Introdução à Teoria da Computação

Márcio Moretto Ribeiro

22 de Agosto de 2020

Conteúdo

1	Inti	rodução	5						
	1.1	Apresentação	5						
	1.2	Problemas de Decisão	8						
	1.3	Linguagens Formais	10						
	1.4	Bibliografia	12						
2	Linguagens Regulares								
	2.1	Introdução	13						
	2.2	Autômatos Finitos Determinísticos	17						
	2.3	Autômatos Finitos Não-Determinísticos	23						
	2.4	$AFD \equiv AFN \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	28						
	2.5	Linguagens Regulares são Reconhecíveis por AFNs	34						
	2.6	Linguagens Reconhecíveis por AFNs são Regulares	42						
	2.7	Linguagens Não-Regulares	48						
3	Linguagens Livres de Contexto								
	3.1	Introdução	51						
	3.2	Autômatos de Pilha	59						
	3.3	LLCs são Reconhecíveis por APs	62						
	3.4	Linguagens Reconhecíveis por APs são Livres e Contexto	66						
	3.5	Linguagens que não são Livres de Contexto	69						
4	Má	quinas de Turing	73						
	4.1	Máquinas de Turing Determinísticas	74						
	4.2	Máquinas de Turing Múltifitas	78						
	4.3	Máquinas de Acesso Aleatório (RAM)							
	4.4	Máquinas de Turing Não-determinísticas							
	15	O Problema da Parada							

		4.5.1	O infinito de Cant	tor										86
		4.5.2	Máquina de Turin	g Ui	nive	ers	sal							87
		4.5.3	O Problema da Pa	arad	a .									88
		4.5.4	Tese de Church-T	uring	g .									88
5	Con	nplexi	dade Computacio	onal										91
	5.1	Comp	lexidade de Tempo											91
	5.2	NP-co	mpletude											95
\mathbf{A}	Exe	rcícios												99
	A.1	Exercí	ícios do Capítulo 2											99
	A.2	Exercí	ícos do Capítulo 3											101
	A.3	Exercí	ícos do Capítulo 4											102
			ícos do Capítulo 5											

Capítulo 1

Introdução

1.1 Apresentação

O curso de Teoria da computação procura responder duas perguntas centrais da área de Ciência da Computação:

- 1. Que problemas são resolvíveis de forma automática? (computabilidade)
- 2. Que problemas são resolvíveis de maneira eficiente? (complexidade)

Para responder à primeira pergunta primeiro devemos esclarecer alguns pontos:

- O que estamos chamando de *problema* no sentido computacional do termo?
- O que é um *método automático* de resolução?

Extencionalmente, um problema computacional é uma espécie de função que descreve os valores aceitos como entrada (domínio) e os valores esperados como saída. A solução de um problema computacional, como estamos acostumados, é uma sequência de instruções inequívocas – um algoritmo – que dado um elemento válido de entrada produz a saída esperada.

Exemplo 1.1.1:

O problema da ordenação pode ser descrito da seguinte maneira:

Entrada: Uma sequência de n inteiros $\langle a_1, \ldots, a_n \rangle$.

Saída: Uma permutação da entrada $\langle a'_1, \ldots, a'_n \rangle$ em que $a'_i \leq a'_j$ para todo i < j.

Uma instância desse problema seria dada por uma entrada específica (e.g. $\langle 4, 2, 42, 24 \rangle$) e sua saída ($\langle 2, 4, 24, 42 \rangle$). E a solução do problema é qualquer dos algoritmos de ordenação que estudamos no curso de análise de algoritmos.

Nosso foco neste curso será nos problemas ditos de $decis\~ao$, ou seja, naqueles cuja saída deve ser SIM ou N $\~aO$

Exemplo 1.1.2:

O seguinte é um problema clássico de decisão:

Entrada: Um inteiro n > 1.

Saída: SIM se n é primo e NÃO caso contrário.

Como veremos na próxima seção, existe uma relação íntima entre problemas de decisão e linguagens formais, a saber, para cada problema de decisão existe uma linguagem formal equivalente e vice-versa. De fato, em grande parte do curso estudaremos classes de linguagens formais.

Voltemos então para a pergunta: o que é um método automático de resolução?

Para responder a essa pergunta, que não tem nada de trivial, precisamos de um *modelo* do funcionamento de dispositivos eletrônicos. Como qualquer outro modelo, faremos abstrações, simplificaremos e desprezaremos variáveis.

Podemos refrasear nossa pergunta, de maneira agora um pouco mais precisa:

• Que linguagens são reconhecíveis por certo modelo de computação?

Durante o curso estudaremos uma sequência de modelos de computação com expressividade crescente. Começaremos com modelos simples, adequados para representar dispositivos simples e capazes de reconhecer uma certa classe de linguagens. Conforme avançarmos no curso estudaremos modelos mais sofisticados capazes de representar classes cada vez maiores de linguagens.

O diagrama abaixo apresenta um resumo dos três primeiros capítulos do livro. No Capítulo 2 estudaremos Autômatos Finitos Determinísticos e

7

não-Determinísticos, mostraremos que eles são equivalentes e são capazes de reconhecer exatamente a classe das linguagens regulares e terminaremos mostrando que nem toda linguagem é regular. No Capítulo 3 começaremos estudando as Linguagens Livres de Contexto e os Autômatos de Pilha, mostraremos a equivalência entre os dois e terminaremos mostrando que nem toda linguagem é livre de contexto. No Capítulo 4 veremos Máquinas de Turing Determinísticas e não-Determinísticas, Linguagens Recursivas e Recursivamente Enumeráveis.

Modelos de Computação	Classes de Linguagens					
AFD AFN		Linguagens Regulares	rqxe			
		Linguagens Regulares				
AP		Linguagens Livres de Contexto	expressividade			
MT		Linguagens Recursivas				
101 1	\Leftrightarrow	Ling. Recursivamente Enumeráveis				

Tabela 1.1: Resumo da apostila

As Máquinas de Turing (MTs) são o modelo mais completo que veremos. Na verdade a Tese de Church afirma que, de fato, as MTs são o modelo mais completo possível. Em outras palavras: se algo pode ser computado, então ele pode ser computado por uma MT.

Por outro lado, veremos que existem linguagens que não são reconhecíveis por MTs, ou equivalentemente, existem problemas de decisão que não admitem solução computacional (*indecidíveis*).

$$Regulares \subset LLCs \subset Recursivas \subset REs \subset Linguagens$$

Para finalizar o curso, no último capítulo nos voltaremos para a segunda pergunta central:

• Que problemas podem ser resolvidos de maneira eficiente?

A resposta dessa pergunta certamente depende do modelo de computação que estamos considerando e o que entendemos por *eficiência*. Vamos convencionar que estamos falando de MTs e que por eficientes queremos dizer soluções que consomem tempo polinomial em relação ao tamanho da entrada. Assim, podemos refrasear a questão central da seguinte forma:

• Para quais problemas existe uma MT que o resolve em tempo polinomial?

Chamaremos essa classe de problemas de P. Note que, diferente do curso de análise de algoritmos em que o foco está nos algoritmos e sua eficiência, aqui o foco está nos problemas. A pergunta não é quão eficiente é uma determinada solução de um problema, mas que problemas estão em cada classe.

Se substituirmos as MT Determinísticas por não-Determinísticas, teremos outra classe de problemas, a classe NP.

O maior problema em aberto hoje na computação, e quiçá na matemática, é saber se essas classes coincidem:

$$P \stackrel{?}{=} NP$$

No fim do curso procuraremos definir o problema de maneira formal e apresentar os poucos resultados mais simples sobre esse assunto.

1.2 Problemas de Decisão

Vamos começar estudando um problema de decisão de grande importância na Teoria da Computação por se tratar do primeiro problema demonstradamente NP-completo (veremos isso no Capítulo 5). O problema que nos referimos é o de decidir se uma fórmula proposicional é ou não satisfatível. Recordemos do curso de Matemática Discreta que uma fórmula proposicional sempre pode ser escrita na Forma Normal Conjuntiva (FNC), ou seja, como uma conjunção de disjunção de literais. Vamos então definir a linguagens das fórmulas supondo que ela esteja na FNC para facilitar.

Partimos de um conjuntos finito cujos elementos são chamados variáveis $proposicionais <math>\mathbb{P} = \{p_1 \dots p_n\}.$

Um literal é qualquer elemento de $\mathbb{L} = \mathbb{P} \cup \overline{\mathbb{P}}$ onde $\overline{\mathbb{P}} = \{\bar{p}_i : p_i \in \mathbb{P}\}$. Ou seja, um literal é uma variável ou sua negação que representamos pelo mesmo símbolo com um traço em cima.

Uma sequência de literais é chamado de *cláusula* e a representaremos como $l_1 l_2 \dots l_n$ onde $l_i \in \mathbb{L}$.

Exemplo 1.2.1:

Seja $\mathbb{P} = \{p_1, p_2, p_3\}$ então as seguintes são cláusulas:

 $p_1p_2p_3\bar{p_1}$

 $p_2\bar{p_2}p_1$

 p_1 $p_1p_2p_3$

Uma sequência de cláusulas é chamada de fórmula e será representada como $c_1; c_2; \ldots; c_n$.

Exemplo 1.2.2:

Seja $\mathbb{P}=\{p_1,p_2,p_3\}$ então as seguintes são fórmulas: $p_1p_2;p_2p_3;\bar{p_3}$ $p_1\bar{p_1};p_2\bar{p_2}$ $p_1p_2p_3$

Interpretaremos uma sequência de literais de maneira disjuntiva e uma sequência de cláusulas de maneira conjuntiva da seguinte forma. Uma função $v: \mathbb{L} \to \{0,1\}$ é uma valoração se para todo $p \in \mathbb{L}$ temos:

$$v(p) = 1$$
 sse $v(\bar{p}) = 0$
 $v(p) = 0$ sse $v(\bar{p}) = 1$

Dizemos que uma valoração v satisfaz uma cláusula $l_1 \dots l_n$ se $v(l_i)=1$ para algum i. Em outras palavras, a valoração satisfaz a cláusula se ela atribuiu o valor verdade para algum literal da cláusula. Uma valoração v satisfaz uma fórmula na FNC $c_1; \dots; c_n$ ela satisfaz cada uma das cláusulas da fórmula.

Exemplo 1.2.3:

```
Seja \mathbb{P}=\{p_1,p_2,p_3\}. A valoração v tal que v(p_1)=v(p_2)=1 e v(p_3)=0 satisfaz as seguintes fórmulas: p_1\bar{p_2};p_2;p_3p_1 p_1\bar{p_1};p_2\bar{p_2} \bar{p_3}
```

Por outro lado, v não satisfaz as seguintes fórmulas:

 p_3 $p_3; p_1p_2; p_1$ $p_3p_1; \bar{p_1}\bar{p_2}$

Uma fórmula é dita satisfatível se existe uma valoração v que a satisfaça.

Exemplo 1.2.4:

São exemplos de fórmulas satisfatíveis:

 $p_1p_2; \bar{p_1}\bar{p_2}$ p_1p_2 p_1

São exemplos de fórmulas não satisfatíveis:

 $p_1; \bar{p_1}$ $p_1\bar{p_2}; p_2; \bar{p_1}$

O problema da satisfatibilidade, ou simplesmente SAT, é um problema de decisão que pode ser enunciado da seguinte forma:

Entrada: Uma fórmula α na FNC qualquer sobre \mathbb{P} .

Saída: SIM se α é satisfatível e NÃO caso contrário.

1.3 Linguagens Formais

Um alfabeto é um conjunto finito qualquer Σ cujos elementos são chamados símbolos.

Exemplo 1.3.1:

São exemplos de alfabeto:

$$\Sigma = \{p_1, p_2, p_3\}$$

$$\overline{\Sigma} = \{\bar{p_1}, \bar{p_2}, \bar{p_3}\}$$

$$\Sigma \cup \overline{\Sigma} = \{p_1, p_2, p_3, \bar{p_1}, \bar{p_2}, \bar{p_3}\}$$

Uma sequência de símbolos de um alfabeto Σ é chamada de uma string ou palavra sobre esse alfabeto. A string vazia, que representa a sequencia de zero símbolos, será representa por ε . O comprimento de uma string s é representado por |s|.

Exemplo 1.3.2:

São string sobre $\Sigma = \{0, 1\}$ os seguintes:

01110

11

1

 ε

Além disso temos que:

$$|01110| = 5$$

$$|11| = 2$$

$$|1| = 1$$

$$|\varepsilon| = 0$$

Sejam $x = a_1 \dots a_n$ e $y = b_1 \dots b_m$ duas strings. A concatenação de x com y será representada por $x \cdot y = xy = a_1 \dots a_n b_1 \dots b_n$. Note que nem sempre $x \cdot y = y \cdot x$. Além disso, para todo x temos que $\varepsilon \cdot x = x \cdot \varepsilon = x$.

O conjunto de todas as strings sobre um alfabeto Σ será representada por Σ^* . Um conjunto de strings A sobre Σ é chamado de uma linguagem sobre Σ i.e. $A \subseteq \Sigma^*$ é uma linguagem.

Exemplo 1.3.3:

São linguagens sobre $\Sigma = \{p_1, p_2\}$:

$$A = \{p_1, p_2, p_1p_2, p_1p_1\}$$

$$B = \{p_1\}$$

$$C = \emptyset$$

$$D = \{\varepsilon, p_1, p_1p_1, p_1p_1p_1, \dots\}$$

Note que, como no último exemplo, uma linguagem pode ser infinita. Existe um problema de decisão naturalmente associado a cada linguagem L, o $problema\ do\ reconhecimento$:

Entrada: $x \in \Sigma^*$

Saída: SIM se $x \in L$ e NÃO caso contrário.

Conversamente, todo problema de decisão possui uma linguagem formal naturalmente associada da seguinte forma. Seja A a linguagem das entradas aceitas como válidas para o problema. Considere agora todas as strings x para as quais o problema de decisão deve responder SIM. O conjunto dessas strings é a linguagem associada ao problema.

Exemplo 1.3.4:

O problema SAT induz uma linguagem formal $A \subseteq \Sigma^*$ aonde $\Sigma = \{p_1, \ldots, p_n, \bar{p_1}, \ldots, \bar{p_n}\}$. A linguagem das fórmulas satisfatíveis.

1.4 Bibliografia

- Introdução à Teoria da Computação Michael Sipser
- Elementos da Teoria da Computação Lewis e Papadimitrius
- Computabilidade, Funções Computáveis, Lógica e os Fundamentos da Matemática - Carnielli e Epstein
- Computational Complexity Christos H. Papadimitriou

Capítulo 2

Linguagens Regulares

Neste capítulo estudaremos um modelo simples de computação, os autômatos finitos, e a classe das linguagens regulares.

2.1 Introdução

Voltaremos nossa atenção um instante para conjuntos (classes) de linguagens, ou seja, conjuntos de conjuntos de strings.

Exemplo 2.1.1:

 $\mathscr{L} = \{A: A \subseteq \Sigma^*\}$ é o conjunto de todas as linguagens sobre Σ

 \emptyset é a classe vazia.

 $\{\emptyset\}$ é a classe que contém apenas a linguagem vazia.

 $\{\{\varepsilon\},\emptyset\}$ é a classe que contém a linguagem vazia e a linguagem que possui apenas a string vazia.

