Index 719

four-point probe measurements in, 128	set-ups for, 155
by implantation, 130–131	Siloxanes, 32
elasticity constants of, 195–198	SIMOX process
etch rate, and dopant concentration in, 218–219	pressure sensor fabrication, 290
first use as micromechanical element, 184–185	wafers fabrication, 287–288
hardness of, 199–200	Single crystal reactive etching and metallization (SCREAM)
lattice plane orientation of, 186–187, see also Wafers, silicon;	111–114
Wet etching	Single layer resists, 38
[100] orientation, 187–189	thin film imaging in, 40–41
[110] orientation, 189–190	
	SMA (shape memory alloy)
selection of, 190–191	in thermal actuators, 591–593
macroporous, 231–232	in valves, 468
as micromachining material, 204	Soft baking, 4
microporous, 230–231	Soft lithography, 63–64, 359, 384
modified, chemically or physically, 126	advantages of, 65
noncrystalline compounds of, 126	disadvantages of, 65
optical properties of, 205	microcontact printing in, 64
oxidation of, kinetics of, 131–133	micromolding in capillaries in, 64
oxides of, color table and applications, 133	microreplica molding in, 64
piezoresistivity of, 200–203	microtransfer molding in, 64
plates of, bending, 203–204	Soft x-ray radiation, 48
porous, 229–232	Software, for MEMS
residual stress in, 198	future, 473
in sensors, 193–204, see also Sensor(s), silicon	from integrated circuitry applications, 471
shear modulus for, 198	specific, 471–473
single crystal	Software mask, 52
characteristics of, 207	SOGs (spin-on glasses), 32
material properties of, 294	electrical properties of, 32
mechanical properties of, 205	SOI (silicon-on-insulator) surface micromachining, 287
stiffness coefficient and compliance coefficient of, 197–198	high sensitivity piezoresistive cantilevers by, 310–313
stress-strain curve of, 195–198	in microelectromechanical systems, 289–290
tensile strength of, 199–200	wafer fabrication in, 287–288
thermal	Solar cells, energy from, 601–602
location of oxide charges in, 134	Sol-gel deposition, 156–157
properties of, 135	in LIGA process, 368–369
thermal properties of, 204–205	SOR (synchrotron orbital radiation)
in wafers, see Wafers, silicon	applications of, 328
yield point of, 199–200	physical concepts of, 328
Young's modulus for, 198	angular opening of radiation cone, 328-329
Silicon carbide thin films, properties of, 304–305	electron emissions, 329
Silicon dioxide	electron energy, 329
chemical vapor deposited thin films, properties of, 301–302	vacuum around sample site, 329
growth/deposition processes for, comparisons of, 302	pros and cons, for integrated circuitry, 327–328
thermal, properties of, 133–134	use of, in micromolding, 327–333
Silicon fusion bonding, 289, 487–489	x-ray exposure station using, 329
Silicon grass, 106–107	Spacer layer, 273, 274
Silicon nitride cavity sealing, 481–482, 483	Spatial coherence, 26
Silicon nitride thin films, 299–300	Spin coating, 159, 336
low pressure chemical vapor deposited, 301	Spinneret nozzles, LIGA, 369–370, 371
plasma deposited, properties of, 300	Spinning resist, 3–4
Silicon-on-insulator (SOI) surface micromachining, 287	Spin-on glasses (SOGs), 32
high sensitivity piezoresistive cantilevers by, 310–313	electrical properties of, 32
in microelectromechanical systems, 289–290	SPL (scanning probe lithography), 57, 58–61, 59
wafer fabrication in, 287–288	pattern generation in, 59–61
Silk screening, 154, 385	writing speeds in, 60–61
and applications of thick film technology, 156	SPR (surface plasmon resonance), 449–451, 523
inks in	Spray development, 5–6
for chemical sensors, 156	Spray pyrolysis, 152, 170–172
pseudoplastic behavior of, 155–156	Sputtering, 10, 88–89, 138–140
traditional, 155–156	compared to thermal evaporation, 138
process of, 155	equipment used in, 140
resistive pastes for, 156	laser, 141–143

