Examen la algebră ¹ an I, sem. I 3.02.2022

Numele și prenumele
Grupa
$\Gamma = \text{numărul de litere al primului nume} = \dots$
$\Omega = \text{numărul de litere al primului prenume} = \dots$

Subjectul I.

1. Pe mulțimea ℝ definim relația binară

$$x \sim y \iff x = y \text{ sau } x + y = \Omega.$$

- (i) Să se arate că "∼" este o relație de echivalență.
- (ii) Să se determine clasa de echivalență a numărului real 2022 în raport cu relația $\sim.$
- (iii) Să se arate că funcția $f: \mathbb{R} \to \mathbb{R}$ definită prin $f(x) = x(\Omega x)$, pentru orice $x \in \mathbb{R}$, nu este nici injectivă, nici surjectivă.
- (iv) Să se arate că mulțimea factor \mathbb{R}/\sim este echipotentă cu imaginea funcției f de la punctul (iii). (6 pct.)
- 2. Definim funcția $g: \mathbb{Z} \to [0,1), \ g(n) = \{2^n \sqrt[13]{\Gamma}\}, \ \text{unde} \ \{x\} \ \text{reprezintă}$ partea fracționară a numărului x. Să se arate că g este injectivă. (3 pct.)

Subjectul II.

- 1. Determinați elementele de ordin 2 și elementele de ordin 3 din grupul $(\mathbb{Z}_{\Gamma+5},+)$.
- 2. Determinați elementele de ordin 6 din grupul $(\mathbb{Z}_{\Gamma+5} \times \mathbb{Z}_{\Omega+12}, +)$. (3 pct.)
- 3. Conține grupul $(\mathbb{Z}_{\Gamma} \times \mathbb{Z}_{\Omega}, +)$ un element de ordin $\Gamma \cdot \Omega$? (3 pct.)

La fiecare subiect, înlocuiți Γ şi Ω cu valorile specificate mai sus! La fiecare subiect, înlocuiți Γ şi Ω cu valorile specificate mai sus! (Spre exemplu: dacă numele este Vasilescu Ștefan Alexandru considerați peste tot $\Gamma=9$ şi $\Omega=6$.)

Toate răspunsurile trebuie justificate. Fiecare subiect trebuie scris pe foi separate.

Timp de lucru $2\frac{1}{2}$ ore. Succes!

¹Toate subjectele sunt obligatorii.

Subiectul III. Se consideră permutarea

- 1. Descompuneți σ în produs de cicluri disjuncte și în produs de transpoziții. (3 pct.)
- 2. Aflați ordinul și signatura permutării σ . Calculați $\sigma^{2022+\Gamma}$. (3 pct.)
- 3. Determinați permutările $\tau \in S_{10}$ cu proprietatea că $\tau^2 = \sigma^{\Omega}$. (3 pct.)

Subjectul IV.

- 1. Să se determine câtul și restul împărțirii polinomului $X^4+X^2+\Gamma$ la $X^3+X+\Omega$ în $\mathbb{Q}[X].$
- 2. Să se determine c
mmdc al polinoamelor $X^5+X^2+\hat{\Gamma}$ și $X^3+\hat{\Omega}X+\hat{1}$ în
 $\mathbb{Z}_2[X].$
- 3. Să se determine numărul elementelor inversabile, al elementelor nilpotente şi al elementelor idempotente din inelul $\mathbb{Z}_{6\Gamma}$.
- 4. Fie $I=(X-\Gamma,\Omega)$ idealul din $\mathbb{Z}[X]$ generat de $X-\Gamma$ și Ω . Să se arate că $I\neq \mathbb{Z}[X]$.