Modeling Absorption in GastroPlus

PSCI-518, Spring 2024

Noam Morningstar-Kywi

Advanced Compartmental Absorption and Transit Model (ACAT™)

Absorptive Processes

Paracellular Transit

Portal Vein

• • •

Device for the measurement of effective jejunal permeability (Peff)

Passive Routes:

- Transcellular Diffusion
- Paracellular Transit
- Passive transport

Active Routes:

Active transport

Permeability

- Effective Jejunal Permeability (Peff) is rate of penetration into membrane (10⁻⁴ cm/s)
 - Units derived from typical convention of experiments measuring Papp/Peff

- Does not account for ionization, concentration, or surface area of intestine
 → GP uses Absorption Scale Factors (ASFs) to account for this
- Must convert in vitro Papp to in vivo Peff

Absorption Scale Factors

- ASFs take into account ionization and intestinal geometry
- Default model is Optimized LogD SA/V
 - LogD accounts for ionization, change with pH of gut section
 - Only neutral form can absorb passively, still dependent on lipophilicity
 - Surface area and volume account for exposed absorption surface, including Surface Enhancement Factor (SEF) to account for species-specific anatomy
- ASFs have units of 1/cm, multiplied by Peff, yields Ka in 1/s
- Each gut section will thus have a unique Ka, which is applied to the concentration gradient of drug to calculate absorption over time

Permeability Conversions

Built in correlations:

- Caco-2 (ABS, SOLVO, COV)
- PAMPA
- Interspecies (dog, rat)

Scaling to Controls method

$$\frac{Papp\ Control}{Peff\ Control} = Ratio = \frac{Papp\ Drug}{Peff\ Drug}$$

$$Peff\ Drug = Papp\ Drug \times \frac{Peff\ Control}{Papp\ Control}$$

Table 2. Permeability of Standard Compounds*

Drug	Direction	Concentration (mg/mL)	\mathbf{P}_{app}	n
Metoprolol	$AP \rightarrow BL$	0.4	29.88 ± 3.17	18
Atenolol	$AP \rightarrow BL$	0.4	1.86 ± 0.47	4

Direction	Concentration (mg/mL)	$\mathbf{P}_{\mathrm{app}}$
AP→BL	3.0	2.49 ± 0.43
$AP \rightarrow BL$	0.3	0.42 ± 0.06
$AP \rightarrow BL$	0.03	1.82 ± 0.41

Avg Drug Papp = 1.58 e-6 cm/s

Closest to atenolol in experiment, so use atenolol as reference

Reference: Papp = 1.86 e-6 cm/s, Peff = 0.2 e-4 cm/s

$$Peff \ Drug = 1.58 \times \frac{0.2}{1.86} = 0.17$$

GastroPlus Activities

- Find experimental permeability, convert and put into GastroPlus
- Look at ASFs in ACAT table, relate to LogD vs pH profile
- Examine simulation results
 - Where does drug absorb?
 - How does it absorb?
 - Is absorption limited by dissolution or permeation?
 - Does this make sense based on the structure?
 - What about transporters...?