AMENDMENTS TO THE CLAIMS

- 1. (cancelled)
- 2. (currently amended) A <u>method of claim 19</u> the compound of claim 1 wherein Z^1 and Z^2 are each R^7 -aryl.
- 3. (currently amended) A sompound method of claim 2 wherein Z^1 and Z^2 are each R^7 -phenyl.
- 4. (currently amended) A compound method of claim 3 wherein R⁷ is selected from the group consisting of (C₁-C₆)alkyl and halo.
- 5. (currently amended) A method of claim 19 compound of claim 1 wherein R¹, R², R³ and R⁴ are each hydrogen.
- 6. (currently amended) A method of claim 19 compound of claim 1 wherein R¹ and R³ are each hydrogen and R² and R⁴ are an alkylene bridge of 2 or 3 carbons.
- 7. (currently amended) A <u>method of claim 19 compound of claim 1</u> wherein X^1 is R^7 -aryl and X^2 is OH or $[-NC(O)R^{28}] -NC(O)R^{21}$.
- 8. (currently amended) A <u>method</u> compound of claim 7 wherein X¹ is R⁷-phenyl.
- 9. (currently amended) A method of claim 19 compound of claim 1 wherein

 R12

 N=0

 X1 is and X2 is hydrogen.

- 10. (currently amended) A <u>method</u> compound of claim 9 wherein R^{12} is hydrogen and R^{11} is (C_1-C_6) alkyl, $-(C_1-C_6)$ alkyl (C_3-C_{12}) cycloalkyl, $-(C_1-C_6)$ alkyl $-OR^{19}$ or $-(C_1-C_6)$ alkyl $-OR^{19}$ 0.
- 11. (currently amended) A method of claim 19 compound of claim 1 wherein X¹ and X² together form the spirocyclic group

 R¹¹, N—(,)...
- 12. (currently amended) A <u>method</u> compound of claim 11 wherein m is 1, R^{17} is phenyl and R^{16} is -(C₁-C₆)alkyl-OR¹⁹ or -(C₁-C₆)alkyl-NR¹⁹R²⁰.
- 19. (new) A method of treating cough comprising administering a combination of an effective amount of an ORL-1 agonist of the formula

$$R^1$$
 R^2
 R^3
 R^4
 R^2
 R^3
 R^4

or a pharmaceutically acceptable salt or solvate thereof, wherein:

the dotted line represents an optional double bond;

 X^1 is R^5 -(C_1 - C_{12})alkyl, R^6 -(C_3 - C_{12})cycloalkyl, R^7 -aryl, R^8 -heteroaryl or R^{10} -(C_3 - C_7)heterocycloalkyl;

 $X^2 \text{ is -CHO, -CN, -NHC}(=NR^{26})NHR^{26}, \text{ -CH}(=NOR^{26}), \text{ -NHOR}^{26}, \\ R^7 - \text{aryl}, R^7 - \text{aryl}(C_1 - C_6) \text{alkyl}, R^7 - \text{aryl}(C_1 - C_6) \text{alkenyl}, R^7 - \text{aryl}(C_1 - C_6) - \text{alkynyl}, \\ -(CH_2)_v OR^{13}, -(CH_2)_v COOR^{27}, -(CH_2)_v CONR^{14}R^{15}, -(CH_2)_v NR^{21}R^{22} \text{ or } \\ -(CH_2)_v NHC(O)R^{21}, \text{ wherein v is zero, 1, 2 or 3 and wherein q is 1 to 3 and a is 1 or 2; }$

or X1 is

$$R^{12} \longrightarrow R^{11} \longrightarrow R^{12} \longrightarrow R^{11} \longrightarrow R^{12} \longrightarrow R^{11} \longrightarrow R^{12} \longrightarrow$$

and X² is hydrogen;

or X1 and X2 together form a spiro group of the formula

n is 1, 2 or 3, provided that when n is 1, one of R^{16} and R^{17} is $-C(O)R^{28}$;

p is 0 or 1;

Q is -CH₂-, -O-, -S-, -SO-, -SO₂- or -NR¹⁷-;

 R^1 , R^2 , R^3 and R^4 are independently selected from the group consisting of hydrogen and (C₁-C₆)alkyl, or (R¹ and R⁴) or (R² and R³) or (R¹ and R³) or (R² and R⁴) together can form an alkylene bridge of 1 to 3 carbon atoms;

