HMMT February 2016

February 20, 2016

Algebra

- 1. Let z be a complex number such that |z| = 1 and |z 1.45| = 1.05. Compute the real part of z.
- 2. For which integers $n \in \{1, 2, ..., 15\}$ is $n^n + 1$ a prime number?
- 3. Let A denote the set of all integers n such that $1 \le n \le 10000$, and moreover the sum of the decimal digits of n is 2. Find the sum of the squares of the elements of A.
- 4. Determine the remainder when

$$\sum_{i=0}^{2015} \left\lfloor \frac{2^i}{25} \right\rfloor$$

is divided by 100, where |x| denotes the largest integer not greater than x.

5. An infinite sequence of real numbers a_1, a_2, \ldots satisfies the recurrence

$$a_{n+3} = a_{n+2} - 2a_{n+1} + a_n$$

for every positive integer n. Given that $a_1 = a_3 = 1$ and $a_{98} = a_{99}$, compute $a_1 + a_2 + \cdots + a_{100}$.

- 6. Call a positive integer $N \ge 2$ "special" if for every k such that $2 \le k \le N$, N can be expressed as a sum of k positive integers that are relatively prime to N (although not necessarily relatively prime to each other). How many special integers are there less than 100?
- 7. Determine the smallest positive integer $n \geq 3$ for which

$$A \equiv 2^{10n} \pmod{2^{170}}$$

where A denotes the result when the numbers 2^{10} , 2^{20} , ..., 2^{10n} are written in decimal notation and concatenated (for example, if n=2 we have A=10241048576).

- 8. Define $\phi^!(n)$ as the product of all positive integers less than or equal to n and relatively prime to n. Compute the number of integers $2 \le n \le 50$ such that n divides $\phi^!(n) + 1$.
- 9. For any positive integer n, S_n be the set of all permutations of $\{1, 2, 3, ..., n\}$. For each permutation $\pi \in S_n$, let $f(\pi)$ be the number of ordered pairs (j, k) for which $\pi(j) > \pi(k)$ and $1 \le j < k \le n$. Further define $g(\pi)$ to be the number of positive integers $k \le n$ such that $\pi(k) \equiv k \pm 1 \pmod{n}$. Compute

$$\sum_{\pi \in S_{999}} (-1)^{f(\pi) + g(\pi)}.$$

10. Let a, b and c be positive real numbers such that

$$a^2 + ab + b^2 = 9$$

$$b^2 + bc + c^2 = 52$$

$$c^2 + ca + a^2 = 49.$$

Compute the value of $\frac{49b^2 - 33bc + 9c^2}{a^2}$.