Scilab Textbook Companion for Thermodynamics: A Core Course by R. C. Srivastava, S. K. Saha And A. K. Jain¹

Created by
Kedar Hanmant Kottawar
B.Tech
Chemical Engineering
VNIT, Nagpur (MH)
College Teacher
Shyam M Kodape
Cross-Checked by
Lavitha Pereira

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Thermodynamics: A Core Course

Author: R. C. Srivastava, S. K. Saha And A. K. Jain

Publisher: PHI Learning Pvt. Ltd.

Edition: 2

Year: 2004

ISBN: 81-203-2498-6

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
2	Important Termonologies in Thermodynamics	5
3	The First Law of Thermodynamics	7
4	Defining Thermodynamic State The State Postulate	23
5	The Second Law of Thermodynamics	26
6	The Question of Ideality	53
7	Statistical Thermodynamics	64

List of Scilab Codes

Exa 2.1	numerical	5
Exa 2.2	numerical	6
Exa 3.1	numerical	7
Exa 3.2	numerical	8
Exa 3.3	numerical	8
Exa 3.4	numerical	9
Exa 3.5	numerical	10
Exa 3.6	numerical	10
Exa 3.7	numerical	11
Exa 3.8	numerical	12
Exa 3.9	numerical	13
Exa 3.10	numerical	13
Exa 3.11	numerical	14
Exa 3.12	numerical	14
Exa 3.13	numerical	15
Exa 3.14	numerical	16
Exa 3.15	numerical	17
Exa 3.16	numerical	17
Exa 3.17	numerical	18
Exa 3.18	numerical	19
Exa 3.19	numerical	20
Exa 3.20	numerical	21
Exa 3.21	numerical	21
Exa 4.1	numerical	23
Exa 4.2	numerical	24
Exa 4.3	numerical	24
Exa 5.1	numerical	26
Exa 5.2	numerical	27

Exa 5.3	numerical	27
Exa 5.5	numerical	28
Exa 5.6	numerical	28
Exa 5.7	numerical	29
Exa 5.8	numerical	30
Exa 5.9	numerical	30
Exa 5.10	numerical	31
Exa 5.11	numerical	32
Exa 5.12	numerical	32
Exa 5.13	numerical	33
Exa 5.14	numerical	34
Exa 5.15	numerical	34
Exa 5.16	numerical	35
Exa 5.17	numerical	36
Exa 5.19	numerical	37
Exa 5.20	numerical	37
Exa 5.21	numerical	38
Exa 5.22	numerical	39
Exa 5.23	numerical	40
Exa 5.26	numerical	40
Exa 5.27	numerical	41
Exa 5.28	numerical	42
Exa 5.29	numerical	43
Exa 5.30	numerical	43
Exa 5.31	numerical	44
Exa 5.32	numerical	44
Exa 5.33	numerical	45
Exa 5.34	numerical	45
Exa 5.35	numerical	46
Exa 5.36	numerical	47
Exa 5.38	numerical	47
Exa 5.39	numerical	48
Exa 5.40	numerical	48
Exa 5.41	numerical	49
Exa 5.42	numerical	50
Exa 5.43	numerical	51
Exa 5.44	numerical	52
Exa 6.2	numerical	53

Exa 6.5	numerical	54
Exa 6.10	numerical	54
Exa 6.11	numerical	55
Exa 6.12	numerical	56
Exa 6.14	numerical	56
Exa 6.15	numerical	57
Exa 6.16	numerical	58
Exa 6.17	numerical	58
Exa 6.18	numerical	59
Exa 6.19	numerical	60
Exa 6.20	numerical	60
Exa 6.21	numerical	61
Exa 6.22	numerical	62
Exa 6.23	numerical	63
Exa 7.1	numerical	64
Exa 7.2	numerical	65
Exa 7.3	numerical	66
Exa 7.4	numerical	66
Exa 7.5	numerical	67
Exa 7.6	numerical	68
Exa 7.9	numerical	69
Exa 7.12	numerical	70
Exa 7.14	numerical	70
Exa 7.15	numerical	71
Exa 7.16	numerical	72
Eva 7 17	numerical	73

Chapter 2

Important Termonologies in Thermodynamics

Scilab code Exa 2.1 numerical

```
1 // example 2.1
3 clear;
4 clc;
6 //Given:
7 m=25; //weight of water vapour [grams]
8 w=18;//molecular weight of water vapour [grams/mol]
9 T=9.69; //increase in temperature [K]
10 Qp=0.45; //heat supplied at constant pressure [KJ]
11
12
13 //To find the molar constant pressure specific heat
14 n=m/w; //no. of moles of water vapour
15 Cp=Qp/(n*T); // specific heat capacity at constant
      pressure [KJ]
16 printf ("The specific heat capacity at constant
      pressure = %f KJ/K/mol",Cp)
```

Scilab code Exa 2.2 numerical

```
1 // example 2.2
3 clear;
4 clc;
6 // Given:
7 m=16; //weight of oxygen [grams]
8 w=32; //molecular weight of oxygen [grams/mol]
9 T=300; // Temperature during compression [K]
10 P1=1; //initial pressure of process [atm]
11 P2=100; // final pressure of process [atm]
12 R=8.314; // Universal gas constant [J/K/mol]
13
14 //To find the minimum work of compression
15 n=m/w; //no. of moles of oxygen
16 W=-n*R*T*log(P1/P2);
17 printf("Minimum work done to compress oxygen = %f J
      ", W)
```

