Assignment 2 Advanced Machine Learning

Armand Nicolicioiu (AI - 407)

September 2021

Exercise 1 Let \mathcal{X} be an instance space. The learning algorithm A is better than the learning algorithm B with respect to some probability distribution, D, if we have:

$$L_D(A(S)) \le L_D(B(S))$$

for all samples $S \in (\mathcal{X} \times \{0,1\})^m$. Prove that for every distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ there exists a learning algorithm A_D that is better than any other algorithm with respect to \mathcal{D} .

Solution:

Let A_i and S_j be all the possible learning algorithms and all the possible training sets, respectively.

Out of all the algorithms, $\exists A_{i^*}$ and $\exists S_{j^*}$ such that the hypothesis h_* resulted when training A_{i^*} on the sample set S_{j^*} obtains the lowest generalization error possible (out of all the algorithms A_i applied on a training set S_j).

Let B be an algorithm such that, for a given training set, S outputs:

$$B = \begin{cases} A_{i^*}(S_{j^*}), & \text{if } S \neq S_{j^*} \text{ (ignores its input } S) \\ A_{i^*}(S), & \text{if } S = S_{j^*} \end{cases}$$

In other words, $B(S) = A_{i^*}(S_{j^*})$. Thus, we have a learning algorithm B that is better than any other algorithm with respect to \mathcal{D} .

Consider the Bayes predictor:

$$f_{\mathcal{D}} = \begin{cases} 1, & \text{if } \mathbb{P}[y=1|x] \ge 1/2\\ 0, & \text{otherwise} \end{cases}$$

We know (proved in the seminar) that for any probability distribution \mathcal{D} , the Bayes predictor $f_{\mathcal{D}}$ is optimal, in the sens that no other classifier $g: \mathcal{X} \to \{0,1\}$ has a lower error, $L_{\mathcal{D}}(f_{\mathcal{D}}) \leq L_{\mathcal{D}}(g)$.

If it is possible to output the Bayes optimal predictor for our distribution \mathcal{D} with a learning algorithm, then this algorithm is better than any other algorithm with respect to \mathcal{D} .

Exercise 2 Show that the class \mathcal{H} of concentric circles centered in origin in the 2D plane can be (ϵ, δ) - PAC learned by giving an algorithm A and determining an upper bound on the sample complexity $m_{\mathcal{H}}(\epsilon, \delta)$ such that the definition of PAC-learnability is satisfied. Compute VCdim(\mathcal{H}).

Solution:

The hypothesis \mathcal{H} is (ϵ, δ) - PAC learnable if for every $\epsilon, \delta > 0$, for every labeling function $f \in \mathcal{H}^2_{rec}$ (realizability case) and for every distribution \mathcal{D} on \mathbb{R}^2 we can find a function $m_{\mathcal{H}} : (0, 1)^2 \to \mathbb{N}$ and a learning algorithm A such that, when ran on a training set S consisting of $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ examples sampled i.i.d. from \mathcal{D} and labeled by f, the algorithm A returns a hypothesis $h_S \in \mathcal{H}$ that has a real risk lower than ϵ with probability at least $1 - \delta$.

$$\underset{S \sim \mathcal{D}^m}{P} (L_{f,\mathcal{D}}(h_S) \le \epsilon) \ge 1 - \delta$$

$$\Longrightarrow \underset{S \sim \mathcal{D}^m}{P} (L_{f,\mathcal{D}}(h_S) > \epsilon) < \delta$$

We will first define the algorithm A.

We consider the training set $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}.$

We find the point x_S that is furthest away from the origin, from the set S_+ of points with label 1.

$$r_S = \max_{x_i \in S_+} ||x_i||_2 \tag{1}$$

We define the hyphotheis $h_S = C(r_S) = C_S$ the circle of radius equal to the distance from the origin to the point r_S . By construction, A is an ERM algorithm with $L_{h^*,\mathcal{D}}(h_S) = 0$ because h_S doesn't mislable any example in the training set.

