CIĄGŁOŚĆ FUNKCJI JEDNEJ ZMIENNEJ

- Otoczeniem punktu x_0 o promieniu δ ($\delta > 0$) nazywamy przedział $U(x_0, \delta) = (x_0 \delta, x_0 + \delta)$,
- Symbolem U oznaczamy dowolne otoczenie punktu x₀,
- Niech funkcja f będzie określona w pewnym otoczeniu
 U punktu x₀.

<u>Definicja</u>: Funkcja f jest ciągła w punkcie x_0 wtedy i tylko wtedy, gdy spełnione są warunki:

- 1. istnieje w punkcie x_0 granica $\lim_{x\to x_0} f(x)$
- 2. funkcja f(x) ma w punkcie x_0 wartość $f(x_0)$
- 3. granica funkcji w punkcie x_0 równa się $f(x_0)$ lim $f(x) = f(x_0)$.

 $x \rightarrow x_0$

Jeżeli nie jest spełniony w punkcie x_0 którykolwiek z wymienionych warunków, to mówimy, że funkcjaf(x) nie jest ciągła w punkcie x_0 , a punkt x_0 nazywamy punktem nieciągłości tej funkcji.

Funkcja f jest nieciągła w punktach:

- a ponieważ nie jest w tym punkcie określona
- **b**, **e** bo nie istnieją granice: $\lim_{x\to b} f(x)$, $\lim_{x\to e} f(x)$
- c ponieważ $\lim_{x\to c} f(x) \neq f(c)$.

Funkcja jest ciągła w punkcie d.

Definicja Heinego:

Funkcja f(x) jest ciągła w punkcie x_0 wtedy i tylko wtedy, gdy dla każdego ciągu $\{x_n\}$ o wyrazach z otoczenia U zbieżnego do x_0 , ciąg wartości funkcji $\{f(x_n)\}$ jest zbieżny do $f(x_0)$.

Definicja Cauchy'ego:

Funkcja f(x) jest ciągła w punkcie x_0 wtedy i tylko wtedy, gdy

$$\bigwedge_{\varepsilon>0} \bigvee_{\delta>0} \bigwedge_{x\in U(x_0,\delta)} |f(x)-f(x_0)| < \varepsilon$$

Twierdzenia o ciągłości funkcji:

- 1. Suma dwóch funkcji ciągłych w punkcie x_0 jest funkcją ciągłą w tym punkcie.
- 2.**Iloczyn** dwóch funkcji ciągłych w punkcie x_0 jest funkcją ciągłą w tym punkcie.
- 3.**Iloraz** dwóch funkcji ciągłych w punkcie x_0 takim, że dzielnik jest różny od zera, jest funkcją ciągłą w tym punkcie.

- 1. Funkcja stała f(x) = c jest funkcją ciągłą w każdym punkcie $x \in R$
- 2. Funkcja tożsamościowa f(x) = x jest funkcją ciągłą w R
- 3. Wielomian stopnia n $(n \in N)$ jest funkcją ciągłą w R
- 4. Funkcja wymierna jest ciągła w każdym punkcie dziedziny:

Funkcja
$$f(x) = \frac{x^3 - 4x^2 + 1}{(x+1)^3}$$
 jest ciągła dla każdego $x \in R - \{-1\}$.

Twierdzenie o ciągłości funkcji złożonej

Jeżeli **funkcja złożona** f(g(x)) jest określona w pewnym otoczeniu punktu x_0 , a funkcja f jest ciągła w punkcie u_0 , gdzie $u_0 = g(x_0)$, to funkcja złożona f(g(x)) jest ciągła punkcie x_0 .

Przykład:

Funkcja złożona $f[g(x)] = \sin x^4$ jest ciągła dla każdego $x \in \mathbb{R}$.

Twierdzenie o ciągłości funkcji odwrotnej

Funkcja odwrotna do funkcji ciągłej i rosnącej (malejącej) jest ciągła i rosnąca (malejąca).

Przykład:

Funkcja $f(x) = a^{x}(a > 1)$ jest funkcja ciągłą i rosnącą, zatem funkcja $f^{-1}(x) = \log_{a} x$, (a > 1) jest także funkcja ciągłą i rosnącą.

