Particle spectrograph

Wave operator and propagator

					lo		Jo.
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{4 i k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)}$	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$-\frac{4k^2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	$\frac{4 i k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2k^2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#2}\alpha_{\beta}$	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2^{+}}^{\sharp 1}\dagger^{\alpha\beta}$	$-\frac{\alpha_0}{4}+\beta_1$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0
$f_{2+}^{#1} \dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$2 \beta_1 k^2$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$-\frac{\alpha_0}{4}+\beta_1$

_	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{16\beta_1}{\alpha_0^2-4\alpha_0\beta_1}$	$\frac{2i\sqrt{2}}{\alpha_0 k}$	0
$\tau_{2}^{#1} \dagger^{\alpha\beta}$	$-\frac{2i\sqrt{2}}{\alpha_0 k}$	$\frac{2}{\alpha_0 k^2}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{\frac{1}{-\frac{\alpha_0}{4} + \beta_1}}$

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\sharp 1}$
$\sigma_{0}^{#1}$ †	$\frac{8\beta_1}{\alpha_0^2 - 4\alpha_0\beta_1}$	$-\frac{i\sqrt{2}}{\alpha_0 k}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2}}{\alpha_0 k}$	$-\frac{1}{\alpha_0 k^2}$	0	0
$\tau_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$\frac{2}{\alpha_0-4\beta_1+2\alpha_3k^2}$

$f_{1^{-}\alpha}^{\#2}$	0	0	0	$-rac{1}{2}$ $ec{l}$ ($lpha_0$ - 4 eta_1) k	0	0	0
$f_{1^{\bar{-}}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{4} (\alpha_0 - 4 \beta_1)$	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	$\frac{1}{2}$ \vec{i} (α_0 - 4 β_1) k
$\omega_{1}^{\#2}{}_{+}\alpha_{eta} f_{1}^{\#1}{}_{+}lpha_{eta}$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#2}{}_+\alpha\beta$	$\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$\frac{1}{4} \left(\alpha_0 - 4 \beta_1 \right) \left \frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}} \right $	$\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{\#1} + ^{lphaeta}$	$\omega_1^{\#2} + \alpha^{eta}$	$f_{1+}^{#1} + \alpha \beta$	$\omega_1^{\#_1} +^\alpha$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$

Source constraints/gauge generators				
SO(3) irreps	Multiplicities			
$\tau_{0+}^{\#2} == 0$	1			
$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
Total constraints:	10			

$\omega_{0}^{\#1}$	0	0	0	$\frac{\alpha_0}{2} - 2\beta_1 + \alpha_3 k^2$
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	$-\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	-4 $\beta_1 k^2$	0	0
$\omega_{0}^{\#1}$	$\frac{1}{2} \left(\alpha_0 - 4 \beta_1 \right)$	$\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	0	0
	$\omega_{0}^{\#1}$ †	$f_{0}^{\#1}$ †	$f_{0}^{\#2}$ \dagger	$\omega_{0^-}^{\#1} \dagger$

Quadratic (free) action

 $S_{F} == \iiint (-\frac{1}{2} (\alpha_{0} - 4 \beta_{1}) \omega^{\alpha \beta}_{\alpha} \omega^{X}_{\beta} + \omega_{\alpha \chi \beta} (-\frac{1}{2} \alpha_{0} \omega^{\alpha \beta \chi} + 4 \beta_{1} \partial^{\chi} f^{\alpha \beta}) +$ $\frac{1}{3} (-6 \beta_{1} \omega^{\chi \delta}_{\alpha} \omega^{\alpha}_{\chi \delta} + 3 \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} - 6 \beta_{1} \omega^{\chi}_{\alpha} \partial_{\beta} f^{\alpha \beta} - 6 \beta_{1} \omega^{\delta}_{\alpha} \partial_{\beta} f^{\alpha \beta} +$ $3 \alpha_{0} \partial_{\beta} \omega^{\alpha \beta}_{\alpha} + 2 \alpha_{3} \partial^{\alpha} \omega^{\beta \zeta}_{\chi} \partial_{\beta} \omega^{\chi}_{\zeta \alpha} + 6 \beta_{1} \omega^{X}_{\beta} \partial^{\beta} f^{\alpha}_{\alpha} + 6 \beta_{1} \omega^{\delta}_{\beta} \partial^{\beta} f^{\alpha}_{\alpha} 6 \beta_{1} \partial_{\beta} f^{\chi}_{\chi} \partial^{\beta} f^{\alpha}_{\alpha} + 3 f^{\alpha \beta} (\tau_{\alpha \beta} - \alpha_{0} \partial_{\beta} \omega^{\chi}_{\alpha} + \alpha_{0} \partial_{\chi} \omega^{\chi}_{\alpha}) - 3 \alpha_{0} f^{\alpha}_{\alpha} \partial_{\chi} \omega^{\beta \chi}_{\beta} 2 \alpha_{3} \partial_{\beta} \omega_{\zeta \alpha}^{\chi} \partial_{\chi} \omega^{\beta \zeta \alpha} - \alpha_{3} \partial_{\beta} \omega^{\chi}_{\zeta \alpha}^{\chi} \partial_{\chi} \omega^{\zeta \alpha \beta} + 3 \beta_{1} \partial_{\chi} f^{\delta}_{\beta} \partial^{\chi} f^{\delta}_{\delta} + 3 \beta_{1} \partial_{\chi} f^{\delta}_{\beta} \partial^{\chi} f^{\delta}_{\delta} +$ $2 \alpha_{3} \partial_{\chi} \omega^{\beta \zeta \alpha} \partial^{\chi} \omega_{\zeta \alpha \beta} + \alpha_{3} \partial_{\chi} \omega^{\zeta \alpha \beta} \partial^{\chi} \omega_{\zeta \alpha \beta} + 12 \beta_{1} \partial^{\beta} f^{\alpha}_{\alpha} \partial_{\delta} f^{\delta}_{\beta} 6 \beta_{1} \partial_{\beta} f^{\beta}_{\chi} \partial_{\delta} f^{\chi \delta} + 2 \alpha_{3} \partial^{\beta} \omega^{\zeta \zeta} \partial_{\delta} \omega_{\zeta \beta}^{\alpha} - 2 \alpha_{3} \partial^{\beta} \omega^{\zeta \delta}_{\alpha} \partial_{\delta} \omega^{\alpha}_{\zeta \beta}^{\alpha} - 3 \beta_{1} \partial^{\chi} f^{\beta}_{\zeta} \partial^{\zeta} f_{\beta \chi} 3 \beta_{1} \partial^{\chi} f^{\beta}_{\zeta} \partial^{\zeta} f_{\chi \beta} + 3 \beta_{1} \partial^{\chi} f_{\delta \zeta} \partial^{\zeta} f^{\delta}_{\chi} - 3 \beta_{1} \partial^{\chi} f_{\zeta \delta} \partial^{\zeta} f^{\delta}_{\chi}))[t, x, y, z] dz dy dx dt$

Massive and massless spectra

?
$$J^P = 0^-$$
 ? PC ?

	Massive particle				
?	Pole residue:	$-\frac{1}{\alpha_3} > 0$			
	Polarisations:	1			
	Square mass:	$-\frac{\alpha_0-4\beta_1}{2\alpha_3}>0$			
	Spin:	0			
	Parity:	Odd			

Quadratic pole

Pole residue:
$$\frac{1}{\alpha_0}$$

Polarisations: | 2

Unitarity conditions

$$\alpha_0 > 0 \&\& \alpha_3 < 0 \&\& \beta_1 < \frac{\alpha_0}{4}$$