Supervised Learning (COMP0078)

7. Learning Theory (Part II): Rademacher Complexity

Carlo Ciliberto

University College London
Department of Computer Science

Admin Notes

- · Coursework 2 Release.
- Question: 2 15 mins breaks or 1 30 mins break?
 Contact Morgane Ohlig

Outline

- Rademacher Complexity and Generalization Error
- Contraction Lemma
- Rademacher complexity in practice
- Constrained optimization

Last Class

We introduced regularization as the abstract strategy of controlling the expressiveness of an estimator, via a parameter $\gamma \geq 0$.

$$f_{n,\gamma} = \underset{f \in \mathcal{H}_{\gamma}}{\operatorname{arg \, min}} \ \mathcal{E}_n(f)$$
 $f_{\gamma} = \underset{f \in \mathcal{H}_{\gamma}}{\operatorname{arg \, min}} \ \mathcal{E}(f)$

Assuming $\mathcal{H}=\bigcup_{\gamma\geq 0}\mathcal{H}_{\gamma}$ we derived the bias-variance decomposition of the excess risk

$$\mathcal{E}(f_{n,\gamma}) - \mathcal{E}(f_*) \\ = \underbrace{\mathcal{E}(f_{n,\gamma}) - \mathcal{E}(f_\gamma)}_{\text{sample error/variance}} + \underbrace{\mathcal{E}(f_\gamma) - \inf_{f \in \mathcal{H}} \mathcal{E}(f)}_{\text{approximation/bias}} + \underbrace{\inf_{f \in \mathcal{H}} \mathcal{E}(f) - \mathcal{E}(f_*)}_{\text{irreducible error}}$$

Depending on the number n of training points available, the ERM strategy would choose $\gamma = \gamma(n)$ as striking the best balance between variance and bias errors.

Last Class - Excess Risk Decomposition

- The irreducible error depends on our choice of $\mathcal H$ with respect to the learning problem. We can not say much about it except if we choose $\mathcal H$ to be "universal" (several choices available), which guarantees the irreducible error to be 0!
- The approximation error depends on the learning problem, the space $\mathcal H$ and our choice of regularization γ .
 - We will get back to this once we will start discussing some more concrete implementations of the regularization strategy (actual algorithms).
 - Since we don't know ρ , we will always need to make some assumptions to say something meaningful about it!
- The sample error depends on how much "freedom" the space \mathcal{H}_{γ} has, as a function of γ .

Last Class - Generalization Error

We have seen how generalization error is a key quantity to control if we want to study the sample error of our learning algorithm...

$$\mathcal{E}(f_{n,\gamma}) - \mathcal{E}_n(f_{n,\gamma})$$

This follows by decomposing the sample error

$$\mathcal{E}(f_{n,\gamma}) - \mathcal{E}(f_{\gamma}) \\ = \underbrace{\mathcal{E}(f_{n,\gamma}) - \mathcal{E}_n(f_{n,\gamma})}_{\text{Generalization error}} + \underbrace{\mathcal{E}_n(f_{n,\gamma}) - \mathcal{E}_n(f_{\gamma})}_{\leq 0} + \underbrace{\mathcal{E}_n(f_{\gamma}) - \mathcal{E}(f_{\gamma})}_{0 \text{ in expectation } O(1/\sqrt{n}) \text{ in probability}}$$

Last Class - Finite Hypotheses Spaces

We observed that limiting ourselves to hypotheses spaces containing a finite number of functions, we could control the generalization error,

$$\mathcal{E}(f_{n,\gamma}) - \mathcal{E}_n(f_{n,\gamma}) \leq |\mathcal{H}_{\gamma}| \sqrt{\frac{V_{\gamma}}{n}} \qquad \text{with} \qquad V_{\gamma} = \sup_{f \in \mathcal{H}_{\gamma}} \operatorname{Var} \ell(f(x), y).$$

- **Pros.** Plugging this result in the excess risk decomposition we are able to actually study the predicton performance of the learning algorithm $f_{n,\gamma}$.
- Cons. The cardinality $|\mathcal{H}_{\gamma}|$ is *very* concerning: even if we have seen that from a statistical perspective we can mitigate its effect (e.g. using Hoeffding's inequality and make it appear as a logaritmic factor), solving ERM on \mathcal{H}_{γ} requires evaluating the empirical risk $|\mathcal{H}_{\gamma}|$ times!

Beyond Finite Hypotheses Spaces

Ideally... We would like to find suitable spaces \mathcal{H}_{γ} such that:

- 1. Any algorithm (ERM included) producing functions in \mathcal{H}_{γ} enjoys good generalization bounds (like it is the case for finite spaces).
- 2. Solving ERM (or in any case, carrying out the required optimization) over \mathcal{H}_{γ} is efficient with respect to n and γ (e.g. can be done in polynomial time).
- 3. The family of $\{\mathcal{H}_{\gamma}\}_{\gamma>0}$ is "fast" in approximating \mathcal{H} . More precisely, under weak assumptions on the learning problem, the bias-variance trade-off identified by γ should yield to fast learning rates.

