Гидродинамика сглаженных частиц Моделирование поведения жидкости

Павелко П.Ю., ИУ7-51

МГТУ им. Баумана

Москва, 2015

Уравнение Навье-Стокса

Суть уравнения

Уравнение Навье-Стокса — « ${f F}=m{f a}$ » для жидкостей.

Для маленького объёма $(V \to 0)$

- Macca $m = \rho V$, где ρ плотность;
- ullet Ускорение ${f a}=rac{d{f u}}{dt},$ где ${f u}$ скорость.

Объёмные силы

 $\mathbf{F}=
horac{d\mathbf{u}}{dt}$ — сила, действующая на каждый элементарный объём.

Уравнение Навье-Стокса

Силы, входящие в уравнение

- Силы, возникающие из-за разности давлений;
- Силы, возникающие из-за вязкости;
- Силы гравитации;
- Силы поверхностного натяжения;
- Любые другие внешние силы.

Давление

Замечание

Мы рассматриваем слабосжимаемые жидкости.

Давление

Роль давления

Силы давления оказывают сопротивление сжатию и расширению.

Уравнение

Разность давлений ведёт к изменению скорости, поэтому

$$\mathbf{f}^p = -\nabla p$$
.

Вязкость

Роль вязкости

Вязкость ведёт к изменению энергии в результате внутреннего трения. Молекулы диффундируют между слоями жидкости, тем самым уравнивая скорость.

Уравнение

Аналитически силы вязкости задаются как

$$\mathbf{f}^{\mathbf{v}} = \mu \Delta \mathbf{u},$$

где μ — коэффициент вязкости

Поверхностное натяжение

Роль поверхностного натяжения

Молекулы жидкости находятся под влиянием сил притяжения от соседних молекул, которые уравновешены внутри жидкости.

Однако такая связь ведёт к дисбалансу сил возле поверхности.

Поверхностное натяжение

Уравнение

Часто силы поверхностного натяжения аппроксимируют как

$$\mathbf{f}^{s} = -\sigma k \mathbf{n},$$

где σ — коэффициент поверхностного натяжения;

k — кривизна поверхности;

n — нормаль к поверхности.

Влияние кривизны

Уравнение Навье-Стокса

Уравнение движения

$$\rho \frac{d\mathbf{u}}{dt} = -\nabla p + \mu \Delta \mathbf{u} - \sigma k \mathbf{n} + \rho \mathbf{g} + \mathbf{f}_{\mathsf{дp}},$$

где ρ — плотность;

u — скорость;

 μ — коэффициент вязкости;

 σ — коэффициент поверхностного натяжения;

k — кривизна поверхности;

n — нормаль к поверхности;

g — ускорение свободного падения;

 $\mathbf{f}_{\mathtt{дp}}$ — прочие внешние силы.

Уравнение неразрывности (для несжимаемой жидкости)

$$\nabla \cdot \mathbf{u} = 0.$$

Гидродинамика сглаженных частиц (ГСЧ)

Идея

Аппроксимировать решение уравнения Навье-Стокса набором движущихся частиц.

Каждая частица имеет массу, скорость и позицию.

ГСЧ

Проблема

Для аппроксимации непрерывных полей необходимо иметь информацию в любой точке, а не только в выбранных частицах.

Решение

«Разгладим» информацию частиц в некотором радиусе.

Значение в любой точке может быть получено как взвешенная сумма значений ближайших частиц.

Ядра сглаживания

Значение поля

$$f(\mathbf{r}_i) \approx \sum_{i=1}^N \frac{m_j}{\rho_j} f(\mathbf{r}_j) \mathbb{W}(\mathbf{r}_i - \mathbf{r}_j, h),$$

где \mathbb{W} — ядро сглаживания;

h — радиус сглаживания;

N — кол-во соседних частиц.

