Дискретна математика 2

Лекция начинается

-Сегодня у нас клуб уопоротых любителей математики.

Contents

1	Лек	кція 1	3						
	1.1	Подільність чисел	3						
	1.2	Найбільший спільний дільник	4						
	1.3	Алгоритм Евкліда	5						
2	Лек	кція 2	7						
	2.1	Найменше спільне кратне	7						
	2.2	Евклідові послідовності	8						
3	Лекція 3								
	3.1	Розширений алгоритм Евкліда	10						
	3.2	Лінійні діафантові рівняння	11						
4	Лек	кція 4	13						
	4.1	Прості числа	13						
	4.2	Розподіл простих чисел	13						
	4.3	Основна теорема арифметики	15						
5	Лек	кція 5	17						
	5.1	Мультиплікативні функції	17						
	5.2	Кількість та сума дільників	18						
	5.3	Досконалі числа	19						
	5.4	Функція Мебіуса	19						
6	Лек	кція 6	22						
	6.1	Порівняння за модулем	22						
	6.2	Степені за модулем	23						
	6.3	Обернені елементи за модулем	24						
7	Лек	кція 7	25						
	7.1	Китайська теорема про остачі	25						
	7.2	Функція Ойлера							
	7.3	Теорема Ойлера та мала теорема Ферма							

Contents 3

8	Лекція 8				
	8.1	Функція Кармайкла	30 31 32 34 34 36 37 38 38 40		
9	Лекція 9				
	9.1	Системи числення	30		
	9.2	Ознака подільності числа			
	9.3	Подільність біноміальних коєфіціентів	32		
10	Лек	ція 10	3 4		
	10.1	Лінійні порівняння за модулем	34		
		Елементи загальної теорії розв'язування порівнянь			
		Розклад Тейлора для поліномів			
		Поліноміальні порівняння за модулем степеня простого числа (1)	37		
11	Лек	ція 11	38		
	11.1	Поліноміальні порівняння за модулем степеня простого числа (2)	38		
	11.2	Квадратичні лишки, критерій квадратичності Ойлера	39		
		Критерій квадратичності Гаусса			
12		ція 12	41		
	12.1	Символ Лежандра та його властивості	41		
	12.2	Символ Якобі та його властивості	42		

CHAPTER 1

Лекція 1

1.1 Подільність чисел

- властивості натуральних чисел $\mathbb{N} = \{1, \ 2, \ 3, \dots\}$ $\mathbb{N}_0 = \{0, \ 1, \ 2, \ 3, \dots\}$ $\mathbb{Z} = \{-1, \ 0, \ 1, -2, \ 2, \dots\}$

Definition 1.1.1. а поділяється на b-a: b або b ділить $a(b \ e \ дільникома) \ b|a$. $a \ : b \Leftrightarrow \exists k \in \mathbb{Z} : \ a = kb$

Property.

- 1. $a \neq 0, a \vdots 0$
- 2. $a \neq 0, 0 : a$
- 3. $a : b, b : c \Rightarrow a : c$
- 4. a:1
- 5. $a : c, b : c \Rightarrow (\alpha a \pm \beta b) : c$
- 6. $a : b \Leftrightarrow ac : bc, c > 0$

Theorem 1.1.1 (про ділення з остачею).

$$\forall a,\; b \in \mathbb{Z} \;\; \exists !q,\; r\; :\; q \in \mathbb{Z},\; r \in \mathbb{N} \;\; 0 \leq r \leq |b| \;\; a = bq + r$$

Proof.

- 1. Існування $bq, q \in \mathbb{Z}$ росте необмежено. $\exists q \; ; \; bq \leq a \leq b(q+1), \; r=a-bq.$
- 2. Єдиність

Нехай
$$a=bq+r,\ a=bq'+r'$$

$$0=b(q-q')+(r-r')\Rightarrow (r-r')\ \vdots\ b,\ -|b|< r-r'<|b|\Rightarrow r-r'=0,\ q=q'.$$

$$q=\lfloor rac{a}{b}
floor$$
 - частка. $r=a+b\cdot \lfloor rac{a}{b}
floor$ - остача $=a\mod b$.

1.2 Найбільший спільний дільник

Найбільший спільний дільник: HCД(a,b)(українська нотація), gcd(a,b)(англійська нотація), (a,b)(спеціальзована література з теорії чисел).

Definition 1.2.1. gcd(a, b) = d:

- 1. $a \vdots d, b \vdots d$

Property.

- 1. $gcd(a, b) = b \Leftrightarrow a \vdots b$
- 2. $a \neq 0$: gcd(a, 0) = a
- 3. $\gcd(a,\,b)$ поділяється на довільний спільний дільник а та b
- 4. c > 0: gcd(ac, bc) = c gcd(a, b)
- 5. $d = \gcd(a, b) \Rightarrow \gcd(\frac{a}{d}, \frac{b}{d})$

Lemma 1.2.1.

$$gcd(a, b) = gcd(b, a - b)$$

Proof.

 $d = \gcd(a, b), d' = \gcd(b, a - b)$

Нехай d > d'

 $a \ \vdots \ d, \ b \ \vdots \ d \Rightarrow (a-b) \ \vdots \ d \Rightarrow d$ - спільний дільник b та a-b $\Rightarrow d' \ \vdots \ d$ - Упс!

Нехай d < d'

$$b : d', a - b \Rightarrow b + (a - b) = a : d' - \text{Vnc!}$$

Consequence. $a \ge b$: $gcd(a, b) = (b, a \mod b)$

Proof.
$$a = bq + r$$

 $\gcd(a, b) = \cdots = \gcd(r, b)$

1.3 Алгоритм Евкліда

Вхід: $a, b \in \mathbb{N}$

Вихід: $d = \gcd(a, b)$

$$r_0 := a, r_1 := b$$

$$r_0 = r_1 q_1 + r_2$$

$$r_1 = r_2 q_2 + r_3$$

$$r_2 = r_3 q_3 + r_4$$

$$\vdots$$

$$r_{n-1} = r_n q_n, r_n = d$$

Proof.
$$r_{i+1} = r_i \mod r_{i-1}$$

 $r_0 \ge r_1 > r_2 > \dots > r_n > r_{n+1} = 0$
 $\gcd(a, b) - \gcd(r_0, r_1) = \gcd(r_1, r_2) = \gcd(r_2, r_3) = \dots =$
 $= \gcd(r_{n-1}, r_n) = \gcd(r_n, 0) = 0$

Lemma 1.3.1.

$$\forall i, \ r_{i+2} < \frac{r_i}{2}$$

Proof.
$$r_i = r_{i+1}q_{i+1} + r_{i+2} \ge r_{i+1} + r_{i+2} > r_{i+2} + r_{i+2} = 2r_{i+2}$$
 \Rightarrow AE зробить $\le 2\lceil \log_2 a \rceil$ кроків.

$$\gcd(123, 456).$$

$$123 = 456 \cdot 0 + 123$$

$$456 = 3 \cdot 123 + 87$$

$$123 = 87 \cdot 1 + 36$$

$$87 = 36 \cdot 2 + 15$$

$$36 = 15 \cdot 2 + 6$$

$$15 = 6 \cdot 2 + 3$$

$$6 = 3 \cdot 2 \Rightarrow \gcd = 3$$

Для яких
$$n: \frac{3n+1}{5n+1}$$
 - скоротний?
$$5n+2=(3n+1)\cdot 1+(2n+1)$$

$$3n+1=(2n+1)\cdot 1+n$$

$$2n+1=n\cdot 2+1$$

$$n=1\cdot n\Rightarrow \gcd(3n+1,\,5n+2)=1$$

2.1 Найменше спільне кратне

Definition 2.1.1. $a, b \in \mathbb{N}$

M = HCK(a, b), lcm(a, b), [a, b]

- 1. $M \vdots a, M \vdots b$
- $2. M \min make число$

Property.

- 1. lcm(a, 0) 'на доске был нарисован грустный смайлик'
- 2. $lcm(a, b) = a \Leftrightarrow a \vdots b$
- 3. a, b -взаємнопрост $i \Rightarrow \operatorname{lcm}(a, b) = a \cdot b$
- 4. Довільне спільне кратне a ma b : lcm(a, b)
- 5. $\forall c > 0$, lcm(ac, bc) = c lcm(a, b)
- 6. $\frac{\operatorname{lcm}(a,b)}{a}$ та $\frac{\operatorname{lcm}(a,b)}{b}$ взаємнопрості

Theorem 2.1.1.

$$\forall a, b \in \mathbb{N} : \gcd(a, b) \cdot \operatorname{lcm}(a, b) = a \cdot b$$

Proof. Нехай
$$d = \gcd(a, b), \ a = a_1 \cdot d, \ b = b_1 \cdot d.$$
 $\gcd(a_1, b_1) = 1, \ \operatorname{lcm}(a_1, b_1) = a_{,1} \cdot b_1, \ \operatorname{lcm}(a, b) = d \cdot a_1 \cdot b_1$ $d \cdot \operatorname{lcm}(a, b) = (a_1 \cdot d) \cdot (b_1 \cdot d) = a \cdot b$

Theorem 2.1.2.

$$\forall a, b \in \mathbb{N} : \gcd(a, b, c) = \gcd(\gcd(a, b), c) = \gcd(a, \gcd(b, c))$$

Proof.
$$d = \gcd(a, b, c)$$

 $d' = \gcd(a, b) \Rightarrow d' : d, c : d \Rightarrow d = \gcd(c, d')$

$$lcm(a, b, c) = lcm(lcm(a, b), c) = lcm(a, lcm(b, c))$$

Theorem 2.1.3.

$$\forall a, b, c \in \mathbb{N} : \operatorname{lcm}(a, b, c) = \frac{a \cdot b \cdot c \cdot \operatorname{gcd}(a, b, c)}{\operatorname{gcd}(a, b) \cdot \operatorname{gcd}(b, c) \cdot \operatorname{gcd}(c, a)}$$

