Math 600 Fall 2017 Homework #6

Due Nov. 13, Mon. in class

Note: For the Euclidean space \mathbb{R}^n , consider the usual metric induced by the Euclidean norm $\|\cdot\|_2$ on \mathbb{R}^n , unless otherwise stated.

- 1. Solve the following problems.
 - (1) Let f be a continuous function on a metric space (M, d) and A be a nonempty set in M. Show that if f is uniformly continuous on the closure of A, then f is uniformly continuous on A.
 - (2) Let $g: \mathbb{R}^2 \to \mathbb{R}$ be continuous on \mathbb{R}^2 . Let (a, b] and (c, d) be two intervals in \mathbb{R} . Use (1) to show that g is uniformly continuous on $(a, b] \times (c, d)$.
- 2. Let $f:(M,d)\to\mathbb{R}^n$ be Lipschitz continuous on M, and f(A) be a closed and bounded set in \mathbb{R}^n for some set $A\subset M$. Let $g:\mathbb{R}^n\to\mathbb{R}$ be continuous on \mathbb{R}^n . Show that the composition $g\circ f$ is uniformly continuous on A.
- 3. Let $f_n(x) = \sin(nx)/(1+nx)$, and $A = [0, \infty)$.
 - (1) Show that (f_n) converges pointwise on A, and find the limit function f_* ;
 - (2) Let a > 0. Show that (f_n) converges uniformly on $[a, \infty)$ to f_* ;
 - (3) Show that (f_n) does not converge uniformly on A to f_* .
- 4. Let $f_n(x) = x^n/(1+x^n)$, and $A = [0, \infty)$.
 - (1) Show that (f_n) converges pointwise on A, and find the limit function f_* ;
 - (2) Let $a \in (0,1)$. Show that (f_n) converges uniformly on [0,a] to f_* ;
 - (3) Show that (f_n) does not converge uniformly on [0,1] to f_* .
- 5. Suppose a sequence of *continuous* functions (f_n) converges pointwise to f_* on a *compact* set A. If f_* is *continuous* on A, does this imply that (f_n) always converge uniformly to f_* on A? If so, prove it; otherwise, give a counterexample.
- 6. Suppose that each f_n is continuous on the set A, and (f_n) converges to f_* uniformly on A. Suppose the sequence (x_n) in A converges to $x_* \in A$. Show that $(f_n(x_n))$ converges to $f_*(x_*)$.
- 7. Let $f_n : \mathbb{R} \to \mathbb{R}$ and $g_n : \mathbb{R} \to \mathbb{R}$ be two sequences of bounded functions that converge uniformly on the set A to f_* and g_* , respectively. Show that $(f_n \cdot g_n)$ converges uniformly to $f_* \cdot g_*$ on A.

Miscellaneous practice problems: Do not submit

- 1. Use the sequential criterion to show that the function $f(x) = x^2$ is not uniformly continuous on $A = [0, \infty)$.
- 2. Let $f_n : \mathbb{R} \to \mathbb{R}$ and $g_n : \mathbb{R} \to \mathbb{R}$ be two sequences of functions that converge uniformly on the set A to f_* and g_* , respectively. Show that $(f_n + g_n)$ converges uniformly on A to $f_* + g_*$.
- 3. Let $f_n(x) = x + 1/n, x \in \mathbb{R}$.

- (1) Show that (f_n) converges pointwise on \mathbb{R} , and find the limit function f_* ;
- (2) Show that (f_n) converges uniformly to f_* on \mathbb{R} ;
- (3) Show that (f_n^2) does *not* converge uniformly to f_*^2 on \mathbb{R} .
- \star This problem shows that in general, the product of uniformly convergent sequences of functions need *not* be uniformly convergent on a set.