رس ری زپردازن دی کاتر سیء امی دفاعمی

Microprocessor System Design

Omid Fatemi
Memory Interfacing
(omid@fatemi.net)

Outline

- Memory module
- Interfacing to memory
- Address decoding
- Chip select
- Memory configurations

A Memory Module

- The Size:
 - -Data bus?
 - -Address bus?
- Controls?
 - -Read
 - -Write

Processor Timing Diagram of 8088 (Minimum Mode) for Memory or I/O Read

Will the circuit be able to perform memory read?

```
;assume that initially the values
;of the registers are:
;BX = 1234, DS = 9000

MOV AL, [BX]
```

Processor Timing Diagram of 8088 (Minimum Mode) for Memory or I/O Read

Octal Transparent Latch with 3-State Output

Processor Timing Diagram of 8088 (Minimum Mode) for Memory or I/O Read (with 74373)

Processor Timing Diagram of 8088 (Minimum Mode) for Memory or I/O Read (with 74245)

2²⁰ bytes or 1MB

What are the memory locations of a 1MB (2²⁰ bytes) Memory?

A19 to	AAAA	AAAA	AAAA	AAAA	AAAA
A0	1111	1111	1198	7654	3210
(HEX)	9876	5432	1000		
00000	0000	0000	0000	0000	0000
FFFFF	1111	1111	1111	1111	1111

Example: 34FD0

0011 0100 11111 1101 0000

Instead of Interfacing 1MB, what will happen if you interface a 512KB Memory?

What are the memory locations of a 512KB (2¹⁹ bytes) Memory?

A18 to	AAAA	AAAA	AAAA	AAAA	AAAA
A0	1111	1111	1198	7654	3210
(HEX)	876	5432	1000		
00000	000	0000	0000	0000	0000
	111	1111	1111	1111	1111

What if you want to read physical address A0023?

What if you want to read physical address A0023?

A19 to	A AAA	AAAA	AAAA	AAAA	AAAA
A0	1 111	1111	1198	7654	3210
(HEX)	<mark>9</mark> 876	5432	1000		
A0023	1010	0000	0000	0010	0011

A19 is not connected to the memory so even if the 8088 microprocessor outputs a logic "1", the memory cannot "see" this.

What if you want to read physical address 20023?

A18 to	A AAA	AAAA	AAAA	AAAA	AAAA
A0	1 111	1111	1198	7654	3210
(HEX)	<mark>9</mark> 876	5432	1000		
20023	0010	0000	0000	0010	0011

For memory it is the same as previous one.

- Problem: Bus Conflict. The two memory chips will provide data at the same time when microprocessor performs a memory read.
- Solution: Use address line A19 as an "arbiter". If A19 outputs a logic "1" the upper memory is enabled (and the lower memory is disabled) and vice-versa.

What are the memory locations of two consecutive 512KB (2¹⁹ bytes) Memory?

A19 to	AAAA	AAAA	AAAA	AAAA	AAAA
A0	1111	1111	1198	7654	3210
(HEX)	9876	5432	1000		
00000	0000	0000	0000	0000	0000
7FFFF	0111	1111	1111	1111	1111
80000	1000	0000	0000	0000	0000
FFFFF	1111	1111	1111	1111	1111

What if we remove the lower memory?

What if we remove the lower memory?

Full and Partial Decoding

Full Decoding

 When all of the "useful" address lines are connected the memory/device to perform selection

Partial Decoding

- When some of the "useful" address lines are connected the memory/device to perform selection
- Using this type of decoding results into roll-over addresses

Full Decoding

Full Decoding

A19 to	AAAA	AAAA	AAAA	AAAA	AAAA
A0	1111	1111	1198	7654	3210
(HEX)	9876	5432	1000		
80000	1000	0000	0000	0000	0000
FFFFF	1111	1111	1111	1111	1111

A19 should be a logic "1" for the memory chip to be enabled

Full Decoding

A19 to	AAAA	AAAA	AAAA	AAAA	AAAA
A0	1111	1111	1198	7654	3210
(HEX)	9876	5432	1000		
00000	6000	0000	0000	0000	0000
7FFFF	0111	1111	1111	1111	1111

Therefore if the microprocessor outputs an address between 00000 to 7FFFF, whose A19 is a logic "0", the memory chip will not be selected

A19 to	AAAA	AAAA	AAAA	AAAA	AAAA
A0	1111	1111	1198	7654	3210
(HEX)	9876	5432	1000		
	\wedge				
00000	0000	0000	0000	0000	0000
7FFFF	0111	1111	1111	1111	1111
80000	1000	0000	0000	0000	0000
FFFFF	11.11	1111	1111	1111	1111

The value of A19 is INSIGNIFICANT to the memory chip, therefore A19 has no bearing whether the memory chip will be enableed to 1 Table 144

