[chapter] [chapter]

Содержание

1	Введение	2
2	Цилиндрическая поверхность.	4
3	Числовые характеристики.	6
4	Рундист.	11

Введение

При оценке драгоценного камня одним из важнейших факторов является качество огранки. В связи с этим, чтобы уменьшить влияние текущих дефектов на стоимость камня, важной задачей является идентификация примитивов, аппроксимирующих различные части камня.

В данном документе речь пойдет о $pyn\partial ucme$, части многогранника, аппроксимируемой цилиндрической поверхностью.

Краткий обзор глав.

Глава "1.Введение".

В введении поясняется, с какой целью создан данный документ.

Глава "2.Цилиндрическая поверхность".

В этой главе будут даны необходимые общие понятия о цилиндрических поверхностях.

Глава "3. Числовые характеристики".

Раздел описывает статистики, рассчитываемые для цилиндрических поверхностей.

Глава "4.Рундист".

Дается определение рундиста на основе вычисленных статистик.

Цилиндрическая поверхность.

Определение (Цилиндрическая поверхность.). Поверхность Суl называется цилиндрической, если она образована параллельным перемещением некоторой прямой l, называемой образующей, вдоль некоторой кривой γ , называемой направляющей.

Следствие. Векторы, перпендикулярные каждой точке цилиндрической поверхности (нормали поверхности), лежат в одной плоскости.

Определение.
$$S^1 = \{x \in \mathbb{R}^3 : |x| = 1\}.$$

Следствие. Единичные нормали цилиндрической поверхности, выпущенные из $\vec{0}$, лежат на C. C – сечение S^1 некоторой плоскостью Π через $\vec{0}$: $C_{big} = S^1 \cap \Pi$

Рассмотрим множество единичных нормалей $\{n_j\}_{j=1}^N$ граней исходного многогранника P, выпущенных из $\vec{0}$. Тогда для нахождения цилиндрических поверхностей на многограннике будем искать множества $N^{(i)} = \{n_j\}_{j \in T_i}$, лежащие на C, где $T_i \subset \{1,\ldots,N\}$ – набор индексов. Найденные наборы граней, соответствующие $N^{(i)}$, обозначим $\{R_i\}$.

Замечание. $\vec{0}$, $N^{(j)}$ лежат на окружности С с некоторой погрешностью.

Числовые характеристики.

 $R = \{Face_i\}_{i \in T}$ – набор граней, соответствующий $\{n_i\}_{i \in T}$.

Полоса набора R.

Определение (Аппроксимирующая плоскость.). $\Pi = \Pi(R)$ – плоскость, аппроксимирующая вершины граней $\mathbf R$ в метрике

$$\rho(R, \Pi = \sum_{i \in T} \sum_{j_i} dist(v_{j_i}, \Pi(R)),$$

где $dist(v_{j_i},\ \Pi)$ – евклидово расстояние от точки v_{j_i} до плоскости $\Pi,\{v_{j_i}\}$ – вершины $Face_i.$

Замечание. Далее, в качестве прямой, аппроксимирующей произвольный набор точек, будем использовать *робастную линейную регрессию*.

Развернем набор граней R на плоскости, перпендикулярной П.

Рис. 3.1: $\{c_i\}$ – красные точки.

Далее:

- Приблизим центры граней $\{c_i\}$ прямой l_{avg} .
- Найдем контур *Contour* развернутого набора R.
- Рассмотрим вершины граней, лежащие выше прямой l_{avg} : $\{v_k^{(u)}\} \in \cup_i Face_i: \forall k \ v_k^{(u)} \in Contour, \ y < v_k^{(u)}(y), \ (x,y) \in l_{avg}.$ Построим $l^{(up)}$ по набору $\{v_k^{(u)}\}.$ Аналогично по точкам $\{v_k^{(l)}\}$, лежащим ниже прямой l_{avg} , вычислим $l^{(low)}$.

Определение (Полоса рундиста $(girdle^{2D})$). Полоса рундиста – пространство плоскости, заключенное между $l^{(up)}$ и $l^{(low)}$ на участке $[x_{min}, x_{max}]$:

$$girdle^{2D}(R) := \{(x, y) \in \mathbb{R}^2 : l^{(low)} \le y \le l^{(up)}\}.$$

Определение.
$$x_{min} = \underset{x \in \{v_k(x)\}}{argmin}(x), \ x_{max} = \underset{x \in \{v_k(x)\}}{argmax}(x).$$

Определение (Размах полосы R (Amplitude).).

$$Amplitude(R) := \underset{x \in [x_{min}, x_{max}]}{argmax} |l^{(up)}(x) - l^{(low)}(x)|,$$

где l(x) – координата y точки $(x,y) \in l$.

