Young Tableau, Symmetric Functions, Schubert Polynomials, and Degeneracy Loci

With 0 Figures

Anakin Dey

Last Edited on 1/28/25 at 23:36

Contents

1	[Ful	97] Geometry	1
2	[Man01] The Ring of Symmetric Functions		3
	2.1	Ordinary Functions	3
	2.2	Schur Functions	5
	2.3	The Knuth Correspondence	7
	2.4	Some Applications to Symmetric Functions	7
	2.5	The Littlewood-Richardson Rule	8

Preface

These are notes for a reading course under Professor Dave Anderson. The primary focus is Manivel's *Symmetric Functions, Schubert Polynomials, and Degeneracy Loci* [Man01] which one could see as a quasi-sequel to Fulton's *Young Tableaux*¹ [Ful97]. Primarily, the solutions will be to exercises from [Man01]. However, as needed there will be solutions to material from [Ful97], or perhaps even other texts such as [Mac98] or [Sta24].

¹which throughout these notes will be spelled as "tableaux" or "tableau" with no real consistency.

Chapter 1

[Ful97] Geometry

Solution: [Ful97] §9.1 Ex. 1: Choose a basis $\{e_1, \ldots, e_m\}$ so that E can be identified with \mathbb{C}^m . Let $i_1 < \cdots < i_{d-1}$ and $j_1 < \cdots j_{d+1}$ be sequences in [m]. Apply §9.1 Equation (1) with k=1 to the sequences $j_2 < \cdots < j_{d+1}$ and $i_1 < \cdots < i_{d-1}, j_1$ by fixing j_1 to be the vector swapped successively with the $j_2 < \cdots < j_{d+1}$. Reordering the indices and applying the appropriate sign change yields the desired alternating summation. \square

Solution: [Ful97] §9.1 Ex. 2: We have that $V \subseteq E = \mathbb{C}^4$ is given as the kernel of multiplication of a matrix $A = (a_{i,j})_{\substack{1 \le i \le 4 \\ 1 \le j \le 2}}$. To find this matrix, the given conditions of the $x_{i,j}$ describe the following determinantal conditions on the entries of A:

$$x_{1,2} = 1 \iff \Delta_{1,2}(A) = 1,$$

 $x_{1,3} = 2 \iff \Delta_{1,3}(A) = 2,$
 $x_{1,4} = 1 \iff \Delta_{1,4}(A) = 1,$
 $x_{2,3} = 1 \iff \Delta_{2,3}(A) = 1,$
 $x_{2,4} = 2 \iff \Delta_{2,4}(A) = 2,$
 $x_{3,4} = 3 \iff \Delta_{3,4}(A) = 3.$

From here, we must make an assumption based on which affine portion of \mathbb{P}^5 our matrix lives in. This amounts to picking some i_1, i_2 so that the minor given by those columns is the identity matrix. For the given conditions, we could pick $(i_1, i_2) = (1, 2), (1, 4), \text{ or } (2, 3)$. We give *A* for each of these choices respectively:

$$A = \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 1 \end{pmatrix}, \qquad A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 1 \end{pmatrix}, \qquad A = \begin{pmatrix} 2 & 1 & 0 & -3 \\ -1 & 0 & 1 & 2 \end{pmatrix}.$$

It is clear that these are the same matrix up to row operations.

Solution: [Ful97] §9.1 Ex. 4: Following [Ful97, Corollary of Theorem 1, §8.1], we have that $S^{\bullet}(m; d_1, ..., d_s)$ is canonically isomorphic to the subalgebra of $\mathbb{C}[Z]$ generated by all D_T , where T varies over all tableaux on Young diagrams whose columns have lengths in $\{d_1, ..., d_s\}$ and entries in [m] where

$$D_T = \prod_{j=1}^{\ell} D_{T(1,j),T(2,j),\dots,T_{\mu_j,j}}$$

where μ_i is the length of the j^{th} column of λ the shape of T and $\ell = \lambda_1$.