A19 to	AAAA	AAAA	AAAA	AAAA	AAAA
A0	1111	1111	1198	7654	3210
(HEX)	9876	5432	1000		
00000	0000	0000	0000	0000	0000
7FFFF	0111	1111	1111	1111	1111
80000	1000	0000	0000	0000	0000
FFFFF	1111	1111	1111	1111	1111

ACTUAL ADDRESS

A19 to	AAAA	AAAA	AAAA	AAAA	AAAA
A0	1111	1111	1198	7654	3210
(HEX)	9876	5432	1000		
00000	0000	0000	0000	0000	0000
7FFFF	0111	1111	1111	1111	1111
80000	1000	0000	0000	0000	0000
FFFFF	1111	1111	1111	1111	1111

ACTUAL ADDRESS

Interfacing two 512K Memory Chips to the 8088 Microprocessor

Interfacing one 512K Memory Chips to the 8088 Microprocessor

Interfacing one 512K Memory Chips to the 8088 Microprocessor (version 2)

Interfacing one 512K Memory Chips to the 8088 Microprocessor (version 3)

Memory chip#__ is mapped to:

A19 to A0 (HEX)	AAAA 1111 9876	AAAA 1111 5432	AAAA 1198 1000	AAAA 7654	AAAA 3210

Interfacing several 8K Memory Chips to the 8088 µP

University of Tehran 57

Interfacing 128 8K Memory Chips to the 8088 µP

Interfacing 128 8K Memory Chips to the 8088 µP

Memory chip#__ is mapped to:

A19 to A0	AAAA 1111	AAAA 1111	AAAA 1198	AAAA 7654	AAAA 3210
(HEX)	9876	5432	1000		

Memory Terms

- Capacity
 - Kbit, Mbit, Gbit
- Organization
 - Address lines
 - Data lines
- Speed / Timing
 - Access time
- Write ability
 - ROM
 - RAM

ROM Variations

- Mask Rom
- PROM OTP
- EPROM UV_EPROM
- EEPROM
- Flash memory

RAM Variations

- SRAM
- DRAM
- NV-RAM
 - SRAM CMOS
 - Internal lithium battery
 - Control circuitry to monitor Vcc

Memory Chip

- 8K SRAM
- to be specific:
 - 8Kx8 bits SRAM

6264 Block Diagram

ty of Tehran 65

6264 Function Table

WE	CS1	CS2	OE	Mode	V _{cc} current	I/O pin	Ref. cycle
×	Н	×	×	Not selected (power down)	I _{SB} , I _{SB1}	High-Z	_
×	×	L	×	Not selected (power down)	I_{SB}, I_{SB1}	High-Z	_
Н	L	Н	Н	Output disable	I _{cc}	High-Z	_
Н	L	Н	L	Read	I _{cc}	Dout	Read cycle (1)–(3)
L	L	Н	Н	Write	I _{cc}	Din	Write cycle (1)
L	L	Н	L	Write	I _{cc}	Din	Write cycle (2)

Note: x: H or L

Interfacing 128 8K Memory Chips to the 8088 µP

8086 Machine Cycles

- The key difference between the 8088 and the 8086 is the size of the data bus:
 - 8-bit for 8088
 - 16-bit for 8086
- Thus the 8086 can transfer 2 bytes of instruction code or data in each machine cycle.

8088 Memory Organization Physical Implementation

Memory in the 8088 is stored in one (logical) bank. This bank might consist of several ICs.

All 20 address lines select the appropriate byte, either directly to the chip, or indirectly through chip select circuitry. Unused lines lead to mirror images.

Little Endian / Big Endian

for the 68000:

MOVE.W #513, D0 ; move value 513 into the lower 16 bits of D0

MOVE.W D0,4 ; store the lower word of D0 into memory 4

for the 80x86:

MOV AX,513 ; load AX (16 bits), with the value 513

MOV [4],AX ; store AX into memory 4

680x0 (big-endi		80x86 (small endian)	
address 8	8-bits wide	address 8-bits wi	de
0		0	
1		1	
2		2	
3		3	
4	02	4	01
5	01	5	02
6		6	
7		7	
8		8	
9		9	
A		A	
		l	

iversity of Tehran 70

80x86 family

- 16-bit Processors
 - 8088 (8-bit data / 20-bit address)
 - 8086/186 (16-bit data / 20-bit address)
 - 80286 (16-bit data / 24-bit address)
- 32-bit Processors
 - 80386 (16/24 or 32/32 common)
 - 80486 (32/32), Pentium, PII (64/32)
 - Pentium Pro, II, III, IV (64/36)
 - PPC 60x (32 or 64/32)
- All 80x86 processors use a 16-bit address for i/o

Memory Alignment in 16-bit Micro

- We have 16-bit data bus
- Why not use it for memory access.
- 1M byte of memory is organized as:
- 512K * 16 bit
- The memory is word-aligned
- Access to even addresses is aligned and simple
- Example: 0102H and 0304H stored in [4H]

		16-bits wide		
a	ddress_	high byte	low byte	address
1	Γ] 0
3				2
5		01	02	4
7		03	04	6
9				8
В] A
				1
				1
				┙

What happens on mov AX,[4]?

