DataMirage - A Unified Platform for Synthetic Data Generation

Team Members

Arjan Sapkota (THA077BCT012)

Girban Adhikari (THA077BCT017)

Jivan Acharya (THA077BCT019)

Subarna Ghimire (THA077BCT043)

Supervised By:

Er. Umesh Kanta Ghimire HOD

Department of Electronics and Computer Engineering Institute of Engineering, Thapathali Campus

Presentation Outlines

- Motivation
- Objectives
- Scope of Project
- Proposed Methodology
- Expected Results
- Projects Applications
- Gantt Chart
- Estimated Project Expenses
- References

Motivation

- Increasing challenges in leveraging data for AI applications
 - Growing AI model complexity demands larger, high-quality datasets
- Traditional data collection is costly and time-intensive
 - Gathering and processing real-world data requires significant resources
- Ethical and privacy concerns with real data
 - Real data use risks privacy violations and ethical issues

Objectives

 Develop a platform for generating high-quality synthetic data across tabular and textual datasets

 Enhance machine learning model training with privacypreserving synthetic data

Scope of Project

Project Capabilities:

- Generate diverse synthetic data for various datasets
- Replace sensitive data to ensure privacy compliance
- Improve AI model accuracy with augmented synthetic data

Project Limitations:

- Synthetic data may lack perfect realism, affecting model performance
- High-quality generation is computationally intensive and resourcedemanding
- Regulatory bodies may not accept synthetic data for all applications.

<u>a</u> **Implementation** System

Proposed Methodology – [2] (Working Principle)

- Data Storage
 - RealDataStorage: Stores the original datasets that will be used to generate synthetic data
 - SyntheticDataStorage: Contains the synthetic datasets generated by the system
 - ModelCheckpointStorage: Keeps track of model checkpoints for saving progress and continuing training

Proposed Methodology – [3] (Working Principle)

Data Input Layer

- Text Preprocessor: Processes and prepares textual data for synthetic data generation
- Tabular Preprocessor: Processes and prepares tabular data for synthetic data generation

API Layer

- TabularDataAPI: Interface for accessing and manipulating tabular data
- TextDataAPI: Interface for accessing and manipulating textual data

Proposed Methodology – [4] (Working Principle)

Data Generation Models

- Text GAN
 - Text Discriminator: Evaluates the quality of generated textual data
 - Text Generator: Produces synthetic textual data that mimics real data
- Tabular GAN
 - Tabular Discriminator: Assesses the authenticity of generated tabular data
 - Tabular Generator: Generates synthetic tabular data that replicates the real data

Training Module

- Training Loop
 - Optimization: Adjusts model parameters to improve the quality of synthetic data
 - Loss Calculation: Computes the difference between generated data and real data to guide training

Proposed Methodology – [5] (Working Principle)

- Evaluation and Validation Module
 - Visualization Tools: Provides graphical representations to analyze and interpret data
 - Evaluation Metrics: Offers metrics to assess the quality and validity of the synthetic data

User Interface

- Dashboard: Central hub for monitoring and managing the data generation process
- Data Visualization: Tools to visualize both the real and synthetic datasets for better understanding and comparison

Proposed Methodology – [6] (Architecture of GAN)

Proposed Methodology – [7] (Working Principle)

- Basic Structure
 - Generator (G)
 - Takes random noise as input
 - Generates synthetic data resembling real data
 - Discriminator (D)
 - Takes both real and synthetic data as input
 - Outputs the probability that the input data is real

Proposed Methodology – [8] (Working Principle)

- Adversarial Process
 - Training Phase
 - Step 1: Train Discriminator
 - Real data labeled as real
 - Synthetic data from the generator labeled as fake
 - Discriminator learns to distinguish between real and fake data
 - Step 2: Train Generator
 - Generator produces synthetic data
 - Synthetic data is fed to the discriminator
 - Generator learns to produce data that fools the discriminator into classifying it as real

Proposed Methodology – [9] (Working Principle)

Objective Functions

- Discriminator Loss
 - Measures the accuracy of the discriminator in distinguishing real data from synthetic data
- Generator Loss
 - Measures how well the generator can produce data that the discriminator classifies as real
- Iterative Training
 - Alternating optimization steps for the discriminator and generator
 - Discriminator: Maximizes Discriminator loss
 - Generator: Minimizes Generator loss

Proposed Methodology – [10] (Working Principle)

Convergence

- The process continues until the generator produces data that the discriminator can no longer distinguish from real data
- Ideally, both networks reach a point where: D(x)=0.5 for real and fake data

d Methodology System Flow) roposec

Proposed Methodology – [12] (Working Principle)