From the realizability assumption, there exists a hypothesis $h^* = C(r^*) = C^*$ such that all the points inside the circle $C(r^*)$ have 1(+) as the correct label, and all the points outside it have 0(-) as the correct label.

Figure 1

Now we want to find the sample complexity $m_{\mathcal{H}}(\epsilon, \delta)$ such that

$$P_{S \sim \mathcal{D}^m}(L_{h^*,\mathcal{D}}(h_S) \leq \epsilon) \geq 1 - \delta$$
 where S contains $m \geq m_{\mathcal{H}}(\epsilon,\delta)$ examples.

Because of the realizability assumption and our of choice of A, it is assured that h_S will label correctly any point inside C_S . Also, we make the observation that $C_S \subset C^*$, meaning that h_S also labels correctly all the examples outside C^* because they are outside C_S too. Thus, the only region of space where h_S can make mistakes is $C^* \setminus C_S$.

Case 1)

$$\mathcal{D}(C^*) = \underset{x \sim \mathcal{D}}{P}(x \in C^*) \leq \epsilon$$

$$\implies L_{h^*, \mathcal{D}}(h_S) = \underset{x \sim \mathcal{D}}{P}(h_S(x) \neq h^*(x)) = \underset{x \sim \mathcal{D}}{P}(x \in C^* \setminus C_S) \leq \underset{x \sim \mathcal{D}}{P}(x \in C^*) \leq \epsilon$$

$$\implies \underset{S \sim \mathcal{D}^m}{P}(L_{h^*, \mathcal{D}}(h_S) \leq \epsilon) = 1 \text{ (this happens all the time)}$$

Case 2)

$$\mathcal{D}(C^*) = \underset{x \sim \mathcal{D}}{P}(x \in C^*) > \epsilon \tag{2}$$

We define $T_{\epsilon} = C^* \setminus C_{\epsilon} = C(r^*) \setminus C(r_{\epsilon})$ is a region of space close to the margins of the C^* such that $P_{T \sim D}(x \in T_{\epsilon}) = \epsilon$ (see Figure 2)

Figure 2: T_{ϵ} (orange color) represents the region at the margin of the C^* ball.

Case 2.1) C_S intersects T_{ϵ} , results:

$$L_{h^*,\mathcal{D}}(h_S) = \underset{x \sim \mathcal{D}}{P}(h^*(x) \neq h_S(x)) = \underset{x \sim \mathcal{D}}{P}(x \in C^* \setminus C_S) \leq \underset{x \sim \mathcal{D}}{P}(x \in T_\epsilon) = \epsilon \quad \text{(with probability 1)}$$

Case 2.2) $C_S \cap T_{\epsilon} = \emptyset$

$$\underset{S \sim \mathcal{D}^m}{P}(L_{h^*,\mathcal{D}}(h_S) > \epsilon) = \underset{S \sim \mathcal{D}^m}{P}(C_S \cap T_{\epsilon} = \emptyset)$$

 $P_{S \sim \mathcal{D}^m}(C_S \cap T_{\epsilon} = \emptyset)$ is the probability that no point from T_{ϵ} is sampled in the training set S. This probability is $(1 - \epsilon)^m$. We obtain:

$$\frac{P}{S \sim \mathcal{D}^m} (L_{h^*, \mathcal{D}}(h_S) > \epsilon) = \frac{P}{S \sim \mathcal{D}^m} (C_S \cap T_{\epsilon} = \emptyset) = (1 - \epsilon)^m \le e^{-\epsilon m} \\
e^{-\epsilon m} < \delta \\
\implies -\epsilon m < \log \delta \\
\implies m > -\frac{1}{\epsilon} \log \delta \\
\implies m > \frac{1}{\epsilon} \log \frac{1}{\delta}$$

