A quick review of topology

Bowen Liu

Mathematics Department of Tsinghua University

2023/06/27

- 2 Homotopy and fundamental group
- 3 Covering space
- 4 Continuous group action

- Overview
- 2 Homotopy and fundamental group
- 3 Covering space
- 4 Continuous group action

In this talk we give a quick review of topology which we will use frequently, and the main topics are listed as follows:

- Homotopy and fundamental group.
- Covering spaces.
- Continuous group action.

- 2 Homotopy and fundamental group

- 2 Homotopy and fundamental group Homotopy

Homotopy and fundamental group

A quick review of topology

Definition (homotopy)

Let X and Y be topological spaces and $f, g: X \to Y$ be continuous maps. A homotopy from f to g is a continuous map $F: X \times I \rightarrow Y$ such that for all $x \in X$, one has

$$F(x,0)=f(x)$$

$$F(x,1)=g(x)$$

If there exists a homotopy from f to g, then we say f and g are homotopic, and write $f \simeq g$.

Definition (stationary homotopy)

Let X and Y be topological spaces and $A \subseteq X$ an arbitrary subset. A homotopy F between continuous maps $f, g: X \to Y$ is said to be stationary on A if

$$F(x,t)=f(x)$$

for all $x \in A$ and $t \in I$. If there exists such a homotopy, then we say f and g are homotopic relative to A.

Remark.

If f and g are homotopic relative to A, then f must agree with gon A.

Definition (path homotopy)

Let X be a topological space and γ_1, γ_2 be two paths in X. They are said to be path homotopic if they are homotopic relative on $\{0,1\}$, and write $\gamma_1 \simeq \gamma_2$.

Definition (loop homotopy)

Let X be a topological space and γ_1, γ_2 be two loops in X. They're called loop homotopic if they are homotopic relative on $\{0\}$, and write $\gamma_1 \simeq \gamma_2$.

Remark.

For convenience, if γ_1, γ_2 are paths (or loops), then when we say γ_1 is homotopic to γ_2 , we mean γ_1 is path (or loop) homotopic to γ_2 .

Definition (free loop homotopy)

Let X be a topological space and γ_1, γ_2 be two loops in X. They are said to be freely loop homotopic if they're homotopic through loops (but not necessarily preserving the base point), that is, there exists a homotopy $F(s,t)\colon [0,1]\times [0,1]\to X$ such that

$$F(s,0)=\gamma_1(s)$$
 $F(s,1)=\gamma_2(s)$ $F(0,t)=F(1,t)$ holds for all $t\in[0,1]$

- 2 Homotopy and fundamental group Fundamental group

Homotopy and fundamental group

Lemma

Let X be a topological space. For any $p, q \in X$, path homotopy is an equivalence relation on the set of all paths in X from p to q. For any path γ in X, the path homotopy class is denoted by $[\gamma]$.

Proof.

For path $\gamma\colon I\to X$, γ is homotopic to itself by $F(s,t)=\gamma(s)$. If γ_1 is homotopic to γ_2 by F, then γ_2 is homotopic to γ_1 by G(s,t)=F(s,1-t). Finally, suppose γ_1 is homotopic to γ_2 by F, γ_2 is homotopic to γ_3 by G. Then consider

$$H = egin{cases} F(s,2t) & 0 \leq t \leq rac{1}{2} \ G(s,2t-1) & rac{1}{2} \leq t \leq 1 \end{cases}$$

which is a homotopy from γ_1 to γ_3 . This shows path homotopy is an equivalence relation.

Definition (reparametrization)

A reparametrization of a path $f: I \to X$ is of the form $f \circ \varphi$ for some continuous map $\varphi: I \to I$ fixing 0 and 1.

emma

Any reparametrization of a path f is homotopic to f.

Proof.

Suppose $f \circ \varphi$ is a reparametrization of f, and let $F: I \times I \to I$ denote the straight-line homotopy from the identity map to φ , that is, $F(s,t) = t\varphi(s) + (1-t)s$. Then $f \circ F$ is a path homotopy from f to $f \circ \varphi$.

Definition (product of path)

Let X be a topological space and f,g be paths. f and g are composable if f(1) = g(0). If f and g are composable, their product $f \cdot g : I \rightarrow X$ is defined by

$$f \cdot g(s) = \begin{cases} f(2s) & 0 \le s \le \frac{1}{2} \\ g(2s-1) & \frac{1}{2} \le s \le 1 \end{cases}$$

Lemma

Let X be a topological space and f_0, f_1, g_0, g_1 be paths in X such that f_0 , g_0 are composable and f_1 , g_1 are composable. If $f_0 \simeq g_0$, $f_1 \simeq g_1$, then $f_0 \cdot g_0 \simeq f_1 \cdot g_1$.

Proof.

Suppose the homotopy from f_0 to f_1 is given by F and the homotopy from g_0 to g_1 is given by G. Then the required homotopy H from $f_0 \cdot g_0$ to $f_1 \cdot g_1$ is given by

$$H(s,t) = egin{cases} F(2s,t) & 0 \leq s \leq rac{1}{2}, 0 \leq t \leq 1 \\ G(2s-1,t) & rac{1}{2} \leq s \leq 1, 0 \leq t \leq 1 \end{cases}$$

Lemma

Let X be a topological space and f, g be paths in X such that $f \simeq g$. If \overline{f} is the path obtained by reversing f, that is $\overline{f}(s) := f(1-s)$, then $\overline{f} \simeq \overline{g}$.

Proof.