Definicja:

Funkcja f(x) jest ciągła lewostronnie

 \mathbf{w} punkcie \mathbf{x}_0 jeżeli spełnione są następujące warunki:

- 1. istnieje granica lewostronna $\lim_{x\to x_0^-} f(x)$
- 2. funkcja f(x) ma w punkcie x_0 wartość $f(x_0)$
- 3. granica lewostronna funkcji w punkcie x_0 równa się $f(x_0)$:

$$\lim_{x \to x_0^-} f(x) = f(x_0).$$

Definicja:

Funkcja f(x) jest ciągła prawostronnie w punkcie x_0 jeżeli spełnione są następujące warunki:

- 1. istnieje granica prawostronna $\lim_{x\to x_0^+} f(x)$
- 2. funkcja f(x) ma w punkcie x_0 wartość $f(x_0)$
- 3. granica prawostronna funkcji w punkcie x_0 równa się $f(x_0)$:

$$\lim_{x \to x_0^+} f(x) = f(x_0).$$

$$f(x) = \begin{cases} x^2 + 1 & \text{dla} & x \in [0, +\infty) \\ x - 1 & \text{dla} & x \in (-\infty, 0) \end{cases}$$

Funkcja jest prawostronnie ciągła w punkcie x = 0, ponieważ

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (x^{2} + 1) = 1 = f(0).$$

Funkcja ta nie jest lewostronnie ciągła w punkcie x = 0, ponieważ

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x - 1) = -1 \neq f(0).$$

$$f(x) = \begin{cases} x+1 & dla & x \in (1,+\infty) \\ 1 & dla & x = 1 \\ -1 & dla & x \in (-\infty,1) \end{cases}$$

Funkcja nie jest prawostronnie ciągła w punkcie x = 1, ponieważ

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (x+1) = 2 \neq f(1).$$

Funkcja ta nie jest także lewostronnie ciągła w punkcie x = 1, ponieważ

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (-1) = -1 \neq f(1).$$

Wniosek:

- \triangleright Jeżeli funkcja jest ciągła w punkcie x_0 , to jest także w tym punkcie ciągła prawostronnie i lewostronnie.
- \triangleright Jeżeli funkcja jest ciągła prawostronnie i lewostronnie w punkcie x_0 , to funkcja jest ciągła w punkcie x_0 .

Definicja:

Funkcja jest ciągła w przedziale otwartym (ograniczonym lub nieograniczonym) jeżeli jest ciągła w każdym punkcie tego przedziału.

- 1. Funkcja $f(x) = \frac{3}{x(x+4)}$ jest ciągła w przedziałach $(-\infty,-4),(-4,0),(0,+\infty).$
- 2. Funkcja $f(x) = \sin x$ jest ciągła w przedziale nieograniczonym $(-\infty, +\infty)$.

Definicja:

Funkcja jest ciągła w przedziale domkniętym (a, b) jeżeli jest ciągła w przedziale otwartym (a, b) oraz jest ciągła prawostronnie w punkcie a i lewostronnie w punkcie b.

- 1. Funkcja $f(x) = \frac{2}{x}$, gdzie $0 < x \le 1$ nie jest ciągła w przedziale domkniętym <0, 1>, jest natomiast ciągła w przedziale (0, 1>.
- 2. Funkcja $f(x) = \sqrt{9-x^2}$ jest ciągła w przedziale domkniętym <-3, 3>.

Twierdzenie Weierstrassa o osiąganiu kresów przez funkcję ciągłą w przedziale domkniętym:

Jeżeli funkcją f(x) jest ciągła w przedziale domkniętym $\langle a,b\rangle$, to jest w tym przedziale ograniczona oraz istnieją w tym przedziale takie dwa punkty x_1 i x_2 , że

Wniosek:

Każda funkcja ciągła w przedziale domkniętym osiąga w tym przedziale kres dolny i kres górny zbioru swoich wartości.

Przykład:

Funkcja $f(x) = x^3$ jest ciągła w przedziale $\langle 0,4 \rangle$ oraz jest w tym przedziale ograniczona ponieważ $|f(x)| \le 64$. Istnieją zatem w przedziale $\langle 0,4 \rangle$ punkty $x_1 = 0$ i $x_2 = 4$, takie, że

$$f(x_1) = 0^3 = 0 = \inf_{x \in \langle 0, 4 \rangle} x^3,$$

$$f(x_2) = 4^3 = 64 = \sup_{x \in \langle 0, 4 \rangle} x^3.$$

oraz

Uwaga:

Funkcja ciągła w przedziale otwartym może być na końcach tego przedziału nieograniczona, zatem kresy zbioru wartości funkcji ciągłej w przedziale otwartym mogą nie istnieć!

