

X4-Class **Power MOSFET™**

IXTH94N20X4

N-Channel Enhancement Mode Avalanche Rated

$V_{\rm DSS}$	=	200V
I _{D25}	=	94A
R _{DS(on)}	≤	10.6m Ω

TO-247 (IXTH)	
G	
D s	D (Tab)

G = Gate	D	= Drain
S = Source	Tab	= Drain

Fe	a	tu	ire	S

- International Standard Package
- Low $R_{\rm DS(ON)}$ and $Q_{\rm G}$ Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol	Test Conditions	Maximum Ra	atings
V _{DSS}	T _J = 25°C to 175°C	200	V
\mathbf{V}_{DGR}	$T_J = 25^{\circ}C$ to 175°C, $R_{GS} = 1M\Omega$	200	V
V _{GSS}	Continuous	±20	V
V _{GSM}	Transient	±30	V
I _{D25}	T _C = 25°C	94	A
I _{DM}	$\rm T_{_{\rm C}}$ = 25°C, Pulse Width Limited by $\rm T_{_{\rm JM}}$	220	Α
I _A	T _C = 25°C	47	Α
E _{as}	T _c = 25°C	1	J
dv/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150^{\circ}C$	20	V/ns
P _D	T _C = 25°C	360	W
T _J		-55 +175	°C
T _{JM}		175	°C
T _{stg}		-55 +175	°C
T _L	Maximum Lead Temperature for Soldering	300	°C
	1.6 mm (0.062 in.) from Case for 10s		
M _d	Mounting Torque	1.13 / 10	Nm/lb.in
Weight		6	g

Symbol (T _J = 25°C	Test Conditions , Unless Otherwise Specified)	Charad Min.	cteristic Typ.	Values Max	
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$	200			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250\mu A$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
DSS	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 150^{\circ}C$			20 500	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			10.6	mΩ

DS101011C(10/22) © 2022 Littelfuse, Inc.

Symbol Test Conditions Chara		acteristic Values		
$(T_{J} = 25^{\circ}C, L)$	Inless Otherwise Specified)	Min.	Тур.	Max
g _{fs}	$V_{DS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$	60	100	S
R _{Gi}	Gate Input Resistance		5.3	Ω
C _{iss}			5050	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		750	pF
C _{rss}			4	pF
	Effective Output Capacitance			
$\mathbf{C}_{o(er)}$	Energy related $\int V_{GS} = 0V$		390	pF
$\mathbf{C}_{\mathrm{o(tr)}}$	Time related $V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		1670	pF
t _{d(on)}	Resistive Switching Times		18	ns
t,	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		9	ns
t _{d(off)}	$R_{\rm G} = 5\Omega$ (External)		97	ns
t _f	N _G = 322 (External)		7	ns
$Q_{g(on)}$			77	nC
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		21	nC
\mathbf{Q}_{gd}			25	nC
R _{thJC}				0.42 °C/W
R _{thcs}			0.21	°C/W

Source-Drain Diode

Symbol	Test Conditions	Chara	cteristic	Values	
$(T_{J} = 25^{\circ}C, U)$	Inless Otherwise Specified)	Min.	Тур.	Max	
I _s	$V_{GS} = 0V$			94	Α
SM	Repetitive, pulse Width Limited by $T_{_{\rm JM}}$			376	A
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left. egin{array}{c} \mathbf{t}_{rr} \\ \mathbf{Q}_{RM} \\ \mathbf{I}_{RM} \end{array} \right\}$	$I_F = 47A$, -di/dt = 200A/ μ s $V_R = 100V$		130 1.1 17		ns µC A

Note: 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

IXTH94N20X4

Fig. 1. Output Characteristics @ $T_J = 25$ °C

Fig. 3. Output Characteristics @ $T_J = 150$ °C

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 47A Value vs. Drain Current

Fig. 2. Extended Output Characteristics @ $T_J = 25$ °C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 47A Value vs. Junction Temperature

Fig. 6. Normalized Breakdown & Threshold Voltages vs. Junction Temperature

IXTH94N20X4

Littelfuse reserves the right to change limits, test conditions and dimensions.

Fig. 14. Forward-Bias Safe Operating Area

Fig. 15. Maximum Transient Thermal Impedance

© 2022 Littelfuse, Inc.

1 - Gate 2,4 - Drain

3 - Source

SYM	INC	HES	INC	HES
OTIVI	MIN	MAX	MIN	MAX
Α	0.190	0.205	4.83	5.21
A1	0.090	0.100	2.29	2.54
A2	0.075	0.085	1.91	2.16
b	0.045	0.055	1.14	1.40
b2	0.075	0.087	1.91	2.20
b4	0.115	0.126	2.92	3.20
С	0.024	0.031	0.61	0.80
D	0.819	0.840	20.80	21.34
D1	0.650	0.690	16.51	17.53
D2	0.035	0.050	0.89	1.27
E	0.620	0.635	15.57	16.13
E1	0.545	0.565	13.84	14.35
е	0.215 BSC		5.45	BSC
J	255	0.010	243	0.250
K	255	0.025	243	0.640
L	0.780	0.810	19.81	20.57
L1	0.150	0.170	3.81	4.32
ØP	0.140	0.144	3.55	3.65
ØP1	0.275	0.290	6.99	7.37
Q	0.220	0.244	5.59	6.20
R	0.170	0.190	4.32	4.83
S	0.242	BSC	6.15	BSC

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Littelfuse reserves the right to change limits, test conditions and dimensions.