E1. Summer Homework

time limit per test: 3 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

By the age of three Smart Beaver mastered all arithmetic operations and got this summer homework from the amazed teacher:

You are given a sequence of integers $a_1, a_2, ..., a_n$. Your task is to perform on it m consecutive operations of the following type:

- 1. For given numbers x_i and v_i assign value v_i to element a_{x_i} .
- 2. For given numbers l_i and r_i you've got to calculate sum , where $f_0 = f_1 = 1$ and at $i \ge 2$: $f_i = f_{i-1} + f_{i-2}$.
- 3. For a group of three numbers $l_i r_i d_i$ you should increase value a_x by d_i for all $x (l_i \le x \le r_i)$.

Smart Beaver planned a tour around great Canadian lakes, so he asked you to help him solve the given problem.

Input

The first line contains two integers n and m ($1 \le n, m \le 2 \cdot 10^5$) — the number of integers in the sequence and the number of operations, correspondingly. The second line contains n integers $a_1, a_2, ..., a_n$ ($0 \le a_i \le 10^5$). Then follow m lines, each describes an operation. Each line starts with an integer t_i ($1 \le t_i \le 3$) — the operation type:

- if $t_i = 1$, then next follow two integers $x_i v_i$ $(1 \le x_i \le n, 0 \le v_i \le 10^5)$;
- if $t_i = 2$, then next follow two integers $l_i r_i$ $(1 \le l_i \le r_i \le n)$;
- if $t_i = 3$, then next follow three integers $l_i r_i d_i$ $(1 \le l_i \le r_i \le n, 0 \le d_i \le 10^5)$.

The input limits for scoring 30 points are (subproblem E1):

• It is guaranteed that n does not exceed 100, m does not exceed 10000 and there will be no queries of the 3-rd type.

The input limits for scoring 70 points are (subproblems E1+E2):

• It is guaranteed that there will be queries of the 1-st and 2-nd type only.

The input limits for scoring 100 points are (subproblems E1+E2+E3):

· No extra limitations.

Output

For each query print the calculated sum modulo $1000000000 \, (10^9)$.

Examples

output

```
12
```

50
input
5 4 1 3 1 2 4 3 1 4 1 2 2 4 1 2 10 2 1 5
output
12 45