Intelligence Artificielle et Analyse de données

Applications: Python-PyTorch

Johan Peralez

- 1. Définir l'Intelligence Artificielle (IA)
- 2. Prérequis –ressources
- 3. Introduction aux réseaux de neurones (NNs, Neural Networks)
 - 3.1. Problèmes de régression
 - 3.2. Descente de gradient, dérivation automatique
 - 3.3. Un NN simple (MLP)
 - 3.4. Problèmes de classification
- 4. Les réseaux de neurones récurrents (RNNs)
 - 4.1. Données séquentielles
 - 4.2. Principaux RNNs
 - 4.3. Implémentation
- 5. Apprentissage pas renforcement (RL)
 - 5.1. Principe et définitions
 - 5.2. Equations de Bellman
 - 5.3. Algorithme tabulaire (Q-learning)
 - 5.4. Approximation des fonctions de valeurs (NNs)
- 6. Travaux Pratiques
 - 6.1. Réseaux de neurones récurrents (RNNs)
 - 6.2. Apprentissage pas renforcement (RL)
 - 6.3. Classification d'images : les réseaux de neurones convolutifs (CNNs)

1. Définir l'Intelligence Artificielle (IA)

- L'IA est une notion floue et qui évolue rapidement ⇒ sa définition dépend:
 - du domaine (traitement d'image, contrôle, etc.)
 - e.g. distinguer des visages vs faire marcher un robot
 - de l'époque (depuis le milieu du XXe siècle)
 - e.g. Deep Blue vs Alpha Go

• Exemples:

- « L'automatisation d'activités que nous associons à la pensée humaine, comme la prise de décision, la résolution de problème ou l'apprentissage. » (BELLMAN 1978) subjectif (nous ?)
- « L'étude de comment **programmer les ordinateurs** pour qu'ils réalisent des tâches pour lesquelles les êtres humains sont **actuellement meilleurs**. » (RICH & KNIGHT 1991) paradoxal (jeu d'échec vs football ?)
- « Ensemble de **théories et de techniques** mises en œuvre en vue de réaliser des machines capables de **simuler l'intelligence humaine**. » (Larousse 2024)

```
vague (définir intelligence ?)
```

• Difficulté à définir l'IA = difficulté à définir l'Intelligence.

Selon [Larousse 2024], l'intelligence =

- 1. « Ensemble des fonctions mentales ayant pour objet la connaissance conceptuelle et rationnelle »
- 2. « Aptitude d'un être humain à s'adapter à une situation, à choisir des moyens d'action en fonction des circonstances »
- Définition "pragmatique":
 - IA = ensemble des méthodes qui sont habituellement classées dans l'IA par les spécialistes de son domaine.
 - En traitement de l'image : réseaux de neurones (NNs) convolutifs (CNNs), algorithmes de segmentation, etc.
 - En contrôle: NNs récurrents (RNNs), algorithmes d'apprentissage par renforcement (RL), etc.

2. Prérequis -ressources (programmation-mathématiques)

- L'IA et l'analyse de données nécessitent des compétences :
 - en **programmation**

Python (langage le + utilisé en IA)

• en mathématiques

Algèbre linéaire, calcul différentiel, probabilités, statistiques

- Ressources Python en ligne:
 - Cours et exos de base :
 - https://www.learnpython.org/
 - https://www.france-ioi.org/algo/chapters.php
 - https://courspython.com/apprendre-numpy.html
 - Installation (programmer en local)
 - https://anaconda.org
 - https://pytorch.org/get-started/locally/
 - Programmer en ligne :
 - https://www.programiz.com/python-programming/online-compiler/
 - https://colab.research.google.com/

3. Introduction aux réseaux de neurones

- 3.1. Problèmes de régression
- 3.2. Descente de gradient, dérivation automatique
- 3.3. Un réseau de neurones simple (MLP)
- 3.4. Titanic

3.1 Problèmes de régression

Formulation : apprendre à prédire une valeur de sortie y à partir d'une donnée d'entrée x

valeur
$$\hat{y}$$
 $\hat{y} = h(x, \theta)$ prédite fonction h paramètre(s) θ choisie « à la main » à apprendre

afin de minimiser une fonction **coût** L (*loss*) :

$$\min_{\theta} L(\{y\}, \{\hat{y}\})$$
 données prédictions

⇒ problème d'optimisation

Remarque : nous verrons plus tard que h peut-être un réseau de neurones ...

Exemple:

Données:

[C. Bishop, Pattern recognition and Machine learning, 2006]

On choisit de prédire avec un polynôme d'ordre M :

$$\hat{t} = h(x, \theta) = \theta_0 + \theta_1 x + \theta_2 x^2 + ... + \theta_M x^M$$

Et une fonction de coût « moindre carrés » (moyenné):

$$L = \frac{1}{N} \sum_{i=1}^{N} (t_i - \hat{t}_i)^2$$
, avec N le nombre de données.

