```
In [1]:
            1 # Import the required modules
             2 import pandas as pd
             pd.set_option('display.max_columns', None)
             4 import numpy as np
             6 # visualization
             7 import matplotlib.pyplot as plt
            8 import hvplot.pandas
            9 import seaborn as sns
            10
            11 # Machine Learning
            12 from sklearn.cluster import KMeans, AgglomerativeClustering, Birch
            13 from sklearn.metrics import silhouette_score, calinski_harabasz_score
            14 from sklearn.manifold import TSNE
            15
            16 # Preprocessing
            17 from sklearn.preprocessing import StandardScaler
            18 from sklearn.decomposition import PCA
            19
            20 # suppress warnings
            21 import warnings
            22 warnings.filterwarnings('ignore')
```

```
In [2]: ▶
             1 # Load the data into a Pandas DataFrame
             2 df_market_data = pd.read_csv(
             3
                    "Resources/crypto_market_data.csv",
                    index_col='coin_id')
             4
             6 # Display sample data
             7 df_market_data.head(10)
```

Out[2]:

$price_change_percentage_24h \quad price_change_percentage_7d \quad price_change_perce$

coin_id			
bitcoin	1.08388	7.60278	
ethereum	0.22392	10.38134	
tether	-0.21173	0.04935	
ripple	-0.37819	-0.60926	
bitcoin- cash	2.90585	17.09717	
binancecoin	2.10423	12.85511	
chainlink	-0.23935	20.69459	
cardano	0.00322	13.99302	
litecoin	-0.06341	6.60221	
bitcoin- cash-sv	0.92530	3.29641	
•			•

1 df_market_data.info() In [3]: ▶

<class 'pandas.core.frame.DataFrame'> Index: 41 entries, bitcoin to digibyte

Data	columns (total 7 columns):				
#	Column	Non-Null Count	Dtype		
0	price_change_percentage_24h	41 non-null	float64		
1	price_change_percentage_7d	41 non-null	float64		
2	price_change_percentage_14d	41 non-null	float64		
3	price_change_percentage_30d	41 non-null	float64		
4	price_change_percentage_60d	41 non-null	float64		
5	<pre>price_change_percentage_200d</pre>	41 non-null	float64		
6	<pre>price_change_percentage_1y</pre>	41 non-null	float64		
dtypes: float64(7)					
memoi	ry usage: 2.6+ KB				

In [4]: # Generate summary statistics df_market_data.describe() Out[4]: count 41.000000 41.000000 41.000 -0.269686 4.497147 0.18 mean 2.694793 8.376 6.375218 std min -13.527860 -6.094560 -18.158 25% -0.608970 0.047260 -5.026 50% -0.063410 3.296410 0.109 75% 0.612090 7.602780 5.510 4.840330 20.694590 24.239 max In [5]: # we need a scaler due to variability in the max for each range

In [6]: # Plot your data to see what's in your DataFrame M df_market_data.hvplot.line(2 3 width=800, 4 height=400, rot=90 5 6) Out[6]: 8000 6000 Varia 4000 2000 0 wrapped-bitcoin leo-token huobi-token leo-token lota vechain zoash theta-token dash ethereum-classic ethere havven omisego celsius-degree-token true-usd digibyte bitcoin ethereum tether ipple bitcoin-cash binancecoin cardano litecoin bitcoin-cash-sv crypto-com-chain usd-coin tron tron tron tezos okb stellar stellar cosmos cdai

