Bluetooth Baseband LSI TC35661-ROM501

Deep Sleep Function

July 2014

000630EBA1-000809TS

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications.
 - Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The Toshiba products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These Toshiba products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of Toshiba products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

 The information contained herein is presented only as a guide for the product operation, its functions, and applications. We request that the operation of any application system incorporating this product is fully tested by system vendor.

CONFIDENTIAL July 25, 2014 2/19

TOSHIBA TENTATIVE TC35661-ROM501 Deep Sleep Function

[Revised Note]

Date	Modification	
25 th -Aug-2014	1st Edition	

CONFIDENTIAL July 25, 2014 3/19

Contents

١.	Deep Sleep Function ·····	• 5
	1.1. General Description	5
	1.2. Command Procedures	5
	1.2.1. First Step ·····	5
	1.2.2. Second Steps ·····	5
	1.3. Conditions to Enter Deep Sleep Mode	5
	1.4. Commands in Detail ······	5
	1.4.1. M2_BTL_SET_DEEP_SLEEP ······	5
	1.4.2. GPIO	7
	1.4.3. TCU_MNG_DEEP_SLEEP_REQ ······	7
	1.5. Procedure Examples	9
	1.5.1. Deep Sleep Mode by GPIO (SPP) ······	9
	1.5.2. Deep Sleep Mode by GPIO (LE)	9
	1.5.3. Deep Sleep Mode by UART command (SPP)	9
	1.5.4. Deep Sleep Mode by UART command (LE)	9
	1.6. Function Examples	∙10
	1.6.1. GPIO Controlled·····	- 10
	1.6.2. UART Controlled ·····	· 13
	1.7. Message Sequence Chart Examples	15
	1.7.1. SPP Operation	· 15
	1.7.2. LE Operation ·····	. 17
	1.8. HostWakeup Signal ······	19
	1.8.1. HostWakeUp Description ·····	. 19
	1.8.2. The Example of Sequence Using HostWakeUp Signal ······	. 19

1. Deep Sleep Function

1.1. General Description

Deep sleep function is available for TC35661 to reduce power consumption. TC35661 uses an external 32-kHz clock for deep sleep mode. In order to enter deep sleep mode, TC35661 requires jitter and drift information of the 32-kHz clock. The information is different from that of 26 MHz clock for active mode.

1.2. Command Procedures

1.2.1. First Step

During HCI mode, M2 _BTL_SET_DEEP_SLEEP command is required to set deep sleep clock parameters such as drift and jitter for 32-kHz clock.

1.2.2. Second Steps

During complete mode, two ways are available for host CPU to enable deep sleep mode for TC35661.

- 1) GPIO0 (RequestWakeUp)
- UART command (TCU MNG DEEP SLEEP REQ)

1.3. Conditions to Enter Deep Sleep Mode

Deep sleep mode is available for the following statuses:

- No Bluetooth link (SPP and LE)
- Sniff mode (SPP)
- Advertising (LE)
- Connected (LE)

1.4. Commands in Detail

1.4.1. M2_BTL_SET_DEEP_SLEEP

M2_BTL_SET_DEEP_SLEEP command sets 32-kHz clock drift and jitter for deep sleep mode. The jitter and drift values are given by the vendor who have supplied the 32-kHz clock crystal. The values are used to determine sync window length for RF receiving. Therefore, when the values are smaller than the given values, sniff link might be disconnected. On the other hand, when the values are bigger than the given values, the sync window for RF receiving opens widely, hence the power consumption is increased.

M2_BTL_SET_DEEP_SLEEP command (For more detail, please refer to

"TC35661APL_ROM501_Extension HCI E xxxxxx.pdf")

TCSSOUTALE_INGINISUL_EXTENSION_TIGI_E_XXXXXX.pdf)			
Parameters	Value	Parameter Description	
Byte0	08	OCF	
Byte1	FC	OGF+OCF	
Byte2	1C	Command length	
Byte3	00	Reserved	
Byte4	A0	Information setting request command	
Byte5-7	000000	Reserved	
Byte8	14	Set the value for Initiator and Acceptor	
		1: value of Acceptor	
		4: value of Initiator	
Byte9	68	Information ID = BTL_SET_DEEP_SLEEP	
Byte10	FF	Reserved. 0xFF fixed.	
Byte11	10	Data type	
		10: Byte array(First byte is length)	

