

BCSC0011: THEORY OF AUTOMATA & FORMAL LANGUAGES

||Shri Hari||

(Module-II)

By: Dr. Sandeep Rathor

- ▼ Context Free Grammar and Context Free Languages: Introduction, Derivation Trees or Parse Tree
- **▼** Ambiguity in Grammar, Ambiguous to Unambiguous CFG
- Simplification of CFGs: Removal of useless symbols, elimination of null productions, elimination of unit productions
- **Normal Forms** for CFGs CNF and GNF
- **▼** Pumping lemma for CFLs
- Equivalence of PDA and CFG
- **Turing Machine**

Context-Free Grammars

- Languages that are **generated** by context-free grammars are context-free languages
- Context-free grammars are more expressive than finite automata: if a language L is **accepted** by a finite automata then L can be **generated** by a context-free grammar
- Beware:
 The converse is NOT true

A Grammar is the collection of 4-tuple i.e.

$G = (V_N, \Sigma, P, S)$ where:

 V_N . Set of Variables; Σ : Set of Terminals

P: Production Rule; S: Start Symbol

 $V_N = {\langle Sentence \rangle, \langle noun \rangle, \langle verb \rangle, \langle adverb \rangle}$ Σ ={sandeep, hari, read, quickly} S=<Sentence> <Sentence> <noun><verb><adverb> <noun> → Sandeep, hari <verb> → read <adverb> → quickly

Validation Rules:

- 1. If S->BC is a given production, it means we can replace S by BC but can not replace BC by S. [Reverse substitution is not possible]
- 2. If S->BC is a given production, it is not necessary that BC->S is a production. [No inverse operation is permitted]

Formal Definition Grammar

All productions in **!!** are of the form $A \rightarrow \alpha$ Variable String of variables and terminals

Example of Context-Free Grammar

$$S o aSb \mid \lambda$$
 $P = \{S o aSb, S o \lambda\}$ $P = \{S, S, P\}$ productions $\mathbf{V}_{\mathsf{N}} = \{S\}$ $\Sigma = \{\mathbf{a}, \mathbf{b}\}$ start variable variables

Chomsky Classification on Grammar

According to Noam Chomosky, there are four types of grammars – Type 0, Type 1, Type 2, and Type 3.

Grammar Type	Grammar Accepted	Language Accepted	Automaton
Type 0	Unrestricted grammar	Recursively enumerable language	Turing Machine
Type 1	Context-sensitive grammar	Context-sensitive language	Linear-bounded automaton
Type 2	Context-free grammar	Context-free language	Pushdown automaton
Type 3	Regular grammar	Regular language	Finite state automaton

Type 0 known as unrestricted grammar.

Type 1 known as context sensitive grammar.

Type 2 known as context free grammar.

Type 3 Regular Grammar.

Unristricted Grammar (Recognized by Turing Machine)

Context Sesitive
Grammar
(Accepted by Linear
Bound Automata)

Context Free Grammar (Accepted by Push Down Automata)

Regular Grammar (Acceped By Finite Automata)

Type-0 grammars

The productions have no restrictions.

Type-1 grammars generate context-sensitive languages. The productions must be in the form $\alpha A \beta \rightarrow \alpha \nu \beta$ where $A \in N$ (Non-terminal) and α , β , $\gamma \in (V_N U \Sigma)^*$ (Strings of terminals and nonterminals) The strings α and β may be empty, but y must be nonempty.

 $AB \rightarrow AbBc$ $A \rightarrow bcA$ $B \rightarrow b$ Type-2 grammars generate context-free languages.

The productions must be in the form $A \to \alpha$, where $A \in V_N$ (Non terminal) and $\alpha \in (V_N \cup \Sigma)^*$ It should be type1

 $S \rightarrow Xa$ $X \rightarrow a$ $X \rightarrow aX$ $X \rightarrow abc$ $X \rightarrow \epsilon$

 $Y \rightarrow b$

Type-3 grammars generate regular languages.

Type-3 grammars must have a single non-terminal on the left-hand side and a right-hand side consisting of a single terminal or single terminal followed by a single $X \to \epsilon$. The productions must be in the form $X \to a$ or $X \to aY$.

where $X, Y \in V_N$ (Non terminal)

and $\mathbf{a} \in \Sigma$ (Terminal)

Derivation Trees or Parse Tree

- Given a derivable string, we may represent the derivation by a derivation / parse tree.
- A parse tree is a tree with the following properties:
 - Every vertex has a label which is a variable or terminal or null (λ).
 - The root node is the start symbol S.
 - The label of an internal vertex is a variable.
 - If the vertices n1,n2,...nk written with labels X1, X2,...,Xk are the sons of vertex n with label A, then A->X1,X2,...Xk is a production in P.
 - A vertex n is a leaf if its label is $a \in \Sigma$ or null.

Example: Let G=({S,A}, {a,b}, P, S), where P consists of S->aAS|a|SS, A->SbA|ba

Note: The yield of a derivation tree is the concatenation of the labels of the leaves without repetition in the left to right ordering

Example: Let G=({S,A}, {a,b}, P, S), where P consists of S->aAS|a|SS, A->SbA|ba. Find derivation tree for string **aabaa**

Example of a Derivation Tree

- Let the grammar *G* be
 - \Box $S \rightarrow AB$
 - $\Box A \rightarrow aAb \mid \lambda$
 - $\Box B \rightarrow bB \mid \lambda$
- Let the string be w = aabbbb.
- Derive the string w.

Now draw the Parse Tree of *aabbbb*

This is the parse tree of many different, but equivalent, derivations of *aabbbb*.

For example,

$$S \Rightarrow AB \Rightarrow aAbB \Rightarrow aaAbbB \Rightarrow aabbbB \Rightarrow aabbbbB \Rightarrow aabbbbb$$

$$S \Rightarrow AB \Rightarrow AbB \Rightarrow AbbB \Rightarrow$$
 $Abb \Rightarrow aAbbb \Rightarrow aaAbbbb \Rightarrow$
 $aabbbb$.

Leftmost and Rightmost Derivations

1. Leftmost Derivations

• A *leftmost derivation* of a string is a derivation in which each production rule is applied to the leftmost non terminal in the string.

or

A derivation A=*w is called a *left most derivation* (LMD) if we apply a production only to the leftmost variable at every step.

2. Rightmost Derivations

A rightmost derivation of a string is a derivation in which each production rule is applied to the rightmost non terminal in the string.

A derivation A=>w is called a *rightmost derivation* (*RMD*) if we apply a production only to the rightmost variable at every step.

```
Example: Let G be the grammar S->0B|1A, A->0|0S|1AA, B->1|1S|0BB. For the string 00110101, find:

a) LMD

b) RMD

c) Derivation Tree or Parse Tree
```

S=>0B=>00BB=>001B=>0011S=>00110B=>001101S=>0011010B=>00110101

```
Solution: LMD:
```

RMD:

```
S=>0B=>00BB=>00B1S=>00B10B=>00B1010B=>00B10101=>00110101

Parse Tree:
```

Ambiguous Grammars

- If there exists $w \in L(G)$ such that w has two or more different
 - parse trees or
 - leftmost (or rightmost) derivations,
- \blacksquare then *G* is *ambiguous*.

