Zustandsbasierte Formulierung der Peridynamik Schwache Lösungstheorie

Maximilian König

28. November 2016

Gliederung

- 1 Eine Existenzaussage für Nichtmonotone Gleichungen
- 2 Einführung: Zustandsbasierte Peridynamische Form
- ${ t 3}$ Formen auf $V=W^{\sigma,p}(\Omega)^d$
- Quellen

Section 1

Eine Existenzaussage für Nichtmonotone Gleichungen

- 1 Eine Existenzaussage für Nichtmonotone Gleichungen
- 2 Einführung: Zustandsbasierte Peridynamische Form
- ${}_{3}$ Formen auf $V=W^{\sigma,p}(\Omega)^d$
- 4 Quellen

Die Peridynamische Bewegungsgleichung

Sei V ein Banachraum. Wir betrachten die Gleichung

$$\langle \mathbf{y}''(t), \mathbf{z} \rangle - k(\mathbf{y}(t), \mathbf{z}) = \langle \mathbf{b}(t), \mathbf{z} \rangle, \quad \mathbf{z} \in V, \quad \text{f. \"{u}. in } (0, T)$$
 (1)

mit einer Form $k: V \times V \rightarrow R$.

Im Ansatzraum $V=W^{\sigma,p}(\Omega)^d$ konnten [EP15] unter Zuhilfenahme der folgenden Eigenschaften der Form k die Existenz von Lösungen zur Gleichung (7)

- (E1) Die Form k ist stetig als Abbildung $W^{\sigma,p}(\Omega)^d \times W^{\sigma,p}(\Omega)^d \to \mathbb{R}$ und linear im zweiten Argument.
- (E2) Es gibt ein $\varepsilon > 0$ so, dass die Form k ebenso stetig ist als Abbildung $W^{\sigma-\varepsilon,p}(\Omega)^d \times W^{\sigma+\varepsilon(p-1),p} \to \mathbb{R}$.
- (E3) Der zur Form k gehörende Operator K ist ein Potentialoperator, sein Potential $-\Phi$ erfüllt Koerzitivitätsbedingungen der Form

$$\Phi(\mathbf{y}) \geq \lambda |\mathbf{y}|_{\sigma,p} - c(1 + ||\mathbf{y}||_{0,p}).$$

Existenzsatz

Satz ([EP15], Theorem 4.1)

Seien $p \in [2, \infty)$ und $\sigma \in (0, 1)$. Weiter seien eine rechte Seite $\mathbf{b} \in L^1(0, T; L^2(\Omega)^d)$ sowie Anfangswerte $\mathbf{y}_0 \in W^{\sigma,p}(\Omega)^d$ und $\mathbf{v}_0 \in L^2(\Omega)^d$ gegeben.

Dann gibt es eine Funktion $\mathbf{y} \in L^{\infty}(0, T; W^{\sigma,p}(\Omega)^d)$ mit

$$\mathbf{y}' \in L^{\infty}(0, T; L^{2}(\Omega)^{d})$$
 und $\mathbf{y}'' \in L^{1}(0, T; (W^{\sigma,p}(\Omega)^{d})^{*}),$

das die Gleichung (7) erfüllt, bzw.

$$\mathbf{y}'' - K\mathbf{y} = \mathbf{b}$$
 in $L^1(0, T; (W^{\sigma,p}(\Omega)^d)^*)$

mit K dem Operator aus (E3), sowie $\mathbf{y}(0) = \mathbf{y}_0$ in $W^{\sigma,p}(\Omega)^d$ und $\mathbf{y}'(0) = \mathbf{v}_0$ in $L^2(\Omega)^d$.

Es folgt eine Beweisskizze mit Bezug auf die Eigenschaften (E1) - (E3)

1. Galerkin-Approximation und diskrete Gleichung.

- Wir wissen $C^{\infty}(\overline{\Omega})^d \stackrel{d}{\subset} W^{s,q}(\Omega)^d$ für beliebige $s \in (0,1)$ und $q \in [1,\infty)$.
- Wähle eine Galerkin-Basis $(\phi_n) \subset \mathcal{C}^{\infty}(\overline{\Omega})^d$ für den Raum $W^{\sigma,p}(\Omega)^d$. $V_n := \operatorname{span}\{\phi_1, \ldots, \phi_n\}.$
- Per Definition liegt auch $V_I \subset W^{\sigma+\varepsilon(p-1),p}(\Omega)^d \subsetneq W^{\sigma,p}(\Omega)^d$.

1. Galerkin-Approximation und diskrete Gleichung.

- Wir wissen $\mathcal{C}^{\infty}(\overline{\Omega})^d \stackrel{d}{\subset} W^{s,q}(\Omega)^d$ für beliebige $s \in (0,1)$ und $q \in [1,\infty)$.
- Wähle eine Galerkin-Basis $(\phi_n) \subset \mathcal{C}^{\infty}(\overline{\Omega})^d$ für den Raum $W^{\sigma,p}(\Omega)^d$. $V_n := \operatorname{span}\{\phi_1, \ldots, \phi_n\}.$
- Per Definition liegt auch $V_I \subset W^{\sigma+\varepsilon(p-1),p}(\Omega)^d \subsetneq W^{\sigma,p}(\Omega)^d$.

$$V_I \subset W^{\sigma+\varepsilon(p-1),p} \overset{c,d}{\hookrightarrow} W^{\sigma,p} \overset{c,d}{\hookrightarrow} W^{\sigma-\varepsilon,p} \overset{c,d}{\hookrightarrow} L^2 \overset{c,d}{\hookrightarrow} (W^{\sigma,p})^*.$$

1. Galerkin-Approximation und diskrete Gleichung.

- Wir wissen $\mathcal{C}^{\infty}(\overline{\Omega})^d \stackrel{d}{\subset} W^{s,q}(\Omega)^d$ für beliebige $s \in (0,1)$ und $q \in [1,\infty)$.
- Wähle eine Galerkin-Basis $(\phi_n) \subset \mathcal{C}^{\infty}(\overline{\Omega})^d$ für den Raum $W^{\sigma,p}(\Omega)^d$. $V_n := \operatorname{span}\{\phi_1,\ldots,\phi_n\}$.
- Per Definition liegt auch $V_I \subset W^{\sigma+\varepsilon(p-1),p}(\Omega)^d \subsetneq W^{\sigma,p}(\Omega)^d$.

$$V_I \subset W^{\sigma+\varepsilon(p-1),p} \overset{c,d}{\hookrightarrow} W^{\sigma,p} \overset{c,d}{\hookrightarrow} W^{\sigma-\varepsilon,p} \overset{c,d}{\hookrightarrow} L^2 \overset{c,d}{\hookrightarrow} (W^{\sigma,p})^*.$$

In klassischer Weise definieren wir das diskrete Ersatzproblem in V_n über die Galerkin-Basis. Die Stetigkeit von k aus (E1) garantiert die notwendige Carathéodory-Bedingung. Blow-Ups schließt man in Schritt 2 aus.

