TRANSLATION of Official.Action of February 10, 2004

123PAT469-DE

1. DE 196 39 178 C2

A. The problem explicitly defined in the application resides in providing an inductance device current control circuit, an information storage device and an inductance device current control method, for expedient driving of a bias magnetic field application device for which an inductance device is used in an information storage device even with a small instruction value of the electric current (cf. page 10, lines 18 to 27)

From the paragraph on page 2 of the description (cf. line 30 to page 3, line 4) a different problem may be deduced which is obviously the objective problem and resides in adjusting the strength of a magnetic field applied to a record carrier for reproduction during the latter so that the level of the reproduction signal is not diminished and reproduction errors are avoided.

B. Publication 1 has been found with reference to the subject of claim 1.

Publication 1 discloses the principle of driving the coils of a direct current motor (10) (inductance device) by means of an inductance device driving system (cf. Fig. 5, Fig. 6 and Fig. 8 with the respective description passages), said system supplying a predetermined electric current to the coil of the direct current motor (10) in that a pulse width of a voltage (cf. Fig. 14a, 14b and 14c with description) applied to the inductance device is changed in accordance with a current instruction value E. The system here comprises

- a current detection section (42) which detects the electric current flowing through the inductance device (10);
- a comparison section (23) which compares a detection current value detected by the current detection section (42) with the current instruction value; a current control section (46) which switches on/off the voltage applied to the inductance according to the comparison result of the comparison section; and

P.03

4) :

an off-time control section (451, 25, 46) which controls an off time for which the application of the voltage to the inductance device (10) is interrupted according to a current instruction value E (cf. column 12, lines 10 to 63, and Fig. 14a, 14b and 14c with description).

Thus, all the features of claim 1 are already known from publication 1.

Although not explicitly set forth in claim 1, the application of this known principle of driving the inductance of a direct current motor by means of an inductance driving device to the driving of head inductance (inductance device) of a magnetooptical disc apparatus is also not able to substantiate inventive level.

Claim 1 is therefore not allowable because of lack of inventive level of its subject.

After removal of claim 1, the claims 2 to 8 appended thereto are not allowable either, expecially since their features are known from publication 1, for example that the off-time control section sets the off time such that the off time becomes longer when the current instruction value is smaller (claim 2) or that the off-time control section sets the off time such the off time becomes shorter when the current instruction value is greater (claim 3) (cf. column 12, lines 10 to 63, and Fig. 14a, 14b and 14c with description), and that the voltage application control section (211) of the inductance device driving system comprises a switching section (222, 223, 224, 225) which controls the application of the voltage to the inductance device from a power source, and a free-wheeling diode (226, 227, 228, 229) which effects that an electric current generated in the inductance device when the switching section switches from an on state to an off state flows into the power source (claim 8) (cf. likewise publication 1, Figs 5 and 6 with the corresponding description passages).

C. Claim 9 is worded as independent claim and directed to an information storage device.

A requirement of independent claims is however that they contain a solution of the technical overall problem which is different from the solutions set forth in the other independent claims (in this case claim 1) De va

However, claim 9 substantially repeats the features of claim 1. It is however obvious to the person skilled in the art, needing no inventive effort, to apply a magnetic field generated by the magnetic field application section (35), driven in accordance with publication 1, to a record carrier if necessary, weighing up the advantages and disadvantages.

Claim 9 is therefore not allowable, firstly because of its unjustified wording as independent claim and secondly at least because of lack of inventive level of its subject (cf. A).

After removal of claim 9 the claims 11 to 16 appended thereto are not allowable either, especially since no inventive matter can be seen in them either.

D. Claim 17 is worded as independent claim and directed to an inductance device driving method.

It must be remembered when choosing the patent category (device/ method) that with claims of several categories it is necessary for the claim of the one category to add something to the claim of the other category, that is to further develop the invention idea (cf. Benkard, Patent Law, 8th edition, § 35, marginal No. 76).

However, the mere repetition of statements of effect of a claimed subject (in this case claim 1) is obvious matter and does not add anything.

Claim 17 is therefore not allowable, firstly because of its unjustified wording as independent claim and secondly because of lack of novelty (cf. A) of its subject.

After removal of claim 17 the claims 18 to 20 appended thereto are not allowable either, especially since no inventive matter can be seen in them either.

E. Since nothing which might be made the subject of an allowable statement of claim is apparent from the remaining documents either, rejection of the application is to be expected.

Examiner for Class G11B

Deutsches Patent- und Markenamt

München, den 10. Februar 2004

Telefon: (089) 2195 - 2855

Aktenzeichen: 101 46 723.0-53

Anmelder: Fujitsu Ltd.

Deutsches Patent- und Markenamt - 80297 München

Seeger & Seeger Patentanwälte Georg-Hager-Str. 40 81369 München

Patentanwälte Seeger & Seeger Eingegangen/Received

1 0. März 2004

Frist:

Ihr Zeichen: 123PAT469-DE

Sitte Aktenzeichen und Anmelder bei allen Eingaben und Zahlungen angeben

Zutreffendes ist angekreuzt 🗵 und/oder ausgefüllt!

Prüfungsantrag, Einzahlungstag am 27. September 2001

Eingabe vom

eingegangen am

Die weitere Prüfung der oben genannten Patentanmeldung hat zu dem nachstehenden Ergebnis geführt. Zur Außerung wird eine Frist von

Vier Monat(en)

gewährt. Die Frist beginnt an dem Tag zu laufen, der auf den Tag des Zugangs des Bescheids folgt.

Für Unterlagen, die der Äußerung gegebenenfalls beigefügt werden (z.B. Beschreibung, Beschreibungsteile, Patentansprüche, Zeichnungen), sind je zwei Ausfertigungen auf gesonderten Blättern erforderlich. Die Äußerung selbst wird nur in einfacher Ausfertigung benötigt.

Werden die Beschreibung, die Patentansprüche oder die Zeichnungen im Laufe des Verfahrens geändert, so hat der Anmelder, sofern die Änderungen nicht vom Deutschen Patent- und Markenamt vorgeschlagen sind, im Einzelnen anzugeben, an welcher Stelle die in den neuen Unterlagen beschriebenen Erfindungsmerkmale in den ursprünglichen Unterlagen offenbart sind.

In diesem Bescheid ist folgende Entgegenhaltung erstmalig genannt. (Bei deren Nummerierung gilt diese auch für das weitere Verfahren);

- siehe Folgeseite(n) -

Anlage: Abl. von 1 Entgegenhaltung (2-fach)

- 2 -

Hinweis auf die Möglichkeit der Gebrauchsmusterabzweigung

Der Anmelder einer mit Wirkung für die Bundesrepublik Deutschland eingereichten Patentanmeldung kann eine Gebrauchsmusteranmeldung, die den gleichen Gegenstand betrifft, einreichen und gleichzeitig den Anmeldetag der früheren Patentanmeldung in Anspruch nehmen. Diese Abzweigung (§ 5 Gebrauchsmustergesetz) ist bis zum Ablauf von 2 Monaten nach dem Ende des Monats möglich, in dem die Patentanmeldung durch rechtskräftige Zurückweisung, freiwillige Rücknahme oder Rücknahmefiktion erledigt, ein Einspruchsverfahren abgeschlossen oder - im Falle der Erteilung des Patents - die Frist für die Beschwerde gegen den Erteilungsbeschluss fruchtlos verstrichen ist. Ausführliche Informationen über die Erfordemisse einer Gebrauchsmusteranmeldung, einschließlich der Abzweigung, enthält das Merkblatt für Gebrauchsmusteranmelder (G 6181), welches kostenlos beim Patent- und Markenamt und den Patentinformationszentren erhältlich ist.

Dokumentenannahme und Nachtbriefkasten nur Zwolbrückenstraße 12 Hauptgebäude Zweibrückenstreße 12 Zweibrückenstreße 5-7 (Breiterhof) Markenabteilungen: Cincinnstistreße 64 81534 München

Hausadresse (für Fracht) Deutsches Patent- und Markenem Zweibrückenstraße 12 80331 München Telefon (089) 2195-0 Telefax (089) 2195-2221 Internet: http://www.dpma.d Zahlungsempfänger; Bundeskasse Welden BBK München KLO-M-1700 010 54 BLZ-700 000 00 BLZ-700 000 000 MARKDEF1700 IBAN: DE84 7000 0000 0070 0010 54

P 2401.1

-Bahnanschluss (m lünchner Verkehrs- und arbverbund (MVV):

→

Zweibrückenstr. 12 (Häustgeböude) Zweibrückenstr. 5-7 (Breiterhof) S1 - SE Haltestelle (serter

Cincinnathtraßa: S2 Haltestelle Fasangarten

SEP-14-2004 11:12

in der Anmeldung explizit genannte Aufgabe besteht darin eine Induktivitätsvorrichtungsstromsteuerschaltung, eine Informationsspeichervorrichtung und Induktivitätsvorrichtungsstromsteuerverfahren vorzusehen. zum zweckmäßigen Antreiben einer Vorspannungsmagnetfeldanwendungsvorrichtung, für die eine Induktivitätsvorrichtung verwendet wird. einer Informationsspeichervorrichtung selbst bei einem kleinen Instruktionswert des elektrischen Stromes (vgl. Seite 10, Zeile 18 bis 27),

Der Absatz auf Seite 2 der Beschreibung (vgl. Zeile 30 bis Seite 3, Zeile 4) lässt auf eine andere Aufgabe schließen, die offensichtlich die objektive Aufgabe darstellt und darin besteht, die Stärke eines Magnetfeldes, das zur Wiedergabe an einen Aufzeichnungsträger anliegt, während der Wiedergabe so einzustellen, dass sich der Pegel des Wiedergabesignals nicht verringert und Wiedergabefehler verhindert werden.

B. Zum Gegenstand des Patentanspruchs 1 wurde die Druckschrift 1 ermittelt.

Aus der Druckschrift 1 ist das Prinzip der Ansteuerung der Spulen eines Gleichstrommotors (10) (Induktivitätsvorrichtung) mittels eines Induktivitätsvorrichtungstreibersystems (vgl. Fig. 5, Fig. 6 und Fig. 8 jeweils mit Beschreibung) bereits bekannt, wobei dieses der Spule des Gleichstrommotors (10) einen vorbestimmten elektrischen Strom zuführt, indem eine Impulsbreite einer Spannung (vgl. Fig. 14a, 14b und 14c mit Beschreibung), die auf die Induktivitätsvorrichtung angewendet wird, gemäß einem Strominstruktionswert E verändert wird. Das System umfasst dabei

eine Stromdetektionssektion (42), die den elektrischen Strom detektiert, der durch die Induktivitätsvorrichtung (10) fließt;

eine Vergleichssektion (23), die einen Detektionsstromwert, der durch die Stromdetektionssektion (42) detektiert wurde, mit dem Strominstruktionswert vergleicht;

eine Stromsteuersektion (46), welche die Spannung, die auf die Induktivität angewendet wird, gemäß dem Vergleichsresultat der Vergleichssektion (23) ein- und ausschaltet; und

eine Aus-Zeit-Steuersektion (451, 25, 46), die eine Aus-Zeit, für die die Anwendung der Spannung auf die Induktivitätsvorrichtung (10) unterbrochen wird, gemäß einem Strominstruktionswert E steuert (vgl. Spalte 12, Zeile 10 bis 63 sowie Fig. 14a, 14b und 14c mit Beschreibung).

