1 Neural networks and Universal Approximation Theorem

1.1

a.

Empirically, I need two hidden neurons to make an approximation of a step function. b.

- (1) The steepness of the step-up part of the bump is in proportion to $w_{1,1}^{(1)}$ and the steepness of the step-down part of the bump is in proportion to $w_{2,1}^{(1)}$.
- (2) The step-up location is $\frac{-b_1}{w_{1,1}^{(1)}}$ and the step-down location is $\frac{-b_2}{w_{2,1}^{(1)}}$.
- (3) The height of the bump equals to $w_{1,1}^{(2)}$ and $-w_{1,2}^{(2)}$.

1.2

a.

Empirically, I need two 1st-layer hidden neurons to make an approximation of a step function in three-dimension.

b.

Empirically, I need four 1st-layer hidden neurons to make an approximation of a tower function in three-dimension.

c.

Since the maximum absolute value of the gradient for both directions is t, and the tower function has width 1/n, the height of the tower should be t/n. The error is then the sum of the volume of two pyramids, which is $2 \times \frac{1}{3} \times \frac{1}{2} \times \frac{1}{n} \times \frac{1}{n} \times \frac{t}{n} = \frac{t}{3n^3}$

To make sure that the maximum error for each tower function used is ϵ , $\frac{t}{3n^3} < \epsilon$

$$n > \sqrt[3]{\frac{t}{3\epsilon}}$$

So, the minimum number of tower functions that satisfies the conditions is $\operatorname{ceil}(\sqrt[3]{\frac{t}{3\epsilon}})$

The greater the gradient limit \rightarrow the larger the error bound \rightarrow the more number of the total neurons is required.

2 EM

a. Use EM algorithm to derive the estimation.

 x_i is the number of failures for each visit.

In the E-step, we compute $p(z = k|x_i, \theta_k)$

$$p(z = k|x_i, \theta_k) = \frac{0.5\theta_k^{x_i}(1 - \theta_k)^{n - x_i}}{0.5\theta_1^{x_i}(1 - \theta_1)^{n - x_i} + 0.5\theta_2^{x_i}(1 - \theta_2)^{n - x_i}}$$
$$= \frac{\theta_k^{x_i}(1 - \theta_k)^{n - x_i}}{\theta_1^{x_i}(1 - \theta_1)^{n - x_i} + \theta_2^{x_i}(1 - \theta_2)^{n - x_i}}$$

In the M-step, we compute the θ_k that maximizes $E_{p(z=k|x_i,\theta_k)}[log\ p\ (x_n|z=k,\theta_k)]$ for each k.

$$\sum_{i=1}^{m} E_{p(z=k|x_i,\theta_k)}[\log p(x_n|z=k,\theta_k)] = \sum_{i=1}^{m} p(z=1|x_i,\theta_1) \log {n \choose x_i} \theta_1^{x_i} (1-x_i) e^{-x_i} e$$

$$[\theta_1]^{n-x_i}$$
 + p (z = 2|x_i, θ_2)log[$\binom{n}{x_i}\theta_2^{x_i}(1-\theta_2)^{n-x_i}$]

If we take the derivative of the expected value above with regard to θ_k and equate it to zero, we can get:

$$\theta_k = \frac{\sum_{i=1}^m p(z = k|x_i, \theta_k) \frac{x_i}{n}}{\sum_{i=1}^m p(z = k|x_i, \theta_k)}$$

b. EM algorithm implementation:

theta1: 0.5, theta2: 0.5

thetal: 0.5433333333333333, theta2: 0.2985264202060478

theta1: 0.7933298011576458, theta2: 0.29333333333333334

theta1: 0.7933333333333333, theta2: 0.2933333333333333

theta1: 0.7933333333333333, theta2: 0.29333333333333334

Three iterations before convergence.

3 Clustering

a. k-means algorithm implementation

k was set to 2:

The group assignment for each point in the dataset is shown in the following figure:

The mean for each group is as follows:

b. hierarchical agglomerative clustering algorithm implementation:

k was set to 2:

The group assignment for each point in the dataset is shown in the following figure:

- c. From the two figures above, we can see hierarchical agglomerative clustering algorithm performs better than k-means algorithm on this dataset. The reason is that this dataset is well-separated and the shape of clusters are not spherical. So, hierarchical agglomerative clustering is useful here but k-means is not a good choice.
- d. Zero-center the dataset and transform the Cartesian coordinates (x, y) of the dataset to polar coordinates (theta, radius). Append a column vector of zeros to the radius vector (also a column vector) gives the transformed dataset. Run k-means algorithm on the transformed dataset.

The classification result plotted on the transformed dataset:

The classification result plotted on the original dataset:

