03 -- Mon Oct 18

ECE 447: Control Systems (Fall 2021)

Prof: San Burder TA. Sat Singh

this week: * HW2 due Fri Oct 22

IV HW 3 assigned -> due Fri Oct 29

I week 3 lecture material

D break

a Office "Hour"

Prof Burden TODO:

tutorial or roots, eigenvalues, and characteristic polynomials \star why is stability governed by roots of characteristic polynomial $\frac{u}{s} \Rightarrow \frac{u}{s} = \frac{u}{s} \Rightarrow \frac{u}{s} \Rightarrow \frac{u}{s} = \frac{u}{s} \Rightarrow \frac{u$

Q: does there exist (non-zero) signal y that satisfies this egu; A: YES? but: only solutions are (linear combinations of) y(t) = eskt where sk is a root of early when sk v characteristic polynomial snt a. sn-1 + ... + 1 1 characteristic polynomial snta, sn-1+...+ an why? $\frac{d}{dt}e^{Skt} = S_k e^{Skt}$, so $\frac{d^2}{dt^2}e^{Skt} = \frac{d}{dt}S_k e^{Skt} = S_k^2 e^{Skt}$ so $\frac{d^n}{dt^n}y + a_1 \frac{d^{n-1}}{dt^{n-1}}y + \dots + a_n y = (s_k^n + a_1 s_k^{n-1} + \dots + a_n)y = 0$ v-velocity (output) c-throttle (input) ex: cruse control $m\ddot{v} = F = -\beta V + \tau$ $\rightarrow |G(s)| \xrightarrow{N} (G(s) = \overline{Ms + B}) \in$ $m\mathring{v} = -\beta v + \zeta \iff m\mathring{v} + \beta v = \zeta \iff (Ms + \beta) v = \zeta$ two cases: but V(0) = 25 mph1º. (homogeneous) T =0 then we want $v:[0,T] \rightarrow \mathbb{R}$ s.t. $\forall t>0:(mv(t) = -\beta v(t))$ Q: what signal is proportional to its time derivative at all times? v(t) $v(t) = e^{-s_{k}t} s_{k} = -t^{3}$ $v(t) = e^{-s_{k}t} s_{k} = -t^{3}$ $v(t) = e^{-s_{k}t} s_{k} = -t^{3}$ $v(t) = e^{-s_{k}t} s_{k} = -t^{3}$ NUT

class-fa21 Page

2°. (particular)
$$\tau \neq 0$$
 $\tau(t) = e^{st} \implies y(t) = c_1 e^{s_1 t} + G(s) e^{st}$

suppose I apply a simusoidal input
$$t = sin(t) = sin(t)$$

then I'll represent $sin(t)$ as a linear (ambination of camplex expanentials, $sin(t) = \frac{1}{2i} \left(e^{it} - e^{-it} \right) = experience the sin(t) = expanentials, $sin(t) = \frac{1}{2i} \left(e^{it} - e^{-it} \right) = experience the sin(t) = experience the sin(t) is a sin(t) as a linear (ambination of experience) and $e^{-it} = e^{-it}$$$

so particular response is a G(i) eit + & G(-i) e-it

tutorial an roots, eigenvalues, and characteristic polynomials

$$\frac{u}{\Rightarrow} G(s) \xrightarrow{g} u(t) = e^{st} \Rightarrow y(t) = \sum_{k=1}^{n} C_k e^{skt} + G(s) e^{st}$$
hamogeneous particular

class-fa21 Page

* who is stability governed by roots of characteristic polynamial?

time
$$\frac{d^n}{dt^n}y + a_n \frac{d^{n-1}}{dt^{n-1}}y + \cdots + a_n y = 0$$
 — homogeneous response

freg.
$$(s^n + a_1 s^{n-1} + \cdots + a_n)g = 0 \leftarrow does there exist nonzero g s.t. this equation is 320?$$

*YES", but: only solutions are
$$g(t) = e^{skt}$$

where s_k are roofs of $s^n + a_n s^{n-1} + \cdots + a_n$

Characteristic polynomial — denominator of $G(s)$

* why is stability governed by eigenvalues?

time
damain
$$\mathring{x} = A x$$

time
$$x = Ax$$
 $\Rightarrow A \Rightarrow S \Rightarrow A$

freg damain $SX = AX \iff (SI - A)X = 0 \iff does there exist nonzero$ X s.t. this egn is 500)

* YES
7
 but: only solutions are $x(t) = e^{Skt} v_{k}$ where $Av_{k} = Sk v_{k} \leftarrow Sk$, v_{k} are eignal/eignec pair

i.e. Sk is a root of let(SI-A)

characteristic polynomia