Podemos aplicar operações sobre linguagens. Como linguagens são conjuntos de strings, podemos tomar a $uni\~ao$ de duas linguagens:

$$A \cup B = \{x \in \Sigma^* : x \in A \text{ ou } x \in B\}$$

Exemplo 2.1.2:

$$A = \{p_1p_2, p_1, p_2p_1\}$$

$$B = \{p_1p_1, p_3, p_1\}$$

$$A \cup B = \{p_1p_2, p_1, p_2p_1, p_1p_1, p_3\}$$

Outra operação sobre linguagens é *concatenação* que consiste na concatenação de cada combinação de strings da linguagem:

$$A \circ B = \{x \cdot y \in \Sigma^* : x \in A \in x \in B\}$$

Exemplo 2.1.3:

$$A = \{p_1p_2, p_1\}$$

$$B = \{p_1p_1, p_3\}$$

$$A \circ B = \{p_1p_2p_1p_1, p_1p_2p_3, p_1p_1p_1, p_1p_3\}$$

$$B \circ A = \{p_1p_1p_1p_2, p_1p_1p_1, p_3p_1p_2, p_3p_1\}$$

$$A \circ A = \{p_1p_2p_1p_2, p_1p_2p_1, p_1p_1p_2, p_1p_1\}$$

Podemos, por fim, aplica a *estrela de Kleene* sobre uma linguagem para produzir todas as possíveis concatenações dos elementos:

$$A^* = \{x_1 \dots x_k \in \Sigma^* : x_i \in A\}$$

Exemplo 2.1.4:

$$\begin{array}{lcl} A & = & \{a,b\} \\ A^* & = & \{\varepsilon,a,b,aa,ab,bb,ba,aaa,aab,aba,abb,\dots\} \end{array}$$

Repare que a notação Σ^* é consistente com a definição de estrela de Kleene.

As operações de união, concatenação e estrela de Kleene sobre linguagens são chamadas *operações regulares*.

Exemplo 2.1.5:

$$A = \{a\}$$

$$B = \{aa, b\}$$

$$A \circ B = \{aaa, ab\}$$

$$A \cup (A \circ B) = \{a, aaa, ab\}$$

$$(A \cup (A \circ B))^* = \{\varepsilon, a, aaa, ab, aa, aaaa, aab, aaaaaa, aaaab, \dots\}$$

Uma classe de linguagens \mathscr{L} é fechada por união quando temos que:

se
$$A, B \in \mathcal{L}$$
 então $A \cup B \in \mathcal{L}$

Analogamente, uma classe de linguagens $\mathcal L$ é fechada por concatenação quando temos que:

se
$$A, B \in \mathcal{L}$$
 então $A \circ B \in \mathcal{L}$

Por fim, \mathcal{L} é fechada pela estrela de Kleene quando temos que:

se
$$A \in \mathcal{L}$$
 então $A^* \in \mathcal{L}$

Exemplo 2.1.6:

$$\mathcal{L}_{1} = \{\{a\}, \{b\}\} \}$$

$$\mathcal{L}_{2} = \{\{a\}, \{b\}, \{a, b\}\} \}$$

$$\mathcal{L}_{3} = \{\{a\}, \{a, aa\}, \{a, aa, aaa\} \dots \}$$

$$\mathcal{L}_{4} = \{\{a\}, \{\varepsilon, a, aa, aaa, \dots \} \}$$

 \mathcal{L}_1 não é fechada por união, mas \mathcal{L}_2 é. \mathcal{L}_3 é fechada por concatenação e \mathcal{L}_4 é fechada pela estrela de Kleene.

A classe das *linguagens regulares* é a menor classe de linguagens fechada por união, concatenação e estrela de Kleene que contém a seguinte linguagem:

$$\{\{a\}:a\in\Sigma\}$$

Uma foram alternativa de definir linguagens regulares é por meio de expressões regulares. Uma *expressão regular* pode ser definida da seguinte forma:

se $r \in \Sigma$ então r é uma expressão regular, ϵ é uma expressão regular, ø é uma expressão regular, se r_1 e r_2 são expressões regulares então $r_1 \cup r_2$ é uma expressão regular, se r_1 e r_2 são expressões regulares então r_1r_2 é uma expressão regular e se r é uma expressão regular então r^* é uma expressão regular.

Exemplo 2.1.7:

São expressões regulares:

Ø

01

 $01^* \cup 1$

 $\epsilon \cup \emptyset$

Denotaremos L(r) a linguagem expressa pela expressão regular r:

$$L(a) = \{a\}$$
 para todo $a \in \Sigma$

$$L(\epsilon) = \{\varepsilon\}$$

$$L(\emptyset) = \emptyset$$

$$L(r_1 \cup r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1r_2) = L(r_1) \circ L(r_2)$$

$$L(r^{\star}) = L(r)^{*}$$

Exemplo 2.1.8:

$$L(\emptyset) = \emptyset$$

$$L(01) = L(0) \circ L(1) = \{01\}$$

$$L(01^* \cup 1) = L(01^*) \cup L(1) = L(0) \circ L(1^*) \cup \{1\} = \{0\} \circ \{1\}^* \cup \{1\} = \{0, \varepsilon, 1, 11, 111 \dots \}$$

$$L(\epsilon \cup \emptyset) = L(\epsilon) \cup L(\emptyset) = \{\varepsilon\} \cup \emptyset = \{\varepsilon\}$$

2.2 Autômatos Finitos Determinísticos

Um Autômato Finito Determinístico (AFD) é um modelo de computação, o mais simples que estudaremos, adequado para representar sistemas computacionais simples como portas automáticas de elevadores e termostatos.

Um AFD é definido formalmente como uma 5-upla $M=\langle Q, \Sigma, \delta, q_0, F \rangle$ em que:

Q é um conjunto finito cujos elementos são chamados estados,

 Σ é uma alfabeto,

 $\delta:Q\times\Sigma\to Q$ é uma função de estados e símbolos em estados chamada função de transição,

 $q_0 \in Q$ é um estado chamado inicial e

 $F \subseteq Q$ é um conjunto de estados chamados finais.

Representaremos um AFD pictoricamente por meio de um diagrama de estados. Nesse tipo de diagrama, cada estado $q \in Q$ é representado por uma circunferência:

Os estados finais $q \in F$ são representados por uma circunferência dupla:

O estado inicial é destacado com uma seta:

 ${\bf A}$ função de transição é representada por uma seta entre os estado com uma etiqueta:

$$\delta(q_1, a) = q_2$$

Exemplo 2.2.1:

Considere o seguinte AFD:

$$M = \langle Q, \Sigma, \delta, q_0, F \rangle$$

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{0, 1\}$$

$$F = \{q_1\}$$

Para simplificar, normalmente escreveremos a função δ como uma tabela:

$$\begin{array}{c|cccc} \delta & 0 & 1 \\ \hline q_0 & q_0 & q_1 \\ q_1 & q_2 & q_1 \\ q_2 & q_1 & q_1 \\ \end{array}$$

Essa tabela indica que:

$$\delta(q_0, 0) = q_0
\delta(q_0, 1) = q_1
\delta(q_1, 0) = q_2
\delta(q_1, 1) = q_1
\delta(q_2, 0) = q_1
\delta(q_2, 1) = q_1$$

O seguinte diagrama de estados representa esse AFD M:

Dizemos que um AFD $M = \langle Q, \Sigma, \delta, q_o, F \rangle$ aceita, ou reconhece, uma string $\omega = a_0 a_1 \dots a_n$ se existe uma sequência de estadps r_0, r_1, \dots, r_m tal que:

- 1. $r_0 = q_0$
- 2. $\delta(r_i, a_{i+1}) = r_{i+1}$
- 3. $r_n \in F$

Dizemos que M consome a string conforme passa de um estado para outro. Assim, começando pelo estado inicial, a cada passo a função de transição indica qual o próximo estado conforme consome um símbolo da string. Ao final do processo, quando todos os símbolos foram consumidos, a string é aceita se o estado atual for final.

Escrevemos L(M) para a linguagem das strings aceitas por M.

$$L(M) = \{ \omega \in \Sigma^* : M \text{ aceita } \omega \}$$

Exemplo 2.2.2:

O AFD M do exemplo anterior aceita a string 1101.

1.
$$r_0 = q_0$$

2.
$$r_1 = q_1 \text{ pois } \delta(q_0, 1) = q_1$$

3.
$$r_2 = q_1 \text{ pois } \delta(q_1, 1) = q_1$$

4.
$$r_3 = q_2$$
 pois $\delta(q_1, 0) = q_2$

5.
$$r_4 = q_1 \text{ pois } \delta(q_2, 1) = q_1$$

6. a string é aceita, pois $r_4 = q_1 \in F$

Exemplo 2.2.3:

$$M_1 = \langle \{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_1\} \rangle$$

$$\begin{array}{c|cccc} \delta & 0 & 1 \\ \hline q_0 & q_0 & q_1 \\ q_1 & q_0 & q_1 \\ \end{array}$$

$$L(M_1) = \{ \omega \in \{0,1\}^* : \omega \text{ termina com } 1 \}$$

Exemplo 2.2.4:

$$M_2 = \langle \{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_0\} \rangle$$

$$\begin{array}{c|cccc} \delta & 0 & 1 \\ \hline q_0 & q_0 & q_1 \\ q_1 & q_0 & q_1 \end{array}$$

2.2. AUTÔMATOS FINITOS DETERMINÍSTICOS

21

$$L(M_2) = \{\omega \in \{0,1\}^* : \omega = \varepsilon \text{ ou } \omega \text{ termina com } 0\}$$

Exemplo 2.2.5:

$$M_3 = \langle \{s, q_1, q_2, r_1, r_2\}, \{a, b\}, \delta, s, \{q_1, r_1\} \rangle$$

δ	$\mid a \mid$	b
s	q_1	r_1
q_1	q_1	q_2
q_2	q_1	q_2
r_1	r_2	r_1
r_2	r_2	r_1

 $L(M_3) = \{\omega \in \{a,b\}^* : \omega = \text{ começa e termina com o mesmo símbolo}\}$

Exemplo 2.2.6:

$$M_4 = \langle \{q_0, q_1, q_2, q_3\}, \{0, 1\}, \delta, q_0, \{q_3\} \rangle$$

δ	0	1
q_0	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_3
q_3	q_3	q_3

 $L(M_4) = \{\omega \in \{0,1\}^* : \omega \text{ contém a substring } 001\}$

Exemplo 2.2.7:

$$M_5 = \langle \{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_2\} \rangle$$

$$\begin{array}{c|cccc} \delta & a & b \\ \hline q_0 & q_1 & q_0 \\ q_1 & q_2 & q_1 \\ q_2 & q_3 & q_2 \\ q_3 & q_3 & q_3 \end{array}$$

$$L(M_5) = \{\omega \in \{0,1\}^* : \omega \text{ contém exatamente dois } a\}$$

Exemplo 2.2.8:

 $L(M_6) = \{\omega \in \{0,1\}^* : \omega \text{ contém pelo menos dois } b\}$

2.3 Autômatos Finitos Não-Determinísticos

Um AFD ao ler um símbolo a em um estado q tem uma única possíbilidade de próximo estado (por isso determinístico). Na definição isso é garantido pelo fato de δ ser uma função. No diagrama de estados isso se reflete no fato de que de cada estado sai uma e uma única seta com cada símbolo do alfabeto.

Os autômatos finitos $n\~ao$ -determinísticos (AFN) extendem os determinísticos em dois aspectos:

- 1. ao ler um símbolo em um estado o AFN possui um conjunto (possivelmente vazio) de possiblidades de próximos estados e
- 2. é possível mudar de estado sem consumir nenhum símbolo da entrada.

Definimos formalmente um AFN é também definido como uma 5-upla $N = \langle Q, \Sigma, \Delta, q_0, F \rangle$, mas agora $\Delta : Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$. Ou seja, a entrada da função pode ser a string vazia ϵ e sua saída é um conjunto de estados.

Representamos o diagrama de estados da mesma forma que fizemos com os AFDs, mas agora é possível que de um mesmo estado partam mais de uma seta com o mesmo síbolo, existem setas com ε e pode haver estados em que não haja seta com determinado símbolo.

Uma string é *aceita* por um AFN se existir *alguma* possibilidade de execução do autômato que consuma toda string e termine em um estado final.

Formalmente, $N = \langle Q, \Sigma, \Delta, q_0, F \rangle$ aceita uma string $\omega = y_1 \dots y_n$ onde $y_i \in \Sigma \cup \{\varepsilon\}$ se *existe* uma sequência de estados r_0, \dots, r_m tal que:

- 1. $r_0 = q_0$
- 2. $r_{i+1} \in \Delta(r_i, y_{i+1})$
- 3. $r_m \in F$

Novamente, escrevemos L(N) para a linguagem formada pelas strings aceitas por N.

Exemplo 2.3.1:

$$N_{1} = \langle \{q_{0}, q_{1}, q_{2}, q_{3}\}, \{0, 1\}, \Delta, q_{0}, \{q_{3}\} \rangle$$

$$\frac{\Delta \mid 0 \quad 1 \quad \varepsilon}{q_{0} \mid \{q_{0}\} \quad \{q_{0}, q_{1}\} \quad \emptyset}$$

$$q_{1} \mid \{q_{2}\} \quad \emptyset \quad \{q_{2}\}$$

$$q_{2} \mid \emptyset \quad \{q_{3}\} \quad \emptyset$$

$$q_{3} \mid \{q_{3}\} \quad \{q_{3}\} \quad \emptyset$$

Vamos simular as possíveis execuções desse autômato para a entrada 010110:

Cada ramo dessa árvore representa uma possível execução do autômato para a entrada dada. O autômato para apenas quando toda a entrada foi consumida. Note que nos três ramos mais a esquerda quando isso ocorre não estamos em um estado final, mas nas três da direita sim. Basta que exita um ramo, uma possibilidade de execução, para que a string seja aceita. Assim, neste caso a string de fato é aceita, basta escolher um caminha que termine em um estado final. Por exemplo: $q_0, q_0, q_1, q_1, q_2, q_3, q_3, q_3$

satisfaz a definição para a string $0101\varepsilon 10 = 010110$.

$$L(N_1) = \{\omega \in \{0,1\}^* : \omega \text{ contém } 101 \text{ ou } 11 \text{ como substring}\}$$

Exemplo 2.3.2:

$$N_{2} = \langle \{q_{0}, q_{1}, q_{2}, q_{3}\}, \{0, 1\}, \Delta, q_{0}, \{q_{3}\} \rangle$$

$$\frac{\Delta \mid 0 \quad 1 \quad \varepsilon}{q_{0} \mid \{q_{0}\} \mid \{q_{0}, q_{1}\} \mid \emptyset}$$

$$q_{1} \mid \{q_{2}\} \quad \{q_{2}\} \quad \emptyset$$

$$q_{2} \mid \{q_{3}\} \quad \{q_{3}\} \quad \emptyset$$

 $L(N_2) = \{\omega \in \{0,1\}^* : \omega \text{ contém 1 na antepenúltima posição}\}$

Exemplo 2.3.3:

O seguinte é o diagrama de N_3 :

$$L(N_3) = \{ \omega \in \{0, 1\}^* : |\omega| \text{ termina com } 010 \}$$

Exemplo 2.3.4:

A partir daqui vamos apresentar os autômatos apenas por seu diagrama. O seguinte é o diagrama de N_4 :

 $L(N_4) = \{\omega \in \{0\}^* : |\omega| \text{ \'e m\'ultiplo de 2 ou de 3}\}$

Exemplo 2.3.5:

O seguinte é o diagrama de N_5 :

 $L(N_5) = \{\omega \in \{0,1\}^* : \omega \text{ contém 1 ou um número ímpar de 0s}\}$

Exemplo 2.3.6:

O seguinte é o diagrama de N_6 :

$2.4 \quad AFD \equiv AFN$

Vimos nas últimas seções dois modelos computacionais. O primeiro é mais próximo da descrição de dispositivos simples, mas sua descrição em termos de diagramas possui diversas limitações. O segundo modelo é mais flexível e mais fácil de descrever pictoricamente.

A pergunta que procuraremos responder nessa seção é se algum desses modelos é mais expressivo que o outro. Ou seja, será que algum deles é capaz de resolver problemas, reconhecer linguagens, que o outro não consegue. A resposta será negativa. De fato, ambos os modelos são equivalentes em um sentido bastante preciso. Comecemos então com essa definição.

