

Guide

Guía de Usuario del paquete de R #rstats (MATdatatools), Versión 0.1.0

Miguel Ángel Tarancón Morán

Catedrático de Economía Aplicada. Universidad de Castilla – La Mancha

MATdatatools Guide

Miguel-Ángel Tarancón

2025-01-15

Tabla de contenidos

1	Introdu	ucción	3
2	Funcio	ones de MATdatatools	3
3	Desca	rga e Instalación	3
	3.1 De	esde GitHub	3
	3.2 Er	n RStudio	4
4	Detalle	e de cada Función	4
	4.1 M	ATfexcel	4
	4.1.1	Uso	4
	4.1.2	Objetivo	4
	4.1.3	Argumentos	4
	4.1.4	Salida	4
	4.1.5	Ejemplo	5
	4.1.6	Resultados Esperados	5
	4.2 M	ATmv	6
	4.2.1	Uso	6
	4.2.2	Objetivo	6
	4.2.3	Argumentos	6
	4.2.4	Salida	6
	4.2.5	Ejemplo	6
	4.2.6	Resultados Esperados	6
	4.3 M	ATout	8
	4.3.1	Uso	8
	4.3.2	Objetivo	8
	4.3.3	Argumentos	8
	4.3.4	Salida	8
	4.3.5	Ejemplo	8
	136	Resultados Esperados	Q

4.4	MAT	out_Mahalanobis	11
4.4.	1	Uso	11
4.4.	2	Objetivo	11
4.4.	3	Argumentos	11
4.4.	4	Salida	11
4.4.	5	Ejemplo	11
4.4.	6	Resultados Esperados	11
4.5	MAT	describe	13
4.5.	1	Uso	13
4.5.	2	Objetivo	13
4.5.	3	Argumentos	13
4.5.	4	Salida	14
4.5.	5	Ejemplo	14
4.5.	6	Resultados Esperados	14
4.6	MAT	taf	15
4.6.	.1	Uso	15
4.6.	2	Objetivo	15
4.6.	3	Argumentos	15
4.6.	4	Salida	15
4.6.	5	Ejemplo	15
4.6.	6	Resultados Esperados	15
Doc	ume	ntación del Paquete	16
¡Em	pieza	a a explorar tus datos con MATdatatools!	17

1 Introducción

El paquete **MATdatatools** ha sido diseñado para facilitar el análisis de datos y la generación de resultados gráficos y estadísticos en R. Este paquete es una herramienta ágil y accesible, especialmente útil para estudiantes y profesionales de Administración y Dirección de Empresas que buscan una manera intuitiva de explorar, analizar y visualizar sus datos sin necesidad de profundos conocimientos de programación.

3

¿Qué ofrece MATdatatools?

- Automatización de procesos estadísticos comunes.
- Gráficos de alta calidad con interpretaciones claras.
- Análisis descriptivo univariante.

2 Funciones de MATdatatools

El paquete incluye las siguientes funciones principales:

- **MATfexcel:** Importa datos desde hojas de Excel, convirtiendo fácilmente las primeras columnas en nombres de filas.
- **MATmv:** Filtra datos con casos completos, muestra gráficamente los datos faltantes y genera un resumen.
- **MATout:** Detecta y elimina valores atípicos en una variable, proporcionando gráficos y tablas explicativas.
- MATout_Mahalanobis: Identifica valores atípicos multidimensionales basándose en la distancia de Mahalanobis.
- MATdescribe: Realiza un análisis descriptivo completo, incluyendo gráficos y estadísticos.
- MATtaf: Genera tablas de frecuencias agrupadas en intervalos y crea histogramas relacionados.

Cada función está diseñada para ser intuitiva y generar resultados listos para interpretar. El archivo de Microsoft® Excel® de los ejemplos, eolica_100_mv.xls, puede descargarse aquí.

