14 The Fundamental Theorem of Calculus

- 14.1 Find the derivative F'(x) of $F(x) = \int_{a}^{x} \cos t \, dt$
 - (a) by evaluating the integral via the Second Fundamental Theorem then differentiating;
 - (b) directly by applying the First Fundamental Theorem.
- 14.2 Find the derivatives of the following functions without performing any integrations.

(a)
$$F(x) = \int_a^x \cos^3 t \, dt$$

(b)
$$F(t) = \int_a^t \cos^3 x \, \mathrm{d}x$$

(c)
$$F(x) = \int_a^b \cos^2 t \, dt$$

(d)
$$F(x) = \int_a^b x \cos^3 t \, dt$$

(e)
$$F(x) = \int_x^b \cos^3 t \, \mathrm{d}t$$

(f)
$$F(x) = \int_2^x \left(\int_y^3 \cos^2 t \, dt \right) dy$$

(g)
$$F(x) = \sin\left(\int_a^x \cos^2 t \, dt\right)$$

(h)
$$F(x) = \sin x \int_a^x \cos^2 t \, dt$$

(i)
$$F(x) = \int_a^{x^3} \cos^3 t \, dt$$
 (Hint: look first at the function G with $F(x) = G(x^3)$.)

(j)
$$F(x) = \int_{7}^{\left(\int_{6}^{x} \sin^{2} t \, dt\right)} \frac{1}{1 + t^{2} + \cos t} \, dt$$

(k)
$$F(x) = \int_{x}^{2x} \cos^2 t \, dt$$
 (Hint: split up the integral.)

(l) Find the derivative of
$$F^{-1}$$
 (expressed in terms of F^{-1}), where $F(x) = \int_{1}^{x} \frac{1}{t} dt$

(m) Find the derivative of
$$F^{-1}$$
 (expressed in terms of F^{-1}), where $F(x) = \int_0^x \frac{1}{\sqrt{1-t^2}} dt$.

- 14.3 Prove that if $F(x) = \int_{g(x)}^{h(x)} f(t) dt$ for a continuous function f and differentiable functions g and h, then $F'(x) = f(h(x)) \cdot h'(x) f(g(x)) \cdot g'(x)$.
- 14.4 Evaluate

(a)
$$\int_0^1 (x - x^2) dx$$
 (b) $\int_{\pi/4}^{3\pi/4} (\sin x + \cos x) dx$ (c) $\int_3^4 (2x^3 - 3x + 1) dx$ (d) $\int_1^2 (x - 2x^{\frac{1}{2}} + 3x^{-\frac{1}{2}}) dx$ (e) $\int_{\pi/6}^{\pi/3} (3\csc^2 x - \frac{1}{3}\sec^2 x) dx$.

- 14.5 For each of the following functions, find the area between the x-axis and the graph of the function between the specified limits.
 - (a) $f(x) = \sin x$ between x = 0 and $x = 3\pi/2$;
 - (b) $f(x) = \sin x$ between x = 0 and $x = 2\pi$;
 - (c) $f(x) = 1 x^2$ between x = 0 and x = 1;
 - (d) $f(x) = 1 x^2$ between x = 0 and x = 2;
 - (e) $f(x) = x x^2$ between x = 0 and x = 1.
- 14.6 Find the area of the *finite regions* bounded by the following curves.
 - (a) $f(x) = \sqrt{x}$, the x-axis, and the vertical line through the point (4,0);
 - (b) f(x) = (2 x)(x + 1) and the x-axis;
 - (c) $f(x) = x^2$ and $g(x) = x^3$;
 - (d) $f(x) = 2 + x x^2$ and g(x) = x + 1:
 - (e) $f(x) = x^3$, g(x) = 1, h(x) = 8, and the vertical line through the point (0,0);
 - (f) $f(x) = 4 x^2$ and g(x) = 1.
- 14.7 Evaluate each of the following improper integrals, or show that it diverges.
 - (a) $\int_{1}^{\infty} \frac{dx}{x^3}$ (b) $\int_{0}^{\infty} \frac{dx}{1+x^2}$ (c) $\int_{-\infty}^{0} \frac{dx}{4+x^2}$ (d) $\int_{-\infty}^{0} \cos x \, dx$ (e) $\int_{3}^{5} \frac{x}{\sqrt{x^2-9}} \, dx$ (f) $\int_{1}^{2} \frac{dx}{(x-2)^2}$.