Решітка(lattice) - $< A, \le, \sup, \inf >$

Example:

- 1. множини, \subseteq , \cap , \cup $|A| + |B| = |A \cup B| + |A \cap B|$
- 2. \mathbb{R} , \leq , max, min $a + b = \max\{a, b\} + \min\{a, b\}$
- 3. \mathbb{N} , \vdots , lcm, gcd $a \cdot b = \text{lcm}(a,) \cdot \text{gcd}(a, b)$

$$\max\{a_1,\ldots,a_n\} = a_1 + \cdots + a_n - \min\{a_1, a_2\} - \cdots - \min\{a_{n-1}, a_n\} + \min\{a_1, a_2, a_3\} - \min\{a_1, a_2, a_3\} - \min\{a_1, a_2, a_3\}$$

2.2 Евклідові послідовності

Definition 2.2.1. Послідовність $a_0, a_1, \ldots, a_i \in \mathbb{R}$ - евклідова, якщо $\forall n, m \in \mathbb{N}_0$ n > m: $\gcd(a_n, a_m) = \gcd(a_m, a_{n-m}) \Rightarrow \gcd(a_n, a_m) = \gcd(a_m, a_{n \mod m})$

Theorem 2.2.1.

$$(a_i)$$
 - $ee\kappa ni\partial oea\ i\ a_0=0,\ mo\ \forall n,\ m:\ \gcd(a_n,\ a_m)=a_{\gcd(n,\ m)}$

Proof. n=m - очевидна.

$$n > m$$
:

$$d=\gcd(n,\ m,)$$
 АЕ породжуе послідовність $r_0,\ r_1,\ \dots,r_t,$ де $r_0=n,$ $r_1=m,\ r_t=d,\ r_{t+1}=0,\ r_{i+1}=r_{i-1}\mod r_i$ $\gcd(a_n,a_m)=\gcd(a_{r_0},a_{r_1}=\gcd(a_n,a_m)=\gcd(a_{r_1},a_{r_2}=\dots=\gcd(a_{t_0},a_{t_{i+1}})=a_{r_t}=a_0$

Consequence. Якщо додатково $a_1 = 1$, то $gcd(n, m) = 1 \Rightarrow gcd(a_n, a_m)$

Example:

$$a_k = k$$

Example:

$$\begin{aligned} a_k &= 2_k - 1 \\ \gcd(a_n,\ a_m) &= ^? \gcd(a_m,\ a_{n-m}) \\ a_n &= 2^n - 1 = 2^n - 2^m - 1 = 2^m (2^{n-m} - 1) + (2^m - 1) = 2^m \cdot a_{n-m} + a_m = a_n \\ \gcd(2^n - 1,\ 2^m - 1) &= 2^{\gcd(n,\ m)} - 1 \end{aligned}$$

Example:

$$a_k = \alpha^k - 1, \ \alpha \in \mathbb{N}, \ \alpha \ge 2$$

$$a_0 = 0, \ a_1 = \alpha - 1 \ne 1$$

Example:

$$a_k = \alpha^k - \beta^k, \ \alpha, \ \beta \in \mathbb{N}, \ \alpha > \beta \geq 2$$

 (a_i) - евклідова і $a_0 = 0$, то $\forall n > m : \gcd(a_n, \, a_m) = 1$

3.1 Розширений алгоритм Евкліда

Theorem 3.1.1 (лема Безу).

$$\forall a, b \in \mathbb{N}, d = \gcd(a, b) \quad \exists u, v \in \mathbb{Z}, d = au + bv$$

```
\begin{array}{l} \textit{Proof.} \\ r_0 = r_1q_1 + r_2 \\ r_1 = r_2q_2 + r_3 \\ r_2 = r_4q_4 + r_5 \\ & \vdots \\ r_{n-3} = r_{n-2}q_{n-2} + r_{n-1} \\ r_{n-2} = r_{n-1}q_{n-1} + r_n \\ r_{n-1} = r_nq_n \\ \text{Тоді } d = r_n = r_{n-2} - r_{n-1}q_{n-1} = r_{n-2} - q_{n-1}(r_{n-3} - r_{n-2}q_{n-2}) = \cdots = \end{array}
```

Consequence.

 $= u \cdot r_0 + v \cdot r_1$

- 1. $d = au + bv \Rightarrow odne$ з чисел u, v недодатье, a inше невід'ємне.
- 2. $d = \gcd(x_1, x_2, \dots, x_k) \Rightarrow a_1, a_2, \dots, a_k \in \mathbb{Z} : d = a_1 x_1 + a_2 + x_2 + \dots + a_k x_k$
- 3. $\forall i: u_i, v_i \in \mathbb{Z} \ r_i = au_i + bv_i \Rightarrow u_0 = 1, v_0 = 0, u_1 = 0, v_1 = 1$ $u_{i+1} = u_{i-1} u_i q_i, \ v_{i+1} = v_{i-1} v_i q_i, \ r_{i+1} = r_{i-1} q_i r_i = (au_{i-1} + bv_{i-1}) q_i (au_i + bv_i) = a\underbrace{(u_{i-1} q_i u_i)}_{u_{i+1}} + b\underbrace{(v_{i-1} q_i v_i)}_{v_{i+1}}$

$$\gcd(123, 456).$$
 $123 = 456 \cdot 0 + 123$
 $456 = 3 \cdot 123 + 87$
 $q_1 = 3$
 $123 = 87 \cdot 1 + 36$
 $q_2 = 1$

$$87 = 36 \cdot 2 + 15$$
 $q_3 = 2$
 $36 = 15 \cdot 2 + 6$ $q_4 = 2$
 $15 = 6 \cdot 2 + 3$ $q_5 = 2$
 $6 = 3 \cdot 2$ $q_6 = 2 \Rightarrow \gcd = 3$

		q_1	q_2	q_3	q_4	q_5	
		3	1	2	2	2	
u_i	1	0	1	-1	3	-7	17
v_i	0	1	-3	4	-11	26	-63

Theorem 3.1.2.

 $\gcd(a, b) - \min \ \partial o \partial am He \ uucлo$, яке має форму $au + bv, \ u, v \in \mathbb{Z}$

Proof.

1.
$$C = \{au + bv \mid u, v \in \mathbb{Z}\}$$

$$d' = \min\{d' > 0\}, \ d \in C \text{ тоді} \ \forall d \in C : \ c \vdots d'$$

$$\text{Нехай } c' = au' + bv', \ c' \vdots d', \text{ тоді} \ c = q'd' + r', \ 0 < r' < d'$$

$$r' = c' - q'd' = (au' + bv') - q'(au'_{\alpha} + bv'_{\alpha}) =$$

$$= a(u' = -q'u'_{\alpha}) + b(v' - q'v'_{\alpha}) - \text{Упс!}$$

2.
$$d=au+bv=\gcd(a,\ b)\Rightarrow d\ \vdots\ d'$$
 $a=a\cdot 1+b\cdot 0\Rightarrow a\ \vdots\ d',\ b=a\cdot 0+b\cdot 1\Rightarrow b\cdot \cdot\cdot \ d'$ $\Rightarrow d'$ - спільний дільник a та $b\Rightarrow d'=au'_{\alpha}+bv'_{\alpha}\ \vdots\ d\Rightarrow d=d'$

3.2 Лінійні діафантові рівняння

Definition 3.2.1.
$$f(x_1, x_2, \ldots, x_n) = 0, x_i \in \mathbb{Z}$$
 $a_1x_1 + a_2x_2 + \cdots + a_nx_n = c, a_i \in \mathbb{Z}, c \in \mathbb{Z}$ $ax + by = c, a, b, c \in \mathbb{Z}$ - $\kappa oe \text{piu} i \text{e} mu, x, y \in \mathbb{Z}$ - $\kappa e \text{e} i \partial o \text{m} i$.

Theorem 3.2.1.

$$Hexaŭax + by = c \ d = \gcd(a, b)$$

1. pівняння має pозв'язки $\Leftrightarrow c : d$

2. $a=a_0\cdot d,\ b=b_0\cdot d,\ c=c_0\cdot d,\ (x_0,\ y_0)$ - якийсь розв'язок рівняння. Тоді довільний розв'язок $(x,\ y)$: $\int x=x_0+b_0\cdot t$

$$\begin{cases} x = x_0 + b_0 \cdot t \\ y = y_0 - a_0 \cdot t \end{cases} \quad t \in \mathbb{Z}$$

Proof.

1. Якщо c : d, але ax + by : d то Упс! Якщо c : d, то $a_0x + b_0y = c_0$ - еквівалентне рівняння $1 = a_ou + b_0v \Rightarrow x_0 = u \cdot c_0$, $y_0v \cdot c_0$ - розв'язки.