- 1. Nie istnieją kresy zbioru wartości funkcji $f(x) = \operatorname{ctg} x$ w przedziale $(0, \pi)$.
- 2. Funkcja $f(x) = x^3$ rozważana w przedziale otwartym (0,4) nie osiąga w tym przedziale kresów.

Twierdzenie Darboux

o przechodzeniu funkcji ciągłej przez wartości pośrednie:

Jeżeli funkcja f(x) jest ciągła w przedziale domkniętym $\langle a,b \rangle$ przy czym $f(a) \neq f(b)$ oraz liczba y_0 jest zawarta między f(a) i f(b), to istnieje $c \in (a,b)$ takie, że $f(c) = y_0$.

Przykład:

Funkcja $f(x) = \cos x - x$ jest ciągła w przedziale $\left\langle 0, \frac{\pi}{2} \right\rangle$.

Ponadto
$$f(0) = 1 > 0$$
 i $f\left(\frac{\pi}{2}\right) = -\frac{\pi}{2} < 0$. Zatem w przedziale

$$\left(0, \frac{\pi}{2}\right)$$
 istnieje taki punkt c, że $f(c) = 0$

Wniosek:

Jeżeli funkcja jest ściśle monotoniczna i ciągła w przedziale $\langle a,b \rangle$ oraz f(a)f(b) < 0 (wartości funkcji na końcach przedziałów są różnych znaków), to istnieje taki punkt $c \in (a,b)$, że f(c) = 0.

RACHUNEK RÓŻNICZKOWY W ZAKRESIE FUNKCJI JEDNEJ ZMIENNEJ

- Rozpatrzmy funkcję y = f(x) określoną w pewnym otoczeniu $U(x_0, \delta)$ punktu x_0 .
- Symbolem Δx oznaczamy przyrost zmiennej niezależnej różny od zera taki, że $x_0 + \Delta x \in U(x_0, \delta)$.
- Przyrostowi Δx odpowiada przyrost wartości funkcji
 Δy:

$$\Delta y = f(x_0 + \Delta x) - f(x_0).$$

Definicja: Ilorazem różnicowym funkcji y = f(x) w punkcie x_0 dla przyrostu Δx nazywamy iloraz $\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$

Przykład:

Iloraz różnicowy funkcji $f(x)=x^2$ w punkcie x_0 dla przyrostu Δx wynosi

$$\frac{\Delta y}{\Delta x} = \frac{(x_0 + \Delta x)^2 - x_0^2}{\Delta x} = \frac{x_0^2 + 2x_0 \Delta x + (\Delta x)^2 - x_0^2}{\Delta x} = \frac{2x_0 + \Delta x}{2}$$

Interpretacja geometryczna ilorazu różnicowego:

Punkty wykresu:

$$P = (x_0, f(x_0)), Q = (x_0 + \Delta x, f(x_0 + \Delta x)).$$

Z wykresu:
$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = tg \alpha.$$

 Iloraz różnicowy jest równy współczynnikowi kierunkowemu siecznej PQ.

• Jeżeli przyjmiemy, że $\Delta x > 0$, to iloraz $\frac{\Delta y}{\Delta x}$ równy jest zmianie wartości funkcji f(x) w przedziale $\langle x_0, x_0 + \Delta x \rangle$ przypadającej na jednostkę miary x

• Iloraz różnicowy można nazwać <u>średnią prędkością</u> zmiany wartości funkcji w przedziale $\langle x_0, x_0 + \Delta x \rangle$

<u>Definicja:</u> Pochodną funkcji f(x) w punkcie x₀ nazywamy granicę właściwą ilorazu różnicowego

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

gdy $\Delta x \rightarrow 0$.

Pochodną funkcji f(x) w punkcie x_0 oznaczamy symbolem $f'(x_0)$.

Zatem

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

Przykład:

Korzystając z definicji oblicz pochodną funkcji $f(x) = x^2$ w punktach $x_0 = 0$ i $x_0 = 3$.

