Implementing Density Functional Theory

Fadjar Fathurrahman Hermawan Kresno Dipojono

May 18, 2020

Preface

Importance of density functional theory

Implementation of density functional theory in various program packages (free and commercial)

Several books about density functional theories

The problem: not yet giving necessary details

This book is our humble attempt to demystifying several aspects of practical density functional theory to beginners in the field.

Objective of this book: show the reader how to implement a density functional theory for simple system containing only model potential (such as harmonic potential) and to non-local pseudopotentials which are usually used in typical DFT calculations for molecular and crystalline systems.

Outline of the book: 1d, 2d, 3d, Schrodinger equation, Poisson equation, Kohn-Sham equation for local (pseudo)potentials, Kohn-Sham equation for nonlocal pseudopotentials.

This is for acknowledgments.

Bandung, month year Fadjar Fathurrahman Hermawan Kresno Dipojono

Contents

1	1 An introduction to density functional theory					
2	Sch	Schroedinger equation in 1d				
	2.1	1 Grid points				
	2.2	2 Approximating second derivative operator				
	2.3	3 Harmonic potential				
	2.4 Higher order finite difference					
	2.5	2.5 Exercises				
3	Schroedinger equation in 2d					
		3.0.1	Describing grid in 2d	17		
		3.0.2	Laplacian operator	19		
		3.0.3	Iterative methods for eigenvalue problem	21		
4	Sch	Schroedinger equation in 3d				
		4.0.1	Three-dimensional grid	25		
		4.0.2	Laplacian operator	25		
5	Nun	Numerical solution of Poisson equation				
6	Kohn-Sham equation part I					
7	Numerical solution of Kohn-Sham equation (part II)					
Α	Introduction to Julia programming language					
	A.1	Install	ation	33		
	A.2	Using	Julia	33		
		A.2.1	Using Julia REPL	33		
		A.2.2	Julia script file	34		
	A.3	Basic	programming construct	34		
	A.4	Mathe	ematical operators	34		
В	Intro	oductio	on to Octopus DFT code	37		

iv *CONTENTS*

An introduction to density functional theory

Density functional theory: [1, 2],

Using the Kohn-Sham density functional theory, total energy of system of interacting electrons under external potential $V_{\rm ext}(\mathbf{r})$ can be written as a functional of a set of single-particle wave functions or Kohn-Sham orbitals $\{\psi_i(\mathbf{r})\}$

$$E\left[\left\{\psi_{i}(\mathbf{r})\right\}\right] = -\frac{1}{2} \int \psi_{i}(\mathbf{r}) \nabla^{2} \psi_{i}(\mathbf{r}) \, d\mathbf{r} + \int \rho(\mathbf{r}) V_{\text{ext}}(\mathbf{r}) \, d\mathbf{r} + \frac{1}{2} \int \frac{\rho(\mathbf{r}) \rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} \, d\mathbf{r}' + E_{\text{xc}}\left[\rho(\mathbf{r})\right]$$
(1.1)

where single-particle electron density $\rho(\mathbf{r})$ is calculated as

$$\rho(\mathbf{r}) = \sum_{i} f_{i} \psi^{*}(\mathbf{r}) \psi(\mathbf{r})$$
 (1.2)

In Equation 1.2 the summation is done over all occupied single electronic states i and f_i is the occupation number of the i-th orbital. For doubly-occupied orbitals we have $f_i = 2$. In the usual setting in material science and chemistry, the external potential is usually the potential due to the atomic nuclei (ions):

$$V_{\text{ext}}(\mathbf{r}) = \sum_{I} \frac{Z_{I}}{|\mathbf{r} - \mathbf{R}_{I}|}$$
 (1.3)

and an additional term of energy, the nucleus-nucleus energy E_{nn} , is added to the total energy functional (1.1):

$$E_{\rm nn} = \frac{1}{2} \sum_{I} \sum_{J} \frac{Z_I Z_J}{|R_I - R_J|} \tag{1.4}$$

The energy terms in total energy functionals are the kinetic, external, Hartree, and exchange-correlation (XC) energy, respectively. The functional form of the last term (i.e. the XC energy) in terms of electron density is not known and one must resort to an approximation. In this article we will use the local density approximation for the XC energy. Under this approximation, the XC energy can be written as:

$$E_{xc} \left[\rho(\mathbf{r}) \right] = \int \rho(\mathbf{r}) \epsilon_{xc} \left[\rho(\mathbf{r}) \right] d\mathbf{r}$$
 (1.5)

where ϵ_{xc} is the exchange-correlation energy per particle. There are many functional forms that have been devised for ϵ_{xc} and they are usually named by the persons who proposed them. An explicit form of ϵ_{xc} will be given later.

Many material properties can be derived from the minimum of the functional (1.1). This minimum energy is also called the *ground state energy*. This energy can be obtained by using direct minimization of the Kohn-Sham

energy functional or by solving the Kohn-Sham equations:

$$\hat{H}_{KS}\,\psi_i(\mathbf{r}) = \epsilon_i\,\psi_i(\mathbf{r}) \tag{1.6}$$

where ϵ_i are the Kohn-Sham orbital energies and the Kohn-Sham Hamiltonian \hat{H}_{KS} is defined as

$$\hat{H}_{KS} = -\frac{1}{2}\nabla^2 + V_{ext}(\mathbf{r}) + V_{Ha}(\mathbf{r}) + V_{xc}(\mathbf{r})$$
(1.7)

From the solutions of the Kohn-Sham equations: ϵ_i and $\psi_i(\mathbf{r})$ we can calculate the corresponding minimum total energy from the functional (1.1).

