Aggregate Demand and Sovereign Debt Crises

Francisco Roldán

New York University

Sovereign debt crises associated with deep recessions

 \cdot Conventional view: low output \implies high spreads

1

Sovereign debt crises associated with deep recessions

 \cdot Conventional view: low output \implies high spreads

- Spain: large output and consumption drops
 - $\cdot |\Delta C| > |\Delta Y| \implies$ Saving rate \uparrow in the crisis
- · IVs on Eurozone country-level data show
 - 1. High spreads cause output to fall
 - 2. High spreads cause consumption to fall more than output
- Large literature about costs of sovereign default silent about costs of default risk
 - · Agg demand irrelevant with Hand-to-mouth households / Law of One Price
 - Saving rate in the crisis?
 - · Consequences?
 - Household sector manages substantial wealth (avg 96% of GDP)
 - Substantial fraction of government debt held by residents

- Spain: large output and consumption drops
 - $\cdot |\Delta C| > |\Delta Y| \implies$ Saving rate \uparrow in the crisis
- · IVs on Eurozone country-level data show
 - 1. High spreads cause output to fall
 - 2. High spreads cause consumption to fall more than output
- Large literature about costs of sovereign default silent about costs of default risk
 - · Agg demand irrelevant with Hand-to-mouth households / Law of One Price
 - · Saving rate in the crisis?
 - · Consequences?
 - Household sector manages substantial wealth (avg 96% of GDP)
 - Substantial fraction of government debt held by residents

- Spain: large output and consumption drops
 - $\cdot |\Delta C| > |\Delta Y| \implies$ Saving rate \uparrow in the crisis
- · IVs on Eurozone country-level data show
 - 1. High spreads cause output to fall
 - 2. High spreads cause consumption to fall more than output
- Large literature about costs of sovereign default silent about costs of default risk
 - · Agg demand irrelevant with Hand-to-mouth households / Law of One Price
 - · Saving rate in the crisis?
 - · Consequences?
 - Household sector manages substantial wealth (avg 96% of GDP)
 - Substantial fraction of government debt held by residents

- Spain: large output and consumption drops
 - $\cdot |\Delta C| > |\Delta Y| \implies$ Saving rate \uparrow in the crisis
- · IVs on Eurozone country-level data show
 - 1. High spreads cause output to fall
 - 2. High spreads cause consumption to fall more than output
- Large literature about costs of sovereign default silent about costs of default risk
 - · Agg demand irrelevant with Hand-to-mouth households / Law of One Price
 - · Saving rate in the crisis?
 - · Consequences?
 - Household sector manages substantial wealth (avg 96% of GDP)
 - Substantial fraction of government debt held by residents spanish data

THIS PAPER

- I propose a model of sovereign debt crises
 - · Prominent role for household consumption/savings decision
 - · Heterogeneous domestic savers can **choose** to be exposed to government debt
 - · Endogenous wealth distribution that interacts with gov't default choice
- Mode
 - · Defaults create

 - Redistributive effects ← Domestic debt holding
 - Economy looks riskier when the default probability increases
 - Default risk interacts with precautionary behavior

THIS PAPER

- I propose a model of sovereign debt crises
 - · Prominent role for household consumption/savings decision
 - · Heterogeneous domestic savers can choose to be exposed to government debt
 - Endogenous wealth distribution that interacts with gov't default choice
- Model
 - Defaults create
 - Aggregate income losses ← TFP costs of default
 - Redistributive effects
- ← Domestic debt holdings
- Economy looks riskier when the default probability increases
 - · Default risk interacts with precautionary behavior

THIS PAPER

- · I propose a model of sovereign debt crises
 - Prominent role for household consumption/savings decision
 - · Heterogeneous domestic savers can **choose** to be exposed to government debt
 - · Endogenous wealth distribution that interacts with gov't default choice

How is sovereign risk costly?

Feedback loop between spreads and output \uparrow Spreads $\Longrightarrow \downarrow$ Demand $\Longrightarrow \downarrow$ Output

- Model
 - · Defaults create
 - Aggregate income losses ← TFP costs of default
- Redistributive effects
- ← Domestic debt holdings
- Economy looks riskier when the default probability increases
 - · Default risk interacts with precautionary behavior

MAIN FINDINGS

- · Sovereign risk makes the response of output to shocks
 - Nonlinear
 - · State-dependent
- Feedback effect explains significant portion of the crisis
 - 20% 40% of output contraction attributable to default
- Large welfare effects
 - Volatility of output and consumption 25% and 55% lower without default
 - · Unemployment halved
 - \cdot Households would give up 10% of permanent consumption to avoid defaults
- New light on Aguiar-Gopinath facts
 - · Amplification of negative shocks, demand-driven recessions
 - In downturns volatility of C > volatility of Y

LITERATURE

• Sovereign risk affecting the supply side through finance
Neumeyer and Perri (2005), Bocola (2016), Arellano, Bai, and Mihalache (2018), Balke (2017)

• Domestic debt and default incentives
Gennaioli, Martin, and Rossi (2014), Mengus (2014), Mallucci (2015), Pérez (2016), Sosa-Padilla (2018),
D'Erasmo and Mendoza (2016), Ferriere (2016), ...

Sovereign risk and fiscal austerity
 Cuadra, Sánchez, and Sapriza (2010), Romei (2015), Bianchi, Ottonello, and Presno (2016), Anzoategui (2017),
 Philippon and Roldán (2018)

Shocks affecting aggregate demand through redistribution
 Auclert (2017), Eggertsson and Krugman (2012), Korinek and Simsek (2016), ...

