CS-2050-All-Sections CS 2050 Homework 1 (HOWARD, FAULKNER, ELLEN)

Vidit Dharmendra Pokharna

TOTAL POINTS

101.5 / 100

OUESTION 1

Question 1 6 pts

1.1 a 2 / 2

√ - 0 pts If you study for the exams, then you will do
well

in discrete math.

- 2 pts Incorrect
- 2 pts Missing / No answer

1.2 b 2 / 2

- \checkmark **0 pts** *If you are going out to eat, then you must remember to bring money.*
 - 2 pts Incorrect
 - 2 pts Missing / No answer

1.3 C 2 / 2

 \checkmark - **0 pts** If you do well on exams, then you will pass the

course.

- 2 pts Incorrect
- 2 pts Missing / No answer

QUESTION 2

Question 28 pts

2.1 a 2/2

- ✓ 0 pts True
 - 2 pts False
 - 2 pts Missing / No answer

2.2 **b 2 / 2**

- √ 0 pts True
 - 2 pts False
 - 2 pts Missing / No answer

2.3 **C 2 / 2**

- √ 0 pts True
 - 2 pts False
 - 2 pts Missing / No answer

2.4 d 2/2

- √ 0 pts False
 - 2 pts True
 - 2 pts Missing / No answer

QUESTION 3

Question 3 6 pts

3.1 a 2 / 2

 \checkmark - **0 pts** If you are taking Discrete Math and it is snowing,

then you are a student.

- 2 pts Missing / No answer

- 2 pts Incorrect

3.2 **b** 2 / 2

 \checkmark - **0 pts** It is not snowing or if it is snowing, then you are

a student

- 2 pts Incorrect
- 2 pts Missing / No answer

3.3 C 2 / 2

✓ - 0 pts It is both snowing and you're taking Discrete

Math if and only if you are a student

- 2 pts Incorrect
- 2 pts Missing / No answer

QUESTION 4

Question 46 pts

4.1 a 3 / 3

- √ 0 pts Correct
 - 1 pts Incorrect translation to predicates
 - 1 pts Incorrect Negation
 - 1 pts Incorrect negation translation to English
 - 3 pts No answer
- 1 should cite which law is being used when doing logical equivalences

4.2 b 3 / 3

- ✓ 0 pts Correct
 - **1 pts** Incorrect translation to predicates
 - 1 pts Incorrect negation
 - 1 pts Incorrect negation to English
 - 3 pts No answer

QUESTION 5

5 Question 5 6 / 6

✓ - **0 pts** Converse: If I go to bed, then I finished my schoolwork

Contrapositive: If I did not go to bed, then I did not finish my school work

Inverse: If I did not finish my schoolwork, then I do not go to bed

- 2 pts Incorrect Converse
- 2 pts Incorrect Contrapositive
- 2 pts Incorrect Inverse
- 6 pts No answer
- **3 pts** You did not specify which statement was the inverse, converse, or contrapositive.

QUESTION 6

Question 6 24 pts

6.1 a 8 / 8

√ - 0 pts Correct

Missing Columns

- 2 pts 1 Missing column
- 4 pts 2 Missing columns
- 6 pts 3 or more Missing columns

Incorrect Cells

- 1 pts 1 Incorrect Cell
- 2 pts 2 Incorrect Cells
- 3 pts 3 Incorrect Cells
- 4 pts 4 or more Incorrect Cells
- 1 pts Used 1/0 instead of T/F
- **3 pts** Incorrect answer due to wrong operation precedence
 - 8 pts No Answer

6.2 b 8 / 8

√ - 0 pts Correct

Missing Columns

- 2 pts 1 Missing column
- 4 pts 2 Missing columns
- 6 pts 3 or more Missing columns

Incorrect Cells

- 1 pts 1 Incorrect Cell
- 2 pts 2 Incorrect Cells
- 3 pts 3 Incorrect Cells
- **4 pts** 4 or more Incorrect Cells
- 1 pts Used 1/0 instead of T/F
- **3 pts** Incorrect answer due to wrong operation precedence
 - 8 pts No Answer

6.3 C 8 / 8

✓ - 0 pts Correct

Missing Columns

- 2 pts 1 Missing column
- 4 pts 2 Missing columns
- 6 pts 3 or more Missing columns

Incorrect Cells

- 1 pts 1 Incorrect Cell
- 2 pts 2 Incorrect Cells
- 3 pts 3 Incorrect Cells
- 4 pts 4 or more Incorrect Cells
- 1 pts Used 1/0 instead of T/F
- 3 pts Incorrect answer due to wrong operation

precedence

- 8 pts No Answer

QUESTION 7

Question 7 16 pts

7.1 a 7 / 8

- 0 pts Correct

Incorrect Steps

- 2 pts 1 Incorrect Step
- 4 pts 2 Incorrect Steps
- 6 pts 3 or more Incorrect Steps

Missing Steps

- 2 pts 1 Missing Step
- 4 pts 2 Missing steps
- 6 pts 3 or more Missing Steps

Uncited/Incorrectly Cited Steps

- √ 1 pts 1 Uncited Step
 - 2 pts 2 Uncited Steps
 - 3 pts 3 or more Uncited Steps
 - 4 pts No cited Steps
 - 8 pts No Answer
- 2 also used commutative

7.2 b 8 / 8

✓ - 0 pts Correct

Incorrect Steps

- 2 pts 1 Incorrect Step
- 4 pts 2 Incorrect Steps
- 6 pts 3 or more Incorrect Steps

Missing Steps

- 2 pts 1 Missing Step
- 4 pts 2 Missing steps
- 6 pts 3 or more Missing Steps

Uncited/Incorrectly Cited Steps

- 1 pts 1 Uncited Step
- 2 pts 2 Uncited Steps
- 3 pts 3 or more Uncited Steps
- 4 pts No cited Steps
- 8 pts No Answer

QUESTION 8

Question 8 20 pts

8.1 a 10 / 10

√ - 0 pts Correct

Missing Columns

- 2.5 pts 1 Missing column
- **5 pts** 2 Missing columns
- 7.5 pts 3 or more Missing columns

Incorrect Cells

- 1.5 pts 1 Incorrect Cell
- 3 pts 2 Incorrect Cells
- **4.5 pts** 3 Incorrect Cells
- **6 pts** 4 or more Incorrect Cells
- 1 pts Used 1/0 instead of T/F
- **4 pts** Incorrect answer due to wrong operation precedence
 - 10 pts No Answer

8.2 b 10 / 10

- ✓ 0 pts Correct
- **1 pts** Not using strict equivalency connecting the LHS to the RHS.