In the definition of Kohn-Sham Hamiltonian, other than the external potential which is usually specified from the problem, we have two additional potential terms, namely the Hartree and exchange-correlation potential. The Hartree potential can be calculated from its integral form

$$V_{\mathsf{Ha}}(\mathbf{r}) = \int \frac{\rho(\mathbf{r})}{\mathbf{r} - \mathbf{r}'} \, \mathrm{d}\mathbf{r}' \tag{1.8}$$

An alternative way to calculate the Hartree potential is to solve the Poisson equation:

$$\nabla^2 V_{\mathsf{Ha}}(\mathbf{r}) = -4\pi \rho(\mathbf{r}) \tag{1.9}$$

The exchange-correlation potential is defined as functional derivative of the exchange-correlation energy:

$$V_{xc}(\mathbf{r}) = \frac{\delta E[\rho(\mathbf{r})]}{\delta \rho(\mathbf{r})}$$
 (1.10)

The Kohn-Sham equations are nonlinear eigenvalue equations in the sense that to calculate the solutions $\{\epsilon_i\}$ and $\{\psi_i(\mathbf{r})\}$ we need to know the electron density $\rho(\mathbf{r})$ to build the Hamiltonian. The electron density itself must be calculated from $\{\psi_i(\mathbf{r})\}$ which are not known (the quantities we want to solve for). The usual algorithm to solve the Kohn-Sham equations is the following:

- (STEP 1): start from a guess input density $\rho^{in}(\mathbf{r})$
- (STEP 2): calculate the Hamiltonian defined in (1.7)
- (STEP 3): solve the eigenvalue equations in (1.6) to obtain the eigenpairs $\{\epsilon_i\}$, $\{\psi_i(\mathbf{r})\}$
- (STEP 4): calculate the output electron density $\rho^{\text{out}}(\mathbf{r})$ from $\{\psi_i(\mathbf{r})\}$ that are obtained from the previous step.
- (STEP 5) Check whether the difference between $\rho^{in}(\mathbf{r})$ and $\rho^{out}(\mathbf{r})$ is small. If the difference is still above a chosen threshold then back to STEP 1. If the difference is already small the stop the algorithm.

The algorithm we have just described is known as the self-consistent field (SCF) algorithm.

Nowadays, there are many available software packages that can be used to solve the Kohn-Sham equations such as Quantum ESPRESSO, ABINIT, VASP, Gaussian, and NWChem are among the popular ones. A more complete list is given in a Wikipedia page [3]. These packages differs in several aspects, particularly the basis set used to discretize the Kohn-Sham equations and characteristic of the systems they can handle (periodic or non-periodic systems). These packages provide an easy way for researchers to carry out calculations based on density functional theory for particular systems they are interested in without knowing the details of how these calculations are performed.

In this book we will describe a simple way to solve the Kohn-Sham equations based on finite difference approximation. Our focus will be on the practical numerical implementation of a solver for the Kohn-Sham equations. The solver will be implemented using Julia programming language [4]. Our target is to calculate the ground state energy of several simple model systems. We will begin to build our solver starting from the ground up. The roadmap of the article is as follows.

- We begin from discussing numerical solution of Schroedinger equation in 1d. We will introduce finite difference approximation and its use in approximating second derivative operator that is present in the Schroedinger equation. We show how one can build the Hamiltonian matrix and solve the resulting eigenvalue equations using standard function that is available in Julia.
- In the next section, we discuss numerical solution of Schroedinger in 2d. We will introduce how one can handle 2d grid and applying finite difference approximation to the Laplacian operator present in the 2d Schroedinger equation. We also present several iterative methods to solve the eigenvalue equations.
- The next section discusses the numerical solution of Schroedinger equation in 3d. The methods presented in this section is a straightforward extension from the 2d case. In this section we start considering V_{ext} that is originated from the Coulomb interaction between atomic nuclei and electrons. We also introduce the concept of pseudopotential which is useful in practical calculations.
- The next section discusses about Poisson equation. Conjugate gradient method for solving system of linear equations. Hartree energy calculation.
- Hartree approximation, implementation of SCF algorithm
- Kohn-Sham equations, XC energy and potential, hydrogen molecule

Schroedinger equation in 1d

In this chapter we will be concentrating on the problem of finding bound states solution to time-independent Schroedinger equation in one dimension:

$$\left[-\frac{1}{2} \frac{d^2}{dx^2} + V(x) \right] \psi(x) = E \psi(x)$$
 (2.1)

with the boundary conditions:

$$\lim_{x \to \pm \infty} \psi(x) = 0 \tag{2.2}$$

This boundary condition is relevant for non-periodic systems such as isolated or free atoms and molecules.

2.1 Grid points

We need to define a spatial domain $[x_{\min}, x_{\max}]$ where x_{\min}, x_{\max} chosen such that the boundary condition 2.2 is approximately satisfied. The next step is to divide the spatial domain x using equally-spaced grid points which we will denote as $\{x_1, x_2, \ldots, x_N\}$ where N is total number of grid points. Various spatial quantities such as wave function $\psi(x)$ and potential $\psi(x)$ will be discretized on these grid points.

The grid points x_i , i = 1, 2, ... are chosen to be:

$$x_i = x_{\min} + (i-1)h$$
 (2.3)

where h is the spacing between the grid points:

$$h = \frac{x_{\text{max}} - x_{\text{min}}}{N - 1} \tag{2.4}$$

The following Julia function can be used to initialize the grid points.

```
function init_FDld_grid( x_min::Float64, x_max::Float64, N::Int64 )
L = x_max - x_min
h = L/(N-1) # spacing
x = zeros(Float64,N) # the grid points
for i = 1:N
    x[i] = x_min + (i-1)*h
end
return x, h
end
```

The function init_FD1d_grid takes three arguments:

- x_min::Int64: the left boundary point
- x_max::Int64: the right boundary point
- N::Float64: number of grid points

The function will return x which is an array of grid points and h which is the uniform spacing between grid points. The boundary points x_{min} and x_{max} will be included in the grid points.

