

### 0016-7037(94)00228-2

## Carbon isotope fractionation during gas-water exchange and dissolution of CO<sub>2</sub>

J. ZHANG, P. D. QUAY, and D. O. WILBUR School of Oceanography, University of Washington, Seattle, WA 98195, USA

(Received February 16, 1994; accepted in revised form September 2, 1994)

Abstract—The kinetic and equilibrium fractionation effects for  $^{13}$ C during CO<sub>2</sub> gas transfer ( $\epsilon_k$  and  $\epsilon_{aq-g}$ ) have been measured in acidified distilled water. The equilibrium fractionation effects between bicarbonate and carbonate and gaseous CO<sub>2</sub> ( $\epsilon_{HCO_3-g}$  and  $\epsilon_{CO_3-g}$ ) have been measured in NaHCO<sub>3</sub> and NaHCO<sub>3</sub> + Na<sub>2</sub>CO<sub>3</sub> solutions, respectively, from 5° to 25°C. The measured fractionations, except  $\epsilon_{CO_3-g}$ , agreed with earlier work to within 0.2%.  $\epsilon_{CO_3-g}$  was about 2% smaller than most values previously reported. The temperature dependence of the fractionation for  $^{13}$ C between bicarbonate and carbonate and gaseous CO<sub>2</sub> was found to be  $\epsilon_{HCO_3-g} = -(0.141 \pm 0.003)T(^{\circ}\text{C}) + (10.78 \pm 0.05)\%_0$  and  $\epsilon_{CO_3-g} = -(0.052 \pm 0.03)T(^{\circ}\text{C}) + (7.22 \pm 0.46)\%_0$ , respectively. The fractionation during gas dissolution was  $\epsilon_{aq-g} = -(0.0049 \pm 0.003)T(^{\circ}\text{C}) - (1.31 \pm 0.06)\%_0$  and the kinetic effect during gas transfer,  $\epsilon_k$ , was  $-0.81 \pm 0.16\%_0$  at 21°C and  $-0.95 \pm 0.20\%_0$  at 5°C.

The equilibrium fractionation between total DIC in seawater and CO<sub>2</sub> in air  $(\epsilon_{\text{DIC-g}})$  was measured and compared with that calculated from the concentration of aqueous CO<sub>2</sub>, HCO<sub>3</sub>, and CO<sub>3</sub> and individual fractionations between the three C species and CO<sub>2</sub> gas. The measured and calculated results showed a significant difference of up to 0.2%. We hypothesize that carbonate ion complexes likely complicate the calculation of  $\epsilon_{\text{DIC-g}}$  from individual C species. We obtain the following empirical function of  $\epsilon_{\text{DIC-g}}$  in seawater vs. temperature and the carbonate fraction  $(f_{\text{CO_3}})$ ,  $\epsilon_{\text{DIC-g}} = (0.014 \pm 0.01)Tf_{\text{CO_3}} - (0.105 \pm 0.002)T + (10.53 \pm 0.05)\%$ , when  $0.05 < f_{\text{CO_3}} < 0.20$  and  $5^{\circ}\text{C} < T < 25^{\circ}\text{C}$ .

#### INTRODUCTION

Stable isotopic composition of C has been widely used as a tracer of C flow between natural reservoirs. Since the ocean is a major sink for anthropogenically produced  $CO_2$ ,  $\delta^{13}C$  has been incorporated into ocean-atmosphere coupling models to study the oceanic uptake of anthropogenic  $CO_2$  (Siegenthaler and Münnich, 1981; Keeling et al., 1989). Because of the addition of <sup>13</sup>C depleted  $CO_2$  ( $\sim -27\%$  vs. PDB) released from fossil fuel combustion, the  $\delta^{13}C$  of atmospheric  $CO_2$  has decreased from pre-industrial level of -6.4% to -7.6% in 1980 (Friedli et al., 1986). The  $\delta^{13}C$  of the ocean C has been affected by this anthropogenic  $CO_2$  perturbation as indicated by the 0.4% decrease during the last 20 years in  $\delta^{13}C$  of mixed layer dissolved inorganic C in the Pacific ocean (Quay et al., 1992).

Gas exchange of <sup>12</sup>CO<sub>2</sub> and <sup>13</sup>CO<sub>2</sub> can be described by the following general flux equations,

for CO<sub>2</sub>:

$$d[CO2(aq)]/dt = -k\gamma(Ps - Pa), (1)$$

for <sup>13</sup>CO<sub>2</sub>:

$$d[^{13}CO_2(aq)]/dt = -k^{13}\gamma^{13}(P^sR_g^s - P^aR_g^a), \quad (2)$$

where aq represents aqueous  $CO_2$  concentration, t is time, k is the air-water exchange coefficient (also referred to as transfer velocity or piston velocity),  $\gamma$  is the  $CO_2$  solubility, P denotes the partial pressure of  $CO_2$ , and R the  $^{13}C/^{12}C$  ratio, where  $^{12}C$  is assumed to be equal to total C since  $^{12}C$  composes of 98.9% of total C. The superscripts a and a refer to the air and solution, respectively, and the subscript a represents gas. The  $^{13}C/^{12}C$  ratio of  $CO_2$  dissolved in seawater can not be directly measured. Instead, the  $^{13}C/^{12}C$  ratio of total

dissolved inorganic C (DIC =  $CO_2(aq) + HCO_3^- + CO_3^=$ ) is measured. To make the gas transfer of  $^{13}CO_2$  comparable to  $^{12}CO_2$ , we define the kinetic fractionation factor  $(\alpha_k)$  as the ratio of the  $^{13}CO_2$  and  $CO_2$  gas transfer rates, i.e.,

$$\alpha_k = k^{13}/k \tag{3}$$

and equilibrium solubility ratio of <sup>13</sup>CO<sub>2</sub> and <sup>12</sup>CO<sub>2</sub> as

$$\alpha_{\rm aq-g} = \gamma^{13}/\gamma. \tag{4}$$

At equilibrium,

$$\alpha_{\rm aq-g} = R_{\rm aq}/R_{\rm g}. \tag{5}$$

Equation 2 can be rewritten as

 $d[^{13}CO_2(aq)]/dt$ 

$$= -k\alpha_k \alpha_{\rm aq-g} \gamma (P^s R_{\rm DIC}/\alpha_{\rm DIC-g} - P^a R_g^a), \quad (6)$$

where  $\alpha_{DIC^-g} = R_{DIC}/R_g$ . We assume that the C system in the water is in chemical and isotopic equilibrium since the rate of  $CO_2$  hydration and reaction with carbonate ion is on the order of 20-200 seconds (Johnson, 1982; Usdowski, 1982), much faster than the  $CO_2$  diffusive transfer across the interface which is on the order of at least hours for the experimental conditions reported here.