3 Descarga e Instalación

3.1 Desde GitHub

1. Asegúrate de tener instalado el paquete devtools:

```
install.packages("devtools")
```

2. Descarga e instala el paquete desde GitHub:

```
devtools::install_github("teckel71/R_for_Economics/packages/MATdata
tools")
```

3. Carga el paquete:

```
library(MATdatatools)
```

3.2 En RStudio

- 1. Abre RStudio y ve a **Tools > Install Packages**.
- 2. Selecciona Install from GitHub y escribe:

```
teckel71/R_for_Economics/packages/MATdatatools
```

3. Haz clic en Install.

4 Detalle de cada Función

4.1 MATfexcel

4.1.1 Uso

```
MATfexcel(file_path, sheet_name, na_values = NULL, viz = FALSE)
```

4.1.2 Objetivo

Esta función carga datos desde un archivo Excel, convirtiendo la primera columna en nombres de fila y generando un resumen.

4.1.3 Argumentos

- file_path: Ruta al archivo Excel.
- sheet name: Nombre o índice de la hoja a importar.
- na values: Vector de caracteres que representan valores NA.
- viz: Si es TRUE, genera una visualización automática de las variables. Es necesario que no existan NAs.

4.1.4 Salida

- Dataframe con los datos importados.
- Siviz = TRUE, genera un objeto con visualización de las variables (<nombre_dataframe>_viz). Es necesario que no existan NAs.

4.1.5 Ejemplo

4.1.6 Resultados Esperados

• Un dataframe llamado eolica 100

```
##
                           ACTIVO
                                               FPIOS
         RES
                                  24944
##
   Min.
           : -5661.5
                                           Min.
                                                  : -77533
                       Min.
   1st Qu.:
               669.5
                       1st Qu.:
                                  34547
                                           1st Qu.:
                                                      2305
##
   Median :
              2084.5
                       Median :
                                  46950
                                           Median :
                                                     11936
                                                  : 123743
##
           : 11529.8
                                 277270
   Mean
                       Mean
                                           Mean
##
    3rd Qu.:
              3806.7
                       3rd Qu.:
                                  85610
                                           3rd Qu.:
                                                     28292
           :727548.0
                              :13492812
##
    Max.
                       Max.
                                           Max.
                                                  :6904824
##
   NA's
                       NA's
           :1
                              :1
##
##
        RENECO
                         RENFIN
                                            LIQUIDEZ
##
    Min.
           :-2.813
                     Min.
                            :-359.773
                                        Min.
                                                  0.0140
                                                :
    1st Qu.: 1.558
##
                     1st Qu.:
                                2.556
                                         1st Qu.:
                                                   0.6567
##
   Median : 4.236
                     Median : 15.326
                                        Median :
                                                  1.0650
##
   Mean
           : 5.416
                     Mean
                               17.243
                                        Mean
                                                   2.7214
##
    3rd Qu.: 7.970
                     3rd Qu.: 31.307
                                         3rd Qu.:
                                                  1.6078
           :35.262
##
                           : 588.190
                                                :128.4330
    Max.
                     Max.
                                         Max.
##
   NA's
           :2
##
##
       ENDEUDA
                          MARGEN
                                             SOLVENCIA
##
    Min. : 0.917
                      Min.
                             :-2248.157
                                           Min.
                                                  :-40.74
                                           1st Qu.: 4.71
    1st Qu.: 50.852
                      1st Qu.:
##
                                 12.316
    Median : 83.346
                      Median :
                                 26.618
                                           Median : 16.65
                                                  : 27.57
##
    Mean
           : 72.227
                      Mean
                                  3.228
                                           Mean
    3rd Qu.: 95.388
                      3rd Qu.:
                                           3rd Qu.: 45.59
                                 39.590
##
           :140.745
                             : 400.899
                                                  : 99.08
    Max.
                                           Max.
                      Max.
##
   NA's
           :2
                      NA's
                             :2
##
       APALANCA
                                           DIMENSION
##
                          MATRIZ
           :-8254.11
##
   Min.
                       Length:100
                                           Length:100
##
    1st Qu.:
              16.13
                       Class :character
                                           Class :character
   Median :
             161.97
                       Mode :character
                                           Mode :character
              345.03
##
    Mean
##
    3rd Qu.:
              623.13
##
   Max.
           :12244.35
```

4.2 MATmv

4.2.1 Uso

MATmv(dataframe, columnas)

4.2.2 Objetivo

Selecciona variables de un dataframe, identifica casos completos y genera un resumen de valores faltantes.

