AMRITA VISHWA VIDYAPEETHAM AMRITA SCHOOL OF ENGINEERING, COIMBATORE DEPARTMENT OF COMPUTER SCIENCE ANDENGINEERING

Project Report On HEALTH INSURANCE CROSS SELL PREDICTION 19AI716-CLOUD AND BIG DATA ANALYTICS

Course Instructor:- Dr.Karthi R
Associate Professor
Department of CSE

Submitted By: Medarametla Sravani Roll No:-CB.EN.P2AID20029

INDEX

1. INTRODUCTION	1
2. DATASET DESCRIPTION	1
3. BLOCK DIAGRAM	2
4. PYSPARK IMPLEMENTATION	3
a. Preprocessing & EDA	3
b. Data Transformation & Scaling	5
c. Feature Scaling & PCA	6
d. Machine Learning Algorithms	7
e. Results	
5. GCP IMPLEMENTATION	10
5.1 DATAPROC	10
1. Implementation	10
2. Results	12
5.2 AUTOML TABLES	15
1. Implementation	15
2. Results	
5.3 DATA FUSION	20
1. Implementation	20
2. Results	25
5.4 BIGQUERY	26
1. Implementation	26
2. Results	29
6. INFERENCE.	42
7. REFERENCE.	42

1. INTRODUCTION

Insurance company that has provided Health Insurance to its customers now they need your help in building a model to predict whether the policyholders (customers) from past year will also be interested in Vehicle Insurance provided by the company.

An insurance policy is an arrangement by which a company undertakes to provide a guarantee of compensation for specified loss, damage, illness, or death in return for the payment of a specified premium. A premium is a sum of money that the customer needs to pay regularly to an insurance company for this guarantee.

Just like medical insurance, there is vehicle insurance where every year customer needs to pay a premium of certain amount to insurance provider company so that in case of unfortunate accident by the vehicle, the insurance provider company will provide a compensation (called 'sum assured') to the customer.

The main aim of this project is to Building a model to predict whether a customer would be interested in Vehicle Insurance.

2. DATASET DESCRIPTION

we used the data obtained from kaggle.com. it contains information about the 381,109 policyholders' demographics, vehicles, and policies in 12 columns without any missing data.

Variable	Definition
id	Unique ID for the customer
Gender	Gender of the customer
Age	Age of the customer
Driving_License	0 : Customer does not have DL, 1 : Customer already has DL
Region_Code	Unique code for the region of the customer
Previously_Insured	1 : Customer already has Vehicle Insurance, 0 : Customer doesn't have Vehicle Insurance
Vehicle_Age	Age of the Vehicle
Vehicle_Damage	1 : Customer got his/her vehicle damaged in the past, 0 : Customer didn't get his/her vehicle damaged in the past.
Annual_Premium	The amount customer needs to pay as premium in the year
PolicySalesChannel	Anonymized Code for the channel of outreaching to the customer ie. Different Agents, Over Mail, Over Phone, In Person, etc.
Vintage	Number of Days, Customer has been associated with the company
Response	1 : Customer is interested, 0 : Customer is not interested

3.BLOCK DIAGRAM

4. PYSPARK IMPLEMENTATION

PySpark has been released in order to support the collaboration of Apache Spark and Python, it actually is a Python API for Spark. In addition, **PySpark**, helps you interface with Resilient Distributed Datasets (RDDs) in Apache Spark and Python programming language.

Loading Dataset from pyspark.sal import SparkSession from pyspark.sql.functions import spark = SparkSession.builder.appName("LinearRegression").getOrCreate() df = spark.read.csv('/content/drive/My Drive/healthinsurance.csv', header=True, inferSchema=True) id|Gender|Age|Driving_License|Region_Code|Previously_Insured|Vehicle_Age|Vehicle_Damage|Annual_Premium|Policy_Sales_Channel|Vintage|Response| 1| Male| 44| 40454.01 28.01 > 2 Years 26.01 2| Male| 76| 3| Male| 47| 1-2 Year 33536.0 38294.0 28.0 26.0 Male 21 28619.0 27496.0 5|Female| 29| only showing top 5 rows

a. Preprocessing & EDA

Spark SQL: This feature was used for Exploratory data Analysis. **Exploratory Data Analysis (EDA)** is an approach to data analysis that attempts to maximize insight into data. This includes assessing the quality and structure of the data, calculating summary or descriptive statistics, and plotting appropriate graphs. It can uncover underlying structures and suggest how the data should be modeled.

