ANÁLISE PROBABILISTICA DO MINI ÍNDICE FUTURO BRASILEIRO

Um estudo estatístico visando maximizar a probabilidade de acertos no mercado financeiro intradiário brasileiro

Orientado por G. L. Desenvolvido por J. H. V. Ano de 2025

ÍNDICE

- Constantes Técnicas Globais

MULTI TIMEFRAME

- Amplitude do Mercado
- Amplitude Normalizada do Mercado
- Superando a Média

INTRADAY

- Abertura Volátil e Dia Volátil
- Variação Intradiária Desde a Abertura
- Amplitude por Hora
- Horário Estimado das Altas e Mínimas por Variação
- Variação Intradiária Remanescente

DIÁRIO

- Tamanho dos Candles e Frequência
- Próxima Amplitude com Volatilidade Reprimida
- Variações Consecutivas
- Testes e Rompimentos

SEMANAL

- Variações por Dia da Semana
- Volatilidade e Reversão

CONSTANTES TÉCNICAS GLOBAIS

PRÉ-DEFINIÇÕES

Principal Ticker: WIN\$
Calendário: 2025

Desenvolvido em: Python **Provider:** Clear, conta Real **Homebroker:** Metatrader 5 **Limite de linhas:** 100,000

LISTA DE ATIVOS

Symbol	Description
\$ WIN\$	IBOVESPA MINI - Por Liquidez (WINQ25) - Ajuste Proporcional
S WIN@	IBOVESPA MINI - Por Vencimento (WINQ25) - Ajuste Proporcional
\$ WIN\$D	IBOVESPA MINI - Por Liquidez (WINQ25) - Ajuste por Diferença
\$ WIN\$N	IBOVESPA MINI - Por Liquidez (WINQ25) - Sem Ajustes
S WIN@D	IBOVESPA MINI - Por Vencimento (WINQ25) - Ajuste por Diferença
S WIN@N	IBOVESPA MINI - Por Vencimento (WINQ25) - Sem Ajustes

INÍCIO DA SÉRIE HISTÓRICA POR TIMEFRAME

		Datetime
Symbol	TF	
WIN\$	M5	2021-11-18 17:35:00
	M15	2020-07-06 09:00:00
	H1	2020-07-06 09:00:00
	H4	2020-07-06 08:00:00
	D1	2020-07-06 00:00:00

TLDR: Estatísticas fundamentais dos candles. Tamanho médio das variações positivas, negativas e ambas em absoluto. Mensuradas em pontos.

Descrição: Quanto é a expectativa de variação média de um candle? Qual o seu tamanho esperado em pontos? Por exemplo, no timeframe D1, ou seja, da abertura do pregão até o encerramento, quanto o mercado tem variado em pontos nos últimos 5 anos? 1245 candles diarios demonstram que em média o mercado se move 2547 pontos entre a máxima e a mínima.

Ticker: WIN\$

Timeframes: M5, M15, H1, H4, D1

Indicadores:

- HL: Alta - Mínima

- Change: Fechamento - Abertura
- Change Abs: Change Absoluto
- Change Pos: Change Positivo
- Change Neg: Change Negativo
- HL Pos: High-Low Positivo
- HL Neg: High-Low Negativo

```
. .
def FORMAT_SOURCE(Raw):
      Src = pd.DataFrame()
                                 = (Src['Close'] - Src['Open']).apply(lambda x: -1 if (x < 0) else +1)
      Src['Direct']
                                                               Src['Direct'].apply(lambda x: x if (x >= 0) else nan)
      Src['Bull Sign']
                                                               Src['Direct'].apply(lambda x: x if (x < 0) else nan)
      Src['Bear Sign']
      Src['Change']
                                    = Src['Close'] - Src['Open']
                                    = Src['High'] - Src['Low']
      Src['HL']
      return Src
def CALCULATIONS(Src):
      Calc = pd.DataFrame(Src)
      Calc['Change Abs'] = Src['Change'].abs()

Calc['Change Pos'] = Src['Change'].apply(lambda x: x if (x >= 0) else nan)

Calc['Change Neg'] = Src['Change'].apply(lambda x: x if (x < 0) else nan)

Calc['HL Pos'] = Src['Bull Sign'] * Src['HL']

Calc['HL Neg'] = Src['Bear Sign'] * Src['HL']
      return Calc
Calc.groupby(['Symbol', 'TF'], sort=0)[['HL']].describe().round(0).astype(int)
Calc.groupby(['Symbol','TF'], sort=0)[['HL Pos']].describe().round(0).astype(int)
Calc.groupby(['Symbol','TF'], sort=0)[['HL Neg']].describe().round(0).astype(int)
Calc.groupby(['Symbol','TF'], sort=0)[['Change']].describe().round(0).astype(int)
Calc.groupby(['Symbol','TF'], sort=0)[['Change Abs']].describe().round(0).astype(int)
Calc.groupby(['Symbol','TF'], sort=0)[['Change Pos']].describe().round(0).astype(int)
Calc.groupby(['Symbol','TF'], sort=0)[['Change Neg']].describe().round(0).astype(int)
```

AMPLITUDE MÁXIMA DOS CANDLES

		HL							
		count	mean	std	min	25%	50%	75%	max
Symbol	TF								
WIN\$	M5	99999	202	131	0	115	169	252	3565
	M15	46083	392	251	0	221	331	494	6275
	H1	11857	773	482	75	439	660	989	7753
	H4	3730	1394	816	204	794	1230	1801	7753
	D1	1245	2547	1155	593	1708	2325	3123	8487

Tamanho máximo dos candles (medido entre máx e min em pontos) segmentado por timeframes.

AMPLITUDE MÁXIMA DOS CANDLES POSITIVOS

		HL Pos							
		count	mean	std	min	25%	50%	75%	max
Symbol	TF								
WIN\$	M5	51539	199	132	0	113	165	247	3565
	M15	23421	386	255	0	217	325	484	6275
	H1	6013	761	484	75	433	650	975	7753
	Н3	2254	1206	806	75	620	1068	1629	7753
	D1	644	2459	1090	593	1660	2258	3035	7864
	W1	124	5636	2323	1708	3779	5163	7164	12978

Olhando somente os candles de alta, qual é o tamanho deles medido da máx a mín em pontos.

AMPLITUDE MÁXIMA DOS CANDLES NEGATIVOS

		HL Neg	,						
		count	mean	std	min	25%	50%	75%	max
Symbol	TF								
WIN\$	M5	48460	-204	130	-2722	-254	-171	-118	-10
	M15	22688	-397	247	-3209	-502	-335	-225	-45
	H1	5853	-783	480	-5016	-1002	-669	-444	-101
	Н3	2154	-1268	839	-6485	-1686	-1109	-663	-104
	D1	602	-2640	1217	-8487	-3264	-2354	-1771	-655
	W1	138	-5714	2364	-17818	-7072	-5120	-4034	-2352

Olhando somente os candles de baixa, qual é o tamanho deles medido da máx a mín em pontos.

VARIAÇÃO DOS CANDLES EM ABSOLUTO

		Change	Abs						
		count	mean	std	min	25%	50%	75%	max
Symbol	TF								
WIN\$	M5	99999	98	103	0	30	68	130	3070
	M15	46083	188	197	0	58	129	252	5312
	H1	11857	379	386	0	114	265	508	5561
	H4	3730	703	668	0	215	496	985	5580
	D1	1245	1326	1079	0	505	1049	1843	7641

Tamanho dos candles medido da abertura ao fechamento em pontos. Os candles negativos tem sinal ignorado e tratado como os de altas.

VARIAÇÃO RESULTANTE DOS CANDLES

		Change	2						
		count	mean	std	min	25%	50%	75%	max
Symbol	TF								
WIN\$	M5	99999	0	142	-2670	-67	0	68	3070
	M15	46083	0	273	-2962	-129	0	128	5312
	H1	11857	-2	540	-4266	-261	5	269	5561
	H4	3730	-6	970	-5087	-503	12	493	5580
	D1	1245	-19	1709	-7641	-1083	65	1020	5768

Se os candles positivos forem somados com os negativos, a média é próxima de zero.

VARIAÇÃO DOS CANDLES POSITIVOS

		Change	Pos						
		count	mean	std	min	25%	50%	75%	max
Symbol	TF								
WIN\$	M5	51535	95	104	0	28	65	126	3070
	M15	23425	185	199	0	54	126	248	5312
	H1	6020	371	382	0	110	264	499	5561
	H4	1897	685	655	0	208	482	963	5580
	D1	645	1261	1022	0	453	983	1840	5768

Tamanho do candles de alta medido da abertura ao fechamento em pontos.

VARIAÇÃO DOS CANDLES POSITIVOS

		Change Neg										
		count	mean	std	min	25%	50%	75%	max			
Symbol	TF											
WIN\$	M5	48464	-101	103	-2670	-134	-70	-33	-5			
	M15	22658	-192	196	-2962	-255	-132	-60	-5			
	H1	5837	-387	389	-4266	-518	-266	-118	-5			
	H4	1833	-722	682	-5087	-1004	-517	-220	-5			
	D1	600	-1396	1133	-7641	-1854	-1115	-576	-6			

Tamanho do candles de baixa medido da abertura ao fechamento em pontos.

DLTR: Repete o estudo anterior, porém, excluindo do cálculo os candles top 5% (marubozus de alta) e os bottoms 5% (marubozus de baixa).

Descrição: Se ordenassemos 100 candles do maior (mais positivo) para o menor (mais negativo) e removessemos os 5 maiores bullishs e os 5 bearishs, quanto seria a amplitude dos 90 candles remanescentes? Ou ainda, se fossem 1000 candles e removessemos os 50 maiores de alta e também os 50 de baixa, quais seriam as medidas de amplitude (max e min) e variação (abert e fech) dos 900 candles que restaram? Basicamente esse estudo remove os outliers (candles atítpicos) e analisa os mais recorrentes.

Ticker: WIN\$

Timeframes: M5, M15, H1, H4, D1

Indicadores:

- Change: Fechamento - Abertura

- HL: Alta - Mínima

- Chg Psc: "Change Percentile Score". Janela rolante expansiva que classifica os Changes de 0 a 100

- HL Psc: "High-Low Percentile Score". Janela rolante expansiva que classifica os HLs de 0 a 100

- Chg Norm: Change Normalized. Acima dos 95% e abaixo do top 5%
- HL Norm: High-Low Normalized. Acima dos 95% e abaixo do top 5%

- Chg Norm Abs: Change Normalized Absoluto
 - Chg Norm Pos: Change Normalized Positivo
 - Chg Norm Neg: Change Normalized Negativo

- HL Norm Pos: High-Low Normalized Positivo- HL Norm Neg: High-Low Normalized Negativo

PRINCIPAIS FÓRMULAS

```
def FORMAT_SOURCE(Raw):
       Src = pd.DataFrame()
                                           = (Src['Close'] - Src['Open']).apply(lambda x: -1 if (x < 0) else +1)

= Src['Direct'].apply(lambda x: x if (x >= 0) else nan)

= Src['Direct'].apply(lambda x: x if (x < 0) else nan)
       Src['Direct']
       Src['Bull Sign']
       Src['Bear Sign']
       Src['Change']
Src['HL']
                                             = Src['Close'] - Src['Open']
= Src['High'] - Src['Low']
       return Src
def CALCULATIONS(Src):
       Calc = pd.DataFrame(Src)
Calc['Chg Psc'] = Calc.groupby(['Symbol','TF'], sort=0)['Change'] .expanding(20).rank(ascending=1, pct=1).mul(100)
Calc['HL Psc'] = Calc.groupby(['Symbol','TF'], sort=0)['HL'] .expanding(20).rank(ascending=1, pct=1).mul(100)
       Calc['Chg Norm']
                                                     = Calc.apply(lambda x: x['Change'] if (5 < x['Chg Psc'] < 95) else nan, axis=1)
       Calc['HL Norm']
                                                     = Calc.apply(lambda x: x['HL'] if (5 < x['HL Psc'] < 95) else nan, axis=1)
       Calc['Chg Norm Abs']
                                                     = Calc['Chg Norm'].abs()

= Calc['Chg Norm'].apply(lambda x: x \text{ if } (x >= 0) \text{ else nan})

= Calc['Chg Norm'].apply(lambda x: x \text{ if } (x < 0) \text{ else nan})
       Calc['Chg Norm Pos']
Calc['Chg Norm Neg']
                                                     = Calc['HL Norm'] * Calc['Bull Sign']
= Calc['HL Norm'] * Calc['Bear Sign']
       Calc['HL Norm Pos']
       Calc['HL Norm Neg']
        return Calc
Calc.groupby(['Symbol','TF'], sort=0)[['HL Norm']].describe().round(0).astype(int)
Calc.groupby(['Symbol','TF'], sort=0)[['HL Norm Pos']].describe().round(0).astype(int)
Calc.groupby(['Symbol','TF'], sort=0)[['HL Norm Neg']].describe().round(0).astype(int)
Calc.groupby(['Symbol','TF'], sort=0)[['Chg Norm']].describe().round(0).astype(int)
Calc.groupby(['Symbol','TF'], sort=0)[['Chg Norm Abs']].describe().round(0).astype(int)
Calc.groupby(['Symbol','TF'], sort=0)[['Chg Norm Pos']].describe().round(0).astype(int)
Calc.groupby(['Symbol','TF'], sort=0)[['Chg Norm Neg']].describe().round(0).astype(int)
```

AMPLITUDE MÁXIMA NORMALIZADA DOS CANDLES

		HL Nor	m						
		count	mean	std	min	25%	50%	75%	max
Symbol	TF								
WIN\$	M5	86774	203	95	71	130	178	254	697
	M15	39409	396	183	133	254	352	500	1046
	H1	10053	791	361	245	509	708	1004	1994
	H4	3206	1424	632	445	916	1305	1825	3524
	D1	1022	2605	899	1163	1909	2440	3145	5646

Excluindo os top 5% candles outliers de alta e de baixa, os 90% remancentes apresentam estas amplitudes high-low medidas em pontos.

