Math 217 – Final Exam Solutions

Student ID Number:	Section:
--------------------	----------

Question	Points	Score
1	12	
2	16	
3	10	
4	16	
5	13	
6	12	
7	10	
8	11	
Total:	100	

- 1. (12 points) Write complete, precise definitions for, or precise mathematical characterizations of, each of the following (italicized) terms.
 - (a) The dimension of the subspace V of \mathbb{R}^n

Solution: The *dimension* of the subspace V of \mathbb{R}^n is the number of vectors in any basis of V.

(b) The list of vectors $(\vec{v}_1, \dots, \vec{v}_n)$ in the vector space V is linearly independent

Solution: The list of vectors $(\vec{v}_1, \ldots, \vec{v}_n)$ in the vector space V is linearly independent if for all $c_1, \ldots, c_n \in \mathbb{R}$, if $\sum_{i=1}^n c_i \vec{v}_i = \vec{0}$ then $c_i = 0$ for each $1 \leq i \leq n$.

(c) The rank of the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$

Solution: The rank of the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is the dimension of im(T).

(d) For a subset X of the vector space V, the span of X in V

Solution: The span of X in V is the set

$$\left\{ \sum_{i=1}^{n} c_i \vec{v}_i : n \in \mathbb{N}, c_1, \dots, c_n \in \mathbb{R}, \text{ and } \vec{v}_1, \dots, \vec{v}_n \in X \right\}.$$

Solution: The span of X in V is the set of all linear combinations of vectors in V.

- 2. State whether each statement is True or False and provide a short proof of your claim.
 - (a) (3 points) For all $n \in \mathbb{N}$, the set W of all orthogonal $n \times n$ matrices is a subspace of the vector space $\mathbb{R}^{n \times n}$.

Solution: FALSE. For any n, the $n \times n$ zero matrix is not orthogonal, but every subspace of $\mathbb{R}^{n \times n}$ contains the $n \times n$ zero matrix.

(b) (3 points) For all integers $0 \le k \le n$, if the $n \times n$ matrix A has k distinct eigenvalues, then rank $A \ge k$.

Solution: FALSE. For instance, the 1×1 zero matrix has one eigenvalue (namely 0), but its rank is zero.

(c) (3 points) If $T: \mathbb{R}^{3\times 3} \to \mathbb{R}^{3\times 3}$ is a linear transformation whose image is contained in its kernel, then rank $(T) \leq 4$.

Solution: TRUE. Let $T: \mathbb{R}^{3\times 3} \to \mathbb{R}^{3\times 3}$ be a linear transformation such that $\operatorname{im}(T) \subseteq \ker(T)$, so $\operatorname{dim}(\operatorname{im}(T)) \le \operatorname{dim}(\ker(T))$. Then, using the Rank-Nullity Theorem for the second equality below, we have

$$9 = \dim(\mathbb{R}^{3\times 3}) = \dim(\operatorname{im}(T)) + \dim(\ker(T)) \leq 2\dim(\ker(T)),$$

which shows $\dim(\ker(T)) \geq 5$. Since $\operatorname{rank}(T) = 9 - \dim(\ker(T))$ by Rank-Nullity, this implies $\operatorname{rank}(T) \leq 4$.

(Problem 2, Continued).

(d) (3 points) For every matrix $A \in \mathbb{R}^{m \times n}$, if $A\vec{x} \cdot A\vec{y} = \vec{x} \cdot \vec{y}$ for all $\vec{x}, \vec{y} \in \mathbb{R}^n$, then the columns of A are linearly independent.

Solution: TRUE. Let $A \in \mathbb{R}^{m \times n}$, and assume that $A\vec{x} \cdot A\vec{y} = \vec{x} \cdot \vec{y}$ for all $\vec{x}, \vec{y} \in \mathbb{R}^n$. Then for each $1 \leq i, j \leq n$, we have

$$A\vec{e}_i \cdot A\vec{e}_j = \vec{e}_i \cdot \vec{e}_j = \delta_{ij},$$

which shows that the columns of A form an orthonormal list of vectors in \mathbb{R}^m . But we proved in class that orthonormal lists of vectors are linearly independent.

(e) (4 points) For every matrix $A \in \mathbb{R}^{n \times n}$, if $A^2 = A$ then A is diagonalizable over \mathbb{R} .