Incorrect Steps

- 2 pts 1 Incorrect Step

- 4 pts 2 Incorrect Steps
- 6 pts 3 or more Incorrect Steps

Missing Steps

- 2 pts 1 Missing Step
- 4 pts 2 Missing steps
- 6 pts 3 or more Missing Steps

Uncited/Miscited Steps

- 1 pts 1 Uncited Step
- 2 pts 2 Uncited Steps
- 3 pts 3 or more Uncited Steps
- **5 pts** No cited Steps
- 10 pts No Answer
- 3 Needed to cite conditional disjunction.
- 4 same here

QUESTION 9

9 Question 9 8 / 8

- √ 0 pts Correct
 - 2 pts Incorrect role assignment for A
 - 2 pts Incorrect role assignment for B
 - 2 pts Incorrect role assignment for C

Missing Columns

- 2 pts 1 Missing column
- 4 pts 2 Missing columns
- **6 pts** 3 or more Missing columns

Incorrect Cells

- 1 pts 1 Incorrect Cell
- 2 pts 2 Incorrect Cells
- 3 pts 3 Incorrect Cells
- 4 pts 4 or more Incorrect Cells
- 1 pts Used 1/0 instead of T/F

- 8 pts No Answer

QUESTION 10

10 On Time 2.5 / 0

- √ + 2.5 pts On Time (Before Thursday)
 - 0 pts On Time (Friday)
 - **10 pts** 1 day late
 - **25 pts** 2 days late

QUESTION 11

11 Matching 0/0

- ✓ 0 pts Correct
 - **5 pts** Incorrect

1.

- a. If you study for the exams, then you will do well in discrete math
- b. If you can go out to eat, then you remember to bring money
- c. If you do well on exams, then you will pass the course

2.

a.
$$F \rightarrow F \equiv T$$

b.
$$T \rightarrow T \equiv T$$

c.
$$F \rightarrow T \equiv T$$

d.
$$T \rightarrow F \equiv F$$

3.

- a. If you are taking discrete math and it is snowing, then you are a student
- b. It is not snowing or if it is snowing, then you are a student
- c. It is snowing and you are taking discrete math if and only if you are a student

4.

- a. Original: $l \rightarrow (\neg a \lor \neg h)$
 - Negation: $\neg(\neg l \lor (\neg a \lor \neg h)) \bigcirc l \land (\neg(\neg a) \land \neg(\neg h)) \equiv l \land (a \land h)$

English: You are late for class, and you set an alarm and you did your homework

b. Original: $\neg a \rightarrow l$

Negation: $\neg(\neg(\neg a) \lor l) \equiv \neg a \land \neg l$

English: You do not set an alarm and you are not late for class

5. Converse: If I go to bed, then I finish my school work

Inverse: If I don't finish my school work, then I don't go to bed

Contrapositive: If I don't go to bed, then I don't finish my school work

6.

ч	•			
p	q	$\neg p$	$\neg q$	$\neg p \rightarrow \neg q$
Т	Т	F	F	Т
Т	F	F	Т	Т
F	Т	Т	F	F
F	F	Т	Т	Т

1.1 a 2 / 2

- ✓ 0 pts If you study for the exams, then you will do well in discrete math.
 - 2 pts Incorrect
 - 2 pts Missing / No answer

1.

- a. If you study for the exams, then you will do well in discrete math
- b. If you can go out to eat, then you remember to bring money
- c. If you do well on exams, then you will pass the course

2.

a.
$$F \rightarrow F \equiv T$$

b.
$$T \rightarrow T \equiv T$$

c.
$$F \rightarrow T \equiv T$$

d.
$$T \rightarrow F \equiv F$$

3.

- a. If you are taking discrete math and it is snowing, then you are a student
- b. It is not snowing or if it is snowing, then you are a student
- c. It is snowing and you are taking discrete math if and only if you are a student

4.

- a. Original: $l \rightarrow (\neg a \lor \neg h)$
 - Negation: $\neg(\neg l \lor (\neg a \lor \neg h)) \bigcirc l \land (\neg(\neg a) \land \neg(\neg h)) \equiv l \land (a \land h)$

English: You are late for class, and you set an alarm and you did your homework

b. Original: $\neg a \rightarrow l$

Negation: $\neg(\neg(\neg a) \lor l) \equiv \neg a \land \neg l$

English: You do not set an alarm and you are not late for class

5. Converse: If I go to bed, then I finish my school work

Inverse: If I don't finish my school work, then I don't go to bed

Contrapositive: If I don't go to bed, then I don't finish my school work

6.

ч	•			
p	q	$\neg p$	$\neg q$	$\neg p \rightarrow \neg q$
Т	Т	F	F	Т
Т	F	F	Т	Т
F	Т	Т	F	F
F	F	Т	Т	Т

1.2 **b 2 / 2**

- \checkmark **0 pts** If you are going out to eat, then you must remember to bring money.
 - 2 pts Incorrect
 - 2 pts Missing / No answer

1.

- a. If you study for the exams, then you will do well in discrete math
- b. If you can go out to eat, then you remember to bring money
- c. If you do well on exams, then you will pass the course

2.

a.
$$F \rightarrow F \equiv T$$

b.
$$T \rightarrow T \equiv T$$

c.
$$F \rightarrow T \equiv T$$

d.
$$T \rightarrow F \equiv F$$

3.

- a. If you are taking discrete math and it is snowing, then you are a student
- b. It is not snowing or if it is snowing, then you are a student
- c. It is snowing and you are taking discrete math if and only if you are a student

4.

