## Wstęp

1982 – prof. Pawlak sformułował nową teorię:

# Teorię zbiorów przybliżonych

(ang. rough set theory)

stanowiącą rozwinięcie klasycznej teorii zbiorów.

Głównym celem jest dostarczanie narzędzi dla problemu aproksymacji pojęć (zbiorów).

#### Zastosowania w systemach decyzyjnych:

- Redukcja danych, selekcja ważnych atrybutów;
- Generowanie reguł decyzyjnych;
- Odkrywanie wzorców z danych: szablony, reguły asocjacyjne;
- Odkrywanie zależności w danych.

# Podstawowe pojęcia

**Zbiór przybliżony (ang. rough set) –** obiekt matematyczny zbudowany w oparciu o logikę trójwartościową.

**Universum** – zebrany, skończony, niepusty zbiór informacji.

#### W zbiorze **U(universum)** wyróżnia się:

- Elementy zbioru **U** zwane **obiektami**.
- Wszystkie podzbiory  $\, X \subseteq U \,$  są "pojęciami" w U
- Dowolna rodzina pojęć zbioru U to wiedza o U

#### W zbiorze **U(universum)** wyróżnia się:

- każda rodzina rozłącznych i niepustych zbiorów U, spełniająca warunek iż ich suma jest równa całemu zbiorowi U, nazywa się podziałem (klasyfikacją) zbioru U,
- para K = (U,C), gdzie C = {C₁, C₂, ..., Cₙ} jest dowolną rodziną podziałów zbioru U, określa się mianem bazy wiedzy o U.

- Ostatni punkt jest równoważny poniższemu pokazanemu w ujęciu relacyjnym:
- Zakładając, że U to uniwersum, to para
   K = (U,R), gdzie R = {R₁, R₂, ..., Rₙ} jest dowolną rodziną relacji równoważności określonych na U, nazywa się bazą wiedzy o U.

#### Pojęcie podstawowe:

Zakładając iż **U** jest uniwersum i **K** = (**U**,**R**) jest bazą wiedzy o **U**, to każdą klasę abstrakcji dowolnej relacji R  $\in$  **R** nazywamy pojęciem podstawowym w bazie wiedzy **K**.

**Pojęcie podstawowe** jest na ten moment nośnikiem informacji podstawowej o własnościach obiektów danego uniwersum.

#### Pojęcie elementarne:

Zakładając iż **U** to uniwersum i **K** = (**U**,**R**) jest bazą wiedzy o **U** oraz ¬R jest relacją R₁ ¬ ... ¬ R¬, gdzie R₁ ∈ R dla i ∈ {1,2, ..., n}, to każdą klasę abstrakcji relacji ¬R nazywa się pojęciem elementarnym w bazie wiedzy **K**.

**Pojęcie elementarne**, zwane także pojęciem atomowym to elementarne – najmniejsze pojęcie, za pomocą którego możemy opisać nasze uniwersum.

# System informacyjny

- System informacyjny (ang. Information system) uporządkowana para A = (U,A), gdzie:
- U jest skończonym, niepustym zbiorem, zwanym uniwersum, przy czym elementy zbioru U nazywamy obiektami.
- A jest skończonym, niepustym zbiorem atrybutów (własności, cech), gdzie każdy atrybut a  $\in$  A jest funkcją  $a: U \rightarrow V_a$ , przy czym  $V_a$ , jest zbiorem wartości atrybutu.

#### Dla B **\_A** definiujemy

 sygnatura obiektu (ang. -information vector) jako

inf 
$$_{B}(x) = \{(a,a(x)): a \in B\}$$

 Zbiór sygnatur względem o obiektach z (ang. information set):

$$INS(U)=\{\inf_{B}(x):x\in U\}$$

# System informacyjny (przykład)

|                       | Ból głowy | Temperatura [°C] |
|-----------------------|-----------|------------------|
| <b>X</b> <sub>1</sub> | Tak       | 36-37            |
| $\mathbf{x}_2$        | Nie       | 36-37            |
| <b>x</b> <sub>3</sub> | Tak       | 37-38            |
| $\mathbf{x}_4$        | Nie       | 36-37            |
| <b>x</b> <sub>5</sub> | Tak       | 37-38            |
| <b>x</b> <sub>6</sub> | Tak       | 38-39            |

# System informacyjny (przykład 2)

|                       | Ból głowy | Bóle mięśni | Dreszcze | Temperatura<br>[°C] |
|-----------------------|-----------|-------------|----------|---------------------|
| <b>x</b> <sub>1</sub> | Tak       | Nie         | Nie      | 36-37               |
| <b>X</b> <sub>2</sub> | Nie       | Nie         | Nie      | 36-37               |
| <b>X</b> <sub>3</sub> | Tak       | Tak         | Nie      | 37-38               |
| x <sub>4</sub>        | Tak       | Nie         | Nie      | 36-37               |
| <b>X</b> <sub>5</sub> | Tak       | Tak         | Tak      | 37-38               |
| <b>X</b> <sub>6</sub> | Tak       | Tak         | Tak      | 38-39               |

# System decyzyjny

- **System decyzyjny (ang. decision system)** jest to system informacyjny z dodatkowym atrybutem *d*, nazywanym atrybutem decyzyjnym (decision attribute).
- System decyzyjny możemy również zapisać w postaci funkcji:  $D = (U, A \cup d)$ , gdzie  $d \notin A$ , jest atrybutem decyzyjnym. Atrybut decyzyjny może przyjmować wiele wartości, ale jest to najczęściej wartość binarna (prawda albo fałsz). Pozostałe atrybuty  $a \in A d$ , nazywamy atrybutami warunkowymi (conditional attributes).

Tablica decyzyjna powstaje ze zwykłych tablic danych poprzez sprecyzowanie:

- Atrybutów (nazwanych warunkowymi): cechy, których wartości na obiektach są dostępne, np. pomiary, parametry, dane osobowe, ...
- Decyzji (atrybut decyzyjny):, t.j. cecha "ukryta" związana z pewną znaną częściowo wiedzą o pewnym pojęciu

- Decyzja jest znana tylko dla obiektów z (treningowej) tablicy decyzyjnej;
- Jest podana przez eksperta (np. lekarza) lub na podstawie późniejszych obserwacji (np. ocena giełdy);
- Chcemy podać metodę jej wyznaczania dla dowolnych obiektów na podstawie wartości atrybutów warunkowych na tych obiektach.

# System decyzyjny (przykład)

|                       | Ból głowy | Temperatura [°C] | Grypa |
|-----------------------|-----------|------------------|-------|
| <b>x</b> <sub>1</sub> | Tak       | 36-37            | Nie   |
| <b>x</b> <sub>2</sub> | Nie       | 36-37            | Nie   |
| <b>x</b> <sub>3</sub> | Tak       | 37-38            | Tak   |
| <b>x</b> <sub>4</sub> | Nie       | 36-37            | Nie   |
| <b>X</b> <sub>5</sub> | Tak       | 37-38            | Nie   |
| <b>x</b> <sub>6</sub> | Tak       | 38-39            | Tak   |

# System decyzyjny (przykład 2)

|                       | Ból głowy | Bóle mięśni | Dreszcze | Temperatura [°C] | Grypa |
|-----------------------|-----------|-------------|----------|------------------|-------|
| <b>X</b> <sub>1</sub> | Tak       | Nie         | Nie      | 36-37            | Nie   |
| X <sub>2</sub>        | Nie       | Nie         | Nie      | 36-37            | Nie   |
| <b>X</b> <sub>3</sub> | Tak       | Tak         | Nie      | 37-38            | Tak   |
| <b>X</b> <sub>4</sub> | Tak       | Nie         | Nie      | 36-37            | Nie   |
| X <sub>5</sub>        | Tak       | Tak         | Tak      | 37-38            | Nie   |
| <b>X</b> <sub>6</sub> | Tak       | Tak         | Tak      | 38-39            | Tak   |

### Nierozróżnialność

#### Przypomnienie:

Binarna relacja  $R \subseteq X \times X$ , która jest zwrotna (obiekt jest w relacji z samym sobą, tzn. xRx), symetryczna (jeżeli xRy to yRx) oraz przechodnia (jeśli xRy i yRz to xRz) jest nazywana relacją równoważności.

Relacja równoważności na danym zbiorze wyznacza klasy równoważności, czyli takie zbiory elementów, że każde dwa elementy są ze sobą w relacji.

## Nierozróżnialność

Niech dany będzie system informacyjny
 S = (U, A) i zbiór B, taki że, B 

A. Przez IND<sub>A</sub>(B) oznaczamy relację równoważności określoną następująco:

$$IND_A(B) = \{(x, y) \in U^2: \forall a \in B \ a(x) = a(y)\}$$

Relację tą nazywamy relacją **nierozróżnialności** (ang. indiscernibility).

