Least Squares Approximation for a Distributed System

Zhu et.al

August 14, 2020

Introduction

The common wisdom for addressing a distributed statistical problem can be classified into two categories.

- 'one-shot' or 'embarrassingly parallel' approach, which requires only one round of communication. It might not achieve the best efficiency in statistical estimation.
- iterative algorithms, which requires multiple iterations to be taken so that the estimation efficiency can be refined to match the global estimator.

Introduction

- The sparse learning problem using ℓ_1 shrinkage estimation.
- Ensure the model selection consistency and establish a criterion for consistent tuning parameter selection.
- The data possessed by different workers are allowed to be heterogeneous but share the same regression relationship.

Models and Notations

- Total N observations, which are indexed as $i=1,2,\ldots,N$, define $\mathcal{S}=\{1,2,\ldots,N\}$
- The *i*th observation is denoted by $Z_i = (X_i^T, Y_i)^T \in \mathbb{R}^{p+1}$.
- The observations are distributed across K local workers, S_k collects observations distributed to kth worker and $S = \bigcup_{k=1}^{K} S_k$.
- Define n = N/K. Assume that $|S_k| = n_k$ and that all n_k diverge in the same order O(n).
- Due to the data storing strategy, the data in different workers could be quite heterogeneous, e.g., they might be collected according to spatial regions.
- Despite the heterogeneity here, we assume they share the same regression relationship, the parameter $\theta_0 \in \mathbb{R}^p$.

Models and Notations

Let $\mathcal{L}(\theta; Z)$ be a plausible twice differentiable loss function. Define the global loss function as $\mathcal{L}(\theta) = N^{-1} \sum_{i=1}^{N} \mathcal{L}(\theta, Z_i)$.

The global estimator is $\hat{\theta} = \arg\min \mathcal{L}(\theta)$ and the true value is θ_0 .

It is assumed that $\hat{\theta}$ admits the following asymptotic rule

$$\sqrt{N}(\hat{\theta}-\theta)\stackrel{d}{\to}N(0,\Sigma),$$

where $\Sigma \in \mathbb{R}^{p \times p}$ is positive definite.

Models and Notations

Define the local loss function in the *k* th worker as

$$\mathcal{L}_k(\theta) = n_k^{-1} \sum_{i \in \mathcal{S}_k} \mathcal{L}(\theta; Z_i)$$

The local minimizer is

$$\hat{\theta}_k = \arg\min \mathcal{L}_k(\theta)$$

We assume that

$$\sqrt{n_k}(\hat{\theta}_k - \theta_0) \stackrel{d}{\rightarrow} N(0, \Sigma_k)$$

Least Squares Approximation

Approximate the global loss function using Taylor's expansion

$$\mathcal{L}(\theta) = N^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{S}_{k}} \mathcal{L}(\theta; Z_{i})$$

$$= N^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{S}_{k}} \left\{ \mathcal{L}(\theta; Z_{i}) - \mathcal{L}\left(\widehat{\theta}_{k}; Z_{i}\right) \right\} + C_{1}$$

$$\approx N^{-1} \sum_{k=1}^{K} \sum_{i \in \mathcal{S}_{k}} \left(\theta - \widehat{\theta}_{k}\right)^{\top} \ddot{\mathcal{L}}\left(\widehat{\theta}_{k}; Z_{i}\right) \left(\theta - \widehat{\theta}_{k}\right) + C_{2}$$

The last equation uses the fact that $\dot{\mathcal{L}}_k(\hat{\theta}_k) = 0$.

