# Quality Inspection Cell:

# **Burrs detection**

Mechatronic Design MR3009

P4.

José Angel Soto Hernández Nathalie Vilchis Lagunes Hector Everardo Martínez Cisneros Teclo Moreno Rodriguez Estefany Morales Valdes Diego A. Santisteban Pozas Jose Antonio Arrambide Garza

A01282300

A01252067 A01281880 A01154423 A00817790

A01039978 A01364838



24/11/2021



# **Opportunity definition**

# Original Problem

During the drilling in aluminum process the presence of burrs is likely to happen.

Burrs might represent a high risk in the subsequent process of the product



# Suggested solution

Automate the inspection of drilled aluminum profiles. Integrate machine learning, computer vision and cobot usage to sort profiles (accepted and rejected parts). Eliminate human interaction.



# Original Value Proposition



### **Increase**

- Adaptability
- Detection speed
- Accuracy
- Higher quality



#### Reduce

- Price
- Workspace
- Hardware/Software requirements

Quality
Inspection
Cell:
Burrs
detection

## Create



- User-friendly interface
- Database
- Alarms
- Machine learning

## **Eliminate**



- Overhead
- Human error

# Value Proposition Conclusion

## **Achieved**

- High detection accuracy
- Higher quality products,
- High adaptability
- Machine Learning
- Result Database

## NOT Achieved

- Eliminate all human interaction
- Real-time results
- User friendly interface
- Reduction of workspace
- Reduction of hardware and software requirements



# Final Product Requirements

## **Achieved**

- Non invasive operation
- Cobot-Python-Orange communication
- Burr classification (92.2%)
- Creating knowledge (databases)
- Machine learning model (Orange)

## **Partially Achieved**

- Reduce workstation accidents
- Working station
   integrated in single
   working table
   (Simulated)
- Reduce workforce (simulated - 1 person)

## **NOT Achieved**

- Near zero human interaction
- Response time less than 5 seconds
- Avoid product damage
- Avoid infrastructure damage
- Real time CV



## Final Design details

- Final model is fully simulated in RobotStudio
  - UR3 CAD model imported to RobotStudio
  - Custom controller designed for six axis robot with an ABB 140 driver and
     Robot Flex 125 toploader mechanical template.
- Communication done through python
  - Robotstudio -> Python -> Orange -> Python -> Robotstudio
- Classification and predictions done in orange

## **Cobot station**







## **Verification results**

### 1. Testing plan

- 1. Classification
  - We ran several tests with assorted images with burrs and no burrs
  - Each image went from Original folder -> Stored folder -> Final folder
  - Orange reads image from stored folder
  - Prediction from image is sent from python to Robotstudio, cleans stored folder places the used image in final folder (to prevent repetition)
  - UR3 takes a pre programmed path according to the classification results
  - UR3 resets to home position and python communication is closed
  - Test concludes when the simulation places the profile in the correct bin and the program resets.

# Prototype Details: Process Loop

(Continue simulation)

**Original** 



**Operator** 

Process lines
=
handled w/Python

# Simplified Orange program

## Original



- Logical regression training model was selected (Better results than SVM and random Forest)
   AC > 92%
- Grayscale database was used for training

## Simplified



- Logic regression model is loaded into new orange file
- Picture saved by python in Store folder is loaded for classification
- Much faster orange results
- No need to retrain every new run

# Python - Robotstudio connection and initiation of python script

- Simulation starts in RobotStudio
- RobotStudio creates server host; waits for python connection confirmation.
- Cobot takes path according to classification results



- After Orange finishes image analysis, user needs to press any key to continue
- . Classification results will be stored in a database
- 4. Python reads and sends results to Robotstudio



```
C:\Users\JAAG\AppData\Local\Programs\Python\Python39\python.
b'Conexion correcta'
C:/Users/JAAG/Desktop/ProyectoCobot/Orig/2RG_F_Crop.JPG
C:/Users/JAAG/Desktop/ProyectoCobot/Store/2RG_F_Crop.JPG
Press any key to continue . . .

C:/Users/JAAG/Desktop/ProyectoCobot/Final/2RG_F_Crop.JPG
Con rebaba
1
```

Python image manipulation



- Orig folder holds pictures to analyze
- Python extracts a random picture from Orig and moves it to Store folder
- Orange reads picture from Store folder
- 4. Python moves picture from store folder to Final folder \*This is to prevent image repetition

# Orange single image results

- ☐ As it can be seen Logistic Regression model gives a correct prediction
- ☐ The prediction result is stored in a database and read by python
- ☐ RobotStudio receives prediction result from python



# Cobot path for image with burrs



- Cobot wont move from classification area (between cameras) until it receives
  Orange's result from python
- Red path means the cobot is holding the profile
- After leaving profile the Cobot returns to its original location.

