

512MB, 240-Pin Unbuffered ECC DDR2 DIMM

Identification

DTM63389C 64Mx72 512MB 1Rx16 DDR2-667E-555

Performance range

Clock/ Module Speed/ CL-t_{RCD} -t_{RP}

333MHz / DDR2-667 / 5-5-5 267MHz/ DDR2-533 / 4-4-4 200MHz / DDR2-400 / 3-3-3

Features

240-pin DIMM, 133.35 mm wide by 30 mm high

Operating Voltage: 1.8 V ±0.1

I/O Type: SSTL 18

Data Transfer Rate: 5.3 Gigabytes/sec

Data Bursts: 4 or 8 bits, Sequential or Interleaved ordering

VSS

92 /DQS5

95 DQ42

99 DQ49

100 VSS

101 SA2

102 NC

103 VSS

104 /DQS6

105 DQS6

106 VSS

93 DQS5

94 VSS

96 DQ43

97 VSS

98 DQ48

Programmable I/O driver strength (OCD)

Programmable On-Die Termination (ODT)

Programmable CAS Latency: 3, 4, or 5

Differential/Redundant Data Strobe signals

61 A4

63 A2

62 VDD

64 VDD

65 VSS

66 VSS

67 VDD

68 NC

69 VDD

70 A10

71 BA0

72 VDD

73 /WE

74 /CAS

75 VDD

76 NC

SDRAM Addressing (Row/Col/Bank): 13/10/3

Fully RoHS Compliant

31 DQ19

32 VSS

33 DQ24

34 DQ25

36 /DQS3

37 DQS3

38 VSS

39 DQ26

40 DQ27

41 VSS

42 CB0

43 CB1

44 VSS

45 /DQS8

46 DQS8

35 VSS

Front Side

1 VREF

2 VSS

3 DQ0

5 VSS 6 /DQS0

8 VSS

9 DQ2

10 DQ3

11 VSS

12 DQ8

13 DQ9

14 VSS

15 /DQS1

16 DQS1

17 VSS

18 NC

19 NC

20 VSS

21 DQ10

22 DQ11

23 VSS

24 DQ16

25 DQ17

26 VSS

27 /DQS2

28 DQS2

30 DQ18

29 VSS

DQ1

DQS0

Description

DTM63389C is an Unbuffered ECC 64Mx72 memory module. The DIMM has one Rank, comprised of five 64Mx16 DDR2 Samsung SDRAMs. One 2K-bit EEPROM is used for Serial Presence Detect.

Both output driver strength and input termination impedance are programmable to maintain signal integrity on the I/O signals.

The assembly is a Dual In-line Memory Module intended for mounting into 240-pin edge connector sockets.

Pin Configuration

121 VSS

122 DQ4

123 DQ5

124 VSS

125 DM0

127 VSS

128 DQ6

129 DQ7

130 VSS

131 DQ12

132 DQ13

133 VSS

134 DM1

135 NC

136 VSS

126 NC

Back Side

151 VSS

152 DQ28

153 DQ29

154 VSS

155 DM3

156 NC

157 VSS

158 DQ30

159 DQ31

160 VSS

161 CB4

162 CB5

163 VSS

164 DM8

165 NC

166 VSS

192 /RAS

193 /S0

194 VDD

195 ODT0

196 A13*

181	VDD	211	DM5
182	A3	212	NC
183	A1	213	VSS
184	VDD	214	DQ46
185	CK0	215	DQ47
186	/CK0	216	VSS
187	VDD	217	DQ52
188	A0	218	DQ53
189	VDD	219	VSS
190	BA1	220	CK2
191	VDD	221	/CK2