Solution: TRUE. Let $A \in \mathbb{R}^{n \times n}$ and suppose $A^2 = A$. Let $y \in \operatorname{im}(A)$ be arbitrary, and fix $\vec{x} \in \mathbb{R}^n$ such that $A\vec{x} = \vec{y}$. Then $A\vec{y} = A(A\vec{x}) = A^2\vec{x} = A\vec{x} = \vec{y}$. Thus $\operatorname{im}(A)$ consists of eigenvector of A with eigenvalue 1. Furthermore, $\operatorname{ker}(A)$ consists of eigenvectors of A with eigenvalue 0. Let \mathcal{B} be a basis of $\operatorname{ker}(A)$ and \mathcal{C} a basis of $\operatorname{im}(A)$. Then $\mathcal{B} \cup \mathcal{C}$ consists of eigenvectors of A, has size n by Rank-Nullity, and is linearly independent since $0 \neq 1$. So $\mathcal{B} \cup \mathcal{C}$ is an eigenbasis for A, which means A is diagonalizable.

3. Let \mathcal{P}_2 be the vector space of polynomials of degree at most 2 in the variable x. Let $T: \mathcal{P}_2 \to \mathcal{P}_2$ be the linear transformation given by

$$T(p)(x) = p'(x) + p''(x)$$
 for all $x \in \mathbb{R}$.

- (a) (6 points) (No justification is necessary for this part of the problem.)
 - (i) Find a basis of im(T).

Solution: (1, x)

(ii) Find a basis of ker(T).

Solution: (1)

(iii) Compute det(T).

Solution: det(T) = 0

(b) (4 points) Find a polynomial p that is an eigenvector of T, and find the associated eigenvalue along with the geometric multiplicity of this eigenvalue. Justify your answer.

Solution: The constant polynomial p(x) = 1 is an eigenvector of T with corresponding eigenvalue 0. We have $gemu(0) = dim(E_0) = dim(ker(T)) = 1$ by part (a)(ii).

4. Consider the 3×3 matrix $A = \begin{bmatrix} a & 0 & 1 \\ 0 & b & 0 \\ -1 & 0 & 0 \end{bmatrix}$, where $a, b \in \mathbb{R}$. In parts (a) – (d) below,

find all values of a and b for which the given condition holds, or else write "none" if there are no such values. (No justification is needed for any part of this problem.)

(a) (2 points) A is invertible.

Solution: Since det(A) = b, we see that A is invertible iff $b \neq 0$.

(b) (2 points) A is orthogonal.

Solution: a = 0 and $b = \pm 1$.

(c) (2 points) A is orthogonally diagonalizable.

Solution: None, since A is not symmetric no matter what a and b are.

(d) (4 points) A has one eigenvalue with algebraic multiplicity 3.

Solution: (a = 2 and b = 1) or (a = -2 and b = -1). To see this, note that the characteristic polynomial of A is $f_A(t) = (t - b)(t^2 - at + 1)$, so for A to have a single eigenvalue with almu 3, the discriminant of $t^2 - at + 1$ must be zero, which means $a = \pm 2$. If a = 2 then $f_A(t) = (t - b)(t - 1)^2$, which gives us b = 1, and if a = -2 then $f_A(t) = (t - b)(t + 1)^2$, which gives us b = -1.

For parts (e) and (f) below, fix b = 1, and find all values of a for which the given condition holds or else write "none" if there are no such values.

(e) (3 points) A is diagonalizable over \mathbb{R} .

Solution: a < -2 or a > 2. (To see this, use the characteristic polynomial $f_A(t) = (t-1)(t^2 - at + 1)$, and note that when a = 2 we have 1 = gemu(1) < almu(1) = 3, and when a = -2 we have 1 = gemu(-1) < almu(-1) = 2.)

(f) (3 points) A is diagonalizable over \mathbb{C} .

Solution: $a \neq \pm 2$. (If b = 1 and $a \neq \pm 2$, then A has three distinct complex eigenvalues and is therefore diagonalizable over \mathbb{C} . If b = 1 and $a = \pm 2$, then A fails to be diagonalizable over \mathbb{C} for the reasons given in (e) above.)

- 5. Let V be a k-dimensional subspace of \mathbb{R}^n , where 0 < k < n. Let $\operatorname{refl}_V \colon \mathbb{R}^n \to \mathbb{R}^n$ be reflection through the subspace V, so $\operatorname{refl}_V(\vec{v}) = \vec{v}$ for all $\vec{v} \in V$ and $\operatorname{refl}_V(\vec{w}) = -\vec{w}$ for all $\vec{w} \in V^{\perp}$. Let A be the standard matrix of refl_V .
 - (a) (3 points) Find det(A) in terms of n and k. (No justification needed.)

Solution: $det(A) = (-1)^{n-k}$.

