

Universidade de Brasília – UnB Faculdade UnB Gama – FGA Projeto Integrador de Engenharia 2

Plataforma de Ciclismo Interativa com Imersão em Realidade Virtual e Monitoramento de Dados Fisiológicos e de Desempenho

Autores: Alisson Henrique S. Carvalho, Arthur S. Gonzaga, Bruno M. V. Rocha, Daniel S. S. Moreira, Heitor M. D. Esposte, Jeann F. Figueiredo, João Vitor A. Moura, Lenin A. S. Cerqueira, Mateus Manuel R. Bezerra, Matheus P. Santana, Thaynara Késsia E. Pereira, Renata S. Santos e Sabryna S. Pessoa

> Brasília, DF 2017

Alisson Henrique Sousa de Carvalho, Arthur Simões Gonzaga, Bruno de Medeiros Vieira Rocha, Daniel sampaio Santos Moreira, Heitor de Moura Del Esposte, Jeann Feitosa Figueiredo, João Vitor Araujo Moura, Lenin Andrade de Sousa Cerqueira, Mateus Manuel Rodrigues Bezerra, Matheus Pereira Santana, Thaynara Késsia Espíndola Pereira, Renata Soares dos Santos e Sabryna de Sousa Pessoa

Plataforma de Ciclismo Interativa com Imersão em Realidade Virtual e Monitoramento de Dados Fisiológicos e de Desempenho

Trabalho submetido ao curso de Projeto Integrador de Engenharia 2 da Universidade de Brasília, como requisito parcial para obtenção do Título de Bacharel em engenharia aeroespacial, automotiva, eletrônica, de energia e de software.

Universidade de Brasília – UnB Faculdade UnB Gama – FGA

Orientador: Alex Reis, Paulo Roberto M. Meireles, Rhander Viana e Sébastien R. M. J. Rondineau

> Brasília, DF 2017

Lista de ilustrações

Lista de tabelas

Sumário

Parte I Escopo do Projeto

1 Introdução

1.1 Contextualização

Uma das grandes demandas de profissionais e entusiastas do esporte de ciclismo é ter a opção de poder praticar em um ambiente fechado, seja em casa, academia ou laboratório. Este interesse é natural por questões de praticidade, comodidade ou por questões mais sérias, tais como avaliações de desempenho. Para este intuito são usadas plataformas de ciclismo estáticas, onde o atleta pode desempenhar sua atividade restrita a um espaço pequeno e fechado. Um exemplo de plataforma estática que ganhou muita fama é a bicicleta ergométrica.

Contudo, o fator preponderante nesta aplicação é o quão próximo os estímulos que essa plataforma estática de ciclismo causa estão dos estímulos de uma corrida de bicicleta em ambiente livre. Neste quesito entram as três grandes propostas deste projeto, que são a plataforma estática iterativa, imersão em ambiente de realidade virtual e medição de dados fisiológicos e de desempenho.

1.2 Objetivo Geral

Construção de uma plataforma de ciclismo estática e iterativa com imersão do usuário em ambiente de realidade virtual com uso de óculos de realidade virtual e monitoramento e armazenamento de dados fisiológicos e de desempenho.

1.3 Objetivos Específicos

Para atingir o objetivo geral e atender a demanda exigida pelo projeto deverão ser cumpridos os seguintes objetivos específicos:

- Projeto e construção da plataforma de acoplamento para bicicleta.
- Projeto do sistema de alimentação dos atuadores e sistemas de sensoriamento.
- Implementação de um sistema de geração de energia para a plataforma.
- Desenvolvimento do sistema de controle dos componentes.
- Projeto dos sistemas de sensoriamento e construção dos circuitos.
- Configuração do microcontrolador responsável pela aquisição e transmissão de dados.

- Desenvolvimento de ambiente e jogo de realidade virtual.
- Estabelecimento de um protocolo de comunicação entre os sistemas de aquisição e processador central (PC).
- Armazenamento de informações adquiridas pelos sensores em um registro.

2 Definições

2.1 *WBS*

Figura 1 – Estrutua Analítica do Projeto.

2.2 Lista É/Não É

- O jogo é um simulador de um ambiente de corrida de bicicleta gamificado que utiliza informações reais do usuário.
- O jogo não é uma a simulação de um ambiente para a exploração do usuário.
- O jogo mostra as medidas do desempenho do usuário comparando-as com resultados anteriores. O design gráfico do jogo não é realista.
- É um produto que possui um sistema de conversão de energia.
- Não é um produto que possui um sistema de alimentação de energia integrado a rede elétrica convencional.

- É um produto em que a alimentação principal ocorre por meio de bateria(s).
- $\bullet\,$ É um produto que possui um sistema de alimentação parcialmente autônomo.
- É um produto que possui um sistema de alimentação com referências sustentáveis.
- É uma estrutura adaptável.
- Não é uma estrutura simples de treino de ciclismo.
- É uma estrutura modular.
- Não é uma bicicleta ergométrica.
- \bullet É um produto com aquisição de dados através de sensores
- É um produto modularizado com modulos comunicantes
- $\bullet\,$ Não é um produto com comunicação totalmente sem fio
- É um produto que faz uso de um protocólo de comunicação

3 Descrição das atividades e responsabilidades des

3.1 Requisitos

3.1.1 Requisitos Funcionais

- Simular corrida de bicicleta em ambiente virtual.
- Manter dados do usuário.
- Visualizar dados de desempenho.
- Gerar energia que alimente pelo menos parcialmente o sistema.
- Monitorar movimentação da bicicleta.
- Monitorar os dados fisiólogicos do usuário de respiração, batimentos cardiacos e resistência galvânica da pele.
- Trasmitir dados monitorados para o óculos.
- Controlar atuadores para emular movimentos do ambiente de realidade virtual.
- Projeto de uma estrutura adaptável que comporte bicicletas de aros de 26 ou 29 polegadas.
- Projeto de uma estrutura que comporte sensores, motores e aparatos tecnológicos.

3.1.2 Requisitos de Desempenho

- O jogo deve executar a uma taxa mínima de 24 frames por segundo.
- O jogo deve responder às entradas dos outros sistemas a um tempo de 100 milissegundos.
- O jogo deverá ser disponível para os sistemas operacionais Windows e Linux.
- O sistema de alimentação deve fornecer uma autonomia mínima de 5 minutos para o sistema.
- O sistema de controle de carga deve ser sincronizado com a realidade do jogo.
- Os sistemas de monitoramento do atleta devem ser enviados via wireless.

- Os sistemas de monitoramento devem ser construídos com robustez suficiente de maneira que possam ser instalados em luvas, pulseiras, cintos e/ou coletes para que possam ser usados pelo usuário e estar em constante movimento.
- Permitir movimentação do guidão da bicicleta.
- Ser firme e segura a fim de prevenir acidentes por tontura ou erro na simulação.

3.2 Estudo da Viabilidade do Projeto

3.2.1 Infra-estrutura

O espaço disposto para o projeto é o Laboratório de Pesquisa em Artes e Tecno-Ciência (LART) localizado dentro do MOCAP. Este laboratório visa integrar artistas e cientistas em uma visão mais humanista dos avanços tecnológicos. Ele nos promove um espaço de trabalho, peças, computadores e apoio dos professores. Ainda temos como espaço de trabalho o Galpão da FGA, onde temos uma série de máquinas e técnicos para a produção da estrutura da plataforma.

3.2.2 Viabilidade Técnica

O produto é uma plataforma de realidade virtual na qual insere-se uma bicicleta. Esse é um produto que está disponível no mercado com diversas tecnologias e formas possíveis por empresas pioneiras, como por exemplo a WideRun, a Zwift e a VirZOOM. A plataforma será capaz de gerar, por óculos de realidade virtual, um ambiente, e haverá toda a aquisição de dados por meio de sensores espalhados pela bicicleta, a fim de monitorar a atividade física exercida pelo usuário. Há mais de uma década que diversos artigos científicos mostram os resultados de estudos do comportamento fisiológico em ambiente virtual (??) (??) (??) mostrando a necessidade e interesse neste tópico. Nossa solução ainda permite a economia de energia, tendo em vista que parte do sistema é um microgerador de energia, com o intuito de fornecer energia para os componentes do sistema, algo também que esta começando a se espalhar em academias e projetos de pesquisas.

O objetivo desta plataforma é estudar e monitorar os ciclistas enquanto realizam exercício indoor em um ambiente virtual, uma área inovadora que tem ainda muito a avançar, tanto em pesquisas quanto em mercado e em implementação de recursos tecnológicos, tais como sensores de frequência cardíaca, microgeração de energia e imersão em realidade virtual, os quais são novidades para boa parte da população. Tais estudos serão conduzidos pelo LART, que se beneficiará dessa plataforma de baixo custo de ciclismo e óculos de realidade virtual, para fazer essas pesquisas de ponta.

3.2.2.1 Investimentos fixos programados

Há a disponibilidade de local físico para trabalho, o LART, portanto, despreza-se os custos com instalações complementares. Os equipamentos principais a serem utilizados, tais como o *Oculus Rift*, estão sendo disponibilizados também pelo laboratório. Os custos fixos programados seriam apenas com compras de componentes para a instrumentação e controle ativo da plataforma e para a construção da estrutura da plataforma.

3.2.3 Aspectos Organizacionais e de Gestão

O projeto é desenvolvido por alunos de Engenharias (Aeroespacial, Automotiva, Eletrônica, Energia e Software), apoiado por professores gabaritados em gestão de projetos e com experiência em lecionar a matéria de Projeto Integrador em Engenharia II. Haverão pontos de controle pré-definidos por estes professores que irão servir de avaliação e acompanhamento do projeto, contudo, a equipe se propõe a elaborar um cronograma com datas específicas de construção, validação e conclusão dos subsistemas.

Dos membros da equipe, todos estão no final do curso, o que os deixa em posição de conseguirem construir cada subsistema do projeto. Ainda temos alguns alunos de eletrônica e software com experiência em realidade virtual, alunos de automotiva experientes em design, simulação e fabricação, alunos de software premiados em competição.

3.2.4 Planejamento Estratégico

Tabela 1 – Matriz S.W.O.T.

	Fatores Controláveis	Fatores Externos
Pontos Fortes	Alunos de várias engenharias; É um projeto simples que pode ser ampliado; Tema instigante e inovador.	Apoio do LART; Suporte financeiro de professores; Atuadores D-Box a disposição; Acesso ao Galpão.
Pontos Fracos	Desconhecimento inicial de algumas tecnologias chave para o projeto; Tempo bem curto.	Greve; Quebrar algum equipamento essencial.

Com base na pesquisa de tendências já realizada, em todo o trabalho já feito e na matriz S.W.O.T. o projeto inicial será o cenário mais simples possível com as exigências de mais alto nível. Esse cenário será adaptável a melhorias que imagina-se serem possíveis, porém não há garantia de tempo hábil. Assim, caso o projeto básico termine antes do previsto, acrescentar-se-á algumas funções que seriam facilmente implementadas no design inicial.

