ne.

主要内容

- 第一部分:数理逻辑,包括命题逻辑和一阶逻辑;(12学时)
- 第二部分:集合论,包括集合的基本概念和运算,二元关系和函数;(12学时)
- 第三部分:图论,包括图的基本概念和几种特殊的图。(15学时)
- 第四部分:组合分析初步,包括基本组合计数、 递推方程(5学时)
- 第五部分:代数系统简介,包括二元运算及其性质、代数系统(4学时)

数理逻辑部分

■第1章 命题逻辑

■第2章 一阶逻辑

第1章 命题逻辑

- 1.1 命题符号化及联结词
- 1.2 命题公式及分类
- 1.3 等值演算
- 1.4 范式
- 1.5 联结词全功能集
- 1.6 组合电路
- 1.7 推理理论

1.1 命题符号化及联结词

- ■命题与真值
- ■原子命题
- ■复合命题
- ■命题常项
- ■命题变项
- ■联结词

判断是否命题,将命题符号化并判断真值

- 1) 明年1月张三考研成功
- 2) 如果今天是1号,则明天是3号
- 3) 小李与张明是同学
- 4) 虽然天气很冷, 老王还是来了
- 5) 小李跑得真快!
- 6) x+5>4
- 7) 李佳吃了苹果或者橘子
- 8)除非天下大雨,否则他不开车上班
- 9)除非天下大雨,他才开车上班
- 10) 只有天下大雨,他才开车上班
- 11) 只要天下大雨,他就开车上班
- 12) 山无陵, 天地合, 乃与君绝

1.2 命题公式及分类

- ■命题变项与合式公式
- 公式的赋值
- ■真值表
- 命题的分类 重言式 矛盾式 可满足式
- ■真值函数

真值函數

问题: 含n个命题变项的所有公式共产生多少个互不相同的真值表?

定义 称定义域为 $\{00...0,00...1,...,11...1\}$,值域为 $\{0,1\}$ 的函数是n元真值函数,定义域中的元素是长为<math>n的0,1串. 常用 $F:\{0,1\}^n \to \{0,1\}$ 表示F是n元真值函数.

共有 2^{2^n} 个n元真值函数.

例如 $F:\{0,1\}^2 \rightarrow \{0,1\}$, 且F(00)=F(01)=F(11)=0, F(01)=1,则F为一个确定的2元真值函数.

2元真值函数对应的真值表

p q	$F_0^{(2)}$	$F_1^{(2)}$	$F_2^{(2)}$	$F_3^{(2)}$	$F_4^{(2)}$	$F_5^{(2)}$	$F_6^{(2)}$	$F_7^{(2)}$
0 0	0	0	0	0	0	0	0	0
0 1	0	0	0	0	1	1	1	1
1 0	0	0	1	1	0	0	1	1
1 1	0	1	0	1	0	1	0	1
p q	$F_8^{(2)}$	$F_9^{(2)}$	$F_{10}^{(2)}$	$F_{11}^{(2)}$	$F_{12}^{(2)}$	$F_{13}^{(2)}$	$F_{14}^{(2)}$	$F_{15}^{(2)}$
p q 0 0	$F_8^{(2)}$ 1	$F_9^{(2)}$ 1	$F_{10}^{(2)}$ 1	$F_{11}^{(2)}$ 1	$F_{12}^{(2)}$ 1	$F_{13}^{(2)}$ 1	$F_{14}^{(2)}$ 1	$F_{15}^{(2)}$ 1
0 0	1	1	1	1	1	1	1	1

命题公式与真值函数

- 对于任何一个含n个命题变项的命题公式A,都存在惟一的一个n元真值函数F为A的真值表.
- 等值的公式对应的真值函数相同.

