Test Plot 1#: GSM 850_Head Left Cheek_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.882 S/m; ϵ_r = 42.335; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.98, 9.98, 9.98); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.111 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.986 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.128 W/kg

SAR(1 g) = 0.102 W/kg; SAR(10 g) = 0.077 W/kg

Maximum value of SAR (measured) = 0.107 W/kg

0 dB = 0.107 W/kg = -9.71 dBW/kg

SAR Plots Plot 1#

Test Plot 2#: GSM 850_Head Left Tilt_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.882 S/m; ϵ_r = 42.335; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.98, 9.98, 9.98); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0755 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.507 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.0880 W/kg

SAR(1 g) = 0.066 W/kg; SAR(10 g) = 0.050 W/kg

Maximum value of SAR (measured) = 0.0694 W/kg

0 dB = 0.0694 W/kg = -11.59 dBW/kg

SAR Plots Plot 2#

Test Plot 3#: GSM 850_Head Right Cheek_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.882 S/m; ϵ_r = 42.335; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.98, 9.98, 9.98); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0885 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.375 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.105 W/kg

SAR(1 g) = 0.084 W/kg; SAR(10 g) = 0.063 W/kg

Maximum value of SAR (measured) = 0.0879 W/kg

0 dB = 0.0879 W/kg = -10.56 dBW/kg

SAR Plots Plot 3#

Test Plot 4#: GSM 850_Head Right Tilt_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.882 S/m; ϵ_r = 42.335; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.98, 9.98, 9.98); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0627 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.387 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.0720 W/kg

SAR(1 g) = 0.056 W/kg; SAR(10 g) = 0.042 W/kg

Maximum value of SAR (measured) = 0.0590 W/kg

0 dB = 0.0590 W/kg = -12.29 dBW/kg

SAR Plots Plot 4#

Test Plot 5#: GSM 850_Body Worn Back_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.96 S/m; ϵ_r = 57.28; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.244 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.43 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.387 W/kg

SAR(1 g) = 0.238 W/kg; SAR(10 g) = 0.145 W/kg

Maximum value of SAR (measured) = 0.254 W/kg

0 dB = 0.254 W/kg = -5.95 dBW/kg

SAR Plots Plot 5#

Test Plot 6#: GSM 850_Body Back_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: Generic GPRS-3 slots; Frequency: 836.6 MHz;Duty Cycle: 1:2.66 Medium parameters used: f = 836.6 MHz; σ = 0.96 S/m; ϵ_r = 57.28; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.409 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.11 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.606 W/kg

SAR(1 g) = 0.386 W/kg; SAR(10 g) = 0.237 W/kg

Maximum value of SAR (measured) = 0.405 W/kg

0 dB = 0.405 W/kg = -3.93 dBW/kg

SAR Plots Plot 6#

Test Plot 7#: GSM 850_Body Left_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: Generic GPRS-3 slots; Frequency: 836.6 MHz;Duty Cycle: 1:2.66 Medium parameters used: f = 836.6 MHz; σ = 0.96 S/m; ϵ_r = 57.28; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.129 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.78 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.171 W/kg

SAR(1 g) = 0.123 W/kg; SAR(10 g) = 0.086 W/kg

Maximum value of SAR (measured) = 0.131 W/kg

0 dB = 0.131 W/kg = -8.83 dBW/kg

SAR Plots Plot 7#

Test Plot 8#: GSM 850_Body Bottom_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: Generic GPRS-3 slots; Frequency: 836.6 MHz;Duty Cycle: 1:2.66 Medium parameters used: f = 836.6 MHz; σ = 0.96 S/m; ϵ_r = 57.28; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.130 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.81 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.211 W/kg

SAR(1 g) = 0.115 W/kg; SAR(10 g) = 0.066 W/kg

Maximum value of SAR (measured) = 0.130 W/kg

0 dB = 0.130 W/kg = -8.86 dBW/kg

SAR Plots Plot 8#

Test Plot 9#: GSM 1900_Head Left Cheek_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.373 S/m; ϵ_r = 40.324; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (71x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.160 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.456 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.248 W/kg

