

Timo Tonn | WS 2024/25

Institut für Numerische Mathematik

Angewandte Numerik Vorlesung 1

Numerik ist (trotz des Namens) kein Teilgebiet der Reinen Mathematik sondern der Angewandten Mathematik:

- mathematische Untersuchung von Berechnungsverfahren
- Algorithmen oder Methoden zur näherungsweisen Berechnung bestimmter Größen (z.B.) auf dem Computer

Zu berechnende Größen sind z.B.:

- ▶ Auswertung von Funktionen wie $sin(1), e^2$
- Lösung von Gleichungen
 - z.B. lineare Ax = b oder nichtlineare Gleichungen: f(x) = 0
 - ▶ gesuchte Lösung $x^* \in \mathbb{R}^n$ mit n > 1.000.000
 - ▶ Differentialgleichungen: $u''(x) = f(x), x \in (0,1)$, gesucht: Funktion $u: [0,1] \to \mathbb{R}$ bei gegebenem $f: [0,1] \to \mathbb{R}$.
- Näherung von Größen, die nicht exakt berechnet werden können:
 - Ableitungen
 - Sensitivitäten
 - Integrale
 - ► Mittel- oder Erwartungswerte
 - Solche Größen werden nicht immer exakt bestimmt, oder die Berechnung würde zu lange dauern.
 - Andere Beispiele: optimale Steuerungen, optimale Strategien.

- Computer-gestützte Simulationen komplexer Vorgänge:
 (z.B. wenn Experimente teuer, aufwändig, gefährlich oder nicht möglich sind)
 - ▶ Wettervorhersage: Simulation der turbulenten Wolkenströmungen.
 - Strömungsmechanik: Aerodynamik, Flugzeug-, Automobil- oder Schiffsbau.
 - ▶ Bauingenieurwesen: Simulation der Statik oder der Eigenschwingung von Brücken und anderen Bauwerken.
 - ▶ Medizin: Simulation der Knochenheilung, Therapie von Gehirn-Tumoren.
 - ► Wirtschaftswissenschaften: Simulation von Aktienkursen, Bewertung von komplexen Finanz- oder Versicherungsprodukten, Bestimmung optimaler Anlage—Strategien.

Speziell beschäftigt sich die Numerik mit:

- Konstruktion "geeigneter" Lösungsverfahren, die
 - schnell ("effizient") sind, teilweise in oder sogar schneller als in "Echtzeit",
 - "zuverlässig", mit beweisbarer Abschätzung z.B. der folgenden Form
 - $||x_{\text{numerisch}} x_{\text{exakt}}|| \le \text{Toleranz}$ (x_{exakt} unbekannt),
 - **"robust**" gegenüber Störungen wie z.B. Messfehlern, Modell–Unsicherheiten etc. sind:
- der mathematischen Analyse dieser Verfahren (Konvergenz, Geschwindigkeit, Aufwand, Robustheit etc.)
- deren effizienter Realisierung (Implementierung).

Die Numerik liegt an der Schnittstelle von Mathematik und Informatik. Teilgebiete:

- ► Numerische Lineare Algebra (Numerik 1),
- ► Numerische Analysis (Numerik 2),
- ► Numerische Optimierung (Numerik 3),
- Numerik von Differenzialgleichungen (Numerik 4 und Numerik von Partiellen Differenzialgleichungen)
- Numerical Finance
- Computational Physics, Computational Science
- ► CFD: Computational Fluid Dynamics
- Wissenschaftliches Rechnen
- · ...

Mathematische Modellierung

Beispiel: Bestimmung des Abraums bei der Braunkohleförderung

- Weg vom realen Modell zur Simulation an einem Beispiel.
- ▶ Bestimmung des Abraums, der durch die Förderung von Braunkohle entstanden ist
- exakte Form des entstandenen Lochs unbekannt,
- ► Flugzeug macht Tiefenmessungen an einzelnen Punkten.