ii.uescrii	be().show()							
summary	id	Gender	Age	Driving_License	Region_Code	Previously_Insured	Vehicle_Age	Vehicle_Damage
count	381109	381109	381109	381109	381109	381109	381109	381109
mean	190555.0	null	38.822583565331705	0.9978693759528114	26.388807401557035	0.4582101183650871	null	null 309
stddev 1	110016.83620776715	null	15.51161101809548	0.046109544207799495	13.22988802578841	0.49825119888722824	null	null 172
min	1	Female	20	0	0.0	0	1-2 Year	No
max	381109	Male	85	1	52.0	1	> 2 Years	Yes

```
df.groupBy("Gender").agg(F.sum("Response")).show()
+----+
|Gender|sum(Response)|
+----+
|Female| 18185|
```

28525

Male

```
#Selecting few columns by their names

df.select(['Gender', 'Age', 'Policy_Sales_Channel']).show(5, False) # Method 1

df.select(df["Age"], df["Gender"], df["Policy_Sales_Channel"]).show(10, False) # Method 2

from pyspark.sql.functions import col # Method 3 - By import SQL function col

df.select(col("Age"), col("Gender"), col("Policy_Sales_Channel")).show(5, False)

| Gender | Age | Policy_Sales_Channel | |
| Male | 44 | 26.0 |
| Male | 47 | 26.0 |
| Male | 21 | 152.0 |
| Female | 29 | 152.0 |
| Female | 29 | 152.0 |
| Hold | 10 | 10 | 10 |
| Hold | 10 | 10 | 10 |
| Hold | 10 |
```

#Creating a subset of dataframe using Filter df.filter(df["Age"] > 30).filter(df["Age"] < 45).show(5) # Selecting subset using chain of Filter of option df.filter((df["Age"] > 30) & (df["Age"] < 45)).show(5, False) # Selcting subset by using AND between the criteria | id|Gender|Age|Driving License|Region Code|Previously Insured|Vehicle Age|Vehicle Damage|Annual Premium|Policy Sales Channel|Vintage|Response| 10|Female| 32| 28771.0 6.0 15.0 < 1 Year 1-2 Year No 152.0 13 Female | 41 No 31409.0 14.0 221 01 16 | Male | 37 | 19 | Male | 42 | 2630.0 only showing top 5 rows | id | Gender| Age| Driving_License | Region_Code | Previously_Insured | Vehicle_Age | Vehicle_Damage | Annual_Premium | Policy_Sales_Channel | Vintage | Response | |0 |1 |1 |> 2 Years | Yes |< 1 Year | No |1-2 Year | No |Male |44 |1 28.0 140454 0 |10 |Female|32 |1 |13 |Female|41 |1 28771.0 31409.0 |6.0 |15.0 221 14.0 |16 |Male |37 |1 |19 |Male |42 |1 1-2 Year 156.0 16.0 12630.0 1147 128.0 1-2 Year 133667.0 1124.0 only showing top 5 rows

b.Data Transformation & scaling

1. String Indexer:- It converts string values to indexes for categorical features.

```
from pyspark.ml.feature import StringIndexer
# create object of StringIndexer class and specify input and output column
indexer1 = StringIndexer(inputCol='Vehicle_Damage',outputCol='Vehicle_Damage_Index')
indexer2 = StringIndexer(inputCol='Vehicle_Age',outputCol='Vehicle_Age_Index')
# transform the data
df = indexer1.fit(df).transform(df)
df = indexer2.fit(df).transform(df)
# view the transformed data
df.select('Vehicle_Damage','Vehicle_Damage_Index','Vehicle_Age','Vehicle_Age_Index').show(10)
|Vehicle_Damage|Vehicle_Damage_Index|Vehicle_Age|Vehicle_Age_Index|
            Yesl
                                  0.0| > 2 Years|
                                         1-2 Year
             Noi
                                   1.0
                                                                   0.0
                                   0.0
                                         > 2 Years
                                                                   2.0
             Nol
                                  1.0
                                          < 1 Year
                                                                   1.0
             Nol
                                   1.0
                                         < 1 Year
                                                                   1.0
                                         < 1 Year
             Yes|
                                   0.0
                                                                   1.0
                                         < 1 Year |
< 1 Year |
1-2 Year |
< 1 Year |
< 1 Year |
                                   0.0
                                                                   1.0
                                   0.0
                                                                   0.0
             Nol
                                   1.0
                                                                   1.0
                                  1.01
                                                                   1.0
             Nol
only showing top 10 rows
```

Health Insurance Cross Sell Prediction

2. OneHotEncoder:- It converts Categorical Features To Continuous Features

3. VectorAssembler:- It combines Categorical Features into single vector.

c. Feature Scaling &PCA

1. Feature Scaling(Stand scalar)

d. Machine Learning Algorithms

1. Logistic Regression: logistic Regression Aims to Measure the Relationship between a Categorical Dependent Variable and One or More Independent Variables (Usually Continuous) By Plotting The Dependent Variables' Probability Scores.

