Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes

K-means has problems when the data contains outliers.

Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

Limitations of K-means: Differing Density

Original Points

K-means (3 Clusters)

Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)

Limitations of K-means: Outlier Problem

- The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data.
- Solution: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.

The K-Medoids Clustering Method

- Find representative objects, called medoids, in clusters
- PAM (Partitioning Around Medoids, 1987)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering.
 - PAM works effectively for small data sets, but does not scale well for large data sets.

PAM (Partitioning Around Medoids)

- Use real objects to represent the clusters (called medoids)
 - 1. Select **k** representative objects arbitrarily
 - For each pair of selected object (i) and non-selected object (h),
 calculate the Total swapping Cost (TC_{ih})
 - 3. For each pair of *i* and *h*,
 - 1. If $TC_{ih} < 0$, i is replaced by h
 - 2. Then assign each non-selected object to the most similar representative object
 - 4. repeat steps 2-3 until there is no change in the medoids or in *TC_{ih}*.

Total swapping Cost (*TC_{ih})*

Total swapping cost $TC_{ih} = \sum_{j} C_{jih}$

- Where C_{jih} is the cost of swapping i with h for all non medoid objects j
- C_{jih} will vary depending upon different cases

Data Objects

	A_1	A_2
0 ₁	2	6
02	3	4
0 ₃	3	8
0 ₄	4	7
05	6	2
0 ₆	6	4
0 ₇	7	3
0 ₈	7	4
09	8	5
0 ₁₀	7	6

Goal: create two clusters

Choose randmly two medoids

$$0_8 = (7,4)$$
 and $0_2 = (3,4)$

Data Objects

Assign each object to closest representative the object

Using L1 Metric (Manhattan), we form the following clusters

Cluster1 =
$$\{0_1, 0_2, 0_3, 0_4\}$$

Cluster2 =
$$\{0_5, 0_6, 0_7, 0_8, 0_9, 0_{10}\}$$

Data Objects

7

6

0₁₀

Compute the absolute error criterion [for the set of Medoids (O2,O8)]

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} |p - O_i| = (|O_1 - O_2| + |O_3 - O_2| + |O_4 - O_2|) +$$

$$(|o_5 - o_8| + |o_6 - o_8| + |o_7 - o_8| + |o_9 - o_8| + |o_{10} - o_8|)$$

Data Objects

	A_1	A_2
0 ₁	2	6
02	3	4
0 ₃	3	8
0 ₄	4	7
0 ₅	6	2
0 ₆	6	4
0 ₇	7	3
0 ₈	7	4
09	8	5
0 ₁₀	7	6

The absolute error criterion [for the set of Medoids (O_2,O_8)]

$$E = (3+4+4)+(3+1+1+2+2) = 20$$

Data Objects

	A ₁	A_2
0 ₁	2	6
02	3	4
0 ₃	3	8
0 ₄	4	7
0 ₅	6	2
0 ₆	6	4
0 ₇	7	3
0 ₈	7	4
09	8	5
0 ₁₀	7	6

- Choose a random object 0₇
- Swap 0_8 and 0_7
- Compute the absolute error criterion [for the set of Medoids (0₂,0₇)

$$E = (3+4+4)+(2+2+1+3+3) = 22$$

Data Objects

	A_1	A_2
0 ₁	2	6
02	3	4
0 ₃	3	8
0 ₄	4	7
0 ₅	6	2
0 ₆	6	4
0 ₇	7	3
08	7	4
09	8	5
0 ₁₀	7	6

→ Compute the cost function

Absolute error $[0_2, 0_7]$ - Absolute error [for $0_2, 0_8$]

$$S=22-20$$

 $S>0 \Rightarrow It is a bad idea to replace <math>O_8$ by O_7

What Is the Problem with PAM?

- PAM is more robust than k-means in the presence of noise and outliers because a medoid is less influenced by outliers or other extreme values than a mean.
- PAM works efficiently for small data sets but does not scale well for large data sets.
 - $O(k(n-k)^2)$ for each iteration; where n is # of data, k is # of clusters.