

Chemistry data booklet

For use during the course and in the examinations
First assessment 2025

Version 1.0

Diploma Programme Chemistry data booklet

Published February 2023

Published on behalf of the International Baccalaureate Organization, a not-for-profit educational foundation of 15 Route des Morillons, 1218 Le Grand-Saconnex, Geneva, Switzerland by the

International Baccalaureate Organization (UK) Ltd
Peterson House, Malthouse Avenue, Cardiff Gate
Cardiff, Wales CF23 8GL
United Kingdom
Website: ibo.org

© International Baccalaureate Organization 2023

The International Baccalaureate Organization (known as the IB) offers four high-quality and challenging educational programmes for a worldwide community of schools, aiming to create a better, more peaceful world. This publication is one of a range of materials produced to support these programmes.

The IB may use a variety of sources in its work and check information to verify accuracy and authenticity, particularly when using community-based knowledge sources such as Wikipedia. The IB respects the principles of intellectual property and makes strenuous efforts to identify and obtain permission before publication from rights holders of all copyright material used. The IB is grateful for permissions received for material used in this publication and will be pleased to correct any errors or omissions at the earliest opportunity.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the IB's prior written permission, or as expressly permitted by the Rules for use of IB Intellectual Property.

IB merchandise and publications can be purchased through the IB Store (email: sales@ibo.org). Any commercial use of IB publications (whether fee-covered or commercial) by third parties acting in the IB's ecosystem without a formal relationship with the IB (including but not limited to tutoring organizations, professional development providers, educational publishers and operators of curriculum mapping or teacher resource digital platforms, etc.) is prohibited and requires a subsequent written licence from the IB. Licence requests should be sent to copyright@ibo.org. More information can be obtained on the IB public website.

Contents

Introduction	1
1. Some relevant equations	2
2. Physical constants	3
3. Metric (SI) multipliers	4
4. Unit conversions and standard conditions	5
5. The electromagnetic spectrum	5
6. Names of the elements	6
7. The periodic table	8
8. Melting points and boiling points of the elements at 101.325 kPa	9
9. First ionization energy, electron affinity and electronegativity of the elements	. 10
10. Atomic and ionic radii of the elements	. 11
11. Covalent or average covalent bond lengths	. 12
12. Bond enthalpies or average bond enthalpies at 298.15 K	. 13
13. Thermodynamic data (selected compounds)	. 14
14. Enthalpies of combustion	. 15
15. Colour wheel with wavelengths of the visible spectrum	. 16
16. Lattice enthalpies at 298.15 K (experimental values)	. 17
17. Triangular bonding diagram (van Arkel-Ketelaar triangle)	. 18
18. Acid-base indicators	. 19
19. Standard reduction potentials at 298.15 K	. 20
20. Infrared data	. 21
21. ¹ H NMR data	. 22
22. Mass spectral fragments lost	. 23
23 References	2/

This page is intentionally blank.

Introduction

This Diploma Programme (DP) Chemistry data booklet accompanies the DP Chemistry guide and DP Chemistry teacher support material. It contains chemical and physical equations and constants, chemical symbols, the periodic table, and other chemical data relevant to the course.

Students must have access to a copy of this booklet for the duration of the course, so that they can become familiar with its contents. Direct reference is made to relevant equations in the "Understandings" sections of the guide. This helps to maintain the emphasis on interpretation and application rather than memorization of symbols, constants and equations.

Each student must have access to a clean copy of the *Chemistry data booklet* during examinations. It is the responsibility of the school to download a copy of this booklet from IBIS or the Programme Resource Centre and to ensure that there are sufficient copies available for all students.

1

1. Some relevant equations

2

Equation
$\mathbf{c} = f\lambda$
E = hf
$n = \frac{m}{M}$
n = CV
PV = nRT
$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$
$Q = mc\Delta T$
% atom economy = $\frac{\text{molar mass of desired product}}{\text{molar mass of all reactants}} \times 100$
$\Delta H^{\ominus} = \sum (\Delta H_{f}^{\ominus}_{products}) - \sum (\Delta H_{f}^{\ominus}_{reactants})$
$\Delta H^{\ominus} = \sum (\Delta H_{c}^{\ominus}_{reactants}) - \sum (\Delta H_{c}^{\ominus}_{products})$
$\Delta G^{\ominus} = \Delta H^{\ominus} - T \Delta S^{\ominus}$
$\Delta G = \Delta G^{\ominus} + RT \ln Q$
$\Delta G^{\ominus} = -RT \ln K$
$\Delta G^{\ominus} = -nFE^{\ominus}$
$k = Ae^{\frac{-E_a}{RT}}$
$\ln k = \frac{-E_a}{RT} + \ln A$
$pH = -log_{10} [H_3O^+]$
or
$pH = -log_{10} [H^+]$
$K_{w} = [H^{+}] [OH^{-}]$
$pOH = -log_{10} [OH^{-}]$