AMPLITUDE MÁXIMA NORMALIZADA DOS CANDLES POSITIVOS

		HL Nor	m Pos						
		count	mean	std	min	25%	50%	75%	max
Symbol	TF								
WIN\$	M5	44298	200	93	70	128	175	249	618
	M15	19939	393	182	133	251	350	492	1046
	H1	5082	788	361	245	505	703	999	1981
	Н3	1913	1265	627	235	760	1151	1674	3338
	D1	520	2560	861	1175	1896	2438	3076	5646
	W1	100	5729	1941	2961	4106	5451	7095	12323

Esta tabela é um recorte da anterior. Filtra os candles positivos e apresentam suas respectivas medidas estatíticas de high-low em pontos.

AMPLITUDE MÁXIMA NORMALIZADA DOS CANDLES NEGATIVOS

		HL No	rm Neg						
		count	mean	std	min	25%	50%	75%	max
Symbol	TF								
WIN\$	M5	42475	-203	95	-654	-255	-180	-130	-70
	M15	19552	-400	185	-1046	-506	-355	-255	-113
	H1	4972	-795	363	-1994	-1008	-714	-512	-245
	Н3	1848	-1303	654	-3227	-1698	-1175	-775	-235
	D1	501	-2648	939	-5223	-3224	-2438	-1919	-1163
	W1	115	-5632	1810	-10320	-7036	-5147	-4242	-2831

Esta tabela tambem é um recorte da anterior. Mas filtra os candles negativos e apresentam suas respectivas medidas estatíticas de high-low em pontos.

VARIAÇÃO NORMALIZADA DOS CANDLES EM ABSOLUTO

		Chg No	orm Abs						
		count	mean	std	min	25%	50%	75%	max
Symbol	TF								
WIN\$	M5	93460	78	63	0	28	62	113	395
	M15	42992	150	121	0	53	118	219	557
	H1	11070	306	249	0	106	242	445	1237
	H4	3468	580	460	0	199	458	869	2092
	D1	1141	1127	804	0	463	972	1620	3944

Esta tabela apresenta as medidas estatísticas das variações dos candles em absoluto excluindo as top 5% maiores variações de alta e de baixa, ou seja, analisa os 90% mais frequentes.

VARIAÇÃO NORMALIZADA DOS CANDLES RESULTANTES

		Chg No	orm						
		count	mean	std	min	25%	50%	75%	max
Symbol	TF								
WIN\$	M5	93460	0	100	-395	-62	0	63	374
	M15	42992	-1	193	-556	-118	0	118	557
	H1	11070	-5	394	-1237	-242	0	243	1042
	H4	3468	-5	740	-2092	-462	10	453	1892
	D1	1141	-42	1384	-3944	-1012	29	954	2983

Esta tabela é similar à anterior, mas com média próxima de 0, pois +10 com -10 é 0, tal como são os dados em estado bruto na tabela.

VARIAÇÃO NORMALIZADA DOS CANDLES POSITIVOS

		Chg Norm Pos								
		count	mean	std	min	25%	50%	75%	max	
Symbol	TF									
WIN\$	M5	48284	76	63	0	26	60	111	374	
	M15	21860	146	120	0	51	115	216	557	
	H1	5604	298	241	0	101	239	432	1042	
	H4	1763	565	451	0	194	441	849	1892	
	D1	584	1060	755	0	436	937	1591	2983	

Esta tabela cotinua repetindo a análise descritiva dos 90%, mas considera somente os candles de altista.

VARIAÇÃO NORMALIZADA DOS CANDLES POSITIVOS

		Chg Norm Neg							
		count	mean	std	min	25%	50%	75%	max
Symbol	TF								
WIN\$	M5	45176	-81	63	-395	-116	-64	-31	-5
	M15	21132	-154	122	-556	-223	-120	-56	-5
	H1	5466	-314	256	-1237	-457	-247	-111	-5
	H4	1705	-595	470	-2092	-896	-470	-204	-5
	D1	557	-1197	847	-3944	-1650	-1049	-508	-6

A mesma análise, considerando somente os candles baixista.

SUPERANDO A MÉDIA

TLDR: Qual a probabilidade do ativo variar acima da média, mensurado da abertura ao fechamento do candle, ou mesmo da mínima à alta dele.

Descrição: Dois estudos foram computados para calcular a probabilidade do tamanho de um candle ser maior que a sua própria média. No primeiro estudo, foi comparado e contabilizado individualmente cada candle em relação a toda base de dados, ou seja, em relação a dados conhecidos do passado e até desconhecidos do futuro. Já no segundo estudo cada candle foi comparado somente com a média acumulada dos dados passados conhecidos, sem levar em conta valores futuros desconhecidos, metodologia mais rigorosa e comum em backtests.

Ticker: WIN\$

Timeframes: M5, M15, H1, H3, D1, W1

Indicadores:

- HL: Máxima - Mínima

- Chg Abs: Absoluto(Fechamento – Abertura)

- Chg Abs Avg: Média Acumulativa do Chg Abs

- HL Avg: Média Acumulativa do HL

- Chg Abs > Avg: Contabiliza se cada Chg Abs é maior que a Média Acumulativa dele

- HL > Avg: Contabiliza se cada HL é maior que a Média Acumulativa dele

```
def CALCULATIONS(Src):
    Calc = pd.DataFrame(Src)
    Calc['Chg Abs'] = Calc['Change'].abs()
    Calc['Chg Abs Avg'] = Calc.groupby('TF', sort=0)['Chg Abs'] .expanding().mean() #.reset_index(drop=1)
    Calc['HL Avg'] = Calc.groupby('TF', sort=0)['HL'] .expanding().mean() #.reset_index(drop=1)

    Calc['Chg Abs > Avg'] = Calc['Chg Abs'] > Calc['Chg Abs Avg']
    Calc['HL > Avg'] = Calc['HL'] > Calc['HL Avg']
    return Calc

# Each value is compared with full timeline average
    Calc.groupby('TF', sort=0)[['HL', 'Chg Abs']].apply(lambda S: (S > S.mean()).mean()) .mul(100).round(0).astype(int)

# Each value is compared with only past window average
    Calc.groupby('TF', sort=0)[['HL > Avg', 'Chg Abs > Avg']].mean() .mul(100).round(0).astype(int)
```

SUPERANDO A MÉDIA

PROBABILIDADE TOTAL

	HL	Chg Abs
TF		
M5	38	36
M15	39	36
H1	39	36
Н3	42	37
D1	42	40
W1	42	40

No candle diário, por exemplo, há 40% de chance do mercado variar e fechar acima da média. Seria exatamente 50%, como é intuitivamente esperado, se fosse comparada com a mediana. Os dados foram contabilizados olhando para o passado e futuro.

PROBABILIDADE EXPANSIVA

	HL > Avg	Chg Abs > Avg
TF		
M5	27	29
M15	27	29
H1	28	29
Н3	28	29
D1	27	33
W1	34	39

Nesta metodologia, há 33% de chance do mercado variar e fechar acima da média. Aqui, os dados foram contabilizados com relação a média acumulativa histórica, ou seja, dados futuros desconhecidos não foram levados em conta.

ABERTURA VOLÁTIL E DIA VOLÁTIL

TLDR: Se o ativo iniciar a pregão (primeiro candle) negociando com volatilidade acima da média implica probabilisticamente que também será um dia volátil, ou seja, com amplitude diaria acima da média?

Descrição: Neste estudo buscamos relacionar a variação inicial do primeiro candle com a variação diária e tentar responder a seguinte pergunta: Se o mercado abrir com alta volatilidade, significa que será um dia de volatilidade acima da média? As médias dos candles iniciais intradiários e do diário foram calculadas com dois métodos, um usando uma janela rolante acumulativa (ou seja, apenas os dados passados são computados) e a o outro através da totalidade dos tados (ou seja, dados do passado e também do futuro foram usados na média).

Ticker: WIN\$

Timeframes: M5, M15, H1

Indicadores:
- HL: High – Low

- Chg Abs: Absoluto(Fechamento – Abertura)

```
def CALCULATIONS(Src, METHOD):
    Calc = pd.DataFrame(Src)
    Calc_by2 = Calc.groupby(['Symbol','TF'], sort=0, group_keys=0)
    Calc_by3 = Calc.groupby(['Symbol','TF','Date'], sort=0, group_keys=0)
    Calc['Day Open'] = Calc_by3['Open'].transform('first')
    Calc['Day High'] = Calc_by3['High'].transform('max')

Calc['Day Low'] = Calc_by3['Low'].transform('min')

Calc['Day Close'] = Calc_by3['Close'].transform('last')
    catc['Day HL'] = Calc['Day High'] - Calc['Day Low']
Calc['Day Chg'] = Calc['Day Close'] - Calc['Day Open']
Calc['Day Chg Abs'] = Calc['Day Chg'] abc()
    if METHOD == 'ROLLING_DATA':
         Calc['Day HL Avg'] = Calc_by2['Day HL']
                                                                  .expanding().mean()
         Calc['Day Chg Abs Avg'] = Calc_by2['Day Chg Abs'] .expanding().mean()
    if METHOD == 'TOTAL_DATA':
         Calc['Day HL Avg'] = Calc_by2['Day HL']
                                                                 .transform('mean')
         Calc['Day Chg Abs Avg'] = Calc_by2['Day Chg Abs'] .transform('mean')
    Calc['Day HL > Avg'] = Calc['Day HL'] > Calc['Day HL Avg']
Calc['Day Chg Abs > Avg'] = Calc['Day Chg Abs'] > Calc['Day Chg Abs Avg']
    Calc['Chg Abs']
                                    = Calc['Change'].abs()
     if METHOD == 'ROLLING_DATA':
         Calc['Chg Abs Avg'] = Calc_by2['Chg Abs'].expanding().mean()
Calc['HL Avg'] = Calc_by2['HL'] .expanding().mean()
     if METHOD == 'TOTAL_DATA':
         Calc['Chg Abs Avg'] = Calc_by2['Chg Abs'].transform('mean')
         Calc['HL Avg']
                                     = Calc_by2['HL'] .transform('mean')
                                     = Calc['Chg Abs'] > Calc['Chg Abs Avg']
    Calc['Chg Abs > Avg']
                                     = Calc['HL'] > Calc['HL Avg']
    Calc['HL > Avg']
     return Calc
```

ABERTURA VOLÁTIL E DIA VOLÁTIL

PRINCIPAIS FÓRMULAS 2

VARIAÇÃO INICIAL ACIMA DA MÉDIA ACUMULADA

TF	Day Chg Abs > Avg	Day HL > Avg
M5	35	29
M15	37	31
H1	40	35

Se o mercado iniciar com variação (fech - abert) acima da média no timeframe H1, há 40% de probabilidade da variação diaria (Day Chg) ser também acima da média e 35% de probabilidade da amplitude diária (HL) ser acima da média. Sendo tais médias computadas de forma acumulada, ou seja, desconhecendo os valores futuros.

AMPLITUDE INICIAL ACIMA DA MÉDIA ACUMULADA

TF	Day Chg Abs > Avg	Day HL > Avg
M5	35	28
M15	35	31
H1	40	41

Esta tabela repete a anterior, mas o critério para avaliar se a volatilidade inicial é acima da média é a amplitude (max - min) do primeiro candle. Ou seja, quando o mercado inicia volátil, segundo o timeframe H1, a 40% de probabilidade de da variação (fech - abert) do dia ser acima da média e 41% da amplitude também.

ABERTURA VOLÁTIL E DIA VOLÁTIL

VARIAÇÃO INICIAL ACIMA DA MÉDIA TOTAL

TF	Day Chg Abs > Avg	Day HL > Avg
M5	41	42
M15	44	46
H1	46	49

Esta tabela repte exatamente a primeira, muda apenas como a média é calculada, pois nesta são consideradas dados do passado e do futuro pra gerar a média.

AMPLITUDE INICIAL ACIMA DA MÉDIA TOTAL

TF	Day Chg Abs > Avg	Day HL > Avg
M5	40	41
M15	42	45
H1	47	55

Esta tabela repte exatamente a segunda, muda apenas como a média é calculada, pois nesta são consideradas dados do passado e do futuro pra gerar a média.

