А. Ю. Пирковский

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ

Лекция 2

2.1. Топологические и метрические свойства линейных операторов

Операторы, о которых пойдет речь в следующем определении, являются аналитическими аналогами вложений. Вложения в функциональном анализе бывают двух типов: «топологические» и «метрические».

Определение 2.1. Пусть X и Y — нормированные пространства. Линейный оператор $T\colon X\to Y$ называется

- (i) топологически интективным, если он осуществляет гомеоморфизм между X и своим образом 1 Im T;
- (ii) *топологическим изоморфизмом*, если он топологически инъективен и сюръективен;
- (iii) изометрическим (или изометрией), если ||Tx|| = ||x|| для всех $x \in X$;
- (iv) изометрическим изоморфизмом, если он изометричен и сюръективен.

Сделаем несколько несложных наблюдений, связанных с этим определением. Вопервых, ясно, что топологический изоморфизм обладает обратным, который также является топологическим изоморфизмом. Далее, любой изометрический линейный оператор $T\colon X\to Y$ инъективен, т.к. если $x\in \operatorname{Ker} T$, то $\|x\|=\|Tx\|=0$, поэтому x=0. Следовательно, изометрический изоморфизм обладает обратным, который также, очевидно, является изометрическим изоморфизмом.

Дадим теперь характеризацию топологически инъективных операторов в метрических терминах.

Предложение 2.1. Следующие свойства оператора $T \in \mathcal{B}(X,Y)$ эквивалентны:

- (i) T mопологически интективен;
- (ii) существует такое c > 0, что $||Tx|| \ge c||x||$ для всех $x \in X$ (это свойство оператора иногда называют ограниченностью снизу).

Доказательство. Положим $Y_0 = \text{Im } T$ и рассмотрим оператор $T_0 \colon X \to Y_0$, $T_0(x) = T(x)$. Заметим, что каждое из условий (i) и (ii) влечет за собой инъективность оператора T, т.е. биективность оператора T_0 . Имеем следующие эквивалентности:

(i)
$$\iff T_0^{-1}$$
 непрерывен $\iff \exists C>0: \|T_0^{-1}y\|\leqslant C\|y\| \ \forall y\in Y_0$ $\iff \exists C>0: \|x\|\leqslant C\|Tx\| \ \forall x\in X$ \iff выполнено (ii) с константой $c=1/C$.

 $^{^1}$ Под *образом* линейного оператора $T\colon X\to Y$ мы всегда будем понимать его теоретикомножественный образ ${\rm Im}\, T=T(X)$. Следует иметь в виду, что это не то же самое, что образ в смысле теории категорий. Полезно проверить, что категорным образом морфизма T в категории нормированных пространств Norm или $Norm_1$ (см. замечание 2.2) является замыкание множества T(X).

Лекция 2

Следствие 2.2. Изометрический линейный оператор топологически инъективен. В частности, изометрический изоморфизм является топологическим изоморфизмом.

Обсудим теперь операторы, которые являются аналитическими аналогами сюръекций. Как и в случае с инъекциями, сюръекции в функциональном анализе бывают двух типов.

Определение 2.2. Пусть X и Y — нормированные пространства. Линейный оператор $T\colon X\to Y$ называется

- (i) *открытым*, если для любого открытого множества $U \subset X$ множество T(U) открыто в Y;
- (ii) коизометрическим (или коизометрией), если $T(\mathbb{B}_{1,X}^{\circ}) = \mathbb{B}_{1,Y}^{\circ}$.

Чтобы увидеть связь между этими двумя понятиями, дадим несколько эквивалентных описаний открытых операторов.

Предложение 2.3. Следующие свойства линейного оператора $T\colon X\to Y$ эквивалентны:

- (i) T $om\kappa p \omega m$;
- (ii) $T(\mathbb{B}_1^{\circ}) \supset \mathbb{B}_r^{\circ}$ для некоторого r > 0;
- (iii) существует такое C > 0, что для каждого $y \in Y$ найдется такой $x \in X$, что $Tx = y \ u \ \|x\| \leqslant C\|y\|$.

Доказательство. (i) \Longrightarrow (ii): очевидно.