Dane są obiekty x,y  $\in$  U i zbiór atrybutów B $\subseteq$ A, mówimy, że

- x,y są rozróżnialne przez wtw, gdy istnieje a ∈B taki, że a(x) ≠a(y);
- x,y są nierozróżnialne przez B, jeśli one są identyczne na B, tzn. a(x)=a(y) dla każdego a ∈ B;
- $[x]_B = zbiór obiektów nierozróżnialnych z x przez B.$

#### Dla każdych obiektów:

- albo  $[x]_B = [y]_B$ ;
- albo  $[x]_B \cap [y]_B = \emptyset$ .

Każdy zbiór atrybutów B wyznacza podział zbioru obiektów na klasy nierozróżnialności.

# Nierozróżnialność (przykład)

 $IND(\{B\'ol\ g\'lowy\}) = \{\{x_1, x_3, x_5, x_6\}, \{x_2, x_4\}\}$ 

 $IND(\{Temp.\}) = \{\{x_1, x_2, x_4\}, \{x_3, x_5\}, \{x_6\}\}$ 

IND({Ból głowy, Temp.}) = {{ $x_1$ },{ $x_2$ ,  $x_4$ },{ $x_3$ ,  $x_5$ },{ $x_6$ }}

|                       | Ból głowy | Temperatura [°C] | Grypa |
|-----------------------|-----------|------------------|-------|
| $\mathbf{x}_1$        | Tak       | 36-37            | Nie   |
| $\mathbf{x}_2$        | Nie       | 36-37            | Nie   |
| <b>X</b> <sub>3</sub> | Tak       | 37-38            | Tak   |
| <b>X</b> <sub>4</sub> | Nie       | 36-37            | Nie   |
| <b>X</b> <sub>5</sub> | Tak       | 37-38            | Nie   |
| <b>x</b> <sub>6</sub> | Tak       | 38-39            | Tak   |

# Nierozróżnialność (przykład 2)

```
IND(\{B\'ol\ g\'owy\}) = \{\{x_1, x_3, x_4, x_5, x_6\}, \{x_2\}\}
IND(\{B\'ole\ mie\'sni\}) = \{\{x_3, x_5, x_6\}, \{x_1, x_2, x_4\}\}
IND(\{Dreszcze\}) = \{\{x_1, x_2, x_3, x_4\}, \{x_5, x_6\}\}
IND(Temperatura) = \{\{x_1, x_2, x_4\}, \{x_3, x_5\}, \{x_6\}\}
IND(\{B\'ol\ g\'owy, B\'ole\ mie\'sni, Dreszcze, Temperatura\}) = \{\{x_1, x_4\}, \{x_2\}, \{x_3\}, \{x_5\}, \{x_6\}\}
```

|                       | Ból głowy | Bóle mięśni | Dreszcze | Temperatura [°C] | Grypa |
|-----------------------|-----------|-------------|----------|------------------|-------|
| <b>x</b> <sub>1</sub> | Tak       | Nie         | Nie      | 36-37            | Nie   |
| X <sub>2</sub>        | Nie       | Nie         | Nie      | 36-37            | Nie   |
| <b>X</b> <sub>3</sub> | Tak       | Tak         | Nie      | 37-38            | Tak   |
| <b>X</b> <sub>4</sub> | Tak       | Nie         | Nie      | 36-37            | Nie   |
| <b>X</b> <sub>5</sub> | Tak       | Tak         | Tak      | 37-38            | Nie   |
| <b>x</b> <sub>6</sub> | Tak       | Tak         | Tak      | 38-39            | Tak   |

# Nierozróżnialność (własności)

- IND<sub>A</sub>(B) jest relacją równoważnościową,
- $IND_A(\emptyset) = U \times U$
- $\forall B_1, B_2 \in A$ :  $IND_A(B_1 \cup B_2) = IND_A(B_1) \cap INDA(B_2),$
- $IND_A(B) = \cap IND_A(\{a\})$

Wynikają z definicji relacji nierozróżnialności oraz z podstawowych zasad logiki i teorii mnogości

### Nierozróznialność cd.

Relacja nierozróżnialności dzieli nam zbiór obiektów ze względu na zbiór atrybutów  $\boldsymbol{B}$  na klasy równoważności, które oznaczamy przez  $[x]_B$ .

O ile nie powoduje to dwuznaczności, to zamiast  $IND_A(B)$  pisze się IND(B).

# Przybliżenie zbioru

Definiujemy **B-dolne** przybliżenie zbioru **X** przez:

$$\underline{B}X = \{x \mid [x]_B \subseteq X\}$$

**B-górne** przybliżenie zbioru **X** przez:

$$BX = \{x \mid [x]_B \cap X \neq \emptyset\}$$

Obiekty należące do **dolnego przybliżenie** zbioru *X*, **na pewno** należą do *X*. Obiekty należące do **górnego przybliżenia** zbioru *X*, **możliwe że,** należą do zbioru *X*.

- Każdy zbiór obiektów X (np. klasa decyzyjna, pojęcie) może być opisany za pomocą atrybutów ze zbioru dokładnie lub w przybliżeniu
- dokładny opis: jeśli X jest sumą pewnych klas nierozróznialności definiowanych przez (ZBIORY DOKŁADNE)
- przybliżony opis: w przeciwnym przypadku (ZBIORY PRZYBLIŻONE)

# Przybliżanie zbioru

- **Zbiór**  $BN_B(X) = BX BX$  nazywamy B-regionem granicznym (brzegiem) zbioru X. Jest to zbiór tych elementów, których nie jesteśmy pewniczy należą do X.
- **Zbiór** *U BX* nazywamy obszarem **negatywnym zbioru** *X*. Jest to zbiór tych elementów, które **z pewnością** nie należą do *X*.

- Obszar brzegowy (ang.B -boundary region)
   pojęcia X zawiera obiekty, dla których nie
   możemy jednoznacznie zdecydować czy należą
   one do czy nie do X na podstawie atrybutów z B
- Obszar wewnętrzny (ang. B-inside region of X) zawiera obiekty, które możemy pewnie klasyfikować jako elementy pojęcia X mając do dyspozycji atrybuty z B.
- Zbiór jest przybliżony (ang. rough set) jeśli obszar brzegowy jest niepusty, w przeciwnym przypadku zbiór jest nazwany dokładny (ang. crisp set).

Zbiór do przybliżenia, brak użytych atrybutów



Podział z pierwszym atrybutem



#### Obszar negatywny



Podział z dwoma atrybutami



#### Obszar negatywny



Obszar pozytywny - dolne przybliżenie



Obszar graniczny



#### Górne przybliżenie



|                       | Ból głowy | Temperatura [°C] | Grypa |
|-----------------------|-----------|------------------|-------|
| $\mathbf{x}_1$        | Tak       | 36-37            | Nie   |
| <b>X</b> <sub>2</sub> | Nie       | 36-37            | Nie   |
| <b>X</b> <sub>3</sub> | Tak       | 37-38            | Tak   |
| X <sub>4</sub>        | Nie       | 36-37            | Nie   |
| <b>X</b> <sub>5</sub> | Tak       | 37-38            | Nie   |
| <b>X</b> <sub>6</sub> | Tak       | 38-39            | Tak   |

Niech  $W = \{x \mid Grypa(x) = Tak\}$ . Wtedy:

• 
$$W = \{x_3, x_6\}$$

• 
$$\underline{A}W = \{x_6\}$$

• 
$$AW = \{x_3, x_5, x_6\}$$

• 
$$BN_A(W) = \{x_3, x_5\}$$

Niech  $W = \{x \mid Grypa(x) = Tak\}$ . Wtedy:

- $W = \{x_3, x_6\}$
- $\underline{A}W = \{x_6\}$
- $AW = \{x_3, x_5, x_6\}$
- $BN_A(W) = \{x_3, x_5\}$



|                       | Ból głowy | Bóle mięśni | Dreszcze | Temperatura [°C] | Grypa |
|-----------------------|-----------|-------------|----------|------------------|-------|
| $\mathbf{x}_1$        | Tak       | Nie         | Nie      | 36-37            | Nie   |
| X <sub>2</sub>        | Nie       | Nie         | Nie      | 36-37            | Nie   |
| <b>x</b> <sub>3</sub> | Tak       | Tak         | Nie      | 37-38            | Tak   |
| <b>X</b> <sub>4</sub> | Tak       | Nie         | Nie      | 36-37            | Nie   |
| <b>X</b> <sub>5</sub> | Tak       | Tak         | Tak      | 37-38            | Nie   |
| <b>x</b> <sub>6</sub> | Tak       | Tak         | Tak      | 38-39            | Tak   |

$$U = \{x_1, x_2, x_3, x_4, x_5, x_6\} \qquad [x_B] = \{\{x_1, x_4\}, \{x_2\}, \{x_3, x_5\}, \{x_6\}\}$$

