

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería Mecánica Automotriz

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA Mecánica de Fluidos y Máquinas Hidráulicas

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Sexto	311063	102

OBJETIVO(S) GENERAL(ES)DE LA ASIGNATURA

Proporcionar al participante los conocimientos para comprender y resolver fenómenos relacionados con el movimiento de los fluidos, así como su aplicación en procesos y sistemas industriales.

TEMAS Y SUBTEMAS

1.Estática de fluidos

- 1.1 Introducción
- 1.2 Variación de la presión con la posición en un fluido
- 1.3 Empuje hidrostático en superficies sumergibles
- 1.4 Estabilidad de cuerpos en fluidos
- 1.5 Equilibrio de fluidos en movimiento

2. Cinemática de fluidos

- 2.1 El campo de velocidad
- 2.2 Medición de velocidades y caudales con tubo de Pitot
- 2.3 El campo de aceleración
- 2.4 Teorema de transporte de Reynolds
- 2.5 Ecuación de continuidad
- 2.6 Ecuación de Bernoulli
- 2.7 Ecuación de energía

3. Flujo en canales abiertos

- 3.1 Introducción
- 3.2 Clasificación del flujo en canal abierto
- 3.3 Tipos de flujo en canal abierto
- 3.4 Flujo estable en canales abietos
- 3.5 Formas eficientes para canales abiertos
- 3.6 Flujo crítico y energía específica
- 3.7 Salto hidráulico
- 3.8 Flujo gradualmente variado

4. Flujo viscoso en tuberías y canales

- 4.1 Flujo laminar y turbulento
- 4.2 Flujo laminar incompresible y permanente entre placas paralelas
- 4.3 Flujo laminar en tuberías y anillos
- 4.4 Relaciones para flujo turbulento
- 4.5 Pérdida de energía en flujo turbulento en conductos abiertos y cerrados
- 4.6 Flujo permanente incompresible a través de tuberías simples

5. Flujo en conductos

- 5.1 Introducción
- 5.2 Flujo laminar en tuberías circulares
- 5.3 Flujo laminar a través de anillos
- 5.4 Flujo laminar entre planos paralelos
- 5.5 Capa límite
- 5.6 Medida de viscosidad
- 5.7 Fundamentos de la teoría de lubricación hidrodinámica
- 5.8 Flujo laminar a través de medios porosos

5.9 Flujo no permanente

6. Análisis dimensional

- 6.1 Variables o parámetros
- 6.2 Dimensiones y Unidades
- 6.3 Aplicación del Teorema de Buckingham
- 6.4 Números adimensionales, Euler, Froude, Reynolds, Match y su significado
- 6.6 Uso de los números adimensionales
- 6.7 Estudio de modelos

7. Flujos compresibles

- 7.1 Introducción
- 7.2 Clasificación de flujos compresibles
- 7.3 Flujo isoentrópico y sus leyes
- 7.4 Flujo subsónico y flujo supersónico

8. Solución Numérica de las ecuaciones de Navier-Stokes

- 8.1 Diferencias Finitas
- 8.2 Elementos Finitos
- 8.3 Utilizacion de paquetes software comerciales. ANSYS, COMSOL, SOLID WORKS

9. Turbomáquinas

- 9.1 Turbinas de impulso
- 9.2 Turbinas de reaccion
- 9.3 Relaciones de energia y cabeza para bombas
- 9.4 Rendimiento de bombas y relaciones de semejanza
- 9.5 Velocidad especifica
- 9.6 Cavitacion
- 9.7 Helices y aerogeneradores

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final.

Además se considerará el trabajo extra clase la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

Básica:

Arthur G. Hansen, "Mecánica de Fluidos", Ed. Limusa

Frank M. White, "Mecánica de Fluidos", Mc Graw Hill

Lawrence E. Malvern, " Introduction to the Mechanics of a Continuos Médium ", Prentice Hall

Munson, Bruce R., Young, Donald F. y Okiishi, Theodore H., Fundamentals of Fluid Mechanics, Ed. John Wiley & Sons Ltd, USA, Fifth Edition, 2006.

Consulta:

Streeter, Victor L., Wylie, E. Benjamín y Bedford, Keit W., Mecánica de Fluidos, McGraw Hill Interamricana S. A., Colombia, Novena Edición, 2003.

Massey, Bernard F., Mechanics of Fluids, Publisher: Routledge, Eighth Edition, 2006.

Mott, Robert L., Applied Fluid Mechanics, Ed. Prentice Hall Inc., Sixth Edition, 2005.

Shames, Irving H., Mechanics of Fluids, McGraw Hill Science, Fourth Edition, 2002

PERFIL PROFESIONAL DEL DOCENTE

Físico o Ingeniero mecánico, preferentemente con Postgrado con especialidad en térmica con experiencia en la docencia y en todo tipo de modelado y aprovechamiento de fluidos.

Vo. Bo.

M.C. VÍCTOR MANUEL CRUZ MARTINEZ
JEFE DE CARRERA

AUTORIZÓ

DR. AGUSTÍN SANTIAGO ALVARADO VICE-RECTOR ACÁDEMICO

Jefatura de Carrera De Ingeniería Mecánica Automotriz