(a) We mimic the proof of [Ful97, Proposition 2, §9.1]. ((I think this proof needs to be rewritten, perhaps with a highest weight argument?)) Let $G = G(d_1, \ldots, d_s) \leq \operatorname{GL}(V)$. The dimension of the vector space of polynomials of homogeneous polynomials of degree a in the span of all the D_{i_1,\ldots,i_p} for $p \in \{d_1,\ldots,d_s\}$ is $\sum d_{\lambda}(m)$ where the sum ranges over all partitions of a of shape λ with columns whose lengths lie in $\{d_1,\ldots,d_s\}$. Viewing $V^{\oplus m}$ by identifying $Z_{i,j}$ with the i^{th} basis vector of the j^{th} copy of V, we have by [Ful97, Corollary 3(a), §8.3] that $\mathbb{C}[Z]_a = \operatorname{Sym}^a(V^{\oplus m}) \simeq \bigoplus_{\lambda \vdash a} (V^{\lambda})^{d_{\lambda}(m)}$ where $\lambda \vdash a$ has at most n rows. Thus, we would like to show that $(V^{\lambda})^G$ has dimension 1 when the lengths of the columns of λ lie in $\{d_1,\ldots,d_s\}$ and 0 otherwise.

We recall the construction of V^{λ} in §8.1 of [Ful97]. Elements of $V^{\times \lambda}$ are specified by specifying an element of V for each box in λ . Fillings by basis vectors $\{e_1, \ldots, e_n\}$ corresponding to semistandard Young Tableaux T of shape λ with entries in [n]. The images of such elements in $V^{\times \lambda}$ in V^{λ} form a basis $\{e_T\}$ of V^{λ} . Consider the basis element corresponding to the tableaux $U(\lambda)$ given by filling every box on row i with the number i. For maps in G, the first d_i basis vectors must map to linear combinations of the first i basis vectors and the restrictions of such maps to the V_i have determinant 1. As such, we can only consider λ whose columns have lengths lying in $\{d_1, \ldots, d_s\}$. To see that $e_{U(\lambda)}$ is the only such fixed basis vector,

(b)

Chapter 2

[Man01] The Ring of Symmetric Functions

2.1 Ordinary Functions

Solution: [Man01] Ex. 1.1.2: We will denote the dominance ordering by $\lambda \leq \mu$ and the ordering given by inclusion of Ferrers diagrams by $\lambda \subseteq \mu$. Let $\lambda = (\lambda_1 \geq \cdots \geq \lambda_k \geq 0)$ and $\lambda' = (\lambda'_1 \geq \cdots \geq \lambda'_l \geq 0)$ be two partitions.

We first consider the ordering \subseteq . Note that $\lambda \subseteq \lambda'$ if and only if $k \le l$ and for all $1 \le i \le k$ we have that $\lambda_i \le \lambda_i'$. Let $m = \min\{k, l\}$. Then define a partition $\mu = (\min\{\lambda_1, \lambda_1'\} \ge \cdots \min\{\lambda_m, \lambda_m'\} \ge 0)$. Then we have that $\mu \subseteq \lambda$ and $\mu \subseteq \lambda'$. Now suppose that $\nu \subseteq \lambda$ and $\nu \subseteq \lambda'$ where $\nu = (\nu_1 \ge \cdots \ge \nu_n \ge 0)$. Then we must have that $n \le \min\{k, l\} = m$ and that for all $1 \le i \le n$ that $\nu_i \le \min\{\lambda_i, \lambda_i'\} = \mu_i$. Thus, $\nu \subseteq \mu$ and so $\mu = \lambda \wedge \lambda'$ with respect to \subseteq . The existence and uniqueness of $\lambda \vee \lambda'$ is similar.

We now consider the ordering \leq , now assuming that $|\lambda| = |\lambda'|$. Before we define $\lambda \vee \lambda'$ for \leq , we prove that $\lambda \leq \lambda'$ if and only if $\lambda'^* \leq \lambda^*$. This follows a proof given by [Ros]. Note that $\lambda \leq \lambda'$ if and only if λ can be obtained from λ' by moving boxes successively down from higher rows to lower rows such that every intermediate diagram is still a Ferrers diagram. This immediately implies the duality.

First, for a partition λ let $\hat{\lambda} := (0, \lambda_1, \lambda_1 + \lambda_2, \dots, \lambda_1 + \dots + \lambda_k)$. We remark that $\lambda \leq \lambda'$ if and only $\hat{\lambda} \leq_{\ell} \hat{\lambda}'$ where \leq_{ℓ} is *lexicographic ordering*. One can easily recover λ from $\hat{\lambda}$. By taking componentwise minimums as above for $\hat{\lambda}$ and $\hat{\lambda}'$, one recovers a tuple $\hat{\mu}$ which yields a partition μ . By the remark, we have that $\mu = \lambda \wedge \lambda'$ with respect to \leq . Then to define $\lambda \vee \lambda'$, we have that $\lambda \vee \lambda' := (\lambda^* \wedge \lambda'^*)^*$. That this is our desired maximum follows from the above paragraph on conjugation being a lattice antiautomorphism on partitions of the same weight. Uniqueness is also immediate.

