Réponse

Exercice 1: (6 points)

1) $p(D) = p(A \cap D) + p(B \cap D) + p(C \cap D)$.

Comme p(D) = 0.1; $p(A \cap D) = p(A) \times p_A(D) = 0.42 \times 0.05 = 0.021$ et $p(C \cap D) = p(C) \times p_C(D) = 0.22 \times 0.03 = 0.0066$, on a

 $0.1 = 0.021 + p(B \cap D) + 0.0066$

 $\Leftrightarrow p(B \cap D) = 0,1-0,021-0,0066 \Leftrightarrow p(B \cap D) = 0,0724$.

 $p(B \cap D) = 0.0724$

2)
$$p_{\rm B}({\rm D}) = \frac{p({\rm B} \cap {\rm D})}{p({\rm B})} = \frac{0{,}0724}{0{,}36}$$
 $p_{\rm B}({\rm D}) \approx 0{,}2011$

3)
$$p_{\overline{D}}(C) = \frac{p(\overline{D} \cap C)}{p(\overline{D})} = \frac{p(\overline{D} \cap C)}{1 - p(D)} = \frac{0.22 \times 0.97}{0.9}$$
 $p_{\overline{D}}(C) \approx 0.2371$

Partie B

1) X suit N (6; 0,3).

À l'aide de la calculatrice on trouve $p(5,5 \le X \le 6,5) \approx 0.9$.

Lorsqu'un clou est déclaré apte pour la vente, celui-ci n'est pas défectueux,

donc $p(5, 5 \le X \le 6, 5) = P(\bar{D}).$

2) a) Z suit la loi normale centrée réduite N(0; 1)

b)
$$p(5,5 \le Y \le 6,5) = p(-0,5 \le Y - 6 \le 0,5) = p\left(\frac{-0,5}{\sigma_2} \le \frac{Y - 6}{\sigma_2} \le \frac{0,5}{\sigma_2}\right)$$

$$p(5,5 \le Y \le 6,5) = p\left(\frac{-0,5}{\sigma_2} \le Z \le \frac{0,5}{\sigma_2}\right).$$

À l'aide de la calculatrice on a $\frac{0.5}{\sigma_2} \approx 2,0537 \Leftrightarrow \sigma_2 \approx \frac{0.5}{2,0537} \approx 0,2435.$ $\boxed{\sigma_2 \approx 0,2435}$

Exercice 2: (6 points)

Partie A

$$g(x) = 2x + \ln(x) - 1$$
 pour tout $x \in]0, +\infty[$.

1. a)
$$\lim_{x \to 0} 2x + \ln(x) - 1 = -\infty$$
 $\lim_{x \to 0} g(x) = -\infty$
 $\lim_{x \to +\infty} 2x + \ln(x) - 1 = +\infty$ donc $\lim_{x \to +\infty} g(x) = +\infty$

$$\lim_{x \to +\infty} 2x + \ln(x) - 1 = +\infty \quad \mathbf{donc} \quad \lim_{x \to +\infty} g(x) = +\infty$$

b)
$$g'(x) = \frac{2x+1}{x}$$
. Comme $x \in]0, +\infty[$, alors $2x + 1 > 0$ et donc $g'(x) > 0$ pour tout $x > 0$.

Ainsi la fonction g est strictement croissante sur $]0,+\infty[$.

x	0 a +∞	
f'(x)	+	
f(x)	-» +»	

- 2) D'après le tableau de variations et en utilisant l'théorème des valeurs intermédiaires l'équation g(x) = 0 admet une seule solution α dans l'intervalle $[0, +\infty[$.
- 3) À l'aide la calculatrice on trouve $0,68 \le \alpha \le 0,69$

4)

x	0	α	+∞
g(x)	_	þ	+

Partie B

1) a) On sait que $\lim_{x\to 0} \ln(x) = -\infty$, or $\lim_{x\to -\infty} x^2 = +\infty$, par composition de limite on a $\lim_{x\to 0} \left[\ln(x)\right]^2 = +\infty$ et $\lim_{x\to 0} -2\ln(x) + 4x = +\infty$, enfin par somme de limite on a $\lim_{x\to 0} \left[\ln(x)\right]^2 - 2\ln(x) + 4x = +\infty$. Alors $\lim_{x\to 0} f(x) = +\infty$

$$\lim_{x \to 0} \left[\ln(x) \right]^2 - 2\ln(x) + 4x = +\infty \text{. Alors } \lim_{x \to 0} f(x) = +\infty$$

b) On écrit $f(x) = \ln(x) [\ln(x) - 2] + 4x$

$$\lim_{\substack{x\to +\infty \\ x\to +\infty}} \ln(x) = +\infty \\ \lim_{\substack{x\to +\infty \\ x\to +\infty}} \ln(x) - 2 = +\infty \\ \right\} \quad \text{par produit de limite on a } \lim_{\substack{x\to +\infty \\ x\to +\infty}} \ln(x) \left[\ln(x) - 2\right] = +\infty \; .$$

