模拟电路实验报告 的方头及大学的过

姓名:张泽俊 学号: 11210119 班级: 3 实验日期: 2013.11.30

共射极单管放大电路研究

1. 实验目的

- > 分析共射极放大电路的性能. 加深对共射极放大电路放大特性的理解:
- ▶ 学习共射极放大电路静态工作点的调试方法,分析静态工作点对放大器性能的影响。
- ▶ 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

2. 实验原理

共射极放大电路既能放大电流又能放大电压,故常用于小信号的放大。改变电路的静态工作点可调节电路的电压放大倍数,该电路输入电阻居中,输出电阻大,放大倍数大,适用于多级放大电路的中间级。实验电路如图 1 所示,图 1 中电路为一电阻分压式工作点稳定的共射极单管放大器。其中 R_m 、 R_{62} 组成分压电路构成三极管 T 的偏置电路,用来固定基极电位。发射极电阻 R_{E1} 和 R_{E2} 用于稳定放大器静态工作点。 R_m 、 R_{62} 、 R_c 、 R_c 构成放大器直流通路。 C_1 、 C_2 为耦合电容,起隔直流作用,即隔断信号源、放大器和负载之间的通路,使三者之间无影响;对交流信号起耦合作用,即保证交流信号畅通无阻地通过放大电路。 C_E 为旁路电容,其大小对电压增益影响较大,是低频响应的主要因素。当在放大器的输入端加上输入信号 V_c 后,便可在放大器的输出端得到一个与输入信号相位相反,幅度被放大了的输出信号 V_o ,从而实现了电压的放大。

图 1 中,当流过分压电阻 R_{m} 和 R_{m2} 的电流远远大于晶体管 T 的基极电流时 $(- 般为 \, 5 \sim \! 10 \, \text{倍})$,则 T 的静态工作点为

模拟电路实验报告のカナガス、それは

$$V_{CEQ} \approx V_{CC} - I_{CQ} \left(R_C + R_{E1} + R_{E2} \right)$$

值得注意的是, 静态工作点是直流量, 必须进行直流分析或用直流电压表和电流 表测量。

图 1. 共射极单管放大电路原理图

电压放大倍数 4. 为

$$A_{V} = -\beta \frac{R_{C} / / R_{L}}{r_{hv} + (1 + \beta) R_{E2}}$$

式中
$$r_{be} \approx 300 + \beta \frac{26(mV)}{I_{EQ}(mA)}$$

输入电阻

$$R_{i} = R_{B1} / / R_{B2} / / [r_{br} + (1 + \beta)R_{E2}]$$

输出电阻 $R_0 = R_C$ 。

2

模拟电路实验报告 的方式及大学和

2.1 放大器静态工作点的测量与调试

1) 静态工作点的测量

短接图 1 所示电路的输入端,分别用电压表依次测量晶体管三个管脚对地的电压 V_B 、 V_C 和 V_E (注意,测量静态工作点时,电压表应放在直流档)。集电极电流可以用间接测量法,方法是由测量所得的 V_C 或 V_B ,计算出 I_C 。即

$$I_{\scriptscriptstyle C} \approx I_{\scriptscriptstyle E} = \frac{V_{\scriptscriptstyle E}}{R_{\scriptscriptstyle E1} + R_{\scriptscriptstyle E2}} \, \vec{\infty} \, \vec{A} \, I_{\scriptscriptstyle C} = \frac{V_{\scriptscriptstyle CC} - V_{\scriptscriptstyle C}}{R_{\scriptscriptstyle C}} \, , \label{eq:Ic}$$

2) 静态工作点的调试

放大器静态工作点的调试是指对三极管集电极电流 I_c (或 V_{ce})的调整与测试。共射极单管放大电路的电路参数对静态工作点的影响如图 2 所示。

图 2. 电路参数对静态工作点的影响

静态工作点是否合适,对放大器的性能和输出波形都有很大影响。静态工作点对V。波形失真的影响如图 3 所示。如果工作点偏高,放大器加入交流信号后易产生饱和失真:如果工作点偏低,易产生截止失真,这都不符合不失真放大的要求。所以在选定工作点后还要进行动态调试,即在放大器的输入端加一定的输入电压V,,监测输出电压V。的大小和波形是否满足要求。如不满足,则应重新调节静态工作点。

模拟电路实验报告 5 为于许及大学和

工作点的偏高和偏低不是绝对的,应该是相对信号的幅度而言。如输入信号幅度很小,即使工作点偏高或偏低也不一定会出现失真。确切的说,产生波形失真是信号幅度与静态工作点设置配合不当所致。如需满足较大信号幅度的要求,静态工作点最好尽量靠近交流负载线的中点。