Solution: [Man01] Ex. 1.1.7: These ideas come from [Sta24, Proposition 7.4.1]. Let $X=(x_{ij})$ be the matrix of variables where $x_{ij}=x_j$, so the first column of X is all x_1 , the second column is all x_2 , etc. We can obtain a term from of e_{λ} from X by choosing λ_1 elements from the first row, λ_2 elements from the second row, corresponding to picking a term from e_{λ_1} , then a term from e_{λ_2} , etc. After choosing all elements, let the result be \overline{x}^{α} . Replace all the chosen elements with 1's and all the other elements with 0's. This gives a matrix with row sums given by λ and all column sums given by α . Note that α is not necessarily a partition, but rather just a tuple (also called a *weak composition*), which is in line with the fact that monomial symmetric functions are sums over arbitrary orderings of tuples with a fixed set of entries. Conversely, any such 0-11matrix with the prescribed row and column sums describes a term of e_{λ} . Thus, we have that $e_{\lambda} = \sum_{\mu} a_{\lambda\mu} m_{\mu}$.

Similarly, with X as before, we can obtain a term of h_{λ} as follows. Choose λ_1 elements from the first row, but we allow each term to be chosen more than once. Next, choose λ_2 elements from the second row, again allowing for each term to be chosen more than once. Continuing on in this manner yields a term \overline{x}^{α} . This again give a matrix, however this time with entries in $\mathbb N$ given by numbering the elements with however many times they were chosen. This matrix has the prescribed row and column sums. Conversely, any such matrix with entries in $\mathbb N$ with the given row and column sums gives a term of h_{λ} and so $h_{\lambda} = \sum_{\mu} b_{\lambda\mu} m_{\mu}$.

Now suppose that $a_{\lambda\mu} > 0$. Then we want to show that $\mu \leq \lambda^*$, i.e. that $|\lambda| = |\mu|$ and that for all i we have that $\mu_1 + \dots + \mu_i \leq \lambda_1^* + \dots + \lambda_i^*$. If $|\lambda| \neq |\mu|$, then we must have that $a_{\lambda\mu} = 0$ as both $|\lambda|$ and $|\mu|$ are equal to the total number of ones and so we must have that $|\lambda| = |\mu|$. So by the above argument, there exist a 0-1-matrix M with row sums given by λ and column sums given by μ . Suppose there exists i such that $\mu_1 + \dots + \mu_i > \lambda_1^* + \dots + \lambda_i^*$.

((Morally)) I would like to say the λ_i^* correspond to column sums as well in some manner but I am not sure how to phrase that.

2.2 Schur Functions

Solution: [Man01] Ex. 1.2.4: We have that $a_{\delta+\delta} = \det(x_i^{\delta_j+n-j}) = \det(x_i^{2n-2j})$. This is the Vandermonde determinant again, but now every term is squared. Thus, $a_{\delta+\delta} = \prod_{1 \le i < j \le n} (x_i^2 - x_j^2)$. Thus, we have that

$$s_{\delta} = \frac{a_{\delta + \delta}}{a_{\delta}} = \frac{\prod_{1 \le i < j \le n} (x_i^2 - x_j^2)}{\prod_{1 \le i < j \le n} (x_i - x_j)} = \prod_{1 \le i < j \le n} (x_i + x_j).$$

Solution: [Man01] Ex. 1.2.7: By Pieri's formulas, we have that

$$\left(\sum_{\mu \text{ even}} s_{\mu}\right) \cdot \left(\sum_{n=0}^{k} e_{k}\right) = \sum_{\mu \text{ even}} \sum_{k=0}^{n} s_{\mu} e_{k} = \sum_{\mu \text{ even}} \sum_{k=0}^{n} \sum_{\lambda \in \mu \otimes 1^{k}} s_{\lambda}.$$
(2.1)

Clearly, every s_{λ} term, *not monomial terms*, in the last summation of Equation (2.1) is a term in $\sum_{\lambda} s_{\lambda}$, except possibly with a coefficient > 1. We claim that all the coefficients are indeed 1 and that every term in $\sum_{\lambda} s_{\lambda}$ appears in the in the last summation of Equation (2.1). This follows from the fact that for any λ , we can decompose λ into an even μ by removing at most one box from each row of λ in each row which is odd and that this removal is unique.

