Tema III: El enfoque relacional

Departamento de Informática e Ingeniería de Sistemas

Universidad Zaragoza

5 MODELO RELACIONAL

- 5.1 Conceptos básicos. Estática del modelo Relacional
- 5.2 Transformación del modelo E/R en el modelo Relacional
- 5.3 Dinámica del modelo Relacional: Álgebra relacional.
- **5.4** Interrogación de una B.D. Relacional utilizando álgebra relacional.

5.1 Conceptos básicos: estática del modelo Relacional

M.R. propuesto por Codd (1970) --- Objetivo: independencia de la Estructura Física de la ordenación de la indización de los caminos de accesos • Independencia física • Independencia lógica características • Uniformidad (tablas) (ventajas) • Sencillez \rightarrow accesibilidad y facilidad de uso T^a Normalización • Flexibilidad **►** ✓ redundancias optimización (consultas y representación) ayuda diseño soporte formal ✓ álgebra relacional
 ✓ cálculo relacional (de tuplas y de dominios)

evolución histórica del modelo Relacional.

• implementaciones poco eficientes (lentas y voluminosas) inconvenientes (pasado reciente) • no soporta muchos de los conceptos muy superados surge el modelo ≈ 1970 prerrelacional 1973-1978 prototipos (Ingres, Sistema R, ..) 1978 QBE **ORACLE** 1979 1980 **INGRES** evolución 1981 **SQL** relacional 1982 DB2 SQL/ANSI 1986 SQL2 1992 postrelacional ≈ 2000 SQL3, MROO, . . .

aproximación intuitiva al modelo relacional.

Esquema relacional (simplificado) de la Base de Datos bancaria

Cliente

<u>DNI</u>	Nombre	Ciudad
17567984	Severino Martínez	Huesca
19465278	Salustiano Pérez	Teruel
25468724	Indalecio López	Zaragoza
18234587	Pedro García	Calatayud
17235465	Antonio Sánchez	Zaragoza

Cuenta

numCC	Sucursal	Saldo
123	23	2567
194	23	125874
237	14	654875
257	18	25984
100	22	0

Titular

<u>DNI</u>	numCC
17567984	123
18234587	123
25468724	257
25468724	194
17235465	237

introducción al concepto de relación

modelo relacional: Dominios y Atributos

Dominio ≡ conjunto <u>finito</u> de valores **homogéneos** y **atómicos**, con un <u>nombre</u> asociado

Dominio compuesto ≡ combinación de dominios simples (+ restricciones integridad)

Atributo ≡ papel de un dominio en una relación −

posibilidad de valores nulos

el Universo Discurso de una base de datos relacional está formado por un conjunto *finito* y *no vacío* de *atributos* estructurados en *relaciones*

relaciones y esquemas de relación

Relación ≈ subconjunto del *producto cartesiano* de los *dominios* sobre los que se define suele tener un *nombre* asociado

cabecera de relación \equiv conjunto de n pares atributo - $dominio subyacente {(A_i : D_i), <math>\forall i \ 1.. \ n}$ grado

cuerpo de relación \equiv conjunto de m tuplas $\{t_1, t_2, ..., t_m\}$ **cardinalidad** \leftarrow conjunto pares $atributo - valor \{(A_i : V_{ij}), \forall i \ 1... n\}$

intensión o esquema de relación $\mathbf{R} \equiv R (\{A_i : D_i\}, \forall i \ 1.. \ n)$

extensión o estado de relación $r(R) \equiv \langle esquema, cuerpo \rangle \longrightarrow ocurrencia$

Base Datos Relacional \equiv conjunto de variables de relación $+ \dots$

clasificación de las relaciones (ISO 92)

clases de relación:

^{*} significa derivada

concepto de clave en el modelo relacional.

claves de una relación:

- ✓ superclave ≡ cualquier conjunto de atributos que identifica cada tupla de la relación
- ✓ clave candidata ≡ cualquier superclave mínima
- ✓ clave primaria ≡ clave candidata elegida por el diseñador. El resto → alternativas
- ✓ clave ajena ≡ conjunto de atributos cuyos valores deben coincidir (o ser nulos) con los de la clave primaria de la relación especificada

→ en SQL92 puede ser clave candidata

muy importantes para estudio de la integridad

restricciones en el modelo relacional (1)

Restricciones:

✓ inherentes

- no hay dos tuplas iguales
- el orden de las tuplas es irrelevante
- el orden de los atributos no es significativo
- cada atributo (en cada tupla) sólo puede tener un valor del dominio

→ 1ª Forma Normal

+ integridad de entidad = ningún atributo que forme parte de la clave primaria puede tomar el valor nulo

el modelo no lo exige para claves alternativas

✓ de usuario (semánticas) básicas

- especificación de clave primaria, (PRIMARY KEY)
- unicidad (UNIQUE)
- obligatoriedad (NOT NULL)
- integridad referencial =

los valores de los atributos de una clave ajena (FOREIGN KEY), deben existir, o ser nulos

restricciones en el modelo relacional (2)

especificación de clave ajena \Rightarrow indicar acción en operaciones de borrado y modificación

- operación restringida (RESTRICT)
 operación transmisión en cascada (CASCADE)
 operación con puesta a nulos (SET NULL)
 operación con puesta a valor por defecto (SET DEFAULT)

• especificación de restricciones basadas en predicados

Intrarrelación (sobre atributos y tuplas) Interrelación de Dominio

asociadas a la estática o a la dinámica (TRIGGERS) con posible activación de un procedimiento asociado

➤ indicación del momento en que se verifica dentro de la transacción

están en el DICCIONARIO, como el resto de las relaciones

concepto de Base de Datos Relacional y notación

Base de Datos relacional = esquema relacional + ocurrencia válida del esquema

notación:

