Конспект к экзамену по билетам (математический анализ) (1-й семестр)

Латыпов Владимир (конспектор) t.me/donRumata03, github.com/donRumata03, donrumata03@gmail.com

Виноградов Олег Леонидович (лектор) olvin@math.spbu.ru

19 января 2022 г.

Содержание

1	Введ	ение	6
2	Назі	вания билетов (ровно как в оригинале)	6
3	Терм	ины, незнание которых приводит к неуду по экзамену	9
4	Указ	ания к билетам	10
	4.1	Множества и операции над ними	10
	4.2	Аксиомы вещественных чисел	11
	4.3	Метод математической индукции. Бином Ньютона	11
	4.4	Существование максимума и минимума конечного мно-	
		жества, следствия	11
	4.5	Целая часть числа. Плотность множества рациональных	
		чисел	12
	4.6	Две теоремы о "бедности" счетных множеств	12
	4.7	Теорема об объединении не более чем счетных множеств	
		(с леммой)	12
	4.8	Счетность множества рациональных чисел	12
	4.9	Несчетность отрезка	13
	4.10	Единственность предела последовательности. Ограничен-	
		ность сходящейся последовательности	13
	4.11	Предельный переход в неравенстве. Теорема о сжатой	
		последовательности	13
	4.12	Бесконечно малые. Арифметические действия над сходя-	
		щимися последовательностями	13
	4.13	Свойства скалярного произведения. Неравенство Коши-	
		Буняковского-Шварца. Норма, порожденная скалярным	
		произведением	14
	4.14	Неравенства Коши-Буняковского в $\mathbb R$ и $\mathbb C$. Сходимость и	
		покоординатная сходимость	15
	4.15	Бесконечно большие и бесконечно малые. Арифметиче-	
		ские действия над бесконечно большими	15
	4.16	Свойства открытых множеств. Открытость шара. Внут-	
		ренность	15
	4.17	Предельные точки. Связь открытости и замкнутости. Свой-	
		ства замкнутых множеств. Замыкание	16
	4.18	Открытость и замкнутость относительно пространства и	
		полпространства	17

4.19	Компактность относительно пространства и подпростран-	
	ства	17
4.20	Компактность, замкнутость и ограниченность	18
	Две леммы о подпоследовательностях	20
4.22	Лемма о вложенных параллелепипедах. Компактность ку-	
	ба	20
4.23	Характеристика компактов в \mathbb{R}^m . Принцип выбора	20
4.24	Сходимость и сходимость в себе. Полнота \mathbb{R}^m	20
4.25	Теорема о стягивающихся отрезках. Существование точ-	
	ной верхней границы.	20
4.26	Предел монотонной последовательности	20
	Неравенство Я. Бернулли, $limz^n$, число e^n	20
	Верхний и нижний пределы последовательности	20
	Равносильность определений предела отображения по	
	Коши и по Рейне.	20
4.30	Простейшие свойства отображений, имеющих предел (един	_
	ственность предела, локальная ограниченность, арифме-	
	тические действия)	20
4.31	Предельный переход в неравенстве для функций. Теоре-	
	ма о сжатой функции	20
4.32	Предел монотонной функции	20
	Критерий Больцано - Коши для отображений.	20
	Двойной и повторные пределы, примеры	20
	Непрерывность. Точки разрыва и их классификация, при-	
	меры.	20
4.36	Арифметические действия над непрерывными отобра-	
	жениями. Стабилизация знака непрерывной функции.	20
4.37	Непрерывность и предел композиции.	20
	Характеристика непрерывности отображения с помощью	
	прообразов.	20
4.39	Теорема Вейерштрасса о непрерывных отображениях, след-	
	ствия.	20
4.40	Теорема Кантора.	20
	Теорема Больцано-Коши о непрерывных функциях	20
	Сохранение промежутка (с леммой о характеристике про-	
	межутков). Сохранение отрезка	20
4.43	Теорема Больцано-Коши о непрерывных отображениях.	20
	Разрывы и непрерывность монотонной функции	20
	Существование и непрерывность обратной функции	20
	Степень с произвольным показателем	20
	Свойства показательной финкции и логарифма	20

