Diszkrét matematika I. feladatok Komplex számok I

Ötödik alkalom (2025.03.10-14.)

Bemelegítő feladatok

1. Fejezze ki algebrai alakban a következő számokat

a)
$$\frac{3+i}{2+3i}$$
 Megoldás: $\frac{3+i}{2+3i} = \frac{3+i}{2+3i} \cdot \frac{2-3i}{2-3i} = \frac{6+3+2i-9i}{2^2+3^2} = \frac{9-7i}{13} = \frac{9}{13} - \frac{7}{13}i;$

b)
$$\frac{1-2i}{5+i}$$
 Megoldás: $\frac{1-2i}{5+i} = \frac{1-2i}{5+i} \cdot \frac{5-i}{5-i} = \frac{5-2-i-10i}{5^2+1^1} = \frac{3-11i}{25+1} = \frac{3}{26} - \frac{11}{26}i;$

c)
$$\frac{1}{(2-5i)^2}$$
 Megoldás: $(2-5i)^2 = 2^2 + (-5i)^2 - 2 \cdot 2 \cdot 5i = 4 - 25 - 20i = -21 - 20i$ $\frac{1}{(2-5i)^2} = \frac{1}{-21-20i} \cdot \frac{-21+20i}{-21+20i} = \frac{-21+20i}{(-21)^2+20^2} = \frac{-21+20i}{441+400} = \left(-\frac{21}{841}\right) + \left(\frac{20}{841}\right)i$.

Gyakorló feladatok

2. Oldja meg a következő egyenleteket a komplex számok halmazán:

a) $\frac{z+i-3i\overline{z}}{z-4}=i-1;$ Megoldás: Először kössük ki, hogy $z\neq 4$, ezután be lehet szorozni: $z+i-3i\overline{z}=(i-1)(z-4),$ most legyen z=a+bi, azaz a+bi+i-3i(a-bi)=(i-1)(a+bi-4), vagyis a-3b+i(b+1-3a)=(4-a-b)+i(a-4-b), azaz a-3b=4-a-b és b+1-3a=a-4-b. Tehát 2a-2b=4 és 4a-2b=5. A két egyenletet kivonva: 2a=1, és így 1-2b=4, azaz 2b=-3. Tehát $a=\frac{1}{2},$ $b=-\frac{3}{2},$ azaz $z=\frac{1}{2}-\frac{3}{2}i$ ($\neq 4$, tehát jó megoldás).

b) $(z+3-i)(\overline{z}-4+3i)=1$; **Megoldás:** z=a+bi, így: (a+bi+3-i)(a-bi-4+3i)=1 $((a+3)+(b-1)i)((a-4)+i(3-b))=(a+3)(a-4)-(b-1)(3-b)+i((b-1)(a-4)+(a+3)(3-b))=(a^2-a-12+b^2-4b+3)+i(2a-7b+13)=1$. Ez két egyenlet két valós ismeretlenre: 2a-7b+13=0 és $a^2-a+b^2-4b=10$, az első egyenletből kifejezzük b-t: b=(13+2a)/7, ezt beírva a második egyenletbe: $a^2-a+(13+2a)^2/49-4(13+2a)/7=10$, szorozzunk be 49-cel: $49a^2-49a+(169+20a+4a^2)-(364+56a)=490$, $53a^2-85a=685$, $53a^2-85a-685=0$, erre megoldóképlet: $a=(85\pm\sqrt{7225+145220})/106$. (a-ra csak valós megoldások jöhetnek szóba, és itt két valós megoldás van.)

Másik megoldás: $0 = (z+3-i)(\overline{z}-4+3i)-1 = z\overline{z}-4z+(3i)z+3\overline{z}-12+9i-i\overline{z}+4i+3-1 = |z|^2+(3\overline{z}-4z)+i(3z-\overline{z})-10+13i = |z|^2-3(z-\overline{z})-z+i(2z+(z-\overline{z}))-10+13i = |z|^2-3(2\operatorname{Im}(z)i)-z+i(2z+(2\operatorname{Im}(z)i))-10+13i = |z|^2-6\operatorname{Im}(z)i-z+(2i)z-2\operatorname{Im}(z)-10+13i = |z|^2-(2+6i)\operatorname{Im}(z)+(-1+2i)z-10+13i.$ Eddig úsztuk meg azt, hogy z=a+bi. Tehát $(a^2+b^2)-(2+6i)b+(-1+2i)(a+bi)-10+13i=0$. Az egyenlet valós része: $(a^2+b^2)-2b-a-2b-10=0$, a képzetes része: -6b+2a-b+13=0, vagyis 7b=2a+13, végül pontosan ugyanaz a két egyenlet jött ki.