- a. Original: $l \rightarrow (\neg a \lor \neg h)$
 - Negation: $\neg(\neg l \lor (\neg a \lor \neg h)) \bigcirc l \land (\neg(\neg a) \land \neg(\neg h)) \equiv l \land (a \land h)$

English: You are late for class, and you set an alarm and you did your homework

b. Original: $\neg a \rightarrow l$

Negation: $\neg(\neg(\neg a) \lor l) \equiv \neg a \land \neg l$

English: You do not set an alarm and you are not late for class

5. Converse: If I go to bed, then I finish my school work

Inverse: If I don't finish my school work, then I don't go to bed

Contrapositive: If I don't go to bed, then I don't finish my school work

6.

ч	•			
p	q	$\neg p$	$\neg q$	$\neg p \rightarrow \neg q$
Т	Т	F	F	Т
Т	F	F	Т	Т
F	Т	Т	F	F
F	F	Т	Т	Т

1.3 **C 2 / 2**

- \checkmark **0 pts** If you do well on exams, then you will pass the course.
 - 2 pts Incorrect
 - 2 pts Missing / No answer

1.

- a. If you study for the exams, then you will do well in discrete math
- b. If you can go out to eat, then you remember to bring money
- c. If you do well on exams, then you will pass the course

2.

a.
$$F \rightarrow F \equiv T$$

b.
$$T \rightarrow T \equiv T$$

c.
$$F \rightarrow T \equiv T$$

d.
$$T \rightarrow F \equiv F$$

3.

- a. If you are taking discrete math and it is snowing, then you are a student
- b. It is not snowing or if it is snowing, then you are a student
- c. It is snowing and you are taking discrete math if and only if you are a student

4.

- a. Original: $l \rightarrow (\neg a \lor \neg h)$
 - Negation: $\neg(\neg l \lor (\neg a \lor \neg h)) \bigcirc l \land (\neg(\neg a) \land \neg(\neg h)) \equiv l \land (a \land h)$

English: You are late for class, and you set an alarm and you did your homework

b. Original: $\neg a \rightarrow l$

Negation: $\neg(\neg(\neg a) \lor l) \equiv \neg a \land \neg l$

English: You do not set an alarm and you are not late for class

5. Converse: If I go to bed, then I finish my school work

Inverse: If I don't finish my school work, then I don't go to bed

Contrapositive: If I don't go to bed, then I don't finish my school work

6.

ч	•			
p	q	$\neg p$	$\neg q$	$\neg p \rightarrow \neg q$
Т	Т	F	F	Т
Т	F	F	Т	Т
F	Т	Т	F	F
F	F	Т	Т	Т

2.1 **a 2 / 2**

- **√ 0 pts** *True*
 - 2 pts False
 - **2 pts** Missing / No answer

1.

- a. If you study for the exams, then you will do well in discrete math
- b. If you can go out to eat, then you remember to bring money
- c. If you do well on exams, then you will pass the course

2.

a.
$$F \rightarrow F \equiv T$$

b.
$$T \rightarrow T \equiv T$$

c.
$$F \rightarrow T \equiv T$$

d.
$$T \rightarrow F \equiv F$$

3.

- a. If you are taking discrete math and it is snowing, then you are a student
- b. It is not snowing or if it is snowing, then you are a student
- c. It is snowing and you are taking discrete math if and only if you are a student

4.

- a. Original: $l \rightarrow (\neg a \lor \neg h)$
 - Negation: $\neg(\neg l \lor (\neg a \lor \neg h)) \bigcirc l \land (\neg(\neg a) \land \neg(\neg h)) \equiv l \land (a \land h)$

English: You are late for class, and you set an alarm and you did your homework

b. Original: $\neg a \rightarrow l$

Negation: $\neg(\neg(\neg a) \lor l) \equiv \neg a \land \neg l$

English: You do not set an alarm and you are not late for class

5. Converse: If I go to bed, then I finish my school work

Inverse: If I don't finish my school work, then I don't go to bed

Contrapositive: If I don't go to bed, then I don't finish my school work

6.

ч	•			
p	q	$\neg p$	$\neg q$	$\neg p \rightarrow \neg q$
Т	Т	F	F	Т
Т	F	F	Т	Т
F	Т	Т	F	F
F	F	Т	Т	Т

2.2 **b 2 / 2**

- **√ 0 pts** *True*
 - 2 pts False
 - 2 pts Missing / No answer

1.

- a. If you study for the exams, then you will do well in discrete math
- b. If you can go out to eat, then you remember to bring money
- c. If you do well on exams, then you will pass the course

2.

a.
$$F \rightarrow F \equiv T$$

b.
$$T \rightarrow T \equiv T$$

c.
$$F \rightarrow T \equiv T$$

d.
$$T \rightarrow F \equiv F$$

3.

- a. If you are taking discrete math and it is snowing, then you are a student
- b. It is not snowing or if it is snowing, then you are a student
- c. It is snowing and you are taking discrete math if and only if you are a student

4.

- a. Original: $l \rightarrow (\neg a \lor \neg h)$
 - Negation: $\neg(\neg l \lor (\neg a \lor \neg h)) \bigcirc l \land (\neg(\neg a) \land \neg(\neg h)) \equiv l \land (a \land h)$

English: You are late for class, and you set an alarm and you did your homework

b. Original: $\neg a \rightarrow l$

Negation: $\neg(\neg(\neg a) \lor l) \equiv \neg a \land \neg l$

English: You do not set an alarm and you are not late for class

5. Converse: If I go to bed, then I finish my school work

Inverse: If I don't finish my school work, then I don't go to bed

Contrapositive: If I don't go to bed, then I don't finish my school work

6.

ч	•			
p	q	$\neg p$	$\neg q$	$\neg p \rightarrow \neg q$
Т	Т	F	F	Т
Т	F	F	Т	Т
F	Т	Т	F	F
F	F	Т	Т	Т

2.3 **C 2 / 2**

- **√ 0 pts** *True*
 - 2 pts False
 - 2 pts Missing / No answer

1.

- a. If you study for the exams, then you will do well in discrete math
- b. If you can go out to eat, then you remember to bring money
- c. If you do well on exams, then you will pass the course

2.

a.
$$F \rightarrow F \equiv T$$

b.
$$T \rightarrow T \equiv T$$

c.
$$F \rightarrow T \equiv T$$

d.
$$T \rightarrow F \equiv F$$

3.

- a. If you are taking discrete math and it is snowing, then you are a student
- b. It is not snowing or if it is snowing, then you are a student
- c. It is snowing and you are taking discrete math if and only if you are a student

4.

