$\overline{3.2}$

2. Find Null(A), Row(A), $Null(A^T)$, Col(A) for

(a)

$$A = \begin{bmatrix} 3 & -1 \\ 6 & -2 \\ -9 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & -1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

So Null(A)=Span((1,3)) and Row(A)=Span((3,-1))

$$A^{T} = \left[\begin{array}{ccc} 3 & 6 & -9 \\ -1 & -2 & 3 \end{array} \right] \Rightarrow \left[\begin{array}{ccc} 1 & 2 & -3 \\ 0 & 0 & 0 \end{array} \right]$$

So $Null(A^T)=Span((-2,1,0),(3,0,1))$ and Col(A)=Span((1,2,-3))

3. Find Null(A), Row(A), $\text{Null}(A^T)$, Col(A) for

(c)

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & -1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So Row(A) = Span((1,0,2),(0,1,-1)) and Null(A) = Span((-2,1,1))

$$A^{T} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 0 \\ 1 & 0 & 1 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & -1 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

So Col(A) = Span((1,0,1,2),(0,1,0,-1)) and $Null(A^T) = Span((-1,0,1,0),(-2,1,0,1))$

6. (a) Construct a matrix whose column space contains [1,1,1] and [0,1,1] and whose nullspace contains [1,0,1] and [0,1,0], or explain why none can exist.

If we know the matrix is 3×3 and because [0,1,0] is in the nullspace then the center column must be all zeroes. And because [1,0,1] is in the nullspace then the first column is equal to the negative of the last column. So the column space of our vector is $\mathrm{Span}((1,1,1))$. But [0,1,1] is not in this form so we cannot construct such a matrix.

(b) Construct a matrix whose column space contains [1, 1, 1] and [0, 1, 1] and whose nullspace contains [1, 0, 1, 0] and [1, 0, 0, 1], or explain why none can exist.

$$\left[\begin{array}{cccc}
1 & 0 & -1 & -1 \\
1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1
\end{array}\right]$$

7. Let
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 & 0 \\ -1 & -1 & 0 \\ 0 & -1 & -1 \end{bmatrix}$

(a) Give $\mathbf{C}(A)$ and $\mathbf{C}(B)$. Are they lines, planes or all of \mathbb{R}^3 ?

$$A^{T} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$B^{T} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & -1 & -1 \\ 0 & 0 & -1 \end{bmatrix} \qquad \Rightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

So C(A) = Span([1, 1, 0], [0, 0, 1]) and C(B) = Span([1, -1, 0], [0, 0, 1]) which are both planes.

(b) Describe C(A + B) and C(A) + C(B). Compare your answers.

This question is confusing to me. It is asking me to compare a set with two sets under a binary operation, but doesn't really define what the operation is. I don't think it's a direct sum. I guess it's either a union, or the sum of any two elements from each set.

First I guess we will figure out what C(A + B) is.

$$(A+B)^T = \begin{bmatrix} 2 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^T = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So C(A + B) = Span([1, 0, 0]), which is a line.

Now $a[1,1,0] \neq b[1,-1,0] \forall a,b \in \mathbb{R}$ and so $\mathbf{C}(A)$ and $\mathbf{C}(B)$ are not the same planes, but they both contain [0,0,1] and so they are nonparallel and intersecting. So $\mathbf{C}(A) \cup \mathbf{C}(B)$ is two nonparallel planes.

Now as we have noted, [1,1,0] and [1,-1,0] are linearly independent. Obviously these are both idependent to [0,0,1] and so these three vectors form a basis for \mathbb{R}^3 . Thus we can represent any element of \mathbb{R}^3 as a linear combination of these vectors, which in turn means that we can represent any $x \in \mathbb{R}^3$ as x = u + v where $u \in \mathbf{C}(A)$ and $v \in \mathbf{C}(B)$.

