Esboce o gráfico de uma função f(x), contínua para todo $x \in \mathbb{R}$, sabendo que f tem três raízes reais, que $\lim_{x \to +\infty} [f(x) - x] = -3$, $\lim_{x \to -\infty} [f(x) - x] = 3$ e que o gráfico da primeira derivada de f está representado na figura a seguir.

Dados:

f possui 3 raízes $\Longrightarrow f(x_i) = 0, i = 1,2,3$

$$\lim_{x \to +\infty} (f(x) - x) = -3 \longrightarrow b_1$$

$$\lim_{x \to +\infty} (f(x) - x) = 3 \longrightarrow b_2$$

$$\lim_{x \to -\infty} (f(x) - x) = 3 \longrightarrow b_2$$

Comparando esses limites com $\lim_{x\to +\infty} (f(x)-kx)=b$, temos que:

A reta:

$$y = x - 3 \implies \text{\'e assíntota oblíqua para } x \to +\infty$$

$$y = x + 3 \implies \text{\'e assíntota oblíqua para } x \to -\infty$$

Esboce o gráfico de uma função f(x), contínua para todo $x \in \mathbb{R}$, sabendo que ftem três raízes reais, que $\lim_{x\to +\infty} [f(x)-x]=-3$, $\lim_{x\to -\infty} [f(x)-x]=3$ e que o gráfico da primeira derivada de f está representado na figura a seguir.

Extraindo os dados do gráfico de f':

Pontos críticos:

$$f'(-1) = 0$$

$$f'(1) = 0$$

$$f'(1) = 0$$

$$f'(1) = 0$$

$$\checkmark f'(x_0) > 0$$
, $\forall x \in (-\infty, -1) \cup (1, +\infty) \Rightarrow f$ é crescente $\forall x \in (-\infty, -1)] \cup [1, +\infty)$

✓
$$f'(x_0) < 0$$
, $\forall x \in (0,3) \Rightarrow f$ é decrescente $\forall x \in [-1,1]$

Pelo teste da 1ª derivada:

-1 é um máximo local

1 é um mínimo local

Esboce o gráfico de uma função f(x), contínua para todo $x \in \mathbb{R}$, sabendo que f tem três raízes reais, que $\lim_{x \to +\infty} [f(x) - x] = -3$, $\lim_{x \to -\infty} [f(x) - x] = 3$ e que o gráfico da primeira derivada de f está representado na figura a seguir.

Pontos de inflexão:

c tal que há mudança de concavidade.

- ✓ f' decrescente $\implies f''$ é negativa
- ✓ f' crescente $\implies f''$ é positiva
- $\checkmark f'$ decresce $\forall x \in (-\infty, 0) \Rightarrow f''(x) < 0, \ \forall x \in (-\infty, 0)$
- $\checkmark f' \text{ cresce } \forall x \in (0,+\infty) \Longrightarrow f''(x) > 0 \text{ , } \forall x \in (-\infty,0)$
- $\checkmark c = 0$ é um ponto de inflexão.

Esboce o gráfico de uma função f(x), contínua para todo $x \in \mathbb{R}$, sabendo que f tem três raízes reais, que $\lim_{x \to +\infty} [f(x) - x] = -3$, $\lim_{x \to -\infty} [f(x) - x] = 3$ e que o gráfico da primeira derivada de f está representado na figura a seguir.

Esboço do gráfico:

Assíntotas:

$$\begin{cases} y = x - 3, \, p/x \to +\infty \\ y = x + 3, \, p/x \to -\infty \end{cases}$$

Exemplo.

Esboce o gráfico da função f, contínua em $\mathbb{R}-\{2\}$, que satisfaz as seguintes condições:

- i. f'(0) = 0 e f'(-1) não existe;
- ii. f'(x) > 0 para todo $x \in (0, 2) \cup (2, +\infty)$;
- iii. P(0, -3) é um ponto de mínimo local;
- iv. Q(-1,0) é um ponto de inflexão;

$$v. \lim_{x \to +\infty} (f(x) - x) = -2$$

vi.
$$\lim_{x \to 2^{-}} f(x) = 1$$
.

Interpretando os dados:

Esboce o gráfico da função f, contínua em $\mathbb{R}-\{2\}$, que satisfaz as seguintes condições:

$$\lim_{x \to c} f(x) = f(c), \forall c \in \mathbb{R} - \{2\}$$

- i. f'(0) = 0 e f'(-1) não existe;
 - \Rightarrow 0 e -1 são pontos críticos de f;
 - \Rightarrow 0 e -1 são candidatos a pontos extremos relativos de f.
- ii. f'(x) > 0 para todo $x \in (0, 2) \cup (2, +\infty)$;

iii. P(0, -3) é um ponto de mínimo local;

iv. Q(-1,0) é um ponto de inflexão;

$$v. \lim_{x \to +\infty} (f(x) - x) = -2$$

A reta y = kx + b, é uma assíntota oblíqua se ambos os limites

$$k = \lim_{x \to \infty} \frac{f(x)}{x}$$
 e $b = \lim_{x \to \infty} (f(x) - kx)$.

Comparando o limite que resulta b com o limite dado, temos que:

$$\lim_{x \to +\infty} (f(x) - (1)x) = -2 = b \implies \text{A reta } y = x - 2 \text{ \'e}$$

$$\text{assíntota oblíqua para}$$

$$x \to +\infty.$$

vi. $\lim_{x\to 2^-} f(x) = 1$. \Rightarrow O limite lateral pela esquerda existe e é igual a 1.

Juntando as informações:

- \Rightarrow f(c) é uma função contínua para $\forall c \in \mathbb{R} \{2\}$
- \Rightarrow 0 e -1 são pontos críticos de f;

 \Rightarrow A reta y = -x + 2 é assíntota oblíqua para $x \to +\infty$.

vi. $\lim_{x\to 2^-} f(x) = 1$. \Rightarrow O limite lateral pela esquerda existe e é igual a 1.

Juntando as informações:

- $\Rightarrow f(c)$ é uma função contínua para $\forall c \in \mathbb{R} \{2\}$
- \Rightarrow 0 e -1 são pontos críticos de f;

