Amanda I. Campos – Projeto 1 da disciplina Otimização Natural 2020/1

Problema do Caixeiro Viajante – 29, 52 e 130 cidades

1- Resultados

J: 9.074148047872841 e tempo de execução 00:00:41

Figura 1. Convergência do problema com 29 cidades

J = 7.544365902 e tempo de execução 00:26:12.

Figura 2. Convergência do problema com 52 pontos

J = 6.538223768 e tempo de execução 05:03:37.

2- Variação dos Parâmetros

3- Comentários

Tabela 1. Análise do tempo de processamento

Nº de pontos do problema	N° de possíveis rotas	Tempo SA	-	Diferença do ótimo global	Total de execuções do algoritmo	Tempo gasto
29	8.84176E+30	00:00:41	00:01:03	0%	58	12:23:21
52	8.06582E+67	00:26:12	00:08:22	0%	47	06:07:55
130	6.4669E+219	05:03:37	03:15:19	8.62%	22	13:37:40

- Casos do parâmetro *T0* muito pequeno ou muito alto não provocam convergência, mas existe uma faixa de valores para *T0* que geralmente resulta no ótimo global;
- O aumento de *K* e *N* geralmente resultam na convergência, porém geram um maior gasto computacional e tempo de processamento;
- A aplicação do resfriamento do FSA não necessariamente resulta em uma convergência rápida.

23/01/2021