

2020 Fall: Business Analytics

Pilsung Kang
School of Industrial Management Engineering
Korea University

Overview

- Course Description
 - √ This course provides advanced topics in statistical/machine learning fields
 - ✓ This course also aims at fostering graduate students to have Python programming skills to implement the introduced (or related) algorithms during the lecture

Overview

Topics

- ✓ Dimensionality reduction: forward/backward/stepwise selection, genetic algorithm, principal component analysis (PCA), multidimensional scaling (MDS), locally linear embedding, ISOMAP, t-SNE, etc.
- ✓ Kernel-based learning: support vector machine (SVM), support vector regression (SVR), Kernel Fisher discriminant analysis (KFDA), Kernel principal component analysis (KPCA), etc.
- ✓ Novelty detection: Gaussian density estimation, mixture of Gaussians, Parzen window density estimation, I-SVM, SVDD, local outlier factor (LOF), iForests, Robust Cut Forest, etc.
- ✓ Ensemble learning: Bagging, AdaBoost, Gradient Boosting Machine (GBM), XGBoost, CatBoost, Random Forests, etc.
- ✓ Semi-supervised learning: Self-training, Generative models, semi-supervised SVM, Graph-based SSL, Co-training, (Re)Mixmatch, Fixmatch, etc.

Lecturer & Course Homepage

- Pilsung Kang, Associate professor at School of Industrial Management Engineering,
 Korea University
 - √ E-mail: pilsung_kang@korea.ac.kr
 - ✓ Course homepage: https://github.com/pilsung-kang/Business-Analytics-IME654-

Lecturer & Course Homepage

Lecture Video

- DSBA Lab Youtube Channel
 - √ https://www.youtube.com/channel/UCPq01cgCcEwhXI7BvcwlQyg
- Playlist for this course

√ https://www.youtube.com/channel/UCPq01cgCcEwhXI7BvcwIQyg/playlists?view_as=s

ubscriber

Lecture Video

Communication Channel

- Slack will be used for real-time communication channel
 - ✓ ime654-koreauniv.slack.com
 - ✓ The invitation link will be sent to the enrolled students via e-mail

Lecture Modules & Self-Introduction

Textbook

- √ No textbook is needed.
- ✓ Lecture notes (PDF format) and recommended paper lists will be provided.

Introduce Yourself

- ✓ Submit your self-introduction slide (max. 5 pages) to the lecturer via E-mail (due date: 2020-09-11)
- √ Required information: Name, department, e-mail, cell phone number, recent photo(s)

- Final exam (25%)
 - √ Three pages of cheating sheets are allowed.

- 5-minutes Youtube video (25%)
 - ✓ Students must upload a short video (max 5 minutes) that reviews the topic covered in the scheduled lecture within 48 hours after the class.
 - ✓ A student must explain what he/she learns in the class to his/her partner.

어떤 교수가 될 것인가?

EBS 다큐프라임 5부작: 최고의 교수

어떤 교수가 될 것인가?

왜 우리는 대학에 가는가

대한민국 청춘들에게 던지는 질문

▼ 제18회 YWVCA가 뽑은 좋은 TV프로그램상 특별상(한국YWCA연합회)

[총 5개의 VOD]

5,000 (67% 할인) ₩ 1,670

포인트 결제

EBS머니 결제

장바구니

구매하기

ㆍ 구매일로부터 7일까지 사용 가능합니다.

' 부분환불이 불가한 상품입니다.

결제취소/환불안내 · 이용약관

왜 우리는 대학에 가는가 - 6부 생각을 터

다큐프라임

왜 우리는 대학에 가는가 - 4부 어메이징 데이Ⅱ

다큐프라임

왜 우리는 대학에 가는가 - 3부 인재의 탄

다큐프라임

왜 우리는 대학에 가는가 - 2부 인재의 탄

다큐프라임

왜 우리는 대학에 가는가 - 1부 어메이징 데이

다큐프라임

13/36

어떤 교수가 될 것인가?

- 5-minute Youtube videos (25%)
 - ✓ Students must upload a short video (max 5 minutes) that reviews the topic covered in the scheduled lecture within 48 hours after the class.
 - ✓ A student must explain what he/she learns in the class to his/her partner.

9) 교수님이 강의 준비를 꼼꼼히 하신다는게 느껴져서 좋았습니다	
10) 체계적인 수업 내용, 어디서도 자세하게 알 수 없는 내용 들을 알 수 있어서 좋았다.	슼니다.
11) 이론적으로 상세히 알려주시고 <mark>유튜브 과제를 통해 학습하는데 도움을 많이 얻었</mark>	던거 같습니다.
12) 세세하게 A부터 Z까지 설명해주시는 교수님의 강의방식과 레퍼런스, 추가적인 공	'부자료를 남겨주셔서 많은 도움이 됬습니
13) 교수님께서 친절하게 잘 설명해주셨습니다	
14) .	
15) 자세한 설명방법과 온라인으로 진행되어도 너무 얻을 것이 많은 과목이었습니다.	
16)	
17) 수업내용 요약해서 영상찍어 올리는 부분이 힘들었지만 새로운 경험이었습니다.	
18) 매 강의 마다 동료에게 수업하고, 유튜브에 업로드한 방식 솔직히 매우 귀찮았지만, 지식 습득에 도움이 된다는 것은 인정할 수 밖에 없다.	
19) 한 학기동안 좋은 강의 감사드립니다.	
20) 강의가 너무 좋았습니다.	
21) 수준높은 강의	
22) .	
23) 텍스트마이닝과 자연어처리에 대하여 꼼꼼하게 가르쳐주셔서 좋았습니다.	

