

# **Technical brochure**

# Thermostatic expansion valves T2 / TE2





# Technical leaflet

# Thermostatic expansion valves, type T 2 and TE 2

| Contents |                                                 | Page |
|----------|-------------------------------------------------|------|
|          | Introduction                                    |      |
|          | Features                                        |      |
|          | Technical data                                  |      |
|          | Superheat                                       | 3    |
|          | Ordering:                                       |      |
|          | Components with flare × flare connection        | 4    |
|          | Flare connections                               | 4    |
|          | Orifice assembly with filter                    | 4    |
|          | Components with flare × solder connection       | 4    |
|          | Solder adaptor                                  | 5    |
|          | Orifice assembly with filter for solder adapter | 5    |
|          | Capacity:                                       |      |
|          | R22                                             | 6    |
|          | R407C                                           |      |
|          | R134a                                           | 8    |
|          | R404A / R507                                    | 9    |
|          | Design - Function                               | 10   |
|          | Identification                                  |      |
|          | Dimensions and weights                          | 11   |



#### **Technical leaflet**

#### Thermostatic expansion valves, type T 2 and TE 2

#### Introduction



Thermostatic expansion valves regulate the injection of refrigerant liquid into evaporators. Injection is controlled by the refrigerant superheat. Therefore the valves are especially suitable for

liquid injection in "dry" evaporators where the superheat at the evaporator outlet is proportional to the evaporator load.

#### **Features**

- Large temperature range
   Equally applicable to freezing, refrigeration
   and air conditioning applications.
- Interchangeable orifice assembly
  - easier stocking
  - easy capacity matching
  - better service.
- Rated capacities from 0.5 to 15.5 kW (0.15 to 4.5 TR) for R22.
- Can be supplied with MOP
   (Max. Operating Pressure)

   Protects the compressor motor against excessive evaporating pressure during normal operation.
- Stainless steel bulb
   Fast and easy to install.
   Good temperature transfer from pipe to bulb.
- Valves for special temperature ranges can be supplied.

#### **Technical data**

Max. temperature

Bulb, when valve is installed: 100°C Bulb, element not mounted: 60°C

Min. temperature T 2  $\rightarrow$  TE 2: -60°C

Max. test pressure PT = 38 bar

Max. working pressurePS/MWP = 34 bar

# **MOP-points**

| mor points  |                                                                  |                                                                  |                                  |                           |
|-------------|------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------|---------------------------|
| Refrigerant | Range N<br>$-40^{\circ}\text{C} \rightarrow +10^{\circ}\text{C}$ | Range NM<br>$-40^{\circ}\text{C} \rightarrow -5^{\circ}\text{C}$ | Range NL<br>–40°C → –15°C        | Range B<br>−60°C → −25°C  |
|             | MOP-point in ev                                                  | vaporating temperatu                                             | re t <sub>e</sub> and evaporatin | g pressure p <sub>e</sub> |
|             | +15°C / +60°F                                                    | 0°C / +32°F                                                      | –10°C / +15°F                    | −20°C / −4°F              |
| R22         | 100 psig/6.9 bar                                                 | 60 psig/4.0 bar                                                  | 35 psig/3.5 bar                  | 20 psig/1.5 bar           |
| R407C       | 95 psig/6.6 bar                                                  |                                                                  |                                  |                           |
| R134a       | 55 psig/5.0 bar                                                  | 30 psig/3.1 bar                                                  | 15 psig/2.1 bar                  |                           |
| R404A/R507  | 120 psig/9.3 bar                                                 | 75 psig/6.2 bar                                                  | 50 psig/4.4 bar                  | 30 psig/3.1 bar           |

#### Superheat

SS = static superheat
OS = opening superheat
SH = SS + OS = total superheat

Q<sub>nom</sub> = rated capacity Q<sub>max</sub> = maximum capacity

Static superheat SS can be adjusted with setting spindle.

The standard superheat setting SS is 5 K for valves without MOP and 4 K for valves with MOP. The opening superheat OS is 6 K from when opening begins to where the valve gives its rated capacity  $Q_{\tiny{nom}}$ 

Example

 $\begin{array}{ll} \text{Static superheat} & \text{SS} = 5 \text{ K} \\ \text{Opening superheat} & \text{OS} = 6 \text{ K} \\ \text{Total superheat} & \text{SH} = 5 + 6 = 11 \text{ K} \\ \end{array}$ 



# Ordering, components with flare $\times$ flare connection

Thermostatic element with sensor band, without orifice, filter cone, nuts



| Refrigerant             | Valve | Pressure                    | Capillary | Conr                         | nection   |                |          | Code                    | e no.                    |               |          |
|-------------------------|-------|-----------------------------|-----------|------------------------------|-----------|----------------|----------|-------------------------|--------------------------|---------------|----------|
|                         | type  | equalization <sup>1</sup> ) | tube      | Inlet ×                      | outlet 1) | Rang<br>–40 to | _        | Range NM<br>–40 to –5°C | Range NL<br>-40 to -15°C | Ran<br>-60 to | ,        |
|                         |       |                             | m         | in. × in.                    | mm×mm     | Without MOP    | With MOP | With MOP                | With MOP                 | Without MOP   | With MOP |
| R22/R407C <sup>2)</sup> | TX 2  | Int.                        | 1.5       | $^{3}/_{8} \times ^{1}/_{2}$ | 10 × 12   | 068Z3206       | 068Z3208 | 068Z3224                | 068Z3226                 | 068Z3207      | 068Z3228 |
|                         | TEX 2 | Ext.                        | 1.5       | $^{3}/_{8} \times ^{1}/_{2}$ | 10 × 12   | 068Z3209       | 068Z3211 | 068Z3225                | 068Z3227                 | 068Z3210      | 068Z3229 |
| R407C                   | TZ 2  | Int.                        | 1.5       | $^{3}/_{8} \times ^{1}/_{2}$ | 10 × 12   | 068Z3496       | 068Z3516 |                         |                          |               |          |
|                         | TEZ 2 | Ext.                        | 1.5       | $^{3}/_{8} \times ^{1}/_{2}$ | 10 × 12   | 068Z3501       | 068Z3517 |                         |                          |               |          |
| R134a                   | TN 2  | Int.                        | 1.5       | $^{3}/_{8} \times ^{1}/_{2}$ | 10 × 12   | 068Z3346       | 068Z3347 | 068Z3393                | 068Z3369                 |               |          |
|                         | TEN 2 | Ext.                        | 1.5       | $^{3}/_{8} \times ^{1}/_{2}$ | 10 × 12   | 068Z3348       | 068Z3349 | 068Z3392                | 068Z3370                 |               |          |
| R404A/                  | TS 2  | Int.                        | 1.5       | $^{3}/_{8} \times ^{1}/_{2}$ | 10 × 12   | 068Z3400       | 068Z3402 | 068Z3406                | 068Z3408                 | 068Z3401      | 068Z3410 |
| R507                    | TES 2 | Ext.                        | 1.5       | $^{3}/_{8} \times ^{1}/_{2}$ | 10 × 12   | 068Z3403       | 068Z3405 | 068Z3407                | 068Z3409                 | 068Z3404      | 068Z3411 |

See the section "Flare connections".

