Licence 2^e année Parcours Renforcé

2017-2018

M4 - Probabilités et fonctions

SOLUTIONS DE L'INTERROGATION

14 février 2018

[durée : 1 heure]

Exercice 1

Dans un jeu de 3 dés, il y un des dés qui est truqué, et qui ne tombe jamais sur 6 (les cinq autres faces sont équiprobables). On jette les 3 dés et on observe.

- a) Quel est l'espace de probabilité que vous considérez? Quelle est la probabilité d'un événement élémentaire?
- b) Quelle est la probabilité d'obtenir 3 dés identiques?
- c) Quelle est la probabilité d'obtenir exactement 2 dés identiques?

Solution:

- a) L'espace de probabilité considéré est $\Omega = \{1, \dots, 5\} \times \{1, \dots, 6\}^2$ avec la probabilité uniforme. Comme le nombre d'éléments de Ω est $\#\Omega = 5 \times 6^2 = 180$, la probabilité d'obtenir une configuration particulière (un événement élémentaire) est de $\frac{1}{180}$.
- **b)** L'événement 3×6 est impossible, et pour tout autre i = 1, ..., 5, la probabilité d'obtenir $3 \times i$ est de $\frac{1}{180}$. Donc la probabilité d'obtenir 3 dés identiques est de $5 \times \frac{1}{180} = \frac{1}{36}$.
- c) Le nombre de configurations avec trois résultats différents est $5 \times 5 \times 4 = 100$. Donc la probabilité d'avoir les trois dés différents est $\frac{100}{180} = \frac{5}{9}$. Ainsi finalement la probabilité d'avoir deux dés identiques est $1 \frac{1}{36} \frac{5}{9} = \frac{15}{36} = \frac{5}{12}$.

Exercice 2

Un enseignant pose une question à un étudiant qui doit répondre par oui ou non. On sait que l'étudiant connaît la bonne réponse avec probabilité p et dans ce cas il donne la bonne réponse. Si l'étudiant ne connaît pas la réponse, il répond alors au hasard «oui» ou «non» avec probabilité $\frac{1}{2}$ chacun.

En écrivant proprement les événements en jeu, calculer les probabilités :

- a) que l'étudiant donne la bonne réponse,
- b) que l'étudiant connaisse la bonne réponse sachant qu'il a répondu correctement.

Solution:

- a) On note C= «l'étudiant connaît la bonne réponse» et R= «l'étudiant donne la bonne réponse». D'après l'énoncé on a $P(C)=p,\ P(R|C)=1$ et $P(R|\overline{C})=\frac{1}{2}$. Ainsi $P(R)=P(R|C)P(C)+P(R|\overline{C})$ $P(\overline{C})=1$ $p+\frac{1}{2}(1-p)=\frac{1+p}{2}$.
- **b)** Nous avons $P(C|R) = \frac{P(R|C)P(C)}{P(R)} = \frac{2p}{1+p}$.

Exercice 3

Dans un lot de 100 composants électroniques, il y a deux composants défectueux. On prélève au hasard sans remise n composants dans ce lot et on note X le nombre de composants défectueux parmi les n prélèvés.

- a) On suppose que $2 \le n \le 98$. Donner la loi de X.
- **b)** Quelle est la loi de X si n = 100?
- c) Je choisis un composant au hasard. Quelle est la probabilité qu'il soit défectueux?
- d) En déduire la loi de X si n = 1.
- e) En déduire aussi la loi de X si n = 99.

Solution:

- a) Comme il s'agit d'un tirage sans remise de n éléments parmi 100 et X compte l'apparition de 2 de ces éléments, on a $X \sim \mathcal{HG}(100,n,2)$ avec $X \in \{0,1,2\}$ et $P(X=k) = \frac{C_2^k C_{98}^{n-k}}{C_{100}^n}$ pour k=0,1,2. Cette formule marche pour tout $n \in [0,100]$, non seulement pour $2 \le n \le 98$.
- b) Si on prend les 100 composants électroniques on sait que X=2, donc X est une constante et P(X=2)=1. On retrouve ce résultat avec la formule générale car $P(X=k)=\frac{C_2^k C_{98}^{100}-k}{C_{100}^{100}}$ et $C_{98}^{100}=C_{98}^{99}=0$, donc P(X=0)=P(X=1)=0 et $P(X=2)=\frac{C_2^2 C_{98}^{98}}{C_{100}^{100}}=1$.
- c) $P(\text{«un composant défectueux»}) = \frac{2}{100}$.
- d) Pour n=1 nous avons $X \in \{0,1\}$ et d'après la question précédente on a $P(X=1)=\frac{2}{100}$ et $P(X=0)=1-P(X=1)=\frac{98}{100}.$ On peut retrouver ce résultat par la formule générale : $P(X=0)=\frac{C_2^0C_{98}^1}{C_{100}^1}=\frac{98}{100}, \ P(X=1)=\frac{C_2^1C_{98}^0}{C_{100}^1}=\frac{2}{100}$ et $P(X=2)=\frac{C_2^2C_{98}^{-1}}{C_{100}^1}=0.$
- e) Si on pose Y =«le nombre de composants défectueux parmi les 100 n non prélevés», nous avons X + Y = 2 et $Y \sim \mathcal{HG}(100, 100 n, 2)$. Ainsi pour n = 99 on a $Y \sim \mathcal{HG}(100, 1, 2)$ et donc d'après la question précédente $P(X = 2) = P(Y = 0) = \frac{98}{100}$, $P(X = 1) = P(Y = 1) = \frac{2}{100}$ et P(X = 0) = P(Y = 2) = 0. On peut, comme dans les questions précédentes, retrouver ce résultat par la formule générale.