De plus $\lim_{x\to +\infty} 4x = +\infty$, enfin par somme de limite on a $\lim_{x\to +\infty} \ln(x) \left[\ln(x) - 2\right] + 4x = +\infty$.

Alors
$$\lim_{x \to +\infty} f(x) = +\infty$$

2) a)
$$f'(x) = \frac{1}{x} \times \left[\ln(x) - 2\right] + \ln(x) \times \frac{1}{x} + 4$$

 $f'(x) = \frac{\ln(x) - 2}{x} + \frac{\ln(x)}{x} + 4 \Leftrightarrow f'(x) = \frac{\ln(x) - 2 + \ln(x) + 4x}{x}$
 $f'(x) = \frac{4x + 2\ln(x) - 2}{x} \Leftrightarrow f'(x) = \frac{2(2x + \ln(x) - 1)}{x}$

$$f'(x) = \frac{2g(x)}{x}$$
 pour tout $x > 0$.

b) Puisque x > 0 et 2 > 0 alors f'(x) a le même signe que g(x).

x	0		α	+∞
f'(x)		-	þ	+
f(x)	+8		$f(\alpha)$	+∞

Partie C

1)
$$I = \int_{1}^{2} (f(x) - h(x)) dx = \int_{1}^{2} 4x \, dx = \left[2x^{2} \right]_{1}^{2} = \left(2 \times 2^{2} - 2 \times 1^{2} \right)$$
. $I = 6$.

2) I est l'aire du domaine délimité entre les deux courbes et les droites d'équations x = 1 et x = 2 en unité d'aire.

Réponse

Exercice 3: (4 points)

1. Réponse b) $N = \overline{3742}^8$

2. Réponse b)
$$|Z| = 1$$
 car $|1+i| = \sqrt{2}$ et $\left| \frac{\sqrt{2}}{1+i} \right| = 1$.

3. Réponse c) 120 car On a : $\overrightarrow{AC}(-1;0;-1)$ et $\overrightarrow{AB}(3;-3;0)$.

Or, $\overrightarrow{AC} \cdot \overrightarrow{AB} = -3$, $\overrightarrow{AC} = \sqrt{2}$ et $\overrightarrow{AB} = \sqrt{18}$. On a donc: $\cos BAC = -0.5$ d'ou $BAC = 120^{\circ}$.

4. Réponse c) décroissant car $\frac{u_{n+1}}{u_n} = \frac{2n+1}{2n+2} < 1$

Réponse

Exercice 4: (4 points)

1. L'affixe de l'image du point O est $z' = \frac{0-1}{0+i} = i$.

L'affixe de l'image du point A est $z = \frac{-1+i-1}{-1+i+i} = \frac{4+3i}{5}$.

2.
$$f(x+iy) = \frac{x+iy-1}{x+iy+i} = \frac{(x^2+y^2-x+y)+i(-x+y+1)}{x^2+(y+1)^2}$$
.

3.
$$a = \frac{x^2 + y^2 - x + y}{x^2 + (y+1)^2}$$
 et $b = \frac{-x + y + 1}{x^2 + (y+1)^2}$

4.a)

 $b=0 \Leftrightarrow \frac{-x+y+1}{x^2+(y+1)^2}=0$. Ce qui revient à dire que -x+y+1=0. Donc l'ensemble

des points M cherché est la droite d'équation -x + y + 1 = 0 privée du point d'affixe -i.

b)

 $a=0 \Leftrightarrow \frac{x^2+y^2-x+y}{x^2+(y+1)^2}=0$. Ce qui revient à dire que $x^2+y^2-x+y=0$. Donc l'ensemble

des points M cherché est le cercle de centre d'affixe $\frac{1}{2} - \frac{i}{2}$ et de rayon $\frac{\sqrt{2}}{2}$ privée du point d'affixe -i.