88. Sean $x, y \in \mathbb{R}$ distintos. Demuestra que existen entornos U de x y V de y, respectivamente, tales que $U \cap V = \emptyset$. Se dice así que \mathbb{R} es un espacio de Hausdorff con la topología usual.

Solución. Denotemos $\delta := |y - x|/2$, el cual es un número real positivo dado que $x \neq y$, y consideremos los entornos dados por $U = (x - \delta, x + \delta)$ así como $V = (y - \delta, y + \delta)$.

Es claro que $x \in U$, $y \in V$ y además $U \cap V = \emptyset$ dado que en caso contrario existiría $z \in U \cap V$, de forma que $|z - x| < \delta$ y $|z - y| < \delta$; pero en virtud de la desigualdad triangular,

$$|y-x| = |(z-x) - (z-y)| \le |z-x| + |z-y| < \delta + \delta = |y-x|,$$

lo cual es absurdo. \Box

- **89.** Demuestra que si $a, b \in \mathbb{R}$, entonces:
 - (1) $\max\{a,b\} = (a+b+|a-b|)/2;$
 - (2) $\min\{a,b\} = (a+b-|a-b|)/2;$
 - (3) $\min\{a, b, c\} = \min\{\min\{a, b\}, c\}.$

Solución. (1) Supongamos que $a \ge b$, sin pérdida de generalidad; entonces,

$$\frac{a+b+|a-b|}{2} = \frac{a+b+a-b}{2} = a = \max\{a,b\},\,$$

como queríamos demostrar.

- (2) Se razona de la misma forma.
- (3) Supongamos que $c \le a, b$; entonces $c \le \min\{a, b\}$ claramente y por ende $\min\{a, b, c\} = c = \min\{\min\{a, b\}, c\}$.

Supongamos ahora que $a \le b, c$ (y se razona de manera análoga en el caso en el que $b \le a, c$). Entonces, $\min\{a,b\} = a$ y

$$\min\{\min\{a,b\},c\} = \min\{a,c\} = a = \min\{a,b,c\},\$$

como queríamos probar.

90. Sean $a, b, c \in \mathbb{R}$. Demuestra que el número «de en medio», en el sentido de orden, es

$$\min\{\max\{a,b\},\max\{b,c\},\max\{c,a\}\}.$$

Solución. Dados $a,b,c\in\mathbb{R}$, dado que el orden en \mathbb{R} es total, es decir, cualesquiera dos elementos se pueden comparar, solo puede haber ocurrir que $a\leq b\leq c,\ a\leq c\leq b,\ b\leq a\leq c,\ b\leq c\leq a,\ c\leq a\leq b$ o $c\leq b\leq a$.

Tras renombrar las variables por a', b' y c', si resulta necesario, podemos suponer sin pérdida de generalidad que $a' \le b' \le c'$, de forma que por simetría:

$$\min\{\max\{a,b\},\max\{b,c\},\max\{c,a\}\} = \min\{\max\{a',b'\},\max\{b',c'\},\max\{c',a'\}\} = \min\{b',c',c'\} = b'$$

y el número «de en medio» es éste, b', como queríamos probar.

La propiedad de completitud de los números reales.

91. Sea $A = \{x \in \mathbb{R} : x \ge 0\}$. Demuestra en detalle que el conjunto A tiene cotas inferiores, pero no cotas superiores, y que $\inf(A) = 0$.

Solución. Dado que $0 \le a$ cualquiera que sea $a \in A$, 0 es cota inferior de A y por ende todo número real negativo es también una cota inferior de A. Necesariamente inf(A) = 0, pues si $\ell > 0$ es una cota inferior, existe $a = \ell/2 \in A$ tal que $a < \ell$, con lo que ℓ no es cota inferior.

Supongamos ahora que A tiene una cota superior, $u \in \mathbb{R}$, de forma que $a \leq u$ para todo $a \in A$. Como $0 \leq a \leq u, u+1 \geq 0$ y por consiguiente $u+1 \in A$. Así, A no tiene cotas superiores.