Least Squares Approximation

The weighted least squares objective function

$$\widetilde{\mathcal{L}}(\theta) = N^{-1} \sum_{k} \left(\theta - \widehat{\theta}_{k} \right)^{\top} \left\{ \sum_{i \in \mathcal{S}_{k}} \ddot{\mathcal{L}} \left(\widehat{\theta}_{k}; Z_{i} \right) \right\} \left(\theta - \widehat{\theta}_{k} \right)$$

$$\stackrel{\mathsf{def}}{=} \sum_{k} \left(\theta - \widehat{\theta}_{k} \right)^{\top} \alpha_{k} \widehat{\Sigma}_{k}^{-1} \left(\theta - \widehat{\theta}_{k} \right)$$

where $\alpha_k = n_k/N$. The solution is (weighted least squares estimator(WLSE))

$$\widetilde{\theta} = \arg\min_{\theta} \widetilde{\mathcal{L}}(\theta) = \left(\sum_{k} \alpha_{k} \widehat{\Sigma}_{k}^{-1}\right)^{-1} \left(\sum_{k} \alpha_{k} \widehat{\Sigma}_{k}^{-1} \widehat{\theta}_{k}\right).$$

Remarks about WLSE

- ullet The local worker sends $\hat{ heta}_k$ and $\hat{\Sigma}_k$ to the master node
- Then the master node produces WLSE by the above equation.
- The above WLSE requires only one round of communication.

Assumptions

- (C1) The parameter space Θ is a compact and convex subset of \mathbb{R}^p . θ_0 lies in the interior of Θ .
- (C2) Covariates $X_i (i \in S_k)$ from kth worker are iid from $F_k(x)$.
- (C3) For any $\delta > 0$, there exists $\varepsilon > 0$ such that

$$\begin{split} & \lim_{n \to \infty} \inf P \left\{ \inf_{\|\theta^* - \theta_0\| \ge \delta, 1 \le k \le K} \left(\mathcal{L}_k \left(\theta^* \right) - \mathcal{L}_k \left(\theta_0 \right) \right) \ge \epsilon \right\} = 1 \\ & \text{and } E \left\{ \left. \frac{\partial \mathcal{L}_k(\theta)}{\partial \theta} \right|_{\theta = \theta_0} \right\} = 0 \end{split}$$

(C4) Define

$$\Omega_k(\theta) = E\left\{\frac{\partial \mathcal{L}\left(\theta; Z_i\right)}{\partial \theta} \frac{\partial \mathcal{L}\left(\theta; Z_i\right)}{\partial \theta^{\top}} \mid i \in \mathcal{S}_k\right\}$$

Assume $\Omega_k(\theta)$ is nonsingular at θ_0 . Let $\Sigma_k = {\Omega_k(\theta_0)}^{-1}$ and $\Sigma = {\Sigma_k \alpha_k \Omega(\theta_0)}^{-1}$.

Assumptions

(C5) Define $B(\delta) = \{\theta^* \in \Theta | ||\theta^* - \theta_0|| \le \delta\}$. There exists function $M_{ijl}(Z)$ and $\delta > 0$ such that

$$\left| \frac{\partial^3}{\partial \theta_i \partial \theta_j \partial \theta_l} \mathcal{L}\left(\theta^*; Z\right) \right| \leq M_{ijl}(Z), \quad \text{ for all } \quad \theta^* \in B(\delta)$$

where

$$E\left\{ M_{ijl}\left(Z_{m}
ight)\mid m\in\mathcal{S}_{k}
ight\} <\infty ext{ for all }1\leq i,j,l\leq p ext{ and }1\leq k\leq K.$$

Propsition 1

Assume Conditions (C1)-(C5). Then, we have

$$\sqrt{N}\left(\widetilde{\theta}-\theta_{0}\right)=V\left(\theta_{0}\right)+B\left(\theta_{0}\right)$$

with cov $\{V(\theta_0)\}=\Sigma$ and $B(\theta_0)=O_p(K/\sqrt{N})$, where $\Sigma=\left(\sum_{k=1}^K \alpha_k \Sigma_k^{-1}\right)^{-1}$.

Theorem 1

Assume Conditions (C1)-(C5) and further assume $n/N^{1/2} \to \infty$. Then we have $\sqrt{N}(\tilde{\theta}-\theta_0) \stackrel{d}{\to} N(0,\Sigma)$, which achieves the same asymptotic normality as the global estimator $\hat{\theta}$.

Distributed Adaptive Lasso Estimation

How to conduct variable selection on a distributed system has not been sufficiently investigated.

Previous work: Lee et al., 2015; Battey et al., 2015; Wang et al., 2017a; Jordan et al., 2018

Notations:

- The first d_0 to be nonzero. i.e. $\theta_j \neq 0$ for $1 \leq j \leq d_0$. Denote $\mathcal{M}_T = \{1, 2, \dots, d_0\}$ to be the true model.
- Let $\mathcal{M} = \{i_1, \dots, i_d\}$ be an arbitrary candidate model.
- For an arbitrary vector v, define $v^{(\mathcal{M})} = (v_i : i \in \mathcal{M})^{\top} \in \mathbb{R}^{|\mathcal{M}|}$ and $v^{(-\mathcal{M})} = (v_i : i \notin \mathcal{M})^{\top} \in \mathbb{R}^{p-|\mathcal{M}|}$.
- For an arbitrary Matrix M, define $M^{(\mathcal{M})} = (m_{j_1 j_2} : j_1, j_2 \in \mathcal{M}) \in \mathbb{R}^{|\mathcal{M}| \times |\mathcal{M}|}$.

Adaptive Lasso

Consider the adaptive Lasso objective function on the master

$$Q_{\lambda}(heta) = \widetilde{\mathcal{L}}(heta) + \sum_{j} \lambda_{j} \left| heta_{j}
ight|$$

Define $\tilde{\theta}_{\lambda} = \arg \min Q_{\lambda}(\theta)$.

Theorem 2

Assume the conditions (C1)-(C5). Let $a_{\lambda} = \max\{\lambda_j, j \leq d_0\}$ and $b_{\lambda} = \min\{\lambda_j, j > d_0\}$. Then the following results holds.

- If $\sqrt{N}a_{\lambda} \stackrel{p}{\to} 0$, then $\tilde{\theta}_{\lambda} \theta = O_p(N^{-1/2})$.
- If $\sqrt{N}a_{\lambda}\stackrel{p}{\to} 0$ and $\sqrt{N}b_{\lambda}\stackrel{p}{\to} \infty$,

$$P\left(\widetilde{\theta}_{\lambda}^{(-\mathcal{M}_{T})}=0\right) \to 1.$$

Covariance Assumption

Condition (C6) does not seem very intuitive. Nevertheless, it is a condition that is well satisifed by most maximum likelihood. estimators

Theorem 3

Assume Conditions (C1)-(C6). Let $\sqrt{N}a_{\lambda} \stackrel{p}{\to} 0$ and $\sqrt{N}b_{\lambda} \stackrel{p}{\to} \infty$, then it holds that $\sqrt{N}\left(\widetilde{\theta}_{\lambda}^{(\mathcal{M}_{\mathcal{T}})} - \theta^{(\mathcal{M}_{\mathcal{T}})}\right) \to_{d} N\left(0, \Sigma_{\mathcal{M}_{\mathcal{T}}}\right).$

18 / 25

Remarks about Theorem 3

- as long as the tuning parameters are approximately selected, the resulting estimator is selection consistent and as efficient as the oracle estimator.
- Specify $\lambda_j = \lambda_0 |\tilde{\theta}_j|^{-1}$.
- Since $\tilde{\theta}_j$ is \sqrt{N} -consistent, then as long as as λ_0 satisfies the condition $\lambda_0\sqrt{N} \to 0$ and $\lambda_0N \to \infty$, then the conditions in Theorem 2 and Theorem 3 hold.