#### Flare connections





| Code no. | opper tubing<br>le diameter | Reducer for c<br>with outsic | Connection for copper tubing with outside diameter |     |  |  |  |  |
|----------|-----------------------------|------------------------------|----------------------------------------------------|-----|--|--|--|--|
|          | mm                          | in.                          | mm                                                 | in. |  |  |  |  |
| 011L1101 |                             |                              | 6                                                  | 1/4 |  |  |  |  |
| 011L1135 |                             |                              | 10                                                 | 3/8 |  |  |  |  |
| 011L1103 |                             |                              | 12                                                 | 1/2 |  |  |  |  |
| 011L1107 | 6                           | 1/4                          |                                                    |     |  |  |  |  |

#### Example

A TE 2 thermostatic expansion valve consists of two elements + flare nuts if required:

- 1 thermostatic element
- 1 orifice assembly and flare nuts

When ordering one thermostatic expansion valve, TEX 2 with orifice 01, five code numbers are required:

1-off thermostatic element,
 1-off orifice assembly 01,
 1-off <sup>3</sup>/<sub>8</sub> in. flare nut,
 1-off <sup>1</sup>/<sub>2</sub> in. flare nut,
 1-off <sup>1</sup>/<sub>4</sub> in. flare nut,
 011L1103
 011L1101

# Orifice assembly with filter



# Range N: −40 to +10°C

|             | F    | Rated capaci | ty in tons (TF | R)            |      | Rated capacity in kW |       |               |                         |  |  |
|-------------|------|--------------|----------------|---------------|------|----------------------|-------|---------------|-------------------------|--|--|
| Orifice no. | R22  | R407C        | R134a          | R404A<br>R507 | R22  | R407C                | R134a | R404A<br>R507 | Code no. <sup>2</sup> ) |  |  |
| 0X          | 0.15 | 0.16         | 0.11           | 0.11          | 0.50 | 0.50                 | 0.40  | 0.38          | 068-2002                |  |  |
| 00          | 0.30 | 0.30         | 0.25           | 0.21          | 1.0  | 1.1                  | 0.90  | 0.70          | 068-2003                |  |  |
| 01          | 0.70 | 0.80         | 0.50           | 0.45          | 2.5  | 2.7                  | 1.8   | 1.6           | 068-2010                |  |  |
| 02          | 1.0  | 1.1          | 0.80           | 0.60          | 3.5  | 3.8                  | 2.6   | 2.1           | 068-2015                |  |  |
| 03          | 1.5  | 1.6          | 1.3            | 1.2           | 5.2  | 5.6                  | 4.6   | 4.2           | 068-2006                |  |  |
| 04          | 2.3  | 2.5          | 1.9            | 1.7           | 8.0  | 8.6                  | 6.7   | 6.0           | 068-2007                |  |  |
| 05          | 3.0  | 3.2          | 2.5            | 2.2           | 10.5 | 11.3                 | 8.6   | 7.7           | 068-2008                |  |  |
| 06          | 4.5  | 4.9          | 3.0            | 2.6           | 15.5 | 16.7                 | 10.5  | 9.1           | 068-2009                |  |  |

# Range B: −60 to −25°C

| narige b. oot | 0 23 C       |                    |           |               |            |
|---------------|--------------|--------------------|-----------|---------------|------------|
|               | Rated capaci | ty in tons (TR)    | Rated cap | acity in kW   |            |
| Orifice no.   | R22          | R22 R404A R22 R507 |           | R404A<br>R507 | Code no.²) |
| 0X            | 0.15         | 0.11               | 0.50      | 0.38          | 068-2002   |
| 00            | 0.20         | 0.21               | 0.70      | 0.70          | 068-2003   |
| 01            | 0.30         | 0.45               | 1.0       | 1.6           | 068-2010   |
| 02            | 0.60         | 0.60               | 2.1       | 2.1           | 068-2015   |
| 03            | 0.80         | 1.0                | 2.8       | 3.5           | 068-2006   |
| 04            | 1.2          | 1.4                | 4.2       | 4.9           | 068-2007   |
| 05            | 1.5          | 1.7                | 5.2       | 6.0           | 068-2008   |
| 06            | 2.0          | 1.9                | 7.0       | 6.6           | 068-2009   |

The rated capacity is based on: Evaporating temperature  $t_e = +5^{\circ}\text{C}$  for range N and  $t_e = -30^{\circ}\text{C}$  for range B Condensing temperature  $t_c = +32^{\circ}\text{C}$  Refrigerant temperature ahead of valve  $t_i = +28^{\circ}\text{C}$ 

<sup>&</sup>lt;sup>2</sup>) For R407C plants, please select valves from the dedicated R407C program

<sup>&</sup>lt;sup>2</sup>)These orifice assemblies cannot be used together with solder adapters. Please see adapter information on next page.



# Ordering, components with flare $\times$ solder connection

Thermostatic element with sensor band, without orifice, filter cone, nuts

| Refrigerant             | Valve | Pressure                    | Capillary | Connection     |                      |    |                |              | Code no.                 |                         |           |  |
|-------------------------|-------|-----------------------------|-----------|----------------|----------------------|----|----------------|--------------|--------------------------|-------------------------|-----------|--|
|                         | type  | equalization <sup>3</sup> ) | tube      | Inlet<br>Flare | Outlet<br>ODF solder |    | Rang<br>–40 to | ge N<br>+10℃ | Range NL<br>-40 to -15°C | Range B<br>−60 to −25°C |           |  |
|                         |       |                             | m         | in./mm         | in.                  | mm | Without MOP    | MOP +15°C    | Mop –10°C                | Without MOP             | MOP –20°C |  |
|                         | TX 2  | Int.                        | 1.5       | 3/8            | 1/2                  |    | 068Z3281       | 068Z3287     |                          | 068Z3357                | 068Z3319  |  |
| D22/D40764)             | TX 2  | Int.                        | 1.5       | 10             |                      | 12 | 068Z3302       | 068Z3308     | 068Z3366                 | 068Z3361                | 068Z3276  |  |
| R22/R407C <sup>4)</sup> | TEX 2 | Ext.                        | 1.5       | 3/8            | 1/2                  |    | 068Z3284       | 068Z3290     |                          | 068Z3359                | 068Z3320  |  |
|                         | TEX 2 | Ext.                        | 1.5       | 10             |                      | 12 | 068Z3305       | 068Z3311     | 068Z3367                 | 068Z3363                | 068Z3277  |  |
|                         | TZ 2  | Int.                        | 1.5       | 3/8            | 1/2                  |    |                | 068Z3329     |                          |                         |           |  |
| D4076                   | TZ 2  | Int.                        | 1.5       | 10             |                      | 12 | 068Z3502       | 068Z3514     |                          |                         |           |  |
| R407C                   | TEZ 2 | Ext.                        | 1.5       | 3/8            | 1/2                  |    | 068Z3446       | 068Z3447     |                          |                         |           |  |
|                         | TEZ 2 | Ext.                        | 1.5       | 10             |                      | 12 | 068Z3503       | 068Z3515     |                          |                         |           |  |
|                         | TN 2  | Int.                        | 1.5       | 3/8            | 1/2                  |    | 068Z3383       | 068Z3387     |                          |                         |           |  |
| R134a                   | TN 2  | Int.                        | 1.5       | 10             |                      | 12 | 068Z3384       | 068Z3388     |                          |                         |           |  |
| K134a                   | TEN 2 | Ext.                        | 1.5       | 3/8            | 1/2                  |    | 068Z3385       | 068Z3389     |                          |                         |           |  |
|                         | TEN 2 | Ext.                        | 1.5       | 10             |                      | 12 | 068Z3386       | 068Z3390     |                          |                         |           |  |
|                         | TS 2  | Int.                        | 1.5       | 3/8            | 1/2                  |    | 068Z3414       | 068Z3416     | 068Z3429                 | 068Z3418                | 068Z3420  |  |
| R404A/                  | TS 2  | Int.                        | 1.5       | 10             |                      | 12 | 068Z3435       | 068Z3423     | 068Z3436                 | 068Z3425                | 068Z3427  |  |
| R507                    | TES 2 | Ext.                        | 1.5       | 3/8            | 1/2                  |    | 068Z3415       | 068Z3417     | 068Z3430                 | 068Z3419                | 068Z3421  |  |
|                         | TES 2 | Ext.                        | 1.5       | 10             |                      | 12 | 068Z3422       | 068Z3424     | 068Z3437                 | 068Z3426                | 068Z3428  |  |

 $<sup>^{3}</sup>$ ) TE valves with inch outlet have  $^{1}/_{4}$  inch pressure equalization. TE valves with mm outlet have 6 mm pressure equalization.

#### Solder adaptor



The adaptor is for use with thermostatic expansion valves T 2 and TE 2 with flare  $\times$  solder connections. When the adaptor is fitted correctly it meets the sealing requirements of DIN 8964.

The adaptor offers the following advantages:

- The orifice assembly can be replaced.
- The filter can be cleaned or replaced.

When using the solder adapter, a special orifice assembly is required. Please use the following tables to select both the appropriate adapter and orifice asembly.

Only in this way can the sealing requirements of DIN 8964 be fulfilled.

Solder adaptor for filter drier (FSA) may not be used in the T 2 inlet.