Annahme (E1)

Die Form k ist stetig als Abbildung $W^{\sigma,p}(\Omega)^d \times W^{\sigma,p}(\Omega)^d \to \mathbb{R}$ und linear im zweiten Argument.

2. A-priori-Abschätzung für diskrete Lösungen

Wir testet die Diskrete Version von (7) mit $\mathbf{y}'_n(t)$

$$\left\langle \mathbf{y}_{n}''(t),\mathbf{y}_{n}'(t)\right
angle -k(\mathbf{y}_{n}(t),\mathbf{y}_{n}'(t))=\left\langle \mathbf{b}(t),\mathbf{y}_{n}'(t)\right
angle$$

und nutzen $\langle \mathbf{y}_n''(t), \mathbf{y}_n'(t) \rangle = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\mathbf{y}_n'(t)\|_{0,2}^2$ und mit (E3)

$$k(\mathbf{y}_n(t),\mathbf{y}'_n(t)) = -\langle \Phi'(\mathbf{y}_n(t)),\mathbf{y}'_n(t) \rangle = -\frac{\mathrm{d}}{\mathrm{d}t}\Phi(\mathbf{y}_n(t)).$$

Geschicktes Umstellen und Integrieren liefern:

$$\|\mathbf{y}'_n(t)\|_{0,2}^2 + \Phi(\mathbf{y}_n(t)) \le c \left(1 + \|\mathbf{v}_{0,n}\|_{0,2}^2 + \Phi(\mathbf{y}_{0,n}) + \|\mathbf{b}\|_{L^1(0,T;L^2(\Omega)^d)}\right),$$

wobei $\mathbf{v}_{0,n},\mathbf{y}_{0,n}\in V_n$, $n\in\mathbb{N}$, die Approximationen der Anfangswerte sind.

Annahme (E3)

Der zur Form k gehörende Operator K ist ein Potentialoperator, sein Potential $-\Phi$ erfüllt Koerzitivitätsbedingungen der Form

$$\Phi(\mathbf{y}) \geq \lambda |\mathbf{y}|_{\sigma,p} - c(1 + ||\mathbf{y}||_{0,p}).$$

2. A-priori-Abschätzung für diskrete Lösungen

Geschicktes Umstellen und Integrieren liefern:

$$\|\mathbf{y}_n'(t)\|_{0,2}^2 + \Phi(\mathbf{y}_n(t)) \le c (1 + \|\mathbf{v}_{0,n}\|_{0,2}^2 + \Phi(\mathbf{y}_{0,n}) + \|\mathbf{b}\|_{L^1(0,T;L^2(\Omega)^d)}),$$

wobei $\mathbf{v}_{0,n},\mathbf{y}_{0,n}\in V_n$, $n\in\mathbb{N}$, die Approximationen der Anfangswerte sind.

Annahme (E3)

Der zur Form k gehörende Operator K ist ein Potentialoperator, sein Potential $-\Phi$ erfüllt Koerzitivitätsbedingungen der Form

$$\Phi(\mathbf{y}) \geq \lambda |\mathbf{y}|_{\sigma,p} - c(1 + ||\mathbf{y}||_{0,p}).$$

Aus der Beschränktheit dieser Approximationsfolgen und den Koerizitivitätsbedingungen aus (E3) kann man nun die folgenden Beschränktheitsaussagen folgern: Die Folgen

$$(\mathbf{y}'_n) \subset L^{\infty}(0,T;L^2(\Omega)^d), (\mathbf{y}_n) \subset \mathcal{C}([0,T];L^2(\Omega)^d) \cap L^{\infty}(0,T;W^{\sigma,p}(\Omega)^d)$$

sind in diesen Räumen jeweils beschränkt.

3. Grenzübergang

 Beschränktheit garantiert die Existenz von Grenzwerten geeigneter Teilfolgen

$$\mathbf{y}_n \stackrel{*}{\rightharpoonup} \mathbf{y} \text{ in } L^{\infty}(0, T; W^{\sigma,p}(\Omega)^d), \mathbf{y}'_n \stackrel{*}{\rightharpoonup} \mathbf{w} \text{ in } L^{\infty}(0, T; L^2(\Omega)^d).$$

- Der wesentliche Schritt ist nun die Verifikation, dass $\mathbf{y} \in L^{\infty}(0, T; W^{\sigma,p}(\Omega)^d)$ die ursprüngliche Gleichung erfüllt.
- Dafür benötigen wir insbesondere starke Konvergenz um in k zum Grenzwert über zu gehen.
- Hierfür nutzen wir $W^{\sigma,p}(\Omega)^d \stackrel{c}{\hookrightarrow} W^{\sigma-\varepsilon,p}(\Omega)^d$ und Lions-Aubin. Damit erhalten wir

$$\mathbf{y}_{n'} \to \mathbf{y}$$
 in $L^p(0, T; W^{\sigma-\varepsilon,p}(\Omega)^d$.

• Mit der Stetigkeit aus (E2) können wir so zum Grenzwert übergehen.

Annahme (E2)

Es gibt ein $\varepsilon > 0$ so, dass die Form k ebenso stetig ist als Abbildung $W^{\sigma-\varepsilon,p}(\Omega)^d \times W^{\sigma+\varepsilon(p-1),p} \to \mathbb{R}$.

Section 2

Einführung: Zustandsbasierte Peridynamische Form

- 1 Eine Existenzaussage für Nichtmonotone Gleichungen
- 2 Einführung: Zustandsbasierte Peridynamische Form
- 3 Formen auf $V=W^{\sigma,p}(\Omega)^d$
- 4 Quellen

Zustände

- Es sei $\Omega \subset \mathbb{R}^d$ offen mit Lipschitz-Rand, d=3 und T>0.
- $\delta > 0$ war der peridynamische Horizont, $\mathcal{H} := B(0, \delta)$.
- Wir setzen $\mathcal{H}:=\mathcal{B}(\mathbf{0},\delta)\subset\mathbb{R}^d$. Ein **Zustand** ist eine Abbildung $\mathbf{A}:\mathcal{H}\to\mathbb{R}^d$.
- ullet Für Funktionen $\mathbf{y} \in W^{\sigma,p}(\Omega)^d$ definieren wir Zustände über

$$\begin{split} \Delta: W^{\sigma,p}(\Omega)^d &\to L^p(\Omega; W^{\sigma,p}(\mathcal{H})^d), \\ \mathbf{y} &\mapsto \Big(\mathbf{x} \mapsto E\mathbf{y}(\mathbf{x} + \cdot) - \mathbf{y}(\mathbf{x})\Big). \end{split}$$

Erinnerung klassische Lösungstheorie:

Zu einer Modellfunktion $T: \Omega \times L^p(\mathcal{H})^d \to L^q(\mathcal{H})^d$ definieren wir den zustandsbasierten peridynamischen Operator K für $\mathbf{y} \in L^p(\Omega)^d$ und $\mathbf{x} \in \Omega$ über

$$\mathsf{K} \mathsf{y}(\mathsf{x}) := \int_{(\mathcal{H} + \mathsf{x}) \cap \Omega} \mathcal{T}(\mathsf{x}, \Delta \mathsf{y}(\mathsf{x})) (\widehat{\mathsf{x}} - \mathsf{x}) - \mathcal{T}(\widehat{\mathsf{x}}, \Delta \mathsf{y}(\widehat{\mathsf{x}})) (\mathsf{x} - \widehat{\mathsf{x}}) \, d\widehat{\mathsf{x}}.$$