图 3. 静态工作点对 Vo 波形失真的影响

2.2 放大器动态指标的测量

放大器动态指标包括电压放大倍数、输入电阻、输出电阻、最大不失真输出 电压(动态范围)和通频带等。

1) 电压放大倍数 4 的测量

$$A_{vo} = V_o / V_i$$
 (输出开路) 或 $A_{vL} = V_L / V_i$ (输出带负载)

2) 输入电阻 R, 的测量

放大器输入电阻的大小,反映放大器消耗前级信号功率的大小,是放大器的重要指标之一。测量原理如图 4 所示,在被测放大器前串联一个可变电阻 R_s ,并加入信号。分别测出电阻 R_s 两端对地的电压 U,和 U,则放大器的输入电阻 R,为

$$R_i = \frac{U_i}{U_s - U_i} R_S$$

3)输出电阻 R。的测量

放大器输出电阻的大小表示该放大器带负载的能力。输出电阻 R. 越小,放

模拟电路实验报告 のカテザダメデナはま

大器输出等效电路越接近于恒流源,这时放大器带负载能力越强。输出电阻的测 量为后级电路的设计提供了输入条件。 R 的测量原理如图 4 所示, 先不加负载 R_{i} , 信号从 U_{i} 点加入,测出开路电压 U_{i} : 然后接上负载 R_{i} , 测得 U_{i} , 则放大 器的输出电阻为

4) 最大不失真输出电压 🗸 。 的测量 (最大动态范围)

如上所述,为了得到最大动态范围,应将静态工作点调在交流负载线的中点。 为此在放大器正常工作的条件下,逐步增大输入信号的幅度,用示波器观察10, 当输出波形同时出现饱和失真和截止失真时,说明静态工作点已经调在交流负载 线的中点。然后再反复调整输入信号,使输出信号幅度最大且无失真时,用万用 表交流毫伏档测出 V。,或者用示波器直接读出 V。,。

3. 实验器材

序号	名 称	型号与规格	数量	备注
1	直流稳压电源	DP1308A	1	
2	数字万用表	DM3051	1	
3	函数信号发生器	DG1022	1	
4	面包板		1	

5 电阻、电容、三极	三极管\$9013一个, 100KΩ可变电阻1个, 62kΩ电阻1个, 20kΩ电阻1个, 5.1kΩ电阻2个, 2kΩ电阻1个, 820Ω电阻1个, 10 μF 电解电容2个, 47 μF 电解电容1个,	12
------------	---	----

4. 实验内容

1) 静态工作点的测试 (理论值 β = 80)

检测需要用到的电子元器件,并且测量电阻电容的精确值,按图1所示连接 电路。接通直流电源前, 先将电位器 R。调至最大, 函数信号发生器输出调整为 零。然后接通+12V 电源,调节 R_p 到一合适数值,使 $I_{co}=1mA$ (即 $V_{Re}=5.1V$ 或 者 V_{co} = 6.9V),测量静态工作点,即测量 V_{co} 、 V_{eo} 、 V_{eo} ,并计算 I_{eo} ,将数据填

入表 1 中。本实验所有表格中带阴影的空格是需要测量的, 无阴影的是估算值

	表 1.	二极官静心工作	出的测试	
	V _{cQ} /V	V _{BQ} /V	V _{EQ} /V	I_{EQ} / mA
理论值	6.9	1.72	.005	10/25
测量值	6.90	1.65	1.03	1.01

2) 测量电压放大倍数

当V_{8c} = 5.1V 时,在放大器的输入端 B 点处加入 f=1kHz,峰-峰值 $V_{w-p}=100mV$ 的正弦信号,用示波器观察放大器输出电压 V_{o} 波形,在波形不失真 的条件下用万用表的交流毫伏档分别测量 $R_{L}=2k\Omega$ 和输出端开路时的 V_{L} 值,并 用示波器观察1,和1,的相位关系,填入表2中。

表 2. 三极管放大倍数的测定

13.74	V_O/mV	Avo	V _{ot.} / mV	A ₁₂
理论值	777.45	21.99	218.99	6-19
实测值	764	21.6	122	6.27

模拟电路实验报告

3) 观察静态工作点对输出波形失真的影响(带负载)

调节 R_p 使三极管分别处于截止区和饱和区(使 V_{co} 分别为最大和最小)(R_p 旋至最大和最小),输入端 B 点加入 f=1kHz 的正弦信号。从零逐渐加大输入信号 幅度,用示波器观察输出波形(带负载),结果填入表3中。

4) 测量最大不失真输出电压(带负载)