 R^5 is 1 to 3 substituents independently selected from the group consisting of H, R^7 -aryl, R^6 -(C_3 - C_{12})cycloalkyl, R^8 -heteroaryl, R^{10} -(C_3 - C_7)heterocycloalkyl, -NR¹⁹R²⁰, -OR¹³ and -S(O)₀₋₂R¹³;

R⁶ is 1 to 3 substituents independently selected from the group consisting of H, (C₁-C₆)alkyl, R⁷-aryl, -NR¹⁹R²⁰, -OR¹³ and -SR¹³;

R⁷ is 1 to 3 substituents independently selected from the group consisting of hydrogen, halo, (C₁-C₆)alkyl, R²⁵-aryl, (C₃-C₁₂)cycloalkyl, -CN, -CF₃, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -OCF₃, -NR¹⁹R²⁰, -(C₁-C₆)alkyl-NR¹⁹R²⁰, -NHSO₂R¹⁹, -SO₂N(R²⁶)₂, -SO₂R¹⁹, -SOR¹⁹, -SR¹⁹, -NO₂, -CONR¹⁹R²⁰, -NR²⁰COR¹⁹, -COR¹⁹, -COCF₃, -OCOR¹⁹, -OCO₂R¹⁹, -COOR¹⁹, -COOR¹⁹, -(C₁-C₆)alkyl-NHCOCC(CH₃)₃, -(C₁-C₆)alkyl-NHCOCF₃, -(C₁-C₆)alkyl-NHCONH-(C₁-C₆)-alkyl or -(CH₂)_f-N N-R¹⁹, wherein f is 0 to 6; or R⁷ substituents on adjacent ring carbon atoms may together form a methylenedioxy or ethylenedioxy ring;

 R^8 is 1 to 3 substituents independently selected from the group consisting of hydrogen, halo, (C₁-C₆)alkyl, R²⁵-aryl, (C₃-C₁₂)cycloalkyl, -CN, -CF₃, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -OCF₃, -NR¹⁹R²⁰, -(C₁-C₆)alkyl-NR¹⁹R²⁰, -NHSO₂R¹⁹, -SO₂N(R²⁶)₂, -NO₂, -CONR¹⁹R²⁰, -NR²⁰COR¹⁹, -COR¹⁹, -OCO₂R¹⁹ and -COOR¹⁹;

 R^9 is hydrogen, (C₁-C₆)alkyl, halo, -OR¹⁹, -NR¹⁹R²⁰, -NHCN, -SR¹⁹ or -(C₁-C₆)alkyl-NR¹⁹R²⁰;

 R^{10} is H, (C₁-C₆)alkyl, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -NR¹⁹R²⁰ or -(C₁-C₆)alkyl-NR¹⁹R²⁰;

 R^{11} is independently selected from the group consisting of H, $R^{5}\text{-}(C_{1}\text{-}C_{6})\text{alkyl},\ R^{6}\text{-}(C_{3}\text{-}C_{12})\text{cycloalkyl},\ -(C_{1}\text{-}C_{6})\text{alkyl}(C_{3}\text{-}C_{12})\text{cycloalkyl},\\ -(C_{1}\text{-}C_{6})\text{alkyl}\text{-}OR^{19},\ -(C_{1}\text{-}C_{6})\text{alkyl-}NR^{19}R^{20} \text{ and} \\ \text{q and a are as defined above;}$

 R^{12} is H, (C₁-C₆)alkyl, halo, -NO₂, -CF₃, -OCF₃, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -NR¹⁹R²⁰ or -(C₁-C₆)alkyl-NR¹⁹R²⁰;

 R^{13} is H, (C₁-C₆)alkyl, R^7 -aryl, -(C₁-C₆)alkyl-OR¹⁹, -(C₁-C₆)alkyl-NR¹⁹R²⁰ or -(C₁-C₆)alkyl-SR¹⁹;

