

«Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИНФОРМ	АТИКА И СИСТЕМЫ У	УПРАВЛЕНИЯ <u> </u>
КАФЕДРА	КОМПЬЮ	ТЕРНЫЕ СИСТЕМЫ И	СЕТИ
НАПРАВЛЕНИЕ П гехника	ЮДГОТОВКИ	[09.03.01 Информатика	а и вычислительная
		ОТЧЕТ	
	по лабо	рраторной работе № 3	
Дисциплина: Маш	инно-зависимі	ые языки и основы комп	иляции
Название лаборат е циклов	орной работы	: Программирование ве	ствлений и итерационных
		Вариант: 17	
Студент	гр. ИУ6-431	04.03.2022 (Подпись, дата)	М.А. Мяделец (И.О. Фамилия)
Препола	ватель		М.В. Широкова

(Подпись, дата)

(И.О. Фамилия)

Программирование ветвлений и итерационных циклов

Цель работы: изучение средств и приемов программирования ветвлений и итерационных циклов на языке ассемблера.

Задание

Рассмотрим задание для лабораторной работы 3 (смотри рисунок 1).

Лабораторная работ №3. Программирование ветвлений и циклов.

Вычислить целочисленное выражение:

$$f = \begin{cases} a * y * \frac{(b-a)}{b} & \text{если } b - \text{четное} \\ a^5 - c^3 & \text{иначе} \end{cases}$$

Рисунок 1 - Условие задания

Краткие моменты решения:

- 1) Чтобы определить четность числа, можно применить побитовую операцию TEST, которая выполняет побитовое И без занесения результата. Тогда по значению флага ZF можно однозначно определить четность числа. Например, test 7, 1 = 1 (111 & 001 = 1), test 6, 1 = 0 (110 & 001 = 0).
- 2) Возведение в степень реализуем с помощью цикла, причем в пятую степень возведем, используя цикл-пока с помощью команд переходов, а в третью степень используя счетный цикл посредством команд организации циклов (смотри блок-схему алгоритма на рисунке 2).

Рисунок 2 - Блок-схема алгоритма

Таблица с результатами тестирования

Таблица 1 - Результаты тестирования

Исхо	дные	Значения функции
данн	ые	$f = \begin{cases} a * y * \frac{(b-a)}{b} & \text{если } b - \text{четное} \\ a^5 - c^3 & \text{иначе} \end{cases}$
a	-2	f(a, b, c, y) = (-2) * 7 * ((8 + 2) / 8) = (-14) * 1 = -14
b	8	Registers
С	3	EAX ffffff2
У	7	user@astra:/media/sf_/prog_asm/Lab_3\$./lab3_32 Result: –14
a	-2	$f(a, b, c, y) = (-2)^5 - 3^3 = -32 - 27 = -59$
b	9	Registers
c	3	EAX ffffffc5
У	7	user@astra:/media/sf_/prog_asm/Lab_3\$./lab3_32 Result: –59
a	4	$f(a, b, c, y) = 4^5 - 3^3 = 1024 - 27 = 997$
b	-1	Registers
c	3	EAX 000003e5
У	4	user@astra:/media/sf_/prog_asm/Lab_3\$./lab3_32 Result: 997
		Если а - положительное
a	12	f(a, b, c, y) = 12 * 3 * ((-4 - 12) / (-4)) = 36 * 4 = 144
b	-4	Registers
С	2	EAX 0000090
у	3	user@astra:/media/sf_/prog_asm/Lab_3\$./lab3_32 Result: 144
a	1	Исключение: на ноль делить нельзя
b	0	user@astra:/media/sf_/prog_asm/Lab_3\$./lab3_32
c	2	Division by zero
у	3	

Вывод: была сделана лабораторная работа 3, которая была нацелена на программирование ветвлений и итерационных циклов. Были изучены команды передачи управления, в частности команды условного и безусловного переходов. В ходе выполнения задания было принято решение возводить число в степень, используя циклы, поэтому в лабораторной работе также были применен цикл-пока и счетный цикл. Результаты тестирования корректны и оформлены в виде таблицы (смотри таблицу 1). Работа проведена успешно!

Контрольные вопросы

1) Какие машинные команды используют при программировании ветвлений и циклов?

