7. Dělitelnost

Definice. Řekneme, že $S(\cdot,1)$ je komutativní monoid s krácením, pokud je $S(\cdot,1)$ monoid s komutativní operací \cdot splňující pro každé $a,b,c\in S$ podmínku $a\cdot c=b\cdot c \Rightarrow a=b$.

Buď $S(\cdot,1)$ komutativní monoid s krácením a nechť $a,b \in S$. Řekneme, že a dělí b (píšeme a/b), pokud existuje takové $c \in S$, že $b = a \cdot c$. Řekneme že a je asociován s b (píšeme a||b), pokud a/b a zároveň b/a.

Příklad. 1) $\mathbf{N}(\cdot,1)$ a $\mathbf{Z}\setminus\{0\}(\cdot,1)$ jsou komutativní monoidy s krácením. 2) Je-li $R(+,\cdot,-,0,1)$ obor integrity, pak je $R\setminus\{0\}(\cdot,1)$ komutativní monoid s krácením.

Poznámka 7.1. Buď $R \setminus \{0\}(\cdot, 1)$ multiplikativní monoid (tedy komutativní monoid s krácením) nějakého oboru integrity $R(+, \cdot, -, 0, 1)$ (například okruhu celých čísel nebo reálných polynomů). Pak a/b právě když $bR \subseteq aR$ a $a \mid b$ právě když bR = aR.

Důkaz. Přímý důsledek definice.

Poznámka 7.2. Nechť $S(\cdot,1)$ je komutativní monoid s krácením.

- (1) Pro každé $a, b \in S$ existuje nejvýše jeden takový prvek $c \in S$, že $a = b \cdot c$.
- (2) Nechť $a, b \in S$. Pak a || b právě tehdy, když existuje invertibilní prvek $u \in S$ tak, že $a = b \cdot u$.
- (3) \parallel je kongruence na $S(\cdot, 1)$.
- (4) $S/\|(\cdot,[1]_{\parallel})$ je komutativní monoid s krácením a relace "dělí" na něm tvoří uspořádání.

$$D\mathring{u}kaz.$$
 (1) viz [D, 5.10], (2) viz [D, 5.2], (3) viz [D, 5.5].

Příklad. Komutativní monoidy $\mathbf{N}(\cdot, 1)$ a $\mathbf{Z} \setminus \{0\}/\|(\cdot, 1)$ jsou izomorfní.

Definice. Buď $S(\cdot,1)$ komutativní monoid s krácením a nechť $a,b,c,a_1,\ldots,a_n\in S$. Prvek c nazveme největší společný dělitel prvků a_1,\ldots,a_n (píšeme $NSD(a_1,\ldots,a_n)$), jestliže c/a_i pro všechna i, a každý prvek $d\in S$, který dělí všechna a_i , dělí i prvek c. Prvek c nazveme ireducibilním prvkem, pokud c není invertibilní a $c=a\cdot b \Rightarrow c\|a$ nebo $c\|b$. Prvek c nazveme prvočinitelem, pokud c není invertibilní a $c/a\cdot b \Rightarrow c/a$ nebo c/b.

Poznámka 7.3. Nechť $S(\cdot,1)$ je komutativní monoid s krácením a $a,b,c\in S$.

- (1) Nechť d je NSD(a,b) a e je $NSD(a \cdot c, b \cdot c)$. Potom $(d \cdot c) || e$
- (2) Nechť 1 je NSD(a,b) a $a/b \cdot c$. Existuje-li $NSD(a \cdot c, b \cdot c)$, pak a/c.

$$D\mathring{u}kaz$$
. (1) viz [D, 5.12] a (2) viz [D, 5.13].

Poznámka 7.4. Mějme $S(\cdot,1)$ komutativní monoid s krácením. Potom je každý prvočinitel ireducibilní. Pokud navíc pro každé $a,b \in S$ existuje NSD(a,b) pak je každý ireducibilní prvek prvočinitelem.

$$D\mathring{u}kaz$$
. Viz [D, 5.14].

Věta 7.5. Nechť je každý ireducibilní prvek komutativního monoidu s krácením $S(\cdot,1)$ prvočinitelem a nechť $p_1,\ldots,p_r,q_1,\ldots,q_s\in S$ jsou ireducibilní prvky takové, že $p_1\cdot p_2\cdot \cdots \cdot p_r\|q_1\cdot q_2\cdot \cdots \cdot q_s$. Potom r=s a existuje bijekce σ tak, že $p_i\|q_{\sigma(i)}$ pro všechna $i=1,\ldots,r$.

Důkaz. Viz [D, 5.16].

Příklad. Uvažujme podokruh $\mathbf{Z}[\sqrt{5}] = \{a + \sqrt{5}b | \ a, b \in \mathbf{Z}\}$ okruhu reálných čísel. Zřejmě se jedná o obor integrity, tedy $\mathbf{Z}[\sqrt{5}] \setminus \{0\}(\cdot,1)$ je komutativního monoidu s krácením. Lze ukázat, že prvky $2, \sqrt{5}+1$ a $\sqrt{5}-1$ jsou ireducibilní, ale nejde o prvočinitele, protože $2/4 = (\sqrt{5}+1) \cdot (\sqrt{5}-1)$, ale 2 nedělí $\sqrt{5}+1$, ani $\sqrt{5}-1$ (podobně pro $\sqrt{5}+1$ a $\sqrt{5}-1$).

Zároveň dostáváme dva neasocivané ireducibilní rozklady prvku 4 = 2 · 2 = $(\sqrt{5}+1) \cdot (\sqrt{5}-1)$.

Definice. Buď $R(+,\cdot,-,0,1)$ obor integrity. největší společný dělitel, ireducibilní prvek respektive prvočinitel oboru integrity R bude největší společný dělitel, ireducibilní prvek, respektive prvočinitel komutativního monoidu s krácením $R \setminus \{0\}(\cdot,1)$ Řekneme, že je R obor integrity hlavních ideálů, jestliže je jeho každý ideál hlavní.

Poznámka 7.6. Buď $R(+,\cdot,-,0,1)$ obor integrity hlavních ideálů a $a_1,\ldots,a_n \in R \setminus \{0\}$. Pak existují prvky u_1,\ldots,u_n tak, že $\sum_{i=1}^n a_i \cdot u_i$ je $NSD(a_1,\ldots,a_n)$.

 $D\mathring{u}kaz$. Viz [D, 10.9].