Suppose f is homotopic to g by homotopy F. Then G(s,t) := F(1-s,t) is a homotopy from \overline{f} to \overline{g} since

$$G(s,0) = F(1-s,0) = f(1-s) = \overline{f}(s)$$

$$G(s,1) = F(1-s,1) = g(1-s) = \overline{g}(s)$$

$\mathsf{Theorem}$

Let X be a topological space and [f], [g], [h] be homotopy classes of loops based at $p \in X$.

- $[c_p] \cdot [f] = [f] \cdot [c_p] = [f]$, where c_p is constant loop based at p.
- $[f] \cdot [\overline{f}] = [c_p] \text{ and } [\overline{f}] \cdot [f] = [c_p].$
- **3** $[f] \cdot ([g] \cdot [h]) = ([f] \cdot [g]) \cdot [h].$

Proof.

For (1). Let us show that $c_p \cdot f \simeq f$, and the other case is similar. Define $H: I \times I \to X$ by

$$H(s,t) = \begin{cases} p & t \ge 2s \\ f(\frac{2s-t}{2-t}) & t \le 2s \end{cases}$$

Continuation.

For (2). It suffices to show that $f \cdot \overline{f} \simeq c_p$, since the reverse path of \overline{f} is f, the other relation follows by interchanging the roles of f and \overline{f} . Define

$$H(s,t) = egin{cases} f(2s) & 0 \leq s \leq rac{t}{2} \\ f(t) & rac{t}{2} \leq s \leq 1 - rac{t}{2} \\ f(2-2s) & 1 - rac{t}{2} \leq s \leq 1 \end{cases}$$

It is easy to check that H is a homotopy from c_p to $f \cdot \overline{f}$. For (3). It suffices to show $(f \cdot g) \cdot h \simeq f \cdot (g \cdot h)$. The first path follows f and then g at quadruple speed for $s \in [0, \frac{1}{2}]$, and then follows h at double speed for $s \in [\frac{1}{2}, 1]$, while the second follows f at double speed and then g and h at quadruple speed. The two paths are therefore reparametrizations of each other and thus homotopic by Lemma 8.

Definition (fundamental group)

Let X be a topological space. The fundamental group of X based at p, denoted by $\pi_1(X,p)$, is the set of path homotopy classes of loops based at p equipped with composition as its group structure.

Theorem (base point change)

Let X be a topological space, $p, q \in X$ and g is any path from p to q. The map

$$\Phi_g \colon \pi_1(X,p) o \pi_1(X,q) \ [f] \mapsto [\overline{g}] \cdot [f] \cdot [g]$$

is a group isomorphism with inverse $\Phi_{\overline{\sigma}}$.

Proof.

Homotopy and fundamental group 000000000000000000

It suffices to show Θ_g is a group homomorphism, since it's clear $\Phi_g \circ \Phi_{\overline{g}} = \Phi_{\overline{g}} \circ \Phi_g = \text{id. For } [\gamma_1], [\gamma_2] \in \pi_1(X, p), \text{ one has }$

$$\Phi_{g}[\gamma_{1}] \cdot \Phi[\gamma_{2}] = [\overline{g}] \cdot [\gamma_{1}] \cdot [g] \cdot [\overline{g}] \cdot [\gamma_{2}] \cdot [g]
= [\overline{g}] \cdot [\gamma_{1}] \cdot [c_{p}] \cdot [\gamma_{2}] \cdot [g]
= [\overline{g}] \cdot [\gamma_{1}] \cdot [\gamma_{2}] \cdot [g]
= \Phi_{g}([\gamma_{1}] \cdot [\gamma_{2}])$$

Corollary

If X is a path-connected topological space, then its fundamental is independent of the choice of base point, and denoted by $\pi_1(X)$ for convenience.

Theorem

The fundamental group of a topological manifold M is countable.

Sketch.

- **1** Since M is second countable, there exists a countable cover \mathcal{U} of M consisting of coordinate balls, and for each $U, U' \in \mathcal{U}$ the intersection $U \cap U'$ has at most countably many components. We choose a point in each such component and let \mathcal{X} denote the (countable) set consisting of all the chosen points as U, U' range over all the sets in \mathcal{U} . For each $U \in \mathcal{U}$ and $x, x' \in \mathcal{X}$ such that $x, x' \in U$, choose a definite path $h_{x, x'}^U$ from x to x' in U.
- 2 Now choose any point $p \in \mathcal{X}$ as base point. A loop based at p is special if it is a finite product of paths of the form $h_{x,y'}^U$. Because both \mathcal{U} and \mathcal{X} are countable sets, there are only countably many special loops. If we can show that every

Bowen Liu Mathematics Department of Tsinghua University

- 3 Covering space

 - The structure of the deck transformation group

In this section we assume all spaces are connected and locally path connected topological spaces. We are including these hypotheses¹ since most of the interesting results (such as lifting criterion) require them, and most of the interesting topological space (such as connected topological manifold) satisfy them.

¹In fact, it's almost the strongest connected hypotheses, since if a topological space is connected and locally path-connected, then it's also path connected.

Definition (covering space)

A covering space of X is a map $\pi\colon X\to X$ such that there exists a discrete space D and for each $x\in X$ an open neighborhood $U\subseteq X$, such that $\pi^{-1}(U)=\coprod_{d\in D}V_d$ and $\pi|_{V_d}\colon V_d\to U$ is a homeomorphism for each $d\in D$.

