1 (a) briven,
$$y = 3 - 2x$$

$$1 = \frac{3 - y}{2}$$

20 the volume is,
$$y = \int_{0}^{2} \pi \left(\frac{3 - y}{2}\right)^{2} dy$$

$$= \frac{\pi}{4} \int_{0}^{2} \left(9 - 6y + y^{2}\right) dy$$

$$= \frac{\pi}{4} \left[9y - \frac{6y^{2}}{2} + \frac{y^{3}}{3}\right]_{0}^{2}$$

$$= \frac{\pi}{4} \left[18 - 12 + \frac{8}{3}\right]$$

$$= \frac{13\pi}{4}$$

1(b) buyen,
$$y = \int conx$$

20 the volume is,
 $V_{L} = \int_{T/2}^{T/2} T \left(\int conx \right) dn$

$$= \int_{T/2}^{T/2} T \left(conx \right) dn$$

1 (c) Griven,
$$x = \sqrt{1+y}$$

So the volume is
 $y = \int_{-1}^{3} \pi(\sqrt{1+y})^{2} dy$
 $= \pi \int_{-1}^{3} (1+y) dy$
 $= \pi \left[y + \frac{y^{2}}{2} \right]_{-1}^{3}$
 $= \pi \left[(3+\frac{3^{2}}{2}) - ((-1) + \frac{(-1)^{2}}{2}) \right]$
 $= 8\pi$

2(a) Griven,
$$y = \sqrt{x} - 0$$

and $x = 0$, $x = q$

$$\frac{x}{\sqrt{x}} = \sqrt{y}$$

$$\frac{x}{\sqrt{x}} = \sqrt{y}$$

$$\sqrt{x} = \sqrt{y}$$

$$\sqrt{y}$$

$$\sqrt{y} = \sqrt{y}$$

$$\sqrt{y}$$

$$\sqrt{y} = \sqrt{y}$$

$$\sqrt{y}$$

$$\sqrt$$

Scanned with CamScanner

2(b) Given,
$$y = x^{2}$$

and, $x = 0, x = 2$
 $\frac{10 + 2}{4}$
 $\frac{10 + 4}{4}$
 $\frac{1}{20} + 4$
 $\frac{1}{4} = \frac{1}{5} =$

2(c) Guven,
$$y = x^{2} - 4x + 5$$

and $x = 1$, $x = 4$

50 the volume is,

 $x = 1 + 4$
 $y = 1 + 5$

So the volume is,

 $x = 1 + 5$
 $x = 7$
 $x =$

(d) Griven,
$$y=x-0$$

 $y=1-2$
and $x=0$
So the volume
 $v_{x}=\int_{0}^{1}\pi(1^{2}x^{2})dx$
 $=\pi\left[x-\frac{x^{3}}{3}\right]_{0}^{1}$
 $=\pi\left[1-\frac{1}{3}\right]_{0}^{1}$
 $=\frac{2\pi}{3}$

3(a) aciven, y= Vx So the volume is, $V_y = \int_0^3 T(yy) dy$ $= T \int_0^3 y^4 dy = T \left[-\frac{5}{5} \right]_0^3$

3(b) Guiven,
$$x = 1 - y^{2} - 0$$

$$x = 0 - 2$$

$$\frac{x}{y | 0 | 1}$$

$$y | \pm 1 | 0$$

So the volume is,
$$y = \int_{-1}^{11} (1 - y^{2})^{2} - 0^{2} dy$$

$$= \pi \int_{-1}^{1} (1 - 2y^{2} + y^{4}) dy$$

$$= 2\pi \left[y - 2\frac{y^{3}}{3} + \frac{y^{5}}{5} \right]_{0}^{1}$$

$$= 2\pi \left[(1 - \frac{2}{3} + \frac{1}{5}) \right]$$

$$= 2\pi \left(\frac{15 - 10 + 3}{15} \right)$$

$$y = \frac{16\pi}{15}$$

$$y = \frac{16\pi}{15}$$