CÁLCULO DE LÍMITES

1. Criterio de Stolz

Sean $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ succesiones que cumplen al menos una de las siguientes condiciones:

(a)
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 0$$

(b)
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \infty$$

(c)
$$\{b_n\}_{n\in\mathbb{N}}$$
 estrictamente creciente y no mayorada con $b_n\neq 0,\,\forall n\in\mathbb{N}$

Si existe $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}$ entonces también existe el límite $\lim_{n\to\infty} \frac{a_n}{b_n}$ y ambos coinciden

2. Criterio de la media aritmética

$${a_n}_{n\in\mathbb{N}}\to l(\pm\infty)\Rightarrow \left\{\frac{a_1+a_2+\cdots+a_n}{n}\right\}_{n\in\mathbb{N}}\to l(\pm\infty)$$

3. Criterio de la media geomética

$$\{a_n\}_{n\in\mathbb{N}},\ a_n>0,\ \forall n\in\mathbb{N}:\ \{a_n\}_{n\in\mathbb{N}}\to l(+\infty)\Rightarrow\{\sqrt[n]{a_1\cdot a_2\cdots a_n}\}_{n\in\mathbb{N}}\to l(+\infty)$$

4. Criterio de la raiz

$$\{a_n\}_{n\in\mathbb{N}},\ a_n>0,\ \forall n\in\mathbb{N}:\ \{\frac{a_{n+1}}{a_n}\}_{n\in\mathbb{N}}\to l(+\infty)\Rightarrow \{\sqrt[n]{a_n}\}_{n\in\mathbb{N}}\to l(+\infty)$$

5. Proposición

$$\{a_n\}_{n\in\mathbb{N}}$$
 divergente $\Rightarrow \left\{\left(1+\frac{1}{a_n}\right)^{a_n}\right\}_{n\in\mathbb{N}}\to e$

6. Corolario

$${a_n}_{n\in\mathbb{N}}\to 0 \Rightarrow \left\{\left(1+a_n\right)^{\frac{1}{a_n}}\right\}_{n\in\mathbb{N}}\to e$$

7. Proposición

Sean $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ succesiones tales que $\lim_{n\to\infty}a_n=1$ y $\lim_{n\to\infty}b_n=\infty$.

Si existe
$$\lim_{n\to\infty} (a_n-1)b_n$$
, entonces $\lim_{n\to\infty} a_n^{b_n} = e^{\lim_{n\to\infty} (a_n-1)b_n}$.