4.48	Непрерывность тригонометрических и обратных триго-	
	нометрических функций	20
4.49	Замечательные пределы.	20
4.50	Замена на эквивалентную при вычислении пределов. Асим	п-
	тоты	20
4.51	Единственность асимптотического разложения	20
4.52	Дифференцируемость и производная. Равносильность опре	<u>-</u>
	делений, примеры.	20
4.53	Геометрический и физический смысл производной	20
4.54	Арифметические действия и производная	20
4.55	Производная композиции	20
4.56	Производная обратной функции и функции, заданной	
	параметрически	20
4.57	Производные элементарных функций	20
4.58	Теорема Ферма	20
4.59	Теорема Ролля	20
4.60	Формулы Лагранжа и Коши, следствия	20
4.61	Правило Лопиталя раскрытия неопределенностей вида	
	примеры	20
4.62	Правило Лопиталя раскрытия неопределенностей вида	
	примеры	20
4.63	Теорема Дарбу, следствия.	20
	Вычисление старших производных: линейность, прави-	
	ло Лейбница, примеры.	20
4.65	Формула Тейлора с остаточным членом в форме Пеано	20
4.66	Формула Тейлора с остаточным членом в форме Лагранжа.	20
	Тейлоровские разложения функций	20
	Иррациональность числа е	20
	Применение формулы Тейлора к раскрытию неопреде-	
	ленностей.	20
4.70	Критерий монотонности функции	20
	Доказательство неравенств с помощью производной, при-	
	меры.	20
4.72	Необходимое условие экстремума. Первое правило ис-	
	следования критических точек	20
4.73	Второе правило исследования критических точек. Произ-	
	водные функции	20
4.74	Лемма о трех хордах и односторонняя дифференцируе-	
	мость выпуклой функции.	20
4.75	Выпуклость и касательные. Опорная прямая	20
	Критерии выпуклости функции.	20

4.77	Неравенство Иенсена.	20
4.78	Неравенства Юнга и Гёльдера	20
4.79	Неравенство Минковского и неравенство Коши между	
	средними	20
4.80	Метод касательных	20

1. Введение

Максимально сжатый матанал: для каждого билета будет списко сущностей (определений, теорем, замечаний, следствий и т.д.), о которых надо рассказать, а также указания к доказательствам (в тех случаях, когда это не очевидно).

2. Названия билетов (ровно как в оригинале)

- 1. Множества и операции над ними.
- 2. Аксиомы вещественных чисел.
- 3. Метод математической индукции. Бином Ньютона.
- 4. Существование максимума и минимума конечного множества, следствия.
- 5. Целая часть числа. Плотность множества рациональных чисел.
- 6. Две теоремы о "бедности" счетных множеств.
- 7. Теорема об объединении не более чем счетных множеств (с леммой).
- 8. Счетность множества рациональных чисел.
- 9. Несчетность отрезка.
- 10. Единственность предела последовательности. Ограниченность сходящейся последовательности.
- 11. Предельный переход в неравенстве. Теорема о сжатой последовательности.
- 12. Бесконечно малые. Арифметические действия над сходящимися последовательностями.
- 13. Свойства скалярного произведения. Неравенство Коши-Буняковского-Шварца. Норма, порожденная скалярным произведением.
- 14. Неравенства Коши-Буняковского в \mathbb{R} и \mathbb{C} . Сходимость и покоординатная сходимость.
- 15. Бесконечно большие и бесконечно малые. Арифметические действия над бесконечно большими.

- 16. Свойства открытых множеств. Открытость шара. Внутренность.
- 17. Предельные точки. Связь открытости и замкнутости. Свойства замкнутых множеств. Замыкание.
- 18. Открытость и замкнутость относительно пространства и подпространства.
- 19. Компактность относительно пространства и подпространства.
- 20. Компактность, замкнутость и ограниченность.
- 21. Две леммы о подпоследовательностях.
- 22. Лемма о вложенных параллелепипедах. Компактность куба.
- 23. Характеристика компактов в \mathbb{R}^{m} . Принцип выбора.
- 24. Сходимость и сходимость в себе. Полнота \mathbb{R}^{m} .
- 25. Теорема о стягивающихся отрезках. Существование точной верхней границы.
- 26. Предел монотонной последовательности.
- 27. Неравенство Я. Бернулли, $limz^n$, число e^n .
- 28. Верхний и нижний пределы последовательности.
- 29. Равносильность определений предела отображения по Коши и по Рейне.
- 30. Простейшие свойства отображений, имеющих предел (единственность предела, локальная ограниченность, арифметические действия).
- 31. Предельный переход в неравенстве для функций. Теорема о сжатой функции.
- 32. Предел монотонной функции.
- 33. Критерий Больцано Коши для отображений.
- 34. Двойной и повторные пределы, примеры.
- 35. Непрерывность. Точки разрыва и их классификация, примеры.
- 36. Арифметические действия над непрерывными отображениями. Стабилизация знака непрерывной функции.
- 37. Непрерывность и предел композиции.