Quel ordre M choisir pour notre polynôme?

- Pour M trop petit : problème de sous-apprentissage (underfitting).
- Pour M trop grand : problème de sur-apprentissage (overfitting).

Remarque (**polynômes de Lagrange**) : pour n données distinctes il existe un (unique) polynôme d'ordre n-1 qui passe exactement par chaque donnée.

Séparation des données en, au moins, 2 ensembles :

- Données d'entraînement ($training\ set$). Pour l'apprentissage de θ , i.e. la résolution du problème d'optimisation.
- Données de validation (validation set).
 Permet de détecter le surapprentissage :

Big Data?

Augmenter (fortement) le nombre de données d'apprentissage permet de réduire le surapprentissage :

M=9

[C. Bishop, Pattern recognition and Machine learning, 2006]

Trois grandes difficultés des problèmes d'apprentissage :

1. Expressivité

Mon modèle, i.e. ma fonction h, peut-elle apprendre des phénomènes complexes ?

2. Difficulté à entraîner

Le problème d'optimisation, i.e. minimiser la différence entre prédictions et données, est-il difficile ? e.g. si on résout par descente de gradient, la fonction coût est-elle dérivable ? lisse ?

3. Généralisation

Comment mon modèle se comporte sur des données qui ne sont pas dans le *training set* ? Capacité à interpoler / extrapoler ?

e.g. le surapprentissage implique une mauvaise généralisation.

Exercice 3.a (Python, NumPy):

Générer et visualiser un jeu de données similaire à l'exemple ci-dessus.

1. Importer les librairies *numpy* et *matplotlib*

import numpy as np
from matplotlib import pyplot as plt

2. Paramètres

N = 30# nombre de points

- 3. Générer (aléatoirement entre 0 et 1) les données d'entrées $\{x\}$, de taille N. Utiliser la fonction np.random.uniform(...) pour utiliser une distribution uniforme.
- 4. Générer les données de sorties $\{y\}$, telles que $y=\sin(2\pi x)+w$.

 Utiliser la fonction np.random.normal(...) pour générer w à partir d'une distribution normale centrée d'écart type (standard deviation) de 0.1
- 5. Visualiser le jeu de données
 Utiliser plt.plot, plt.legend, plt.xlabel, etc.

3.2 Descente de gradient, dérivation automatique

Objectif: minimiser la fonction coût *L*.

 $\underline{\mathsf{Id\acute{e}e}}$: mise à jour des paramètres, dans la direction qui fait diminuer L le plus fortement.

Mises à jour :

$$\theta^{k+1} = \theta^k - \eta. \nabla_\theta L(h(x, \theta^k), y)$$
Paramètre à Pas (learning Gradient (se note aussi $\frac{\partial L}{\partial \theta}$)
l'itération k rate)

<u>Convergence</u>: garantie pour un problème convexe, et

pour
$$0 < \eta < \frac{2}{k}$$
.

Illustration (non convexe): W_a est un minimum local.

Calculer le gradient $\nabla_{\theta} L = \left[\frac{\partial L}{\partial \theta_0}, \frac{\partial L}{\partial \theta_1}, \dots\right]^T$ revient à calculer les dérivées partielles $\frac{\partial L}{\partial \theta_i}$.

Ce calcul est à faire à chaque itération k (dépend de la valeur de θ) \Rightarrow calcul « à la main » prohibitif. Calcul par différences finies :

$$\frac{\partial \mathit{L}}{\partial \theta_i} \approx \frac{\mathit{L}(\mathit{h}(x,\widetilde{\theta}),\mathit{y}) - \mathit{L}(\mathit{h}(x,\theta),\mathit{y})}{\epsilon} \text{, avec } \widetilde{\theta} = [\theta_0, \ldots, \theta_{i-1}, \theta_i + \epsilon, \theta_{i+1}] \text{ et } \epsilon \text{ petit}$$

 \Rightarrow approximatif et coûteux (nombreuses évaluations de L).

<u>Calcul par dérivation automatique</u>:

dérivation **exacte** (formelle) à l'aide d'un **logiciel**⇒ plus précis et plus rapide.