- Research paper reproduction (50%)
 - ✓ Students are required to reproduce one excellent (at least good) paper with Python for each topic category (5 reproductions in total).
 - How to determine how good this paper is?
 - https://www.notion.so/9568e19aed0641c09cd02150b3cb3114
 - ✓ The contents of the selected paper and corresponding python code should be explained in a single web page post.
 - Example I: https://machinelearningmastery.com/machine-learning-in-python-step-by-step/
 - Example 2: https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-mechanism-deep-learning/

Introduction to Yourself

- ✓ Submit your self-introduction slide (max. 5 pages) to the lecturer via E-mail
 - Due date: 2020-09-11

Schedule

Week	Topics
1	Orientation
2	Dimensionality reduction: forward/backward/stepwise selection, genetic algorithm, PCA
3	Dimensionality reduction: MDS, ISOMAP, LLE, t-SNE
4	Kernel-based learning: SVM
5	Kernel-based learning: SVR, KFDA, KPCA
6	Novelty detection: Gauss, MoG, Parzen
7	Novelty detection: k-NN, LOF, 1-SVM, SVDD
8	No Class
9	Novelty detection: PCA-based, Clustering-based, iForest, Robust Random Cut Forest
10	Ensemble learning: Bagging, Random Forests
11	Ensemble learning: AdaBoost, GBM
12	Ensemble learning: XGBoost, CatBoost
13	Semi-supervised learning: Self-training, Generative models
14	Semi-supervised learning: SS-SVM, Graph-based SSL
15	Semi-supervised learning: Co-Training, (Re)MixMatch, FixMatch
16	Final Exam

Additional Material

- If you are the first semester in the Graduate school
 - ✓ https://www.notion.so/c3b3474d18ef4304b23ea360367a5137?v=5d763ad5773f44eb950f49de7d7671bd

Papers You Must Read

<u>Aa</u> Title	■ Journal/Conference	Year	■ Description	∷ 태그	⊘ 파일	XMind
Language Models are Few-Shot Learners	arXiv	2020	GPT-3	NLP Neural Network	2005.14165.pdf	Included
FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence	arXiv	2020	FixMatch	Semi-supervised Learning	2001.07685.pdf	Included
YOLOv4: Optimal Speed and Accuracy of Object Detection	arXiv	2020	Yolo-V4	Deep Learning Vision	2004.10934.pdf	Included
A Comprehensive Survey on Graph Neural Networks	IEEE TNNLS	2020	GNN	Graph Neural Network	1901.00596.pdf	Included
Language models are unsupervised multitask learners		2019	GPT-2	NLP Neural Network	2019-Radford	Included
MixMatch: A Holistic Approach to Semi-Supervised Learning	NIPS	2019	MixMatch	Semi-supervised Learning	1905.02249.pdf	Included
ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring	arXiv	2019	ReMixMatch	Semi-supervised Learning	1911.09785.pdf	Included
AutoML: A Survey of the State-of-the-Art	arXiv	2019	Auto-ML	Auto-ML	AutoML_A Surv	Included
Deep Learning for Anomaly Detection: A Survey	arXiv	2019	Anomaly Detection	Deep Learning Anomaly Detection Survey	1901.03407.pdf	Included
An Introduction to Variational Autoencoders	FTML	2019	Variational Autoencoder	Neural Network	1906.02691.pdf	Included
A Survey of Parallel Sequential Pattern Mining	ACM TKDD	2019	Sequential Pattern Mining	Data Mining	3314107.pdf	Included
Improving language understanding by generative pre-training		2018	GPT	NLP Neural Network	language_unde	Included
Deep contextualized word representations	arXiv	2018	ELMo	NLP Neural Network	1802.05365.pdf	Included
Bert: Pre-training of deep bidirectional transformers for language understanding	arXiv	2018	BERT	NLP Neural Network	1810.04805.pdf	Included
Deep learning for sentiment analysis: A survey		2018	Sentiment Analysis	NLP Survey	1801.07883.pdf	Included
CatBoost : unbiased boosting with categorical features	NIPS	2018	CatBoost	Ensemble Learning	CatBoost_unbia	Included
The matrix calculus you need for deep learning		2018	Matrix Calculus	Machine Learning Basics	The matrix calc	Included
YOLOv3: An Incremental Improvement	arXiv	2018	Yolo-V3	Deep Learning Vision	1804.02767.pdf	Included
Know what you don't know: Unanswerable questions for SQuAD	arXiv	2018	Question Answering	NLP	1806.03822.pdf	Included
Group normalization	ECCV	2018	Normalization	Neural Network	Yuxin_Wu_Grou	Included