Consider the grammar G with production rules –

$$S \rightarrow S+S \mid S*S \mid a \mid b$$

Find two Left Most Derivations of the string "a+a*b"

Derivation 1: $S \rightarrow S+S \rightarrow a+S \rightarrow a+S^*S \rightarrow a+a^*S \rightarrow a+a^*b$

Derivation 2: $S \rightarrow S^*S \rightarrow S+S^*S \rightarrow a+S^*S \rightarrow a+a^*S \rightarrow a+a^*b$

Parse trees for a+a*b

If G is the grammar $S \rightarrow SbS$ |a, show that G is ambiguous.

Consider w=abababa

$$E \rightarrow E + E$$

Prove that grammar is ambiguous...

$$E \rightarrow E - E$$

 $E \rightarrow id$

First Leftmost derivation

$$E \rightarrow E + E$$

$$\rightarrow$$
 id + E

$$\rightarrow$$
 id + E - E

$$\rightarrow$$
 id + id - E

$$\rightarrow$$
 id + id- id

Second Leftmost derivation

$$E \rightarrow E - E$$

$$\rightarrow$$
 E + E - E

$$\rightarrow$$
 id + E - E

$$\rightarrow$$
 id + id - E

$$\rightarrow$$
 id + id - id

Example1

$$A \rightarrow AA$$

For the string "a(a)aa"

$$A \rightarrow (A)$$

$$A \rightarrow a$$

Two different parse tree for the same string:

• Ambiguity can be removed by rewriting the grammar such that there is only one derivation or parse tree possible for a string of the language which the grammar represents.

E.g.

- ► Ambiguous Grammar
 - $S \rightarrow SbS \mid a$
- Can be rewritten asS → abS | a

Rule: A-> $A\alpha_1 |A\alpha_2|A\alpha_3|...|A\alpha_m|B_1|B_2|...|B_n$ where no $B_{i,j}$ begin with A. then we replace the A-production by:

A-> B₁ A' | B₂A' | ... | B_n A'
A'->
$$\alpha_1$$
A' | α_2 A' | ... | α_m A' | λ

[Note: productions of the form of A-> $A\alpha$, called immediate left recursion]

Example: E->E+T | T, T->T*F | F, F->(E) |a

Solution:

E->TE' E'->+TE'
$$|\lambda$$

$$T \rightarrow FT'$$
 $T' \rightarrow *FT' \mid \lambda$

$$F\rightarrow (E) |a|$$

Simplification of CFGs

Can't always eliminate ambiguity.

But, CFG simplification & restriction still useful

theoretically & pragmatically.

- Simpler grammars are easier to understand.
- Simpler grammars can lead to faster parsing.
- Restricted forms useful for some parsing algorithms.
- Restricted forms can give you more knowledge about derivations.

- Context Free Grammar can be simplified by:
 - Useless production elimination
 or
 Construction of Reduced Grammar
 - **■** ε production elimination
 - Unit production elimination

Useless Productions

- A non-terminal *X* is **useless** if:
 - □ *X* does not generate any string of terminals.
 - It cannot derive a terminal string

OR

- □ *X* does not occur in any sentential form
 - It cannot be reached from start symbol

Derive some strings

 $S \rightarrow aSb \mid c \mid Ac$

 $A \rightarrow aA$

 $B \rightarrow bB \mid b$

Any production involving a useless symbol is a useless production.

Elimination of Useless Productions

Phase 1 – Derivation of an equivalent grammar, **G'**, from the CFG, G, such that each variable derives some terminal string.

Construction of V':

- We define $V_i' \subseteq V$ by recursion
- $V_1' = \{A \in V \mid \text{there exists a production } A \to \omega \text{ where } \omega \in \Sigma^* \}$
- Vi+1'=V_i' \cup {A \in V| there exists some production A $\rightarrow \alpha$ with $\alpha \in (\Sigma \cup V_i')^*$ }
- At some point $V_{k'}=V_{k+1}'$. Then we get $V'=V_{k'}$
- Construction of P'
- P' ={ $A \rightarrow \alpha \mid A, \alpha \in (V' \cup \Sigma)^*$ }

Let G be $S \rightarrow AB$, $A \rightarrow a$, $B \rightarrow b$, $B \rightarrow C$, and $E \rightarrow c$

Find G' such that every variable in G' derives some terminal string.

$$V_{1}' = \{A, B, E\}$$

$$A \rightarrow a, B \rightarrow b, E \rightarrow c$$

$$V_2' = \{A, B, E, S\}$$

$$S \rightarrow AB$$

$$V_3' = \{A, B, E, S\}$$

= V_2'

Here we get
$$V'=\{S,A,B,E\}$$
.

So P'=
$$S \rightarrow AB$$
, $A \rightarrow a$, $B \rightarrow b$ and $E \rightarrow c$

Phase 2 – Derivation of an equivalent grammar, **G**", from the CFG, **G**', such that each symbol appears in a sentential form.

Construction of V":

- We define $V_i'' \subseteq V$ by recursion
- $V_1''=\{S\}$
- Vi+1"= V_i " \cup {X \in V'| there exists some production $A \rightarrow \alpha$ with $A \in V_i$ " & α contains the symbol X}
- At some point $V_k'' = V_{k+1}''$. Then we get $V'' = V_k''$
- Construction of P"
- $P'' = \{A \rightarrow \alpha \mid A, \alpha \in (V'' \cup \Sigma)^*\}$

We had G as $S \rightarrow AB$, $A \rightarrow a$, $B \rightarrow b$, $B \rightarrow C$, and $E \rightarrow c$

Then we got G' as $S \rightarrow AB$, $A \rightarrow a$, $B \rightarrow b$ and $E \rightarrow c$

$$V_1'' = \{S\}$$

$$V_2'' = \{S, A, B\}$$

$$V_3'' = \{S, A, B\}$$

$$= V_2''$$

$$S \rightarrow AB$$

$$A \rightarrow a, B \rightarrow b$$

Here we get $V''=\{S,A,B\}$.