Nichtlokale Partielle Integration

Satz

Seien T und K wie oben definiert. Dann gilt für beliebige $\mathbf{y},\mathbf{z}\in L^p(\Omega)^d$:

$$\begin{split} \int_{\Omega} (K\mathbf{y})(\mathbf{x}) \cdot \mathbf{z}(\mathbf{x}) \, d\mathbf{x} \\ &= -\frac{1}{2} \iint_{\substack{\Omega \times \Omega \\ |\widehat{\mathbf{x}} - \mathbf{x}| < \delta}} \left[T(\mathbf{x}, \Delta \mathbf{y}(\mathbf{x}))(\widehat{\mathbf{x}} - \mathbf{x}) - T(\widehat{\mathbf{x}}, \Delta \mathbf{y}(\widehat{\mathbf{x}}))(\mathbf{x} - \widehat{\mathbf{x}}) \right] \\ & \cdot \left[\mathbf{z}(\widehat{\mathbf{x}}) - \mathbf{z}(\mathbf{x}) \right] d(\mathbf{x}, \widehat{\mathbf{x}}) \\ &= - \int_{\Omega} \int_{\mathcal{H}} \mathbb{1}_{\Omega}(\mathbf{x} + \boldsymbol{\xi}) \, T(\mathbf{x}, \Delta \mathbf{y}(\mathbf{x}))(\boldsymbol{\xi}) \cdot \Delta \mathbf{z}(\mathbf{x})(\boldsymbol{\xi}) \, d\boldsymbol{\xi} \, d\mathbf{x}. \end{split}$$

Nichtlokale Partielle Integration

Satz

Seien T und K wie oben definiert. Dann gilt für beliebige $y, z \in L^p(\Omega)^d$:

$$\begin{split} \int_{\Omega} (\mathcal{K} \mathbf{y})(\mathbf{x}) \cdot \mathbf{z}(\mathbf{x}) \, d\mathbf{x} \\ &= -\frac{1}{2} \iint_{\substack{\Omega \times \Omega \\ |\widehat{\mathbf{x}} - \mathbf{x}| < \delta}} \left[\mathcal{T}(\mathbf{x}, \Delta \mathbf{y}(\mathbf{x}))(\widehat{\mathbf{x}} - \mathbf{x}) - \mathcal{T}(\widehat{\mathbf{x}}, \Delta \mathbf{y}(\widehat{\mathbf{x}}))(\mathbf{x} - \widehat{\mathbf{x}}) \right] \\ & \cdot \left[\mathbf{z}(\widehat{\mathbf{x}}) - \mathbf{z}(\mathbf{x}) \right] d(\mathbf{x}, \widehat{\mathbf{x}}) \\ &= - \int_{\Omega} \int_{\mathcal{H}} \mathcal{T}(\mathbf{x}, \Delta \mathbf{y}(\mathbf{x}))(\boldsymbol{\xi}) \cdot \Delta \mathbf{z}(\mathbf{x})(\boldsymbol{\xi}) \, d\boldsymbol{\varpi}_{\mathbf{x}}(\boldsymbol{\xi}) \, d\mathbf{x}. \end{split}$$

Abkürzungen:

- $\mathbb{1}_{\Omega}(\mathbf{x} + \boldsymbol{\xi}) d\boldsymbol{\xi} =: d\boldsymbol{\varpi}_{\mathbf{x}}(\boldsymbol{\xi}) \text{ in } \mathcal{H}$
- $\mathbb{1}_{\Omega}(\mathbf{x} + \boldsymbol{\xi}) d\boldsymbol{\xi} d\mathbf{x} =: d\boldsymbol{\omega}(\mathbf{x}, \boldsymbol{\xi}) \text{ in } \Omega \times \mathcal{H}.$

Die Funktion \mathbf{t} und die peridynamische Form k

Sei $X \subset L^p(\mathcal{H})^d$ ein Banach-Raum und $T : \Omega \times X \to L^q(\mathcal{H})^d$.

Wir identifizieren T mit einer Funktion $\mathbf{t}: \Omega \times X \times \mathcal{H} \to \mathbb{R}^d$ via

$$\mathbf{t}(\mathbf{x},\mathbf{A},\boldsymbol{\xi}):=\mathit{T}(\mathbf{x},\mathbf{A})(\boldsymbol{\xi}),\quad \mathbf{x}\in\Omega,\mathbf{A}\in\mathit{X},\ \mathsf{f.\,a.}\ \boldsymbol{\xi}\in\mathcal{H}.$$

Mit dieser Funktion definieren wir eine zustandsbasierte peridynamiche Form

Definition

Zu einer Funktion $\mathbf{t}: \Omega \times X \times \mathcal{H} \to \mathbb{R}^d$ definieren wir die zustandsbasierte peridynamische Form $k: V \times V \to \mathbb{R}$ über

$$\mathit{k}(y,z) := -\iint_{\Omega \times \mathcal{H}} t(x, \Delta y(x), \xi) \cdot \Delta z(x)(\xi) \, \mathrm{d}\varpi(x, \xi), \quad y, z \in \mathit{V},$$

vorausgesetzt \mathbf{t} ist so gegeben, dass für alle $\mathbf{y}, \mathbf{z} \in V$ die Abbildung $(\mathbf{x}, \boldsymbol{\xi}) \mapsto \mathbf{t}(\mathbf{x}, \Delta \mathbf{y}(\mathbf{x}), \boldsymbol{\xi}) \cdot \Delta \mathbf{z}(\mathbf{x})(\boldsymbol{\xi})$ in $L^1(\Omega \times \mathcal{H}, \varpi(\mathbf{x}, \boldsymbol{\xi}))$ liegt.

Beispiel: Bindungsbasierte Form

Mit der Modellfunktion $T:(\mathbf{x},\mathbf{A})\mapsto \frac{1}{2}\mathbf{f}(\,\cdot\,,\mathbf{A}(\cdot))$ mit $\mathbf{f}:\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}^d$ der paarweiser Kraftfunktion in einem bindungsbasierten Modell entspricht das zustandsbasierte dem bindungsbasierten Modell.

