Lab Manual 5

Basic Plotting

Course Objective: understand the basic features and commands of MATLAB

Part A: Theory

plot(x,y)	plots y versus x with a solid line (the default line style),
plot(x,y,'')	plots y versus x with a dashed line (more on this below), and
plot(x)	plots the elements of x against their row index.

Color Style-option	Line	Style-option	M	arker Style-option
y yellow m magenta c cyan r red g green b blue w white k black	- : none	solid dashed dotted dash-dot no line	+ o * x	plus sign circle asterisk x-mark point up triangle square diamond, etc.

Examples:

plot(x,y,'r')	plots y versus x with a red solid line,
plot(x,y,':')	plots y versus x with a dotted line,
plot(x,y,'b')	plots y versus x with a blue dashed line, and
plot(x,y,'+')	plots y versus x as unconnected points marked by $+$.

When no style-option is specified, MATLAB uses a blue solid line by default.

Plots may be annotated with xlabel, ylabel, title, and text commands.

The first three commands take string arguments, whereas the last one requires three arguments—text(x-coordinate, y-coordinate, 'text'), where the coordinate values are taken from the current plot. Thus,

```
xlabel('Pipe Length') labels the x-axis with Pipe Length, ylabel('Fluid Pressure') labels the y-axis with Fluid Pressure, title('Pressure Variation') titles the plot with Pressure Variation, and writes "Note this dip" at the location (2.0,6.0) in the plot coordinates.
```

Part B: Practical

```
>> t=linspace(0,2*pi,100);
                                         % Generate vector t
>> y1=sin(t); y2=t;
                                         % Calculate y1, y2, y3
y_3=t-(t.^3)/6+(t.^5)/120;
>> plot(t,y1,t,y2,'--',t,y3,'o')
                                         % Plot (t,y1) with solid line
                                         %- (t,y2) with dashed line and
                                         %- (t,y3) with circles
>> axis([0 5 -1 5])
                                         % Zoom in with new axis limits
>> xlabel('t')
                                         % Put x-label
>> ylabel('Approximations of sin(t)')% Put y-label
>> title('Fun with sin(t)')
                                        % Put title
                                         % Write 'sin(t)' at point (3.5,0)
>> text(3.5,0,'sin(t)')
>> gtext('Linear approximation')
                                        gtext writes the specified string at a
>> gtext('First 3 terms')
                                        location clicked with the mouse in the
>> gtext('in Taylor series')
                                        graphics window. So after hitting return
                                        at the end of gtext command, go to the
                                        graphics window and click a location.
```


fplot	$f(t) = t \sin t, \ 0 \le t \le 10\pi$ $\text{fplot('x.*sin(x)',[0\ 10*pi])}$ Note that the function to be plotted must be written as a function of x .	300 100 100 -100 -300 -300 -300 -300 -30
semilogx	$x=e^{-t}, y=t, \ 0 \leq t \leq 2\pi$ $\texttt{t = linspace(0,2*pi,200);}$ $\texttt{x = exp(-t);} \ \texttt{y = t;}$ $\texttt{semilogx(x,y),} \ \texttt{grid}$	10 ² 10 ² 10 ³ 10 ⁵
semilogy	$x=t,\;y=e^t,\;\;0\leq t\leq 2\pi$ $\texttt{t=linspace(0,2*pi,200);}$ $\texttt{semilogy(t,exp(t))}$ \texttt{grid}	10
loglog	$x = e^{t}, y = 100 + e^{2t}, 0 \le t \le 2\pi$ $t = linspace(0,2*pi,200);$ $x = exp(t);$ $y = 100 + exp(2*t);$ $loglog(x,y), grid$	10° 10° 10° 10° 10° 10° 10° 10° 10° 10°

Plot 3D

sphere	A unit sphere centered at the origin and generated by three matrices x, y, and z of size 21 × 21 each. sphere(20) axis('square') or [x,y,z] = sphere(20); surf(x,y,z) axis('square')	0.5
ellipsoid	An ellipsoid of radii $rx = 1$, $ry = 2$, and $rz = 0.5$, centered at the origin. $cx = 0; cy = 0; cz = 0;$ $rx = 1; ry = 2; rz = 0.5;$ $ellipsoid(cx,cy,cz,rx,ry,rz)$ $axis('equal')$	05 0 15 10 08 0 15 10 08 0 10 10 10 10 10 10 10 10 10 10 10 10 1
cylinder	A cylinder generated by $ \begin{split} r &= \sin(3\piz) + 2 \\ & 0 \leq z \leq 1, 0 \leq \theta \leq 2\pi. \end{split} $ $ z &= [0:.02:1]; \\ r &= \sin(3*\text{pi}*z) + 2; \\ \text{cylinder(r), axis square} \end{split} $	0.8- 0.8- 0.8- 0.8- 0.8- 0.8- 0.8- 0.8-
slice	Slices of the volumetric function $f(x, y, z) = \cos^2 x + \cos^2 y - z^2$ $ x \le 3$, $ y \le 3$, $ z \le 3$ at $x = -2$ and 2 , $y = 2$, and $z = -2.5$ and 0 . $v = [-3:.2:3];$ $[x,y,z] = \text{meshgrid}(v,v,v);$ $f = (\cos(x).^2 + \sin(y).^2-z.^2);$ $xv = [-2.5:3]; yv = 2;$ $zv = [-2.5:0];$ slice(x,y,z,f,xv,yv,zv); The value of the function is indicated by the color intensity.	NO ON O