<u>Exemple</u> (librairie Pytorch) :

```
import torch
x = torch.tensor([3.1], requires_grad = True) # initialise un scalaire (vecteur de taille 1)
y = x ** 2
grad = torch.autograd.grad(y, x) # calcule dy/dx = 2x
print(grad) # 6.2

x = torch.tensor([3.1, 2.0], requires_grad = True)
b = torch.tensor([5.5, 7.7])
y = b @ x # produit scalaire : y = b_1 * x_1 + b_2 * x_2
grad = torch.autograd.grad(y, x) # calcule dy/dx = [b_1, b_2]
print(grad) # [5.5, 7.7]
```

Exercice 3.a.suite (PyTorch):

Par descente de gradient, chercher le polynôme d'ordre 9 qui minimise la fonction coût L (moindres carrés). Compléter le programme:

```
# convertir données (numpy -> pytorch)
import torch
x, y = torch.tensor(x), torch.tensor(y)
# initialise theta
M = 3
theta = torch.zeros(M + 1, requires grad = True)
# fonction polynome
def get predict(x, coefs):
  y predict = torch.zeros like(x)
  for i in range(len(theta)):
    y predict = y predict + coefs[i] * x**i
  return y predict
# fonction coût
def get loss(y predict):
  return ((y predict - y)**2).mean()
# descente de gradient
```

Tester pour:

- M = 1, 2, 3, 8.
- Différents *learning rate* (=0.01, 0.5, 2)

<u>Pour aller plus loin</u>: générer un 2^{ème} ensemble de données (*test set*) et tracer le coût en fonction de M.

3.3 Un réseau de neurones simple : le MLP (multi-layers perceptron)

Principe du MLP (réseau dense) :

- Plusieurs couches (*layers*)
- Une couche transforme un vecteur d'entrée e en vecteur de sortie s.
- s est une combinaison linéaire de e, suivie (pour les couche cachées) par une non-linéarité σ .

\Rightarrow le MLP est une fonction :

- Sortie d'une couche $i: s^{(i)} = \sigma(W^{(i)} \times e^{(i)} + b^{(i)})$
- Sortie du réseau : $y = W^{(2)} \times \sigma(W^{(1)} \times x + b^{(1)}) + b^{(2)}$
- Sortie d'un neurone : $s_j^{(i)} = w_j^{(i)} * e^{(i)} + b_j^{(i)}$

Entraı̂ner un MLP = apprendre (identifier) ses paramètres, i.e. les matrices $W^{(i)}$ (les poids) et les vecteurs $b^{(i)}$ (les biais).

Non-linéarités σ (fonction d'activation):

- Fonction scalaire, i.e. $\sigma: \mathbb{R} \to \mathbb{R}$
- Sur un vecteur, s'applique élément par élément, i.e. $\sigma([x_1, x_2, ...]) = [\sigma(x_1), \sigma(x_2), ...]$
- Les activations les + courantes :

Sigmoïde $\sigma(x) = \frac{1}{1 + e^{-x}}$

Tangente hyperbolique $\sigma(x) = \frac{2}{1 + e^{-2x}} - 1$

 $ReLU \\ \sigma(x) = \max(0, x)$

<u>Théorème d'approximation universelle</u>:

Un MLP peut approcher d'aussi près que l'on veut n'importe quelle fonction continue.

Pour cela une seule couche cachée suffit (à condition de prendre une taille suffisante, i.e. une matrice $W^{(1)}$ suffisamment grande) et une fonction d'activation non polynomiale (les fonctions ci-dessus respectent cette condition). Et ... il faut trouver les bons paramètres !

<u>Implémentation du MLP</u> (PyTorch):

Hérite de la classe torch.nn.Module.

Exemple pour une entrée de taille 3, une matrice $W^{(1)}$ (couche cachée) de taille 3×32 , et une sortie de taille 2.

```
class MLP(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.fcl=torch.nn.Linear(3, 32) # W^1, b^1
        self.fc2=torch.nn.Linear(32, 2) # W^2, b^2

def forward(self, x): # méthode appelée par MLP.forward(x) ou MLP(x)
        y = self.fc2(torch.functional.F.relu(self.fc1(x)))
        return y

model = MLP()
print(model)
print(list(model.parameters()))
```

Question: de quelle taille sont les vecteurs de biais ?

Entraînement du MLP:

PyTorch propose des outils pour faciliter la chaîne d'actions (pipeline) de l'entraînement :

- Classe DataSet pour la génération des données (train set, et valid set).
- L'implémentation de NNs.
- Des *optimizer* pour gérer la descente de gradient et la mise du *learning rate*.

Dans le code liés à ce cours, vous trouverez un exemple de pipeline. La descente de gradient utilisée est stochastique (stochastic gradient descent, SGD).

<u>Avec SGD</u>, à chaque itération, les données *train* sont découpées en sous-ensemble (*mini-batch*) et un calcul de gradient et une mise à jour des paramètres sont faits sur chaque *mini-batch*. Le découpage est fait aléatoirement à chaque itération (i.e. stochastique). Les avantages sont:

- Apprendre plus vite sur les grandes quantités de données (mises à jour plus fréquentes).
- Moins de risque d'être bloqué dans un minimum local.

