

Project Report: Bearing Health Detection Using Al

Objective

To develop a robust Al-based system for classifying the health of bearings using vibration signal data. The system automatically detects the condition of bearings and classifies them into one of four categories:

- Normal
- Inner Race Fault (IR)
- Outer Race Fault (OR)
- Ball Fault

📂 Dataset Overview

- Source: .mat files containing time-series vibration data from different bearing conditions
- Signal Key: DE_time
- Sampling Rate: 12,000 Hz Segment Duration: 5 seconds
- Augmented Dataset Size: 4× original segments

Preprocessing Pipeline

- 1. Segmentation:
 - Raw vibration signal is divided into 5-second segments
 - o Ensures uniform input duration for all samples
- 2. Spectrogram Conversion:
 - Each segment is converted to a time-frequency spectrogram
 - Output shape standardized to (128, 128) for CNN input
- 3. Label Assignment:
 - Labels are inferred from filenames: Normal, IR, OR, B0
 - Mapped to class indices: $0 \rightarrow \text{Normal}$, $1 \rightarrow \text{IR}$, $2 \rightarrow \text{OR}$, $3 \rightarrow \text{Ball Fault}$

🔄 Data Augmentation

Augmentation Applied On **Purpose**

Gaussian Noise Raw signal Simulates sensor/environment noise Amplitude Scaling Raw signal Mimics varying signal intensities

Frequency Masking Spectrogra Simulates frequency dropout/occlusion

m

Each original segment generates:

- 1 Original spectrogram
- 1 Noised version
- 1 Amplitude-scaled version
- 1 Frequency-masked version

■ Dataset size increases 4x, improving generalization.

LLM-Based Fault Reasoning System

To enhance explainability, a **Large Language Model (LLM)** is used alongside the CNN. The LLM takes **engineered features** from the raw signal and simulates how a human expert would reason about the fault.

Input Features to LLM:

- RMS (Root Mean Square) → Vibration energy
- **Kurtosis** → Impulsiveness of the signal
- **Skewness** → Asymmetry of the waveform
- Peak-to-Peak Amplitude
- Crest Factor → Ratio of peak to RMS
- **Dominant Frequency** → Main frequency component

LLM Inference Flow:

- 1. A segment's statistical features are extracted
- 2. A formatted prompt is created describing the features
- 3. The LLM (e.g., deepseek-llama via Groq API) returns the predicted fault type as text

₩ Why LLM?

- Offers interpretable reasoning
- Acts as a sanity check for CNN predictions
- Helps in cases where CNN and LLM disagree, offering deeper insight

III CNN Model Architecture

Layer Description

Input (128, 128, 1) grayscale

spectrogram

Conv2D × 3 32, 64, 128 filters with ReLU

BatchNorm + MaxPool Normalize and reduce spatial dims

Flatten Converts to 1D

Dense (128) Fully connected with ReLU

Dropout (0.3) Prevents overfitting

Output Dense (4) Softmax over 4 classes

•

Optimizer: Adam (lr = 0.0005)

• Loss Function: Sparse Categorical Crossentropy

• Balanced Class Weights used

Model Training

• Train/Validation/Test: 64% / 16% / 20%

Epochs: 35Batch Size: 32

Training Trends:

- Accuracy improves steadily
- Loss reduces consistently
- Model shows strong generalization

III Evaluation Results

• Test Accuracy: ~96%

• Precision & Recall: High across all classes

• Confusion Matrix: Small confusion between IR and OR

! Classification Report:

	precision	recall f	1-score
Normal	0.98	0.97	0.98
IR	0.94	0.96	0.95
OR	0.95	0.94	0.94
Ball	0.97	0.96	0.96

Ul for Inference

- Developed using ipywidgets for .mat file input
- Visualizes:
 - o Time-domain signal
 - o CNN prediction with confidence
 - o LLM prediction with reasoning
 - o Extracted signal features
- Highlights agreement or disagreement between models

Conclusion

This project builds a complete Al-based system for automatic bearing health detection using:

- CNN trained on spectrograms
- Feature-based LLM reasoning
- Signal-domain and frequency-domain augmentations
- Interactive UI for real-time testing