2. Factorization machines classifier:- A Combination Of Linear Regression And Matrix Factorization, The Cool Idea Behind This Type Of Algorithm Is It Aims Model Interactions Between Features Using Factorized Parameters.

```
from pyspark.ml.classification import FMClassifier
fm = FMClassifier(labelCol="Response", featuresCol="features", stepSize=0.001)
fm_model = fm.fit(trainingData)
fm_prediction = fm_model.transform(testData)
fm_prediction.select("prediction", "Response", "features").show(5)
fm_accuracy = evaluator.evaluate(fm_prediction)
print('Accuracy of Factorization machines classifier is:', multi_evaluator.evaluate(svm_prediction))
evaluator = BinaryClassificationEvaluator(labelCol='Response', metricName='areaUnderROC')
roc_FM=evaluator.evaluate(gb_predictions)
print('FMClassifier_ROC SCORE:',roc_FM )
          --+----
|prediction|Response|
        0.0| 1|[47.0,1.0,28.0,0...|

0.0| 1|[56.0,1.0,28.0,0...|

1.0| 0|[76.0,1.0,28.0,0...|

0.0| 0|[25.0,1.0,35.0,1...|

0.0| 1|[51.0,1.0.28.0.0
only showing top 5 rows
Accuracy of Factorization machines classifier is: 0.8786968031662545
FMClassifier_ROC SCORE: 0.8534113932238853
```

3. Linear Support Vector Machine: Support Vector Machine is a linear model for classification and regression problems. It can solve linear and non-linear problems and work well for many practical problems. The idea of SVM is simple: The algorithm creates a line or a hyper plane which separates the data into classes.

```
from pyspark.ml.classification import LinearSVC
svm = LinearSVC(labelCol="Response", featuresCol="features")
svm_model = svm.fit(trainingData)
svm_prediction = svm_model.transform(testData)
svm_prediction.select("prediction", "Response", "features").show(5)
svm_accuracy = evaluator.evaluate(svm_prediction)
print('Accuracy of Support Vector Machine is:', multi_evaluator.evaluate(svm_prediction))
evaluator = BinaryClassificationEvaluator(labelCol='Response', metricName='areaUnderROC')
roc_LSVC=evaluator.evaluate(gb_predictions)
print('LinearSVC ROC SCORE:',roc LSVC )
+-----
|prediction|Response|
                                features
       0.0| 1|[47.0,1.0,28.0,0....|

0.0| 1|[56.0,1.0,28.0,0....|

0.0| 0|[76.0,1.0,28.0,0....|
       0.0 0 0 [25.0,1.0,35.0,1.... ]
0.0 1 1 [51.0,1.0,28.0,0....]
    -----
only showing top 5 rows
Accuracy of Support Vector Machine is: 0.8786968031662545
LinearSVC ROC SCORE: 0.8534113932238853
```

4.Gradient Boosted Tree Classifier:- Gradient boosting is a machine learning technique for regression, classification and other tasks, which produces a prediction model in the form of an ensemble of weak prediction models, typically decision trees.

```
from pyspark.ml.classification import GBTClassifier
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.ml.evaluation import BinaryClassificationEvaluator
gbt = GBTClassifier(labelCol="Response", featuresCol="features")
gbModel = gbt.fit(trainingData)
gb_predictions = gbModel.transform(testData)
print(gb_predictions)
gb_predictions.select("prediction", "Response", "features").show(5)
multi_evaluator = MulticlassClassificationEvaluator(labelCol = 'Response', metricName = 'accuracy')
print('Gradient-boosted Trees Accuracy:', multi_evaluator.evaluate(gb_predictions))
evaluator = BinaryClassificationEvaluator(labelCol='Response', metricName='areaUnderROC')
roc gbt=evaluator.evaluate(gb predictions)
print('GBT_ROC SCORE:',roc_gbt )
DataFrame[id: int, Gender: string, Age: int, Driving_License: int, Region_Code: double, Previously_Insured: int, V
|prediction|Response|
                                   features
              1|[47.0,1.0,28.0,0....|
1|[56.0,1.0,28.0,0....|
0|[76.0,1.0,28.0,0....|
0|[25.0,1.0,35.0,1....|
1|[51.0,1.0,28.0,0....|
        0.01
        0.01
        0.01
        0.01
        0.0
only showing top 5 rows
Gradient-boosted Trees Accuracy: 0.8786968031662545
GBT ROC SCORE: 0.8528597869299667
```