Věta 7.7. $Bud'R(+,\cdot,-,0,1)$ je obor integrity hlavních ideálů. Pak platí:

- (1) Každý ireducibilní prvek $R(+,\cdot,-,0,1)$ je prvočinitelem.
- (2) Pro každý nenulový neinvertibilní prvek $R(+, \cdot, -, 0, 1)$ existují takové ireducibilní prvky $p_1, \ldots, p_n \in R \setminus \{0\}$, že $a = p_1 \cdot \cdots \cdot p_n$. Jsou-li navíc prvky q_1, \ldots, q_k ireducibilní takové, že $a = q_1 \cdot \cdots \cdot q_k$, pak n = k a existuje bijekce σ tak, že $p_i || q_{\sigma(i)}$ pro všechna $i = 1, \ldots, n$

Důkaz. (1) Podle 7.6 jsou splněny předpoklady 7.4, které implikují závěr. (2) viz [D, 10.11].

Příklad. V momoidech $\mathbf{N} \setminus \{0\}(\cdot, 1)$ a $\mathbf{Z} \setminus \{0\}(\cdot, 1)$ existují největší společní dělitelé a zřejmě existuje rozklad na ireducibilní prvky, tedy jsou v \mathbf{N} jsou ireducibilní rozklady určeny jednoznačně, v \mathbf{Z} jsou určeny jednoznačné až na znaménko.

8. Okruhy polynomů

Nechť $R(+,\cdot,-,0,1)$ je okruh a $M(\cdot,e)$ je monoid. Položme $R[M]=\{p:M\to R|\ \{m|p(m)\neq 0\}$ je konečné}. Prvek $p\in R[M]$ budeme zapisovat také ve tvaru $\sum_{m\in M}p(m).m$. Na R[M] definujme binární operace + a \cdot , unární operaci - a nulární operace $\mathbf{0}$ a $\mathbf{1}$: $p+q=\sum_{m\in M}(p(m)+q(m)).m,$ $p\cdot q=\sum_{m\in M}(\sum_{r\cdot s=m}p(r)\cdot q(s)).m,$ $-p=\sum_{m\in M}(-p(m)).m,$ $\mathbf{0}=\sum_{m\in M}0.m,$ $\mathbf{1}=1.e+\sum_{m\in M\setminus\{e\}}0.m.$

Poznámka 8.1. Nechť $R(+,\cdot,-,0,1)$ je okruh a $M(\cdot,e)$ je monoid.

- (1) $R[M](+,\cdot,-,\mathbf{0},\mathbf{1})$ je okruh,
- (2) zobrazení $i: R \to R[M]$ dané předpisem i(r) = r.e (tj. [i(r)](m) = 0 pro všechna $m \neq e$ a [i(r)](e) = r) je prostý okruhový homomorfismus.
- (3) zobrazení $\nu: M \to R[M]$ dané předpisem $\nu(m) = 1.m$ je prostý homomorfismus monoidu $M(\cdot, e)$ do monoidu $R[M](\cdot, 1)$.

Důkaz. (1) Přímočaré ověření definice okruhu,

(2) a (3) dostáváme okamžitě z konstrukce okruhu R[M].

Definice. Buď $R(+,\cdot,-,0,1)$ okruh a buď $\mathbf{N}_0(+,0)$ monoid nezáporných celých čísel se sčítáním. Potom okruh $R[\mathbf{N}_0](+,\cdot,-,\mathbf{0},\mathbf{1})$ nazveme okruhem polynomů jedné neurčité a jeho prvkům budeme říkat polynomy. Místo $R[\mathbf{N}_0]$ budeme psát R[x] a polynomy budeme místo $p = \sum_{n \in \mathbf{N}_0} p(n).n \in R[x]$ zapisovat ve tvaru $p = \sum_{n \in \mathbf{N}_0} p(n).x^n$.

Příklad. Polynomy více neurčitých můžeme zavést dvěma ekvivalentními způsoby: jednak indukcí $R[x_1, \ldots, x_n] = (R[x_1, \ldots, x_{n-1}])[x_n]$ nebo jako monoidový okruh $R[\mathbf{N_0}^n] = (R[x_1, \ldots, x_{n-1}])[x_n]$ se součinovým monoidem $\mathbf{N_0}^n(+, (0, \ldots, 0))$.

Poznámka 8.2. Nechť $S(+,\cdot,-,0,1)$ je okruh, R jeho podokruh a nechť $\alpha \in S$. Potom zobrazení $j_{\alpha}: R[x] \to S$ dané předpisem $j_{\alpha}(\sum_{n \in \mathbb{N}_0} a_n.x^n) = \sum_{n \in \mathbb{N}_0} a_n \cdot \alpha^n$ je okruhový homomorfismus.

 $D\mathring{u}kaz$. Viz [D, 10.17].

Homomorfismu j_α říkáme dosazovací homomorfismus.

Definice. Buď $R(+,\cdot,-,0,1)$ je okruh a $p = \sum_{n \in \mathbb{N}_0} a_n.x^n \in R[x]$. Je-li $p \neq \mathbf{0}$, budeme největší takové $n \in \mathbb{N}_0$, že $a_n \neq 0$, nazývat stupněm polynomu p. Stupeň polynomu p budeme označovat p.

Poznámka 8.3. Nechť $R(+,\cdot,-,0,1)$ je okruh a $p,q \in R[x]$. Pak platí:

- (1) st p = st p,
- (2) $st p + q \leq max(st p, st q),$
- (3) je- $li \ p \neq 0 \neq q$, $pak \ st \ p \cdot q \leq st \ p + st \ q$), je- $li \ navic \ R$ oborem integrity, $potom \ st \ p \cdot q = st \ p + st \ q$),
- (4) R[x] je obor integrity právě tehdy, když je R obor integrity,
- (5) je-li R obor integrity, polynom p je invertibilní prvek okruhu R[x], právě když st p=0 a p(0) je invertibilní prvek okruhu R.

 $D\mathring{u}kaz.$ (1) - (3) viz [D, 10.3], (4) Viz [D, 10.17] a (5) viz 10.5.

Příklad. Je-li p prvočíslo, pak $\mathbf{Z}_p(+,\cdot,-,0,1)$ je komutativní těleso charakteristiky p, tedy obor integrity. Podle Poznámky 7.3 je $Z_p[x]$ rovněž obor integrity (zřejmě nekonečný). Poznámka 7.1 (2) zaručuje existenci prostého okruhového homomorfismu Z_p do $Z_p[x]$, tedy charakteristika okruhu $Z_p[x]$ je rovna p. Pro obor integrity $Z_p[x]$ existuje jeho podílové těleso $Q(Z_p[x])$. Tím jsme zkonstruovali nekonečné těleso charakteristiky p.

