

DATA SHEET

Logic

Order code	Manufacturer code	Description
83-0262	HCF4001BM1	4001BM QUAD 2-INPUT NOR GATE
83-0278	HCF4025BM1	4025MB TRIPLE 3-INPUT NOR GATE
83-0314	HCF4000BEY	4000B DUAL 3 INPUT NOR GATE + INVERT
83-0316	HCF4001BEY	4001B QUAD 2 INPUT NOR GATE
83-0318	HCF4002BEY	4002B DUAL 4 INPUT NOR GATE
83-0356	HCF4025BEY	4025B TRIPLE 3 INPUT NOR GATES

Logic	Page 1 of 14
The enclosed information is believed to be correct, Information may change 'without notice' due to	Revision A
product improvement. Users should ensure that the product is suitable for their use. E. & O. E.	04/07/2003

Sales: 01206 751166 Technical: 01206 835555 Fax: 01206 7551188 Sales@rapidelec.co.uk Tech@rapidelec.co.uk www.rapidelectronics.co.uk

HCC/HCF4000B-4001B HCC/HCF4002B-4025B

NOR GATE

4000B-DUAL 3 INPUT PLUS INVERTER 4001B-QUAD 2 INPUT 4002B-DUAL 4 INPUT 4025B TRIPLE 3 INPUT

- PROPAGATION DELAY TIME = 60 ns (typ.) AT C_L = 50 pF, V_{DD} = 10 V
- BUFFERED INPUTS AND OUTPUTS
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- QUIESCENT CURRENT SPECIFIED TO 20 V FOR HCC DEVICE
- 5V, 10V AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25 °C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTEN-TATIVE STANDARD N. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

DESCRIPTION

The HCC4000B, HCC4001B, HCC4002B and HCC4025B (extended temperature range) and HCF4000B, HCF4001B, HCF4002B and HCF4025B (intermediate temperature range) are monolithic integrated circuit, available in 14-lead dual in line plastic or ceramic package and plastic

micropackage.

The HCC/HCF4000B, HCC/HCF4001B, HCC/HCF 4002B and HCC/HCF4025B nor gate provide the system designer with direct implementation of the nor function and supplement the existing family of COS/MOS gates. All inputs and outputs are buffered.

PIN CONNECTIONS

September 1988 1/13

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage: HCC Types HCF Types	-0.5 to +20 -0.5 to +18	V V
Vi	Input Voltage	-0.5 to V _{DD} + 0.5	V
II	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor	200	mW
	for Top = Full Package Temperature Range	100	mW
T_{op}	Operating Temperature: HCC Types HCF Types	-55 to +125 -40 to +85	°C °C
T _{stg}	Storage Temperature	-65 to +150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage: HCC Types	3 to 18	V
	HCF Types	3 to 15	V
VI	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature: HCC Types	-55 to +125	°C
·	HCF Types	-40 to +85	°C

^{*} All voltage values are referred to V_{SS} pin voltage.

SCHEMATIC AND LOGIC DIAGRAMS

SCHEMATIC AND LOGIC DIAGRAMS (continued)

4002B V_{DD} ∳14 (12) (11) 4* (10) 5* 0-(9) 5005770 1 OF 2 GATES (NUMBERS IN PARANTHESES ARE THERMINAL FOR SEC-OND GATE)

4025B

INVERTER AND 1 OF 3 GATES (NUMBERS IN PARANTHESES ARE THERMINAL FOR OTHER GATES)