Niech  $W = \{x \mid Grypa(x) = Tak\}$ . Wtedy:

$$W = \{x_3, x_6\}$$

$$\underline{AW} = \{x_6\}$$

$$AW = \{x_3, x_5, x_6\}$$

$$(z \text{ def. } \underline{BX} = \{x \mid [x]B \subseteq X\} )$$

$$(z \text{ def. } BX = \{x \mid [x]B \cap X \neq \emptyset\} )$$

$$BN_{\Delta}(W) = \{x_3, x_5\}$$

$$(z \text{ def. } BN_{B}(X) = BX - \underline{BX})$$

$$U = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$
 
$$[x_B] = \{\{x_1, x_4\}, \{x_2\}, \{x_3\}, \{x_5\}, \{x_6\}\}$$

Niech  $W = \{x \mid Grypa(x) = Tak\}$ . Wtedy:

$$W = \{x_3, x_6\}$$

$$\underline{AW} = \{x_6\}$$

$$AW = \{x_3, x_5, x_6\}$$

$$BN_A(W) = \{x_3, x_5\}$$

$$(z def. \underline{B}X = \{x \mid [x]B \subseteq X\})$$

(z def. 
$$BX = \{x \mid [x]B \cap X \neq \emptyset\}$$
)

$$(z def. BNB (X) = BX - \underline{B}X)$$



|                       |           |             | I        |                  | <u> </u> |
|-----------------------|-----------|-------------|----------|------------------|----------|
|                       | Ból głowy | Bóle mięśni | Dreszcze | Temperatura [°C] | Grypa    |
| $\mathbf{x}_1$        | Tak       | Nie         | Nie      | 36-37            | Nie      |
| X <sub>2</sub>        | Nie       | Nie         | Nie      | 36-37            | Nie      |
| <b>x</b> <sub>3</sub> | Tak       | Tak         | Nie      | 37-38            | Tak      |
| <b>X</b> <sub>4</sub> | Tak       | Nie         | Nie      | 36-37            | Nie      |
| <b>X</b> <sub>5</sub> | Tak       | Tak         | Tak      | 37-38            | Nie      |
| <b>x</b> <sub>6</sub> | Tak       | Tak         | Tak      | 38-39            | Tak      |

$$U = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$
 
$$[x_B] = \{\{x_1, x_4\}, \{x_2\}, \{x_3, x_5\}, \{x_6\}\}$$

Niech  $W = \{x \mid Grypa(x) = Nie\}$ . Wtedy:

$$W = \{x_1, x_2, x_4, x_5\}$$

$$\underline{A}W = \{x_2\}$$
 (z def.  $\underline{B}X = \{x \mid [x]B \subseteq X\}$ )

$$AW = \{x_1, x_2, x_3, x_4, x_5\}$$
 (z def.  $BX = \{x \mid [x]B \cap X \neq \emptyset\}$ )

$$BN_{A}(W) = \{x_{1}, x_{2}, x_{4}, x_{5}\}\$$
 (z def.  $BN_{B}(X) = BX - \underline{B}X$ )

$$U = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

$$[x_B] = \{\{x_1, x_4\}, \{x_2\}, \{x_3, x_5\}, \{x_6\}\}$$

Niech  $W = \{x \mid Grypa(x) = Nie\}$ . Wtedy:

$$W = \{x_1, x_2, x_4, x_5\}$$

$$\underline{A}W = \{x_2\}$$

$$AW = \{x_1, x_2, x_3, x_4, x_5\}$$

$$BN_A(W) = \{x_1, x_3, x_4, x_5\}$$

$$(z def. \underline{B}X = \{x \mid [x]B \subseteq X\})$$

(z def. 
$$BX = \{x \mid [x]B \cap X \neq \emptyset\}$$
)

$$(z def. BN_B(X) = BX - \underline{B}X)$$

**Zbiór** X nazywamy **zbiorem przybliżonym**, jeżeli  $BN_B(X) \neq \emptyset$ , czyli jeżeli jego region graniczny jest **niepusty**.

#### Pojęcia dzielimy na:

- Nieostre, które nie są pojęciami jednoznacznymi, dokładnie określonymi.
- Ostre, to pojęcia ściśle sklasyfikowane, przyporządkowane.

Jeśli A = (U, A) jest systemem informacyjnym, B  $\in$  A oraz X  $\in$  U taki, że X  $\neq$  Ø, to miarę  $\alpha B(X) = card BX/card X$ 

będziemy nazywać **współczynnikiem dokładności** pojęcia X w systemie A, względem zbioru atrybutów B.

Własności współczynnika własności:

- $0 \le \alpha B \le 1$ ,
- Jeśli αB(X) = 1, to pojęcie jest ostre i jego własności mogą być w pełni wyrażone za pomocą zbioru atrybutów B,
- Jeśli αB(X) = 0, to pojęcie X jest całkowicie nieostre i jego własności nie mogą być wyrażone za pomocą zbioru atrybutów B,
- Jeśli 0 < αB(X) < 1, to pojęcie jest również nieostre ale jego własności mogą być częściowo wyrażone przy pomocy atrybutów ze zbioru B.

# Atrybuty zbędne i niezbędne

 Atrybut zbędny (zależny) – atrybut, który nie wpływa na relację nierozróżnialności. Może być pominięty.

 Atrybut niezbędny (niezależny) – atrybut, który wpływa na relację nierozróżnialności.

# Atrybuty zbędne i niezbędne

Zbiór A (zbiór atrybutów) jest zbiorem niezależnym, jeżeli:

V a ⊆A, a jest niezbędny (niezależny)

# Atrybuty zbędne i niezbędne

- Nie dany będzie system: S = (U, A) i B ⊆A
- Atrybut a jest zbędny (nie wpływa na relację nierozróżnialności) wtedy i tylko wtedy, gdy: IND(B)=IND(B-{a})

 Atrybut a jest niezbędny (wpływa na relację nierozróżnialności) wtedy i tylko wtedy, gdy: IND(B) ≠IND(B-{a})

### Rdzeń

**Rdzeń** – jest to zbiór wszystkich niezbędnych (niezależnych) atrybutów należących do systemu decyzyjnego.

Dany system informacyjny (decyzyjny) posiada jeden rdzeń.

## Rdzeń

Niech S = (U, A) i  $B \subseteq A$ 

Wtedy rdzeń zawierający wszystkie niezależne atrybuty oznaczymy jako:

CORE(B)

#### Redukt

**Redukt** – jest to minimalny zbiór niezbędnych (niezależnych) atrybutów.

Dany system informacyjny (decyzyjny) może posiadać wiele **reduktów**.

# Redukty (def.)

Redukt systemu S = (U, A) jest definiowany jako minimalny zbiór atrybutów  $B \subseteq A$ , taki że,

$$IND(B) = IND(A)$$

Zbiór wszystkich reduktów w zbiorze atrybutów A, oznaczamy:

RED(A)

Twierdzenie

Problem szukania najkrótszego reduktu jest NP-zupełny.

#### Redukt a Rdzeń

Zależność między reduktem, a rdzeniem jest następująca:

$$CORE(A) = \cap RED(A)$$

Redukt zawiera w sobie rdzeń.

# Atrybuty zbędne i niezbędne (przykł.1)

|                       | Ból głowy | Temperatura [°C] | Grypa |
|-----------------------|-----------|------------------|-------|
| $\mathbf{x}_1$        | Tak       | 36-37            | Nie   |
| x <sub>2</sub>        | Nie       | 36-37            | Nie   |
| <b>X</b> <sub>3</sub> | Tak       | 37-38            | Tak   |
| <b>X</b> <sub>4</sub> | Nie       | 36-37            | Nie   |
| X <sub>5</sub>        | Tak       | 37-38            | Nie   |
| <b>x</b> <sub>6</sub> | Tak       | 38-39            | Tak   |

```
B = \{B\'ol\ g\'owy,\ Temperatura\}
IND(\{B\'ol\ g\'owy\}) = \{\{x_1, x_3, x_5, x_6\}, \{x_2, x_4\}\}
IND(Temperatura) = \{\{x_1, x_2, x_4\}, \{x_3, x_5\}, \{x_6\}\}
IND(\{B\'ol\ g\'owy,\ Temperatura\}) = \{\{x_1\}, \{x_2, x_4\}, \{x_3, x_5\}, \{x_6\}\}
```

# Niech $B = \{B\acute{o}l\ g\acute{e}owy,\ Temperatura\}$ oczywiście S = (U, A) i $B \subseteq A$

# Atrybuty zbędne i niezbędne (przykł.1)

Sprawdzamy atrybut: {Ból głowy} jest zbędny:

IND{B-{Ból głowy}} = {{
$$x_1, x_2, x_4$$
}, { $x_3, x_5$ }, { $x_6$ }}  
IND(B) = {{ $x_1$ }, { $x_2, x_4$ }, { $x_3, x_5$ }, { $x_6$ }}

IND{B-{Ból głowy}}  $\neq$  IND(B)  $\leftarrow$  atrybut {Ból głowy nie jest zbędny}

Sprawdzamy, czy atrybut {Temperatura} jest zbędny:

IND{B-{Temperatura}} = 
$$\{\{x_1, x_3, x_5, x_6\}, \{x_2, x_4\}\}$$
  
IND(B) =  $\{\{x_1\}, \{x_2, x_4\}, \{x_3, x_5\}, \{x_6\}\}$ 

IND{B-{Temperatura}} ≠ IND(B) ← atrybut {Temperatura nie jest zbędny}

# Redukty (przykład 1)

Atrybuty B1 {Ból głowy, Temperatura} :

- Nie są zbędne (zależne)
- Nie ma innych niezbędnych atrybutów w tym systemie.