4.2.3 Argumentos

- dataframe: El dataframe que se desea analizar.
- columnas: Las columnas (variables) que se desean evaluar, separadas por comas (sin comillas). Si no se especifican las variables, se procesarán todas las variables del dataframe.

4.2.4 Salida

- Un nuevo dataframe con los casos completos de las columnas seleccionadas.
- Una lista con:
 - Tabla de valores faltantes.
 - Gráfico de valores ausentes.

4.2.5 Ejemplo

MATmv(eolica_100, RENECO, ACTIVO, RES, RENFIN, FPIOS, MARGEN)

4.2.6 Resultados Esperados

- 1. Un dataframe llamado eolica_100_sm con los casos completos en las variables seleccionadas.
- 2. Una lista eolica_100_sm_info que contiene:
 - Gráfico que visualiza los valores faltantes.
 - Tabla con los casos faltantes.

```
RES
                          ACTIVO
                                              FPIOS
##
##
   Min.
          : -5661.5
                      Min.
                                 24944
                                         Min.
                                                 : -77533
   1st Qu.:
                      1st Qu.:
                                         1st Qu.:
              739.6
                                 34249
                                                    2380
##
                                         Median : 11936
##
   Median : 2114.7
                      Median :
                                 46653
         : 12080.6
##
   Mean
                      Mean
                                285091
                                         Mean
                                                 : 128818
                                         3rd Qu.: 27991
   3rd Qu.:
                      3rd Qu.:
             3844.2
                                 83091
##
   Max.
          :727548.0
                      Max.
                             :13492812
                                                 :6904824
                                         Max.
##
```

```
RENECO
                                            LIQUIDEZ
##
                         RENFIN
##
    Min.
           :-2.813
                     Min.
                            :-359.773
                                        Min.
                                                   0.0140
                     1st Qu.:
    1st Qu.: 1.558
                                2.212
                                         1st Qu.:
                                                   0.6675
    Median : 4.236
##
                     Median :
                               15.924
                                        Median :
                                                   1.0795
##
    Mean
           : 5.478
                     Mean
                               17.906
                                        Mean
                                                   2.8401
    3rd Qu.: 8.107
                     3rd Qu.: 34.167
##
                                         3rd Qu.:
                                                   1.6350
##
         :35.262
                           : 588.190
                                                :128.4330
    Max.
                     Max.
                                        Max.
##
##
       ENDEUDA
                          MARGEN
                                             SOLVENCIA
##
    Min. : 0.917
                      Min.
                             :-2248.157
                                          Min.
                                                  :-40.745
    1st Qu.: 54.406
##
                      1st Qu.:
                                 12.793
                                           1st Qu.: 4.779
##
    Median: 83.346
                      Median :
                                 27.638
                                           Median : 16.653
           : 72.002
                                                  : 27.773
##
    Mean
                      Mean
                                  9.393
                                           Mean
                      3rd Qu.:
                                           3rd Qu.: 43.812
##
    3rd Qu.: 95.289
                                 41.264
##
    Max.
           :140.745
                      Max.
                             : 400.899
                                           Max.
                                                  : 99.082
##
    NA's
           :2
##
##
       APALANCA
                          MATRIZ
                                           DIMENSION
##
    Min.
          :-8254.11
                       Length:94
                                           Length:94
    1st Qu.:
                       Class :character
##
              25.71
                                          Class :character
    Median :
                       Mode :character
                                           Mode :character
             223.21
##
    Mean
              378.36
##
    3rd Qu.:
              670.30
           :12244.35
##
    Max.
```

eolica_100_sm_info\$grafico_vis_miss

eolica_100_sm_info\$tabla_na

Casos con datos faltantes						
	RENECO	ACTIVO	RES	RENFIN	FPIOS	MARGEN
Viesgo Renovables SL.	NA	269730.00	4609.000	3.200	177707.000	11.818
Biovent Energia SA	4.551	183899.00	NA	11.952	70033.000	22.792
Sargon Energias SLU	NA	85745.00	-2216.000	26.900	-10985.000	-615.625
Parc Eolic Sant Antoni SL	1.361	69654.00	668.000	9.746	9727.000	NA
Eolica La Brujula SA	7.295	42146.98	2306.062	14.174	21694.791	NA
La Caldera Energia Burgos SL	2.643	NA	511.304	-24.857	-2752.605	14.448

4.3 MATout

4.3.1 Uso

MATout(data, variable)

4.3.2 Objetivo

Detectar valores atípicos unidimensionales basados en el rango intercuartílico (IQR).

