INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

A1

(51) International Patent Classification 5: C07D 487/04, A61K 31/53 // (C07D 487/04, 253:00, 231:00)

(11) International Publication Number:

WO 94/19350

(43) International Publication Date:

1 September 1994 (01.09.94)

(21) International Application Number:

PCT/JP94/00213

(22) International Filing Date:

9 February 1994 (09.02.94)

(81) Designated States: AU, CA, CN, HU, JP, KR, RU, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

.7

(30) Priority Data: 9303993.1

26 February 1993 (26.02.93) GB Published

With international search report.

(71) Applicant (for all designated States except US): FUJISAWA PHARMACEUTICAL CO., LTD. [JP/JP]; 4-7, Doshomachi 3-chome, Chuo-ku, Osaka-shi, Osaka 541 (JP).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): KAWAI, Yoshio [JP/JP]; 3-33-14, Kamikashiwada, Ushiku-shi, Ibaraki 300-12 (JP). YAMAZAKI, Hitoshi [JP/JP]; 4-15-203, Tsuchida, Tsukuba-shi, Ibaraki 300-26 (JP). TANAKA, Hirokazu [JP/JP]; 3-10-21, Hanayashiki Souen, Takarazuka-shi, Hvogo 665 (JP). OKU, Teruo [JP/JP]; 8-2, Midorigaoka, Tsukuba-shi, Ibaraki 305 (JP).
- (74) Agent: SEKI, Hideo; Fujisawa Pharmaceutical Co., Ltd., Osaka Factory, 1-6, Kashima 2-chome, Yodogawa-ku, Osaka-shi, Osaka 532 (JP).

(54) Title: PYRAZOLITRIAZINES WITH INTERLEUKIN-1 AND TUMOUR NECROSIS FACTOR INHIBITIORY ACTIVITY

(57) Abstract

New heterocyclic derivatives of formula (I) wherein R1 is aryl which may have suitable substituent(s) or heterocyclic group which may have suitable substituent(s), R2 is aryl which may have suitable substituent(s) or heterocyclic group which may have suitable substituent(s), R3 is hydrogen or acyl, R4 is hydrogen, lower alkyl, cyclo(lower)alkyl, cyclo(lower)alkyl-(lower)alkyl, carboxy(lower)alkyl, protected carboxy(lower)alkyl, ar(lower)alkyl which may have suitable substituent(s), ar(lower)alkenyl, bridged tricyclicalkyl, heterocyclic group which may have suitable substituent(s), acyl, or a group of formula (b) (in which A is lower alkylene), and R5 is hydrogen or lower alkyl, and a pharmaceutically acceptable salt thereof which are useful as interleukin-1 and tumor necrosis inhibitors.

$$\begin{array}{c|c}
R^{1} & N \\
N & R^{5} & (I) \\
N & N & R^{4}
\end{array}$$

Atty. Docket No. 3015/6/US Serial No. 10/021,780 Anantanarayan et al. Reference 53 of 77

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	TE	Ireland	NZ	New Zealand
BJ	Benin	rr	Italy	PL.	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Beiarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	. SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Pinland	ML	Mali	UZ.	Uzbekistan
FR	France	MN	Mongolia	VN	Vict Nam
GA	Gabon		-		

DESCRIPTION

PYRAZOLITRIAZINES WITH INTERLEUKIN - 1 AND TUMOUR NECROSIS FACTOR INHIBITORY ACTIVITY

5 TECHNICAL FIELD

This invention relates to new heterocylic derivatives and pharmaceutically acceptable salts thereof which are useful as a medicament.

10

15

20

25

DISCLOSURE OF INVENTION

This invention relates to new heterocyclic derivatives. More particularly, this invention relates to pyrazole derivatives and pharmaceutically acceptable salts thereof which have pharmacological activities, processes for preparation thereof, a pharmaceutical composition comprising the same and a use of the same.

Accordingly, one object of this invention is to provide the new and useful pyrazole derivatives and pharmaceutically acceptable salts thereof which possess a strong inhibitory activity on the production of Interleukin-1 (IL-1) and a strong inhibitory activity on the production of tumor necrosis factor (TNF).

Another object of this invention is to provide processes for preparation of the pyrazole derivatives and salts thereof.

A further object of this invention is to provide a pharmaceutical composition comprising said pyrazole derivatives or a pharmaceutically acceptable salt thereof.

35

30

10

15

25

30

35

Still further object of this invention is to provide a use of said pyrazole derivatives or a pharmaceutically acceptable salt thereof as a medicament for prophylactic and therapeutic treatment of IL-1 and TNF mediated diseases such as chronic inflammatory diseases, specific autoimmune diseases, sepsis-induced organ injury, and the like in human being and animals.

The object pyrazole derivatives of the present invention are novel and can be represented by the following general formula (I):

$$\begin{array}{c|c}
R^{1} & N \\
N & - R^{5}
\end{array}$$

$$\begin{array}{c|c}
N - N \\
R^{3} & R^{4}
\end{array}$$
(1)

wherein R¹ is aryl which may have suitable substituent(s) or heterocyclic group which may have 20 suitable substituent(s),

R² is aryl which may have suitable substituent(s) or heterocyclic group which may have suitable substituent(s),

is hydrogen or acyl, .

R⁴ is hydrogen, lower alkyl, cyclo(lower)alkyl, cyclo(lower)alkyl-(lower)alkyl, carboxy(lower)alkyl, protected carboxy(lower)alkyl, ar(lower)alkyl which may have suitable substituent(s), ar(lower)alkenyl, bridged tricyclicalkyl, heterocyclic group which may have suitable substituent(s), acyl, or a group of the

formula :

(in which A is lower alkylene), and $\ensuremath{\mathbb{R}}^5$ is hydrogen or lower alkyl.

The object compound (I) of the present invention can be prepared by the following processes.

Process (1)

10

15

(II) or a salt thereof

20

25

30

10

20

Process (2)

(Ib)

or a salt thereof

Acylation

15 R¹ N

(Ic)

or a salt thereof Process (3)

35 (Id) or a salt thereof

Reduction

5

$$\begin{array}{c|c}
R^{1} & N & \\
N & N \\
R^{3} & CH_{2}R^{6}
\end{array}$$

10

15 <u>Process (4)</u>

 $\begin{array}{c|c}
\mathbb{R}^{1} & & & \\
\mathbb{R}^{2} & & & \\
\mathbb{R}^{3} & & & \\
\mathbb{R}^{3} & & & \\
\mathbb{R}^{8} & & \mathbb{R}^{7}
\end{array}$

25

20

(III)
or a salt thereof

30

reduction

10

15

Process (5)

20

25

30

35

R¹
N
N
R⁵
R
R
R
R
R
(If)

or a salt thereof

$$\begin{array}{c|c}
R^1 & N & \\
N &$$

(Ig) or a salt thereof

Elimination reaction of the hydroxy protective group

$$\begin{array}{c|c}
R^1 & N & \\
N & N \\
R^3 & R^4 \\
R^4 & R^4
\end{array}$$

(Ih) or a salt thereof

Elimination reaction of

the amino protective group

Process (6)

5

$$\begin{array}{c|c}
 & N \\
 & N \\$$

(Ii)

or a salt thereof

10

15

20

25 Process (7)

30

 $\cdot R^1$

(Ij)

or a salt thereof

$$\begin{array}{c|c}
R^{1} & N & \\
N & N & \\
N$$

(Ik)

or a salt thereof

35

cyclo(lower)alkyl-(lower)alkyl,

carboxy(lower)alkyl, protected

carboxy(lower)alkyl, ar(lower)alkyl which
may have suitable substituent(s),
ar(lower)alkenyl, bridged tricyclicalkyl,
heterocyclic group which may have suitable
substituent(s),
or a group of the formula :

A

10

5

(in which A is lower alkylene),

x is anion, and is N-containing heterocyclic group.

The starting compounds or salts thereof can be prepared by the following Processes.

Process (A)

20

(V)

or a salt thereof

 $\begin{array}{c|c}
R^{9} & \text{CH-N} & R^{10} \\
R^{9} & \text{CH-N} & R^{10}
\end{array}$ (VI)

$$R^{1}$$
 O R^{2} CH $\sim N$ R^{10}

(VII) or a salt thereof

Process (B)

10

$$R^{1}$$
 O R^{2} CH $\sim N < R^{10}$ (VII)

15

or a salt thereof

20

25

30

(IX) or a salt thereof

Process (C)

 R^2

(IX)

or a salt thereof

10

Cleavage reaction of O-N bond

15

$$\mathbb{R}^1$$
 0 \mathbb{R}^2 CN

20

(X) or a salt thereof

Process (D)

25

30

$$\mathbb{R}^1$$
 O \mathbb{R}^2 CN

(X)

or a salt thereof

1 halogenation

$$R^1$$
 X^2 R^2 CN

(XI) or a salt thereof

10

15

20

(XIII) or a salt thereof

Process (E)

25

(XIV)

or a salt thereof

30

35

(X)
or a salt thereof

Process (F)

10

$$\mathbb{R}^1$$
 O \mathbb{R}^2 CN

15

(X)
or a salt thereof

20

25

30

Process (G)

(XIII) or a salt thereof

(XVI)
or a salt thereof

25 Process (H)

10

$$R^{1}$$
 N
 R^{5}
 $N = N$

(IIa)

or a salt thereof

15

Process (I)

20

25

30

35

15

20

5

(III) or a salt thereof

wherein R^{1} , R^{2} , R^{5} , X^{10} and $-CH < \frac{R^{7}}{8}$,

defined above, R^9 and X^3 are each a leaving group,

X² is halogen,

R¹⁰ is lower alkyl,

R¹¹ is lower alkyl or aryl, and

X4 is acid residue.

Suitable pharmaceutically acceptable salts of the object compound (I) are conventional non-toxic salts and may include a salt with a base or an acid addition salt 25 such as a salt with an inorganic base, for example, an alkali metal salt (e.g., sodium salt, potassium salt, etc.), an alkaline earth metal salt (e.g., calcium salt, magnesium salt, etc.), an ammonium salt; a salt with an organic base, for example, an organic amine 30 salt (e.g., triethylamine salt, pyridine salt, picoline salt, ethanolamine salt, triethanolamine salt, dicyclo-

hexylamine salt, N,N'-dibenzylethylenediamine salt, etc.); an inorganic acid addition salt (e.g., hydrochloride,

hydrobromide, sulfate, phosphate, etc.); 35

20

35

in detail as follows.

an organic carboxylic or sulfonic acid addition salt (e.g., formate, acetate, trifluoroacetate, maleate, tartrate, fumarate, methanesulfonate, benzenesulfonate, toluenesulfonate, etc.);

a salt with a basic or acidic amino acid (e.g., arginine, aspartic acid, glutamic acid, etc.).

In the above and subsequent descriptions of the present specification, suitable examples and illustration of the various definitions which the present invention intends to include within the scope thereof are explained

The term "lower" is used to intend a group having 1 to 6 carbon atom(s), unless otherwise provided.

The term "higher" is used to intend a group having 7 to 20 carbon atoms, unless otherwise provided.

Suitable "lower alkyl" and "lower alkyl moiety" in the terms "cyclo(lower)alkyl-(lower)alkyl", "carboxy(lower)alkyl", "protected carboxy(lower)alkyl" and "ar(lower)alkyl" may include straight or branched one having 1 to 6 carbon atoms(s), such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, tert-pentyl, hexyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, and the like.

Suitable "lower alkenyl moiety" in the term

"ar(lower)alkenyl" may include vinyl, 1-(or 2-)propenyl,

1-(or 2- or 3-)butenyl, 1-(or 2- or 3- or 4-)pentenyl,

1-(or 2- or 3- or 4- or 5-)hexenyl, methylvinyl,

ethylvinyl, 1-(or 2- or 3-)methyl-1-(or 2-)propenyl, 1-(or

2- or 3-)ethyl-1-(or 2-)propenyl, 1-(or 2- or 3- or 4-)
methyl-1-(or 2- or 3-)butenyl, and the like, in which more

preferable example may be C2-C4 alkenyl.

Suitable "protected amino" and "protected amino moiety" in the term "acyl having protected amino" may include an acylamino or an amino group substituted by a conventional protecting group such as ar(lower)alkyl which

10

may have suitable substituent(s) (e.g., benzyl, trityl, etc.) or the like.

Suitable "acyl" and "acyl moiety" in the term
"acylamino", "acyl having protected hydroxy", "acyl having
hydroxy", "acyl having protected amino", "acyl having
amino", "acyl having a leaving group" and "acyl having
N-containing heterocyclic group" may include carbamoyl,
cyclo(lower)alkylcarbamoyl, aliphatic acyl group and acyl
group containing an aromatic ring, which is referred to as
aromatic acyl, or heterocyclic ring, which is referred to
as heterocyclic acyl.

Suitable example of said acyl may be illustrated as follows:

Carbamoyl; Thiocarbamoyl;

- cyclo(lower)alkylcarbonyl (e.g., cyclopropylcarbonyl, cyclohexylcarbonyl, etc.);
 Aliphatic acyl such as lower or higher alkanoyl (e.g., formyl, acetyl, propanoyl, isobutyryl, butanoyl, pivaloyl, 2-methylpropanoyl, pentanoyl, 2,2-dimethylpropanoyl,
- 3,3-dimethylbutanoyl, 2,2-dimethylbutanoyl, hexanoyl, heptanoyl, octanoyl, nonanoyl, decanoyl, undecanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, pentadecanoyl, hexadecanoyl, heptadecanoyl, octadecanoyl, nonadecanoyl, icosanoyl, etc.);
- lower or higher alkoxycarbonyl (e.g., methoxycarbonyl, ethoxycarbonyl, isobutyloxycarbonyl, t-butoxycarbonyl, t-pentyloxycarbonyl, heptyloxycarbonyl, etc.); lower alkoxyglyoxyloyl (e.g., methoxalyl, ethoxalyl, etc.),
- lower or higher alkylsulfonyl (e.g., methylsulfonyl, ethylsulfonyl, etc.);
 lower or higher alkoxysulfonyl (e.g., methoxysulfonyl, ethoxysulfonyl, etc.); or the like;

Aromatic acyl such as

aroyl (e.g., benzoyl, toluoyl, naphthoyl, etc.);

```
ar(lower)alkanoyl [e.g., phenyl(lower)alkanoyl (e.g.,
      phenylacetyl, phenylpropanoyl, phenylbutanoyl,
      phenylisobutanoyl, phenylpentanoyl, phenylhexanoyl, etc.),
      naphthyl(lower)alkanoyl (e.g., naphthylacetyl,
 5
      naphthylpropanoyl, naphthylbutanoyl, etc.);
      ar(lower)alkenoyl [e.g., phenyl(lower)alkenoyl (e.g.,
      phenylpropenoyl, phenylbutenoyl, phenylmethacryloyl,
      phenylpentenoyl, phenylhexenoyl, etc.),
      naphthyl(lower)alkenoyl (e.g., naphthylpropenoyl,
10
      naphthylbutenoyl, etc.), etc.];
      ar(lower)alkoxycarbonyl [e.g. phenyl(lower)alkoxycarbonyl
      (e.g., benzyloxycarbonyl, etc.), etc.];
      aryloxycarbonyl (e.g., phenoxycarbonyl,
      naphthyloxycarbonyl, etc.);
15
      arylthio(lower)alkanoyl [e.g., phenylthio(lower)alkanoyl
      (e.g., phenylthioacetyl, phenylthiopropanoyl, etc.),
      aryloxy(lower)alkanoyl (e.g., phenoxyacetyl,
      phenoxypropionyl, etc.);
20
      arylcarbamoyl (e.g., phenylcarbamoyl, etc.);
      aryl-thiocarbamoyl (e.g., phenyl-thiocarbamoyl, etc.);
      arylglyoxyloyl (e.g., phenylglyoxyloyl,
      naphthylglyoxyloyl, etc.);
     'arylsulfonyl (e.g., phenylsulfonyl, p-tolylsulfonyl,
25
      etc.); or the like;
          Heterocyclic acyl such as
      heterocycliccarbonyl; heterocycliccarbamoyl;
     heterocyclic(lower)alkanoyl (e.g., heterocyclicacetyl,
     heterocyclicpropanoyl, heterocyclicbutanoyl,
30
     heterocyclicpentanoyl, heterocyclichexanoyl, etc.);
     heterocyclic(lower)alkenoyl (e.g., heterocyclicpropenoyl,
    heterocyclicbutenoyl, heterocyclicpentenoyl,
     heterocyclichexenoyl, etc.); heterocyclicglyoxyloyl; or
     the like;
35
      in which suitable "heterocyclic moiety" in the terms
```

"heterocycliccarbonyl", "heterocycliccarbamoyl",
"heterocyclic(lower)alkyl", heterocyclic(lower)alkenoyl"
and "heterocyclicglyoxyloyl" as mentioned above means, in
more detail, saturated or unsaturated, monocyclic or
polycyclic heterocyclic group containing at least one
hetero-atom such as an oxygen, sulfur, nitrogen atom and
the like.

And, especially preferable heterocyclic group may be heterocyclic group such as

- unsaturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 4 nitrogen atom(s), for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, pyridyl, dihydropyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazolyl (e.g.,
- 4H-1,2,4-triazolyl, 1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, etc.), tetrazolyl (e.g., 1H-tetrazolyl, 2H-tetrazolyl, etc.), etc.;

saturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 4

nitrogen atom(s), for example, pyrrolidinyl, imidazolidinyl, piperidyl, piperazinyl, etc.;

unsaturated condensed heterocyclic group containing 1 to 4 nitrogen atom(s), for example, indolyl, isoindolyl, 'indolinyl, indolizinyl, benzimidazolyl, quinolyl,

isoquinolyl, indazolyl, benzotriazolyl, etc.;

unsaturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 2 oxygen atom(s) and 1 to 3 nitrogen atom(s), for example, oxazolyl, isoxazolyl, oxadiazolyl (e.g.,

1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5-oxadiazolyl, etc.), etc.;

saturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 2 oxygen atom(s) and 1 to 3 nitrogen atom(s), for example,

35 morpholinyl, sydnonyl, etc.;

10

20

25

30

35

unsaturated condensed heterocyclic group containing 1 to 2 oxygen atom(s) and 1 to 3 nitrogen atom(s), for example, benzoxazolyl, benzoxadiazolyl, etc.;

unsaturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 2 sulfur atom(s) and 1 to 3 nitrogen atom(s), for example, thiazolyl, isothiazolyl, thiadiazolyl (e.g., 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,3,4-thiadiazolyl, I,2,5-thiadiazolyl, etc.), dihydrothiazinyl, etc.;

saturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 2 sulfur atom(s) and 1 to 3 nitrogen atom(s), for example,

thiazolidinyl, etc.;

unsaturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 2 sulfur atom(s), for example, thienyl, dihydrodithionyl, etc.;

saturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 2 oxygen atom(s), for example, tetrahydrofuryl, tetrahydropyranyl, etc.;

unsaturated condensed heterocyclic group containing 1 'to 2 sulfur atom(s) and 1 to 3 nitrogen atom(s), for example, benzothiazolyl, benzothiadiazolyl, etc.;

unsaturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing an oxygen atom, for example, furyl, etc.;

spiro heterocyclic group containing 1 to 2 oxygen atom(s), for example, dioxaspiroundecanyl (e.g., 1,5-dioxaspiro[5,5]undecanyl, etc.), etc.;

unsaturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing an oxygen atom and 1 to 2 sulfur atom(s), for example, dihydrooxathiinyl, etc.;

10

25

30

35

unsaturated condensed heterocyclic group containing 1 to 2 sulfur atom(s), for example, benzothienyl, benzodithiinyl, etc.;

unsaturated condensed heterocyclic group containing an oxygen atom and 1 to 2 sulfur atom(s), for example benzoxathiinyl, etc.; and the like.

The acyl moiety as stated above may have one to ten.

same or different, suitable substituent(s) such as lower alkyl (e.g., methyl, ethyl, propyl, etc.); lower alkoxy (e.g., methoxy, ethoxy, propoxy, etc.); lower alkylthio (e.g., methylthio, ethylthio, etc.); lower alkylamino (e.g., methylamino, ethylamino, propylamino, etc.); mono(or di or tri)halo(lower)alkyl (e.g., fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, bromomethyl,

dichloromethyl, trichloromethyl, bromomethyl, dibromomethyl, tribromomethyl, 1 or 2-fluoroethyl, 1 or 2-bromoethyl, 1 or 2-chloroethyl, 1,1-difluoroethyl, 2,2-difluoroethyl, etc.), di(lower)alkylamino (e.g. dimethylamino, diethylamino, etc.); cyclo(lower)alkyl

20 (e.g., cyclopropyl, cyclopentyl, cyclohexyl, etc.);
 cyclo(lower)alkenyl (e.g., cyclohexenyl, cyclohexadienyl,
 etc.); halogen (e.g., fluorine, chlorine, bromine,
 iodine); amino, protected amino as mentioned above;
 hydroxy; protected hydroxy as mentioned below; cyano;

nitro; carboxy; protected carboxy as mentioned below; sulfo; aryl (e.g., phenyl, naphthyl, etc.); sulfamoyl; imino; oxo; amino(lower)alkyl (e.g., aminomethyl, aminoethyl, etc.); carbamoyloxy; hydroxy(lower)alkyl (e.g., hydroxymethyl, 1 or 2-hydroxyethyl, 1 or 2 or 3-hydroxypropyl, etc.) or the like.

