Introduction to Machine Learning NPFL 054

http://ufal.mff.cuni.cz/course/npf1054

Barbora Hladká hladka@ufal.mff.cuni.cz Martin Holub holub@ufal.mff.cuni.cz

Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Outline

- Linear regression
 - Auto data set
- Logistic regression
 - Auto data set

Machine learning process and development cycle

Machine learning as building a prediction function

- if target values are *continuous* numbers, we speak about **regression**
 - = estimating or predicting a continuous response
- if target values are <u>discrete/categorical</u>, we speak about <u>classification</u> = identifying group membership

Prediction function and its relation to the data

Idealized model of supervised learning

- x_i are feature vectors, y_i are true predictions
- prediction function h^* is the "best" of all possible hypotheses h
- **learning process** is searching for h^* , which means to search the **hypothesis** space and minimize a predefined **loss function**
- ideally, the learning process results in h^* so that predicted $\hat{y}_i = h^*(\mathbf{x}_i)$ is equal to the true target values y_i

NPFL054, 2016 Hladká & Holub Lecture 5, page 5/72

Regression

TODO I need pdf

Linear regression

Dataset Auto from the ISLR package

392 instances on the following 9 features

mpg	Miles per gallon
cylinders	Number of cylinders between 4 and 8
displacement	Engine displacement (cu. inches)
horsepower	Engine horsepower
weight	Vehicle weight (lbs.)
acceleration	Time to accelerate from 0 to 60 mph (sec.)
year	Model year (modulo 100)
origin	Origin of car (1. American, 2. European, 3. Japanese)
name	Vehicle name

Dataset Auto from the ISLR package

Linear regression

h has a form of linear function

$$h(\mathbf{x}) = \Theta_0 + \Theta_1 x_1 + \dots \Theta_m x_m = \Theta_0 + \langle \Theta_1, \dots, \Theta_m \rangle^{\mathsf{T}} \mathbf{x}$$
 (1)

Linear regression is a parametric method.

We estimate m+1 parameters (Θ) instead of fitting data with an entirely arbitrary function h.

NPFL054, 2016 Hladká & Holub Lecture 5, page 10/72

Linear regression

Notation

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}, \, \mathbf{\Theta} = \begin{pmatrix} \Theta_0 \\ \dots \\ \Theta_m \end{pmatrix}, \, \mathbf{X} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1m} \\ 1 & x_{21} & \dots & x_{2m} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n1} & \dots & x_{nm} \end{pmatrix}$$
$$\mathbf{y} = \mathbf{X}\mathbf{\Theta}$$

Simple linear regression

Simple regression is a linear regression with a single feature.

- $Attr = \{A_1\}$
- $\mathbf{x} = \langle x_1 \rangle$
- $h(\mathbf{x}) = \Theta_0 + \Theta_1 x_1$
- Θ_1 is the average change in y for a unit change in A_1 , if A_1 is a continuous feature

NPFL054, 2016 Hladká & Holub Lecture 5, page 12/72

Simple linear regression

How to choose parameters Θ_0 and Θ_1 ?

Idea: Choose them so that h(x) is close to y for training examples $\langle x, y \rangle$

How to measure closeness? E.g., least square criterion

Least square criterion

- Residual $e_i = y_i h(\mathbf{x}_i)$
- Residual sum of squares $RSS(h) = \sum_{i=1}^{n} e_i^2$

ISLR: Auto data set

NPFL054, 2016 Hladká & Holub Lecture 5, page 14/72

Simple linear regression

$$h(\mathbf{x}) = \Theta_0 + \Theta_1 x_1 \\ \mathbf{\Theta} = \langle \Theta_0, \Theta_1 \rangle$$

Loss function

$$L(\mathbf{\Theta}) = RSS = (\mathbf{X}\mathbf{\Theta} - \mathbf{y})^2 \tag{2}$$

Optimization task

$$\mathbf{\Theta}^{\star} = \operatorname{argmin}_{\mathbf{\Theta}} L(\mathbf{\Theta}) \tag{3}$$

The argmin operator will give Θ for which $L(\Theta)$ is minimal.