Věta 8.4 (Dělení se zbytkem). Nechť $R(+,\cdot,-,0,1)$ je obor integrity, $a, b \in R[x]$, $a \ b = \sum b_n x^n$. Předpokládejme, že $m = st \ b \ge 0$ a b_m je invertibilní v R. Potom existují jednoznačně určené polynomy $q, r \in R[x]$ tak, že $a = b \cdot q + r$ a $st \ r < st \ b$.

 $D\mathring{u}kaz$. Viz [D, 10.6].

Definice. Buď $R(+,\cdot,-,0,1)$ obor integrity. Řekneme, že R je eukleidovský obor integrity, pokud existuje zobrazení $\nu: R \to \mathbf{N}_0 \cup \{-1\}$ (tzv. eukleidovská funkce) splňující pro každé $a, b \in R$ podmínky:

- (1) pokud a/b a $b \neq 0$, pak $\nu(a) \leq \nu(b)$,
- (2) pokud $b \neq 0$, existuje $q, r \in R$ takové, že $a = b \cdot q + r$ a $\nu(r) < \nu(b)$.

Poznámka 8.5. Každý euklidovský obor integrity je oborem integrity hlavních ideálů.

 $D\mathring{u}kaz$. Viz [D, 10.8].

Důsledek 8.6. Nechť $T(+,\cdot,-,0,1)$ je komutativní těleso. Pak je T[x] eukleidovským okruhem s eukleidovskou funkcí danou stupněm polynomů, tudíž je T[x] oborem integrity hlavních ideálů.

Příklad. (1) Okruh celých čísel je eukleidovským oborem integrity s eukleidovskou funkcí |-|.

- (2) Podokruh $\mathbf{Z}[i] = \{a+bi | a, b \in \mathbf{Z}\}$ okruhu komplexních čísel je eukleidovským oborem integrity s eukleidovskou funkcí $\nu(a+bi) = a^2 + b^2$.
- (3) Podokruh $\mathbf{Z}[\sqrt{2}] = \{a + \sqrt{2}b | a, b \in \mathbf{Z}\}$ okruhu reálných čísel je eukleidovským oborem integrity s eukleidovskou funkcí $\nu(a + b\sqrt{2}) = |a^2 2b^2|$.

Věta 8.7 (Eukleidův algoritmus). Buď $R(+,\cdot,-,0,1)$ eukleidovským okruhem s eukleidovskou funkcí ν a nechť $a_0,\ a_1 \in R \setminus \{0\}$. Sestrojme posloupnosti prvků a_i a q_i následujícím postupem:

- (1) je-li $i \geq 1$ a a_i nedělí a_{i-1} , vezměme takové $a_{i+1} \in R$, že $a_{i-1} = a_i \cdot q_i + a_{i+1}$ a $\nu(a_{i+1}) < \nu(a_i)$.
- (2) je- $li i \ge 1$ a a_i dělí a_{i-1} , položme n = i a konstrukce končí.

Posloupnost a_i je konečná a a_n je $NSD(a_0,a_1)$. Definujme dále posloupnosti x_i a y_i tak, že $x_0 = y_1 = 1$, $x_1 = y_0 = 0$, a pro $i \ge 1$ položme $x_{i+1} = x_{i-1} - x_i \cdot q_i$ a $y_{i+1} = y_{i-1} - y_i \cdot q_i$. Potom $a_i = x_i \cdot a_0 + y_i \cdot a_1$, speciálně $x_n \cdot a_0 + y_n \cdot a_1$ je $NSD(a_0,a_1)$.

$$D\mathring{u}kaz$$
. Viz [D, 10.13].

Definice. Nechť $S(+,\cdot,-,0,1)$ je okruh a R jeho podokruh. Řekneme, že $\alpha \in S$ je kořenem polynomu $p \in R[x]$, pokud $j_{\alpha}(p) = p(\alpha) = 0$. Kořenovým činitelem (kořenu α) nazveme polynom tvaru $x - \alpha$. Řekneme, že se polynom $p \in R[x]$ rozkládá na kořenové činitele v R[x], existují-li takové prvky $a, \alpha_1, \ldots, \alpha_n \in R$, že $p = a \cdot (x - \alpha_1) \cdot \cdots \cdot (x - \alpha_n)$.

Poznámka 8.8. Nechť $R(+,\cdot,-,0,1)$ je obor integrity, $\alpha \in R$ a $p \in R[x] \setminus \{0\}$. Pak α je kořenem p právě tehdy, když $(x-\alpha)/p$.

$$D\mathring{u}kaz$$
. Viz [D, 10.18].

Poznámka 8.9. Nechť $R(+,\cdot,-,0,1)$ je obor integrity a $p \in R[x]$. Je-li st $p \ge 0$, potom p má nejvýše st p kořenů.

 $D\mathring{u}kaz$. Přímý důsledek Poznámky 8.3 (3).

Definice. Buď $R(+,\cdot,-,0,1)$ komutativní okruh a $p = \sum_{i\geq 0} a_i x^i \in R[x]$. *Derivací* polynomu p budeme rozumět polynom $(\sum_{i\geq 0} a_i x^i)' = \sum_{i\geq 0} (i+1)a_{i+1}x^i$. Řekneme, že $\alpha \in R$ je *vícenásobným kořenem* polynomu p, pokud $(x-\alpha)^2/p$.

Poznámka 8.10. Nechť $R(+,\cdot,-,0,1)$ je komutativní okruh, $\alpha \in R$ a $p,q \in R[x]$. Pak platí:

- (1) (p+q)' = p' + q',
- $(2) \ (\alpha p)' = \alpha p',$
- $(3) (p \cdot q)' = p' \cdot q + p \cdot q'.$

Důkaz. Vlastnosti dostáváme okamžitě z definice.

T[x]/uT[x].

Důkaz. Viz [D, 11.6].

Označme ireducibilní polynom u symbolem $(T[x])_u$ těleso T[x]/uT[x]. Podle předchozí poznámky a 1. věty o izomorfismu můžeme stotožnit těleso T a jeho homomorfní obraz $\mu(T)$, tedy těleso T budeme chápat jako podokruh tělesa $(T[x])_u$.

