- 1. Use any method to write down integrals that represent the volume of the following solids.
 - (a) The solid obtained by rotating the region bounded by the x and y axes and the graph of y = 3 3x about the y-axis.
 - (b) Let T be the triangle enclosed by $1 \le x \le 2$ and $0 \le y \le 3x 3$.
 - i. The solid obtained by rotating T around the x-axis.
 - ii. The solid obtained by rotating T around the y-axis.
 - iii. The solid obtained by rotating T around the line x = -1.
 - iv. The solid obtained by rotating T around the line y = -2.
 - (c) The solid obtained by rotating the region enclosed by y = x and $y = \sqrt{x}$ about the line x = 5.
 - (d) The solid obtained by rotating the region enclosed by $y = -(x^2 2x)$ and the x-axis about the line x = 3.
 - (e) The solid obtained by rotating the region enclosed by $x = 2 y^2$, $x = y^4$; about the y-axis.
- 2. Compute the average value of the following functions on the given interval.
 - (a) The function $f(x) = \sin(2x)$ on the interval $[0, \pi/2]$.
 - (b) The function $f(x) = x^2 + 3$ on the interval [-1, 1].

Final Exam Review

- 3. Consider the curve $2yx + 3x^2y = \sin(xy)$. Find $\frac{dy}{dx}$.
- 4. Find the absolute max and the absolute min of the function $f(x) = x^3 2x$ on the interval [0, 4].
- 5. A paper cup has the shape of a cone with height 10 cm and radius 3 cm (at the top). If water is poured into the cup at a rate of 2 cm³/s, how fast is the water level rising when the water is 5 cm deep? (Recall that the volume of a cone is $V = \frac{1}{3}\pi r^2 h$.
- 6. Find a parabola $y = ax^2 + bx + c$ that passes through the point (1,4) and whose tangent lines at x = -1 and x = 5 have slopes 6 and -2 respectively.
- 7. Compute the following limits, if they exist. If the limit does not exist, decide whether it is ∞ , $-\infty$ or neither.
 - (a) $\lim_{v \to 4^+} \frac{4-v}{|4-v|}$.
 - (b) $\lim_{x \to 0} \cos\left(\frac{2}{x}\right) x^4$.
 - (c) $\lim_{x \to 1^+} \frac{x^2 9}{x^2 + 2x 3}$.
- 8. Does the function $f(x) = \frac{x^3 x^2 2x}{x 2}$ have any discontinuities? If so, determine whether the discontinuity is a removable discontinuity, a jump discontinuity or an infinite discontinuity.
- 9. Show that the equation $3x + 2\cos(x) + 5 = 0$ has exactly one real root.
- 10. Suppose that f is continuous on [0,4], f(0)=1 and $2 \le f'(x) \le 5$ for all x in (0,4). Show that $9 \le f(4) \le 21$.
- 11. Find the point on the ellipse $\frac{x^2}{9} + y^2 = 1$ that is closest to the point (2,0).
- 12. Find f if $f''(x) = 5x^3 + 6x^2 + 2$, with f(0) = 3 and f(1) = -2.
- 13. Find the area of the region bounded by the curves $y = e^x$, $y = e^{-x}$, x = -2 and x = 1.
- 14. Write an integral that represents the volume of the solid obtained by rotating the region bounded by the curves y = x and $y = x^2$ about the line y = 2.