Suitable "hydroxy protective group" in the term
"protected hydroxy" and "acyl having protected hydroxy"
may include acyl as mentioned above, phenyl(lower)alkyl
which may have one or more suitable substituent(s) (e.g.,
benzyl, 4-methoxybenzyl, trityl, etc.), trisubstituted

15

20

silyl [e.g., tri(lower)alkylsilyl (e.g. trimethylsilyl, t-butyldimethylsilyl, etc.), etc.], tetrahydropyranyl and the like.

Suitable "aryl" and "aryl moiety" in the terms "ar(lower)alkyl", "ar(lower)alkenyl" and "ar(C_1-C_5)alkyl" may include phenyl, naphthyl and the like.

Suitable "leaving group" and "leaving group moiety" in the term "acyl having a leaving group" may include acid residue and the like.

Suitable "acid residue" may include halogen (e.g., fluorine, chlorine, bromine, iodine), acyloxy [e.g., sulfonyloxy (e.g., phenylsulfonyloxy, tosyloxy, mesyloxy, etc.), lower alkanoyloxy (e.g., acetyloxy, propionyloxy, etc.), etc.] and the like.

Suitable "halogen" may include fluorine, bromine, chlorine, iodine.

Suitable "protected carboxy" and "protected carboxy moiety" in the term "protected carboxy(lower)alkyl" may include esterified carboxy and the like. And suitable example of said ester may be the ones such as lower alkyl ester (e.g., methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, t-butyl ester, pentyl ester, t-pentyl ester, hexyl ester, etc.); 'lower alkynyl ester (e.g., vinyl ester, allyl ester, propynyl ester) is lower alkynyl ester (e.g., ethynyl ester, propynyl ester).

- ester, etc.); lower alkynyl ester (e.g., ethynyl ester, propynyl ester, etc.); lower alkoxy(lower)alkyl ester (e.g., methoxymethyl ester, ethoxymethyl ester, isopropoxy ester, 1-methoxyethyl ester, 1-ethoxyethyl ester, etc.); lower alkylthio(lower)alkyl ester (e.g., methylthiomethyl ester,
- ethylthiomethyl ester, ethylthioethyl ester,
 isopropoxythiomethyl ester, etc.); mono(or di or tri)halo(lower)alkyl ester (e.g., 2-icdoethyl ester,
 2,2,2-trichloroethyl ester, etc.); lower
 alkanoyloxy(lower)alkyl ester (e.g., acetoxymethyl ester,
 propionyloxymethyl ester, butyryloxymethyl ester,

```
valeryloxymethyl ester, pivaloyloxymethyl ester,
     hexanoyloxymethyl ester, 1-acetoxyethyl ester,
      2-acetoxyethyl ester, 2-propionyloxyethyl ester, etc.);
     cyclo(lower)alkyl ester (e.g., cyclopropyl ester,
5
     cyclopentyl ester, cyclohexyl ester, etc.);
     lower alkoxycarbonyloxy(lower)alkyl ester (e.g.,
     methoxycarbonyloxymethyl ester, ethoxycarbonyloxymethyl
     ester, propoxycarbonyloxymethyl ester, 1-(or 2-)[methoxy-
     carbonyloxy]ethyl ester, 1-(or 2-)[ethoxycarbonyloxy]ethyl
10
     ester, 1-(or 2-)[propoxycarbonyloxy]ethyl ester, 1-(or
      2-)[isopropoxycarbonyloxy]ethyl ester, etc.);
     lower alkanesulfonyl(lower)alkyl ester (e.g., mesylmethyl
     ester, 2-mesylethyl ester, etc.); lower alkoxycarbonyloxy-
      (lower)alkyl ester (e.g., methoxycarbonyloxymethyl ester,
15
     ethoxycarbonyloxymethyl ester, propoxycarbonyloxymethyl
     ester, t-butoxycarbonyloxymethyl ester, 1-(or
     2-)methoxycarbonyloxyethyl ester, 1-(or 2-)methoxy-
     carbonyloxyethyl ester, 1-(or 2-)ethoxycarbonyloxyethyl
     ester, 1-(or 2-)isopropoxycarbonyloxyethyl ester, etc.);
20
     phthalidylidene(lower)alkyl ester, or (5-lower alkyl-2-
     oxo-1,3-dioxol-4-yl)(lower)alkyl ester [e.g.,
      (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl ester,
      (5-ethyl-2-oxo-1,3-dioxol-4-yl)methyl ester,
     '(5-propyl-2-oxo-1,3-dioxol-4-yl)ethyl ester, etc.];
25
     ar(lower)alkyl ester, for example, phenyl(lower)alkyl
     ester which may have one or more suitable substituent(s)
      (e.g., benzyl ester, 4-methoxybenzyl ester, 4-nitrobenzyl
      ester, phenethyl ester, trityl ester, benzhydryl ester,
     bis(methoxyphenyl)methyl ester, 3,4-dimethoxybenzyl ester,
30
      4-hydroxy-3,5-di-t-butylbenzyl ester, etc.);
      aryl ester which may have one or more suitable
      substituent(s) such as substituted or unsubstituted phenyl
     ester (e.g., phenyl ester, tolyl ester, t-butylphenyl
      ester, xylyl ester, mesityl ester, cumenyl ester,
35
      4-chlorophenyl ester, 4-methoxyphenyl ester, etc.);
```

30

tri(lower)alkyl silyl ester; lower alkylthioester (e.g., methylthioester, ethylthioester, etc.) and the like.

Suitable "lower alkylene" may include straight or branched one such as methylene, ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, methylene, ethylethylene, propylene, and the like, in which more preferable example may be $\mathrm{C_1}\text{-}\mathrm{C_4}$ alkylene.

Suitable "heterocyclic group" can be referred to the ones as exemplified above.

Suitable "bridged tricyclicalkyl" may include tricyclobutyl, tricyclopentyl, tricyclohexyl, tricycloheptyl, tricyclooctyl, tricyclononanyl, tricyclodecanoyl (e.g., adamantanyl, etc.), tricycloundecanyl, and the like.

Suitable "cyclo(lower)alkyl" and "cyclo(lower)alkyl moiety" in the terms "cyclo(lower)alkyl-(lower)alkyl" and "cyclo(lower)alkyl-(C₁-C₅)alkyl" may include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.

Suitable "C₁-C₅ alkyl" and "C₁-C₅ alkyl moiety" in the terms "cyclo(lower)alkyl-(C₁-C₅)alkyl" and "ar(C₁-C₅)alkyl" may include straight or branched one having 1 to 5 carbon atom(s), such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, 'pentyl, tert-pentyl, neopentyl, and the like.

Suitable "N-containing heterocyclic group" and "N-containing heterocyclic group moiety" in the term "acyl having N-containing heterocyclic group" may include

unsaturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 4 nitrogen atom(s), for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, dihydropyridyl, triazolyl (e.g., 4H-1,2,4-triazolyl, 1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, etc.) tetrazolyl (e.g., 1H-tetrazolyl, 2H-tetrazolyl, etc.), etc.;

35 saturated 3 to 8-membered (more preferably 5 or

6-membered) heteromonocyclic group containing 1 to 4 nitrogen atom(s), for example, pyrrolidinyl, imidazolidinyl, piperidyl, piperazinyl, etc.;

unsaturated condensed heterocyclic group containing 1 to 4 nitrogen atom(s), for example, indolyl, isoindolyl, indolinyl, etc.;

saturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 2 oxygen atom(s) and 1 to 3 nitrogen atom(s), for example, morpholinyl, etc.;

saturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 2 sulfur atom(s) and 1 to 3 nitrogen atom(s), for example, thiazolidinyl, etc.; and the like.

15

35

10

Suitable substituent" in the term" heterocyclic group which may have suitable substituent(s)" may include lower alkyl (e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, neopentyl, t-pentyl, hexyl, 20 etc.), lower alkoxy (e.g., methoxy, ethoxy, propoxy, isopropoxy, isobutoxy, t-butoxy, pentyloxy, neopentyloxy, t-pentyloxy, hexyloxy, etc.), lower alkenyl (e.g., vinyl, 1-propenyl, allyl, 1-methylallyl, 1 or 2 or 3-butenyl, 1 or 2 or 3 or 4-pentenyl, 1 or 2 or 3 or 4 or 5-hexenyl, 25 etc.), lower alkynyl (e.g., ethynyl, 1-propynyl, propargyl, 1-methylpropargyl, 1-methylpropargyl, 1 or 2 or 3-butynyl, 1 or 2 or 3 or 4-pentynyl, 1 or 2 or 3 or 4 or 5-hexynyl, etc.), mono(or di or tri)halo(lower)alkyl (e.g., fluoromethyl, difluoromethyl, trifluoromethyl, 30 chloromethyl, dichloromethyl, trichloromethyl, bromomethyl, dibromomethyl, tribromomethyl, 1 or 2-fluoroethyl, 1 or 2-bromoethyl, 1 or 2-chloroethyl, 1,1-difluoroethyl, 2,2-difluoroethyl, etc.), halogen (e.g., chlorine, bromine, fluorine, iodine), carboxy,

protected carboxy, hydroxy, protected hydroxy, aryl (e.g.,

phenyl, naphthyl, etc.), ar(lower)alkyl such as phenyl(lower)alkyl (e.g., benzyl, phenethyl, phenylpropyl, etc.), carboxy(lower)alkyl, protected carboxy(lower)alkyl, nitro, amino, protected amino, di(lower)alkylamino (e.g., 5 dimethylamino, diethylamino, diisopropylamino, ethylmethylamino, isopropylmethylamino, ethylmethylamino, ethylpropylamino, etc.), hydroxy(lower)alkyl, protected hydroxy(lower)alkyl, acyl as mentioned above, cyano, mercapto, lower alkylthio (e.g., methylthio, ethylthio, propylthio, isopropylthio, butylthio, etc.), imino, and the like.

Suitable "substituent" in the term "aryl which may have suitable substituent", "ar(lower)alkyl which may have suitable substituent(s)" and "ar(C_1-C_5)alkyl which may 15 have suitable substituent(s)" may include lower alkyl (e.g., methyl, ethyl propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, neopentyl, t-pentyl, hexyl, etc.), lower alkoxy (e.g., methoxy, ethoxy, propoxy, isopropoxy, 20 isobutoxy, t-butoxy, pentyloxy, neopentyloxy, t-pentyloxy, hexyloxy, etc.), lower alkenyl (e.g., vinyl, 1-propenyl, allyl, 1-methylallyl, 1 or 2 or 3-butenyl, 1 or 2 or 3 or 4-pentenyl, 1 or 2 or 3 or 4 or 5-hexenyl, etc.), lower 'alkynyl (e.g., ethynyl, 1-propynyl, propargyl, 1-methylpropargyl, 1-methylpropargyl, 1 or 2 or 3-butynyl, 25 1 or 2 or 3 or 4-pentynyl, 1 or 2 or 3 or 4 or 5-hexynyl, etc.), mono(or di or tri)halo(lower)alkyl (e.g., fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, bromomethyl, dibromomethyl, tribromomethyl, 1 or 30 2-fluoroethyl, 1 or 2-bromoethyl, 1 or 2-chloroethyl, 1,1-difluoroethyl, 2,2-difluoroethyl, etc.), halogen (e.g., chlorine, bromine, fluorine, iodine), carboxy, protected carboxy, hydroxy, protected hydroxy, aryl (e.g., phenyl, naphthyl, etc.), ar(lower)alkyl such as 35

phenyl(lower)alkyl (e.g., benzyl, phenethyl, phenylpropyl, etc.), carboxy(lower)alkyl, protected carboxy(lower)alkyl, nitro, amino, protected amino, di(lower)alkylamino (e.g., dimethylamino, diethylamino, diisopropylamino,

ethylmethylamino, isopropylmethylamino, ethylmethylamino, ethylpropylamino, etc.), hydroxy(lower)alkyl, protected hydroxy(lower)alkyl, acyl as mentioned above, cyano, mercapto, lower alkylthio (e.g., methylthio, ethylthio, propylthio, isopropylthio, butylthio, etc.), imino, and the like.

The processes for preparing the object and starting compounds are explained in detail in the following.

Process (1)

The compound (Ia) or a salt thereof can be prepared by subjecting the compound (II) or a salt thereof to reduction reaction.

Reduction is carried out in a conventional manner, including chemical reduction and catalytic reduction.

Suitable reducing reagent to be used in chemical reduction are hydrides (e.g., hydrogen iodide, hydrogen sulfide, lithium aluminum hydride, sodium borohydride, sodium cyanoborohydride, etc.);

'a combination of borane, and tetrahydrofuran or
di(lower)alkyl sulfide (e.g., dimethyl sulfide, etc.);
or a combination of a metal (e.g., tin, zinc, iron, etc.)
or metallic compound (e.g., chromium chloride, chromium
acetate, etc.) and an organic acid or an inorganic acid
(e.g., formic acid, acetic acid, propionic acid,

trifluoroacetic acid, p-toluenesulfonic acid, hydrochloric acid, hydrobromic acid, etc.).

Suitable catalysts to be used in catalytic reduction are conventional ones such as platinum catalysts (e.g., platinum plate, spongy platinum, platinum black, colloidal platinum, platinum oxide, platinum wire, etc.), palladium

15

35

catalysts (e.g., spongy palladium, palladium black, palladium oxide, palladium on carbon, colloidal palladium, palladium on barium sulfate, palladium on barium carbonate, etc.), nickel catalysts (e.g., reduced nickel, nickel oxide, Raney nickel, etc.), cobalt catalysts (e.g., reduced cobalt, Raney cobalt, etc.), iron catalysts (e.g., reduced iron, Raney copper, Ullman copper, etc.), and the like.

The reduction is usually carried out in a conventional solvent which does not adversely influence the reaction such as water, alcohol (e.g., methanol, ethanol, propanol, etc.), tetrahydrofuran, dioxane, N,N-dimethylformamide, or a mixture thereof.

Additionally, in case that the above-mentioned acids to be used in chemical reduction are in liquid, they can also be used as a solvent.

The reaction temperature is not critical and the reaction is usually carried out under cooling to warming.

20 Process (2)

The compound (Ic) or a salt thereof can be prepared by subjecting the compound (Ib) or its reactive derivative at the imino group or a salt thereof to acylation reaction.

Suitable acylating agent to be used in the present acylation reaction may include the compound of the formula:

$$R_a^4$$
 - OH (XIX)

30 (wherein R_a⁴ is acyl)

or its reactive derivative or a salt thereof.

Suitable reactive derivative at the imino group of the compound (Ib) may include a silyl derivative formed by the reaction of the compound (Ib) with a silyl compound such as N,O-bis(trimethylsilyl)acetamide, N-trimethylsilylacetamide or the like; a derivative formed by the reaction of the compound (Ib) with phosphorus trichloride or phospene, and the like.

Suitable reactive derivative of the compound (XIX) may include an acid halide, an acid anhydride, an 5 activated ester, isothiocyanate, isocyanate, and the like. The suitable example may be an acid chloride; acid azide; a mixed acid anhydride with an acid such as substituted phosphoric acid (e.g., dialkylphosphoric acid, 10 phenylphosphoric acid, diphenylphosphoric acid, dibenzylphosphoric acid, halogenated phosphoric acid, etc.), dialkylphosphorous acid, sulfurous acid, thiosulfuric acid, alkanesulfuric acid (e.g., methanesulfonic acid, ethanesulfonic acid, etc.), sulfuric acid, alkylcarbonic acid, aliphatic carboxylic acid (e.g., 15 pivalic acid, pentanoic acid, isopentanoic acid, 2-ethylbutyric acid, trichloroacetic acid, etc.); aromatic carboxylic acid (e.g., benzoic acid, etc.); a symmetrical acid anhydride; an activated amide with 20 imidazole, 4-substituted imidazole, dimethylpyrazole, triazole or tetrazole; an activated ester (e.g., cyanomethyl ester, methoxymethyl ester, dimethyliminomethyl [(CH₂)₂N⁽⁺⁾=CH-] ester, vinyl ester, propargyl ester, p-nitrophenyl ester, 2,4-dinitrophenyl ester, trichlorophenyl ester, pentachlorophenyl ester, 25 mesylphenyl ester, phenylazophenyl ester, phenylthio ester, p-nitrophenyl thioester, p-cresyl thioester, carboxymethyl thioester, pyranyl ester, pyridyl ester, piperidyl ester, 8-quinolyl thioester, etc.); an ester 30 with a N-hydroxy compound (e.g., N,N-dimethylhydroxyamine, 1-hydroxy-2-(1H)-pyridone, N-hydroxysuccinimide, N-hydroxybenzotriazole, N-hydroxyphthalimide, 1-hydroxy-6-chloro-1H-benzotriazole, etc.); substituted or unsubstituted aryl isocyanate; substituted or unsubstituted 35 aryl isothiocyanate, and the like. These reactive

35

derivatives can optionally be selected from them according to the kind of the compound (XIX) to be used.

The reaction is usually carried out in a conventional solvent such as water, acetone, dioxane, acetonitrile, chloroform, methylene chloride, ethylene chloride, tetrahydrofuran, ethyl acetate, N,N-dimethylformamide, pyridine or any other organic solvents which do not adversely influence the reaction. These conventional solvents may also be used in a mixture with water.

- When the compound (XIX) is used in free acid form or its salt form in the reaction, the reaction is preferably carried out in the presence of a conventional condensing agent such as N,N'-dicyclohexylcarbodiimide; N-cyclohexyl-N'-morpholinoethylcarbodiimide;
- N-cyclohexyl-N'-(4-diethylaminocyclohexyl)carbodiimide;
 N,N'-diisopropylcarbodiimide;
 N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide;
 N,N-carbonyl-bis(2-methylimidazole);
 pentamethyleneketene-N-cyclohexylimine;
- diphenylketene-N-cyclohexylimine; ethoxyacetylene;
 1-alkoxy-1-chloroethylene; trialkyl phosphite; isopropyl
 polyphosphate; phosphorous oxychloride (phosphoryl
 chloride); phosphorous trichloride; thionyl chloride;
 'oxalyl chloride; triphenylphosphite;
- 25 2-ethyl-7-hydroxybenzisoxazolium salt; 2-ethyl-5-(m-sulfophenyl)isoxazolium hydroxide intra-molecular salt; 1-(p-chlorobenzenesulfonyloxy)-6chloro-1H-benzotriazole; so-called Vilsmeier reagent prepared by the reaction of N,N-dimethylformamide with
- thionyl chloride, phospene, phosphorous oxychloride, etc.; or the like.

The reaction may be carried out in the presence of an inorganic or an organic base such as an alkali metal (e.g., sodium, potassium, etc.), an alkali metal hydroxide (e.g., sodium hydroxide, potassium hydroxide, etc.), an

alkali metal hydrogencarbonate (e.g., sodium hydrogencarbonate, potassium hydrogencarbonate, etc.), alkali metal carbonate (e.g., sodium carbonate, potassium carbonate, etc.), tri(lower)alkylamine (e.g.,

- trimethylamine, triethylamine, diisopropylethylamine, etc.), alkali metal hydride (e.g., sodium hydride, etc.), alkali metal (lower)alkoxide (e.g., sodium methoxide, sodium ethoxide, etc.), pyridine, lutidine, picoline, dimethylaminopyridine, N-(lower)alkylmorpholine,
- N,N-di(lower)alkylbenzylamine, N,N-di(lower)alkylamine, N-(lower)alkylpyrrolidone (e.g., N-methyl-2-pyrrolidone, etc.), or the like.

The reaction may be carried out in the presence of an acid including Lewis acid.

- Suitable acid may include an organic acid [e.g. formic acid, acetic acid, propionic acid, trichloroacetic acid, trifluoroacetic acid, etc.] and an inorganic acid [e.g. hydrochloric acid, hydrobromic acid, sulfuric acid, hydrogen chloride, hydrogen bromide, zinc halide (e.g.
- zinc chloride, zinc bromide, etc.), etc.] and the like.

 When the acid, the base and/or the starting compound are in liquid, they can be used also as a solvent.

The reaction temperature is not critical and the reaction is usually carried out under cooling to heating.

The present invention includes, within the scope of the invention, the case that hydrogen in R³ is transformed into acyl group during the reaction.

Process (3)

35

The compound (Ie) or a salt thereof can be prepared by subjecting the compound (Id) or a salt thereof to reduction reaction.

This reduction can be carried out in a similar manner to that of the aforementioned <u>Process (1)</u>, and therefore the reagents to be used and the reaction conditions (e.g.,

10

20

25

35

solvent, reaction temperature, etc.) can be referred to those of the Process (1).

Process (4)

The compound (If) or a salt thereof can be prepared by subjecting the compound (III) or a salt thereof to reduction reaction.

This reduction can be carried out in a similar manner to that of the aforementioned <u>Process (1)</u>, and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of the Process (1).

Process (5)

The compound (Ih) or a salt thereof can be prepared by subjecting the compound (Ig) or a salt thereof to elimination reaction of the hydroxy protective group.

Suitable method of this elimination reaction may include conventional one such as hydrolysis, reduction and the like.

(i) For Hydrolysis:

The hydrolysis is preferably carried out in the 'presence of a base or an acid including Lewis acid.

- Suitable base may include an inorganic base and an organic base such as an alkali metal [e.g., sodium, potassium, etc.], an alkaline earth metal [e.g., magnesium, calcium, etc.], the hydroxide or carbonate or hydrogencarbonate thereof, trialkylamine [e.g., trimethylamine, triethylamine, etc.], picoline.
- trimethylamine, triethylamine, etc.], picoline, 1,5-diazabicyclo[4.3.0]-non-5-ene, or the like.

Suitable acid may include an organic acid [e.g., formic acid, acetic acid, propionic acid, trichloroacetic acid, trifluoroacetic acid, etc.], and an inorganic acid [e.g., hydrochloric acid, hydrobromic acid, sulfuric acid,

10

15

25

30

35

1

hydrogen chloride, hydrogen bromide, etc.].

