In defense of the three-point shot

Louis Nass

Tulane University

December 17, 2019

Nass (Tulane) NBA Modeling December 17, 2019 1/16

Introduction

Introduction of NBA three-point line 1979-80

 Trend towards larger volume of three-point shots in more recent seasons

"NBA players don't play defense"

2/16

Project Overview

- Linear model
 - Input: o_2pm, o_3pm, d_2pm, d_3pm
 - Output: wins
 - Run for three data sets: 1985-88, 1995-98, 2005-08
- Analysis of data
 - Pre-processing: "normal check"
 - Correlation coefficients: which predictor influences wins most?
- Hypothesis test
 - $H_0: d_2pm = d_3pm = 0$
 - Is defense obsolete?
- Residual vs Leverage
 - Compare and contrast R "highlighted" data points

3 / 16

Data Set

- Data exported from Kaggle¹
- Records of shots made, shots attempted, steals, rebounds, wins, ...
 etc.
- Sample of data:

```
"name"
                 "o_2pm" "o_3pm" "d_2pm" "d_3pm"
                                                    "wins"
"Atlanta Hawks"
                                   1717
                  2490
                           341
                                            236
                                                     30
"Boston Celtics"
                  2387
                           471
                                   1754
                                            212
                                                     24
                                    1406
                                            387
"Chicago Bulls"
                  2566
                           480
                                                     49
```

Nass (Tulane)

NBA Modeling

December 17, 2019

4/16

https://www.kaggle.com/open-source-sports/
mens-professional-basketball#basketball_teams.csv

Pre-processing

- We want our data to be approximately normal
- ullet Skewed data o need to make transformation

Figure: Histograms of predictor data from 1985-88 seasons. The histograms appear to be approximately normal.

Pre-processing

Figure: Histograms of wins from 1985-88 seasons. Again this is approximately normal.

- All data is approximately normal
- Similar figures for 1995-98 and 2005-08 data sets

Linear model

ullet Coefficient significance and R^2 values

Model Comparison					
Model	Pr(> t)	Pr(> t)	Pr(> t)	Pr(> t)	R^2
years	o_2pm	o_3pm	d_2pm	d_3pm	
1985-	1.62e-10	0.00186	1.44 <i>e</i> -06	0.48015	0.5418
88					
1995-	1.09e-13	1.20e-13	< 2e - 16	9.26e - 13	0.7725
98					
2005-	1.00e - 12	< 2e - 16	$2.12e{-12}$	< 2e - 16	0.7423
2008					

Correlation coefficients

• Which predictors have greatest effect wins in each data set?

Correlation coefficients to wins					
Data set o_2pm		o_3pm	d_2pm	d_3pm	
1985-88	0.4232	0.2789	-0.2845	0.1968	
1995-98	0.1742	0.1903	-0.5275	0.1178	
2005-08	0.0423	0.4059	0.0099	-0.3641	

Hypothesis test

• $H_0: d_2pm = d_3pm = 0$

Model Comparison					
Model years DF		Sum of Sq	F	Pr(>F)	
1985-88	2	2363.7	16.116	2.146 <i>e</i> – 06	
1995-98	2	8993	86.812	< 2.2e - 16	
2005-2008	2	5129.2	68.23	< 2.2e - 16	

- Reject the null for each model
- Suggests that defense is not obsolete

Residual vs leverage plot

Figure: Leverage plots for 80's data set

Nass (Tulane) NBA Modeling December 17, 2019 10 / 16

Residual vs leverage plot

Figure: Leverage plots for 90's data set

Nass (Tulane) NBA Modeling December 17, 2019 11/16

Residual vs leverage plot

Figure: Leverage plots for 00's data set

Nass (Tulane) NBA Modeling

80's data set leverage highlights						
name		o_2pm	o_3pm	d_2pm	d_3pm	wins
11	Los Angeles Clippers	3324	64	3588	261	32
16	Philadelphia 76ers	3384	51	3333	282	54
54	Golden State Warriors	3372	91	3157	470	20
	Mean values		107	3141	356	41
90's data set leverage highlights						
27	Cleveland Cavaliers	2221	483	1258	1230	42
47	Atlanta Hawks	2550	337	1944	1017	50
68	Utah Jazz	2744	249	1684	1122	62
	Mean values	2545	443	1722	1248	41
00's data set leverage highlights						
3	Chicago Bulls	2444	560	1345	1428	41
52	Denver Nuggets	2738	569	1624	1710	50
68	Utah Jazz	2872	407	1477	1419	54
	Mean values	2499	504	1610	1383	42

Conclusion

- Model effectively represents data for all three sets
 - $\approx 50\%$ for 1985-88
 - $\approx 75\%$ for 1995-98, 2005-08
- Evolution of basketball suggests greater importance for three-point shot
 - Increased correlation values, increased averages
- No statistical data suggests a dip in defense
 - Rejected null hypothesis
 - \bullet Average \approx 3300 total makes allowed in all three data sets
 - Difference being magnitude of type of makes allowed

14 / 16

Limitations/continued study

Limitations

- Is the discussed hypothesis test the best way to determine defensive efficiency?
- Many other statistics recorded, too simple of a model?
- Limited data size

Continued Study

- Incorporate more predictors, increase the data size
- Consider trends throughout course of NBA season
- What would happen with a four-point shot?

Thank you!

Nass (Tulane) NBA Modeling December 17, 2019 16 / 16