8. Hausaufgabe – Theoretische Grundlagen der Informatik 3

WS 2012/2013

Stand: 10.12.2012

Abgabe: 20.12.2012 in der Vorlesung

Für alle Aufgaben gilt: Solange in der Aufgabenstellung nichts anderes steht, erwarten wir zu jeder Antwort eine Begründung. Es genügt nicht, nur eine Formel zu schreiben ohne Begründung.

Hausaufgabe 1 5 Punkte

(i) Gegeben sind die folgenden Strukturen A_1, A_2, A_3 und prädikatenlogischen Formeln $\varphi_1, \varphi_2, \varphi_3$. Entscheiden Sie für $1 \le i, j \le 3$, ob $A_i \models \varphi_j$ gilt.

- $\varphi_1 = \exists x_1 \exists x_2 \exists x_3 \exists x_4 \exists x_5 (E(x_1, x_2) \land E(x_2, x_3) \land E(x_3, x_4) \land E(x_4, x_5) \land E(x_5, x_1)).$
- $\varphi_2 = \forall x \exists y_1 \exists y_2 \forall y_3 (y_1 \neq y_2 \land E(x, y_1) \land E(x, y_2) \land ((y_3 \neq y_1 \land y_3 \neq y_2) \rightarrow \neg E(x, y_3))).$
- $\varphi_3 = \forall x \forall y (x \neq y \rightarrow E(x, y)).$

Sie müssen Ihre Antwort in dieser Teilaufgabe nicht begründen.

(ii) Gegeben sind die folgenden Strukturen $\mathcal{B}_1 = (\mathbb{N}, +, \cdot)$, $\mathcal{B}_2 = (\mathbb{Q}, +, \cdot)$ und $\mathcal{B}_3 = (\mathbb{C}, +, \cdot)$, wobei $+, \cdot$ 2-stellige Funktionssymbole mit den üblichen Interpretationen auf den entsprechenden Strukturen sind. Geben Sie Formeln ψ_1, ψ_2, ψ_3 an, sodass gilt $\mathcal{B}_i \models \psi_j$ genau dann, wenn i = j.

Begründen Sie Ihre Antwort.

Hausaufgabe 2 5 Punkte

Sei φ eine aussagenlogische Formel und sei \mathcal{A} die Struktur mit Universum $\{0,1\}$ und einem einstelligen Prädikat $Z^{\mathcal{A}} = \{0\}$. Geben Sie prädikatenlogische Formeln φ_e und φ_t ohne freie Variablen an, so dass φ erfüllbar ist genau dann, wenn $\mathcal{A} \models \varphi_e$ bzw. φ eine Tautologie ist genau dann, wenn $\mathcal{A} \models \varphi_t$.

Hausaufgabe 3 5 Punkte

Ein Dominating Set eines ungerichteten Graphen G=(V,E) ist eine Menge X, sodass jeder Knoten $v\in V(G)$ in X liegt oder benachbart ist zu einem Knoten in X. Wir betrachten einen Graphen G als Struktur über der Signatur $\{E\}$ mit einem 2-stelligen Relationssymbol.

Geben Sie für jedes $k \in \mathbb{N}$ eine Formel $\varphi_k \in FO(\{E\})$ an, sodass gilt: G hat ein Dominating Set der Größe mindestens k genau dann, wenn $G \models \varphi_k$.

Hausaufgabe 4 5 Punkte

Sei $\sigma=\{E\}$ die Signatur mit einem 2-stelligen Relationssymbol. Sei $n\in\mathbb{N}$ beliebig.

Geben Sie für jede FO-Formel φ eine aussagenlogische Formel ψ_n an, sodass Sie für jede σ -Struktur \mathcal{A} mit Universum $\{1,2,\ldots,n\}$ eine Belegung $\beta(\mathcal{A})$ berechnen können mit der Eigenschaft, dass

$$\mathcal{A} \models \varphi$$
 genau dann, wenn $\beta(\mathcal{A}) \models \psi_n$.

Beachten Sie, dass β nur von $\mathcal A$ abhängen darf, nicht jedoch von $\varphi.$