Моделирование

Исследование СМО с помощью диаграмм интенсивностей переходов

Задачи теории массового обслуживания:

- нахождение вероятностей различных состояний СМО,
- установление зависимости между

заданными параметрами

(числом каналов n, интенсивностью потока заявок λ, распределением времени обслуживания и т.д.)

И

характеристиками эффективности работы СМО.

В качестве таких характеристик могут рассматриваться следующие

Характеристики эффективности работы СМО

- **А** *абсолютная пропускная способность* СМО или среднее число заявок, обслуживаемое СМО в единицу времени;
- **Q** *относительная пропускная способность* СМО или вероятность обслуживания поступившей заявки:

$$Q=A/\lambda$$
;

Р_{отк} – *вероятность отказа*, т.е вероятность того, что поступившая заявка не будет обслужена, получит отказ:

$$P_{OTK} = 1 - Q;$$

L_c – *среднее число заявок в СМО* (обслуживаемых или ожидающих в очереди);

L_{оч} – среднее число заявок в очереди;

 W_c — *среднее время пребывания заявки в СМО* (в очереди или под обслуживанием);

W_{оч} – среднее время пребывания заявки в очереди;

k – среднее число занятых каналов.

В общем случае все эти характеристики зависят от времени. Но многие СМО работают в неизменных условиях достаточно долгое время, и поэтому для них успевает установиться режим, близкий к стационарному. В дальнейшем, не оговаривая этого каждый раз специально, будем вычислять финальные вероятности состояний и финальные характеристики эффективности СМО, относящиеся к предельному, стационарному режиму ее работы.

Часто встречающиеся конфигурации СМО и показатели эффективности их функционирования.

1) Одноканальная СМО с фиксированным числом мест ожидания (с ограниченной очередью) – M/M/1/m

входной поток заявок – простейший с интенсивностью λ, поток обслуживаний – простейший с интенсивностью μ, количество мест ожидания m.

Заявка, заставшая очередь полностью заполненной, теряется.

Максимальное количество заявок, присутствующих в системе – m+1 (m заявок в очереди и одна заявка в канале).

ДИП для системы M/M/1/m

Воспользуемся правилом равенства встречных потоков через сечения диаграммы. Получаем $P_i = \omega^i p$.

Для определения значения $P_0 = p$ используют нормировочное уравнение:

$$\sum_{i=0}^{m+1} P_i = 1$$
, или $\sum_{i=0}^{m+1} \omega^i p = p \sum_{i=0}^{m+1} \omega^i = 1$.

$$\omega = \lambda/\mu$$

Окончательно: $p = \frac{1-\omega}{1-\omega^{m+2}}$.

Характеристики эффективности:

- абсолютная пропускная способность $A = \lambda(1 P_{m+1});$
- относительная пропускная способность (Q=A/ λ) $Q=1-P_{m+1}$;
- вероятность отказа ($P_{\text{отк}} = 1 Q$ $P_i = \omega^i p$) $P_{om\kappa} = P_{m+1} = \omega^{m+1} p$;
- среднее число занятых каналов (вероятность того, что канал занят) $\overline{k} = 1 P_0 = 1 \frac{1 \omega}{1 \omega^{m+2}}$
- среднее число заявок в очереди $L_{ou} = \sum_{i=1}^m i P_{i+1} = \sum_{i=1}^m i \omega^{i+1} p$ $L_{ou} = \frac{\omega^2 [1 \omega^m (m+1 m\omega)]}{(1 \omega)(1 \omega^{m+2})}$

Эта формула справедлива только при $\omega \neq 0!!$ При $\omega = 0$ она превращается в неопределенность вида 0/0.

Ho, учитывая, что
$$\sum_{i=0}^{m+1} \omega^i$$
 при ω =0 равна m +2, получим $p = \frac{1}{m+2}$ и $L_{oq} = \frac{m(m+1)}{2(m+2)}$; $L_c = L_{oq} + (1-p) = \frac{m+1}{2}$.