- Detects the type of data objects in the user's dataset
- Classifies the dataset type and optionally extracts feature columns
- User specifies the number of rows for the synthetic dataset
- Input data and synthesizing options are fed into the data generation model
- System generates synthetic data based on the provided specifications
- Generates a comprehensive report including correlation, statistical analysis to validate

Proposed Methodology – [13] (Hardware Requirements)

- Processor:
 - NVIDIA Tesla K80, P100, or T4 (Google Colab)
 - NVIDIA Tesla P100 (Kaggle)
- RAM:
 - Up to 25 GB (Google Colab)
 - 13 GB (Kaggle)
- Persistent Storage:
 - 5 GB per notebook (Kaggle)
- GPU Access:
 - Free access to powerful GPUs (Google Colab)

Proposed Methodology – [14] (Software Requirements)

- Programming Languages: Python
- Development Environments and IDEs: Jupyter Notebook, Google Colab, Kaggle Kernels
- Data Processing and Analysis: Pandas, NumPy, Scikit-learn
- Deep Learning Frameworks: TensorFlow, Keras, PyTorch
- Synthetic Data Generation: GANs TensorFlow and PyTorch
- Model Training and Evaluation: TensorBoard, Weights & Biases
- Data Storage and Management: Google Drive, Kaggle Datasets
- Version Control: GitHub

Dataset Exploration – [1] (Textual)

Attribute	Details	
Dataset Name	Mental Health Counselling Conversations	
Data Type	Textual	
Source	Primarily User-Contributed	
Size	3.51k rows	
Information Covered		
Context	String containing the question asked by a user	
	String containing the corresponding answer	
Response	provided by a psychologist	

Dataset Exploration – [2] (Textual)

Dataset Exploration – [3] (Tabular)

Dataset Name	Data Type	Source	Size (No. of Instances)	Covered Information	Features
Database 1 to 6	Continuousiv-	Garavan Institute	~2800 (training, 972 testing)	Various	~29 attributes
Database with 9172 instances	Boolean or Continuously- valued	Ross Quinlan	9172	Covers 20 classes, includes domain theory	~29 attributes
database by Stefan	(Continuously-	Stefan Aeberhard	215	Thyroid condition, no missing values	5 attributes
Thyroid	Boolean or Continuously- valued	Peter Turney	3772 (training, 3428 testing)	condition	3 classes, includes cost data

Expected Results – [1]

You don't have Synthetic data created yet.

Synthesizers generate new data from a specific Data Source.

Expected Results – [2]

Project Applications

- Privacy-Preserving Applications
 - Substituting sensitive data with synthetic equivalents to mitigate privacy risks
 - Enhancing AI model training without compromising sensitive health/financial data
- Al Model Training and Performance
 - Augmenting existing datasets with synthetic data to boost model accuracy
 - Facilitating faster iteration and deployment of AI solutions in various fields
- Educational and Training Purposes
 - Providing realistic synthetic datasets for training researchers, students, and professionals
 - Enabling practical experimentation with accessible and diverse datasets

Gantt Chart

Estimated Project Expenses

TASK	EXPECTED PRICE (NRs)
Printing	2500.00
Compute Resources	10000.00
Deployment	3000.00
Total	15500.00

References – [1]

- [1] I. J. Goodfellow, J. Pouget-Abadie and M. Mirza, "Generative Adversarial Networks," in *Advances in Neural Information Processing Systems (NIPS)*, 2014, pp. 2672-2680
- [2] D. P. Kingma and M. Welling, "Auto-Encoding Variational Bayes," in *International Conference on Learning Representations* (ICLR), 2013.
- [3] E. Choi, S. Biswal and B. Malin, "Generating Multi-label Discrete Patient Records using Generative Adversarial Networks," in *Proceedings of Machine Learning Research*, 2017.

References – [2]

- [4] Y. Zhang, Z. Gan and K. Fan, "Adversarial Feature Matching for Text Generation," in *Conference on Empirical Methods in Natural Language Processing (EMNLP)*, 2016, August.
- [5] L. Yu, W. Zhang and J. Wang, "Sequence generative adversarial nets with policy gradient," in *Thirty-First AAAI Conference on Artificial Intelligence (AAAI)*, 2017.
- [6] R. Quinlan, "Thyroid Disease," UCI Machine Learning Repository, 1987.[Online]. Available: https://doi.org/10.24432/C5D010.