A mathematical modeling toolbox for ion channels and transporters across cell membranes

Shadi Zaheria, Fatemeh Hassanipoura,*

^aDepartment of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA

- The following supplementary material is from " A mathematical modeling toolbox for ion channels
- 2 and transporters across cell membranes" manuscript. It contains an overview of all equations
- 3 related to Ion channels, Pumps, Cotransporters, and Symporters, organized in a table form. The
- 4 detailed transporters along with the descriptions of their equatuons can be found from here.

^{*}This document is the result of the research project funded by the National Science Foundation.

^{*}Corresponding author

21 1.4.2. Cystic Fibrosis Transmembrane conductance Regulator (CFTR)

Cystic Fibrosis Transmembrane conductance Regulator (CFTR)		Ref
		[26]
$I''_{Cl,CFTR}^{M,N(a)} = n''_{CFTR}^{M-N(a)} P_{Cl,CFTR}^{M(a)} \frac{z_{Cl}^2 F^2 V_m^{M-N(a)}}{RT}$	$\frac{1}{1 - exp^{\frac{z_{Cl}FV_m^{M-N(a)}}{RT}}} \frac{[Cl]_N - [Cl]_M exp^{\frac{z_{Cl}FV_m^{M-N(a)}}{RT}}}{1 - exp^{\frac{z_{Cl}FV_m^{M-N(a)}}{RT}}} $ (90)	
$I''^{M-N(a)}_{Cl,CFTR} = n''^{M-N(a)}_{CFTR} g^{M-N}_{CFTR} f^{Cl,Cl}_{o}$	$FTR(V_m^{M-N(a)} - V_{Cl,rev}^{M-N(a)}) $ (91)	[5, 8, 27]
		[6]
$I''^{M-N(a)}_{Cl,CFTR} = n''^{M-N}_{CFTR} g_{CFTR}$	$\left(V_m^{M-N} - V_{Cl,rev}^{M-N}\right) \tag{92}$	
$I''_{HCO3,CFTR}^{M-N(a)} = n''_{CFTR}^{M-N} \beta g_{CFT}$	$R\left(V_{m}^{M-N}-V_{HCO3,rev}^{M-N}\right) \tag{93}$	
where: $\beta = \frac{g_{CFTR,H}}{g_{CFTR,g}}$	$\frac{co_3}{cl}$ (94)	
		[28]
$I^{\prime\prime M-N}_{Cl,CFTR} = n^{\prime\prime M-N}_{CFTR} (\overline{g}_{Cl}^{M-N} g_{Cl}^{CF})$	${}^{TR})\left(V_m^{M-N(a)} - V_{Cl,rev}^{M-N}\right) $ $\tag{95}$	
$I''_{HCO_3,CFTR}^{M-N} = n''_{CFTR}^{M-N} (\overline{g}_{HCO_3}^{M-N} g_{HCO_3}^{CFT})$	$(V_{CO3}^{TR}) \left(V_m^{M-N(a)} - V_{HCO_3,rev}^{M-N} \right) $ (96)	
Where		
$g_x^{M-N}([x]_M, [x]_N) = [x]_M$	$[x]_N \frac{ln\left(\frac{[x]_M}{[x]_N}\right)}{[x]_M - [x]_N} \tag{97}$	
$V_{Cl,rev}^{M-N(a)} = \frac{RT}{z_{Cl}F}ln$		
$V_{HCO_3,rev}^{M-N} = \frac{RT}{z_{HCO_3}F} ln$	$ \left(\frac{[HCO_3]_N}{[HCO_3]_M}\right) $ (99)	

Table 8: The corresponding equations describing the ionic current transported via cystic fibrosis transmembrane conductance regulator (CFTR) channels across the cell membrane (part 1/2 continued on the next page).