As an example of the usage of the function init_FD1d_grid, let's sample and plot a Gaussian function

$$\psi(x) = e^{-\alpha x^2} \tag{2.5}$$

where α is a positive number. We will sample the function within the domain $[x_{\min}, x_{\max}]$ where $x_{\min} = -5$ and $x_{\max} = 5$. The Gaussian function defined in (2.5) can be implemented as the following function.

```
function my_gaussian(x::Float64; \alpha=1.0) return exp( -\alpha*x^2 ) end
```

Note that we have set the default value of parameter α to 1.

The full Julia program is as follows.

```
using Printf
using LaTeXStrings
import PyPlot
const plt = PyPlot
plt.rc("text", usetex=true)
include("init_FD1d_grid.jl")
function my_gaussian(x::Float64; \alpha=1.0)
  return exp(-\alpha*x^2)
end
function main()
  A = -5.0
  B = 5.0
  Npoints = 8
  x, h = init_FD1d_grid( A, B, Npoints )
  @printf("Grid spacing = %f\n", h)
  @printf("\nGrid points:\n")
  for i in 1:Npoints
    @printf("%3d %18.10f\n", i, x[i])
  end
  NptsPlot = 200
  x_dense = range(A, stop=5, length=NptsPlot)
  plt.clf()
  plt.plot(x_dense, my_gaussian.(x_dense), label=L"f(x)")
  plt.plot(x, my_gaussian.(x), label=L"Sampled $f(x)$", marker="o")
  plt.legend()
  plt.tight_layout()
  plt.savefig("IMG_gaussian_1d_8pt.pdf")
end
main()
```

2.1. GRID POINTS 7

After execution, the program will print grid spacing and grid points to the standard output and also plot the function to a file named IMG_gaussian_1d_8pt.pdf You may try to experiment by changing the value of N and compare the result. The resulting plots for N=8 and N=21 are shown in Figure XXX.

Figure 2.1: Sampling a Gaussian function defined in (2.5), $\alpha=1$, two different number of grid points: N=8 (upper) and N=21 (lower). The sampled coordinates are marked by dots. The true or "continuous" function is emulated by using a dense sampling points of 200.

Note that we have used a densely-sampled points of NptsPlot=200 in the program to emulate the true or "continuous" function. The plot of densely-sampled array is not done by not showing the point marker, as opposed to the array with lower sampling points.

Exercise Try to vary the value of α and N. Make the program more sophisticated by using loop over for various values of N instead of manually changing its value in the program. You also may want to make set the saved filename of the resulting plot programmatically.

2.2 Approximating second derivative operator

Our next task is to find an approximation to the second derivative operator present in the Equation (2.1). Suppose that we have a function sampled at appropriate positions x_i as $\psi(x_i)$. How can we approximate $\psi''(x_i)$? One simple approximation that we can use is the 3-point (central) finite difference:

$$\frac{d^2}{dx^2}\psi_i = \frac{\psi_{i+1} - 2\psi_i + \psi_{i-1}}{h^2}$$
 (2.6)

where we have the following notation have been used: $\psi_i = \psi(x_i)$. Let's see we can apply this by writing out the Equation (2.6).

$$\psi_{1}'' \approx (\psi_{2} - 2\psi_{1} + \psi_{0})/h^{2}$$

$$\psi_{2}'' \approx (\psi_{3} - 2\psi_{2} + \psi_{1})/h^{2}$$

$$\psi_{3}'' \approx (\psi_{4} - 2\psi_{3} + \psi_{2})/h^{2}$$

$$\vdots$$

$$\psi_{N}'' \approx (\psi_{N+1} - 2\psi_{N} + \psi_{N-1})/h^{2}$$

In the first and the last equations, there are terms involving ψ_0 and ψ_{N+1} which are not known. Recall that we have numbered our grid from 1 to N, so ψ_0 and ψ_{N+1} are outside of our grid. However, by using the boundary equation (2.2), these quantities can be taken as zeros. So we have:

$$\psi_{1}'' \approx (\psi_{2} - 2\psi_{1})/h^{2}$$

$$\psi_{2}'' \approx (\psi_{3} - 2\psi_{2} + \psi_{1})/h^{2}$$

$$\psi_{3}'' \approx (\psi_{4} - 2\psi_{3} + \psi_{2})/h^{2}$$

$$\vdots$$

$$\psi_{N}'' \approx (-2\psi_{N} + \psi_{N-1})/h^{2}$$

This operation can be compactly expressed by using matrix-vector notation. By taking $\{\psi_i\}$ as a column vector, the second derivative operation can be expressed as matrix multiplication:

$$\{\psi''\} \approx \mathbb{D}^{(2)}\{\psi\} \tag{2.7}$$

where $\mathbb{D}^{(2)}$ is the second derivative matrix operator:

$$\mathbb{D}^{(2)} = \frac{1}{h^2} \begin{bmatrix} -2 & 1 & 0 & 0 & 0 & \cdots & 0 \\ 1 & -2 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & -2 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & -2 & 1 & 0 \\ 0 & \cdots & \cdots & 0 & 1 & -2 & 1 \\ 0 & \cdots & \cdots & 0 & 1 & -2 \end{bmatrix}$$
 (2.8)

The following Julia function can be used to initialize the matrix $\mathbb{D}^{(2)}$.

```
function build_D2_matrix_3pt( N::Int64, h::Float64 )
  mat = zeros(Float64,N,N)1
  for i = 1:N-1
    mat[i,i] = -2.0
    mat[i,i+1] = 1.0
    mat[i+1,i] = mat[i,i+1]
  end
  mat[N,N] = -2.0
  return mat/h^2
end
```

The function build_D2_matrix_3pt takes two arguments:

- N:: Int64: number of grid points
- h::Float64: the uniform grid spacing

and returns the matrix $\mathbb{D}^{(2)}$ as two dimensional array.