Résultats (problème de régression simple):

Soit N le nombre de données d'entraînement. Nous fixerons N=200 (ce sont des données du problème).

Soit M le nombre de colonnes de $W^{(1)}$, epochs le nombre d'itérations, LR le learning rate. M, epochs, LR sont des réglages (hyperparamètres) de l'entraînement.

Exercice 3.b : Résoudre le problème de régression avec les données (vectorielle) générées ainsi:

- $x \in \mathbb{R}^2, x_1 \in [-1; 1], x_2 \in [1; 4]$ (aléatoire uniforme)
- $y = [\sqrt{x_1 + x_2}; x_2^3] + N(0, .1)$ (bruit gaussien)

Résultats pour

- Nombre de données : 2000 (entraînement) et 500 (validation)
- Nombre d'itérations (epochs): 500
- Learning rate : $1e^{-3}$ puis $2e^{-4}$

Echelle semilog

Réduction du *learning rate*

3.4 Problèmes de classification

Les données de sortie (qu'on cherche à prédire) sont des valeurs discrètes,

i.e. un échantillon y appartient à un ensemble finis de classes $\{1, ..., C\}$.

Ex: à partir d'une image d'un animal, prédire s'il s'agit d'un chat, d'un chien, etc.

Sorties du modèle:

La sortie du modèle est un vecteur $\hat{y} \in \mathbb{R}^C$.

A chaque \hat{y}_i on associe la probabilité $\hat{P}(i|x) = \frac{\exp(\hat{y}_i)}{\sum_{c=1}^{C} \exp(\hat{y}_c)}$

La prédiction du modèle est la classe avec la plus grande probabilité.

Remarque: on vérifie qu'il s'agit d'une loi de proba: $\hat{P}(i|x) > 0$ et $\sum_{i=1}^{C} \hat{P}(i|x) = 1$.

Fonction coût (*cross entropy*): Soit y = c pour l'entrée x (i.e. la *vraie* classe est c), alors $L = -\log \widehat{P}(c|x)$

Analyse des données :

- Type d'entrées : numérique, catégorie (binaire, multiple).
- Statistique simple : moyennes, écart-types, min, max.
- Corrélations :

Coefficient de Pearson (r ou R): mesure de la force et de la direction de la relation entre deux variables.

$$R(x,y) = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

Propriétés:

- 1. $-1 \le R \le 1$ (avec, e.g., relation linéaire positive parfaite pour r = 1, aucune relation pour R = 0).
- 2. R(x,y) = R(y,x)
- 3. R(x,x) = 1

Matrice de corrélation : pour des variables {x, y, z, ...} matrice carrée représentant les coeffs de Pearson.

Remarques:

propriété 2 ⇒ la matrice est symétrique. propriété 3 ⇒ diagonale remplies de 1.

	x	у	Z
X	R(x,x)	R(x,y)	R(x,z)
у	R(y,x)		
Z			

<u>Pré-traitement des données</u>:

Certaines données brutes sont mal adaptées aux NN.

Pour faciliter leur entrainement, i.e. rendre la descente de gradient plus simple, il faut :

 Eviter des valeurs numériques extrêmes (problèmes de conditionnement, explosion ou anulation du gradient).

Ex : représentation d'une pression en hPa plutôt qu'en Pascal (pression atmosphérique > $1e^5$ Pa)

• Favoriser une représentation informative des entrées.

Ex : la représentation d'une image sous forme de 3 matrices RGB (red, green, blue) est plus informative que sous la forme d'un vecteur (notions de voisinage spatial, couleur).

Normalisation (valeurs numériques) : Afin de s'assurer que les données respectent des valeurs centrées autour de zéro, et un écart-type de 1, on peut normaliser les données ainsi:

$$x^{norm} \coloneqq \frac{x - \bar{x}}{\sigma_x}$$
 où \bar{x} représente la moyenne et σ_x l'écart-type.

One-hot encoding (classes): plutôt que de représenter la classe par un seul nombre entier, on représente par un vecteur de longueur le nombre de classe; le vecteur est alors formés de zéros et d'un seul 1.

Ex: soit une donnée appartenant à $\{1,2,3,4,5\}$. L'appartenance à la classe 1 est codée [1,0,0,0,0], à la 3 [0,0,1,0,0].

