Eigenvalues and Eigenvectors

Definition Real or complex valued scalar λ is an eigenvalue of a matrix A, if there exists a vector $x \neq 0$ such that $Ax = \lambda x$.

The eigenvectors x are the solutions of $Ax = \lambda x$.

We are interested in eigenpairs (λ, \times) .

Example
$$R = \begin{pmatrix} 0 & 1 \\ 1 & d \end{pmatrix}$$
; $x_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$: $Rx_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \Rightarrow \lambda_1 = 1$

$$x_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 : $Rx_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \Rightarrow \lambda_2 = -L$

Example
$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
; $A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

A is a rotation matrix; $\varphi = \frac{\pi}{4}$ It is clear that $\lambda \in \mathbb{R}$ cannot exist! Thus, $\lambda \in \mathbb{C}$.

How to find the eigenvalues? For our purposes the following is sufficient:

Theorem λ is an eigenvalue, if and only if det $(A - \lambda I) = 0$.

Proof Ax= Ax (A- AI) x = 0

If $dit(A-\lambda I) \neq 0$, then $A-\lambda I$ is invertible and x=0 is the unique solution. Otherwise $x\neq 0$ and by definition λ is an eigenvalue.

det $(A - \lambda I)$ is a polynomial and its roots one the eigenvalues. Of course det $(\lambda I - A)$ has the same roots. Definition $\rho(\lambda) = \det(A - \lambda I)$ is the characteristic polynomial.

Example
$$A = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix}$$
; det $(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 1 \\ -1 & -1 - \lambda \end{vmatrix} = 0$
 $<=> (2 - \lambda)(-1 - \lambda) - (-1)1 = 0$
 $<=> \lambda^2 - \lambda - 1 = 0$
 $\lambda_{1,2} = \frac{1 \pm \sqrt{5}}{2} \in \mathbb{R}$

Example $A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$; $\rho(\lambda) = \left(\frac{1}{\sqrt{2}} - \lambda\right)^2 + \frac{1}{2} = 0$
 $\lambda_{1,2} = \frac{1}{\sqrt{2}} \pm i\frac{1}{\sqrt{6}} \in \mathbb{C}$

What about eigenvectors?

Example
$$A = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix}$$
; $\lambda_1 = \frac{1}{2} + \frac{\sqrt{5}}{2}$; $\lambda_2 = \frac{1}{2} + \frac{\sqrt{5}}{2}$; $\lambda_3 = \frac{1}{2} + \frac{\sqrt{5}}{2}$; $\lambda_4 = 0$; $\lambda_4 = 0$

No need to use elimination: $\xi_1 = \left(-\frac{3}{2} - \frac{\sqrt{5}}{2}\right) \xi_2$ ξ_2 is free: $\chi_1 = \sigma \left(-\frac{3}{2} - \frac{\sqrt{5}}{2}\right)$, $\sigma \in \mathbb{R}$

Important: The direction is important, any scaling can be chosen!

Let A such that its eigenvectors $V_1, V_2, ..., V_n$ are linearly independent and the corresponding eigenvalues are $\lambda_1, \lambda_2, ..., \lambda_n$ The vector x has its unique coordinates:

 $x = \sum_{k=1}^{n} \int_{\mathbb{R}^{n}} v_{k} \qquad \left(\{ v_{i} \} \text{ is a basis} \right)$

Then $Ax = A\left(\sum_{k=1}^{n} \xi_k v_k\right) = \sum_{k=1}^{n} \xi_k A v_k = \sum_{k=1}^{n} \xi_k \lambda_k v_k$

and $A^k x = \xi_1 \lambda_1^k v_1 + \xi_2 \lambda_2^k v_2 + \ldots + \xi_n \lambda_n^k v_n.$

Let $|\lambda_1| > |\lambda_2| > \dots > |\lambda_n|$. Assuming $|\lambda_i|^k \gg |\lambda_j|^k$, j > 1, $k \gg 0$:

If $\xi_1 \neq 0$, then in the sequence $x^{(k)} = A^k x$ eventually $x^{(k)} \simeq \xi_1 \lambda_1^k V_1$.

 λ_1 can be recovered: $\lambda_1 \simeq \frac{(k)}{x_i^{(k-1)}}$, if $x_i^{(k-1)} \neq 0$.

As you can see the order have been reversed, first we have found the eigenvector and only than the eigenvalue. This is our first example of iterative methods.

Summary

- (1) Find p(x) = det (A xI) = 0.
- (2) Find the roots of p(2).
- (3) Solve Ax: = x:x: for all x:

Notice: If $\lambda = 0$, then A is singular.

Two useful identities:

(i) det
$$A = \prod_{i=1}^{n} \lambda_i$$

(ii) to
$$A = \alpha_{11} + \kappa_{22} + \dots + \alpha_{nn} = \lambda_1 + \lambda_2 + \dots + \lambda_n$$

$$= \sum_{i=1}^{n} \alpha_{ii} = \sum_{i=1}^{n} \lambda_i$$

to A is the trace of A.