Funções

José Antônio O. Freitas

MAT-UnB

15 de setembro de 2020

1/17

Definição

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de **domínio** de f e será denotado por dom(f). O conjunto B é chamado de **contra-domínio** de f. O conjunto

$$\operatorname{Im}(f) = \{f(x) \mid x \in A\} \subseteq B$$

é chamado imagem de f.

- 1) Sejam $A = \{0, 1, 2, 3\}$ e $B = \{4, 5, 6, 7, 8\}$. Quais das seguintes relações são funções?
 - a) $R_1 = \{(0,5), (1,6), (2,7)\}$
 - b) $R_2 = \{(0,4), (1,5), (1,6), (2,7), (3,8)\}$
 - c) $R_3 = \{(0,4), (1,5), (2,7), (3,8)\}$
 - d) $R_4 = \{(0,5), (1,5), (2,6), (3,7)\}$

Solução:

- a) Não é função pois 3 ∈ A e 3 não está associado à nenhum elemento de B.
- b) Não é função pois $1 \in A$ está associado a dois elementos diferentes em B.
- c) É uma função.
- d) É uma função.

2)
$$R_5 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y^2 = x^2\}$$

Solução:

Não é função pois, por exemplo, para x = 1 temos y = -1 ou y = 1.

3)
$$R_6 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 + y^2 = 1\}.$$

Solução:

Não é função pois, por exemplo, para x = 0 temos y = 1 ou y = -1.

4)
$$R_7 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = x^2\}$$

Solução:

É uma função.

Definição

Seja $f: A \rightarrow B$ uma função.

- i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f e **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$ tal que f(x) = y.
- iii) Dizemos que f e **bijetora** se f for **injetora** e **sobrejetora** simultaneamente.

Verifique se as seguintes funções são injetoras ou sobrejetoras:

1)
$$f: \mathbb{Z} \to \mathbb{Z}$$
 dada por $f(x) = 3x + 1$

2) $g: \mathbb{Q} \to \mathbb{Q}$ dada por f(x) = 3x + 1

3) A função $h: \mathbb{R} \to \mathbb{R}$ dada por $h(x) = x^2$

Definição

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que $(g \circ f)(x) = g(f(x))$ para todo $x \in A$.

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$ e g(x) = x + 1. Assim podemos definir $g \circ f$ e $f \circ g$ e:

2) $f: \mathbb{R}_- \to \mathbb{R}_+^* \ e \ g: \mathbb{R}_+^* \to \mathbb{R}$ dadas por $f(x) = x^2 + 1$ e $g(x) = \ln x$. Nesse caso só podemos definir $g \circ f: \mathbb{R}_- \to \mathbb{R}$ e:

Proposição

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

Prova: Dados x_1 , $x_2 \in A$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$ queremos mostrar que $x_1 = x_2$. Temos:

$$(g \circ f)(x_1) = (g \circ f)(x_2)$$

 $g(f(x_1)) = g(f(x_2)).$

Como por hipótese g é injetora, dessa última igualdade segue que $f(x_1) = f(x_2)$. Mas f também é injetora, por hipótese, daí $x_1 = x_2$, como queríamos. Portanto $g \circ f$ é injetora.