

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Derin öğrenme ve Makine öğrenme ile veri tabanlarında aykırılıklar tespit etme ve erken müdahale sistemi

Aisan KHEIRI Kaan Kürşat KILIÇ

Bitirme Projesi Raporu

Bilgisayar Mühendisliği Bölümü

DANIŞMAN

Doç. Dr. Buket DOĞAN

İSTANBUL, 2025

ú

İÇİNDEKİLER

1. Gİ	RİŞ	8
1.1.	Proje Çalışmasının Amacı ve Önemi	8
•	1.1.1 Çalışmanın Amacı	8
•	1.1.2 Çalışmanın Önemi	9
-	1.1.3 İlgili Çalışmalar	10
1.2.	Benchmark Çalışmaları	14
-	1.2.1. Patent Araştırması	14
•	1.2.2. Patent Araştırma Sonuçları	15
-	1.2.3. Sonuç ve Değerlendirme	15
2. M	ATERYAL VE YÖNTEM	16
2.1.	Veri Seti ve Özellikleri	16
•	2.1.1. Veri Setinin İçeriği	16
•	2.1.2. Veri Ön İşleme ve Temizleme	19
•	2.1.3. Veri Setinin Kullanım Amacı	20
•	2.1.4 Veri Seti Örneği	20
2.2.	Makine Öğrenmesi ve Derin Öğrenme Algoritmaları	21
•	2.2.1 Makine Öğrenmesi Algoritmaları ve Hiperparametreler	21
•	2.2.2 Kullanılan Makine Öğrenmesi Sonuçları	24
•	2.2.3 Kullanılan Derin Öğrenme Algoritmaları	25
•	2.2.4 Kullanılan Derin Öğrenme Hiper Parametreleri	26
•	2.2.5 Kullanılan Derin Öğrenme Sonuçları	26
3. W	EB SİTESİ GELİŞTİRME VE KULLANILAN TEKNOLOJİLER	28
3.1.	Web Sitesinin Genel Yapısı	28
3.2.	Kullanılan Teknolojiler ve Araçlar	38

3	3.3.	Veri Tabanı ve Tablolar	40
3	5.4.	Web Sitesine Ait Ekran Kaydı	41
4.	BU	LGULAR VE TARTIŞMA	41
5.	SO	NUÇ	43

ÖZET

Bu çalışma, veri tabanı sistemlerinde ortaya çıkabilecek olası sorunları önceden tespit ederek, otomatik müdahale mekanizmaları geliştirmeyi hedeflemektedir. Bu doğrultuda, makine öğrenimi ve derin öğrenme tabanlı anomali tespit yöntemleri kullanılmaktadır. Araştırma kapsamında sürekli toplanan telemetri verileri detaylı bir şekilde analiz edilerek ön işleme aşamalarından geçirilmiş ve değerlendirilmektedir. Veri tabanlarında oluşabilecek hataları erken tespit edebilmek için yerli bir yazılım çözümü geliştirilmesi hedeflenmiştir.

Ayrıca, bu sistemin bir web sitesi üzerinden erişilebilir olması planlanarak kullanıcıların model eğitim sürecine dahil edilmesi amaçlanmaktadır. Kullanıcılar, hiperparametreleri belirleyerek model eğitimi gerçekleştirebilecek ve sonuçları değerlendirebilecektir. Çalışma kapsamında veri toplama, ön işleme, analiz ve model değerlendirme süreçleri ayrıntılı bir şekilde ele alınmış, farklı makine öğrenimi ve derin öğrenme algoritmalarının performans karşılaştırmaları yapılmıştır.

Sonuç olarak, bu çalışma, veri tabanı yönetim süreçlerini optimize ederek verimliliği artırmayı ve gelecekteki otomasyon sistemlerine katkı sağlamayı amaçlamaktadır. Projenin uzun vadeli hedefleri arasında, veri tabanlarını daha verimli hale getirerek sorgu maliyetlerini en aza indirmek ve sistemin, sunucu içindeki gerekli tüm aksiyonları otomatik olarak gerçekleştirebilir duruma gelmesini sağlamak yer almaktadır. Ayrıca, elde edilen analiz sonuçlarının raporlanarak sistematik bir sekilde saklanması planlanmaktadır.

Anahtar Kelimeler: Veri Tabanı Yönetimi, Anomali Tespiti, Telemetri Analizi, Veri Madenciliği, Büyük Veri, Makine Öğrenmesi Modelleri, Derin Öğrenme Algoritmaları, Hiperparametre Optimizasyonu, Yapay Zeka Tabanlı Analiz, Veri Ön İşleme Teknikleri, Model Performans Ölçümü, Otomatik Anomali Algılama, Web Tabanlı Veri Analizi, Sunucu Sağlık Kontrolü, Akıllı Veri Yönetimi.

Haziran, 2025

Aisan KHEIRI, Kaan Kürşat KILIÇ

ABSTRACT

This study aims to detect potential issues in database systems in advance and develop automated intervention mechanisms. In this context, anomaly detection methods based on machine learning and deep learning are utilized. As part of the research, continuously collected telemetry data is thoroughly analyzed, preprocessed, and evaluated. A domestic software solution is intended to be developed to detect possible database errors at an early stage.

Additionally, making this system accessible via a website is planned, allowing users to participate in the model training process. Users will be able to define hyperparameters, train models, and evaluate the results. The study extensively covers data collection, preprocessing, analysis, and model evaluation processes while comparing the performance of various machine learning and deep learning algorithms.

As a result, this study aims to optimize database management processes, enhance efficiency, and contribute to future automation systems. The long-term objectives of the project include improving database efficiency, minimizing query costs, and enabling the system to autonomously execute all necessary actions within the server. Furthermore, it is planned that the obtained analysis results will be systematically recorded and reported.

Keywords: Database Management, Anomaly Detection, Telemetry Analysis, Data Mining, Big Data, Machine Learning Models, Deep Learning Algorithms, Hyperparameter Optimization, AI-Based Analysis, Data Preprocessing Techniques, Model Performance Evaluation, Automated Anomaly Detection, Web-Based Data Analysis, Server Health Monitoring, Intelligent Data Management.

June, 2025

Aisan KHEIRI, Kaan Kürşat KILIÇ

KISALTMALAR

DBMS: Database Management System

DBA : Database Administrator

LLM: Large Language Model

ML : Machine Learning

DL : Deep Learning

AI : Artificial Intelligence

SQL : Structured Query Language

RDBMS: Relational Database Management System

API : Application Programming Interface

GPU: Graphics Processing Unit

TPU: Tensor Processing Unit

ORM: Object-Relational Mapping

FPDF: Free PDF Library for Python

RNN : Recurrent Neural Network

LSTM: Long Short-Term Memory

SVM : Support Vector Machine

KNN: K-Nearest Neighbors

Auto ML: Automated Machine Learning

ŞEKİL LİSTESİ

Şekil 2.1:Veri Setinin İlk Beş Satırı	20
Şekil 3.1: Kullanıcı Giriş ve Kayıt Ekranı	28
Şekil 3.2: Şirket Gurubunun Belirlenmesi	29
Şekil 3.3: Dosya Yükleme ve Algoritma Seçme Alanı	31
Şekil 3.4: Seçilen Algoritmaya Göre Hiper parametre Girişi	31
Şekil 3.5: Eğitim Sürecinin İlerlemesi Adımı	32
Şekil 3.6: Veri Seti İçeriği Tablo Halinde	32
Şekil 3.7: Grafiğin ChatGpt Tarafından Yorumlanması	33
Şekil 3.8: Veri Setinin İstatiksel Özellikleri	33
Şekil 3.9: Veri Setinin İlişkiler Tablosu	33
Şekil 3.10: PLE Değeri için Etkili Kolonlar ve ChatGpt Yorumu	34
Şekil 3.11: Veri Setinin Sütun Bazında İstatiksel Özeti	34
Şekil 3.12: Veri Setinin PLE değerlerine Ait Pasta Grafiği	34
Şekil 3.13: Modelin Performans Ölçümü ve Karmaşıklık Matrisi	35
Şekil 3.14: Tüm Sonuçların Raporlandığı Pdf Butonu	35
Şekil 3.15: Pdf Raporuna Ait Görsel	36
Şekil 3.16: Kullanıcının Oluşturduğu Tüm Raporların Tutulduğu Ekran	36
Şekil 3.17: Telegram Bot ve Anlık Bildirim Sistemi	36
Şekil 3.18: Yeni Kullanıcı İçin Oluşturulan Kullanım Kılavuzu Örneği	37
Şekil 3.19: Adminlerin Gözüktüğü Sekme	37
Şekil 3.20: Kullanıcıların Gözüktüğü Sekme	38
Sekil 3.21: Kullanıcıların Oluşturduğu Raporlar Sekmesi	38