TLDR: Qual a variação e amplitude do ativo desde a abertura do pregão até a hora H?

Descrição: O pregão inicia as 9h da manhã, chegando às 10h, quanto o ativo já se moveu em média? Medindo a amplitude (max - min) e variação (cotação atual do pregão - preço de abertura)? Chegando as 11h, quanto já são a amplitude e variação média acumulada? E as 12, 13, 14... até as 16hrs? Este estudo mede essas métricas acumuladas no intradiário.

Ticker: WIN\$
Timeframes: H1
Indicadores:

- Before: Horário limite máximo até o qual os candles anteriores intradiários serão computados
- ID Change: Variação Intradiária desde a Abertura
- ID Hilo: Amplitude Máxima Intradiária desde a Abertura

```
. .
def CALCULATIONS(Src):
   Calc = pd.DataFrame(Src)
   Calc_by = Calc.groupby(['Symbol', 'TF', 'Date'], sort=0, group_keys=0)
   Calc['Day Open']
                           = Calc_by['Open'].transform('first')
   Calc['ID High']
                          = Calc_by['High'].expanding().max()
   Calc['ID Low']
                           = Calc_by['Low'].expanding().min()
   Calc['ID Change']
                          = Calc['Close'] - Calc['Day Open']
   Calc['ID Hilo']
                          = Calc['ID High'] - Calc['ID Low']
   Calc['ID Sign']
                           = Calc['ID Change'].apply(lambda x: -1 if (x < 0) else +1)
   Calc['ID Sign Bull']
                         = Calc['ID Change'].apply(lambda x: +1 if (x >= 0) else nan)
   Calc['ID Sign Bear']
                          = Calc['ID Change'].apply(lambda x: -1 if (x < 0) else nan)
   Calc['ID Chg Abs']
                           = Calc['ID Change'].abs()
   Calc['ID Chg Pos']
                           = Calc['ID Chg Abs'] * Calc['ID Sign Bull']
   Calc['ID Chg Neg']
                           = Calc['ID Chg Abs'] * Calc['ID Sign Bear']
   Calc['ID HL Pos'] = Calc['ID Hilo'] * Calc['ID Sign Bull']
   Calc['ID HL Neg']
                          = Calc['ID Hilo'] * Calc['ID Sign Bear']
    return Calc
def STATS(Calc, Col):
   pipe = []
    for HR in [9,10,11,12,13,14,15,16,17,18]:
       Df = Calc[Calc['Time'] <= dt.time(HR,00)]</pre>
       pipe.append({
            'Before': dt.time(HR+1,00),
            **Df[Col].describe().round(0).astype(int)
        })
   pass
    return pd.DataFrame(pipe)
```

AMPLTIUDE MÁXIMA DOS CANDLES

Before	count	mean	std	min	25%	50%	75%	max
10:00:00	1241	943	437	241	630	858	1143	3852
11:00:00	2482	1220	609	241	780	1103	1525	7321
12:00:00	3723	1417	720	241	899	1283	1772	7731
13:00:00	4964	1563	793	241	1000	1420	1965	7731
14:00:00	6210	1671	839	241	1069	1524	2092	7731
15:00:00	7455	1764	884	241	1126	1614	2211	7731
16:00:00	8700	1848	927	241	1179	1684	2312	7731
17:00:00	9945	1924	971	241	1229	1745	2407	7849
18:00:00	11190	1991	1009	241	1268	1807	2488	7864
19:00:00	11866	2010	1022	241	1285	1821	2510	8487

Vejamos o examplo das 14 horas, linha 5. A ampltiude máxima (high - low) intradiária desde a abetura do pregão até esse momento é em média 1671 pontos. E medindo pela mediana são 1524 pontos.

AMPLTIUDE DOS CANDLES POSITIVOS

Before	count	mean	std	min	25%	50%	75%	max
10:00:00	638	936	422	241	626	861	1143	3236
11:00:00	1254	1225	607	241	788	1112	1548	7321
12:00:00	1864	1415	707	241	902	1290	1798	7731
13:00:00	2477	1555	775	241	997	1438	1971	7731
14:00:00	3109	1659	816	241	1075	1541	2087	7731
15:00:00	3743	1748	859	241	1126	1618	2198	7731
16:00:00	4377	1828	899	241	1174	1685	2294	7731
17:00:00	5018	1899	938	241	1225	1743	2392	7849
18:00:00	5660	1961	970	241	1259	1811	2468	7864
19:00:00	6018	1980	983	241	1268	1820	2491	7864

Esta tabela tem a mesma interpretação da anterior, porém aqui é filtrado e contabilizado apenas os candles de alta.

AMPLTIUDE DOS CANDLES NEGATIVOS

Before	count	mean	std	min	25%	50%	75%	max
10:00:00	603	-950	452	-3852	-1144	-851	-635	-309
11:00:00	1228	-1215	610	-4852	-1499	-1086	-773	-309
12:00:00	1859	-1419	733	-6308	-1744	-1276	-892	-309
13:00:00	2487	-1570	810	-6775	-1956	-1408	-1004	-309
14:00:00	3101	-1684	862	-6775	-2102	-1511	-1065	-309
15:00:00	3712	-1781	908	-6775	-2235	-1609	-1128	-309
16:00:00	4323	-1868	955	-7479	-2334	-1684	-1185	-309
17:00:00	4927	-1949	1002	-7753	-2424	-1748	-1232	-309
18:00:00	5530	-2021	1046	-7753	-2511	-1803	-1282	-309
19:00:00	5848	-2041	1060	-8487	-2534	-1824	-1299	-309

Esta tabela é a mesma das duas anteriores, porém contabilizando apenas os candles negativos.

VARIAÇÃO RESULTANTE DOS CANDLES

Before	count	mean	std	min	25%	50%	75%	max
10:00:00	1241	-6	608	-3113	-377	16	351	2811
11:00:00	2482	5	812	-3223	-462	6	474	6093
12:00:00	3723	-6	949	-5087	-550	0	542	6093
13:00:00	4964	-7	1046	-5461	-621	-6	604	6093
14:00:00	6210	-8	1112	-5461	-680	0	663	6093
15:00:00	7455	-8	1170	-5461	-713	0	706	6093
16:00:00	8700	-10	1225	-6707	-743	0	738	6093
17:00:00	9945	-11	1276	-6707	-770	6	769	6295
18:00:00	11190	-13	1325	-6707	-800	8	791	6295
19:00:00	11866	-12	1342	-7641	-812	14	810	6295

Esta bela mede a performance média acumulada dos candles intradiários desde a abertura do pregão, contabilizando a variação, ou seja, o preço de fechamento - abertura do candle. Quer dizer que, até o meiodia, 12hrs, linha 3, a variação média é de apenas -6 pontos, uma vez que os candles positivos se anulam com os negativos.

VARIAÇÃO DOS CANDLES EM ABSOLUTO

Before	count	mean	std	min	25%	50%	75%	max
10:00:00	1241	460	398	0	163	361	647	3113
11:00:00	2482	609	536	0	216	464	872	6093
12:00:00	3723	711	628	0	250	545	1005	6093
13:00:00	4964	789	687	0	275	614	1118	6093
14:00:00	6210	844	723	0	292	674	1201	6093
15:00:00	7455	892	758	0	312	710	1270	6093
16:00:00	8700	933	794	0	326	740	1333	6707
17:00:00	9945	972	826	0	342	770	1390	6707
18:00:00	11190	1008	860	0	354	795	1435	6707
19:00:00	11866	1021	872	0	359	810	1448	7641

Esta bela mede é similar as anteriores, mas contabiliza os candles em absoluto, ou seja, desconsiderando o sinal. De modo que os candles positivos e negativos são interpretados apenas pelo tamanho do corpo (fechamento - abertura).

VARIAÇÃO DOS CANDLES POSITIVOS

Before	count	mean	std	min	25%	50%	75%	max
10:00:00	638	442	387	0	138	344	649	2811
11:00:00	1254	608	541	0	203	461	890	6093
12:00:00	1864	704	620	0	236	540	1026	6093
13:00:00	2477	783	677	0	264	606	1147	6093
14:00:00	3109	835	712	0	279	660	1226	6093
15:00:00	3743	880	742	0	297	700	1293	6093
16:00:00	4377	918	770	0	309	732	1351	6093
17:00:00	5018	953	798	0	324	758	1395	6295
18:00:00	5660	983	827	0	338	780	1435	6295
19:00:00	6018	994	836	0	343	792	1447	6295

Aqui vemos a continuação das tabelas anteriores olhando apenas os candles positivos.

VARIAÇÃO DOS CANDLES NEGATIVOS

Before	count	mean	std	min	25%	50%	75%	max
10:00:00	603	-479	408	-3113	-644	-383	-187	-5
11:00:00	1228	-611	532	-3223	-858	-469	-229	-5
12:00:00	1859	-718	637	-5087	-993	-550	-262	-5
13:00:00	2487	-795	697	-5461	-1092	-620	-284	-5
14:00:00	3101	-853	735	-5461	-1183	-680	-306	-5
15:00:00	3712	-903	774	-5461	-1243	-717	-327	-5
16:00:00	4323	-949	817	-6707	-1312	-749	-342	-5
17:00:00	4927	-992	853	-6707	-1379	-777	-354	-5
18:00:00	5530	-1033	891	-6707	-1433	-814	-370	-5
19:00:00	5848	-1048	906	-7641	-1455	-826	-378	-5

E nesta tabela é contabilizado apenas os candles negativos.

DLTR: Quanto é a expectativa de amplitude e variação por faixa horária do pregão?

Descrição: Na primeira hora de neogicação, ou seja, das 9:00 às 9:59, quanto é expectativa de variação (fechabert) do candle e da amplitude (max - min) dele? Na segunda hora, ou seja, das 10:00 às 10:59, quanto é novamente a expectativa de variação e amplitude desse segundo candle? E da terceira hora de negociação? Quarta? Etc. Este estudo fatia o pregão por faixa horária e análise separadamente cada parte.

Ticker: WIN\$
Timeframes: H1
Indicadores:

- Time: Horário de início dos candles

- Hilo: Alta - Mínima

- Change: Fechamento - Abertura

```
. . .
def FORMAT_SOURCE(Query):
    Src = pd.DataFrame()
    Src['Time'] = Query['datetime'].dt.time
Src['Change'] = Src['Close'] - Src['Open']
    Src['Hilo']
                    = Src['High'] - Src['Low']
    Src['Sign'] = Src['Change'].apply(lambda x: -1 if (x < 0) else +1)
    Src['Sign Bull'] = Src['Change'].apply(lambda x: +1 if (x >= 0) else nan)
    Src['Sign Bear'] = Src['Change'].apply(lambda x: -1 if (x < 0) else nan)
    return Src
def CALCULATIONS(Src):
    Calc = pd.DataFrame(Src)
    Calc['Chg Abs'] = Calc['Change'].abs()
    Calc['Chg Pos'] = Calc['Chg Abs'] * Calc['Sign Bull']
    Calc['Chg Neg'] = Calc['Chg Abs'] * Calc['Sign Bear']
    Calc['HL Pos'] = Calc['Hilo'] * Calc['Sign Bull']
    Calc['HL Neg'] = Calc['Hilo'] * Calc['Sign Bear']
    return Calc
Calc.groupby('Time')[['Hilo']].describe().round(0).astype(int)
Calc.groupby('Time')[['HL Pos']].describe().round(0).astype(int)
Calc.groupby('Time')[['HL Neg']].describe().round(0).astype(int)
Calc.groupby('Time')[['Change']].describe().round(0).astype(int)
Calc.groupby('Time')[['Chg Abs']].describe().round(0).astype(int)
Calc.groupby('Time')[['Chg Pos']].describe().round(0).astype(int)
Calc.groupby('Time')[['Chg Neg']].describe().round(0).astype(int)
```

AMPLITUDE DOS CANDLES

	Hilo							
	count	mean	std	min	25%	50%	75%	max
Time								
09:00:00	1241	943	437	241	630	858	1143	3852
10:00:00	1241	1166	511	279	805	1064	1428	6210
11:00:00	1241	992	472	279	654	905	1196	3765
12:00:00	1241	802	433	197	488	699	997	3259
13:00:00	1246	655	352	143	403	570	824	3176
14:00:00	1245	681	429	161	410	576	813	6275
15:00:00	1245	700	463	133	402	572	855	5016
16:00:00	1245	674	501	114	382	544	809	7753
17:00:00	1245	561	375	101	319	466	661	3001
18:00:00	676	362	248	75	204	292	448	2811

Por padrão, os candles são representados pelo horário de abertura, então a primeira linha das 9 horas começa em 09:00 e termina em 09:59. É normalmente um padrão internacional dos candles. E seguindo essa regra, no horário do meio-dia, por exemplo, no candle de 12:00, significa que a amplitude média (max - min) é de aproximadamente 802 pontos, tendo uma mediana de 699 pontos.

