TP 2 - Grammaires et Automates

Milles 2020-2021

B. Madeline

Grammaires:

Exo 1) Soit la grammaire $G = (\{S,A,a,b,c\},\{a,b,c\},P,S)$ où P contient les règles suivantes .

$$S \rightarrow aS \mid bA$$
$$A \rightarrow cA \mid \epsilon$$

- 1) Déterminer si les mots w1 = abac, w2 = aabccc, w3 = cabbac et w4 = ab sont dans L(G).
- 2) Trouver le langage généré par G (qu'on note L(G)).

Exo 2) Trouver pour chacune des grammaires $Gi = (\{S, A, a, b, c\}, \{a, b, c\}, Pi, S)$ le langage engendré par celle-ci : (i=1 et 2)

1) P1 : S
$$\rightarrow$$
 aSc | A
A \rightarrow bAc | ϵ
2) P2 : S \rightarrow aSbS | ϵ

Exo 3) Quel est le type de la grammaire $Gi = (\{S, A, a, b, c\}, \{a, b, c\}, Pi, S)$:

1) P1 : S
$$\rightarrow$$
 aAS | a A \rightarrow SbA | SS | ba 2) P2 : S \rightarrow aAS | SA | ϵ aA \rightarrow a

Exo 4) Soit la grammaire formelle $G = (\{S, R, a, b\}, \{a, b\}, P, S)$ dont les règles de P sont :

- (1) $S \rightarrow aS$
- (2) $S \rightarrow bR$
- (3) $S \rightarrow b$
- (4) $R \rightarrow aR$
- (5) $R \rightarrow bS$
- 1. Montrer que le mot abbb est généré par G .
- 2. Montrer que le mot abb n'est pas généré par G.
- 3. Montrer qu'un mot se terminant par a ne peut pas être généré par G.
- 4. Montrer que les mots générés par G ont tous un nombre impair de b.

Exo5) Pour chacun des langages suivants, donner une grammaire $G_i = \{V, \Sigma, P, S\}$ qui l'engendre :

- L1 = { $O^{2n} / n \ge 0$ }
- L2 = { $a^n b^m / n \ge 1, m \ge 1$ }
- Tous les mots de la forme $a^n b^n$ sur $\Sigma = \{a, b\}$
- L3 = { $O^n v \tilde{v} 1^n / n \ge 0$, $v \in \{a, b\}^*$ }
- Tous les palindromes sur l'alphabet $\Sigma = \{a, b, c, d, e\}$
- Tous les nombres binaires pairs
- En admettant connue la grammaire qui définit une instruction en C, définissez la grammaire de la syntaxe du *for* sur $\Sigma = \{for, ;, \{,\}, (,), test, instruction\}$
- même question pour le *if* en langage C sur $\Sigma = \{if, else, \{,\}, (,), test, instruction, ;\}$
- Définissez la grammaire qui reconnaît une instruction en C sur $\Sigma = \{=, type, (,), identificateur\}$