Therefore, for a training set S of size $m \geq m_{\mathcal{H}}(\epsilon, \delta) = \frac{1}{\epsilon} \log \frac{1}{\delta}$ i.i.d. samples from \mathcal{D} , our learning algorithm A obtains a hypothesis h_S with $\Pr_{S \sim \mathcal{D}^m}(L_{h^*, \mathcal{D}}(h_S) \leq \epsilon) \geq 1 - \delta$, showing that \mathcal{H} is (ϵ, δ) - PAC learnable. \square

b. $VCdim(\mathcal{H})$

It is easy to see that any set of one point $X = \{x\}$ is shattered by \mathcal{H} . We denote $d = ||x||_2$ the distance from the point x to the origin. The two possible labelings can be realised by selecting a circle with radius r < d for label 0(-) or selecting a circle with radius r > d for label 1(+). So:

$$VCdim(gH) \ge 1$$
 (3)

Let $X_2 = \{x_1, x_2\}$ a set of two points. We will show that \mathcal{H} cannot shatter X_2 .

Without loosing generality, we can sort any two points such that the first one is closer to the origin than the second point (or at equal distance) $||x_1||_2 \le ||x_2||_2$.

Let's assume that the labeling (0,1) is realised by a hyphothesis h = C(r). The second point x_2 has label 1(+), so:

$$x_2 \in C(r) \implies ||x_2|| < r$$
$$||x_1||_2 \le ||x_2||_2 < r \implies x_1 \in C(r)$$

Thus, the first point x_1 also has label 1(+), contradicting the assumption. Thus, the labeling (0,1) cannot be realised for any set of two points, which means that any such set X_2 cannot be shattered.

This results in

$$VCdim(gH) < 2$$
 $Eq.3 \implies VCdim(gH) = 1$

Exercise 3 Consider the concept class C formed by closed intervals [a, b] with $a, b \in \mathbb{R}$:

$$C = \{h_{a,b} : \mathbb{R} \to \{0,1\}, a \le b, h_{a,b}(x) = \mathbf{1}_{[a,b]}(x)\}$$

Compute the shattering coefficient $\tau_H(m)$ of the growth function for $m \geq 0$.

Solution

From the definition, for a hypothesis class \mathcal{H} , $\tau_H(m)$ is the maximum number of different functions from a set C of size m to $\{0,1\}$ that can be obtained by restricting \mathcal{H} to C.

$$\tau_H(m) = \max_{C \subseteq X : |C| = m} |\mathcal{H}_C|$$

Let $X = \{x_1, x_2, ..., x_m\}$ be a set of m points. Without losing generality, consider $x_i < x_j$.

The concept class C assigns label 1 to a single continuous region (i.e a subarray) of our sorted array of points.

For the base case, we have no positive label:

$$(0,0,0,\ldots,0)$$

Now, we count the number of labelings with i positive points, for $i = \overline{1, m}$.

$$\begin{split} i &= 1 \implies \{(1,0,0,\dots,0), (0,1,0,\dots,0),\dots, (0,0,0,\dots,1)\} \ m \ \text{labelings.} \\ i &= 2 \implies \{(1,1,0,\dots,0), (0,1,1,0,\dots,0),\dots, (0,\dots,0,1,1)\} \ m-1 \ \text{labelings.} \\ & \dots \\ i &= m-1 \implies \{(1,1,1,\dots,1,0),\dots, (0,1,1,\dots,1,1)\} \ 2 \ \text{labelings.} \\ i &= m \implies \{(1,1,1,\dots,1)\} \ 1 \ \text{labelings.} \end{split}$$

In total, we have 1 (the base case with no positive labels) $+ m + (m-1) + \cdots + 1$ labelings. Thus,

$$\tau_H(m) = 1 + \frac{m \cdot (m+1)}{2}$$

Exercise 4 Consider a concept class C_2 formed by union of two closed intervals, that is $[a,b] \cup [c,d]$, with $a,b,c,d \in \mathbb{R}$ (with $a \leq b \leq c \leq d$). Give an efficient ERM algorithm for learning the concept class C_2 and compute its complexity for each of the following cases:

- a. realizable case.
- b. agnostic case.