coin_id

Prepare the Data

price change percentage 7d -

```
In [7]:
              1 # are we independent? or suffer from multi-collinearity?
              2 corrs = df_market_data.corr()
              3 corrs
    Out[7]:
                                        0.169659
              price_change_percentage_24h
                                                         1.000000
                                                         0.169659
                                                                                  1.000000
               price_change_percentage_7d
              price_change_percentage_14d
                                                         0.279682
                                                                                  0.538294
              price_change_percentage_30d
                                                         0.292563
                                                                                  0.056899
                                                         0.136974
                                                                                 -0.145099
              price_change_percentage_60d
             price_change_percentage_200d
                                                         -0.541190
                                                                                 -0.052533
               price_change_percentage_1y
                                                         -0.750630
                                                                                 -0.038424
In [8]:
                 sns.heatmap(corrs)
                 plt.show
    Out[8]: <function matplotlib.pyplot.show(close=None, block=None)>
              price_change_percentage_24h -
                                                                                     0.8
```

```
In [11]: ▶
              1 # subset
              2 df_sub = df_market_data.loc[:, num_features]
              4 # initialize
              5 scaler = StandardScaler()
              6
              7
                # fit
              8 scaler.fit(df_sub)
              9
             10 # predict/transform
             scaled_data = scaler.transform(df_sub)
             df_scaled = pd.DataFrame(scaled_data, columns=num_features)
             13
             14
             15 df_scaled.head()
```

Out[11]:

	price_change_percentage_24h	price_change_percentage_7d	price_change_percentage_14d
0	0.508529	0.493193	0.772200
1	0.185446	0.934445	0.558692
2	0.021774	-0.706337	-0.021680
3	-0.040764	-0.810928	0.249458
4	1.193036	2.000959	1.760610
4			+

Out[12]:

	price_change_percentage_24h	price_change_percentage_7d	price_change_percentage_
count	41.000000	4.100000e+01	4.100000€
mean	0.000000	1.895503e-16	2.707861
std	1.012423	1.012423e+00	1.0124236
min	-4.981042	-1.682027e+00	-2.2171086
25%	-0.127467	-7.066688e-01	-6.299628
50%	0.077497	-1.906843e-01	-9.190922
75%	0.331280	4.931931e-01	6.435649
max	1.919812	2.572251e+00	2.907054€
4)

Find the Best Value for k Using the Original Data.

```
In [13]: | # Create a list with the number of k-values from 1 to 11
2    X = df_scaled.loc[:, num_features]
3    X.head()
```

Out[13]:

	price_change_percentage_24h	price_change_percentage_7d	price_change_percentage_14d
0	0.508529	0.493193	0.772200
1	0.185446	0.934445	0.558692
2	0.021774	-0.706337	-0.021680
3	-0.040764	-0.810928	0.249458
4	1.193036	2.000959	1.760610
4			•

```
In [14]: ▶
              1 # Create a a list to store inertia values
              2 inertia = []
              3 silhouettes = []
              4 cha chas = []
              6 # Create a a list to store the values of k
              7 k = list(range(2, 11))
              9 # Create a for-loop where each value of k is evaluated using the K-med
             10 # Fit the model using the spread_df DataFrame
             11 # Append the value of the computed inertia from the `inertia_` attribu
             12 for i in k:
                     # initialize the model
             13
             14
                     k_model = KMeans(n_clusters=i, random_state=1)
             15
                     # fit the model
             16
             17
                     k_model.fit(X)
             18
             19
                     # predict the model
             20
                     preds = k_model.predict(X)
             21
             22
                     # evaluate the model (generate the metics)
             23
                     inertia.append(k_model.inertia_)
             24
                     score = silhouette_score(X, preds)
             25
                     silhouettes.append(score)
             26
                     cha_cha = calinski_harabasz_score(X, preds)
             27
                     cha_chas.append(cha_cha)
             28
             29
                     print(f"Finished {i} out of {max(k)}")
             30
```

Out[15]:

	k	inertia	silhouette_score	cha_score	acc
0	2	195.820218	0.651576	18.159573	NaN
1	3	123.190482	0.702822	25.264783	-72.629736
2	4	79.022435	0.314482	32.459853	-44.168046
3	5	63.858668	0.329023	31.448698	-15.163768
4	6	53.057788	0.287883	30.864375	-10.800879
5	7	44.406791	0.290874	30.956861	-8.650998
6	8	37.078233	0.205692	31.776126	-7.328557
7	9	32.832187	0.258600	30.965687	-4.246046
8	10	28.165433	0.244422	31.653739	-4.666754

Answer the following question:

Question: What is the best value for k?