So P"=
$$S \rightarrow AB$$
, $A \rightarrow a$, $B \rightarrow b$

Question: Find a reduced grammar equivalent to the grammar G, having production rules, P: S \rightarrow AC | B, A \rightarrow a, C \rightarrow c | BC, E \rightarrow aA |e. Solution:

Terminals =
$$\{a, c, e\}$$

$$W_1 = \{ A, C, E \}$$
 from rules $A \rightarrow a, C \rightarrow c$ and $E \rightarrow e$
 $W_2 = \{ A, C, E \} \cup \{ S \}$ from rule $S \rightarrow AC$

$$W_3 = \{ A, C, E, S \} \cup \emptyset$$

Since $W_2 = W_3$, we can derive G' as –

$$G' = \{ \{ A, C, E, S \}, \{ a, c, e \}, P, \{S\} \}, \text{ where P: } S \rightarrow AC, A \rightarrow a, C \rightarrow c \ , E \rightarrow aA \mid e \} \}$$

Step2:

$$V_1 = \{ S \}$$

 $V_2 = \{ S, A, C \}$ from rule $S \rightarrow AC$

$$V_3 = \{ S, A, C, a, c \}$$
 from rules $A \rightarrow a$ and $C \rightarrow c$
 $V_4 = \{ S, A, C, a, c \}$

Since
$$V_3 = V_4$$
, we can derive G" as –
G" = { { A, C, S }, { a, c }, P, {S}}, where P: S \rightarrow AC, A \rightarrow a, C \rightarrow c

Construct a reduced grammar equivalent to the grammar:

Solution: Step1:

 $G' = (Vn, \{a, b\}, P', S)$

```
W1 ={C} as C-> abb is the only production with a terminal string on the R.H.S. W2 = {C} U {E, A}, as E -> aC and A -> bCC are productions with R.H.S. in (\Sigma U {C})* W3 = {C, E, A} U {S}, as S -> aAa and aAa is in (\Sigma U W2) * w4 = W3 U Ø Hence, Vn= W, = {S, A, C, E} P'= {S-> aAa, A->Sb | bCC, C-> abb, E-> aC}
```

Solution: Step2:

 $W1 = {S}$, As we have S-> aAa,

 $W2 = {S} U {A, a}, As A -> Sb | bCC,$

 $W3 = {S, A, a} U {S, b, C} = {S, A, C, a, b}$

As we have C ->abb,

 $W4 = W3 U \{a, b\} = W3$

Hence $P''=\{S-> aAa, A->Sb \mid bCC, C-> abb \}$

G"= ({S, A, C}, {a, b}, P", S) is the reduced grammar.

Question: Find a reduced grammar equivalent to the grammar G whose productions are S->AB|CA, B->BC|AB, A->a, C->aB|b

Solution:

Elimination of Null Productions

 \square A CFG may have productions of the form A \rightarrow λ . So, a production in the form of A \rightarrow λ , where A is variable, is c/d *null production*.

If G is a context free grammar, then we can find a context free grammar G1 having no null productions such that $L(G)=L(G)-\{\lambda\}$

Step 1: Construction of the set W of all nullable variables

- W₁={ $A_1 \in V \mid A_1 \rightarrow \lambda \text{ is a}$ production in P
- $W_{i+1} = W_i \cup \{K \in V \mid \exists a \text{ production } K \rightarrow \alpha \text{ with } \alpha \in W_i^* \}$
- At some point $W_{i+1} = W_i$

$$S \rightarrow aS \mid AB$$

$$A \rightarrow \lambda \mid a$$

$$B \rightarrow \lambda \mid b$$

$$D \rightarrow b$$

$$W_1 = \{A, B\}$$

$$W_2 = \{A, B, S\}$$

$$W_3 = \{A, B, S\}$$
$$= W_2$$

Step 2: Construction P'

- All prodⁿs whose RHS doesn't have any nullable variables are included in P'
- If $A \rightarrow X_1 X_2 \dots X_k$ is in P then include $A \rightarrow \alpha_1 \alpha_2 \cdots \alpha_k$ where

$$\alpha_{i} = \begin{cases} \mathbf{X}_{i} & \text{if } \mathbf{X}_{i} \notin \mathbf{W} \\ \lambda & \text{or } \mathbf{X}_{i} & \text{if } \mathbf{X}_{i} \in \mathbf{W} \end{cases}$$

Provided $A \rightarrow \alpha \alpha_2 \cdots \alpha_k \neq \lambda$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$D \rightarrow b$$

$$S \rightarrow aS \mid a \mid AB \mid A \mid B$$

Question: Remove null production from the following – $S \rightarrow ASA \mid aB \mid b, A \rightarrow B, B \rightarrow b \mid \in$

Solution:

$$S \rightarrow ASA \mid aB \mid b \mid a \mid SA \mid AS \mid S$$
, $A \rightarrow B$, $B \rightarrow b$

Eliminate Null productions:

1. S -> ABAC A -> aA / ϵ B -> bB / ϵ C -> c

Solution after null elimination:

S -> ABAC / ABC / BAC / BC / AAC / AC / C

A -> aA / a

 $B \rightarrow bB / b$

C -> c

Eliminate Null productions:

2. S -> aSb/aAb/ab/a A -> ε

Solution after null elimination:

S -> aSb/aAb/ab/a

Eliminate Null(ϵ)-Productions

 $B \rightarrow bB \mid b$

 $C \rightarrow cC \mid c$

```
1. S \rightarrow AB, A \rightarrow aAA/\epsilon, B \rightarrow bBB/\epsilon
      Solution:
      S \rightarrow AB \mid A \mid B
     A->aAA|aA|a
      B->bBB|bB|b
2. S -> ABCd
   A -> BC, B -> bB \mid \varepsilon, C -> cC \mid \varepsilon
       Solution:
       S -> ABCd | ABd | ACd | BCd | Ad | Bd | Cd | d
      A -> BC | B | C
```

Eliminate $Null(\epsilon)$ -Productions

```
1. S-> ABA, A-> aA/\epsilon, B -> bB/\epsilon
     Solution:
     S->ABA|AB|BA|AA|A|B
     A->aA|a
     B->bB|b
2. S -> ABCd
   A -> BC, B -> bB \mid \varepsilon, C -> cC \mid \varepsilon
      Solution:
      S -> ABCd | ABd | ACd | BCd | Ad | Bd | Cd | d
      A -> BC | B | C
      B \rightarrow bB \mid b
      C \rightarrow cC \mid c
```

Eliminate Null

Productions

$$S \rightarrow ABCBCDA$$

$$A \rightarrow CD$$

$$B \rightarrow Cb$$

$$C \rightarrow a \mid \lambda$$

$$D \rightarrow bD \mid \lambda$$

The CFG will have total 40 prodⁿs!!

$$\triangleright$$
 A \rightarrow CD | C | D

$$\triangleright$$
 B \rightarrow Cb | b

$$\rightarrow$$
 D \rightarrow bD | b

Elimination of Unit Productions

 $\mathbf{A} \rightarrow \mathbf{B}$ where $\mathbf{A}, \mathbf{B} \in \mathbf{V}$

