CS3230: Design and Analysis of Algorithms (Spring 2015) **Tutorial Set #1**

[SOLUTION SKETCHES]

[DO NOT give to future students: Let them have a chance to learn.]

Note (by LHW): Only for this first tutorial, I will be kind and explain in great details. For future tutorials, you will need to "grow up", as the explanation will be more like what we expect a CS3230 student to be able to understand (and fill in the gaps, if necessary).

Routine Practice Problems -- do not turn these in -- but make sure you know how to do them.

R1-(a) Show, by definition, that f(n) = O(n), where f(n) = 119n.

ANSWER: We need to find c and n_0 , and show that

$$f(n) \le c \ n$$
 for all $n \ge n_0$. (**)

So, we first write down what we know

$$f(n) = 119n$$

 $\leq 119n$, for all $n \geq 1$, (Here, we are lucky; we got it for free)

We choose c = 119, $n_0 = 1$. Then (**) holds.

Hence, f(n) = 119n = O(n).

R1-(a') Is $f(n) = O(n^2)$? **YES** (Proof by definition is similar)

Is
$$f(n) = O(n^n)$$
? YES (Proof by definition is similar)
$$f(n) = 119n \le 119n^2, \text{ for all } n \ge 1, \qquad \text{(Again, got it almost free)}$$
Is $f(n) = O(n^{819})$? YES

Is
$$f(n) = O(n^{819})$$
? **YES**

$$f(n) = 119n \le 119n^{819}$$
, for all $n \ge 1$, (Again, got it almost free)

R1-(c) Show, by definition, that $h(n) = O(n^2)$, where $h(n) = 26n^2 + 119n$.

ANSWER:

$$h(n) = 26n^2 + 119n$$

 $\leq 26n^2 + 119n^2$, for all $n \geq 1$ $(119n \leq 119n^2)$
 $= 145n^2$, for all $n \geq 1$,
We choose $c = 145$, $n_0 = 1$, we have $h(n) \leq 145n^2$, for all $n \geq 1$,
Hence, $h(n) = 26n^2 + 119n = O(n^2)$.

(**Note:** You do *not* have to find the smallest c and the smallest n_0 .

Any c and n_0 that work will be equally good. I find an easy one that works. If you want a smaller value for c, you will need to work hard and may also have to use a bigger n_0 . Remember, the burden of proof is on YOU to prove your result.)

R1-(c') Is
$$h(n) = O(n^3)$$
? **YES** Is $h(n) = O(n^{145})$? **YES** (DIY)

R1(b), (b'): DIY (Do It Yourself) Similar to 1(a), (a').

R1(d), (d'): DIY. Similar to (c), (c').

R2. Will only show R1-(c). DIY for the rest.

R2-(c): Show, by definition, that $h(n) = \Theta(n^2)$, where $h(n) = 26n^2 + 119n$.

ANSWER:

Upper Bound:

For R1(c) above, we already know, $h(n) \le 145 n^2$, for all $n \ge n_0 = 1$,

Lower Bound:

Next, we need to do the "lower bound" proof. Which is also easy. Since $h(n) = 26n^2 + 119n \ge 26n^2$, for all $n \ge 1$, (throw away 119n) Put these together, we have $26n^2 \le h(n) \le 836n^2$, for all $n \ge 1$, We choose $C_1 = 26$, $C_2 = 145$, $n_0 = 1$. Hence, $h(n) = 26n^2 + 119n = \Theta(n^2)$.

R2-(c') Is
$$h(n) = \Theta(n)$$
? **NO** Is $h(n) = \Theta(n^3)$? **NO** Is $g(n) = \Theta(n^{2039})$? **NO**

- **R3.** From R1 and R2, we see that O is only an upper bound and so it is less precise, but Θ is a more precise (lower and upper) bound on the time complexity.
- **D1:** (No brainer analysis of algorithms) Bob designs an algorithm Bobal, and finds that it requires $(3n^2 + n)$ instructions to run. Use the definition to show $(3n^2 + n)$ is $O(n^2)$, and $O(n^2)$. Hence, algorithm Bobal runs in time $O(n^2)$. [Hint: For all $n \ge 1$, we know that $n^2 \ge n$.]