Dementsprechend sei

$$\mathbf{t}: (\mathbf{x}, \mathbf{A}, \boldsymbol{\xi}) \mapsto \frac{1}{2} \mathbf{f}(\boldsymbol{\xi}, \mathbf{A}(\boldsymbol{\xi})).$$

Dann ist die resultierende peridynamische Form

$$\begin{split} k(\mathbf{y},\mathbf{z}) &= -\int_{\Omega} \int_{\mathcal{H}} \mathbb{1}_{\Omega}(\mathbf{x} + \boldsymbol{\xi}) \mathbf{t}(\mathbf{x}, \Delta \mathbf{y}(\mathbf{x}), \boldsymbol{\xi}) \cdot \Delta \mathbf{z}(\mathbf{x})(\boldsymbol{\xi}) \, \mathrm{d}\boldsymbol{\xi} \, \mathrm{d}\mathbf{x} \\ &= -\int_{\Omega} \int_{\mathcal{H}} \mathbb{1}_{\Omega}(\mathbf{x} + \boldsymbol{\xi}) \frac{1}{2} \mathbf{f}(\boldsymbol{\xi}, \Delta \mathbf{y}(\mathbf{x})(\boldsymbol{\xi})) \cdot \Delta \mathbf{z}(\mathbf{x})(\boldsymbol{\xi}) \, \mathrm{d}\boldsymbol{\xi} \, \mathrm{d}\mathbf{x} \\ &= -\frac{1}{2} \int\!\!\int_{\Omega \times \Omega} \mathbb{1}_{[0,\delta)}(|\widehat{\mathbf{x}} - \mathbf{x}|) \mathbf{f}(\widehat{\mathbf{x}} - \mathbf{x}, \Delta \mathbf{y}(\mathbf{x})(\widehat{\mathbf{x}} - \mathbf{x})) \cdot \Delta \mathbf{z}(\mathbf{x})(\widehat{\mathbf{x}} - \mathbf{x}) \, \mathrm{d}\widehat{\mathbf{x}} \, \mathrm{d}\mathbf{x} \\ &= -\frac{1}{2} \int\!\!\int_{\substack{\Omega \times \Omega \\ |\widehat{\mathbf{x}} - \mathbf{x}| < \delta}} \mathbf{f}(\widehat{\mathbf{x}} - \mathbf{x}, \mathbf{y}(\widehat{\mathbf{x}}) - \mathbf{y}(\mathbf{x})) \cdot \left(\mathbf{z}(\widehat{\mathbf{x}}) - \mathbf{z}(\mathbf{x})\right) \, \mathrm{d}(\widehat{\mathbf{x}}, \mathbf{x}) \end{split}$$

Beispiel: Form via L^p -Norm I

Sei $p \in [1, \infty)$. Wir definieren

$$\phi_p:\Omega imes L^p(\mathcal{H})^d o\mathbb{R}, (\mathbf{x},\mathbf{A})\mapsto\int_{\mathcal{H}}|\mathbf{A}(oldsymbol{\xi})|^p\,\mathrm{d}arpi_{\mathbf{x}}(oldsymbol{\xi}).$$

Offensichtlich gilt $\phi_p(\mathbf{x}, \mathbf{A}) \leq \|\mathbf{A}\|_{0,p}^p$ für alle $\mathbf{A} \in L^p(\mathcal{H})^d$ und $\mathbf{x} \in \Omega$.

Sei weiter $r \in (0, \infty)$ eine Konstante und

$$\mathbf{t}: \Omega \times L^p(\mathcal{H})^d \times \mathcal{H} \to \mathbb{R}^d, (\mathbf{x}, \mathbf{A}, \boldsymbol{\xi}) \mapsto \phi_p(\mathbf{x}, \mathbf{A})^r \mathbb{1}_{\Omega}(\mathbf{x} + \boldsymbol{\xi}) |\mathbf{A}(\boldsymbol{\xi})|^{p-2} \mathbf{A}(\boldsymbol{\xi}).$$

Wir untersuchen für $\mathbf{x} \in \Omega$ und $\mathbf{A} \in L^p(\mathcal{H})^d$ die Abbildung $\boldsymbol{\xi} \mapsto \mathbf{t}(\mathbf{x}, \mathbf{A}, \boldsymbol{\xi})$:

$$\begin{split} \|\mathbf{t}(\mathbf{x},\mathbf{A},\,\cdot\,)\|_{0,q}^q &= \int_{\mathcal{H}} |\mathbf{t}(\mathbf{x},\mathbf{A},\boldsymbol{\xi})|^q \,\mathrm{d}\boldsymbol{\xi} \\ &= \int_{\mathcal{H}} |\phi_p(\mathbf{x},\mathbf{A})|^{qr} \mathbb{1}_{\Omega}(\mathbf{x}+\boldsymbol{\xi})|\mathbf{A}(\boldsymbol{\xi})|^{q(p-1)} \,\mathrm{d}\boldsymbol{\xi} \\ &= |\phi_p(\mathbf{x},\mathbf{A})|^{qr+1} \leq \|\mathbf{A}\|_{0,p}^{p(qr+1)} < \infty. \end{split}$$

Beispiel: Form via L^p-Norm II

Für die Wohldefiniertheit von k haben wir von \mathbf{t} gefordert, dass der folgende Ausdruck endlich sei:

$$\begin{split} \iint_{\Omega \times \mathcal{H}} \mathbf{t}(\mathbf{x}, \Delta \mathbf{y}(\mathbf{x}), \boldsymbol{\xi}) \cdot \Delta \mathbf{z}(\mathbf{x})(\boldsymbol{\xi}) \, \mathrm{d}\varpi(\mathbf{x}, \boldsymbol{\xi}) \\ & \leq \left(\iint_{\Omega \times \mathcal{H}} |\mathbf{t}(\mathbf{x}, \Delta \mathbf{y}(\mathbf{x}), \boldsymbol{\xi})|^q \, \mathrm{d}\varpi(\mathbf{x}, \boldsymbol{\xi}) \right)^{\frac{1}{q}} \\ & \cdot \left(\iint_{\Omega \times \mathcal{H}} |\Delta \mathbf{z}(\mathbf{x})(\boldsymbol{\xi})|^p \, \mathrm{d}\varpi(\mathbf{x}, \boldsymbol{\xi}) \right)^{\frac{1}{p}} \\ & \leq \left(\int_{\Omega} \|\mathbf{t}(\mathbf{x}, \Delta \mathbf{y}(\mathbf{x}), \cdot)\|_{0,q}^q \, \mathrm{d}\mathbf{x} \right)^q \|\Delta \mathbf{z}\|_{L^p(\Omega; L^p(\mathcal{H})^d)} \end{split}$$

Aufgrund der eben gezeigten Abschätzung sieht man, dass dies nur der Fall ist. falls

$$\|\Delta \mathbf{y}\|_{L^{p(qr+1)}(\Omega;L^p(\mathcal{H})^d)}<\infty \qquad \text{gilt.}$$

Beispiel: Form via L^p -Norm III

Mit den Abbildungseigenschaften von Δ

$$\Delta: L^{q}(\Omega)^{d} \to L^{q}(\Omega; L^{q}(\mathcal{H})^{d}),$$

$$\Delta: W^{\sigma,q}(\Omega)^{d} \to L^{q}(\Omega; W^{\sigma,q}(\mathcal{H})^{d})$$

für $q \in [1,\infty)$ beliebig ist klar, dass für $V = L^s(\Omega)^d$ mit $s := p \left(\frac{rp}{p-1} + 1 \right)$, $p \in [1,\infty)$ und $r \in (0,\infty)$, und somit $X = L^s(\mathcal{H})^d \hookrightarrow L^p(\mathcal{H})^d$ die zustandsbasierte peridynamische Form $k : V \times V \to \mathbb{R}$ zu \mathbf{t} wie oben wohldefiniert ist.

