

CSC 3001 · Assignment 1

Due: 23:59, September 30th, 2024

Instructions:

- Homework problems must be carefully and clearly answered to receive full credit. Complete sentences that establish a clear logical progression are highly recommended.
- You must independently complete each assignment.
- You must submit your assignment in Blackboard with all necessary supplemental material.
- Late submission will not be graded.

Question 1 (10 marks)

Show that each of these conditional statements is a tautology by using truth tables.

(1)
$$\neg p \rightarrow (p \rightarrow q)$$

$$(2) \neg (p \rightarrow q) \rightarrow \neg q$$

Solution

Question 2 (10 marks)

Using a truth table to obtain the principal conjunctive normal form of $(p \leftrightarrow q) \rightarrow r$. Hint: Principal conjunctive normal form is the logical expression using only AND (\land) , OR (\lor) , and NOT (\lnot) operators.

Solution

$$\neg (p \land q \land \neg r) \land \neg (\neg p \land \neg q \land \neg r)$$

p	q	r	$(p \leftrightarrow q)$	$(p \leftrightarrow q) \to r$
\overline{T}	Т	Т	Т	Т
${f T}$	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}
${ m T}$	F	Т	F	${ m T}$
${ m T}$	F	F	F	${ m T}$
${ m F}$	Γ	Γ	F	${ m T}$
\mathbf{F}	Γ	F	F	T
\mathbf{F}	F	Γ	T	T
\mathbf{F}	\mathbf{F}	\mathbf{F}	T	${f F}$

Question 3 (10 marks)

Prove $p \to (q \to r)$ and $p \land q \to r$ are logically equivalent.

Solution

$$\begin{array}{ll} p \to (q \to r) \\ \equiv & \neg p \lor (q \to r) \\ \equiv & \neg p \lor (\neg q \lor r) \\ \equiv & (\neg p \lor \neg q) \lor r) \\ \equiv & (\neg p \lor \neg q) \lor r) \\ \equiv & \neg (p \land q) \lor r \\ \equiv & (p \land q) \to r \end{array} \quad \begin{array}{ll} \text{conditional-disjunction law} \\ \text{associative law} \\ \equiv & (p \land q) \to r \end{array}$$

Question 4 (10 marks)

Determine whether each of these statements is true or false.

 $(1) \ 0 \in \emptyset$

 $(6) \{0\} \subset \{0\}$

 $(2) \ \emptyset \in \{0\}$

 $(7) \{\emptyset\} \subseteq \{\emptyset\}$

 $(3) \{0\} \subset \emptyset$

(8) $\emptyset \in \emptyset$

 $(4) \emptyset \subset \{0\}$

 $(9) \emptyset \in \{\emptyset\}$

 $(5) \{0\} \in \{0\}$

 $(10) \{a,b\} \in \{a,b,\{a,b,c\}\}\$

Solution

(1)F,(2)F,(3)F,(4)T,(5)F,

(6)F,(7)T,(8)F,(9)T,(10)F.

Question 5 (10 marks)

Let M be a set and let $A, B \subset M$. Prove that $M - (A \cup B) = (M - A) \cap (M - B)$.

Solution

$$M - (A \cup B) = M \cap (\overline{A \cup B})$$

$$= M \cap (\overline{A} \cap \overline{B})$$

$$= M \cap \overline{A} \cap \overline{B}$$

$$= M \cap \overline{A} \cap \overline{B} \cap M$$

$$= (M \cap \overline{A}) \cap (\overline{B} \cap M)$$

$$= (M - A) \cap (M - B)$$

Another Proof:

$$\begin{split} M - (A \cup B) &= \{x | x \in M \land x \not\in (A \cup B)\} \\ &= \{x | x \in M \land x \in \overline{A \cup B}\} \\ &= \{x | x \in M \land x \in \overline{A} \cap \overline{B}\} \\ &= \{x | x \in M \land (x \in \overline{A} \land x \in \overline{B})\} \\ &= \{x | x \in M \land x \in \overline{A} \land x \in \overline{B} \land x \in M\} \\ &= \{x | (x \in M \land x \not\in A) \land (x \in M \land x \not\in \overline{B})\} \\ &= \{x | x \in (M - A) \land x \in (M - B)\} \\ &= (M - A) \cap (M - B) \end{split}$$

Question 6 (10 marks)

Let A, B, and C be sets such that $A \cap B = A \cap C$ and $\bar{A} \cap B = \bar{A} \cap C$. Prove that B = C. Solution

 $\forall x \in B$:

If $x \in A$, then $x \in A \cap B$. Since $A \cap B = A \cap C$, it follows that $x \in C$.

