Submitted by-Aditya Gautam

Roll No-12

M.sc. 3rd semester

Date of Assignment-10/11/2020

Date of Submission-16/11/2020

Experiment No-05

Topic- FITTING OF MULTIPLE REGRESSION MODEL AND COMPUTATION OF MULTIPLE CORRELATION COEFFICIENT.

<u>Problem-</u> A study was carried out in the class to see if in a particular subject, the performance of the students in the 3 class tests affect the performance in the final examination. The marks scored out of 100 in the final examination and out of 15 in each of the 3 class tests in the subject under consideration by 15 students of the class is given below.

Sl. No. of	Final exam	Marks in 1 st	Marks in 2 nd	Marks in 3 rd
<u>students</u>	marks(Y)	$\underline{\operatorname{class test}(\mathbf{X}_1)}$	class test(X_2)	class test(X ₃)
1.	87	45	41	49
2.	97	34	41	38
3.	81	40	35	43
4.	75	37	35	40
5.	69	31	36	39
6.	78	42	31	37
7.	91	48	47	48
8.	83	41	39	43
9	93	49	50	46
10.	72	38	36	42
11.	80	38	40	38
12.	89	41	47	38
13.	81	39	40	37
14.	78	36	33	39
15.	59	29	22	30

(i)Fit a multiple linear regression model to the given data.(ii)Compare the multiple correlation coefficient of Y on (X₁,X₂,X₃) and hence, test if it is							
(ii)Compare the significantly dif		pefficient of Y or	(X_1, X_2, X_3) and	hence, test if it is	1		
organicantly an	referre from 0.						

Theory- (i) In matrix notation, the multiple linear regression model is given by

$$\tilde{Y} = \tilde{X} \; \tilde{\beta} + \tilde{\epsilon}$$

Where,
$$\tilde{\mathbf{Y}} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$
, $\tilde{\boldsymbol{\beta}} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{bmatrix}$

$$\tilde{\mathbf{X}} = \begin{pmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1p} \\ 1 & X_{21} & X_{22} & \dots & X_{2p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{np} \end{pmatrix}$$

$$\tilde{\varepsilon} = (\varepsilon_1, \varepsilon_2, \dots \dots \varepsilon_n)$$

$$Y_i = \beta_1 + \beta_2 X_{i1} + \beta_3 X_{i2} + \beta_4 X_{i3}$$

$$Y_1 = \beta_1 + \beta_2 X_{11} + \beta_3 X_{12} + \beta_4 X_{13}$$

$$Y_2 = \beta_1 + \beta_2 X_{21} + \beta_3 X_{22} + \beta_4 X_{23}$$

$$Y_n = \beta_1 + \beta_2 X_{n1} + \beta_3 X_{n2} + \beta_4 X_{n3}$$

The least square estimate of $\tilde{\beta}$ is given by

$$\tilde{\beta} = (X^{/}X)^{-1}(X^{/}Y)$$

and thus the fitted multiple linear regression model becomes,

$$Y = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3 + \hat{\beta}_n X_p$$

(ii) We first find the sample covariance matrix of X and partitioned it as shown below:

$$\underline{X} = \begin{pmatrix} Y \\ \dots \\ X_1 \\ X_2 \\ X_3 \end{pmatrix} \qquad \hat{\Sigma} = \mathbf{S} = \begin{bmatrix} \sigma_y^2 & \vdots & \sigma_{y_1} & \sigma_{y_2} & \sigma_{y_3} \\ \dots & \dots & \dots & \dots \\ \sigma_{y_1} & \vdots & \sigma_{12}^2 & \sigma_{13} \\ \sigma_{y_2} & \vdots & \sigma_{21} & \sigma_{22}^2 & \sigma_{23} \\ \sigma_{y_3} & \vdots & \sigma_{31} & \sigma_{32} & \sigma_{33}^2 \end{bmatrix} = \begin{bmatrix} \hat{\Sigma}_{11} & \hat{\Sigma}_{12} \\ \hat{\Sigma}_{21} & \hat{\Sigma}_{22} \end{bmatrix}$$

The multiple correlation coefficient between Y and (X_1,X_2,X_3) is given by

$$R_{y.123} = R^2 = \frac{\widehat{\Sigma}_{12} \widehat{\Sigma}_{22}^{-1} \widehat{\Sigma}_{21}}{\widehat{\Sigma}_{11}}$$

The null to be tested here is $H_0: \rho_{4.123}=0$

(The population multiple correlation coefficient is not significantly different from zero)

Under H₀ the test statistic is

$$F = \frac{R^2}{1 - R^2} \frac{n - p - 1}{p} \sim F(p, n - p - 1)$$

The calculated value of F is compared to the tabulated values and conclusions are drawn according

Calculation-

The R-Programming for obtaining the solution.

Y=c(87,97,81,75,69,78,91,83,93,72,80,89,81,78,59)

X1=c(45,34,40,37,31,42,48,41,49,38,38,41,39,36,29)

X2=c(41,41,35,35,36,31,47,39,50,36,40,47,40,33,32)

X3=c(49,38,43,40,39,37,48,43,46,42,38,38,37,39,30)

X0=rep(1,times=15)

X0

X = array(c(X0,X1,X2,X3),dim=c(15,4))

X

 $X_X=t(X)\%*\%X$

 X_X

 $X_Y=t(X)\%*\%Y$

 X_Y

 $B=solve(X_X)\%*\%X_Y$

В

Z=array(c(Y,X1,X2,X3),dim=c(15,4))

 \mathbf{Z}

```
S=cov(Z)
S
S11=S[1,1]
S11
S12=array(c(S[1,2],S[1,3],S[1,4]),dim=c(1,3))
S12
S21=t(S12)
S21
S22 = array(c(S[2,2],S[3,2],S[4,2],S[2,3],S[3,3],S[4,3],S[2,4],S[3,4],S[4,4]), dim = c(3,3))
S22
R=sqrt((S12%*%solve(S22)%*%S21)/S11)
R
R2=R^2
R2
n=15
p=4
F_{cal}=(R2/(1-R2))*((n-p-1)/p)
F_cal
F_{tab}=qf(0.95,n,n-p-1)
F_tab
```

Conclusion-

- (i) The fitted multiple linear regression model is $\underline{Y}=19.1718726+0.4107971X_1+0.9546416X_2+0.2097482X_3$
- (ii) The multiple correlation coefficient between Y and (X_1,X_2X_3) is given by

$$R_{Y.123} = 0.7985956$$

Since, The calculated value of F at (p,n-p-1) = (4,10) d.f is 4.401406 which is greater than the tabulated value of F= 2.845017 at 5% level of significance, so we reject the null hypothesis and conclude that the population multiple correlation is not significantly different from zero(0).