Simple linear regression Solving the loss function analytically

• Find the pair (Θ_0, Θ_1) that minimizes $L(\mathbf{\Theta}) = \sum_{i=1}^n (y_i - \Theta_0 - \Theta_1 \mathbf{x}_i)^2$

•
$$\frac{\partial L(\Theta)}{\partial \Theta_0} = -\sum_{i=1}^n 2(y_i - \Theta_0 - \Theta_1 \mathbf{x}_i)$$

 $-\sum_{i=1}^n 2(y_i - \Theta_0 - \Theta_1 \mathbf{x}_i) = 0 \implies \sum_{i=1}^n (y_i - \Theta_0 - \Theta_1 \mathbf{x}_i) = 0$

$$\bullet \frac{\partial L(\Theta)}{\partial \Theta_1} = -\sum_{i=1}^n 2\mathbf{x}_i (y_i - \Theta_0 - \Theta_1 \mathbf{x}_i) - \sum_{i=1}^n 2\mathbf{x}_i (y_i - \Theta_0 - \Theta_1 \mathbf{x}_i) = 0 \implies \sum_{i=1}^n \mathbf{x}_i (y_i - \Theta_0 - \Theta_1 \mathbf{x}_i) = 0$$

Using the Normal equations calculus (see below), the minimizers are

$$\Theta_1 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})},$$

$$\Theta_0 = \overline{y} - \Theta_1 \overline{x}$$

$$\Theta_1 = \frac{1}{N} \sum_{i=1}^{n} (x_i - \overline{x})$$

where
$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i, \overline{x} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x_i}$$

Simple linear regression Solving the loss function analytically

Normal Equations Calculus

Find Θ that minimizes $e = y - X\Theta$

Theorem

 Θ^{\star} is a least square solution to $\mathbf{y} = \mathbf{X}\Theta \Leftrightarrow \Theta^{\star}$ is a solution to the Normal equation $\mathbf{X}^T\mathbf{X}\Theta = \mathbf{X}^T\mathbf{y}$.

Simple linear regression Solving the loss function analytically

Normal Equations Calculus

- $\bullet \ \Theta^{\star} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$
- Thus we work with a system of (m+1) equations in (m+1) unknowns.
- The term "normal equations" derives from the fact that the solution Θ satisfies at $\mathbf{X}^{T}(\mathbf{y} \mathbf{X}\Theta) = \mathbf{0}$ where the residual vector $\mathbf{y} \mathbf{X}\Theta$ is a normal to the columns of \mathbf{X} .
- (Two non-zero vectors \mathbf{a} and \mathbf{b} are orthogonal if and only if $\mathbf{ab} = 0$.)

Simple linear regression Solving the loss function analytically

- When using the Normal equations for solving the cost function analytically one has to compute $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$
- But it is computationally expensive;-(calculating the inverse of a $(m+1)\times(m+1)$ matrix is $O(m+1)^3$ and as m increases it can take a very long time to finish.
- When m is low one can think of Normal equations as the better option for calculation Θ, however for greater values Gradient Descent Algorithm is much more faster.

Simple linear regression Gradient Descent Algorithm

Simplification: $\Theta_0 = 0$, $\Theta_1 \neq 0$

Hypothesis

$$h(\mathbf{x}) = \Theta_1 x_1$$

Hypothesis parameters

$$\Theta_1 \; (\mathbf{\Theta} = \langle 0, \Theta_1 \rangle)$$

Loss function

$$L(\mathbf{\Theta}) = RSS$$

 $\begin{array}{ll} \text{Optimization} & \Theta_1^{\star} = \mathrm{argmin}_{\Theta_1} \mathrm{L}(\Theta) \\ \text{task} & \end{array}$

Simple linear regression Gradient Descent Algorithm

$$\Theta_0=0,\,\Theta_1\neq 0$$

Simple linear regression Gradient Descent Algorithm

 $\Theta_0,\Theta_1\neq 0$

Gradient descent algorithm is an optimization algorithm to find a local minimum of a function.