The equilibrium fractionation factor between DIC and gaseous  $CO_2$ ,  $\alpha_{DIC-g}$ , depends on the carbon speciation of the solution, i.e., the proportion of the  $CO_2(aq)$ ,  $HCO_3^-$ , and  $CO_3^-$ , and the individual fractionation factor of each species with respect to gaseous  $CO_2$  ( $\alpha_{i-g} = R_i/R_g$ ). Therefore,

$$\epsilon_{\text{DIC-g}} = \sum f_i \epsilon_{i-g},$$
(7)

where f is the proportion of each species (i) and  $\epsilon$  is the permil fractionation which is

$$\epsilon = (\alpha - 1) * 1000. \tag{8}$$

The proportion of  $CO_2(aq)$ ,  $HCO_3^-$ , and  $CO_3^\pm$  are usually obtained from the measured pH and DIC concentration of the solution.

The kinetic isotope fractionation during CO<sub>2</sub> gas exchange  $(\epsilon_k)$  in seawater has been measured in the laboratory to be ca. -1 to [as  $-1 \sim$ ] -4%, but with a large uncertainty of 2-5%, by Wanninkhof (1985) and Inoue and Sugimura (1985). The equilibrium fractionations,  $\epsilon_{i-g}$ , are known from the earlier work of many researchers.  $\epsilon_{\rm aq-g}$  was measured as -1.09%at 25°C by Vogel et al. (1970). Previous determinations of  $\epsilon_{HCO_3-g}$  ranged between 10.3% and 6.7% over 5° to 40°C, but with significant discrepancies of about  $0.2 \sim 0.3\%$  at 25°C between different groups (Deuser and Degens, 1967; Wendt, 1968; Emrich et al., 1970; Mook et al., 1974; Lesniak and Sakai, 1989). Notably, the fractionation between carbonate ion and gaseous CO<sub>2</sub>,  $\epsilon_{\text{CO}_3-\text{g}}$ , has not been established accurately because of the difficulties in extracting a sufficient amount of CO<sub>2</sub> in the presence of CO<sub>3</sub>. For example, individual measurements of  $\epsilon_{\rm CO_3-g}$  ranged from 6.5% (Turner, 1982) to 8.3% (Lesniak and Sakai, 1989) at 25°C. Since all previous equilibrium fractionation factors were measured in sodium bicarbonate solutions, the applicability of these factors to seawater needs to be tested.

Model predictions of the gas transfer of  $^{13}\text{CO}_2$  are very sensitive to the equilibrium fractionation between DIC and gaseous  $\text{CO}_2$ . For example, Tans et al. (1993) found that oceanic  $\text{CO}_2$  uptake rates showed an uncertainty of  $\pm 1$  Gigaton/yr per 0.2% uncertainty in the air-sea  $^{13}\text{C}$  fractionation. This sensitivity results because of the small (<1%) disequilibrium fractionation of  $^{13}\text{C}$  between the atmospheric  $\text{CO}_2$  and surface DIC. Results of Tans et al. (1993) underscore the need to accurately determine, i.e., to better than  $\pm 0.1\%$ , the isotopic fractionation effects during  $\text{CO}_2$  gas transfer. In this work, we have redetermined all four fractionations during  $\text{CO}_2$  gas transfer and dissolution in freshwater and directly measured the  $\epsilon_{\text{DIC}-g}$  in seawater.

### **METHODS**

All the experiments were conducted in closed-systems of pure CO<sub>2</sub> gas or air over a solution of distilled water or seawater.

### **Kinetic Experiments**

The system for kinetic experiments is similar to that used for measurements of kinetic isotopic fractionations of O<sub>2</sub> and N<sub>2</sub> by Knox et al. (1992). It consists of a 4-L flask which was open to the atmosphere through a water manometer and an attached sampling port (Fig. 1a). The 4-L flask was prefilled with degassed, acidified distilled water which was made by adding 1 mL 50% H<sub>3</sub>PO<sub>4</sub> per liter (pH ~ 2) and boiling for half an hour. An amount of pure CO2 gas was then admitted into the flask and the exact volume of this input was determined by the amount of water displaced into the manometer (Fig. 1a). The pressure of the headspace during the experiment was kept constant at atmospheric pressure by the inflow of degassed water as CO2 gas dissolved. The water volume change was recorded about every 10 minutes and  $\delta^{13}$ C of the gaseous CO<sub>2</sub> was measured every hour by taking ~1 cc of CO<sub>2</sub> from the headspace through the sampling port which was connected to a vacuum extraction line. The sample was purified and collected by pumping through two dry iceisopropanol slush traps and two liquid nitrogen traps. The amount of CO<sub>2</sub> collected was determined by measuring the pressure (Baratron Model #222BA, MKS Instruments Inc.) of the CO2 gas expanded







Fig. 1. Schematic representation of the experimental systems. (a) The kinetic system. Gas transfer takes place in the 4-L flask (A) which is open to the atmosphere via a water manometer (B). Sampling is done through the expansion port (D). (b) The equilibrium system for fresh water experiments. The 200 mL flask for equilibrium (A). Gas samples are taken from the expansion arm (D), which is about  $^{1}/_{10}$  of the total headspace. (c) The equilibrium system for sea water experiments. In the 1000 mL equilibrium flask (A) clean air with ~350 ppm CO<sub>2</sub> is in contact with ~200 mL sea water sample. The finger extended to the bottom of the flask with fritted end is used for stripping. The expansion volume D is ~500 mL. Water phase represented by hatching. (See text for details).

into a known volume of the extraction line. The efficiency of the extraction was  $100\pm0.5\%$  based on  $Na_2CO_3$  standards. The overall precision on measured volumes of extracted  $CO_2$  was better than 1%.  $\delta^{13}C$  of  $CO_2$ , measured on a Finnigan 251 mass spectrometer, is

reported relative to PDB, based on working standards calibrated against NBS-19. The overall precision of  $\delta^{13}$ C of CO<sub>2</sub> from head-space, including 0.02% for the mass spectrometer, was 0.03%. Three kinetic experiments have been done, two at 21°C and one at 5°C.

### **Equilibrium Experiments in Fresh Water**

Equilibrium fractionations between each C species and  $CO_2$  gas were measured in a closed-system (Fig. 1b) consisting of a 200 mL flask with a side arm of about 10 mL attached through two o-ring stopcocks (Louwers Hapert Right-Angle O-Ring Stopcock). The arm can be connected to the extraction line as in the kinetic experiment.

