

1. General Description

The IT245 is a high-speed Si-gate CMOS device. IT245 is an octal transceiver featuring non-inverting 3-state bus compatible outputs in both send and receive directions. The IT245 features an output enable input (\overline{OE}) for easy cascading and a send/receive input (DIR) for direction control. \overline{OE} controls the outputs so that the buses are effectively isolated.

The IT245 has true (non-inverting) outputs.

2. Features

- Octal bidirectional bus interface
- Non-inverting 3-state outputs
- Multiple package options
- Complies with JEDEC standard no. 7A
- ESD protection:
 - ♦ HBM EIA/JESD22-A114-B exceeds 2000V
 - ♦ MM EIA/JESD22-A115-A exceeds 200V
- Specified from -40 $^{\circ}$ C to +85 $^{\circ}$ C and from -40 $^{\circ}$ C to +125 $^{\circ}$ C

3. Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t_{PHL},t_{PLH}	propagation delay An to Bn or Bn to An	$C_L=15pF; V_{CC}=5V$	-	5	-	ns
Cı	input capacitance		-	3.5	-	pF
C _{I/O}	input/output capacitance		-	10	-	pF
C _{PD}	power dissipation capacitance per transceiver	V _I =GND to V _{CC} *	-	12	-	pF

 C_{PD} is used to determine the dynamic power dissipation (P_D in μW)

4. Functional Diagram

Fig. 1 Logic symbol

5. Pin information

5.1 Pinning

Fig. 2 Pin configuration

5.2 Pin Description

Table 2: Pin description

Table 2. Fill description						
Symbol	Pin	Conditions				
DIR	1	direction control				
A0	2	data input/output				
A1	3	data input/output				
A2	4	data input/output				
A3	5	data input/output				
A4	6	data input/output				
A5	7	data input/output				
A6	8	data input/output				
A7	9	data input/output				
GND	10	ground (0V)				
B7	11	data input/output				
B6	12	data input/output				
B5	13	data input/output				
B4	14	data input/output				
В3	15	data input/output				
B2	16	data input/output				
B1	17	data input/output				
В0	18	data input/output				
OE	19	output enable input (active LOW)				
VCC	20	supply voltage				

6. Functional Description

6.1 Function table

Table 3: Function table *

	Input	Input/output			
OE	DIR	An	Bn		
0	0	A = B	input		
L	Н	input	B = A		
Н	X	Z	Z		

^{*} H = HIGH voltage level;

L = LOW voltage level;

X = don't care;

Z = high-impedance OFF-state

7. Limiting values

Table 4: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground =0V)

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7	٧
I _{IK}	input diode current	$V_{I} < -0.5V \text{ or } V_{I} > V_{CC} + 0.5V$	-	±20	mΑ
I _{OK}	output diode current	$V_{\rm O}$ < -0.5V or $V_{\rm O}$ > $V_{\rm CC}$ +0.5V	-	±20	mΑ
Io	output source or sink current	$V_O = -0.5V$ to $V_{CC} + 0.5V$	-	±35	mA
I_{CC},I_{GND}	V _{CC} or GND current		-	±70	mA
T _{stg}	storage temperature		-65	+150	${\mathbb C}$

8. Recommended Operating Conditions

Table 5: Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		4	5	6	٧
V_{l}	input voltage		0	-	V_{CC}	٧
Vo	output voltage		0	-	V_{CC}	٧
t _r , t _f	input rise and fall times	$V_{CC} = 4.5V$	-	6.0	500	ns
T _{amb}	ambient temperature		-40	-	+125	${\mathbb C}$

9. Static Characteristics

Table 6: static characteristics

At recommended operating conditions; voltage are referenced to GND (ground =0V)

0		0		25℃			o +85℃	-40 ℃ to +125 ℃		
Symbol	Parameter	Conditions	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{IH}	HIGH-level	$V_{CC} = 2.0 \text{ V}$	1.5	1.2	-	1.5	-	1.5	-	٧
	input voltage	V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V
		$V_{CC} = 6.0 \text{ V}$	4.2	3.2	-	4.2	-	4.2	-	٧
V _{IL}	LOW-level	$V_{CC} = 2.0 \text{ V}$	-	8.0	0.5	-	0.5	-	0.5	V
	input voltage	$V_{CC} = 4.5 \text{ V}$	-	2.1	1.35	-	1.35	-	1.35	V
		$V_{CC} = 6.0 \text{ V}$	-	2.8	1.8	-	1.8	-	1.8	V
V _{OH}	HIGH-level	$V_I = V_{IH} \text{ or } V_{IL}$								
	output voltage	I _O = -20 uA; Vcc=2.0V	1.9	2.0	-	1.9	-	1.9	-	٧
		I _O = -20 uA; Vcc=4.5V	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -20 uA; Vcc=6.0V	5.9	6.0	-	5.9	-	5.9	-	V
		·								

IT245 Octal Bus Transceiver; 3-state

(preliminary)