下表给出所有2元真值函数对应的真值表,每一个含2个命题变项的公式的真值表都可以在下表中找到. 例如: $p \rightarrow q$, $\neg p \lor q$, $(\neg p \lor q) \lor (\neg (p \rightarrow q) \land q)$ 等都对应表中的 $F_{13}^{(2)}$

■评分标准

- □命题符号化每小题5分共40分
 - ■缺前提扣4分
- □习题1.12每小题20分共60分
 - ■公式类型每个4分

——命题符号化

□命题符号化的4至8错误较多,重点4、6、8

-命题变量的取值顺序

2.用真值表判断为初习版1.12中公式的类型 6)(PV(qAr)) > (PAqAr)

		U			1 5 6
par	9Ar	PEPV(9 Nr)	Pn9	PAGAr	PVC9Ar) - PAGAR
000	00	0	0	0	6
001	00	0	0	0	1 to is it
010	00	0	0	0	1100
011	01	10	00	0	0
100	0	1	0	0	0/
110	D	/	1	0	0
111	,		/	/	//
1.01	D	1	0	0	0
1.01	1		119	10 1	

一习题1.12中的第二题错误较多

12)		Nr))->(PA9			UI
(7P-79-	7	79-VP)	1 4	是这一生成为	1
P 9-	TP	79 77-7	8 178-ND 1	7P->4)-> (79-V	P)
0 0	1	18490	ROZE	1主不罢 11代国经	13
01	1	0 91	13121	ME XI 181	
10	0	10-01	国民公司	TREV SEL	13
11	0	ho by	CELONE EN	THE THE THE	

真值表中数 据的个数不 全

-没看课件作业,按照原题回答

1.12 求主折取,主台取,成真成假赋值。 (b (PV(QAY)) -> (PAQAY) 解: 任何原并为 7(PU(9AY)) V(PAPAY) E> (7P M(19 VTY)) V(PAQAY) E> ((7PA79)ACYV7Y) V(7PA7Y)A(7QVQ)) V(PAQAY) => (7PA72A7Y) V(7PA79AY) V(7PA9AY) V(PA9AY) 、原式的主称 取范式为 M。 VM、 VM、 VM, 大自治 豆花 主台西范式为 M3 NM4 NM5 NM6 成直然值为 Mo, m, m, m, 成 衛股 2計份为 M3, M4, M5, M6

情况汇总——抄袭示例

710 0119

深件Pxn 石

(2) 真值是如了. 0 0

-需要区分作业与草稿

-需要区分作业与草稿

有些问题不是不会是因为不细心,希望以后注意

正确答案及示范

(8)小王穿羽纸服仅当天冷的时候。

注意:p→85 78→7P等值(真值相同).

解:设P:天冷; 8:小王穿羽绒服则P, 8为两个命题.特心~(8)例

符号化如下:

- (1) p→g
- (2) P -> g
- (3)78→7P 或符号化为P→8
- (4) 2 -> P
- (5) g -> P
- 16) P-> g
- (7) アタラマを或符号化为各サタ
- 18) 2 -> P

正确答案及示范

解:(1)表(1)为(pv(g/r))→(p/g/c)这个命题欲的真值表,期极下:

P	8	r	8 Ar	pv(ZAr)	PAB	by gve	(pv(gar)) → (pagar)
0	0	0	0	0	0	0	
9	0	1	0	0	0	0	1
2	1	0	0	.0	0	0	
0	1	1			0	0	0
1	0	0	0	1	0	0	0
1	0	1	0	1	0	0	0
1	1	0	0	1	1	0	0 - /
1	1	1	1	1:1:	1		

因为最后一引既有0又有1,所以这个命题公式为准重音式的可满处式

T 答 案 及 示 范

(2)表(2)为命题公式(¬p→8)→(¬8Vp)的真值表,具体如下: 表(2)

_ P	8	70	78	7p -> g	78 VP	(7p→q)→(7gVP)
0	0	1	1	0		1
0	1	1	0	1	0	0
- 1	0	0	1	1	1	1
1	1	0	0	1	1	1

