Quantum Computation and Quantum Information by Michael A. Nielsen and Isaac L. Chuang

Chris Doble

May 2024

Contents

1	F 'u	ından	nental concepts	
1	Introduction and overview			
	1.2	Quant	tum bits	
		1.2.1	Multiple Bits	
	1.3	Quant	tum Computation	
		1.3.1	Single Qubit Gates	
		1.3.2	Multiple Qubit Gates	
		1.3.3	Measurements in bases other than the computational basis	
		1.3.4	Quantum circuits	
		1.3.5	Qubit copying circuit?	
		1.3.6	Example: Bell states	

Part I

Fundamental concepts

1 Introduction and overview

1.2 Quantum bits

- The special states $|0\rangle$ and $|1\rangle$ form an orthonormal basis and are known as **computational basis states**.
- $\bullet\,$ A quantum bit (qubit) is a linear combination of the computational basis states

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

where α and β are complex numbers.

- When we measure a qubit we either get $|0\rangle$ with probability $|\alpha|^2$ or $|1\rangle$ with probability $|\beta|^2$. Thus, $|\alpha|^2 + |\beta|^2 = 1$ and a qubit can be thought of as a unit vector in a two-dimensional complex vector space.
- If a qubit is in the state

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

there's a 50/50 chance of measuring $|0\rangle$ or $|1\rangle$.

• If we let

$$\alpha = e^{i\gamma} \cos \frac{\theta}{2}$$

and

$$\beta = e^{i\gamma} e^{i\varphi} \sin \frac{\theta}{2}$$

then

$$|\alpha|^2 + |\beta|^2 = \alpha^* \alpha + \beta^* \beta$$
$$= \cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2}$$
$$= 1$$

so the qubit is still normalised and it can be written

$$\left|\psi\right\rangle = e^{i\gamma} \left(\cos\frac{\theta}{2}\left|0\right\rangle + e^{i\varphi}\sin\frac{\theta}{2}\left|1\right\rangle\right).$$

It turns out that $e^{i\gamma}$ has no observable effects and we can effectively write

$$\left|\psi\right\rangle = \cos\frac{\theta}{2}\left|0\right\rangle + e^{i\varphi}\sin\frac{\theta}{2}\left|1\right\rangle.$$

This defines a point on a three-dimensional sphere known as the **Bloch** sphere where θ and φ take on their usual roles in a spherical coordinate system.

• Before measurement a qubit is in a linear combination of $|0\rangle$ and $|1\rangle$ but when measured you get one or the other and the state of the system changes to match the measured result.

1.2.1 Multiple Bits

• A two qubit system has four computational basis state $|00\rangle$, $|01\rangle$, $|10\rangle$, and $|11\rangle$ so the general expression for the state of such a system is

$$|\psi\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle.$$

• If you were to measure the first qubit, you would get $|0\rangle$ with probability $|\alpha_{00}|^2 + |\alpha_{01}|^2$ and the system would be left in the state

$$|\psi\rangle = \frac{\alpha_{00}|00\rangle + \alpha_{01}|01\rangle}{\sqrt{|\alpha_{00}|^2 + |\alpha_{01}|^2}},$$

i.e. it is renormalised such that the normalisation condition still holds.

1.3 Quantum Computation

1.3.1 Single Qubit Gates

• The quantum NOT changes $|0\rangle$ to $|1\rangle$ and $|1\rangle$ to $|0\rangle$. It acts linearly on superpositions of those states, i.e. it turns $\alpha \, |0\rangle + \beta \, |1\rangle$ into $\beta \, |0\rangle + \alpha \, |1\rangle$. If a quantum state $|\psi\rangle = \alpha \, |0\rangle + \beta \, |1\rangle$ is written in vector notation as

$$|\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

then the quantum NOT gate can be expressed in matrix form as

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

- In order to preserve the normalisation condition, matrix representations of quantum gates must be unitary, i.e. $M^{\dagger}M = I$ where I is the identity matrix.
- An arbitrary unitary 2x2 matrix can be decomposed into a finite set of other 2x2 matrices. This means an arbitrary single qubit gate can be generated by a finite set of other gates.

