Computadores Simples

University of Ulm local Contest <a>Image Alemanha

Timelimit: 1

Você escreverá um interpretador para um computador simples. Este computador usa um processador com um pequeno número de instruções de máquina. Além disso, é equipado com 32 bytes de memória, um acumulador de 8 bits (accu) e um contador de programa de 5 bits (pc). A memória contém dados, bem como código, que é a arquitetura habitual de von Neumann.

O contador de programa contém o endereço da instrução a ser executada em seguida. Cada instrução tem um comprimento de 1 byte - os 3 bits mais significativos (bits mais a esquerda) definem o tipo de instrução e os 5 bits menos significativos definem um operando opcional que é sempre um endereço de memória (xxxxx). Para instruções que não precisam de um operando, os 5 bits menos significativos não têm significado (-----). Aqui está uma lista de instruções da máquina e a sua semântica:

```
000xxxxx
          STA x
                  armazena o valor do acumulador no byte x da memória
                  carrega o valor do byte x da memória para o acumulador
001xxxxx
          LDA x
                    se o valor do acumulador for 0, carreque o valor x para o
010xxxxx
          BEQ x
contador de programa
011----
         NOP
                  nenhuma operação
100----
         DEC
                  subtraia 1 do acumulador
101----
        INC
                  adicione 1 ao acumulador
                  carreque o valor de x para o contador de programa
110xxxxx JMP x
111----
         HLT
                  finaliza o programa
```

No início, o acumulador e o contador do programa são definidos como 0. Depois de buscar uma instrução, mas antes de sua execução, o contador de programa é incrementado. Você pode assumir que os programas serão encerrados.

Entrada

O arquivo de entrada contém vários casos de teste. Cada caso de teste especifica o conteúdo da memória antes da execução do programa. Byte 0 a 31 são dadas em linhas separadas em representação binária. Um byte é indicado por seus bits mais e menos significativos. A entrada é terminada por EOF.

Saída

Para cada caso de teste, dê como saída o valor final do acumulador em representação binária, novamente: bits mais significativos primeiro.

Exemplo de Entrada	Exemplo de Saída
00111110	10000111
10100000	
01010000	
11100000	
0000000	
0000000	
0000000	

0000000	Exemplo de Entrada	Exemplo de Saída
0000000	·	
0000000		
0000000		
0000000		
0000000		
0000000		
0000000		
0000000		
00111111		
10000000		
00000010		
11000010		
0000000		
0000000		
0000000		
0000000		
0000000		
0000000		
0000000		
0000000		
0000000		
0000000		
11111111		
10001001		

University of Ulm local Contest 2000/2001