

COMPUTER VISION

Le Thanh Ha, Ph.D

Assoc. Prof. at University of Engineering and Technology, Vietnam National University

ltha@vnu.edu.vn; lthavnu@gmail.com; 0983 692 592

How light is recorded

Digital camera

A digital camera replaces film with a sensor array

- Each cell in the array is light-sensitive diode that converts photons to electrons
- Two common types: Charge Coupled Device (CCD) and CMOS
- http://electronics.howstuffworks.com/cameras-photography/digital/question362.htm

Sensor Array

CMOS sensor

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Each sensor cell records amount of light coming in at a small range of orientations

The raster image (pixel matrix)

The raster image (pixel matrix)

Today's class: Light and Shading

- What determines a pixel's intensity?
- What can we infer about the scene from pixel intensities?

How does a pixel get its value?

How does a pixel get its value?

- Major factors
 - Illumination strength and direction
 - Surface geometry
 - Surface material
 - Nearby surfaces
 - Camera gain/exposure

Basic models of reflection

Specular: light bounces off at the incident angle

E.g., mirror

- Diffuse: light scatters in all directions
 - E.g., brick, cloth, rough wood

Lambertian reflectance model

- Some light is absorbed (function of albedo ρ)
- Remaining light is scattered (diffuse reflection)
- Examples: soft cloth, concrete, matte paints

Diffuse reflection: Lambert's cosine law

Intensity does *not* depend on viewer angle.

- Amount of reflected light proportional to $cos(\theta)$
- Visible solid angle also proportional to $cos(\theta)$

http://en.wikipedia.org/wiki/Lambert%27s_cosine_law

Specular Reflection

- Reflected direction depends on light orientation and surface normal
 - E.g., mirrors are fully specular
 - Most surfaces can be modeled with a mixture of diffuse and specular components

Flickr, by piratejohnny

Most surfaces have both specular and diffuse components

 Specularity = spot where specular reflection dominates (typically reflects light source)

Photo: northcountryhardwoodfloors.com

Typically, specular component is small

Intensity and Surface Orientation

Intensity depends on illumination angle because less light comes in at oblique angles.

 $\rho = albedo$

S =directional source

N = surface normal

I = reflected intensity

$$I(x) = \rho(x)(S \cdot N(x))$$

Recap

- When light hits a typical surface
 - Some light is absorbed (1- ρ)
 - More absorbed for low albedos
 - Some light is reflected diffusely
 - Independent of viewing direction

- Some light is reflected specularly
 - Light bounces off (like a mirror), depends on viewing direction

Other possible effects

Color

Light is composed of a spectrum of wavelengths

Human Luminance Sensitivity Function

Some examples of the spectra of light sources

Some examples of the <u>reflectance</u> spectra of <u>surfaces</u>

More spectra

The color of objects

- Colored light arriving at the camera involves two effects
 - The color of the light source (illumination + inter-reflections)
 - The color of the surface

Color Sensing: Bayer Grid

Estimate RGB at each cell from neighboring values

Which image plane is R, G, or B?

Why RGB?

If light is a spectrum, why are images RGB?

Human color receptors

- Long (red), Medium (green), and Short (blue) cones, plus intensity rods
- Fun facts
 - "M" and "L" on the X-chromosome
 - That's why men are more likely to be color blind (see what it's like:
 - http://www.vischeck.com/vischeck/vischeckURL.php)
 - "L" has high variation, so some women are tetrachromatic
 - Some animals have 1 (night animals), 2 (e.g., dogs), 4 (fish, birds), 5 (pigeons, some reptiles/amphibians), or even 12 (mantis shrimp) types of cones

So far: light → surface → camera

- Called a local illumination model
- But much light comes from surrounding surfaces

From Koenderink slides on image texture and the flow of light

Inter-reflection affects the apparent color of objects

From Koenderink slides on image texture and the flow of light

Scene surfaces also cause shadows

Shadow: reduction in intensity due to a blocked source

Shadows

Models of light sources

- Distant point source
 - One illumination direction
 - E.g., sun
- Area source
 - E.g., white walls, diffuser lamps, sky
- Ambient light
 - Substitute for dealing with interreflections
- Global illumination model
 - Account for interreflections in modeled scene

Recap

Possible factors: albedo, shadows, texture, specularities, curvature, lighting direction

What does the intensity of a pixel tell us?

	1										
0.92	0.93	0.94	0.97	0.62	0.37	0.85	0.97	0.93	0.92	0.99	
0.92	0.93	0.94	0.89	0.62	0.31	0.85	0.97	0.93	0.92	0.99	
	0.89				0.31					0.91	
0.89		0.51	0.55	0/51		0.57	0.41	0.49	0.91		
0.96	0.95	0.88	0.94	0.56	0.46	0.91	0.87	0.90	0.97	0.95	
0.71	0.81	0.81	0.87	0.57	0.37	0.80	0.88	0.89	0.79	0.85	
0.49	0.62	0.60	0.58	0.50	0.60	0.58	0.50	0.61	0.45	0.33	
0.86	0.84	0.74	0.58	0.51	0.39	0.73	0.92	0.91	0.49	0.74	
0.96	0.67	0.54	0.85	0.48	0.37	0.88	0.90	0.94	0.82	0.93	
0.69	0.49	0.56	0.66	0.43	0.42	0.77	0.73	0.71	0.90	0.99	
0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	
0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	

The plight of the poor pixel

- A pixel's brightness is determined by
 - Light source (strength, direction, color)
 - Surface orientation
 - Surface material and albedo
 - Reflected light and shadows from surrounding surfaces
 - Gain on the sensor

A pixel's brightness tells us nothing by itself

And yet we can interpret images...

- Key idea: for nearby scene points, most factors do not change much
- The information is mainly contained in *local* differences of brightness

Darkness = Large Difference in Neighboring Pixels

What is this?

What differences in intensity tell us about shape

- Changes in surface normal
- Texture
- Proximity
- Indents and bumps
- Grooves and creases

Color constancy

- Interpret surface in terms of albedo or "true color", rather than observed intensity
 - Humans are good at it
 - Computers are not nearly as good

Color Correction

• Simple idea: multiply R, G, and B values by separate constants

$$\begin{bmatrix} \tilde{r} \\ \tilde{g} \\ \tilde{b} \end{bmatrix} = \begin{bmatrix} \alpha_r & 0 & 0 \\ 0 & \alpha_g & 0 \\ 0 & 0 & \alpha_b \end{bmatrix} \begin{bmatrix} r \\ g \\ b \end{bmatrix}$$

- How to choose the constants?
 - "White world" assumption: brightest pixel is white
 - Divide by largest value
 - "Gray world" assumption: average value should be gray
 - E.g., multiply r channel by avg(r) /avg((r+g+b)/3)
 - White balancing: choose a reference as the white or gray color

Things to remember

- Important terms: diffuse/specular reflectance, albedo, umbra/penumbra
- Observed intensity depends on light sources, geometry/material of reflecting surface, surrounding objects, camera settings
- Objects cast light and shadows on each other
- Differences in intensity are primary cues for shape