(Ez egy nem túl szép, technikás feladat.)

c) $\frac{z+i-\overline{z}}{\overline{z}-3+z}=i$ Megoldás: Először kössük ki, hogy $\overline{z}-3+z=2\operatorname{Re}(z)-3\neq 0$. Haz=a+bi, akkor $\overline{z}=a-bi$, így $\frac{a+bi+i-a+bi}{a-bi-3+a+bi}=\frac{(2b+1)i}{2a-3}=i$, vagyis $\frac{2b+1}{2a-3}=1$, azaz 2b+1=2a-3, vagyis 2b=2a-4, tehát b=a-2, ez egy egyenes egyenlete a komplex számsíkon: $\operatorname{Im}(z)=\operatorname{Re}(z)-2$, vagy ha jobban tetszik, az y=x-2 egyenes az x-y-koordinátasíkon. Viszont volt egy feltételünk, hogy $2\operatorname{Re}(z)\neq 3$, azaz a fenti egyenesnek a (3/2,-1/2) koordinátájú pontja (a $z=\frac{3}{2}-\frac{1}{2}i$ komplex szám) mégsem megoldás.

Tehát a megoldások halmaza $\{z=a+bi\in\mathbb{C}:b=a-2\land a\neq\frac{3}{2}\}$, vagy másképpen: $\{z\in\mathbb{C}:\operatorname{Im}(z)=\operatorname{Re}(z)-2\land\operatorname{Re}(z)\neq3/2\}$.

Ugyanaz a megoldás más szavakkal: Mivel $z+\overline{z}=2\operatorname{Re}(z)$, és $z-\overline{z}=2\operatorname{Im}(z)i$, így $\frac{z+i-\overline{z}}{\overline{z}-3+z}=\frac{(2\operatorname{Im}(z)+1)i}{2\operatorname{Re}(z)-3}=i$, i-vel egyszerűsítve $\frac{2\operatorname{Im}(z)+1}{2\operatorname{Re}(z)-3}=1$ Most is kikötjük, hogy $\operatorname{Re}(z)\neq 3/2$, ezután beszorozhatunk a nevezővel: $2\operatorname{Im}(z)+1=2\operatorname{Re}(z)-3$, azaz $2\operatorname{Im}(z)=2\operatorname{Re}(z)-4$, azaz $\operatorname{Im}(z)=\operatorname{Re}(z)-2$. Az ezt teljesítő z-k közül ki kell hagyni a $\operatorname{Re}(z)=3/2$ ($\operatorname{Im}(z)=\operatorname{Re}(z)-2=-1/2$) elemet: $\{z\in\mathbb{C}:\operatorname{Im}(z)=\operatorname{Re}(z)-2\}\setminus\{\frac{3-i}{2}\}$

3. Adja meg az a és b valós számok értékét, ha

a) (a+bi)(2-i) = a + (3+b)i; **Megoldás:** $(2a+b) + i \cdot (2b-a) = a + (3+b)i$, vagyis $(a+b) + i \cdot (b-a-3) = 0$, azaz a+b=0 és b-a-3=0, tehát b=-a, és így -2a-3=0, ezért $a=-\frac{3}{2}$, és $b=\frac{3}{2}$.

Frappánsabb megoldás: Legyen z = a + bi, ekkor (a + bi)(2 - i) = a + (3 + b)i úgy írható, hogy z(2 - i) = z + 3i, mindkét oldalból kivonva z-t: z(1 - i) = 3i, azaz $z = \frac{3i}{1 - i} = \frac{3i(1 + i)}{(1 - i)(1 + i)} = \frac{-3 + 3i}{2} = -\frac{3}{2} + \frac{3}{2}i$, ezért $a = -\frac{3}{2}$, és $b = \frac{3}{2}$.

