Relations (R)

Chapter		Lecture	Assignment	
Relations	8	8	4	

6. (6 pts) Consider the binary relation R on \mathbb{N} defined as follows for all $n, m \in \mathbb{N}$:	6. (6 pts) Consider the binary relation R on \mathbb{N} defined as follows for all $n, m \in \mathbb{N}$:				
$mRn ext{ iff } n=5\cdot m$	$m R n \text{iff} n = 5 \cdot m$				
Which of the following statements is true ?	Which of the following statements is true ?				
$\square R$ is an equivalence relation.	f A is an equivalence relation.				
\square R is a partial order relation.	$\boxed{\mathbb{B}}$ R is a partial order relation.				
\square R is antisymmetric, but not transitive.					
\square R is symmetric, but not reflexive.	$\boxed{\mathbb{D}}$ R is symmetric, but not reflexive.				
3. (6 pts) Let A be an arbitrary set. Which of the following statements is true for all binary relations R and S on A?	3. (6 pts) Let A be an arbitrary set. Which of the following statements is true for all binary relations R and S on A?				
\square If R and S are transitive, then also $R \cup S$ is transitive.	$\overline{\mathbf{A}}$ If R and S are transitive, then also $R \cup S$ is transitive.				
\square If R and S are symmetric, then also $R \cup S$ is symmetric.	$ ightharpoonup$ If R and S are symmetric, then also $R \cup S$ is symmetric.				
\square If R is transitive and $S \subseteq R$, then also S is transitive.	$\overline{\mathbb{C}}$ If R is transitive and $S \subseteq R$, then also S is transitive.				
\square If R is symmetric and $S \subseteq R$, then also S is symmetric.	$\overline{\mathbb{D}}$ If R is symmetric and $S\subseteq R$, then also S is symmetric.				
	Solution: Let R, S be symmetric, and let $(x, y) \in R \cup S$. Then $(x, y) \in R$ or $(x, y) \in S$. Since both relations are symmetric, we obtain $(y, x) \in R$ or $(y, x) \in S$. Consequently, $(y, x) \in R \cup S$.				
7. (6 pts) Let $R = \{(0,0), (0,1), (1,3), (2,1)(2,2), (2,3), (3,0)\}$ be a relation on the set $S = \{0,1,2,3\}$. Which of the following statements is true ?	7. (6 pts) Let $R = \{(0,0), (0,1), (1,3), (2,1)(2,2), (2,3), (3,0)\}$ be a relation on the set $S = \{0,1,2,3\}$. Which of the following statements is true ?				
\square R is reflexive and transitive, but not antisymmetric.	$\boxed{\mathbb{A}}$ R is reflexive and transitive, but not antisymmetric.				
\square R is antisymmetric, but neither reflexive nor transitive.	$\blacksquare R$ is antisymmetric, but neither reflexive nor transitive.				
\square R is transitive and antisymmetric, but not reflexive.	$\boxed{\mathbb{C}}$ R is transitive and antisymmetric, but not reflexive.				
\square R is reflexive, but neither transitive nor antisymmetric.	$\boxed{\mathbb{D}}$ R is reflexive, but neither transitive nor antisymmetric.				