Um exemplo claro disso é a utilização de atuadores para a inclinação da plataforma. Isso deixaria a simulação mais real, porém não se sabe se haverá tempo suficiente. Para tanto, projetar-se-á a plataforma que possa ser facilmente integrada com uma base de atuadores D-Box, que já consta no LART. Mas antes disso, tem que se assegurar que todos os demais requisitos do projeto estejam funcionando. Uma descrição detalhada dos requisitos da plataforma se encontram na seção ??.

Assim, os requisitos iniciais visarão segurança do usuário em caso de tontura, dificuldade de pedalada em simulação de subida, geração de energia a partir da movimentação da bicicleta e criação de ambiente virtual integrado com a plataforma real.

Esses objetivos primários foram discutidos com os professores do LART e com os orientadores da disciplina e acredita-se que sejam factíveis e que são o mínimo esperado pelo grupo.

3.3 Escopo

3.3.1 Definição do Escopo

A proposta do projeto é composto pela plataforma estática iterativa, a imersão em ambiente de realidade virtual e a medição de dados fisiológicos e de desempenho.

A plataforma estática deve ser de tal forma que o usuário tenha como treinar e sentir resultados assim como na corrida em ambiente livre. Para isso a estrutura tem um projeto que permite o usuário acoplar sua própria bicicleta para desenvolver suas atividades e permitir que os atuadores possam oferecer uma resposta de maneira similar para eventos comuns a uma corrida de bicicleta, tais como subida, descida, vibração e aceleração.

O ambiente em realidade virtual será desenvolvido visando a criação de um jogo a ser executado em um *Oculus Rift* padrão. Este tipo de óculos é uma ferramenta usada para promover imersão do usuário em um cenário de realidade virtual 3D e seu objetivo é atuar em sincronia com a plataforma estática proporcionando todo o estímulo visual do trajeto de corrida.

Os sistemas de monitoramento irão colher diversos dados do usuário e da própria bicicleta e armazenar os mesmos, para que possam ser observados em tempo real pelo usuário ou ainda ser expostos a uma na análise posterior a execução.

O intuito destas três abordagens é permitir que o usuário tenha a opção de praticar sua rotina de atividades, com sua própria bicicleta, em um ponto estático e possa ter uma métrica desta execução.

3.3.2 Processo de Formalização de Aprovação

A fim de conseguir controlar as entregas foi definido um processo sob a qual toda atividade que resulte em algo entregável deve passar.

Os objetivos do processo consistem em verificar se aquele entregável foi submetido a um conjunto de testes e se ele propicia alguma alteração no escopo. Para tanto, segue o processo juntamente com a descrição das atividades:

Figura 2 – Processo de Formalização de Entregas.

- **Testar entrega** Consiste na avaliação do que foi produzido, com o intuito de garantir que está pronto para ser utilizado. Uma prática importante é validar os pontos de extremidade que possam vir a ocorrer com o construido.
- Processo de Gerenciamento de Mudança Uma vez que está sendo entregue pode afetar diretamente o planejamento, foi definido um processo de gerenciamento de mudança, que é melhor explicado na próxima subseção.
- Aprovar entrega Estando testado e verificado que a entrega obedece aos requisitos especificados, ela é dita como aprovada. Aprovar a entrega consiste em atualizar o status do que faz referência a ela, como o cronograma.

3.3.3 Processo de Gerenciamento de Mudança

Toda vez que o escopo necessitar de uma alteração, devem ser realizadas as atividades do processo de gerenciamento de mudança do escopo que está descrito no diagrama da figura 3.

Figura 3 – Processo de Gerenciamento de Blocos.

As atividades do processo de gereciamento de mudança são:

- Identificar o Problema Nesta atividade, a equipe deve identificar o problema que ocasionou a mudança do escopo. O resultado desta atividade facilitará as análises posteriores do processo.
- Analisar o impacto da mudança nos outros subsistemas A partir da identificação do problema, a equipe deve analisar o impacto desta mudança nos outros subsistemas. Tudo o que deverá ser implementado no projeto devido à mudança solicitada é identificado e analisado nesta atividade.
- Analisar o custo da mudança A equipe deve analisar o custo que a mudança solicitada vai gerar ao projeto.
- Aprovar mudança Após a análise de impacto e custo no projeto, a equipe deve acordar se a mudança será realmente encorporada no projeto ou não, caso os impactos e os custos sejam prejudiciais.
- Atualizar o escopo do projeto O escopo do projeto deve ser atualizado com todas as mudanças identificadas na atividade de Analisar o impacto da mudança nos outros subsistemas.
- Atualizar o cronograma do projeto O cronograma deve ser adaptado com as mudanças encorporadas a fim de atender o prazo estabelicido do projeto.

3.4 Análise Crítica de Projeto e Desenvolvimento

3.4.1 Processo de Gerenciamento dos Riscos

O principal objetivo do processo de gerenciamento dos riscos é minimizar e controlar os eventuais impedimentos que ocorram no projeto e explorar os acontecimentos positivos. Em geral, neste processo são identificados todos os riscos de todas as categorias possíveis, cujo são analisados e respostas à eles caso ocorram são planejadas. As atividades do processo de gerenciamento de riscos estão descritas abaixo.

Figura 4 – Processo de Gerenciamento de Riscos.

- Identificar riscos: Consiste em elencar os riscos que podem afetar o desenvolver do projeto. Além de listá-los procura-se entender algumas de suas características para que sejam analisadas posteriormente.
- Analisar qualitativamente: Nesta etapa são aplicadas métricas de impacto e probabilidade aos riscos a fim de obter uma compreensão maior sobre eles.
- Analisar quantitativamente: Consiste em analisar de forma numérica os riscos para investigar melhor as métricas definidas no processo anterior.
- Planejar respostas: Com base na análise feita, é estipulado um conjunto de ações a serem tomadas de acordo com cada risco.
- Monitorar: Consiste em controlar os riscos durante o projeto, avaliando as suas causas, e executando as ações planejadas.

3.4.2 Categoria dos Riscos

Analisando a natureza dos riscos, os mesmos foram categorizados em três principais tipos:

- Riscos Externos: acontecimentos inerentes ao projeto que impactam no planejamento e desenvolvimento do mesmo. Como por exemplo, a falta de financiamento dos patrocinadores.
- Riscos Técnicos: eventos intrinsecamente ligados com a construção do produto. Um exemplo que pode ser citado é a descontinuação das tecnologias que serão utilizadas.
- Riscos Gerencias: estão relacionados ao mau planejamento e controle do projeto ocasionando impactos no produto final. Citando caso análogo, a definição de um escopo muito grande para o prazo de tempo do projeto.

3.4.3 Definições de Probabilidade e Impacto dos Riscos

Abaixo segue um conjunto de pesos da probabilidade e do impacto. Tais valores servirão de base para a priorização dos riscos, a fim de que ganhem um maior controle do que os outros.

3.4.3.1 Probabilidade

Tabela 2 – Probabilidade

Probabilidade (P)	Intervalo	Peso
Muito Baixa	$0 \le P \le 20\%$	1
Baixa	20% < P <= 40%	2
Moderada	40% < P <= 60%	3
Alta	60% < P <= 80%	4
Muito Alta	80% < P <= 100%	5

3.4.3.2 Impacto

Tabela 3 – Impacto

Impacto (I)	Descrição	Peso
Muito Baixo	Quase que imperceptível ao projeto	1
Baixo	Pouca influência no desenvolvimento do projeto	2
Moderado	Notável ao projeto, mas sem grandes consequências	3
Alto	Dificulta o desenvolvimento do projeto	4
Muito Alto	Impossibilita o prosseguimento do projeto	5

3.4.4 Matriz de probabilidade e Impacto

Os pesos da probabilidade de um evento ocorrer em contraste ao risco que este mesmo oferece é apresentado na tabela 4.

Tabela4 – Probabilidade e Impacto

P\I	Muito Baixo	Baixo	Moderado	Alto	Muito Alto
Muito Baixa	1	2	3	4	5
Baixa	2	4	6	8	10
Moderada	3	6	9	12	15
Alta	4	8	12	16	20
Muito Alta	5	10	15	20	25

3.4.4.1 Prioridade

Com base na matriz apresentada é possível determina o nível de prioridade de cada risco como consequência dos intervalos definidos.

Tabela 5 – Prioridade

Prioridade	Intervalo
Baixa	1-5
Média	6-15
Alta	16-25

3.4.5 Registro dos Riscos

3.4.5.1 Riscos Negativos do Projeto

Tabela 6 – Riscos do Projeto

Causa	Risco	Descrição	Impacto
Inexperiência da equipe	R01	Dificuldades com as tecnologias e recursos utilizados para a construção da plataforma	Produtividade baixa e atraso nas entregas
Escopo mal definido	R02	Mudança no escopo	Replanejamento das atividades
Falha no planejamento ou baixa produtividade da equipe ou desmotivação dos integrantes	R03	Atraso nas entregas	Atraso no cronograma
Desmotivação dos integrantes	R04	Membros desistirem da disciplina	Sobrecarga de trabalho
Falha no planejamento	R05	Não concluir o escopo do projeto	O grupo pode ser penalizado com a nota do trabalho
Professores e/ou técnicos insatisfeitos	R06	Greve na universidade	Mudança no planejamento e interrupção do projeto
Interrupção no financia- mento do projeto	R07	Desinteresse dos patrocinadores	Mudança no planejamento financeiro e no orçamento do projeto

Tabela 7 – Riscos do Projeto Estrutual

Causa	Risco	Descrição	Impacto
Atraso na entrega da estrutura	R08	Atraso na produção/montagem da estrutura no prazo estipulado	Produtividade baixa e atraso nas entregas
Técnicos insatisfeitos	R09	Mau relacionamento com os técnicos	Orçamento maior que o necessário e também uma logística mais complexa
Professores contra	R10	Um dos fatores estipulados por um dos professores pa- trocinadores é que o projeto fique na antessala do Mocap; tal lugar também é dividido entre outros professores e estes podem ser contra a a- plicação do projeto no local Para entrarem no LART os	Se essa possibilidade ocorrer ou terá que ser confecciona- do uma estrutura fácil de ser retirada do laboratório ou estipulado outro lugar para a aplicação
Professores que dão aula no Mocap incomo- dados com os alunos	R11	alunos terão que pedir para que os funcionários abram e fechem as portas e também terão que atra- vessar a aula no momento de aula, assim como conver- sas e barulhos de trabalho	Prejudicará a fluência e liberdade de trabalho. Se forem barrados ou alertados pelos professores pelo incómodo tornará mais difícil o trabalho ágil
Falta de equipamentos e peças	R12	Falta ou má aplicação dos equipamentos já comprados ou produzidos Alguns equipamentos e ma-	Atraso no cronograma, pois deverá ser fabricado ou en- comendado outra peça
Falta de dinheiro	R13	teriais possuem o preço bas- tante alto e contando com o orçamento alto das outras subequipes pode acontecer de ter escassez de financeiro	Atraso no projeto para encontrar outra possibilidade mais barata ou adaptação do projeto
Falhas, trincas, desmontes no momento da integração final	R14	Após a construção final po- de ocorrer falhas na estrutu- ra	Atraso no projeto para a manutenção
Danos a patrimônios da UnB	R15	Danos a patrimônios como: quebra de furadeira, torno, fresa e cnc, furar a lona ca- ve ou algum patrimônio no Mocap	Aumentos do custo do projeto
Geometria incompatível a outro subsistema	R16	Na integração final pode a- contecer que um subsistema tenha projetado de uma for- ma que não encaixe ou atra- palhe qualquer desempenho	Atraso no projeto para a manutenção

