Tumor Segmentation on Multi-Modal Brain MRI

Jacob Quon, Tien Tong, Amirreza Kazemloo, Carlos Enciso, Pelin Özsezer & Elham Akhlaghi Manesh

Group: BraTS; Pod: fantastic-lechenaultia

- Medical image segmentation (e.g., tumors, lesions) is difficult.
- Traditional method: manual segmentation → time consuming, requires expertise.
- DL: learn from segmented data from manual method + apply to new data

- The Medical Segmentation Decathlon (Antonelli et al., 2022)
- Multimodal MRI data (FLAIR, T1w, T1gd, T2w)
- 4D volumes (484 people with labeled tumors)
 - (240 x 240 x 155) x 4 (modalities)
- Source → BRATS 2016 and 2017 datasets.

Data - Preprocessing Steps 🐥

- Split 484: a) Train (72%, N=348); b) Validation (18%, N=87); c) Test (10%, N=49).
- Crop out blank edge pixels to reduce x & y dimensions: $240x240 \rightarrow 192x192$.

- **Exclude 1 modality:** No to T1w since T1Gd provides superior information.
 - 🧠 192 x 192 x 29 x 3 🧠
- *Normalize:* grayscale in different intensity levels → Using MinMaxScaler
- "background" Binarize: "non-enhancing tumor "enhancing tumour"

The Model: UNet

Ronneberger, Fischer, & Brox (2015)

Example of UNet only. **Does not reflect final implementation.**

Finding the Most Effective Loss Function (1/2)

Layer (type)	Output Shape	Param #
Conv2d-1	[-1, 16, 192, 192]	448
BatchNorm2d-2	[-1, 16, 192, 192]	32
ReLU-3	[-1, 16, 192, 192]	0
MaxPool2d-4	[-1, 16, 96, 96]	0
Conv2d-5	[-1, 32, 96, 96]	4,640
BatchNorm2d-6	[-1, 32, 96, 96]	64
ReLU-7	[-1, 32, 96, 96]	0
MaxPool2d-8	[-1, 32, 48, 48]	0
Conv2d-9	[-1, 64, 48, 48]	18,496
BatchNorm2d-10	[-1, 64, 48, 48]	128
ReLU-11	[-1, 64, 48, 48]	0
ConvTranspose2d-12	[-1, 32, 96, 96]	8,224
Conv2d-13	[-1, 32, 96, 96]	18,464
BatchNorm2d-14	[-1, 32, 96, 96]	64
ReLU-15	[-1, 32, 96, 96]	0
ConvTranspose2d-16	[-1, 16, 192, 192]	2,064
Conv2d-17	[-1, 16, 192, 192]	4,624
BatchNorm2d-18	[-1, 16, 192, 192]	32
ReLU-19	[-1, 16, 192, 192]	0
Conv2d-20	[-1, 1, 192, 192]	17

For faster compute time:

- Run on a simpler U-Net (2 Encoders, 1 Bottleneck, 2 Decoders, Features: [16, 32, 64], Trainable params: 57,297)
- Subsetting Train and Validation sets (each with 500 2D images)

Finding the Most Effective Loss Function (2/2) 🔆

Testing the following:

BCE:

$$BCE = -\frac{1}{N} \sum_{i=0}^{N} y_i \cdot log(\hat{y}_i) + (1 - y_i) \cdot log(1 - \hat{y}_i)$$

Focal Loss:

$$Focal Loss = -\sum_{i=1}^{i=n} (i - p_i)^{\gamma} log_b(p_i)$$

Dice Loss:

IOU Loss:

Loss Curves Comparison for Training and Validation Data 🔆

Stability in validation loss is crucial.

decrease in loss function training is stable

Performance Metrics Comparison Across Loss Functions 🔆

Metrics for **evaluating** the effectiveness of the segmentation model: **Dice** is superior.

- 4 Encoders, 1 Bottleneck, 4 Decoders
- Features/layer: [16, 32, 64, 128, 256]
- Trainable params: 1,941,105

Model performance on the *Test Set*:

Test Loss: 0.1521

Test Accuracy: 99.19%

Test IoU: 0.7670

Test F1: 0.8479

Graphs portray model performance on the Validation Set

Vertical red line represents best performance on **validation** set.

Model Performance on 1 person from the Test set Tumor mask overlaid on FLAIR

ID: BRATS 068

Model Performance on a different person from the Test set Tumor mask overlaid on T2w

ID: BRATS 371

The U-Net model is effective in tumor segmentation.

Future work:

- Use a more complex model (e.g., 3D U-Net).
- Use more data (whole-brain + additional MRI modalities).
- Segmenting multi-labeled tumors to increase medical usefulness.