Dois autômatos M_1 e M_2 são ditos equivalentes (escrevemos $M_1 \sim M_2$) se reconhecem a mesma linguagem, ou seja, se $L(M_1) = L(M_2)$.

Exemplo 2.4.1:

$$\begin{array}{c|cc} \delta & a \\ \hline q_0 & q_1 \\ q_1 & q_0 \end{array} \qquad L(M_1) = L(a^*)$$

 $2.4. \quad AFD \equiv AFN$

29

$$M_2 = \langle \{q_0\}, \{a\}, \delta, q_0, \{q_0\} \rangle$$

$$\frac{\delta \mid a}{q_0 \mid q_0}$$

$$L(M_2) = L(a^*)$$

$$M_1 \sim M_2$$

Primeiramente devemos mostrar que AFNs são uma extensão dos AFDs. Essa parte coincide com nossa intuição uma vez que todo diagrama de um AFD é também um diagrama para um AFN (o contrário não vale!). Vamos formalizar essa ideia no seguinte teorema:

Teorema 2.4.2. Se M é um AFD então existe um AFN N tal que $M \sim N$

Demonstração. Seja $M=\langle Q,\Sigma,\delta,q_o,F\rangle$ um AFD qualquer. Considere o AFN $N=\langle Q,\Sigma,\Delta,q_0,F\rangle$ em que:

$$\Delta(a,q) = \begin{cases} \{q'\} & \text{se } a \in \Sigma \text{ e } \delta(a,q) = q' \\ \emptyset & \text{se } a = \varepsilon \end{cases}$$

Note que os diagramas de Me de Nsão idênticos e segue trivialmente que $M \sim N$

A demonstração da outra equivalência exige mais cuidado e faremos em duas partes. Primeiro vamos supor que não fosse permitido mudar de estado sem consumir símbolos em um AFN. Ou seja, suponhamos que não seja permitido usar ε nas setas no diagrama de estados. Vamos mostrar que é possível construir um AFD equivalente a esse AFN. A ideia da construção é que cada estado no AFD simula um conjunto de estados no AFN. Conforme consumimos a string nesse AFD o estado atual representa o conjunto de todos os estados possíveis no AFN ao consumir os mesmos símbolos.

Lema 2.4.3. Seja N um AFN em que $n\~ao$ é permitido mudar de estados sem consumir símbolos, ent $\~ao$ existe um AFD M tal que $N \sim M$.

Demonstração. Não faremos a demonstração completa, apenas apresentaremos a construção e posteriormente mostraremos alguns exemplos.

Seja $N=\langle Q,\Sigma,\Delta,q_0,F\rangle,$ construiremos $M=\langle Q',\Sigma',\delta,q_0',F'\rangle$ da seguinte forma:

1.
$$Q' = 2^Q$$

2.
$$\Sigma' = \Sigma$$

3.
$$q_0' = \{q_0\}$$

4.
$$F' = \{ R \in Q' : R \cap F \neq \emptyset \}$$

5.
$$\delta(R, a) = \bigcup_{r \in R} \Delta(r, a)$$

Exemplo 2.4.4:

$$N_1 = \langle \{1, 2\}, \{a, b\}, \Delta, 1, \{1\} \rangle$$

$$\begin{array}{c|cccc} \Delta & a & b \\ \hline 1 & \emptyset & \{2\} \\ 2 & \{1,2\} & \{1\} \end{array}$$

Seguindo a construção que vimos no teorema anterior:

$$M_1 = \langle \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}, \{a, b\}, \delta, \{1\}, \{\{1\}, \{1, 2\}\} \rangle$$

δ	a	b
$-\emptyset$	Ø	Ø
{1}	Ø	{2}
{2}	$\{1, 2\}$	{1}
$\{1, 2\}$	$\{1, 2\}$	$\{1, 2\}$

Para terminar vamos simular nos dois a leitura da string baab:

Para completar nossa prova precisamos lidar com as setas rotuladas por ε . O que faremos nesse caso será incluir no estado atual todos os estados que conseguimos alcançar sem precisar consumir símbolos.

Teorema 2.4.5. Para todo AFN N existe um AFD M tal que $N \sim M$.

Demonstração. Sejam N e M como definidos na demonstração do lema anterior Considere a seguinte função $E:Q'\to Q'$:

$$E(R) = \{ q \in Q : \exists q' \in R(q' \stackrel{\varepsilon}{\leadsto} q) \}$$

Ou seja, existe um caminho de algum $q' \in R$ até q passando apenas por setas com etiqueta ε .

Vamos agora atualizar a definição de M em dois pontos:

3'.
$$q_0 = E(\{q_0\})$$

5'.
$$\delta(R, a) = \bigcup_{r \in R} E(\Delta(r, a))$$

Exemplo 2.4.6:

Considere o AFN N_2 representado pelo seguinte diagrama de estados:

$$L(N_2) = L(0^*11^*0^*)$$

Usando a construção dos teoremas anteriores produzimos o seguinte AFD M_2 :

A construção que vimos possui sempre uma quantidade exponencialmente maior de estados, porém, alguns deles podem ser supérfluos. Note que os estados em vermelho não são alcançáveis a partir do estado inicial, logo, podem ser omitidos (formalmente, o autômato gerado ao se omitir esses estados é equivalente a esse).

Removendo os estados supérfluos é fácil ver que:

$$L(M_2) = L(N_2) = L(0^*11^*0^*)$$

Portanto $M_2 \sim N_2$.

2.5 Linguagens Regulares são Reconhecíveis por AFNs

Na seção anterior vimos que AFDs e AFNs são capazes de reconhecer a mesma classe de linguagens. Nesta seção começaremos a investigar que essa classe é exatamente a classe das linguagens regulares.

Mostraremos nessa seção que toda linguagem regular é reconhecível por algum AFN e, consequentemente, por algum AFD. Para tanto, temos que mostrar que a classe das linguagens reconhecíveis por AFNs é fechada por *, \cup , \circ e que contém $\{\{a\}: a \in \Sigma\}$.

Lema 2.5.1. Se $A, B \subseteq \Sigma^*$ são reconhecíveis por AFNs então $A \cup B$ também é. Ou seja, a classe das linguagens reconhecíveis por AFNs é fechada por união.

Demonstração. A hipótese garante que existem AFNs N_1 e N_2 tal que $L(N_1) = A$ e $L(N_2) = B$. Vamos construir a partir de N_1 e N_2 um AFN N tal que $L(N) = L(N_1) \cup L(N_2)$

Sejam:

$$N_1 = \langle Q_1, \Sigma, \Delta_1, q_1, F_1 \rangle$$

$$N_2 = \langle Q_2, \Sigma, \Delta_2, q'_1, F_2 \rangle$$

Vamos construir $N = \langle Q, \Sigma, \Delta, q_0, F \rangle$:

$$Q = Q_1 \cup Q_2 \cup \{q_0\}$$

$$F = F_1 \cup F_2$$

$$\Delta(q, a) = \begin{cases} \Delta_1(q, a) & \text{se} & q \in Q_1 \\ \Delta_2(q, a) & \text{se} & q \in Q_2 \\ \{q_1, q_1'\} & \text{se} & q = q_0 \text{ e } a = \varepsilon \\ \emptyset & \text{se} & q = q_0 \text{ e } a \neq \varepsilon \end{cases}$$

2.5. LINGUAGENS REGULARES SÃO RECONHECÍVEIS POR AFNS35

N

Exemplo 2.5.2:

N

$$L(N) = L(N_1) \cup L(N_2) = L(0^*) \cup L(10^*) = L(0^* \cup 10^*)$$

Lema 2.5.3. Se $A, B \subseteq \Sigma^*$ são reconhecíveis por AFNs então $A \circ B$ também é. Ou seja, a classe das linguagens reconhecíveis por AFNs é fechada por concatenação.

Demonstração. A hipótese garante que existem AFNs N_1 e N_2 tal que $L(N_1)=A$ e $L(N_2)=B$. Vamos construir a partir de N_1 e N_2 um AFN N tal que $L(N)=L(N_1)\circ L(N_2)$

Sejam:

$$N_1 = \langle Q_1, \Sigma, \Delta_1, q_1, F_1 \rangle$$

$$N_2 = \langle Q_2, \Sigma, \Delta_2, q'_1, F_2 \rangle$$

Vamos construir $N = \langle Q, \Sigma, \Delta, q_0, F \rangle$:

$$Q = Q_1 \cup Q_2$$

$$q_0 = q_1$$

$$F = F_2$$

$$\Delta(q, a) = \begin{cases} \Delta_1(q, a) & \text{se} \quad q \in Q_1 \text{ e } q \notin F_1 \\ \Delta_1(q, a) & \text{se} \quad q \in F_1 \text{ e } a \neq \varepsilon \\ \Delta_1(q, a) \cup \{q_1'\} & \text{se} \quad q \in F_1 \text{ e } a = \varepsilon \\ \Delta_2(q, a) & \text{se} \quad q \in Q_2 \end{cases}$$

$2.5.\ LINGUAGENS\ REGULARES\ S\~{A}O\ RECONHEC\'IVEIS\ POR\ AFNS37$

Exemplo 2.5.4:

N

$$L(N) = L(N_1) \circ L(N_2) = L(0^*) \circ L(10^*) = L(0^*10^*)$$

Lema 2.5.5. Se $A \subseteq \Sigma^*$ é reconhecível por um AFN então A^* também é. Ou seja, a classe das linguagens reconhecíveis por AFNs é fechada por estrela de Kleene.

Demonstração. A hipótese garante que existe AFNs N_1 tal que $L(N_1) = A$. Vamos construir a partir de N_1 um AFN N tal que $L(N) = L(N_1)^*$ Seja:

$$N_1 = \langle Q_1, \Sigma, \Delta_1, q_1, F_1 \rangle$$

Vamos construir $N = \langle Q, \Sigma, \Delta, q_0, F \rangle$:

$$Q = Q_1 \cup \{q_0\}$$

$$F = F_1 \cup \{q_0\}$$

$$\Delta(q, a) = \begin{cases} \Delta_1(q, a) & \text{se} \quad q \in Q_1 \text{ e } q \notin F_1 \\ \Delta_1(q, a) & \text{se} \quad q \in F_1 \text{ e } a \neq \varepsilon \\ \Delta_1(q, a) \cup \{q_1\} & \text{se} \quad q \in F_1 \text{ e } a = \varepsilon \\ \{q_1\} & \text{se} \quad q = q_0 \text{ e } a = \varepsilon \\ \emptyset & \text{se} \quad q = q_0 \text{ e } a \neq \varepsilon \end{cases}$$

 N_1

N

2.5. LINGUAGENS REGULARES SÃO RECONHECÍVEIS POR AFNS39

Exemplo 2.5.6:

 N_1

$$L(N_1) = L(01 \cup 10)$$

N

$$L(N) = L(N_1)^* = L((01 \cup 10)^*)$$

Teorema 2.5.7. Toda linguagem regular é reconhecível por um AFN. Ou seja, a classe das linguagens reconhecíveis por AFNs contém a classe das linguagem regulares.

 $\begin{array}{l} Demonstraç\~ao. \text{ Pelos lemas anteriores sabemos que a classe das linguagens}\\ \text{reconhec\'iveis por AFNs \'e fechada por uni\~ao, concatenaç\~ao e estrela de Kleene. Para completar a prova mostraremos que a classe contém as linguagens $\{a\}$ para todo $a \in \Sigma$, $\{\varepsilon\}$ e \emptyset. Os seguintes AFNs fazem exatamente isso: $N_a$$

 N_{ε}

 N_{\emptyset}

Exemplo 2.5.8:

Construiremos o autômato que reconhece $L((ab \cup a)^*)$ usando o método visto neste capítulo:

a

b

ab

 $ab \cup a$

2.5. LINGUAGENS REGULARES SÃO RECONHECÍVEIS POR AFNS41

 $(ab \cup a)^*$

Exemplo 2.5.9:

Para concluir, construiremos o autômato que reconhece $L((a \cup b)^*aba)$ usando o método visto neste capítulo:

 $a \cup b$

 $(a \cup b)^*$

aba

 $(a \cup b)^*aba$

2.6 Linguagens Reconhecíveis por AFNs são Regulares

Na última seção vimos que toda linguagem regular pode ser reconhecida por um autômato finito. Veremos agora a relação recíproca, a saber, que toda linguagem reconhecível por um autômato é regular. Para isso comecemos com a seguinte definição. Um $Autômato\ Finito\ Generalizado\ (AFG)$ é uma 5-upla $\langle Q, \Sigma, \delta, q_i, q_f \rangle$ em que:

Q é um conjunto de estados,

 Σ é um alfabeto,

 $q_i \in Q$ é um estado chamado de inicial,

 $q_f \in Q$ é um estado chamado final e

 $\delta: (Q-\{q_f)) \times (Q-\{q_i\}) \to R$ em que R é o conjunto das expressões regulares sobre Σ .

2.6. LINGUAGENS RECONHECÍVEIS POR AFNS SÃO REGULARES43

Em outras palavas, um AFG é como um AFN com um único estado final e aonde as transições são etiquetadas não com um símbolo, mas com uma expressão regular. Um AFG aceita uma string $\omega \in \Sigma^*$ se $\omega = \omega_1 \cdot \omega_2 \dots \omega_k$ e existe uma sequência de estados q_0, \dots, q_k tal que:

- 1. $q_0 = q_i$
- 2. $q_k = q_f$
- 3. $\omega_j \in L(R_j)$ onde $R_j = \delta(q_{j-1}, q_j)$ para $0 < j \le k$

Exemplo 2.6.1:

$$G = \langle \{q_i, q_1, q_2, q_f\}, \{a, b\}, \delta, q_i, q_f \rangle$$

δ	q_i	q_1	q_2	q_f
q_i	×	Ø	ab^{\star}	b
q_1	×	ab	$(aa)^{\star}$	b^{\star}
q_2	×	a^{\star}	aa	$ab \cup ba$
q_f	×	\times	$ \begin{array}{c} ab^* \\ (aa)^* \\ aa \\ \times \end{array} $	×

 $aba, aab, abbbab, aaab, b \in L(G)$

Omitiremos a partir de agora as setas com etiqueta \emptyset .

Lema 2.6.2. Para todo AFD M existe um AFG G equivalente.

Demonstração. Seja $M = \langle Q, \Sigma, \delta, q_o, F \rangle$. Construímos $G = \langle Q \cup \{q_i, q_f\}, \Sigma, \delta', q_i, q_f \rangle$ e para todo $q_j \in Q - \{q_f\}$ e $q_k \in Q - \{q_i\}$ temos:

$$\delta'(q_j, q_k) = \begin{cases} \varepsilon & \text{se} & q_j = q_i \in q_k = q_0 \\ \varepsilon & \text{se} & q_j \in F \in q_k = q_f \\ \bigcup a_i & \text{se} & \delta(a_i, q_j) = q_k \\ \emptyset & \text{se} & \nexists a \in \Sigma \text{ com } \delta(a, q_j) = q_k \end{cases}$$

Exemplo 2.6.3:

$$M = \langle \{1, 2\}, \{a, b\}, \delta, 1, \{2\} \rangle$$

$$\begin{array}{c|ccccc}
\delta & a & b \\
\hline
1 & 1 & 2 \\
2 & 2 & 2 \\
\end{array}$$

$$G = \langle \{1,2,s,f\}, \{a,b\}, \delta', s, f \rangle$$

2.6. LINGUAGENS RECONHECÍVEIS POR AFNS SÃO REGULARES45

Lema 2.6.4. Se G é um AFG com k > 2 estados, então existe um AFG G' com k-1 estados tal que $G \sim G'$.