Step 1: Construction of the set variables, derivable from A

- $\qquad \qquad W_1(A) = \{A\}$
- W_{i+1}(A)= W_i(A) ∪ {C ∈ V | there is a production B → C & B ∈ W_i(A) }
- At some point $W_{i+1}(A) = W_i(A)$

$$S \rightarrow A \mid bb$$
 $A \rightarrow B \mid b$
 $B \rightarrow S \mid a$
 $W(S) = \{S, A, B\}$
 $W(A) = \{S, A, B\}$
 $W(B) = \{S, A, B\}$

$$W_1(S) = \{S\}$$
 $W_2(S) = \{S, A\}$
 $W_3(S) = \{S, A, B\} = W_4(S)$
 $W(S) = \{S, A, B\}$

Step 2: All non unit prodⁿs are included as such

$$S \rightarrow bb$$
 $A \rightarrow b$
 $B \rightarrow a$

Step 3: Add prodⁿ $A \rightarrow \alpha$ whenever

- \triangleright B \in W(A) and
- B $\rightarrow \alpha$ is in P and
- $\alpha \notin V$

$$S \rightarrow A \mid bb$$
 $W(S) = \{S, A, B\}$
 $A \rightarrow B \mid b$ $W(A) = \{S, A, B\}$
 $B \rightarrow S \mid a$ $W(B) = \{S, A, B\}$

$$S \rightarrow b \mid a$$

 $A \rightarrow bb \mid a$
 $B \rightarrow bb \mid b$

Hence prodⁿ s in G' are: $S \rightarrow a \mid b \mid bb$ $A \rightarrow a \mid b \mid bb$ $B \rightarrow a \mid b \mid bb$

Eliminate Unit-productions

Solution:

B-production doesnt occur in the production 'S', then the following grammar becomes

Question: Remove unit production from the following: $S \rightarrow XY, X \rightarrow a, Y \rightarrow Z \mid b, Z \rightarrow M, M \rightarrow N, N \rightarrow a$

Solution:

$$S \rightarrow XY, X \rightarrow a, Y \rightarrow a \mid b, Z \rightarrow a, M \rightarrow a, N \rightarrow a$$

Now Z, M, and N are unreachable, hence we can remove those.

The final CFG is unit production free -

$$S \rightarrow XY, X \rightarrow a, Y \rightarrow a \mid b$$

Eliminates unit production:

$$E -> E + T | T$$
, $T -> T*F | F$, $F -> (E) | a$

Solution after Elimination of unit production:

Simplify the following grammar:

$$S \rightarrow 0A0 \mid 1B1 \mid BB$$
, $A \rightarrow C$, $B \rightarrow S \mid A$ $C \rightarrow S \mid \varepsilon$

Solution after null removal:

A ->C

 $B \rightarrow S \mid A$

C-> S

Solution without unit production:

S -> 0A0 | 00 | 1B1 | 11 | BB A -> 0A0 | 00 | 1B1 | 11 | BB B -> 0A0 | 00 | 1B1 | 11 | BB

C-> 0A0 | 00 | 1B1 | 11 | BB

Simplified Grammar:

Symbol C is not reachable i.e. useless

so final simplified grammar:

S -> 0A0 | 00 | 1B1 | 11 | BB

A -> 0A0 | 00 | 1B1 | 11 | BB

B -> 0A0 | 00 | 1B1 | 11 | BB

Simplify the following grammar:

S-> AB | BC | aACb | a, A-> AAB | BD | abD | C, C-> CA | S | a , D-> d , E-> ab

*Answer is not verified, pls verify it.

Solution without unit production:

S -> AB | BC | aACb | a A-> AAB | BD | abD | CA | AB | BC | aACb | a C-> CA | AB | BC | aACb | a D-> d, E-> ab

Simplified Grammar:

Symbol E is not reachable i.e. useless so

final simplified grammar:

S -> AB | BC | aACb | a
A-> AAB | BD | abD | CA | AB | BC | aACb | a
C-> CA | AB | BC | aACb | a
D-> d

Normal Forms

□Chomsky Normal Form (CNF)

□Griebach Normal Form (GNF)

04: Dr. Sandeep Rathor

Chomsky Normal Form

- A CFG is in CNF if all the prodⁿs are in any one of the following forms
 - \Box A \rightarrow a
 - □ $A \rightarrow BC$ where A, B, and C are non-terminals and **a** is a terminal

Steps of Chomsky Normal Form

Step1: Elimination of null production and unit

production

Step2: Elimination of terminals on RHS

Step3: Restricting the number of variable on RHS

Conversion to CNF

Algorithm to Convert into Chomsky Normal Form -

every production which is in the form $A \rightarrow aB$.

Step 1 – If the start symbol **S** occurs on some right side, create a new start symbol **S'** and a new production $S' \rightarrow S$.

Step 2 – Remove Null productions. (Using the Null production removal algorithm discussed earlier)

Step 3 – Remove unit productions. (Using the Unit production removal algorithm discussed earlier)

Step 4 – Replace each production $A \rightarrow B_1...B_n$ where n > 2 with $A \rightarrow B_1C$ where $C \rightarrow B_2...B_n$. Repeat this step for all productions having two or more symbols in the right side.

Step 5 – If the right side of any production is in the form $A \rightarrow aB$ where a is a terminal and A, B are non-terminal, then the production is replaced by $A \rightarrow XB$ and $X \rightarrow a$. Repeat this step for

Convert the following CFG into CNF

$$S \rightarrow aSa \mid bSb \mid aa \mid bb \mid a \mid b$$

□No null or unit prodⁿs or ε∈L

■Add prodⁿs already in CNF

□Convert $S \rightarrow aSa$

 \square Convert $\mathbf{S} \rightarrow \mathbf{bSb}$

 \square Convert $S \rightarrow aa$

□Convert $\mathbf{S} \rightarrow \mathbf{b}\mathbf{b}$

$$S \rightarrow a \mid b$$

$$S \rightarrow N_a S N_a$$
, $N_a \rightarrow a$

$$S \rightarrow N_a S_1$$

$$S_1 \rightarrow S N_a$$

$$S \rightarrow N_b S N_b \qquad N_b \rightarrow b$$

$$S \rightarrow N_b S_2$$

$$S_2 \rightarrow S N_b$$

$$S \rightarrow N_a N_a$$

$$S \rightarrow N_b N_b$$

Convert the following CFG into CNF

$$S \rightarrow aAD, A \rightarrow aB|bAB, B \rightarrow b, D \rightarrow d$$

■No null or unit prodⁿs

■Add prodⁿs already in CNF $\mathbf{B} \to \mathbf{b}, \mathbf{D} \to \mathbf{d}$

```
S \rightarrow aAD gives rise to S \rightarrow CaAD and Ca \rightarrow a.

A \rightarrow aB gives rise to A \rightarrow CaB.

A \rightarrowbAB gives rise to A \rightarrow CbAB and Cb \rightarrow b.

V' = {S, A, B, D, Ca, Cb }.
```

```
P1 consists of S \rightarrow CaAD, A \rightarrow CaB | CbAB,
B \rightarrow b, D \rightarrow d, Ca \rightarrow a, Cb \rightarrow b.
A \rightarrow CaB, B \rightarrow b, D \rightarrow d, Ca \rightarrow a, Cb \rightarrow b are
added to P2
S \rightarrow CaAD is replaced by S \rightarrow CaC1 and C1 \rightarrow AD.
A \rightarrow CbAB is replaced by A \rightarrow CbC2 and C2 \rightarrow AB.
Let
G2 = (\{S,A, B, D, Ca Cb,Cl,C2\} \{a, b, d\}, P2, S)
where P2 consists of S \rightarrow CaC1, A \rightarrow CaB | CbC2,
C1 \rightarrow AD, C2 \rightarrow AB, B \rightarrow b, D \rightarrow d, Ca \rightarrow a.
Cb \rightarrow b. G2 is in CNF and equivalent to G.
```

