YOLO MobileNet

Vladislav Goncharenko Spring 2019 MIPT, Moscow

Outline

- Recap
- Focal Loss
- Non-Maximum Suppression
- YOLO
 - v1
 - o v2
 - V3
- Separable convolutions
- MobileNet

Recap

Computer Vision tasks

- Classification
- Localisation
- Detection
- o Semantic Segmentation
- o Instance Segmentation

Metrics

- o loU
- o mAP

Datasets

- PASCAL VOC
- o ImageNet
- o COCO
- Open Images
- R-CNN
- Fast R-CNN
- Faster R-CNN

Её мать

Её бывший

Focal Loss

Non-Maximum Suppression

You Only Look Once (YOLO)

YOLOv1-v2

Original Joseph Redmon slides from conferences

- YOLOv1
- YOLOv2

Also CVPR 2016 talk video

YOLOv3

- Bounding Box Prediction
- Class Prediction
- Predictions Across Scales
- Feature Extractor

All articles published on Joseph's website

Practical notes

Write your own YOLO from scratch https://blog.paperspace.com/how-to-implement-a-yolo-o bject-detector-in-pytorch/

Original YOLO written on Darknet - custom NN framework

Weights import to TF via https://github.com/thtrieu/darkflow

Current state

Figure 5: Speed (ms) vs. accuracy (mAP) on COCO test-dev.

M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network

https://arxiv.org/pdf/1811.04533.pdf

Separable convs MobileNet

Spatial Separable Convolution

$$\begin{bmatrix} 3 & 6 & 9 \\ 4 & 8 & 12 \\ 5 & 10 & 15 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

Spatial Separable Convolution

Simple Convolution

Spatial Separable Convolution

Normal Convolution

Depthwise Convolution

Don't change channels number

Pointwise Convolution

MobileNet v1

Table 1. MobileNet Body Architecture

Type / Stride	Filter Shape	Input Size	
Conv/s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$	
Conv dw / s1	$3 \times 3 \times 32 \text{ dw}$	$112 \times 112 \times 32$	
Conv/s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$	
Conv dw / s2	$3 \times 3 \times 64 \text{ dw}$	$112 \times 112 \times 64$	
Conv/s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$	
Conv dw / s1	$3 \times 3 \times 128 \mathrm{dw}$	$56 \times 56 \times 128$	
Conv/s1	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$	
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$	
Conv/s1	$1 \times 1 \times 128 \times 256$	$28 \times 28 \times 128$	
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$	
Conv/s1	$1 \times 1 \times 256 \times 256$	$28 \times 28 \times 256$	
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$	
Conv/s1	$1 \times 1 \times 256 \times 512$	$14 \times 14 \times 256$	
5× Conv dw/s1	$3 \times 3 \times 512 \mathrm{dw}$	$14 \times 14 \times 512$	
Conv/s1	$1\times1\times512\times512$	$14 \times 14 \times 512$	
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$	
Conv/s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$	
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$	
Conv/s1	$1\times1\times1024\times1024$	$7 \times 7 \times 1024$	
Avg Pool / s1	Pool 7 × 7	$7 \times 7 \times 1024$	
FC/s1	1024×1000	$1 \times 1 \times 1024$	
Softmax / s1	Classifier	$1 \times 1 \times 1000$	

MobileNet v2

Results

Архитектура сети	Количество параметров	Top-1 accuracy	Top-5 accuracy
Xception	22.91M	0.790	0.945
VGG16	138.35M	0.715	0.901
MobileNetV1 (alpha=1, rho=1)	4.20M	0.709	0.899
MobileNetV1 (alpha=0.75, rho=0.85)	2.59M	0.672	0.873
MobileNetV1 (alpha=0.25, rho=0.57)	0.47M	0.415	0.663
MobileNetV2 (alpha=1.4, rho=1)	6.06M	0.750	0.925
MobileNetV2 (alpha=1, rho=1)	3.47M	0.718	0.910
MobileNetV2 (alpha=0.35, rho=0.43)	1.66M	0.455	0.704

Revise

- Recap
- Focal Loss
- Non-Maximum Suppression
- YOLO
 - o v1
 - o v2
 - o V3
- Separable convolutions
- MobileNet

Next time

Segmentation

See Mask R-CNN ICCV17 talk to prepare yourself

