 1.	O 2.	0.	0.	C	1090.000	1200.000	124.90518			
NbO2(III)	J12/73	NB 1.	O 2.	0.	0.	C	1200.000	2175.000	124.90518			
NbO2(L)	J12/73	NB 1.	O 2.	0.	0.	C	2175.000	5000.000	124.90518			
Nb205(s)	J12/72	NB 2.	O 5.	0.	0.	C	300.000	1785.000	265.86976			
Nb205(L)	J12/72	NB 2.	O 5.	0.	0.	C	1785.000	5000.000	265.86976			
Ni(cr)	J12/76	NI 1.	0.	0.	0.	C	200.000	631.000	58.69346			
Ni(cr)	J12/76	NI 1.	0.	0.	0.	C	631.000	1728.000	58.69346			
Ni(L)	J12/76	NI 1.	0.	0.	0.	C	1728.000	6000.000	58.69346			
NiS(b)	J12/76	NI 1.	S 1.	0.	0.	C	300.000	652.000	90.75940			
NiS(a)	J12/76	NI 1.	S 1.	0.	0.	C	652.000	1249.000	90.75940			
NiS(L)	J12/76	NI 1.	S 1.	0.	0.	C	1249.000	5000.000	90.75940			
NiS2(s)	J 3/77	NI 1.	S 2.	0.	0.	C	300.000	1280.000	122.82546			
NiS2(L)	J 3/77	NI 1.	S 2.	0.	0.	C	1280.000	5000.000	122.82546			
Ni3S2(1)	J12/76	NI 3.	S 2.	0.	0.	C	300.000	829.000	240.21226			
Ni3S2(2)	J12/76	NI 3.	S 2.	0.	0.	C	829.000	1062.000	240.21226			
Ni3S2(L)	J12/76	NI 3.	S 2.	0.	0.	C	1062.000	5000.000	240.21226			
Ni3S4(s)	J 3/77	NI 3.	S 4.	0.	0.	C	300.000	1100.000	304.34426			
P(cr)	TPIS89	P 1.	0.	0.	0.	C	195.400	317.300	30.97376			

