

Transformers

Context

Context

- "The animal didn't cross the street because it was too tired"
- •What is "it"?

Context

Attention

•Attention mechanism has an infinite reference window.

Attention is all you need

1. Input Embedding

2. Positional Encoding

3-4 Encoder layer

Multi-Head Attention

Self Attention

 Associates each individual word in the input to other words in the input.

Self attention details

- Given an input sequence, X
- Project to Queries, Keys and Values using linear transforms.

$$Q = W^Q X$$

$$K = W^K X$$

$$V = W^{V} X$$

Residual Connection, Layer Normalization and Pointwise FW NW

Transformer Encoder

Multi Head Example

- No of tokens=9
- Token encoded dimension =512
- Split each token into 8 equal parts of 64 dimension

Transformer Decoder

Decoder is to generate text

It is auto regressive –Takes previous outputs as inputs

Stops generation when<end> token is generated.

Output Embedding and positional Encoding

Decoder MH Attention1

Look ahead Mask

Prevents decoder from looking at future tokens

Linear Classifier

Transformer – Encoder & Decoder

Transformers, GPT-2, and BERT

- A transformer uses an encoder stack to model input, and uses decoder stack to model output (using input information from encoder side)
- If we do not have input, we just want to model the "next word", we can get rid of the encoder side of a transformer and output "next word" one by one. This gives us GPT
- If we are only interested in training a language model for the input for some other tasks, then we do not need the decoder of the transformer, that gives us BERT

Training a Transformer

- Transformers typically use semi-supervised learning with
 - ►Unsupervised pretraining over a very large dataset of general text
 - ► Followed by supervised **fine-tuning** over a focused data set of inputs and outputs for a particular task
- Tasks for pretraining and fine-tuning commonly include:
 - ►language modeling
 - ▶next-sentence prediction (aka completion)
 - ▶question answering
 - ▶reading comprehension
 - ►sentiment analysis
 - paraphrasing

Pre-trained Models

- Since training a model requires huge datasets of text and significant computation, researchers often use common pretrained models
- Examples (~ December 2021) include
 - ►Google's <u>BERT</u> model
 - ► Huggingface's various <u>Transformer models</u>
 - ►OpenAl's and GPT-3 models

GPT-2 & BERT

GPT - Varients

GPT released June 2018

GPT-2 released Nov. 2019 with 1.5B parameters

GPT-3 released in 2020 with 175B parameters

Model Dimensionality: 768

Model Dimensionality: 1024

Model Dimensionality: 1280

1542M

117M parameters

345M

762M

ViT – Vision Transformers

- •Divide an input image into 196 (14x14) small images of size (16x16)
- Treat it as embedding in NLP
- •Use it as an input for traditional transformer encoder (like in BERT)
- •Use 12 transformer layers (Norm, Multi-head attention, etc.)
- •Take the last output, use it as input for Dense Layer with 1000 classes

Patch Embedding

[CLS] Token

[CLS] token is a vector of size (1,768)(1,768)

The final patch matrix has size (197,768)(197,768), 196 from patches and 1 [CLS] token

ViT - Summary

ViT Layers

How Good is ViT?

- Worse than Resnet when trained just on ImageNet
- Performance improved when pre-trained on big (and I mean it) dataset
- Pretrained outperforms much bigger CNNs

ViT – in Numbers

Model	Layers	${\it Hidden \ size \ } D$	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Table 1: Details of Vision Transformer model variants.

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21K (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Critics

- Better results only with more data
- •The cost of training from scratch is ridiculously high (30k\$)
- •Is it really that different from Convolutions?