# Pre programed paths

Path with no burrs



Path with burrs



## **Video test results**



## **Test results**

- The model of classification of images with or without burrs in orange is of **92.9%**
- Times of simulation experiment results:

| Steps/Velocity                 | Slow | Medium | Maximum |
|--------------------------------|------|--------|---------|
| Pick up and position the piece | 14s  | 11s    | 9s      |
| Python y Orange                | 35s  | 23s    | 23s     |
| Position the piece in the bins | 14s  | 10s    | 8s      |
| Total Time                     | 63 s | 44 s   | 40 s    |

# Orange test results

| image name  | image                                                            | Logistic Regression     | Logistic Regression (Con rebaba) |
|-------------|------------------------------------------------------------------|-------------------------|----------------------------------|
| string      | string                                                           | Con\ rebaba Sin\ rebaba | continuous                       |
| meta        | meta origin=C:/Users/JAAG/Desktop/ProyectoCobot/Store type=image | meta                    | meta                             |
| 11RG_F_Crop | 11RG_F_Crop.JPG                                                  | Sin rebaba              | 0.318308626                      |
| 1RG_F_Crop  | 1RG_F_Crop.JPG                                                   | Con rebaba              | 0.879055988                      |
| 1RP_F_Crop  | 1RP_F_Crop.JPG                                                   | Con rebaba              | 0.529156108                      |
| 1SG_F_Crop  | 1SG_F_Crop.JPG                                                   | Sin rebaba              | 0.001326119                      |
| 1SP_F_Crop  | 1SP_F_Crop.JPG                                                   | Sin rebaba              | 2.02E-08                         |
| 22RG_F_Crop | 22RG_F_Crop.JPG                                                  | Con rebaba              | 0.99999972                       |
| 2RG_F_Crop  | 2RG_F_Crop.JPG                                                   | Con rebaba              | 0.999999126                      |
| 2RP_F_Crop  | 2RP_F_Crop.JPG                                                   | Con rebaba              | 0.999826744                      |
| 2SG_F_Crop  | 2SG_F_Crop.JPG                                                   | Sin rebaba              | 0.024250907                      |
| 2SP_F_Crop  | 2SP_F_Crop.JPG                                                   | Sin rebaba              | 0.016766824                      |

<sup>\*</sup>Testing carried out with the original images flipped 180°



## **Risk Assessment**

| Reliability/                                       | Reliability/ Performance                                 | Fast Process                                             |  |
|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--|
| R1: Wrong classification of the aluminium profiles |                                                          | FP1:Takes more than 5 seconds to classify                |  |
|                                                    | R2: Software failure                                     | FP2: Process stops due to bad connectivity               |  |
| Major                                              | R3: Requirement of multiple software programs management | FP3: Maintenance and upgrades take too much time         |  |
| Risks                                              | Costs                                                    | Safety                                                   |  |
|                                                    | C1: Operational cost are bigger than revenues            | S1: Possible accident that injures the user              |  |
| C2: Initia                                         | C2: Initial investment is very high                      | S2: Possible accident that damages the Cobot             |  |
|                                                    | C3: Maintenance of system expenses                       | S3: Possible accident that damages the aluminium profile |  |

## **Risk Assessment**

|            |                     |          | Business Impact |           |       |               |    |
|------------|---------------------|----------|-----------------|-----------|-------|---------------|----|
|            |                     | Extreme  | Major           | Moderate  | Minor | Insignificant |    |
|            |                     |          | 100%            | 80%       | 62%   | 25%           | 1% |
| Occurrency | (Almost)<br>Certain | 100<br>% |                 | FP1       |       |               |    |
|            | Probable            | 80%      |                 |           |       |               |    |
|            | Possible            | 62%      | C1              | FP2       |       |               |    |
|            | Unlikely            | 25%      | S1              | R2, C2,S2 | R1    | S3            |    |
|            | Rare                | 1%       |                 | R3,FP3    | C3    |               |    |

