

SSD201 Demo 单板用户指南

SSD201 Demo 单板用户指南

© 2020 SigmaStar Technology Corp. All rights reserved.

SigmaStar Technology makes no representations or warranties including, for example but not limited to, warranties of merchantability, fitness for a particular purpose, non-infringement of any intellectual property right or the accuracy or completeness of this document, and reserves the right to make changes without further notice to any products herein to improve reliability, function or design. No responsibility is assumed by SigmaStar Technology arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

SigmaStar is a trademark of SigmaStar Technology Corp. Other trademarks or names herein are only for identification purposes only and owned by their respective owners.

REVISION HISTORY

Revision No.	Description	Date
V1.0	• First Release	20190422

TABLE OF CONTENTS

REVISION HISTORYi				
TABLE OF CONTENTSii				
LIS	T OF	TABLES		. iii
LIS	T OF	FIGURE	:S	. iii
1.	SSD	201 Der	mo 介绍	1
	1. 1.	单板最多	小系统	1
	1.2.	单板启动	动方式配置	1
	1.3.	结构与抗	妾口	1
	1.4.	1.4. 单板外部接口详细描述。		3
		1.4.1	0 3-1 喇叭接口 CON22	3
		1.4.2	04_1 模拟 AMIC 接口	4
		1.4.3	05_1:数字 DMIC 接口	
		1.4.4	07_08_09-1: I2C0/SPI/SAR 接口	
			11_12_13_14_1: RE485/UART0/UART1 接口	
			17-1: 触摸屏 I2C1 接口	
	1.5.	. 5. GPIO 的分配		9
	1. 6.	单板 TT	L/MIPI/RMII 接口使用说明	.10

LIST OF TABLES

Table 1: {Table Title} 错误!未定义书签。

LIST OF FIGURES

1. SSD201 DEMO 介绍

1.1. 单板最小系统

- 1、SPI Norflash 16Mbyte
- 2、 芯片内置 DDR2-1333 容量 512Mbit
- 3、 系统使用外部 RC 复位, 24M 晶振(24M±30ppm)
- 4、芯片内置 RTC,外接 32.768KHz 晶振, AVDD_RTC<3uA@25℃
- 5、电源 DC12V/2A

1.2. 单板启动方式配置

单板默认 SPI NOR 启动, 预留 SPI NAND 封装。若要使用 SPI NAND 启动,需要更换单板 SPINOR 器件为 SPINAND 器件,电阻 R23 上拉 R24 NC,SPINAND 启动,

1.3. 结构与接口

单板外部接口说明

序号	说明
01	电源 DC 12V 接口
02	EPHY RJ45 接口
03	喇叭接口 1.4.1
04	模拟 AMIC 接口 1.4.2
05	数字 DMIC 接口 1.4.3
06	USB2.0 Port2 接口
07	I2C0 接口 1.4.4
08	SPI 接口 1.4.4
09	SAR ADC 接口 1.4.4
10	红外接口
11	RS485 接口 1.4.5
12	Debug 串口 1.4.5
13	GPIO 1.4.5
14	串口 UART1 1.4.5
15	TTL Panel 接口下接
16	WIFI 天线接口
17	触摸屏 I2C1 接口上接 1.4.6
18	RMII_IP101GA RJ45 接口
19	SD 卡接口

1.4. 单板外部接口详细描述。

1.4.1 03-1 喇叭接口 CON22

CON22 接口,控制 Audio EN 关断使能 SGM4890

Figure 1.4.1:1

C204

NC

1.4.2 **04_1** 模拟 AMIC 接口

模拟 AMIC 接口 CON23

Figure 1.4.2:1

1.4.3 05 1:数字 DMIC 接口

DMIC 接口: J11 默认电源供电 3.3V.

