Problem

A *useless state* in a Turing machine is one that is never entered on any input string. Consider the problem of determining whether a Turing machine has any useless states. Formulate this problem as a language and show that it is undecidable.

Step-by-step solution

Step 1 of 1

Undecidability of the Turing machine problem:

• The given problem is defined as the following language:

 $USELESS_{TM} = \{ \langle T, q \rangle \mid q \text{ is a useless state in TM T } \}.$

- Show that $USELESS_{TM}$ is undecidable by reducing E_{TM} to $USELESS_{TM}$, where $E_{TM} = \left\{ \langle T1 \rangle \mid T1 \text{ is a } TM \text{ and } L(T1) = \varnothing \right\}$.
- Using the Theorem 5.2. it is already proved that $\ ^{E_{T\!M}}$ is undecidable
- Suppose that $USELESS_{TM}$ is decidable and that TMR decides it.
- Note that for any Turing machine M with accept state q_{accept} , q_{accept} is useless if and only if $L(T1) = \varnothing$.
- Accordingly, since TMR solves $USELESS_{TM}$, R can be used to check if q_{accept} is a useless state to decide E_{TM} .

Specifically, below is a TMS that decides E_{TM} by using the decider R for $USELESS_{TM}$ as a subroutine:

- S = "On input $\langle T \rangle$, where M is a TM:
- 1. Run TM R on input $\langle T, q_{accept} \rangle$, where q_{accept} is the accept state of T.
- 2. If R accepts, accept. If R rejects, reject."

However, since it is known E_{TM} is undecidable and there cannot be a TM that decides $\mathit{USELESS}_{\mathit{TM}}$.

Hence it is proved, that the given problem is undecidable.

Comments (5)