20222 CET058-CMP Proj2c

Entrega: 17 de outubro

Sumário

- 1. Análise Sintática e Árvore de Sintaxe Abstrata
- 2. Árvore n-aria em vetor
- 3. GLC LL[1] para o projeto
- 4. Gramáticas LL[1] para testes
- 5. Transformação de G1 em APD
- 6. Árvore de Análise: (!(p&q):q)
- 7. Árvore de Sintaxe Abstrata: (!(p&q):q)
- 8. Representação vetorial
- 9. Relatório

1. Análise Sintática e Árvore de Sintaxe Abstrata

- Implementar, na linguagem C, um simulador do autômato de pilha para a gramática de nosso projeto.
- O analisador deve emitir uma mensagem dizendo se o programa foi aceito ou se aconteceu um erro sintático
- Deve ser impressa a lista de produções envolvidas na análise e a árvore de análise n-aria, codificada num vetor de inteiros.
- Deve ser impressa a árvore de sintaxe abstrata binária, codificada num vetor de inteiros. Á Árvore de Sintaxe Abstrata é obtida da Árvore de Analise, removendo os símbolos sem conteúdo semântico.

2. Árvore n-aria em vetor

- Binária: esq(i) = 2i+1, dir(i) = 2i+2,
- Ternária:

$$esq(i) = 3i+1, esq(i) = 3i+2, dir(i) = 3i+3,$$

• Quaternária:

$$d1(i) = 4i+1$$
, $d2(i) = 4i+2$, $d3(i) = 4i+3$, $d4(i) = 4i+4$,

• Penta-ária

$$d1(i) = 5i+1, d2(i) = 5i+2, d3(i) = 5i+3, d4(i) = 5i+4, d5(i) = 5i+5$$

0	1	2	3	4	5	6	7	8	9	10
1						l		l	l	

3. GLC LL[1] para o projeto

```
• p_1: S \rightarrow M | G M | N G M
• p_6: M \rightarrow m() { C; r(E); }
• p_7: E \rightarrow 0 | 1 | x | y | (EXE)
• p_{12}: X \rightarrow + | - | * | /
• p_{16}: C \rightarrow h=E | i=E | j=E | k=E
  | z=E | (EXE) | w(E) \{ C; \} |
 f(E) { C; } | o(E; E; E) { C; }
```

NGM

```
• p_4: N \to n() { C; r(E); }
• p_5: G \to g() { C; r(E); }
• p_6: M \to m() { C; r(E); }
```

```
p_6: M \rightarrow m() { C; r(E); } p_6: M \rightarrow main() { COMMAND; return(E); }
```

```
w(E) { C; }
```

```
while (EXPR) {
    COMMAND;
}
```

```
f(E) { C; }
```

```
if (EXPR) {
        COMMAND;
}
```

```
O(E; E; E) { C; }
for (EXPR; EXPR; EXPR) {
    COMMAND;
}
```

4. Gramáticas LL[1] para testes

- 1. Gramática da lógica proposicional:
 - $S \rightarrow 0 | 1 | p | q | !S | (SXS).$
 - $-X \rightarrow \&|"|"|:|-.$
- 2. Gramática de expressões aritméticas:
 - $S \rightarrow 0 | 1 | x | y | -S | (SXS).$
 - $-X \rightarrow + |-|*|/.$
- 3. Gramática de parênteses balanceados.
 - $S \rightarrow aSb$
 - $-S \rightarrow c$
- 4. Gramática para LP0

4.1 GLC LL[1] para a Lógica Proposicional

$G1=(N, \Sigma, P, S)$

- $G=(N=\{S, X\}, \Sigma=\{0, 1, p, q, "(", ")", "!", "&", "|", ":", "-"\}, P, S)$
- P:
 - $-S \rightarrow 0$
 - $-S \rightarrow 1$
 - $-S \rightarrow p$
 - $-S \rightarrow q$
 - $-S \rightarrow !S$
 - $-S \rightarrow (SXS)$
 - X→ "&" | "|" | ":" | "-"

Formato TXT

S0

S1

Sp

Sp

S!S

S(SXS)

X&

 \mathbf{X}

X:

Х-

4.2 GLC LL[1] Expressões Aritméticas

$G2=(N, \Sigma, P, S)$

- $G=(V=\{S, X\}, \Sigma=\{0, 1, x, y, "(", ")", "-", "+", "*", "/"\}, P, S)$
- P:
 - $-S \rightarrow 0$
 - $-S \rightarrow 1$
 - $-S \rightarrow X$
 - $-S \rightarrow y$
 - $-S \rightarrow -S$
 - $-S \rightarrow (SXS)$
 - X→ "+" | "-" | "*" | "/"