Somit sind alle Merkmale des Patentanspruch 1 bereits aus der Druckschrift 1 bekannt.

Dieses bekannte Prinzip der Ansteuerung der Induktivität eines Gleichstrommotors mittels einer Induktivitätstreibervorrichtung auf die Ansteuerung der Kopfinduktivität (Induktivitätsvorrichtung) einer magnetooptischen Plattenvorrichtung anzuwenden, obwohl nicht explizit im Patentanspruch 1 genannt, vermag auch nicht die Erfindungshöhe zu stützen.

Der Patentanspruch 1 ist daher mangels Erfindungshöhe seines Gegenstandes nicht gewährbar.

Nach Wegfall des Patentanspruchs 1 fallen auch die auf diesen rückbezogenen Patentansprüche 2 bis 8, zumal deren Merkmale, z. B. dass die Aus-Zeit-Steuersektion die Aus-Zeit so festlegt, dass die Aus-Zeit länger wird, wenn der Strominstruktionswert kleiner ist (Patentanspruch 2) bzw. dass die Aus-Zeit-Steuersektion die Aus-Zeit so festlegt, dass die Aus-Zeit kürzer wird, wenn der Strominstruktionswert größer ist (Patentanspruch 3) aus der Druckschrift 1 (vgl. Spalte 12, Zeile 10 bis 63 sowie Fig. 14a, 14b und 14c mit Beschreibung) und dass die Spannungsanwendungsteuersektion (211) des Induktivitätsvorrichtungstreibersystems eine Schaltsektion (222,223,224,225) umfasst, die die Anwendung der Spannung auf die Induktivitätsvorrichtung von einer Energiequelle steuert sowie eine Freilaufdiode (226,227,228,229) umfasst, die bewirkt, dass ein elektrischer Strom, der in der Induktivitätsvorrichtung erzeugt wird, wenn die Schaltsektion von einem Ein-Zustand auf einen Aus-Zustand schaltet, in die Energiequelle fließt (Patentanspruch 8) ebenfalls aus der Druckschrift 1 (vgl. Fig. 5 und Fig. 6 jeweils mit Beschreibung) bekannt sind.

C. Der Patentanspruch 9 ist als Nebenanspruch formuliert und auf eine Informationsspeichervorrichtung gerichtet.

Von Nebenansprüchen muss jedoch verlangt werden, dass sie eine andere Lösung der technischen Gesamtaufgabe beinhalten, die von den in den anderen Nebenansprüchen (hier: Patentanspruch 1) genannten Lösungen unabhängig sind.

Mit dem Patentanspruch 9 werden im wesentlichen jedoch die Merkmale des Patentanspruch 1 wiederholt. Ein Magnetfeld, erzeugt durch die Magnetfeldanwendungssektion (35), welche entsprechend der Druckschrift 1 angesteuert wird, unter Abwägung der Vor- und Nachteile bei Bedarf auf einen Aufzeichnungsträger anzuwenden ist für einen Fachmann jedoch naheliegend und bedarf somit keiner erfinderischen Tätigkelt.

Der Patentanspruch 9 ist daher einerseits wegen seiner nicht berechtigten Fassung als Nebenanspruch und andrerseits zumindest mangels Erfindungshöhe (vgl. A.) seines Gegenstandes nicht gewährbar.

Nach Wegfall des Patentanspruchs 9 fallen auch die auf diesen rückbezogenen Patentansprüche 11 bis 16, zumal diese ebenfalls keine erfinderischen Besonderheiten erkennen lassen.

D. Der Patentanspruch 17 ist als Nebenanspruch formuliert und auf ein Induktivitätsvorrichtungstreiberverfahren gerichtet.

Bei der Wahl der Patentkategorie (Vorrichtung/Verfahren) ist zu berücksichtigen, dass bei Ansprüchen mit mehreren Patentkategorien verlangt werden muss, dass der der einen Kategorie angehörende Patentanspruch den der anderen Kategorie angehörende Patentanspruch etwas zusätzliches hinzufügt, also den Erfindungsgedanken weiter ausgestaltet (vergleiche Benkard, Patentgesetz, 8. Auflage, §35, Rdn. 76).

Die bloße Wiederholung von Wirkungsangaben eines beanspruchten Gegenstandes (hier Patentanspruch 1) stellt jedoch eine Selbstverständlichkeit dar und fügt nichts Zusätzliches hinzu.

Der Patentanspruch 17 ist daher einerseits wegen seiner nicht berechtigten Fassung als Nebenanspruch und andrerseits mangels Neuheit (vgl. A.) seines Gegenstandes nicht gewährbar.

101 46 723.0-53

Nach Wegfall des Patentanspruchs 17 fallen auch die auf diesen rückbezogenen Patentansprüche 18 bis 20, zumal diese ebenfalls keine erfinderischen Besonderheiten erkennen lassen.

GREER, BURNS & CRAIN, LTD

E. Da auch den übrigen Unterlagen nichts mehr entnommen werden kann, was noch zu einem gewährbaren Patentbegehren gemacht werden könnte, ist die Zurückweisung der Anmeldung zu erwarten.

Prüfungsstelle für Klasse G11B

Mitarbeiter Dipl.-Phys. Sommer

Dipl.-Ing. Ulfers

BUNDESREPUBLIK DEUTSCHLAND

® Patentschrift _® DE 196 39 178 C 2

⑤ Int. Cl.7: B 62 D 5/04 H 02 P 7/00 // B62D 153:00

DEUTSCHES PATENT. UND MARKENAMT

196 39 178.4-21 (n) Aktenzeichen: 24. 9, 1996 Anmeldetag: 27. 3. 1997

(I) Offenlegungstag: Veröffentlichungstag **(E)** der Patentertellung: 16. 8. 2001

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

① Unionspriorität:

7-269041 7-269042 25. 09. 1995 25. 09. 1995 JP

(B) Patentinhaber: NSK Ltd., Tokio/Tokyo, JP

(N) Vertreter: HOFFMANN - EITLE, 81925 München (72) Erfinder:

Endo, Shuji, Maebashi, Gunma, JP; Itakura, Yusuke, Maebashi, Gunma, JP; Kobayashi, Hideyuki, Maebashi, Gunma, JP

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

44 02 423 A1 05-10 270 B2 JP

Steuervorrichtung für elektrisches Lenkservosystem

Steuervorrichtung für ein elektrisches Lenkservosystem, welches eine Rückkopplungssteuervorrichtung (24, 25, 26, 27) aufweist, um einen Abtriebswert eines Motors (M; 10) zu steuern, der eine Lenkhilfskraft an einen Lenkmechanismus (1, 2, 4, 5a, 5b, 7, 8) abgibt, entsprechend einem Wert (E) eines Stromsteuersignals, das aus einem Lenkkrafthilfsvorgabewert (iref) berechnet wird, der auf. der Grundlage eines Lenkdrehmomentsignals berechnet wird, das zumindest auf eine Lenkwelle (2) einwirkt, und auf der Grundlage eines festgestellten Motorstromwertes (I), wobei die Steuervorrichtung für das elektrische Lenkservosystem aufweist:

eine Motortreibervorrichtung (41), welche eine Stromversorgung (14) über die Eingangsklemmen einer H-Brükkenschaltung anlegt, die durch Verbindung von vier Halbleiterelementen (FET1, FET2, FET3, FET4) und Anschluß des Motors (M; 10) an die Ausgangskiemmen der H-Brük-kenschaltung gebildet wird, wobei zwei Halbleiterele-mente (FET1, FET4) paarweise in einem ersten Arm und zwei Halbleiteralemente (FET2, FET3) paarweise in einem zweiten Arm der H-Brückenschaltung vorgesehen sind;

eine Steuervorrichtung (45) zum Treiben der Halbleiterelemente (FET1, FET4) des eraten Arms mit einem PWM-Signal, das ein erstes Tastverhältnis (D1) het, das auf der Grundlage des Warts (E) des Stromsteuersignals festgelegt wird, und zum Treiben der Halbleiterelemente (FET2, FET3) des zweiten Arms mit einem PWM-Signel, des ein zweites Tastverhältnis (D2) hat, das eine Funktion (f) des ersten Tastverhältnisses (D1) ist.

-67 HOCHSPHOUNGS-FET WM DI STEVEN-REFERM S TIDMEIT FETA PREINCE-46

Beschreibung

Die vorliegende Erfindung betrifft eine Steuervorrichtung für ein elektrisches Lenkservosystem.

Aus der DE 44 02 423 Al ist eine Steuervorrichtung für ein elektrisches Lenkservosystem bekannt, welches eine Rückkopplungssteuervorrichtung aufweist, um einen Abtriehawert eines Motors zu steuern, um eine Lenkhilfskraft an einen Lenkmechanismus abzugeben, entsprechend einem Wert eines Stromsteuersignals, das aus einem Lenkkrafthilfsvorgabewert berechnet wird, der auf der Grundlage eines Lenkdrehmomentsignals berechnet wird, das zumindest auf eine Lenkwelle einwirkt, und auf der Grundlage eines festgestellten Motorstromwertes, wobei die Steuervorrichtung für das elektrische Lenkservosystem aufweist: eine 15 Motortreibervorrichtung, welche eine Stromversorgung über die Eingangsklemmen einer H-Brückenschaltung anlegt, die durch Verbindung von vier Halbleiterelementen und des Motors über die Ausgangsklemmen der H-Brücke gebildet wird; und eine Steuervorrichtung, bei welcher die 20 Halbleiterelemente, von denen jeweils ein Paar bilden, die einander gegenüherliegend in der H-Brückenschaltung vorgesehen sind, welche die Motortreibervorrichtung bildet, entweder durch ein PWM-Signal mit einem ersten Tastverhältnis, das auf der Grundlage des Stromsteuerwertes be- 25 infolge eines Rückstelldrehmoments zurückgebracht wird, stimmt wird, oder durch ein PWM-Signal mit einem zweiten Tastverhältnis getrieben werden.

Eine bestimmte Art eines elektrischen Lenkservosystems für Fahrzeuge soll den von Hand durchgeführten Lenkvorgang dudurch unterstützen, daß es ein Lenkdrehmoment und 30 andere Drehmomente feststellt, die auf eine Lenksäule einwirken, wenn ein Lenkrad betätigt wird, einen Lenkkrafthilfsvorgabewert berechnet, der einen Steuersollwert eines Motors darstellt, auf der Orundlage eines festgestellten Signals, und eine Differenz, als einen Stromsteuerwert, zwi- 35 schen dem Lenkhilfsvorgahewert, welcher den voranstehend erläuterten Steuersollwert darstellt, und den festgestellten Wert des Motorsstroms ermittelt, um den Motor mit

dem Stromsteuerwert anzutreiben.