Three separate experiments were performed in freshwater. In the first experiment, pure CO<sub>2</sub> was allowed to equilibrate with degassed, acidified distilled water. The bottle was evacuated first and then CO2 gas was frozen in. The water was degassed as in the kinetic experiments and drawn into the bottle through a siphon while boiling. In the second and third experiments, a NaHCO<sub>3</sub> (~0.5 M) and NaHCO<sub>3</sub> +  $Na_2CO_3$  ( $\sim 0.5$  M) solution, respectively, was equilibrated with pure CO2 gas. Solid NaHCO3 or NaHCO3 + Na2CO3 was admitted through a weighing paper tube into the bottom of the bottle before it was evacuated. The  $\delta^{\hat{1}3}$ C of the pure CO<sub>2</sub> gas (-36.45 ± 0.02‰) and the solid NaHCO<sub>3</sub> ( $-22.04 \pm 0.03\%$ ) and Na<sub>2</sub>CO<sub>3</sub> (-1.84± 0.04%) was measured previously. In all three experiments, the total amount of C input was determined to  $\pm 0.2\%$ . Four or five flasks were equilibrated simultaneously at each temperature, using a water bath, for 7-10 days. The minimum time to reach equilibrium was determined, in the stirred flasks, by sampling one of the bottles at 4, 6, and 10 days; there was no significant difference in the  $\delta^{13}$ C values (i.e., all were less than 0.05\%) for the three aliquots. After equilibrium was established, an aliquot of CO2 in the headspace was removed and measured for  $\delta^{13}$ C. The partial pressure of CO<sub>2</sub> in the headspace was obtained by knowing the amount of CO<sub>2</sub> collected from the side arm and the volume ratio of the arm to the main part of the flask. Then the system was closed and readied for the next equilibrium experiment at another temperature. No detectable leaks occurred, as would have been indicated by a pressure of noncondensable gas, during any of the equilibrium experiments.

At the end of the final run in the second and third experiments, the concentration and  $\delta^{13}$ C of total DIC and the total alkalinity (ALK) of the solution in each flask were measured. A 2 mL aliquot of the solution was extracted and weighed using a syringe. This aliquot was injected into a 15 mL pre-evacuated flask, with 2 mL 50% H<sub>3</sub>PO<sub>4</sub>, connected to the extraction line to collect CO<sub>2</sub>. A separate 20 mL aliquot of the solution was diluted and measured for the total alkalinity by Gran titration (Stumm and Morgan, 1981).

The C distribution between the gas phase and the solution was determined from measured partial pressure of  $CO_2$  and the total C added to the flask by using  $CO_2$  equilibrium dissociation equations. Solubility of  $CO_2$  gas from Weiss (1974), dissociation constants of carbonic acid from Harned and Davis (1943) and Harned and Scholes (1941) and activity coefficients of bicarbonate and carbonate from Walker et al. (1927) were used. The bicarbonate species composed 97% of total DIC in the 0.5 M NaHCO<sub>3</sub> solution, whereas the carbonate proportion was 18% of total DIC in the 0.5 M NaHCO<sub>3</sub> + Na<sub>2</sub>CO<sub>3</sub> solution. We calculated, using Eqn. 7, the isotope fractionations between  $CO_2$  gas and  $CO_2(aq)$ ,  $HCO_3^-$ , and  $CO_3^-$  from the results of the three independent experiments that used acidified degassed distilled water, a NaHCO<sub>3</sub> solution and a NaHCO<sub>3</sub> + Na<sub>2</sub>CO<sub>3</sub> solution, respectively.

### **Equilibrium Experiments in Seawater**

A 1000 mL flat-bottom flask with two o-ring stopcocks was used (Fig. 1c). A finger extending to the bottom of the flask with a fritted glass termination was used for bubbling. The flask was prepurged with clean air having  $p \text{CO}_2$  of ~350 ppm and  $\delta^{13}\text{C} \sim -8.7\%$ . Then about 200 mL seawater, collected from the North Pacific during spring 1991, was admitted into the flask through a glass tube by exerting higher than atmospheric pressure on the seawater with air described above. pH was adjusted by using NaOH or HCl when necessary. Two flasks containing seawater were simultaneously sub-

merged in a circulation water bath to equilibrate for 1 week while stirring. After equilibration, the headspace gas was expanded into a 500 mL flask connected through a Ultra-Torr® fitting and then isolated (Fig. 1c).  $CO_2$  gas in the expanded volume was purified from air and water vapor and collected for  $\delta^{13}C$  measurement. The flask containing the seawater was connected to the extraction line, acidified and stripped of gas using He flow for half an hour;  $CO_2$  was collected for total C and  $\delta^{13}C$  measurements. The  $\delta^{13}C$  of the DIC in seawater was obtained by correcting for the  $CO_2$  remaining in the headspace. pH and C speciation were calculated from  $CO_2$  partial pressure in the headspace and the total DIC concentration of the solution using the dissociation constants of seawater given by Goyet and Poisson (1989).

We have done several tests to see if there was any carbon isotopic fractionation effect during the expansion of the gas from the 1000 mL flask to the 500 mL flask. We conclude there was none since results showed that the  $\delta^{13}$ C difference for CO<sub>2</sub> in the two flasks after expansion was less than 0.02%.

### RESULTS AND DISCUSSION

The isotopic fractionation between C species and  $CO_2$  gas is a function of temperature (Vogel et al., 1970; Mook et al., 1974). It can be approximated as a linear function of T (°C) within the range of ocean temperature (-2°C to 30°C) to within  $\pm 0.03$ %. All the results of this work have been presented using Celsius temperature.

# Equilibrium Fractionation during $CO_2$ Gas Dissolution $(\varepsilon_{aq-g})$

In an acidified solution (pH  $\sim$  2), the measured fractionation between total DIC and gaseous CO<sub>2</sub> at equilibrium directly represents the fractionation between aqueous and gaseous CO<sub>2</sub> ( $\epsilon_{aq-g}$ ). Mean values for  $\epsilon_{aq-g}$  were measured to be -1.29% to -1.19% from 5°C to 25°C, respectively, (Fig. 2) with a standard deviation of  $\pm 0.05\%$  based on five simultaneous runs at each temperature. The temperature dependence of  $\epsilon_{aq-g}$  is clear, despite the uncertainties of  $\epsilon_{aq-g}$  at each temperature, with a slope of 0.01%/°C. Compared to the Vogel et al. (1970) data, our results of  $\epsilon_{aq-g}$  are about 0.1%0 more negative but with a similar slope. The discrepancy is unlikely



FIG. 2. The  $^{13}$ C equilibrium fractionation between dissolved and gaseous  $CO_2$  ( $\epsilon_{aq-g}$ ) measured using acidified distilled water equilibrated with pure  $CO_2$  from 5° to 25°C. The open circles are the average values of five bottles at each temperature. The solid line is the linear regression of the average values,  $\epsilon_{aq-g} = (0.0049 \pm 0.0015)T(^{\circ}C) - (1.31 \pm 0.05)\%$ . The dashed line and the open triangles are the results reported by Vogel et al. (1970).

(c)

to be an interlaboratory offset, since  $\epsilon_{\rm aq-g}$  depends on relative  $\delta^{13}{\rm C}$  measurements, and more likely is caused by a difference between the two experimental methods.