- a. Original: $l \rightarrow (\neg a \lor \neg h)$
 - Negation: $\neg(\neg l \lor (\neg a \lor \neg h)) \bigcirc l \land (\neg(\neg a) \land \neg(\neg h)) \equiv l \land (a \land h)$

English: You are late for class, and you set an alarm and you did your homework

b. Original: $\neg a \rightarrow l$

Negation: $\neg(\neg(\neg a) \lor l) \equiv \neg a \land \neg l$

English: You do not set an alarm and you are not late for class

5. Converse: If I go to bed, then I finish my school work

Inverse: If I don't finish my school work, then I don't go to bed

Contrapositive: If I don't go to bed, then I don't finish my school work

6.

ч	•			
p	q	$\neg p$	$\neg q$	$\neg p \rightarrow \neg q$
Т	Т	F	F	Т
Т	F	F	Т	Т
F	Т	Т	F	F
F	F	Т	Т	Т

2.4 **d 2 / 2**

- **√ 0 pts** *False*
 - 2 pts True
 - 2 pts Missing / No answer

1.

- a. If you study for the exams, then you will do well in discrete math
- b. If you can go out to eat, then you remember to bring money
- c. If you do well on exams, then you will pass the course

2.

a.
$$F \rightarrow F \equiv T$$

b.
$$T \rightarrow T \equiv T$$

c.
$$F \rightarrow T \equiv T$$

d.
$$T \rightarrow F \equiv F$$

3.

- a. If you are taking discrete math and it is snowing, then you are a student
- b. It is not snowing or if it is snowing, then you are a student
- c. It is snowing and you are taking discrete math if and only if you are a student

4.

- a. Original: $l \rightarrow (\neg a \lor \neg h)$
 - Negation: $\neg(\neg l \lor (\neg a \lor \neg h)) \bigcirc l \land (\neg(\neg a) \land \neg(\neg h)) \equiv l \land (a \land h)$

English: You are late for class, and you set an alarm and you did your homework

b. Original: $\neg a \rightarrow l$

Negation: $\neg(\neg(\neg a) \lor l) \equiv \neg a \land \neg l$

English: You do not set an alarm and you are not late for class

5. Converse: If I go to bed, then I finish my school work

Inverse: If I don't finish my school work, then I don't go to bed

Contrapositive: If I don't go to bed, then I don't finish my school work

6.

ч	•			
p	q	$\neg p$	$\neg q$	$\neg p \rightarrow \neg q$
Т	Т	F	F	Т
Т	F	F	Т	Т
F	Т	Т	F	F
F	F	Т	Т	Т

3.1 **a 2 / 2**

- \checkmark **0 pts** If you are taking Discrete Math and it is snowing, then you are a student.
 - 2 pts Missing / No answer
 - 2 pts Incorrect

1.

- a. If you study for the exams, then you will do well in discrete math
- b. If you can go out to eat, then you remember to bring money
- c. If you do well on exams, then you will pass the course

2.

a.
$$F \rightarrow F \equiv T$$

b.
$$T \rightarrow T \equiv T$$

c.
$$F \rightarrow T \equiv T$$

d.
$$T \rightarrow F \equiv F$$

3.

- a. If you are taking discrete math and it is snowing, then you are a student
- b. It is not snowing or if it is snowing, then you are a student
- c. It is snowing and you are taking discrete math if and only if you are a student

4.

- a. Original: $l \rightarrow (\neg a \lor \neg h)$
 - Negation: $\neg(\neg l \lor (\neg a \lor \neg h)) \bigcirc l \land (\neg(\neg a) \land \neg(\neg h)) \equiv l \land (a \land h)$

English: You are late for class, and you set an alarm and you did your homework

b. Original: $\neg a \rightarrow l$

Negation: $\neg(\neg(\neg a) \lor l) \equiv \neg a \land \neg l$

English: You do not set an alarm and you are not late for class

5. Converse: If I go to bed, then I finish my school work

Inverse: If I don't finish my school work, then I don't go to bed

Contrapositive: If I don't go to bed, then I don't finish my school work

6.

ч	•			
p	q	$\neg p$	$\neg q$	$\neg p \rightarrow \neg q$
Т	Т	F	F	Т
Т	F	F	Т	Т
F	Т	Т	F	F
F	F	Т	Т	Т

3.2 **b 2 / 2**

 \checkmark - **0 pts** It is not snowing or if it is snowing, then you are

a student

- 2 pts Incorrect
- 2 pts Missing / No answer

1.

- a. If you study for the exams, then you will do well in discrete math
- b. If you can go out to eat, then you remember to bring money
- c. If you do well on exams, then you will pass the course

2.

a.
$$F \rightarrow F \equiv T$$

b.
$$T \rightarrow T \equiv T$$

c.
$$F \rightarrow T \equiv T$$

d.
$$T \rightarrow F \equiv F$$

3.

- a. If you are taking discrete math and it is snowing, then you are a student
- b. It is not snowing or if it is snowing, then you are a student
- c. It is snowing and you are taking discrete math if and only if you are a student

4.

- a. Original: $l \rightarrow (\neg a \lor \neg h)$
 - Negation: $\neg(\neg l \lor (\neg a \lor \neg h)) \bigcirc l \land (\neg(\neg a) \land \neg(\neg h)) \equiv l \land (a \land h)$

English: You are late for class, and you set an alarm and you did your homework

b. Original: $\neg a \rightarrow l$

Negation: $\neg(\neg(\neg a) \lor l) \equiv \neg a \land \neg l$

English: You do not set an alarm and you are not late for class

5. Converse: If I go to bed, then I finish my school work

Inverse: If I don't finish my school work, then I don't go to bed

Contrapositive: If I don't go to bed, then I don't finish my school work

6.

ч	•			
p	q	$\neg p$	$\neg q$	$\neg p \rightarrow \neg q$
Т	Т	F	F	Т
Т	F	F	Т	Т
F	Т	Т	F	F
F	F	Т	Т	Т

3.3 **C 2 / 2**

✓ - **0 pts** It is both snowing and you're taking Discrete

Math if and only if you are a student

- 2 pts Incorrect
- 2 pts Missing / No answer

1.