Species ID.	Code	Formula Used by CETPC				Phase	Temp.	Range	Mole. Wt.
P(L)	TPIS89	P 1.	0.	0.	0.	C	317.300	6000.000	30.97376
P4010(s)	J12/65	P 4.	0 10.	0.	0.	C	300.000	1500.000	263.88905
Pb(cr)	TPIS91	PB 1.	0.	0.	0.	C	200.000	600.650	207.20000
Pb(L)	TPIS91	PB 1.	0.	0.	0.	C	600.650	3600.000	207.20000
PbBr2(s)	J12/73	PB 1.	BR 2.	0.	0.	C	300.000	644.000	367.00000
PbBr2(L)	J12/73	PB 1.	BR 2.	0.	0.	C	644.000	5000.000	367.00000
PbCL2(s)	J 6/73	PB 1.	CL 2.	0.	0.	C	300.000	774.000	278.10540
PbCL2(L)	J 6/73	PB 1.	CL 2.	0.	0.	C	774.000	5000.000	278.10540
PbF2(a)	J12/73	PB 1.	F 2.	0.	0.	C	298.150	583.000	245.19681
PbF2(b)	J12/73	PB 1.	F 2.	0.	0.	C	583.000	1103.000	245.19681
PbF2(L)	J12/73	PB 1.	F 2.	0.	0.	C	1103.000	6000.000	245.19681
PbI2(s)	J12/73	PB 1.	I 2.	0.	0.	C	300.000	683.000	461.00094
PbI2(L)	J12/73	PB 1.	I 2.	0.	0.	C	683.000	5000.000	461.00094
PbO(rd)	J12/71	PB 1.	O 1.	0.	0.	C	300.000	762.000	223.19940
PbO(yw)	J12/71	PB 1.	O 1.	0.	0.	C	762.000	1159.000	223.19940
PbO(L)	J12/71	PB 1.	O 1.	0.	0.	C	1159.000	5000.000	223.19940
PbO2(s)	J12/71	PB 1.	O 2.	0.	0.	C	300.000	1200.000	239.19880
PbS(s)	J 6/73	PB 1.	S 1.	0.	0.	C	300.000	1386.500	239.26680
PbS(L)	J 6/73	PB 1.	S 1.	0.	0.	C	1386.500	5000.000	239.26680
PbS04(s)	J12/71	PB 3.	O 4.	0.	0.	C	300.000	5000.000	685.59760
S(cr1)	TPIS89	S 1.	0.	0.	0.	C	200.000	368.300	32.00000
S(cr2)	TPIS89	S 1.	0.	0.	0.	C	368.300	388.300	32.00000
S(L)	TPIS89	S 1.	0.	0.	0.	C	388.300	6000.000	32.00000
SCL2(L)	J 6/78	S 1.	CL 2.	0.	0.	C	300.000	5000.000	102.97140
S2CL2(L)	J 6/78	S 2.	CL 2.	0.	0.	C	300.000	5000.000	135.03740
Si(cr)	TPIS91	SI 1.	0.	0.	0.	C	200.000	1690.000	28.00050
Si(L)	TPIS91	SI 1.	0.	0.	0.	C	1690.000	6000.000	28.00050
SiC(b)	J 3/67	SI 1.	C 1.	0.	0.	C	300.000	4000.000	40.00050
SiO2(Lqz)	J 6/67	SI 1.	O 2.	0.	0.	C	200.000	847.000	60.00430
SiO2(hqz)	J 6/67	SI 1.	O 2.	0.	0.	C	847.000	1679.000	60.00430
SiO2(L)	J 6/67	SI 1.	O 2.	0.	0.	C	1679.000	2500.000	60.00430
Si2N20(s)	L 1/84	SI 2.	N 2.	0.	0.	C	298.150	2500.000	100.19380
Si3N4(a)	J 3/67	SI 3.	N 4.	0.	0.	C	300.000	3000.000	140.28345
Sr(a)	SRD 93	SR 1.	0.	0.	0.	C	298.150	820.000	87.62000
Sr(b)	SRD 93	SR 1.	0.	0.	0.	C	820.000	1041.000	87.62000
Sr(L)	SRD 93	SR 1.	0.	0.	0.	C	1041.000	6000.000	87.62000
SrCL2(1)	J12/72	SR 1.	CL 2.	0.	0.	C	300.000	1000.000	150.52540
SrCL2(2)	J12/72	SR 1.	CL 2.	0.	0.	C	1000.000	1147.000	150.52540
SrCL2(L)	J12/72	SR 1.	CL 2.	0.	0.	C	1147.000	5000.000	150.52540
SrF2(e)	J12/72	SR 1.	F 2.	0.	0.	C	300.000	1750.000	125.61681
SrF2(L)	J12/72	SR 1.	F 2.	0.	0.	C	1750.000	5000.000	125.61681
SrO(s)	J12/72	SR 1.	O 1.	0.	0.	C	300.000	2938.000	103.61945
SrO(L)	J12/72	SR 1.	O 1.	0.	0.	C	2938.000	5000.000	103.61945
SrO2H2(s)	J12/75	SR 1.	O 2.	H 2.	0.	C	300.000	783.150	121.63468
SrO2H2(L)	J12/75	SR 1.	O 2.	H 2.	0.	C	783.150	5000.000	121.63468
SrS(s)	J 9/77	SR 1.	S 1.	0.	0.	C	300.000	3000.000	119.68680
Ta(cr)	J12/72	TA 1.	0.	0.	0.	C	200.000	3258.000	180.94790
Ta(L)	J12/72	TA 1.	0.	0.	0.	C	3258.000	6000.000	180.94790
TaC(s)	J12/73	TA 1.	C 1.	0.	0.	C	300.000	4273.000	192.95890
TaC(L)	J12/73	TA 1.	C 1.	0.	0.	C	4273.000	5000.000	192.95890
Ta205(s)	J12/72	TA 2.	O 5.	0.	0.	C	300.000	2058.000	441.89280
Ta205(L)	J12/72	TA 2.	O 5.	0.	0.	C	2058.000	5000.000	441.89280
Ti(s)	CODA89	TI 1.	0.	0.	0.	C	200.000	1156.000	47.89000
Ti(b)	CODA89	TI 1.	0.	0.	0.	C	1156.000	1944.000	47.89000
Ti(L)	CODA89	TI 1.	0.	0.	0.	C	1944.000	6000.000	47.89000
TiC(s)	J 6/68	TI 1.	C 1.	0.	0.	C	300.000	3298.000	59.89100
TiC(L)	J 6/68	TI 1.	C 1.	0.	0.	C	3298.000	5000.000	59.89100
TiCL2(s)	J12/68	TI 1.	CL 2.	0.	0.	C	300.000	2000.000	118.78640
TiCL3(s)	J 6/68	TI 1.	CL 3.	0.	0.	C	300.000	5000.000	154.23610
TiCL4(L)	J12/67	TI 1.	CL 4.	0.	0.	C	300.000	5000.000	189.69680
TiN(s)	J 6/68	TI 1.	N 1.	0.	0.	C	300.000	3220.000	61.88674
TiN(L)	J 6/68	TI 1.	N 1.	0.	0.	C	3220.000	5000.000	61.88674
TiO(s)	J12/73	TI 1.	O 1.	0.	0.	C	300.000	1265.000	63.87940
TiO(b)	J12/73	TI 1.	O 1.	0.	0.	C	1265.000	2023.000	63.87940
TiO(L)	J12/73	TI 1.	O 1.	0.	0.	C	2023.000	5000.000	63.87940
TiO2(ru)	J12/73	TI 1.	O 2.	0.	0.	C	300.000	2130.000	79.87880
TiO2(L)	J12/73	TI 1.	O 2.	0.	0.	C	2130.000	5000.000	79.87880
Ti203(1)	J 6/73	TI 2.	O 3.	0.	0.	C	300.000	470.000	143.75820
Ti203(2)	J 6/73	TI 2.	O 3.	0.	0.	C	470.000	2115.000	143.75820
Ti203(L)	J 6/73	TI 2.	O 3.	0.	0.	C	2115.000	5000.000	143.75820
Ti305(s)	J12/73	TI 3.	O 5.	0.	0.	C	300.000	450.000	223.63700
Ti305(b)	J12/73	TI 3.	O 5.	0.	0.	C	450.000	2050.000	223.63700
Ti305(L)	J12/73	TI 3.	O 5.	0.	0.	C	2050.000	5000.000	223.63700
Ti407(s)	J12/73	TI 4.	O 7.	0.	0.	C	300.000	1950.000	303.51580

