Classwork 8 Abstract Algebra Math 320 Stephen Giang, Emily Boyd Mihwa Yu, Bridget Houdyshel

Problem 1: Consider the polynomial $f(x) = x^4 + x^3 + x^2 + 1$ in $\mathbb{Z}_3[x]$. Prove that f(x) is irreducible. If you only check for roots, you will receive 0 points, and if you use the Rational Roots Test or Eisenstein, you will receive 0 points

Notice: The possible roots of f(x) are 0, 1, 2:

$$f(0) = 1$$

 $f(1) = 1$
 $f(2) = 2$

Thus, there are no roots, meaning the factors must be both degree 2, that is:

$$x^{4} + x^{3} + x^{2} + 1 = (ax^{2} + bx + c)(dx^{2} + ex + f)$$
$$= x^{4} + (a + c)x^{3} + (ac + b + d)x^{2} + (bc + ad)x + bd$$

Thus we get

$$a + c = 1 \tag{1}$$

$$ac + b + d = 1 \tag{2}$$

$$bc + ad = 1 (3)$$

$$bd = 1 (4)$$

Notice because of (4), we have b = d = 1 or b = d = 2.

$$b = d = 1$$

$$ac + 2 = 1$$

$$ac = 2$$

$$b = d = 2$$

$$ac + 1 = 1$$

$$ac = 0$$

If ac = 2, then either a = 1, c = 2 or a = 2, c = 1. Either way $a + c = 0 \neq 1$.

If ac = 0, then if we let a = 0, then c = 1. But this contradicts (3), because this is the case when b = 2, and $(2)(1) = 2 \neq 1$. The same is true, when we let c = 0.

Problem 2: Write out the multiplication table for $K = \mathbb{Z}_2[x]/(x^2 + x + 1)$. Use your table to explain why K is a field

	0	1	x	x+1
0	0	0	0	0
1	0	1	x	x+1
x	0	x	x+1	1
x+1	0	x+1	1	x

A field is defined as a commutative ring with identity such that all its nonzero elements have a multiplicative inverse.

Well we can see that K is a commutative ring as the table is symmetric meaning that $a*b=b*c\in K$.

Also we can see that each row, and each column contain 1, meaning each nonzero element has a multiplicative inverse.

Problem 3: Every element of $R = \mathbb{Q}[x]/(x^2 - 2)$ is a congruence class and can be written in the form [ax + b]. Determine the rules for multiplication of congruence classes in R. That if, if [ax + b][cx + d] = [rx + s], solve for r and s in terms of a, b, c, d

Notice: $[x^2] = [2]$

$$(ax + b)(cx + d) = acx^{2} + adx + bcx + bd$$
$$= 2ac + adx + bcx + bd$$
$$= (ad + bc)x + (2ac + bd)$$

So we get:

$$r = ad + bc s = 2ac + bd$$

Problem 4: Let $f(x), g(x) \in F[x]$, not both zero. Prove that if there exist $u(x), v(x) \in F[x]$ such that $f(x)u(x) + g(x)v(x) = 1_F$, then f(x) and g(x) are relatively prime.

Let
$$d(x) = gcd(f(x), g(x))$$
 and $f(x)u(x) + g(x)v(x) = 1_F$.

So notice now for $a(x), b(x) \in F[x]$:

$$f(x) = a(x)d(x)$$
$$g(x) = b(x)d(x)$$

And now we can replace these values into our beginning equation:

$$f(x)u(x) + g(x)v(x) = 1_F$$

$$d(x)(a(x)u(x) + b(x)v(x)) = 1_F$$

Thus we get $d(x)|1_F$. Because $d(x)|1_F$, degree of d(x) must be 0, such that $d(x)=1_F$