If $x \notin A$, then $x \in \bar{A} \cap B$. Since $\bar{A} \cap B = \bar{A} \cap C$, it follows that $x \in C$.

Therefore, $\forall x \in B$, we have $x \in C$. This implies $B \subseteq C$.

By a similar argument, we can conclude that $\forall x \in C$, we have $x \in B$. This implies $C \subseteq D$. In conclusion, we have B = C.

Question 7 (10 marks)

Let Q(x, y, z) denote the statement x+y=z. Determine the truth value of the following statements and provide explanations for your answers. The domain of all variables is \mathbb{R} .

- (1) $\forall x \forall y \exists z Q(x, y, z)$
- (2) $\exists z \forall x \forall y Q(x, y, z)$

Solution

$(1) \ \forall x \forall y \exists z \, Q(x, y, z)$

This statement means: "For all x and y in \mathbb{R} , there exists a z in \mathbb{R} such that x + y = z."

For any real numbers x and y, we can always find a real number z such that z = x + y. Since addition of real numbers is always defined and results in another real number, for any x and y, we can take z = x + y.

Therefore, this statement is **True**.

(2) $\exists z \forall x \forall y Q(x, y, z)$

This statement means: "There exists a z in \mathbb{R} such that for all x and y in \mathbb{R} , x + y = z."

This would require a single real number z to be equal to x+y for all possible x and y. However, this is not possible because z would have to change depending on the values of x and y. Specifically, for different pairs (x_1, y_1) and (x_2, y_2) such that $x_1 + y_1 \neq x_2 + y_2$, there cannot be a single z that satisfies both $x_1 + y_1 = z$ and $x_2 + y_2 = z$.

Therefore, this statement is **False**.

Question 8 (10 marks)

Show that

$$\forall x (P(x) \lor (Q(x)))$$

$$\forall x (\neg Q(x) \lor S(x))$$

$$\forall x (R(x) \to \neg S(x))$$

$$\exists x \neg P(x)$$

$$\vdots \exists x \neg R(x)$$

is a valid argument.

Solution

1	$\exists x \neg P(x)$	premise
2	$\neg P(c)$	EI on ①
3	$\forall x (P(x) \lor (Q(x))$	premise
4	$P(c) \vee Q(c)$	UI on ③
(5)	Q(c)	elimination on 2
6	$\forall x (\neg Q(x) \vee S(x))$	premise
7	$\neg Q(c) \vee S(c)$	UI on ⑥
8	S(c)	elimination on 5 7
9	$\forall x (R(x) \to \neg S(x))$	premise
(1)	$R(c) \to \neg S(c)$	UI on (9)
	$\neg R(c)$	modus tollens on $\ \ \ \ \ \ \ \ \ \ \ \ \ $
12	$\exists x \neg R(x)$	EG on \bigcirc

Question 9 (10 marks)

Prove that when x and y are integers of opposite parity, $x^2 - xy - y^2$ is an odd integer.

Solution

Let x be an even number, then $x=2m, m\in\mathbb{Z}$. Let y be an odd number, then $y=2n+1, n\in\mathbb{Z}$. Then, we have:

$$x^{2} - xy - y^{2} = (2m)^{2} - 2m(2n+1) - (2n+1)^{2}$$

$$= 4m^{2} - 4mn - 2m - (4n^{2} + 4n + 1)$$

$$= 4m^{2} - 4mn - 2m - 4n^{2} - 4n - 1$$

$$= 2(2m^{2} - 2mn - m - 2n^{2} - 2n) - 1$$

Therefore, this expression must be odd.

By a similar argument, we can conclude that this number is also odd when x is odd and y is even. In conclusion, when x and y are integers of opposite parity, $x^2 - xy - y^2$ is an odd integer.

Question 10 (10 marks)

Prove or disprove that there exists a rational number x and an irrational number y such that x^y is irrational.

Solution

Let x=2 be a rational number and $y=\sqrt{\frac{1}{2}}$ be an irrational number. Then we have $x^y=2^{\sqrt{\frac{1}{2}}}$.

If $2^{\sqrt{\frac{1}{2}}}$ is an irrational number, then the proof is complete.

If $2^{\sqrt{\frac{1}{2}}}$ is a rational number, let us reset $x=2^{\sqrt{\frac{1}{2}}}$, which is now a rational number by our assumption, and keep $y=\sqrt{\frac{1}{2}}$ as before. Then we have:

$$x^y = \left(2^{\sqrt{\frac{1}{2}}}\right)^{\sqrt{\frac{1}{2}}} = 2^{\left(\sqrt{\frac{1}{2}}\cdot\sqrt{\frac{1}{2}}\right)} = 2^{\frac{1}{2}} = \sqrt{2},$$

which is an irrational number. Therefore, the proof is complete.