Species ID.	Code	Formula Used by CETPC				Phase	Temp. Range		Mole. Wt.			
Ti407(L)	J12/73	TI	4.	O	7.	O.	O.	C	1950.000	5000.000	363.51580	
V(cr)	J 6/73	V	1.	O.	O.	O.	O.	C	200.000	2190.000	50.94150	
V(L)	J 6/73	V	1.	O.	O.	O.	O.	C	2190.000	6000.000	50.94150	
VCL2(s)	L 2/76	V	1.	CL	2.	O.	O.	C	300.000	1300.000	121.94690	
VCL3(s)	L 2/76	V	1.	CL	3.	O.	O.	C	300.000	1000.000	157.29960	
VCL4(L)	L 2/76	V	1.	CL	4.	O.	O.	C	300.000	2000.000	192.75230	
VN(s)	J12/73	V	1.	N	1.	O.	O.	C	300.000	3500.000	64.94824	
VO(s)	J12/73	V	1.	O	1.	O.	O.	C	2000.000	2663.000	66.94090	
VO(L)	J12/73	V	1.	O	1.	O.	O.	C	2000.000	5000.000	66.94090	
V203(s)	J12/73	V	2.	O	3.	O.	O.	C	300.000	2340.000	149.88120	
V203(L)	J12/73	V	2.	O	3.	O.	O.	C	2340.000	5000.000	149.88120	
V204(1)	J 6/73	V	2.	O	4.	O.	O.	C	300.000	340.000	165.89060	
V204(2)	J 6/73	V	2.	O	4.	O.	O.	C	340.000	1618.000	165.89060	
V204(L)	J 6/73	V	2.	O	4.	O.	O.	C	1618.000	5000.000	165.89060	
V205(s)	J 6/73	V	2.	O	5.	O.	O.	C	300.000	943.000	181.88660	
V205(L)	J 6/73	V	2.	O	5.	O.	O.	C	943.000	5000.000	181.88660	
Zn(cr)	CODA89	ZN	1.	O.	O.	O.	O.	C	200.000	692.730	65.39000	
Zn(L)	CODA89	ZN	1.	O.	O.	O.	O.	C	692.730	6000.000	65.39000	
ZnSO4(a)	J 3/79	ZN	1.	S	1.	O	4.	O.	C	300.000	540.000	161.45360
ZnSO4(a)	J 3/79	ZN	1.	S	1.	O	4.	O.	C	540.000	1613.000	161.45360
ZnSO4(b)	J 3/79	ZN	1.	S	1.	O	4.	O.	C	1613.000	5000.000	161.45360
Zr(a)	J 6/79	ZR	1.	O.	O.	O.	O.	C	200.000	1135.000	91.22460	
Zr(b)	J 6/79	ZR	1.	O.	O.	O.	O.	C	1135.000	2125.000	91.22460	
Zr(L)	J 6/79	ZR	1.	O.	O.	O.	O.	C	2125.000	6000.000	91.22460	
ZrN(s)	J 6/61	ZR	1.	N	1.	O.	O.	C	300.000	3225.000	105.23674	
ZrN(L)	J 6/61	ZR	1.	N	1.	O.	O.	C	3225.000	5000.000	105.23674	
ZrO2(a)	J12/65	ZR	1.	O	2.	O.	O.	C	300.000	1478.000	123.22280	
ZrO2(b)	J12/65	ZR	1.	O	2.	O.	O.	C	1478.000	2950.000	123.22280	
ZrO2(L)	J12/65	ZR	1.	O	2.	O.	O.	C	2950.000	5000.000	123.22280	

Appendix B

Example Problems

EXAMPLE 3, case 3:

