

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

(MAIN CAMPUS)

UNIVERSITY MAIN EXAMINATIONS 2023/2024 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN MIE, CSE, SRT, BTB AND ECE

COURSE CODE: MAT 202 E/ MAT 262

COURSE TITLE: ENGINEERING MATHEMATICS II

DATE:

18TH April, 2024

TIME: 11:30AM - 2:30PM

INSTRUCTION

Answer question ONE and ANY OTHER TWO questions.

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE- COMPULSORY (30 Marks)

- a. Estimate the value of f(2) using the first 4 terms of the taylor series expansion of $f(x) = e^x$ around the point a = 0. Find the absolute error associated with the exact and estimate value of f(2) (5marks)
- b. Evaluate $(\Delta \nabla)^2(x^2 + x + 1)$ given that the interval of differencing h = 2(5 marks)
- c. Find the binary form of $(17.859375)_{10}$

(4 marks)

d. Find the sixth term of the sequence below using the forward difference table 8,12,19,29,42

(4 marks)

e. Solve the system below by Cramer's method

(5 Marks)

$$x + 2y + z = 3$$

$$2x + 3y + 3z = 10$$

$$3x - y + 2z = 13$$

- f. Find the approximate root of $2x^3 2x 5 = 0$ using the fixed point iteration method. Use 4dp setting $x_0 = 1.5$ up to $x_0 = 1.5$
 - (5 Marks)
- g. Describe any two types of errors encountered in computation
- (2 Marks)

Travalis att

Attempt ANY TWO Questions 🗲

QUESTION TWO (20 Marks)

a. Solve the system below by Crout's decomposition method

(7 Marks)

$$x + y + z = 1$$

$$4x + 3y - z = 6$$

$$3x + 5y + 3z = 4$$

b. Find the Lagrange interpolation polynomial to fit the following data

(6 Marks)

x	0	1	2	3
$e^{x}-1$	0	1.7183	6.3891 .	19.0855

Hence evaluate the value of $e^{1.5}$

c. Find a straight line to the data given below by the method of least squares approximation. Use it to estimate the value of y at x=2.5
 (5 Marks)

x 0	1	2	3	4
y 1	1.8	3.3	4.5	6.3

This Paper Consists of 4 Printed Pages. Please Turn Over.

d. Prove that $E = 1 + \Delta$

(2 Marks)

QUESTION THREE (20 Marks)

a. Consider the system of equations below

$$4x - y + z = 7$$
$$4x - 8y + z = -21$$

$$-2x + y + 5z = 15$$

Apply 6 times the Gauss Jacobi scheme to obtain the approximate solution to the system above. Taking $(x_0 = 1, y_0 = 1, z_0 = 2)$ (7 Marks)

- b. Find the real root of the equation $-4x + \cos x + 2 = 0$ by Newton Raphson Method up to 4d.p. Take $x_0 = 0.5$. (7 Marks)
- c. Solve the system below using Gauss's elimination method

(6 Marks)

$$16x - 4y + 4z = 24$$

$$-4x + 5y + 3z = -6$$

$$4x + 3y + 14z = 15$$

J sin -cos (see sin dx cin cos (Jx cos -si

QUESTION FOUR (20 Marks) ×

a. Find the cubic polynomial in xwhich takes on the values -3,3,11,27,57 and 107, when x = 0,1,2,3,4 and 5 respectively.

(7 Marks)

- b. Using linear interpolation formula, find the equation for the coordinates (6, 8) and (10, 16). What is the value of y when x=5?

 (3 Marks)
- c. Use backward differences to find y_{-1} if $y_0 = 2$, $y_1 = 9$, $y_2 = 28$, $y_3 = 65$, $y_4 = 126$ and $y_5 = 217$ (4 marks)
- d. Use Romberg's method to evaluate $\int_{0}^{1} \frac{1}{1+x^2} dx$. Let $h_1 = 0.25$ and $h_2 = 0.125$ (6 Marks)

J4 89

This Paper Consists of 4 Printed Pages. Please Turn Over.

13-1/2

arn over.

QUESTION FIVE (20 Marks)

a. Find the first two derivatives of $x^{\frac{1}{3}}$ at x = 50 and x = 57 given the table below (8 Marks)

x	50	51	52	53	54	55	56
$y=x^{\frac{1}{3}}$	3.6840	3.7084	3.7325	3.7563	3.7798	3.803	3.8259

b. Evaluate $\int_0^{\pi} \sin x \ dx$ using the trapezoidal rule with 10 intervals.

(6 Marks)

(6 Marks)

c. Evaluate $\int_{0}^{\pi} \sin x dx$ by the Simpson's rule. Compare your result with analytical result

io intervals