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

				Test Con	ditios					Value				
Symbol	Parame	ter	Vı	Vo	lo	V _{DD}	TLC	w *		25 °C		THI	3H *	Unit
				(V)	(µA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/5			5		0.25		0.01	0.25		7.5	
	Current	HCC	0/10			10		0.5		0.01	0.5		15	
		Types	0/15			15		1		0.01	1		30	
			0/20			20		5		0.02	5		150	μΑ
		HCF	0/5			5		1		0.01	1		7.5	
		Types	0/10			10		2		0.01	2		15	15
		.,,,,,	0/15			15		4		0.01	4		30	
V_{OH}	Output High		0/5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V_{OL}	Output Low		5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V_{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V_{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	
	Voltage			9/1	< 1	10		3			3		3	V
				13.5/1.5	< 1	15		4			4		4	
Іон	Output		0/5	2.5		5	-2		-1.6	-3.2		-1.15		
	Drive	HCC	0/5	4.6		5	-0.64		-0.51	-1		-0.36		
	Current	Types	0/10	9.5		10	-1.6		-1.3	-2.6		-0.9		
			0/15	13.5		15	-4.2		-3.4	-6.8		-2.4		mA
			0/5	2.5		5	-1.53		-1.36	-3.2		-1.1		
		HCF	0/5	4.6		5	-0.52		-0.44	-1		-0.36		
		Types	0/10	9.5		10	-1.3		-1.1	-2.6		-0.9		
			0/15	13.5		15	-3.6		-3.0	-6.8		-2.4		
IoL	Output	нсс	0/5	0.4		5	0.64		0.51	1		0.36		
	Sink	Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Current		0/15	1.5		15	4.2		3.4	6.8		2.4		mA
		HCF	0/5	0.4		5	0.52		0.44	1		0.36		
		Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
		''	0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input HCC Leakage Types	0/18	Any In	nut	18		±0.1		±10 ⁻⁵	±0.1		±1	μА	
	Current	HCF Types	0/15	7 W 19 111	- Lui	15		±0.3		±10 ⁻⁵	±0.3		±1	μπ
Cı	Input Capacitance			Any In	put					5	7.5			pF

^{*} T_{LOW} = -55 °C for **HCC** device: -40 °C for **HCF** device.

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} = 5 V, 2 V min. with V_{DD} = 10 V, 2.5 V min. with V_{DD} = 15 V

^{*} T_{HIGH} = +125 °C for **HCC** device: +85 °C for **HCF** device.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25$ °C, $C_L = 50$ pF, $R_L = 200$ K Ω , typical temperature coefficent for all V_{DD} values is 03 %/°C, all input rise and fall times= 20 ns)

Symbol	Parameter	Test Condition	Value			Unit	
	r ai ailletei		$V_{DD}(V)$	Min.	Тур.	Max.	Oill
t _{PHL}	Propagation Delay Time		5		125	250	
t _{PLH}			10		60	120	ns
			5		45	90	
t _{THL}	Transition Time		5		100	200	
t _{TLH}			10		50	100	ns
			15		40	80	

Typical Output Low (sink) Current Characteristics

Typical Output High (source) Current Characteristics

Minimum Output Low (sink) Current Characteristics

Minimum Output High (sorce) Current Characteristics

Typical Transition Time vs Load Capacitance

Typical Voltage Transfer Characteristics as a Function of Temperature

Typical Propagation Delay Time vs Load Capacitance

Typical Power Dissipation Per Gate vs Frequency

TEST CIRCUITS

Quiescent Device Current.

Noise Immunity.

Input Leakage Current.

Plastic DIP14 MECHANICAL DATA

DIM.		mm		inch			
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	1.39		1.65	0.055		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		15.24			0.600		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z	1.27		2.54	0.050		0.100	

Ceramic DIP14/1 MECHANICAL DATA

DIM.		mm		inch			
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			20			0.787	
В			7.0			0.276	
D		3.3			0.130		
Е	0.38			0.015			
e3		15.24			0.600		
F	2.29		2.79	0.090		0.110	
G	0.4		0.55	0.016		0.022	
Н	1.17		1.52	0.046		0.060	
L	0.22		0.31	0.009		0.012	
М	1.52		2.54	0.060		0.100	
N			10.3			0.406	
Р	7.8		8.05	0.307		0.317	
Q			5.08			0.200	

SO14 MECHANICAL DATA

DIM.		mm				
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	8.55		8.75	0.336		0.344
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		7.62			0.300	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.68			0.026
S			8° (ı	max.)		

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
5.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

