# UFRGS – INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT01168 - 2022/2 - Turma DProva da área IIA

| 1 - 2 | 3 | 4 | Total |
|-------|---|---|-------|
|       |   |   |       |
|       |   |   |       |
|       |   |   |       |

| Nome: | Cartão: | Turma: D |
|-------|---------|----------|

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

| Identidades:                                                                                  |                                        |  |  |
|-----------------------------------------------------------------------------------------------|----------------------------------------|--|--|
| $\operatorname{sen}(x) = \frac{e^{ix} - e^{-ix}}{2i}$                                         | $\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$ |  |  |
| $\operatorname{senh}(x) = \frac{e^x - e^{-x}}{2}$                                             | $\cosh(x) = \frac{e^x + e^{-x}}{2}$    |  |  |
| $(a+b)^n = \sum_{j=0}^{\infty} \binom{n}{j} a^{n-j} b^j,  \binom{n}{j} = \frac{n!}{j!(n-j)!}$ |                                        |  |  |
| sen(x + y) = sen(x)cos(y) + sen(y)cos(x)                                                      |                                        |  |  |
| $\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$                                                 |                                        |  |  |

Propriedades:

| 1  | Linearidade                        | $\mathcal{L}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{L}\left\{f(t)\right\} + \beta \mathcal{L}\left\{g(t)\right\}$                               |
|----|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Transformada<br>da derivada        | $\mathcal{L}\left\{f'(t)\right\} = s\mathcal{L}\left\{f(t)\right\} - f(0)$ $\mathcal{L}\left\{f''(t)\right\} = s^2\mathcal{L}\left\{f(t)\right\} - sf(0) - f'(0)$ |
| 3  | Deslocamento no eixo $s$           | $\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$                                                                                                                   |
| 4  | Deslocamento no eixo $t$           | $\mathcal{L}\left\{u(t-a)f(t-a)\right\} = e^{-as}F(s)$ $\mathcal{L}\left\{u(t-a)\right\} = \frac{e^{-as}}{s}$                                                     |
| 5  | Transformada<br>da integral        | $\mathcal{L}\left\{ \int_0^t f(\tau)d\tau \right\} = \frac{F(s)}{s}$                                                                                              |
| 6  | Filtragem da<br>Delta de Dirac     | $\int_{-\infty}^{\infty} f(t)\delta(t-a)dt = f(a)$                                                                                                                |
| 7  | Transformada da<br>Delta de Dirac  | $\mathcal{L}\left\{\delta(t-a)\right\} = e^{-as}$                                                                                                                 |
| 8  | Teorema da<br>Convolução           | $\mathcal{L}\left\{(f*g)(t)\right\} = F(s)G(s),$ onde $(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$                                                                 |
| 9  | Transformada de funções periódicas | $\mathcal{L}\left\{f(t)\right\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-s\tau} f(\tau) d\tau$                                                                        |
| 10 | Derivada da<br>transformada        | $\mathcal{L}\left\{tf(t)\right\} = -\frac{dF(s)}{ds}$                                                                                                             |
| 11 | Integral da<br>transformada        | $\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\hat{s})d\hat{s}$                                                                                 |

|   | Séries:                                                                                                             |
|---|---------------------------------------------------------------------------------------------------------------------|
|   | $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 \cdots,  -1 < x < 1$                                   |
|   | $\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n = x + 2x^2 + 3x^3 + \dots, -1 < x < 1$                                |
| - | $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots,  -\infty < x < \infty$ |
|   | $\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1},  -1 < x < 1$                                            |
|   | $\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1},  -1 < x < 1$                                        |
|   | $sen(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!},  -\infty < x < \infty$                               |
|   | $\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!},  -\infty < x < \infty$                                  |
|   | $senh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$                                      |
|   | $\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!},  -\infty < x < \infty$                                        |
|   | $(1+x)^m = 1 + \sum_{n=1}^{\infty} \frac{m(m-1)\cdots(m-n+1)}{n!} x^n,$                                             |
|   | $-1 < x < 1, \ m \neq 0, 1, 2, \dots$                                                                               |