The elimination using Lewis acid such as trihaloacetic acid [e.g., trichloroacetic acid, trifluoroacetic acid, etc.], or the like is preferably carried out in the presence of cation trapping agents [e.g., anisole, phenol, etc.].

The reaction is usually carried out in a conventional solvent such as water, alcohol (e.g., methanol, ethanol, isopropyl alcohol, etc.), tetrahydrofuran, dioxane, dichloromethane, ethylene dichloride, chloroform, N,N-dimethylformamide, N,N-dimethylacetamide, or any other organic solvent which does not adversely affect the reaction.

Among these solvents, hydrophilic solvents may be used in a mixture with water.

The reaction temperature is not critical and the reaction is usually carried out under cooling to warming.

(ii) For reduction :

20 Reduction is carried out in a conventional manner, including chemical reduction and catalytic reduction.

Suitable reducing reagent to be used in chemical reduction are hydrides (e.g., hydrogen iodide, hydrogen sulfide, lithium aluminum hydride, sodium borohydride, sodium cyanoborohydride, etc.), or a combination of a metal (e.g., tin, zinc, iron, etc.) or metallic compound (e.g., chromium chloride, chromium acetate, etc.) and an organic acid or an inorganic acid (e.g., formic acid, acetic acid, propionic acid, trifluoroacetic acid, p-toluenesulfonic acid, hydrochloric acid, hydrobromic acid, etc.).

Suitable catalysts to be used in catalytic reduction are conventional ones such as platinum catalysts (e.g., platinum plate, spongy platinum, platinum black, colloidal platinum, platinum oxide, platinum wire, etc.), palladium

15

20

25

30

35

catalysts (e.g., spongy palladium, palladium black, palladium oxide, palladium on carbon, colloidal palladium, palladium on barium sulfate, palladium on barium carbonate, etc.), nickel catalysts (e.g., reduced nickel, nickel oxide, Raney nickel, etc.), cobalt catalysts (e.g., reduced cobalt, Raney cobalt, etc.), iron catalysts (e.g., reduced iron, etc.), and the like.

The reduction is usually carried out in a conventional solvent which does not adversely influence the reaction such as water, alcohol (e.g., methanol, ethanol, propanol, etc.), N,N-dimethylformamide, tetrahydrofuran, methylene dichloride, chloroform, dioxane, or a mixture thereof.

Additionally, in case that the above-mentioned acids to be used in chemical reduction are in liquid, they can also be used as a solvent.

The reaction temperature of this reduction is not critical and the reaction is usually carried out under cooling to warming.

Process (6)

The compound (Ij) or a salt thereof can be prepared by subjecting the compound (Ii) or a salt thereof to elimination reaction of the amino protective group.

This reaction can be carried out in a similar manner to that of the aforementioned <u>Process (5)</u>, and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of the <u>Process (5)</u>.

Process (7)

The compound (I1) or a salt thereof can be prepared by reacting the compound (Ik) or a salt thereof with the compound (IV) or a salt thereof.

This reaction is usually carried out in a solvent such as water, alcohol (e.g., methanol, ethanol, etc.), benzene, N,N-dimethylformamide, tetrahydrofuran, toluene, methylene chloride, ethylene dichloride, chloroform, dioxane, diethyl ether or any other solvent which does not adversely affect the reaction. These conventional solvent may also be used in a mixture with water.

The reaction temperature is not critical and the reaction is usually carried out under cooling to heating.

- The reaction is usually carried out in the presence of an inorganic or an organic base such as an alkali metal (e.g., sodium, potassium, etc.), an alkali metal hydroxide (e.g., sodium hydroxide, potassium hydroxide, etc.), an alkali metal hydrogencarbonate (e.g., sodium
- hydrogencarbonate, potassium hydrogencarbonate, etc.),
 alkali metal carbonate (e.g., sodium carbonate, potassium
 carbonate, etc.), tri(lower)alkylamine (e.g.,
 trimethylamine, triethylamine, diisopropylethylamine,
 etc.), alkali metal hydride (e.g., sodium hydride, etc.),
 alkali metal (lower)alkovide (e.g., sodium methovide)
- alkali metal (lower)alkoxide (e.g. sodium methoxide, sodium ethoxide, etc.), pyridine, lutidine, picoline, dimethylaminopyridine, N-(lower)alkylmorpholine, N,N-di(lower)alkylbenzylamine, N,N-di(lower)alkylaniline or the like.
- When the base and/or the starting compound are in liquid, they can be used also as a solvent.

Process (A)

The compound (VII) or a salt thereof can be prepared by reacting the compound (V) or a salt thereof with the compound (VI) or a salt thereof.

This reaction can be carried out in the manner disclosed in Preparation 2 or similar manners thereto.

20

25

30

Process (B)

The compound (IX) or a salt thereof can be prepared by reacting the compound (VII) or a salt thereof with the compound (VIII) or a salt thereof.

This reaction can be carried out in the manner disclosed in Preparation 3 or similar manners thereto.

Process (C)

The compound (X) or a salt thereof can be prepared by subjecting the compound (IX) or a salt thereof to cleavage reaction of O-N bond.

This reaction can be carried out in the manner disclosed in Preparation 4 or similar manners thereto.

15 <u>Process (D) - 1</u>

The compound (XI) or a salt thereof can be prepared by subjecting the compound (X) or a salt thereof to halogenation reaction.

This halogenation is usually carried out by using a conventional halogenating agent such as halogen (e.g., chlorine, bromine, etc.), phosphorus trihalide (e.g., phosphorus tribromide, phosphorus trichloride, etc.), phosphorus pentahalide, (e.g., phosphorus pentachloride, 'phosphorus pentabromide, etc.), phosphorus oxychloride (e.g., phosphoryl trichloride, phosphoryl monochloride, etc.), thionyl halide (e.g., thionyl chloride, thionyl bromide, etc.), oxalyl halide (e.g., oxalyl chloride, oxalyl bromide, etc.) and the like.

This reaction is usually carried out in a solvent such as water, alcohol (e.g., methanol, ethanol, isopropyl alcohol, etc.), benzene, dioxane, N,N-dimethylformamide, tetrahydrofuran, methylene chloride, ethylene dichloride, chloroform, diethyl ether or any other solvent which does not adversely affect the reaction.

The reaction temperature is not critical and the

WO 94119350

4 1 1 1

reaction is usually carried out under cooling to warming. The compound (XIII) or a salt thereof can be prepared or a salt thereof can be prepared or a salt thereof.

The compound (XIII) or a salt thereof with the compound (XIII) or a salt thereof with the by reacting the compound thereof.

By reacting (XII) or a salt thereof. or a salt thereof.

This reaction is usually marked out in a solvent

This reaction is usually marked out in a solvent

This reaction is usually marked out in a solvent

This reaction is usually marked out in a solvent

This reaction is usually marked out in a solvent

The solvent in a solvent

The solv such as water, herearthy formamide tetrahydrofiren benzene w w-dimerky formamide such as water, alcohol (e.g., metnanol, etnanol, toluene, toluene, alcohol (e.g., metnanol, etnanol, toluene, toluene, toluene, metnanol, etnanol, etnanol, toluene, Process DI compound (XII) or a salt thereof.

5

Denzene, N,N-almethyltormamide, tetranydroruran, tolumethyltormamide, tetranydroruran, chloroform, ethylene dichloride, one not methylene chloride, arms other columns of any other allocations arms of any other allocations. metnylene chloride, ethylene dichloride, which does not diethyl ether or any reaction The reaction temperature is not critical and the The reaction temperature is not critical and the warming to heating.

adversely affect the reaction. 20

The compound (X) or a salt thereof can be prepared by

The compound (X) or a salt thereof thereof with the reacting the compound (XV) or a salt thereof with the compound (XV) or a salt thereof Dung (XV) or a salt thereor. Carried out in a solvent or a salt thereor. Thereor. Thereor. Thereor. Such as Water, Northwarformamide tetrahvarofuran Northwarformamide Northwarformamide tetrahvarofuran Northwa compound (XV) or a salt thereof. such as water, alconol (e.g., methanol, ethanol, ohiorofo, ohiorof Process (E) 15

These conventional solvent

methylene chloride, ethylene dichloride, chlorotorm, c Denzene, N,N-almethyltormamide, tetranydrofuran, tolu, tetranydrofuran, chloroform, ethylene dichloride, chloride, which an any other entrent which and methylene diethylene diethylene diethylene diethylene diethylene diethylene The reaction temperature is not critical and the reaction temperature. The reaction is usually carried out in the presence reaction is usually reaction. may also be used in a mixture with water. The reaction is usually carried out under warming to nearling.

The reaction is usually carried out in the presence an increasing or an organic hase each as an alvali man, and increasing or an organic hase each as an increasing organic hase each as an increasing organic hase each as a subject to the organic hase each as adversely affect the reaction. of an inorganic potagasium potaga 30

25

or an inorganic or an organic base such as an alkali metal hydroxide erc.), an an alkali metal hydroxide erc.), an erc.), arc.), (e.g., sodium hydroxide, potassium hydroxide, etc.), an least mydroxide, etc.), an hydroxide, potassium hydroxide, sodium hydroxide, and sodium hydroxide, alkall metal nydrogencarbonate (e.g., sodlum etc.),

noraes

nydrogencarbonate, potaesium hydrogencarbonate

nydrogencarbonate, potaesium endium garhonate

nydrogencarbonate, potaesium endium garhonate

alkali metal garhonate (e.g., sodlum

antal nydrogencarbonate) nydrogencarbonate, potassium hydrogencarbonate, potassium hydrogencarbonate, potassium sodium carbonate, potassium alkali metal alkali metal hydrogencarbonate (e.g., sodium hydrogencarbonate) 30

35

15

20

25

30

carbonate. etc.), tri(lower)alkylamine (e.g., trimethylamine, triethylamine, diisopropylethylamine, etc.), alkali metal hydride (e.g., sodium hydride, etc.), alkali metal (lower)alkoxide (e.g., sodium methoxide, sodium ethoxide, etc.), pyridine, lutidine, picoline, dimethylaminopyridine, N-(lower)alkylmorpholine, N,N-di(lower)alkylbenzylamine, N,N-di(lower)alkylaniline or the like.

When the base and/or the starting compound are in liquid, they can be also as a solvent.

Process (F)

The compound (XIII) or a salt thereof can be prepared by reacting the compound (X) or a salt thereof with the compound (XII) or a salt thereof.

This reaction is usually carried out in a solvent such as benzene, N,N-dimethylformamide, tetrahydrofuran, toluene, methylene chloride, ethylene dichloride, chloroform, dioxane, diethyl ether or any other solvent which does not adversely affect the reaction.

The reaction temperature is not critical and the reaction is usually carried out under warming to heating.

The reaction is usually carried out in the presence of an acid including Lewis acid.

Suitable acid may include an organic acid [e.g. formic acid, acetic acid, propionic acid, trichloroacetic acid, trifluoroacetic acid, etc.], an inorganic acid [e.g. hydrochloric acid, hydrobromic acid, sulfuric acid, hydrogen chloride, hydrogen bromide, zinc halide (e.g. zinc chloride, zing bromide, etc.), etc.] and the like.

When the acid and/or the starting compound are in liquid, they can be also as a solvent.

Process (G)

The compound (XVI) or a salt thereof can be prepared

25

35

by subjecting the compound (XIII) or a salt thereof to diazotization reaction.

The reaction is usually carried out by using a conventional diazotizing agent such as a combination of an alkali metal nitrite (e.g., sodium nitrite, etc.) and an inorganic acid (e.g., hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, etc.), a combination of isopentyl nitrite and an organic acid (e.g., acetic acid, benzoic acid, etc.) and the like.

This reaction is usually carried out in a solvent such as water, alcohol (e.g., methanol, ethanol, etc.), benzene, N,N-dimethylformamide, tetrahydrofuran, toluene, methylene chloride, ethylene dichloride, chloroform, diethyl ether or any other solvent which does not adversely affect the reaction.

The reaction temperature is not critical and the reaction is usually carried out under cooling.

Process (H)

20 The compound (IIa) or a salt thereof can be prepared by reacting the compound (XVI) or a salt thereof with the compound (XVII) or a salt thereof.

This reaction is usually carried out in a solvent such as water, alcohol (e.g, methanol, ethanol, etc.), benzene, N,N-dimethylformamide, tetrahydrofuran, toluene, methylenechloride, ethylene dichloride, chloroform, diethyl ether or any other solvent which does not adversely affect the reaction.

The reaction temperature is not critical and the reaction is usually carried out under cooling to warming.

Process (I)

The compound (III) or a salt thereof can be prepared by reacting the compound (Ib) or a salt thereof with the compound (XVIII) or a salt thereof.

10

15

20

25

30

This reaction is usually carried out in a solvent such as water, alcohol (e.g., methanol, ethanol, etc.), benzene, N,N-dimethylformamide, tetrahydrofuran, toluene, methylene chloride, ethylene dichloride, chloroform, dioxane, diethyl ether or any other solvent which does not adversely affect the reaction. These conventional solvent may also be used in a mixture with water.

The reaction temperature is not critical and the reaction is usually carried out under cooling to heating.

The reaction is usually carried out in the presence of an acid including Lewis acid.

Suitable acid may include an organic acid [e.g. formic acid, acetic acid, propionic acid, trichloroacetic acid, trifluoroacetic acid, etc.] and an inorganic acid [e.g. hydrochloric acid, hydrobromic acid, sulfuric acid, hydrogen chloride, hydrogen bromide, zinc halide (e.g. zinc chloride, zinc bromide, etc.), etc.] and the like.

When the acid and/or the starting compound are in liquid, they can be used also as a solvent.

Suitable "anion" may include anion derived from the materials used in this reaction such as acid residue [e.g., halogen (e.g., fluorine, chlorine, bromine, iodine), etc.], OH and the like.

Suitable salts of the object and starting compounds in Process (1)-(7) and (A)-(I) can be referred to the ones as exemplified for the compound (I).

The new pyrazole derivatives (I) and a pharmaceutically acceptable salt thereof of the present invention possess a strong inhibitory activity on the production of Interleukin-1 (IL-1) and a strong inhibitory activity on the production of tumor necrosis factor (TNF), and therefore are useful as an inhibitor on the production of Interleukin-1 (IL-1) and an inhibitor on the production of tumor necrosis factor (TNF).

Accordingly, the new pyrazole derivatives (I)

and a pharmaceutically acceptable salt thereof can be used for prophylactic and therapeutic treatment of IL-1 and TNF mediated diseases such as chronic inflammatory diseases (e.g. rheumatoid arthritis, osteoarthritis, etc.) 5 osteoporosis, rejection by transplantation, asthma, endotoxin shock, specific autoimmune diseases [e.g. ankylosing spondylitis, autoimmune hematological disorders (e.g. hemolyticodo anaemia, aplastic anaemia, pure red cell anaemia, idiopathic thrombocytopenia, etc.), systemic 10 lupus erythematosus, polychondritis, scleroderma, Wegener granulamotosis, dermatomyositis, chronic active hepatitis, myasthenia gravis, psoriasis, idiopathic sprue, autoimmune inflammatory bowel disease (e.g. ulcerative colitis, Crohn's disease, etc.), endocrine opthalmopathy, Grave's 15 disease, sarcoidosis, multiple scleosis, primary billiary cirrhosis, juvenile diabetes (diabetes mellitus type I), Reiter's syndrome, non infection uveitis, autoimmune keratitis (e.g. keratoconjuntivitis sicca, vernal keratoconjunctivitis, etc.), interstitial lung fibrosis, 20 psoriatic arthritis, glomerulonephritis {e.g. nephrotic syndrome (e.g. idiopathic nephrotic syndrome, minimal change nephropathy, etc.), etc.], cancer cachexia, AIDS cachexia, thrombosis, and the like.

In order to show the utilities of the pyrazole

derivatives (I) and a pharmaceutically acceptable salt
thereof of the present invention, pharmacological test
data of the representative compounds of the pyrazole
derivatives (I) are illustrated in the following.

The expression of each "Example 16-(5)" and Example 18-(2) in the following test means the compounds prepared in Example 16-(5) and Example 18-(2) respectively.

(a) <u>Inhibitory activity on the production of</u> <u>Interleukin-1 (IL-1)</u>

1. Test method

5

10

Purified human peripheral blood monocyte were stimulated with bacterial lipopolysaccharide (l $\mu g/10^4$ cells) in the absence or presence of appropriately diluted test compound for 2 days at 37°C in a humidified 5% CO₂ atmosphere. Culture supernatants were tested for IL-1 ELISA assay.

Test compound was dissolved in absolute DMSO (dimethyl sulfoxide) to achieve 10 mM stock solutions and was subsequently diluted in serum free RPMI1640.

IL-1 levels were quantified by a commercial ELISA kit (Ohtsuka assay, Japan) using a sandwich technique. The sensitivity levels for the detection of IL-1β were 20 pg/ml.

The inhibitory concentration that caused a 50% inhibition (IC₅₀) was calculated by regression analysis of the dose-response data.

2. Test result

25

Test compound	IC ₅₀ (M)
Example 16-(5)	9.2×10^{-8}
Example 18-(2)	8.8 x 10 ⁻⁸

30 (b) Inhibitory activity on the production of tumor necrosis factor (TNF)

1. Test method

Purified human peripheral blood monocyte were

stimulated with bacterial lipopolysaccharide (l $\mu g/10^4$ cells) in the absence or presence of appropriately diluted test compound for 2 days at 37°C in a humidified 5% CO₂ atmosphere. Culture supernatants were tested for TNF ELISA assay.

TNF levels were quantified by a commercial ELISA kit (Endogen, Inc. USA) using a sandwich technique. The sensitivity levels for the detection of TNF were 12 pg/ml.

The inhibitory concentration that caused a 50% inhibition (IC₅₀) was calculated by regression analysis of the dose-response data.

2. Test result

15

10

Test compound	IC ₅₀ (M)
Example 16-(5)	9.1 x 10 ⁻⁸
Example 18-(2)	1.1×10^{-7}

- For therapeutic administration, the object compounds 20 (I) of the present invention and pharmaceutically acceptable salts thereof are used in a form of the conventional pharmaceutical preparation in admixture with 'a conventional pharmaceutically acceptable carrier such as 25 an organic or inorganic solid or liquid excipient which is suitable for oral, parenteral or external administration. The pharmaceutical preparation may be compounded in a solid form such as granule, capsule, tablet, dragee or suppository, or in a liquid form such as solution, 30 suspension or emulsion for injection, ingestion, eye drops, etc. If needed, there may be included in the above preparation auxiliary substance such as stabilizing agent, wetting or emulsifying agent, buffer or any other commonly used additives.
- The effective ingredient may usually be administered

with a unit dose of 0.001 mg/kg to 500 mg/kg, preferably 0.01 mg/kg to 10 mg/kg, 1 to 4 times a day. However, the above dosage may be increased or decreased according to age, weight and conditions of the patient or the administering method.

Preferred embodiments of the object compound (I) are as follows.