Solder adaptor without orifice assembly and filter

| Code no. |
|----------|
| 068-2062 |
| 068-2063 |
| 068-2060 |
| 068-2061 |
|          |

Filter for solder adaptor

| Description                   | Code no. |
|-------------------------------|----------|
| Filter excl. orifice assembly | 068-0015 |

Flare connections See previous page.

Orifice assembly with filter for solder adaptor

| Orifice no. | Code no. |
|-------------|----------|
| 0X          | 068-2089 |
| 00          | 068-2090 |
| 01          | 068-2091 |
| 02          | 068-2092 |
| 03          | 068-2093 |
| 04          | 068-2094 |
| 05          | 068-2095 |
| 06          | 068-2096 |

For capacities see previous page.

 $<sup>^{\</sup>scriptscriptstyle 4}$ ) For R407C plants, please select valves from the dedicated R407C program



Capacity in kW for range N:  $-40^{\circ}$ C to  $+10^{\circ}$ C

**R22** 

| Value to see    | Orifice |      |      | Pressur  | e drop ac | ross valve | e ∆p bar |      |      |                             |      | Pressur | e drop ac | ross valve | e ∆p bar |      |      |
|-----------------|---------|------|------|----------|-----------|------------|----------|------|------|-----------------------------|------|---------|-----------|------------|----------|------|------|
| Valve type      | no.     | 2    | 4    | 6        | 8         | 10         | 12       | 14   | 16   | 2                           | 4    | 6       | 8         | 10         | 12       | 14   | 16   |
|                 |         |      | Eva  | porating | g temper  | ature +1   | 0°C      |      |      | Evaporating temperature 0°C |      |         |           |            |          |      |      |
| TX 2/TEX 2-0.15 | 0X      | 0.37 | 0.48 | 0.55     | 0.60      | 0.63       | 0.65     | 0.65 | 0.67 | 0.37                        | 0.48 | 0.55    | 0.59      | 0.63       | 0.65     | 0.66 | 0.66 |
| TX 2/TEX 2-0.3  | 00      | 0.87 | 1.1  | 1.2      | 1.3       | 1.4        | 1.4      | 1.4  | 1.5  | 0.84                        | 1.0  | 1.2     | 1.3       | 1.3        | 1.4      | 1.4  | 1.4  |
| TX 2/TEX 2-0.7  | 01      | 2.2  | 2.8  | 3.2      | 3.4       | 3.6        | 3.7      | 3.8  | 3.8  | 1.9                         | 2.4  | 2.7     | 3.0       | 3.1        | 3.2      | 3.3  | 3.3  |
| TX 2/TEX 2-1.0  | 02      | 3.0  | 4.0  | 4.7      | 5.1       | 5.4        | 5.6      | 5.8  | 5.8  | 2.6                         | 3.4  | 4.0     | 4.3       | 4.6        | 4.8      | 4.9  | 5.0  |
| TX 2/TEX 2-1.5  | 03      | 5.4  | 7.2  | 8.3      | 9.1       | 9.7        | 10.0     | 10.2 | 10.3 | 4.6                         | 6.1  | 7.1     | 7.8       | 8.2        | 8.5      | 8.7  | 8.8  |
| TX 2/TEX 2-2.3  | 04      | 8.1  | 10.8 | 12.5     | 13.8      | 14.5       | 15.0     | 15.4 | 15.5 | 6.9                         | 9.1  | 10.5    | 11.5      | 12.2       | 12.7     | 13.0 | 13.2 |
| TX 2/TEX 2-3.0  | 05      | 10.2 | 13.6 | 15.7     | 17.2      | 18.3       | 18.9     | 19.3 | 19.5 | 8.8                         | 11.6 | 13.3    | 14.6      | 15.5       | 16.1     | 16.4 | 16.6 |
| TX 2/TEX 2-4.5  | 06      | 12.6 | 16.7 | 19.3     | 21.0      | 22.3       | 23.1     | 23.5 | 23.7 | 10.8                        | 14.2 | 16.3    | 17.8      | 18.9       | 19.6     | 20.0 | 20.2 |
|                 |         |      | Eva  | porating | g temper  | ature –1   | 0°C      |      |      |                             |      | Evapor  | ating ten | nperatur   | e –20°C  |      |      |
| TX 2/TEX 2-0.15 | 0X      | 0.37 | 0.47 | 0.53     | 0.57      | 0.60       | 0.63     | 0.64 | 0.64 |                             | 0.44 | 0.50    | 0.54      | 0.57       | 0.59     | 0.61 | 0.61 |
| TX 2/TEX 2-0.3  | 00      | 0.79 | 0.96 | 1.1      | 1.2       | 1.2        | 1.3      | 1.3  | 1.3  |                             | 0.88 | 1.0     | 1.1       | 1.1        | 1.2      | 1.2  | 1.2  |
| TX 2/TEX 2-0.7  | 01      | 1.6  | 2.0  | 2.3      | 2.5       | 2.6        | 2.7      | 2.8  | 2.8  |                             | 1.7  | 1.9     | 2.0       | 2.2        | 2.3      | 2.3  | 2.3  |
| TX 2/TEX 2-1.0  | 02      | 2.2  | 2.9  | 3.3      | 3.6       | 3.8        | 4.0      | 4.1  | 4.1  |                             | 2.4  | 2.7     | 2.9       | 3.1        | 3.2      | 3.3  | 3.3  |
| TX 2/TEX 2-1.5  | 03      | 3.9  | 5.1  | 5.9      | 6.4       | 6.8        | 7.1      | 7.3  | 7.3  |                             | 4.2  | 4.8     | 5.2       | 5.5        | 5.8      | 5.9  | 6.0  |
| TX 2/TEX 2-2.3  | 04      | 5.8  | 7.6  | 8.7      | 9.5       | 10.1       | 10.5     | 10.8 | 10.9 |                             | 6.2  | 7.1     | 7.7       | 8.2        | 8.5      | 8.7  | 8.8  |
| TX 2/TEX 2-3.0  | 05      | 7.4  | 9.6  | 11.0     | 12.0      | 12.8       | 13.3     | 13.6 | 13.8 |                             | 7.9  | 9.0     | 9.8       | 10.3       | 10.8     | 11.0 | 11.2 |
| TX 2/TEX 2-4.5  | 06      | 9.1  | 11.8 | 13.5     | 14.7      | 15.6       | 16.2     | 16.6 | 16.8 |                             | 9.6  | 11.0    | 11.9      | 12.6       | 13.1     | 13.5 | 13.7 |
|                 |         |      | Eva  | porating | g temper  | ature –3   | 0°C      |      | ,    |                             |      | Evapor  | ating ten | nperatur   | e –40°C  | ,    |      |
| TX 2/TEX 2-0.15 | 0X      |      | 0.40 | 0.45     | 0.49      | 0.52       | 0.55     | 0.56 | 0.57 |                             |      | 0.42    | 0.45      | 0.48       | 0.50     | 0.52 | 0.53 |
| TX 2/TEX 2-0.3  | 00      |      | 0.79 | 0.90     | 0.96      | 1.0        | 1.1      | 1.1  | 1.1  |                             |      | 0.80    | 0.86      | 0.92       | 0.95     | 0.98 | 0.99 |
| TX 2/TEX 2-0.7  | 01      |      | 1.4  | 1.5      | 1.7       | 1.8        | 1.8      | 1.9  | 1.9  |                             |      | 1.3     | 1.4       | 1.4        | 1.5      | 1.5  | 1.6  |
| TX 2/TEX 2-1.0  | 02      |      | 1.9  | 2.2      | 2.7       | 2.5        | 2.6      | 2.6  | 2.7  |                             |      | 1.7     | 1.9       | 2.0        | 2.0      | 2.1  | 2.1  |
| TX 2/TEX 2-1.5  | 03      |      | 3.4  | 3.9      | 4.2       | 4.4        | 4.6      | 4.7  | 4.8  |                             |      | 3.1     | 3.4       | 3.5        | 3.7      | 3.8  | 3.8  |
| TX 2/TEX 2-2.3  | 04      |      | 5.0  | 5.7      | 6.2       | 6.5        | 6.8      | 7.0  | 7.1  |                             |      | 4.6     | 4.9       | 5.2        | 5.4      | 5.6  | 5.7  |
| TX 2/TEX 2-3.0  | 05      |      | 6.4  | 7.2      | 7.8       | 8.3        | 8.6      | 8.8  | 9.0  |                             |      | 5.8     | 6.3       | 6.6        | 6.9      | 7.1  | 7.2  |
| TX 2/TEX 2-4.5  | 06      |      | 7.8  | 8.8      | 9.6       | 10.1       | 10.5     | 10.8 | 11.0 |                             |      | 7.1     | 7.7       | 8.1        | 8.4      | 8.7  | 8.8  |