1. Start with some x_0 .

2. Keep changing \mathbf{x}_i to reduce $f(\mathbf{x}_i)$ until you end up at a minimum.

- We are seeking the solution to the minimum of some function f(x). Given some initial value x_0 , we can change its value in many directions.
- If we operate in only one dimension, we can make **x** higher of lower.
- What is the best direction to minimize f? We take the **gradient** ∇f of f (the derivative along every dimension of \mathbf{x}).
- Intuitively, the gradient will give the slope of the curve at that x and its direction will point to an increase in the function. So we change x in the opposite direction to lower the function value.

Choice of the step

Choice of the step

Choice of the step

repeat until convergence {

$$\Theta_j := \Theta_j - \alpha \frac{\partial \mathbf{L}(\Theta_0, \Theta_1)}{\partial \Theta_j}, j = 0, 1$$
 (4)

(simultaneously update Θ_j for j=0 and j=1) }

 $- rac{1}{lpha}$ is a positive step-size parameter that controls how big step we'll take downhill

• If α is too large, GDA can overshoot the minimum. It may fail to converge, or even diverge.

• If α is too small, GDA can be slow.

• As we approach a local minimum, GDA automatically take smaller steps. So, no need to decrease α over time.

NPFL054, 2016 Hladká & Holub Lecture 5, page 32/72

Simple linear regression Gradient Descent Algorithm

$$\frac{\partial L(\Theta_0,\Theta_1)}{\partial \Theta_j} = \frac{\partial \sum_{i=1}^n (h(x_i) - y_i)^2}{\partial \Theta_j} = \frac{\partial \sum_{i=1}^n (\Theta_0 + \Theta_1 x_{i_1} - y_i)^2}{\partial \Theta_j}$$

•
$$j = 0$$
: $\frac{\partial L(\Theta_0, \Theta_1)}{\partial \Theta_0} = \sum_{i=1}^n (h(\mathbf{x}_i) - y_i)$

•
$$j = 1$$
: $\frac{\partial L(\Theta_0, \Theta_1)}{\partial \Theta_1} = \sum_{i=1}^n (h(\mathbf{x}_i) - y_i) x_{i_1}$

•
$$\Theta_0 := \Theta_0 - \alpha \sum_{i=1}^n (h(\mathbf{x}_i) - y_i)$$

•
$$\Theta_1 := \Theta_1 - \alpha \sum_{i=1}^n (h(\mathbf{x}_i) - y_i) x_{i_1}$$

Batch gradient descent uses all the training examples at each step.

Simple linear regression Gradient Descent Algorithm

Squared error function $L(\Theta)$ is a convex function, so there is no local optimum, just global minimum.

Assessing the accuracy of the model R^2 statistic

 R^2 measures the proportion of variance in a target value that can be explained using \mathbf{X}

- $TSS = \sum_{i=1}^{n} (y_i \overline{y})^2 \# \text{total variance in } Y$
- RSS # amount of variability left unexplained after the regression
- $R^2 = \frac{TSS RSS}{TSS} = 1 \frac{RSS}{TSS}$

Multivariate linear regression

Multivariate regression is a linear regression with multiple features.

- $\mathbf{x} = \langle x_1, x_2, ..., x_m \rangle$
- Previously $h(\mathbf{x}) = \Theta_0 + \Theta_1 x_1$
- Here

$$h(\mathbf{x}) = \Theta_0 + \Theta_1 x_1 + \dots + \Theta_m x_m \tag{5}$$

- $\langle \Theta_0, \Theta_1, ..., \Theta_m \rangle \in \mathcal{R}^{m+1}$
- Define $x_0 = 1$, so $\mathbf{x} = \langle x_0, x_1, x_2, ..., x_m \rangle$
- Θ_i is the average change in y for a unit change in A_1 holding all other features fixed, if A_1 is a continuous feature