• gráfica = diagrama relacional

• hay que completarlo con notación textual

• textual (en lenguaje natural, o utilizando un estándar como SQL92)

ejemplo de esquema relacional simple

ejemplo de B.D. Bancaria:

diagrama relacional

Dominios:

```
tpDNI = 0..99999999;
tpNombre = cadena(50);
```

esquemas de relación:

modelo relacional y arquitectura ANSI (1)

el modelo relacional es un modelo lógico \Rightarrow no contempla el nivel interno de la B.D. parcialmente en SQL (CREATE INDEX, ...) y en implementaciones concretas

Relaciones base → nivel conceptual de la B.D. (esquema lógico global)

 $Vistas \ (\equiv tablas \ virtuales) \cong \ \overrightarrow{nivel} \ externo \ de \ la \ B.D.$

diferencias
 el usuario tiene acceso a más información (autorizaciones, tablas, etc.)
 no todas las vistas son actualizables

Las tablas temporales no tienen correspondencia directa en la arquitectura ANSI

modelo relacional y arquitectura ANSI (2)

Transformación del modelo E/R en modelo Relacional

las reglas de transformación son bastante simples y fáciles de deducir

- \checkmark dominios $ER \rightarrow$ dominios relacionales
- \checkmark atributos $E/R \rightarrow$ atributos de relaciones

- ✓ tipos de entidad \rightarrow relaciones (tablas)
- ✓ tipos de interrelación

- caso general (N:M)
 relación con clave primaria = concatenación de las C.P. de los tipos de entidad que participan
 + especificación de claves ajenas

casos (1 : N) y (1 : 1) • propagación de clave + especificación de clave ajena • o como el caso general

al tipo correspondiente a la N, o a cualquiera de ellos si es 1:1

transformación de tipo de correspondencia N:M

las cardinalidades mínima y máxima \Rightarrow casos particulares

- (3) R(A(1,N), B(0,N)) \rightarrow similar al anterior

transformación de tipo de correspondencia 1:N

el resto de casos, mezcla del caso general y el anterior

transformación de tipo de correspondencia 1:1

si ambas cardinalidades máximas son = 1

⇒ se puede propagar la clave a cualquiera de las relaciones

→ hacia la tabla más pequeña

- $R(A(0,1),B(0,1)) \rightarrow A(\underline{clvA},...); B(\underline{clvB},clvA,...);$ → clave ajena de A, UNICO
- → clave ajena de A, UNICO, NO NULO
- $R(A(1,1),B(0,1)) \rightarrow A(\underline{clvA},...); B(\underline{clvB},clvA,...); \\ Clave ajena de A, UNICO, \\ R(A(0,1),B(1,1)) \rightarrow A(\underline{clvA},...); B(\underline{clvB},clvA,...); \\ Clave ajena de A, UNICO$ → clvA referencia a B(clvA)
 - $R(A(1,1), B(1,1)) \rightarrow mejor fusionar las tablas$
 - no interesa la propagación de clave si
- hay muy pocas ocurrencias de la interrelación → daría lugar a muchos "nulos"
- en el futuro será una interrelación N:M
- hay atributos en la interrelación

otras transformaciones de atributos e interrelaciones

- ✓ los atributos de los tipos de interrelación se añaden a la traducción de la interrelación
- ✓ *tipos de interrelación ternaria* → similar, pero puede haber casos particulares (p.e. 1:N:N)
- ✓ tipos de entidad débiles → como los fuertes, pero añadiendo a su clave primaria la clave primaria de los tipos de entidad de los que depende + especificación de clave ajena
- ✓ tipos de interrelación en exclusión → restricciones adicionales (predicados)
 + posibilidad de "trucos" de implementación
- ✓ atributos multivaluados → nueva relación cuya clave primaria está formada por la clave primaria y el atributo multivaluado + especificación de clave ajena casos particulares

transformación de la generalización / especialización (1)

✓ la *generalización/especialización* plantea varias posibilidades

transformación de la generalización / especialización (2)

una única tabla con toda la información (supertipo y subtipos) S(clvS, atribS, selec..., atribA, ..., atribB, ...); Acceso más eficiente una tabla para cada uno de los tipos de entidad (supertipo y subtipos) S(<u>clvS</u>, atribS, selec, ...); Mejor la $A(\underline{clvS}, atribA, ...);$ semántica B(clvS, atribB, ...); una tabla para cada uno de los subtipos (incluyen la del supertipo) A(clvS, atribS, selec, ..., atribA, ...); Acceso eficiente B(<u>clvS</u>, atribS, selec, ..., atribB, ...); peor la semántica S(clvS, atribS, selec, ...); sólo para los que no están en ningún subtipo

habrá que añadir restricciones adicionales para implementar la semántica y los casos particulares

transformación de la agregación

✓ la *agregación* queda representada por la interrelación

puede haber muchos casos particulares, pero en la práctica sólo algunos y simples

Ejemplos: . . .

transformación de la B.D. de la Universidad (1)

diagrama E/R:

transformación de la B.D. de la Universidad

Atributos de tipos de entidad:

clvProf: tpClave; **AIP** codProf: tpCódigo; AIA nombProf: tpNombre;

clvArea: tpClave; **AIP** codArea: tpCódigo; AIA nombArea: tpNombre;

clvDpto: tpClave; AIP codDpto: tpCódigo; AIA nombDpto: tpNombre;

clvAsign: tpClave; AIP codAsign: tpCódigo; AIA nombAsign: tpNombre; tt HT, tt HP: tpHoras;

clvTitulo: tpClave; AIP codTitulo: tpCódigo; AIA nombTitulo: tpNombre;

Atributos de interrelaciones:

impartir.HT, impartir.HP: tpHoras;

