제 13 장 상관분석

제1절 모집단의 경우

1. 공분산(Covariance)

$$C\!ov(X\!,Y\!) \; = \; E\left[(X\!-\mu_{\!X}\!)(\,Y\!-\mu_{\!y}\!)\right]$$

Note:
$$V(X) = E[(X - \mu_x)(X - \mu_x)] = E(X - \mu_x)^2$$

$$V(Y) = E[(Y - \mu_y)(Y - \mu_y)] = E(Y - \mu_y)^2$$

예제 1. 카드를 두 번 뽑는 게임; *X*: 첫 번째 카드의 수, *Y*: 두 번째 카드의 수 주어진 결합확률표를 사용하여 두 변수의 기대값, 분산, 공분산을 구하시오.

X Y	100	200	300		
0	0.12	0.60	0.08		
100	0.08	0.10	0.02		

풀이 한계확률 p(X)와 p(Y)

X Y	100	100 200		p(Y)	
0	0.12	0.60	0.08	0.80	
100	0.08	0.10	0.02	0.20	
p(X)	0.20	0.70	0.10	1.00	

$$\begin{split} E(X) &= \sum_{j=1}^{3} X_{j} \cdot p(X_{j}) = 100(0.20) + 200(0.70) + 300(0.10) = 190 \\ E(Y) &= \sum_{i=1}^{2} Y_{i} \cdot p(Y_{i}) = 0(0.80) + 100(0.20) = 20 \\ V(X) &= \sigma_{X}^{2} = \sum_{j=1}^{3} (X_{j} - E(X))^{2} \cdot p(X_{j}) \\ &= (100 - 190)^{2}(0.20) + (200 - 190)^{2}(0.70) + (300 - 190)^{2}(0.10) = 2,900 \\ V(Y) &= \sigma_{Y}^{2} = \sum_{i=1}^{2} (Y_{i} - E(Y))^{2} \cdot p(Y_{i}) = (0 - 20)^{2}(0.80) + (100 - 20)^{2}(0.20) = 1,600 \\ Cov(X, Y) &= \sigma_{XY} = \sum_{i=1}^{2} \sum_{j=1}^{3} ((X_{j} - E(X)(Y_{i} - E(Y)) \cdot p(X_{j}, Y_{i})) + (100 - 20)^{2}(0.20) = 1,600 \end{split}$$

$$= (100-190)(0-20) \cdot 0.12 + (200-190)(0-20) \cdot 0.60 + (300-190)(0-20) \cdot 0.08$$

$$+ (100-190)(100-20) \cdot 0.08 + (200-190)(100-20) \cdot 0.10 + (300-190)(100-20) \cdot 0.02$$

$$= -400$$

연습문제 1. 아래 결합확률표를 사용하여 두 변수의 기대값, 분산, 공분산을 구하시오.

		X Y	100	200
п л		300	0.30	0.40
문제	1.	400	0.10	0.20

X Y	20	80
40	0.40	0.10
70	0.20	0.30

문제 2.

두 확률변수가 서로 독립적인 경우의 E(XY), Cov(X, Y), $V(X\pm Y)$

X Y	100	200	P(Y)
300	0.42	0.28	0.70
400	0.18	0.12	0.30
P(X)	0.60	0.40	1.00

$$E(X) = 100(.6) + 200(.4) = 140,$$
 $E(Y) = 300(.7) + 400(.3) = 330$

독립적이므로 다음이 성립한다.

$$P(X=100, Y=300) = 0.42$$
인데, 독립적이므로 $P(X=100) \times P(Y=300) = 0.6 \times 0.7$ 과 같다. $P(X=100, Y=400) = 0.18$ 인데, 독립적이므로 $P(X=100) \times P(Y=400) = 0.6 \times 0.3$ 과 같다. $P(X=200, Y=300) = 0.28$ 인데, 독립적이므로 $P(X=200) \times P(Y=300) = 0.4 \times 0.7$ 과 같다. $P(X=200, Y=400) = 0.12$ 인데, 독립적이므로 $P(X=200) \times P(Y=400) = 0.4 \times 0.3$ 과 같다.

$$E(XY) = \sum_{i=1}^{2} \sum_{j=1}^{2} X_i Y_j \cdot P(X_i Y_j)$$
 {개념에 따라 전개한 경우}
= $100 \cdot 300(0.42) + 100 \cdot 400(0.18) + 200 \cdot 300(0.28) + 200 \cdot 400(0.12)$
= $12,600 + 7,200 + 16,800 + 9,600 = 46,200$

위의 식은 X와 Y가 서로 독립적이면 아래와 같이 정리된다.