Before use these functions to solve Schroedinger equation, we will test the operation in Equation (2.8) for a simple function for which the second derivative can be calculated analytically. This function also should satisfy the boundary condition 2.2. We will take the Gaussian function (2.5) that we have used before. The second derivative of this Gaussian function can be calculated as

$$\psi''(x) = (-2\alpha + 4\alpha^2 x^2) e^{-\alpha x^2}$$
(2.9)

We also need to define the computational domain $[x_{\min}, x_{\max}]$ for our test. Let's choose $x_{\min} = -5$ and $x_{\max} = 5$ again as in the previous example. We can evaluate the value of function $\psi(x)$ at those points to be at the order of 10^{-11} , which is sufficiently small for our purpose.

The full Julia program that we will use is as follows.

```
using Printf
using LaTeXStrings
import PyPlot
const plt = PyPlot
plt.rc("text", usetex=true)
include("init FD1d grid.jl")
include("build_D2_matrix_3pt.jl")
function my_gaussian(x, \alpha=1.0)
  return exp(-\alpha*x^2)
end
function d2_my_gaussian(x, \alpha=1.0)
  return (-2*\alpha + 4*\alpha^2 * x^2) * \exp(-\alpha*x^2)
end
function main(N::Int64)
  x_min = -5.0
  x_max = 5.0
  x, h = init_FD1d_grid( x_min, x_max, N )
  fx = my gaussian.(x)
```

```
Ndense = 200
  x_dense = range(A, stop=B, length=Ndense)
  fx_dense = my_gaussian.(x_dense)
  d2_fx_dense = d2_my_gaussian.(x_dense)
 D2 = build_D2_matrix_3pt(N, h)
  d2_fx_3pt = D2*fx
  plt.clf()
  plt.plot(x, fx, marker="o", label=L"Sampled $f(x)$")
  plt.plot(x_dense, fx_dense, label=L"f(x)")
  plt.plot(x, d2_fx_3pt, marker="o", label=L"Approx $f''(x)$")
  plt.plot(x dense, d2 fx dense, label=L"f''(x)")
  plt.legend()
  plt.grid()
  plt.savefig("IMG_gaussian_"*string(N)*".pdf")
main(15)
main(51)
```

We have followed similar approach as we have done in the previous section for plotting. The important parts of the program are the lines:

```
D2 = build_D2_matrix_3pt(N, h)
d2_fx_3pt = D2*fx
```

where we build $\mathbb{D}^{(2)}$ matrix, represented by the variable D2 in the program, and multiply it with the vector fx to obtain an approximation to $\psi''(x)$. The results are plotted with two different values of number of grid points, N=15 and N=51, which are shown in Figure XXX.

Figure 2.2: Finite difference approximation to a Gaussian function and its second derivative with number of grid points N=15

Figure 2.3: Finite difference approximation to a Gaussian function and its second derivative with number of grid points ${\it N}=51$

2.3 Harmonic potential

The time-independent Schroedinger equation (2.1) can be expressed into the following eigenvalue problem in matrix form:

$$\mathbb{H}\{\psi\} = E\{\psi\} \tag{2.10}$$

where $\mathbb H$ is the Hamiltonian matrix and $\{\psi\}$ is a vector column representation of wave function. In finite difference representation, the Hamiltonian matrix is

$$\mathbb{H} = -\frac{1}{2}\mathbb{D}^{(2)} + \mathbb{V} \tag{2.11}$$

where $\mathbb V$ is a diagonal matrix whose elements are:

$$V_{ij} = V(x_i)\delta_{ij} \tag{2.12}$$

As an example, we will start with a simple potential with known exact solution, namely the harmonic potential:

$$V(x) = \frac{1}{2}\omega^2 x^2 \tag{2.13}$$

In Julia, we can the process of building the Hamiltonian matrix is very simple

```
x, h = init_FDld_grid(xmin, xmax, N) # grid points
D2 = build_D2_matrix_3pt(N, h) # Build 2nd derivative matrix
Vpot = pot_harmonic.(x) # Potential
Ham = -0.5*D2 + diagm( 0 => Vpot ) # Hamiltonian matrix
```

The function pot_harmonic is a function that calculate the harmonic potential

```
function pot_harmonic( x; \omega=1.0 ) return 0.5 * \omega^2 * x^2 end
```

Once the Hamiltonian matrix is built, we can solve for E and $\{\psi\}$ by using standard methods. In Julia this can be achieved by simply using the eigen function from LinearAlgebra standard library as illustrated in the following code.

```
evals, evecs = eigen( Ham )
```

The values of E or eigenvalues are stored in one-dimensional array evals and the corresponding wave functions or eigenvectors are stored by column in two-dimensional array or matrix evecs.

The complete Julia program to solve the Schroedinger equation for harmonic potential is as follows.

```
using Printf
using LinearAlgebra
using LaTeXStrings
import PyPlot
const plt = PyPlot
plt.rc("text", usetex=true)
include("init_FD1d_grid.jl")
include("build_D2_matrix_3pt.jl")
function pot_harmonic( x; \omega=1.0 )
  return 0.5 * \omega^2 * x^2
end
function main()
  xmin = -5.0
  xmax = 5.0
  N = 51
  x, h = init_FDld_grid(xmin, xmax, N)
  D2 = build_D2_matrix_3pt(N, h)
  Vpot = pot_harmonic.(x)
  Ham = -0.5*D2 + diagm(0 => Vpot)
  evals, evecs = eigen( Ham )
  # We will show the 5 lowest eigenvalues
  Nstates = 5
  @printf("Eigenvalues\n")
  \omega = 1.0
  hbar = 1.0
  @printf(" State
                                               Exact
                                                               Difference\n")
                           Approx
  for i in 1:Nstates
    E ana = (2*i - 1)*\omega*hbar/2
    @printf("%5d %18.10f %18.10f %18.10e\n", i, evals[i], E_ana, abs(evals[i]-E_ana))
  end
  # normalize the first three eigenstates
  for i in 1:3
    ss = dot(evecs[:,i], evecs[:,i])*h
    evecs[:,i] = evecs[:,i]/sqrt(ss)
  # Plot up to 3rd eigenstate
  plot_title = "N="*string(N)
  plt.plot(x, evecs[:,1], label="1st eigenstate", marker="o")
  plt.plot(x, evecs[:,2], label="2nd eigenstate", marker="o")
```

```
plt.plot(x, evecs[:,3], label="3rd eigenstate", marker="o")
plt.legend()
plt.grid()
plt.tight_layout()
plt.savefig("IMG_main_harmonic_01_"*string(N)*".pdf")
end

main()
```

The program shows five lowest approximate eigenvalues and their comparison with analytical or exact eigenvalues. A sample output from running the program is as follows.