Dominios:

```
tpClave = entero;
tpC\acute{o}digo = 0..99999;
tpNombre = cadena(40);
tpHoras = 0..400;
```

Restricciones:

- 1) Ningún profesor puede impartir docencia en una asignatura que no esté encargada a su área de conocimiento
- 2) El total de horas impartidas de una asignatura debe ser menor o igual que el correspondiente a la asignatura.

curso

transformación de la B.D. de la Universidad (3)

Dominios:

```
tpClave = entero; tpNombre = cadena(40);
tpCódigo = 0..99999; tpHoras = 0..400;
```

Esquemas de relación:

Departamento = (<u>clvDpto</u>: tpClave; codDpto: tpCódigo, *UNICO, NO NULO*; nombDpto: tpNombre, *NO NULO*);

eliminar pertenecer y propagar clvDpto a relación AreaConoc

AreaConoc = (<u>clvArea</u>: tpClave; codArea: tpCódigo, *UNICO, NO NULO*; nombArea: tpNombre, *NO NULO* clvDpto:tpClave, *NO NULO*, clave ajena de Departamento);

eliminar adscribir y propagar clvArea a relación Profesor

Profesor = (<u>clvProf</u>: tpClave; codProf: tpCódigo, *UNICO, NO NULO*; nombProf: tpNombre, *NO NULO*); clvArea: tpClave, *NO NULO*, clave ajena de AreaConoc);

eliminar encargar y propagar clvArea a relación Asignatura

Asignatura = (<u>clvAsign</u>: tpClave; codAsign: tpCódigo, *UNICO*, *NO NULO*; nombAsign: tpNombre, *NO NULO*; clvArea: tpClave, *NO NULO*, clave ajena de AreaConoc; tt_HT, tt_HP: tpHoras, *NO NULOS*);

transformación de la B.D. de la Universidad (4)

Titulacion = (<u>clvTitulo</u>: tpClave; codTitulo: tpCódigo, *UNICO, NO NULO*; nombTitulo: tpNombre, *NO NULO*);

```
ImparteAsign = (<u>clvProf</u>: tpClave; <u>clvAsign</u>: tpClave; HT, HP: tpHoras, NO NULOS); 
clave ajena (clvProf), referencia a Profesor; borrado en cascada 
clave ajena (clvAsign), referencia a Asignatura; borrado en cascada
```

```
AsignTitulo = (clvAsign: tpClave; clvTitulo: tpClave);

clave ajena (clvAsign), referencia a Asignatura; borrado en cascada

clave ajena (clvTitulo), referencia a Titulacion; borrado en cascada
```

restricciones:

```
    verificar que ∀ ocurrencia de clvDpto en Departamento, ∃ en AreaConoc
    verificar que ∀ ocurrencia de clvAsign en Asignatura, ∃ en AsignTitulo
    verificar que ∀ ocurrencia de clvAsign en Asignatura, ∃ en ImparteAsign
```

verificar que \forall ocurrencia en ImparteAsign, la clvArea del Profesor coincide con la de la Asignatura

```
verificar que la suma de HT, y la de HP en ImparteAsign, agrupando por asignatura es menor o igual que el valor de tt_HT y tt_HP correspondiente a la Asignatura
```

transformación de la B.D. del colegio (1)

transformación de la B.D. del colegio (2)

Dominios:

```
tpNombre = cadena(40);
tpDirección = cadena(40);
tpTfno = 0..99999999;
```

Atributos de tipos de entidad:

```
DNI_Prof: cadena(9); AIP nombreProf: tpNombre; apellProf: tpNombre; direcProf: tpDireccion; profesor.tfno: tpTfno;
```

numMatric: 0..9999; **AIP** nombreAlum: tpNombre; apellAlum: tpNombre; direcAlum: tpDireccion; alumno.tfno: tpTfno;

Atributos de tipos de entidad (cont.):

numCurso: 0..8; **AIP** letra: 'A'..'G'; **AIP**

nombreAsign: tpNombre; AIP

numAula: 0..99; **AIP** capacidad: 0..150; conex_PC: booleano; proyector: booleano;

Restricciones:

1) Un alumno sólo puede ser delegado del grupo al que asiste.

• • •

transformación de la B.D. del colegio (3)

Dominios:

```
tpDNI = cadena(9); tpNombre = cadena(40); tpNombAsign = cadena(16); tpCurso = 1..8; tpTfno = 0..999999999; tpIdAula = 1..69; tpIdGrupo = 'A'..'G'; tpCapacAula = 10..100;
```

Esquemas de relación:

```
Profesor = (<u>DNI_Prof</u>: tpDNI; tfno: tpTfno; nombreProf: tpNombre, NO NULO); ApellProf: tpNombre, NO NULO; direcProf: tpNombre);
```

eliminar coordinar y propagar DNI Prof a relación Curso

```
Curso = (<u>numCurso</u>: tpCurso; ProfCoord: tpDNI, NO NULO, clave ajena de Profesor);
```

añadir a entidad débil asignatura la clave de entidad fuerte numCurso eliminar constar y propagar numCurso a relación Asignatura (ya hecho)

```
Asignatura = (nombreAsign: tpNombre; numCurso: tpCurso, clave ajena de Curso); 
verificar que \exists numCurso en Asignatura \forall ocurrencia de Curso
```

```
Aula = (numAula: tpIdAula; capacidad: tpCapacAula; conexPC, proyector: booleano);
```

transformación de la B.D. del colegio (4)