2.
$$ax + by = a(x_0 + b_0t) + b(y_0 - a_0t) = \underbrace{(ax_0 + by_0)}_{=c} + \underbrace{(ab_0t - ba_0t)}_{a_0b_0dt - a_0b_0dt} = c$$

Нехай (x, y) - розв'язок рівняння $ax + by = 0, \ ax_0 + by_0 = c \Rightarrow a(x - x_0) + b(y - y_0) = 0 \Rightarrow$ $\Rightarrow a_0(x - x_0) + b_0(y - y_0) = 0 \ \gcd(a_0, b_0) = 1 \Rightarrow 1 = a_0u + b_0v \Rightarrow$ $\Rightarrow 0 = \underbrace{a_0u}_{=(1-b_0v)} (x - x_0) + b_0v(y - y_0) = (x - x_0) + b_0(u(y - y_0) - v(x - x_0)) \Rightarrow$ $\Rightarrow x - x_0 \vdots b_0, \ x - x_0 = b_0 \cdot t, \ t \in \mathbb{Z} \Rightarrow a_0 \cdot b_0t + b_0(y - y_0) = 0 \Rightarrow$ $\Rightarrow y - y_0 = a_0t$

Ехаприе.
$$15x + 9y = 27$$

$$15 = 9 \cdot 1$$

$$9 = 6 \cdot 1 + 3$$

$$6 = 3 \cdot 2 \Rightarrow 3 = 15 \cdot (-1) + 9 \cdot 2$$

$$27 \vdots 3 \Rightarrow \text{розв'язки існують}$$

$$5x + 3y = 9$$

$$1 = 5 \cdot (-1) + 3 \cdot 2$$

$$x_0 = 9, y_0 = 18$$

$$\begin{cases} x = -9 + 3 \cdot t \\ y = 18 - 5 \cdot t \end{cases}$$

$$5 \cdot 21 - 3 \cdot 32 = 105 - 96 = 9$$

$$?t : x > 0, y > 0$$

$$\begin{cases} -9 + 3t > 0 \\ 18 - 5t > 0 \end{cases} \Rightarrow \begin{cases} t > 3 \\ t < 3, 6 \end{cases}$$

4.1 Прості числа

Definition 4.1.1. $n \in \mathbb{N}$ - просте \Leftrightarrow мае рівно два дільники 1 та п $n \in \mathbb{N}$ - складене $\Leftrightarrow \exists a: \ 1 < a < n \quad n : a$

1 - не просте, не складене

Lemma 4.1.1.

$$n \in \mathbb{N}$$
: $gcd(n, n+1) = 1$

Theorem 4.1.2 (Евклід).

Якщо $A = \{p_1, p_2, \dots, p_n\}$ - скінченна сукупність простих чисел, то існує просте $\underline{P} \notin A$

Proof.

$$Q=p_1p_2p_3\dots p_n+1\Rightarrow Q\ \vdots\ p_i,\ n=\overline{1,n}$$
 Q - або просте, або має простий дільник

Consequence. Простих чисел нескінченно багато

Lemma 4.1.3.

 $n \in \mathbb{N}$ - складене d > 1 — \min дільник $n \Rightarrow d$ - npocme

Proof. Нехай d - складене, $d=a\cdot b,\ a,\ b\neq 1,\ d \vdots a,\ n \vdots d \Rightarrow n \vdots a$ - Упсв!

4.2 Розподіл простих чисел

Сито Ератросфена(пошук простих чисел?) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 // Беремо перше число яке тут є. Це число 2 - воно просте. Після чого беремо

і викреслюємо кожне друге число.

- (2) 3 \$\frac{1}{4}\$ 5 \$\frac{1}{8}\$ 7 \$\frac{1}{8}\$ 9 \$\frac{1}{2}\$ 11 \$\frac{1}{2}\$ 13 \$\frac{1}{2}\$ 15 \$\frac{1}{2}\$ 17 \$\frac{1}{2}\$ 19 \$\frac{1}{2}\$
- // Беремо перше незакреслене число. Це число 3 воно просте. Викреслюємо кожне трете число в цьому ряду.
- (2) (3) $\cancel{4}$ 5 $\cancel{6}$ 7 $\cancel{8}$ $\cancel{9}$ $\cancel{11}$ $\cancel{13}$ $\cancel{14}$ $\cancel{16}$ $\cancel{17}$ $\cancel{16}$ 19 $\cancel{20}$
- // Беремо настпуне. Це 5 просте. Викреслюємо кожне п'яте число. Ну вони вже викреслині. Тому далі уже нічого не викреслюєтся.
- 2 3 4 5 8 7 8 9 11 24 13 14 24 16 17 24 19 24

Lemma 4.2.1.

$$n = a \cdot b, \ 1 < a, \ b < n \Rightarrow \min\{a, \ b\} \le \sqrt{n} \le \max\{a, \ b\}$$

Proof. Від супротивного

Consequence. У ситі Ератросфена для $2 \dots N$ після викреслень чисел $\leq \sqrt{n}$ залишаются прості.

Example:

 $\forall m \in \mathbb{N}$: існують m послідовних натуральних складених чисел.

$$(m+1)! \vdots 2, (m+1)! \vdots 3, (m+1)! \vdots 5, \dots, (m+1)! \vdots (m+1).$$

Example:

Прості числа-близнюки p, q: прості, p - q = 2

Наразі найбільша відома пара чисел близнюків: $2996863034895 \cdot 2^{1290000} \pm 1$

Example:

Прості числа Мерсена: $M_p = 2^p - 1$ - просте, $M_n = 2^n - 1$ - складене

Lemma 4.2.2.

$$M_p$$
 - $npocme \Rightarrow p$ - $npocme$. $p = a \cdot b \Rightarrow M_p = 2^{ab} - 1 \vdots 2^a - 1$

Постулат Бертрана

 $\forall n \in \mathbb{N}, > 4$. інтервал $n \dots 2n - 2$ містить просте число.

Функція розподіла простих чисел $\Pi(x)$

 $\Pi(x)=$ кількість простих чисел < x.

$$\frac{1}{2} \cdot \frac{x}{\log_2 x} \le \Pi(x) \le 5 \cdot \frac{x}{\log_2 x} \to \alpha \cdot \frac{x}{\ln x} \le \Pi(x) \le \beta \cdot \frac{x}{\ln x}, \quad \alpha = 0.92129, \quad \beta = 1,10555$$

Theorem 4.2.3 (Адамер, Вале).

$$\Pi(x) \sim \frac{x}{\ln x} (\Pi(x) \sim \int_{2}^{x} \frac{dt}{\ln t}) \Rightarrow p_n \sim n \cdot \ln n$$

Theorem 4.2.4 (Діріхле).

Якщо gcd(a, b) = 1, то існує ∞ простих чисел виду $a \cdot m + b$

4.3 Основна теорема арифметики

Lemma 4.3.1 (Euclid).

$$p - npocme, ab : p \Rightarrow \begin{bmatrix} a : p \\ b : p \end{bmatrix}$$

Proof. Нехай
$$ab : p$$
, але $a : p \Rightarrow \gcd(a, p) = 1 \Rightarrow$

$$\Rightarrow \exists u, v, \quad au + pv = 1 \Rightarrow \underbrace{ab}_{p} \cdot u + \underbrace{p}_{p} \cdot bv = \underbrace{b}_{p}$$

$$\vdots_{p} \qquad \vdots_{p}$$

Theorem 4.3.2 (основна теорема арифметики).

 $\forall n \in \mathbb{N} : n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}, \ \partial e \ p_1 < p_2 < \dots < p_t - \ npocmi, \ \alpha_i \ge 1 \ - \ натуральні.$ Proof.

1. Існування

Нехай все вірне , n_0 — тіп чысло, яке не розкладаэться $\Rightarrow \exists a: 1 < a < n_0: n = a \cdot b$

2. Єдність

Нехай
$$n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_t^{\alpha_t}=q_1^{\beta_1}q_2^{\beta_2}\dots q_t^{\beta_t},\ n\ \vdots\ p_1\Rightarrow q_1^{\beta_1}\dots q_t^{\beta_t}\ \vdots\ p_1\exists i:\ q_i^{p_i}\ \vdots\ p_1\Rightarrow q_i=p_i$$

Example:

Приклад Гільберта

Розглянемо числа виду 4k+1 5, 9, 13, 17, 21, 25 $((4k_1+1)(4k_2+1)=4(\dots)+1)$

1.
$$d \mid n \Rightarrow d = q_1^{\beta_1} q_2^{\beta_2} \dots q_t^{\beta_t}, \ 0 \le \beta_i \le \alpha_i$$

2.
$$a = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}, \quad \alpha_i \ge 0,$$
 $b = p_1^{\beta_1} p_2^{\beta_2} \dots p_t^{\beta_t}, \quad \beta_i \ge 0$

$$\gcd(a, b) = \prod_{i=1}^t p_i^{\min\{\alpha_i, \beta_i\}}, \qquad \operatorname{lcm}(a, b) \prod_{i=1}^t p_i^{\min\{\alpha_i, \beta_i\}}$$

3.
$$a : b, a : c, \gcd(b, c) = 1 \Rightarrow a : (b \cdot c)$$

CHAPTER 5

Лекція 5

5.1 Мультиплікативні функції

f(n) - мультіплікативна:

- 1. $f(n) \not\equiv$
- 2. $\forall a, b \in \mathbb{N}$: $gcd(a, b) = 1 \Rightarrow f(ab) = f(a)f(b)$

Example:

$$f(n) = 1$$

$$f(n) = n$$

$$f(n) = n^{S}$$

Property.

1.
$$f(1) = 1$$
; $f(n) = f(n \cdot 1) = f(n)f(1)$

2. Якщо
$$x_1, x_2, \ldots, x_t$$
 - попарно взаємнопрості, то $f(x_1x_2\ldots x_t)=f(x_1)\ldots f(x_t)$

3. Якщо
$$f(n), g(n)$$
 - мультиплікативні, то $h(n) = f(n) \cdot g(n)$ - мультиплікативна

4.
$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}, f(n) = f(p_1^{\alpha_1}) \cdot f(p_2^{\alpha_2}) \dots f(p_t^{\alpha_t})$$

Definition 5.1.1. f(n) - мультиплікативна. Числовий інтеграл $g(n) = \sum\limits_{d \mid n} f(d)$

Theorem 5.1.1 (S).

$$f(n)$$
 - мультиплікативна $\Rightarrow g(n)$ - такоже.

Proof.