Beyond Finite Hypotheses Spaces (Continued)

Let's look back at the way we were able to control the generalization of f_n over a finite space of Hypotheses \mathcal{H} .

$$\mathbb{E}[\mathcal{E}(f_n) - \mathcal{E}_n(f_n)] \leq \mathbb{E}\left[\sup_{f \in \mathcal{H}} \mathcal{E}(f) - \mathcal{E}_n(f)\right]$$

$$\leq \sum_{f \in \mathcal{H}} \mathbb{E} \mathcal{E}(f) - \mathcal{E}_n(f)$$

$$\leq |\mathcal{H}| \sqrt{\frac{V_{\mathcal{H}}}{n}}.$$

Both inequalities first and second inequalities are possibly loose, but the second one, replacing the \sup with the sum over all possible functions in $\mathcal H$ is arguably the worst...

...can we do better to control
$$\mathbb{E} [\sup_{f \in \mathcal{H}} \mathcal{E}(f) - \mathcal{E}_n(f)]$$
?

Yes, for example using Rademacher complexity.

Rademacher Complexity

Rademacher complexity is a way to measure how expressive a family of hypotheses is, by measuring how "well" the functions it contains correlate with random noise.

Empirical Rademacher Complexity: Let \mathcal{Z} be a set and $S = (z_i)_{i=1}^n$ a dataset on \mathcal{Z} . The *empirical Rademacher complexity* of a space of hypotheses $\mathcal{H}\{f: \mathcal{Z} \to \mathbb{R}\}$ is

$$\mathcal{R}_{\mathbf{S}}(\mathcal{H}) = \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{n} \sigma_{i} f(z_{i}) \right]$$

where $\sigma = (\sigma_i)_{i=1}^n$ and σ_i uniformly sampled in $\{-1,1\}$ (independent to each other) known as *Rademacher variables*.

Rademacher Complexity: Let ρ be a probability measure on $\mathcal Z$

$$\mathcal{R}_n(\mathcal{H}) = \mathcal{R}_{\rho,n}(\mathcal{H}) = \mathbb{E}_{\mathcal{S} \sim \rho^n}[\mathcal{R}_{\mathcal{S}}(\mathcal{H})]$$

Rademacher Complexity

Rademacher complexity is a well-established measure that:

- Can be controlled for a large number of popular spaces of hypotheses (we will see one key example in a bit).
- Is related to many other complexity measures:¹
 - Covering numbers,
 - Gaussian complexity,
 - · Growth function,
 - Vapnik-Chervonenkis (VC) dimension,
 - ...

...and it is *very* reminiscent of term we would like to control (an expectation of a sup)...

...could we use it to upper bound $\mathbb{E} [\sup_{f \in \mathcal{H}} \mathcal{E}(f) - \mathcal{E}_n(f)]$?

¹e.g. can upper bound and/or be upper bounded by

Rademacher Complexity and Generalization Error

We will try now to connect the "worst" generalization error over \mathcal{H} and the Rademacher complexity of \mathcal{H} .

In particular, we will show that

$$\mathbb{E}\left[\sup_{f\in\mathcal{H}}\,\mathcal{E}(f)-\mathcal{E}_n(f)\right]\leq 2\mathcal{R}_n(\ell\circ\mathcal{H})$$

where

$$\ell \circ \mathcal{H} = \{ g(x, y) = \ell(f(x), y) \mid f \in \mathcal{H} \}$$

Let's prove this...

Back to the "worst" generalization error

Notation. For clarity, in the following we denote the empirical risk of a function f with respect to a dataset $S \sim \rho^n$ as $\mathcal{E}_S(f)$.

Recall that for any dataset $S \sim \rho^n$, the expectation of the empirical risk corresponds to the expected risk, namely $\mathbb{E}_{\mathcal{S}} \, \mathcal{E}_{\mathcal{S}}(f) = \mathcal{E}(f)$. Then, by introducing a new "virtual" dataset $S' \sim \rho^n$, we have

$$\mathbb{E}_{\mathcal{S}}\left[\sup_{f\in\mathcal{H}}\mathcal{E}(f)-\mathcal{E}_{\mathcal{S}}(f)\right]=\mathbb{E}_{\mathcal{S}}\left[\sup_{f\in\mathcal{H}}\mathbb{E}_{\mathcal{S}'}\left[\mathcal{E}_{\mathcal{S}'}(f)-\mathcal{E}_{\mathcal{S}}(f)\right]\right]$$

Moreover, since the the sup function is convex, we have

$$\mathbb{E}_{\mathcal{S}}\left[\sup_{f\in\mathcal{H}}\mathbb{E}_{\mathcal{S}'}\left[\mathcal{E}_{\mathcal{S}'}(f)-\mathcal{E}_{\mathcal{S}}(f)\right]\right]\leq\mathbb{E}_{\mathcal{S},\mathbf{S}'}\left[\sup_{f\in\mathcal{H}}\mathcal{E}_{\mathcal{S}'}(f)-\mathcal{E}_{\mathcal{S}}(f)\right]$$

