1. Regular or not? Prove or disprove that each of the languages below is regular (or not). Let Σ^+ denote the set of all nonempty strings over alphabet Σ ; in other words, $\Sigma^+ = \Sigma \cdot \Sigma^*$. Denote n(w) the integer corresponding to the binary string w.

```
(a) \left\{3x=y: x, y \in \{0, 1\}^*, n(y) = 3n(x)\right\}

(b) \left\{\frac{3x}{=y}: x \in \left\{0, 0, 1, \frac{1}{0}, \frac{1}{1}\right\}^*, n(y) = 3n(x)\right\}

(c) \left\{wxw^R: w, x \in \Sigma^+\right\}

(d) \left\{ww^Rx: w, x \in \Sigma^+\right\}
```

[Hint: To prove that a language L is regular, construct an NFA that recognizes L; to disprove that L is regular, construct a fooling set for L and argue that the construction is correct.]

2. Telling DFAs apart.

Let M_1 and M_2 be two DFAs, each with exactly n states. Assume that the languages associated with the two machines are different (that is, $L(M_1) \neq L(M_2)$), there is always a string in the symmetric difference of the two languages.

Prove that there is always a string w of length polynomial in n in the symmetric difference of $L(M_1)$ and $L(M_2)$. What is the best upper bound you can get on the length of w?

★3. Telling strings apart.

Let w_1 and w_2 be two strings over binary alphabet $\Sigma = \{0, 1\}$, each of exactly length n. Assume that the two strings are different, there is always an n-state DFA that accepts exactly one of the two strings.

Prove that there is a DFA M of size o(n) such that exactly one of w_1 and w_2 is in L(M). What is the best upper bound you can get on the size of M?