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}, \quad d \mid n \Rightarrow d = p_1^{\beta_1} p_2^{\beta_2} \dots p_t^{\beta_t}, \quad 0 \le \beta_i \le \alpha_i$$

$$g(n) = \sum_{d \mid n} f(d) = \sum_{\beta_1 = 0}^{\alpha_1} \sum_{\beta_2 = 0}^{\alpha_2} \dots \sum_{\beta_t = 0}^{\alpha_t} f(p_1^{\beta_1} \dots p_t^{\beta_t}) =$$

$$= \sum_{\beta_1} \dots \sum_{\beta_t} \prod_{i = 1}^t i = 1^t f(p_i^{\beta_t}) = \prod_{i = 1}^t \sum_{\beta_i = 0}^{\alpha_i} f(p_i^{\beta_i})$$

$$g(n) = \prod_{i=1}^t \sum_{\beta_i=0}^{\alpha_i} f(p_i^{\beta_i})$$

5.2 Кількість та сума дільників

Кількість дільників $\tau(n) = \sum_{d \mid n} 1$ Сума дільників $\sigma(n) = \sum_{d \mid n} d$

Proposition.

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}, \qquad p_t^{\alpha_t} : \ \tau(n) = (1 + \alpha_1)(1 + \alpha_2) \dots (1 + \alpha_t)$$
$$\sigma = \prod_{i=0}^t \frac{p_i^{\alpha_{i+1}}}{p_i - 1}$$

Proof.

$$p$$
 - просте. $\tau(p) = 2$ $\tau(p^{\alpha}) = 1 + \alpha$ $\tau(n) = \tau(p_1^{\alpha_1}) \dots \tau(p_t^{\alpha_t}) = (1 + \alpha_1)(1 + \alpha_2) \dots (1 + \alpha_t)$ $\sigma(p) = 1 + p$ $\sigma = 1 + p + p^2 = \dots + p^{\alpha} = \frac{p^{\alpha+1} - 1}{p-1}$ $\sigma(n) = \sigma(p_1^{\alpha_1})\sigma(p_2^{\alpha_2}) \dots \sigma(p_t^{\alpha_t})$

Example:

$$n = 1000 = 2^{3}5^{3}$$

$$\tau(1000) = (1+3)(1+3) = 16$$

$$\sigma(1000) = \frac{2^{4}-1}{2-1} \cdot \frac{5^{4}-1}{5-1} = 2340$$

Example:

$$n = 1001 = 7 \cdot 11 \cdot 13$$

$$\tau(1001) = (1+1)(1+1)(1+1) = 8$$

$$\sigma(1001) = (1+7)(1+11)(1+13) = 1344$$

Property.

1.
$$\tau(n) \le 2\sqrt{n}$$

 $n : d \Rightarrow n = d \cdot d'$
 $\sigma(n) \ge n + 1$

2.
$$\tau(n)$$
 - непарне $\Leftrightarrow n=m^2$

3.
$$\sigma$$
 - nenapne $\Leftrightarrow \begin{bmatrix} m^2 \\ 2m^2 \end{bmatrix}$

5.3 Досконалі числа

Definition 5.3.1. Досконале число n:

 $n=cymi\ ycix\ дільників\ окрім\ власне\ n\ або\ \sigma(n)=2n$

Example:

$$n = 6$$
: $1 + 2 + 3 = 6$

Example:

$$n = 28$$
: $1 + 2 + 4 + 7 + 14 = 28$

Theorem 5.3.1 (Евклід-Ойлер).

Парне n - досконале $\Leftrightarrow n=2^{p-1}\cdot M_p$, де $M_p=2^p-1$ - просте число Марсена Proof.

1.
$$n = 2^{p-1} \cdot M_p$$
, $p > 2$
 $\sigma(n) = \sigma(2^{p-1} \cdot M_p) = \sigma(2^{p-1})\sigma(M_p) = (2^p - 1)(M_p + 1) = 2^p(2^p - 1) = n$

2. Нехай
$$n$$
 - парне досконале, $n = 2^k \cdot b$, b - непарне $\sigma(n) = \sigma(2^k \cdot b) = (2^k - 1) \cdot \sigma(b) = 2^k \cdot b = 2n \Rightarrow$ $\Rightarrow b \vdots (2^k - 1), \ b = (2^k - 1) \cdot c \qquad (2^k - 1)\sigma(b) = 2^k (2^k - 1) \cdot c$ $\sigma(b) = 2^k \cdot c = (2^k - 1 + 1) \cdot c = b + c$ $b \vdots c, \ c \neq 1, \ c \neq b \Rightarrow \sigma(b) > 1 + b + c \Rightarrow c = 1.$ $b = 2^k - 1, \ \sigma(b) = b + 1 \Rightarrow b$ - просте. $n = 2^{k-1} \underbrace{(2^k - 1)}_{\text{просте}}$

5.4 Функція Мебіуса

Definition 5.4.1. $\mu(n)$:

$$\mu(p^{\alpha}) = \begin{cases} -1, & \alpha = 1 \\ 0, & \alpha > 1 \end{cases} \Rightarrow M(n) = \begin{cases} (-1)^k, & n = p_1 p_2 \dots p_t \\ 0, & n \vdots a^2 \end{cases}$$

Lemma 5.4.1 (характерізаційна властивість μ).

$$\sum_{d \mid n} M(d) = \begin{cases} 1, & n = 1 \\ 0, & n \neq 1 \end{cases}$$

Proof.

$$\begin{array}{ll} p^\alpha: & \mu(1) + \mu(p) + \mu(p^2) + \dots + \mu(p^\alpha) = 1 + (-1) + 0 + 0 + \dots + 0 = 0 \\ \text{За теоремою } 5.1.1 \sum_{d \mid n} \mu(d) = \prod_i \sum_\beta \mu(p_i^\beta) \end{array} \qquad \square$$

Proposition. f(n) - мультіплікативна, $n = p_1^{\alpha_1} \dots p_t^{\alpha_t}$

$$\sum_{d \mid n} M(d) f((d) = (1 - f(p_1))(1 - f(p_2)) \dots (1 - f(p_t))$$

Proof. За теоремою 5.1.1
$$\sum_{\beta} \mu(p_1^{\beta}) f(p_i^{\beta}) = \mu(1) f(1) + \mu(p_i) f(p_i) + \mu(p_i^2) f(p_i^2) + \dots = 1 + (-1) f(p_i) = 1 - f(p_i)$$

Theorem 5.4.2 (закон обертання Мебіуса).

$$f(n)$$
 - мультіплікативна, $g(n) = \sum_{d \mid n} f(d) \Rightarrow f(n) = \sum_{d \mid n} M(d) \cdot g(\frac{n}{d})$

Proof.

$$\sum_{d \mid n} M(d) \cdot \sum_{\delta \mid \frac{n}{d}} f(\delta) = \sum_{(d, \delta), d\delta \mid n} \mu(d \cdot f(\delta)) = \sum_{\delta \mid n} \sum_{d \mid \frac{n}{d}} \mu(d) f(\delta) = \sum_{\delta \mid n} f(\delta) \cdot \sum_{d \mid \frac{n}{d} = 1 \Rightarrow \delta = n} \mu(d) = f(n)$$

Example:
$$a_0, a_1, \ldots, a_n$$
 $A(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ - ряд Діріхле. $B(s) = \sum_{n=1}^{\infty} \frac{b_n}{n^s}$
 $C(s) = A(s) \cdot B(s) = \sum_{n=1}^{\infty} \frac{c_n}{n^s} \Rightarrow C_n = \sum_{d \mid n} a_d \cdot b_{\frac{n}{d}} \qquad \xi(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$
 $\frac{1}{\xi(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} \qquad C(s) = A(s) \cdot \xi(s) \qquad C_n = \sum_{d \mid n} a_d$
 $A(s) = C(s) \cdot (\xi(s))' \Rightarrow a_n = \sum_{d \mid n} \mu(d) c_{\frac{n}{d}}$

6.1 Порівняння за модулем

Definition 6.1.1. $a, b \in \mathbb{N}$, $a \ ma \ b \ nopiвнювані за <math>\mod n$:

$$a \equiv b \pmod{n}, \ a \equiv_n b, \ \kappa o n u \colon (1) \exists t \in \mathbb{Z} : \ a = b + nt$$

$$(2) \ a \mod n = b \mod n$$

$$(3) \ (a - b) \vdots n$$

Property.

1.
$$a \equiv a \pmod{n}$$
, $a \equiv b \pmod{n} \Rightarrow b \equiv a \pmod{n}$, $a \equiv b \pmod{n}$, $b \equiv a \pmod{n} \Rightarrow a \equiv a \pmod{n}$

2.
$$a \equiv b \pmod{n}$$
, $c \equiv d \pmod{n} \Rightarrow a \pm c \equiv b \pm d \pmod{n}$, $ac \equiv bd \mod n$

Proof.
$$a = b + nt_1$$
, $c = d + nt_2$, $ac = bd + \underbrace{nt_1d + nt_2b + n^2t_1t_2}_{n \cdot T, T \in \mathbb{Z}}$

$$p(x_1, x_2, ..., x_t)$$
 - поліном з цілими коефіцієнтами, $(a_i), (b_i): a_i \equiv b_i \pmod{n} \Rightarrow p(a_1, a_2, ..., a_t) = p(b_1, b_2, ..., b_t) \pmod{n}$

3. Akujo $ca \equiv cb \pmod n$, $\gcd(c, n) = 1$, $mo \ a \equiv b \pmod n$ Ane $6 \equiv 2 \pmod 4$, $3 \not\equiv \pmod 4$

Proof.
$$ca - cb : n, c(a - b) : n \Rightarrow (a - b) : n$$

4. (a) $a \equiv b \pmod{n}, \ k \neq 0 \Rightarrow ak \equiv bk \pmod{nk}$

(b)
$$d = \gcd(a, b, n)$$

 $a = a_1 d_1, b = b_1 d_1, n = n_1 d_1, a \equiv b \pmod{n} \Rightarrow a_1 \equiv b_1 \pmod{n}$