AMPLITUDE DOS CANDLES POSITIVOS

	HL Pos							
	count	mean	std	min	25%	50%	75%	max
Time								
09:00:00	638	936	422	241	626	861	1143	3236
10:00:00	617	1193	526	332	835	1111	1442	6210
11:00:00	608	957	449	279	634	864	1164	3722
12:00:00	638	798	426	197	485	704	990	2982
13:00:00	624	654	344	143	412	575	811	3176
14:00:00	636	661	448	166	393	554	780	6275
15:00:00	617	692	462	133	405	586	830	4095
16:00:00	650	669	555	152	384	534	772	7753
17:00:00	620	532	318	120	318	450	646	2361
18:00:00	365	366	228	75	197	298	475	1388

Esta tabela é semelhante à anterior, calcula a média das amplitudes por faixa horária, mas considerando apenas os candles verdes de altistas.

AMPLITUDE DOS CANDLES NEGATIVOS

	HL Neg	ı						
	count	mean	std	min	25%	50%	75%	max
Time								
09:00:00	603	-950	452	-3852	-1144	-851	-635	-309
10:00:00	624	-1139	496	-3011	-1394	-1028	-770	-279
11:00:00	633	-1026	492	-3765	-1232	-945	-681	-293
12:00:00	603	-807	441	-3259	-1006	-694	-489	-208
13:00:00	622	-657	361	-2356	-832	-565	-392	-174
14:00:00	609	-702	407	-3758	-871	-591	-426	-161
15:00:00	628	-708	465	-5016	-886	-560	-397	-153
16:00:00	595	-681	434	-3326	-832	-560	-379	-114
17:00:00	625	-589	422	-3001	-683	-473	-325	-101
18:00:00	311	-357	270	-2811	-421	-289	-209	-104

Novamente, esta tabela é a réplica das duas anteriores, mas considera apenas os candles vermelhos baixistas.

VARIAÇÃO RESULTANTE DOS CANDLES

	Change	2						
	count	mean	std	min	25%	50%	75%	max
Time								
09:00:00	1241	-6	608	-3113	-377	16	351	2811
10:00:00	1241	20	777	-2665	-454	-11	488	5561
11:00:00	1241	-41	648	-3204	-431	-17	331	3410
12:00:00	1241	14	547	-2831	-270	20	302	2270
13:00:00	1246	4	412	-1803	-210	0	232	1551
14:00:00	1245	-3	465	-3291	-239	0	234	4059
15:00:00	1245	-10	491	-4266	-223	-6	242	2745
16:00:00	1245	4	507	-2659	-198	14	225	5505
17:00:00	1245	-18	402	-2428	-200	-5	183	1795
18:00:00	676	19	285	-2530	-130	18	145	1121

Esta tabela segue a mesma ideia, mas aqui é calculado a variação, ou seja, fechamento - abertura, de todos os candles com seus respectivos sinais, fazendo com que os positivos se anulem com os negativos.

•

VARIAÇÃO DOS CANDLES EM ABSOLUTO

	Chg Ab	s						
	count	mean	std	min	25%	50%	75%	max
Time								
09:00:00	1241	460	398	0	163	361	647	3113
10:00:00	1241	593	502	0	221	472	826	5561
11:00:00	1241	488	428	0	185	384	670	3410
12:00:00	1241	399	373	0	141	287	528	2831
13:00:00	1246	300	282	0	95	222	412	1803
14:00:00	1245	320	337	0	95	237	417	4059
15:00:00	1245	332	362	0	92	227	433	4266
16:00:00	1245	331	383	0	100	212	434	5505
17:00:00	1245	280	289	0	88	193	363	2428
18:00:00	676	197	207	0	66	140	267	2530

Esta tabela representa melhor o tamanho médio aproximado dos corpos dos candles, positivos ou negativos, pois desconsidera o sinal e mensura apenas o tamanho.

VARIAÇÃO DOS CANDLES POSITIVOS

	Chg Po	s						
	count	mean	std	min	25%	50%	75%	max
Time								
09:00:00	638	442	387	0	138	344	649	2811
10:00:00	617	617	526	0	242	495	886	5561
11:00:00	608	456	406	0	177	340	633	3410
12:00:00	638	402	370	0	146	290	545	2270
13:00:00	624	303	272	0	102	232	417	1551
14:00:00	636	310	343	0	90	230	409	4059
15:00:00	617	324	336	0	87	247	437	2745
16:00:00	650	321	403	0	100	211	400	5505
17:00:00	620	263	262	0	88	184	345	1795
18:00:00	365	201	193	0	68	134	297	1121

Aqui vemos novamente a variação (fech - abert) dos candles por faixa horária, mas olhando apenas os candles verdes altistas.

VARIAÇÃO DOS CANDLES NEGATIVOS

	Chg Ne	g						
	count	mean	std	min	25%	50%	75%	max
Time								
09:00:00	603	-479	408	-3113	-644	-383	-187	-5
10:00:00	624	-570	476	-2665	-788	-444	-209	-5
11:00:00	633	-519	447	-3204	-696	-420	-197	-5
12:00:00	603	-396	378	-2831	-520	-277	-140	-6
13:00:00	622	-297	292	-1803	-408	-210	-90	-6
14:00:00	609	-330	331	-3291	-425	-244	-102	-5
15:00:00	628	-339	386	-4266	-428	-220	-99	-5
16:00:00	595	-342	360	-2659	-464	-217	-103	-5
17:00:00	625	-297	312	-2428	-382	-200	-89	-5
18:00:00	311	-194	222	-2530	-256	-142	-64	-5

E agora apenas os candles vermelhos baixistas.

TLDR: Qual o horário médio o mercado atinge a alta ou a mínima quando varia determinada faixa de pontos do inicío ao fim do pregão?

Descrição: Quando o ativo varia 1000 pontos, por exemplo, em que horário geralmente ocorre a máxima e a mínima? Já foi feito um estudo generalista para responder essa questão. Mas neste estudo ela é segmentada por faixas de amplitudes/variações.

Ticker: WIN\$
Timeframes: M15
Indicadores:

- Time: Hora + Minuto (base 60)

- Day Chg: Absoluto(Fechamento - Abertura)

- Day HL: Máxima - Mínima

```
def CALCULATIONS(Src):
    Calc = pd.DataFrame(Src)
    Calc_by = Calc.groupby(['Symbol', 'TF', 'Date'], sort=0, group_keys=0)
    Calc['Day Open']
                       = Calc_by['Open'] .transform('first')
    Calc['Day High']
                      = Calc_by['High']
                                          .transform('max')
   Calc['Day Low'] = Calc_by['Low'] .transform('min')
Calc['Day Close'] = Calc_by['Close'] .transform('last')
                       = Calc['Day High'] - Calc['Day Low']
= Calc['Day Close'] - Calc['Day Open']
    Calc['Day HL']
    Calc['Day Chg']
    Calc['Day Chg Abs'] = Calc['Day Chg'].abs()
    Calc['ID High Rnk'] = Calc_by['High'].rank(method='dense', ascending=0)
    Calc['ID Low Rnk'] = Calc_by['Low'].rank(method='dense', ascending=1)
   WINS_CHG = [0, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6500,
   WINS_HL = [ 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6500, 7000, 7500, 8000, inf]
    for (a,b) in [x for x in pd.Series(WINS_CHG).rolling(2) if (len(x)==2)]:
        Calc[f'Day\ Chg\ Abs\ \{_int(a)\}-\{_int(b)\}'] = ((a \leftarrow Calc['Day\ Chg\ Abs']) \& (Calc['Day\ Chg\ Abs'] < b))
    for (a,b) in [x for x in pd.Series(WINS_HL).rolling(2) if (len(x)==2)]:
        return Calc
```

```
. .
def STATS(Calc, bins):
   def _from_clock(x): return x.hour + x.minute/60
   def _to_clock(x): return round(x//1 + x%1 * 60/100, 2)
   pipe = []
   for x in bins:
       Df1 = Calc[Calc[x]==1]
        for y in ['High', 'Low']:
            Df2 = Df1[Df1[f'ID {y} Rnk']==1]
            pipe.append({ 'Bins':x, 'Peak or Valley?':y,
                'Count':
                                 Df2['Time'].count(),
                'Avg': _to_clock(Df2['Time'].apply(_from_clock).mean()),
                'Max': _to_clock(Df2['Time'].apply(_from_clock).max()),
                       _to_clock(Df2['Time'].apply(_from_clock).quantile(.75)),
                'Med': _to_clock(Df2['Time'].apply(_from_clock).median()),
                'Q1': _to_clock(Df2['Time'].apply(_from_clock).quantile(.25)),
                'Min': _to_clock(Df2['Time'].apply(_from_clock).min()),
       pass
   pass
    return pd.DataFrame(pipe)
```

HORÁRIO DOS PICOS E VALES POR FAIXA DE AMPLITUDE DIÁRIA

	Bins	Peak or Valley?	Count	Avg	Max	Q3	Med	Q1	Min
0	Day HL 500-1000	High	34	12.01	18.15	13.45	11.22	10.19	9.00
1	Day HL 500-1000	Low	29	11.21	18.15	12.00	10.30	9.30	9.00
2	Day HL 1000-1500	High	181	12.27	18.15	15.15	11.30	9.30	9.00
3	Day HL 1000-1500	Low	177	11.39	18.15	13.15	11.00	9.30	9.00
4	Day HL 1500-2000	High	271	12.15	18.15	14.30	11.00	9.30	9.00
5	Day HL 1500-2000	Low	269	12.14	18.15	14.00	11.30	10.15	9.00
6	Day HL 2000-2500	High	244	12.25	18.15	14.49	11.45	10.00	9.00
7	Day HL 2000-2500	Low	246	12.39	18.15	15.15	11.38	10.00	9.00
8	Day HL 2500-3000	High	192	13.08	18.15	16.00	13.15	10.00	9.00
9	Day HL 2500-3000	Low	193	12.20	18.15	15.15	11.30	9.30	9.00
10	Day HL 3000-3500	High	139	13.19	18.15	16.52	12.30	10.00	9.00
11	Day HL 3000-3500	Low	139	12.22	18.15	15.00	11.15	9.30	9.00
12	Day HL 3500-4000	High	70	12.56	18.15	16.30	11.52	9.34	9.00
13	Day HL 3500-4000	Low	71	13.20	18.15	16.52	13.15	9.38	9.00
14	Day HL 4000-4500	High	57	12.12	18.15	15.00	11.00	9.45	9.00
15	Day HL 4000-4500	Low	54	13.33	18.15	16.56	13.30	10.15	9.00
16	Day HL 4500-5000	High	42	12.44	18.15	16.00	12.00	9.07	9.00
17	Day HL 4500-5000	Low	41	13.53	18.15	16.45	14.45	10.30	9.00
18	Day HL 5000-5500	High	24	11.39	17.45	13.08	10.38	9.00	9.00
19	Day HL 5000-5500	Low	24	14.09	18.15	17.19	15.15	10.26	9.00
20	Day HL 5500-6500	High	17	12.43	18.15	16.30	10.30	9.00	9.00
21	Day HL 5500-6500	Low	18	13.46	18.15	16.26	15.00	9.49	9.00
22	Day HL 6500-7000	High	1	10.30	10.30	10.30	10.30	10.30	10.30
23	Day HL 6500-7000	Low	1	17.00	17.00	17.00	17.00	17.00	17.00
24	Day HL 7000-7500	High	2	13.30	15.30	14.30	13.30	12.30	11.30
25	Day HL 7000-7500	Low	2	15.15	18.15	16.45	15.15	13.45	12.15
26	Day HL 7500-8000	High	4	14.45	17.00	16.49	15.30	13.26	11.00
27	Day HL 7500-8000	Low	4	11.15	16.00	11.52	10.00	9.22	9.00
28	Day HL 8000-inf	High	1	12.30	12.30	12.30	12.30	12.30	12.30
29	Day HL 8000-inf	Low	1	18.15	18.15	18.15	18.15	18.15	18.15

Vejamos um exemplo prático par ailustrar o entendimento: Na linha 5, quando o ativo tem amplitude (max-min) entre 1500 a 2000 pontos, geralmente o pico do dia ocorre por volta das 12:14, e, de acordo com a mediana, o pico ocorreria as 11:30.

