Actividad - Visualización

• Nombre: Ramona Nájera Fuentes

• Matrícula: A01423596

Entregar: Archivo PDF de la actividad, así como el archivo .ipynb en tu repositorio. **Nota:** Recuerda habrá una penalización de **50** puntos si la actividad fue entregada fuera de la fecha límite.

Carga el conjunto de datos bestsellers with categories.csv (se encuentra en el repositorio de la clase) y realiza un análisis estadístico de las variables.

Muestra los primeros 6 renglones
df = pd.read_csv('bestsellers with categories.csv')
df.head(6)

	Name	Author	User Rating	Reviews	Price	Year	Genre
0	10-Day Green Smoothie Cleanse	JJ Smith	4.7	17350	8	2016	Non Fiction
1	11/22/63: A Novel	Stephen King	4.6	2052	22	2011	Fiction
2	12 Rules for Life: An Antidote to Chaos	Jordan B. Peterson	4.7	18979	15	2018	Non Fiction
3	1984 (Signet Classics)	George Orwell	4.7	21424	6	2017	Fiction
	5,000 Awesome Facts	A1 (1)					B.1

El conjunto de datos es una tabla que contiene el top 50 de los libros más vendidos por Amazon por año desde 2009 hasta 2019. Cada libro está clasificado como Ficción o No ficción.

Las variables que contiene son:

- Name: Nombre del libro.
- Author: Autor.
- User Rating: Calificación promedio que los usuarios asignaron al libro (1-5).
- Reviews: Número de reseñas.
- Price: Precio del libro.
- Year: Año de publicación.
- Genre: Género literario (ficción/no ficción).

Crea una tabla resumen con los estadísticas generales de las variables numéricas df.describe()

¿Cuál es el género con más publicaciones?
df['Genre'].value_counts() # NON FICTION

Non Fiction 310 Fiction 240 Name: Genre, dtype: int64

Muéstralo en un gráfico

freq = plt.figure(figsize=(4,4))
sns.countplot(data=df, x='Genre')

plt.title('Observaciones por género')
plt.xlabel('Género')
plt.ylabel('Frecuencia')

Text(0, 0.5, 'Frecuencia')

¿Cuántos libros del top 50 se publicaron por género en cada año?
top50 = pd.crosstab(df['Year'], df['Genre'])
top50

Genre	Fiction	Non Fiction	1
Year			
2009	24	26	
2010	20	30	
2011	21	29	
2012	21	29	
2013	24	26	
2014	29	21	
2015	17	33	
2016	19	31	
2017	24	26	
2018	21	29	
2019	20	30	

```
# \{Hay algún año donde hubo más libros de ficción en el top 50? topFict = []
```

```
def topFiction(row):
    if row['Fiction'] > row['Non Fiction']:
        topFict.append(row.name)

top50.apply(topFiction, axis=1)
topFict
```

[2014]

```
# Muéstralo en un gráfico
top50[['Fiction', 'Non Fiction']].plot(kind='bar')
plt.title('Géneros del top 50 por año')
plt.xlabel('Año')
plt.ylabel('Frecuencia')
```

Text(0, 0.5, 'Frecuencia')


```
# ¿Cómo se distribuye la variable Review?
# Muéstra el histograma
rev = plt.figure(figsize=(9,6))
sns.histplot(data=df, x='Reviews', hue='Genre', bins=10, kde= True)
plt.title('Distribución de la variable Review')
plt.ylabel('Count')
plt.xlabel('Reviews value')
```

Text(0.5, 0, 'Reviews value')


```
# Ahora muéstralo en un gráfico de caja y bigote
```

```
bnw = plt.figure(figsize=(6, 1))
sns.boxplot(data=df, x='Reviews')
plt.title('Distribución de la variable Review')
```

Text(0.5, 1.0, 'Distribución de la variable Review')

- # ¿Cómo se compara la evaluación del libro por género?
- $\ensuremath{\text{\# }}\xspace$ ¿Qué genero es mejor evaluado por los lectores? FICTION
- # Muéstralo en un solo gráfico de caja y bigote

fig = plt.figure(figsize=(4,5))

```
sns.boxplot(data=df, x='Genre', y='Reviews')
plt.title('Evaluación del libro por género')
```

Text(0.5, 1.0, 'Evaluación del libro por género')


```
# ¿Cuál es la relación entre el número de reseñas y precios?
# Muéstralo en un gráfico de dispersión

fig = plt.figure(figsize=(6,4))

plt.plot(df['Reviews'], df['Price'], '.')

plt.title('Relación número de reseñas - precio')
plt.xlabel('Reseñas')
plt.ylabel('Precio')
```

plt.grid(True)


```
# De la pregunta anterior, ¿influye algo el año de publicación? MUY POCO
# ¿Cuál es la relación entre el número de reseñar, el precio y el año de publicación?
# Relación DÉBIL positiva (Reviews - Year) negativa (Reviews - Price | Price - Year)
# IMPORTANTE: Selecciona una paleta de colores adeacuada.
```

corr = df[['Reviews', 'Price', 'Year']].corr()
sns.heatmap(data=corr, vmin=-1, vmax=1, cmap = 'RdBu', annot=True, square=True)

- # ¿Cuál es la correlación entre las variables numéricas?
- # Muéstralo en un gráfico
- # La variable año, a pesar de ser numérica, la vamos a considerar como cualitativa

corrNum = df[['User Rating', 'Reviews', 'Price']].corr()
sns.heatmap(data=corrNum, vmin=-1, vmax=1, cmap = 'RdBu', annot=True, square=True)

¿Cuáles variables tiene una fuerte relación positiva entre sí y cuáles tienen una fuerte relación negativa?

Relación positiva

• User Rating - Reviews

Relación negativa

- · User Rating Price
- · Reviews Price

En general, dado que los coeficientes de relación son cercanos a 0, se podría concluir que las relaciones son débiles.

- # Haz una gráfica donde podemos comparar la relación entre las tres variables numéricas
- # Además, podamos ver el efecto del libro
- # Año, a pesar de ser numérica, la vamos a considerar como cualitativa, así que la eliminaremos del análisis

sns.pairplot(data=df[['User Rating', 'Reviews', 'Price', 'Genre']], hue='Genre')

✓ 0 s terminée à 13:07

• ×