APPENDIX C—EQUIVALENCE BETWEEN SI-METRIC, MKS-METRIC, AND U.S. CUSTOMARY UNITS OF NONHOMOGENOUS EQUATIONS IN THE CODE

Provision number	SI-metric stress in MPa	mks-metric stress in kgf/cm ²	U.S. Customary units stress in pounds per square inch (psi)
	1 MPa	10 kgf/cm ²	145 psi
	$f_c' = 21 \text{ MPa}$	$f_c' = 210 \text{ kgf/cm}^2$	$f_c' = 3000 \text{ psi}$
	$f_c' = 28 \text{ MPa}$	$f_c' = 280 \text{ kgf/cm}^2$	$f_c' = 4000 \text{ psi}$
	$f_c' = 35 \text{ MPa}$	$f_c' = 350 \text{ kgf/cm}^2$	$f_c' = 5000 \text{ psi}$
	$f_c' = 40 \text{ MPa}$	$f_c' = 420 \text{ kgf/cm}^2$	$f_c' = 6000 \text{ psi}$
	$f_y = 280 \text{ MPa}$	$f_y = 2800 \text{ kgf/cm}^2$	$f_y = 40,000 \text{ psi}$
	$f_y = 420 \text{ MPa}$	$f_y = 4200 \text{ kgf/cm}^2$	$f_y = 60,000 \text{ psi}$
	$f_y = 550 \text{ MPa}$	$f_y = 5600 \text{ kgf/cm}^2$	$f_y = 80,000 \text{ psi}$
	$f_y = 690 \text{ MPa}$	$f_y = 7000 \text{ kgf/cm}^2$	$f_y = 100,000 \text{ psi}$
	$f_{pu} = 1725 \text{ MPa}$	$f_{pu} = 17,600 \text{ kgf/cm}^2$	$f_{pu} = 250,000 \text{ psi}$
	$f_{pu} = 1860 \text{ MPa}$	$f_{pu} = 19,000 \text{ kgf/cm}^2$	$f_{pu} = 270,000 \text{ psi}$
	$\sqrt{f_c'}$ in MPa	$3.18\sqrt{f_c'}$ in kgf/cm ²	$12\sqrt{f_c'}$ in psi
	$0.313\sqrt{f_c'}$ in MPa	$\sqrt{f_c'}$ in kgf/cm ²	$3.77\sqrt{f_c'}$ in psi
	$0.083\sqrt{f_c'}$ in MPa	$0.27\sqrt{f_c'}$ in kgf/cm ²	$\sqrt{f_c'}$ in psi
	$0.17\sqrt{f_c'}$ in MPa	$0.53\sqrt{f_c'}$ in kgf/cm ²	$2\sqrt{f_c'}$ in psi
6.6.4.5.4	$M_{2,min} = P_u(15 + 0.03h)$	$M_{2,min} = P_u(1.5 + 0.03h)$	$M_{2,min} = P_u(0.6 + 0.03h)$
7.3.1.1.1	$\left(0.4 + \frac{f_y}{700}\right)$	$\left(0.4 + \frac{f_y}{7000}\right)$	$\left(0.4 + \frac{f_{y}}{100,000}\right)$
7.3.1.1.2	$(1.65 - 0.0003w_c)$	$(1.65 - 0.0003w_c)$	$(1.65 - 0.005w_c)$
7.7.3.5(c)	$0.41 \frac{b_{\scriptscriptstyle w} s}{f_{\scriptscriptstyle yt}}$	$4.2 \frac{b_w s}{f_{yt}}$	$60 \frac{b_w s}{f_{yt}}$
8.3.1.1	$f_r = 0.41 \sqrt{f_c'}$	$f_r = 1.33 \sqrt{f_c'}$	$f_r = 5\sqrt{f_c'}$
8.3.1.2(b)	$h = \frac{\ell_n \left(0.8 + \frac{f_y}{1400}\right)}{36 + 5\beta(\alpha_{fm} - 0.2)} \ge 125 \text{ mm}$	$h = \frac{\ell_n \left(0.8 + \frac{f_y}{14,000} \right)}{36 + 5\beta(\alpha_{fm} - 0.2)} \ge 12.5 \text{ cm}$	$h = \frac{\ell_n \left(0.8 + \frac{f_y}{200,000} \right)}{36 + 5\beta(\alpha_{fin} - 0.2)} \ge 5 \text{ in.}$
8.3.1.2(d)	$h = \frac{\ell_n \left(0.8 + \frac{f_y}{1400} \right)}{36 + 9\beta} \ge 90 \text{ mm}$	$h = \frac{\ell_n \left(0.8 + \frac{f_y}{14,000} \right)}{36 + 9\beta} \ge 9 \text{ cm}$	$h = \frac{\ell_n \left(0.8 + \frac{f_y}{200,000} \right)}{36 + 9\beta} \ge 3.5 \text{ in.}$
8.3.4.1	$f_t \le 0.5 \sqrt{f_c'}$	$f_t \le 1.6 \sqrt{f_c'}$	$f_t \leq 6\sqrt{f_c'}$
	$0.17\sqrt{f_c'}$	$0.53\sqrt{f_c'}$	$2\sqrt{f_c'}$
8.6.2.3	$0.5\sqrt{f_c'}$	$1.6\sqrt{f_c'}$	$6\sqrt{f_c'}$