- (a) Combustion or assigned-enthalpy-and-pressure problem ($hp=t$).
- (b) Fuels are C7H8(L) and C8H18(L) at 298.15 K and oxidant is air at 700 K.
- (c) The enthalpies of all the reactants are to be calculated from the product thermodynamic data base (00 in cols. 37 and 38).
- (d) Oxidant-to-fuel weight ratio is 17 (of=t,mix=17).
- (e) Mixture enthalpy is calculated from reactant values (default).
- (f) Many species are omitted from the product data base (OMIT records).
- (g) Assigned pressures are 100, 10, and 1 bar ($p=100,10,1$).
- (h) Mixture properties are to be printed in SI units (siunit=t).
- (i) Mole fractions $> 1.e-15$ are to be in e-format (trace=1.e-15).

	1	2	3	4	5	6	7	8
REACTANTS								
N 2.		00	.75524		G 700.0	0		
O 2.		00	.23144		G 700.0	0		
Ar1.		00	.01286		G 700.0	0		
C 1.	O 2.	00	.00046		G 700.0	0		
C 7.	H 8.	00	.4		L 298.15	F		
C 8.	H 18.	00	.6		L 298.15	F		
OMIT	CCN	CNC	C2N2	C2O				
OMIT	C3H4, allene	C3H4, propyne	C3H4, cyclo-	C3				
OMIT	C3H5, allyl	C3H6, propylene	C3H6, cyclo-	C3H3, propargyl				
OMIT	C3H60	C3H7, n-propyl	C3H7, i-propyl	Jet-A(g)				
OMIT	C3O2	C4	C4H2	C3H80, 2propanol				
OMIT	C4H4, 1,3-cyclo-C4H6, butadiene	C4H6, 2-butyne	C4H80, 1propanol					
OMIT	C4H8, tr2-butene	C4H8, isobutene	C4H8, cyclo-	C4H6, cyclo-				
OMIT	(CH3COOH)2	C4H9, n-butyl	C4H9, i-butyl	C4H8, 1-butene				
OMIT	C4H9, s-butyl	C4H9, t-butyl	C4H10, isobutane	C4H8, cis2-buten				
OMIT	C4H10, n-butane	C4N2	C5	C3H8				
OMIT	C5H6, 1,3cyclo-	C5H8, cyclo-	C5H10, 1-pentene	C10H21, n-decyl				
OMIT	C5H10, cyclo-	C5H11, pentyl	C5H11, t-pentyl	C12H10, biphenyl				
OMIT	C5H12, n-pentane	C5H12, i-pentane	CH3C(CH3)2CH3	C12H9, o-biphenyl				
OMIT	C6H6	C6H5OH, phenol	C6H10, cyclo-	C6H2				
OMIT	C6H12, 1-hexene	C6H12, cyclo-	C6H13, n-hexyl	C6H5, phenyl				
OMIT	C7H7, benzyl	C7H8	C7H80, cresol	mxC6H5O, phenoxy				
OMIT	C7H14, 1-heptene	C7H15, n-heptyl	C7H16, n-heptane	C10H8, azulene				
OMIT	C8H8, styrene	C8H10, ethylbenz	C8H18, 1-octene	C10H8, naphthlene				
OMIT	C8H17, n-octyl	C8H18, isooctane	C8H18, n-octane	C9H19, n-nonyl				
OMIT	Jet-A(L)	C6H6(L)	H2O(s)	H2O(L)				

NAMESISTS

```
*inpt2 kase=3,hp=t,p=100,10,1,of=t,mix=17,siunit=t,trace=1.e-15&end
```

EXAMPLE 4, case 4:

- (a) Assigned-internal-energy-and-density problem ($uv=t$).
- (b) Fuel, oxidant, and oxidant-to-fuel weight ratio are the same as in example 3.
- (c) Internal energy u was taken from col. 1 of the output of example 3. However, input requires u/R , i.e., $u = -375.08 \text{ kJ/kg}$ and $u/R = -375.08/8.31451 = -45.1115$ ($ur=-45.1115$).
- (d) Units for density input are limited to g/cc. From example 3 point 1, $\rho = 14.426 \text{ kg/m}^3 = 0.014426 \text{ g/cc}$ ($\rho=0.014426$).
- (e) Mixture properties are to be printed in SI units ($siunit=t$).
- (f) Mole fractions $> 1.e-15$ are to be in e-format ($trace=1.e-15$).
- (g) Note that since all parameters for this example are the same as those used for col. 1 of example 3, assigning u and ρ from this column should yield the same pressure and temperature assigned for that point in example 3.

