GANPAT UNIVERSITY											
FACULTY OF ENGINEERING & TECHNOLOGY											
Programme		Bachelor of Technology				Branch/Spec.	•	Computer Engineering / Information			
							Technolog	Technology			
Semester	VI				Version	2.0.0.0	2.0.0.0				
Effective from	lemic Year 2020-21			1	Effective for	Effective for the batch Admitted in July 2018		July 2018			
Subject code		2CEIT601		Subject Name		Theory of Computation					
Teaching scheme						Examination scheme (Marks)					
(Per week)	Lecti	ure(D	Practi	cal(La	Total		CE	SEE	Total		
	T)		b.)								
	L	TU	P	TW							
Credit	3	0	1	-	4	Theory	40	60	100		
Hours	3	0	2	-	5	Practical	30	20	50		

Pre-requisites:

Basic Understanding of Mathematics

Objectives of the course:

- 1. Explain the models of computation, including formal languages, grammars and automata, and their connections.
- 2. Identify limitations of some computational models and possible methods of proving them.
- 3. Have an overview of how the theoretical study in this course is applicable to engineering application like designing the compilers.
- 4. Course should provide a formal connection between algorithmic problem solving and the theory of automata and develop them into a mathematical view.

Regular Languages And Finite Automata: Regular Expressions, Regular Languages, Memory Required to Recognize A Language, Finite Automata, Distinguishable Strings, Union, Intersection and Complement of Regular Languages, Construction of Mealy and Moore Machine, Conversion From Mealy to Moore Machine and Vice Versa Non-Determinism And Kleen's Theorem: Non-Deterministic Finite Automata, Non Deterministic Finite Automata With ^ Transitions, Kleen's Theorem Regular And Non Regular Language: Minimization of Finite Automata, Non-Regular and Regular Languages, Pumping Lemma	Theory syllabus						
Sets, Functions, Type of Functions, Logic, Logical Connectives, Quantifiers, Proofs, Relations, Equivalence Relation Regular Languages And Finite Automata: Regular Expressions, Regular Languages, Memory Required to Recognize A Language, Finite Automata, Distinguishable Strings, Union, Intersection and Complement of Regular Languages, Construction of Mealy and Moore Machine, Conversion From Mealy to Moore Machine and Vice Versa Nondeterminism And Kleen's Theorem: Non-Deterministic Finite Automata, Non Deterministic Finite Automata With ^ Transitions, Kleen's Theorem Regular And Non Regular Language: Minimization of Finite Automata, Non-Regular and Regular Languages, Pumping Lemma	Unit	Content					
Regular Languages And Finite Automata: Regular Expressions, Regular Languages, Memory Required to Recognize A Language, Finite Automata, Distinguishable Strings, Union, Intersection and Complement of Regular Languages, Construction of Mealy and Moore Machine, Conversion From Mealy to Moore Machine and Vice Versa Non-Determinism And Kleen's Theorem: Non-Deterministic Finite Automata, Non Deterministic Finite Automata With ^ Transitions, Kleen's Theorem Regular And Non Regular Language: Minimization of Finite Automata, Non-Regular and Regular Languages, Pumping Lemma		Review of Mathematical Background:					
Regular Languages And Finite Automata: Regular Expressions, Regular Languages, Memory Required to Recognize A Language, Finite Automata, Distinguishable Strings, Union, Intersection and Complement of Regular Languages, Construction of Mealy and Moore Machine, Conversion From Mealy to Moore Machine and Vice Versa Nondeterminism And Kleen's Theorem: Non-Deterministic Finite Automata, Non Deterministic Finite Automata With ^ Transitions, Kleen's Theorem Regular And Non Regular Language: Minimization of Finite Automata, Non-Regular and Regular Languages, Pumping Lemma	1	Sets, Functions, Type of Functions, Logic, Logical Connectives, Quantifiers, Proofs,	02				
Regular Expressions, Regular Languages, Memory Required to Recognize A Language, Finite Automata, Distinguishable Strings, Union, Intersection and Complement of Regular Languages, Construction of Mealy and Moore Machine, Conversion From Mealy to Moore Machine and Vice Versa Non-Determinism And Kleen's Theorem: Non-Deterministic Finite Automata, Non Deterministic Finite Automata With ^ Transitions, Kleen's Theorem Regular And Non Regular Language: Minimization of Finite Automata, Non-Regular and Regular Languages, Pumping Lemma		Relations, Equivalence Relation					
Finite Automata, Distinguishable Strings, Union, Intersection and Complement of Regular Languages, Construction of Mealy and Moore Machine, Conversion From Mealy to Moore Machine and Vice Versa Nondeterminism And Kleen's Theorem: Non-Deterministic Finite Automata, Non Deterministic Finite Automata With ^ Transitions, Kleen's Theorem Regular And Non Regular Language: Minimization of Finite Automata, Non-Regular and Regular Languages, Pumping Lemma	Regular Languages And Finite Automata:						
Languages, Construction of Mealy and Moore Machine, Conversion From Mealy to Moore Machine and Vice Versa Nondeterminism And Kleen's Theorem: Non-Deterministic Finite Automata, Non Deterministic Finite Automata With ^ Transitions, Kleen's Theorem Regular And Non Regular Language: Minimization of Finite Automata, Non-Regular and Regular Languages, Pumping Lemma	2	Regular Expressions, Regular Languages, Memory Required to Recognize A Language,					
Machine and Vice Versa Nondeterminism And Kleen's Theorem: Non-Deterministic Finite Automata, Non Deterministic Finite Automata With ^ Transitions, Kleen's Theorem Regular And Non Regular Language: Minimization of Finite Automata, Non-Regular and Regular Languages, Pumping Lemma			11				
Non-Determinism And Kleen's Theorem: Non-Deterministic Finite Automata, Non Deterministic Finite Automata With ^ Transitions, Kleen's Theorem Regular And Non Regular Language: Minimization of Finite Automata, Non-Regular and Regular Languages, Pumping Lemma		·					
Non-Deterministic Finite Automata, Non Deterministic Finite Automata With ^ Transitions, Kleen's Theorem Regular And Non Regular Language: Minimization of Finite Automata, Non-Regular and Regular Languages, Pumping Lemma							
Kleen's Theorem Regular And Non Regular Language: Minimization of Finite Automata, Non-Regular and Regular Languages, Pumping Lemma	3						
Regular And Non Regular Language: Minimization of Finite Automata, Non-Regular and Regular Languages, Pumping Lemma		· ·	05				
Minimization of Finite Automata Non-Regular and Regular I anguages Pumping Lemma							
Minimization of Finite Automata, Non-Regular and Regular Languages, Pumping Lemma, I							
	4		07				
Decision Problems and Decision Algorithms, Regular Languages in Relation to							
Programming Languages							
Context-Free Languages And Push-Down Automata:	5		07				
			07				
Unambiguous CFG, Simplified and Normal Forms, Chomsky Normal Form							
Pushdown Automata And CFL: Push Down Automata Definition and Examples Deterministic RDA Types of Acceptances	6						
Push -Down Automata, Definition and Examples, Deterministic PDA, Types of Acceptances and Their Equivalence, Equivalence of CFG and PDA, Introduction to Parsing, Top-Down		^					
and Bottom Up Parsing, Non-CFL and CFL, Pumping Lemma for CFL, Intersection and		1 1	UU				
Complement of CFL							

7	Turing Machine: Models of Computation, Tm Definition, Combining Tms, Computing A Function With Tms. Variations on Turing Machines, Doubly Infinite and More Than One Tapes, Non- Deterministic and Universal Tm, The Halting Problem, Acceptability and Decidability.				
Practical content					
Perform various lex programs using all metacharacters.					
Text Books					
1	Introduction to Languages and Theory of Computation: By John C. Martin				
Reference Books					
1	Computation: Finite and Infinite: By Marvin L. Minsky, Prentice-Hall.				
2	Introduction to formal languages: By G. E. Reevsz, Mc-graw hill.				
3	Formal language theory: By M. H. Harrison				
ICT/MOOCs Reference					
1	https://nptel.ac.in/courses/106106049/				
2	https://nptel.ac.in/courses/111103016/				
3	https://nptel.ac.in/courses/106/105/106105196/				
4	https://nptel.ac.in/courses/106/104/106104028/				
Course Outcomes:					
After successful completion of this course, student will be able to					
1.	1. Demonstrate advanced knowledge of formal computation and its relationship to formal languages.				

Distinguish different computing languages and classify their respective types.

Show a competent understanding of the basic concepts of complexity theory.

Recognize and comprehend formal reasoning about languages.

2.