Exercises week 41 (exploration) FYS-STK4155

Even Sletteng Garvang

```
# import libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
```

Here I implement various methods of gradient descent (GD) for a simple synthetic dataset generated by a polynomial function.

Generate data

```
def data_function(x):
    return 4*x**3 + x**2 - 17*x + 48

np.random.seed(8923)

# generate data
n = 100
x = np.linspace(-2, 2, n)
f_x = data_function(x)
y = f_x + np.random.normal(0, 1, n)
y = y.reshape(-1,1)

# create design matrix of polynomials
# for now 3rd order reflecting data function
X = PolynomialFeatures(3).fit_transform(x.reshape(-1, 1))

plt.plot(x, y, "o")
plt.show()
```


Plain gradient descent

```
def gradient_OLS(X, y, theta):
    n = y.shape[0]
    return -(2.0/n) * X.T @ (y - X @ theta)
def gradient_descent(eta, X, y, n_iter, gradient_fun=gradient_OLS, check_converge=False, three
    theta = np.random.randn(X.shape[1], 1)
    for i in range(n_iter):
        gradient = gradient_fun(X, y, theta)
        if check_converge:
            if np.all(np.abs(gradient) < thresh):</pre>
                print(f"Converged for eta={round(eta, 3)} after {i+1} iterations.")
        theta -= eta * gradient
    if check_converge:
        print(f"Did not converge for eta={round(eta, 3)} and {n_iter} iterations.")
    return theta
np.random.seed(50)
etas = np.linspace(0.01, 0.1, 10)
n_{iter} = 1000
```

```
for eta in etas:
    theta = gradient_descent(eta, X, y, n_iter, check_converge=True)
```

```
Did not converge for eta=0.01 and 1000 iterations. Did not converge for eta=0.02 and 1000 iterations. Converged for eta=0.03 after 739 iterations. Converged for eta=0.04 after 556 iterations. Converged for eta=0.05 after 449 iterations. Converged for eta=0.06 after 373 iterations. Converged for eta=0.07 after 318 iterations. Converged for eta=0.08 after 279 iterations. Converged for eta=0.09 after 254 iterations. Did not converge for eta=0.1 and 1000 iterations.
```

A learning rate of 0.09 works best for this data, converging after 254 iterations. This was with convergence criterion of all gradients being smaller than 0.001.

```
theta_analytical = np.linalg.inv(X.T @ X) @ X.T @ y
np.random.seed(50)
eta = 0.09
n_iter = 254
theta = gradient_descent(eta, X, y, n_iter)

print("Analytical:")
print(theta_analytical)
print("Gradient descent (plain):")
print(theta)
```

```
Analytical:
[[ 47.89078067]
  [-16.65248688]
  [ 1.06213488]
  [ 3.87029735]]
Gradient descent (plain):
[[ 47.89077985]
  [-16.65052384]
  [ 1.06213526]
  [ 3.86961629]]
```

Gradient descent with momentum

```
# function for momentum
def momentum_change(eta, gradient, gamma, change):
    return eta * gradient + gamma * change
# modify for momentum function
def gradient_descent_momentum(eta, X, y, n_iter, gamma, gradient_fun=gradient_OLS, check_con
    theta = np.random.randn(X.shape[1], 1)
    change = 0
    for i in range(n_iter):
        gradient = gradient_fun(X, y, theta)
        if check_converge:
            if np.all(np.abs(gradient) < thresh):</pre>
                print(f"Converged for eta={round(eta, 3)} after {i+1} iterations.")
                return theta
        new_change = momentum_change(eta, gradient, gamma, change)
        change = new_change
        theta -= new_change
    if check_converge:
        print(f"Did not converge for eta={round(eta, 3)} and {n_iter} iterations.")
    return theta
np.random.seed(50)
gamma = 0.7
n_{iter} = 200
np.random.seed(50)
etas = np.linspace(0.01, 0.1, 10)
n_{iter} = 1000
for eta in etas:
    theta = gradient_descent_momentum(eta, X, y, n_iter, gamma, check_converge=True)
Converged for eta=0.01 after 655 iterations.
Converged for eta=0.02 after 313 iterations.
Converged for eta=0.03 after 199 iterations.
Converged for eta=0.04 after 143 iterations.
Converged for eta=0.05 after 108 iterations.
Converged for eta=0.06 after 83 iterations.
Converged for eta=0.07 after 64 iterations.
Converged for eta=0.08 after 63 iterations.
```

```
Converged for eta=0.09 after 66 iterations. Converged for eta=0.1 after 59 iterations.
```

For $\gamma = 0.7$, the algorithm converges much faster than without momentum, and converges for the whole range of learning rates.

