Συναρτήσεις

Ασύμπτωτες

Κωνσταντίνος Λόλας

 10^o ΓΕΛ Θεσσαλονίκης

5 Ιουλίου 2025

Ναι αλλά "καταλήγουμε" κάπου?

Σχεδόν τελειώσαμε την σχεδίαση. Εμεινε να δούμε, αν πλησιάζουμε σε ευθείες και πότε!

Συναρτήσεις Λόλας (10^o ΓΕΛ) 5 Ιουλίου 2025 2/20

Ζωγραφική 1 από 3

Φτιάξτε συνάρτηση που να τείνει να γίνει η ευθεία x=1

Τι παρατηρείτε για την συνάρτηση όσο x o 1?

3/20

Ζωγραφική 1 από 3

Φτιάξτε συνάρτηση που να τείνει να γίνει η ευθεία x=1 Τι παρατηρείτε για την συνάρτηση όσο $x\to 1$?

Λόλας $(10^o$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025

3/20

Κατακόρυφη ασύμπτωτη

Ορισμός

Η $x=x_0$ είναι <u>κατακόρυφη ασύμπτωτη</u> της C_f αν ένα τουλάχιστον από τα όρια $\lim_{x\to x_0^+}f(x)$ ή $\lim_{x\to x_0^-}f(x)$ είναι $+\infty$ ή $-\infty$.

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 4/20

Ζωγραφική 2 από 3

Φτιάξτε συνάρτηση που δεξιά να τείνει να γίνει η ευθεία y=1

Τι παρατηρείτε για την συνάρτηση όσο $x \to +\infty$?

Ζωγραφική 2 από 3

Φτιάξτε συνάρτηση που <u>δεξιά</u> να τείνει να γίνει η ευθεία y=1 Τι παρατηρείτε για την συνάρτηση όσο $x\to +\infty$?

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 5/20

Οριζόντια ασύμπτωτη

Ορισμός

Η y=a είναι <u>οριζόντια ασύμπτωτη</u> της C_f στο $+\infty$ αν $\lim_{x \to +\infty} f(x)=a$

και αντίστοιχα

Ορισμός

Η y=a είναι <u>οριζόντια ασύμπτωτη</u> της C_f στο $-\infty$ αν $\lim_{x \to -\infty} f(x)=a$

Συναρτήσεις 5 Ιουλίου 2025 6/20

Ζωγραφική 3 από 3

Φτιάξτε συνάρτηση που δεξιά να τείνει να γίνει η ευθεία y=2x+1

Συναρτήσεις 5 Ιουλίου 2025 7/20

Ζωγραφική 3 από 3

Φτιάξτε συνάρτηση που δεξιά να τείνει να γίνει η ευθεία y=2x+1 Προσπαθήστε να ορίσετε συνθήκη για να είναι μία ευθεία ασύμπτωτη της f(x)

Λόλας (10^{o} ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 7/20

Πλάγια ασύμπτωτη

Ορισμός

Η y=ax+b είναι $\underline{\text{ασύμπτωτη}}$ της C_f στο $+\infty$ αν

$$\lim_{x\to +\infty} \left[f(x) - (ax+b) \right] = 0$$

και αντίστοιχα

Ορισμός

Η y=ax+b είναι <u>ασύμπτωτη</u> της C_f στο $-\infty$ αν

$$\lim_{x \to -\infty} \left[f(x) - (ax + b) \right] = 0$$

Λόλας $(10^o$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 8/20

Μην μπερδευτούμε μόνο

- ullet η ασύμπτωτη με a=0 ονομάζεται οριζόντια
- ullet η ασύμπτωτη με a
 eq 0 ονομάζεται πλάγια
- ullet η ασύμπτωτη που δεν ορίζεται το a ονομάζεται κατακόρυφη

Μην μπερδευτούμε μόνο

- ullet η ασύμπτωτη με a=0 ονομάζεται οριζόντια
- ullet η ασύμπτωτη με $a \neq 0$ ονομάζεται πλάγια
- ullet η ασύμπτωτη που δεν ορίζεται το a ονομάζεται κατακόρυφη

Μην μπερδευτούμε μόνο

- ullet η ασύμπτωτη με a=0 ονομάζεται οριζόντια
- ullet η ασύμπτωτη με $a \neq 0$ ονομάζεται πλάγια
- ullet η ασύμπτωτη που δεν ορίζεται το a ονομάζεται κατακόρυφη

Και λίγοι υπολογισμοί

Ξέροντας ότι

$$\lim_{x\to +\infty} \left[f(x) - (ax+b) \right] = 0$$

να βρείτε τα a και b.