negative aspects of, 140	physical, 88–90
plasmas in, 139–140	physical/chemical etching as, 97–104
reactive, 87, 140	plasma etching as, 93–97
Stamp, PDMS (polydimethylsiloxane), 63–64	plasmas as etchants in, 79–88, 101, 102
Stamper substrates, 361–362	etch rates and etch ratios of, 103
Standing waves, 40	for microelectronic materials, 103
Stepped, and slanted microstructures, 340–341	for polymeric materials, 114–115, 116
Stepper system, 23, 24	popular, 79
Stereolithography, 66–67	profiles associated with techniques in, 80, 81
Stiction, 12	radical etching as, 93–97
in-use, 277	rule simplification in, 101–104
	•
in surface micromachining, 276–277	selective vs. unselective, 102–103
Stiffness coefficient, 197–198	in situ monitoring of, 108–109
STM (scanning tunneling microscopy), 56–57, 58–59	spectrum of, 98
STM aligned field emission (SAFE) system, 56–57	sputtering as, 88–99
Stoney's formula, 312	substrate bias in, 103
Stress	techniques in, 80
normal, 197	terminology used in, 78–79
residual, 198, 263	vapor phase etching without plasma as, 107–108
and strain behavior, typical, 195–198	Supercritical cleaning, 12–13
in thin films, 262–263	Surface micromachining, 259–260
intrinsic, 265	base (spacer, sacrificial) layer in, 273
measurement of, 265–272	deposition and etching of, 274
qualitative analysis, 262–263	selective etching of, 275–276
quantitative analysis, 263–265	basic process of, 272–273
residual, 263	compared to bulk micromachining, 259–260, 292–293
thermal, 264–265	dimensions in, variability of, 279
Stress-to-modulus, test structures, 268	etchant-spacer-microstructure combinations in, 276
Strippers, commercial, 13	examples of, 306–313
Structural etching, 207	film stress control in, 277–279
SU–8 resist, 35–37	history of, 260–261
latest updates on, 36	and integration issues with CMOS, 280–282
for master micromolds, 342	isolation layer in, 273–274
Subatmospheric pressure chemical vapor deposition (SACVD),	mechanical properties of fabrications in, 277–279
302	
	pattern transfer to silicon dioxide buffer in, 273–274
Substrate bias, 103	polysilicon, 283–287
Substrate materials, 467, 518–519	compared to silicon-on-insulator surface micromachining
ceramic, 519–521	290–291
in LIGA process, 368	milliscale molded, 285–287
photosensitive, 389–390	resists in, 291–292
performance characteristics of, 193–194	resonant frequencies in, 279, 311
polyimide, 521–522	sealing processes in, 279–280
for master micromolds, 342	silicon-on-insulator, 287
as substrates, 521–522	compared to polysilicon surface micromachining, 290-29
surface structure of, 291–292	in microelectromechanical systems, 289–290
quartz, 519, 559	wafer fabrication in, 287–288
silicon, see Silicon; Wafers, silicon	stiction in, 276–277
Subtractive process(es), 77–78	stress measuring techniques in, 265–266
and carbon containing additives, 104	structural material deposition in, 274–275
combined with wet etching, 115, 117	terminology of, 261
compared to wet etching, 110	thin film materials in, properties of, 293–306, see also Thin
deep reactive ion etching as, 104–107	film(s)
etch performance of, 88	thin film mechanics in, 261–272, see also Thin film(s)
fluorine to carbon ratio in, 102	Surface plasmon resonance (SPR), 449–451, 523
and group III and IV compounds, 103–104	Surfactants, 430
ion beam etching as, 89–90	Synchrotron(s), 51–52
ion beam milling as, 89–90	cost of construction of, 330
ion etching as, 88–99	in existence in United States, 330
mask materials in, 103	
and metals, 104	Synchrotron orbital radiation (SOR)
	applications of, 328
in micromachining, 110–116	physical concepts of, 328
and organic masks, 104	angular opening of radiation cone, 328–329

