

Design and Analysis of Algorithms

Tutorial 8

Greedy Approach

It is important that we learn the theory behind the greedy approach.

- 1. Explain the theory behind the greedy approach
 - (a) What is meant by the greedy approach?
 - (b) Does the greedy approach always lead to a globally optimal solution.
- 2. Solve the 0/1 knapsack problem using the greedy approach for the instance shown in table 1 with a knapsack capacity of 12.

Item	Weight	Value	
1	5	\$20	
2	3	\$15	
3	9	\$30	
4	4	\$25	

Table 1: A small instance of the 0/1 knapsack problem

3. Solve the assignment problem using the greedy row-by-row and column-by-column approaches for the instance shown in table 2.

	Job 1	Job 2	Job 3
Person 1	5	7	9
Person 2	3	8	5
Person 3	7	4	9

Table 2: A small instance of the assignment problem

4. You are given the following data for this question.

Symbol	A	В	С	D	-
Frequency	0.4	0.1	0.2	0.15	0.15

Table 3: Data for a the question

- (a) Construct a huffman code from the above data.
- (b) Encode ABACABAD using the above generated code.
- (c) Decode 100010111001010 using the above generated code.

Exercise

- 1. Solve the following linear programming problem geometrically. Maximize 3x + y, subject to $-x + y \le 1$ and $2x + y \le 4$, where $x \ge 0$ and $y \ge 0$.
- 2. Solve the all-pairs shortest-path problem by Floyd's algorithm for the following diagram:

Figure 1: A small instance of the travelling salesman problem