222 VSS

223 DM6

224 NC 225 VSS

226 DQ54

47 VSS 77 NC 107 DQ50 137 CK1 167 CB6 197 VDD 227 DQ55 48 CB2 78 VDD 108 DQ51 138 /CK1 168 CB7 198 VSS 228 VSS 49 CB3 79 VSS 109 VSS 139 VSS 169 VSS 199 DQ36 229 DQ60 50 VSS 80 DQ32 170 VDD 110 DQ56 140 DQ14 200 DQ37 230 DQ61 51 VDD 81 DQ33 111 DQ57 171 NC 231 VSS 141 DQ15 201 VSS 52 CKE0 82 VSS 112 VSS 142 VSS 172 VDD 232 DM7 202 DM4 53 VDD 83 /DQS4 113 /DQS7 143 DQ20 173 A15 * 203 NC 233 NC 54 BA2 84 DQS4 114 DQS7 144 DQ21 174 A14 ¹ 204 VSS 234 VSS 235 DQ62 55 NC 115 VSS 145 VSS 175 VDD 205 DQ38 85 VSS 56 VDD 86 DQ34 116 DQ58 146 DM2 176 A12 206 DQ39 236 DQ63 57 A11 87 DQ35 117 DQ59 147 NC 177 A9 207 VSS 237 VSS 238 VDDSPD 58 A7 88 VSS 118 VSS 148 VSS 178 VDD 208 DQ44 239 SA0 59 VDD 89 DQ40 119 SDA 149 DQ22 179 A8 209 DQ45 90 DQ41 120 SCL 150 DQ23 180 A6 210 VSS 240 SA1 60 A5

Pin Description

	23011ption
Name	Function
CB[7:0]	Data Check Bits
DQ[63:0]	Data Bits
DQS[8:0], /DQS[8:0]	Differential Data Strobes
DM[8:0]	Data Mask
CK[2:0], /CK[2:0]	Differential Clock Inputs
CKE0	Clock Enables
/CAS	Column Address Strobe
/RAS	Row Address Strobe
/S0	Chip Selects
/WE	Write Enable
A[15:0]	Address Inputs
BA[2:0]	Bank Addresses
ODT0	On Die Termination Inputs
SA[2:0]	SPD Address
SCL	SPD Clock Input
SDA	SPD Data Input/Output
VSS	Ground
VDD	Power
VDDSPD	SPD EEPROM Power
VREF	Reference Voltage
NC	No Connection

^{*} Connected but not used

512MB, 240-Pin Unbuffered ECC DDR2 DIMM

Front view

Notes

Tolerances on all dimensions except where otherwise indicated are \pm .13 (.005).

All dimensions are expressed: millimeters [inches]

512MB, 240-Pin Unbuffered ECC DDR2 DIMM

Absolute Maximum Ratings

(Note: Operation at or above Absolute Maximum Ratings can adversely affect module reliability.)

			• • •	
PARAMETER	Symbol	Minimum	Maximum	Unit
Temperature, non-Operating	T _{STORAGE}	-55	100	С
Ambient Temperature, Operating	T _A	0	70	С
DRAM Case Temperature, Operating	T _{CASE}	0	95	С
Voltage on V _{DD} relative to V _{SS}	V_{DD}	-0.5	2.3	V
Voltage on Any Pin relative to V _{SS}	V_{IN}, V_{OUT}	-0.5	2.3	V

Notes:

Recommended DC Operating Conditions ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Minimum	Typical	Maximum	Unit	Note
Power Supply Voltage	V_{DD}	1.7	1.8	1.9	V	
I/O Reference Voltage	V_{REF}	0.49 V _{DD}	0.50 V _{DD}	0.51 V _{DD}	V	1
Bus Termination Voltage	V _{TT}	V _{REF} - 0.04	V_{REF}	V _{REF} + 0.04	V	

Notes:

DC Input Logic Levels, Single-Ended ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Minimum	Maximum	Unit
Logical High (Logic 1)	V _{IH(DC)}	V _{REF} + 0.125	V _{DD} + 0.300	V
Logical Low (Logic 0)	V _{IL(DC)}	-0.300	V _{REF} - 0.125	V

AC Input Logic Levels, Single-Ended ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Minimum	Maximum	Unit
Logical High (Logic 1)	$V_{IH(AC)}$	V _{REF} + 0.250	-	V
Logical Low (Logic 0)	V _{IL(AC)}	-	V _{REF} - 0.250	V

Temperature above 85C requires doubling the refresh rate i.e. 3.9us instead of 7.8us

The value of V_{REF} is expected to equal one-half V_{DD} and to track variations in the V_{DD} DC level. Peak-to-peak noise on V_{REF} may not exceed ±1% of its DC value.