HORÁRIO DOS PICOS E VALES POR FAIXA DE VARIAÇÃO DIÁRIA

	Bins	Peak or Valley?	Count	Avg	Max	Q3	Med	Q1	Min
0	Day Chg Abs 0-500	High	317	12.22	18.15	14.15	11.45	10.15	9.00
1	Day Chg Abs 0-500	Low	315	11.49	18.15	13.15	11.15	10.15	9.00
2	Day Chg Abs 500-1000	High	294	12.34	18.15	15.15	11.45	10.00	9.00
3	Day Chg Abs 500-1000	Low	293	12.21	18.15	14.30	11.45	10.15	9.00
4	Day Chg Abs 1000-1500	High	226	12.18	18.15	15.00	11.45	9.15	9.00
5	Day Chg Abs 1000-1500	Low	223	12.44	18.15	15.30	12.00	10.00	9.00
6	Day Chg Abs 1500-2000	High	164	13.04	18.15	16.30	12.22	10.00	9.00
7	Day Chg Abs 1500-2000	Low	161	12.44	18.15	16.00	12.00	9.15	9.00
8	Day Chg Abs 2000-2500	High	104	12.57	18.15	16.15	12.22	9.11	9.00
9	Day Chg Abs 2000-2500	Low	102	12.23	18.15	15.34	11.15	9.00	9.00
10	Day Chg Abs 2500-3000	High	60	13.38	18.15	17.34	14.30	9.26	9.00
11	Day Chg Abs 2500-3000	Low	62	12.47	18.15	17.00	10.38	9.00	9.00
12	Day Chg Abs 3000-3500	High	54	13.39	18.15	17.30	13.52	10.15	9.00
13	Day Chg Abs 3000-3500	Low	50	12.28	18.15	16.45	10.07	9.00	9.00
14	Day Chg Abs 3500-4000	High	26	11.07	18.15	11.04	9.07	9.00	9.00
15	Day Chg Abs 3500-4000	Low	28	15.17	18.15	17.45	17.00	14.41	9.00
16	Day Chg Abs 4000-4500	High	16	10.33	18.15	10.07	9.00	9.00	9.00
17	Day Chg Abs 4000-4500	Low	16	15.06	18.15	17.11	16.30	14.45	9.00
18	Day Chg Abs 4500-5000	High	8	11.09	18.15	11.38	9.30	9.00	9.00
19	Day Chg Abs 4500-5000	Low	8	14.45	18.15	17.45	15.45	13.04	9.00
20	Day Chg Abs 5000-5500	High	5	15.54	18.15	18.15	17.45	16.15	9.00
21	Day Chg Abs 5000-5500	Low	6	12.20	18.15	16.00	9.52	9.11	9.00
22	Day Chg Abs 5500-6500	High	4	12.22	17.45	13.04	11.15	10.34	9.15
23	Day Chg Abs 5500-6500	Low	4	12.41	18.15	15.26	11.45	9.00	9.00
24	Day Chg Abs 6500-inf	High	1	12.30	12.30	12.30	12.30	12.30	12.30
25	Day Chg Abs 6500-inf	Low	1	18.15	18.15	18.15	18.15	18.15	18.15

Esta tabela é um reflexo da anterior, porém, a segmentação é feita por variação (fechamento - abertura).

VARIAÇÃO INTRADIARIA REMANESCENTE

TLDR: Se o ativo variar mais que X pontos até as 13h00, quais seriam os valores estatísticos da variação remanescente até o fechamento do dia.

Descrição: Este estudo busca mensurar a quantidade de variação e amplitude potencial remanescente a partir das 13h, quando o ativo já variou mais que X pontos antes das 13h. Basicamente funciona como um guia a ser consultado durante os pregões. Por exemplo, se ativo variou mais de 2000 pontos, ele teria, em media, 960 pontos para se mover ainda até o final do dia.

Ticker: WIN\$
Timeframes: M15
Indicadores:

- Bwd: Backward (do início do pregão até as 13h)
- Fwd: Forward (das 13h até o final do pregão)

- Chg: Fech - Abert- HL: Max - Min- Abs: Absoluto

- Pos: Somente valores positivos- Neg: Somente valores negativos

```
def CALCULATIONS(Src):
   Calc = pd.DataFrame(Src)
   Calc_by = Calc.groupby(['Symbol','TF','Date'], sort=0, group_keys=0)
   Calc['Time+1']
                       = (Calc['Datetime'] + pd.Timedelta(hours=1)).dt.time
   Calc['Day Open']
                       = Calc_by['Open'] .transform('first')
   Calc['Day High']
                      = Calc_by['High'] .transform('max')
   Calc['Day Low'] = Calc_by['Low'] .transform('min')
   Calc['Day Close'] = Calc_by['Close'] .transform('last')
   Calc['Day Hilo']
                       = Calc['Day High'] - Calc['Day Low']
   Calc['ID High']
Calc['ID Low']
                       = Calc_by['High'] .expanding().max()
                                                              #.reset_index(drop=1)
                       = Calc_by['Low'] .expanding().min()
= Calc['ID High'] - Calc['ID Low']
                                                                #.reset index(drop=1)
   Calc['ID Hilo']
   Calc['Bwd HL']
                       = Calc['ID Hilo']
    Calc['Bwd Chg']
                                              Calc['Open'] - Calc['Day Open']
    Calc['Fwd Chg']
                       = Calc['Day Close'] - Calc['Open']
    Calc['Bwd Chg Abs'] = Calc['Bwd Chg'].abs()
    Calc['Fwd Chg Abs'] = Calc['Fwd Chg'].abs()
    Calc['Fwd Bull']
                        = Calc['Fwd Chg'].apply(lambda x: +1 if (x >= 0) else nan)
    Calc['Fwd Bear']
                        = Calc['Fwd Chg'].apply(lambda x: -1 if (x < 0) else nan)
    Calc['Fwd\ Chg\ Pos'] = Calc['Fwd\ Chg\ Abs'] * Calc['Fwd\ Bull']
   Calc['Fwd Chg Neg'] = Calc['Fwd Chg Abs'] * Calc['Fwd Bear']
                        = Calc['Day Hilo'] - Calc['ID Hilo']
   Calc['Fwd HL']
    Calc['Fwd HL Pos'] = Calc['Fwd HL'] * Calc['Fwd Bull']
    Calc['Fwd HL Neg'] = Calc['Fwd HL'] * Calc['Fwd Bear']
    return Calc
```

VARIAÇÃO INTRADIARIA REMANESCENTE

```
. .
def STATS(Calc, HR, X, Y):
    pipe = []
    for b in [100, 200, 500, 800, 1000, 1200, 1500, 1800, 2000, 2200,
2500, 2800, 3000, 3200, 3500, 3800, 4000, 4200, 4500, 4800, 5000]:
        Df = Calc[(Calc['Time'] == dt.time(HR,00)) & (Calc[X] > b)]
        pipe.append({
            'Time =': dt.time(HR,00),
            f'{X} >': b,
            **Df[Y].describe().round(0).astype(int)
        })
    pass
    return pd.DataFrame(pipe)
Calc.groupby('Time')[['Fwd Chg']].describe().round(0).astype(int)
Calc.groupby('Time')[['Fwd Chg Abs']].describe().round(0).astype(int)
Calc.groupby('Time')[['Fwd Chg Pos']].describe().round(0).astype(int)
Calc.groupby('Time')[['Fwd Chg Neg']].describe().round(0).astype(int)
```

VARIAÇÃO INTRADIARIA REMANESCENTE

AMPLITUDE REMANESCENTE SEGMENTADA POR AMPLITUDE REALIZADA

	Time =	Bwd HL >	count	mean	std	min	25%	50%	75%	max
0	13:00:00	100	1246	442	642	0	0	200	640	5824
1	13:00:00	200	1246	442	642	0	0	200	640	5824
2	13:00:00	500	1246	442	642	0	0	200	640	5824
3	13:00:00	800	1228	445	645	0	0	202	645	5824
4	13:00:00	1000	1177	447	647	0	0	203	648	5824
5	13:00:00	1200	1089	455	650	0	0	207	682	5824
6	13:00:00	1500	925	480	682	0	0	219	704	5824
7	13:00:00	1800	725	522	730	0	0	238	774	5824
8	13:00:00	2000	602	532	738	0	0	251	794	5824
9	13:00:00	2200	482	563	780	0	0	253	839	5824
10	13:00:00	2500	337	579	806	0	0	276	871	5824
11	13:00:00	2800	232	546	706	0	0	286	844	3895
12	13:00:00	3000	181	539	714	0	0	264	859	3895
13	13:00:00	3200	138	601	760	0	0	374	910	3895
14	13:00:00	3500	84	631	774	0	0	386	1044	3182
15	13:00:00	3800	61	542	683	0	0	366	817	3012
16	13:00:00	4000	47	531	674	0	0	366	838	3012
17	13:00:00	4200	34	510	706	0	0	0	823	3012
18	13:00:00	4500	19	628	843	0	0	0	1064	3012
19	13:00:00	4800	11	730	1007	0	0	0	1321	3012
20	13:00:00	5000	7	339	642	0	0	0	352	1669

Amplitude Realizada é o High - Low desde a abertura do pregão até as 13hrs, pode ser consultada na coluna Bwd HL (Backward High-Low). Amplitude Remanescente é a medida histórica estatística potencial do quanto o ativo ainda poderia se mover da máxima a mínima contabilizando desde às 13hrs até o fechamento do pregão. Ou seja, de acordo com a tabela na linha 10, se o ativo realizar uma amplitide igual ou superior a 2500 pontos, ele teria 579 pontos potenciais para se mover de High-Low até o fechamento.

VARIAÇÃO REMANESCENTE SEGMENTADA POR AMPLITUDE REALIZADA

	Time =	Bwd HL >	count	mean	std	min	25%	50%	75%	max
0	13:00:00	100	1246	752	762	0	234	520	1010	7834
1	13:00:00	200	1246	752	762	0	234	520	1010	7834
2	13:00:00	500	1246	752	762	0	234	520	1010	7834
3	13:00:00	800	1228	757	765	0	236	528	1019	7834
4	13:00:00	1000	1177	767	768	0	246	545	1034	7834
5	13:00:00	1200	1089	789	779	0	251	566	1070	7834
6	13:00:00	1500	925	835	815	0	273	593	1132	7834
7	13:00:00	1800	725	912	870	0	300	665	1225	7834
8	13:00:00	2000	602	939	900	0	295	712	1278	7834
9	13:00:00	2200	482	994	946	0	309	760	1359	7834
10	13:00:00	2500	337	1058	991	0	352	806	1546	7834
11	13:00:00	2800	232	1021	905	0	340	790	1595	4941
12	13:00:00	3000	181	1067	940	0	343	833	1636	4941
13	13:00:00	3200	138	1162	988	0	412	912	1704	4941
14	13:00:00	3500	84	1203	1019	0	421	926	1696	4886
15	13:00:00	3800	61	1207	972	0	467	929	1685	4019
16	13:00:00	4000	47	1184	937	0	446	929	1696	4013
17	13:00:00	4200	34	1239	955	0	521	1058	1746	4013
18	13:00:00	4500	19	1398	1136	0	408	1359	1906	4013
19	13:00:00	4800	11	1832	1226	0	968	1759	2365	4013
20	13:00:00	5000	7	1755	1065	513	968	1708	2308	3509

Essa tabela segue a mesma lógica da anterior, porém, tem como como métrica futura potencial a variação (fech - abert) contabilizada a partir das 13hrs até o fechamento do pregão. Vejamos o exemplo da linha 4, se o ativo apresenta uma amplitude high-low até as 13hrs igual ou superior a 1000 pontos, ele teria então, me média, 767 pontos de de variação potencial até o fechamento do pregão.

AMPLITUDE REMANESCENTE SEGMENTADA POR VARIAÇÃO REALIZADA

	Time =	Bwd Chg Abs >	count	mean	std	min	25%	50%	75%	max
0	13:00:00	100	1169	440	638	0	0	202	633	5824
1	13:00:00	200	1077	435	617	0	0	199	627	5012
2	13:00:00	500	859	437	626	0	0	207	622	5012
3	13:00:00	800	663	441	616	0	0	208	620	3895
4	13:00:00	1000	534	472	640	0	0	221	703	3778
5	13:00:00	1200	434	470	632	0	0	223	682	3778
6	13:00:00	1500	297	480	639	0	0	223	760	3778
7	13:00:00	1800	185	486	646	0	0	217	788	3182
8	13:00:00	2000	139	511	664	0	0	251	820	3182
9	13:00:00	2200	109	495	669	0	0	207	788	3182
10	13:00:00	2500	62	503	659	0	0	231	770	2650
11	13:00:00	2800	39	527	664	0	0	366	828	2579
12	13:00:00	3000	27	524	561	0	0	540	838	1669
13	13:00:00	3200	20	531	580	0	0	502	838	1669
14	13:00:00	3500	14	624	637	0	0	670	992	1669
15	13:00:00	3800	8	481	602	0	0	318	738	1669
16	13:00:00	4000	4	417	834	0	0	0	417	1669
17	13:00:00	4200	3	556	964	0	0	0	834	1669
18	13:00:00	4500	3	556	964	0	0	0	834	1669
19	13:00:00	4800	2	834	1180	0	417	834	1252	1669
20	13:00:00	5000	2	834	1180	0	417	834	1252	1669

Essa tabela segue a mesma lógica das duas anteriores, porém, usa como métrica de realização intradiária, ou seja, da abertura do pregão até às 13hrs, a variação (fech - abert). E tem como medida potencial futura a ampltiude (max - min).