- ① Such a U is called evenly covered by $\{V_d\}$.
- 2 The open sets $\{V_d\}$ are called sheets.
- **3** For each $x \in X$, the discrete subset $\pi^{-1}(x)$ is called the fiber of x.
- **4** The degree of the covering is the cardinality of the space D.

Definition (isomorphism between covering spaces)

Let $\pi_1 \colon \widetilde{X}_1 \to X$ and $\pi_2 \colon \widetilde{X}_2 \to X$ be two covering spaces. An isomorphism between covering spaces is a homeomorphism

 $f: X_1 \to X_2$ such that $\pi_1 = \pi_2 \circ f$.

(ロ) (部) (注) (注) 注 り()

- 3 Covering space

Proper maps

The structure of the deck transformation group

Definition (proper)

Let $f: X \to Y$ be a continuous map between topological spaces. f is called proper if preimage of any compact set in Y is a compact subset in X.

Lemma

Let $p: X \to Y$ be a proper map between topological spaces and Y be locally compact and Hausdorff. Then p is a closed map.

Proof.

Let C be a closed subset of X. It suffices to show $Y \setminus p(C)$ is open. Let $y \in Y \setminus p(C)$. Then y has an compact neighborhood V since Y is locally compact and $p^{-1}(V)$ is compact. Let $E = C \cap p^{-1}(V)$. Then E is a compact and hence so is p(E). Then p(E) is closed since compact set in Hausdorff space is closed. Let $U = V \setminus p(E)$. Then U is an open neighborhood of Y and disjoint from p(C).

27 / 75

Corollary

Let $p: X \to Y$ be a proper map between topological spaces and Y be locally compact and Hausdorff. If $y \in Y$ and V is an open neighborhood of $p^{-1}(y)$, then there exists an open neighborhood U of v with $p^{-1}(U) \subseteq V$.

Proof.

Since V is open, one has $X \setminus V$ is closed, and thus $A := p(X \setminus V)$ is also closed with $y \notin A$ since p is a closed map by Lemma 20. Thus $U := Y \setminus A$ is an open neighborhood of y such that $p^{-1}(U) \subseteq V$.

$\mathsf{Theorem}$

Let $p: X \to Y$ be a proper local homeomorphism between topological spaces and Y be locally compact and Hausdorff. Then p is a covering map.

Proof.

For $y \in Y$, since $\{y\}$ is compact and hence so is $p^{-1}(y)$ since p is proper. On the other hand, $p^{-1}(y)$ is a discrete set since p is a local homeomorphism. Then $p^{-1}(y)$ is a finite set, and we denote it by $\{x_1, \ldots, x_n\}$. Since p is a local homeomorphism, for each $i = 1, \ldots, n$, there exists an open neighborhood W_i of x_i and an open neighborhood U_i of y such that $p|_{W_i}$ is a homeomorphism. Without lose of generality we may assume W_i are pairwise disjoint. Now $W_1 \cup \cdots \cup W_n$ is an open neighborhood of $p^{-1}(y)$. Thus by Corollary 21 there exists an open neighborhood $U \subseteq U_1 \cap \cdots \cap U_n$ of y with $p^{-1}(U) \subset W_1 \cup \cdots \cup W_n$. If we let $V_i = W_i \cap p^{-1}(U)$, then the V_i are disjoint open sets with

$$p^{-1}(U) = V_1 \cup \cdots \cup V_n$$

and all the mappings $p|_{V_i}$ are homeomorphisms.

- 3 Covering space

Lifting theorems

The structure of the deck transformation group

Theorem (unique lifting property)

Let $\pi: X \to X$ be a covering space and a map $f: Y \to X$. If two lifts $\widetilde{f}_1, \widetilde{f}_2: Y \to \widetilde{X}$ of f agree at one point of Y, then \widetilde{f}_1 and \widetilde{f}_2 agree on all of Y.

Proof.

Let A be the set consisting of points of Y where f_1 and f_2 agree. If \widetilde{f}_1 agrees with \widetilde{f}_2 at some point of Y, then A is not empty, and we may assume $A \neq Y$, otherwise there is nothing to prove. For $y \notin A$, let U_1 and U_2 be the sheets containing $f_1(y)$ and $f_2(y)$ respectively. By continuity of f_1 and f_2 , there exists a neighborhood N of y mapped into U_1 by f_1 and mapped into U_2 by f_2 . Since $f_1(y) \neq f_2(y)$, then $U_1 \cap U_2 = \emptyset$. This shows $f_2 \neq f_2$ throughout the neighborhood N, and thus $Y \setminus A$ is open, that is Ais closed. To see A is open, for $y \in A$ one has $f_1(y) = f_2(y)$, and thus $U_1 = U_2$. Since $\pi|_{\widetilde{U}_1}$ is a diffeomorphism, one has $\widetilde{f}_1 = \pi^{-1} \circ f = \widetilde{f}_2$ on \widetilde{U}_i . This shows the set A is open, and thus A = Y since Y is connected.

Theorem (homotopy lifting property)

Let $\pi\colon\widetilde{X}\to X$ be a covering space and $F\colon Y\times I\to X$ be a homotopy. If there exists a map $\widetilde{F}\colon Y\times\{0\}\to\widetilde{X}$ which lifts $F|_{Y\times\{0\}}$, then there exists a unique homotopy $\widetilde{F}\colon Y\times I\to\widetilde{X}$ which lifts F and restricting to the given \widetilde{F} on $Y\times\{0\}$. Furthermore, if F is stationary on A, so is \widetilde{F} .

Sketch.