答因为最后一剑就有0,又有1,所以这个命题公式为可满处式。

(3)表(3)为命题公式 7(P->8) 18/1 的真值表,具体如下:

表(3)

P	8	r	P->8	7 (p->g)	7(P->8)18	7(p-g) 1815
0	0	0	1	0	0	0
0	0	1	- 1	0	0	0
0	1	0	1	0	0-	0
0	1,	J.	1	0	0	0
1	0	0	0	1	0	0
1	0	1	0	1	0	0
1	1	0	1	0	0	0
1	1	1	1	0	0	0/

答:因为无成真时试值,所这个命题公式为矛盾式。

1.3 命题逻辑等值演算

- ■等值式
- ■基本等值式
- ■等值演算
- ■置换规则

м

等值式

定义 若等价式 $A \leftrightarrow B$ 是重言式,则称 $A \hookrightarrow B$ 等值,

记作 $A \Leftrightarrow B$,并称 $A \Leftrightarrow B$ 是等值式

说明:定义中, A,B,\Leftrightarrow 均为元语言符号,A或B中可能有哑元出现.

例如,在 $(p \rightarrow q) \Leftrightarrow ((\neg p \lor q) \lor (\neg r \land r))$ 中,r为左边公式的哑元.

用真值表可验证两个公式是否等值

请验证:
$$p \rightarrow (q \rightarrow r) \Leftrightarrow (p \land q) \rightarrow r$$

$$p \rightarrow (q \rightarrow r) \Leftrightarrow (p \rightarrow q) \rightarrow r$$

基本等值式

双重否定律: $\neg\neg A \Leftrightarrow A$

等幂律: $A\lor A \Leftrightarrow A, A\land A \Leftrightarrow A$

交換律: $A \lor B \Leftrightarrow B \lor A, A \land B \Leftrightarrow B \land A$

结合律: $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$

 $(A \land B) \land C \Leftrightarrow A \land (B \land C)$

分配律: $A\lor(B\land C)\Leftrightarrow (A\lor B)\land (A\lor C)$

 $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$

基本等值式(续)

$$\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$$

吸收律:
$$A\lor(A\land B)\Leftrightarrow A$$
, $A\land(A\lor B)\Leftrightarrow A$

零律:
$$A\lor1\Leftrightarrow1$$
, $A\land0\Leftrightarrow0$

同一律:
$$A \lor 0 \Leftrightarrow A$$
, $A \land 1 \Leftrightarrow A$

排中律:
$$A \lor \neg A \Leftrightarrow 1$$

矛盾律:
$$A \land \neg A \Leftrightarrow 0$$

基本等值式(续)

蕴涵等值式: $A \rightarrow B \Leftrightarrow \neg A \lor B$

假言易位: $A \rightarrow B \Leftrightarrow \neg B \rightarrow \neg A$

等价等值式: $A \leftrightarrow B \Leftrightarrow (A \rightarrow B) \land (B \rightarrow A)$

等价否定等值式: $A \leftrightarrow B \Leftrightarrow \neg A \leftrightarrow \neg B$

归谬论: $(A \rightarrow B) \land (A \rightarrow \neg B) \Leftrightarrow \neg A$

牢记这些等值式是继续学习的基础

注意: A,B,C代表任意的命题公式

等值演算与置换规则

等值演算:

由已知的等值式推演出新的等值式的过程

等值演算的基础:

- (1) 等值关系的性质: 自反、对称、传递
- (2) 基本的等值式
- (3) 置换规则

应用举例——证明两个公式等值

例1 证明
$$p \rightarrow (q \rightarrow r) \Leftrightarrow (p \land q) \rightarrow r$$

证 $p \rightarrow (q \rightarrow r)$
 $\Leftrightarrow \neg p \lor (\neg q \lor r)$
 $\Leftrightarrow (\neg p \lor \neg q) \lor r$
 $\Leftrightarrow \neg (p \land q) \lor r$
 $\Leftrightarrow (p \land q) \rightarrow r$

说明:也可以从右边开始演算(请做一遍) 因为每一步都用置换规则,故可不写出 熟练后,基本等值式也可以不写出

.