Interprétation des résultats / utilisation du modèle:

Une fois entraîné, le modèle nous intéresse pour :

• La **prédiction d'une classe** = index de la sortie avec la plus grande valeur, i.e.

$$classe\ pr\'edite = arg\ \max_{i \in \{1, \dots C\}} y_i$$

• La **confiance** du modèle en sa prédiction = $P(y = i | x) = \frac{\exp(y_i)}{\sum_{c=1}^{C} \exp(y_c)}$

Les fonctions de coût utilisé en classification (e.g. *cross entropy*) sont des **métriques indirectes** de la qualité du modèle.

La métrique (quantité qui évalue notre modèle) qui nous intéresse vraiment est le **pourcentage** d'erreur dans la prédiction des classes. C'est une métrique dont l'évolution est à regarder pendant l'entraînement et pour interpréter la qualité du modèle. Mais cette métrique ne peut pas être utilisé pour l'entrainement par descente de gradient car pas dérivable.

Exemple: Titanic

<u>Données</u>: pour 891 passagers, prix de leur billet, genre (H/F), tarif de leur billet, classe de leur cabine, un identifiant et si ils ont survécu.

<u>Problème</u>: entraîner un modèle qui prédise si un passager a survécu.

Type de données :

Affichons les premières lignes du fichier de données (*titanic.csv*). Chaque ligne correspond à un passager.

- Sortie:
 - « Survived » (survécu vs pas survécu) = classe binaire
- Entrées :
 - « p_id » (identifiant) = classe multiples,
 - « cabin_class » = classe multiples,
 - « female » (femme vs homme) = classe binaire,
 - « fare » (tarif du billet) = numérique.


```
# p_id, survived, cabin_class, female, fare 0,0,3,0,7.250  
1,1,1,1,71.283  
2,1,3,1,7.925  
3,1,1,1,53.100  
4,0,3,0,8.050  
5,0,3,0,8.458  
6,0,1,0,51.862  
7,0,3,0,21.075  
8,1,3,1,11.133
```

<u>Traçons</u> les valeurs des champs « p_id » et « cabin_class ».

p_id attribue une valeur unique à chaque passager.

Cabin_class est une classe multiple; ses éléments sont {1,2,3}:

print(np.unique(cabin_class))

Combien de passagers ont survécu ? print(sum(survived))

<u>Statistiques simples</u>:

>> fare: min 0.000 max 512.329 écart-type 49.666

<u>Corrélation</u>:

Forte corrélation négative entre « cabin_class » et « survived », i.e. les passagers de 1ère classe ont plus de chance de survie que ceux en 3ème classe.

Pré-traitement des données:

Normalisation de « fare » (valeur numérique).

Encodage *one-hot* de « p_id », « cabin_class » et « female » (classes).

Il est préférable d'éliminer l'entrée non pertinente « p_id » : n'a pas de lien avec ce qu'on cherche à prédire (ce que confirme l'analyse de corrélation). Au contraire cette entrée peut :

- Complexifier le modèle (plus d'entrées impliquent plus de paramètres).
- Favoriser le sur-apprentissage (en apprenant une relation causale qui n'existe pas).

Remarque: puisque les passagers sont identifiés par un nombre unique, « p_id » il est possible d'apprendre à prédire de façon parfaite, sur les données d'entraînement, si un passager à survécu seulement avec cette entrée. Mais sur de nouvelles données, la prédiction sera totalement aléatoire (cas extrême de surapprentissage).

Résultats:

Pour un NN avec 1 couche caché de taille 32, learning rate à $1e^{-3}$, des mini-batch de taille 32 :

La courbe de droite correspond au % de réussite dans la prédiction de la classe de sortie.

Remarque : dans cette exemple (Titanic) le nombre de classe en sortie est de 2 (survécu / pas survécu). Il est donc logique qu'un modèle non entraîné ait un score proche de 50% (réponse « au hasard » en début d'entrainement).

4. Les réseaux de neurones récurrents (RNNs)

- 4.1. Données séquentielles
- 4.2. Principaux RNNs

4.1 Données séquentielles

Données simples y = f(x)

Entrées séquentielles $y = f_2(h_{t+1}, x_{t+1})$ $h_{t+1} = f_1(h_t, x_t)$

Entrées et sorties séquentielles

$$y_{t+1} = f_2(h_t, x_t)$$

 $h_{t+1} = f_1(h_t, x_t)$

Exemple (pendule):

Problème 1 :

On enregistre la position angulaire θ au cours du temps (données d'entrées) pour différentes longueurs l et masse m du pendule (données de sortie) \Rightarrow apprendre un modèle pour estimer les valeurs de l et m.

Problème 2:

On enregistre la position angulaire θ au cours du temps (données d'entrées x) et on cherche à prédire les futures valeurs de θ .

Approche simple:

- Représentation de la **séquence en simple vecteur** (*flat*).
- Utilisation d'un MLP.