Capacity in kW for range B:  $-60^{\circ}$ C to  $-25^{\circ}$ C

| Valve type     | Orifice |      |      | Pressur   | e drop ac | ross valve | e ∆p bar |      |      |                               |      | Pressur | e drop ac | ross valve | Δp bar |      |      |
|----------------|---------|------|------|-----------|-----------|------------|----------|------|------|-------------------------------|------|---------|-----------|------------|--------|------|------|
| valve type     | no.     | 2    | 4    | 6         | 8         | 10         | 12       | 14   | 16   | 2                             | 4    | 6       | 8         | 10         | 12     | 14   | 16   |
|                |         |      | Eva  | aporating | g temper  | ature –2   | 5°C      |      | ,    | Evaporating temperature –30°C |      |         |           |            |        |      |      |
| TX 2/TEX 2-0.2 | 00      | 0.69 | 0.83 | 0.94      | 1.0       | 1.1        | 1.1      | 1.1  | 1.2  | 0.66                          | 0.79 | 0.89    | 0.96      | 1.0        | 1.1    | 1.1  | 1.1  |
| TX 2/TEX 2-0.3 | 01      | 1.2  | 1.5  | 1.7       | 1.9       | 2.0        | 2.0      | 2.1  | 2.1  | 1.1                           | 1.4  | 1.5     | 1.7       | 1.8        | 1.8    | 1.9  | 1.9  |
| TX 2/TEX 2-0.6 | 02      | 1.7  | 2.1  | 2.4       | 2.6       | 2.8        | 2.9      | 2.9  | 3.0  | 1.5                           | 1.9  | 2.2     | 2.3       | 2.5        | 2.6    | 2.6  | 2.7  |
| TX 2/TEX 2-0.8 | 03      | 3.0  | 3.8  | 4.3       | 4.7       | 5.0        | 5.2      | 5.3  | 5.3  | 2.7                           | 3.4  | 3.9     | 4.2       | 4.4        | 4.6    | 4.7  | 4.8  |
| TX 2/TEX 2-1.2 | 04      | 4.4  | 5.6  | 6.4       | 6.9       | 7.3        | 7.6      | 7.8  | 7.9  | 3.9                           | 5.0  | 5.7     | 6.2       | 6.5        | 6.8    | 7.0  | 7.1  |
| TX 2/TEX 2-1.5 | 05      | 5.6  | 7.1  | 8.1       | 8.7       | 9.3        | 9.6      | 9.9  | 10.0 | 5.0                           | 6.4  | 7.2     | 7.8       | 8.3        | 8.6    | 8.8  | 9.0  |
| TX 2/TEX 2-2.0 | 06      | 6.8  | 8.7  | 9.8       | 10.7      | 11.3       | 11.8     | 12.1 | 12.3 | 6.1                           | 7.8  | 8.8     | 9.6       | 10.1       | 10.5   | 10.8 | 11.0 |
|                |         |      | Eva  | aporating | g temper  | ature –4   | 0°C      | •    |      | Evaporating temperature -50°C |      |         |           |            |        |      |      |
| TX 2/TEX 2-0.2 | 00      | 0.60 | 0.71 | 0.80      | 0.86      | 0.92       | 0.95     | 0.98 | 0.99 | 0.54                          | 0.65 | 0.72    | 0.78      | 0.82       | 0.85   | 0.87 | 0.88 |
| TX 2/TEX 2-0.3 | 01      | 0.90 | 1.1  | 1.3       | 1.4       | 1.4        | 1.5      | 1.5  | 1.6  | 0.74                          | 0.92 | 1.0     | 1.1       | 1.2        | 1.2    | 1.3  | 1.3  |
| TX 2/TEX 2-0.6 | 02      | 1.2  | 1.6  | 1.7       | 1.9       | 2.0        | 2.1      | 2.1  | 2.1  | 1.0                           | 1.3  | 1.4     | 1.5       | 1.6        | 1.7    | 1.7  | 1.7  |
| TX 2/TEX 2-0.8 | 03      | 2.2  | 2.8  | 3.1       | 3.4       | 3.5        | 3.7      | 3.8  | 3.8  | 1.8                           | 2.3  | 2.6     | 2.7       | 2.9        | 3.0    | 3.1  | 3.1  |
| TX 2/TEX 2-1.2 | 04      | 3.2  | 4.0  | 4.6       | 4.9       | 5.2        | 5.4      | 5.6  | 5.7  | 2.6                           | 3.3  | 3.7     | 4.0       | 4.2        | 4.4    | 4.5  | 4.6  |
| TX 2/TEX 2-1.5 | 05      | 4.1  | 5.1  | 5.8       | 6.3       | 6.6        | 6.9      | 7.1  | 7.2  | 3.4                           | 4.2  | 4.7     | 5.1       | 5.4        | 5.6    | 5.8  | 5.9  |
| TX 2/TEX 2-2.0 | 06      | 5.0  | 6.3  | 7.1       | 7.7       | 8.1        | 8.4      | 8.7  | 8.8  | 4.1                           | 5.1  | 5.8     | 6.2       | 6.6        | 6.9    | 7.1  | 7.2  |
|                |         |      | Eva  | aporating | g temper  | ature -6   | 0°C      |      |      |                               |      |         |           |            |        |      |      |
| TX 2/TEX 2-0.2 | 00      | 0.50 | 0.60 | 0.66      | 0.71      | 0.75       | 0.77     | 0.79 | 0.80 |                               |      |         |           |            |        |      |      |
| TX 2/TEX 2-0.3 | 01      | 0.64 | 0.79 | 0.88      | 0.95      | 1.0        | 1.0      | 1.1  | 1.1  |                               |      |         |           |            |        |      |      |
| TX 2/TEX 2-0.6 | 02      | 0.9  | 1.1  | 1.2       | 1.3       | 1.4        | 1.4      | 1.4  | 1.4  |                               |      |         |           |            |        |      | 1    |
| TX 2/TEX 2-0.8 | 03      | 1.6  | 1.9  | 2.2       | 2.3       | 2.4        | 2.5      | 2.6  | 2.6  |                               |      |         |           |            |        |      |      |
| TX 2/TEX 2-1.2 | 04      | 2.2  | 2.8  | 3.1       | 3.4       | 3.6        | 3.7      | 3.8  | 3.9  |                               |      |         |           |            |        |      | 1    |
| TX 2/TEX 2-1.5 | 05      | 2.9  | 3.6  | 4.0       | 4.3       | 4.6        | 4.8      | 4.9  | 5.0  |                               |      |         |           |            |        |      |      |
| TX 2/TEX 2-2.0 | 06      | 3.5  | 4.4  | 4.9       | 5.3       | 5.6        | 5.8      | 6.0  | 6.1  |                               |      |         |           |            |        |      | 1    |

Correction for subcooling  $\Delta t_{sub}$ 

Note: Insufficient subcooling can produce flash gas. The evaporator capacities used must be corrected if subcooling deviates from 4 K. The corrected capacity can be obtained by

dividing the required evaporator capacity by the correction factor below. Selections can then be made from the tables above.

| $\Delta t_u$      | 4 K  | 10 K | 15 K | 20 K | 25 K | 30 K | 35 K | 40 K | 45 K | 50 K |
|-------------------|------|------|------|------|------|------|------|------|------|------|
| Correction factor | 1.00 | 1.06 | 1.11 | 1.15 | 1.20 | 1.25 | 1.30 | 1.35 | 1.39 | 1.44 |

Example
Refrigerant = R22
Evaporator capacity  $Q_e = 5 \text{ kW}$ Subcooling = 10 K

