CS 810 Lecture Notes

Convex Hull and Prime Testing

Dev Patel

Oct 3, 2023

Convex Hull

Trying to grow the convex hull 1 point at a time:

INPUT: Set S of N points in 2D (assume no 3 points are collinear)

Initialization:

- 1. Randomly permute S: $p_1, p_2, ..., p_n$
- 2. Let $S_3 = \{p_1, p_2, p_3\}$ and let $CH(S_3)$ be the C.H. of S_3 (in counterclockwise order)
- 3. Let p_0 be the centroid of S_3 (this point will always be in C.H.)

Data Structures:

- 1. Maintain circular list of CH(S_i)
 - a. $S_i = \{p_1,...,p_i\}$
- 2. For every point in S S_i, keep a pointer from p to edge (e_p) of S_i that $\overline{p_0p}$ crosses

Actual Process:

- Look at next point (p_{i+1})

- 1. If p_{i+1} in $CH(S_i)$, do nothing
- 2. If p_{i+1} outside of CH(S_i), let uw be the edge of CH(S_i) that $\overline{p_0p_{i+1}}$ crosses
 - a. Updating $CH(s_{i+1})$:
 - b. Starting from either u or w, move to the closest vertex away from p_{i+1} (consider them as v_1 and v_2)
 - c. If $p_{i+1} \rightarrow u \rightarrow v_1$ has a 'right' turn, consider v_1 as u and delete old u
 - d. Alternatively terminology: if $p_{i+1} \rightarrow u \rightarrow v_1$ is convex, replace u
 - e. Recurse away from p_{i+1} in both directions until there are no more 'right turns'
 - f. Update both data structures:
 - $i. S_i = S_i + p_{i+1}$
 - ii. Some pointers need to be updated because edges of the convex hull have been changed
 - 1. This deterministic approach to managing pointers can perform very poorly in some runs
 - 2. It's possible to get very lucky or unlucky on where the algorithm starts and how much work needs to be done

Time Complexity:

Take a backwards approach to calculate time complexity

- The point is that the # of updates forward and backwards is the same Remove some random point p from S_i
 - Need to update pointers and edges

For some pointer, ptr_b, to need updating:

- One of the 2 points making up edge_b had to have been deleted

Therefore, P(pointer for point in S - S_i is updated) $\leq \frac{2}{i-3^*} = O(\frac{1}{i})$

* i - 3 because it can be any point except for the 3 initial non collinear points

E(# pointer updates for $S_{i-1} -> S_i$) = $O(\frac{n}{i})$

E(# pointer updates in total) =
$$O(\sum_{i=1}^{n-3} (\frac{n}{i})) = O(n \sum_{i=1}^{n} \frac{1}{i}) = O(n * log(n))$$

Prime Testing

Figuring out if a number is prime

INPUT: Number $N \le 10^{100}$

OUTPUT: {Yes: N is prime

{No: N is not prime

Approach 1: Brute Force (Deterministic)

Try dividing n by $2,3,...,\sqrt{n}$ (all primes)

about
$$\frac{\sqrt{n}}{\log(n)}$$
 divisions, $\approx 10^{50}$

* Probabilistic algorithm can output not prime or probably prime

Approach 2: Fermat's Little Theorem (Probabilistic)

If p is prime, then $\forall a$

Ex1:

$$p = 7$$
, $a = 3$

$$3^1 \equiv 3 \pmod{7}$$

$$3^2 \equiv 2 \pmod{7}$$

$$3^4 \equiv 4 \pmod{7}$$

 $3^6 \equiv 4 * 2 \equiv 8 \equiv 1 \pmod{7}$ \leftarrow this says that this 'a' value for this p value is not a witness

Ex2:

$$p = 6, a = 2$$

 $2^5 \equiv 2 \pmod{6}$ \leftarrow this is a witness to p being composite

Algorithm:

For some p:

- 1. Pick some a's and try to find witnesses
- 2. If no witnesses are found, p is probably prime
- 3. If a single witness is found, p is definitely composite

Limitations:

<u>Carmichael Numbers</u>:

These are composite numbers that $\forall a$ pass the Fermat test

Ex:

$$N = 3 * 11 * 17 = 561$$

$$\forall a < 561: a^{560} \equiv 1 \ (mod \ 561)$$

*Just because there is no 'a' for some p that $a^{p-1} \not\equiv 1 \pmod{p}$, it doesn't prove primality

Wilson's Theorem:

p is prime IFF
$$(p-1)! \equiv -1 \pmod{p}$$

*limitation: computing (p-1)! is too expensive

CRT:

$$x \equiv a_1 \pmod{p_1}$$

$$x \equiv a_2 \pmod{p_2}$$

$$\gcd(p_1, p_2) = 1$$

Then there is a <u>unique</u> solution (mod p_1p_2) that satisfy these 2 congruences

Fact:

$$x^2 \equiv 1 \pmod{p}$$

There are exactly 2 solutions in Z_p^+ to this congruence when p is prime

$$*Z_p^+ = \{1,...,p-1\}$$

$$x^2 - 1 \equiv 0 \pmod{p}$$

$$x^2 - 1 = \alpha p$$

$$(x+1)(x-1) = \alpha p$$
 $x = 1, -1$

*p cannot divide some x that is less than p, so x=1,-1 are the only 2 solutions

What about when p is not prime?

$$p = 15$$

Satisfies $x^2 \equiv 1 \pmod{p}$ by 1, -1, 4, 11

p = qr s.t. q, r are prime

$$x^2 \equiv 1 \pmod{q} \pm 1$$

$$y^2 \equiv 1 \pmod{r} \pm 1$$

 $(1, 1), (-1, -1), (1, -1), (-1, 1) \rightarrow \text{At least 4 square roots of unity when p is not prime}$

IDEA: try and find square roots of unity that aren't -1, 1 quickly:

Randomly pick:

- If we find one, number is composite because this square root of unity is a witness
- If not, we might have been unlucky

$$x^2 \equiv 1 \pmod{77}$$

$$(1, 1) \to 1$$

$$(-1, -1) \rightarrow p - 1 = 76$$

$$(1, -1) \rightarrow 43$$

$$(-1, 1) \rightarrow 34$$

P(finding root of unity) = 4/77

Not efficient, a more deliberate algorithm will be better

More deliberate algorithm:

Given p:

- 1. Check if even/odd \rightarrow if even and not 2, return composite [return prime if 2]
- 2. If odd:
 - a. Pick random 'a'
 - b. If $a^{p-1} \equiv 1 \pmod{p}$ not true, then return composite
 - c. Else:
 - i. If $a^{\frac{p-1}{2}} \neq 1$, -1, then return composite
 - ii. Else: repeat step i. with $a^{\frac{p-1}{4}}a^{\frac{p-1}{8}}$,... until:

Once $a^{\frac{p-1}{x}} = -1$, stop the algorithm

If a number that isn't 1 or -1 is found, p is composite.