Mal adapté :

- La structure du MLP est mal adaptée à la **structure des données** (e.g. la similitude entre un vecteur x_t et x_{t+1} n'est pas exploitée).
- Mal adapté à des séquences de longueurs variables.
- ⇒ expressivité limitée
- ⇒ prédictions peu précises et/ou nécessite de nombreux paramètres (beaucoup de neurones)
- \Rightarrow risque de surapprentissage.

4.2 Principaux RNNs

Réseau Elman (= vanilla):

$$h_t = tanh(W_x x_t + W_h h_{t-1} + b_h)$$

 y_t est une fonction de h_t , par exemple $y_t = Wh_t + b_y$ (relation linéaire).

Amélioration par rapport au MLP : ajout d'une mémoire \Rightarrow partage des paramètres entre les pas de temps $t \Rightarrow$ plus facile à entraîner (nécessite moins de paramètres).

Limitations : temps-invariant, difficile à entrainer sur de longues séquences (perte de sensibilité = vanishing gradient) .

LSTM (Long Short Term Mermory):

Mécanisme de porte (gate) pour décider si on laisse passer une information : σ représente la fonction sigmoide, avec en sortie un signal entre 0 (ne laisse rien passer) et 1 (laisse tout passer).

Expérimentalement, les LSTM ont montré leur efficacité pour modéliser des systèmes complexes. Système d'équations difficiles à analyser ⇒ restent encore mal compris.

5. Apprentissage par renforcement (RL)

- 5.1. Principe et définitions
- 5.2. Equations de Bellman
- 5.3. Algorithme tabulaire (Q-learning)
- 5.4. Approximation des fonctions de valeurs (NNs)

5.1 Principe et Définitions

Reinforcement learning (RL):

<u>Un agent autonome</u>: apprend à se comporter à partir d'expériences (sans modèle de l'environnement).

Interactions agent-environnement:

- **Etat** (*state*) $s \in \mathbb{R}^n$
- Action $a \in \mathbb{R}^d$
- **Récompense** (reward) $r \in \mathbb{R}$, fonction de l'état et de l'action.

Remarque : on supposera s_t mesuré (en RL on parle d'observations complètes).

Politique (π) : règle de décision $a = \pi(s)$.

Objectif: apprendre une politique optimale π^* (maximiser les récompenses).

Environnement déterministe:

- la transition de s_{t+1} en fonction de s_t et a_t est déterministe.
- Objectif : optimiser la somme pondérée des récompenses G

$$G = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots = \sum_{t=0}^{\infty} \gamma^t r_{t+1}$$

avec $\gamma \in [0; 1[$ qui favorise les récompenses rapides (*discount factor*).

Environnement stochastique:

- la transition de s_{t+1} en fonction de s_t et a_t est une densité de probabilité.
- Objectif : optimiser l'espérance de *G*

Remarque : Dans la suite de ce cours, nous supposons que l'environnement est déterministe.

Fonction de valeur des états, V:

- V est la valeur de la somme (pondérée) des futures récompenses.
- Utilisée pour évaluer la valeur d'un état.
- Dépend de la politique utilisée

$$V_{\pi}(s_t) = r_{t+1} + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$$

• Si on connaît la fonction optimale V_{π^*} et le modèle \Rightarrow l'action optimale est :

$$a^*(s_t) = \arg\max_{a} V_{\pi^*}(s')$$

avec s' l'état qui succède à s quand l'action a est prise.

Fonction de valeur des couple (états-actions), Q :

- $Q_{\pi}(s,a)$ est la valeur des futures récompenses, sachant qu'on choisit l'action a, puis qu'on utilise la politique π .
- Si on connaît la fonction optimale $Q_{\pi^*} \Rightarrow$ l'action optimale est :

$$a^*(s_t) = \arg\max_{a} Q_{\pi^*}(s, a)$$

- \Rightarrow 1. Apprendre $V_{\pi^*}(s)$ nécessite modèle pour prise de décision (*model-based*). Remarque : le modèle peut-être appris à partir d'expériences.
- \Rightarrow 2. Apprendre $Q_{\pi^*}(s,a)$ = Q-learning (*model-free*).
- Relations entre *V* et *Q*:

$$Q_{\pi}(s, a) = r + \gamma V_{\pi}(s')$$
 , $\forall \pi$
 $V_{\pi}(s) = Q(s, \pi(s))$, $\forall \pi$

• Relation entre V^* et Q^* :

$$V_{\pi^*}(s) = \max_a Q_{\pi^*}(s, a)$$

- Récompenses : -1 à chaque pas de temps
- Actions : Gauche, Droite, Bas, Haut
- Etats : position de l'agent

• <u>Remarque</u>: ici (**environnement déterministe**) l'agent est sûr de se déplacer dans la direction qui correspond à sa demande. En stochastique, par exemple, on considère une probabilité de « glisser » dans une mauvaise direction.

