

By: W. Logan Spooner and Dr. Shantanu Chakraborty

Outline

- Background and Premise
- Circuit Setup
- Horn Antenna Construction
- Weather Antenna
- Software
- Data
- Horn Antenna vs Weather Antenna
- Issues and Setbacks
- Looking Forward

Background and Premise

- 21 cm wavelength radiation emitted by cold Hydrogen Clouds
 - Cold Hydrogen is that which makes up most of the Inter Stellar Medium (ISM)
- The observation of this helped Astronomers determine the shape and structure of our Galaxy.
- We hope to create a telescope capable of observing this using a Software Defined Radio

Circuit Design

- SDR circuit consisted of 4 parts
 - 1. The Antenna and feedline to collect and focus the information
 - 2. A Bandpass filter (BPF) to filter out unwanted frequency bands
 - 3. A Low Noise Amplifier (LNA) to amplify our target frequency
 - 4. An RTL-SDR to allow the analysis of the data on a laptop using SDRSharp

Horn Antenna Construction

- Design comes from American
 Astronomical Society, AAS Meeting
 #224, id.415.01
- Dimensions used to optimize size while still being convenient to move
- Construction:
 - Used a 9"x6"x4" can as the waveguide.
 - 5.3 cm piece of copper wire for feed line
 - Cut cardboard into shape and wrapped with aluminum foil.
 - Taped everything together with aluminum conducting tape.

Horn Antenna Construction

Weather Antenna

- Noelec GOES Weather Satellite Parabolic Antenna
 - 1.7GHz Center
 Frequency
 - 200 MHz+ Bandwidth

Software

- All free open-source software used for creating software defined radios
 - Limited in their use for radio astronomy
- Used SDRSharp (SDR#)
 - Easy UI and simple display
 - Limited scope and data collection
- SDRAngel was another option
 - Included data save option, didn't work properly
 - More complicated UI

Observation Conditions

Location: Nevins Hall roof,
 Valdosta State University,
 Valdosta, Ga.

• 30.84847916421404, - 83.28885987900686

 Weather: Varied, mostly Sunny

• Time: 10:30 EST and

22:30 EST

Horn Antenna at Night

Data: Horn Antenna in the Morning

Data: Weather Antenna

Horn Antenna vs Weather Antenna

Horn Antenna

- Pros
 - Directional
 - Optimized for 1420 MHz band
 - More customizable
- Cons
 - Lower gain
 - Harder direction control (no mount)

Weather Antenna

- Pros
 - Higher gain
 - Easier direction control (came with a mount)
- Cons
 - Wider beam angle
 - Not optimized for 1420
 MHz
 - Less consistent data

Setbacks and Limitations

- Possible reflection sources
- Software
 - Crashes/file issues
 - No obvious ways to integrate signal over time
- Hardware
 - RTL-SDR heating
 - Angle measurement
- Weather Conditions
- Blue/Red shift

Looking Forward

Software

 Found plugin to perform FFT (Fast Fourier Transform) of audio signal and save as Power vs Frequency

Hardware

- Parabolic dish antenna
- Larger/more precise horn antenna
- Mount with Altazimuth coordinates

Observations

- More open locations
- Other regions of the sky such as Cygnus and Sagittarius

References

- https://en.wikipedia.org/wiki/Hydrogen line
- http://hyperphysics.phy-astr.gsu.edu/hbase/Relativ/reldop2.html
- https://www.heavens-above.com/
- http://www.ccera.ca/papers/memo-0011-a-21cm-map-of-the-northern-sky/
- https://radio-astronomy.org/node/191
- http://mercury.pr.erau.edu/~prcphysics/observatory/hydrogen.htm