LAPORAN PRAKTIK PREPROSESSING DATASET HOUSING

Nama : Zulfikar Junirto

Npm : 22010022

A. Source Lengkap

```
import os
import pandas as pd
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
director = []
for i in os.listdir():
 direc_dir = os.path.join(os.getcwd(),i)
 director.append(direc dir)
print(director)
dataset_housing_train = pd.read_csv(director[1])
dataset housing train.head(10)
dataset housing train[['LotFrontage','MasVnrArea']].head(10) #menampilkan 10 kolom
LotFrontage dan MasVnrArea
dataset_housing_train[['MSZoning','Neighborhood']].head(10)
#Membuat Objek pada labelImage
dataset Neighborhood = LabelEncoder()
dataset_MSZoning = LabelEncoder()
# Transformasi kolom 'Neighborhood'
dataset housing train['Neighborhood'] =
dataset Neighborhood.fit transform(dataset housing train['Neighborhood'])
# Transformasi Kolom 'MSZoning'
dataset housing train['MSZoning'] =
dataset_MSZoning.fit_transform(dataset_housing_train['MSZoning'])
```

```
dataset_housing_train[['Neighborhood','MSZoning']].head(10)

#membuat Objel masing masing masing Kolom untuk normalisasi
normalisasi_SalePrice = MinMaxScaler()
normalisasi_GrLivArea = MinMaxScaler()

# Melakukan Normalisasi pada Kolom SalePrice
dataset_housing_train['SalePrice'] =
normalisasi_SalePrice.fit_transform(dataset_housing_train[['SalePrice']])
dataset_housing_train['GrLivArea'] =
normalisasi_GrLivArea.fit_transform(dataset_housing_train[['GrLivArea']])
dataset_housing_train[['SalePrice','GrLivArea']].head(10)
dataset_housing_train.to_csv('dataset_housing_train_fix.csv',index=False)
```

B. Penjelasan Singkat Preprocessing

1. Import Library

```
[101] import os
import pandas as pd
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
```

Melakukan import Beberapa Library yang digunakan untuk preprosessing Data, yaitu *Pandas,Sklearn*, dan *os*.

Mengatur Director

```
Mengabungkan Director dengan path File

[102] director = []
    for i in os.listdir():
        direc_dir = os.path.join(os.getcwd(),i)
        director.append(direc_dir)

Menampilkan file yang ada di director

[103] print(director)

[103] print(director)

[104] [105] [107] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [108] [1
```

Melakukan looping pada Director dan menggabungkan Path dan update kedalam Array Agar mudah untuk Manage file file tertentu.

3. Membaca semua Kolom yang ada di file

Lalu membuat sebuah variabe untuk menampung method $pd_read_csv(FILE\ DIRECTOR)$, lalu dipanggil lagi variabel tadi juga ditambahkan method head() tapi dengan rentang nilai index atau urutannya itu 10.

Note:

Kenapa Outputnya 9 bukan 10? Karna Kelompok lokasi memori berurutan yang semuanya memiliki tipe yang sama. Kumpulan data diindeks, atau diberi nomor, dan dimulai dari 0.

4. Missing Value

```
↑ ↓ ↑ ◎ 및 章 및 回 :
print(dataset_housing_train[['LotFrontage','MasVnrArea']].isnull().sum())

LotFrontage 259

MasVnrArea 8
dtype: int64
```

Menampilkan Jumla data yang kosong kolom *LotFrontage*, *dan MasVnrArea*, mengeluarkan Output dengan *LotFrontage 250 data* dan *MasVnArea 8* data.

Lalu menampilkan 10 data menggunakan *Method()* dengan rentang 10 untuk melihat mana data yang kosong, dan ternyara ada di bagian *LotFrontage*.

```
Mengisi Masing masing Kolom yang Sebelumnya Null menggunakan Method median() dari pandas dan mengatur 1 angka dibelakang koma dengan method round()

[115] dataset_housing_train['LotFrontage'] = dataset_housing_train['LotFrontage'].fillna(dataset_housing_train['MasVnrArea'].mean()).round(1)
dataset_housing_train['MasVnrArea'] = dataset_housing_train['MasVnrArea'].fillna(dataset_housing_train['MasVnrArea'].mean()).round(1)
```

Lalu Menggunakan *Method mean()* dan *fillnaa()*, untuk mengisi nilai nilai yang *Nan/atau kosong* lalu menggunakan *method round()* dengan input 1 yang artinnya membuat nilai bilangan binner dibelakang koma berjumlah 1 digit.

setelah menggunakan method *mean()* lalu menampilkan hasilnya, menggunakan method *isallnum().sum()* akan menampilkan jumlah data yang hilang, lalu dibawahnya juga diperlihatkan menggunakan Method *head(10)* yang artinnya menampilkan 10 baris. Dan terlihat pada kolom *LotFrontage()* pada index ke 7 yang tadinya *Nan* menjadi ada nilainya.

5. Encoding

pada proses Encoding ini adalah proses mengubah yang tadinya itu data kategorial menjadi numerik

pada source code tersebut yang pertama adalah membuat 2 variabel yang masing masing digunakan untuk per kolom, yang pertama ada *dataset_Neighborhood* dan *dataset_MSZoning* yang itu digunakan untuk membuat objek dari library *sklearn* dengan method *labelEncoder karna* nantinya akan otomatis merubah menjadi numerik.

Setelah melakukan proses encoding hasilny akan seperti itu karna dia merubah numerik pada label tertentu misal *RL* adalah angka *1* dan *RM* adalah angka *4*.

6. Normalisasi

menampilkan data sebelum di normalisasi yaitu pada Kolom "SalePrice" dan "GrLivArea".

```
Melakukan Normalisasi Data pada Kolom SalePrice GrLivArea

** [136] #membuat Objel masing masing masing Kolom untuk normalisasi
normalisasi_SalePrice = MinMaxScaler()
normalisasi_GrLivArea = MinMaxScaler()

# Melakukan Normalisasi pada Kolom SalePrice
dataset_housing_train['SalePrice'] = normalisasi_SalePrice.fit_transform(dataset_housing_train['SalePrice']])
dataset_housing_train['GrLivArea'] = normalisasi_GrLivArea.fit_transform(dataset_housing_train['GrLivArea']])
```

Step ini sama seperti encoding cuma bedanya hanya pada *value* di variabel masing masing kolom yang akan di *Normalisasi*.

Tampilan setealah kolom *SalePrice* dan GrLivArea menjadi bilangan biner yang bertipe data float64. Hal ini akan memudahkan model untuk dilatih.