- (ii) \Longrightarrow (iii). Зафиксируем $y \in Y$, $y \neq 0$, и положим y' = (r/2||y||) y. Очевидно, $y' \in \mathbb{B}_{r,Y}^{\circ}$, поэтому y' = Tx' для некоторого $x' \in \mathbb{B}_{1,X}^{\circ}$. Положим x = (2||y||/r) x'; тогда Tx = y и $||x|| \leq (2/r)||y||$. Ясно, что для y = 0 свойство (iii) также выполнено.
 - $(iii) \Longrightarrow (ii)$: очевидно (достаточно положить r = 1/C).
- (ii) \Longrightarrow (i). Пусть $U \subset X$ открытое подмножество и $x \in U$. Достаточно показать, что Tx внутренняя точка множества T(U). Подберем $\varepsilon > 0$ так, чтобы $x + \varepsilon \mathbb{B}_1^{\circ} \subset U$; тогда $T(U) \supset Tx + \varepsilon T(\mathbb{B}_1^{\circ}) \supset Tx + \mathbb{B}_{\varepsilon r}^{\circ}$, так что Tx внутренняя точка T(U).

Следствие 2.4. Коизометрический линейный оператор открыт, а открытый линейный оператор сюръективен.

Наблюдение 2.5. Отметим тот очевидный факт, что если оператор $T\colon X\to Y$ изометричен и $X\neq 0$, то $\|T\|=1$. То же самое равенство верно и для коизометрического оператора $T\colon X\to Y$ при условии, что $Y\neq 0$. В самом деле, из равенства $T(\mathbb{B}_{1,X}^\circ)=\mathbb{B}_{1,Y}^\circ$ по непрерывности следует включение $T(\mathbb{B}_{1,X})\subset \mathbb{B}_{1,Y}$, которое дает оценку $\|T\|\leqslant 1$. С другой стороны, если бы норма T была меньше 1, то включение $T(\mathbb{B}_{1,X}^\circ)\subset \mathbb{B}_{\|T\|,Y}^\circ$ противоречило бы определению коизометрии. Следовательно, $\|T\|=1$.

Замечание 2.1. Операторы $T: X \to Y$, удовлетворяющие условию $T(\mathbb{B}_{1,X}) = \mathbb{B}_{1,Y}$, называются иногда *строгими коизометриями*. Можно проверить, что всякая строгая коизометрия является коизометрией, но не наоборот (см. задачу 2.10 из листка 2).

Замечание 2.2. Операторы, о которых шла речь выше, можно интерпретировать в терминах теории категорий. А именно, рассмотрим категорию Norm, объектами которой являются нормированные пространства, а морфизмами — ограниченные линейные

Обсудим теперь несколько базовых примеров.

2.2. Примеры ограниченных линейных операторов

Пример 2.1. Обозначим через $\mathbf{1}_X$ тождественный оператор в нормированном пространстве X. Очевидно, он ограничен и $\|\mathbf{1}_X\| = 1$.

Пример 2.2 (диагональный оператор). Пусть $\lambda = (\lambda_i)_{i=1}^{\infty}$ — ограниченная последовательность, т.е. элемент пространства ℓ^{∞} . Пусть X — какое-либо из пространств последовательностей ℓ^p (где $1 \leq p \leq \infty$) или c_0 .

Предложение 2.6. Для любого $x \in X$ последовательность $\lambda x = (\lambda_1 x_1, \lambda_2 x_2, \ldots)$ также принадлежит X, и отображение $M_{\lambda} \colon X \to X$, $x \mapsto \lambda x$, является ограниченным линейным оператором. При этом $\|M_{\lambda}\| = \|\lambda\|_{\infty}$.

Доказательство. Проведем доказательство для $X = \ell^p$ при $p < \infty$ (для ℓ^∞ и c_0 все делается аналогично). Для каждого $x \in \ell^p$ имеем

$$\sum_{i} |\lambda_i x_i|^p \leqslant \sup_{i} |\lambda_i|^p \sum_{i} |x_i|^p = ||\lambda||_{\infty}^p ||x||_p^p.$$

Следовательно, ряд в левой части неравенства сходится, так что $\lambda x \in \ell^p$, и определен (очевидно, линейный) оператор $M_{\lambda} \colon \ell^p \to \ell^p$. Из того же неравенства видно, что $\|M_{\lambda}\| \le \|\lambda\|_{\infty}$. Обозначим через e_i последовательность с единицей на i-ом месте и нулем на остальных. Тогда

$$||M_{\lambda}|| = \sup_{\|x\| \leqslant 1} ||M_{\lambda}x|| \geqslant \sup_{i \in \mathbb{N}} ||M_{\lambda}e_i|| = \sup_{i \in \mathbb{N}} ||\lambda_i e_i|| = \sup_{i \in \mathbb{N}} |\lambda_i| = ||\lambda||_{\infty}.$$

Отсюда получаем требуемое равенство $||M_{\lambda}|| = ||\lambda||_{\infty}$.