 R^{14} and R^{15} are independently selected from the group consisting of $-(CH_2)_q-C-N$ a $+(C_1-C_6)_q$ and $+(C_1-C_6)_q$ are independently selected from the group consisting of $+(C_1-C_6)_q$ and $+(C_1-C_6)_q$ are independently selected from the group consisting of $+(C_1-C_6)_q$ and $+(C_1-C_6)_q$ are independently selected from the group consisting of $+(C_1-C_6)_q$ and $+(C_1-C_6)_q$ and $+(C_1-C_6)_q$ and $+(C_1-C_6)_q$ are independently selected from the group consisting of $+(C_1-C_6)_q$ and $+(C_1-C_6)_$

 R^{16} and R^{17} are independently selected from the group consisting of hydrogen, R^5 -(C_1 - C_6)alkyl, R^7 -aryl, (C_3 - C_{12})cycloalkyl, R^8 -heteroaryl, R^8 -heteroaryl(C_1 - C_6)alkyl, -C(O) R^{28} , -(C_1 - C_6)alkyl(C_3 - C_7)-heterocycloalkyl, -(C_1 - C_6)alkyl-OR¹⁹ and -(C_1 - C_6)alkyl-SR¹⁹;

 R^{19} and R^{20} are independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, aryl and aryl(C₁-C₆)alkyl;

 R^{21} and R^{22} are independently selected from the group consisting of hydrogen, $(C_1\text{-}C_6)$ alkyl, $(C_3\text{-}C_{12})$ cycloalkyl, $(C_3\text{-}C_{12})$ cycloalkyl, $(C_3\text{-}C_{12})$ cycloalkyl, $(C_3\text{-}C_7)$ heterocycloalkyl, $-(C_1\text{-}C_6)$ alkyl, $(C_3\text{-}C_7)$ heterocycloalkyl, R^7 -aryl, R^7 -aryl, R^7 -aryl, R^8 -heteroaryl, R^8 -heteroaryl,

 R^{18} is hydrogen or (C_1-C_6) alkyl;

 Z^1 is R⁵-(C₁-C₁₂)alkyl, R⁷-aryl, R⁸-heteroaryl, R⁶-(C₃-C₁₂)cyclo-alkyl, R¹⁰-(C₃-C₇)heterocycloalkyl, -CO₂(C₁-C₆)alkyl, CN or -C(O)NR¹⁹R²⁰; Z^2 is hydrogen or Z^1 ; Z^3 is hydrogen or (C₁-C₆)alkyl; or Z^1 , Z^2 and Z^3 , together with the carbon to which they are attached, form the group

or R²³, wherein r is 0 to 3; w and u are each 0-3, provided that the sum of w and u is 1-3; c and d are independently 1 or 2; s is 1 to 5; and ring

A is a fused R⁷-phenyl or R⁸-heteroaryl ring;

 R^{23} is 1 to 3 substituents independently selected from the group consisting of H, (C₁-C₆)alkyl, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -NR¹⁹R²⁰ and -(C₁-C₆)alkyl-NR¹⁹R²⁰;

 R^{24} is 1 to 3 substituents independently selected from the group consisting of R^{23} , -CF₃, -OCF₃, NO₂ or halo, or R^{24} substituents on adjacent ring carbon atoms may together form a methylenedioxy or ethylenedioxy ring;

R²⁵ is 1-3 substituents independently selected from the group consisting of H, (C₁-C₆)alkyl, (C₁-C₆)alkoxy and halo;

 R^{26} is independently selected from the group consisting of H, (C_1-C_6) alkyl and $R^{25}-C_6H_4-CH_2-$;

 R^{27} is H, (C_1-C_6) alkyl, R^7 -aryl (C_1-C_6) alkyl, or (C_3-C_{12}) cycloalkyl; R^{28} is (C_1-C_6) alkyl, $-(C_1-C_6)$ alkyl (C_3-C_{12}) cycloalkyl, R^7 -aryl,

R⁷-aryl-(C₁-C₆)alkyl, R⁸-heteroaryl, -(C₁-C₆)alkyl-NR¹⁹R²⁰,

 $-(C_1-C_6)$ alkyl-OR¹⁹ or $-(C_1-C_6)$ alkyl-SR¹⁹;

provided that when X¹ is

or X1 and X2 together are

and Z^1 is R^7 -phenyl, Z^2 is not hydrogen or (C_1-C_3) alkyl;

provided that when Z^1 , Z^2 and Z^3 , together with the carbon to which they are attached, form