Das ergibt folgendes Vorgehen:

- 1) Reales Modell: Volumen des Abraums; mit Messungen (Experiment) aus Flugzeugen, Satelliten;
- 2) Mathematisches Problem: Bestimme das Volumen des Lochs → Volumenintegrale; verwende dabei Mess-Ergebnisse als Daten (Modellierung);
- 3) Konstruktion und Umsetzung von Verfahren: näherungsweise Berechnung der 3D–Integrale;
 Simulation: Programmiere das o.g. Verfahren

2.1 Kondition eines Problems I

- Bestimmung des Schnittpunkts S zweier Geraden g und h in der Ebene.
- Abhängigkeit von S (Output) bzgl. den Zeichenfehlern (Fehler im Input)

2.1 Kondition eines Problems II

In der Grafik zu sehen:

- ▶ Ausgabefehler hängt stark vom Winkel $\angle(g, h)$ ab!
- ightharpoonup g annähernd senkrecht $h \leadsto \mathsf{Ausgabefehler} pprox \mathsf{Eingabefehler}$: gut konditioniert.
- \swarrow $\angle(g,h)$ klein (g und h fast parallel) \leadsto kleine Lageänderung von g oder h liefert ganz anderen Schnittpunkt: schlecht konditioniertes Problem.
- Nathematische Präzisierung des Konditionsbegriffs nötig!

2.1 Kondition eines Problems III

Aufgabe

Seien X, Y Mengen und $\varphi : X \to Y$. Wir betrachten das Problem:

Gegeben sei
$$x \in X$$
, gesucht $y = \varphi(x)$.

Fragen:

- ightharpoonup Wie wirken sich Störungen in den Daten x auf das Ergebnis y aus?
- Zu beachten: hat nichts mit der Realisierung auf dem Computer (dem Algorithmus) zu tun, ist einzig eine Eigenschaft der Problemstellung.

2.1 Kondition eines Problems IV

Noch einmal der Geradenschnittpunkt

Gegeben seien die 2 Geraden in folgender Form:

$$G_1=\{(x_1,x_2)\in\mathbb{R}^2: a_{1,1}x_1+a_{1,2}x_2=b_1\}, \quad G_2=\{(x_1,x_2)\in\mathbb{R}^2: a_{2,1}x_1+a_{2,2}x_2=b_2\},$$

mit: $b = (b_1, b_2)^T \in \mathbb{R}^2$, $a_{i,j}$ für i, j = 1, 2, $A := (a_{ij})_{i,j=1,2} \in \mathbb{R}^{2 \times 2}$

Gesucht: Schnittpunkt $x = (x_1, x_2)^T$ von G_1, G_2 : $Ax = b \rightsquigarrow x = A^{-1}b$ (falls A regulär)

Also: $X = \mathbb{R}^{2 \times 2} \times \mathbb{R}^2$, $Y = \mathbb{R}^2$ und $\varphi(A, b) = A^{-1}b = x$.

2.1 Kondition eines Problems V

Und noch einmal der Kohleaushub

- **► Gegeben:** Messungen h(x) = z, $h : \mathbb{R}^2 \to \mathbb{R}$
- ▶ Das Kohlerevier sei in $R := [a, b] \times [c, d] \subset \mathbb{R}^2$ enthalten.
- Formel für den Kohleaushub: $f(h) = \int_{a}^{b} \int_{c}^{d} h(x) dx_2 dx_1$
- ightarrow $Y=\mathbb{R}$, $h\in\mathcal{R}(\mathbb{R}^2)=X$ (Menge der Rieman-integrierbaren Funktionen auf \mathbb{R}^2)
- ► *X* ist hier *unendlich-dimensional*!

2.1 Kondition eines Problems VI

Lineare skalare Abbildungen

Seite 14

betrachte den Spezialfall

$$\varphi: \mathbb{R}^n \to \mathbb{R} \quad \text{mit} \quad \varphi(x) := \langle a, x \rangle + b, \quad a \in \mathbb{R}^n, \quad b \in \mathbb{R}, \qquad (\langle x, y \rangle = x^T y)$$

- ightharpoonup Seien x und $\widetilde{x} \in \mathbb{R}^n$ zwei Eingaben.

