

NLP

Sequence to Sequence (seq2seq)

Msc. Rodrigo Cardenas Szigety rodrigo.cardenas.sz@gmail.com

Esp. Ing. Hernán Contigiani hernan4790@gmail.com

Programa de la materia

- Clase 1: Introducción a NLP, Vectorización de documentos.
- Clase 2: Preprocesamiento de texto, librerías de NLP y Rule-Based Bots.
- Clase 3: Word Embeddings, CBOW y SkipGRAM, representación de oraciones.
- Clase 4: Redes recurrentes (RNN), problemas de secuencia y estimación de próxima palabra.
- Clase 5: Redes LSTM, análisis de sentimientos.
- Clase 6: Modelos Seq2Seq, traductores y bots conversacionales.
- Clase 7: Celdas con Attention. Transformers, BERT & ELMo, fine tuning.
- Clase 8: Cierre del curso, NLP hoy y futuro, deploy.
- *Unidades con desafíos a presentar al finalizar el curso.
- *Último desafío y cierre del contenido práctico del curso.

Soluciones Seq2Seq

Trabaja principalmente con el concepto many-to-many en formato "codificador" a "decodificador", en donde la sequence de entrada se traduce en una intención y se transforma al nuevo espacio destino.

Conversacionales

Traducción de idiomas

Generar música

Completar una imagen

Chat bot conversacional

LINK

"Utilizan IA entrenados en un dominio cerrado o abierto para generar una respuesta basada en el set de entrenamiento".

Requiere mucha más información pero tiene más poder de interpretabilidad y de responder a preguntas nunca antes realizadas.

La respuesta es totalmente generada, por lo que se tiene menos control del resultado y es más probable obtener un error de sentencia.

many-to-many

LINK

"Dada una entrada de tamaño fijo el sistema arroja una sentencia o oración a partir de ella de longitud fija"

Este tipo de estructuras no son muy utilizadas porque solo son útiles para secuencias de entrada y salida fija (no necesariamente iguales).

Es mucho más simple este tipo de estructuras que las que veremos para NLP con encoder-decoder

many-to-many

Seq2Seq con encoder-decoder

"Modelo basado en dos partes, la primera genera un "espacio latente" o "contexto" que alimenta a la segunda parte, la cual realiza una inferencia realimentada de la última salida." (simil one-to-many)

La primera inferencia depende del encoder, luego comienza a tomar relevancia el estado anterior.

"El encoder reemplaza el concepto de $h_{t0} = 0$ "

Tokens especiales <SOS> & <EOS>

"Palabras que se reservan para indicarle al modelo el comienzo (start of sequence) o el fin (end of sequence) de la secuencia".

También se puede ver casos en donde se utiliza [start] y [stop]

Los tokens poseen una representación numérica al igual que una palabra

LSTM encoder-decoder

LINK

El modelo que se entrena es el "completo", con el encoder y decoder.

LSTM Decoder

LINK

Para la inferencia se utiliza por separado el encoder y el decoder Para armar la realimentación al final con cada inferencia

Encoder-decoder

NLP Encoder-decoder

LINK

Cuando hablamos de un encoder-decoder NLP se agrega un grado de dificultar más, que las secuencias no necesariamente tienen el mismo tamaño y que hay que vectorizar las sentencias de entrada

Para solucionar el problema de secuencias de distinto tamaño se define una máxima longitud y luego se acota con los tokens de inicio y fin de sentencia (<sos>/<eos> o [start]/[stop]

Traductores

En este ejemplo realizaremos un traductor de inglés a español, vectorizando las sentencias de entrada con Embeddings

Facultad de Ingeniería Universidad de Buenos Aires

13

Inferencia del traductor

14

El encoder inicializa el contexto (h1,c1) con la entrada del decoder en <sos>, luego la salida es realimentada.

```
('A deal is a deal.',
'Un trato es un trato. <eos>',
'<sos> Un trato es un trato.')
```

Input: Tom is naked. Response: tom es un noche

Ensayo real, formó una oración coherente pero no era el resultado solicitado

```
Step 1:
A deal is a deal -> Encoder -> enc(h1,c1)
enc(h1,c1) + \langle sos \rangle - \rangle Decoder - \rangle Un + dec(h1,c1)
step 2:
dec(h1,c1) + Un \rightarrow Decoder \rightarrow trato + dec(h2,c2)
step 3:
dec(h2,c2) + trato -> Decoder -> es + dec(h3,c3)
step 4:
dec(h3,c3) + es -> Decoder -> un + dec(h4,c4)
step 5:
dec(h4,c4) + un \rightarrow Decoder \rightarrow trato + dec(h5,c5)
step 6:
dec(h5,c5) + trato. \rightarrow Decoder \rightarrow \langle eos \rangle + dec(h6,c6)
```

Traductor Seq2Seq

Question and answers (QA) ~ Bot LINK

Es hora de armar un Bot conversacional, que responda a preguntas que nosotros le hagamos (QA). Para ello utilizaremos un dataset "modesto" por lo que no se espera alcanzar resultados muy prometedores

Question and answers (QA) Bot

LINK

Un ejemplo de una arquitectura utilizando los Embeddings de Glove (dim 50)

Desafio

Construir QA Bot basado en el ejemplo del traductor pero con un dataset QA

Frameworks para crear modelos seq2seq LINK

Algunos frameworks/librerías que traen modelos e interfaces preparadas para armar rápidamente un sistema basado en NLP.

¡Muchas gracias!