- 38. Характеристика непрерывности отображения с помощью прообразов.
- 39. Теорема Вейерштрасса о непрерывных отображениях, следствия.
- 40. Теорема Кантора.
- 41. Теорема Больцано-Коши о непрерывных функциях.
- 42. Сохранение промежутка (с леммой о характеристике промежутков). Сохранение отрезка.
- 43. Теорема Больцано-Коши о непрерывных отображениях.
- 44. Разрывы и непрерывность монотонной функции.
- 45. Существование и непрерывность обратной функции.
- 46. Степень с произвольным показателем.
- 47. Свойства показательной функции и логарифма.
- 48. Непрерывность тригонометрических и обратных тригонометрических функций.
- 49. Замечательные пределы.
- 50. Замена на эквивалентную при вычислении пределов. Асимптоты.
- 51. Единственность асимптотического разложения.
- 52. Дифференцируемость и производная. Равносильность определений, примеры.
- 53. Геометрический и физический смысл производной.
- 54. Арифметические действия и производная.
- 55. Производная композиции.
- 56. Производная обратной функции и функции, заданной параметрически.
- 57. Производные элементарных функций.
- 58. Теорема Ферма.
- 59. Теорема Ролля.
- 60. Формулы Лагранжа и Коши, следствия.

- 61. Правило Лопиталя раскрытия неопределенностей вида примеры.
- 62. Правило Лопиталя раскрытия неопределенностей вида примеры.
- 63. Теорема Дарбу, следствия.
- 64. Вычисление старших производных: линейность, правило Лейбница, примеры.
- 65. Формула Тейлора с остаточным членом в форме Пеано.
- 66. Формула Тейлора с остаточным членом в форме Лагранжа.
- 67. Тейлоровские разложения функций
- 68. Иррациональность числа е.
- 69. Применение формулы Тейлора к раскрытию неопределенностей.
- 70. Критерий монотонности функции.
- 71. Доказательство неравенств с помощью производной, примеры.
- 72. Необходимое условие экстремума. Первое правило исследования критических точек.
- 73. Второе правило исследования критических точек. Производные функции
- 74. Лемма о трех хордах и односторонняя дифференцируемость выпуклой функции.
- 75. Выпуклость и касательные. Опорная прямая.
- 76. Критерии выпуклости функции.
- 77. Неравенство Иенсена.
- 78. Неравенства Юнга и Гёльдера.
- 79. Неравенство Минковского и неравенство Коши между средними.
- 80. Метод касательных.

3. Термины, незнание которых приводит к неуду по экзамену

1. Виды отображений (инъекция, сюръекция, биекция), образ, прообраз, обратное отображение

- 2. Предел последовательности, функции, отображения (в разных ситуациях и на разных языках)
- 3. Метрическое, векторное, нормированное пространства, неравенство Коши Буняковского
- 4. Внутренние и предельные точки, открытые, замкнутые и компактные множества, компактность в евклидовом пространстве;
- 5. Сходимость в себе, полнота метрического пространства
- 6. Ограниченность множества, точные границы
- 7. О-символика
- 8. Непрерывность, теоремы Больцано Коши и Вейерштрасса о непрерывных функциях, равномерная непрерывность, теорема Кантора
- 9. Замечательные пределы
- 10. Дифференцируемость и производная
- 11. Формулы и правила дифференцирования
- 12. Формула Лагранжа, формула Тейлора с остатками в форме Пеано и Лагранжа, основные тейлоровские разложения
- 13. Сравнение логарифмической, степенной и показательной функций
- 14. Точки экстремума и их отыскание, определение и критерии выпуклости
- 15. Умение дифференцировать обязательно

4. Указания к билетам

Укзания составлены в соответствии с учебником Виноградова 🔊

4.1. Множества и операции над ними.

Задание множеств, обозначения, подмножества, обозначния числовых множеств

Утверждения, кванторы

Семейства множеств, пересечения, объединения, разность, универсум, дополнение

Законы Де-Моргана (вычесть объединение \Leftrightarrow пересечь частичные разности и то же для пересечение \leftrightarrow объединение)

Ещё теорема: пересечение с объединением ⇔ объединенние пересечений и наоборот

4.2. Аксиомы вещественных чисел.