R is phenyl which may have 1 to 3 (more preferably one or ĩo two) suitable substituent(s) [more preferably phenyl which may have 1 to 3 (more preferably one or two; most preferably one) substituent(s) selected from the group consisting of lower alkyl, lower alkoxy, lower 15 alkenyl, lower alkynyl, mono(or di or tri)halo(lower)alkyl, halogen, carboxy, protected carboxy, hydroxy, protected hydroxy, aryl, ar(lower)alkyl, carboxy(lower)alkyl, protected carboxy(lower)alkyl, amino, protected amino, 20 di(lower)alkylamino, hydroxy(lower)alkyl, protected hydroxy(lower)alkyl, nitro, acyl, cyano, mercapto, lower alkylthio and imino; most preferably halophenyl]; or pyridyl which may have 1 to 3 (more preferably one or 25 two) suitable substituent(s) [more preferably pyridyl which may have 1 to 3 (more preferably one or two; most preferably one) substituent(s) selected from the group consisting of lower alkyl, lower alkoxy, lower alkenyl, lower alkynyl, mono(or di or 30 tri)halo(lower)alkyl, halogen, carboxy, protected carboxy, hydroxy, protected hydroxy, aryl, ar(lower)alkyl, carboxy(lower)alkyl, protected carboxy(lower)alkyl, amino, protected amino, di(lower)alkylamino, hydroxy(lower)alkyl, protected 35 hydroxy(lower)alkyl, nitro, acyl, cyano, mercapto,

lower alkylthio and imino;
most preferably pyridyl],

lower alkyl;

cyclo(lower)alkyl;

35

most preferably pyridyl], ${\ensuremath{\mathtt{R}}}^2$ is phenyl which may have 1 to 3 (more preferably one or two) suitable substituent(s) [more preferably phenyl which may have 1 to 3 (more preferably one or two; 5 most preferably one) substituent(s) selected from the group consisting of lower alkyl, lower alkoxy, lower alkenyl, lower alkynyl, mono(or di or tri)halo(lower)alkyl, halogen, carboxy, protected carboxy, hydroxy, protected hydroxy, aryl, 10 ar(lower)alkyl, carboxy(lower)alkyl, protected carboxy(lower)alkyl, amino, protected amino, di(lower)alkylamino, hydroxy(lower)alkyl, protected hydroxy(lower)alkyl, nitro, acyl, cyano, mercapto, lower alkylthio and imino; 15 most preferably halophenyl]; or pyridyl which may have 1 to 3 (more preferably one or two) suitable substituent(s) [more preferably pyridyl which may have 1 to 3 (more preferably one or two; most preferably one) substituent(s) selected from the 20 group consisting of lower alkyl, lower alkoxy, lower alkenyl, lower alkynyl, mono(or di or tri)halo(lower)alkyl, halogen, carboxy, protected carboxy, hydroxy, protected hydroxy, aryl, 25 ar(lower)alkyl, carboxy(lower)alkyl, protected carboxy(lower)alkyl, amino, protected amino, di(lower)alkylamino, hydroxy(lower)alkyl, protected hydroxy(lower)alkyl, nitro, acyl, cyano, mercapto, lower alkylthio and imino; 30 most preferably pyridyl, halopyridyl or lower alkoxypyridyl], is hydrogen or lower alkanoyl, R4 is hydrogen;

	cyclo(lower)alkyl-(lower)alkyl;
	<pre>carboxy(lower)alkyl;</pre>
	esterified carboxy(lower)alkyl [more preferably
	<pre>lower alkoxycarbonyl(lower)alkyl];</pre>
5	phenyl(lower)alkyl which may have 1 to 3 (more
	preferably one or two) suitable substituent(s) [more
	preferably phenyl(lower)alkyl which may have 1 to 3
	(more preferably one or two) substituent(s) selected
	from the group consisting of halogen, lower alkyl,
10	lower alkoxy, lower alkenyl, lower alkynyl, mono(or
	di or tri)halo(lower)alkyl and di(lower)alkylamino;
	<pre>most preferably mono(or di)halophenyl(lower)alkyl];</pre>
	adamantanyl; phenyl(lower)alkenyl; tetrahydropyranyl,
	piperidyl or dioxaspiroundecanyl, each of which may
15	have 1 to 3 (more preferably one or two)
	substituent(s) selected from the group consisting of
	lower alkyl and acyl [more preferably
	tetrahydropyranyl, piperidyl or dioxaspiroundecanyl,
	each of which may have one or two substituent(s)
20	selected from the group consisting of lower alkyl and
	lower alkanoy1;
	most preferably tetrahydropyranyl,
	lower alkylpiperidyl, lower alkanoylpiperidyl, or
	<pre>di(lower)alkyldioxaspiroundecanyl];</pre>
25	indanyl;
	lower alkanoyl which may have 1 to 3 (more preferably
	one or two) suitable substituent(s) [more preferably
	lower alkanoyl which may have 1 to 3 (more preferably
	one or two; most preferably one) substituent(s)
30	selected from the group consisting of carboxy,
	protected carboxy, lower alkoxy, halogen, protected
	amino, amino, hydroxy, protected hydroxy and
	di(lower)alkylamino;
0.5	most preferably lower alkanoyl which may have a
35	substituent selected from the group consisting of

	carboxy, esterified carboxy, lower alkoxy, halogen,
	lower alkoxycarbonylamino, lower alkanoylamino,
	amino, hydroxy, acyloxy (more preferably lower
	alkanoyloxy or cyclo(lower)alkylcarbonyloxy), and
5	<pre>di(lower)alkylamino];</pre>
	lower alkoxycarbonyl;
	lower alkoxyglyoxyloyl;
	lower alkylsulfonyl;
	cyclo(lower)alky-carbonyl;
10	aroyl which may have 1 to 3 (more preferably one or
	two) suitable substituent(s) [more preferably benzoyl
	which may have 1 to 3 (more preferably one or two)
	substituent(s) selected from the group consisting of
	mono(or di or tri)halo(lower)alkyl, halogen, protected
15	hydroxy and hydroxy; most preferably benzoyl which may
	have one or two substituent(s) selected from the group
	consisting of trihalo(lower)alkyl, halogen, acyloxy
	(more preferably lower alkanoyloxy) and hydroxy];
	ar(lower)alkanoyl which may have 1 to 3 (more
20	preferably one or two) suitable substituent(s) [more
	preferably phenyl(lower)alkanoyl which may have 1 to
•	<pre>3 (more preferably one or two) substituent(s)</pre>
	selected from the group consisting of lower alkoxy,
	aryl, halogen and mono(or di or tri)halo(lower)alkyl;
25	most preferably phenyl(lower)alkanoyl which may have
	one or two substituent(s) selected from the group
	consisting of lower alkoxy, phenyl, halogen and
	trihalo(lower)alkyl];
	ar(lower)alkenoyl [more preferably
30	<pre>phenyl(lower)alkenoyl);</pre>
	arylthio(lower)alkanoyl [more preferably
	<pre>phenylthio(lower)alkanoyl];</pre>
	arylcarbamoyl [more preferably phenylcarbamoyl];
25	aryl-thiocarbamoyl [more preferably
35	phenyl-thiocarbamoyl];

arylglyoxyloyl which may have 1 to 3 (more preferably one or two) suitable substituent(s) [more preferably phenylglyoxyloyl which may have 1 to 3 (more preferably one or two; most preferably one) substituent(s) selected from the group consisting of 5 mono(or di or tri)halo(lower)alkyl and lower alkoxy; most preferably phenylglyoxyloyl which may have a substituent selected from the group consisting of trihalo(lower)alkyl and lower alkoxy]; carbamoyl which may have one or two suitable 10 substituent(s) selected from the group consisting of lower alkyl, hydroxy(lower)alkyl, protected hydroxy(lower)alkyl (more preferably acyloxy(lower)alkyl), lower alkoxy and 15 cyclo(lower)alkyl; heterocycliccarbonyl [more preferably morpholinylcarbonyl]; heterocyclic(lower)alkanoyl [more preferably indolyl(lower)alkanoyl or morpholinyl(lower)alkanoyl]; or 20 heterocycliccarbamoyl [more preferably piperidylcarbamoyl], and R⁵ is hydrogen or lower alkyl.

The following Preparations and Examples are given for the purpose of illustrating the present invention in more detail.

30

Preparation 1

To a solution of 4-methylpyridine (74.4 g) and ethyl 4-fluorobenzoate (134.4 g) in dry tetrahydrofuran (600 ml) was added a 1.0M solution of lithium

- bis(trimethylsilyl)amide in tetrahydrofuran (1.6 l) dropwise with ice cooling. The mixture was stirred at ambient temperature for 30 minutes. To the reaction mixture was added hexane (2.2 l) and the separated solid was collected, washed with hexane and dried. The obtained
- solid was dissolved in 3N-hydrochloric acid (800 ml) and the solution was neutralized with an aqueous saturated sodium bicarbonate solution. The separated solid was collected, washed with water and dried to give 1-(4-fluorophenyl)-2-(pyridin-4-yl)ethan-1-one (148 g).
- 15 mp: 93-94°C NMR (CDCl₃, δ): 4.28 (2H, s), 7.09-7.25 (4H, m), 8.01 (1H, d, J=5Hz), 8.06 (1H, d, J=5Hz), 8.60 (2H, d, J=6Hz)

20 Preparation 2

A mixture of 1-(4-fluorophenyl)-2-(pyridin-4-yl)-ethan-1-one (5.12 g) and N,N-dimethylformamide dimethyl acetal (16 ml) was stirred at 100°C for 3 hours under nitrogen. The cooled mixture was concentrated in vacuo.

The residue was crystallized from isopropyl ether to yield 3-dimethylamino-1-(4-fluorophenyl)-2-(pyridin-4-yl)-2-propen-1-one (6.15 g).

NMR (CDCl₃, δ): 2.82 (6H, s), 6.99 (2H, t, J=9Hz), 7.03 (2H, d, J=6Hz), 7.35-7.55 (3H, m), 8.48 (2H, br)

Preparation 3

30

35

A mixture of 3-dimethylamino-1-(4-fluorophenyl)-2-(pyridin-4-yl)-2-propen-1-one (6.15 g) and hydroxylamine hydrochloride (4.75 g) in dry ethanol (40 ml) was refluxed

25

for 20 minutes. The mixture was cooled and concentrated in vacuo. The residue was dissolved in dilute hydrochloric acid and then treated with an aqueous saturated sodium bicarbonate solution. The precipitates were collected by filtration, washed with water, and dried to give 5-(4-fluorophenyl)-4-(pyridin-4-yl)isoxazole (5.35 g).

mp: 95-97°C

NMR (CDCl₃, δ): 7.15 (2H, t, J=9Hz), 7.37 (2H, d, J=6Hz), 7.61 (2H, dd, J=5Hz and 9Hz), 8.46 (1H, s), 8.67 (2H, d, J=6Hz)

Preparation 4

A suspension of 5-(4-fluorophenyl)-4-(pyridin-4-yl)isoxazole (5.35 g) in 1N sodium hydroxide aqueous solution
(50 ml) was stirred for one hour at 60°C. The solution
was cooled and adjusted to pH 6 with concentrated
hydrochloric acid. The separated solid was collected,
washed with water, and dried to give
3-(4-fluorophenyl)-3-oxo-2-(pyridin-4-yl)propanenitrile

mp: 222-225°C

NMR (CDCl₃ + CD₃OD, δ): 7.11 (2H, t, J=9Hz), 7.77 (2H, dd, J=5Hz and 9Hz), 7.82 (2H, d, J=6Hz), 8.21 (2H, d, J=6Hz)

Preparation 5

(5.27 g).

A solution of 3-(4-fluorophenyl)-3-oxo-2-(pyridin-4-yl)propanenitrile (240 mg) in phosphoryl trichloride (3 ml) was stirred for 15 minutes at 100°C and then evaporated under reduced pressure. To the residue was added toluene and concentrated in vacuo, and the residue was dissolved in ethanol (2 ml). To the mixture was added hydrazine monohydrate (150 mg). The mixture was refluxed for 3 hours, cooled, and poured into an aqueous saturated

sodium bicarbonate solution. The separated oil was extracted with a mixture of ethanol and dichloromethane (2:8). The extract was washed with water, dried and concentrated in vacuo. The residue was crystallized from methanol to yield 5-amino-3-(4-fluorophenyl)-4-(pyridin-4-yl)pyrazole (110 mg).

mp : >250°C

NMR (CDCl₃ + CD₃OD, δ): 7.08 (2H, t, J=9Hz), 7.23 (2H, d, J=6Hz), 7.33 (2H, dd, J=5Hz and 9Hz), 8.42 (2H, d, J=6Hz)

Preparation 6

Sodium (2.48 g) was dissolved in dry ethanol (37 ml) under nitrogen atmosphere. To the solution was added 4-fluorophenylacetonitrile (11.65 g) and ethyl isonicotinate (16.41 ml) and the solution was refluxed for 3 hours. The reaction mixture was cooled and poured into water. The ethanol of the mixture was removed under reduced pressure. The resulting aqueous solution was washed with ether and neutralized with diluted hydrochloric acid. The separated solid was collected, washed with water and dried to give 2-(4-fluorophenyl)-3-oxo-3-(pyridin-4-yl)propanenitrile (16.43 g).

mp: 230-232°C

25 NMR (CDCl₃ + CD₃OD, δ): 7.12 (2H, t, J=9Hz), 7.68 (2H, d, J=6Hz), 7.84 (2H, dd, J=5Hz and 9Hz), 8.69 (2H, d, J=6Hz)

Preparation 7

A mixture of 2-(4-fluorophenyl)-3-oxo-3(pyridin-4-yl)propanenitrile (10 g), hydrazine monohydrate
(2.4 ml) and acetic acid (5.2 ml) in dry benzene (100 ml)
was refluxed for 4 hours. The reaction mixture was cooled
and extracted with 3N-hydrochloric acid (80 ml x 3).

The extracts were concentrated in vacuo to 100 ml of the

volume and the solution was neutralized with aqueous ammonia solution. The separated solid was collected, washed with water and dried to give 5-amino-4-(4-fluorophenyl)-3-(pyridin-4-yl)pyrazole (2.02 g).

5 mp: 116-118°C

NMR (CDCl₃ + CD₃OD, δ): 7.12 (2H, t, J=9Hz), 7.25 (2H, dd, J=5Hz and 9Hz), 7.38 (2H, d, J=6Hz), 8.46 (2H, d, J=6Hz)

10 Preparation 8

To a mixture of 5-amino-4-(4-fluorophenyl)-3(pyridin-4-yl)pyrazole (100 mg) and concentrated
hydrochloric acid (0.2 ml) in water (0.4 ml) was added
sodium nitrite (28 mg) in water (0.12 ml) under ice
cooling. The mixture was stirred for 30 minutes and to
the mixture were added cold dichloromethane (5 ml), an
aqueous saturated sodium bicarbonate (2 ml) solution and
1-(triphenylphosphoranylidene)-2-propanone (126 mg) in
dichloromethane (2 ml). The mixture was stirred at 10°C
for 2 hours. The organic layer was separated, dried and
concentrated in vacuo. The residue was purified by column
chromatography on silica gel and the obtained oil was
crystallized from diisopropyl ether to give
8-(4-fluorophenyl)-4-methyl-7-(pyridin-4-yl)pyrazolo[5,1-c][1,2,4]triazine (41 mg).

mp: 202.5-204.0°C

NMR (CDCl₃, δ): 2.91 (3H, s), 7.18 (2H, t, J=9Hz), 7.62 (2H, dd, J=5Hz and 9Hz), 7.68 (2H, d, J=6Hz), 8.70 (2H, d, J=6Hz), 8.79 (1H, s)

30

25

15

20

Preparation 9

The following compounds were obtained according to a similar manner to that of Preparation 8.

35 (1) 8-(4-Fluorophenyl)-7-(pyridin-4-yl)pyrazolo[5,1-c]-

30

[1,2,4]triazine

mp : 180-182°C

NMR (CDCl₃, δ) : 7.20 (2H, t, J=9Hz), 7.55-7.70 (4H, m), 8.59 (1H, d, J=5Hz), 8.70 (2H, d, J=6Hz), 8.90 (1H, d, J=5Hz)

- (2) 7-(4-Fluorophenyl)-4-methyl-8-(pyridin-4-yl)pyrazolo-[5,1-c][1,2,4]triazine mp: 220-223°C (dec.) NMR (CDCl₃, δ): 2.90 (3H, s), 7.17 (2H, t, J=9Hz), 7.60-7.75 (4H, m), 8.67 (2H, d, J=6Hz), 8.81 (1H, m)
- (3) 7-(4-Fluorophenyl)-8-(pyridin-4-yl)pyrazolo[5,1-c][1,2,4]triazine

 NMR (CDCl₃, δ): 7.18 (2H, t, J=9Hz), 7.60-7.75 (4H,

 m), 8.59 (1H, d, J=4Hz), 8.68 (2H, d, J=6Hz),

 8.93 (1H, d, J=4Hz)
- 20 Preparation 10

The following compounds were obtained according to a similar manner to that of Preparation 1.

- (1) 2-(2-Chloropyridin-4-yl)-1-(4-fluorophenyl)ethan-125 one
 mp: 99-103°C
 NMR (CDCl₃, δ): 4.28 (2H, s), 7.11-7.22 (3H, m),
 7.27 (1H, s), 8.03 (2H, dd, J=6Hz and 9Hz), 8.37 (1H, d, J=6Hz)
- (2) 2-(2-Bromopyridin-4-yl)-1-(4-fluorophenyl)ethan-1-one mp : 100-104°C

 NMR (CDCl₃, δ) : 4.25 (2H, s), 7.14-7.24 (3H, m), 7.40 (1H, s), 8.02 (2H, dd, J=6Hz and 9Hz), 8.35 (1H, d, J=6Hz)

Preparation 11

The following compounds were obtained according to similar manners to those of Preparation 2 and 3.

- 10
 (2) 4-(2-Bromopyridin-4-yl)-5-(4-fluorophenyl)isoxazole
 mp: 136-138°C
 NMR (CDCl₃, δ): 7.28 (2H, t, J=9Hz), 7.24 (1H, d,
 J=6Hz), 7.53 (1H, s), 7.63 (2H, dd, J=6Hz and
 9Hz), 8.39 (1H, d, J=6Hz), 8.44 (1H, s)

Preparation 12

The following compounds were obtained according to similar manners to those of Preparation 4 and 6.

- (2) 2-(2-Bromopyridin-4-yl)-3-(4-fluorophenyl)-3oxopropanenitrile

 30 mp: 217-219°C (dec.)

 NMR (CDCl₃ + CD₃OD, δ): 7.13 (2H, t, J=9Hz), 7.73

 (2H, dd, J=6Hz and 9Hz), 7.79-7.90 (2H, m), 8.23
 (1H, m)

Preparation 13

The following compounds were obtained according to similar manners to those of Preparation 5 and 7.

5 (1) 5-Amino-4-(2-chloropyridin-4-yl)-3-(4-fluorophenyl)pyrazole

mp : 213-216°C

NMR (CDCl₃ + CD₃OD, δ): 7.03-7.14 (3H, m), 7.29-7.38 (3H, m), 8.23 (1H, d, J=6Hz)

10

(2) 5-Amino-4-(2-bromopyridin-4-yl)-3-(4-fluorophenyl)pyrazole

mp : 213-215°C

NMR (CDCl₃ + CD₃OD, δ): 7.01-7.14 (3H, m), 7.28-7.47 (3H, m), 8.24 (1H, d, J=6Hz)

Preparation 14

The following compounds were obtained according to a similar manner to that of Preparation 8.

20

15

(1) 8-(2-Chloropyridin-4-yl)-7-(4-fluorophenyl)pyrazolo-[5,1-c][1,2,4]triazine

mp : >250°C

- NMR (DMSO-d₆, δ): 7.40 (2H, t, J=9Hz), 7.58 (1H, d, J=6Hz), 7.70 (2H, dd, J=6Hz and 9Hz), 7.80 (1H, s), 8.49 (1H, d, J=6Hz), 9.20 (1H, d, J=5Hz), 9.40 (1H, d, J=5Hz)
- (2) 8-(2-Bromopyridin-4-yl)-7-(4-fluorophenyl)pyrazolo-30 [5,1-c][1,2,4]triazine

mp : 258°C (dec.)

NMR (DMSO-d₆, δ): 7.42 (2H, t, J=9Hz), 7.58 (1H, d, J=6Hz), 7.71 (2H, dd, J=6Hz and 9Hz), 7.80 (1H, s), 8.50 (1H, d, J=6Hz), 9.20 (1H, d, J=5Hz),

9.43 (1H, d, J=5Hz)

15

20

```
(3) 7-(4-Fluorophenyl)-8-(2-fluoropyridin-4-yl)pyrazolo-
[5,1-c][1,2,4]triazine
mp: 240-242°C

NMR (CDCl<sub>3</sub>:CD<sub>3</sub>OD = 9:1, δ): 7.23 (2H, t, J=9Hz),
7.42 (1H, s), 7.57 (1H, d, J=6Hz),
7.69 (2H, dd, J=6Hz and 9Hz),
8.24 (1H, d, J=6Hz), 8.78 (1H, d, J=4Hz),
9.01 (1H, d, J=4Hz)
```

10 Preparation 15

To a suspension of 7-(4-fluorophenyl)-8-(2-fluoropyridin-4-yl)pyrazolo[5,1-c][1,2,4]triazine (350 mg) in methanol (2 ml) was added conc. sulfuric acid (0.32 ml) dropwise. The mixture was refluxed for 1 hour, cooled and poured into cold water. The aqueous solution was neutralized with an aqueous saturated sodium bicarbonate solution and the separated oil was extracted with dichloromethane. The extract was washed with brine, dried and concentrated in vacuo. The residue was purified by column chromatography on silica gel and the obtained oil was crystallized from methanol to give 7-(4-fluorophenyl)-8-(2-methoxypyridin-4-yl)pyrazolo[5,1-c][1,2,4]triazine (220 mg).

mp: 223-225°C

NMR (CDCl₃:CD₃OD = 9:1, δ): 3.99 (3H, s),

7.10-7.25 (4H, m), 7.69 (2H, dd, J=6Hz and 9Hz),

8.21 (1H, d, J=6Hz), 8.68 (1H, d, J=4Hz),

8.93 (1H, d, J=4Hz)

30

10

15

Example 1

To a suspension of 7-(4-fluorophenyl)-8-(pyridin-4-yl)pyrazolo[5,1-c][1,2,4]triazine (2.2 g) in methanol (20 ml) was added sodium cyanoborohydride (480 mg). The pH of the mixture was maintained at 3 to 4 for 2 hours with 1N hydrochloric acid. The procedure was repeated three additional times to completely finish the reduction. Then, the mixture was concentrated in vacuo and the residue was dissolved in 2N hydrochloric acid. The mixture was stirred at 80°C for 30 minutes and cooled. The solution was neutralized with an aqueous saturated sodium bicarbonate solution. The separated solid was collected, washed with water and methanol and dried to give 7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (2.06 g).

mp: 233-235°C

NMR (CDCl_2:CD_OD = 9:1, 0, : 3.37 (2H, t, J=6Hz),

NMR (CDCl₃:CD₃OD = 9:1, o, : 3.37 (2H, t, J=6Hz), 4.17 (2H, t, J=6Hz), 7.13 (2H, t, J=9Hz), 7.30-7.50 (4H, m), 8.24 (2H, d, J=6Hz)

20

1

Example 2

The following compounds were obtained according to a similar manner to that of Example 1.