Eigenvalues

State	Approx	Exact	Difference
1	0.4987468513	0.5000000000	1.2531486828e-03
2	1.4937215179	1.5000000000	6.2784821079e-03
3	2.4836386480	2.5000000000	1.6361352013e-02
4	3.4684589732	3.5000000000	3.1541026791e-02
5	4.4481438504	4.5000000000	5.1856149551e-02

The program will also plot three lowest resulting eigenvectors (wave functions) to a file. An example plot is show in Figure 2.4.

Figure 2.4: Eigenstates of harmonic oscillator

You can get more accurate values of eigenvalues by using higher value for grid points. This is the result if we use N=81.

Eigenvalues

-			
State	Approx	Exact	Difference
1	0.4995112405	0.5000000000	4.8875946328e-04
2	1.4975542824	1.5000000000	2.4457175928e-03
3	2.4936355672	2.5000000000	6.3644328157e-03
4	3.4877496130	3.5000000000	1.2250387024e-02
5	4.4798939398	4.5000000000	2.0106060206e-02

2.4 Higher order finite difference

To obtain higher accuracy, we can include more points in our approximation to second derivative operator. An example is by using 5-point finite-difference formula:

$$\frac{d^2}{dx^2}\psi_i = \frac{-\psi_{i+2} + 16\psi_{i+1} - 30\psi_i + 16\psi_{i-1} - \psi_{i-2}}{12h^2}$$
(2.14)

The corresponding second derivative matrix can be built using the following function.

```
function build_D2_matrix_5pt( N::Int64, h::Float64 )
   mat = zeros(Float64,N,N)
   for i = 1:N-2
        mat[i,i] = -30.0
        mat[i,i+1] = 16.0
        mat[i,i+2] = -1.0
        mat[i+1,i] = mat[i,i+1]
        mat[i+2,i] = mat[i,i+2]
   end
   #
   mat[N-1,N-1] = -30.0
   mat[N,N-1] = mat[N-2,N-1]
   mat[N,N] = -30.0
   #
   return mat/(12*h^2)
end
```

Other approximation formulas for second derivative also can be used. We have implemented 3-, 5-, 7-, 9-, and 11-points formulas.

In the following we plot the difference (approximation - exact) of second derivative of the Gaussian function for several approximation formulas using N=15 grid points.

Figure 2.5: Error of 2nd derivative approx

Program:

2.5. EXERCISES 15

```
function solve eigvals(N::Int64, D2 func)
  # Initialize the grid points
  x_min = -5.0
  x_max = 5.0
  x, h = init_FD1d_grid(x_min, x_max, N)
  # Build 2nd derivative matrix
  D2 = D2_func(N, h)
  # Potential
  Vpot = pot harmonic.(x)
  # Hamiltonian
  Ham = -0.5*D2 + diagm( 0 => Vpot )
  # Solve for the eigenvalues only
  evals = eigvals( Ham )
  return evals
end
function main()
  Npoints = 20
  funcs = [build_D2_matrix_3pt, build_D2_matrix_5pt, build_D2_matrix_7pt,
           build_D2_matrix_9pt, build_D2_matrix_11pt]
  \omega = 1.0
  hbar = 1.0
  ist = 1
  E ana = (2*ist - 1)*\omega*hbar/2
  for f in funcs
      evals = solve_eigvals(Npoints, f)
      dE = abs(evals[ist]-E_ana) # absolute error
      @printf("%20s: %18.10f %18.10e\n", string(f), evals[ist], dE)
  end
end
main()
Example result:
  build_D2_matrix_3pt:
                             0.4911851752
                                             8.8148248058e-03
  build_D2_matrix_5pt:
                             0.4992583463 7.4165366457e-04
  build_D2_matrix_7pt:
                             0.4998965249 1.0347512122e-04
  build D2 matrix 9pt:
                             0.4999802170 1.9782954165e-05
 build_D2_matrix_11pt:
                             0.4999952673 4.7326636594e-06
```

2.5 Exercises

Gaussian potential

Schroedinger equation in 2d

Now we will turn our attention to higher dimensions, i.e 2d. The time-independent Schrodinger equation in 2d can be written as:

$$\left[-\frac{1}{2}\nabla^2 + V(x, y) \right] \psi(x, y) = E \psi(x, y)$$
(3.1)

where ∇^2 is the Laplacian operator:

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \tag{3.2}$$

3.0.1 Describing grid in 2d

Now we have two directions x and y. Our approach to solving the Schroedinger equation is similar to the one we have used before in 1d, however several technical difficulties will arise.