eliminar asignar y propagar numAula a relación Grupo eliminar tutorar y propagar DNI_Prof a relación Grupo eliminar delegar y propagar numMatric a relación Grupo añadir a entidad débil Grupo la clave de entidad fuerte numCurso eliminar organizar y propagar numCurso a relación Grupo (ya hecho)

```
Grupo = (letra: tpIdGrupo; tfno: numCurso: tpCurso; numAula: tpIdAula, NO NULO; profTutor: tpDNI, NO NULO; deleGrupo: tpNumMatric, NO NULO, UNICO); clave ajena (numCurso), referencia a Curso; borrado en cascada clave ajena (numAula), referencia a Aula; borrado en cascada clave ajena (profTutor), referencia a Profesor; borrado en cascada clave ajena (deleGrupo), referencia a Alumno; borrado en cascada verificar que ∃ numCurso en Grupo ∀ ocurrencia de curso verificar que ∃ (deleGrupo, numcurso, letra) en Alumno
```

eliminar asistir y propagar (numCurso, letra) a relación Alumno

```
Alumno = (<u>numMatric</u>: tpNumMatric; nombreAlum, ApellAlum: tpNombre, NO NULOS; direcAlum: tpNombre; tfno: tpTfno; numCurso: tpCurso, NO NULO; letra: tpIdGrupo, NO NULO); clave ajena (numCurso, letra), referencia a Grupo; borrado en cascada verificar que ∃ (letra , numCurso) en Alumno ∀ ocurrencia de Grupo
```

transformación de la B.D. del colegio (5)

```
impartir = (DNI_Prof: tpDNI, NO NULO; <u>numCurso</u>: tpCurso; <u>letra</u>: tpIdGrupo; <u>nombreAsign</u>: tpNombre); 
clave ajena (numCurso, letra), referencia a Grupo; borrado en cascada 
clave ajena (DNI_Prof), referencia a Profesor; borrado en cascada 
clave ajena (nombreAsign, numCurso), referencia a Asignatura; borrado en cascada
```

```
verificar que \exists (letra , numCurso) en impartir \forall ocurrencia de Grupo verificar que \exists (nombreAsign, numCurso) en impartir \forall ocurrencia de Asignatura
```

- ► Verificar el esquema relacional obtenido y añadir las restricciones que faltan
- Haga pequeñas modificaciones en el enunciado y estudie cómo afectan al esquema relacional, así como posibles mejoras a la solución propuesta
- ► Transforme el resto de los esquemas E/R diseñados

otros ejemplos de transformación

5.3 Dinámica del modelo Relacional: Álgebra relacional

reglas de transformación de estado aplicables a las la componente dinámica de un modelo ≡ ocurrencias de la B.D. (operadores y restricciones) operadores básicos { Selección < condición > Acción < objetivo > se expresan mediante LMD **LMD** operan sobre conjuntos de relaciones (tuplas)
suelen ser lenguajes de especificación no-navegacionales y no-procedurales relacionales expresiones basadas en operadores algebraicos algebraicos (álgebra relacional) \Rightarrow predicativos (cálculo relacional) \Rightarrow los operandos y resultados son relaciones expresiones basadas en lógica de predicados que especifican el objetivo (conjunto de tuplas) ✓ cálculo relacional de tuplas
✓ cálculo relacional de dominios

ejemplos de consultas en álgebra y cálculo relacional (1)

1) numCC, Sucursal y saldo de todas las cuentas con saldo > 100000 :

2) nombre de todos los clientes del banco:

ejemplos de consultas en álgebra y cálculo relacional (2)

3) DNI de todos los clientes del banco que tienen cuenta:

4) nombre y numCC de todos los clientes :

introducción al Álgebra Relacional

lacktriangledown operandos y resultados son *relaciones* R_i y los *operadores* $O_j \ / \ O_j \ (R_i) \to R_k$

$$\begin{array}{c} \text{operadores} \\ \text{básicos} \end{array} \begin{array}{c} \textit{unión} & \cup & \text{R1} \cup \text{R2} \\ \textit{diferencia} & - & \text{R1} - \text{R2} \\ \textit{producto cartesiano} & \times & \text{R1} \times \text{R2} \\ \textit{selección} & \sigma & \sigma_{\text{condición}} \left(\text{R} \right) \\ \textit{proyeccion} & \prod & \prod_{\text{atributos}} \left(\text{R} \right) \\ \text{operadores} \\ \text{derivados} \end{array} \\ \begin{array}{c} \textit{intersección} & \cap & \text{R1} \cap \text{R2} \\ \textit{cociente} & \div & \text{R1} \div \text{R2} \\ \textit{join} & \bowtie & \text{R1} \bowtie \text{R2} \end{array}$$

- además de añaden otros operadores (asignación, tratamientos aritméticos, agrupación, etc.) para facilitar la descripción de consultas más complejas
- mormalmente sólo se usan para obtener información (otros operadores para inserción, eliminación, etc.)

*****álgebra relacional extendida

álgebra relacional: operador selección

Sean:

 $R(A) = (A_1 : D_1, ..., A_n : D_n)$ la intensión (esquema de relación) de una relación R de grado n, y

$$r(R) = \{ \ t_i \ \} \ con \ 1 <= i <= m, \ y \ \ t_i = < v_{i1}, \ v_{i2}, \ \dots, \ v_{in} > / \ \ v_{ij} \in D_j \ , \ \ la \ \textit{extensión} \ de \ R.$$

operadores unarios

(a) Selección, o restricción o sobre una relación R, según un predicado p

R

 $\sigma_p(R)$ = selección de las tuplas de la relación R que verifican el predicado p

 $\sigma_p(R) = R'$, con $r'(R') = \{ t_i \in r(R) \mid p(t_i) \}$, donde p es un predicado de selección formado por una expresión lógica de cláusulas de la forma Ai θ Aj , o Ai θ cte. , siendo θ operador de comparación. Los operadores lógicos serán AND, OR y NOT

el grado de R', n', es igual a n, y su cardinalidad, m' <= m

álgebra relacional: operador proyección

- (b) Proyección
- \prod de una relación **R** sobre un conjunto de atributos **X**

