

Evaluating Model Explanations without Ground Truth

Kai Rawal ⁵⁶
kaivalyarawal 45@gmail.com

Eoin Delaney eoin.delaney@tcd.ie

Zihao Fu zihao.fu@oii.oxford.ac.uk

Chris Russell chris.russell@oii.ox.ac.uk

• The same prediction can have different explanations

- The same prediction can have different explanations
- It is hard to measure which explanation is best

- The same prediction can have different explanations
- It is hard to measure which explanation is best
- AXE is a new method to measure explanation quality

- The same prediction can have different explanations
- It is hard to measure which explanation is best
- AXE is a new method to measure explanation quality
- It is intuitive, accurately detects explanation fairwashing, and can be used without ground truth explanations

- The same prediction can have different explanations
- It is hard to measure which explanation is best
- AXE is a new method to measure explanation quality
- It is intuitive, accurately detects explanation fairwashing, and can be used without ground truth explanations

Check us out on GitHub!

github.com/KaiRawal/Evaluating-Model-Explanations-without-Ground-Truth

Explaining AI Models

(Fig. 2a, Page 2)

SHAP

- + Glucose
- Pedigree Fn.

- SHAP
 - + Glucose
 - Pedigree Fn.
- LIME
 - + Glucose, BMI
 - Insulin

- SHAP
 - + Glucose
 - Pedigree Fn.
- LIME
 - + Glucose, BMI
 - Insulin
- **Gradients**
 - + Pedigree Fn.

(Fig. 1, Page 2)

- SHAP
 - + Glucose
 - Pedigree Fn.
- LIME
 - + Glucose, BMI
 - Insulin
- Gradients
 - + <u>Pedigree Fn.</u>

(Fig. 1, Page 2)

Explanation Evaluation

Explanation Evaluation

Explanation Evaluation: a scoring function of **x**, **m**, and **e**

Explanation Evaluation

Explanation Evaluation: a <u>scoring</u> function of $\underline{\mathbf{x}}$, $\underline{\mathbf{m}}$, and $\underline{\mathbf{e}}$

Evaluating Explanation Quality

- Question: So which explanation should we use?
- How can we measure which explanation is best?

Evaluating Explanation Quality

- Question: So which explanation should we use?
- How can we measure which explanation is best?
- Short Answer: Use the explanation most predictive of the model output

Three Evaluation Principles

- Question: So which explanation should we use?
- How can we measure which explanation is best?
- Long Answer: Any evaluation framework for AI explanations should follow three foundational principles:
 - local contextualisation;
 - o model relativism; and
 - on-manifold evaluation.

Principle 1: Local Contextualization

Principle 1: Local Contextualization

Explanations should reflect that models are *not constant* for all inputs

Principle 1: Local Contextualization

Explanations should reflect that models are *not constant* for all inputs

"When input x changes, the evaluation *might* change."

Principle 2: Model Relativism

Principle 2: Model Relativism

Explanations should depend on the Al model

Principle 2: Model Relativism

Explanations should depend on the Al model

"When model m changes, the evaluation should change."

Principle 3: On-Manifold Evaluation

Principle 3: On-Manifold Evaluation

Explainers that sample points in synthetic neighbourhoods should not be sensitive to off-point model behaviour

Principle 3: On-Manifold Evaluation

Explainers that sample points in synthetic neighbourhoods should not be sensitive to off-point model behaviour

"The evaluation should *not* depend on model output m(x')."

 Recall "Short" Answer: select explanation that predicts model output.

- Recall "Short" Answer: select explanation that predicts model output.
- Use a K-NN model on the subset of important features to predict model output.

- Recall "Short" Answer: select <u>explanation</u> that predicts model output.
- Use a K-NN model on the <u>subset of important</u> <u>features</u> to predict model output.

Key Idea

- Recall "Short" Answer: select <u>explanation</u> that predicts model output.
- Use a K-NN model on the <u>subset of important</u> <u>features</u> to predict model output.

Algorithm 1 Evaluating Explanation Quality with AXE_n^k

Require: Number of Features n, Number of Neighbors kDataset $\mathcal{X} = \{\mathbf{x}_i\}_{i=1}^{\nu}$, Predictions $Y_{\text{preds}} = \{y_i\}_{i=1}^{\nu}$, and Explanations $E = \{\mathbf{e}_i\}_{i=1}^{\nu}$