Distributed Bayes Information Criterion

distributed Bayesian information criterion (DBIC)-based criterion

$$\mathrm{DBIC}_{\lambda} = \left(\widetilde{\theta}_{\lambda} - \widetilde{\theta}\right)^{\top} \widehat{\Sigma}^{-1} \left(\widetilde{\theta}_{\lambda} - \widetilde{\theta}\right) + \log N \times df_{\lambda}/N$$

where df_{λ} is the number of nonzero elements in $\hat{\theta}_{\lambda}$. Define the set of nonzero elements of $\hat{\theta}_{\lambda}$ by \mathcal{M}_{λ} . Define

$$\mathbb{R}_{-} = \left\{ \lambda \in \mathbb{R}^{p} : \mathcal{M}_{\lambda} \not\supset \mathcal{M}_{T} \right\}, \mathbb{R}_{0} = \left\{ \lambda \in \mathbb{R}^{p} : \mathcal{M}_{\lambda} = \mathcal{M}_{T} \right\}$$
$$\mathbb{R}_{+} = \left\{ \lambda \in \mathbb{R}^{p} : \mathcal{M}_{\lambda} \supset \mathcal{M}_{T}, \mathcal{M}_{\lambda} \neq \mathcal{M}_{T} \right\}$$

where \mathbb{R}_{-} denotes the under fitted model, and \mathbb{R}_{+} denotes an over fitted model.

Theorem 4

Assume Conditions (C1)-(C6). Define a reference tuning parameter sequence $\{\lambda_N \in \mathbb{R}^p\}$, where the first d_0 elements of λ_N are 1/N and and the remaining elements are $\log N/N$. Then we have

$$P\left(\inf_{\lambda\in\mathbb{R}_{-}\cup\mathbb{R}_{+}}DBIC_{\lambda}>DBIC_{\lambda_{N}}\right)\rightarrow1.$$

Simulation Models and Setting

For each model, we consider two typical settings to verify the numerical performance of the proposed method.

- The first strategy is to distribute data in a complete random manner. X_{ij} are sampled from the standard normal distribution N(0,1).
- The second strategy allows for covariate distribution on different workers to be heterogeneous. On the kth worker, the covariates are sampled from the multivariate normal distribution $N(\mu_k, \Sigma_k)$, where $\mu_k \sim U[-1,1]$ and $\Sigma_k = (\rho_k^{|j_1-j_2|})$ with $\rho_k \sim U[0.3,0.4]$.

Simulation Models and Setting

Examples:

- Linear Regression $\theta_0 = (3, 1.5, 0, 0, 2, 0, 0, 0)$
- Logistic Regression $\theta_0 = (3, 0, 0, 1.5, 0, 0, 2, 0)$
- Possion Regression $\theta_0 = (0.8, 0, 0, 1, 0, 0, -0.4, 0, 0)$
- Cox Model. We set the hazard function to be $h(t_i|x_i) = \exp(X_i^T\theta_0)$, where t_i is the survival time from the ith subject. $\theta_0 = (0.8, 0, 0, 1, 0, 0, 0.6, 0, 0)$. Censoring time is generated independently from an exponential distribution with a mean $\mu_i \exp(X_i^T\theta_0)$ where u_i sampled from a uniform distribution U[1,3].
- Ordered Probit Regression. The ordinal responses are independently generated as follows:

$$P(Y_i = I \mid X_i, \theta_0) = \begin{pmatrix} \Phi(c_1 - X^{\top}\theta_0) & I = 1 \\ \Phi(c_I - X^{\top}\theta_0) - \Phi(c_{I-1} - X^{\top}\theta_0) & 2 \leq I \leq L - 1 \\ 1 - \Phi(c_{L-1} - X^{\top}\theta_0) & I = L \end{pmatrix}$$

where $\theta_0 = (0.8, 0, 0, 1, 0, 0, 0.6, 0, 0)$

(D) (B) (E) (E) E 900

Simulation Results: I

Page 42 -Page 46

Airline Data

- The dataset considered here is the U.S. Airline Dataset. It contains detailed flight information about U.S. airlines from 1987 to 2008.
- The task is to predict the delayed status of a fight given all other flight information.

The results are in Page 27.