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{(x_0 + \Delta x)^2 - x_0^2}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{x_0^2 + 2x_0 \Delta x + (\Delta x)^2 - x_0^2}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} (2x_0 + \Delta x) = 2x_0$$

$$f'(0) = 2 \cdot 0 = 0, \qquad f'(3) = 2 \cdot 3 = 6.$$

Uwaga:

Jeżeli nie istnieje granica właściwa ilorazu różnicowego dla $\Delta x \rightarrow 0$, to mówimy, że pochodna $f'(x_0)$ nie istnieje.

Funkcja pochodna

Jeżeli pochodna funkcji f(x) istnieje w każdym punkcie pewnego przedziału otwartego V, to każdej liczbie $x_0 \in V$ przyporządkowana jest dokładnie jedna liczba $f'(x_0)$. Mówimy, że w przedziale V określona jest nowa funkcja, zwana funkcją pochodną funkcji f(x) i oznaczana jest symbolem f'(x). Funkcję pochodną nazywamy krótko pochodną.

Przykład: Funkcja $f(x) = x^2$ ma funkcję pochodną f'(x) = 2x dla każdego $x \in R$.

Twierdzenie: Funkcja może mieć w punkcie x_0 co najwyżej jedną pochodną.

POCHODNA FUNKCJI JEDNEJ ZMIENNEJ

Podstawowe wzory

FUNKCJA

POCHODNA FUNKCJI

$$f(x) = p(x) + g(x)$$

$$f'(x) = p'(x) + g'(x)$$

$$f(x) = p(x)-g(x)$$

$$f'(x) = p'(x)-g'(x)$$

$$f(x) = ag(x)$$

$$f'(x) = ag'(x)$$

$$f(x) = p(x)g(x)$$
 $f'(x) = p'(x)g(x) + p(x)g'(x)$

$$f(x) = p(x)/g(x)$$
 $f'(x) = [p'(x)g(x) - p(x)g'(x)]/[g(x)]^2$

$$f(x) = p(g(x))$$
 $f'(x) = p'(g(x))g'(x)$

$$f(x) = \ln p(x) \qquad f'(x) = p'(x)/p(x)$$

Pochodne podstawowych funkcji

FUNKCJA

POCHODNA FUNKCJI

a 0

 \mathbf{x} 1

ax a

 x^n nx^{n-1}

 $\ln x$ 1/x

lna^x lna

 e^{x} e^{x}

 e^{mx} me^{mx}

 a^{x}

 a^{x} lna, a>0

 $\mathbf{X}^{\mathbf{X}}$

 x^x (ln x + 1)

sin x

cos x

cos x

- sin x

tg x

 $1/\cos^2 x$

ctg x

 $-1/\sin^2 x$

log a x

1/(x lna)

$$\frac{1}{\sqrt{1-x^2}}$$

$$\frac{-1}{\sqrt{1-x^2}}$$

$$\frac{1}{1+x^2}$$

$$\frac{-1}{1+x^2}$$

Pochodne jednostronne funkcji

Definicja: Pochodną lewostronną funkcji f(x) w punkcie x_0 nazywamy granicę właściwą ilorazu różnicowego gdy $\Delta x \rightarrow 0^-$:

$$f'(x_0^-) = \lim_{\Delta x \to 0^-} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Definicja: Pochodną prawostronną funkcji f(x) w punkcie x_0 nazywamy granicę właściwą ilorazu różnicowego gdy $\Delta x \rightarrow 0^+$:

$$f'(x_0^+) = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Uwaga:

- ♦ Jeżeli istnieje pochodna $f'(x_0)$, to istnieją pochodne jednostronne $f'(x_0^-)$, $f'(x_0^+)$ oraz $f'(x_0) = f'(x_0^-) = f'(x_0^+)$
- Jeżeli istnieją pochodne jednostronne $f'(x_0^-)$, $f'(x_0^+)$ i są sobie równe to istnieje pochodna $f'(x_0)$ równa pochodnym jednostronnym.
- ♦ Istnienie granic właściwych $f'(x_0^-)$, $f'(x_0^+)$ nie zapewnia istnienia pochodnej!!!

