# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Лабораторная работа 3.5.1

Изучение плазмы газового разряда в неоне.

**Цель работы:** изучение вольт-амперной характеристики тлеющего разряда; изучение свойств плазмы методом зондовых характеристик.

В работе используются: стеклянная газоразрядная трубка, наполненная неоном; высоковольтный источник питания; источник питания постоянного тока; делитель напряжения; потенциометр; амперметры; вольтметры; переключатели.

#### 1 Теоретическая часть и методика:

Тлеющий разряд – электрический разряд в газе низекого давлнеия.

Свечение плазмы — следствие непрерывно идущей рекомбинации электронов и ионов в нейтральные атомы при относительно невысоких температурах. В этом процессе выделяется энергия и уменьшаеься концентрация электронов и ионов. В тлеющем газовом разряде обычно: «горячие» элктроны и «холодные» ионы:  $T_e >> T_i$ , так как масса электрона много меньше массы иона  $m_e << m_i$ , следовательно, электроны ускоряются внешним полем почти без потерь энергии, а иону быстро отдают энергию от поля и электронов нейтральным атомам газа и стенкам сосуда.

#### Дебаевский радиус

Плазменные колебания могут быть возбуждены как за счёт внешнего воздействия (например, при прохождении электромагнитной волны), так и за счёт тепловой энергии, содержащейся непосредственно в плазме. Оценим амплитуду колебаний в последнем случае. Средняя скорость теплового движения электронов по порядку величины равна

$$\bar{v_e} \sim \sqrt{\frac{K_{\rm B}T_e}{m_e}}$$

где  $T_e$  – температура электронов. Амплитуду r колебаний электронов относительно ионов оценим как смещение с тепловой скоростью  $\bar{v_e}$  за характерное время плазменных колебаний  $\frac{1}{w_p}$  :  $r=\frac{\bar{v_e}}{w_p}$ . Зная, что  $w_p=\sqrt{\frac{4_e e^2}{m_e}}$ , получим:

$$r_D = \sqrt{\frac{k_{\rm B}T_e}{4\pi n_e e^2}} \sim \frac{v_e}{w_p}$$

Эту величину называют **дебаевским радиусом** (дебаевской длиной). Из рассмотренного примера видно, что дебаевская длина есть амплитуда ленгмюровских колебаний, возбуждаемых тепловыми флуктуациями. Она задаёт масштаб, на котором возможно спонтанное нарушение квазинейтральности плазмы.

Таким образом, плазменная частота  $w_p$  и дебаевская длина  $r_D$  определят временную и пространственную масштабы коллективного движения электронов относительно ионов.

#### Плазменная частота



Рис. 1: Плазменные колебания

Теперь выделим параллелепипед с плотностью n электронов, сместим их на x. Возникнут поверхностные заряды плотностью  $\sigma=nex$ , поле от которых  $E=4_e\Delta x$  будет придавать электронам ускорение:

$$\frac{d^2x}{dt^2} = -\frac{eE}{m} = -\frac{4\pi ne^2}{m}$$

откуда получаем уравнение гармонических колебаний:

$$\ddot{\Delta x} + \frac{4\pi n_e e^2}{m} \Delta x = 0$$

Следовательно, плазменная (ленгмюровская) частота колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi n e^2}{m}}. (1)$$

Нами получен один из важнейших параметров плазмы. Плазменная частота определяет характрный временной масштаб плазы - время отклика на флуктуацию плотности заряда в ней. Часот аопределяет многие физические процессы, включая распространение электромагнитных волн в плазме.

#### Равновесная и неравновесная плазма

**Равновесная плазма** - плазма, в которой в состоянии теплового равновесия все частицы (электроны, ионы, нейтральные) имеют максвелловское распределение по скоростям, а их температуры равны:  $T_e = T_i = T_n$ . При тепловом равновесии с окружающей средой равновесная плазма может существовать неограниченно долго.

**Неавновесная плазма** - плазма, в которой имеет место разделение температур компонентов, образующих её. При прекращении действия внешних источников неравновесная плазма исчезает в течение малых долей секунды ( $\sim 10^{-5}-10^{-4}$ ).

В нашем эксперименте плазма является неравновесной.

 Работа 3.5.1
 2 Ход работы:



Рис. 2: Экспериментальная установка

## 2 Ход работы:

#### 2.1 Вольт-амперная характеристика разряда

Установим переключатель  $\Pi_1$  в положение "Анод-I". Установим напряжение, подаваемое с ВИП в 0. Плавно увеличивая выходное напряжение ВИП, определим напряжение зажигания разряда  $V_d$  (По показания вольиетра  $V_1$  непосредственно перед зажиганием). Получим:  $V_d=230~V$ 

Снимем с помощью вольтметра  $V_1$  и амперметра  $A_1$  ВАХ разряда  $I_d\left(V_d\right)$ . Изменять ток разряда  $I_{dsch}$  будем в диапазоне  $(0.5\ mA-5\ mA)$ .

| U, V  | I, mA |
|-------|-------|
| 32    | 1.4   |
| 31.9  | 1.8   |
| 28.7  | 2.28  |
| 27.8  | 2.8   |
| 26.9  | 3.28  |
| 25.7  | 3.8   |
| 24.9  | 4.28  |
| 24.4  | 4.8   |
| 25    | 4.28  |
| 25.6  | 3.8   |
| 26.9  | 3.32  |
| 27.6  | 2.8   |
| 28.3  | 2.32  |
| 31.96 | 1.8   |
| 33.2  | 1.28  |
| 34.3  | 0.8   |
| 35    | 0.46  |