Integrais:

Funções especiais:

| runções especiais.                         |                                                                                                  |
|--------------------------------------------|--------------------------------------------------------------------------------------------------|
| Função Gamma                               | $\Gamma(k) = \int_0^\infty x^{k-1} e^{-x} dx$                                                    |
| Propriedade da<br>Função Gamma             | $\Gamma(k+1) = k\Gamma(k),  k > 0$<br>$\Gamma(n+1) = n!,  n \in \mathbb{N}$                      |
| Função de Bessel modificada de ordem $\nu$ | $I_{\nu}(x) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+\nu+1)} \left(\frac{x}{2}\right)^{2m+\nu}$ |
| Função de Bessel<br>de ordem 0             | $J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!^2} \left(\frac{x}{2}\right)^{2m}$                 |
| Integral seno                              | $\operatorname{Si}(t) = \int_0^t \frac{\operatorname{sen}(x)}{x} dx$                             |

 $\int xe^{\lambda x} \, \mathrm{d}x = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$  $\int x^2 e^{\lambda x} dx = e^{\lambda x} \left( \frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$  $\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$ 

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

$$\int e^{\lambda x} \sin(w x) dx = \frac{e^{\lambda x} (\lambda \sin(w x) - w \cos(w x))}{\lambda^2 + w^2}$$

$$\int e^{\lambda x} \operatorname{sen}(w x) dx = \frac{e^{\lambda x} (\lambda \operatorname{sen}(w x) - w \cos(w x))}{\lambda^2 + w^2}$$

| Tabela de transformadas de Laplace | Tabela d | e trans | formadas | de | Laplace |
|------------------------------------|----------|---------|----------|----|---------|
|------------------------------------|----------|---------|----------|----|---------|

