NVIDIA

O2 NVDA RETURN ANALYSIS

04 XGB00ST

NVIDIA PRICE HISTORY

MAJOR EVENTS:

- **NVIDIA** went public in **January 1999**, with its shares priced at **\$19.69** each.
- After returning 227% and 82% in 2016 and 2017, respectively, shares of the graphics processing unit (GPU) specialist declined 30.8% (including dividends) in 2018 due of The major market sell-off in October and "cryptocurrency hangover," in third Quarter.
- At start of 2020 there was a decline due to covid-19 impact, but global semiconductor shortage served boon for NVDA and with strong data-centers, interest in gaming exploded in later in 2020. By the end it increased by 121%.
- NVDA underwent a 4-for-1 forward **stock split** in **July 2021**.
- In **2021**, Nvidia stock was on fire. The sharpest rise came in **October** last week.
 - Strong market trend
 - Meta new corporate name and hype around "Metaverse"
 - Meta releasing their earnings and spending plans for its data centers & network infrastructure

PERFORMANCE FROM 2016-2019

NVIDIA's stock gave excellent return from 2016-2019 becoming one of the favourite stocks for investors. NVIDIA's 3-year return were 409.7% which was well over the SPY's return of 50.31% in the period.

NVIDIA & IT'S COMPETITORS

ORIGINAL TIME SERIES

MODELS FOR RETURN

+

GARCH (I,I)

sigma2[t] = omega + alpha*(Y[t-1]-mu)**2 +
beta*sigma2[t-1]
Y[t] = mu + err[t]*sqrt(sigma2[t])
GARCH_t[t] = 0.5*(log(2*pi) + log(sigma2[t])
+ (Y[t]-mu)**2/sigma2[t])

The **Generalized ARCH** (GARCH) is a statistical model used in analyzing time-series data to describe volatility in financial markets.

Predicts volatility of returns on financial assets and forecasts it into the future

Responds to changes in data, it is dynamic

GARCH models are used by financial institutions to model asset risks over different holding periods.

GARCH aims to minimize errors in forecasting by accounting for errors in prior forecasting, thereby enhancing the accuracy of ongoing predictions. This is the main reason for the wide use of GARCH model in finance.

The general process for a GARCH model involves three steps: The first is to estimate a best-fitting autoregressive model. The second is to compute autocorrelations of the error term. The third step is to test for significance.

GARCH (I,I)

MU = 0, OMEGA = 0.003, ALPHA = 0.3, BETA = 0.3

MODELS FOR RETURN

- An algorithm that provides estimates of some unknown variables given the measurements observed over time
- The Kalman filter process has two steps:

The prediction step, where the next state of the system is predicted given the previous measurements,

The update step, where the current state of the system is estimated given the measurement at that time

• A predictor-corrector type estimator that is optimal in the sense that it minimizes the estimated error covariance when some presumed conditions are met

KALMAN FILTER RETURNS

MODELS FOR PRICE

$$Y_t = \alpha + \beta X_t + \epsilon_t,$$

$$ER_i = R_f + \beta_i (ER_m - R_f)$$

04

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

 $r = r_f + \beta_1(r_m - r_f) + \beta_2(SMB) + \beta_3(HML) + \varepsilon$

$$\begin{array}{c} \textbf{05} \\ \textbf{ARIMA} \\ \\ Y_t = \beta_1 Y_{t-1} + \beta_2 Y_{t-2} + \ldots + \beta_0 Y_0 + \epsilon_t \\ \end{array}$$

$$Y_{t} = \beta_{1}Y_{t-1} + \beta_{2}Y_{t-2} + ... + \beta_{0}Y_{0} + \epsilon_{t}$$

$$Y_{t-1} = \beta_{1}Y_{t-2} + \beta_{2}Y_{t-3} + ... + \beta_{0}Y_{0} + \epsilon_{t-1}$$

OLS MODEL

In data analysis, the most commonly applied econometric tool is least-squares estimation, also known as **regression**.

Ordinary least squares (OLS) regression is a statistical method of analysis that estimates the relationship between one or more independent variables and a dependent variable.