b) $(a+bi)(-1-2i)=\frac{2+i}{a-bi}$; Megoldás: Először kikötjük, hogy $a-bi\neq 0$, vagyis a és b egyszerre nem lehet nulla. Ezután már beszorozhatunk a-bi-vel: (a-bi)(a+bi)(-1-2i)=2+i, azaz $(a^2+b^2)(-1-2i)=(-a^2-b^2)-2(a^2+b^2)i=2+i$, vagyis $-a^2-b^2=2$, és $-2(a^2+b^2)=1$, azaz -2(-2)=1, 4=1, ami ellentmondás, azaz nincs megoldás: semmilyen a és b valós számokat megadva sem teljesíthető az egyenlet. (Valójában már a $-a^2-b^2=2 \Leftrightarrow a^2+b^2=-2$ egyenlet önmagában is ellentmondásra vezet, hiszen két nemnegatív valós szám összege nem lehet negatív.)

Frappánsabb megoldás: Legyen z=a+bi, ekkor (a+bi)(-1-2i)=-z(1+2i) és $\frac{2+i}{a-bi}=\frac{2+i}{\overline{z}}$, és az egyenlet: $-z(1+2i)=\frac{2+i}{\overline{z}}$. Feltéve, hogy $\overline{z}\neq 0$ (és így $z\neq 0$), beszorozva: $-z\overline{z}(1+2i)=2+i$, azaz $-|z|^2(1+2i)=2+i$. Mivel $|z|^2\in\mathbb{R}$ valós szám, viszont az 1+2i és a 2+i komplex számok irányszöge nem egyezik (és nem is kiegészítő szögei egymásnak, vagyis (1,2) és (2,1) síkvektorok lineárisan függetlenek), így nem lehetséges, hogy 1+2i valós számszorosa 2+i legyen.

Máshogy befejezve a frappánsabb megoldást: $-|z|^2(1+2i)=2+i$, átosztva: $-|z|^2=\frac{2+i}{1+2i}=\frac{2+i}{1+2i}\cdot\frac{1-2i}{1-2i}=\frac{4-3i}{1^2+2^2}=\frac{4}{5}-\frac{3}{5}i$, de $-|z|^2\in\mathbb{R}$ tisztán valós szám, míg $\frac{4}{5}-\frac{3}{5}i\in\mathbb{C}\backslash\mathbb{R}$

nemvalós komplex szám. Ellentmondásra jutottunk, nincs ilyen z.

c) $\overline{(a+bi)(3-4i)} = 2i$. Megoldás: $\overline{(a+bi)(3-4i)} = \overline{(3a+4b)+(3b-4a)i} = (3a+4b) - (3b-4a)i = 2i$, azaz 3a+4b=0, és 4a-3b=2. Ez egy lineáis egyenletrendszer, amit vagy mátrixosan oldunk meg, vagy ad hoc módon.

$$\begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} \qquad \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \frac{1}{-9 - 16} \begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \frac{-1}{25} \begin{pmatrix} 8 \\ 6 \end{pmatrix}$$

az ad hoc megoldással: 3a+4b=0 egyenlet négyszeresét kivonjuk 4a-3b=2 egyenlet háromszorosából: -9b-16b=6, azaz -25b=6, vagyis $b=-\frac{6}{25}$. Illetve 3a+4b=0 egyenlet háromszorosát hozzáadjuk 4a-3b=2 egyenlet négyszereséhez: 9a+16a=8, és így $a=\frac{8}{25}$. (Természetesen ugyanaz jön ki, mint mátrixosan.)

Frappánsabb megoldás: Legyen z=a+bi, ekkor $\overline{(a+bi)(3-4i)}=2i$ úgy írható, hogy $\overline{z(3-4i)}=2i$, mindkét oldal konjugáltját véve z(3-4i)=-2i, átosztva $z=\frac{-2i}{3-4i}$ és a bemelegítő módszerével $z=\frac{-2i}{3-4i}\cdot\frac{3+4i}{3+4i}=\frac{-6i+8}{3^2+4^2}=\frac{8}{25}-\frac{6}{25}i$, vagyis $a=\frac{8}{25}$ és $b=-\frac{6}{25}$.