### Kinetic Fractionation during CO<sub>2</sub> Gas Transfer $(\epsilon_k)$

Combining Eqns. 1 and 6, we obtained

$$d[CO_2(aq)R_{aq}]/d[CO_2(aq)]$$

$$= \alpha_k \alpha_{\text{aq-g}} (P^s R_{\text{aq}} / \alpha_{\text{aq-g}} - P^a R_g^a) / (P^s - P^a). \quad (9)$$

For the calculation convenience, we used the volume change of the  $CO_2$  in the headspace (V) to determine the time rate of aqueous  $CO_2$  change and defined the saturation degree of  $CO_2$  as the ratio of  $CO_2(aq)$  concentration to the saturated value under atmospheric pressure, i.e.,  $S = P^s/P^a$ . Equation 9 is rewritten to get the kinetic fraction factor as

$$\alpha_k = [\Delta(VR_g)/\Delta V][(S-1)/(SR_{aq} - R_g\alpha_{aq-g})], \quad (10)$$

where V and  $R_{\rm g}$  were directly measured. Values for S and  $R_{\rm aq}$  were obtained, from V and  $\delta^{13}{\rm C_g}$  measurements, based on the C balance in a closed-system. The saturation degree as a function of time and  $\delta^{13}{\rm C_g}$  vs. saturation level are shown in Fig. 3a and 3b, respectively. Due to the high solubility of  ${\rm CO_2}$ , the saturation degree only reached about 50% before the  ${\rm CO_2}$  headspace disappeared. Values for  $\epsilon_k$  were directly calculated for each interval between measurements of  $\delta^{13}{\rm C_g}$  based on Eqns. 8 and 10. The calculated values of  $\epsilon_k$  depended on the value of  $\epsilon_{\rm aq-g}$  but were independent of the absolute gas exchange rate.

The overall range in  $\epsilon_k$  values was from -0.3 to -1.5%, excluding one data point, as discussed below using  $\epsilon_{aq-g}$  of this work (Fig. 3c). The total error in the  $\epsilon_k$  calculation depends on the errors in measurements of the volume change and  $\delta^{13}$ C of CO<sub>2</sub> extracted from the headspace. The error was largest, up to 0.7%, at the beginning of the experiment when CO<sub>2</sub> gas started to dissolve and at the end when the headspace of CO<sub>2</sub> almost disappeared. The large difference of total amount of CO2 between the headspace and solution resulted in large uncertainty on the calculation of  $\delta^{13}C_{aq}$  in these two extreme situations. The error for the rest of the  $\epsilon_k$  values was no greater than  $\pm 0.2\%$ . The mean  $\epsilon_k$  values ( $\pm 1$  SD), excluding the first and last points for each experiment, were  $-0.81 \pm 0.16\%$  at 21°C and  $-0.95 \pm 0.20\%$  at 5°C. The mean  $\epsilon_k$  values were  $-0.99 \pm 0.16\%$  and  $-1.11 \pm 0.20\%$  at 21°C and 5°C, respectively, if  $\epsilon_{aq-g}$  values from Vogel et al. (1970) were used. A significant temperature dependence for  $\epsilon_k$  was not detected within the measurement uncertainty. Siegenthaler and Münnich (1981) reported a value of -0.5% for  $\epsilon_k$  from a theoretical calculation of the ratio of  $^{13}\text{CO}_2$  and <sup>12</sup>CO<sub>2</sub> gas transfer rates based on the measured molecular diffusion rates of these species. Their  $\epsilon_k$  calculation depends on the choice of the gas exchange model relating gas transfer rates to diffusion rates, i.e., they assumed a square root dependence. Due to the uncertainties caused by this choice and the unknown isotope fractionation effect of up to -0.5% during CO<sub>2</sub> hydration (Siegenthaler and Münnich, 1981), the range of a theoretical  $\epsilon_k$  value is estimated to be from -0.5 to -1.4%, which is confirmed by our results of  $-0.81 \pm 0.2\%$ at 21°C and  $-0.95 \pm 0.2\%$  at 5°C.



Fig. 3. The kinetic fractionation for  $^{13}\text{C}$  during CO<sub>2</sub> gas transfer between pure CO<sub>2</sub> and distilled water  $(\epsilon_k)$ . Filled circles are data for experiment #1 and open circles for #2 both at 21°C and filled triangles at 5°C. (a) The saturation degree of dissolved CO<sub>2</sub> in the solution vs. time. (b) The  $\delta^{13}\text{C}$  (vs. PDB) of the gaseous CO<sub>2</sub> in the headspace vs. saturation degree. The lines are a polynomial fit of the data. (c) The  $\epsilon_k$  vs. CO<sub>2</sub> saturation degree in the solution, calculated, based on Eqn. 8 and 10, using  $\epsilon_{\text{aq-g}}$  of this work. The average value is  $-0.81 \pm 0.16\%_0$  at 21°C and  $-0.95 \pm 0.20\%_0$  at 5°C, excluding the first and last points for each experiment (see text).

saturation (%)

The total fractionation during CO<sub>2</sub> invasion, i.e.,  $\epsilon_{\rm as} = (\alpha_k \alpha_{\rm aq-g} - 1)*1000$ , was calculated to be -2.02% to -2.23% and -2.08% to -2.26% from 21°C to 5°C with  $\epsilon_{\rm aq-g}$  values from this work and Vogel et al. (1970), respectively (Table 1). The choice of  $\epsilon_{\rm aq-g}$  has less influence on results of  $\epsilon_{\rm as}$  than  $\epsilon_k$ . In order to compare our results to those made in seawater, the above  $\epsilon_{\rm as}$  values should be corrected by -0.2% to account for the fractionation during the reaction of CO<sub>2</sub>

**Table 1** Kinetic and equilibrium fractionations for <sup>13</sup>C during CO<sub>2</sub> gas exchange process.

| Exp# | T(°C)  | ε <sub>aq_g</sub> (‰) | ε <sub>k</sub> (‰) <sup>b</sup> | ε <sub>as</sub> (‰) |
|------|--------|-----------------------|---------------------------------|---------------------|
| 1    | 21     | -1.09a                | -0.89±0.11                      | -1.98±0.13b         |
| 2    | 21     | -1.09a                | -1.08±0.15                      | -2.18±0.16b         |
| 3    | 5      | -1.16ª                | -1.11±0.20                      | -2.26±0.21b         |
| 1    | 21     | -1.21b                | -0.71±0.10                      | -1.92±0.13b         |
| 2    | 21     | -1.21 <sup>b</sup>    | -0.91±0.14                      | -2.12±0.15b         |
| 3    | 5      | -1.28 <sup>b</sup>    | -0.95±0.20                      | -2.23±0.21b         |
|      | 15     |                       |                                 | -2.0±3.0°           |
|      | 23     |                       |                                 | -4.0±5.0°           |
|      | 30     |                       |                                 | -5.0±7.0°           |
|      | 3.5-20 |                       |                                 | -2.4±2.0d           |

 $\epsilon_{aq,g}$ : the equilibrium fractionation factor between aqueous and gaseous  ${\rm CO}_2$ .  $\epsilon_{\rm k}$ : the kinetic fractionation factor during gas exchange calculated from the experiment

\*Vogel et al. (1970)

with hydroxide (Siegenthaler and Münnich, 1981). Our  $\epsilon_{\rm as}$  values are well within the range of  $-2.4 \pm 2\%$  and  $-3 \pm 4\%$  measured in seawater by Wanninkhof (1985) and Inoue and Sugimura (1985), respectively, and the uncertainty has been reduced by a factor of 10.

