#### **Functions of Continuous Random Variables**

#### Probability and Statistics for Data Science

Carlos Fernandez-Granda





These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net



Explain how to derive the distribution of a function of a continuous random variable

### Function of a discrete random variable

Let h be a deterministic function

If  $ilde{a}$  is a discrete random variable, is  $ilde{b}:=h( ilde{a})$  a discrete random variable? Yes

How do we compute  $p_{\tilde{b}}$  from  $p_{\tilde{a}}$ ?

$$p_{\tilde{b}}\left(b\right) = \sum_{\left\{a \mid h\left(a\right) = b\right\}} p_{\tilde{a}}\left(a\right)$$

### Converting goal difference to points



### Function of a continuous random variable

Let h be a deterministic function

If  $\tilde{a}$  is a continuous random variable, is  $\tilde{b}:=h(\tilde{a})$  a continuous random variable?

Not necessarily, but for most h it is

#### Continuous random variables





## Cdf and pdf



#### Function of a random variable

h is a deterministic function

 $\tilde{a}$  is a continuous random variable with pdf  $f_{\tilde{a}}$ 

What is the cdf of  $\tilde{b} := h(\tilde{a})$ ?

$$F_{\tilde{b}}(b) = P\left(\tilde{b} \le b\right)$$

$$= P\left(h(\tilde{a}) \le b\right)$$

$$= \int_{h(a) \le b} f_{\tilde{a}}(a) da$$

To compute the pdf  $f_{\tilde{b}}$  we differentiate  $F_{\tilde{b}}$ 

# Current and voltage

Current  $\tilde{c}$  with pdf  $f_{\tilde{c}}$ 

Voltage  $\tilde{v} = r\tilde{c}$ 

$$F_{\tilde{v}}(v) = P(\tilde{v} \le v)$$

$$= P(r\tilde{c} \le v)$$

$$= F_{\tilde{c}}(\frac{v}{r})$$

$$f_{\tilde{b}}(b) = \frac{dF_{\tilde{v}}(v)}{dv}$$
$$= \frac{1}{r} f_{\tilde{c}}\left(\frac{v}{r}\right)$$

# Current and voltage



## Current and power

Current  $\tilde{c}$  with pdf  $f_{\tilde{c}}$ 

Power 
$$\tilde{w} = r\tilde{c}^2$$

$$F_{\tilde{w}}(w) = P(\tilde{w} \le w)$$

$$= P(r\tilde{c}^2 \le w)$$

$$= P\left(-\sqrt{\frac{w}{r}} \le \tilde{c} \le \sqrt{\frac{w}{r}}\right)$$

$$= F_{\tilde{c}}\left(\sqrt{\frac{w}{r}}\right) - F_{\tilde{c}}\left(-\sqrt{\frac{w}{r}}\right)$$

$$f_{\widetilde{w}}(w) = \frac{d}{dw} \left( F_{\widetilde{c}} \left( \sqrt{\frac{w}{r}} \right) - F_{\widetilde{c}} \left( -\sqrt{\frac{w}{r}} \right) \right)$$
$$= \frac{1}{2\sqrt{rw}} \left( f_{\widetilde{c}} \left( \sqrt{\frac{w}{r}} \right) + f_{\widetilde{c}} \left( -\sqrt{\frac{w}{r}} \right) \right)$$

if w > 0

## Current and power



#### Weird question

What happens if we feed a random variable  $\tilde{a}$  into its own cdf?

What is the distribution of  $\tilde{b} := F_{\tilde{a}}(\tilde{a})$ ?

This is crucial to understand p values!

# Probability integral transform

We assume that  $F_{\tilde{a}}$  is invertible

For  $0 \le b \le 1$ 

$$\begin{split} F_{\tilde{b}}\left(b\right) &= \mathrm{P}\left(\tilde{b} \leq b\right) \\ &= \mathrm{P}\left(F_{\tilde{a}}\left(\tilde{a}\right) \leq b\right) \\ &= \mathrm{P}\left(\tilde{a} \leq F_{\tilde{a}}^{-1}\left(b\right)\right) \\ &= F_{\tilde{a}}\left(F_{\tilde{a}}^{-1}\left(b\right)\right) \\ &= b \end{split}$$

Uniform distribution in [0, 1]

