Foundation Layers

- o Nyquist Sampling Theorem
- o Nyquist Stability Criterion
- o Nyquist Noise
- o Fax

- o Shannon Capacity
- o Information Entropy
- o Shannon's maxim
- o Computer Chess
- o Shannon's mouse

- o Fourier Series
- o Fourier Transform
- o Greenhouse Effect

TELE303 Wireless Communications Lecture 2 — Transmission

Jeremiah Deng TELE Programme / Info Sci University of Otago, 2016

Outline

- Last lecture:
 - o Signals
 - o Time-domain concepts
 - o Frequency spectrum
 - o Nyquist bandwidth
 - o Shannon's channel capacity
- This lecture:
 - o Fourier transform
 - o Transmission media
 - Multiplexing

The Duality (?)

XOR with 0,1

- 0\sqrt{0}=0
- 0 **○** 1=1
- 1\(\sigma 1=0\)
- 1\(\times 0=1\)

Multiplication w/ +1,-1

- $(+1)\times(+1)=+1$
- $(+1)\times(-1)=-1$
- ...

Question: how can we get the spectrum of a signal?

What we saw yesterday

What Real Signals Look Like

Fourier Transform

Fourier Series

• Fourier: any periodic signal can be represented by a sum of sinusoids, known as Fourier series:

$$x(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} \left[A_n \cos(2n\pi f_0 t) + B_n \sin(2n\pi f_0 t) \right]$$

• These sinusoids are orthogonal to each other, so we have

$$A_0 = \frac{2}{T} \int_0^T x(t) dt$$

$$A_n = \frac{2}{T} \int_0^T x(t) \cos(2\pi n f_0 t) dt$$

$$B_n = \frac{2}{T} \int_0^T x(t) \sin(2\pi n f_0 t) dt$$

• a(t)*b(t): now T=2

$$\int_{T} a(t)b(t)dt = 0 > \sin 2\pi f_{I}t \text{ and } \sin 2\pi (2f_{I})t \text{ are orthogonal.}$$

Orthogonality: An Example

- $a(t) = \sin(2\pi f_1 t), f_1 = 1Hz$ $b(t) = \sin(2\pi f_2 t), f_2 = 2Hz$
- a(t)*a(t): T=1

 $\int a(t)a(t)dt > 0 \qquad > \sin 2\pi f_I t \text{ is } not \text{ orthogonal to itself.}$

Periodic Signal: Fourier Series

$$x(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} \left[A_n \cos(2\pi n f_0 t) + B_n \sin(2\pi n f_0 t) \right]$$

$$A_n = \frac{2}{T} \int_T x(t) \cos(2\pi n f_0 t) dt$$

$$B_n = \frac{2}{T} \int_T x(t) \sin(2\pi n f_0 t) dt$$

Fourier Transform

• For aperiodic signal, Fourier representation becomes a continuum of frequencies.

• Integral transform

o Forward:

$$x(t) \Leftrightarrow X(f)$$

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$

o Inverse:

$$x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi f t} df$$

Dealing with Digital Signals

- x[n] denotes digital signals
- Discrete Fourier Transform (DFT)
 - o for finite duration discrete signals
 - o defined on discrete frequencies using Fourier series:

$$X(k) = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk(2\pi/N)n}, k = 0,1,...,N-1$$

$$x[n] = \sum_{k=0}^{N-1} X[k] e^{jk(2\pi/N)n}, n = 0,1,...,N-1$$

• Fast algorithms exist for DFT: "FFT"

"Butterfly" FFT

14

13

Characteristics of F.T.

- Symmetry: X(-f) = X(f) if x(t) is real and even
- Linearity: $ax_1(t) + bx_2(t) \Leftrightarrow aX_1(f) + bX_2(f)$
- Duality: $X(t) \leftrightarrow x(-f)$
- Time shift → Phase shift in freq. domain

$$(t - t_0) \Leftrightarrow e^{j2\pi f t_0} X(f)$$

17

Characteristics (more)

- Parseval's relation (on energy)
 - $\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |X(f)|^2 df$
- Convolution in T.D. is equivalent to multiplication in F.D.

 - $\circ Y(f) = X(f)H(f)$
- ➤ What about multiplication in T.D.?

From Wolfram MathWorld

Spreading the Spectrum (Fig.7.9)

Example: Direct Sequence Spread Spectrum (Figure 9.7)

A Signal Processing Example - Noise Removal

http://www.mediacy.com/, retrieved on 2/2/2008

The Duality, again

- Convolution is expensive!
- Convolution in TD = multiplication in FD
 Filtering in FD is handy (with the use of FFT/IFFT)
- Convolution in FD = multiplication in TD
 Spread spectrum is handy in TD!

Media & Signaling

Transmission Media

- Transmission medium: Physical path between transmitter and receiver
- Guided Media
 - o Waves are guided along a solid medium
 - o E.g., copper twisted pair, copper coaxial cable, optical fibre
- Unguided Media
 - o Provides means of transmission but does not guide electromagnetic signals
 - o Usually referred to as wireless transmission
 - o E.g., atmosphere, water, outer space

Figure 2.10 Electromagnetic Spectrum for Telecommunications

26

Unguided Media

- Transmission and reception are achieved by means of an antenna
- Configurations for wireless transmission
 - o Directional
 - o Omnidirectional

General Frequency Ranges

- Radio frequency range
 - o 30 MHz to 1 GHz
 - o Suitable for omnidirectional applications
- Microwave frequency range
 - o 1 GHz to 40 GHz
 - o Directional beams possible
 - o Suitable for point-to-point transmission
 - o Used for satellite communications
- Infrared frequency range
 - \circ Roughly, $3x10^{11}$ to $2x10^{14}$ Hz
 - Useful in local point-to-point multipoint applications within confined areas

Multiplexing

- Capacity of transmission medium usually exceeds capacity required for transmission of a single signal
- Multiplexing carrying multiple signals on a single medium, hence more efficient
- Two basic forms of multiplexing:
 - o Frequency-division multiplexing (FDM)
 - o Time-division multiplexing (TDM)

FDM

- Frequency-division multiplexing (FDM)
 - Takes advantage of the fact that the useful bandwidth of the medium exceeds the required bandwidth of a given signal
 - Guard-bands between channels needed
 - Easy to implement in analog system

TDM

- Time-division multiplexing (TDM)
 - Takes advantage of the fact that the achievable bit rate of the medium exceeds the required data rate of a digital signal
 - Can be synchronous or statistical
 - Format flexibility and lower power consumption

Duplexing: FDD vs TDD

- FDD: Frequency-Division Duplexing
 - o Easy to implement
 - o Needs guard band
- TDD: Time-Division Duplexing
 - o Synchronisation required
 - o Stringent requirement on RTT
 - o Can be made adaptive
- FDD favoured in WCDMA
 - o However: TD-SCDMA uses TDD.
- Both are supposed to be supported in new standards, e.g., IEEE 802.20.

Example: GSM

- FDMA/TDMA/FDD
- Forward and reverse channels use separate carrier frequencies (FDD).
- Each carrier supports up to 8 users via TDMA, each using a 13 kbps encoded speech signal, within a 200 kHz bandwidth.
- A total of 124 frequency carriers are available in the 25 MHz band in each direction.

Recap

- This lecture:
 - o Frequency transform
 - o Transmission media
 - o Multiplexing
- Reading: Stallings Ch.2
- Next: propagation & encoding

FDMA/TDMA/FDD Scheme in GSM

