Fall Semester, 2019

Exam 1

N T			
Name:			
value.			

Directions: Answer questions as directed. Please show work. Partial credit may be awarded for correct expressions given in incomplete answers. To save time, it is perfectly ok to give answers as numeric expressions without carrying out every last operation on the calculator. If the question asked for the standard error of the estimated mean of a population at x = 14 in a simple linear regression, the following response would receive full credit:

$$\widehat{SE}(\hat{\beta}_0 + 14\hat{\beta}_1) = \sqrt{16.4\left(\frac{1}{38} + \frac{(14 - 10.8)^2}{190}\right)}$$

1. (21 pts) For n=9 randomly sampled school districts, a simple linear regression model of eighth grade math score (y) on per-pupil expenditures (x, in K) was fit with partial output below. The model is

$$Y_i = \beta_0 + \beta_1 x_i + E_i \text{ with } E_i \stackrel{iid}{\sim} N(0, \sigma^2).$$

The SAS Sy							
		Analy	ysis of Variand	е			
			Sum of	Mean			
Source		DF	Squares	Square	F Value	Pr	> F
Model			172.80000	172.80000			
Error			126.00000	18.00000			
Corrected	Total	8	298.80000				
		Parameter	Standard	1			
Variable	DF	Estimate	Erro	t Value	Pr >	t	
Intercept	1	230.00000	13.24387	17.37	<.00	01	
x	1	6.00000	1.93649	3.10	0.01	74	

- (a) Report the coefficient of determination for this regression model.
- (b) Report the *p*-value and *F*-ratio from a test of $H_0: \beta_1 = 0$.
- (c) Obtain the fitted value, \hat{y}_3 for the third observation below $(x_3 = 6.8 = \overline{x})$. Also, obtain residuals for the third and last observations in the table below. Write them in the blank provided or in the space to the right.

х	У	fitted	resid
5.6	260.6	263.6	-3
6.4	262.4	268.4	-6
6.8	270.8		
7.2	279.2	273.2	6
8.0	275.0	278.0	-3
6.0	269.0	266.0	3
6.4	271.4	268.4	3
7.2	276.2	273.2	3
7.6	272.6	275.6	

- (f) The mean expenditure in the sample was $\overline{x} = 6.8$ and the estimated mean response at this value is $\widehat{\mu}(x = \overline{x}) = \overline{y}$. It can be shown that $SD(\widehat{\mu}(x = \overline{x})) = \sigma/\sqrt{n}$. Report an estimate, \widehat{SE} of this standard error.
- (g) The 97.5th percentile from the appropriate t distribution is t = 2.36. Use it, along with the \widehat{SE} term from problem (f) to construct a 95% confidence interval for the mean math score among districts who spend the average amount (\overline{x}) per pupil.
- (h) Obtain a 95% prediction interval for the grades from one such school district with $x = \overline{x}$ sampled at random.

- 2. (15 pts) A bivariate random sample $(x_1, y_1), \ldots, (x_{16}, y_{16})$ led to an observed average of $\overline{y} = 10$. The observed standard deviations were $s_x = 3$ and $s_y = 2$. The observed correlation between x and y was r = 0.6
 - (a) Report the least squares estimate of the slope in a simple linear regression of y on x.

(b) Estimate the population mean of the response y when x is one standard deviation below its average from the sample, \overline{x} , which doesn't need to be given to solve this problem.

(c) Estimate the difference in the mean estimated in part (b) and the estimated mean when $x = \overline{x}$.

- 3. (15 pts) An experiment in veterinary medicine involves N=20 cats suffering from the same degenerative hip condition. They are assigned to t=4 treatment groups at random:
 - FHO Surgery, plus physical therapy
- FHO Surgery, no physical therapy
- THR Surgery, plus physical therapy
- THR Surgery, no physical therapy

A primary outcome (y) from the surgery is leg extension on the operated side after 12 months. The means, standard deviations and variances from these four treatment groups are given below:

Analysis Variable : extension						
trt	N Obs	N	Mean	Std Dev	Variance	
FHO,PT	5	5	146.1000000	5.7706152	33.3000000	
FHO, no PT	5	5	142.0000000	6.3146655	39.8750000	
THR, PT	5	5	149.500000	3.9051248	15.2500000	
THR, no PT	5	5	143.800000	7.9733933	63.5750000	

- (a) What is the name of this experimental design?
- (b) Complete the ANOVA table below and construct an F-ratio for testing for an effect of the surgery-by-PT treatment combination:

Source	df	Sum of squares	Mean square	F-ratio
Treatments	3	157.05		
Error		608		
Total		765.05		

(c) Under the model $Y_{ij} = \mu + \tau_i + E_{ij}$ with $E_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$, what is the expectation of the error mean square: $E(MS(E)) = \underline{\hspace{1cm}}$?

4. (19 pts) Consider further the experiment with cats undergoing hip surgery. Two solution vectors for the parameters $(\mu, \tau_1, \ldots, \tau_4)$ for the model $Y_{ij} = \mu + \tau_i + E_{ij}$ are given as output below.