Proof.
$$a = b + nt$$
, $a_1 \not d = b_1 \not d + n_1 \not dt$

5.
$$a \equiv b \pmod{n}$$
, $n : d \Rightarrow a \equiv b \pmod{d}$

6.
$$a \equiv b \pmod{n_1}$$
,
 $a \equiv b \pmod{n_2}$,
 \vdots
 $a \equiv b \pmod{n_t}$,
 $a \equiv b \pmod{n_t}$,
 $a \equiv b \pmod{n_t}$

7.
$$a \equiv b \pmod{n} \Rightarrow \gcd(a, n) = \gcd(b, n)$$

Definition 6.1.2. Лишок за модулем n: $k, [k], \underline{k}$

$$\{k + nt \mid k \in \mathbb{Z}\}$$

Definition 6.1.3. Повна система лишків (кільце):

$$\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$$

6.2 Степені за модулем

Lemma 6.2.1 (A).

$$a \cdot \mathbb{Z}_n + b = \mathbb{Z}_n$$

Якщо x пробігає усі елементи \mathbb{Z}_n і $\gcd(a, n) = 1$, то $\forall b \in \mathbb{Z}$ y = (ax + b) $\mod n$ - також пробігає усі лишки з \mathbb{Z}_n

Proof. Нехай
$$ax_1 + b \equiv ax_2 + b \pmod{n}$$
, $ax_1 \equiv ax_2 \pmod{n}$, $x_1 = x_2 \pmod{n}$

6.3 Обернені елементи за модулем

Definition 6.3.1. $\forall a \in \mathbb{Z}, n \in \mathbb{N}$ Обернене до a за $\operatorname{mod} n$ a^{-1} $\operatorname{mod} n$:

$$a \cdot a^{-1} \equiv a^{-1} \cdot a \equiv 1 \pmod{n}$$

Theorem 6.3.1.

$$\exists a^{-1} \mod n \Leftrightarrow \gcd(a, n) = 1$$

Proof.

- 1. Нехай $\gcd(a,\ n)=1$ Тоді $\exists u,\ v \qquad a\cdot u+n\cdot v=1\Rightarrow a\cdot u\equiv 1(\mod n)\Rightarrow u=a^{-1}\mod n$
- 2. Нехай $\forall a^{-1} \mod n, \gcd(a, n) = d > 1$ $a \cdot a^{-1} = 1 + nt, \ 1 = a \cdot a^{-1} nt \ \vdots \ \text{- Упс!}$

Definition 6.3.2. Зведена с-ма лишків (мультиплікативна группа кільця \mathbb{Z}_n)

$$\mathbb{Z}_n^* = \{ a \mid \gcd(a, n) = 1 \}$$

Definition 6.3.3. Функція Ойлера

$$\varphi(n) = |\mathbb{Z}_n^*|$$

7.1 Китайська теорема про остачі

Theorem 7.1.1 (KTO).

$$\begin{cases} x \equiv b_1 (\mod n_1) & \textit{yci } n_i \textit{ nonapho взаємнопрості} \\ x \equiv b_2 (\mod n_2) & \textit{Todi ichye рівно один класс лишків} \\ \vdots & \text{mod } n_1 n_2 \dots n_i, \\ x \equiv b_t (\mod n_t) & \textit{який є розв'язком системи.} \end{cases}$$

Proof.

1. Нехай x_1 та x_2 - різні розв'язки.

$$x_1 \equiv x_2 \equiv b_i \pmod{n_i} \Rightarrow (x_1 - x_2) \vdots n_i, \ i = \overline{1, t} \Rightarrow (x_1 - x_2) \vdots n_1 n_2 \dots n_t$$

2.
$$\begin{cases} x \equiv b_1 (\mod n_1) & x = b_1 + n_1 k, \ k \in \mathbb{Z} \\ x \equiv b_2 (\mod n_2) & \underset{=b_2}{\underset{=b_2}{\longrightarrow}} n_1 k + b_1 (\mod n_2), \ k = \overline{1, n_2 - 1} \end{cases}$$
 3 леми А: $\exists ! k \ n_1 k + b_1 \equiv b_2 (\mod n_2)$ Повторюємо для $n_1 n_2$ та $n_3, \ n_1 n_2 n_3$ та $n_4 \dots$

3.
$$N=n_1n_2\dots n_t,\ N_i=\frac{N}{n_i},\ M_i=N_i^{-1}\mod n_i$$
 $x_0=(b_iN_1M_1+b_2N_2M_2+\dots+B_iN_iM_i)\mod N$ - розв'язок $x_0\mod n_1\equiv b_1N_1M_1\mod n_1\equiv b_1N_1N_1^{-1}\mod n_1=b_1\mod n_1$

Example:

$$\begin{cases} x \equiv 1 \pmod{2} & n_1 = 2 \quad N_1 = 21 \quad M_1 = 1 \\ x \equiv 2 \pmod{3} & n_2 = 3 \quad N_2 = 14 \quad M_2 = 14^{-1} \mod{3} = 2 \\ x \equiv 3 \pmod{7} & n_3 = 7 \quad N_3 = 6 \quad M_3 = 6^{-1} \mod{7} = 6 \mod{7} \\ N = 42, & x_0 = 1 \cdot 4 \cdot 1 + 2 \cdot 14 \cdot 2 + 3 \cdot 6 \cdot 6 \equiv 17 \mod{42} \end{cases}$$

7.2 Функція Ойлера

Definition 7.2.1.

$$\varphi(n)=|\mathbb{Z}_n^*|=\kappa$$
-ть чисел в інтервалі $1\dots n$, які взаємнопрості з n

Proposition.

$$\varphi(n)$$
- мультиплікативна.

$$n=ab,\ \gcd(a,\ b)=1$$
 $\forall x:\ \gcd(x,\ n)=1\Leftrightarrow egin{cases}\gcd(x,\ a)=1\ \gcd(x,\ b)=1 \end{cases}$ (Випливає з ОТА) $\varphi(n)=\varphi(a\cdot b)$ $x\equiv x_0(\mod n)\Leftrightarrow egin{cases}x\equiv x_0(\mod a) & x_0=x_0\mod a & \varphi(a)\ x\equiv x_0(\mod b) & x_0=x_0\mod b & \varphi(b) \end{cases}$ ($x_a,\ x_n$): $\varphi(a)\cdot \varphi(b)$

$$n = p: \qquad \varphi(p) = p - 1 \text{ (Bci okpim } p)$$

$$n = p^{\alpha}: \qquad \varphi(p) = p^{\alpha} - p^{\alpha-1} \text{ (Bci okpim } p, \ 2p, \ 3p, \ 4p, \dots, \ (p^{\alpha-1} - 1, \ p^{\alpha})$$

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}: \qquad \varphi(n) = \prod_{i=1}^t (p_i^{\alpha_i} - p_i^{\alpha_i-1}) = n \cdot \prod_{i=1}^t (1 - \frac{1}{p_i})$$

Example:

$$\varphi(31) = 30$$

 $\varphi(32) = \varphi(2^5) = 16$
 $\varphi(33) = \varphi(3 \cdot 11) = 30$

Proposition.

$$\sum_{d \mid n} \varphi(d) = n$$

$$\varphi(n) = \#x : \gcd(x, n) = 1,$$

$$N_d = \#x: \quad \gcd(x, n) = d, \ x = x_1 \cdot d, \ n = n_1 \cdot d, \ \gcd(x_1, n_1) = 1 \Rightarrow$$

$$\Rightarrow N_\alpha = \varphi(n_1) = \varphi(\frac{n}{d}) \Rightarrow n = \sum_{d \mid n} N_d = \sum_{d \mid n} \varphi(\frac{n}{d}) = \sum_{d \mid n} \varphi(d)$$

$$\sum_{\substack{d \mid n}} \varphi(d) = n \Rightarrow \varphi(n) = \sum_{\substack{d \mid n}} \mu(d) \cdot \frac{n}{d} = n - \frac{n}{p_1} - \frac{n}{p_2} - \dots - \frac{n}{p_t} + \frac{n}{p_2 p_3} + \dots + \frac{n}{p_{t-1} p_t} - \frac{n}{p_1 p_2 p_2} - \dots + (-1)^t \frac{n}{p_1 p_2 \dots p_t}$$

7.3 Теорема Ойлера та мала теорема Ферма

Theorem 7.3.1 (Ойлер).

$$\forall n \in \mathbb{N}, \ \forall a \in \mathbb{Z}_n^* : \ a^{\varphi(n)} \equiv 1 \pmod{n}$$

Proof.

 $\forall a \in \mathbb{Z}_n^*: a\mathbb{Z}_n^* = \mathbb{Z}_n^*$ якщо x пробігає усі значення \mathbb{Z}_n^* , то ax також пробігає \mathbb{Z}_n^* $ax \equiv ay \pmod{n} \Rightarrow x \equiv y \pmod{n}$

$$\mathbb{Z}_n^* = \{b_1, b_2, \dots, b_{\varphi(n)}\} = \{ab_1, ab_2, \dots, ab_{\varphi(n)}\} \Rightarrow$$

$$\Rightarrow b_1 b_2 \dots b_{\varphi(n)} \equiv ab_1 \cdot ab_2 \dots ab_{\varphi(n)} 1 \equiv a^{\varphi(n)} \pmod{n}$$

Consequence. n = p

$$a : p \Rightarrow a^{p-1} \equiv 1 \pmod{n}$$

Theorem 7.3.2 (Мала теорема Ферма).

$$p$$
 - $npocme: \forall a$ $a^p \equiv p \pmod{a}$

Proof.

$$a \stackrel{\cdot}{\underline{\cdot}} p \qquad a^p \equiv a \equiv 0 \pmod{p}$$
 $a \stackrel{\cdot}{\underline{\cdot}} p \qquad a^{p-1} \equiv 1 \pmod{p}$

```
5555^{2222} + 2222^{5555} \vdots 7
2222 \equiv 3 \pmod{7} \qquad 5555 \equiv 4 \pmod{7}
3^{5555} + 4^{2222} \pmod{7} \qquad 3^6 \equiv 1 \pmod{7}
2222 \equiv 2 \pmod{6} \qquad 5555 \equiv 5 \pmod{6}
3^5 + 4^2 \equiv 9 \cdot 9 \cdot 9 \cdot 3 + 16 \equiv 2 \cdot 2 \cdot 3 + 2 \equiv 14 \equiv 0 \pmod{7}
```

Функція Кармайкла 8.1

$$\mathbb{Z}_8^* = \{1, 3, 5, 7\}, \ \varphi(8) = 4$$
 $1^2 \equiv 1 \pmod{8}, \ 3^2 \equiv 1 \pmod{8}, \ 5^2 \equiv 1 \pmod{8}, \ 7^2 \equiv 1 \pmod{8}$

Proposition. n > 3, a - n

$$a^{2^{n-2}} \equiv 1 \pmod{2^n}$$

Proof. Доведемо за MMI.

