Resolución Examen de Ingreso

FILA 1

AREA MATEMATICA

1. A un alambre de 91 metros de longitud se le da 4 cortes de manera que la longitud de cada trozo es igual a la del inmediato anterior, aumentado en su mitad. ¿Cuál es la longitud del trozo más grande?

Resolución. Sean a, b, c y d los cuatro cortes, en ese orden. Por lo tanto

$$a+b+c+d=91\tag{1}$$

Al ser d el último corte, tenemos

$$d = c + \frac{c}{2} = \frac{3}{2}c\tag{2}$$

De manera análoga,

$$c = b + \frac{b}{2} = \frac{3}{2}b\tag{3}$$

$$b = a + \frac{a}{2} = \frac{3}{2}a\tag{4}$$

Reemplazando (3) en (2)

$$d = \frac{9}{4}b\tag{5}$$

Reemplazando (4) en (5)

$$d = \frac{27}{8}a\tag{6}$$

De forma similar, se obtiene c

$$c = \frac{9}{4}a\tag{7}$$

Tenemos por lo tanto los siguientes valores,

$$d = \frac{27}{8}a, \quad c = \frac{9}{4}a, \quad b = \frac{3}{2}a \tag{8}$$

Reemplazando en (1),

$$a + \frac{3}{2}a + \frac{9}{4}a + \frac{27}{8}a = 91\tag{9}$$

Operando,

$$\frac{65}{8}a = 91\tag{10}$$

Por lo tanto,

$$a = \frac{728}{65} = 11.2 \tag{11}$$

Reemplazando este valor en las ecuaciones dadas en (8)

$$b = 16.8, \quad c = 25.2, \quad d = 37.8$$
 (12)

Concluyendo que la respuesta es

$$d = 37.8 \text{ metros}$$
 inciso b)

2. Si a + m + n = 36, hallar n sabiendo que: $\frac{a}{2} = \frac{m}{3} = \frac{n}{4}$.

Resolución. De $\frac{a}{2} = \frac{m}{3} = \frac{n}{4}$ podemos concluir que

$$3a = 2m, \quad 4m = 3n$$
 (13)

luego,

$$m = \frac{3}{2}a, \quad n = \frac{4}{3}m$$
 (14)

Reemplazando el valor de m en n en (14),

$$n = 2a \tag{15}$$

Reemplazando los valores de m y n de (14) en a + m + n = 36,

$$a + \frac{3}{2}a + 2a = \frac{9}{2}a = 36\tag{16}$$

$$a = 8 \tag{17}$$

Por lo tanto, reemplazando el valor de a en (15),

$$n=16$$
 inciso a) (18)

3. En el polinomio $P(x) = mx^2 + mx + 2$, se verifica que P(1) = 3P(-1). Calcular P(m+3). Resolución. Calculando P(1) y P(-1) se tiene

$$P(1) = m + m + 2 = 2m + 2 \tag{19}$$

$$P(-1) = m - m + 2 = 2 (20)$$

De P(1) = 3P(-1) obtenemos que

$$2m + 2 = 6 (21)$$

$$m = 2 \tag{22}$$

Como se pide calcular P(m+3), esto es P(5), y utilizando (22) tenemos

$$P(5) = 25m + 5m + 2 = 62$$
 incise b) (23)

4. Efectue las operaciones y simplifique:

$$(\frac{a^2}{(1+a)(1-a)} - \frac{a^4}{1-a^4})(1-a + \frac{1+a^3}{a^2})$$

$$(\frac{a^2}{(1+a)(1-a)} - \frac{a^4}{1-a^4})(1-a + \frac{1+a^3}{a^2}) = (\frac{a^2}{1-a^2} - \frac{a^4}{(1+a^2)(1-a^2)})(\frac{(1-a)a^2+1+a^3}{a^2})$$

$$= (\frac{a^2(1+a^2)-a^4}{(1+a^2)(1-a^2)})(\frac{a^2(1-a)+(1+a^3)}{a^2})$$

$$= (\frac{a^2+a^4-a^4}{(1+a^2)(1-a^2)})(\frac{a^2-a^3+1+a^3}{a^2})$$

$$= \frac{a^2(a^2+1)}{(1+a^2)(1-a^2)a^2}$$

$$= \frac{1}{1-a^2} \text{ Incise b}$$

5. Encontrar los valores del lado c y los ángulos A y B del triángulo ABC, conocidos los valores del lado a=132, el lado b=224 y el ángulo $C=28^o40'$. Ver figura

