第一章 矩阵

1.1 矩阵的定义和运算

1.1.1 矩阵的定义

定义 1.1.1: 矩阵

形如以下的矩形阵列称为一个域 F 上的矩阵

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, a_{ij} \in F$$

简记为 $(a_{ij})_{m \times n}$ 或 $(a_{ij})_{\circ}$ m 称为矩阵的行数,n 称为矩阵的列数。

特别地,如果 m=n,我们称它是一个 m 阶方阵。

F 上的全体 $m \times n$ 矩阵的集合记作 $M_{m \times n}(F)$,特别地如果 m = n,记作 $M_n(F)$ 。

我们也将矩阵 A 在 m 行 n 列处的元素记作 A(i;j)

1.1.2 矩阵的运算

1. 相等

定义 1.1.2: 矩阵的相等

设 $A \in M_{m \times n}(F), B \in M_{m \times n}(F)$, 如果 $\forall i, j, A(i; j) = B(i; j)$, 则称 A = B。

2. 转置

定义 1.1.3: 矩阵的转置

设 $A \in M_{m \times n}(F)$,

我们定义矩阵 $A^T \in M_{n \times m}(F)$ 为满足 $A^T(i;j) = A(i;j)$ 的矩阵,称为 A 的转置。

3. 加法

定义 1.1.4: 矩阵的加法

设 $A \in M_{m \times n}(F), B \in M_{m \times n}(F)$

我们定义: (A+B)(i;j) = A(i;j) + B(i;j)。

4. 纯量乘法

定义 1.1.5: 矩阵的纯量乘法

设 $A \in M_{m \times n}(F), k \in F$,

我们定义矩阵 $k\cdot A\in M_{m\times n}(F)$ 为满足 $(k\cdot A)(i;j)=k\cdot A(i;j)$ 的矩阵。

5. 乘法

定义 1.1.6: 矩阵的乘法

设 $A \in M_{m \times n}(F), B \in M_{n \times p}(F)$,

我们定义矩阵 $A\cdot B\in M_{m\times p}(F)$ 为满足 $(A\cdot B)(i;j)=\sum_{k=1}^n A(i;k)B(k;j)$ 的矩阵

6. 幂

定义 1.1.7: 方阵的幂

设 $A \in M_n(F)$ 是一个方阵, 我们定义:

$$A^k = A \cdot A^{k-1}$$

1.2 行列式 3

1.1.3 矩阵的性质

1.2 行列式

1.2.1 行列式的定义和性质

定义 1.2.1: 行列式

设 F 是一个域,V 是 F 上的一个线性空间,并且 $\dim_F V = n$

映射 $\det: V^n \to F$ 如果满足:

$$\textcircled{1} \det(\alpha_1, \cdots, \alpha_i + \beta_i, \cdots, \alpha_n) = \det(\alpha_1, \cdots, \alpha_i, \cdots, \alpha_n) + \det(\alpha_1, \cdots, \beta_i, \cdots, \alpha_n)$$

$$2 \det(\alpha_1, \cdots, \alpha_i, \cdots, \alpha_i, \cdots, \alpha_n) = -\det(\alpha_1, \cdots, \alpha_i, \cdots, \alpha_i, \cdots, \alpha_n)$$

③ 存在
$$V$$
 的一组基 $\gamma_i, \dots, \gamma_n, \det(\gamma_1, \dots, \gamma_n) = 1$

那么我们称 det 是一个 V 上的 n 阶行列式

由行列式的定义, 我们可以推导出行列式的基本性质

命题 1.2.1. 向量组 $\alpha_1,\cdots,\alpha_i,\cdots,\alpha_j,\cdots,\alpha_n$ 如果有 $\alpha_i=\alpha_j$

那么 $\det(\alpha_1, \dots, \alpha_i, \dots, \alpha_i, \dots, \alpha_n) = 0$

证明: $\det(\alpha_1, \cdots, \alpha_i, \cdots, \alpha_i, \cdots, \alpha_n) = -\det(\alpha_1, \cdots, \alpha_i, \cdots, \alpha_i, \cdots, \alpha_n)$

但因为 $\alpha_i = \alpha_i$,所以必有 $\det(\alpha_1, \dots, \alpha_i, \dots, \alpha_i, \dots, \alpha_n) = 0$

进一步我们可以推出,如果两个变量成系数关系,那么行列式也为零

推论 1.2.1: 存在成比例变量的行列式为零

向量组 $\alpha_1, \cdots, \alpha_i, \cdots, \alpha_j, \cdots, \alpha_n$ 如果有 $\alpha_i = k\alpha_j, k \in F$

那么 $\det(\alpha_1,\cdots,\alpha_i,\cdots,\alpha_j,\cdots,\alpha_n)=0$

证明:
$$\det(\alpha_1,\cdots,\alpha_i,\cdots,\alpha_j,\cdots,\alpha_n)=k\cdot\det(\alpha_1,\cdots,\alpha_j,\cdots,\alpha_j,\cdots,\alpha_n)=0$$

1.2 行列式 4

1.2.2 行列式在基上的展开

定理 1.2.2: 行列式的展开

设 F 是一个域,V 是 F 上的一个线性空间,并且 $dim_F V = n$,

V 上的 n 阶行列式 det 满足 $\det(\gamma_1,\cdots,\gamma_n)=1$,其中 $\{\gamma_1,\cdots,\gamma_n\}$ 是 V 的一组基那么,有:

$$\det(\alpha_1, \cdots, \alpha_n) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i, \sigma(i)} \tag{1.1}$$

其中
$$\alpha_i = \sum_{j=1}^n a_{i,j} \gamma_j$$

证明:
$$\det(\alpha_1,\cdots,\alpha_n) = \det\left(\sum_{i_1=1}^n a_{1,i_1}\gamma_{i_1},\cdots,\sum_{i_n=1}^n a_{n,i_n}\gamma_{i_n}\right)$$

$$= \sum_{i_1=1}^n \cdots \sum_{i_n=1}^n \left(\prod_{k=1}^n a_{k,i_k} \det(\alpha_{i_1},\cdots,\alpha_{i_n})\right)$$

$$= \sum_{\sigma \in S_n} \left(\prod_{k=1}^n a_{k,\sigma(k)} \mathrm{sgn}(\sigma)\right)$$

1.2.3 矩阵的行列式

我们之前已经指出, $M_n(F)\cong F^{n^2}\cong (F^n)^n$,因此,我们可以对矩阵定义行列式:

定义 1.2.2: 矩阵的行列式

设矩阵 $A=(\alpha_1,\cdots,\alpha_n)\in M_n(F)$,我们定义:

$$|A| = \det(A) := \det(\alpha_1, \cdots, \alpha_n)$$

并且有 $\det(e_1,\cdots,e_n)=1$,其中 e_i 是标准基向量 $(0,\cdots,1,\cdots,0)$,1 在第 i 个位置上。

矩阵的行列式也可以类似地在标准基上展开

定理 1.2.3: 矩阵的行列式的展开

设 F 是一个域,矩阵 $A=(a_{ij})\in M_{n\times n}(F)$ 那么,有:

$$|A| = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$
(1.2)

- 1.2.4 矩阵的行列式的展开
 - 1.3 矩阵的初等变换、线性方程组的解
 - 1.4 可逆矩阵
 - 1.5 矩阵的分块