Last Day: Symmetric Matricer

A matrix A is symmetric if A is a nxn matrix & $A = A^T$

note if A&B both nxn symmetric matricies, then:

1)
$$(A+B)^T = A+B$$
 (sum is symmetric!)

2)
$$(KA)^T = KA^T = KA$$
 (Scalar mult. is symmetric.

3)
$$(A^{-1})^T = (A^T)^{-1} = A^{-1}$$
 (invarc, if exity is symmetric

4)
$$(AB)^T = B^TA^T = BA \neq AB$$
 (ingeneral)

AB is symmetric if A symm, B symm,

l AR = RA lie

& AB = BA lie commake)

Othanise not symmetric

cg.

[2,35]

Sympton:

Same across principal diagonal!

Determinants

Remember it A is 2x2

 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Rightarrow A^{-1} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \xrightarrow{ad-bc}$

ad-bc = def (A) = determinant of A

det (A) = 0 => no invase $\det(A) \neq 0 \Rightarrow \text{ inverse exists}$ $\det(A) \neq 0 \Rightarrow \text{ inverse exists}$ $\det(A) = |A|$

not an absolute value!

Dete	rminants for hkn matrices	No.
	Define dct(A) = sum of produ	net of elements one from each col/row netrix). (permutation sign)
		(Paratin sign)
	neva use this!	Awkword
ez	If A = \[\begin{array}{c} a & b & c \\ d & e & f \\ g & h & i \end{array}	det A = aei 3 rul, 2,3 -ahf. 3 rul, 3,2
Vastly	neg, multiplis. på snåp:	+(-1) ² gbf} row 3,1,2 = det (A)

Instead Let's get some terminology!

Mi: = minor (minor det.) of i

Mij = minor (minor det.) of position rowi, col.j

= det. of matrix with we rowi, colij removed

eg Let $B = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 3 & 1 \\ 0 & 2 & 5 \end{bmatrix}$

For the B, let's calculate minors! $M_{23} = det([02])$

 $M_{33} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} = 1(3) - (2)(-1)$ = 3 + 2 = 5

In genul: det(A) = sum of (entries) (minors) (-1) sign along any 1 row (or). 1 col

$$= \frac{2}{2} \quad \alpha_{ij} (-1)^{i+j} M_{ij}$$

$$= \frac{2}{2} \quad \alpha_{ij} (-1)^{i+j} M_{ij}$$

$$= \frac{2}{2} \quad \alpha_{ij} (-1)^{i+j} M_{ij}$$

$$de+A = a_{13} (-1)^{1+3} M_{13} + a_{23} (-1)^{2+3} M_{23} + a_{33} (-1)^{3+3} M_{33}$$

$$= 3 (+1) \begin{vmatrix} 0 & 1 \\ 2 & 1 \end{vmatrix} + 5 (-1) \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} + 0 \begin{pmatrix} w & 0 \\ cores! \end{pmatrix}$$

$$= -(-2) = (-2)^{6}$$

= -6:- 20 = (-26)

I say expand along row Hz $dot(A) = \frac{9}{21} \frac{(-1)^{1/2}}{M_{21}} + \frac{9}{21} \frac{(-1)^{1/2}}{M_{21}} + \frac{9}{21} \frac{(-1)^{1/2}}{M_{22}} + \frac{9}{21} \frac{(-1)^{1/2}}{M_{23}} = \frac{1}{2} \frac{1}{2}$

Small noter. 1) (-1) it i = "position sign" can be found by inspection or country!

 $A = \begin{bmatrix} 2^{t} & -1 & 3 \\ 0 & 1 & 5 \end{bmatrix}$ $(-1)^{(t)} = \pm 1$ $\begin{bmatrix} 2^{t} & -1 & 3 \\ 0 & 1 & 5 \end{bmatrix}$ $\begin{bmatrix} 2^{t} & 1 & 5 \\ 1 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 2^{t} & 1 & 5 \\ 1 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 3 & 1 & 5 \\ 2 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 3 & 1 & 5 \\ 3 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 3 & 1 & 5 \\ 3 & 1 & 1 \end{bmatrix}$

2) (position sogg) (Minur) = (-1) i#j, Mij = Cij Cofactar of position i,j cofactor = (-1):+1 Mi ic a cofactor expansion of determinant

Use cofactor expansion to calculate det (B) if B is: Let's expand on colf! |B| = b| C| + b| C| C| + b| C| C| $= 1 \cdot (-1)^{1/1} \cdot M_{11} = M_{11} = \begin{vmatrix} -1 & 2 & 1 & e \\ 0 & 0 & 3 & 5 \\ 0 & 0 & 2 & (\\ 0 & 0 & 0 & 10 \end{vmatrix}$

due expand along its col. #1 (B) = by C11 + b/2, C21 b/1, C41 } e new cofers! = (-1) (-1)(+1)
6 3 5 1
0 2 1 dexport again! = (-1) (6), 12.1 / + 0 = 1(-1)(6).(2).(10.)