DISCIPLINA - FÍSICA

CURSO - AGROECONOMIA E EXTENSÃO AGRARIA

Docente da Disciplina de Física -

- 1. Guambe, Francisco José, PhD;
- 2. Mucomole, Fernando Venâncio, Ms.C;
- Mucavele, Bernardino da Conceição, Bs.C

Tema 1 – LEIS DO MOVIMENTO – b) MOVIMENTO CURVILINEO

Sumário -

- O Movimento Curvilíneo:
- O Movimento Curvilíneo: Velocidade;
- O Movimento Curvilíneo: Aceleração;
- Movimento com aceleração constante;
- Componentes tangencial e Normal da Aceleração.
- O Movimento Circular;
- O Movimento Circular: Velocidade Angular;
- O Movimento Circular: Aceleração Angular;
- Movimento curvilíneo geral em um Plano.

NOTA IMPORTANTE

Estas notas teóricas são apenas para o uso na Cadeira de Física, leccionada aos estudantes da Faculdade de Agronomia e Engenharia Florestal, no 1º Ano, 1º Semestre durante o ano Lectiva de 2021, pelo Grupo da Disciplina de Física mencionado anteriormente. As mesmas poderão se usado para outros fins mediante a autorização previa dos autores. (pp. 1-14)

email: fernando.mucomole@uem.mz

MOVIMENTO CURVILINEO: VELOCIDADE

Consideremos uma partícula com trajetória curvilínea.

Figura 1 – Deslocamento e velocidade média no movimento curvilíneo.

Figura 2 – A velocidade e tangente a trajetória no movimento curvilíneo.

Para t, a partícula se encontra no ponto A, tal que o vector-posição é dado como,

$$\vec{r} = \overrightarrow{OB} = \vec{i}x = \vec{j}y + \vec{k}z$$

O instante posterior a t' a partícula esta na posição B, dada como

$$\vec{r}' = \overrightarrow{OB} = \vec{\iota}x' + \vec{\jmath}y' + \vec{k}z'$$

a velocidade média e definida como,

$$v_{med.} = \frac{\Delta \vec{r}}{\Delta t}$$

A velocidade instantânea como no caso anterior é obtida quando Δt é muito pequena, como

$$\vec{v} = lim_{\Delta t \to 0} v_{med.} = lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t}$$

No movimento curvilíneo, a velocidade instantânea é um vector tangente a trajetória, dada como,

$$\vec{v} = \frac{d\vec{r}}{dt}$$

Que tem a forma explicita,

$$\vec{v} = \vec{i}\frac{dx}{dt} + \vec{j}\frac{dy}{dt} + \vec{k}\frac{dz}{dt}$$

As componentes da velocidade nos eixos x, y e z são: $v_x = \frac{dx}{dt}$, $v_y = \frac{dy}{dt}$ e $v_z = \frac{dz}{dt}$.

E o modulo da velocidade é,

$$v^2 = v_x^2 + v_y^2 + v_z^2$$

Caso generalizado, a velocidade instantânea pode ser escrita como,

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta s} \frac{\Delta s}{\Delta t} = \left(\lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta s} \right) \left(\lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} \right)$$

O $\lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta s}$ representa o vector unitário e a direcção tangente a trajetória (direcção da velocidade), então

$$\frac{d\vec{r}}{ds} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta s} = \vec{u}_T$$

Entretanto, a velocidade será

$$\vec{v} = \vec{u}_T \frac{ds}{dt} = \vec{u}_T v$$

Movimento curvilíneo: Aceleração

Aqui a aceleração, varia tanto o modulo, como a direcção.

O modulo varia porque a partícula pode aumentar ou diminuir a sua velocidade.

A direcção da velocidade varia porque a velocidade e tangente a trajetória a qual esta continuamente se curvando aceleração media, no intervalo de tempo Δt , é um vector definido por,

$$a_{med.} = \frac{d\vec{v}}{dt}$$

A aceleração e paralelo a $\Delta \vec{v}$, visto que,

$$\vec{v} = \vec{\iota}v_x + \vec{\jmath}v_y + \vec{k}v_z$$

$$\Delta \vec{v} = \vec{\iota}\Delta v_x + \vec{\jmath}\Delta v_y + \vec{k}\Delta v_z$$

Então,

$$a_{med.} = \vec{i} \frac{d\Delta v_x}{\Delta t} + \vec{j} \frac{d\Delta v_y}{\Delta t} + \vec{k} \frac{d\Delta v_z}{\Delta t}$$

Daqui em diante designaremos a aceleração instantânea por aceleração.

