Trees

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

Spanning Trees

DFS BES

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Chapter 3 Trees

Graph theory on September 11, 2023

Huynh Tuong Nguyen, Vo Dang Khoa Faculty of Information Technology Industrial University of Ho Chi Minh City {htnguyen,khoavo}@iuh.edu.vn

Contents

Trees

Introduction

Applications of Trees

Decision Trees

DFS

BES

Minimum Spanning Trees

Kruskal's Algorithm

Properties of Trees

Tree Traversal

Binary Search Trees

Spanning Trees

Prim's Algorithm

2 Tree Traversal

3 Applications of Trees Binary Search Trees Decision Trees

4 Spanning Trees **DFS**

BFS

5 Minimum Spanning Trees

Course outcomes

	Course learning outcomes
CLO.1	Understanding of the basic concepts of graphs
	Special types of graph,
	computer based graph representation, isomorphism,
	planar graph, connectivity in graph, graph traversal.
CLO.2	Describe definition of path and circuit
	Identify the existence of Euler path & circuit
	Identify the existence of Hamilton path & circuit
CLO.3	Compute minimum spanning tree in a (weighted) graph
	Use algorithms: Prim, Kruskal
CLO.4	Determine shortest path in a weighted graph
	Use algorithms: Dijkstra, Bellman-Ford, Floyd-Warshall
CLO.5	Solve maximum flow problem
	Use Ford-Fulkerson's algorithm

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

Spanning Trees

DFS BFS

Minimum Spanning Trees

Introduction

INDUSTRIAL UNIVERSITY OF HOCHIMINH CITY

Trees

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

DFS BFS

Minimum Spanning Trees

- Very useful in computer science: search algorithm, game winning strategy, decision making, sorting, . . .
- Other disciplines: chemical compounds, family trees, organizational tree, . . .

Definition

A $tree\ (c\hat{a}y)$ is a connected undirected graph without any circuits. Consequently, a tree must be a simple graph.

not connected

Definition

Graphs containing no circuits that are not necessarily connected is forest (rimg), in which each connected component is a tree.

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees
DFS
BFS

Minimum Spanning Trees Prim's Algorithm

Kruskal's Algorithm

Rooted Trees

Definition

A rooted tree (cây có gốc) is a tree in which:

- One vertex has been designated as the root and
- Every edge is directed away from the root

Trees

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees
DFS
BFS

Minimum Spanning Trees

Terminology

Definition

- ullet parent (cha) of v is the unique u such that there is a directed edge from u to v
- when u is the parent of v, v is called a child (con) of u
- vertices with the same parent are called siblings (anh em)
- the ancestors (tổ tiên) of a vertex are the vertices in the path from the root to this vertex (excluding the vertex itself)
- descendants (con cháu) of a vertex v are those vertices that have v as an ancestor

Trees

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

DFS

BES

Minimum Spanning Trees

Terminology

Definition

- a vertex of a tree is called a leaf (lá) if it has no children
- vertices that have children are called internal vertices (dinh trong)

Trees

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees
DFS
BFS

Minimum Spanning Trees

Terminology

Definition

If a is a vertex in a tree, the subtree ($c\hat{a}y$ con) with a as its root is the subgraph of the tree consisting of a and its descendants and all edges incident to these descendants.

Trees

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

DFS BFS

Minimum Spanning Trees Prim's Algorithm

Kruskal's Algorithm

Definition

- m-ary tree (cây m-phân): at most m children on each internal vertex of a rooted tree.
- full m-ary tree (cây m-phân đầy đủ): every internal vertex has exactly m children.
- An m-ary tree with m=2 is called a binary tree ($c\hat{a}y$ nhi $ph\hat{a}n$).

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees
DFS
BFS

Minimum Spanning Trees

Ordered Rooted Trees

Definition

- An ordered rooted tree (cây có gốc có thứ tự) is a rooted tree where the children of each internal vertex are ordered (e.g. in order from left to right).
- In an ordered binary tree (cây nhị phân có thứ tự), if an internal vertex has two children, the first child is called the left child (con bên trái) and the second is called the right child (con bên phải).

