

Capstone Project – 3 Email Campaign Effectiveness Prediction

SUPERVISED ML-CLASSIFICATION ALGORITHM

Submitted BY:

Name: Rahul Kumar Gupta

Content

- Problem statement
- Data Summary
- Data Cleaning
- Imputing missing values
- Analysis of categorical features
- Analysis of Continuous features
- Outlier treatment
- Feature Engineering
- Understanding target variable
- Handling Imbalanced data.
- Different Models
- Challenges
- Conclusion

Problem Statement

Most of the small to medium business owners are making effective use of Gmail-based Email marketing Strategies for offline targeting of converting their prospective customers into leads so that they stay with them in Business.

The main objective is to create a machine learning model to characterize the mail and track the mail that is ignored; read; acknowledged by the reader.

Data Summary

- The dataset comprised of 12 features including the target variable Email_Status.
- The **5 numerical variables** were:

```
Word_Count
Total_Past_Communications
Subject_Hotness_Score
Total_Links
Total_Images
```

• The **5 categorical variables** were:

```
Email_Type

Email_Source_Type

Customer_Location

Email_Campaign_Type

Time_Email_Sent_Catergory
```

The total no. of records in our dataset is 68353

Data Cleaning

1 Null Value Imputation:

Email_ID	0
Email_Type	0
Subject_Hotness_Score	0
Email_Source_Type	0
Customer_Location	11595
Email_Campaign_Type	0
Total_Past_Communications	6825
Time Email sent Category	0
Word_Count	0
Total_Links	2201
Total_Images	1677
Email_Status	0
dtype: int64	

Here we saw see clearly there are total 4 features which is having a null value, so we will try to fill by analyzing it

Imputing missing values

- Impute the missing values for Total_Past_Communication by the mean
- Impute the missing values for Total_Links & Total_Images by the mode

Analysis of Categorical features

Customer_Location w.r.t Email_Status

Inference: same ratio of Email_Status for different demographics

Analysis of Categorical features

Email_Campaign_Type w.r.t. Email_Status
 90% of the time Email gets read or acknowledged if Campaign_Type is 1

Analysis of Categorical features

Time_Email_Sent_Catagory

Time Email Sent has no influence over Email_Status

OBSERVATION FROM CATAGORICAL VARIABLE AND TARGET EMAIL STATUS

The email type 1 which may be considered as promotional emails are sent more than email type 2 and hence are read and acknowledged more than the other type otherwise the proportion of ignored, read, acknowledged emails are kind of same in both email types. Email source type shows kind of a similar pattern for both the categories.

In the customer location feature we can find that irrespective of the location, the percentage ratio of emails being ignored, read and acknowledge are kind of similar. It does not exclusively influence our target variable. It would be better to not consider location as factor in people ignoring, reading or acknowledging our emails. Other factors should be responsible in why people are ignoring the emails not location.

In the Email Campaign Type feature, it seems like in campaign type 1 very few emails were sent but has a very high likelihood of getting read. Most emails were sent under email campaign type 2 and most ignored. Seems like campaign 3 was a success as even when less number of emails were sent under campaign 3, more emails were read and acknowledged.

If we consider 1 annd 3 as morning and night category in time email sent feature, it is obvious to think 2 as middle of the day and as expected there were more emails sent under 2nd category than either of the others, sending emails in the middle of the day could lead to reading and opening the email as people are generally working at that time and they frequently checkup their emails, but it cannot be considered as the major factor in leading to acknowledged emails.

Analysis of Continuous features

Total_Past_Communications

As no. of past communication is increasing, Email is less ignored.

Analysis of Continuous features

Word_Count

No one is interested in reading Emails that are too long!!

Analysis of Continuous features

Outliers in different continuous features

Outliers in different continuous features

We have more than 5% outliers in minority section and hence to avoid lack of information, we decide against deleting them.

1 Combining Total_Images and Total_Links:

High **positive correlation** observed and hence **Links_Images =Total_Images + Total_Links=(0.75)**

2. Multicollinearity Check:

Multicollinearity checked using VIF Factor

Why?

- Variables with high multicollinearity can adversely affect the model and removing highly correlated independent variables can help in reducing curse of dimensionality as well
- We can observe that all numerical variables are within the threshold(i.e. 5).

	variables	VIF
0	Subject_Hotness_Score	1.734531
1	Total_Past_Communications	3.430879
2	Word_Count	3.687067
3	Links_Images	2.629047

3. Understanding Feature Importance:

3. Understanding Feature Importance:

The concept used to understand feature importance is Information Gain.

Why?

- It explains which feature has maximum impact in classification based on the **notion of Entropy**.
- It works well for numeric as well as categorical data
- From the graph we understand that Total_Past_Communications and Email_Campaign_Type have high importance.
- Time_Email_Sent_Category and Customer_Location are not important and hence we decide to drop the feature.

Numerical variables were scaled using MinMaxScaler.

Why?

The numerical features of the dataset do not have a certain range and they differ from each other.

Categorical variables were encoded using One-Hot Encoding.

Why?

This method changes categorical data to a numerical format and enables you to group your categorical data without losing any information.

Understanding Target Variable

The target variable consists of 3 classes:

- 0 ignored 54941
- 1- read -11039
- 2 acknowledged -2373

Target Variable was **highly imbalanced**.

Handling Imbalanced data

1. Undersampling Technique:

- Technique used was Random UnderSampler
- Created balanced data with 2373 records for each class.

Why it didn't work?

Created baseline models with undersampled data and it was observed that they underperformed primarily due to **loss of information.**

Handling Imbalanced data

2. Oversampling Technique:

- Technique used was SMOTE
- Created balanced data with **54941** records for each class.

Different Models

Evaluation Metrics:

1 F1_Score

Different Models

2. **ROC_AUC_Score**

Winner Model

XGBoost SMOTE:

- Robust to outliers.
- Supports regularization.
- Works well on small to medium dataset.
- F1 score for train & test set were 89% & 81% respectively

Conclusion

- In EDA, we observed that Email_Campaign_Type was the most important feature. If your Email_Campaign_Type was 1,there is a 90%likelihood of your Email to be read/acknowledged.
- It was observed that both Time_Email_Sent and Customer_Location were insignificant in determining the Email_status. The ratio of the Email_Status was same irrespective of the demographic location or the time frame the emails were sent on.
- As the word_count increases beyond the 600 mark we see that there is a high possibility of that email being ignored. The ideal mark is 400-600. No one is interested in reading long emails!
- For modelling, it was observed that for imbalance handling Oversampling i.e. SMOTE worked way better than undersampling as the latter resulted in a lot of loss of information.
- Based on the metrics, XGBoost Classifier worked the best giving a train score of 89% and test score of 81% for F1 score.

Challenges

- Choosing the appropriate technique to handle the imbalance in data was quite challenging as it was a tradeoff b/winformation loss vs risk of overfitting.
- Overfitting was another major challenge during the modelling process.
- Understanding what features are most important and what features to avoid was a difficult task.
- Decision making on missing value imputations and outlier treatment was quite challenging as well.

Thank You AlmaBetter Team