Dynamic Upper-Body Reach with Trajectory Prediction

Presenter: Patrick (Huaze) Liu Mentor: Kehlani Fay, Arth Shukla 2025.9.29

Overall Project Goal

- Build a unified platform for catching moving objects in simulation and real robots.
- Combine trajectory prediction, tactile sensing, and humanoid control into one system.

My Focus

- Designed and implemented **Trajectory Predictor**
- Developed Upper-Body Reach Policy (humanoid arm with locked legs)

1. Motivation & Tasks

Constraints

- 1. Upper body only (legs locked)
- 2. Noisy and delayed camera input
- 3. Ballistic object motion
- 4. Tight real-time control budget

Success Criteria

- 1. "Near" = within a few radius
- 2. "Still" = very low speed for a short time

Simulator

Next State

Predict object's future

→ Act ahead of time

2.1 Sensing & Camera

- Setups: Head-mounted camera,
 world→camera transform
- Region-aware noise
- Dynamic scaling: farther/faster
 objects ⇒ noisier.
- Takeaway: All observations expressed in camera frame → simplifies control

2.1 Sensing & Camera

All observations are expressed in camera frame to simplified the control

2.2 Trajectory Prediction

2.2 Trajectory Prediction

Distance Error Analysis

2.3 Policy Training – Observations & Actions

Observations

2.3 Policy Training – PPO-LSTM & Training Loop

- **PPO-LSTM** (partial observability & latency)
- Rollout collect T steps from N parallel sims → build sequences for LSTM → reset hidden state at episode ends
- Update PPO clipped objective + advantage estimates; early-stop by KL target
- Repeat iterate collect

Why LSTM?

It remembers recent observations/actions.

Smoother and more robust control under laggy vision

2.3 Policy Training – Rewards

Rewards: What the robot is taught to care about.

Reward Structure

Reward type	What it measures
Proximity (✓ Get closer)	Hand-object distance, stable hold
Smoothness (Stay stable)	Joint velocity / acceleration, tracking error
Safety (✓ Stay safe)	Torque, joint limits, contacts
Efficiency (Don't waste effort)	Torque/energy Time shaping

2.3 Policy Training – Rewards Tuning Strategy

- Phase 1 Reach first
 - High weight on proximity & hold rewards
 - Keep penalties light so policy learns basic reaching
- Phase 2 Stabilize
 - Increase smoothness penalties (vel/acc)
 - Penalize contacts more → motions smoother
- Phase 3 Safety hardened
 - Raise torque/limit penalties until spikes disappear
 - Ensure action clipping stays low
 - Keep success rate stable

3. Results – Baseline performance

Observation of Object	Components	
3D	[x, y, z]	Without angular info
7D	[x, y, z, qx, qy, qz, qw]	With angular info

7D full pose: 83% success rate

3D pos: 73% success rate

Orientation info is critical — without it, policy loses some stability.

3. Results – Effect of noise

Noise Type	Success Rate	Comparison
No noise	83%	
DoF/Vel Noise	75%	-5%
Camera Reading Noise	70%	-10%, high oscillation

Noise reduces stability (oscillation) more than raw accuracy.

3. Results – Target position matters!

• What is the Target Position?

Observation Type	W/ Target Position	W/O Target Position	Comparison
7D	83%	76%	-7%
3D	73%	32%	-41%

Target position is critical for 3D-only observations; without it, success collapses.

3. Results – Traj pred & critic observation

3D obs			
A	Ablation	SR effect	Note
Traj pre	ed (any # states)	~30% (w/o target position)	Ignored by policy
Crit	ic 7D vs 3D	+ 5–8%	Marginal gain
Linea	ar vs Quad Z	No major differences	Policy not using physics prior

 \blacksquare Trajectory prediction and critic variations had little impact \rightarrow likely ignored by policy.

4. Summary

System & Framework

- Built an end-to-end trajectory prediction + control system in Isaac Gym
- Designed & tuned reward functions for real-robot constraints
- Implemented noise models to mimic real perception errors and latency

Experiments

- Ablation studies to explore each attribute's effect on the control policy
- Separate system blocks (perception vs. prediction vs. control)

Broader Takeaway

- Importance of sim2real realism
- Cross-disciplinary integration