8. (a) Construct a 3×3 matrix A with $\mathbf{C}(A) \subset \mathbf{N}(A)$.

$$A = \left[\begin{array}{rrr} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

(b) Construct a 3×3 matrix A with $\mathbf{N}(A) \subset \mathbf{C}(A)$.

$$A = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

- (c) Do you think there can be a 3×3 matrix A with $\mathbf{N}(A) = \mathbf{C}(A)$? Why or why not? There can't. dim $\mathbf{N}(A) = 3 \text{rank } A = 3 \mathbf{R}(A) = 3 \mathbf{C}(A)$. And so because 3 is odd then the nullspace and the column space can't have the same dimension, and so can't be the same.
- (d) Construct a 4×4 matrix A with $\mathbf{C}(A) = \mathbf{N}(A)$.

$$A = \left[\begin{array}{rrrr} 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 \end{array} \right]$$

10. Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. Prove that

(a) $\mathbf{N}(B) \subset \mathbf{N}(AB)$

We take any $\mathbf{x} \in \mathbf{N}(B)$. Then $B\mathbf{x} = \mathbf{0}$ and $AB\mathbf{x} = A\mathbf{0} = \mathbf{0}$. And so $\mathbf{x} \in \mathbf{N}(AB)$

(b) $\mathbf{C}(AB) \subset \mathbf{C}(A)$

We choose some $\mathbf{b} \in \mathbf{C}(AB)$. We know that $\mathbf{b} = (AB)\mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^p$. But then $(AB)\mathbf{x} = A(B\mathbf{x})$ and so $\mathbf{b} \in \mathbf{C}(A)$ also by proposition 2.1 and so we are done.

(c) $\mathbf{N}(B) = \mathbf{N}(AB)$ when A is $n \times n$ and nonsingular

If A is nonsingular than it is invertible. And so if we have $AB\mathbf{x} = \mathbf{0}$ then we also have $A^{-1}AB\mathbf{x} = A^{-1}\mathbf{0}$ or $B\mathbf{x} = \mathbf{0}$. Thus if $\mathbf{x} \in \mathbf{N}(AB)$ then $\mathbf{x} \in \mathbf{N}(B)$. We already did the reverse containment in part a

- (d) $\mathbf{C}(AB) = \mathbf{C}(A)$ when B is $n \times n$ and nonsingular We choose some $\mathbf{b} \in \mathbf{C}(A)$. Then $\mathbf{b} = A\mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^n$. And so $\mathbf{b} = ABB^{-1} = AB(B^{-1}x)$. Because $B^{-1}\mathbf{x}$ exists, then \mathbf{b} is in $\mathbf{C}(AB)$. The reverse containment was done above.
- 11. Let A be an $m \times n$ matrix. Prove that $\mathbf{N}(A^T A) = N(A)$

If $A\mathbf{x} = \mathbf{0}$ then $A^T A \mathbf{x} = A^T \mathbf{0} = \mathbf{0}$ and so $\mathbf{N}(A) \subset \mathbf{N}(A^T A)$. Now from 2.5.15 we know that if $A^T A \mathbf{x} = \mathbf{0}$ then $A \mathbf{x} = \mathbf{0}$ and so $\mathbf{N}(A^T A) \subset \mathbf{N}(A)$.

12. Suppose A and B are $m \times n$ matrices. Prove that $\mathbf{C}(A)$ and $\mathbf{C}(B)$ are orthogonal subspaces of \mathbb{R}^m if and only if $A^TB = O$

If $\mathbf{C}(A)$ and $\mathbf{C}(B)$ are orthogonal subspaces, then $\operatorname{row}_i(A^TB) = \operatorname{row}_i(A^T)B = \operatorname{col}_i(A)B = [\operatorname{col}_i(A) \cdot \operatorname{col}_1(B), \ldots, \operatorname{col}_i(A) \cdot \operatorname{col}_n] = \mathbf{0}$. Similarly, if they are not orthogonal subspaces, then there must exist some k, l such that $\operatorname{col}_k(A) \cdot \operatorname{col}_l(B) \neq 0$. But then $\operatorname{row}_k(A^T) \cdot \operatorname{col}_l(B) = \operatorname{elem}_k l(A^TB) \neq 0$. And so then $A^TB \neq O$.