- a. If you study for the exams, then you will do well in discrete math
- b. If you can go out to eat, then you remember to bring money
- c. If you do well on exams, then you will pass the course

2.

a.
$$F \rightarrow F \equiv T$$

b.
$$T \rightarrow T \equiv T$$

c.
$$F \rightarrow T \equiv T$$

d.
$$T \rightarrow F \equiv F$$

3.

- a. If you are taking discrete math and it is snowing, then you are a student
- b. It is not snowing or if it is snowing, then you are a student
- c. It is snowing and you are taking discrete math if and only if you are a student

4.

- a. Original: $l \rightarrow (\neg a \lor \neg h)$
 - Negation: $\neg(\neg l \lor (\neg a \lor \neg h)) \bigcirc l \land (\neg(\neg a) \land \neg(\neg h)) \equiv l \land (a \land h)$

English: You are late for class, and you set an alarm and you did your homework

b. Original: $\neg a \rightarrow l$

Negation: $\neg(\neg(\neg a) \lor l) \equiv \neg a \land \neg l$

English: You do not set an alarm and you are not late for class

5. Converse: If I go to bed, then I finish my school work

Inverse: If I don't finish my school work, then I don't go to bed

Contrapositive: If I don't go to bed, then I don't finish my school work

6.

ч	•			
p	q	$\neg p$	$\neg q$	$\neg p \rightarrow \neg q$
Т	Т	F	F	Т
Т	F	F	Т	Т
F	Т	Т	F	F
F	F	Т	Т	Т

4.1 a 3 / 3

- ✓ 0 pts Correct
 - **1 pts** Incorrect translation to predicates
 - 1 pts Incorrect Negation
 - 1 pts Incorrect negation translation to English
 - 3 pts No answer
- 1 should cite which law is being used when doing logical equivalences

1.

- a. If you study for the exams, then you will do well in discrete math
- b. If you can go out to eat, then you remember to bring money
- c. If you do well on exams, then you will pass the course

2.

a.
$$F \rightarrow F \equiv T$$

b.
$$T \rightarrow T \equiv T$$

c.
$$F \rightarrow T \equiv T$$

d.
$$T \rightarrow F \equiv F$$

3.

- a. If you are taking discrete math and it is snowing, then you are a student
- b. It is not snowing or if it is snowing, then you are a student
- c. It is snowing and you are taking discrete math if and only if you are a student

4.

- a. Original: $l \rightarrow (\neg a \lor \neg h)$
 - Negation: $\neg(\neg l \lor (\neg a \lor \neg h)) \bigcirc l \land (\neg(\neg a) \land \neg(\neg h)) \equiv l \land (a \land h)$

English: You are late for class, and you set an alarm and you did your homework

b. Original: $\neg a \rightarrow l$

Negation: $\neg(\neg(\neg a) \lor l) \equiv \neg a \land \neg l$

English: You do not set an alarm and you are not late for class

5. Converse: If I go to bed, then I finish my school work

Inverse: If I don't finish my school work, then I don't go to bed

Contrapositive: If I don't go to bed, then I don't finish my school work

6.

	•			
p	q	$\neg p$	$\neg q$	$\neg p \rightarrow \neg q$
Т	Т	F	F	Т
Т	F	F	Т	Т
F	Т	Т	F	F
F	F	Т	Т	Т

4.2 b 3 / 3

- **√ 0 pts** Correct
 - **1 pts** Incorrect translation to predicates
 - 1 pts Incorrect negation
 - **1 pts** Incorrect negation to English
 - 3 pts No answer

1.

- a. If you study for the exams, then you will do well in discrete math
- b. If you can go out to eat, then you remember to bring money
- c. If you do well on exams, then you will pass the course

2.

a.
$$F \rightarrow F \equiv T$$

b.
$$T \rightarrow T \equiv T$$

c.
$$F \rightarrow T \equiv T$$

d.
$$T \rightarrow F \equiv F$$

3.

- a. If you are taking discrete math and it is snowing, then you are a student
- b. It is not snowing or if it is snowing, then you are a student
- c. It is snowing and you are taking discrete math if and only if you are a student

4.

- a. Original: $l \rightarrow (\neg a \lor \neg h)$
 - Negation: $\neg(\neg l \lor (\neg a \lor \neg h)) \bigcirc l \land (\neg(\neg a) \land \neg(\neg h)) \equiv l \land (a \land h)$

English: You are late for class, and you set an alarm and you did your homework

b. Original: $\neg a \rightarrow l$

Negation: $\neg(\neg(\neg a) \lor l) \equiv \neg a \land \neg l$

English: You do not set an alarm and you are not late for class

5. Converse: If I go to bed, then I finish my school work

Inverse: If I don't finish my school work, then I don't go to bed

Contrapositive: If I don't go to bed, then I don't finish my school work

6.

p	q	$\neg p$	$\neg q$	$\neg p \rightarrow \neg q$		
Т	Т	F	F	Т		
Т	F	F	Т	Т		
F	Т	Т	F	F		
F	F	Т	Т	Т		

5 Question 5 6 / 6

✓ - **0 pts** Converse: If I go to bed, then I finished my schoolwork

Contrapositive: If I did not go to bed, then I did not finish my school work

Inverse: If I did not finish my schoolwork, then I do not go to bed

- **2 pts** Incorrect Converse
- **2 pts** Incorrect Contrapositive
- 2 pts Incorrect Inverse
- 6 pts No answer
- 3 pts You did not specify which statement was the inverse, converse, or contrapositive.

1.

- a. If you study for the exams, then you will do well in discrete math
- b. If you can go out to eat, then you remember to bring money
- c. If you do well on exams, then you will pass the course

2.

a.
$$F \rightarrow F \equiv T$$

b.
$$T \rightarrow T \equiv T$$

c.
$$F \rightarrow T \equiv T$$

d.
$$T \rightarrow F \equiv F$$

3.

- a. If you are taking discrete math and it is snowing, then you are a student
- b. It is not snowing or if it is snowing, then you are a student
- c. It is snowing and you are taking discrete math if and only if you are a student

4.