VARIAÇÃO REMANESCENTE SEGMENTADA POR VARIAÇÃO REALIZADA

	Time =	Bwd Chg Abs >	count	mean	std	min	25%	50%	75%	max
0	13:00:00	100	1169	752	767	0	235	520	1010	7834
1	13:00:00	200	1077	752	746	0	234	522	1012	5224
2	13:00:00	500	859	782	770	0	250	561	1043	5224
3	13:00:00	800	663	799	776	0	264	573	1071	5224
4	13:00:00	1000	534	840	797	0	272	611	1126	5224
5	13:00:00	1200	434	853	798	0	282	636	1124	5224
6	13:00:00	1500	297	922	858	5	289	715	1216	5224
7	13:00:00	1800	185	975	851	5	303	778	1319	4886
8	13:00:00	2000	139	1019	887	5	343	835	1378	4886
9	13:00:00	2200	109	1029	873	5	340	836	1498	4886
10	13:00:00	2500	62	1099	861	5	413	898	1674	3509
11	13:00:00	2800	39	1080	776	43	564	901	1490	3509
12	13:00:00	3000	27	1224	813	159	614	1071	1734	3509
13	13:00:00	3200	20	1353	866	159	694	1158	1814	3509
14	13:00:00	3500	14	1520	876	409	808	1490	1924	3509
15	13:00:00	3800	8	1670	1012	546	966	1458	2144	3509
16	13:00:00	4000	4	1981	1152	728	1463	1844	2362	3509
17	13:00:00	4200	3	2072	1393	728	1354	1979	2744	3509
18	13:00:00	4500	3	2072	1393	728	1354	1979	2744	3509
19	13:00:00	4800	2	2744	1082	1979	2362	2744	3126	3509
20	13:00:00	5000	2	2744	1082	1979	2362	2744	3126	3509

Essa tabela tabela também repete a lógica das suas três anteriores, mas tem como métricas de realização intradiaria passada a variação e também a futura potencial.

VARIAÇÃO RESULTANTE DOS CANDLES

	Fwd Ch							
	count	mean	std	min	25%	50%	75%	max
Time								
09:00:00	1241	-26	1712	-7641	-1083	64	1015	5768
10:00:00	1241	-20	1597	-6425	-899	16	938	5420
11:00:00	1241	-41	1369	-7315	-696	32	720	5297
12:00:00	1241	0	1189	-6885	-614	18	650	5111
13:00:00	1246	-13	1071	-7834	-503	16	542	5224
14:00:00	1245	-17	955	-7018	-489	10	474	4585
15:00:00	1245	-14	889	-8005	-406	7	447	5697
16:00:00	1245	-4	708	-3739	-312	25	335	5544
17:00:00	1245	-8	478	-4214	-235	10	229	2005
18:00:00	676	19	285	-2530	-130	18	145	1121

Este estudo é uma continuação complementar das tabelas anteriores, mas neste **excluimos a condição maior que**, ficando apenas a condição horária. Vejamos um exemplo prático: Na terceira linha, às 11hrs, significa que até o fechamento do pregão a expectativa de variação do preço atual é o preço de fechamento é de aproximadamente -41 pontos. O resultado levemente negativo é devido aos candles positivos se anularem com os negativos resultando numa leve perda de valor com o tempo.

VARIAÇÃO DOS CANDLES EM ABSOLUTO

	Fwd Ch	ng Abs						
	count	mean	std	min	25%	50%	75%	max
Time								
09:00:00	1241	1327	1081	0	505	1049	1849	7641
10:00:00	1241	1209	1043	0	423	914	1760	6425
11:00:00	1241	1005	930	0	332	712	1430	7315
12:00:00	1241	859	822	0	285	630	1192	6885
13:00:00	1246	752	762	0	234	520	1010	7834
14:00:00	1245	676	674	0	220	480	923	7018
15:00:00	1245	608	648	0	188	433	801	8005
16:00:00	1245	482	517	0	158	325	639	5544
17:00:00	1245	331	345	0	118	232	421	4214
18:00:00	676	197	207	0	66	140	267	2530

Esta tabela segue a mesma ideia da anterior, mas com os candles contabilizados em absoluto, ou seja, olhando a quarta linha das 12hrs haveriam 859 pontos de variação em média que ativo poderia varia positivamente ou negativamente.

VARIAÇÃO DOS CANDLES POSITIVOS

	Fwd Ch	ng Pos						
	count	mean	std	min	25%	50%	75%	max
Time								
09:00:00	642	1258	1022	0	452	980	1823	5768
10:00:00	632	1167	999	0	428	901	1648	5420
11:00:00	631	948	822	0	314	712	1353	5297
12:00:00	632	844	760	0	298	640	1222	5111
13:00:00	639	720	692	0	233	518	978	5224
14:00:00	628	654	630	0	228	469	901	4585
15:00:00	628	589	594	0	195	442	776	5697
16:00:00	643	463	510	0	158	318	610	5544
17:00:00	638	316	304	0	118	224	414	2005
18:00:00	365	201	193	0	68	134	297	1121

Esta tabela segue a mesma lógica das duas anteriores, mas seleciona e contabiliza apenas as variações positivas contadas da hora H até o fechamento do pregão.

VARIAÇÃO DOS CANDLES NEGATIVOS

	Fwd Ch	g Neg						
	count	mean	std	min	25%	50%	75%	max
Time								
09:00:00	599	-1402	1136	-7641	-1894	-1115	-578	-6
10:00:00	609	-1253	1086	-6425	-1811	-922	-415	-6
11:00:00	610	-1064	1027	-7315	-1549	-712	-354	-6
12:00:00	609	-875	882	-6885	-1175	-618	-258	-7
13:00:00	607	-785	828	-7834	-1046	-530	-236	-5
14:00:00	617	-699	716	-7018	-977	-496	-210	-5
15:00:00	617	-627	699	-8005	-836	-409	-180	-5
16:00:00	602	-503	525	-3739	-672	-329	-158	-5
17:00:00	607	-348	383	-4214	-450	-240	-118	-5
18:00:00	311	-194	222	-2530	-256	-142	-64	-5

E esta tabela, tal como a anterior, contabiliza apenas as variações negativas (contando da hora H até o fechamento do pregão).

DIÁRIO

TLDR: Esta tabela demonstra qual a probabilidade percentual da variação do dia (em absoluto) ser maior que X pontos. Ou seja, o mini-índice tem 52% de chance de variar mais de 1000 pontos.

Descrição: Antes de iniciar o dia, o trader pode se perguntar: "Quais as chances do mercado variar da abertura ao fechamento mais que 1000 pontos? E mais que 2000 pontos? E mais que 3000?" Esta tabela esclarece probabilisticamente tal dúvida.

Ticker: WIN\$
Timeframes: D1
Indicadores:

- Chg Abs: Absoluto(Fechamento - Abertura)

- Hilo: Máxima - Mínima

PRINCIPAIS FÓRMULAS

```
. .
def FORMAT SOURCE(Query):
   Src = pd.DataFrame()
    Src['Hilo'] = Src['High'] - Src['Low']
    Src['Change'] = Src['Close'] - Src['Open']
    Src['Chg Abs'] = Src['Change'].abs()
    return Src
def CALCULATIONS(Src):
   Calc = pd.DataFrame(Src)
    BINS_CHG = [100, 200, 500, 800, 1000, 1200, 1500, 1800, 2000, 2200, 2500, ...]
    BINS_HL = [500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, ...]
    for b in BINS_CHG: Calc[f'Chg Abs > {b}'] = (Calc['Chg Abs'] > b)
    for b in BINS_HL: Calc[f'Hilo > {b}'] = (Calc['Hilo']
    for (A,Z) in [x \text{ for } x \text{ in pd.Series}([0, *BINS_CHG, inf]).rolling(2) if <math>(len(x)==2)]:
        Calc[f'Chg Abs {_int(A)}-{_int(Z)}'] = (A \Leftarrow Calc['Chg Abs']) & (Calc['Chg Abs'] < Z)
    for (A,Z) in [x for x in pd.Series([0, *BINS_HL, inf]).rolling(2) if (len(x)==2)]:
        Calc[f'HL {_int(A)}-{_int(Z)}'] = (A <= Calc['Hilo']) & (Calc['Hilo'] < Z)
    return Calc
Calc.loc[:,
               'Hilo > 500':
                                 'Hilo > 8500'].mean().mul(100).round(1)
Calc.loc[:, 'Chg Abs > 100': 'Chg Abs > 8000'].mean().mul(100).round(1)
Calc.loc[:,
                 'HL 0-500':
                                'HL 8500-inf'].mean().mul(100).round(1)
Calc.loc[:, 'Chg Abs 0-100':'Chg Abs 8000-inf'].mean().mul(100).round(1)
```

PROBABILIDADE ACUMULADA DAS AMPLITUDES

Hilo	>	500	100.0
Hilo	>	1000	97.7
Hilo	>	1500	83.9
Hilo	>	2000	62.4
Hilo	>	2500	43.4
Hilo	>	3000	28.1
Hilo	>	3500	17.0
Hilo	>	4000	11.5
Hilo	>	4500	7.2
Hilo	>	5000	3.9
Hilo	>	5500	2.0
Hilo	>	6000	1.0
Hilo	>	6500	0.6
Hilo	>	7000	0.6
Hilo	>	7500	0.4
Hilo	>	8000	0.1
Hilo	>	8500	0.0

Esta tabela relata que há 28.1% de chance da amplitude diaria (máxima - mínima) ser maior que 3000 pontos. E 1.0% de chance de ser maior que 6000 pontos.

PROBABILIDADE ACUMULADA DAS VARIAÇÕES

Chg	Abs	>	100	95.0
Chg	Abs	>	200	89.5
Chg	Abs	>	500	75.3
Chg	Abs	>	800	62.7
Chg	Abs	>	1000	52.0
Chg	Abs	>	1200	44.7
Chg	Abs	>	1500	34.5
Chg	Abs	>	1800	26.0
Chg	Abs	>	2000	21.6
Chg	Abs	>	2200	18.4
Chg	Abs	>	2500	13.7
Chg	Abs	>	2800	10.0
Chg	Abs	>	3000	8.8
Chg	Abs	>	3200	6.9
Chg	Abs	>	3500	4.8
Chg	Abs	>	3800	3.2
Chg	Abs	>	4000	2.7
Chg	Abs	>	4200	2.0
Chg	Abs	>	4500	1.4
Chg	Abs	>	4800	1.0
Chg	Abs	>	5000	0.8
Chg	Abs	>	5500	0.4
Chg	Abs	>	6000	0.1
Chg	Abs	>	6500	0.1
Chg	Abs	>	7000	0.1
Chg	Abs	>	7500	0.1
Chg	Abs	>	8000	0.0

Na 11a linha de baixo pra cima, ou seja, na condição **Chg Abs > 4000**, significa que o ativo tem 2.7% de chance de variar da abertura ao fechamento mais que 4000 pontos.

Descrição: Esta tabela é um estudo derivado do anterior. Mas em vez de apresentar a probabilidade acumulada (maior que), apresenta a frequência/desensidade por faixa de candles.

FREQUÊNCIA DAS AMPLITUDES POR FAIXA

0-500	0.0
500-1000	2.3
1000-1500	13.8
1500-2000	21.4
2000-2500	19.0
2500-3000	15.3
3000-3500	11.1
3500-4000	5.5
4000-4500	4.3
4500-5000	3.3
5000-5500	1.9
5500-6000	1.0
6000-6500	0.4
6500-7000	0.1
7000-7500	0.2
7500-8000	0.3
8000-8500	0.1
8500-inf	0.0
	500-1000 1000-1500 1500-2000 2000-2500 2500-3000 3000-3500 3500-4000 4000-4500 4500-5000 5000-5500 5500-6000 6000-6500 6500-7000 7000-7500 7500-8000 8000-8500

Vejamos um interpretação prática: **Hilo 1500-2000 21.4** significa que há 21% de probabilidade do candle diário ter uma amplitude (alta - mínima) entre 1500 e 2000 pontos. E **Hilo 5000-5500 1.9** significa que há 1.9% de probabilidade da amplitude ser entre 5000 e 5500 pontos.

FREQUÊNCIA DAS VARIAÇÕES POR FAIXA

Chg	Abs	0-100	4.9
Chg	Abs	100-200	5.5
Chg	Abs	200-500	14.2
Chg	Abs	500-800	12.7
Chg	Abs	800-1000	10.6
Chg	Abs	1000-1200	7.4
Chg	Abs	1200-1500	10.2
Chg	Abs	1500-1800	8.4
Chg	Abs	1800-2000	4.4
Chg	Abs	2000-2200	3.3
Chg	Abs	2200-2500	4.7
Chg	Abs	2500-2800	3.6
Chg	Abs	2800-3000	1.3
Chg	Abs	3000-3200	1.8
Chg	Abs	3200-3500	2.1
Chg	Abs	3500-3800	1.6
Chg	Abs	3800-4000	0.5
Chg	Abs	4000-4200	0.7
Chg	Abs	4200-4500	0.6
Chg	Abs	4500-4800	0.4
Chg	Abs	4800-5000	0.2
Chg	Abs	5000-5500	0.4
Chg	Abs	5500-6000	0.3
Chg	Abs	6000-6500	0.0
Chg	Abs	6500-7000	0.0
Chg	Abs	7000-7500	0.0
Chg	Abs	7500-8000	0.1

Essa lista repete a interpretação da anterior, mas em vez de contabilizar a amplitude, contabiliza a variação (fechamento - abertura) em absoluto. O que quer dizer que entre 4000 e 4200 pontos há 0.7% de probabilidade do dia variar nesta faixa.

