Diabetes Risk Analysis

Attributes :-

(A)Glucose-level in the body (B) No. of Pregnancies (C)Blood Pressure (D)Skin thickness (E)Insulin level in the body (F)Diabetes Prediction function (G)Age

problem statement- To cluster the group of people into various clusters into risk level groups with the help of different Attributes.

```
In [321]:
               import pandas as pd
               import numpy as np
               import matplotlib.pyplot as plt
               import seaborn as sns
               from sklearn.cluster import KMeans
            M | dataset = pd.read_csv("diabetes_data_upload.csv")
In [259]:
In [260]:
               dataset.head()
    Out[260]:
                                                                               DiabetesPedigreeFunction Age
                   Pregnancies Glucose
                                       BloodPressure
                                                     SkinThickness Insulin
                                                                          BMI
                0
                            6
                                   148
                                                 72
                                                               35
                                                                        0
                                                                          33.6
                                                                                                 0.627
                                                                                                        50
                1
                            1
                                    85
                                                 66
                                                               29
                                                                          26.6
                                                                                                 0.351
                                                                        0
                                                                                                        31
                                   183
                                                 64
                                                                0
                                                                          23.3
                                                                                                 0.672
```

66

40

23

35

94

168 43.1

28.1

0.167

2.288

21

33

In [261]: ▶ dataset.shape

3

1

0

89

137

Out[261]: (768, 8)

In [262]: ► dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64

dtypes: float64(2), int64(6)

memory usage: 48.1 KB

In [263]: ▶ dataset.describe()

Out[263]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeF
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2

In [264]: | dataset.isnull().values.any()

Out[264]: False


```
In [285]: ▶ dataset.corr()
```

Out[285]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diab
Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	0.017683	
Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	0.221071	
BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	0.281805	
SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	0.392573	
Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	0.197859	
ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1.000000	
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	0.140647	
Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	0.036242	

```
number of rows missing glucose_conc: 5 number of rows missing diastolic_bp: 35 number of rows missing insulin: 374 number of rows missing bmi: 11 number of rows missing diab_pred: 0 number of rows missing age: 0 number of rows missing skin: 227
```

```
In [ ]: •
```

```
In [266]:

X=dataset.mask(dataset==0).fillna(dataset.mean())

              print("number of rows missing glucose_conc: {0}".format(len(X.loc[X['Glucose'] == 0])))
              print("number of rows missing diastolic_bp: {0}".format(len(X.loc[X['BloodPressure'] ==
              print("number of rows missing insulin: {0}".format(len(df.loc[X['Insulin'] == 0])))
              print("number of rows missing bmi: {0}".format(len(X.loc[X['BMI'] == 0])))
              print("number of rows missing diab_pred: {0}".format(len(X.loc[X['DiabetesPedigreeFunct)
              print("number of rows missing age: {0}".format(len(X.loc[X['Age'] == 0])))
              print("number of rows missing skin: {0}".format(len(X.loc[X['SkinThickness'] == 0])))
              number of rows missing glucose_conc: 0
              number of rows missing diastolic_bp: 0
              number of rows missing insulin: 0
              number of rows missing bmi: 0
              number of rows missing diab_pred: 0
              number of rows missing age: 0
              number of rows missing skin: 0
In [267]:
           M | X= dataset.iloc[:,[0,1,2,3,4,5,6,7]]
```

In [268]: ► sns.pairplot(X)

Out[268]: <seaborn.axisgrid.PairGrid at 0x1e6d8854400>

In []: •

Out[270]: <seaborn.axisgrid.JointGrid at 0x1e6d4c1e470>


```
[ 0.672, 32. ],
...,
[ 0.245, 30. ],
[ 0.349, 47. ],
[ 0.315, 23. ]])

In [272]: 

plt.figure(figsize=(10,6))
sns.countplot(x="Pregnancies", data=X)
plt.xlabel("Number of pregrancies")
plt.ylabel("Number of patients")
```

],

],

In [273]: ▶ dataset.head()

Out[273]:

In [271]:

Out[271]: array([[0.627, 50.

[0.351, 31.

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age
0	6	148	72	35	0	33.6	0.627	50
1	1	85	66	29	0	26.6	0.351	31
2	8	183	64	0	0	23.3	0.672	32
3	1	89	66	23	94	28.1	0.167	21
4	0	137	40	35	168	43.1	2.288	33

```
In [307]:
           Y=X.mask(dataset==0).fillna(dataset.mean())
              Y=X.iloc[:,[6,7]].values
   Out[307]: array([[ 0.627, 50.
                                     ],
                     [ 0.351, 31.
                     [ 0.672, 32.
                      . . . ,
                     [ 0.245, 30.
                                     ],
                     [ 0.349, 47.
                     [ 0.315, 23.
                                     ]])
In [308]:
           ▶ # Using the elbow method to find the optimal number of clusters
              from sklearn.cluster import KMeans
              wcss = []
              for i in range(1, 11):
                  kmeans = KMeans(n_clusters = i, init = 'k-means++', max_iter=300, n_init=10)
                  kmeans.fit(Y)
                  wcss.append(kmeans.inertia_)
              plt.plot(range(1, 11), wcss)
              plt.title('The Elbow Method')
              plt.xlabel('Number of clusters')
              plt.ylabel('WCSS')
              plt.show()
```


[0.46015098 25.19474836] [0.48234101 39.75115207]]

```
In [309]: # Fitting K-Means to the dataset
kmeans = KMeans(n_clusters = 3, init = 'k-means++', max_iter=300, n_init=10)
y_kmeans = kmeans.fit_predict(Y)
print(kmeans.cluster_centers_)

[[ 0.5047234  57.32978723]
```


ASSESMENT

Out[312]: 0.6476126010968893

Heirarchiacal Clustering

complete linkage

```
In [314]:  # Fitting Hierarchical Clustering to the dataset
    from sklearn.cluster import AgglomerativeClustering
    hc = AgglomerativeClustering(n_clusters = 3, affinity = 'euclidean', linkage = 'complet
    y_hc = hc.fit_predict(Y)
```


Single linkeage

Average linkage

```
In [320]: N
from sklearn.cluster import AgglomerativeClustering
hc = AgglomerativeClustering(n_clusters=3, affinity = 'euclidean', linkage = 'average')
#dendrogram = sch.dendrogram(hc)
hc.fit_predict(Y)
# Visualising the clusters
plt.scatter(Y[y_hc == 0, 0], Y[y_hc == 0, 1], s = 10, c = 'red', label = 'Cluster 1')
plt.scatter(Y[y_hc == 1, 0], Y[y_hc == 1, 1], s = 10, c = 'blue', label = 'Cluster 2')
plt.scatter(Y[y_hc == 2, 0], Y[y_hc == 2, 1], s = 10, c = 'green', label = 'Cluster 3')
plt.xlabel('Diabetes prediction function')
plt.ylabel('Age')
plt.legend()
plt.show()
```