TABLO LİSTESİ

Tablo 1.1: <i>Literatür Tarama</i>	14
Tablo 2.1: Üç Algoritmaya Ait Model Eğitim Sonuçları	24
Tablo 2.2: İki Algoritmaya Ait Model Parametreleri	26
Tablo 2.3: Derin Öğrenmede İki Algoritmaya Ait Model Eğitim Sonuçları	27

1. GİRİŞ

Günümüzde veri tabanı yönetim sistemleri, büyük ölçekli şirketlerden kamu kuruluşlarına kadar birçok alanda kritik bir rol oynamaktadır. Veri tabanlarının kesintisiz ve hatasız çalışması, veri güvenliği, sistem performansı ve iş sürekliliği açısından büyük önem taşımaktadır. Ancak, sistemlerde meydana gelebilecek anormal durumlar (aykırılıklar), performans düşüşlerine, veri kayıplarına veya güvenlik tehditlerine yol açabilmektedir. Geleneksel yöntemler genellikle statik kural tabanlı tespit sistemlerine dayanmakta olup, yeni ve bilinmeyen anomalileri algılamakta yetersiz kalmaktadır. Bu nedenle, makine öğrenmesi (ML) ve derin öğrenme (DL) tabanlı otomatik tespit ve müdahale mekanizmalarına duyulan ihtiyaç giderek artmaktadır.

Bu çalışmada, makine öğrenmesi ve derin öğrenme teknikleri kullanılarak, veri tabanlarında meydana gelen anormalliklerin tespit edilmesi ve otomatik müdahale mekanizmalarının geliştirilmesi amaçlanmaktadır. Sistem, veri tabanı telemetri verilerini sürekli olarak analiz ederek, anomalileri erken aşamada tespit edecek ve proaktif önlemler alacaktır. Makine öğrenmesi algoritmaları, geçmiş verilere dayalı istatistiksel analiz yaparak anomali modellerini belirlerken; derin öğrenme teknikleri, daha karmaşık ve öngörülemeyen anomalileri tespit etmek için gelişmiş yapay sinir ağları ile çalışacaktır.

1.1. Proje Çalışmasının Amacı ve Önemi

• 1.1.1 Çalışmanın Amacı

Bu çalışma, makine öğrenmesi (ML) ve derin öğrenme (DL) tekniklerini kullanarak veri tabanlarında meydana gelen anomalileri tespit etmek ve erken müdahale mekanizmaları geliştirmek amacıyla yürütülmektedir. Veri tabanı sistemleri, günümüz dijital dünyasında büyük ölçekli işletmelerden kamu kurumlarına kadar birçok alanda kritik öneme sahiptir. Ancak, veri tabanlarında oluşabilecek aykırılıklar (anomaliler), veri bütünlüğünü, performansı ve sistem güvenilirliğini tehdit edebilir. Geleneksel veri tabanı yönetim sistemleri (DBMS), statik kural tabanlı yöntemlere dayanırken, dinamik ve değişen veri yapıları karşısında esneklikleri sınırlıdır.

Bu çalışmada, makine öğrenmesi ve derin öğrenmenin birlikte kullanıldığı hibrit bir sistem geliştirerek, veri tabanlarında otomatik anomali tespiti ve erken müdahale mekanizmaları

oluşturulması hedeflenmektedir.

- Makine öğrenmesi algoritmaları ile geçmiş verilere dayalı olarak veritabanı anormalliklerini öngörmek,
- Derin öğrenme modelleri ile karmaşık ve öngörülemeyen anomalileri daha yüksek doğrulukla tespit etmek,

1.1.2 Çalışmanın Önemi

Veri tabanlarında meydana gelen anomaliler ve sistem hataları, sistem kesintilerine, veri kaybına ve güvenlik açıklarına yol açabilmektedir. Geleneksel veri tabanı yönetim sistemleri, bu tür sorunları tespit etmek ve müdahale etmek için kural tabanlı yaklaşımlar ve manuel DBA (Database Administrator) müdahalelerine bağımlıdır. Ancak, günümüzün büyük ölçekli veri sistemleri için manuel yönetim süreçleri zaman alıcı ve yetersizdir.

Bu çalışmanın önemi aşağıdaki faktörlerle özetlenebilir:

- Veri tabanı sistemlerinde gerçek zamanlı anomali tespiti: Geleneksel sistemler genellikle anomalileri geç tespit eder ve çoğu zaman müdahale edemez. Bu sistem, otomatik ve hızlı bir şekilde anomalileri tespit edip müdahale etme yeteneğine sahip olacaktır.
- Makine öğrenmesi ve derin öğrenme tekniklerinin hibrit kullanımı: Çalışma, ML tabanlı sınıflandırma modelleri ile DL tabanlı zaman serisi analiz yöntemlerini entegre ederek daha yüksek doğruluk oranına sahip bir tespit mekanizması sunacaktır.
- 3. Endüstri ve akademik alanda katkı sağlaması: Geliştirilecek sistem, kurumsal veri tabanı yönetim sistemleri, finans, sağlık, e-ticaret ve büyük veri yönetimi gibi birçok alanda kullanılabilir. Ayrıca, yapay zeka destekli veri tabanı yönetimi alanında akademik katkı sunacaktır.
- 4. Bu çalışmanın çıktıları, günümüzün büyüyen veri sistemlerinin daha güvenli, ölçeklenebilir ve otonom hale gelmesine katkı sağlayacak ve gelecekteki yapay zeka destekli veri tabanı yönetim sistemlerine temel oluşturacaktır.

• 1.1.3 İlgili Çalışmalar

Veri tabanı yönetim sistemlerinde aykırılık tespiti, hata tahmini ve optimizasyon konularında birçok çalışma yapılmış olup, bu çalışmalar genellikle makine öğrenmesi, derin öğrenme ve büyük dil modelleri (LLM) gibi yöntemleri içermektedir. Bu bölümde, önerilen çalışmaya benzer araştırmalar ele alınarak kullanılan yöntemler, temel bulgular ve eksik yönler tartışılacaktır.

Makale Başlığı	Yazar(lar)	Yayın Tarihi	Yayın Künyesi	Özet
D-Bot: Database Diagnosis System using Large Language Models [1]	Zhou, X., Li, G., Sun, Z., Liu, Z., Chen, W., Wu, J., & Zeng, G.	2023	Sun, Z., Liu, Z.,	(LLM) veritabanı teşhis süreçlerinde kullanılmasını amaçlayan D-Bot adlı bir sistem önermektedir. D- Bot, otomatik teşhis ipuçları
A Machine Learning Approach to Database Failure Prediction [2]	Karakurt, İ., Özer, S., Ulusinan, T., & Ganiz, M. C.	2017	Karakurt, I., Ozer, S., Ulusinan, T., & Ganiz, M. C. (2017). A machine learning approach to database failure prediction. In 2017	Bu çalışmada, Oracle veri tabanı sistemlerindeki olası hataların önceden tahmin edilmesi için makine öğrenmesi

			International Conference on Computer Science and Engineering (UBMK) (pp. 1030-1035). IEEE.	
DB-GPT: Large Language Model Meets Database [3]	Zhou, X., Sun, Z., & Li, G.	2024	Zhou, X., Sun, Z., & Li, G. (2024). Db-gpt: Large language model meets database. Data Science and Engineering, 9(1), 102-111.	dil modellerinin veri tabanı sorgu optimizasyonu,

		1	Г	
				sağlamıştır. Bu çalışma, LLM'lerin veri tabanı yönetiminde nasıl kullanılabileceğini ortaya koyarak yeni nesil otomatik veritabanı optimizasyon sistemlerinin temelini atmaktadır.
Future Trends in SQL Databases and Big Data Analytics [4]	Islam, S.	2024	Islam, S. (2024). Future Trends In SQL Databases And Big Data Analytics: Impact of Machine Learning and Artificial Intelligence. Available at SSRN 5064781.	Bu makale, SQL veri tabanları ile büyük veri analitiğinin kesişim noktalarını
LLM for Data Management	Li, G., Zhou, X., & Zhao,	2024	Li, G., Zhou, X., & Zhao, X. (2024).	Bu çalışma, büyük dil modellerinin