При программировании циклов и ветвлений используют команду сравнения стр, команды условного перехода је, јпе, јl, јg...; безусловного перехода јтр. Для навигации используют метки.

2) Выделите в своей программе фрагмент, реализующий ветвление. Каково назначение каждой машинной команды?

В разработанной мной программе реализовано два вида циклов: цикл-пока с использованием команд переходов и счетный цикл с использованием команд организации циклической обработки.

Цикл-пока.

cycle:

cmp ECX, [n]
je break_cycle
jmp cycle

. . .

break_cycle:

Счетный цикл.

3) Чем вызвана необходимость использования команд безусловной передачи управления?

Тем, что необходимо пропускать некоторые операции, записанные последовательно. Например, в ветвлении пропустить ветку else, а в цикле осуществить выход из цикла.

4) Поясните последовательность команд, выполняющих операции ввода-вывода в вашей программе. Чем вызвана сложность преобразований данных при выполнении операций ввода-вывода?

Для осуществления операций ввода / вывода необходимо заполнить регистры определенными значениями, которые определять параметры системной функции. mov eax, 4 или mov eax, 3 задают системную функцию. В ebx пересылаем 0 или 1, тем самым указывания дескриптор файла stdin или stdout соответственно. есх принимает адрес строки для ввода / вывода, edx содержит длину строки. Вызов системной функции происходит через прерывание int 80h. Также для ввода / вывода понадобиться преобразовать строку в число или число в строку, используя модули библиотеки StrToInt или IntToStr соответственно.

ПРИЛОЖЕНИЕ

Текст программы

```
section .data
          dd -2
   a
   b
          dd 8
          dd 3
   C
          dd 7
          dd 5
   n
          dd 3
   m
   msg1
         db "Result: "
   lenm1
          equ $-msg1
msg0 db "Division by zero...", 10
          equ $-msg0
   lenm0
   endline db 10
           section .bss
   strres resb 10
           section .text
           global _start
   _start:
           test dword[b], 1; четное \& 1 = 0, нечетное \& 1 = 1
           jz else
                          ; b - нечетное, обрабатываем второе выражение
(ниже)
           mov EAX, 1
                      ; через цикл-пока считаем a^n, где n = 5
           mov ECX, 0
   cycle:
                  cmp ECX, [n]
                  je break_cycle
                   imul dword[a]
                   inc ECX
                  jmp cycle
```

break_cycle: mov EBX, EAX ; a^n помещаем в EBX ; через счетный цикл считаем c^m , где m = 3mov EAX, 1 mov ECX, [m] jcxz end_loop begin_loop: imul dword[c] loop begin_loop end loop: sub EBX, EAX ; $a^n - c^m$ mov EAX, EBX ; результат в EAX jmp continue else: ; обрабатываем первое выражение mov EAX, [b] cmp EAX, 0 je exception ; если b = 0, "генерируем исключение" sub EAX, [a] ; b - a cdq idiv dword[b] ; (b - a) / b imul dword[a] ; a * y * (b - a) / b jmp continue exception: ; выводим "Division by zero..." mov eax, 4 mov ebx, 1 mov ecx, msg0 mov edx, lenm0 int 80h

; выводим "Result: <EAX>"

jmp exit

continue:

```
eax, 4 ; Выводим "Result: "
          mov
                  ebx, 1
          mov
                  ecx, msg1
          mov
          mov
                  edx, lenm1
           int
                  80h
          pop eax
                          ; в ЕАХ хранится целочисленный результат
          mov esi, strres ; заносим в esi буфер для результата строки
          call IntToStr ; esi теперь хранит адрес строки "<EAX>", а EAX
- длину строки
          mov edi, eax
          mov eax, 4
          mov ebx, 1
          mov ecx, esi
                           ; esi содержит адрес строки "<EAX>"
          mov edx, edi
                                 ; edi содержит длину строки "<EAX>"
          int 80h
   exit:
          ; exit
                  eax, 1
                                 ; системная функция 1 (exit)
          mov
                  ebx, ebx
                                 ; код возврата 0
          xor
           int
                  80h
                                  ; вызов системной функции
```

push eax

%include "./lib.asm"