Upper Bound:

$$(3n^2 + n) \le 3n^2 + n^2$$
, for all $n \ge 1$ $(n \le n^2)$
= $4n^2$, for all $n \ge 1$,
We choose $c = 4$, $n_0 = 1$, we have $(3n^2 + n) \le 4n^2$, for all $n \ge 1$,
Hence, $(3n^2 + n) = O(n^2)$. [**]

Lower Bound:

$$(3n^2 + n) \ge 3n^2$$
 for all $n \ge 1$ (Throw away n)
We choose $c = 3$, $n_0 = 1$, we have $(3n^2 + n) \ge 3n^2$, for all $n \ge 1$,
Hence, $(3n^2 + n) = \Omega(n^2)$. [***]

Combining [**] and [***], we have $(3n^2 + n) = \Theta(n^2)$ and algorithm Bobal runs in time $\Theta(n^2)$.

- **D2.** [Simple Proving O, Ω , Θ by definition] Let $f(n) = 16n^3 6n + 121$
- Prove the following by using the definitions of O, Ω , Θ . Namely, find the respective constants c, c_1 , c_2 , and the positive integer n_0 .

(i)
$$f(n) = O(n^3)$$

(ii)
$$f(n) = \Omega(n^3)$$
 (iii) $f(n) = \Theta(n^3)$

$$(iii) f(n) = \Theta(n^3)$$

[Answer Sketches]

(i)
$$f(n) = 16n^3 - 6n + 12 \le 16n^3 + 12$$
 for all $n \ge 1$. (throw away $-6n$)
 $\le 16n^3 + 12n^3$ for all $n \ge 1$. ($12 \le 12n^3$)
 $\le 28n^3$ for all $n \ge 1$.

Choose c = 28 and $n_0 = 1$. Therefore, by definition, $f(n) = O(n^3)$.

(ii)
$$f(n) = 16n^3 - 6n + 12 \ge 16n^3 - 6n$$
 for all $n \ge 1$. (throw away 12) $\ge 15n^3 + (n^3 - 6n)$ for all $n \ge 1$. (algebra) $\ge 15n^3$ for all $n \ge 3$. ($(n^3 - 6n) > 0$ when $n \ge 3$) Choose $c = 15$ and $n_0 = 3$. Therefore, by definition, $f(n) = \Omega(n^3)$.

- (iii) Note that (i) + (ii) gives (iii).
- Sum Rule: (see T2 first, come back to this later) $f(n) = 16n^3 - 6n + 12$ cannot be directly applied here.

Polynomial Rule:

$$f(n) = 16n^3 - 6n + 12$$
 is a polynomial of degree 3. Hence $f(n) = \Theta(n^3)$.
Note: $f(n) = \Theta(n^3)$ implies $f(n) = O(n^3)$ and $f(n) = \Omega(n^3)$

Limit Theorem and L' Hopital's rule:

$$\lim_{n \to \infty} (n - n) \int_{-\infty}^{\infty} f(n)/n^3 = (16n^3 - 6n + 12) / n^3 = \lim_{n \to \infty} 16 - 6/n^2 + 12/n^3) = 16$$

Thus, $f(n) = \Theta(n^3)$.

D3: (Two Important Processes in CS) [SS by HW]

Trivial, will NOT do it here;

(c)

- (a),(b) [DIY -- Do it with a Table (Excel table, maybe?)] IMPORTANT that you do it yourself. You will learn from doing it.
- Most of the time h(n) = d(n), except in some "boundary" cases, they differ by 1? Q: Where are those boundary cases?
- $h(n) = \lceil \lg(n+1) \rceil$ and $d(n) = \lceil \lg n \rceil$. (They are equal MOST of the time.) (Note: $\lceil \lg(n+1) \rceil = 1 + \lceil \lg n \rceil$)
- D4. Solution sketch to HW1-S1. (Refer to earlier solution)
- D5. Solution sketch to HW1-S3. (Refer to earlier solution)