Introducing the Rademacher Variables

Let $S = (x_i, y_i)_{i=1}^n$ and $S' = (x_i', y_i')_{i=1}^n$, then

$$\mathcal{E}_{\mathcal{S}'}(f) - \mathcal{E}_{\mathcal{S}}(f) = \frac{1}{n} \sum_{i=1}^{n} \left(\ell(f(x_i'), y_i') - \ell(f(x_i), y_i) \right).$$

Introduce the Rademacher variables σ_i sampled with uniform probability in $\{-1,1\}$. We note the following equality holds

$$\mathbb{E}_{S,S'}\left[\sup_{f\in\mathcal{H}}\frac{1}{n}\sum_{i=1}^{n}\left(\ell(f(x_i'),y_i')-\ell(f(x_i),y_i)\right)\right]$$

$$=\mathbb{E}_{S,S',\sigma}\left[\sup_{f\in\mathcal{H}}\frac{1}{n}\sum_{i=1}^{n}\sigma_i\left(\ell(f(x_i'),y_i')-\ell(f(x_i),y_i)\right)\right].$$

Why?

Introducing the Rademacher Variables

Let $S = (x_i, y_i)_{i=1}^n$ and $S' = (x_i', y_i')_{i=1}^n$, then

$$\mathcal{E}_{\mathcal{S}'}(f) - \mathcal{E}_{\mathcal{S}}(f) = \frac{1}{n} \sum_{i=1}^{n} \left(\ell(f(x_i'), y_i') - \ell(f(x_i), y_i) \right).$$

Introduce the Rademacher variables σ_i sampled with uniform probability in $\{-1,1\}$. We note the following equality holds

$$\mathbb{E}_{\mathcal{S},\mathcal{S}'}\left[\sup_{f\in\mathcal{H}}\frac{1}{n}\sum_{i=1}^{n}\left(\ell(f(x_i'),y_i')-\ell(f(x_i),y_i)\right)\right]$$

$$=\mathbb{E}_{\mathcal{S},\mathcal{S}',\sigma}\left[\sup_{f\in\mathcal{H}}\frac{1}{n}\sum_{i=1}^{n}\sigma_i\left(\ell(f(x_i'),y_i')-\ell(f(x_i),y_i)\right)\right].$$

Why? Because sampling $\sigma_i = -1$ can be interpreted as "swapping" the sample (x_i, y_i) from S with the (x_i', y_i') in S'. But the expectation is considering all possible combinations of S and S'. We are only changing the order of elements in the expectation but not the result.

Sub-additivity of the Supremum

By recalling that the supremum is *sub-additve*, namely $\sup_{x} f(x) + g(x) \le \sup_{x} f(x) + \sup_{x} g(x)$, we have

$$\mathbb{E}_{S,S',\sigma} \sup_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \left(\ell(f(x'_{i}), y'_{i}) - \ell(f(x_{i}), y_{i}) \right)$$

$$\leq \mathbb{E}_{S',\sigma} \sup_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \ell(f(x'_{i}), y'_{i}) + \mathbb{E}_{S,\sigma} \sup_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} -\sigma_{i} \ell(f(x_{i}), y_{i})$$

$$\leq 2 \mathbb{E}_{S,\sigma} \sup_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \ell(f(x_{i}), y_{i}).$$

The last inequality follows by observing that the σ_i s absorb any change of sign and S and S' play the same role in the two elements in the sum.

Back to the Rademacher Complexity

The last term we got is actually a Rademacher complexity...

To see it, consider

$$\mathcal{G} = \{g : \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \mid g(x, y) = \ell(f(x), y) \; \exists f \in \mathcal{H}\}$$

We denote $\mathcal{G}=\ell\circ\mathcal{H}$ as the set of functions obtained by composing the loss ℓ with the hypotheses in \mathcal{H} . Then,

$$\mathbb{E}_{S,\sigma} \sup_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \ell(f(x_{i}), y_{i}) = \mathbb{E}_{S,\sigma} \sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} g(\underbrace{z_{i}}_{(x_{i}, y_{i})}) = \mathcal{R}_{n}(\ell \circ \mathcal{H})$$

Bringing everything back together, we have

$$\mathbb{E}\left[\sup_{f\in\mathcal{H}}\mathcal{E}(f)-\mathcal{E}_n(f)\right]\leq 2\mathcal{R}_n(\ell\circ\mathcal{H})$$

as required.

Dependency on the Loss

We were able to bound the generalization bound in terms of $\mathcal{R}_n(\ell \circ \mathcal{H})$.

However, in practice, we can expect to have results characterizing the Rademacher complexity of a space $\mathcal H$ for some well-established hypotheses space (and we will see some of them below)...

Question. Can we control $\mathcal{R}_n(\ell \circ \mathcal{H})$ in terms of $\mathcal{R}_n(\mathcal{H})$?

Yes! Provided we make some assumptions on the loss...

Contraction Lemma

We have seen that most we use have appealing properties, e.g. smoothness, convexity, Lipschitz, etc...

Lemma (Contraction). Let $\ell(\cdot, y)$ be L-Lipschitz uniformly for $y \in \mathcal{Y}$ with L > 0. Then, for any set $S = (x_i, y_i)_{i=1}^n$

$$\mathcal{R}_{\mathcal{S}}(\ell \circ \mathcal{H}) \leq L\mathcal{R}_{\mathcal{S}_{\mathcal{X}}}(\mathcal{H}),$$

with $S_{\mathcal{X}} = (x_i)_{i=1}^n$. Furthermore, for any ρ probability distribution on $\mathcal{X} \times \mathcal{Y}$ and any $n \in \mathbb{N}$,

$$\mathcal{R}_n(\ell \circ \mathcal{H}) \leq L\mathcal{R}_n(\mathcal{H}).$$

Contraction Lemma

Let us start by isolating the contribution of the term $\sigma_1 \ell(f(x_1), y_1)$ in the Rademacher complexity:

$$\mathcal{R}_{S}(\ell \circ \mathcal{H}) = \mathbb{E}_{\sigma} \sup_{f \in \mathcal{H}} \sum_{i=1}^{n} \sigma_{i} \ell(f(x_{i}), y_{i})$$

$$= \mathbb{E}_{\sigma} \sup_{f \in \mathcal{H}} \left[\sigma_{1} \ell(f(x_{1}), y_{1}) + \sum_{i=2}^{n} \sigma_{i} \ell(f(x_{i}), y_{i}) \right]$$

$$= \frac{1}{2} \mathbb{E}_{\sigma_{2}, \dots \sigma_{n}} \sup_{f \in \mathcal{H}} \left[\ell(f(x_{1}), y_{1}) + \sum_{i=2}^{n} \sigma_{i} \ell(f(x_{i}), y_{i}) \right]$$

$$+ \frac{1}{2} \mathbb{E}_{\sigma_{2}, \dots \sigma_{n}} \sup_{f \in \mathcal{H}} \left[-\ell(f(x_{1}), y_{1}) + \sum_{i=2}^{n} \sigma_{i} \ell(f(x_{i}), y_{i}) \right]$$

where we have explicitly written the expectation with respect to σ_1 (which is uniformly sampled from $\{-1,1\}$).

Contraction Lemma (Cont.)

By considering the supremum over two functions f and f', we then have

$$\mathcal{R}_{\mathcal{S}}(\ell \circ \mathcal{H}) = \frac{1}{2} \mathbb{E}_{\sigma_2, \dots, \sigma_n} \sup_{f, f' \in \mathcal{H}} \left[\ell(f(x_1), y_1) - \ell(f'(x_1), y_1) + \sum_{i=2}^n \sigma_i \ell(f(x_i), y_i) + \sum_{i=2}^n \sigma_i \ell(f'(x_i), y_i) \right].$$

Since the loss is L-Lipschiz...

$$\mathcal{R}_{S}(\ell \circ \mathcal{H}) \leq \frac{1}{2} \mathbb{E}_{\sigma_{2},...,\sigma_{n}} \sup_{f,f' \in \mathcal{H}} \left[\frac{L|f(x_{1}) - f'(x_{1})|}{+ \sum_{i=2}^{n} \sigma_{i}\ell(f(x_{i}), y_{i}) + \sum_{i=2}^{n} \sigma_{i}\ell(f'(x_{i}), y_{i})} \right]$$

Contraction Lemma (Cont.)

Since f and f' are from the same set \mathcal{H} and the last two terms are identical functions of f or f', we can remove the absolute value, namely

$$\frac{1}{2} \sup_{f,f' \in \mathcal{H}} \left[L|f(x_1) - f'(x_1)| + \sum_{i=2}^{n} \sigma_i \ell(f(x_i), y_i) + \sum_{i=2}^{n} \sigma_i \ell(f'(x_i), y_i) \right] \\
= \frac{1}{2} \sup_{f,f' \in \mathcal{H}} \left[L(f(x_1) - f'(x_1)) + \sum_{i=2}^{n} \sigma_i \ell(f(x_i), y_i) + \sum_{i=2}^{n} \sigma_i \ell(f'(x_i), y_i) \right]$$

By splitting again the supremum with respect to f and f', we can write everything as

$$= \mathbb{E}_{\sigma_1} \sup_{f \in \mathcal{H}} \left[L \sigma_1 f(x_1) + \sum_{i=2}^n \sigma_i \ell(f(x_i), y_i) \right]$$

Contraction Lemma (Cont.)

Repeating the same argument for i = 2, ..., n, we conclude that

$$\mathcal{R}_{\mathcal{S}}(\ell \circ \mathcal{H}) = \mathbb{E}_{\sigma} \sup_{f \in \mathcal{H}} \sum_{i=1}^{n} \sigma_{i} \ell(f(x_{i}), y_{i})$$

$$\leq L \mathbb{E}_{\sigma} \sup_{f \in \mathcal{H}} \sum_{i=1}^{n} \sigma_{i} f(x_{i}) = L \mathcal{R}_{\mathcal{S}_{\mathcal{X}}}(\mathcal{H}),$$

as desired. The result for the (expected) Rademacher complexity

$$\mathcal{R}_n(\ell \circ \mathcal{H}) \leq L \, \mathcal{R}_n(\mathcal{H}),$$

follows by taking the expectation with respect to $S \sim \rho^n$.

Bringing everything together

Therefore, by assuming ℓ to be L-lipschitz, we can control the worst generalization error as

$$\mathbb{E}\mathcal{E}(f_n) - \mathcal{E}_n(f_n) \leq \mathbb{E} \sup_{f \in \mathcal{H}} \mathcal{E}(f) - \mathcal{E}_n(f) \leq 2L \ \mathcal{R}(\mathcal{H})$$

Can we control the same result in probability?

McDiarmid Inequality

Theorem. Let \mathcal{Z} be a set and $g: \mathcal{Z}^n \to \mathbb{R}$ be a function such that there exists c > 0 such that for any i = 1, ..., n and any $z_1, ..., z_n, z_i' \in \mathcal{Z}$ we have

$$|g(z_1,...,z_n)-g(z_1,...,z_{i-1},z'_i,z_{i+1},...,z_n)| \leq c.$$

Let $Z_1, ..., Z_n$ be n independent random variables taking values in \mathcal{Z} . Then, for any $\delta > 0$, with probability at least $1 - \delta$

$$|g(Z_1,\ldots,Z_n)-\mathbb{E}g(Z_1,\ldots,Z_n)|\leq c\sqrt{\frac{n}{2}\log(2/\delta)}$$

Error Bound with Rademacher Complexity

Let $z_i = (x_i, y_i)$ and

$$g(z_1,\ldots,z_n)=\sup_{f\in\mathcal{H}}\left[\mathcal{E}(f)-\frac{1}{n}\sum_{i=1}^n\ell(f(x_i),y_i)\right].$$

Assume² $|\ell(y',y)| \le c$. We recall that for any two functions $\alpha,\beta:\mathcal{X}\to\mathbb{R}$, we have

$$\sup_{x} \alpha(x) - \sup_{x} \beta(x) \le \sup_{x} |\alpha(x) - \beta(x)|$$
. Therefore

$$|g(z_{1},...,z_{n}) - g(z_{1},...,z_{i-1},z'_{i},z_{i+1},...,z_{n})|$$

$$\leq \frac{1}{n}|\ell(f(x_{i}),y_{i}) - \ell(f(x'_{i}),y'_{i})|$$

$$\leq \frac{2c}{n}$$

We can apply McDiarmid's inequality...

²This might require us to assume bounded inputs/outputs.

Error Bound with Rademacher Complexity

We have that for any $\delta > 0$, with probability at least $1 - \delta$,

$$\sup_{f \in \mathcal{H}} \mathcal{E}(f) - \mathcal{E}_n(f) \leq \mathbb{E}\left[\sup_{f \in \mathcal{H}} \mathcal{E}(f) - \mathcal{E}_n(f)\right] + c\sqrt{\frac{2\log(2/\delta)}{n}}.$$

By applying our analysis in terms of the Rademacher complexity, we have also that

$$\sup_{f \in \mathcal{H}} \mathcal{E}(f) - \mathcal{E}_n(f) \leq 2L \ \mathcal{R}(\mathcal{H}) + c\sqrt{\frac{2\log(2/\delta)}{n}}.$$

Holds with probability at least 1 $-\delta$

Recap

We have shown that the generalization error of an algorithm learning a function on a space of hypotheses \mathcal{H} can be controlled in terms of the Rademacher complexity of such space...

Note. This applies to *any* algorithm, not just ERM!³

But in general... when is the Rademacher complexity of ${\cal H}$ finite? And not too large?

We started from the observation that finite spaces were not that good for our purposes... So let's consider some other spaces!

³of course this would leave an outstanding term $\mathcal{E}_n(f_n) - \mathcal{E}_n(f_*)$... but this is a question for another day!

Rademacher Complexity In Practice...

Caveats in using Rademacher Complexity

With Rademacher complexity we now have a tool to study the theoretical properties of the ERM estimator (possibly others)

$$f_{\mathcal{S}} = \operatorname*{arg\;min}_{f \in \mathcal{H}} \ \mathcal{E}_{\mathcal{S}}(f)$$

Caveat:

Caveats in using Rademacher Complexity

With Rademacher complexity we now have a tool to study the theoretical properties of the ERM estimator (possibly others)

$$f_{\mathcal{S}} = \underset{f \in \mathcal{H}}{\operatorname{arg \, min}} \ \mathcal{E}_{\mathcal{S}}(f)$$

Caveat: we need $\mathcal{R}(\mathcal{H})$ to be finite!

This opens two main questions:

- For which spaces can we "control" $\mathcal{R}(\mathcal{H})$?
- How to solve such constrained optimization problem?

Example - Linear Spaces

Let $\mathcal{X} = \mathbb{R}^d$ and consider a space of linear hypotheses

$$\mathcal{H} = \Big\{ f \mid f(x) = \langle x, w \rangle, \ \forall x \in \mathcal{X}, \ \exists w \in \mathbb{R}^d \Big\}.$$

We want to study the Rademacher complexity of \mathcal{H} .

$$\mathcal{R}_{n}(\mathcal{H}) = \mathbb{E} \sup_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f(x_{i})$$

$$= \frac{1}{n} \mathbb{E} \sup_{f \in \mathcal{H}} \sum_{i=1}^{n} \sigma_{i} \langle x_{i}, w_{i} \rangle$$

$$= \frac{1}{n} \mathbb{E} \sup_{f \in \mathcal{H}} \left\langle \sum_{i=1}^{n} \sigma_{i} x_{i}, w_{i} \right\rangle$$

$$\leq \frac{1}{n} \mathbb{E} \| \sum_{i=1}^{n} \sigma_{i} x_{i} \| \underbrace{\sup_{w \in \mathbb{R}^{d}} \| w \|}_{\text{we}}$$

Obtained applying Cauchy-Schwartz $\langle x, w \rangle \le ||x|| ||w||$.

Example - Balls in Linear Spaces

Let us restrict ourselves to balls in ${\cal H}$

$$\mathcal{H}_{\gamma} = \Big\{ f \mid f(x) = \langle x, w \rangle, \ \forall x \in \mathcal{X}, \ \exists w \in \mathbb{R}^{d}, \|w\| \leq \gamma \Big\}.$$

Then,

$$\mathcal{R}_n(\mathcal{H}_{\gamma}) \leq \frac{\gamma}{n} \mathbb{E} \| \sum_{i=1}^n \sigma_i x_i \|$$

By noting that $\|\sum_{i=1}^n \sigma_i x_i\| = (\|\sum_{i=1}^n \sigma_i x_i\|^2)^{1/2}$ and applying Jensen's inequality (Or simply the concavity of the square root), we have

$$\mathbb{E}\|\sum_{i=1}^n \sigma_i x_i\| \le \left(\mathbb{E}\|\sum_{i=1}^n \sigma_i x_i\|^2\right)^{1/2}$$

Example - Balls in Linear Spaces (Cont.)

Now

$$\mathbb{E}\|\sum_{i=1}^{n}\sigma_{i}x_{i}\|^{2} = \mathbb{E}\sum_{i,j=1}^{n}\sigma_{i}\sigma_{j}\left\langle x_{i}, x_{j}\right\rangle$$

$$= \mathbb{E}_{S}\left[\sum_{i,j\neq1}^{n}\mathbb{E}_{\sigma}[\sigma_{i}\sigma_{j}]\left\langle x_{i}, x_{j}\right\rangle + \sum_{i=1}^{n}\mathbb{E}_{\sigma}[\sigma_{i}^{2}]\|x_{i}\|^{2}\right]$$

Since the σ_i are independent and have zero mean, we have $\mathbb{E}_{\sigma}[\sigma_i\sigma_j]=0$ for $i\neq j$ and $\mathbb{E}_{\sigma}[\sigma_i^2]=1$. Therefore

$$\mathbb{E}\|\sum_{i=1}^n \sigma_i x_i\|^2 \leq \mathbb{E}_{\mathcal{S}} \sum_{i=1}^n \|x_i\|^2$$

Example - Balls in Linear Spaces (Cont.)

Therefore, if we assume the input points to be bounded as well (e.g. in a ball of radius B in \mathbb{R}^d), we have

$$\mathcal{R}_{n}(\mathcal{H}) \leq \frac{\gamma}{n} \left(\mathbb{E}_{S} \sum_{i=1}^{n} \|x_{i}\|^{2} \right)^{1/2}$$
$$\leq \frac{\gamma}{n} \sqrt{nB^{2}}$$
$$= \frac{\gamma B}{\sqrt{n}}$$

Note. As expected, we have a bound on the generalization error that:

- decreases as n increases, but that becomes more and,
- becomes less meaningful as γ increases (since we are giving too much "freedom" to our learning algorithm to choose a function).

Example - Reproducing Kernel Hilbert Spaces

Following the example of spaces of linear hypotheses, we can think of generalizing the result also to RKHS...

Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a bounded kernel, namely $k(x, x) \le \kappa^2$ for any $x \in \mathcal{X}$ (e.g. $\kappa = 1$ for Gaussian or Abel kernels).

Let \mathcal{H} be the RKHS associated to k and \mathcal{H}_{γ} the space of $f \in \mathcal{H}$ such that $||f||_{\mathcal{H}} \leq \gamma$.

Then, we only need to replace each x_i with $k(x_i, \cdot)$ in our analysis for linear hypotheses and obtain

$$\mathcal{R}(\mathcal{H}_{\gamma}) \leq \frac{\gamma \kappa}{\sqrt{n}}$$

Constrained Optimization

The examples above show that considering the optimization over the entire space \mathcal{H} is not a good idea (at least for Rademacher complexity)...

...But so far we have mostly seen examples of this form!

$$w_{S,\lambda} = \underset{w \in \mathbb{R}^d}{\operatorname{arg \, min}} \ \mathcal{E}_S(w) + \lambda \|w\|^2$$

Does it mean that we cannot study the theoretical properties of Tikhonov regularization?

Constrained Optimization

The examples above show that considering the optimization over the entire space \mathcal{H} is not a good idea (at least for Rademacher complexity)...

...But so far we have mostly seen examples of this form!

$$w_{S,\lambda} = \underset{w \in \mathbb{R}^d}{\operatorname{arg \, min}} \ \mathcal{E}_S(w) + \lambda \|w\|^2$$

Does it mean that we cannot study the theoretical properties of Tikhonov regularization?

well... yes and no.

Rademacher and Tikhonov

Note. while it's true that Tikhonov considers all $w \in \mathbb{R}^d$, it does not *need to...*

Since $w_{S,\lambda}$ is the minimizer of the regularized problem, we have

$$\mathcal{E}_{S}(w_{S,\lambda}) + \lambda \|w_{S,\lambda}\|^{2} \le \mathcal{E}_{S}(0) + \lambda \|0\|^{2}$$

Assume for simplicity $\ell(y, y') \leq M^2$ for a constant M > 0, then

$$\|w_{S,\lambda}\| \leq \sqrt{\frac{\mathcal{E}_{S}(0)}{\lambda}} \leq \frac{M}{\sqrt{\lambda}}$$

namely we can restrict Tikhonov to \mathcal{H}_{γ} with $\gamma = \frac{\mathit{M}}{\sqrt{\lambda}}$

Rademacher and Tikhonov (II)

Then, assuming $w_* \in \mathcal{H}$, we can consider the following decomposition of the excess risk

$$\mathbb{E}[\mathcal{E}(w_{S,\lambda}) - \mathcal{E}(w_*)] = \underbrace{\mathbb{E}[\mathcal{E}(w_{S,\lambda}) - \mathcal{E}_S(w_{S,\lambda})]}_{\text{Rademacher}} + \underbrace{\mathbb{E}[\mathcal{E}_S(w_{S,\lambda}) - \mathcal{E}_S(w_*)]}_{\leq ?} + \underbrace{\mathbb{E}[\mathcal{E}_S(w_*) - \mathcal{E}(w_*)]}_{=0}$$

Rademacher and Tikhonov (III)

We can bound the remaining term by adding $\lambda \left\| w_{\mathcal{S},\lambda} \right\|^2$ and adding and removing $\lambda \left\| w_* \right\|^2$

$$\begin{split} \mathcal{E}_{\mathcal{S}}(w_{\mathcal{S},\lambda}) - \mathcal{E}_{\mathcal{S}}(w_*) \\ & \leq (\mathcal{E}_{\mathcal{S}}(w_{\mathcal{S},\lambda}) + \lambda \|w_{\mathcal{S},\lambda}\|^2 - (\mathcal{E}_{\mathcal{S}}(w_*) + \lambda \|w_*\|^2) + \lambda \|w_*\|^2 \\ & \leq \lambda \|w_*\|^2 \end{split}$$

Rademacher and Tikhonov (Conclusion)

Putting everything together we conclude that

$$\mathbb{E}[\mathcal{E}(w_{S,\lambda}) - \mathcal{E}(w_*)] \leq \frac{2LMB}{\sqrt{n\lambda}} + \lambda \|w_*\|^2$$

Choosing $\lambda(n)$ to minimize this upper bound yields

$$\lambda(n) = \frac{(LMB)^{2/3}}{\|w_*\|^{4/3} n^{1/3}}$$

And an overall rate of

$$\mathbb{E}[\mathcal{E}(w_{S,\lambda(n)}) - \mathcal{E}(w_*)] \leq \frac{3(LMB)^{2/3} \|w_*\|^{2/3}}{n^{1/3}}$$

Ivanov Regularization

This is odd... from our analysis of Rademacher, if we took $\gamma = \|w_*\|$ and solved the so-called Ivanov regularization problem

$$w_{S,\gamma} = \operatorname*{arg\,min}_{\|w\| \leq \gamma} \mathcal{E}_{S}(w)$$

we would have a much faster excess risk bound

$$\mathbb{E}[\mathcal{E}(w_{S,\gamma}) - \mathcal{E}(w_*)] \leq O(\frac{1}{\sqrt{n}})$$

This is mainly because Rademacher complexity is not suited to study Tikhonov regularization...

...however, the observation above makes the Ivanov regularization a good strategy to obtain a predictor

How can we obtain $w_{S,\gamma}$ in practice?