Index 721

electron emissions, 329	adhesion of, 262
electron energy, 329	amorphous and hydrogenated amorphous silicon, 298-299
vacuum around sample site, 329	compared to thick films, 168–170
pros and cons, for integrated circuitry, 327–328	deposition of
use of, in micromolding, 327–333	comparison of processes for, 294
x-ray exposure station using, 329	PECVD and sputtered, 298
	terminology in, 261
T	by thermal evaporation, 136
Taguchi gas sensor, 170–171	vs. thick film deposition, 168–170
Taniguchi's law, 47, 380–381	diamond, 303–304
Tape casting, 157, 160, 385, 386	gallium arsenide, 305
tBOC based resists, 33–35	insoluble, as etch stop process, 239
Telomeres, 443	interference effects of, 38, 40
Temperature zone melting, 496	materials used in, 293–294
Terminology	mechanics of, in surface micromachining, 261–262
actuators, miniature, 618	· · · · · · · · · · · · · · · · · · ·
BIOMEMS, 616	adhesion, 262
commercial off-the-shelf MEMS, 616	Poisson ratio in, 269
high aspect ratio MEMS, 616	stress, 262–265
interdisciplinary, 618–620	metallic, 303
mechanical MEMS, 616	phosphosilicate glass, chemical vapor deposited, 302–303
mechatronics, 616–617	polysilicon, 294–298, see also Polysilicon
MEMS (microelectromechanical systems), 616	silicon carbide, 304–305
microcomponents, 618	silicon dioxide, chemical vapor deposited, 301–302
microstructures, 618	silicon nitride, 299–300
microsystems technology (MST), 616	low pressure chemical vapor deposited, 301
miniaturization vs. microelectromechanical systems, 621	plasma deposited, 300
optical MEMS, 616	single-crystal silicon, compared to crystalline polysilicon, 294
radio frequency MEMS, 616	strength of, 272
sensors, miniature, 617–618	stress measurement in, 265–272
Tetramethyl ammonium hydroxide/water (TMAHW), 215–217	biaxial methods of, 268–269
Thermal actuators, 587	cantilever beams for, 270–271
bimetallic, 591	cantilever spirals for, 271–272
Biot's number in, 590	clamped-clamped beams for, 269
examples of, 591–593	disk method, 265–266
Fourier law of heat conduction in, 587–589	lateral resonators for, 270
heat transfer continuum breakdown in, 590–591	in micromachined parts, 277–279
Newton's cooling law in, 589	Poisson ratio, 269
radiation in, 589–590	ring crossbar structures for, 269
shape memory alloy, 591–593	summary of, 272
thermal boundary layer thickness in, 590	uniaxial methods of, 266–268
thermopneumatic, 591	vernier gauges for, 269–270
Thermal annealing, 131	Thin film heads, 47, 353–354
Thermal bonding, 484–487	Thin film imaging (THI), 38–41
with intermediate layers, 489–490	in multilayer resist, 41
Thermal boundary layer, 590	in single layer resist, 40–41
	3D lithographic methods, 65
Thermal energy, power from, 602	holographic, 65–66
Thermal evaporation	on nonplanar substrates, 67–68
compared to sputtering, 138	stereolithography as, 66–67
geometric considerations in, 137	synchrotron orbital radiation in, 327–328
heat sources for, 135–136	Through-mask electrochemical micromachining, 393–394
kinetics of, 135–138	
air, kinetics of, as function of pressure, 135	TI micromirrors, 308–310
mean free path and total pressure, 136–137	TMAHW (tetramethyl ammonium hydroxide/water), 215–217
shadowing in, 137	Tourmaline, 559
theoretical metal film thickness profiles in, 137–138	Transducer, see Sensor(s)
thin film deposition by, 136	Transfer molding, 357–358
Thermal valves, comparison of, 591	Transistor gates, 46
Thermoelectricity, 561	Transposons, 442
Thermoplastic injection molding, 385	Trimmer's vertical bracket notation, 545–546
Thick film technology, 156	Tubulin, 431–432
Thin film(s)	Two-point calibration, 587