Correction factor from table = 1.06Corrected capacity = 5:1.06=4.72 kW



Capacity in kW for range N: -40°C to +10°C

**R407C** 

| Valve type        | Orifice |                               | Pressure drop across valve $\Delta p$ bar |          |        |          |      |      |      |      | Pressure | e drop ac | ross valve | ∆p bar   |         |      |      |
|-------------------|---------|-------------------------------|-------------------------------------------|----------|--------|----------|------|------|------|------|----------|-----------|------------|----------|---------|------|------|
| valve type        | no.     | 2                             | 4                                         | 6        | 8      | 10       | 12   | 14   | 16   | 2    | 4        | 6         | 8          | 10       | 12      | 14   | 16   |
|                   |         |                               | Eva                                       | porating | temper | ature +1 | 0°C  |      |      |      |          | Evapo     | rating te  | mperatu  | re 0°C  |      |      |
| TZ 2/TEZ 2 - 0.16 | 0X      | 0.40                          | 0.50                                      | 0.56     | 0.61   | 0.63     | 0.64 | 0.63 | 0.64 | 0.40 | 0.50     | 0.56      | 0.60       | 0.63     | 0.64    | 0.64 | 0.63 |
| TZ 2/TEZ 2 - 0.30 | 00      | 0.90                          | 1.1                                       | 1.2      | 1.3    | 1.4      | 1.4  | 1.4  | 1.4  | 0.87 | 1.0      | 1.2       | 1.3        | 1.3      | 1.4     | 1.4  | 1.3  |
| TZ 2/TEZ 2 - 0.80 | 01      | 2.3                           | 2.9                                       | 3.3      | 3.4    | 3.6      | 3.6  | 3.7  | 3.6  | 2.0  | 2.5      | 2.8       | 3.0        | 3.1      | 3.1     | 3.2  | 3.2  |
| TZ 2/TEZ 2 - 1.1  | 02      | 3.1                           | 4.1                                       | 4.8      | 5.2    | 5.4      | 5.5  | 5.6  | 5.6  | 2.7  | 3.5      | 4.1       | 4.3        | 4.6      | 4.7     | 4.8  | 4.8  |
| TZ 2/TEZ 2 - 1.6  | 03      | 5.6                           | 7.4                                       | 8.5      | 9.2    | 9.7      | 9.8  | 9.9  | 9.9  | 4.8  | 6.3      | 7.2       | 7.9        | 8.2      | 8.3     | 8.4  | 8.4  |
| TZ 2/TEZ 2 - 2.5  | 04      | 8.4                           | 11.1                                      | 12.8     | 13.9   | 14.5     | 14.7 | 14.9 | 14.9 | 7.2  | 9.4      | 10.7      | 11.6       | 12.2     | 12.4    | 12.6 | 12.7 |
| TZ 2/TEZ 2 - 3.2  | 05      | 10.6                          | 14.0                                      | 16.0     | 17.4   | 18.3     | 18.5 | 18.7 | 18.7 | 9.2  | 11.9     | 13.6      | 14.7       | 15.5     | 15.8    | 15.9 | 15.9 |
| TZ 2/TEZ 2 - 4.9  | 06      | 13.1                          | 17.2                                      | 19.7     | 21.2   | 22.3     | 22.6 | 22.8 | 22.8 | 11.2 | 14.6     | 16.6      | 18.0       | 18.9     | 19.2    | 19.4 | 19.4 |
|                   |         | Evaporating temperature –10°C |                                           |          |        |          |      |      |      |      |          | Evapor    | ating ten  | nperatur | e –20°C |      |      |
| TZ 2/TEZ 2 - 0.16 | 0X      | 0.38                          | 0.48                                      | 0.54     | 0.57   | 0.60     | 0.62 | 0.62 | 0.61 |      | 0.45     | 0.51      | 0.54       | 0.56     | 0.57    | 0.59 | 0.57 |
| TZ 2/TEZ 2 - 0.30 | 00      | 0.82                          | 1.0                                       | 1.1      | 1.2    | 1.2      | 1.3  | 1.3  | 1.2  |      | 0.90     | 1.0       | 1.1        | 1.1      | 1.2     | 1.2  | 1.1  |
| TZ 2/TEZ 2 - 0.80 | 01      | 1.7                           | 2.0                                       | 2.3      | 2.5    | 2.6      | 2.6  | 2.7  | 2.7  |      | 1.7      | 1.9       | 2.0        | 2.2      | 2.2     | 2.2  | 2.2  |
| TZ 2/TEZ 2 - 1.1  | 02      | 2.3                           | 3.0                                       | 3.3      | 3.6    | 3.8      | 3.9  | 4.0  | 3.9  |      | 2.4      | 2.7       | 2.9        | 3.1      | 3.1     | 3.2  | 3.1  |
| TZ 2/TEZ 2 - 1.6  | 03      | 4.1                           | 5.2                                       | 6.0      | 6.4    | 6.8      | 7.0  | 7.1  | 6.9  |      | 4.3      | 4.8       | 5.2        | 5.4      | 5.6     | 5.7  | 5.6  |
| TZ 2/TEZ 2 - 2.5  | 04      | 6.0                           | 7.8                                       | 8.8      | 9.5    | 10.1     | 10.3 | 10.5 | 10.4 |      | 6.3      | 7.2       | 7.7        | 8.1      | 8.2     | 8.4  | 8.3  |
| TZ 2/TEZ 2 - 3.2  | 05      | 7.7                           | 9.8                                       | 11.1     | 12.0   | 12.8     | 13.0 | 13.2 | 13.1 |      | 8.1      | 9.1       | 9.8        | 10.2     | 10.5    | 10.6 | 10.5 |
| TZ 2/TEZ 2 - 4.9  | 06      | 9.5                           | 12.0                                      | 13.6     | 14.7   | 15.6     | 15.9 | 16.1 | 16.0 |      | 9.8      | 11.1      | 11.9       | 12.5     | 12.7    | 13.0 | 12.9 |
|                   |         |                               | Eva                                       | porating | temper | ature –3 | 0°C  |      |      |      |          | Evapor    | ating ten  | nperatur | e –40°C |      |      |
| TZ 2/TEZ 2 - 0.16 | 0X      |                               | 0.41                                      | 0.45     | 0.49   | 0.51     | 0.53 | 0.53 | 0.53 |      |          | 0.42      | 0.44       | 0.46     | 0.48    | 0.48 | 0.49 |
| TZ 2/TEZ 2 - 0.30 | 00      |                               | 0.81                                      | 0.90     | 1.0    | 1.0      | 1.1  | 1.0  | 1.0  |      |          | 0.80      | 0.84       | 0.90     | 0.90    | 0.90 | 0.90 |
| TZ 2/TEZ 2 - 0.80 | 01      |                               | 1.4                                       | 1.5      | 1.7    | 1.8      | 1.7  | 1.8  | 1.8  |      |          | 1.3       | 1.4        | 1.3      | 1.4     | 1.4  | 1.5  |
| TZ 2/TEZ 2 - 1.1  | 02      |                               | 1.9                                       | 2.2      | 2.7    | 2.5      | 2.5  | 2.5  | 2.5  |      |          | 1.7       | 1.9        | 1.9      | 1.9     | 2.0  | 1.9  |
| TZ 2/TEZ 2 - 1.6  | 03      |                               | 3.5                                       | 3.9      | 4.2    | 4.3      | 4.4  | 4.5  | 4.5  |      |          | 3.1       | 3.3        | 3.4      | 3.5     | 3.5  | 3.5  |
| TZ 2/TEZ 2 - 2.5  | 04      |                               | 5.1                                       | 5.8      | 6.1    | 6.4      | 6.5  | 6.7  | 6.6  |      |          | 4.6       | 4.8        | 5.0      | 5.1     | 5.2  | 5.2  |
| TZ 2/TEZ 2 - 3.2  | 05      |                               | 6.5                                       | 7.3      | 7.7    | 8.1      | 8.3  | 8.4  | 8.4  |      |          | 5.8       | 6.2        | 6.3      | 6.6     | 6.6  | 6.6  |
| TZ 2/TEZ 2 - 4.9  | 06      |                               | 8.0                                       | 8.9      | 9.5    | 9.9      | 10.1 | 10.3 | 10.2 |      |          | 7.1       | 7.5        | 7.8      | 8.0     | 8.1  | 8.1  |