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                         | Tabel | a de transformadas de Lapiace:            | $f(t) = \mathcal{L}^{-1}\{F(s)\}$                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------|------------------------------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                         |       | $F(s) = \mathcal{L}\{f(t)\}$              | $J(t) = \mathcal{L} - \{F(s)\}$                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                         | 1     |                                           | 1                                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                         | 2     |                                           |                                                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                         | 3     | $\frac{1}{s^n}$ , $(n = 1, 2, 3,)$        | ·                                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                         | 4     | $\frac{1}{\sqrt{s}}$ ,                    | 1                                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                         | 5     | $\frac{1}{s^{\frac{3}{2}}},$              | $2\sqrt{\frac{t}{\pi}}$                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                         | 6     |                                           | $\frac{t^{k-1}}{\Gamma(k)}$                          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                         | 7     | $\frac{1}{s-a}$                           | $e^{at}$                                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                         | 8     |                                           | $te^{at}$                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                         | 9     | $\frac{1}{(s-a)^n}$ , $(n=1,2,3)$         | $\frac{1}{(n-1)!}t^{n-1}e^{at}$                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                         | 10    | $\frac{1}{(s-a)^k}, \qquad (k>0)$         |                                                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                        | 11    |                                           |                                                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                         | 12    | $\frac{s}{(s-a)(s-b)}, \qquad (a \neq b)$ |                                                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                         | 13    |                                           | $\frac{1}{w}\operatorname{sen}(wt)$                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                        | 14    | $\frac{s}{s^2 + w^2}$                     | $\cos(wt)$                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                        | 15    |                                           | $\frac{1}{a}\operatorname{senh}(at)$                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                        | 16    | $\frac{s}{s^2 - a^2}$                     | $\cosh(at)$                                          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                        | 17    | $\frac{1}{(s-a)^2 + w^2}$                 | $\frac{1}{w}e^{at}\operatorname{sen}(wt)$            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                        | 18    | $\frac{s-a}{(s-a)^2 + w^2}$               |                                                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                        | 19    | 1                                         | $\frac{1}{w^2}(1-\cos(wt))$                          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                        | 20    | 1                                         | $\frac{1}{w^3}(wt - \operatorname{sen}(wt))$         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                        | 21    | $\frac{1}{(s^2+w^2)^2}$                   |                                                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                        | 22    |                                           | $\frac{t}{2w}\operatorname{sen}(wt)$                 |
| $(a^{2} \neq b^{2})$ $\frac{1}{(s^{4} + 4a^{4})}$ $\frac{1}{(s^{4} + 4a^{4})}$ $\frac{1}{4a^{3}}[\operatorname{sen}(at) \operatorname{cosh}(at) - \operatorname{cos}(at) \operatorname{senh}(at)]$ $26$ $\frac{s}{(s^{4} + 4a^{4})}$ $\frac{1}{2a^{2}} \operatorname{sen}(at) \operatorname{senh}(at))$ $27$ $\frac{1}{(s^{4} - a^{4})}$ $\frac{1}{2a^{3}}(\operatorname{senh}(at) - \operatorname{sen}(at))$ | 23    | $\frac{s^2}{(s^2+w^2)^2}$                 | $\frac{1}{2w}(\operatorname{sen}(wt) + wt \cos(wt))$ |
| $-\cos(at) \operatorname{senh}(at)]$ $26 \qquad \frac{s}{(s^4 + 4a^4)} \qquad \frac{1}{2a^2} \operatorname{sen}(at) \operatorname{senh}(at))$ $27 \qquad \frac{1}{(s^4 - a^4)} \qquad \frac{1}{2a^3} (\operatorname{senh}(at) - \operatorname{sen}(at))$                                                                                                                                                      | 24    |                                           | $\frac{1}{b^2 - a^2}(\cos(at) - \cos(bt))$           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                        | 25    | $\frac{1}{(s^4 + 4a^4)}$                  | 100                                                  |
| $\frac{1}{(s^4 - a^4)} \qquad \frac{1}{2a^3} (\operatorname{senh}(at) - \operatorname{sen}(at))$                                                                                                                                                                                                                                                                                                              | 26    | $\frac{s}{(s^4 + 4a^4)}$                  | 1                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                               | 27    | 1                                         |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                               | 28    | $\frac{s}{(s^4 - a^4)}$                   | $\frac{1}{2a^2}(\cosh(at) - \cos(at))$               |