Поле: абелева группа по сложению, абелева группа по умножению (кроме обратимости нуля)

Добавляем аксиомы для упорядоченности: 3 для линейного порядка + можно прибавлять к неравенствам + умножать неравенства с нулём (Вводим значки $>, <, \geqslant$ через \leqslant)

Вводим промежутки, отрезки, интервалы, полуинтервалы, лучи.

Вводим $\overline{\mathbb{R}}$, добавляя $\pm \infty$

Добавляем аксиому Архимеда (но всё ещё $\mathbb Q$ удовлетворяет)

Аксиома Кантора о вложенных отрезках (пересечение даже бесконечного количества в $\mathbb R$ непусто, но только для замкнутых) Пример: в $\mathbb Q$ можно сделать, чтобы они сходились в $\sqrt{2}$.

4.3. Метод математической индукции. Бином Ньютона.

Определение ММИ для последователдьности утверждений (следствие следующего утверждения из предыдущего)

Индуктивное подмножество ℝ

Определение № как минимального по включению индуктивного.

Доказываем Бином Ньютона по индукции.

4.4. Существование максимума и минимума конечного множества, следствия.

Ограниченность сверху, снизу $M \subset \mathbb{R}$, \Leftrightarrow ограниченность по модулю Верхняя граница, минимум, максимум

Существование минимума и максимума конечного множества по индукции по количеству элементов.

Полная упорядоченность № по отношению ≤

4.5. Целая часть числа. Плотность множества рациональных чисел.

Через аксиому Архимеда, $c = \frac{[na]+1}{n}$.

 \Rightarrow в любом промежутке найдётся ∞ рациональных.

4.6. Две теоремы о "бедности" счетных множеств.

Эквивалентность по мощности: существует биекция (это отношение эквивалентности)

Счётное, если №.

Сами теоремы о бедности:

- Любое бесконечное подмножество сожержит счётное подмножество
- Бесконечное подмножество счётного счётно (расположим в виде последовательности, нумеруем в порядке появления)

4.7. Теорема об объединении не более чем счетных множеств (с леммой).

Счётное, если $\mathbb{N}\Leftrightarrow$ можно расположить в виде последовательности \Leftrightarrow в виде таблицы \Leftrightarrow можно составить биекцию с $\mathbb{N}\times\mathbb{N}$

Не более чем счётно объединение не более чем счётных не более чем счётно

4.8. Счетность множества рациональных чисел.

Счётность рациональных как таблицы (отдельно рассматреть отрицательные и ноль)

4.9. Несчетность отрезка.

Несчётность отрезка [0;1] (по аксиоме Кантора: пусть расположили в виде последовательности, бесконечное деление на 3 части, последовательность вложенных, не содержащих n-ную точку \Leftarrow пересечение не пусто \Leftarrow она не занумерована. Противоречие), гипотеза Континуума.

4.10. Единственность предела последовательности. Ограниченность сходящейся последовательности.

По определению (обе — в произвольных метрических пространствах).

4.11. Предельный переход в неравенстве. Теорема о сжатой последовательности.

Обе — для ℝ

При переходе важно не забыть про неверность в случае перехода от строгого к строгому.

Про двух милиционеров — по определению.

4.12. Бесконечно малые. Арифметические действия над сходящимися последовательностями.

Бесконечно малые — в нормированном (⇒ линейном) пространстве.

Note: метрика может быть не «равномерной» $\Rightarrow \rho(x,0)$ может быть не нормой.

Арифметические действия:

для нормированного пространства: сумма, умножение на последовательность скаляров, разность, сходимость нормы к норме предела. для числовых последовательностей: ещё и частное последовательностей (если знаметель не принимает ноль и его предел не ноль) через предел $\frac{1}{y_n}$ через ограниченность $\frac{1}{y_n}$.

4.13. Свойства скалярного произведения. Неравенство Коши-Буняковского-Шварца. Норма, порожденная скалярным произведением.

Метрика: тождественность (ноль только у равных), симметричность, неравенство треугольника

Норма (в векторных): положительная определённость (ноль у нуля и только), положительная однородность, неравенство треугольника.

Скалярное произведение (в векторных): Линейность по первому аргументу, Эрмитова симметричность (то есть $\langle x,x\rangle\in\mathbb{R}$), положительная определённость (для одинаковых не меньше нуля, ноль у нуля и только).