R

- $\prod_{X}(R) \equiv$ selección de los atributos X de la relación R
- $\prod_{\mathbf{X}}(\mathbf{R}) = \mathbf{R}'(\mathbf{X})$, con $\mathbf{r}'(\mathbf{R}') = \{ t_i(\mathbf{X}) \mid \mathbf{X} \subset \mathbf{A} \}$, es decir, las tuplas de la relación original definidas sobre los atributos X, eliminando las duplicadas.
 - el grado de R' es n' < n, y su cardinalidad, m' <= m

operadores binarios

- ⇒ tienen como operandos dos relaciones, y el resultado es otra relación
- en algunos operadores $(\cup, -, \cap)$ los operandos deben ser <u>compatibles</u>; es decir, deben estar definidos sobre el mismo conjunto de dominios (<u>semánticamente equivalentes</u>)

para cambiar los nombres de los atributos y su orden, se puede utilizar el operador unario: RENOMBRAR (R; A'), donde A' describe la transformación de atributos de R

álgebra relacional: operadores unión y diferencia

(c) Unión

U de dos relaciones compatibles R1 y R2

 $R1 \cup R2 \equiv$ relación formada por las tuplas de ambas relaciones R1 y R2

$$R1 \cup R2 = R'$$
, con $r'(R') = \{ t_i | t_i \in r1(R1) \text{ or } t_i \in r2(R2) \}$

el grado de R' es n' = n1 = n2, y su cardinalidad es m' >= m1, m' >= m2, y m' <= m1+m2

d Diferencia

- de dos relaciones compatibles R1 y R2

 $R1 - R2 \equiv$ relación formada por las tuplas de R1 que no aparecen en R2

$$R1 - R2 = R'$$
, con $r'(R') = \{ t_i | t_i \in r1(R1) \text{ and } t_i \notin r2(R2) \}$

el grado de R' es, n' = n1 = n2, y su cardinalidad, $m' \le m1$

álgebra relacional: operador producto cartesiano

(e) Producto cartesiano generalizado × de dos relaciones R1 y R2 (cross JOIN)

R1 × R2 ≡ relación formada por todas las tuplas obtenidas concatenando una tupla de R1 con otra de R2

$$R1 \times R2 = R', con \ r'(R') = \{ < v_{i1}, ..., v_{in1}, v_{j1}, ..., v_{jn2} > | < v_{i1}, ..., v_{in1} > \in r1(R1), < v_{j1}, ..., v_{jn2} > \in r2(R2) \}$$

 \blacksquare el grado de R' es n' = n1 + n2, y su cardinalidad m' = m1 * m2

Para distinguir los atributos que tienen el mismo nombre en las dos relaciones, se antepone el nombre de la relación: R1.X, R2.X

álgebra relacional: ejemplo de operaciones básicas

Sean: R1(A1, A2); R2(A3, A4); R3 = RENOMBRAR (R2; A1=A3, A2=A4)

$$r(R1) = \begin{array}{|c|c|} A1 & A2 \\ \hline a & 1 \\ \hline b & 2 \\ \hline b & 1 \\ \hline c & 3 \\ \hline \end{array}$$

$$r(R2) = \begin{array}{c|c} A3 & A4 \\ \hline x & 1 \\ \hline b & 2 \\ \end{array}$$

$$\mathbf{\sigma}_{AI=b}(\mathbf{R}1) = \begin{array}{c|c} \mathbf{A1} & \mathbf{A2} \\ \mathbf{b} & \mathbf{1} \\ \mathbf{b} & \mathbf{2} \end{array}$$

$$\Pi_{AI}(R1) =
\begin{array}{c}
A1 \\
a \\
b \\
c
\end{array}$$

$$R1 \cup R3 = \begin{bmatrix} A1 & A2 \\ a & 1 \\ b & 2 \\ b & 1 \\ c & 3 \\ x & 1 \end{bmatrix}$$

$$R1 - R3 = \begin{array}{c|c} A1 & A2 \\ \hline a & 1 \\ \hline b & 1 \\ \hline c & 3 \end{array}$$

$$R1 \cap R3 = \begin{array}{|c|c|c|c|c|} \hline A1 & A2 \\ \hline b & 2 \\ \hline \end{array}$$

álgebra relacional: operador intersección

operadores derivados

se introducen para simplificar las expresiones, ya que pueden ser descritos con los operadores básicos

(f) Intersección

de dos relaciones **compatibles** R1 y R2

 $R1 \cap R2 \equiv$ relación formada por las tuplas que pertenecen a R1 y a R2

$$R1 \cap R2 = R'$$
, con $r'(R') = \{ t_i | t_i \in r1(R1) \text{ and } t_i \in r2(R2) \}$

el grado de R' es n' = n1 = n2, y su cardinalidad m' $\leq m1$, m' $\leq m2$

Obsérvese que:
$$R' = (R1 \cup R2) - ((R1 - R2) \cup (R2 - R1))$$
, ò bien $R' = R1 - (R1 - R2)$, o $R' = R2 - (R2 - R1)$