Figure 1.4.3:1

1.4.4 07_08_09-1: I2C0/SPI/SAR 接口

I2CO 接口 JP3:3V3/I2CO_SCL/I2CO_SDA/GND JP4 SPI 接口 3V3/SPI_CS/SPI_CLK/SPI_DO/ SPI_DI /GND CON25 SAR ADC 接口 SAR GPIO2/GND

Figure 1.4.4:1

1.4.5 11_12_13_14_1: RE485/UART0/UART1 接口

J21 RS485接口 B/A ;CON3 Debug 串口 NC/GND/RX/TX; JP1 GPIO 3V3/GPIO47/GPIO48/GND; JP2 UART1 串口 3V3/RX/TX/GND。

Figure 1.4.5:1

1.4.6 17-1: 触摸屏 I2C1 接口

触摸屏 I2C 接口顺序: SDA/SCL/RTS/INT/GND/3V3

Figure 1.4.6:1

1.5. GPIO 的分配

GPIO 接口除了表格中所列之外,其他使用的 GPIO 均用作其他功能或悬空。

GPIO	用途	单板处理
GPIO12	SGM4890 音频使能,默认下拉	-
GPIO13	触摸屏中断,默认下拉	3.3V 上拉
GPIO14	WIFI 使能,默认下拉	3.3V 上拉
GPIO85	NC,默认下拉	NC
GPIO86	Power KEY 控制 ,默认下拉	3.3V 上拉
GPIO90	系统电源使能,默认下拉	-
GPIO0	SD 卡 Power 使能,默认下拉	3.3V 上拉
GPIO1	触摸屏复位控制,默认下拉	-
GPIO2	触摸屏 I2C 时钟 SCL,默认下拉	3.3V 上拉
GPIO3	触摸屏 I2C 数据 SDA,默认下拉	3.3V 上拉
GPIO4	TTL Panel 背光控制,默认上拉	5V 上拉
GPIO5	TTL Panel 升压负压控制,默认上拉	5V 上拉
GPIO6	I2C0_SCL 默认下拉	3.3V 上拉
GPIO7	I2C0_SDA 默认上拉	3.3V 上拉
GPIO8	SPI_CS 默认上拉	3.3V 上拉
GPIO9	SPI_CLK 默认上拉	3.3V 上拉
GPIO10	SPI_DI 默认下拉	3.3V 上拉
GPIO11	SPI_DO 默认下拉	3.3V 上拉

1.6. 单板 TTL/MIPI/RMII 接口使用说明

SSD201 Demo 单板设计 TTL/MIPI/RMII 接口共用部分引脚如下表所示:

Pin Location	Ball Pin Name	Function
65	PAD_TTL6	MIPI_TX_P_CH0
66	PAD_TTL7	MIPI_TX_N_CH0
67	PAD_TTL8	MIPI_TX_P_CH1
68	PAD_TTL9	MIPI_TX_N_CH1
69	PAD_TTL10	MIPI_TX_P_CH2
70	PAD_TTL11	MIPI_TX_N_CH2
71	PAD_TTL12	MIPI_TX_P_CH3
72	PAD_TTL13	MIPI_TX_N_CH3
73	PAD_TTL14	MIPI_TX_P_CH4
74	PAD_TTL15	MIPI_TX_N_CH4
79	PAD_TTL16	ETH1_MDIO
80	PAD_TTL17	ETH1_MDC
81	PAD_TTL18	ETH1_COL
82	PAD_TTL19	ETH1_RXD0
83	PAD_TTL20	ETH1_RXD1
84	PAD_TTL21	ETH1_TX_CLK
85	PAD_TTL22	ETH1_TXD0
86	PAD_TTL23	ETH1_TXD1
87	PAD_TTL24	ETH1_TX_EN

PAD_TTL16	R/10, , ,0R	RMII_MDIO	// DMIL MDIO
PAD TTL17	R708, , , OR	RMII MDC	RMII_MDIO
PAD TTL18	R713 OR	RMII RX DV	
PAD TTL19	R711, 0R	RMII RX D0	-≺RMII_RX_DV
PAD TTL20	R715 OR	RMII RX D1	—<⟨RMII_RX_D0 · · · ·
PAD TTL21	R712, 0R	RMII RĒF ČLK	<⊈RMII_RX_D1
PAD_TTL22	R717, 0R	RMII TX D0	⟨ŖMII_REF_CLK
PAD TTL23	R714 0R	RMII TX D1	<≤RMII_TX_D0 · · · ·
PAD_TTL24	R718, 0R	RMII TX EN	<≤RMII_TX_D1 · · · ·
PAD TTL25	R716 0R	RMIL RST	< <rmii_tx_en td="" ·="" ·<=""></rmii_tx_en>
PAD TTL16	R186, 0R	LCD_B0	—<< RMJI_RST
PAD TTL17	R196 0R	LCD B1	
PAD TTL18	R199 0R	LCD B2	
PAD TTL19	R197 0R	LCD B3	
PAD TTL20	R201 0R	LCD B4	
PAD TTL21	R198 0R	LCD B5	
PAD TTL22	R203 0R	LCD B6	
PAD TTL23		LCD_B0	
	R200 V OR	LOD_D/	
PAD TTL24	Dásó Con	LCD_PCLK	
PAD_TTL25	R150 OR	_	C LCD_PCLK
	R151 V 0R	LCD_HSYNC	
PAD_TTL26	R152 OR	LCD_VSYNC	
PAD_TTL27	R153 V 0R	LCD_DE	——————————————————————————————————————

当使用 TTL 功能时, RMII 电路的 0 欧姆电阻需要 NC,例如 R710/R708 等,当使用 RMII 功能时,TTL 部分电路的 0 欧姆电阻需要 NC,例如 R186/R196 等,RMII 和 MIPI 功能可以同时使用。