# Equilibrium Fractionation between $HCO_3^-$ and $CO_2$ Gas $(\varepsilon_{HCO_3-g})$

The equilibrium fractionation between HCO<sub>3</sub> and CO<sub>2</sub> gas  $(\epsilon_{HCO_3-g})$  varied from 7.9% to 10.2% over the temperature range of 25°C to 5°C, respectively (Fig. 4). Linear regression of the mean values for  $\epsilon_{HCO_3 - g}$  at each temperature yields:  $\epsilon_{\text{HCO}_3-g} = -(0.1141 \pm 0.0028)T(^{\circ}\text{C}) + (10.78 \pm 0.04)\%c.$ The four simultaneous measurements made at each temperature yield a consistent precision of  $\pm 0.04\%$  (Fig. 4). Our values of  $\epsilon_{HCO_3-g}$  are very close to those measured by Mook et al. (1974) with the same slope of temperature dependence, but about 0.05%e lower. If the results of  $\epsilon_{HCO_3-g}$  measured in this work were used, as discussed below, instead of those from Thode et al. (1965) which are  $2 \sim 3\%$  higher, the Mook et al.'s (1974) calculated values for  $\epsilon_{HCO_3-g}$  would decrease by 0.03% and agree with our values within the experimental uncertainty of ±0.04%. In contrast to our results and those from Mook et al. (1974),  $\epsilon_{\text{CO}_3-g}$  values determined by Lesniak and Sakai (1989) using an open flask experimental procedure were higher by about 0.4%.

# Equilibrium Fractionation between CO $_3^{\scriptscriptstyle =}$ and CO $_2$ Gas $(\varepsilon_{\text{CO}_3-g})$

The fractionation between  $CO_3^=$  and  $CO_2$  gas  $(\epsilon_{CO_3-g})$  ranged from 6.0% to 7.0% at  $25^\circ$  to  $5^\circ$ C, respectively (Fig. 5). The temperature dependent function of  $\epsilon_{CO_3-g}$  is  $\epsilon_{CO_3-g} = -(0.052 \pm 0.021)T(^\circ\text{C}) + (7.22 \pm 0.38)\%$ . The average standard deviation of  $\epsilon_{CO_3-g}$  based on five simultaneous measurements at each temperature was  $\pm 0.4\%$ , which is consistent with the uncertainty  $(\pm 0.04\%)$  of the  $\epsilon_{HCO_3-g}$  calculation and the 4:1 ratio of  $HCO_3^-$  to  $CO_3^-$  in solution. The 2 to 3% offset of  $\epsilon_{CO_3-g}$  from the theoretical values given by Thode et al. (1965), however, is significant at all temperatures.  $\epsilon_{CO_3-g}$  reported by Turner (1982) falls within the uncertainty of our results. Lesniak and Sakai (1989) reported values that are 2.3% higher than ours at  $25^\circ$ C (Fig. 5).



Fig. 4. The <sup>13</sup>C fractionation between HCO<sub>3</sub><sup>-</sup> and gaseous CO<sub>2</sub> ( $\epsilon_{\text{HCO}_3-g}$ ) measured using a NaHCO<sub>3</sub> solution equilibrated with pure CO<sub>2</sub> gas from 5°C to 25°C. The open circles are the average values of four bottles equilibrated at each temperature. The error bars, average  $\pm 0.04\%_o$ , are within the size of the symbols. The linear regression of the average values gives (solid line):  $\epsilon_{\text{HCO}_3-g} = -(0.114 \pm 0.003)T(^{\circ}\text{C}) + (10.78 \pm 0.04)\%_o$ , which is an average of  $0.05\%_o$  lower than Mook et al.'s (1974) (open triangles and dashed line) values. The filled triangles are from Lesniak and Sakai (1989).

The DIC concentration, total alkalinity, and the  $\delta^{13}C$  of the solution measured at the end of the experiments agreed well with the values calculated from the total C and CO<sub>2</sub> headspace pressure measurements (Table 2). The average ratio of the measured value to the expected value from initial input was  $99.5\pm0.7\%$  for DIC and  $100.0\pm0.7\%$  for alkalinity. The average difference between the measured and calculated  $\delta^{13}C$  of the solution is  $0.00\pm0.06\%$ . This indicates that the mass balance for C we used in the calculations is valid within the measurement error range.

The difference between our  $\epsilon_{\text{CO}_3-\text{g}}$  results and previously published values is significant. In average seawater aqueous  $\text{CO}_2$  is <1%,  $\text{HCO}_3$  is 87–93%, and carbonate is 7–13% of



Fig. 5. The  $^{13}\text{C}$  fractionation between CO<sub>3</sub> and gaseous CO<sub>2</sub> ( $\epsilon_{\text{CO}_3-g}$ ) measured using a NaHCO<sub>3</sub> + Na<sub>2</sub>CO<sub>3</sub> solution equilibrated with pure CO<sub>2</sub> gas from 5°C to 25°C. The open circles are the average values of five bottles equilibrated at each temperature. The errors range from 0.3–0.5‰ based on five measurements at each temperature. A regression yields (solid line)  $\epsilon_{\text{CO}_3-g} = -(0.052 \pm 0.021) T(^{\circ}\text{C}) + (7.22 \pm 0.38)‰ which is about 1.5 to 2.8‰ lower than the Thode et al. (1965) theoretical results (dashed line). The filled triangles are from Lesniak and Sakai (1989) and the solid square from Turner (1982).$ 

data and  $\varepsilon_{4q,g}$ :  $\varepsilon_{4s}$ : the total fractionation during  $co_2$  invasion, obtained from  $\varepsilon_{4s} = (\alpha_k \alpha_{4q,g} - 1)*1000$ .

Inoue and Sugimura (1985) in seawater dWanninkhof (1985) in seawater

 $\begin{tabular}{ll} \textbf{Table 2} & \textbf{Comparison of the carbon system and $\delta^{13}$C parameters measured at the end of the $\epsilon_{CO3\_g}$ experiment at 25°C and the expected values calculated from a CO_2 mass balance. \end{tabular}$ 

| Bot# | ALK<br>(%) | ¹DIC<br>(%) | ²∆pH | δ <sup>13</sup> C <sub>DIC</sub> m<br>(‰) | δ <sup>13</sup> C <sub>DIC</sub> c<br>(‰) | <sup>2</sup> Δδ <sup>13</sup> C<br>(‰) |
|------|------------|-------------|------|-------------------------------------------|-------------------------------------------|----------------------------------------|
| 1    | 99.32      | 99.82       | 0.00 | -19.59                                    | -19.59                                    | -0.00                                  |
| 2    | 99.38      | 99.05       | 0.02 | -19.50                                    | -19.41                                    | 0.09                                   |
| 3    | 100.72     | 100.36      | 0.02 | -19.69                                    | -19.75                                    | -0.06                                  |
| 4    | 100.52     | 98.68       | 0.04 | -20.34                                    | -20.29                                    | 0.05                                   |
| 5    | 99.88      | 100.47      | 0.04 | -18.20                                    | -18.29                                    | -0.08                                  |
| AVG  | 99.96      | 99.68       | 0.03 |                                           |                                           | 0.00                                   |
| SD   | 0.58       | 0.71        | 0.02 |                                           |                                           | 0.07                                   |

1. ALK and DIC represent the ratios of the measured alkalinity and total DIC concentration values to the expected values calculated at equilibrium from the initial inputs of pure  $CO_2$ , solid NaHCO<sub>3</sub> and Na<sub>2</sub>CO<sub>3</sub> (see text).

