



# Soft Magnetic Materials and Ordinary Differential Equations:

### From Linear Circuits to Neural Network Models

### Thomas Guillod

**Dartmouth College, USA** 

IEEE MagNet Challenge Webinar May 23, 2025







## **Magnetic Material Models**



- Magnetics are a bottleneck
  - Bulky, expensive, lossy
  - Challenging design process
- Soft magnetic core material
  - Inductors, transformers, sensors, etc.
  - Datasheet: only sinusoidal and incomplete
  - Models: inaccurate (up to 100% deviation)
  - No accurate first principles model
- Better models are required



Standing package and some standing package a

[Dartmouth]

[ETHZ]



[TDK-EPCOS]



## **Magnet Challenge 1**



• **Nonlinear >** Amplitude, waveshape, frequency, temperature











# DARTMOUTH ENGINEERING Magnet Challenge 2



### Arbitrary PWM → longer waveforms with minor loops





# DARTMOUTH ENGINEERING MagNetX Dataset



### MagNetX Dataset

- 10 different materials
- Over 10GB of measurements





## MagNet Challenge 2

- Innovative models
- Accurate & versatile
- Usable for PE engineers



$$P = \frac{1}{T} \int_{0}^{T} k \left| \frac{\mathrm{d}B}{\mathrm{d}t} \right|^{\alpha} (B_{\mathrm{pkpk}})^{\beta - \alpha} \, \mathrm{d}t$$

$$P = W_{\mathrm{hyst}} f_{\mathrm{eff}},$$

$$W_{\mathrm{hyst}} = a_{1} B_{\mathrm{pkpk}} + a_{2} B_{\mathrm{pkpk}}^{2} + a_{3} B_{\mathrm{pkpk}}^{3}$$

$$f_{\mathrm{eff}} = f \left( 1 + c \left( \frac{1}{B_{\mathrm{pkpk}}} \int_{0}^{T} \left| \frac{\mathrm{d}^{2}B}{\mathrm{d}t^{2}} \right| \, \mathrm{d}t \right)^{\gamma} \right)$$

$$Model$$





**Modeling Workflow** Part I:

Part II: **Circuit-Based Differential Equation Models** 

Part III: **Neural Differential Equation Models** 

**Conclusion and Outlooks** Part IV:





# Part I: **Modeling Workflow**



## **Workflow Step 1: Dataset**



- Load the measurements
- Select the samples:
  - Select the training samples
  - Select the test samples
- **Prepare** the samples:
  - Compute the gradient of the flux density
  - Remove any offset and align the phase
  - Filter noise if required
- Save the resulting dataset

# Data used in this presentation

MagNetX: "N\_87\_5"

- EPCOS/TDK N87
- 25°C operating temp.
- 3.2 kHz rep. frequency
- 48 training samples
- 24 test samples



# **Workflow Step 2: Training**







# DARTMOUTH ENGINEERING Workflow Step 2: Training



Load the dataset

Resample the dataset

Scale the model parameters

**Split training and validation sets** 

Evaluate the model

Update param. with train. set.

Check convergence with valid. set.

**Unscale** the model parameters

Save the model parameters

For each sample in the dataset.

Unscale the model parameters

Compute a penalty for bound violations

Solve the model with the meas. dB/dt excitation

Extract the predicted value for the magnetic field

Compute the error metrics

$$err_{H} = \frac{RMS(H_{model} - H_{ref})}{RMS(H_{ref})}$$

$$\operatorname{err}_{P} = \frac{P_{\operatorname{model}} - P_{\operatorname{ref}}}{P_{\operatorname{ref}}}$$



# **Workflow Step 3: Inference**









## Part II:

# **Circuit-Based Differential Equation Models**



# DARTMOUTH ENGINEERING Circuit Model for Magnetics



### Basic equations

$$\circ I = \frac{1}{N} \cdot \int H \, \mathrm{d}l \ \Rightarrow \ I \propto H$$



- Common for dynamic systems
- Causality is enforced
- Non-periodic waveforms
- Compatible with SPICE
- Compatible with FEM







$$\frac{d\vec{y}(t)}{dt} = f\left(\vec{y}(t), \frac{dB(t)}{dt}\right)$$

$$H(t) = g\left(\vec{y}(t), \frac{\mathrm{d}B(t)}{\mathrm{d}t}\right)$$



# **Problem: Steady-State**



The MagNetX dataset contains periodic steady-state data



The initial state of the material is not known!



## **Problem: Steady-State**



The MagNetX dataset contains periodic steady-state data



Align the phase with zero crossings and wait for steady-state!