Demonstração. Seja $G = \langle Q, \Sigma, \delta, q_i, q_f \rangle$ um AFG e $q_r \in Q - \{q_i, q_f\}$, Construiremos $G' = \langle Q', \Sigma, \delta', q_i, q_f \rangle$ da seguinte forma:

$$Q' = Q - \{q_r\}$$

$$\delta'(q_j, q_k) = R_1 R_2^{\star} R_3 \cup R_4 \text{ aonde:}$$

$$R_1 = \delta(q_j, q_r)$$

$$R_2 = \delta(q_r, q_r)$$

$$R_3 = \delta(q_r, q_k)$$

 $R_4 = \delta(q_i, q_k)$

Diagramaticamente, partimos de um diagrama com o seguinte formato:

E depois de remover q_r chegamos nos seguinte:

$$q_j \qquad R_1 R_2^{\star} R_3 \cup R_4 \qquad q_k$$

Exemplo 2.6.5:

Considere o AFG G do Exemplo 2.6.3. Vamos remover o estado 2 seguindo a construção do lema anterior.

$$G' = \langle \{s, 1, f\}, \{a, b\}, \delta', s, f \rangle$$

$$\begin{array}{c|cccc} \delta' & s & 1 & f \\ \hline s & \times & \varepsilon & \emptyset \\ 1 & \times & a & b(a \cup b)^* \\ f & \times & \times & \times \end{array}$$

Teorema 2.6.6. Toda linguagem reconhecível por AFD é regular.

Demonstração. Seja A uma linguagem reconhecível por um AFD M i.e. L(M)=A. Pelo Lema 2.6.2 existe um AFG G tal que $M\sim G$. Além disso, examinando a construção do Lema 2.6.4 temos que se o número de estados de M é k então o número de estado de G é k+2.

Pelo lema 2.6.4 existe G_1 com um estado a menos (k+1) estados) tal que $G_1 \sim G$. Aplicando o lema k vezes obtemos $G_k \sim G$ com exatamente 2 estados: q_i e q_f . É claro que $L(G_k) = L(R)$ aonde $\delta_{G_k}(q_i, q_f) = R$. Como $G_k \sim G$, temos L(G) = L(H) = L(R).

$$L(M) = L(G) = L(G_1) = \cdots = L(G_k) = L(R)$$

Exemplo 2.6.7:

Considere o AFD M do Exemplo 2.6.3. Mostramos que ele é equivalente a um AFG e, em no Exemplo 2.6.5 mostramos um AFG equivalente com 3 estados. Removendo mais um estado ficamos com o seguinte diagrama:

2.6. LINGUAGENS RECONHECÍVEIS POR AFNS SÃO REGULARES47

Portanto temos que:

$$L(M) = L(a^*b(a \cup b)^*)$$

Exemplo 2.6.8:

Considere o seguinte AFD:

2.7 Linguagens Não-Regulares

Neste capítulo vimos dois modelos computacionais: AFDs e AFNs. Ambos reconhecem a mesma classe de linguagens, a saber, as linguagens regulares. Para completar esse capítulo veremos exemplos de linguagens que não são regulares.

Lema 2.7.1 (Lema do Bombeamento). Se A é uma linguagem regular então exite um número p (chamado comprimento do bombeamento) tal que se $\omega \in A$ e $|\omega| \leq p$ então $\omega = x \cdot y \cdot z$ onde:

- 1. $x \cdot y^i \cdot z \in A$ para todo $i \leq 0$,
- 2. |y| > 0 e
- $3. |x \cdot y| \le p$

Demonstração. Como A é regular, existe AFD $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ tal que L(M) = A. Seja p = |Q| e seja $\omega \in A$ uma string tal que $|\omega| \leq p$.

Como $\omega = a_1 a_2 \dots a_n \in A = L(M)$ existe uma sequência de estados q_0, \dots, q_n onde $q_n \in F$ e $q_{i+1} = \delta(q_i, a_{i+1})$. Como $|\omega| = n \ge p$, pelo princípio da casa dos pombos¹ existe pelo menos um estado que se repete na sequência.

Seja q_i o primeiro estado que se repete na sequência. Temos então a seguinte situação:

 $^{^1{\}rm O}$ princípio da casa dos pombos garante que se há n pombos e p casas com n>pentão com certeza pelo menos uma casa terá mais de um pombo.

Ou seja, a sequência q_0, \ldots, q_i reconhece a string x, a sequência q_i, \ldots, q_i reconhece y e a sequência q_i, \ldots, q_n reconhece z.

Portanto, ω pode ser dividido em três partes $\omega = x \cdot y \cdot z$ em que |y| > 0. Além disso, como q_i é o primeiro estado que se repete, temos que $|x \cdot y| \leq p$. Por fim, como ilustrado, o autômato reconhece y um número arbitrário de vezes. Ou seja, $x \cdot y^i \cdot z \in A$ para todo i = 0, 1, 2, ...

Exemplo 2.7.2:

Vamos mostrar que $A = \{0^n 1^n : n \ge 0\}$ não é regular.

Seja p p comprimento do bombeamento e $\omega = 0^p 1^p \in A$. Se A fosse regular, pelo lema do bombeamento, ω poderia ser dividida em três partes $\omega = xyz$ e para todo $i = 0, 1, \ldots$ teríamos $xy^iz \in A$.

Se y é formada só por 0s ou só por 1s então xyyz possuiria um número diferente de 0s e 1s e, portanto, $xyyz \notin A$. Se y possuir 0s e 1s então xyyz conterá pelo menos um 0 entre dois 1s e, portanto, $xyyz \notin A$.

Logo A não pode ser regular.

Exemplo 2.7.3:

Mostraremos que $A=\{\omega:\omega \text{ tem o mesmo número de 0s e 1s}\}$ não é regular.

Seja p o comprimento do bombeamento e $\omega=0^p1^p\in A$. Se A fosse regular poderíamos escrever $\omega=xyz$ com $|xy|\leq p$ e $xy^iz\in A$ para todo $i\geq 0$.

Como $|xy| \le p$, por definição, xy contém apenas 0s. Neste caso, xyyz deve conter mais 0 do que 1s. Logo $xyyz \notin A$.

Exemplo 2.7.4:

Vamos mostrar que $A = \{\omega\omega : \omega \in \{0,1\}^*\}$ não é regular.

Seja p o comprimento do bombeamento e $\omega=0^p1^p0^p1\in A$. Dividimos $\omega=xyz$ com $|xy|\leq p$ então y contém apenas 0s e $xyyz=0^p0\dots010^p1\notin A$.

Exemplo 2.7.5:

Vamos mostrar que $A = \{1^{n^2} : n \ge 0\}$ não é regular.

Seja p o comprimento do bombeamento e $\omega=1^{p^2}\in A$. Dividimos $\omega=xyz$ com $|xy|\leq p$. Como $|y|\leq p$ então $|xyyz|\leq p^2+p< p^2+2p+1=(p+1)^2$. Logo $p^2<|xyyz|<(p+1)^2$.

Exemplo 2.7.6:

Por fim, vamos mostrar que $A = \{0^i 1^j : i < j\}$ não é regular.

Seja p o comprimento do bombeamento e $\omega=0^{p+1}1^p\in A$. Tomamos $\omega=xyz$ com $|xy|\leq p$ e |y|>0. Portanto, y contém apenas 0s e $xy^0z=xz\notin A$.

Neste capítulo estudamos a classe das linguagens regulares e dois modelos de computação, autômatos finitos determinísticos e não-determinísticos. Provamos que esses dois modelos são equivalentes e que a classe das linguagens que eles reconhecem coincide com a classe das linguagens regulares. Terminamos o capítulo vendo exemplos de linguagens que não são regulares.

Capítulo 3

Linguagens Livres de Contexto

Estudamos até exaustivamente uma classe de linguagens, as regulares. Apresentamos essa classe de maneira declarativa por meio de expressões regulares e imperativa com dois modelos de computação: autômatos finitos determinísticos e não-determinísticos que vimos serem equivalentes. No fim do capítulo mostramos que nem toda linguagem é regular.

Neste capítulo estudaremos uma classe de linguagens mais completa, as linguagens livres de contexto. Como as linguagens regulares, apresentaremos tais linguagens de maneira declarativa por meio de gramáticas livres de contexto e imperativa por meio dos autômatos com pilha.

3.1 Introdução

Uma Gramática Livre de Contexto (GLC) é uma 4-upla $\langle V, \Sigma, R, S \rangle$ em que:

V é um conjunto finito cujos elementos são chamados variáveis,

 Σ é um conjunto finito disjunto de V (i.e. $\Sigma \cap V \neq \emptyset)$ cujos elementos são chamados terminais,

R é um conjunto finito de regras e cada regra é da forma $v_1 \to v_2 \dots v_n$ onde $v_1 \in V$ e $v_i \in V \cup \Sigma$ para $i=2,\dots,n$ e

 $S \in V$ é uma variável chamada inicial.

Se u, v e w strings sobre o alfabeto $V \cup \Sigma$ e $A \rightarrow w$ é uma regra da gramática, dizemos que uAv origina uwv (escrevemos $uAv \Rightarrow uwv$). Dizemos

que u deriva v (escrevemos $u \Rightarrow^* v$) se u = v ou existe uma sequência u_1, \ldots, u_k para $k \ge 0$ em que:

$$u \Rightarrow u_1 \Rightarrow \cdots \Rightarrow u_k \Rightarrow v$$

A linguagem associada à gramatica $G = \langle V, \Sigma, R, S \rangle$, ou simplemente a linguagem de $G \notin \{\omega \in \Sigma^* : S \Rightarrow^* \omega\}$.

Se uma linguagem A possui uma gramatica livre de contexto associada a ele então A é chamada $linguagem\ livre\ de\ contexto.$

Exemplo 3.1.1:

Considere a seguinte GLC $G = \langle V, \Sigma, R, S \rangle$:

- $\bullet \ V = \{S\}$
- $\Sigma = \{0, 1\}$
- $R = \{S \to \varepsilon, S \to 0S1\}$

01 pertence a linguagem dessa gramática:

$$S \Rightarrow 0S1$$
$$\Rightarrow 0\varepsilon 1 = 01$$

000111 pertence a linguagem dessa gramática:

$$S \Rightarrow 0S1$$

$$\Rightarrow 00S11$$

$$\Rightarrow 000S111$$

$$\Rightarrow 000\varepsilon111$$

$$\Rightarrow 000111$$

Não é difícil notar que a linguagem dessa gramática é:

$$\{0^n 1^n : n \ge 0\}$$

3.1. INTRODUÇÃO

53

Para apresentar as próximas gramáticas, usaremos a seguinte abreviação:

$$\{A \to w, A \to u, A \to v\}$$

Será substituído simplesmente por:

$$A \to w|u|v$$

Exemplo 3.1.2:

 $G = \langle \{S\}, \{0,1\}, R, S \rangle$ em que Ré:

$$S \to SS|0|1$$

01 pertence à linguagem de G:

$$S \Rightarrow SS$$

 $\Rightarrow 0S$

 $\Rightarrow 01$

0101 pertence à linguagem de G:

$$S \Rightarrow SS$$

 $\Rightarrow 0S$

 $\Rightarrow 0SS$

 $\Rightarrow 0S0$

 \Rightarrow 010

Exemplo 3.1.3:

$$G = \langle \{S\}, \{0, 1, \star, \cup, \epsilon, \emptyset\}, R, S \rangle$$

$$S \to 0|1|\epsilon|\emptyset|SS|S \cup S|S^*$$

Vamos mostrar que $10 \cup 1^* \in L(G)$

$$S \Rightarrow S \cup S$$

$$\Rightarrow SS \cup S$$

$$\Rightarrow SS \cup S^*$$

$$\Rightarrow 1S \cup S^*$$

$$\Rightarrow 10 \cup S^*$$

$$\Rightarrow 10 \cup 1^*$$

Exemplo 3.1.4:

$$G = \langle V, \Sigma, R, Expr \rangle$$

- $V = \{Expr, Termo, Fator\}$
- $\Sigma = \{a, +, \cdot, (,)\}$

$$\begin{array}{ccc} Expr & \rightarrow & Expr + Termo|Termo \\ Termo & \rightarrow & Termo \cdot Fator|Fator \\ Fator & \rightarrow & (Expr)|a \end{array}$$

Vamos mostrar que $a + a \cdot a \in L(G)$.

$$Expr \Rightarrow Expr + Termo$$

$$\Rightarrow Expr + Termo \cdot Fator$$

$$\Rightarrow Termo + Termo \cdot Fator$$

$$\Rightarrow Fator + Fator \cdot Fator$$

$$\Rightarrow a + a \cdot a$$

Podemos representar a derivação do último exemplo por meio de uma árvore sintática:

Note que uma mesma string pode ser derivada de uma mesma gramática por diferentes árvores sintáticas. Esse fenômeno é chamado *ambiguidade*.

Uma derivação de uma string ω em uma gramática G é uma derivação mais a esquerda se a cada passo a variável remanescente mais a esquerda é aquela que será substituída no próximo passo. Uma string é derivada de maneira ambígua na gramática G se ela tem mais de uma derivação à esquerda. Uma GLC é dita ambígua se ela gera alguma string de maneira ambígua.

Exemplo 3.1.5:

$$G = \langle \{S\}, \{+, \cdot, a\}, R, S \rangle$$

$$S \to S + S|S \cdot S|a$$

Vamos derivar a esquerda a expressão $a + a \cdot a$:

$$S \Rightarrow S + S$$

$$\Rightarrow a + S$$

$$\Rightarrow a + S \cdot S$$

$$\Rightarrow a + a \cdot a$$

Alternativamente podemos derivar a mesma expressão à esquerda da seguinte maneira:

$$S \Rightarrow S \cdot S$$
$$\Rightarrow S + S \cdot S$$
$$\Rightarrow a + S \cdot S$$
$$\Rightarrow a + a \cdot a$$

Essas derivações são representadas pelas seguintes árvores sintáticas.

Uma GLC está na Forma Normal de Chomsky (FNC) se toda regra é de uma das seguintes formas:

$$S \to \varepsilon$$

3.1. INTRODUÇÃO

57

$$A \to BC|a$$

Onde
$$a \in \Sigma$$
, $A \in V$ e $B, C \in V - \{S\}$.

Teorema 3.1.6. Toda linguagem livre de contexto é gerada por uma GLC na FNC.

Demonstração. Essa prova é construtiva.