■ Para c: utilizando la ley de los cosenos,

$$c^2 = a^2 + b^2 - 2ab \, \cos(C) = 132^2 + 224^2 - 2(132)(224) \, \cos(28^o 40') = 15625$$
 entonces,
$$c = 125$$

 \bullet Para A:

$$sen(A) = \frac{a \ sen(C)}{c} = \frac{132 \ sen(28^{\circ}40')}{125} = 0,5066$$

$$A = 30^{\circ}30'$$

■ Para *B*:

$$sen(B) = \frac{b \ sen(C)}{c} = \frac{224 \ sen(28^{\circ}40')}{125} = 0,8596$$

$$B = 120^{\circ}40'$$

6. La expresión $sec^2(x) + csc^2(x)$ es idéntica (identidad trigonométrica) a:

$$sec^2(x) + csc^2(x) = \frac{1}{cos^2(x)} + \frac{1}{sen^2(x)} = \frac{sen^2(x) + cos^2(x)}{sen^2(x) \cos^2(x)} = \frac{1}{sen^2(x) \cos^2(x)} = \frac{$$

7. Hallar los valores de x, $0 \le x < 2\pi$, que son solución de $sen^2(x) + sen(x) - 2 = 0$. Resolución.

$$sen^{2}(x) + sen(x) - 2 = (sen(x) + 2)(sen(x) - 1) = 0$$

- Para sen(x) + 2 = 0 no existe solución, pues sen(x) = -2 no tiene sentido, ya que se sabe que $-1 \le sen(x) \le 1$.
- Para sen(x) 1 = 0, entonces sen(x) = 1. Como $0 \le x < 2\pi$, el único valor que es solución es $x = \frac{\pi}{2}$ inciso c
- 8. Hallar el valor de x, sabiendo que el segmento BC es paralelo al segmento DE.

Resolución. Utilizando semejanza de triángulos; como DE es paralelo a BC, se tiene

$$\frac{x}{12} = \frac{28}{14}$$

Por lo tanto,

$$x = 24$$
 in uso a)

F9.

N=0

t=25

Sen
$$45^{\circ} = \frac{\sqrt{21}}{2}$$

 $x = x_0 + v_0 t + \frac{1}{2} a t^2$ $d = \frac{1}{2} a (4)$ d = 2a

$$prg = prd$$

 $a = 9 = en45$
 $a = 10 \sqrt{2} = 5 \sqrt{2}$

$$d = 20 = 2(5\sqrt{2}) = 10\sqrt{2}$$

 $d = 10\sqrt{2}$ m

Rta.(d)

F10.

$$D = 60 \text{ cm} - 7R = 30 \text{ cm} = \frac{3}{10} \text{ m}$$

$$\omega = \frac{\sigma}{R}$$

$$\omega = \frac{80\pi}{3} (10)$$

$$\omega = \frac{80\pi}{3} (10)$$

$$W = \frac{80}{8} \pi red * \frac{1 \text{ rev}}{2 \pi red} * \frac{100}{2 \text{ min}} = 800 \text{ rpm}$$

$$M = 800 \text{ rpm}$$

Rta.(d)

$$\begin{array}{ccc}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

I = 2 A,,

$$M_{A}g = 80130^{\circ} + - M_{A}M_{A}g = 80030^{\circ} = M_{B}Q$$
 $+ M_{B}g = 80130^{\circ} + - M_{B}M_{B}g = 80030^{\circ} = M_{B}Q$

 $Q = \frac{g_{SRN30}(M_A + M_B) - g_{COS36}(M_A M_A + M_B M_B)}{M_A + M_B}$

 $\cos 36^\circ = \frac{\sqrt{3}}{3}$ $50030^{\circ} = \frac{1}{9}$

$$\lambda_{A} = \frac{1}{2\sqrt{3}}; \quad \lambda_{B} = \frac{2}{\sqrt{3}}$$

$$\lambda_{A} = \frac{1}{2\sqrt{3}}; \quad \lambda_{B} = \frac{2}{\sqrt{3}}; \quad M_{A} = 8 \text{ kg} \qquad M_{B} = 2 \text{ kg}$$

$$\lambda_{A} = \frac{1}{2\sqrt{3}}; \quad \lambda_{B} = \frac{2}{\sqrt{3}}; \quad M_{A} = 8 \text{ kg} \qquad M_{B} = 2 \text{ kg}$$

$$\lambda_{A} = \frac{1}{2\sqrt{3}}; \quad \lambda_{B} = \frac{2}{\sqrt{3}}; \quad M_{A} = 8 \text{ kg} \qquad M_{B} = 2 \text{ kg}$$

$$\lambda_{A} = \frac{1}{2\sqrt{3}}; \quad \lambda_{B} = \frac{2}{\sqrt{3}}; \quad \lambda_{B} = \frac{2}$$

$$a = \frac{50 - 5\sqrt{318}}{10} = \frac{50 - 40}{10}$$

$$a = \frac{1}{52}$$

Rta. (b)