## **Problem: Computational Cost**



- Integrate **ODEs** for **thousand of time steps** with a measured excitation
- Repeat for the hundreds of signals composing the dataset
- Repeat hundred of times until the optimal parameters are found







[Oak Ridge, CC BY]

[Personal Laptop, CC BY]



# DARTMOUTH ENGINEERING JAX-Powered Computations





- Python matrix / vector / array computation library Similar to NumPy/SciPy or MATLAB
- Just-In-Time compiler, auto-vectorization, and parallelism
- Transparent usage with CPUs, GPUs, and TPUs
- Extremely powerful automatic differentiation engine
- "The Sharp Bits" pure functions, immutable arrays, etc.



## Simple JAX Example







# DARTMOUTH ENGINEERING JAX as an Ecosystem



### Neural networks:

Flax: flexible neural networks

Equinox: lightweight neural networks

Optax: first-order gradient optimizers

Leventer: scalable foundation models

### Other tools:

Optimistix: root finding, minimization, etc.

Diffrax: differential equation solvers

Lineax: linear equation solvers

BlackJAX: probabilistic sampling

• In this work: JAX, Diffrax, Equinox, Optax, and Optimistix



# DARTMOUTH ENGINEERING ODE with JAX and Diffrax



```
import jax
import jax.numpy as jnp
import diffrax as dfx
@jax.jit
def eval_ode(R, L):
  # definition of the ODE: voltage step applied to a RL network
  term = dfx.ODETerm (lambda t, i, args: (1.0 - R * i) / L)
  # solve the ODE with the specified initial value
  sol = dfx.diffeqsolve(term, dfx.Dopri5(), t0=0e-6, t1=5e-6, dt0=50e-9, y0=0.0)
  # return the final value of the current
  return sol.ys[0]
# compute the ODE solution
R = inp.array(5.0)
L = inp.array(20e-6)
i = eval ode(R, L)
# compute the derivative of the ODE solution
didR_auto = jax.grad(eval_ode, argnums=0)(R, L)
# compute the derivation with an approximation (slower, less accurate)
didR diff = (eval ode(R + 0.01, L) - eval ode(R - 0.01, L)) / 0.02
```

i = 0.14269903302192688 didR\_auto = -0.014214569702744484 didR\_diff = -0.014217197895050049

- Define a simple ODE:
  - RL step response with 1V.
  - The ODE state is the current.
  - Return the current (last step).
- Evaluate the solution of the ODE.
- Evaluate the derivative of the solution.

# DARTMOUTH ENGINEERING Simple Linear R-L Circuit



### Simplest possible circuit



$$V(t) = R \cdot i(t) + L \frac{\mathrm{d}i(t)}{\mathrm{d}t}$$

$$\frac{\mathrm{d}B(t)}{\mathrm{d}t} = r \cdot H(t) + \mu_0 \mu_r \frac{\mathrm{d}H(t)}{\mathrm{d}t}$$

- Single (linear) ordinary differential equation
  - Two free parameters (resistance and permeability)
  - Cannot model saturation behavior
  - Cannot model nonlinear losses



# DARTMOUTH ENGINEERING Simple Linear R-L Circuit



```
@eqx.filter_jit
def get_ode(t, H, param, interp):
  # extract the variables
  r_lin = param["r_lin"]
  mu lin = param["mu lin"]
  # obtain the applied excitation
  dBdt = interp(t)
  # define the permeability
  mu0 = 4 * jnp.pi * 1e-7
  # compute the dynamic term
  dHdt = (dBdt - r_lin * H) / (mu0 * mu_lin)
  return dHdt
```

• 
$$\frac{dB(t)}{dt} = r \cdot H(t) + \mu_0 \mu_r \frac{dH(t)}{dt}$$

- Define a circuit ODE.
- RL series connection.
- The ODE state is the mag. field.
- The excitation is the flux derivative.
- The excitation is interpolated.



## **Linear R-L Circuit Results**









## **Linear R-L Circuit Results**





- RMS error on the mag. field: 46%
- RMS error on the losses: 41%
- Only two parameters...
- Magnetics are non-linear...