应用举例一一证明两个公式不等值

例2 证明: $p \rightarrow (q \rightarrow r) \Leftrightarrow (p \rightarrow q) \rightarrow r$

用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.

- ◆ 方法一: 真值表法(自己证)
- ◆ 方法二:观察赋值法.容易看出000,010等是左 边的成真赋值,是右边的成假赋值.
- ◆ 方法三:用等值演算先化简两个公式,再观察.

应用举例——判断公式类型

例3用等值演算法判断下列公式的类型

$$(1)$$
 $q \land \neg (p \rightarrow q)$ 解 $q \land \neg (p \rightarrow q)$ 会 $q \land \neg (\neg p \lor q)$ 会 $q \land (p \land \neg q)$ 会 $p \land (q \land \neg q)$ 会 $p \land 0$ 会 0 由最后一步可知,该式为矛盾式.

例3 (续)

例3 (续)

$$(3) ((p \land q) \lor (p \land \neg q)) \land r)$$
解 $((p \land q) \lor (p \land \neg q)) \land r)$

$$\Leftrightarrow (p \land (q \lor \neg q)) \land r$$

$$\Leftrightarrow p \land 1 \land r$$

$$\Leftrightarrow p \land r$$

这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.

总结: A为矛盾式当且仅当 $A \Leftrightarrow 0$

A为重言式当且仅当 $A \Leftrightarrow 1$

说明:演算步骤不惟一,应尽量使演算短些

■析取范式与合取范式

■主析取范式与主合取范式

析取范式与合取范式

文字:命题变项及其否定的总称 简单析取式:有限个文字构成的析取式 如 $p, \neg q, p \lor \neg q, p \lor q \lor r, \dots$ 简单合取式:有限个文字构成的合取式 如 $p, \neg q, p \land \neg q, p \land q \land r, \dots$ 析取范式:由有限个简单合取式组成的析取式 $A_1 \lor A_2 \lor ... \lor A_r$, 其中 $A_1 , A_2 , ... , A_r$ 是简单合取式 合取范式:由有限个简单析取式组成的合取式 $A_1 \wedge A_2 \wedge ... \wedge A_r$,其中 $A_1 , A_2 , ... , A_r$ 是简单析取式

析取范式与合取范式(续)

范式: 析取范式与合取范式的总称

公式A的析取范式:与A等值的析取范式

公式A的合取范式:与A等值的合取范式

说明:

单个文字既是简单析取式,又是简单合取式

 $p \land \neg q \land r, \neg p \lor q \lor \neg r$ 既是析取范式,又是合取范式 (为什么?)

×

命题公式的范式

定理 任何命题公式都存在着与之等值的析取范式与合取范式.

求公式A的范式的步骤:

- (1) 消去A中的 \rightarrow , \leftrightarrow (若存在)
- (2) 否定联结词¬的内移或消去
- (3) 使用分配律

△对∨分配(析取范式)

∨对∧分配(合取范式)

公式的范式存在,但不惟一

求公式的范式举例

例 求下列公式的析取范式与合取范式

$$(1) A = (p \rightarrow \neg q) \lor \neg r$$

解 $(p \rightarrow \neg q) \lor \neg r$
 $\Leftrightarrow (\neg p \lor \neg q) \lor \neg r$ (消去 \rightarrow)
 $\Leftrightarrow \neg p \lor \neg q \lor \neg r$ (结合律)
这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)

求公式的范式举例(续)

极小项与极大项

定义 在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式<u>出现且仅出现一次</u>,称这样的简单合取式(简单析取式)为极小项(极大项).