álgebra relacional: operador división

(g) División

÷ de dos relaciones R1 y R2

R1 ÷ R2 ≡ relación formada por todas las tuplas (cociente) tales que su producto cartesiano por R2 (divisor) está incluída en R1 (dividendo)

supóngase, para simplificar, que los k últimos atributos de R1 coinciden con los de R2 $R1 \div R2 = R', \text{ con } R'(A') = (A_1 : D_1, \dots, A_{n1-k} : D_{n1-k}), y \\ r'(R') = \{ <\!\!v_{i1}, \dots, v_{i(n1-k)}\!\!> \mid \forall <\!\!v_{j(n1-k+1)}, \dots, v_{jn1}\!\!> \in r2(R2), \\ \exists <\!\!v_{i1}, \dots, v_{i(n1-k)}, v_{j(n1-k+1)}, \dots, v_{jn1}\!\!> \in r(R1) \}$

el grado de R' es n' = n1 - n2, y su cardinalidad m' <= m1 / m2

Obsérvese que: R1 ÷ R2 =
$$\prod_{A'}(R1) - \prod_{A'}((\prod_{A'}(R1) \times R2) - R1)$$

las que hay

las que no pueden ser

ej. de interpretación:

Obtener los alumnos que están matriculados en todas las asignaturas

álgebra relacional: ejemplo de operación división

$$r(R4) = \begin{vmatrix} A1 & A2 & A3 & A4 \\ a & 1 & x & 1 \\ a & 1 & b & 2 \\ b & 2 & x & 1 \\ b & 2 & b & 2 \\ b & 1 & x & 1 \\ c & 3 & b & 2 \end{vmatrix}$$

$$r(R2) = \begin{array}{c|c} A3 & A4 \\ \hline x & 1 \\ \hline b & 2 \\ \end{array}$$

$$R4 \div R2 = \begin{array}{c|c} A1 & A2 \\ \hline a & 1 \\ \hline b & 2 \end{array}$$

$$R4 \div R2 = \prod_{AI,A2}(R4) - \prod_{AI,A2}((\prod_{AI,A2}(R4) \times R2) - R4)$$

$$R1$$

$$R1$$

$$R5$$

$$R6$$

R5 - R4 =

$$R1 - R7 = \begin{array}{c|c} A1 & A2 \\ \hline a & 1 \\ \hline b & 2 \end{array}$$

A1 A2 A3 A4

R7

álgebra relacional: operadores JOIN (1)

 θ -Combinación, o θ -JOIN $\stackrel{\triangleright}{H}$ de dos relaciones R1 y R2

donde θ es un predicado de selección que relaciona atributos de R1 y R2

R1 \bowtie R2 = relación formada por todas las tuplas obtenidas concatenando (combinando) a una tupla de R1 otra de R2, y que verifican el predicado θ

si k y l representan dos atributos cualquiera de R1 y R2, respectivamente, sobre los que se define θ , R1 \bowtie R2 = R', con r'(R') = { $\langle v_{i1}, ..., v_{in1}, v_{j1}, ..., v_{jn2} \rangle | \forall i, j \langle v_{i1}, ..., v_{in1} \rangle \in r1(R1),$ $\langle v_{i1}, ..., v_{in2} \rangle \in r2(R2)$, y se verifica $v_{ik} \theta v_{il}$

el grado de R' es n' = n1 + n2, y su cardinalidad m' $\leq m1 * m2$

Obsérvese que: R1 \bowtie R2 = σ_{θ} (R1 × R2)

álgebra relacional: operadores JOIN (1)

Equi-JOIN

 \bowtie

de dos relaciones R1 y R2

R1 $\stackrel{\triangleright}{=}$ R2 = R1 $\stackrel{\triangleright}{\bowtie}$ R2, con θ el operador =, definido sobre los atributos comunes de R1 y R2

JOIN Natural

 \bowtie

de dos relaciones R1 y R2

R1 ⋈ R2 ≡ R1 ⋈ R2, seguido de la eliminación de atributos repetidos ≡ equi-JOIN, seguido de proyección sobre la unión de los atributos de R1 y R2

Es uno de los operadores más usados, ya que permite completar la información de una tabla con la de otra, referenciada en la primera mediante una clave ajena

álgebra relacional: ejemplo de operaciones JOIN

$$r(R8) = \begin{array}{|c|c|c|} \hline A1 & A2 & A3 \\ \hline a & 1 & x \\ \hline a & 1 & y \\ \hline b & 2 & x \\ \hline b & 2 & z \\ \hline b & 1 & s \\ \hline c & 3 & y \\ \hline \end{array}$$

$$r(R9) = \begin{array}{c|c} A3 & A4 \\ \hline x & 7 \\ \hline y & 9 \end{array}$$

R8
$$\bowtie$$
 R9 = $\prod_{A1,A2,A3,A4} (\sigma_{R8.A3=R9.A3} (R8 \times R9))$

$$R8 \bowtie R9 = \sigma_{4*A2>A4}(R8 \times R9)$$

$$R8 \bowtie_{=} R9 = \sigma_{R8.A3=R9.A3}(R8 \times R9))$$

álgebra relacional: tratamiento de los valores nulos

el *valor nulo* (o *ausente*) es consecuencia de \(\frac{\sqrt{valores desconocidos}}{\sqrt{nuevos atributos añadidos}} \) a una relación \(\frac{\sqrt{atributos inaplicables}}{\sqrt{atributos inaplicables}} \) a una tupla concreta

- Su tratamiento complica las operaciones y obliga a la *redefinición de los operadores* (aritméticos, comparación, lógicos, relacionales, estadísticos, etc.)
 - ➤ No existe una total unidad de criterio en las implementaciones de SGBD
 - ⇒ hay que asegurarse al implementar sobre un SGBD concreto
- los valores nulos no son comparables (un valor nulo no es ni igual ni distinto de otro valor)
- \blacktriangleright el operador **ES-NULO** (v) devuelve verdad si v es el valor nulo, y falso en caso contrario

lógica trivaluada

OR	V	Q	F
V	٧	٧	٧
Q	٧	Q	Q
F	٧	Q	F

	NOT
٧	F
Q	Q
F	V

la lógica **cuatrivaluada** usa: verdad(V), falso(F),desconocido aplicable(A),desconocido no-aplicable(I)

5.4 Interrogación de B.D. con álgebra relacional extendida

para diseñar consultas a una B.D. R. se añaden otros operadores (álgebra relacional extendida)

- simplificar expresiones complejas
- permitir tratamientos especiales (aritméticos, estadísticos, etc.)