EXAMEN QUÍMICA

Fila 1

Q13.- Los ácidos grasos se extienden espontáneamente en el agua formando una película monomolecular. Una solución de benceno que contiene 1 mm³ de ácido esteárico se vierte en una bandeja con agua. El ácido es insoluble en agua pero se extiende en la superficie formando una zona de película continua de 1000 cm² después de haberse evaporado todo el benceno. ¿Cuál es el espesor medio de la película en Angstrom? 1 Angstrom = 1*10⁻¹⁰m

Solución:

$$\frac{1mm^3}{1000cm^2} * \frac{1cm^2}{10^2mm^2} * \frac{1m}{1000mm} * \frac{1 \text{ Angstrom}}{1*10^{-10}\text{m}} = \textbf{100 Angstrom}$$

Q14.- En la reacción redox que sigue, ocurre en una solución ácida:

$$K_2Cr_2O_7 + H_2S + HCl \rightarrow KCl + CrCl_3 + H_2O + S$$

Determinar el coeficiente el agente reductor.

Solución:

$$6 e^{-} + 14H^{+} + Cr_{2}O_{7}^{2-} \rightarrow 2Cr^{3+} + 7H_{2}O \qquad *1$$

$$\underline{H_{2}S \rightarrow S + 2 H^{+} + 2 e^{-}} \qquad *3$$

$$6 e^{-} + 14H^{+} + Cr_{2}O_{7}^{2-} + 3H_{2}S \rightarrow 2Cr^{3+} + 7H_{2}O + 3S + 6H^{+} + 6 e^{-}$$

$$8 H^{+}$$

Igualando:
$$K_2Cr_2O_7 + 3H_2S + 8HCl \rightarrow 2KCl + 2CrCl_3 + 7H_2O + 3S$$

El agente reductor es el H₂S y su coeficiente estequiométrico es 3.

Q15.- El ión M^{3-} presenta 42 neutrones y número de masa 75, si M^{3-} es isoelectrónico con el ión X^{2+} , ¿cuántos electrones hay en el cuarto nivel energético del átomo X?

A) 8 E) Ninguno

B) 18

C) 2

D) 16

Solución:

El número atómico de M:
$$Z = A - n^{\circ} = 75 - 42 = 33 = p^{+}$$

Como es un ión M^{3-} quiere decir que gana 3 e⁻; por lo tanto $M^{3-} = 36 e^{-}$

Si es isoelectrónico con el ión X^{2+} ; entonces: $X^{2+} = 36 e^{-}$

 X^{2+} significa que X pierde 2 e⁻; por lo tanto: El número atómico para X=38

Realizando la configuración electrónica: $1s^22s^22p^63s^23p^6\mathbf{4s^2}3d^{10}\mathbf{4p^6}5s^2$

La cantidad de electrones en el cuarto nivel es de 8.

Q16.- Realizar los enlaces (Lewis y Barras) e indicar cuál de las especies tiene la mayor cantidad de enlaces covalentes simples.

A) NH₄NO₃

B) Cl_2O_7 C) $[CO_3]^{2-}$ D) Mg $(ClO_4)_2$

<u>E)</u>

CCl₂FNH₂

Solución:

Realizando los enlaces, se comprueba que el compuesto CCl₂FNH₂ tiene todos sus enlaces covalentes simples (6 enlaces).

Fila 1

BIOLOGIA

B17. La importancia ecológica de las plantas esta dada por:		
a) Ser productores primarios de los eco	osistemas b) Prod	ducir oxigeno molecular al ambiente
c) Transformar la energía luminosa en	química d) Toda	s e) Ninguna
B18. La disminución de la capa de ozono alrededor de la Tierra, provoca:		
a) Mayor incidencia de rayos ultraviole humano	etas b)	Menor ingreso de la luz visible al ojo
c) Mayor crecimiento en las plantas	d)Todas	e)Ninguna.
B19. Las cadenas tróficas están formadas por:		
a) Productores	b) Consumidores	c) Descomponedores
d) Todas	e)Ninguna	
B20. En un ecosistema la energía fluye	en la siguiente dire	ección:
B20. En un ecosistema la energía fluye a) Sol, productores, consumidores, des descomponedores	-	ección: b) Productores, consumidores,
a) Sol, productores, consumidores, des	scomponedores	