Answer: 4 or 5

Cluster Cryptocurrencies with K-means Using the Original Data

```
In [17]:
              1 # Initialize the K-Means model using the best value for k
               2 model = KMeans(n_clusters=4, random_state=1)
              1 # Fit the K-Means model using the scaled data
In [18]:
               2 model.fit(X)
   Out[18]:
                             KMeans
              KMeans(n_clusters=4, random_state=1)
              1 # Predict the clusters to group the cryptocurrencies using the scaled
In [19]:
                 preds = model.predict(X)
In [20]:
              1 # Add a new column to the DataFrame with the predicted clusters
              2
                 df2 = df_scaled.copy()
              3
                 df2['clusters'] = preds
              6 # Display sample data
              7 df2.head()
   Out[20]:
                price_change_percentage_24h price_change_percentage_7d price_change_percentage_14d
              0
                                 0.508529
                                                         0.493193
                                                                                  0.772200
              1
                                 0.185446
                                                         0.934445
                                                                                  0.558692
```

-0.706337

-0.021680

0.021774

```
In [21]:
               1 # Create a scatter plot using hvPlot by setting
               2 # `x="price_change_percentage_24h"` and `y="price_change_percentage_7c
               3 # Color the graph points with the labels found using K-Means and
               4 # add the crypto name in the `hover_cols` parameter to identify
               5 # the cryptocurrency represented by each data point.
               6 df2.hvplot.scatter(
               7
                      width=800,
                      height=400,
               8
                      x="price_change_percentage_24h",
               9
              10
                      y="price_change_percentage_7d",
              11
                      by="clusters",
                      hover_cols="coin_id"
              12
              13 )
   Out[21]:
                price_change_percentage_7d
```

Optimize Clusters with Principal Component Analysis.

Out[23]:

	PCA1	PCA2	PCA3	PCA4	PCA5	PCA6	PCA7
0	-0.600667	0.842760	0.461595	-0.109151	-0.033786	-0.225703	0.006595
1	-0.458261	0.458466	0.952877	0.095100	0.014588	0.034158	0.109593
2	-0.433070	-0.168126	-0.641752	-0.470282	0.115300	-0.127710	-0.086857
3	-0.471835	-0.222660	-0.479053	-0.737473	-0.148641	-0.273472	0.134870
4	-1.157800	2.041209	1.859715	0.236479	-0.191787	-0.411513	-0.070411


```
In [25]: ▶
               1 # Use the PCA model with `fit_transform` to reduce to
               2 # three principal components.
               4 # View the first five rows of the DataFrame. (BOOOTH like 4 better)
               5 df3 = df_pca.loc[:, ["PCA1", "PCA2", "PCA3", "PCA4"]]
               6 df3.head()
   Out[25]:
                   PCA1
                            PCA2
                                     PCA3
                                             PCA4
              0 -0.600667 0.842760 0.461595 -0.109151
              1 -0.458261
                         0.458466 0.952877 0.095100
              2 -0.433070 -0.168126 -0.641752 -0.470282
              3 -0.471835 -0.222660 -0.479053 -0.737473
              4 -1.157800 2.041209 1.859715 0.236479
In [26]:
               1 print("Explained Variance")
               2 for i in range(len(exp_var)):
               3
                     val = exp_var[i]
               4
                      print(f"PCA{i+1}:", round(val, 3))
               5
               6 print()
               7 print("CUMULATIVE Explained Variance")
              9 exp_var_cum = np.cumsum(exp_var)
              10 for i in range(len(exp_var_cum)):
              11
                      val = exp_var_cum[i]
                      print(f"PCA{i+1}:", round(val, 3))
              12
             Explained Variance
             PCA1: 0.372
             PCA2: 0.347
             PCA3: 0.176
```