#	1	2	3	4	5	6	7	8
REACTANTS								
N 2.				.75524		G 700.	0	
O 2.				.23144		G 700.	0	
Ar1.				.01286		G 700.	0	
C 1.	0 2.			.00048		G 700.	0	
C 7.	H 8.			.4		L 298.15	F	
C 8.	H 18.			.8		L 298.15	F	
OMIT	CCN	CNC	C2N2	C20				
OMIT	C3H4, allene	C3H4, propyne	C3H4, cyclo-	C3				
OMIT	C3H5, allyl	C3H6, propylene	C3H6, cyclo-	C3H3, propargyl				
OMIT	C3H60	C3H7, n-propyl	C3H7, i-propyl	Jet-A(g)				
OMIT	C3O2	C4	C4H2	C3H80, 2propanol				
OMIT	C4H4, 1,3-cyclo-	C4H6, butadiene	C4H6, 2-butyne	C3H80, 1propanol				
OMIT	C4H8, tr2-butene	C4H8, isobutene	C4H8, cyclo-	C4H6, cyclo-				
OMIT	(CH3COOH)2	C4H9, n-butyl	C4H9, i-butyl	C4H8, 1-butene				
OMIT	C4H9, s-butyl	C4H9, t-butyl	C4H10, isobutane	C4H8, cis2-buten				
OMIT	C4H10, n-butane	C4N2	C5	C3H8				
OMIT	C5H6, 1,3cyclo-	C5H8, cyclo-	C5H10, 1-pentene	C10H21, n-decyl				
OMIT	C5H10, cyclo-	C5H11, pentyl	C5H11, t-pentyl	C12H10, biphenyl				
OMIT	C5H12, n-pentane	C5H12, i-pentane	CH3C(CH3)2CH3	C12H9, o-biphenyl				
OMIT	C6H6	C6H5OH, phenol	C6H10, cyclo-	C6H2				
OMIT	C6H12, 1-hexene	C6H12, cyclo-	C6H13, n-hexyl	C6H5, phenyl				
OMIT	C7H7, benzyl	C7H8	C7H80, cresol mx	C6H50, phenoxy				
OMIT	C7H14, 1-heptene	C7H15, n-heptyl	C7H16, n-heptane	C10H8, azulene				
OMIT	C8H8, styrene	C8H10, ethylbenz	C8H16, 1-octene	C10H8, naphthlene				
OMIT	C8H17, n-octyl	C8H18, isoctane	C8H18, n-octane	C9H19, n-nonyl				
OMIT	C7H8(L)	C8H18(L), n-octane	Jet-A(L)	C6H6(L)				
OMIT	H2O(s)	H2O(L)						

NATIONALISTS

```
&inpt2 kase=4,uv=t,ur=-45.1115,rho=.014426,of=t,mix=17,siunit=t,  
trace=1.e-15&end
```

```

# EXAMPLE 5, case 5:
# (a) Combustion problem (hp=t) for solid propellant with 5 ingredients.
# (b) The assigned enthalpies in cal/mole are given on each reactant
# record except for MgO(s), which is to be calculated from the
# product data base (00 in cols. 37 and 38).
# (c) The reactants are given in percent by weight (default).
# (d) Five pressures are given in units of psia (psia=t,p=500,250,
# 125,50,5,).
# (e) AL203(L) is included as a possible combustion species for the first
# pressure (INSERT record). Note that the program will remove
# any condensed species if their inclusion is wrong.
# (f) Many species are omitted from the product data base (OMIT records).

```

REACTANTS

N 1.	H 4.	C11.	O 4.	72.06	-70890.	S298.15	0
C 1.	H 1.869550	.031256S	.008415	18.58	-2999.082L	S298.15	F
A11.				9.	0.0	S298.15	F
Mg1.	O 1.		00	.2		S298.15	F
H 2.	O 1.			.16	-68317.4	L298.15	F