说明:

- n个命题变项产生2n个极小项和2n个极大项
- 2ⁿ个极小项(极大项)均互不等值
- 在极小项和极大项中文字均按下标或字母顺序排列

M

极小项与极大项(续)

说明(续):

■用 m_i 表示第i个极小项,其中i是该极小项成 真赋值的十进制表示。 用 M_i 表示第i个极大项, 其中i是该极大项成假赋值的十进制表示, $m_i(M_i)$ 称为极小项(极大项)的名称。

■ m_i 与 M_i 的关系: $\neg m_i \Leftrightarrow M_i$, $\neg M_i \Leftrightarrow m_i$

极小项与极大项(续)

由p,q两个命题变项形成的极小项与极大项

极小项			极大项		
公式	成真赋值	名称	公式	成假赋值	名称
$\neg p \land \neg q$	0 0	m_0	$p \lor q$	0 0	M_0
$\neg p \wedge q$	0 1	m_1	$p \vee \neg q$	0 1	M_1
$p \land \neg q$	1 0	m_2	$\neg p \lor q$	1 0	M_2
$p \wedge q$	1 1	m_3	$\neg p \lor \neg q$	1 1	M_3

由p,q,r三个命题变项形成的极小项与极大项

极小项			极大项		
公式	成真 赋值	名称	公式	成假 赋值	名称
$\neg p \land \neg q \land \neg r$	000	m_0	$p \lor q \lor r$	000	M_0
$\neg p \land \neg q \land r$	001	m_1	$p \lor q \lor \neg r$	001	M_1
$\neg p \land q \land \neg r$	010	m_2	$p \vee \neg q \vee r$	010	M_2
$\neg p \land q \land r$	011	m_3	$p \vee \neg q \vee \neg r$	011	M_3
$p \land \neg q \land \neg r$	100	m_4	$\neg p \lor q \lor r$	100	M_4
$p \land \neg q \land r$	101	m_5	$\neg p \lor q \lor \neg r$	101	M_5
$p \land q \land \neg r$	110	m_6	$\neg p \lor \neg q \lor r$	110	M_6
$p \land q \land r$	111	m_7	$\neg p \lor \neg q \lor \neg r$	111	M_7

主析取范式与主合取范式

主析取范式: 由极小项构成的析取范式

主合取范式: 由极大项构成的合取范式

例如,n=3,命题变项为p,q,r时,

 $(\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \Leftrightarrow m_1 \lor m_3$ 是主析取范式 $(p \lor q \lor \neg r) \land (\neg p \lor q \lor \neg r) \Leftrightarrow M_1 \land M_5$ 是主合取范式

A的主析取范式:与A等值的主析取范式

A的主合取范式:与A等值的主合取范式.

主析取范式与主合取范式(续)

定理 任何命题公式都存在着与之等值的主析取范式和主合取范式,并且是唯一的.

用等值演算法求公式的主范式的步骤:

- (1) 先求析取范式(合取范式)
- (2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.
- (3) 极小项(极大项)用名称 m_i (M_i)表示,并按角标从小到大顺序排序.

求公式的主范式

例 求公式 $A=(p\rightarrow \neg q)\rightarrow r$ 的主析取范式与主合取范式.

(1) 求主析取范式

$$(p \rightarrow \neg q) \rightarrow r$$

$$\Leftrightarrow (p \land q) \lor r$$
, (析取范式) ① $(p \land q)$

$$\Leftrightarrow (p \land q) \land (\neg r \lor r)$$

$$\Leftrightarrow (p \land q \land \neg r) \lor (p \land q \land r)$$

$$\Leftrightarrow m_6 \lor m_7$$
,

(2)

求公式的主范式(续)

$$r$$

$$\Leftrightarrow (\neg p \lor p) \land (\neg q \lor q) \land r$$

$$\Leftrightarrow (\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land q \land r)$$

$$\Leftrightarrow m_1 \lor m_3 \lor m_5 \lor m_7$$
③
②,③代入①并排序,得
$$(p \rightarrow \neg q) \rightarrow r \Leftrightarrow m_1 \lor m_3 \lor m_5 \lor m_6 \lor m_7 \text{ (主析取范式)}$$