# Redukty (przykład 1)

Zbiór atrybutów B1 jest minimalny tj. wszelkie podzbiory o mniejszej mocy nie spełniają warunku Reduktu

- IND({Ból głowy}) ≠ IND(B);
- IND({Temperatura}) ≠ IND(B);

# Redukty (przykład 1)

Skoro zbiór B1 jest minimalny i:

IND({Ból głowy, Temperatura}) = IND(B)

To jest on jedynym reduktem zbioru B.

Zatem zbiór wszystkich reduktów:

RED(B) = ({Ból głowy, Temperatura})

# Rdzeń (przykład 1)

Na podstawie zbioru wszystkich reduktów, można wyznaczyć rdzeń.

$$CORE(A) = \cap RED(A)$$

więc:

CORE(A) = ({Ból głowy, Temperatura})

# Atrybuty zbędne i niezbędne (przykł.2)

|                       | Ból głowy | Bóle mięśni | Dreszcze | Temperatura [°C] | Grypa |
|-----------------------|-----------|-------------|----------|------------------|-------|
| $\mathbf{x}_1$        | Tak       | Nie         | Nie      | 36-37            | Nie   |
| $\mathbf{x}_2$        | Nie       | Nie         | Nie      | 36-37            | Nie   |
| <b>x</b> <sub>3</sub> | Tak       | Tak         | Nie      | 37-38            | Tak   |
| <b>X</b> <sub>4</sub> | Tak       | Nie         | Nie      | 36-37            | Nie   |
| <b>X</b> <sub>5</sub> | Tak       | Tak         | Tak      | 37-38            | Nie   |
| <b>x</b> <sub>6</sub> | Tak       | Tak         | Tak      | 38-39            | Tak   |

```
IND(\{B\'ol\ g\'owy\}) = \{\{x_1, x_3, x_4, x_5, x_6\}, \{x_2\}\}
IND(\{B\'ole\ mie\'sni\}) = \{\{x_3, x_5, x_6\}, \{x_1, x_2, x_4\}\}
IND(\{Dreszcze\}) = \{\{x_1, x_2, x_3, x_4\}, \{x_5, x_6\}\}
IND(Temperatura) = \{\{x_1, x_2, x_4\}, \{x_3, x_5\}, \{x_6\}\}
IND(\{B\'ol\ g\'owy, B\'ole\ mie\'sni, Dreszcze, Temperatura\}) = \{\{x_1, x_4\}, \{x_2\}, \{x_3\}, \{x_5\}, \{x_6\}\}
```

#### Niech

B = {Ból głowy, Bóle mięśni, Dreszcze, Temperatura} oczywiście S = (U, A) i  $B \subseteq A$ 

# Atrybuty zbędne i niezbędne (przykł.2)

```
Sprawdzamy atrybut: {Ból głowy} jest zbędny:
            IND{B-{Ból głowy}} = IND({Bóle mięśni, Dreszcze, Temperatura})
            IND{B-{Ból głowy}} = {{x_1, x_2, x_4}, {x_2, x_5}, {x_6}}
            IND(B) = \{\{x_1, x_4\}, \{x_2\}, \{x_3\}, \{x_5\}, \{x_6\}\}\}
            IND\{B-\{Bol glowy\}\} \neq IND(B) \leftarrow atrybut \{Bol glowy nie jest zbędny\}
 Sprawdzamy, czy atrybut {Bóle mięśni} jest zbędny:
            IND{B-{Bóle mięśni}} = IND({Bóle głowy, Dreszcze, Temperatura})
            IND{B-{Bóle mięśni}} = {\{x_1, x_4\}, \{x_2\}, \{x_3\}, \{x_5\}, \{x_6\}\}}
            IND(B) = \{\{x_1, x_4\}, \{x_2\}, \{x_3\}, \{x_5\}, \{x_6\}\}
```

IND{B-{Bóle mięśni}} = IND(B)  $\leftarrow$  atrybut {Bóle mięśni jest zbędny}

# Atrybuty zbędne i niezbędne (przykł.2)

Sprawdzamy atrybut: czy {Dreszcze} jest zbędny:

```
IND{B-{Dreszcze}} = IND({Bóle głowy, Bóle mięśni, Temperatura})
IND{B-{Dreszcze}} = \{\{x_1, x_4\}, \{x_2\}, \{x_3, x_4\}, \{x_6\}\}
IND(B) = \{\{x_1, x_4\}, \{x_2\}, \{x_3\}, \{x_5\}, \{x_6\}\}
```

 $IND\{B-\{Dreszcze\}\} \neq IND(B) \leftarrow atrybut \{Dreszcze nie jest zbędny\}$ 

Sprawdzamy, czy atrybut {Temperatura} jest zbędny:

```
IND{B-{Temperatura}} = IND({Bóle głowy, Bóle mięśni, Temperatura}) IND{B-{Temperatura}} = \{\{x_1, x_4\}, \{x_2\}, \{x_3, x_5, x_6\}\}

IND(B) = \{\{x_1, x_4\}, \{x_2\}, \{x_3\}, \{x_5\}, \{x_6\}\}
```

IND{B-{Temperatura}} ≠ IND(B) ← atrybut {Temperatura nie jest zbędny}

# Redukty (przykład 2)

Atrybuty B1{Ból głowy, Dreszcze, Temperatura}:

- Nie są zbędne (zależne)
- Nie ma innych niezbędnych atrybutów w tym systemie.

#### Atrybut {Bóle mięśni}:

 Jest zbędny (Nie wpływa na rozróżnialności obiektów Uniwersum)

# Redukty (przykład 2)

Zbiór atrybutów B1 jest minimalny tj. wszelkie podzbiory o mniejszej mocy nie spełniają warunku Reduktu

```
IND({Ból głowy}) ≠ IND(B);
IND({Dreszcze}) ≠ IND(B);
IND({Temperatura}) ≠ IND(B);
IND({Ból głowy, Dreszcze}) ≠ IND(B);
IND({Ból głowy, Temperatura}) ≠ IND(B);
IND({Dreszcze, Temperatura}) ≠ IND(B);
```

# Redukt (przykład 2)

Skoro zbiór B1 jest minimalny i:

IND({Ból głowy, Dreszcze, Temperatura}) = IND(B)

To jest on jedynym reduktem zbioru B.

Zatem zbiór wszystkich reduktów:

RED(B) = ({Ból głowy, Dreszcze, Temperatura})

# Rdzeń (przykład 2)

Na podstawie zbioru wszystkich reduktów, można wyznaczyć rdzeń.

$$CORE(A) = \cap RED(A)$$

więc:

CORE(A) = ({Ból głowy, Dreszcze, Temperatura})

# Redukty (przykład 2.1)

|                | а | b | С |
|----------------|---|---|---|
| $\mathbf{X}_1$ | 1 | 3 | 3 |
| $\mathbf{X}_2$ | 2 | 2 | 2 |
| $X_3$          | 3 | 1 | 3 |

Niech 
$$S = (U, A) i B \subseteq A$$

$$IND(B) = \{\{X_1\}, \{X_2\}, \{X_3\}\}$$

$$IND(B-\{a\}) = \{\{X_1, X_2\}, \{X_3\}\} \neq IND(B)$$
  $\leftarrow$  atrybut niezbędny

$$IND(B-\{b\}) = \{\{X_1\}, \{X_2, X_3\}\} \neq IND(B)$$
  $\leftarrow$  atrybut niezbędny

$$IND(B-\{c\}) = \{\{X_1\}, \{X_2\}, \{X_3\}\} = IND(B) \qquad \leftarrow atrybut \ zbędny$$

# Redukty (przykład 2.1)

|                  | а | b | С |
|------------------|---|---|---|
| $\mathbf{X}_{1}$ | 1 | 3 | 3 |
| $X_2$            | 2 | 2 | 2 |
| $X_3$            | 3 | 1 | 3 |

Niech 
$$S = (U, A) i B \subseteq A$$

$$IND(B) = \{\{X_1\}, \{X_2\}, \{X_3\}\}\}$$

$$IND(\{a\}) = \{\{X_1\}, \{X_2\}, \{X_3\}\}\} = IND(B) \leftarrow Redukt$$

$$IND(\{b\}) = \{\{X_1, X_2\}, \{X_3\}\}\} = IND(B) \leftarrow Redukt$$

$$IND(\{a,b\}) = \{\{X_1\}, \{X_2\}, \{X_3\}\}\} \neq IND(B)$$

$$RED(B) = \{\{a\}, \{b\}\}\} \leftarrow Zbiór wszystkich reduktów$$

### Rdzeń (przykład 2.1)

|                  | a | b | С |
|------------------|---|---|---|
| $\mathbf{X}_{1}$ | 1 | 3 | 3 |
| $\mathbf{X}_2$   | 2 | 2 | 2 |
| $X_3$            | 3 | 1 | 3 |