Przykład:

Funkcja f(x)=|x| ma w punkcie $x_0=0$ pochodne jednostronne:

$$f'(0^{-}) = \lim_{\Delta x \to 0^{-}} \frac{|\Delta x| - 0}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{-\Delta x}{\Delta x} =$$

$$= \lim_{\Delta x \to 0^{-}} (-1) = -1$$

$$f'(0^{+}) = \lim_{\Delta x \to 0^{+}} \frac{|\Delta x| - 0}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{\Delta x}{\Delta x} =$$

$$= \lim_{\Delta x \to 0^{+}} 1 = 1$$

$$\Delta x \to 0^{+}$$
Note that is the second of the first probability of the first pr

Nie istnieje pochodna f'(0) ponieważ $f'(x_0^-) \neq f'(x_0^+)$.

Twierdzenie: Jeżeli funkcja ma pochodną w punkcie x_0 to jest w tym punkcie ciągła.

<u>Uwaga:</u> Funkcja ciągła w punkcie x_0 nie musi mieć pochodnej w x_0 .

Przykład: Funkcja f(x) = |x| jest ciągła w $x_0 = 0$, ale nie ma w tym punkcie pochodnej!

Interpretacja geometryczna pochodnej:

Zakładamy, że funkcja f(x) jest określona w przedziale (a, b) i ciągła w punkcie x_0 należącym do tego przedziału.

Równanie siecznej:
$$y = k(\Delta x)(x - x_0) + y_0$$
, gdzie $k(\Delta x) = \frac{\Delta y}{\Delta x}$

Równanie stycznej: $y = f'(x_0)(x - x_0) + y_0$.

Twierdzenie: Jeżeli funkcja f(x) jest ciągła w punkcie x_0 , to do wykresu tej funkcji istnieje **styczna** o równaniu

$$y = f'(x_0)(x - x_0) + y_0$$
 $(y_0 = f(x_0))$

wtedy i tylko wtedy, gdy funkcja f(x) ma w punkcie x_0 pochodną.

RÓŻNICZKA FUNKCJI

Twierdzenie o przedstawieniu przyrostu funkcji

Jeżeli funkcja f(x), określona w pewnym otoczeniu $U(x_0,\delta)$ punktu x_0 , ma pochodną $f'(x_0)$, to dla każdego przyrostu Δx takiego, że $(x_0 + \Delta x) \in U(x_0,\delta)$, odpowiadający przyrost funkcji

$$\Delta f = f(x_0 + \Delta x) - f(x_0)$$

można przedstawić w następujący sposób:

przy czym

$$\Delta f = f'(x_0) \Delta x + \alpha(\Delta x) \cdot \Delta x,$$

$$\lim_{\Delta x \to 0} \alpha(\Delta x) = 0.$$

Definicja:

Funkcję f(x) nazywamy różniczkowalną w punkcie x_0 jeżeli jej przyrost $\Delta f = f(x_0 + \Delta x) - f(x_0)$ można przedstawić dla każdego Δx dostatecznie bliskiego zeru w postaci

$$\Delta f = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x,$$
gdzie A jest stałą oraz $\lim_{\Delta x \to 0} \alpha(\Delta x) = 0.$

<u>Wniosek:</u> Jeżeli istnieje $f'(x_0)$, to funkcja f(x) jest w tym punkcie różniczkowalna oraz $A = f'(x_0)$. Jeżeli funkcja jest w punkcie x_0 różniczkowalna to $A = f'(x_0)$.

Definicja: Różniczką funkcji f(x) w punkcie x_0 dla przyrostu Δx zmiennej niezależnej x nazywamy iloczyn pochodnej $f'(x_0)$ i przyrostu Δx . Różniczkę funkcji f(x) w punkcie x_0 oznaczamy symbolem

$$df(x_0, \Delta x) = df(x_0) = df = dy$$

Zatem $df(x_0, \Delta x) = f'(x_0) \cdot \Delta x$.

Przykład: Oblicz różniczkę funkcji $f(x) = 3x^2$ w punkcie x_0 dla przyrostu zmiennej niezależnej x.

$$dy = 6x_0 \Delta x$$
.

Przykład: Różniczka funkcji f(x) = x jest równa $dx = 1 \cdot \Delta x = \Delta x$.

Różniczka zmiennej niezależnej jest równa przyrostowi tej zmiennej. Przyrost Δx zmiennej niezależnej nazywamy różniczką zmiennej niezależnej x i oznaczamy symbolem dx.