CONFIDENTIAL July 25, 2014 5/19

TOSHIBA TENTATIVE TC35661-ROM501 Deep Sleep Function

Byte12	12	Parameter length. 0x12 fixed.
Byte13	XX	CLKREQ signal output format setting.
•		A high level of CLKREQ pin indicates a request for Oscillator.
		00: Work deep-sleep (initial value)
		01: Always L (CLKREQ terminal unnecessary)
		02-FF: Always H (32KHz)
Byte14-17	XXXXXXXX	Crystal stabilization time (us).
		Initial setting = 0x00000BB8 (3000us)
		This value can't be changed by Toshiba permission.
		This value influence HW operation.
Byte18	XX	Deep-sleep instructions / Set Notify specific interface
		Bit0:GPIO (0=No notification / 1=Notification)
		GPIO0:Request ,GPIO1:Notify
		Bit1: UART (0=No notification / 1=Notification)
		Bit2: USB (0=No notification / 1=Notification)
		Bit0 and Bit1 and Bit2 are exclusive.
		SPP complete firmware dose not USB.
		Bit3-7: Reserved
Byte19-20	XXXX	Local device 32kHz oscillator drift (ppm).
		Initial setting = 0x0050 (80ppm)
		This value is decided by each vender.
		This value influence sync window length and sleep time.
Byte21-22	XXXX	Local device 32kHz jitter drift (us).
		Initial setting = 0x000A (10us)
		This value is decided by each vender.
<u> </u>	1000	This value influence sync window length and sleep time.
Byte25-24	XXXX	Margin to wake up before SniffAttempt
		During Sniff mode, this value is used to wake up before SniffAttempt. Unit
		is ms.
		For example, 0x000a, TC35661 wakes up 10ms before SniffAttmt Host
D. 400E 20	00000000000	CPU can send sending data during this period
Byte25-30	00000000000	Reserved. 0x00000000000 fixed.

July 25, 2014 6/19 CONFIDENTIAL

M2_Deep_Sleep_Set event

	ı • —	
Parameters	Value	Parameter Description
Byte0	FF	Event code
Byte1	0A	Command length
Byte2	08	OCF
Byte3	00	Reserved
Byte4	A0	Information setting request command
Byte5-7	000000	Reserved
Byte8	14	1:value of Acceptor
		4: value of Initiator
Byte9	68	Information ID
Byte10	00	Command result
		00:M2MSG_OK(Success)
		02:M2MSG_UNKNOWN_DATA_TYPE
		(information data type is not 18-byte string)
		04:M2MSG_INVALID_DATA_VALUE
		(Not set in [Deep-sleep instructions / Set Notify specific
		interface])
Byte11	00	Data type
		00:No information data

1.4.2. GPIO

Host CPU controls GPIO0 to enable or disable deep sleep mode. TC35661 notifies its status (active mode or deep sleep mode) with GPIO1. M2_BTL_SET_DEEP_SLEEP command sets method at Bit0:GPIO (0=No notification) in Byte18 (deep-sleep instructions/set notify specific interface).

GPIO0 = H: deep sleep mode is not available.

GPIO0 = L: deep sleep mode is available.

GPIO1 = H: deep sleep mode. Host cannot send UART command.

GPIO1 = L: active mode. Host can send UART command.

1.4.3. TCU_MNG_DEEP_SLEEP_REQ

TCU_MNG_DEEP_SLEEP_REQ command is used in complete mode to enter deep sleep mode or to wake up. After a host has sent TCU_MNG_DEEP_SLEEP_REQ(Enable) command, the host shall send TCU_MNG_DEEP_SLEEP_REQ(Disable) command before sending other commands. TC35661 enters deep sleep mode after receiving TCU_MNG_DEEP_SLEEP_REQ(Enable) command. During deep sleep mode, TC35661 recognizes all commands as TCU_MNG_DEEP_SLEEP_REQ(Disable) command.

Command Format: (For more detail, please refer to "TC35661APL_ROM501_MNG_E_xxxxxxx.pdf")

ServiceID	1 Byte
OpCode	1 Byte
Parameter_Length	2 Bytes
mode	1 Bytes

ServiceID: 0xE1
OpCode: 0xB6
Parameter Length: 0x0001

Parameters:

Parameters	Parameter Description	Value
mode	Deep Sleep mode setting	
	Disable	0x00
	Enable	0x01

CONFIDENTIAL July 25, 2014 8/19

1.5. Procedure Examples

1.5.1. Deep Sleep Mode by GPIO (SPP)

- 1) Send M2_BTL_SET_DEEP_SLEEP command during HCl mode with Bit0 = 1 in Byte18 (GPIO notification).
- 2) Send TCU_MNG_INIT_REQ command during complete mode (32-kHz clock is enabled).
- Input high to GPIO0 (No Sleep mode).
- 4) Connect SPP.
- 5) Send TCU_MNG_SNIFF_MODE_CONTROL_REQ command to set sniff mode.
- 6) Input Low to GPIO0 to enter deep sleep mode.