SAR(1 g) = 0.161 W/kg; SAR(10 g) = 0.099 W/kg

Maximum value of SAR (measured) = 0.168 W/kg

0 dB = 0.168 W/kg = -7.75 dBW/kg

SAR Plots Plot 9#

Test Plot 10#: GSM 1900_Head Left Tilt_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.373 S/m; ϵ_r = 40.324; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0335 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.118 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.0420 W/kg

SAR(1 g) = 0.031 W/kg; SAR(10 g) = 0.022 W/kg

Maximum value of SAR (measured) = 0.0325 W/kg

0 dB = 0.0325 W/kg = -14.88 dBW/kg

SAR Plots Plot 10#

Test Plot 11#: GSM 1900_Head Right Cheek_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.373 S/m; ϵ_r = 40.324; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.152 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.971 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.228 W/kg

SAR(1 g) = 0.145 W/kg; SAR(10 g) = 0.086 W/kg

Maximum value of SAR (measured) = 0.152 W/kg

0 dB = 0.152 W/kg = -8.18 dBW/kg

SAR Plots Plot 11#

Test Plot 12#: GSM 1900_Head Right Tilt_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.373 S/m; ϵ_r = 40.324; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0293 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.567 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.0550 W/kg

SAR(1 g) = 0.030 W/kg; SAR(10 g) = 0.019 W/kg

Maximum value of SAR (measured) = 0.0317 W/kg

0 dB = 0.0317 W/kg = -14.99 dBW/kg

SAR Plots Plot 12#

Test Plot 13#: GSM 1900_Body Worn Back_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.486 S/m; ϵ_r = 54.09; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.79, 7.79, 7.79); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.642 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.496 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.584 W/kg; SAR(10 g) = 0.291 W/kg

Maximum value of SAR (measured) = 0.639 W/kg

0 dB = 0.639 W/kg = -1.94 dBW/kg

SAR Plots Plot 13#

Test Plot 14#: GSM 1900_Body Back_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: Generic GPRS-3 slots; Frequency: 1880 MHz; Duty Cycle: 1:2.66 Medium parameters used: f = 1880 MHz; $\sigma = 1.486$ S/m; $\epsilon_r = 54.09$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.79, 7.79, 7.79); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.739 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.258 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.668 W/kg; SAR(10 g) = 0.331 W/kg

Maximum value of SAR (measured) = 0.733 W/kg

0 dB = 0.733 W/kg = -1.35 dBW/kg

SAR Plots Plot 14#

Test Plot 15#: GSM 1900_Body Left_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: Generic GPRS-3 slots; Frequency: 1880 MHz; Duty Cycle: 1:2.66 Medium parameters used: f = 1880 MHz; $\sigma = 1.486$ S/m; $\epsilon_r = 54.09$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.79, 7.79, 7.79); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0781 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.538 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.0920 W/kg

SAR(1 g) = 0.069 W/kg; SAR(10 g) = 0.041 W/kg

Maximum value of SAR (measured) = 0.0787 W/kg

0 dB = 0.0787 W/kg = -11.04 dBW/kg

SAR Plots Plot 15#

Test Plot 16#: GSM 1900_Body Bottom_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: Generic GPRS-3 slots; Frequency: 1880 MHz; Duty Cycle: 1:2.66 Medium parameters used: f = 1880 MHz; $\sigma = 1.486$ S/m; $\epsilon_r = 54.09$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.79, 7.79, 7.79); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.305 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.10 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.508 W/kg

SAR(1 g) = 0.279 W/kg; SAR(10 g) = 0.149 W/kg

Maximum value of SAR (measured) = 0.314 W/kg

0 dB = 0.314 W/kg = -5.03 dBW/kg

SAR Plots Plot 16#

Test Plot 17#: WCDMA Band 2_Head Left Cheek_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.373 \text{ S/m}$; $\varepsilon_r = 40.324$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1459; Calibrated: 2017/9/15

Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.125 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.460 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.183 W/kg

SAR(1 g) = 0.119 W/kg; SAR(10 g) = 0.077 W/kg

Maximum value of SAR (measured) = 0.127 W/kg

0 dB = 0.127 W/kg = -8.96 dBW/kg

SAR Plots Plot 17#

Test Plot 18#: WCDMA Band 2_Head Left Tilt_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.373 \text{ S/m}$; $\varepsilon_r = 40.324$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1459; Calibrated: 2017/9/15

Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0389 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.494 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.0530 W/kg

SAR(1 g) = 0.036 W/kg; SAR(10 g) = 0.025 W/kg

Maximum value of SAR (measured) = 0.0384 W/kg

0 dB = 0.0384 W/kg = -14.16 dBW/kg

SAR Plots Plot 18#

Test Plot 19#: WCDMA Band 2_Head Right Cheek_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.373 \text{ S/m}$; $\varepsilon_r = 40.324$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1459; Calibrated: 2017/9/15

Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.149 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.837 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.215 W/kg

SAR(1 g) = 0.135 W/kg; SAR(10 g) = 0.081 W/kg

Maximum value of SAR (measured) = 0.148 W/kg

0 dB = 0.148 W/kg = -8.30 dBW/kg

SAR Plots Plot 19#

Test Plot 20#: WCDMA Band 2_Head Right Tilt_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.373 \text{ S/m}$; $\varepsilon_r = 40.324$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7441; ConvF(7.9, 7.9, 7.9); Calibrated: 2017/11/2;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1459; Calibrated: 2017/9/15

Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0360 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.019 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.0470 W/kg

SAR(1 g) = 0.035 W/kg; SAR(10 g) = 0.024 W/kg

Maximum value of SAR (measured) = 0.0369 W/kg

0 dB = 0.0369 W/kg = -14.33 dBW/kg

SAR Plots Plot 20#

Test Plot 21#: WCDMA Band 2_Body Back_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.486 \text{ S/m}$; $\varepsilon_r = 54.09$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7441; ConvF(7.79, 7.79, 7.79); Calibrated: 2017/11/2;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1459; Calibrated: 2017/9/15

Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.601 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.885 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 0.916 W/kg

SAR(1 g) = 0.491 W/kg; SAR(10 g) = 0.271 W/kg

Maximum value of SAR (measured) = 0.542 W/kg

0 dB = 0.542 W/kg = -2.66 dBW/kg

SAR Plots Plot 21#

Test Plot 22#: WCDMA Band 2_Body Left_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.486 \text{ S/m}$; $\varepsilon_r = 54.09$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7441; ConvF(7.79, 7.79, 7.79); Calibrated: 2017/11/2;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1459; Calibrated: 2017/9/15

Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.107 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.608 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.164 W/kg

SAR(1 g) = 0.101 W/kg; SAR(10 g) = 0.055 W/kg

Maximum value of SAR (measured) = 0.114 W/kg

0 dB = 0.114 W/kg = -9.43 dBW/kg

SAR Plots Plot 22#

Test Plot 23#: WCDMA Band 2_Body Bottom_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.486$ S/m; $\varepsilon_r = 54.09$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7441; ConvF(7.79, 7.79, 7.79); Calibrated: 2017/11/2;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1459; Calibrated: 2017/9/15

Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.423 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.85 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.694 W/kg

SAR(1 g) = 0.383 W/kg; SAR(10 g) = 0.205 W/kg

Maximum value of SAR (measured) = 0.425 W/kg

0 dB = 0.425 W/kg = -3.72 dBW/kg

SAR Plots Plot 23#

Test Plot 24#: WCDMA Band 5_Head Left Cheek_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: WCDMA; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 836.6 MHz; $\sigma = 0.882 \text{ S/m}$; $\varepsilon_r = 42.335$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7441; ConvF(9.98, 9.98, 9.98); Calibrated: 2017/11/2;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1459; Calibrated: 2017/9/15

Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0684 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.867 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.0790 W/kg