Asignación

R1 := R2 ≡ asocia a la relación R1 la ocurrencia correspondiente a la expresión relacional R2

se puede utilizar para el renombrado de atributos

Agrupación

AGRUPAR

una relación R respecto a un subconjunto de atributos X

AGRUPAR $_F(R, X) \equiv \text{agrupa las tuplas de } R \text{ según los valores de los atributos } X, y aplica a cada uno de los grupos la lista de funciones de agregación <math>F$

el resultado consta de los atributos X, más uno por cada una de las funciones F, y tantas tuplas como "grupos" se hayan obtenido (= cardinalidad de $\prod_X(R)$)

funciones de agregación típicas: CONTAR, SUMA, MEDIA, MAX, MIN, etc.

ejemplo de operaciones de agrupamiento

$$r(R) = \begin{array}{|c|c|c|} \hline A1 & A2 & A3 \\ \hline a & 1 & x \\ a & 1 & y \\ \hline b & 2 & x \\ \hline b & 2 & z \\ \hline b & 1 & s \\ \hline c & 3 & y \\ \hline \end{array}$$

$$R'(A2, N) := AGRUPAR_{contar}(R, A2) \longrightarrow R' = \begin{bmatrix} A2 & N \\ \hline 1 & 3 \\ \hline 2 & 2 \\ \hline 3 & 1 \end{bmatrix}$$

$$R'(A3, S) := AGRUPAR_{suma(A2)}(R, A3) \longrightarrow R' = \begin{bmatrix} x & 3 \\ y & 4 \\ s & 1 \\ z & 2 \end{bmatrix}$$

- no se suelen eliminar los duplicados antes de aplicar la función de agregación

extensión de atributos y operadores de JOIN externo

Extensión de atributos **EXTENDER** una relación R con un conjunto de atributos X

EXTENDER $(R, X) \equiv \text{añade a R los atributos especificados por } X \text{ (pares atributo-dominio)}$

JOIN externo izquierdo, derecho, o completo

 $+\bowtie$ \bowtie $+\bowtie$ $+\bowtie$ $+\bowtie$ left, right, o full <u>outer</u>

- $R1^{\dagger}$
- JOIN natural de R1 y R2 completado con las tuplas de R1 que no tienen correspondencia en R2 (dichos atributos de R2 tomarán el valor nulo)
- R1 127
- JOIN natural de R1 y R2 completado con las tuplas de R2 que no tienen correspondencia en R1 (dichos atributos de R1 tomarán el valor nulo)
- JOIN natural de R1 y R2 completado con las tuplas de R1 que no tienen correspondencia en R2 (dichos atributos de R2 tomarán el valor nulo), y con las tuplas de R2 que no tienen correspondencia en R1 (serán nulos)

ejemplo de operaciones de JOIN externo

$$r(R1) = \begin{array}{|c|c|c|c|c|} \hline A1 & A2 & A3 \\ \hline a & 1 & x \\ \hline a & 1 & y \\ \hline b & 2 & x \\ \hline b & 2 & z \\ \hline b & 1 & s \\ \hline c & 3 & y \\ \hline \end{array}$$

$$r(R2) = \begin{array}{c|c} A3 & A4 \\ \hline x & 7 \\ \hline y & 9 \\ \end{array}$$

$$R1 R2 = \begin{bmatrix} A1 & A2 & A3 & A4 \\ a & 1 & x & 7 \\ a & 1 & y & 9 \\ b & 2 & x & 7 \\ b & 2 & z \\ b & 1 & s \\ c & 3 & y & 9 \end{bmatrix}$$

$$R1 \mathbb{R}^{+} = \begin{bmatrix} A1 & A2 & A3 & A4 \\ a & 1 & x & 7 \\ a & 1 & y & 9 \\ b & 2 & x & 7 \\ c & 3 & y & 9 \\ & & t & 6 \end{bmatrix}$$

otros operadores de álgebra relacional extendida. Ejemplos

cierre transitivo

CT de R sobre un subconjunto de atributos compatibles X

 $CT(R, X) \equiv \text{relación obtenida aplicando la transitividad sobre } X \text{ hasta la saturación}$

unión externa

U⁺ devuelve relación con todos los atributos...

para el diseño de *consultas complejas* \rightarrow *descomponer* en pasos intermedios

ejemplo: Considérese el siguiente esquema (simplificado) de una B.D. relacional

Pieza (<u>clvPieza</u>: *entero*; nombPieza, color: *tpNombre*);

Proveedor (<u>clvProv</u>: *entero*; nombProv: *tpNombre*);

suministrar (<u>clvProv</u>: entero; <u>clvPieza</u>: entero)

clvProv clave ajena de Proveedor; clvPieza clave ajena de Pieza;

ejemplos de consulta a una B.D. con álgebra relacional (1)

1) Piezas de color 'verde'

$$R1 = \sigma_{color = 'verde'}$$
 (Pieza)

(2) Nombre de los proveedores que suministran al menos una pieza de color 'verde'

$$R2 = \prod_{nombProv} (Proveedor \bowtie Suministrar \bowtie R1)$$

(3) Nombre de los proveedores que no suministran "tuercas"