- среднее число заявок в СМО $L_c = L_{ou} + \overline{k}$.
- среднее время пребывания заявки в очереди $W_{ou} = L_{ou} / \lambda$
- среднее время обслуживания заявки каналом $\bar{t}_{obcs} = 0 \cdot P_{om\kappa} + \frac{1}{\mu} (1 P_{om\kappa}) = \frac{Q}{\mu}$.

 $ar{t}_{o\delta c\pi}$ может принимать значения $\frac{1}{\mu}$, если заявка попала в систему (вероятность этого равна 1- $P_{oтк}$), или 0, если заявка получила отказ (с вероятностью $P_{oтk}$).

— среднего времени пребывания заявки в системе $W_{cuc} = W_{ou} + \frac{Q}{u}$.

Пример. Автозаправочная станция (A3C) с одной колонкой и площадкой при станции на три машины. Поток машин, прибывающих для заправки, имеет - машина в минуту. Процесс заправки продолжается в среднем 1,25 мин.

Определимь: вероятность отказа; относительную и абсолютную пропускную способности СМО; среднее число машин, ожидающих заправки; среднее число машин, находящихся на АЗС (включая и обслуживаемую); среднее время ожидания машины в очереди; среднее время пребывания машины на АЗС (включая обслуживание).

Решение.

1) A3C – CMO с одним каналом обслуживания (одна колонка); площадка при станции – очередь на 3 места; входной поток имеет интенсивность $\lambda = 1$ (машина в минуту).

Возможные состояния:

 S_0 - канал свободен, чередь свбодна;

 S_1 - канал занят, чередь свбодна;

 S_2 - канал занят, 1 место занято, 2 свободны;

 S_3 - канал занят, 2 места заняты, 1 свободно;

 S_4 - канал занят, очередь занята $\Rightarrow P_4 = P_{\text{отк}}$

2) Находим приведенную интенсивность потока заявок:

$$\mu$$
= 1/ to6 = 1/1,25 = 0,8 $\omega = \lambda / \mu = 1/0,8$ =1,25.

3) По формулам для системы М/М/1/m получаем:

$$p = 0.122$$

Вероятность отказа $P_{\text{отк}} = P_4 = 0.297$

Относительная пропускная способность СМО $Q = 1 - P_{orr} = 0,703$.

Абсолютная пропускная способность CMO $A = \lambda Q = 0.703$ (машины в мин.)

Среднее число машин в очереди L_{оч} ≈1,56

Среднее число машин, находящихся под обслуживанием $k \approx 0.88$

Среднее число машин, связанных с A3C: $L_c = L_{oq} + k = 2,44$

Среднее время ожидания машины в очереди, по формуле Литтла $W_{oq} = L_{oq} / \lambda = 1,56$ (мин).

Среднее время пребывания машины на A3C $W_{cuc} = 2,44$

Примерно 30% заявок уходят из системы не обслуженными. Это получается за счет сравнительно высокой интенсивности обсуживания заявок µ.

2) Многоканальная СМО с отказами M/M/n (задача Эрланга).

входной поток заявок – простейший с интенсивностью λ, поток обслуживаний – простейший с интенсивностью ц, количество каналов обслуживания – n, количество мест ожидания 0, время обслуживания - показательное с параметром $\mu = 1/\sqrt{t_{oбcs}}$.

Состояния СМО нумеруются по числу заявок, находящихся в CMO (B силу отсутствия очереди, оно совпадает с числом занятых каналов.

ДИП для системы М/М/п

Воспользуемся правилом равенства встречных потоков через сечения диаграммы.

раммы. Получаем $P_i = \frac{\omega}{il} p$

Финальные вероятности состояний выражаются формулами Эрланга::

$$P_o = p = \{1 + \frac{\omega}{1!} + \frac{\omega^2}{2!} + \dots + \frac{\omega^n}{n!}\}^{-1}; \quad P_k = \frac{\omega^k}{k!}P_0 \quad (k = 1, 2...n).$$

Характеристики эффективности:

- вероятность отказа $P_{om\kappa} = P_n = \frac{\omega^n}{n!} p;$
- относительная пропускная способность ($P_{\text{отк}} = 1 Q => Q = 1 P_{\text{отк}}$) $Q = 1 P_n = 1 \frac{\omega^n}{n!} p$;
- абсолютная пропускная способность $A = \lambda Q = \lambda (1 \frac{\omega^n}{n!} p);$
- среднее число занятых каналов (можно вычислить непосредственно через вероятности P_0 , P_1 , ..., P_n) $\overline{k}=0P_0+1P_1+\ldots+nP_n$,

но, учитывая, что абсолютная пропускная способность А есть не что иное, как среднее число заявок, обслуживаемых системой в единицу времени, а один занятый канал обслуживает за единицу времени в среднем ц заявок, получаем:

$$\overline{k} = \frac{A}{\mu} = \omega (1 - \frac{\omega^n}{n!} p).$$

Пример. Имеется двухканальная простейшая СМО с отказами. На ее вход поступает поток заявок с интенсивностью 4 заявки/ч. Среднее время обслуживания одной заявки 0.8 ч. Каждая обслуженная заявка приносит доход c=4 руб. Содержание каждого канала обходится 2 руб./ч.

Решить: выгодно или невыгодно в экономическом отношении увеличить число каналов СМО до трех? **Решение.**

- 1) A3C СМО с двумя каналами обслуживания, n=2; входной поток имеет интенсивность $\lambda=4$ заявки/ч ; среднее время обслуживания одной заявки $t_{o6}=0.8$ ч;
- 2) Возможные состояния:

 S_0 - все каналы свободны;

S₁ - один канал занят, второй свободен;

 S_2 - все каналы заняты. $\Rightarrow P_2 = P_{\text{отк}}$

2) Находим приведенную интенсивность потока заявок:

$$\mu = 1/0.8 = 1.25$$
 $\omega = 4/1.25 = \lambda/\mu = 3.2$.

3) По формулам Эрланга получаем:

$$P_0 = 0.107$$
; $\Rightarrow P_2 = 0.55$.

- 4) Относительная пропускная способность $Q = 1-P_2 = 0,450$ абсолютная пропускная способность $A = \lambda Q = 1,8$ заявки/ч среднее число занятых каналов k = 1,8 / 1,25 = 1,44
- 5) Доход от заявок, приносимый СМО в данном варианте, равен $D = Ac \approx 7.2$ руб/ч.

Анализ результатов показывает, что примерно 50 % заявок будет обслуживаться и, сответственно, примерно 50 % получат отказ. Это получается за счет сравнительно высокой интенсивности обсуживания заявок μ . Вследствие этого в среднем обслуживанием заявок будут заняты 2 канала.

6) Подсчитаем те же характеристики для трехканальной СМО (отмечая их штрихом вверху):

$$P_0' = 0.07; \implies P_3' = 0.37$$

$$Q' = 1 - P_3 = 0.63$$

$$A' = \lambda Q = 2.52$$

$$D' = A'c \approx 10,08$$
 руб/ч

Увеличение дохода равно 2,88 руб./ч; увеличение расхода равно 2 руб./ч; из этого видно, что переход от n=2 к n=3 экономически выгоден.

3) Многоканальная СМО с фиксированным числом мест ожидания (с ограниченной очередью) — M/M/n/m.

входной поток заявок — простейший с интенсивностью λ , поток обслуживаний — простейший с интенсивностью μ , количество каналов обслуживания — n, количество мест ожидания — m, время обслуживания - показательное с параметром $\mu = 1/\sqrt{t_{oбca}}$.

Состояния СМО нумеруются по числу заявок, находящихся в СМО (в силу отсутствия очереди, оно совпадает с числом занятых каналов.

ДИП для системы M/M/n/m

Диаграмма для состояний 0-n полностью совпадает с диаграммой для системы M/M/n с отказами.

/n с отказами. Значит, и вероятности для этих состояний тоже совпадут: $P_{k} = \frac{\omega^{k}}{k!} p$

Вероятности для состояний с номерами больше n: $P_{n+i} = \frac{\omega^i}{n^i} P_n$, (воспользуемся правилом равенства встречных потоков через сечения)

Из уравнения нормировки
$$P_0$$
=p: $p = [1 + \frac{\omega}{1!} + \frac{\omega^2}{2!} + ... + \frac{\omega^n}{n!} + \frac{\omega^{n+1}(1 - \frac{\omega^m}{n^m})}{n!(n - \omega)}]^{-1}$.