|    | $F(s) = \mathcal{L}\{f(t)\}\$                            | $f(t) = \mathcal{L}^{-1}\{F(s)\}$                                                                                                                                                         |
|----|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29 | $\sqrt{s-a} - \sqrt{s-b}$                                | $f(t) = \mathcal{L}^{-1}\{F(s)\}$ $\frac{1}{2\sqrt{\pi t^3}}(e^{bt} - e^{at})$                                                                                                            |
| 30 | $\frac{1}{\sqrt{s+a}\sqrt{s+b}}$                         | $e^{\frac{-(a+b)t}{2}}I_0\left(\frac{a-b}{2}t\right)$                                                                                                                                     |
| 31 | $\frac{1}{\sqrt{s^2 + a^2}}$                             | $J_0(at)$                                                                                                                                                                                 |
| 32 | $\frac{s}{(s-a)^{\frac{3}{2}}}$                          | $\frac{1}{\sqrt{\pi t}}e^{at}(1+2at)$                                                                                                                                                     |
| 33 | $\frac{1}{(s^2 - a^2)^k}, \qquad (k > 0)$                | $\frac{\sqrt{\pi}}{\Gamma(k)} \left(\frac{t}{2a}\right)^{k-\frac{1}{2}} I_{k-\frac{1}{2}}(at)$                                                                                            |
| 34 | $\frac{1}{s}e^{-\frac{k}{s}}, \qquad (k>0)$              | $J_0(2\sqrt{kt})$                                                                                                                                                                         |
| 35 | $\frac{1}{\sqrt{s}}e^{-rac{k}{s}}$                      | $\frac{1}{\sqrt{\pi t}}\cos(2\sqrt{kt})$                                                                                                                                                  |
| 36 | $\frac{1}{s^{\frac{3}{2}}}e^{\frac{k}{s}}$               | $\frac{1}{\sqrt{\pi t}} \operatorname{senh}(2\sqrt{kt})$                                                                                                                                  |
| 37 | $e^{-k\sqrt{s}}, \qquad (k>0)$                           | $\frac{k}{2\sqrt{\pi t^3}}e^{-\frac{k^2}{4t}}$                                                                                                                                            |
| 38 | $\frac{1}{s}\ln(s)$                                      | $-\ln(t) - \gamma, \qquad (\gamma \approx 0, 5772)$                                                                                                                                       |
| 39 | $\ln\left(\frac{s-a}{s-b}\right)$                        | $\frac{1}{t}\left(e^{bt} - e^{at}\right)$                                                                                                                                                 |
| 40 | $\ln\left(\frac{s^2+w^2}{s^2}\right)$                    | $\frac{2}{t}\left(1-\cos(wt)\right)$                                                                                                                                                      |
| 41 | $\ln\left(\frac{s^2 - a^2}{s^2}\right)$                  | $\frac{2}{t}\left(1-\cosh(at)\right)$                                                                                                                                                     |
| 42 | $\tan^{-1}\left(\frac{w}{s}\right)$                      | $\frac{1}{t}\operatorname{sen}(wt)$                                                                                                                                                       |
| 43 | $\frac{1}{s}\cot^{-1}(s)$                                | $\mathrm{Si}\left(t ight)$                                                                                                                                                                |
| 44 | $\frac{1}{s} \tanh\left(\frac{as}{2}\right)$             | Onda quadrada $f(t) = \begin{cases} 1, & 0 < t < a \\ -1, & a < t < 2a \end{cases}$ $f(t+2a) = f(t),  t > 0$                                                                              |
| 45 | $\frac{1}{as^2}\tanh\left(\frac{as}{2}\right)$           | Onda triangular $f(t) = \begin{cases} \frac{t}{a}, & 0 < t < a \\ -\frac{t}{a} + 2, & a < t < 2a \end{cases}$ $f(t+2a) = f(t),  t > 0$                                                    |
| 46 | $\frac{w}{(s^2+w^2)\left(1-e^{-\frac{\pi}{w}s}\right)}$  | Retificador de meia onda $f(t) = \begin{cases} sen(wt), & 0 < t < \frac{\pi}{w} \\ 0, & \frac{\pi}{w} < t < \frac{2\pi}{w} \end{cases}$ $f\left(t + \frac{2\pi}{w}\right) = f(t),  t > 0$ |
| 47 | $\frac{w}{s^2 + w^2} \coth\left(\frac{\pi s}{2w}\right)$ | Retificador de onda completa $f(t) =  \operatorname{sen}(wt) $                                                                                                                            |
| 48 | $\frac{1}{as^2} - \frac{e^{-as}}{s(1 - e^{-as})}$        | Onda dente de serra $f(t) = \frac{t}{a}, \qquad 0 < t < a$ $f(t) = f(t-a),  t > a$                                                                                                        |

ullet Questão 1 (0.5 cada item) Considere a transformada de Laplace da função f(t) dada na expressão abaixo:

$$F(s) = \frac{2 + (3s + 4)e^{-5s}}{s^3}$$

Na primeira coluna, marque a alternativa que apresenta uma expressão para f(t). Na segunda coluna, marque a alternativa que apresenta uma expressão para f'(t). Na terceira, marque a transformada de Laplace de f'(t). E, na quarta, marque a transformada de Laplace de f''(t). f'(t):

( ) 
$$f(t) = 3t^2 - 17t + 35$$
.

( ) 
$$f(t) = t^2 u(t) + (3t + 2t^2)u(t - 5)$$
.