Πλάγια ασύμπτωτη

Η ευθεία y=ax+b λέγεται πλάγια ασύμπτωτη της C_f στο $+\infty$ αν και μόνο αν

$$\lim_{x \to +\infty} \frac{f(x)}{x} = a \in \mathbb{R}$$

KOLL

$$\lim_{x \to +\infty} \left(f(x) - ax \right) = b \in \mathbb{F}$$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 10/20

Και λίγοι υπολογισμοί

Ξέροντας ότι

$$\lim_{x\to +\infty} \left[f(x) - (ax+b) \right] = 0$$

να βρείτε τα a και b.

Πλάγια ασύμπτωτη

Η ευθεία y=ax+b λέγεται πλάγια ασύμπτωτη της C_f στο $+\infty$ αν και μόνο αν

$$\lim_{x\to +\infty}\frac{f(x)}{x}=a\in \mathbb{R}$$

και

$$\lim_{x\to +\infty}\left(f(x)-ax\right)=b\in\mathbb{R}$$

Λόλας $(10^o$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 10/20

Για το βιβλίο σχόλια, για εμάς ασκήσεις

- Ποιό είναι τα μοναδικά πολυώνυμα που έχουν ασύμπτωτες και ποιές?
- Τι πρέπει να ισχύει για τις ρητές συναρτήσεις ώστε να έχουν πλάγιες ασύμπτωτες?
- Ποιές συναρτήσεις έχουν κατακόρυφες ασύμπτωτες?
- Πού ψάχνουμε κατακόρυφες ασύμπτωτες?

Λόλας $(10^{O}$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 11/20

Για το βιβλίο σχόλια, για εμάς ασκήσεις

- Ποιό είναι τα μοναδικά πολυώνυμα που έχουν ασύμπτωτες και ποιές?
- Τι πρέπει να ισχύει για τις ρητές συναρτήσεις ώστε να έχουν πλάγιες ασύμπτωτες?
- Ποιές συναρτήσεις έχουν κατακόρυφες ασύμπτωτες?
- Πού ψάχνουμε κατακόρυφες ασύμπτωτες?

Λόλας $(10^o$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 11/20

Για το βιβλίο σχόλια, για εμάς ασκήσεις

- Ποιό είναι τα μοναδικά πολυώνυμα που έχουν ασύμπτωτες και ποιές?
- Τι πρέπει να ισχύει για τις ρητές συναρτήσεις ώστε να έχουν πλάγιες ασύμπτωτες?
- Ποιές συναρτήσεις έχουν κατακόρυφες ασύμπτωτες?
- Πού ψάχνουμε κατακόρυφες ασύμπτωτες?

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 11/20

Για το βιβλίο σχόλια, για εμάς ασκήσεις

- Ποιό είναι τα μοναδικά πολυώνυμα που έχουν ασύμπτωτες και ποιές?
- Τι πρέπει να ισχύει για τις ρητές συναρτήσεις ώστε να έχουν πλάγιες ασύμπτωτες?
- Ποιές συναρτήσεις έχουν κατακόρυφες ασύμπτωτες?
- Πού ψάχνουμε κατακόρυφες ασύμπτωτες?

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 11/20

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

11/20

1. Να βρείτε τις κατακόρυφες ασύμπτωτες των γραφικών παραστάσεων των παρακάτω συναρτήσεων

- $f(x) = \frac{\ln x}{x}$ $f(x) = \frac{x}{x-2}$

1. Να βρείτε τις κατακόρυφες ασύμπτωτες των γραφικών παραστάσεων των παρακάτω συναρτήσεων

- $f(x) = \frac{\ln x}{x}$ $f(x) = \frac{x}{x-2}$

1. Να βρείτε τις κατακόρυφες ασύμπτωτες των γραφικών παραστάσεων των παρακάτω συναρτήσεων

2. Να βρείτε τις οριζόντιες και τις κατακόρυφες ασύμπτωτες των γραφικών παραστάσεων των συναρτήσεων:

1
$$f(x) = \frac{x}{x^2 + 1}$$

$$f(x) = \frac{x}{x^2 + 1}$$

$$f(x) = \frac{e^x}{1 + e^x}$$

- 2. Να βρείτε τις οριζόντιες και τις κατακόρυφες ασύμπτωτες των γραφικών παραστάσεων των συναρτήσεων:

 - 1 $f(x) = \frac{x}{x^2 + 1}$ 2 $f(x) = \frac{e^x}{1 + e^x}$ 3 $f(x) = \frac{\eta \mu x}{x}$ 4 $f(x) = e^{\frac{1}{x}}$

- 2. Να βρείτε τις οριζόντιες και τις κατακόρυφες ασύμπτωτες των γραφικών παραστάσεων των συναρτήσεων:

