Q5 [编辑]

如何证明P113的 Corollary 5.4? (闫引桥)

Corollary 5.4 Let $\mathbf{X} \sim N_p(\mu, \mathbf{V})$, \mathbf{A} be symmetric with rank r, and \mathbf{B} be symmetric with rank s; if $\mathbf{BVA} = \mathbf{0}$, then $\mathbf{X}^T \mathbf{AX}$ and $\mathbf{X}^T \mathbf{BX}$ are independent.

(12 Result 5.16 12 12 NA I 18

因为A的B 和在 symmetric, 则 存在 P, E Pxr, Q, E Pxs

$$A = P_1 \Lambda_1 P_1^T$$
 $B = Q_1 \Gamma_1 Q_1^T$

A, ∈ IR with r=rank(A). P. ∈ IR sal with S=rank(B)

叫有 joint dirth bution

$$\begin{bmatrix} P_{i}^{\mathsf{T}} X \\ Q_{i}^{\mathsf{T}} X \end{bmatrix} = \begin{bmatrix} P_{i}^{\mathsf{T}} \\ Q_{i}^{\mathsf{T}} \end{bmatrix} X \sim \mathcal{N}_{2P} \left(\begin{bmatrix} P_{i}^{\mathsf{T}} \mathcal{M} \\ Q_{i}^{\mathsf{T}} \mathcal{M} \end{bmatrix}, \begin{bmatrix} P_{i}^{\mathsf{T}} \mathcal{V} P_{i} & P_{i}^{\mathsf{T}} \mathcal{V} Q_{i} \\ Q_{i}^{\mathsf{T}} \mathcal{V} P_{i} & Q_{i}^{\mathsf{T}} \mathcal{V} Q_{i} \end{bmatrix} \right)$$

若 BVA =0, 知 QIFQTVPIAIPT=0

由于 Γ_1 , Λ_1 都之 可连 xt 有 P_1 , Q_1 $Q_1 = 1$ s, P_1 $P_1 = 1$ r

$$\Rightarrow Q_1^T \vee P_1 = 0$$

Um P, TX fo Q, TX , P X TAX fo X TBX 3kz.

? $\partial A : B = [b_1, \dots, b_T]$. $A = [a_1, \dots, a_T]$ $M \quad B \lor A = \begin{bmatrix} b_1^T \\ \vdots \\ b_T^T \end{bmatrix} \lor \begin{bmatrix} a_1, \dots, a_T \end{bmatrix} = \begin{bmatrix} b_1^T \lor a_1 & \dots & b_1^T \lor a_T \\ \vdots & & & \vdots \\ b_n^T \lor a_1 & \dots & b_n^T \lor a_T \end{bmatrix} = O$

 γ $\forall i.j$, $b_j^{\mathsf{T}} \vee a_i = 0$. 这 $\vee \succ 0$, 则 $\eta \vee$ 这 \times 内积 $\langle a_i, b_j \rangle_{_{\boldsymbol{V}}} = b_j^{\mathsf{T}} \vee a_i$

tM3于 $\{a_i\}$ 的 $\{b_i\}$ 在 $\langle\cdot,\cdot\rangle_V$ 意义下走 树飞正之为 ,从面导改了 χ^TAX 和 χ^TBX 创意。