Niech 
$$S = (U, A) i B \subseteq A$$

Skoro RED(B) =  $\{\{a\},\{b\}\}\}$ , to

CORE(B) = 
$$\bigcap$$
 RED(B) =  $\bigcap$  {{a},{b}} =  $\emptyset$ 

#### Macierz rozróżnialności

Macierz rozróżnialności (ang. discernability matrix) M jest macierzą o wielkości  $n \times n$ , o elementach  $m_{ii}$ , takich że:

 $m_{ij} = \{a \in A: a(x_i) \neq a(x_j)\} \text{ dla } i, j = 1,...,n$ 

Macierz rozróżnialności ma za zadanie podsumować relacje nierozróżnialności zachodzące w systemie **S.** 

# Macierz rozróżnialności (przykład)

b – ból głowy, t - temperatura

|                       | <b>x</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> | <b>X</b> <sub>6</sub> |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| <b>x</b> <sub>1</sub> | -                     |                       |                       |                       |                       |                       |
| <b>x</b> <sub>2</sub> | b                     | -                     |                       |                       |                       |                       |
| <b>X</b> <sub>3</sub> | t                     | b, t                  | -                     |                       |                       |                       |
| X <sub>4</sub>        | b                     | Ø                     | b, t                  | -                     |                       |                       |
| <b>X</b> <sub>5</sub> | t                     | b, t                  | Ø                     | b, t                  | -                     |                       |
| <b>x</b> <sub>6</sub> | t                     | b, t                  | t                     | b, t                  | t                     | -                     |

#### Macierz rozróżnialności (przykład 2)

g – ból głowy, m- ból mięśni, d- dreszcze t - temperatura

|                       | <b>x</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> | <b>x</b> <sub>6</sub> |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| <b>x</b> <sub>1</sub> | -                     |                       |                       |                       |                       |                       |
| <b>x</b> <sub>2</sub> | g                     | -                     |                       |                       |                       |                       |
| <b>X</b> <sub>3</sub> | m,t                   | g,m,t                 | -                     |                       |                       |                       |
| X <sub>4</sub>        | Ø                     | g                     | m,t                   | -                     |                       |                       |
|                       |                       |                       |                       |                       |                       |                       |
| <b>X</b> <sub>5</sub> | m,d,t                 | g,m,d,t               | d                     | m,d,t                 | -                     |                       |
| <b>X</b> <sub>6</sub> | m,d,t                 | g,m,d,t               | d,t                   | m,d,t                 | t                     | -                     |

#### Macierz rozróżnialności

Na podstawie Macierzy Rozróżnialności, możemy łatwo wyznaczyć atrybuty niezbędne.

Są to elementy występujące w macierzy jednostkowo (pojedyńczo)

# Macierz rozróżnialności (przykład 1,2)

W przypadku rozważanej macierzy (przykład 1) będą to atrybuty:

b,t

W przypadku rozważanej macierzy (przykład 2) będą to atrybuty:

g,d,t

# Macierz rozróżnialności atrybuty niezbędne(przykład 1,2)

|                       | <b>x</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> | <b>x</b> <sub>6</sub> |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| <b>x</b> <sub>1</sub> | -                     |                       |                       |                       |                       |                       |
| <b>X</b> <sub>2</sub> | b                     | -                     |                       |                       |                       |                       |
| <b>X</b> <sub>3</sub> | t                     | <b>b</b> ,            | -                     |                       |                       |                       |
|                       |                       | t                     |                       |                       |                       |                       |
| <b>X</b> <sub>4</sub> | b                     | Ø                     | b,                    | -                     |                       |                       |
|                       |                       |                       | t                     |                       |                       |                       |
| <b>X</b> <sub>5</sub> | t                     | b,                    | Ø                     | b,                    | -                     |                       |
|                       |                       | t                     |                       | t                     |                       |                       |
| <b>X</b> <sub>6</sub> | t                     | <b>b</b> ,            | t                     | b,                    | t                     | -                     |
|                       |                       | t                     |                       | t                     |                       |                       |

|                       | $\mathbf{x}_1$ | $\mathbf{x_2}$ | $\mathbf{x}_3$ | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> | <b>x</b> <sub>6</sub> |
|-----------------------|----------------|----------------|----------------|-----------------------|-----------------------|-----------------------|
| $\mathbf{x_1}$        | ı              |                |                |                       |                       |                       |
| $\mathbf{x}_2$        | œ              | 1              |                |                       |                       |                       |
| <b>X</b> <sub>3</sub> | m,             | g,             | 1              |                       |                       |                       |
|                       | t              | m,             |                |                       |                       |                       |
|                       |                | t              |                |                       |                       |                       |
| <b>x</b> <sub>4</sub> | Ø              | g              | m,             | -                     |                       |                       |
|                       |                |                | t              |                       |                       |                       |
| <b>X</b> <sub>5</sub> | m,             | g,             | d              | m,                    | -                     |                       |
|                       | d,t            | m,             |                | d,t                   |                       |                       |
|                       |                | d,t            |                |                       |                       |                       |
| <b>x</b> <sub>6</sub> | m,             | g,             | d,t            | m,                    | t                     | -                     |
|                       | d,t            | m,             |                | d,t                   |                       |                       |
|                       |                | d,t            |                |                       |                       |                       |

#### Macierz rozróżnialności

Na podstawie Macierzy Rozróżnialności, możemy łatwo wyznaczyć redukty.

Są to elementy mające niepustą część wspólną z każdym niepustym elementem należącym do macierzy.

# Macierz rozróżnialności (przykład 1,2)

W przypadku rozważanej macierzy (przykład 1) będą to atrybuty:

b,t

W przypadku rozważanej macierzy (przykład 2) redukt stanowiły będą atrybuty:

g , d , t

## Macierz rozróżnialności

#### redukty(przykład 1,2)

|                       | $\mathbf{x}_1$ | $\mathbf{x}_2$ | <b>x</b> <sub>3</sub> | $\mathbf{x_4}$ | <b>X</b> <sub>5</sub> | <b>x</b> <sub>6</sub> |
|-----------------------|----------------|----------------|-----------------------|----------------|-----------------------|-----------------------|
| $\mathbf{x_1}$        | •              |                |                       |                |                       |                       |
| $\mathbf{x}_2$        | b              | •              |                       |                |                       |                       |
| <b>X</b> <sub>3</sub> | t              | <b>b</b> ,     | -                     |                |                       |                       |
|                       |                | t              |                       |                |                       |                       |
| <b>X</b> <sub>4</sub> | b              | Ø              | b,                    | -              |                       |                       |
|                       |                |                | t                     |                |                       |                       |
| <b>X</b> <sub>5</sub> | t              | b,             | Ø                     | b,             | -                     |                       |
|                       |                | t              |                       | t              |                       |                       |
| <b>X</b> <sub>6</sub> | t              | <b>b</b> ,     | t                     | b,             | t                     | -                     |
|                       |                | t              |                       | t              |                       |                       |

|                       | $\mathbf{x}_1$ | $\mathbf{x}_2$ | <b>x</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> | <b>x</b> <sub>6</sub> |
|-----------------------|----------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|
| $\mathbf{x_1}$        | -              |                |                       |                       |                       |                       |
| <b>X</b> <sub>2</sub> | g              | -              |                       |                       |                       |                       |
| <b>X</b> <sub>3</sub> | m,t            | g,m,t          | -                     |                       |                       |                       |
| X <sub>4</sub>        | Ø              | g              | m,t                   | -                     |                       |                       |
| X <sub>5</sub>        | m,d,t          | g,m,d,t        | d                     | m,d,t                 | -                     |                       |
| <b>X</b> <sub>6</sub> | m,d,t          | g,m,d,t        | d,t                   | m,d,t                 | t                     | -                     |

### Funkcja rozróżnialności

**Funkcja rozróżnialności** jest funkcją Boole'a o m zmiennych Boole'a  $a_1^*,...,a_m^*$  (nawiązujących do atrybutów  $a_1,...,a_m$ , gdzie  $c_{i,j}^*=\{a^*:a\in c_{ij}\}$ .  $f_S(a_1^*,...,a_m^*)= \land \{\lor c_{i,j}^*: 1\leq j\leq n, c_{i,j}\neq\varnothing\}$ 

## Funkcja rozróżnialności

Funkcja rozróżnialności jest prostą koniunkcją wszystkich elementów macierzy M.

Koniunkcja ta może zostać uproszczona przy pomocy algebry Boole'a, a jej wynikiem są możliwe **redukty** systemu.