Section 3

Formen auf
$$V=W^{\sigma,p}(\Omega)^d$$

- 1 Eine Existenzaussage für Nichtmonotone Gleichungen
- 2 Einführung: Zustandsbasierte Peridynamische Form
- ${f 3}$ Formen auf $V=W^{\sigma,p}(\Omega)^d$
- 4 Quellen

Das Funktional $\theta_{\sigma,p}$

Es seien $p \in [1, \infty)$ und $\sigma \in (0, 1)$ fest gewählt. Wir schreiben

$$\theta_{\sigma,p}(\mathbf{x},\mathbf{A}) := \int_{\mathcal{H}} |\boldsymbol{\xi}|^{-(d+\sigma p)} |\mathbf{A}(\boldsymbol{\xi})|^p d\boldsymbol{\omega}_{\mathbf{x}}(\boldsymbol{\xi}). \tag{2}$$

Lemma

Neben p und σ seien $\tau \in (0, \sigma)$ und $\alpha \in [1, p)$ sowie $\mathbf{y} \in W^{\sigma, p}(\Omega)^d$ gegeben. Dann gelten für θ aus (2) die Abschätzungen

$$\int_{\Omega} \theta_{\sigma,p}(\mathbf{x},\Delta\mathbf{y}(\mathbf{x})) \, \mathrm{d}\mathbf{x} \leq |\mathbf{y}|_{\sigma,p}^{p} \quad \textit{und} \quad \int_{\Omega} \theta_{\tau,\alpha}(\mathbf{x},\Delta\mathbf{y}(\mathbf{x}))^{\frac{p}{\alpha}} \, \mathrm{d}\mathbf{x} \leq c|\mathbf{y}|_{\sigma,p}^{p}$$

mit c > 0 einer geeigneten Konstanten.

Form via $\theta_{\sigma,p}$

Satz

Es sei $\mathbf{t}: \Omega \times W^{\sigma,p}(\mathcal{H})^d \times \mathcal{H} \to \mathbb{R}^d$ gegeben mit

- (A*) t sei messbar im 1. und 3. Argument und stetig im 2.
- (A4) Seien $\alpha \in [1, p)$, $\tau \in (0, \sigma)$ sowie $r \in (0, \frac{p}{\alpha} 1)$. Es gebe Konstanten $c_1, c_2 \in \mathbb{R}^+$, $\eta \in [0, d + \sigma)$ und $\gamma \in [0, d + \tau \alpha]$ so, dass für alle $\mathbf{x} \in \Omega$, $\mathbf{A} \in W^{\sigma,p}(\mathcal{H})^d$ und $\boldsymbol{\xi} \in \mathcal{H}$ gilt:

$$|\mathbf{t}(\mathbf{x}, \mathbf{A}, \boldsymbol{\xi})| \le (\theta_{\tau,\alpha}(\mathbf{x}, \mathbf{A}))^r (c_1 |\boldsymbol{\xi}|^{-\eta} + c_2 |\boldsymbol{\xi}|^{-\gamma} |\mathbf{A}(\boldsymbol{\xi})|^{\alpha-1}).$$
 (3)

Unter diesen Annahmen $k:W^{\sigma,p}(\Omega)^d\times W^{\sigma,p}(\Omega)^d\to\mathbb{R}$ wohldefiniert, linear im zweiten Argument, stetig in beiden Argumenten und es gilt die Abschätzung

$$|k(\mathbf{y}, \mathbf{z})| \le c|\mathbf{y}|_{\sigma, p}^{r\alpha} \left(1 + |\mathbf{y}|_{\sigma, p}^{\alpha - 1}\right) |\mathbf{z}|_{\sigma, p}, \quad \mathbf{y}, \mathbf{z} \in W^{\sigma, p}(\Omega)^{d}. \tag{4}$$

Bemerkungen

Der Satz entspricht gerade der Eigenschaft (E1).

Im Beweis zeigt man eigentlich für k die Abschätzung

$$|k(\mathbf{y},\mathbf{z})| \leq c \left(|\mathbf{y}|_{\tau',r\alpha p^*}^{r\alpha} + |\mathbf{y}|_{\tau',(r\alpha+\alpha-1)p^*}^{r\alpha+\alpha-1} \right) |\mathbf{z}|_{\sigma,p}, \quad \mathbf{y},\mathbf{z} \in W^{\sigma,p}(\Omega)^d$$

mit $\tau' \in (\tau, \sigma)$ beliebig.

Ist das zugrunde liegende \mathbf{t} sogar als Abbildung $\Omega \times W^{\tau',s}(\mathcal{H})^d \times \mathcal{H} \to \mathbb{R}^d$, $s \in [(r\alpha + \alpha - 1)p^*,p]$, gegeben, und erfüllt \mathbf{t} die Messbarkeits- und Stetigkeitsbedingungen aus (A*) auf diesen Mengen, so kann man völlig analog zeigen, dass $k: W^{\tau',s} \times W^{\sigma,p} \to \mathbb{R}$ stetig abbildet.

Zusammen mit der stetigen Einbettung $W^{\tau'',p}(\Omega)^d \hookrightarrow W^{\tau',s}(\Omega)^d$ für ein $\tau'' \in (\tau',\sigma)$ erhalten wir so auch die Eigenschaft (E2).

Alternative Form via $\theta_{\sigma,p}$

Satz

Es sei $\mathbf{t}:\Omega\times W^{\sigma,p}(\mathcal{H})^d\times\mathcal{H}\to\mathbb{R}^d$ gegeben mit (A*) und

(A4') Es sei $r \in \left(0, \frac{1}{p}\right)$, und es gebe Konstanten $c_1, c_2 \in \mathbb{R}^+$, $\eta \in [0, d+1)$ und $\gamma \in [0, d+\sigma p]$ so, dass für alle $\mathbf{x} \in \Omega$, $\mathbf{A} \in W^{\sigma,p}(\mathcal{H})^d$ und $\boldsymbol{\xi} \in \mathcal{H}$ gilt:

$$|\mathbf{t}(\mathbf{x}, \mathbf{A}, \boldsymbol{\xi})| \le (\theta_{\sigma, p}(\mathbf{x}, \mathbf{A}))^r \left(c_1 |\boldsymbol{\xi}|^{-\eta} + c_2 |\boldsymbol{\xi}|^{-\gamma} |\mathbf{A}(\boldsymbol{\xi})|^{p-1}\right).$$
 (5)

Seien $s \in (p, \infty)$ mit $s \ge \left(\frac{1}{p} - r\right)^{-1}$ und $\tau' \in [\sigma, 1)$ so, dass $\eta < d + \tau'$ gilt. Dann ist k wohldefiniert als Abbildung $W^{\sigma,p}(\Omega)^d \times W^{\tau',s}(\Omega)^d \to \mathbb{R}$, linear im zweiten und stetig in beiden Argumenten. Weiterhin gilt die Abschätzung

$$|k(\mathbf{y},\mathbf{z})| \leq c \left(|\mathbf{y}|_{\sigma,p}^{rp} + |\mathbf{y}|_{\sigma,p}^{rp-1} \right) |\mathbf{z}|_{\tau',s}, \quad \mathbf{y} \in W^{\sigma,p}(\Omega)^d, \mathbf{z} \in W^{\tau',s}(\Omega)^d.$$

Potentialoperatoren

Es sei $V:=W^{\sigma,p}(\Omega)^d$. Wir erhalten einen Operator $K:V o V^*$ über

$$\langle Ky, z \rangle := k(y, z), \quad y, z \in V.$$

Offensichtlich ist K demistetig.