R3 =
$$\sigma_{nombPieza} = 'tuerca'$$
 (Pieza) = piezas que son tuercas

R4 =
$$\prod_{clvProv}$$
 (Suministrar \bowtie R3) = proveedores de tuercas

R5 =
$$\prod_{clvProv}$$
 (Proveedor) - R4 = proveedores que no suministran tuercas

$$R6 = \prod_{nombProv} (Proveedor \bowtie R5) \equiv nombre de proveedores que no suministran tuercas$$

o también

R5 =
$$\prod_{nombProv}$$
 (Proveedor \bowtie ($\prod_{clvProv}$ (Proveedor) - $\prod_{clvProv}$ (Suministrar \bowtie R3))

ejemplos de consulta a una B.D. con álgebra relacional (2)

(4) Clave, nombre, y suministradores de las piezas existentes

a) si todas tienen algún suministrador (faltaría la restricción en el esquema relacional):

R6 =
$$\prod_{clvPieza, nombPieza, clvProv}$$
 (Pieza Saministrar)

b) si puede haber piezas que no tienen suministrador:

R7 =
$$\prod_{clvPieza, nombPieza, clvProv}$$
 (Pieza Sxiministrar)

o también

$$R8 = \prod_{clvPieza, nombPieza} (Pieza Syministrar) \equiv piezas que tienen proveedor$$

$$R9 = \prod_{clvPieza, nombPieza} (Pieza) - R8 \equiv piezas que no son suministradas por nadie$$

$$R7 = (R8 \bowtie Suministrar) \cup EXTENDER (R9, clvProv: entero)$$

R9 =
$$\prod_{clvPieza, nombPieza}$$
 (Pieza) - $\prod_{clvPieza, nombPieza}$ (R6) = piezas que no son suministradas

$$R7 = R6 \cup EXTENDER (R9, clvProv: entero)$$

ejemplos de consulta a una B.D. con álgebra relacional (3)

(5) Nombre de los proveedores que suministran al menos todas las piezas suministradas por el proveedor de clave 25

R1 =
$$\prod_{clvPieza} (\sigma_{clvProv = 25} (Suministrar)) \equiv piezas suministradas por el proveedor 25$$

$$R2 = \prod_{clvProv} (Proveedor) \times R1 \equiv suministros si todos los proveedores suministrasen R1$$

$$R3 = R2 - Suministrar \equiv suministros de R1 que no se realizan$$

R4 =
$$\prod_{clvProv}$$
 (R3) = proveedores que no suministran todas las piezas de R1

$$R5 = \prod_{clvProv} (Suministrar) - R4 \equiv suministradores de todas las piezas de R1$$

$$R6 = \prod_{nombProv} (Proveedor \bowtie R5)$$

o también

ejemplos de consulta a una B.D. con álgebra relacional (4)

(5) Nombre de los proveedores que suministran al menos todas las piezas suministradas por el proveedor de clave 25

R1 =
$$\prod_{clvPieza} (\sigma_{clvProv = 25} (Suministrar)) \equiv piezas suministradas por el proveedor 25$$

$$R5 = Suministrar \div R1 \equiv suministradores de todas las piezas de R1$$

$$R6 = \prod_{nombProv} (Proveedor \bowtie R5)$$

6 Nombre de los proveedores que suministran 'tuercas' y 'tornillos'

R1 =
$$\prod_{clvPieza} (\sigma_{nombPieza = 'tuerca'} (Pieza))$$
 = piezas que son tuercas

$$R2 = \prod_{clvPieza} (\sigma_{nombPieza = 'tornillo'}, (Pieza)) \equiv piezas que son tornillos$$

R3 =
$$\prod_{clvProv}$$
 (Suministrar \bowtie R1) = proveedores de tuercas

$$R4 = \prod_{clvProv} (Suministrar \bowtie R2) \equiv proveedores de tornillos$$

$$R5 = \prod_{nomProv} (Proveedor \bowtie (R3 \cap R4))$$

ejemplos de consulta a una B.D. con álgebra relacional (5)

Nombre de los proveedores que suministran 'tuercas' y 'tornillos'

R1 = R2 = Suministrar \bowtie Pieza = piezas y sus suministradores

R3(clvProv) = $\prod_{R1.clvProv} (\sigma_p (R1 \times R2) \equiv proveedores que suministran tuercas y tornillos$ Siendo p = (R1.clvProv = R2.clvProv) AND (R1.nombPieza = 'tuerca') AND (R2.nombPieza = 'tornillo')

R5 = $\prod_{nomProv}$ (Proveedor \bowtie R3)

(7) Clave, nombre, y nº de piezas que suministra cada proveedor

R1(clvProv, numPiezas) := AGRUPAR $_{contar(clvPieza)}$ (Suministrar, clvProv) = $de\ los\ proveedores\ que\ suministran\ piezas$

 $R2 = \prod_{clvProv, nombProv, numPiezas} (Proveedor \mathbb{R})$

ejemplos de consulta a una B.D. con álgebra relacional (6)

- (8) Clave de las piezas que son suministradas por más de un proveedor
- (9) Clave de las piezas que a lo sumo tienen un proveedor
- (10) Clave de los proveedores que sólo suministran un tipo de piezas
- (11) Clave de los proveedores que suministran alguna pieza en exclusiva (sólo ellos)
- (12) Clave de los proveedores "prescindibles", pues no suministran ninguna pieza en exclusiva
- (13) Parejas (sin repetir ninguna) de proveedores que comparten el suministro de alguna pieza
- (14) Proveedor(es) que más piezas suministra del mismo tipo (tuercas, tornillos, etc.)
- (15) Parejas (sin repetir ninguna) de proveedores suministran exactamente las mismas piezas
- (16) Clave de los proveedores que suministran piezas de todos los colores
- (17) Clave de los proveedores que suministran más de dos piezas
- (18) Pares de suministradores (S1, S2) tales que S1 suministra todas las piezas que suministra S2
- $(\overline{19})$