MAC 105 – Fundamentos de Matemática para Computação

$3^{\underline{\mathbf{a}}}$ Lista de Exercícios 1.0 -8/6/2017 – Não vale nota

A maior parte desses exercícios pedem, ou para argumentar/fazer contas (mod p) ou para trabalhar em \mathbb{Z}_p . É mais questão de conveniência: algo que nos inteiros se expressa como $\equiv \pmod{p}$, em \mathbb{Z}_p se expressa como igualdade.

- 1. Resolva, em inteiros, as seguintes equações, ou mostre, conforme o caso, que não tem solução:
 - (a) 250x 147y = 12
 - (b) 363x 48y + 135z = 2017
 - (c) $26x \equiv 1 \pmod{31}$
- 2. Note que as noções de "divisor comum" e "máximo divisor comum" têm sentido para qualquer conjunto de inteiros, não só para conjuntos de tamanho 2. Com isso, mostre que se $a, b, c \in \mathbb{Z}$, então

$$mdc(a, b, c) = mdc(mdc(a, b), c).$$

- 3. Prove que se p é primo, e $a \in \mathbb{Z}_p$, a equação $x^2 = a$ tem no máximo duas raízes em \mathbb{Z}_p (ou seja, cada elemento de \mathbb{Z}_p tem no máximo duas raízes quadradas). Dê um exemplo, com p composto, de um elemento $a \in \mathbb{Z}_p$ que tem mais que duas raízes quadradas.
- 4. Se p é primo, e $0 \neq a \in \mathbb{Z}_p$, então sabemos que existe $x \in \mathbb{Z}_p$ tal que ax = 1. Dizemos que x é o *inverso* de a. Mostre que:
 - (a) Cada elemento não nulo de \mathbb{Z}_p tem um único inverso.
 - (b) Os únicos elementos de \mathbb{Z}_p que são iguais ao seu inverso são 1 e -1.
- 5. Prove o Teorema de Wilson: Se p é um primo positivo, então $(p-1)! \equiv -1 \pmod{p}$.
- 6. Prove que se p é primo, $x, y \in \mathbb{Z}$ e $xy \equiv 0 \pmod{p}$, então $x \equiv 0 \pmod{p}$ ou $y \equiv 0 \pmod{p}$. Mostre que essa implicação não é verdadeira se p for composto.
- 7. Mostre que se p é primo e $r, s \in \mathbb{N}$ são tais que $r \equiv s \pmod{p-1}$, então, para todo $x \in \mathbb{Z}_p, x^r = x^s$.
- 8. Calcule o resto da divisão de $(1234^{567} + 8)^{910}$ por 11.