$$R^{24} \xrightarrow{A} A \xrightarrow{Z^3} R^{24} \xrightarrow{A} (CHR^{23})_u$$
 , and X^1 and X^2 together are

provided that when R^2 and R^4 form an alkylene bridge, Z^1 , Z^2 and Z^3 , together with the carbon to which they are attached, are not

$$R^{24} \xrightarrow{A} P^{23} R^{23} R^{24} \xrightarrow{A} (CHR^{23})_u$$

$$R^{12} \xrightarrow{R^{11}} R^{11}$$

$$R^{12} \xrightarrow{R^{11}$$

cycloalkyl, Z² is not H;

and an effective amount of second agent for treating cough, allergy or asthma symptoms selected from the group consisting of: antihistamines, 5-lipoxygenase inhibitors, leukotriene inhibitors, H_3 inhibitors, B-adrenergic receptor agonists, xanthine derivatives, α -adrenergic receptor agonists, mast cell stabilizers, anti-tussives, expectorants, NK_1 , NK_2 and NK_3 tachykinin receptor antagonists, and $GABA_B$ agonists.

20. (new) A pharmaceutical composition comprising: a therapeutically effective amount of a nociceptin receptor ORL-1 agonist of the formula

$$\begin{array}{c|c}
X^1 & X^2 \\
R^1 & R^3 \\
R^2 & N & R^4 \\
Z^1 & Z^2 & Z^3
\end{array}$$

or a pharmaceutically acceptable salt or solvate thereof, wherein:

the dotted line represents an optional double bond;

 X^1 is R^5 -(C_1 - C_{12})alkyl, R^6 -(C_3 - C_{12})cycloalkyl, R^7 -aryl, R^8 -heteroaryl or R^{10} -(C_3 - C_7)heterocycloalkyl;

 $X^2 \text{ is -CHO, -CN, -NHC} (=NR^{26}) NHR^{26}, -CH (=NOR^{26}), -NHOR^{26}, \\ R^7 - \text{aryl}, \ R^7 - \text{aryl} (C_1 - C_6) \text{alkyl}, \ R^7 - \text{aryl} (C_1 - C_6) \text{alkenyl}, \ R^7 - \text{aryl} (C_1 - C_6) - \text{alkynyl}, \\ -(CH_2)_v OR^{13}, -(CH_2)_v COOR^{27}, -(CH_2)_v CONR^{14}R^{15}, -(CH_2)_v NR^{21}R^{22} \text{ or } \\ -(CH_2)_v NHC(O)R^{21}, \text{ wherein v is zero, 1, 2 or 3 and wherein q is 1 to 3 and a is 1 or 2; }$

or X¹ is

$$R^{12}$$
 $N = 0$
 $N = 0$

and X² is hydrogen;

or X^1 and X^2 together form a spiro group of the formula

n is 1, 2 or 3, provided that when n is 1, one of R^{16} and R^{17} is $-C(O)R^{28}$;

p is 0 or 1;

Q is -CH₂-, -O-, -S-, -SO-, -SO₂- or -NR¹⁷-;

 R^1 , R^2 , R^3 and R^4 are independently selected from the group consisting of hydrogen and (C₁-C₆)alkyl, or (R^1 and R^4) or (R^2 and R^3) or

(R¹ and R³) or (R² and R⁴) together can form an alkylene bridge of 1 to 3 carbon atoms;

 R^5 is 1 to 3 substituents independently selected from the group consisting of H, R^7 -aryl, R^6 -(C_3 - C_{12})cycloalkyl, R^8 -heteroaryl, R^{10} -(C_3 - C_7)heterocycloalkyl, -NR¹⁹R²⁰, -OR¹³ and -S(O)₀₋₂R¹³;

R⁶ is 1 to 3 substituents independently selected from the group consisting of H, (C₁-C₆)alkyl, R⁷-aryl, -NR¹⁹R²⁰, -OR¹³ and -SR¹³;