Correction for subcooling  $\Delta t_{sub}$ 

Note: Insufficient subcooling can produce flash gas. The evaporator capacities used must be corrected if subcooling deviates from 4 K. The corrected capacity can be obtained by

dividing the required evaporator capacity by the correction factor below. Selections can then be made from the tables above.

| $\Delta t_u$      | 4 K  | 10 K | 15 K | 20 K | 25 K | 30 K | 35 K | 40 K | 45 K | 50 K |
|-------------------|------|------|------|------|------|------|------|------|------|------|
| Correction factor | 1.00 | 1.08 | 1.14 | 1.21 | 1.27 | 1.33 | 1.39 | 1.45 | 1.51 | 1.57 |



Capacity in kW for range N: −40°C to +10°C

R134a

| Capacity III KW 101 Tange N. –40 C to +10 C |         |         |           |          |          |                               |      |           |          |           |      |
|---------------------------------------------|---------|---------|-----------|----------|----------|-------------------------------|------|-----------|----------|-----------|------|
| Valve type                                  | Orifice | Pre     | ssure dro | p across | valve ∆p | bar                           | Pre  | ssure dro | p across | valve ∆p  | bar  |
| valve type                                  | no.     | 2       | 4         | 6        | 8        | 10                            | 2    | 4         | 6        | 8         | 10   |
|                                             |         | Evapora | ating ten | peratur  | e +10°C  |                               | Εν   | /aporatir | ng tempe | erature 0 | °C   |
| TN 2/TEN 2 - 0.11                           | 0X      | 0.34    | 0.43      | 0.47     | 0.50     | 0.51                          | 0.33 | 0.42      | 0.46     | 0.47      | 0.49 |
| TN 2/TEN 2 - 0.25                           | 00      | 0.71    | 0.86      | 0.93     | 0.97     | 0.98                          | 0.65 | 0.78      | 0.86     | 0.89      | 0.91 |
| TN 2/TEN 2 - 0.5                            | 01      | 1.5     | 1.9       | 2.1      | 2.2      | 2.2                           | 1.3  | 1.6       | 1.7      | 1.8       | 1.8  |
| TN 2/TEN 2 - 0.8                            | 02      | 2.0     | 2.6       | 3.0      | 3.1      | 3.2                           | 1.7  | 2.2       | 2.4      | 2.6       | 2.6  |
| TN 2/TEN 2 - 1.3                            | 03      | 3.6     | 4.7       | 5.3      | 5.6      | 5.8                           | 3.0  | 3.9       | 4.4      | 4.6       | 4.7  |
| TN 2/TEN 2 - 1.9                            | 04      | 5.4     | 7.0       | 7.8      | 8.3      | 8.6                           | 4.5  | 5.7       | 6.4      | 6.8       | 7.0  |
| TN 2/TEN 2 - 2.5                            | 05      | 6.9     | 8.9       | 9.9      | 10.8     | 10.9                          | 5.7  | 7.3       | 8.1      | 8.6       | 8.8  |
| TN 2/TEN 2 - 3.0                            | 06      | 8.4     | 10.8      | 12.1     | 12.8     | 13.2                          | 7.0  | 8.9       | 10.0     | 10.5      | 10.8 |
|                                             |         | Evapor  | ating ten | nperatur | e –10°C  | Evaporating temperature -20°C |      |           |          |           |      |
| TN 2/TEN 2 - 0.11                           | 0X      | 0.30    | 0.38      | 0.43     | 0.44     | 0.44                          | 0.28 | 0.35      | 0.39     | 0.41      | 0.42 |
| TN 2/TEN 2 - 0.25                           | 00      | 0.59    | 0.70      | 0.77     | 0.81     | 0.82                          | 0.53 | 0.62      | 0.69     | 0.72      | 0.73 |
| TN 2/TEN 2 - 0.5                            | 01      | 1.0     | 1.3       | 1.4      | 1.5      | 1.5                           | 0.81 | 1.00      | 1.1      | 1.2       | 1.2  |
| TN 2/TEN 2 - 0.8                            | 02      | 1.4     | 1.8       | 2.0      | 2.1      | 2.1                           | 1.1  | 1.4       | 1.5      | 1.6       | 1.7  |
| TN 2/TEN 2 - 1.3                            | 03      | 2.5     | 3.1       | 3.5      | 3.7      | 3.8                           | 2.0  | 2.5       | 2.8      | 2.9       | 3.0  |
| TN 2/TEN 2 - 1.9                            | 04      | 3.6     | 4.6       | 5.1      | 5.4      | 5.6                           | 2.9  | 3.6       | 4.0      | 4.3       | 4.4  |
| TN 2/TEN 2 - 2.5                            | 05      | 4.6     | 5.8       | 6.5      | 6.9      | 7.1                           | 3.7  | 4.6       | 5.1      | 5.4       | 5.5  |
| TN 2/TEN 2 - 3.0                            | 06      | 5.7     | 7.1       | 8.0      | 8.4      | 8.6                           | 4.5  | 5.6       | 6.2      | 6.6       | 6.8  |
|                                             |         | Evapor  | ating ten | nperatur | e –30°C  |                               | Eva  | porating  | g temper | ature -4  | 0°C  |
| TN 2/TEN 2 - 0.11                           | 0X      | 0.25    | 0.32      | 0.35     | 0.37     | 0.38                          | 0.23 | 0.28      | 0.32     | 0.33      | 0.34 |
| TN 2/TEN 2 - 0.25                           | 00      | 0.48    | 0.55      | 0.61     | 0.64     | 0.64                          | 0.44 | 0.50      | 0.54     | 0.56      | 0.57 |
| TN 2/TEN 2 - 0.5                            | 01      | 0.66    | 0.80      | 0.88     | 0.93     | 0.95                          | 0.54 | 0.65      | 0.72     | 0.76      | 0.77 |
| TN 2/TEN 2 - 0.8                            | 02      | 0.90    | 1.1       | 1.2      | 1.3      | 1.3                           | 0.74 | 0.89      | 0.98     | 1.0       | 1.0  |
| TN 2/TEN 2 - 1.3                            | 03      | 1.6     | 2.0       | 2.2      | 2.3      | 2.3                           | 1.3  | 1.6       | 1.8      | 1.9       | 1.9  |
| TN 2/TEN 2 - 1.9                            | 04      | 2.3     | 2.9       | 3.2      | 3.3      | 3.4                           | 1.9  | 2.3       | 2.6      | 2.7       | 2.7  |
| TN 2/TEN 2 - 2.5                            | 05      | 3.0     | 3.6       | 4.0      | 4.2      | 4.3                           | 2.4  | 2.9       | 3.2      | 3.5       | 3.5  |
| TN 2/TEN 2 - 3.0                            | 06      | 3.6     | 4.4       | 4.9      | 5.2      | 5.3                           | 3.0  | 3.6       | 4.0      | 4.2       | 4.3  |

Correction for subcooling  $\Delta t_{sub}$ 

Note: Insufficient subcooling can produce flash gas. The evaporator capacities used must be corrected if subcooling deviates from 4 K. The corrected capacity can be obtained by

dividing the required evaporator capacity by the correction factor below. Selections can then be made from the tables above.

| $\Delta t_u$      | 4 K  | 10 K | 15 K | 20 K | 25 K | 30 K | 35 K | 40 K | 45 K | 50 K |
|-------------------|------|------|------|------|------|------|------|------|------|------|
| Correction factor | 1.00 | 1.08 | 1.13 | 1.19 | 1.25 | 1.31 | 1.37 | 1.42 | 1.48 | 1.54 |