Es ist $-K:V\to V^*$ ein Potentialoperator, falls es eine Abbildung $\Phi:V\to\mathbb{R}$ gibt mit

$$\langle -K\mathbf{y}, \mathbf{z} \rangle = -k(\mathbf{y}, \mathbf{z}) = \delta \Phi(\mathbf{y}, \mathbf{z}) := \lim_{h \to 0} \frac{1}{h} (\Phi(\mathbf{y} + h\mathbf{z}) - \Phi(\mathbf{y}))$$

Potential zur Form k: Bindungsbasierte Theorie

In der Bindungsbasierten Theorie ergab sich das Potential zu der Form k mit

$$k(\mathbf{y}, \mathbf{z}) = -\frac{1}{2} \iint\limits_{\substack{\Omega \times \Omega \\ |\widehat{\mathbf{x}} - \mathbf{x}| < \delta}} a(|\widehat{\mathbf{x}} - \mathbf{x}|, |\mathbf{y}(\widehat{\mathbf{x}}) - \mathbf{y}(\mathbf{x})|) (\mathbf{y}(\widehat{\mathbf{x}}) - \mathbf{y}(\mathbf{x})) (\mathbf{z}(\widehat{\mathbf{x}}) - \mathbf{z}(\mathbf{x})) d(\mathbf{x}, \widehat{\mathbf{x}}).$$

direkt über die Struktur aus dem Hauptsatz der Differential- und Integralrechnung als

$$\Phi(\mathbf{y}) = \frac{1}{2} \iint_{\Omega \times \Omega} \left[\int_{0}^{|\mathbf{y}(\widehat{\mathbf{x}}) - \mathbf{y}(\mathbf{x})|} a(|\widehat{\mathbf{x}} - \mathbf{x}|, s) s \, ds \right] d(\mathbf{x}, \widehat{\mathbf{x}})$$
(6)

ergeben. Dabei ergibt sich die Struktur von k mit einer Funktion $a: \mathbb{R}^+ \times \mathbb{R}^+_0 \to \mathbb{R}$ aus der Annahme der Elastizität.

Potential zur Form k: Zustandsbasierte Theorie

Definition

Sei $X\subset\{\mathbf{A}:\mathcal{H}\to\mathbb{R}^d\}$ ein Banach-Raum. Eine einfache Modellfunktion $\mathcal{T}:\Omega\times X\to X^*$ heißt **elastisch**, falls es eine Funktion $W:\Omega\times X\to\mathbb{R}$ so gibt, dass

$$T(\mathbf{x}, \mathbf{A}) = \nabla_{\mathbf{A}} W(\mathbf{x}, \mathbf{A}), \quad \mathbf{x} \in \Omega, \mathbf{A} \in X.$$

Potential zur Form k: Zustandsbasierte Theorie

Definition

Sei $X\subset\{\mathbf{A}:\mathcal{H}\to\mathbb{R}^d\}$ ein Banach-Raum. Eine einfache Modellfunktion $T:\Omega\times X\to X^*$ heißt **elastisch**, falls es eine Funktion $W:\Omega\times X\to\mathbb{R}$ so gibt, dass

$$T(\mathbf{x}, \mathbf{A}) = \nabla_{\mathbf{A}} W(\mathbf{x}, \mathbf{A}), \quad \mathbf{x} \in \Omega, \mathbf{A} \in X.$$

Annahme (A5)

Zu p, σ und \mathbf{t} wie in Satz 3.2 gebe es eine Funktion $w: \Omega \times W^{\sigma,p}(\mathcal{H})^d \to \mathbb{R}$ so, dass für alle $\mathbf{x} \in \Omega$ und alle $\mathbf{A}, \mathbf{B} \in W^{\sigma,p}(\mathcal{H})^d$ gilt

$$\int_{\mathcal{H}} \mathbf{t}(\mathbf{x}, \mathbf{A}, \boldsymbol{\xi}) \cdot \mathbf{B}(\boldsymbol{\xi}) d\omega_{\mathbf{x}}(\boldsymbol{\xi})$$

$$= \delta w(\mathbf{x}, \mathbf{A}, \mathbf{B}) := \lim_{h \to 0} \frac{1}{h} (w(\mathbf{x}, \mathbf{A} + h\mathbf{B}) - w(\mathbf{x}, \mathbf{A})).$$

Hauptsatz der Differential- und Integralrechnung für Gâteaux-Ableitungen

Satz

Es sei V ein Banach-Raum und $\Phi:V\to R$ so, dass für alle $u,v\in V$ die Gâteaux-Ableitung

$$\delta\Phi(u,v) := \lim_{h\to 0} \frac{1}{h} \big[\Phi(u+hv) - \Phi(u)\big]$$

existiert. Weiter sei die Abbildung $[0,1] \to \mathbb{R}$ mit $t \mapsto \delta \Phi(u+tv,v)$ für alle $u,v \in V$ stetig. Dann gilt für alle $u,v \in V$

$$\Phi(u) - \Phi(v) = \int_0^1 \delta \Phi(v + t(u - v), u - v) dt$$

und insbesondere $\Phi(u) = \Phi(0) + \int_0^1 \delta \Phi(tu, u) dt$.

Potential zur Form k: Zustandsbasierte Theorie (Forts.)

Seien $\mathbf{y}, \mathbf{z} \in W^{\sigma,p}(\Omega)^d$.

$$-\int_{0}^{1} k(t\mathbf{y}, \mathbf{y}) dt = \int_{0}^{1} \int_{\Omega} \int_{\mathcal{H}} \mathbf{t}(\mathbf{x}, t\Delta \mathbf{y}(\mathbf{x}), \boldsymbol{\xi}) \cdot \Delta \mathbf{y}(\mathbf{x})(\boldsymbol{\xi}) d\omega_{\mathbf{x}}(\boldsymbol{\xi}) d\mathbf{x}$$
$$= \int_{\Omega} \int_{0}^{1} \delta w(\mathbf{x}, t\Delta \mathbf{y}(\mathbf{x}), \Delta \mathbf{y}(\mathbf{x})) dt d\mathbf{x}$$
$$= \int_{\Omega} w(\mathbf{x}, \Delta \mathbf{y}(\mathbf{x})) - w(\mathbf{x}, \mathbf{0}) d\mathbf{x}$$

$$-\int_0^1 k(\mathbf{z}+t(\mathbf{y}-\mathbf{z}),\mathbf{y}-\mathbf{z})\,\mathrm{d}t = \int_\Omega w(\mathbf{x},\Delta\mathbf{y}(\mathbf{x})) - w(\mathbf{x},\Delta\mathbf{z}(\mathbf{x}))\,\mathrm{d}\mathbf{x}.$$

