Devoir à la maison n°13

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – Mines 2016 MP Maths 2 – Théorème taubérien de Hardy-Littlewood-Karamata

Dans tout le problème, I désigne l'intervalle $]0, +\infty[$.

I Une intégrale à paramètre

Pour tout $x \in \mathbb{R}$, on pose, sous réserve d'existence,

$$F(x) = \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u(u+x)}} du \qquad \text{et} \qquad K = \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}} du$$

- 1 Montrer que la fonction ψ : $u \mapsto \frac{e^{-u}}{\sqrt{u}}$ est intégrable sur I.
- **2** Déterminer les valeurs de x pour lesquelles F(x) est définie.
- 3 Montrer que la fonction F est de classe \mathcal{C}^1 sur I et exprimer F'(x) sous la forme d'une intégrale.
- 4 En déduire que pour tout $x \in I$, $xF'(x) \left(x \frac{1}{2}\right)F(x) = -K$.
- Pour tout $x \in I$, on pose $G(x) = \sqrt{x}e^{-x}F(x)$. Montrer qu'il existe une constante réelle C telle que pour tout $x \in I$, $G(x) = C K \int_0^x \frac{e^{-t}}{\sqrt{t}} dt$.
- **6** Déterminer les limites de G en 0 et $+\infty$ et en déduire la valeur de K.

II Etude de deux séries de fonctions

Dans toute cette partie, on pose $f(x) = \sum_{n=1}^{+\infty} \frac{e^{-nx}}{\sqrt{n}}$ et $g(x) = \sum_{n=0}^{+\infty} \sqrt{n}e^{-nx}$.

- $\boxed{\mathbf{7}}$ Montrer que f et g sont définies et continues sur I.
- 8 Montrer que pour tout $x \in I$, $\int_1^{+\infty} \frac{e^{-ux}}{\sqrt{u}} du \le f(x) \le \int_0^{+\infty} \frac{e^{-ux}}{\sqrt{u}} du$. En déduire un équivalent de f(x) lorsque $x \to 0$.

1

9 Montrer que la suite $\left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}} - 2\sqrt{n}\right)_{n \ge 1}$ converge.

- Démontrer que pour tout x > 0, la série $\sum_{n \ge 1} \left(\sum_{k=1}^n \frac{1}{\sqrt{k}} \right) e^{-nx}$ converge et exprimer sa somme h(x) en fonction de f(x) pour tout $x \in I$.
- En déduire un équivalent de h(x) lorsque $x \to 0$. Montrer alors que g(x) est équivalent à $\frac{\sqrt{\pi}}{2x^{3/2}}$ lorsque $x \to 0$.