Chemistry data booklet 🔥

2. Physical constants

Quantity	Symbol	Approximate value
Elementary charge	е	1.602177 × 10 ⁻¹⁹ C
Electron rest mass	m _e	9.109384 × 10 ⁻³¹ kg
Proton rest mass	$m_{ m p}$	$1.672622 \times 10^{-27} \text{ kg}$
Neutron rest mass	m_{n}	$1.674927 \times 10^{-27} \text{ kg}$
Speed of light in vacuum	С	$3.00 \times 10^8 \text{ m s}^{-1}$
Planck constant	h	$6.63 \times 10^{-34} \text{ J s}$
Avogadro constant	N _A	$6.02 \times 10^{23} \text{ mol}^{-1}$
Gas constant	R	8.31 J K ⁻¹ mol ⁻¹
Molar volume of an ideal gas at STP	V _m	$2.27 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1} = 22.7 \text{ dm}^3 \text{ mol}^{-1}$
Specific heat capacity of water	c _w	$4.18 \text{ kJ kg}^{-1} \text{ K}^{-1} = 4.18 \text{ J g}^{-1} \text{ K}^{-1}$
Ionic product constant for water at 298.15 K	K _w	$1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$
Faraday constant	F	$9.65 \times 10^4 \text{ C mol}^{-1}$

3. Metric (SI) multipliers

Prefix	Abbreviation	Value
peta	Р	10 ¹⁵
tera	Т	10 ¹²
giga	G	10 ⁹
mega	M	10 ⁶
kilo	k	10 ³
hecto	h	10 ²
deca	da	10 ¹
deci	d	10 ⁻¹
centi	С	10 ⁻²
milli	m	10 ⁻³
micro	μ	10 ⁻⁶
nano	n	10 ⁻⁹
pico	р	10 ⁻¹²
femto	f	10 ⁻¹⁵

4. Unit conversions and standard conditions

Temperature (K) = temperature (°C) + 273.15

 $1dm^3 = 1$ litre = 1×10^{-3} m³ = 1×10^3 cm³

STP conditions: 273.15 K and 100 kPa

SATP conditions: 298.15 K and 100 kPa

5. The electromagnetic spectrum

6. Names of the elements

Atomic number	89	13	98	51	18	33	85	56	97	4	83	107	5	35	48	55	20	86	9	58	17	24	27	112	29	96	110	105
Symbol	Ac	Al	Am	Sb	Ar	As	At	Ва	BK	Be	Bi	Bh	В	Br	Cd	Cs	Ca	Ç	O	Ce	ರ	Ö	S	C	Cu	Cm	Ds	Db
Element	actinium	aluminium	americium	antimony	argon	arsenic	astatine	barium	berkelium	beryllium	bismuth	bohrium	boron	bromine	cadmium	caesium	calcium	californium	carbon	cerium	chlorine	chromium	cobalt	copernicium	copper	curium	darmstadtium	dubnium

Element	Symbol	Atomic number
dysprosium	Dy	99
einsteinium	Es	66
erbium	Ē	89
europium	Eu	63
fermium	Fm	100
flerovium	E.	114
fluorine	ш	6
francium	Fr	87
gadolinium	РЭ	64
gallium	Ga	31
germanium	Ge	32
plog	Au	62
hafnium	Hf	72
hassium	Hs	108
helium	He	2
holmium	Но	29
hydrogen	Τ	_
indium	In	49
iodine	I	53
iridium	Ir	77
iron	Fe	26
krypton	Kr	36
lanthanum	La	22
lawrencium	Ţ	103
lead	Pb	82
lithium	Ξ	3
livermorium	Lv	116
lutetium	Lu	7.1

Element	Symbol	Atomic number
roentgenium	Rg	111
rubidium	Rb	37
ruthenium	Ru	44
rutherfordium	R	104
samarium	Sm	62
scandium	Sc	21
seaborgium	Sg	106
selenium	Se	34
silicon	S	14
silver	Ag	47
sodium	Na	1
strontium	Sr	38
sulfur	S	16
tantalum	Та	73
technetium	Tc	43
tellurium	Те	52
tennessine	Ts	117
terbium	Tb	65
thallium	11	81
thorium	Th	06
thulium	Tm	69
tin	Sn	20
titanium	Ш	22
tungsten	M	74
uranium	D	92
vanadium	>	23
xenon	Xe	54
ytterbium	Yb	70
yttrium	\	39
zinc	Zn	30
zirconium	Zr	40

Element	Symbol	Atomic number
magnesium	Mg	12
manganese	Mn	25
meitnerium	Mt	109
mendelevium	Md	101
mercury	Hg	80
molybdenum	Мо	42
moscovium	Mc	115
neodymium	Nd	09
neon	Ne	10
neptunium	Νρ	93
nickel	Z	28
nihonium	R	113
niobium	NP	41
nitrogen	Z	7
nobelium	No	102
oganesson	Og	118
osmium	Os	92
oxygen	0	8
palladium	Pd	46
phosphorus	Ф	15
platinum	Ŧ	78
plutonium	Pu	94
polonium	Po	84
potassium	¥	19
praseodymium	Pr	59
promethium	Pm	61
protactinium	Ра	91
radium	Ra	88
radon	Rn	98
rhenium	Re	75
rhodium	Rh	45

