Konvexní množiny

Zadání

1. Ať $x,y \in \mathbb{R}^n$ jsou dva různé body. Z definice ukažte, že přímka

$$L = \{\alpha x + (1 - \alpha)y \mid \alpha \in \mathbb{R}\}\$$

procházející těmito body je konvexní množina.

- 2. Ukažte, že množina $C \subseteq \mathbb{R}^n$ je konvexní mnohostěn a navíc tento mnohostěn načrtněte v případě n=2, jestliže
 - (a) $C = \{x \in \mathbb{R}^n \mid \sum_{i=1}^n |x_i| \le 1\};$
 - (b) $C = \{x \in \mathbb{R}^n \mid \max_{i \in \{1,\dots,n\}} |x_i| \le 1\};$
- 3. Ať C_1, C_2 jsou konvexní množiny v \mathbb{R}^n a $\alpha \in \mathbb{R}$. Ukažte, že
 - (a) $C_1 + C_2 = \{x + y \mid x \in C_1, y \in C_2\}$ je konvexní množina;
 - (b) $\alpha C_1 = \{\alpha x \mid x \in C_1\}$ je konvexní množina;
- 4. Napište konvexní obal množiny $M = \{(0,0)^T, (0,2)^T, (1,1)^T, (2,1)^T\}$ jako průnik tří polorovin.
- 5. Nechť M a N jsou dvě množiny v \mathbb{R}^n . Ukažte, že
 - (a) $M \subseteq conv(M)$;
 - (b) jestliže $M \subseteq N$, potom conv $(M) \subseteq \text{conv}(N)$;
 - (c) $\operatorname{conv}(\operatorname{conv}(M)) = \operatorname{conv}(M)$;
 - (d) $\operatorname{conv}(M+N) = \operatorname{conv}(M) + \operatorname{conv}(N)$.
- 6. Nechť M a N jsou dvě množiny v \mathbb{R}^n . Ukažte, že

$$\operatorname{conv}(M \cap N) \subseteq \operatorname{conv}(M) \cap \operatorname{conv}(N)$$
.

Je conv $(M \cap N) = \text{conv } (M) \cap \text{conv } (N)$? Pokud ne, nalezněte protipříklad.

- 7. Nalezněte conv $(\{(1,1)^T,(1,2)^T\})$ + conv $(\{(2,1)^T,(3,2)^T\})$. Nakreslete tuto množinu v rovině a popište ji jako průnik nejvýše čtyř polorovin.
- 8. Je dána matice $A \in \mathbb{M}_{m,n}(\mathbb{R})$. Ať $L = \{Ax \mid x \in \mathbb{R}^n\}$.
 - (a) Ukažte, že A má lineárně nezávislé sloupce právě tehdy, když A^TA je invertibilní.
 - (b) Ukažte, že má-li A lineárně nezávislé sloupce, pak $P_L(x) = A(A^TA)^{-1}A^Tx$ pro všechna $x \in \mathbb{R}^n$.
 - (c) Ukažte, že má-li matice A sloupce $a_1, \ldots a_n$, které jsou nenulové a vzájemně ortogonální, pak

$$P_L(x) = \sum_{i=1}^n \frac{\langle x, a_i \rangle}{\|a_i\|^2} a_i.$$

9. Nechť $y \in \mathbb{R}^n \setminus \{0\}, b \in \mathbb{R}$ a $C = \{x \in \mathbb{R}^n \mid \langle x, y \rangle = b\}$. Ukažte, že

$$P_C(x) = x - \frac{\langle x, y \rangle - b}{\|y\|^2} y.$$

- 10. Ať $C = \mathbb{R}^n_+$. Ukažte, že $P_C(x) = x^+$, kde $x^+ \in \mathbb{R}^n_+$ je vektor o komponentách $x_i^+ = \max\{0, x_i\} \ (i = 1, \dots, n)$.
- 11. Jsou dány body $a = (-2, -1)^T$, $b = (-1, -2)^T$, $c = (0, 0)^T$, $d = (1, 2)^T$. Metodou nejmenších čtverců proložte těmito body graf
 - (a) afinní funkce $f(x) = \alpha x + \beta$, kde $\alpha, \beta \in \mathbb{R}$;
 - (b) funkce $f(x) = \alpha x^2 + \beta x + \gamma$, kde $\alpha, \beta, \gamma \in \mathbb{R}$.
- 12. Při působení síly velikosti F má pružina délku L. Naměřené hodnoty délky pružiny v závislosti na velikosti působící síly jsou uvedeny v tabulce.

