CSC 591 Cryptography

10/24/2018

Lecture 11: Message Authentication Code (MAC)

Lecturer: Alessandra Scafuro Scribe: Mingkang Zhuang

Security of Message Authentication Code

In previous lectures, we learned about security for encryption of messages, we focused on the *confidentiality* of encryption schema, and whether an adversary can *distinguish* the ciphertext. But it raise another problem about *integrity*, how do we *authenticate* message we received is sent from the sender, not replaced or modified by a third party.

In this lecture, we learn the concept and security of Message Authentication Code (MAC).

Definition

We see that encryption does not solve problem of integrity, so additional mechanism is needed to let communicating parties to know whether or not a message was tampered with. MAC is a tool aims to prevent an adversary from modifying or replacing the message sent from one to another, without detecting the message is not from the original sender.

Definition A message Authentication Code is a tuple of algorithms $\Pi = (\text{Gen, Mac, Verify})$ where $\text{Gen}(1^n)$ outputs a key k, Mac(m, k) outputs a tag t and Verify(k, m, t) outputs 1 if the tag is correct (and 0 otherwise).

Formal Representation

The message authentication experiment Mac-Forge(A, Π , n)

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary \mathcal{A} is given oracle access to the MAC function (Mac(k, m)), and can query this oracle with input m_i and obtain outputs t_i . Let \mathcal{Q} be the set of queries asked by \mathcal{A} to the MAC oracle.
- 3. When the challenger is ready, the adversary outputs a tuple (m^*, t^*) .
- 4. The adversary wins if $Verify(m^*, t^*) = 1$, and $m^* \notin \mathcal{Q}$.

Unforgeability: even after observing many pairs of (m_i, t_i) , the adversary is not able to generate a valid new tag for a new message:

$$Pr[Mac - Forge_{A,\Pi}(n) = 1] \le negl(n)$$

Scheme

MAC

$$Gen(1^n) \to k$$

 $Mac(m,k) \to t$

L11: Message Authentication Code (MAC)-1

```
Verify(k, m, t) outputs 1 if the tag matches the massage outputs 0 otherwise
```

Security Proof

We construct a MAC scheme Π using PRF F as follow:

- $Gen(1^n) \to k$
- Mac(k, m):
 - 1. $t = F_k(m)$
 - 2. Output m, t
- Verify(k, m, t):

Output 1 if $t = F_k(m)$ Output 0 if $t \neq F_k(m)$

Theorem: If \mathcal{F} is a PRF, then Π is a secure MAC scheme.

Proof: Towards a contradiction, assume there exists an adversary \mathcal{A}_{Forge} wins the forge game, \mathcal{A}_{Forge} outputs a pair (m^*, t^*) such that $t^* = F_k(m^*)$, with probability negl(n)

we can construct an adversary \mathcal{A}_F that distinguishes the output of an PRF from truly random function. \mathcal{A}_F has oracle access \mathcal{O} with \mathcal{F} and Truly random function:

- 1. when \mathcal{A}_{Forge} queries Game Π with input m_i , \mathcal{A}_F sends m_i to oracle \mathcal{O} and obtain y_i and sends to \mathcal{A}_{Forge}
- 2. when \mathcal{A}_{Forge} outputs (m^*, t^*) , \mathcal{A}_F sends m^* to oracle and obtain z
- 3. if $z = t^*$ output 1 else output 0

Analysis:

 \mathcal{A}_{Forge} simulates exactly as \mathcal{A}_F , which wins the game with probability of negl(n). So Π is a secure MAC scheme.