Question: Convert the following CFG into CNF $S \rightarrow ASA \mid aB, A \rightarrow B \mid S \mid \in, B \rightarrow b \mid \in$

Solution:

(1) Since **S** appears in R.H.S, we add a new state S_0 and $S_0 \rightarrow S$ is added to the production set and it becomes $S_0 \rightarrow S$, $S \rightarrow ASA \mid aB$, $A \rightarrow B \mid S$, $B \rightarrow b \mid E$

(2) Now we will remove the null productions –

$$B \rightarrow \in \text{and } A \rightarrow \in$$

After removing B \rightarrow ϵ , the production set becomes –

$$S_0 \rightarrow S$$
, $S \rightarrow ASA \mid aB \mid a$, $A \rightarrow B \mid S \mid \in$, $B \rightarrow b$

After removing A \rightarrow \in , the production set becomes –

$$S_0 \rightarrow S$$
, $S \rightarrow ASA \mid aB \mid a \mid AS \mid SA \mid S$, $A \rightarrow B \mid S$, $B \rightarrow b$

$$S_0 \rightarrow S$$
, $S \rightarrow ASA \mid aB \mid a \mid AS \mid SA$, $A \rightarrow B \mid S$, $B \rightarrow b$

After removing $S_0 \rightarrow S$, the production set becomes –

 $S_0 \rightarrow ASA \mid aB \mid a \mid AS \mid SA$, $S \rightarrow ASA \mid aB \mid a \mid AS \mid SA$
 $A \rightarrow B \mid S$, $B \rightarrow b$

After removing $A \rightarrow B$, the production set becomes –

 $S_0 \rightarrow ASA \mid aB \mid a \mid AS \mid SA$, $S \rightarrow ASA \mid aB \mid a \mid AS \mid SA$
 $A \rightarrow S \mid b$

B $\rightarrow b$

After removing $A \rightarrow S$, the production set becomes –

 $S_0 \rightarrow ASA \mid aB \mid a \mid AS \mid SA$, $S \rightarrow ASA \mid aB \mid a \mid AS \mid SA$, $A \rightarrow b \mid ASA \mid aB \mid a \mid AS \mid SA$, $B \rightarrow b \mid ASA \mid ASA$

(3) Now we will remove the unit productions.

After removing $S \rightarrow S$, the production set becomes –

(4) Now we will find out more than two variables in the R.H.S

Here, $S_0 \rightarrow ASA$, $S \rightarrow ASA$, $A \rightarrow ASA$ violates two Non-terminals in R.H.S.

Hence we will apply step 4 and step 5 to get the following final production set which is in CNF –

$$S_0 \rightarrow AX \mid aB \mid a \mid AS \mid SA$$

$$S \rightarrow AX \mid aB \mid a \mid AS \mid SA$$

 $A \rightarrow b \mid AX \mid aB \mid a \mid AS \mid SA$

$$A \rightarrow b \mid AX \mid aB \mid a \mid AS \mid SA$$

 $B \rightarrow b$

$$X \rightarrow SA$$

(E) We have to change the productions $S \rightarrow AB$ $S \rightarrow AB$

(5) We have to change the productions
$$S_0 \rightarrow aB$$
, $S \rightarrow aB$, $A \rightarrow aB$
And the final production set becomes –

$$S_0 \rightarrow AX \mid YB \mid a \mid AS \mid SA$$

$$S \rightarrow AX \mid YB \mid a \mid AS \mid SA$$

 $A \rightarrow b \mid AX \mid YB \mid a \mid AS \mid SA$

$$A \rightarrow b \mid AX \mid YB \mid a \mid AS \mid SA$$

$$B \rightarrow b$$

 $X \rightarrow SA$

$$Y \rightarrow a$$

Practice Session

Question1: $S \rightarrow aAbB$, $A \rightarrow aAla$, $B \rightarrow bBlb$. Convert it into CNF

Solution:

G: = ({S, A, B, Ca, Cb,CI,C2}, {a, b}, P2, S), where P2 consists of S \rightarrow CaC1, C1 \rightarrow AC2, C2 \rightarrow CbB, $A \rightarrow$ CaA, $B \rightarrow$ CbB, $Ca \rightarrow a$, Cb \rightarrow b, $A \rightarrow a$ and $B \rightarrow b$.

Question2:

Find a grammar in CNF equivalent to the grammar

$$S \rightarrow \neg S \mid [S \supset) S \mid p \mid q$$
 (S being the only variable)

$$G_2 = (\{S, A, B, C, D, C_1, C_2, C_3\}, \Sigma, P_2, S)$$
 where P_2 consists of $S \rightarrow p |q|AS|BC_1, A \rightarrow \sim$, $B \rightarrow [, C \rightarrow \supset, D \rightarrow], C_1 \rightarrow SC_2, C_2 \rightarrow CC_3, C_3 \rightarrow SD$. G_2 is in CNF and equivalent to the given grammar.

Find the CNF:

 $S \rightarrow a \mid aA \mid B$

 $A \rightarrow aBB \mid \epsilon$

 $B \rightarrow Aa \mid b$

Solution:

 $S \rightarrow a \mid XA \mid AX \mid b$

 $A \rightarrow RB$

 $B \rightarrow AX \mid b \mid a$

 $X \rightarrow a$

 $R \rightarrow XB$

Greibach Normal Form

A context-free grammar is in Greibach Normal Form if the right-hand side of each rule has one terminal followed by zero or more non-terminals:

$$A \rightarrow a \alpha$$

where $a \in \Sigma$ $\alpha \in V^*$

Algorithm to Convert a CFG into Greibach Normal Form

- **Step 1** If the start symbol **S** occurs on some right side, create a new start symbol **S'** and a new production $S' \rightarrow S$.
- **Step 2** Remove Null productions. (Using the Null production removal algorithm discussed earlier)
- **Step 3** Remove unit productions. (Using the Unit production removal algorithm discussed earlier)
- **Step 4** Remove all direct and indirect left-recursion.
- **Step 5** Do proper substitutions of productions to convert it into the proper form of GNF.

To convert a CFG in to a GNF:

- 1. the grammar has to be in Chomsky Normal Form
- 2. there should be no Left-Recursive Rules

Lemma1: Let $G=(V_N, \Sigma, P, S)$ be a CFG. Let $A \rightarrow B\gamma$ be an A-production in P. Let the B-productions be $B \rightarrow \beta 1 |\beta 2|\beta 3|...|\beta s$. Define $P_1=(P-\{A \rightarrow B\gamma\}U\{A \rightarrow \beta\gamma\})|1 \le i \le s\}$. Then, $G1=(V_N, \Sigma, P_1, S)$ is a CFG equivalent to G.