2.  $\Delta$  refers to the difference of measured value minus the expected value.

m and c represent measured and calculated values respectively

total DIC (5°-30°C). The fractionation between DIC of seawater and CO<sub>2</sub> gas would be about 0.2-0.3% less than the value previously assumed (Mook, 1986; Keeling et al., 1989; Siegenthaler and Münnich, 1981; Tans et al., 1993) if the  $\epsilon_{HCO_3-g}$  and  $\epsilon_{CO_3-g}$  values we measured in freshwater are applicable to seawater. In contrast, our remeasurements of  $\epsilon_{aq-g}$ and  $\epsilon_{HCO_3-g}$ , when compared to previous measurements, yield a decrease in  $\epsilon_{DIC-g}$  of only 0.05%. We will see below, however, that extrapolation to seawater of  $\epsilon_{\text{CO}_3 - g}$  measurements made in a Na<sub>2</sub>CO<sub>3</sub> solution likely is not justified.

### **Direct Measurements of Fractionation between Seawater** DIC and CO<sub>2</sub> in Air

 $\epsilon_{DIC-g}$  has been measured directly in seawater samples at different temperatures and pH (Table 3). The measured  $\epsilon_{DIC-g}$ was  $\sim 0.2\%$  higher at 23°C than the value calculated from the C speciation in seawater and  $\epsilon_{i-g}$  values determined in this work (Fig. 6), and within 0.07% of this value at 5°C. In contrast, the measured  $\epsilon_{DIC-g}$  was within 0.06% of the value calculated using  $\epsilon_{i-g}$  values from Vogel et al. (1970), Mook et al. (1974), and Thode et al. (1965) at 23°C and lower by  $\sim 0.2\%$  at 5°C. The slope of the measured  $\epsilon_{\rm DIC-g}$  vs. temper-

Table 3 The measured equilibrium fractionations between DIC in seawater and CO2 in air (E<sub>DIC\_8</sub>)

a.  $\mathcal{E}_{DIC\_g}$  (‰) measured over a range in pH at t=23.0±0.2(°C).

| EXP# | pH <sup>1</sup> | %CO <sub>2</sub> | %HCO <sub>3</sub> | %CO <sub>3</sub> | ²€ <sub>DIC_g</sub> | ³ε <sub>DIC_8</sub> c | 4EDIC_RC |
|------|-----------------|------------------|-------------------|------------------|---------------------|-----------------------|----------|
| 19   | 8.33            | 0.28             | 81.02             | 18.70            | 8.17                | 7.77                  | 8.12     |
| 19   | 8.30            | 0.31             | 81.96             | 17.73            | 8.09                | 7.79                  | 8.12     |
| 18   | 8.11            | 0.50             | 87.15             | 12.35            | 8.09                | 7.84                  | 8.08     |
| 17   | 8.11            | 0.51             | 87.25             | 12.24            | 8.04                | 7.86                  | 8.10     |
| 18   | 7.99            | 0.67             | 89.55             | 9.78             | 8.13                | 7.88                  | 8.07     |
| 20   | 7.72            | 1.33             | 93.34             | 5.33             | 8.03                | 7.94                  | 8.06     |
| 20   | 7.69            | 1.40             | 93.53             | 5.07             | 8.08                | 7.94                  | 8.05     |

b.  $\varepsilon_{DIC_{gg}}$  (‰) measured over a range of temperatures at pH=8.15±0.1

| E | XP# | t(°C) | %CO <sub>2</sub> | %HCO <sub>3</sub> | %CO <sub>3</sub> | ²€ <sub>DIC_g</sub> | $^{3}\epsilon_{DIC\_g}c$ | <sup>4</sup> E <sub>DIC_R</sub> c |
|---|-----|-------|------------------|-------------------|------------------|---------------------|--------------------------|-----------------------------------|
| Г | 18  | 23.2  | 0.50             | 87.15             | 12.35            | 8.09                | 7.84                     | 8.08                              |
|   | 18  | 23.2  | 0.67             | 89.55             | 9.78             | 8.13                | 7.88                     | 8.07                              |
| 1 | 17  | 23.0  | 0.51             | 87.25             | 12.24            | 8.04                | 7.86                     | 8.10                              |
|   | 7   | 22.0  | 0.48             | 87.03             | 12.49            | 8.18                | 7.97                     | 8.21                              |
| l | 9   | 21.0  | 0.47             | 86.93             | 12.60            | 8.34                | 8.07                     | 8.32                              |
|   | 8   | 21.0  | 0.52             | 87.77             | 11.71            | 8.32                | 8.09                     | 8.32                              |
|   | 21  | 14.9  | 0.54             | 89.12             | 10.34            | 8.96                | 8.77                     | 9.01                              |
|   | 21  | 14.9  | 0.57             | 89.57             | 9.86             | 8.91                | 8.78                     | 9.01                              |
| 1 | 23  | 9.8   | 0.68             | 92.04             | 7.28             | 9.51                | 9.41                     | 9.63                              |
| 1 | 23  | 9.8   | 0.73             | 92.39             | 6.88             | 9.50                | 9.42                     | 9.63                              |
| 1 | 24  | 7.6   | 0.54             | 90.28             | 9.18             | 9.80                | 9.59                     | 9.87                              |
|   | 24  | 7.6   | 0.59             | 90.83             | 8.58             | 9.76                | 9.60                     | 9.87                              |
| 1 | 22  | 5.3   | 0.55             | 90.70             | 8.75             | 9.92                | 9.85                     | 10.15                             |
| L | 22  | 5.3   | 0.56             | 90.77             | 8.67             | 9.86                | 9.85                     | 10.15                             |

<sup>1</sup>pH adjusted using HCl and NaOH.

<sup>2</sup>Directly measured in scawater.