[5]	X.		LLM for Data	(LLM) veri
[5]	Λ.			` /
			Management.	yönetimi
			Proceedings of the	
			VLDB	kullanılabileceğini
			Endowment,	analiz etmektedir.
			17(12), 4213-	
			4216.	öğrenmesi
				yöntemlerine
				kıyasla LLM'lerin
				bağlamsal anlama
				yetenekleri
				sayesinde veri
				analitiği, sorgu
				optimizasyonu ve
				hata teşhisi gibi
				alanlarda daha
				başarılı sonuçlar
				verebileceği
				belirtilmektedir.
				Önerilen sistem,
				RAG (Retrieval-
				`
				Augmented
				Generation)
				teknikleri ve
				vektör veri
				tabanları ile
				desteklenerek,
				LLM'lerin
				doğruluk oranını
				artırmayı
				hedeflemektedir.
Machine	Fahima, M.	2024	Fahima, M. M. F.,	Makine öğrenmesi
Learning for	M. F., Sreen,	2024	Sreen, A. S.,	_
Database Tor	A. S.,		Ruksana, S. F.,	
Management	Ruksana, S.		Weihena, D. T. E.,	sorgu
and Query			& Majid, M. H. M.	
Optimization	D. T. E., &		(2024). Machine	
[6]	Majid, M. H.		Learning for	
	M.		Database	araştıran bu
			Management and	, , , ,
			Query	yönetimi,
			Optimization.	indeksleme ve veri
			Elementaria:	kalitesi sağlama
			Journal of	\mathcal{L}
			Educational	odaklanmaktadır.
			Research, 2(1), 96-	Derin öğrenme,
			108.	pekiştirmeli
				öğrenme ve doğal
L	<u>I</u>	ı	I	<i>a</i> == := == 531

	dil işleme
	tekniklerinin, veri
	tabanı yönetim
	sistemlerinde
	verimliliği artırma
	potansiyeli
	vurgulanmaktadır.
	Çalışma, özellikle
	dinamik sorgu
	optimizasyonu ve
	otonom
	indeksleme
	tekniklerine
	odaklanarak,
	geleneksel
	yöntemlerden daha
	iyi sonuçlar elde
	edilebileceğini
	göstermektedir.

Tablo 1.1: Literatür Tarama

1.2. Benchmark Çalışmaları

• 1.2.1. Patent Araştırması

Bu çalışmada, veri tabanı yönetimi ve yapay zeka konularında mevcut patentlerin varlığını araştırmak amacıyla çeşitli ulusal ve uluslararası patent veri tabanlarında aramalar gerçekleştirilmiştir. Araştırmada, aşağıdaki anahtar kelimeler kullanılmıştır:

- "database and deep learning"
- "database optimization"
- "database and machine learning"
- "database artificial intelligence"
- "veri tabanı ve yapay zeka"
- "veri tabanı"
- "veri tabanı ve derin öğrenme"
- "veri tabanı ve makine öğrenmesi"

Araştırma, ABD Patent ve Ticari Marka Ofisi (USPTO), Espacenet (Avrupa Patent Ofisi), Google Patents ve Türk Patent ve Marka Kurumu veri tabanlarında gerçekleştirilmiştir.

• 1.2.2. Patent Araştırma Sonuçları

USPTO Patent Veri Tabanı:

USPTO'nun Artificial Intelligence Patent Dataset (AIPD) 2023 güncellenmiş veri seti incelenmiş ve yukarıda belirtilen anahtar kelimelerle ilgili doğrudan bir patente rastlanmamıştır. Ancak, AI tabanlı veritabanı yönetimi ve optimizasyon süreçleri ile ilgili bazı genel patentler bulunmaktadır.

Espacenet Patent Veri Tabanı:

Espacenet üzerinden yapılan aramalarda, "database and deep learning", "database and machine learning" gibi anahtar kelimeler kullanılarak yapılan sorgular sonucunda doğrudan bir veri tabanı ve yapay zeka entegrasyonu üzerine alınmış patent tespit edilememiştir.

Google Patents Veri Tabanı:

Google Patent üzerinde yapılan aramalarda, veri tabanı optimizasyonu ve yapay zeka tabanlı veri tabanı yönetimi ile ilgili bazı başvuruların olduğu görülmüş, ancak bu başvuruların doğrudan büyük dil modelleri (LLM) veya derin öğrenme tabanlı veri tabanı teşhisi ve optimizasyonu ile ilgili olmadığı anlaşılmıştır.

Türk Patent ve Marka Kurumu:

Türk Patent ve Marka Kurumu veri tabanında "veri tabanı ve yapay zeka", "veri tabanı ve makine öğrenmesi" gibi Türkçe ve İngilizce anahtar kelimelerle araştırma yapılmış, ancak konuya ilişkin doğrudan bir patent bulunamamıştır.

• 1.2.3. Sonuç ve Değerlendirme

Yapılan benchmark çalışmaları sonucunda, veri tabanı yönetim sistemleri ve yapay zeka entegrasyonu ile ilgili patentlerin sınırlı olduğu görülmektedir. Mevcut patentler genellikle genel veri tabanı optimizasyon teknikleri ve yapay zeka ile ilgili genel çözümler üzerine yoğunlaşmıştır. Derin öğrenme (deep learning) ve büyük dil modelleri (LLM) ile veri tabanı teşhisi, optimizasyonu ve yönetimi konularında henüz kapsamlı bir patent başvurusunun olmadığı tespit edilmiştir.

2. MATERYAL VE YÖNTEM

2.1. Veri Seti ve Özellikleri

Bu çalışmada kullanılan veri seti, Data Platform şirketinin gerçek verilerini içermektedir ve veri tabanı performans analizine yönelik çeşitli metrikleri kapsamaktadır. Veri seti, zaman serisi tabanlı ölçümler içerdiğinden, veri tabanı yönetimi süreçlerinin performansını değerlendirmek ve optimizasyon stratejileri geliştirmek için analiz edilmiştir.

• 2.1.1. Veri Setinin İçeriği

Veri setinde 36 farklı değişken bulunmaktadır. Bu değişkenler, veri tabanının çalışma durumu, performans metrikleri ve yönetim süreçleri ile ilgili bilgiler içermektedir. Öne çıkan bazı değişkenler şunlardır:

Sütun Adı	Açıklama			
InstanceID	SQL Server sisteminden alınan verilerin hangi sunucu (veya örnek/instance) üzerinden geldiğini belirtir. Sistemleri birbirinden ayırmak için kullanılır.			
CreateDate	Bu satırdaki verilerin hangi tarih ve saatte toplandığını belirtir. Yani sistem performansı o anda nasılmış, bu bilgiyi verir.			
page life expectancy	SQL Server'ın belleğinde (RAM) bulunan verilerin ne kadar süre bellekte tutulduğunu gösterir. Düşükse, RAM yetersizdir ve sistem daha yavaş çalışabilir.			
% privileged time	CPU'nun işletim sistemi seviyesinde (yani kullanıcı değil sistem modunda) ne kadar süre çalıştığını gösterir. Yüksekse donanım sıkıntısı veya sürücü problemi olabilir.			
transactions/sec	Sistemde saniyede kaç işlem gerçekleştiğini gösterir. Bu, genel işlem yoğunluğunu belirtir.			

