Lista de Exercícios das Unidades 4 e 5 Bamada de Rede e Enlace. Aluna: Fernanda Costa de Sausa, 485404

1)0)10000001.00010001.10000001.01100001

6) 129.17.129.01100001 ->
129.17.129.96 para 129.17.129.127

c) 129.17. 129. 01100 xxx -> 129.17. 129. 96 - 103/29; 129.17. 129. 104 - 111/29; 129.17. 129. 112 - 119/29! 129.17.129.129-127/99 0)

7	DCA), pCA)	D(B),P(B)	D(c),p(c)	D(F), p(E)	D(F), p(F)
Ŋ	4,D	<i>∞</i>	all D	410	8
DC	3,0	9,0	-	410	00
DCA		5,A		40	9
DCAE		5,A			6,E
DCAEB				No. 1	6,8

- · U caminho mais auto de D para B & D C A B.
- · U eusto do caminho á 5.

b)

N	DCA),P(A)	D(B), P(B)	9(c), p(C)	D(D), P(O)	D(F), p(F)
6	60	10/E	000	418	DIE .
ĖF	60	61F	B	4,5	
EFD	8,0	6,5	5,0		
EFDC	7,0	61F			
EFDCB	7,C				

- e O cominho mois curto de E para B é EFB.
- · O cuto do caminho é 6.

c)

N	DCA), PCA)	D(C) , P(C)	D(D), P(D)	DCE)p(E)	D(F) 1P(F)
В	213	8,8	00	10,8	418
BA		ULA	8,A	10,13	403
BAC			5 ₁ C	10,0	4,13
BACF	and the second s		5,C	61E	
BACED	and the same of th			6E	

- · O earninho mais auto de B para D I BACD.
- · O ourt dem caminh á 5.

3)
a)
A [
$$DA(B) = 2$$
, $DA(C) = 2$, $DA(D) = 3$, $DA(E) = 7$, $DA(F) = 6$]

B [$DB(A) = 2$, $DB(C) = 4$, $DB(D) = 5$, $DB(E) = 6$, $DB(F) = 4$]

C [$DC(A) = 2$, $DC(B) = 4$, $DC(D) = 1$, $DC(E) = 5$, $DC(F) = 7$]

D [$DD(A) = 3$, $DD(B) = 5$, $DD(C) = 1$, $DD(E) = 4$, $DD(F) = 6$]

E [$DE(A) = 7$, $DE(B) = 6$, $DE(C) = 5$, $DE(D) = 4$, $DE(E) = 2$]

F [$DF(A) = 6$, $DE(B) = 4$, $DE(C) = 7$, $DE(D) = 6$, $DE(E) = 2$]

Ords Inp

- b) Da nós viginhos: A B e D. C nós ruebe victorios de distanción dos nós E e F, porque eles nós sós viginhos diretos.
- e) O custo de c para E. via B & $C(C_1B) + DB(E) = 8+6 = 14$.

Ochreto de c. para E via A é c (C,A) + DA(E) = 2+7=9, o cominho mois curto de A pora E é otrovés de c.

0 cuts du c para E via D é c (EID) + .DD (E) = 1+4=5.

Assim, C indiration para E pilo. D, pois em 10 caminho com custo mínimo.

d) Nos nós vizinhos B,D & F. W 'E' nós riabe vetores de distância dos nós A & C, rema rez que eles nós sos viginhos diretes.

1) 0 euste de E para 8 via B 5 c(E,B)+DB(B) = 10+0 = 10.

O eusto de E para B via D i C(E,D)+.DD(B)=4+S=9.

O ensto de E para B via F é c(E|F) + DF(B) = 2+4 = 6.

Assim, E irá votear para B palo F, pois une é o corminho com menor austo.

- 4) a) · O nó A eria um parte TCP syn que dupois do encapsulamento de um datagnama IP, i unapsulado em um Fram Ethernet. Esse Frame vai ten o indereço MAC de B para su indereço de distino. O nó A tranomite o Frame. Quendo o premi religio do switch, o smitch anota a localização de A a tranomite o Frame para centro Dinks, dando um tatab de N tranomissão. Quando B recher o quando, ele envía um synarck, encapsulato do um um Frame esternat um indereço MAC de A para o indereço distino.

 Quando o svitch reade o Frame, ele tomo nota da Isralização de B, ele vai ten umo entrador no sua Jobela para A e aveim, tranomitir o frame um um link.

 Quando um A reade: o synack vai unión um Ack, dando o tatal de frames tranomitidos.
- Esse as Jabelas ARP estas vogios, primais o host A deu envior uma conselta
 ARP. dentro de um preme de Inanomissas ettrumet. Esso aci apran uma
 premo missas um A e Aranomissas mo seritetro. Entas o host B responderá com
 uma respota ARP, que aci gnon desas tranomissas, dando o datal atí aqui.

 Nesse preuso o host B, atualizará sua tabela ARP com uma entrada para host
 A. Além disso, demarte ena trada ARP, o seritetro aprenderá a localização de A

 e B. Entan quemb A envira em SUN, o puntos pode envirar p packet SUN
 diretamente para o B. O hardolable TCP irá portanto gerar 6 grames Ethernet
 acticionais, dando o tatal de grames.

5) a) Corda sub-rude prucisa enduricar at 31 hosts, usando os 5 bits mais a direito do indireço. Os 5 indireços: X.4.7 000_127, X.4.7 000_127, X.4.7 011_/27, X.4.7 011_/27,

* sobre a notação: Significo que os 3 hist maio à inquinda do quarto byte de indireça é: 000. também é pessível un a inspirata com es valoris; 25,26,27, diode que es 5 podrãis de 3 bits urados sijam inclusions.

6) Se pigormos um intervalo de indereços x.y.z. 200_/27 pora a rude A, o indereço inschibb aqui dive ter usus 27 bits iniciais e pode ter quaisquer 5 bits rustantes que quiser. Se incolher um intervalo x.y.z. 011_127 para a rude D, o indereço secolhido aqui deve ter usus 27 bits iniciais e pode ter quaisquer 5 bits rustantes que desson.

c) Se voû arcalheu um intervalo de andreços x.4.2.100-127 pono a rude E, antro o andreço que voû ascalher agui dere ten ums 27 bets iniciais a pode ten quoisquer 5 bets restantes que quiser.

d) x.y.Z. > 24

e) Qualquer numero de 48 bits.