ΘΕΜΑ 4

Δύο σημειακά φορτισμένα σώματα με φορτία $q_1=q_2=3\cdot 10^{-4}~C$ βρίσκονται στις θέσεις A και B, πάνω σε οριζόντιο μονωμένο επίπεδο A B Γ μεγάλων διαστάσεων, για τις οποίες ισχύει AB=3 m. Η μάζα του σώματος που βρίσκεται στο σημείο A είναι m=0,2 kg.

4.1. Να βρείτε τη δυναμική ενέργεια του συστήματος των δύο σωμάτων.

Μονάδες 6

4.2. Να βρεθεί η τιμή του φορτίου q_3 τρίτου σημειακού φορτισμένου σώματος, το οποίο πρέπει να τοποθετηθεί στο σημείο Γ της ευθείας AB, για το οποίο ισχύει $B\Gamma=3$ m, ώστε η ολική δυναμική ενέργεια του συστήματος των τριών σωμάτων να είναι μηδενική.

Μονάδες 6

4.3. Να εξετάσετε αν σε κάποιο από τα φορτία q_1 , q_2 και q_3 η συνισταμένη δύναμη από τα άλλα είναι μηδέν στις θέσεις A, B και Γ αντίστοιχα.

Μονάδες 6

Ακινητοποιούμε τα φορτία q_2 και q_3 στις θέσεις B και Γ και αφήνουμε το q_1 ελεύθερο να κινηθεί.

4.4. Αφού αιτιολογήσετε γιατί το φορτίο q_1 μπορεί να φτάσει στο άπειρο (δηλαδή σε πολύ μεγάλη απόσταση από τα άλλα δύο φορτία), να βρείτε την ταχύτητά του όταν φτάνει στο άπειρο.

Μονάδες 7

Δίνεται $k_c=9\cdot 10^9~{\rm N\cdot m^2/C^2}$. Η επίδραση της βαρύτητας, οι τριβές και η αντίσταση του αέρα θεωρούνται αμελητέα.