Politique optimale π^* ($\forall \gamma > 0$):

- sortir du labyrinthe le plus vite possible
- e.g. $\pi^*(s = Start) = Droite$

Remarque : pour $\gamma = 0$ n'importe quelle politique est optimale, car $V^*(s) = r(s,a) + 0 \times V(s') = r(s,a) = -1, \forall a$

Valeur des états V_{π^*} pour $\gamma = 1$:

Questions: On représente les lignes par des lettres et les colonnes par des chiffres, e.g. V(c1) = -16 et V(c2) = -15. Que vaut Q(c1, Droite)? Q(c2, Bas)?

5.2 Equations de Bellman

La fonction de valeur *V* peut être <u>décomposée en 2 termes</u>:

- Une récompense immédiate r_{t+1}
- Une valeur pour l'état suivant $\gamma V(s_{t+1})$

$$V_{\pi}(s_t) = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots$$

$$= r_{t+1} + \gamma (r_{t+2} + \gamma r_{t+3} + \dots)$$

$$= r_{t+1} + \gamma V_{\pi}(s_{t+1})$$

avec r_{t+1}, r_{t+2}, \dots obtenus en suivant la politique π , i.e. $r_{k+1} = r_{k+1}(s_t, \pi(s_t)) \forall k \geq t$.

Pour Q:

$$Q_{\pi}(s_t, a_t) = r_{t+1} + \gamma \ Q_{\pi}(s_{t+1}, \pi(s_{t+1}))$$

avec r_{t+1} obtenu avec a_t puis r_{t+2}, r_{t+3}, \dots obtenus en suivant la politique π .

Les décompositions

$$V_{\pi}(s) = r + \gamma V_{\pi}(s')$$

$$Q_{\pi}(s, a) = r + \gamma Q_{\pi}(s', \pi(s'))$$

où s' désigne le successeur de s (l'état suivant).

montrent l'intérêt du compromis entre recherche de récompense immédiate et à plus long terme.

Remarque : stratégie gloutonne (greedy) maximise la prochaine récompense \Rightarrow optimale pour $\gamma = 0$.

• <u>Equations d'optimalité</u> :

$$V_{\pi^*}(s) = \max_{a} (r(s, a) + \gamma V_{\pi^*}(s'(s, a)))$$

$$Q_{\pi^*}(s, a) = r(s, a) + \gamma \max_{a'} Q_{\pi^*}(s', a')$$

Exercice (labyrinthe):

Vérifier pour quelques cases les équations d'optimalité.

5.3 Algorithme tabulaire

Objectif : résoudre (au moins) une équation d'optimalité de Bellman :

$$V_{\pi^*}(s) = \max_{a} (r(s, a) + \gamma V_{\pi^*}(s'(s, a)))$$

$$Q_{\pi^*}(s, a) = r(s, a) + \gamma \max_{a'} Q(s', a')$$

i.e. **déterminer** V_{π^*} **et/ou** Q_{π^*} de manière exacte ou approchée $(\widehat{V}_{\pi^*}, \widehat{Q}_{\pi^*})$.

Fonctions tabulaires : représentation de V ou Q sous forme de tableau.

- \Rightarrow 1. représentation exacte possible pour des modèles spatialement discrets, i.e. s et a appartiennent à des ensembles finis.
- \Rightarrow 2. limité à de petits modèles, i.e. s et a de petites dimensions.

Notations états: lignes avec une lettre, colonne avec un chiffre, e.g. c1 case à droite de Start.

Représentation de $V^*(s)$:

État s	C1	C2	B2	B4	
$V^*(s)$	-16	-15	-14	-16	

Représentation de $Q^*(s, a)$:

	C1	C2	B2	B4	•••
Droite	-16	X	-14	-12	
Gauche	-18	-17	X	-14	
Bas	Х	-17	-16	X	
Haut	Χ	-15	Χ	Χ	

Nombreuses méthodes de résolution itératives (dont les estimations de V et/ou Q convergent vers les valeurs exactes), e.g. Value itération, Policy itération, **Q-learning**, Sarsa.

Q-learning:

• apprentissage de Q, par mises à jour :

$$\begin{split} \widehat{Q}_{\pi^*}(s,a) &\coloneqq (1-\alpha)\widehat{Q}_{\pi^*}(s,a) + \alpha(r + \max_{a'} \widehat{Q}_{\pi^*}(s',a')) \\ &\text{avec } s,r,s' \text{ collect\'es exp\'erimentalement,} \\ &\text{avec } \alpha \in]0;1] = \textit{learning rate}. \end{split}$$

- Alternance d'expériences et de mises à jour de \hat{Q} .
- Les expériences utilisent l'estimation \widehat{Q} pour choisir de meilleurs actions = **exploitation** $\Rightarrow \widehat{Q}$ précis pour les (s,a) d'intérêt.
- Pour garantir la convergence de \hat{Q} vers Q, le choix d'action garde une part de hasard = **exploration**.