ROADMAP

- Evidence
- · Description of Model
- Model Results
- Simulations
- Crises

EVIDENCE

MAIN SPECIFICATION

· Regress outcome variable Q_{jt} on country j's spread

$$Q_{jt} = \beta \Delta Spread_{jt} + \gamma X_{jt} + \delta_t + \mu_j + \epsilon_{jt}$$

where $Q_{jt} = \log Y_{jt}, \log C_{jt}$

• IV strategy (based on Martin and Philippon, 2017)

$$\Delta Spread_{jt} = \underbrace{\phi B_{jo} + \delta_t}_{Z_{jt}} + \eta_{jt}$$

Data for 11 European countries between 2010Q1 – 2013Q1
 Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Portugal, Spain

FEEDBACK

	Dependent variable:			
	$\log Y_{jt}$ (1)	$\log C_{jt}$ (2)	log Y _{jt} (3)	log <i>C_{jt}</i> (4)
Δ Spread $_{jt}$	-0.008*** (0.001)	-0.013*** (0.001)		
Δ Spread $_{jt}$ (IV)			-0.006** (0.002)	-0.010*** (0.003)
Country + Time FE	√	√	√	√
Observations	143	143	143	143
Adj. R ²	0.772	0.784	0.765	0.776

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

► The Cycle is the Trend

DESCRIPTION OF MODEL

GENERAL DESCRIPTION

- · Small open economy with
 - Uninsurable idiosyncratic income risk + Incomplete markets
 - Default risk
 - Nominal rigidities
- Actors:
 - A government
 - · Issues long-term debt, purchases goods, decides repayment
 - Households
 - · Consume, work, save in the gov't bond + risk-free debt
 - · Differ in 'cash' holdings, idiosyncratic income shock
 - Firms
 - · Produce the goods with labor, subject to wage rigidities
 - Foreigners
 - · Lend to the government and to the private sector
 - · Price all assets

Decisions within a period
Dashed ellipses encircle simultaneous decisions

GOVERNMENT POLICY

At each t, the government

- Chooses repayment $h_t \in \{1, 1 \hbar\}$
- Follows fiscal rules for new issuances $B'(S_t)$ and spending $G(S_t)$
 - · Can depend on full state: $(B_t, \lambda_t, \xi_t, \zeta_t, z_t)$
- Must satisfy its budget constraint

$$\underbrace{q_t^g}_{\text{debt price}}\underbrace{(B_t' - (1 - \rho)B_t)}_{\text{new debt issued}} + \underbrace{T_t}_{\text{lump-sum}} + \underbrace{\tau w_t L_t}_{\text{payroll tax}} = \underbrace{G_t}_{\text{spending}} + \underbrace{\kappa B_t}_{\text{coupor}}$$

 $\rightarrow T_t$ summarizes a default / austerity tradeoff

PRIVATE ECONOMY

Given a government policy $h(S, \xi', z'), B'(S), T(S, q^g)$, in a comp eq'm

- Risk-neutral foreigners
 - Price all assets

$$q^{h}(S) = \frac{1}{1 + r^{\star}}$$

$$q^{g}(S) = \frac{1}{1 + r^{\star}} \mathbb{E} \left[\underbrace{\mathbb{1}_{(\zeta'=1)}(1 - \xi')\kappa}_{coupon} + \underbrace{(1 - \rho)}_{depreciation} \underbrace{(1 - \hbar \mathbb{1}_{(\zeta=1 \cap \zeta' \neq 1)})}_{potential \ haircut} \underbrace{q^{g}(S')}_{resale \ price} \mid S \right]$$

PRIVATE ECONOMY

Given a government policy $h(S, \xi', z'), B'(S), T(S, q^g)$, in a comp eq'm

- Risk-neutral foreigners General Formulation
 - · Price all assets

$$q^{g}(S) = \underbrace{\frac{1}{1+r^{\star}}}_{q^{h}(S)} \mathbb{E} \left[\underbrace{\mathbb{1}_{(\zeta'=1)}(1-\xi')\kappa}_{coupon} + \underbrace{\frac{(1-\rho)}{depreciation}}_{depreciation} \underbrace{\frac{(1-\hbar\mathbb{1}_{(\zeta=1\cap\zeta'\neq1)})}{potential \ haircut}}_{potential \ haircut} \underbrace{q^{g}(S')}_{resale \ price} \mid S \right]$$

- Firms
 - · Traded and nontraded goods, CES aggregator, wage rigidities

$$Y_{Nt} = L_{Nt}^{\alpha_N} \left(1 - \Delta \mathbb{1}_{(\zeta \neq 1)} \right) \qquad \qquad Y_{Tt} = Z_t L_{Tt}^{\alpha_T} \left(1 - \Delta \mathbb{1}_{(\zeta \neq 1)} \right) \qquad \qquad \mathbf{w}_t \geq \bar{\mathbf{w}}$$

PRIVATE ECONOMY

Given a government policy $h(S, \xi', z'), B'(S), T(S, q^g)$, in a comp eq'm

- Risk-neutral foreigners General Formulation
 - Price all assets

$$q^{g}(S) = \underbrace{\frac{1}{1+r^{\star}}}_{q^{h}(S)} \mathbb{E} \left[\underbrace{\mathbb{1}_{(\zeta'=1)}(1-\xi')\kappa}_{\text{coupon}} + \underbrace{(1-\rho)}_{\text{depreciation}} \underbrace{(1-\hbar\mathbb{1}_{(\zeta=1\cap\zeta'\neq1)})}_{\text{potential haircut}} \underbrace{q^{g}(S')}_{\text{resale price}} \right| S \right]$$

- Firms
 - · Traded and nontraded goods, CES aggregator, wage rigidities

$$Y_{Nt} = L_{Nt}^{\alpha_N} \left(1 - \Delta \mathbb{1}_{(\zeta \neq 1)} \right) \qquad \qquad Y_{Tt} = Z_t L_{Tt}^{\alpha_T} \left(1 - \Delta \mathbb{1}_{(\zeta \neq 1)} \right) \qquad \qquad \mathbf{w}_t \geq \overline{\mathbf{w}}$$

- Households
 - Access to both assets with borrowing limits, inelastic labor supply
- Approximation: $\lambda_t = \log \mathcal{N}(\mu_t, \Sigma_t)$. So $S = (B, \mu, \sigma, \xi, \zeta, z)$

· Given govt's policies, aggregates, and evolution of the state

$$v(\omega,\epsilon,\mathbf{S})^{\frac{\psi-1}{\psi}} = \max_{c,a',b'} (1-\beta)c^{\frac{\psi-1}{\psi}} + \beta \mathbb{E} \left[\left(v(\underline{a'} + R_{\mathbf{S},\mathbf{S'}}b',\epsilon',\mathbf{S'}) \right)^{1-\gamma} \middle| \omega,\epsilon,\mathbf{S} \right]^{\frac{1}{\psi(1-\gamma)}}$$
 subject to $p_{\mathcal{C}}(\mathbf{S})c + q^h(\mathbf{S})a' + q^g(\mathbf{S})b' = \omega + \ell(\mathbf{S})\epsilon - T(\mathbf{S})$
$$\ell(\mathbf{S}) = w(\mathbf{S})L(\mathbf{S})(1-\tau) + \Pi(\mathbf{S})$$

$$R_{\mathbf{S},\mathbf{S'}} = \mathbb{1}_{(\zeta'=1)}\kappa + (1-\rho)\left(1-\hbar\mathbb{1}_{(\zeta=1)(\zeta'\neq1)}\right)q^g(\mathbf{S'})$$

$$a' \geq \bar{a}; \qquad b' \geq 0$$

$$\mathbf{S'} = \Psi(\mathbf{S},\xi',z',h')$$
 Exog LoMs for (ϵ,ξ,z) ; prob of h' given (\mathbf{S},ξ',z')

· Given govt's policies, aggregates, and evolution of the state

$$v(\omega, \epsilon, \mathbf{S})^{\frac{\psi-1}{\psi}} = \max_{c, a', b'} (1 - \beta) c^{\frac{\psi-1}{\psi}} + \beta \mathbb{E} \left[\left(v(\underline{a'} + R_{\mathbf{S}, \mathbf{S'}} \underline{b'}, \epsilon', \mathbf{S'}) \right)^{1 - \gamma} \middle| \omega, \epsilon, \mathbf{S} \right]^{\frac{\psi(1 - \gamma)}{\psi}}$$
subject to $p_{\mathcal{C}}(\mathbf{S})c + q^{h}(\mathbf{S})\underline{a'} + q^{g}(\mathbf{S})\underline{b'} = \omega + \ell(\mathbf{S})\epsilon - T(\mathbf{S})$

$$R_{\mathbf{S}, \mathbf{S'}} = \mathbb{1}_{(\zeta'=1)}\kappa + (1 - \rho) \left(1 - \hbar \mathbb{1}_{(\zeta=1)(\zeta'\neq 1)} \right) q^{g}(\mathbf{S'})$$

In crisis times

$$\pi \uparrow \Longrightarrow \mathbb{E}\left[w'L'\right] = \pi \mathbb{E}\left[w'L'|\zeta' \neq 1\right] + (1 - \pi)\mathbb{E}\left[w'L'|\zeta' = 1\right] \downarrow \qquad \leftarrow \text{Aggregate effect}$$

$$q^g \downarrow \Longrightarrow \downarrow \text{ for all} \qquad \leftarrow \text{Distributional effect}$$

$$\Leftrightarrow (R_{S,S'}, sdf' \mid S) \downarrow \qquad \leftarrow \text{Savings technology' effect}$$

· Given govt's policies, aggregates, and evolution of the state

$$\begin{aligned} v(\omega,\epsilon,\mathbf{S})^{\frac{\psi-1}{\psi}} &= \max_{c,a',b'} (1-\beta)c^{\frac{\psi-1}{\psi}} + \beta \mathbb{E} \left[\left(v(\underline{\mathbf{a}'} + R_{\mathbf{S},\mathbf{S'}}\underline{b'},\epsilon',\mathbf{S'}) \right)^{1-\gamma} \middle| \omega,\epsilon,\mathbf{S} \right]^{\frac{\psi}{\psi(1-\gamma)}} \\ &\text{subject to } p_{\mathcal{C}}(\mathbf{S})c + q^{h}(\mathbf{S})\underline{a'} + q^{g}(\mathbf{S})\underline{b'} = \omega + \ell(\mathbf{S})\epsilon - T(\mathbf{S}) \\ &R_{\mathbf{S},\mathbf{S'}} &= \mathbb{1}_{(\zeta'=1)}\kappa + (1-\rho)\left(1 - \hbar\mathbb{1}_{(\zeta=1)(\zeta'\neq 1)}\right)q^{g}(\mathbf{S'}) \end{aligned}$$

In crisis times

$$\pi \uparrow \Longrightarrow \mathbb{E} [w'L'] = \pi \mathbb{E} [w'L'|\zeta' \neq 1] + (1 - \pi) \mathbb{E} [w'L'|\zeta' = 1] \downarrow \qquad \leftarrow \text{Aggregate effect}$$

$$q^g \downarrow \Longrightarrow \omega \downarrow \text{ for all} \qquad \leftarrow \text{Distributional effect}$$

 \leftarrow 'Savings technology' effect

· Given govt's policies, aggregates, and evolution of the state

$$v(\omega, \epsilon, \mathbf{S})^{\frac{\psi-1}{\psi}} = \max_{c, a', b'} (1 - \beta) c^{\frac{\psi-1}{\psi}} + \beta \mathbb{E} \left[\left(v(\underline{\mathbf{a}' + R_{\mathbf{S}, \mathbf{S'}} \mathbf{b'}}, \epsilon', \mathbf{S'}) \right)^{1 - \gamma} \middle| \omega, \epsilon, \mathbf{S} \right]^{\frac{1}{\psi(1 - \gamma)}}$$
subject to $p_{\mathcal{C}}(\mathbf{S})c + q^{h}(\mathbf{S})\mathbf{a'} + q^{g}(\mathbf{S})\mathbf{b'} = \omega + \ell(\mathbf{S})\epsilon - T(\mathbf{S})$

$$R_{\mathbf{S}, \mathbf{S'}} = \mathbb{1}_{(\zeta'=1)}\kappa + (1 - \rho) \left(1 - \hbar \mathbb{1}_{(\zeta=1)(\zeta'\neq 1)} \right) q^{g}(\mathbf{S'})$$

In crisis times

$$\pi \uparrow \Longrightarrow \mathbb{E}\left[w'L'\right] = \pi \mathbb{E}\left[w'L'|\zeta' \neq 1\right] + (1-\pi)\mathbb{E}\left[w'L'|\zeta' = 1\right] \downarrow \qquad \leftarrow \text{Aggregate effect}$$

$$\Leftrightarrow q^g \downarrow \Longrightarrow \omega \downarrow \text{ for all} \qquad \leftarrow \text{Distributional effect}$$

$$\Leftrightarrow \text{Cov}(R_{S,S'}, sdf' \mid S) \downarrow \qquad \leftarrow \text{`Savings technology' effect}$$

$$Y_{N}^{d} = C\varpi \left(\frac{p_{N}}{p_{C}}\right)^{-\eta} + \frac{\vartheta_{N}}{p_{N}}G$$

$$Y_{N}^{s} = L_{N}^{\alpha_{N}} \left(1 - \mathbb{1}_{(\zeta \neq 1)}\Delta\right)$$

$$L_{N}^{d} = \left(\alpha_{N} \frac{p_{N}}{w}\right)^{\frac{1}{1-\alpha_{N}}}$$

$$Y_{N}^{d} = C\varpi \left(\frac{p_{N}}{p_{C}}\right)^{-\eta} + \frac{\vartheta_{N}}{p_{N}}G$$

$$Y_{N}^{s} = L_{N}^{\alpha_{N}} \left(1 - \mathbb{1}_{(\zeta \neq 1)}\Delta\right)$$

$$L_{N}^{d} = \left(\alpha_{N} \frac{p_{N}}{\max\{W, \bar{W}\}}\right)^{\frac{1}{1-\alpha_{N}}}$$

$$Y_{N}^{d} = C\varpi \left(\frac{p_{N}}{p_{C}}\right)^{-\eta} + \frac{\vartheta_{N}}{p_{N}}G$$

$$Y_{N}^{s} = L_{N}^{\alpha_{N}} \left(1 - \mathbb{1}_{(\zeta \neq 1)}\Delta\right)$$

$$L_{N}^{d} = \left(\alpha_{N} \frac{p_{N}}{\max\{W, \bar{W}\}}\right)^{\frac{1}{1-\alpha_{N}}}$$

- $\cdot C \downarrow \Longrightarrow p_N \downarrow \Longrightarrow w \downarrow$
- Wage rigidity creates price stickiness

THE GOVERNMENT'S OBJECTIVE

- B'_t and G_t are given functions of S_t
- · Default / Repayment is an optimal choice
 - Utilitarian objective

$$W(S) = \int v(s, S) d\lambda_S(s)$$

- · In period t, observe S_{t-1} and (ξ_t, z_t)
- · Gov't understands $\mathsf{S}_t = \Psi(\mathsf{S}_{t-1}, \xi_t, z_t, \zeta_t)$
- · Default iff

$$\underbrace{\mathcal{W}\left(\Psi(\mathsf{S}_{t-1},\xi_t,Z_t,\zeta_t\neq 1)\right)}_{\text{v under def}} - \underbrace{\mathcal{W}\left(\Psi(\mathsf{S}_{t-1},\xi_t,Z_t,\zeta_t=1)\right)}_{\text{v under rep}} \geq \sigma_g \xi_t^{\text{de}}$$

where
$$\xi_t^{\mathrm{def}} \stackrel{iid}{\sim} \mathcal{N}(0,1)$$

THE GOVERNMENT'S OBJECTIVE

- B'_t and G_t are given functions of S_t
- · Default / Repayment is an optimal choice
 - · Utilitarian objective

$$W(S) = \int v(s, S) d\lambda_S(s)$$

- But B_t , ζ_t are part of S_t !
- · Gov't understands $\mathsf{S}_t = \Psi(\mathsf{S}_{t-1}, \xi_t, Z_t, \zeta_t)$ · Distribution
- Default iff

$$\underbrace{\mathcal{W}\left(\Psi(\mathsf{S}_{t-1},\xi_t,Z_t,\zeta_t\neq 1)\right)}_{\text{v under def}} - \underbrace{\mathcal{W}\left(\Psi(\mathsf{S}_{t-1},\xi_t,Z_t,\zeta_t=1)\right)}_{\text{v under rep}} \geq \sigma_g \xi_t^{\text{de}}$$

where
$$\xi_t^{\mathrm{def}} \stackrel{iid}{\sim} \mathcal{N}(0,1)$$

THE GOVERNMENT'S OBJECTIVE

- B'_t and G_t are given functions of S_t
- Default / Repayment is an optimal choice
 - Utilitarian objective

$$W(S) = \int v(s, S) d\lambda_S(s)$$

- In period t, observe S_{t-1} and (ξ_t, z_t)
- · Gov't understands $S_t = \Psi(S_{t-1}, \xi_t, Z_t, \zeta_t)$ Distribution
- · Default iff

$$\underbrace{\mathcal{W}\left(\Psi(S_{t-1},\xi_{t},Z_{t},\zeta_{t}\neq1)\right)}_{\text{v under def}} - \underbrace{\mathcal{W}\left(\Psi(S_{t-1},\xi_{t},Z_{t},\zeta_{t}=1)\right)}_{\text{v under rep}} \geq \sigma_{g}\xi_{t}^{\text{def}}$$

where
$$\xi_t^{\mathrm{def}} \stackrel{iid}{\sim} \mathcal{N}(\mathsf{0}, \mathsf{1})$$

EQUILIBRIUM CONCEPT

Definition

Given fiscal rules B'(S), G(S), an equilibrium consists of

- A government policy $h'(S, \xi', z'), T(S)$
- Policy functions $\{\phi_a, \phi_b, \phi_c\}$ (s, S)
- Prices $p_c(S)$, $p_N(S)$, w(S), $q^g(S)$. Quantities $L_N(S)$, $L_T(S)$, $\Pi(S)$, T(S)
- Laws of motion $\mu'(S, \xi', z'; h), \sigma'(S, \xi', z'; h)$

such that

- The policy functions solve the household's problem
- · The laws of motion are consistent with the policy functions
- Firms maximize profits, $w(S) \ge \bar{w}$, markets clear Market Clearing
- h' maximizes $\mathcal{W}(\Psi(S,\xi',z',\cdot))$ for gov't, taxes respect budget constraint.

OBJECTIVE FUNCTION

Anticipated objective function Blue: repayment, red: default

TRANSFERS

Transfers
Blue: repayment, red: default

PRICE OF DEBT

19

UNEMPLOYMENT

SIMULATIONS

CALIBRATION

Description	Parameter	Value	Source
Risk-free rate	r*	4% ann.	Anzoategui (2017)
Haircut in case of default	\hbar	50%	Philippon and Roldán (2018)
TFP loss in case of default	Δ	10%	Philippon and Roldán (2018)
Share of nontraded in prod	ϖ	0.74	Anzoategui (2017)
Share of nontraded in G	ϑ_N	88%	Anzoategui (2017)
Idiosyncratic income	$ ho_\epsilon, \sigma_\epsilon$	(0.978, 0.022)	D'Erasmo and Mendoza (2016)

Internally calibrated			Target (Spain)
Discount rate of HHs	$1/\beta - 1$	4.46% ann.	Moments in Table 1
Risk aversion	γ	14.3	Moments in Table 1
Progressivity of tax schedule	au	19.4%	Moments in Table 1
Wage minimum	\bar{W}	1.15	Moments in Table 1
TFP process	$ ho_{Z}, \sigma_{Z}$	(0.886, 0.0371)	Moments in Table 1
Mean risk premium	$ar{\xi}$	1.39%	Moments in Table 1
Risk premium AR(1)	$ ho_{\xi}, \sigma_{\xi}$	(0.948, 0.00195)	Moments in Table 1

CALIBRATION (CONT'D)

- Simulate model solution for 8000 years
- · Agents' believe $\lambda_t = \log \mathcal{N} (\mu_t, \sigma_t)$
- Keep track of actual distribution

Target	Model	Data
$AR(1) \operatorname{coef} \log(Y_t)$	0.994	0.966
Std coef $log(Y_t)$	0.0399	0.0129
$AR(1) \operatorname{coef} \log(C_t)$	0.998	0.962
Std coef $log(C_t)$	0.0157	0.0166
AR(1) coef spread	0.987	0.967
Std coef spread	0.064	0.103
Avg Debt-to-GDP	72.8%	64.6%
Std Debt-to-GDP	17.4%	23.5%
Avg unemployment	17.4%	15.9%
Std unemployment	8.65%	6.09%
Median dom holdings	53.6%	56.5%
Avg wealth-to-GDP	56.8%	94.5%

Table 1: Model Fit

CALIBRATION (CONT'D)

- Simulate model solution for 8000 years
- · Agents' believe $\lambda_t = \log \mathcal{N}\left(\mu_t, \sigma_t
 ight)$
- Keep track of actual distribution

Target	Model	Data
$AR(1) \operatorname{coef} \log(Y_t)$	0.994	0.966
Std coef $log(Y_t)$	0.0399	0.0129
$AR(1) \operatorname{coef} \log(C_t)$	0.998	0.962
Std coef $log(C_t)$	0.0157	0.0166
AR(1) coef spread	0.987	0.967
Std coef spread	0.064	0.103
Avg Debt-to-GDP	72.8%	64.6%
Std Debt-to-GDP	17.4%	23.5%
Avg unemployment	17.4%	15.9%
Std unemployment	8.65%	6.09%
Median dom holdings	53.6%	56.5%
Avg wealth-to-GDP	56.8%	94.5%

Table 1: Model Fit

SIMULATED PATHS

AMPLIFICATION OF TFP SHOCKS

$$\log Y_{t+h} = \alpha + \beta_h \log \epsilon_t^{z} + \eta_{t+h}$$

AMPLIFICATION OF TFP SHOCKS (CONT'D)

For large shocks

For indebted economies

ERGODIC DISTRIBUTIONS

Ergodic Densities for Normalized Output and Consumption

CRISES

SIMULATED CRISES

In simulated data

- · Record all episodes of
 - i. High spreads for 7 quarters
 - ii. Default
- · Take 2-year windows around each
 - Left with 178 defaults ($\sim 4.5\%$ annual freq)
- · Compute distribution of endogenous variables around them

SIMULATED DATA - CRISES

Red: Median, Shaded blue: [0.25, 0.75] percentiles, Dashed green: Mean

SIMULATED DATA - CRISES

- Decompose output contraction between
 - TFP + wage rigidities
 - · Aggregate demand
- · Compare against a no default benchmark
 - · Give the no-default economy the same shocks as the benchmarks
 - Extract the same t's

Key

Conditioning on high spreads only \implies economies only differ in expectations

SIMULATED DATA - CRISES

- Decompose output contraction between
 - TFP + wage rigidities
 - · Aggregate demand
- · Compare against a no default benchmark
 - · Give the no-default economy the same shocks as the benchmarks
 - · Extract the same t's

Key

Conditioning on high spreads only \implies economies only differ in expectations

SIMULATED DATA - NO DEFAULT BENCHMARK

Blue: Benchmark, Dashed orange: No default

Models

Target	Benchmark	No default
$AR(1) \operatorname{coef} \log(Y_t)$	0.994	0.998
Std coef $log(Y_t)$	0.0399	0.0306
$AR(1) \operatorname{coef} \log(C_t)$	0.998	0.998
Std coef $log(C_t)$	0.0157	0.00699
AR(1) coef spread	0.987	1
Std coef spread	0.064	0.000471
Avg Debt-to-GDP	72.8%	57.5%
Std Debt-to-GDP	17.4%	24.5%
Avg unemployment	17.4%	8.27%
Std unemployment	8.65%	7.13%
Median dom holdings	53.6%	130%
Avg wealth-to-GDP	56.8%	93.3%

Table 2: Models

STILL MISSING

- · Compare episodes of high spreads in simulated data against
 - i. No TFP costs of default \leftarrow shuts down aggregate income losses
 - $\Delta = 0$
 - ii. Only TFP costs of default ← shuts down redistributive wealth effects
 - Keep paying coupons in default + $\hbar = 0$
 - \rightarrow (i) + (ii) = no default
- Compare against representative agent benchmark

CONCLUDING REMARKS

- · Interested in interaction of
 - Default risk
 - · Precautionary behavior
 - + implications for amplification of shocks
- · Channel helps explain severity of recessions in debt crises
 - · Default risk creates high volatility of consumption and unemployment
 - Large welfare costs of sovereign risk up to 10% of permanent consumption
- Key:
 - · Aggregate + redistributive wealth effects if default
 - Agents take precautions against those
 - Timing flips usual MPC / transfer argument

ITALY

Italian firms' self-reported limits to production

Source: Eurostat

GREECE

Greek firms' self-reported limits to production Source: Eurostat

HOUSEHOLD SURVEY

Companion paper: dom exp to Spanish sovereign risk ■■■

MEASURING EXPOSURES TO SOVEREIGN DEBT - BANKS

Measure exposure based on Philippon and Salord (2017)

- study European banks resolutions in Cyprus
- · average total recapitalization need was around 17.4% of assets
- private investors provided 33% of need via loss in equity (91%), junior debt (53%) and senior debt (14%)
- remaining 2/3 came from government intervention
 - → assumed not possible in Spain!
 - → remaining need comes from senior debt and depositors

MEASURING EXPOSURES TO SOVEREIGN DEBT - DEPOSITS

Work with different scenarios of loss on deposits:

cenario	SD Loss Dep.	Loss
xtreme	25% 14	%
Mild	50% 10	%
Conservative	75 % 5%	6

Table 3: Expected losses on deposits

- · Assume a 50% haircut on public debt that triggers a bank crisis
- \cdot Loss for depositors of 10%
- Overall, public debt and bank crisis would induce a fall of between 8% and 10% of financial assets

DATA - EXPOSURES

◆ BACK

- Companion paper: dom exp to Spanish sovereign risk
- · Pension funds, mutual funds, insurance perfect passthrough
- Deposits more complicated
 - Philippon and Salord (2017): bank resolutions in Cyprus Petails

FISCAL RULES

	G_t/Y_t		$\left(B_t'-(1-\rho)B_t\right)/Y_t$	
	(1)	(2)	(3)	(4)
Unemployment _t	0.031 (0.039)	0.073*** (0.015)	0.334** (0.158)	0.346*** (0.059)
Unemployment ²	0.002 (0.001)		0.0001 (0.006)	
B_t/Y_t	0.010* (0.005)	-0.017*** (0.002)	-0.010 (0.020)	0.009 (0.007)
$(B_t/Y_t)^2$	-0.0002*** (0.00004)		0.0001 (0.0001)	
$Net\ Exports_t$	0.009 (0.019)	0.007 (0.012)	0.046 (0.075)	0.019 (0.046)
Net Exports ²	-0.0001 (0.001)		-0.001 (0.003)	
Mean FE	20.675	21.085	1.079	0.571
Country + Time FE	✓	✓	✓	✓
Observations Adj. <i>R</i> ²	968 0.904	968 0.901	957 0.697	957 0.698

