Локальные модификации метода анализа сингулярного спектра

Сандалов Сергей, группа 15.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к.ф.-м.н., доцент Голяндина Н.Э.

Рецензент: к.ф.-м.н., системный программист Звонарев Н.К.

Санкт-Петербург 2019г.

Введение. Постановка задачи

Вещественный временной ряд $\mathbb{F}_N=\mathbb{S}_N+\mathbb{R}_N$, где $\mathbb{S}_N=(s_1,s_2,\ldots,s_N)$ — сигнал с $s_n=A(n)\cos(2\pi\omega(n)\cdot n+\phi)$, A(n)>0, а $\mathbb{R}_N=(r_1,r_2,\ldots,r_N)$ — стационарный процесс.

Цель: по наблюдаемому ряду \mathbb{F}_N оценить \mathbb{S}_N .

Метод: SSA (Singular spectrum analysis)[Analysis of Time Series Structure: SSA and Related Techniques, Golyandina et. al. 2001].

Известно: если $A(n)=Ae^{\gamma n}$, $\omega(n)={\rm const.}$ а $\gamma,A\in {\bf R}$, то SSA хорошо умеет выделять сигнал.

Задача: в рамках SSA предложить подход лучше, чем базовый метод SSA, справляющийся с оценкой сигнала при более сложной модуляции как амплитуды, так и частоты.

Введение. Алгоритм SSA

 $\mathbb{F}_N = (f_1, f_2, \dots, f_N)$ — временной ряд. Параметры алгоритма: L — длина окна, r — количество компонент для получения оценки сигнала.

- Вложение: 1 < L < N, K = N L + 1, ряд переводится в траекторную матрицу $\mathbf{X} = [X_1:\ldots:X_K]$, где $X_i = (f_i,\ldots,f_{i+L-1})^{\mathrm{T}}$, где $1 \le i \le K$.
- Сингулярное разложение: $\mathbf{X} = \mathbf{X}_1 + \ldots + \mathbf{X}_d$, $\mathbf{X}_i = \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}$, где $1 \leq i \leq d = \mathrm{rk}(\mathbf{X})$ и $\sqrt{\lambda_i}$ сингулярные числа, упорядоченные по невозрастанию.
- ullet Группировка: $\hat{\mathbf{X}} = \sum\limits_{i=1}^r \mathbf{X}_i$.
- ullet Диагонализация: $\hat{\mathbf{X}}$ переводится во временной ряд $\widetilde{\mathbb{S}}_N.$

Введение. Основные определения

Рассмотрим модель сигнала \mathbb{S}_N . \mathbf{S} – траекторная матрица \mathbb{S}_N .

Ранг временного ряда

Если равенство $\mathrm{rk}(\mathbf{S}) = d < N/2$ имеет место для любого $L: d \leq \min(L,K)$, то будем говорить, что ряд \mathbb{S}_N имеет ранг d (обозн. $\mathrm{rk}(\mathbb{S}_N) = d$; говорят \mathbb{S}_N — ряд конечного ранга).

- ullet Если $\mathrm{rk}(\mathbb{F}_N)=d$ и для SSA взять $L\geq d$ и r=d, то $\widetilde{\mathbb{S}}_N=\mathbb{F}_N.$
- ullet Если $\mathbb{F}_N=\mathbb{S}_N+\mathbb{R}_N$, где \mathbb{R}_N шум, а $\mathrm{rk}(\mathbb{S}_N)=d$, то рекомендуется брать $Lpprox rac{N}{2}$ и r=d.

Примеры:

- $s_n = Ae^{\alpha n}\cos(2\pi\omega n + \phi)$ ранг 2.
- $s_n = \sum_{i=0}^m c_i n^i$ ранг m+1.

Введение. Основные определения

Число обусловленности

Числом обусловленности матрицы сигнала \mathbb{S}_N ранга d называется $\operatorname{cond}(\mathbf{S}) = \frac{\lambda_1^{sig}}{\lambda_d^{sig}}$, где λ_i^{sig} – собственные числа матрицы \mathbf{S} , взятые в неубывающем порядке.

