EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

Mingxing Tan, Quoc V. Le ICML 2019

발표자: 박상수

EfficientNet 결과

• 정확도와 Efficient에서 모두 우수한 성능

ConvNet의 정확도를 높이기 위해서는 ?

Size scaling

Figure 2. Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.

하나만 Scaling 하는 경우

- Width, Depth scaling은 이른 시점이 Saturation
- Resolution은 키울수록 정확도 향상

Figure 3. Scaling Up a Baseline Model with Different Network Width (w), Depth (d), and Resolution (r) Coefficients. Bigger networks with larger width, depth, or resolution tend to achieve higher accuracy, but the accuracy gain quickly saturate after reaching 80%, demonstrating the limitation of single dimension scaling. Baseline network is described in Table 1.

D, R을 고정하고 W만 Scaling

- 초록색과 노란색: Resolution을 키우는 것이 좋음
- 빨간색: 3가지 Scaling factor을 키우는 것이 성능 향상에 좋음

Compound scaling

- 모델 (F)를 고정하고 d, w, r을 조절하는 방법을 사용
- MnasNet과 유사한 Search space에서 AutoML을 통해서 얻은 모델

EfficientNet-B0

Table 1. EfficientNet-B0 baseline network – Each row describes a stage i with \hat{L}_i layers, with input resolution $\langle \hat{H}_i, \hat{W}_i \rangle$ and output channels \hat{C}_i . Notations are adopted from equation 2.

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	#Layers \hat{L}_i	
1	Conv3x3	224×224	32	1	
2	MBConv1, k3x3	112×112	16	1	
3	MBConv6, k3x3	112×112	24	2	
4	MBConv6, k5x5	56×56	40	2	
5	MBConv6, k3x3	28×28	80	3	
6	MBConv6, k5x5	28×28	112	3	
7	MBConv6, k5x5	14×14	192	4	
8	MBConv6, k3x3	7×7	320	1	
9	Conv1x1 & Pooling & FC	7×7	1280	1	

실험 결과

• 기존 ConvNet과 비슷한 정확도, 적은 연산량 및 모델 크기

Table 2. EfficientNet Performance Results on ImageNet (Russakovsky et al., 2015). All EfficientNet models are scaled from our baseline EfficientNet-B0 using different compound coefficient ϕ in Equation 3. ConvNets with similar top-1/top-5 accuracy are grouped together for efficiency comparison. Our scaled EfficientNet models consistently reduce parameters and FLOPS by an order of magnitude (up to 8.4x parameter reduction and up to 16x FLOPS reduction) than existing ConvNets.

Model	Top-1 Acc.	Top-5 Acc.	#Params	Ratio-to-EfficientNet	#FLOPS	Ratio-to-EfficientNet	
EfficientNet-B0	76.3%	93.2%	5.3M			1x	
ResNet-50 (He et al., 2016)	76.0%	93.0%	26M	4.9x	4.1B 11x		
DenseNet-169 (Huang et al., 2017)	76.2%	93.2%	14M	2.6x	3.5B	8.9x	
EfficientNet-B1	78.8%	94.4%	7.8M	1x	0.70B	1x	
ResNet-152 (He et al., 2016)	77.8%	93.8%	60M	7.6x	11B	16x	
DenseNet-264 (Huang et al., 2017)	77.9%	93.9%	34M	4.3x	6.0B	8.6x	
Inception-v3 (Szegedy et al., 2016)	78.8%	94.4%	24M	3.0x	5.7B	8.1x	
Xception (Chollet, 2017)	79.0%	94.5%	23M	3.0x	8.4B	12x	
EfficientNet-B2	79.8%	94.9%	9.2M	1x	1.0B	1x	
Inception-v4 (Szegedy et al., 2017)	80.0%	95.0%	48M	5.2x	13B	13x	
Inception-resnet-v2 (Szegedy et al., 2017)	80.1%	95.1%	56M	6.1x	13B	13x	
EfficientNet-B3	81.1%	95.5%	12M	1x	1.8B	1x	
ResNeXt-101 (Xie et al., 2017)	80.9%	95.6%	84M	7.0x	32B	18x	
PolyNet (Zhang et al., 2017)	81.3%	95.8%	92M	7.7x	35B	19x	
EfficientNet-B4	82.6%	96.3%	19M	1x	4.2B	1x	
SENet (Hu et al., 2018)	82.7%	96.2%	146M	7.7x	42B	10x	
NASNet-A (Zoph et al., 2018)	82.7%	96.2%	89M	4.7x	24B	5.7x	
AmoebaNet-A (Real et al., 2019)	82.8%	96.1%	87M	4.6x	23B	5.5x	
PNASNet (Liu et al., 2018)	82.9%	96.2%	86M	4.5x	23B	6.0x	
EfficientNet-B5	83.3%	96.7%	30M	1x	9.9B	1x	
AmoebaNet-C (Cubuk et al., 2019)	83.5%	96.5%	155M	5.2x	41B	4.1x	
EfficientNet-B6	84.0%	96.9%	43M	1x	19B	1x	
EfficientNet-B7	84.4%	97.1%	66M	1x	37B	1x	
GPipe (Huang et al., 2018)	84.3%	97.0%	557M	8.4x	-	-	