Ядра сглаживания

Производные поля

Аналогичным образом выводится градиент поля:

$$\nabla f(\mathbf{r}_i) \approx \sum_{j=1}^N \frac{m_j}{\rho_j} f(\mathbf{r}_j) \nabla \mathbb{W}(\mathbf{r}_i - \mathbf{r}_j, h).$$

И лапласиан поля:

$$\Delta f(\mathbf{r}_i) \approx \sum_{i=1}^N \frac{m_j}{\rho_j} f(\mathbf{r}_j) \Delta \mathbb{W}(\mathbf{r}_i - \mathbf{r}_j, h).$$

Дискретизация силы давления

Первая попытка

$$\mathbf{f}_{i}^{p} = -\nabla p(\mathbf{r}_{i}) = -\rho_{i} \sum_{j \neq i} m_{j} \frac{p_{j}}{\rho_{j}} \nabla \mathbb{W}(\mathbf{r}_{i} - \mathbf{r}_{j}, h).$$

Проблема

Сила не симметрична (действие \neq противодействию).

Решение

Один из способов симметризовать силу:

$$\mathbf{f}_i^p = -\nabla p(\mathbf{r}_i) = -\rho_i \sum_{i \neq j} \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_i^2} \right) m_j \nabla \mathbb{W}(\mathbf{r}_i - \mathbf{r}_j, h).$$

14 / 22

Дискретизация сил давления

Проблема

Как определить давление?

Решение

- Позволим небольшие колебания плотности:
- Определим плотности всех частиц;
- Используя уравнение состояния, найдём давление.

Уравнения состояния

- Закон идеального газа: $p = k(\rho \rho_0)$;
- Уравнение Тэта: $p = B((\frac{\rho}{2\sigma})^7 1)$,

где k и B — константы.

15 / 22

Дискретизация сил вязкости и гравитация

Дискретизация сил вязкости

Поскольку силы вязкости зависят только от разности скоростей, а не от их абсолютных значений, то простейший способ симметризовать аппроксимацию — использовать разность скоростей:

$$\mathbf{f}_i^{\nu} = \mu \Delta \mathbf{u}(\mathbf{r}_i) = \mu \sum_j (\mathbf{u}_j - \mathbf{u}_i) \frac{m_j}{\rho_j} \Delta \mathbb{W}(\mathbf{r}_i - \mathbf{r}_j, h).$$

Гравитация

Т.к. гравитация не зависит от характеристик частиц, то уравнение гравитационных сил ($\mathbf{f}^g = \rho \mathbf{g}$) не требует дискретизации.

Дискретизация сил поверхностного натяжения

Проблема

Необходимо определить кривизну k. Какие частицы составляют поверхность?

Дискретизация сил поверхностного натяжения

Модель для расчёта строится на «цветовой» функции:

$$c(\mathbf{r}) = egin{cases} 1, & \exists i: \mathbf{r} = \mathbf{r}_i \ 0 & ext{иначе} \end{cases}$$

При этом, внутренняя нормаль вычисляется как

$$\mathbf{n}_i = \nabla c(\mathbf{r}_i) = \sum_j \frac{m_j}{\rho_j} \nabla \mathbb{W}_d(\mathbf{r}_i - \mathbf{r}_j, h).$$

Тогда сила поверхностного натяжения принимает вид

$$\mathbf{f}_i^s = -\sigma \Delta c_i \frac{\mathbf{n}_i}{|\mathbf{n}_i|}.$$

Метод шагающих кубиков

Триангуляция

Для получения полигонизированной поверхности необходимо:

- Создать сетку вокселей, каждый узел которой обладает потенциалом меньше или больше заданного;
- Получить базовые треугольники для данного случая;
- Уточнить вершины треугольников интерполяцией.

Базовые треугольники

Потенциалы

Проблема

Для применения метода шагающих кубиков необходимо иметь потенциалы в узлах сетки, однако мы имеем разрозненные частицы, несвязанные никакой структурой.

Решение

- Для каждой частицы определить занимаемый воксель;
- Увеличить счётчик частиц в данном вокселе;
- Вычислить потенциалы в узлах усреднением прилежащих восьми вокселей.

Гистограммные пирамиды

Триангулировать имеет смысл только непустые воксели, которых немного. Для их поиска используются гистопирамиды.

На последнем уровне имеем количество непустых вокселей.

Спасибо за внимание!

Московский государственный технический университет им Н. Э. Баумана

Москва, 2015