База: n = 3

$$a = 2k + 1$$
 $a^2 = (2k + 1)^2 = 4k(k + 1) + 1 \equiv 1 \pmod{8}$

Крок:
$$n$$

$$a^{2^{n-2}} \equiv 1 \pmod{2^n} \qquad a^{2^{n-2}} = 1 + 2^n \cdot t$$

$$a^{2^{n-1}} = (1 + 2^n \cdot t)^2 = 1 + 2 \cdot 2^n \cdot t + 2^{2n} \cdot t^2 = 1 + 2^{n+2} \cdot t_1 \equiv 1 \pmod{2^{m+1}} \quad \Box$$

Definition 8.1.1 (Функція Кармайкла: $\lambda(n)(\psi(n))$).

$$\lambda(n) = \min\{u : \forall a \in \mathbb{Z}_n^* : a^u \equiv 1 (\mod n)\}\$$

Lemma 8.1.1.

$$\forall a \in \mathbb{Z}_n^* : a^{\omega} \equiv 1 \pmod{n} \Rightarrow \omega : \lambda(n)$$

Proof.

Нехай
$$\omega : \lambda(n) \Rightarrow \omega = q \cdot \lambda(n) + r, \ 0 \le r \le \lambda(n)$$

 $1 \equiv a^{\omega} \equiv a^{q \cdot \lambda(n) + r} \equiv (a^{q \cdot \lambda(n)})(a^r) \equiv a^r \pmod{n}$ - Упс!

Lemma 8.1.2.

$$n=p^{lpha},\;p\geq 3\Rightarrow \exists a\in\mathbb{Z}_n^k:\;1,\;a,\;a^2,\ldots,\;a^{arphi(n)-1}$$
 - попарно різні лишки

Proof. Доведення буде пізніше

Consequence.

$$\lambda(p^{\alpha}) = \varphi(p^{\alpha})$$

Theorem 8.1.3 (Кармайкл).

1.
$$n = p$$

$$\lambda(n) = \begin{cases} \varphi(n), \ n = 2, \ 4, \ p^{\alpha}, \ p \ge 3\\ \frac{1}{2}\varphi(n), \ n = 2, \ \alpha > 3 \end{cases} \qquad (\lambda(p^{\alpha}) = \varphi(p^{\alpha}), \lambda(2^{\alpha}) = 2^{\alpha - 1}, \alpha = 3$$

2.
$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}$$

$$\lambda(n) = \operatorname{lcm}(\lambda(p_1^{\alpha_1})), (\lambda(p_2^{\alpha_2})), \dots, (\lambda(p_t^{\alpha_t}))$$

Proof.

2) Нехай
$$a^{\omega} \equiv 1 \pmod{n}, \ \forall a \in \mathbb{Z}_n^* \Rightarrow a^{\omega} \equiv 1 \pmod{p_i^{\alpha_i}} \Rightarrow \omega \ \vdots \ \lambda(p_i^{\alpha_i}) \Rightarrow \min \omega = \operatorname{lcm}(\lambda(p_1^{\alpha_1})), \ (\lambda(p_2^{\alpha_2})), \ldots, \ (\lambda(p_t^{\alpha_t})) = \lambda(n)$$

Example:

$$n = 35 = 5 \cdot 7$$

 $\varphi(35) = 4 \cdot 5 = 24$ $\lambda(35) = \text{lcm}(4, 6) = 12$

$$n = 1000 = 2^3 \cdot 5^3$$

 $\varphi(1000) = \varphi(2^3)\varphi(5^3) = 4 \cdot 100 = 400$ $\lambda(1000) \operatorname{lcm}(\lambda(2^3), \lambda(5^3)) = \operatorname{lcm}(2, 100) = 100$

CHAPTER 9

Лекція 9

9.1 Системи числення

- представлення чисел у вигляді послідовності символів обмеженого алфавіту. (Позиційна) система числення за основою B:

Популярні системи числення: B = 2, B = 10, B = 16

Непозиційні системи:

- 1. римська
- 2. фібоначчієва
- 3. факторіальна

Example:
$$\overline{11010}_2 = 2 + 8 + 16 = 26$$

 $2^n = \underline{100 \dots 0}_2$

Example:

$$70 \text{ y } B = 3$$

 $70 = 23 \cdot 3 + 1$
 $23 = 7 \cdot 3 + 2$
 $7 = 2 \cdot 3 + 1$
 $2 = 0 \cdot 3 + 2$

 $70 = \overline{2121}_3$

9.2 Ознака подільності числа

Theorem 9.2.1 (Ознака подільності Паскаля).

$$Hexaŭ n = a_{k-1}a_{k-2}\dots a_1a_0, \ m \in \mathbb{N}, \qquad r_0 := 1, \ r_{i+1}r_1B \mod m$$

$$To\partial i \ n \equiv \sum_{i=0}^{k-1} a_i r_i \pmod{m}, \qquad n \vdots m \Leftrightarrow \sum_{i=0}^{k-1} a_i r_i \vdots m$$

Proof.

$$r_i \equiv B^i \mod m, n = a_{k+1}B^{k+1} + \dots + a_1B + a_0 = \sum_{i=0}^{k-1} a_iB^i = \sum_{i=0}^{k-1} a_ir_i \pmod m$$

Remark.

1.
$$n \leq B^k$$
, $\sum a_i r_i \leq k \cdot m \cdot B$

2. Якщо $\gcd(B, m) = 1$, то послідовність (r_i) є періодичною. Період $\leq \lambda(m)$. Якщо $\gcd(B, m) \neq 1$

Example:

$$(B = 10), m = 3$$

 $r_0 = 1$ $r_1 = 10 \cdot 1 \mod 3 = 1 \Rightarrow n \equiv \sum a_i \pmod{3}$

Example:

$$(B = 10), m = 4$$

 $r_0 = 1$ $r_1 = 10 \cdot 1 \mod 4 = 2$ $r_2 = 10 \cdot 2 \mod 4 = 0 \Rightarrow$
 $\Rightarrow n \equiv 2a_i + a_0 \pmod 4$

Example:

$$\begin{array}{ll} (B=10),\ m=7\\ r_0=1 & r_1=10\cdot 1 \mod 7=3 & r_2=10\cdot 3 \mod 7=-1\\ r_4=-3 & r_5=-2 & r_6=1\\ 12345678\equiv 8\cdot 1+7\cdot 3+6\cdot 2-5\cdot 1-4\cdot 3-3\cdot 2+2\cdot 1+1\cdot 3\equiv 2(\mod 7) \end{array}$$

$$(B = 10), m = 7, 11, 13$$

 $1001 = 7 \cdot 11 \cdot 13 \equiv -1 \begin{pmatrix} 7 \\ \text{mod } 11 \\ 13 \end{pmatrix} \Rightarrow$

$$\Rightarrow n \equiv \overline{a_2 a_1 a_0} - \overline{a_5 a_4 a_3} + \overline{a_8 a_7 a_6} - \overline{a_{11} a_{10} a_9} + \dots + \begin{pmatrix} 7 \\ \text{mod } 11 \\ 13 \end{pmatrix}$$

$$m = 11 : \qquad 10 \equiv -1 \pmod{11}$$

$$n \equiv a_0 - a_1 + a_2 - a_3 + \dots = \sum_{i=0}^{k-1} (-1)^i a_i \pmod{11}$$

Lemma 9.2.2.

1. Якщо
$$m \mid (B-1), \ mo \ n \equiv \sum_{i=0}^{k-1} a_i (\mod m)$$

2. Armo
$$m \mid (B+1), \ mo \ n \equiv \sum_{i=0}^{k-1} (-1)^i a_i \pmod{m}$$

9.3 Подільність біноміальних коєфіціентів

$$C_n^k = \frac{n!}{k!(n-k)!}$$

Proposition.

p - npocme:

$$C_p^k \mod p = \begin{cases} 1, k = 0, \ p \\ 0, 0 < k < p \end{cases}$$

Proof.

$$C_p^0 = C_p^p = 1$$
 $C_p^k = \frac{p!}{k!(p-k!)} \stackrel{:}{:} p$

Proposition ("біном для дурників").

$$\forall a, b \in \mathbb{Z}, p - npocme (a + b)^p \equiv a^p + b^p \pmod{p}$$

Theorem 9.3.1 (Люка).

$$p$$
 - $npocme$, $n = \overline{n_{k-1}n_{k-2}\dots n_1n_0}$, $m = \overline{m_{k-1}m_{k-2}\dots m_1m_0}$

$$C_m^n \equiv C_{n_0}^{m_0}C_{n_1}^{m_1}\dots C_{n_{k-1}}^{m_{k-1}} \pmod{p}$$

Proof.

$$n = \widetilde{n}p + n_0, \ m = \widetilde{m}p + m_0, \ C_n^m, \ \equiv C_{\widetilde{n}}^{\widetilde{m}}C_{n_0}^{m_0} \pmod{p}$$
 Розглянемо біном $\operatorname{coef}[x^m] = C_n^m$ $(1+x)^n = (1+x)^{\widetilde{n}p}(1+x)^{n_0} \equiv (1+x^p)^{\widetilde{n}}(1+x)^{n_0} \quad m = \widetilde{m}p + m_0$ x^m одержуємо $x^{\widetilde{m}p}$ з $(1+x^p)^{\widetilde{n}} \Rightarrow x^{\widetilde{m}}$ з $(1+x)^{\widetilde{n}} \Rightarrow \operatorname{coef}[x^m] = C_{\widetilde{n}}^{\widetilde{m}}C_n^n$

Consequence.

