A Generalised Variational Quantum Eigensolver

Daochen Wang, Oscar Higgott, Stephen Brierley River Lane Research arXiv:1802.00171

Generalised VQE

Algorithm	Maximum coherent depth	Non-coherent repetitions	Total resources
$\overline{\text{VQE}}$	$O(C_R)$	$O(\frac{1}{\epsilon^2})$	$O(C_R \frac{1}{\epsilon^2})$
0-VQE	$O(C_R + \log n)$	$O(\frac{1}{\epsilon^2})$	$O((C_R + \log n) \frac{1}{\epsilon^2})$
1-VQE	$O((C_R + \log n) \frac{1}{\epsilon})$	$O(\log rac{1}{\epsilon})$	$O((C_R + \log n) \frac{1}{\epsilon})$
α -VQE	$O((C_R + \log n) \frac{1}{\epsilon^{\alpha}})$	$O(f(\epsilon, lpha))$	$O((C_R + \log n) \frac{1}{\epsilon^{\alpha}} f(\epsilon, \alpha))$

TABLE I. Resource comparison of one expectation estimation subroutine within VQE, 0-VQE, 1-VQE, α -VQE. ϵ is the precision required for the expected energy, C_R is the state preparation depth cost, n is the number of qubits, and $\alpha \in [0,1]$ is the free parameter that determines the circuit depth of α -QPE. Note that 0-VQE would never be advantageous over VQE but is included for completeness.

Boxed in red: up to square root speed-up

I. Introduction

The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm typically used to approximate the ground energy of a Hamiltonian $H = \sum a_i P_i$ where P_i are tensored Pauli operators. It is often compared with the quantum phase estimation algorithm (QPE). Idea: combine them!

Our work **replaces** the expectation estimation subroutine of VQE by a version of Bayesian QPE [1], which we name **a-QPE**, in order to reduce the subroutine's run-time by **up to a square root**. This is possible by exploiting quantum coherence time.

II. Define α-QPE

This is the α -QPE circuit which is iterated to find an eigenphase ψ of U. Before each iteration, the real tuple (M,θ) is chosen as $(1/\sigma^{\alpha}, \mu-\sigma)$ where μ , σ is the current mean and standard deviation on the Bayesian posterior of ψ .

Notation: $Z(M\theta) = \text{diag}(1, e^{-iM\theta}), |+\rangle$ is the +1 X eigenstate, measurement in the X basis.

III. Replace expectation estimation by α -QPE

With U defined by the right circuit, Knill et al. [2] showed that $|\psi\rangle$ is always in a 50:50 superposition of two eigenstates of U with eigenphases $\pm\phi$ respectively where $\phi=2\arccos(|1+\langle\psi|P|\psi\rangle|/2)$. Running α -QPE with this U estimates the expectation value $\langle\psi|P|\psi\rangle$. This differs from standard expectation estimation which uses statistical sampling.

Notation: $\Pi = I - 2|0\rangle\langle 0|$, $R:|0...0\rangle \mapsto |\psi\rangle$.

References

[1] N. Wiebe, C. Granade, Physical Review Letters 2016, 117, 10503.

[2] E. Knill, G. Ortiz, R. D. Somma, *Physical Review A* **2007**, *75*, 12328.