

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE)

Curso 2007-2008

MATERIA: MATEMÁTICAS APLICADAS A LAS CC. SOCIALES II

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES: El alumno deberá elegir una de las dos opciones A o B que figuran en el presente examen y contestar razonadamente a los cuatro ejercicios de que consta dicha opción. Para la realización de esta prueba puede utilizarse calculadora científica, siempre que no disponga de capacidad de representación gráfica o de cálculo simbólico.

CALIFICACIÓN: La puntuación máxima de cada ejercicio se indica en el encabezamiento del mismo.

TIEMPO: 90 minutos.

OPCIÓN A

Ejercicio 1. (Puntuación máxima: 3 puntos)

Un agricultor tiene repartidas sus 10 hectáreas de terreno en barbecho, cultivo de trigo y cultivo de cebada. La superficie dedicada al trigo ocupa 2 hectáreas más que la dedicada a la cebada, mientras que en barbecho tiene 6 hectáreas menos que la superficie total dedicada al cultivo de trigo y cebada. ¿Cuántas hectáreas tiene dedicadas a cada uno de los cultivos y cuántas están en barbecho?

Ejercicio 2. (Puntuación máxima: 3 puntos)

Calcúlese el área de la región plana acotada limitada por las gráficas de las funciones reales de variable real:

$$f(x) = x^2 - x$$
 ; $g(x) = 1 - x^2$.

Ejercicio 3. (Puntuación máxima: 2 puntos)

En un juego consistente en lanzar dos monedas indistinguibles y equilibradas y un dado de seis caras equilibrado, un jugador gana si obtiene dos caras y un número par en el dado, o bien exactamente una cara y un número mayor o igual que cinco en el dado.

- a) Calcúlese la probabilidad de que un jugador gane.
- b) Se sabe que una persona ha ganado. ¿Cuál es la probabilidad de que obtuviera dos caras al lanzar las monedas?

Ejercicio 4. (Puntuación máxima: 2 puntos)

El tiempo en minutos dedicado cada día a escuchar música por los estudiantes de secundaria de una cierta ciudad se supone que es una variable aleatoria con distribución normal de desviación típica igual a 15 minutos. Se toma una muestra aleatoria simple de 10 estudiantes y se obtienen los siguientes tiempos (en minutos):

- a) Determínese un intervalo de confianza al 90% para el tiempo medio diario dedicado a escuchar música por un estudiante.
- b) Calcúlese el tamaño muestral mínimo necesario para conseguir una estimación de la media del tiempo diario dedicado a escuchar música con un error menor que 5 minutos, con un nivel de confianza del 95%.

OPCIÓN B

Ejercicio 1. (Puntuación máxima: 3 puntos)

Un distribuidor de aceite de oliva compra la materia prima a dos almazaras, A y B. Las almazaras A y B venden el aceite a 2000 y 3000 euros por tonelada, respectivamente. Cada almazara le vende un mínimo de 2 toneladas y un máximo de 7 y para atender a su demanda, el distribuidor debe comprar en total un mínimo de 6 toneladas. El distribuidor debe comprar como máximo a la almazara A el doble de aceite que a la almazara B. ¿Qué cantidad de aceite debe comprar el distribuidor a cada una de las almazaras para obtener el mínimo coste? Determínese dicho coste mínimo.

Ejercicio 2. (Puntuación máxima: 3 puntos)

Se considera la función real de variable real definida por:

$$f(x) = \frac{x^2 + x + 2}{x} \quad , \quad x \neq 0.$$

- a) Determínense las asíntotas de f.
- b) Calcúlense sus máximos y mínimos relativos y determínense sus intervalos de crecimiento.
- c) Calcúlese la integral definida $\int_{1}^{2} f(x) dx$.

Ejercicio 3. (Puntuación máxima: 2 puntos)

Se consideran dos sucesos A y B de un experimento aleatorio, tales que:

$$P(A) = \frac{1}{4}$$
 , $P(B) = \frac{1}{3}$, $P(A \cup B) = \frac{1}{2}$.

- a) ¿Son A y B sucesos independientes? Razónese.
- b) Calcúlese $P(\bar{A}|\bar{B})$.

Nota. La notación \bar{A} representa al suceso complementario de A.

Ejercicio 4. (Puntuación máxima: 2 puntos)

El rendimiento por hectárea de las plantaciones de trigo en una cierta región, se supone que es una variable aleatoria con distribución normal de desviación típica igual a 1 tonelada por hectárea. Se ha tomado una muestra aleatoria simple de 64 parcelas con una superficie igual a 1 hectárea cada una, obteniéndose un rendimiento medio de 6 toneladas.

- a) ¿Puede asegurarse que el error de estimación del rendimiento medio por hectárea es menor que 0,5 toneladas, con un nivel de confianza del 98%? Razónese.
- b) ¿Qué tamaño muestral mínimo ha de tomarse para que el error en la estimación sea menor que 0,5 toneladas con un nivel de confianza del 95%?