Оператор M_{λ} называется диагональным оператором в X.

Замечание 2.3. Из проведенного доказательства видно, что для ограниченного оператора T не обязательно существует такой ненулевой вектор x, что ||Tx|| = ||T|| ||x||. Если такое все же случилось, то говорят, что оператор достигает нормы. А в общем случае можно лишь гарантировать, что для каждого $\delta > 0$ найдется такой ненулевой x_{δ} , что $||Tx_{\delta}|| \ge (||T|| - \delta)||x_{\delta}||$.

Лекция 2 15

Пример 2.3 (*операторы сдвига*). Пусть X — любое из пространств ℓ^p или c_0 , как и в предыдущем примере. Рассмотрим операторы

$$T_r: X \to X,$$
 $T_r(x) = (0, x_1, x_2, \ldots)$ (оператор правого сдвига), $T_\ell: X \to X,$ $T_\ell(x) = (x_2, x_3, \ldots)$ (оператор левого сдвига).

Ясно, что они оба линейны и ограничены. Оператор T_r , очевидно, изометричен, поэтому $||T_r||=1$. Оператор же T_ℓ , как нетрудно проверить, коизометричен (проверьте!), поэтому $||T_\ell||=1$.

Если в качестве X взять пространство «двусторонних» последовательностей $\ell^p(\mathbb{Z})$ или $c_0(\mathbb{Z})$, то можно определить оператор

$$T_b: X \to X$$
, $(T_b(x))_i = x_{i-1}$ (оператор двустороннего сдвига).

Очевидно, он изометричен и имеет поэтому норму 1.

Операторы, аналогичные оператору двустороннего сдвига, можно определить во многих других пространствах функций на группах. Пусть, например, X — это одно из пространств $C_b(\mathbb{R})$, $C_0(\mathbb{R})$ или $L^p(\mathbb{R})$ (относительно меры Лебега); тогда для каждого $a \in \mathbb{R}$ определен изометрический оператор

$$T_a \colon X \to X, \quad (T_a f)(t) = f(t - a).$$

Изометричность этого оператора (в случае $X=L^p(\mathbb{R})$ при $p<\infty$) следует из инвариантности меры Лебега относительно сдвигов.

Вместо группы \mathbb{R} можно взять единичную окружность $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$, снабженную нормализованной мерой Лебега¹. Если X — это одно из пространств $C(\mathbb{T})$ или $L^p(\mathbb{T})$, то для каждого $\zeta \in \mathbb{T}$ определен изометрический оператор

$$T_{\zeta} \colon X \to X, \quad (T_{\zeta}f)(z) = f(\zeta^{-1}z).$$

Изометричность этого оператора (в случае $X=L^p(\mathbb{T})$ при $p<\infty$) следует из инвариантности меры Лебега относительно поворотов окружности.

Замечание 2.4. Отметим, что для $G = \mathbb{R}$ или $G = \mathbb{T}$ сопоставление каждому $g \in G$ оператора сдвига T_g является представлением G в X; оно называется регулярным представлением. Аналогичную конструкцию можно проделать для любой локально компактной топологической группы G, снабженной так называемой мерой Xaapa — регулярной борелевской мерой, инвариантной относительно левых сдвигов. Существование и единственность (с точностью до множителя) такой меры — это весьма глубокая теорема, доказанная в разное время и в разной степени общности A. Хааром, Aж. фон Нойманном и A. Вейлем. Впрочем, для групп A0 меру A0 жара построить довольно легко; знакомые с группами A1 могут попробовать сделать это в качестве упражнения.

Пример 2.4 (оператор умножения в $C_b(X)$). Пусть X — топологическое пространство и $f \in C_b(X)$. Оператор умножения $M_f \colon C_b(X) \to C_b(X)$ действует по формуле $M_f(g) = fg$ (где $g \in C_b(X)$). Легко проверить (проверьте), что оператор M_f ограничен и $\|M_f\| = \|f\|_{\infty}$. Обратите внимание, что при $X = \mathbb{N}$ оператор M_f — это в точности диагональный оператор из примера 2.2.

