LAB2 - Indirect Field-Oriented Control (IFOC) of an Induction Motor

1. Objective

The goal of this laboratory exercise is to:

- 1. Study the principles and structure of indirect field-oriented control (IFOC) for induction motors.
- 2. Observe the dynamic behavior of torque, flux, and current in dq-coordinates.
- 3. Learn how PI controller parameters affect stability and transient response.
- 4. Use an optimization algorithm to tune PI regulators for best performance.

2. Description of the System

The system consists of several interconnected subsystems, as illustrated in the Simulink diagram:

1. Flux and Torque Reference Generation

Provides the desired rotor flux and electromagnetic torque for control purposes.

2. Field-Oriented Control (FOC) Unit

Includes transformation of measured currents into dq-coordinates, and computation of reference voltages U_d^* , U_q^* for decoupled control of torque and flux.

3. PI Regulators with Cross-Coupling Compensation

Used to minimize flux and torque errors. Their optimal proportional (K_p) and integral (K_i) coefficients are found through a search algorithm in SEARCH.m.

4. PWM Inverter and dq→abc Transformations

Convert dq voltages to three-phase voltages and apply them to the induction motor model.

5. Induction Motor Model

Implemented with inverse inductance function, modeling electromagnetic torque M_{em} , rotor flux Ψ_r , and currents I_a , I_b , I_c .

6. Mechanical Subsystem

Simulates the rotor's angular speed and position under the applied torque.

7. Measurement and Signal Conditioning

Includes A/D converters, low-pass filters, and workspace outputs for recording variables (torque, flux, voltage, and current).

3. Simulation Tasks

Students must perform the following steps:

A. Initialization

Run the file init.m to load all motor and simulation parameters.

Understand how catalog parameters (rated power, voltage, current, etc.) are normalized to per-unit (p.u.) values.

B. Controller Optimization

Study the algorithm in SEARCH.m, which:

- Iteratively adjusts PI controller gains K_p , K_i ,
- Evaluates system poles using rootscalc.m,
- Calculates the performance index using performance.m.

Observe how the algorithm minimizes instability by penalizing:

- Poles on the positive real axis,
- Poles close to the unit circle,
- Poor damping ratios (< 0.4).
- C. System Simulation

Run the Simulink model and record the following signals:

- Electromagnetic torque $M_{em}(t)$,
- Rotor flux $\Psi_r(t)$,
- Phase voltages U_a , U_b , U_c ,
- Phase currents I_a , I_b , I_c .
- D. Visualization

Use the provided MATLAB plotting script to visualize and analyze results

4. Tasks

Task 1 - Initialization

Study the init.m script and identify the following parameters:

Rated Power P_{nom} : _____ kW Rated Torque M_{nom} : _____ Nm Rated Slip: _____

DC-Link Voltage U_{dc} : ______V

Sampling Period T_s : _____s

Task 2 – PI Controller Optimization

- Open and examine the files performance.m, rootscalc.m, and SEARCH.m.
- 2. Explain in your own words how the optimization algorithm works:

After running SEARCH.m, record the obtained optimal parameters:

$$K_p = \underline{\qquad}$$
 $K_i = \underline{\qquad}$

Comment on how the performance criterion penalizes unstable poles or poor damping:

Task 3 – Simulation

- 1. Run the Simulink model.
- 2. Observe waveforms of:

Electromagnetic torque $M_{em}(t)$

Rotor flux $\Psi_r(t)$

Phase voltages U_a , U_b , U_c

Phase currents I_a , I_b , I_c

3. Export all signals to workspace and visualize

5. Discussion Questions

- 1. What are the advantages of vector control over scalar (V/f) control?
- 2. What physical quantities do I_d and I_q correspond to?
- 3. How does the dq-transformation simplify control of AC motors?
- 4. What happens if PI gains are too high or too low?
- 5. Why is it useful to express parameters in per-unit values?

6. Report Structure

Your final lab report must include:

Title Page – HDU number, Lab #, Student, Date.

Objective – 2–3 sentences.

Theoretical Background – dq-control, flux-torque decoupling, PI tuning.

Model Description – Annotated diagram with explanation.

Simulation Results - Plots and brief interpretation.

Optimization Results – Final K_p , K_i , damping discussion.

Conclusion - Evaluate control quality and system stability.

7. Conclusion

After completing this lab, students should be able to:

- Describe the principle of indirect field-oriented control (IFOC).
- Tune PI controllers using performance-based criteria.
- Analyze dynamic responses of torque, flux, and current.
- Relate simulation results to theoretical motor control concepts.