Bei einem derartigen elektrischen Lenkservosystem ist 40 eine H-Brückenschaltung, die einen ersten Arm (FETI und FET4) und einen zweiten Arm (FET2 und FET3) aufweist. die durch Brückenschaltung von vier Feldeffekttransistoren FETT bis FET4 gebildet wird, so wie in Fig. 22 gezeigt aufgebaut, und die Stromversorgung ist über die Eingangsklemmen geschaltet, während der voranstehend erwähnte Motor M über die Ausgangsklemmen angeschlossen ist, um eine Motorsteuerschaltung auszubilden.

Die Amplitude des Motorstroms kann dadurch gesteuert werden, daß FETT des ersten Arms (oder FET2 des zweiten 50 Arms) eines Paares von FETs, welche zwei Arme bilden, die einander gegenüberliegend in der H-Brückenschaltung vorgesehen sind, welche die Motorsteuerschaltung bildet, mit einem PWM-Signal (Impulsbreitenmodulationssignal) gotrieben wird, welches ein Tastverhältnis D aufweist, das auf 55 der Grundlage des Stromsteuerwertes festgelegt wird.

Weiterhin kann die Drehrichtung des Motors M dadurch gesteuert werden, daß der FET3 des zweiten Arms auf ON (EIN) und der FET4 des ersten Arms auf OFF (AUS) (oder FET3 des zweiten Arms auf OFF und FET4 des ersten Arms auf ON) gesteuert wird, auf der Grundlage des Vorzeichens des Stromsteuerwertes.

Wenn der FET3 leitet, fließt ein Strom durch den FET1, den Motor M und den FET3, und fließt ein positiver Strom in den Motor M. Wenn FET4 des zweiten Arms leitet, fließt 65 ein Strom durch FET3, den Motor M und den FET4, und fließt ein negativer Strom in den Motor M.

Diese Motorsteuerschaltung wird häufig eingesetzt, da

die FETs auf damselben Arm niemals gleichzeitig betrieben werden, und daher bei dem Arm eine geringere Wahrschein-

lichkeit für das Auftreten von Kurzschlüssen besteht, was zu einer besseren Verläßlichkeit führt (vergleiche beispielsweise das japanische offengelegte Patent Nr. Hei 5-10270).

Fig. 23 zeigt die Beziehung zwischen dem Motorstrom (einem tatsächlich in dem Motor fließenden Strom, der sich von dem gemessenen Strom i unterscheidet) und dem PWM-Signal und einem Tastverhältnis D. Wenn infolge der Betätigung des Lenkrades ein Lenkdrehmoment erzeugt wird, ändert sich die Beziehung zwischen dem Motorstrom I und dem Tastverhältnis D so, wie durch die Linie (a) in Fig. 23 angedeutet ist, und es wird ein Lenkkrafthilfsvorgabewert Tref, der den Steuersollwert für den Motor darstellt, auf der Grundlage des festgestellten Signals für das manuelle Lenkdrehmoment in der Steuerschaltung berechnet, und es wird ein Stromsteuerwert E, der die Differenz zwischen dem Lenkkrafthilfsvorgabewert Iref und dem festgestellten Wert I des Motorstroms darstellt, und rückgekoppelt werden soll, an die Motortreiberschaltung ausgegeben. Daher nimmt das lastverhältnis D zum Steuem von Halbleiterbauteilen in der Motortreiberschaltung einen bestimmten Wert an, so daß niemals ein besonderes Problem auftritt.

Wenn jedoch das Lenkrad in die Geradeausfahrposition nachdem das Lenkrad belätigt wurde (nachstehend als der Zustand bezeichnet, in welchem das Lenkrad in die Ausgangslage zurückgebracht wird), wird infolge der Tatsache, daß kein manuelles Lenkdrehmoment erzeugt wird, der Wert des Lenkkrafthilfsvorgabewertes Iref, welcher den Steuersollwert für den Motor darstellt, gleich null, jedoch wird eine rückwärts gerichtete elektromotorische Kraft (EMK) in dem Motor erzeugt. Daher ändert sich die Beziehung zwischen dem Motorstrom I und dem Tustverhültnis D nach oben nur um einen Wert (g) entsprechend der rückwarts gerichteten EMK, wie durch die Linie (h) in Fig. 23 angedeutet ist, wodurch ein diskontinuierlicher Bereich in der Beziehung zwischen dem Motorstrom I und dem Tastverhältnis D in dem Bereich erzeugt wird, in welchem der Wert für das Tastverhältnis D gleich null wird.

Hierbei versucht eine Rückkopplungssteuerschaltung oder Rückkopplungsregelschaltung, einen Stromsteuerwert E zu berechnen, aber da es kein Tastverhältnis D entsprechend dem Lenkkrafthilfsvorgabewert Iref gibt, wird ein oszillierender Strom mit einer Amplitude, die ungeführ dem diskontinuierlichen Bereich des Motorstroms I entspricht, als der Stromsteuerwert E ausgegeben, wie durch die Linie (c) in Fig. 23 angedeutet ist.

Die Erzeugung dieses oszillierenden Stroms stellt eine Geräuscherzeugungsquelle dar, und verursacht darüber hinaus eine Bezinträchtigung der Stabilität der Rückkopplungsstevening.

Im Falle eines Antriebs durch die voranstehend geschilderte H-Brückenschaltung wird dann, wenn das Tastverhältnis D kleiner als ein bestimmter Wert wird, eine Totzone (f) erzeugt, in welcher der Motorstrom verschwindet, wie in Fig. 24 gezeigt ist, infolge der Beziehung des Motorstroms zum Tastverhältnis bei dem PWM-Signal.

Allerdings weist das elektrische Lenkservosystem einen Mechanismus zur Durchführung einer Rückkopplungssteuerung für den Motorstrom auf, so daß dieser dem Lenkkrasthilfsvorgabewert folgt, welcher den Steuersollwert des Motorstroms darstellt, der auf der Grundlage des festgestellten Signals für beispielsweise ein Lenkdrehmoment oder dergleichen berechnet wird. Hierdurch kann ein Motorstrom erzeugt werden, was nicht zu irgendwelchen Problemen führt, entsprechend dem Lenkkrafthilfsvorgabewert, in jenem Bereich, in welchem der Motorstrom vergleichsweise

3 höher ist, selbst wenn die voranstehend geschilderte Totzone (f) vorhanden ist.

Wenn jedoch das Lenkrad geringfügig betätigt wird, wenn sich das Lenkrad in der Position nahe der neutralen Position (der Geradeausfahrtposition) befindet, und wenn das berechnete Tastverhältnis in der Totzone (f) liegt, so daß kein Motorstrom fließen kann, wenn das Tastverhältnis entsprechend dem Lenkkrafthilfsvorgabewert berechnet wird, da nur eine geringe Anderung des Lenkkrafthilfsvorgabewertes erzeugt wird, so folgt der Motorstrom nicht der Än- 10 derung des Lenkkrafthilfsvorgabewertes, was zu einer Verzögerung der Erzeugung der Lenkhilfskraft führt, und dies kann das Lenkgefühl beeinträchtigen. Fig. 25 zeigt die Boziehung zwischen dem Lenkkrafthilfsvorgabewert und dem Motorstrom in diesem Zustand, woraus hervorgeht, daß der 15 Motorstrom i gegenüber dem Lenkkrafthilfsvorgabewert I verzögert ist.

Fig. 26 zeigt gleichzeitig den diskontinuierlichen Bereich (g) in der Beziehung zwischen dem Motorstrom I und dem Tastverhältnis D, der in dem Bereich nahe dem Punkt er- 20 zeugt wird, an welchem das Tastverhältnis D gleich null ist, sowie in der Totzone (f), in welcher kein Motorstrom fließt, wenn das Tastverhältnis D kleiner als ein bestimmter Wert

Hieraus geht hervor, daß dann, wenn die Breite der Tot- 25 cone (f) des Motorstroms für das Tastverhältnis D des PWM-Signals vergrößert wird, also die Linie (a), welche die Beziehung zwischen dem Tastverhältnis D und dem Motorstrom i in einem derartigen Zustand angibt, in welchem sich der Motor nicht dreht, in Fig. 26 auf die rechte Seite ver- 30 schoben wird, um die Stabilität des Rückkopplungssteuersystems aufrecht zu erhalten und die Erzeugung von Geräuschen zu unterdrücken, sich auch die Linie (b), welche die Beziehung zwischen dem Tastverhältnis D, wenn das Lenkrad in die Ausgangsposition (der Motor dreht sich) zurtickgehracht wird, und dem Motorstrom i angiht, ehenfalls nach rechts verschiebt, wodurch der diskontinuierliche Bereich (g) die Erzeugung des oszillierenden Stroms kontrolliert. Allerdings wird in diesem Fall die Breite der Totzone (I) vergrößert.

Daher gibt es in diesem Zusammenhang die widersprüchliche Anforderung, daß die Breite der Totzone verringert werden soll, um das Lenkgefühl beim Lenkvorgang in dem Bereich nahe der Neutralposition des Lenkrades zu verbessern, jedoch andererseits die Breite erhöht werden soll, um 45 die Erzeugung eines oszillierenden Stroms zu kontrollieren. und die Erzeugung von Geräuschen, wenn das Lenkrad in die Ursprungslage zurückkehrt.

Ein Hauptziel der vorliegenden Erfindung besteht daher in der Bereitstellung einer neuen Steuer- oder Regelvorrich- 50 tung für ein elektrisches Lenkservosystem, bei welcher eine verbesserte Stabilität des Motorsteuersystems unter verschiedenen Betriebsbedingungen erzielt wird, und ein verbessertes Lenkgefühl beim Lenkvorgang erzielt wird, wenn das Lenkrad auch nur geringfügig bewegt wird.

Ein weiteres Ziel der vorliegenden Erfindung besteht in der Bereitstellung einer neuen Steuervorrichtung für ein elektrisches Lenkservosystem, bei welchem eine verbesserte Stabilität des Rückkopplungssteuersystems vorhanden ist, welches ein Motorsteuersystem bildet, wenn das Lenk- 60 rad in die Geradeausfahrposition (Ursprungslage) zurückgebracht wird, infolge eines Rückstelldrehmoments, das auf der Grundlage der Eigenschaften des Lenkmechanismus erzeugt wird, und bei welchem die Erzeugung von Gegangsposition zurückgebracht wird.

Ein weiteres Ziel der vorliegenden Erfindung besteht in der Bereitstellung einer neuen Steuervorrichtung für ein elektrisches Lenkservosystem, bei welchem ein verbessertes Lenkgefühl beim Lenkvorgang vorhanden ist, wenn das Lenkrad geringfügig betätigt ist, während es sich in der Position nahe der Geradeausfahrposition befindet.