Tabela 8 – Riscos do Subsistema de Aquisição e Controle

Causa	Risco	Descrição	Impacto
Atraso na entrega dos sensores comprados	R17	O produto não ser entregue no prazo estipulado	Atraso no cronograma de implementação e de testes e ensaios
Falta de equipamentos de monitoramento	R18	Não conseguir equipa- mentos ou meios que per- mitam a validação dos sistemas de monitoram- ento do atleta	Subsistemas com risco de não serem feitos confor- me estipulado previamen- te
Sistema de conversão eletrômecânico não funcionar conforme previsto no projeto	R19	A resistência imposta pelo alternador da roda não ser suficiente para emular um ambiente de declive e aclive	Atraso no cronograma e mudança no planejamen- to
Protocolo de comunica- ção não ser implementado	R20	Não conseguir implementar um protocolo eficiente para comunicação entre os mó- dulos e o computador cen- tral	Desconexão dos subsistemas
Danos a componentes ele- trônicos unitários no pro- jeto	R21	Danificar sensores, atuadores ou afins, que foram comprados unitariamente	Atraso do projeto, aumentode custo
Atraso na construção dos sistemas	R22	Atraso na etapa de constru- ção dos sistemas de senso- riamento do atleta ou da bicicleta	Atraso no projeto
Atraso no aprendizado acerca dos componen- tes	R23	Não ter trabalhado com as ferramentas decididas na e- tapa de planejamento e ter uma curva de aprendizado lenta	Atraso no projeto

3.4.5.2 Riscos Positivos

Tabela 11 – Riscos Positivos

Causa	Risco	Descrição	Impacto
Alta produtividade e agi-	R01	Finalização do escopo dos	Conclusão precoce do es-
lidade na construção dos		subsistemas antes do tempo	copo planejado
subsistemas		planejado	
Controle dos atuadores	R02	Finalizar o controle dos atu-	O usuário terá uma imer-
D-BOX		adores para pequenas incli-	são ainda mais real na re-
		nações na plataforma	alidade virtual

Tabela 9 – Riscos do Subsistema do Ambiente Virtual

Causa	Risco	Descrição	Impacto
Baixa qualidade dos assets produzidos	R24	Produção dos componentes visuais abaixo do esperado	Interface gráfica comprometida
Lentidão entre a comunicação do software com os sensores	R25	Tempo de processamento com os sensores atrapa- lhando a execução do fluxo de ações no ambiente vir- tual	Prejuízo na experiência do usuário

Tabela 10 – Riscos do Subsistema de Alimentação

Causa	Risco	Descrição	Impacto
Inexperiência prática dos integrantes com a tecno- logia a ser utilizada	R26	Seleção da solução e equi- pamentos errados durante a fase de planejamento para atender as demandas de alimentação do projeto	Produtividade baixa e atraso nas entregas
Inexperiência prática dos integrantes com a tecno- logia a ser utilizada	R27	Manipulação errônea de equipamentos e disposi- tivos	Danos nos equipamentos e acréscimo no orçamento

3.4.6 Análise e Resposta aos Riscos

3.4.6.1 Riscos Negativos

Tabela 12 – Respostas aos Riscos do Projeto

Risco	Probab.	Impacto	Prior.	Ação
R01	Muito Alta	Muito Alto	Alta	Prevenir - Realizar treinamentos em equipe
R02	Moderada	Moderado	Média	Mitigar - Refazer planejamento
R03	Moderada	Alto	Média	Mitigar - Cobrar entregas um dia antes e replanejar
				cronograma
R04	Baixa	Muito Alto	Média	Mitigar - Redefinir escopo e atividades entre os
				membros
R05	Baixa	Alto	Média	Mitigar - Fazer um bom planejamento, buscar opi-
				niões de pessoas mais experientes
R06	Muito Baixa	Muito Alto	Baixa	Prevenir - Refazer o planejamento
R07	Muito Baixa	Muito Alto	Baixa	Prevenir - Manter continuamente os patrocinado-
				res informados sobre o status do projeto

Tabela 13 – Respostas aos Riscos do Projeto Estrutural

Risco	Probab.	Impacto	Prior.	Ação
R08	Moderada	Alto	Média	Prevenir - constantemente conferir o planejamento
R09	Muito Baixa	Moderado	Baixa	Prevenir - demonstrar respeito para com os técni-
				cos
R10	Baixa	Alto	Média	Prevenir - sempre consultar os professores envolvi-
				dos e demonstrar respeito para com eles
R11	Baixa	Moderado	Média	revenir - quando usar o LART, não fazer tanto ba-
				rulho e ser discretos ao entrar e sair do laboratório
R12	Moderada	Alto	Média	Prevenir - fazer pesquisa de mercado com antece-
				dência para validar o orçamento.
R13	Muito Baixa	Alto	Baixa	Prevenir - manter uma boa relação com os patro-
				cinadores do projeto
R14	Baixa	Alto	Média	Prevenir - validar bem a estrutura com CAE e
				operar a estrutura conforme foi projetada para ser
				usada
R15	Baixa	Moderado	Média	Prevenir - sempre consultar os professores respon-
				sáveis e utilizar os equipamentos que já se tenha
				conhecimento antes.
R16	Moderada	Alto	Média	Prevenir - manter uma boa engenharia de siste-
				mas para garantir que todos os sistemas estejam
				alinhados

 Tabela 14 — Respostas a
os Riscos do Subsistema de Aquisição e Controle

Risco	Probab.	Impacto	Prior.	Ação
R17	Moderada	Alto	Média	Mitigar - Comprar os sensores o mais rápido possí-
				vel e um distribuidor próximo, se possível regional e em loja fisica.
R18	Moderada	Alto	Média	Prevenir - Procurar professores, pesquisares e de- senvolvedores da área de biomédica que possam
				informar onde conseguir os aparatos ou como validar o sistema dado sua falta
R19	Moderada	Moderado	Média	Previnir - Trocar o alternador por um outro gerador eletromecânico ou compensar tal deficiência
R20	Moderada	Muito Alto	Média	com outro sistema de carga ou outro algoritmo Previnir - Trocar o protocolo de comunição ou simplifica-ló
R21	Baixo	Baixo	Baixa	Previnir - Estabelecer uso e testes de componentes mais caros, unitários e de entrega demorada se- guindo a indicação do facricante a rigor. Comprar componentes sobressalentes
R22	Alta	Muito Alto	Alta	Previnir - Seguir cronograma e procurar auxílio para empecilhos persistentes
R23	Alto	Muito Alto	Alta	Previnir - Fazer revisão bibliográfica acerca da tec- nologia, consultar o <i>datasheet</i> do fabricante e pro- curar referências de uso em aplicações similares

Tabela 15 – Respostas aos Riscos do Subsistema do Ambiente Virtual

Risco	Probab.	Impacto	Prior.	Ação	
R24	Moderada	Alto	Média	Mitigar - Buscar assets disponíveis para a plata-	
				forma de desenvolvimento	
R25	Moderada	Muito Alto	Média	Prevenir - Realizar testes constantemente	

Tabela 16 – Respostas aos Riscos do Subsistema de Alimentação

Risco	Probab.	Impacto	Prior.	Ação
R26	Alta	Muito Alto	Alta	Prevenir - Realizar extensa pesquisa bibliográfica
				sobre as tecnologias consideradas e conversar com
				profissionais experientes da área para noções prá-
				ticas.
R27	Alta	Muito Alto	Alta	Prevenir -Realizar simulações de todas as ações an-
				tes de implementar na prática e sempre que possí-
				vel contar com supervisão.

3.4.6.2 Riscos Positivos

Tabela 17 – Respostas aos Riscos Positivos

Risco	Probab.	Impacto	Prior.	Ação
RP01	Baixa	Muito Alto	Média	Explorar - Adicionar funcionalidades ao produto
RP02	Baixa	Alto	Média	Explorar - verificar com os que já trabalharam com
				D-Box e caso o cronograma permita, emular pe-
				quenos cenários de inclinações e vibrações

3.5 Recursos Humanos

3.5.1 Papéis e responsabilidades

As divisões das tarefas para a realização do projeto foram definidas de acordo com cada área para garantir uma qualidade do projeto. O papel do gerente geral é ser responsável por manter a equipe sempre focada no objetivo, manter a comunicação sempre em dia e dando assistência para todo o conjunto, deste modo, facilitando o processo de integração de todos os subsistemas.

Cada subsistema possui também um subgerente, responsável por acompanhar e ajudar seu subgrupo, manter uma melhor comunicação entre eles e reportar todos as informações para os demais.

Para determinar todas as tarefas a serem feitas e garantir uma melhor organização e interação entre os membros do grupo, serão realizadas reuniões como todos os integrantes do grupo semanalmente. E para que não ocorra conflitos de horários, foi criado uma

planilha de horários de todos os integrantes, para que todos possam saber dos horários disponíveis de cada um.

Por ser um projeto complexo onde exige uma integração entre 4 subsistemas, é necessário a utilização de ferramentas para o auxílio do projeto. As ferramentas utilizadas são o *Slack* para a comunicação com os integrantes, o *Google Drive* para armazenamento e compartilhamento de documentos, o *GitHub* para manutenção e verificação dos códigos utilizados na eletrônica e software ao longo do projeto e o *Overleaf* para a edição e formatação do documento final do projeto.

3.5.2 Organograma

O projeto é composto por 13 integrantes e foi dividido em 4 equipes, sendo cada uma delas responsável por um subsistema. Estes subsistemas foram previamente definidos para que cada equipe tivesse a liberdade de trabalhar independentemente, deste modo, aumentando consideravelmente a velocidade de produção. Os subsistemas definidos para o projeto são: Estrutura, Energia, Software e Eletrônica. E para cada equipe foi designado um subgerente responsável por supervisionar e coordenar cada área do projeto.

A estrutura geral de gerenciamento do projeto pode ser observada na figura 5.

Figura 5 – Organograma do projeto.