Formato TXT

S0

S1

Sx

Sy

S-S

S(SXS)

X+

Х-

 X^*

 $\mathbf{X}/$

4.3 GLC LL[1] Parênteses balanceados

$G3=(V, \Sigma, P, S)$

- $G=(V=\{S, a, b, c\}, \Sigma=\{a, b, c\}, P, S)$
- P:
 - $-S \rightarrow aSb$
 - $-S \rightarrow c$

Formato TXT

SaSb

Sc

4.4 GLC LL[0] para main

$G4=(V, \Sigma, P, S)$

- $G=(V=\{S, a, b\}, \Sigma=\{a, b\}, P, S)$
- P:
 - $M \rightarrow m()\{C;r(E);\}$
 - C → 0 | 1 | x | y | | h=E | i=E |
 j=E | k=E | z=E | (EXE) |
 w(E){C;} | f(E){C;}
 |o(E;E;E){C;}
 - $E \rightarrow 0 | 1 | x | y | (EXE) |$
 - $X \rightarrow + | | * | /$

Formato TXT

$Mm()\{C;r(E);\}$	$Cw(E)\{C;\}$
C 0	$Cf(E)\{C;\}$
C 1	$Co(E;E;E)\{C;\}$
Cx	E0
Су	E1
Ch=E	Ex
Ci=E	Ey
Cj=E	E(EXE)
Ck=E	X+
Cz=E	X-
C(EXE)	
	X*
	X/

5. Transformação de G1 em APD

As transições t_1 , t_2 , t_3 , ... correspondem às produções p_1 , p_2 , p_3 , ... em FNG.

As produções t₀, t*, t# não tem produções correspondentes.

APN que opera como APD LL[1]

$$t=(0, 0, \epsilon)$$
 $t=(!, !, \epsilon)$
 $t=(1, 1, \epsilon)$
 $t=(\&, \&, \epsilon)$
 $t=(p, p, \epsilon)$
 $t=(|, |, \epsilon)$
 $t=(q, q, \epsilon)$
 $t=(:, :, \epsilon)$
 $t=("(","(",\epsilon)", \epsilon))$
 $t=(-, -, \epsilon)$

```
t_1 = (\varepsilon, S, 0)
                                       p_1=S \rightarrow 0
t_2 = (\varepsilon, S, 1)
                                       p_2 = S \rightarrow 1
t_3 = (\varepsilon, S, p)
                                       p_3=S \rightarrow p
t_{4}=(\varepsilon, S,q)
                                       p_4 = S \rightarrow q
t_5 = (\varepsilon, S, !S)
                                       p_5=S \rightarrow !S
t_6 = (\varepsilon, S, (SXS))
                                       p_6 = S \rightarrow (SXS)
t_7 = (\varepsilon, X, \&)
                                       p_7 = X \rightarrow \&
t_8 = (\varepsilon, X, |)
                                       p_8=X \rightarrow |
t_0 = (\varepsilon, X, :)
                                       p_0=X \rightarrow :
t_{10} = (\varepsilon, X, -)
                                       p_{10}=X \rightarrow -
```

Simulação do APD

State	W	Stack	transition
0	.(!(p&q):q)	Ø	t_0
1	.(!(p&q):q)	S	t_6
1	.(!(p&q):q)	(SXS)	t ₁₅
1	(.!(p&q):q)	SXS)	t_5
1	(.!(p&q):q)	!SXS)	t ₁₇
1	(!.(p&q):q)	SXS)	t_6
1	(!.(p&q):q)	(SXS)XS)	t ₁₅
1	(!(.p&q):q)	SXS)XS)	t_3
1	•••	• • •	•••

6. Árvore de Análise: (!(p&q):q)

7. Árvore de Sintaxe Abstrata:

8. Representação vetorial

i	ADP[i]	i	ASA[i]
0	S	0	•
1	(1	!
2	S	2	q
3	X	3	&
4	S	4	p
5)	5	q
11	!		
12	S		

9. Relatório

- O relatório deve conter:
 - Folha de rosto
 - Sumário
 - Link para download da implementação.
 - Comando para compilação
 - Comando para a execução.
 - Saída para programas exemplo
 - Referências.