PREDICTING INSTACART'S CUSTOMERS BEHAVIORS

BY: MANAL ALQHATANI NADIA ALGHAMDI

ABSTRACT

Instacart is an American company provides grocery shopping service where users can order their groceries through an app, and a freelance or aka "shopper" takes responsibility for fulfilling user orders. Thus, pretending that Instacart is our client who wants to improve its business; we are using machine learning classification algorithm to help them improve their business by do so.

Our objective/ business need: is to predict whether previous purchased will be reorder again. Machine learning classification will help us doing so.

DESIGN

We fitted 4 classifiers models (KNN, Logistic Regression, Random Forest and Decision Tree) without sampling and again with some sampling techniques like (SMOTE & Random oversampling)

DATA

The dataset we used obtained from <u>Keggle</u> website; it contains 6 csv files having relational set of files describing user's orders over time

ANALYSIS STEPS

- 1- We joined all related tables and create data frame that includes the target-label feature (reordered).
- 2- Applied EDA which gave us a whole picture of data; from it we knew that Banana is the most ordered item, the most popular department is produce, and Sunday is the busiest day in terms of number of orders.
- 3-Since the dataset is huge and consumed a lot of time and memory, we chose 1% of the data to be our sample which left us with (317410, 11)

- 4- Before fitting the model, we checked the imbalanced of the target feature. The distribution of target variable shows that nearly 63% of observations have class 1 and about 37% having class 0.
- 5- Applying some sampling techniques: we used SMOTE and Random oversampling. Both resample data equally.
- 7- We fitted classifiers also without any sampling methods.

CONCLUSION AND SUMMARY

The result from all the 12 experiments we did, random forest with Random oversampling technique outperforms and predicted whether customers will have the same order in their next purchase based on their previous purchases with around 71% accuracy.

Recommendation: doing more experiments on our data might give us more accurate prediction!

ИОТЕ	Mode	ı	Precision	Recall	F1	Accuracy
	KNN		71.252	62.335	66.495	60.567
	Logistic Regression		77.730	56.009	65.106	62.311
	Descisionn	Descisionn Tree		68.543	69.057	61.441
Random Fore		orest	74.166	81.315	77.576	70.490
ndom C	Oversamplin		Precision	Recall	F1	Accuracy
	KNN		70.719	63,203	66,750	60,472
	Logistic Regres		77.637	56.329	65.288	62.399
Descisionn		Tree	69.633	69.633	69.633	61.874
	Random Forest		74.679	80.275	77.376	70.531
	nout Sai		ng :	Recall	F1	Accuracy
- 1	KNN		8.849	78.565	73.386	64.229
	Logistic Regression		7.958	90.638	77.676	67.295
	Descisionn Tree		9.982	69.011	69.493	61.964
Random Forest		73.305		84.413	78.468	70.918