SAR(1 g) = 0.062 W/kg; SAR(10 g) = 0.046 W/kg

Maximum value of SAR (measured) = 0.0646 W/kg

0 dB = 0.0646 W/kg = -11.90 dBW/kg

SAR Plots Plot 24#

Test Plot 25#: WCDMA Band 5_Head Left Tilt_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: WCDMA; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 836.6 MHz; $\sigma = 0.882 \text{ S/m}$; $\varepsilon_r = 42.335$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7441; ConvF(9.98, 9.98, 9.98); Calibrated: 2017/11/2;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1459; Calibrated: 2017/9/15

Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0382 W/kg

Zoom Scan (7x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.447 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.0450 W/kg

SAR(1 g) = 0.035 W/kg; SAR(10 g) = 0.027 W/kg

Maximum value of SAR (measured) = 0.0373 W/kg

0 dB = 0.0373 W/kg = -14.28 dBW/kg

SAR Plots Plot 25#

Test Plot 26#: WCDMA Band 5_Head Right Cheek_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: WCDMA; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 836.6 MHz; $\sigma = 0.882 \text{ S/m}$; $\varepsilon_r = 42.335$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7441; ConvF(9.98, 9.98, 9.98); Calibrated: 2017/11/2;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1459; Calibrated: 2017/9/15

Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0562 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.067 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.0690 W/kg

SAR(1 g) = 0.054 W/kg; SAR(10 g) = 0.040 W/kg

Maximum value of SAR (measured) = 0.0558 W/kg

0 dB = 0.0558 W/kg = -12.53 dBW/kg

SAR Plots Plot 26#

Test Plot 27#: WCDMA Band 5_Head Right Tilt_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: WCDMA; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 836.6 MHz; $\sigma = 0.882 \text{ S/m}$; $\varepsilon_r = 42.335$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7441; ConvF(9.98, 9.98, 9.98); Calibrated: 2017/11/2;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1459; Calibrated: 2017/9/15

Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0386 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.197 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.0470 W/kg

SAR(1 g) = 0.034 W/kg; SAR(10 g) = 0.026 W/kg

Maximum value of SAR (measured) = 0.0354 W/kg

0 dB = 0.0354 W/kg = -14.51 dBW/kg

SAR Plots Plot 27#

Test Plot 28#: WCDMA Band 5_Body Back_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: WCDMA; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; σ = 0.96 S/m; ϵ_r = 57.28; ρ = 1000 kg/m³;

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.265 W/kg

Zoom Scan (6x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.59 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.360 W/kg

SAR(1 g) = 0.240 W/kg; SAR(10 g) = 0.171 W/kg

Maximum value of SAR (measured) = 0.260 W/kg

0 dB = 0.260 W/kg = -5.85 dBW/kg

SAR Plots Plot 28#

Test Plot 29#: WCDMA Band 5_Body Left_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: WCDMA; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; σ = 0.96 S/m; ϵ_r = 57.28; ρ = 1000 kg/m³;

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0711 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.658 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.0960 W/kg

SAR(1 g) = 0.067 W/kg; SAR(10 g) = 0.047 W/kg

Maximum value of SAR (measured) = 0.0705 W/kg

0 dB = 0.0705 W/kg = -11.52 dBW/kg

SAR Plots Plot 29#

Test Plot 30#: WCDMA Band 5_Body Bottom_Middle

DUT: Mobile phone; Type: Z407; Serial: 17121300920

Communication System: WCDMA; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; σ = 0.96 S/m; ϵ_r = 57.28; ρ = 1000 kg/m³;

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.95, 9.95, 9.95); Calibrated: 2017/11/2;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1459; Calibrated: 2017/9/15
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

Report No.: RDG171213009-20

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0413 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.115 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.0560 W/kg

SAR(1 g) = 0.035 W/kg; SAR(10 g) = 0.021 W/kg

Maximum value of SAR (measured) = 0.0407 W/kg

0 dB = 0.0407 W/kg = -13.90 dBW/kg

SAR Plots Plot 30#