512MB, 240-Pin Unbuffered ECC DDR2 DIMM

Differential Input Logic Levels ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Minimum	Maximum	Unit	Note
DC Input Signal Voltage	$V_{IN(DC)}$	-0.300	V _{DD} + 0.300	V	1
DC Differential Input Voltage	V _{ID(DC)}	-0.250	V _{DD} + 0.600	V	2
AC Differential Input Voltage	$V_{ID(AC)}$	-0.500	V _{DD} + 0.600	V	3
AC Differential Cross-Point Voltage	$V_{IX(AC)}$	0.50 VDD - 0.175	0.50 VDD + 0.175	V	4

- 1. $V_{\text{IN(DC)}}$ specifies the allowable DC excursion of each input of a differential pair.
- V_{ID(DC)} specifies the input differential voltage, *i.e.* the absolute value of the difference between the two voltages of a differential pair.
- V_{ID(AC)} specifies the input differential voltage required for switching.
 The typical value of V_{IX(AC)} is expected to be 0.5 V_{DD} and is expected to track variations in V_{DD}.

Capacitance ($T_A = 25 \text{ C}$, f = 100 MHz)

PARAMETER	Pin	Symbol	Minimum	Maximum	Unit
Input Capacitance, Clock	CK[2:0], /CK[2:0]	CIN1	6.2	8.2	pF
Input Capacitance, Address and Control	BA[2:0], A[13:0], /RAS, /CAS, /WE,	CIN2	5.0	10.0	pF
Input Capacitance, Control	CKE0, ODT0, /S0	CIN3	31.5	36.5	pF
Input/Output Capacitance	DQ[63:0], CB[7:0], DQS[8:0], /DQS[8:0], DM[8:0]	CIO	2.5	3.5	pF

DC Characteristics ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Minimum	Maximum	Unit	Note
Input Leakage Current Command and Address	I _{LI}	-10	10	μA	1
Input Leakage Current CK0, /CK0	ILI	-2	2	μA	1
Input Leakage Current CK[1:0], /CK[1:0]	ILI	-4	4	μA	1
Input Leakage Current DM	ILI	-2	2	μA	1
Output Leakage Current DQS, DQ	I _{OZ}	-2	2	μA	2
Output Minimum Source DC Current	I _{OH}	-13.4	-	mA	3
Output Minimum Sink DC Current	I _{OL}	+13.4	-	mA	4

Notes:

- These values are guaranteed by design and are tested on a sample basis only
- DQx and ODT are disabled, and 0 V ≤ V_{OUT} ≤ V_{DD}.
 V_{DD} = 1.7 V, V_{OUT} = 1420 mV. (V_{OUT} V_{DD})/I_{OH} must be less than 21 Ohms for values of V_{OUT} between V_{DD} and (V_{DD} 280 mV).
 V_{DD} = 1.7 V, V_{OUT} = 280 mV. V_{OUT}/I_{OL} must be less than 21 Ohms for values of V_{OUT} between 0 V and 280 mV.