4.3.3 Argumentos

- data: El dataframe que contiene los datos.
- variable: La variable numérica a analizar (sin comillas).

4.3.4 Salida

- Identifica valores atípicos y los muestra en un boxplot.
- Filtra los datos sin valores atípicos.

4.3.5 Ejemplo

MATout(data = eolica_100_sm, variable = RENECO)

4.3.6 Resultados Esperados

- 1. Un dataframe llamado eolica_100_sm_so con los datos filtrados.
- 2. Una lista eolica_100_sm_so_info que contiene:
 - o Box-Plot de la variable analizada.
 - o Tabla de valores atípicos.


```
## RES ACTIVO FPIOS
   Min. : -5661.5 Min. : 24944
                                   Min. : -77533
##
   1st Qu.: 718.8
                   1st Qu.: 34437
                                   1st Qu.: 2305
   Median : 2016.7
                   Median : 46653
                                   Median : 10870
##
   Mean : 12109.0 Mean : 290312
                                   Mean : 131112
   3rd Qu.: 3666.9 3rd Qu.: 84061
                                   3rd Qu.: 28292
##
   Max. :727548.0 Max. :13492812
##
                                   Max. :6904824
##
##
    RENECO
                  RENFIN
                                  LIQUIDEZ
##
   Min. :-2.813
                 Min. :-359.773
                                 Min. : 0.0140
##
   1st Qu.: 1.421
                 1st Qu.: 1.951
                                 1st Qu.: 0.6915
   Median : 4.144
                 Median : 15.460
                                 Median : 1.1115
   Mean : 4.977
                 Mean : 17.078
##
                                 Mean : 2.8952
   3rd Qu.: 7.904
                 3rd Qu.: 33.163
                                 3rd Qu.: 1.6567
##
   Max. :15.882
                 Max. : 588.190
                                 Max. :128.4330
##
##
    ENDEUDA
                    MARGEN
                                    SOLVENCIA
                 Min. :-2248.157 Min. :-40.74
##
   Min. : 0.917
   1st Qu.: 56.187
                 1st Qu.: 12.493 1st Qu.: 4.71
                  Median : 27.409
                                   Median : 16.35
##
   Median : 83.648
   Mean : 72.646
                  Mean : 8.631
                                   Mean : 27.14
                  3rd Qu.: 39.580
                                   3rd Qu.: 43.80
##
   3rd Ou.: 95.388
                  Max. : 400.899
##
   Max. :140.745
                                   Max. : 99.08
   NA's :2
##
##
##
    APALANCA
                     MATRIZ
                                   DIMENSION
   Min. :-8254.11 Length:92
##
                                  Length:92
   1st Qu.: 26.17 Class :character Class :character
   Median : 233.75
                   Mode :character Mode :character
##
   Mean : 385.76
  3rd Qu.: 693.49
##
## Max. :12244.35
```


eolica_100_sm_so_info\$Outliers_Table

Casos considerados outliers					
	RENECO				
Molinos Del Ebro SA	35.262				
Sierra De Selva SL	21.761				

4.4 MATout_Mahalanobis

4.4.1 Uso

MATout Mahalanobis(data, variables)

4.4.2 Objetivo

Usa la distancia de Mahalanobis para detectar y eliminar outliers multivariados en un conjunto de variables.

4.4.3 Argumentos

- data: El dataframe que contiene los datos.
- variables: Variables a incluir en el análisis (sin comillas, separadas por comas).

4.4.4 Salida

- Un dataframe sin outliers (<nombre_original>_so).
- Una lista con:
 - o Tabla de outliers detectados.
 - Boxplot de distancias de Mahalanobis.