Solution:

a. In the realizable case, there exists a function $h_{a^*,b^*,c^*,d^*}(x) = (\mathbf{1}_{[a^*,b^*]} \cup \mathbf{1}_{[c^*,d^*]})(x)$ that labels the training points.

$$S = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$$
 $y_i = h_{a^*, b^*, c^*, d^*}(x_i)$

First, we sort all the points in S in ascential order according to the x's, obtaining:

$$S = \{(x_{\sigma(1)}, y_{\sigma(1)}), (x_{\sigma(2)}, y_{\sigma(2)})(x_{\sigma(m)}, y_{\sigma(m)})\}$$
 with $x_{\sigma(1)} \le x_{\sigma(2)} \le \cdots \le x_{\sigma(m)}$.

Consider the following ERM algorithm for determining a, b, c, d after sorting the training set S.

- 1. If there are no positive labels return: $h_{a,b,c,d}$, where $a=x_{\sigma(1)}-1,b=x_{\sigma(1)}-1,c=x_{\sigma(m)}+1,d=x_{\sigma(m)}+1$.
- 2. If there are only positive examples return: $h_{a,b,c,d}$ where $a = x_{\sigma(1)}, b = c = d = x_{\sigma(m)}$.
- 3. if $\exists (x_i, y_i) \in S$ such that $y_i == 1$ then:

$$a = b = \min_{i=\overline{1,m}, y_i=+1} x_i.$$

 $c = d = \max_{i=\overline{1,m}, y_i=+1} x_i.$

4. We found the final values for at least a and d, now let's adjust the values for b and c.

for
$$i = \overline{2, m}$$

if
$$(y_{\sigma(i)} == -1 \text{ and } y_{\sigma(i-1)} == +1)$$

then $b = x_{\sigma(i-1)}$
if $(y_{\sigma(i)} == +1 \text{ and } y_{\sigma(i-1)} == -1)$
then $c = x_{\sigma(i)}$

return: $h_{a,b,c,d}$

Let's compute the complexity of this algorithm:

Sorting: $\mathcal{O}(m \cdot \log m)$.

Determining there are no positive labels: $\mathcal{O}(m)$.

Determining there are only positive labels: $\mathcal{O}(m)$.

Final iteration to adjust b and c: $\mathcal{O}(m)$.

Total complexity: $\mathcal{O}(m \cdot \log m)$.

b. In the agnostic case, we can have different labels for the same point, so we are dealing with a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$.

Similarly to the realizable case, we start by sorting the training set S according to the x's, obtaining:

$$S = \{(x_{\sigma(1)}, y_{\sigma(1)}), (x_{\sigma(2)}, y_{\sigma(2)})(x_{\sigma(m)}, y_{\sigma(m)})\} \text{ with } x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(m)}.$$

Consider the set Z containing the values of x' with no repetition:

$$Z = \{z_1, z_2, \dots, z_n\}$$

$$z_1 = x_{\sigma(1)} < z_2 < \dots < z_n = x_{\sigma(m)} \quad n \le m$$

- 1. If all $y_i = 0$, in order to return an ERM algorithm we can pick two intervals outside the training set S, for example $a_S = b_S = c_S = d_S = x_{\sigma(1)} 1$.
- 2. Consider all possible two intervals reunions $Z_{i,j,k,l} = [z_i,z_j] \cup [z_k,z_l], i = \overline{1,n}, j = \overline{i,n}, k = \overline{j,n}, l = \overline{k,n}$.