Lemma2: Let G=(V , Σ , P , S) be a CFG. Let set of A- producitons be $A \rightarrow A\alpha_1 \mid A\alpha_2 \mid ... \mid A\alpha_r \mid \beta 1 \mid \beta 2 \mid \beta 3 \mid ... \mid \beta s$. (βi do not start with A) Let z be a new variable. Let G1=(G = ($V_N \cup \{Z\}$), Σ , P_1 , S) where P_1 is defined as:

$$A \rightarrow \beta 1 \mid \beta 2 \mid ... \mid \beta s$$

$$A \rightarrow \beta 1Z \mid \beta 2 \mid Z \mid ... \mid \beta s \mid Z$$

Set of Z- productions:

$$Z \rightarrow \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_r$$

$$Z \rightarrow \alpha_1 Z \mid \alpha_2 Z \mid \dots \mid \alpha_r Z$$

Conversion to GNF

- 1. Eliminate null, unit productions & useless symbols from the grammar G
- 2. Convert it to **Chomsky Normal Form** (CNF) generating the language $L(G') = L(G) \{\epsilon\}$ where $G' = (V', \Sigma, P', S)$ in.
- 3. Rename the variables like $A_1, A_2, ... A_n$ starting with $S = A_1$. Rewrite the prodⁿs

- 4. Checking for loop
 - ♦ Prodⁿs of following form don't give rise to loops

$$A_i \rightarrow a X$$
 where $a \in \Sigma$, $X \in (V \cup \Sigma)^*$

$$A_i \rightarrow A_j X$$
 where $a \in \Sigma$, $X \in (V \cup \Sigma)^*$ and $i < j$

♦ In prodⁿs having loop, carry out substitution to get Left Recursion.

$$A_i \rightarrow A_j X$$
 where $a \in \Sigma$, $X \in (V \cup \Sigma)^*$ and $i > j$

- 5. Eliminate Left Recursion from all the Prodⁿs
- 6. Do **substitution** in prodⁿs not in GNF

Convert given CFG to GNF

$$S \rightarrow AA \mid a$$

 $A \rightarrow SS \mid b$

Step 1 & 2: Convert to CNF

No null and unit productions and Already in CNF

Step 3: Rename the variables & Rewrite the prodⁿs

$$S - A_1 \qquad A - A_2$$

$$A_1 \rightarrow A_2 A_2 \mid a$$

$$A_2 \rightarrow A_1 A_1 \mid b$$

Step 4

A1-productions are in the required form. They are A1 \rightarrow A2A2 | a. (ii) $A2 \rightarrow b$ is in the required form.

Apply Lemma 1 to $A2 \rightarrow A1A1$.

The resulting productions are $A2 \rightarrow A2A2A1$, $A2 \rightarrow aA1$

Thus the A2- productions are

$$A2 \rightarrow A2A2A1$$
, $A2 \rightarrow aA1$, $A2 \rightarrow b$

Step 5

We have to apply Lemma 2 to A2-Productions as we have A2 \rightarrow A2A2A1. Let Z2 be the new variable. The resulting productions are $A2 \rightarrow aA1, A2 \rightarrow b$ $A2 \rightarrow aA1Z2, A2 \rightarrow bZ2$ $Z2 \rightarrow A2A1, Z2 \rightarrow A2A1Z2,$

Finally A2-productions are:

$$A2 \rightarrow aA1 \mid b \mid aA1Z2 \mid bZ2 \mid (1)$$

 $A1 \rightarrow A2A2 | a$

Apply lemma1 to A1-production

 $A1 \rightarrow A2A2$ then we find

A1
$$\rightarrow$$
 aA1A2 | bA2 | aA1Z2A2 | bZ2A2

Finally A1- productions are:

Z2-productions are:

$$Z2 \rightarrow A2A1, Z2 \rightarrow A2A1Z2, [Apply lemma1]$$

Equivalent grammar is:

(2)

(3)

Convert given CFG to GNF

$$S \rightarrow AB$$

 $A \rightarrow BS \mid b$
 $B \rightarrow SA \mid a$

Step 1 & 2: Convert to CNF Already in CNF

Step 3: Rename the variables & Rewrite the prodⁿs

$$S - A_1 \qquad A - A_2 \qquad B - A_3$$

$$A_1 \rightarrow A_2 A_3$$

$$A_2 \rightarrow A_3 A_1 \mid b$$

$$A_3 \rightarrow A_1 A_2 \mid a$$

Step 4: Check for Loop

$$A_3 \rightarrow A_1 A_2$$
 // i > j
 $A_3 \rightarrow A_2 A_3 A_2$ // i > j
 $A_3 \rightarrow A_3 A_1 A_3 A_2 \mid b A_3 A_2$

Step 5: Eliminate Left Recursion

$$A_1 \rightarrow A_2 A_3$$

 $A_2 \rightarrow A_3 A_1 \mid b$
 $A_3 \rightarrow A_3 A_1 A_3 A_2 \mid b A_3 A_2 \mid a$

$$A_3 \rightarrow A_3 A_1 A_3 A_2 \mid \mathbf{b} A_3 A_2 \mid \mathbf{a}$$

$$\alpha_1 \qquad \beta_1 \qquad \beta_2$$

\underline{A} prodⁿs are:

$$A_3 \rightarrow b A_3 A_2 | a$$

 $A_3 \rightarrow b A_3 A_2 Z_3 | a Z_3$

\underline{Z} prodⁿs are:

$$Z_3 \rightarrow A_1 A_3 A_2 Z_3$$

 $Z_3 \rightarrow A_1 A_3 A_2$

5. Step 6: Do substitution in prodⁿs not in GNF

$$A_{1} \rightarrow A_{2} A_{3}$$
 $A_{2} \rightarrow A_{3} A_{1} \mid b$
 $A_{3} \rightarrow b A_{3} A_{2} \mid a$
 $A_{3} \rightarrow b A_{3} A_{2} Z_{3} \mid a Z_{3}$
 $Z_{3} \rightarrow A_{1} A_{3} A_{2} Z_{3}$
 $Z_{3} \rightarrow A_{1} A_{3} A_{2}$

Total 24 prodⁿs

All A₃ prodⁿs are in GNF

$$A_3 \rightarrow b A_3 A_2 | b A_3 A_2 Z_3 | a Z_3 | a$$

Substitute in $A_2 \rightarrow A_3 A_1 \mid b$

So we get 5 A₂ prodⁿs

Substitute in $A_1 \rightarrow A_2 A_3$

So we get 5 A₁ prodⁿs

Substitute in $\mathbb{Z}_3 \to \mathbb{A}_1 \mathbb{A}_3 \mathbb{A}_2 \mathbb{Z}_3 \mid \mathbb{A}_1 \mathbb{A}_3 \mathbb{A}_2$

So we get $5 + 5 Z_3 \text{ prod}^n s$

Convert into GNF

$$S \rightarrow XB \mid AA$$

$$A \rightarrow a \mid SA$$

$$B \rightarrow b$$

$$X \rightarrow a$$

Solution:

$$S \rightarrow aB \mid aCA \mid aBACA \mid aA \mid aBAA$$

$$A \rightarrow aC \mid aBAC \mid a \mid aBA$$

$$C \rightarrow aCAC \mid aBACAC \mid aAC \mid aBAAC$$

$$C \rightarrow aCA \mid aBACA \mid aA \mid aBAA$$

$$B \rightarrow b$$

$$X \rightarrow a$$

Find GNF of the given CFG:

Questions for Practice

1. Convert following grammar into CNF:

$$S \rightarrow bA / aB$$

 $A \rightarrow bAA / aS / a$
 $B \rightarrow aBB / bS / b$

2. Convert following grammar to PDA:

$$S \to aAA$$
$$A \to aS / bS / a$$

B. Eliminate Null and Unit production:

$$S \to aXbX$$

$$X \to aY / bY / \land$$

$$Y \to X / c$$

After NullAfter Unit
$$S \rightarrow aXbX / abX / aXb / ab$$
 $S \rightarrow aXbX / abX / aXb / ab$ $X \rightarrow aY / bY / a / b$ $X \rightarrow aY / bY / a / b$ $Y \rightarrow X / c$ $Y \rightarrow aY / bY / a / b / c$

Discussion

Eliminate null production:

$$S \rightarrow ASA \mid aB \mid b, A \rightarrow B, B \rightarrow b \mid \in$$

Solution:

$$S \rightarrow ASA \mid aB \mid b \mid a \mid SA \mid AS \mid S, A \rightarrow B \mid b, B \rightarrow b$$

Remove unit production:

$$S \rightarrow XY, X \rightarrow a, Y \rightarrow Z \mid b, Z \rightarrow M, M \rightarrow N, N \rightarrow a$$

Solution:

$$S \rightarrow XY$$
, $X \rightarrow a$, $Y \rightarrow a$ | b, $Z \rightarrow a$, $M \rightarrow a$, $N \rightarrow a$ (after removal of unit production)
 $S \rightarrow XY$, $X \rightarrow a$, $Y \rightarrow a$ | b [after removal of unreachable symbols since, Z, M, and N are unreachable]

Eliminate null production:

$$S \rightarrow XYX$$
 Solution:
 $X \rightarrow 0X \mid \epsilon$ $S \rightarrow XY \mid YX \mid XX \mid X \mid Y$
 $Y \rightarrow 1Y \mid \epsilon$ $X \rightarrow 0X \mid 0$
 $Y \rightarrow 1Y \mid 1$

Pumping Lemma for Context Free Languages Let L be a CFL. There exists some integer n such that for all w in L with $|w| \ge n$,

w = uvxyz with $|vxy| \le n$ and |vy| > 0 such that

 $\mathbf{D}uv^{i}xy^{i}z \in L$ for all $i = 0, 1, 2, 3 \dots$

Let G be a grammar in CNF generating the language $L - \{\epsilon\}$ Let the grammar have m variables. Pick $n = 2^m$. Let $w \in L(G) \& |w| \ge n$

Any derivation tree for w has height at least m+1.

Consider the following grammar.

 $S \rightarrow AB \mid a$ $A \rightarrow AS \mid b$

 $B \rightarrow AS \mid c$

Take any string of length 2^p & check that the height is at least p+1.

- * At least m + 1 node are internal nodes labeled with non-terminals.
- * Since there are only m non-terminals in the grammar, and since m+1 appear on this long path, it follows that some non-terminal (and perhaps many) appears at least twice on this path.

* Consider the first non-terminal that is repeated, when traversing the path from the leaf to the root.

Parse Tree in the Pumping-Lemma Proof

Pump Zero Times

Pump Twice, Thrice...

Observe

We have the production rules which lead us to the following derivations:

- ightharpoonup S \Rightarrow u A z
- \rightarrow A \Rightarrow v A y
- \rightarrow A \Rightarrow x

- > w = uvxyz with $|vxy| \le n$ and |vy| > 0 such that
- $\begin{array}{ll} & uv^{i}xy^{i}z \in L \\ & \text{for all } \boldsymbol{i} = 0, 1, 2, 3 \dots \end{array}$

Prove that $L = \{a^i b^i c^i \mid i \ge 0\}$ is not a CFL.

Proof:

- Let L be a CFL. Since L is infinite, the pumping lemma can be applied. Let **n** be the constant of the lemma.
- Let $w \in L \& w = a^k b^k c^k$ for some k > n.
 - \circ Then we can write w = uvxyz
 - \circ Such that |vy| > 0
 - \circ And $|vxy| \le n$
- Since |vxy| ≤ n, therefore it cannot contain all 3 symbols –
 a, b & c

- Case I: Suppose vxy contains one of the symbol in Σ .
 - Suppose vxy contains at least one a.
 - O Then uv²xy²z will more a's than b or c.
 - Therefore uv 2xy2z does not belong to L.
 - o This is a contradiction of the pumping lemma.
- Case II: Suppose vxy contains two of the symbol in Σ .
 - o Suppose vxy contains at least one a & at least one b.
 - O Then uv²xy²z will more a's & b's than c.
 - Therefore uv 2xy2z does not belong to L.
 - o This is a contradiction of the pumping lemma.

In all the cases we get a contradiction.

Therefore our assumption that L is context free is wrong.

Prove that the following languages are not CFLs.

1)
$$L = \{0^i 1^i 0^i 1^i \mid i > 0\}$$

2)
$$L = \{0^{2^i} : i \ge 1\}$$

Push Down Automata

Equivalence of Push Down Automata

Context Free Languages

By: Dr. Sandeep Rathor

CFG to PDA

- ◆ The PDA simulates the left-sentential forms that G uses to generate any string w
- Let $G = (V, \Sigma, P, S)$
- ◆ Construct PDA N that accepts L(G) by empty stack
- N = ({q}, Σ , V $\cup \Sigma$, δ , q, S)
- Transitions are defined as
 - ☐ For each variable A

$$\delta(\mathbf{q}, \boldsymbol{\varepsilon}, \mathbf{A}) = \{(\mathbf{q}, \boldsymbol{\beta}) \mid \mathbf{A} \rightarrow \boldsymbol{\beta} \text{ is a prod}^{\mathbf{n}} \text{ in } \mathbf{G}\}$$

☐ For each terminal a

$$\delta(\mathbf{q}, \mathbf{a}, \mathbf{a}) = \{(\mathbf{q}, \boldsymbol{\varepsilon})\}$$

Find a PDA equivalent to the grammar S → aSbb | a Generate the string aabb and also simulate the PDA for it

Where $\Sigma = \{a, b\}, V = \{S\} \& \delta$ is as following

- 1. $\delta(q, \epsilon, S) = \{(q, aSbb), (q, a)\}$
- 2. $\delta(q, a, a) = \{(q, \epsilon)\}$
- 3. $\delta(q, b, b) = \{(q, \epsilon)\}$

$$S \Rightarrow aSbb \Rightarrow aabb$$

(q, aabb, S)
- (q, aabb, aSbb)
- (q, abb, Sbb)
- (q, abb, abb)
- (q, bb, bb)
- (q, b, b)
- (q, ε, ε)