4.4.5 Ejemplo

```
MATout_Mahalanobis(data = eolica_100_sm, RENECO, ACTIVO, RES, RENFIN,
FPIOS, MARGEN)
```

4.4.6 Resultados Esperados

- 1. Un dataframe llamado eolica_100_sm_so con los datos filtrados.
- 2. Una lista eolica_100_sm_so_info que contiene:
 - o Tabla de valores atípicos.
 - o Gráficos de las distancias de Mahalanobis.

```
RES
                        ACTIVO
                                         FPIOS
##
##
   Min.
          :-5661.5
                    Min.
                          : 24944
                                      Min.
                                            :-77533
   1st Qu.: 650.7
                    1st Qu.: 33607
                                      1st Qu.: 2842
   Median : 1949.0
                    Median : 43998
                                      Median : 10980
                                      Mean : 28365
   Mean : 3253.1
                    Mean : 89534
  3rd Qu.: 3497.5
                    3rd Qu.: 79873
                                      3rd Qu.: 25995
##
##
   Max. :67033.0
                    Max. :1275939
                                      Max. :726783
##
```

```
RENECO
##
                        RENFIN
                                         LIQUIDEZ
##
          :-2.813
                    Min.
                          :-165.348
                                      Min. : 0.029
   Min.
   1st Qu.: 1.424
                    1st Qu.:
                              6.904
                                      1st Qu.:
                                               0.690
##
   Median : 4.237
                    Median : 16.684
                                      Median :
                                               1.177
##
   Mean : 5.236
                    Mean
                         : 19.599
                                      Mean
                                           : 3.129
   3rd Qu.: 8.560
                    3rd Qu.: 34.669
                                      3rd Qu.: 1.648
##
##
   Max. :15.882
                    Max. : 207.801
                                      Max.
                                           :128.433
##
##
      ENDEUDA
                        MARGEN
                                        SOLVENCIA
##
   Min. : 0.917
                    Min.
                            :-302.03
                                             :-40.745
                                      Min.
   1st Qu.: 56.193
                    1st Qu.: 11.66
##
                                      1st Qu.: 5.981
##
   Median : 83.098
                    Median : 28.52
                                      Median : 16.901
          : 72.071
                                      Mean : 27.670
##
   Mean
                    Mean
                          : 34.10
                                      3rd Qu.: 43.796
##
   3rd Qu.: 94.059
                     3rd Qu.: 42.02
                                      Max. : 99.082
##
   Max.
          :140.745
                    Max. : 400.90
##
   NA's
          :2
##
##
      APALANCA
                        MATRIZ
                                         DIMENSION
##
   Min. :-7770.00
                      Length:81
                                        Length:81
   1st Qu.:
##
            31.93
                     Class :character
                                        Class :character
                     Mode :character
                                        Mode :character
   Median : 239.37
   Mean : 435.09
##
##
   3rd Qu.: 684.22
   Max. : 8049.39
##
```

eolica_100_sm_so_info\$Boxplot

eolica_100_sm_so_info\$Outliers_Table

	Mahalanobis_Distance	RENECO	ACTIVO	RES	RENFIN	FPIOS	MARGEN
Holding De Negocios De GAS SL.	91.048060	5.264	13492812.00	727548.0000	10.287	6904824.0000	91.152
Global Power Generation SA.	72.365163	1.393	2002458.00	39995.0000	1.603	1740487.0000	22.403
Naturgy Renovables SLU	69.684700	1.959	1956869.00	42737.0000	12.043	318475.0000	20.442
Corporacion Acciona Eolica SL	8.471773	4.562	864606.00	29592.0000	28.990	136064.0000	20.091
Saeta Yield SA.	16.650544	0.360	796886.38	2084.4760	0.432	665319.5560	16.258
Parque Eolico Santa Catalina SL	15.261169	4.053	147742.52	3645.2780	-359.773	-1664.7550	31.780
Molinos Del Ebro SA	29.667488	35.262	62114.37	17026.2569	81.149	26991.0714	41.821
Luria De Energias SA	6.816766	4.844	49912.00	1849.0000	267.774	903.0000	20.160
Parque Eolico Sierra De Las Carbas SL	8.424602	3.676	46949.76	1252.4250	-263.639	-654.7640	19.056
Elecdey Lezuza SA	34.902738	4.657	36061.15	1258.6609	588.190	285.5387	22.346
WPD Parque Eolico Navillas SL.	84.604706	-0.416	35511.45	-110.9293	-14.302	1034.1284	-2248.157
Sierra De Selva SL	9.134843	21.761	27728.00	4525.0000	30.856	19555.0000	47.045
El Paramo Parque Eolico SL	9.970725	3.416	26634.00	671.0000	-287.974	-316.0000	16.267

4.5 MATdescribe

4.5.1 Uso

MATdescribe(data, variable)

4.5.2 Objetivo

Esta función realiza un análisis descriptivo y gráfico detallado de una variable numérica en un dataframe. Incluye histogramas, densidad, boxplots y pruebas de normalidad.