1.3.2 Multiple Qubit Gates

• The controlled-NOT or CNOT gate is a multi-qubit gate that has two input qubits known as the control qubit and the target qubit. If the control qubit is set to $|0\rangle$ the target qubit is left alone, but if it's set to $|1\rangle$ the target qubit is flipped. Another way of writing this is $|A,B\rangle \to |A,A\oplus B\rangle$ where \oplus is modulo-two addition. Yet another way of writing this is in matrix form

$$U_{CN} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

where the first column describes what happens to the $|00\rangle$ basis state, etc.

• Other classical gates like NAND or XOR can't be represented as quantum gates as they're irreversibile. For example, given the output $A \oplus B$ from an XOR gate it's not possible to determine what the inputs A and B were.

 Any multiple qubit logic gate may be composed from CNOT and single qubit gates.

1.3.3 Measurements in bases other than the computational basis

• Given any basis states $|a\rangle$ and $|b\rangle$ it is possible to express an arbitrary state as a linear combination $\alpha |a\rangle + \beta |b\rangle$ of those states. For example, if $|a\rangle = |+\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$ and $|b\rangle = |-\rangle = (|0\rangle - |1\rangle)/\sqrt{2}$ then

$$|\phi\rangle = \alpha \, |0\rangle + \beta \, |1\rangle = \alpha \frac{|+\rangle + |-\rangle}{\sqrt{2}} + \beta \frac{|0\rangle - |1\rangle}{\sqrt{2}} = \frac{\alpha + \beta}{\sqrt{2}} \, |+\rangle + \frac{\alpha - \beta}{\sqrt{2}} \, |-\rangle \, .$$

• If $|a\rangle$ and $|b\rangle$ are orthonormal, it's also possible to perform a measurement with respect to that basis. In the example above you would measure $|+\rangle$ with probability $|\alpha + \beta|^2/2$ and $|-\rangle$ with probability $|\alpha - \beta|^2/2$.

1.3.4 Quantum circuits

• Applying a CNOT gate three times swaps the state of two qubits:

$$|a,b\rangle \to |a,a \oplus b\rangle$$

$$\to |a \oplus (a \oplus b), a \oplus b\rangle = |b, a \oplus b\rangle$$

$$\to |b, (a \oplus b) \oplus b\rangle = |b, a\rangle.$$

This can be represented in a quantum circuit diagram

which is equivalent to

- Quantum circuits don't allow loops (they are acyclic), they don't allow multiple wires to be joined into one, and they don't allow one wire to be split into multiple wires.
- If *U* is a unitary matrix operating on *n* qubits then *U* can be regarded as a quantum gate. Then we can define a controlled-*U* gate which takes a single control qubit and *n* target qubits. If the control qubit is set to 0 then nothing happens to the target qubits. If it's set to 1 then the *U* gate is applied to the target qubits.

• Measurement is represented as

$$|\psi\rangle$$
 —

where the double lines represent a classical bit.

1.3.5 Qubit copying circuit?

- A CNOT gate can be used to copy a classical bit. As input it takes a bit in state x and a "scratchpad" bit set to zero. The output is a bit in state x and a bit in state 0 if x = 0 and 1 if x = 1 both bits are in state x.
- However, a CNOT gate cannot be used to copy quantum information. As input it takes a qubit in the state $|\psi\rangle = a\,|0\rangle + b\,|1\rangle$ and a "scratchpad" qubit set to $|0\rangle$. The input state may be written as

$$[a |0\rangle + b |1\rangle] |0\rangle = a |00\rangle + b |01\rangle.$$

The gate negates the second bit if the first bit is 1 so the output is $a|00\rangle + b|11\rangle$. The desired output is

$$|\psi\rangle |\psi\rangle = a^2 |00\rangle + ab |01\rangle + ab |10\rangle + b^2 |11\rangle.$$

Unless a = 0 or b = 0, i.e. it's a classical bit, the qubit hasn't been copied. This is known as the **no-cloning theorem**.

1.3.6 Example: Bell states

- The Hadamard gate acts on a single qubit, mapping $|0\rangle$ to $(|0\rangle + |1\rangle)/\sqrt{2}$ and $|1\rangle$ to $(|0\rangle |1\rangle)/\sqrt{2}$.
- This circuit

applies a Hadamard gate to the first qubit which then acts as the control input to the CNOT. The output states

$$|\beta_{00}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}},$$

$$|\beta_{01}\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}},$$

$$|\beta_{10}\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}, \text{ and}$$

$$|\beta_{11}\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}$$

are known as the **Bell states**.