Sütun Adı	Açıklama
write transactions/sec	Saniyede kaç tane yazma işlemi (insert, update, delete gibi) yapıldığını gösterir. Yüksek değerler diske yazma yoğunluğu olduğunu gösterir.
logical connections	Veri tabanına anlık olarak kaç bağlantı olduğunu belirtir. Yani kaç kullanıcı veya uygulama bağlanmış.
dbaHCDOC	HCDOC adlı bir kontrol veya sağlık kontrol prosedürünün çalıştırılıp çalıştırılmadığını gösterir.
dbaShrinkLog	Log dosyalarının "shrink" işlemi (boyut küçültme) ile temizlenip temizlenmediğini belirtir. Disk alanı kazanımı için yapılır.
dbaHCDOCexportTxt	HCDOC verilerinin dışa metin (.txt) olarak aktarılıp aktarılmadığını gösterir.
dbaCheckPrimaryNode	Sunucu kümeleme (AlwaysOn gibi) yapısındaysa, sistemin birincil (primary) düğümde olup olmadığını kontrol eder.
dbaTurkiyeFinansEventLogDeleto	Türkiye Finans sistemine özel olarak olay (event) loglarının silinip silinmediğini gösterir.
dbaBackupLog	Veri tabanı log dosyalarının yedeklenip yedeklenmediğini belirtir. Loglar düzenli yedeklenmezse veri kaybı riski vardır.
dbaSessionKiller	Uzun süre işlem yapmadan açık kalan bağlantıların otomatik olarak sonlandırılıp sonlandırılmadığını belirtir. Performansı korumak için kullanılır.
dbafullbackup	Veri tabanının tam (full) yedeğinin alınıp alınmadığını gösterir. Günlük veya haftalık

Sütun Adı Açıklama yapılması gereken temel bir bakım işlemidir. Veri tabanındaki index'lerin yeniden düzenlenip dbaMaintenanceReIndex düzenlenmediğini belirtir. Performansı artırmak için yapılır. Genel bakım işlemlerinin (yedek, index temizliği, log temizliği gibi) planlandığı şekilde çalışıp Maintenance çalışmadığını gösterir. HCDOC işlemlerinin kontrol ve doğrulama dbaHCDOCcontrol başarıyla aşamasının tamamlanıp tamamlanmadığını belirtir. HCDOC işlemlerinin yüksek erişilebilirlik dbaHCDOCHadrControl sistemleri (AlwaysOn, HADR) entegre ile kontrolünün yapılma durumunu belirtir. SQL Server'ın kendi güvenlik ve yapılandırma politikalarına ait geçmiş log kayıtlarının temizlenip syspolicy purge history temizlenmediğini belirtir. SQL Server'ın dinleyici (listener) servisinin çalışıp dbaCheckListenerStatus çalışmadığını kontrol eder. Bu servis dış bağlantılar için gereklidir. Veri tabanının aylık tam yedeğinin alınma dbaFullAylıkBackup belirtir. Stratejik yedekleme durumunu politikalarının bir parçasıdır. FibaBank'a ait sistemlerde loglarının olay dbaFibabankEventLogDelete temizlenip temizlenmediğini belirtir. FibaBank sisteminde veri/log dosyalarının

küçültme (shrink) işleminin yapılıp yapılmadığını

dbaFibadataShrink

Sütun Adı Açıklama

belirtir.

Veri tabanı replikasyonu veya yedek sunucular ile dbaCheckDBSync senkronizasyonun kontrol edilip edilmediğini

belirtir.

Aşağıdaki sütunlar tabloda yer alan başlıca alanlardır:

- InstanceID
- CreateDate
- Page Life Expectancy
- % Privileged Time
- Transactions/sec
- Write Transactions/sec
- Logical Connections

Bu alanların dışındaki sütunlar ise, ilgili tarih ve saatteki job'ın başarılı bir şekilde çalışıp çalışmadığını göstermektedir.

• 2.1.2. Veri Ön İşleme ve Temizleme

Bu proje kapsamında veri ön işleme adımları çok katmanlı olarak gerçekleştirilmiştir. Aşağıda sıralanan teknik adımlar sayesinde, hem makine öğrenmesi hem de derin öğrenme modelleri için dengeli ve anlamlı veri sağlanmıştır:

- Ham veri, dbaHCDOC, dbaHCDOCexportTxt gibi stored procedure'ler ile DOCperformanceMonitor, DOCjobStatus, DOCintegration tablolarından toplanmıştır.
- 40.000'den fazla sıfır değer içeren sütunlar temizlenerek noise reduction uygulanmıştır.
- Eksik timestamp'ler ve hatalı tarih formatları ayıklanmıştır.
- FP-Growth ve Apriori algoritmalarıyla iş parçacığı ilişkileri modellenmiş, yeni özellikler türetilmiştir.
- Page Life Expectancy (PLE) değerine göre [0-300], [301-5000], [5001+] aralıklarında

etiketleme yapılmıştır.

- Sınıf dengesini sağlamak için oversampling ve undersampling teknikleri kullanılmıştır.
- LSTM ve RNN gibi modeller için tüm sayısal veriler 0–1 aralığına normalize edilmiştir (MinMaxScaler).
- Eğitim-test ayrımı %80-%20 oranında yapılmış, lookback penceresi 240 olarak belirlenmiştir.

Bu kapsamlı ön işleme süreci, sistem performans tahminlerinin doğruluğunu ve model genel başarımını artırmaya yöneliktir.

2.1.3. Veri Setinin Kullanım Amacı

Bu veri seti, aşağıdaki amaçlarla analiz edilmiştir:

1. Veritabanı Performans Analizi:

- İşlem yükü (transactions/sec) ve CPU kullanım oranlarının korelasyonu analiz edilerek, sistem üzerindeki yoğunluk dönemleri belirlenmiştir.
- Page Life Expectancy değişkeni ile bellek kullanım verimliliği değerlendirilmiştir.

2. Anomali Tespiti:

 Normalden sapmalar gösteren CPU ve bellek kullanımları tespit edilerek, sistem anormalliklerini belirlemek için Makine Öğrenmesi tabanlı anomali tespiti uygulanmıştır.

• 2.1.4 Veri Seti Örneği

	InstanceID	CreateDate	page life expectancy	% privileged time	transactions/ sec	write transactions/ sec	logical connections	dbaHCDOC	VobVadesiDolmuslariSil	dbaShrinkLog	 syspolicy_purge_history	dbaCheckListenerStatus	SP_TblTicGunlukInsertData	tblTicTarihsel
0	297	2024-06-20 00:00:00	12167	10.15	254.72	166.82	638	0	0	0	0	0	0	0
1	297	2024-06-20 00:00:15	12167	3.32	420.75	336.80	658	0	0	0	0	0	0	0
2	297	2024-06-20 00:00:30	12167	2.54	217.77	174.81	655	0	0	0	0	0	0	0
3	297	2024-06-20 00:00:45	12167	4.09	159.67	124.74	652	0	0	0	0	0	0	0
4	297	2024-06-20 00:01:00	12167	3.12	411.09	190.58	652	0	0	0	0	0	0	0
5 rov	vs × 36 colum	nns												

Şekil 2.1:Veri Setinin İlk Beş Satırı

2.2. Makine Öğrenmesi ve Derin Öğrenme Algoritmaları

Bu çalışmada, veri tabanı performans analizi, anomali tespiti ve tahmine dayalı modelleme süreçlerinde farklı makine öğrenmesi ve derin öğrenme algoritmaları kullanılmıştır. Veri setindeki örüntüleri belirlemek, veri tabanı üzerindeki işlemleri optimize etmek ve anomali tespiti yapmak amacıyla aşağıdaki algoritmalar tercih edilmiştir.

• 2.2.1 Makine Öğrenmesi Algoritmaları ve Hiperparametreler

Bu çalışmada, verilerin sınıflandırılması ve tahmin edilmesi amacıyla üç farklı makine öğrenmesi algoritması uygulanmıştır. Bu algoritmaların her birine ilişkin kullanılan hiperparametreler aşağıda detaylı olarak sunulmuştur.

• 1. Random Forest Algoritması:

Random Forest, birden fazla karar ağacının birleşiminden oluşan bir öğrenme yöntemidir. Bu algoritma, güçlü tahmin performansı ile bilinmekte olup, yüksek doğruluk oranlarına ulaşabilmektedir. Random Forest algoritmasında kullanılan belirli hiper parametreler şunlardır:

• n estimators: 100

Modeldeki karar ağaçlarının sayısı belirlenmiştir. 100, makul bir model doğruluğu elde etmek için seçilen optimum değeri temsil etmektedir.

• max_depth: 5

Karar ağaçlarının maksimum derinliği sınırlandırılmıştır. Bu, modelin aşırı öğrenmesini (overfitting) engellemek için kullanılan bir parametredir.