• es gilt (falls
$$\varphi(x) \neq 0$$
 und $x_j \neq 0$ für alle j):

$$\left|\frac{\varphi(x)-\varphi(\widetilde{x})}{\varphi(x)}\right| = \frac{|\langle a, x-\widetilde{x}\rangle|}{|\varphi(x)|} \le \frac{1}{|\varphi(x)|} \sum_{j=1}^{n} |a_j||x_j-\widetilde{x}_j| = \sum_{j=1}^{n} \frac{|x_j|}{|\varphi(x)|} |a_j| \cdot \frac{|x_j-\widetilde{x}_j|}{|x_j|} \quad (1)$$

2.1 Kondition eines Problems VII

Lineare skalare Abbildungen – Fortsetzung

$$\left|\frac{\varphi(x)-\varphi(\widetilde{x})}{\varphi(x)}\right| \leq \sum_{i=1}^{n} \frac{|x_{j}|}{|\varphi(x)|} |a_{j}| \cdot \frac{|x_{j}-\widetilde{x}_{j}|}{|x_{j}|}$$

▶ falls $\operatorname{eps} := \frac{|x_j - \widetilde{x}_j|}{|x_j|}$ für alle j dann ist der **unvermeidbaren Fehler** (selbst bei exakter Rechnung), der bei der Berechnung von φ auftritt:

$$\operatorname{eps} \cdot \sum_{j=1}^{n} \frac{|x_{j}|}{|\varphi(x)|} |a_{j}|$$

2.1 Kondition eines Problems VIII

Allgemeiner Fall

Seite 16

 $lackbox{ sei nun } \varphi:\mathbb{R}^n o \mathbb{R}$ differenzierbar in x. Dann gilt mit der Taylor–Entwicklung

$$\varphi(x) - \varphi(\widetilde{x}) = \langle \nabla \varphi(x), x - \widetilde{x} \rangle + o(\|x - \widetilde{x}\|),$$

und (1) wird zu

$$\frac{|\varphi(x) - \varphi(\widetilde{x})|}{|\varphi(x)|} \le \sum_{i=1}^{n} \frac{|x_{i}|}{|\varphi(x)|} \left| \frac{\partial \varphi}{\partial x_{i}}(x) \right| \cdot \frac{|x_{i} - \widetilde{x}_{i}|}{|x_{i}|} + o(\|x - \widetilde{x}\|).$$

dies ist der Fehlerverstärkungsfaktor

2.1 Kondition eines Problems IX

Definition (Konditionszahlen)

Sei $\varphi: \mathbb{R}^n \to \mathbb{R}^m$ differenzierbar in $x \in \mathbb{R}^n$ sowie $\varphi_i(x) \neq 0, \ 1 \leq i \leq m$. Die Zahlen

$$\kappa_{ij}(x) = \frac{|x_j|}{|\varphi_i(x)|} \left| \frac{\partial \varphi_i}{\partial x_j}(x) \right|, \qquad 1 \le i \le m, \ 1 \le j \le n,$$

(2)

heißen die Konditionszahlen von φ in x.

Seite 18

2.1 Kondition eines Problems X

Beispiele

1. Multiplikation: $\varphi: \mathbb{R}^2 \to \mathbb{R}, \varphi(x_1, x_2) = x_1 \cdot x_2$

$$\kappa_1(x) = \frac{|x_1|}{|x_1|} \left| \frac{\partial \varphi}{\partial x_1}(x) \right| = 1, \quad \kappa_2(x) = 1 \quad \text{\leadsto "gut konditioniert"}$$

2. Addition: $\varphi : \mathbb{R}^2 \to \mathbb{R}, \varphi(x_1, x_2) = x_1 + x_2$,

$$\kappa_1(x) = \frac{|x_1|}{|x_1 + x_2|} \left| \frac{\partial \varphi}{\partial x_1}(x) \right| = \frac{|x_1|}{|x_1 + x_2|}, \quad \kappa_2(x) = \frac{|x_2|}{|x_1 + x_2|}.$$

 \rightsquigarrow falls $|x_j| \gg |x_1 + x_2|$ große Verstärkung des relativen Fehlers; in diesem Fall "schlecht konditioniert".