Figura 3 - Aceleração no movimento curvilíneo.

Figura 4 – Relação vectorial entre a velocidade e a aceleração no movimento curvilíneo.

A aceleração possui uma relação com o vector velocidade dada como,

$$a = \frac{d^2 \vec{r}}{dt^2}$$

Que tem a forma explicita,

$$\vec{a} = \vec{i} \frac{dv_x}{dt} + \vec{j} \frac{dv_y}{dt} + \vec{k} \frac{dv_z}{dt}$$

As componentes da velocidade nos eixos x, y e z são: $a_x = \frac{dv_x}{dt}$, $a_y = \frac{dv_y}{dt}$ e $a_z = \frac{dv_z}{dt}$.

E o modulo da velocidade é,

$$a^2 = a_x^2 + a_y^2 + a_z^2$$

A equação do movimento e, x = x(t); y = y(t) e z = z(t)

Para a aceleração temos, $a = a_x(t) + aq_y(t) + a_z(t)$

As componentes da velocidade resultam como funçao de integração da velocidade com relação ao tempo.

Movimento com aceleração constante

Consideremos o caso especial, em que a aceleração e constante em modulo, direcção. Por integração, temos:

$$d\vec{v} = \vec{a}(t - t_0)$$

onde v_0 e a velocidade no instante t_0 , então

$$\vec{v} = \vec{v}_0 + \vec{a}(t - t_0)$$

Que os da velocidade em qualquer instante; onde \vec{r}_0 da a posição no instante t_0 , assim

$$\vec{r} = \vec{r}_0 + v_0(t - t_0) + \frac{1}{2}\vec{a}(t - t_0)^2$$

O que da a posição da partícula em qualquer instante.

"Um movimento com aceleração constante é sempre plano".

A ultima equação mostra que a trajetória do movimento é uma **parábola**., neste caso $\vec{a} = \vec{g} = aceleração de graviddae.$

Suponhamos que temos um plano XY coincidente com o plano definido por \vec{v}_0 e $\vec{a} = \vec{g}$, o eixo Y dirigido para cima de modo que $\vec{g} = -\vec{u}_{\nu}g$ e a origem, o coincidente com \vec{r}_0 , então,

$$\vec{v}_0 = \vec{u}_x v_{ox} + \vec{u}_y v_{oy}$$

Onde $v_{ox} = v_o \cos \alpha$; $v_{oy} = v_o \sin \alpha$

$$v_o = v_{ox}, v_v = v_{ov} - gt$$

Figura 5 – Quando a aceleração é constate a trajetória é um aparabola

Ou seja

$$x = v_{ox}t, y = v_{oy} - \frac{1}{2}gt$$

O tempo necessário para o projétil alcançar o ponto mais alto A é obtido fazendo-se $v_y=0$, tal que a velocidade do projétil e horizontal, então

$$t = \frac{v_{oy}}{g}$$

ou

$$t = \frac{v_o \sin \alpha}{g}$$

A altura máxima \boldsymbol{h} será dada quando $v_{oy} = 0$, então

$$y = \frac{v_0^2 \sin^2 \alpha}{2g}$$

O tempo necessário para o projétil voltar ao nível do solo B e denominado **tempo de trânsito (tempo de queda)** e obtida para y = 0, e será o dobro do valor do tempo necessário para alcançar a altura máxima, isto é,

$$t = \frac{2v_o \sin \alpha}{g}$$

O alcance R = OB e a distancia horizontal total percorrida é substituída pelo valor do tempo de trânsito, e resulta,

$$\vec{R} = \frac{v_0^2 \sin 2\alpha}{g}$$

Nota-se que o alcance e máximo para $\alpha=45^{\circ}$, a equação da trajetória e obtida por eliminação do tempo, tal que

$$y = -\frac{g}{2v_0^2 \cos^2 \alpha} x^2 + x \tan \alpha$$

Figura 6 - A trajetória de um projétil de longo alcance não é uma parábola, mas sim um arco da elipse.