- 1. Criamos um novo estado S_0 e uma regra $S_0 \to S$
- 2. Removemos cada regra da forma $A \to \varepsilon$ e criamos uma nova regra para cada ocorrência de A a direita de uma regra em que A não ocorre (por exemplo $R \to uAvAw$ gera três regras $R \to uvAw$, $R \to uAvw$ e $R \to uvw$).
- 3. Removemos todas as regras da forma $A \to B$ e criamos uma regra $A \to u$ para cada ocorrência de $B \to u$.
- 4. Substituímos $A \to u_1 u_2 \dots u_k$ onde k > 2 e $u_i \in V \cup \Sigma$ por $A \to u_1 A_1$, $A \to u_2 A_2, \dots, A_{k-2} \to u_{k-1} u_k$.
- 5. Substituímos $A \to cB$ (e $A \to Bc$) por $A \to BC$ (ou $A \to CB$) e $C \to c$

Exemplo 3.1.7:

Considere por exemplo a seguinte GLC:

$$\begin{array}{ccc} S & \to & ASA|aB \\ A & \to & B|S \\ B & \to & b|\varepsilon \end{array}$$

Aplicando o primeiro passo da construção obetmos:

$$S_0 \rightarrow S$$

$$S \rightarrow ASA|aB$$

$$A \rightarrow B|S$$

$$B \rightarrow b|\varepsilon$$

Aplicando o segundo passo primeiro removemos $B \to \varepsilon$:

$$S_0 \rightarrow S$$

$$S \rightarrow ASA|aB|a$$

$$A \rightarrow B|S|\varepsilon$$

$$B \rightarrow b$$

Em seguida removemos $A \to \varepsilon$

$$S_0 \rightarrow S$$

$$S \rightarrow ASA|AS|SA|aB|a$$

$$A \rightarrow B|S$$

$$B \rightarrow b$$

Aplicando terceiro passo ficamos com o seguinte:

$$S_0 \rightarrow ASA|AS|SA|aB|a$$

 $S \rightarrow ASA|AS|SA|aB|a$
 $A \rightarrow b|ASA|AS|SA|aB|a$
 $B \rightarrow b$

O quarto passo consiste em substituir as sequência de mais de duas variáveis não terminais:

$$S_0 \rightarrow AA_1|SA|AS|SA|S|aB|a$$

$$S \rightarrow AA_1|AS|SA|S|aB|a$$

$$A \rightarrow b|AA_1|AS|SA|S|aB|a$$

$$A_1 \rightarrow SA$$

$$B \rightarrow b$$

Para concluir substituímos os símbolos terminais em regras com um símbolo não terminal:

$$S_0 \rightarrow AA_1|SA|AS|SA|UB|a$$

$$S \rightarrow AA_1|AS|SA|UB|a$$

$$A \rightarrow b|AA_1|AS|SA|UB|a$$

$$A_1 \rightarrow SA$$

$$B \rightarrow b$$

$$U \rightarrow a$$

3.2 Autômatos de Pilha

Em um dos exemplos da seção anterior vimos que a linguagem não-regular $\{0^n1^n:n\geq 0\}$ é livre de contexto. Portanto, os autômatos finitos não são adequados para reconhecer LLC. Nesta seção veremos um novo modelo de computação chamado autômato com pilha e mais para frente mostraremos sua relação íntima com as LLCs.

Um autômato com pilha (AP) é uma 6-upla $\langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$ onde:

- \bullet Q é um conjunto finito cujos elementos são chamados estados,
- Σ é um alfabeto chamado alfabeto de entrada,
- Γ é um alfabeto chamado alfabeto da pilha,
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \to 2^{Q \times (\Gamma \cup \{\varepsilon\})}$ é a função de transição,
- $q_0 \in Q$ é o estado inicial e
- $F \subseteq Q$ é o conjunto dos estados finais.

Um AP $M = \langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$ aceita uma string ω se $\omega = \omega_1 \omega_2 \dots \omega_n$ onde $\omega_i \in \Sigma \cup \{\varepsilon\}$ e existe uma sequência de estados $r_0, r_1, \dots, r_m \in Q$ e uma sequência de strings $s_0, s_1, \dots, s_m \in \Gamma^*$ tal que:

- 1. $r_0=q_0$ e $s_0=\varepsilon$ (a pilha começa vazia),
- 2. $\langle r_{i+1}, b \rangle \in \delta(r_i, \omega_{i+1}, a)$ onde $s_i = at$ e $s_{i+1} = bt$ para $t \in \Gamma^*$ (lê um símbolo, vai para o próximo estado e atualiza a pilha) e
- 3. $r_m \in F$ (termina em um estado final).

A cada passo o AP lê um símbolo $\omega_{i+1} \in \Sigma \cup \{\varepsilon\}$, desempilha um símbolo $a \in \Gamma \cup \{\varepsilon\}$ da pilha, empilha outro $b \in \Gamma \cup \{\varepsilon\}$ e vai para o novo estado r_{i+1} .

Exemplo 3.2.1:

$$M = \langle Q, \Sigma, \Gamma, \delta, q_1, F \rangle$$

$$Q = \{q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{0, 1\}$$

$$\Gamma = \{0, \$\}$$

$$F = \{q_1, q_4\}$$

	1 0			1			ϵ		
	0	\$	arepsilon	0	\$	ε	0	\$	ε
$\overline{q_1}$									$\{(q_2,\$)\}$
q_2			$\{(q_2,0)\}$	$\{(q_3,\varepsilon)\}$					
q_3				$\{(q_3,\varepsilon)\}$				$\{(q_4,\varepsilon)\}$	
q_4									

 δ é dado pela seguinte tabela:

Na tabela omitimos as células que deveriam ser preenchidas por \emptyset deixando-as vazias.

M reconhece a string 01:

- 1. Começo no estado q_1 , emppilho \$ e vou para q_2 (pilha: \$).
- 2. Leio 0, empilho 0 e fico em q_2 (pilha: 0\$).
- 3. Leio 1, desempilho 0 e vou para q_3 (pilha: \$).
- 4. Desempilho \$ e vou para $q_4 \in F$ (pilha: ε).

Podemos representar um AP usando um diagrama de estados. O diagrama de estados de um AP é como um diagrama de AFNs, mas em cada transição, além do símbolo a ser lido, indicamos os símbolos a serem desempilhados e empilhados (exemplo $a \rightarrow b$ indica que deve-se desempilhar a e empilhar b).

Exemplo 3.2.2:

Vamos ilustrar o autômato do último exemplo:

A pilha garante que será reconhecida a mesma quantidade de 0s e de 1s. Portanto $L(G)=\{0^n1^n:n\geq 0\}$

Exemplo 3.2.3:

Procure verificar com alguns exemplos que $L(G)=\{\omega\omega^R:\omega\in\{0,1\}^*\}$ aonde ω^R é ω escrito de trás para frente.

Exemplo 3.2.4:

Procure verificar com alguns exemplos que:

$$L(G) = \{a^i b^j c^k : i = j \text{ ou } i = k\}$$

3.3 LLCs são Reconhecíveis por APs

Para esta seção usaremos uma abreviação para descrever o empilhamento de uma sequência de símbolos. Seja $\omega \in \Gamma^*$, $r, q \in Q$, $a \in \Sigma$ e $s \in \Gamma$, escrevemos $\langle r, \omega \rangle \in \Delta(q, a, s)$ para indicar que ao ler a no estado q, desempilhamos s e empilhamos cada um dos símbolos de ω antes de ir para r. Ou seja, se $\omega = s_1 s_2 \dots s_n \in \Gamma^*$, então $\langle r, \omega \rangle \in \Delta(q, a, s)$ é uma abreviação para:

$$\langle q_1, s_n \rangle \in \Delta(q, a, s)$$

$$\{ \langle q_2, s_{n-1} \rangle \} = \Delta(q_1, \varepsilon, \varepsilon)$$

$$\{ \langle q_3, s_{n-2} \rangle \} = \Delta(q_2, \varepsilon, \varepsilon)$$

$$\dots$$

$$\{ \langle r, s_1 \rangle \} = \Delta(q_{n-1}, \varepsilon, \varepsilon)$$

No diagrama de estados, escrevemos:

3.3. LLCS SÃO RECONHECÍVEIS POR APS

63

$$q \xrightarrow{a, s \to s_1 s_2 \dots s_n} s$$

Para abreviar o seguinte:

Exemplo 3.3.1:

É uma abreviação de:

Teorema 3.3.2. Toda linguagem livre de contexto é reconhecida por um Autômato com Pilha.

Demonstração. Se A é uma LLC, por definição, existe uma GLC $G = \langle V, \Sigma, R, S \rangle$ associada a A i.e. L(G) = A.

Construiremos um AP $P=\langle Q, \Sigma, \Gamma, \Delta, q_0, F \rangle$ que reconhece A i.e. L(P)=A.

- $Q = \{q_0, q_I, q_F\} \cup E$ onde E é o conjunto de estados necessários para abreviação que vimos acima.
- $\bullet \ F = \{q_F\}$
- $\Gamma = V \cup \Sigma \cup \{\$\}$
- Δ é apresentado abaixo.

$$\begin{array}{lcl} \Delta(q_0,\varepsilon,\varepsilon) &=& \{\langle q_I,S\$\rangle\} \\ \Delta(q_I,\varepsilon,\$) &=& \{\langle q_F,\varepsilon\rangle\} \\ \Delta(q_I,a,a) &=& \{\langle q_I,\varepsilon\rangle\} \text{ para todo } a\in\Sigma \\ \Delta(q_I,\varepsilon,A) &=& \{\langle q_I,\omega\rangle\} \text{ para todo } A\to\omega\in R \end{array}$$

Diagramaticamente temos:

Em palavras, primeiro inserimos \$ para marcar o fim da pilha e em seguida inserimos a variável inicial S na pilha e seguimos para o estado intermediário q_I . Então, não-deterministicamente empilhamos o corpo de alguma das regras $A \to \omega$ ou desempilhamos um símbolo terminal a e o reconhecemos. Quando a pilha chega no fim (no símbolo \$), desempilhamos e vamos para o estado final.

Exemplo 3.3.3:

Considere a gramática $G = \langle V, \Sigma, R, S \rangle$ aonde R possui as seguintes regras:

$$S \to 0S1|\varepsilon$$

Como já vimos, $L(G) = \{0^n 1^n : n \ge 0\}.$

Usando a construção do teorema anterior, temos que o seguinte AP reconhece essa linguagem:

3.3. LLCS SÃO RECONHECÍVEIS POR APS

65

O diagrama acima é uma abreviação para o seguinte diagrama:

Exemplo 3.3.4:

Exemplo 3.3.5:

3.4 Linguagens Reconhecíveis por APs são Livres e Contexto

Lema 3.4.1. Todo AP P é equivalente a outro AP P' em que:

- 1. o conjunto de estados finais possui um único elemento q_f ,
- 2. as transações só empilham ou desempilham, mas nunca ambas ao mesmo tempo e
- 3. chega ao estado final com a pilha vazia.

Demonstração. Para garantir os itens 1 e 3 criamos transições de cada estado final de P para q_f' que não leem nada e não empilham nem desempilham nada (setas com etiqueta $\varepsilon, \varepsilon \to \varepsilon$). Uma transição de q_f' para si mesmo que não le nada e desempilha s para cada $s \in \Gamma$ e uma transição que não lê nada e não mexe na pilha que vai de q_f' para q_f .

Para garantir a condição 2, substituimos toda transição que empilha e desempilha ao mesmo tempo por uma que desempilha seguida por outra que empilha.

Teorema 3.4.2. Toda linguagem reconhecida por APs é livre de contexto.

Demonstração. Seja $P = \langle Q, \Sigma, \Gamma, \Delta, q_0, F \rangle$. Pelo lema anterior existe P' equivalente a P satisfazendo as três proriedades. Criaremos uma gramática $G = \langle \Sigma, V, R, S \rangle$ que reconhece L(P) = L(P').

- $\bullet \ V = \{A_{pq} : p, q \in Q\}$
- $\bullet \ S = A_{p_0 p_f}$
- ullet R é formado por três tipos de regras:
 - 1. $A_{pq} \to A_{pr}A_{rq} \in R$ para todo $p, r, q \in Q$
 - 2. se $\langle r,t\rangle\in\Delta(p,a,\varepsilon)$ e $\langle q,\varepsilon\rangle\in\Delta(s,b,t)$ então $A_{pq}\to aA_{rs}b\in R$
 - 3. $A_{pp} \to \varepsilon \in R$ para todo $p \in Q$

Primeiro demonstraremos por indução no tamanho da derivação o seguinte:

Hipótese de Indução: Se $A_{pq} \Rightarrow^k x$ então P começa no estado p, reconhece x e chega no estado q com a pilha vazia.

Base: As únicas derivações de tamanho 1 são da forma $A_{pp} \to \varepsilon$ e claro que o autômato que começa e termina em q reconhece ε .

Passo de Indução: Precisamos mostrar que se $A_{pq} \Rightarrow^{k+1} x$ então P começa em p, reconhece x e chega em q com a pilha vazia. O primeiro passo dessa derivação deve ser

- 1. $A_{pq} \Rightarrow aA_{rs}b$ ou
- 2. $A_{pq} \Rightarrow A_{pr}A_{rq}$

No primeiro caso temos que x=ayb e, portanto, $A_{rs} \Rightarrow^k y$. Pela H.I. P reconhece y indo de r até s e terminando com a pilha vazia. Como a $A_{pq} \to aA_{rs}b \in R$ então $\langle r,t \rangle \in \Delta(p,a,\varepsilon)$ e $\langle q,\varepsilon \rangle \in \Delta(s,b,t)$. Então p vai para r e empilha t ao ler a e desempilha t ao ler b e ir para q.

No segundo caso, temos que x = yz e $A_{pr} \Rightarrow^* y$ e $A_{rq} \Rightarrow z$. Ambas derivações devem ter comprimento menor que k + 1 e, logo, pela H.I. P reconhece y indo de p para r e reconhece z indo de r até q.

Por fim, resta provar por indução no número de passos de computação de P que:

Hipótese de Indução: Se P reconhece x indo de p para q em k passos então $A_{pq} \Rightarrow^* x$

Base: Em 0 passos não sai do estado p e reconhece ε . Pela regra $A_{pp} \to \varepsilon$ geramos ε .

Passo de Indução: Suponha que P vai de p até q em k+1 passos e reconhece x.

Suponhamos primeiro que em nenhum momento no processo a pilha fique vazia. Neste caso, o símbolo t empilhado no começo é desempilhado no fim. Se a é o símbolo lido no começo, b o símbolo lido no fim, então r o estado seguinte a p e s é o anterior a q. Ou seja, se $\langle r, t \rangle \in \Delta(p, a, \varepsilon)$ e $\langle q, \varepsilon \rangle \in \Delta(s, b, t)$ então $A_{pq} \to aA_{rs}b \in R$. Seja x = ayb, pela H.I., $A_{rs} \Rightarrow^* y$ e logo $A_{pq} \Rightarrow^* x$.

Por outro lado, se a pilha chega esvaziar entçai ela reconhece uma string y até ficar vazia e z até q e x=yz. Seja r o estado em P quando a pilha está vazia. Pela H.I. $A_{pr} \Rightarrow^* y$ e $A_{rp} \Rightarrow^* z$. Como $A_{pq} \to A_{pr}A_{rq} \in R$ então $A_{pq} \Rightarrow^* yz = x$.

Corolario 3.4.3. Toda linguagem regular é livre de contexto.

Demonstração. Não é difícil notar que todo AFD é um AP aonde a pilha nunca é usada. Vimos que toda linguagem regular é reconhecida por um AFD, portanto toda linguagem regular é reconhecida por um AP e portanto é livre de contexto.2

Exemplo 3.4.4:

$$\begin{array}{rcl}
\langle 1,0\rangle & \in & \Delta(1,0,\varepsilon) \\
\langle 2,\varepsilon\rangle & \in & \Delta(2,1,0)
\end{array}$$

$$A_{12} \to 0A_{12}1$$

$$\langle 2,0\rangle & \in & \Delta(1,0,\varepsilon) \\
\langle 2,\varepsilon\rangle & \in & \Delta(2,1,0)
\end{array}$$

$$A_{12} \to 0A_{22}1$$

$$\langle 1,\$\rangle & \in & \Delta(0,\varepsilon,\varepsilon) \\
\langle f,\varepsilon\rangle & \in & \Delta(2,\varepsilon,\$)$$

$$A_{0f} \to \varepsilon A_{12}\varepsilon$$

Preconhece 0011, portanto essa string deve estar em L(G) onde G é a gramática acima.

$$A_{0f} \Rightarrow \varepsilon A_{12}\varepsilon$$

$$\Rightarrow 0A_{12}1$$

$$\Rightarrow 00A_{12}11$$

$$\Rightarrow 00\varepsilon 11 = 0011$$

3.5 Linguagens que não são Livres de Contexto

Lema 3.5.1 (Bombeamento para LLCs). Se A é uma LLC então existe p (comprimento do bombeamento) tal que se $\omega \in A$ e $|\omega| \ge p$ então $\omega = uvxyz$ e:

- 1. $uv^i x y^i z \in A \text{ para todo } i \geq 0$
- 2. |vy| > 0 e
- $\beta. |vxy| \le p$

Demonstração. Se A é uma LLC, então por definição existe uma GLC $G = \langle \Sigma, V, R, S \rangle$ tal que L(G) = A. Seja b o número máximo de símbolos a direita em uma regra em R. Se partirmos de uma varíavel qualquer em G, em h passos o comprimento máximo da string que é possível produzir é b^h (se

desenharmos a árvore sintática da string produzida desta forma, h é a altura desta árvore).