 - 1 $f(x) = \frac{x}{x^2 + 1}$ 2 $f(x) = \frac{e^x}{1 + e^x}$ 3 $f(x) = \frac{\eta \mu x}{x}$ 4 $f(x) = e^{\frac{1}{x}}$

- 2. Να βρείτε τις οριζόντιες και τις κατακόρυφες ασύμπτωτες των γραφικών παραστάσεων των συναρτήσεων:

 - 1 $f(x) = \frac{x}{x^2 + 1}$ 2 $f(x) = \frac{e^x}{1 + e^x}$ 3 $f(x) = \frac{\eta \mu x}{x}$ 4 $f(x) = e^{\frac{1}{x}}$

3. Δίνεται η συνάρτηση $f(x) = \sqrt{x^2 + 1}$

- Να βρείτε στο $+\infty$ και στο $-\infty$ τις ασύμπτωτες ε_1 και ε_2 αντίστοιχα της C_f
- ② Να δείξετε ότι η C_f βρίσκεται πάνω από την ε_1 κοντά στο $+\infty$ και

- 3. Δίνεται η συνάρτηση $f(x) = \sqrt{x^2 + 1}$
 - Να βρείτε στο +∞ και στο -∞ τις ασύμπτωτες $ε_1$ και $ε_2$ αντίστοιχα της
 - Να δείξετε ότι η C_f βρίσκεται πάνω από την ε_1 κοντά στο $+\infty$ και πάνω από την ε_2 κοντά στο $-\infty$

4. Εστω $f, q: \mathbb{R} \to \mathbb{R}$ δύο συναρτήσεις για τις οποίες ισχύει:

$$g(x)=f(x)-2x+\frac{x}{x^2+1}\text{, }x\in\mathbb{R}$$

και η ευθεία y=3x-2 η οποία είναι ασύμπτωτη της C_f στο $+\infty$

- Να βρείτε την ασύμπτωτη της C_a στο $+\infty$

$$\lim_{x \to +\infty} \frac{xf(x) - 3x^2 + \lambda x - 1}{\lambda f(x) - 4x + 5} = 1$$

4. Εστω $f, q: \mathbb{R} \to \mathbb{R}$ δύο συναρτήσεις για τις οποίες ισχύει:

$$g(x)=f(x)-2x+\frac{x}{x^2+1}\text{, }x\in\mathbb{R}$$

και η ευθεία y=3x-2 η οποία είναι ασύμπτωτη της C_f στο $+\infty$

- Να βρείτε την ασύμπτωτη της C_a στο $+\infty$
- Να βρείτε τις τιμές του λ , για τις οποίες ισχύει:

$$\lim_{x\to +\infty}\frac{xf(x)-3x^2+\lambda x-1}{\lambda f(x)-4x+5}=1$$

5. Να δείξετε ότι η ευθεία y = x είναι πλάγια ασύμπτωτη της γραφικής παράστασης της συνάρτησης $f(x)=\frac{x^2-x+1}{x-1}$ στο $+\infty$

6. Να βρείτε τις πλάγιες ή οριζόντιες ασύμπτωτες στο $+\infty$ των γραφικών παραστάσεων των παρακάτω συναρτήσεων

①
$$f(x) = x - 1 + \frac{1}{x}$$

② $f(x) = 2 + \frac{1}{x+1}$

$$(2) f(x) = 2 + \frac{1}{x+1}$$

6. Να βρείτε τις πλάγιες ή οριζόντιες ασύμπτωτες στο $+\infty$ των γραφικών παραστάσεων των παρακάτω συναρτήσεων

①
$$f(x) = x - 1 + \frac{1}{x}$$

② $f(x) = 2 + \frac{1}{x+1}$

7. Εστω η συνάρτηση $f(x)=\frac{x^2+x+2a}{x-a^2}$. Να βρείτε τις τιμές του $\alpha\in\mathbb{R}$, για τις οποίες η ευθεία $\varepsilon:x=1$ είναι ασύμπτωτη της C_f

8. Δίνεται η συνάρτηση $f(x) = \frac{a^2 x^n + 5 x + 1}{x^2 + 1}$. Να βρείτε τις τιμές των $a\in\mathbb{R}^*$ και $n\in\mathbb{N}-0,1$ για τις οποίες η ευθεία $\varepsilon:y=1$ είναι οριζόντια ασύμπτωτη της C_f στο $+\infty$

9. Να βρείτε τις τιμές των α και $\beta \in \mathbb{R}$, ώστε

$$\lim_{x \to +\infty} \left(\frac{\alpha x^2 + \beta x + 3}{x - 1} - x \right) = 2$$