#### Funkcja rozróżnialności (przykład 1)

Korzystamy z macierzy rozróżnialności z poprzedniego przykładu

$$f_{S}(b, t) = (b) \wedge (t) \wedge (b) \wedge (t) \wedge (t) \wedge (t) \wedge (b \vee t) \wedge (t) = (b) \wedge (t)$$

Czyli w tym przypadku **nie możemy** zmniejszyć rozmiaru danych przez usunięcie atrybutu. Oba atrybuty (ból głowy, temperatura) muszą zostać.

|                       | <b>x</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> | <b>x</b> <sub>6</sub> |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| <b>x</b> <sub>1</sub> | -                     |                       |                       |                       |                       |                       |
| <b>X</b> <sub>2</sub> | b                     | -                     |                       |                       |                       |                       |
| <b>X</b> <sub>3</sub> | t                     | b, t                  | -                     |                       |                       |                       |
| <b>X</b> <sub>4</sub> | b                     | Ø                     | b, t                  | -                     |                       |                       |
| <b>X</b> <sub>5</sub> | t                     | b, t                  | Ø                     | b, t                  | -                     |                       |
| <b>x</b> <sub>6</sub> | t                     | b, t                  | t                     | b, t                  | t                     | -                     |

## Funkcja rozróżnialności (przykład 2)

Korzystamy z poniższej macierzy rozróżnialności, opisujący przykład nr 2:

$$f_{S}(g, m, d, t) = g \wedge (m \vee t) \wedge (g \vee m \vee t) \wedge g \wedge (m \vee t) \wedge (m \vee d \vee t)$$

$$\wedge (g \vee m \vee d \vee t) \wedge d \wedge (m \vee d \vee t) \wedge (m \vee d \vee t)$$

$$\wedge (g \vee m \vee d \vee t) \wedge (d \vee t) \wedge (m \vee d \vee t) \wedge t$$

$$= g \wedge d \wedge t$$

W tym przypadku możemy usunąć atrybut m (ból mięśni)

|                       | <b>x</b> <sub>1</sub> | $\mathbf{x}_2$ | <b>x</b> <sub>3</sub> | $\mathbf{x}_4$ | <b>X</b> <sub>5</sub> | <b>X</b> <sub>6</sub> |
|-----------------------|-----------------------|----------------|-----------------------|----------------|-----------------------|-----------------------|
| <b>x</b> <sub>1</sub> | -                     |                |                       |                |                       |                       |
| $\mathbf{x}_2$        | g                     | -              |                       |                |                       |                       |
| <b>X</b> <sub>3</sub> | m,t                   | g,m,t          | -                     |                |                       |                       |
| $\mathbf{x}_4$        | Ø                     | g              | m,t                   | -              |                       |                       |
|                       |                       |                |                       |                |                       |                       |
| <b>X</b> <sub>5</sub> | m,d,t                 | g,m,d,t        | d                     | m,d,t          | -                     |                       |
| <b>x</b> <sub>6</sub> | m,d,t                 | g,m,d,t        | d,t                   | m,d,t          | t                     | -                     |

#### Funkcja rozróżnialności (przykład 3)

Tabela przedstawia system decyzyjny z kandydatami, ich atrybutami (wykształcenie, doświadczenie, znajomość języka angielskiego, referencje) oraz decyzje czy danego kandydata należy przyjąć, czy odrzucić.

|                       | Wykształcenie | Doświadczenie | Angielski | Referencje | Decyzja |
|-----------------------|---------------|---------------|-----------|------------|---------|
| <b>X</b> <sub>1</sub> | Wyższe        | Średnie       | Tak       | Znakomite  | Tak     |
| <b>X</b> <sub>2</sub> | Wyższe        | Małe          | Tak       | Neutralne  | Nie     |
| <b>X</b> <sub>3</sub> | Podstawowe    | Małe          | Tak       | Dobre      | Nie     |
| <b>x</b> <sub>4</sub> | Średnie       | Duże          | Tak       | Neutralne  | Tak     |
| <b>X</b> <sub>5</sub> | Średnie       | Średnie       | Tak       | Neutralne  | Nie     |
| <b>x</b> <sub>6</sub> | Średnie       | Duże          | Tak       | Znakomite  | Tak     |
| <b>X</b> <sub>7</sub> | Wyższe        | Duże          | Nie       | Dobre      | Tak     |
| X <sub>8</sub>        | Podstawowe    | Małe          | Nie       | Znakomite  | Nie     |

#### Funkcja rozróżnialności (przykład 2.)

Kilka przykładowych relacji nierozróżnialności:

- IND({Wykształcenie}) = {{x<sub>1</sub>, x<sub>2</sub>, x<sub>7</sub>}, {x<sub>3</sub>, x<sub>8</sub>}, {x<sub>4</sub>, x<sub>5</sub>, x<sub>6</sub>}}
- IND({Wykształcenie, Angielski})= {{x<sub>1</sub>, x<sub>2</sub>}, {x<sub>3</sub>}, {x<sub>4</sub>, x<sub>5</sub>, x<sub>6</sub>}, { x<sub>7</sub>}, { x<sub>8</sub>}}
- IND({Angielski, Referencje}) =  $\{\{x_1, x_6\}, \{x_2, x_4, x_5\}, \{x_3\}, \{x_7\}, \{x_8\}\}$
- IND({W, D, A, R})=  $\{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}, \{x_8\}\}\}$

#### Funkcja rozróżnialności (przykład 2.)

Wyznaczmy dolne oraz górne przybliżenie:

Niech  $W = \{x \mid Decyzja(x) = Tak\}$ . Wtedy:

- $W = \{x_1, x_4, x_6, x_7\}$
- $\underline{A}W = \{x_1, x_4, x_6, x_7\}$
- $AW = \{x_1, x_4, x_6, x_7\}$

#### Funkcja rozróżnialności (przykład 3)

#### Macierz rozróżnialności:

|                       | <b>x</b> <sub>1</sub> | $\mathbf{x}_2$ | <b>X</b> <sub>3</sub> | $\mathbf{x}_4$ | <b>X</b> <sub>5</sub> | <b>x</b> <sub>6</sub> | <b>X</b> <sub>7</sub> | <b>x</b> <sub>8</sub> |
|-----------------------|-----------------------|----------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|
| <b>x</b> <sub>1</sub> | -                     |                |                       |                |                       |                       |                       |                       |
| <b>x</b> <sub>2</sub> | d,r                   | -              |                       |                |                       |                       |                       |                       |
| <b>X</b> <sub>3</sub> | w,d,r                 | w,r            | -                     |                |                       |                       |                       |                       |
| <b>X</b> <sub>4</sub> | w,d,r                 | w,d            | w,d,r                 | -              |                       |                       |                       |                       |
| <b>X</b> <sub>5</sub> | w,r                   | w,d            | w,d,r                 | d              | -                     |                       |                       |                       |
| <b>x</b> <sub>6</sub> | w,d                   | w,d,r          | w,d,r                 | r              | d,r                   |                       |                       |                       |
| <b>X</b> <sub>7</sub> | d,a,r                 | d,a,r          | w,d,a                 | w,a,r          | w,d,a,r               | w,a,r                 | -                     |                       |
| x <sub>8</sub>        | w,d,a                 | w,a,r          | a,r                   | w,d,a,r        | w,d,a,r               | w,d,a                 | w,d,r                 | -                     |

#### Funkcja rozróżnialności (przykład 2.)

Zbudujmy funkcję rozróżnialności:

$$f_{S}(w, d, a, r) = (d \lor r) \land (w \lor d \lor r) \land (w \lor d \lor r) \land (w \lor d \lor r)$$

$$\land (w \lor d) \land (d \lor a \lor r) \land (w \lor d) \land (w \lor d \lor r)$$

$$\land (d \lor a \lor r) \land (w \lor a \lor r) \land (w \lor d \lor r)$$

$$\land (w \lor d \lor r) \land (w \lor d \lor r) \land (w \lor d \lor a)$$

$$\land (a \lor r) \land (d) \land (r) \land (w \lor a \lor r)$$

$$\land (w \lor d \lor a \lor r) \land (d \lor r) \land (w \lor d \lor a \lor r)$$

$$\land (w \lor d \lor a \lor r) \land (w \lor a \lor r) \land (w \lor d \lor a)$$

$$\land (w \lor d \lor a \lor r) \land (w \lor a \lor r) \land (w \lor d \lor a)$$

$$\land (w \lor d \lor r)$$

#### Funkcja rozróżnialności (przykład 3)

Po uproszczeniu funkcja  $f_s(w, d, a, r) = d \wedge r$ . Czyli 'Doświadczenie' i 'Referencje' są reduktami. Możemy to sprawdzić przez porównanie:  $IND(\{W, D, A, R\}) \times IND(\{D, R\}).$ IND({W, D, A, R})  $= \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}, \{x_8\}\}\}$ *IND({D,R})*  $= \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}, \{x_8\}\}\}$ Czyli  $IND(\{W, D, A, R\}) = IND(\{D, R\}).$ 

#### Niespójności

 W każdym układzie decyzyjnym, mogą pojawić się elementy Uniwersum o tych samych wartościach atrybutów, lecz o innej wartości funkcji decyzyjnej.