Свойства: аддитичность по второму аргументу, «эрмитова» (но не полодительная) однородность по второму аргументу, хотя бы при одном нуле — ноль.

КБШ:

$$\left| \langle x, y \rangle \right|^2 \leqslant \langle x, x \rangle \langle y, y \rangle \tag{1}$$

Доказываем, отдельно рассмотрев $y=\mathbb{O}$, иначе $\lambda=-\frac{< x,x>}{< y,y>}.$

Раскладываем по линейности и $\lambda\overline{\lambda}=|\lambda|^2$:

$$\langle x + \lambda y, x + \lambda y \rangle$$

Получаем: $\langle x,x\rangle\langle y,y\rangle-|\langle x,y\rangle|^2=\langle y,y\rangle\langle x+\lambda y,x+\lambda y\rangle\geqslant 0$

Обращается в равенство только для коллинеарных векторов.

Умеем порождать норму как $\|x\| = \sqrt{\langle x, x \rangle}$

Проверяем аксиомы, треугольник:

$$\|x+y\| = \langle x,x\rangle + 2\operatorname{Re}\langle x,y\rangle + \langle y,y\rangle \leqslant \langle x,x\rangle + 2|\langle x,y\rangle| + \langle y,y\rangle \leqslant \leqslant p^2(x) + 2p(x)p(y) + p^2(y) = \|p(x)\| + 2p(x)p(y) + p^2(y) +$$

Нер-во треугольника обращается в равенство только для **сонаправленных** векторов.

4.14. Неравенства Коши-Буняковского в $\mathbb R$ и $\mathbb C$. Сходимость и покоординатная сходимость.

Нер-ва КБШ и треугольника просто приводим в частом случае для евклидовой нормы.

Покоординатная сходимость равносильна в \mathbb{R}^m сходимости по Евклидовой норме. (ограничиваем друг друга с обеих сторон (разность по любой координате меньше нормы меньше корня из размерности на максимальную разность), производим поредельный переход)

4.15. Бесконечно большие и бесконечно малые. Арифметические действия над бесконечно большими.

Определеяем стремление к просто бесконечности (если с какого-то момента норма всегда больше любого заданного значения)

Для $\mathbb R$ также определяем для $+\infty$ и $-\infty$.

NOTE: НЕограниченная — не обязательно бесконечно большая.

Предел в $\overline{\mathbb{R}}$ единственен.

Бесконечно большая $\Leftrightarrow rac{1}{x_n}$ бесконечно малая и не равна нулю никогда.

Арифметические действия с ББ (некоторые можно и в С):

- 1. Можно суммировать с огранмиченными правильным образом (3 штуки).
- 2. Можно умножать на отделимую от нуля правильным образом (3 штуки).
- 3. Можно делить на бесконечно малую и бесконечно большую, а ещё стремящуюся к обычному пределу делить на ББ (ещё 3 штуки).

4.16. Свойства открытых множеств. Открытость шара. Внутренность.

Внутренняя точка: найдётся окрестность, целиком содержащаяся во множестве.

Открытое: все точки множества — внутренние.

1. Объединение любого количества открытых множеств открыто

2. Пересечение конечного количества открытых множеств открыто.

Первое очевидно, воторое доказывается через минимум множества радиусов.

Внутренность — множество внутренних точек ($\stackrel{\circ}{D}$ или Int D).

Также это:

- Объединение всех открытых подмножеств
- Максимальное по включению открытое подмножество

Доказывается: рассмотрим множество G в виде объединения всех открытых подмножеств. Оно удовлетворяет второму критерию, открыто (как объединение открытых). Докажем, что любая внутренняя точка принадлежит G (действительно, внутреняя \Rightarrow есть окрестность, содержащаяся в D, но она открытое мн-во $\Rightarrow x \in V_x \subset G$) и что все точки G — внутренние (очевидно).

«Открытый шар» является открытым множеством. Доказывается через неравенство треугольника.

4.17. Предельные точки. Связь открытости и замкнутости. Свойства замкнутых множеств. Замыкание.

Предельная точка = точка сгущения множества: в любой **проколотой** окрестности найдётся точка (\Rightarrow найдётся и бесконечное количество точек). Можно также переформутировать как «предельная, если существует последовательность точек множества, **отличных** от a стремящаяся к a». (Равносильность очевидна).

Изолированная точка: принадлежит множеству, но не является точкой сгущения.

