Epreuve écrite

Examen de fin d'études secondaires 2014

Sections: C et D

Branche: Mathématiques II

Numéro d'ordre du candidat

Exercice 1

(1,5+2,5=4 points)

Soit a un réel strictement positif et distinct de 1. Démontrer, en justifiant, les propriétés suivantes :

- 1) $\forall x > 0, \quad (\log_a x)' = \frac{1}{x \ln a}$
- 2) $\forall x \in \mathbb{R}, (a^x)' = a^x \ln a$

Exercice 2

(4+(5+5) = 14 points)

1) Soit la fonction f définie par $f(x) = \left(\frac{x+5}{x-1}\right)^{2x+3}$. Trouver le domaine de définition de f.

Calculer $\lim_{x \to +\infty} f(x)$.

- 2) Résoudre dans \mathbb{R} :
 - a) $\log_3 \sqrt{2x-3} \ge \log_3 (6-x) \log_9 x$.
 - b) $4e^{4x} + e^{-2x} = 3$

Exercice 3

((0,5+4+4+4+0,5+3)+6 = 22 points)

Soit la fonction f définie par $f(x) = (x+2)^2 e^{-x}$.

- 1) Etudier la fonction f:
 - domaines de définition, de continuité et de dérivabilité
 - limites aux bornes du domaine et asymptotes
 - dérivée, tableau de variation et extrema éventuels
 - concavité de la courbe et points d'inflexion éventuels
 - ullet points d'intersection de la courbe C_f avec l'axe des abscisses
 - représentation graphique dans un repère orthonormé d'unité 1 cm
- Soit un réel $\lambda > -2$. Calculer l'aire A_{λ} de la partie du plan comprise entre l'axe des x, le graphique de f et la droite d'équation $x = \lambda$. Calculer $\lim_{x \to +\infty} A_{\lambda}$.

Tourner s.v.p. ~

Examen de fin d'études secondaires 2014

Sections: C et D

Branche: Mathématiques II

Numéro d'ordre du candidat

Exercice 4

(6+2=8 points)

Soit la fonction f définie par $f(x) = \frac{x}{3} - 1 + \frac{\ln x}{x}$.

- 1) Déterminer le domaine de définition et étudier le comportement asymptotique de la fonction f.
- Etudier la position de la courbe représentative de f par rapport à ses asymptotes horizontales ou obliques éventuelles.

Exercice 5

((3,5+3,5)+5=12 points)

1) Calculer les intégrales suivantes :

a)
$$\int_{0}^{\frac{3}{2}} \frac{1+5x}{\sqrt{9-x^2}} \, dx$$

b)
$$\int_{0}^{\frac{\pi}{2}} \frac{\sin 2x}{\left(5 - 2\sin^{2} x\right)^{3}} dx$$

2) Dans un repère orthonormé d'unité 2 cm, calculer, au cm^3 près, le volume V du solide engendré par la rotation autour de l'axe des x de la surface comprise entre la parabole d'équation $y=4-x^2$ et la droite d'équation y=2-x.