```
ClearAll["Global`*"]
ST[vv_{n}] := Mod[n, vv] - Mod[(n-1), vv]
LAdd[vv_{n}] := Sum[vv^k/k, \{k, 1, Log[vv, n]\}]
E1[vv_, n_, 0] := 1
E1[vv_n, n_k] := E1[vv, n, k] = Sum[ST[vv, j]E1[vv, Floor[n/j], k-1], {j, 1, n}]
E2[vv_{,n_{,k_{||}}} := E2[vv_{,n_{,k_{||}}}] = Sum[(-1)^{(k-j)} Binomial[k, j] E1[vv_{,n_{,j_{||}}}, \{j, 0, k\}]
e2[vv_{n}, n_{k}] := e2[vv, n, k] = E2[vv, n, k] - E2[vv, n-1, k]
P2[vv_{n}, n] := Sum[(-1)^(k+1)/kE2[vv, n, k], \{k, 1, Log[2, n]\}]
p2[vv_{n}] := n + Sum[(-1)^(k+1)/ke2[vv, n, k], \{k, 1, Log[2, n]\}]
P2a[n] := P2a[n] = Sum[p2[j, j], {j, 2, n}]
md[x_{, y_{]}} := y/2 - y/PiSum[Sin[2Pikx/y]/k, {k, 1, 200}]
md2[x_{, y_{, 1}} := (y/2 - y/PiSum[Sin[2Pikx/y]/k, \{k, 1, 200\}]) -
  (y/2 - y/PiSum[Sin[2Pik(x-1)/y]/k, \{k, 1, 200\}])
md3[x_{y}] := (y/2 - y/PiSum[Sin[2Pikx/y]/k, {k, 1, 1000}]) -
  (y/2 - y/PiSum[Sin[2Pik(x-1)/y]/k, \{k, 1, 1000\}])
DiscretePlot[P2[5, n] + LAdd[5, n], \{n, 2, 100\}]
25
20
15
                              60
```


DiscretePlot[{E2[13/2, n, 2]}, {n, 2, 100}]

${\tt DiscretePlot[\{E2[2,\,n,\,1]-E2[2,\,n-1,\,1]\},\,\{n,\,2,\,100\}]}$

N[md2[100, 6]]

0.997257

Plot[md2[n, 2], {n, 2, 30}]

Plot[md2[n, 4], {n, 2, 30}]

Plot[$md2[n, 3/2], \{n, 2, 30\}$]

Plot[md2[n, 5 / 4], {n, 2, 30}]

${\tt DiscretePlot[\{E2[9\,/\,2,\,n,\,1]\,-\,E2[9\,/\,2,\,n-1,\,1]\},\,\{n,\,2,\,30\}]}$

Plot[md2[n, 9 / 2], {n, 2, 30}]

Plot[md[n, 9 / 2], {n, 2, 30}]

${\tt DiscretePlot[Mod[n, 9/2], \{n, 2, 30\}]}$

$DiscretePlot[md[n, 9 / 2], \{n, 2, 30\}]$

 $\label{eq:discretePlot} \texttt{DiscretePlot}[\texttt{ST}[9.5,\,n]\,,\,\{n,\,2,\,100\}\,,\,\,\texttt{PlotRange} \rightarrow \{\{2,\,100\}\,,\,\{-10,\,1\}\}]$

 $\label{eq:discretePlot} \texttt{DiscretePlot[ST[9, n], \{n, 2, 100\}, PlotRange} \rightarrow \{\{2, 100\}, \{-10, 1\}\}]$

 $\label{eq:discretePlot} \texttt{DiscretePlot[ST[10, n], \{n, 2, 100\}, PlotRange} \rightarrow \{\{2, 100\}, \{-10, 1\}\}]$

 $DiscretePlot[ST[9.1, n], \{n, 2, 100\}, PlotRange \rightarrow \{\{2, 100\}, \{-10, 1\}\}\}$

 $\texttt{DiscretePlot}[\texttt{P2[2, n]} + \texttt{LAdd[2, n]} - \texttt{LAdd[1.00001, n]} + \texttt{LAdd[1.000001, 1.4513692]}, \{\texttt{n, 2, 100}\}]$

LogIntegral[1.000001]

-13.2383

LAdd[1.000001, 80] - LAdd[1.000001, 1.4513692]

 $25.6786 - 2.49006 \times 10^{-10}$ i

N[LogIntegral[80]]

25.6786

LAdd[1.000001, 1.4513692]

13.8155

 $\label{eq:decomposition} \mbox{DiscretePlot}[\mbox{P2[2, n]} + \mbox{LAdd[2, n]} - \mbox{LogIntegral[n]}, \{\mbox{n, 2, 100}\}]$

DiscretePlot[{ s2[n] }, {n, 1, 100}]

s1[1]

ST[5/2,1]

s

ST[5/2,2]

1

ST[5/2,3]

- -

ST[5/2,4]

1

ST[5/2,5]

- -

p2[2, 2]

- 1

p2[3, 3]

- 2

p2[4, 4]

- 7 2

p2[5, 5]

- 4

p2[6, 6]

- 6

p2[7, 7]

- 6

p2[8,8]

- 23

p2[9,9]

- 17

p2[10, 10]

-10

P2a[100]

- ^{75 307}

 $ex[n_] := n(n+1)/2$

DiscretePlot[P2a[n], {n, 2, 100}]

 ${\tt Table[\ \{n,\ p2[n,\,n]\ \},\ \{n,\,2,\,100\}]\ //\ TableForm}$

35	0
36	0
37	1
38	0
39	0
40	0
41	1
42	0
43	1
44	0
45	0
46	0
47	1
48	0
49	2
50	
51	0
52	0
53	1
54	0
55	
	0
56	0
57	0
58	0
59	1
60	0
61	1
62	0
63	0
64	$\frac{1}{6}$
65	0
66	0
67	1
68	0
69	0
70	0
71	1
72	0
73	1
74	0
75	0
75	0
76 77 78	0
70	0
78 79	1
80	0
	1
81	4
82	0
83	1
84	0
85	0
86	0
87	0
88	0

90	0
91	0
92	0
93	0
94	0
95	0
96	0
97	1
98	0
99	0
100	0