

感知介绍

□ 在自动驾驶中的角色

• 回忆你在开车的时候,关注什么?

⇒ 感知概览

□ 在自动驾驶中的角色

• 提供周围360度的环境信息

• 看环境: 障碍物检测、红绿灯检测、车道线检测

• 理解环境: 多传感器障碍物融合、红绿灯识别、车道线跟踪

• 信息预判: 轨迹预测

⇒ 感知的要素

- 传感器
- 算法
- 数据
- 计算平台

• 在线: 车端芯片

• 离线: 训练平台

□ 传感器

- 激光雷达 (LiDAR, Light Detection And Ranging)
- 相机 (Camera)
- 毫米波雷达(常称Radar, Radio Detection And Ranging, 实际是millimeter wave Radar
- 超声波雷达(Ultrasonic Radar)

□ 各传感器优劣势分析

	camera	lidar	radar	sonar
Object detection		•		•
Object classification	•		•	•
distance			0	•
velocity	•			•
Range of visibility	0		•	•
Feature / Texture			•	•
Lane tracking	•	•	•	•
Functionality in bad weather	•		•	•
Functionality in poor lighting		•	•	•

Why Lidar:

• 提供深度信息,高精度bev环境描述

Why camera:

- 提供颜色纹理信息, 处理更复杂的环境;
- 更远的观测,提前决策;

Why Radar:

- 提供速度观测, 处理突然出现的障碍物;
- 恶劣天气的鲁棒处理;

Why sonar:

• 近处泊车预警

□ 算法

⇒ 感知的要素

□ 数据

- 数据是自动驾驶效果的基石
- 数据的多样性决定了产品的成熟度(demo->产品)
- 数据的挖掘效率和速度决定了产品迭代的速度

⇒ 感知的要素

□ 计算平台

- 车端: 例如orin、Xavier
 - gpu / fpga
 - cpu
- 离线平台:例如dojo
 - 训练平台
 - 验证平台

Tesla FSD computer

xavier

orin

dojo: 5760个GPU

如何搭建一套合适的感知系统

□ 行业主流方案

如何搭建一套合适的感知系统

□ 行业主流方案

自动驾驶

低速

辅助驾驶

参 如何搭建一套合适的感知系统

□ 行业主流方案

	应用领域	代表公司	技术路线	特点	
跨越式路线	Robotaxi	Waymo / 百度	lidar为主的多传感 器融合方案	高成本 场景复杂度高 强依赖高精度地图 特定区域	
	末端物流	Nuro / 阿里 / 美团	lidar为主的多传感 器融合方案		
渐进式路线	车企	Tesla	纯视觉方案	低成本 场景复杂度低 弱/无依赖高精度地图 规模化	
		蔚来/小鹏/长城	视觉为主的多传感 器融合方案		
	OEM	Mobileye	视觉子系统 + lidar / radar子系统		

□ waymo

• 输入: 传感器 (lidar、camera、radar) + 高精度地图 (传感器深度自研)

• 技术路线: 直奔L4, lidar为主, camera、radar为辅, 依赖高精度地图先验

• 现状: 指定区域(凤凰城、San Francisco)的无人驾驶

● 计算平台: Xeon处理器 + Arria FPGA

• 数据: 自采为主(详细数据量未透露)

□ waymo

- 车端/在线系统
 - 感知算法效果
 - 计算效率 (算力、内存)
 - 通用性(城市、天气、长尾问题)
- 离线系统
 - 数据灵活可用(数据量[真实数据,仿真数据]、存储成本)
 - 自动标注(时间成本、金钱成本)
- 车端与离线系统的交互
 - 离线系统提供更多的数据
 - 车端系统的问题指导离线模型的迭代

Improved Detection Results

效果

汝率

- 利用range image分割减少空区域 计算
- · 区分前后景,减少后景区域计算 效果
- · 结合bev和range image提升效果

☐ Tesla

• 输入: 传感器 (camera、radar, 宣称去除radar) + 弱高精度地图

• 技术路线: L2+ -> L3+, 纯视觉感知方案

• 现状: 大多数区域的辅助驾驶

• 计算平台: 自研FSD, 144Tops

• 数据: 100w个10秒视频数据、60亿个标记物体,总计达1.5petabytes的数据 (量产回传为主)

侧视摄像头 后视摄像头

深度定制相机模组(1280x960 12bit HDR 36Hz)