4.Random Forest Classifier:- The random forest is a classification algorithm consisting of many decisions trees. It uses bagging and feature randomness when building each individual tree to try to create an uncorrelated forest of trees whose prediction by committee is more accurate than that of any individual tree.

```
from pyspark.ml.classification import RandomForestClassifier
rf = RandomForestClassifier(labelCol='Response',
                                 featuresCol='features',
                                 maxDepth=5)
model = rf.fit(trainingData)
rf_predictions = model.transform(testData)
print(rf predictions)
rf_predictions.select("prediction", "Response", "features").show(5)
multi_evaluator = MulticlassClassificationEvaluator(labelCol = 'Response', metricName = 'accuracy')
print('Random Forest classifier Accuracy:', multi_evaluator.evaluate(rf_predictions))
evaluator = BinaryClassificationEvaluator(labelCol='Response', metricName='areaUnderROC')
roc_rf=evaluator.evaluate(gb_predictions)
print('RF_ROC SCORE:',roc_rf )
DataFrame[id: int, Gender: string, Age: int, Driving_License: int, Region_Code: double, Previously_Insu
|prediction|Response|
                                      features
                 1|[47.0,1.0,28.0,0....|
1|[56.0,1.0,28.0,0....|
0|[76.0,1.0,28.0,0....|
0|[25.0,1.0,35.0,1....|
1|[51.0,1.0,28.0,0....|
         0.01
         0.01
         0.01
         0.0
only showing top 5 rows
Random Forest classifier Accuracy: 0.8786968031662545
RF_ROC SCORE: 0.8528597869299667
```

e. RESULTS:-

Accuracy scores for all algorithms

```
Logistic Regression Accuracy: 0.8786968031662545
Accuracy of Factorization machines classifier is: 0.8786968031662545
Accuracy of Support Vector Machine is: 0.8786968031662545
Gradient-boosted Trees Accuracy: 0.8786968031662545
Random Forest classifier Accuracy: 0.8786968031662545
```

Roc score for all algorithms

```
LR_ROC SCORE: 0.8534113932238853
FMClassifier_ROC SCORE: 0.8534113932238853
LinearSVC_ROC SCORE: 0.8534113932238853
RF_ROC SCORE: 0.8534113932238853
GBT_ROC SCORE: 0.8534113932238853
```

5. GCP IMPLEMENTATION

5.1DATAPROC

1.Implementation

Dataproc is a managed Spark and Hadoop service that lets you take advantage of open source data tools for batch processing, querying, streaming, and machine learning. Dataproc automation helps you create clusters quickly, manage them easily, and save money by turning clusters off when you don't need them. With less time and money spent on administration, you can focus on your jobs and your data.

When compared to traditional, on-premises products and competing cloud services, Dataproc has a number of unique advantages for clusters of three to hundreds of nodes:

- 1. Low cost
- 2. Super fast
- 3. Integrated
- 4. Managed
- 5. Similar and familiar

STEP-1:- Create a cluster (Clustername, configure nodes -series –N1, n1 standard 2)

STEP-2:- create a bucket in cloud storage – to browse data files.

Step-3:- After uploading the data files, submit the job in cluster using cloud input file with pyspark job type.