Dementsprechend ist ein Potential von -K die Funktion

$$\Phi: W^{\sigma,p}(\Omega)^d o \mathbb{R}, \, \mathbf{y} \mapsto \int_{\Omega} w(\mathbf{x}, \Delta \mathbf{y}(\mathbf{x})) \, \mathsf{d}\mathbf{x}.$$

Beispiel: Zustandsbasierte Form und deren Potential I

Seien $\alpha, p \in [2, \infty)$ mit $\alpha < p$ und $\tau, \sigma \in (0, 1)$ mit $\tau < \sigma$. Sei weiter $r \in (0, \frac{p}{\alpha} - 1)$. Wir definieren

$$w: \Omega \times W^{\sigma,p}(\Omega)^d \to \mathbb{R}, (\mathsf{x},\mathsf{A}) \mapsto \frac{1}{(r+1)\alpha} \theta_{\tau,\alpha}(\mathsf{x},\mathsf{A})^{r+1}.$$

Dann ist für $\mathbf{x} \in \Omega$ und $\mathbf{A}, \mathbf{B} \in W^{\sigma,p}(\Omega)^d$ beliebig

$$\delta w(\mathbf{x}, \mathbf{A}, \mathbf{B}) = \theta_{\sigma, p}(\mathbf{x}, \mathbf{A})^r \int_{\mathcal{H}} |\boldsymbol{\xi}|^{-(d+\tau\alpha)} |\mathbf{A}(\boldsymbol{\xi})|^{\alpha-2} \mathbf{A}(\boldsymbol{\xi}) \cdot \mathbf{B}(\boldsymbol{\xi}) d\boldsymbol{\varpi}_{\mathbf{x}}(\boldsymbol{\xi})$$

Definieren wir also $\mathbf{t}: \Omega imes W^{\sigma,p}(\mathcal{H})^d imes \mathcal{H} o \mathbb{R}^d$ via

$$\mathbf{t}(\mathbf{x}, \mathbf{A}, \boldsymbol{\xi}) := \theta_{\tau, \alpha}(\mathbf{x}, \mathbf{A})^r \mathbb{1}_{\Omega}(\mathbf{x} + \boldsymbol{\xi}) |\boldsymbol{\xi}|^{-(d + \tau \alpha)} |\mathbf{A}(\boldsymbol{\xi})|^{\alpha - 2} \mathbf{A}(\boldsymbol{\xi}),$$

Beispiel: Zustandsbasierte Form und deren Potential II

So wissen wir, dass die zugehörige peridynamische Form k einen Potentialoperator mit Potential $\Phi: W^{\sigma,p}(\Omega)^d \to \mathbb{R}$ mit

$$\Phi(\mathbf{y}) = \int_{\Omega} w(\mathbf{x}, \Delta \mathbf{y}(\mathbf{x})) \, d\mathbf{x} = \frac{1}{(r+1)\alpha} \int_{\Omega} \theta_{\tau,\alpha}(\mathbf{x}, \Delta \mathbf{y}(\mathbf{x}))^{r+1} \, d\mathbf{x}$$

für beliebige $\mathbf{y} \in W^{\sigma,p}(\Omega)^d$ induziert.

Problem: Mangelnde Koerzitivität I

Im Beispiel eben hat das Potential die Form

$$\begin{split} \Phi(\mathbf{y}) &= \frac{1}{(r+1)\alpha} \int_{\Omega} \left(\int_{\mathcal{H}} |\boldsymbol{\xi}|^{-(d+r\alpha)} |\Delta \mathbf{y}(\mathbf{x})(\boldsymbol{\xi})|^{\alpha} \, \mathrm{d}\boldsymbol{\varpi}_{\mathbf{x}}(\boldsymbol{\xi}) \right)^{r+1} \, \mathrm{d}\mathbf{x} \\ &\geq \frac{1}{(r+1)\alpha} \int_{\Omega} (r+1) \left(\int_{\mathcal{H}} \frac{|\mathbf{y}(\mathbf{x}+\boldsymbol{\xi}) - \mathbf{y}(\mathbf{x})|^{\alpha}}{|\mathbf{x}+\boldsymbol{\xi} - \mathbf{x}|^{d+r\alpha}} \mathbb{1}_{\Omega}(\mathbf{x}+\boldsymbol{\xi}) \, \mathrm{d}\boldsymbol{\xi} \right) - r \, \mathrm{d}\mathbf{x} \\ &\geq \mu \iint_{|\widehat{\mathbf{x}} - \mathbf{x}| \leq \delta} \frac{|\mathbf{y}(\widehat{\mathbf{x}}) - \mathbf{y}(\mathbf{x})|^{\alpha}}{|\widehat{\mathbf{x}} - \mathbf{x}|^{d+r\alpha}} \, \mathrm{d}(\mathbf{x}, \widehat{\mathbf{x}}) - \kappa_{0}, \end{split}$$

Aus dieser Abschätzung kann man das folgende herleiten (vgl. [EP15, Proposition 4.4])

$$\begin{split} & \Phi(\mathbf{y}) \geq -\kappa, \\ & \Phi(\mathbf{y}) \geq \lambda \|\mathbf{y}\|_{0,\alpha}^{\alpha} - \kappa \left(1 + \|\mathbf{y}\|_{0,1}^{\alpha}\right), \\ & \Phi(\mathbf{y}) \geq \lambda |\mathbf{y}|_{1,\alpha}^{\alpha} - \kappa \left(1 + \|\mathbf{y}\|_{0,\alpha}^{\alpha}\right). \end{split}$$

Problem: Mangelnde Koerzitivität II

Ist $\tau \alpha \geq d$ oder $\frac{d\alpha}{d-\tau\alpha} \geq p$, so erhält man mithilfe der klassischen Einbettungen $W^{\sigma,p}(\Omega)^d \hookrightarrow L^q(\Omega)^d$:

$$\Phi(\mathbf{y}) \geq c\lambda \|\mathbf{y}\|_{0,p}^{\alpha} - \kappa \left(1 + \|\mathbf{y}\|_{0,\alpha}^{\alpha}\right).$$

Problem: Mangelnde Koerzitivität II

Ist $\tau \alpha \geq d$ oder $\frac{d\alpha}{d-\tau\alpha} \geq p$, so erhält man mithilfe der klassischen Einbettungen $W^{\sigma,p}(\Omega)^d \hookrightarrow L^q(\Omega)^d$:

$$\Phi(\mathbf{y}) \geq c\lambda \|\mathbf{y}\|_{0,p}^{\alpha} - \kappa \left(1 + \|\mathbf{y}\|_{0,\alpha}^{\alpha}\right).$$

Aber: Φ ist nicht schwach koerzitiv in $W^{\sigma,p}(\Omega)^d$.