Tolerate to Improve Must be corrected

# **Mitigation Plan**

|                                               | Reliability/ Performance                                 |   | Actions to eliminate/mitigate Risk                                                                                |
|-----------------------------------------------|----------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------|
|                                               | R1: Wrong classification of the aluminium profiles       | М | Improve the quality of the image acquisition.                                                                     |
| R2: Software failure                          |                                                          | М | Regular check-ups to verify that the softwares are in optimals conditions                                         |
| Major                                         | R3: Requirement of multiple software programs management | L | Run the programs in a device that supports all the softwares running at the same time without saturating the RAM. |
| Risks                                         | Costs                                                    |   |                                                                                                                   |
| C1: Operational cost are bigger than revenues |                                                          | М | Try to cut unnecessary costs and match it with the sales prices.                                                  |
|                                               | C2: Initial investment is very high                      | М | Try to cut unnecessary costs to low initial investment.                                                           |
|                                               | C3: Maintenance of system expenses                       | L | Make a study of how often are maintenance shall be done.                                                          |

# **Mitigation Plan**

|                                                                                                                                                     | Fast Process                                        | Risk                                                                     | Actions to eliminate/mitigate Risk                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|                                                                                                                                                     | FP1:Takes more than 5 seconds to classify           | Н                                                                        | Optimize the movement path and velocity of the robot.                                      |
| FP2: Process stops due to bad connectivity                                                                                                          |                                                     | M                                                                        | Implements communication protocols to avoid interference.                                  |
| Major                                                                                                                                               | FP3: Maintenance and<br>Upgrades take too much time | L                                                                        | Program maintenance when production line is not running. (at night or holidays)            |
| Risks                                                                                                                                               | Safety                                              |                                                                          |                                                                                            |
| S1: Possible accident that injures the user  S2: Possible accident that damages the Cobot  S3: Possible accident that damages the aluminium profile | М                                                   | Redesign the working area to avoid accidents,<br>Integrate a Stop Button |                                                                                            |
|                                                                                                                                                     | 0                                                   | М                                                                        | Redesign the working area to avoid accidents,<br>Integrate a Stop Button                   |
|                                                                                                                                                     | damages the aluminium                               | М                                                                        | Ensure by testing that the robot is able to place the aluminium profile in a correct place |



## Claims and IP Instruments

#### Copyright

# Orange algorithm for the detection of burrs in aluminum profiles.

This patent protects the algorithm created to analyse compare and classify provided images for the detection of aluminum burrs. It also includes a machine learning stage to improve accuracy and precision through a previously loaded database.

### Copyright

# Python algorithm used as an intermediary for the synchronization between orange and robot studio.

Algorithm that manipulates a robotstudio simulation with information previously processed by orange. It provides information to orange to complete the image classification process, which is sent back to python. This information is used to determine the specific placement of the aluminum profiles in robotstudio.

#### **Patent**

# Computer vision device and quality inspection cell for burr detection in aluminum profiles.

This is an inspection cell that incorporates a cobot and computer visión to fully automate the classification of metal burrs. This inspection cell takes into account the pick of the part, the inspection of the profile in an specific area and the correct distribution of the aluminum part.





## What's next

Make a physical prototype based on the simulation. (Implementation of the product).

Validation tests (On field testing for communication between softwares, robot trajectory, image capturing, etc.).

Optimization of classification model to reach more than or equal to 95% detection accuracy.



# Quality Inspection Cell: Burrs detection

Mechatronic Design MR3009 Sergio Uribe

P4.

José Angel Soto Hernández
Nathalie Vilchis Lagunes
Hector Everardo Martínez Cisneros
Teclo Moreno Rodriguez
Estefany Morales Valdes
Diego A. Santisteban Pozas
Jose Antonio Arrambide Garza

A01039978 A01364838

A01282300

A01252067 A01281880 A01154423 A00817790



## **Table of Contents**

Project Definition

2 Value Proposition

**Business Case** 

PRS

5 Project plan



# **Project Definition**

- Automate the inspection of drilled aluminium profiles.
- Discriminate Clean parts from Rejected parts
- Fuse computer vision and cobot integration.
- Machine Learning

## **Problem/Opportunity**







## **Suggested Solutions**



## **Major Risks**

#### **Technology Risks**

- Lack of useful training data
- Inaccurate burrs detection

#### **Business Risks**

- Cost effectivity
- Competition

- Aluminium drilling implies material removal.
- Metal burrs may appear due to many factors.
- Tool velocity, precision, quality
- Potential risk for subsequent processes.
- Performance Failure

#### **Main Beneficiaries**

#### CID y T-Tec:

- QA Department
- Operator/quality Inspector

#### **Other Customers**

## **Project target**

- 1. Automatic process of burrs detection with computer vision
- 2. Increase process efficiency
- 3. Less expensive by eliminating the human factor

## **Project Scope**

- → Research
- → Quality control
- → Automation & manufacturing



#### **Project Deliverables**





Design of the full inspection cell



Training and verification of the system



Machine Learning classifier



Program the cobot integrating the full function



### Value Proposition



#### **Increase**

- Adaptability
- Detection speed
- Accuracy
- Higher quality



#### **Reduce**

- Price
- Workspace
- Hardware/Software requirements

Quality
Inspection
Cell:
Burrs
detection

#### Create



- User-friendly interface
- Database
- Alarms
- Machine learning

#### **Eliminate**



- Overhead
- Human error



## **Commercial Feasibility**



The project is technologically challenging, but based on a **proven** concept.