Solution: [Man01] Ex. 1.2.12: The first identity comes from noticing that if you take any standard Young tableaux with n boxes and remove the box labelled n, then you obtain a standard Young tableaux with n-1 boxes. Furthermore, if you add a box labelled n to any valid position of a Young tableaux with n-1 boxes, valid meaning the resulting shape is still a partition, then you obtain a standard Young tableaux with n boxes. This gives a combinatorial bijection between the two sets described by each side of first identity.

For the second identity, suppose that $|\lambda|=(1)$. Then λ is just a single box and thus we must have that $K_{\lambda}=K_{(1)}=1$ and so $(1+|(1)|)K_{(1)}=2$. Then $(1)\otimes 1=\{(1,1),(2)\}$ which each have exactly one standard filling and so we have that $K_{(1,1)}=K_{(2)}=1$ and thus $\sum_{\mu\in(1)\otimes 1}K_{\mu}=2$. Now suppose that $|\lambda|=n>1$. We have that

$$(1+|\lambda|)K_{\lambda} = (1+|\lambda|)\sum_{\lambda \in \mu \otimes 1} K_{\mu}$$

$$= \sum_{\lambda \in \mu \otimes 1} K_{\mu} + \sum_{\lambda \in \mu \otimes 1} (1+|\mu|)K_{\mu}$$

$$= \sum_{\lambda \in \mu \otimes 1} K_{\mu} + \sum_{\lambda \in \mu \otimes 1} \sum_{\nu \in \mu \otimes 1} K_{\nu}$$

((Not sure)) how to work with this double summation.

For the third identity, as $K_{(1)} = 1$ we immediately have that $\sum_{\lambda=1} K_{\lambda}^2 = K_{(1)}^2 = 1 = 1!$. Now suppose that $|\lambda| = \ell > 0$. Then we have that

$$\begin{split} \ell! &= \ell \cdot (\ell - 1)! \\ &= \ell \sum_{|\lambda| = \ell - 1} K_{\lambda}^2 \\ &= \sum_{|\lambda| = \ell - 1} K_{\lambda} \cdot (\ell K_{\lambda}) \\ &= \sum_{|\lambda| = \ell - 1} K_{\lambda} \cdot \sum_{\mu \in \lambda \otimes 1} K_{\mu} \end{split}$$

((Not sure)) how to work with this double summation.

Solution: [Man01] Ex. 1.2.15: Recall that $h_j = s_{(j)}$ and $e_k = s_{1^k}$. Using the Pieri formulas, we can express $h_j e_k$ as

$$\sum_{\mu\in 1^k\otimes j}s_\mu=s_{1^k}h_j=h_je_k=s_{(j)}e_k=\sum_{\mu\in (j)\otimes 1^k}s_\mu.$$

((Expanding either side)) gives $h_j s_k = s_{(j-1|k)} + s_{(j|k-1)}$ which is already stated. Not sure what a second way would be, nor how to introduce the variable q in a generating-function sort of way.

2.3 The Knuth Correspondence

Solution: [Man01] Ex. 1.3.1: Already saw this as the *Row Bumping Lemma* in [Ful97] which gives a slightly stronger characterization.

2.4 Some Applications to Symmetric Functions

Solution: [Man01] Ex. 1.4.4: ((Why)) are these bases?

Let $M_{\lambda\nu}$ and $N_{\lambda\nu}$ be such that $s_{\lambda}=\sum_{\mu}M_{\lambda\mu}=\sum_{\nu}N_{\lambda\nu}b_{\nu}$. Then we have that

$$\begin{split} \sum_{\lambda} a_{\lambda}(\overline{x}) b_{\lambda}(\overline{y}) &= \prod_{i,j} (1 - x_i y_j)^{-1} \\ &= \sum_{\lambda} s_{\lambda}(\overline{x}) s_{\lambda}(\overline{y}) \\ &= \sum_{\lambda} \left(\sum_{\rho} M_{\lambda \rho} a_{\rho}(\overline{x}) \right) \left(\sum_{\nu} N_{\lambda \nu} b_{\nu}(\overline{y}) \right) = \sum_{\rho, \nu} \left(\sum_{\lambda} M_{\lambda \rho} N_{\lambda \nu} \right) a_{\rho}(\overline{x}) b_{\nu}(\overline{y}). \end{split}$$