Věta 9.4. Nechť $T(+,\cdot,-,0,1)$ je komutativní těleso a $u=\sum_{i>0}a_iy^i\in T[y]$ je ireducibilní polynom stupně aspoň 1. Pak $(T[y])_u$ je komutativní \overline{t} ěleso a polynom $\sum_{i>0} a_i x^i \ m\'a \ v \ (T[y])_u \ ko\'ren.$

$$D\mathring{u}kaz$$
. Viz [D, 11.7].

Definice. Nechť $U(+,\cdot,-,0,1)$ je komutativní těleso a $T\subseteq U$. Řekneme, že T je $podtěleso~U~({\rm resp.}~U~{\rm je}~nadtěleso~T,~{\rm pokud}~T~{\rm je}~{\rm podokruh~okruhu}~U(+,\cdot,-,0,1)$ a T je těleso (tj. navíc $T \setminus \{0\}$ je podgrupou multiplikativní grupy $U \setminus \{0\}(\cdot, ^{-1}, 1)$ tělesa U).

Důsledek 9.5. Je-li $T(+,\cdot,-,0,1)$ komutativní těleso a $u \in T[x]$ je polynom stupně aspoň 1, pak platí:

- (1) existuje komutativní těleso U tak že T je podtěleso U a u má v U aspoň jeden kořen,
- (2) existuje komutativní těleso V tak že T je podtěleso V a u se ve V rozkládá na kořenové činitele.

$$Důkaz.$$
 (1) viz [D, 11.8] a (2) viz [D, 11.9].

Poznámka 9.6. Množina všech podtěles komutativního tělesa tvoří uzávěrový sys $t\acute{e}m.$

 $D\mathring{u}kaz$. Plyne okamžitě z toho, že podokruhy T tvoří uzávěrový systém, podgrupy $T \setminus \{0\}$ tvoří rovněž uzávěrový systém a průnik dvou uzávěrových systémů je opět uzávěrový systém.

V následujícím budeme uvažovat vždy komutativní těleso U a jeho podtěleso T.

Značení. Mějme komutativní tělesa $T \subseteq U$ a $\alpha \in U$ (resp. $S \subseteq U$). Označme $T[\alpha]$ (resp. T[S]) nejmenší podokruh U obsahující množinu $T \cup \{\alpha\}$ (resp. $T \cup S$), $T(\alpha)$ (resp. T(S)) nejmenší podtěleso U obsahující množinu $T \cup \{\alpha\}$ (resp. $T \cup S$).

Poznámka 9.7. Nechť $T \subseteq U$ jsou komutativní tělesa, $\alpha \in U$, $S \subset U$.

- $\begin{array}{ll} (1) \ T[\alpha] = \{p(\alpha)| \ p \in T[x]\}, \\ (2) \ T[\alpha] \subseteq T(\alpha), \end{array}$
- (3) $T[S] \subseteq T(S)$.

Důkaz. (1) viz [D, 12.2], (2) a (3) zřejmé.

Definice. Nechť $T \subseteq U$ jsou komutativní tělesa a $p \in T[x]$. Řekneme, že U je kořenové nadtěleso polynomu p, pokud $U = T(\alpha)$ pro nějaký kořen $\alpha \in U$ polynomu p. U nazveme rozkladovým nadtělesem polynomu p, je-li $p = a(x - \alpha_1) \dots (x - \alpha_n)$ pro $a \in T$ a $\alpha_1, \ldots, \alpha_n \in U$ a $U = T(\alpha_1, \ldots, \alpha_n)$.

Věta 9.8. Nechť $T(+,\cdot,-,0,1)$ je komutativní těleso a $p \in T[x]$, st $p \ge 1$.

- (1) existuje kořenové nadtěleso polynomu p,
- (2) existuje rozkladové nadtěleso polynomu p.

 $D\mathring{u}kaz$. Podle 9.5 existuje těleso U(V), které obsahuje kořen (nad nímž se p rozkládá na kořenové činitele) a podle 9.6 můžeme vzít nejmenší podtěleso U (V) s takovou vlastností.

Definice. Nechť $T \subseteq U$ jsou komutativní tělesa a $\alpha \in U$. Řekneme, že α je algebraický prvek nad T, existuje-li nenulový polynom $p \in T[x]$ tak, že $j_{\alpha}(p) = p(\alpha) = 0$. V opačném případě mluvíme o transcendentním prvku. Těleso U nazveme algebraickým rozšířením tělesa T, jsou-li všechny prvky $\alpha \in U$ algebraické nad T.

Polynom $p = \sum a_i x^i$ je monický, je-li $a_{stp} = 1$.

Věta 9.9. Buď $T \subseteq U$ komutativní tělesa a $\alpha \in U$ je algebraický prvek nad T. Pak existuje právě jeden monický polynom $m \in T[x]$ takový, že pro každé $p \in T[x] \setminus \{0\}$ platí, že $p(\alpha) = 0$, právě když m/p. Navíc m_{α} je ireducibilní, $(T[x])_{m_{\alpha}} \cong T(\alpha)$ a $T[\alpha] = T(\alpha)$.

 $D\mathring{u}kaz$. Viz [D, 12.3].

Definice. Polynom z předchozí věty nazveme minimálním polynomem algebraického prvku α , budeme ho značit m_{α} .

Definice. Buď $T \subseteq U$ komutativní tělesa. *Stupeň rozšíření* U nad T definujeme jako $[U:T] = dim_T U$, kde U chápeme jako vektorový prostor nad tělesem T.

Příklad. Těleso komplexních čísel je rozkladovým nadtělesem polynomu $x^2 + 1$ nad \mathbf{R} , $[\mathbf{C} : \mathbf{R}] = 2$.

Poznámka 9.10. Nechť $T \subseteq U \subseteq V$ jsou do sebe zařazená komutativní tělesa. Potom [V:T] = [V:U][U:T].

 $D\mathring{u}kaz$. Viz [D, 12.1].

Poznámka 9.11. Nechť $T\subseteq U$ jsou komutativní tělesa a $\alpha\in U$.

- (1) Je-li α algebraický, pak $[T(\alpha):T]=st\ m_{\alpha}$,
- (2) je- $li[T(\alpha):T]$ konečné, pak je α algebraický,
- (3) je-li [U:T] konečné, pak je U algebraické rozšíření tělesa T.

Důkaz. (1) a (2) viz [D, 12.4] a (3) viz 12.5.