( ) 
$$f(t) = 2t^2u(t) + (3t + 4t^2)u(t - 5)$$
.

( ) 
$$f(t) = 2t^2u(t) + (3(t-5) + 4(t-5)^2)u(t-5)$$
.

$$(X) f(t) = t^2 u(t) + (3(t-5) + 2(t-5)^2)u(t-5).$$

$$\mathcal{L}\{f'(t)\}:$$

$$(\ {\bf X}\ )\ \mathcal{L}\{f'(t)\} = \frac{2 + (3s+4)e^{-5s}}{s^2}.$$

( ) 
$$\mathcal{L}{f'(t)} = \frac{2 + (3s + 4)e^{-5s}}{s}$$
.

$$(\ )\ \mathcal{L}\{f'(t)\}=\frac{2+\big(3s+4\big)e^{-5s}-s^2}{s^2}.$$

( ) 
$$\mathcal{L}{f'(t)} = \frac{2 + (3s+4)e^{-5s} - s^2}{s}$$
.

( ) 
$$\mathcal{L}{f'(t)} = \frac{2 + (3s+4)e^{-5s}}{s^4}$$
.

( ) 
$$f'(t) = 6t - 2$$
.

() 
$$f'(t) = 2u(t) + (3+4t)u(t-5)$$
.

( ) 
$$f'(t) = 2tu(t) + (3+4t)u(t-5)$$
.

$$(X) f'(t) = 2tu(t) + (3 + 4(t - 5))u(t - 5).$$

() 
$$f'(t) = 2tu(t) + (3(t-5) + 4(t-5))u(t-5)$$
.

$$\mathcal{L}\{f''(t)\}:$$

( ) 
$$\mathcal{L}{f''(t)} = \frac{2 + (3s + 4)e^{-5s}}{s^2}$$
.

( X ) 
$$\mathcal{L}\lbrace f''(t)\rbrace = \frac{2+(3s+4)e^{-5s}}{s}$$

( ) 
$$\mathcal{L}{f''(t)} = \frac{2 + (3s+4)e^{-5s} - s^2 - s}{s^2}$$

( ) 
$$\mathcal{L}{f''(t)} = \frac{2 + (3s+4)e^{-5s} - s^2 - s}{s}$$
.

( ) 
$$\mathcal{L}{f''(t)} = 2 + (3s+4)e^{-5s}$$
.

ullet Questão 2 (0.5 cada item) Considere a transformada de Laplace da função f(t) dada na expressão abaixo:

$$F(s) = \frac{s+1}{30s+31s^2+10s^3+s^4}$$

Observe que o objetivo aqui não é calcular a transformada inversa.

Na primeira coluna, marque a alternativa que apresenta uma expressão para a transformada de Laplace de tf(t). Na segunda coluna, marque a alternativa que apresenta o limite  $\lim_{t\to\infty} f(t)$ . Na terceira, marque a alternativa que apresenta uma expressão para  $\mathcal{L}\{e^{2t}f(t)\}$ . E, na quarta, marque a alternativa que apresenta a transformada de Laplace de (f\*f)(t).  $\mathcal{L}\{tf(t)\}$ :

(X) 
$$\mathcal{L}{tf(t)} = \frac{30 + 62s + 61s^2 + 24s^3 + 3s^4}{s^2(30 + 31s + 10s^2 + s^3)^2}$$
.

( ) 
$$\mathcal{L}{tf(t)} = -\frac{30 + 62s + 61s^2 + 24s^3 + 3s^4}{s(30 + 31s + 10s^2 + s^3)}$$
.

