Time Series Labb 1 Time Series Analysis, Umeå University

Artem Shiryaev Group 8

2024-03-15

Problem Forumlation

- ► Time Series Forecasting
- ▶ Investment Decision based on Accuracy of Models
- ► Exploration of data
- Model evaluation

Data Presentation

Data Presentation

Statistical Methods Results: S1

Statistical Methods Results: S1

Statistical Methods Results: S2

Figure 1: Differenced Method for de-seasonlized and de-trending Time

Checking Assumptions

▶ Visually checking the sample autocorrelation function

 $H_0 = \mbox{The Time Series is iid Noise}$ $H_1 = \mbox{The Time Series is NOT iid Noise}$

- Protmanteau test
- Turning point test
- Difference-sign test
- Mann-Kendall Rank test
- Augmented Dicker-Fuller test
- Checking for normality
 - Histogram
 - qq plot
 - Normality test
 - ► Shapiro-Wilks test
 - Shapiro-Francia test

Checking Assumptions

Figure 2: ACF for S1 and S2 methods on time series

Checking Assumptions

Figure 3: Q-Q plots for Normality of Residuals of S1 and S2 Method

Spectral Analysis

Figure 4: Spectral Analysis on S1 and S2 data

Fitting ARMA models

- Check ACF for AR(p), PACF for MA(q)
- ► Evaluate using AIC
- ► Fit model
- Residual Diagnostics

Fitting ARMA models

Fitting ARMA models

Figure 5: Residual checks

Forecast of 2023

Figure 6: Forecast with SARIMA(9,0,1) Model with 95 CI

Forecast of 2023

Figure 7: Forecast with auto.arima AR(1) Model with 95 CI

Summary

			SARMA(9,0,1)		
Model	ARMA(1,1)	ARMA(9,1)	\times (1,0,1)	AR(1)	
MSE	1261	1258	10.1	3.72	

Conclusion

- Poor performance, linear time series model is insufficient or poorly specified for using on this kind of data set
- Stationary assumption and normality assumption violated
- Intuitively the assumption of the model that $s_t = s_{t+d}$ may be too strong
- Poor data handling and processing from my side
- ► Challenging to fit a suitable model

Questions?

Thank you for listening.