A niche market is targeted, but the **growth is expected to be moderate** (<15%).

The delivered benefit rests on the **radical** improvement in performance, cost, and quality.

**Added value and customer need** should be highlighted and constantly improved upon to keep the strong competitors at bay.

## **Project Financials**

Project development time:

18 weeks (4.5 months)

#### Assuming:

- 6 monthly sales
- 30% mark-up 10% market growth



Initial investment: 4.950,750 MYN



Note: projection up to year 5



#### Qualifiers



#### **DIFFERENTIATORS**

#### **User Friendly Workspace**



### **Product Requirements Solutions (PRS)**



The solution needs more **added value** in order to get **more money** back



More Differentiators to distinguish the product



## Project Plan (18 weeks)



|                                                     |                 |               |   |   |   |    |   |   |   |   |    | Week | number |    |    |    |    |    |    |    |    |    |
|-----------------------------------------------------|-----------------|---------------|---|---|---|----|---|---|---|---|----|------|--------|----|----|----|----|----|----|----|----|----|
| Activities/Task                                     | Responsi<br>ble | Support<br>by | 1 | 2 | 3 | 4  | 5 | 6 | 7 | 8 | 9  | 10   | 11     | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| TRL1: Project Definition                            | Ev.             | Ev.           | р | р | р | р  |   |   |   |   |    |      |        |    |    |    |    |    |    |    |    |    |
| Customer visit                                      | Ev.             | Ev.           |   |   | A |    |   |   |   |   |    |      |        |    |    |    |    |    |    |    |    |    |
| Project Definition (Target,<br>Scope, Deliverables) | Ev.             | Ev.           |   | A |   |    |   |   |   |   |    |      |        |    |    |    |    |    |    |    |    |    |
| Value Proposition definition                        | T&J             | Ev.           |   | A |   |    |   |   |   |   |    |      |        |    |    |    |    |    |    |    |    |    |
| Product Requirements<br>Specification definition    | H&N             | Ev.           |   |   | A |    |   |   |   |   |    |      |        |    |    |    |    |    |    |    |    |    |
| Business Case Analysis                              | E&D             | Ev.           |   |   |   | A  |   |   |   |   |    |      |        |    |    |    |    |    |    |    |    |    |
| Project Team definition and engagement              | A&T             | Ev.           |   |   | A |    |   |   |   |   |    |      |        |    |    |    |    |    |    |    |    |    |
| Consolidate Master Plan for execution               | A & T           | Ev.           |   |   |   | A  |   |   |   |   |    |      |        |    |    |    |    |    |    |    |    |    |
| Consolidate TRL1 presentation                       | Ev.             | Ev.           |   |   |   | MR |   |   |   |   |    |      |        |    |    |    |    |    |    |    |    |    |
| Presentation TRL1                                   | Ev.             | Ev.           |   |   |   | MR |   |   |   |   |    |      |        |    |    |    |    |    |    |    |    |    |
| TRL2: Concept Definition                            |                 |               |   |   |   | р  | р | р | р | р | MR |      |        |    |    |    |    |    |    |    |    |    |
| TRL3: Design                                        |                 |               |   |   |   |    |   |   |   |   | р  | р    | р      | р  | MR |    |    |    |    |    |    |    |
| TRL4: Proof of Concept<br>/Conclusions              |                 |               |   |   |   |    |   |   |   |   |    |      |        |    | р  | р  | р  | р  | р  | MR |    |    |





# Thank you!

Quality Inspection Cell: Burrs detection TRL2

Mechatronic Design MR3009

P4.