NPFL054, 2016 Hladká & Holub Lecture 5, page 36/72

Multivariate linear regression

$$h(\mathbf{x}) = \mathbf{\Theta}^T \mathbf{x}$$

$$\mathbf{\Theta} = \langle \Theta_0, \Theta_1, \dots, \Theta_m \rangle$$

$$L(\mathbf{\Theta}) = RSS = \sum_{i=1}^{n} (h(\mathbf{x}_i) - y_i)^2$$

$$\Theta^* = \underset{\Theta}{\operatorname{argmin}} L(\Theta)$$

Multivariate linear regression Auto data set

Multivariate linear regression Gradient Descent Algorithm

Gradient of
$$f(x_1, x_2, \dots, x_m)$$
: $\nabla f(x_1, x_2, \dots, x_m) = (\underbrace{\frac{\partial f}{\partial x_1}}, \underbrace{\frac{\partial f}{\partial x_2}}, \dots, \underbrace{\frac{\partial f}{\partial x_m}})$

repeat until convergence {

$$\mathbf{\Theta}^{K+1} := \mathbf{\Theta}^{K} - \alpha \nabla \mathbf{L}(\mathbf{\Theta}^{K}), \tag{6}$$

where

$$\nabla L(\mathbf{\Theta}^{K}) = \mathbf{X}^{T}(\mathbf{X}\mathbf{\Theta}^{K} - \mathbf{y}) \tag{7}$$

}

Polynomial regression

Polynomial regression is an extension of linear regression where the relationship between features and target value is modelled as a *d*-th order polynomial.

Simple regression

$$y = \Theta_0 + \Theta_1 x_1$$

Polynomial regression

$$y = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_1^2 + \dots \Theta_d x_1^d$$

It is still a linear model with features A_1, A_1^2, \dots, A_1^d .

The linear in linear model refers to the hypothesis parameters, not to the features. Thus, the parameters $\Theta_0, \Theta_1, \dots, \Theta_d$ can be easily estimated using least squares linear regression.

Polynomial regression

Notation

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}, \ \mathbf{\Theta} = \begin{pmatrix} \Theta_0 \\ \dots \\ \Theta_d \end{pmatrix}, \ \mathbf{X} = \begin{pmatrix} 1 & x_{11} & \dots & x_{11}^d \\ 1 & x_{21} & \dots & x_{21}^d \\ \dots & \dots & \dots & \dots \\ 1 & x_{n1} & \dots & x_{n1}^d \end{pmatrix}$$
$$\mathbf{y} = \mathbf{X}\mathbf{\Theta}$$

Polynomial regression Auto data set

ISLR: Auto data set

Simple regression with a categorical feature

- assume a categorical feature with k values
- create k-1 dummy variables (DA)
- then $v_i = \Theta_0 + \Theta_1 DA_i^1 + \cdots + \Theta_{k-1} DA_i^{k-1}$
- Example:
 - mpg \sim origin

	DA_1^1	DA_2^1
American	0	0
European	1	0
Japanase	0	1

- $v_i = \Theta_0 + \Theta_1 DA_1^1 + \Theta_2 DA_2^1$
- $y_i = \Theta_0 + \Theta_1$ if the *i*-th car is European
- $y_i = \Theta_0 + \Theta_2$ if the *i*-th car is Japanese
- $v_i = \Theta_0$ if the *i*-th car is American

Interpretation

- Θ_0 as the average mpg for American cars
- \bullet Θ_1 as the average difference in mpg between European and American cars Θ_2 as the average difference in mpg between Japanese and American cars

Lecture 5, page 43/72

- $Attr = \{A_1\}$ (e.g., Pointwise mutual information)
- $Y = \{0, 1\}$

Fit the data with a linear function h

- prediction function of x
 - if $h(x) \ge 0.5$, predict 1
 - if h(x) < 0.5, predict 0

Add one more training instance

It can happen that h(x) > 1 or h(x) < 0 but we predict 0 and 1.

h has a form of sigmoid function $g(z) = \frac{1}{1+e^{-z}}$

$$h(\mathbf{x}) = g(\mathbf{\Theta}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{\Theta}^T \mathbf{x}}} = \frac{e^{\mathbf{\Theta}^T \mathbf{x}}}{1 + e^{\mathbf{\Theta}^T \mathbf{x}}}$$
(8)

Sigmoid function

•
$$g(z) = \frac{1}{1+e^{-z}}$$

•
$$\lim_{z\to+\infty} g(z)=1$$

•
$$\lim_{z\to-\infty} g(z)=0$$

• We interpret the output of h(x) as estimated probability of y=1 given x parameterized by Θ , i.e. $h(x)=\Pr(y=1|x;\Theta)$