Stochastic gradient descent

We implement stochastic gradient descent, which helps with avoiding getting stuck in local minima.

```
def SGD(X, y, eta, gradient_fun, n_epochs, M):
   n = y.shape[0]
   m = int(n/M)
   xy = np.column_stack([X,y]) # for shuffling x and y together
    theta = np.random.randn(X.shape[1], 1)
    for i in range(n_epochs):
        np.random.shuffle(xy)
        for j in range(m):
            random_index = M * np.random.randint(m)
            xi = xy[random_index:random_index+5, :-1]
            yi = xy[random_index:random_index+5, -1:]
            gradient = (1/M)*gradient_fun(xi, yi, theta)
            theta = theta - eta*gradient
    return theta
np.random.seed(39)
eta = 0.01
n_{epochs} = 200
M = 5
      # minibatch size
theta = SGD(X, y, eta, gradient_OLS, n_epochs, M)
print(theta)
print(theta_analytical)
```

```
[[ 47.77879581]
[-15.97183846]
[ 1.11092537]
```

```
[ 3.63334777]]
[[ 47.89078067]
[-16.65248688]
[ 1.06213488]
[ 3.87029735]]
```

SGD with momentum

```
def SGD_momentum(X, y, eta, gradient_fun, n_epochs, M, gamma):
   n = y.shape[0]
    m = int(n/M)
    xy = np.column_stack([X,y]) # for shuffling x and y together
    theta = np.random.randn(X.shape[1], 1)
    change = 0
    for i in range(n_epochs):
        np.random.shuffle(xy)
        for j in range(m):
            random_index = M * np.random.randint(m)
            xi = xy[random_index:random_index+5, :-1]
            yi = xy[random_index:random_index+5, -1:]
            gradient = (1/M)*gradient_fun(xi, yi, theta)
            new_change = momentum_change(eta, gradient, gamma, change)
            theta = theta - new change
            change = new_change
    return theta
np.random.seed(60)
eta = 0.01
gamma = 0.3
n_{epochs} = 100
M = 5
             # minibatch size
theta = SGD_momentum(X, y, eta, gradient_OLS, n_epochs, M, gamma)
print(theta)
print(theta_analytical)
```

[[47.4171236] [-14.98964006]

```
[ 1.30777058]
[ 3.19582651]]
[[ 47.89078067]
[-16.65248688]
[ 1.06213488]
[ 3.87029735]]
```

AdaGrad

```
def AdaGrad(gradient, Giter, eta, delta = 1e-8):
    Giter += gradient*gradient
    update = gradient * eta / (delta + np.sqrt(Giter))
    return Giter, update
def GD_AdaGrad(eta, X, y, n_iter, gradient_fun=gradient_OLS):
    theta = np.random.randn(X.shape[1], 1)
    Giter = 0
    for i in range(n_iter):
        gradient = gradient_fun(X, y, theta)
        Giter, update = AdaGrad(gradient, Giter, eta)
        theta -= update
    return theta
eta = 0.5
n_{iter} = 200
theta = GD_AdaGrad(eta, X, y, n_iter)
print(theta)
print(theta_analytical)
```

```
[[ 13.2019473 ]
[-10.06549974]
[ 10.91808174]
[ 1.57741944]]
[[ 47.89078067]
[-16.65248688]
[ 1.06213488]
[ 3.87029735]]
```

RMSProp

```
def RMSProp(gradient, Giter, eta, rho, delta=1e-8):
    Giter = rho*Giter + (1-rho)*gradient*gradient
    update = gradient*eta/(delta+np.sqrt(Giter))
    return Giter, update

def GD_RMSProp(eta, X, y, n_iter, gradient_fun=gradient_OLS):
    theta = np.random.randn(X.shape[1], 1)
    Giter = 0
    for i in range(n_iter):
        gradient = gradient_fun(X, y, theta)
        Giter, update = RMSProp(gradient, Giter, eta, rho)
        theta -= eta * gradient
    return theta
```