Mamy zatem

$$df(x_0) = f'(x_0) \cdot dx$$
skąd
$$f'(x_0) = \frac{df(x_0)}{dx}.$$

Interpretacja geometryczna różniczki

Z wykresu wynika, że
$$\frac{dy}{\Delta x} = tg \alpha$$
 oraz $tg \alpha = f'(x_0)$, zatem $dy = f'(x_0) \Delta x$.

Przykład: Obliczyć w przybliżeniu $\sqrt{10}$.

Przyjmujemy $f(x) = \sqrt{x}$, $x_0 = 9$, x = 10. Korzystamy ze wzoru

$$f(x_0 + dx) \approx f(x_0) + f'(x_0)dx.$$

Mamy: $dx = x - x_0 = 10 - 9 = 1$

$$f'(x_0) = \frac{1}{2\sqrt{x_0}}, \quad f'(9) = \frac{1}{6}, \quad f(9) = 3.$$

Zatem
$$\sqrt{10} \approx 3 + \frac{1}{6} \cdot 1 = 3, 1,6(6).$$

Niech $f^{-1}(y)$ będzie funkcją odwrotną do funkcji ściśle monotonicznej (ściśle rosnącej lub malejącej) i ciągłej f(x).

Twierdzenie o pochodnej funkcji odwrotnej: Jeżeli funkcja f(x) jest różniczkowalna w otoczeniu punktu x oraz $f'(x) \neq 0$, to funkcja odwrotna $f^{-1}(y)$ jest różniczkowalna w punkcie y = f(x), przy czym $\left(f^{-1}(y)\right)' = \frac{1}{f'(x)}$.

Rozpatrzmy funkcję złożoną y = f[g(x)]. Niech y = f(u) oraz u = g(x).

Twierdzenie o pochodnej funkcji złożonej:

Jeżeli funkcja u = g(x) ma pochodną g'(x), zaś funkcja y = f(u) ma pochodną f'(u), to funkcja złożona y = f[g(x)] ma pochodną $y' = f'(u) \cdot g'(x) = f'(g(x)) \cdot g'(x)$.

Przykład:
$$y = \sqrt{x^3 + 5}$$

$$y = \sqrt{u}$$
 $u = x^3 + 5$ $(x^3 + 5)' = 3x^2$
 $y' = \frac{1}{2\sqrt{u}} \cdot 3x^2 = \frac{3x^2}{2\sqrt{x^3 + 5}}$

Przykład:
$$y = x^X$$

$$(\ln f(x))' = \frac{f'(x)}{f(x)}$$

$$\ln y = x \ln x$$
 $(\ln y)' = \frac{y'}{y} = \ln x + 1$

$$y' = y(\ln x + 1) = x^{x}(\ln x + 1)$$

POCHODNE I RÓŻNICZKI WYŻSZYCH RZĘDÓW

Jeżeli funkcja pochodna f'(x) ma pochodną w zbiorze X, to tę pochodną oznaczamy symbolem f''(x) lub $f^{(2)}(x)$ i mówimy, że funkcja f(x) ma w zbiorze X pochodną rzędu drugiego:

$$f^{(2)}(x) = f''(x) = (f'(x))'$$
.

Jeżeli funkcja f''(x) ma pochodną w zbiorze X, to tę pochodną oznaczamy symbolem f'''(x) lub $f^{(3)}(x)$ i mówimy, że funkcja f(x) ma w zbiorze X pochodną rzędu trzeciego:

$$f^{(3)}(x) = f'''(x) = (f''(x))'$$
.

Analogicznie określamy pochodną rzędu czwartego, piątego itd.

Ogólnie **pochodna rzędu n** $(n \in N)$ funkcji f(x) jest dana wzorem

$$y^{(n)} = f^{(n)}(x) = (f^{(n-1)}(x))'$$
.

Jeżeli funkcja f(x) posiada w pewnym punkcie (zbiorze) pochodną rzędu n, to mówimy że jest w tym punkcie (zbiorze) **n-krotnie różniczkowalna**.