- a. Original: $l \rightarrow (\neg a \lor \neg h)$
 - Negation: $\neg(\neg l \lor (\neg a \lor \neg h)) \bigcirc l \land (\neg(\neg a) \land \neg(\neg h)) \equiv l \land (a \land h)$

English: You are late for class, and you set an alarm and you did your homework

b. Original: $\neg a \rightarrow l$

Negation: $\neg(\neg(\neg a) \lor l) \equiv \neg a \land \neg l$

English: You do not set an alarm and you are not late for class

5. Converse: If I go to bed, then I finish my school work

Inverse: If I don't finish my school work, then I don't go to bed

Contrapositive: If I don't go to bed, then I don't finish my school work

6.

.						
p	q	$\neg p$	$\neg q$	$\neg p \rightarrow \neg q$		
Т	Т	F	F	Т		
Т	F	F	Т	Т		
F	Т	Т	F	F		
F	F	T	Т	Т		

6.1 **a 8 / 8**

✓ - 0 pts Correct

Missing Columns

- 2 pts 1 Missing column
- 4 pts 2 Missing columns
- 6 pts 3 or more Missing columns

Incorrect Cells

- 1 pts 1 Incorrect Cell
- 2 pts 2 Incorrect Cells
- 3 pts 3 Incorrect Cells
- 4 pts 4 or more Incorrect Cells
- 1 pts Used 1/0 instead of T/F
- 3 pts Incorrect answer due to wrong operation precedence
- 8 pts No Answer

b.

p	q	r	$\neg p$	$(\neg p \land q)$	$\neg r$	$(\neg p \land q) \rightarrow \neg r$
Т	Т	Т	F	F	F	Т
Т	Т	F	F	F	Т	Т
Т	F	Т	F	F	F	Т
Т	F	F	F	F	Т	Т
F	Т	Т	T	Т	F	F
F	Т	F	T	Т	Т	Т
F	F	Т	Т	F	F	Т
F	F	F	Т	F	Т	Т

c.

p	q	$\neg q$	$(p \rightarrow \neg q)$	$(p \lor q)$	$\neg (p \lor q)$	$(p \to \neg q) \leftrightarrow \neg (p \lor q)$
Т	Т	F	F	Т	F	Т
Т	F	Т	Т	Т	F	F
F	Т	F	Т	Т	F	F
F	F	Т	Т	F	Т	T

7.

<u>u.</u>	
Expression	Step
$q \to (p \lor q)$	Original
$\neg q \lor (p \lor q)$	Conditional Identity
$p \lor (\neg q \lor q)$	Associativity 2
$p \lor T$	Negation Law
T	Domination

6.2 **b** 8 / 8

✓ - 0 pts Correct

Missing Columns

- 2 pts 1 Missing column
- **4 pts** 2 Missing columns
- 6 pts 3 or more Missing columns

Incorrect Cells

- 1 pts 1 Incorrect Cell
- 2 pts 2 Incorrect Cells
- 3 pts 3 Incorrect Cells
- 4 pts 4 or more Incorrect Cells
- 1 pts Used 1/0 instead of T/F
- 3 pts Incorrect answer due to wrong operation precedence
- 8 pts No Answer

b.

p	q	r	$\neg p$	$(\neg p \land q)$	$\neg r$	$(\neg p \land q) \rightarrow \neg r$
Т	Т	Т	F	F	F	Т
Т	Т	F	F	F	Т	Т
Т	F	Т	F	F	F	Т
Т	F	F	F	F	Т	Т
F	Т	Т	T	Т	F	F
F	Т	F	T	Т	Т	Т
F	F	Т	Т	F	F	Т
F	F	F	Т	F	Т	Т

c.

p	q	$\neg q$	$(p \rightarrow \neg q)$	$(p \lor q)$	$\neg (p \lor q)$	$(p \to \neg q) \leftrightarrow \neg (p \lor q)$
Т	Т	F	F	Т	F	Т
Т	F	Т	Т	Т	F	F
F	Т	F	Т	Т	F	F
F	F	Т	Т	F	Т	T

7.

<u>u.</u>	
Expression	Step
$q \to (p \lor q)$	Original
$\neg q \lor (p \lor q)$	Conditional Identity
$p \lor (\neg q \lor q)$	Associativity 2
$p \lor T$	Negation Law
T	Domination

6.3 **C 8 / 8**

✓ - 0 pts Correct

Missing Columns

- 2 pts 1 Missing column
- 4 pts 2 Missing columns
- 6 pts 3 or more Missing columns

Incorrect Cells

- 1 pts 1 Incorrect Cell
- 2 pts 2 Incorrect Cells
- 3 pts 3 Incorrect Cells
- 4 pts 4 or more Incorrect Cells
- 1 pts Used 1/0 instead of T/F
- 3 pts Incorrect answer due to wrong operation precedence
- 8 pts No Answer

p	q	r	$\neg p$	$(\neg p \land q)$	$\neg r$	$(\neg p \land q) \rightarrow \neg r$
Т	Т	Т	F	F	F	Т
Т	Т	F	F	F	Т	Т
Т	F	Т	F	F	F	Т
Т	F	F	F	F	Т	Т
F	Т	Т	T	Т	F	F
F	Т	F	T	Т	Т	Т
F	F	Т	Т	F	F	Т
F	F	F	Т	F	Т	Т

c.

p	q	$\neg q$	$(p \rightarrow \neg q)$	$(p \lor q)$	$\neg (p \lor q)$	$(p \to \neg q) \leftrightarrow \neg (p \lor q)$
Т	Т	F	F	Т	F	Т
Т	F	Т	Т	Т	F	F
F	Т	F	Т	Т	F	F
F	F	Т	Т	F	Т	T

7.

a.