При
$$\omega$$
=n: $p = [1 + \frac{n}{1!} + \frac{n^2}{2!} + ... + \frac{n^n}{n!} + \frac{mn^n}{n!}]^{-1}$.

Характеристики эффективности:

- вероятность отказа $P_{om\kappa} = P_{n+m} = \frac{\omega^{n+m}}{n^m n!} p;$
- относительная пропускная способность $(P_{\text{отк}} = 1 Q => Q = 1 P_{\text{отк}})$ $Q = 1 P_{omk} = 1 \frac{\omega^{n+m}}{n^m n!} p;$
- абсолютная пропускная способность $A = \lambda Q = \lambda (1 \frac{\omega^{n+m}}{n^m n!} p);$
- среднее число занятых каналов $\bar{k} = \frac{A}{\mu} = \omega (1 \frac{\omega^{n+m}}{n^m n!} p)$.
- среднее число заявок в очереди $L_{o^q} = \frac{\omega^{n+1} [1-(m+1)\rho^m + m\rho^{m+1}]}{nn!(1-\rho)^2} p$. где $\frac{\omega}{n} = \rho$.

При $\frac{\omega}{n} = \rho = 1$ раскрытие неопределенности в формуле для L_{oq} приводит к следующему результату: $L_{oq} = \frac{\omega^{n+1} m(m+1)}{2nn!} p$.

- среднее число заявок в СМО $L_c = L_{ou} + \bar{k}$.
- среднее время пребывания заявки в очереди $W_{oq} = L_{oq} / \lambda$
- среднего времени пребывания заявки в системе $W_c = W_{ou} + \frac{Q}{\mu}$.

Пример. Автозаправочная станция (A3C) с двумя колонками предназначена для обслуживания машин. Поток машин, прибывающих на A3C-2 машины в минуту; среднее время обслуживания одной машины $\overline{t}_{o\bar{o}} = \frac{1}{u} = 2$ (мин).

Площадка у АЗС может вместить очередь не более 3 машин. Машина, прибывшая в момент, когда все три места в очереди заняты, покидает АЗС (получает отказ).

Найти характеристики СМО: вероятность отказа, относительную и абсолютную пропускную способности, среднее число занятых колонок, среднее число машин в очереди, среднее время ожидания и пребывания машины на АЗС.

Решение.

1) A3C — CMO с двумя каналами обслуживания (две колонки); площадка при станции — очередь на m=3 места; входной поток имеет интенсивность $\lambda=2$ (машины в минуту);

Возможные состояния:

 S_0 - все каналы свободны, чередь свбодна;

 ${\bf S}_1$ - один канал занят, второй свободен, чередь свбодна;

 S_2 - один канал занят, второй занят, чередь свбодна;

S₃ - один канал занят, второй занят, 1 место занято, 2 свободны;

 S_4 - один канал занят, второй занят, 2 места заняты, 1 свободно;

 \mathbf{S}_5 - оба канала заняты, очередь занята \Rightarrow \mathbf{P}_5 = $\mathbf{P}_{\text{отк}}$

2) Имеем: n = 2, m = 3, $\lambda = 2$, $\mu = 0.5$, $\omega = 4$, $\rho = \omega/n = 2$.

3) По формулам для СМО М/М/n/m находим:

p = 0.008

Вероятность отказа: $P_{\text{отк}} = P_5 = 0,512$

Относительная пропускная способность $Q = 1 - P_{\text{отк}} = 0,488$

Абсолютная пропускная способность $A = \lambda Q = 0.976$ машины/мин

Среднее число занятых каналов k = 0.976 / 0.5 = 1.952

Среднее число машин в очереди: $L_{oy} = 2,18$

Среднее время пребывания в очереди: $W_{oq} = 2,18$ (мин)

Среднее время пребывания машины на A3C (включая время обслуживания): $W_c = 2,07$ (мин)

Полученные характеристики СМО M/M/2/3 свидетельствуют о том, что доля простоя каналов очень мала и составляет примерно 1% рабочего времени, а вероятность отказа в обслуживании очень большая: около 51 % заявок получат отказ. Обе колонки почти все время заняты ($k \approx 2$), а относительная пропускная способность маленькая — только 49% заявок будет обслужено. Из всего этого можно сделать вывод: СМО не справляется с потоком заявок, и необходимо увеличить число каналов или интенсивность обслуживания и, возможно, увеличить число мест в очереди.