Finally, Job was submitted successfully, Results will be runned,

2.RESULTS

Preprocessing

|Age|Gender|Policy_Sales_Channel| |44 |Male |76 |Male |47 |Male |26.0 |26.0 |26.0 Male |29 |Female|152.0 only showing top 5 rows id|Gender|Age|Driving_License|Region_Code|Previously_Insured|Vehicle_Age|Vehicle_Damage|Annual_Premium|Policy_Sales_Channel|Vintage|Response| 1 | Male | 44 | 1 | 28.0 | 0 | > 2 Years | Yes | 40454.0 | 26.0 | 2 217 1 Male 44 10 Female 32 13 Female 41 16 Male 37 19 Male 42 6.0 15.0 6.0 6.0 28.0 < 1 Years 1-2 Year 1-2 Year 1-2 Year 28771.0 31409.0 2630.0 33667.0 221 147 158 Yes| only showing top 5 rows summary id|Gender| Age| Driving_License| Region_Code| Previously_Insured|Vehicle_Age|Vehicle_Damage| Annual_Premium|Polic 381109 | 381109 | 381109 381109 381109 381109 381109 381109 count 381109 | 381109| | 3811 null null|30564.389581458323| null null | 17213.15505698001| 54 1|remaic, 381109| Male| 1|Female| 20 0 0.0 0 1-2 Year No 2630.0 min 85 1 52.0 1 > 2 Years 540165.0 ----+----| id|Gender|Age|Driving_License|Region_Code|Previously_Insured|Vehicle_Age|Vehicle_Damage|Annual_Premium|Policy_Sales_Channel|Vintage|Response| | 0| 0| 0| 01 | Male| 28525 obs on Clusters | id|Age|Driving_License|Region_Code|Previously_Insured|Vehicle_Age|Vehicle_Damage|Annual_Premium|Policy_Sales_Channel|Vintage|Response| Clusters 1 | 44 | 21 | 76 | 3 | 47 | 4 | 21 | 5 | 29 | 6 | 24 | 7 | 23 | 8 | 56 | 9 | 24 | 10 | 32 | 11 | 47 | 12 | 24 | 13 | 41 | 14 | 76 | 15 | 71 | 16 | 37 | 17 | 25 | 28.0 | 3.0 | 28.0 | 11.0 | 11.0 | 28.0 | 3.0 | 6.0 | 35.0 | 15.0 | 28.0 | 6.0 | 45.0 | 35.0 | 28.0 | 28.0 | 28.0 | 28.0 | 28.0 | 33.0 | 38294.0| 28619.0| 27496.0| 2630.0| 23367.0| 32031.0| 27619.0| 47576.0| 48699.0| 31409.0| 36770.0| 46818.0| 2633.0| 152.0| 152.0| 160.0| 152.0| 26.0| 152.0| 152.0| 124.0| 152.0| 14.0| 13.0| 30.0| 156.0| 160.0| ♣ Workflows Autoscaling policies Itilities

+		+
Vehicle_Damage Vehicle_Dam	age_Index Vehicle	_Age Vehicle_Age_Index
+		++
Yes	0.0 > 2 Ye	ears 2.0
No	1.0 1-2	Year 0.0
Yes	0.0 > 2 Ye	ears 2.0
No	1.0 < 1 \	Year 1.0
No	1.0 < 1 \	Year 1.0
Yes	0.0 < 1	Year 1.0
Yes	0.0 < 1	Year 1.0
Yes	0.0 1-2	Year 0.0
No	1.0 < 1 \	Year 1.0
No	1.0 < 1	Year 1.0
and the second s		and the second s

only showing top 10 rows

|Vehicle_Damage|Vehicle_Damage_Index|Vehicle_Damage_OHE|Vehicle_Age|Vehicle_Age_Index|Vehicle_Age_OHE| +-----0.0| (1,[0],[1.0])| > 2 Years| 1.0| (1,[],[])| 1-2 Year| 0.0| (1,[0],[1.0])| > 2 Years| 2.0| (2,[],[])| 0.0| (2,[0],[1.0])| 2.0| (2,[],[])| Yes (1,[],[])| 1-2 Year| Nol Yesl (1,[],[]) < 1 Year 1.0 (2,[1],[1.0]) 1.0 Nol 1.0 No (1,[],[])| < 1 Year| 1.0 (2,[1],[1.0])

only showing top 5 rows

Gradient Boosted Tree

DataFrame[id: int, Gender: string, Age: int, Driving_License: int, Region_Code: double, Previously_Insured: int, Vehicle_Age: string, Vehicle_Damage: string, Annual

features	Response	prediction	İ
[47.0,1.0,28.0,0 [56.0,1.0,28.0,0 [76.0,1.0,28.0,0 [25.0,1.0,35.0,1 [51.0,1.0,28.0,0	1 0 0	0.0 0.0 0.0 0.0	1 1 1 1

only showing top 5 rows

Gradient-boosted Trees Accuracy: 0.8776009364244658

DataFrame[id: int. Gender: string. Age: int. Driving License: int. Region Code: double. Previously Insured: int. Vehicle Age: string. Vehicle Damage: string. Annual

Random Forest Classifier

Gradient-boosted Trees Accuracy: 0.8776009364244658

DataFrame[id: int, Gender: string, Age: int, Driving_License: int, Region_Code: double, Previously_Insured: int, Vehicle_Age: string, Vehicle_Damage: string, Annual

prediction	Response	features
0.0 0.0 0.0	1 0	[47.0,1.0,28.0,0 [56.0,1.0,28.0,0 [76.0,1.0,28.0,0 [76.0,1.0,28.0,0
0.0	1	[51.0,1.0,28.0,0

only showing top 5 rows

Random Forest classifier Accuracy: 0.8776009364244658

Linear Regression

```
Coefficients: [0.01902751283606541]
Intercept: 25.65648188890467
RMSE: 13.238974
r2: 0.001313
DataFrame[id: int, Gender: string, Age: int, Driving_License: int, Region_Code: double, Previously_Insured: int, Vehicle_Age: string, Vehicle_Damage: string, Annual
        prediction Region Code | features |
26.493692453691548
26.55077499219974
                         28.0
                                [47.0]
|26.113142196970237|
                        33.0 [24.01]
26.26536229965876
                          6.0 [32.0]
                      35.0 [47.0]
26.55077499219974
only showing top 5 rows
R Squared (R2) on test data = 0.00149068
```