F[N]	0	0,5	1	1,5	2	2,5	3	3,5	4
L [cm]	4,9	6,7	8,4	9,2	10,7	12,2	13,5	15,9	16,8

Předpokládejte, že délka pružiny se řídí Hookovým zákonem ve tvaru L=a+bF, kde a je délka pružiny bez zatížení a b je převrácená hodnota tuhosti pružiny. Metodou nejmenších čtverců nalezněte koeficienty a a b. (K výpočtu využijte vhodný software.)

13. Jsou dány body $(x,y)^T$ v rovině, jejichž souřadnice jsou uvedeny v tabulce.

x	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
y	0,33	0,60	0,82	0,75	1,16	1,36	1,41	1,67	1,75
\overline{x}	1,0	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8
y	2,07	2,07	2,34	2,32	2,72	2,75	2,88	2,89	3,09
\overline{x}	1,9	2,0	2,1	2,2	2,3	2,4	2,5	2,6	2,7
y	3,32	3,12	3,29	3,16	3,29	3,08	3,10	3,13	3,02

S využitím vhodného softwaru nalezněte pomocí metody nejmenších čtverců neznámé parametry ve funkci f(x) (a tuto funkci vykreslete do společného grafu se zadanými body), která je matematickým modelem závislost y na x, jestliže

- (a) $f(x) = a_1 x + a_0$;
- (b) $f(x) = a_2x^2 + a_1x + a_0$:
- (c) $f(x) = a_3x^3 + a_2x^2 + a_1x + a_0$;
- (d) $f(x) = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$;
- (e) $f(x) = a_0 + a_1 \sin x + a_2 \cos x$.

- 14. Vysílač vysílá v časovém rozmezí 1 až 3 časové jednotky diskrétní signál $(2,4,3)^T$. Signál se dostane do přijímače po dvou drahách L_1 a L_2 s časovým spožděním. Od vysílače k přijímači se signál dostane po L_1 za 10 časových jednotek a po L_2 za 12 časových jednotek. Signál měřený přijímačem v časovém rozmezí 10 až 14 časových jednotek je $(1,3,3,2,1)^T$. Předpokládejte, že přijímač bude signál šířící se po dráze L_i (i=1,2) detekovat utlumený ve tvaru $a_i(2,4,3)$, kde $a_i \in \{0,1\}$ je koeficient útlumu signálu na dráze L_i . Metodou nejmenších čtverců nalezněte koeficienty a_1 a a_2 .
- 15. Ať w_1, \ldots, w_m jsou kladná reálná čísla a $A \in \mathbb{M}_{m,n}(\mathbb{R})$ má řádky a_1, \ldots, a_m . Je dána úloha (váhovaných nejmenších čtverců) minimalizujte funkci $f(x) = \sum_{i=1}^m w_i (\langle a_i^T, x \rangle b_i)^2$ na \mathbb{R}^n .
 - (a) Formulujte uvedenou úlohu jako obyčejnou úlohu nejmenších čtverců (tj. nalezněte $B \in \mathbb{M}_{m,n}(\mathbb{R})$ a $c \in \mathbb{R}^m$ tak, aby $f(x) = ||Bx c||^2$).
 - (b) Ukažte, že má-li A lineárně nezávislé sloupce, potom jediné řešení uvedené optimalizační úlohy je $\hat{x} = (A^T W A)^{-1} A^T W b$, kde W je diagonální matice diag (w_1, \ldots, w_n) .
- 16. Měřením bylo zjištěno prvních 20 koeficientů diskrétního signálu $(y_n)_{n=0}^{\infty}$, které jsou uvedeny v tabulce.

	0									9
y_n	1,84	0,29	0,78	2,00	0,42	0,46	2,00	0,80	0,31	1,80
\overline{n}	10	11	12	13	14	15	16	17	18	19
y_n	0,95	0,35	1,54	1,15	0,36	1,32	1,38	0,35	1,21	1,37

S využitím vhodného softwaru nalezněte pomocí metody nejmenších čtverců neznámé parametry matematického modelu pro predikci koeficientů signálu, jestliže

(a)
$$y_n = a_1 y_{n-1} + a_2 y_{n-2} + a_3 y_{n-3}$$
 pro $n \ge 3$;

(b)
$$y_n = a_1 y_{n-1} + a_2 y_{n-2} + a_3 y_{n-3} + a_4 y_{n-4} + a_5 y_{n-5}$$
 pro $n \ge 5$.