2

min_samples_split:

Bir iç düğümün iki alt düğüme ayrılması için gereken minimum örnek sayısını ifade etmektedir. Bu parametre, modelin daha ince ayrıntılara odaklanmasına olanak verir.

• criterion: Gini

Karar ağacı inşasında, düğüm bölme kararlarını almak için kullanılan kriterdir. Burada, Gini saflığı kullanılmıştır.

• Test Size: 0.2

Verilerin %20'lik kısmı test seti olarak ayrılmıştır.

• Random State: 42

Rastgelelikin tekrarlanabilirliğini sağlamak amacıyla belirlenen sabit bir sayı.

Sınıflama yönteminin temel amacı; veri tabanı sistemlerinde oluşabilecek performans anomalilerini önceden belirlemek, sistemleri üç sınıfa ayırmak ve erken müdahale mekanizmalarını başlatmaktır.

Veri sınıflandırması, Page Life Expectancy (PLE) değişkenine göre şu şekilde yapılandırılmıştır:

- 0–300: Düşük (Aykırı Kritik Durum)
- 301–5000: Orta (İzlenmeli Alarm)
- 5001+: Yüksek (Normal)

Bu eşikler istatistiksel analiz (ortalama ≈ 6400 , mod ≈ 13500) ve alan uzmanlarının görüşlerine dayanmaktadır. Bu yapı, hem model eğitimi hem de sistem uyarı mekanizması için temel teşkil etmektedir.

• 2. SVM (Support Vector Machine) Algoritması:

Destek Vektör Makinesi (SVM), verilerin en iyi şekilde sınıflandırılabilmesi için bir hiper düzlem (hyperplane) bulmaya çalışan bir algoritmadır. SVM algoritmasında kullanılan hiper parametreler ise şu şekildedir:

- C: 2.00
 C parametresi, modelin sınıflandırma hatalarını nasıl cezalandıracağını belirler.
 Daha büyük C değerleri, modelin hata toleransını azaltır.
- Kernel: Sigmoid
 SVM'nin doğrusal olmayan sınıflandırmalar için kullanılan çekirdek
 fonksiyonudur. Burada, sigmoid fonksiyonu tercih edilmiştir.
- Sütun Aralığı: 2 (page life expectancy) 7 (dbaHCDOC)
 Kullanılan özellikler arasındaki ilişkiyi tanımlar. Bu aralık, SVM modeline sağlanan veri sütunlarını belirlemektedir.
- Test Size: 0.2

 Test verisinin oranını belirler. Verilerin %20'lik kısmı test için ayrılmıştır.

•	Random			State:			42
	Modelin o		irliğini ve	rastgeleliğinin	sabitliğini	sağlamak	amacıyla
•	Operator	•					>
	-		anılan karş	ılaştırma operatö	örüdür.		
•	Hedef	,	ŕ	Etiket:			300
·		rılacak hedef	etiket değe				300
•			_	= df["page	life exp	ectancv"]	> 300
			•	expectancy" s	•	• -	
	olmadığın	a göre belirle	nmiştir.	-			
•	3. KNN (I	K-Nearest N	eighbors)	Algoritması:			
yönten	nidir. KNN,	· · · · · ·	ğrenilmesi	ı, en yakın kon nde yakınlık ölçi	,		
•	n_neighbo	ors:					5
	KNN modelinde, sınıflandırma kararı verirken dikkate alınacak komşu sayısını belirler.						
•	metric:]	Euclidean
	•	mesafesini	-	nmasında kullar	nılan metri	ktir. Burac	la, Öklid
•	weights:						Uniform
	Komşu a	ğırlıklarının	tüm kom	şular için eşit	olduğu be	lirtilmiştir.	Bu, her
	komşunun	sınıf kararın	a eşit katkı	ı sağlamasını sağ	glar.		
•	Sütun	Aralığı: 2	(page	life expecta	ancy) -	7 (dba	HCDOC)
	KNN mod	leline sağlana	ın veri sütu	ınlarının seçildiğ	gi aralık.		
•	Test			Size:			0.2
	Test verisi	nin oranını b	elirler. Ve	rilerin %20'si te	st için ayrılı	mıştır.	
•	Random			State:			42
	Modelin ra	astgeleliğini l	kontrol altı	na almak için sa	bit bir değe	r belirlenm	iştir.

• Operator: >

KNN algoritmasında kullanılan karşılaştırma operatörüdür.

• **Hedef Etiket**: 300 KNN algoritmasında sınıflandırılması gereken hedef etiket değeri.

• **Hedef Etiket Tanımı**: y = df["page life expectancy"] > 300 Hedef etiket, verinin "page life expectancy" sütununun 300'den büyük olup olmadığına göre belirlenmiştir.

2.2.2 Kullanılan Makine Öğrenmesi Sonuçları

Algorithm	Confusion Matrix	Accuracy	F1-Score	Recall
SVM	[[1864, 137], [104, 11889]]	0.9828	0.9900	0.9913
Random Forest	[[1593, 408, 0], [0, 5482, 0], [0, 0, 6511]]	0.9708	0.9708	0.9708
KNN	[[2004, 0], [25, 1978]]	0.9938	0.9937	0.9875

Tablo 2.1: Üç Algoritmaya Ait Model Eğitim Sonuçları

• Tablo 2.1'e Ait Açıklamalar:

- Confusion Matrix: Her algoritmanın, doğru ve yanlış sınıflandırdığı örneklerin sayısını göstermektedir. Satırlar gerçek sınıfı, sütunlar ise tahmin edilen sınıfı ifade eder. Örneğin, SVM algoritması için [1864, 137] ilk satırda, [104, 11889] ikinci satırda yer alıyor, bu da doğru ve yanlış sınıflandırmalar hakkında bilgi verir.
- Accuracy (Doğruluk): Modelin doğru tahminlerinin, toplam tahminlere oranıdır.
 Yüksek bir accuracy, modelin genel doğruluğunu gösterir. KNN algoritması, en yüksek doğruluğa sahip olup, %99.38 doğruluk oranına ulaşmıştır.
- **F1-Score:** Precision ve Recall değerlerinin harmonik ortalamasıdır. F1-Score, dengesiz sınıf dağılımlarında daha faydalıdır. SVM ve KNN algoritmaları, yüksek F1-Score değerleri ile dikkat çekmektedir.

• Recall: Gerçek pozitif sınıfların doğru bir şekilde sınıflandırılma oranını ifade eder. Yüksek bir recall değeri, modelin doğru pozitif sınıflandırmalarını artırma yeteneğini gösterir. SVM, en yüksek recall değerine sahip algoritmadır.

2.2.3 Kullanılan Derin Öğrenme Algoritmaları

Veri tabanı yönetimi ve performans optimizasyonunda zaman serisi analizi ve tahminleme için derin öğrenme modelleri kullanılmaktadır.

Zaman serisi verilerindeki performans tahmininde klasik yöntemler yetersiz kaldığı için bu projede hem RNN hem de LSTM mimarileri kullanılmıştır.

- RNN, kısa vadeli bağımlılıkları öğrenmekte başarılıdır fakat uzun dönemli ilişkilerde "vanishing gradient" sorunu yaşayabilir.
- LSTM, bellek hücreleri sayesinde geçmişteki önemli bilgileri daha uzun süre koruyarak hem kısa hem uzun vadeli bağımlılıkları öğrenebilir.
- LSTM mimarisiyle eğitilen modelde:
- 1 LSTM katmanı (4 nöron), dropout, dense çıkış katmanı
- MinMaxScaler ile normalize edilmiş giriş
- Eğitim RMSE \approx 796, Test RMSE \approx 720 sonuçları elde edilmiştir.

Bu derin öğrenme modelleri sayesinde, sistem kaynaklarının geçmişe bağlı etkileri öğrenilmiş ve PLE gibi metrikler için doğru tahminler yapılabilmiştir.

• Tekrarlayan Sinir Ağları (Recurrent Neural Networks - RNN):

- o Önceki zaman adımlarını dikkate alarak ardışık verilerde analiz yapar.
- Veri tabanındaki işlem yükü değişikliklerini zaman serisi bazında analiz etmek için kullanılmıştır.
- Ani performans değişikliklerini öngörerek gelecekteki anormallikleri tespit edebilme yeteneğine sahiptir.