Příklad. (1) $\mathbf{Q}(\sqrt[3]{2}) = \mathbf{Q}[\sqrt[3]{2}] = \{x+y\sqrt[3]{2}+z\sqrt[3]{4} | x, y, z \in \mathbf{Q}\}$ je kořenové nadtěleso polynomu x^3-2 nad \mathbf{Q} a $[\mathbf{Q}(\sqrt[3]{2}):\mathbf{Q}]=3$, tedy x^3-2 je minimální polynom algebraického prvku $\sqrt[3]{2}$.

(2) R není algebraickým rozšířením tělesa Q.

Poznámka 9.12. Nechť $T \subseteq U$ jsou komutativní tělesa a $\alpha_1, \ldots, \alpha_n \in U$ jsou algebraické prvky nad T. Pak $T(\alpha_1, \ldots, \alpha_n) = T[\alpha_1, \ldots, \alpha_n]$ je algebraickým rozšířením tělesa T.

 $D\mathring{u}kaz$. Viz [D, 12.6].

Důsledek 9.13. Nechť T je komutativní těleso, $p \in T[x]$ a nechť U je rozkladové nadtěleso polynomu p. Jsou-li $\alpha_1, \ldots, \alpha_n \in U$ všechny kořeny polynomu p v tělese U, pak $U = T[\alpha_1, \ldots, \alpha_n]$.

Příklad. Prvek $\sqrt[5]{3}$ je kořenem polynomu $x^5-3\in \mathbf{Q}[x]$ a prvek $\sqrt[7]{11}$ kořenem polynomu $x^7-11\in \mathbf{Q}[x]$, tedy oba jsou algebraické nad \mathbf{Q} . Podle Poznámky 8.12 je $\mathbf{Q}(\sqrt[5]{3},\sqrt[7]{11})=\mathbf{Q}[\sqrt[5]{3},\sqrt[7]{11}]$ algebraické rozšíření. Z toho plyne, že například pro prvek $\alpha=5\sqrt[5]{3}+2\sqrt[7]{11}-\sqrt[5]{27}\sqrt[7]{11}-3$ existuje polynom $p\in \mathbf{Q}[x]$, jehož je α kořenem.

Věta 9.15. Nechť T_1 a T_2 jsou komutativní tělesa, $f:T_1\to T_2$ je izomorfismus a nechť U_1 je rozkladové nadtěleso polynomu $p\in T_1[x]$ a U_2 je rozkladové nadtěleso polynomu $f_x(p)\in T_2[x]$. Označme α_1,\ldots,α_n všechny kořeny polynomu p v U_1 a β_1,\ldots,β_m všechny kořeny polynomu $f_x(p)$ v U_2 . Potom n=m a existuje permutace σ a izomorfismus $g:U_1\to U_2$ tak, že $g(\alpha_i)=\beta_{\sigma(i)}$ pro $i=1,\ldots,n$ a g(t)=f(t) pro všechna $t\in T_1$.

 $D\mathring{u}kaz$. Viz [D, 13.4].

Důsledek 9.16. Nechť T je komutativní těleso, $p \in T[x]$. Pak existuje až na izomorfismus právě jedno rozkladové nadtěleso polynomu p.

Definice. Řekneme, že je komutativní těleso U algebraicky uzavřené, pokud se každý nenulový polynom $p \in U[x]$ rozkládá nad U na kořenové činitele. Řekneme, že komutativní těleso U je algebraickým uzávěrem tělesa T, pokud $T \subseteq U$, U je algebraicky uzavřené těleso a žádné podtěleso V tělesa U, které obsahuje podtěleso T není algebraicky uzavřené.

Věta 9.17. Nechť T je komutativní těleso. Pak existuje jeho algebraický uzávěr U.

10. Konečná tělesa

Poznámka 10.1. Žádné konečné komutativní těleso není algebraicky uzavřené.

 $D\mathring{u}kaz$. Nechť T je konečné těleso. Polynom $1+\prod_{t\in T}(x-t)$ (stupně |T|) nemá v T žádný kořen, tedy T není algebraicky uzavřené.

Důsledek 10.2. Algebraický uzávěr konečného tělesa má (nekonečně) spočetnou mohutnost.

Poznámka 10.3. Buď T komutativní těleso (prvočíselné) charakteristiky p, buď n přirozené číslo a nechť $q=p^n$. Pak množina $Q=\{t\in T|\ t^q=t\}$ tvoří podtěleso T.

 $D\mathring{u}kaz$. Viz [D, 7.22].

Poznámka 10.4. Nechť T je konečné komutativní těleso, pak $P = \{k \times 1 | k \in \mathbb{N}\} \cong \mathbb{Z}_p$, kde p je prvočíslo, je podtěleso T a existuje n tak, že $|T| = |P|^n = p^n$.

 $D\mathring{u}kaz$. Viz [D, 13.5].

Věta 10.5. Nechť $q \in \mathbf{N}$. Pak existuje komutativní těleso o q prvcích, právě když $q = p^n$ pro nějaké prvočíslo p a přirozené číslo n. Těleso o p^n prvcích je izomorfní rozkladovému nadtělesu polynomu $x^{p^n} - x$ nad \mathbf{Z}_p .

 $D\mathring{u}kaz$. Viz [D, 13.5].

Jednoznačně (až na izomorfismus) určené těleso o p^n prvcích se zpravidla značí $GF(p^n)$ (GF = Galois field).

Důsledek 10.6. Konečné komutativní těleso T obsahuje podtěleso o q prvcích právě tehdy, když q/|T| a q-1/|T|-1. Takové podtěleso je určeno jednoznačně.

Poznámka 10.7. Nechť p je prvočíslo a k, n přirozené číslo. Pak k/n právě tehdy, $kdy\check{z} (p^k - 1)/(p^n - 1).$

Věta 10.8. Pro každé konečné komutativní těleso T a přirozené číslo n existuje nad T ireducibilní polynom stupně n.

Důsledek 10.9. Pro každé prvočíslo p a přirozené číslo n existuje nad \mathbf{Z}_p ireducibilní polynom stupně n.

Poznámka 10.10. Nechť T je konečné komutativní těleso. Každý ireducibilní polynom stupně n z okruhu $\mathbf{T}[x]$ dělí polynom $x^{|T|^n} - x$.

Věta 10.11. Nechť T je konečné komutativní těleso, d přirozené číslo a $u \in \mathbf{T}[x]$ ireducibilni polynom stupně k. Položme q = |T|. Následující tvrzení jsou ekvivalentní:

- (a) $(x^{q^k} x)/(x^{q^d} x) v \mathbf{T}[x],$
- (b) $u/(x^{q^d} x) v \mathbf{T}[x],$ (c) $(q^k 1)/(q^d 1) v \mathbf{Z},$ (d) $k/d v \mathbf{Z}.$

Důsledek 10.12. Nechť p je prvočíslo, n přirozené číslo a $q = p^n$. Pak polynom $x^{q^d}-x$ je právě součinem všech monických ireducibilních polynomů nad tělesem $GF(q^d)$ všech stupňů k, které dělí d.

