LT FISICA (Fioresi)

23 Gennaio, 2019

NOME:	
COGNOME:	

NUMERO DI MATRICOLA:

Non sono permesse calcolatrici, telefonini, libri o appunti.

Ci sono 5 esercizi per un totale di 300 punti. Tutto il lavoro deve essere svolto su queste pagine. Non fate la brutta e siate chiari nei ragionamenti.

In tutto il compito siano a e b le ultime due cifre NON NULLE e DISTINTE del proprio numero di matricola. Esempio: se il numero di matricola e' 624040066 allora a=4, b=6.

1	
2	
3	
4	
5	
Totale	

Esercizio 1 (60 punti)

- a) i) Trovare il piano π_1 per l'origine e parallelo al piano π_2 : x+y-z=a.
- ii) Trovare la distanza tra i piani π_1 e π_2 . Non e' permesso l'uso di formule preconfezionate.
- b) Siano \mathbf{v} , \mathbf{w} vettori linearmente indipendenti in uno spazio di dimensione NON finita V. Sia $\mathbf{u} \in \operatorname{span}\{\mathbf{v}, \mathbf{w}\}$, $\mathbf{u} \neq 0$, ma linearmente indipendente sia con \mathbf{v} che con \mathbf{w} .
- i) Si dimostri che span $\{u, w\}$ = span $\{v, w\}$. [Nota: si richiede una dimostrazione senza citare alcun risultato ma a partire solamente dalle definizioni.]
- ii) Che dimensione puo' avere span $\{u, v, w\}$? Si motivi la risposta.
- c) Si enunci con chiarezza il teorema del completamento e si spieghi come conduca al concetto di dimensione.

Esercizio 2 (60 punti)

- a) Si consideri il sottoinsieme W dello spazio vettoriale dei polinomi reali $\mathbf{R}[x]$, con coefficienti interi (anche nulli), cioe' $p(x) = a_0 + a_1x + \cdots + a_nx^n$ con $a_i \in \mathbf{Z}$. E' un sottospazio vettoriale?
- b) Si determini (se possibile) una applicazione lineare non nulla $f: M_{m,n}(\mathbf{R}) \longrightarrow \mathbf{R}[x]$.
- Si dica se una tale applicazione lineare puo' essere iniettiva, suriettiva e/o biettiva, per opportuni valori di m,n motivando la risposta. Quando la risposta e' positiva e' richiesto un esempio.
- c) Si enunci chiaramente il teorema di Rouche'-Capelli insieme alla nozione di rango e se ne dia un esempio (anche semplice) significativo.

Esercizio 3 (60 punti)

- a) Si risponda vero o falso motivando chiaramente la risposta con una dimostrazione oppure con un controesempio. Se si vuole utilizzare un risultato e' necessario enunciarlo chiaramente.
- I) Sia $f: V \longrightarrow W$ una applicazione lineare, con V e W spazi vettoriali infinito dimensionali sullo stesso campo k. Se $f(\mathbf{v}_1), \ldots, f(\mathbf{v}_n)$ sono linearmente indipendenti allora $\mathbf{v}_1, \ldots, \mathbf{v}_n$ sono linearmente indipendenti.
- II) Siano A e B matrici complesse diagonalizzabili. A e' simile a B se e solo se hanno lo stesso polinomio caratteristico.
- b) Sia V uno spazio vettoriale reale finito dimensionale con un prodotto scalare definito positivo. Sia W un sottospazio vettoriale. Si dimostri che $V=W\oplus W^{\perp}$.

CREDITO EXTRA (30 punti). Si dimostri che se X e' una matrice $n \times n$ allora exp(X) e' sempre invertibile e si determini la sua inversa come esponenziale.

Esercizio 4 (80 punti)

a) Data la matrice

$$A = \begin{pmatrix} a & 0 & 1\\ 0 & a & -2i\\ 1 & 2i & a \end{pmatrix}$$

si determini una base per il nucleo e una base per l'immagine dell'applicazione lineare $T_A: \mathbb{C}^3 \longrightarrow \mathbb{C}^3$ ad essa associata nella base canonica di dominio e codominio.

- b) Si calcolino autovalori e autovettori di A e si dica se A e' diagonalizzabile.
- c) Si dica se tale matrice e' associata ad un prodotto hermitiano nella base canonica. In caso affermativo si dica se tale prodotto e' non degenere, definito positivo.
- d) Si trovi (se possibile) una matrice P tale che $P^{-1}AP$ sia diagonale.

Esercizio 5 (40 punti)

- a) Sia $W = \{(x,y,z,t)|x+y-z=0, ax-ay+az=0=0\} \subset \mathbf{R}^4$. Si determini una base per W^{\perp} rispetto al prodotto scalare euclideo e una base per W^{\perp_M} rispetto al prodotto scalare di Minkowski. I due spazi W^{\perp} e W^{\perp_M} sono isomorfi?
- b) Si trovi una base ortonormale per W^{\perp} rispetto al prodotto scalare euclideo.