7. (6 pts) Let $R = \{(0,0), (0,1), (0,2), (2,2), (3,1), (3,3), (4,1), (4,3)\}$ be a relation on the set $S = \{0,1,2,3,4\}$. Which of the following statements is true ?	7. (6 pts) Let $R = \{(0,0), (0,1), (0,2), (2,2), (3,1), (3,3), (4,1), (4,3)\}$ be a relation on the set $S = \{0,1,2,3,4\}$. Which of the following statements is true ?
\square R is transitive and antisymmetric, but not reflexive.	
\square R is antisymmetric, but neither reflexive nor transitive.	$\boxed{\mathbb{B}}$ R is antisymmetric, but neither reflexive nor transitive.
\square R is reflexive and transitive, but not antisymmetric.	$\overline{\mathbb{C}}$ R is reflexive and transitive, but not antisymmetric.
\square R is reflexive, but neither transitive nor antisymmetric.	$\boxed{\mathbb{D}}$ R is reflexive, but neither transitive nor antisymmetric.
7. (6 pts) Let R be a relation on the set $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ defined as follows: For all $m, n \in \mathbb{Z}$, $m R n$ if and only if $m - n$ is odd. Which of the following statements is true ?	7. (6 pts) Let R be a relation on the set $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ defined as follows: For all $m, n \in \mathbb{Z}$, $m R n$ if and only if $m - n$ is odd. Which of the following statements is true ?
\square R is reflexive and transitive.	$\boxed{\mathbb{A}} R$ is reflexive and transitive.
\square R is reflexive but not transitive.	$\boxed{\mathbf{B}}$ R is reflexive but not transitive.
\square R is not reflexive but transitive.	$\boxed{\mathbb{C}}$ R is not reflexive but transitive.
\square R is neither reflexive nor transitive.	
☐ A is neither renexive nor transitive.	Solution: For example we don't have $1R1$ since $1-1=0$ is not odd. And we have $1R2$ and $2R3$ but not $1R3$.
7. (6 pts) Let $R = \{(0,0), (0,1), (0,3), (1,1), (2,2), (3,0), (3,1), (3,3)\}$ be a relation on the set $S = \{0,1,2,3\}$. Which of the following statements is true ?	7. (6 pts) Let $R = \{(0,0), (0,1), (0,3), (1,1), (2,2), (3,0), (3,1), (3,3)\}$ be a relation on the set $S = \{0,1,2,3\}$. Which of the following statements is true ?
$\square R$ is symmetric and transitive.	$\boxed{\mathbf{A}}$ R is symmetric and transitive.
$\square R$ is symmetric but not transitive.	$\boxed{\mathbf{B}}$ R is symmetric but not transitive.
$\square R$ is not symmetric but transitive.	
\square R is neither symmetric nor transitive.	$\boxed{\mathbb{D}}$ R is neither symmetric nor transitive.
R is neither symmetric nor transitive.	Solution: R is not symmetric because $(0,1) \in R$ but $(1,0) \notin R$. To check that R is transitive, we look at all cases where $(a,b),(b,c) \in R$ and show that $(a,c) \in R$. If $a=b$ or $b=c$, then $(a,c) \in R$ follows immediately. Let's look at all other cases:
	• $(0,3),(3,0) \in R$: $(0,0) \in R$
	• $(3,0),(0,3) \in R$: $(3,3) \in R$

• $(0,3), (3,1) \in R$: $(0,1) \in R$ • $(3,0), (0,1) \in R$: $(3,1) \in R$

12.	(12 pts) Which	ch of the following	g statements a	re true for	r all re	elations R	and S	on	\mathbb{N} ?
	Justify your a	answer by giving a	a proof or a co	unterexam	ple.				

- (a) If R and S are antisymmetric, then $R \cup S$ is antisymmetric.
- (b) If R and S are antisymmetric, then $R \cap S$ is antisymmetric.

3. (6 pts) Consider the binary relation R on \mathbb{N} defined as follows

$$mRn$$
 iff $m \equiv n \pmod{4}$

Which of the following statements is **true**?

	Each	equivalence	e class	of .	R has	exactly	four	elements
--	------	-------------	---------	------	-------	---------	------	----------

	R	has	exactly	four	distinct	equival	lence	classe	S
\Box	10	mas	chactry	Ioui	distillet	equiva.	cnce	Classc	o

	R	is	antisymmetric	;
--	---	----	---------------	---

$$\square [1]_R = [4]_R.$$

- 12. (12 pts) Which of the following statements are true for all relations R and S on \mathbb{N} ? Justify your answer by giving a proof or a counterexample.
 - (a) If R and S are antisymmetric, then $R \cup S$ is antisymmetric.

Solution: $R \cup S$ is not necessarily antisymmetric.