The GLM Pr	ocedure (top)				
	_		Standard			
Parameter		Estimate	Error	t Value	Pr > t	
Intercept		143.8000000 B	2.75680975	52.16	<.0001	
trt	FHO,PT	2.3000000 B	3.89871774	0.59	0.5635	
trt	FHO, no PT	-1.8000000 B	3.89871774	-0.46	0.6505	
trt	THR, PT	5.7000000 B	3.89871774	1.46	0.1631	
trt	THR, no PT	0.0000000 B			•	
		mal equations. Ter uely estimable.	ms whose estima	tes are fol	lowed by the l	use ette
'В'		uely estimable.		tes are fol	lowed by the l	
'B' The GLM Pr	are not uniq	uely estimable.	ms whose estima Standard Error		lowed by the l	
'B' The GLM Pr Parameter	are not uniq	uely estimable.	Standard		·	
'B' The GLM Pr Parameter Intercept	are not uniq	uely estimable. tom) Estimate	Standard Error	t Value	Pr > t	
'B' The GLM Pr Parameter Intercept trt	are not uniq cocedure (bot FHO,PT	uely estimable. tom) Estimate 146.1000000 B	Standard Error 2.75680975	t Value 53.00	Pr > t <.0001	
'B' The GLM Pr Parameter Intercept trt	are not uniq cocedure (bot FHO,PT	tom) Estimate 146.1000000 B 0.0000000 B	Standard Error 2.75680975 3.89871774	t Value 53.001.05	Pr > t <.0001 . 0.3086	
'B' The GLM Pr Parameter Intercept trt trt trt	are not unique cocedure (bote FHO,PT FHO,no PT THR,PT	tom) Estimate 146.1000000 B 0.0000000 B -4.1000000 B	Standard Error 2.75680975 3.89871774	t Value 53.001.05 0.87	Pr > t <.0001 . 0.3086 0.3961	

(a) Use this output to complete the table of estimates below:

		Parameter	
Parameterization	$ au_3 - au_4$	$\mu + \tau_3$	$ au_3$
top	5.7 - 0 = 5.7		
bottom		146.1 + 3.4 = 149.5	
Label			

(b) In the table above, write UE or NUE beneath each column to indicate whether the linear combination of parameters in that column is uniquely estimable (UE) or not (NUE).

5.	(30 points) Three measurements are made on each of $n=31$ trees randomly sampled
	from a population of interest: $y = volume$ (in cubic ft), $x_1 = girth$ (in inches),
	$x_2 = height$ (in feet). Let X denote the design matrix for a multiple linear regression
	model of y on x_1 and x_2 :

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + E_i$$

The partial output at the end of the exam was generated using the SAS code below. Use it to answer the given questions.

proc reg;

model volume=girth height/xpx i ss1 ss2;
run;

- (a) Enter here the hidden part of the output labelled AAA. _____
- (b) Enter here the hidden part of the output labelled BBB. _____
- (c) Enter here the hidden part of the output labelled CCC.
- (d) Specify the dimension of the design matrix X.
- (e) Give the matrix product $(X'X)^{-1}X'Y$

(f) Give the extra sum of squares for girth after controlling for height, $R(\beta_1|\beta_0,\beta_2)$.

(g) Give the regression sum of squares for a simple linear regression of volume on height only.

- (h) What is the squared correlation between the observed values (y_i) and the fitted values (\hat{y}_i) from the multiple linear regression? What is this coefficient called?
- (i) When the product girth \times height is added to the model, the least squares regression equation becomes

$$\hat{y} = 69.4 - 5.86x_1 - 1.3x_2 + 0.135x_1x_2$$

and the unexplained error is quantified by SS[E] = 198 on 27 df. Formulate a test comparing the additive model with the interactive model. Specify a null hypothesis H_0 and report an F-ratio, along with associated degrees of freedom.

(j) Consider trees with $x_1 = 10$. Use the fitted model from (i) to report the least squares regression line for estimated volume as a function of x_2 for these trees:

$$\mu(x_2) = \underline{\qquad} + \underline{\qquad} x_2$$

Model Crossproducts X'X X'Y Y'Y

Variable	Intercept	girth	he	ight	volume				
Intercept	AAA	410.7		2356	935.3				
girth	BBB	5736.55		24.7	13887.86				
height	2356	31524.7		0274	72962.6				
volume	935.3	13887.86		62.6	36324.99				
X'X Inverse, Parameter Estimates, and SSE									
Variable	Intercept	girth	he	ight	volume				
Intercept	4.9519429276	0.028680223	-0.06973	2257	-57.98765892				
girth	0.028680223	CCC	-0.00118		4.708160503				
height	-0.069732257	-0.001185265	0.001124		0.3392512342				
volume	-57.98765892	4.708160503	0.339251		421.92135922				
	A	nalysis of Varia	nce						
		Sum of	Mean						
Source	DF	Squares	Square	F Value	Pr > F				
Model	2	7684.16251	3842.08126	254.97	<.0001				
Error	28	421.92136	15.06862						
Corrected To	otal 30	8106.08387							
Root MSE	3.88183	R-Square	0.9480						
Dependent Me		-	0.9442						
		Parameter Esti	mates						
	Parameter	Standard	5		00 E TT 00				
Variable I)F Estimate	Error t Val	ue Pr > t	Type I	SS Type II SS				
Intercept	1 -57.98766	8.63823 -6.	71 <.0001	282	219 679.04025				
girth	1 4.70816	0.26426 17.		7581.783	133 4782.97364				
height	1 0.33925	0.13015 2.	61 0.0145	102.383	118 102.38118				