Cumbal	Parameter	neter Conditions 25°C			-40℃ to +85℃		-40 °C to +125 °C		Unit	
Symbol	Parameter	Conditions	Min	Тур	Max	Min	Max	Min	Max	Unit
		$I_O = -4.0 \text{ mA}$; Vcc=3.0V	2.72	2.84	-	2.70	-	2.70	-	V
		$I_O = -6.5 \text{ mA}$; Vcc=4.5V	4.20	4.31	-	4.15	-	4.10	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = 20 uA; Vcc=2.0V	-	0	0.1	-	0.1	-	0.1	٧
		I _O = 20 uA; Vcc=4.5V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 20 uA; Vcc=6.0V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 4.0 mA; Vcc=3.0V	-	0.12	0.20	-	0.21	-	0.22	V
		I _O = 6.5 mA; Vcc=4.5V	-	0.15	0.23	-	0.23	-	0.25	V
	Input leakage	V _I = Vcc or GND;			±0.1				±10	^
ILI	current	Vcc = 0V to 5.5 V	-	-	±0.1	-	±1.2	-	±10	μA
loz	OFF-state output current	VI = VIH or VIL; VCC = 5.5 V; VO=Vcc or GND; IO= 0 A	-	-	±0.1	-	±0.1	-	±1.0	μΑ
lcc	quiescent supply current	V_I =Vcc or GND; I_O =0 A; Vcc = 5.5 V	-	-	1.0	-	10.0	-	50	μA
Cı	input capacitance	V _I =Vcc or GND	-	3.5	10	-	10	-	10	pF
C _{I/O}	input/output capacitance		-	4	-	-	-	-	-	pF

10. Dynamic characteristics

Table 7: Dynamic characteristics GND =0V; test circuit see Figure 5.

Or much all	Damamatan	O a maliki a ma	25℃		-40℃ t	o +85℃	-40℃ to +125℃		Unit	
Symbol	Parameter	Conditions	Min	Тур	Max	Min	Max	Min	Max	Oilit
t _{PHL} , t _{PLH}	propagation delay	An to Bn or Bn to An, see Fi	gure 3							
		$V_{CC} = 2.0 \text{ V}$	-	21.0	35	-	40	-	50	ns
		$V_{CC} = 4.5 \text{ V}$	-	7.5	15	-	20	-	25	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$	-	5.0	10	-	-	-	-	ns
		$V_{CC} = 6.0 \text{ V}$	-	6	12	-	15	-	20	ns
t _{PZH} , t _{PZL}	3-state output enable time	OE to An or OE to Bn, see	Figure	4						
	chable time	$V_{CC} = 2.0 \text{ V}$	-	24	48		52		60	ns
	•	V _{CC} = 4.5 V	-	10	20		24		28	ns
	•	V _{CC} = 6.0 V	-	8	16	-	20	-	24	ns
t _{PHZ} , t _{PLZ}	3-state output	OE to An or OE to Bn, see	Figure	4						
	disable time	V _{CC} = 2.0 V	-	13	26	-	30	-	40	ns
	•	V _{CC} = 4.5 V	-	10	20	_	24	-	28	ns
									T.11 0.00	

IT245 Octal Bus Transceiver; 3-state

Innochip Tech	nnology Inc.								preiim	inary)
		$V_{CC} = 6.0 \text{ V}$	-	9	18	-	21	-	25	ns
t _{THL} , t _{TL}	H output transition	see Figure 4								
time		$V_{CC} = 2.0 \text{ V}$	-	16	32	-	36	-	42	ns
		$V_{CC} = 4.5 \text{ V}$	-	5	12	-	14	-	18	ns
		$V_{CC} = 6.0 \text{ V}$	-	4	9	-	11	-	14	ns
C _{PD}	power dissipation capacitance per transceiver	V _I =GND to Vcc-1.5	5V -	12	-	-	-	-	-	pF

 $^{^{\}star}$ C_{PD} is used to determine the dynamic power dissipation (P_D in μ W)

$$P_{\text{D}} = C_{\text{PD}} \times {V_{\text{CC}}}^2 \times f_i \times N + \ \Sigma \ (C_{\text{L}} \times {V_{\text{CC}}}^2 \times f_o) \text{ where:}$$

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

 C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 Σ (C_L × V_{CC}² × f_o) = sum of outputs.

11. Waveforms

Measurement points are given in Table 8.

 V_{OL} and V_{OH} are typical voltage output drop that occur with the output load.

Fig 3. Input (An, Bn) to output (Bn, An) propagation delays and output transition times

Octal Bus Transceiver; 3-state

(preliminary)

Measurement points are given in Table 8.

 V_{OL} and V_{OH} are typical voltage output drop that occur with the output load.

Fig 4. 3-state output enable and disable times

Table 8: Measurement points

GND =0V; test circuit see Figure 5.

Input	Output
V _M	V_{M}
0.5*Vcc	0.5*Vcc

Octal Bus Transceiver; 3-state

(preliminary)

Definitions test circuit:

 R_T = Termination resistance should be equal to output impedance Zo of the pulse generator.

 C_{L} = Load capacitance including jig and probe capacitance.

 R_L = Load resistor

Fig. 5 Load circuitry for switching times

Table 9: Test data

Inp	out		Output	
V_{l}	t _r ,t _f	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
Vcc	6ns	open	GND	V_{CC}