Introducción a los Sistemas Operativos

Anexo I Arquitectura de Entrada/Salida











## I.S.O.

- ✓ Versión: Octubre 2017
- ☑Palabras Claves: Dispositivos de IO, Hardware de IO, IO programada, Polling, Interrupciones, DMA

Algunas diapositivas han sido extraídas de las ofrecidas para docentes desde el libro de Stallings (Sistemas Operativos) y el de Silberschatz (Operating Systems Concepts). También se incluyen diapositivas cedidas por Microsoft S.A.









## Variedad en los dispositivos de I/O

- ☑ Legible para el usuario
  - ✓ Usados para comunicarse con el usuario
    - Impresoras, Terminales: Pantalla, Teclado, Mouse
- Legible para la máquina
  - ✓ Utilizados para comunicarse con los componentes electrónicos
    - Discos, Cintas, Sensores, etc.
- **✓** Comunicación
  - ✓ Usados para comunicarse con dispositivos remotos
    - Líneas Digitales, Modems, Interfaces de red, etc.









# Problemas que surgen

- Amplia Variedad
  - ✓ Manejan diferentes cantidad de datos
  - ✓ En Velocidades Diferentes
  - ✓ En Formatos Diferentes
- La gran mayoría de los dispositivos de E/S son más lentos que la CPU y la RAM











# Hardware y software involucrado

- **☑** Buses
- Controladores
- Dispositivos
- ☑Puertos de E/S Registros
- ✓ Drivers
- ☑Comunicación con controlador del dispositivo: I/O Programada, Interrupciones, DMA











## Estructura de Bus de una PC













# Comunicación: CPU - Controladora

- ☑¿Cómo puede la CPU ejecutar comandos o enviar/recibir datos de una controladora de un dispositivo?
  - ✓ La controladora tiene uno o mas registros:
    - Registros para señales de control
    - Registros para datos
- ✓ La CPU se comunica con la controladora escribiendo y leyendo en dichos registros

## Comandos de I/O

- ☑ CPU emite direcciones
  - ✓ Para identificar el dispositivo
- ☑ CPU emite comandos
  - ✓ Control Que hacer?
    - Ej. Girar el disco
  - ✓ Test Controlar el estado
    - Ej. power? Error?
  - ✓ Read/Write
    - Transferir información desde/hacia el dispositivo







# Mapeo de E/S y E/S aislada

- ☑ Correspondencia en memoria (Memory mapped I/O)
  - ✓ Dispositivos y memoria comparten el espacio de direcciones.
  - ✓ I/O es como escribir/leer en la memoria.
  - ✓ No hay instrucciones especiales para I/O
    - Ya se dispone de muchas instrucciones para la memoria
- ☑ Isolated I/O (Aislada, uso de Puertos de E/S)
  - ✓ Espacio separado de direcciones
  - ✓ Se necesitan líneas de I/O. Puertos de E/S
  - ✓ Instrucciones especiales
    - Conjunto Limitado





## Memory Mapped and Isolated I/O

| ADDRESS               | INSTRUCTION        | OPERAND          | COMMENT                |          |          |     |               |     |   |   |   |          |                              |
|-----------------------|--------------------|------------------|------------------------|----------|----------|-----|---------------|-----|---|---|---|----------|------------------------------|
| 200                   | Load AC            |                  | Load accumulator       |          | 7        | 6   | 5             | 4   | 3 | 2 | 1 | 0        | _                            |
|                       | Store AC           | 517              | Initiate keyboard read | 1<br>516 |          |     |               |     |   |   |   |          | Keyboard input data register |
| 202                   | Load AC            | 517              | Get status byte        | 310      |          |     |               |     |   |   |   |          | Reyboard input data register |
|                       | Branch if Sign = 0 | 202              | Loop until ready       |          |          |     |               |     |   |   |   |          |                              |
|                       | Load AC            | 516              | Load data byte         |          |          |     |               |     |   |   |   |          |                              |
|                       |                    |                  |                        |          | 7        | 6   | 5             | 4   | 3 | 2 | 1 | 0        | _                            |
|                       |                    |                  |                        | 517      |          |     |               |     |   |   |   |          | Keyboard input status        |
| (a) Memory-mapped I/O |                    |                  |                        |          |          |     |               |     |   |   |   |          | and control register         |
|                       | (4) 111011         | iory mapped in o |                        |          | <b>↑</b> | 4.  |               | - d |   |   |   | <b>↑</b> | Sat to 1 to                  |
|                       |                    |                  |                        |          | _        |     | = rea<br>= bu |     |   |   |   |          | Set to 1 to start read       |
|                       |                    |                  |                        |          |          | 0 - | - bu          | ъу  |   |   |   |          | Start reau                   |

| ADDRESS          | INSTRUCTION      | OPERAND | COMMENT                |  |  |  |  |  |  |
|------------------|------------------|---------|------------------------|--|--|--|--|--|--|
| 200              | Load I/O         | 5       | Initiate keyboard read |  |  |  |  |  |  |
| 201              | Test I/O         | 5       | Check for completion   |  |  |  |  |  |  |
|                  | Branch Not Ready | 201     | Loop until complete    |  |  |  |  |  |  |
|                  | In               | 5       | Load data byte         |  |  |  |  |  |  |
| (b) Isolated I/O |                  |         |                        |  |  |  |  |  |  |











### Técnicas de I/O - Programada

- ☑ CPU tiene control directo sobre la I/O
  - ✓ Controla el estado
  - ✓ Comandos para leer y escribir
  - ✓ Transfiere los datos
- ☑CPU espera que el componente de I/O complete la operación
- ☑ Se desperdician ciclos de CPU













# Polling

- ☑En la I/O Programada, es necesario hacer polling del dispositivo para determinar el estado del mismo
  - ✓ Listo para recibir comandos
  - ✓ Ocupado
  - ✓ Error
- ☑Ciclo de "Busy-wait" para realizar la I/O
- ☑Puede ser muy costoso si la espera es muy larga











#### Técnicas de I/O - Manejada por Interrupciones

- ☑ Soluciona el problema de la espera de la CPU
- ✓ La CPU no repite el chequeo sobre el dispositivo
- ☑ El procesador continúa la ejecución de instrucciones
- ☑ El componente de I/O envía una interrupción cuando termina











#### Técnicas de I/O - DMA

#### DMA (Direct Memory Access)

- ✓ Un componente de DMA controla el intercambio de datos entre la memoria principal y el dispositivo
- ☑ El procesador es interrumpido luego de que el bloque entero fue transferido.











#### Pasos para una transferencia DMA











