Covid CT Image Classification

By: Steven Saurbier Jeremy Hart Jayson Villena

Problem

- Can we classify patients' CT scans into pathologies, without human intervention?
- Can we do this better than a radiologist?

"It's always hard to defend, but radiologists - we are human beings - and the inherent error rate of human being runs around .5 to 2% for everything we do in life... And o I like the example of a stroke that's missed on CT - it's hard to see - and then of course the MRI is done the next day and it's lighting up like a light bulb, right."

Problem Landscape

- Imagine is in high demand - there is no shortage of radiologists, but machine learning can improve diagnosis time, and in cases like breast cancer, catch calcium deposits or irregularities that a human can't possibly see.

- "It (machine learning) will be good. Everybody is racing... it's going to do the same thing to medicine that computers did for airline safety. It's going to make a huge difference in the accuracy that human error rate by 50% or more.

- "It's always hard to defend, but radiologists - we are human beings - and the inherent error rate of human being runs around .5 to 2% for everything we do in life... And o I like the example of a stroke that's missed on CT - it's hard to see - and then of course the MRI is done the next day and it's lighting up like a light bulb, right."

Classes

Methodology

- <u>Cleaning</u>
 - Pytorch
- Model selection
 - TF
 - TF + transfer1 (EfficientNetB0)
 - Pre-built Models (VGG16, Xception)
 - Pytorch + augmentation + pre-built (resnet18)
- Feature engineering
 - Shaping and augmenting the data
- Model designs

TensorFlow Transfer Learning

Tensorflow VGG16

Pytorch + Transfer Learning

- Class oriented (OOP)
- Augmentations

Gradient Cam

Model reviews / tables 1

0: Covid 1: Lung Opacity 2:Normal 3:Viral Pneumonia

	precision	recall	f1-score	support	
0	0.99	0.89	0.94	357	
1	0.97	0.82	0.89	614	
2	0.86	0.99	0.92	991	
3	0.91	0.88	0.90	154	
accuracy			0.91	2116	
macro avg	0.93	0.89	0.91	2116	
weighted avg	0.92	0.91	0.91	2116	

Recommendations / next steps

- Conclusions
 - Model improvement
 - "What would happen if we released this into the wild?"
 - Model tradeoffs (time vs. accuracy)
- Applications
 - Radiologist underpenetration
 - Radiologist productivity