Figura 7 - Efeito da resistência do ar no movimento de um projétil

- O alcance e suficientemente pequeno para a variação da gravidade com a altura que possa ser desprezada;
- (2) O alcance e suficientemente pequeno para que se possa desprezar a curvatura;
- (3) A velocidade inicial e suficientemente pequena para que se possa desprezar a resistência do ar.

E este e o caso d um MBI (Missel Balístico Internacional), que descreve uma trajetória cuja forma e uma elipse.

Componentes tangencial e Normal da Aceleração

Suponhamos que temos uma partícula que descreve uma curvatura plana, no instante t, a partícula esta em A, com velocidade \vec{v} e a aceleração \vec{a} , visto que \vec{a} esta dirigida para concaviddae da trajectoria decompo-la em uma componete \vec{a}_T – paralela a tangete AT e denominada **aceleração tangencial**; e um acomponente normal \vec{a}_N – paralela a normal NA e denominada **aceleração normal**.

Figura 8 – Aceleração tangencial e normal no movimento curvilíneo

Figura 9 – Representação da aceleração tangencial e normal no movimento curvilíneo

Variação do modulo da velocidade: aceleração tangencial;

Variação na direcção da velocidade: aceleração normal.

O vector \vec{u}_T e tangente a curva, a velocidade de acordo será,

$$\vec{v} = \vec{u}_T v$$

Assim aceleração fica,

$$\vec{a} = \vec{u}_T \frac{dv}{dt} + \frac{d\vec{u}_T}{dt} v$$

Introduzamos $u_{\scriptscriptstyle N}$ normal a curva e no sentido da concavidade,

$$\vec{u}_T = \vec{u}_x \cos \phi + \vec{u}_y \sin \phi$$

Então

$$\frac{d\vec{u}_T}{dt} = \vec{u}_N \frac{d\phi}{dt}$$

E essa relação indica de $\frac{d\vec{u}_T}{dt}$ e normal a curva,

$$\frac{d\phi}{dt} = \frac{d\phi}{ds}\frac{ds}{dt} = \vec{v}\frac{d\phi}{ds}$$

Ode ds = AA' e o pequeno arco percorrido pela partícula no intervalo de tempo dt.

As massas a curva em A e A' se intercetam no poto C, denominado o **centro de curvatura**. **Introduzamos o raio de curvatura** $\rho = CA$ e usando

$$ds = \rho d\phi$$

ou

$$\frac{d\phi}{ds} = \frac{1}{\rho}$$
; entao $\frac{d\phi}{dt} = \frac{v}{\rho}$

e

$$\frac{d\vec{u}_T}{dt} = \vec{u}_N \frac{v}{\rho}$$

Obtemos a aceleração dada como,

$$\vec{a} = \vec{u}_T \frac{dv}{dt} + \vec{u}_N \frac{v^2}{\rho}$$

Aqui, o primeiro termo $\vec{u}_T\left(\frac{dv}{dt}\right)$ e o vector tangente a curva e é proporcional a variação no tempo do modulo da velocidade correspondente a aceleração tangente \vec{a}_T .

O segundo termo é um vector normal a curva e corresponde a aceleração normal \vec{a}_N . Tal que,

$$\vec{a}_T = \frac{dv}{dt} e \vec{a}_N = \frac{v^2}{\rho}$$

Então o modulo da aceleração o ponto A será então,

$$a = \sqrt{a_T^2 + a_N^2} = \sqrt{\left(\frac{dv}{dt}\right)^2 + \left(\frac{v^4}{\rho^2}\right)}$$

"Se o movimento curvilíneo é uniforme (i.e., se o modulo da velocidade permanece constante), v=constante de modo que $a_T=0$ não havendo assim aceleração tangencial. Por outro lado, se o movimento e rectilíneo (i.e., se a direcção da velocidade não varia), o raio de curvatura e infinito ($\rho=\infty$), de modo que $a_N=0$, não havendo assim aceleração normal. Isto e válido no plano e no espaço."

Movimento Circular: Velocidade Angular

Consideraremos o caso especial em que a trajetória e uma circunferência., i.e., movimento circular. A velocidade \vec{v} , sando tangente a circunferência, será perpendicular ao raio R = CA.