Die Erfindung wird nachstehend anhand zeichnerisch dargestellter Ausführungsbeispiele näher erläutert, aus welchen weitere Vorteile und Merkmale hervorgehen. Es zeigt:

Fig. 1 die Beziehung zwischen einem Motorstromwert I und einem Tastverhältnis D des PWM-Signals in einer Motorsteuerschaltung gemäß der vorliegenden Erfindung:

Fig. 2 eine Darstellung zur Erläuterung des Betriebs, wenn FET1 und FET3 gleichzeitig mit unterschiedlichen Tastverhältnissen angetrieben werden (Betriebsart A und Betriebsart B);

Fig. 3 eine Darstellung zur Erläuterung des Betriebs, wenn FET1 und FET3 gleichzeitig mit unterschiedlichen Tastverhältnissen angetrieben werden (Betriebsart C);

Fig. 4(a) bis 4(e) Darstellungen zur Erläuterung von Betriebsbedingungen von FETs und einer Beziehung zwischen einer Motorklemmenspannung VM und einem Motorstromwert I:

Fig. 5 eine Darstellung zur Frläuterung des grundsätzlichen Aufbaus eines elektrischen Lenkservosystems;

Fig. 6 ein Blockschaltbild einer elektronischen Steuerschaltung eines elektrischen Lenkservosystems;

Fig. 7 ein Blockschaltbild des Aufbaus einer Motortreiberschaltung;

Fig. 8 ein Blockschaltbild des Aufbaus eines ersten Beispiels für eine Steuerbefehlseinheit;

Fig. 9 ein Blockschaltbild eines Beispiels für den Aufbau einer Gatetreiberschaltung;

Fig. 10 ein Blockschaltbild des Aufbaus eines zweiten Beispiels für eine Steuerbefehlseinheit;

Fig. 11 ein Blockschaltbild eines Beispiels für den Auf-35 bau einer Sägezahnsignalerzeugungsschaltung;

Fig. 12 ein Blockschalthild eines Beispiels für den Aufbau einer Dreieckssignalerzeugungsschaltung;

Fig. 13(a) bis 13(d) schematische Darstellungen zur Erläuterung der Sägezahnsignalform, des Tastverhältnisses des PWM-Signals und der Motorspannung bei dem zweiten Beispiel für die Steuerbefehlseinheit

Fig. 14(a) bis 14(d) Darstellungen zur Erläuterung der Dreieckssignalform, des Tastverhältnisses des PWM-Signals und der Motorspannung bei der zweiten Ausführungsform für die Steuerbefehlseinheit;

Fig. 15 ein Blockschaltbild des Aufbaus eines dritten Beispiels für die Steuerbefehlseinheit;

Fig. 16 ein Blockschaltbild eines Beispiels für einen Tastverhältnisfunktionsgenerator bei dem dritten Beispiel für die Steuerhefehlseinheit:

Fig. 17 ein Blockschaltbild eines Beispiels für ein Tastverhältnisfunktionsgenerator bei dem dritten Beispiel für die Steuerbefehlseinbeit:

Fig. 18 ein Flußdiagramm der Betriebsahlaussolge zur 55 Berechnung der Winkelgeschwindigkeit eines Motors;

Fig. 19(a) und 19(b) eine schematische Darstellung zur Erläuterung einer Zeitverzögerung zwischen einem FET-Gatetreiberbefehlssignal und dem tatsächlichen ON/OFF-Betrieb des Gates;

Fig. 20(a) bis 20(c) schematische Darstellungen zur Erläuterung eines berechneten Wertes für die Motorklemmenspannung, mit einer Kompensation der Zeitverzögerung (wenn das Tastverhältnis immer gleich 1 ist, also $D_2 = 1$);

Fig. 21(a) bis 21(c) schematische Darstellungen zur Erräuschen unterdrückt wird, wenn das Lenkrad in die Aus- 65 läuterung eines berechneten Wertes für die Motorkiernmenspannung, mit einer Kompensation für die Zeitverzögerung (wenn das Tastverhältnis annähernd gleich 1 ist, also D2 = ca. 1):

hältnis getrieben wird.

Fig. 22 eine schematische Darstellung zur Erläuterung einer konventionellen Motortreiberschaltung, die aus einer H-Brückenschaltung besteht, die durch FBTs gebildet wird;

Fig. 23 eine schematische Darstellung zur Erläuterung der Beziehung zwischen dem Motorstrom und dem Tastverhältnis eines PWM-Signals bei der konventionellen Motorsteuerschaltung;

Fig. 24 eine schematische Darstellung zur Erläuterung der Totzone, in welcher kein Motorstrom fließt, bei der Beziehung des Motorstroms zum Tastverhältnis des PWM-Si- 10 gnals bei der konventionellen Motorsteuerschaltung;

Fig. 25 eine schematische Darstellung zur Erläuterung der Beziehung zwischen dem Lenkkraftbilfsvogabewert und dem Motorstrom, wenn das Lenkrad auf eine Position nahe der neutralen Position bei der konventionellen Motor- 15 steuerschaltung eingestellt wird; und

Fig. 26 eine schematische Darstellung zur Erläuterung des diskontinuierlichen Bereichs des Motorstroms und der Totzone in der Beziehung zwischen dem Motorstrom und dem Tastverhältnis bei der konventionellen Motorsteuer- 20

Zuerst wird das grundsätzliche Konzept der vorliegenden Erfindung erläutert. Wie bereits voranstehend im Zusammenhang mit Fig. 23 erwähnt, wird infolge der Tatsache, daß das Lenkdrehmoment in jenem Zustand noch nicht er- 25 zeugt wird, in welchem das Lenkrad, das bereits betätigt wurde, in die Geradeausfahrposition zurückgebracht wird, infolge eines Rückstelldrehmoments, der Lenkkrafthilfsvorgabewert Iref, der einen Steuersollwert für den Motor darstellt, gleich null, jedoch bewegt sich infolge der Tatsache, 30 daß eine umgekehrte EMK in dem Motor erzeugt wird, die Beziehung zwischen dem Motorstromwert I und dem Tastverhältnis D um einen der Rückwärts-EMK entsprechenden Wert nach oben, wie durch die Linie (b) in Fig. 23 gezeigt ist. Dies führt dazu, daß ein diskontinuierlicher Bereich (g) in der Beziehung zwischen dem Motorstrom I und dem Tastverhältnis D in dem Bereich nahe der Position erzeugt wird. an welcher das Tastverhälmis D gleich null wird, was zu dem Auftreten eines oszillierenden Stroms führt, dessen Amplitude ungefähr dem diskontinuierlichen Bereich des 40 Motorstromwerts I entspricht, wodurch Geräusche erzeugt werden, und andere Schwierigkeiten auftreten können.

Die vorliegende Erfindung hat daher diese Probleme dadurch gelöst, daß die Beziehung zwischen dem Motorstromwert I und dem Tastverhältnis D so kontrolliert wird, daß der 45 diskontinuierliche Bereich entfällt, so daß die Beziehung kontinuierlich ausgebildet wird, also kontinuierlich zwischen dem Punkt P, der den Motorstromwert I angibt, wenn das Tastverhälmis $D = \gamma$ auf der Linie (b) liegt, und dem Ursprung O verläuft, der die Beziehung zwischen dem Motor- so stromwert I und dem Tastverhältnis D angibt, wenn das Lenkrad zurückgestellt wird, wie in Fig. 1 gezeigt ist.

In der Praxis wird in dem Bereich, in welchem das Tastverhältnis D klein ist, der FET1 durch das Tastverhältnis D1 getrieben, und gleichzeitig werden der FET3 und der FET4 55 durch das PWM-Signal getrieben, welches das Tastverhältnis D2 aufweist, das durch die primare Funktion des voranstehend geschilderten Tastverhältnisses D1 definiert ist,

In dem Bereich, in welchem das Tastverhältnis D1 größer als y ist, wird das konventionelle Treiberverfahren eingeseizt, also jenes Treiberverfahren, bei welchem FET3 (oder FE14) ON oder OFF gesteuert wird, abhängig von der Stromrichtung.

Nunmehr wird der Fall untersucht, in welchem FRT3 (oder FET4) nicht auf ON (oder OFF) in Abhängigkeit von 65 Funktionsgleichung (2) definiert werden. der Drehrichtung des Motors gesteuert wird, die durch das Vorzeichen des PWM-Signals bestimmt ist, sondern zusammen mit FET1 (oder FET2) mit unterschiedlichem Tastver-

Die Fig. 2 und 3 sind Diagramme zur Erläuterung von Betriebsabläufen, bei welchen FET1 und FET3 gleichzeitig mit unterschiedlichen Tastverhältnissen getrieben werden, und die Fig. 4(a) bis 4(e) sind Diagramme zur Erläuterung der Betriebszustände von FETs, wenn FET1 des ersten Arms und FE13 des zweiten Arms gleichzeitig mit unterschiedlichem Tastverhältnis D getrichen werden, sowie durch die Beziehung zwischen der Motorkiemmenspannung VM und dem Motorstromwert I, wobei ein Wert R1 dadurch erhalten wird, daß der Einfluß der Rückwärts-EMK des Motors K_T ovon der Motorkleimmenspannung VM subtrahiert wint

6

Hierbei wird angenommen, daß der FET1 durch das Tastverhältnis D1 getrieben wird, der FET3 durch das größere Tastverhältnis D2 (also zeitlich länger) als das Tastverhältnis D1 von FETI, und daß FET2 und FET4 in dem Zustand OFF gehalten werden. Die Fig. 4(a) und 4(b) zeigen die ON/ OFF-Zustände für die Zeit von FET1 und FET3.

In diesem Fall ändert sich die Motorklemmenspannung VM so, wie in Fig. 4(c) gezeigt. Befinden sich nämlich sowohl FET1 als auch FET3 in dem Zustand ON (diese Betriebsart wird als Betriebsart oder Modus A bezeichnet) (vergleiche Fig. 2), wird eine Batteriespannung Vb an die Klemmen des Motors M angelegt. Wenn dann FET1 sich in dem Zustand OFF befindet, während FET3 im Zustand ON ist (diese Betriebsart wird als Betriebsart oder der Modus B bezeichnet) (vergleiche Fig. 2), wird die Klemmenspannung des Motors gleich aull.

Wenn sich sowohl der FET1 als auch der FET3 in dem Zustand OFF befinden (diese Betriebsart wird als die Betriebsart oder der Modus C bezeichnet) (vergleiche Fig. 3), wird eine negative Batteriespannung -Vb an die Klemmen des Motors M angelegt. In dem Modus C wird daher mit dem Motor M folgende Stromschaltung gebildet; vom Widerstand RL zur Freilaufdiode DT4, die zum FET4 gehört, zum Motor M, zur Freilaufdiode DT2, die zum FET2 gehört, und zur Stromversorgung, und die Klemmenspannung VM des Motors M wird gleich der negativen Batteriespannung -Vb.

