Solution

Codility_

Tasks Details

Check out Codility training tasks

Easy

1. Distinct

Compute number of distinct values in an array.

Task Score

Correctness

Performance

100%

100%

Task description

Write a function

def solution(A)

that, given an array A consisting of N integers, returns the number of distinct values in array A.

For example, given array A consisting of six elements such that:

$$A[0] = 2$$
 $A[1] = 1$ $A[2] = 1$
 $A[3] = 2$ $A[4] = 3$ $A[5] = 1$

the function should return 3, because there are 3 distinct values appearing in array A, namely 1, 2 and 3.

Write an efficient algorithm for the following assumptions:

- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [-1,000,000..1,000,000].

Copyright 2009–2021 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

Notes: not defined yet

00:07:01 00:08:55

```
Code: 00:08:55 UTC, py, final,
                                        show code in pop-up
 score: 100
 1
     # you can write to stdout for debugging purposes, e.g.
 2
     # print("this is a debug message")
 3
 4
     def solution(A):
 5
          # write your code in Python 3.6
          if len(A) == 0:
 6
             return 0
 8
          dic = \{\}
          for i in A:
 9
10
             dic[i] = 1
11
          return len(dic)
```

Analysis summary

The solution obtained perfect score.

Analysis

Detected time complexity:

O(N*log(N)) or O(N)

ехра	nd all Example to	ests
•	example1 example test, positive answer	√ OK
ехра	nd all Correctness	tests
•	extreme_empty empty sequence	√ OK
•	extreme_single sequence of one element	√ OK
•	extreme_two_elems sequence of three distinct element	✓ OK ts
•	extreme_one_value sequence of 10 equal elements	√ OK
•	extreme_negative sequence of negative elements, length=5	√ OK
•	extreme_big_values sequence with big values, length=	✓ OK
•	medium1 chaotic sequence of value sfrom [01K], length=100	√ OK
•	medium2 chaotic sequence of value sfrom [01K], length=200	√ OK
•	medium3 chaotic sequence of values from [010], length=200	√ OK
ехра	nd all Performance	etests
•	large1 chaotic sequence of values from [0100K], length=10K	√ OK
•	large_random1 chaotic sequence of values from [-1M1M], length=100K	√ OK
•	large_random2 another chaotic sequence of value from [-1M1M], length=100K	√ OK

The PDF version of this report that may be downloaded on top of this site may contain sensitive data including personal information. For security purposes, we recommend you remove it from your system once reviewed.