PCA4: 0.057

Find the Best Value for k Using the PCA Data

```
In [32]: | # Create a a list to store inertia values
              2 inertia = []
              3 silhouettes = []
              4 cha_chas = []
              6 # Create a a list to store the values of k
              7 k = list(range(2, 11))
              8
              9 # Create a for-loop where each value of k is evaluated using the K-med
             # Fit the model using the spread_df DataFrame
             11 # Append the value of the computed inertia from the `inertia_` attribu
             12 for i in k:
                     # initialize the model
             13
                     k_model = KMeans(n_clusters=i, random_state=1)
             14
             15
             16
                     # fit the model
             17
                     k_model.fit(X)
             18
             19
                     # predict the model
             20
                     preds = k_model.predict(X)
             21
                     # evaluate the model (generate the metics)
             22
             23
                     inertia.append(k_model.inertia_)
             24
                     score = silhouette_score(X, preds)
             25
                     silhouettes.append(score)
             26
             27
                     cha_cha = calinski_harabasz_score(X, preds)
             28
                     cha_chas.append(cha_cha)
             29
             30
                     print(f"Finished {i} out of {max(k)}")
             Finished 2 out of 10
             Finished 3 out of 10
             Finished 4 out of 10
             Finished 5 out of 10
```

```
1 # Define a DataFrame to hold the values for k and the corresponding in
In [33]:
           M
                   elbow_data = {"k": k, "inertia": inertia, "silhouette_score": silhouet
                  df_elbow2 = pd.DataFrame(elbow_data)
                5 | df_elbow["acc"] = df_elbow.inertia.diff()
                7 # Review the DataFrame
                8 df_elbow.head(10)
    Out[33]:
                  k
                         inertia silhouette_score cha_score
                                                               acc
                  2 195.820218
                                      0.651576 18.159573
                                                               NaN
                  3 123.190482
                                      0.702822 25.264783 -72.629736
               2
                      79.022435
                                      0.314482 32.459853 -44.168046
               3
                  5
                      63.858668
                                      0.329023 31.448698 -15.163768
                      53.057788
                                      0.287883
                                               30.864375 -10.800879
                      44.406791
                                      0.290874 30.956861
                                                          -8.650998
                      37.078233
                                      0.205692 31.776126
                                                          -7.328557
                      32.832187
                                      0.258600
                                               30.965687
                                                          -4.246046
               8 10
                      28.165433
                                      0.244422 31.653739
                                                          -4.666754
```

```
In [34]: ▶
               1 # Plot a line chart with all the inertia values computed with
               2 # the different values of k to visually identify the optimal value for
               4 # Plot the DataFrame
               plt.plot(df_elbow2["k"], df_elbow["inertia"])
plt.title("Elbow Curve")
               7 plt.xticks(df_elbow2["k"])
               8 plt.ylabel("inertia")
               9 plt.xlabel("k")
              10 plt.show()
                                                 Elbow Curve
                 200
                 175
                 150
                 125
              100
152
                   75
```

50 -

Answer the following questions:

- Question: What is the best value for k when using the PCA data?
 - Answer: 4
- Question: Does it differ from the best k value found using the original data?
 - Answer: No really, Just a bit clearer

Cluster Cryptocurrencies with K-means Using the PCA Data

```
In [38]: ▶
             1 # Create a copy of the DataFrame with the PCA data
              2 # Define the model with the higher value of k clusters
             3 # Use a random_state of 1 to generate the model
             5 # CHANGE THIS DEPENDING ON YOUR OPTIMAL k
             6 model = KMeans(n_clusters=4, random_state=1)
             8 # Fit the model
             9 model.fit(X)
             10
             11 # Make predictions
             12 preds = model.predict(X)
             13
             14 # Add a class column with the labels to the df DataFrame
             15 df4 = df3.copy()
             16 df4['clusters'] = preds
             17
             18 df4.head()
             19
             20 # Add a new column to the DataFrame with the predicted clusters
             21
             22
             23 # Display sample data
             24
```

Out[38]:

	PCA1	PCA2	PCA3	PCA4	clusters
C	-0.600667	0.842760	0.461595	-0.109151	2
1	-0.458261	0.458466	0.952877	0.095100	2
2	-0.433070	-0.168126	-0.641752	-0.470282	0
3	-0.471835	-0.222660	-0.479053	-0.737473	0

Visualize and Compare the Results

In this section, you will visually analyze the cluster analysis results by contrasting the outcome with and without using the optimization techniques.

Answer the following question:

- **Question:** After visually analyzing the cluster analysis results, what is the impact of using fewer features to cluster the data using K-Means?
- **Answer:**DATA IS MORE CONSICE AND LESS DISPERSE