In a linear regression, the dependent variable \boldsymbol{Y} is projected on a set of N predetermined independent variables, \boldsymbol{X} .

$$Y_t = \alpha + \beta X_t + \epsilon_t,$$
 $t = 1, ..., T$

where α is called the intercept, or constant. β is called the slope and ϵ is called error term.

Here, Y is the regressand, and X the regressor/predictor

```
beta
                 t stat
                                   p val
[[2.00253538e-03 5.78304762e-02 4.76941831e-01]
 [4.33854689e-06 1.65457166e-02 4.93399515e-01]
 [1.28571955e+00 1.89550183e+00 2.90129745e-02]]
 Joint significance of all coefficients
 [0.04957036393447257, 1.0]
R-Square is
0.7838839408442686
Adjusted R Square
0.7819629092073288
Standard Error
0.017255803845173064
```

OLS MODEL

OLS MODEL

REGRESSION STATISTICS FOR AMD	REGRESSION STATISTICS FOR INTC			
beta t_stat	p_val	beta	t_stat	p_val
[[2.70330234e-03	5.06310503e-01] 2.53994593e-01]]	[-4.4638256 [1.0209691 Joint signi	quare 54527355 or	5.01855197e-01] 1.66922669e-01]]

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network capable of learning order dependence in sequence prediction problems.

These gates can learn which data in a sequence is important to keep or throw away.

By doing that, it can pass relevant information down the long chain of sequences to make predictions.

Almost all state of the art results based on recurrent neural networks are achieved with these two networks.

LSTM's and GRU's can be found in speech recognition, speech synthesis, and text generation. You can even use them to generate captions for videos

LSTM MODEL

LSTM MODEL

38.39841077893767

```
### Test Data RMSE
math.sqrt(mean_squared_error(ytest,test_predict))
```

144.03820944435554

CAPM MODEL

CAPM gives relationship between risk and predicted return of assets in certain stocks.

There must be a relationship between stock and market performance

We have taken TOOO here

We calculate the alpha and beta values by using stats package and call the linear regression of it

After calculating alpha and beta values we find that alpha=0.0008 and beta=1.0849

Beta value is really low here so can infer there is not much relation between the stock and the market.

CAPM MODEL

Advantages

- · Ease of use
- · Considers systematic risks
- Establishes theoretical relationship between risk and return
- · Vital in WACC calculation
- Superior discount rate in Investment Appraisal

Disadvantages

- Assumption of Risk free rate unrealistic
- Substitute of risk free rate, yield on GOI bonds, keeps fluctuating
- Betas do not remain stable over time
- Rate of return is based only on one factor- Systematic Risk
- Focuses only on single period time horizon

CAPM MODEL

According to CAPM, there should be some relation between the stock performance and market performance

CAPM MODEL

Scatter plot for daily returns of stock and market

CAPM FOR NVIDIA AND COMPETITORS

	NVIDIA	AMD	INTL
Alpha	0.0008	0.0012	0.0023
Beta	1.0849	0.6552	1.3772
r_val	0.7537	0.5663	0.7135
p_val	2.8241	2.0620	2.4984
std_err	0.0298	0.0300	0.0426

ARIMA Model

Autoregressive Integrated Moving Average

ARIMA, is a statistical analysis model that uses time series data to either better understand the data set or to predict future trends.

A statistical model is autoregressive if it predicts future values based on past values. For example, an ARIMA model might seek to predict a stock's future prices based on its past performance or forecast a company's earnings based on past periods.

A **ARIMA** model is classified as an "**ARIMA(p,d,q)**" model, where:

- p is the number of autoregressive terms,
- d is the number of non seasonal differences needed for stationarity, and
- q is the number of lagged forecast errors in the prediction equation.

The ARIMA forecasting equation for a stationary time series is a linear equation in which the predictors consist of lags of the dependent variable and/or lags of the forecast errors.