(1974) and Thode et al. (1965)



Fig. 6. The <sup>13</sup>C fractionation between DIC in seawater and CO<sub>2</sub> in air  $(\epsilon_{DIC-g})$  from 5°C to 25°C. The filled circles are data directly measured, corrected for the carbonate fraction, and the solid line a regression yielding,  $\epsilon_{\text{DIC-g}} = -(0.105 \pm 0.002)T(^{\circ}\text{C}) + (10.51)$  $\pm$  0.05)% at  $f_{\text{CO}_3} = 0.12$  or pH  $\sim$  8.15. The open circles and dashed line are  $\epsilon_{\text{DIC-g}}$  predicted from the corresponding carbon speciation in seawater and the  $\epsilon$  values for CO<sub>2</sub>aq, HCO<sub>3</sub> and CO<sub>3</sub> measured in fresh water shown in Fig. 2, 4, and 5. The open triangles and dotted line are the calculated  $\epsilon_{DIC-g}$  using  $\epsilon$  values for  $CO_2$ aq,  $HCO_3^-$  and  $CO_3^-$  previously reported by Vogel et al. (1970), Mook et al. (1974), and Thode et al. (1965).

ature is slightly lower than that resulting from using  $\epsilon_{i-g}$  values (Fig. 6).

We hypothesize that ion complexes in seawater might have significant effects on  $\epsilon_{HCO_3-g}$  and  $\epsilon_{CO_3-g}$ . A comparison of the measured and predicted  $\epsilon_{DIC-g}$  at 23°C indicates that the magnitude of the discrepancy depends on the proportion of total carbonate, where total means free and complexed CO<sub>3</sub> ions (Fig. 7). That the discrepancy becomes larger as the proportion of carbonate increases suggests that the carbonate complexes, e.g., MgCO<sub>3</sub> and CaCO<sub>3</sub>, might significantly affect the fractionation between total carbonate and gaseous CO2. The effect of sodium complexes on  $\epsilon_{HCO_3-g}$  and  $\epsilon_{CO_3-g}$  has



Fig. 7. The <sup>13</sup>C fractionation between DIC in seawater and CO<sub>2</sub> in air  $(\epsilon_{DIC-g})$  vs. the carbonate fraction at 23°C. The filled circles are data measured for seawater and the solid line is the regression vs. the carbonate fraction,  $\epsilon_{\text{DIC-g}} = (0.33 \pm 0.3) f_{\text{CO}_3} + (8.06 \pm 0.04)\%$  at t = 23°C. The open circles are calculated  $\epsilon_{\mathrm{DIC-g}}$  values based on the  $\epsilon$ values for CO<sub>2</sub>aq, HCO<sub>3</sub> and CO<sub>3</sub> measured in distilled water, NaHCO3, and Na2CO3 solutions (this work) at the corresponding carbonate fraction.

Calculated from the fractionations measured for fresh water (this work) and proportion of individual species in seawater (equation 7). Calculated as above, but using the fractionations from Vogel et al. (1970), Mook et al.

already been included in the reported values of  $\epsilon_{CO_3-g}$  and  $\epsilon_{\rm CO_3-g}$  measured in sodium bicarbonate solutions. In seawater free carbonate ion plus NaCO<sub>3</sub> account for only 25-29% of total carbonate species while MgCO<sub>3</sub> plus CaCO<sub>3</sub> account for up to 70% (Stumm and Morgan, 1981). The fractionation between solid CaCO3 and CO2 gas during CaCO3 precipitation has been reported to be around 9.0 to 10% at 25°C (Turner, 1982; Emrich et al., 1970). Assuming that the ion pairs of MgCO<sub>3</sub> and CaCO<sub>3</sub> are 70% of total carbonate and have an average  $\epsilon$  value of 9.0% with respect to gaseous CO<sub>2</sub> and that free carbonate and NaCO<sub>3</sub> are 30% of total carbonate with an average  $\epsilon$  of 6.0% (Fig. 5), the fractionation between total carbonate species and CO2 gas would be 8.1% at 23°C. A correction of this magnitude explains the observed discrepancy between the measured and calculated  $\epsilon_{\mathrm{DIC}-\mathrm{g}}$  results (Fig. 7). In addition, MgHCO<sub>3</sub>, as the most prevalent bicarbonate species other than free HCO<sub>3</sub> ion, might also have effects on  $\epsilon_{HCO_3-g}$ . Thode et al. (1965) measured an  $\epsilon_{DIC-g}$  increase from 7.1-12% when the Mg<sup>2+</sup> concentration in a NaHCO<sub>3</sub> solution was increased from 0-0.5 M.

The hypothesized carbonate ion complex effect, however, can't explain the slope difference of the temperature dependence between measured and predicted  $\epsilon_{DIC-g}$  values (Fig. 6). The expected difference between the observed and predicted  $\epsilon_{DIC-g}$  would be larger at low temperature based on this hypothesis. Further investigation needs to be done on this point.

We have obtained an empirical function of  $\epsilon_{\text{DIC-g}}$  vs. temperature (5° to 25°C) and the proportion of total carbonate species in total DIC:  $\epsilon_{\text{DIC-g}} = (0.0144 \pm 0.01) T(^{\circ}\text{C}) f_{\text{CO}_3} - (0.107 \pm 0.002) T(^{\circ}\text{C}) + (10.53 \pm 0.05) \%$ . We use carbonate fraction instead of pH because the carbonic acid dissociation constants vary with temperature and, therefore, calculated pH depends on temperature. Although the theoretical relationship between  $\epsilon_{\text{DIC-g}}$  and carbonate fraction is not a linear function, it can be linearly approximated in the narrow pH range of 7.7–8.5 used in the experiments. The total error in  $\epsilon_{\text{DIC-g}}$  is estimated at 0.05% based on regression curves vs. temperature and CO<sub>3</sub> fraction.

### CONCLUSIONS

Results from the experiments have yielded new estimates for carbon isotope fractionation effects during CO<sub>2</sub> gas transfer, gas dissolution, and chemical equilibrium between HCO<sub>3</sub><sup>-</sup>, CO<sub>3</sub><sup>-</sup>, and aqueous CO<sub>2</sub>. We have confirmed the kinetic fractionation factor measured previously by Wanninkhof (1985) and Inoue and Sugimura (1985), while reducing the uncertainty by ten times. The equilibrium fractionation measurements in sodium bicarbonate solution and seawater

**Table 4** Summary of the  $^{13}$ C fractionations between gaseous CO<sub>2</sub> and dissolved CO<sub>2</sub>. HCO<sub>2</sub> and CO<sub>3</sub>= in fresh water and seawater as functions of temperature and CO<sub>3</sub>= fraction. The uncertainties in the slopes and intercepts account for the uncertainties in the mean  $\epsilon$  values measured at each temperature (Bevington and Robinson, 1992).