92. Sea $A = \{a \in \mathbb{R} : a > 0\}$. ¿Tiene el conjunto A cotas inferiores? ¿Tiene A cotas superiores? ¿Existe $\inf(A)$? ¿Existe $\sup(A)$?

Solución. El conjunto A tiene cotas inferiores, más concretamente, todo número real $\ell \leq 0$ es una cota inferior pues $\ell \leq 0 < a$ cualquiera que sea $a \in A$.

Además, $\inf(A) = 0$, se deduce de la misma forma que en el Ejercicio 91.

También carece de cotas superiores, como razonamos en el Ejercicio 91, y por tanto no existe $\sup(A)$. \square

93. Sea $A = \{1/n : n \in \mathbb{N}\}$ Demuestra que $\sup(A) = 1$ e $\inf(A) = 0$.

Solución. En primer lugar, cualquiera que sea $n \in \mathbb{N}$, dado que n > 0 deducimos que 1/n > 0, y por ende 0 es una cota inferior de A.

Por otra parte, $0 \le 1/n \le 1 \ \forall n \in \mathbb{N}$, de forma que $0 \ y \ 1$ son cotas inferior y superior de A.

Por consiguiente, existen $\inf(A) \ge 0$ y $\sup(A) \le 1$.

Que $\sup(A) = 1$ es claro, pues $1 \in A$, no hay cotas superiores $\xi < 1$.

Que $\inf(A) = 0$ se deduce de la propiedad arquimediana, sabemos que 0 es cota inferior, pero ¿podría ser cota inferior $\eta > 0$?. ¡No!, porque por la Prop. Arquimediana $\exists N \in \mathbb{N}$ tal que $N > 1/\eta$, o bien $A \ni 1/N < \eta$ y entonces η no es cota inferior.

94. Sea $A = \{1 - (-1)^n / n : n \in \mathbb{N}\}$. Determina $\inf(A)$ y $\sup(A)$.

Solución. En primer lugar, si obtenemos algunos primeros valores de la sucesión, observamos que son $x_1=2,\ x_2=1/2,\ x_3=4/3,\ x_4=3/4,\ x_5=6/5,...$

Veamos que $\sup(A) = 2$ y que $\inf(A) = 1/2$.

Basta probar que 2, que se alcanza en x_1 , es cota superior. $1-(-1)^n/n \le 1+1/n \le 2$ para $n \in \mathbb{N}$.

Basta probar también que 1/2, que se alcanza en x_2 , es cota inferior:

•
$$\frac{1}{2} \le 1 - \frac{1}{n} = 1 - \frac{(-1)^n}{n}$$
 para $n \in 2\mathbb{N}$ • $\frac{1}{2} \le 1 \le 1 + \frac{1}{n} = 1 - \frac{(-1)^n}{n}$ para $n \in 2\mathbb{N} - 1$.

96. Sea A un subconjunto de \mathbb{R} que contiene una de sus cotas superiores. Demuestra que dicha cota superior es necesariamente $\sup(A)$.

Solución. Dado que el conjunto A está acotado superiormente, sabemos que existe el número real $\sup(A)$.

Supongamos que $u \in \mathbb{R}$ es una cota superior de A tal que $u \in A$.

Dado que u es cota superior de A, por la definición de supremo deducimos que $\sup(A) \leq u$.

Por otra parte, dado que $u \in A$, deducimos que $u \leq \sup(A)$. Así hemos probado que $u = \sup(A)$.

97. Sea A un subconjunto no vacío de \mathbb{R} . Demuestra que $u \in \mathbb{R}$ es una cota superior de A si y solo si para todo $t \in \mathbb{R}$, t > u implica $t \notin A$.

Solución. (\Rightarrow) Supongamos que $u \in \mathbb{R}$ es una cota superior de A y sea $t \in \mathbb{R}$ tal que t > u.

Si, razonando por reducción al absurdo, $t \in A$, esto significa que $t \le u$, lo cual contradice que t > u. Por ende, $t \notin A$, necesariamente.