|                | Angielski | Java | Doświadczenie | Rekrutacja |
|----------------|-----------|------|---------------|------------|
| X <sub>1</sub> | Nie       | Tak  | Niskie        | Tak        |
| X <sub>2</sub> | Nie       | Tak  | Niskie        | Nie        |

|                       | Angielski | Java | Doświadczenie | Rekrutacja |
|-----------------------|-----------|------|---------------|------------|
| $\mathbf{x}_1$        | Nie       | Tak  | Niskie        | Tak        |
| $\mathbf{x}_2$        | Nie       | Tak  | Niskie        | Nie        |
| <b>X</b> <sub>3</sub> | Tak       | Nie  | Średnie       | Nie        |
| X <sub>4</sub>        | Tak       | Tak  | Średnie       | Tak        |
| <b>X</b> <sub>5</sub> | Tak       | Tak  | Wysokie       | Tak        |

### Niespójności - usuwanie

Istnieją różne metody usuwania niespójności,
 np.:

Metoda Jakościowa

 Metoda Nowego Podziału Systemu Informacyjnego

### Niespójności - usuwanie

Metoda jakościowa:

Z systemu o niespójnej wiedzy, należy usunąć ten obiekt, dla którego dokładność górnego bądź dolnego przybliżenia jest mniejsza.

|                       | Angielski | Java | Doświadczenie | Rekrutacja |
|-----------------------|-----------|------|---------------|------------|
| $\mathbf{x}_1$        | Nie       | Tak  | Niskie        | Tak        |
| $\mathbf{x}_2$        | Nie       | Tak  | Niskie        | Nie        |
| <b>X</b> <sub>3</sub> | Tak       | Nie  | Średnie       | Nie        |
| $X_4$                 | Tak       | Tak  | Średnie       | Tak        |
| <b>X</b> <sub>5</sub> | Tak       | Tak  | Wysokie       | Tak        |

Niech 
$$S = (U, A) i B \subseteq A$$

$$W1 = \{x \mid Rekrutacja(x) = Tak\}.$$
  $W2 = \{x \mid Rekrutacja(x) = Nie\}.$   $W1 = \{x_1, x_4, x_5\}$   $W2 = \{x_2, x_3\}$   $AW1 = \{x_1, x_4, x_5\}$   $AW2 = \{x_2, x_4, x_5\}$   $AW2 = \{x_1, x_2, x_3, x_4, x_5\}$   $AW2 = \{x_1, x_2, x_3, x_4, x_5\}$ 

Niech 
$$S = (U, A) i B \subseteq A$$

$$U = \{x_1, x_2, x_3, x_4, x_5\}$$

$$IND(B) = \{\{x_1, x_2\}, \{x_3\}, \{x_4\}, \{x_5\}\}$$

$$W1 = \{x \mid Rekrutacja(x) = Tak\}.$$
  
 $W1 = \{x_1, x_4, x_5\}$   
 $\underline{A}W1 = \{x_4, x_5\}$   
 $AW1 = \{x_1, x_2, x_4, x_5\}$ 

$$W2 = \{x \mid Rekrutacja(x) = Nie\}.$$
  
 $W2 = \{x_2, x_3\}$   
 $\underline{A}W2 = \{x_3\}$   
 $AW2 = \{x_1, x_2, x_3\}$ 

Dokładność przybliżenia górnego:

$$P = \frac{|\underline{B}X|}{|U|}$$

$$P = \frac{|AW1|}{5} = \frac{4}{5}$$

$$P = \left| \frac{AW2}{5} \right| = \frac{3}{5}$$

Dokładność przybliżenia dolnego:

$$P = \frac{|BX|}{|U|}$$

$$P = \frac{\left| \frac{AW1}{5} \right|}{5} = \frac{2}{5}$$

$$P = \frac{\left| \underline{AW2} \right|}{5} = \frac{1}{5}$$

Przybliżenia są mniejsze dla zbioru:  $W2 = \{x \mid Rekrutacja(x) = Nie\}$ 

Usuwamy z niego obiekt  $x_2$ , który wraz z obiektem  $x_1$  stanowił niespójność.

#### Nowa tabela jest teraz spójna.

|                       | Angielski | Java | Doświadczenie | Rekrutacja |
|-----------------------|-----------|------|---------------|------------|
| $\mathbf{x}_1$        | Nie       | Tak  | Niskie        | Tak        |
| <b>X</b> <sub>3</sub> | Tak       | Nie  | Średnie       | Nie        |
| $X_4$                 | Tak       | Tak  | Średnie       | Tak        |
| <b>X</b> <sub>5</sub> | Tak       | Tak  | Wysokie       | Tak        |

# Generowanie reguł

 Reguła decyzyjna – jest to obiekt należący do tablicy decyzyjnej, zapisany w postaci:

Jeśli {warunek bądź warunki} to {decyzja}

Warunek reguły decyzyjnej

Decyzja reguły decyzyjnej

# Generowanie reguł (przykład 1)

|                       | Ból głowy | Temperatura [°C] | Grypa |
|-----------------------|-----------|------------------|-------|
| <b>x</b> <sub>1</sub> | Tak       | 36-37            | Nie   |
| <b>x</b> <sub>2</sub> | Nie       | 36-37            | Nie   |
| <b>X</b> <sub>3</sub> | Tak       | 37-38            | Tak   |
| <b>X</b> <sub>4</sub> | Nie       | 36-37            | Nie   |
| X <sub>5</sub>        | Tak       | 37-38            | Nie   |
| x <sub>6</sub>        | Tak       | 38-39            | Tak   |

#### Reguly decyzyjne:

```
IF {Ból głowy == Tak} AND {Temperatura == 36-37} THEN Grypa = Nie
IF {Ból głowy == Nie} AND {Temperatura == 36-37} THEN Grypa = Nie
IF {Ból głowy == Tak} AND {Temperatura == 37-38} THEN Grypa = Tak
IF {Ból głowy == Nie} AND {Temperatura == 36-37} THEN Grypa = Nie
IF {Ból głowy == Tak} AND {Temperatura == 37-38} THEN Grypa = Nie
IF {Ból głowy == Tak} AND {Temperatura == 38-39} THEN Grypa = Tak
```

# Generowanie reguł (przykład 2)

|                       | Ból głowy | Bóle mięśni | Dreszcze | Temperatura [°C] | Grypa |
|-----------------------|-----------|-------------|----------|------------------|-------|
| $\mathbf{x}_1$        | Tak       | Nie         | Nie      | 36-37            | Nie   |
| $\mathbf{x}_2$        | Nie       | Nie         | Nie      | 36-37            | Nie   |
| <b>X</b> <sub>3</sub> | Tak       | Tak         | Nie      | 37-38            | Tak   |
| X <sub>4</sub>        | Tak       | Nie         | Nie      | 36-37            | Nie   |
| <b>X</b> <sub>5</sub> | Tak       | Tak         | Tak      | 37-38            | Nie   |
| <b>x</b> <sub>6</sub> | Tak       | Tak         | Tak      | 38-39            | Tak   |

Niech: Ból głowy: BG, Bóle mięśni: BM, Dreszcze: D, Temperatura: T Reguły decyzyjne:

```
IF \{BG == Tak\} AND \{BM == Nie\} AND \{D == Nie\} AND \{T == 36-37\} THEN Grypa = Nie IF \{BG == Nie\} AND \{BM == Nie\} AND \{D == Nie\} AND \{T == 36-37\} THEN Grypa = Nie IF \{BG == Tak\} AND \{BM == Tak\} AND \{D == Nie\} AND \{T == 36-37\} THEN Grypa = Tak IF \{BG == Tak\} AND \{BM == Tak\} AND \{D == Tak\} AND \{T == 36-37\} THEN Grypa = Nie IF \{BG == Tak\} AND \{BM == Tak\} AND \{D == Tak\} AND \{T == 36-37\} THEN Grypa = Tak
```

## Generowanie reguł minimalnych

Możemy wygenerować również reguły minimalne.

Musimy w tym celu wygenerować macierz rozróżnialności dla wierszy o różnych wartościach decyzji.

## Generowanie reguł minimalnych

#### **Definiujemy macierz:**

$$m_{ij} = \{a \in A: a(x_i) \neq a(x_j)\} \text{ dla } i, j = 1,...,n$$

$$M_{ij} = \begin{cases} a \in A: a(x_i) \neq a(x_j) \} & \text{dla } i, j = 1, ..., n; \text{ jeśli } d(x_i) \neq d(x_j) \\ \lambda & \text{; jeśli } d(x_i) = d(x_j) \end{cases}$$

Gdzie,  $\lambda$  – wartość wstawiana w przypadku wierszy o takich samych decyzjach d(wiersz)

# Generowanie reguł minimalnych (przykład 1)

|                       | $\mathbf{x}_1$ | $\mathbf{x}_2$ | <b>x</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> | <b>x</b> <sub>6</sub> |
|-----------------------|----------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                       | -              | λ              | t                     | λ                     | λ                     | t                     |
| $\mathbf{x}_1$        |                |                |                       |                       |                       |                       |
| $\mathbf{x}_2$        | λ              | •              | b,t                   | λ                     | λ                     | b,t                   |
| A <sub>2</sub>        |                | _              |                       | _                     |                       |                       |
|                       | t              | b,t            | -                     | b,t                   | Ø                     | λ                     |
| $\mathbf{x}_3$        |                |                |                       |                       |                       |                       |
|                       | λ              | λ              | b,t                   | -                     | λ                     | b,t                   |
| $\mathbf{X_4}$        |                |                |                       |                       |                       |                       |
| <b>X</b> 7            | λ              | λ              | Ø                     | λ                     | -                     | t                     |
| <b>X</b> <sub>5</sub> |                |                |                       |                       |                       |                       |
|                       | t              | b,t            | λ                     | b,t                   | t                     | -                     |
| <b>x</b> <sub>6</sub> |                |                |                       |                       |                       |                       |

