```
In [1]: # Data Imports
         import numpy as np
         import pandas as pd
         from pandas import Series,DataFrame
         # Math
         import math
         # Plot imports
         import matplotlib.pyplot as plt
         import seaborn as sns
         sns.set_style('whitegrid')
         %matplotlib inline
In [2]:
         clf = pd.read_excel("CLF Test.xlsx")
In [3]:
         clf.head()
Out[3]:
                                    Survey
                                                         Claim
                                                               Handling
                                                                                        Claim
              Date State Sex Age
                                            Main Driver
                                                                            Peril
                                                                                               Adjı
                                    Result
                                                                                      Number
                                                         Type
                                                                   Type
             2020-
                                                         Load
                     MA
                                46
                                           Professional
                                                                 Regular
                                                                           Water 1.234568e+08
                           M
                                                                                                Les
             09-01
                                                       Balance
             2020-
                                                         Load
                     PA
                                70
                           F
                                         1
                                               Service
                                                                 Regular Lightning 1.234568e+08
                                                                                               Mar
             09-01
                                                       Balance
             2020-
                                                         Load
                                                  Low
                     TX
                                36
                                                                 Regular
                                                                           Water 9.012346e+08
                                                                                                 ٤
                           M
             09-01
                                              Payment
                                                       Balance
             2020-
                                                   No
                                                                                                Ste
                      IL
                           F
                                81
                                                         Virtual
                                                                  Virtual
                                                                           Water 1.160494e+09
                                         1
             09-01
                                              Comment
             2020-
                                                         Load
                     VA
                           Μ
                                39
                                         1
                                               Service
                                                                 Regular
                                                                           Water 1.549383e+09
             09-02
                                                       Balance
In [4]: | clf['Survey Result'].count()
Out[4]: 76
         clf[['Survey Result', 'Adjuster']].mean()
In [5]:
Out[5]: Survey Result
                            0.697368
         dtype: float64
         clf['Survey Result'].value_counts()
In [6]:
Out[6]: 1
               53
               23
         Name: Survey Result, dtype: int64
```

```
In [7]: | clf.columns
'Survey Type', 'Payment Type', 'Days to Close', 'Coverage'],
             dtype='object')
In [8]: | clf['Survey Result'].mean()
Out[8]: 0.6973684210526315
In [9]: | clf[['Survey Result', 'Adjuster']]
Out[9]:
            Survey Result Adjuster
         0
                       Lessner
          1
                       Martinez
          2
                         Skeet
          3
                    1
                       Stevens
          4
                    1
                         Cook
         71
                     1
                         Cook
         72
                         Ortbal
         73
                    0
                         Cook
                     1
         74
                         Cook
         75
                    1
                       Lessner
        76 rows × 2 columns
In [10]: | clf.describe()
Out[10]:
```

	Age	Survey Result	Claim Number	Days to Close
count	76.000000	76.000000	7.600000e+01	76.000000
mean	52.394737	0.697368	1.457716e+10	9.500000
std	16.169996	0.462450	8.587980e+09	14.566171
min	23.000000	0.000000	1.234568e+08	1.000000
25%	38.750000	0.000000	7.285494e+09	3.000000
50%	52.500000	1.000000	1.457716e+10	6.000000
75%	68.000000	1.000000	2.186883e+10	9.000000
max	81.000000	1.000000	2.916049e+10	114.000000

```
In [11]: sns.catplot('Sex',data=clf,kind='count')
```

Out[11]: <seaborn.axisgrid.FacetGrid at 0x2813cab25c8>

In [12]: sns.catplot('Sex',data=clf,kind='count',hue='Survey Result')

Out[12]: <seaborn.axisgrid.FacetGrid at 0x2813cad8b08>


```
In [13]: sns.catplot('Age',data=clf,kind='count',hue='Survey Result', aspect=2)
```

Out[13]: <seaborn.axisgrid.FacetGrid at 0x2813d2f9088>

In [14]: sns.catplot('Days to Close',data=clf,kind='count',hue='Survey Result')

Out[14]: <seaborn.axisgrid.FacetGrid at 0x2813d384748>


```
In [15]: sns.catplot('Adjuster',data=clf,kind='count',hue='Survey Result')
```

Out[15]: <seaborn.axisgrid.FacetGrid at 0x2813d2f09c8>

In [16]: sns.catplot('State',data=clf,kind='count',hue='Survey Result')

Out[16]: <seaborn.axisgrid.FacetGrid at 0x2813d559cc8>


```
In [17]: sns.catplot('Main Driver',data=clf,kind='count',hue='Survey Result', aspect=2)
```

Out[17]: <seaborn.axisgrid.FacetGrid at 0x2813d84ea48>

In [18]: sns.catplot('Claim Type',data=clf,kind='count',hue='Survey Result')

Out[18]: <seaborn.axisgrid.FacetGrid at 0x2813d824788>


```
In [19]: sns.catplot('Peril',data=clf,kind='count',hue='Survey Result')
```

Out[19]: <seaborn.axisgrid.FacetGrid at 0x2813d96cc08>

In [20]: sns.heatmap(clf.corr(),annot=True, fmt='.0%')

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x2813da07748>

In [21]: clf.corr()

Out[21]:

	Age	Survey Result	Claim Number	Days to Close
Age	1.000000	0.101775	-0.180733	-0.070534
Survey Result	0.101775	1.000000	-0.268735	0.145484
Claim Number	-0.180733	-0.268735	1.000000	0.098845
Days to Close	-0.070534	0.145484	0.098845	1.000000