- **Příklad.** 1) Hledáme-li nerozložitelné polynomy ze $\mathbb{Z}_2[x]$ stupně 4, víme z Poznámky 10.8, že všechny musí dělit polynom $x^{16} - x$, resp. $x^{15} - 1$. Dále nám Důsledek 10.10 říká, že nerozložitelný polynom stupně $k \ (\leq 4)$ dělí polynom $x^{16} - x$ právě když k/4 (tj. právě když existuje podtěleso šestnáctiprvkového tělesa o 2^k prvcích). Tudíž polynom $x^{16} - x$ budou dělit právě všechny nerozložitelné polynomy stupně 1, 2 a 4. Jediným nerozložitelným polynomem stupně 2 nad tělesem ${f Z}_2$ je polynom x^2+x+1 . Snadno spočítáme, že $x^{16}-x=x(x-1)(x^2+x+1)(x^{12}+x^9+x^6+x^3+1)$, tedy polynom $x^{12}+x^9+x^6+x^3+1$ už nutně musí být součinem všech nerozložitelných polynomů stupně 4 (zřejmě existují právě 3). Dopočítáme, že $x^{12}+x^9+x^6+x^3+1=(x^4+x^3+x^2+x+1)(x^4+x^3+1)(x^4+x+1)$.
- 2) Neboť těleso o 2^7 prv
cích obsahuje pouze vlastní podtěleso o 2 prv
cích (7 je totiž prvočíslo), je polynom $x^{128} - x$ nad \mathbf{Z}_2 součinem právě všech ireducibilních polynomů stupně 1 (takové jsou právě 2) a stupně 7. Proto nad \mathbb{Z}_2 existuje právě $18 = \frac{128-2}{7}$ nerozložitelných polynomů stupně 7.
- 3) Spočítáme pomocí Důsledků 9.9 a 9.10 neasociované nerozložitelné polynomy stupně šest nad tělesem \mathbb{Z}_3 . Víme, že polynom $x^{729}-x$ se rozkládá na součin všech vzájemně neasociovaných (mají totiž různé kořeny) ireducibilních polynomů stupně k/6, tedy rozklad $x^{729} - x$ na ireducibilní činitele obsahuje právě polynomy stupně 1, 2, 3 a 6. Zřejmě máme právě 3 neasociované ireducibilní polynomy stupně 1 a snadno spočteme (např. stejným postupem pro polynom $x^9 - x$), že existují rovněž 3 neasociované neireducibilní polynomy stupně 2. Konečně pomocí rozkladu

polynomu $x^{27}\!-\!x$ na nerozložitelné polynomy (stejnou metodou) zjistíme, že existuje až na asociovanost $8 = \frac{27 - (3 \cdot 1)}{3}$ neireducibilních polynomů stupně 3. Tedy snadno dopočítáme, že neasociovaných ireducibilních polynomů stupně 6 nad \mathbb{Z}_3 existuje právě $116 = \frac{729 - (3\cdot 1 + 3\cdot 2 + 8\cdot 3)}{6}$.

Řekneme, že polynom f je bez čtverců, jestliže neexistuje žádný takový polynom g (nad týmž tělesem) kladného stupně, aby $g^2/f.$ Je-li $f=\prod_{i=1}^n f_i^i,$ kde všechny polynomy f_i jsou bez čtverců, mluvíme o bezčtvercovém rozkladu polynomu f.

Poznámka 10.13. Pro každý polynom nad komutativním tělesem existuje bezčtvercový rozklad.

Důkaz. Bezprostřední důsledek 7.7 spolu s 8.6.

Poznámka 10.14. Nechť T je komutativní těleso, $f \in T[x]$. Pak je f bez čtverců $právě\ když\ 1\ je\ NSD(f,f').$

 $D\mathring{u}kaz$. Postupujeme podobně jako v Poznámce 8.11. Jestliže $f = g^2h$, pak podle 8.10(3) $f' = g \cdot (gh)' + g' \cdot gh = g \cdot ((gh)' + g'h)$, tedy g/f'.

Předpokládejme, že 1 není NSD(f, f'), tedy podle 7.7 (2) existuje ireducibilní polynom g, který dělí f' i f, tj. $f = g \cdot a$, $f' = g \cdot b$. Protože $g \cdot b = f' = (g \cdot a)' = g \cdot b$ $g \cdot a' + g' \cdot a$ a protože g a g' jsou nesoudělné, dostáváme, že g/a a tedy g^2/f . \square

Příklad (Bezčtvercový rozklad polynomu nad tělesem kladné charakteristiky). Mějme těleso T prvočíselné charakteristiky p a $f \in T[x]$. Označujme nsd(a,b)jednoznačně určený monický polynom, který je NSD(a,b).

Položme $c_1 = nsd(f, f'), \quad g_1 = \frac{f}{c_1}, \quad h_1 = nsd(c_1, g_1),$ a induktivně definujme posloupnosti $\{c_i\}, \{g_i\}, \{h_i\}$:

$$c_i = \frac{c_{i-1}}{h_{i-1}}, \quad g_i = h_{i-1}, \quad h_i = nsd(c_i, g_i).$$

Nechť $f = \prod_{i=1}^n f_i^i$ je bezčtvercový rozklad. Potom

$$f' = [\sum_{i \notin p\mathbf{N}} i f_i' f_i^{i-1} \cdot \prod_{j \notin p\mathbf{N} \cup \{i\}} f_j^j] \cdot [\prod_{i \in p\mathbf{N}} f_i^i],$$

a proto

$$c_1 = nsd(f, f') = \left[\prod_{j \notin p\mathbf{N}} f_j^{j-1}\right] \cdot \left[\prod_{i \in p\mathbf{N}} f_i^i\right].$$

Odtud dostáváme, že $g_1 = \prod_{j \notin p\mathbf{N}} f_j$ a $h_1 = \prod_{j \geq 2, j \notin p\mathbf{N}} f_j$.
Podobně nahlédneme, že $c_k = [\prod_{j \geq k, j \notin p\mathbf{N}} f_j^{j-1}] \cdot [\prod_{i \in p\mathbf{N}} f_i^i]$ a že $g_k = h_{k-1} = \prod_{j \geq k, j \notin p\mathbf{N}} f_j$. Odtud snadno spočítáme, že $\frac{g_k}{h_k} = f_k$ pokud p nedělí p a $\frac{g_k}{h_k} = 1$ v opačném případě. Máme tedy algoritmus k nalezení členů bezčtvercového rozkladu pro všechna i, jež nedělí p. Všimneme-li si, že po konečně krocích dostaneme

$$c_n = [\prod_{i \in p\mathbf{N}} f_i^i] = \sum_i a_i x^{ip} = (\sum_i a_i x^i)^p.$$

Použijeme-li nyní rekurzivně algoritmus na polynom $\sum_i a_i x^i$, najdeme členy f_i bezčtvercový rozklad pro p/i, jestliže p^2 nedělí i. Dále můžeme pokračovat rekurzí. Podrobnosti viz [MS].

