计算机组成

时序电路 (从RS锁存器到D寄存器)

(2025秋)

高小鹏

北京航空航天大学计算机学院

目录

- □ 双稳态电路
- □ RS锁存器
- □ D锁存器
- □ D寄存器
- □ 增强D寄存器的功能

目录

- □ 双稳态电路
- □ RS锁存器
- □ D锁存器
- □ D寄存器
- □ 增强D寄存器的功能

RS锁存器

- □ 结构特征: 2个或非门输出信号交叉反馈
 - 2个输入信号: 1个来自外部输入, 1个来自另一门的输出
- □ 输出诉求: 2个输出值应该为互补(一个若为0, 另一个则1)
- □ *Q_{prev}/Q* : 代表推理<mark>前</mark>/后的值
 - 由于内部输入就是外部输出,为了便于书写表达式和推理,因此使用独立的命名

$$Q = \overline{R|\bar{Q}_{prev}}$$

$$\bar{Q} = \overline{S|Q_{prev}}$$

.

RS锁存器

- 先分析:外部輸入能直接决定輸出值的组合
 - 以或非门为例:如果任意外部输入为1,则输出必为0
- □ 再分析:外部输入不能直接决定输出值的组合
 - 假设 Q_{prev} 值然后推理。重点关注:推理得出的Q和假设的 Q_{prev} 是否一致

序	S	R	Q_{prev}	Q	$ar{Q}$
1	0	1	Х	0	1
2	1	0	Χ	1	0
3	1	1	Х	0	0
4.1	0	0	0	0	1
4.2	0	0	1	1	0

假设Q_{prev}为0 假设Q_{prev}为1

.

RS锁存器:一个R/S为开关的盒子

- □ 1) 当R和S为0/1或1/0组合时,则电路的内部取值与R/S取值相关
- □ 2)当R和S为0/0时,则电路的内部取值与R/S取值无关,而是取决于之前的内部取值
- □ 如果内部电路看成是一把可以能放入0或1的盒子, 那么R/S的取值就是开关
 - ◆ R/S取值为0/0: 开关在正中, 盒子关闭。之前放入了什么, 那盒子就永远是什么
 - R/S取值为0/1: 开关往左拧, 盒子打开&放入1
 - R/S取值为1/0: 开关往右拧, 盒子打开&放入0

序	S	R	Q_{prev}	Q	$ar{Q}$
1	0	1	Х	0	1
2	1	0	Х	1	0
3	1	1	Х	0	0
4.1	0	0	0	0	1
4.2	0	0	1	1	0

-

如何使用RS锁存器,才能保存0或1?

- □ 以保存1为例。进行反向推理
 - ◆ -1步: 要想保存1, 意味着R/S取值为0/0, 并且Q_{orev}必须为1
 - ◆ -2步: 如果Q_{prev}为1, 则必须让R/S取值为0/1
- □ 正向设置
 - ◆ 第1步:设置R/S取值为0/1,目的在于设置Q(即Q_{orev})为1
 - ◆ 第2步: 设置R/S取值为0/0, 目的在于让内部状态与R/S(外部信号)无关

	序	S	R	Q_{prev}	Q	$ar{Q}$	
	1	0	1	Х	0	1	
	2	1	0	Х	1	0	
	3	1	1	Х	0	0	
	4.1	0	0	0	0	1	
U	4.2	0	0	1	1	0	

8

通过组合操作实现保存"1" (动态过程分析)

- □ 分析要点: N1和N2独立工作, 执行时间相同
 - ◆ 以N1为例,其计算结果在N2计算完成之前,仅与N1当前输入有关
- \blacksquare T0: R=0, S=1, Q=1, \bar{Q} =0
- □ T1: R=0, S=0
 - N2: Q_{prev} =1且S=0,因此 $\bar{Q}=0$
 - N1: 类似分析, 因此Q=1
- □ T2: R=0, S=0(S继续保持)
 - Q和 \bar{Q} ,可以继续保持之前的值

□ 在S从1变为0后, N1和N2的计算结果, 均不再改变

S 1 1

RS锁存器

- □ RS锁存器功能: 清除、置位、保持
 - S: 代表Set的意思
 - R: 代表Reset的意思
- □ 使用禁忌: R和S不能同时为1

序	S	R	Q_{prev}	Q	Q	
1	0	1	Х	0	1	
2	1	0	Х	1	0	
3	1	1	Х	0	0	
4.1	0	0	0	0	1	
4.2	0	0	1	1	0	

功能	S	R	Q	$ar{Q}$
清除	0	1	0	1
置位	1	0	1	0
保持	0	0	Q_{prev}	$ar{Q}_{prev}$
非法	1	1	0	0

课堂练习:用与非门构造RS锁存器

□ RS锁存器功能: 清除、置位、保持

• S: 代表Set的意思

• R: 代表Reset的意思

□ 使用禁忌: R和S不能同时为0

序	S	R	Q_{prev}	Q	$ar{Q}$
1	0	1	Х	0	1
2	1	0	Х	1	0
3	0	0	Х	0	0
4.1	1	1	0	0	1
4.2	1	1	1	1	0

功能	S	R	Q	$ar{Q}$
清除	0	1	0	1
置位	1	0	1	0
保持	1	1	Q_{prev}	$ar{Q}_{prev}$
非法	0	0	1	1

1

课堂讨论

□ Q: 能否只用AND或者OR构造RS寄存器?