- ① Step one: Let's construct a lift $\widetilde{F}: N \times I \to \widetilde{X}$ for some neighborhood N in Y of a given point $y_0 \in Y$.
- 2 Step two: Let's show the lift construct in step one is unique.
- **3** Conclusion: Since the \widetilde{F} constructed above on sets of the form $N \times I$ are unique when restricted to each segment $\{y\} \times I$, they must agree whenever two such sets $N \times I$ overlap, which gives well-defined \widetilde{F} on $Y \times I$.

Proof.

point $(y_0, t) \in Y \times I$ has a product neighborhood $N_t \times (a_t, b_t)$ such that $F(N_t \times (a_t, b_t))$ is contained in an evenly covered neighborhood of $F(y_0, t)$. By compactness of $\{y_0\} \times I$, finitely many such products $N_t \times (a_t, b_t)$ cover $\{y_0\} \times I$. This implies that we can choose a single neighborhood N of y_0 and a partition $0 = t_0 < t_1 < \cdots < t_m = 1$ of I such that for each i, one has $F(N \times [t_i, t_{i+1}])$ is contained in an evenly covered neighborhood U_i . Suppose F has been constructed on $N \times [0, t_i]$, starting with the given F on $N \times \{0\}$. Since U_i is evenly covered, there is an open set U_i of X projecting homeomorphically onto U_i by π and containing the point $F(y_0, t_i)$. After replacing N by a smaller neighborhood of y_0 we may assume that $F(N \times \{t_i\})$ is contained in U_i .

Here we give a proof of step one. Since F is continuous, every

Continuation.

Now we can define \widetilde{F} on $N \times [t_i, t_{i+1}]$ to be the composition of F with the homeomorphism $\pi^{-1} \colon U_i \to \widetilde{U}_i$ since

 $F(N \times [t_i, t_{i+1}]) \subseteq U_i$, After a finite number of steps we eventually get a lift $F: N \times I \to X$ for some neighborhood N of y_0 .

Corollary (path lifting property)

Let $\pi\colon X\to X$ be a covering space. Suppose $\gamma\colon I\to X$ is any path, and $\widetilde{x}\in\widetilde{X}$ is any point in the fiber of $\pi^{-1}(\gamma(0))$. Then there exists a unique lift $\widetilde{\gamma}\colon I\to\widetilde{X}$ of γ such that $\widetilde{\gamma}(0)=\widetilde{x}$.

Corollary (monodromy theorem)

Let $\pi \colon \widetilde{X} \to X$ be a covering space. Suppose γ_1 and γ_2 are paths in X which are homotopic, and $\widetilde{\gamma}_1, \widetilde{\gamma}_2$ are their lifts with the same initial point. Then $\widetilde{\gamma}_1$ is homotopic to $\widetilde{\gamma}_2$.

Corollary

Let $\pi: (X, \widetilde{x_0}) \to (X, x_0)$ be a covering space. Then

- **1** The map $\pi_* : \pi_1(\widetilde{X}, \widetilde{x}_0) \to \pi_1(X, x_0)$ is injective.
- whose lifts to X are still loops.
- 3 The index of $\pi_*(\pi_1(X, \widetilde{x}_0))$ in $\pi_1(X, x_0)$ is the degree of covering. In particular, the degree of universal covering equals $|\pi_1(X,x_0)|$.

Theorem (lifting criterion)

Let $\pi: (X, \widetilde{x}_0) \to (X, x_0)$ be a covering space and $f: (Y, y_0) \to (X, x_0)$ be a map. A lift $\widetilde{f}: (Y, y_0) \to (\widetilde{X}, \widetilde{x}_0)$ of f exists if and only if $f_*(\pi_1(Y, y_0)) \subseteq \pi_*(\pi_1(X, \widetilde{x}_0))$.

Proof.

The only if statement is obvious since $f_* = \pi_* \circ f_*$. Conversely, let $y \in Y$ and let γ be a path in Y from y_0 to y. By Corollary 25, the path $f\gamma$ in X starting at x_0 has a unique lift $f\gamma$ starting at \tilde{x}_0 , and we define $f(y) = f\gamma(1)$.

To see it's well-defined, let γ' be another path from y_0 to γ . Then $(f\gamma')\cdot(\overline{f\gamma})$ is a loop h_0 at x_0 with

 $[h_0] \in f_*(\pi_1(Y, y_0)) \subseteq \pi_*(\pi_1(X, \widetilde{X}_0))$. This means there is a homotopy H of h_0 to a loop h_1 that lifts to a loop \widetilde{h}_1 in \widetilde{X} based at \widetilde{x}_0 .

Apply Theorem 24 to H to get a lifting \widetilde{H} . Since \widetilde{h}_1 is a loop at \widetilde{x}_0 , so is \widetilde{h}_0 . By Theorem 23, that is uniqueness of lifted paths, the first half of \widetilde{h}_0 is $\widetilde{f}\gamma'$ and the second half is $\widetilde{f}\gamma$ traversed backwards, with the common midpoint $\widetilde{f}\gamma(1)=\widetilde{f}\gamma'(1)$. This shows \widetilde{f} is well-defined.

