关于"段"的总结

贺利坚 主讲

各种段——

10000H 23 10001H 11 10002H 22 10003H 66

□基础

⑩ 物理地址=段地址×16+偏移地址

温做法

- □ 编程时,可以根据需要将一组内存单 元定义为一个段。
- 可以将起始地址为16的倍数,长度为 N(N≤64K)的一组地址连续的内存 单元,定义为一个段。
- 个 将一段内存定义为一个段,用一个段 地址指示段,用偏移地址访问段内的 单元——在程序中可以完全由程序员 安排。

□三种段

- ₾ 数据段
 - 剩 将段地址放在 DS中

他 代码段

- □ CPU将执行我们定义的代码段中的指令;

^ 栈段

- □ CPU在需要进行栈操作(push、pop)时,就 将我们定义的栈段当作栈空间来用。

综合示例: 按要求设置段并执行代码


```
DS 1000
:1000
rss
SS 1001
:1001
-rsp
SP 0010
:0010
-rcs
CS 2000
:2000
-rip
IP 0000
 e ds:0 23 11 22 66
                                              BP=0000 SI=0000 DI=0000
                                    IP=0000
                                               NU UP EI PL NZ NA PO NC
                           CS=2000
2000:0000 0000
                                [BX+SI],AL
                        ADD
                                                                     DS:0000=23
-d ds:0 f
1000:0000 23 11 22 66 00 00 00 00-00 00 00 00 00 00 00 00
-a CS:0000
2000:0000 mov bx, 1000
2000:0003 mov ds, bx
                            DS=1000 ES=073F
2000:0005 mo∨ bx, 1001
                                              SS=1001
                                                        CS=2000
2000:0008 mov ss, bx
                            2000:0003 BEDB
                                                     MOV
                                                             DS, BX
  00:000A mov sp, 10
 d ds:0 f
          22 66 23 11 90 90 90 90-90 90 90 90 90 90 90 90
```

综合示例: 三个段地址可以一样滴!

10000H	23			mov bx, 1000F
10001H	11			mov ds, bx
10002H	22			mov ss, bx
10003H	66		数据段	mov sp, 20H
			栈段	mov ax, [0]
1000FH			12072	
10010H				mov bx, [2]
•••				push ax
1001FH				push bx
10020H				pop ax
•••			代码段	pop bx
				mov [0], ax
•••				mov [2], bx

```
-rds
DS 1000
:1000
SS 1000
:1000
-rcs
CS 1000
:1000
SP 0020
:0020
-rip
IP 001F
:0020
-e ds:0 23 11 22 66
AX=6622 BX=1123 CX=0000 DX=0000 SP=0020 BP=0000 SI=0000 DI=0000
DS=1000 ES=073F SS=1000 CS=1000 IP=0020
                                            NU UP EI PL NZ NA PO NC
1000:0020 0000
                               [BX+SI],AL
                       ADD
                                                                 DS:1123=00
```