Stack Empty – string accepted

Find a PDA equivalent to the following grammar that generates simple expressions like a * (a + bo10)

$$E \rightarrow I \mid E * E \mid E + E \mid (E)$$

 $I \rightarrow a \mid b \mid Ia \mid Ib \mid Io \mid I1$

Let N be a PDA that accepts the language generated by the given CFG

- ♦ $\Sigma = \{a, b, o, 1, (,), *, +\}$
- \bullet V = {E, I)

PDA to CFG

We construct grammar G as follows.

$$G = (V, \Sigma, P, S)$$

The productions in P are induced by the moves of PDA as follows

Rule 1:

The S productions are given by

$$S \rightarrow [q_0, Z_0, q] \forall q \in Q$$

Rule 2:

Each move erasing a pushdown symbol given by $(q', \varepsilon) \in \delta(q, a, z)$ induces the prodⁿ $[q, z, q'] \rightarrow a$

Rule 3:

Each move not erasing a pushdown symbol given by $(\underline{q_1}, \underline{z_1}\underline{z_2} \dots \underline{z_m}) \in \delta(\underline{q}, \underline{a}, \underline{z})$ induces many prodⁿs of the following form where $q', q_2, ..., q_m$ can be any state in Q

$$[q, z, q'] \rightarrow a [q_1, z_1, q_2] [q_2, z_2, q_3] ... [q_m, z_m, q']$$

Construct a context-free grammar G which accepts L(N), where

$$N = (\{qo, q1\}, \{a. b\}, \{Zo, Z\}, \delta, qo, Zo, \phi)$$

 δ is given by

- 1. $\delta(qo, b, Zo) = \{(qo, ZZo)\}$
- 2. $\delta(qo, \varepsilon, Zo) = \{(qo, \varepsilon)\}$
- 3. $\delta(qo, b, Z) = \{(qo, ZZ)\}$
- 4. $\delta(qo, a, Z) = \{(q1, Z)\}$
- 5. $\delta(q_1, b, Z) = \{(q_1, \epsilon)\}$
- 6. $\delta(q_1, a, Z_0) = \{(q_0, Z_0)\}$

Let $G = \{V, \{a, b\}, P, S\}$

 $V = \{S\} \cup \{[qo, Zo, qo], [qo, Zo, q1],$ [qo, Z, qo], [qo, Z, q1], [q1, Zo, qo], [q1, Zo, q1], [q1, Z, qo], [q1, Z, q1],

The productions in P are induced by the moves of PDA

■ Rule 1:
$$S \rightarrow [q_0, Z_0, q] \forall q \in Q$$

- 1. $S \rightarrow [qo, Zo, qo]$
- 2. $S \rightarrow [qo, Zo, q1]$

□ Rule 2: $\delta(\mathbf{q}, \mathbf{a}, \mathbf{z}) = (\mathbf{q}', \epsilon)$ induces $[\mathbf{q}, \mathbf{z}, \mathbf{q}'] \rightarrow \mathbf{a}$

• $\delta(qo, \varepsilon, Zo) = \{(qo, \varepsilon)\}$

3. $[qo, Zo, qo] \rightarrow \varepsilon$

• $\delta(q_1, b, Z) = \{(q_1, \epsilon)\}$

4. $[q_1, Z, q_1] \rightarrow b$

■ **Rule 3:** $\delta(q, a, z) = (q_1, z_1 z_2 ... z_m)$

 $[q, z, q'] \rightarrow a [q_1, z_1, q_2] [q_2, z_2, q_3] ... [q_m, z_m, q']$

• $\delta(qo, b, Zo) = \{(qo, ZZo)\}$

 $[qo, Zo, \bullet] \rightarrow b [qo, Z, \bullet] [\bullet, Zo, \bullet]$

- 5. $[qo, Zo, qo] \rightarrow b [qo, Z, qo] [qo, Zo, qo]$
- 6. $[qo, Zo, qo] \rightarrow b [qo, Z, q1] [q1, Zo, qo]$
- 7. $[qo, Zo, q1] \rightarrow b [qo, Z, qo] [qo, Zo, q1]$
- 8. $[qo, Zo, q1] \rightarrow b [qo, Z, q1] [q1, Zo, q1]$

• $\delta(qo, b, Z) = \{(qo, ZZ)\}$

$$[qo, Z, \bullet] \rightarrow b [qo, Z, \bullet] [\bullet, Z, \bullet]$$

9. $[qo, Z, qo] \rightarrow b [qo, Z, qo] [qo, Z, qo]$ 10. $[qo, Z, qo] \rightarrow b [qo, Z, q1] [q1, Z, qo]$ 11. $[qo, Z, q1] \rightarrow b [qo, Z, qo] [qo, Z, q1]$ 12. $[qo, Z, q1] \rightarrow b [qo, Z, q1] [q1, Z, q1]$ • $\delta(qo, a, Z) = \{(q1, Z)\}$ $[qo, Z, •] \rightarrow a [q1, Z, •]$

13. $[qo, Z, qo] \rightarrow a [q1, Z, qo]$ 14. $[qo, Z, q1] \rightarrow a [q1, Z, q1]$

- $\delta(q_1, a, Z_0) = \{(q_0, Z_0)\}$ $[q_1, Z_0, \blacklozenge] \rightarrow a [q_0, Z_0, \blacklozenge]$
- 15.[q1, Z0, q0] → a [q0, Z0, q0] 16.[q1, Z0, q1] → a [q0, Z0, q1]

Closure Properties of Languages

Dronorty

Property	negular	CFL	DUFL	WL	VECTIONS	nr.
Union	Yes	Yes	No	Yes	Yes	Yes
Intersection	Yes	No	No	Yes	Yes	Yes
Set Difference	Yes	No	No	Yes	Yes	No
Complementation	Yes	No	Yes	Yes	Yes	No
Intersection with a regular lang.	Yes	Yes	Yes	Yes	Yes	Yes
Concatenation	Yes	Yes	No	Yes	Yes	Yes
Kleen Closure	Yes	Yes	No	Yes	Yes	Yes
Kleen Plus	Yes	Yes	No	Yes	Yes	Yes
Reversal	Yes	Yes	No	Yes	Yes	Yes
Homomorphism	Yes	Yes	No	No	No	Yes

Voe

Vac

No

4. Convert following grammar into CNF:

 $B \rightarrow aBB/bS/b$

$$S \rightarrow bA / aB$$
$$A \rightarrow bAA / aS / a$$

5. Convert following grammar to PDA:

$$S \to aAA$$
$$A \to aS / bS / a$$

6. Eliminate Null and Unit production:

$$S \to aXbX$$

$$X \to aY / bY / \land$$

$$Y \to X / c$$

After NullAfter Unit
$$S \rightarrow aXbX / abX / aXb / ab$$
 $S \rightarrow aXbX / abX / aXb / ab$ $X \rightarrow aY / bY / a / b$ $X \rightarrow aY / bY / a / b$ $Y \rightarrow X / c$ $Y \rightarrow aY / bY / a / b / c$