

CS/IS F214 Logic in Computer Science

MODULE: PROPOSITIONAL LOGIC

Satisfiability

Satisfiability (SAT)

- The satisfiability problem (SAT) is <u>not known to have a polynomial time algorithm</u>
 - Satisfiability of formulas in CNF is also known to be equally difficult
 - i.e. there is no known polynomial time algorithm for finding whether a formula in CNF is satisfiable.
- Reconcile this with:
 - there is a polynomial time algorithm for finding validity of formulas in CNF
 - [Hint: What is the time taken to convert a propositional logic formula to CNF? End of Hint.]

Complexity of SAT

- Recall that:
 - SAT is in NP
 - but is not known to be in P.
- Furthermore SAT is known to be among <u>the most difficult</u> problems in NP
 - finding an efficient i.e. polynomial-time algorithm for SAT would result in
 - efficient solutions for a host of several thousands of such difficult problems in NP
 - for none of which we have polynomial time algorithms.

SAT is **NP-complete**

- SAT is at least as difficult as any other problem in NP
 - i.e. *any problem in* **NP** *can be reduced to* SAT in polynomial-time
 - i.e. for any problem π in **NP**, there is a polynomial-time mapping function f such that:
 - $\pi(x)$ returns TRUE <u>if and only if SAT(f(x))</u> returns TRUE

CNF-SAT and variations

- The satisfiability problem for CNF formulas is referred to as CNF-SAT:
 - There is no known polynomial time algorithm for CNF-SAT.
- What if the form is further restricted to k-CNF?
 - i.e. a formula is a conjunction of clauses
 - where a clause is a disjunction of (exactly) k literals
- Satisfiability for k-CNF is referred to as k-SAT.
 - k-SAT is as difficult as CNF-SAT for k>=3
 - i.e. 3-SAT is NP-complete.
 - and k-SAT is NP-complete for all k>=3

2-SAT

- 2-SAT is k-SAT for k=2
- There is a polynomial time algorithm for 2-SAT:
 - Look at every clause in a given formula as an implication:
 - $L_1 \vee L_2$ as either $\neg L_1 \longrightarrow L_2$ or as $\neg L_2 \longrightarrow L_1$
 - Apply transitivity:
 - $L_1 \rightarrow L_2$ and $L_2 \rightarrow L_3$ would result in $L_1 \rightarrow L_3$ as well.
 - If, by repeated application of transitivity, you end up with $x_i \vee x_i$ as well as $\neg x_i \vee \neg x_i$.
 - Then we have a contradiction i.e.
 - the formula is not satisfiable.

Summary

- SAT is NP-complete
 - DNF-SAT is in P
- CNF-SAT is NP-complete
 - k-SAT is NP-complete for k>2
 - 2-SAT is in P
- Horn-SAT is in P
- Implications (for formulas in in propositional logic):
 - Time for conversion of formulas to DNF?
 - Time for conversion of CNF formulas to DNF?
 - Which formulas can be expressed in Horn form?
 - Which formulas can be expressed in 2-CNF?

SAT Solvers

- Efficiency issues
 - Restricted versions
 - Use of Heuristics may lead to faster than exponential algorithms
- SAT competition

http://www.satcompetition.org/

