Lighting

Partly based on Georgia Technical University lectures

Illumination

▶ How do we compute radiance for a sample ray?

Goal

- Must derive computer models for ...
 - Emission at light sources
 - Scattering at surfaces
 - Reception at the camera
- Desirable features ...
 - Concise
 - Efficient to compute
 - "Accurate"

Overview

- Direct (Local) Illumination
 - Emission at light sources
 - Scattering at surfaces
- ▶ Global illumination
 - Shadows
 - Refractions
 - Inter-object reflections

Direct Illumination

Modeling Light Sources

In general may be quite complicated...

$$I_L = (x, y, z, \theta, \phi, \lambda)$$

- where...
 - $ightharpoonup I_L$ describes the intensity of energy,
 - leaving a light source, ...
 - ightharpoonup arriving at location(x,y,z), ...
 - from direction (θ, ϕ) , ...
 - with wavelength λ

Empirical Models

- ▶ Ideally measure irradiant energy for "all" situations
 - ▶ Too much storage
 - Difficult in practice

Directional Light Sources

- For a directional light source we make simplifying assumptions
 - Direction is constant for all surfaces in the scene
 - All rays of light from the source are parallel
 - As if the source were infinitely far away from the surfaces in the scene
 - ▶ A good approximation to sunlight

The direction from a surface to the light source is important in lighting the surface

Directional Light Sources

▶ The same scene lit with a directional and an ambient light source

Point Light Sources

- A point light source emits light equally in all directions from a single point
- The direction to the light from a point on a surface thus differs for different points:
 - So we need to calculate a normalized vector to the light source for every point we light:

$$\overline{d} = \frac{\overline{p} - \overline{l}}{\left\| \overline{p} - \overline{l} \right\|}$$

Other Light Sources

- Spotlights are point sources whose intensity falls off directionally.
 - Requires color, point direction, falloff parameters
 - Supported by Three.js

Other Light Sources

- Area light sources define a 2-D emissive surface (usually a disc or polygon)
 - Good example: fluorescent light panels
 - Capable of generating soft shadows (why?)

- Objects not directly lit are typically still visible
 - e.g., the ceiling in this room, undersides of desks
- This is the result of indirect illumination from emitters, bouncing off intermediate surfaces
- Too expensive to calculate (in real time), so we use a hack called an ambient light source
 - No spatial or directional characteristics; illuminates all surfaces equally
 - Amount reflected depends on surface properties

- For each sampled wavelength (R, G, B), the ambient light reflected from a surface depends on
 - \triangleright The surface properties, k_A
 - The intensity, I_{A_i} of the ambient light source (constant for all points on all surfaces)

$$I_R = k_A \cdot I_A$$

$$I_{R}^{R} = k_{A}^{R} \cdot I_{A}^{R}$$
$$I_{R}^{G} = k_{A}^{G} \cdot I_{A}^{G}$$
$$I_{R}^{B} = k_{A}^{B} \cdot I_{A}^{B}$$

A scene lit only with an ambient light source:

Light Position Not Important

Viewer Position Not Important

Surface Angle Not Important

Ambient Term

▶ Represents reflection of all indirect illumination

This is a total hack (avoids complexity of global illumination)!

A scene lit only with an ambient light source:

Light Position Not Important

Viewer Position Not Important

Surface Angle Not Important

Ambient Term

▶ Represents reflection of all indirect illumination

This is a total hack (avoids complexity of global illumination)!

Overview

- Direct (Local) Illumination
 - ▶ Emission at light sources
 - Scattering at surfaces
- ▶ Global illumination
 - Shadows
 - Refractions
 - Inter-object reflections

Direct Illumination

Modeling Surface Reflectance

- $Arr R_s(\theta, \phi, \gamma, \psi, \lambda)$...
 - b describes the amount of incident energy,
 - arriving from direction (θ, ϕ) , ...
 - leaving in direction $(\gamma, \psi), \dots$
 - \blacktriangleright with wavelength λ

Empirical Models

- Ideally measure radiant energy for "all" combinations of incident angles
 - Too much storage
 - Difficult in practice

The Physics of Reflection

Ideal diffuse reflection

- An *ideal diffuse reflector*, at the microscopic level, is a very rough surface (real-world example: chalk)
- Because of these microscopic variations, an incoming ray of light is equally likely to be reflected in any direction over the hemisphere:

Diffuse Reflection

- How much light is reflected?
 - Depends on angle of incident light

Diffuse Reflection

- How much light is reflected?
 - Depends on angle of incident light

Lambert's Cosine Law

▶ Ideal diffuse surfaces reflect according to Lambert's cosine law:

The energy reflected by a small portion of a surface from a light source in a given direction is proportional to the cosine of the angle between that direction and the surface normal

- ▶ These are often called Lambertian surfaces
- Note that the reflected intensity is independent of the viewing direction, but does depend on the surface orientation with regard to the light source

