L15 – PID Control Design

$$H(s) = \frac{\sqrt{cs+1}}{cs+1} \qquad (x>1)$$

doublet

Lead freq selective differentiator.

** This termination for derivatives.

Winax

When $A = SiV \left(\frac{d-1}{d+1}\right)$. A = 10 $A = 55^{\circ}$

· Whox = $\sqrt{\omega_p \cdot \omega_z} = \frac{1}{2R}$.

 Θ $W_{c} = \omega_{max}$ \rightarrow Θ Adjust \forall_{p} $\cdot |L(j \omega_{max})| = 1$

Example. In f= ms+105.

- Design steps.

 Base blot
- V 3 Implement a lead such that.

 WC ~ Whox.
- V 3 Set $\not\vdash$ such that. $w_c = w_c^*$ $\Rightarrow |L(jw_c^*)| = 1$
- Trade-off (+) Amax 1. (Amax < 90°)

 X 1 (-) I low-frag gain / 1 high-frag gards.

< PID Gontroller Design >.

"Series form".

$$\beta = ms^2$$

$$\frac{1+cb}{x} = \frac{1+cb}{x}$$

(a)
$$\frac{X}{D} = \frac{D}{1+CD}$$
. Load Sensitivity (1)

Dist rejection.

$$= \frac{1}{1+C \cdot ms^2} = \frac{1}{ms^2 + Ccs}$$
 " byhavnic Stiffner"

PID for CLS) for loop shapping.

· PI. is a spectal corse of Long comp.

L(5) = C(5) P(5)

TJSt/ · H(5) = 1+ T35. ZiT o Bode plot of CCS). Kpx. Noise attention = W; Cox Whax = We

PID tuning

p(5) = m5-

Decide Wit \mathcal{O}

Sonsor BW.

power Amp BW.

power Amp BW.

High-Ang res.

Implement

Set Kp. | P1. JR. = 1.

3 Set kp such that
$$w_c = w_c^*$$
(Parker kp $v \to t_p^*$)

Introduce Integrator "Later"

$$\omega : < \omega_i < \omega_c$$
($\omega_i = \frac{1}{10} \omega_c$.)

Introduce LPF:
$$(w_f = 10 \text{ Wc})$$