R⁷ is 1 to 3 substituents independently selected from the group consisting of hydrogen, halo, $(C_1\text{-}C_6)$ alkyl, R^{25} -aryl, $(C_3\text{-}C_{12})$ cycloalkyl, -CN, -CF₃, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -OCF₃, -NR¹⁹R²⁰, -(C₁-C₆)alkyl-NR¹⁹R²⁰, -NHSO₂R¹⁹, -SO₂N(R²⁶)₂, -SO₂R¹⁹, -SOR¹⁹, -SR¹⁹, -NO₂, -CONR¹⁹R²⁰, -NR²⁰COR¹⁹, -COR¹⁹, -COCF₃, -OCOR¹⁹, -OCO₂R¹⁹, -COOR¹⁹, -COOR¹⁹, -(C₁-C₆)alkyl-NHCOCC(CH₃)₃, -(C₁-C₆)alkyl-NHCOCF₃, -(C₁-C₆)alkyl-NHCONH-(C₁-C₆)-alkyl or -(CH₂)_f-N. N-R¹⁹, wherein f is 0 to 6; or R⁷ substituents on adjacent ring carbon atoms may together form a methylenedioxy or ethylenedioxy ring;

R⁸ is 1 to 3 substituents independently selected from the group consisting of hydrogen, halo, (C₁-C₆)alkyl, R²⁵-aryl, (C₃-C₁₂)cycloalkyl, -CN, -CF₃, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -OCF₃, -NR¹⁹R²⁰, -(C₁-C₆)alkyl-NR¹⁹R²⁰, -NHSO₂R¹⁹, -SO₂N(R²⁶)₂, -NO₂, -CONR¹⁹R²⁰, -NR²⁰COR¹⁹, -COR¹⁹, -OCO₂R¹⁹ and -COOR¹⁹;

 R^9 is hydrogen, (C₁-C₆)alkyl, halo, -OR¹⁹, -NR¹⁹R²⁰, -NHCN, -SR¹⁹ or -(C₁-C₆)alkyl-NR¹⁹R²⁰;

 R^{10} is H, (C₁-C₆)alkyl, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -NR¹⁹R²⁰ or -(C₁-C₆)alkyl-NR¹⁹R²⁰;

R¹¹ is independently selected from the group consisting of H, R⁵-(C₁-C₆)alkyl, R⁶-(C₃-C₁₂)cycloalkyl, -(C₁-C₆)alkyl(C₃-C₁₂)cycloalkyl,

 R^{12} is H, (C₁-C₆)alkyl, halo, -NO₂, -CF₃, -OCF₃, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -NR¹⁹R²⁰ or -(C₁-C₆)alkyl-NR¹⁹R²⁰;

 R^{13} is H, (C₁-C₆)alkyl, R^7 -aryl, -(C₁-C₆)alkyl-OR¹⁹, -(C₁-C₆)alkyl-NR¹⁹R²⁰ or -(C₁-C₆)alkyl-SR¹⁹;

 R^{14} and R^{15} are independently selected from the group consisting of $-(CH_2)_q-C-N$ and $-(CH_2)_q-C-N$, wherein q and a are as defined above;

 R^{16} and R^{17} are independently selected from the group consisting of hydrogen, R^5 -(C_1 - C_6)alkyl, R^7 -aryl, (C_3 - C_{12})cycloalkyl, R^8 -heteroaryl, R^8 -heteroaryl(C_1 - C_6)alkyl, -C(O) R^{28} , -(C_1 - C_6)alkyl(C_3 - C_7)-heterocycloalkyl, -(C_1 - C_6)alkyl-OR¹⁹ and -(C_1 - C_6)alkyl-SR¹⁹;

 R^{19} and R^{20} are independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₃-C₁₂)cycloalkyl, aryl and aryl(C₁-C₆)alkyl;

 R^{21} and R^{22} are independently selected from the group consisting of hydrogen, (C1-C6)alkyl, (C3-C12)cycloalkyl, (C3-C12)cycloalkyl, (C1-C6)alkyl, (C3-C7)heterocycloalkyl, -(C1-C6)alkyl(C3-C7)-heterocycloalkyl, R^7 -aryl, R^7 -aryl(C1-C6)alkyl, R^8 -heteroaryl(C1-C12)alkyl, -(C1-C6)alkyl-OR^{19}, -(C1-C6)alkyl-NR^{19}R^{20}, -(C1-C6)alkyl-SR^{19}, -(C1-C6)alkyl-NR^{18}-(C1-C6)alkyl-O-(C1-C6)alkyl-NR^{18}-(C1-C6)alkyl-N

R¹⁸ is hydrogen or (C₁-C₆)alkyl;

