Text as Data: Homework 1

Question 1: Using Python

- a) Install Python, Rstudio, and R markdown
- b) Using Python write to a .txt file:
 - Hello World

With a for loop, write the numbers 1-100 to the same text file

c) Close the .txt file, turn it in with your homework

Question 2: Properties of Random Variables

a) Suppose X is a random variable, with $E[X] = \mu$ and $var(X) = \sigma^2$. Show that c = E[X] minimizes

$$E[(X-c)^2]$$

Why does this suggest E[X] is a "good" guess for the value of X?

- b) Suppose Y and Z are random variables, with joint density f(y, z).
 - i) How do we obtain the marginal distribution of Y, $f_Y(y)$ (should be an expression involving an integral)
 - ii) How do we obtain the marginal distribution of Z, $f_Z(z)$ (should be an expression involving an integral)
 - iii) Show that if Y and Z are independent, E[YZ] = E[Y]E[Z]

Question 3: Finding Critical Values for a Function

Suppose we have a function $f: \Re \to \Re$, $f(x) = \sin(x)$.

- a) Using R plot $\sin(x)$ for $x \in [-2\pi, 2\pi]$ (here π is the mathematical constant).
- b) What is f'(x) (first derivative at x)? Using R plot it over $[-2\pi, 2\pi]$
- c) What is f''(x) (second derivative at x)? Using R plot it over $[-2\pi, 2\pi]$

We say that x^* is a critical value for a function if $f'(x^*) = 0$. We can find x^* algebraically. Or, we can use a computational approach.

We discussed the Newton-Raphson approach in class on Thursday. We're going to write our own implementation of the algorithm in R and apply it to find the critical values of $f(x) = \sin(x)$

d) Suppose that we have current guess for the root x_t . Then the updated guess, x_{t+1} is given by

$$x_{t+1} = x_t - \frac{f'(x_t)}{f''(x_t)}$$

where $f'(x_t)$ is the first derivative evaluated at x_t and $f''(x_t)$ is the second derivative evaluated at x_t .

Write a function in R that provides the update step for some value x_t if $f(x) = \sin(x)$.

- e) The Newton-Raphson algorithm continues to update until the size of the update step drops below a threshold. Using the while command in R, write a loop that continues updating until the change, $(|x_{t+1} x_t|)$ drops below 10^{-5} .
- f) Place the while loop in a function that returns the converged value $x_{\rm final}$
- g) Use your function with initial guesses -2, -1, 1, 2. What values do you obtain? Now examine the behavior close to 0. Why is it so unstable?

Table 1: Pseudo Code for Newton Raphson (To assist in developing your function)

- x_0 = initial guess
- Do while change > tolerance:

$$x_{t+1} = x_t - \frac{f'(x_t)}{f''(x_t)}$$

$$change = |x_{t+1} - x_t|$$

• return x_{t+1}

Problem 3: Probit Regression with a Prior

Suppose that we assume the following data generation process

$$Y_i \sim \text{Bernoulli}(\pi_i)$$

 $\pi_i = \Phi(\boldsymbol{X}_i \boldsymbol{\beta})$
 $\beta_j \sim \text{Normal}(\mu, \sigma_j^2)$

with $X_i = (1, x_i)$ for all i (i = 1, ..., N), $\boldsymbol{\beta} = (\beta_1, \beta_2)$, and $\Phi(\cdot)$ is the cumulative normal distribution function.

We might equivalently write a directed acyclic graph as,

This is very similar to the model described in class, but now we have added a *prior* on β . This slightly alters the objective function:

$$p(\boldsymbol{\beta}|\boldsymbol{Y},\boldsymbol{X}) \propto p(\boldsymbol{\beta}|\mu,\sigma^2) \times p(\boldsymbol{Y}|\boldsymbol{X},\boldsymbol{\beta})$$

$$\propto \prod_{i=1}^{2} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\beta_j - \mu)^2}{2\sigma^2}\right) \times \prod_{i=1}^{N} \Phi(\boldsymbol{X}_i\boldsymbol{\beta})^{Y_i} (1 - \Phi(\boldsymbol{X}_i\boldsymbol{\beta})^{1 - Y_i}$$
(1)

In this problem, we will examine how the prior on β , and in particular the values we set for μ and σ^2 , alters our inferences about β .

- a) Analytically, write out the $\log(p(\boldsymbol{\beta}|\boldsymbol{Y},\boldsymbol{X}))$.
- b) In R create a function for the log of Equation 1.
- c) Using the synthetic data and the optim guide from class, use optim to find $\widehat{\beta}$ with $\mu = 0$ and $\sigma^2 = 1000$
- d) Set $\mu = 1$ and then vary σ^2 . Using a for loop, store estimates of how β_2 changes as you vary σ^2 from 10 to 0.01. Plot β_2 against σ^2 and describe what happens as σ^2 varies.