We omit ensemble and multi-crop models (Hu et al., 2018), or models pretrained on 3.5B Instagram images (Mahajan et al., 2018).

Table 4. Inference Latency Comparison – Latency is measured with batch size 1 on a single core of Intel Xeon CPU E5-2690.

	Acc. @ Latency			
ResNet-152	77.8% @ 0.554s	GPipe	84.3% @ 19.0s	
EfficientNet-B1	78.8% @ 0.098s	EfficientNet-B7	84.4% @ 3.1s	
Speedup	5.7x	Speedup	6.1x	

실험 결과

• Transfer learning에서도 적용 가능함

Table 5. EfficientNet Performance Results on Transfer Learning Datasets. Our scaled EfficientNet models achieve new state-of-the-art accuracy for 5 out of 8 datasets, with 9.6x fewer parameters on average.

	Comparison to best public-available results						Comparison to best reported results					
	Model	Acc.	#Param	Our Model	Acc.	#Param(ratio)	Model	Acc.	#Param	Our Model	Acc.	#Param(ratio)
CIFAR-10	NASNet-A	98.0%	85M	EfficientNet-B0	98.1%	4M (21x)	†Gpipe	99.0%	556M	EfficientNet-B7	98.9%	64M (8.7x)
CIFAR-100	NASNet-A	87.5%	85M	EfficientNet-B0	88.1%	4M (21x)	Gpipe	91.3%	556M	EfficientNet-B7	91.7%	64M (8.7x)
Birdsnap	Inception-v4	81.8%	41M	EfficientNet-B5	82.0%	28M (1.5x)	GPipe	83.6%	556M	EfficientNet-B7	84.3%	64M (8.7x)
Stanford Cars	Inception-v4	93.4%	41M	EfficientNet-B3	93.6%	10M (4.1x)	‡DAT	94.8%	-	EfficientNet-B7	94.7%	-
Flowers	Inception-v4	98.5%	41M	EfficientNet-B5	98.5%	28M (1.5x)	DAT	97.7%	-	EfficientNet-B7	98.8%	-
FGVC Aircraft	Inception-v4	90.9%	41M	EfficientNet-B3	90.7%	10M (4.1x)	DAT	92.9%	-	EfficientNet-B7	92.9%	-
Oxford-IIIT Pets	ResNet-152	94.5%	58M	EfficientNet-B4	94.8%	17M (5.6x)	GPipe	95.9%	556M	EfficientNet-B6	95.4%	41M (14x)
Food-101	Inception-v4	90.8%	41M	EfficientNet-B4	91.5%	17M (2.4x)	GPipe	93.0%	556M	EfficientNet-B7	93.0%	64M (8.7x)
Geo-Mean						(4.7x)						(9.6x)

[†]GPipe (Huang et al., 2018) trains giant models with specialized pipeline parallelism library.

[‡]DAT denotes domain adaptive transfer learning (Ngiam et al., 2018). Here we only compare ImageNet-based transfer learning results.

Transfer accuracy and #params for NASNet (Zoph et al., 2018), Inception-v4 (Szegedy et al., 2017), ResNet-152 (He et al., 2016) are from (Kornblith et al., 2019).

실험 결과

• 3개의 Scaling factor를 고려할 때가 정교한 CAM 획득 가능

Figure 7. Class Activation Map (CAM) (Zhou et al., 2016) for Models with different scaling methods- Our compound scaling method allows the scaled model (last column) to focus on more relevant regions with more object details. Model details are in Table 7.