Wenn sowohl FET1 als auch FET3 gleichzeitig mit unterschiedlichen Tastverhältnissen getrieben werden, um den Gleichgewichtszustand für den Motor einzustellen, und der Zeitraum des PWM-Signals ausreichend kürzer als die elektrische Zeitkonstante des Motors ist, so kann der Motorstromwert I durch folgende Gleichung (1) approximiert wer-

$$I = \{(D1 + D2 - 1) \cdot Vb/R\} - K_T\omega/R$$
 (1)

Hierbei ist

D1: ein Tastverhältnis:

D2: ein Tastverhältnis;

Vb: die Batteriespannung;

R: der Motorwiderstand zwischen den Klemmen;

Kr. Rückwärts-EMK des Motors; und

ω: Winkelgeschwindigkeit des Motors.

Wenn das Tastverhältnis D2 als die kontinuierliche Funkdon des Tastverhältnisses D1 so definiert ist, daß gilt D2 = f(D1), und die Funktion f so definiert ist, daß man I = 0 erhalt, wenn $\omega = \omega_{ret}$, D1 = 0 ist, so ergibt sich Kontinuität zwischen dem Tastverhältnis D und dem Motorstrom I innerbalb des Bereiches von $0 \le \omega \le \omega \cot$.

Als Beispiel für die Funktion f kann folgende lineare

 $D2 = a \cdot D1 + b \quad (2)$

8

Ilierbei sind a, b Konstanten.

Um die Konstanten a, b zu erhalten, werden zuerst folgende Bedingungen eingestellt.

(1) Wenn das Tastverhältnis D1 = y ist, ist das Tastverhältnis D2 = 1 (100%), wobei γ ein frei wählbarer Wert

(2) Wenn das Tastverhältnis D1 = 0 und @ = wret ist, ist I = 0. Hierbei ist ∞ die Winkelgeschwindigkeit des Motors, und wret eine Winkelgeschwindigkeit des Mo- 10 tors, wenn das Lenkrad frei gedreht wird.

Die Bedingung (1) ist dazu erforderlich, die Position des Punktes p auf der Linie (b) festzulegen, wenn das Tastverhältnis DI = γ in Fig. 1 ist, und paßt zu dem normalen Fahr- 15 $\omega = 1/K_T \{VM - (Ls + R)I\}$ (7)

Die Bedingung (2) ist dafür erforderlich, festzulegen, daß die Linie (b) durch den Ursprung O in Fig. 1 geht. Daher kann die lineare Funktion, welche den Punkt P und den Ursprung O verbindet, dadurch bestimmt werden, daß die 20 Konstanten a und b erhalten werden, welche die voranstehend angegehenen Bedingungen erfüllen.

In dem Bereich, in welchem das Tastverhältnis D1 größer als γ ist, kann das vorhandene Treiberverfahren eingesetzt werden, so daß FET3 (oder FET4) auf ON oder OFF in Ab- 25 hängigkeit von der Strommichtung gesteuert wird.

Die Konstanten a, b, welche die voranstehenden Bedingungen erfüllen, werden durch nachstehende Gleichungen (3), (4) ausgedrückt.

$$a = K_T \omega_{ret} / \gamma V_0$$
 (3)

$$b = 1 + K_T \omega ret/\gamma V b$$
 (4)

In diesem Fall kann der Motorstromwert I durch folgende 35 Gleichung (5) ausgedrückt werden, welche man dadurch erhält, daß die Gleichung (2) für D2 der Gleichung (1) eingesetzt wird, und dann die Konstanten a, b eingesetzt werden. welche durch die Gleichungen (3) und (4) bestimmt sind.

$$I = Vb/R(1 - (K_T\omega \cot/\gamma Vb)) \cdot D1 - K_T/R(\omega \cot - \omega)$$
 (5)

Gemäß Gleichung (5) zeigt die Beziehung zwischen dem Motorstromwert I und dem Tastverhältnis D keinen diskontinuierlichen Bereich, selbst in dem Bereich, in welchem die 45 Winkelgeschwindigkeit des Motors oo kleiner als die Winkelgeschwindigkeit des Motors oret ist, wenn das Lenkrad zurückkehrt.

Das Tastverhältnis D1 kann daber kontinuierlich für den Motorstromwert I selbst in dem Bereich geändert werden, in 50 welchem die Motorwinkelgeschwindigkeit o kleiner als die Motorwinkelgeschwindigkeit Gret ist, wenn das Lenkrad zurtickgestellt wird, durch Treiben von FET1 mit dem Tastverhältnis D1, während gleichzeitig FET3 mit dem Tastverhältnis D2 getrieben wird, das sich von D1 unterscheidet. 55

Bei der voranstehenden Erläuterung wird das Tastverhältnis D2 als lineare Funktion des Tastverhältnisses D1 ausgedrückt, jedoch ist das Verfahren hierauf nicht beschränkt, und es kann jede Funktion verwendet werden, soweit sie die voranstehend angegebenen Grenzbedingungen erfüllt.

Als nächstes wird die Feststellung des Motorstromwerts und die Berechnung der Motorwinkelgeschwindigkeit aus einer Motorklemmenspannung und einem Motorstromwert gemäß der vorliegenden Erfindung erläutert.

Wenn ein Motor sich dreht, erzeugt er eine rückwärts ge- 65 richtete EMK. Es besteht folgende Beziehung zwischen der Rückwärts-EMK des Motors, der Motorklemmenspannung und dem Motorstromwert.

 $VM = (Ls + R)I + K_T\omega \quad (6)$

Hierbei ist

VM: die Motorklemmenspannung; I: der Motorstromwert;

L: die Motorinduktivität;

s: der Laplaceoperator;

R: der Motorwiderstand zwischen den Klemmen;

KT: die Rückwärts-EMK des Motors; und m: die Winkelgeschwindigkeit des Motors.

Daher kann die Motorwinkelgeschwindigkeit o durch folgende Gleichung (7) ausgedrückt werden.

$$5 \omega = 1/K_{\pi}(VM - (Ls + R)I) \quad (7)$$

Daher wird die Berechnung des Motorstromwerts I und der Motorklemmenspannung VM, wenn das voranstehend erläuterte FET-Treiberverfahren eingesetzt wird, unter Bezugnahme auf Fig. 2 erläutert, welches das Schaltbild zeigt, sowie auf Fig. 4, welche die Beziehung zwischen dem Betriebszustand des FET, der Motorklemmenspannung VM und dem Motorstromwert I zeigt.

In der Betriebsart A wird, da sich sowohl FET1 als auch FET3 in dem Zustand ON befinden, die Klemmenspannung VM des Motors M gleich der Batteriespannung Vw. Es fließt ein Motorstrom i(A), der durch die durchgezogene Linie in Fig. 2 angedeutet ist, entlang dem Pfad vom FET'l zum Motor M, zum FET3 und zum Widerstand Rg, und er 30 wird festgesteilt durch Bestirnmung des Spannungsabfalls am Widerstand RR durch einen Operationsverstärker OPR einer Strommeßschaltung.

In der Betriebsart B wird, da FET1 gleich OFF ist, und FET3 ON, die Klemmenspannung VM des Motors M gleich null. Daher wird in dem Motor gespeicherte magnetische Energie in elektrische Energie umgewandelt, und fließt ein Strom i(B), wie er durch die gestrichelte Linie in Fig. 2 angedeutet ist, und zwar entlang dem Pfad vom Motor M, zum FET3, zum Widerstand Rn zum Widerstand Rt., zur Freilausthiode DT4, die zum FET4 gehört, und zum Motor M. Der Motorstrom i(B) wird durch Feststellung des Spanaungsabfalls an dem Widerstand Re durch einen Operationsverstärker OPg der Strommeßschaltung festgestellt. Da der Operationsverstärker OPL zur Feststellung des Spannungsabfalls des Widerstands R. eine unipolare Stromversorgung darstellt (eine einseitige Stromversorgungsquelle), und nicht einen in entgegengesetzter Richtung fließenden Strom feststellen kann, wird in diesem Fall der gemessene Stromwert des Operationsverstärkers OPL gleich null.

In der Betriehsart C wird, wie in Fig. 3 gezeigt ist, infolge der Tatsache, daß sowohl FET1 als auch FET3 OFF sind, eine Stromschaltung gebildet, die vom Widerstand RL zur Freilausdiode DT4 geht, die zu FET4 gehört, zum Motor M, zur Freilaufdiede DT2 von FET2, und zur Stromversorgung, und die Klemmenspannung VM des Motors M wird gleich der Batteriespannung in negativer Richtung -Vb. In diesem Fall fließt, da in dem Motor M gespeicherte magnetische Energie in elektrische Energie umgewandelt wird, ein Strom i(C) in der Richtung entgegengesetzt zur Klemmenspannung -Vb des Motors M. Da der Operationsverstärker OPL der Stromschaltung zur Erfassung des Spannungsabfalls über den Widerstand RL eine unipolare Stromquelle ist (eine einseitige Stromversorgungsquelle), kann er nicht einen in entgegengesetzte Richtung fließenden Strom feststellen, und daher wird in diesem Fall der gemessene Stromwert des Operationsverstärkers OP_L gleich null.

Daher kann ein Motorstromwert I, der tatsächlich in dem Motor M fließt, in jeder Stufe der Betriebsart A, der Be-

10

triebsart B, und der Betriebsart C, während eines Zyklus des PWM-Signals, durch folgende Gleichung (8) ausgedrückt werden.

I = i(A) + i(B) + i(C) (8)

Andererseits kann der Gesamtwert des gemessenen Stroms i(det), der von der StrommeBschaltung festgestellt wird, durch folgende Gleichung (9) ausgedrückt werden, da der Strom i(C) nicht gemessen wird.

 $i(dct) = i(A) + i(B) \quad (9)$

Der Zeitraum zur Erfassung des Stroms (Motorstrommcswerts) i(dct) während eines Zyklus des PWM-Signals 15 ist gleich dem Zeitraum der Betriebsart A und der Betriebsart B während eines Zyklus des PWM-Signals, und dieser Zeltraum entspricht dem Tastverhältnis D2: Fig. 4(a), 4(b). Der Strom i(det) kann daher durch folgende Gleichung (10) ausgedrückt werden.

 $i(det) = D2 \cdot I \quad (10)$

Der tatsächliche Motorstromwert L der in dem Motor M fließt, kann daher durch Umwandlung von Gleichung (10) 25 durch folgende Gleichung (11) ausgedrückt werden.

I = i(dct)/D2 (11)

Fig. 4(e) zeigt ein Beispiel, welches den Änderungszu- 30 stand des Motorstromwerts I in jeder Stufe der Betriebsart A, der Betriebsart B und der Betriebsart C angibt. In dieser Figur wird der Änderungszustand im Verlauf der Zeit allmählich an den ausgeglichenen Zustand angenähert, und konvergiert der Motorstrommeßwert i(dct) gegen I.