☐ Tesla

- 多任务框架: HydraNets
 - 共享backbone, 高效推理
 - 多head解耦任务, 独立迭代
- 多相机融合
 - 直接检测输出vector space
 - transformer进行跨相机特征融合
- learn based 时序模型
 - RNN连接时序

☐ Tesla

- 数据闭环
 - 影子模式 (快速收集case)
- 4D 数据标注获取
 - 自动标注流程
 - 三维重建
 - 仿真引擎

□ 大纲

- 视觉模块
- 激光雷达模块
- 融合模块

□ 视觉感知

• 核心功能: 看周围的世界

- 红绿灯
- 车道线
- 障碍物

◆ Apollo感知

□ 视觉感知-障碍物检测网络

Head

□ 视觉感知- YOLO (You Only Look Once)

Neck: SPP & PAN

• 不同尺度特征的处理 —— 增大感受野

Head

• 对图像特征进行预测, 生成边界框并预测类别

(cx, cy): 中心点所处区域的左上角点

(pw, ph): anchor的宽高

(bx, by): 预测框中心点

(bw, bh): 预测框宽高

□ 激光雷达感知

• pillar feature net: 提取点特征(点视图), 然后进行pillar化(俯视图)

backbone: Feature Pyramid Network

head: SSD

参 Apollo感知

□ 激光雷达感知

• pillar feature net: 提取点特征(点视图), 然后进行pillar化(俯视图)

输入: x, y, z, intensity

- X-Y平面网格量化
 - 一个网格 = 一个Pillar
 - 97%Pillar为空(KITTI, 0.16m)
- 每个点用9维特征表示
 - x, y, z, r, x_c, y_c, z_c, x_p, y_p
- Pillar的表示: Tensor (P, N, D)
 - D=9, P=非空Pillar数量, N=Pillar中的点数

- PointNet提取点特征
 - (P, N, **D**) => (P, N, **C**)
- MaxPooling
 - (P, **N**, C) => (P, C)

- Pillar映射回X-Y平面
 - (P, C) + Pillar的索引 => (H, W, C)

□ 激光雷达感知

• backbone: Feature Pyramid Network

head: SSD

输出:

• box中心: x, y, z

• box大小: w, l, h

• box角度: dir

• box类别: class

• loss
$$\mathcal{L} = \frac{1}{N_{pos}} \left(\beta_{loc} \mathcal{L}_{loc} + \beta_{cls} \mathcal{L}_{cls} + \beta_{dir} \mathcal{L}_{dir} \right)$$

Bbox loss

类别loss

朝向角loss

- 核心功能: 理解世界
 - 关联
 - 状态估计

◆ Apollo感知

- 关联: 对当前帧观测量与历史Tracker状态量进行时空对齐, 输出关联关系
 - HM (Hungarian Match)
 - Greedy Match
 - JPDAF (Joint Probabilistic Data Association Filter)
 - MHT (Multiple Hypothesis Tracker)

- 状态估计
 - 运动状态融合
 - 存在性融合
 - 形状融合
 - 轨迹融合
 - 类别融合

- why we need:
 - 更完整的fov
 - 更鲁棒 (冗余)
 - 更稳定(噪声更小)

◆ Apollo感知算法

□ 代码概览

```
BUILD
Perception_README_3_5.md
README.md
base
camera
common
data
fusion
inference
lib
lidar
map
onboard
production
proto
radar
testdata
tool
```

-感知模块的基础类定义,例如障碍物Object; camera——视觉感知模块; common——感知模块的基础操作,例如几何信息计算等; data——感知模块使用的数据; fusion——融合模块; Interface——感知模块的接口定义; lib——感知模块的算法定义; lidar——激光雷达感知模块; map——感知模块与高精度地图相关的操作,例如提取ROI; onboard——实车运行程序,其中component文件夹是感知模块的入口; production——感知模块的配置参数定义; proto——感知模块的protobuf定义; Radar——毫米波雷达感知模块; Testdata——一些用于测试的数据,如点云pcd文件; Tool————些工具方法:

□ 预测

• 核心功能: 信息预判

• 帮助提前决策

□总结

□ 总结

- 面对的挑战
 - 层出不穷的复杂场景
 - 恶劣天气情况
 - 成本与效果的权衡
 - ...
- 学术界/未来方向
 - 长尾问题的解决
 - 信息功能安全
 - 多模态bev的感知 / 前融合
 - ...

多谢观看