# DARTMOUTH ENGINEERING Nonlinear Circuit Definition



### Transition to a nonlinear circuit



## Two decoupled ODEs

- $\circ$  Two resistances  $(R_i = R_i(H_i))$
- Two inductances  $(L_i = L_i(H_i))$
- Non-linear equations
- 10 free parameters





# DARTMOUTH ENGINEERING Nonlinear Circuit Results









## **Nonlinear Circuit Results**





- RMS error on the mag. field: 18%
- RMS error on the losses: 9%
- No overfitting (test set)
- Number of parameters: 2 x 5
- Parameters bounds are enforced
- Initial values: latin hypercube
- Optimizer: AdaBelief grad. descent



## **Limitations and Opportunities**



- Equation-based analytical models have potential
- Physics-based (or inspired) models
  - Minor loop splitting / decomposition
  - Steinmetz-based model (e.g. iGSE)
  - Using reluctance or permeance models
  - Landau—Lifshitz—Gilbert equation
  - Preisach Hysteresis model
  - Jiles–Atherton model
- A last warning about such models:

Physics-based material model



Fitted parameters have a physical meaning



## Some Interesting References



#### Loss Models

- K. Venkatachalam et. al., "Accurate Prediction of Ferrite Core Loss with Nonsinusoidal Waveforms using only Steinmetz Parameters", 2002, <a href="https://doi.org/10.1109/CIPE.2002.1196712">https://doi.org/10.1109/CIPE.2002.1196712</a>
- J. Mühlethaler et al., "Improved Core-Loss Calculation for Magnetic Components Employed in Power Electronic Systems", 2012, <a href="https://doi.org/10.1109/TPEL.2011.2162252">https://doi.org/10.1109/TPEL.2011.2162252</a>
- E. Stenglein et al., "Core Loss Model for Arbitrary Excitations With DC Bias Covering a Wide Frequency Range", 2021, https://doi.org/10.1109/TMAG.2021.3068188
- T. Dimier et al, "Non-Linear Material Model of Ferrite to Calculate Core Losses With Full Frequency and Excitation Scaling," 2023, <a href="https://doi.org/10.1109/TMAG.2023.3277492">https://doi.org/10.1109/TMAG.2023.3277492</a>

#### Hysteresis models

- o D. C. Jiles et al., "Theory of Ferromagnetic Hysteresis". 1984, https://doi.org/10.1016/0304-8853(86)90066-1
- H., K. Tanaka, Nakamura et al. "Calculation of Iron Loss in Soft Ferromagnetic Materials using Magnetic Circuit Model Taking Magnetic Hysteresis into Consideration", 2015, <a href="https://doi.org/10.3379/msjmag.1501R001">https://doi.org/10.3379/msjmag.1501R001</a>
- M. Luo et al., "Modeling Frequency Independent Hysteresis Effects of Ferrite Core Materials Using Permeance—Capacitance Analogy for System-Level Circuit Simulations," 2018, https://doi.org/10.1109/TPEL.2018.2809704
- G. Mörée et al., "Review of Play and Preisach Models for Hysteresis in Magnetic Materials", 2023, https://doi.org/10.3390/ma16062422





## Part III:

# **Neural Differential Equation Models**



# DARTMOUTH ENGINEERING Neural Differential Equations



### Neural ODEs

$$\frac{\mathrm{d}\vec{y}(t)}{\mathrm{d}t} = f\left(\vec{y}(t), \frac{\mathrm{d}B(t)}{\mathrm{d}t}\right)$$

$$H(t) = g\left(\vec{y}(t), \frac{\mathrm{d}B(t)}{\mathrm{d}t}\right)$$



$$\frac{d\vec{y}(t)}{dt} = \text{Neural Network}\left(\vec{y}(t), \frac{dB(t)}{dt}\right)$$

$$H(t) = \text{Neural Network}\left(\vec{y}(t), \frac{dB(t)}{dt}\right)$$

## Neural networks are defining the ODE functions

- Coupled system of nonlinear differential equations
- Very similar problem to circuit-based ODEs
- Most of the code / libraries are the same



# DARTMOUTH ENGINEERING Neural Differential Equations



- Standard multilayer perceptron (MLP) network
- Neural networks are small and shallow
- Scaling of the variables is required



#### **State dynamics: single network:**

$$\begin{bmatrix} dH_1/dt \\ dH_2/dt \\ \vdots \\ dH_n/dt \end{bmatrix} = MLP \begin{pmatrix} H_1(t) \\ H_2(t) \\ \vdots \\ H_n(t) \\ dB(t)/dt \end{pmatrix}$$

