$CB N^{\circ}3$ - Réduction - Sujet 1

EXERCICE 1

Soit
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
. Calculer A^n , $n \in \mathbb{N}^*$.

EXERCICE 2

Soient
$$B = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$
 et $T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$.

Montrer qu'il existe une matrice inversible P, que l'on déterminera, telle que

$$B = PTP^{-1}$$

EXERCICE 3

Soit $A \in \mathcal{M}_3(\mathbb{R})$ telle que $\operatorname{Sp}(A) = \{-2, -1, 1\}$.

Démontrer qu'il existe a_n, b_n et c_n dans \mathbb{R} que l'on déterminera, tels que

$$A^n = a_n \mathbf{I}_3 + b_n A + c_n A^2, \quad n \in \mathbb{N}$$

${ m CB}\ { m N}^{\circ}3$ - Réduction - Sujet 2

EXERCICE 1

Soit
$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
. Calculer $A^n, n \in \mathbb{N}^*$.

EXERCICE 2

Soient
$$B = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
 et $T = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

Montrer qu'il existe une matrice inversible P, que l'on déterminera, telle que

$$B = PTP^{-1}$$

EXERCICE 3

Soit $A \in \mathcal{M}_3(\mathbb{R})$ telle que $Sp(A) = \{-1, 1, 2\}$.

Démontrer qu'il existe a_n, b_n et c_n dans \mathbb{R} que l'on déterminera, tels que

$$A^n = a_n I_3 + b_n A + c_n A^2, \quad n \in \mathbb{N}$$

Spé PT B CB3 - 2018-2019