Modern Zero Knowledge Cryptography - MIT IAP, 2023.1

Homework 5: Commitment Schemes

18 January 2023

Lecturer: Ying Tong

- 1. The Setup phase of the KZG polynomial commitment scheme involves computing commitments to powers of a secret evaluation point τ . This is called the "trusted setup" and is often generated in a multi-party computation known as the "Powers of Tau" ceremony. One day, you find the value of τ on a slip of paper. How can you use it to make a fake KZG opening proof?
- 2. Construct a **vector commitment scheme** from the KZG polynomial commitment scheme. (Hint: For a vector $m = (m_1, \ldots, m_q)$, is there an "interpolation polynomial" I(X) such that I(i) = m[i]?)

Fun fact: The Verkle tree [1] is a Merkle tree that uses a **vector commitment** instead of a hash function. Using the KZG vector commitment scheme, can you see why a Verkle tree is more efficient?

3. The KZG polynomial commitment scheme makes an opening proof π for the relation p(x) = y. Can you extend the scheme to produce a multiproof π , that convinces us of $p(x_i) = y_i$ for a list of points and evaluations (x_i, y_i) ? (Hint: assume that you have an interpolation polynomial I(X) such that $I(x_i) = y_i$.

References

[1] J. Kuszmaul. Verkle trees. https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf, 2019.