Surjections, Injections, and Inverses

Office hours schedule change (till the end of semester) TW 4:45 ~ 6:15 pm

Restriction and Extension

Restriction

Definition 1

Let f be a function and let $C \subseteq Dom(f)$. Then the restriction of f to C is the function, denoted $f \upharpoonright C$, defined by $(f \upharpoonright C)(x) = f(x)$ for all $x \in C$.

• Note that $Dom(f \upharpoonright C) = C$.

Examples.

- Let $f(x)=x^{1/3}$ for all $x\in\mathbb{R}$ and let $g(x)=x^{1/3}$ for all $x\in[1,5)$. Then $\mathcal{G}=\{0,1,1,2,\ldots,4\}$ $q = f \upharpoonright [1, 5).$
- Let $f(x) = \sqrt{x}$ for all $x \in [0, \infty)$, $g(x) = 1 x^2$ for all $x \in \mathbb{R}$, and h(x) = 1 - x for all $x \in \mathbb{R}$. Then $g \circ f = h \upharpoonright [0, \infty)$.

$$(g \circ f)(x) = g(f \circ x)$$

$$= g(\sqrt{x})$$

$$= (\sqrt{x})$$

$$= (\sqrt{x})^2 = (-x)^2$$

$$= (\sqrt{x})^2 = (-x)^2$$

$$= (\sqrt{x})^2 = (-x)^2$$

Extension

Definition 2

Let f and g be functions. To say that \underline{f} is an extension of g means that $\mathrm{Dom}(f) \supseteq \mathrm{Dom}(g)$ and for each $x \in \mathrm{Dom}(g)$, f(x) = g(x).

- Note f is an extension of g iff $Dom(f) \supseteq Dom(g)$ and $f \upharpoonright Dom(g) = g$.
- · Example (Even or odd periodic extensions)

Let
$$f: [0, \infty) \to \mathbb{R}$$
 whose graph is as shown below

as shown below
$$f(-x) = \begin{cases} f(x) & \text{for } 1.70 \\ f(-x) & \text{for } 1.60 \end{cases}$$
Note: $Pom(g) = |R| \ge [0, \infty) = Pom(f)$ and $f(x) = g(x)$ for each $x \in [0, \infty)$.

Now let g: IR -> IR defined by

Thus g is an extension of f.

4/13

- one-to-one
- horizontal line test
- · one-to-one

Surjections, Injections, and Inverses

of is a surjection from A to B

Every single element in B is realized as a function value.

I is not a surjection from A to B

C doesn't get any pick!

Surjections

Definition 3

Let A and B be sets. To say that \underline{f} is a surjection from A to B means that f is a function from A to B and for each $y \in B$, there exists $x \in A$ such that f(x) = y.

$$(\forall y \in B) (\exists x \in A) (f(x) = y)$$
at least one!

Notes.

- A surjection from A to B is also said to be a function from A onto B.
- Any function is a surjection from its domain to its range.
- f is a surjection from A to B
 iff f is a function, Dom(f) = A, and Rng(f) = B
 iff for each y ∈ B, the equation f(x) = y has at least one solution x in A.

Surjections (cont')

Example 4

- Let $f(x) = \sin(x)$ for all $x \in \mathbb{R}$. Then f is a surjection from \mathbb{R} to [-1,1], but f is not a surjection from \mathbb{R} to \mathbb{R} .
- Let $g(x) = \arctan(x)$ for all $x \in \mathbb{R}$. Then f is a surjection from \mathbb{R} to $(-\pi/2, \pi/2)$.

Injections

Definition 5

To say that f is an injection means that f is a function and for all $x_1, x_2 \in \text{Dom}(f)$, if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

Note.
$$(\forall \lambda_1, \lambda_2 \in Dom(f))[f(\lambda_1) = f(\lambda_2) \Rightarrow \lambda_1 = \lambda_2] \equiv (\forall \lambda_1, \lambda_2 \in Dom(f))[\lambda_1 \neq \lambda_2 \Rightarrow f(\lambda_1) \neq f(\lambda_2)]$$

- To say that f is an injection from A to B means that f is a function from A to B and f is an injection.
- An injection is also said to be a one-to-one function.
- cf) Surj.: "at least" f is an injection from A to B iff for each $y \in B$, the equation f(x) = y has at most one solution x in Aiff for all $x_1, x_2 \in A$, if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$.

Injections (cont')

Example 6

Let $f(x) = x^2$ for all $x \in \mathbb{R}$ and let $g(x) = \sqrt{x}$ for all $x \in [0, \infty)$. Then:

• f is not an injection from \mathbb{R} to $[0,\infty)$ because

$$f(2) = 4 = f(-2)$$

• g is an injection from $[0, \infty)$ to $[0, \infty)$ because

Let
$$d_1$$
, $d_2 \in [0, \infty)$. Suppose that $g(d_1) = g(d_2)$.

Then
$$\sqrt{\chi_1} = \sqrt{\chi_2}$$

thus q is an injection.