O comprimento do bombeamento será $p=b^{|V|+1}$. Se $\omega\in A$ e $|\omega|\geq p$, como na hipótese, existe k tal que $S\Rightarrow^k\omega$. Vamos supor que k seja o menor valor em que S deriva ω . Note que necessariamente $k\geq |V|+1$. É claro que esse caminho possui |V|+1 símbolos não-terminais, logo, pelo princípio da casa dos pombos, pelo menos uma variável ocorre mais de uma de uma vez neste caminho. Seja $T\in V$ a última variável que ocorre mais de uma vez.

Dividimos ω em 5 partes $\omega = uvxyz$ de forma que a penúltima ocorrência de T gera vxy e a última gera x (i.e. $S \Rightarrow^* uTz \Rightarrow^* uvTyz \Rightarrow uvxyz$).

Note que $S \Rightarrow^* uxz$ se substituirmos a penúltima ocorrência de T pela última (i.e. $S \Rightarrow^* uTz \Rightarrow^* uxz$).

Da mesma forma, $S \Rightarrow^* uv^i xy^i z$ para qualquer i > 1 bastando repetir i vezes a última ocorrência de T pela penúltima.

Se |vy| = 0 então $v = y = \varepsilon$ e, portanto, $S \Rightarrow^l uxz = \omega$ como substituindo a penúltima ocorrência de T pela última e l < k contrariando a suposição.

Se |vxy| > p então, pelo princípio da casa dos pombos, na derivação da penúltima ocorrência de T até vxy alguma variável deveria repetir contrariando a suposição de que T era a última variável que se repetia.

Exemplo 3.5.2:

 $B = \{a^n b^n c^n : n \ge 0\}$ não é livre de contexto.

Seja p o comprimento do bombeamento, e $\omega = a^p b^p c^p \in B$. Se B fosse uma LLC então, pelo lema, $\omega = uvxyz$, |vy| > 0 e $uv^i xy^i z \in B$ para todo $i \geq 0$. Temos duas possibilidades:

- 1. se v e y um único tipo de símbolo cada, então uv^2xy^2z não conterá a mesma quantidade de as, bs e cs e, portanto, $uv^2xy^2z\notin B$.
- 2. se v ou y contém mais de um símbolo distinto então uv^2xy^2z contém símbolos na ordem errada e, portanto, $uv^2xy^2z \notin B$.

Concluímos que B não é livre de contexto.

Exemplo 3.5.3:

 $C = \{a^i b^j c^k : 0 \le i \le j \le k\}$ não é livre de contexto.

Seja p o comprimento do bombeamento e $\omega=a^pb^pc^p\in C$. Pelo lema, se C fosse livre de contexto, teríamos $\omega=uvxyz$ com |vy|>0 e $uv^ixy^iz\in C$ para todo i>0. Considere os dois possíveis casos:

- 1. $y \in v$ só contém um tipo de símbolo cada:
 - se a não ocorre em vy então $uxz \notin C$;
 - se *b* não ocorre em vy, mas *a* ocorre, então $uv^2xy^2z \notin C$, pois possui mais *a*s do que *b*s e se *c* ocorre $uv^2xy^2z \notin C$ por motivo análogo;
 - se c não ocorre em vy então $uv^2xy^2z \notin C$, pois a string possuiria mais as ou mais bs do que c.
- 2. se y ou z possuem mais de um tipo de símbolo então $uv^2xy^2z \notin C$, pois possui símbolos na ordem errada.

Concluímos que C não é livre de contexto.

Na seção anterior, vimos que todas as linguagens regulares são livres de contexto, mas anteriormente havíamos mostrado que exitem linguagens livres de contexto ($\{0^n1^n : n \geq 0\}$ por exemplo) que não são regulares.

Ling. Reg.
$$\subset$$
 LLCs

Nesta seção vimos que esxistem linguagens formais que não são livres de contexto:

$LLCs \subset Ling.$ Formais

Além disso, vimos que linguagens regulares coincidem com as linguagens reconhecíveis por autômatos finitos e que as livres de contexto coincidem com as reconhecíveis por autômatos com pilha.

No próximo capítulo passaremos à questão central do curso, a saber, a existência de problemas que não possuem solução computacional. Para tanto, precisamos de um modelo de computação capaz de dar conta de qualquer dispositivo mecânico.

Capítulo 4

Máquinas de Turing

Estudamos até aqui modelos de computação de expressividade crescente. Começamos com autômatos finitos, vimos que existem linguagens que não conseguimos reconhecer com esse tipo de autômatos. Identificamos exatamente a classe de linguagens que esse tipo de modelo é capaz de reconhecer, a saber, as linguagens regulares. Passamos então para os autômatos com pilha que são mais expressivos, reconhecem todas as liguagens regulares e mais algumas não-regulares. Novamente encontramos limitações, linguagens que não são reconhecíveis por autômatos com pilha.

Neste capítulo estudaremos um modelo ainda mais expressivo, as Máquinas de Turing (MTs). Temos dois grandes objetivos neste capítulo. O primeiro é convencer que este é o modelo definitivo de computação, ou seja, que não existe modelo de computação mais expressivo que as Máquinas de Turing. Esse resultado, que não é nem pode ser um teorema, é chamado de Tese de Church-Turing. O argumento para esta tese serão três: provaremos que as MTs são mais expressivas que os autômatos com pilha, em seguida mostraremos uma serie de variantes das MTs e provaremos que todas são equivalentes (i.e. tem a mesma expressividade) e, por fim, provaremos que toda MT pode ser simulada por uma MT específica chamada de Máquina de Turing Universal. O segundo objetivo deste capítulo é provar que, mesmo sendo o modelo de computação mais completo, as MTs possuem limitações. Ou seja, existem problemas computacionais que não podem ser resolvidos por MTs.

4.1 Máquinas de Turing Determinísticas

Uma MT consiste de uma fita formada por células em sequência, potencialmente infinita em ambas as direções e uma cabeça que lê o conteúdo de cada célula e guarda o estado atual. Uma função de transição indica, dado o estado atual e o símbolo sendo lido qual é a próxima operação: ir para esquerda ou ir para a direita e qual o novo símbolo na célula atual.

Formalmente temos que uma Máquina de Turing Determinística, ou simplesmente uma MT, é uma 7-upla $\langle Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r \rangle$ em que:

Q é um conjunto finito de estados,

 Σ é o alfabeto da entrada,

 Γ é o alfabeto da fita e $\Sigma \cup \{\bot\} \subseteq \Gamma$,

 $\delta: Q \times \Gamma \to Q \times \Gamma \times \{E, D\}$ é a função de transição,

 $q_0 \in Q$ é o estado inicial,

 $q_a \in Q$ é o estado de aceitação e

 $q_r \in Q$ é o estado de rejeição.

A cada passo, a MT está e, uma certa configuração. A configuração indica a sequência de símbolos antes da cabeça na fita e a sequência de símbolos depois da cabeça. Uma configuração pode ser representada por uma string da seguinte forma:

$$C = \omega_1 q \omega_2$$

As strings $\omega_1 \in \Gamma^*$ e $\omega_2 \in \Gamma^*$ indicam as sequências antes e depois da cabeça. O estado q indica o estado atual e o primeiro símbolo de ω dois é o símbolo sendo lido. Uma configuração em que $q=q_a$ é dita de aceitação e em que $q=q_r$ é de rejeição. Configurações de aceitação ou de rejeição são ditas configurações de parada. A função de transição define para cada configuração C_i qual o próxima configuração C_{i+1} .

Exemplo 4.1.1:

1. $uaq_ibv \Rightarrow uq_jacv$ se $\delta(q_i, b) = \langle q_j, c, E \rangle$

4.1. MÁQUINAS DE TURING DETERMINÍSTICAS

75

2. $uaq_ibv \Rightarrow uacq_jv \text{ se } \delta(q_i, b) = \langle q_j, c, D \rangle$

3. $uaq_ib \Rightarrow uabq_j$ se $\delta(q_i, b) = \langle q_j, b, D \rangle$

$$\begin{array}{c|cccc}
q_i & q_j \\
\hline
u & a & b & \Rightarrow & u & a & b & \\
\end{array}$$

4. $q_i uab \Rightarrow q_j uab \text{ se } \delta(q_i, u) = \langle q_j, u, E \rangle$

$$\begin{array}{c|cccc}
q_i & q_j \\
\hline
u & a & b & \Rightarrow & u & a & b
\end{array}$$

Uma MT aceita uma string $\omega \in \Sigma^*$ se existe uma sequência de configurações C_1, C_2, \ldots, C_k em que:

- 1. $C_1 = q_0 \omega$ (configuração inicial),
- 2. $C_i \Rightarrow C_{i+1}$ para i < k e
- 3. $C_k = \omega_1 q_a \omega_2$ (configuração de aceitação)

Uma MT rejeita uma string $\omega \in \Sigma^*$ se existe uma sequência de configurações que satisfaz os dois primeiros itens e o seguinte:

3' $C_k = \omega_1 q_r \omega_2$ (configuração de rejeição)

Note que para rejeitar uma string não basta não aceitá-la.

Uma linguagem A é Turing-reconhecível ou recursivamente enumerável (r.e.) se existe uma MT que aceita todas as strings de A. Um linguagem B é Turing-decidível ou recursiva se existe uma MT que aceita todas as strings em B e rejeita todas as strings em \bar{B} .

Exemplo 4.1.2:

A linguagem $\mathscr{L}=a^*b^*$ é recursiva.

Exemplo 4.1.3:

A linguagem $\mathscr{L} = \{a^nb^nc^n : n \geq 0\}$ é recursiva¹.

Exemplo 4.1.4:

 $^{^1\}mathrm{Para}$ não poluir o diagrama omitimos as transições para q_r

4.1. MÁQUINAS DE TURING DETERMINÍSTICAS

77

A linguagem $\mathscr{L} = \{\omega \# \omega : \omega \in \{a,b\}^*\}$ é recursiva.

Exemplo 4.1.5:

A Máquina de Turing a seguir tem o seguinte efeito:

$$\omega_1 q_i a \omega_2 \Rightarrow^* \omega_1 q_j \Box a \omega_2$$

4.2 Máquinas de Turing Múltifitas

Uma variante das Máquinas de Turing são aquelas com múltiplas fitas. Nesse caso, a cada passo temos k símbolos sendos lidos e a função de transição indica o que fazer em cada uma das fitas dado o estado atual e os k símbolos que estão sendo lidos. Formalmente, como numa MT tradicional temas a seguinte tupla:

$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r \rangle$$

Neste caso, porém, temos que:

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{E, D\}^k$$

Ou seja, a função de transição leva um estado e k símbolos em um novo estado, k novos símbolos e k direções.

Exemplo 4.2.1:

$$\delta(q_0, \langle a, b \rangle) = \langle q_1, \langle b, a \rangle, \langle D, D \rangle \rangle$$

Teorema 4.2.2. Para toda MT multifita existe uma MT simples equivalente.

Demonstração. Faremos aqui apenas o esboço da prova. Simulamos as k fitas em uma única fita com delimitadores indicados pelo símbolo #.

- a entrada $a_1 \dots a_n$ será representada em uma única fita como $\#\bar{a_1} \dots a_n \# \# \dots \#$
- varre a entrada para verificar os símbolos sendo lidos
- varre novamente efetuando as transições em cada um dos trechos da fita
- se em algum ponto estivermos em # e a instrução for D devemos abrir um espaço em branco antes de # (Exercício 4.1.5).

Exemplo 4.2.3:

Considere o seguinte estado em uma MT multifita:

1	0	Ī	
$\bar{0}$	0		
0	Ī	1	1

Ela seria representada em uma MT simples da seguinte forma:

#	1	0	Ī	#	$\bar{0}$	0	#	0	Ī	1	1	#

Teorema 4.2.4. Uma linguagem é recursiva se e somente se existem MTs que reconhecem A e \bar{A}

Demonstração. Se A é recursivo então, por defineção existe uma MT M que decide A e, portanto, existe uma MT que reconhece A.

Seja M' uma MT igual a M exceto que em M' trocamos q_a por q_r . A máquina M' aceita tudo que M rejeita e rejeita tudo que M aceita. Portanto M' reconhece \bar{A} .

Agora sejam M_1 e M_2 MTs que reconhecem A e \bar{A} respectivamente. Construímos uma MT com duas fitas que simula M_1 e M_2 em paralelo. Ou seja, simula M_1 na primeira fita e M_2 na segunda. Essa MT deve aceitar ω se M_1 aceita ω e deve rejeitar ω se M_2 aceita ω . Pelo Teorema 4.2.2 temos que existe uma MT simples equivalente a essa de fita dupla e esta MT decide A.

4.3 Máquinas de Acesso Aleatório (RAM)

Vamos considerar agora uma máquina que a princípio parece bem diferente de uma MT, muito mais parecida com um computador moderno. Uma $M\acute{a}quina$ de Acesso $Aleat\'{o}rio$ (RAM) tem a capacidade de acessar um elemento qualquer em um único passo desde que ele esteja devidamente endereçado.

Em uma RAM temos um número de registradores capazes de armazenar e manipular endereços das células de memória. Um programa em uma RAM é uma sequência de instruções que manipulam o conteúdo dos registradores e da memória. O primeiro registrador tem uma função especial e é chamado acumulador. Além disso, o programa mantém um contador K que indica a instrução a ser executada.

Uma Máquina de Acesso Aleatório (RAM) é um par $M = \langle k, \Pi \rangle$ em que k > 0 indica o número de registradores e $\Pi = \langle \pi_0, \pi_1, \dots, \pi_n \rangle$ é uma sequência de instruções (programa) da Tabela 4.3 admitindo que $\pi_n = halt$.

Formalmente um configuração de uma RAM é uma k+2-upla $\langle K, R_0, \ldots, R_{k-1}, T \rangle$ em que:

- 1. $K \in \mathbb{Z}_p$ é o contador de instruções
- 2. uma configuração de parada é tal que K=0
- 3. R_j é o valor do registrador j
- 4. $T: \mathbb{N} \to \mathbb{N}$ leva um natural i (endereço) em seu conteúdo m.

Dizemos que a configuração $C = \langle K, R_0, \dots, R_{k-1}, T \rangle$ de uma RAM $M = \langle k, \Pi \rangle$ produz em um passo $C' = \langle K', R'_0, \dots, R'_{k-1}, T' \rangle$ (escrevemos $C \vdash_M C'$) se C' reflete o resultado da aplicação da instrução π_K em C. A relação \vdash_M^* é o fecho reflexivo transitivo de \vdash_M .

Exemplo 4.3.1:

```
R_0 \leftarrow T[R_i]
read(j)
write(j)
                 T[R_i] \leftarrow R_0
                 R_i \leftarrow R_0
store(j)
                 R_0 \leftarrow R_i
load(j)
load(=c)
               R_0 \leftarrow c
                 R_0 \leftarrow R_0 + R_i
add(j)
                 R_0 \leftarrow R_0 + c
add(=c)
                 R_0 \leftarrow R_0 - R_i
sub(j)
                 R_0 \leftarrow R_0 - c
sub(=c)
                 R_0 \leftarrow |R_0/2|
half
                 K \leftarrow s
jump(s)
                 R_0 > 0 \Rightarrow K \leftarrow s
jpos(s)
                 R_0 = 0 \Rightarrow K \leftarrow s
jzero(s)
                 K \leftarrow 0
halt
```

Tabela 4.1: Catálogo de instruções de uma RAM

Considere a seguinte márquina $\langle Pi, 4 \rangle$:

1. store(2)	$6. \ load(2)$
2. jzero(9)	7. $sub(=1)$
3. load(3)	$8. \ store(2)$
()	9. $jump(1)$
$4. \ add(1)$	$10. \ load(3)$
$5. \ store(3)$	$11. \ halt$

Essa máquina começa com valores n e x nos registradores 0 e 1 e termina com $n \cdot x$ no acumulador. Ou seja, a maquina calcula a multiplicação.