(b) (4 points) Is A symmetric? Answer yes or no, and briefly justify your answer.

Solution: Yes, A is symmetric by the Spectral Theorem since A is orthonorally diagonalizable. (To see this, note that if \mathcal{B} is an orthonormal basis of $V = E_1$ and \mathcal{C} is an orthonormal basis of $V^{\perp} = E_{-1}$, then $\mathcal{B} \cup \mathcal{C}$ is an orthonormal eigenbasis of V.)

(c) (4 points) Assuming $n \geq 3$, find the area of the parallelogram P in \mathbb{R}^n determined by the vectors $\vec{v}_1 = \vec{e}_1 + \vec{e}_2$ and $\vec{v}_2 = \vec{e}_1 + \vec{e}_3$ in \mathbb{R}^n .

Solution: Let $A = [\vec{v}_1 \ \vec{v}_2] \in \mathbb{R}^{n \times 2}$. Then the area of P is $\sqrt{\det(A^{\top}A)}$, where

$$A^{\top}A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

Thus the area of P is $\sqrt{3}$.

(d) (2 points) With P as in part (c), find the area of $\operatorname{refl}_V[P]$. You may give your answer in terms of the area of P, if you wish. (No justification needed.)

Solution: Since refl_V is an orthogonal transformation, the area of refl_V[P] is the same as the area of P, namely $\sqrt{3}$.

6. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation. Let $\mathcal{B} = (\vec{x}, \vec{y}, \vec{z})$ be a basis of \mathbb{R}^3 , and assume that

$$T(\vec{x}) = \vec{y}, \qquad T(\vec{y}) = \vec{z}, \qquad T(\vec{z}) = \vec{x}.$$

Let A be the standard matrix of T, so that $T(\vec{v}) = A\vec{v}$ for all $\vec{v} \in \mathbb{R}^3$.

(a) (4 points) Compute det(A). Justify your answer.

Solution: If
$$\mathcal{B} = (\vec{x}, \vec{y}, \vec{z})$$
, then $[T]_{\mathcal{B}} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, so $\det(A) = \det[T]_{\mathcal{B}} = 1$ since $[T]_{\mathcal{B}}$ can be converted to I_3 be performing two row swaps.

(b) (4 points) Find an eigenvector of T and the corresponding eigenvalue. Justify your answer.

Solution: Let $\vec{v} = \vec{x} + \vec{y} + \vec{z}$. Then $\vec{v} \neq \vec{0}$ since \mathcal{B} is a basis of \mathbb{R}^3 , and $T(\vec{v}) = T(\vec{x}) + T(\vec{y}) + T(\vec{z}) = \vec{y} + \vec{z} + \vec{x} = \vec{v}$. Thus \vec{v} is an eigenvector of T with corresponding eigenvalue 1.

(c) (4 points) Determine whether T is diagonalizable, and justify your answer.

Solution: The characteristic polynomial of T is

$$\det (tI_3 - [T]_{\mathcal{B}}) = \det \begin{bmatrix} t & 0 & -1 \\ -1 & t & 0 \\ 0 & -1 & t \end{bmatrix} = t^3 - 1 = (t - 1)(t^2 + t + 1).$$

Since $t^2 + t + 1$ has no real roots, it follows that T has just one real eigenvalue (even counting multiplicities), so T is not diagonalizable.

- 7. Fix an $n \times n$ matrix M, and let $T: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ be the linear transformation defined by T(A) = MA for all $A \in \mathbb{R}^{n \times n}$.
 - (a) (4 points) Prove that if \vec{v} is an eigenvector of M with eigenvalue λ , then the matrix $A = \begin{bmatrix} | & | \\ \vec{v} & \cdots & \vec{v} \end{bmatrix}$ with all columns equal to \vec{v} is an eigenvector of T.

Solution: Suppose \vec{v} is an eigenvector of M with eigenvalue λ . Then $\vec{v} \neq \vec{0}$, so $A \neq 0$, and we have

$$T(A) = MA = M \begin{bmatrix} | & & | \\ \vec{v} & \cdots & \vec{v} \\ | & & | \end{bmatrix} = \begin{bmatrix} | & & | \\ M\vec{v} & \cdots & M\vec{v} \\ | & & | \end{bmatrix} = \begin{bmatrix} | & & | \\ \lambda\vec{v} & \cdots & \lambda\vec{v} \\ | & & | \end{bmatrix} = \lambda A.$$

Thus A is an eigenvector of T with corresponding eigenvalue λ .

(b) (6 points) Prove that if M has n distinct real eigenvalues, then T is diagonalizable.