For the ERM algorithm, we have to determine the solution $Z^* = Z_{i^*,j^*,k^*,l^*}$ with the smallest empirical risk. We compute this as:

Loss
$$(Z_{i,j,k,l}) = \frac{\text{\# negative points inside } Z_{i,j,k,l} + \text{\# positive points outside } Z_{i,j,k,l}}{m}$$

To make the implementation more efficient, we pre-compute the total number of positive (pos_prefix_i) and negative points (neg_prefix_i) with value $x \leq x_{\sigma(i)}$ using a dynamic programming approach of prefixsums. Because we can have multiple points with the same value x, we need the auxiliary pos_i and neg_i , the number of points with positive, respectively negative labels and value $x = x_{\sigma(i)}$. Considering the base case $pos_prefix_0 = neg_prefix_0 = 0$, we have the recurrence, for $i = \overline{1, n}$:

$$pos_prefix_i = pos_prefix_{i-1} + pos_i$$

 $neg_prefix_i = neg_prefix_{i-1} + neg_i$

Now, we fix the limits i, j, k, l and find the ones that minimize Loss $(Z_{i,j,k,l})$. An efficient ERM algorithm for this is:

- 1. Sort S and obtain $x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(m)}$. Build set Z containing value x without repetition: $Z = \{z_1, z_2, \dots, z_n\}, \ z_1 = x_{\sigma(1)} < z_2 < \cdots < z_n = x_{\sigma(m)}$
- 2. Check if all y_i $i = \overline{1,m}$ have value 0. If so, return h_{a_S,b_S,c_S,d_S} , where $a_S = b_S = c_S = d_S = z_1 1$.
- 3. for $j = \overline{1, n}$ compute values $pos_j = \# \text{ points } x_i = z_j \text{ with label } y_i = 1$ $neg_j = \# \text{ points } x_i = z_j \text{ with label } y_i = 0$
- 4. for $i = \overline{1, n}$ $pos_prefix_i = pos_prefix_{i-1} + pos_i$ $neg_prefix_i = neg_prefix_{i-1} + neg_i$
- 5. $\begin{aligned} & \min_\text{error} = \frac{m}{m} = 1, \ i^* = [], \ j^* = [], \ k^* = [], \ l^* = []. \\ & \text{for } i = \overline{1, n} \\ & \text{for } k = \overline{j, n} \\ & \text{for } l = \overline{k, n} \end{aligned}$ $& \text{Loss}(Z_{i,j,k,l}) = \frac{(neg_prefix_j neg_prefix_{i-1}) + (neg_prefix_l neg_prefix_{k-1})}{m} + \frac{m}{pos_prefix_l pos_prefix_l pos_prefix_{l-1}) (pos_prefix_l pos_prefix_{k-1})}{m} \end{aligned}$

if
$$\operatorname{Loss}(Z_{i,j,k,l}) < \min_{\text{error}}$$

$$\min_{\text{error}} = \operatorname{Loss}(Z_{i,j,k,l})$$

$$i^* = i$$

$$j^* = j$$

$$k^* = k$$

$$l^* = l$$

6. return h_{a_S,b_S,c_S,d_S} , where $a_S = z_{i^*}, b_S = z_{j^*}, c_S = z_{k^*}, d_S = z_{l^*}$.

Let's compute the complexity of this algorithm:

1. Sorting: $\mathcal{O}(m \cdot \log m)$.

2. Linear check: $\mathcal{O}(m)$.

3. Auxiliary counts pre-compute: $\mathcal{O}(m)$.

4. Prefix-sums DP pre-compute: $\mathcal{O}(m)$.

5. Finding best i, j, k, l combination: $\mathcal{O}(m^4)$ (constant time for Loss using pre-computed prefix-sums).

Total complexity: $\mathcal{O}(m^4)$.

Exercise 5 Consider H^d_{2DNF} the class of 2-term disjunctive normal form formulae consisting of hypothesis of the form $h: \{0,1\}^d \to \{0,1\},$

$$h(x) = A_1(x) \vee A_2(x)$$

where $A_i(x)$ is a Boolean conjunction of literals (in H^d_{conj}).