Left subtree of a

Right subtree of a

Trees

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees Decision Trees

Spanning Trees
DFS

BFS

Minimum Spanning Trees

Properties & Theorems

Decision Trees

Spanning Trees

DFS

BFS
Minimum Spanning

Trees
Prim's Algorithm

Prim's Algorithm Kruskal's Algorithm

Theorem

A tree with n vertices has n-1 edges.

Theorem

A full m-ary tree

- **1** n vertices has (n-1)/m internal vertices and [(m-1)n+1]/m leaves
- $m{n}$ i internal vertices has n=mi+1 vertices and (m-1)i+1 leaves
- # ℓ leaves has $n=(m\ell-1)/(m-1)$ vertices and $(\ell-1)/(m-1)$ internal vertices

Example

Trees

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

Spanning Trees

DFS BFS

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Example (Chain Letter Game)

- Each person who receives the letter is asked to send it on to four other peoples.
- Some peoples do this, but others do not send any letters.
- How many people have seen the letter, including the first person, if no one receives more than one letter and if the chain letter ends after there have been 100 people who read it but did not send it out?
- How many people sent out the letter?

Definition

- The level (múc) of a vertex v in a rooted tree is the length of the unique path from the root to this vertex.
- The level of the root is defined to be zero.
- The height (độ cao) of a rooted tree is the maximum of the levels of vertices (i.e. the length of the longest path from the root to any vertex).

Example

- Level of root a=0, b, j, k=1 and $c, e, f, l=2 \dots$
- Because the largest level of any vertex is
 4, this tree has height
 4.

INDUSTRIAL UNIVERSITY OF HOCHIMINH CITY

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees DFS

BES

Minimum Spanning Trees Prim's Algorithm

Kruskal's Algorithm

Balanced m-ary Trees

Definition

A rooted m-ary tree of height h is balanced ($c\hat{a}n \ d\hat{o}i$) if all leaves are at levels h or h-1.

Trees

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees
DFS
BFS

Minimum Spanning Trees

Balanced m-ary Tree

Contents

Introduction Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees Spanning Trees

DFS BFS

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Theorem

There are at most m^h leaves in an m-ary tree of height h.

It can be proved by using mathematical induction on the height.

Corollary

- If an m-ary tree of height h has ℓ leaves, then $h \geq \lceil \log_m \ell \rceil$.
- If the m-ary tree is full and balanced, then $h = \lceil \log_m \ell \rceil$.

Contents

Introduction

Properties of Trees Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

> Spanning Trees DFS BES

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Exercise (Chess tournament)

Suppose 1000 people enter a chess tournament. Use a rooted tree model of the tournament to determine how many games must be played to determine a champion. A player is eliminated after one loss and games are played until only one entrant has not lost. (Assume there are no ties)

Exercise (Isomorphic)

How many different isomers (đồng phân) do the following saturated hydrocarbons have?

- \bullet C_3H_8
- C_5H_{12}
- \bullet C_6H_{14}

Question

Trees

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

Spanning Trees
DFS
BES

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Exercise

- How many vertices and how many leaves does a complete m-ary tree of height h have?
- Show that a full m-ary balanced tree ($c\hat{a}y \ m$ -phân hoàn hảo) of height h has more than m^{h-1} leaves.
- How many edges are there in a forest of t trees containing a total of n vertices?

Labeling Ordered Rooted Trees

- Ordered rooted trees are often used to store information.
- Need a procedure for visiting each vertex of an ordered rooted tree to access data.
- Ordering and labeling the vertices is important to traverse them in any procedure
- Universal address system (hệ địa chỉ phổ dụng)
 0 < 1 < 1.1 < 1.1.1 < 1.2 < 1.3 < ... < 2 < 3 < 3.1 < ...