512MB, 240-Pin Unbuffered ECC DDR2 DIMM

 I_{DD} Specifications and Conditions ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Test Condition	Max Value	Unit
Operating One Bank Active-Precharge Current	I _{DD} 0	CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are switching; Data bus inputs are switching.	450	mA
Operating One Bank Active-Read- Precharge Current	I _{DD} 1	I _{OUT} = 0 mA; BL = 4, CL = 5 ns, AL = 0; CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are switching.	575	mA
Precharge Power- Down Current	I _{DD} 2P	All banks idle; CKE is LOW; Other control and address bus inputs are stable; Data bus inputs are floating.	50	mA
Precharge Quiet Standby Current	I _{DD} 2Q	All banks idle; CKE is HIGH, /CS is HIGH; Other control and address bus inputs are stable; Data bus inputs are floating.	150	mA
Precharge Standby Current	I _{DD} 2N	All banks idle; CKE is HIGH, /CS is HIGH; Other control and address bus inputs are switching; Data bus inputs are switching.	200	mA
Active Power-Down Current	I _{DD} 3P	All banks open; CKE is LOW; Other control and address bus inputs are stable; Data bus inputs are floating. Fast Power-down exit (Mode Register bit 12 = 0)	125	mA
Active Power-Down Current	I _{DD} 3P	All banks open; CKE is LOW; Other control and address bus inputs are stable; Data bus inputs are floating. Slow Power-down exit (Mode Register bit 12 = 1)	60	mA
Active Standby Current	I _{DD} 3N	All banks open; t _{RAS} = 70 ms; CKE is HIGH, /CS is HIGH between valid commands; Other control and address bus inputs are switching; Data bus inputs are switching.	250	mA
Operating Burst Write Current	I _{DD} 4W	All banks open, Continuous burst writes; BL = 4, CL = 5 t _{CK} , AL = 0; t _{RAS} = 70 ms, CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are switching; Data bus inputs are switching.	975	mA
Operating Burst Read Current	I _{DD} 4R	All banks open, Continuous burst reads, $I_{OUT} = 0$ mA; BL = 4, CL = 5 t_{CK} , AL = 0, $t_{RAS} = 70$ ms; CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are switching; Data bus inputs are switching.	975	mA
Burst Refresh Current	I _{DD} 5	Refresh command at every 75 ns; CKE is HIGH, /CS is HIGH between valid commands; Other control and address bus inputs are switching; Data bus inputs are switching.	875	mA
Self Refresh Current	I _{DD} 6	CK and /CK at 0 V; CKE ≤ 0.2 V; Other control and address bus inputs are floating; Data bus inputs are floating.	50	mA
Operating Bank Interleave Read Current	I _{DD} 7	All bank interleaving reads, I_{OUT} = 0 mA; BL = 4, CL = 5 t _{CK} ; AL = tRCD(IDD) -1 × tCK(IDD); t_{RRD} = 7.5 ns; CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are stable during deselects; Data bus inputs are switching.	1325	mA

Notes: For all $I_{DD}X$ measurements, t_{CK} = 3 ns, t_{RC} = 60 ns, t_{RCD} = 15 ns, t_{RAS} = 45 ns, and t_{RP} = 15 ns unless otherwise specified. All currents are based on absolute maximum values.