Érdekes feladatok

- 4. Rajzolja le a komplex számsíkon a következő halmazokat:
 - a) $\{z : \operatorname{Re}(z+2i) \leq 0\}$; **Megoldás:** Mivel 2i hozzáadása nem váloztat a valós részen: $\operatorname{Re}(z+2i) = \operatorname{Re}z \leq 0$, ezek azok a z komplex számok, amiknek a valós része (az "x-koordinátája") nempozitív. Azaz ez a képzetes tengelytől balra eső zárt félsík (maga a félsíkot határoló képzetes tengely is benne van).
 - b) $\{z: \operatorname{Re}(z+1) \geq \operatorname{Im}(z-3i)\};$ Megoldás: $\operatorname{Re}(z+1) = \operatorname{Re}z+1$, és $\operatorname{Im}(z-3i) = \operatorname{Im}z-3$, így a feltétel $1+\operatorname{Re}z \geq -3+\operatorname{Im}z$, vagyis z=x+yi esetén $1+x \geq y-3$, vagyis $y \leq 4+x$. Ez tehát az y=x+4 egyenletű egyenes által határolt két félsík egyike, méghozzá az, ami (x,y)=(0.0) pontot tartalmazza (hiszen $0 \leq 4+0$), azaz az egyenes alatti félsík (a határolóegyenest is beleértve).
 - c) $\{z: |z-i-1| \leq 3\}$; Megoldás: A $|z| \leq 3$ egyenlőtlenséget kielégítő z=a+bi komplex számokra $\sqrt{a^2+b^2} \leq 3$ teljesül, azaz ez az origó körüli 3 sugarú körlap (a $a^2+b^2=3^2$ egyenletű körvonal és annak belseje is). De a feladat nem ezt kérdezi, hanem $|z-i-1| \leq 3$ egyenlőtlenséget. Ebben a z=0 helyett a z=i+1 esetén lenne a baloldal 0, azaz sejthető, hogy ez az 1+i körüli 3 sugarú körlap lesz.

És valóban: mivel |z-i-1| a z szám "távolsága" 1+i-től (abban az értelemben, hogy |z-w| a z és w számok távolsága, mivel a különbségvektor hossza), így $|z-i-1| \leq 3$ feltételt kielégítő z számok valóban az 1+i-tól legfeljebb 3 távolságra lévő számok a komplex számsíkon, azaz egy 3 sugarú, 1+i középpontú zárt körlap pontjai.

Másik megoldás: $|z-i-1| \le 3 \Leftrightarrow |z-i-1|^2 \le 9$ (mivel az egyenlőtlenség mindkét oldalán nemnegatív valós szám áll). $|z-i-1|^2 = |(a-1)+(b-1)i|^2 = (a-1)^2+(b-1)^2 \le 3^2$. Ez valóban az (1,1) koordinátájú pont körüli 3 sugarú körlap "egyenlete".

d) $\{z: |z-3+2i| = |z+4-i|\};$ **Megoldás:** |(a-3)+(b+2)i| = |(a+4)+(b-1)i|, vagyis $|(a-3)+(b+2)i|^2 = |(a+4)+(b-1)i|^2$ (az egyenlet mindkét oldalán nemnegatív valós

szám áll), vagyis $(a-3)^2 + (b+2)^2 = (a+4)^2 + (b-1)^2$, azaz $a^2 - 6a + 9 + b^2 + 4b + 4 = a^2 + 8a + 16 + b^2 - 2b + 1$, azaz 13 - 6a + 4b = 17 + 8a - 2b, azaz 6b = 14a + 4, azaz 3b = 7a + 2. Ez egy egyenes.

Másik megoldás: |z-3+2i|=|z-(3-2i)| a z távolsága 3-2i számtól. |z+4-i|=|z-(-4+i)| a z távolsága -4+i számtól. Azaz |z-3+2i|=|z+4-i| feltételt azok a z pontok teljesítik, amik ugyanakkora távolságra vannak 3-2i és -4+i pontok közötti szakasznak a szakaszfelező merőlegese (ezen egyenes pontjai) a megoldások halmaza.