( ) 
$$\mathcal{L}{tf(t)} = -\frac{1}{30 + 62s + 30s^2 + 4s^3}$$

$$(\ )\ \mathcal{L}\{tf(t)\}=\frac{s+1}{30+31s+10s^2+s^3}.$$

( ) 
$$\mathcal{L}{tf(t)} = \frac{s+1}{30s+31s^2+10s^3+s^4}$$
.

$$\mathcal{L}\{e^{2t}f(t)\}$$
:

( ) 
$$\frac{(s+2)+1}{30(s+2)+31(s+2)^2+10(s+2)^3+(s+2)^4}.$$

$$(\ {\rm X\ })\ \frac{(s-2)+1}{30(s-2)+31(s-2)^2+10(s-2)^3+(s-2)^4}.$$

$$(\ )\ (s-2)\frac{s+1}{30s+31s^2+10s^3+s^4}.$$

$$(\ )\ e^{-2s}\frac{s+1}{30s+31s^2+10s^3+s^4}.$$

( ) 
$$u(s-2)\frac{s+1}{30s+31s^2+10s^3+s^4}$$
.

$$\lim_{t \to \infty} f(t)$$
:

( ) 
$$\lim_{t \to \infty} f(t) = 0.$$

$$() \lim_{t \to \infty} f(t) = \frac{1}{31}.$$

$$(X) \lim_{t \to \infty} f(t) = \frac{1}{30}.$$

() 
$$\lim_{t \to \infty} f(t) = \frac{1}{10}$$
.

$$() \lim_{t \to \infty} f(t) = 1.$$

$$\mathcal{L}\{(f*f)(t)\}:$$

$$\left(\ \right) \left(\frac{s+1}{30+31s+10s^2+s^3}\right)^2$$

$$(\ )\ \frac{s+1}{30+31s+10s^2+s^3}$$

$$(\ )\ \frac{s+1}{30s+31s^2+10s^3+s^4}$$

( ) 
$$\int_{s}^{\infty} \left( \frac{v+1}{30v+31v^2+10v^3+v^4} \right) dv$$

$$(\ {\rm X\ })\ \left(\frac{s+1}{30s+31s^2+10s^3+s^4}\right)^2$$

• Questão 3 (3.0 pontos) Um sistema mecânico com massa m, coeficiente de amortecimento c e constante de mola k é representado pela seguinte equação diferencial:

$$my''(t) + cy'(t) + ky(t) = F(t)$$

onde F(t) é uma força externa aplicada ao sistema. Considere que a força externa é zero, ou seja, F(t) = 0.

- a) (1.0 ponto) Encontre uma expressão geral para Y(s).
- b) (1.0) Explique os três regimes de amortecimento de um sistema de segunda ordem, indicando como diferenciá-los e escreva a forma geral da solução e um gráfico qualitativo para cada um dos três.
- c) (1.0) Encontre Y(s) e y(t) para o caso específico em que m=1, c=2 e k=5 e as condições iniciais são y(0)=1 e y'(0)=0.

## Solução do item a)

Tomando a transformada de Laplace, temos

$$m\left[s^{2}Y(s) - sy(0) - y'(0)\right] + c\left[sY(s) - y(0)\right] + kY(s) = 0$$

O que resulta em:

$$Y(s) = \frac{smy(0) + my'(0) + cy(0)}{ms^2 + cs + k}$$

#### Solução do item b)

Obs: Para o sistema físico ser amortecido as três constantes devem ser positivas. O caso c=0 seria não-amortecido. A fim de calcular a transformada inversa, precisamos identificar as raízes do denominador. Temos três casos em função do discriminante  $\Delta=c^2-4mk$ :

| $\Delta > 0$ | raízes reais distintas     | $ms^2 + cs + k = m(s-a)(s-b)$                | $y(t) = Ae^{at} + Be^{bt} \qquad (a \neq b)$               | superamort.  |
|--------------|----------------------------|----------------------------------------------|------------------------------------------------------------|--------------|
| $\Delta = 0$ | raiz real dupla            | $ms^2 + cs + k = m(s-a)^2$                   | $y(t) = (A + Bt) e^{at}$                                   | crit. amort. |
| $\Delta < 0$ | raízes complexo-conjugadas | $ms^{2} + cs + k = m[(s-a)^{2} + w_{0}^{2}]$ | $y(t) = e^{at} \left[ A\cos(w_0 t) + B\sin(w_0 t) \right]$ | superamort.  |

Aqui a e b são constantes reais negativas, pelo que as exponenciais são decrescentes. A frequência  $w_0$  é real e pode ser escolhida de qualquer sinal.