7. The periodic table

1 2 3	1.01			19 20 21 K Ca Sc 39.10 40.08 44.96	38 Sr 87.62		88 Ra (226)
4					40 Zr 91.22		104 Rf (267)
ro				23 × 50.94		73 Ta 180.95	
9			I	24 Cr 52.00	42 Mo 95.96	74 W 183.84	106 Sg (269)
7	Atomic number	Relative atomic mass		25 Mn 54.94	43 Tc (98)	75 Re 186.21	107 Bh (270)
œ	umber ent	atomic s		26 Fe 55.85	44 Ru 101.07	76 Os 190.23	108 Hs (269)
თ				27 Co 58.93	45 Rh 102.91	77 Ir 192.22	109 Mt (278)
10				28 Ni 58.69	46 Pd 106.42	78 Pt 195.08	110 Ds (281)
7				29 Cu 63.55	47 Ag 107.87	79 Au 196.97	111 Rg (281)
12				30 Zn 65.38	48 Cd 112.41	80 Hg 200.59	112 Cn (285)
13		5 B 10.81	13 Al 26.98	31 Ga 69.72	49 In 114.82	81 Tl 204.38	113 Nh (286)
4		6 C 12.01	14 Si 28.09	32 Ge 72.63	50 Sn 118.71	82 Pb 207.20	114 F((289)
15		7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.76	83 Bi 208.98	115 Mc (288)
16		8 O 16.00	16 S 32.07	34 Se 78.96	52 Te 127.60	84 Po (209)	116 Lv (293)
17		9 F 19.00	17 Cl 35.45	35 Br 79.90	53 I 126.90	85 At (210)	117 Ts (294)
8	2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.80	54 Xe 131.29	86 Rn (222)	118 Og (294)

+	58 Ce	59 Pr	PN 09	61 Pm	62 Sm	63 Eu	9 D	91	99 9 ^	9	68 Er	ш_	02 Xb	71 Lu
	140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
	06	91	92	93	94	92	96	97	86	66	100	101	102	103
++	Т	Ра	_	ď	Pu	Am	CB	BĶ	ర	Es	Fn	Md	%	ځ
	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

8. Melting points and boiling points of the elements at 101.325 kPa

He -268.9	-248.6 Ne -246.0	-189.3 Ar -185.8	-157.4 Kr -153.4	-111.8 Xe -108.1	-71.15 Rn -61.85	
	-219.7 F -188.1	-101.5 Cl -34.04	-7.050 Br 58.78	113.7 I 184.4	301.8 At 336.8	
	-218.8 O -183.0	115.2 S 444.6	220.8 Se 684.8	449.5 Te 987.8	253.8 Po 962.0	
	-210.0 N -195.8	44.15 P 280.5	816.8 As 613.0	630.6 Sb 1587	271.4 Bi	
	3500 C 4827	1414 Si 3265	938.2 Ge 2833	231.9 Sn 2586	327.5 Pb 1749	
	2077 B 4000	660.3 Al 2519	29.77 Ga 2229	156.6 In 2027	303.8 Tl 1473	
			419.5 Zn 907.0	321.1 Cd 766.8	-38.83 Hg 356.6	
			1085 Cu 2560	961.8 Ag 2162	1064 Au 2836	
			1455 Ni 2913	1555 Pd 2963	1768 Pt 3825	
			1495 Co 2927	1963 Rh 3695	2446 Ir 4428	
Melting point / °C	Boiling point / °C		1538 Fe 2861	2333 Ru 4147	3033 Os 5008	
Melting	Boiling		1246 Mn 2061	2157 Tc 4262	3453 Re 5900	
			1907 Cr 2671	2622 Mo 4639	3414 W 5555	
			1910 V 3407	2477 Nb 4741	3017 Ta 5455	
			1670 Ti 3287	1854 Zr 4406	2233 Hf 4600	
			1541 Sc 2836	1522 Y 3345	920.0 La † 3464	1050 Ac ‡ 3200
	1287 Be 2468	650.0 Mg 1090	842.0 Ca 1484	768.8 Sr 1377	725.0 Ba 1845	699.8 Ra 1140
-259.2 H -252.9	180.5 Li 1342	97.79 Na 882.9	63.38 K 758.8	39.30 Rb 687.8	28.44 Cs 670.8	27.00 Fr 676.8

1340
986 900 (860) Bk Cf Es Fm (2623)
986 900 (860) Bk Cf Es (2623)
986 900 Bk Cf (2623)
980 BK (2623)
8 E 5
≃ ပ ္ဗ
Am (2067)
940 Pu 3230
937 Np (3900)
15/2 Pa (4000)
٠
4