It is known that the class H^d_{2DNF} is not efficient properly learnable but can be learned improperly considering the class H^d_{2DNF} . Give a γ -weak-learner algorithm for learning the class H^d_{2DNF} which is not a stronger PAC algorithm for H^d_{2DNF} (like the one considering H^d_{2CNF}). Prove that this algorithm is a γ -weak-learner algorithm for H^d_{2DNF} .

Solution:

From the definition, a learning algorithm A is a γ -weak-learner for a class \mathcal{H} if there exists a function $m_{\mathcal{H}}: (0,1) \to \mathbb{N}$ such that: for every $\delta > 0$, for every labeling function $f \in \mathcal{H}, f : \mathcal{X} \to \{-1,+1\}$, for every distribution \mathcal{D} over \mathcal{X} , when we run the learning algorithm A on a training set, consisting of $m > m_{\mathcal{H}}(\delta)$ examples sampled i.i.d from \mathcal{D} and labeled by f, the algorithm A return a hypothesis h (h might not be from \mathcal{H} - improper learning) such that, with probability at least $1-\delta$ (over the choice of examples), $L_{\mathcal{D},f} \leq 1/2-\gamma$.

Using the distribution rule, we can transform the 2-term DNF formula to a 2-CNF formula:

$$A_1 \lor A_2 = \bigwedge_{u \in A_1, v \in A_2} (u \lor v) = \bigwedge_{u \in A_1, v \in A_2} y_{u,v}$$

With this, we obtain a conjunction of $(2n)^2$ variables, each of them being a disjunction of 2 literals from the original problem. This conjunction can be efficiently PAC learned.

To make the problem even simpler, we want a learning algorithm A_{weak} that "drops" one variable from the conjunction (say, without losing generality, $y_{u,v}$) and learns to predict the conjunction of the remaining y type variables. We will show that this is a γ -weak-learner for a class H_{2DNF}^d .

By removing the variable $y_{u,v} = (u \vee v)$ from the conjunction, it is equivalent with saying that we assume its value is +1. The chance to be mistaken (both u and v are -1) is 1/4 ($1/2 \times 1/2$, both literals having 50% chance to be positive.)

Now, we return the answer of the conjunction problem for the remaining of the $(2n)^2 - 1$ variables, having introduced an additional 1/4 chance of error to the accuracy of this predictor.

We know that C_n , the concept class of conjunctions of at most n Boolean literals is PAC learnable with sample complexity $m_{\mathcal{H}}(\epsilon, \delta) = \left[\frac{1}{\epsilon}(n\log(3) - \log(\delta))\right]$.

This results in: $L_{\mathcal{D}}(A_{weak}(S)) \leq 1/4(\text{introduced by the variable elimination}) + \epsilon$.

We want $L_{\mathcal{D}}(A_{weak}(S)) < 1/2 - \gamma$.

Take ϵ such that $1/4 + \epsilon < 1/2 \implies \epsilon < 1/4$. Then, the ERM algorithm for solving the resulted conjunction of Booleans (with one "dropped" variable) is a γ -weak-learner for a class H^d_{2DNF} , where $\gamma = \epsilon$.

Going back to the definition, we proved that for every $\delta>0$, for every labeling function $f\in\mathcal{H}, f:\mathcal{X}\to\{-1,+1\}$, for every distribution \mathcal{D} over \mathcal{X} , we have the function $m_{\mathcal{H}}(\gamma,\delta)=\left\lceil\frac{1}{\gamma}((2n)^2log(3)-log(\delta))\right\rceil$ such that when we run the algorithm A_{weak} on $m>m_{\mathcal{H}}(\delta)$ examples sampled i.i.d from \mathcal{D} and labeled by f, the algorithm A_{weak} return a hypothesis h (h might not be from \mathcal{H} - improper learning) such that, with probability at least $1-\delta$ (over the choice of examples), $L_{\mathcal{D},f}\leq 1/2-\gamma$. (for γ values <1/4). Thus, our A_{weak} algorithm is a γ -weak-learner algorithm for learning the class H_{2DNF}^d .