Durante la lezione teorica, abbiamo visto la Threat Intelligence e gli indicatori di compromissione. Abbiamo visto che gli IOC sono evidenze o eventi di un attacco in corso, oppure già avvenuto.

Per l'esercizio pratico di oggi, trovate in allegato una cattura di rete effettuata con Wireshark. Analizzate la cattura attentamente e rispondere ai seguenti quesiti:

- Identificare eventuali IOC, ovvero evidenze di attacchi in corso
- In base agli IOC trovati, fate delle ipotesi sui potenziali vettori di attacco utilizzati
- Consigliate un'azione per ridurre gli impatti dell'attacco

Da VirtualBox, nella sezione Cartelle condivise creo una cartella per condividere i file tra Windows e la macchian virtuale

Il file aperto su WireShark si presenta così

I pacchetti RST vengono spesso utilizzati per terminare bruscamente una connessione TCP e possono indicare un problema o un attacco.

tcp.flags.reset == 1

						flags.reset == 1				
No.	Time	Source	Destination	Protocol Ler	No.	Time	Source	Destination	Protocol	Length Info
		192.168.200.150	192.168.200.255	BROWSER		5 23.764777427	192.168.200.150	192.168.200.100	TCP	60 443 → 33876 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
		192.168.200.100	192.168.200.150	TCP		7 23.764899091	192.168.200.100	192.168.200.150	TCP	66 53060 → 80 [RST, ACK] Seq=1 Ack=1 Win=64256 Len
_		192.168.200.100	192.168.200.150	TCP		21 36.774685696	192.168.200.150	192.168.200.100	TCP	60 443 → 33878 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
		192.168.200.150	192.168.200.100	TCP		22 36.774685737	192.168.200.150	192.168.200.100	TCP	60 554 → 58636 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
		192.168.200.150	192.168.200.100	TCP		23 36.774685776	192.168.200.150	192.168.200.100	TCP	60 135 → 52358 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
		192.168.200.100	192.168.200.150	TCP			192.168.200.150	192.168.200.100	TCP	60 993 → 46138 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
		192.168.200.100	192.168.200.150	TCP			192.168.200.150	192.168.200.100	TCP	60 113 → 59174 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
		_	PCSSystemtec_39:7d:				192.168.200.100	192.168.200.150	TCP	66 41304 → 23 [RST, ACK] Seq=1 Ack=1 Win=64256 Len
		_	PCSSystemtec_fd:87:				192.168.200.100	192.168.200.150	TCP	66 56120 → 111 [RST, ACK] Seq=1 Ack=1 Win=64256 Le
		_	PCSSystemtec_fd:87:			39 36.775861964	192.168.200.100	192.168.200.150	TCP	66 41182 → 21 [RST, ACK] Seq=1 Ack=1 Win=64256 Len
_		_	PCSSystemtec_39:7d:			40 36.775975876	192.168.200.100	192.168.200.150	TCP	66 55656 → 22 [RST, ACK] Seq=1 Ack=1 Win=64256 Len
	12 36.774143445		192.168.200.150	TCP			192.168.200.100	192.168.200.150	TCP	66 53062 → 80 [RST, ACK] Seq=1 Ack=1 Win=64256 Len
_	13 36.774218116		192.168.200.150	TCP			192.168.200.150	192.168.200.100	TCP	60 199 → 50684 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	14 36.774257841		192.168.200.150	TCP			192.168.200.150	192.168.200.100	TCP	60 995 → 54220 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	15 36.774366305		192.168.200.150	TCP			192.168.200.150	192.168.200.100	TCP	60 587 → 34648 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	16 36.774405627		192.168.200.150	TCP TCP			192.168.200.150	192.168.200.100	TCP	60 256 → 49814 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	17 36.774535534		192.168.200.150	TCP			192.168.200.150	192.168.200.100	TCP	60 143 → 33206 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	18 36.774614776		192.168.200.150	TCP			192.168.200.150	192.168.200.100	TCP	60 110 → 49654 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	19 36.774685505	192.168.200.150	192.168.200.100	TCP			192.168.200.150	192.168.200.100	TCP	60 500 → 54898 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
_	21 26 774695606	102 168 200 150	102 168 200 100	TCP			192.168.200.150	192.168.200.100	TCP	60 487 → 51534 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	21 36.774685696		192.168.200.100				192.168.200.150	192.168.200.100	TCP	60 707 → 56990 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	22 36.774685737		192.168.200.100	TCP TCP			192.168.200.150	192.168.200.100	TCP	60 436 → 35638 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	23 36.774685776		192.168.200.100				192.168.200.150	192.168.200.100	TCP	60 98 → 34120 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	25 26 774711072		102 169 200 150	TCD			192.168.200.150	192.168.200.100	TCP	60 78 → 49780 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	25 36.774711072		192.168.200.150	TCP TCP			192.168.200.150	192.168.200.100	TCP	60 580 → 36138 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
_	26 36.775141104		192.168.200.100	TCP			192.168.200.150	192.168.200.100	TCP	60 962 → 52428 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	27 36.775141273		192.168.200.100	TCP			192.168.200.150	192.168.200.100	TCP	60 764 → 41874 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	28 36.775174048		192.168.200.150	TCP			192.168.200.150	192.168.200.100	TCP	60 435 → 51506 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	29 36.775337800		192.168.200.150				192.168.200.100	192.168.200.150	TCP	66 33042 → 445 [RST, ACK] Seq=1 Ack=1 Win=64256 Le
	30 36.775386694		192.168.200.150	TCP			192.168.200.100	192.168.200.150	TCP	66 46990 → 139 [RST, ACK] Seq=1 Ack=1 Win=64256 Le
	31 36.775524204	192.108.200.100	192.168.200.150	TCP		88 36.777986759	192.168.200.100	192.168.200.150	TCP	66 60632 → 25 [RST, ACK] Seq=1 Ack=1 Win=64256 Len