4) Одноканальная СМО с неограниченной очередью – М/М/1/∞

входной поток заявок – простейший с интенсивностью λ, поток обслуживаний – простейший с интенсивностью μ, количество каналов обслуживания – 1, количество мест ожидания – не ограничено

Финальные вероятности существуют и могут быть определены, если интенсивность поступления заявок ниже интенсивности их обслуживания, т.е. $\omega = \frac{\lambda}{\mu} < 1$

При ω=1 очередь будет бесконечно расти

ДИП для системы М/М/1/∞

Воспользовавшись правилом равенства встречных потоков вероятностей через сечение диаграммы и, используя, как и ранее, обозначения $P_0 = \rho$ и $\lambda/\mu = \omega$, получим: :

$$P_i = \omega^i p.$$

Для определения значения $P_0 = p$ воспользуемся нормировочным уравнением.

Окончательно: $p = 1 - \omega$.

Характеристики эффективности:

При отсутствии ограничений по длине очереди каждая заявка, пришедшая в систему, будет обслужена, поэтому

- относительная пропускная способность Q = 1;
- абсолютная пропускная способность $A = \lambda Q = \lambda;$
- среднее число занятых каналов $\overline{k}=1-P_0=\omega$
- среднее число заявок в очереди $L_{oq} = \frac{\omega^2}{1-\omega}$.
- среднее число заявок в СМО $L_c = L_{oq} + \overline{k} = \frac{\omega^2}{1-\omega} + \omega = \frac{\omega}{1-\omega}$
- среднее время пребывания заявки в очереди $W_{oq} = L_{oq} / \lambda$
- среднего времени пребывания заявки в системе $W_c = L_c \, / \, \lambda$.

Примера НЕТ

5) Многоканальная СМО с неограниченной очередью) – M/M/n/∞

входной поток заявок — простейший с интенсивностью λ , поток обслуживаний — простейший с интенсивностью μ , количество каналов обслуживания — n, количество мест ожидания — не ограничено, время обслуживания - показательное с параметром $\mu = 1/\sqrt{t_{oбсn}}$.

Состояния СМО нумеруются по числу заявок, находящихся в СМО (в силу отсутствия очереди, оно совпадает с числом занятых каналов.

ДИП для системы M/M/n/∞

Диаграмма для этой системы отличается диаграммы для многоканальной системы с ограниченной очередью M/M/n/m только бесконечным числом состояний. Значит, и вероятности для этих состояний тоже совпадут:

$$P_k = rac{\omega^k}{k!} P_0 \quad (k=1,2...n),$$
 $P_{n+i} = rac{\omega^i}{n^i} P_n, \quad i=1,2,...,m \;. \;\;$ где $P_n = rac{\omega^n}{n!} p,$

Из уравнения нормировки можно найти значение P_0 =р.

Окончательно:
$$p = [1 + \frac{\omega}{1!} + \frac{\omega^2}{2!} + ... + \frac{\omega^n}{n!} + \frac{\omega^{n+1}}{n!(n-\omega)}]^{-1}$$
.