9. First ionization energy, electron affinity and electronegativity of the elements

2372 He	328 2081	Ne	349 1520	Ar	325 1351	Ϋ́	295 1170	×e	-270 1037	R		
	1 1681 –3	O F N 3.4 4.0	0 1251 -3	3.2 3.2	-195 1140 -325 1351	. 3.0	0 1008 –2	I 2.7		2.2 A		
	1314 –14	3.4	1000 –20	2.6 v 3.5	-78 941 -19	Se 2.6	869 –19	Te	-91 812 -183	Po 2:0		
	1402	3 .0	1012 -72	Si P S Cl A 9. 2.2 2.6 3.2		As 2.2	831 -101	Sb 2.0		.9 (1.9		
	-27 1086 -122 1402	C 2.6		S 1.9	762 -119 944	Ge 2.0	-29 709 -107 831 -101 869 -190 1008 -295 1170	Sn 2.0	716 -35 703	d 4.8		
	801 –27	B	578 -42 787	A 1.6	579 -41 762	Q + 8.	. 62- 859	In 1.8	589 -36 716	L 5.		
			1 47			Z 1.6		1.7		H 6		
					-64 737 -112 745 -119 906	O 6.	-54 731 -126 868	A ← 0.0	-151 864 -205 890 -223 1007	Au 2.4		
					37 -112 7	Z 6.		Pd	34 -205 8	Pt		
J mol ⁻¹						Q 6.	-53 710 -101 720 -110 804	Rh 2.3		1 r 2.2		
inity (EA) / kJ mol¹ (2nd EA / kJ mol⁻¹)					2 -15 760	- T - 8.	0 -101 72	Ru 2.2	-14 814 -106 865	0 s		
Electron affinity (EA) / kJ mol ⁻¹ (2nd EA / kJ mol ⁻¹)	ement	Electronegativity			762	An 1.6		2.1		1.9 Re		
	Eler	Electr			3 -64 717	٠ <u>٠</u>	-88 684 -72 702	Mo 2.2	-31 759 -79 756	> \(\tau_{\chi} \)		
First ionization energy / kJ mol ⁻¹					-51 653	> %.	l	N 0.1.6		Ta 1.5		
e Fir					-8 651	1. 5	-30 640 -41 652	1.3 1.3	-1 728	± £.1		
					-18 659	Sc	-30 640	> ¹ / ₂ .	-45 659	-	-34	Ac #
					-2 633		-5 600		-14 538		-10 499	
	006 09-	Be 1.6	-53 738	Mg	-48 590	S -0.	-47 549	ດ	-46 503 -	Ba 0.9	-47 509 -	R _a
1312 –73 H 2.2	520 –60	1.0 1.0	496 –53	8 6.0	419 –48	⊼ °.	403 -47	8 .0	376 -46	S 0.8	393 -47	F 0

534 -63 528	528 -93 533	533 -185 539	539	545	547 -83 593	593	566 -112 573		< 0 581	589	597 -99 603		2 524 -33
-))))						
ပီ	Ą	ğ	Pm	Sm	Еn	gg	Д	٥	유	ш	٦	Υp	Ľ
1.7	1.1	1.1		1.2		1.2		1.2	1.2	1.2	1.3		1.0
609	268	298	909	581	929	929	298	909	619	627	635	642	473
두	Ра	ח	o N	Pu	Am	Cm	æ	Ç	В	Fm	Md	٥ N	ئ
1.3	1.5	1.7	1.3	1.3									

10. Atomic and ionic radii of the elements

The values for atomic radii used in this table are the covalent radii of the elements.

. 0	. 0	- F	(O L	(O, 4)	(O, C	1
37 He	62 Ne	101 Ar	7 18 7 7	136 Xe	146 Rn	
	60 F 133 (1–)	100 Cl 181 (1-)	117 Br 196 (1-)	136 I 220 (1-)	148 At	
	64 O 140 (2-)	104 S 184 (2-)	Se 198 (2-)	137 Te 221 (2-)	142 Po 97 (4+)	
	71 N 146 (3-)	109 P 38 (5+)	120 As 58 (3+) 46 (5+)	140 Sb 76 (3+)	150 Bi 103 (3+) 76 (5+)	
	75 C 16 (4+)	114 Si 40 (4+)	120 Ge 53 (4+) 272 (4-)	140 Sn 118 (2+) 69 (4+)	145 Pb 119 (2+) 78 (4+)	
	84 B 27 (3+)	124 Al 54 (3+)	123 Ga 62 (3+)	142 In 80 (+3)	144 Tl 150 (1+) 89 (3+)	
			120 Zn 74 (2+)	140 Cd 95 (2+)	132 Hg 119 (1+) 102 (2+)	
			122 Cu 77 (1+) 73 (2+)	136 Ag 115 (1+)	130 Au 137 (1+) 85 (3+)	
			117 Ni 69 (2+)	130 Pd 86 (2+) 62 (4+)	130 Pt 80 (2+) 63 (4+)	
			118 Co 65 (2+) 55 (3+)	134 Rh 67 (3+) 60 (4+)	132 Ir 68 (3+) 63 (4+)	
radius / m	adius / (charge)		124 Fe 61 (2+) 55 (3+)	136 Ru 68 (3+) 62 (4+)	136 Os 63 (4+) 55 (6+)	
Atomic radius / 10 ⁻¹² m	lonic radius / 10 ⁻¹² m (charge)		129 Mn 83 (2+) 53 (4+)	138 Tc 65 (4+)	141 Re 63 (4+) 53 (7+)	
			130 Cr 62 (3+) 44 (6+)	146 Mo 65 (4+)	150 W 66 (4+) 60 (6+)	
			144 V 79 (2+) 54 (5+)	156 Nb 72 (3+) 64 (5+)	158 Ta 64 (5+)	
			148 Ti 86 (2+) 61 (4+)	164 Zr 72 (4+)	164 Hf 71 (4+)	
			159 Sc 75 (3+)	176 Y 90 (3+)	194 La † 103 (3+)	201 Ac ‡
	99 Be 45 (2+)	140 Mg 72 (2+)	200 174 Ca 138 (1+) 100 (2+)	215 190 Rb Sr 152 (1+) 118 (2+)	238 206 Cs Ba 167 (1+) 135 (2+)	211 Ra
35 エ	130 Li 76 (1+)	160 Na 102 (1+)	200 K 138 (1+)	215 Rb 152 (1+)	238 Cs 167 (1+)	242 Fr