5.2 AUTOML TABLES

1. Implementation

AutoML Tables enables your entire team to automatically build and deploy state-of-the-art machine learning models on structured data at massively increased speed and scale. ... **AutoML Tables** is now available in the new, unified Vertex AI. **It** is a supervised learning service. This means that you train a machine learning model with example data. **AutoML Tables** uses tabular (structured) data to train a machine learning model to make predictions on new data.

STEP-1:- Create a dataset and import a csv file from cloud storage.

STEP-2:- Give the Target Column & Train the model

Model is training

After model is trained, Evaluate the results

STEP-3:- In Test & use Deploy the model in online prediction.

2.Results

Metrics are generated using the least-common class as the positive class. Accuracy based on score threshold of 0.5

The score threshold determines the minimum level of confidence needed to make a prediction positive. <u>Learn more about model</u> evaluation

Confusion matrix

A confusion matrix summarizes how successful a classification model's predictions were. The matrix rows are ground truth labels and the columns are labels predicted by the model. Scan each row to determine where misclassifications occur for a given label: the blue cell indicates accurate predictions for the label (true positives or negatives) while the grey cells indicate errors (false positives or negatives). Hower over the matrix cells to learn more.

Feature importance ② ±

Online prediction results

5.3 DATAFUSION

1.Implementation

Cloud **Data Fusion** is the brand new, fully-managed data engineering product from Google Cloud. It will help users to efficiently build and manage ETL/ELT data pipelines. ... Built on top of the open-source project CDAP, it leverages a convenient user interface for building data pipelines in a 'drag and drop' manner. It helps users build scalable, distributed data lakes on Google Cloud by integrating data from siloed on-premises platforms.

STEP-1:- Create a DataFusion Instance.

Step-2:- if, Instance is created.view the instance

Step-3:- click the Wrangler

Step-4:- Upload the csv file from cloud storage or device.

Parse the data into column names

Step-5:- Click the insights & plot the different insights from dataset

Step-6:- Create a pipeline with Batch pipeline.

Step-7:- Sink the BigQuery pipeline to Wrangler and give the project details and properties.

2. RESULTS

String id	String Gender	String Age	String Driving_License	Float Region_Code	String Previously_Insured	String Vehicle_Age	•
1	Male	44	1	28.0	0	> 2 Years	Y
2	Male	76	1	3.0	0	1-2 Year	N
3	Male	47	1	28.0	0	> 2 Years	Y
4	Male	21	1	11.0	1	< 1 Year	N
5	Female	29	1	41.0	1	< 1 Year	N
6	Female	24	1	33.0	0	< 1 Year	Y
7	Male	23	1	11.0	0	< 1 Year	Y
8	Female	56	1	28.0	0	1-2 Year	Y
							-

5.4 BIGQUERY

1. Implementation

BigQuery is an enterprise data warehouse that solves this problem by enabling super-fast SQL queries using the processing power of Google's infrastructure. Simply move your data into BigQuery and let us handle the hard work. You can control access to both the project and your data based on your business needs, such as giving others the ability to view or query your data.

2.Results

Machine learning Algorithms

1. Logistic Regression

```
CREATE OR REPLACE MODEL
   `essential-cairn-305008.health.log` OPTIONS (model_type='logistic_reg',
        input_label_cols=['Response']) AS

SELECT
Age,
Driving_License,
Region_Code,
Previously_Insured,
Annual_Premium,
Policy_Sales_Channel,
Vintage,
Response
FROM `essential-cairn-305008.health.healthinsu`
LIMIT 1000
```

Model type	Data location
LOGISTIC_REGRESSION	US
LOGISTIC_REGRESSION	US

Training Options

Training options are the optional parameters that were added in the script to create this model.

