

Experiment -6

Student Name: Aditi Mourya UID: 22BCS11624

Branch: CSE Section: TPP-IOT-638-A

Semester: 6th DOP: /02/2025

Subject: Advanced Programming-II Subject Code:22CSP-351

Problem-1: Convert Sorted Array to Binary Search Tree

Given an integer array nums where the elements are sorted in ascending order, convert it to a height-balanced binary search tree.

Example 1:

Input: nums = [-10,-3,0,5,9] **Output:** [0,-3,9,-10,null,5]

Explanation: [0,-10,5,null,-3,null,9] is also accepted:

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Discover. Learn. Empower.

Example 2:

Input: nums = [1,3]

Output: [3,1]

Explanation: [1,null,3] and [3,1] are both height-balanced BSTs.

Constraints:

1 <= nums.length <= 10⁴

• -10⁴ <= nums[i] <= 10⁴

• nums is sorted in a strictly increasing order.

Problem-2: Maximum Depth of Binary Tree

Given the root of a binary tree, return its maximum depth.

A binary tree's **maximum depth** is the number of nodes along the longest path from the root node down to the farthest leaf node.

Input: root = [3,9,20,null,null,15,7]

Output: 3
Example 2:

Input: root = [1,null,2]

Output: 2

Constraints:

- The number of nodes in the tree is in the range [0, 10⁴].
- -100 <= Node.val <= 100

