HW03: NDFSM ke DFSM dan Minimisasi DFSM (Versi 2) Kuliah: Teori Bahasa Dan Automata (A, B, C)

Semester: Genap 2023-2024

Batas Waktu Pengumpulan: 21 Februari 2024, jam 23:59:59 Waktu Server Aren

Bagian 1. Diberikan mesin-mesin Finite State yang bersifat Nondeterministik (NDFSM) sebagai berikut. Jalankan algoritma konversi NDFSM menjadi DFSM.

Bagian 2. Diberikan mesin-mesin Finite State yang sudah Deterministik (DFSM) sebagai berikut. Lakukan minimisasi untuk mendapatkan mesin DFSM dengan jumlah status minimal.

Bagian 3. Berikut ini diberikan sejumlah bahasa regular. Temukanlah kelas-kelas ekivalensi berdasarkan bahasa ybs. dan bentuklah DFSM minimal berdasarkan kelas-kelas ekivalensi tersebut.

LR-3a. Bahasa $\{w \in \{a,b\}^* : \#_b(w) \text{ berharga ganjil dan setiap kemunculan b selalu segera diikuti aa} \}$

LR-3b. Bahasa $\{w \in \{a,b\}^* : \#_b(w) \text{ berharga genap dan setiap kemunculan b selalu segera diikuti aa} \}$

LR-3c. Bahasa $\{w \in \{a,b\}^* : \#_b(w) \text{ berharga ganjil dan setiap kemunculan b selalu tepat sebelum aa} \}$

LR-3d. Bahasa $\{w \in \{a,b\}^* : \#_b(w) \text{ berharga genap dan setiap kemunculan b selalu tepat sebelum aa} \}$

LR-3e. Bahasa $\{w \in \{a,b\}^* : \#_b(w) \text{ berharga ganjil dan setiap kemunculan b selalu dalam substring-substring aba yang nonoverlap }$

LR-3f. Bahasa $\{w \in \{a,b\}^* : \#_b(w) \text{ berharga genap dan setiap kemunculan b selalu dalam substring-substring aba yang nonoverlap }$

LR-3g. Bahasa $\{w \in \{a,b\}^* : \#_b(w)/2 \text{ berharga ganjil dan setiap kemunculan b selalu dalam substring-substring bab yang nonoverlap }$

LR-3h. Bahasa $\{w \in \{a,b\}^* : \#_b(w)/2 \text{ berharga genap dan setiap kemunculan b selalu dalam substring-substring bab yang nonoverlap }$

Petunjuk Umum:

- Masing-masing akan mendapatkan 1 soal di setiap bagian, jadi 3 soal.
- Jawaban ditulis dengan **tulisan tangan sendiri** (boleh dengan stylush dengan ketebalan tulisan minimal 2 point, tapi mouse tidak disarankan karena biasanya tidak rapih).
- Setiap jawaban dituliskan pada kertas HVS dengan orientasi portrait (tidak boleh landscape!), satu jawaban soal di satu halaman kertas HVS tsb. (jadi tidak boleh satu halaman lebih dari 1 jawaban soal, dan tidak boleh satu jawaban di lebih dari satu halaman kertas).
- Beri ruang spasi (min 1 cm) di setiap tepi kertas agar jawaban tidak terpotong saat cropping, dan beri **nomor bagian-versi** soal (misalnya 2b) di pojok kanan atas.
- Setiap halaman di-scan (boleh dengan camscanner atau software semacamnya, asal kertas pada foto tidak kusut, tidak bergelombang, tidak berbentuk trapesium, tidak berotasi > 4 derajat, atau jugaterkena bayangan).
- Submit melalui "Soal=soal Essay dan Submit" di server Aren, boleh satu demi sebagai file-file jpg atau satu file pdf yang berisi ketiga halaman (opsi diberikan oleh server Aren). Jika sebagai satu file pdf harap urutan halaman sesuai urutan bagian.

Petunjuk Bagian 1. Jawaban harus berisi:

• Hasil proses mendapatkan δ' (menurut algoritma di halaman 14 slide materi kuliah ybs) dituliskan dalam bentuk tabel sebagai berikut:

StateAktif Q	δ'(Q,a)	δ'(Q,b)

... dst

• Urutan stateAktif di kolom terkiri harus sesuai dengan **urutan ditemukannya** setiap stateAktif tersebut oleh algoritma. Untuk menyingkat penulisannya stateAktif dituliskan tanpa kurung kurawal dan koma (contoh {A,B,C} ditulis ABC).

- Tunjukkan proses mendapatkan **stateBaru** cukup dari satu stateAktif yang berisikan lebih dari satu status untuk setiap symbol dalam Σ .
- Gambarkan DFSM (dengan nama-nama status yang telah disingkat tsb) yang dihasilkan.
- Jangan lupa menandai mana start state dan juga setiap accepting states.

Petunjuk Bagian 2. Jawaban harus berisi:

- Mulai dari A dan K-A, tunjukkan pemecahan himpunan yang terjadi.
- Tunjukkan prmeriksaan yang mengakibatkan **pemecahan-pemecahan yang pertama** baik di A maupun di K-A, masing-masing cukup yang pertama saja.
- Gambarkan secara lengkap pohon terpecahnya {A} dan {K-A} hingga kelas-kelas ekivalensi ditemukan secara lengkap.
- Gambarkan DFSM minimum yang diperoleh serta dengan **nama status disingkat** seperti pada bagian 1 sebelumnya.
- Jangan lupa menandai mana start state dan juga setiap accepting states.

Petunjuk Bagian 3. Jawaban harus berisi:

- Pemeriksaan indistinguishability dari setiap dari 31 string pertama proper-ordered dari {a,b}* (yaitu ε, a, b, aa, ..., bbbb}* dengan satu string dalam kelas ekivalensi yang sudah teridentifikasi saat setiap pemeriksaan itu.
- Kelas ekivalensi yang ditemukan diberi nama dengan huruf besar A, B, C, ... terurut sesuai dengan diidentifikasikannya kelas ekivalensi tsb.
- Khusus pada pemeriksaan 7 string pertama, tunjukkan distinguishable atau indistinguishable dari string tsb. sementara string-string berikutnya cukup dengan Keputusan masuk ke kelas ekivalensi yang mana saja.
- Jika setelah 31 string tsb anda berpikir masih adanya kelas ekivalensi yang belum teridentifikasi, sebutkanlah kelas itu dan untuk string-string apa saja.
- Gambarkan DFSM minimum yang diperoleh serta dengan **nama kelas ekivalensi** yang diberikan.
- Jangan lupa menandai mana start state dan juga setiap accepting states.