• Uzun Kısa Süreli Bellek (Long Short-Term Memory - LSTM):

 RNN modelinin geliştirilmiş versiyonudur ve uzun vadeli bağımlılıkları öğrenme kapasitesine sahiptir.

- Veri tabanı işlemleri üzerindeki zaman serisi tahminlerinde ve performans optimizasyonunda kullanılmıştır.
- Bellek mekanizması sayesinde geçmiş işlemleri daha etkili bir şekilde hatırlayarak gelecek tahminleri yapabilmektedir.

• 2.2.4 Kullanılan Derin Öğrenme Hiper Parametreleri

Hiperparametre	LSTM Modeli	RNN Modeli
Nöron Sayısı	4	4
Dropout Oranı	0.2	0.2
Epoch Sayısı	2	2
Batch Boyutu	32	64
Aktivasyon Fonksiyonu	-	tanh
Optimizer	Adam	Adam

Tablo 2.2: İki Algoritmaya Ait Model Parametreleri

• 2.2.5 Kullanılan Derin Öğrenme Sonuçları

Metik	LSTM (Test)	RNN (Test)	Yorum
MAE	656.69	1149.70	LSTM, ortalama mutlak hata açısından çok daha düşük hata üretmiş ve daha doğru tahminler yapmıştır.
MSE	985.50	1525.89	LSTM, daha küçük kare hata ile tahminlerde daha az büyük hata yapmıştır.
RMSE	31.39	39.06	LSTM, hata dağılımında da daha başarılıdır.
MAPE	26.21%	77.89%	LSTM'nin yüzdelik hatası çok daha düşüktür; RNN'ye göre tahminlerde büyük ölçüde daha isabetlidir.

R²	0.97	0.93	Her iki model de yüksek doğrulukla tahmin yapmıştır ancak LSTM daha fazla varyans açıklamaktadır.
----	------	------	--

Tablo 2.3: Derin Öğrenmede İki Algoritmaya Ait Model Eğitim Sonuçları

• Kullanılan Hata Metrikleri ve Anlamları

MAE (Mean Absolute Error)
 Ortalama mutlak hata, tahmin edilen değerler ile gerçek değerler arasındaki farkların mutlak değerlerinin ortalamasıdır. Daha düşük değerler, daha yüksek doğruluğu gösterir.

- 2. MSE (Mean Squared Error)

 Ortalama kare hata, hata değerlerinin karesinin ortalamasıdır. Büyük hatalara daha fazla ceza verdiği için duyarlıdır. Küçük MSE değeri, modelin genel hatasını daha düşük tuttuğunu gösterir.
- 3. RMSE (Root Mean Squared Error)
 MSE'nin kareköküdür ve birimsel olarak hedef değişkenle aynı ölçeği taşır.
 Genellikle yorumlaması daha kolaydır. Düşük RMSE, daha iyi performans anlamına gelir.
- 4. MAPE (Mean Absolute Percentage Error)
 Ortalama mutlak yüzdelik hata, tahmin hatalarının yüzde cinsinden ortalamasıdır.
 Gerçek değer sıfıra yakın olduğunda sorun yaratabilir ama genellikle sezgiseldir:
 %26 MAPE, tahminlerin ortalama %26 sapma içerdiğini gösterir.
- 5. R² (R-Kare Determination Coefficient)

 Modelin bağımlı değişkenin varyansını ne kadar açıkladığını gösterir. 1'e ne kadar yakınsa, modelin o kadar iyi olduğunu gösterir. 0.93 ile 0.97 arasındaki R² değerleri oldukça yüksek kabul edilir.

Yapılan değerlendirmeler göstermektedir ki LSTM modeli, tüm hata metriklerinde RNN modeline kıyasla daha iyi performans sergilemiştir. Özellikle MAPE değerindeki dramatik fark, LSTM'nin gerçek değerlere çok daha yakın tahminlerde bulunduğunu ortaya koymaktadır. R² değerleri her iki modelde de yüksek olmakla birlikte, LSTM'nin

açıklayıcılık gücü daha yüksektir.

Bu sonuçlar, zaman serisi verileriyle çalışılan durumlarda LSTM'nin, belleği uzun süreli olarak daha etkili kullanabildiği için daha uygun bir derin öğrenme modeli olduğunu doğrulamaktadır.

3. WEB SİTESİ GELİŞTİRME VE KULLANILAN TEKNOLOJİLER

Bu çalışmada, yapay zekâ destekli bir web sitesi geliştirilerek, kullanıcıların veri analizi yapmasına, makine öğrenmesi modelleri eğitmesine ve sonuçları raporlamasına olanak sağlayan bir platform oluşturulmuştur. Web sitesi, React ve Flask gibi modern teknolojileri kullanarak veri tabanı yönetimi, analiz, model eğitimi ve raporlama işlemlerini entegre eden bir sistem olarak tasarlanmıştır.

3.1. Web Sitesinin Genel Yapısı

Web sitesi, kullanıcı dostu bir arayüze sahip olup, veri yükleme, model seçimi, eğitim süreci, sonuçların görüntülenmesi ve raporlanması gibi adımları içermektedir. Platformun temel özellikleri şu şekildedir:

• Kullanıcılar sisteme giriş yaptıktan sonra, makine öğrenmesi veya derin öğrenme modellerini eğitmek için veri yükleyebilir. Model eğitimi tamamlandığında, kullanıcılar görselleştirilmiş sonuçları analiz edebilir ve seçtikleri metrikler doğrultusunda şirket kategorisini belirleyebilir.

Şekil 3.1: Kullanıcı Giriş ve Kayıt Ekranı

Şekil 3.2: Şirket Gurubunun Belirlenmesi

• Kriter Tespiti ve Firma Kategorilendirme Aracı

Şekil 3.1.2'de, SQL Server tabanlı veri tabanı sistemlerinin performans özelliklerine göre firma büyüklüğünü kategorize etmek amacıyla geliştirilmiştir. Hazırlanan bu sistemde, kullanıcıdan aşağıdaki işlemleri gerçekleştirmesi beklenmektedir:

- Adım 1 Kriter Betiğini Çalıştırma:
 Kullanıcı, tarafımızca sağlanan kriter.sql adlı SQL betiğini kendi veri tabanı ortamında çalıştırır. Bu betik, sistemin çeşitli performans göstergelerini (işlem sayısı, bağlantı yoğunluğu, RAM, CPU kullanımı vb.) analiz eder ve sonuçları tek satırlık bir tablo formatında üretir.
- 2. Adım 2 Sonuçların Girdisi:

 Betik çalıştırıldıktan sonra kullanıcı, elde ettiği değerleri bu ekranda ilgili metrik alanlarında işaretler. Her metrik için "Büyük", "Orta" veya "Küçük" kategorilerinden biri seçilir.
- 3. Adım 3 Firma Sınıflandırması:
 Yapılan işaretlemeler sonucunda sistem, firmanın hangi ölçekte faaliyet gösterdiğini (örneğin büyük, orta ya da küçük veri işleme kapasitesine sahip bir sistem) belirler. Bu sınıflandırma; kaynak yönetimi, kapasite planlaması ve sistem iyileştirme stratejileri için temel girdi olarak kullanılabilir.

• Kriter.sql Betiği İşleyiş Özeti

Kriter. Sql betiği, SQL Server tabanlı sistemlerin performansını değerlendirmek amacıyla geliştirilmiştir. Kodun başında, önceki çalışmalardan kalan geçici tablo (#TotalRowsTemp) varsa silinir ve toplam satır sayısını tutacak şekilde yeniden oluşturulur. Bu adım, veri temizliği ve tutarlılığı sağlamak içindir.

Ardından, betik sırasıyla aşağıdaki 11 metriği sistemden dinamik SQL ve sistem görünümleri aracılığıyla toplar:

- @MaxTransactions: DOCperformanceMonitor tablosundan maksimum işlem sayısı alınır.
- @MaxProcessorTime: En yüksek işlemci kullanımı yüzdesi hesaplanır.
- @TotalSessions: Anlık oturum sayısı sys.dm_exec_connections ve sys.dm_exec_sessions kullanılarak belirlenir.
- @SqlServerEdition: SERVERPROPERTY fonksiyonu ile SQL Server sürümü tespit edilir.
- @TotalRAM: sys.dm os sys info görünümünden fiziksel RAM bilgisi çekilir.
- @TotalRows: Tüm kullanıcı veri tabanları dinamik SQL ile dolaşılarak toplam satır sayısı hesaplanır.
- @AvgLogBackupSize: backupset ve backupmediafamily tabloları üzerinden son 50 log yedeğinin ortalama boyutu alınır.
- @AvgTransactionsPerSec ve @AvgTransactions: DOCperformanceMonitor üzerinden işlem yoğunlukları ölçülür.
- @MaxConnectionCount ve @AvgConnectionCount: Maksimum ve ortalama bağlantı sayıları hesaplanır.