Simulando com entrada 2 e 3 podemos conferir que:

$$\langle 1; 2, 3, 0, 0; \emptyset \rangle \vdash_{M}^{*} \langle 10; 6, 3, 0, 6; \emptyset \rangle$$

Para faciliar a leitura e a escrita de programas podemos usar a abreviação $R_3 \leftarrow R_3 + R_1$ para a sequência comum de instruções load(3), add(1), store(3) e $R_2 \leftarrow R_2 - 1$ para load(2), sub(=1),

store(2). Além disso, podemos dar nomes como x, y e z para R_1 , R_2 e R_3 . Por fim, as instruções 2 e 9 normalmente são expressas com um loop while contendo as instruções a serem repetidas.

O programa anterior pode, então ser reescrito da seguinte forma:

```
z = x
while y > 0
z = z + x
y = y - 1
x = z
```

Considere um alfabeto finite Σ . Podemos enumerar seus elementos $E: \Sigma \to \mathbb{N}$. A configuração inicial de uma RAM $M = \langle K, \Pi \rangle$ cuja entrada é $\omega = a_1 \dots a_n$ é $\langle 1; 0, 0, \dots; T \rangle$ em que $T[1] = E(a_1), T[2] = E(a_2) \dots$ $T[n] = E(a_n)$.

Dizemos que M aceita $x \in \Sigma^*$ se a configuração inicial de M para entrada x produz uma configuração de parada em que $R_0 = 1$ e reiejta x se produz uma configuração de parada em que $R_0 = 1$. Dizemos que M decide uma linguagem \mathscr{L} se M aceita todo $x \in \mathscr{L}$ e rejeita todo $x \notin \mathscr{L}$.

Exemplo 4.3.2:

Sendo a instrução aceita é uma abreviação para load (=1) seguido de halt e a instrução rejeita uma abreviação para load (=0) seguido de halt, o seguinte programa decide a linguagem $\mathcal{L} = \{a^nb^nc^n : n \geq 0\}$

```
a = 0
b = 0
c = 0
n = 1
while T[n] == 1
    n = n + 1
    a = a + 1
while T[n] == 2
    n = n + 1
b = b + 1
```

```
while T[n] == 3
    n = n + 1
    c = c + 1
se a == b && T[n] == 0
    aceita
senão
    rejeita
```

Teorema 4.3.3. Para toda RAM existe uma MT equivalente.

Demonstração. Construir uma RAM que simula uma MT é possível, mas um exercício pedante que deixaremos aqui em aberto.

Construir uma MT que simula uma RAM é mais complicado, mas possível. Para tanto precisaríamos de uma MT com 7 fitas:

- 1. guarda a entrada
- 2. guarda o conteúdos dos registradores
- 3. guarda o valor atual de K
- 4. guarda o valor do registrador sendo lido
- 5 7 executam as operações (no caso das operações aritméticas duas fitas guardam os fatores e uma o resultado)

4.4 Máquinas de Turing Não-determinísticas

Em uma Máquina de Turing não-determinística, cada configuração pode levar a uma um mais configurações. Uma string é *aceita* se partindo da configuração inicial *existe* uma sequência de configurações que chega a uma configuração de aceitação.

Formalmente temos que:

 $N = \langle Q, \Sigma, \Gamma, \Delta, q_0, q_a, q_r \rangle$

 \Box

Em que Δ não é uma função de transição que recebe um estado e um símbolo e leva a um conjunto de configurações:

$$\Delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{E,D\}}$$

Máquinas não-determinísticas são ideias. Não temos pretenção de construí-las. Porém, por mais que pareçam muito mais poderosas, assim com as outras variantes de MT que vimos até aqui, essas máquinas também computam o mesmo que uma MT simples.

Teorema 4.4.1. Para toda MT não determinísitca existe uma MT simples equivalente.

Demonstração. Seja $N = \langle Q, \Sigma, \Gamma, \Delta, q_0, q_a, q_r \rangle$ uma MT não-determinística e seja b o tamanho máximo de uma ramificação em N pode chegar – ou seja, $b = \max_{(a,q) \in \Sigma \times Q} (|Delta(a,q)|)$ – e seja então $\Sigma_b = \{1, 2, \dots, b\}$.

Simularemos N em uma MT com três fitas. A primeira fita contém a entrada ω . A segunda fita fará a simulação e a terceira contém uma string $s \in \Sigma_b^*$ que indica as escolhas não determinísticas a serem feitas.

- 1. Copiamos ω para a fita 2.
- 2. Seguindo o indicado na fita 3 simulamos as transições na fita 2. Se chegarmos a um estado de rejeição ou se esgotarmos as instruções da fita 3 vamos para o item 3.
- 3. Apagamos todo o conteúdo da fita 3 e escrevemos a próxima string em Σ_b^* na ordem lexicográfica, apagamos a fita 2 e voltamos para o passo 1.

Em poucas palavras, estamos fazendo uma busca em largura nas configurações de N e são paramos quando chegamos em um estado de aceitação.

Exemplo 4.4.2:

Vamos simular essa máquina com entrada $\omega = aa$. Nesse caso b=2

Teorema 4.4.3. Linguagens livres de contexto são recursivas.

Demonstração. Se A é uma LLC, por definição, existe uma GLC G associada a A. Vimos que deve existir G' na forma normal de Chomsky equivalente a G. Escrevemos, então, uma MT não-determinística que faz o seguinte:

- 1. Começa na configuração inicial $q_0\omega$ e põe #S depois de ω sendo S o estado inicial de G'.
- 2. Repetidamente substitui não deterministicamente a primeira variável depois de # pelo corpo das regras em G'.
- 3. Testa para ver se o lado esquerdo de # é igual do ao direito (Exemplo 4.1.4) e aceita a string em caso afirmativo.

Como G' está na forma normal, se $\omega \in L(G')$ então ω será reconhecida usando $2 \cdot |\omega| - 1$ derivações de regras.

4.5 O Problema da Parada

As diversas variantes de Máquinas de Turing (multifitas, RAM e mesmo as não-determinísticas) são equivalentes a MTs simples. Além disso vimos que todas as Línguagens Livres de Contexto são recursivas (Teorema ??), ou seja, toda LLC podem ser reconhecidas por uma MT. Vimos também linguagens que não são livres de contexto e são reconhecidas por MTs. Assim, parece que chegamos em um modelo que é mais expressivo do que os que vimos até aqui e parece que chegamos em uma espécie de limite – todas as tentativas de tornar o modelo mais expressivo falharam. Nesta seção veremos que mesmo esse modelo super-expressivo tem limitações.

Para tanto precisamos fazer uma digressão sobre o conceito de infinito

4.5.1 O infinito de Cantor

Dizemos que dois conjuntos A e B tem a mesma cardinalidade se existe uma bijeção entre eles. Ou seja, se existe alguma função $f: A \to B$ que leva cada elemento de A em um elemento distinto de B (injetora) de forma que não sobre elementos em B (sobrejetora).

Note que se A e B são finitos, nossa definição garante que eles possuem a mesma quantidade de elementos (se A possui mais elementos não há como a função f ser injetora e se B possui mais elementos ela não pode ser sobrejetora). A cardinalidade representa a forma mais primitiva de contagem: uma pedra (do conjunto A das pedras) para cada carneiro (do conjunto B de carneiros). Quando extrapolamos essa definição para os conjuntos infinitos, temos alguns resultados um pouco contra-intuitivos.

Exemplo 4.5.1:

O conjunto dos naturais $\mathbb N$ tem a mesma cardinalidade do conjunto dos números pares.

Para mostrar isso, basta achar uma função bijetora que leve naturais em pares. A função f(n) = 2n faz isso.

O exemplo anterior mostra dois conjuntos infinitos que tem a mesma cardinalidade (mesma quantidade de elementos por assim dizer). Poderíamos levantar a hipótese de que todo conjunto infinito possui a mesma cardinalidade, mas o teorema a seguir provado por Cantor no final do século XIX mostra que esse não é o caso.

Teorema 4.5.2 (Cantor). Seja A um conjunto qualquer, o conjunto $2^A := \{B : B \subseteq A\}$ (chamado conjunto das partes de A) tem cardinalidade extritamente maior do que A.

Demonstração. Suponha por absurdo que exista uma bijeção entre $f: A \to 2^A$ e considere o conjunto $B := \{x \in A : x \notin f(x)\}$. Como $B \subseteq A$, por definição $B \in 2^A$. Se f fosse bijetora, deveria existir $x \in A$ tal que f(x) = B.

Vejamos se $x \in f(x)$. Mas se $x \in f(x)$, então $x \in B = f(x)$ e nesse caso $x \notin f(x)$ pela definição de B o que seria uma contradição. Por outro lado, se $x \notin f(x) = B$ então, pela defição de B, temos que $x \in f(x)$, o que também seria uma contradição.

Concluímos que não existe uma função bijetora entre $A \in 2^A$.

Voltemos agora às MTs. Podemos representar uma MT é descrita como uma sequência de instruções com o seguinte formato:

$$q_0a \rightarrow q_1bD$$

Ou seja, podemos representar uma sequência de instruçõe como uma string sobre o alfabeto $\Sigma_{MT} = Q \cup \Sigma \cap \{E, D, \rightarrow, \#\}$ (o símbolo # é usado para separar as instruções). Existem infinitas MTs, ou equivalentemente, infinitas strings em Σ_{MT}^* . Pelo teorema de Cantor vimos que o conjunto $2^{\Sigma_{MT}^*}$ tem cardinalidade maior do que Σ_{MT}^* . Ou seja, existem mais linguagens do que MTs. Concluímos que deve haver linguagens que não são reconhecidas por Máquinas de Turing. Antes de mostrar um exemplo disso, vamos explorar uma consquência importante do fato de que qualquer MT pode ser descrita como uma string.

4.5.2 Máquina de Turing Universal

Uma MT universal U recebe $m \in \Sigma_{MT}^*$ – a representação de uma MT M – e uma entrada x. A máquina U e aceita essa entrada se M aceita x e rejeita a entrada se M rejeita x. Em outras palavras U reconhece a seguinte linguagem $A_{MT} := \{\langle m, x \rangle : m \in \Sigma_{MT}^* \text{ é a codificação de uma MT que aceita } x\}.$

A existência de uma MT universal nos mostra que se codificarmos uma única MT, a saber uma MT universal, em um harware, podemos *simular* qualquer MT como um software. Essa descoberta do começo dos anos 30 dá origem ao que hoje chamamos de *computação*.

4.5.3 O Problema da Parada

Note que não dicemo que U decide A_{MT} . Se M aceita x, então, por definição U aceita $\langle m, x \rangle$, mas não dicemos o que acontece se M rejeita x. No caso de M rejeitar x, U não pode aceitar $\langle m, x \rangle$. Neste caso U pode rejeitar $\langle m, x \rangle$, mas podem ocorrer outras coisas, por exemplo, U pode entrar em loop infinito e nem aceitar nem rejeitar a entrada.

Teorema 4.5.3. A_{MT} não é recursiva.

Demonstração. Suponha por absurdo A_{MT} seja recursiva. Por definição, deve existir uma MT H tal que:

$$H(m,x) = \begin{cases} \text{ aceita } \text{ se } M \text{ aceita } x \\ \text{ rejeita } \text{ se } M \text{ não aceita } x \end{cases}$$

Se essa MT existisse, poderíamos trivialmente construir uma MT D que faz o seguinte:

$$D(m) = \begin{cases} \text{ aceita se } M \text{ não aceita } m \\ \text{rejeita se } M \text{ aceita } m \end{cases}$$

Seja d a codificação da MT D. Temos então que:

$$D(d) = \begin{cases} \text{ aceita se } D \text{ não aceita } d \\ \text{rejeita se } D \text{ aceita } d \end{cases}$$

Contrariando a definição de D. Logo, não podem existir uma MT D e, portanto, não pode existir H que decide A_{MT} .

Corolario 4.5.4. \vec{A}_{MT} não é recursivamente enumerável.

 A_{MT} é um exemplo de linguagem recursivamente enumerável que não é recursiva.

4.5.4 Tese de Church-Turing

Nas seções anteriores vimos o quão expressivas são as MTs. Nesta vimos algumas limitações.

A pergunta que resta é se existe algum modelo de computação mais expressivo do que as Máquinas de Turing. Ou seja, algum modelo que reconhece um conjunto ainda maior de linguagens.

Nos anos 30 o matemático Alonzo Church levantou a hipótese de que não. A *Tese de Church-Turing*, como ficou conhecida, estabelece que não existem modelos de computação mais expressivos do que as MTs. Temos três motivos para crer que a hipótese seja válida:

- 1. a equivalência entre muitos modelos distintos (não só os que vimos em aqui, mas principalmente as funções recursivas e o cálcula lambda)
- 2. a existência de uma MT universal
- 3. a propria simplicidade e generalidade do modelo de Turing

Podemos manter, porém, uma postura cética e aceitar a tese enquanto não se apresenta nenhum outro modelo mais expressivo.

Capítulo 5

Complexidade Computacional

Até aqui nos ocupamos principalmente do problema da expressivdade de modelos de computação. Ou seja, o que é possível computar com cada modelo. Terminamos o último capítulo com um modelo bastante expressivo das Máquinas de Turing. Vimos que mesmo nesse modelo há problemas que não são computáveis, como o problema da parada.

Neste último capítulo nos voltaremos para outra questão: que problemas computacionais são resolvíveis de maneira eficiente? Por efeciente entendemo que há algum recurso escasso consumido pelo algoritmo que resolve o problema, por exemplo tempo ou espaço de memória.

5.1 Complexidade de Tempo

O tempo de execução de uma MT M é uma função $f: \mathbb{N} \to \mathbb{N}$ em que f(n) é o número máximo de passos de derivação para uma entrada ω qualquer de tamanho n.

 $TIME(t(n)) = \{A \subseteq \Sigma^* : \exists \text{ MT simples que decide } A \text{ em tempo } O(t(n))\}$

Exemplo 5.1.1:

TIME(n) é a classe dos problemas resolvíveis em tempos linear no pior caso.

 $TIME(n^2)$ é a classe dos problemas resolvíveis em tempo quadrático no pior caso.

Teorema 5.1.2. Se $t(n) \ge n$ então toda MT multifita que consome tempo t(n) é equivalente a uma MT simples que consome tempo $O(t^2(n))$.

Demonstração. Considere a simulação de uma MT com k fitas que vimos no Teorema $\ref{eq:main_solution}$.

M varre a fita em tempo O(n) para obter as informação necessárias para o próximo passo.

Para executar um passo M no pior precisamos abrir um espaço em branco na fita e para isso deslocamos todo conteúdo uma posição para a direita. Nesse caso como o tamanho máximo da fita é O(t(n)), precisaríamos de O(t(n)) passos para esse deslocamento.

Assim, o tempo total de excecução é t(n).O(t(n)) + O(n). Se $t(n) \ge n$ então $t(n).O(t(n)) + O(n) = O(t^2(n))$.

O tempo de execução de uma MT não-determinística N é uma função $f:\mathbb{N}\to\mathbb{N}$ em que f(n) é o número máximo de passos de alguma derivação de N para a entrada ω de tamanho n.

Teorema 5.1.3. Se $t(n) \ge n$ então toda MT não-determinística que consome tempo t(n) é equivalente a uma MT simples que consome tempo $2^{O(t(n))}$.