Trees

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees
DFS
BFS

Minimum Spanning Trees

Traversal Algorithms (Thuật toán duyệt cây)

Preorder Traversal (duyệt tiền thứ tự - NLR)

procedure preorder(T: ordered rooted tree)

r := root of Tprint r

a

for each child c of r from left to right

T(c) :=subtree with c as its root preorder(T(c))

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

DFS BFS

Minimum Spanning Trees Prim's Algorithm

Kruskal's Algorithm

Traversal Algorithms

Inorder Traversal (Duyệt trung thứ tự - LNR)

Suppose a tree T with root r. If T consists only of r, then r is inorder traversal of T. Otherwise, suppose r has subtrees T_1, T_2, \ldots, T_n from left to right, inorder traversal: $T_1 \to r \to T_2 \to \ldots \to T_n$.

Trees

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

DFS BFS

Minimum Spanning Trees

Postorder Traversal (Duyệt hậu thứ tự - LRN)

```
\begin{aligned} & \textbf{procedure} \ postorder(T: \ \text{ordered rooted tree}) \\ & r := \text{root of } T \\ & \textbf{for} \ \text{each child} \ c \ \text{of } r \ \text{from left to right} \\ & T(c) := \text{subtree with } c \ \text{as its root} \\ & postorder(T(c)) \\ & \textbf{print } r \end{aligned}
```


Contents

Introduction

Properties of Trees
Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees
DFS

BFS
Minimum Spanning

Trees

Infix, Prefix and Postfix Notations

Trees

Contents

Introduction

Properties of Trees

Tree Travers

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

DFS

Trees

BFS
Minimum Spanning

Prim's Algorithm Kruskal's Algorithm

• Infix (trung $t\hat{o}$): $((x+y) \uparrow 2) + ((x-4)/3)$

• Prefix (tiền tố): + ↑ + x y 2 / - x 4 3

• Postfix ($h\hat{a}u t\hat{o}$): $x y + 2 \uparrow x 4 - 3 / +$

Contents

Introduction

Properties of Trees

Tree Traversal Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

DFS BFS

Minimum Spanning Trees

Contents

Introduction

Properties of Trees

Tree Traversal Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees

DFS BFS

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Exercise

Find the ordered rooted tree representing

$$(\neg(p \land q) \lor (\neg q \land r)) \to (\neg p \lor \neg r)$$

Then use this rooted tree to find the prefix, postfix and infix forms of this expression

Solution

Trees

Contents

Introduction

Properties of Trees
Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees
Spanning Trees

DFS BFS

Minimum Spanning

Trees
Prim's Algorithm

Kruskal's Algorithm

Exercise

Determine postorder of a binary tree with inorder D B H E I A F C J G K and preorder A B D E H I C F G J K.

Solution

Binary Search Trees

Definition

Binary search tree (cây tìm kiếm nhị phân - BST) is a binary tree in which the assigned key of a vertex is:

- larger than the keys of all vertices in its left subtree, and
- smaller than the keys of all vertices in its right subtree.

Trees

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees DFS

BFS

Minimum Spanning Trees

Adding and Locating an Item in BST

Example

Form a BST for the words *mathematics*, *physics*, *geography*, *zoology*, *meteorology*, *geology*, *psychology*, *chemistry* using alphabetical order.

Complexity in searching

 $O(\log(n))$ vs. O(n) in linear list

Trees

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees
DFS
BES

Minimum Spanning Trees

Decision Trees (Cây quyết định)

Trees

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

DFS BES

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Example

There are seven coins, all with the same weight, and a counterfeit coin that weighs less than the others. How many weighings are necessary using a balance scale to determine which of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

Yet Another Application

Example

If we know that the probability that a person has tuberculosis (TB) is p(TB) = 0.0005.

We also know p(+|TB) = 0.999 and $p(-|\overline{TB}) = 0.99$.

What is p(TB|+) and $p(\overline{TB}|-)$?

Trees

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

BFS

Spanning Trees DFS

Minimum Spanning Trees

Problem

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

DFS BFS

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Definition

• A spanning tree (cây khung) in a graph G is a subgraph of Gthat is a tree which contains all vertices of G.

