(Cognome) (Nome) (Corso di laurea)

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max & 8 \ x_1 - 9 \ x_2 \\ -x_1 + x_2 \le 4 \\ -5 \ x_1 - 4 \ x_2 \le 20 \\ x_1 + 2 \ x_2 \le 2 \\ 2 \ x_1 + x_2 \le 1 \\ 4 \ x_1 - x_2 \le 5 \\ 5 \ x_1 + x_2 \le 7 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (-4, 0)	SI	NO
{5, 6}	$y = \left(0, \ 0, \ 0, \ \frac{53}{9}, \ -\frac{28}{9}\right)$	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	{3, 4}	(0, 1)	$\left(0,\ 0,\ -\frac{26}{3},\ \frac{25}{3},\ 0,\ 0\right)$	3	24, 3, 6	5
2° iterazione	$\{4, 5\}$	(1, -1)	$\left(0,\ 0,\ 0,\ -\frac{14}{3},\ \frac{13}{3},\ 0\right)$	4	6	2

Esercizio 3. Un'azienda produce tre tipi di prodotti, A, B e C, utilizzando tra le diverse materie prime anche l'alluminio. Di quest'ultima materia prima, per il prossimo mese sono disponibili dal fornitore 400 kg. Un chilogrammo di alluminio costa all'azienda 7 euro. La seguente tabella mostra i kg di alluminio richiesti per produrre un kg di A, B e C, i costi di produzione (in euro per kg di prodotto) al netto delle materie prime, e i ricavi (in euro per kg di prodotto) di vendita per ognuno dei prodotti A, B e C:

prodotti	alluminio (kg)	costo (euro/kg)	ricavo (euro/kg)
A	0.3	12	25
В	0.6	6	30
С	0.9	7	38

Determinare la produzione mensile che massimizza i profitti sapendo che per produrre A non si deve utilizzare più di 1/3 dell'alluminio utilizzato in totale.

COMANDI DI MATLAB

c = [-10.9; -19.8; -24.7]

A = [0.3 0.6 0.9; 0.2 -0.2 -0.3]

b=[400; 0]

beq=[]

beq=[]

ub=[0;0;0]

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,5) (3,4)				
(4,6) (5,6)	(1,4)	x = (-5, 11, -1, 0, 0, 7, 0, 16, -6)	NO	SI
(1,4) (2,4) (3,4)				
(4,6)(5,6)	(2,3)	$\pi = (0, -3, -6, 3, 5, 10)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione		
Archi di T	(1,4) (2,4) (3,4) (4,6) (5,6)	(1,4) (1,5) (2,4) (3,4) (4,6)		
Archi di U	(1,5)			
x	(0, 0, 5, 0, 5, 7, 0, 10, 0)	(0, 0, 5, 0, 5, 7, 0, 10, 0)		
π	(0, -3, -6, 3, 5, 10)	(0, -3, -6, 3, 10, 10)		
Arco entrante	(1,5)	(4,5)		
ϑ^+,ϑ^-	2, 0	11, 5		
Arco uscente	(5,6)	(1,5)		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		iter	· 2	iter 3		iter 4		iter 5		iter 6	
	π	p	π	p	π	p	π	p	π	p	π	p
nodo												
visitato	1		3		4	1	4	2	5	ó	6	\mathbf{j}
nodo 2	9	1	9	1	9	1	9	1	9	1	9	1
nodo 3	6	1	6	1	6	1	6	1	6	1	6	1
nodo 4	6	1	6	1	6	1	6	1	6	1	6	1
nodo 5	$+\infty$	-1	$+\infty$	-1	23	4	19	2	19	2	19	2
nodo 6	$+\infty$	-1	21	3	20	4	20	4	20	4	20	4
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	2, 4	, 6	2, 5	5, 6	5,	6	(5	(Ď

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 6	5	(0, 5, 0, 0, 0, 5, 0, 0, 0, 0)	5
1 - 4 - 6	10	(0, 5, 10, 0, 0, 5, 0, 0, 10, 0)	15
1 - 2 - 5 - 6	5	(5, 5, 10, 0, 5, 5, 0, 0, 10, 5)	20

Taglio di capacità minima: $N_s = \{1, 2, 3, 4, 5\}$ $N_t = \{6\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} & \min \ 9 \ x_1 + 9 \ x_2 \\ & 18 \ x_1 + 5 \ x_2 \ge 44 \\ & 8 \ x_1 + 17 \ x_2 \ge 66 \\ & x_1 \ge 0 \\ & x_2 \ge 0 \\ & x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $\left(\frac{11}{7}, \frac{22}{7}\right)$ $v_I(P) = 43$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = (2,4) $v_S(P) = 54$

c) Calcolare un taglio di Gomory.

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 487 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	14	15	8	5	9	13	16
Volumi	122	270	48	12	58	69	20

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =
$$(1, 0, 1, 1, 1, 1, 1)$$
 $v_I(P) = 65$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(1, \frac{79}{135}, 1, 1, 1, 1, 1\right)$$
 $v_S(P) = 73$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

soluzione ottima = (0, 1, 1, 1, 1, 1, 1)

valore ottimo = 66