Reading: Heterogeneity Adjustment with Application to Graphical Model Inference

Meilei Jiang

Department of Statistics and Operations Research
University of North Carolina at Chapel Hill

February 24, 2016

Overview

Introduction

- Problem Setup
- Framework of heterogeneity adjustment: Adaptive Low-rank Principal Heterogeneity Adjustment (ALPHA)

Heterogeneity Effects

Heterogeneity is an unwanted variation when analyzing aggregated datasets from multiple sources.

Challenge of modeling and estimating heterogeneity effect:

- 1 We can only access a limited number of samples from an individual group, given the high cost of biological experiment, technological constraint or fast economy regime switching.
- 2 The dimensionality can be much larger than the total aggregated number of samples.

Model Settings of Data Heterogeneity

- Assume data come from *m* different sources
 - the ith data source contributes n_i samples.
 - Each sample having *p* measurements.
- Assume the batch-specific latent factors f_t^i influence the observed data X_{it}^i in batch i (j indexes variables; t indexes samples).
 - $X_{jt}^i = {\lambda_j^i}' f_t^i + u_{jt}^i, 1 \le j \le p, 1 \le t \le n_i, 1 \le i \le m$
 - where λ^i_j is unknown factor loading for variable j and u^i_{jt} is true uncorrupted signals.
- Assume that f_t^i is independent of u_{jt}^i .
- Assume $f_t^i \sim N(\mathbf{0}, \mathbf{I})$ and $\mathbf{u}_t^i = (u_{1t}, \dots, u_{pt})'$ shares the common normal distribution $N(\mathbf{0}, \mathbf{\Sigma}_{p \times p})$.

Model Settings of Data Heterogeneity

The matrix form model can be written as: $\mathbf{X}^{i} = \mathbf{\Lambda}^{i} \mathbf{F}^{i'} + \mathbf{U}^{i}$.

- \mathbf{X}^i is a $p \times n_i$ data matrix in the *i*th batch, $\mathbf{\Lambda}^i$ is a $p \times K^i$ factor loading matrix with λ^i_j in the *j*th row, \mathbf{F}^i is an $n_i \times K^i$ factor matrix and \mathbf{U}^i is a $p \times n_i$ signal matrix.
- $X_t^i \sim N(\mathbf{0}, \mathbf{\Lambda}^i \mathbf{\Lambda}^{i'} + \mathbf{\Sigma}).$
- The heterogeneity effect is modeled as a low rank component $\mathbf{\Lambda}^i \mathbf{\Lambda}^{i'}$ of the population covariance matrix of \mathbf{X}_t^i .

Semiparametric Factor Model

- For subgroup i, we have d external covariates $\mathbf{W}_{j}^{i} = (W_{j1}^{i}, \cdots, W_{jd}^{i})'$ for variable j.
- Assume that these covariates have some explanatory power on the loading parameters λ_i^i : $\lambda_i^i = g^i(\mathbf{W}_i^i) + \gamma_i^i$.
- $X_{jt}^{i} = \lambda_{j}^{i} f_{t}^{i} + u_{jt}^{i} = (g^{i}(\mathbf{W}_{j}^{i}) + \gamma_{j}^{i})' t^{i} + u_{jt}^{i}$
 - If \mathbf{W}_{j}^{i} is not informative, then $g^{i}(.) = 0$.
- $\mathbf{X}^i = \mathbf{\Lambda}^i \mathbf{F}^{i'} + \mathbf{U}^i$, where $\mathbf{\Lambda}^i = \mathbf{G}^i(\mathbf{W}^i) + \mathbf{\Gamma}^i, 1 \leq i \leq m$.
 - $\mathbf{G}^{i}(\mathbf{W}^{i})$ and $\mathbf{\Gamma}^{i}$ are $p \times K^{i}$ component matrices of $\mathbf{\Lambda}^{i}$.

Modeling Assumptions And General Methodology

Data Generating Process:

- i $n_i \mathbf{F}^{i'} \mathbf{F}^i = \mathbf{I}$.
- ii $\{\mathbf{u}_t^i\}$ are independent within and between subgroups. $\{f_t^i\}_{t \leq n_i}$ is a stationary process, but with arbitrary temporal dependency.
- iii $\exists C_0 > 0$, such that $\|\mathbf{\Sigma}\|_2 < C_0$.
- iv The tail of the factors is sub-Gaussian.

Modeling Assumptions And General Methodology

Regime 1: External covariates are not informative

- (Pervasiveness) $\exists c_{\min}, c_{\max} > 0$, so that $c_{\min} < \lambda_{\min}(p^{-1}\mathbf{\Lambda}^{i}\mathbf{\Lambda}^{i'}) < \lambda_{\max}(p^{-1}\mathbf{\Lambda}^{i}\mathbf{\Lambda}^{i'}) < c_{\max}$.
- $\max_{k \le K^i, j \le p} |\lambda^i_{jk}| = O_P(\sqrt{\log p}).$

Regime 2: External covariates are informative

- (Pervasiveness) $\exists c_{\min}, c_{\max} > 0$, so that $c_{\min} < \lambda_{\min}(p^{-1}\mathbf{G}^i(\mathbf{W}^i)\mathbf{G}^i(\mathbf{W}^i)') < \lambda_{\max}(p^{-1}\mathbf{G}^i(\mathbf{W}^i)\mathbf{G}^i(\mathbf{W}^i)') < c_{\max}$.
- $\max_{k \leq K^i, j \leq p} E_{g_k}(W_j^i)^2 \leq \infty$.
- $\max_{k \le K^i, j \le p} |\gamma^i_{jk}| = O_P(\sqrt{\log p}).$

The ALPHA Framework

This section covers details for heterogeneity adjustments under both regimes that $G_i()=0$ and $G_i()\neq 0$: they correspond to estimating U_i by either PCA or Projected-PCA.

From now on, we drop the superscript i whenever there is no confusion as we focus on the ith data source. We will use the notation $(\hat{\mathbf{F}})$ if \mathbf{F} is estimated by PCA and $\tilde{\mathbf{F}}$ if estimated by PPCA. This convention applies to other related quantities such as $(\hat{\mathbf{U}})$ and $\tilde{\mathbf{U}}$, the heterogeneity adjusted estimator. In addition, we use notations such as $\check{\mathbf{F}}$ and $\check{\mathbf{U}}$ to denote the final estimators.

By the priciple of least squre, the residul estimator of \mathbf{U} admits the form $\check{\mathbf{U}} = \mathbf{X}(\mathbf{I} - \frac{1}{n}\check{\mathbf{F}}\check{\mathbf{F}}')$.

Estimating factors by PCA

Estimating factors by Projected-PCA

References

Jianqing Fan, Han Liu, Weichen Wang and Ziwei Zhu (2012)
Heterogeneity Adjustment with Applications to Graphical Model Inference

Journal of the American Statistical Association Under review.

The End