Poznámka 10.15 (Čínská věta o zbytcích). Mějme konečné komutativní těleso T, navzájem nesoudělné ireducibilní polynomy $f_1, \ldots, f_n \in \mathbf{T}[x]$ a položme $f = \prod_{i=1}^n f_i$. Pak je zobrazení $\varphi : \mathbf{T}[x]/fT[x] \to \prod_{i=1}^n T[x]/f_iT[x]$ dané předpisem $\varphi([g]_f) = ([(g)modf_1], \ldots [(g)modf_n])$ okrohový izomorfismus.

 $D\mathring{u}kaz$. Obdobný jako u Čínské věty o zbytcích pro okruh celých čísel.

Věta 10.16. Buď T konečné komutativní těleso a f monický bezčtvercový polynom. Označme V = T[x]/fT[x] a $W = \{u \in V | u^{|T|} = u\}$.

- (1) V je vektorový prostor nad tělesem T a W jeho podprostor.
- (2) Je-li f součinem k ireducibilních polynomů, pak $dim_T W = k$.
- (3) Je-li $[u]_f \in W$ a $1 \le st$ $u \le st$ f, potom $f = \prod_{s \in T} nsd(u s, f)$.
- (4) Je- $li [u_1]_f ... [u_k]_f$ báze vektorového prostoru W a f_1 a f_2 dva neasociované ireducibilní faktory f, potom existuje takové $i \le k$ a $s \in T$, že f_1 dělí $(w_i s)$ a f_2 nedělí $(w_i s)$.
- $D\mathring{u}kaz$. (1) V je komutativní grupou s přirozeně definovaným násobením skalárem, o němž snadno nahlédneme, že tvoří na V strukturu vektorového prostoru. Abychom dokázali, že je W jeho podprostor, stačí podobně jako v Poznámce 10.3 využít toho, že zobrazení $p \to u^|T|$ tvoří endomorfismus na T[x] a tedy i na V = T[x]/fT[x]. To ovšem plyne z Věty 10.5.
- (2) Buď $f=f_1\cdot\dots\cdot f_k$ rozklad f na monické ireducibilní polynomy a označme $V_i=T[x]/f_iT[x]$ a $W_i=\{u\in V_i|\ u^{|T|}=u\}$. Podle Poznámky 10.15 je $\varphi([v]_f)=([(v)modf_1],\dots[(v)modf_n])$ izomorfismus okruhů (a zřejmě i vektorových prostorů) V a $\prod_{i=1}^k V_i$. Vidíme, že $\varphi(W)\subseteq\prod_{i=1}^k W_i$ ($\subseteq\prod_{i=1}^k V_i$). Protože dále pro každé $(w_1,\dots,w_k)\in\prod_{i=1}^k W_i$, existuje vzor $w\in V$, tj. $\varphi(w)=(w_1,\dots,w_k)$, přičemž $\varphi(w^{|T|})=(w_1^{|T|},\dots,w_k^{|T|})=(w_1,\dots,w_k)=\varphi(w)$, tedy $\varphi(W)=\prod_{i=1}^k W_i$. Konečně si všimněme, že každý okruh V_i je těleso a W_i jeho podtěleso o nejvýše |T| prvcích (viz 10.3) a zároveň je W_i nenulový vektorový |T|-prostor, má tedy právě |T| prvků. Tím jsme ověřili, že $|W|=|\prod_{i=1}^k W_i|=|T|^k$, proto je $dim_T(W)=k$.
- (3) Využijeme-li faktu, že okruhy W_i jsou |T|-prvková tělesa a φ indukuje okruhový izomorfismus W a $\prod_{i=1}^k W_i$, pro každý prvek $w \in W$ dostáváme $w^{|T|} w = \prod_{s \in T} (w-s) = 0$, kde ztotožníme prvky tělesa T a rozkladové třídy $[sx^0]_f$. Je-li tedy $[u]_f = w \in W$, platí, že $f/\prod_{s \in T} (u-s)$, proto $f/\prod_{s \in T} nsd(u-s,f)$. Jelikož jsou polynomy u-s a u-t pro $t \neq s$ nesoudělné, dostáváme $f/\prod_{s \in T} nsd(u-s,f)$, a protože jsou oba polynomy monické dostáváme dokonce rovnost.
- (4) Bez újmy na obecnosti oddělíme například polynomy f_1 a f_2 . Protože $\omega=([1],[0],\ldots,[0])\in\prod_{i=1}^kW_i$, existuje polynom w, pro nějž $[u]\in W$ a $\varphi([u])=\omega$. To znamená, že $f_1/u-1$ a f_2/u , proto f_2 nedělí u-1. Předpokládejme nyní, že pro každé i existuje takové $s_i\in T$, že $f_1f_2/(u_i-s_i)$ a vezměme T-lineární kombinaci $u=\sum_{i=1}^k a_iu_i$. Potom $f_1f_2/\sum_{i=1}^k a_i(u_i-s_i)=u-\sum_{i=1}^k a_is_i$, čímž dostáváme spor vlastnosti u a nesoudělnosti u-s a u-t pro $t\neq s$.

Příklad (Berlekampův algoritmus). Pomocí předchozí věty budeme umět rozložit bezčtvercový polynom, najdeme-li bázi vektorového prostoru W.

Položme $(x^{j-1}) mod \ f = \sum_{i=1}^n q_{ij} x^i$ pro každé $j=1,\ldots,n$ a setsvme matici $Q=(q_{ij})$. Všimneme-li si, že $Q\mathbf{v}^T = \mathbf{v}^T$, právě když $(\sum_{i < n} v_i x^i) \equiv (\sum_{i < n} v_i x^i) mod \ f$, kde $\mathbf{v} = (v_0, \ldots, v_{n-1})$, stačí nám najít bázi řešení homogenní soustavy rovnic s maticí $Q - I_n$. Podrobnosti viz [MS].