Os seguintes gráficos foram traçados com  $a=-1,\,b=-2,\,w_0=2\pi,\,y(0)=0$  e y'(0)=1.



# Solução do item c)

O caso particular é dado por:

$$Y(s) = \frac{s+2}{s^2+2s+5} = \frac{s+2}{(s+1)^2+2^2} = \frac{s+1}{(s+1)^2+2^2} + \frac{1}{(s+1)^2+2^2}$$

isto é:

$$y(t) = e^{-t}\cos(2t) + \frac{1}{2}e^{-t}\sin(2t) = e^{-t}\left[\cos(2t) + \frac{1}{2}\sin(2t)\right]$$

• Questão 4 (3.0 pontos): Considere o circuito RLC representado na figura abaixo:



onde L = 1H,  $R = 3\Omega$  e  $C = \frac{1}{2}F$ , a carga inicial no capacitor e a corrente incial na malha são nulas. Use a teoria das transformadas de Laplace para calcular a corrente i(t) quando a tensão v(t) na fonte é dada por

$$v(t) = \begin{cases} 0, & 0 \le t < 2, \\ 1, & t > 2. \end{cases}$$

Lembre que este circuito é governado pela seguinte equação:

$$L\frac{di(t)}{dt} + Ri(t) + \frac{1}{C}\left(q(0) + \int_0^t i(\tau)d\tau\right) = v(t).$$

- a) (1.0) Encontre I(s).
- b) (1.0) Encontre i(t).
- c) (1.0) Esboce o gráfico de i(t), indicando eixos e valores notáveis.

Solução do item a): Tomando a transformada de Laplace e condições iniciais nulas, temos:

$$sI(s) + 3I(s) + \frac{2}{s}I(s) = \frac{e^{-2s}}{s}.$$

multiplicando por s, temos:

$$(s^2 + 3s + 2)I(s) = e^{-2s}.$$

Isto é:

$$I(s) = \frac{e^{-2s}}{s^2 + 3s + 2} = \frac{e^{-2s}}{(s+1)(s+2)}.$$

#### Solução do item b):

Sabemos que:

$$\mathcal{L}^{-1}\left\{\frac{1}{(s+1)(s+2)}\right\} = e^{-t} - e^{-2t}$$

Usando a propriedade do deslocamento, obtemos:

$$i(t) = \mathcal{L}^{-1} \left\{ \frac{e^{-2s}}{(s+1)(s+2)} \right\} = \left( e^{-(t-2)} - e^{-2(t-2)} \right) u(t-2)$$

### Solução do item c):

Primeiramente, sabemos que t(t) = 0 se t < 2. Além disso temos:

$$\lim_{t \to 2+} i(t) = \lim_{t \to +\infty} i(t) = 0.$$

Ademais, como  $e^{-t} > e^{-2t}$  para t > 0, temos que i(t) > 0 para t > 2.

Concluímos que a função deve ter apresentar pelo menos um ponto de máximo em t > 2. Sendo a i(t) diferenciável para  $t \ge 2$ , calculamos o ponto de máximo de i(t) através da sua derivada:

$$i'(t) = -e^{-(t-2)} + 2e^{-2(t-2)} = -e^2e^{-t} + 2e^4e^{-2t}, \quad t > 2.$$

A derivada se anula quando:

$$e^2e^{-t} = 2e^4e^{-2t} \rightarrow e^t = 2e^2$$
.

Assim o ponto de máximo acontece em  $t_* = 2 + \ln(2) > 2$  e  $i(t_*) = 1/2 - 1/4 = 1/4$ .

Corrente com máximo em i(2 + ln(2)) = 1/4

