Manifold Learning

DENSITY ESTIMATION

Jairo Cugliari

Master Informatique Parcours Data Mining

Density estimation

Old Faithful Geyser Data: waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA.

- \bigcirc Data: 272 obs \times 2 vars
- Methods to analyze this data : summaries, plots, smth cleverer?

	eruptions ‡	waiting ‡
1	3.600	79
2	1.800	54
3	3.333	74
4	2.283	62
5	4.533	85
6	2.883	55
7	4.700	88
8	3.600	85

Density Estimation

- O Data : X_1, \ldots, X_n from an unknown density f
- \bigcirc Goal: estimate f making mild assumptions
 - nonparametric vs parametric
- Histograms are a popular choice but ...
- We'll study the kernel density estimator. We need :
 - a kernel K function (centred prob mass function with bounded 2nd moment)
 - a positive number *h* called the bandwidth

Kernel Density Estimation (KDE)

○ The KDE of *f* is defined as

$$\widehat{f}_n(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h} K\left(\frac{x - X_i}{h}\right)$$

- Several kernel functions exists
- \bigcirc The crucial quantity is h which must be correctly tuned

KDE calibration

How to choose the optimal value h^* ?

- O Normal reference : if f and K are normal, $h^* = 1.06\sigma n^{-1/5}$
 - Estimate σ by $\hat{\sigma} = \{s, IQR/1.34\}$, where s is the empirical standard deviation and IQR the interquartile range
 - Use $h^* = 1.06 \hat{\sigma} n^{-1/5}$
- Cross validation
 - CV score function $\hat{J}(h) = \int \hat{f}^2(x) dx 2/n \sum_{i=1}^n \hat{f}_{-i}(X_i)$
 - Use $h^* = \arg\min \hat{J}(h)$