512MB, 240-Pin Unbuffered ECC DDR2 DIMM

AC Operating Conditions

PARAMETER	Symbol	Min	Max	Unit
DQ Output Access Time from Clock	t _{AC}	-450	+450	ps
CAS-to-CAS Command Delay	t _{CCD}	2	-	t _{CK}
Clock High Level Width	tсн	0.48	0.52	t _{CK}
Clock Cycle Time	t _{CK}	3000	8000	ps
Clock Low Level Width	t _{CL}	0.48	0.52	t _{CK}
Data Input Hold Time after DQS Strobe	t _{DH}	175	-	ps
DQ Input Pulse Width	t _{DIPW}	0.35	-	t _{CK}
DQS Output Access Time from Clock	t _{DQSCK}	-400	+400	ps
Write DQS High Level Width	t _{DQSH}	0.35	-	t _{CK}
Write DQS Low Level Width	t _{DQSL}	0.35	-	t _{CK}
DQS-Out Edge to Data-Out Edge Skew	t _{DQSQ}	-	240	ps
Data Input Setup Time Before DQS Strobe	t _{DS}	100	-	ps
DQS Falling Edge from Clock, Hold Time	t _{DSH}	0.2	-	tcĸ
DQS Falling Edge to Clock, Setup Time	t _{DSS}	0.2	-	t _{CK}
Clock Half Period	t _{HP}	minimum of t_{CH} or t_{CL}	-	ns
Address and Command Hold Time after Clock	t _{IH}	275	-	ps
Address and Command Setup Time before Clock	t _{IS}	200	-	ps
Load Mode Command Cycle Time	t _{MRD}	2	-	t _{CK}
DQ-to-DQS Hold	t_{QH}	t_{HP} - t_{QHS}	-	-
Data Hold Skew Factor	t _{QHS}	-	340	ps
Active-to-Precharge Time	t _{RAS}	45	70K	ns
Active-to-Active / Auto Refresh Time	t _{RC}	60	-	ns
RAS-to-CAS Delay	t _{RCD}	15	-	ns
Average Periodic Refresh Interval	t _{REFI}	-	7.8	μs
Auto Refresh Row Cycle Time	t _{RFC}	127.5	-	ns
Row Precharge Time	t _{RP}	15	-	ns
Read DQS Preamble Time	t _{RPRE}	0.9	1.1	tcĸ
Read DQS Postamble Time	t _{RPST}	0.4	0.6	t _{CK}
Row Active to Row Active Delay	t _{RRD}	7.5	-	ns
Internal Read to Precharge Command Delay	t _{RTP}	7.5	-	ns
Write DQS Preamble Time	t _{WPRE}	0.35	-	ps
Write DQS Postamble Time	t _{WPST}	0.4	0.6	t _{CK}
Write Recovery Time	t _{WR}	15	-	ns
Internal Write to Read Command Delay	t _{WTR}	7.5	-	ns
Exit Self Refresh to Non-Read Command	t _{XSNR}	$t_{RFC}(min) + 10$	-	ns
Exit Self Refresh to Read Command	t _{XSRD}	200	-	t _{CK}

512MB, 240-Pin Unbuffered ECC DDR2 DIMM

SERIAL PRESENCE DETECT MATRIX

Ditt	SUNIAL FIXESUNGE DETECTIVIATION	\/als	11				
Byte#	Function.	Value	Hex				
	Number of Bytes Utilized by Module Manufacturer	128 bytes	0x80				
1	Total number of Bytes in Serial PD device	256 bytes	80x0				
2	Memory Type	DDR2 SDRAM	0x08				
3	Number of Row Addresses	13	0x0D				
4	Number of Column Addresses	10	0x0A				
5	Module Attributes - Number of Ranks, Package and Height		0x60				
	# of Ranks -						
	Card on Card -						
	DRAM Package - Module Height -						
6	Module Data Width.	72	0x48				
7	Reserved	UNUSED	0x40				
_		SSTL/1.8V					
8	Voltage Interface Level of this assembly		0x05				
9	SDRAM Cycle time. (Max. Supported CAS Latency). CL=X (tCK) ns	3	0x30				
10	SDRAM Access from Clock. (Highest CAS latency). (tAC) ns	0.45	0x45				
11	DIMM configuration type (Non-parity, Parity or ECC)		0x02				
,	Data Parity -						
	Data ECC -						
	Address/Command Parity - TBD -						
	TBD -						
	TBD -						
	TBD -						
40	TBD -		000				
12	Refresh Rate/Type (us)	7.8 (SR)	0x82				
13	Primary SDRAM Width	16	0x10				
14	Error Checking SDRAM Width	8	0x08				
15	Reserved	UNUSED	0x00				
16	SDRAM Device Attributes: Burst Lengths Supported		0x0C				
	TBD -						
,	TBD -	V					
	Burst Length = 4 - Burst Length = 8 -						
	TBD -						
	TBD -						
	TBD -						
47	TBD -		0.00				
17	SDRAM Device Attributes - Number of Banks on SDRAM Device	8	0x08				
18	SDRAM Device Attributes: CAS Latency		0x38				
	TBD -						
	TBD -						
	Latency = 2 -						