- 1: Initialize an empty list: $\hat{Y} \leftarrow []$
- 2: **for** each datapoint \mathbf{x}_i and explanation \mathbf{e}_i in (X, E) **do**
- Find *n* most important features: $f_{\text{imp}} \leftarrow \text{ImpFeatures}(\mathbf{e}_i, n)$
- 4: Create X_f with subset of features f_{imp} from X
- 5: Train K-NN model M_i^k with inputs \mathcal{X}_f and target Y_{preds}
- 6: Obtain prediction \hat{y}_i from M_i^k for datapoint \mathbf{x}_i
- 7: Append \hat{y}_i to \hat{Y}
- 8: end for
- 9: Return performance measure: Accuracy(\hat{Y} , Y_{preds})

(Algorithm 1, Page 5)

Proportion of Fairwashing Attacks Detected

Evaluation met

Ground-Truth based metrics are unusable

Proportion of Fairwashing Attacks Detected

(Table 2, Page 8)

- Ground-Truth based metrics are unusable
- PGI and PGU are susceptible to adversarial attacks

Proportion of Fairwashing Attacks Detected

Evaluation Method

- Ground-Truth based metrics are unusable
- PGI and PGU are susceptible to adversarial attacks
- AXE is invulnerable and perfectly detects fairwashing

Proportion of Fairwashing Attacks Detected

Evaluation Method

• **Is principled**, following local contextualisation, model relativism, and on-manifold evaluation (sec. 2.4, 2.5);

- Is principled, following local contextualisation, model relativism, and on-manifold evaluation (sec. 2.4, 2.5);
- Provides robustness to hyperparam variation (sec. 3.2);

- Is principled, following local contextualisation, model relativism, and on-manifold evaluation (sec. 2.4, 2.5);
- Provides robustness to hyperparam variation (sec. 3.2);
- Detects fairwashing in explanations (sec. 4.1);

- Is principled, following local contextualisation, model relativism, and on-manifold evaluation (sec. 2.4, 2.5);
- Provides robustness to hyperparam variation (sec. 3.2);
- Detects fairwashing in explanations (sec. 4.1);
- Has high cogency in its evaluations (sec. 4.2); &

- Is principled, following local contextualisation, model relativism, and on-manifold evaluation (sec. 2.4, 2.5);
- Provides robustness to hyperparam variation (sec. 3.2);
- Detects fairwashing in explanations (sec. 4.1);
- Has high cogency in its evaluations (sec. 4.2); &
- Public code on GitHub!

Thank You

Kaivalya Rawal, Zihao Fu, Eoin Delaney, and Chris Russell. "Evaluating Model Explanations without Ground Truth" In The 2025 ACM Conference on Fairness, Accountability, and Transparency (FAccT '25), June 23–26, 2025, Athens, Greece. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3715275.3732219

https://github.com/KaiRawal/Evaluating-Model-Explanations-without-Ground-Truth

Thank You

(paper, code, & slides)

Kaivalya Rawal, Zihao Fu, Eoin Delaney, and Chris Russell. "Evaluating Model Explanations without Ground Truth" In The 2025 ACM Conference on Fairness, Accountability, and Transparency (FAccT '25), June 23–26, 2025, Athens, Greece. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3715275.3732219

https://github.com/KaiRawal/Evaluating-Model-Explanations-without-Ground-Truth

Thank You Questions?

(paper, code, & slides)

Kaivalya Rawal, Zihao Fu, Eoin Delaney, and Chris Russell. "Evaluating Model Explanations without Ground Truth" In The 2025 ACM Conference on Fairness, Accountability, and Transparency (FAccT '25), June 23–26, 2025, Athens, Greece. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3715275.3732219

https://github.com/KaiRawal/Evaluating-Model-Explanations-without-Ground-Truth

AXE vs Prior Evaluation Metrics

Metric	Definition	Local Contextualization	Model Relativism	On-Manifold Evaluation
FA: Feature Agreement	Fraction of top-n features common between e and e *.	×	×	V
RA: Rank Agreement	Fraction of top-n features common between e and e * with the same position in respective rank orders.	×	×	~
SA: Sign Agreement	Fraction of top-n features common between e and e * with the same sign.	×	×	~
SRA: Signed Rank Agreement	Fraction of top-n features common between e and e * with the same sign and rank.	×	×	~
RC: Rank Correlation	Spearman's rank correlation coefficient for feature rankings from e and e *.	×	×	~
PRA: Pairwise Rank Agreement	Fraction of feature pairs for which relative ordering in e and e * is the same.	×	×	~
PGI: Prediction-Gap on Important Feature Perturbation	Mean absolute change in model output upon perturbing top-n most important inputs.	~	V	×
PGU*: Prediction-Gap on Unimportant Feature Perturbation	Mean absolute change in model output upon perturbing top-n most unimportant inputs.	~	V	×
AXE: (ground-truth) Agnostic eXplanation Evaluation	Predictiveness of the top-n most important inputs in recovering model output. Defined in section 3.1.	~	~	v

AXE across Hyperparameter Settings

Evaluation Cogency with AXE