José Angel Soto Hernández Nathalie Vilchis Lagunes Hector Everardo Martínez Cisneros Teclo Moreno Rodriguez Estefany Morales Valdes Diego A. Santisteban Pozas Jose Antonio Arrambide Garza

A01039978 A01364838

A01282300

A01252067 A01281880 A01154423 A00817790



29/09/2021

#### **Table of Contents**

Functional Diagram

Morphology Matrix

Generated Concepts

Selection criteria

5 Selected concepts



### Functional diagram

#### Updated Merged functional block diagrams

\*The color of the arrows mark from which block they are coming from.





|                    |                          |                                             |                           | Alternatives to Impleme                                                | Alternatives to Implement Functions                         |                                                                     |                             |  |  |  |  |
|--------------------|--------------------------|---------------------------------------------|---------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------|--|--|--|--|
|                    |                          | Part positioning                            |                           | Random location                                                        | Specified area of work<br>(Human)                           | Conveyor                                                            | Dispenser of Parts          |  |  |  |  |
|                    | W/sulcing neut           | Part Location<br>Image acquisition          |                           | Robot holding IP camera                                                | No camera necessary<br>(defined area of work)               | IP Roof camera (for area scanning)                                  | -                           |  |  |  |  |
|                    | Working part<br>sampling | Image<br>acquisition                        | Burr image<br>acquisition | Robot holding IP camera                                                | Specified area for image acquisition with multiples cameras | Fixed camera in<br>workplace with the<br>Robot rotating the<br>part | -                           |  |  |  |  |
| lules              |                          | Imag                                        | e processing              | MatLab                                                                 | Python                                                      | Visual Studio                                                       | Insight Cognex              |  |  |  |  |
| Mod                | Defects<br>detection     | Training scheme                             |                           | Hold Out Sampling                                                      | Cross Validation                                            | -                                                                   | -                           |  |  |  |  |
| onal               |                          | Classification model<br>(TBD after testing) |                           | Logistic Regression                                                    | Support Vector Machine                                      | Neural Network                                                      | Random Forest               |  |  |  |  |
| Functional Modules | Part storage             | Pick a                                      | nd place part             | Cobot places classified parts in designed bins with mechanical gripper | Conveyor that classifies                                    | Cobot with a vacuum suction gripper                                 |                             |  |  |  |  |
|                    |                          | Safety module                               |                           | Wire mesh cage + Cobot<br>collision function                           | Wire mesh cage + Cobot<br>collision function + tray         | Roof camera worker<br>detection + Cobot<br>collision function       | Cobot collision<br>function |  |  |  |  |
|                    | Communication module     |                                             |                           | Computer                                                               | Microcontroller<br>(raspberry pi)                           | -                                                                   | -                           |  |  |  |  |
|                    | User interface           |                                             |                           | LEDs + push button                                                     | LCD + push button                                           | Mobile App                                                          | HMI Screen<br>(Computer)    |  |  |  |  |

|                    |                          |                                                           |                                    | Alternatives to Impleme                                                | Low Cost                                                          |                                                                     |                             |
|--------------------|--------------------------|-----------------------------------------------------------|------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------|
|                    |                          | Part                                                      | positioning                        | Random location                                                        | Specified area of work<br>(Human)                                 | Conveyor                                                            | Dispenser of Parts          |
|                    | Working part             |                                                           | Part Location<br>Image acquisition | Robot holding IP camera                                                | No camera necessary<br>(defined area of work)                     | IP Roof camera (for area scanning)                                  | -                           |
|                    | Working part<br>sampling | Image<br>acquisition                                      | Burr image<br>acquisition          | Robot holding IP camera                                                | Specified area for image<br>acquisition with multiples<br>cameras | Fixed camera in<br>workplace with the<br>Robot rotating the<br>part | -                           |
| lules              |                          | Image                                                     | e processing                       | MatLab                                                                 | Python                                                            | Visual Studio                                                       | Insight Cognex              |
| Мос                | Defects<br>detection     | Training scheme  Classification model (TBD after testing) |                                    | Hold Out Sampling                                                      | Cross Validation                                                  | •                                                                   | -                           |
| ional              |                          |                                                           |                                    | Logistic Regression                                                    | Support Vector Machine                                            | Neural Network                                                      | Random Forest               |
| Functional Modules | Part storage             | Pick a                                                    | nd place part                      | Cobot places classified parts in designed bins with mechanical gripper | Conveyor that classifies                                          | Cobot with a vacuum suction gripper                                 |                             |
|                    |                          | Safety module                                             |                                    | Wire mesh cage + Cobot<br>collision function                           | Wire mesh cage + Cobot<br>collision function + tray               | Roof camera worker<br>detection + Cobot<br>collision function       | Cobot collision<br>function |
|                    | Communication module     |                                                           |                                    | Computer                                                               | Microcontroller<br>(raspberry pi)                                 |                                                                     | -                           |
|                    | User interface           |                                                           |                                    | LEDs + push button                                                     | LCD + push button                                                 | Mobile App                                                          | HMI Screen<br>(Computer)    |