- e) $\{z: z=1/\overline{z}\};$ Megoldás: $z=1/\overline{z} \Leftrightarrow 1=z\overline{z}=|z|^2 \Leftrightarrow |z|=1$. Ez a komplex egységkör.
- f) $\{z: z + \overline{z} = 0\}$. Megoldás: $z + \overline{z} = 2 \operatorname{Re} z = 0$, ez a képzetes tengely.
- 5. Adja meg a következő számokat trigonometrikus alakban:

a)
$$\sqrt{3} + i$$
; Megoldás: $\sqrt{3} + i = 2 \cdot (\frac{\sqrt{3}}{2} + i\frac{1}{2}) = 2 \cdot (\cos\frac{\pi}{6} + i \cdot \sin\frac{\pi}{6})$

b) 1 - i; Megoldás:

$$1 - i = \sqrt{2} \cdot (\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \cdot i) = \sqrt{2} \cdot (\cos(-\frac{\pi}{4}) + i \cdot \sin(-\frac{\pi}{4})) = \sqrt{2} \cdot (\cos\frac{7\pi}{4} + i \cdot \sin\frac{7\pi}{4})$$

- c) 4i; Megoldás: $4i = 4 \cdot (0 + 1 \cdot i) = 4 \cdot (\cos \frac{\pi}{2} + i \cdot \sin \frac{\pi}{2})$
- d) -3; **Megoldás:** $-3 = 3 \cdot (-1 + 0 \cdot i) = 3 \cdot (\cos \pi + i \cdot \sin \pi)$
- e) $\frac{10}{\sqrt{3}-i}$; **Megoldás:** Előbb külön a számláló és külön a nevező trigonometrikus alakja:

$$10 = 10 \cdot (1 + 0 \cdot i) = 10 \cdot (\cos 0 + i \cdot \sin 0) \quad \sqrt{3} - i = 2 \cdot (\frac{\sqrt{3}}{2} - \frac{1}{2} \cdot i) = 2 \cdot (\cos \frac{-\pi}{6} + i \cdot \sin \frac{-\pi}{6})$$

$$\frac{10}{\sqrt{3} - i} = \frac{10}{2} \cdot (\cos(0 - \frac{-\pi}{6}) + i \cdot \sin(0 - \frac{-\pi}{6})) = 5 \cdot (\cos \frac{\pi}{6} + i \cdot \sin \frac{\pi}{6})$$

Beadandó házi feladatok

- 6. Rajzolja le a komplex számsíkon a következő halmazokat (**részenként** 1/3 **pont**):
 - a) $\{z: \operatorname{Re}((1+i)z) \le 0\};$ b) $\{z: \operatorname{Im}(1/z) \ge 0\};$ c) $\{z: |(1+i)(z-i-1)| \le 1\}.$

Megoldást itt nem közlünk (mert beadandó feladat).

7. Adja meg a következő számokat trigonometrikus alakban (**részenként 1/3 pont**):

a)
$$1 + \sqrt{3}i$$
; b) $\frac{7}{1+i}$; c) $\frac{1-\sqrt{3}i}{\sqrt{3}+i}$.

Megoldást itt nem közlünk (mert beadandó feladat).

Nevezetes	szögek	trigonometrikus	értéke
TICICECOCS	DEOCK	urigonomic urinus	CIUCIC

x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
$\sin x$	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1
$\cos x$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0

8. Tekintsük a következő relációkat a komplex számok halmazán:

$$R = \{(z, w) \in \mathbb{C}^2 : |z| = |w|\}, \quad S = \{(z, w) \in \mathbb{C}^2 : \text{Re}(z) = \text{Re}(w)\}.$$

Mi lesz $(R \circ S)(\{1\})$, ill. $(S \circ R)(\{1\})$? (1 pont)

Megoldást itt nem közlünk (mert beadandó feladat).

További gyakorló feladatok otthonra

9. Adja meg a következő számokat trigonometrikus alakban (5. feladat folytatása):

f) $\frac{2+3i}{5+i}$; Megoldás: Vagy 5/e)-hez hasonlóan, csak itt nem nevezetes szög sem a számláló, sem a nevező argumentuma, így precíz formárban benne maradnak az arkusztangensek. Vagy: Másik megoldás: Előbb algebrai alakkal kiszámoljuk tört algebrai alakját:

$$\frac{2+3i}{5+i} = \frac{2+3i}{5+i} \cdot \frac{5-i}{5-i} = \frac{10+3+i\cdot(15-2)}{5^2-(-1)} = \frac{13+13i}{26} = \frac{1}{2} \cdot (1+i) = \frac{\sqrt{2}}{2} \cdot (\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2})$$