A partir do centro a distancia $s = R\theta$, se R é constante então,

$$v = \frac{ds}{dt} = R \frac{d\theta}{dt}$$

Figura 10 - Movimento circular

Figura 11 – Relação vectorial entre a velocidade angular linear e o vector posição no movimento circular. Tal que a velocidade angular é,

$$\omega = \frac{d\theta}{dt}$$

E é igual a variação do angulo no tempo, e expressa em rad/s, então

$$\vec{v} = \omega \vec{R}$$

A aceleração que se vale em modulo direcção e sentido é,

$$\vec{v} = \vec{\omega} \times \vec{r}$$

Essa relação o e valida quando o movimento é circular ou de rotação (movimento com \vec{r} e γ constante).

Caso de interesse, e o movimento circular uniforme, i.e., movimento com $\omega = constante$.

O movimento é periódico, a partícula passa em cada ponto da circunferência em intervalos regular de tempo.

O período P e o tempo necessário para uma volta completa (ou revolução)

A frequência ν é o numero de revoluções por unidade de tempo.

Assim se durante o intervalo de tempo t, o número de revoluções da partícula e n, o período é

$$p = \frac{t}{n}$$

E a frequência é,

$$v = \frac{n}{t}$$

A unidade da frequência é o Hertz ou 1/s.

Se $\omega = constante$,

$$\theta = \theta_0 + \omega(t - t_0)$$

Esta relação e valida para o movimento circular uniforme com a expressão para o movimento rectilíneo uniforme, tal que fazendo $\theta_0=0~e~t_0=0$, nos da

$$\theta = \omega t$$
, ou $\omega = \frac{\theta}{t}$

Para uma revolução completa, t = P e $\theta = 2\pi$ resultando,

$$\omega = \frac{2\pi}{p} = 2\pi v$$

Movimento Circular: Aceleração Angular

Quando a velocidade angular de uma partícula varia com o tempo a aceleração angular e definida pelo vector,

$$\alpha = \frac{d\omega}{dt}$$

O movimento e circular e plano, a direcção de ω permanece,

$$\alpha = \frac{d^2\theta}{dt^2}$$

Então, quando a aceleração e constante, tem-se que,

$$\omega = \omega_0 + \alpha(t - t_0)$$

Onde ω_0 e o valor de ω no instante t_0 ,

$$\theta = \theta_0 + \omega_0 (t - t_0) + \frac{1}{2} \alpha (t - t_0)^2$$

Esta relação fornece a posição angular em qualquer instante, para a aceleração tangencial

$$\vec{a}_T = \vec{R}\vec{\alpha}$$

E para a aceleração normal (ou centrípeta), a expressão

$$\vec{a}_N = \frac{v^2}{\vec{R}} = \omega^2 \vec{R}$$

Figura 12 - Aceleração tangencial e normal no movimento circular

Figura 13 – vista de representação da aceleração tangencial e normal no movimento circular

Movimento Curvilíneo Geral em um Plano

Consideremos uma partícula que descreve a trajetória plana.

Figura 14 – Velocidade e aceleração de um ponto sobre a Terra.

Figura 15 – Perspetiva da representação da velocidade e aceleração de um ponto sobre a Terra.

Em a velocidade é,

$$\vec{v} = \frac{d\vec{r}}{dt}$$

Tal que a velocidade da partícula envolvendo as componentes retangulares e os vectores unitários, será

$$\vec{v} = \vec{u}_{\vec{r}} \frac{d\vec{r}}{dt} + \vec{u}_{\theta} \vec{r} \frac{d\theta}{dt}$$

A primeira parte desta equação $\left[\vec{u}_{\vec{r}}\frac{d\vec{r}}{dt}\right]$ e um vector paralela a \vec{r} , denominado **velocidade radial**, essa parte e derivada da variação de \vec{r} , distancia da partícula a origem O.

A segunda parte $\left[\vec{u}_{\theta}\vec{r}\frac{d\theta}{dt}\right]$ e um vector perpendicular a \vec{r} e é a derivada da variação da direcção de \vec{r} , ou da rotação da partícula em torno de O, essa parte e denominada **velocidade transversal**.

$$v_r = \frac{d\vec{r}}{dt}; \ v_\theta = \vec{r} \frac{d\theta}{dt}$$

No movimento circular não há velocidade radial porque o raio e constante, isto e $\frac{d\vec{r}}{dt} = 0$, sendo então a velocidade inteiramente transversal.