To see f is continuous, let $U\subseteq X$ be an open neighborhood of f(y) having a lift $\widetilde{U}\subseteq\widetilde{X}$ containing $\widetilde{f}(y)$ such that $\pi\colon\widetilde{U}\to U$ is a homeomorphism. Choose a path-connected open neighborhood V of y with $f(V)\subseteq V$. For paths from y_0 to points $y'\in V$, we can take a fixed path γ from y_0 to y followed by paths η in V from y to points y'. Then the paths $(f\gamma)\cdot(f\eta)$ in X have lifts $(\widetilde{f\gamma})\cdot(\widetilde{f\eta})$ where $\widetilde{f\eta}=\pi^{-1}f\eta$. Thus $\widetilde{f}(V)\subseteq\widetilde{U}$ and $\widetilde{f}|_{V}=\pi^{-1}f$, so \widetilde{f} is continuous at y.

Suppose M is a topological manifold, E is a Hausdorff space and $\pi \colon E \to M$ is a local homeomorphism with the path lifting property. Then π is a covering space.

- 3 Covering space

The classification of the covering spaces

The structure of the deck transformation group

Definition (universal covering)

A simply-connected covering space of X is called universal covering.

Definition (semilocally simply-connected)

A topological space X is called semilocally simply-connected if each $x \in X$ has a neighborhood U such that the inclusion induced map $\pi_1(U,x) \to \pi_1(X,x)$ is trivial.

$\mathsf{Theorem}$

If X is a semilocally simply-connected topological space, then X has a universal covering X.

Theorem

Let X be a semilocally simply-connected topological space. Then there is a bijection between the set of basepoint-preserving isomorphism classes of covering spaces $\pi: (\widetilde{X}, \widetilde{x}_0) \to (X, x_0)$ and the the set of subgroups of $\pi_1(X, x_0)$ obtained by associating the subgroup $\pi_*(\pi_1(\widetilde{X}, \widetilde{x}_0))$ to the covering space $(\widetilde{X}, \widetilde{x}_0)$. If basepoints are ignored, this correspondence gives a bijection between isomorphism classes of covering spaces $\pi: \widetilde{X} \to X$ and conjugacy classes of subgroups of $\pi_1(X, x_0)$.

Corollary

Let X be a semilocally simply-connected topological space. Then the universal covering of X is unique up to isomorphism.

- 3 Covering space

The structure of the deck transformation group

Definition (deck transformation)

Let $\pi \colon \widetilde{X} \to X$ be a covering space. The deck transformation group is following set

$$\operatorname{\mathsf{Aut}}_\pi(\widetilde{X}) = \{f \colon \widetilde{X} \to \widetilde{X} \text{ is homeomorphism } | \ \pi \circ f = \pi \}$$

equipped with composition as group operation.

Definition (normal)

A covering $\pi \colon \widetilde{X} \to X$ is called normal, if any deck transformation acts transitively on each fiber of $x \in X$.

Overview

Let $\pi: \widetilde{X} \to X$ be a covering space. The deck transformation group $\operatorname{Aut}_{\pi}(\widetilde{X})$ acts on \widetilde{X} freely.

Proof.

Suppose $f: \widetilde{X} \to \widetilde{X}$ is a deck transformation admitting a fixed point. Since $\pi \circ f = \pi$, we may regard f as a lift of π , and identity map of \widetilde{X} is another lift of π . By Theorem 23, that is unique lifting property, one has f is exactly identity map since it agrees with identity map at fixed point.

Lemma

Let $\pi \colon \widetilde{X} \to X$ be a normal covering. Then $\widetilde{X}/\operatorname{Aut}_{\pi}(\widetilde{X})$ is homeomorphic to X.

Proof.

Let $\Phi \colon \widetilde{X} / \operatorname{Aut}_{\pi}(\widetilde{X}) \to X$ be the map sending the orbit $\mathcal{O}_{\widetilde{X}}$ to $\pi(\widetilde{X})$, where $\widetilde{X} \in \widetilde{X}$. It's clear Φ is well-defined bijection since $\operatorname{Aut}_{\pi}(\widetilde{X})$ acts on \widetilde{X} fiberwise transitive, and the following diagram commutes

This diagram shows Φ is both continuous and open, since p is the quotient map and π is continuous and open, which shows

 $\widetilde{X}/\operatorname{Aut}_{\pi}(\widetilde{X})$ is homeomorphic to X.

$\mathsf{Theorem}$

Let $\pi: (X, \widetilde{x}_0) \to (X, x_0)$ be a covering space and $H = \pi_*(\pi_1(X, \widetilde{x}_0)) \subset \pi_1(X, x_0)$. Then

- $\mathbf{0}$ π is a normal covering if and only if H is a normal subgroup of $\pi_1(X, x_0)$.
- **2** Aut_{π}(X) is isomorphic to the quotient N(H)/H, where N(H)is the normalizer of H in $\pi_1(X,x_0)$. In particular, if $\pi\colon X\to X$ is the universal covering, then $\operatorname{Aut}_{\pi}(X) \cong \pi_1(X, x_0)$.

- 3 Covering space

The structure of the deck transformation group

Covering of topological manifold

Lemma

Let X be a topological space admitting a countable open covering $\{U_i\}$ such that each set U_i is second countable in the subspace topology. Then X is second countable.

Proof.

Let \mathcal{B}_{α} be a countable base for U_{α} . Its members are by definition open in U_{α} , and as all U_{α} are open in X, these sets are also open in X. So $\mathcal{B} = \bigcup_{\alpha} \mathcal{B}_{\alpha}$ is a countable family of open sets in X. Suppose that $x \in X$ and V is open in X with $x \in V$. Then $x \in U_{\beta}$ for some index β . Now apply the definition of a base to see that for some $B \in \mathcal{B}_{\beta}$ we have $x \in B \subseteq V \cap U_{\beta}$. This $B \in \mathcal{B}$ and $x \in B \subseteq V$. This shows that \mathcal{B} is a countable base for X.

