

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPT. OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

END OF FIRST SEMESTER EXAMINATIONS - 2020/21

COURSE TITLE:
DISCRETE MATHEMATICS 1
COURSE CODE:

COMP 107

TIME ALLOWED: TWO (2) HOURS

Student's ID:

INSTRUCTIONS:

- 1. Answer <u>ALL</u> questions in <u>SECTION A</u>. Circle the right answer or write your answer in the provided on the question paper.
- 2. Answer any <u>TWO</u> questions in <u>SECTION B</u> in the answer booklet provided. All questions <u>equal marks</u>.
- 3. Fill the space indicated above with your Student ID. Fill in the details of the examination space provided on the cover of the <u>answer booklet</u>.

DO NOT TURN OVER THIS PAGE UNTIL YOU HAVE BEEN TO TO DO SO BY THE INVIGILATOR

Instructor: Dr. K. Obeng Sarkodie

SECTION A [40 marks]

Each question is followed by four lettered options A to D. Find out the correct option for each section and circle the letter that corresponds to the option you have chosen.

Let $A = \{x, y\}$, $B = \{1, 2, 3\}$, and $C = \{a, b\}$. Use this information to answer questions 1, 2, 3, and 4

- 1. Find A x B.
 - A. $\{(x, 1), (y, 1), (x, 2), (y, b), (x, 3), (y, 3)\}$
 - B. $\{(x, 1), (y, 1), (x, 2), (y, 2), (x, 3), (y, 3)\}$
 - C. $\{(x, 1), (y, 1), (x, 2), (y, 2), (x, 3), (y, b)\}$
 - D. $\{(x, 1), (y, 1), (a, 2), (y, 2), (x, 3), (y, 3)\}$
- 2. Find B x A.
 - A. $\{(1, x), (3, y), (2, x), (2, y), (3, x), (3, y)\}$
 - B. $\{(1, x), (2, y), (2, x), (2, y), (3, x), (3, y)\}$
 - C. $\{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\}$
 - D. $\{(1, x), (1, y), (1, x), (2, y), (3, x), (3, y)\}$
- 3. Find A x A.
 - A. $\{(x, x), (x, y), (y, x), (x, y)\}$
 - B. $\{(x, x), (x, y), (x, x), (y, y)\}$
 - C. $\{(x, x), (x, y), (y, x), (x, y)\}$
 - D. $\{(x, x), (x, y), (y, x), (y, y)\}$
- 4. How many elements are in A x B x C?
 - A. 10
 - B. 11
 - C. 12
 - D. 13

Write your answers in the boxes provided.

Assuming that p is true, q is false, and r is true, find the truth value of each proposition in questions 5, 6, 7 and 8.

- 5. $p \land q \rightarrow r$
- 6. $p \lor q \rightarrow \neg r$
- 7. $p \land (q \rightarrow r)$

8.
$$p \rightarrow (q \rightarrow r)$$

In Figure 1 below, determine whether the following walks are trails, paths, closed walks, circuits, simple circuits, or just walks in questions 9, 10, 11, 12, 13 and 14.

Figure 1

9. $v_1e_2v_2e_3v_3e_4v_4e_5v_2e_2v_1e_1v_0$

 $10.v_2v_3v_4v_5v_2$

11. v4v2v3v4v5v2v4

 $12.v_2v_1v_5v_2v_3v_4v_2$

 $13.v_0v_5v_2v_3v_4v_2v_1$

14. 25242221

Consider the finite-state automation A defined by the transition diagram shown in Figure 2. Use the information to answer questions 15, 16, 17, 18, 19 and 20.

Figure 2

- 15. What are the states of A?
- 16. What are the input symbols of A?
- 17. What is the initial state of A?
- 18. What are the accepting states of A?
- 19. Determine N(s1, 1) and N(S2, 1).
- 20. Construct the annotated next-state table for A.

SECTION B: [60 Marks]

Answer ANY TWO questions from this section. All questions carry equal marks.

Question 1

a. Show that if $A = \{x \mid x^2 + x - 6 = 0\}$ and $B = \{2, -3\}$, then A = B. [9 marks]

b. Let $X = \{x \mid x^2 + x - 2 = 0\}$. Show that $X \subseteq \mathbb{Z}$. [9 marks]

c. Let $X = \{x \mid 3x^2 - x - 2 = 0\}$. Show that X is not a subset of Z. [9 marks]

d. What day of the week will it be 365 days from Wednesday? [3 marks]

- a. Prove that the function $f(x) = 1/x^2$ from the set X of nonzero real numbers to the set Y of positive real numbers is onto Y. [10 marks]
- b. Let $J_3 = \{0, 1, 2\}$, and define functions f and g from J_3 to J_3 as follows: For every x in J_3 , $f(x) = (x^2 + x + 1) \mod 3$ and $g(x) = (x + 2)^2 \mod 3$.

Does
$$f = g$$
?

[10 marks]

c. Let $F: \mathbb{R} \to \mathbb{R}$ and $G: \mathbb{R} \to \mathbb{R}$ be functions. Define new functions $F + G: \mathbb{R} \to \mathbb{R}$ and $G + F: \mathbb{R} \to \mathbb{R}$ as follows: For every $x \in \mathbb{R}$,

$$F + G: \mathbf{R} \to \mathbf{R}$$
 and $G + F: \mathbf{R} \to \mathbf{R}$ as follows: For every $x = K$, $(F + G)(x) = F(x) + G(x)$ and $(G + F)(x) + G(x) + F(x)$.

Does
$$F + G = G + F$$
?

[10 marks]

Question 3

Consider the finite-state automaton A defined by the following annotated next-state table:

			Input		
			a	b	C
	→	U	Z	Y	Y
	0	V	V	V	V
State		Y	Z	V	Y
	0	Z	Z	Z	Z

- a. What are the states of A?
- b. What are the input symbols of A?
- c. What is the initial state of A?
- d. What are the accepting states of A?
- e. Find N(U, c) and N(Y, a) and N(Z, b)
- f. Draw the transition diagram for A.

[5 marks]

[5 marks]

[5 marks]

[5 marks]

[5 marks]

[5 marks]