1. Akujo
$$\exists i: m_i > n_i, \ mo \ C_n^m \equiv 0 (\mod p)$$

2.
$$n = p^k = (\underbrace{100...0}_{k})_p$$

2.
$$n = p^k = (\underbrace{100 \dots 0}_k)_p$$

$$\forall m : 0 < m < p^k \qquad \forall i : m_i \neq 0, \ 0 \leq i \leq k \Rightarrow C_{p^k}^m \vdots p$$

10.1 Лінійні порівняння за модулем

```
ax \equiv \pmod{n}
1. Якщо \gcd(a, n) = 1, то x \equiv a^{-1} \cdot b \pmod{n}
2. Якщо ax = b + nt, b = ax - nt
Якщо b \stackrel{.}{:} d - розв'язків немає
```

Якщо
$$b : d$$
, то $a = a_1d$, $b = b_1d$, $n = n_1d$ $\gcd(a_1, n_1) = 1$ $b_1 = a_1x - n_1t \Rightarrow a_1x \equiv b_1 \pmod{n_1}$ $x_0, x_0 + n_1, x_0 + 2n_1, x_0 + (d-1)n_1$ - d розв'язків

Example:

```
12x \equiv 5 \pmod{25}x \equiv 12^{-1} \cdot 5 \pmod{25} \equiv 15 \pmod{25}
```

Example:

$$12x \equiv 5 \pmod{27}$$
$$\gcd(12, 27) = 3, 5 \vdots 3 \Rightarrow \emptyset$$

```
12x \equiv 9 \pmod{27}
\gcd(9, 27) = 3, 9 \vdots 9
4x \equiv 3 \pmod{9}
\begin{cases} x_0 \equiv 3 \\ x_0 \equiv 3 + 9 \equiv 12 \\ x_2 \equiv 12 + 9 \equiv 21 \end{cases}
mod \ 27
```

10.2 Елементи загальної теорії розв'язування порівнянь

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ - поліном з цілими коєфіцієнтами. $f(x) \equiv 0 \pmod{m}$

1. Якщо $m = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}$, то

$$f(x) \equiv 0 \pmod{m} \Leftrightarrow \begin{cases} f(x) \equiv (\mod{p_1^{\alpha_1}}) \\ f(x) \equiv (\mod{p_2^{\alpha_2}}) \\ \vdots \\ f(x) \equiv (\mod{p_t^{\alpha_t}}) \end{cases}$$

2. $f(x) \equiv 0 \pmod{p}$ $f(x) \equiv 0 \pmod{p}$ Ta $g(x) \equiv 0 \pmod{p}$

- еквівалентні, якщо множини розв'язків спіспадають

Lemma 10.2.1. $\forall h(x), f(x)$:

$$f(x) \equiv 0 \pmod{p}, \ f(x) - (x^p - x) \cdot h(x) \equiv 0 \pmod{p}$$
 - еквівалентні
$$\Rightarrow f(x) \equiv 0 \pmod{p}, \ f(x) \mod (x^p - x) \equiv 0 \pmod{p}$$
 можна розглядати f : $\deg f < p$

Theorem 10.2.2 (основна теорема алгебри для \mathbb{Z}_p). $f(x) \in \mathbb{Z}_p[x], \deg f = n < p$

Якщо
$$a_n \, \vdots \, p, \, mo \, f(x) \equiv 0 (\mod p)$$
 ма $e \leq n \, poзe$ 'язків

Proof. MMI за n

- 1. n=1 $a_1x+a_0\equiv 0 \pmod p,\ \gcd(a_1,\ p)=1\Rightarrow$ рівно один розв'язок
- 2. Для усіх поліномів $\deg \le n-1$ вірне $f(x) \equiv 0 \pmod{p}$
 - (а) Якщо розв'язків немає ок
 - (b) Якщо x_0 розв'язок, то $f(x) = (x-x_0) \cdot g(x) + f(x_0) \equiv (x-x_0) \cdot g(x) \pmod{p}$ g(x) поліном з цілими коєфіцієнтами, $\deg g = n-1$ $coef[x^{n-1}]g = a_n \vdots p \Rightarrow g(x) \equiv 0 \pmod{p} \text{ має} \leq n-1 \text{ розв'язків}$

Consequence.

Якщо $f(x) = 0 \pmod{p}$ ма $\epsilon > n$ розв'язків, то $\forall i : a_i : p$

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \equiv 0 \pmod{p}$$

$$a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \equiv 0 \pmod{p}$$

$$\vdots$$

$$a_0 \equiv 0 \pmod{p}$$

Theorem 10.2.3 (Вільсон).

$$n - npocme \Leftrightarrow ((n+1)! + 1) : n$$

Proof.

1.
$$p$$
 - просте, $p>3$ $(p-1)!\equiv -1(\mod p)?$ $f(x)=(x-1)(x-2)(x-3)\dots(x-(p-1))-(x^{p-1}-1)$ $deg f=p-2,$ 1, 2, 3,..., $p-1$ - корені $\mod p$ $p=2$ - очевидна

2. Нехай
$$n = a \cdot b$$
, $! < a < n \Rightarrow (n-1)! \vdots a$ $\Rightarrow (n-1)! + 1 \vdots n$

Розклад Тейлора для поліномів 10.3

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum_{t=0}^n a_t x^t$$

$$f'(x) = f^{(1)}(x) = \sum_{t=1}^{n} a_t t x^{t-1}$$

$$f'(x)$$
 - поліном з цілими коєфіцієнтами $\deg f = n-1$ К-тий похідний поліном:
$$f^{(k)}(x) = \sum_{t=k}^n a_t t(t-1) \dots (t-k+1) x^{t-k}$$

Lemma 10.3.1.

$$\frac{f^{(k)}(x)}{k!} = \sum_{t=k}^{n} C_t^k a_t x^{t-k}$$

$$\frac{Proof.}{t(t-1)...(t-k+1)} \cdot \cdot \cdot \cdot \frac{(t-k)!}{(t-k)!} = \frac{t!}{k!(t-k)!}$$

Remark. $f^{(0)}(x) \equiv f(x)$

Theorem 10.3.2 (Розклад Тейлора для поліномів). $\forall f(x) : \forall x_0, \alpha$

$$f(x+\alpha) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} \alpha^k$$

Proof.

$$f(x_0 + \alpha) = \sum_{t=0}^{n} a_t (x_0 + \alpha)^t = \sum_{t=0}^{n} \sum_{k=0}^{t} a_y C_t^k x_0^{t-k} \alpha^k$$

$$t \quad 0 \quad 1 \quad 2 \quad 3 \quad \dots \quad n$$

$$k \colon 0 \quad 0 \quad 0 \quad 0 \quad \dots \quad 0$$

$$1 \quad 1 \quad 1 \quad \dots \quad 1$$

$$2 \quad 2 \quad \dots \quad 2$$

$$3 \quad \dots \quad 3$$

$$\vdots \quad \dots$$

$$n$$

$$= \sum_{k=0}^{n} (\sum_{t=k}^{n} C_t^k a_t x_0^{t-k}) \alpha^k = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} \alpha^k$$

10.4 Поліноміальні порівняння за модулем степеня простого числа (1)

Theorem 10.4.1. f(x) - поліном з цілими коефіцієнтами x_0 .

$$f(x_0) \equiv 0 \pmod{p^k}, \ f'(x_0) \vdots p$$

Тоді існує єдиний лишок $x_k: f(x_k) \equiv 0 \pmod{p^k}, \ x_k \equiv x_0 \pmod{p}, \forall k$ Proof. ММІ за k

1. k = 1

2.
$$k=2$$
 нНехай x_k - задовільняє умовам $f(x_k) \equiv 0 \pmod{p^k}, \ f'(x_k) \vdots \ p, \ x_k \equiv x_0 \pmod{p}$ $\Rightarrow f'(x_k) \equiv f'(x_0) \pmod{p} \Rightarrow f'(x_k) \vdots p$ Шукаємо $x_{k+1} = x_k + p^k \cdot t, \ 0 \le t \le p-1$ $f(x_{k+1}) \equiv 0 \pmod{p^{k+1}}$ $f(x_k + p^k t) = f(x_k) + f'(x_k) \cdot p^k t + \frac{f''(x_k)}{2!} (p^k t)^2 + \cdots \equiv \equiv f(x_k) + f'(x_k) \cdot p^k t \pmod{p^k} \Rightarrow 0 \equiv f(x_k) + f'(x_k) \cdot p^k t \pmod{p^k}$ $f'(x_k) \cdot t \equiv -\frac{f(x_0)}{p^k} \pmod{p} \Rightarrow$ існує єдине $t \Rightarrow$ існує єдине значення

11.1 Поліноміальні порівняння за модулем степеня простого числа (2)

Theorem 11.1.1. f(x) - опліном з цілими коефіцієнтами

$$x_0: \quad f(x_0) \equiv 0 \pmod{p}, \quad f'(x_0) \vdots p$$

$$x_k: \quad f(x_k) \equiv 0 \pmod{p^k}, \quad x_k \equiv x_0 \pmod{p}$$

 $To \partial i$:

1. Якщо $f(x) : p^{k+1}$, то

$$f(x) \equiv 0 (\mod p^{k+1}$$
 - не мае розв'язків

2. Якщо $f(x_k)p^{k+1}$, то

розв'язками
$$\mod p^{k+1}$$
 е усі числах $_k + p^k t, \ t = \overline{0, p-1}$

Proof.