TLDR: Como o mercado se comporta nos dois próximos dias quando a variação do dia atual é inferior a X pontos? A tabela abaixo demonstra essa relação.

Descrição: A ideia é buscar entender se a baixa volatilidade de um dia implica em demanda repremida que pode ser extravasa com muita força (volatilidade) no dia seguinte.

Ticker: WIN\$
Timeframes: D1
Indicadores:

- Chg Abs: Absoluto(Fechamento - Abertura)

- Hilo: Máxima - Mínima

PRINCIPAIS FÓRMULAS 1

```
. .
def FORMAT_SOURCE(Query):
    Src = pd.DataFrame()
    Src['Change'] = (Src['Close'] - Src['Open'])
Src['Hilo'] = (Src['High'] - Src['Low'])
Src['Sign Bull'] = Src['Change'].apply(lambda x: +1 if x >= 0 else nan)
Src['Sign Bear'] = Src['Change'].apply(lambda x: -1 if x < 0 else nan)</pre>
    return Src
def CALCULATIONS(Src):
    Calc = pd.DataFrame(Src)
    Calc['Chg Abs'] = Calc['Change'].abs()
    Calc['Chg Pos'] = Calc['Chg Abs'] * Calc['Sign Bull']
    Calc['Chg Neg'] = Calc['Chg Abs'] * Calc['Sign Bear']
    Calc['HL Pos'] = Calc['Hilo'] * Calc['Sign Bull']
    Calc['HL Neg'] = Calc['Hilo'] * Calc['Sign Bear']
    BINS_CHG = [100, 200, 500, 800, 1000, 1200, 1500, 1800, 2000, 2200, 2500, ...]
    BINS HL = [1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, ...]
    for x in BINS_CHG: Calc[f'Chg Abs < {x}'] = (Calc['Chg Abs'] < x)</pre>
    for x in BINS_HL: Calc[f'Hilo < {x}'] = (Calc['Hilo']</pre>
    FUTS = [1, 2]
                                             = Calc['Change'].shift(-x)
    for x in FUTS: Calc[f'Chg +{x}']
    for x in FUTS: Calc[f'Chg Abs + \{x\}'] = Calc['Chg Abs'].shift(-x)
    for x in FUTS: Calc[f'Chg Pos +{x}'] = Calc['Chg Pos'].shift(-x)
    for x in FUTS: Calc[f'Chg Neg +{x}'] = Calc['Chg Neg'].shift(-x)
    for x in FUTS: Calc[f'Hilo +{x}']
                                                 = Calc['Hilo'].shift(-x)
    for x in FUTS: Calc[f'HL Pos +{x}']
                                                 = Calc['HL Pos'].shift(-x)
    for x in FUTS: Calc[f'HL Neg +{x}']
                                                 = Calc['HL Neg'].shift(-x)
    return Calc
```

PRINCIPAIS FÓRMULAS 2

```
. .
def MARKOV_CHAIN(Calc, when, _next):
     pipe = []
for x in when:
         Df = Calc[Calc[x]==1]
         for y in _next:
              pipe.append({ 'Previous':x, 'Next':y,
                                      Df[y].count(),
                   'Count':
                   'Avg': np.round(Df[y].mean(),
                                                                0).astype(int),
                   'Max': np.round(Df[y].max(), 0).astype(int),
'Q3': np.round(Df[y].quantile(.75), 0).astype(int),
                   'Med': np.round(Df[y].median(), 0).astype(int),
                   'Q1': np.round(Df[y].quantile(.25), 0).astype(int),
                   'Min':
                                                         0).astype(int),
                             np.round(Df[y].min(),
             })
         pass
     return pd.DataFrame(pipe)
MARKOV_CHAIN(Calc, when=Calc.loc[:,
                                              f'Hilo < {1000}': f'Hilo < {8000}'].columns, _next=['Hilo +1'])
                                             f'Hilo < {1000}': f'Hilo < {8000}'].columns, _next=['Chg Abs +1'])
MARKOV_CHAIN(Calc, when=Calc.loc[:,
MARKOV_CHAIN(Calc, when=Calc.loc[:, f'Chg Abs < {100}' :f'Chg Abs < {5500}'].columns, _next=['Hilo +1'])
MARKOV_CHAIN(Calc, when=Calc.loc[:, f'Chg Abs < {100}' :f'Chg Abs < {5500}'].columns, _next=['Chg Abs +1'])
```

PRÓXIMA AMPLTIUDE COM AMPLITUDE REPRIMIDA

	Previous	Next	Count	Avg	Max	Q3	Med	Q1	Min
0	Hilo < 1000	Hilo +1	29	1902	3969	2135	1833	1376	752
1	Hilo < 1500	Hilo +1	200	1929	5976	2301	1719	1379	655
2	Hilo < 2000	Hilo +1	466	2106	5976	2582	1900	1492	593
3	Hilo < 2500	Hilo +1	703	2207	7278	2664	2038	1550	593
4	Hilo < 3000	Hilo +1	894	2290	7278	2748	2109	1600	593
5	Hilo < 3500	Hilo +1	1032	2362	7731	2871	2190	1641	593
6	Hilo < 4000	Hilo +1	1101	2393	7864	2897	2211	1657	593
7	Hilo < 4500	Hilo +1	1154	2442	7864	2987	2242	1671	593
8	Hilo < 5000	Hilo +1	1195	2482	8487	3024	2259	1688	593
9	Hilo < 5500	Hilo +1	1219	2504	8487	3057	2289	1694	593
10	Hilo < 6000	Hilo +1	1231	2521	8487	3076	2304	1696	593
11	Hilo < 6500	Hilo +1	1236	2531	8487	3094	2311	1698	593
12	Hilo < 7000	Hilo +1	1237	2532	8487	3094	2315	1698	593
13	Hilo < 7500	Hilo +1	1239	2536	8487	3106	2316	1700	593
14	Hilo < 8000	Hilo +1	1243	2545	8487	3118	2325	1704	593

Quando o ativo tem uma amplitude (max - min) inferior a 1500 pontos, estima-se que no próximo dia performará uma amplitude média de 1929 pontos.

PRÓXIMA VARIAÇÃO COM AMPLITUDE REPRIMIDA

	Previous	Next	Count	Avg	Max	Q3	Med	Q1	Min
0	Hilo < 1000	Chg Abs +1	29	1051	3536	1475	1030	333	17
1	Hilo < 1500	Chg Abs +1	200	1039	5678	1488	908	327	0
2	Hilo < 2000	Chg Abs +1	466	1138	5678	1619	964	436	0
3	Hilo < 2500	Chg Abs +1	703	1189	5935	1666	980	446	0
4	Hilo < 3000	Chg Abs +1	894	1228	5935	1689	1000	472	0
5	Hilo < 3500	Chg Abs +1	1032	1251	5935	1730	1006	476	0
6	Hilo < 4000	Chg Abs +1	1101	1258	5935	1751	1006	480	0
7	Hilo < 4500	Chg Abs +1	1154	1287	5935	1816	1036	488	0
8	Hilo < 5000	Chg Abs +1	1195	1301	7641	1818	1043	491	0
9	Hilo < 5500	Chg Abs +1	1219	1311	7641	1828	1045	500	0
10	Hilo < 6000	Chg Abs +1	1231	1317	7641	1828	1046	502	0
11	Hilo < 6500	Chg Abs +1	1236	1324	7641	1840	1052	503	0
12	Hilo < 7000	Chg Abs +1	1237	1323	7641	1840	1049	503	0
13	Hilo < 7500	Chg Abs +1	1239	1326	7641	1842	1054	503	0
14	Hilo < 8000	Chg Abs +1	1243	1327	7641	1846	1054	504	0

Quando o ativo tem uma amplitude (max - min) inferior a 1500 pontos, estima-se que no próximo dia performará uma variação média (fechamento - abertura) de 1039 pontos.

PRÓXIMA AMPLITUDE COM VARIAÇÃO REPRIMIDA

	Previous	Next	Count	Avg	Max	Q3	Med	Q1	Min
0	Chg Abs < 100	Hilo +1	61	2271	5258	2829	1989	1646	1006
1	Chg Abs < 200	Hilo +1	130	2406	7479	2874	2182	1663	1006
2	Chg Abs < 500	Hilo +1	307	2420	7479	2873	2160	1660	752
3	Chg Abs < 800	Hilo +1	465	2440	7479	2980	2215	1662	752
4	Chg Abs < 1000	Hilo +1	597	2418	7479	2902	2219	1660	655
5	Chg Abs < 1200	Hilo +1	688	2415	7479	2916	2216	1645	655
6	Chg Abs < 1500	Hilo +1	815	2447	7864	2983	2225	1661	593
7	Chg Abs < 1800	Hilo +1	919	2454	7864	2994	2240	1665	593
8	Chg Abs < 2000	Hilo +1	974	2447	7864	2988	2234	1660	593
9	Chg Abs < 2200	Hilo +1	1015	2441	7864	2977	2231	1658	593
10	Chg Abs < 2500	Hilo +1	1074	2450	7864	2987	2244	1668	593
11	Chg Abs < 2800	Hilo +1	1119	2463	8487	3016	2246	1666	593
12	Chg Abs < 3000	Hilo +1	1135	2477	8487	3022	2250	1670	593
13	Chg Abs < 3200	Hilo +1	1158	2485	8487	3040	2256	1681	593
14	Chg Abs < 3500	Hilo +1	1184	2503	8487	3050	2272	1689	593
15	Chg Abs < 3800	Hilo +1	1204	2512	8487	3057	2290	1693	593
16	Chg Abs < 4000	Hilo +1	1210	2515	8487	3058	2292	1693	593
17	Chg Abs < 4200	Hilo +1	1219	2520	8487	3069	2302	1694	593
18	Chg Abs < 4500	Hilo +1	1226	2522	8487	3070	2301	1695	593
19	Chg Abs < 4800	Hilo +1	1231	2528	8487	3086	2306	1696	593
20	Chg Abs < 5000	Hilo +1	1234	2533	8487	3094	2311	1697	593
21	Chg Abs < 5200	Hilo +1	1235	2535	8487	3099	2315	1698	593
22	Chg Abs < 5500	Hilo +1	1239	2541	8487	3108	2320	1700	593

Quando o ativo tem uma variação (fech - abert) inferior a 1500 pontos, estima-se que no próximo dia performará uma amplitude média (max - min) de 2447 pontos.

PRÓXIMA VARIAÇÃO COM VARIAÇÃO REPRIMIDA

	Previous	Next	Count	Avg	Max	Q3	Med	Q1	Min
0	Chg Abs < 100	Chg Abs +1	61	1207	3536	1774	1030	333	74
1	Chg Abs < 200	Chg Abs +1	130	1247	5178	1691	1102	437	6
2	Chg Abs < 500	Chg Abs +1	307	1315	5678	1772	1100	550	6
3	Chg Abs < 800	Chg Abs +1	465	1331	5935	1840	1104	540	0
4	Chg Abs < 1000	Chg Abs +1	597	1308	5935	1804	1075	507	0
5	Chg Abs < 1200	Chg Abs +1	688	1286	5935	1800	1043	498	0
6	Chg Abs < 1500	Chg Abs +1	815	1311	5935	1829	1045	506	0
7	Chg Abs < 1800	Chg Abs +1	919	1301	5935	1836	1045	500	0
8	Chg Abs < 2000	Chg Abs +1	974	1304	5935	1831	1047	503	0
9	Chg Abs < 2200	Chg Abs +1	1015	1293	5935	1814	1045	496	0
10	Chg Abs < 2500	Chg Abs +1	1074	1290	5935	1804	1043	493	0
11	Chg Abs < 2800	Chg Abs +1	1119	1294	7641	1814	1042	490	0
12	Chg Abs < 3000	Chg Abs +1	1135	1300	7641	1822	1043	491	0
13	Chg Abs < 3200	Chg Abs +1	1158	1301	7641	1829	1043	489	0
14	Chg Abs < 3500	Chg Abs +1	1184	1309	7641	1835	1045	490	0
15	Chg Abs < 3800	Chg Abs +1	1204	1309	7641	1831	1045	496	0
16	Chg Abs < 4000	Chg Abs +1	1210	1313	7641	1838	1046	499	0
17	Chg Abs < 4200	Chg Abs +1	1219	1315	7641	1842	1046	500	0
18	Chg Abs < 4500	Chg Abs +1	1226	1314	7641	1838	1048	502	0
19	Chg Abs < 4800	Chg Abs +1	1231	1315	7641	1836	1048	502	0
20	Chg Abs < 5000	Chg Abs +1	1234	1318	7641	1842	1048	503	0
21	Chg Abs < 5200	Chg Abs +1	1235	1321	7641	1842	1049	503	0
22	Chg Abs < 5500	Chg Abs +1	1239	1325	7641	1846	1054	503	0

Quando o ativo tem uma variação (fech - abert) inferior a 1500 pontos, estima-se que no próximo dia performará uma variação média (fech - abert) de 1311 pontos.