- 25 (1) 7-(4-Fluorophenyl)-4-methyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp: 219-221°C

 NMR (CDCl₃:CD₃OD = 9:1, δ): 1.60 (3H, d, J=7Hz),
 3.05 (1H, dd, J=6Hz and 14Hz), 3.38 (1H, dd,
 J=4Hz and 14Hz), 4.33 (1H, m), 7.06 (2H, t,
 J=9Hz), 7.12 (2H, d, J=6Hz), 7.40 (2H, dd,
 J=6Hz and 9Hz), 8.37 (2H, d, J=6Hz)
- (2) 8-(4-Fluorophenyl)-7-(pyridin-4-yl)-1,2,3,4-35 tetrahydropyrazolo[5,1-c][1,2,4]triazine

mp: >250°C

NMR (CDCl₃, δ): 3.38 (2H, q, J=6Hz), 3.60 (1H, m),

4.21 (2H, t, J=6Hz), 5.47 (1H, d, J=5Hz), 7.06

(2H, t, J=9Hz), 7.19 (2H, dd, J=6Hz and 9Hz),

7.35 (2H, d, J=6Hz), 8.49 (2H, d, J=6Hz)

Example 3

To a solution of 7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (207 mg) 10 in acetic acid (2 ml) was added acetic anhydride (75 mg) with ice cooling. The solution was stirred at ambient temperature for 1 hour and concentrated in vacuo. residue was dissolved in water (3 ml) and the solution was neutralized with an aqueous saturated sodium bicarbonate 15 solution. The separated oil was extracted with dichloromethane and the extract was dried and concentrated in vacuo. The residue was crystallized from ethyl acetate to give 2-acetyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (195 mg). 20 mp : 216-218°C NMR (CDCl₃:CD₃OD = 9:1, δ) : 2.28 (3H, s), 4.13 (2H, t, J=6Hz), 4.26 (2H, t, J=6Hz), 7.05 (2H, t, J=9Hz), 7.27 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.42 (2H, d, J=6Hz)

25

Example 4

The following compounds were obtained according to a similar manner to that of Example 3.

30 (1) 2-Acetyl-8-(4-fluorophenyl)-7-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
mp: 115-120°C

NMR (CDCl₃, δ): 2.28 (3H, s), 4.14 (2H, t, J=6Hz),
4.28 (2H, t, J=6Hz), 6.08 (1H, s), 7.09 (2H, t,
J=9Hz), 7.23 (2H, dd, J=6Hz and 9Hz), 7.35 (2H,

d, J=6Hz), 8.49 (2H, d, J=6Hz)

(2) 7-(4-Fluorophenyl)-2-formyl-8-(pyridin-4-yl)-1,2,3,4tetrahydropyrazolo[5,1-c][1,2,4]triazine

mp: 233-235°C

NMR (CDCl₃, δ): 4.10-4.20 (2H, m), 4.25-4.40 (2H, m), 6.50 (1H, br s), 7.05 (2H, t, J=9Hz), 7.15 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.45 (2H, d, J=6Hz), 8.55 (1H, s)

10

15

20

5

Example 5

To a mixture of 7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (148 mg) and triethylamine (101 mg) in dry dichloromethane was added acetic anhydride (54 mg). The reaction mixture was stirred at ambient temperature for 4 hours and then, to the mixture was added methanol (1 ml). After standing for 30 minutes, the mixture was concentrated in vacuo. The residue was purified by column chromatography on silica gel. The first fraction was concentrated in vacuo and the obtained oil was crystallized from a mixture of diethyl ether and n-hexane to give 1,2-diacetyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo-[5,1-c][1,2,4]triazine (22 mg).

25 mp: 162-164°C

NMR (CDCl₃, δ): 2.11 (3H, s), 2.32 (3H, s), 3.40 (1H, m), 4.20-4.45 (2H, m), 5.07 (1H, dd, J=6Hz and 14Hz), 7.10 (2H, t, J=9Hz), 7.14 (2H, d, J=6Hz), 7.33 (2H, dd, J=6Hz and 9Hz), 8.58 (2H, d, J=6Hz)

30

The second fraction was concentrated in vacuo and the obtained oil was crystallized from ethyl acetate to give 2-acetyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (101 mg).

35 mp : 216-218°C

10

15

20

25

30

35

```
NMR (CDCl<sub>3</sub>:CD<sub>3</sub>OD = 9:1, \delta) : 2.28 (3H, s), 4.12 (2H,
            t, J=6Hz), 4.25 (2H, t, J=6Hz), 7.07 (2H, t,
           J=9Hz), 7.20 (2H, d, J=6Hz), 7.40 (2H, dd.
           J=6Hz and 9Hz), 8.42 (2H, d, J=6Hz)
 Example 6
      The following two compounds were obtained by reacting
 7-(4-fluorophenyl)-4-methyl-8-(pyridin-4-yl)-1,2,3,4-
 tetrahydro[5,1-c][1,2,4]triazine according to a similar
 manner to that of Example 5.
      2-Acetyl-7-(4-fluorophenyl)-4-methyl-8-(pyridin-4-
yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
      mp : 247-249°C
     NMR (CDCl<sub>3</sub>:CD<sub>3</sub>OD = 9:1, \delta) : 1.60 (3H, d, J=7Hz),
           2.30 (3H, s), 3.93 (1H, dd, J=6Hz and 13Hz),
           4.10 (1H, dd, J=5Hz and 13Hz), 4.46 (1H, m),
           7.06 (2H, t, J=9Hz), 7.21 (2H, d, J=6Hz), 7.41
           (2H, dd, J=6Hz and 9Hz), 8.42 (2H, d, J=6Hz)
     1,2-Diacetyl-7-(4-fluorophenyl)-4-methyl-8-(pyridin-
4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
     mp: 193-194°C
     NMR (CDCl<sub>3</sub>, \delta): 1.71 (3H, d, J=7Hz), 2.12 (3H, s),
          2.31 (3H, s), 3.00 (1H, dd, J=11Hz and 13Hz),
          4.43 (1H, m), 5.05 (1H, dd, J=6Hz and 13Hz),
          7.00 (2H, t, J=9Hz), 7.13 (2H, d, J=6Hz), 7.35
          (2H, dd, J=6Hz and 9Hz), 8.58 (2H, d, J=6Hz)
Example 7
     To a mixture of 7-(4-fluorophenyl)-8-(pyridin-4-yl)-
1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (100 mg,
```

0.339 mmol) and pyridine (54 mg, 0.678 mmol) in

N-methyl-2-pyrrolidone (1.5 ml) was added acetoxyacetyl

chloride (60 mg, 0.441 mmol) in N-methyl-2-pyrrolidone

10

(0.5 ml) under nitrogen atmosphere with ice cooling. After stirring for 30 minutes, the reaction mixture was diluted with an aqueous saturated sodium bicarbonate solution, then extracted with ethyl acetate. The organic phase was washed with water and brine, dried over sodium sulfate, and concentrated in vacuo. The residue was purified by chromatography on silica gel (eluent:dichloromethane/methanol; 100/1~20/1) and the obtained amorphous product was crystallized from diisopropyl ether to give 2-acetoxyacetyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo-[5,1-c][1,2,4]triazine (76 mg).

mp : 121°C (dec.)

NMR (DMSO-d₆, δ): 2.10 (3H, s), 3.95-4.05 (2H, m),
4.10-4.20 (2H, m), 4.90 (2H, s), 7.15-7.30 (4H,
m), 7.35-7.45 (2H, m), 8.45 (2H, d, J=6Hz), 8.70
(1H, s)

Example 8

- The following compounds were obtained according to a similar manner to that of Example 7.
- (1) 7-(4-Fluorophenyl)-2-methylsulfonyl-8-(pyridin-4-yl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp : 133-135°C
 NMR (CDCl₃:CD₃OD = 9:1, δ) : 3.16 (3H, s), 4.03 (2H, t, J=6Hz), 4.33 (2H, t, J=6Hz), 7.08 (2H, t, J=9Hz), 7.30-7.45 (4H, m), 8.40 (2H, d, J=6Hz)
- 30 (2) 7-(4-Fluorophenyl)-2-methoxycarbonyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp: 215-216°C

 NMR (DMSO-d₆, δ): 3.65 (3H, s), 3.90-4.00 (2H, m), 4.10-4.25 (2H, m), 7.15 (2H, d, J=6Hz), 7.20 (2H, t, J=9Hz), 7.40 (2H, dd, J=6Hz and 9Hz),

3.45 (2H, d, J=6Hz), 8.55 (1H, s)

(3) 7-(4-Fluorophenyl)-8-(pyridin-4-yl)-2-[4-(trifluoromethyl)benzoyl]-1,2,3,4-tetrahydropyrazolo-[5,1-c][1,2,4]triazine mp: 207-209°C NMR (DMSO-d₆, δ): 4.10-4.40 (4H, m), 6.75-6.90 (2H, m), 7.10-7.45 (4H, m), 7.75-7.85 (4H, m), 8.20-8.35 (2H, m)

10

15

5

- (4) 2-Cinnamoyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp: 228-230°C

 NMR (CDCl₃, δ): 4.25-4.40 (4H, m), 6.25 (1H, br s),
 7.05 (2H, t, J=9Hz), 7.20 (2H, d, J=6Hz),
 7.30-7.60 (8H, m), 7.80 (1H, d, J=15Hz), 8.55
- (5) 2-Benzoyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp: 141°C (dec.)

 NMR (CDCl₃, δ): 4.20-4.40 (4H, m), 6.85-7.10 (4H,
 m), 7.40 (2H, dd, J=6Hz and 9Hz), 7.45-7.65 (5H,
 m), 8.30-8.45 (2H, m)

25

(6) 2-[4-(Acetoxy)benzoyl]-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]-triazine

mp : 148°C (dec.)

(2H, d, J=6Hz)

- NMR (CDCl₃, δ): 2.35 (3H, s), 4.25-4.40 (4H, m), 6.90-7.10 (4H, m), 7.20 (2H, t, J=9Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 7.65 (2H, d, J=9Hz), 8.40 (2H, d, J=6Hz)
- 35 (7) 2-(3-Carboxypropanoyl)-7-(4-fluorophenyl)-8-(pyridin-

mp : 209-211°C

4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp : 214-215°C NMR (DMSO- d_6 , δ): 2.45 (2H, t, J=6Hz), 2.72 (2H, t, 5 J=6Hz), 4.02 (2H, t, J=5Hz), 4.15 (2H, t, J=5Hz), 7.10-7.30 (4H, m), 7.40 (2H, dd, J=6Hzand 9Hz), 8.49 (2H, d, J=6Hz), 8.70 (1H, s) (8) 2-Chloroacetyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-10 1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine NMR (CDCl₃, δ): 4.15-4.25 (2H, m), 4.25-4.35 (2H, m), 4.40 (2H, s), 6.45 (1H, s), 7.00 (2H, t, J=9Hz), 7.15 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hzand 9Hz), 8.50 (2H, d, J=6Hz) 15 (9) 7-(4-Fluorophenyl)-2-methoxyacetyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp : 219°C (dec.) NMR (CDCl₂, δ): 3.45 (3H, s), 4.10-4.25 (2H, m), 20 4.25-4.35 (2H, m), 4.40 (2H, s), 6.45 (1H, br s), 7.05 (2H, t, J=9Hz), 7.15 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.50 (2H, d, J=6Hz) 25 (10) 7-(4-Fluorophenyl)-2-pivaloyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp: 248-250°C NMR (CDCl₃, δ): 1.30 (9H, s), 4.10-4.20 (2H, m), 4.22-4.32 (2H, m), 6.28 (1H, br s), 7.04 (2H, t, 30 J=9Hz), 7.14 (2H, d, J=6Hz), 7.41 (2H, dd, J=6Hzand 9Hz), 8.50 (2H, d, J=6Hz)

(11) 2-Cyclohexylcarbonyl-7-(4-fluorophenyl)-8-(pyridin-4-

yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine

NMR (CDCl₃, δ): 1.20-1.60 (6H, m), 1.70-1.90 (4H, m), 2.95-3.10 (1H, m), 4.10-4.30 (4H, m), 6.15 (1H, br s), 7.05 (2H, t, J=9Hz), 7.15 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.50 (2H, 5 d, J=6Hz) (12) 2-Cyclohexylcarbonyloxyacetyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-[1,2,4]triazine 10 mp: 178-181°C NMR (CDCl₃, δ): 1.20-1.83 (8H, m), 1.90-2.05 (2H, m), 2.35-2.52 (1H, m), 4.10-4.20 (2H, m), 4.24-4.35 (2H, m), 5.00 (2H, s), 6.54 (1H, s), 7.05 (2H, t, J=9Hz), 7.12 (2H, d, J=6Hz), 7.40 15 (2H, dd, J=6Hz and 9Hz), 8.50 (2H, d, J=6Hz)(13) 2-Cyclopropylcarbonyl-7-(4-fluorophenyl)-8-(pyridin-4-y1)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine 20 mp: 192-194°C NMR (CDCl₃, δ): 0.80-1.15 (4H, m), 2.52 (1H, m), 4.10-4.35 (4H, m), 6.52 (1H, s), 7.04 (2H, t, J=9Hz), 7.17 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hzand 9Hz), 8.49 (2H, d, J=6Hz) 25 (14) 2-(3,3-Dimethylbutyryl)-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-[1,2,4]triazine mp : 120°C (dec.) 30 NMR (CDCl₃, δ): 1.03 (9H, s), 2.60 (2H, s), 4.14-4.30 (4H, m), 6.08 (1H, s), 7.03 (2H, t, J=9Hz), 7.17 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hzand 9Hz), 8.50 (2H, d, J=6Hz)

(15) 7-(4-Fluorophenyl)-2-isopropyloxycarbonyl-8-(pyridin-

```
4-y1)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]-
            triazine
            mp : 170-172°C
            NMR (CDCl<sub>3</sub>, \delta): 1.32 (6H, d, J=6Hz), 4.10 (2H, t,
  5
                 J=5Hz), 4.25 (2H, t, J=5Hz), 5.01 (1H, quint,
                 J=6Hz), 6.60 (1H, br s), 7.03 (2H, t, J=9Hz),
                 7.16 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and
                 9Hz), 8.51 (2H, d, J=6Hz)
       (16) 2-(3-Chloro-2,2-dimethylpropionyl)-7-(4-
 10
            fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydro-
            pyrazolo[5,1-c][1,2,4]triazine
            mp: 188-189°C
            NMR (CDCl<sub>3</sub>, \delta): 1.20 (6H, s), 3.20 (2H, s), 4.14
15
                 (2H, t, J=5.5Hz), 4.32 (2H, t, J=5.5Hz), 7.00
                 (2H, t, J=9Hz), 7.18 (2H, d, J=6Hz), 7.30 (2H,
                 dd, J=6Hz and 9Hz), 8.58 (2H, d, J=6Hz)
      (17) 2-(2,2-Dimethylbutyryl)-7-(4-fluorophenyl)-8-
20
           (pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-
           [1,2,4]triazine
           mp : 204°C (dec.)
           NMR (CDCl<sub>3</sub>, \delta): 0.79 (3H, t, J=9Hz), 1.27 (6H, s),
                 1.70 (2H, q, J=9Hz), 4.12-4.21 (2H, m),
25
                 4.24-4.33 (2H, m), 6.20 (1H, br s), 7.04 (2H, t,
                J=9Hz), 7.13 (2H, d, J=6Hz), 7.43 (2H, dd, J=6Hz
                and 9Hz), 8.52 (2H, d, J=6Hz)
      (18) 2-Ethoxalyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-
30
           1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
           mp: 174-176°C
           NMR (CDCl<sub>3</sub>, \delta): 1.29 (3H, t, J=7Hz), 4.18 (2H, t,
                J=6Hz), 4.25-4.45 (4H, m), 6.95-7.15 (4H, m),
                7.39 (2H, dd, J=6Hz and 9Hz), 8.37 (2H, d,
35
```

J=6Hz)

20

25

30

(20) 2-Acetoxyacetyl-8-(4-fluorophenyl)-7-(pyridin-4-yl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
mp: 231-232°C

NMR (CDCl₃:CD₃OD = 9:1, δ): 2.18 (3H, s), 4.13 (2H,
t, J=6Hz), 4.30 (2H, t, J=6Hz), 4.92 (2H, s),
7.09 (2H, t, J=9Hz), 7.21 (2H, dd, J=6Hz and
9Hz), 7.36 (2H, d, J=6Hz), 8.48 (2H, d, J=6Hz)

Example 9

A mixture of 7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (118 mg) and ethyl isocyanate (30 mg) in dichloromethane (2 ml) was stirred at ambient temperature for 1 hour. The mixture was concentrated in vacuo and the residue was crystallized from ethyl acetate to give 2-ethylcarbamoyl-7-(4-,fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo-[5,1-c][1,2,4]triazine (120 mg).

mp: 235-240°C

NMR (CDCl₃:CD₃OD = 9:1, δ): 1.12 (3H, t, J=7Hz), 3.25 (2H, q, J=7Hz), 4.07 (2H, t, J=6Hz), 4.20 (2H, t, J=6Hz), 7.04 (2H, t, J=9Hz), 7.14 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.47 (2H, d, J=6Hz)

Example 10

The following compounds were obtained according to a similar manner to that of Example 9.

15

- (2) 7-(4-Fluorophenyl)-2-phenylcarbamoyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp: 180-182°C

 NMR (CDCl₃, δ): 4.17 (2H, t, J=6Hz), 4.28 (2H, t, J=6Hz), 6.95-7.10 (3H, m), 7.15-7.45 (9H, m), 8.12 (1H, s), 8.51 (2H, d, J=6Hz)
- (3) 2-Carbamoyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp: 141-145°C

 NMR (CDCl₃:CD₃OD = 9:1, δ): 4.06 (2H, t, J=6Hz),
 4.23 (2H, t, J=6Hz), 7.07 (2H, t, J=9Hz), 7.25
 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz),
 8.43 (2H, d, J=6Hz)

Example 11

A mixture of 7-(4-fluorophenyl)-8-(pyridin-4-yl)
1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (74 mg)

and N,N'-disuccinimidylcarbonate (77 mg) in dry

N,N-dimethylformamide (2 ml) was stirred at ambient

temperature for 1 hour. To the mixture was added

diethylamine (0.13 ml) and the mixture was stirred at

ambient temperature for 3 hours. The reaction mixture was

poured into cold water and the separated oil was extracted

with ethyl acetate. The extract was washed with brine,

dried and concentrated in vacuo. The residue was

crystallized from ethyl acetate to give

2-diethylcarbamoyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (80 mg).
mp: 223-226°C

NMR (CDCl₃:CD₃OD = 9:1, δ): 1.01 (6H, t, J=7Hz),
3.27 (4H, q, J=7Hz), 3.84 (2H, t, J=6Hz), 4.35
(2H, t, J=6Hz), 7.03 (2H, t, J=9Hz), 7.15 (2H,
d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.40
(2H, d, J=6Hz)

10 Example 12

The following compounds were obtained according to a similar manner to that of Example 11.

- (2) 2-Bis(2-hydroxyethyl)carbamoyl-7-(4-fluorophenyl)-8(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp: 118-121°C
 NMR (CDCl₃:CD₃OD = 1:1, δ): 3.50 (4H, t, J=6Hz),
 3.62 (4H, t, J=6Hz), 3.89 (2H, t, J=6Hz), 7.07
 (2H, t, J=9Hz), 7.18 (2H, d, J=6Hz), 7.38 (2H,
 dd, J=6Hz and 9Hz), 8.49 (2H, d, J=6Hz)
 - (3) 2-Cyclohexylcarbamoyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]-triazine
- 35 mp : 181-183°C

NMR (CDCl₃, δ): 1.00-1.50 (4H, m), 1.50-1.80 (4H, m), 1.80-2.00 (2H, m), 3.60 (1H, m), 4.07 (2H, t, J=6Hz), 4.23 (2H, t, J=6Hz), 5.91 (1H, d, J=8Hz), 6.10 (1H, s), 7.03 (2H, t, J=9Hz), 7.11 (2H, d, J=6Hz), 7.42 (2H, dd, J=6Hz and 9Hz), 8.53 (2H, d, J=6Hz)

- (4) 7-(4-Fluorophenyl)-2-(piperidin-1-yl)carbamoyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-[1,2,4]triazine mp: 140-141°C NMR (CDCl₃:CD₃OD = 9:1, δ): 1.39 (2H, m), 1.65 (4H, m), 2.70 (4H, t, J=5Hz), 4.30 (2H, t, J=6Hz), 4.23 (2H, t, J=6Hz), 7.07 (2H, t, J=9Hz), 7.15 (2H, d, J=6Hz), 7.38 (2H, dd, J=6Hz and 9Hz), 8.47 (2H, d, J=6Hz)
- (5) 7-(4-Fluorophenyl)-2-methoxycarbamoyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp: 209-210°C

 NMR (CDCl₃:CD₃OD = 9:1, δ): 3.73 (3H, s), 4.07 (2H, t, J=6Hz), 4.26 (2H, t, J=6Hz), 7.07 (2H, t, J=9Hz), 7.18 (2H, d, J=6Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.42 (2H, d, J=6Hz)
- NMR (DMSO-d₆, δ): 3.13 (2H, m), 3.38 (2H, m), 3.85 (2H, t, J=6Hz), 4.07 (2H, t, J=6Hz), 4.65 (1H, t, J=5Hz), 6.85 (1H, t, J=5Hz), 7.20 (2H, t, J=9Hz), 7.27 (2H, d, J=5Hz), 7.37 (2H, dd, J=6Hz and 9Hz), 8.47 (2H, d, J=5Hz), 8.50 (1H, s)

Example 13

A mixture of 3-indolylacetic acid (57 mg, 0.325 mmol), 3-(3-dimethylaminopropyl)-1-ethylcarbodiimide (50 mg, 0.325 mmol) and 1-hydroxybenzotriazole (44 mg, 0.325 mmol) in N,N-dimethylformamide (0.6 ml) was stirred for 1 5 hour at ambient temperature. Then to the mixture was added 7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4tetrahydropyrazolo[5,1-c][1,2,4]triazine (80 mg, 0.271 mmol) in N,N-dimethylformamide (1 ml). After stirring for 2 hours, the mixture was diluted with water and extracted 10 with ethyl acetate. The organic phase was washed with water and brine, dried over sodium sulfate and concentrated in vacuo. The residue was purified by crystallization from ethyl acetate to give 7-(4-fluorophenyl)-2-(3-indolylacetyl)-8-(pyridin-4-yl)-15 1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (87 mg). mp : 212-214°C NMR (CDCl₃ + CD₃OD, δ): 4.02-4.13 (4H, m), 4.18-4.27 (2H, m), 6.96-7.24 (7H, m), 7.32-7.42 (3H, m), 20 7.58 (1H, d, J=8Hz), 8.37 (2H, d, J=6Hz)

Example 14

J=6Hz

The following compounds were obtained according to a similar manner to that of Example 13.