Elde edilen tüm sonuçlar, @Results adlı tablo değişkenine tek bir satır olarak eklenmekte ve SELECT * FROM @Results komutu ile kullanıcıya sunulmaktadır. Son adımda geçici tablo silinerek sistem temizliği sağlanır.

Bu yapı, sistem kaynaklarının durumu hakkında bütüncül ve güncel bir görünüm sunarak, veri tabanı altyapısının performansını nesnel biçimde analiz etmeyi mümkün kılar.

• Dosya Yükleme ve İşleme:

Kullanıcılar veri setlerini yükleyerek model eğitimine başlayabilir ve arka planda çalışan algoritmalar sayesinde veri ön işleme adımlarını gerçekleştirebilir.

Şekil 3.3: Dosya Yükleme ve Algoritma Seçme Alanı

Şekil 3.4: Seçilen Algoritmaya Göre Hiper parametre Girişi

Şekil 3.5: Eğitim Sürecinin İlerlemesi Adımı

• Gerçek Zamanlı Sonuç Analizi: Yapay zeka destekli anlık yorumlama özelliği sayesinde, model eğitimi sonucunda oluşan grafikler ChatGPT tarafından analiz edilerek kullanıcıya detaylı açıklamalar sunulmaktadır.

Şekil 3.6: Veri Seti İçeriği Tablo Halinde

Şekil 3.7: Grafiğin ChatGpt Tarafından Yorumlanması

Şekil 3.8: Veri Setinin İstatiksel Özellikleri

Şekil 3.9: Veri Setinin İlişkiler Tablosu

Şekil 3.10: PLE Değeri için Etkili Kolonlar ve ChatGpt Yorumu

Şekil 3.11: Veri Setinin Sütun Bazında İstatiksel Özeti

Şekil 3.12: Veri Setinin PLE değerlerine Ait Pasta Grafiği

Şekil 3.13: Modelin Performans Ölçümü ve Karmaşıklık Matrisi

• Raporlama ve PDF Oluşturma: Kullanıcılar, eğitim sonuçlarını PDF formatında rapor olarak kaydedebilir ve her oluşturulan rapor, kullanıcının hesabına otomatik olarak kaydedilmektedir.

Şekil 3.14: Tüm Sonuçların Raporlandığı Pdf Butonu

Şekil 3.15: Pdf Raporuna Ait Görsel

Şekil 3.16: Kullanıcının Oluşturduğu Tüm Raporların Tutulduğu Ekran

• Telegram Bot Bildirim Sistemi: Model eğitimi sırasında, Telegram botu üzerinden anlık doğruluk (accuracy) değeri bildirimleri gönderilmekte, böylece kullanıcı modelin ilerleme durumunu gerçek zamanlı olarak takip edebilmektedir.

Şekil 3.17: Telegram Bot ve Anlık Bildirim Sistemi

Şekil 3.18: Yeni Kullanıcı İçin Oluşturulan Kullanım Kılavuzu Örneği

• Admin Paneli ve Yönetim:

Web sitesi üzerinde bir admin paneli oluşturulmuş olup, admin kullanıcıları diğer kullanıcıların gerçekleştirdiği model eğitimlerini, raporlamalarını ve genel sistem istatistiklerini takip edebilmektedir.

Şekil 3.19: Adminlerin Gözüktüğü Sekme

Şekil 3.20: Kullanıcıların Gözüktüğü Sekme

Şekil 3.21: Kullanıcıların Oluşturduğu Raporlar Sekmesi

3.2. Kullanılan Teknolojiler ve Araçlar

Web sitesinin geliştirilme sürecinde, modern frontend ve backend teknolojileri kullanılarak kullanıcı dostu, ölçeklenebilir ve yüksek performanslı bir sistem oluşturulmuştur. Kullanılan temel araçlar şunlardır:

• Backend (Sunucu Tarafı)

• Python & Flask:

- Web API'lerinin geliştirilmesi, veri tabanı yönetimi ve model eğitimi süreçleri için kullanılan hafif ve ölçeklenebilir bir Python web çerçevesidir.
- o Kullanıcı doğrulama, veri yükleme, model eğitimi ve sonuç

raporlamalarını yönetmek için Flask ile RESTful API'ler oluşturulmuştur.

• MSSQL Server:

- Veri yönetimi ve saklama süreçleri için kullanılan ilişkisel veri tabanı yönetim sistemi (RDBMS).
- Kullanıcı işlemleri, model eğitim sonuçları ve analiz verileri MSSQL üzerinde saklanmaktadır.

• Frontend (Kullanıcı Arayüzü - UI/UX)

React.js:

- Kullanıcıların etkileşimli ve dinamik bir deneyim yaşamasını sağlamak için bileşen tabanlı modern JavaScript kütüphanesi kullanılmıştır.
- Veri yükleme, model seçimi, eğitim süreci ve sonuçların görselleştirilmesi
 React bileşenleri aracılığıyla yönetilmektedir.

• Ant Design (AntD):

- Web arayüzünün modern ve profesyonel bir görünüme sahip olması için kullanılan React tabanlı UI bileşen kütüphanesidir.
- Kullanıcı girişi, veri yükleme, grafik gösterimi, butonlar ve form elemanları gibi bileşenler için Ant Design bileşenleri kullanılmıştır.

• Bildirim ve Otomasyon Sistemleri

Telegram Bot API:

- Model eğitimi sırasında doğruluk (accuracy) değeri ve diğer önemli istatistikler Telegram botu aracılığıyla kullanıcıya gerçek zamanlı olarak bildirilecektir.
- Kullanıcılar, model eğitimi tamamlandığında Telegram üzerinden otomatik güncellemeler alabileceklerdir.

• Raporlama ve Dosya Yönetimi

FPDF (Python PDF Kütüphanesi):

 Kullanıcıların eğitim sonuçlarını ve analizlerini PDF formatında raporlamasına olanak sağlayan kütüphane kullanılacaktır.

- Kullanıcı, sonuçları analiz ettikten sonra "Rapor Oluştur" butonuna tıklayarak PDF formatında çıktı alabilecektir.
- FPDF ile oluşturulan PDF dosyaları, kullanıcının hesabına kaydedilecek ve istenildiğinde indirilebilecektir.

3.3. Veri Tabanı ve Tablolar

Tablo Adı Açıklama

Sistemdeki kullanıcı bilgilerini (UserID, UserName, Email, Password,

UserTable Role, CreateDate) saklar. Bu tabloya kullanıcı ekleme, silme, güncelleme

ve doğrulama işlemleri yapılır.

Şirket bilgilerini (CompanyID, CompanyName) içerir. Şirket ekleme, CompanyTable

silme ve güncelleme işlemleri gerçekleştirilir.

Kullanıcı işlem geçmişi ve raporlarını (AI modeli, kullanıcı rolü, tarih,

UserLogTable şirket bilgisi ve rapor dosyası) saklar. Kullanıcının yaptığı işlemler

burada izlenebilir.