- Sei $\mathbf{y} \in W^{\tau,\alpha}(\Omega)^d \setminus W^{\sigma,p}(\Omega)^d$.
- Dann gibt es eine Folge $(\mathbf{y}_l) \subset \mathcal{C}^{\infty}(\overline{\Omega})^d$ mit $\mathbf{y}_l \to \mathbf{y}$ in $W^{\tau,\alpha}(\Omega)^d$.
- Es ist $(|\mathbf{y}_I|_{\tau,\alpha})$ beschränkt und somit auch $(\theta_{\tau,\alpha}(\mathbf{y}_I))$.
- Aber (y_l) ist unbeschränkt in $W^{\sigma,p}(\Omega)^d$.

Zusammenfassung zur Form k I

Ist
$$\mathbf{t}: \Omega \times W^{\tau,\alpha}(\Omega)^d \times \mathcal{H} \to \mathbb{R}^d$$
 mit

$$\mathbf{t}(\mathbf{x}, \mathbf{A}, \boldsymbol{\xi}) := \theta_{\tau, \alpha}(\mathbf{x}, \mathbf{A})^r \mathbb{1}_{\Omega}(\mathbf{x} + \boldsymbol{\xi}) |\boldsymbol{\xi}|^{-(d + \tau\alpha)} |\mathbf{A}(\boldsymbol{\xi})|^{\alpha - 2} \mathbf{A}(\boldsymbol{\xi}),$$

so ist das dazugehörige k bzw. dessen Operator K:

- k ist stetig als Abbildung $W^{\sigma,p}(\Omega)^d \times W^{\sigma,p}(\Omega)^d \to \mathbb{R}$. (E1)
- k ist stetig als Abbildung $W^{\tau',p}(\Omega)^d \times W^{\sigma,p}(\Omega)^d \to \mathbb{R}$, $\tau' \in (\tau,\sigma)$. (E2')
- -K hat ein Potential Φ, dieses ist **nicht** schwach koerzitiv in $W^{\sigma,p}(\Omega)^d$. (E3 gilt nicht)

Zusammenfassung zur Form $k \parallel$

Ist
$$\mathbf{t}: \Omega \times W^{\sigma,p}(\Omega)^d \times \mathcal{H} \to \mathbb{R}^d$$
 mit

$$\mathbf{t}(\mathbf{x}, \mathbf{A}, \boldsymbol{\xi}) := \theta_{\sigma, p}(\mathbf{x}, \mathbf{A})^r \mathbb{1}_{\Omega}(\mathbf{x} + \boldsymbol{\xi}) |\boldsymbol{\xi}|^{-(d + \tau \alpha)} |\mathbf{A}(\boldsymbol{\xi})|^{p - 2} \mathbf{A}(\boldsymbol{\xi}),$$

so ist das dazugehörige k bzw. dessen Operator K:

- k ist stetig als Abbildung $W^{\sigma,p}(\Omega)^d \times W^{\tau',s}(\Omega)^d \to \mathbb{R}$. (E1')
- Die Abbildung $\mathbf{y} \mapsto k(\mathbf{y}, \mathbf{z}), W^{\tau',p}(\Omega)^d \to \mathbb{R}$ ist **nicht** stetig für nichttriviale \mathbf{z} und irgendein $\tau \in (0, \sigma)$. (E2 gilt nicht)
- -K hat ein Potential Φ , dieses erfüllt die richtigen Abschätzungen nach unten. (E3)

Auflösung I

Um eine lösbare Gleichung im zustandsbasierten Rahmen zu erhalten, rekombinieren wir die bindungsbasierte und die Zustandsbasierte Gleichung:

$$\langle \mathbf{y}''(t), \mathbf{z} \rangle - c_0 k_0(\mathbf{y}(t), \mathbf{z}) - c_1 k_1(\mathbf{y}(t), \mathbf{z}) = \langle \mathbf{b}(t), \mathbf{z} \rangle, \tag{7}$$

für alle $z \in V$ und f. ü. in (0, T). Dabei sei

- k_0 eine bindungsbasierte Form, bzw. wie die Beispiele zuvor mit $\theta_{\sigma,p}$ aber r=0.
- k_1 eine zustandsbasierte Form auf Basis von $\theta_{\tau,\alpha}$.

Dann erfüllen $k := c_0 k_0 + c_1 k_1$ bzw. $K := c_0 K_0 + c_1 K_1$ die Eigenschaften (E1) - (E3).

Auflösung II

Man erhält im Beweis

$$\|\mathbf{y}_n'(t)\|_{0,2}^2 + \Phi(\mathbf{y}_n(t)) \le c \big(1 + \|\mathbf{v}_{0,n}\|_{0,2}^2 + \Phi(\mathbf{y}_{0,n}) + \|\mathbf{b}\|_{L^1(0,T;L^2(\Omega)^d)}\big).$$

Damit erhält man

$$\|\mathbf{y}'_{n}(t)\|_{0,2}^{2} \leq M = M(\mathbf{v}_{0}, \mathbf{y}_{0}, \mathbf{b}),$$

$$\|\mathbf{y}_{n}(t)\|_{0,2} \leq \|\mathbf{y}_{0}\|_{0,2} + \int_{0}^{t} \|\mathbf{y}'_{n}(\tau)\|_{0,2} d\tau \leq \|\mathbf{y}_{0}\|_{0,2} + t\sqrt{M} =: \widetilde{M},$$

$$\lambda \|\mathbf{y}_{n}(t)\|_{0,p}^{p} \leq \kappa (1 + \|\mathbf{y}_{n}(t)\|_{0,1}^{p}) + M \leq \kappa (1 + \widetilde{M}^{p}) + M.$$

 κ und λ können unabhängig von c_0 und c_1 gewählt werden.

Damit kann man für $n \to \infty$ eine Art "Energieungleichung" für die Lösung y in $L^p(\Omega)$ herleiten.

Eine Folge von Lösungen (y_{ε}) zu den Formen $k := \varepsilon k_0 + c_1 k_1$ ist also beschränkt in $L^p(\Omega)^d$ (und in $W^{\tau,\alpha}$, aber im Allgemeinen nicht in $W^{\sigma,p}$).

Section 4

Quellen

- 1 Eine Existenzaussage für Nichtmonotone Gleichungen
- 2 Einführung: Zustandsbasierte Peridynamische Form
- ${}_{3}$ Formen auf $V=W^{\sigma,p}(\Omega)^d$
- Quellen

Quellen I

E. Emmrich und D. Puhst. "Measure-valued and weak solutions to the nonlinear peridynamic model in nonlocal elastodynamics." English. In: *Nonlinearity* 28.1 (2015), S. 285–307. issn: 0951-7715; 1361-6544/e. doi: 10.1088/0951-7715/28/1/285.

S. A. Silling, M. Epton, O. Weckner, J. Xu und E. Askari. "Peridynamic states and constitutive modeling." English. In: *J. Elasticity* 88.2 (2007), S. 151–184. issn: 0374-3535; 1573-2681/e. doi: 10.1007/s10659-007-9125-1.

S. A. Silling und R. B. Lehoucq. "Peridynamic theory of solid mechanics". In: *Advances in Applied Mechanics* 44 (2010), S. 73–168.