Capacity in kW for range N: −40°C to +10°C

# R404A / R507

| Valve type        | Orifice |                               | Pressure drop across valve $\Delta p$ bar |          |          |          |      |      |      |      |        | Pressur   | e drop ac | ross valve | Δp bar  |      |      |
|-------------------|---------|-------------------------------|-------------------------------------------|----------|----------|----------|------|------|------|------|--------|-----------|-----------|------------|---------|------|------|
| valve type        | no.     | 2                             | 4                                         | 6        | 8        | 10       | 12   | 14   | 16   | 2    | 4      | 6         | 8         | 10         | 12      | 14   | 16   |
|                   |         |                               | Eva                                       | porating | g temper | ature +1 | 0°C  |      |      |      |        | Evapo     | rating te | mperatu    | re 0°C  |      |      |
| TS 2/TES 2 - 0.11 | 0X      | 0.28                          | 0.35                                      | 0.40     | 0.42     | 0.43     | 0.43 | 0.42 | 0.41 | 0.30 | 0.37   | 0.41      | 0.42      | 0.43       | 0.43    | 0.43 | 0.41 |
| TS 2/TES 2 - 0.21 | 00      | 0.67                          | 0.82                                      | 0.90     | 0.94     | 0.96     | 0.96 | 0.93 | 0.90 | 0.68 | 0.80   | 0.87      | 0.90      | 0.92       | 0.93    | 0.91 | 0.87 |
| TS 2/TES 2 - 0.45 | 01      | 1.7                           | 2.1                                       | 2.3      | 2.4      | 2.5      | 2.5  | 2.4  | 2.3  | 1.5  | 1.9    | 2.0       | 2.1       | 2.2        | 2.2     | 2.2  | 2.1  |
| TS 2/TES 2 - 0.6  | 02      | 2.3                           | 3.0                                       | 3.4      | 3.6      | 3.7      | 3.7  | 3.7  | 3.6  | 2.1  | 2.6    | 3.0       | 3.1       | 3.2        | 3.3     | 3.2  | 3.1  |
| TS 2/TES 2 - 1.2  | 03      | 4.2                           | 5.4                                       | 6.0      | 6.4      | 6.6      | 6.7  | 6.6  | 6.4  | 3.7  | 4.7    | 5.3       | 5.6       | 5.8        | 5.8     | 5.7  | 5.6  |
| TS 2/TES 2 - 1.7  | 04      | 6.2                           | 8.1                                       | 9.1      | 9.7      | 10.0     | 10.0 | 9.8  | 9.6  | 5.5  | 7.1    | 7.9       | 8.3       | 8.6        | 8.6     | 8.5  | 8.3  |
| TS 2/TES 2 - 2.2  | 05      | 7.9                           | 10.2                                      | 11.4     | 12.2     | 12.5     | 12.6 | 12.3 | 12.0 | 7.0  | 8.9    | 10.0      | 10.5      | 10.8       | 10.9    | 10.8 | 10.4 |
| TS 2/TES 2 - 2.6  | 06      | 9.7                           | 12.5                                      | 14.0     | 14.9     | 15.3     | 15.3 | 15.1 | 14.7 | 8.6  | 10.9   | 12.2      | 12.9      | 13.2       | 13.3    | 13.1 | 12.7 |
|                   |         | Evaporating temperature –10°C |                                           |          |          |          |      |      |      | ,    | Evapor | ating ten | nperatur  | e –20°C    |         |      |      |
| TS 2/TES 2 - 0.11 | 0X      | 0.30                          | 0.37                                      | 0.40     | 0.42     | 0.42     | 0.42 | 0.41 | 0.41 |      | 0.35   | 0.38      | 0.40      | 0.39       | 0.40    | 0.39 | 0.38 |
| TS 2/TES 2 - 0.21 | 00      | 0.65                          | 0.76                                      | 0.82     | 0.84     | 0.87     | 0.87 | 0.85 | 0.83 |      | 0.70   | 0.75      | 0.77      | 0.79       | 0.79    | 0.79 | 0.76 |
| TS 2/TES 2 - 0.45 | 01      | 1.3                           | 1.6                                       | 1.7      | 1.8      | 1.8      | 1.9  | 1.8  | 1.8  |      | 1.3    | 1.5       | 1.5       | 1.5        | 1.5     | 1.5  | 1.5  |
| TS 2/TES 2 - 0.6  | 02      | 1.8                           | 2.2                                       | 2.5      | 2.6      | 2.7      | 2.7  | 2.7  | 2.6  |      | 1.9    | 2.0       | 2.1       | 2.2        | 2.2     | 2.2  | 2.1  |
| TS 2/TES 2 - 1.2  | 03      | 3.1                           | 4.0                                       | 4.5      | 4.7      | 4.8      | 4.8  | 4.8  | 4.7  |      | 3.3    | 3.7       | 3.8       | 3.9        | 3.9     | 3.9  | 3.8  |
| TS 2/TES 2 - 1.7  | 04      | 4.7                           | 6.0                                       | 6.6      | 7.0      | 7.1      | 7.2  | 7.1  | 6.9  |      | 4.9    | 5.4       | 5.6       | 5.8        | 5.8     | 5.7  | 5.6  |
| TS 2/TES 2 - 2.2  | 05      | 5.9                           | 7.6                                       | 8.4      | 8.8      | 9.0      | 9.1  | 9.0  | 8.7  |      | 6.2    | 6.9       | 7.2       | 7.3        | 7.3     | 7.2  | 7.1  |
| TS 2/TES 2 - 2.6  | 06      | 7.3                           | 9.3                                       | 10.3     | 10.8     | 11.0     | 11.1 | 11.0 | 10.7 |      | 7.6    | 8.4       | 8.8       | 8.9        | 8.9     | 8.8  | 8.6  |
|                   |         |                               | Eva                                       | porating | g temper | ature –3 | 0°C  |      |      |      |        | Evapor    | ating ten | nperatur   | e –40°C |      |      |
| TS 2/TES 2 - 0.11 | 0X      |                               |                                           | 0.35     | 0.37     | 0.36     | 0.37 | 0.36 | 0.35 |      |        | 0.32      | 0.33      | 0.33       | 0.33    | 0.32 | 0.32 |
| TS 2/TES 2 - 0.21 | 00      |                               |                                           | 0.67     | 0.70     | 0.70     | 0.70 | 0.69 | 0.67 |      |        | 0.60      | 0.61      | 0.62       | 0.61    | 0.60 | 0.59 |
| TS 2/TES 2 - 0.45 | 01      |                               |                                           | 1.2      | 1.2      | 1.2      | 1.2  | 1.2  | 1.2  | 1    |        | 0.92      | 0.96      | 0.97       | 0.96    | 0.94 | 0.91 |
| TS 2/TES 2 - 0.6  | 02      |                               |                                           | 1.6      | 1.7      | 1.7      | 1.7  | 1.7  | 1.6  | l    |        | 1.3       | 1.3       | 1.3        | 1.3     | 1.3  | 1.2  |
| TS 2/TES 2 - 1.2  | 03      |                               |                                           | 2.9      | 3.0      | 3.1      | 3.1  | 3.0  | 2.9  | 1    |        | 2.3       | 2.4       | 2.4        | 2.4     | 2.3  | 2.2  |
| TS 2/TES 2 - 1.7  | 04      |                               |                                           | 4.3      | 4.5      | 4.5      | 4.5  | 4.5  | 4.4  | 1    |        | 3.3       | 3.5       | 3.5        | 3.5     | 3.4  | 3.3  |
| TS 2/TES 2 - 2.2  | 05      |                               |                                           | 5.5      | 5.7      | 5.7      | 5.7  | 5.7  | 5.5  | 1    |        | 4.3       | 4.4       | 4.5        | 4.4     | 4.4  | 4.2  |
| TS 2/TES 2 - 2.6  | 06      |                               |                                           | 6.7      | 6.9      | 7.0      | 7.0  | 6.9  | 6.8  |      |        | 5.2       | 5.4       | 5.5        | 5.4     | 5.3  | 5.2  |