RS锁存器的局限性

- □ 从语义上看:寄存器保存的是数据,因此外部特性应该是有数据输入和数据输出
 - ◆ R和S的语义是控制,与寄存器的外部特性的需求不一致
- □ 从时序上看:数字系统为协调各部分电路运行,要求电路在<mark>时钟信号</mark>控制下统一动作
 - 仅在时钟边沿处(0→1)保存输入,但RS锁存器不具有时间特性
- □ 期望的存储单元
 - ◆ D: 输入
 - Q: 输出
 - CLK: 时钟

目录

- □ 双稳态电路
- □ RS锁存器
- □ D锁存器
- □ D寄存器
- □ 增强D寄存器的功能

D锁存器的意义

- □ 有了时间概念,即:When, What
 - ◆ When: CLK, 决定何时保存
 - ◆ What: D, 决定保存何值
 - ◆ CLK = 1: D传递至Q(透明传输)
 - ◆ CLK = 0: Q保持为前值
- 避免了非法状态,即确保了Q≡NOT Q̄
 - 不会出现Q与Q同值

目录

- □ 双稳态电路
- □ RS锁存器
- □ D锁存器
- □ D寄存器
- □ 增强D寄存器的功能

D寄存器

- □ 内部结构:由2个锁存器串接而成,并且时钟反相
 - CLK = 0
 - L1: 透传; L2: 保持
 - D传递至N1
 - CLK = 1
 - L1: 保持; L2: 透传
 - N1传递至Q

			CLK				
C	LK		\sim				
	CL	K		CL	K		
D-	D	Q	N1	D	Q	Q	
	L1	Q	-	L2	Q	Q	

CLK	CLK	D	N1	Q
0	1	0	0	Q _{prev}
0	1	1	1	Q _{prev}
1	0	Χ	0	0
1	0	Χ	1	1

D寄存器

- □ 内部结构:由2个锁存器串接而成,并且时钟反相
 - CLK = 0
 - L1: 透传; L2: 保持
 - D传递至N1
 - CLK = 1
 - L1: 保持; L2: 透传
 - N1传递至Q

□ 外部特性: CLK从0变为1(时钟边沿)时, D被L1锁存并透传至Q

CLK	D	Q				
0	Χ	$Q_{ m prev}$				
1	D					
D锁存器真值表						

CLK	CLK	D	N1	Q
0	1	0	0	Q_{prev}
0	1	1	1	Q_{prev}
1	0	Χ	0	0
1	0	Χ	1	1

D寄存器工作时序 □ 实现了边沿处保存数据 □ D在非边沿区域的任何变化都不会影响Q CLK CLK CLK **CLK** N1 Q $\mathsf{D} \dashv \mathsf{D}$ D $Q \vdash Q$ L1 Q $L2 \overline{Q} - \overline{Q}$!CLK CLK D D Χ Q_{prev} N1 1 D D D锁存器真值表 不关心

D寄存器

- □ 输入: CLK, D
- □ 功能: CLK上升沿时采样D
 - ◆ CLK从0变为1: D传递至Q
 - ◆ 其他条件: Q保持前值
- □ 输出: Q, 仅在CLK上升沿处改变
- □ 这种特性被称为边沿触发

D寄存器的时间特性

- □ 决定D值能否被保存,取决于T_S和T_H
- □ 决定Q值最快多久能被<mark>看见</mark>,取决于**T**₀
- □ T_S: 建立时间, Setup Time
 - ◆ CLK边沿前, D必须保持稳定的时间
- □ T_H: 保持时间, Hold Time
 - ◆ CLK边沿后, D必须保持稳定的时间
- □ To: 输出延迟, CLK-to-Q延迟
 - ◆ CLK边沿后, Q输出有效值的时间

目录

- □ 双稳态电路
- □ RS锁存器
- □ D锁存器
- □ D寄存器
- □ 增强D寄存器的功能

多路选择器(MUX)

□ MUX: 根据控制信号取值, 让输出信号的取值为多个输入信号的某个取值

□ 二选一, 2:1 MUX

S	D_1	D_0	Υ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

真值表

卡诺图/表达式

带使能的D寄存器

□ 输入: CLK, D, EN

◆ EN: EN有效时, D才能被写入寄存器

□ EN = 1: 当时钟上升沿时, D写入寄存器

□ EN = 0: 寄存器保持前值

带同步清除的D寄存器

□ 输入: CLK, D, Reset

□ Reset = 1: 寄存器被强制写入0

□ Reset = 0: 寄存器可以被自由写入