Als nächstes wird die Bestimmung der Motorklemmenspannung VM erläutert. Wenn der Motor mit dem Tastverhältnis D getrieben wird, kann infolge der Tatsache, daß die Batteriespannung über die Klemmen des Motors in dem zeitlichen Verhältnis angelegt wird, welches durch das Tastverhältnis D ausgedrückt wird, die Motorklemmenspannung VM als VM = D1 · Vb ausgedrückt werden, wobei Vb die Batteriespannung bezeichnet.

Wie aus Fig. 4(c) hervorgeht, wird bei der vorliegenden Erfindung die Motorklemmenspannung VM gleich der 45 Summe der Batteriespannung Vb, die während des Treiberzeitraums t(A) der Betriebsart A angelegt wird, in welcher das Tastverhültnis D1 berrscht, und der negativen Batteriespannungs (-Vb), die während des Treiberzeitraums t(C) der Betriebsart C mit dem Tastverhältnis D2 angelegt wird. 50

Wie aus Fig. 4(a) hervorgeht, ist das Verhältnis der Betriebsart A in einem Zyklus des PWM-Signals gleich D1. und kann das Verbältnis der Betriebsart C ausgedrückt werden durch (1 - D2), und kunn die Motorklemmenspannung VM durch folgende Gleichung (12) ausgedrückt werden.

 $VM = D1 \cdot Vb + (1 - D2) \cdot (-Vb) = (D1 + D2 -$ 1) \$\forall b \quad (12)

Unter Verwendung der Gleichung (12) kann die Motor- 60 klemmenspannung VM einfach aus der Batterlespannung Vb und den Tastverhältnissen D1 und D2 erhalten werden, ohne daß eine Vorrichtung zur Feststellung der Motorklemmenspannung erforderlich ist.

Wie voranstehend erläutert kann der Motorstromwert I 65 durch die Gleichung (11) ausgedrückt werden, und die Motorklemmenspannung VM durch die Gleichung (12), Daher kann man die Motorwinkelgeschwindigkeit @ (berochneter

Wert) dadurch erhalten, daß der Motorstrom I und die Motorklemmenspannung VM in die Gleichung (7) eingesetzt

Nachstehend wird unter Bezugnahme auf die Fig. 5 und 7 5 der grundsätzliche Aufbau des elektrischen Lenkservosystems beschrieben, welches zur Ausführung der vorliegenden Erfindung geeignet ist. Fig. 5 zeigt schematisch den Aufhau des elektrischen Lenkservosystems, Rine Welle 2 des Lenkrades 1 ist mit Spurstangen 8 der gelenkten Räder 10 über ein Reduziergetriebe 4, Kardangelenke 5a, 5b und einen Zahnstangenmechanismus 7 gekuppelt. Die Welle 2 ist weiterhin mit einem Drehmomentsensor 3 zur Bestimmung des Lenkdrehmoments der Welle 2 versehen, und ein Motor 10 zur Unterstützung des Lenkvergangs ist mit der Welle 2 über eine Kupplung 9 und das Reduziergetriebe 4 gekuppelt.

Eine elektronische Steuerschaltung 13 zur Kontrolle des Lenkservosystems empfängt elektrische Energie von der Batterie 14 über ein Relais, das durch einen Zündschlüssel 11 betätigt wird. Die elektronische Steuerschaltung 13 berechnet einen Wert für den Lenkkrasthilfsvorgabewert aus einem Lenkdrehmoment, das von dem Drehmomentsensor 3 bestimmt wird, und der Fahrzeuggeschwindigkeit, die von einem Fahrzeuggeschwindigkeitssensor 12 bestimmt wird, und kontrolliert den dem Motor 10 zuzuführenden Strom auf der Grundlage des berechneten Lenkkrafthilfsvorgabe-

Die Kupplung 9 wird durch die elektronische Steuerschaltung 13 gesteuert. Die Kupplung 9 ist im normalen Betriebszustand eingekuppelt, und wird ausgekuppelt, wenn von der elektronischen Steuerschaltung 13 ein Ausfall oder Fehler des Lenkservosystems festgestellt wird, und wenn die Stromversorgung OFF ist.

Fig. 6 ist ein Blockschaltbild der elektronischen Steuerschaltung 13. Bei der vorliegenden Ausführungsform besteht die elektronische Steuerschaltung 13 hauptsächlich aus einer CPU, und es werden hier die Funktionen erläutert, die von einem Programm in der CPU durchgeführt werden. Eine Stabilisierungskompensationsvorrichtung 21 ist beispielsweise nicht als unabhängiges Hardwarebauteil ausgeführt, sondern stellt eine Stabilisierungskompensationsvorrichtung dar, die durch Programmausführung in der CPU gebildet wird.

Nachstehend werden die Funktionen und Betriebsabläufe der elektronischen Steuerschaltung 13 erläutert. Ein Lenkdrehmomentsignal, welches von dem Drehmomentsensor 3 eingegeben wird, wird bezüglich der Stabilisierung kompensiert, um die Stabilisierung des Lenksystems zu verbessern, und zwar in dem Stabilisierungskompensator 21, und wird dann einem Lenkkrafthilfsvorgabewertprozessor 22 zugeführt. Weiterhin wird die Fahrzeuggeschwindigkeit, die von dem Fahrzeuggeschwindigkeitssensor 12 festgestellt wird, ebenfalls dem Lenkkrafthilfsvorgabewertprozessor 22 eingegeben.

Der Lenkkrasthilfsvorgabewemprozessor 22 berechnet einen Lenkkrafthilfsvorgabewert iref, der einen Stromsteuersollwert darstellt, der dem Motor 10 zugeführt wird, durch cine vorbestimmte Gleichung auf der Grundlage des eingegebenen Lenkdrehmomentsignals, welches zur Stabilisierung kompensiert ist, und des Fahrzeuggeschwindigkeitssignals. Der Lenkkrafthilfsvorgabewert Iref wird durch den Kompensationswert kompensiert, der von einem Kompensationswertprozessor 29 ausgegeben wird, der nachstehend

noch genauer edäutert wird.

Fine Schaltung, die aus einem Differenzierkompensator 24, einem Proportionalprozessor 25, einem Integrierprozessor 26 und einem Addierer 27 besteht, führt eine Rückkopplungssteuerung oder Rückkopplungsregelung aus, um den Motorstrom i zu erhalten, der an den Lenkkrafthilfsvorgabee €

DE 196 39 178 C 2

11

wert Iref angepaßt ist.

In dem Komparator 23 wird der Lenkkrafthilfsvorgabewert Iref, welcher den Steuersollwert darstellt, der von dem Lenkkrafthilfsvorgabewertprozessor 22 berechnet wird, mit einem Motorstrommeßwert i(det) verglichen, der von der Motorstrombestimmungsschaltung 42 festgestellt wird, die nachstehend noch genauer erläutent wird.

Von dem Proportional prozessor 25 wird ein Wert ausgegeben, der proportional zur Differenz zwischen dem Lenkkrafthilfsvorgabewert Iref und dem Motorstrommeßwert i(dct) ist. Weiterhin wird das Ausgangssignal des Proportionalprozessors 25 durch den Integrierprozessor 26 integriert, um die Charakteristik des Rückkopplungssystems zu verbessern, und es wird ein Proportionalwert des integrierten Wertes der Differenz ausgegeben.

Der Differenzierkompensator 24 gibt einen differenzierten Wert des Lenkkrufthilfsvorgabewertes Iref aus, um die Reaktionsgeschwindigkeit des Motorstrommeßwerts i(det) bezüglich des Lenkkrafthilfsvorgabewertes Iref zu verbes-

In dem Addierer 27 werden der differenzierte Wert des Lenkkrafthilfsvorgabewertes Iref, der von dem Differenzierkompensator 24 ausgegeben wird, ein Wert proportional zur Differenz zwischen dem Lenkkrafthilfsvorgabewert Iref, der von dem Proportionalprozessor 25 ausgegeben wird, und dem Motorstrommeßwert i(det) ist, und ein integrierter Wert, der von dem Integrierprozessor 26 ausgegeben wird, addiert, und dann wird ein Stromsteuerwert Eoder Stromregelwert, der das Ergebnis dieser Operationen darstellt, an die Motortreiberschaltung 41 ausgegeben. Der in dem Motor fließende Strom wird durch die Motorstrommeßschaltung 42 festgestellt, und dann zum Komparator 23 rückgekoppelt.

Ein Winkelgeschwindigkeitsprozessor 28 empfängt die Tastverhältnisse D1 und D2 des PWM-Signals, was nachstehend noch genauer erläutert wird, ausgegeben von der Motortreiberschaltung 41, einen Meßwert i(dct) für den Motorstrom, und eine Batteriespannung Vb als Eingangsgrößen, und berechnet einen berechneten oder Schätzwert für die Motorwinkelgeschwindigkeit 66.

Weiterhin berechnet der Kompensationswertprozessor 29 einen Kompensationswert zum Kompensieren des Lenkkrafthilfsvorgabewertes entsprechend der Fahrzeuggeschwindigkeit, die von dem Fahrzeuggeschwindigkeitssensor 12 festgestellt wird, und der Motorwinkelgeschwindigkeit wird, und der Motorwinkelgeschwindigkeit wird, und gibt dann diesen Wert an den Lenkkrafthilfsvorgabewertprozessor 22 aus. Der Kompensationswert kann experimentell auf der Grundlage der Fahrzeuggeschwindigkeit der Winkelgeschwindigkeit bestimmt wers den.

Fig. 7 zeigt ein Beispiel für den Aufbau der Motortreiberschaltung 41. Die Motortreiberschaltung 41 besteht aus einer H-Brückenschaltung oder dergleichen, die eine Steuerbefehlseinheit 45 aufweist, eine FET-Gatetreiberschaltung 55 46, FET1 bis FET4, und die Steuerbefehlseinheit 45 gibt das PWM-Signal zum Treiben von FET1 bis FET4 auf der Grundlage des Stromsteuerwertes B aus, der von dem Addierer 27 eingegeben wird, sowie ein Drehrichtungssignal zur Vorgabe der Motordrehrichtung.

Das Gate von FBT1 (FBT2) wird ON bzw. OFF auf der Grundlage des PWM-Signals mit dem Tastverhältnis D1 gesteuert, das von der Steuerbefehlseinheit. 45 ausgegeben wird, während das Gate von FET3 (FBT4) hezilglich ON und OFF auf der Grundlage des PWM-Signals mit dem 65 Tastverhältnis D2 gesteuert wird, um so tatsächlich die Amplitude des Motorstromwerts I zu kontrollieren.

Welcher von den FETs FET1 und FET2 bzw. FET3 und

12

FET4 getrieben wird, wird durch das Drehrichtungssignal festgelegt, welches die Drehrichtung des Motors vorgibt.