Theorem

Suppose M is a topological n-manifold and let $\pi\colon M\to M$ be a covering map. Then \widetilde{M} is a topological n-manifold.

Proof.

Since π is a local diffeomorphism and M is locally Euclidean, one has \widetilde{M} is also locally Euclidean. Now let's show \widetilde{M} is Hausdorff, let $\widetilde{\kappa}_1,\widetilde{\kappa}_2$ be two distinct points in \widetilde{M} . If $\pi(\widetilde{\kappa}_1)=\pi(\widetilde{\kappa}_2)$ and $U\subseteq M$ is an evenly covered open subset containing $\pi(\widetilde{\kappa}_1)$, then the component of $\pi^{-1}(U)$ containing $\widetilde{\kappa}_1$ and $\widetilde{\kappa}_2$ are disjoint open subsets of \widetilde{M} that separate $\widetilde{\kappa}_1$ and $\widetilde{\kappa}_2$. If $\pi(\widetilde{\kappa}_1)\neq\pi(\widetilde{\kappa}_2)$, there are disjoint open subsets $U_1,U_2\subseteq M$ containing $\pi(\widetilde{\kappa}_1)$ and $\pi(\widetilde{\kappa}_2)$ since M is Hausdorff, and then $\pi^{-1}(U_1)$ and $\pi^{-1}(U_2)$ are disjoint open subsets of \widetilde{M} containing $\widetilde{\kappa}_1$ and $\widetilde{\kappa}_2$, and thus \widetilde{M} is Hausdorff.

To see M is second countable, firstly note that each fiber of π is countable since by Corollary 27 one has the degree of covering less than or equal $|\pi(M,x)|$, and by Theorem 16 one has the fundamental group of a topological manifold is countable. The collection of all evenly covered open subsets is an open covering of M, and therefore has a countable subcover $\{U_i\}$. For any given i, each component of $\pi^{-1}(U_i)$ contains exactly one point in each fiber over U_i , so $\pi^{-1}(U_i)$ has countably many components. The collection of all components of all sets of the form $\pi^{-1}(U_i)$ is a countable open covering of M. Since each such component is second countable, by Lemma 40 one has M is also second countable.

- 4 Continuous group action

A quick review of topology

- 4 Continuous group action Continuous group action

Definition (group action)

Let G be a group and S be a set. A left G-action on S is a function

$$\theta \colon G \times S \to S$$

satisfying the following two axioms:

- **1** $\theta(e,s)=s$, where $e \in G$ is the identity element.
- ② $\theta(g_1, \theta(g_2, s)) = \theta(g_1g_2, s)$, where $g_1, g_2 \in G$.

For convenience we denote $\theta(g,s) = gs$ for $g \in G, s \in S$.

Definition (*G*-set)

Let G be a group. A set S endowed with a left (or right) G-action is called a left (or right) G-set.

Definition

Let G be a group and S be a left G-set.

- **1** For $g \in G$, if gs = s for some $s \in S$ implies g = e, then the group action is called free.
- **2** For $g \in G$, if gs = s for all $s \in S$ implies g = e, then the group action is called effective.
- 3 If for arbitrary $s_1, s_2 \in S$, there exists $g \in G$ such that $gs_1 = s_2$, then the group action is called transitive.

Definition (isotropy group)

Let G be a group and S be a left G-set. For any $s \in S$, the isotropy group of s, denoted by G_s , is the set of all elements of G that fix s, that is

$$G_s = \{g \in G \mid gs = s\}$$

Definition (act by homeomorphisms)

Let Γ be a group and X be a topological space. The group Γ is calld acting X by homeomorphisms, if Γ acts on X, and for every $g \in \Gamma$, the map $x \mapsto gx$ is a homeomorphism.

Definition (topological group)

A group is called a topological group, if it's a topological space such that the multiplication and the inversion are continuous.

Definition (continuous action)

Let X be a topological space and G a topological group. A continuous G-action on X is given by the following data:

- **1** G acts on X by homeomorphisms.
- 2 The map $G \times X \to X$ given by $(g, x) \mapsto gx$ is continuous.

Lemma

Let X be a topological space and Γ a group acting on X by homeomorphisms. Then the quotient map $\pi: X \to X/\Gamma$ is an open map.

Proof.

For any $g \in \Gamma$ and any subset $U \subseteq X$, the set $gU \subseteq X$ is defined as

$$gU = \{gx \mid x \in U\}$$

If $U \subseteq X$ is open, then $\pi^{-1}(\pi(U))$ is the union of all sets of the form gU as g ranges over G. Since $p \mapsto gp$ is a homeomorphism, each set is open, and therefore $\pi^{-1}(\pi(U))$ is open in X. Since π is a quotient map, this implies $\pi(U)$ is open in X/Γ , and therefore π is an open map.

- 4 Continuous group action

Proper action

Definition (proper)

Let X be a topological space and G a topological group. A continuous G-action on X is called proper if the continuous map

$$\Theta \colon G \times X \to X \times X$$
$$(g,x) \mapsto (gx,x)$$

is proper, that is, the preimage of a compact set is compact.

Lemma

Let X be a topological space and G a topological group acting on X continuously. If the action is also proper, then the orbit space is Hausdorff.

Theorem

Let M be a topological manifold and G a topological group acting on M continuously. The following statements are equivalent.