INSERT	AL203(L)						
OMIT	C00H	C2	C2H	CHCO	,ketyl		
OMIT	C2H2, vinylidene	CH2C0, ketene	C2H3, vinyl	CH3C0	, acetyl		
OMIT	C2H40, ethylen	oCH3CH0, ethanal	CH3C00H	(HC00H)2			
OMIT	C2H5	C2H6	CH3N2CH3	CH3OCH3			
OMIT	C2H50H	CCN	CNC	C2N2			
OMIT	C2O	C3	C3H3, propargyl	C3H4, allene			
DMIT	C3H4, propyne	C3H4, cyclo-	C3H5, allyl	C3H6, propylene			
OMIT	C3H6, cyclo-	C3H60	C3H7, n-propyl	C3H7, i-propyl			
OMIT	C3H8	C3H80, 1propanol	C3H80, 2propanol	C302			
OMIT	C4	C4H2	C4H4, 1,3-cyclo-04H8	butadiene			
OMIT	C4H8, 2-butyne	C4H8, cyclo-	C4H8, 1-butene	C4H8, cis2-buten			
OMIT	C4H8, tr2-butene	C4H8, isobutene	C4H8, cyclo-	(CH3C00H)2			
OMIT	C4H9, n-butyl	C4H9, i-butyl	C4H9, s-butyl	C4H9, t-butyl			
OMIT	C4H10, isobutane	C4H10, n-butane	C4N2	C5			
OMIT	C5H6, 1,3cyclo-	C5H8, cyclo-	C5H10, 1-pentene	C5H10, cyclo-			
OMIT	C5H11, pentyl	C5H11, t-pentyl	C5H12, n-pentane	C5H12, i-pentane			
OMIT	CH3C(CH3)2CH3	C6H2	C6H5, phenyl	C6H50, phenoxy			
OMIT	C6H6	C6H50H, phenol	C6H10, cyclo-	C6H12, 1-hexene			
OMIT	C6H12, cyclo-	C6H13, n-hexyl	C7H7, benzyl	C7H8			
OMIT	C7H80, cresol	mxC7H14, 1-heptene	C7H15, n-heptyl	C7H16, n-heptane			
OMIT	C8H8, styrene	C8H10, ethylbenz	C8H18, 1-octene	C8H17, n-octyl			
OMIT	C8H18, isoctane	C8H18, n-octane	C9H19, n-nonyl	C10H8, naphthal			
OMIT	C10H21, n-decyl	C12H9, o-biphenyl	C12H10, biphenyl	Jet-A(g)			
OMIT	HNC0	HN0	HN02	HN03			
OMIT	HCCN	HCHO, formaldehy	HC00H				
OMIT	NH	NH2	NH20H				
OMIT	NCN	N2H2	NH2NO2	N2H4			
OMIT	H2O2	(HC00H)2	C6H6(L)	C7H8(L)			
OMIT	C8H18(L), n-octane	Jet-A(L)	H2O(s)	H2O(L)			

NAMELISTS

```
&inpt2 kase=5,hp=t,psia=t,p=500,250,125,50,5,&end
```

```

# EXAMPLE 6, case 6:
#   (a) Chapman-Jouguet detonation problem (detn=t).
#   (b) The reactants are stoichiometric H2 and O2 gases (eratio=t,mix=1).
#   (c) The unburned gases are at 298.15 and 500 K and 1 bar (t=298.15,500,
#       bar=t,p=1)
#   (d) Thermal transport properties are called for (trnspt=t).
#
#234567890123456789012345678901234567890123456789012345678901234567890
#      1      2      3      4      5      6      7      8
REACTANTS
O 2.                               100.0  0.0      G298.15  0
H 2.                               100.    0.      G298.15  F

NAMELISTS
&inpt2 kase=6,detn=t,eratio=t,mix=1,t=298.15,500,bar=t,p=1,trnspt=t, &end

```

```

# EXAMPLE 7, case 7:
#   (a) Shock tube problem (shock=t).
#   (b) Reactants are H2, O2, and Ar gases at 300 K. Note that for shock
#       problems reactants must be gaseous species in the thermodynamic
#       product data base. The program calculates properties of the
#       reactants at the temperature given on the records (300 K).
#   (c) Reactants are given in moles (M in col. 53).
#   (d) Initial gas pressures are 10 and 20 mm Hg (p=10,20,mmhg=t).
#   (e) Seven initial gas velocities are assigned (u1=1000,1100,1200,
#       1250,1300,1350,1400,).
#   (f) Equilibrium calculations are to be performed for incident shock
#       conditions (incdeq=t).
#   (g) Frozen calculations are to be performed for incident shock
#       conditions (incdfz=t).
#
#234567890123456789012345678901234567890123456789012345678901234567890
#      1      2      3      4      5      6      7      8
REACTANTS
H 2.                               0.050  M      G 300.00
O 2.                               0.050  M      G 300.00
Ar1.                              0.900  M      G 300.00

NAMELISTS
&inpt2 kase=7,p=10,20,mmhg=t, shock=t,&end
&shkinp u1=1000,1100,1200,1250,1300,1350,1400,incdeq=t,incdfz=t&end

```

```

# EXAMPLE 8, case 8 (see Gordon and McBride, 1988):
# (a) Rocket problem with an infinite-area combustor (rkt=t).
# (b) The fuel is H2(L) at 20.17 K; the oxidant is O2(L) at 90.18 K.
# (c) The oxidant-to-fuel ratio is 5.55157 (of=t,mix=5.55157).
# (d) The chamber pressure is 53.3172 bars (p=53.3172,bar=t).
# (e) Calculations are with equilibrium chemistry only (froz=f).
# (f) For exit points there are three pressure ratios (pcp=10,100,1000),
#      one subsonic area ratio (subar=1.58), and three supersonic area
#      ratios (supar=25,50,75).
#
#234567890123456789012345678901234567890123456789012345678901234567890
#   1   2   3   4   5   6   7   8
REACTANTS
H 2.                               100.    -2154.  L  20.17 F
O 2.                               100.    -3102.  L  90.18 0

