CSCI203 Algorithms and Data Structures

Algorithm Efficiency

Lecturer: Dr. Fenghui Ren

Room 3.203

Email: fren@uow.edu.au

Analysis of Algorithms

- Issues to be considered
 - Correctness
 - Time efficiency
 - Space efficiency
 - Optimality
- Approaches
 - Theoretical analysis
 - Empirical analysis

Theoretical Analysis of Time Efficiency

- Time efficiency is analyzed by determining the number of repetitions of the <u>basic operation</u> as a function of <u>input size</u>
- <u>Basic operation</u>: the operation that contributes most towards the running time of the algorithm

Input Size and Basic Operations Examples

Problem	Input size measure	Basic operation	
Searching for key in a list of <i>n</i> items	Number of list's items, i.e. <i>n</i>	Key comparison	
Multiplication of two matrices	Matrix dimensions or total number of elements	Multiplication of two numbers	
Checking primality of a given integer <i>n</i>	<i>n</i> 'size = number of digits (in binary representation)	Division	
Typical graph problem	# vertices and/or edges	Visiting a vertex or traversing an edge	

Empirical Analysis of Time Efficiency

- Select a specific (typical) sample of inputs
- Use physical unit of time (e.g., milliseconds)
 or
 Count actual number of basic operation's executions
- Analyze the empirical data

Best-case, average-case, worst-case

- For some algorithms efficiency depends on form of input:
 - Worst case: $C_{worst}(n)$ maximum over inputs of size n
 - Best case: $C_{best}(n)$ minimum over inputs of size n
 - Average case: $C_{avg}(n)$ "average" over inputs of size n
 - Number of times the basic operation will be executed on typical input
 - NOT the average of worst and best case
 - Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs

Example: Sequential search

```
ALGORITHM SequentialSearch(A[0..n-1], K)
    //Searches for a given value in a given array by sequential search
    //Input: An array A[0..n-1] and a search key K
    //Output: The index of the first element of A that matches K
              or -1 if there are no matching elements
    i \leftarrow 0
    while i < n and A[i] \neq K do
        i \leftarrow i + 1
    if i < n return i
    else return -1
```

- Worst case
 - $C_{worst}(n) = n$
- Best case?
 - $C_{hest}(n) = 1$
- Average case

$$C_{avg}(n) = \frac{p(n+1)}{2} + n(1-p)$$

where p is the probability of finding K in A

Types of formulas for basic operation's count

- Exact formula
 - e.g., C(n) = n(n-1)/2
- Formula indicating order of growth with specific multiplicative constant
 - e.g., $C(n) \approx 0.5 n^2$
- Formula indicating order of growth with unknown multiplicative constant
 - e.g., $C(n) \approx cn^2$

Order of Growth

- Most important: Order of growth within a constant multiple as $n \to \infty$
 - e.g. How much longer does it take to solve problem of double input size?

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	n!
10	3.3	10 ¹	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^{6}$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^2$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^5$	108	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^6$	10^{10}	10^{15}		
106	20	10^{6}	$2.0 \cdot 10^7$	10^{12}	10^{18}		

Approximate values of several important functions for analysis of algorithms

Asymptotic Order of Growth

- A way of comparing functions that ignores constant factors and small input sizes
- O(g(n)): class of functions f(n) that grow no faster than g(n)
 - Related to the worst-case behavior of the algorithm
- $\Omega(g(n))$: class of functions f(n) that grow at least as f(n) as g(n)
 - Related to the best-case behavior of the algorithm

Big-O

Big-O notation: $t(n) \in O(g(n))$

Big-omega

Big-omega notation: $t(n) \in \Omega(g(n))$

Relating 0 and Ω

- Both of O and Ω are loose bounds. A function can be in one of these and yet grow much more slowly (or quickly) than the bounding function.
 - E.g. $n^2 \in O(n!)$ and $n! \in \Omega(n^2)$
- ▶ A third notation allows us to create a tighter bound for some functions.

Theta, a tighter bound

- \blacktriangleright Sometimes, we can find a function g(n) so that:
 - $f(n) \in O(g(n))$
 - $f(n) \in \Omega(g(n))$
- That is, the same function is both an upper bound and a lower bound.
- In this case we say that $f(n) \in \Theta(g(n))$
- $\Theta(g(n))$: class of functions f(n) that grow at same rate as g(n)
 - Related to the average or typical case behavior of the algorithm

Big-theta

Big-theta notation: $t(n) \in \Theta(g(n))$

Establishing order of growth using the definition

Definition: f(n) is in O(g(n)) if order of growth of $f(n) \le$ order of growth of g(n) (within constant multiple),

• i.e., there exist positive constant c and nonnegative integer n_0 such that

$$f(n) \le c g(n)$$
 for every $n \ge n_0$

- Examples:
 - $10n \text{ is } O(n^2)$
 - 5n + 20 is O(n)

Some properties of asymptotic order of growth

- $f(n) \in O(f(n))$
- $f(n) \in O(g(n)) \text{ iff } g(n) \in (f(n))$
 - That is to say that f(n) is bounded below by g(n) if and only if g(n) is bounded above by f(n).
- If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$
- If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) + f_2(n) \in O(\max\{g_1(n), g_2(n)\})$

Establishing order of growth using limits

$$\lim_{n\to\infty} T(n)/g(n) = \begin{cases} 0 & \text{order of growth of } T(n) < \text{order of growth of } g(n) \\ c > 0 & \text{order of growth of } T(n) = \text{order of growth of } g(n) \\ \infty & \text{order of growth of } T(n) > \text{order of growth of } g(n) \end{cases}$$

Examples:

- T(n) = 10n vs. $g(n) = n^2$ T(n) = n(n + 1)/2 vs. $g(n) = n^2$

L'Hôpital's rule and Stirling's formula

L'Hôpital's rule: If $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n)$ and the derivatives f', g' exist, then

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}$$

Example: $\log n \ vs.n$

► Stirling's formula: $n! \sim \sqrt{2\pi n} (n/e)^n$

Example: $2^n vs. n!$

An Example

Consider the following algorithm.

```
Algorithm Enigma (A[1\cdots n,1\cdots n])

//Input: A matrix of A[1\cdots n,\ 1\cdots n] real numbers for i \leftarrow 1 to n - 1 do

for j \leftarrow i + 1 to n do

if A[i,j] \neq A[j,i]

return false

return true
```

- What does this algorithm compute?
- What is its basic operation?
- How many times is the basic operation executed?
- What is the efficiency class of this algorithm?

An Example...

- The algorithm returns "true" if its input matrix is symmetric and "false" if it is not.
- Comparison of two matrix elements.
- $C_{worst}(n) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n-1} 1 = \sum_{i=1}^{n-1} [(n-1) (i+1) + 1]$ $= \sum_{i=1}^{n-1} (n-1-i) = (n-1) + (n-2) + \dots + 1 = \frac{(n-1)n}{2} = \frac{n^2 n}{2}$
- Quadratic $C(n) \in O(n^2)$

Basic asymptotic efficiency classes

1	constant	
log n	logarithmic	
n	linear	
$n \log n$	<i>n-</i> log- <i>n</i> or linearithmic	
n^2	quadratic	
n^3	cubic	
2 ⁿ	exponential	
n!	factorial	

Related References

- Introduction to the Design and Analysis of Algorithms, A. Levitin, 3rd Ed., Pearson 2011.
 - Chapters 2.1 & 2.2
- Introduction to Algorithms, T. H. Cormen, 3rd Ed, MIT Press 2009.
 - Chapters 2 & 3