

Complete set of equations for the EDES

Equation Role	Source
---------------	--------

Glucose

$G_{meal} = \sigma k_1^{\sigma} t^{\sigma-1} e^{-k_1 t^{\sigma}} \cdot D_G$	Glucose mass in stomach	Maas et al. 2015
$\frac{d[M_{G-gut}]}{dt} = G_{meal} - k_{2[M_{G-gut}]}$	Rate of transition of glucose from stomach through gut to plasma.	Rozendaal et al. 2018
$G_{gut} = k_2 \left(\frac{f_G}{V_G \cdot BW} \right) \left[M_{G-gut} \right]$	Glucose appearance in plasma from the meal via the gut.	Rozendaal et al. 2018
$G_{liver} = EGP_b - k_{4[I_{d1}]} - k_3([G_{PL}] - G_b)$	Net hepatic glucose flux – EGP inhibited by insulin and glucose	Rozendaal et al. 2018
$G_{uii} = EGP_b \left(\frac{K_m + G_b}{G_b} \right) \cdot \left(\frac{[G_{PL}]}{K_m + [G_{PL}]} \right)$	Insulin independent glucose uptake into tissues (maintain steady state)	Rozendaal et al. 2018
$G_{uid} = k_5[I_{d1}] \left(\frac{[G_{PL}]}{K_M + [G_{PL}]} \right)$	Insulin dependent glucose uptake into tissues (delayed insulin signal)	Rozendaal et al. 2018
$G_{\text{ren}} = \left(\frac{c_1}{V_G \cdot BW}\right) ([G_{PL}] - G_{\text{ren}}) ([G_{PL}] > G_{\text{ren}})$	Renal excretion of excess glucose (iff $G_{\rm PL}$ > sepecified threshold)	Rozendaal et al. 2018
$\frac{d[G_{PL}]}{dt} = G_{gut} + G_{liver} - G_{uii} - G_{uid} - G_{ren}$	Rate of change of plasma glucose.	Rozendaal et al. 2018

Insulin

$I_{pro} = k_6([G_{PL}] - G_b) + \frac{k_7}{\tau_i}(G_{int} + G_b)$	Insulin production in pancreas (PID controller)	Rozendaal et al. 2018
$+rac{k_8}{ au_d}\!\!\left(\!rac{d[m{G_{PL}}]}{dt}\! ight)$	(Fib controller)	2010
$I_{liver} = k_7 \left(\frac{G_b}{\tau_i \cdot I + b} \right) [\boldsymbol{I}_{\boldsymbol{PL}}]$	Insulin degradation in liver (maintain steady state)	Rozendaal et al. 2018
$I_{rem} = k_9([\boldsymbol{I_{PL}}] - I_b)$	Insulin transport to interstitial space	Rozendaal et al. 2018
$\frac{d[\mathbf{I_{PL}}]}{dt} = I_{pro} - I_{liver} - I_{rem}$	Rate pf change of plasma insulin	Rozendaal et al. 2018
$\frac{d[I_{d1}]}{dt} = k_9([I_{Pl}]I_b) - k_{10} \cdot [I_{d1}]$	Insulin delay 1 (glucose)	Rozendaal et al. 2018

EDES Model parameters

Parameter		Function	value	
Eindhoven Diabetes Education Simulator	k_1	Stomach emptying glucose (stomach-> gut).	estimated	[51]
	k_2	Glucose appearance from gut (gut->plasma).	0.28	[51]
	k_3	Suppression of hepatic glucose release by change in plasma glucose.	6.07x10 ⁻³	[51]
	k_4	Suppression of hepatic glucose release by remote insulin.	2.34x10 ⁻⁴	[51]
	k_5	Coefficient for rate of insulin dependent glucose uptake to tissues.	estimated	[51]
	k_6	Coefficient for rate of insulin production (proportional term)	estimated	[51]
	k ₇	Coefficient for rate of insulin production (integral term)	1.15	[51]
	k_8	Coefficient for rate of insulin production (derivative term)	7.27	[51]
	k_9	Coefficient for rate of outflow of plasma insulin to remote compartment.	3.83x10 ⁻²	[51]
	k_{10}	Coefficient for rate of degradation of insulin in remote compartment.	2.84x10 ⁻¹	[51]
	σ	Shape factor glucose meal	1.4	[51]
	K_m	Michealis-Menten coefficient for glucose uptake into tissues.	13.2	[53]
	G_b	Basal glucose level. (glucose set point of model)	Fasting glucose value	[51]
	I_b	Basal insulin level (insulin set point of model)	Fasting insulin value	[51]
	EGP_b	Basal rate of Endogenous glucose production	0.043	[51]

A complete list of EDES Model parameters, indicating the biological function attributed to them in the model construction, the value to which they are fixed, and their source.