(\Leftarrow) Supongamos ahora que se cumple la condición de que para todo $t \in \mathbb{R}$, t > u implica $t \notin A$ y, por reducción al absurdo, supongamos que u no es una cota superior de A.

Con esto último se tiene que existe $a \in A$ tal que u < a, pero entonces, por la condición supuesta, se sigue que $a \notin A$, lo cual es una contradicción.

98. Sea A un subconjunto no vacío de \mathbb{R} . Demuestra que para todo $n \in \mathbb{N}$ el número $\sup(A) - 1/n$ no es una cota superior de A, pero que $\sup(A) + 1/n$ es una cota superior de A.

Solución. En efecto, sea $n \in \mathbb{N}$, denotando $\varepsilon_n = 1/n$, sabemos por la definición de supremo que existe $a_n \in A$ tal que $\sup(A) - \varepsilon_n < a_n \le \sup(A)$, de forma que $\sup(A) - \varepsilon$ no es una cota superior de A.

Sin embargo, $\sup(A) + \varepsilon_n > \sup(A)$, y como $\sup(A)$ es una cota superior de A, también lo es ésta, por la transitividad del orden y la definición de cota superior.

99. Sean A y B dos subconjuntos no vacíos acotados superiormente de \mathbb{R} . Demuestra que $A \cup B$ es también acotado superiormente y que $\sup\{A \cup B\} = \sup\{\sup\{A\}, \sup\{B\}\}\}$.

Solución. Si A y B son dos subconjuntos acotados superiormente, existen cotas superiores $\xi_1, \xi_2 \in \mathbb{R}$ de A y B, respectivamente; es sencillo comprobar entonces que $\xi = \max\{\xi_1, \xi_2\}$ es cota superior de $A \cup B$, por lo que $A \cup B$ es acotado y $\sup(A \cup B)$ existe por definición de \mathbb{R} .

Por una parte, si $x \in A \cup B$, entonces tendremos que $x \le \sup A$ si $x \in A$ o $x \le \sup B$ si $x \in B$, en cualquiera de los casos, $x \le \sup \{\sup A, \sup B\}$, de forma que, dado que el supremo de $A \cup B$ es la menor de las cotas superiores, deducimos que $\sup (A \cup B) \le \sup \{\sup A, \sup B\}$.

Por otra parte, dado que $\sup(A \cup B)$ es cota superior de $A \cup B$, lo es en particular de A y de B, de forma que $a \le \sup(A \cup B)$ para todo $a \in A$ y $b \le \sup(A \cup B)$ para todo $b \in B$. Por tanto, $\sup A \le \sup(A \cup B)$ y $\sup B \le \sup(A \cup B)$, pero entonces el conjunto $\{\sup A, \sup B\}$ está acotado superiormente por $\sup(A \cup B)$ y como el supremo es la menor de las cotas superiores, $\sup\{\sup A, \sup B\} \le \sup(A \cup B)$.

Ambas desigualdades nos proporcionan la igualdad de los supremos.

100. Sea A un subconjunto acotado no vacío de \mathbb{R} y sea B un subconjunto no vacío de A. Prueba que $\inf(A) \leq \inf(B) \leq \sup(B) \leq \sup(A)$.

Solución. Observamos en primer lugar que $\sup(A)$ existe, pues A es un subconjunto acotado de los números reales, el cual es Dedekind-completo, y en particular éste es una cota superior de A, de forma que también es una cota superior de B, y por ende $\sup(B) \leq \sup(A)$. Dicha desigualdad se tiene porque $\sup(B)$ es la menor de las cotas superiores.

El mismo razonamiento nos permite concluir que $\inf(A) \leq \inf(B)$.

Que $\inf(B) \leq \sup(B)$ es claro por la definición de cotas inferior y superior: dado $b_0 \in B$ se tiene que $\inf(B) \leq b_0 \leq \sup(B)$ ya que por definición $\inf(B)$ es una cota inferior de B y $\sup(B)$ es una cota superior de B, y por la transitividad del orden se sigue que $\inf(B) \leq \sup(B)$.