i l	Latency = 3 -	Х		
l t	Latency = 4 -	X		
l t	Latency = 5 -	X		
†	Latency = 6 -			
İ Î	TBD -			
	DIMM Mechanical Characteristics. Max. module thickness. (mm)	x = 4.10</td <td>0x01</td>	0x01	
20	DIMM type information		0x02	
1	Regular RDIMM (133.35mm) -			
	Regular UDIMM (133.35mm) -	X		
	SODIMM (67.6mm) -			
	Micro-DIMM (45.5mm) -			
	Mini RDIMM (82.0mm) - Mini UDIMM (82.0mm) -			
	- TBD -			
l t	TBD -			
21	1			
†	Number of active registers on the DIMM (N/A for UDIMM) -			
	Number of PLL on the DIMM (N/A for UDIMM) -	0		
†	FET Switch External Enable -	No		
 	TBD -			
	Analysis probe installed -	No		
	TBD -			
22	SDRAM Device Attributes: General		0x03	
	Includes Weak Driver -	X		
	Supports 50 ohm ODT -	X		
+	Supports PASR (Partial Array Self Refresh) - TBD -			
l t	TBD -			
†	TBD -			
ĺ	TBD -			
	TBD -			
	Minimum Clock Cycle Time at Reduced CAS Latency, CL = X-1 (ns)	3.75	0x3D	
	Maximum Data Access Time (tAC) from Clock at CL = X-1 (ns)	0.45	0x45	
25	Minimum Clock Cycle Time at CL = X-2 (ns)	5	0x50	
	Maximum Data Access Time (tAC) from Clock at CL = X-2 (ns)	0.45	0x45	
	Minimum Row Precharge Time (tRP) (ns)	15	0x3C	
28	Minimum Row Active to Row Active Delay (tRRD) (ns)	7.5	0x1E	
	Minimum RAS to CAS Delay (tRCD) (ns)	15	0x3C	
	Minimum Active to Precharge Time (tRAS) (ns)	45	0x2D	
	Module Rank Density	512MB	0x80	
	Address and Command Setup Time Before Clock (tlS) (ns)	0.2	0x20	
	, , , , ,			
	Address and Command Hold Time After Clock (tlH) (ns) Data Input Setup Time Before Strobe (tDS) (ns)	0.27 0.1	0x27 0x10	
	· · · · · · · · · · · · · · · · · · ·	0.17		
	Data Input Hold Time After Strobe (tDH) (ns)		0x17	
.30	Write Recovery Time (tWR) (ns)	15	0x3C	

