

Visualization: Grammar of Graphics

Data Science: Jordan Boyd-Graber

University of Maryland

Understanding Data

- After you've cleaned (wrangled) data
- Need to tell a story with the data
- Often a first step before you can build a model
- Necessary afterward to explain model works

Grammar of Graphics

- Don't focus on pixels
- Focus on data
- Easy combination / switches

Tiny Dataset

x	У	Shape
2	4	a
1	1	a
4	15	b
9	80	b

Data Tell a Story

x	У	Shape
25	11	circle
0	0	circle
75	53	square
200	300	square

What visualization helps you tell your story?

Components of a Plot

Figure 1. Graphics objects produced by (from left to right): geometric objects, scales and coordinate system, plot annotations.

- Geom: How data turn into shapes
- Scales: Relative positioning
- Annotations: Text, explanations

Putting it Together


```
simple_point = (ggplot(demo,
                       aes(color='Shape', y='y', x='x')) +
                geom_point())
simple point.save("simple point.pdf", scale=0.6,
                  height=6, width=8)
```

Geometry Options: Line


```
simple_point = (ggplot(demo,
                       aes(color='Shape', y='y', x='x')) +
                geom_line())
simple_point.save("simple_line.pdf", scale=0.6,
                  height=6, width=8)
```

Geometry Options: Bar


```
simple_point = (ggplot(demo,
                       aes(color='Shape', y='y', x='x')) +
               geom_bar(stat="identity"))
simple point.save("simple bar.pdf", scale=0.6,
                  height=6, width=8)
```

Aesthetic Options: Continuous Data

Size, color

Aesthetic Options: Discrete Data

Shape, color

Rescaling Data

Edward Tufte on Charles Joseph Minard

Data (Troops)

```
Long, Lat, Troops, Dir, Div
24.0,54.9,340000,Advance,1
24.5,55.0,340000,Advance,1
24.2,54.4,4000,Retreat,2
24.1,54.3,4000, Retreat, 2
24.6,55.8,6000, Retreat, 3
24.2,54.4,6000, Retreat, 3
```

Cities

Long, Lat, City 24.0,55.0,Kowno 25.3,54.7, Wilna 26.4,54.4, Smorgoni 26.8,54.3,Molodexno 27.7,55.2,Gloubokoe 27.6,53.9,Minsk

Plot Troops

Add Cities

both = plot_troops + geom_text(aes(label='City'), size=7, data=cities)

Make Prettier

polish = both + scale_color_manual(["#888888", "#990000"])

Practicalities

- Remember to have data in accessible directory
- Install plotnine (e.g., with pip)
- Keep track of how you generate every plot

Tips

- Avoid clutter
- Organize logically, not arbitrarily
- Encourage / enable comparisons
- Don't overload with variables
- Overplotting

Tips

- Avoid clutter
- Organize logically, not arbitrarily
- Encourage / enable comparisons
- Don't overload with variables
- Overplotting
- Examples of what not to do

Every Governor's Salary by State

U.S. trade with China and Taiwan

Enable comparisons

Order sensibly

Wrap Up

- Cleanup
- Explore
- Model
- Copy
- Explain