4. Понятие о вероятностном пространстве общего вида. Аксиоматическое задание вероятности, основные свойства вероятности.

Вероятностное пространство есть тройка вида $<\Omega,S,P>$, где Ω - пространство элементарных исходов, S - совокупность подмножеств Ω (не все, поскольку есть неизмеримые), P - функция $S \to [0,1]$, удовлетворяющая аксиомам:

- 1. $P(A) \geq 0 \quad \forall A \in S$.
- 2. $P(\Omega) = 1$.
- 3. Счетная аддитивность: если события $A_1,A_2,...$ таковы, что $A_iA_j=\emptyset$ (i
 eq j) (попарно несовместны), то

$$P(igcup_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}P(A_i).$$

Тогда у вероятности появляются следующие свойства:

- 1. $P(\emptyset) = 0$ (из аксиомы 3).
- 2. Конечная аддитивность (из аксиомы 3, хвост заменяем на пустые множества).
- $3. P(A) + P(\overline{A}) = 1.$
- 4. $P(A \cup B) = P(A) + P(B) P(AB)$.
 - 1. Доказательство: $P(A \cup B) = P(B \cup (A \setminus B)) = P(B) + P(A \setminus B)$; $P(A) = P(AB) + P(A \setminus B) \Rightarrow P(A \cup B) = P(B) + P(A) P(AB)$.

^{4.} Понятие о вероятностном пространстве общего вида. Аксиоматическое задание вероятности, основные свойства вероятности.

- 5. Если $A \subset B$, то $P(A) \leq P(B)$.
 - 1. Доказательство: $P(B) = P(A) + P(B \backslash A) \geq P(A)$.
- 6. Свойство непрерывности вероятности
 - 1. См. Лотова, много бесполезной информации, у Черновой вообще нет.
- 7. Формула включения-исключения:

Формула включения-исключения:

$$P(A_1 \cup ... \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i A_j) + \sum_{i < j < m} P(A_i A_j A_m) - ... + (-1)^{n-1} P(A_1 A_2 ... A_n).$$