Thus by the fact that the a_{ρ} and b_{ν} form bases in their respective variables, we have that $\sum_{\lambda} M_{\lambda\rho} N_{\lambda\nu} = \langle a_{\rho}, b_{\nu} \rangle$. We want to show that $\langle a_{\rho}, b_{\nu} \rangle = \delta_{\rho\nu}$. Indeed, this follows from that

$$\sum_{\lambda} s_{\lambda}(\overline{x}) s_{\lambda}(\overline{y}) = \sum_{\lambda} a_{\lambda}(\overline{x}) b_{\lambda}(\overline{y}) \implies \sum_{\lambda} M_{\lambda \rho} N_{\lambda \nu} = \delta_{\rho \nu}.$$

2.5 The Littlewood-Richardson Rule

Solution: [Man01] Ex. 1.5.4: We consider the coefficient of \bar{x}^{α} on both sides. We have that

$$\prod_i (1-x_i)^{-1} \cdot \prod_{i < j} (1-x_i x_j)^{-1} = \left(\prod_i \sum_{n \ge 0} x_i^n\right) \cdot \left(\prod_{i < j} \sum_{n \ge 0} x_i^n x_j^n\right).$$

Notices that the coefficient of \overline{x}^{α} is equal to the number of symmetric matrices A such that the vector of rowsums of A is equal to α . Then, by the combinatorial definition of Schur polynomials, the coefficient of \overline{x}^{α} in $\sum_{\lambda} s_{\lambda}(\overline{x})$ is equal to the number of semistandard Young tableaux with weight vector α . Then by [Man01, Knuth Correspondence 1.3.4] and in particular [Man01, Corollary 1.5.3], we know these two quantities must be equivalent, and thus the identity holds.

Next, recall from ?? that $\left(\sum_{\mu \text{ even}} s_{\mu}(\overline{x})\right) \cdot \left(\sum_{k=0}^{n} e_{k}\right) = \sum_{\lambda} s_{\lambda}$. To see that

$$\sum_{\mu \text{ even}} s_{\mu}(\overline{x}) = \prod_{i} (1 - x_{i})^{-2} \cdot \prod_{i < j} (1 - x_{i}x_{j})^{-1} = \prod_{i \le j} (1 - x_{i}x_{j})^{-1}$$

simply apply the above identity and the fact that $\sum_k e_k = \prod_i (1+x_i)$ and divide. To prove the other identity, apply the involution ω using the fact that the sum over all λ is just a reordering of the sum over all λ^* . The same arguments above generalize to the generating function with $t^{o(\lambda)}$ by multiplying/dividing appropriately by $1+tx_i$ corresponding to odd parts of λ .

Solution: [Man01] Ex. 1.5.6: By [Man01, Corollary 1.5.3], every standard tableau with n boxes corresponds to an involution $\sigma: [n] \leftrightarrow [n]$. Thus, we can establish the recurrence for involution. Every involution $\sigma: [n+1] \leftrightarrow [n+1]$ takes one of two forms. The first is that $\sigma(n+1) = n+1$ and the rest is an involution $\sigma|_{[n]}: [n] \leftrightarrow [n]$. Otherwise, σ swaps n+1 and some $i \in [n]$ and the rest of σ is an involution on the other n-1 elements which up to relabelling is an involution from n-1 to n-1 elements. As these cases are disjoint, this yields the recursive formula.

To prove the identity, we work with exponential generating functions. This follows ideas from [Sta24, Example 7.8.5]. \Box

Bibliography

- [Ful97] William Fulton. *Young Tableaux: With Applications to Representation Theory and Geometry*. Cambridge University Press, 1997. ISBN: 0521567246. DOI: 10.1017/cbo9780511626241.
- [Mac98] Ian Grant Macdonald. Symmetric functions and Hall polynomials. Oxford university press, 1998.
- [Man01] L. Manivel. *Symmetric Functions, Schubert Polynomials and Degeneracy Loci*. Collection SMF. American Mathematical Society, 2001. ISBN: 9780821821541. URL: https://books.google.com/books?id=yz7gyKYgIuwC.
- [Ros] Hjalmar Rosengren. *Proof of the duality of the dominance order on partitions*. Mathematics Stack Exchange. URL: https://math.stackexchange.com/a/3429855.
- [Sta24] R.P. Stanley. *Enumerative Combinatorics: Volume 2.* Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2024. ISBN: 9781009262484. DOI: 10.1017/9781009262538.