Parte II

Planejamento

4 Orçamento do Projeto

4.1 Simulador de Ambiente Virtual

Tabela 18 – Orçamento - Simulador de Ambiente Virtual

Recursos	Preço Unitário	Quantidade	Preço Total
Oculus Development Kit 1	R\$ 4.117,64	1	R\$ 4.117,64
Computador com placa de vídeo GTX 1050 TI e 8GB de RAM	R\$ 3.200,00	1	R\$ 3200,00
Custo Total		R\$ 7.317,64	

4.2 Sistema de Alimentação de Energia

Tabela 19 – Orçamento - Sistema de Alimentação de Energia

Recursos	Preço Unitário	Quantidade	Preço Total
Alternador VW 12 V 120 A	R\$ 299,00	1	R\$ 299,00
Bateria de Moto 12 V- 5 ah Honda	R\$ 84,99	1	R\$ 84,99
Custo Total		R\$ 383,99	

4.3 Estrutura

Tabela 20 – Orçamento - Estrutura

Recursos	Preço Unitário	Quantidade	Preço Total
Perfis de alumpinio (40 x 40)	R\$ 66,70 (o metro)	6 (metros)	R\$ 400,00
Compensado para gabaritos	R\$ 70,00	1	R\$ 70,00
Impressão de desenhos técnicos	não definido	não definido	R\$ 30,00
para construção			
Bicicleta para teste	R\$ 400,00	1	R\$ 400,00
Custo Total	R\$ 900,00		

4.4 Sistemas de Aquisição e Controle

Tabela 21 – Orçamento - Sistemas de Aquisição e Controle

Recursos	Preço Unitário	Quantidade	Preço Total
Sensor de Velocidade Encoder	R\$ 12,90	1	R\$ 12,90
Pastilha piezoelétrico	R\$ 4,99	4	R\$ 19,96
FSR circular	R\$ 57,00	2	R\$ 114,00
Potênciometro Linear 200 k Ω	R\$ 0,79	1	R\$ 0,79
Sensor GSR	R\$ 31,00	1	R\$ 31,00
Sensor ótico	R\$ 5,26	1	R\$ 5,26
FSR quadrado $(4,38 \times 4 \times 38 \text{ cm}^2)$	R\$ 79,90	2	R\$ 159,80
Componentes eletrônicos varia-	não definido	não definido	R\$ 50,00 (estimado)
dos			
Custo Total	R\$ 393,71		

O custo total do projeto estimado inicialmente é na importância de R\$ 8.995,34, desta quantia, R\$ 1677,7 refere-se a equipamentos a serem adiquiridos e o restante, R\$ 7.317,64, refere-se aos custos do óculos Rift e oDesktop do LART.

5 Cronograma

	0	Nome	Duração	Ínicio	Fim
1		☐ Problematização e Concepção	11d?	18/08/2017	29/08/201
2	<u></u>	Analisar viabilidade	0.33d?	19/08/2017	19/08/201
3	<u> </u>	Definir solução	8.38d?	18/08/2017	26/08/201
4	-	Definir gerência	0.33d?	23/08/2017	23/08/201
5	**	Configurar Ambiente	7.38d?	18/08/2017	25/08/201
6	**	Ponto de Controle 1	1d?	28/08/2017	29/08/201
7		□Construção dos Subsistemas	83d?	18/08/2017	09/11/201
8		□ Ambiente Virtual	53.38d?	28/08/2017	20/10/201
9	-	Estabilizar o ambiente de desenvolvimento	4.38d?	28/08/2017	01/09/201
10	-	Desenvolver mecanismo básico do jogo	13.38d?	02/09/2017	15/09/201
11	-	Construir de assets fundamentais	6.38d?	16/09/2017	22/09/201
2	-	Emular inputs e outputs com a bicicleta e jogador	4.38d?	23/09/2017	27/09/201
3		Criar funcionalidade de conta	6.38d?	28/09/2017	
4		Construir dos cenários	10.38d?	05/10/2017	
5		Implementar gráficos de desempenho	5.38d?	15/10/2017	
6	-	☐ Sistema de alimentação de energia	53.38d?	28/08/2017	
7		Desenhar a solução do mecanismo de conversão de energia	5.38d?	28/08/2017	
8		Selecionar equipamentos para mecanismo de conversão de energia	3.38d?	02/09/2017	
9		Realizar simulações com todos os equipamentos	5.38d?	05/09/2017	10/09/20
0	100	Realizar o orçamento final dos equipamentos demandados	0.33d?	10/09/2017	10/09/20
1	5	Construir o mecanismo de conversão de energia	10.38d?	12/09/2017	22/09/20
2	<u> </u>	Testar o mecanismo de conversão de energia	3.38d?	22/09/2017	25/09/20
3	100	Integrar o sistema de conversão de energia com a liberação de energia	6.38d?	25/09/2017	01/10/20
4	5	Testar o funcionamento das atividades desenvolvidas com integração com os outros subsistemas	9.38d?	01/10/2017	10/10/20
5	100	Listar o consumo energético e realizar o balanço energético	5.38d?	10/10/2017	15/10/20
6	-	Conceber e implementar soluções alternativas caso a autonomia completa do sistema não seja alcançada	5.38d?	15/10/2017	20/10/20
7		⊟Aquisição e Controle	73.38d?	18/08/2017	30/10/20
3		□ Monitoramento bicicleta	39.38d?	28/08/2017	
9	-	Projetar e simular sistema de monitoramento da bicideta	9.38d?	28/08/2017	
0		Construir e testar sistema de monitoramento da bicicleta	30.38d?	06/09/2017	_
	Lib				_
1		□ Monitoramento do atleta	59.38d?	28/08/2017	
2	150	Projetar e simular sistema de monitoramento dos dados fisiológicos do atleta	12.38d?	28/08/2017	
3		Construir e depurar sistema de monitoramento dos dados fisiológicos do atleta	31.38d?	09/09/2017	
4		Teste e validação sistema de monitoramento dos dados fisiológicos do atleta	16.38d?	10/10/2017	
5		□Controle dos atuadores	52.38d?	08/09/2017	30/10/20
6	100	Implementar algoritmo ou rotina de controle dos atuadores da plataforma	29.38d?	01/10/2017	30/10/20
7	100	Calibrar nível de atuação do alternador	14.38d?	08/09/2017	22/09/20
8		□ Comunicação dos módulos com óculos	73.38d?	18/08/2017	30/10/20
9	100	Programar microcontrolador para captar dados dos sensores	7.38d?	09/10/2017	16/10/20
0		Programar microcontrolador para enviar dados para o computador principal	0.33d?	18/08/2017	18/08/20
1	-	Estabelecer protocolo de comunicação para envio de dados baseado em lo	29.38d?	01/10/2017	30/10/20
2		⊟Estrutura	73.38d?	20/08/2017	01/11/20
0	-	Ponto de Controle 2	1d?	08/11/2017	
3		Sketches iniciais	2.38d?	31/08/2017	
4		CAD Beta	4.38d?	02/09/2017	
+ 5			4.38d? 4.38d?	06/09/2017	
		Aquisição de dados para condições de contornos para simulação em CAE			-
6	100	Execução e validação parcial das simulações	2.38d?	10/09/2017	_
7		Consulta de projeto com os técnicos do Galpão	2.38d?	12/09/2017	
3	*	Definição prévia de materiais	0.38d?	14/09/2017	
)		Design preliminar	2.38d?	15/09/2017	
)	-	Execução e validação final das simulações	3.38d?	17/09/2017	
	**	Definição final de materiais	0.38d?	25/09/2017	25/09/20
2	**	Desenho técnico	6.38d?	25/09/2017	01/10/20
3	*	Design crítico	2.38d?	01/10/2017	03/10/20
ı	**	Montagem de gabaritos	3.38d?	03/10/2017	06/10/20
;		Corte	9.38d?	06/10/2017	15/10/20
3		Processo de Soldagem	3.38d?	15/10/2017	
,		Acabamento	2.38d?	18/10/2017	
3		Assembly final Estrutura	0.38d?	20/08/2017	
		Assembly final Estitution		22/10/2017	
9			10.38d?		
1		□Integração	29d?	03/11/2017	
· 2	3	Integrar módulos	28.38d?	03/11/2017	

Figura 6 – Cronograma Geral do Projeto

6 Subsistemas

6.1 Simulador de Ambiente Virtual

6.1.1 Apresentação e Resumo

VRide é um jogo que deverá ser utilizado em uma plataforma de bicileta de realidade virtual para simular percursos de bicileta em diferentes cenários.

6.1.2 Principais Características

6.1.2.1 Simulação de Corrida

O jogo é um simulador de corrida em bicicleta. Possuirá sistema de voltas, podendo escolher o número de voltas na pista e ter o tempo das voltas medido e armazenado para efeitos de comparação futura.

6.1.2.2 Conta de Usuário

O jogador poderá criar contas locais para guardar preferências, recordes e dados de desempenho coletados pelo subsistema eletrônico. O jogo apresentará gráficos apresentando a evolução desses indicadores.

6.1.2.3 Dois tipos de pista

Haverá dois tipos de pista. Uma será baseada em circuitos de corrida *indoor* e é focada em treinos profissionais e evolução do usuário em relação aos exercícios. A segunda será baseada em cenários abertos comumente usados para ciclismo como parques e bosques. Nesse tipo de pista o foco será na exploração do ambiente e experimentação das diferentes sensações de elevação e vibração proporcionadas pelo projeto.

6.1.3 Público-Alvo

O jogo será feito para os usuários do laboratório da bicicleta de realidade virtual localizado no campus Gama da UnB.

6.1.4 Plataformas

O jogo será desenvolvido para computadores e poderá ser executado nos sistemas operacionais *Windows* e *Linux*.

6.1.5 Controles

- Giroscópio do *oculus*: selecionar opções do jogo.
- Botão integrado na estrutura: pausar o jogo.

6.1.6 Interfaces

A tela inicial do jogo apresentará duas modalidades de jogo: pista lisa ou pista com irregularidades. Cada modalidade de jogo possuirá um cenário diferente.

Ao final do jogo, serão apresentadas informações de desempenho do jogador durante o percurso.

6.1.7 Unity 3D

A engine Unity 3D será utilizada para a construção dos menus e cenários. Ela é uma engine comumente utilizada para a criação de jogos e foi escolhida como ferramenta pela integração com o óculos de realidade virtual e ferramentas de criação de ambientes 3D interativos. Possui uma arquitetura baseada em componentes e suas linguagens de programação padrão são C# e Javascript.

6.1.8 Oculus SDK

Figura 7 – Modelo de óculos *rift* disponível para o projeto.

O Oculus SDK é o kit de desenvolvimento a ser utilizado para a criação do ambiente de realidade virtual. Será utilizada a versão DK1 disponibilizada pelos patrocinadores do projeto. O kit inclui um óculos de realidade virtual com os componentes necessários para conectá-lo com um computador com placa gráfica, ponto necessário para a construção do sistema.

6.1.9 Testes

Os testes serão realizados na ferramenta *Unity Test Runner* disponibilizada pelo *Unity 3D*. Essa ferramenta permite que os testes sejam executados tanto em *Edit Mode* quanto em *Play Mode*.

6.2 Sistemas de Aquisição e Controle

6.2.1 Apresentação e Resumo

Todos os subsistemas propostos são feitos para mensurar dados fisiológicos e de desempenho para um futuro feedback para o atleta e controlar os atuadores presentes na plataforma.

6.2.2 Principais Características

6.2.2.1 Monitoramento da Bicicleta

O monitoramento da bicicleta se dá através de sensores de velocidade e aceleração, considerando passar estes parâmetros para o jogo de realidade virtual, possibilitando uma maior inserção do usuário no ambiente. O sistema será feito também de encoders, afim de que consigamos mensurar a distância percorrida pelo atleta, guardando este dado para que na posteridade possamos analisar com dados de outras sessões (indoor) ou até mesmo com dados cruzados em atividades externas (outdoor). Ademais este sistema também será responsável por captar dados referentes ao movimento angular do guidão, acionamento dos freios e deteção de presença do usuário assim que este se sentar na bicicleta.

