>> What is Pirighlet dist.? >> Start with Beta dist: flip a coin w. prob. q turning up head prob. of x heads in n flips >> Binomial dist. $P(x|q,n) = \binom{n}{x} q^{x} (1-q)^{n-x}$ what if you don't know q? -> Bayesiano represent uncentainty about qu with a prior dist. (i.e. Beta dist.) P(q1x1, x2) = T(x1+x2) qx1-1 (1-q) hyperpuanters & 1, ×2)0 & are pseudo Comi Why Beta? -it is defined over interval Lo, - Beta and Binomial are conjugat (a Beta prior and Binomid likeli result in a posterior Beta posterior & likelihood x prior P(q1x, x, x2) x P(x)q,n) P(q1x, 1x2) × q× (1-q) -× q= (1-q) =1 $=q^{\alpha_{1}+x-1}(1-q)^{\alpha_{2}+n-x-1}$ = Beta (d,+x, d2+h-x)

Dirichlet (Multinomial conjugacy) DP-03 - Multinomial extends binomial to (1) (instead of flipping a coin, roll a die) Simplex: Let Z be ten multinomial random var.

with $P(Z_K=1)=q_K$ -Dinichlet dis. is conjugate prior to

multinomia generalization of a triangle to arbitrary dimension multinomial K-Simplex 15 a K-dim - It is defined as an exponential family polytope dist on the simplex (generalizes the Beta) Which is Convex $P(q_{1}\alpha) = \frac{\Gamma\left(\frac{S}{S}\alpha_{i}\right)}{\prod_{i=1}^{m}\Gamma\left(\alpha_{i}\right)} q_{i}^{\alpha_{i}-1} - q_{m}^{\alpha_{m}-1}$ hau of 1+5 K-1 verticies. where q = (q, 19kz, - qkm) is a point on (m-1)-sin plex (i.e. 0<91, <1 and = 9 = 1 and d=(di,--dm) is a set of parameters (di)o) Posterior & likelihood x prior P(91212) X P(219) P(91x) $\propto (q_1^{2}, --, q_m^{2m})(q_1^{2}, -- q_m^{2m-1})$ $\mathcal{L}(q_1, ---, q_m)$ = Dir (di+70--- dm+2m)

properties of Dirichlet:
1) -> Any Dir. dist. can be represented as a hormalized set of indep. Gamma Random Var.
$Dir(X_1, -, X_m) = \left(\frac{Gam(X_1)}{Gam(X_1) + -+ Gam(X_m)},, \frac{Gam(X_n)}{Gam(X_1) + -+ Gam(X_m)}\right)$
(2) Sum of Gamua RVs (with Common Scale Paranters) is also a Gamua RV. Gam(d, +d2) = Gam(d,) + Gam(d2) Cantoners
The aggregation of any subset of Dir. variables yield a Dir, with Corresponding agg. of parameters.
9=(91,-19+9,-9m)~Dir(d1,-di+di+1-74m)

9 = (9,+92+-+9,99i++-+9m)~Dir(d+-+di) di+++dm)

(1) the paranter (12) of 1)

Dirichlet Process/ Chinese Restournt process Lestent class models (Often used in clustering) Gaussian
Process

Beta

Process

(Regression)

Indian buffet

Process

Clatent feature)
models

* Caussian process!

Defines a distribution over functions of where fis a function mapping some input space & to R fix > R

(x could be infinite dimentional quantity.

(e.g. X=R)

Let $f = (f(x_i), f(x_i) - - , f(x_{ii}))$ n-dim. vector of function values evaluated at n points $X_i \in X$ $\Rightarrow f$ is a R. V.

then: p(f) is a Gaussian process if for any finite subset [X1, -, Xn] CX

the mariginal dist. over that
finite subset p(f) has a

multivariate Gaussian dist.

Cops are prevantrized by a mean function pull and Cov. function C(x, x') p(f(x),f(x'))=N(M,E) $\mu = \left[\frac{\mu(x)}{\mu(x')} \right], \leq \left[\frac{c(x,x)}{c(x,x')} \right]$

C(x1,xj)=Voexp{-(1xi-xj)}}+V,+V28ij with parameters (Vo, V, Vz, X, x)

Dirighlet dist. is a distribution over K-dimensional prob. Let P be a K-dim Vector 5.+. 4; Simplex. Pi>,0 of \$ P;=1 $P_{j} = 0$ of S = 0 j = 1 $P(P | X) = Dir(X, X_2, -X_k) = \prod_{j=1}^{K} \Gamma(S_j | X_j) \prod_{j=1}^{K} p_j^{X_{j-1}}$ $P(P | X) = Dir(X_1, X_2, -X_k) = \prod_{j=1}^{K} \Gamma(X_j) \int_{j=1}^{K} p_j^{X_{j-1}}$ $P(P | X) = Dir(X_1, X_2, -X_k) = \prod_{j=1}^{K} \Gamma(X_j) \int_{j=1}^{K} p_j^{X_{j-1}}$ $P(P | X) = Dir(X_1, X_2, -X_k) = \prod_{j=1}^{K} \Gamma(X_j) \int_{j=1}^{K} p_j^{X_{j-1}}$ $P(P | X) = Dir(X_1, X_2, -X_k) = \prod_{j=1}^{K} \Gamma(X_j) \int_{j=1}^{K} p_j^{X_{j-1}}$

Dir is conjugate to multinomial dist. Let CIP~ multinomial (.1P) P(c=j |P)=P; Then posterior is Pirichlet $P(P|C=jgd) = \frac{P(C=j|P)P(P|d)}{P(C=j|A)} = Dir(X')$ $p(C=jgd) = \frac{P(C=j|A)}{P(C=j|A)} = \frac{Dir(X')}{A'=A'}$ A'=A' A'=A'T (n)=(n-1)!

P(f) ~ Gauss. Process (Gp)

parametrized by a mean function $\mu(x)$ and Cov. Function C(x,x')

where $p(f(x), f(x')) = N(p, \xi)$ $M = \begin{bmatrix} p(x) \\ p(x') \end{bmatrix} : \xi = \begin{bmatrix} c(x,x) & c(x,x') \\ c(x',x) & c(x',x') \end{bmatrix}$

for p(f(xi) => pr is nx1 vector of 2 nxn medix.

C(xi,xj)=Voexp[-(\frac{1\ti-xj1}{\ti})\delta\frac{1}{\ti}\delta\frac{1

Once the mean of cov. functions are defined then everything can be defined easily from Mu Gassian

How to use GP for nonlinear regression:

observing Pata set $D = \{(x_i, y_i)_{i=1}^n\} = (x_i, y_i)$ Model $y_i = f(x_i) + \epsilon_i$ $f \sim GP(.10_{1}c)$ $\epsilon_i \sim N(.10_{1}s^2)$

pribr on f is a GP) => possevior on f likelihood is Gaussian) is also GP

Using GP for Classification (2-class problem) - Binary Given a data set D={(xi, yi)}"
with binary class (abeds yie \-1,+1) infer class label probabilities at new points. F 0 1/5-1 75-1 75-1 75-1 75-1 75-1 75-1 75-1 Relate fixi) to Class probabilities