





#### STRUCTURAL RELIABILITY



Nandar Hlaing, Pablo G. Morato Philippe Rigo















Experience

Lessons learned

Conservatism



Uncertain loading

**Deterioration** 

**Optimization** 







# Frequentist

Classical







Bayesian











# Frequentist

# Classical





# Bayesian











# Frequentist

Classical





## Structural reliability

Bayesian





#### Uncertainty quantification







#### Why uncertainty quantification?

**Example:** penalization due to late arrival  $(1000 \in)$  and the meeting is taking place in 60 minutes.

- Option 1 (fast taxi): average 40 mins
- Option 2 (taxi with gps): average 50 mins

#### Uncertainty quantification







#### Why uncertainty quantification?

**Example:** penalization due to late arrival  $(1000 \in)$  and the meeting is taking place in 60 minutes.

- Option 1 (fast taxi): average 40 mins
- Option 2 (taxi with gps): average 50 mins

**Example:** penalization due to late arrival  $(1000 \in)$  and the meeting is taking place in 60 minutes.

- Option 1 (fast taxi): average 40 mins, std 20 mins, CoV=0.50;
- Option 2 (taxi with gps): average 50 mins, std 5 mins, CoV=0.10.



#### Uncertainty quantification







Physical



**Aleatory** 





Measurement



**Statistical** 



**Epistemic** 

#### **Bayesian** Inference



KNOWLEDGE



**KNOWLEDGE** 



Decommissioning







#### Level I methods

- Uncertainty —→ one value
- Partial Safety Factor

#### Level II methods

- Gaussian (Mean & std)
- 'Reliability index method'

#### Level III methods

- Joint distribution functions
- 'Probability of failure'



#### Level IV methods

- Consequence (cost) of failure
- Risk = Probability of failure \* cost



https://ascelibrary.org/doi/10.1061/AJRUA6.0001104







#### **Level II and III methods**

- First order reliability method (FORM)
  - Cornell's reliability index for linear failure function (Level II & independent variables)
  - Hasofer & Lind's reliability index for non-linear failure function (Level II & independent variables)
  - •
- Second order reliability method (SORM)
- Simulation techniques
  - Monte Carlo simulations
  - Importance sampling
  - •

#### Structural reliability analysis







- 1. Formulate limit state function.
- 2. Identify random variables (uncertainties) and deterministic parameters.
- 3. Specify distribution types and statistical parameters for random variables.
- 4. Estimate the reliability (probability of failure).







#### **Limit state functions**

- Fatigue limit state
- Serviceability limit state
- Ultimate limit state
- Accidental limit state

Note: A combination of more than one limit state is also possible (e.g., the failure function of a system can be a combination (series or parallel system) of those of its components.

#### Failure probability estimation







Let's consider a fundamental limit state: failure is expected when the load exceeds the resistance of the structure.

$$g(x) = \mathbf{R} - \mathbf{S}$$

Failure event  $\rightarrow R \le S \text{ or } g(x) \le 0$ 

$$P_F = \int_{-\infty}^{+\infty} P(R \le S)$$

$$= \int_{-\infty}^{+\infty} P(R \le x) P(x \le S \le x + dx) dx$$

$$= \int_{-\infty}^{+\infty} F_R(x) f_S(x) dx$$



#### Failure probability estimation (Level II method)







Linear safety margin for fundamental limit state: M.

$$M = R - S$$

If R and S are normally distributed, M is also normally distributed.





#### Failure probability estimation (Level II method)







Mean:  $\mu_M = \mu_R - \mu_S$ 

Variance: 
$$\sigma_M^2 = \sigma_R^2 + \sigma_S^2$$

Probability of failure:

$$P_F = P(R \le S) = P(M \le 0) = \int_{-\infty}^{+0} f_M dm$$

Reduce to standard normal distribution function N(0,1)

$$P_F = \Phi(\frac{0 - \mu_m}{\sigma_m})$$

$$P_F = \Phi(-\beta) \Leftrightarrow \beta = -\Phi^{-1}(P_F)$$

**CDF of N(0,1)** 

**Reliability index** 



#### Geometrical interpretation of reliability index







Joint probability distribution function f(R, S):

$$P_F = \int_{g(x) \le 0} f(x) dx, \qquad x = [x_1, x_2, ... x_N]^T$$



#### Geometrical interpretation of reliability index









-6

Transformation to standard normal space:

$$\boldsymbol{u}_i = \frac{x_i - \mu_{x_i}}{\sigma_{x_i}}$$













|          | Serviceability      |     | Collapse/Ultimate   |     |  |
|----------|---------------------|-----|---------------------|-----|--|
|          | $P_f$               | β   | $P_f$               | β   |  |
| Extreme  | $1.0 \cdot 10^{-3}$ | 3.1 | $5.1 \cdot 10^{-6}$ | 4.5 |  |
| Severe   | $5.2 \cdot 10^{-3}$ | 2.5 | $3.1 \cdot 10^{-5}$ | 4   |  |
| Moderate | $2.3 \cdot 10^{-2}$ | 2.0 | $1.2 \cdot 10^{-4}$ | 3.7 |  |







#### Monte Carlo Simulations – named after Monte Carlo casino (Monaco)



Stanislaw Ulam (1909-1984)





John Von Neumann (1903-1957)

#### Law of large numbers – rolling a die







#### Example: Rolling a die



Theoretical mean:

$$E[X] = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$E[X] = 1\frac{1}{6} + 2\frac{1}{6} + 3\frac{1}{6} + 4\frac{1}{6} + 5\frac{1}{6} + 6\frac{1}{6} = 3.5$$

| i     | 1 | 2   | 3 | 4   | 5   | 6   | 7   | 8   | 9    |
|-------|---|-----|---|-----|-----|-----|-----|-----|------|
| $x_i$ | 5 | 6   | 1 | 6   | 4   | 1   | 2   | 4   | 6    |
| E[X]  | 5 | 5.5 | 4 | 4.5 | 4.4 | 3.8 | 3.5 | 3.6 | 3.88 |



#### Law of large numbers – rolling a die







#### **Example: Approximating the value of pi**

$$\frac{A_{pie}}{A_{square}} = \frac{\pi}{4}$$

#### Two important points:

- Must be random (uniformly distributed).
- Enough number of samples (n).









