Semillero de Programación Algoritmo de Bellman-Ford

Ana Echavarría Unan Francisco Cardona

Universidad EAFIT

22 de marzo de 2013

Contenido

- Problemas semana anterior
 - Problema A Non-Stop Travel
 - Problema B Peter's Smokes
 - Problema C Fire Station
- 2 Grafos con peso negativo
- 3 Algoritmo de Bellman-Ford
- Tarea

Contenido

- Problemas semana anterior
 - Problema A Non-Stop Travel
 - Problema B Peter's Smokes
 - Problema C Fire Station

Algoritmo de Bellman-Ford

Problema A - Non-Stop Travel

Problema B - Peter's Smokes

Problemas semana anterior

Problema C - Fire Station

Problemas semana anterior

Contenido

2 Grafos con peso negativo

Motivación

Problemas semana anterior

Sea el grafo G = (V, E) un grafo donde

- V es un conjunto de moléculas químicas
- $(u, v) \in E$ si existe una reacción química que convierta la molécula u en la molécula v.
- f(e) es la energía requerida para hacer la reacción $e \in E$
- Si una reacción consume energía f(e) > 0 y si produce energía f(e) < 0.

¿Qué hacer si se quiere hallar la mínima energía para convertir una molécula en otra?

Grafos con pesos negativos

Algunas veces se necesita hallar el camino más corto desde una fuente a todos los demás nodos en un grafo que tiene pesos negativos.

El algoritmo de Bellman-Ford encuentra esos caminos.

Algoritmo de Bellman-Ford

Ciclos con peso negativo

¿Cuál es la distancia más corta del nodo 1 al nodo 5?

Ciclos con peso negativo

¿Cuál es la distancia más corta del nodo 1 al nodo 5?

Se tiene el camino con peso $-\infty$

$$1 - (2 - 3 - 4) - (2 - 3 - 4) - \cdots - (2 - 3 - 4) - 5.$$

Ciclos con peso negativo

Problemas semana anterior

- El problema del camino más corto está bien definido siempre y cuando no se tengan ciclos de peso negativo alcanzables desde la fuente.
- Si el grafo contiene ciclos de peso negativo alcanzables desde s el problema no está bien definido porque no hay ningún camino más corto saliendo desde la fuente.
- Si se tiene un camino "más corto" desde s, este se puede hacer aún más corto si se hace una vuelta más al ciclo de peso negativo.

Contenido

3 Algoritmo de Bellman-Ford

Single-Source Shortest-Paths con pesos negativos

Entrada

- Un grafo G = (V, E)
- Una función de pesos $w: E \to \mathbb{R}$ (posiblemente w < 0)
- Un nodo $s \in V$

Objetivo

• Para todo $v \in V$ hallar el camino más corto de s a v

0

• Decir que G tiene un ciclo de peso negativo y que el problema no está bien definido.

Pregunta

Pregunta

Sea n el número de nodos y m el número de aristas de un grafo G. Si G no contiene ciclos de peso negativo, ¿cuál es el número máximo de aristas que puede contener un camino más corto entre dos nodos s y v?

Pregunta

Pregunta

Problemas semana anterior

Sea n el número de nodos y m el número de aristas de un grafo G. Si G no contiene ciclos de peso negativo, ¿cuál es el número máximo de aristas que puede contener un camino más corto entre dos nodos $s \vee v$?

Respuesta

Un camino más corto en un grafo sin ciclos de peso negativo tiene máximo n-1 aristas.

Si tuviera más es porque visita algún nodo dos veces lo que implica que hay un ciclo.

Como el ciclo no tiene peso negativo, se puede eliminar y reducir la longitud del camino.

Idea principal

Hallar el camino más corto de s a v que usa máximo i aristas.

¿Cómo hacerlo?

Sea $L_{i,v}$ la longitud del camino más corto de s a v con máximo i aristas (se permiten ciclos).

$$L_{0,v} = \begin{cases} 0 & \text{si } v = s \\ +\infty & \text{si } v \neq s \end{cases}$$

Ahora $\forall v \in V$

$$L_{i,v} = \min \left\{ \begin{cases} L_{i-1,v} \\ \min_{(u,v) \in E} \{L_{i-1,u} + w_{u,v}\} \end{cases} \right\}$$

Algoritmo cuando no hay ciclos de peso negativo

- Asumamos que no hay ciclos de peso negativo.
- Ya vimos que el camino más corto tiene máximo n-1aristas
- Para hallar la solución al problema hay que computar $L_{i,v}$ para $i = 0, 1, \dots n-1$ y todo $v \in V$

Algoritmo cuando no hay ciclos de peso negativo

```
Crear matriz L[MAXN][MAXN] // L[i][u]
   Hacer L[0][s] = 0 y L[0][u] = INF para u != s
   Para i = 1 hasta n-1
      // El camino ms corto con i-1 arstas
      Para u = 0 hasta n-1
         L[i][u] = L[i-1][u]
      // Mirar todas las aristas
      Para u = 0 hasta n-1
         Para k = 0 hasta g[u].size() - 1
10
            v = g[u][k].first // El nodo
11
            w = g[u][k].second // El peso
12
            // Mirando la arista (u, v) de peso w
13
            L[i][v] = min(L[i][v], L[i-1][u] + w)
14
```

Бјешрю

Complejidad

Complejidad

¿Cuál de las siguientes es la mejor aproximación a la complejidad del algoritmo cuando no hay ciclos de peso negativo?

- a $O(n^2)$
- b $O(n \cdot m)$
- ${\color{red} {\bf c}} \ O(n^3)$
- $\frac{d}{d} O(m^2)$

Complejidad

Complejidad

¿Cuál de las siguientes es la mejor aproximación a la complejidad del algoritmo cuando no hay ciclos de peso negativo?

- b $O(n \cdot m)$

Contenido

4 Tarea

Tarea

Resolver los problemas de