Eine Motorstrommeßschaltung 42 stellt die Amplitude des Vorwärsstroms (positiv) auf der Grundlage des Spannungsabfalls über dem Widerstand R1 fest, wogegen sie die Amplitude des Rückwärtsstroms (negativ) auf der Grundlage des Spannungsabfalls über dem Widerstand R2 feststellt. Der festgestellte Motorstrommeßwert i wird rückgekoppelt dem Komparator 23 zugeführt.

Als nächstes wird der Aufbau der Steuerbefehtseinheit 45 erläutert. Flg. 8 zeigt eine Ausführungsform der Steuerbefehlseinheit, die einen Mikroprozessor 451 und mehrere PWM-Zeitgeber 452, 453 aufweist. Bei dieser Anordnung wird der PWM-Zeitgeber 45 auf der Grundlage des eingegebenen Stromsteuerwertes E betrieben, so daß er das PWM-Signal D1 ausgibt, welches die Dauer des Tastverhältnisses D1 aufweist, und darüber hinaus das PWM-Signal D1 auf der Mikroprozessor eingibt, um das Tastverhältnis D2 auf der Grundlage der voranstehend erläuterten Gleichung (2) zu berechnen, und berechnet das PWM-Signal D2 mit der Dauer des Tastverhältnisses D2 durch Betrieb des PWM-Zeitgebers 453.

Die FET-tiatetreiberschaltung 46 wird beispielsweise durch eine Schaltung gebildet, die aus vier AND-Schaltungen AN1 bis AN4 und einer NOT-Schaltung NT1 besteht, wie in Fig. 9 gezeigt ist.

Wenn bei dieser Schaltung angenommen wird, daß das Drehrichtungssignal ON ist (was beispielsweise eine positive Drehrichtung anzeigt), und die PWM-Signale D1 und D2 eingegeben werden, so wird FET2 durch den Ausgang der AND-Schaltung AN2 getrieben, und wird FET4 durch den Ausgang der AND-Schaltung AN4 getrieben. Da in diesem Fall das Ausgangssignal der NOT-Schaltung NT1 gleich OFF ist, liefem die AND-Schaltungen AN1 und AN3 kein Ausgangssignal, und sind FET1 und FET3 OFF geschaltet

Nimmt man an, daß das Drehrichtungssignal gleich OFF ist (was beispielsweise eine negative Drehrichtung anzeigt), und die PWM-Signale D1 und D2 eingegeben werden, so wird, da das Ausgangssignal der NOT-Schaltung NT1 gleich ON wird, FET1 durch das Ausgangssignal der AND-Schaltung AN1 getrieben, und wird auch FET3 durch das Ausgangssignal der AND-Schaltung AN3 getrieben. In diesem Fall liefern die AND-Schaltungen AN2 und AN4 kein Ausgangssignal, und daher sind FET1 und FET4 OFF geschaltet.

Fig. 10 ist ein zweites Beispiel für die Steuerbefehlseinheit, welche hier aus einem Mikroprozessor 451, mehreren D/A-Wandlern 454, 455, mehreren Komparatoren 456, 457 und einem Signalgenerator 458 besieht.

Bei dieser Anordnung wird ein Analogsignal AD1 entsprechend dem Tastverhältnis D1 auf der Grundlage des eingegebenen Stromsteuerwertes E erhalten, und wird ein entsprechendes Analogsignal AD2 auf der Grundlage des Tastverhältnisses D2 erhalten, das infolge der Arithmetikoperation gemäß Gleichung (2) erhalten wird, und es wird ein Sägezahnsignal oder ein Dreieckssignal mit einer Wellenlänge entsprechend einem Zyklus des PWM-Signals, das von dem Signalgenerator 458 über die Komparatoren 456, 457 ausgeben wird, mit den Analogsignalen AD1 und AD2 vergli-chen, und es werden das PWM-Signal D1 und das PWM-Signal D2 mit einer Dauer entsprechend den Spannungen der Analogsignale AD1 und AD2 ausgegeben. Fig. 11 zeigt ein Beispiel für die Sägezahnsignalerzeugungsschaltung, und Fig. 12 zeigt ein Beispiel für die Dreieckssignalerzeugungsschaltung. Allordings sind derartige Signalerzeugungsschaltungen wohlbekannt, und daher wird auf eine zusätzliche Beschreibung verzichtet.

d &

DE 196 39 178 C 2

13

Die Fig. 13(a), 13(b), 13(c) und 13(d) zeigen die Signalformen des Sägezahnsignals, das von dem Signalgenerator 458 über die Komparatoren 456, 457 ausgegeben wird, sowie die PWM-Signale D1 und D2, die durch Vergleich der Auslogsignale ADI, AD2 mit der an den Motor angelegten Spannung ausgegeben werden. Die Fig. 14(a), 14(b), 14(c) und 14(d) zeigen die Signalformen des Dreieckssignals, die PWM-Signale D1 und D2, die durch Vergleich der Analogsignale AD1, AD2 mit der an den Motor angelegten Spannung ausgegeben werden. Obwohl aus dem Vergleich der Fig. 9 und 10 hervorgeht, daß eine Abweichung zwischen den Anstiegsabschnitten der PWM-Signale D1 und D2 im Falle des Dreieckssignals auftritt, ist daher auch die Signalform der an den Motor angelegten Spannung verschieden, jedoch gibt es keinen grundsätzlichen Unterschied im Be- 15 triebsablauf.

Fig. 15 zeigt ein drittes Beispiel für die Steuerbefehlseinheit, welche aus einem Mikroprozessor 451, einem D/A-Wandler 454, einem Tastfunktionsgenerator 459, mehreren

Bei dieser Anordnung wird ein Analogsignal AD1 entsprechend dem Tastverhältnis D1 auf der Grundlage des eingegebenen Stromsteuerwertes E erhalten, ein Analogsignal AD2 entsprechend dem Tastverhältnis D2 wird von der Ein- 25 gabe des Analogsignals AD1 in den Tastfunktionsgenerator 459 erhalten, der einen Funktionsgenerator auf der Grundlage der Cleichung (2) enthält, das Sägezahnsignal oder Dreieckssignal mit einer Wellenlänge entsprechend einem Zyklus des PWM-Signals, das von dem Signalgenerator 458 30 2Dt) Vb (15) über die Komparatoren 456, 457 ausgegeben wird, wird mit dem Analogsignal AD1 und AD2 verglichen, und hierdurch werden das PWM-Signal D1 sowie das PMW-Signal D2 entsprechend den Spannungen der Analogsignale AD1 und AD2 ausgegeben. Der Tastfunktionsgenerator 459 weist 35 beixpielsweike einen Aufbau auf, der durch Kombination von Analogschaltungen unter Verwendung üblicher Operationsverstärker erhalten wird, wie dies beispielsweise in Fig. 16 und Fig. 17-gezeigt ist.

Die Komparatoren 456, 457 und der Signalgenerator 458 40 sind ähnlich wie bei der zweiten Ausführungsform, und die Ausgangssignale der Komparatoren 456, 457 sind Shnlich denen, die unter Bezugnahme auf die Fig. 13(a) bis 13(d) sowie Fig. 14(a) bis 14(d) bei der zweiten Ausführungsform erläutert wurden.

Fig. 18 ist ein Flußdiagramm, welches die Abfolge der Verarbeitungsschritte zur Berechnung der Motorwinkelgeschwindigkeit in dem Winkelgeschwindigkeitsprozessor 28 erläutert. Zuerst wird eine Batteriespannung Vb festgestellt (Schritt P1), und ein Motorstrommeßwert i(dct) festgestellt. 50 (Schritt P2). Die Tastverhältnisse D1 und D2 zum Treiben eines FETs der Motortreiberschaltung werden auf der Grundlage des Lenkkrafthilfsvorgabewertes Iref (Schritt P3) berechnet, und eine Motorkleumenspannung VM wird auf der Grundlage von Gleichung (12) berechnet (Schritt P4), 59 Ein Motorstrommeßwert i(det) wird durch das Tastverhältnis D2 auf der Grundlage der Gleichung (11) kompensiort, um den Motorstromwert I zu berechnen (Schritt PS). Der berechnete Wert für die Motorwinkelgeschwindigkeit @ wird auf der Grundlage von Gleichung (7) berechnet 60 (Schritt P6).

Da der in Gleichung (7) enthaltene Term (Ls + R) einfach durch ein Programm beschrieben werden kann, unter Verwendung des hekannten Ganzzahlverfahrens, kann die Gleichung (7) durch die CPU bearbeitet werden, die in der Steu- 65 ereinheit vorhanden ist.

Bei der voranstehend Verarbeitung wird der Einfluß der Zeitverzögerung zum Treiben der FETs vernachlässigt. Wie

jedoch aus den Fig. 19(a) und 19(b) bervorgeht, ist eine Zeitverzögerung Dt vorhanden, entsprechend einer Summe der Betriebsverzögerung (1) der Logikschaltung und der Betriebsverzögerung (2) des FET-Elements zwischen dem Gatetreiberbefehlssignal (a) und den ON/OFF-Operationen des betreffenden Gates (b). Daher tritt eine Verringerung des Effektivwertes des Tastverhältnisses D auf, was zu einem Fehler führt, ohwohl es sich nur um einen geringfügigen Fehler handelt, bei dem berechneten Wert für die Motorklemmenspannung VM. Der berechnete Wert für die Motorklemmenspannung VM mit einer Kompensation bezüglich der Zeitverzögerung Dt wird nachstehend erläutert.

Wenn das Tastverhältnis D2 immer gleich 1 ist, wird die Motorklemmenspannung VM durch folgende Gleichung (13) ausgedrückt:

VM = (D1 Dt)Vb (13)

Wenn das Tastverhältnis D2 zu 1 approximiert wird, wird Komparatoren 456, 457 und einem Signalgenerator 458 be- 20 die Motorklemmenspannung VM durch folgende Gleichung (14) ausgedrückt:

 $VM = {(D1 - Dt) - Dt}Vb$ (14)

Wenn das Tastverhältnis D2 < 1 ist, wird die Motorklemmenspannung VM durch folgende Gleichung (15) ausgedrückt:

Fig. 20(a), 20(b) und 20(c) zeigen die ON/OFF-Zustände von FET1, FET3 und die ermittelte Motorklemmenspannung VM, wenn das Tastverhältnis von FET3 immer gleich 1 ist, wogegen die Fig. 21(a), 21(b) und 21(c) die ON/OFF-Zustände von FET1, FET3 und die ermittelte Motorklemmenspannung VM zeigen, wenn das Tastverhältnis D2 von FET3 zu 1 approximien wird.