Max allowed iterations	20
Actual iterations	8
L1 regularization	0.00
L2 regularization	0.00
Early stop	true
Min relative progress	0.01
Learn rate strategy	Line search
Line search initial learn rate	0.10

Loss

0.8 0.6 0.2 0 2 4 6

Duration (seconds)

Learn rate

Aggregate Metrics @

Log loss ②	0.2964
ROC AUC 3	0.7040

Score threshold

Positive class threshold	9 0	0.0039
Positive class	1	
Negative class	0	
Precision 2	0.0825	
Recall 2	1.0000	
Accuracy 2	0.0825	
F1 score ?	0.1525	

Confusion matrix

This table shows how often the model classified each label correctly (in blue), and which labels were most often confused for that label (in gray).


```
SELECT * FROM ML.EVALUATE(MODEL `essential-cairn-305008.health.log`,
  (
                                 SELECT
                       Age,
                        Driving_License,
                        Region_Code,
                       Previously_Insured,
                        Annual_Premium,
                        Policy_Sales_Channel,
                       Vintage,
                        Response
                        essential-cairn-305008.health.healthinsu`
             Query complete (2.1 sec elapsed, 23.3 MB processed)
                                                                                                                                               JSON Execution details
                       0.21895848437580098 \quad 0.6400984799828731 \quad 0.6760428118989581 \quad 0.3262996491342948 \quad 0.7299451134220115 \quad 0.7073856143856144 \quad 0.7299451144 \quad 0.72994144 \quad 0.7299451144 \quad 0.729941144 \quad 0.72994144 \quad 0.729941
```

```
SELECT
predicted_Response,
FROM ML.PREDICT(MODEL `essential-cairn-305008.health.log`,
   SELECT
   Age,
   Driving_License,
   Region_Code,
   Previously_Insured,
   Annual_Premium,
   Policy_Sales_Channel,
   Vintage
FROM
  `essential-cairn-305008.health.healthinsu`
     Query complete (1.8 sec elapsed, 20.4 MB processed)
     Job information
                                JSON Execution details
                      Results
       predicted_Response
 Row
1
                       0
2
                       0
3
                       0
                       n
4
```

2.Boosted Tree Classifier

```
CREATE OR REPLACE MODEL
    `essential-cairn-305008.health.Boosted` OPTIONS (model_type='BOOSTED_TREE_CLASSIFIER',
        input_label_cols=['Response']) AS

SELECT
Age,
Driving_License,
Region_Code,
Previously_Insured,
Annual_Premium,
Policy_Sales_Channel,
Vintage,
Response
FROM `essential-cairn-305008.health.healthinsu`
LIMIT 1000
```

Model type	Data location
BOOSTED_TREE_CLASSIFIER	US

Training Options

Training options are the optional parameters that were added in the script to create this model.

Max allowed iterations	20
Actual iterations	8
L1 regularization	0.00
L2 regularization	1.00
Learn rate	0.30
Early stop	true
Min relative progress	0.01

Learn rate

Aggregate Metrics @

Log loss ②	0.3121
ROC AUC ?	0.7231

Score threshold

Positive class threshold	9	0.0420
Positive class	1	
Negative class	0	
Precision ②	0.0825	
Recall ?	1.0000	
Accuracy ②	0.0825	
F1 score ?	0.1525	

Precision-recall curve ②

ROC curve @

Confusion matrix

This table shows how often the model classified each label correctly (in blue), and which labels were most often confused for that label (in gray).


```
SELECT * FROM ML.EVALUATE(MODEL `essential-cairn-305008.health.boosting_clf`,

(
    SELECT
    Age,
    Driving_License,
    Region_Code,
    Previously_Insured,
    Annual_Premium,
    Policy_Sales_Channel,
    Vintage,
    Response
FROM
    `essential-cairn-305008.health.healthinsu`
)
```

Row	precision	recall	accuracy	f1_score	log_loss	roc_auc
1	0.24203886980154865	0.40419610361806896	0.7718395524639933	0.30277274403835974	0.5308435842108878	0.6777592407592408

```
SELECT
predicted_Response,
FROM ML.PREDICT(MODEL `essential-cairn-305008.health.boosting_clf`,
(
    SELECT
    Age,
    Driving_License,
    Region_Code,
    Previously_Insured,
    Annual_Premium,
    Policy_Sales_Channel,
    Vintage
FROM
    `essential-cairn-305008.health.healthinsu`
)
)
```

Job information Results

Row predicted_Response		
1	0	
2	0	
3	0	
4	0	
5	0	

3.AUTOML CLASSIFIER

```
CREATE OR REPLACE MODEL
    `essential-cairn-305008.health.automl_clf` OPTIONS (model_type='AUTOML_CLASSIFIER',
        input_label_cols=['Response']) AS

SELECT
Age,
Driving_License,
Region_Code,
Previously_Insured,
Annual_Premium,
Policy_Sales_Channel,
Vintage,
Response
FROM `essential-cairn-305008.health.healthinsu`
LIMIT 1000
```

Model type Data location
AUTOML_CLASSIFIER US

Training Options

Training options are the optional parameters that were added in the script to create this model.

