Department of Chemical Engineering, Indian Institute of Technology Delhi CHL 712: Computer Aided Design in Chemical Engineering Semester II, 2007-2008

Closed Book & Notes

Major Examination

Date: 28/04/08

Time: 2 hr

1. [10 Marks] Design a HEN to meet MER targets with $\Delta T_{min} = 10$ °C for the following streams.

Marks: 35

Stream	Ts (0C)	Tt (0C)	C (kW/ºC)	
H1	180	40	2	
H2	150	40	4	
C1	60	180	3	
C2	30	130	2.6	

- Answer the following in one or two sentences (descriptive answers will not be evaluated)
 - [6 Marks] What is characteristic difference between P&ID and PFD. List the various distinct regions in a P&ID.
 - b. [2 Marks] In shortcut distillation method, what does a negative value of x_LD imply?
 - c. [2 Marks] In shortcut distillation method, what does a negative value of reflux ratio imply?
 - d. [2 Mark] In separation of a ternary mixture by distillation, it is desired to obtain each of the three components as products. When is a single column with side-stream product likely to be the optimum design?
 - e. [2 Marks] For what type of system (mixture) sum rate method for simulation of distillation recommended?
 - f. [2 Marks] when is purge preferred over recycle.
- 3. [5 Marks] Find the key components for the following distillation column:

Component	CH ₄ (1)	C ₂ H ₅ (2)	n-C ₃ H ₈ (3)	n-C ₄ H ₁₀ (4)	n-C5H12 (5)	n-C ₆ H ₁₄ (6)
$X_{i,F}$	0.03	0.07	0.15	0.33	0.30	0.12
K (80 °C)	21	5.9	2.49	0.95	0.395	0.180

Feed: T = 82 °C. P = 1035 N/m²; Vapor distillate to contain 98% of 3 but only 1 % of 5. Take column temperature = 80 °C and assume ideal solution with K values at 80 °C given in Table above.

Shiras eqn:
$$\frac{Dx_{i,D}}{Fx_{i,F}} = \frac{(\alpha_{i,bk})_F - 1}{(\alpha_{ik,bk})_F - 1} \frac{Dx_{ik,D}}{Fx_{ik,F}} + \left[\frac{(\alpha_{ik,bk})_F - (\alpha_{i,bk})_F}{(\alpha_{ik,bk})_F - 1} \frac{Dx_{bk,D}}{Fx_{bk,F}} \right]$$

4. [4 Marks] Derive the stream matching criterion at pinch point (both above pinch side and below pinch side).