逐渐加大 B 点输入信号, 若出现饱和失真, 则增大 R。阻值使工作点下降, 反之若出现截止失真则减小 R。阻值, 提高工作点。如此反复调节, 直到输出波 形同时出现饱和失真和截止失真,测量 V_{CEO} 、 I_{CO} ,将结果填入表 3 中。并在此 后的实验中保持最佳工作点。随后逐渐减小输入信号幅度, 使输出波形刚好不失 真,用示波器和万用表测出 Von-a和 Vonex 的值,并将测量结果计入表 3 中。

表 3. 调节失真和最佳工作点的参数

	V_{cQ}/V	I _{CQ} / mA	V _{EQ} / V	V _{CEQ} /V	输出波形(示意)	失真类型
工作	8-81	0.737	0.641	7.46	W	截止
点偏	235	1-974	1.95	0.292	MM	4240
最佳 工作 点	4.40	1.485	1.60	2.80	最大不失真输出 に V _{Omax} = 人 50 \ V _{Op-p} = 4、23	1

模拟电路实验报告 的方头及大子和

5) 测量输入电阻和输出电阻

测量输出电阻时,在输入端 B 点加入 f=1kHz, $V_{ip-p}=200mV$ 的正弦波信号, 令 R_L 分别为 $2k\Omega$ 和空载,在输出信号 U_o 不失真的情况下,用万用表或示波器测 出 U_0 和 U_1 的值, 计入表 4 中。

测量输入电阻时,在输入端 A 点加入 f=1kHz, $V_{u-p}=200mV$ 的正弦波信号, 在输出信号不失真的情况下,用万用表或示波器测出 U_x 和 U_i 的值,填入表 4中。

表 4 检入由四、输出由阳的相关参数测试

测试条件	U_o/V	U_L/V	$R_o/k\Omega$	U_s / mV	U_i/mV	$R_i/k\Omega$
测量值	1.54	0.457	4.74	70.7	41.9	7.42

6) 测量幅频特性(带负载)

改变输入信号的频率 (B 点输入,幅值不变, $V_{m-n}=600mV$),用逐点法测 出相应的输出电压 V_o 值(带负载,使用万用表的交流毫伏档测有效值),填入表 5中,据此测出上下限频率。 2954:

来 c 給 λ 信品额室对给中中压的影响

	1 000	4X J. 4M/	いロラ大手	V) 418 CT -CT	EHORONO			
f / Hz	20	1.3566	50	100	200	500	lk ICOL	10k
V _o / V	0.471	1.07	1.26	1.22	134	134	135	135
f / Hz	100k	200k	300k	400k	500k	800k	820k	1M
V_o/V	135	1.35	1-395	1.35	134	1.34	134	1.34

上限频率: 4001474.

7) 旁路电容 C, 对放大电路的影响

 C_E 对放大器的增益有很大影响,按表 6 所示条件进行测量,并简述 C_E 是如 何对放大器的增益产生影响的。

下限频率:

ris.

模拟电路实验报告 6 为于许及大子和过

表 6. 旁路电容对增益的影响

測试条件 V_o/V A_{10} 保持最佳工作点, $R_L = \infty$ 、 $R_S = 0$. $C_E = 47 \mu F$ 1.5 4 2 $N_{0-p} = 200 mV$, f = 1 kHz 不接 C_E 0、337 4、77

8) 用 Multisim 仿真实验内容 3) 和 7)。结果填入表 7 和表 8 中。

表 7. 调节失真的参数 (Multisim 仿真

表 7. 调节失真的参数(Multisim 仿真)						
	V _{CEQ} /V	I _{CQ} / mA	输出波形	失真类型		
	100					
				100		
	10 10					
工作点偏离			-			
	G-10-00					
		6				
		1000				
	1 1 1 1	- 55		-		
			and the same of the same of			

表 8. 旁路电容对增益的影响(Multisim 仿真)

& O. 75	田屯台对相皿印象等	Charastin byser	
测试条件	V ₀ / V	Avo	
保持最佳工作点,	$C_E = 47 \mu F$	P. H. William	
$R_L = \infty$, $R_S = 0$ $V_{m-p} = 200mV$, $f = 1kHz$	不接℃。		

模拟电路实验报告●为方头及大学和过

5. 思考题

1. 调整静态工作点时,R_m要用一固定电阻与电位器串联,而不能直接用电位器, 为什么?

如果不接保护电阻,调节电信具器对极号使失路中电阻的人员的发展的电阻的人员。

2. 若将NPN型三极管换成PNP型的,试问 $V_{\rm CC}$ 及电容的极性应如何改动?

VU至成的一(2V, 电容松性地区反对