Exercise 6

Exercise: Build decision tree model to predict survival based on certain parameters

In this file using following columns build a model to predict if person would survive or not

- 1. Pclass
- 2. Sex
- 3. Age
- 4. Fare

Calculate score of your model

```
In [64]: import pandas as pd
import matplotlib.pyplot as plt
from sklearn import tree
from sklearn.model_selection import train_test_split
In [65]: data = pd.read_csv('titanic.csv')
data
```

:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
8	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 12 columns

Out[65]

Checking shape of the data

```
In [66]: data.shape
Out[66]: (891, 12)
```

Printing how many people survived and died

```
In [67]: print(f"Number of people survied : {len(data[data['Survived'] == 1])}")
    print(f"Number of people death : {len(data[data['Survived'] == 0])}")
```

Number of people survied : 342 Number of people death : 549

Splitting into X and y

```
In [68]: X = data[['Pclass', 'Sex', 'Age', 'Fare']]
y = data['Survived']
```

Label Encoding on sex column and creating new le sex column

```
In [69]: from sklearn.preprocessing import LabelEncoder
In [70]: le_sex = LabelEncoder()
    X['le_sex'] = le_sex.fit_transform(X['Sex'])
    X

    C:\Users\User\AppData\Local\Temp\ipykernel_7844\1216391553.py:2: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#retu rning-a-view-versus-a-copy
    X['le_sex'] = le_sex.fit_transform(X['Sex'])
```

Out[70]:		Pclass	Sex	Age	Fare	le_sex
	0	3	male	22.0	7.2500	1
	1	1	female	38.0	71.2833	0
	2	3	female	26.0	7.9250	0
	3	1	female	35.0	53.1000	0
	4	3	male	35.0	8.0500	1
	886	2	male	27.0	13.0000	1
	887	1	female	19.0	30.0000	0
	888	3	female	NaN	23.4500	0
	889	1	male	26.0	30.0000	1
	890	3	male	32.0	7.7500	1

891 rows × 5 columns

Dropping the sex column

]:		Pclass	Age	Fare	le_sex
	0	3	22.0	7.2500	1
	1	1	38.0	71.2833	0
	2	3	26.0	7.9250	0
	3	1	35.0	53.1000	0
	4	3	35.0	8.0500	1
	886	2	27.0	13.0000	1
	887	1	19.0	30.0000	0
	888	3	NaN	23.4500	0
	889	1	26.0	30.0000	1
	890	3	32.0	7.7500	1

891 rows × 4 columns

Train, Test dataset splitting

```
In [86]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size=0.3)
```

Model instance and training the model

```
In [87]: model = tree.DecisionTreeClassifier()
In [88]: model.fit(X_train, y_train)
Out[88]: v DecisionTreeClassifier
    DecisionTreeClassifier()
```

Checking the score

```
In [89]: model.score(X_test, y_test)
```

Out[89]: 0.7947761194029851

Printing total number of people in the Titanic

```
In [90]: print(f"Total People present in the Titanic : {len(X_new['le_sex'])}")
```

Printing num of male and female in Titanic

```
In [91]:     num_female = len(X_new[X_new['le_sex'] == 0])
     print(f"Num of female in titanic : {num_female}")

     num_male = len(X_new[X_new['le_sex'] == 1])
     print(f"Num of male in titanic : {num_male}")

Num of female in titanic : 314
Num of male in titanic : 577
```

Printing how num of male and female survived

```
In [92]: num_female_survived = len(X_new[(X_new['le_sex'] == 0) & (y == 1)])
    num_male_survived = len(X_new[(X_new['le_sex'] == 1) & (y == 1)])
    print(f'Num of female survived : {num_female_survived}')
    print(f'Num of male survived : {num_male_survived}')
```

Num of female survived : 233 Num of male survived : 109

Printing num of male and female death

```
In [93]: num_female_died = len(X_new[(X_new['le_sex'] == 0) & (y == 0)])
num_male_died = len(X_new[(X_new['le_sex'] == 1) & (y == 0)])
print(f'Num of female death : {num_female_died}')
print(f'Num of male death : {num_male_died}')
```

Num of female death : 81 Num of male death : 468

In [111_ X_new.head()

Out[111]:		Pclass	Age	Fare	le_sex
	0	3	22.0	7.2500	1
	1	1	38.0	71.2833	0
	2	3	26.0	7.9250	0
	3	1	35.0	53.1000	0
	4	3	35.0	8.0500	1

Predicting a particular value

```
In [121... model.predict([[3, 22, 7.2500, 1]])
```

C:\User\User\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\base.py:465: UserWarning: X does
not have valid feature names, but DecisionTreeClassifier was fitted with feature names
warnings.warn(

Out[121]: array([0], dtype=int64)

Printing the value at index 1 and checking it

```
In [127... model.predict([X_new.iloc[1]])

C:\User\User\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\base.py:465: UserWarning: X does not have valid feature names, but DecisionTreeClassifier was fitted with feature names
```

```
warnings.warn(
Out[127]: array([1], dtype=int64)
```

```
In [128- y[1]
Out[128]: 1
```

Predicting on the actual test set and making it a new DataFrame

```
In [132... predict = model.predict(X_test)

In [140... obj = {
    "Pclass" : X_test['Pclass'],
    "Age" : X_test['Age'],
    "Fare" : X_test['Fare'],
    "le_sex" : X_test['le_sex'],
```

```
"Actual Value" : y_test,
    "Predicted Value" : predict
}
pd.options.display.max_rows = 500
newdf = pd.DataFrame(obj)
newdf.shape
Out[140]: (268, 6)
```

Checking how many right and wrong predictions

```
In [141... len(newdf[newdf['Actual Value'] == newdf['Predicted Value']])
    Out[141]: 213
    In [143... len(newdf[newdf['Actual Value'] != newdf['Predicted Value']])
    Out[143]: 55
    In [150... plt.hist(data['Age'], bins=10)
   Out[150]: (array([ 54., 46., 177., 169., 118., 70., 45., 24., 9., 2.]), array([ 0.42 , 8.378, 16.336, 24.294, 32.252, 40.21 , 48.168, 56.126, 64.084, 72.042, 80. ]),
                  <BarContainer object of 10 artists>)
               175
               150
               125
               100
                75
                50
                25
                                10
                                         20
                                                  30
                                                            40
                                                                     50
                                                                              60
                                                                                       70
                                                                                                 80
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```