ÁREAS BAJO LA DISTRIBUCIÓN DE PROBABILIDAD NORMAL ESTÁNDAR

Los valores en la tabla representan el área bajo la curva normal hasta un valor positivo de z.

z	1.00	,01	.02	,03	.04	.05	.06	.07	.08	.09
 	1.00	1.0.	1.02	1,00	 •••	1,00	 ,,,,,,		,00	,00
0,0	0.5000	0.5040	0,5080	0.5120	0.5160	0.5199	0.5239	0.5279	0,5319	0.5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0.5793	0,5832	0.5871	0,5910	0,5948	0,5987	0.6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0.6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
'''	-,	-,			1	, ,				3,00.0
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7857	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7703	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
l										
1,0	0,8413	0,8438	0,8461	0,8485	0.8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0.8770	0,8790	0,8810	0,8830
1,2	0.8849	0,8869	0,8888	0,8907	0,8925	0.8944	0,8962	0,8980	0,8997	0,9015
1,3	0.9032	0.9049	0.9066	0,9082	0,9099	0.9115	0.9131	0.9147	0.9162	0.9177
1,4	0,9192	0,9207	0.9222	0,9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
	0.0000	0.0045	0.0059	0.0070	0.000	0.0004	0.0400	00410	0.0400	00441
1,5	0.9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0.9452	0,9463	0,9474 0,9573	0,9484 0.9582	0,9495 0.9591	0,9505 0.9599	0,9515 0,9608	0,9525 0,9616	0,9535 0,9625	0,9545 0.9633
1,7	0,9554	0.9564					0,9686	0,9693	0,9623	
1,8	0,9641	0,9649 0.9719	0,9656 0,9726	0,9664 0,9732	0,9671 0.9738	0,9678 0,9744	0,9050	0,9055	0,933	0,9706 0,9767
1,9	0,9713	0,5115	0,5120	0,5132	0,5130	0,5144	0,5100	0,5100	0,5101	0,5101
2,0	0,9772	0,9778	0,9783	0.9788	0,9793	0,9798	0,9803	0,9808	0,9812	.0,9817
2.1	0.9821	0,9826	0.9830	0.9834	0.9838	0.9842	0,9846	0.9850	0.9854	0.9857
2,2	0,9861	0,9864	0.9868	0,9871	0,9875	0.9878	0.9881	0,9884	0,9887	0,9890
2,3	0.9893	0.9896	0,9898	0,9901	0.9904	0.9906	0,9909	0.9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0.9927	0,9929	0,9931	0,9932	0,9934	0.9936
2,4	0.5510	0,5520	0,0022	0.0020	0,00,21	0,0000	0,000.	0,000	0,000.	0,000
2,5	0.9938	0.9940	0.9941	0,9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2,6	0.9953	0.9954	0.9956	0,9957	0,9959	0.9960	0.9961	0.9962	0.9963	0.9964
2,7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2,8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2,9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0,9986	0.9986
- ,-	0,0001	0,0002	0,0002	0.0000	0,0004	5,5554	5,5555	000	5,0000	J,5555
3,0	0,9987	0,9987	0,9987	0.9988	0.9988	0.9989	0.9989	0,9989	0.9990	0,9990
٠,٠	1,000,0	1,000,	0,0001	0,5300	0,5500	0,0000	0,0000	5,0000	0,0000	0,0000

MATEMÁTICAS APLICADAS A LAS CC. SOCIALES II

CRITERIOS ESPECÍFICOS DE CORRECCIÓN

ATENCIÓN.- La calificación debe hacerse en múltiplos de 0,25 puntos.

OPCIÓN A

Ejercicio 1.— Planteamiento correcto del sistema de ecuaciones: 1,5 puntos.— Resolución correcta de dicho sistema: 1,5 puntos.

Ejercicio 2.— Localización de la región: 1 punto.— Planteamiento del área como una integral definida: 1 punto.— Cálculo correcto del área: 1 punto.

Ejercicio 3.- Cada apartado correctamente resuelto: 1 punto.

Ejercicio 4.- Cada apartado correctamente resuelto: 1 punto.

OPCIÓN B

Ejercicio 1.— Deducción correcta de la función objetivo: 0,5 puntos.— Planteamiento correcto del problema de programación lineal: 0,5 puntos.— Representación correcta de la región factible: 1 punto.— Localización del mínimo: 0,5 puntos.— Obtención del valor mínimo: 0,5 puntos.

Ejercicio 2.- Cada apartado correctamente resuelto: 1 punto.

Ejercicio 3.- Cada apartado correctamente resuelto. 1 punto.

Ejercicio 4.- Cada apartado correctamente resuelto: 1 punto.

NOTA

La resolución de ejercicios por cualquier procedimiento correcto, diferente al propuesto por los coordinadores, ha de valorarse con los criterios convenientemente adaptados.