Отношение сигнал/шум

Пусть
$$\mathbb{F}_N=\mathbb{S}_N+\mathbb{R}_N$$
, где $\mathbb{S}_N=(s_1,s_2,\ldots,s_N)$ — сигнал, а $\mathbb{R}_N=(r_1,r_2,\ldots,r_N)$ — стац. процесс. $\mathsf{SNR}=\frac{\frac{1}{N}\sum_{i=1}^N s_i^2}{\mathrm{Er}_1^2}.$

Замечание: чем больше SNR (Signal-to-Noise Ratio), тем сильнее сигнал по отношению к шуму.

Амплитудная модуляция

Рассмотрим два амплитудно-модулированных сигнала:

- Экспоненциально-модулированный косинус $\mathbb{S}_N^{(1)} = e^{-\frac{n}{80}}\cos(2\pi\frac{1}{12}n)$, ранг 2.
- Квадратично-модулированный косинус $\mathbb{S}_N^{(2)}=(15\cdot 10^{-5}n^2-0.02n+1)\cos(2\pi\tfrac{1}{12}n)\text{, ранг 6}.$

Рис.:
$$\mathbb{S}_N^{(2)}$$
, $\operatorname{cond}(\mathbf{S}^{(2)}) = 126.187$

Амплитудная модуляция

Добавим шум с ${\sf SNR}=5$ к сигналам и применим ${\sf SSA}$ с L=60.

Рис.: Средн. ошибка оценки $\mathbb{S}_N^{(1)}$ по 2-ум комп., $\mathbb{S}_N^{(2)}$ — по 4-м и 6-ти комп.

Вывод: для сигнала с полиномиальной модуляцией выбор 4 < 6=rk($\mathbb{S}_N^{(2)}$) оказался лучше.

Частотная модуляция

Пусть имеется временной ряд $\mathbb{F}_N=\mathbb{S}_N+\mathbb{R}_N$, где $\mathbb{S}_N=\cos(2\pi(\frac{n}{60})^2)$ — сигнал , а \mathbb{R}_N — белый гауссовский шум с $\mathrm{SNR}=5$.

При *оптимальных параметрах L=34*, r=5 оценка получается плохая.

Общие черты локальных алгоритмов

Рассмотрим следующие локальные алгоритмы:

- Overlap SSA [Leles et. al. 2017]
- Sliding SSA [Harmouche et. al. 2018]
- Averaging SSA обобщение Overlap SSA

Общая идея: применять SSA на небольших отрезках ряда, а потом объединять результаты.

На вход алгоритмам подаются:

- ullet $\mathbb{F}_N=(f_1,f_2,\ldots,f_N)$ временной ряд
- ullet Z длина локального сегмента ряда
- ullet q количество элементов внутри локального сегмента, используемое для восстановления
- L длина окна
- ullet r количество компонент для оценки сигнала

Общие соотношения на параметры: L, q < Z, $r \le L$.

Описание локальных алгоритмов

Схема локальных алгоритмов:

- С помощью SSA происходит анализ не всего ряда, а только его отрезков, длины ${\cal Z}.$
- Рассматриваются скользящие отрезки ряда с заданным сдвигом.
- Из оценки сигнала берутся не все значения, а только некоторые, расположенные специальным образом.
- Результаты по отрезкам объединяются некоторым образом для получения оценки сигнала всего ряда.

	Выбор	Сдвиг	Объед-е
Overlap SSA	q точек из середины	q	СТЫК
Sliding SSA	q точек из левой половины	q	СТЫК
Averaging SSA	q точек из середины	1	усредн-е

Соотношения между алгоритмами

- Если положить q=1, то все предложенные локальные алгоритмы совпадают между собой.
- Если положить Z=N, где N длина ряда (нечетно), то все предложенные локальные алгоритмы совпадают с глобальным методом SSA, примененным ко всему ряду целиком.