Solution: Suppose that M has n distinct real eigenvalues $\lambda_1, \ldots \lambda_n$, with corresponding eigenvectors $\vec{v}_1, \ldots, \vec{v}_n$. By part (a), each λ_i is also an eigenvalue of T. Since $\dim(\mathbb{R}^{n\times n})=n^2$, in order to show that T is diagonalizable it will suffice to show that $\sum_{i=1}^n \operatorname{gemu}(\lambda_i)=n^2$. Fix $1 \leq i \leq n$. For each $1 \leq j \leq n$, let A_{ij} be the matrix whose jth column is \vec{v}_i and whose other columns are all $\vec{0}$. Then $A_{ij} \neq 0$ and $T(A_{ij})=MA_{ij}=\lambda_i A_{ij}$, so A_{ij} is an eigenvector of T. This is true for each $1 \leq j \leq n$, so $\operatorname{gemu}(\lambda_i)=n$. Thus $\sum_{i=1}^n \operatorname{gemu}(\lambda_i)=\sum_{i=1}^n j=n^2$, showing that T is diagonalizable as desired.

8. Let V be an inner product space of dimension n with inner product $\langle \cdot, \cdot \rangle$, and let $\mathcal{B} = (\vec{b}_1, \dots, \vec{b}_n)$ be an orthonormal basis of V with respect to this inner product. Let $T: V \to V$ be a linear transformation and assume for all $\vec{x}, \vec{y} \in V$ that

$$\langle T(\vec{x}), \vec{y} \rangle = \langle \vec{x}, T(\vec{y}) \rangle.$$

(a) (5 points) Prove that $[T]_{\mathcal{B}}$, the \mathcal{B} -matrix of T, is a symmetric matrix.

Solution: Let $1 \leq i, j \leq n$. Then the jth column of $[T]_{\mathcal{B}}$ is $[T(\vec{b}_j)]_{\mathcal{B}}$. Since \mathcal{B} is orthonormal, we have

$$T(\vec{b}_j) = \sum_{k=1}^n \langle T(\vec{b}_j), \vec{b}_k \rangle \vec{b}_k,$$

so the (i, j)-entry of $[T]_{\mathcal{B}}$ is the *i*th component of $[T(\vec{b}_j)]_{\mathcal{B}}$, which is $\langle T(\vec{b}_j), \vec{b}_i \rangle$. By hypothesis we have $\langle T(\vec{b}_j), \vec{b}_i \rangle = \langle \vec{b}_j, T(\vec{b}_i) \rangle$, and $\langle \vec{b}_j, T(\vec{b}_i) \rangle = \langle T(\vec{b}_i), \vec{b}_j \rangle$ is the (j, i)-entry of $[T]_{\mathcal{B}}$ by the argument above. Thus $[T]_{\mathcal{B}}$ is symmetric.

(b) (6 points) Prove that there exists an orthonormal basis \mathcal{U} of V which is an eigenbasis for the linear transformation T.

Solution: Using part (a) and the Spectral Theorem, fix an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ such that $Q^{\top}[T]_{\mathcal{B}}Q$ is diagonal. For each $1 \leq i \leq n$, let $\vec{u}_i = L_{\mathcal{B}}^{-1}(Q\vec{e}_i)$. Then $Q\vec{e}_i = [\vec{u}_i]_{\mathcal{B}}$ for each i, so $Q = S_{\mathcal{U} \to \mathcal{B}}$. We claim that $\mathcal{U} = (\vec{u}_1, \dots, \vec{u}_n)$ is an orthonormal eigenbasis for T. To see that \mathcal{U} is orthonormal, observe that

$$\langle \vec{u}_i, \vec{u}_j \rangle \ = \ [\vec{u}_i]_{\mathcal{B}} \cdot [\vec{u}_j]_{\mathcal{B}} \ = \ Q[\vec{u}_i]_{\mathcal{U}} \cdot Q[\vec{u}_j]_{\mathcal{U}} \ = \ \vec{e}_i^\top Q^\top Q \vec{e}_j \ = \ \vec{e}_i \cdot \vec{e}_j \ = \ \delta_{ij}$$

for each $1 \leq i, j \leq n$. Finally, note that the matrix

$$[T]_{\mathcal{U}} = S_{\mathcal{B} \to \mathcal{U}}[T]_{\mathcal{B}}S_{\mathcal{U} \to \mathcal{B}} = Q^{\top}[T]_{\mathcal{B}}Q$$

is diagonal, se each \vec{u}_i is an eigenvector of T.