25

- (1) 2-tert-Butoxycarbonylaminoacetyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-[1,2,4]triazine

 NMR (CDCl₃, δ): 1.45 (9H, s), 4.10-4.20 (2H, m),
 4.20-4.35 (4H, m), 5.20-5.30 (1H, m), 6.70 (1H, br s), 7.05 (2H, t, J=9Hz), 7.15 (2H, d, J=6Hz),
 7.35 (2H, dd, J=6Hz and 9Hz), 8.45 (2H, d,
- 35 (2) 7-(4-Fluorophenyl)-2-(2-methoxy-2-methylpropionyl)-

```
8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-
            [1,2,4]triazine
           mp : 114-116°C
            NMR (CDCl<sub>3</sub>, \delta): 1.50 (6H, s), 3.28 (3H, s),
 5
                 4.20-4.36 (3H, m), 4.64-4.83 (1H, m), 7.03 (2H,
                 t, J=9Hz), 7.10 (2H, d, J=6Hz), 7.42 (2H, d,
                 J=6.9Hz), 8.50-8.56 (3H, m)
      (3) 7-(4-Fluorophenyl)-2-[(R)-(methoxy)(phenyl)acetyl]-8-
10
            (pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-
            [1,2,4]triazine
           mp : 213-215°C
           NMR (CDCl<sub>3</sub>, \delta): 3.34 (3H, s), 3.70-3.88 (1H, m),
                 4.20-4.30 (2H, m), 4.45-4.58 (1H, m), 5.77 (1H,
                 s), 5.88 (1H, s), 6.98-7.08 (4H, m), 7.27-7.33
15
                 (5H, m), 7.38 (2H, dd, J=6Hz and 9Hz), 8.56 (2H,
                 d, J=6Hz)
      (4) 2-[(Biphenyl-4-yl)acetyl]-7-(4-fluorophenyl)-8-
20
           (pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-
           [1,2,4]triazine
           mp: 153°C
           NMR (CDCl<sub>2</sub>, \delta): 3.98 (2H, s), 4.12-4.20 (2H, m),
                 4.20-4.32 (2H, m), 6.04 (1H, s), 7.03 (2H, t,
25
                 J=9Hz), 7.08 (2H, d, J=6Hz), 7.23-7.57 (11H, m),
                 8.50 (2H, d, J=6Hz)
      (5) 2-[(2,6-Dichlorophenyl)acetyl]-7-(4-fluorophenyl)-8-
            (pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-
30
            [1,2,4]triazine
           mp : >250°C
           NMR (CDCl<sub>3</sub> + CD<sub>3</sub>OD, \delta): 4.15-4.24 (2H, m),
                 4.24-4.37 (4H, m), 7.06 (2H, t, J=9Hz),
                 7.10-7.33 (5H, m), 7.43 (2H, dd, J=6Hz and 9Hz),
35
                 8.48 (2H, d, J=6Hz)
```

```
2-(N,N-Dimethylaminoacetyl)-7-(4-flurophenyl)-8-
            (pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-
            [1,2,4]triazine dihydrochloride
            mp : >250°C
  5
           NMR (DMSO-d_6, \delta): 2.82 (6H, s), 4.10 (2H, t,
                 J=5Hz), 4.25 (2H, t, J=5Hz), 4.40 (2H, s), 7.30
                 (2H, t, J=9Hz), 7.47 (2H, dd, J=6Hz and 9Hz),
                 7.79 (2H, d, J=6Hz), 8.70 (2H, d, J=6Hz), 10.12
                 (1H, s)
10
           7-(4-Fluorophenyl)-2-(phenylthioacetyl)-8-(pyridin-
           4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]-
           triazine hydrochloride
           mp: 235-238°C
           NMR (DMSO-d_6, \delta): 3.95-4.20 (6H, m), 7.10-7.40 (7H,
15
                m), 7.49 (2H, dd, J=6Hz and 9Hz), 7.69 (2H, d,
                J=6Hz), 8.68 (2H, d, J=6Hz), 9.69 (1H, s)
      (8) 7-(4-Fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-
20
           tetrahydro-2-[(3-trifluoromethylphenyl)acetyl]-
           pyrazolo[5,1-c][1,2,4]triazine hydrochloride
           mp : 254°C (dec.)
           NMR (CDCl<sub>3</sub> + CD<sub>3</sub>OD, \delta): 4.05 (2H, s), 4.17-4.39
                (4H, m), 7.13 (2H, t, J=9Hz), 7.24-7.42 (6H, m),
25
                7.62-7.74 (2H, m), 8.32-8.50 (2H, m)
      (9) 2-[(3,4-Dimethoxyphenyl)acetyl]-7-(4-fluorophenyl)-
           8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-
           [1,2,4]triazine hydrochloride
30
          NMR (CDCl<sub>3</sub>, \delta): 3.73 (6H, s), 3.96 (2H, s),
                4.18-4.26 (4H, m), 6.62 (1H, s), 6.64 (2H, d,
                J=8Hz), 7.13 (2H, t, J=9Hz), 7.37 (2H, dd, J=6Hz
                and 9Hz), 7.70-7.77 (2H, m), 8.10-8.20 (2H, m),
                9.60 (1H, br s)
```

J=8Hz), 7.35-7.55 (4H, m), 8.41 (2H, d, J=6Hz)

Example 16

The following compounds were obtained according to a similar manner to that of Example 15.

- 5 (1) 2-(3,4-Dichlorophenyl)methyl-7-(4-fluorophenyl)-8(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp: 188-191°C
 NMR (CDCl₃, δ):- 3.40 (2H, t, J=6Hz), 3.93 (2H, s),
 4.30 (2H, t, J=6Hz), 5.68 (1H, s), 6.99 (2H, d,
 J=6Hz), 7.05 (2H, t, J=9Hz), 7.20 (1H, d,
- (2) 7-(4-Fluorophenyl)-2-isobutyl-8-(pyridin-4-yl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp: 159-162°C

 NMR (CDCl₃, δ): 0.98 (6H, d, J=7Hz), 1.94 (1H,
 quint, J=7Hz), 2.58 (2H, d, J=7Hz), 3.32 (2H, t,
 J=6Hz), 4.25 (2H, t, J=6Hz), 5.58 (1H, s), 7.03
 (2H, t, J=9Hz), 7.09 (2H, d, J=6Hz), 7.43 (2H,
 dd, J=6Hz and 9Hz), 8.47 (2H, d, J=6Hz)
- (3) 2-Cyclopropylmethyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp: 137-139°C

 NMR (CDCl₃, δ): 0.29 (2H, m), 0.56 (2H, m), 0.98 (1H, m), 2.71 (2H, d, J=7Hz), 3.42 (2H, t, J=6Hz), 4.23 (2H, t, J=6Hz), 5.95 (1H, s), 7.03 (2H, t, J=9Hz), 7.09 (2H, d, J=6Hz), 7.42 (2H, dd, J=6Hz and 9Hz), 8.50 (2H, d, J=6Hz)
 - (4) 2-(3,3-Dimethylbutyl)-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
- 35 mp: 185°C (dec.)

		•
5		NMR (CDCl ₃ , δ): 0.94 (9H, s), 1.50-1.60 (2H, m), 2.75-2.85 (2H, m), 3.35 (2H, t, J=6Hz), 4.25 (2H, t, J=6Hz), 7.02 (2H, t, J=9Hz), 7.10 (2H, d, J=6Hz), 7.43 (2H, dd, J=6Hz and 9Hz), 8.48 (2H, d, J=6Hz)
	(5)	7-(4-Fluorophenyl)-2-neopentyl-8-(pyridin-4-yl)- 1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp: 174°C (dec.)
10		NMR (CDCl ₃ , δ): 1.00 (9H, s), 2.59 (2H, s), 3.30 (2H, t, J=5Hz), 4.25 (2H, t, J=5Hz), 5.70 (1H, s), 7.03 (2H, t, J=9Hz), 7.08 (2H, d, J=6Hz), 7.43 (2H, dd, J=6Hz and 9Hz), 8.46 (2H, d, J=6Hz)
15		
	(6)	2-Cyclohexylmethyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp: 120-135°C (dec.) NMR (CDCl ₃ , δ): 0.84-1.05 (2H, m), 1.13-1.40 (4H,
20		m), 1.54-1.90 (5H, m), 2.60 (2H, d, J=8Hz), 3.29 (2H, t, J=6Hz), 4.24 (2H, t, J=6Hz), 5.56 (1H, s), 7.02 (2H, t, J=9Hz), 7.08 (2H, d, J=6Hz), 7.43 (2H, dd, J=6Hz and 9Hz), 8.47 (2H, d, J=6Hz)
	(7)	2-(2,2-Dimethylbutyl)-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]-triazine mp: 148-151°C (dec.)
30		NMR (CDCl ₃ , δ): 0.83 (3H, t, J=8Hz), 0.94 (6H, s), 1.36 (2H, q, J=8Hz), 2.59 (2H, s), 3.28 (2H, t, J=6Hz), 4.25 (2H, t, J=6Hz), 5.67 (1H, s), 7.02 (2H, t, J=9Hz), 7.07 (2H, d, J=6Hz), 7.43 (2H,

dd, J=6Hz and 9Hz), 8.46 (2H, d, J=6Hz)

10

15

20

Example 17

To a mixture of 7-(4-fluorophenyl)-8-(pyridin-4-yl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (89 mg)
and sodium cyanoborohydride (63 mg) in methanol (1 ml) was
added acetone (0.1 ml) with ice cooling. The pH of the
mixture was adjusted to 3 to 4 with 1N hydrochloric acid
and the solution was stirred at 4°C for 30 minutes.
Then, the solution was neutralized with an aqueous
saturated sodium bicarbonate solution and poured into cold
water. The separated oil was extracted with ethyl acetate
and the extract was washed with brine, dried and
concentrated in vacuo. The residue was crystallized from
diethyl ether to give 7-(4-fluorophenyl)-2-isopropyl-8(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (75 mg).

NMR (CDCl₃, δ): 1.20 (6H, d, J=7Hz), 3.09 (1H, m), 3.42 (2H, t, J=6Hz), 4.21 (2H, t, J=6Hz), 5.62 (1H, s), 7.03 (2H, t, J=9Hz), 7.10 (2H, d, J=6Hz), 7.42 (2H, dd, J=6Hz and 9Hz), 8.48 (2H, d, J=6Hz)

Example 18

The following compounds were obtained according to a similar manner to that of Example 17.

- (1) 2-(Adamantan-2-yl)-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp: 224°C (dec.)
- NMR (CDCl₃, δ): 1.47-2.18 (14H, m), 2.90 (1H, m),
 3.44 (2H, t, J=6Hz), 4.18 (2H, t, J=6Hz), 5.63
 (1H, s), 7.03 (2H, t, J=9Hz), 7.08 (2H, d,
 J=6Hz), 7.44 (2H, dd, J=6Hz and 9Hz), 8.48 (2H,
 d, J=6Hz)
- 35 (2) 2-Cyclohexyl-7-(4-Fluorophenyl)-8-(pyridin-4-yl)-

15

1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
NMR (CDCl ₃ , 6): 1.10-1.40 (4H, m), 1.55-2.10 (6H,
m), 2.73 (1H, m), 3.45 (2H, t, J=6Hz), 4.19 (2H
t, $J=6Hz$), 5.67 (1H, s), 7.03 (2H, t, $J=9Hz$),
7.10 (2H, d, J=6Hz), 7.42 (2H, dd, J=6Hz and
9Hz), 8.48 ($2H$, d, $J=6Hz$)

(3) 7-(4-Fluorophenyl)-8-(pyridin-4-yl)-2-(tetrahydro-pyran-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]-triazine

NMR (CDCl₃, δ): 1.50-1.80 (2H, m), 1.85-2.05 (2H, m), 2.98 (1H, m), 3.30-3.50 (4H, m), 3.95-4.10 (2H, m), 4.21 (2H, t, J=6Hz), 5.70 (1H, s), 7.03 (2H, t, J=9Hz), 7.09 (2H, d, J=6Hz), 7.41 (2H,

dd, J=6Hz and 9Hz), 8.48 (2H, d, J=6Hz)

- (4) 2-(1-Acetylpiperidin-4-yl)-7-(4-fluorophenyl)-8(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
- 20 NMR (CDCl₃, δ): 1.52 (2H, m), 1.99 (2H, m), 2.11 (3H, s), 2.78 (1H, m), 2.98 (1H, m), 3.15 (1H, m), 3.47 (2H, t, J=6Hz), 3.85 (1H, m), 4.22 (2H, t, J=6Hz), 4.51 (1H, m), 5.69 (1H, s), 7.03 (2H, t, J=9Hz), 7.09 (2H, d, J=6Hz), 7.41 (2H, dd, J=6Hz and 9Hz), 8.47 (2H, d, J=6Hz)
 - (5) 7-(4-Fluorophenyl)-2-(1-methylpiperidin-4-yl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-[1,2,4]triazine
- NMR (CDCl₃:CD₃OD = 9:1, δ): 1.50-1.75 (2H, m), 1.90-2.15 (4H, m), 2.30 (3H, s), 2.65-3.00 (3H, m), 3.46 (2H, t, J=6Hz), 4.19 (2H, t, J=6Hz), 7.07 (2H, t, J=9Hz), 7.12 (2H, d, J=6Hz), 7.39 (2H, dd, J=6Hz and 9Hz), 8.38 (2H, d, J=6Hz)

```
(6) 7-(4-Fluorophenyl)-2-(1-methoxycarbonylethyl)-8-
           (pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-
           [1,2,4]triazine
           mp: 132-134°C
           NMR (CDCl<sub>3</sub>, \delta): 1.50 (3H, d, J=7Hz), 3.27-3.58 (2H,
 5
                 m), 3.78 (3H, s), 3.82 (1H, q, J=7Hz), 4.10-4.40
                \sim (2H, m), 6.04 (1H, s), 7.03 (2H, t, J=9Hz), 7.10
                 (2H, d, J=6Hz), 7.41 (2H, dd, J=6Hz and 9Hz),
                 8.48 (2H, d, J=6Hz)
10
      (7) 7-(4-Fluorophenyl)-2-(indan-2-yl)-8-(pyridin-4-yl)-
           1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
           mp : 232°C (dec.)
           NMR (CDCl<sub>3</sub>, \delta): 2.99-3.26 (4H, m), 3.48 (2H, t,
15
                 J=6Hz), 3.90 (1H, t, J=8Hz), 4.30 (2H, t,
                 J=6Hz), 5.68 (1H, s), 7.03 (2H, t, J=9Hz), 7.08
                 (2H, d, J=6Hz), 7.15-7.25 (4H, m), 7.41 (2H, dd,
                 J=6Hz and 9Hz), 8.48 (2H, d, J=6Hz)
20
      (8) 2-[(E)-Cinnamyl]-7-(4-fluorophenyl)-8-(pyridin-4-yl)-
           1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
           mp: 178-183°C
           NMR (CDCl<sub>3</sub>, \delta): 3.43 (2H, t, J=6Hz), 3.63 (2H, d,
                 J=6Hz), 4.27 (2H, t, J=6Hz), 5.80 (1H, br s),
25
                 6.27 (1H, td, J=6Hz and 15Hz), 6.60 (1H, d,
                 J=15Hz), 6.98-7.09 (4H, m), 7.27-7.36 (5H, m),
                 7.43 (2H, dd, J=6Hz and 9Hz), 8.40 (2H, d,
                 J=6Hz)
           2-(3,3-Dimethyl-1,5-dioxaspiro[5,5]undecan-9-yl)-7-
30
           (4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydro-
           pyrazolo[5,1-c][1,2,4]triazine
                  186°C (dec.)
           NMR (CDCl<sub>3</sub>, \delta): 0.98 (6H, s), 1.44-1.76 (4H, m),
```

1.85-1.98 (2H, m), 2.15-2.28 (2H, m), 2.78-2.91

(1H, m), 3.46 (2H, t, J=6Hz), 3.52 (4H, d, J=4Hz), 4.20 (2H, t, J=6Hz), 5.60 (1H, s), 7.03 (2H, t, J=9Hz), 7.09 (2H, d, J=6Hz), 7.41 (2H, dd, J=6Hz and 9Hz), 8.46 (2H, d, J=6Hz)

5

10

15

20

1.72

25

Example 19

A mixture of 2-acetoxyacetyl-7-(4-fluorophenyl)-8(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (75 mg, 0.190 mmol) and an aqueous sodium
hydroxide solution (1N, 0.38 ml, 0.380 mmol) in ethanol
(1.5 ml) was stirred for 30 minutes at ambient
temperature. After dilution of an aqueous saturated
ammonium chloride solution, the mixture was extracted with
ethyl acetate. The extracts were dried over sodium
sulfate, and concentrated in vacuo. The residue was
purified by chromatography on silica gel (eluent:
dichloromethane/methanol; 50/1~10/1), and the obtained
amorphous product was crystallized from diisopropyl ether
to give 7-(4-fluorophenyl)-2-hydroxyacetyl-8-(pyridin-4yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (20
mg).

mp: 133°C (dec.)

NMR (DMSO-d₆, δ): 3.95-4.05 (2H, m), 4.10-4.20 (2H, m), 4.25 (2H, d, J=6Hz), 4.75 (1H, t, J=6Hz), 7.15 (2H, d, J=6Hz), 7.25 (2H, t, J=9Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.50 (2H, d, J=6Hz), 8.55 (1H, s)

Example 20

A mixture of 2-(4-acetoxybenzoyl)-7-(4-fluorophenyl)8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (65 mg, 0.142 mmol) and potassium carbonate (20
mg, 0.142 mmol) in methanol (1.3 ml) was stirred for 30
minutes at ambient temperature. The mixture was adjusted
to pH 6 with an aqueous saturated ammonium chloride

solution, and extracted with ethyl acetate. The organic phase was washed with water and brine, dried over sodium sulfate, and concentrated in vacuo. The residue was purified by chromatography on silica gel

(eluent:dichloromethane/methanol; 30/1~20/1), and the obtained amorphous product was crystallized from diisopropyl ether to give 7-(4-fluorophenyl)-2-(4-hydroxybenzoyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydro-pyrazolo[5,1-c][1,2,4]triazine (37 mg).

10 mp : 222°C (dec.)

NMR (CDCl₃ + CD₃OD, δ): 4.20-4.40 (4H, m), 6.85 (2H, d, J=9Hz), 6.95-7.10 (4H, m), 7.35 (2H, dd, J=6Hz and 9Hz), 7.55 (2H, d, J=9Hz), 8.30 (2H, d, J=6Hz)

15

Example 21

2-tert-Butoxycarbonylaminoacety1-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]-triazine (50 mg) was dissolved in trifluoroacetic acid (0.5 ml). The solution was stirred at ambient temperature for 30 minutes and concentrated in vacuo. The residue was dissolved in water and the solution was neutralized with an aqueous saturated sodium bicarbonate solution. The 'separated oil was extracted with a mixture of dichloromethane and ethanol (7:3) and the extract was washed with water, dried and concentrated in vacuo. The residue was crystallized from ethyl acetate to give 2-aminoacety1-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (30 mg).

