Confidential Customized for Lorem Ipsum LLC Version 1.0

Unraveling Tomorrow: Predicting Europe's Climate Future with Machine Learning

Drew Riedlin March 14, 2025

Overview

A New Frontier: Explore different advanced machine learning models, and experiment to find which are most useful and accurate in weather prediction

Decoding the Unknown: Uncover hidden patterns in global weather data

Tracing the Signals: Identify meaningful trends within decades of volatile weather data to enhance climate prediction and risk assessment

Data Profile

Weather data gathered from 18 European stations from the late 1800s to 2022, including daily records of temperature, wind speed, snow, and global radiation, sourced from the European Climate Assessment & Data Set project.

Potential Bias

- Regional: Machine learning in climate analysis can worsen regional and cultural biases. This dataset
 only includes data from 18 specific weather stations which may not accurately represent the many
 climates and regions of Europe. This could lead to inaccurate predictions for unrepresented areas.
- **Systemic:** In climate data, human bias can be amplified in ML models, influencing predictions and policies. Political and economic interests may shape data, and confirmation bias can reinforce selective narratives.
- Temporal: The data set includes over 200 years of weather data. If the model relies on incomplete or biased historical data, it may overlook vulnerable regions, underestimate extreme events, or inaccurate predictions that could have serious consequences for disaster preparedness, infrastructure planning, and climate policy decisions.

Exploring Possibilities: Hypothesis

- Using Machine Learning algorithms, future weather patterns can be predicted with accuracy based on historical weather data.
- Prediction accuracy will vary depending on geographic location and the diverse climatic conditions present within the region.
- Machine learning will help reveal patterns in the climate data that can help detect climate change and uncover its hidden impacts.

Gradient Descent was used to optimize the data.

- Minimizes Error: Iteratively adjusts model parameters to reduce the difference between predictions and actual values.
- Finds Optimal Solutions: Navigates the cost function to locate the point of lowest error or loss.
- Updates Parameters: Adjusts model weights by calculating gradients to improve prediction accuracy step-by-step.

Decision Matrix

Used to evaluate and compare model performance and select the best algorithm based on multiple criteria, in this case pleasant vs unpleasant weather days.

- True Positive = unpleasant weather predicted and unpleasant was correct
- True Negative = pleasant weather predicted and pleasant was correct
- False Positive = unpleasant weather predicted but weather was pleasant
- False Negative = pleasant weather predicted but weather was unpleasant

Three supervised machine learning methods were used to compare accuracy and performance.

K-Nearest Neighbors (KNN) Algorithm

KNN finds the k closest data points (neighbors) based on a chosen distance metric, assigns the most common label among the K neighbors to the new data point, and then predicts the average value of the K neighbors

Accuracy: 88%

Precision: 93%

Precision: 93

Recall: 93%

F1 Score: 93%

then predicts the average value of the K neighbors.

Belgrade Budapest Debilt Dusseldorf Heathrow Kassel Ljubljana Maastricht Madrid Munchenb Oslo Sonnblick Stockholm

Valentia

Total

Station

BASEL

3917	
3252	
3424	
4320	
4164	
4138	
4563	
3740	
4253	
2750	
4237	
4637	
5738	
4483	
5404	

63020

13108

True

Positive

True

Negative

1544	
1462	
723	
810	
744	
614	
1180	
824	
2261	
792	
512	
0	
607	

False

961

Positive

421

524

False

Negative

439

418

376

4839

378	
421	
424	
309	
363	
352	
309	
400	
347	
0	
365	
202	

5103

879	%	
85°	%	
90	%	
86°	%	
88	%	
87°	%	
88	%	
909	%	
100°	%	
89°	%	

95%

88%

93%	
92%	
91%	
95%	
89%	
93%	
87%	
93%	
95%	
100%	

94%

99%

93%

Precision

90%

86%

88%

Recall

90%

89%

Accuracy

85%

84%

85%

88%

90%	
92%	
91%	
91%	
94%	
91%	
92%	
90%	
91%	
93%	
100%	

92%

96%

93%

F1 Score

90%

87%

89%

93%

92%

91%

94%

90%

93%

88%

92%

94%

100%

93%

98%

93%

2. Decision Tree Algorithm

Divides data into subsets based on the most significant feature, and based on this feature. Branches grow to show outcomes, and leaves represent the final prediction. It follows a top-down approach, making decisions at each step to reach a prediction.