 Z^1 is R^5 -(C_1 - C_{12})alkyl, R^7 -aryl, R^8 -heteroaryl, R^6 -(C_3 - C_{12})cyclo-alkyl, R^{10} -(C_3 - C_7)heterocycloalkyl, $-CO_2(C_1$ - C_6)alkyl, CN or $-C(O)NR^{19}R^{20}$; Z^2 is hydrogen or Z^1 ; Z^3 is hydrogen or (C_1 - C_6)alkyl; or Z^1 , Z^2 and Z^3 , together with the carbon to which they are attached, form the group

or \mathbb{R}^{23} , wherein r is 0 to 3; w and u are each 0-3, provided that the sum of w and u is 1-3; c and d are independently 1 or 2; s is 1 to 5; and ring A is a fused \mathbb{R}^7 -phenyl or \mathbb{R}^8 -heteroaryl ring;

 R^{23} is 1 to 3 substituents independently selected from the group consisting of H, (C₁-C₆)alkyl, -OR¹⁹, -(C₁-C₆)alkyl-OR¹⁹, -NR¹⁹R²⁰ and -(C₁-C₆)alkyl-NR¹⁹R²⁰;

R²⁴ is 1 to 3 substituents independently selected from the group consisting of R²³, -CF₃, -OCF₃, NO₂ or halo, or R²⁴ substituents on adjacent ring carbon atoms may together form a methylenedioxy or ethylenedioxy ring;

 R^{25} is 1-3 substituents independently selected from the group consisting of H, (C₁-C₆)alkyl, (C₁-C₆)alkoxy and halo;

 R^{26} is independently selected from the group consisting of H, (C₁-C₆)alkyl and R^{25} -C₆H₄-CH₂-;

$$\begin{split} &\mathsf{R}^{27} \text{ is H, } (\mathsf{C}_1\text{-}\mathsf{C}_6) \text{alkyl, } \mathsf{R}^7\text{-aryl}(\mathsf{C}_1\text{-}\mathsf{C}_6) \text{alkyl, or } (\mathsf{C}_3\text{-}\mathsf{C}_{12}) \text{cycloalkyl;} \\ &\mathsf{R}^{28} \text{ is } (\mathsf{C}_1\text{-}\mathsf{C}_6) \text{alkyl, } \text{-}(\mathsf{C}_1\text{-}\mathsf{C}_6) \text{alkyl}(\mathsf{C}_3\text{-}\mathsf{C}_{12}) \text{cycloalkyl, } \mathsf{R}^7\text{-aryl,} \end{split}$$

 R^7 -aryl-(C_1 - C_6)alkyl, R^8 -heteroaryl, -(C_1 - C_6)alkyl- $NR^{19}R^{20}$,

-(C_1 - C_6)alkyl-OR¹⁹ or -(C_1 - C_6)alkyl-SR¹⁹;

provided that when X1 is

or X1 and X2 together are

and Z^1 is R^7 -phenyl, Z^2 is not hydrogen or (C_1-C_3) alkyl;

provided that when Z^1 , Z^2 and Z^3 , together with the carbon to which they are attached, form

provided that when R^2 and R^4 form an alkylene bridge, Z^1 , Z^2 and Z^3 , together with the carbon to which they are attached, are not

$$R^{24}$$
 A
 C
 R^{23}
 R^{24}
 A
 C
 C
 C
 C
 C
 R^{23}
 R^{24}
 R^{23}
 R^{24}
 R^{24}
 R^{23}
 R^{24}
 R^{24}
 R^{23}
 R^{24}
 R^{23}
 R^{24}
 R^{23}
 R^{24}
 R^{24}
 R^{23}
 R^{24}
 R^{24}
 R^{23}
 R^{24}
 R^{23}
 R^{24}
 R^{23}
 R^{24}
 R^{24}
 R^{24

cycloalkyl, Z2 is not H; and

a therapeutically effective amount of a second agent selected from the group consisting of: antihistamines, 5-lipoxygenase inhibitors, leukotriene inhibitors, H_3 inhibitors, B-adrenergic receptor agonists, xanthine derivatives, A-adrenergic receptor agonists, mast cell stabilizers, anti-tussives, expectorants, NK_1 , NK_2 and NK_3 tachykinin receptor antagonists, and ABA_B agonists; and a pharmaceutically acceptable carrier.