LA FONCTION CARRÉ E06

EXERCICE N°1 (Le corrigé)

Résoudre les inéquations suivantes et donner l'ensemble des solutions sous la forme d'un intervalle ou d'une réunion d'intervalle.

1)
$$(2x+3)(x-4) < 0$$

2)
$$(-3x+6)(x-2) \ge 0$$

1)

Pour résoudre (2x+3)(x-4) < 0, nous utilisons un tableau de signes :

$$2x+3 > 0 \Leftrightarrow 2x > -3 \Leftrightarrow x > -\frac{3}{2}$$

Pourquoi > ? Parce qu'on cherche où mettre les « + » dans le tableau.

$$x-4 > 0 \Leftrightarrow x > 4$$

x	$-\infty$		$-\frac{3}{2}$		4		+∞
2x+3		-	0	+		+	
x-4		-		-	0	+	
(2x+3)(x-4)		+	0	_	0	+	

En notant
$$S$$
 l'ensemble des solutions : $S = \left] -\frac{3}{2}$; $4 \left[\right]$

Pour tout
$$x$$
 appartenant à l'intervalle $-\infty$; $-\frac{3}{2}$

2x+3 est toujours strictement négatif, x-4 est toujours négatif, cela nous permet d'affirmer que la règle des signes donnera toujours le même résultat : « + ».

On peut raisonner de la même façon, sur chaque intervalle de la première ligne du tableau. C'est en cela que le tableau est utile...

Il n'y a plus qu'à lire la dernière pour trouver le(s) intervalle(s) vérifiant l'inégalité de départ.

2)

Pour résoudre, $(-3x+6)(x-2) \ge 0$ nous utilisons un tableau de signes :

$$-3x+6 > 0 \Leftrightarrow -3x > -6 \Leftrightarrow x < \frac{-6}{-3} = 2$$

$$x-2 > 0 \Leftrightarrow x > 2$$

Tiens tiens, la même valeur...

Tens tens, ia meme valeur										
	x	$-\infty$		2		+ ∞				
	-3x+6		+	0	-					
	x-2		-	0	+					
	(-3x+6)(x-2)		_	0	_					

En notant S l'ensemble des solutions : $S = \{2\}$.

On peut aussi procéder comme suit si on a pensé à factoriser. :

$$(-3x+6)(x-2) = -3(x-2)(x-2) = -3(x-2)^2$$

Or pour tout réel x, $(x-2)^2 \ge 0$ d'où $-3(x-2)^2 \le 0$

(Du coup, on sait que $(-3x+6)(x-2) \le 0$ et on veut $(-3x+6)(x-2) \ge 0$ la seule possibilité est donc (-3x+6)(x-2) = 0)

On en déduit que l'inéquation $(-3x+6)(x-2) \ge 0$ n'admet qu'une seule solution : 2