Przykład:

$$y = \cos x$$
 $y^{(1)} = -\sin x$ $y^{(2)} = -\cos x$ $y^{(3)} = \sin x$
 $y^{(4)} = \cos x$ $y^{(5)} = -\sin x$ $y^{(6)} = -\cos x$ $y^{(7)} = \sin x$

Twierdzenie Rolle'a:

Jeżeli funkcja f(x) jest ciągła w przedziale $\langle a,b\rangle$ i różniczkowalna w jego wnętrzu oraz f(a)=f(b), to istnieje taki punkt $c\in (a,b)$, że f'(c)=0.

Styczna do wykresu w punktach c_1 , c_2 jest równoległa do osi OX:

$$f'(c_1) = 0$$
 $f'(c_2) = 0$

Przykład:

f nie jest ciągła w przedziale [0, 1]

f nie jest różniczkowalna w przedziale (0, 1)

funkcja f (x) = x nie spełnia warunku f (0) = f (1)

Twierdzenie Lagrange'a (o przyrostach, o wartości średniej):

Jeżeli funkcja f(x) jest ciągła w przedziale $\langle a,b\rangle$ oraz ma pierwszą pochodną wewnątrz tego przedziału, to istnieje taki punkt $c \in (a,b)$, że $f'(c) = \frac{f(b) - f(a)}{b-a}$.

tg $\alpha = \frac{f(b) - f(a)}{b - a}$ - współczynnik kierunkowy siecznej (i stycznej!)

Wnioski z twierdzenia Lagrange'a:

1.
$$\bigwedge_{x \in (a,b)} f'(x) = 0 \Leftrightarrow f(x) = c, c - stała$$

- 2. $\bigwedge_{x \in (a,b)} f'(x) > 0 \Rightarrow$ funkcja f jest rosnąca w przedziale (a, b)
- 3. $\bigwedge_{x \in (a,b)} f'(x) < 0 \Rightarrow$ funkcja f jest malejąca w przedziale (a, b)

Elastyczność funkcji

Niech $f:(0,\infty) \to (0,\infty)$.

Iloraz

$$\frac{f(x_0 + \Delta x) - f(x_0)}{f(x_0)} \div \frac{\Delta x}{x_0}$$

nazywamy elastycznością przeciętną funkcji f w przedziale $\langle x_0, x_0 + \Delta x \rangle$ i oznaczamy symbolem E.

Stosunek przyrostu względnego wartości funkcji do przyrostu względnego argumentu można także przedstawić w postaci

$$E = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \cdot \frac{x_0}{f(x_0)}.$$

Granice

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \cdot \frac{x_0}{f(x_0)} = f'(x_0) \cdot \frac{x_0}{f(x_0)}$$

nazywamy elastycznością funkcji f w punkcie x_0 i oznaczamy $E(x_0)$.

Twierdzenie: Jeżeli przyrostowi zmiennej niezależnej funkcji f o p% odpowiada przyrost funkcji o q%, to $q \approx p \cdot E(x)$.

Przykład:

Oblicz elastyczność funkcji $f(x) = \frac{3x}{2x+5}$ w punkcie x = 1.

Funkcja pochodna
$$f'(x) = \frac{15}{(2x+5)^2}$$

Elastyczność

$$E(x) = f'(x) \cdot \frac{x}{f(x)} = \frac{15}{(2x+5)^2} \cdot \frac{x}{\frac{3x}{2x+5}} = \frac{5}{2x+5}$$

$$E(1) = f'(1) \cdot \frac{1}{f(1)} = \frac{5}{7}$$

Jeżeli wartość x = 1 wzrośnie o 1%, to wartość funkcji f wzrośnie o około 5/7 %.

TWIERDZENIE DE L'HOSPITALA

Regula de l'Hospitala jest stosowana do obliczania nieoznaczoności następujących typów:

$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$, $0 \cdot \infty$, $\infty - \infty$, 0^0 , ∞^0 , 1^∞ .