Lambert's Law

Computing Diffuse Reflection

The angle between the surface normal and the incoming light is the angle of incidence:

$$I_{diffuse} = k_d I_{light} \cos \theta$$

In practice we use vector arithmetic:

$$I_{diffuse} = k_d I_{light} (n \cdot 1)$$

Diffuse Lighting Examples

- ▶ We need only consider angles from 0° to 90° (Why?)
- A Lambertian sphere seen at several different lighting angles:

Specular Reflection

- Shiny surfaces exhibit specular reflection
 - Polished metal
 - Glossy car finish

- A light shining on a specular surface causes a bright spot known as a specular highlight
- Where these highlights appear is a function of the viewer's position, so specular reflectance is view dependent

The Physics of Reflection

At the microscopic level a specular reflecting surface is very smooth

Thus rays of light are likely to bounce off the microgeometry in a mirror-like fashion

▶ The smoother the surface, the closer it becomes to a perfect mirror

The Optics of Reflection

- Reflection follows Snell's Laws:
 - The incoming ray and reflected ray lie in a plane with the surface normal
 - The angle that the reflected ray forms with the surface normal equals the angle formed by the incoming ray and the surface normal:

Specular Reflection

- ▶ Reflection is strongest near mirror angle
 - Examples: mirrors, metals

Non-Ideal Specular Reflectance

- Snell's law applies to perfect mirror-like surfaces, but aside from mirrors (and chrome) few surfaces exhibit perfect specularity
- How can we capture the "softer" reflections of surface that are glossy rather than mirror-like?
- One option: model the microgeometry of to bounce rays off of it
- Or...

Non-Ideal Specular Reflectance: An Empirical Approximation

- Hypothesis: most light reflects according to Snell's Law
 - But because of microscopic surface variations, some light may be reflected in a direction slightly off the ideal reflected ray
- Hypothesis: as we move from the ideal reflected ray, some light is still reflected

Non-Ideal Specular Reflectance: An Empirical Approximation

▶ An illustration of this angular falloff:

Phong Lighting

The most common lighting model in computer graphics was suggested by Phong:

$$I_{specular} = k_s I_{light} (\cos \phi)^{n_{shiny}}$$

The n_{shiny} term is a purely empirical constant that varies the rate of falloff

Though this model has no physical basis, it works (sort of) in practice

Phong Lighting: The n_{shiny} Term

This diagram shows how the Phong reflectance term drops off with divergence of the viewing angle from the ideal reflected ray:

Calculating Phong Lighting

The cos term of Phong lighting can be computed using vector arithmetic:

$$I_{specular} = k_s I_{light} (\overline{v} \cdot \overline{r})^{n_{shiny}}$$

- v is the unit vector towards the viewer
- r is the ideal reflectance direction

Phong Examples

 $\begin{tabular}{ll} \hline \textbf{These spheres illustrate the Phong model as 1 and n_{shiny} are varied: } \\ \hline \end{tabular}$

Combining Everything Simple analytic model:

- - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"

Combining Everything

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"

OpenGL/WebGL Reflectance Model

Sum diffuse, specular, emission, and ambient

Phong	ρ _{ambient}	$\rho_{ m diffuse}$	Pspecular	$ ho_{ m total}$
$\phi_i = 60^{\circ}$	6			
$\phi_i = 25^{\circ}$	•			
$\phi_i = 0^{\circ}$	•			

The Final Combined Equation

Single light source:

Final Combined Equation

Multiple light sources:

$$I = I_E + K_A I_{AL} + \sum_{i} (K_D (N \bullet L_i) I_i + K_S (V \bullet R_i)^n I_i)$$

Overview

- Direct (Local) Illumination
 - Emission at light sources
 - Scattering at surfaces
- Global illumination
 - Shadows
 - Refractions
 - Inter-object reflections

Direct Illumination

Global Illumination

- We've glossed over how light really works
- And we will continue to do so...
- One step better

Global Illumination

The notion that a point is illuminated by more than light from local lights; it is illuminated by all the emitters and reflectors in the global scene

The 'Rendering Equation'

▶ Jim Kajiya developed this in 1986 — we are not going to use it

$$I(x,x') = g(x,x') \left[\varepsilon(x,x') + \int_{S} \rho(x,x',x'') I(x',x'') dx'' \right]$$

- I(x, x') = total intensity from point x' to x
- g(x, x') = 0 when x/x' are occluded
 - = I/d^2 otherwise (d = distance between x and x')
- $\epsilon(x, x')$ = intensity emitted by x' to x
- $\rho(x, x', x'')$ = intensity of light reflected from x" to x through x'
- S = all points on all surfaces

The 'Rendering Equation'

- The light that hits x from x' is the direct illumination from x' and all the light reflected by x' from all x"
- ▶ To implement:
 - Must handle recursion effectively
 - Must support diffuse and specular light
 - Must model object shadowing