Точка прикосновения: В любой **не проколотой** окрестности точки найдётся точка множества. «коснулось как-то: возможно — за счёт густоты, возможно — за счёт наличия в себе». Можно переформулировать как «существует последовательность точек множества (может быть и просто стационаная последовательность из a), стремащаяся к a».

Замкнутое множество: Содерджит все свои точки сгущения

Теорема: Множество замкнуто \iff его дополнение открыто Доказывается легко по определениям.

Можно и сформулировать как «множество открыто \iff его дополнение замкнуто».

Свойства

- 1. Пересечение любого количества замкнутых множеств замкнуто.
- 2. *Объединение* **конечного** количества замкнутых множеств замкнуто

(Доказывается через соответствующие свойства открытых множеств, по предыдущей теореме, а также — через законы Де-Моргана)

3амыкание: все точки прикосновения (\overline{D} или $\operatorname{Cl} D$)

Замыкание множества — это также (теорема):

- Пересечение всех замкнутых надмножеств
- Минимальное по включению замкнутое надмножество

Доказательство: Берём пересечение всех замкнутых **над**множеств. (Конечно, оно соответствет второму критерию). Оно замкнуто по предыдущей теореме.

Если $x\in D$, то есть x - точка прикосповепия D, то тем более x — точка прикосповепия F, а тогда $x\in F$ в силу замкпутости F. С другой сторопы, если $x\notin \bar{D}$, то у точки x существует окрестпость V_x , содержащаяся в D^c . Тогда ее дополпепие V_x^c замкпуто и содержит D, поэтому $F\subset V_x^c$, то есть $V_x\subset F^c$ и, в частпости, $x\notin F$.

Множество замкнуто ⇔ оно совпадает со своим замыканием.

4.18. Открытость и замкнутость относительно пространства и подпространства.

Пусть $D \subset Y \subset X$.

- 1. D открыто в $Y \iff \exists G$, открытое в X, такое, что $D = G \cap Y$.
- 2. D закрыто в $Y \iff \exists F$, закрытое в X, такое, что $D = G \cap Y$.

4.19. Компактность относительно пространства и подпространства.

Свойства компактности равносильны в метрическом пространстве и в его подпространстве.

4.20. Компактность, замкнутость и ограниченность.

- 1. Компактность \Rightarrow замкнутость и ограниченность.
- 2. Замкнутое подмножество компакта компактно компактно.

- 4.21. Две леммы о подпоследовательностях.
- 4.22. Лемма о вложенных параллелепипедах. Компактность куба.
- **4.23**. Характеристика компактов в \mathbb{R}^{m} . Принцип выбора.
- 4.24. Сходимость и сходимость в себе. Полнота \mathbb{R}^{m} .
- 4.25. Теорема о стягивающихся отрезках. Существование точной верхней границы.
- 4.26. Предел монотонной последовательности.
- 4.27. Неравенство Я. Бернулли, $limz^n$, число e^n .
- 4.28. Верхний и нижний пределы последовательности.
- 4.29. Равносильность определений предела отображения по Коши и по Рейне.
- 4.30. Простейшие свойства отображений, имеющих предел (единственность предела, локальная ограниченность, арифметические действия).
- 4.31. Предельный переход в неравенстве для функций. Теорема о сжатой функции.
- 4.32. Предел монотонной функции.
- 4.33. Критерий Больцано Коши для отображений.
- 4.34. Двойной и повторные пределы, примеры.
- 4.35. Непрерывность. Точки разрыва и их классификация, примеры.
- 4.36. Арифметические действия над непрерывными отображениями. Стабилизация знака непрерывной функции.
- 4.37. Непрерывность и предел композиции.
- 4.38. Характеристика непрерывности отображения с помощью прообразов.
- 4.39. Теорема Вейерштрасса о непрерывных отображениях, следствия.
- 4.40. Теорема Кантора.

Первая и вторая производные сохраняют знак. Рассматриваем 4 случая, какой, чтобы не разойтись.

Подбираемся всегда с одной стороны.

Квадратичную сходимость доказываем через тейлоровское разложение функции и ограничнность $\left|\frac{f''}{f'}\right|$ или же |f''| и отделимость от нуля |f'|

Количество гарантированно правильных знаков увеличивается каждый раз в 2 раза (при $\to \infty$), причём можно пост-фактум определять правильность, имея информацию о новых знаках.

Был пример с нахождением $\frac{1}{7}$, умея лишь складывать и умножать.