 Работа 3.5.1
 2 Ход работы:



Опроксимировав уравнением (y = kx + b) получим уравнения для уменьшения тока:

$$k = (-0.34 \pm 0.02) \ mA/V$$

$$b = (12.5 \pm 0.08) \ mA$$

И для повышения тока:

$$k = (-0.40 \pm 0.03) \ mA/V$$

$$b = (14.1 \pm 0.09) \ mA$$

Как видно из графиков, прямые очень похожи. По их наклону определим дифференциальное сопротивление разряда:

$$R_{diff} = \frac{dV}{dI} = (-2.5 \pm 0.18) \cdot 10^3 \,\Omega$$

#### 2.2 Зондовые характеристики

Уменьшим напряжение ВИП до 0. Переведём переключатель  $\Pi_1$  в положение "Анод-II переключатель  $\Pi_2$  в положение "+". Плавно увеличим напряжение ВИП и установим разрядный ток  $I_d=5~mA$ . Включим в сеть источник питания постоянного тока и установим на нем выходное напряжение  $V_2=25~V$ . При помощи потенциометра R установим на зонде максимальное напряжение  $V_0=25~V$ . С помощью амперметра  $A_2$  и вольметра  $V_2$  снимем ВАХ двойного зонда  $I_3$  ( $V_3$ ). Измерим ВАХ также при  $I_d=3~mA$  и  $I_d=1.5~mA$ 

 Работа 3.5.1
 2 Ход работы:

| $I_d = 5 mA$ |           | $I_d = 3 mA$ |           | $I_d = 1.5  mA$ |           |
|--------------|-----------|--------------|-----------|-----------------|-----------|
| $V_3, V$     | $I_3, mA$ | $V_3, V$     | $I_3, mA$ | $V_3, V$        | $I_3, mA$ |
| 25           | 103       | 25           | 55        | 25              | 27        |
| 22           | 100       | 22           | 54        | 22              | 26        |
| 19           | 98        | 19           | 52        | 19              | 25        |
| 16           | 95        | 16           | 50        | 16              | 24        |
| 13           | 91        | 13           | 48        | 13              | 23        |
| 10           | 82        | 10           | 45        | 10              | 21        |
| 8            | 74        | 8            | 40        | 8               | 19        |
| 6            | 62        | 6            | 34        | 6               | 16        |
| 4            | 49        | 4            | 26        | 4               | 12        |
| 2            | 31        | 2            | 14        | 2               | 6.5       |
| 0.6          | 18        | 0.6          | 6         | 0.6             | 2         |
| -0.6         | 17        | -0.6         | 4         | -0.6            | 2         |
| -2           | 29        | -2           | 13        | -2              | 6         |
| -4           | 49        | -4           | 24        | -4              | 12        |
| -6           | 63        | -6           | 34        | -6              | 16        |
| -8           | 75        | -8           | 41        | -8              | 19        |
| -10          | 85        | -10          | 47        | -10             | 22        |
| -13          | 94        | -13          | 50        | -13             | 24        |
| -16          | 100       | -16          | 53        | -16             | 25        |
| -19          | 103       | -19          | 55        | -19             | 26        |
| -22          | 106       | -22          | 56        | -22             | 27        |
| -25          | 109       | -25          | 58        | -25             | 28        |

 $I_d = 5 mA$ :



 Работа 3.5.1
 2 Ход работы:

 $I_d = 3 \, mA$ :



 $I_d = 1.5 \ mA$ :



По ВАХ для всех трёх значений  $I_d$  легко убедиться что участки кривой при больших напряжениях выходят на асимптоты.

Из графиков вычислим температуры электронов  $T_e$ . Вычислим концентрацию электронов  $n_e$  по формуле

$$I_s = 0.4n_e e S \sqrt{\frac{2kT_e}{m_i}}$$

Расчитаем плазменную частоту колебаний электронов по формуле

$$\omega = \sqrt{\frac{4\pi n_e e^2}{m_e}} = 6 \cdot 10^{-4} \sqrt{n_e}$$

 Работа 3.5.1
 3 Выводы

| $I_d, mA$ | $T_e, 10^4 K$ | $n_e, 10^{18} m^{-3}$ | $\omega$ , $10^6 rad/sec$ | $r_{D_e}, cm$ | $r_D, cm$ | $N_D$ |
|-----------|---------------|-----------------------|---------------------------|---------------|-----------|-------|
| 5         | 3.14          | 4.9                   | 1.3                       | 0.5           | 0.05      | 256   |
| 3         | 3.6           | 2.8                   | 1.0                       | 0.7           | 0.07      | 704   |
| 1.5       | 3.6           | 1.4                   | 0.7                       | 1.0           | 0.095     | 1700  |

Построим зависимости  $T_e(I_d)$  и  $n_e(I_d)$ :





### 3 Выводы

В этой работе мы изучили ВАХ тлеющего разряда. Затем мы занялись изучением свойств плазмы методом зондовых характеристик. Мы получили что температура электронов у нас имеет пордок  $10^4~K$ , когда  $kT_e \simeq 1~eV$ . Концентрация электронов в плазме получильсь порядка  $10^{18}~m^{-3}$ . Плазменная частота колебаний  $\omega \simeq 10^6 rad/sec$ . Дебаевский радиус порядка  $10^{-3}~m$  и число ионов в нём много больше единицы.