2.1 Kondition eines Problems XI

3. Lösen der quadratischen Gleichung $x^2 + 2px - q = 0$ Fall p, q > 0:

$$p = p + \sqrt{p^2 + q}$$

"Mitternachtsformel": $\varphi(p, q) = -p + \sqrt{p^2 + q}$. $\varphi: \mathbb{R}^2 \to \mathbb{R}$.

(3)

dann:
$$\kappa_p = \frac{p}{\sqrt{p^2 + q}} \le 1$$
, $\kappa_q = \frac{p + \sqrt{p^2 + q}}{2\sqrt{p^2 + q}} \le 1$: "gut konditioniert".

From q < 0, $q \approx -p^2$ ist das Problem "schlecht konditioniert".

Fehler I

- (a) Sei $\tilde{x} \in X$ eine Approximation von $x \in X$, $\Delta x := x \tilde{x}$ ist der **Fehler**
 - ightharpoonup zu gegebener Norm $\|\cdot\|_X$ ist $\|x-\widetilde{x}\|_X$ der absolute Fehler von \widetilde{x}
 - Für $x \neq 0$ ist $\frac{\|x \widetilde{x}\|_X}{\|x\|_X} = \frac{\|\Delta x\|_X}{\|x\|_X}$ der **relative Fehler** von \widetilde{x}
- (b) seien $\|\cdot\|_X$, $\|\cdot\|_Y$ Normen auf X bzw. Y, $\Delta x := x \tilde{x}$, $\Delta y := y \tilde{y}$ und

$$\delta_x := \frac{\|\Delta x\|_X}{\|x\|_X}$$
, $\delta_y := \frac{\|\Delta y\|_Y}{\|y\|_X}$ die relativen Ein- bzw. Ausgabefehler.

Dann heißt $\kappa_{\varphi} := \frac{\delta_y}{\delta_y}$ bzw. $\kappa_{\varphi, abs} := \frac{\|\Delta y\|_Y}{\|\Delta x\|_X}$ die **relative/absolute Kondition** von $y = \varphi(x), \varphi : X \to Y$.

(c) $y = \varphi(x)$ heißt **gut konditioniert**, wenn κ_{φ} "klein" ist für $\delta_x \to 0$

Fehler II

Beispiel Addition:

$$X = \mathbb{R}^2$$
, $X = (x_1, x_2)$, $||X||_X^2 = x_1^2 + x_2^2$ und $Y = \mathbb{R}$, $Y = x_1 + x_2$, $||Y||_Y = |x_1 + x_2|$

$$\kappa_{\varphi, abs}^{2} = \frac{|x_{1} - \widetilde{x}_{1} + x_{2} - \widetilde{x}_{2}|^{2}}{(x_{1} - \widetilde{x}_{1})^{2} + (x_{2} - \widetilde{x}_{2})^{2}} = \frac{(x_{1} - \widetilde{x}_{1})^{2} + (x_{2} - \widetilde{x}_{2})^{2} + 2|x_{1} - \widetilde{x}_{1}||x_{2} - \widetilde{x}_{2}|}{(x_{1} - \widetilde{x}_{1})^{2} + (x_{2} - \widetilde{x}_{2})^{2}}
= 1 + 2\frac{|x_{1} - \widetilde{x}_{1}||x_{2} - \widetilde{x}_{2}|}{(x_{1} - \widetilde{x}_{1})^{2} + (x_{2} - \widetilde{x}_{2})^{2}} \le 2,$$

