MATH 311

Chapter 7

SECTION 7.3: COORDINATES ISOMORPHISM AND COMPOSITION

Contents

Coordinates of a Vector	2
Composition	3

Created by: Pierre-Olivier Parisé Spring 2024

COORDINATES OF A VECTOR

Assume that V is a vector space with $n = \dim V < \infty$.

Let

- ① $B = {\mathbf{b_1, b_2, \dots, b_n}}$ be a basis of V
- ② $E = {\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_n}}$ be the standard basis for \mathbb{R}^n .

Given any $\mathbf{v} \in V$ with $\mathbf{v} = v_1 \mathbf{b_1} + v_2 \mathbf{b_2} + \cdots + v_n \mathbf{b_n}$, define the linear transformation $C_B : V \to \mathbb{R}^n$ as

$$C_B(\mathbf{v}) = v_1 \mathbf{e_1} + v_2 \mathbf{e_2} + \dots + v_n \mathbf{e_n} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}.$$

DEFINITION 1. The linear transformation C_B is called the **coordinates isomorphism**.

Notes:

- ① The coordinates isomorphism C_B gives a way to regard any vector space V of dimension n as \mathbb{R}^n .
- ② In mathematical jargon, we say that V (dim V = n) and \mathbb{R}^n are **isomorphic**.
- ③ More generally, two vector spaces V and W are isomorphic if there is a linear transformation $T:V\to W$ which is onto and one-to-one.

Composition

DEFINITION 2. Let V, W and U be vector spaces. Let $T: V \to W$ and $S: W \to U$ be linear transformations. The **composite transformation** $ST: V \to U$ of T and S is defined by

$$ST(\mathbf{v}) = S(T(\mathbf{v})) \quad \mathbf{v} \in V.$$

Notes:

- ① ST is a linear transformation.
- ② TS might not be defined unless U = V.
- ③ We say that $T:V\to W$ is an **isomorphism** if there exists a linear transformation $S:W\to V$ such that:

•
$$ST = 1_V$$
. $TS = 1_W$. $TS = 1_W$.

In this case, $S = T^{-1}$ is called the inverse of T.

EXAMPLE 1. Let $B = \{1, x, x^2\}$ be a basis for $\mathbf{P_2}$.

- a) Find the coordinate transformation C_B .
- b) Find C_B^{-1} .

SOLUTION.

a)
$$p(x) = 1 - 2x + 3x^2$$

$$\Rightarrow C_B(p(x)) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

In general,
$$p(x) = aot a_1x + a_2x^2$$

$$\Rightarrow C_B(p(x)) = \begin{bmatrix} a_0 \\ a_1 \end{bmatrix}$$

b) The inverse
$$C_B^{-1}: \mathbb{R}^3 \rightarrow \mathbb{P}_2$$

for wample:
 $C_B^{-1}(\begin{bmatrix} -\frac{1}{2} \\ -\frac{2}{3} \end{bmatrix}) = 1 - 2x + 3x^2$

In general

$$C_{\mathcal{B}}^{-1}\left(\begin{bmatrix} X_1 \\ Y_2 \\ X_3 \end{bmatrix}\right) = \chi_1 + \chi_2 \chi + \chi_3 \chi^2$$