174 Lu 86 (3+)	161 Lr
178 Yb 87 (3+)	176 No 110 (2+)
177 Tm 88 (3+)	173 Md
177 Er 89 (3+)	167 Fm
179 Ho 90 (+3)	165 Es
180 Dy 91 (3+)	168 Cf 95 (3+)
181 Tb 92 (3+) 76 (4+)	168 Bk 96 (3+)
182 Gd 94 (3+)	168 Cm 97 (3+)
183 Eu 117 (2+) 95 (3+)	Am 98 (3+) 85 (4+)
185 Sm 96 (3+)	180 Pu 100 (3+) 86 (4+)
186 Pm 97 (3+)	180 Np 101 (3+) 87 (4+)
188 Nd 98 (3+)	183 U 89 (4+) 73 (6+)
190 Pr 99 (3+) 85 (4+)	184 Pa 104 (3+) 90 (4+)
184 Ce 101 (3+) 87 (4+)	190 Th 94 (4+)

11. Covalent or average covalent bond lengths

Single bonds

Bond	Length / 10 ⁻¹² m	Bond	Length / 10 ⁻¹² m	Bond	Length / 10 ⁻¹² m	Bond	Length / 10 ⁻¹² m
H — H	74	N — H	101	Si — H	148	S — H	134
H — F	92	N — N	146	Si — Si	232	S-S	205
H — Cl	128	N — O	136	Si — S	215	S — F	158
H — Br	141	N — Si	174	Si — F	156	S — Cl	199
H — I	160	N — S	175	Si — Cl	202	S — Br	227
		N — F	136	Si — Br	216		
C — H	108	N — Cl	197	Si — I	243	F — F	142
C-C	154	N — Br	214			F — Cl	163
C — N	147			P — H	142	F — Br	176
C-O	143	0 — H	97	P — P	221	F — I	257
C — Si	185	0-0	148	P — S	210		
C — P	184	0 — Si	163	P — F	154	Cl — Cl	199
C-S	182	0 — P	154	P — Cl	203	Cl — Br	214
C — F	138	0 — S	161	P — Br	220	Cl — I	232
C — Cl	177	0 — F	142	P — I	247		
C — Br	194	0 — Cl	170			Br — Br	228
C — I	214					Br — I	247
						I — I	267

Multiple bonds

Bond	Length / 10 ⁻¹² m	Bond	Length / 10 ⁻¹² m	Bond	Length / 10 ⁻¹² m
C = C	134	N = N	125	0=0	121
C = N	130	N = O	114	0 = S	143
C = O	122				
C = S	156			S = S	189
$C \equiv C$	120	$N \equiv N$	110		
C≡N	116				
C≡O	113				

12. Bond enthalpies or average bond enthalpies at 298.15 K

Single bonds

Bond	Enthalpy / kJ mol ⁻¹	Bond	Enthalpy / kJ mol ⁻¹	Bond	Enthalpy / kJ mol ⁻¹	Bond	Enthalpy / kJ mol ⁻¹
H — H	436	N — H	391	Si — H	323	S — H	364
H — F	567	N — N	158	Si — Si	226	S-S	266
H — Cl	431	N — O	214	Si — S	293	S — F	327
H — Br	366	N — F	278	Si — F	597	S — Cl	271
H — I	298	N — Cl	192	Si — Cl	400	S — Br	218
				Si — Br	330		
C — H	414	0 — H	463	Si — I	234	F — F	159
C-C	346	0-0	144			F — Cl	255
C — N	286	0 — Si	466	P — H	322	F — Br	249
C — O	358	0 — P	363	P — P	198	F — I	280
C — Si	307	0 — F	191	P — F	490		
C — P	264	0 — Cl	206	P — Cl	322	Cl — Cl	242
C — S	289	0 — Br	201	P — Br	264	Cl — Br	219
C — F	492	0 — I	201	P — I	184	Cl — I	211
C — Cl	324						
C — Br	285					Br — Br	193
C — I	228					Br — I	178
						I — I	151