Actual iterations 1

Duration (seconds)

Aggregate Metrics @

Log loss 🔞	1.3984
ROC AUC ②	0.5000

Score threshold

Positive class threshold	0	0.0000
Positive class	1	
Negative class	0	
Precision ?		
Recall ?	0.0000	
Accuracy 2	0.9545	
F1 score 🔞	0.0000	

Confusion matrix

This table shows how often the model classified each label correctly (in blue), and which labels were most often confused for that label (in gray).


```
SELECT * FROM ML.EVALUATE(MODEL `essential-cairn-305008.health.automl_clf`,
    SELECT
   Age,
   Driving_License,
   Region_Code,
   Previously_Insured,
   Annual_Premium,
   Policy_Sales_Channel,
   Vintage,
   Response
FROM
  'essential-cairn-305008.health.healthinsu'
)
Row precision
                 recall
                                             f1_score
                                                            log_loss
                                accuracy
  0.2564102564102564 8.563476771569257E-4 0.877237220847579 0.0017069944095933086 0.383350156086901 0.7335364635364635
SELECT
predicted_Response,
FROM ML.PREDICT(MODEL `essential-cairn-305008.health.automl_clf`,
    SELECT
   Age,
   Driving_License,
   Region_Code,
    Previously_Insured,
    Annual_Premium,
    Policy_Sales_Channel,
    Vintage
FROM
    essential-cairn-305008.health.healthinsu`
   "predicted_Response": "0"
    "predicted_Response": "0"
    "predicted_Response": "0"
```

"predicted_Response": "0"

},

4.DNN CLASSIFIER

```
CREATE OR REPLACE MODEL
    'essential-cairn-305008.health.dnn_clf` OPTIONS (model_type='DNN_CLASSIFIER',
        input_label_cols=['Response']) AS

SELECT
Age,
Driving_License,
Region_Code,
Previously_Insured,
Annual_Premium,
Policy_Sales_Channel,
Vintage,
Response
FROM `essential-cairn-305008.health.healthinsu`
LIMIT 1000
```

Model type	Data location	
DNN_CLASSIFIER	US	

Training Options

Training options are the optional parameters that were added in the script to create this model.

Max allowed iterations	20
Actual iterations	20
L1 regularization	0.00
L2 regularization	0.00
Learn rate	0.00
Early stop	true
Min relative progress	0.01

Loss

Duration (seconds)

Learn rate

Aggregate Metrics @

Log loss 🔞	0.4265
ROC AUC 2	0.3283

Score threshold

Positive class () threshold	0.0145
Positive class	1
Negative class	0
Precision ?	0.0825
Recall 😯	1.0000
Accuracy ?	0.0825
F1 score 🔞	0.1525

Confusion matrix

This table shows how often the model classified each label correctly (in blue), and which labels were most often confused for that label (in gr

Row	precision	recall	accuracy	f1_score	log_loss	roc_auc	
1	0.12277471650633459	0.9964675658317277	0.12694530960958675	0.2186140120567659	436.2974612061208	0.005987012987012987	

SELECT

```
SELECT
Age,
Driving_License,
Region_Code,
Previously_Insured,
Annual_Premium,
Policy_Sales_Channel,
Vintage
FROM
`essential-cairn-305008.health.healthinsu`
```

Job information		Results
Row	v predicted_Response	
1		0
2		0
3		О
4		0

6. INFERNCE

1. In GCP BIGQUERY Machine Learning Algorithms are trained & Evaluated, Accuracies are:-

Logistic Regression - 82% Boosted Tree Classifier - 82% Automl Classifier - 95% DNN Classifier - 82%

Therefore, The above 4 models gives good accuracy. But, The best model Is AutoML Classifier got 95% Accuracy.

- 2. Data Insights and Big Query Pipeline was done on Data Fusion.
- Machine Learning Training & Testing was done on AutoML Tables In GCP VertexAI.

Training Accuracy is 87.8%

Test on online Prediction Deployment is:- Baseline Prediction value :- 0.767

Response 0 - Confidence score is 0.976

Response 1 - Confidence Score is 0.024.

4. Pyspark Implementation of machine learning algorithms Got Good Accuracy 85%.so, All models(Logistic, Random Forest Classifier, Gradient Boosted Classifier, LVSM, FM Classifier) are fit for this dataset.

7.REFERENCE

- https://gutentagworld.wordpress.com/2020/12/13/health-insurance-cross-sell-prediction/
- https://www.kaggle.com/anmolkumar/health-insurance-cross-sell-prediction?select=train.csv