Demonstração. Vimos no Teorema ?? como simular uma MT não-determinística N usando uma MT com 3 fitas usando uma busca em largura.

Seja b o número máximo de ramificações de na excecução N. O número total de nós da árvore é $O(b^{t(n)})$ e a excecução de cada nó toma tempo O(t(n)) no pior caso.

Assim, o tempo total de excecução dessa simulação é $O(t(n).b^{t(n)}) = 2^{O(t(n))}$ se t(n) > n.

Por fim, essa MT de três fitas pode ser simulada por uma MT simples que consome tempo $2^{O(t^2(n))} = 2^{2O(t(n))} = 2^{O(t(n))}$.

 $NTIME(t(n)) = \{A \subseteq \Sigma^* : \exists MT \text{ não-det. que decide } A \text{ em tempo } O(t(n))\}$

Vamos definir duas classes de complexidade de tempo. A classe P contém todas as linguagens decidíveis por MT simples em tempo polinomial e a classe NP que contém todas as linguágens decidíveis por MTs não-determinísticas em tempo polinomial:

$$P = \bigcup_{k} TIME(n^{k})$$

$$NP = \bigcup_{k} NTIME(n^{k})$$

É evidente que toda linguagem em P pertence a NP. Ou seja, $P \subseteq NP$. Não sabemos, porém, se é verdade que $NP \subseteq P$. Em outra palavras, se existem soluções polinomiais em MTs simples para os problemas em que possuem solução em MTs não-determinísticas. Esse é o principal problema em aberto na computação.

Uma forma alternativa de apresentar a classe de problemas NP é por meio de um or'aculo. Um or'aculo (ou verificador) para uma linguagem A é um algotimo V tal que:

$$A = \{\omega : V \text{ aceita } \langle \omega, o \rangle \text{ para alguma string } o \}$$

Exemplo 5.1.4:

Seja $L = \{p_1, \ldots, p_n, \bar{p_1} \ldots \bar{p_n}\}$ uma alfabeto. Uma $cl\text{\'{a}}usula$ sobre L \'{e} uma string $c \in L^*$ e uma f\'{o}rmula \'{e} uma string $f \in (L \cup \{;\})^*$. Uma valoraç $\~{a}o$ \'{e} uma funç $\~{a}o$ $v : L \to \{0,1\}$ tal que v(p) = 1 sse $v(\bar{p}) = 0$. Uma valoraç $\~{a}o$ v satisfaz uma $cl\text{\'{a}}usula$ c se v(l) = 1 para algum l em c e v satisfaz uma f\acute{o}rmula $f = c_1; c_2; \ldots; c_m$ se ele satisfaz todas as cláusulas c_1, \ldots, c_n .

Definimos o problema da satisfatibilidade da seguinte forma:

$$SAT = \{ f \in (L \cup \{;\})^* : \text{existe } v \text{ que satisfaz } f \}$$

Uma valoração pode ser descrita como uma string $o \in \{0, 1\}^*$. (Por exemplo, a string 101 indica que $v(p_1) = 1$, $v(p_2) = 0$ e $v(p_3) = 1$).

É fácil construir uma MT V que recebe uma fórmula $f \in (L \cup \{;\})^*$ e um string $o \in \{0,1\}^*$ e aceita se a valoração v representada por o satisfaz f e rejeita caso contrário. Essa verificação pode ser feita em tempo polinomial em relação a |f|. Note que podemos descrever o problema SAT da seguinte forma:

$$SAT = \{f \in (L \cup \{;\})^* : V \text{ aceita } \langle f, o \rangle \text{ para algum } o \in \{0,1\}^* \}$$

Dizemos, portanto, que V é um verificador polinomial para SAT.

Teorema 5.1.5. Uma linguagem $A \in NP$ sse exsite um verificador polinomial para A.

Demonstração. Se $A \in NP$ então, por definição, existe uma MT não-determinística N que decide A em tempo polinomial. Considere uma string ω qualquer. Se $\omega \in A$ então N aceita, senão rejeita. De qualquer forma existe um ramo da excecução de N que termina em menos de $O(n^k)$ passos. Seja o a codificação desse ramo (a string que indica a cada passo qual o caminho que foi seguido). Simulando N como uma MT com três fitas, e colocando o na terceira, decidimos se ω é aceito ou não em tempo polinomial.

Agora considere o outro lado. Seja V ium verificador para A que decide se a entrada é aceita em tempo $O(n^k)$. Escolhemos não deterministicamente uma string o com tamanho máximo n^k . Em cada ramo e excecutamos V sobre $\langle \omega, o \rangle$ para um o distinto e aceitamos ω se V aceitar $\langle \omega, o \rangle$ para algum o. Se nenhum ramo V aceitar a entrada então rejeitamos ω .

5.2 NP-completude

Na última seção definimos as classes P e NP e mencionamos que a pergunta se $P\stackrel{?}{=} NP$ é um problema em aberto na computação. O que faremos então será tentar classificar que problemas são mais "fáceis" ou mais "difíceis" do que outros.

Dizemos que uma função $f: \Sigma^* \to Sigma^*$ é computável em tempo polinomial se existe um polinômio p e uma MT que ao receber $\omega \in \Sigma^*$ para depois de $p(|\omega|)$ passos e devolve $f(\omega)$.

Uma linguagem A é polinomialmente redutível a B (escrevemos $A \leq_p B$) se existe $f: \Sigma^* \to \Sigma^*$ que seja computável em tempo polinomial e tal que $\omega \in A$ sse $f(\omega) \in B$.

O teorema a seguir mostra que a redutibilidade polinonimal preserva o pertencimento na classe P:

Teorema 5.2.1. Se $A \leq_P B$ e $B \in P$ então $A \in P$.

Demonstração. Seja M uma MT que decide B em tempo polinomial e seja f a redução polinomial de A em B. Construímos uma MT N da seguinte forma: N recebe ω e computa $f(\omega)$ então roda M sobre $f(\omega)$.

Pela definição de f, M aceita $f(\omega)$ sse $\omega \in A$ e, portanto, N aceita ω . Além disso, N é polinomial pois cada passo é polinomial e polinômios são fechados por composição.

Exemplo 5.2.2:

 $3SAT = \{ f \in SAT : \text{cada clásula de } f \text{ tem tamanho exatamente } 3 \}$

Vamos mostrar que $SAT \leq_P 3SAT$.

A transformação vai substituir cada cláusula $c_i = l_1 \dots l_n$ de cada fórmula $f = c_1; c_2; \dots; c_m$ pela seguinte sequência de cláusulas: $l_1 l_2 m_1; \overline{m_1} l_3 m_2; \overline{m_2} l_4 m_3; \dots; \overline{m_{n-3}} l_{n-1} l_n$. Essa transformação é claramente polinomial e é possível mostrar que $f \in SAT$ see essa nova fórmula também for satisfatível.

Uma linguagem $A \in NP$ -completa se:

- $A \in NP$ e
- para todo $B \in NP$ temos que $B \leq_P A$

Os seguintes são corolários da definição de NP-completude:

Corolario 5.2.3. Seja A uma linguagem NP-completa, se $A \in P$ entçao P = NP.

Corolario 5.2.4. Se A é NP-completa e $A \leq_P B$ então B também é NP-completa.

Ou seja, intuitivamente as linguagens NP-completas são as mais difíceis dentro da classe NP. Além disso, se conhecemos uma linguagem NP-completa, então podemos inferir que outras linguagens também o são por redução polinomail.

Resta mostrar que pelo menos uma linguagem é NP-completa.

Teorema 5.2.5 (Cook-Levin). A linguagem SAT é NP-completa.

Demonstração. Mostramos na última seção que $SAT \in NP$. Temos que mostrar que $B \neq_P SAT$ para todo $B \in NP$. Se $B \in NP$ então existe uma MT não-determinística N que decide B em tempo polinomial n^k .

Um tableau para N sobre a entrada ω é uma tabela $n^k \times n^k$ cujas linhas são configurações de um ramo de N com entrada ω . Assim, a primeira linha contém a configuração inicial e deve haver um tableau que contém uma configuração de aceitação para cada $\omega \in B$.

Vamos representar o tableuau como um fórmula f que é satisfatível sse existe um tableau que aceita ω .

Seja $C = Q \cup \Gamma \cup \{\#\}$, temos uma variável $x_{i,j,s}$ para cada $i, j \in \{1, \ldots, n^k\}$ e cada $s \in C$. A ideia é que uma valoração v satisfaz $x_{i,j,s}$ se a célula $\langle i, j \rangle$ no tableau contém o símbolo s. Projetaremos a fórmula f de modo que uma valoração que satisfaz f corresponde a um tableau que reconhece ω .

$$f_c = x_{1,1,s_1} x_{1,1,s_2} \dots x_{1,1,s_n}; \overline{x_{1,1,s_1} x_{1,1,s_2}}; \overline{x_{1,1,s_1} x_{1,1,s_3}} \dots; x_{1,2,s_1} x_{1,2,s_2} \dots$$

A fórmula $f_c \in SAT$ sse cada célula contém exatamente um símbolo. Escrevemos a fórmula f_i de forma que $f_i \in SAT$ sse a primeira linha do tableau contém a configuração inicial de N.

$$f_a = x_{1,1,q_a} x_{1,2,q_a} \dots x_{n^k,n^k,q_a}$$

A fórmula $f_a \in SAT$ sse alguma linha é uma configuração de aceitação.

Uma $janela~2\times3$ no tableua é legal se não viola as ações especificadas pela função de transição de N (Exemplo 5.2.6). Escrevemos f_m como a conjunção de todas as janelas legais. Ou seja, f_m é tal que $f_m \in SAT$ sse a configuração da linha i segue da configurção da linha i-1 em N.

Assim, a fórmula $f=f_c; f_i; f_a; f_m \in SAT$ sse $\omega \in B$ para algum $B \in NP$.

Exemplo 5.2.6:

Considere que $\Delta(q_1, b) = \{\langle q_2, c, E \rangle, \langle q_2, a, D \rangle\}$, as seguintes janelas são legais:

a	q_1	b
a	a	q_2

$$\begin{array}{c|cccc}
a & q_1 & b \\
\hline
q_2 & a & c
\end{array}$$

Corolario 5.2.7. 3SAT é NP-completa

Apêndice A

Exercícios

A.1 Exercícios do Capítulo 2

Exercício 1: Para cada uma das seguintes expressões regulares dê uma string na linguagem representada por ela e uma string que não está nessa linguagem.

- a) $(ab \cup \epsilon)b^*$
- b) $(ab)^*bb$
- c) $(a \cup b)ba^*$
- $\mathrm{d}) \ (aa)^{\star}(bb)^{\star}bb$

Exercício 2: Dê o diagrama de estado **e** a descrição formal de AFDs que reconheçam as seguintes linguagens:

- a) $\{\omega \in \{0,1\}^* : \omega \text{ começa com } 1 \text{ e termina com } 0\}$
- b) $\{\omega \in \{0,1\}^* : \omega \text{ contém a substring } 000\}$
- c) $\{0,1\}^* \{\varepsilon\}$
- d) $\{\omega \in \{0,1\}^*: \omega$ começa com 1 e tem comprimento par $\}$

Exercício 3: Dê o diagrama de estados de AFNs que reconheçam a linguagem:

- a) 0^*1^* com dois estados.
- b) $(01)^*$ com três estados.
- c) $(0 \cup 1)$ com três estados.
- d) $\{\omega \in \{0,1\}^* : \omega \text{ começa com } 0 \text{ e tem comprimento par ou começa com } 1 \text{ e tem comprimento impar } \}$

Exercício 4: Seja $A = \{\omega \in \{0,1\}^* : \omega \text{ começa com } 1 \text{ e termina com } 0\}$ e $B = \{\omega \in \{0,1\}^* : \omega \text{ começa com } 0 \text{ e tem comprimento par ou começa com } 1 \text{ e tem comprimento impar } \}$. Desenhe o diagrama de estados para AFN que reconheça:

- a) $A \circ B$
- b) $B \circ A$
- c) $A \cup B$
- d) B^*

Exercício 5: Use o método visto em sala para desenhar o diagrama de estados AFD que reconheça a mesma linguagem que o seguinte diagrama AFN reconhece. Em seguida desenhe o mesmo AFD omitindo os estados supérfluos.

Exercício 6: Use o método visto em aula para encontrar uma expressão regular que reconhece a linguagem reconhecida pelo segundo AFD desenhado acima.

101

A.2 Exercícos do Capítulo 3

Exercício 7: O que é uma gramática ambígüa? A seguinte gramática $G = \langle V, \Sigma, R, E \rangle$, cujas regras R estão descritas a seguir, é ambígüa?

$$E \rightarrow E \wedge E|E \vee E|p| \neg p$$

Exercício 8: Desenhe o diagrama de estados de um autômato com pilha que reconhece a seguinte linguagem¹:

$$A = \{\omega.\omega^R : \omega \in \{0,1\}^*\}$$

Exercício 9: Mostre que a linguagem do exercício anterior não é regular.

Exercício 10: Mostre uma GLC associada a cada uma das linguagens abaixo:

- a) $\{\omega \in \{0,1\}^* : \omega \text{ possui pelo menos dois 1s} \}$
- b) $\{\omega.\omega^R : \omega \in \{0,1\}^*\}$
- c) $\{0^n 1^n : n \ge 0\}$

Exercício 11: Use o teorema visto em aula para construir um autômato com pilha a partir da gramática $G = \langle V, \Sigma, R, E \rangle$, cujas regras R estão descritas a seguir:

$$\begin{array}{ccc} E & \rightarrow & C \wedge C | C \\ C & \rightarrow & L \vee L | L \\ L & \rightarrow & p | \neg p \end{array}$$

Exercício 12: Mostre que a seguinte linguagem não é livre de contexto:

$$\{0^n 1^n 0^n 1^n : n \ge 0\}$$

¹Lembre-se que ω^R é ω com os símbolos invertidos

A.3 Exercícos do Capítulo 4

Exercício 13: Considere a Máquina de Turing $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r \rangle$ em que $Q = \{q_0, q_1, q_a, q_r\}, \Sigma = \{a, b\}, \Gamma = \{a, b, \bot\}, e \delta$ é o seguinte:

$$\delta(q_0, a) = \langle q_0, a, D \rangle
\delta(q_0, b) = \langle q_0, b, D \rangle
\delta(q_0, \omega) = \langle q_1, \omega, E \rangle
\delta(q_1, a) = \langle q_a, a, D \rangle
\delta(q_1, b) = \langle q_r, b, D \rangle
\delta(q_1, \omega) = \langle q_r, \omega, D \rangle$$

Para cada uma das seguintes strings, escreva as configurações da máquina, da inicial até a final e indique se a string é aceita ou rejeitada:

- 1. *aaa*
- 2. *aba*
- 3. *aab*
- 4. *bbb*

Exercício 14: Construa uma MT que decide se a string $\omega \in \{a, b\}^*$ começa com a e termina com b.

Exercício 15: Construa uma MT que decide se a string $\omega \in \{0\}^*$ tem comprimento par.

Exercício 16: Explique com suas palavras o que é uma linguagem recursiva e o que é uma linguagem recursivamente enumerável. Dê um exemplo de linguagem recursivamente enumerável que não seja recursiva.

A.4 Exercícos do Capítulo 5

Exercício 17: Explique com suas palavras o que é um problema NP e o que é um problema NP-completo. Dê um exemplo de problema NP-completo.

Exercício 18:

- O que é um verificador polinomial?
- Dê um exemplo de problema que possui um verificador polinomial e indique qual seria esse verificador.
- O que podemos dizer sobre a complexidade computacional deste problema?

Exercício 19: Sabemos que o problema SAT é NP-completo, mostre que 3SAT é NP-completo.