Характеристики эффективности:

как и для одноканальной СМО при отсутствии ограничений по длине очереди каждая заявка, пришедшая в систему, будет обслужена, поэтому

- относительная пропускная способность $\mathcal{Q}=1$
- абсолютная пропускная способность $A = \lambda Q = \lambda$;
- среднее число занятых каналов $\overline{k} = \frac{\lambda}{\mu} = \omega$
- среднее число заявок в очереди $L_{ou} = \frac{\omega^{n+1}}{nn!} p \frac{d}{d\rho} (\frac{\rho}{1-\rho}) = \frac{\omega^{n+1}}{nn!(1-\rho)^2} p$
- среднее число заявок в СМО $L_c = L_{ou} + \bar{k}$
- среднее время пребывания заявки в очереди $W_{oq} = L_{oq} / \lambda$
- среднего времени пребывания заявки в системе $W_c = L_c / \lambda$

Пример. Автозаправочная станция с двумя колонками обслуживает поток машин с интенсивностью 0,8 машин в минуту. Среднее время обслуживания одной машины $\overline{t_{o\delta}} = \frac{1}{\mu} = 2 \, (\text{мин}).$

В данном районе нет другой АЗС, так что очередь машин перед АЗС может расти практически неограниченно.

Найти характеристики СМО.

Решение

Решение.

1) A3C – CMO с двумя каналами обслуживания (две колонки, n=2); входной поток имеет интенсивность $\lambda=0.8$ машин в минуту;

Возможные состояния:

 S_0 - канал свободtн, чередь свбодна;

S₁ - канал занят, чередь свбодна;

 S_2 - канал занят, 1 место занято;

.

- 2) Имеем: n = 2, $m = \infty$, $\lambda = 0.8$, $\mu = 0.5$, $\omega = 1.6$, $\rho = \omega/n = 0.8$.
- 3) Поскольку $\rho < 1$, очередь не растет безгранично и имеет смысл говорить о предельном стационарном режиме работы СМО. По формулам для системы $M/M/n/\infty$ находим : p = 0,111

Среднее число занятых каналов: $k = \omega = 1.6$

Среднее число машин в очереди: $L_{ou} = 2,84$

Среднее число машин на A3C: $L_c = 4,44$

Среднее время ожидания в очереди: $W_{oq} = 3,55$ (мин)

Среднее время пребывания машины на A3C: $W_c = 5,55$ (мин)

Таким образом, доля простоя канала равна 11,1 % от длительности интервала функционирования СМО, по остальным характеристикам работу данной системы следует признать удовлетворительной.

6) Простейшая многофазовая СМО с очередью

<u>Анализ</u> многофазовых СМО в общем случае <u>затруднен</u>, тем что <u>входящий поток каждой последующей фазы является выходным потоком предыдущей и в общем случае имеет последействие.</u>

Однако если на вход СМО с неограниченной очередью поступает простейший поток заявок, а время обслуживания показательное, то выходной поток этой СМО — простейший, с той же интенсивностью λ, что и входящий. Из этого следует, что многофазовую СМО с неограниченной очередью перед каждой фазой, простейшим входящим потоком заявок и показательным временем обслуживания на каждой фазе можно анализировать как простую последовательность простейших СМО.

Если очередь к фазе ограничена, то выходной поток этой фазы перестает быть простейшим и вышеуказанный прием может применяться только в качестве приближенного.

Замкнутые системы массового обслуживания (СМО с ожиданием ответа)

До сих пор мы рассматривали СМО, где заявки приходили откуда-то извне и интенсивность потока заявок не зависела от состояния самой системы.

Сейчас мы рассмотрим СМО, в которых интенсивность потока поступающих заявок зависит от состояния самой системы, - замкнутые СМО.

Пример. Система с центральным процессором и удаленными терминалами. Пользователь, отправивший запрос с терминала не может выдать новый запрос, пока не получит сообщения от процессора об окончании обработки предыдущего.

Характерным для замкнутой системы массового обслуживания является наличие ограниченного числа источников заявок.

В сущности, любая СМО имеет дело только с ограниченным числом источников заявок, но в ряде случаев число этих источников так велико, что можно пренебречь влиянием состояния самой СМО на поток заявок. В замкнутой же СМО источники заявок, наряду с каналами обслуживания, рассматриваются как элементы СМО.

Построим аналитическую модель такой системы.

Одноканальная СМО (с одним обслуживающим прибором) и количеством источников т.

Состояния будем кодировать числом выданных заявок.

