28. a.i.	Comment on the following statements				
•	(i) First ionization energy of Aluminium (Al) is lower than that of Magnesium (Mg).	5	3	3,6	4
	(ii) Ca ²⁺ has smaller ionic radius than k ⁺	5	3	3,6	4
	(OR)				
Ъ.	Discuss about the instrumentation and working of XPS with a neat sketch.	10	2	3,6	1
29. a.	Apply Nernst equation in determining the potential of a redox reaction and explain how it is useful in predicting the spontaneity of redox reactions.	10	3	4,6	2
	(OR)				
Ъ.	Explain centre of symmetry and alternating axis of symmetry with suitable examples.	10	2	4,6	3
30. a.	Construct the different conformations of n-butane and correlate it with	10	3	5,6	4
	potential energy diagram.				
	(OR)				
b.i.	Find out the mechanism followed for the hydrolysis of tertiary butyl bromide and explain.	5	4	5,6	2
ii.	Explain Dieckmann condensation with an example.	5	2	5,6	1

Page 4 of 4

Reg. No.								

B.Tech. DEGREE EXAMINATION, MAY 2022

Second Semester

18CYB101J - CHEMISTRY

	(For the candidates admitted from the academic year 2018-2019 to 2019-2020))			
Note:					
(i)	Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet over to hall invigilator at the end of 40 th minute.	t shoul	d be	han	ded
(ii)	Part - B should be answered in answer booklet.				
Time: 2½	Hours	Max.	Ma	rks:	75
	$PART - A (25 \times 1 = 25 Marks)$ Answer ALL Questions	Marks	BL	CO	PO
1.	The filling up of molecular orbitals takes place according to	1	1	1,6	1

2.	Which of the following does not ex	xist due to it's zero bond order?	1	2	1,6	
	(A) H_2^+	(B) He ₂ ⁺				

(C) He₂ (D) H₂-1 2 1,6 1

(B) Hund's rule

(D) Cahn Ingold Prelog Rule

3. CO has how many bonding electrons? (B) 6 (A) 4. (C) 8 (D) 10

1 1 1,6 1 4. According to Heisenberg, the product of uncertainity in the position and

momentum of the body is (A) Equal to h/p (B) $\geq h/4\pi$

(D) \geq E- V 1 2 1,6 1

(D) $+1.8 A_0$

5. The CFSE for a high spin d⁴ octahedral complex is (A) $-1.8 A_0$ (B) $-0.6 A_0$

1 1 2,6 1

6. Radio frequency region in the electromagnetic spectrum is meant for (B) NMR (A) Microwave

1 2 2,6 1 7. Which of the following is not IR active?

(B) OCS (A) CH_2 - CH_2 (C) H₂O (D) CO₂

(D) UV-Visible

1 1 2,6 1 8. The selection rule for vibrational transition in simple harmonic oscillation

23MA218CYB101J

(B) $\Delta J = +1$ (A) $\Delta J = \pm 1$ (C) $\Delta V = \pm 1$ (D) $\Delta V = +1$

(A) Huckel's rule

(C) Fajan's rule

(C) Equal to E-V

(C) $-1.6 A_0$

(C) IR

9	` '	drogen atom spectrum is 3) $1s \rightarrow ns$ 3) $2p \rightarrow nd$		2 2					are	Enantiomers	(B)	Diastereomers Conformers	1	2	4,6	1
	$\left[Co(NH_3)_6 \right]^{3+}$ ion is		1	2	2,6	1										
10	(A) Diamagnetic (E	B) Ferromagnetic D) Paramagnetic						21.	(A)	ich of the following compound v H ₂ N CH (CH ₃) ₂ CH ₃ -CH (OH) COOH	(B)	show optical isomerism? H ₂ N CH ₂ COOH (CH ₃) ₂ CH CHO	1	2	5,6	2,3
11	. Repeatable entity of a crystal structure is	known as	1	1	3,6	1		22) The	e potential energy of n-butane is	ninin	um for	1	1	5,6	2
1.1		B) Lattice						22.								
		,								Skew conformations		Staggared conformations				
	(C) Miller Indices (I) Unit cell							(C)	Eclipsed conformations	(D)	Gauche conformations				
12	The correction factor for pressure in state is	modified vanderwaals equation of a/v^2	1	1	3,6	1		23.	form	m cyanohydrin?		reatment of a ketone with HCN to	1	1	5,6	2
										Nucleophilic addition		Nucleophilic substitution				
	(C) a/v (I	O) v-nb							(C)	Electrophilic addition	(D)	Electrophilic substitution				
13	. For which of the following species, the (A) Ne (H	onization energy is maximum? 3) Mg ⁺	1	2	3,6	1,2		24.	_		$H_3)_5$	(ONO) Cl_2 are related to each	1	2	5,6	2
		D) Li ⁺								er as	(***)					
									(A)			Optical Isomers				
14	. According to Fajan's rule, the covalent	oond is favoured by	1	1	3,6	1			(C)	Linkage Isomers	(D)	Coordination Isomers				
		3) Large cation and Large anion											,	1	5.0	2
		Small cation and small anion						25.		ntify the reducing agent from the			1	1	5,6	2
									` '	OsO ₄	` /	PCC		27		
15	. The energy responsible to release the ele	ectron in XPS is	1	1	3,6	1			(C)	LiAlH ₄	(D)	$K_2Cr_2O_7$				
		B) Gibbs Energy														
		D) Free Energy														
	(0) 1 11111118 111118]									$PART - B (5 \times 10$	= 50	Marks)	Marks	BL	CO	PO
16	. Which statement is incorrect?		1	2	4,6	1,3				Answer ALL ()uesti	ions				
10	(A) At constant pressure (I) $\Delta H = \Delta E + P\Delta V$	3) The thermodynamic symbol for entropy is S						26. a.		rive Schrodinger equation for mula for energy.	one (dimensional box and obtain the	10	3	1,6	1
	. ,	D) For an endothermic process, ΔH							TOIT	mula for energy.						
	function	is negative								(OR)						
17	The entropy of an isolated system is all when equilibrium is reached		1	2	4,6	1,3		b.			benz	zene and explain its bonding and	10	3	1,6	3
		B) Decreases, minimum						27 3	a Dra	aw the energy level diagrams	and c	alculate CFSE for the following				
	(C) Increases, maximum (I	D) Decreases, constant	-					21. a.		ofigurations.	iiiu c	arculate CI DL 101 the 1010Willig				
			1	1	4,6	1.2			i	. d ⁵ tetrahedral, high spin			5	3	2,6	3
= 18	3. In corrosion, as a result of decay, the m		- 1	1	4,0	1,5			1 ;	i. d ⁸ Octahedral, low spin			5			
		B) Peroxides							1.	ii. d Octanediai, low spin						
	(C) Carbonation (I	D) Hydroxides								(OR)						
			1	1	4,6	1.3		h i	i Ev		for (Carbon monoxide (CO) absorbing	5	2	2,6	4
19	O. Identify the hard acid from the followin		1	1	4,0	1,5		0.1.		R region.	101	Carour monoxide (CO) ausoroning				
		3) N ₂ H ₄							111 1	iic region.						
	(C) H_2O (J	O) OH-						**	ii An	alway the NMP enactrum of Etha	nol a	nd explain the splitting of signals.	5	4	2,6	4
90							2.18	11.	u. All	aryze the twitte spectrum of Euro	noi al	nd explain the spitting of signals.				