In un attacco man-in-the-middle, un aggressore potrebbe iniettare pacchetti RST per interrompere le connessioni esistenti e dirottare il traffico verso di sé.

Attacchi Denial-of-Service (DoS) possono utilizzare pacchetti RST per inondare un host o un dispositivo di rete, consumando le sue risorse e rendendolo non disponibile per i legittimi utenti.

Gli aggressori possono inviare pacchetti SYN falsi con flag RST impostati per scansionare le porte aperte su un host e mappare i servizi in esecuzione. Un'ondata improvvisa di tali pacchetti potrebbe indicare una scansione SYN in corso

Multiple richieste TCP SYN dall'host 192.168.200.100 a 192.168.200.150 su porte diverse, potrebbe trattarsi di una scansione in corso

12 00.111110110	102.100.200.100	102.100.200.100	101	74 41004 4 20 [01N] 004-0 WIN-04240 ECH-0 1100-1400 0/OK_1 EK
13 36.774218116	192.168.200.100	192.168.200.150	TCP	74 56120 → 111 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PE
14 36.774257841	192.168.200.100	192.168.200.150	TCP	74 33878 → 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PE
15 36.774366305	192.168.200.100	192.168.200.150	TCP	74 58636 → 554 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PE
16 36.774405627	192.168.200.100	192.168.200.150	TCP	74 52358 → 135 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PE
17 36.774535534	192.168.200.100	192.168.200.150	TCP	74 46138 → 993 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PE
18 36.774614776	192.168.200.100	192.168.200.150	TCP	74 41182 → 21 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PER
29 36 775337800	192 168 200 100	192 168 200 150	TCP	7/ 5917/ . 113 [SVN] Seg=0 Win=6/2/0 Len=0 MSS=1/60 SACK PERM TSval

TCP

30 36,775386694

192.168.200.100

192.168.200.150

74 55656 → 22 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=..

Gli indizi portano a pensare ad una scansione nmap -sT cioè che usa three-way-handshake, lo si può notare analizzando il traffico su una singola porta, ovvero una prima richiesta da parte dell'attaccante SYN, successivamente una risposta SYN+ACK e nuovamente un ACK da parte dell'attaccante che poco dopo chiude la comunicazione con un RST

Itcp.port == 23 □ □ □ +								
No.	Time	Source	Destination	Protocol	Length Info			
	12 36.774143445	192.168.200.100	192.168.200.150	TCP	74 41304 → 23 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=81053			
	19 36.774685505	192.168.200.150	192.168.200.100	TCP	74 23 → 41304 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=1460 SACK_PERM T			
	24 36.774700464	192.168.200.100	192.168.200.150	TCP	66 41304 → 23 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=810535438 TSecr=42			
	33 36.775619454	192.168.200.100	192.168.200.150	TCP	66 41304 → 23 [RST, ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=810535439 TSe…			

Come si può notare, l'attaccante ha ricevuto 13 risposte SYN+ACK quindi è riuscito a trovare delle porte aperte che potrà sfruttare

Una possibile soluzione è quella di inserire una regola per queste porte in un firewall in modo che si vada a bloccare la comunicazione dall'esterno, un'altra soluzione è quella di bloccare l'indirizzo IP dell'attaccante