# A PSF-fitting Photometry Pipeline for Crowded Under-sampled Fields



M. Marengo & Jillian Neeley lowa State University

## What, and Why

- Developed to extract globular cluster photometry for Spitzer/IRAC
   "Carnegie RR Lyrae Program" (CRRP): over 900 hours Spitzer observations of RR Lyrae in the MW halo, globular clusters and bulge.
- Individual frame photometry to extract light curves of variables (>12 phase points), plus average magnitudes of cluster stars.
- Based on DAOPHOT, with binding scripts written in Python (plus a few legacy IDL calibration scripts). Strategy similar to one used by Martha for the DUSTINGS program.
- Challenges similar to JWST observations of Local Group galaxies.

# Example: M4 Photometry



SAGE / JWST-ERS Meeting



SAGE / JWST-ERS Meeting — Keele 05/31/2017

#### Pipeline Setup & Initial Source Lists





- Convert all individual frames into photon counts (DN) units.
- Setup DAOPHOT options.
- Make initial source list for each frame separately: FIND & PHOT.
- Photometry at this stage is only used to help source matching across catalogs in following steps.

#### Pipeline Setup & Initial Source Lists





- Convert all individual frames into photon counts (DN) units.
- Setup DAOPHOT options.
- Make initial source list for each frame separately: FIND & PHOT.
- Photometry at this stage is only used to help source matching across catalogs in following steps.

## Point Spread Function Characterization





- Make a new analytical PSF: PICK & PSF.
- Chose one of many functional forms: e.g. Moffat ( $\beta = 1.5$ ).

$$\$PSF(z) = \frac{1}{(1+z^2)^{\beta}}$$

$$z^2 = \frac{x^2}{\alpha_x^2} + \frac{y^2}{\alpha_y^2} + \alpha_{xy}xy$$

- Chose order for variation of PSF across frame.
- Use same PSF if stable.





- Use PSF for photometry of all sources identified, in each frame, in previous step: ALLSTAR.
- Only sources that can be fit by PSF are now retained (initial bad pixels and other artifacts removal).
- Only bright/isolates sources are found at this stage.





- Use PSF for photometry of all sources identified, in each frame, in previous step: ALLSTAR.
- Only sources that can be fit by PSF are now retained (initial bad pixels and other artifacts removal).
- Only bright/isolates sources are found at this stage.





- Use PSF for photometry of all sources identified, in each frame, in previous step: ALLSTAR.
- Only sources that can be fit by PSF are now retained (initial bad pixels and other artifacts removal).
- Only bright/isolates sources are found at this stage.





- Use PSF for photometry of all sources identified, in each frame, in previous step: ALLSTAR.
- Only sources that can be fit by PSF are now retained (initial bad pixels and other artifacts removal).
- Only bright/isolates sources are found at this stage.

#### Geometrical Transformation for all Frames



- Identify spatial overlap of individual frames, taking into account dithers, on/off (non contiguous) fields, mapping pattern.
- Find geometrical transformation among all individual (contiguous) frames, based on source matching: DAOMATCH.

SAGE / JWST-ERS Meeting — Keele 05/31/2017

#### Make Accurate Star Lists for all Fields





- Refine for each frame the geometric transformations using overlaps.
- Create complete list of sources for each field.
- Uses DAOMASTER.
- This is the final source list unless source list from high resolution images available.

#### Make Accurate Star Lists for all Fields





- Refine for each frame the geometric transformations using overlaps.
- Create complete list of sources for each field.
- Uses DAOMASTER.
- This is the final source list unless source list from high resolution images available.

# Find Catalog Bounding Box





 Find bounding box of fields overlapping with external, high astrometric precision, master catalog.

#### Create Master Input Source List





 Find basic geometric transformation among master and individual field catalogs: DAOMATCH.

- Refine geometrical transformation and write final source list with accurate position of each source in each frame: DAOMASTER.
- Combine transformations for all frames: COMBINE.

SAGE / JWST-ERS Meeting — Keele 05/31/2017





- Run photometry on final matched source list for all frames: ALLFRAME.
- Only sources with good PSF-fitting solution are kept; other rejected.
- Residuals improved by using high precision astrometric catalog.





- Run photometry on final matched source list for all frames: ALLFRAME.
- Only sources with good PSF-fitting solution are kept; other rejected.
- Residuals improved by using high precision astrometric catalog.





- Run photometry on final matched source list for all frames: ALLFRAME.
- Only sources with good PSF-fitting solution are kept; other rejected.
- Residuals improved by using high precision astrometric catalog.





- Run photometry on final matched source list for all frames: ALLFRAME.
- Only sources with good PSF-fitting solution are kept; other rejected.
- Residuals improved by using high precision astrometric catalog.





- Run photometry on final matched source list for all frames: ALLFRAME.
- Only sources with good PSF-fitting solution are kept; other rejected.
- Residuals improved by using high precision astrometric catalog.



# Using Mosaics for Faint Sources?



# Using Mosaics instead of Single Frames



- Advantages: better sensitivity (S/N ~ N<sup>1/2</sup>), better sampling (better PSF fitting / source de-blending), better outlier rejection.
- Disadvantages: will lose spatial information of PSF variations on detector array, complex PSF if different roll angle, will lose temporal information if frames are taken time apart.

SAGE / JWST-ERS Meeting — Keele 05/31/2017

## Calibration Pipeline



SAGE / JWST-ERS Meeting — Keele 05/31/2017

## Identify Calibration Stars





- Identify isolated (minimum number of neighbors) bright stars from mosaic.
- Match calibration stars to PSF-fitting photometry catalog (including neighbors falling within ~2 apertures from center of each star).
- Compile list of PSF photometry for each star and its neighbors.

# Measure Aperture Photometry





- Perform aperture photometry on individual frames.
- Relies on instrumental absolute calibration and pipeline corrections.
- Apply post-pipeline corrections.

#### De-blend Calibrator Stars





 Use PSF photometry ratio of calibrator star and neighbors too subtract flux fraction of neighbors from aperture.

# Photometry σ-Clipping



# Filtering on Residuals





- Calculate residuals between aperture and PSF photometry.
- Remove outliers, (and stars with too many neighbors).

# Filtering on Residuals





- Calculate residuals between aperture and PSF photometry.
- Remove outliers, (and stars with too many neighbors).

------ Keele 05/31/2017

#### Calculate Zero Point



SAGE / JWST-ERS Meeting — Keele 05/31/2017

# Moving Forward

- Needs to be adapted to specifics of JWST NIRCam/MIRI images.
- Needs to be integrated with JWST tools: how much do we need DAOPHOT, how much can be done natively with JWST pipeline, and JWST post-pipeline tools?
- Alternative software packages: e.g. TPHOT (see M. Di Criscienzo).
- Does the way we plan to do photometry inform the way we propose observations (e.g. availability of HST catalog, mapping/dithering strategy, etc).