1.5.2. Deep Sleep Mode by GPIO (LE)

- 1) Send M2_BTL_SET_DEEP_SLEEP command during HCI mode with Bit0 = 1 in Byte18 (GPIO notification).
- 2) Send TCU_MNG_INIT_REQ command during complete mode (32-kHz clock is enabled).
- 3) Send TCU MNG LE INIT REQ command during complete mode.
- 4) Input high to GPIO0 (No Sleep mode).
- 5) Start advertising or get connected.
- 6) Input Low to GPIO0 to enter deep sleep mode.

1.5.3. Deep Sleep Mode by UART command (SPP)

- 1) Send M2_BTL_SET_DEEP_SLEEP command during HCI mode with Bit1 = 1 in Byte18 (UART notification)
- 2) Send TCU_MNG_INIT_REQ command during complete mode (32-kHz clock is enabled).
- 3) Connect SPP.
- 4) Send TCU_MNG_SNIFF_MODE_CONTROL_REQ command to set sniff mode.
- 5) Send TCU MNG DEEP SLEEP REQ command to enter deep sleep mode.

1.5.4. Deep Sleep Mode by UART command (LE)

- 1) Send M2_BTL_SET_DEEP_SLEEP command during HCI mode with Bit1 = 1 in Byte18 (UART notification)
- 2) Send TCU_MNG_INIT_REQ command during complete mode (32-kHz clock is enabled).
- 3) Send TCU_MNG_LE_INIT_REQ command during complete mode.
- 4) Start advertising or get connected.
- 5) Send TCU_MNG_DEEP_SLEEP_REQ command to enter deep sleep mode.

CONFIDENTIAL July 25, 2014 9/19

1.6. Function Examples

1.6.1. GPIO Controlled

During No Bluetooth Link

During Scan mode

CONFIDENTIAL July 25, 2014 10/19

During Sniff mode

During Advertising

CONFIDENTIAL July 25, 2014 11/19

Connection event

During LE Connection Deep sleep mode GPIO0 (RequestWakeUp) MCU ->TC356561 High level (deep sleep mode is not available) Host CPU can transmit UART commands. Low level (request deep sleep mode) Host CPU cannot transmit UART commands. GPIO1 (status) TC35661->MCU High level (deep sleeping) TC35661 wakes up during connection events. Connection request 26-MHz clock off 32-kHz clock on 26-MHz clock on 32-kHz clock off 26-MHz clock off 26-MHz clock off 32-kHz clock on 32-kHz clock on time Connection Inteval

Connection event

CONFIDENTIAL July 25, 2014 12/19

1.6.2. UART Controlled

During No Bluetooth Link

During Scan Mode

During Sniff Mode

CONFIDENTIAL July 25, 2014 13/19

During Advertising

During LE Connection

CONFIDENTIAL July 25, 2014 14/19

1.7. Message Sequence Chart Examples

1.7.1. SPP Operation

CONFIDENTIAL July 25, 2014 15/19

CONFIDENTIAL July 25, 2014 16/19

1.7.2. LE Operation

CONFIDENTIAL July 25, 2014 17/19

*Note
During deep sleep mode, any command from host CPU wakes up TC35661.

CONFIDENTIAL July 25, 2014 18/19

1.8. HostWakeup Signal

1.8.1. General Description

TCU_VEN_SET_HOST_WAKEUP_NOTIFICATION_REQ command enables HostWakeUp signal on GPIO4, HostWakeUp signal wakes up host CPU from sleep mode.

Both host CPU and TC35661 can enter sleep mode to reduce the system power consumption.

1.8.2. Sequence Example

- 1) Send TCU_VEN_SET_HOST_WAKEUP_NOTIFICATION_REQ(Enable) command from host CPU.
- 2) TC35661 sends TCU_VEN_SET_HOST_WAKEUP_RESP to host CPU as well as HostWakeUp signal simultaneously
- 3) Host CPU needs to turn BT_CTS to high before entering sleep mode.
- 4) TC35661 is waked up by receiving data from remote device.
- 5) TC35661 outputs HostWakeUp signal to host CPU.
- 6) Host CPU is waked up by receiving HostWakeUp signal.
- 7) After host CPU wakes up, It turns BT_CTS signal to low, and then TC35661 sends the received data.

End Of Document

CONFIDENTIAL July 25, 2014 19/19