VARIAÇÕES CONSECUTIVAS

DLTR: Quando o mercado se movimenta mais que X pontos, qual a probabilidade de fazer também os mesmos mais que X pontos nos próximos 1, 2 e 3 dias?

Descrição: Neste estudo queremos contabilizar se a volatilidade tem memória, ou seja, se um dia de alta volatilidade vai implicar que os próximos dias também serão igualmente voláteis.

Ticker: WIN\$
Timeframes: D1
Indicadores:

- Chg Abs: Absoluto(Fechamento - Abertura)

- Hilo: (Máxima - Mínima)

PRINCIPAIS FÓRMULAS

```
. .
def CALCULATIONS(Src):
    Calc = pd.DataFrame(Src)
    Calc['Chg Abs'] = Calc['Change'].abs()
    for b in BINS: Calc[f'Chg Abs > {b}']
                                                     = (Calc[f'Chg Abs'] > b)
    for b in BINS: Calc[f'Hilo > {b}']
                                                     = (Calc[f'Hilo']
    for b in BINS: Calc[f'Chg Abs > {b} +{1}'] = Calc[f'Chg Abs > {b}'].shift(-1)
    for b in BINS: Calc[f'Chg Abs > \{b\} + \{2\}'] = Calc[f'Chg Abs > \{b\}'].shift(-2)
    for b in BINS: Calc[f'Chg Abs > \{b\} + \{3\}'] = Calc[f'Chg Abs > \{b\}'].shift(-3)
    for b in BINS: Calc[f'Hilo > \{b\} + \{1\}'] = Calc[f'Hilo > \{b\}'].shift(-1)
    for b in BINS: Calc[f'Hilo > \{b\} + \{2\}'] = Calc[f'Hilo > \{b\}'].shift(-2) for b in BINS: Calc[f'Hilo > \{b\} + \{3\}'] = Calc[f'Hilo > \{b\}'].shift(-3)
    return Calc
def STATS(Calc, Col):
    pipe = []
    for b in BINS:
        Df = Calc[Calc[f'{Col} > {b}']==1]
        pipe.append({
             f'{Col} > D0': b,
             f'\{Col\} > D+1': np.round(Df[f'\{Col\} > \{b\} +\{1\}'].mean() *100, 1),
             f'\{Col\} > D+2': np.round(Df[f'\{Col\} > \{b\} + \{2\}'].mean() *100, 1),
             f'\{Col\} > D+3': np.round(Df[f'\{Col\} > \{b\} + \{3\}'].mean() *100, 1),
        })
    pass
    return pd.DataFrame(pipe)
STATS(Calc, Col='Hilo')
STATS(Calc, Col='Chg Abs')
```

VARIAÇÕES CONSECUTIVAS

AMPLITUDE DOS CANDLES ANTES E DEPOIS

	Hilo > D0	Hilo > D+1	Hilo > D+2	Hilo > D+3
0	1000	97.9	97.7	97.8
1	1200	94.1	94.7	94.7
2	1500	86.6	88.0	87.8
3	1800	78.0	79.8	80.3
4	2000	72.5	73.9	74.0
5	2200	67.4	69.4	67.9
6	2500	59.8	60.6	61.8
7	2800	52.9	52.1	54.3
8	3000	48.9	47.1	49.7
9	3200	46.8	43.4	42.7
10	3500	41.5	36.8	34.4
11	3800	40.0	31.2	30.0
12	4000	38.5	28.0	26.6
13	4200	36.1	24.4	22.7
14	4500	32.2	23.3	16.7
15	4800	24.6	16.4	14.8
16	5000	24.5	14.3	18.4
17	5500	24.0	12.0	16.0
18	6000	15.4	0.0	15.4
19	6500	12.5	0.0	25.0
20	7000	14.3	0.0	28.6
21	7500	20.0	0.0	20.0
22	8000	0.0	0.0	0.0

Interpretação prática: Quando a amplitude diária (max - min) for de 5000 pontos, tal como na linha 16, há 24.5% de probabilidade de no dia seguinte ser também superior a 5000 pontos e 14.3% no D+2 e 18.4% n D+3.

VARIAÇÕES CONSECUTIVAS

VARIAÇÕES DOS CANDLES EM ABSOLUTO

	Chg Abs > D0	Chg Abs > D+1	Chg Abs > D+2	Chg Abs > D+3
0	100	95.0	95.0	95.3
1	200	89.6	89.4	89.8
2	500	75.1	75.5	76.7
3	800	60.8	65.2	63.4
4	1000	51.2	55.1	54.9
5	1200	46.8	49.8	48.1
6	1500	35.9	35.7	39.3
7	1800	27.2	28.1	29.4
8	2000	24.2	23.4	24.9
9	2200	23.1	20.5	21.8
10	2500	19.4	11.2	14.1
11	2800	15.2	7.2	11.2
12	3000	13.8	5.5	7.3
13	3200	15.1	4.7	7.0
14	3500	11.7	3.3	6.7
15	3800	7.5	0.0	5.0
16	4000	8.8	0.0	5.9
17	4200	12.0	0.0	0.0
18	4500	16.7	0.0	0.0
19	4800	15.4	0.0	0.0
20	5000	10.0	0.0	0.0
21	5500	0.0	0.0	0.0

Quando a variação (fech - abert) do dia for superior a 3500 pontos, há 11.7% de probabilidade de ser também superior a 3500 pontos no dia seguinte e 3.3% no D+1 e 6.7% no D+2.

TESTES E ROMPIMENTOS

TLDR: Se o ativo variou X pontos no dia D, qual a probabilidade do ativo em D+1 testar ou rompoer a máxima ou a mínima do dia anterior.

Descrição: Neste estudo desejamos mensurar a probabilidade de ocorrer inside bars, testes ou rompimentos no próximo dia quando já sabemos a amplitude (max - min) do dia atual. A coluna Hilo D0 da tabela abaixo segmenta a aplitude atual por faixas do tipo maior que, que servirão de guia para consulta.

Ticker: WIN\$
Timeframes: D1
Indicadores:
- Hilo: High – Low

- **Inside:** Insidebar, ocorre quando a máxima, mínima e fechamento do próximo candle fica dentro dos limites de alta e de mínima do dia anterior
- **Test:** Ocorre quando a máxima ou a mínima do próximo dia supera os limites superiores ou inferiores do dia anterior, porém com fechamento dentro dos limites
- **Break:** Ocorre quando o fechamento do próximo dia fica fora de um dos limites de alta ou de baixa do candle anterior

PRINCIPAIS FÓRMULAS

```
def CALCULATIONS(Src):
     Calc = pd.DataFrame(Src)
Calc[f'High +{1}'] =
                                   = Calc['High'] .shift(-1)
     Calc[f'Low +{1}']
                                   = Calc['Low']
                                                       .shift(-1)
                                    = Calc['Close'] .shift(-1)
     Calc[f'Close +{1}']
                                                        Calc['High +1'] < Calc['High']</pre>
     Calc['High in max']
                                    = Calc['Low'] < Calc['Low +1']
     Calc['Low in min']
                                                            Calc['High'] < Calc['High +1']</pre>
     Calc['High out max']
                                    = Calc['Low +1'] < Calc['Low']
     Calc['Low out min']
     Calc['Close in max']
                                                         Calc['Close +1'] < Calc['High']</pre>
     Calc['Close in min']
                                    = Calc['Low'] < Calc['Close +1']
                                                               Calc['High'] < Calc['Close +1']</pre>
     Calc['Close out max']
     Calc['Close out min']
                                    = Calc['Close +1'] < Calc['Low']
    Calc['Break 0'] = (Calc['Close in min'] & Calc['Close in max']) & (Calc['Low in min'] & Calc['High in max'])
Calc['Break 1'] = (Calc['Close in min'] & Calc['Close in max']) & (Calc['Low out min'] | Calc['High out max'])
Calc['Break 2'] = (Calc['Close out min'] | Calc['Close out max']) & (Calc['Low out min'] | Calc['High out max'])
     return Calc
def STATS(Calc):
     BINS = [500,1000,1500,2000,2500,3000,3500,4000,4500,5000,5500,6000,6500,7000,7500,8000]
pipe = []
     for b in BINS:
          Df = Calc[Calc['Hilo'] > b] #.reset_index(drop=1)
          pipe.append({
                'Hilo D0 >': b,
                'Count':
                              len(Df),
                              np.round(Df['Break 0'].mean()*100, 1),
                'Inside':
                              np.round(Df['Break 1'].mean()*100, 1),
np.round(Df['Break 2'].mean()*100, 1),
                'Test':
                'Break':
          })
     pass
     return pd.DataFrame(pipe)
```

TESTES E ROMPIMENTOS

TABELA DE PROBABILIDADES

	Hilo D0 >	Count	Inside	Test	Break
0	500	1245	11.4	35.3	52.4
1	1000	1216	11.7	35.4	52.1
2	1500	1044	13.4	35.6	50.2
3	2000	777	15.1	35.4	48.9
4	2500	540	15.9	36.7	46.9
5	3000	350	18.6	36.6	44.6
6	3500	212	21.2	37.3	41.0
7	4000	143	21.7	35.7	42.0
8	4500	90	24.4	32.2	42.2
9	5000	49	22.4	34.7	40.8
10	5500	25	24.0	36.0	36.0
11	6000	13	15.4	38.5	46.2
12	6500	8	25.0	25.0	50.0
13	7000	7	28.6	28.6	42.9
14	7500	5	40.0	40.0	20.0
15	8000	1	100.0	0.0	0.0

Interpretação prática: Se a amplitude (max - min) do dia atual for maior que 4000 pontos, de acordo com a linha 7, há 21.7% da próximo dia ser um inside bar, 32.2% de testar o suporte ou a resistencia e 42% de fechar fora dos limites do dia anterior.

VARIAÇÕES POR DIA DA SEMANA

Descrição: Estatísticas de variações contabilizadas por dias da semana.

Ticker: WIN\$
Timeframes: D1
Indicadores:

- HL: Alta - Mínima

- Change: Fechamento - Abertura
- Change Abs: Change Absoluto
- Change Pos: Change Positivo
- Change Neg: Change Negativo

MÁXIMOS E MÍNIMOS

	HL							
	count	mean	std	min	25%	50%	75%	max
Week.Day								
2	247	2414	1168	593	1557	2220	3004	8487
3	250	2503	1119	655	1668	2208	3268	7864
4	252	2565	1126	687	1806	2398	3051	7753
5	249	2653	1233	701	1713	2454	3197	7278
6	247	2601	1118	805	1808	2411	3227	7479

MOVIMENTO (NET)

	Change	e Abs						
	count	mean	std	min	25%	50%	75%	max
Week.Day								
2	247	1278	1135	6	477	1054	1687	7641
3	250	1276	1029	0	512	1022	1712	5218
4	252	1272	1018	7	487	959	1831	4825
5	249	1453	1166	0	524	1151	2095	5935
6	247	1352	1034	6	524	1064	1968	5367

VARIAÇÕES POR DIA DA SEMANA

MOVIMENTO (CANDLES POSITIVOS)

	Change	e Pos						
	count	mean	std	min	25%	50%	75%	max
Week.Day								
2	134	1178	976	6	450	986	1697	576
3	131	1228	1011	0	362	983	1728	521
4	129	1216	969	13	452	890	1892	461
5	131	1373	1132	0	492	1046	1976	544
6	120	1317	1015	6	504	974	1930	517

MOVIMENTO (CANDLES POSITIVOS)

	Change	Change Neg							
	count	mean	std	min	25%	50%	75%	max	
Week.Day									
2	113	-1396	1293	-7641	-1677	-1083	-606	-16	
3	119	-1329	1050	-4544	-1680	-1074	-594	-6	
4	123	-1331	1068	-4825	-1757	-1036	-499	-7	
5	118	-1541	1200	-5935	-2119	-1224	-595	-13	
6	127	-1385	1055	-5367	-1975	-1181	-584	-11	

VOLATILIDADE E REVERSÃO

Descrição: Quando o ativo se move acima de X% qual a probabilidade de subir ou descer na semana seguinte.

Ticker: WIN\$
Timeframes: W1
Indicadores:

- Variat: Fechamento / Abertura *100-100

- Variat +1: Variação Futura D+1

VARIAÇÃO POSITIVA

Variat > %	Variat +1 > 0	Variat +1 < 0
5.0	51.2	47.9
4.5	51.2	47.9
4.0	50.8	48.4
3.5	50.8	48.4
3.0	50.8	48.4
2.5	50.8	48.4
2.0	50.8	48.4
1.5	50.8	48.4
1.0	50.4	48.8
0.5	50.4	48.8

VARIAÇÃO NEGATIVA

Variat < %	Variat +1 > 0	Variat +1 < 0
-0.5	42.8	56.5
-1.0	42.8	56.5
-1.5	42.8	56.5
-2.0	42.8	56.5
-2.5	42.8	56.5
-3.0	43.1	56.2
-3.5	43.1	56.2
-4.0	43.1	56.2
-4.5	43.1	56.2
-5.0	43.0	56.3