To describe the computational grid, we now need to specify x_{max} , x_{min} for the X-domain and y_{max} , y_{min} for Y-domain. We also need to specify number of grid points in for each x and y-directions, i.e. N_x and N_y . That are quite lot of variables. For easier management, we will collect our grid related variables in one data structure or struct in Julia. A struct in Julia looks very much like C-struct. It also defines a new custom data type in Julia. Our struct definition looks like this.

```
struct FD2dGrid
    Npoints::Int64
    Nx::Int64
    Ny::Int64
    hx::Float64
    hy::Float64
    dA::Float64
    x::Array{Float64,1}
    y::Array{Float64,2}
    idx_ip2xy::Array{Int64,2}
    idx_xy2ip::Array{Int64,2}
end
```

An instance of FD2dGrid can be initialized using the following constructor function:

```
function FD2dGrid( x_domain, Nx, y_domain, Ny )
    x, hx = init_FDld_grid(x_domain, Nx)
    y, hy = init_FDld_grid(y_domain, Ny)
    dA = hx*hy
    Npoints = Nx*Ny
```

```
r = zeros(2, Npoints)
    ip = 0
    idx_ip2xy = zeros(Int64,2,Npoints)
    idx_xy2ip = zeros(Int64,Nx,Ny)
    for j in 1:Ny
        for i in 1:Nx
            ip = ip + 1
            r[1,ip] = x[i]
            r[2,ip] = y[j]
            idx_ip2xy[1,ip] = i
            idx_ip2xy[2,ip] = j
            idx_xy2ip[i,j] = ip
        end
    end
    return FD2dGrid(Npoints, Nx, Ny, hx, hy, dA, x, y, r, idx_ip2xy, idx_xy2ip)
end
```

A short explanation about the members of FD2dGrid follows.

- Npoints is the total number of grid points.
- Nx and Ny is the total number of grid points in x and y-directions, respectively.
- hx and hy is grid spacing in x and y-directions, respectively. dA is the product of hx and hy.
- x and y are the grid points in x and y-directions. The actual two dimensional grid points $r \equiv (x_i, y_i)$ are stored as two dimensional array r.
- Thw two integers arrays idx_ip2xy and idx_xy2ip defines mapping between two dimensional grids and linear grids.

As an illustration let's build a grid for a rectangular domain $x_{min} = y_{min} = -5$ and $x_{max} = y_{max} = 5$ and $N_x = 3$, $N_y = 4$. Using the above constructor for FD2dGrid:

```
Nx = 3

Ny = 4

fdgrid = FD2dGrid((-5.0,5.0), Nx, (-5.0,5.0), Ny)
```

Dividing the x and y accordingly we obtain $N_x = 3$ grid points along x-direction

```
> println(fdgrid.x) [-5.0, 0.0, 5.0] and N_y = 4 points along the y-direction 
> println(fdgrid.y) [-5.0, -1.666666666666665, 1.6666666666667, 5.0]
```

The actual grid points are stored in fdgrid.r. Using the following snippet, we can printout all of the grid points:

```
for ip = 1:fdgrid.Npoints
    @printf("%3d %8.3f %8.3f\n", ip, fdgrid.r[1,ip], fdgrid.r[2,ip])
end
```

The results are:

```
1
     -5.000
                -5.000
 2
      0.000
                -5.000
 3
      5.000
                -5.000
 4
     -5.000
                -1.667
 5
      0.000
                -1.667
 6
      5.000
                -1.667
 7
     -5.000
                 1.667
 8
      0.000
                 1.667
 9
      5.000
                 1.667
10
     -5.000
                 5.000
                 5.000
11
      0.000
12
      5.000
                 5.000
```

We also can use the usual rearrange these points in the usual 2d grid rearrangement:

```
-5.000,
          -5.000] [
                      -5.000,
                                -1.667] [
                                             -5.000,
                                                        1.667] [
                                                                   -5.000,
                                                                              5.000]
 0.000,
          -5.000] [
                       0.000,
                                -1.667] [
                                              0.000,
                                                        1.667] [
                                                                    0.000,
                                                                              5.000]
          -5.000] [
 5.000,
                       5.000,
                                -1.667] [
                                              5.000,
                                                        1.667] [
                                                                    5.000,
                                                                              5.000]
```

which can be produced from the following snippet:

```
for i = 1:Nx
    for j = 1:Ny
        ip = fdgrid.idx_xy2ip[i,j]
        @printf("[%8.3f,%8.3f] ", fdgrid.r[1,ip], fdgrid.r[2,ip])
    end
    @printf("\n")
end
```

3.0.2 Laplacian operator

Having built out 2d grid, we now turn our attention to the second derivative operator or the Laplacian in the equation 3.1. There are several ways to build a matrix representation of the Laplacian, but we will use the easiest one.

Before constructing the Laplacian matrix, there is an important observation that we should make about the second derivative matrix $\mathbb{D}^{(2)}$. We should note that the second derivative matrix contains mostly zeros. This type of matrix that most of its elements are zeros is called **sparse matrix**. In a sparse matrix data structure, we only store its non-zero elements with specific formats such as compressed sparse row/column format (CSR/CSC) and coordinate format. We have not made use of the sparsity of the second derivative matrix in the 1d case for simplicity. In the higher dimensions, however, we must make use of this sparsity, otherwise we will waste computational resources by storing many zeros. The Laplacian matrix that we will build from $\mathbb{D}^{(2)}$ is also very sparse.

Given second derivative matrix in x, $\mathbb{D}_{x}^{(2)}$, y direction, $\mathbb{D}_{x}^{(2)}$, we can construct finite difference representation of the Laplacian operator \mathbb{L} by using

$$\mathbb{L} = \mathbb{D}_{x}^{(2)} \otimes \mathbb{I}_{y} + \mathbb{I}_{x} \otimes \mathbb{D}_{y}^{(2)}$$
(3.3)

where \otimes is Kronecker product. In Julia, we can use the function kron to form the Kronecker product between two matrices A and B as kron(A,B).

The following function illustrates the above approach to construct matrix representation of the Laplacian operator.

```
function build_nabla2_matrix( fdgrid::FD2dGrid; func_1d=build_D2_matrix_3pt )
   Nx = fdgrid.Nx
```

```
hx = fdgrid.hx
Ny = fdgrid.Ny
hy = fdgrid.hy

D2x = func_ld(Nx, hx)
D2y = func_ld(Ny, hy)

∇2 = kron(D2x, speye(Ny)) + kron(speye(Nx), D2y)
return ∇2
end
```

The standard Julia library does not include definition for speye function but it can be implemented by the following definition.

```
speye(N::Int64) = sparse( Matrix(1.0I, N, N) )
```

In the Figure 3.1, an example to the approximation of 2nd derivative of 2d Gaussian function by using finite difference is shown.