11. Boleovy algebry

Připomeňme, že svaz můžeme chápat jako algebru $S(\land,\lor)$ nebo uspořádanou množinu (S,\leq) (splňující jisté podmínky, viz 3. kapitola).

Definice. Řekneme, že svaz $S(\wedge, \vee)$ je distributivní, platí-li pro každé $a, b, c \in S$, že $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$.

Poznámka 11.1. Svaz $S(\land,\lor)$ je distributivní, právě když pro každé $a,b,c\in S$ platí, že $a\land (b\lor c)=(a\land b)\lor (a\land c)$ (tj. svaz $S(\land,\lor)$ je distributivní, právě když je opačný svaz $S(\lor,\land)$ distributivní).

 $D\mathring{u}kaz$. Viz [D, 14.6].

Poznámka 11.2. Každý distributivní svaz je modulární.

 $D\mathring{u}kaz$. Viz [D, 14.6].

Příklad. Nechť $M_5 = \{\mathbf{0}, \mathbf{1}, u, v, w\}$, buď **0** nejmenší prvek, **1** největší prvek a $u \lor v = u \lor w = v \lor w = \mathbf{1}$ a $u \land v = u \land w = v \land w = \mathbf{0}$. Pak $M_5(\land, \lor)$ je modulární svaz, který není distributivní.

Definice. Nechť má svaz $S(\land, \lor)$ nejmenší prvek $\mathbf{0}$ a největší prvek $\mathbf{1}$. Komplementem prvku $a \in S$ nazveme takový prvek $a' \in S$, že $a \lor a' = \mathbf{1}$ a $a \land a' = \mathbf{0}$.

Poznámka 11.3. Každý prvek distributivního svazu má nejvýše jeden komplement.

$$D\mathring{u}kaz$$
. Viz [D, 14.8].

Definice. Booleovou algebrou nazveme takovou algebru $S(\vee, \wedge, \mathbf{0}, \mathbf{1}, ')$, že $S(\wedge, \vee)$ je distributivní svaz s největším prvkem $\mathbf{1}$ a nejmenším prvkem $\mathbf{0}$ a unární operace ' přiřadí každému prvku jeho komplement.

Poznámka 11.4. Nechť $S(\vee, \wedge, \mathbf{0}, \mathbf{1}, ')$ je Booleova algebra. Pak pro každé $a, b \in S$ platí:

- (1) (a')' = a,
- $(2) (a \lor b)' = a' \land b',$
- $(3) (a \wedge b)' = a' \vee b',$
- (4) (1)' = 0 a(0)' = 1.

Důkaz. Viz [D, 14.9].

Příklad. Nechť $\mathcal{P}(X)$ je množina všech podmnožin množiny X a pro každou podmnožinu $Y \subseteq X$ definujme $Y' = X \setminus Y$. Pak $\mathcal{P}(X)(\cup, \cap, \emptyset, X, ')$ je Booleova algebra.

Vezmeme-li $M=\{m_1,\ldots,m_n\}$ neprázdnou konečnou podmnožinu Booleovy algebry, pak značme $\bigwedge M=m_1\wedge m_2\wedge\cdots\wedge m_n$ a $\bigvee M=m_1\vee m_2\vee\cdots\vee m_n$. Dále $\bigwedge \emptyset=\mathbf{1}$ a $\bigvee \emptyset=\mathbf{0}$.

Věta 11.5. Buď $S(\vee, \wedge, \mathbf{0}, \mathbf{1}, ')$ konečná Booleova algebra a A buď množina všech atomů svazu S. Potom zobrazení $\varphi : \mathcal{P}(A) \to S$ dané předpisem $\varphi(B) = \bigvee B$ je izomorfismus Booleových algeber $S(\vee, \wedge, \mathbf{0}, \mathbf{1}, ')$ a $P(A)(\cup, \cap, \emptyset, X, ')$.

 $D\mathring{u}kaz$. Viz [D, 15.2].

Definice. O okruhu $R(+,\cdot,-,0,1)$ řekneme, že je Booleův, je-li to komutativní okruh a pro každé $r \in R$ platí, že $r \cdot r = r$ a r + r = 0.

Příklad. Algebra $\mathcal{P}(X)(\div, \cap, Id, \emptyset, X)$, kde \div značí symetrickou diferenci, je pro každou neprázdnou množinu X Booleův okruh.

Poznámka 11.6. Nechť $S(\vee, \wedge, \mathbf{0}, \mathbf{1}, ')$ je Booleova algebra. Definujeme-li na S binární operaci + předpisem $a + b = (a \wedge b') \vee (a' \wedge b)$, pak $S(+, \wedge, Id_S, \mathbf{0}, \mathbf{1})$ je Booleův okruh. Každá podalgebra resp. kongruence Booleovy algebry $S(\vee, \wedge, \mathbf{0}, \mathbf{1}, ')$ je podokruhem resp. kongruencí Booleova okruhu $S(+, \wedge, Id_S, \mathbf{0}, \mathbf{1})$.

 $D\mathring{u}kaz$. Viz [D, 15.3].

Poznámka 11.7. Nechť $S(+,\cdot,-,0,1)$ je Booleův okruh. Definujeme-li na S binární operaci \vee předpisem $a \vee b = a+b+a \cdot b$ a unární operaci ' předpisem a' = 1+a, pak $S(\vee,\cdot,0,1,\ ')$ je Booleova algebra. Každý podokruh resp. kongruence Booleova okruhu $S(+,\cdot,-,0,1)$ je podalgebrou resp. kongruencí příslušné Booleovy algebry $S(\vee,\cdot,0,1,\ ')$.

 $D\mathring{u}kaz$. Viz [D, 15.3].

Příklad. Svaz všech kongruencí konečné Booleovy algebry $S(\vee, \wedge, \mathbf{0}, \mathbf{1}, ')$ je izomorfní svazu všech podmnožin $\mathcal{P}(A)(\cap, \cup)$, kde A je množina všech atomů S.

[D] - odkazuje na skripta docenta Drápala na adrese http://www.karlin.mff.cuni.cz/~drapal/skripta/

[MS] - odkazuje na bakalářskou práci Milana Straky (2006) http://fox.ucw.cz/papers/factoring/