Tehát $\frac{2+3i}{5+i} = \frac{\sqrt{2}}{2} \cdot (\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}) = \frac{\sqrt{2}}{2} \cdot (\cos\frac{\pi}{4} + i \cdot \sin\frac{\pi}{4})$, így sikerült precíz alakot adni. g) 3-4i; **Megoldás:** $3-4i = \sqrt{3^2+4^2} \cdot (\frac{3}{5}+i \cdot \frac{-4}{5}) = 5 \cdot (\frac{3}{5}+i \cdot \frac{-4}{5}) = 5 \cdot (\cos\alpha+i \cdot \sin\alpha)$, ahol α egy olyan szög, aminek a tangense $\frac{-4}{3}$, és a negyedik síknegyedbe esik, tehát $\alpha = \arctan\frac{-4}{3}$. h) -2+i. **Megoldás:** $-2+i = \sqrt{2^2+1^2} \cdot (\frac{-2}{\sqrt{5}}+i \cdot \frac{1}{\sqrt{5}}) = \sqrt{5} \cdot (\cos\alpha+i \cdot \sin\alpha)$, ahol α egy olyan szög, aminek a tangense $\frac{-1}{2}$, és a második síknegyedbe esik, tehát $\alpha = \arctan\frac{-1}{2}+\pi$.

10. Legyenek $A \in \mathbb{C}^{2\times 2}, B \in \mathbb{C}^{3\times 2}, C \in \mathbb{C}^{3\times 3}$ a következő mátrixok

$$A = \begin{pmatrix} 2-i & 2+i \\ 2+i & 2-i \end{pmatrix}, \quad B = \begin{pmatrix} -i & 3-i \\ 3-i & 2-i \\ -1+2i & -i \end{pmatrix}, \quad C = \begin{pmatrix} -1 & -3+i & i \\ 3i & 2i & 3-4i \\ 2i & 2 & -i \end{pmatrix}$$

Számítsa ki a következő szorzatok közül amelyiket lehet: A^2 , B^2 , AB, BA, AC, CA, BC, CB. **Megoldás:** A^2 létezik, B^2 nem létezik, AB nem léezik, BA létezik, AC nem létezik, CA nem létezik, BC nem létezik, CB létezik.

$$A^{2} = \begin{pmatrix} \overline{z} & z \\ z & \overline{z} \end{pmatrix} \begin{pmatrix} \overline{z} & z \\ z & \overline{z} \end{pmatrix} = \begin{pmatrix} \overline{z}^{2} + z^{2} & 2z\overline{z} \\ 2z\overline{z} & \overline{z}^{2} + z^{2} \end{pmatrix} = \begin{pmatrix} 6 & 2 \cdot 5 \\ 2 \cdot 5 & 6 \end{pmatrix} = \begin{pmatrix} 6 & 10 \\ 10 & 6 \end{pmatrix}$$

BA és CB is kiszámolható...

11. Legyen

$$A = \begin{pmatrix} -i & i \\ i & i \end{pmatrix}, \quad B = \begin{pmatrix} 2-i & 2+i \\ 2+i & 2-i \end{pmatrix} \in \mathbb{C}^{2 \times 2}.$$

Számolja ki a det A, det B, det A^2 , det AB, det BA, det B^2 determinánsokat.

Megoldás: det $A = \det(i \cdot \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}) = i^2 \cdot \begin{vmatrix} -1 & 1 \\ 1 & 1 \end{vmatrix} = -1 \cdot (-1 \cdot 1 - 1 \cdot 1) = 2$, hiszen $d \times d$ -es mátrix λ skalárszorosának determinánsa a determináns λ^d -szerese. De kijönne úgy is, hogy det $A = (-i) \cdot (i) - (\underline{i}) \cdot (i) = \underline{-(-1)} - (-1) = 2$ det $B = \overline{z} \cdot \overline{z} - z \cdot z = \overline{z^2} - z^2 = \overline{(2+i)^2} - (2+i)^2 = \overline{(5+4i)} - (5+4i) = (5-4i) - (5+4i) = -8i$ det $A^2 = (\det A)^2 = 2^2 = 4$, det $AB = \det A \det B = 2 \cdot (-8i) = -16i$, det $BA = \det B \det A = -16i$, det $B^2 = (\det B)^2 = (-8i)^2 = -64$.