Accuracy: 95%

Precision: 97%

Recall: 97%

F1 Score: 97%

True

True

False

False

F1 Score

96%

97%

96%

95%

99%

94%

97%

99%

95%

95%

97%

97%

100%

95%

97%

Station	Positive	Negative	Positive	Negative	Accuracy	Precision	Recall
BASEL	4151	1237	187	163	94%	96%	96%
Belgrade	3646	1855	130	107	96%	97%	97%
Budapest	3740	1689	160	149	95%	96%	96%
Debilt	4412	908	225	193	93%	95%	96%
Dusseldorf	4477	1187	30	44	99%	99%	99%
Heathrow	4268	925	302	243	91%	93%	95%
Kassel	4672	778	143	145	95%	97%	97%
₋jubljana	4138	1506	57	37	98%	99%	99%
Maastricht	4336	993	226	183	93%	95%	96%
Madrid	2994	2425	174	145	94%	95%	95%
Munchenb	4387	1042	159	150	95%	97%	97%
Oslo	4716	709	163	150	95%	97%	97%
Sonnblick	5738	0	0	0	100%	100%	100%
Stockholm	4518	708	248	264	91%	95%	94%
Valentia	5303	109	159	167	94%	97%	97%
Total	65496	16071	2363	2140	95%	97%	97%

3. Artificial Neural Network (ANN)

Divides data into subsets based on the most significant feature, and based on this feature. Branches grow to show outcomes, and leaves represent the final prediction. It follows a top-down approach, making decisions at each step to reach a prediction.

Accuracy: 95%

Precision: 97%

Recall: 97%

F1 Score: 97%

BASEL Belgrade Budapest Debilt Dusseldorf Heathrow Kassel Ljubljana Maastricht Madrid Munchenb Oslo Sonnblick Stockholm Valentia Total

True

Station

Positive

True

4164

Negative

1248

False

Positive

False

174

Negative

152

4164	1248
3683	1872
3643	1818
4480	813
4411	990
4309	1055
4693	680
4036	1364
4508	904
3056	2525
4320	1064
4631	690
5738	0
4488	843
5407	145
65567	16011

93
257
157
96
261
122
159
54
112
226
248
0
278
55
2292

90	
20	
288	
241	
113	
243	
179	
272	
45	
128	
169	
0	
129	
131	
2200	

94%	6
97%	6
95%	6
92%	6
94%	6
93%	6
94%	6
94%	6
94%	6
97%	6
94%	6
93%	6
100%	6
93%	6
97%	6
95%	6

95%

100%

94%

99%

Precision

96%

98%

93%

Recall

96%

98%

99%

94%

Accuracy

95%	
97%	
95%	
96%	
94%	
99%	
97%	

96%

100%

97%

98%

97%

F1 Score

96%

98%

96%

95%

96%

96%

96%

96%

97%

97%

96%

96%

100%

96%

98%

97%

Algorithm Summary

- All models were able to learn and produce results with a high level of accuracy. The Decision Tree and ANN models had the highest level of accuracy with 95% accuracy and a F1 score of 97%.
- **Decision Tree**: complex and would need to be trimmed.
- KNN: simple and best for smaller data sets. Not the best choice for this project because it will be computationally expensive to run.
- ANN: will be the best choice here because it is better suited to larger data sets and can help us predict the weather with high accuracy.

Hypothesis Recap

- 1. Machine Learning models are capable of predicting future weather trends with up to 95% accuracy.
- 2. The accuracy of the predictions made by the different machine learning algorithms fluctuated between the various stations and their different climate types.
 - a. Example: All algorithms correctly predicted all days at the Sonnblick to be 'unpleasant'.
- 3. Machine learning algorithms helped us reveal patterns in the weather data that may help determine climate change levels in Europe.

Next Steps

- Continue to test unsupervised machine learning algorithms, and experiment with unsupervised algorithms to find the best one for this project.
- Continue to make adjustments to optimize model accuracy.
- Utilize other variables, such as wind speed, humidity, air pressure, etc. to further enhance model accuracy.

Thank you.

For questions or further discussion, please reach out to me at drew.riedlin@gmail.com

Link to GitHub repositories

Check out my portfolio website

