William Stallings Computer Organization and Architecture 7th Edition

Chapter 7 Input/Output

Input/Output Problems

- Wide variety of peripherals
 - Delivering different amounts of data
 - —At different speeds
 - —In different formats
- All slower than CPU and RAM
- Need I/O modules

Input/Output Module

Interface to CPU and Memory

Interface to one or more peripherals

Generic Model of I/O Module

I/O Module Functions

- Control and timing
- Processor communication
- Device communication
- Data buffering
- Error detection

External Devices

- Human readable
 - -Screen, printer, keyboard
- Machine readable
 - —Monitoring and control
- Communication
 - -Modem
 - —Network Interface Card (NIC)

I/O Steps

- CPU checks I/O module device status
- I/O module returns status

- If ready, CPU requests data transfer
- I/O module gets data from device
- I/O module transfers data to CPU
- Variations for output, DMA, etc.

Input Output Techniques

Programmed

Interrupt driven

Direct Memory Access (DMA)

PROGRAMMED I/O

Data transfer operations are completely controlled by CPU i.e. CPU

executes a program that

- initiates,
- directs and

— terminates the I/O operation

PROGRAMMED I/O

- Useful where h/w costs need to be minimized.
- Entire I/O is handled by CPU
- STEPS
 - ─1. Read I/O devices status bit
 - —2. Test status bit to determine if device is ready
 - —3. If device not ready return to step 1
 - —4. During interval when device is not ready CPU simply wastes its time until device is ready

Programmed I/O

- CPU has direct control over I/O
 - —Sensing status
 - —Read/write commands
 - —Transferring data
- CPU waits for I/O module to complete operation
- Wastes CPU time

Programmed I/O - detail

- CPU requests I/O operation
- I/O module performs operation
- I/O module sets status bits
- CPU checks status bits periodically
- I/O module does not inform CPU directly
- I/O module does not interrupt CPU
- CPU may wait or come back later

INTERRUPT DRIVEN I/O

- Major drawback of programmed I/O is busy waiting
- Speed of I/O devices is much slower than CPU
- Performance of CPU goes down as it has to repeatedly check for device status
- Solution: Switch to another task if device is not ready and thus use interrupt mechanism

Interrupt Driven I/O

- Overcomes CPU waiting
- No repeated CPU checking of device
- I/O module interrupts when ready

Interrupt Driven I/O Basic Operation

- CPU issues read command
- I/O module gets data from peripheral whilst CPU does other work
- I/O module interrupts CPU
- CPU requests data
- I/O module transfers data

CPU Viewpoint

- Issue read command
- Do other work
- Check for interrupt at end of each instruction cycle
- If interrupted:-
 - —Save context (registers)
 - —Process interrupt
 - Fetch data & store

Three Techniques for Input of a Block of Data

Direct Memory Access

- Interrupt driven and programmed I/O require active CPU intervention
 - —Transfer rate is limited
 - —CPU is tied up

 Direct memory access (**DMA**) is a feature of computer systems that allows certain hardware subsystems to access main system memory (RAM) independently of the central processing unit (CPU).

DMA Function

Additional Module (hardware) on bus

block command

to I/O module

 DMA controller takes over from CPU for $\mathsf{CPU} o \mathsf{DMA}$ I/O Issue Read

Do something

(c) Direct memory access

Typical DMA Module Diagram

DMA Operation

- CPU tells DMA controller:-
 - Read/Write
 - Device address
 - Starting address of memory block for data
 - Amount of data to be transferred
- CPU carries on with other work
- DMA controller deals with transfer
- DMA controller sends interrupt when finished

DMA data transfer modes:

- Burst Mode
- Cycle Stealing Mode
- Transparent Mode

DMA data transfer modes

1. DMA block transfer/Burst Mode

A block of data of arbitrary length is transferred in a single

burst

 Burst - Temporary high-speed data transmission mode used to facilitate sequential data transfer at maximum throughput.

2. Cycle stealing mode

- DMA controller is allowed to use system bus to transfer one
 word of data at a time, after which it must return control of the
 bus to the CPU.
- The DMA module uses the system bus only when the processor
 does not need it, or it must force the processor to suspend
 operation temporarily.
- Referred to as cycle stealing, because the DMA module in effect steals a bus cycle.

DMA data transfer modes:

3. Transparent DMA

DMA is allowed to steal only those cycles when CPU is not

using system bus

Advantages of DMA

- High transfer rates
 - fewer CPU cycles for each transfer.
 - DMA speedups the memory operations by bypassing the involvement of the CPU.
- Work overload on the CPU decreases.

Disadvantages of DMA

- DMA transfer requires a DMA controller to carry out the operation
- More expensive system
- Synchronization mechanisms must be provided in order to avoid accessing non-updated information from RAM
 - Cache coherence problem