30

mp : 208~211°C

NMR (DMSO-d₆, δ): 3.50 (2H, s), 4.01 (2H, t, J=6Hz), 4.16 (2H, t, J=6Hz), 7.19 (2H, d, J=6Hz), 7.22 (2H, t, J=9Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 8.49 (2H, d, J=6Hz)

. 82 -

WO 94119350

```
A mixture of 2-chioroacety1-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1)-8-(1,2,4)-1-(4-rivoropheny1
                                         (Pyrlain-4-yi)-1,2,3,4-tetranydropyrazolol3,1-c)[1,2,4].

(Pyrlain-4-yi)-1,0,215 mmol), morpholine (37 mmol) in triazine (80 mg, 0.215 mmol), md. 0.215 mmol) and triethylamine (22 md. 0.215 mmol).
                                                    TILAZINE (80 mg, 0.213 mmol), morpholine (31 mg) in (22 mg, 0.213 mmol) in mol), and triethylamine (22 mg, 0.213 mmol), and triethylamine (32 mg), and triethylamine (32 mg), and an area (32 mg), and area (32 mg), are
                                                                    mmol), and triethylamine (22 mg, 0.21) mmol) in at at an area at a mol), and triethylamine (22 ml) was stirred for 24 hours at a mol), and triethylamine (2 ml) was stirred of aight or more at a mol), and triethylamine (2 ml) was stirred for a dight or more at a mol), and triethylamine (2 ml) was stirred for a dight or a dight or mol), and triethylamine (2 ml) was stirred for a dight or mol), and triethylamine (2 ml) was stirred for a dight or mol).
                                                                                  amplent temperature. After dilution of dichloromethane, was washed with an aqueous remanic whas washed with an aqueous the mixture was washed and hrine higarhorate solution
                                                                                                         the mixture was washed with an aqueous saturated sodium the organic phase was and brine.

the mixture was washed and brine concentrated in vacuo.

bicarbonate sodium sulfate. and concentrated in dried over sodium sulfate.
                                                                                                                         Dicarponate solution, and prine. The organic prase was and concentrated in vacuo.

dried over sodium sulfate, and concentrated in organic prase was and concentrated in vacuo.
                                                                                                                                         arlea over soutum sultate, and concentrated in vacuo.

Tesidue was purified by chromatography on silica gel

Tesidue was purified by chromatography on silica gel

Tesidue was purified by chromatography on silica gel
                                                                                                                                                       reslave was purified by chromatography on silica gel
(eluent:ethyl acetate-ethyl acetate-from all common of the obtained of th
                                                                                                                                                                  (eluent: ethyl acetate-ethyl acetate/methanol; 20/1) ether the obtained oil was crystallized from dilsopropyl ether the obtained oil was acetate-methanol; noacetyl-8-
                                                                                                                                                                                                   to gave 7-(4-fluorophenyl)-2-morpholinoacetyl-8-
(Pyridin-4-yl)-1,2,3,4-tetrahydropyrazolol5,1-c)[1,2,4]-
(Pyridin-4-yl)-1,2,3,4-tetrahydropyrazolol5,1-c)[1,2,4]-
(Pyridin-4-yl)-1,2,3,4-tetrahydropyrazolol5,1-c)[1,2,4]-
(Pyridin-4-yl)-1,2,3,4-tetrahydropyrazolol5,1-c)[1,2,4]-
                                                                                                                                                                                  to give 7-(4-fluoroghenyl)-2-morpholinoacetyl-8-to give 7-(4-fluoroghenyl)-2-m
5
                                                                                                                                                                                                                                                                                                                                                                                                                                                             $1, 3.00 (4H, T, J=6HZ), 12H, 4.20 (2H, T=9HZ), 0H7)

$1, 3.00 (4H, T=6HZ), 12H, 7=6H7, 2NA, 0H7)

4.30 (2H, A, 7=6H7)

(2H, A, 7=6H7)
                                                                                                                                                                                                                                                                                                                                                                                                               4.30 (2H, d, J=6Hz), (2H, dd, J=6Hz and 9Hz), (2H, dd, J=6Hz), (2H, dd, J=
                                                       20
                                                                                                                                                                                                                     triazine (50 mg).
                                                                                                                                                                                                                                                                                                                                                                                                                          (2H, Dr s), 8.50 (2H, d, J=6HZ)
                                                                                                                                                                                                                                                                                                                                                                                            Die Li mixture of 7-14-fluorophenyl)-8-(pyridin-4-yl)-
To a mixture of 7-14-fluorophenyl)-8-(pyridin-4-yl)-
3 4-ratushundanamananana
                                                                                                                                                                                                                                                                                                     MAR (CDC13'
                                                                                                                                                                                                                                                                                                                                     To a mixture of 7-(4-fluorophenyl)-8-(pyridin-4-yl)-was no a mixture of 7-(4-fluorophenyl)-8-(pyridine (2 ml) was 1,2,3,4-tetrahydropyrazolo(5,1-c)(1,2,4)trilazine (2 ml) was and pyridine (64 mg) in N-methyl-1-pyrrolidone (2 ml) and pyridine
                                                                                                                           25
                                                                                                                                                                                                                                                                                                                                                     and pyridine (64 mg) chloride (65 mg) under nitrogen added phenviacety!
                                                                                                                                                                                                                                                                                                                                                                                 added phenylacetyl chloride (65 mg) under nitrogen nour at me with ice cooling.

atmosphere with reaction mixture was noured into cold water.
                                                                                                                                                                                                                                                                                                                                                                   and pyridine (64 mg) in N-methyl-1-pyrrolidone (2 ml under nitrogen of chloride (65 mg) under nitrogen added phenylacetyl chloride (84 mg) added phenylacetyl chloride (85 mg) under exirting for added phenylacetyl chloride (84 mg) atmosphere with ice comittee (84 mg) in N-methyl-1-pyrrolidone (2 ml under nitrogen) under added phenylacetyl chloride (85 mg) under exirting for a strong added phenylacetyl chloride (85 mg) under exirting for a strong added phenylacetyl chloride (84 mg) in N-methyl-1-pyrrolidone (2 ml under nitrogen) under nitrogen (84 mg) under nitrogen (85 mg) under nitrogen (85
                                                                                                                                                                                                                                                                                                                                                                                               atmosphere with ice cooling. After stiffing for and the 4°C, the reaction mixture was poured into a catara and the contract of the reaction of
                                                                                                                                                                                                                                                                                                                                                                                                          The reaction mixture was poured into cold water.

The reaction mixture was poured into cold water, the and concentrated with aried and concentrated in separated oil was extracted with hrine daried and concentrated in separated oil was washed with hrine daried and concentrated in separated oil was washed with hrine daried and concentrated in separated oil was washed with hrine daried and concentrated in separated oil was extract was washed with hrine daried and concentrated in separated oil was extract was washed with hrine daried and concentrated in separated oil was extracted with hrine daried and concentrated in separated oil was extracted with hrine daried and concentrated in separated oil was extracted with hrine daried and concentrated in separated oil was extracted with hrine daried and concentrated in separated oil was extracted with hrine daried and concentrated in separated oil was extracted with hrine daried and concentrated in separated oil was extracted oil was extracted with hrine daried and concentrated in separated oil was washed with hrine daried and concentrated in separated oil was washed with hrine daried and concentrated in separated in 
                                                                                                                                                                                            20
                                                                                                                                                                                                                                                                                                                                                                                                                        separated oil was extracted with ethyl acetate and the in dried and concentrated in column chromatography column chromatography extract was washed with brine, the column chromatography chromatogra
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             was wasned with prine, dried by column chromatography
was wasned was purified by column the residue was purified by colum
                                                                                                                                                                                                                                                                                                                                                                                                                                                   vacuo. The residue was purified by column chromatograf in 10% of the obtain oil was dissolved in 10% on silica gel and the obtain (1 ml). The resulting of methanolic hydrogen chloride (1 ml).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               The resulting clear
                                                                                                                                                                                                                                                              25
                                                                                                                                                                                                                                                                                                                                                                                                                                                               on silica gel and the optoble (1 ml).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Solution was concentrated in vacuo.
                                                                                                                                                                                                                                                                                                                                     30
                                                                                                                                                                                                     \
```

```
crystallized from ethyl acetate to give 7-(4-
fluorophenyl)-2-phenylacetyl-8-(pyridin-4-yl)-1,2,3,4-
tetrahydropyrazolo[5,1-c][1,2,4]triazine hydrochloride
(130 mg).
```

5 : am 208-212°C NMR (DMSO- d_6 , δ) 3.87 (2H, s), 4.07 (2H, t, J=5Hz), 4.18 (2H, t, J=5Hz), 7.00-7.20 (5H, m), 7.29 (2H, t, J=9Hz), 7.43 (2H, dd, J=6Hz and 9Hz), 7.66 (2H, d, J=6Hz), 8.71 (2H, d, J=6Hz), 9.63 10 (1H, s)

Example 24

The following compounds were obtained according to a similar manner to that of Example 23.

15

7-(4-Fluorophenyl)-2-pentanoyl-8-(pyridin-4-yl)-(1)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine hydrochloride

mp : 175°C (dec.)

20 NMR (CD₃C1, δ): 0.90 (3H, t, J=6Hz), 1.25-1.45 (2H, m), 1.55-1.70 (2H, m), 2.55 (2H, t, J=6Hz), 4.10-4.30 (4H, m), 7.15 (2H, t, J=9Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 7.80-7.90 (2H, m),8.10-8.25 (2H, m), 9.60 (1H, br s)

- (2) 7-(4-Fluorophenyl)-2-isobutyryl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine hydrochloride
- NMR (CDCl₃, δ): 1.15 (6H, d, J=7Hz), 3.20-3.40 (1H, 30 m), 4.15-4.30 (4H, m), 7.15 (2H, t, J=9Hz), 7.40 (2H, dd, J=6Hz and 9Hz), 7.80-7.90 (2H, m), 8.15-8.30 (2H, m), 9.50 (1H, br s)
- 2-(3,4-Dichlorobenzoyl)-7-(4-fluorophenyl)-8-35 (pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c]-

```
[1,2,4]triazine hydrochloride
             NMR (DMSO-d_6, \delta): 4.22 (2H, t, J=6Hz), 4.33 (2H, t,
                  J=6Hz), 7.29 (2H, t, J=9Hz), 7.40-7.60 (4H, m),
                 7.70 (2H, m), 7.94 (1H, s), 8.63 (2H, d, J=6Hz),
  5
                 9.99 (1H, s)
            7-(4-Fluorophenyl)-2-phenylglyoxyloyl-8-(pyridin-4-
            yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
            hydrochloride
. 10
            mp : 182-191°C (dec.)
            NMR (DMSO-d_6, \delta): 4.24 (2H, t, J=6Hz), 4.49 (2H, t,
                 J=6Hz), 7.16 (2H, d, J=7Hz), 7.26 (2H, t,
                 J=9Hz), 7.30-7.45 (4H, m), 7.50-7.65 (3H, m),
                 8.57 (2H, d, J=7Hz), 9.77 (1H, s)
15
      (5) 7-(4-Fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-
           tetrahydro-2-(4-trifluoromethylphenyl)glyoxyloyl-
```

Example 25

20

To a mixture of 7-(4-fluorophenyl)-2-isobutyl-8(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine (70 mg, 0.199 mmol) and pyridine (31 mg, 0.398
mmol) in N-methyl-2-pyrrolidone (1.2 ml) was added acetyl
chloride (19 mg, 0.239 mmol) in N-methyl-2-pyrrolidone
(0.3 ml) at ambient temperature. The reaction mixture was
stirred for 1 hour, then aqueous saturated sodium
bicarbonate and ethyl acetate were added thereto. The
organic phase was separated, and washed with water, brine,
and dried over sodium sulfate. The solvent was
evaporated, and the obtained residue was purified by

column chromatography on silica gel (eluent:dichloromethane/methanol; 100/1~40/1). The fractions containing the object compound were concentrated in vacuo and the obtained oil was crystallized from diisopropyl ether to give 1-acetyl-7-(4-fluorophenyl)-2-isobutyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo-[5,1-c][1,2,4]triazine (57.0 mg).

mp : 194-197°C (dec.)

NMR (CDCl₃, δ): 1.05 (3H, d, J=6Hz), 1.12 (3H, d, J=6Hz), 1.90 (1H, m), 2.25 (3H, s), 2.57-2.69 (1H, m), 2.75-2.86 (1H, m), 3.43-3.70 (2H, m), 4.13-4.24 (1H, m), 4.33-4.50 (1H, m), 6.95-7.05 (4H, m), 7.34 (2H, dd, J=6Hz and 9Hz), 8.50 (2H, d, J=6Hz)

15

Example 26

The following compounds were obtained according to a similar manner to that of Example 1.

- 20 (1) 8-(2-Chloropyridin-4-yl)-7-(4-fluorophenyl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp: 219-221°C
- NMR (CDCl₃, δ): 3.48 (2H, q, J=5Hz), 3.68 (1H, q, J=5Hz), 4.20 (2H, t, J=5Hz), 5.65 (1H, d, J=5Hz), 6.94 (1H, d, J=6Hz), 7.06 (2H, t, J=9Hz), 7.16 (1H, s), 7.40 (2H, dd, J=6Hz and 9Hz), 8.20 (1H, d, J=6Hz)
- (2) 8-(2-Bromopyridin-4-yl)-7-(4-fluorophenyl)-1,2,3,4tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp: 212-216°C

 NMR (CDCl₃, δ): 3.32-3.44 (2H, m), 3.68 (1H, m),
- 4.20 (2H, t, J=5Hz), 5.67 (1H, br s), 6.95 (1H, d, J=6Hz), 7.07 (2H, t, J=9Hz), 7.17 (1H, s), 7.40 (2H, dd, J=6Hz and 9Hz), 8.21 (1H, d, J=6Hz)

- (4) 7-(4-Fluorophenyl)-8-(2-fluoropyridin-4-yl)-1,2,3,4
 tetrahydropyrazolo[5,1-c][1,2,4]triazine

 mp: 230-232°C

 NMR (CDCl₃:CD₃OD = 9:1, δ): 3.37 (2H, t, J=6Hz),

 4.18 (2H, t, J=6Hz), 6.77 (1H, s), 6.95 (1H, d,

 J=6Hz), 7.08 (2H, t, J=9Hz), 7.40 (2H, dd, J=6Hz)

 and 9Hz), 8.02 (1H, d, J=6Hz)

Example 27

The following compounds were obtained according to similar manners to those of Example 3, 7 and 13.

20

25

- (1) 2-Acetyl-8-(2-chloropyridin-4-yl)-7-(4-fluorophenyl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp: 208-209°C

 NMR (CDCl₃, δ): 2.34 (3H, s), 4.13-4.20 (2H, m),
 4.20-4.31 (2H, m), 6.30 (1H, br s), 7.00-7.11
 (3H, m), 7.24 (1H, s), 7.40 (2H, dd, J=6Hz and
- (2) 8-(2-Chloropyridin-4-yl)-7-(4-fluorophenyl)-2phenylglyoxyloyl-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine

 NMR (CDCl₃, δ): 4.30 (2H, t, J=5Hz), 4.45 (2H, t,
 J=5Hz), 6.54-6.60 (2H, m), 6.67 (1H, s), 7.03
 (2H, t, J=9Hz), 7.30 (2H, m), 7.53 (2H, t,
 J=9Hz), 7.68 (1H, t, J=9Hz), 7.89-7.95 (3H, m)

9Hz), 8.23 (1H, d, J=6Hz)

- (3) 2-Acetyl-8-(2-bromopyridin-4-yl)-7-(4-fluorophenyl)1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 mp: 210-211°C

 NMR (CDCl₃, δ): 2.35 (3H, s), 4.12-4.32 (4H, m),
 6.30 (1H, br s), 7.00-7.12 (3H, m), 7.23 (1H,
 s), 7.40 (2H, dd, J=6Hz and 9Hz), 8.24 (1H, d,
 J=6Hz)
- (4) 8-(2-Bromopyridin-4-yl)-7-(4-fluorophenyl)-2phenylglyoxyloyl-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine

 NMR (CDCl₃, δ): 4.30 (2H, t, J=5Hz), 4.45 (2H, t,
 J=5Hz), 6.53-6.61 (2H, m), 6.68 (1H, s), 7.02
 (2H, t, J=9Hz), 7.25-7.35 (2H, m), 7.53 (2H, t,
 J=9Hz), 7.66 (1H, t, J=9Hz), 7.88-7.97 (3H, m)
 - (5) 7-(4-Fluorophenyl)-2-[(2-methoxyphenyl)glyoxyloyl]-8(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
- 20 mp: 231-245°C (dec.)

 NMR (CDCl₃, δ): 3.48 (3H, s), 4.24 (2H, t, J=6Hz),

 4.43 (2H, t, J=6Hz), 6.48 (2H, d, J=6Hz), 6.77

 (1H, s), 6.84 (1H, d, J=9Hz), 7.01 (2H, t,

 J=9Hz), 7.15 (1H, dt, J=2Hz and 9Hz), 7.32 (2H,

 dd, J=6Hz and 9Hz), 7.57 (1H, dt, J=2Hz and

 9Hz), 8.06-8.13 (3H, m)
- (6) 2-Acetyl-7-(4-fluorophenyl)-8-(2-methoxypyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine mp: 148-150°C

 NMR (CDCl₃:CD₃OD = 9:1, δ): 2.28 (3H, s), 3.91 (3H, s), 4.12 (2H, t, J=6Hz), 4.25 (2H, t, J=6Hz), 6.67 (1H, s), 6.72 (1H, d, J=6Hz), 7.06 (2H, t, J=9Hz), 7.41 (2H, dd, J=6Hz and 9Hz), 8.02 (1H, d, J=6Hz)

```
(7) 7-(4-Fluorophenyl)-8-(2-methoxypyridin-4-yl)-2-
             phenylglyoxyloyl-1,2,3,4-tetrahydropyrazolo[5,1-c]-
             [1,2,4]triazine
             mp: 129-133°C
             NMR (CDCl<sub>3</sub>:CD<sub>3</sub>OD = 9:1, \delta) : 3.81 (3H, s), 4.25 (2H,
 5
                  t, J=6Hz), 4.42 (2H, t, J=6Hz), 6.20 (1H, s),
                  6.28 (1H, d, J=6Hz), 7.02 (2H, t, J=9Hz), 7.32
                  (2H, dd, J=6Hz and 9Hz), 7.46 (2H, t, J=8Hz),
                  7.61 (1H, t, J=8Hz), 7.75-7.85 (3H, m)
10
         (8) 2-Acetyl-7-(4-fluorophenyl)-8-(2-fluoropyridin-4-yl)-
             1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
             mp: 204-206°C
             NMR (CDCl<sub>3</sub>:CD<sub>3</sub>OD = 9:1, \delta) : 2.28 (3H, s), 4.14 (2H,
                  t, J=6Hz), 4.26 (2H, t, J=6Hz), 7.02 (1H, d,
15
                  J=6Hz), 7.10 (2H, t, J=9Hz), 7.04 (2H, dd, J=6Hz
                  and 9Hz), 8.05 (1H, d, J=6Hz)
        (9) 7-(4-Fluorophenyl)-8-(2-fluoropyridin-4-yl)-2-
20
            phenylglyoxyloyl-1,2,3,4-tetrahydropyrazolo[5,1-c]-
             [1,2,4]triazine
            mp: 238-240°C
            NMR (CDCl<sub>3</sub>:CD<sub>3</sub>OD = 9:1, \delta): 4.28 (2H, t, J=6Hz),
                  4.43 (2H, t, J=6Hz), 6.35 (1H, s), 6.60 (1H, d,
                  J=6Hz), 7.05 (2H, t, J=9Hz), 7.48 (2H, t,
25
                  J=8Hz), 7.62 (1H, t, J=8Hz), 7.75-7.90 (3H, m)
       (10) 2-Acetyl-7-(4-fluorophenyl)-8-(pyridin-4-yl)-1,2,3,4-
            tetrahydropyrazolo[5,1-c][1,2,4]triazine
30
            hydrochloride
            mp : 262-270°C (dec)
            NMR (CHCl<sub>3</sub>, \delta): 2.29 (3H, s), 4.11-4,27 (4H, m),
                  7.12 (2H, t, J=9Hz), 7.40 (2H, dd, J=6, 9Hz),
                  7.80 (2H, d, J=6Hz), 8.49 (2H, d, J=6Hz), 9.57
35
                  (1H, br s)
```

15

20

25

10 Example 28

To a suspension of 7-(4-fluorophenyl)-2phenylglyoxyloyl-8-(pyridin-4-yl)-1,2,3,4tetrahydropyrazolo[5,1-c][1,2,4]triazine (2.778 g) in a
mixture of ethanol (14 ml) and ethyl acetate (10 ml) was
added conc. sulfuric acid (0.67 g). To the resulting
clear solution was added ethyl acetate (30 ml) and the
solution was stirred at ambient temperature for 4 hours.
The separated solid was collected and recrystallized from
aqueous acetonitrile to give 7-(4-fluorophenyl)-2phenylglyoxyloyl-8-(pyridin-4-yl)-1,2,3,4tetrahydropyrazolo[5,1-c][1,2,4]triazine sulfate (2.7 g).
mp: 155-157°C

NMR (DMSO-d₆, δ): 4.25 (2H, m), 4.49 (2H, m), 7.12 (2H, d, J=7Hz), 7.15-7.50 (6H, m), 7.50-7.70 (3H, m), 8.56 (2H, d, J=7Hz), 9.43 (1H, s)

CLAIMS

1. A compound of the formula :

10 wherein R¹ is aryl which may have suitable substituent(s) or heterocyclic group which may have suitable substituent(s), 15 R² is aryl which may have suitable substituent(s) or heterocyclic group which may have suitable substituent(s), is hydrogen or acyl, R4 is hydrogen, lower alkyl, 20 cyclo(lower)alkyl, cyclo(lower)alkyl-(lower)alkyl, carboxy(lower)alkyl, protected carboxy(lower)alkyl, ar(lower)alkyl which may have suitable substituent(s), 25 ar(lower)alkenyl, bridged tricyclicalkyl, heterocyclic group which may have suitable substituent(s), acyl, or a group of the formula: 30

(in which A is lower alkylene), and R⁵ is hydrogen or lower alkyl, and a pharmaceutically acceptable salt thereof.