Capacity in kW for range B: −60°C to −25°C

| Valve type        | Orifice                       |      |      | Pressur  | e drop ac | ross valve | ≙ ∆p bar |      |      |      |        | Pressur   | e drop ac | ross valve | ∆p bar  |      |      |
|-------------------|-------------------------------|------|------|----------|-----------|------------|----------|------|------|------|--------|-----------|-----------|------------|---------|------|------|
| valve type        | no.                           | 2    | 4    | 6        | 8         | 10         | 12       | 14   | 16   | 2    | 4      | 6         | 8         | 10         | 12      | 14   | 16   |
|                   |                               |      | Eva  | porating | g temper  | ature –2   | 5°C      |      |      |      |        | Evapor    | ating ten | nperatur   | e –30°C |      |      |
| TS 2/TES 2 - 0.21 | 00                            | 0.57 | 0.67 | 0.72     | 0.73      | 0.74       | 0.85     | 0.74 | 0.71 | 0.53 | 0.64   | 0.67      | 0.70      | 0.70       | 0.70    | 0.69 | 0.67 |
| TS 2/TES 2 - 0.45 | 01                            | 0.98 | 1.2  | 1.3      | 1.5       | 1.4        | 1.4      | 1.4  | 1.31 | 0.88 | 1.07   | 1.2       | 1.2       | 1.2        | 1.2     | 1.2  | 1.2  |
| TS 2/TES 2 - 0.6  | 02                            | 1.3  | 1.7  | 1.8      | 1.9       | 1.9        | 1.9      | 1.9  | 1.9  | 1.2  | 1.5    | 1.6       | 1.7       | 1.7        | 1.7     | 1.7  | 1.6  |
| TS 2/TES 2 - 1.0  | 03                            | 2.4  | 3.0  | 3.3      | 3.4       | 3.5        | 3.5      | 3.4  | 3.3  | 2.1  | 2.7    | 2.9       | 3.0       | 3.1        | 3.1     | 3.0  | 2.9  |
| TS 2/TES 2 - 1.4  | 04                            | 3.5  | 4.4  | 4.8      | 5.0       | 5.1        | 5.1      | 5.1  | 4.9  | 3.1  | 3.9    | 4.3       | 4.5       | 4.5        | 4.5     | 4.5  | 4.4  |
| TS 2/TES 2 - 1.7  | 05                            | 4.4  | 5.6  | 6.1      | 6.4       | 6.5        | 6.5      | 6.4  | 6.3  | 3.9  | 4.9    | 5.5       | 5.7       | 5.7        | 5.7     | 5.7  | 5.5  |
| TS 2/TES 2 - 1.9  | 06                            | 5.4  | 6.8  | 7.5      | 7.8       | 7.9        | 7.9      | 7.9  | 7.6  | 4.8  | 6.1    | 6.7       | 6.9       | 7.0        | 7.0     | 6.9  | 6.8  |
|                   | Evaporating temperature –40°C |      |      |          |           |            |          |      |      |      | Evapor | ating ten | nperatur  | e –50°C    |         |      |      |
| TS 2/TES 2 - 0.21 | 00                            |      | 0.56 | 0.60     | 0.61      | 0.62       | 0.61     | 0.60 | 0.59 |      | 0.49   | 0.53      | 0.54      | 0.54       | 0.53    | 0.52 | 0.50 |
| TS 2/TES 2 - 0.45 | 01                            |      | 0.85 | 0.92     | 0.96      | 0.97       | 0.96     | 0.94 | 0.91 |      | 0.51   | 0.57      | 0.60      | 0.60       | 0.60    | 0.60 | 0.59 |
| TS 2/TES 2 - 0.6  | 02                            |      | 1.2  | 1.3      | 1.3       | 1.3        | 1.3      | 1.3  | 1.2  |      | 0.91   | 0.99      | 1.0       | 1.0        | 1.0     | 0.98 | 0.95 |
| TS 2/TES 2 - 1.0  | 03                            |      | 2.1  | 2.3      | 2.4       | 2.4        | 2.4      | 2.3  | 2.2  |      | 1.6    | 1.8       | 1.8       | 1.8        | 1.8     | 1.8  | 1.7  |
| TS 2/TES 2 - 1.4  | 04                            |      | 3.0  | 3.3      | 3.5       | 3.5        | 3.5      | 3.4  | 3.3  |      | 2.4    | 2.6       | 2.7       | 2.7        | 2.7     | 2.6  | 2.6  |
| TS 2/TES 2 - 1.7  | 05                            |      | 3.9  | 4.3      | 4.4       | 4.5        | 4.4      | 4.4  | 4.2  |      | 3.0    | 3.3       | 3.4       | 3.5        | 3.4     | 3.4  | 3.3  |
| TS 2/TES 2 - 1.9  | 06                            |      | 4.7  | 5.2      | 5.4       | 5.5        | 5.5      | 5.3  | 5.2  |      | 3.7    | 4.0       | 4.2       | 4.2        | 4.2     | 4.1  | 4.0  |
|                   |                               |      | Eva  | porating | g temper  | ature –6   | 0°C      | ,    |      |      |        |           |           |            |         |      |      |
| TS 2/TES 2 - 0.21 | 00                            |      |      | 0.46     | 0.48      | 0.47       | 0.45     | 0.45 | 0.43 |      |        |           |           |            |         |      |      |
| TS 2/TES 2 - 0.45 | 01                            |      |      | 0.58     | 0.60      | 0.60       | 0.58     | 0.56 | 0.54 |      |        |           |           |            |         |      |      |
| TS 2/TES 2 - 0.6  | 02                            |      |      | 0.78     | 0.80      | 0.80       | 0.78     | 0.75 | 0.72 |      |        |           |           |            |         |      |      |
| TS 2/TES 2 - 1.0  | 03                            |      |      | 1.4      | 1.4       | 1.4        | 1.4      | 1.4  | 1.3  | 1    |        |           |           |            |         |      |      |
| TS 2/TES 2 - 1.4  | 04                            |      |      | 2.0      | 2.1       | 2.1        | 2.1      | 2.0  | 2.0  | 1    |        |           |           |            |         |      |      |
| TS 2/TES 2 - 1.7  | 05                            |      |      | 2.6      | 2.7       | 2.7        | 2.7      | 2.6  | 2.5  | 1    |        |           |           |            |         |      |      |
| TS 2/TES 2 - 1.9  | 06                            |      |      | 3.2      | 3.3       | 3.3        | 3.3      | 3.2  | 3.1  | 1    |        |           |           |            |         |      |      |

Correction for subcooling  $\Delta t_{sub}$ 

Note: Insufficient subcooling can produce flash gas. The evaporator capacities used must be corrected if subcooling deviates from 4 K. The corrected capacity can be obtained by

dividing the required evaporator capacity by the correction factor below. Selections can then be made from the tables above.

| $\Delta t_u$      | 4 K  | 10 K | 15 K | 20 K | 25 K | 30 K | 35 K | 40 K | 45 K | 50 K |
|-------------------|------|------|------|------|------|------|------|------|------|------|
| Correction factor | 1.00 | 1.10 | 1.20 | 1.29 | 1.37 | 1.46 | 1.54 | 1.63 | 1.70 | 1.78 |

# **Technical leaflet**

#### Thermostatic expansion valves, type T 2 and TE 2

### Design Function

#### General

T 2 and TE 2 valves have an interchangeable orifice assembly.

For the same valve type and refrigerant, the associated orifice assembly is suitable for all versions of valve body and in all evaporating temperature ranges.

The charge in the thermostatic element depends on the evaporating temperature range. The valves can be equipped with internal (T 2) or external (TE 2) pressure equalization.

External pressure equalization should always be used on systems with liquid distributors. The double contact bulb gives fast and precise reaction to temperature changes in the evaporator. It also makes fitting the bulb quick and easy.

The valves are able to withstand the effects that normally occur with hot gas defrosting.

To ensure long operating life, the valve cone and seat are made of a special alloy with particularly good wear qualities.



- 1. Thermostatic element
- (diaphragm)
  2. Interchangeable orifice assembly
- 3. Valve body
- Superheat setting spindle (see instructions)



# Identification

The thermostatic element is fitted with a laser engraving on top of the diaphragm.

This engraving gives valve type (with code number), evaporating temperature range, MOP point, refrigerant, and max. working pressure, PS/MWP.

The code refers to the refrigerant for which the valve is designed:

X = R22/R407C<sup>1)</sup> Z = R407C N = R134a S = R404A/R507

# Orifice assembly for T 2 and TE 2

The orifice assembly is marked with the orifice size (e.g. 06) and week stamp + last number in the year (e.g. 174).

The orifice assembly number is also given on the lid of its plastic container.

#### Capillary tube label for T 2 and TE 2

The label gives the orifice size (04) and consists of the lid of the orifice assembly plastic container. It can easily be fastened around the expansion valve capillary tube to clearly identify the valve size.







#### **Dimensions and weights**

# T 2 and TE 2



<sup>1)</sup> For R407C plants, please select valves from the dedicated R407C program



**Technical leaflet** Thermostatic expansion valves, type T 2 and TE 2

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed.

All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.