求公式的主范式(续)

(2) 求A的主合取范式 $(p \rightarrow \neg q) \rightarrow r$ $\Leftrightarrow (p \lor r) \land (q \lor r)$, (合取范式) $p \lor r$ $\Leftrightarrow p \lor (q \land \neg q) \lor r$ $\Leftrightarrow (p \lor q \lor r) \land (p \lor \neg q \lor r)$ $\Leftrightarrow M_0 \land M_2$

求公式的主范式(续)

$$q \lor r$$
 $\Leftrightarrow (p \land \neg p) \lor q \lor r$
 $\Leftrightarrow (p \lor q \lor r) \land (\neg p \lor q \lor r)$
 $\Leftrightarrow M_0 \land M_4$
②, ③代入①并排序,得
 $(p \rightarrow \neg q) \rightarrow r \Leftrightarrow M_0 \land M_2 \land M_4$
(主合取范式)

由公式A的主析取范式确定它的 主合取范式

- ■步骤
- 1. 写出A的主析取范式
- 2. 写出以A的主析取范式中没出现的极小项的角码为角码的极大项
- 3. 由这些极大项构成的合取式即为A的主合 取范式

м

设命题公式A中含n个命题变项,且设A的主析取范式中含k个极小项 $m_{i_1}, m_{i_2}, ..., m_{i_k}, 则一A的主析取范式中必含其余的2ⁿ-k个极小项,设为<math>m_{j_1}, m_{j_2}, ..., m_{j_{2^{n-k}}}$,即

$$\neg A \Leftrightarrow m_{j_1} \lor m_{j_2} \lor \dots \lor m_{j_{2^{n_{-k}}}}$$

$$A \Leftrightarrow \neg \neg A \Leftrightarrow \neg (m_{j_1} \lor m_{j_2} \lor \dots \lor m_{j_{2^{n_{-k}}}})$$

$$\Leftrightarrow \neg m_{j_1} \land \neg m_{j_2} \land \dots \land \neg m_{j_{2^{n_{-k}}}}$$

$$\Leftrightarrow M_{j_1} \land M_{j_2} \land \dots \land M_{j_{2^{n_{-k}}}}$$

用公式A的真值表求A的主范式

- ■求主析取范式的步骤
- 1. 找出A的真值表中所有的成真赋值
- 2. 计算成真赋值对应的十进制数
- 3. 顺序写出以上述十进制数作为角码的极小项即可构造A的主析取范式

主范式的用途——与真值表相同

(1) 求公式的成真赋值和成假赋值

例如 $(p \rightarrow \neg q) \rightarrow r \Leftrightarrow m_1 \lor m_3 \lor m_5 \lor m_6 \lor m_7$, 其成真赋值为001,011,101,110,111, 其余的赋值 000,010,100为成假赋值. 类似地,由主合取范式也可立即求出成 假赋值和成真赋值.

10

主范式的用途(续)

(2) 判断公式的类型

设A含n个命题变项,则

A为重言式⇔A的主析取范式含 2^n 个极小项 ⇔A的主合取范式为1.

A为矛盾式 $\Leftrightarrow A$ 的主析取范式为0

 $\Leftrightarrow A$ 的主合取范式含 2^n 个极大项

A为非重言式的可满足式

⇔A的主析取范式中至少含一个且不含全部极小项 ⇔A的主合取范式中至少含一个且不含全部极大项

主范式的用途(续)

(3) 判断两个公式是否等值

例 用主析取范式判断下述两个公式是否等值:

(1)
$$p \rightarrow (q \rightarrow r) = (p \land q) \rightarrow r$$

(2)
$$p \rightarrow (q \rightarrow r) = (p \rightarrow q) \rightarrow r$$

解
$$p \rightarrow (q \rightarrow r) = m_0 \lor m_1 \lor m_2 \lor m_3 \lor m_4 \lor m_5 \lor m_7$$

 $(p \land q) \rightarrow r = m_0 \lor m_1 \lor m_2 \lor m_3 \lor m_4 \lor m_5 \lor m_7$
 $(p \rightarrow q) \rightarrow r = m_1 \lor m_3 \lor m_4 \lor m_5 \lor m_7$
故(1)中的两公式等值,而(2)的不等值.