- The action is proper.
- 2 If $\{p_i\}$ is a sequence in M and $\{g_i\}$ is a sequence in G such that both $\{p_i\}$ and $\{g_ip_i\}$ converge, then a subsequence of $\{g_i\}$ converges.
- **3** For every compact subset $K \subseteq M$, the set $G_K = \{g \in G \mid gK \cap K \neq \emptyset\}$ is compact.

Proof.

Along the proof, let $\Theta: G \times M \to M \times M$ denote the map $(g,p)\mapsto (gp,p)$. For (1) to (2). Suppose Θ is proper, and $\{p_i\}$, $\{g_i\}$ are sequences satisfying the hypotheses of (2). Let U and V be precompact² neighborhoods of $p = \lim_{i \to j} p_i$ and $q = \lim_{i \to j} g_i p_i$. The assumption implies $\Theta(g_i, p_i)$ all lie in compact set $\overline{U} \times \overline{V}$ when i is sufficiently large, so there exists a subsequence of $\{(g_i, p_i)\}\$ converges in $G \times M$ since Θ is proper. In particular, this means that a subsequence of $\{g_i\}$ converges in G. For (2) to (3). Let K be a compact subset of M, and suppose $\{g_i\}$ is any sequence in G_K . This means for each i, there exists $p_i \in g_i K \cap K$, which is to say that $p_i \in K$ and $g_i^{-1} p_i \in K$. By passing to a subsequence twice, we may assume both $\{p_i\}$ and $\{g_i^{-1}p_i\}$ converge, and the assumption implies there exists a convergent subsequence of $\{g_i\}$. Since each sequence of G_K has a convergent subsequence, G_K is compact.

For (3) to (1). Suppose $L \subseteq M \times M$ is compact, and let $K = \pi_1(L) \cup \pi_2(L)$, where $\pi_1, \pi_2 : M \times M \to M$ are the projections onto the first and second factors, respectively. Then

$$\Theta^{-1}(L) \subseteq \Theta^{-1}(K \times K) = \{(g, p) \mid gp \in K, p \in K\} \subseteq G_K \times K$$

By assumption $G_K \times K$ is compact, and thus $\Theta^{-1}(L)$ is compact since it's a closed subset of a compact subset, which implies the action is proper.

Corollary

Let M be a topological manifold and G a compact topological group. Then every continuous G-action on M is proper.

- 4 Continuous group action

Properly discontinuous action

Definition (properly discontinuous)

Let Γ be a group acting on a topological space X by homeomorphisms. The action is called properly discontinuous, if every point $x \in X$ has a neighborhood U such that for each $g \in G$, $gU \cap U = \emptyset$ unless g = e.

emma

Suppose Γ be a group acting properly discontinuous on a topological space X. Then every subgroup of Γ still acts properly discontinuous on X.

Lemma

Let $\pi: X \to X$ be a covering space. Then $\operatorname{Aut}_{\pi}(X)$ acts on Xproperly discontinuous.

Proof.

Let $U \subseteq X$ project homeomorphically to $U \subseteq X$. For $g \in \operatorname{Aut}_{\pi}(X)$, if $g(\widetilde{U}) \cap \widetilde{U} \neq \emptyset$, then $g\widetilde{x}_1 = \widetilde{x}_2$ for some $\widetilde{x}_1, \widetilde{x}_2 \in U$. Since \widetilde{x}_1 and \widetilde{x}_2 lie in the same set $\pi^{-1}(x)$, which intersects \widetilde{U} in only one point, we must have $\widetilde{x}_1 = \widetilde{x}_2 = \widetilde{x}$. Then \widetilde{x} is a fixed point of g, which implies g = e by Lemma 37.

Theorem (covering space quotient theorem)

Let E be a topological space and Γ be a group acting on E by homeomorphisms effectively . Then the quotient map $\pi\colon E\to E/\Gamma$ is a covering map if and only if Γ acts on E properly discontinuous. In this case, π is a normal covering and $\operatorname{Aut}_{\pi}(E)=\Gamma$.

Proof.

Firstly, assume π is a covering map. Then the action of each $g \in \Gamma$ is an automorphism of the covering since it's a homeomorphism satisfying $\pi(ge) = \pi(e)$ for all $g \in \Gamma, e \in E$, so we can identify Γ with a subgroup of $\operatorname{Aut}_{\pi}(E)$. Then Γ acts on E properly discontinuous by Lemma 55 and Lemma 56.

Conversely, suppose the action is properly discontinuous. To show π is a covering map, suppose $x \in E/\Gamma$ is arbitrary. Choose $e \in \pi^{-1}(x)$, and let U be a neighborhood of e such that for each $g \in \Gamma$, $gU \cap U = \emptyset$ unless g = 1. Since E is locally path-connected, by passing to the component of U containing e, we may assume U is path-connected. Let $V = \pi(U)$, which is a path-connected neighborhood of x. Now $\pi^{-1}(V)$ is equal to the union of the disjoint connected open subsets gU for $g \in \Gamma$, so to show π is a covering space it remains to show π is a homeomorphism from each such set onto V. For each $g \in \Gamma$, the restriction map $g: U \to gU$ is a homeomorphism, and the diagram

Thus it suffices to show $\pi|_{U}: U \to V$ is a homeomorphism. It's surjective, continuous and open, and it's injective since $\pi(e) = \pi(e')$ for $e, e' \in U$ implies e' = ge for some $g \in \Gamma$, so e = e' by the choice of U. This shows π is a covering map. To prove the final statement of the theorem, suppose the action is a covering space action. As noted above, each map $e \mapsto ge$ is a covering automorphism, so $\Gamma \subseteq \operatorname{Aut}_{\pi}(E)$. By construction, Γ acts transitively on each fiber, so $Aut_{\pi}(E)$ does too, and thus π is a normal covering. If φ is any covering automorphism, choose $e \in E$ and let $e' = \varphi(e)$. Then there is some $g \in \Gamma$ such that ge = e'. Since φ and $x \mapsto gx$ are deck transformation that agree at a point, so they are equal. Thus $\Gamma = \operatorname{Aut}_{\pi}(E)$.