	2.	A compound of claim 1, wherein
		${ t R}^{ extsf{1}}$ is phenyl which may have 1 to 3 suitable
		substituent(s), or
		pyridyl which may have 1 to 3 suitable
5		<pre>substituent(s),</pre>
		R ² is phenyl which may have 1 to 3 suitable
		substituent(s) or
		pyridyl which may have 1 to 3 suitable
		substituent(s),
10		R ³ is hydrogen or lower alkanoyl,
		R4 is hydrogen; lower alkyl; cyclo(lower)alkyl;
		<pre>cyclo(lower)alkyl-(lower)alkyl;</pre>
		<pre>carboxy(lower)alkyl;</pre>
		<pre>esterified carboxy(lower)alkyl;</pre>
15		phenyl(lower)alkyl which may have 1 to 3
		<pre>suitable substituent(s); adamantanyl;</pre>
		<pre>phenyl(lower)alkenyl; tetrahydropyranyl,</pre>
		piperidyl or dioxaspiro decanyl, each of which
		may have 1 to 3 substituent(s) selected from the
20		group consisting of lower alkyl and acyl; indanyl;
		lower alkanoyl which may have 1 to 3 suitable
		<pre>substituent(s); lower alkoxycarbonyl;</pre>
		lower alkoxyglyoxyloyl; lower alkylsulfonyl;
		cyclo(lower)alkylcarbonyl; aroyl which may have
25		<pre>1 to 3 suitable substituent(s);</pre>
		ar(lower)alkanoyl which may have 1 to 3 suitable
		<pre>substituent(s); ar(lower)alkenoyl;</pre>
		arylthio(lower)alkanoyl; arylcarbamoyl;
		aryl-thiocarbamoyl; arylglyoxyloyl which may
30		have 1 to 3 suitable substituent(s);
		carbamoyl which may have one or two suitable
		substituent(s) selected from the group
		consisting of lower alkyl, hydroxy(lower)alkyl,
		protected hydroxy(lower)alkyl, lower alkoxy and
35		<pre>cyclo(lower)alkyl; heterocycliccarbonyl;</pre>

- 92 -

heterocyclic(lower)alkanoyl; or A compound of claim may have 1 to 3 substituent(s)

A compound of claim may have 1 to 3 substituent (s)

A compound of claim may have 1 to 3 substituent (s)

A compound of claim may have 1 to 3 substituent (s)

A compound of claim aroun consisting of lower

A compound of claim aroun consisting of lower

A compound of claim aroun consisting of lower WO 94119350 Preny which may have consisting of lower selected from alternational land. A compound of claim 2, wherein alkynyl momolor at or trillon lower alkenyl, alkowy, ar trillon the group consisting of lower alkenyl, alkowy, ar trillon to a lower alkynyl, mono(or di or tri)halo(lower)alkyl, lower alayuy 1 Carboxy Protected Carboxy hydroxy halogen arranger arrang protected hydroxy, aryl, aryl, aryl, aryl, aryl, Carboxy (lower) alkyl, hardrand 1 amino, hardran carboxy(lower)alkyl, protected dillower alkylamino, hydroxy lower alkyl, Diotected Widtoxy lower alkyl, and imino. CYARO, Wercasto, Tomer arkithro and imino; or charo, which were alkylthro and imino; or charo, which were alkylthroughly alkylthroughly alkylthroughly and imino; or charo, which were alkylthroughly alkyl 5 cyano, mercapco, rower arky rento and runtus; of lower arky tento ar pyrlayl which have the group consisting of lower selected from allower allowers. alkyl, wowolor ar try halvilance, alkow, the drong or try halvilance, always to the drong or tower alkynyl, mono(or di or tri)halo(lower)alkyl, halonen alayly 1 Carboxy | protected carboxy | hydroxy |
halogen | hardrang | protected | hydroxy |
halogen | hardrang | hydroxy | 20 protected hydroxy, aryl, archanger, alkyl, carboxy(lower)alkyl, hydroxyllower)alkyl, hydroxyllower, alkyl, hydroxyllower, hydroxyllo carboxy(lower)alkyl, protected di(lower) alkylemino, hydroxy lower) alkyl, hydroxy lower) alkylemino, hydroxy lower alkyl, di lower alkyl, hydroxy lower alkyl, hydrox Diotected hydroxy lower alkyl, and imino 15 procedured nydroxy (Lower alky) thio and imino, cyano, nercapto, have 1 to 2 enher; thent's enher; then may have 1 to 2 enher; thent's cyano, mercapto, lower alkylthio and imino, lower alkylthio and imino, lower alkylthio and imino, of lower alkylthio and imino, and PRENYL WILLOR MAY nave to 3 substitute of lower the group consisting of lower selected from 3 sources always as selected from 3 sources as selected alkyl manniar at ar trillalarianserialky alkynyl, mono(or di or tri)halo(lower)alkyl, halonen 20 alayuy 1, monoror al of cell flator Lower laway 1, halogen, hardran, and arilament 21 hard hardran, and arilament 21 hardran hardran, and arilament 21 hardran Protected hydroxy, aryl, archagara, alkyl, archagara, a Carboxy(lower)alkyl, amino, hvaroxy(lower)alkyl, hv 25 carboxy lower) alkyli protected di(lower)alkylamino, hydroxy(lower)alkyl,

35

30

WO 94/19350

20

protected hydroxy(lower)alkyl, nitro, acyl, CYano, mercapto, lower alkylthio and imino; or necessary lower alkylthio alk cyanu, mercapco, hower alxyluno and imano; o

pyridyl which may have 1 to 3 substituent(s) by selected from a series of lower selected from a series of l alkar, wowolok as lower alkenal lower of the heart of the lower alkynyl, mono(or di or tri)halo(lower)alkyl, alkylly Li Carboxy protected carboxy hydroxy halogen hardrown narvyen, carpoxy, proceded ar(lower)alkyl,
protected hydroxy,
protected hydroxy, carboxy(lower)alkyl amino, protected amino, carboxy(lower)alkyl, amino, protected amino, amino, amino, protected amino, amin carboxy(lower)alkyl' protected di(lower)alkylamino, hydroxy(lower)alkyl, hydroxy ULILLOWER ALKYLOMY (LOWER) ALKYL PROTECTED ACYLINATION AND AREA AND AREA AREA ACYLINATION AND AREA AREA ACYLINATION AND AREA AREA ACYLINATION AND AREA AREA ACYLINATION AND AREA cyano, mercapto, alkalthio and imino, mercapto, alkalthio and imino, acalo, mercapto, alkalthio and acalo, cyano, mercapto, lower alkyltnio and lmlno, lower alkyltnio and lmlno, lower alkyltnio and lmlno, lower alkyltnio and lmlno, lower alkyltnio and lower) alkyl; cyclo(lower)alkyl-(lower)alkyl; phenyl (lower) alkyl which may have _____ lower alkoxycarbonyl(lower)alkyl; pheny tituent(s) selected from the group carboxy(lower)alkyl; consisting of halogen, lower alkynyl, mono(or di alkynyl, mono(or di lower alkynyl, mono(or di lower alkynyl, and dillower) alkonyl, and dillower, alkynyl, and dillower, alkynyl, mono(or dillower, alkyny Subscicuencisi selected Iron the group alkyl, monor consisting of halogen, lower alkyl, monor consisting of halogen, lower alkyl, monor or tri) halo(lower) alkyl and di(lower) alkylamino;

alkoxy, halo(lower) alkyl and di(lower) alkylamino;

alkoxy, halo(lower) alkyl and di(lower) alkylamino; tetranydropyranyl, plperldyl or which may have one dioxaspiroundecanyl, ealented from the drown or the dioxaspiroundecanyl, ealented from the drown adamantanyl; phenyl(lower)alkenyl; 15 aloxaspiroundecanyl, each or which may have one or two substituent(s) selected from the group tetranyaropyranyl, piperidyl or consisting of lower alkyl and lower alkanoyl; consisting of lower alkanovi which may have 1 to 3 indany; lower alkanovi which may have 1 to 3 SUDSCIEUENT(S) SELECTED FROM THE GROUP LOWER

SUDSCIEUENT(S) SELECTED PROTECTED TO THE CARDOXY!

CONSISTING OF CARDOXY!

AND TO THE GROUP LOWER

T substituent(s) selected from the group 20 ourses willy of carboxy, protected amino, amino, alkoxy, halogen, area area and area and area and area area. dillower alkylamino; lower alkoxycarbonyli lower alkoxydlyoxyloyli lower alkylsulfonyli lower alkoxydlyoxyloyli lower alkylsulfonyli lower alkoxydlyoxyloyli hydroxy, protected hydroxy and cyclo(lower)alkylcarbonyl; benzoyl which may 25 30

	have 1 to 3 substituent(s) selected from the
	group consisting of mono(or di or
	tri)halo(lower)alkyl, halogen, protected hydroxy
	and hydroxy; phenyl(lower)alkanoyl which may
5	have 1 to 3 substituent(s) selected from the
	group consisting of lower alkoxy, aryl, halogen
	and mono(or di or tri)halo(lower)alkyl;
	<pre>phenyl(lower)alkenoyl;</pre>
	<pre>phenylthio(lower)alkanoyl; phenylcarbamoyl;</pre>
10	phenyl-thiocarbamoyl; phenylglyoxyloyl which may
	have 1 to 3 substituent(s) selected from the
	group consisting of mono(or di or
	tri)halo(lower)alkyl and lower alkoxy; carbamoyl
	which may have one or two suitable
15	substituent(s) selected from the group
	consisting of lower alkyl, hydroxy(lower)alkyl,
	acyloxy(lower)alkyl, lower alkoxy and
	cyclo(lower)alkyl; morpholinylcarbonyl;
	<pre>indolyl(lower)alkanoyl;</pre>
20	<pre>morpholinyl(lower)alkanoyl; or</pre>
	piperidylcarbamoyl.
4.	A compound of claim 3. wherein

R¹ is halophenyl or pyridyl,

R² is halophenyl, pyridyl, halopyridyl or lower

alkoxypyridyl,

R⁴ is hydrogen: lower alkyl: cyclo(lower)alkyl:

lower alkoxycarbonyl(lower)alkyl; mono(or
di)halophenyl(lower)alkyl; adamantanyl;
phenyl(lower)alkenyl; tetrahydropyranyl;
lower alkylpiperidyl; lower alkanoylpiperidyl;
di(lower)alkyldioxaspiroundecanyl; indanyl;
lower alkanoyl which may have a substituent

35

25

30

864.Y08

	selected from the group consisting of carboxy,
	esterified carboxy, lower alkoxy, halogen, lower
	alkoxycarbonylamino, lower alkanoylamino, amino,
	hydroxy, acyloxy and di(lower)alkylamino; lower
5	alkoxycarbonyl; lower alkoxyglyoxyloyl; lower
	alkylsulfonyl; cyclo(lower)alkylcarbonyl;
	benzoyl which may have one or two substituent(s)
	selected from the group consisting of
	trihalo(lower)alkyl, halogen, acyloxy and
10	hydroxy; phenyl(lower)alkanoyl which may have
	one or two substituent(s) selected from the
	group consisting of lower alkoxy, phenyl,
	halogen and trihalo(lower)alkyl;
	<pre>phenyl(lower)alkenoyl;</pre>
15	<pre>phenylthio(lower)alkanoyl; phenylcarbamoyl;</pre>
	phenyl-thiocarbamoyl; phenylglyoxyloyl which may
	have a substituent selected from the group
	consisting of trihalo(lower)alkyl and lower
	alkoxy; carbamoyl which may have one or two
20	suitable substituent(s) selected from the group
	consisting of lower alkyl, hydroxy(lower)alkyl,
	acyloxy(lower)alkyl, lower alkoxy and
	<pre>cyclo(lower)alkyl; morpholinylcarbonyl;</pre>
	<pre>indolyl(lower)alkanoyl;</pre>
25	morpholinyl(lower)alkanoyl; or
	piperidylcarbamoyl.

5. A compound of claim 4, wherein

R⁴ is hydrogen; lower alkyl; cyclo(lower)alkyl;

cyclo(lower)alkyl-(lower)alkyl;

carboxy(lower)alkyl; lower alkoxycarbonyl(lower)alkyl; mono(or di)halophenyl(lower)alkyl; adamantanyl; phenyl(lower)alkenyl;
tetrahydropyranyl; lower alkylpiperidyl;
lower alkanoylpiperidyl;

	<pre>di(lower)alkyldioxaspiroundecanyl; indanyl;</pre>
	lower alkanoyl which may have a substituent
	selected from the group consisting of carboxy,
	esterified carboxy, lower alkoxy, halogen, lower
5	alkoxycarbonylamino, lower alkanoylamino, amino,
	hydroxy, lower alkanoyloxy, cyclo(lower)-
	alkylcarbonyloxy and di(lower)alkylamino;
	lower alkoxycarbonyl; lower alkoxyglyoxyloyl;
	<pre>lower alkylsulfonyl; cyclo(lower)alkylcarbonyl;</pre>
10	benzoyl which may have one or two substituent(s)
	selected from the group consisting of
	trihalo(lower)alkyl, halogen, lower alkanoyloxy
	and hydroxy; phenyl(lower)alkanoyl which may
	have one or two substituent(s) selected from the
15	group consisting of lower alkoxy, phenyl,
	halogen and trihalo(lower)alkyl;
	<pre>phenyl(lower)alkenoyl;</pre>
	<pre>phenylthio(lower)alkanoyl; phenylcarbamoyl;</pre>
	phenyl-thiocarbamoyl; phenylglyoxyloyl which may
20	have a substituent selected from the group
	consisting of trihalo(lower)alkyl and lower
	alkoxy; carbamoyl which may have one or two
	suitable substituent(s) selected from the group
	consisting of lower alkyl, hydroxy(lower)alkyl,
25	acyloxy(lower)alkyl, lower alkoxy and
	cyclo(lower)alkyl; morpholinylcarbonyl;
	<pre>indolyl(lower)alkanoyl;</pre>
	morpholinyl(lower)alkanoyl; or
	piperidylcarbamoyl.
30	

6. A compound of claim 5, wherein R¹ is halophenyl, R² is pyridyl, R³ is hydrogen,

 ${ t R}^4$ is phenylglyoxyloyl, and 35

R⁵ is hydrogen.

- 7. A compound of claim 6, which is selected from the group consisting of
- (1) 7-(4-Fluorophenyl)-2-phenylglyoxyloyl-8-(pyridin-4yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine,
- (2) 7-(4-Fluorophenyl)-2-phenylglyoxyloyl-8-(pyridin-410 yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine
 hydrochloride, and
- (3) 7-(4-Fluorophenyl)-2-phenylglyoxyloyl-8-(pyridin-4-yl)-1,2,3,4-tetrahydropyrazolo[5,1-c][1,2,4]triazine sulfate.
 - 8. A process for preparing a compound of the formula :

- wherein R¹ is aryl which may have suitable substituent(s) or heterocyclic group which may have suitable substituent(s),
- R² is aryl which may have suitable
 substituent(s) or heterocyclic group
 which may have suitable substituent(s),
 - R³ is hydrogen or acyl,
- R⁴ is hydrogen, lower alkyl,
 cyclo(lower)alkyl,
 cyclo(lower)alkyl-(lower)alkyl,

carboxy(lower)alkyl, protected
carboxy(lower)alkyl, ar(lower)alkyl
which may have suitable substituent(s),
ar(lower)alkenyl, bridged
tricyclicalkyl, heterocyclic group
which may have suitable
substituent(s), acyl, or a group of the
formula:

10

5

(in which A is lower alkylene), and \mathbb{R}^5 is hydrogen or lower alkyl, or a salt thereof, which comprises

(1) subjecting a compound of the formula:

20

15

$$\begin{array}{c|c}
R^1 & N \\
N & N \\
N & N
\end{array}$$

wherein R^1 , R^2 and R^5 are each as defined above, or a salt thereof to reduction reaction to give a compound of the formula :

30

I

wherein ${\ensuremath{\text{R}}}^1$, ${\ensuremath{\text{R}}}^2$ and ${\ensuremath{\text{R}}}^5$ are each as defined above, or a salt thereof, or

(2) subjecting a compound of the formula:

5

10

wherein R^1 , R^2 , R^3 and R^5 are each as defined above, or a salt thereof to acylation reaction to give a compound of the formula :

20

15

25

wherein R^1 , R^2 , R^3 and R^5 are each as defined above, and R^4 is acyl, or a salt thereof, or

30

(3) subjecting a compound of the formula:

$$R^{1}$$
 N
 N
 R^{2}
 $N - N$
 R^{3}
 COR^{6}

wherein \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 and \mathbb{R}^5 are each as defined above, and

10

R⁶ is hydrogen, C₁-C₅ alkyl,

cyclo(lower)alkyl, cyclo(lower)alkyl- (C_1-C_5) alkyl, aryl which may have suitable substituent(s) or $ar(C_1-C_5)$ alkyl which may have suitable

15

substituent(s),
or a salt thereof to reduction reaction to give a

20

$$\begin{array}{c|c}
R^1 & N & \\
N & N \\
N & N \\
R^3 & CH_2R^6
\end{array}$$

25

wherein \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^5 and \mathbb{R}^6 are each as defined above,

or a salt thereof, or

compound of the formula :

30

(4) subjecting a compound of the formula:

5

wherein R^1 , R^2 , R^3 and R^5 are each as defined above, x^{1-} is anion, and

cyclo(lower)alkyl-(lower)alkyl,

a group of the formula :

15

-CH is lower alkyl, cyclo(lower)alkyl,

20

carboxy(lower)alkyl, protected
carboxy(lower)alkyl, ar(lower)alkyl which
may have suitable substituent(s),
ar(lower)alkenyl, bridged tricyclicalkyl,
heterocyclic group which may have suitable
substituent(s),

or a group of the formula :

25

(in which A is lower alkylene),
or a salt thereof to reduction reaction to give a
compound of the formula:

5

wherein R^1 , R^2 , R^3 , R^5 and a group of the formula :

-CH are each as defined above,

15

(5) subjecting a compound of the formula:

or a salt thereof, or

20

$$\begin{array}{c|c}
R^1 & N & \\
N & N & R^5 \\
N & N & R^4 & R^4 & R^5
\end{array}$$

25

wherein R^1 , R^2 , R^3 and R^5 are each as defined above, and

30

 $R_{\hat{D}}^4$ is acyl having protected hydroxy, or a salt thereof to elimination reaction of the hydroxy protective group to give a compound of the formula :

wherein R^1 , R^2 , R^3 and R^5 are each as defined above, and $R_{\bf c}^4 \text{ is acyl having hydroxy,}$ or a salt thereof, or

(6) subjecting a compound of the formula:

15

10

$$\begin{array}{c|c}
R^1 & N & \\
N &$$

20

wherein R^1 , R^2 , R^3 and R^5 are each as defined above, and

25

 ${\tt R}_{\tt d}^4$ is acyl having protected amino, or a salt thereof to elimination reaction of the amino protective group to give a compound of the formula :

30

$$\begin{array}{c|c}
R^1 & N \\
N & N \\
N & N \\
R^3 & R_e^4
\end{array}$$

wherein ${\rm R}^1$, ${\rm R}^2$, ${\rm R}^3$ and ${\rm R}^5$ are each as defined above, and ${\rm R}_e^4$ is acyl having amino, or a salt thereof, or

5

(7) reacting a compound of the formula:

 $\begin{array}{c|c}
R^1 & N \\
N & N \\
R^2 & N \\
N & N \\$

15

wherein \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 and \mathbb{R}^5 are each as defined above, and

 $R_{\rm f}^4$ is acyl having a leaving group, or a salt thereof with a compound of the formula :

20

wherein -N is N-containing heterocyclic group, or a salt thereof to give a compound of the formula:

25

$$\begin{array}{c|c}
R^1 & N \\
N & - N \\
R^3 & R^4
\end{array}$$

30

wherein R^1 , R^2 , R^3 and R^5 are each as defined above, and

- R_g^4 is acyl having N-containing heterocyclic group, or salt thereof.
- A pharmaceutical composition which comprises, as an
 active ingredient, a compound of claim 1 or a pharmaceutically acceptable salt thereof in admixture with pharmaceutically acceptable carriers.
- 10. A use of a compound of claim 1 or a pharmaceutically
 10 acceptable salt thereof as an inhibitor on the
 production of Interleukin-1 (IL-1) and an inhibitor
 on the production of tumor necrosis factor (TNF).
- 11. A method for the prophylactic or therapeutic

 treatment of Interleukin-1 (IL-1) and tumor necrosis
 factor (TNF) mediated diseases which comprises
 administering a compound of claim 1 or a
 pharmaceutically acceptable salt thereof to human or
 animals.
- 12. A process for preparing a pharmaceutical composition which comprises admixing a compound of claim 1 or a pharmaceutically acceptable salt thereof with a pharmaceutically acceptable carrier.

25

20

INTERNATIONAL SEARCH REPORT

Internat al Application No PCT/JP 94/00213

A. CLASSI IPC 5	FICATION OF SUBJECT MATTER C07D487/04 A61K31/53 //(C07	D487/04,253:00,231:00)	,
According to	o International Patent Classification (IPC) or to both national cla	ssification and IPC	
	SEARCHED		
Minimum d IPC 5	ocumentation searched (classification system followed by classifi CO7D A61K	cation symbols)	
Documentat	tion searched other than minimum documentation to the extent th	at such documents are included in the fields s	earched .
Electronic d	iata base consulted during the international search (name of data	base and, where practical, search terms used)	
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of th	e relevant passages	Relevant to claim No.
٨	WO,A,92 12154 (FUJISAWA) 23 July 1992 see claims 1,7		1,9
Ρ,Α	EP,A,O 531 901 (FUJISAWA) 17 March 1993 see claims 1,9		1,9
Fur	ther documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
'A' document consider the consider the consider the consider the constant c	nent defining the general state of the art which is not dered to be of particular relevance. document but published on or after the international date the description of the description of the description of the control of the description of the special reason (as specified) or or other special reason (as specified) or means the description or or other special reason (as specified) or means the published prior to the international filing date but than the priority date claimed	T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. &' document member of the same patent family	
	e actual completion of the international search 28 April 1994	Date of mailing of the international of — 9, 05, 94	
	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswajk Tel. (+31-70) 340-2040, Tx. 31 651 epo ml,	Authorized officer Alfaro Faus.	

INTERNATIONAL SEARCH REPORT

emation on patent family members

Interne 'ai Application No
PCT/JP 94/00213

Patent document cited in search report			family er(s)	Publication date
WO-A-9212154	23-07-92	JP-T-	6502178	10-03-94
EP-A-0531901	17-03-93	AU-A-	2280592	11-03-93