4.5.3 Argumentos

- data: El dataframe que contiene los datos.
- variable: La variable numérica a analizar (sin comillas).
- bins: Número de bins para el histograma. Si es 0, o no se especifica, se usa el método *Freedman-Diaconis* para calcular el número de intervalos de valores en el histograma.

4.5.4 Salida

Genera un objeto en el entorno global con el nombre <variable>_describe_info, que incluye:

- Resumen gráfico (histograma, densidad, boxplot, QQ-Plot).
- Estadísticos descriptivos (media, mediana, asimetría, curtosis, etc.).
- Pruebas de normalidad (Shapiro-Wilk, Kolmogorov-Smirnov, Anderson-Darling).

4.5.5 Ejemplo

MATdescribe(eolica_100_sm_so, RENECO, bins = 0)

4.5.6 Resultados Esperados

- 1. Una lista llamada RENECO_describe_info que contiene:
 - o Gráfico resumen con varios paneles.
 - o Tabla de estadísticos descriptivos.
 - Resultado de la prueba de normalidad de Shapiro-Wilk, Kolmogorov-Smirnov y Anderson-Darling (para significación de 0.05).

RENECO_describe_info\$grafico_resumen

15

RENECO_describe_info\$estadisticos

Principales Estadísticos de RENECO

Media	Desviación Típica	Mediana	Valor mínimo	Valor máximo	C. Asimetría Fisher	C. Curtosis Fisher	
5.236346	4.554305	4.237	-2.813	15.882	0.4115856	-0.6729009	

RENECO_describe_info\$normalidad

RENECO - Pruebas de Normalidad

Prueba	p-valor	Conclusión
Shapiro-Wilk	0.026	NO-NORMALIDAD
Kolmogorov-Smirnov	0.080	NORMALIDAD
Anderson-Darling	0.024	NO-NORMALIDAD

4.6 MATtaf

4.6.1 Uso

MATtaf(data, variable, breaks = NULL)

4.6.2 Objetivo

Generar una tabla de frecuencias agrupadas en intervalos y un histograma relacionado.

4.6.3 Argumentos

- data: El dataframe que contiene los datos.
- variable: La variable numérica para analizar (sin comillas).
- breaks: Número de intervalos (opcional, se calcula automáticamente si no se especifica, mediante el método de Freedman-Diaconis).

4.6.4 Salida

- Una tabla de frecuencias.
- Un histograma con los mismos intervalos.

4.6.5 Ejemplo

MATtaf(eolica_100_sm_so, RENECO)

4.6.6 Resultados Esperados

- 1. Una lista llamada RENECO_intervalos_frecuencia que contiene:
 - o Histograma con los mismos intervalos que la tabla de frecuencias.

RENECO_intervalos_frecuencia\$tabla

Distribución de frecuencias agrupadas en intervalos de RENECO

Intervalo	Frecuencia absoluta n(i)	Frecuencia absoluta acum. N(i)	Frecuencia relativa f(i)	Frecuencia relativa acum. F(i)
[-2.83,0.303]	11	11	0.136	0.14
(0.303,3.42]	22	33	0.272	0.41
(3.42,6.53]	19	52	0.235	0.64
(6.53,9.65]	13	65	0.160	0.80
(9.65,12.8]	8	73	0.099	0.90
(12.8,15.9]	8	81	0.099	1.00

5 Documentación del Paquete

• Autor: Miguel Ángel Tarancón miguelangel.tarancon@uclm.es

Versión: 0.1.0
 Fecha: 2025-02-14
 Licencia: MIT

6 ¡Empieza a explorar tus datos con MATdatatools!

Este paquete está diseñado para facilitarte el trabajo y ayudarte a generar análisis rápidos y visuales. ¡Pruébalo hoy y optimiza tus estudios de datos!