- 4 Continuous group action

Relation between proper and properly discontinuous

Lemma

Suppose G is a discrete topological group acting continuously and freely on a topological manifold M. The action is proper if and only if the following conditions both hold.

- **1** *G* acts on *M* properly discontinuous.
- ② If $p, p' \in M$ are not in the same orbit, then there exist a neighborhood V of p and V' of p' such that $gV \cap V' = \emptyset$ for all $g \in G$.

Proof.

Firstly, suppose that the action is free and proper and let $\pi\colon M\to M/G$ denote the quotient map. By Lemma 51, the orbit space M/G is Hausdorff. If $p,p'\in M$ are not in the same orbit, we can choose disjoint neighborhoods W of $\pi(p)$ and W' of $\pi(p')$.

Firstly, suppose that the action is free and proper and let $\pi: M \to M/G$ denote the quotient map. By Lemma 51, the orbit space M/G is Hausdorff. If $p, p' \in M$ are not in the same orbit, we can choose disjoint neighborhoods W of $\pi(p)$ and W' of $\pi(p')$, and then $V = \pi^{-1}(W)$ and $V' = \pi^{-1}(W')$ satisfy the conclusion of condition (2). To show G acts on M properly discontinuous, we need to show for each $p \in M$, there exists an open neighborhood U of p such that $gU \cap U = \emptyset$ unless g = e. Let V be a precompact neighborhood of p. By Theorem 52, the set $G_{\overline{V}}$ is a compact subset of G, and hence finite because G is discrete, so we write $G_{\overline{V}} = \{e, g_1, \dots, g_m\}$. Shrinking V if necessary, we may assume that $g_i^{-1}p \notin \overline{V}$ for $i=1,\ldots,m$. Consider open subset

$$U = V \setminus (g_1 \overline{V} \cup \cdots \cup g_m \overline{V})$$

It's clear $gU \cap U = \emptyset$ unless g = e.

Then $V = \pi^{-1}(W)$ and $V' = \pi^{-1}(W')$ satisfy the conclusion of condition (2).

To show G acts on M properly discontinuous, we need to show for each $p \in M$, there exists an open neighborhood U of p such that $gU \cap U = \emptyset$ unless g = e. Let V be a precompact neighborhood of p. By Theorem 52, the set $G_{\overline{V}}$ is a compact subset of G, and hence finite because G is discrete, so we write $G_{\overline{V}} = \{e, g_1, \ldots, g_m\}$. Shrinking V if necessary, we may assume that $g_i^{-1}p \notin \overline{V}$ for $i = 1, \ldots, m$. Consider open subset

$$U = V \setminus (g_1 \overline{V} \cup \cdots \cup g_m \overline{V})$$

It's clear $gU \cap U = \emptyset$ unless g = e.

Conversely, assume that (1) and (2) hold. Suppose $\{g_i\}$ is a sequence in G and $\{p_i\}$ is a sequence in M such that $p_i \to p$ and $g_i p_i \rightarrow p'$. If p and p' are in different orbits, there exist neighborhoods V of p and V' of p' as in (2), but for large enough i, we have $p_i \in V$ and $g_i p_i \in V'$, which contradicts the fact that $g_i V \cap V' = \emptyset$. This shows p and p' are in the same orbit, so there exists $g \in G$ such that gp = p'. This implies $g^{-1}g_ip_i \to p$. Since G acts on M properly discontinuous, there exists an open neighborhood U such that $gU \cap U = \emptyset$ unless g = e. For large enough i, one has p_i and $g^{-1}g_ip_i$ are both in U, and by the choice of U one has $g^{-1}g_i = e$. So $g_i = g$ when i is large enough, which certainly converges. By (2) of Theorem 52, the action is proper.

Theorem

Let M be a topological manifold and $\pi: M \to M$ be a normal covering space. If $Aut_{\pi}(M)$ is equipped with the discrete topology, then it acts on M continuously, freely and properly.

Proof.

By Lemma 37 one has $\operatorname{Aut}_{\pi}(M)$ acts on M freely and the action is also continuously since $Aut_{\pi}(M)$ is equipped with discrete topology. To see the action is properly, it suffices to show the action satisfies the two conditions in Theorem 52.

- (a) By Lemma 56, one already has $Aut_{\pi}(M)$ acts on M properly discontinuous.
- (b) Since $\pi \colon \widetilde{M} \to M$ is a normal covering, one has the orbit space is homeomorphic to M by Lemma 38 and thus orbit space is Hausdorff. If $\widetilde{x}_1, \widetilde{x}_2 \in M$ are in different orbits, we can choose disjoint neighborhoods W of $\pi(\widetilde{x}_1)$ and W' of $\pi(\widetilde{x}_2)$ since orbit space is Hausdorff, and it follows that $V = \pi^{-1}(W)$ and $V' = \pi^{-1}(W')$ satisfy the second condition.

Thanks!