ДИП для одноканальной замкнутой СМО

Воспользовавшись правилом равенства встречных потоков вероятностей через сечение диаграммы и исходя из уравнения нормировки, получим выражение для р

$$p = \frac{1}{1 + m\omega + m(m-1)\omega^2 + m(m-1)(m-2)\omega^3 + ... + m(m-1)...1\omega^m}.$$

Характеристики эффективности замкнутой СМО:

- абсолютная пропускная способность $A = (1-p) \mu$ канал занят обслуживанием заявок с вероятностью (1-p), если он занят, то обслуживает в среднем μ заявок в единицу времени
- относительная пропускная способность Q=1 так как каждая заявка, в конце концов, будет обслужена
- среднее число заявок в СМО $L_{\rm c}=m-\frac{\mu}{\lambda}(1-p)=m-\frac{1-p}{\omega}.$ по сути среднее число источников, выдавших заявку и ожидающих ответа
- среднее число занятых каналов $\bar{k} = 0 \cdot p + 1 \cdot (1 p) = 1 p$.
- среднее число заявок в очереди $L_{\text{oq}} = m \frac{1-p}{\omega} (1-p) = m (1-p)(1+\frac{1}{\omega})$ где $L_{\text{c}} = L_{\text{oq}} + \overline{k}$.

Пример. Рабочий обслуживает группу из трех станков. Каждый станок останавливается в среднем 2 раза в час. Процесс наладки занимает у рабочего, в среднем, 10 минут. Все потоки полагаем простейшими.

Определить характеристики замкнутой СМО: вероятность занятости рабочего; его абсолютную пропускную способность A; среднее количество неисправных станков L_c .

Решение.

1) Группа станков — замкнутая СМО одним каналом обслуживания (один рабочий); количество источников заявок m=3 (три станка); входной поток имеет интенсивность $\lambda = 2$ (останавок станоков в среднем в час).

Имеем n = 3, $\lambda = 2$, $\mu = 1/(1/6) = 6$, $\omega = \lambda/\mu = 1/3$.

2) Определяем по формулам для одноканальной замкнутой СМО $p \approx 0.346$

Вероятность занятости рабочего:

$$P_{\text{3aH}} = 1 - P_0 = 1 - p = 0.654.$$

Абсолютная пропускная способность (среднее число неисправностей, которое рабочий ликвидирует в час):

$$A = (1 - p)\mu = 0.654 \cdot 6 = 3.94.$$

Среднее число неисправных станков:

$$L_{\rm c} = m - \frac{1-p}{\omega} = 3 - \frac{0.654}{1/3} = 1.04.$$

Многоканальная СМО (с несколькими обслуживающими приборами n) и количеством источников m (n<m)

Будем кодировать состояния общим числом выданных источниками и еще не обслуженных заявок. Так как источник не может выдать новую заявку до окончания обслуживания предыдущей, то интенсивность общего потока заявок зависит от того, сколько заявок связано с процессом обслуживания (непосредственно обслуживается или стоит в очереди).

ДИП для многоканальной замкнутой СМО

$$P_{i} = \frac{m(m-1)(m-2)...(m-i+1)}{i!} \omega^{i} p, i=1, 2,.$$

$$P_{n.} = \frac{m(m-1)(m-2)...(m-n+1)}{n!} \omega^{n} p.$$

$$P_{m} = \frac{m!}{n! n^{m-n}} \omega^{m} p.$$

Воспользовавшись правилом равенства встречных потоков вероятностей через сечение диаграммы и исходя из уравнения нормировки, получим выражение для р

$$p = \left[1 + \frac{m}{1!}\omega + \frac{m(m-1)}{2!}\omega^2 + \dots + \frac{m(m-1)(m-2)\dots(m-n+1)}{n!}\omega^n + \frac{m(m-1)\dots(m-n)}{n!n}\omega^{n+1} + \dots + \frac{m!}{n!n^{m-n}}\omega^m\right]^{-1}$$

Характеристики эффективности замкнутой СМО:

— среднее число занятых каналов

$$\overline{k} = P_1 + 2P_2 + ... + (n-1)P_{n-1} + n(1 - P_0 - P_1 - ... P_{n-1}).$$

— абсолютная пропускная способность $A=\overline{k}\mu$.