6.2.2.2 Monitoramento do Atleta

O sistema principal a ser desenvolvido. Este subsistema tem como escopo mensurar dados fisiológicos do usuário, como batimento cardíaco, resistência na palma da mão e também fazer uma estimativa da respiração do usuário com o intuito de gerar parâmetros para análise sobre a diferença na prática de esportes no ambiente virtual e no real.

6.2.2.3 Controle de atuadores

Eles são responsáveis por agregar a sensação de movimento à plataforma da bicicleta, simulando os ambientes de inclinação, ladeiras e declives, concomitante ao ambiente virtual reproduzido nos óculos. Para emular os níveis de aceleração de aclives e declives serão utilizado motores e/ou geradores elétricos. Os algoritmos são escopos do projeto.

6.2.2.4 Comunicação dos módulos

Os subsistemas acima supracitados fornecem parâmetros que podem ser vistos pelos usuários. Estes parâmetros serão passados para a interface gráfica, disponível no óculos. A parte de comunicação entre os módulos e o óculos será desenvolvida pela equipe de eletrônica conjunto a equipe de software.

6.2.3 Testes

Os testes serão feitos de acordo com cronograma disposto, comparando os dados adquiridos com os resultados desenvolvidos em pesquisas e artigos científicos já disponibilizados em bases de consulta. Para validação dos sistemas finais, os sistemas deverão responder a um nível satisfatório ao serem comparados com equipamentos profissionais, caso haja possibilidade de usufruir destas ferramentas.

6.3 Estrutura

6.3.1 Apresentação e Resumo

Desenvolvimento de uma plataforma física com intuito de acoplar todos os outros sistemas desenvolvidos: sensores, atuadores, entre outros e concluir um sistema de segurança com o objetivo de preservar a integridade física do usuário.

Figura 8 – Modelo de bicileta acoplada a estrutura proposta.

6.3.2 Principais Características

6.3.2.1 Desenvolvimento da plataforma

Visa o desenvolvimento de uma plataforma para acoplamento da bicicleta da maneira mais simples possível. Isto envolve todo dimensionamento da parte modular e posicionamento dos componentes dos sistemas. O projeto deste subsistema deve ser todo simulado de forma computacional, para melhor avaliação dos materiais a serem escolhidos, peso e esforços na plataforma.

6.3.2.2 Segurança

Como o ambiente virtual junto com a utilização da plataforma (caracterizando uma realidade aumentada) pode gerar um certo desconforto para o usuário, é proposto pela equipe um sistema que auxilie o usuário em momentos de dificuldade ou que possam acarretar em acidentes. Para tal, haverá toda a documentação e estudo quanto a melhor disposição dos equipamentos de segurança.

Figura 9 – Versão inicial da estrutura de acoplamento da bicleta.

6.3.3 Testes

Os testes serão feitos por meio de análises computacionais, utilizando os softwares CATIA V5R19 e Ansys 17.2. A cada modificação do Design será feito análises tanto estáticas quanto dinâmicas para garantir que a estrutura seja bem firme e aguente bem mais que os esforços e excitações causados pelos equipamentos e pelo usuário.

6.4 Sistemas de Alimentação de Energia

6.4.1 Apresentação e Resumo

O subsistema de alimentação visa identificar as principais formas de alimentação energética do projeto. Ou seja, o subsistema é responsável por identificar os gastos energéticos oriundos de todos os subsistemas que compõem o produto em sua totalidade, bem como formular e executar um sistema de geração de energia, seja ele autônomo ou não, a fim de satisfazer as necessidades criadas e promover a integração entre todos os subsistemas da plataforma.

Para tanto, as principais tarefas que o subgrupo se concentrará em realizar são listadas e descritas a seguir.

6.4.2 Principais Características

6.4.2.1 Atuadores da plataforma

Dimensionar os motores a serem utilizados para realizar o movimento da estrutura. De acordo com a delimitação dos movimentos que a bicicleta terá que realizar para atender o escopo da estrutura do projeto serão dimensionados motores que permitam a execução das tarefas demandadas, inicialmente prevê-se a solução de utilizar um alternador como gerador a fim de utilizar a corrente que sairá deste para atribuir diferentes dificuldades nas pedaladas que o usuário realizará, através de um sistema de controle que com a variação desta dista corrente permita simular diferentes cenários de dificuldade de acordo com a realidade virtual correspondente.

6.4.2.2 Estudo energético do sistema

Serão mapeados todos os equipamentos do projeto que consomem energia durante seu funcionamento e seus respectivos consumos serão quantificado em unidade de potência (W) através da ficha técnica e cálculos periódicos de consumo (por hora, por dia, por mês, etc).

6.4.2.3 Sistema de alimentação energética

Através do mapeamento do consumo energético do sistema serão realizadas propostas de formas de alimentação para este sistema através da seleção de baterias ou geradores ou ainda, através da rede elétrica convencional de energia integradas a contribuição da energia a ser gerada pelo próprio sistema.

6.4.2.4 Conversão de energia

Realizar a conversão da energia mecânica gerada pelas pedaladas no equipamento em energia elétrica. A bicicleta será acoplada a uma estrutura fixa onde sua roda será posicionada em uma espécie de rolo de treino, neste rolo de treino será acoplado um alternador a fim de converter a energia mecânica oriunda das pedaladas em energia elétrica.

6.4.2.5 Armazenamento da energia elétrica

O alternador citado anteriormente terá duas saídas, além de fornecer energia que será utilizada para dificultar o movimento de pedaladas em cenários de inclinação, fornecerá energia (que após retificada) será direcionada a uma bateria que será responsável por armazenar esta energia gerada, esta bateria possuirá tensão de 12V, assim sendo, que será utilizada para alimentar dispositivos menos exigentes tais como sensores e carregar componentes como o óculos e computadores.

6.4.3 Testes

Os testes serão feitos concomitantemente aos sistemas de controle dos atuadores, descritos no sistema de aquisição e controle.

Parte III

Desenvolvimento

7 Automotiva e Aeroespacial

8 Eletrônica

8.1 Protocolo de Comunicação

8.1.1 Message Queue Telemetry Transport

Consiste em um protocolo de mensagens leves, criado para comunicação M2M (Machine to Machine). Por exigir muito pouco processamento e banda ou consumo de internet, este é um dos protocolos ideais para dispositivos embarcados. Por esta razão, o MQTT é famoso no conceito IoT (Internet of Things). Uma comunicação MQTT é composta das seguintes partes: os Publishers, que irão disponibilizar as informações, os Subscribers, que são responsáveis por receber as informações e o Broker, que é o servidor MQTT acessível de qualquer lugar que possua conexão com internet. O funcionamento deste protocolo é simples, basicamente os publishers enviam informações para o broker, os subscribers recebem essas informações e o broker é responsável por gerenciar essa troca de informações entre eles. Este procedimento é mostrado a seguir.

Figura 10 – Funcionamento do protocólo MQTT

A partir do Broker MQTT, as bibliotecas MQTT cliente podem ser utilizadas para obter os serviços de publicação e leitura dos dados do Broker. No geral a estrutura das bibliotecas contém os seguintes requisitos para conexão, publicação e inscrição:

- Configuração do Servidor MQTT
- Configuração de credenciais (Usuário, senha e ID do dispositivo)
- Funções de conexão
- Implementação da função callback

• Funções de inscrição e publicação.

No geral as funções efetuam as configurações e conexões básicas para a comunicação MQTT. No entanto, a função callback merece maior atenção. Ao efetuar a inscrição em um tópico MQTT, o sistema cria um "gerenciador de notificações" que, em sistemas operacionais, é um thread que gerencia um socket para recebimento das mensagens de atualização no tópico inscrito. Portanto, ao detectar o recebimento de alguma atualização o sistema em thread efetua a chamada da função call-back, possibilitando o tratamento das informações provenientes da mensagem. Em geral a função call-back é padronizada, e tem a seguinte estrutura: callback(char* topic, byte* payload, unsigned int length);. Onde: topic representa o tópico referente a mensagem recebida, payload é o conteudo da mensagem atualizada no Broker MQTT e length é o tamanho da mensagem recebida. É importante lembrar que todas as mensagens serão recebidas pela função callback, independentemente do número de tópicos inscritos. Para diferenciar os dados basta utilizar a variável que referencia o nome do tópico da mensagem. Portanto, com tais componentes é possível manipular dados recebidos pelas inscrições.

8.2 Módulos de Processamento

8.2.1 Módulo WiFi ESP8266

O chip ESP8266 é um módulo wireless de baixo custo com 11 portas GPIO (General Purpose Input/Output) com um processador ARM. Este módulo é bastante usado para aplicações com IoT (Internet of Things) e automação. O ESP8266 possui uma variedade de versões, e essas versões podem ser apenas o chip ou já integrada em uma placa chamada de "Node mcu" com todas as conexões prontas para uso, bastando apenas conectar em um computador para programa-lo. A versão utilizada neste projeto foi o modelo ESP8266-12E sem o Node mcu, segue em anexo na figura.

Figura 11 – Portas do módulo WiFi ESP8266.

Por ter sido usado um modelo que possui apenas o chip, todas as ligações necessárias para poder programar o módulo foram realizadas manualmente. As ligações realizadas podem ser visualizadas a seguir na figura.

Figura 12 – Conexões necessárias para programar o módulo ESP8266.

Para poder programar este módulo é necessário entender os seus modos de operação. O ESP8266 possui dois modos de operações, são eles o Flash Boot e o modo UART. O modo de flash boot é basicamente o modo em que ele está pronto para receber o código que vai ser executado, já o modo UART é o modo em que o modulo vai estar em execução do código que está presente em sua memória flash. Os pinos responsáveis por alternar entre os modos de operação são os pinos de reset e GPIO0. Para manter o módulo em Flash Boot o pino GPIO0 deve estar conectado ao GND e logo após ativar e desativar o reset. E para manter em modo UART mantém-se o GPIO0 em VCC e realiza o mesmo

procedimento de reset. Isso explica o uso dos "Switches" nos pinos de reset e GPIO0, utilizado unicamente para alterar os modos de operação do ESP. Este módulo pode ser programado utilizando a IDE do Arduino ou utilizando a interface ESplorer, que faz uso da linguagem LUA para programá-lo.

8.2.1.1 Especificações do ESP8266-12E

- Protocolo 802.11 b/g/n
- Antena embutida
- Modos de operação: STA/AP/STA+AP
- Suporta 5 conexões TCP/IP
- GPIO com funções de PWM, I2C, SPI, etc
- Taxa de transferência: 110-460800bps
- Conversor AD (1V de entrada).

8.2.2 Raspberry Pi 3

O Raspberry Pi, diferentemente de microcontroladores potencialmente utilizáveis para realizar esse projeto, permite o multitasking do software nele embarcado. Essa característica é importante para a coordenação de vários subsistemas necessários para solucionar o problema a que o projeto se propõe a lidar. As especificações que foram levantadas no início do projeto, a exemplo da modularização dos sensores, podiam ser atendidos com outro microcomputadores, contudo, o Raspberry possui sistemas operacionais dedicados e aplicações dos protocolos de IoT (Internet das Coisas) mais robustos.