```

NAMELISTS
 $\&\text{inpt2 kase}=8,\text{rkt}=t,\text{p}=53.3172,\text{bar}=t,\text{of}=t,\text{mix}=5.55157,\text{siunit}=t$ &end
 $\&\text{rktpin foz=f,subar}=1.58,\text{pcp}=10,100,1000,\text{supar}=25,50,75\&end$

```

# EXAMPLE 9, case 9 (see Gordon and McBride, 1988):
# (a) Rocket problem with a finite-area combustor (rkt=t,fac=t).
# (b) Contraction ratio of 1.58 (acat=1.58) is assigned.
# (c) Fuel, oxidant, and the remaining parameters are the same as in
#      example 8.
#
#234567890123456789012345678901234567890123456789012345678901234567890
#   1   2   3   4   5   6   7   8
REACTANTS
H 2.                               100.    -2154.  L  20.17 F
O 2.                               100.    -3102.  L  90.18 0

```

NAMELISTS
 $\&\text{inpt2 kase}=9,\text{rkt}=t,\text{p}=53.3172,\text{bar}=t,\text{of}=t,\text{mix}=5.55157,\text{siunit}=t$ &end
 $\&\text{rktpin fac=t,acat}=1.58,\text{pcp}=10,100,1000,\text{supar}=25,50,75\&end$

```

# EXAMPLE 10, case 10 (see Gordon and McBride, 1988):
# (a) Rocket problem with a finite-area combustor (rkt=t,fac=t).
# (b) A ratio of mass flow rate to chamber area of 1333.8 (ma=1333.8)
#      is assigned. This value was calculated from the results
#      of example 9 where a contraction ratio of 1.58 was assigned.
# (c) Fuel, oxidant, and the remaining parameters are the same as in
#      examples 8 and 9.
#
#234567890123456789012345678901234567890123456789012345678901234567890
#   1   2   3   4   5   6   7   8
REACTANTS
H 2.                               100.    -2154.  L  20.17 F
O 2.                               100.    -3102.  L  90.18 0

```

NAMELISTS
 $\&\text{inpt2 kase}=10,\text{rkt}=t,\text{p}=53.3172,\text{bar}=t,\text{of}=t,\text{mix}=5.55157,\text{siunit}=t\&end$
 $\&\text{rktpin fac=t,ma}=1333.8,\text{pcp}=10,100,1000,\text{supar}=25,50,75\&end$

```

# EXAMPLE 11, case 11:
#   (a) Rocket problem with an infinite-area combustor (rkt=t).
#   (b) Reactants are Li(s) at 298.15 K and F2(L) at 85.02 K.
#   (c) Relative amounts of reactants are given as moles on the records
#       (M in col. 53).
#   (d) Chamber pressure is 1000 psia (p=1000,psia=t).
#   (e) Ionized species are to be included in the products (ions=t).
#   (f) Only equilibrium calculations are to be performed (froz=f).
#   (g) For exit points one pressure ratio (pcp=68.0457), one
#       subsonic area ratio (subar=5), and three supersonic area ratios
#       (supar=10,20,100) are to be included.
#
#234567890123456789012345678901234567890123456789012345678901234567890
#      1      2      3      4      5      6      7      8
REACTANTS
Li1.                               1.    M    0.    S298.15  F
F 2.                               .5556  M-3098.  L 85.02  0

```

NAMELISTS

```

&inpt2 kase=11, rkt=t,p=1000,psia=t,ions=t ,trnspt=f&end
&rktinp pcp=68.0457,subar=5,supar=10,20,100,froz=f&end

```

```

# EXAMPLE 12, case 12:
#   (a) Infinite-area rocket problem (rkt=t).
#   (b) The fuel is monomethyl hydrazine and the oxidant is nitrogen
#       tetroxide, both liquids at 298.15 K.
#   (c) The oxidant-to-fuel weight ratio is 2.5 (of=t,mix=2.5).
#   (d) Chamber pressure is 1000 psia (p=1000,psia=t).
#   (e) Equilibrium and frozen calculations are to be performed with freezing
#       at the throat (nfz=2).
#   (f) For exit points one pressure ratio (pcp=68.0457) and four supersonic
#       area ratios (supar=10,50,100,200) are to be included.
#
#234567890123456789012345678901234567890123456789012345678901234567890
#      1      2      3      4      5      6      7      8
REACTANTS
C 1.    H 6.    N 2.                      100.    54000.    L298.15  JF
N 2.    O 4.                                100.    -19564.    L298.15  J0
ONLY      CO      CO2      H      HNO
ONLY      HN02     HO2      H2      H2O
ONLY      H2O2     N       NO      NO2
ONLY      N2      N2O      O       OH
ONLY      O2      ECO      NH      CH4
ONLY      NH2     NH3      H2O(L)  C(gr)
NAMELISTS
&inpt2 kase=12,p=1000,psia=t,of=t,mix=2.5,rkt=t,siunit=t,&end
&rktinp pcp=68.0457, supar=10,50,100,200, nfz=2, &end