Depth-First Search (Tìm kiếm ưu tiên chiều sâu)

Property

- Go deeper as you can
- Backtrack (quay lui) to possible branch when you are stuck.
- $\bullet \ O(e) \ {\rm or} \ O(n^2)$

Trees

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

Spanning Trees

DFS

BFS

Minimum Spanning Trees

Depth-First Search

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

Spanning Trees

DFS

BFS

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Algorithm

procedure DFS (G) $T := \text{tree consisting only vertex } v_1$ $visit(v_1)$

```
 \begin{array}{c} \textbf{procedure} \ \textit{visit}(v : \text{vertex of } G) \ / * \ \textit{recursive */} \\ \textbf{for each vertex} \ w \ \textit{adjacent to} \ v \ \textit{and not in} \ T \\ \textbf{add} \ w \ \textit{and edge} \ \{v,w\} \ \textit{to} \ T \\ \textit{visit}(w) \\ \end{array}
```

A pseudocode of DFS

void DFS(G)

1.loop (more vertex v in G)

 $1.\mathsf{color}[v] = \mathbf{W}\mathsf{hite}$

2.father[v]=null

2.time=0

vertex

Α

B

D

Ē

F

Н

3.loop (more vertex v in G)

1. if $(\operatorname{color}[v] == \mathbf{W} \operatorname{hite})$

color

WGB

WGB

WGB

WGB

WGB

WGB

WGB

WGB

 $1.\mathsf{DFSVisit}(G,v)$

father

-A

-B

-A

-F

-C

-D

-G

void DFSVisit (G, v)

1.color[v]=Gray1.color[v]=Gray 2.time= time+12.time=

time+1

3.d[v] = time 3.d[v] = time

4. $loop(more \ u \ adjacent \ to \ v)$

1. if(color[u] == White)

1. father[u]=v1.

father[u]=v

 \bullet 2.DFSVisit(G, u)2.DFSVisit(G, u)

• 5.color[v]=Black5.color[v]=Black

6.time=time+16.time=time+1 7.f[v]=time7.f[v]=time

time = 0 1 2 3 4 5 6 7 8 9 10 11 12 1

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

FS TTC

BFS

Minimum Spanning Trees

Exercise

Apply DFS into the following graph.

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

DFS BFS

Minimum Spanning Trees

Exercise

Apply DFS into the following graph.

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

DFS

BFS

Minimum Spanning Trees

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

BES

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

How to apply & modify DFS algorithm to ...

- a determine whether an undirected graph is connected,
- **6** determine whether there exists a cycle in an undirected graph,
- c determine whether there exists a cycle in an digraph,
- determine whether a graph is bipartite,
- determine topological order,
- f calculate number of connected components,
- g identify articulation points,
- h determine a longest path in a given digraph...

Exercise

Apply DFS into the following graph.

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

DFS Trees

BFS

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Breadth-First Search (Tìm kiếm ưu tiên chiều rộng)

Trees

Contents

Introduction

Properties of Trees
Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

DFS BFS

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

	VCILCX	
		Ø
	1	2, 3, 4
	2	3, 4, 5, 6
	3	4, 5, 6
	4	5, 6, 7, 8
	5	6, 7, 8
	6	7, 8
nd!	7	8
	8	Ø
	'	'

vertex | L

Property

• O(e) or $O(n^2)$

Breadth-First Search

Contents

Introduction

Properties of Trees

Applications of Trees

Decision Trees

DFS

Minimum Spanning Trees

Prim's Algorithm

Tree Traversal

Binary Search Trees

Spanning Trees

Kruskal's Algorithm

Algorithm

procedure BFS (G)

T :=tree consisting only vertex v_1

 $L := \mathsf{empty} \mathsf{\,list}$

put v_1 in the list L of unprocessed vertices

while L is not empty

remove the first vertex, v, from L

for each neighbor w of v

if w is not in L and not in T then add w to the end of the list Ladd w and edge $\{v, w\}$ to T

3.56

Find spanning tree in the following graphs.

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees
DFS
BFS

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Minimum Spanning Trees

Trees

Contents

Introduction

Properties of Trees
Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

Spanning Trees

DFS BFS

/linimum Span

Prim's Algorithm Kruskal's Algorithm

Definition

 A minimum spanning tree (cây khung nhỏ nhất) in a connected weighted graph is a spanning tree that has the smallest possible sum of weights of its edges.