• Stored Procedure'lerin Rolü

Kullanıcı Yönetimi (UserTable)

sp AddUser: Yeni kullanıcı ekler

sp UpdateUser: Kullanıcı bilgilerini günceller

sp DeleteUser: Kullanıcıyı siler

sp CheckUserLogin: Kullanıcı adı ve şifre kontrolü yapar

sp_CheckUserExists: Kullanıcının var olup olmadığını kontrol eder

Şirket Yönetimi (CompanyTable)

sp InsertCompany: Yeni şirket ekler

sp UpdateCompany: Şirket adını günceller

sp_DeleteCompany: Şirketi siler

Kullanıcı Log Kayıtları (UserLogTable)

sp InsertUserLog: Kullanıcının yaptığı işlemlerin kaydını ekler

sp UpdateUserLog: Kullanıcıya ait işlem geçmişini günceller

sp DeleteUserLog: Kullanıcıya ait işlem geçmişini siler

3.4. Web Sitesine Ait Ekran Kaydı

Geliştirilen web sitesinin işlevselliğini ve kullanıcı arayüzünü daha etkili bir şekilde sunmak amacıyla bir ekran kaydı alınmıştır. Bu kayıt, sistemin çalışma prensibini ve uygulamanın kullanıcı ile etkileşimini görsel olarak desteklemektedir. İlgili ekran kaydına aşağıdaki bağlantıdan erişilebilir:

Video Bağlantısı:

https://drive.google.com/file/d/1MP7VI-LmR7-OjoF7gMRPKUPKU74YJdVE/view?usp=sharing

4. BULGULAR VE TARTIŞMA

Yapılan modelleme sonucunda, sistemdeki aykırılıklar Page Life Expectancy gibi metriklerle başarılı şekilde sınıflandırılmış ve kritik eşiklerde (PLE < 300) otomatik uyarı sistemleri oluşturulmuştur.

LSTM ve RNN gibi zaman serisi odaklı modellerin performansı karşılaştırıldığında LSTM'nin genel hata (MSE, RMSE, MAE) oranlarında daha üstün olduğu görülmüştür. Bu, geçmişe dayalı performans tahminlerinde LSTM'nin daha isabetli olduğunu göstermektedir.

Ayrıca FP-Growth ile iş parçacığı etkileri modellenmiş, örneğin 'dbaMaintenanceReIndex' job'ı çalıştığında logical connections ile PLE arasındaki bağ net biçimde analiz edilmiştir.

Bu bulgular, projenin amacına uygun olarak karar destek sistemine katkı sağlamış ve otonom uyarı mimarisinin temelini oluşturmuştur.

4.1. Gerçekleştirilen Çalışmalar

• 4.1.1. Veri Toplama ve Ön İşleme

Proje kapsamında, Data Platform şirketine ait gerçek veriler kullanılmıştır. Bu veriler, veri tabanı yönetimi, sistem performansı takibi ve anomali tespiti amaçlarına hizmet edecek

şekilde ön işleme tabi tutulmuştur. Eksik veriler doldurulmuş, aykırı değerler temizlenmiş ve veri seti analiz süreçlerine uygun hale getirilerek optimize edilmiştir.

• 4.1.2. Web Sitesinin Geliştirilmesi

Kullanıcı deneyimini ön planda tutan, etkileşimli bir web arayüzü React.js ve Ant Design kütüphanesiyle oluşturulmuştur. Backend tarafı ise Flask ve Python ile geliştirilmiş; bu yapı MSSQL veri tabanı ile tam uyumlu şekilde entegre edilmiştir. Web sitesi üzerinden veri analizleri, model çıktıları ve raporlamalar dinamik olarak sunulmaktadır.

• 4.1.3. Makine Öğrenmesi Modelleri ile Anomali Tespiti

Anomali tespiti ve sistem performans değerlendirmeleri amacıyla çeşitli klasik makine öğrenmesi algoritmaları (Random Forest, KNN, SVM vb.) uygulanmıştır. Bu modellerin çıktıları, sistem davranışlarını analiz etmek ve olağan dışı durumları tespit etmek için başarıyla kullanılmıştır.

• 4.1.4. Model Performans Analizi

Model eğitim süreçlerinde; doğruluk (accuracy), kesinlik (precision), geri çağırma (recall) ve F1 skoru gibi performans metrikleri kullanılarak değerlendirmeler yapılmıştır. Uygulanan modellerin karşılaştırmalı analizleri sonucunda, her bir modelin hangi senaryolarda daha verimli çalıştığı belirlenmiştir.

• 4.1.5. Gelişmiş Özelliklerin Entegrasyonu

Projenin gelişmiş sürümünde aşağıdaki yenilikçi özellikler başarıyla uygulanmıştır:

- Otomatik Model Seçimi (Auto ML): Sistem, en uygun modelin parametrelerini otomatik olarak belirleyerek kullanıcı müdahalesine gerek kalmadan optimum sonuçlar sunmaktadır.
- Telegram Bot API Entegrasyonu: Model eğitim süreçlerinin çıktıları, Telegram
 Bot API aracılığıyla anlık olarak kullanıcılara iletilmektedir. Bu entegrasyon
 sayesinde doğruluk oranları ve diğer kritik metrikler gerçek zamanlı olarak takip
 edilebilmektedir.
- Otomatik PDF Raporlama (FPDF): Eğitim sonuçları ve analiz çıktıları, FPDF kütüphanesi kullanılarak otomatik şekilde PDF formatında raporlanmakta ve

kullanıcıya sunulmaktadır. Bu özellik, raporlama sürecini sistematik ve kullanıcı dostu bir hale getirmiştir.

5. SONUÇ

Proje çıktıları akademik açıdan zaman serisi temelli anomali tespitinin veritabanı performans yönetiminde başarılı biçimde uygulanabileceğini göstermiştir. Özellikle gerçek verilerle yapılan testlerde, derin öğrenme modellerinin sistem davranışını doğru tahmin edebildiği gözlemlenmiştir.

Endüstriyel olarak bu sistem:

- DBA iş yükünü azaltmakta
- SLA yönetimini güçlendirmekte
- Otonom sistem optimizasyonuna zemin hazırlamaktadır.

Yerli yazılım yaklaşımıyla geliştirilen bu sistem, Türkiye'deki veri merkezleri, bankacılık sistemleri ve ERP altyapılarında uygulanabilir, ölçeklenebilir ve sürdürülebilir bir yapıda tasarlanmıştır.

Bu çalışmada gerçekleştirilen tüm uygulamalar, veri tabanı yönetimi süreçlerinin yapay zekâ teknikleriyle nasıl etkin bir şekilde optimize edilebileceğini ortaya koymuştur. Geliştirilen web tabanlı sistem, kullanıcıların veri ön işleme, model eğitimi, anomali tespiti ve performans analizi gibi işlemleri otomatik ve etkileşimli bir şekilde gerçekleştirebilmesini mümkün kılmaktadır.

Özellikle Auto ML entegrasyonu, Telegram ile anlık bildirim sistemi ve otomatik PDF raporlama modülü sayesinde sistem, kullanıcı dostu ve gerçek zamanlı karar destek sunabilen bir yapıya kavuşmuştur.

Gelecek çalışmalarda, sistemin daha büyük ve çeşitli veri kümeleri üzerinde test edilmesiyle model doğruluğunun artırılması; aynı zamanda altyapının ölçeklenebilirliğinin ve kullanıcı arayüzünün daha da geliştirilmesi hedeflenmektedir. Bu doğrultuda, tam otomatik çalışan, esnek, güvenilir ve yüksek doğruluklu bir analiz platformu oluşturulması amaçlanmaktadır.

KAYNAKLAR

- [1] X. Zhou et al., "D-Bot: Database Diagnosis System using Large Language Models," arXiv.org, 2024. https://arxiv.org/abs/2312.01454
- [2] Ismet Karakurt, S. Ozer, Taner Ulusinan, and Murat Can Ganiz, "A machine learning approach to database failure prediction," 2017 International Conference on Computer Science and Engineering (UBMK), pp. 1030–1035, Oct. 2017, doi: https://doi.org/10.1109/ubmk.2017.8093426.
- [3] X. Zhou, Z. Sun, and G. Li, "DB-GPT: Large Language Model Meets Database," Data science and engineering (Internet), Jan. 2024, doi: https://doi.org/10.1007/s41019-023-00235-6.
- [4] S. Islam, "FUTURE TRENDS IN SQL DATABASES AND BIG DATA ANALYTICS: **IMPACT** OF MACHINE LEARNING **AND** ARTIFICIAL INTELLIGENCE," 1, no. 4, pp. 47–62, Aug. 2024, doi: https://doi.org/10.62304/ijse.v1i04.188.
- [5] G. Li, X. Zhou, and X. Zhao, "LLM for Data Management," Proceedings of the VLDB Endowment, vol. 17, no. 12, pp. 4213–4216, Aug. 2024, doi: https://doi.org/10.14778/3685800.3685838.
- [6] "View of Machine Learning for Database Management and Query Optimization," Elementaria.my.id, 2024. https://elementaria.my.id/index.php/e/article/view/66/23