Patentansprüche

1. Steuervorrichtung für ein elektrisches Lenkservosystem, weiches eine Rückkopplungssteuervorrichtung (24, 25, 26, 27) aufweist, um einen Abtriebswert eines Motors (M; 10) zu steuern, der eine Lenkhilfskraft an einen Lenkmechanismus (1, 2, 4, 5a, 5b, 7, 8) abgibt, entsprechend einem Wert (E) eines Stromsteuerzignals, das aus einem Lenkkrafthilfsvorgabewert (iref) berechnet wird, der auf der Grundlage eines Leukdrehmomentsignals herechnet wird, das zumindest auf eine Lenkwelle (2) einwirkt, und auf der Grundlage eines festgestellten Motorstromwenes (I), wobei die Steuervonichtung für das elektrische Lenkservosystem auf-

cine Motortreibervorrichtung (41), welche eine Stromversorgung (14) über die Eingangsklemmen einer II-Brückenschaltung anlegt, die durch Verbindung von vier Halbleiterelementen (FET1, FET2, FET3, FET4) und Anschluß des Motors (M; 10) an die Ausgangsklemmen der H-Brückenschaltung gebildet wird, wo-bei zwei Halbleiterelemente (FET1, FET4) paarweise in einem ersten Arm und zwei Halbleiterelemente (FET2, FET3) paarweise in einem zweiten Arm der H-Brückenschaltung vorgesehen sind; und

eine Steuervorrichtung (45) zum Treiben der Halbleiterelemente (FET1, FET4) des ersten Arms mit einem PWM-Signal, das ein erstes Tastverhältnis (D1) hat. das auf der Grundlage des Werts (E) des Stromsteuersi-

P.18

DE 196 39 178 C 2

GREER, BURNS & CRAIN, LTD

15

16

gnals festgelegt wird, und zum Treiben der Halbleiterclemente (FET2, FET3) des zweiten Arms mit einem PWM-Signal, das ein zweites Tastverhältnis (D2) hat, das eine Funktion (f) des ersten Tastverhältnisses (D1) ist.

2. Steuervorrichtung für ein elektrisches Lenkservosystem nach Anspruch I, dadurch gekennzeichnet, daß der Motorstromwert (1) an die Rückkopplungssteuervorrichtung (24, 25, 26, 27) als ein Motorstrommeßwert (i(dct)) rückgekoppelt wird, der durch das zweite 10 Tastverhältnis (D2) kompensiert ist.

3. Steuervorrichtung für ein elektrisches Lenkservosystem nach Anspruch 1, gekennzeichnet durch: eine Motorwinkelgeschwindigkeitsermittlungsvorrichtung (28) zur Ermittlung einer Winkelgeschwindigkeit (0) 15 auf der Grundlage einer Batterlespannung (Vb), einer Motorklemmenspannung (VM), die auf der Grundlage des ersten Tastverhältnisses (D1) und des zweiten Tastverhältnisses (D2) bestimmt wird, und eines Motorstrommeßwertes (i(dct)), der durch das zweite Tastver- 20 hältnis (U2) kompensiert ist.

4. Steuervorrichtung für ein elektrisches Lenkservosystem nach Anspruch I, dadurch gekennzeichnet, daß das erste PWM-Signal mit dem ersten Tastverbältnis (D1) und das zweite FWM-Signal mit dem zweiten 25 Tustverhältnis (D2) unabhängig an die Motortreibervorrichtung (41) ausgegeben werden.

5. Steuervorrichtung für ein elektrisches Lenkservosystem nach Anspruch 4,

gekennzeichnet durch:

eine Vorrichtung (45) zur Berechnung des ersten Tastverhältnisses (D1) auf der Grundlage des Wertes (E) des Stromsteuersignals, und zur Berechnung des zweiten Tastverhültnisses (D2) auf der Grundlage einer vorbestimmten Gleichung als Funktion des ersten Tastver- 35 .hältnisses (D2):

eine Vorrichtung (451, 452) zur Ausgabe des ersten PWM-Signals mit dem ersten Tastverhältnis (D1) durch Eingabe eines Wertes des ersten Tastverhältnisses (D1); und

eine Vorrichtung (451, 453) zur Ausgabe des zweiten PWM-Signals mit dem zweiten Tastverhältnis (D2) durch Eingabe eines Wertes des zweiten Tastverhältnisses (D2).

6. Steuervorrichtung für ein elektrisches Lenkservosy- 45 stem nach Anspruch 5, dadurch gekennzeichnet, daß die vorbestimmte Gleichung gegeben ist durch:

$D2 = a \cdot D1 + b$

wobei D2 das zweite Tastverhältnis ist. D1 das erste Tastverhältnis, und a und b Konstanten sind.

7. Stevervorrichtung für ein elektrisches Lenkservosystem nach Anspruch 4,

gekennzeichnet durch: eine Berechnungsvorrichtung (451) zur Berechnung eines ersten Tastverhältnisses (D1) als Digitaldaten auf der Grundlage des Wertes (E) des Stromsteuersignals, und zur Berechnung eines zweiten Tastverhältnisses (D2) als Digitaldaten mit der vorbestimmten Gleichung 60 durch Eingabe des Wertes für das erste Tastverbältnis

eine Vorrichtung (454, 455) zur Umwandlung der Digitaldaten des ersten Tastverhältnisses (D1) und der Digitaldaten des zweiten Tastverhältnisses (D2), die von 65 der Berechnungsvorrichtung (451) ausgegeben werden, in Analogdaten (AD1) des ersten Tastverhältnisses (D1) bzw. (AD2) des zweiten Tastverhältnisses

cine Signalerzeugungsvorrichtung (458) zur Erzeugung eines Sägezahnsignals oder eines Dreiecksignals mit einer Wellenlänge entsprechehd einem Zyklus eines PWM-Signals; and

eine PWM-Signalausgabevorrichtung (456, 457) zur Umwandlung der Signalform, die von der Signalerzeugungsvorrichtung (458) ausgegeben wird, in ein erstes PWM-Signal, dessen Dauer einer Spannung des Analogsignals (AD1) des ersten Tastverhältnisses (D1) entspricht, und der Signalform des zweiten Tastverhältnisses (D2) in ein zweites PWM-Signal mit einer Dauer entsprechend der Spannung des Analogsignals (AD2) des zweiten Tastverhältnisses (D2).

8. Steuervorrichtung für ein elektrisches Lenkservosystem nach Anspruch 4, gekennzeichnet durch: eine Vorrichtung (451) zur Berechnung eines Wertes eines ersten Tastverhältnisses (D1) in Digitaldaten auf der Grundlage des Wertes (E) des Stromsteuersignals; eine Vorrichtung zur Umwandlung der Digitaldaten des ersten Tastverhältnisses in Analogdaten des ersten

Tastverhältnisses; eine Funktionssignalerzeugungsvorrichtung (459) zur Erzeugung des Analogsignals (AD2) eines zweiten Tastverhältnisses (D2) auf der Grundlage der Analogdaten (AD1) des ersten Tastverhältnisses (D1);

eine Signalerzeugungsvorrichtung (458) zur Erzeugung eines Sägezahnsignals oder eines Dreiecksignals mit einer Wellenlänge entsprechend einem Zyklus des PWM-Signals; und

eine PWM-Signalwandlervorrichtung (458) zur Umwandlung der Signalform, die von der Signalerzeugungsvorrichtung (45%) ausgegeben wird, in ein erstes PWM-Signal mit einer Dauer entsprechend einer Spannung des Analogsignals (AD1) des ersten Tastverhältnisses (D1), und in ein zweites PWM-Signal mit einer Dauer entsprechend der Spannung des Analogsignals (AD2) des zweiten Tastverbältnisses (D2).

Hierzu 21 Seite(n) Zeichnungen

Nummer: Int. Cl.7:

DE 198 39 178 C2

B 62 D 5/04 Veröffentlichungstag: 16. August 2001

Nummer: Int. Cl.⁷:

Int. Cl.'; Veröffentlichungstag; DE 196 39 178 C2 B 62 D 5/04 16. August 2001

Fig. 1

Nummer: Int. Cl.7:

Veröffentlichungstag:

DE 196 39 178 CZ B 62 D 5/04 16. August 2001

OPL

7

GREER, BURNS & CRAIN, LTD

102 133/144

Nummer: Int. Cl.7:

DE 196 39 178 CZ 8 62 D 5/04

Veröffentlichungstag:

Nummer: Int. Cl.7: Veröffentlichungstag:

DE 196 39 178 C2 B 62 D 5/04 16. August 2001

GREER, BURNS & CRAIN, LTD

Nummer: Int. Cl.⁷:

Veröffentlichungstag:

DE 198 39 178 C2 B 62 D 5/04 16. August 2001

102 133/144

Nummer: Int Ci.7:

Veröffentlichungstag:

DE 196 39 178 C2 B 62 D 5/04 16. August 2001

102 133/144

Nummer: Int, Cl.⁷;

Veröffentlichungstag:

DE 196 39 178 C2 B 62 D 5/04 16. August 2001

У PWM D1

Nummer: Int. Cl.⁷; Veröffentlichungstag:

DE 196 39 178 C2 8 62 D 5/04 16. August 2001

Nummer;

Int. Cl.⁷;

DE 196 39 178 CZ B 62 D 5/04

Veröffentlichungstag:

16. August 2001

Fig. 11

Fig. 12

102 133/144

Veröffentlichungstag:

DE 196 39 178 C2 B 62 D 5/04 16. August 2001

Nummer:

DE 196 39 178 CZ 8 62 D 5/04 16. August 2001

Int. CI.7: Veröffentlichungstag:

Nummer: Int. Ci.⁷:

Int. Cl.7: B 6 Veröffentlichungstag: 16.

DE 196 38 178 C2 B 62 D 5/04 16. August 2001

Fig. 1.

11:21 GREER, BURNS & CRAIN, LTD

SEP-14-2004 11:21 ZEICHNÜNGEN SEITE 14

Nummer: Int. Cl.⁷:

Veröffentlichungstag:

DE 196 39 178 C2 B 62 D 5/04 16. August 2001

Fig. 16

Fig. 17

Nummer; Int. Cl.⁷:

Veröffentlichungstag:

DE 196 39 178 C2 B 62 D 5/04 16. August 2001

P.34

Nummer: Int. Cl.⁷:

Veröffentlichungstag:

DE 196 39 178 C2 B 62 D 5/04 18. August 2001

Nummer: Int. Cl.⁷;

Int. Ct.⁷: B 62 Veröffentlichungstag: 16.

DE 196 39 178 C2 B 62 D 5/04 16. August 2001

Nummer: Int Cl.7:

DE 196 39 178 C2 B 62 D 5/04 16, August 2001

Veröffentlichungstag:

Fig. 22

GREER, BURNS & CRAIN, LTD

Fig. 23

102 133/144

Nummer: Int. Cl.⁷: DE 196 39 178 C2 B 62 D 5/04

Int. Cl./: Veröffentlichungstag:

16. August 2001

Fig. 24

Fig. 25

Nummer: Int. Cl.?:

Veröffentlichungstag:

DE 196 39 178 C2 B 62 D 5/04 16. August 2001

Fig. 26

