

Parallele Sortierung

Björn Rathjen Patrick Winterstein Freie Universität Berlin

Proseminar Algorithmen, SS14

Inhalt

Motivation

Vorraussetzungen

Komparator 0,1-Prinzip

Sortiernetzwerk

Aufbau

Sortieren im Sortiernetzwerk

Laufzeit

Herleitung Vergleich mit Software sortieren

Fazit

Geschwindigkeit vs Variabilität Hardwareaufwand vs Softwareaufwand

Zusammenfassung

Ausblick

Hybercube Anhang

Motivation

Vorraussetzunger

Sortiernetzwerk

Laufzeit

Fazit

Zusammenfassung

Ausblick

Motivatior: Allgemein

ist Basis für:

- Suche
- ► (Sortierung)

Bezug aufs Fach

- ▶ Listen
- Wörterbücher
- ▶ ...

Motivation

Vorraussetzungen Komparator 0,1-Prinzip

Sortiernetzwerk

Laufzeit

Fazit

Zusammenfassung

Aushlick

abstrakter Aufbau

- ▶ 2 Eingänge
- vergleichender Baustein
- ▶ 2 Ausgänge

Aufbau

abstrakter Aufbau

- ▶ 2 Eingänge
- vergleichender Baustein
- 2 Ausgänge

konkret

- Datenleitungen
- vernetzte Transistoren
- Datenleitungen

besteht aus


```
void comp(chan in1, in2, out1 out2){
    a = <- in1;
    b = <- in2;

if (a < b){
      out1 <- a;
      out2 <- b;
      return void;
    }
    out1 <- b;
    out2 <- a;
    return void;
}</pre>
```

Konvention für die folgenden Folien

- ▶ Reihenfolge des Inputs egal
- kleineres Element am oberen Ausgang
- größeres Element am unteren Ausgang

Wenn es eine Folge A gibt, die ein Sortiennetzwerk nicht sortiert, so existiert auch eine 0,1-Folge, die von diesem Netzwerk nicht sortiert wird.

man kann jede Zahlenfolge durch eine 0,1 Folge repräsentieren

$$f(c) = \begin{cases} 0, & \text{if } c < k \\ 1, & \text{if } c \ge k \end{cases}$$

Beispiel an der Tafel? Bild

Motivation

Vorraussetzungen

Sortiernetzwerk Aufbau Sortieren im Sortiernetzwerk

Laufzeit

Fazit

Zusammenfassung

Aushlick

besteht aus mehreren Eingabeleitungen die durch Komperatoren vernetzt sind. Das Ergebnis ist eine sortierte Folge der Eingabe, die bei unterschiedlicher Eingabeanordnungen im gleichen Ergebnis endet.

Sortieren im Sortiernetzwerk

Bild aus dem Buch

nativer Ansatz

- Aufgabe
- ► grundlegendes Prinzip
- ► Demonstration (kleines Beispiel)
- Laufzeit

► Resultat soll sortierte Eingabe sein

nativ : grundlegenders Prinzip

- ▶ intuitiver Einsatz von Vergleichen
- Schrittweises sortieren

Bild siehe 2

Demonstration

Bild kleiner Zahlenfolge 4-8-16 Beispiel

effektiverer Ansatz

- Aufgabe
- ► grundlegendes Prinzip
- ► Demonstration (kleines Beispiel)
- Laufzeit

effektiver : Aufgabe

- ▶ Resultat soll sortierte Eingabe sein
- soll effizient sein

effektiver: grundlegenders Prinzip

- ▶ intuitiver Einsatz von Vergleichen
 - + Einbezug von Teile und Herrscher

Aufteilung

Bild Buch Biton-Sortierer

effektiver: grundlegendes Prinzip

- intuitiver Einsatz von Vergleichen
 - + Einbezug von Teile und Herrscher
- Schrittweises sortieren
 - + Einbezug vorheriger Ergebnisse

Bild

Demonstration

Bild kleiner Zahlenfolge 4-8-16 Beispiel

Motivation

Vorraussetzungen

Sortiernetzwerk

Laufzeit
Herleitung
Vergleich mit Software sortieren

Fazit

Zusammenfassung

Aushlick

Herleitung

Herleitung

Unterschiedliche Betrachtungen Schritte gegen Vergleiche, versuch der Darstellung

Bubblesort im Hardwarenetz

Bild Bubblesort siehe 1

Mergesort im Hardwarenetz

Bild Mergesort siehe 4

Bild Quicksort Bild 5

Motivation

Vorraussetzunger

Sortiernetzwerk

Laufzeit

Fazit

Geschwindigkeit vs Variabilität Hardwareaufwand vs Softwareaufwand

Zusammenfassung

Ausblick

- hohe Geschwindigkeit durch direkte Hardware Implementriegung
- starre Struktur, bildet Rahmen der Möglichkeiten
- stark typisierte Eingabe

- Software zur Auswertung keine zum sortieren
- geringe Skalierbarkeit
- hoher Aufwand wenn Eingabelimit überschritten wird
- nur lokal
- Hardware Konzeption eventuell aufwendiger

Motivation

Vorraussetzungen

Sortiernetzwerk

Laufzeit

Fazit

Zusammenfassung

Ausblick

Zusammenfassung

- paralleles sortieren ist schnell und effizient
- stark Problemabhängig
- muss noch gefüllt werden

Motivation

Vorraussetzungen

Sortiernetzwerk

Laufzeit

Fazit

Zusammenfassung

Ausblick Hybercube Anhang

Ausblick

weiter

Hyprecube

?¿

structur

Fragen, Anregungen? (keine Liederwünsche)

A. Author.

Taschenbuch der Algorithmen. Springer Verlag, 2008.

Tom Leighton.

Einführung in Parallele Algorithmen und Architekturen Gitter, Bäume und Hypercubes. Thomsom Publisching, 1997.

S. Someone.

http://www.iti.fh-

flensburg.de/lang/algorithmen/sortieren/networks/nulleins.htm