Group 4

Expected Travel Time

TUHH

Technische Universität Hamburg

Benjamin Ko, Abeeku Ampah, Jorgos Drossinakis

		TUHH
	1. Introduction to the ETT	
Agenda:	2. Data Preparation and Cleaning	
	3. Selection of Machine Learning Models	
	4. Solution	
	5. Demo	
<u> </u>	6. SCRUM Evaluation	
		2

TUHH

Introduction to ETT Problem and Tasks

Problem: Harbors need to optimize their daily operations

Our Subtasks:

- Clean Automatic Identification System (AIS) Data
 - Felixstowe to Rotterdam
 - Rotterdam to Hamburg
- Feature Selection
- Model Selection
- Integration of decision-making system.

TUHH

Data Preparation and Cleaning

Overview of AIS Data

- 1. Static Data
 - a. MMSI
 - b. TripID
 - c. Length, Draught etc
- 2. Dynamic Data
 - a. Speed over Ground
 - b. Course over Ground
 - c. Vessel position etc

	TripID	MMSI	StartLatitude	StartLongitude	StartTime	EndLatitude	EndLongitude	EndTime	Sta
0	27811	477829700	51.95	4.03	'2016-01-24 12:50'	53.5	9.93	'2016-01-25 13:00'	RO
	27811	477829700	51.95	4.03	'2016-01-24 12:50'	53.5	9.93	'2016-01-25 13:00'	RO
2	27811	477829700	51.95	4.03	'2016-01-24 12:50'	53.5	9.93	'2016-01-25 13:00'	RO
3	27811	477829700	51.95	4.03	'2016-01-24 12:50'	53.5	9.93	'2016-01-25 13:00'	RO
4	27811	477829700	51.95	4.03	'2016-01-24 12:50'	53.5	9.93	'2016-01-25 13:00'	RO

Data Preparation and Cleaning

TUHH

- Checking for Duplicates
- Identifying how the data is distributed
- Handling of missing data
- Cross-checking data validity
- Addition of new features.

Selection of Machine Learning Methods

TUHH

The following Machine Learning Methods were tested and experimented on:

- Extra Trees
- Random Forest
- Adaptive Boosting
- XGBoost
- Neural Networks

Selection of Machine Learning Methods: XGBoost

Development of final ETT Prediction (Broker Agent)

TUHH

Broker Agent is implemented by Stacking method.

- Base models (predictor agents)
- Meta model selection
- Repeated K-Fold cross validation
- Final ETT Prediction with meta model
- Save models with joblib

Solution: Stacking

```
TUHH
```

```
#use given csv data for the model
data = pd.read_csv("../.../data/RotHam_cleaned/rotterdam_hamburg_clean.csv", on_bad_lines="warn")
print('Data read done')

#specify test features
test_features = [ "COG", "TH", "shiptype", "EndLongitude", "EndLatitude", "pastTravelTime"]
print('Specify test features done')

#specify test and training sets
#Random state is used for initializing the internal random number generator, which will decide the splitting of data into train and test indices
y = data["timeTilUarrival"]
X = data["Latitude", "Longitude", "SOG"] + test_features]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
print('Spliting data done')
```


Solution: Stacking

```
#Initializing models
model1 = RandomForestRegressor(n estimators=100, max depth=8, random state=42)
model2 = ExtraTreesRegressor(n estimators=450, min samples split=2, min samples leaf=2, max depth=21, random state=42)
model3 = xgb.XGBRegressor(n_estimators=500, learning_rate=0.05, max_depth=25, min_child_weight=3, subsample=0.8, colsample_bytree=0.8,
# Meta model
meta_model = ExtraTreesRegressor(n_estimators=400, min_samples_split=2, min_samples_leaf=2, max_depth=20, random_state=42)
print('Initializing models done')
#K-fold Cross-Validation: Divide dataset into k equally sized folds (subsets) to reduce variance and better utilize the data
n_splits = 5
kf = KFold(n splits=n splits, shuffle=True, random state=42)
print('K-Folds done')
#Arrays to store predictions
x1_train = np.zeros((X_train.shape[0],))
x2 train = np.zeros((X train.shape[0],))
x3 train = np.zeros((X train.shape[0],))
x1_test = np.zeros((X_test.shape[0], n_splits))
x2 test = np.zeros((X test.shape[0], n splits))
x3 test = np.zeros((X test.shape[0], n splits))
print('Initializing Arrays done')
```

Solution: Stacking

```
TUHH
for fold idx, (train idx, valid idx) in enumerate(kf.split(X train)):
    #Training base models
    model1.fit(X train.iloc[train idx], y train.iloc[train idx])
    model2.fit(X train.iloc[train idx], y train.iloc[train idx])
    model3.fit(X_train.iloc[train_idx], y_train.iloc[train_idx])
    print(f'Fiting base models done for fold {fold idx + 1}')
    #Making predictions
    x1 train[valid idx] = model1.predict(X train.iloc[valid idx])
    x2 train[valid idx] = model2.predict(X train.iloc[valid idx])
    x3 train[valid idx] = model3.predict(X train.iloc[valid idx])
    print(f'Predictins base models done for fold {fold idx + 1}')
    #Collecting test set predictions for averaging later
    x1 test[:, fold idx] = model1.predict(X test)
    x2_test[:, fold_idx] = model2.predict(X_test)
    x3_test[:, fold_idx] = model3.predict(X_test)
    print(f'Collecting test predictions done for fold {fold idx + 1}')
#Average the test set predictions
x1 test = x1 test.mean(axis=1)
x2 test = x2 test.mean(axis=1)
x3 test = x3 test.mean(axis=1)
print('Averaging test set predictions done')
#Stack predictions as new feature set for meta model
X_train_meta = np.column_stack((x1_train, x2_train, x3_train))
X test_meta = np.column_stack((x1_test, x2_test, x3_test))
print('Stack predictions as new features set for meta model done')
```

```
Solution: Stacking
```

```
#Train meta model
meta_model.fit(X_train_meta, y_train)
print('Train meta model done')
#Make final predictions
final_predictions = meta_model.predict(X_test_meta)
print('Final Prediction done')
#Evaluate the model (Perfect MAE = 0)
#Give out MAE of the prediction set compared to the test set
#MAE in minutes
mse = mean_absolute_error(y_test, final_predictions)
print('Mean absolute Error for Extra Trees: ' , mse/60)
rmse = np.sqrt(mean_squared_error(y_test, final_predictions))
                                                                 #Save the models with Joblib
print('Mean squared Error for Extra Trees: ', rmse)
                                                                 dump(model1, 'model1.joblib', compress=3)
                                                                 dump(model2, 'model2.joblib', compress=3)
#feature names for stacked features
                                                                 dump(model3, 'model3.joblib', compress=3)
stacked features = ['x1 train', 'x2 train', 'x3 train']
                                                                 dump(meta_model, 'meta_model.joblib', compress=3)
importances = meta_model.feature_importances_
#features = X.columns
```

15

TUHH

Solution - UI

TUHH

- Web based server-client architecture
- Frontend: HTML, CSS(Bootstrap),
 Javascript
- Backend: Node.js (Express)
- Flask in a docker container
- Joblib to load the models

Solution - Sequence diagram

TUHH SCRUM Evaluation We planned our time realistically Tasks were evenly distributed between us Bi-Weekly SCRUM Meetings helpful **Used Google Sheets for planning**

Thank you!