|                    |                          |                                             |                                    | Alternatives to Impleme                                                | ent Functions                                               |                                                          | Fastest process          |
|--------------------|--------------------------|---------------------------------------------|------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|--------------------------|
|                    |                          | Part positioning                            |                                    | Random location                                                        | Specified area of work<br>(Human)                           | Conveyor                                                 | Dispenser of Parts       |
|                    | Warking part             |                                             | Part Location<br>Image acquisition | Robot holding IP camera                                                | No camera necessary<br>(defined area of work)               | IP Roof camera<br>area scanning                          | _                        |
|                    | Working part<br>sampling | Image<br>acquisition                        | Burr image<br>acquisition          | Robot holding IP camera                                                | Specified area for image acquisition with multiples cameras | Fixed camera<br>workplace with<br>Robot rotating<br>part | the                      |
| lules              |                          | Image processing                            |                                    | MatLab                                                                 | Python                                                      | Visual Studio                                            | o Insight Cognex         |
| Мос                | Defects<br>detection     | Training scheme                             |                                    | Hold Out Sampling                                                      | Cross Validation                                            | -                                                        | -                        |
| ional              | detection                | Classification model<br>(TBD after testing) |                                    | Logistic Regression                                                    | Support Vector Machine                                      | Neural Netwo                                             | ork Random Forest        |
| Functional Modules | Part storage             | Pick and place part                         |                                    | Cobot places classified parts in designed bins with mechanical gripper | Conveyor that classifies                                    | Cobot with a vac<br>suction gripp                        |                          |
|                    |                          | Safety module                               |                                    | Wire mesh cage + Cobot collision function                              | Wire mesh cage + Cobot<br>collision function + tray         | Roof camera wo<br>detection + Co<br>collision functi     | bot Cobot collision      |
|                    | Communication module     |                                             |                                    | Computer                                                               | Microcontroller<br>(raspberry pi)                           | -                                                        | -                        |
|                    | User interface           |                                             |                                    | LEDs + push button                                                     | LCD + push button                                           | Mobile App                                               | HMI Screen<br>(Computer) |

|                    |                          |                                             |                                    | Alternatives to Impleme                                                | ent Functions                                               |                                                                     | Most Reliable               |
|--------------------|--------------------------|---------------------------------------------|------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------|
|                    |                          | Part positioning                            |                                    | Random location                                                        | Specified area of work<br>(Human)                           | Conveyor                                                            | Dispenser of Parts          |
|                    | W/salcing mast           |                                             | Part Location<br>Image acquisition | Robot holding IP camera                                                | No camera necessary<br>(defined area of work)               | IP Roof camera (for area scanning)                                  | -                           |
|                    | Working part<br>sampling | Image<br>acquisition                        | Burr image<br>acquisition          | Robot holding IP camera                                                | Specified area for image acquisition with multiples cameras | Fixed camera in<br>workplace with the<br>Robot rotating the<br>part | -                           |
| lules              |                          | Image                                       | e processing                       | MatLab                                                                 | Python                                                      | Visual Studio                                                       | Insight Cognex              |
| Mod                | Defects<br>detection     | Training scheme                             |                                    | Hold Out Sampling                                                      | Cross Validation                                            | -                                                                   | -                           |
| ional              |                          | Classification model<br>(IBD after testing) |                                    | Logistic Regression                                                    | Support Vector Machine                                      | Neural Network                                                      | Random Forest               |
| Functional Modules | Part storage             | Pick a                                      | nd place part                      | Cobot places classified parts in designed bins with mechanical gripper | Conveyor that classifies                                    | Cobot with a vacuum suction gripper                                 |                             |
|                    |                          | Safety module                               |                                    | Wire mesh cage + Cobot collision function                              | Wire mesh cage + Cobot<br>collision function + tray         | Roof camera worker<br>detection + Cobot<br>collision function       | Cobot collision<br>function |
|                    | Communication module     |                                             |                                    | Computer                                                               | Microcontroller<br>(raspberry pi)                           | -                                                                   | -                           |
|                    | User interface           |                                             |                                    | LEDs + push button                                                     | LCD + push button                                           | Mobile App                                                          | HMI Screen<br>(Computer)    |