Figure 3.1: Two-dimensional Gaussian function and its finite difference approximation of second derivative

The following program is used to produce the figure.

```
using Printf
using LinearAlgebra
using SparseArrays

import PyPlot
const plt = PyPlot

include("FD2dGrid.jl")
include("build_nabla2_matrix.jl")
include("supporting_functions.jl")

function my_gaussian( fdgrid::FD2dGrid; α=1.0 )
   Npoints = fdgrid.Npoints
   f = zeros(Npoints)
   for i in 1:Npoints
        x = fdgrid.r[1,i]
        y = fdgrid.r[2,i]
```

```
r2 = x^2 + y^2
    f[i] = exp(-\alpha*r2)
  end
  return f
end
function main()
  Nx = 75
  Ny = 75
  fdgrid = FD2dGrid((-5.0,5.0), Nx, (-5.0,5.0), Ny)
  ∇2 = build_nabla2_matrix( fdgrid, func_1d=build_D2_matrix_9pt )
  fg = my gaussian(fdgrid, \alpha=0.5)
  plt.clf()
  plt.surf(fdgrid.x, fdgrid.y, reshape(fg, fdgrid.Nx, fdgrid.Ny), cmap=:jet)
  plt.gca(projection="3d").view_init(30,7)
  fileplot = "IMG_gaussian2d.pdf"
  plt.savefig(fileplot)
  d2fg = \nabla 2*fg
  plt.clf()
  plt.surf(fdgrid.x, fdgrid.y, reshape(d2fg, fdgrid.Nx, fdgrid.Ny), cmap=:jet)
  plt.gca(projection="3d").view_init(30,7)
  fileplot = "IMG_d2_gaussian2d.pdf"
  plt.savefig(fileplot)
end
main()
```

3.0.3 Iterative methods for eigenvalue problem

Now that we know how to build the Laplacian matrix, we now can build the Hamiltonian matrix given some potential:

```
\nabla 2 = build_nabla2_matrix( fdgrid )
Ham = -0.5*\nabla 2 + spdiagm( 0 => Vpot )
```

Note that we have used sparse diagonal matrix for building the potential matrix by using the function spdiagm. Our next task after building the Hamiltonian matrix is to find the eigenvalues and eigenfunctions. However, note that the Hamiltonian matrix size is large. For example, if we use $N_x = 50$ and $N_y = 50$ we will end up with a Hamiltonian matrix with the size of 2500. The use eigen method to solve this eigenvalue problem is thus not practical. Actually, given enough computer memory and time, we can use the function eigen anyway to find the eigenvalue and eigenfunction of the Hamiltonian, however it is not recommended nor practical for larger problem size.

Typically, we also do not need to solve for all eigenvalue and eigenfunction pairs. We only need to solve for several eigenpairs with lowest eigenvalues. In typical density functional theory calculations, we typically solve for $N_{\text{electrons}}$ or $N_{\text{electrons}}/2$ lowest states, where $N_{\text{electrons}}$ is the number of electrons in the system.

In numerical methods, there are several methods to search for several eigenpairs of a matrix. These methods falls into the category of *partial or iterative diagonalization methods*. Several known methods are Lanczos method, Davidson method, preconditioned conjugate gradients, etc.

In this short article, we will not discuss about these methods in depth. However, we have prepared several implementation of iterative diagonalization methods for your convenience:

- diag_Emin_PCG
- diag_davidson
- diag_LOBPCG

Almost all iterative methods need a good preconditioner to function properly. In this talk, we will use several preconditioners that have been implemented in several packages in Julia such as incomplete LU and multigrid preconditioners.

Here we show an example of Julia program to solve the Schroedinger equation for two dimensional harmonic potentials. The complete program can be found in the sch_2d/main_harmonic.jl.

```
function pot harmonic(fdgrid::FD2dGrid; \omega=1.0)
  Npoints = fdgrid.Npoints
  Vpot = zeros(Npoints)
  for i in 1:Npoints
    x = fdgrid.r[1,i]
    y = fdgrid.r[2,i]
    Vpot[i] = 0.5 * \omega^2 * (x^2 + y^2)
  return Vpot
end
function main()
  Nx = 50
  Ny = 50
  fdgrid = FD2dGrid((-5.0,5.0), Nx, (-5.0,5.0), Ny)
  \nabla 2 = build_nabla2_matrix(fdgrid)
  Vpot = pot_harmonic( fdgrid )
  Ham = -0.5*\nabla 2 + spdiagm( 0 \Rightarrow Vpot )
  # Preconditioner based on inverse kinetic
  prec = ilu(-0.5*\nabla 2)
  Nstates = 10
  Npoints = Nx*Ny
  X = rand(Float64, Npoints, Nstates)
  ortho_sqrt!(X)
  evals = diag_LOBPCG!( Ham, X, prec, verbose=true )
  X = X/sqrt(fdgrid.dA) # renormalize the eigenfunctions
  @printf("\n\nEigenvalues\n")
  for i in 1:Nstates
    @printf("%5d %18.10f\n", i, evals[i])
  end
end
```

The eigenfunctions are shown in Figure 3.0.3.