Постановка численного эксперимента

Рассмотрим вещественный временной ряд $\mathbb{F}_N=\mathbb{S}_N+\mathbb{R}_N$, где $\mathbb{S}_N=(s_1,s_2,\ldots,s_N)$ с $s_n=A(n)\cos(2\pi\omega(n)\cdot n+\phi)$ — сигнал, а $\mathbb{R}_N=(r_1,r_2,\ldots,r_N)$ — белый гауссовский шум.

Задача: сравнить локальные алгоритмы и стандартный SSA.

Примеры сигналов:

- ullet Экспоненциально-модулированный косинус $s_n = e^{-rac{n}{80}}\cos(2\pirac{1}{12}n)$, ранг 2.
- Квадратично-модулированный косинус $s_n = (15 \cdot 10^{-5} n^2 0.02n + 1) \cos(2\pi \frac{1}{12} n), \ \text{ранг 6}.$
- Частотно-модулированный косинус $s_n = \cos(2\pi \cdot (\frac{n}{60})^2)$, ряд не конечного ранга.

Постановка численного эксперимента

- Выбрать вид выделяемого сигнала.
- f 2 Зафиксировать ${
 m SNR}=4$ и N=121 длина ряда.
- ① Промоделировать k=5000 реализаций белого гауссовского шума при выбранном ${
 m SNR}$ и добавить их к сигналу. Получится выборка из временных рядов.
- Для каждого из указанных методов найти оптимальные параметры, при которых среднее MSE оценки сигнала минимально на полученной выборке. Оптимальные параметры находятся полным перебор по решетке значений.
- **5** Сравнить методы при найденных оптимальных параметрах на выборке из временных рядов, полученной в пункте 3.

Сигнал+шум

sigma: 0.121

Рис.: Эксп.-модулир. сигнал с SNR=4

Рис.: Квадр.-модулир. сигнал с SNR=4

Рис.: Частотно-модулир. сигнал с SNR=4

Экспоненциальная модуляция

Таблица: Экспоненциально-модулированный косинус

	Z	q	L	r	RMSE
SSA			60	2	0.03906
Overlap SSA	121	\forall	60	2	0.03906
Sliding SSA	121	\forall	60	2	0.03906
Averaging SSA	121	\forall	60	2	0.03906

Квадратичная модуляция

Таблица: Квадратично-модулированный косинус

	Z	q	L	r	RMSE
SSA			27	2	0.06784
Overlap SSA	41	1	20	2	0.05587
Sliding SSA	41	1	20	2	0.05887
Averaging SSA	41	1	20	2	0.05887

Частотная модуляция

Таблица: Частотно-модулированный косинус

	Z	q	L	r	RMSE
SSA			34	5	0.15664
Overlap SSA	29	1	13	2	0.13849
Sliding SSA	29	1	13	2	0.13849
Averaging SSA	29	1	13	2	0.13849

Выводы

- Все три локальных метода совпали между собой при выборе оптимальных параметров.
- Для экспоненциальной модуляции лучше всех справился стандартный SSA.
- В случае квадратичной модуляции локальные методы показали значимое преимущество перед SSA.
- Для частотной модуляции преимущество локальных методов еще сильнее.
- Оптимальным значением q^* для всех алгоритмов оказалось значение q=1, т.е. используется только центральная точка восстановленного ряда для каждого отрезка.
- В результате моделирования выяснено, что чем сложнее вид сигнала для SSA, тем меньше должно быть Z.

Заключение

Что сделано:

- Изучена теория метода SSA.
- Разобраны и реализованы локальные алгоритмы Overlap SSA, Sliding SSA и Averaging SSA на языке R.
- Проведено численное сравнение локальных алгоритмов.
- Сделаны рекомендации по выбору параметров локальных модификаций на качественном уровне.