ENGINEERING ONLINE

Lecture Notes

Course Number: CSC 513

Instructor: Dr. Singh

Lecture Number: 2

Dynamism

Independence of system configurers and administrators

- Sociopolitical reasons
 - Ownership of resources
 - Changing user preferences or economic considerations
- Technical reasons: difficulty of maintaining configurations by hand
 - Same reasons as for network administration
 - Future-proofing your system

Coherence

Think of this as an alternative to consistency

- There may be no state (of the various databases) that can be considered consistent
 - Maintaining consistency of multiple databases is difficult
 - Unexpected real-world events can knock databases out of sync with reality
- What matters is
 - Are organizational relationships preserved?
 - Are processes followed?
 - Are appropriate business rules applied?

Integration

Yields with one integrated entity

- ► Yields central decision making by homogeneous entity
- ► Requires resolving all potential inconsistencies ahead of time

 FREEZE ONG POLICIES INTO SYSTEM AS FOR STUDENT

 Fragile and must be repeated whenever components change EMPLY AS

Obsolete way of thinking: tries to achieve consistency (and fails)

ENTALIRISE : NCSU KINDS OF INFO RESOURCES CEXAMPLES) LIBRARY

CORRECTNESS CHITCHE (FOR THE INFO IN THE SYSTEM)

DATA VIEW

CONSISTENCY

CORDINATED

VIEW

reduce need fur

COORDINATION

ADUPT A PROCESS

WOPTET

PAYROLL

WOLFWARE (course)

BENEFITI

MERCIH ELL

INVENTORY

LAB INFO SYS

PUBLICATIONS

COURSE SCHEDULES

WEB SITE

ENRALMENTS

FAILURE

- LOST UPDATE

- INTEGROTY CONSTRAINTS

AU711

COMMITMENTS

© North Carolina State University, All Rights Reserved

Locality and Interaction

A way to maintain coherence in the face of openness

- ► Have each local entity look after its own
 - Minimize dependence on others
 - Continually have interested parties verify the components of the state that apply to them
- ► Approach: replace global constraints with protocols for interaction
 - ► Lazy: obtain global knowledge as needed
 - Optimistic: correct rather than prevent violations
 - Inspectable: specify rules for when, where, and how to make corrections

INTERLATION OF COMPONENTS

LMAINTAIN CONSISTENCY AMONG SER. THEM

RELIABILITY

IDENTIFY OVERLAPS AND COMBINE COMPONENTS

ACCESS OF INFO

Interoperation

- Yields decentralized decision making by heterogeneous entities
- Resolves inconsistencies incrementally
- Potentially robust and easy to swap out partners as needed

Also termed "light integration" (bad terminology)

Example: Selling

Update inventory, take payment, initiate shipping

- Record a sale in a sales database
- Debit the credit card (receive payment)
- Send order to shipper
- Receive OK from shipper
- Update inventory

Potential Problems Pertaining to Functionality

- What if the order is shipped, but the payment fails?
- What if the payment succeeds, but the order was never entered or shipped?
- ▶ What if the payments are made offline, i.e., significantly delayed?

In a Closed Environment

- ► Transaction processing (TP) monitors ensure that all or none of the steps are completed, and that systems eventually reach a consistent state
- ▶ But what if the user is disconnected right after he clicks on OK? Did order succeed? What if line went dead before acknowledgment arrives? Will the user order again?
- ► The TP monitor cannot get the user into a consistent state

MON WOULD YOU PROPRES THIS CHALLENGE?

- MAINTAIN STATE (CAST GOOD SIATE)