37	Internal write to read command delay (tWTR) (ns)	7.5	0x1E
38	Internal read to precharge command delay (tRTP) (ns)	7.5	0x1E
39	Memory Analysis Probe Characteristics.	UNUSED	0x00
40	Extension of Byte 41(tRC) and Byte 42 (tRFC) (ns)		0x06
	Add this value to byte 41 -	0	
	Add this value to byte 42 -	0.5	
41	SDRAM Device Minimum Active to Active/Auto Refresh Time (tRC) (ns)	60	0x3C
42	SDRAM Device Minimum Auto-Refresh to Active/Auto- Refresh Command Period (tRFC). (ns)	127.5	0x7F
43	SDRAM Device Maximum Cycle Time (tCK max). (ns)	8	0x80
44	SDRAM Dev DQS-DQ Skew for DQS & DQ signals (tDQSQ) (ns)	0.24	0x18
45	DDR SDRAM Device Read Data Hold Skew Factor (tQHS) (ns)	0.34	0x22
46	PLL Relock Time (us)	UNUSED	0x00
47	DRAM maximun Case Temperature Delta. (Degree C). DT4R4W Delta (Bits 0:3) -	1.2	0x03
	Tcasemax delta (Bits 7:4) -	0	
48	Thermal Resistance of DRAM Package from Top (Case) to Ambient (Psi T-A DRAM). (C/Watt)	58	0x74
49	DRAM Case Temperature Rise from Ambient due to Activate-Precharge/ Mode Bits (DT0/Mode Bits). (Degree C).		0x6F
	Bit 0. If "0" DRAM does not support high temperature self- refresh entry -	1	
	Bit 1. If "0" Do not need double refresh rate for the proper operation -	1	
	DT0, (Bits 2:7) -	8.1	
50	DRAM Case Temperature Rise from Ambient due to Precharge/Quiet Standby (DT2N/DT2Q). (Degree C).	6	0x3C
51	DRAM Case Temperature Rise from Ambient due to Precharge Power-Down (DT2P). (Degree C).	1.44	0x60
52	DRAM Case Temperature Rise from Ambient due to Active Standby (DT3N). (Degree C).	6.9	0x2E
53	DRAM Case temperature Rise from Ambient due to Active Power-Down with Fast PDN Exit (DT3Pfast). (Degree C).	4.4	0x58
54	DRAM Case temperature Rise from Ambient due to Active Power-Down with Slow PDN Exit (DT3Pslow). (Degree C).	2.2	0x58
55	DRAM Case Temperature Rise from Ambient due to Page Open Burst Read/DT4R4W Mode Bit (DT4R/DT4R4W Mode Bit). (Degree C).		0x56
	Bit 0. "0" if DT4W is greater than DT4R - 0		1
	DT4R, (Bits 1:7) -	17.2	1
56	DRAM Case Temperature Rise from Ambient due to Burst Refresh (DT5B). (Degree C).	24.5	0x31

57	DRAM Case Temperature Rise from Ambient due to Bank Interleave Reads with Auto-Precharge (DT7). (Degree C).	33.5	0x43
58	Thermal Resistance of PLL Package from Top to Ambient (Psi T-A PLL). (C/Watt).	UNUSED	0x00
59	Thermal Resistance of Register Package from Top to Ambient (Psi T-A Register). (C/Watt).	UNUSED	0x00
60	PLL Case Temperature Rise from Ambient due to PLL Active (DT PLL Active). (Degree C).	UNUSED	0x00
61	Register Case Temperature Rise from Ambient due to Register (DT Register Active/Mode Bit).	Active/Mode Bit	0x00
•	Bit 0.If "0"Unit for Bits 2:7 is 0.75C -	0.75	
,	Bit 1. RFU. Default: 0 -	0	
,	Register Active,(Bits 2:7) -	0	
62	SPD Revision	Revision 1.2	0x12
63	Checksum for Bytes 0-62		0xAE
64	Module Manufacturer's JEDEC ID Code	Dataram ID	0x7F
65	Module Manufacturer's JEDEC ID Code	Dataram ID	0x91
66-71	Module Manufacturer's JEDEC ID Code	UNUSED	0x00
72	Module Manufacturing Location	UNUSED	0x00
73-90	Module Part Number		0x20
91,92	Module Revision Code	UNUSED	0x00
93,94	Module Manufacturing Date	DATE	0x##
95-98	Module Serial Number	S/N	0x##
99- 127	Manufacturer's Specific Data	UNUSED	0x00

512MB, 240-Pin Unbuffered ECC DDR2 DIMM

DATARAM CORPORATION, USA Corporate Headquarters, P.O.Box 7528, Princeton, NJ 08543-7528; Voice: 609-799-0071, Fax: 609-799-6734; www.dataram.com

All rights reserved.

The information contained in this document has been carefully checked and is believed to be reliable. However, Dataram assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Dataram.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Dataram.