(letzter Schritt mit Young-Ungleichung $ab \leq \frac{1}{2}(a^2 + b^2)$): $\kappa_{\varphi,abs} \leq \sqrt{2}$

► Hingegen: $\kappa_{\varphi} = \kappa_{\varphi, \text{abs}} \frac{\|x\|_X}{\|y\|_Y} = \kappa_{\varphi, \text{abs}} \frac{\sqrt{x_1^2 + x_2^2}}{|x_1 + x_2|} \le \sqrt{2} \frac{\sqrt{x_1^2 + x_2^2}}{|x_1 + x_2|}$ unbeschränkt für $x_1 \approx -x_2$ ("Auslöschung")

Fehler III

Bemerkung

Relativer Fehler in der ∞-Norm:

$$\frac{\|x - \widetilde{x}\|_{\infty}}{\|x\|_{\infty}} \approx 10^{-p},$$

bedeutet, dass \widetilde{x} näherungsweise p korrekte signifikante Stellen hat.

Jeder Algorithmus lässt sich auffassen als Abbildung $\widetilde{\varphi}:X o Y.$

Erwartungen an einen "guten" Algorithmus:

- lacktriangle unwesentliche Verstärkung der relativen Fehler, also $pprox \kappa_{ij}(x)$ des Problems arphi
- Für $\widetilde{\varphi}: \mathbb{R}^n \to \mathbb{R}^m$ sollte gelten eine Abschätzung der Form:

$$\left|\frac{\widetilde{\varphi}_{i}(\widetilde{x}) - \widetilde{\varphi}_{i}(x)}{\widetilde{\varphi}_{i}(x)}\right| \leq C_{i1} \sum_{\substack{j=1 \ \geqslant \frac{|\varphi_{i}(\widetilde{x}) - \varphi_{i}(x)|}{|\varphi_{i}(x)|} + o(\|\widetilde{x} - x\|)}}^{n} + C_{i2} n \text{ eps} \quad (i = 1 \dots, m), \quad (4)$$

mit Konstanten C_{i1} , $C_{i2} \ge 0$, welche nicht viel größer als 1 sind.

2.2 Stabilität eines Algorithmus II

Definition (Numerische Stabilität eines Algorithmus)

- Ein Algorithmus $\widetilde{\varphi}: \mathbb{R}^n \to \mathbb{R}^m$ zur Lösung von $\varphi: \mathbb{R}^n \to \mathbb{R}^m$ heißt *numerisch stabil*, falls (4) gilt mit "vernünftigen" Konstanten C_{i1} , C_{i2} .
- Andernfalls heißt der Algorithmus *numerisch instabil*.

2.2 Stabilität eines Algorithmus III

Beispiel: Quadratische Gleichung

Wir untersuchen zwei verschiedene Verfahren zur Lösung der quadratischen Gleichung.

$$\varphi(p,q) = -p + \sqrt{p^2 + q}$$
 löst $x^2 + 2px - q = 0$.

1.
$$u = \sqrt{p^2 + q}$$
, $y = \varphi_1(p, u) = -p + u$: falls $u \approx p$ $(p \gg q)$: $\kappa_{\varphi_1} \gg 1$

2.
$$u=\sqrt{p^2+q}, \quad y=\varphi_2(p,q,u)=\frac{q}{p+u}$$
: (Satz von Viëta): $\kappa_{\varphi_2}\leq 1$

Algorithmus 1. ist numerisch instabil, aber Algorithmus 2. ist numerisch stabil.

2.2 Stabilität eines Algorithmus IV

Bemerkung

Zu beachten beim Algorithmus in obigem Beispiel:

- ▶ die numerische Auswertung der Funktion φ_1 für sich genommen ist *nicht* numerisch instabil!
- roblematisch ist $\varphi_1(p, \sqrt{p^2 + q})$ zu berechnen.
- das Zusammensetzen zweier stablier Algorithmen kann instabil sein.