Criterio del confronto asintotico. Sia $(a_n)_n$ e $(b_n)_n$ due successioni in $]0,+\infty)$ tali che esista finito il limite $\lim_{n\to+\infty}\frac{a_n}{b_n}=\ell$. Se $\ell\neq 0$ le serie $\sum_{n=1}^\infty a_n$ e $\sum_{n=1}^\infty b_n$ hanno lo stesso comportamento.

Dimostrazione Si può scegliere $\varepsilon > 0$ tale che $\ell - \varepsilon > 0$. Applicando la definizione di limite, esisterà \overline{n} tale che per $n > \overline{n}$,

$$\left| \frac{a_n}{b_n} - \ell \right| \le \varepsilon$$

ovvero

$$(\ell - \varepsilon)b_n \le a_n \le (\ell + \varepsilon)b_n \tag{1}$$

definitivamente. Applicando allora il Criterio del confronto, e la linearità delle serie, dalla prima diseguaglianza nella (1), si ha che se $\sum_{n=1}^{\infty} a_n$ converge, allora converge anche $\sum_{n=1}^{\infty} b_n$, mentre se $\sum_{n=1}^{\infty} b_n$ diverge, divergerà anche $\sum_{n=1}^{\infty} a_n$.

Nel caso in cui $\ell = 0$ la (1) diventa

$$a_n < \varepsilon b_n$$

definitivamente. Quindi se $\sum_{n=1}^{\infty} b_n$ converge, converge anche $\sum_{n=1}^{\infty} a_n$, mentre se $\sum_{n=1}^{\infty} a_n$ diverge, diverge anche $\sum_{n=1}^{\infty} b_n$.