1) y=a xT + b in fresh water at 5°C<T<25°C 2) y=axT + b + dxTxf $_{CO3}$  in sea water at 5°C<T<25°C; 0.05<f $_{CO3}$ <0.20 or 7.5<pH<8.5

| Y                                                                      | a(%o/°C)                                                                                | b(‰)                                                   | d(%d/°C)   | solution                                                                                                                    |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------|
| 1) E <sub>as</sub> 1) E <sub>aq-g</sub> 1) EHCO3_g 1) ECO3_g 2) EDIC_g | 0.013±0.016 <sup>a</sup><br>0.0049±0.003<br>-0.114±0.003<br>-0.052±0.03<br>-0.107±0.002 | -2.30±0.27* -1.31±0.06 10.78±0.05 7.22±0.46 10.53±0.05 | 0.014±0.01 | distilled water<br>distilled water<br>NaHCO <sub>3</sub><br>Na <sub>2</sub> CO <sub>3+</sub> NaHCO <sub>3</sub><br>seawater |

Obtained from measurements at two temperatures only, i.e., 21°C and 5°C

indicate that the fractionation factor between total DIC and gaseous  $CO_2$  can't be simply calculated from the fractionation factors measured for three C species, as has been done previously. An empirical function of  $\epsilon_{\text{DIC-g}}$  in seawater has been obtained with an average error of 0.05% in the temperature range of 5° to 25°C and carbonate fraction of 0.05-0.20 (Table 4).

Acknowledgments—We like to thank Molly Knox for her help on setting up the kinetic experimental system and Jim Murray for providing instruments for titration of alkalinity. Bob Morley made all the glassware. Rik Wanninkhof provided a helpful review. This work was supported by NOAA's Climate and Global Change Program (NA90AA-D-AC828). Contribution #2004 from School of Oceanography, University of Washington.

Editorial handling: B. E. Taylor

#### REFERENCES

Bevington P. R. and Robinson D. K. (1992) Data reduction and error analysis for the physical sciences. McGraw-Hill.

Deuser W. G. and Degens E. T. (1967) Carbon isotope fractionation in the system CO<sub>2</sub>(gas)-CO<sub>2</sub>(aqueous)-HCO<sub>3</sub>(aqueous). *Nature* **215**, 1033–1035.

Emrich K., Ehalt D. H., and Vogel J. C. (1970) Carbon isotope fractionation during the precipitation of calcium carbonate. *Earth Planet. Sci. Lett.* **8,** 363–371.

Friedli H., Lotscher H., Oeschger H., Siegenthaler U., and Stauffer B. (1986) Ice Core record of the <sup>13</sup>C/<sup>12</sup>C ratio of atmospheric CO<sub>2</sub> in the past two centuries. *Nature* 324, 237–238.

Goyet C. and Poisson A. (1989) New determination of carbonic acid dissociation constants in seawater as a function of temperature and salinity. *Deep-Sea Res.* **36**, 1635–1654.

Harned H. S. and Davis R. (1943) The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0° to 50°. J. Amer. Chem. Soc. 65, 2030–2037.

Harned H. S. and Scholes S. R. (1941) The ionization constant of HCO<sub>3</sub> from 0° to 50°. *J. Amer. Chem. Soc.* **63**, 1706–1709.

Inoue H. and Sugimura Y. (1985) Carbon isotopic fractionation during the CO<sub>2</sub> exchange process between air and sea water under equilibrium and kinetic conditions. *Geochim. Cosmochim. Acta* 49, 2453–2460.

Johnson K. S. (1982) Carbon dioxide hydration and dehydration kinetics in seawater. *Limnol. Oceanogr.* 27, 849-855.

Keeling C. D., Bacastow R. B., Carter A. F., Piper S. C., Whorf T. P., Heimann M., Mook W. G., and Roeloffzen H. (1989) A three-dimensional model of atmospheric CO<sub>2</sub> transport based on observed winds: 1. Analysis of observational data. In Aspects of Climate Variability in the Pacific and Western Americas (ed. D. H. Peterson); Geophys. Monograph 55, 165-236.

Knox M., Quay P. D., and Wilbur D. (1992) Kinetic isotopic fractionation during air-water gas transfer of O<sub>2</sub>, N<sub>2</sub>, CH<sub>4</sub> and H<sub>2</sub>. J. Geophy. Res. 97, 20335-20343.

Lesniak P. M. and Sakai H. (1989) Carbon isotope fractionation between dissolved carbonate (CO<sub>2</sub><sup>2</sup>) and CO<sub>2</sub>(g) at 25° and 40°C. *Earth Planet. Sci. Lett.* **95**, 297–301.

Mook W. G. (1986) <sup>13</sup>C in atmospheric CO<sub>2</sub>. Neth. J. Sea Res. 20, 211-223.

Mook W. G., Bommerson J. C., and Staverman W. H. (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. *Earth Planet. Sci. Lett.* 22, 169–176.

Quay P. D., Tilbrook B., and Wong C. S. (1992) Oceanic uptake of fossil fuel CO<sub>2</sub>: carbon-13 evidence. *Science* **256**, 74–79.

Siegenthaler U. and Oeschger H. (1987) Biospheric CO<sub>2</sub> emissions during the past 200 years reconstructed by deconvolution of ice core data. *Tellus* **39B**, 140–154.

Siegenthaler U. and Münnich K. O. (1981) <sup>13</sup>C/<sup>12</sup>C fractionation during CO<sub>2</sub> transfer from air to sea. In *Carbon Cycle Modeling*, pp. 249–251. Wiley.

- Stumm W. and Morgan J. J. (1981) *Aquatic Chemistry*. Wiley. Tans P. P., Berry J. A., and Keeling R. F. (1993) Oceanic <sup>13</sup>C/<sup>12</sup>C Observasions: A new window on ocean CO<sub>2</sub> uptake. *Global Biogeochemical Cycles*. **7**, 353–368.
- Thode H. G., Shima M., Rees C. E., and Krishnamurty K. V. (1965) Carbon-13 isotope effects in systems containing carbon dioxide, bicarbonate, carbonate, and metal ions. *Canada J. Chem.* 43, 582–595.
- Turner J. V. (1982) Kinetic fractionation of carbon-13 during calcium carbonate precipitation. Geochim. Cosmochim. Acta 46, 1183-1191.
- Usdowski E. (1982) Reactions and equilibria in the systems CO<sub>2</sub>-H<sub>2</sub>O and CaCO<sub>3</sub>-CO<sub>2</sub>-H<sub>2</sub>O (0°-50°C). N. Jb. Miner. Abh. 144, 148-171.
- Vogel J. C., Grootes P. M., and Mook W. G. (1970) Isotopic fractionation between gaseous and dissolved carbon dioxide. Z. Physik 230, 225-238.
- Walker A. C., Bray U. B., and Johnson J. (1927) Equilibrium in solutions of alkali carbonates. *Amer. Chem. J.* 49, 1235–1256.
- Wanninkhof R. (1985) Kinetic fractionation of the carbon isotopes <sup>13</sup>C and <sup>12</sup>C during transfer of CO<sub>2</sub> from air to seawater. *Tellus* **37B**, 128–135.
- Weiss R. (1974) Carbon dioxide in water and seawater: The solubility of a nonideal gas, *Mar. Chem.* 2, 203-215.
- Wendt I. (1968) Fractionation of carbon isotopes and its temperature dependence in the system CO<sub>2</sub>-gas-CO<sub>2</sub> in solution and HCO<sub>3</sub>-CO<sub>3</sub> in solution. *Earth Planet. Sci. Lett.* **4**, 64-68.