Funkcje rozróżnialności dla wierszy:

F(A,{Nie}, 
$$X_1$$
) =  $t \wedge t = t$   
F(A,{Nie},  $X_2$ ) = (b  $\vee t$ )  $\wedge$ (b  $\vee t$ ) = b  $\vee t$   
F(A,{Tak},  $X_3$ ) =  $t \wedge$  (b  $\vee t$ )  $\wedge$ (b  $\vee t$ ) =  $t$   
F(A,{Nie},  $X_4$ ) =(b  $\vee t$ )  $\wedge$ (b  $\vee t$ ) = b  $\vee t$   
F(A,{Nie},  $X_5$ ) =  $t$   
F(A,{Tak},  $X_6$ ) =  $t \wedge$ (b  $\vee t$ )  $\wedge$ (b  $\vee t$ )  $\wedge t = t$ 

# Generowanie reguł minimalnych (przykład 1)

Reguly minimalne

Dla F(A,{Nie}, 
$$X_1$$
) =  $t$ 

IF Temperatura == 36-37 THEN Grypa = Nie

Dla F(A,{Nie}, 
$$X_2$$
) =  $b \lor t$ 

IF Ból głowy == Nie THEN Grypa = Nie

IF Temperatura == 36-37 THEN Grypa = Nie

Dla F(A,{Tak}, 
$$X_3$$
) =  $t$ 

IF Temperatura == 37-38 THEN Grypa = Tak

# Generowanie reguł minimalnych (przykład 1)

THEN Grypa = Tak

Reguly minimalne

IF Temperatura == 38-39

# Generowanie reguł (przykład 1)

Dzięki pojedyńczym regułom, można wyznaczyć ogólną regułę dla decyzji Grypa = Nie

```
IF (t == 36-37)

\lor (b == Nie) \lor (t == 36-37)

\lor (b == Nie) \lor (t == 36-37)

\lor (t == 37-38)

THEN Grypa = Nie
```

# Generowanie reguł (przykład 1)

### po uproszczeniu:

```
IF (t == 36-37) \lor (b == Nie) \lor (t == 37-38)
THEN Grypa = Nie
```

#### ostatecznie:

```
IF (Temperatura == 36-37) ∨ (Ból głowy == Nie) ∨ (Temperatura == 37-38)
THEN Grypa = Nie
```

# Generowanie reguł (przykład 1)

Dzięki pojedyńczym regułom, można wyznaczyć ogólną regułę dla decycji Grypa = Nie

```
IF (t == 37-38) \lor (t == 38-39)
THEN Grypa = Tak
```

ostatecznie:

```
IF (Temperatura == 37-38) OR (Temperatura == 38-39) THEN Grypa = Tak
```

# Generowanie reguł minimalnych

|                       | <b>x</b> <sub>1</sub> | X <sub>2</sub> | <b>x</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> | <b>x</b> <sub>6</sub> |
|-----------------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|
| $\mathbf{x}_1$        | -                     | λ              | m,t                   | λ                     | λ                     | m,d,t                 |
| $\mathbf{x}_2$        | λ                     | _              | g,m,t                 | λ                     | λ                     | g,m,d,t               |
| <b>X</b> <sub>3</sub> | m,t                   | g,m,t          | -                     | m,t                   | d                     | λ                     |
|                       |                       |                |                       |                       |                       |                       |
| <b>X</b> <sub>4</sub> | λ                     | λ              | m,t                   | -                     | λ                     | m,d,t                 |
| <b>X</b> <sub>5</sub> | λ                     | λ              | d                     | λ                     | -                     | t                     |
| <b>x</b> <sub>6</sub> | m,d,t                 | g,m,d,t        | λ                     | m,d,t                 | t                     | -                     |

# Przykład 2

### Funkcje rozróżnialności dla wierszy:

 $m \vee d \vee t$ 

F(A,{Nie}, 
$$\mathbf{X}_1$$
) =  $(m \lor t) \land (m \lor d \lor t) = m \lor t$   
F(A,{Nie},  $\mathbf{X}_2$ ) =  $(g \lor m \lor t) \land (g \lor m \lor d \lor t) = g \lor m \lor t$   
F(A,{Tak},  $\mathbf{X}_3$ ) =  $(m \lor t) \land (g \lor m \lor t) \land (m \lor t) \land d = m \lor t$   
F(A,{Nie},  $\mathbf{X}_4$ ) =  $(m \lor t) \land (m \lor d \lor t) = m \lor t$   
F(A,{Nie},  $\mathbf{X}_5$ ) =  $d \land t$   
F(A,{Tak},  $\mathbf{X}_6$ ) =  $(m \lor d \lor t) \land (g \lor m \lor d \lor t) \land (m \lor d \lor t) \land t = m \lor t$ 

# Generowanie reguł minimalnych (przykład 2)

Reguly minimalne

```
Dla F(A,{Nie}, X_1) = m \vee t
       IF Bóle mięśni == Nie THEN Grypa = Nie
       IF Temperatura == 36-37 THEN Grypa = Nie
Dla F(A,{Nie}, X_2) = g \vee m \vee t
       IF Ból głowy == Nie THEN Grypa = Nie
       IF Bóle mięśni == Nie THEN Grypa = Nie
           Temperatura == 36-37 THEN Grypa = Nie
Dla F(A,{Tak}, X_3) = m \vee t
        IF Bóle mięśni == Tak THEN Grypa = Tak
                                THEN Grypa = Tak
           Temperatura == 37-38
```

# Generowanie reguł minimalnych (przykład 2)

Reguly minimalne

```
Dla F(A,{Nie}, X_4) = m \lor t

IF Bóle mięśni == Nie THEN Grypa = Nie

IF Temperatura == 36-37 THEN Grypa = Nie

Dla F(A,{Nie}, X_5) = d \land t

IF Dreszcze == Tak AND Temperatura == 37-38 THEN Grypa = Nie

Dla F(A,{Tak}, X_6) = m \lor d \lor t

IF Bóle mięśni == Tak THEN Grypa = Tak

IF Dreszcze == Tak THEN Grypa = Tak

IF Temperatura == 38-39THEN Grypa = Tak
```

# Generowanie reguł (przykład 2)

Dzięki pojedyńczym regułom, można wyznaczyć ogólną regułę dla decycji Grypa = Nie

```
IF (m == Nie) \lor (t == 36-37)

\lor (g == Nie) \lor (m == Nie) \lor (t == 36-37)

\lor (m == Nie) \lor (t == 36-37)

\lor ((d == Tak) \land (t == 38-39))

THEN Grypa = Nie
```

## Generowanie reguł (przykład 2)

### po uproszczeniu:

```
IF (m == Nie) \lor (t == 36-37) \lor (g == Nie) \lor [(d == Tak) \land (t == 38-39)]
THEN Grypa = Nie
```

#### Ostatecznie:

```
IF (Bóle mięśni ==Nie) ∨ (Temperatura == 36-37)
     ∨ (Bóle głowy == Nie)
     ∨ [(Dreszcze == Tak) ∧ (Temperatura == 38-39)]
THEN Grypa = Nie
```

# Generowanie reguł (przykład 2)

Dzięki pojedyńczym regułom, można wyznaczyć ogólną regułę dla decyzji Grypa = Tak

```
IF (m == Tak) \lor (t == 37-38)
\lor (m == Tak) \lor (d == Tak) \lor (t == 38-39)
```

THEN Grypa = Tak

# Generowanie reguł minimalnych (przykład 2)

```
po uproszczeniu:
```

```
IF (m == Tak) \lor (t == 37-38) \lor (d == Tak) \lor (t == 38-39)
THEN Grypa = Tak
```

#### ostatecznie:

```
IF (Bóle mięśni == Tak) ∨ (Temperatura = 37-38) ∨ (Dreszcze = Tak)
∨ (Temperatura = 38-39)
THEN Grypa = Tak
```

Zbiór do przybliżenia, brak użytych atrybutów



Podział z pierwszym atrybutem



### Obszar negatywny



Podział z dwoma atrybutami



### Obszar negatywny



Obszar pozytywny - dolne przybliżenie



Obszar graniczny



### Górne przybliżenie



## Bibliografia

- Zbiory przybliżone wnioskowanie przybliżone
   Autor: Nowotarski, Chodara ,Leończyk.
- Metody wnioskowań aproksymacyjnych dla syntezy algorytmów decyzyjnych Autor: Bazan J.
- Rough Sets. International Journal of Komputer and Information Sciences Autor: Pawlak Z.
- Fuzzy sets, Information and Control

Autor: Zadeh, L., A.