Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code.

As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.

Furthermore, I have not only read but will also follow the instructions on the exam.

Signature:	V C	
Name (printed)): Trever O	Isen

INSTRUCTIONS:

- (1) Start each new problem on a separate page.
- (2) Write your name (or just your initials) and problem number on the top of each page.
- (3) Write your solutions on only one side of your paper.
- (4) When finished with the exam, put the problems in order and then consecutively number your pages.
- (5) You have 3 hours for this exam but you may take 4 hours.
- (6) Questions 1-8 are each worth 10 points. Question 9 is worth 20 points.

Notation:

- $\mathbb{N}_0:=\mathbb{N}\cup\{0\}$.
- Let \mathbb{K} be the field of the real numbers \mathbb{R} or of the extended real numbers $\widehat{\mathbb{R}}$. For $1 \leq p \leq \infty$, $L_p((X, \mathcal{F}, \mu); \mathbb{K})$, or just L_p if confusion seems unlikely, denotes the space of (equivalence classes of) functions $f: X \to \mathbb{K}$ with finite $\|\cdot\|_p$ -norm. Similarly, $L_0((X, \mathcal{F}, \mu); \mathbb{K})$ denotes the space of (equivalence classes of) \mathcal{F} -measurable functions $f: X \to \mathbb{K}$.
- 1. Let $\gamma : [0, 2\pi] \to \mathbb{C}$ be given by $\gamma(t) = 5e^{it}$. Compute

$$\int_{\gamma} \left[z e^{3/z} + \frac{\cos z}{z^2 (z - \pi)^3} \right] dz. \tag{1.1}$$

- 2. Let $f \in H(\mathbb{C})$ be an entire function and $\text{Im}(f(z)) \geq 0$ for each $z \in \mathbb{C}$. Show that f is constant.
- 3. Let (X, d) be a metric space. Let K be a compact subset of X and C be a closed subset of X. Show that $K + C := \{k + c \in X : k \in K \text{ and } c \in C\}$ is closed in X.
- 4. Let A and B be disjoint closed subsets of a metric space (X, d). Construct a continuous function $f: X \to \mathbb{R}$ such that

$$f(a) = {}^{+}1$$
 , if $a \in A$ $f(b) = {}^{-}1$, if $b \in B$ ${}^{-}1 < f(x) < {}^{+}1$, if $x \in X \setminus (A \cup B)$.

You need to clearly show why your function f does all it needs to do. Stated in short, constructively clearly prove Urysohn's Lemma.

5. Let (X, \mathcal{F}) be a measurable space and \mathcal{B}_Y be the Borel sets of a separable metric space (Y, d). Show that a function $f: X \to Y$ is $(\mathcal{F}, \mathcal{B}_Y)$ -measurable if and only if, for each fixed $y \in Y$, the function $g_y: X \to \mathbb{R}$ given by

$$g_{y}\left(x\right) := d\left(y, f\left(x\right)\right) \tag{5.1}$$

is measurable. If you use the fact that Y is separable, be sure to mention where.

6. Let $(\mathbb{R}, \mathcal{L}, \mu)$ be the Lebesgue measure space on \mathbb{R} and $f \in L_p((\mathbb{R}, \mathcal{L}, \mu); \mathbb{R})$ where $1 \leq p < \infty$. For a $y \in \mathbb{R}$, define $\tau_y f \in L_p$ by

$$(\tau_y f)(x) = f(x - y). \tag{6.1}$$

Show that

$$\lim_{y \to 0} \|f - \tau_y f\|_p = 0. \tag{6.2}$$

7. Let $([0,1], \mathcal{L}, \mu)$ be the Lebesgue measure space on [0,1]. Let $f \in L_1(([0,1], \mathcal{L}, \mu); \mathbb{R})$ satisfy

$$\int_0^1 e^{nx} f(x) d\mu(x) = 0 \quad , \quad \forall n \in \mathbb{N}_0.$$
 (7.1)

Show that $f = 0 \mu$ -a.e..

8. Let (X, \mathcal{F}, μ) be a finite positive measure space (so $\mu \colon \mathcal{F} \to [0, \infty)$) and $1 \le p < \infty$. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence in $L_p((X, \mathcal{F}, \mu); \mathbb{R})$ that converges μ -a.e. to $f \in L_0((X, \mathcal{F}, \mu); \mathbb{R})$. Let the set $\{|f_n|^p : n \in \mathbb{N}\}$ is uniformly integrable, i.e.,

 $\forall \epsilon > 0 \ \exists \delta_{\epsilon} > 0 \ \text{such that if} \ E \in \mathcal{F} \ \text{and} \ \mu(E) < \delta_{\epsilon} \ \text{then} \ \int_{E} |f_{n}|^{p} \ d\mu < \epsilon \ \text{for each} \ n \in \mathbb{N}.$ (8.1)

Show that $f \in L_p((X, \mathcal{F}, \mu); \mathbb{R})$ and $f_n \to f$ in L_p -norm.

Remark: you may use, without proving, Egoroff's Theorem provided you state Egoroff's Theorem as well as define each involved mode of converges.

- 9. State whether the statement is true or false (0pt). Then either prove or give a counterexample (4pt).
- 9.a. Let (X,d) be a metric space. If A and B are closed subsets of X, then their Minkowski sum $A+B:=\{a+b\in X\colon a\in A,b\in B\}$ is closed in X.
- 9.b. Let $(\mathbb{R}, \mathcal{L}, \mu)$ is the Lebesgue measure space on \mathbb{R} , $L_s((\mathbb{R}, \mathcal{L}, \mu); \mathbb{R}) := L_s$, and $1 \le p < q < r \le \infty$. Then $L_q \subset L_p + L_r$. (Recall $L_p + L_r := \{g + h : g \in L_p, h \in L_r\}$.)
- 9.c. If a Lebesgue measurable subset E of [0,1] has Lebesgue measure one, then E is dense in [0,1].
- 9.d. If a sequence converges in L_p -norm, where $1 \leq p < \infty$, then the sequence also converges in measure.
- 9.e. There exists an entire function whose real part is u(x,y) = xy x + y. (If true, also constuct such an entire function.)