NeoCASS Tutorial

How to run a flutter analysis

Version 2.2(.790)

Outline

1. How to Run NeoCASS	pag.	<u>3</u>
2. How to Run GUESS	pag.	20
3. How to Run MODAL analysis with SMARTCAD	pag.	29
4. How to Run FLUTTER analysis with SMARTCAD	pag.	43

NeoCASS path definition

NeoCASS path definition

NeoCASS GUI Panel

1st STEP: loading the XML file

The *Open techno* button is not active when the technology info are already included into XML file.

Click *Open aircraft* button to load the XML file

1st STEP: loading the XML file

1st STEP: loading the XML file

How to run a Flutter analysis - V2.2.790 - Rel.1 August 2017 - pag. 9

Click the *Sizing mode* button to select the sizing loads

2nd STEP: Selecting the sizing mode

Using a single user defined maneuver is highly recommended the first time you analyze a new aircraft.

2nd STEP: Selecting the sizing mode

A single load condition is imposed. Click on *SELECT Values* ...

1	Mach: 0	Altitude [m]: 0	
Symmetric Maneuvers		Anti-Symmetric Maneuvers	
Cruise/Climb (AoA, pitch control surf	aces)	Sideslip levelled flight	•
Parameters—			
Angle of attack (ANGLEA) [deg	:	Sideslip angle (SIDES) [deg]:	0
Roll rate (ROLL) [1/s]:	0	p rate (URDD4) [1/s^2]:	0
Pitch rate (PITCH) [1/s]:	0	q rate (URDD5) [1/s^2]:	0
Yaw rate (YAW) [1/s]:	0	r rate (URDD6) [1/s^2]:	0
Elevator rotation (elev1r) [deg]:		X acc (URDD1) [m/s^2]:	
Canard rotation (elevC1r) [deg]:		Y acc (URDD2) [m/s^2]:	0
Aileron rotation (aileronr) [deg]:	0	Z acc (URDD3) [m/s^2]:	9.81
Rudder rotation (rudder1) [deg]:	0	Vertical speed (VGUST) [EAS m/s]:	0
1st Flap rotation (flap1r) [deg]:	0	Strut efficiency (LNDGEFF) []:	0
2nd Flap rotation (flap2r) [deg]:	0	Sink speed (VSINK) [m/s]:	0
✓ Symmetric maneuver		Shock absorber stroke (STROKE) [m]:	0

Selection of the trim maneuvers

1	Mach: 0	Altitude [m]:	t of pre-define	ed symmetric
ymmetric Maneurers		Anti-Symmetric Maneu	aneuvers	•
Cruise/Climb (AoA, pitch control su	ırfaces)	Sideslip levelled flight	▼	
Cruise/Climb (AoA, pitch control su				
Climb fixed AoA (Z acc, pitch control Vertical gust (AoA, pitch control su				
Landing (AoA, pitch control surface Angle of attack (ANGLEA) [de	es)	Sideslip angle (SIDES) [deg]:	0	
Roll rate (ROLL) [1/s]:	0	p rate (URDD4) [1/s^2]:	0	
Pitch rate (PITCH) [1/s]:	0	q rate (URDD5) [1/s^2]:	0	
Yaw rate (YAW) [1/s]:	0	r rate (URDD6) [1/s^2]:	0	
Elevator rotation (elev1r) [deg]:	:	X acc (URDD1) [m/s^2]:		
Canard rotation (elevC1r) [deg	:	Y acc (URDD2) [m/s^2]:	0	
Aileron rotation (aileronr) [deg]	: 0	Z acc (URDD3) [m/s^2]:	9.81	
Rudder rotation (rudder1) [deg]: 0	Vertical speed (VGUST) [EAS m/s]:	0	
1st Flap rotation (flap1r) [deg]:	0	Strut efficiency (LNDGEFF) []:	0	
2nd Flap rotation (flap2r) [deg]	. 0	Sink speed (VSINK) [m/s]:	0	
Symmetric maneuver		Shock absorber stroke (STROKE) [m]:	0	
User defined maneuver	Save	Discard		

Selection of the trim maneuvers

Selecting the sizing mode

Two solution modes are available: force method (*Rigid Aircraft*) and displacement method (*Elastic Aircraft*). The second option is compulsory in case of non-conventional configurations and multiple mass configurations. After this choice, press *OK* button.

Press *RUN GUESS* button to run Guess module

How to run a Flutter analysis - V2.2.790 - Rel.1 August 2017 - pag. 21

✓ ChEcK ✓ Check					
Aerodynamic Model Structural Model Aeroelastic Model					
Horizontal tail all movable Canard all movable					
Vertical tail all movable					
Mass Configuration					
Max number of iterations (NMAX):					
Tolerance for convergence check (EPS): 1.0e-3					
Run Exit					

The **Check** window allows the user to check the structural, aerodynamic and aeroelastic meshes, as well the selection of different mass configurations (Elastic Aircraft only)

Press the *Ref. Values* button to define the reference quantities used for the calculation of many aeroelastic quantities.

REFERENCE_Setting	gs		4		_
Reference values					
Ref. Chord	7	Ref. Span 3	4 F	Ref. Surface	145
- Aerodynamic settings	3 ————————————————————————————————————				
Vertical simmetry	y Horizo	ontal simmetry	Height	Ke	rnel order
0 Full model	▼ 0 No Gr	ound effect 🔻	0	2 Quadra	itic 🔻
	Ok	Apply	Car	ncel	

Only *Chord, Span* and *Surface* have to be defined. The other quantities assume the default values.

Definition of the Analysis problem

Press the *Settings* button to start the definition of the analysis problem.

This panel allows the user to define the analysis problem to be solved.

To run the Flutter analysis at first a MODAL analysis has to be performed.

Press the *GENERATE* button to save the input data for modal analysis.

ANALYSIS Settings definition: MODAL ANALYSIS

Generation of SMARTCAD input file for MODAL analysis

By pressing the ASSEMBLY button it is possible to **merge** the different files (.inc) already prepared into an unique **SMARTCAD analysis file** (.dat)

Generation of SMARTCAD input file for MODAL analysis

Generation of SMARTCAD input file for MODAL analysis

To define a SMARTCAD file usually it is necessary to include:

- The **mesh** model created by GUESS
- The **MASS** file including the non structural masses
- The **analysis file** including the cards requested for a specific analysis

The Popup window shows all the files available in the current folder and the selection can be done in an usual Windows style using the left mouse button + SHIFT or CTRL button.

To run a SMARTCAD analysis it is necessary to open the corresponding analysis file (modal.dat)

NeoCASS processes the provided SMARTCAD file and on the basis of the included cards shows which kind of analysis can be carried out (green message).

In the case of modal file, only modal analysis can be performed.

Pressing the RUN Tab, it is possible to see that only the MODAL analysis button is now active. Press the button to run the analysis

Press the *Settings* button to start the definition of the flutter problem.

Definition of the flutter problem

The standard *V-g plot* option is selected. The analysis parameters are usually correct for any kind of test case, otherwise have to be updated

Definition of the flutter problem

Definition of the flutter problem

MSELECT Button is used to select the the modes that have to be included into the aeroelastic

Press the GENERATE button to save the input data for flutter analysis.

How to run a Flutter analysis – V2.2.790 - Rel.1 August 2017 - pag. 49

By pressing the ASSEMBLY button it is possible to merge the different files (.inc) already prepared into an unique SMARTCAD analysis file (.dat)

Generation of FLUTTER analysis SMARTCAD file

How to run a Flutter analysis – V2.2.790 - Rel.1 August 2017 - pag. 51

Generation of FLUTTER analysis SMARTCAD file

To define a SMARTCAD file usually it is necessary to include:

- The **mesh** model created by GUESS
- The **MASS** file including the non structural masses
- The **analysis file** including the cards requested for a specific analysis

The Popup window shows all the files available in the current folder and the selection can be done in an usual Windows style using the left mouse button + SHIFT or CTRL button.

To run a SMARTCAD analysis it is necessary to open the corresponding analysis file (.dat)

NeoCASS processes the provided SMARTCAD file and on the basis of the included cards shows what kind of analysis can be carried out (green messages). In the case of flutter different analyses can be executed with the same cards.

Pressing the *RUN* tab, it is possible to see that three run buttons are now active. Press the *FLUTTER* button to run the flutter analysis.

After the due time, the final **V-g plot** appears on the screen.

In the present case, no flutter is found