$$x_{k+1} = x_t + p^k t, \ t = \overline{0, p-1}$$

$$f(x_{k+1}) = f(x_k + p^k t) = f(x_k) + f'(x_k) \cdot p^k t + \dots \equiv f(x_k) \pmod{p^{k+1}}$$

$$f(x_{k+1}) \equiv 0 \pmod{p^{k+1}} \Rightarrow f(x_k) \equiv 0 \pmod{p^{k+1}}$$

$$x^4 + 7x + 4 \equiv 0 \pmod{27}$$

 $f(x) = x^4 + 7x + 4$ $f'(x) = 4x^3 + 7$

- 1. $f(x) \equiv 0 \pmod{3}$ $x_0 \equiv 1 \pmod{3}$ $f'(1) = 4 + 7 = 11 \equiv -1 \pmod{3}$
- 2. $f(x) \equiv 0 \pmod{9}$ $x_1 = x_0 + 3 \cdot t_0$

$$f'(1) \cdot t_0 \equiv -\frac{f(1)}{3} \pmod{3}$$

$$2t_0 \equiv -4 \equiv 2 \pmod{3}$$

$$t_0 = 1 \qquad x_1 = 1 + 3 = 4 \pmod{9}$$
3. $f(x) \equiv 0 \pmod{27}$

$$x_2 = x_1 + 9t_1$$

$$f'(4) \cdot t_1 \equiv -\frac{f(4)}{9} \pmod{3}$$

$$263t_1 \equiv -32 \pmod{3}$$

$$2t_1 \equiv 1 \pmod{3}$$

$$t_1 = \pmod{3}$$

$$x_2 = 4 + 9 \cdot 2 \equiv 22 \pmod{27}$$

11.2 Квадратичні лишки, критерій квадратичності Ойлера

 $ax^2 + bx + c \equiv 0 \pmod{p}$ - квадратичне порівняння. $\Rightarrow x^2 \equiv \alpha \pmod{p}$

Definition 11.2.1. $\alpha \in \mathbb{Z}_p^*$ - квадратичний лишок за $\mod p$, якщо

$$\exists x: \qquad x^2 \equiv \alpha \pmod{p}$$

$$\mathbb{Z}_p^* = \{1, 2, 3, \dots, p-1\}, \ \mathbb{Z}_p^* = \{-\frac{p-1}{2}, \dots, -2, -1, 1, 2, \dots, \frac{p-1}{2}\}_{(p>3)},$$

$$Y_p = \{1, 2, \dots, \frac{p-1}{2}\}$$

$$f(x) = x^2 - \alpha$$

 x_0 - корінь, то $(-x_0)$ також корінь

Lemma 11.2.1.

 \mathbb{Z}_p^* має рівно $\frac{p-1}{2}$ квадратичних лишків та $\frac{p-1}{2}$ квадратичних не лішків

Proof.

Квадратичні лишки:
$$(1)^2, \ 2^2, \ 3^2, \dots, \ \left(\frac{p-1}{2}\right)^2 \Rightarrow \frac{p-1}{2}$$
 штук Але $0 < u < v \leq \frac{p-1}{2}$: $u^2 \equiv v^2 \pmod{p}$ то $x^2 \equiv u^2 \pmod{p}$ має 4 розв'язки $\pm u, \ \pm v \Rightarrow$ квадратичних лишків $\frac{p-1}{2}$ штук

Theorem 11.2.2 (Критерій Ойлера).

$$a^{\frac{p-1}{2}} \mod p \equiv \left\{ egin{array}{ll} 1, & a$$
 - квадратичний лишок $-1, & a$ - квадратичний нелишок

Proof.

$$a \equiv 0 \pmod{p}$$
 - очевидно

$$a \not\equiv 0 (mod p) \Rightarrow a^{p-1} \equiv 1 \pmod{p} a^{p-1} - 1 = (a^{\frac{p-1}{2}} - 1) (a^{\frac{p-1}{2}} + 1) \equiv 0 \pmod{p}$$
 Нехай $a = b^2 \Rightarrow a^{\frac{p-1}{2}} = b^{p-1} \equiv 1 \pmod{p}$

$$f(x)x^{\frac{p-1}{2}}-1$$
 - має $\leq \frac{p-1}{2}$ коренів, усі квадратичні лишки - корені

11.3 Критерій квадратичності Гаусса

Theorem 11.3.1 (критерій Гаусса). $a \in \mathbb{Z}_p^*, \ a \cdot Y_p = \{a, \ 2a, \ 3a, \dots, \ \frac{p-1}{2}a\}, \ l$ -кількість від'ємних лишків $y \ a \cdot Y_p$

$$(-1)^l = \left\{ egin{array}{ll} 1, & a - \kappa в a \partial p a m u \lor h u \ddot{u} \ -1, & a - \kappa в a \partial p a m u \lor h u \ddot{u} \ h e h u u u o \kappa \end{array}
ight.$$

Proof.
$$\forall u \in Y_p : lu \in \{0, 1\}, \ r_u \in Y_p, \ a \cdot u \equiv (-1)^{lu} \cdot r_u (\mod p)$$

$$u \not\equiv v \Rightarrow r_u \not\equiv r_v (\mod p)$$

$$\begin{cases} u \not\equiv v \\ r_u \equiv r_v \end{cases} \Rightarrow \begin{cases} au \not\equiv av \\ r_u \equiv r_v \end{cases} \Rightarrow au \equiv av (\mod p)$$

$$a(u+v) \vdots p, \text{ and } 0 < \frac{u}{v} \leq \frac{p-1}{2} \Rightarrow 0 < u+v \leq p-1 < p \Rightarrow u+v \vdots p \text{ - Ync!}$$

$$\Rightarrow \{r_1, \ r_2, \dots, \ r_{\frac{p-1}{2}}\} = Y_p$$

$$(a \cdot 1)(a \cdot 2)(a \cdot 3) \dots (a^{\frac{p-1}{2}}) \equiv (-1)^{l_1+l_2+\dots+l_{\frac{p-1}{2}}} r_1 r_2 \dots r_{\frac{p-1}{2}} (\mod p)$$

$$a^{\frac{p-1}{2}} \equiv (-1)^{l_1+l_2+\dots+l_{\frac{p-1}{2}}} (\mod p) \equiv (-1)^{l} (\mod p)$$

12.1 Символ Лежандра та його властивості

 $x^2 \equiv a \pmod{p}, \ p \geq 3$ - просте

Definition 12.1.1. Символ Леэкандра -

$$\left(rac{a}{p}
ight) = \left\{ egin{array}{ll} 1, & a - \kappa в a d p a m u ч h u \"u \ -1, & a - \kappa в a d p a m u ч h u \ddotu \ h e n u w o \kappa \ 0, & a \vdots p \end{array}
ight.$$

Ойлер: $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$ $\Gamma aycc: \left(\frac{a}{p}\right) \equiv (-1)^l$

Property.

1.
$$\left(\frac{a}{p}\right) = 1$$
, $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$,
 $p = 4k + 3: \left(\frac{-1}{p}\right) = -1$, $p = 4k + 1: \left(\frac{-1}{p}\right) = -1$

2.
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$$
 $\left(\frac{a^2}{p}\right) = 1, \qquad \left(\frac{ab^2}{p}\right) = \left(\frac{a}{p}\right)$

3.
$$\left(\frac{2}{p}\right) = (-1)^{\frac{p-1}{8}}$$

 $p = 8k \pm 1 = \left(\frac{2}{p}\right) = 1, \qquad p = 8k \pm 3\left(\frac{2}{p}\right) = -1$

4. Закон квадратично \ddot{I} взаємодії Гаусса $p,\ q$ - непарні прості, $\left(\frac{p}{q}\right)=(-1)^{\frac{p-1}{2}}(-1)^{\frac{q-1}{2}}\left(\frac{q}{p}\right)$

12.2 Символ Якобі та його властивості

n - непарне, a - довільне

Definition 12.2.1. Символ Якобі

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)^{\alpha} \left(\frac{a}{p_2}\right)^{\alpha} \dots \left(\frac{a}{p_t}\right)^{\alpha}$$

$$n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_t^{\alpha_t},\; \left(\frac{a}{n}\right)\in\{-1,\;1,\;0\},\; \left(\frac{a}{n}\right)=0\Leftrightarrow\gcd(a,\;n)\neq 1,\; \left(\frac{a}{n}\right)=-1\Leftrightarrow a-kb$$
 квадратний нелишок $\mod n,\; \left(\frac{a}{n}\right)=1\Leftrightarrow ?$

Property.

1.
$$\left(\frac{1}{n}\right) = 1$$
, $\left(\frac{-1}{n}\right) = (-1)^{\frac{n-1}{2}}$

2.
$$\left(\frac{a \cdot b}{n}\right) = \left(\frac{a}{n}\right) \left(\frac{b}{n}\right)$$

3.
$$\left(\frac{2}{n}\right) = (-1)^{\frac{n^2-1}{8}}$$

4.
$$\left(\frac{a}{n}\right) = (-1)^{\frac{a-1}{2}\frac{n-1}{2}} \left(\frac{a}{n}\right),$$
 а, n - непарні

$$x^{2} \equiv 59 \pmod{97}$$

$$\left(\frac{59}{97}\right) = (-1)^{\frac{59-1}{2}\frac{97-1}{2}} \left(\frac{59}{97}\right) = (-1)^{\frac{a-1}{2}\frac{n-1}{2}} \left(\frac{38}{29}\right) = \left(\frac{2}{29}\right) \left(\frac{19}{29}\right) = (-1) \left(\frac{19}{59}\right) = (-1)(-1)^{\frac{19-1}{2}\frac{59-1}{19}} = (+1) \left(\frac{2}{19}\right) = -1$$