Pattern Recognition, Image Processing and Computer Graphics Test Exam

25+25

+2,+1,0

		25+25	+2,+1,0	M	ax 100
	Rendering Pipeline	To pa	ss: 55/60	true	false
\times	The depth test is performed in the fragment processing stage.		\otimes	\bigcirc	
for hogest	Stencil tests are performed in the vertex processing stage.		\bigcirc	\otimes	
	In Phong shading, the illumination model is evaluated per vertex. In Gouraud shading, however, the illumination model is evaluated per fragment.		0	\otimes	
	Blending combines the color of an incoming fragment with the framebuffer color at the pixel position of the incoming fragment. The resulting color replaces the respective framebuffer color.		\otimes	0	
	Homogeneous Coordinates and Tr	ansforms		true	false
X,	The same modelview transform is applied Projection transform is applied to all object	ed to all objec	ets in a scene.	\bigcirc	\otimes
	Affine transformations map the midpoint midpoint of the transformed line segments	nt of a line se	gment to the	\otimes	\bigcirc
Divide x,y,z, by	$(9,6,3,1)^{T}, (-9,-6,-3,-1)^{T}, (9\cdot\sqrt{2},6\cdot\sqrt{2},3\cdot\sqrt{2},1\cdot\frac{2}{\sqrt{2}})^{T}$ are all homogeneous coordinates of the same point in Cartesian space.		\otimes	\bigcirc	
	$(3,4,0)^T$ is a point at infinity on the line		_	\otimes	\bigcirc
	Projections			true	false
	Perspective projection is an affine trans	sform.		\bigcirc	\otimes
	The orthographic projection is a comb scaling.	ination of tra	anslation and	\otimes	\bigcirc
	Projective transforms map from object	space to clip	space.	\bigcirc	\otimes
	Perspective projections non-linearly m camera / eye space to normalized device	_	_	\otimes	\bigcirc

Lighting

true

In the Phong illumination model, the computation of the specular component is independent from the light source direction.

 \otimes

false

In Phong shading, the lighting model is evaluated per vertex, not per fragment.

 \otimes

Ray Casting false true

Consider a 3D plane through point $(0,0,0)^T$ with surface normal $(1,0,0)^{\mathsf{T}}$. A ray with origin $(-1,0,0)^{\mathsf{T}}$ and direction $(1,1,0)^{\mathsf{T}}$ intersects this plane at point $(0,1,0)^{\mathsf{T}}$.

 \otimes \bigcirc

All points $p(b_1, b_2) = (1 - b_1 - b_2)p_0 + b_1p_1 + b_2p_2$ with $b_1 \ge 0, b_2 \ge 0$ $0, b_1 + b_2 \leq 1$ are within the triangle formed by points $\boldsymbol{p}_0, \boldsymbol{p}_1, \boldsymbol{p}_2$.

 \otimes \bigcirc

Curves false true

 $\boldsymbol{x}(t) = (1-t)^2 \boldsymbol{p}_0 + 2t(1-t)t \boldsymbol{p}_1 + t^2 \boldsymbol{p}_2$ with $0 \le t \le 1$ is a quadratic Bézier curve.

 \otimes

The Bernstein polynomials of degree 2 can be written in matrix

 \otimes \bigcirc

form as $\begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \end{pmatrix}$.

Consider a quadratic Bézier curve with control points p_0, p_1, p_2 . The point x(t) on this curve for $0 \le t \le 1$ can be computed as $x(t) = (1-t)((1-t)p_0 + tp_1) + t((1-t)p_1 + tp_2).$

 \otimes

The curve $\mathbf{x}(t) = (1 + t^3, 2)^{\mathsf{T}}$ is C^1 continuous.

 \otimes

Particle Fluids false true

In an SPH fluid solver, the density at a particle is computed as sum over adjacent particles as $\rho_i = \sum_i \rho_j W_{ij}$.

 \otimes

In an SPH fluid solver, the Verlet scheme updates particle positions and velocities with $\boldsymbol{x}^{t+h} = \boldsymbol{x}^t + h \boldsymbol{v}^t$ and $\boldsymbol{v}^{t+h} = \boldsymbol{v}^t + h \boldsymbol{a}^t$.

 \otimes