• the ratio of the probability of success and the probability of failure odds = $\frac{h(\mathbf{x})}{1 - h(\mathbf{x})} = e^{\mathbf{\Theta}^T \mathbf{x}} \in (0, +\infty)$

• log-odds (logit) is linear in x

$$\log \frac{h(\mathbf{x})}{1 - h(\mathbf{x})} = \mathbf{\Theta}^T \mathbf{x} \in (-\infty, +\infty)$$

• recall linear regression $h(x) = \Theta^T x$

Interpretation of \Theta for continuous features

Suppose $\Theta = \langle \Theta_0, \Theta_1 \rangle$

- linear regression $h(\mathbf{x}) = \Theta_0 + \Theta_1 x_1$: Θ_1 gives an average change in a target value with one-unit change in A_1
- logistic regression $\log \frac{h(\mathbf{x})}{1-h(\mathbf{x})} = \Theta_0 + \Theta_1 x_1$: Θ_1 gives an average change in logit $h(\mathbf{x})$ with one-unit change in A_1

Interpretation of \Theta for binary features **Example:**

•
$$\log \frac{\rho_1}{1-\rho_1} = \Theta_0 + \Theta_1 * \text{gender} \Rightarrow \text{gender} = 0 \Rightarrow \frac{\rho_1}{1-\rho_1} = e^{\Theta_0}$$

- the intercept Θ_0 is the log odds for men

•
$$\log \frac{p_2}{1-p_2} = \Theta_0 + \Theta_1 * \text{gender} \Rightarrow \text{gender} = 1 \Rightarrow \frac{p_2}{1-p_2} = e^{\Theta_0 + \Theta_1}$$

• odds ratio = $\frac{p_2}{1-p_2} / \frac{p_1}{1-p_1} = e^{\Theta_1}$

- the parameter Θ_1 is the log of odds ratio between men and women

Hypothesis

$$h(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{\Theta}^T \mathbf{x}}}$$

Hypothesis parameters

$$\mathbf{\Theta} = \langle \Theta_0, \dots, \Theta_m \rangle$$

Loss function

$$L(\mathbf{\Theta}) = \sum_{i=1}^{n} y_i \log \frac{P(y_i|\mathbf{x}_i;\mathbf{\Theta}) + (1 - y_i) \log (1 - P(y_i|\mathbf{x}_i;\mathbf{\Theta}))}{(9)}$$

Optimization task

$$\begin{aligned} \mathbf{\Theta}^{\star} &= \operatorname{argmax}_{\mathbf{\Theta}} \ \operatorname{L}(\mathbf{\Theta}) \\ &= \operatorname{argmin}_{\mathbf{\Theta}} \ - \operatorname{L}(\mathbf{\Theta}) \\ &= \operatorname{argmin}_{\mathbf{\Theta}} \ \sum_{i=1}^{n} -y_{i} \log \operatorname{P}(y_{i}|\mathbf{x}_{i};\mathbf{\Theta}) - (1-y_{i}) \log(1-\operatorname{P}(y_{i}|\mathbf{x}_{i};\mathbf{\Theta})) \end{aligned}$$

The argmin operator will give Θ for which $L(\Theta)$ is minimal.

Logistic regression Estimating Θ by maximizing the likelihood

· likelihood of the data

$$\mathcal{L}(y_1,\ldots,y_n;\boldsymbol{\Theta},\mathbf{X}) = \prod_{i=1}^n \mathbf{P}(y_i|\mathbf{x_i};\boldsymbol{\Theta})$$

• log likelihood of the data

$$\ell(y_1, \dots, y_n; \boldsymbol{\Theta}, \mathbf{X}) = \log \mathcal{L}(y_1, \dots, y_n; \boldsymbol{\Theta}, \mathbf{X})$$

$$= \sum_{i=1}^n \log P(y_i | \mathbf{x}_i; \boldsymbol{\Theta})$$

$$= \sum_{i=1}^n y_i \log P(y_i | \mathbf{x}_i; \boldsymbol{\Theta}) + (1 - y_i) \log(1 - P(y_i | \mathbf{x}_i; \boldsymbol{\Theta}))$$

loss function $L(\Theta) = \ell(y_1, \dots, y_n; \Theta, X)$

prediction function of x

- $h(\mathbf{x}) = g(\mathbf{\Theta}^T \mathbf{x})$
- $g(z) \ge 0.5$ whenever $z \ge 0$ and g(z) < 0.5 whenever z < 0
 - if $h(x) \ge 0.5$, i.e. $\Theta^T x \ge 0$, predict 1
 - if $h(\mathbf{x}) < 0.5$, i.e. $\Theta^T \mathbf{x} < 0$, predict 0