ARIMA MODEL

Dep. Variable:		D.Close	No. Obser	vations:	605		
Model:	ARIMA(2, 1, 0)		Log Likelihood		1258.365		
Method:		css-mle Sat, 02 Apr 2022		nnovations	0.030 -2508.730		
Date:	Sat,						
Time:		10:13:06		BIC		-2491.109	
Sample:		1		HQIC		-2501.873	
========		std err			-		
const		0.001					
ar.L1.D.Close	-0.1848	0.041	-4.554	0.000	-0.264	-0.109	
ar.L2.D.Close	0.0672	0.041	1.657	0.098	-0.012	0.147	
		Roo	ots				
	Real	Imagin	ary	Modulus	Frequency		
AR.1	-2.7206	+0.00	90j	2.7206	0.5000		
AR.2	5.4709	+0.00	00j	5.4709	709 0.0000		

ARIMA MODEL

ARIMA MODEL

FAMA-FRENCH MODEL

FAMA-FRENCH MODEL

The Fama French Model is an asset pricing model

It expands on the capital asset pricing model (CAPM) by adding size risk and value risk factors to the market risk factor in CAPM

This model considers the fact that value and small-cap stocks outperform markets on a regular basis and model adjusts for this outperforming tendency, by including these two additional factors.

The Fama and French model has three factors: the size of firms, book-to-market values, and excess return on the market. These factors used are SMB (small minus big), HML (high minus low) and the portfolio's return less the risk free rate of return.

The model is essentially the result of an econometric regression of historical stock prices.

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals:		y OLS Least Squares Thu, 24 Mar 2022 20:00:37 11 7		R-squa	red:		0.357 0.081	
				Adj. R	-squared:			
				F-stat	istic:		1.294	
				Prob (F-statistic)	:	0.34	
				Log-Likelihood:			12.195	
				AIC:			-16.39	
				BIC:			-14.80	
Df Model:			3					
Covariance	Type:	nonrob	ust					
========	coef	std err	====	t	P> t	[0.025	0.975]	
const	0.0547	0.055	0	.999	0.351	-0.075	0.184	
Mkt-RF	0.9426	0.484	1	.948	0.092	-0.201	2.087	
SMB	-0.9504	1.410	-0	.674	0.522	-4.285	2.384	
HML	-0.4428	1.275	-0	.347	0.739	-3.459	2.573	
Omnibus:		1.0	==== 696	Durbin	 ı-Watson:		1.995	
Prob(Omnibu	ıs):	0.4	428	Jarque	-Bera (JB):		1.222	
Skew: 0.667		667	Prob(JB):			0.543		
Kurtosis:		2.0	959	Cond.			58.9	
	========	===========		======	=========	=========		

STOCK PRICE PREDICTION MODEL

XGBOOST

XGBoost stands for Extreme Gradient Boosting, which is a scalable distributed gradient boosting machine learning library

XGBoost is decision-tree based ensemble ML algorithm, and decision-tree based algorithms are considered best in class right now for small to medium structured/tabular data

MODEL SYNOPSIS

CHALLENGES

Initially, the team
brainstormed and dug
deep in data. We
explored a lot of
resources to get dataset
with wide variety of
attributes. After several
visualization and analysis,
we finalized on XGBoost

PROCESS

Starting off with
Technical Indicators such
as SMA, EMA, RSI and
MACD. Proceeded to
feature engineering for
the model and fine tuning
the parameters.

RESULT

Successfully, built a model which would predict proximating 'Close Price' of the stock price on the Test data. Model results in MSE to be as low as 5.567 which conveniently provides line of best fit.

```
[89] y_pred = model.predict(X_test)
    print(f'y_true = {np.array(y_test)[:5]}')
    print(f'y_pred = {y_pred[:5]}')

y_true = [42.18000031 41.22999954 40.29750061 37.69749832 38.08750153]
    y_pred = [43.36597 41.951378 41.119476 40.56402 39.48251 ]
```


BACKGROUND

BOLLINGER BAND

MOVING AVERAGE

TRADING STRATEGY

STRATEGY I

Investment = 100000 Return at the end of 2021 = 47%

STRATEGY II

Investment = 100000 Return at the end of 2021 = 87%