Especificações Raspberry Pi 3:

- Processador Broadcom BCM2837 64bit ARMv8 Cortex-A53 Quad-Core
- Clock 1.2 GHz
- Memória RAM: 1GB
- Adaptador Wifi 802.11n integrado
- Bluetooth 4.1 BLE integrado
- Conector de vídeo HDM
- 4 portas USB 2.0
- Conector Ethernet

- Interface para câmera (CSI)
- Interface para display (DSI)
- Slot para cartão microSD
- Conector de áudio e vídeo
- GPIO de 40 pinos
- Dimensões: 85 x 56 x 17mm

No Raspberry foram desenvolvidas as configurações de rede. Nele foi feito um access point para que os sensores wireless pudessem se conectar ao broker. Além do mais, ele permite a utilização do cabo de rede para conexão com o computador que irá gerar os gráficos do jogo. As configurações setadas estão no Raspberry estão explicadas passo a passo no anexo 4.

Outra configuração setada no Raspberry foi a configuração do mesmo como broker. Para tal função, é necessária a instalação de uma aplicação já consolidada no MQTT, chamada de Mosquitto. Assim que instalada, a aplicação já funciona como um daemon e é carregada concomitantemente ao kernel do Raspberry. Isto é, assim que iniciado, o Raspberry executa a aplicação que o permite ser o broker.

8.2.3 Conversor Analógico-Digital ADC0809

Para fazer a conversão analógico-digital dos dados de frenagem e posição angular do guidão foi usado o conversor analógico-digital ADC0809, devido ao Raspberry Pi 3 não possuir conversores analógico-digitais. O ADC0809 é um conversor de 8 bits de resolução e frequência de amostragem de 10 kHz. O conversor conta com 8 canais de entrada independentes e saída paralela de 8 bits.

O conversor conta com seis entradas de controle. Três entradas de seleção do endereço de entrada ($ADD\ A - Address\ A$, $ADD\ B - Address\ B\ e\ ADD\ C - Address\ C$), uma entrada para atualizar o endereço do canal setado nas seletoras ($ALE\ - Address\ Latch\ Enable$), uma entrada para habilitar a saída ($OE\ - Output\ Enable$) e uma entrada para dar início a conversão (START).

O conversor também tem um sinal de interrupção (EOC – End of Conversion) que indica quando a conversão iniciou e termino. O sinal quando não há conversão fica em nível alto, quando uma conversão é iniciada o sinal vai para nível baixo e quando a conversão é finalizada o sinal volta para nível alto, indicando o fim de conversão.

Há ainda os sinais de referência do sinal de entrada que servem para condicionar o sinal de entrada para máximo aproveitamento de resolução e o sinal de *clock* de clock com uma frequência de 500 kHz. Este sinal de *clock* foi gerado com o LM555 em modo ástavel.

Para fazer uma conversão primeiro deve se definir o canal através de seu endereço usando entradas de controle seletoras, depois atualizar o endereço com a entrada de controle ALE e setar o sinal de START. Após isso basta esperar a interrupção EOC acusar fim de conversão e habilitar a saída com OE para entregar o resultado da conversão a GPIO do Raspberry Pi 3.

8.3 Circuitos de Aquisição de Dados

8.3.1 Circuitos de Aquisição de Dados da Bicicleta

8.3.1.1 Sensor de RPM e velocidade

Para o sistema responsável por aferir a velocidade da corrida do usuário foi usado o sensor de proximidade infravermelho ajustável E18-D80NK da Tinkbox. Este sensor de modelo comercial foi escolhido por apresentar uma estrutura cilíndrica de fácil acoplamento, sendo requisitado apenas um furo em uma superfície para prendê-lo com suas próprias roscas de fixação.

Figura 13 – Sensor de proximidade infravermelho ED18-D80NK.

O sensor é do tipo ativo e conta com um transmissor de sinal IR, um LED IR, e um receptor de sinal IR, um fototransistor. O sinal emitido pelo LED IR é refletido para o sensor com encontra algum obstáculo e é detectado pelo fototransistor TBJ NPN. A distância que é alcançada pelo sinal emitido pelo LED IR é controlada pela tensão sobre o mesmo, esta tensão é regulada por um *trimpot*, sua variação faz com que o alcance do sinal IR emitido consiga refletir objetos em distâncias de 3 a 80 cm.

Figura 14 – Esquemático do circuito do sensor de proximidade ED18-D80NK.

A saída do sinal é puramente digital. Enquanto o fototransistor não detecta o sinal IR refletido não há condução de corrente, logo não a queda de tensão no resistor R1 da Fig.?? e a saída tem o valor da tensão DC de alimentação. Se o fototransistor detecta o sinal refletido este é polarizado e passa a conduzir, com isso o sinal de saída passa a ser o valor da queda de tensão sobre o fototransmissor, que pode ser interpretado com 0 pelo Raspberry Pi 3, uma vez que sua documentação acusa de tensões entre 0 e 0,8 V são interpretadas com nível baixo na entrada de sua GPIO.

Para contar a velocidade com este sensor primeiro são calculadas as rotações por minuto do rolo ao qual o rolo da bicicleta está em contato, para isso, no rolo foi conectado um nível em formato de paralelepípido com 2 cm de altura, como consta na Fig.??. Deste modo é possível ajudar o sensor para detectar apenas o nível a cada rotação.

Figura 15 – Esquema de posicionamento do sensor de proximidade infravermelho para contagem de RPM.

A saída do sensor é conectada na Raspbery Pi 3. Na Raspberry Pi 3 foi implementado um código em python que conta as bordas de descida na porta de GPIO a qual a saída está conectada. Esta borda de descida indica que o sensor detectou uma rotação. A lógica implementada no código consiste em contar quantas rotações ocorrerão em um segundo e então multiplicar esse número por 60 para se ter um valor de RPM. Toda vez que há uma borda de descida uma interrupção é chamada e um contador é incrementado, a cada segundo é feito o cálculo em cima do valor do contador e este é zerado em seguida para se iniciar uma nova contagem.

8.3.2 Circuitos de Aquisição de Dados da Fisiológicos

8.3.2.1 Atividade Eletrodermal via GSR

No estudo dos sinais fisiológicos na Engenharia Biomédica o sinal de Atividade Eletrodermal é um dos mais importantes, isto devido ao fato de que a sua resposta é baseada nas características elétricas da pele. Sabe-se a mais de 100 anos (??) que a resposta galvânica da pele é um efeito proveniente das regiões periféricas e que, muitas das vezes, pode ser utilizado como uma medida para níveis de estresse em diversas situações (??). Para mensurar o nível de estresse no ambiente virtual, um dos objetivos propostos pelo trabalho, utilizou-se então de um circuito GSR (Galvanic Skin Response) desenvolvido na dissertação de (??), almejando disponibilizar para o usuário informações sobre o nível de estresse, os quais podem ser comparados a posteriori com atividades fora da realidade virtual.

O circuito utilizado possui dois seguidores de tensão, que têm como objetivo diminuir o consumo de energia, pois o circuito é alimentado por bateria e tende-se a facilitar a manutenção para usuário final. Ainda usufrui-se de dois filtros passa-baixas, com frequências de corte teóricas de 60Hz e 120Hz (harmônicos advindos da rede de energia elétrica). Utilizou-se então dois filtros com seguidores de tensão, os quais podem ser observados no esquemático presente no anexo 1, realizando algumas alterações nos valores dos componentes para ser possível a utilização de componentes comerciais. Os resultados obtidos em simulação, podem ser observados na Fig.??.

Figura 16 – Resultado da Simulação do GSR

Foram elaborados também terminais específicos para o dedo, melhorando a superfície de contato, tendo em vista que este circuito tem que ficar em extremidades do corpo (sensibilidade do circuito simpático), ou seja, ficará próximo à mão do atleta.

8.3.2.2 Frequência Cardíaca

Outro sinal muito importante no diagnóstico de doenças cardiovasculares e do esforço exercitado nas atividades físicas é o sinal de frequência cardíaca. Ele ajuda os profissionais da saúde a entenderem melhor os efeitos de doenças como: miocardiopatia, hipertensão arterial, epilepsia, entre outros. (??) .

O usuário da plataforma Vride terá disponível este sinal para avaliação do seu rendimento e comportamento na atividade física desenvolvida dentro do ambiente. Estes dados podem ser usufruidos para análise de profissionais da educação física ou da medicina para detectar o parâmetros importantes na elaboração de treinamentos ou tratamentos destas doenças.

Na literatura disponível, possuem diversas topologias para adquirir este sinal de frequência cardíaca, contudo, a ideia é ter um método não invasivo com a maior precisão possível. Então, após um refinamento dos artigos pesquisados, foi definido que a técnica de fotopletismografica atendia aos nossos critérios de custo e precisão, e foi encontrado um artigo em que era tal plataforma era desenvolvida por mas algumas características de filtragem foram extraídas por foram retiradas de (??) e (??) .

O circuito desenvolvido utiliza de um sensor optoeletrônico de refletância, composto de um LED (diodo emissor de luz) e um fototransistor. Segundo a topologia escolhida, devem-se haver dois estágios de filtragem. Portanto, seguindo o design apresentado no anexo 1, foram feitos circuitos para amplificação de 65 dB, tendo em vista que o sinal possui uma amplitude muito baixa, filtrado na faixa de 1Hz a 5Hz. Pôde-se observar então nas simulações:

Figura 17 – Resultado da Simulação do Circuito de Frequência Cardíaca

8.3.2.3 Estimação de Frequência Respiratória com Uso de FSR

Um dos dados fisiológicos que presta informação útil acerca do estresse causado pela atividade de ciclismo é a frequência respiratória. Esta grandeza varia proporcionalmente a frequência cardíaca, uma vez que com o aumento da frequência cardíaca mais sangue é enviado aos pulmões e logo há uma maior demanda de taxa trocas de gasosas [1]. Monitorar esse dado ajuda a perceber se o usuário está respirando de maneira correta para o melhor desempenho.

Para se mensurar a frequência respiratória efetivamente deve se aferir as trocas gasosas em cada respiração, esta demanda exige que um aparato seja conectado ao redor das vias nasais para fazer a medida [2]. Para o escopo do trabalho esta medida não pode ser implementada visto que o usuário já estará usando um óculos de realidade virtual consideravelmente grande e este aparato traria um incomodo para o usuário, o que provavelmente o faria não usar a solução ou interferir na análise de estresse causada.

Uma solução para suprir essa demanda é ao invés de aferir as trocas gasosas aferir a expansão da caixa torácica a cada respiração do usuário. Quando o usuário respira a variação de gás no pulmão faz com este se contraia e expanda, ao se ler o nível dessa expansão é possível ter uma boa estimativa da frequência respiratória do atleta [2].

Para e verificar a expansão da caixa torácica foi usado um FSR (Force-Sensing Resistor) este dispositivo é um material que tem sua resistência elétrica variada de forma inversamente proporcional a tensão mecânica aplicada em sua superfície. Logo, basta colocar um FSR com sua superfície em contato com o tórax do atleta.