U	buried cavity creation in, 289
Ultrasonic machining, 327, 415–417, 496	cleaning, 10–13
Ultrathin film resists, 63	information sources on, 13
Ultraviolet lithography, see Photolithography	compression molding LIGA structures on, 366–367
Undercutting, 18	crystal orientation of, 186–187
in wet etching, 241–245	flatness of, and defect parameters in additive processes, 127
Underetching, in wet etching, 240–241	lattice planes of, 186–187
Unity cube, and relevant planes	primary and secondary flats on, 187
(100) orientation, 187	priming, 10
(110) orientation, 190	SIMOX, 287–288
	stress on, measurement of, 266
V	Well plates, miniaturized, 646–647
Vacuum pressure reservoir, 501	Wet bulk micromachining, 183, see also Wet etching
Vacuum UV, 48	Wet development, 5
Valves	Wet etching, 206
electrochemical, disposable, 247–249	in (100) wafers, see Wafers, silicon
in fluidic networks, 585–587	in [100] wafers, see Wafers, silicon
in industrial/automation applications, 657–658	[100] wafers or [110] wafers, selection of, 190–191
shape memory alloy (SMA), 468	in (110) wafers, see Wafers, silicon
thermal, comparison of, 591	in <110> wafers, see Wafers, silicon
Vapor phase etching without plasma (XeF2), 107–108	in [110] wafers, see Wafers, silicon
Variable entrance slit, for spectrophotometer, 522–523	in {110} wafers, see Wafers, silicon
Very large scale immobilized polymer patterning and synthesis	alignment in, use of targets, 219–220
(VLSIPS), 162–163	anisotropic, 184, 191-193, 212, see also Anisotropic wet etching
Very large scale integration manufacturing, 3	in (100) oriented silicon wafers, 188
Very low pressure chemical vapor deposition (VLPCVD), 151	in (110) orientated wafers, 190
Very thin layer resist(s), 61–62	in [110] oriented wafers, 192
Langmuir-Blodgett, 62	in {110} oriented wafers, 191
self-assembled monolayers as, 62–63	ammonium hydroxide/water system in, 215–217
ultrathin films as, 63	Arrhenius plots for, 212–214
Vias	compared to isotropic etching, 191–192, 226–228
by dry etching, 110–111	etch rate as function of KOH concentration in, 218
by laser drilling, 496–497	etchant systems for, 212–217
Voltage constant, 553	characteristics of, 215
W	ethylenediamine pyrocatechol (EDP) system in, 215
	hydrazine in, 217
Wafers, silicon, see also Thin film(s)	masking for, 217–218
(100) orientation	models of, 220–228
anisotropic etching in, 188	potassium hydroxide system in, 214–215
unity cube and relevant planes, 187	rates of, in silicon, 216
vertical sidewalls in, 189	rough surfaces left by, 217
V-shaped grooves in, 192	tetramethyl ammonium hydroxide/water system in,
[100] orientation	215–217
isotropic and anisotropic features of, 192	with bias and/or illumination, 228–232
selection of, 190–191	chemical, models for, 220–221
suspension bridge from, 194	combined with dry etching, 115, 117
wet etching geometry, 187–189 (110) orientation	compared to dry etching, 110, 395–398
	convex corners in, emergent planes, 242–243
with anisotropically etched recesses, 190	diving board from [110] wafers, 194
holes created by laser and KOH etching, 194	electropolishing as, 229
unity cube and relevant planes, 190	etch rate dependency on dopant concentration in, 218–219
[110] orientation	etch stop techniques in, 232–239
anisotropic etching in, 192	examples of, 191–193, 245–249
diving board from, 194	from front of wafer, 239–240
isotropic and anisotropic features of, 192	historical use of, 184–185
selection of, 190–191	isotropic, 184, 191–193
wet etching geometry, 189–190	Arrhenius plot for, 209–210
{110} orientation, anisotropic etching in, 191	compared to anisotropic etching, 191–192, 226–228
<110> orientation, long, narrow grooves in, 193	curves for, 208–209
alignment patterns for, 219–220	dopant dependence of, 211
backside protection in wet etching of, 218	electrochemical, 211–212
bonded, 287–288	etchants for, 206–207, 208

Index 723

Wire electrode discharge grinding (WEDG), 400–401
Wireless communications, 664
Wobble motor, 549–550
T.
X
XeF2, 107–108
X-ray generation, with synchrotron, 51–52, see also Synchrotron;
Synchrotron orbital radiation (SOR)
X-ray lithography, 49, 383–384
LIGA, 49-50, see also LIGA (Lithographie, Galvanoformung,
Abformung)
masks in, 51
negative resists in, 50
resists in, 50–51
X-ray masks, 330
absorber materials for, 332
alignment of, to substrate, 333–334
CNC machined absorbers in, 333
for high aspect ratio microlithography, 334–335
in LIGA processes, 51
for integrated circuitry, 330–331
membrane materials for, 331–332
single layer absorbers in, 332–333
stepped absorbers in, 333
**
Y
Young's modulus
measuring, in thin films, 267
for silicon, 198
77
Z
Zinc oxide (ZnO), 559–560
Zone melting recrystallization, 288