Prim's Algorithm (Nearest-Neighbor)

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

Spanning Trees

DFS BFS

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Prim's Algorithm (1957)

procedure Prim(G)

T:= a minimum-weight edge incident to a **given vertex**

 $\mathbf{for}\ i := 1\ \mathsf{to}\ n-2$

 $e:= \mbox{an edge of minimum weight incident to a vertex in } T$ and not forming a simple circuit in T if added to T

T := T with e added

 ${\bf return}\ T$

Prim's Algorithm (Nearest-Neighbor)

- Pick a vertex to start from
- Iteratively absorb smallest edge possible

Contents

Introduction

Properties of Trees

Tree Traversal

BFS

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees DFS

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm (Lightest-Edge)

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Decision Trees

DFS BES

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Binary Search Trees

Spanning Trees

Kruskal's Algorithm (1958)

procedure Kruskal(G)

 $T := \mathsf{empty} \mathsf{graph}$

for i := 1 to n - 1

e :=any edge in G with smallest weight that does not form a simple circuit when added to T

T := T with e added

return T

Kruskal's Algorithm (Lightest-Edge)

• Iteratively add smallest edge possible

ad	OK
ce	OK
df	OK
ab	OK
be	OK
bc	KO
ef	KO
eg	OK & Stop
fg	

Trees

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees DFS

BFS
Minimum Spanning

Prim's Algorithm

Trees

By using Prim's and Kruskal's algorithm, determine minimum spanning tree in the following graphs. (and maximum spanning tree (cây khung cực đại).

Trees

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees Spanning Trees DFS

BFS Minimum Spanning

Prim's Algorithm

Trees

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees Spanning Trees

DFS BFS

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Cho một cây có gốc với n đỉnh. Giả thiết một đỉnh trong tập đỉnh có bậc là n-1. Chiều cao của cây là

- **A** 1
- **B** n-1
- $\bigcirc n$

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Decision Trees

DFS BES

Minimum Spanning Trees

Kruskal's Algorithm

Binary Search Trees

Spanning Trees

Prim's Algorithm

Xác định tiền tố (prefix) của cây nhị phân có gốc và có thứ tự (ordered rooted tree) dùng để biểu diễn

$$(\neg(p \land q) \lor (\neg q \land r)) \to (\neg p \lor \neg r)$$

- $\triangle \rightarrow \lor \neg \land p \ q \lor \neg q \ r \lor \neg p \ r$
- $p q \land \neg \lor q \neg r \land p \neg r \lor \rightarrow$
- $p q \neg \lor q \neg \land r \rightarrow p \neg \lor r$
- $p q \neg \lor q \neg \land r \rightarrow p \neg \lor r$

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Decision Trees

Spanning Trees

DFS BFS

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Có bao nhiêu cây nhị phân có tiền tố (pre-order traversal) là ABC?

- **A** 1
- **B** :
- **(**
- **D** 7

Trees

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees Spanning Trees

DFS BES

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Hãy cho biết hậu tố (post-order traversal) của một cây nhị phân biết rằng tiền tố (pre-order traversal) là HBGFDECIA và trung tố (in-order traversal) là GBFHCEIDA.

- \triangle GFBCIEADH
- **B** BGFDECIAH
- GFBCIEJADH
- GFBHCIEADH

Cho đồ thị như trong hình vẽ dưới.

Cây phủ tối thiểu có tổng trọng số là

- A 40
- **B** 60
- **6** 84
- 100

Trees

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees

Spanning Trees

DFS BFS

Minimum Spanning Trees

Prim's Algorithm

Introduction

Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees

Decision Trees
Spanning Trees

DFS BFS

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Cho trước số tự nhiên a>1, và xét đồ thị đầy đủ K_{2a+3} . Số lượng cạnh ta phải xóa khỏi đồ thị K_{2a+3} để thu được một cây phủ (cây khung hay bao trùm, spanning tree) của K_{2a+3} là bao nhiêu?

- $\triangle 2a + 2$
- **B** $2a^2 + 3a 1$
- $2a^2 + 3a + 1$