<u>u.</u>	
Expression	Step
$q \to (p \lor q)$	Original
$\neg q \lor (p \lor q)$	Conditional Identity
$p \lor (\neg q \lor q)$	Associativity 2
$p \lor T$	Negation Law
T	Domination

7.1 a 7 / 8

- 0 pts Correct

Incorrect Steps

- 2 pts 1 Incorrect Step
- 4 pts 2 Incorrect Steps
- 6 pts 3 or more Incorrect Steps

Missing Steps

- 2 pts 1 Missing Step
- 4 pts 2 Missing steps
- **6 pts** 3 or more Missing Steps

Uncited/Incorrectly Cited Steps

- ✓ 1 pts 1 Uncited Step
 - 2 pts 2 Uncited Steps
 - 3 pts 3 or more Uncited Steps
 - 4 pts No cited Steps
 - 8 pts No Answer
- 2 also used commutative

Expression	Step
$(p \to q) \land (p \to \neg q)$	Original
$(\neg p \lor q) \land (p \to \neg q)$	Conditional Identity
$(\neg p \lor q) \land (\neg p \lor \neg q)$	Conditional Identity
$(\neg p \land \neg p) \lor (\neg p \land \neg q) \lor (q \land \neg p) \lor (q \land \neg q)$	Distributivity
$(\neg p \land \neg p) \lor (q \land \neg q) \lor (\neg p \land \neg q) \lor (q \land \neg p)$	Commutativity
$\neg p \lor (q \land \neg q) \lor (\neg p \land \neg q) \lor (q \land \neg p)$	Idempotent
$(q \land \neg q) \lor \neg p \lor (\neg p \land \neg q) \lor (q \land \neg p)$	Commutativity
$F \vee \neg p \vee (\neg p \wedge \neg q) \vee (q \wedge \neg p)$	Negation Law
$\neg p \lor (\neg p \land \neg q) \lor (q \land \neg p) \lor F$	Commutativity
$\neg p \lor (q \land \neg p) \lor F$	Absorption
$\neg p \lor (\neg p \land q) \lor F$	Commutativity
$\neg p \lor F$	Absorption
$\neg p$	Identity

8.

٠.		

p	q	$(p \land q)$	$(p \land q) \to q$	$\neg q$	$(p \land \neg q)$	$(p \land \neg q)$ $\rightarrow \neg q$	$(p \land q) \to q$ $\equiv (p \land \neg q)$
							$\rightarrow \neg q$
Т	Т	Т	Т	F	F	Т	Т
Т	F	F	Т	Т	Т	Т	Т
F	Т	F	Т	F	F	Т	Т
F	F	F	Т	Т	F	Т	Т

Therefore, the statement $(p \land q) \rightarrow q \equiv (p \land \neg q) \rightarrow \neg q$ is true by the truth table.

b.

Expression	Step
$(p \land q) \rightarrow q$	LHS
$\neg (p \land q) \lor q$	Conditional Identity
$(\neg p \lor \neg q) \lor q$	DeMorgan's Law
$(\neg p \lor q) \lor \neg q$	Associativity
$\neg (p \land \neg q) \lor \neg q$	Inverse DeMorgan's Law
$(p \land \neg q) \rightarrow \neg q$	Inverse Conditional Identity

The last statement represents the RHS. Therefore, the statement $(p \land q) \rightarrow q \equiv (p \land \neg q) \rightarrow \neg q$ is true by logical equivalence.

7.2 **b** 8 / 8

✓ - 0 pts Correct

Incorrect Steps

- 2 pts 1 Incorrect Step
- 4 pts 2 Incorrect Steps
- 6 pts 3 or more Incorrect Steps

Missing Steps

- 2 pts 1 Missing Step
- 4 pts 2 Missing steps
- **6 pts** 3 or more Missing Steps

Uncited/Incorrectly Cited Steps

- 1 pts 1 Uncited Step
- 2 pts 2 Uncited Steps
- **3 pts** 3 or more Uncited Steps
- 4 pts No cited Steps
- 8 pts No Answer

Expression	Step
$(p \to q) \land (p \to \neg q)$	Original
$(\neg p \lor q) \land (p \to \neg q)$	Conditional Identity
$(\neg p \lor q) \land (\neg p \lor \neg q)$	Conditional Identity
$(\neg p \land \neg p) \lor (\neg p \land \neg q) \lor (q \land \neg p) \lor (q \land \neg q)$	Distributivity
$(\neg p \land \neg p) \lor (q \land \neg q) \lor (\neg p \land \neg q) \lor (q \land \neg p)$	Commutativity
$\neg p \lor (q \land \neg q) \lor (\neg p \land \neg q) \lor (q \land \neg p)$	Idempotent
$(q \land \neg q) \lor \neg p \lor (\neg p \land \neg q) \lor (q \land \neg p)$	Commutativity
$F \vee \neg p \vee (\neg p \wedge \neg q) \vee (q \wedge \neg p)$	Negation Law
$\neg p \lor (\neg p \land \neg q) \lor (q \land \neg p) \lor F$	Commutativity
$\neg p \lor (q \land \neg p) \lor F$	Absorption
$\neg p \lor (\neg p \land q) \lor F$	Commutativity
$\neg p \lor F$	Absorption
$\neg p$	Identity

8.

٠.		

p	q	$(p \land q)$	$(p \land q) \to q$	$\neg q$	$(p \land \neg q)$	$(p \land \neg q)$ $\rightarrow \neg q$	$(p \land q) \to q$ $\equiv (p \land \neg q)$
							$\rightarrow \neg q$
Т	Т	Т	Т	F	F	Т	Т
Т	F	F	Т	Т	Т	Т	Т
F	Т	F	Т	F	F	Т	Т
F	F	F	Т	Т	F	Т	Т

Therefore, the statement $(p \land q) \rightarrow q \equiv (p \land \neg q) \rightarrow \neg q$ is true by the truth table.

b.

Expression	Step
$(p \land q) \rightarrow q$	LHS
$\neg (p \land q) \lor q$	Conditional Identity
$(\neg p \lor \neg q) \lor q$	DeMorgan's Law
$(\neg p \lor q) \lor \neg q$	Associativity
$\neg (p \land \neg q) \lor \neg q$	Inverse DeMorgan's Law
$(p \land \neg q) \rightarrow \neg q$	Inverse Conditional Identity

The last statement represents the RHS. Therefore, the statement $(p \land q) \rightarrow q \equiv (p \land \neg q) \rightarrow \neg q$ is true by logical equivalence.