说明:

由公式A的主析取范式确定它的主合取范式,反之亦然. 用公式A的真值表求A的主范式.

主范式的用途(续)

例 某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:

- (1) 若赵去,钱也去;
- (2) 李、周两人中至少有一人去;
- (3)钱、孙两人中有一人去且仅去一人;
- (4)孙、李两人同去或同不去;
- (5) 若周去,则赵、钱也去.

试用主析取范式法分析该公司如何选派他们出国?

解此类问题的步骤为:

- ① 将简单命题符号化
- ② 写出各复合命题
- ③ 写出由②中复合命题组成的合取式
- ④ 求③中所得公式的主析取范式

- 解①设p:派赵去,q:派钱去,r:派孙去,
 - s: 派李去, u: 派周去.
 - $(2)(1)(p\rightarrow q)$

(1) 若赵去,钱也去:

 $(2) (s \vee u)$

- (2)李、周两人中至少有一人去;
- $(3)((q \land \neg r) \lor (\neg q \land r))$ (3)钱、孙两人中有一人去且仅去一人;
- $(4)((r \land s) \lor (\neg r \land \neg s))$ (4) 孙、李两人同去或同不去;
- $(5) (u \rightarrow (p \land q))$
- (5) 若周去,则赵、钱也去.
- ③ (1) ~ (5)构成的合取式为

$$A = (p \rightarrow q) \land (s \lor u) \land ((q \land \neg r) \lor (\neg q \land r)) \land ((r \land s) \lor (\neg r \land \neg s)) \land (u \rightarrow (p \land q))$$

 $4) \quad A \Leftrightarrow (\neg p \land \neg q \land r \land s \land \neg u) \lor (p \land q \land \neg r \land \neg s \land u)$ 结论: 由④可知, A的成真赋值为00110与11001, 因而派孙、李去(赵、钱、周不去)或派赵、钱、 周去(孙、李不去). A的演算过程如下: $A \Leftrightarrow (\neg p \lor q) \land ((q \land \neg r) \lor (\neg q \land r)) \land (s \lor u) \land (\neg u \lor (p \land q)) \land$ (交換律) $((r \land s) \lor (\neg r \land \neg s))$ $B_1 = (\neg p \lor q) \land ((q \land \neg r) \lor (\neg q \land r))$ $\Leftrightarrow ((\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (q \land \neg r))$ (分配律)

$$B_2 = (s \lor u) \land (\neg u \lor (p \land q))$$
 $\Leftrightarrow ((s \land \neg u) \lor (p \land q \land s) \lor (p \land q \land u))$ (分配律)
 $B_1 \land B_2 \Leftrightarrow (\neg p \land q \land \neg r \land s \land \neg u) \lor (\neg p \land \neg q \land r \land s \land \neg u)$
 $\lor (q \land \neg r \land s \land \neg u) \lor (p \land q \land \neg r \land s) \lor (p \land q \land \neg r \land u)$
再令 $B_3 = ((r \land s) \lor (\neg r \land \neg s))$
得 $A \Leftrightarrow B_1 \land B_2 \land B_3$
 $\Leftrightarrow (\neg p \land \neg q \land r \land s \land \neg u) \lor (p \land q \land \neg r \land \neg s \land u)$
注意: 在以上演算中多次用矛盾律
要求: 自己演算一遍

作业

教材

- P26例1.26,分别用等值演算法 (写出所使用的基本等值式)、 主析取范式法(矛盾式不用写)、主合取范式法(重言式不用写))判断。
- P34习题1.15