Определение (Параллельность $girdle^{2D}$).

$$sin(R) := |sin \angle (l^{(up)}, l^{(low)})|.$$

Определение. Измерим, насколько сильно R выходит за свою полосу: посчитаем площадь частей граней $Face_i$, выходящих за полосу:

$$S_{extern}(R) := \sum_{i} Area(Face_i \cap \{\mathbb{R}^2 \setminus girdle^{2D}\})$$

Рис. 3.2: В примере на изображении выше находим суммарную площадь синих участков.

Замечание. Возможна ситуация, когда в R лежат наборы, не соответствующие (визуально) одной и той же части камня. Разобьем R на подмножества смежных граней: $R^i: \bigcup_i R^i = R$.

Однако, может быть такое, что \exists грани $\in R$, для которых среди элементов R нет смежных граней.

Рассмотрим случай, когда такая грань $Face_{i_0}$ одна. Необходимо объединить ее с соответствующим ей набором R^i . Если \exists вершина $v \in Face_{i_0} : v \in girdle^{2D}(R^i)$, то добавим $Face_{i_0}$ в R^i .

Рис. 3.3: В примере на изображении выше фиолетовые части многогранника будут лежать в одном R.

Симметричность многогранника относительно набора ${\it R}.$

 Π делит \mathbb{R}^3 на два полупространства, Π^+ и Π^- , соответственно, делит многогранник P на $P^+ \in \Pi^+$ и $P^- \in \Pi^-$. Рассмотрим P^+ , аналогично для P^- .

Будем пересекать P^+ плоскостями Π_j , параллельными Π . $CS_j(CrossSection)$ – граница j-ого сечения, $j=1,N_{cs}$.

Введем меру симметричности CS_j . Для этого проведем n прямых l_i через центр многогранника P, спроецированного на Π_j , с шагом по углу $\frac{360}{n}$. l_i делит CS_j на две части: CS_j^+ , CS_j^- . Отобразим CS_j^- на CS_j^+ симметрично относительно l_i (обозначение для отображенного CS_j^- оставим тем же), найдем площадь пересечения и поделим ее на площадь CS_j для нормировки:

$$S_j^i(P^+) := \frac{Area(CS_j^+ \cap CS_j^-)}{Area(CS_j)}.$$

Таким образом, набору R поставим в соответствие величину

$$Sym(R) := \sum_{j=1}^{N_{cs}} \sum_{i=1}^{n} S_j^i(P^+) + S_j^i(P^-).$$

Мера близости набора R и аппроксимирующей ее цилиндрической поверхности Cyl.

R – набор граней, Cyl – аппроксимирующая его цилиндрическая поверхность. Для каждого множества граней R вычислим, насколько хорошо оно "ложится"на Cyl:

$$S_{Cyl}(R) := \frac{Area(R \cap Cyl)}{Area(R)}$$

Рундист.

Определение (Рундист). **Рундист** – набор граней $R_0 = \{Face_i\}_{i \in T_0} \in \{R_i\}$, удовлетворяющий наибольшему числу следующих свойств:

1. R_0 имеет наибольшее число элементов среди остальных R_i :

$$R_0 := \underset{R \in \{R_i\}}{argmax}(|R|)$$

2. полоса R_0 имеет наменьший размах среди остальных R_i :

$$R_0 := \underset{R \in \{R_i\}}{argmin}(Amplitude(R))$$

3. угол между $l^{(up)}$ и $l^{(low)}$, соответствующий R_0 , наименьший среди остальных R_i :

$$R_0 := \underset{R \in \{R_i\}}{argmin}(sin(R))$$

4. через ось, перпендикулярную $\Pi(R_0)$ и проходящую через центр многогранника P, проходит наибольшее количество плоскостей симметрии относительно других $\Pi(R_i)$:

$$R_0 := \underset{R \in \{R_i\}}{argmax}(Sym(R))$$

5. набор R_0 лучше всех остальных R_i аппроксимируется соответствующим цилиндром:

$$R_0 := \underset{R \in \{R_i\}}{argmax}(S_{Cyl}(R))$$

Замечание. Константы, которые должны быть заданы:

• N_{cs} – количество сечений плоскостями для вычисления меры симметричности;

ullet n — количество отражений для одного сечения при вычислении меры симметричности;