Multiple bonds

Bond	Enthalpy / kJ mol ⁻¹	Bond	Enthalpy / kJ mol ⁻¹	Bond	Enthalpy / kJ mol ⁻¹
C = C	614	N = N	470	0 = 0	498
C = N	615	N = O	587	0 = S	522
C = O	804				
C = S	536			S = S	429
$C \equiv C$	839	$N \equiv N$	945		
$C \equiv N$	890				
C≡O	1077				

13. Thermodynamic data (selected compounds)

Substance	Formula	State	∆H _f ⊖ / kJ mol ⁻¹	∆G _f → / kJ mol −1	S [⊕] / J K ⁻¹ mol ⁻¹
methane	CH ₄	g	-74	-50	+186
ethane	C_2H_6	g	-84	-32	+230
propane	C_3H_8	g	-105	-24	+270
butane	C_4H_{10}	g	-126	-17	+310
pentane	C_5H_{12}	l	-173		
hexane	C ₆ H ₁₄	l	-199		
ethene	C_2H_4	g	+52	+68	+220
propene	C_3H_6	g	+20	+62	+267
but-1-ene	C ₄ H ₈	g	+0.1	+71	+306
cis-but-2-ene	C ₄ H ₈	g	-7	+66	+301
trans-but-2-ene	C ₄ H ₈	g	-11	+63	+297
ethyne	C_2H_2	g	+228	+211	+201
propyne	C_3H_4	g	+185	+194	+248
buta-1,3-diene	C_4H_6	g	+110	+151	+279
cyclohexane	C ₆ H ₁₂	l	-156		
benzene	C_6H_6	l	+49	+125	+173
methylbenzene	$C_6H_5CH_3$	l	+12		
ethylbenzene	C ₆ H ₅ CH ₂ CH ₃	ι	-12		
phenylethene	C ₆ H ₅ CHCH ₂	ι	+104		
chloromethane	CH₃Cl	g	-82	-58	+235
dichloromethane	CH ₂ Cl ₂	ι	-124		+178
trichloromethane	CHCl ₃	ι	-134	-74	+202
bromomethane	CH₃Br	g	-36	-26	+246
iodomethane	CH₃I	ι	-14		+163
chloroethane	C ₂ H ₅ Cl	g	-137	-53	
bromoethane	C ₂ H ₅ Br	ι	-90	-26	+199
chlorobenzene	C ₆ H ₅ Cl	ι	+11		
methanol	CH₃OH	l	-239	-167	+127
ethanol	C ₂ H ₅ OH	l	-278	-175	+161
phenol	C ₆ H ₅ OH	s	-165		+144
methanal	НСНО	g	-109	-102	+219
ethanal	CH₃CHO	g	-166	-133	+264
propanone	$(CH_3)_2CO$	l	-248		+200
methanoic acid	НСООН	l	-425	-361	+129
ethanoic acid	CH₃COOH	l	-484	-390	+160
benzoic acid	C ₆ H ₅ COOH	s	-385		+168
methylamine	CH ₃ NH ₂	g	-23	+32	+243
water	H ₂ O	ι	-286	-237	+70
steam	H ₂ O	g	-242	-229	+189
carbon monoxide	CO	g	-111	-137	+198
carbon dioxide	CO ₂	g	-394	-394	+214
hydrogen bromide	HBr	g	-36	-53	+199
hydrogen chloride	HCl	g	-92	-95	+187
hydrogen fluoride	HF	g	-273	-275	+174
hydrogen iodide	HI	g	+26	+2	+207

14. Enthalpies of combustion

The values of the molar enthalpy of combustion (ΔH_c^{Θ}) in the following table refer to a temperature of 298.15 K and a pressure of 100 kPa.

Substance	Formula	State	$\Delta H_{\rm c}^{\Theta}$ / kJ mol ⁻¹
hydrogen	H_2	б	-286
sulfur	S	S	-297
carbon (graphite)	O	S	-394
carbon monoxide	00	g	-283
methane	CH⁴	g	-891
ethane	C_2H_6	g	-1561
propane	C_3H_8	D	-2219
butane	C_4H_{10}	ס	-2878
pentane	C ₅ H ₁₂	_	-3509
hexane	C ₆ H ₁₄	_	-4163
octane	C ₈ H ₁₈	_	-5470
cyclohexane	C ₆ H ₁₂	_	-3920
ethene	C_2H_4	б	-1411
buta-1,3-diene	C_4H_6	б	-2541
ethyne	C_2H_2	б	-1301
benzene	C_6H_6	_	-3268
methylbenzene	C ₆ H ₅ CH ₃	_	-3910
naphthalene	$C_{10}H_8$	S	-5156
chloroethane	C_2H_5Cl	б	-1413
iodoethane	$C_2H_5\mathrm{I}$	1	-1463
trichloromethane	CHCl ₃	1	-473
methanol	CH ₃ OH	1	-726
ethanol	C ₂ H ₅ OH	_	-1367