General GD function

```
# function for momentum
def momentum_change(eta, gradient, gamma, change):
   return eta * gradient + gamma * change
def AdaGrad(update_term, gradient, Giter, delta = 1e-8):
   Giter += gradient*gradient
   update = update_term / (delta + np.sqrt(Giter))
   return Giter, update
def RMSProp(update_term, gradient, Giter, rho, delta=1e-8):
   Giter = rho*Giter + (1-rho)*gradient*gradient
   update = update_term / (delta+np.sqrt(Giter))
   return Giter, update
def ADAM(gradient, first moment, second moment, beta1, beta2, itr, delta=1e-8):
   first_moment = beta1*first_moment + (1-beta1)*gradient
   second_moment = beta2*second_moment + (1-beta2)*gradient*gradient
   first_term = first_moment/(1.0-beta1**itr)
   second_term = second_moment/(1.0-beta2**itr)
   update = eta*first_term/(np.sqrt(second_term)+delta)
```

```
return first_moment, second_moment, update
def GD_inner(eta, theta, moments, gradient, momentum=False, gamma=None, adaptive_fun=None, adaptive_fun=None
          adaptive = adaptive_fun is not None
          if adam:
                    first_moment, second_moment = moments
                    first_moment, second_moment, update = ADAM(gradient, first_moment, second_moment, **
                    theta -= update
                    return theta, first_moment, second_moment
          else:
                    Giter, change = moments
                    update = eta * gradient
                    if momentum:
                              update += gamma * change
                               change = update
                    if adaptive:
                              Giter, update = adaptive_fun(update, gradient, Giter, **kwargs)
          theta -= update
          return theta, Giter, change
def GD(X, y, eta, n_iter, gradient_fun=gradient_OLS, momentum=False, gamma=None, adaptive_fu
          theta = np.random.randn(X.shape[1], 1)
          # moment 1 and 2 of ADAM
          # Giter and change if not ADAM
         moments = [0, 0]
          for i in range(n_iter):
                    gradient = gradient_fun(X, y, theta)
                               theta, moments[0], moments[1] = GD_inner(eta, theta, moments, gradient, momentum
                               theta, moments[0], moments[1] = GD_inner(eta, theta, moments, gradient, momentum
          return theta
def SGD(X, y, eta, M, n_epochs, gradient_fun=gradient_OLS, momentum=False, gamma=None, adapt
         n = y.shape[0]
         m = int(n/M)
         xy = np.column_stack([X,y]) # for shuffling x and y together
         theta = np.random.randn(X.shape[1], 1)
```

```
# moment 1 and 2 of ADAM
    # Giter and change if not ADAM
    moments = [0, 0]
    for i in range(n_epochs):
        Giter = 0.0
        np.random.shuffle(xy)
        for j in range(m):
            random_index = M * np.random.randint(m)
            xi = xy[random_index:random_index+5, :-1]
            yi = xy[random_index:random_index+5, -1:]
            gradient = (1/M)*gradient_fun(xi, yi, theta)
                theta, moments[0], moments[1] = GD_inner(eta, theta, moments, gradient, moments
            else:
                theta, moments[0], moments[1] = GD_inner(eta, theta, moments, gradient, moments
    return theta
eta = 0.5
n_{iter} = 1000
beta1 = 0.9
beta2 = 0.999
theta = GD(X, y, eta, n_iter, adam=True, beta1=beta1, beta2=beta2)
print(theta)
M = 5
n_{epochs} = 100
theta_sgd_adam = SGD(X, y, eta, M, n_epochs, adam=True, beta1=beta1, beta2=beta2)
print(theta_sgd_adam)
[[ 47.89078067]
 [-16.65248688]
 [ 1.06213488]
 [ 3.87029735]]
[[ 47.93196761]
 [-16.59502347]
 [ 1.02168202]
 [ 3.83096949]]
```

```
eta = 0.09
n_{iter} = 100
theta = GD(X, y, eta, n_iter)
np.random.seed(56)
theta_momentum = GD(X, y, eta, n_iter, momentum=True, gamma = 0.3)
np.random.seed(56)
theta_momentum_old = gradient_descent_momentum(eta, X, y, n_iter, gamma=0.3)
print(theta)
print(theta_momentum)
print(theta_momentum_old)
theta_adagrad = GD(X, y, eta=10, n_iter=n_iter, adaptive_fun=AdaGrad)
theta_adagrad_momentum = GD(X, y, eta=10, n_iter=n_iter, momentum=True, gamma = 0.3, adaptive
print("Adagrad:")
print(theta_adagrad)
print(theta_adagrad_momentum)
theta_rmsprop = GD(X, y, eta=10, n_iter=n_iter, adaptive_fun=RMSProp, rho=0.99)
print("RMSProp")
print(theta_rmsprop)
[[ 47.85354031]
 [-16.18668031]
 [ 1.07927133]
 [ 3.73293436]]
[[ 47.88976967]
 [-16.56208425]
 [ 1.0626001 ]
 [ 3.83864136]]
[[ 47.88976967]
 [-16.56208425]
 [ 1.0626001 ]
 [ 3.83864136]]
Adagrad:
```

```
[[ 47.75739966]
 [-16.43216276]
 [ 1.12418121]
 [ 3.79094167]]
[[ 47.88739958]
 [-16.63144066]
 [ 1.06372826]
 [ 3.86272304]]
RMSProp
[[ 47.89078066]
 [-16.49087085]
 [ 1.06213489]
 [ 3.81212571]]
eta = 0.09
M = 5
n_{epochs} = 50
# test SGD
theta = SGD(X, y, eta, M, n_epochs)
theta_momentum = SGD(X, y, eta, M, n_epochs, momentum=True, gamma = 0.3)
print(theta)
print(theta_momentum)
eta = 10
theta_adagrad = SGD(X, y, eta, M, n_epochs, adaptive_fun=AdaGrad)
theta_adagrad_momentum = SGD(X, y, eta, M, n_epochs, momentum=True, gamma = 0.3, adaptive_fu
print("Adagrad:")
print(theta_adagrad)
print(theta_adagrad_momentum)
[[ 47.76360679]
 [-16.6772413]
 [ 1.04379253]
 [ 3.80506926]]
[[ 47.93549226]
 [-16.69514403]
 [ 1.13236295]
 [ 3.89640275]]
Adagrad:
[[ 47.96023195]
```

- [-16.64580242]
- [1.16326879]
- [3.87458737]]
- [[47.73724392]
- [-16.60879717]
- [0.76667081]
- [3.72090355]]