8.1 **a 10 / 10**

✓ - 0 pts Correct

Missing Columns

- 2.5 pts 1 Missing column
- **5 pts** 2 Missing columns
- **7.5 pts** 3 or more Missing columns

Incorrect Cells

- 1.5 pts 1 Incorrect Cell
- 3 pts 2 Incorrect Cells
- 4.5 pts 3 Incorrect Cells
- 6 pts 4 or more Incorrect Cells
- 1 pts Used 1/0 instead of T/F
- 4 pts Incorrect answer due to wrong operation precedence
- 10 pts No Answer

Expression	Step
$(p \to q) \land (p \to \neg q)$	Original
$(\neg p \lor q) \land (p \to \neg q)$	Conditional Identity
$(\neg p \lor q) \land (\neg p \lor \neg q)$	Conditional Identity
$(\neg p \land \neg p) \lor (\neg p \land \neg q) \lor (q \land \neg p) \lor (q \land \neg q)$	Distributivity
$(\neg p \land \neg p) \lor (q \land \neg q) \lor (\neg p \land \neg q) \lor (q \land \neg p)$	Commutativity
$\neg p \lor (q \land \neg q) \lor (\neg p \land \neg q) \lor (q \land \neg p)$	Idempotent
$(q \land \neg q) \lor \neg p \lor (\neg p \land \neg q) \lor (q \land \neg p)$	Commutativity
$F \vee \neg p \vee (\neg p \wedge \neg q) \vee (q \wedge \neg p)$	Negation Law
$\neg p \lor (\neg p \land \neg q) \lor (q \land \neg p) \lor F$	Commutativity
$\neg p \lor (q \land \neg p) \lor F$	Absorption
$\neg p \lor (\neg p \land q) \lor F$	Commutativity
$\neg p \lor F$	Absorption
$\neg p$	Identity

8.

٠.		

p	q	$(p \land q)$	$(p \land q) \rightarrow q$	$\neg q$	$(p \land \neg q)$	$(p \land \neg q)$ $\rightarrow \neg q$	$(p \land q) \to q$ $\equiv (p \land \neg q)$
							$\rightarrow \neg q$
Т	Т	Т	Т	F	F	Т	Т
Т	F	F	Т	Т	Т	Т	Т
F	Т	F	Т	F	F	Т	Т
F	F	F	Т	Т	F	Т	Т

Therefore, the statement $(p \land q) \rightarrow q \equiv (p \land \neg q) \rightarrow \neg q$ is true by the truth table.

b.

Expression	Step
$(p \land q) \rightarrow q$	LHS
$\neg (p \land q) \lor q$	Conditional Identity
$(\neg p \lor \neg q) \lor q$	DeMorgan's Law
$(\neg p \lor q) \lor \neg q$	Associativity
$\neg (p \land \neg q) \lor \neg q$	Inverse DeMorgan's Law
$(p \land \neg q) \rightarrow \neg q$	Inverse Conditional Identity

The last statement represents the RHS. Therefore, the statement $(p \land q) \rightarrow q \equiv (p \land \neg q) \rightarrow \neg q$ is true by logical equivalence.

8.2 b 10 / 10

- √ 0 pts Correct
 - 1 pts Not using strict equivalency connecting the LHS to the RHS.

Incorrect Steps

- 2 pts 1 Incorrect Step
- 4 pts 2 Incorrect Steps
- 6 pts 3 or more Incorrect Steps

Missing Steps

- 2 pts 1 Missing Step
- 4 pts 2 Missing steps
- **6 pts** 3 or more Missing Steps

Uncited/Miscited Steps

- 1 pts 1 Uncited Step
- 2 pts 2 Uncited Steps
- 3 pts 3 or more Uncited Steps
- **5 pts** No cited Steps
- 10 pts No Answer
- 3 Needed to cite conditional disjunction.
- 4 same here

p: A is a viking

q: B is a viking

r: C is a viking

A: $(p \lor \neg q)$

B: $(r \rightarrow \neg p)$

C: $(\neg r \lor \neg p) \rightarrow q$

p	q	r	$\neg p$	$\neg q$	$\neg r$	$(p \lor \neg q)$	$(r \rightarrow \neg p)$	$(\neg r \lor \neg p)$	$(\neg r \lor \neg p)$
									$\rightarrow q$
Т	Т	T	F	F	F	T	F	F	Т
Т	Т	F	F	F	T	T	Т	Т	Т
T	F	T	F	T	F	T	F	F	T
Т	F	F	F	Т	Τ	Т	T	T	F
F	T	T	T	F	F	F	T	T	T
F	Т	F	Т	F	Τ	F	Т	Т	Т
F	F	Т	Т	Т	F	Т	Т	Т	F
F	F	F	Т	Т	Τ	Т	T	Т	F

p	q	r	$(p \leftrightarrow (p \lor \neg q)) \land (q \leftrightarrow (r \rightarrow \neg p)) \land (r$
\leftrightarrow (p	\leftrightarrow $(r$	$\leftrightarrow (\neg r \lor \neg p)$	$\leftrightarrow (\neg r \lor \neg p) \to q)$
$V \neg q)$	$\rightarrow \neg p)$	$\rightarrow q$	
T	F	Т	F
Т	Т	F	F
T	T	T	T
T	F	Т	F
T	T	T	T
T	T	F	F
F	F	F	F
F	F	Т	F

Seeing that we produce only two trues in the last column of the above table, we can see the only combinations that work are: (p is T, q is F, and r is T) and (p is F, q is T, r is T). Therefore, we can conclude that C is a viking, but we cannot determine the status of A and B due to unconclusive results about them.

9 Question 9 8 / 8

- ✓ 0 pts Correct
 - 2 pts Incorrect role assignment for A
 - 2 pts Incorrect role assignment for B
 - 2 pts Incorrect role assignment for C

Missing Columns

- 2 pts 1 Missing column
- 4 pts 2 Missing columns
- **6 pts** 3 or more Missing columns

Incorrect Cells

- 1 pts 1 Incorrect Cell
- 2 pts 2 Incorrect Cells
- 3 pts 3 Incorrect Cells
- 4 pts 4 or more Incorrect Cells
- 1 pts Used 1/0 instead of T/F
- 8 pts No Answer

10 On Time 2.5 / 0

- √ + 2.5 pts On Time (Before Thursday)
 - 0 pts On Time (Friday)
 - **10 pts** 1 day late
 - **25 pts** 2 days late

11 Matching 0/0

- **√ 0 pts** Correct
 - **5 pts** Incorrect