For example, if $R = \{(0,1)\}$ and $S = \{(1,0)\}$, then R and S are antisymmetric, but the relation $R \cup S = \{(0,1),(1,0)\}$ is not.

(b) If R and S are antisymmetric, then $R \cap S$ is antisymmetric.

Solution: This statement is true.

Suppose that R and S are antisymmetric. To show that $R \cap S$ is antisymmetric, we assume some $x,y \in \mathbb{N}$ such that $(x,y) \in R \cap S$ and $(y,x) \in R \cap S$. We must then show that also x=y. By definition of intersection, we know that $(x,y) \in R$ and $(y,x) \in R$. Because R is antisymmetric, it follows that x=y.

3. (6 pts) Consider the binary relation R on \mathbb{N} defined as follows

$$mRn$$
 iff $m \equiv n \pmod{4}$

Which of the following statements is **true**?

- $\overline{\mathbf{A}}$ Each equivalence class of R has exactly four elements.
- \mathbf{P} R has exactly four distinct equivalence classes.
- $\overline{\mathbb{C}}$ R is antisymmetric.
- $D[1]_R = [4]_R.$

12. (12 pts) Consider the "divides" relation on the set $A = \{1, 2, 3, 5, 10, 15\}$. That is, consider the relation R defined as follows for all $n, m \in A$:

$$mRn \iff m|n$$

The relation R is a partial order relation.

- (a) Draw the Hasse diagram for R.
- (b) Find all minimal elements of R. Write 'None' if there aren't any.
- (c) Find all maximal elements of R. Write 'None' if there aren't any.
- (d) Find all least elements of R. Write 'None' if there aren't any.
- (e) Find all greatest elements of R. Write 'None' if there aren't any.

12. (12 pts) Consider the "divides" relation on the set $A=\{1,2,3,5,10,15\}$. That is, consider the relation R defined as follows for all $n,m\in A$:

$$m\,R\,n \iff m\,|\,n$$

The relation R is a partial order relation.

(a) Draw the Hasse diagram for R. Solution:

- (b) Find all minimal elements of R. Write 'None' if there aren't any. Solution: 1
- (c) Find all maximal elements of R. Write 'None' if there aren't any. Solution: 10,15
- (d) Find all least elements of R. Write 'None' if there aren't any. Solution: 1
- (e) Find all greatest elements of R. Write 'None' if there aren't any. Solution: None

6. (6 pts) Let $(\{a,b,c,d,e,f,g,h\},\preceq)$ be the partially ordered set defined by the following Hasse diagram:

Which of the following statements is **true**?

 \Box a and f are incomparable.

 $\square g \leq c$.

 \Box a is the greatest element.

 \square h is the least element.

13. (8 pts) Let ({a, b, c, d, e, f, g, h}, ≤) be the partially ordered set defined by the following Hasse diagram:

- (a) Find all minimal elements. Write 'None' if there aren't any.
- (b) Find all maximal elements. Write 'None' if there aren't any.
- (c) Find all least elements. Write 'None' if there aren't any.
- (d) Find all greatest elements. Write 'None' if there aren't any.

6. (6 pts) Let $(\{a,b,c,d,e,f,g,h\},\preceq)$ be the partially ordered set defined by the following Hasse diagram:

Which of the following statements is true?

 $\overline{\mathbf{A}}$ a and f are incomparable.

 $\mathbb{B} g \leq c$.

 $\overline{\mathbf{C}}$ a is the greatest element.

 $\triangleright h$ is the least element.

13. (8 pts) Let $(\{a,b,c,d,e,f,g,h\},\preceq)$ be the partially ordered set defined by the following Hasse diagram:

(a) Find all minimal elements. Write 'None' if there aren't any.

Solution: d, h

- (b) Find all maximal elements. Write 'None' if there aren't any. Solution: a
- (c) Find all least elements. Write 'None' if there aren't any. Solution: None
- (d) Find all greatest elements. Write 'None' if there aren't any. Solution: a