### Output functions: parallel connections:

$$H(t) = \sum_{i} H_{i}$$

### State dynamics: two networks:

$$\begin{bmatrix} \mathrm{d}H_1/\mathrm{d}t \\ \mathrm{d}H_2/\mathrm{d}t \\ \vdots \\ \mathrm{d}H_n/\mathrm{d}t \end{bmatrix} = \mathrm{MLP}_1 \left( \begin{bmatrix} |H_1(t)| \\ |H_2(t)| \\ \vdots \\ |H_n(t)| \end{bmatrix} \right) \begin{bmatrix} H_1(t) \\ H_2(t) \\ \vdots \\ H_n(t) \end{bmatrix} + \mathrm{MLP}_2 \left( \begin{bmatrix} |H_1(t)| \\ |H_2(t)| \\ \vdots \\ |H_n(t)| \end{bmatrix} \right) \mathrm{d}B(t)/\mathrm{d}t$$
 similar form 
$$\begin{cases} \frac{\mathrm{d}B(t)}{\mathrm{d}t} = r(H) \cdot H(t) + \mu_0 \mu_r(H) \frac{\mathrm{d}H(t)}{\mathrm{d}t} \\ \frac{\mathrm{d}H(t)}{\mathrm{d}t} = \frac{1}{\mu_0 \mu_r(H)} \frac{\mathrm{d}B(t)}{\mathrm{d}t} - \frac{r(H)}{\mu_0 \mu_r(H)} H(t) \end{cases}$$



# DARTMOUTH ENGINEERING Problem: Initial Parameters



- The initial random networks parameters are a bad model
- This would imply a very slow and/or unstable training





# DARTMOUTH ENGINEERING Problem: Initial Parameters



- Solution: start the training with a very short window
- Drawback: initial transient and hysteresis loop is not closed





## **Problem: Initial Parameters**



- Solution: start the training with a very short window
- Goal: slowly increase the size of the window





## **Problem: Initial Parameters**



- Solution: start the training with a very short window
- Goal: training a full period with the model in steady-state





## **Neural ODE Results**







## **Neural ODE Results**





- RMS error on the mag. field: 13%
- RMS error on the losses: 9%
- No overfitting (test set)
- Network: MLP with tanh activation
- Network size: 4 inputs and 3 outputs
- Hidden layers: 2 with 16 neurons
- Optimizer: AdaBelief grad. descent



## **Limitations and Opportunities**



### Neural ODEs

- No clear physical meaning
- Opportunity for compact models
- Compatible with existing tooling

### Endless possibilities

- Neural SDE, neural CDE, latent ODE, etc.
- System with discrete states (e.g. Preisach-based)
- Possibility to implement a physics-informed network

### Some references

- P. Kidger, "On Neural Differential Equations", 2021, https://doi.org/10.48550/arXiv.2202.02435
- P. Kidger, "Neural Differential Equations in Machine Learning", 2021, https://kidger.site/links/KltsP45n2UP5/NDE\_presentation.pdf





# **Part IV: Conclusion and Outlooks**



## What is the ideal model?



#### Parameters and dataset

- Small number of parameters
- Small dataset for the parametrization
- Robust parametrization of the model

#### Model performance

- Accurate prediction for the field and the losses
- Extrapolation outside the training/fitting range
- Predicting waveshapes that are not in the training/fitting data
- o Transition to special cases (small signal, saturation, static curves, etc.)
- Low computational cost (training and inference)

### Other qualities

- Link with physical phenomena
- Model debuggability and interpretability
- Transfer of knowledge between materials
- Possibility to extend the model (core geometry, DC bias, etc.)
- Compatible with existing tooling (SPICE, FEM, etc.)

Advantage for analytical models?

Advantage for machine learning?

Unclear advantage?



# **Python Implementation**



- Used to generate all the presented results
- Can be used as a starting point for the challenge

### Implementation features

- Training and inference of ODE models
- Management of the dataset with dataframes
- Using Python, JAX, Diffrax, Pandas, etc.
- Does not require a GPU
- Open source (MPL 2.0)

### Disclaimers

- The goal of this code is to demonstrate basic ODE models
- The implementation is neither comprehensive nor optimized
- https://github.com/otvam/magnetic\_ode\_models



## General Tips for the Challenge



### The dataset is quite large

- Don't hesitate to create a "simplified fake dataset"
- Don't hesitate to start with a subset of the dataset
- Don't hesitate to downsample / truncate the signals

#### Several factors are critical

- The model (structure, parameters, etc.)
- The training/fitting process (optimizer, scaling, etc.)
- The error metrics used as an objective

### Programming tips

- Use clear interfaces between the training and inference
- Use vectorized instructions (avoid loops and branches)
- Nice data structures for storing the results
- Make tools for displaying the results











# Thank you! Questions?

### **Slides and Python source code:**

https://github.com/otvam/magnetic\_ode\_models

### **Magnet Challenge GitHub:**

https://github.com/minjiechen/magnetchallenge-2