Decision boundary

partitions a feature space into two sets, one for each class. Decision boundary takes a form of function h.

Hyperplane

Assume a **linear** decision boundary, called **hyperplane**, of the form

$$h(\mathbf{x}) = \mathbf{\Theta}^T x = \Theta_0 + \sum_{i=1}^m \Theta_i x_i$$

where direction of $(\Theta_1, \Theta_2, \dots, \Theta_m)$ is perpendicular to the hyperplane and Θ_0 determines position of the hyperplane with respect to the origin

Hyperplane

- Logistic regression models imply a linear decision boundary.
- A condition for instance **x** to be on the hyperplane is $h(\mathbf{x}) = \mathbf{\Theta}^T \mathbf{x} = 0$.
- Decision boundaries are the set of points with $\log \operatorname{odds} = 0$

- Predict y = 1 if $h(\mathbf{x}) \ge 0.5$, i.e. $\mathbf{\Theta}^T \mathbf{x} \ge 0$
- Predict y = 0 if $h(\mathbf{x}) < 0.5$, i.e. $\boldsymbol{\Theta}^T \mathbf{x} < 0$

Non-linear decision boundary

- Let $h(\mathbf{x}) = g(\Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + \Theta_3 x_1^2 + \Theta_4 x_2^2)$ (a higher degree polynomial)
- Assume $\Theta_0 = -1$, $\Theta_1 = 0$, $\Theta_2 = 0$, $\Theta_3 = 1$, $\Theta_4 = 1$
- Predict y = 1 if $-1 + x_1^2 + x_2^2 \ge 0$ i.e. $x_1^2 + x_2^2 \ge 1$

Non-linear decision boundary

More complicated decision boundary

Logistic regression Gradient Descent Algorithm

Loss function
$$L(\Theta) = -\sum_{i=1}^{n} y_i \log(h(\mathbf{x}_i)) + (1 - y_i) \log(1 - h(\mathbf{x}_i))$$

Optimization task $\Theta^* = \operatorname{argmin}_{\Theta} L(\Theta)$

```
Use Gradient descent algorithm
```

Repeat until convergence

$$\Theta_{j} := \Theta_{j} - \alpha \frac{\partial L(\theta)}{\partial \Theta_{i}} \tag{10}$$

(simultaneously update Θ_j for $j=1,\ldots,m$)

Logistic regression Gradient descent algorithm

```
Repeat until convergence
                                     \Theta_j := \Theta_j - \alpha \sum_{i=1}^n (h(\mathbf{x}_i) - y_i) \mathbf{x}_{ij}
                                                                                                                        (11)
(simultaneously update \Theta_i for j = 1, \dots, m)
```

Have you already meet it? Yes, see linear regression.

- linear regression $h(x) = \Theta^T x$ logistic regression $h(x) = \frac{1}{1 + e^{-\Theta^T x}}$

Logistic regression // Summary

Classification of x by h^*

- **1** Project x onto Θ^* to convert it into a real number z in the range $\langle -\infty, +\infty \rangle$
 - i.e. $z = (\mathbf{\Theta}^*)^T \mathbf{x}$
- 2 Map z to the range (0,1) using the sigmoid function $g(z) = 1/(1+e^{-z})$

One-vs-all algorithm

New instance x:

- $h(\mathbf{x}) = \Pr(y = red | \mathbf{x}; \Theta)$
- $h(\mathbf{x}) = \Pr(y = blue | \mathbf{x}; \Theta)$
- $h(\mathbf{x}) = \Pr(y = green|\mathbf{x}; \Theta)$

Classify x into class $i \in \{red, green, blue\}$ that maximizes h(x).