Kromě toho vykreslete v obou případech členy y_n pro $n \leq 100$ a diskutujte rozdíl ve výsledcích uvedených dvou modelů.

17. Ať závislost výstupního signálu $(y_n)_{n=0}^{\infty}$ systému na vstupním signálu $(x_n)_{n=0}^{\infty}$ je dána konvolucí posloupnosti $(x_n)_{n=0}^{\infty}$ s posloupností $(h_n)_{n=0}^{\infty}$ $((h_n)_{n=0}^{\infty}$ popisuje odezvu systému na jednotkový impulz), tj. $y_n = \sum_{i=0}^n h_i x_{n-i}$. Předpokládejte dále, že $h_n = 0$ pro všechna $n \geq 4$. Měřením byla zjištěna hodnota koeficientů y_0, \ldots, y_{20} výstupního signálu, když na vstupu byl signál s počátečními koeficienty x_0, \ldots, x_{20} . Formulujte úlohu nejmenších čtverců pro nalezení koeficientů h_0, h_1, h_2, h_3 .

Výsledky

4. conv
$$(M) = C_1 \cap C_2 \cap C_3$$
, kde $C_i = \{x \in \mathbb{R}^2 \mid \langle x, v_i \rangle \leq \alpha_i\}$, $v_1 = (-1, 0)^T$, $v_2 = (1, -2)^T$, $v_3 = (1, 2)^T$, $\alpha_1 = \alpha_2 = 0$ a $\alpha_3 = 4$.

6. Pro
$$M = \{0, 2\}, N = \{1, 3\}$$
 je

$$\emptyset = \operatorname{conv}(M \cap N) \neq \operatorname{conv}(M) \cap \operatorname{conv}(N) = [1, 2].$$

7. conv
$$(M) = C_1 \cap C_2 \cap C_3 \cap C_4$$
, kde $C_i = \{x \in \mathbb{R}^2 \mid \langle x, v_i \rangle \leq \alpha_i\}$, $v_1 = (-1, 0)^T$, $v_2 = (1, -1)^T$, $v_3 = (-1, 1)^T$, $v_3 = (1, 0)^T$, $\alpha_1 = -3$, $\alpha_2 = 1$, $\alpha_3 = 0$, $\alpha_4 = 4$.

- 11. (a) $\alpha = \frac{11}{10}, \beta = \frac{3}{10};$
 - (b) $\alpha = \frac{3}{4}, \beta = \frac{37}{20}, \gamma = -\frac{9}{20}$.
- 12. $a \approx 5,03 \, \text{cm} \ \text{a} \ b \approx 2,95 \, \text{cm/N}.$
- 13. (a) $a_1 \approx 1, 13, a_0 \approx 0, 7$;
 - (b) $a_2 \approx -0.55, a_1 \approx 2.68, a_0 \approx -0.05;$
 - (c) $a_3 \approx -0.22, a_2 \approx 0.37, a_1 \approx 1.63, a_0 \approx 0.21;$
 - (d) $a_4 \approx 0.01, a_3 \approx -0.29, a_2 \approx 0.50, a_1 \approx 1.54, a_0 \approx 0.23;$
 - (e) $a_2 \approx -1, 13, a_1 \approx 1, 47, a_0 \approx 1, 37.$
- 14. $a_1 = \frac{113}{161} \approx 0, 7, a_2 = \frac{71}{161} \approx 0, 44.$
- 15. (a) minimalizujte $f(x) = \|W^{\frac{1}{2}}Ax W^{\frac{1}{2}}b\|^2$, kde $W = \text{diag}(w_1, \dots, w_n)$.
- 16. (a) $a_1 \approx 0, 18, a_2 \approx -0, 14, a_3 \approx 0, 96$;
 - (b) $a_1 \approx -0.37, a_2 \approx -0.35, a_3 \approx 0.91, a_4 \approx 0.49, a_5 \approx 0.31.$
- 17. Minimalizujte $f(x) = ||Ax + b||^2$, kde A je matice s řádky $a_1 = (x_0, 0, 0, 0), a_2 = (x_1, x_0, 0, 0), \dots, a_{20} = (x_{20}, x_{19}, x_{18}, x_{17})$ a $b = (y_0, \dots, y_{20})^T$.