- 13. Suppose A is an $n \times n$ matrix with the property that $A^2 = A$.
 - (a) Prove that $\mathbf{C}(A) = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = A\mathbf{x}\}$. If $\mathbf{x} = A\mathbf{x}$ then $\mathbf{x} \in \mathbf{C}(A)$ by Theorem 4. Let us choose $\mathbf{b} \in \mathbf{C}(A)$. Then we know that $\mathbf{b} = A\mathbf{x}$ for some \mathbf{x} . Now because $A^2 = A$ then $A\mathbf{b} = A^2\mathbf{x} = A\mathbf{x}$. But $A\mathbf{x} = \mathbf{b}$ and so $\mathbf{b} = A\mathbf{b}$. Thus if $\mathbf{b} \in \mathbf{C}(A)$ then $\mathbf{b} \in \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = A\mathbf{x}\}$ and so we have equality.
 - (b) Prove that $\mathbf{N}(A) = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = \mathbf{u} A\mathbf{u} \text{ for some } \mathbf{u} \in \mathbb{R}^n \}$. If $\mathbf{x} = \mathbf{u} - A\mathbf{u}$ then $A\mathbf{x} = A(\mathbf{u} - A\mathbf{u}) = A\mathbf{u} - A^2\mathbf{u} = A\mathbf{u} - A\mathbf{u} = \mathbf{0}$ and so $\mathbf{x} \in \mathbf{N}(A)$. Now if $\mathbf{x} \in \mathbf{N}(A)$ then $A\mathbf{x} = \mathbf{0}$. Obviously $A\mathbf{0} = \mathbf{0}$ and so $A\mathbf{x} = \mathbf{0} - A\mathbf{0}$ and so $\mathbf{x} \in \{x \in \mathbb{R}^n : \mathbf{x} = \mathbf{u} - A\mathbf{u}\}$. Thus we have equality.
 - (c) Prove that $\mathbf{C}(A) \cap \mathbf{N}(A) = \{\mathbf{0}\}$. Let us choose some $\mathbf{b} \in \mathbf{C}(A)$ such that $\mathbf{b} \neq \mathbf{0}$. Now then we know that $\mathbf{b} = A\mathbf{x}$ for some \mathbf{x} . And because $A = A^2$ then $A\mathbf{b} = A\mathbf{x}$. But because $\mathbf{b} \neq \mathbf{0}$ then $A\mathbf{x} \neq \mathbf{0}$ and $A\mathbf{b} \neq \mathbf{0}$. Thus $\mathbf{b} \neq \mathbf{0}$ and

because $A = A^2$ then $A\mathbf{b} = A\mathbf{x}$. But because $\mathbf{b} \neq \mathbf{0}$ then $A\mathbf{x} \neq 0$ and $A\mathbf{b} \neq 0$. Thus $\mathbf{b} \neq 0$ and so $\mathbf{b} \notin \mathbf{N}(A)$. It is obvious that $\mathbf{0}$ is in the span of any set of vectors, including $\mathbf{C}(A)$. Just as obviously $A\mathbf{0} = \mathbf{0}$ and so $\mathbf{0} \in \mathbf{C}(A) \cap \mathbf{N}(A)$. And so we have our proof.

(d) Prove that $\mathbf{C}(A) + \mathbf{N}(A) = \mathbb{R}^n$.

We choose any $\mathbf{x} \in \mathbb{R}^n$. Then $A\mathbf{x} \in \mathbf{C}(A)$ and $\mathbf{x} - A\mathbf{x} \in \mathbf{N}(A)$. And so $\mathbf{x} - A\mathbf{x} + A\mathbf{x} = \mathbf{x}$. Thus any element of \mathbb{R}^n can be written as the sum of elements in $\mathbf{N}(A)$ and $\mathbf{C}(A)$.

2.5

15. Suppose A is an $m \times n$ matrix and $\mathbf{x} \in \mathbb{R}^n$ satisfies $(A^T A)\mathbf{x} = \mathbf{0}$. Prove that $A\mathbf{x} = \mathbf{0}$.

If $A^T A \mathbf{x} = \mathbf{0}$ then $(A^T A \mathbf{x}) \cdot \mathbf{x} = \mathbf{0}$. This leads to $A^T (A \mathbf{x}) \cdot \mathbf{x} = (A \mathbf{x}) \cdot A \mathbf{x} = ||A \mathbf{x}||^2 = 0$. This means that $A \mathbf{x}$ must be $\mathbf{0}$