Eigenvalues ($N_x = N_y = 50$):

1 0.999999862 2 1.9999998768 3 1.9999999392 2.9999992436 4 5 2.9999993054 6 2.9999997845 7 3.9999973668 3.9999976649 8 9 3.9999992565 10 3.9999998030

Energy

Energy:

$$E_{n_X+n_y} = \hbar\omega \left(n_X + n_y + 1\right) \tag{3.4}$$

Schroedinger equation in 3d

After we have considered two-dimensional Schroedinger equations, we are now ready for the extension to three-dimensional systems. In 3d, Schroedinger equation can be written as:

$$\left[-\frac{1}{2} \nabla^2 + V(\mathbf{r}) \right] \psi(\mathbf{r}) = E \psi(\mathbf{r})$$
 (4.1)

where **r** is the abbreviation to (x, y, z) and ∇^2 is the Laplacian operator in 3d:

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \tag{4.2}$$

4.0.1 Three-dimensional grid

As in the preceeding chapter, our first task is to create a representation of 3d grid points and various quantities defined on it. This task is realized using straightforward extension of FD2dGrid to FD3dGrid.

Visualization of 3d functions as isosurface map or slice of 3d array.

Introducing 3d xsf

4.0.2 Laplacian operator

$$\mathbb{L} = \mathbb{D}_{x}^{(2)} \otimes \mathbb{I}_{y} \otimes \mathbb{I}_{z} + \mathbb{I}_{x} \otimes \mathbb{D}_{y}^{(2)} \otimes \mathbb{I}_{z} + \mathbb{I}_{x} \otimes \mathbb{D}_{z}^{(2)}$$

$$(4.3)$$

Code

```
const ⊗ = kron
function build_nabla2_matrix( fdgrid::FD3dGrid; func_1d=build_D2_matrix_3pt )
    D2x = func_1d(fdgrid.Nx, fdgrid.hx)
    D2y = func_1d(fdgrid.Ny, fdgrid.hy)
    D2z = func_1d(fdgrid.Nz, fdgrid.hz)
    IIx = speye(fdgrid.Nx)
    IIy = speye(fdgrid.Ny)
    IIz = speye(fdgrid.Nz)
    ∇2 = D2x⊗IIy⊗IIz + IIx⊗D2y⊗IIz + IIx⊗IIy⊗D2z
    return ∇2
end
```

Numerical solution of Poisson equation

We will turn our attention to the Poisson equation:

$$\nabla^2 V_H(\mathbf{r}) = 4\pi \rho(\mathbf{r}) \tag{5.1}$$

Introduction to conjugate gradient problem 3d dimensional problem

Kohn-Sham equation part I

Using local potential only

Numerical solution of Kohn-Sham equation (part II)

Using nonlocal potential (pseudopotential)

Appendix A

Introduction to Julia programming language

This chapter is intended to as an introduction to the Julia programming language.

This chapter assumes familiarity with command line interface.

A.1 Installation

Go to https://julialang.org/downloads/ and download the suitable file for your platform. For example, on 64 bit Linux OS, we can download the file julia-1.x.x-linux-x86_64.tar.gz where 1.x.x referring to the version of Julia. After you have downloaded the tarball you can unpack it.

```
tar xvf julia-1.x.x-linux-x86_64.tar.gz
```

After unpacking the tarball, there should be a new folder called julia-1.x.x. You might want to put this directory under your home directory (or another directory of your preference).

A.2 Using Julia

A.2.1 Using Julia REPL

Let's assume that you have put the Julia distribution under your home directory. You can start the Julia interpreter by typing:

/home/username/julia-1.x.x/bin/julia

You should see something like this in your terminal:

\$ julia

julia>

This is called the Julia REPL (read-eval-print loop) or the Julia command prompt. You can type the Julia program and see the output. This is useful for interactive exploration or debugging the program.

The Julia code can be typed after the julia> prompt. In this way, we can write Julia code interactively.

Example Julia session

```
julia> 1.2 + 3.4
4.6

julia> sin(2*pi)
-2.4492935982947064e-16

julia> sin(2*pi)^2 + cos(2*pi)^2
1.0

Using Unicode:
julia> α = 1234;
julia> β = 3456;
julia> α * β
4264704

To exit type
julia> exit()
```

A.2.2 Julia script file

In a text file with .jl extension.

You can experiment with Julia REPL by typing julia at terminal:

We also can put the code in a text file with .jl extension and execute it with the command:

```
julia filename.jl
The following code
function say_hello(name)
    println("Hello: ", name)
end
say_hello("efefer")
```

A.3 Basic programming construct

Julia has similarities with several popular programming languages such as Julia, MATLAB, and R, to name a few.

A.4 Mathematical operators

```
if a >= 1
  println("a is larger or equal to 1")
end
```

Example code 3

```
using PGFPlotsX
using LaTeXStrings
include("init_FD1d_grid.jl")
function my_gaussian(x::Float64; \alpha=1.0)
  return exp( -\alpha * x^2 )
end
function main()
  A = -5.0
  B = 5.0
  Npoints = 8
  x, h = init_FDld_grid( A, B, Npoints )
  NptsPlot = 200
  x_dense = range(A, stop=5, length=NptsPlot)
  f = @pgf(
    Axis( \{\text{height} = "6cm", \text{width} = "10cm" \},
      PlotInc( {mark="none"}, Coordinates(x_dense, my_gaussian.(x_dense)) ),
      LegendEntry(L"f(x)"),
      PlotInc( Coordinates(x, my_gaussian.(x)) ),
      LegendEntry(L"Sampled $f(x)$"),
    )
  pgfsave("TEMP_gaussian_ld.pdf", f)
end
main()
```

Appendix B

Introduction to Octopus DFT code

Prerequisites:

- Autotools and GNU Make
- C, C++ and Fortran compilers
- Libxc

```
autoreconf --install
./configure --prefix=path_to_install
make
make install
```

Bibliography

- [1] P. Hohenberg and W. Kohn. Inhomogenous electron gas. Phys. Rev., 136:B864-871, 1964.
- [2] W Kohn and L.J. Sham. Self-consistent equations including exchange and correlation effects. *Phys. Rev.*, 140(4A):A1333–1138, 1965.
- [3] List of quantum chemistry and solid-state physics software. https://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_software.
- [4] Julia programming language. https://julialang.org/.