Substance	Formula	State	$\triangle H_{ m c}^{\Theta}$ / kJ mol $^{-1}$
propan-1-ol	С₃Н₁ОН	1	-2021
butan-1-ol	C ₄ H ₉ OH	1	-2676
cyclohexanol	С ₆ Н ₁₁ ОН	S	-3728
phenol	C ₆ H ₅ OH	S	-3053
ethoxyethane	(C ₂ H ₅) ₂ O	1	-2724
methanal	НСНО	g	-571
ethanal	СН3СНО	g	-1167
benzaldehyde	С ₆ Н ₅ СНО	1	-3525
propanone	(CH ₃) ₂ CO	1	-1790
pentan-3-one	(C ₂ H ₅) ₂ CO	l	-3100
phenylethanone	CH ₃ COC ₆ H ₅	1	-4149
methanoic acid	НСООН	l	-255
ethanoic acid	СН3СООН	l	-874
benzoic acid	С ₆ Н ₅ СООН	S	-3228
ethanedioic acid	(COOH) ₂	S	-243
ethyl ethanoate	CH ₃ COOC ₂ H ₅	l	-2238
ethanamide	CH ₃ CONH ₂	S	-1186
methylamine	CH ₃ NH ₂	g	-1086
phenylamine	$C_6H_5NH_2$	l	-3393
nitrobenzene	$C_6H_5NO_2$	l	-3088
urea	$CO(NH_2)_2$	S	-633
glucose	$C_6H_{12}O_6$	S	-2803
sucrose	C ₁₂ H ₂₂ O ₁₁	S	-5640

15. Colour wheel with wavelengths of the visible spectrum

16. Lattice enthalpies at 298.15 K (experimental values)

The lattice enthalpy values $(\Delta H_{\text{lattice}}^{\Theta})$ in the following tables relate to the endothermic process $M_a X_b(s) \rightarrow a M^{b+}(g) + b X^{a-}(g)$ in which the gaseous ions of a crystal are separated to an infinite distance from each other.

The data in these tables are experimental values obtained by means of a suitable Born-Haber cycle.

Alkali metal halides		$\Delta H_{ m lattice}^{\ominus}$ /	kJ mol ⁻¹	
Alkali ilictal lialiaco	F	Cl	Br	I
Li	1049	864	820	764
Na	930	790	754	705
K	829	720	691	650
Rb	795	695	668	632
Cs	759	670	647	613

Other substances	ΔH [⊕] _{lattice} / kJ mol ⁻¹
CaF ₂	2651
BeCl ₂	3033
MgCl ₂	2540
CaCl ₂	2271
SrCl ₂	2170
BaCl ₂	2069
MgO	3791
CaO	3401

Other substances	∆H [⊕] _{lattice} / kJ mol ⁻¹
SrO	3223
BaO	3054
CuCl ₂	2824
AgF	974
AgCl	918
AgBr	905
AgI	892

17. Triangular bonding diagram (van Arkel-Ketelaar triangle)

18. Acid-base indicators

			Colour	change
Indicator	p <i>K</i> _a	pH range	Acid	Alkali
methyl orange	3.7	3.1-4.4	red	yellow
bromophenol blue	4.2	3.0-4.6	yellow	blue
bromocresol green	4.7	3.8-5.4	yellow	blue
methyl red	5.1	4.4-6.2	red	yellow
bromothymol blue	7.0	6.0-7.6	yellow	blue
phenol red	7.9	6.8-8.4	yellow	red
phenolphthalein	9.6	8.3-10.0	colourless	pink

