# Aplikacja mobilna do rozpoznawania węzłów żeglarskich

Mobile application for knots recognition

Autor: Natalia Nadolna

Promotor: dr hab. inż. Paweł Wachel, prof. PWr

## Przegląd technik rozpoznawania obrazów

#### Wykorzystane technologie:

- TensorFlow
- Keras
- o model: MobileNet





## Rozpoznawane klasy węzłów

1. zwykły

2. ósemka

3. prosty

4. szotowy

5. ratowniczy



6. rożkowy

7. refowy

8. flagowy

9. wyblinka



### Przygotowanie bazy zdjęć węzłów

#### Użyto 9 lin włókiennych:

- o średnica: 3-13 mm
- w różnych kolorach
- o o różnych typach splotu

#### Podział danych:

- 10% dane testowe
- 20% dane walidacyjne
- 70% dane treningowe

| Rodzaj zdjęć   | Flagowy | Ósemkowy | Prosty | Ratowniczy | Refowy | Rożkowy | Szotowy | Wyblinka | Zwykły |
|----------------|---------|----------|--------|------------|--------|---------|---------|----------|--------|
| oryginalnych   | 1 630   | 1 180    | 1 236  | 932        | 1 135  | 705     | 1 744   | 935      | 931    |
| po augmentacji | 13 040  | 9 312    | 9 880  | 7 456      | 9 080  | 5 640   | 13 952  | 7 408    | 7 376  |

## Porównanie modeli MobileNet w problemie dwuklasowym

#### Dla 10 epok:

|                  | V1     | V2     | V3Small | V3Large |
|------------------|--------|--------|---------|---------|
| Dokładność       | 0,9880 | 0,9880 | 0,9954  | 0,9944  |
| Błąd             | 0,4015 | 0,4330 | 0,4240  | 0,4113  |
| Czas uczenia [s] | 11 496 | 11 877 | 9 197   | 11 605  |

#### Dla modelu MobileNetV3Small:

| Liczba epok | Błąd   | Precyzja |
|-------------|--------|----------|
| 5           | 0,5184 | 0,0889   |
| 10          | 0,4240 | 0,9954   |
| 15          | 0,3521 | 0,9981   |

## Porównanie modeli MobileNetV3Small w problemie dwuklasowym

Ograniczenie liczby warstw i parametrów uczących:

 usunięto 4 ostatnie warstwy, trenowano ostatnie 22 warstwy

| Model       | Błąd   | Dokładność |
|-------------|--------|------------|
| Oryginalny  | 0,3521 | 0,9981     |
| Ograniczony | 0,0113 | 0,9991     |

Przebiegi funkcji błędu dla modelu oryginalnego oraz po ograniczeniu:





## Ocena poprawności

- Precyzja dla lin wykorzystanych w procesie uczenia: 99,66%
- Ocena poprawności dla lin niewykorzystywanych w procesie uczenia:

#### Liny testowe:

- o biała, statyczna, średnica: 10,5 mm
- o czerwona, półstatyczna, średnica: 10,5 mm
- o zielona, dynamiczna, średnica: 10,2 mm

Precyzja dla nowych lin: 64,71%

## Aplikacja mobilna

- Android Studio
- Java



### Ekran powitalny, rozpoznawanie zdjęć



### Lista węzłów



 $\triangleleft$ 

 $\equiv$ 



Lista węzłów

 $\equiv$ 

Aparat

 $\triangleleft$ 

Szotowy

\$1 3.00 € . . . 78



\$0 2.00 € 11 78

#### Zwykły

Węzeł zwykły (półsztyk) jest najprostszym rodzajem węzła. Jest stosowany jako węzeł zabezpieczający inny węzeł przed rozwiązaniem. Czasem stosuje się go również jako zabezpieczenie liny przed wysunięciem się z bloczka lub kipy, jednak w tym celu lepiej jest zastosować ósemkę.

#### Instrukcja:

Opis:





#### Zwykły

Węzeł zwykły (półsztyk) jest najprostszym rodzajem węzła. Jest stosowany jako węzeł zabezpieczający inny węzeł przed rozwiązaniem. Czasem stosuje się go również jako zabezpieczenie liny przed wysunięciem się z bloczka lub kipy, jednak w tym celu lepiej jest zastosować ósemkę.

#### Instrukcja:

Opis:



### Podsumowanie i wnioski

- W pracy stworzono aplikację mobilną do rozpoznawania 9 klas węzłów żeglarskich.
- Badania potwierdziły przewagę trzeciej wersji architektury MobileNet.
- Na wybór modelu MobileNetV3Small wpłynęła wysoka dokładność oraz krótszy czas uczenia sieci.
- Uzyskana teoretyczna precyzja wytrenowanej sieci wyniosła ponad 99%.
- Rzeczywista precyzja modelu uzyskana na zupełnie nowych danych testowych wyniosła 64.71%.

## Dziękuję za uwagę!

# Aplikacja mobilna do rozpoznawania węzłów żeglarskich

Mobile application for knots recognition

Natalia Nadolna