Remarque: en environnement stochastique, α « filtre » la variance expérimentale. En déterministe, on peut garder $\alpha=1$ pour un apprentissage plus rapide.

```
Q-learning, pseudo-code (avec exploration \epsilon-greedy):
entrée : 1 \ge \alpha > 0, \epsilon > 0, k > 0
sortie: tableau Q[., .]
initialiser Q[s, a] = 0 pour tout s et tout a
Répéter k fois // k = nombre d'épisodes
   s := état initial
   répéter // étapes d'un épisode
         choisir une action a: //\epsilon-greedy
            si \epsilon < random(0,1)
                      a := \max_{A} Q(s,A) // exploitation
             sinon
                     a ≔random(actions) // exploration
         exécuter l'action a, observer la récompense r et le nouvel état s' // nouvelle données
         Q[s, a] := Q[s, a] + \alpha (r + \gamma \max Q[s', a'] - Q[s, a]) // \operatorname{mise à jour de} \widehat{Q}
         s := s'
   jusqu'à ce que s soit l'état terminal
```

Exercice (Marche aléatoire):

Objectif : atteindre la case de droite.

Actions : Droite, Gauche

Etats: A, B, C, D, E, But, Piège

Récompenses = 1 sauf si action Droite en E

Discount : $\gamma = 0.9$

Dresser un tableau de V^* (commencer par Goal, puis E, D, ...).

Dresser un tableau de Q^* pour E, D, C.

5.4 Approximation des fonctions de valeurs (NNs)

Les méthodes de RL peuvent être appliquées sur de grands modèles :

- Jeux (échecs, Go, Backgammon, ...) $\Rightarrow 10^{20}$ états au backgammon, beaucoup plus au échecs.
- Pilotage de drones ⇒ états/actions continus

Faiblesse des fonctions tabulaires :

- Limite du nombre d'états/actions : capacité de stockage en mémoire.
- Apprend chaque valeur Q(s, a) individuellement (pas de généralisation) \Rightarrow lent.

Approximation des fonctions de valeurs par NNs:

- Remplace le tableau de valeurs $\widehat{Q}[s,a]$ par un NN
- $s \in \mathbb{R}^n$ entièrement mesuré \Rightarrow utilisation d'un MLP possible (sinon besoin d'un RNN)
- a discret, prend n_a valeurs \Rightarrow entrées du NN = s, n_a sorties

Exemple (MLP):

- État continu : $s = [s_1, s_2, ..., s_n] \in \mathbb{R}^n$
- Actions discrètes : $a \in \{a^1, a^2, ..., a^{n_a}\}$

Adaptation de l'algorithme Q-learning :

- Utilisation d'un NN pour apprendre Q(s, a)
- Mise à jour de Q, i.e. du NN ne se fait plus après chaque action :
 - Utilisation de mini-batch, i.e. mise à jour sur plusieurs données (s, a, r, s')
 - Le NN doit être entrainée régulièrement avec les anciennes expériences (risque d'oubli)
 - ⇒ utilisation d'un dataset qui mémorise les expériences (Replay Buffer)

<u>Pour aller plus loin</u>:

• De nombreuses évolution d'algorithmes sont disponibles, e.g. **DQN** propose l'utilisation de 2 NNs pour stabiliser l'apprentissage.

• Des librairies permettent de tester les algos sur des problèmes variés, e.g.

https://gymnasium.farama.org/


```
Q-learning, avec NN pseudo-code (avec exploration \epsilon-greedy):
entrée : \eta > 0, \epsilon > 0, k > 0
sortie : un réseau de neurone Q
Initialiser un Replay Buffer : buffer = {}
Répéter k fois // k = nombre d'épisodes
   s := état initial
   répéter // étapes d'un épisode
        choisir une action a: // \epsilon-greedy
           si \epsilon < random(0,1): a := \max_{A} Q(s,A) // exploitation
                                       a ≔random(actions) // exploration
            sinon
         exécuter l'action a, observer la récompense r et le nouvel état s' // nouvelle données
         buffer := buffer U (s, a, r, s')
         s := s'
   jusqu'à ce que s soit l'état terminal
   entraı̂ner Q, avec Loss = r + \gamma max Q[s', a'] – Q[s, a] // mise à jour de \hat{Q}
```