Projected Gradient Descent

When $F: \mathbb{R}^d \to \mathbb{R}$ is a smooth convex function and $C \subset \mathbb{R}^d$ is a convex set, we can solve the constrained optimization

$$\min_{w \in C} F(w)$$

with a variant of GD: Projected Gradient Descent (PGD). Let

$$\Pi_C(w) = \arg\min_{z \in C} \|z - w\|^2$$

the projection of w onto C. Then, starting from w_0 , PGD produces the sequence $(w_k)_{k\in\mathbb{N}}$ such that

$$w_{k+1} = \Pi_C(w_k - \eta \nabla F(w_k))$$

PGD on Euclidean Balls

Let's go back to the Ivanov regularization problem

$$w_{\mathcal{S},\gamma} = \underset{\|w\| \leq \gamma}{\operatorname{arg \, min}} \ \mathcal{E}_{\mathcal{S}}(w)$$

This corresponds to the constrained optimization problem with $F(\cdot) = \mathcal{E}_{\mathcal{S}}(\cdot)$ and $C = \mathcal{H}_{\gamma}$ the ball of radius γ .

Given $w \in \mathcal{H} = \mathbb{R}^d$, projecting to the ball of radius γ yields

$$\Pi_{\mathcal{H}_{\gamma}}(w) = \begin{cases} w & \text{if } ||w|| \leq \gamma \\ \frac{\gamma}{||w||} w & \text{otherwise} \end{cases}$$

Therefore PGD for Ivanov regularization on Eucliden balls is as efficient as GD on the entire space!

...and what about convergence rates?

Convergence of PGD

Theorem (PGD Rates). Let F be convex and M-smooth. Assume F admits a minimum in $w_* \in C \subseteq R^d$ closed and convex set. Let $(w_k)_{k=1}^K$ be a sequence produced by PGD with $\eta = 1/M$. Then

$$F(w_K) - F(w_*) \le \frac{M}{2K} \|w_0 - w_*\|^2$$

Lemma.Let $z \in \mathbb{R}^d$ then for any $y \in C$

$$(z - \Pi_C(z))^{\top}(y - \Pi_C(z)) \leq 0$$

Now, take $z = w - \frac{1}{M} \nabla F(w)$ and $w' = \Pi_C(z)$ the PGD step. Applying the Lemma yields

$$(w - w')^{\top}(y - w') \le \frac{1}{M} \nabla F(w)^{\top}(y - w')$$

or equivalently

$$-M(w'-w)^{\top}(w'-y) \geq \nabla F(w)^{\top}(w'-y)$$

Proposition. For any $y \in C$

$$F(w') \le F(y) + M(w'-w)^{\top}(y-w) - \frac{M}{2} \|w'-w\|^2$$

Proof.

$$F(w') - F(y) = F(w') - F(w) + F(w) - F(y)$$

$$\leq \nabla F(w)^{\top} (w' - w) + \frac{M}{2} \|w' - w\|^{2} + \nabla F(w)^{\top} (w - y)$$

$$= \nabla F(w)^{\top} (w' - y) + \frac{M}{2} \|w' - w\|^{2}$$

$$\leq -M(w' - w)^{\top} (w' - y) + \frac{M}{2} \|w' - w\|^{2}$$

Adding and removing w inside (w' - w) yields

$$F(w') - F(y) \le -M(w' - w)^{\top}(w - y) - \frac{M}{2} \|w' - w\|^2$$
 as required.

The term M(w'-w) now plays the same role originally played by $\nabla F(w)$ in the proof of GD. Consider

$$F(w_{k+1}) - F(w_*) \le M(w_{k+1} - w_k)^{\top} (w_k - w_*) - \frac{M}{2} \|w_{k+1} - w_k\|^2$$

Then, by adding and removing $\frac{M}{2} \| w_k - w_* \|$ and "completing the square", we obtain

$$F(w_{k+1}) - F(w_*) \le \frac{M}{2} (\|w_k - w_*\|^2 - \|w_{k+1} - w_*\|^2)$$

Exploiting the telescopic sum

$$\sum_{k=1}^{K} (F(w_{k+1}) - F(w_*)) \le \frac{M}{2} \sum_{k=1}^{K} (\|w_k - w_*\|^2 - \|w_{k+1} - w_*\|^2)$$
$$\le \frac{M}{2} \|w_0 - w_*\|^2$$

and the fact that the PGD algorithm is decreasing⁴, yields the required result.

⁴Exercise. Why?

Wrapping Up

- Unsatisfied by being able to control the generalization error of a learning algorithm only when considering finite spaces of hypotheses, we payed more careful attention to the way we bounded it.
- We observed that by looking at the worst generalization error in a class of functions (rather than the sum of all such errors which might be too large), can be controlled in terms of the Rademacher complexity of such space of hypotheses.
- We concluded showing that for the case of spaces of linear hypotheses, or more generally for balls in a RKHS, such complexity is bounded by a finite quantity that depends on the number of training points and the radius of the ball.
- We provided an efficient algorithm to solve the corresponding (constrained) ERM problem.

Recommended Reading

Chapter 26 of Shalev-Shwartz, Shai, and Shai Ben-David. *Understanding machine learning: From theory to algorithms.* Cambridge university press, 2014.