Twierdzenie 1

Założenia:

- 1. Funkcje $\frac{f(x)}{g(x)}$ i $\frac{f'(x)}{g'(x)}$ są określone w pewnym sąsiedztwie $S(x_0,\delta)$ punktu x_0
- 2. $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ lub $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \pm \infty$
- 3. Istnieje granica $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ (właściwa lub niewłaściwa)

Teza: Istnieje granica
$$\lim_{x \to x_0} \frac{f(x)}{g(x)}$$
, przy czym
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Uwaga: Twierdzenie jest także prawdziwe dla granic jednostronnych x_0^-, x_0^+

Twierdzenie 2

Założenia:

- 1. Funkcje $\frac{f(x)}{g(x)}$ i $\frac{f'(x)}{g'(x)}$ są określone w przedziale $(-\infty, a)$ 2. $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} g(x) = 0$ lub $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} g(x) = \pm \infty$
- 3. Istnieje granica $\lim_{x\to -\infty} \frac{f'(x)}{g'(x)}$ (właściwa lub niewłaściwa)

Teza: Istnieje granica $\lim_{x \to -\infty} \frac{f(x)}{g(x)}$, przy czym $\lim_{x \to -\infty} \frac{f(x)}{\sigma(x)} = \lim_{x \to -\infty} \frac{f'(x)}{\sigma'(x)}$

Uwaga: Twierdzenie jest także prawdziwe gdy rozpatrujemy funkcje w przedziale $(a,+\infty)$.

REGUŁY DE L'HOSPITALA

1.
$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$ $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$

 $2. \infty - \infty$ sprowadzamy do $\frac{0}{0}$ za pomocą tożsamości

$$f(x)-g(x) = \frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x) \cdot g(x)}}$$

3. $0 \cdot \infty$ sprowadzamy do $\frac{0}{0}$, $\frac{\infty}{\infty}$ za pomocą tożsamości $f(x) \cdot g(x) = \frac{f(x)}{1} = \frac{g(x)}{1}$

$$f(x) \cdot g(x) = \frac{f(x)}{\frac{1}{g(x)}} = \frac{g(x)}{\frac{1}{f(x)}}$$

4. 0^0 , ∞^0 , 1^∞ sprowadzamy do $0\cdot\infty$ stosując tożsamość

$$f(x)^{g(x)} = e^{g(x) \cdot \ln f(x)},$$

przy czym na początku obliczamy granicę:

$$\lim_{x\to x_0} g(x) \cdot \ln f(x) = A,$$

wtedy
$$\lim_{x \to x_0} f(x)^{g(x)} = e^A$$
.

Przykład:

1.
$$\lim_{x \to 0} \frac{3^{x} - 1^{\left[\frac{0}{0}\right]}}{x} = \lim_{x \to 0} \frac{3^{x} \ln 3}{1} = \ln 3$$

2.
$$\lim_{x \to \infty} \frac{x^2 + x + 2^{\left[\frac{\infty}{\infty}\right]}}{4x^2 + 5} = \lim_{x \to \infty} \frac{2x + 1^{\left[\frac{\infty}{\infty}\right]}}{8x} = \lim_{x \to \infty} \frac{2}{8} = \frac{1}{4}$$

$$3. \lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)^{\left[\infty - \infty\right]} = \lim_{x \to 0} \frac{x - \sin x}{x \sin x} = \lim_{x \to 0} \frac{1 - \cos x}{\sin x + x \cos x} = \lim_{x \to 0} \frac{1 - \cos x}{\sin x + x \cos x}$$

$$= \lim_{x \to 0} \frac{\sin x}{\cos x + (\cos x - x \sin x)} = \lim_{x \to 0} \frac{\sin x}{2 \cos x - x \sin x} = \frac{0}{2} = 0$$

4.
$$\lim_{x \to \infty} x \sin \frac{a}{x} = \lim_{x \to \infty} \frac{\sin \frac{a}{x} \left[\frac{0}{0} \right]}{\frac{1}{x}} = \lim_{x \to \infty} \frac{-\frac{a}{x^2} \cos \frac{a}{x}}{-\frac{1}{x^2}} =$$

$$= \lim_{x \to \infty} a \cos \frac{a}{x} = a$$

5.
$$\lim_{x \to 0^{+}} x^{\sqrt{x}} = e^{A} = e^{0} = 1$$

$$A = \lim_{x \to 0^{+}} \sqrt{x} \ln x = \lim_{x \to 0^{+}} \frac{\ln x}{\frac{1}{\sqrt{x}}} = \lim_{x \to 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{2\sqrt{x^{3}}}} = \lim_{x \to 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{2\sqrt{x^{3}}}} = \lim_{x \to 0^{+}} \frac{\ln x}{-\frac{1}{2\sqrt{x^{3}}}} = \lim_{x$$

$$=\lim_{x\to 0^+} -2\sqrt{x}=0$$