#### **Procedures**

- (1) Collect independent random samples from the input random variables
- (2) Evaluate the function of interest
- (3) Assess the statistical properties of the output function







$$g(F, A, S_y) = S_y - \frac{F}{A} = S_y - S$$

# F

$$F \sim N[\mu_F = 40 \text{ kN}; CoV = 5\%]$$

$$A \sim N[\mu_A = 200 \ mm^2; CoV = 4\%]$$

$$S_y \sim N[\mu_{S_y} = 235 N/mm^2; CoV = 10\%]$$

## Limit state function



$$S = \frac{F}{A}$$







# (1) Collect independent random samples from the input random variables









# (1) Collect independent random samples from the input random variables









#### (2) Evaluate the function of interest

$$g(F, A, S_y) = S_y - \frac{F}{A} = S_y - S$$

$$p_F = \frac{1}{N} \sum_{i=1}^{N} I[g(\mathbf{x})] \begin{cases} 1 & if \ g(\mathbf{x}) \le \mathbf{0} \\ 0 & if \ g(\mathbf{x}) > \mathbf{0} \end{cases}$$

$$p_F = \frac{1}{100} 11 = 0.11$$









#### (3) Assess the statistical properties of the output function











$$S_y \sim N[\mu_{S_y} = 235 \ N/mm^2; CoV = 10\%]$$

$$\boldsymbol{\beta} = -\Phi^{-1}[\boldsymbol{p}_F]$$

$$p_F = \Phi[-\beta]$$

|          | Serviceability      |     |  |
|----------|---------------------|-----|--|
|          | $P_f$               | β   |  |
| Extreme  | $1.0 \cdot 10^{-3}$ | 3.1 |  |
| Severe   | $5.2 \cdot 10^{-3}$ | 2.5 |  |
| Moderate | $2.3 \cdot 10^{-2}$ | 2.0 |  |









$$S_y \sim N[\mu_{S_y} = 235 \ N/mm^2; CoV = 3\%]$$

$$p_F = \Phi[-\beta]$$

|          | Serviceability      |     |  |
|----------|---------------------|-----|--|
|          | $P_f$               | β   |  |
| Extreme  | $1.0 \cdot 10^{-3}$ | 3.1 |  |
| Severe   | $5.2 \cdot 10^{-3}$ | 2.5 |  |
| Moderate | $2.3 \cdot 10^{-2}$ | 2.0 |  |



#### Reliability updating (Bayesian inference)







• Bayes' theorem is used to update the probability of a hypothesis/event when more information is available.

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

#### **Prior, Likelihood and Posterior Distribution**









#### Monty Hall Problem



2 goats | 1 Tesla

















#### Question





Shall we change our first choice after one door has been opened?

- The host knows where the tesla is.
- The host only reveals a goat.









$$p(T_1) = 1/3$$



$$p(T_2) = 1/3$$
  $p(T_3) = 1/3$ 

33



$$p(T_3) = 1/3$$

- $T_x$ : Tesla is behind door 'x'
- $D_k$ : door 'k' is open













$$p(T_1) = 1/3$$

$$p(T_1|D_2)?$$

$$p(T_1|D_2) = \frac{p(D_2|T_1)p(T_1)}{p(D_2)}$$

$$p(T_3) = 1/3$$

$$p(T_3|D_2)?$$

$$p(T_3|D_2) = \frac{p(D_2|T_3)p(T_3)}{p(D_2)}$$















$$p(T_1) = 1/3$$

$$p(T_1|D_2)$$
?

$$p(T_1|D_2) = \frac{p(D_2|T_1)p(T_1)}{p(D_2)}$$

$$p(D_2|T_1) = 0.5$$

35













$$p(D_2|T_3)=1$$

$$p(T_3) = 1/3$$

$$p(T_3|D_2)?$$

$$p(T_3|D_2) = \frac{p(D_2|T_3)p(T_3)}{p(D_2)}$$









2 goats | 1 Tesla





$$p(T_1|D_2) = \frac{p(D_2|T_1)p(T_1)}{p(D_2|T_1)p(T_1) + p(D_2|T_3)p(T_3)} = \frac{\frac{1}{3} \cdot 0.5}{\frac{1}{3} \cdot 0.5 + \frac{1}{3} \cdot 1} = \mathbf{1/3}$$









2 goats | 1 Tesla





$$p(T_1|D_2) = \frac{p(D_2|T_1)p(T_1)}{p(D_2|T_1)p(T_1) + p(D_2|T_3)p(T_3)} = \frac{\frac{1}{3} \cdot 0.5}{\frac{1}{3} \cdot 0.5 + \frac{1}{3} \cdot 1} = \mathbf{1/3}$$