```

```

# EXAMPLE 13, case 13:
# (a) Rocket problem with an infinite-area combustor (rkt=t). This problem
# was selected to show singularity at the throat.
# (b) Tripropellant. Fuels are N2H4(L) and Be(L) and oxidant is H2O2(L),
# all at 298.15 K.
# (c) Reactant mixture is given as 67% fuel by weight (fpct=t,mix=67.).
# (d) Chamber pressure is 3000 psia (psia=t,p=3000).
# (e) Calculations are to be for equilibrium conditions only (froz=f).
# (f) Four exit pressure ratios are assigned (pcp=3,10,30,300).
# (g) BeO(L) is included as possible combustion product for combustion
# chamber (INSERT record).
# (h) Mole fractions > 1.e-10 are to be in e-format (trace=1.e-10).
#
#234567890123456789012345678901234567890123456789012345678901234567890
#      1       2       3       4       5       6       7       8
REACTANTS
N 2.      H 4.          80.     12050.    L298.15   F
Be1.          20.      0.0      S298.15   F
H 2.      O 2.         100.    -44880.    L298.15   0

```

INSERT BeO(L)

NAMELISTS

```

&inpt2 kase=13,fpct=t,mix=67,psia=t,p=3000,trace=1.e-10,rkt=t&end
&rktinp pcp=3,10,30,300,froz=f &end

```

References

Gordon, S., 1970 "Calculation of Theoretical Equilibrium Nozzle Throat Conditions When Velocity of Sound Is Discontinuous," AIAA Journal, Vol. 9, No. 1, pp. 179–182.

Gordon, S., and McBride, B.J., 1976, "Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations," NASA SP-273, Interim Revision.

Gordon, S., 1982, "Thermodynamic and Transport Combustion Properties of Hydrocarbons With Air. Part I: Properties in SI Units," NASA TP-1906.

Gordon, S., McBride, B.J., and Zeleznik, F.J., 1984, "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. Supplement I: Transport Properties," NASA TM-86885.

Gordon, S., and McBride, B.J., 1988, "Finite Area Combustor Theoretical Rocket Performance," NASA TM-100785.

Gordon, S., and McBride, B.J., 1994, "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. Part 1: Analysis," NASA RP-1311.

McBride, B.J., Gordon, S., and Reno, M.A., 1993a, "Thermodynamic Data for Fifty Reference Elements," NASA TP-3287.

McBride, B.J., Gordon, S., and Reno, M.A., 1993b, "Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species," NASA TM-4513.

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
<p>Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.</p>			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
	March 1994	Technical Memorandum	
4. TITLE AND SUBTITLE CET93 and CETPC: An Interim Updated Version of the NASA Lewis Computer Program for Calculating Complex Chemical Equilibria With Applications		5. FUNDING NUMBERS	
6. AUTHOR(S) Bonnie J. McBride, Martin A. Reno, and Sanford Gordon		WU-505-62-52	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135-3191		8. PERFORMING ORGANIZATION REPORT NUMBER E-8297	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration Washington, D.C. 20546-0001		10. SPONSORING/MONITORING AGENCY REPORT NUMBER NASA TM-4557	
11. SUPPLEMENTARY NOTES Bonnie J. McBride, NASA Lewis Research Center; Martin A. Reno, Heidelberg College, Tiffin, Ohio 44883; and Sanford Gordon, Sanford Gordon and Associates, 4078 Stonehaven Road, Cleveland, Ohio 44121. Responsible person, Bonnie J. McBride, organization code 2670, (216) 433-5870.			
12a. DISTRIBUTION/AVAILABILITY STATEMENT Unclassified - Unlimited Subject Category 25		12b. DISTRIBUTION CODE	
13. ABSTRACT (Maximum 200 words) The NASA Lewis chemical equilibrium program with applications continues to be improved and updated. The latest version is CET93. This code, with smaller arrays, has been compiled for use on an IBM or IBM-compatible personal computer and is called CETPC. This report is intended to be primarily a users manual for CET93 and CETPC. It does not repeat the more complete documentation of earlier reports on the equilibrium program. Most of the discussion covers input and output files, two new options (ONLY and comments), example problems, and implementation of CETPC.			
14. SUBJECT TERMS Chemical equilibrium; Combustion products; Rocket performance; Computer program; Thermodynamic properties; Thermal transport properties			15. NUMBER OF PAGES 38
			16. PRICE CODE A03
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT