

SENIORSERTIFIKAAT-EKSAMEN

FISIESE WETENSKAPPE: CHEMIE (V2)

2018

PUNTE: 150

TYD: 3 uur

Hierdie vraestel bestaan uit 16 bladsye en 4 gegewensblaaie.

INSTRUKSIES EN INLIGTING

- 1. Skryf jou sentrumnommer en eksamennommer in die toepaslike ruimtes op die ANTWOORDEBOEK neer.
- Hierdie vraestel bestaan uit TIEN vrae. Beantwoord AL die vrae in die ANTWOORDEBOEK.
- 3. Begin ELKE vraag op 'n NUWE bladsy in die ANTWOORDEBOEK.
- 4. Nommer die antwoorde korrek volgens die nommeringstelsel wat in hierdie vraestel gebruik is.
- 5. Laat EEN reël oop tussen twee subvrae, byvoorbeeld tussen VRAAG 2.1 en VRAAG 2.2.
- 6. Jy mag 'n nieprogrammeerbare sakrekenaar gebruik.
- 7. Jy mag toepaslike wiskundige instrumente gebruik.
- 8. Jy word aangeraai om die aangehegte GEGEWENSBLAAIE te gebruik.
- 9. Toon ALLE formules en substitusies in ALLE berekeninge.
- 10. Rond jou finale numeriese antwoorde tot 'n minimum van TWEE desimale plekke af.
- 11. Gee kort (bondige) motiverings, besprekings, ensovoorts waar nodig.
- 12. Skryf netjies en leesbaar.

VRAAG 1: MEERVOUDIGEKEUSE-VRAE

Verskeie opsies word as moontlike antwoorde op die volgende vrae gegee. Kies die antwoord en skryf slegs die letter (A–D) langs die vraagnommers (1.1 tot 1.10) in die ANTWOORDEBOEK neer, byvoorbeeld 1.11 D.

- 1.1 'n Voorbeeld van 'n versadigde organiese verbinding is ...
 - A etyn.
 - B propeen.
 - C but-2-een.
 - D 2-chloropropaan. (2)
- 1.2 Wanneer eteen met waterstofgas in die teenwoordigheid van 'n katalisator reageer, is die produk ...
 - A etaan.
 - B etyn.
 - C etanol.
 - D etanaal. (2)
- 1.3 Bestudeer die struktuurformule van die funksionele groep hieronder.

Die struktuur hierbo is die funksionele groep van ...

- A esters.
- B ketone.
- C aldehiede.
- D karboksielsure. (2)

1.4 Die potensiële-energiegrafiek vir 'n hipotetiese chemiese reaksie word hieronder getoon.

Watter tipe reaksie vind plaas en wat is die korrekte metodes om $\triangle H$ en E_a te bereken?

	SOORT REAKSIE	ΔН	Ea
Α	Eksotermies	b – a	c – b
В	Endotermies	b – a	c - a
С	Endotermies	a – b	a - c
D	Eksotermies	a – b	b - c

(2)

1.5 Bestudeer die hipotetiese reaksie hieronder:

$$2P(g) + 3Q(g) \rightarrow 4R(g) + 2Z(g)$$

Die tempo van die reaksie ten opsigte van die aantal mol van stof \mathbf{P} wat opgebruik word, is 1 x 10⁻³ mol·dm⁻³·s⁻¹. Wat is die tempo (in mol·dm⁻³·s⁻¹) waarteen produk \mathbf{R} gevorm word?

A
$$1 \times 10^{-3}$$

B
$$4(1 \times 10^{-3})$$

$$C \qquad \frac{1 \times 10^{-3}}{2}$$

D
$$2(1\times10^{-3})$$
 (2)

Kopiereg voorbehou

1.6 Bestudeer die volgende reaksie in ewewig by 'n sekere temperatuur.

$$2SO_3(g) \rightleftharpoons O_2(g) + 2SO_2(g)$$
 $\triangle H > 0$

Watter EEN van die volgende faktore sal die K_c-waarde verander?

- A Voeg meer SO₂(g) by.
- B Voeg 'n katalisator by.
- C Verhoog die temperatuur.
- D Verhoog die druk deur die volume te verklein.
- 1.7 Watter EEN van die volgende verteenwoordig die produkte wat vorm tydens die hidrolise van NH₄ (aq)?
 - A $NH_3(aq) + H_2O(\ell)$
 - B $NH_3(aq) + H_3O^+(aq)$
 - C $NH_3(aq) + OH^-(aq)$

D
$$NH_3(aq) + OH^-(aq) + H_2O(\ell)$$
 (2)

1.8 Kaliumnitraat word as 'n elektroliet in die soutbrug van 'n koper-sinksel gebruik.

Watter EEN van die volgende toon die rigting van migrasie van die kalium- en nitraat-ione in die sel KORREK aan?

	KALIUMIONE NA DIE:	NITRAAT-IONE NA DIE:
Α	Anode	Katode
В	Negatiewe elektrode	Positiewe elektrode
С	Sinkelektrode	Koperelektrode
D	Koperelektrode	Sinkelektrode

(2)

(2)

1.9 Watter EEN van die volgende toon die elektrode waar daar 'n wins van elektrone in 'n **elektrolitiese sel** is en die chemiese verandering wat by die elektrode plaasvind?

	ELEKTRODE WAAR DAAR 'N WINS VAN ELEKTRONE IS	CHEMIESE VERANDERING
Α	Anode	Oksidasie
В	Anode	Reduksie
С	Katode	Oksidasie
D	Katode	Reduksie

(2)

- 1.10 Die industriële bereiding van salpetersuur staan as die ... bekend.
 - A Haberproses
 - B kontakproses
 - C Ostwaldproses
 - D katalitiese oksidasie van ammoniak

(2) **[20]**

VRAAG 2 (Begin op 'n nuwe bladsy.)

Langs elke letter, **A** tot **F**, in die tabel hieronder is die molekulêre formule van 'n organiese verbinding.

A	C₂H₅Br	В	C ₂ H ₄
С	C ₄ H ₁₀	D	C ₂ H ₆ O
E	C ₃ H ₆ O	F	C ₃ H ₆ O ₂

2.1 Kies 'n molekulêre formule hierbo wat 'n organiese verbinding hieronder voorstel. Skryf slegs die letter (**A** tot **F**) langs die vraagnommers (2.1.1 tot 2.1.5) neer, bv. 2.1.6 G.

2.1.1	'n Haloalkaan	(1)
2.1.2	'n Alkohol	(1)
2.1.3	'n Onversadigde koolwaterstof	(1)
2.1.4	'n Aldehied	(1)

2.1.5 'n Produk van termiese kraking van verbinding **C** (1)

2.2 Indien verbinding **F** 'n karboksielsuur is, skryf die volgende neer:

2.2.1 Die struktuurformule van 'n FUNKSIONELE isomeer van **F** (2)

2.2.2 Die IUPAC-naam van 'n FUNKSIONELE isomeer van **F** (2)

2.3 Verbinding **B** is 'n monomeer wat gebruik word om 'n polimeer te maak.

Skryf neer die:

2.3.1 Definisie van 'n *polimeer* (2)

2.3.2 IUPAC-naam van die polimeer (1)

2.3.3 Gebalanseerde vergelyking vir die polimerisasiereaksie (3)

2.4 Verbinding **A** word as reaktans in die bereiding van verbinding **D** gebruik.

Noem die soort reaksie wat plaasvind. (1)

2.5 Noem TWEE veranderinge wat aan die reaksietoestande in VRAAG 2.4 gemaak kan word om verbinding **B**, in plaas van **D**, as produk te verkry. (2) [18]

VRAAG 3 (Begin op 'n nuwe bladsy.)

Die kookpunte van reguitketting-alkane en reguitketting-alkohole word in die tabel hieronder vergelyk.

AANTAL KOOLSTOFATOME	KOOKPUNTE VAN ALKANE (°C)	KOOKPUNTE VAN ALKOHOLE (°C)
1	- 162	64
2	- 89	78
3	- 42	98
4	- 0,5	118

- 3.1 Verduidelik die toename in kookpunte van alkane, soos in die tabel aangedui. (3)
- 3.2 Verduidelik die verskil tussen die kookpunte van 'n alkaan en 'n alkohol, wat elk DRIE koolstofatome per molekuul bevat, deur na die SOORT intermolekulêre kragte te verwys.

al

(4)

(1)

- 3.3 NEEM die dampdruk van alkohole TOE of AF met 'n toename in die aantal koolstofatome?
- 3.4 Hoe sal die kookpunt van 2-metielpropaan met dié van sy kettingisomeer vergelyk?

Skryf neer HOËR AS, LAER AS of GELYK AAN. Gee 'n rede vir die antwoord deur na die strukturele verskille tussen die twee verbindings te verwys.

(2) [**10**]

VRAAG 4 (Begin op 'n nuwe bladsy.)

Propan-1-ol kan verskeie organiese reaksies ondergaan, soos deur die letters **A** tot **D** in die diagram hieronder aangedui word.

4.1 Skryf die soort reaksie neer wat voorgestel word deur:

4.1.1	Α	(1)

4.2 Vir reaksie **C**, skryf neer die:

4.2.1 Funksie van
$$H_2SO_4$$
 (1)

- 4.2.2 IUPAC-naam van die organiese produk (2)
- 4.2.3 Struktuurformule van die ander organiese reaktans (2)
- 4.3 Gebruik STRUKTUURFORMULES vir al die organiese reaktanse en produkte om 'n gebalanseerde vergelyking vir **reaksie A** te skryf. (5)

 [14]

VRAAG 5 (Begin op 'n nuwe bladsy.)

Twee eksperimente word uitgevoer om een van die faktore te ondersoek wat die reaksietempo tussen magnesium en verdunde soutsuur beïnvloed. Die gebalanseerde vergelyking hieronder stel die reaksie voor wat plaasvind.

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

In **eksperiment 1** reageer 'n sekere massa magnesium*lint* met oormaat verdunde soutsuur. In **eksperiment 2** reageer dieselfde massa magnesium*poeier* as die magnesiumlint, met dieselfde volume oormaat verdunde soutsuur. Die konsentrasie van die suur in beide eksperimente is dieselfde.

Die apparaat hieronder word vir die ondersoek gebruik.

- 5.1 Definieer *reaksietempo*. (2)
- 5.2 Vir hierdie ondersoek, skryf neer die:
 - 5.2.1 Onafhanklike veranderlike (1)
 - 5.2.2 Beheerveranderlike (1)

Die massaverandering van magnesium word in 2-minuut-intervalle vir beide eksperimente bereken en opgeteken. Die resultate verkry, word in die grafiek hieronder (NIE volgens skaal geteken NIE) getoon.

- 5.3 Gebruik die inligting op die grafiek en:
 - 5.3.1 Bereken die volume waterstofgas wat in **eksperiment 1** van t = 2 minute tot t = 10 minute berei word

Neem die molêre gasvolume as 25 dm³·mol⁻¹. (5)

- 5.3.2 Bereken die aanvanklike massa magnesium wat gebruik is indien die gemiddelde tempo van vorming van waterstofgas in **eksperiment 2**, 2,08 x 10⁻⁴ mol·s⁻¹ was (5)
- 5.4 Gebruik die botsingsteorie om te verduidelik waarom die kurwe vir **eksperiment 2** steiler as dié vir **eksperiment 1** is. (3) [17]

VRAAG 6 (Begin op 'n nuwe bladsy.)

Die vergelyking hieronder stel 'n hipotetiese reaksie voor wat na 2 minute ewewig in 'n geslote houer by kamertemperatuur bereik. Die letters **x**, **y** en **z** stel die aantal mol in die gebalanseerde vergelyking voor.

$$\mathbf{x}A(aq) + \mathbf{y}B(aq) \rightleftharpoons \mathbf{z}C(aq)$$

Die grafiek hieronder toon die verandering in die aantal mol van reaktanse en produkte teenoor tyd tydens die reaksie.

Grafiek van aantal mol van reaktanse en produkte teenoor tyd

6.1 Definieer 'n *dinamiese ewewig*.

(2)

6.2 Gebruik die inligting op die grafiek en skryf die waarde neer van:

6.2.1 \mathbf{x} (1)

6.2.2 **y** (1)

 $6.2.3 \qquad \mathbf{z} \tag{1}$

6.3 Bereken die ewewigskonstante, K_c, vir hierdie hipotetiese reaksie by kamertemperatuur indien die volume van die geslote houer 3 dm³ is. (7)

6.4 By t = 4 minute is die temperatuur van die sisteem verhoog na 60 °C. Is die TERUGWAARTSE reaksie EKSOTERMIES of ENDOTERMIES? Verduidelik hoe jy by die antwoord uitgekom het.

(3) **[15]**

VRAAG 7 (Begin op 'n nuwe bladsy.)

Die reaksie tussen 'n swawelsuuroplossing (H₂SO₄) en 'n natriumhidroksiedoplossing (NaOH) word ondersoek deur die apparaat hieronder te gebruik.

- 7.1 Skryf die naam van die eksperimentele prosedure wat hierbo geïllustreer word, neer. (1)
- 7.2 Wat is die funksie van die buret? (1)
- 7.3 Definieer 'n *suur* ten opsigte van die Arrheniusteorie. (2)
- 7.4 Gee 'n rede waarom swawelsuur as 'n sterk suur beskou word. (1)
- 7.5 Broomtimolblou word as 'n indikator gebruik. Skryf die kleurverandering neer wat in die Erlenmeyerfles sal plaasvind wanneer die eindpunt van die titrasie bereik word.

Kies uit die volgende:

BLOU NA GEEL GEEL NA BLOU GROEN NA GEEL (1)

Tydens die titrasie voeg 'n leerder 25 cm 3 NaOH(aq), met 'n konsentrasie van 0,1 mol·dm 3 , by 'n Erlenmeyerfles en titreer hierdie oplossing met H $_2$ SO $_4$ (aq) met 'n konsentrasie van 0,1 mol·dm 3 . Die gebalanseerde vergelyking vir die reaksie wat plaasvind, is:

$$2NaOH(aq) + H_2SO_4(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(\ell)$$

- 7.6 Bepaal die volume H₂SO₄(aq) wat bygevoeg moet word om die NaOH(aq) in die Erlenmeyerfles volledig te neutraliseer. (4)
- 7.7 Indien die leerder verby die eindpunt gaan deur 5 cm 3 van dieselfde $H_2SO_4(aq)$ in oormaat by te voeg, bereken die pH van die oplossing in die fles. (7)

VRAAG 8 (Begin op 'n nuwe bladsy.)

8.1 Beskou die elektrochemiese sel voorgestel deur die selnotasie hieronder, waar **X** 'n onbekende metaal is:

$$Pt(s) | Fe^{2+}(aq), Fe^{3+}(aq) || X^{+}(aq) | X(s)$$

Daar is gevind dat die selpotensiaal van hierdie sel 0,03 V is.

- 8.1.1 Skryf die soort elektrochemiese sel, wat hierbo voorgestel word, neer. (1)
- 8.1.2 Wat stel die enkellyn (|) in die selnotasie hierbo voor? (1)
- 8.1.3 Skryf die halfreaksie neer wat by die anode in die sel hierbo plaasvind. (2)
- 8.1.4 Identifiseer **X** met behulp van 'n berekening. (5)
- 8.2 'n Pt(s) | $Fe^{2+}(aq)$, $Fe^{3+}(aq)$ -halfsel word aan 'n Cu(s) | $Cu^{2+}(aq)$ -halfsel verbind.

Skryf neer die:

- 8.5.1 Chemiese simbool vir die elektrode in die katodehalfsel (1)
- 8.5.2 NAAM van die oksideermiddel (1)
- 8.5.3 Algehele selreaksie wat in hierdie sel plaasvind (3) [14]

[11]

VRAAG 9 (Begin op 'n nuwe bladsy.)

Die diagram hieronder toon 'n elektrolitiese sel wat gebruik word om 'n ysterstaaf met KOPER te elektroplateer. Oplossing **X** is saamgestel van 'n onbekende NITRAAT.

- 9.1 Oplossings, soos oplossing **X**, word altyd in elektrochemiese selle gebruik.
 - 9.1.1 Skryf die algemene term neer wat gebruik word om hierdie oplossings te beskryf. (1)
 - 9.1.2 Wat is die funksie van hierdie oplossings in elektrochemiese selle? (1)
- 9.2 Skryf die FORMULE van oplossing **X** neer. (1)
- 9.3 Watter elektrode (**A** of **YSTERSTAAF**) is die negatiewe elektrode? Gee 'n rede vir die antwoord. (2)
- 9.4 Skryf die halfreaksie neer wat by elektrode **A** plaasvind. (2)
- 9.5 Elektrode **A** word nou deur 'n silwerstaaf vervang sonder om enige ander veranderinge aan die sel te maak. Na 'n rukkie word gevind dat TWEE metaalione in die oplossing teenwoordig is.
 - 9.5.1 Noem die TWEE metaalione wat in die oplossing teenwoordig is. (2)
 - 9.5.2 Verwys na die relatiewe sterkte van oksideermiddels om te verduidelik watter EEN van die ione verkieslik by die plateringsproses betrokke sal wees.

VRAAG 10 (Begin op 'n nuwe bladsy.)

Die vloeidiagram hieronder toon die stappe wat gebruik word om kunsmisstowwe **X** and **Y** te berei. Byskrifte **I** en **II** stel tipes chemiese reaksies voor en **P** is 'n verbinding.

10.1 Skryf die naam neer van reaksie:

10.2 Skryf die NAAM of FORMULE neer van:

10.3 Skryf 'n gebalanseerde vergelyking neer vir:

10.3.1 Die bereiding van kunsmis
$$\mathbf{X}$$
 (3)

10.4 Kunsmis **Y** is ammoniumnitraat. Bereken die massa-persentasie stikstof in kunsmis **Y**. (3) [14]

TOTAAL: 150

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p ^θ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Τ ^θ	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$
$\frac{\mathbf{c_a v_a}}{\mathbf{c_b v_b}} = \frac{\mathbf{n_a}}{\mathbf{n_b}}$	pH = -log[H3O+]

$$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298 \text{ K / } 25 \text{ °C}$$

$$\mathsf{E}_{\mathsf{cell}}^\theta = \mathsf{E}_{\mathsf{cathode}}^\theta - \mathsf{E}_{\mathsf{anode}}^\theta / \mathsf{E}_{\mathsf{sel}}^\theta = \mathsf{E}_{\mathsf{katode}}^\theta - \mathsf{E}_{\mathsf{anode}}^\theta$$

or/of

$$\mathsf{E}_{\mathsf{cell}}^{\theta} = \mathsf{E}_{\mathsf{reduction}}^{\theta} - \mathsf{E}_{\mathsf{oxidation}}^{\theta} / \mathsf{E}_{\mathsf{sel}}^{\theta} = \mathsf{E}_{\mathsf{reduksie}}^{\theta} - \mathsf{E}_{\mathsf{oksidasie}}^{\theta}$$

or/of

$$E_{\text{cell}}^{\theta} = E_{\text{oxidising agent}}^{\theta} - E_{\text{reducing agent}}^{\theta} / E_{\text{sel}}^{\theta} = E_{\text{oksideermiddel}}^{\theta} - E_{\text{reduseermiddel}}^{\theta}$$

TABLE 3: THE PERIODIC TABLE OF ELEMENTS
TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

	1 (l)		2 (II)		3		4	5	6	7	8	9	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
		_	(,							Δ	tomic n	umber				()	(,	(•)	(• •)	(•,	
	1							KEY/SL	EUTEL	,	Atoom										2
2,1	Н											getai									He
1	1									ſ		\neg									4
	3		4	1				Flact.			29		ا م ما مدد			5	6	7	8	9	10
0		LO.							onegati		್ಲ್ Cn		mbol								
1,0	Li	1,5	Be					Elektro	negativ	/iteit	63,5	- I SII	mbool			°,0 B	2,5 C		3,5	o, F	Ne
	7		9													11	12	14	16	19	20
	11		12								Ī					13	14	15	16	17	18
6,0	Na	1,2	Mg						Appro	oximate	relative	e atomi	c mass			λ. Υ δ.	² Si	L, P	S,5	တို့ ငြ	Ar
	23	•	24						Bena	derde r	elatiewe	atoom	massa			27	28	31	32	35,5	40
	19		20		21		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
∞		0		က		2													_		
8,0	K	1,0	Ca	1,3	Sc	1,5	Ti	ئ. ۸	ç Cr	ਨੂੰ Mu		² ⁄ _∞ Co	∞ Ni	-		ç Ga				% Br	Kr
	39		40		45		48	51	52	55	56	59	59	63,5		70	73	75	79	80	84
	37		38		39		40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
9,0	Rb	1,0	Sr	1,2	Υ	4,	Zr	Nb	⁴ Mo	್ಲ್ Tc	₹ Ru	₹ Rh	7 Pd	ਨੂੰ Ag	Ç Cd	۲. In	[∞] Sn	್ಲ್ Sb	₹ Te	2,5	Xe
	86	(88	(89	`	91	92	96	,	101	103	106	108	112	115	119	122	128	127	131
	55		56		57		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
7		6			_	9			W	_	_										
0,7	Cs	6,0	Ba		La	1,6	Hf	Та		Re	Os	Ir	Pt	Au	Hg		-		% Po	5; At	Rn
	133		137		139		179	181	184	186	190	192	195	197	201	204	207	209			
	87		88		89																
0,7	Fr	6,0	Ra		Ac			58	59	60	61	62	63	64	65	66	67	68	69	70	71
			226																		_
				1		_		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
								140	141	144		150	152	157	159	163	165	167	169	173	175
								90	91	92	93	94	95	96	97	98	99	100	101	102	103
								Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
								232	• •	238	٦.٠٣		/ ****			•		• • • •			
								202		250											

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

BEL 4A: STANDAARD-REDUKSIEPOTENSIA								
Half-reactions	/Hal	freaksies	E ^Œ (V)					
$F_2(g) + 2e^-$	=	2F ⁻	+ 2,87					
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81					
$H_2O_2 + 2H^+ + 2e^-$	=	2H ₂ O	+1,77					
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	+ 1,51					
$C\ell_2(g) + 2e^-$	=	2Cℓ ⁻	+ 1,36					
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	2Cr ³⁺ + 7H ₂ O	+ 1,33					
$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23					
$MnO_2 + 4H^+ + 2e^-$	=	$Mn^{2+} + 2H_2O$	+ 1,23					
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20					
$Br_2(\ell) + 2e^-$	\Rightarrow	2Br ⁻	+ 1,07					
$NO_{3}^{-} + 4H^{+} + 3e^{-}$	=	$NO(g) + 2H_2O$	+ 0,96					
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85					
$Ag^{+} + e^{-}$	=	Ag	+ 0,80					
$NO_{3}^{-} + 2H^{+} + e^{-}$	=	$NO_2(g) + H_2O$	+ 0,80					
Fe ³⁺ + e ⁻	\Rightarrow	Fe ²⁺	+ 0,77					
$O_2(g) + 2H^+ + 2e^-$	=	H_2O_2	+ 0,68					
I ₂ + 2e ⁻	\Rightarrow	2l ⁻	+ 0,54					
Cu⁺ + e⁻	=	Cu	+ 0,52					
$SO_2 + 4H^+ + 4e^-$	=	S + 2H2O	+ 0,45					
$2H_2O + O_2 + 4e^-$	=	40H ⁻	+ 0,40					
Cu ²⁺ + 2e ⁻	\Rightarrow	Cu	+ 0,34					
$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_2(g) + 2H_2O$	+ 0,17					
Cu ²⁺ + e ⁻	=	Cu ⁺	+ 0,16					
Sn ⁴⁺ + 2e ⁻	\Rightarrow	Sn ²⁺	+ 0,15					
S + 2H ⁺ + 2e ⁻	=	$H_2S(g)$	+ 0,14					
2H ⁺ + 2e ⁻	=	$H_2(g)$	0,00					
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06					
Pb ²⁺ + 2e ⁻	\Rightarrow	Pb	- 0,13					
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14					
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27					
Co ²⁺ + 2e ⁻	=	Co	- 0,28					
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	- 0,40					
Cr ³⁺ + e ⁻	\Rightarrow	Cr ²⁺	- 0,41					
Fe ²⁺ + 2e ⁻	\Rightarrow	Fe	- 0,44					
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74					
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76					
2H ₂ O + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,83					
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91					
Mn ²⁺ + 2e ⁻	\Rightarrow	Mn	- 1,18					
$Al^{3+} + 3e^{-}$	=	Αℓ	- 1,66					
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36					
Na ⁺ + e ⁻	=	Na	- 2,71					
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87					
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89					
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90					
Cs ⁺ + e ⁻	=	Cs	- 2,92					
K ⁺ + e ⁻	=	K	- 2,93					

 $Li^+ + e^- \rightleftharpoons Li$

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

- 3,05

Increasing oxidising ability/Toenemende oksiderende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BEL 4B: STANDAARD-REDUKSIEPOTENSIA									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Half-reactions/ <i>Halfreaksies</i> $E^{\mathfrak{C}}(V)$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Li ⁺ + e⁻	=	Li	- 3,05						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		\Rightarrow	K							
$Sr^{2^{+}} + 2e^{-} = Sr$ $Ca^{2^{+}} + 2e^{-} = Ca$ $Na^{+} + e^{-} = Na$ $Ar^{3^{+}} + 3e^{-} = A\ell$ $Ar^{3^{+}} + 3e^{-} = Cr$ $2H_{2}O + 2e^{-} = H_{2}(g) + 2OH^{-}$ $2H_{2}O + 2e^{-} = Ta$ $2H_{2}O + 2e^{-} + Ta$ $2H_{2$		=	Cs							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=								
$A\ell^{3+} + 3e^- = A\ell$ $Mn^{2+} + 2e^- = Mn$ $Cr^{2+} + 2e^- = Cr$ $2H_2O + 2e^- = H_2(g) + 2OH^-$ $2H_2O + 2e^- = H_2(g) + 2OH^-$ $- 0,83$ $Zn^{2+} + 2e^- = Zn$ $- 0,76$ $Cr^{3+} + 3e^- = Cr$ $- 0,74$ $Fe^{2+} + 2e^- = Fe$ $- 0,44$ $Cr^{3+} + e^- = Cr^{2+}$ $- 0,41$ $Cd^{2+} + 2e^- = Cd$ $- 0,40$ $Co^{2+} + 2e^- = Cd$ $- 0,28$ $Ni^{2+} + 2e^- = Ni$ $- 0,27$ $Sn^{2+} + 2e^- = Sn$ $- 0,14$ $Pb^{2+} + 2e^- = Pb$ $- 0,13$ $Fe^{3+} + 3e^- = Fe$ $- 0,06$ $2H^+ + 2e^- \Rightarrow H_2(g)$ $S + 2H^+ + 2e^- \Rightarrow H_2(g)$ $S + 2H^+ + 2e^- \Rightarrow Sn^{2+}$ $- 0,06$ $2H^+ + 2e^- \Rightarrow H_2(g)$ $S^{4+} + 2e^- \Rightarrow Sn^{2+}$ $- 0,16$ $SO_4^2 + 4H^+ + 2e^- = SO_2(g) + 2H_2O$ $- 0,28$ $SO_4^2 + 4H^+ + 2e^- \Rightarrow SO_2(g) + 2H_2O$ $- 0,00$ $S + 2H^+ + 2e^- \Rightarrow SO_2(g) + 2H_2O$ $- 0,00$ $S + 2H^+ + 2e^- \Rightarrow SO_2(g) + 2H_2O$ $- 0,00$ $S + 2H^+ + 2e^- \Rightarrow SO_2(g) + 2H_2O$ $- 0,00$ $S + 2H^+ + 2e^- \Rightarrow SO_2(g) + 2H_2O$ $- 0,17$ $- 0,16$ $SO_4^2 + 4H^+ + 2e^- \Rightarrow SO_2(g) + 2H_2O$ $- 0,17$ $- 0,17$ $- 0,18$ $- 0,18$ $- 0,18$ $- 0,14$ $- 0,13$ $- 0,00$ $- 0,13$ $- 0,00$ $- 0,13$ $- 0,00$ $- 0,13$ $- 0,00$ $- 0,13$ $- 0,00$ $- 0,13$ $- 0,00$ $- 0,13$ $- 0,00$ $- 0,13$ $- 0,00$ $- 0,13$ $- 0,00$ $- 0,14$ $- 0,13$ $- 0,00$ $- 0,13$ $- 0,00$ $- 0,13$ $- 0,00$ $- 0,13$ $- 0,00$ $- 0,13$ $- 0,00$ $- 0,13$ $- 0,00$ $- 0,13$ $- 0,00$ $- 0,13$ $- 0,01$ $- 0,13$ $- 0,01$ $- 0,13$ $- 0,01$ $- 0,13$ $- 0,01$ $- 0,13$ $- 0,01$ $- 0,14$ $- 0,14$ $- 0,13$ $- 0,01$ $- 0,14$		\Rightarrow								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u> </u>	=		·						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$Fe^{3+} + 3e^{-} = Fe$ $2H^{+} + 2e^{-} = H_{2}(g)$ $S + 2H^{+} + 2e^{-} = H_{2}(g)$ $S^{4+} + 2e^{-} = Sn^{2+}$ $Cu^{2+} + e^{-} = Cu^{+}$ $SO_{4}^{2-} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O$ $Cu^{2+} + 2e^{-} = Cu$ $SO_{2}^{2-} + 4H^{+} + 4e^{-} = S + 2H_{2}O$ $Cu^{2+} + 2e^{-} = Cu$ $SO_{2} + 4H^{+} + 4e^{-} = S + 2H_{2}O$ $Cu^{+} + e^{-} = Cu$ $I_{2} + 2e^{-} = 2I^{-}$ $O_{2}(g) + 2H^{+} + 2e^{-} = H_{2}O_{2}$ $I_{2} + 2e^{-} = I^{-}$ $O_{2}(g) + 2H^{+} + e^{-} = I^{-}$ $Ag^{+} + e^{-} = Fe^{2+}$ $NO_{3}^{-} + 2H^{+} + e^{-} = I^{-}$ $Ag^{+} + e^{-} = I^{-}$ $Hg^{2+} + 2e^{-} = Hg(\ell)$ $NO_{3}^{-} + 4H^{+} + 3e^{-} = I^{-}$ $Hg^{2+} + 2e^{-} = I^{-}$ I^{-}										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$Sn^{4+} + 2e^{-} = Sn^{2+} + 0,15$ $Cu^{2+} + e^{-} = Cu^{+} + 0,16$ $SO_{4}^{2-} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O + 0,17$ $Cu^{2+} + 2e^{-} = Cu + 0,34$ $2H_{2}O + O_{2} + 4e^{-} = 4OH^{-} + 0,40$ $SO_{2} + 4H^{+} + 4e^{-} = S + 2H_{2}O + 0,45$ $Cu^{+} + e^{-} = Cu + 0,52$ $I_{2} + 2e^{-} = 2I^{-} + 0,54$ $O_{2}(g) + 2H^{+} + 2e^{-} = H_{2}O_{2} + 0,68$ $Fe^{3+} + e^{-} = Fe^{2+} + 0,77$ $NO_{3}^{-} + 2H^{+} + e^{-} = NO_{2}(g) + H_{2}O + 0,80$ $Ag^{+} + e^{-} = Ag + 0,80$ $Hg^{2+} + 2e^{-} = Hg(\ell) + 0,85$ $NO_{3}^{-} + 4H^{+} + 3e^{-} = NO(g) + 2H_{2}O + 0,96$ $Br_{2}(\ell) + 2e^{-} = 2Br^{-} + 1,07$ $Pt^{2+} + 2e^{-} = Pt + 1,20$ $MnO_{2} + 4H^{+} + 4e^{-} = 2H_{2}O + 1,23$ $O_{2}(g) + 4H^{+} + 4e^{-} = 2H_{2}O + 1,23$ $Cr_{2}O_{7}^{2-} + 14H^{+} + 6e^{-} = 2Cr^{3+} + 7H_{2}O + 1,33$ $C\ell_{2}(g) + 2e^{-} = 2C\ell^{-} + 1,36$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} = Mn^{2+} + 4H_{2}O + 1,51$ $H_{2}O_{2} + 2H^{+} + 2e^{-} = 2H_{2}O + 1,77$ $Co^{3+} + e^{-} = Co^{2+} + 1,81$	S + 2H ⁺ + 2e ⁻	=								
$SO_{4}^{2-} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O $ $Cu^{2+} + 2e^{-} = Cu $ $2H_{2}O + O_{2} + 4e^{-} = 4OH^{-} $ $SO_{2} + 4H^{+} + 4e^{-} = S + 2H_{2}O $ $Cu^{+} + e^{-} = Cu $ $1_{2} + 2e^{-} = 2I^{-} $ $O_{2}(g) + 2H^{+} + 2e^{-} = H_{2}O_{2} $ $Fe^{3+} + e^{-} = Fe^{2+} $ $NO_{3}^{-} + 2H^{+} + e^{-} = NO_{2}(g) + H_{2}O $ $Ag^{+} + e^{-} = Ag $ $Hg^{2+} + 2e^{-} = Hg(\ell) $ $NO_{3}^{-} + 4H^{+} + 3e^{-} = NO(g) + 2H_{2}O $ $Pt^{2+} + 2e^{-} = Pt $ $MnO_{2} + 4H^{+} + 4e^{-} = 2H_{2}O $ $O_{2}(g) + 4H^{+} + 4e^{-} = 2H_{2}O $ $O_{2}(g) + 4H^{+} + 4e^{-} = 2H_{2}O $ $O_{2}(g) + 4H^{+} + 6e^{-} = 2Cr^{3+} + 7H_{2}O $ $Cr_{2}O_{7}^{2-} + 14H^{+} + 6e^{-} = 2Cr^{3+} + 7H_{2}O $ $O_{2}(g) + 2e^{-} = 2H_{2}O $ $O_{1}(g) + 2e^{-} = 2H_{2}O $ $O_{2}(g) + 2e^{-} = 2Cr^{3+} + 7H_{2}O $ $O_{1}(g) + 2e^{-} = 2Cr^{3+} + 7H_{2}O $ $O_{2}(g) + 2e^{-} = 2Cr^{3+} + 7H_{2}O $ $O_{1}(g) + 2e^{-} = 2Cr^{3+} + 7H_{2}O $ $O_{2}(g) + 2e^{-} = 2Cr^{3+} + 7H_{2}O $ $O_{1}(g) + 2e^{-} = 2Cr^{3+} + 7H_{2}O $ $O_{2}(g) + 2e^{-} = 2Cr^{3+} + 7H_{2}O $ $O_{1}(g) + 2e^{-} = 2Cr^{3+} + 7H_{2}O $ $O_{2}(g) + 2e^{-} = 2Cr^{3-} + 7$	Sn ⁴⁺ + 2e ⁻	=		+ 0,15						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu ²⁺ + e ⁻	=	Cu^{+}	+ 0,16						
$\begin{array}{rclcrcl} 2H_2O + O_2 + 4e^- & = & 4OH^- \\ SO_2 + 4H^+ + 4e^- & = & S + 2H_2O \\ & Cu^+ + e^- & = & Cu \\ & I_2 + 2e^- & = & 2I^- \\ O_2(g) + 2H^+ + 2e^- & = & H_2O_2 \\ & Fe^{3+} + e^- & = & Fe^{2+} \\ & + 0,77 \\ NO_3^- + 2H^+ + e^- & = & NO_2(g) + H_2O \\ & Ag^+ + e^- & = & Ag \\ & Hg^{2+} + 2e^- & = & Hg(\ell) \\ & NO_3^- + 4H^+ + 3e^- & = & NO(g) + 2H_2O \\ & Br_2(\ell) + 2e^- & = & 2Br^- \\ & Pt^{2+} + 2e^- & = & Pt \\ & MnO_2 + 4H^+ + 2e^- & = & Mn^{2+} + 2H_2O \\ O_2(g) + 4H^+ + 4e^- & = & 2H_2O \\ & Cr_2O_7^- + 14H^+ + 6e^- & = & 2Cr^{3+} + 7H_2O \\ & Cr_2O_7^- + 14H^+ + 5e^- & = & 2C\ell^- \\ & & & + 1,33 \\ & C\ell_2(g) + 2e^- & = & 2H_2O \\ & & & + 1,36 \\ & MnO_4^- + 8H^+ + 5e^- & = & Mn^{2+} + 4H_2O \\ & & & + 1,51 \\ & & & & + 1,77 \\ & & & & & & + 1,81 \\ \end{array}$	$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_2(g) + 2H_2O$	+ 0,17						
$SO_{2} + 4H^{+} + 4e^{-} = S + 2H_{2}O $	Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2H_2O + O_2 + 4e^-$	=	40H ⁻	+ 0,40						
$\begin{array}{rclcrcl} & & & & & & & & & & & & & & & & & & &$	$SO_2 + 4H^+ + 4e^-$	\Rightarrow	S + 2H ₂ O	+ 0,45						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu ⁺ + e ⁻	=	Cu	+ 0,52						
$Fe^{3+} + e^{-} = Fe^{2+} + 0,77$ $NO_{3}^{-} + 2H^{+} + e^{-} = NO_{2}(g) + H_{2}O + 0,80$ $Ag^{+} + e^{-} = Ag + 0,80$ $Hg^{2+} + 2e^{-} = Hg(\ell) + 0,85$ $NO_{3}^{-} + 4H^{+} + 3e^{-} = NO(g) + 2H_{2}O + 0,96$ $Br_{2}(\ell) + 2e^{-} = 2Br^{-} + 1,07$ $Pt^{2+} + 2e^{-} = Pt + 1,20$ $MnO_{2} + 4H^{+} + 2e^{-} = Mn^{2+} + 2H_{2}O + 1,23$ $O_{2}(g) + 4H^{+} + 4e^{-} = 2H_{2}O + 1,23$ $Cr_{2}O_{7}^{2-} + 14H^{+} + 6e^{-} = 2Cr^{3+} + 7H_{2}O + 1,33$ $C\ell_{2}(g) + 2e^{-} = 2C\ell^{-} + 1,36$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} = Mn^{2+} + 4H_{2}O + 1,51$ $H_{2}O_{2} + 2H^{+} + 2e^{-} = 2H_{2}O + 1,77$ $Co^{3+} + e^{-} = Co^{2+} + 1,81$		=	2I ⁻							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		\Rightarrow	Fe ²⁺	+ 0,77						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·	=								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	\Rightarrow	-	•						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	=	_							
$\begin{array}{rclcrcl} Pt^{2^{+}} + 2 e^{-} & \rightleftharpoons & Pt & + 1,20 \\ MnO_{2} + 4H^{+} + 2e^{-} & \rightleftharpoons & Mn^{2^{+}} + 2H_{2}O & + 1,23 \\ O_{2}(g) + 4H^{+} + 4e^{-} & \rightleftharpoons & 2H_{2}O & + 1,23 \\ Cr_{2}O_{7}^{2^{-}} + 14H^{+} + 6e^{-} & \rightleftharpoons & 2Cr^{3^{+}} + 7H_{2}O & + 1,33 \\ C\ell_{2}(g) + 2e^{-} & \rightleftharpoons & 2C\ell^{-} & + 1,36 \\ MnO_{4}^{-} + 8H^{+} + 5e^{-} & \rightleftharpoons & Mn^{2^{+}} + 4H_{2}O & + 1,51 \\ H_{2}O_{2} + 2H^{+} + 2e^{-} & \rightleftharpoons & 2H_{2}O & + 1,77 \\ Co^{3^{+}} + e^{-} & \rightleftharpoons & Co^{2^{+}} & + 1,81 \\ \end{array}$	$NO_{3}^{-} + 4H^{+} + 3e^{-}$	\Rightarrow	$NO(g) + 2H_2O$	+ 0,96						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=	2Br ⁻	+ 1,07						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=		+ 1,20						
$Cr_2O_7^{2-} + 14H^+ + 6e^- = 2Cr^{3+} + 7H_2O$ + 1,33 $C\ell_2(g) + 2e^- = 2C\ell^-$ + 1,36 $MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$ + 1,51 $H_2O_2 + 2H^+ + 2e^- = 2H_2O$ + 1,77 $Co^{3+} + e^- = Co^{2+}$ + 1,81		=	$Mn^{2+} + 2H_2O$							
$C\ell_{2}(g) + 2e^{-} \Rightarrow 2C\ell^{-}$ + 1,36 $MnO_{4}^{-} + 8H^{+} + 5e^{-} \Rightarrow Mn^{2+} + 4H_{2}O$ + 1,51 $H_{2}O_{2} + 2H^{+} + 2e^{-} \Rightarrow 2H_{2}O$ + 1,77 $Co^{3+} + e^{-} \Rightarrow Co^{2+}$ + 1,81		=		+ 1,23						
$MnO_{4}^{-} + 8H^{+} + 5e^{-} \Rightarrow Mn^{2+} + 4H_{2}O$ + 1,51 $H_{2}O_{2} + 2H^{+} + 2e^{-} \Rightarrow 2H_{2}O$ + 1,77 $Co^{3+} + e^{-} \Rightarrow Co^{2+}$ + 1,81	$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	2Cr ³⁺ + 7H ₂ O	+ 1,33						
$H_2O_2 + 2H^+ + 2e^- \Rightarrow 2H_2O$ +1,77 $Co^{3+} + e^- \Rightarrow Co^{2+}$ +1,81	$C\ell_2(g) + 2e^-$	=	2Cℓ ⁻	+ 1,36						
$Co^{3+} + e^{-} = Co^{2+} + 1,81$	$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	+ 1,51						
·		=		+1,77						
$F_2(g) + 2e^- \Rightarrow 2F^- + 2.87$	Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81						
	F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87						

Increasing reducing ability/Toenemende reduserende vermoë