FORMAL LANGUAGES AND AUTOMATA HW-1

Asst. Prof. Dr. Osman Kaan EROL Asst. Prof. Dr. Tolga OVATMAN R.A. G. Selda UYANIK R.A. Mustafa ERSEN

- 1. You are asked to design a division circuit using ASM, that conforms with the following properties
 - a) Circuit starts operation by enabling ('1') a control bit S,
 - b) In the beginning of the operation two unsigned 8 bit numbers should be loaded to registers A and B; if B=0 an overflow flag should be set and the circuit should jump to the last step skipping division operation.
 - c) The circuit should perform A/B operation and store the result in C register and the remainder in D register,
 - d) After storing the results, the circuit should wait for the control bit S to be disabled ('0') and go back to starting state.

You should assume that an adder/subtractor and necessary number of registers are present. Registers have synchronous reset, increment and parallel loading capabilities.

In this context,

- a) Draw ASM flowchart
- b) Design control unit
- c) Design data processor. Also provide the boolean expressions that control the digital components in the system.
- 2. Reduce the states of the incompletely specified Mealy machine below and draw the state transition table of the reduced machine in Moore model.

	l ₁	l ₂	l ₃	I ₄	I ₅
Α	D-0	D-0	-	-	B-0
В	E-0	D-0	B-1	-	C-0
С	-	D-0	-	A-0	A-0
D	C-1	C-0	E-0	B-0	-
E	D-1	C-0	-	-	E-1

Submission Deadline: 7 March 2013