|                    |                          |                                                           |                           | Alternatives to Impleme                                                | SAFEST                                                      |                                                                     |                             |
|--------------------|--------------------------|-----------------------------------------------------------|---------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------|
|                    |                          | Part                                                      | positioning               | Random location                                                        | Specified area of work<br>(Human)                           | Conveyor                                                            | Dispenser of Parts          |
|                    | Working part             | Part Location<br>Image acquisition                        |                           | Robot holding IP camera                                                | No camera necessary<br>(defined area of work)               | IP Roof camera (for area scanning)                                  | -                           |
|                    | Working part<br>sampling | Image<br>acquisition                                      | Burr image<br>acquisition | Robot holding IP camera                                                | Specified area for image acquisition with multiples cameras | Fixed camera in<br>workplace with the<br>Robot rotating the<br>part | -                           |
| lules              |                          | Image                                                     | e processing              | MatLab                                                                 | Python                                                      | Visual Studio                                                       | Insight Cognex              |
| Мос                | Defects<br>detection     | Training scheme  Classification model (TBD after testing) |                           | Hold Out Sampling                                                      | Cross Validation                                            | -                                                                   | •                           |
| ional              |                          |                                                           |                           | Logistic Regression                                                    | Support Vector Machine                                      | Neural Network                                                      | Random Forest               |
| Functional Modules | Part storage             | Pick a                                                    | nd place part             | Cobot places classified parts in designed bins with mechanical gripper | Conveyor that classifies                                    | Cobot with a vacuum suction gripper                                 |                             |
|                    |                          | Safety module                                             |                           | Wire mesh cage + Cobot collision function                              | Wire mesh cage + Cobot<br>collision function + tray         | Roof camera worker<br>detection + Cobot<br>collision function       | Cobot collision<br>function |
|                    | Communication module     |                                                           |                           | Computer                                                               | Microcontroller<br>(raspberry pi)                           | -                                                                   | -                           |
|                    | User interface           |                                                           |                           | LEDs + push button                                                     | LCD + push button                                           | Mobile App                                                          | HMI Screen<br>(Computer)    |



## Most reliable concept - Top view



# Most reliable concept - close up (w/no cage)



## Safest concept - Top view



# Safest concept - close up (w/no cage)





#### **Selection Criteria**

#### Based on the customer values:

- High precision
- Safety
- Low Cost
- Fast Process



# **Pugh Matrix**

Less than spec \
0
Sames as spec
More than spec

1

| Weight | Customer<br>Value    | Low Cost | Fastest<br>Process | Most reliable | Safest |
|--------|----------------------|----------|--------------------|---------------|--------|
| 0.35   | 1. High<br>Precision | 0        | 1                  | 1.1           | 1.1    |
| 0.35   | 1. Safety            | 0        | 1                  | 1             | 1.1    |
| 0.2    | 2. Low cost          | 1.1      | 0                  | 0             | 0      |
| 0.1    | 3. Fast process      | 0        | 1.1                | 1             | 1      |
| 1      | Total Score          | 27.5%    | 77.5%              | 77.5%         | 80%    |
|        | Weighted total Score | 22.0%    | 81%                | 83.5%         | 87%    |

# Quality **Inspection Cell: Burrs detection**

Mechatronic Design MR3009

Ρ4

José Angel Soto Hernández Nathalie Vilchis Lagunes Hector Everardo Martínez Cisneros Teclo Moreno Rodriguez **Estefany Morales Valdes** Diego A. Santisteban Pozas Jose Antonio Arrambide Garza

A01282300

A01252067 A01281880 A01154423 A00817790

A01039978

A01364838

03/11/2021

#### **Table of Contents**

Detailed designs of selected concept

4 P

Plan for final prototype

Models

**5** 

Freedom to operate

**Virtual Prototypes** 

6

What's next?



# **Quality Station (RobotStudio)**



\*The UR3 Cobot will be rec



## **Operation**

- User loads the drilled aluminum profiles in a designated area and close the station door
- 2. User commands cobot to pick the aluminum profiles when ready.
- 3. The cobot moves the profile between the two ip cameras.
  - a. The cobot slightly rotate profiles (For angular pictures)
- 4. The pictures will be send to python/orange trainer
- 5. Trainer communicates the classification results to cobot through python.
- 6. Cobot separates profiles according to results
- 7. User may extract classified profiles



# Classification training (Orange)



## **Filters**

Front-Original



Angled-Grayscale



Frontal-Binary



Angled-Edge



#### **First Test**

#### **Datasets**

- Original
- Gray
- Edge
- Binary

**Best Model:** 

87.5% accuracy



#### **Conclusions**

- Cropped images work better than originals
- The best results are with grayscale images
- Front images work noticeably better than angled ones
- Cross Validation with 5 divisions is the best performing sample type