What happens on mov AX,[5]?

Interfacing two 512KB Memory to the 8088 Microprocessor (review)

Interfacing two 512KB Memory to the 8086 Microprocessor

How to connect data lines? How to connect address lines?

University of Tehran 74

Address lines in 8086

- Byte addressability should be considered.
- Bytes in address 0 and 1 form a word.
- This word could be accessed in one memory cycle.
- Every even address (byte) with the corresponding odd address (byte) form a 16bit word.
- Address 0 and 1 from processor map to word 0 (row 0). Address 2, 3 map to word 1....
- Address 2n and 2n+1 map to word n.

Interfacing two 512KB Memory to the 8086 Microprocessor

Memory Bank Select

- 8086/186/286/386SX has 16 Data Lines D15-D0
- 6264 Only has 8 I/O7 I/O0
- Must Use a "Memory Bank"
 - 1 SRAM for Storing Bytes with "Even Addresses" (... 0 2)
 - 1 SRAM for Storing Bytes with "Odd" Addresses" (... 1 3)
- 8086 has BHE Control Signal (Bank High Enable)
- Can Use Combination of A0 and BHE to Determine Type of Access

v .		
- BHE	A0	Access Type
– 0	0	1 word (16-bits)
– 0	1	Odd Byte (D15-D8)
- 1	0	Even Byte (D7-D0)
- 1	1	No Access

BHE - Bus High Enable

- The BHE pin (#34) is the only physical difference between the 8088 and the 8086.
- It is active low, which corresponds to most of the enable lines of memory devices (they are usually active low).

Physical Selection

The A₀ line and the <u>BHE</u> pin determine which bank is selected.

BHE	A_0	Memory Access		
0	0	Word	$D_0 - D_{15}$	
0	1	Odd byte	$D_{8}^{0}-D_{15}^{13}$	
1	0	Even byte	$D_0 - D_7$	
1	1	NONE	0 1	

Decoding Circuit with Bank Select

8086 Memory Organization

Physical Implementation (Chapter 3.2)

		16-bits wide		
	address	high byte	low byte	address
1				0
3				2
5		01	02	4
7		03	04	6
9				8
В				A

In 8086-based systems, memory is organized into 2 banks. Lines D_0 - D_7 are connected to one, and lines D_8 - D_{15} to the other.

The A₀ and <u>BHE</u> lines select which bank to enable.

Both banks have identical address decoding circuits.

University of Tehran 81

Dual Memory Banks

- One consequence of the dual memory bank is that a word of data/instructions can only be loaded in one machine cycle if it starts on an even address.
 - This affects how you store data in the computer
 - Choosing a wrong address could lead to code that is almost 50% slower!
- 8-bit wide memory must be added in equal sized pairs.

Memory Alignment in 16-bit Micro (Summary)

- We have 16-bit data bus
- Why not use it for memory access.
- 1M byte of memory is organized as:
- 512K * 16 bit
- The memory is word-aligned
- Access to even addresses is aligned and simple
- Example: 0102H and 0304H stored in [4H]

What happens on mov AX,[4]?

What happens on mov AX,[5]?

Memory Chip

- 8K EPROM
- to be specific:
 - 8Kx8 bits EPROM

2764 Block Diagram

Operating Modes

Mode	Ē	G	P	A 9	V _{PP}	Q0 - Q7
Read	V _{IL}	V_{IL}	V _{IH}	X	Vcc	Data Out
Output Disable	V _{IL}	V_{IH}	V _{IH}	X	Vcc	Hi-Z
Program	V _{IL}	V _{IH}	V _{IL} Pulse	Х	V_{PP}	Data In
Verify	V _{IL}	V_{IL}	V _{IH}	Х	V_{PP}	Data Out
Program Inhibit	V _{IH}	Х	X	X	V_{PP}	Hi-Z
Standby	VIH	Х	X	X	Vcc	Hi-Z
Electronic Signature	V _{IL}	V_{IL}	V _{IH}	V _{ID}	Vcc	Codes Out

Note: X = V_{IH} or V_{IL} , V_{ID} = 12V \pm 0.5%.

Programming 2764

- after each erasure for UV-EPROM):
 - all bits of the M2764A are in the "1" state.
- The only way to change a "0" to a "1" is by ultraviolet light erasure.
- Programming mode when:
 - VPP input is at 12.5V
 - E and P are at TTL low.
- The data to the data output pins.
- The levels required for the address and data inputs are TTL.