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

FISCAL RULES (CONT'D)

EVOLUTION OF THE DISTRIBUTION

The law of motion for λ

- Policy functions ϕ_a, ϕ_b at S_t determine assets at t+1
- After seeing z_{t+1} , the government decides **repayment**
- · At S_{t+1} , relationship between $q^g(S_{t+1})$, $R_b(S_{t+1})$, μ_{t+1} , σ_{t+1}

$$R_b(\mathbf{S}_{t+1}) = \mathbb{1}_{(\zeta_{t+1}=1)}\kappa + (1-\rho)q^g(\mathbf{S}_{t+1})$$

$$\int \omega d\lambda_{t+1} = \int \phi_a(\mathbf{S}_t) + R_b(\mathbf{S}_{t+1})\phi_b(\mathbf{S}_t)d\lambda_t$$

$$\int \omega^2 d\lambda_{t+1} = \int (\phi_a(\mathbf{S}_t) + R_b(\mathbf{S}_{t+1})\phi_b(\mathbf{S}_t))^2 d\lambda_t$$

OUTPUT GROWTH AND DEFAULTS

Defaults and output growth

Source: Panizza, Sturzenegger, and Zettelmeyer (2009)

SHARE OF DOMESTIC DEBT

Source: Morelli and Roldán (2018) on Banco de España

SHARE OF DOMESTIC DEBT

Source: Morelli and Roldán (2018) on Banco de España Dotted lines are sample averages

NET WORTH

Source: Eurostat Dotted lines are sample averages

NET WORTH

- Assets - Liabilities

Source: Eurostat Dotted lines are sample averages

GENERAL SDF OF FOREIGNERS

• If risk-averse foreigners

$$q_t^h = \frac{1}{1+r^*} \mathbb{E}_t \left[\left(\frac{C_{t+1}^f}{C_t^f} \right)^{-\gamma_f} \right]$$
$$q_t^g = \frac{1}{1+r^*} \mathbb{E}_t \left[\left(\frac{C_{t+1}^f}{C_t^f} \right)^{-\gamma_f} R_{t,t+1}^b \right]$$

where
$$R_{t,t+1}^b = \mathbb{1}_{(\zeta_{t+1}=1)} \tilde{\kappa} + (1-\rho)(1-\hbar \mathbb{1}_{(\zeta_t=1\cap \zeta_{t+1}\neq 1)}) q_{t+1}^g$$

· Reduces to risk-neutral if

$$\operatorname{cov}\left(\left(\frac{C_{t+1}^f}{C_t^f}\right)^{-\gamma_f}, R_{t,t+1}^b\right) = 0$$

SOLUTION METHOD

- Guess a policy for the government
 - · Guess a law of motion for the distribution
 - Compute $q^g(S)$, q^h from lenders' sdf.
 - Compute w, L_N, L_T, Π, T as functions of (S, p_N)
 - Guess a relative price of nontraded goods p_N
 - \cdot Solve the household's problem at $(\mathbf{s},\mathbf{S},p_{\mathit{N}})$
 - $\boldsymbol{\cdot}$ Check market clearing for nontraded goods.
 - Iterate until $p_N(S)$ converges
 - · Iterate until the law of motion converges
- Iterate on the government's policy

FEEDBACK

	Unemployment _{jt}			S	aving rate _{jt}	∮jt
	(1)	(2)	(3)	(4)	(5)	(6)
Spread _{jt}	1.381*** (0.064)			0.461*** (0.097)		
$Spread_{jt}$ (IV)		2.372*** (0.826)	1.951** (0.896)		1.634 (1.186)	2.048 (1.515)
Spread Non-fin _{jt}		-0.172 (0.297)	-0.450 (0.306)		0.654	0.832
Spread Fin _{jt}		-0.364 (0.530)	0.076		-0.265 (0.666)	-0.595 (0.901)
B_{jt}/Y_{jt}		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.040*** (0.012)		, ,	-0.035 (0.035)
Model	OLS	IV	IV	OLS	IV	IV
Country FE	Υ	Υ	Υ	Υ	Υ	Υ
Quad Time Trend	Υ	Υ	Υ	Υ	Υ	Υ
Observations Adj. <i>R</i> ²	968 0.731	304 0.715	304 0.713	569 0.450	179 0.420	179 0.398

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. Gilchrist-Mojon (2017) indices of corporate spreads for FRA, DEU, ITA, ESP. 2000Q1 – 2017Q4

MARKET CLEARING

· Three markets need to clear

$$\begin{aligned} Y_{Nt} &= C_{Nt} + \frac{\vartheta_N}{\rho_{Nt}} G_t \\ Y_{Tt} &= C_{Tt} + (1 - \vartheta_N) G_t - \mathbf{NFI}_t \\ (L_{Nt} + L_{Tt} - 1) (w_t - \gamma w_{t-1}) &= 0 \end{aligned}$$

where net foreign inflows are

$$\mathsf{NFI}_t = \int \left(\omega - q_t^h \phi_a - q_t^g \phi_b\right) d\lambda_t - \kappa B_{t-1} + q_t^g (B_t - (1-
ho)B_{t-1})$$

FEEDBACK

	Dependent variable Q _{jt} :							
	$\log Y_{jt}$				$\log C_{jt}$			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Spread _{jt}	-0.011*** (0.003)				-0.011*** (0.002)			
Spread _{jt} (IV)		-0.048** (0.019)	-0.031 (0.023)	-0.031 (0.024)		-0.088*** (0.022)	-0.035** (0.017)	-0.035** (0.016)
R_{jt}^h			0.054***	0.049***			0.004	-0.009 (0.007)
R_{jt}^{s}			(0.010)	0.013 (0.046)			(0.007)	0.036
Model	OLS	IV	IV	IV	OLS	IV	IV	IV
Country + Time FE	✓	\checkmark	\checkmark	✓	✓	✓	\checkmark	\checkmark
Observations	968	968	540	540	968	968	540	540
Adj. R ²	0.995	0.994	0.997	0.997	0.997	0.993	0.999	0.999

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

ECB borrowing rates for AUT, BEL, DEU, ESP, FRA, IRL, ITA, NLD, PRT. 2003Q1 - 2017Q4

FEEDBACK

Standard errors in parentneses. $^{n-p} \neq 0.01, ^{n-p} \neq 0.05, ^{n} \neq 0.1$.

ECB borrowing rates for AUT, BEL, DEU, ESP, FRA, IRL, ITA, NLD, PRT. 2003Q1 - 2017Q4

THE CYCLE IS THE TREND

	$\sigma(C)$	$\sigma(Y)$	$\sigma(C)/\sigma(Y)$	$\sigma(C)/\sigma(Y)$ (AG)
Austria	0.716	0.782	0.916	0.870
Belgium	0.556	0.795	0.700	0.810
Denmark	1.047	1.178	0.889	1.190
Finland	1.278	1.957	0.653	0.940
France	0.780	0.773	1.009	_
Germany	0.692	0.867	0.799	_
Ireland	3.140	3.680	0.853	_
Italy	1.165	0.978	1.191	_
Netherlands	1.726	1.244	1.388	1.070
Portugal	1.827	1.576	1.160	1.020
Spain	1.901	1.396	1.362	1.110

HP filtered data with $\lambda =$ 1600. Std deviations in %.

SPAIN IN THE EUROZONE CRISIS

Spain in the 2000s

SPAIN IN THE EUROZONE CRISIS

Spain in the 2000s

LOW DEMAND?

Spanish firms' self-reported limits to production

Source: Eurostat

NONDURABLE CONSUMPTION

ERGODIC DISTRIBUTIONS

Densities for Output and Consumption during Crises ($\pi \geq 15\%$)

ERGODIC DISTRIBUTIONS

Densities for Output and Consumption during Defaults

ERGODIC DISTRIBUTIONS

Unconditional Ergodic Densities for Output and Consumption

SIMULATED DATA - DEFAULT EPISODES

Red: Median, Shaded blue: [0.25, 0.75] percentiles, Dashed green: Mean

REFERENCES

ANZOATEGUI, D. (2017): "Sovereign Debt and the Effects of Fiscal Austerity," mimeo, NYU. ARELLANO, C., Y. BAI, AND G. MIHALACHE (2018): "Default risk, sectoral reallocation, and persistent recessions," *Journal of International Economics*, 112, 182–199.

AUCLERT, A. (2017): "Monetary Policy and the Redistribution Channel," Working Paper 23451, National Bureau of Economic Research.

BALKE, N. (2017): "The Employment Cost of Sovereign Default," mimeo, UCL.

BIANCHI, J., P. OTTONELLO, AND I. PRESNO (2016): "Unemployment, Sovereign Debt, and Fiscal Policy in a Currency Union," 2016 Meeting Papers 459, Society for Economic Dynamics.

BOCOLA. L. (2016): "The Pass-Through of Sovereign Risk," Journal of Political Economy, 124,

879–926.
D'ERASMO, P. AND E. G. MENDOZA (2016): "Optimal Domestic (and External) Sovereign

Default," Working Paper 22509, National Bureau of Economic Research.
EGGERTSSON, G. AND P. KRUGMAN (2012): "Debt, Deleveraging, and the Liquidity Trap: a

Fisher-Minsky-Koo Approach," *Quarterly Journal of Economics*, 1469–1513.

FERRIERE, A. (2016): "Sovereign default, inequality, and progressive taxation," Working paper, European University Insitute.

GENNAIOLI, N., A. MARTIN, AND S. ROSSI (2014): "Sovereign Default, Domestic Banks, and Financial Institutions," *Journal of Finance*, 69, 819–866.

KORINEK, A. AND A. SIMSEK (2016): "Liquidity Trap and Excessive Leverage," American Economic Review, 106, 699–738.

MALLUCCI, E. (2015): "Domestic Debt and Sovereign Defaults," International Finance Discussion Papers 1153, Board of Governors of the Federal Reserve System (U.S.).

MARTIN, P. AND T. PHILIPPON (2017): "Inspecting the Mechanism: Leverage and the Great

Recession in the Eurozone," American Economic Review, 107, 1904–37.

MORELLI, J. M. AND F. ROLDÁN (2018): "Distributional Effects in Sovereign Debt Policy."

mimeo, NYU.

NEUMEYER, P. A. AND F. PERRI (2005): "Business cycles in emerging economies: the role of interest rates," *Journal of Monetary Economics*, 52, 345–380.

PHILIPPON, T. AND F. ROLDÁN (2018): "On the Optimal Speed of Sovereign Deleveraging with

Precautionary Savings," *IMF Economic Review*, 66, 375–413.

PÉREZ, D. (2016): "Sovereign Debt, Domestic Banks and the Provision of Public Liquidity,"

mimeo, NYU.