Figura 18 – Curva típica de um FSR.

O FSR usado foi o de modelo quadrado de lado medindo 4,38 cm da Interlink Electronics. Sua resistência varia de um valor de mais de 1MOhm, quando está sem carga, para algumas unidades de Ohm, quando está saturado de carga [3].

Figura 19 – Modelo de FSR usado.

Como componente elétrico o FSR pode ser tratado com uma resistência variável. Logo, é possível associá-lo com outros resistores e aferir a tensão do divisor de tensão gerado. Esta tensão irá variar de acordo com a variação do FSR. Deste modo, o FSR foi colocado como resistência variável em uma topologia de ponte de Wheatstone desequilibrada.

O circuito montado para o estimador de respiração usado está no Anexo I, a saída da ponte de Wheatstone é conectada um amplificador diferencial DC de alta impedância de entrada, a topologia do amplificador diferencial usa dois estágios de amplificadores LM324 e foi baseada em um esquemático que consta no próprio datasheet do mesmo. O

LM324 foi escolhido devido a não precisar de alimentação simétrica, podendo ser alimentado apenas com 5 V.

Após o estágio diferenciador o sinal é passado através de um filtro RC Passa-Baixas de 1ª ordem, com frequência de corte de 34 Hz. Um adulto possuí uma frequência de movimentos respiratórios por minuto entre 12 e 48 movimentos [4], logo uma frequência baixa ade 34 Hz é suficiente para preservar o sinal de variação lenta. Após o estágio de filtragem o sinal é passando por um *buffer* e um divisor de tensão para condicionar o sinal de saída para próximo de 1 V, valor de entrada do conversor analógico-digital do módulo transmissor ESP2866.

O circuito do estimador de respiração foi simulado no software ADS 2009, da Agilent. A figura de sua simulação consta na Fig.??.

Figura 20 – Simulação do estimador de respiração no software ADS.

Para validar o circuito foram feitas duas simulações uma simulação paramétrica e uma transiente. Na simulação paramétrica foi variado a resistência que representa o FSR de 1 Ω a 1 M Ω para ver o comportamento do circuito dentro dos limites possíveis da variação do FSR. Este resultado consta na Fig.??. Na figura, os dois *markers* indicam os valores de resistência de 50 k Ω e 300 k Ω , através de testes com o FSR em contato com a caixa torácica percebeu que a expansão e contração da mesma tende a manter o valor de resistência do FSR entre estes valores. Deste modo o circuito foi condicionado para que este *range* de valores esteja bem alocado no valor de 0 a 1 V de tensão de saída.

Resposta do circuito estimador de respiração X Variação da resistência do FSR

Figura 21 – Resultado da simulação parâmetrica do estimador de respiração no software ADS.

Para a simulação transiente foi atribuida uma função para a resistência do FSR apresentada na Eq.??. Essa função emula a resistência do FSR quando em contato com a caixa toráxica para um ritmo extremo de duas respirações por segundo. Para sua modelagem foram considerados os limites de excursão frequentes da resitência do FSR quando em contato com a pele. Quando a função seno está em seu máximo a resistência tem 300 k Ω e em seu mínimo um valor de 50 k Ω . A simulação foi executada durante 3 segundos. Pode se perceber que a saída ficou no range de saída entre 0 e 1 V.

Figura 22 – Resultado da simulação transiente do estimador de respiração no software ADS.

A saída é convertida com o conversor analógico-digital do ESP8266-12E e transmitida via WI-FI até o broker do protocolo do MQTT implementado no Raspberry Pi 3. O layout do circuito foi desenvolvido no software Proteus e segue nos Anexos II. O placa desenvolvida foi de camada simples com uso de componentes PTH. Para a transferência do layout para o cobre foi usado o processo de transferência térmica e corrosão por percloreto de ferro.

9 Energia

10 Software

10.1 Fluxograma do jogo

A Figura ?? detalha o fluxo do jogo com as ações possivelmente executadas pelos jogadores.

Figura 23 – Fluxograma do Jogo.

10.2 Funcionalidades

10.2.1 Menu

O menu é o módulo pelo qual o usuário irá escolher suas opções de jogo, sendo elas: a criação de conta ou a utilização de uma já existente, escolha dos modos de jogo, seleção de número de voltas na pista, escolha da pista, cenário noturno ou diurno, visualização de gráficos. Esta sequência de escolhas no menu possibilitará ao jogador diferentes versões de ambientes de realidade virtual.

Figura 24 – Tela inicial do menu.

Figura 25 – Tela de inserir o nome para criar conta.

Figura 26 – Tela de selecionar o número de voltas.

10.2.2 Modo Corrida

Para cada cenário disponível no jogo é possível escolher dentre dois modos: um deles é o modo corrida e outro é o modo livre. A principal diferença presente é a restrição do número de voltas no circuito no modo corrida. Contudo, outras particularidades são encontradas nesse modo, como a contabilização do tempo, a restrição do sentido da bicicleta para computação das voltas e delimitação do cenário do circuito, para auxiliar o cumprimento das voltas.

Depois de escolher o pista que deseja, o usuário escolhe a quantidade de voltas que vai correr e então começa a corrida. O início e o fim do modo corrida são demarcados

pela linha de chegada (Figura ??). O modo corrida termina assim que as voltas acabam, e então é mostrado o seu desempenho.

Figura 27 – Linha de Chegada.

10.2.3 Modo Livre

Diferentemente da funcionalidade anterior, o modo livre tem o propósito de deixar o usuário experimentar o ambiente virtual criado. Nenhuma das particularidades citadas anteriormente está presente nele. Para iniciá-lo é necessário apenas escolher a pista que deseja explorar. A partir de então é iniciado o modo livre. Ele só acaba quando é pausado o jogo. Sendo que tal interação se dá quando o usuário tira alguma de suas mãos do guidão da bicicleta física. Neste momento é mostrado então a opção de se encerrar o modo livre.

10.2.4 Controle da Bicicleta

Essa funcionalidade descreve a comunicação do sistema eletrônico, que devolve dados de velocidade da bicicleta e rotação do guidão. Com esses dados, o jogo deve ser capaz de controlar a bicicleta no cenário, alterando a velocidade do objeto, movimentando o sistema personagem-bicicleta-câmeras e rotacionando a direção do jogador, além de rotacionar o guidão para fidelidade visual.

10.2.5 Física do Jogo

A física do jogo é a parte responsável pela detecção e tratamento das colisões entre os objetos físicos dele. Nesse jogo, é necessário definir um poliedro de colisão para a bicicleta, de forma que fique realista a um nível em que o jogador tenha a sensação de estar em uma bicicleta real. Além de poliedros de colisão para a grama, as pistas, a cerca e a linha de chegada. Essas colisões são tratadas pela *Unity* e podem ser capturadas por código para mudar estados e ativar sons, como batida em cerca e caminhada na grama.

10.2.6 Conta

A fim de conseguir customizar a experiência de cada usuário, o jogo consta com a funcionalidade de criação de uma conta. Assim que é ele entra no jogo é possível selecionar uma conta já existente ou criar uma nova. Para criar a conta é necessário informar o nome,

peso, altura e sexo. A partir de então, com a conta criada é possível acessar as outras funcionalidades, bem como acessar algumas estatísticas próprias do jogo. Por final, é possível na tela de criar uma conta deletar uma já existente.

10.2.7 Gráficos

Além dos dados já informados pelo próprio usuário ao criar a sua conta, a plataforma possui sensores que irão coletar e medir dados como velocidade da bicicleta, batimentos cardíacos, resistência galvânica da pele, frequência respiratória, entre outros. Durante o jogo serão exibidos alguns destes dados coletados como ilustrado na Figura ?? e ao final serão exibidos de forma mais detalhada. Estes dados de cada corrida serão armazenados na conta do usuário e possibilitarão a ele a visualização de gráficos que servirão para demonstrar o seu desempenho na plataforma.

Figura 28 – Informações do Modo Corrida.

10.2.8 Personagens

A visão do jogador consiste na orientação da câmera que representa o *Oculus*. Dentro do jogo é a visão do personagem, no qual está posicionado em cima da bicicleta, para proporcionar a sensação de imersão. É possível visualizar a movimentação do personagem como o pedalar de acordo com a velocidade, os braços acompanhando a direção do guidão, entre outras. Existem dois tipos de personagens no jogo que podem ser selecionados pelo jogador: um homem e uma mulher, demonstrados na Figura ?? e Figura HOMEM.

10.2.9 Cenários

O jogador poderá escolher opções do cenários para jogar como:

Pistas Uma pista íngreme e uma pista regular.

Modo Corrida e Modo Livre Detalhados nas Seções ?? e ??.

Noturno e Diurno Cenário noturno (Figura ??) com os postes ligados, lua e estrelas e o cenário diurno (Figura ??) com nuvens, sol e postes desligados.

Figura 30 – Cenário noturno.

Figura 31 – Cenário diurno.

As imagens abaixo contém os elementos principais que compõem o cenário do jogo.

Figura 32 – Vista superior da pista regular.

Figura 33 – Jardim localizado no centro do cenário.

Figura 34 – Torcida localizada proximo à linha de chegada.

Figura 35 – Visão próxima á linha de chegada.

10.3 Arquitetura

10.3.1 Modelo de Domínio

10.3.2 Arquitetura de Componentes

A *Unity 3D* possui uma arquitetura baseada em componentes. Tal decisão arquitetural é baseada no princípio de que os objetos de um jogo - como personagem, árvore, chão - são formados por diversos componentes diferentes - como imagem, som, colidível e outros. Dessa forma, ao invés de cada tipo de objeto do jogo possuir novas funcionalidades por meio de herança, novos componentes são adicionados a eles de forma dinâmica. Na *Unity*, em específico, cada objeto herda da classe *GameObject* que possui métodos de adicionar e remover componentes. Todos os componentes herdam da classe *Component* e alguns dos mais usados incluem:

- Collider: Adiciona uma área de colisão ao objeto, que pode reagir a colisões físicas ou de gatilho em métodos como OnCollisionEnter e OnTriggerEnter;
- AudioSource: Adiciona som ao objeto, que pode tocar, automaticamente, em loop e ser 3D (ter uma fonte espacial no jogo) ou não.
- Transform: Guarda as informações acerca da posição e da rotação de um objeto.
- Script: Adiciona instruções ao objeto. Podem ser escritos em C# ou Javascript, com instruções executadas ao iniciar (Start), a cada frame (Update) ou em determinados eventos (OnCollisionExit e outras).

Em relação à construção do jogo, os menus e fases são agrupados em cenas (scenes). Cada cena possui uma hierarquia com diversos game objects. Cada game object possui um pai e um ou mais filhos. A cada frame, todos os game objects são atualizados e todos os métodos de update dos scripts executados.

Figura 36 – Arquitetura de Componentes. Fonte: (??)

10.3.2.1 *Scripts*

Os *scripts* são a parte em que os desenvolvedores alteram o comportamento do jogo programaticamente. Cada *script* altera o comportamento de um *game object* diretamente e pode alterar o de outros de forma indireta. Cada *game object* pode ter um ou mais scripts.

