

Measurement models

• Which of the following statement are true in a filtering context?

Yellow The measurement model describes the statistics of a sensor observation as a function of the state vector.

Orange Using the measurement model, it is often possible to simulate (sample) sensor observations from a know state.

Green Using the measurement model, it is often possible to simulate (sample) *states* using a know *observation*.

Pink The measurement model describes the distribution of the state from a given sensor observation.

CHALMERS

MEASUREMENT MODEL - EXAMPLE

There are many sensors that measure bearing, θ , and/or distance, d, to objects. This lidar is one example.

If the rotational axis of the lidar is in (x_0, y_0) and it is aligned as in the picture, what is a reasonable measurement model for the bearing, θ , to an object located in (x_1, y_1) which is being tracked by your filter?

• Which of these models are reasonable measurement models for z_k ? Note: z_k is a noisy observation of θ .

Pink
$$z_k = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2} + r_\theta, r_\theta \sim \mathcal{N}(0, R_\theta)$$