19. Standard reduction potentials at 298.15 K

Oxidized species		Reduced species	E [⊕] / V
Li ⁺ (aq) + e ⁻	\rightleftharpoons	Li(s)	-3.04
K ⁺ (aq) + e ⁻	\rightleftharpoons	K(s)	-2.93
Ca ²⁺ (aq) + 2e ⁻	\rightleftharpoons	Ca(s)	-2.87
Na ⁺ (aq) + e ⁻	\rightleftharpoons	Na(s)	-2.71
Mg ²⁺ (aq) + 2e ⁻	\rightleftharpoons	Mg(s)	-2.37
Al ³⁺ (aq) + 3e ⁻	\rightleftharpoons	Al(s)	-1.66
Mn ²⁺ (aq) + 2e ⁻	\rightleftharpoons	Mn(s)	-1.18
$H_2O(l) + e^-$	\rightleftharpoons	$\frac{1}{2}H_2(g) + OH^-(aq)$	-0.83
Zn ²⁺ (aq) + 2e ⁻	\rightleftharpoons	Zn(s)	-0.76
Fe ²⁺ (aq) + 2e ⁻	\rightleftharpoons	Fe(s)	-0.45
Ni ²⁺ (aq) + 2e ⁻	\rightleftharpoons	Ni(s)	-0.26
Sn ²⁺ (aq) + 2e ⁻	\rightleftharpoons	Sn(s)	-0.14
Pb ²⁺ (aq) + 2e ⁻	\rightleftharpoons	Pb(s)	-0.13
H ⁺ (aq) + e ⁻	\rightleftharpoons	$\frac{1}{2}H_2(g)$	0.00
Cu ²⁺ (aq) + e ⁻	\rightleftharpoons	Cu ⁺ (aq)	+0.15
SO ₄ ²⁻ (aq) + 4H ⁺ (aq) + 2e ⁻	\rightleftharpoons	$H_2SO_3(aq) + H_2O(l)$	+0.17
Cu ²⁺ (aq) + 2e ⁻	\rightleftharpoons	Cu(s)	+0.34
$\frac{1}{2}O_2(g) + H_2O(l) + 2e^-$	\rightleftharpoons	2OH⁻(aq)	+0.40
Cu ⁺ (aq) + e ⁻	\rightleftharpoons	Cu(s)	+0.52
$\frac{1}{2}I_{2}(s) + e^{-}$	\rightleftharpoons	I⁻(aq)	+0.54
Fe ³⁺ (aq) + e ⁻	\rightleftharpoons	Fe ²⁺ (aq)	+0.77
Ag ⁺ (aq) + e ⁻	\rightleftharpoons	Ag(s)	+0.80
$\frac{1}{2} Br_2(l) + e^-$	\rightleftharpoons	Br ⁻ (aq)	+1.09
$\frac{1}{2}O_2(g) + 2H^+(aq) + 2e^-$	\rightleftharpoons	$H_2O(l)$	+1.23
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^-$	\rightleftharpoons	$2Cr^{3+}(aq) + 7H_2O(l)$	+1.36
$\frac{1}{2}Cl_{2}(g) + e^{-}$	\rightleftharpoons	Cl ⁻ (aq)	+1.36
MnO ₄ ⁻ (aq) + 8H ⁺ (aq) + 5e ⁻	\rightleftharpoons	$Mn^{2+}(aq) + 4H_2O(l)$	+1.51
$\frac{1}{2}F_2(g) + e^-$	\rightleftharpoons	F ⁻ (aq)	+2.87

20. Infrared data

Characteristic ranges for infrared absorption due to stretching vibrations in organic molecules

Bond	Types of organic molecules	Wavenumber / cm ⁻¹	Intensity
C-I	iodoalkanes	490–620	strong
C — Br	bromoalkanes	200–009	strong
C — CI	chloroalkanes	008-009	strong
C – F	fluoroalkanes	1000–1400	strong
0 - 0	alcohols, esters, ethers	1050–1410	strong
C = C	alkenes	1620–1680	medium-weak; multiple bands
0 = 0	aldehydes, ketones, carboxylic acids and esters	1700–1750	strong
O Ⅲ O	alkynes	2100–2260	variable
Н — О	carboxylic acids (with hydrogen bonding)	2500–3000	strong, very broad
C – H	alkanes, alkenes, arenes	2850–3090	strong
Н — О	alcohols and phenols (with hydrogen bonding)	3200–3600	strong, broad
I Z	primary amines	3300–3500	medium; two bands

21. ¹H NMR data

Typical proton chemical shift values (δ) relative to tetramethylsilane (TMS)

R represents an alkyl group, and Hal represents F, Cl, Br or I.

These values may vary for different solvents and conditions.

Type of proton	Chemical shift / ppm
—C H ₃	0.9–1.0
—С Н ₂ -R	1.3–1.4
—CHR ₂	1.5
ROCCH ₂ —	2.0–2.5
O C C C	2.2–2.7
— ←C H ₃	2.5–3.5
—C≡C− H	1.8–3.1
—C H ₂−Hal	3.5-4.4
R-O-C H ₂ -	3.3–3.7
$ \begin{array}{c} O \\ \parallel \\ C \end{array} $ $ O - CH_2 - $	3.7–4.8
O C O- H	9.0–13.0
R-O- H	1.0-6.0
$$ CH $=$ C H $_2$	4.5-6.0
——ОН	4.0-12.0
————Н	6.9–9.0
O = C H	9.4–10.0

Chemistry data booklet 1

22. Mass spectral fragments lost

Mass lost (M _r)	Possible neutral fragment lost
15	•CH₃
17	•OH
18	H ₂ O
28	CH ₂ =CH ₂ CO
29	•CH₂CH₃ •CHO
31	•OCH ₃
45	•COOH

23. References

Data in sections 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21 and 22 were taken fully or in part from:

Blackman, A., Gahan, L. R., Aylward, G. H., & Findlay, T. J. V. (2014). Aylward and Findlay's SI Chemical Data. (7th ed.). John Wiley & Sons.

National Institute of Standards and Technology. (2021). NIST Chemistry WebBook SRD 69, NIST Standard Reference Database. U.S. Department of Commerce. http://webbook.nist.gov

Rumble, J. R. (Ed.). (2019). CRC Handbook of Chemistry and Physics. (100th ed.). CRC Press.

Data in section 17 are reproduced with permission from the author:

Leach, M. R. (2021). The Chemogenesis Web Book: Timeline of structural theory. http://www.metasynthesis.com/webbook/30_timeline/timeline.html