Os principais scripts do jogo são:

• *PlayerScript*: Responsável pelo controle do jogador, utilizando os valores de velocidade e rotação para movimentar a bicicleta, o personagem e a câmera.

- *HandleBarScript*: Responsável pela rotação do guidão da bicicleta de acordo com a rotação recebida da classe InputOutput.
- Scripts de áudio: Responsáveis pela reprodução de áudio de colisão com cercas e chão, reproduzindo sons característicos em tal contato.
- CheeringScript: Responsável pelo início da animação dos personagens de torcida para que eles não tenham a animação sincronizada, mas em tempos randômicos em relação um ao outro.
- Scripts do menu: Responsáveis pela transição dos paíneis dentro do menu, pelo controle das ações e comportamento dos botões e por salvar e carregar as informações da conta.

10.3.3 Fluxo de Informações

10.3.3.1 MQTT

O MQTT é um protocolo baseado em mensagens utilizado em soluções IOT. Como ilustrada na Figura ??, o MQTT possui três papéis principais para o estabelecimento das trocas de mensagens: o *Broker*, o *Publisher* e o *Subscriber*: O *Broker* é um servidor responsável por intermediar o recebimento e envio das mensagens e é onde é implementado toda a lógica responsável pelo armazenamento de dados. O *Publisher* é o dispositivo que mandará mensagens em tópicos para o Broker de modo que fique acessível para o *Subscriber* ler a mensagens.

A identificação das mensagens é definida por tópicos que podem ser identificadas por palavras divididas por barras, como por exemplo: **bike/velocity**. Para que o *Publisher* publique uma mensagem, o tópico deve ser definido. E para que o *Subscriber* leia a mensagem, ele se inscrever no tópico desejado. Os dados contidos nas mensagens trocadas pelo MQTT estão em *bytecode*.

Figura 37 – Fluxo de mensagens do MQTT.

Neste projeto, o jogo agirá como um *Publisher* e como um *Subscriber*. Por exemplo, para definir a velocidade da bicicleta e a angulação do guidão, agirá como um *Subscriber*

e para definir a angulação vertical, agirá como um *Publisher*. As funções de publicação, inscrição, conexão, entre outras é importada do asset do MQTT disponível para Unity. A classe que faz as intermediações entre os dados no jogo é a *InputOutput* que será detalhada no tópico a seguir.

10.3.3.2 InputOutPut e Mock do Input

Na função *Start* da classe *InputOutput*, é realizada a conexão do jogo com o *Broker* através do IP e porta e a inscrição de todos os tópicos que serão utilizados. Os tópicos presentes atualmente são: o *bike/velocity* para a velocidade da bicicleta e o *bike/angle* para a angulação do guidão.

Como a integração com o sistema físico ainda não foi realizada, é implementado um *Publisher* para enviar mensagens a partir de eventos do teclado. Portanto, para testes do subsistema isolado, o fluxo de informações é o seguinte:

- Quando a seta ↑ é pressionada, é enviado uma mensagem através de um Publish que a tecla está sendo pressionada no tópico bike/velocity. No script responsável pelo controle do movimento da bicicleta, são repassadas as mensagens contidas no tópico de velocidade que aumenta gradativamente enquanto esta tecla estiver pressionada.
- Quando as setas ← e → são pressionadas, também é enviado uma mensagem através de um Publish que a tecla está sendo pressionada no tópico bike/angle. As mensagens contidas no tópico de angulação são repassadas para o script responsável pela movimentação e é variada então em 45° para direita ou esquerda dependendo da tecla pressionada e para 0° quando nenhuma das duas estiver pressionada.
- Concluindo, o *Publisher* que é acionado através do *Input.GetKey*, uma espécie de handler de eventos do teclado, envia dados para o *Broker* que repassa para o jogo como demonstrado na Figura ??.

Figura 38 – Integração através do MQTT

10.3.4 Banco de Dados

Para o armazenamento das informações relativas a conta de um usuário foi adotado a utilização de um banco de dados. Tais informações incluem sendo tanto os dados pessoais

como, nome, altura e peso, quanto os dados relativos ao desenvolver do usuário, como o tempo das voltas, batimentos cardíacos durante a corrida, frequência respiratória e velocidade no circuito, entre outros, que poderão vir a ser adicionados para melhorar a funcionalidade de estatísticas.

O banco de dados escolhido foi o *iBoxBD* (<http://www.iboxdb.com/>), uma banco de bados totalmente não relacional, que é leve e usa pouca memória. Ele é executado como um servidor incorporado como banco de dados local, também suporta conexão TCP como parte do sistema distribuído. Outras vantagens são: único arquivo, ausência da necessidade de configuração e suporte ao C#.

Na implementação dele no projeto foi criado um *Singleton*, que instância e gerencia a "Box", que é parte desse BD que cuida do contexto das operações e as executa. Além disso foi criada uma DAO para o *Player*, que separa as regras de negócio do jogo do acesso aos dados, que se dá pelo *Singleton*. O *Player*, por sua vez, possui todas as informações que se refere a ele e que vai adquirindo, já citadas anteriormente.

APÊNDICE A – Termo de Abertura do Projeto

A.0.1 Descrição do projeto

O projeto é uma plataforma de ciclismo interativa com imersão em ambiente de realidade virtual e monitoramento de dados fisiológicos e de desempenho. O usuário utilizará uma bicicleta acoplada ao sistema e um óculos de realidade virtual, interagindo com um ambiente virtual gamificado emulado pelo Oculus por meio da bicicleta, pedalando e utilizando o guidão.

A.0.2 Justificativa do projeto

Treinos de ciclismo em ambientes fechados é uma demanda relevante para profissionais e entusiastas do esporte. Diversas soluções para esse ponto existem, incluindo circuitos *indoor* e bicicletas fixas de exercício que simulam parte da estrutura de uma bicicleta tradicional. Tais soluções são o padrão atual do mercado, mas possuem algumas limitações. Uma delas é o fato de que bicicletas de exercício não possuem uma sensação similar o suficiente a uma bicicleta comum, além de possuírem indicadores limitados a quantidade aproximada de calorias gastas e outros. Treinamento em circuitos *indoor* requerem deslocamento do usuário ao local.

Um sistema de ciclismo interativo permitiria uma experiência de ciclismo verossímil e gamificada, servindo de estímulo de treinamento aos usuários, tanto pela qualidade da experiência quanto pela praticidade de uso.

A.0.3 Objetivos do projeto

Como proposta de solução, o projeto a ser desenvolvido tem como objetivo emular a sensação de andar de bicicleta de uma forma verossímil, utilizando uma bicicleta tradicional como base e a realidade virtual para emular diferentes ambientes de ciclismo, a fim de aproximar a experiência do usuário no sistema à experiência real, à medida em que dados do seu desempenho são coletados. O projeto também procura ser de fácil acesso e utilização, utilizando-se de diretrizes de usabilidade para isso. Com isso, busca-se uma maior utilização do sistema no dia-a-dia, para que o usuário tenha seu desempenho medido de forma constante.

A.0.4 Requisitos de alto nível

O projeto terá uma bicicleta acoplada a uma plataforma, um óculos de realidade virtual e um *notebook* para a execução do *software*. O sistema também contará com um sistema que permite a elevação da bicicleta e aumento no esforço necessário para movimentar o pedal, simulando subidas e decidas.

O jogo contará com dois circuitos, um com pista lisa e duas curvas inspirado em pistas tradicionais e um com caminho com elevações e diversas curvas, inspirado em ambientes abertos. Cada usuário poderá ter uma conta local, em que serão registrados preferências e dados de desempenho. Os dados de desempenho devem ser apresentados em forma de gráficos para o usuário e acessíveis a partir do menu principal. A bicicleta deverá ser projetada de tal forma que caso o usuário venha a perder o equilibrio este não caia da plataforma. Além disso, deverá haver aproveitamento de parte da energia produzida pelo usuário ao pedalar.

A.0.5 Subsistemas Identificados

Foram identificados quatro subsistemas no projeto: o subsistema eletrônico, responsável pela construção dos componentes eletrônicos, captação e interpretação dos sinais da bicicleta e do usuário, o subsistema de energia, responsável pela geração de energia elétrica a partir da energia mecânica obtida pelos movimentos de pedalada do usuário, o subsistema de estrutura, responsável pela construção da plataforma e adaptação da bicicleta e componentes do Oculus na montagem do projeto, e o subsistema de software, responsável pela interface de interação com o usuário e apresentação do cenário virtual.

A.0.6 Riscos

Os principais riscos que podem ocorrer durante o projeto são os referentes a inexperiência da equipe na utilização das ferramentas necessárias para construção da plataforma, bem como nas tecnologias a serem utilizadas no desenvolvimento. Outros riscos que podem ocorrer e que afetam diretamente ao projeto, são os riscos relacionados a utilização de equipamentos de alto custo e do espaço cedido para equipe no LART. Outro risco de grande impacto é a integração no último mês do projeto de todos os módulos a serem desenvolvidos.

A.0.7 Resumo do cronograma de marcos

O desenvolvimento da solução terá três marcos principais, caracterizados como pontos de controle. A primeira fase do projeto é a fase de planejamento e tem duração de três semanas e será finalizada no dia do primeiro ponto de controle, entre seis a nove de setembro. A segunda fase é a fase de construção dos subsistemas e inicia dia primeiro de

setembro e termina dia três de novembro, com uma duração de, aproximadamente, dois meses. O segundo ponto de controle ocorre entre os dias primeiro e três de novembro. A terceira fase é a de integração dos subsistemas, inicia dia três de novembro e termina dia primeiro de dezembro. O terceiro ponto de controle ocorre entre três a seis de dezembro.

A.0.8 Resumo do orçamento

O custo total do projeto será de R\$ 8.995,34, deste valor total, R\$ 7.317,64, referese aos custos do óculos Rift e o Desktop do LART que a equipe já possui.

Simulador de Ambiente Virtual R\$ 7.317,64
Sistema de Alimentação de Energia R\$ 383,99
Estrutura R\$ 900,00
Sistemas de aquisição e controle R\$ 393,71
R\$ 8.995,34

Tabela 22 – Orçamento

A.0.9 Lista das partes interessadas

Dentre os interessados, estão os patrocinadores e alunos de graduação de engenharia da Universidade de Brasília campus Gama que cursam a disciplina de Projeto Integrador em Engenharia 2.

A.0.10 Requisitos para a aprovação do projeto

O projeto deverá ser aprovado por seus patrocinadores e professores da disciplina de Projeto Integrador em Engenha2.

A.0.11 Gerência do projeto

O projeto será gerenciado por Matheus Pereira Santana, graduando em Engenharia Eletrônica, sendo ele o gerente geral. Mas terá também outros quatro estudantes responsavéis por gerenciar cada subsistema da Plataforma de Ciclismo Interativa.

A.0.12 Patrocinadores

O projeto contará com dois patrocinadores, a professora Carla Rocha e o professor Augusto Brasil, que possuem interesse no produto a ser gerado ao final do semestre.