

MONKEYKRAFT CODERS

Presentation 2023

Presented By:

Karishma Gawali Rithik Shetty Pranali Chipkar Mittul Sharma

CCCCCCC

Introduction

- Welcome to MonkeyKraft Coders, your all-encompassing platform dedicated to honing your coding skills.
- Our mission is to provide a rich variety of coding challenges that cater to all skill levels, ensuring a dynamic and effective learning experience.

Languages & Framework

- Typescript
- Javascript
- Css
- Python
- Html
- Mongoose
- MongoDB
- PostMan
- Express
- React
- BCrypt
- Acorn

Features

- Problem Sets
- Coding Playground
- Submission and Evaluation
- User Profiles

Home Page

MonkeyKraft Coders Sign Up Log In **Explore** Scale the heights of coding excellence alongside MonkeyKraft Coders. Advance your skills, triumph over challenges, and excel in technical interviews, propelling your programming journey to unparalleled success. **Get Started**

Login Page

Signup Page

Problemset Page

MonkeyKraft Coders

All Topics Algorithms JavaScript DataBase Shell Search questions						
Status	Title♠	Acceptance 🔷	Difficulty 	Likes	Dislikes	Star
8	1. Maximum Subarray	92%	Easy	3	0	☆
\otimes	2. Minimum Subarray Sum	89%	Easy	7	1	☆
0	3. Longest Increasing Subarray	47%	Medium	4	0	☆
0	4. Subarray Sum Equals K	35%	Medium	11	0	☆
0	5. Shortest Subarray with Sum at Least K	5%	Hard	5	2	☆
0	6. Maximum Average Subarray I	71.4%	Easy	5	2	☆
0	7. Maximum Sum Circular Subarray	100%	Medium	3	0	☆
0	8. Longest Subarray with Ones after Replacement	62.5%	Medium	5	2	☆
0	9. Maximum Subarray Difference	50%	Hard	5	2	☆
0	10. Partition Array into Disjoint Intervals	50%	Medium	5	2	☆

Solution Article

let minLength = Number.POSITIVE_INFINITY;

for (let end = 0; end < nums.length; end++) {</pre>

minLength = Math.min(minLength, end - start + 1);

currentSum += nums[end];

while (currentSum >= k) {

let currentSum = 0;

let start = 0;

MonkeyKraft Coders

Problem List

Solution Article

Approach: Sliding Window

Algorithm

The sliding window technique is used to find the length of the shortest contiguous subarray with a sum at least k. It involves maintaining a window of elements and moving the window to find the shortest subarray.

The key idea is to keep track of the current sum of the window. If the sum becomes greater than or equal to k, we shrink the window from the start to find the shortest subarray with the required sum.

Implementation

var shortestSubarraySumAtLeastK = function(nums, k) {

```
javascript
6 var shortestSubarraySumAtLeastK = function(nums, k) {
                                                                              Submit
```


Submit

Submission Page

MonkeyKraft Coders Problem List Description Editorial Submissions javascript Status Language Runtime Memory Date 2 * @param {number[]} nums JavaScript 0ms 8MB December 12, 2023 5 var maxSubArray = function(nums) { JavaScript 0ms 50MB December 12, 2023

User

Thank You!