두 확률변수 X, Y가 독립적이면 아래 식들이 성립한다.

(1)
$$E(XY) = E(X)E(Y)$$
 1)

(2)
$$Cov(X, Y) = 0$$
 2)

(3)
$$V(X \pm Y) = V(X) + V(Y)$$
 3)

1)
$$E(XY) = \sum_{i} \sum_{j} X_{i} Y_{j} \cdot P(X_{i} Y_{j})$$
 $E(XY)$ 의 정의
$$= \sum_{i} \sum_{j} X_{i} Y_{j} \cdot P(X_{i}) P(Y_{j})$$
 서로 독립적이므로 $P(X_{i} Y_{j}) = P(X_{i}) P(Y_{j})$
$$= \sum_{i} \sum_{j} X_{i} \cdot P(X_{i}) \cdot Y_{j} \cdot P(Y_{j})$$

$$= \sum_{i} X_{i} \cdot P(X_{i}) \cdot \sum_{j} Y_{j} \cdot P(Y_{j})$$

$$= E(X) \cdot E(Y)$$

2)
$$Cov(X,Y) = E((X-\mu_X)(Y-\mu_y))$$
 $Cov(X,Y)$ 의 정의
$$= E(XY-X\mu_y-\mu_XY+\mu_X\mu_Y)$$

$$= E(XY) - \mu_Y E(X) - \mu_X E(Y) + \mu_X \mu_Y$$

$$= 0$$
 서로 독립적이면 $E(XY) = \mu_X \mu_Y$

연습문제 2. 아래 결합확률표를 사용하여 두 변수의 기대값, 분산, 공분산을 구하시오.

문제 1. 두 확률변수가 서로 독립적인 경우

X Y	20	80
40	0.42	0.28
70	0.18	0.12

예제 2. 키와 몸무게 자료(모집단)

		1	2	3	4	5	6	7	8	9	10	평균	분산
ſ	키	170	159	180	172	175	163	166	182	178	175	172	50.8
	몸무게	62	45	90	58	70	55	60	85	65	60	65	165.8

공분산 = 78.6

[주의] 모집단 자료이므로 분산을 구할 때 분산과 공분산을 구할 때 분모는 10이다.

산포도(scatter diagram) (주의: Excel에서는 분산형이라 한다.)

3)
$$V(X+Y) = E((X+Y)-(\mu_X+\mu_Y))^2$$

 $= E((X-\mu_X)+(Y-\mu_Y))^2$
 $= E((X-\mu_X)^2+2(X-\mu_X)(Y-\mu_Y)+(Y-\mu_Y)^2)$
 $= E(X-\mu_X)^2+2E((X-\mu_X)(Y-\mu_Y))+E(Y-\mu_Y)^2$
 $= V(X)+2Cov(X,Y)+V(Y)$
서로 독립적이면 $Cov(X,Y)=0$

연습문제 3. 평균, 분산 및 공분산을 구하고 산포도를 작성하시오. (모집단)

	1	2	3	4	5	6
X	10	20	30	40	50	60
Y	50	60	30	40	10	20

2. 상관계수 (Correlation Coefficient)

모집단상관계수
$$ho=rac{\sigma_{xy}}{\sqrt{\sigma_x^2\cdot\sigma_y^2}}=rac{\sigma_{xy}}{\sigma_x\cdot\sigma_y}$$
 $-1~\leq~
ho~\leq~1$

연습문제 4. ρ 의 하한값과 상한값

문제 1. ρ 가 취할 수 있는 가장 작은 값 문제 2. ρ 가 취할 수 있는 가장 큰 값

연습문제 5. (모집단) 상관계수를 구하시오.

문제 1.
$$\sigma_x^2=3,200,\;\sigma_y^2=2,800,\;\sigma_{xy}=2,500$$

문제 2. $\sigma_x^2=3,200,\;\sigma_y^2=2,800,\;\sigma_{xy}=1,500$
문제 3. $\sigma_x^2=3,200,\;\sigma_y^2=2,800,\;\sigma_{xy}=-1,000$
문제 4. $\sigma_x^2=3,200,\;\sigma_y^2=2,800,\;\sigma_{xy}=-2,600$

상관계수와 변수의 관련성

0.0~0.2	(-0.2~0.0)	관련이 없음
0.2~0.4	(-0.4~-0.2)	약간의 관련성
0.4~0.6	(-0.6~-0.4)	상당한 관련성
0.7~1.0	(-1.0~-0.7)	매우 강한 관련성