#### Best Model from 1st Test 87.5 % accuracy

★ Logistic regression and SVM with Cross Validation (V3)



#### **2nd Test**

#### **Datasets**

Frontal crop images in grayscale **Best Model:** 

92.9% accuray



#### Parameters to vary:

- □ Embedder
- Sampling method
- ☐ Logistic Regression Strength
- ☐ Logistic Regression Regularization Type
- □ SVM type
- □ SVM Kernel

#### Best Model from 2nd Test: 92.9 % accuracy

Logistic Regression with Random Sampling (VGG19)





#### RobotStudio



#### Python & Orange

- Module for Python Script in Orange
- Library of Orange for Python
- Classification models can be generated directly in Python



# RobotStudio & Python Communication

- Python needs to send the variable of accepted or rejected to RobotStudio
- Communication will be established through TCP/IP protocol (sockets)
- The client will be Python and server will be the server.







## Plan for Final Prototype

- Integrate all the programs with real data exchange to simulate as close to reality as possible.
- Adjust the models, designs and approaches to ensure reaching the requirements of the client such as: Time, Quality, Reliability, Safetiness.
- Run enough tests in order to generate the specifications and recommendations of the final product.



# 360 degrees product burrs detection device of rotation type

Applicant: Dongguan Shengxiang Precision Metal Co Ltd

Application date: 2018-05-29Publication date: 2018-12-11



## Other patents...

#### Machine-vision system and method for remote quality inspection of a product

Applicant: SIGHT MACHINE Inc

Application date: 2018-04-10

Publication date: 2019-03-21



#### Extracted from:

#### https://patents.google.com/patent/US20200082225A1/en?q=(computer+vision+manufacturing+quality+control)&language=ENGLISH&oq=(computer+vision+manufacturing+quality+control)+language:ENGLISH&page=1

#### Inspection device and machine learning method- Analyzer

 Applicant: Keisuke Watanabe, Yasuhiro Shibasaki

Application date: 2018-09-12 (JP)
 & 2019-09-12 (DE-US-CN)

Publication date: 2021-01-27 (JP)



#### Extracted from



#### **Next Steps**

- Interconnect all the systems for the final prototype.
- Testing results to define the reliability and limitations of the performance.
- Optimization of parameters to meet the requirements of the client.
- Evaluate the risk of the limitations and compare to the original project definition.
- Define the specifications, claims and recommendations of the final product.

| TRL4: Proof of Concept /Conclusions         | 8 | 0 |          |      | / | / | / | / | / | / | P | P | P | P | P | Р | Р | Р | MR |
|---------------------------------------------|---|---|----------|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
| Testing and improvement                     |   |   | Hector   | Team | / | / | / | / | / | / | / | / | / | / | / | Р |   |   |    |
| Summary of results                          |   |   | Teclo    | Team | / | / | / | / | / | / | / | / | / | / | / | Р |   |   |    |
| Cost Estimation and final Business Case doc |   |   | Nathalie | Team | / | / | / | / | / | / | / | / | / | / | / | Р |   |   |    |
| Technology Readiness Assessment             |   |   | Diego    | Team | / | / | / | / | / | / | / | / | / | / | / |   | Р |   |    |
| Risk Assessment                             |   |   | Estefy   | Team | / | / | / | / | / | / | / | / | / | / | / |   | Р |   |    |
| Final IPR recommendation                    |   |   | Antonio  | Team | / | / | / | / | / | / | / | / | / | / | / |   | Р | Р |    |
| Final Recommendations                       |   |   | Antonio  | Team | / | / | / | / | / | / | / | / | / | / | / |   | Р | Р |    |
| Consolidate TRL4 Report                     |   |   | Jose     | Team | / | / | / | / | / | / | / | / | / | / | / |   |   |   | MR |
| Presenation TRL4                            |   |   | Jose     | Team | / | / | / | / | / | / | / | / | / | / | / |   |   |   | MR |

# **Major Risks**

**Time** is the main concern. Right now we are all in on a solution that involves robot studio, python and orange. If for some reason the communication between the 3 were to fail or show to be inconsistent. Realistically, time wouldn't allow for a secondary solution to take place.

**Robot Studio:** working without an ABB Robot that already includes its own virtual controller is a challenge since the team lacks experience with the software and most digital resources assume that an ABB robot is chosen. However, as shown in the video, it is possible to create a full working station with a third party robot.

**Computer vision**: if the lighting conditions and other factors with which the training data was obtained can't be fully replicated or approached on the field, then we could see a drop in performance for the classification algorithm. Making a field run test and calibrating the algorithm would be an important step before implementing the final solution.