¹Это означает, что мы переносим меру Лебега с полуинтервала $[0, 2\pi)$ на $\mathbb T$ посредством отображения $t\mapsto e^{it}$, а потом нормируем ее, т.е. делим на 2π , чтобы мера всей окружности равнялась 1.

Пример 2.5 (оператор умножения в $L^p(X,\mu)$). Пусть (X,μ) — пространство с мерой и $f \in L^\infty(X,\mu)$. Зафиксируем произвольное $p \in [1,+\infty]$. Оператор умножения $M_f \colon L^p(X,\mu) \to L^p(X,\mu)$ действует по той же формуле, что и в предыдущем примере. Можно проверить (проверьте), что оператор M_f ограничен и $\|M_f\| = \|f\|_{L^\infty}$. Обратите внимание, что при $X = \mathbb{N}$ (со считающей мерой) мы снова получаем диагональный оператор из примера 2.2.

Отметим, что диагональный оператор и оператор умножения — это больше чем просто примеры. Через некоторое время мы увидим, что при p=2 они служат моделями для весьма важных классов операторов — нормальных и нормальных компактных операторов в гильбертовом пространстве.

Следующий класс операторов также играет весьма важную роль как в общей теории, так и в приложениях.

Определение 2.3. Пусть (X, μ) — пространство с мерой, K — измеримая функция на $X \times X$ и E — некоторое векторное пространство функций на X. Интегральным оператором на E называется оператор вида

$$T_K : E \to E, \quad (T_K f)(x) = \int_X K(x, y) f(y) \, d\mu(y).$$
 (2.1)

Функцию K иногда называют ядром¹ оператора T_K .

Обратите внимание, что формула (2.1) — это обобщение формулы умножения матрицы на столбец. В самом деле, если $X = \{1, \ldots, n\}$ и μ — считающая мера, то K — это просто квадратная $n \times n$ -матрица, функция f — столбец чисел, а оператор T_K действует по формуле $(T_K f)_i = \sum_j K_{ij} f_j$.

Важный частный случай интегральных операторов — это так называемые операторы Вольтерра.

Определение 2.4. Пусть I=[a,b] — отрезок с мерой Лебега, K — измеримая функция на $I \times I$ и E — некоторое векторное пространство функций на I. Оператором Вольтерра на E называется оператор вида

$$V_K \colon E \to E, \quad (V_K f)(x) = \int_a^x K(x, y) f(y) \, dy.$$

Заметим, что $V_K = T_{\tilde{K}}$, где функция \tilde{K} определена формулой

$$\tilde{K}(x,y) = \begin{cases} K(x,y), & \text{если } y \leqslant x, \\ 0, & \text{если } y > x. \end{cases}$$

Разумеется, чтобы оператор T_K (или V_K) был определен, следует наложить на функцию K и пространство E определенные условия. Вот два конкретных примера.

Пример 2.6. Пусть I = [0,1] (с мерой Лебега) и $K \in C(I \times I)$. Нетрудно проверить (проверьте), что формула (2.1) задает ограниченный линейный оператор $T_K \colon C(I) \to C(I)$, причем $||T_K|| \leq ||K||_{\infty}$. Аналогичное утверждение справедливо и для оператора Вольтерра $V_K \colon C(I) \to C(I)$.

 $^{^{1}}$ Хотя она и не имеет ничего общего с подпространством $\operatorname{Ker} T_{K}$; в данном случае термин «ядро» — это просто дань традиции.

Лекция 2 17

Пример 2.7. Пусть (X,μ) — пространство с мерой и $K \in L^2(X \times X, \mu \times \mu)$. Используя теорему Фубини, можно показать (покажите), что для каждой $f \in L^2(X,\mu)$ интеграл в правой части равенства (2.1) существует для почти всех $x \in X$ и определяет функцию $T_K f \in L^2(X,\mu)$. Таким образом, получаем линейный оператор $T_K \colon L^2(X,\mu) \to L^2(X,\mu)$. Можно проверить (проверьте), что он ограничен, и что $||T_K|| \leq ||K||_2$.

Последний пример также является модельным — на этот раз для так называемых операторов Γ ильберта—Шмидта.