상관계수와 산포도

제2절 표본의 경우

표본공분산
$$S_{xy} = \frac{\sum (x-\overline{x})(y-\overline{y})}{n-1}$$
 표본상관계수
$$r_{xy} = \frac{S_{xy}}{\sqrt{S_x^2 \cdot S_y^2}} = \frac{S_{xy}}{S_x \cdot S_y}, \quad -1 \leq r_{xy} \leq 1$$

제3절 상관계수의 가설검정

①
$$H_0$$
: $\rho = \hat{\theta}$
$$H_A$$
: $\rho \neq \hat{\theta}$ (또는 $\rho < \hat{\theta}, \ \rho > \hat{\theta}$)

(1)
$$H_A$$
: $\rho \neq \hat{\theta} \rightarrow t < -t \atop n-2, \frac{\alpha}{2}$ or $t > t \atop n-2, \frac{\alpha}{2}$

(2)
$$H_A$$
: $\rho < \hat{\theta} \rightarrow t < -t_{n-2, \alpha}$

(3)
$$H_A$$
: $\rho > \hat{\theta} \rightarrow t > t_{n-2, \alpha}$

연습문제 6. ρ 에 대한 가설검정을 실시하시오.

문제 1.
$$H_0$$
: ρ = 0, H_A : ρ \neq 0; r = -0.54, n = 8, α = 0.05

문제 2.
$$H_0$$
: ρ = 0, H_A : ρ > 0; r = 0.3250, n = 10, α = 0.10

연습문제 정답

1. (1)
$$p(X=100) = p(X=100, Y=300) + p(X=100, Y=400) = 0.30 + 0.10 = 0.40$$

 $p(X=200) = p(X=200, Y=300) + p(X=200, Y=400) = 0.40 + 0.20 = 0.60$
 $p(Y=300) = p(X=100, Y=300) + p(X=200, Y=300) = 0.30 + 0.40 = 0.70$
 $p(Y=400) = p(X=100, Y=400) + p(X=200, Y=400) = 0.10 + 0.20 = 0.30$

$$E(X) = 100(0.40) + 200(0.60) = 160$$

 $E(Y) = 300(0.70) + 400(0.30) = 330$

$$V(X) = (100-160)^2(0.40) + (200-160)^2(0.60) = 2,400$$

 $V(Y) = (300-330)^2(0.70) + (400-330)^2(0.30) = 2,100$

$$Cov(X, Y) = (100-160)(300-330)(0.30) + (200-160)(300-330)(0.40)$$

+ $(100-160)(400-330)(0.10) + (200-160)(400-330)(0.20)$
= $540 - 480 - 420 + 560 = 200$

(2)
$$p(X=20) = 0.60$$
, $p(X=80) = 0.40$, $p(Y=40) = 0.50$, $p(Y=70) = 0.50$
 $E(X) = 44.0$, $E(Y) = 55.0$
 $V(X) = 864$, $V(Y) = 225$, $Cov(X, Y) = 180$

2. (1)
$$p(X=20) = 0.60$$
, $p(X=80) = 0.40$, $p(Y=40) = 0.70$, $p(Y=70) = 0.30$
 $E(X) = 44.0$, $E(Y) = 49.0$
 $V(X) = 864$, $V(Y) = 189$, $Cov(X, Y) = 0$

		1	2	3	4	5	6	평균	분산
	X	10	20	30	40	50	60	35.0	291.667
3. (1)	Y	50	60	30	40	10	20	35.0	291.667

공분산 = -241.667

- 4. (1) -1 (2) 1
- 5. (1) 0.835 (2) 0.501 (3) -0.334 (4) -0.869
- 6. (1) ① H_0 : $\rho = 0$, H_A : $\rho \neq 0$

- ③ For $\alpha = 0.05$, Rejection Region: $t < -t_{6,0.025} = -2.4469$ or $t > t_{6,0.025} = 2.4469$
- (4) Value of the Test Statistic: $t = \frac{-0.54 0}{\sqrt{\frac{1 (-0.54)^2}{8 2}}} = -1.5716$
- \bigcirc Conclusion: Do not reject H_0 .
- (2) ① H_0 : $\rho = 0$, H_A : $\rho > 0$

 - ③ For α =0.10, Rejection Region: $t > t_{8, 0.10} = 1.3968$
 - ① Value of the Test Statistic: $t = \frac{0.3250 0}{\sqrt{\frac{1 0.3250^2}{10 2}}} = 0.9720$
 - \bigcirc Conclusion: Do not reject H_0 .