Chapter 3

The First Law of Thermodynamics

Scilab code Exa 3.1 numerical

```
//example 3.1

clear;
clc;

//given:
V1=14;//initial volume of cylinder in m3
V2=9;//final volume of cylinder in m3
P=2000;//pressure during the operation in N/m2
U=(-6000);//internal energy of the system in J

//to find energy transfered in form of heat:
W=-P*(V2-V1);//work done during the operation in J
Q=U-W;//energy transfered in form of heat in J
printf("energy transfered in form of heat is %f J",Q);
```

Scilab code Exa 3.2 numerical

```
1 // \text{example } 3.2
2
3 clear;
4 clc;
5
6 //given:
7 R=8.314; // universal gas constant [J/K/mol]
8 T=300; //temperture for the process [K]
9 U=0;//change in internal energy [J]
10 V1=2.28; //initial volume [m3]
11 V2=4.56; // final volume [m3]
12
13
14 //to find the heat lost or gained by the system:
15 W=2.303*R*T*log10(V2/V1);//work done during the
      process [J]
16 Q=W; //heat lost or gained by the system [J]
17 printf("the heat gained by the system is %f J",Q);
```

Scilab code Exa 3.3 numerical

```
1 //example 3.3
2
3 clear;
4 clc;
5
6 //given:
7 H=29.2; //latent heat of vaporisation [KJ/mol]
8 T=332; //temperature of the system [K]
9 R=8.314; //universal gas constant [J/K/mol]
10
11
12 //to find Q,W,U for 1 mole of bromine vaporizes
```

```
//where Q is heat absorbed or evolved
//W is the work done by system
//U is the change in internak energy
Qp=H;//at constant pressure [KJ]
W=-R*0.001*T;//workdone [KJ]
U=Qp+W;//change in internal energy [KJ]
printf("heat absorbed by the bromine vapours is %f KJ",Qp);
printf("\nworkdone during the process is %f KJ",W);
printf("\nchange in internal energy of the system is %f KJ",U);
```

Scilab code Exa 3.4 numerical

```
1 // example 3.4
2
3 clear;
4 clc;
6 //given:
7 \text{ disp}(\text{"C7H16(1)} + 11O2(g) \rightarrow 7CO2(g) + 8H2O(1)\text{"});
8 n=-4; //change in no. of moles when reaction proceeds
       from reactants to products
9 T=298; //temperature of the process [K]
10 R=8.314; //universal gas constant [J/K/mol]
11 Qv=-4800; //heat energy at constant volume [KJ]
12
13
14 //to find change in enthalpy of the process:
15 U=Qv; //change in internal energy of system [KJ]
16 H=U+n*R*0.001*T;//change in enthalpy of the system[
17 printf ("the change in enthalpy of system is %f KJ", H
      );
```

Scilab code Exa 3.5 numerical

```
1 // \text{example } 3.5
3 clear;
4 clc;
6 // given:
7 n=1; //number of moles of an given ideal gas
8 T=298; //temperature for the process [K]
9 V1=8.3; //initial volume of the ideal gas [m3]
10 V2=16.8; //final volume of the ideal gas [m3]
11 R=8.314; // universal gas constant [J/K/mol]
12
13
14 //to find the Q,W,H
15 //where Q is heat absorbed or evolved by the system
16 //W is the net workdone
17 //H is the change in enthalpy of system
18 W = -2.303 * R * T * log 10 (V2/V1); // [J]
19 Q = -W; //[J]
20 disp("H=U+PV , where U is change in internal energy
      which is zero due to isothermal process");
21 disp("PV where V is change in volume of system ,PV=
     RT & RT==0 since T i.e change in temp is zero for
       system");
22 disp("Therefore, the change in enthalpy is 0J");
23 printf("the workdone by system is %f J",W);
24 printf("\nthe heat evolved is \%f J",Q);
```

Scilab code Exa 3.6 numerical

```
1 // \text{example } 3.6
2
3 clear;
4 clc;
5
6 //given:
7 T1=323; //intial temperature of water [K]
8 T2=373; //final temperature of water [K]
9 Cp=75.29; // specific heat of water [J/K/mol]
10 w=100; // weight of water[g]
11 mol.wt=18; //molecular weight of water [g/mol]
12
13 //to find the change in enthalpy (H) of water
14 n=w/mol.wt;//no. of moles of water[moles]
15 H=(n*Cp*(T2-T1))*0.001;//change in enthalpy of water
16 printf ("The change in enthalpy of water is %f J", H);
```

Scilab code Exa 3.7 numerical

```
//example 3.7

clear;
clc;

disp("SO2 + 0.5O2 -> SO3");
//given:
U=-97030;//heat of reaction[J]
n=1-(1+0.5);//change in no. of moles
R=8.314;//universal gas constant[J/K/mol]
T=298;//temperature during the reaction[K]

//to find the change in enthalpy of reaction(H)
H=U+n*R*T;//change in enthalpy of reaction[J]
```

```
16 printf("The change in enthalpy of reaction is %f J", H);
```

Scilab code Exa 3.8 numerical

```
1 // \text{example } 3.8
3 clear;
4 clc;
5
6 disp("i.C(s) + O2(g) -> CO2(g)");
7 // Given:
8 H1=-393.5; //change in enthalpy [KJ/mol]
9 T1=298; //temperature [K]
10 n1=0; //change in no. of moles in reaction moving in
     forward direction
11 R=0.008314; //universal gas constant [KJ/K/mol]
12
13 //to find the change in internal energy (U) of given
       reaction
14 U1=H1-n1*R*T1; //change in internal energy [KJ]
15 printf ("The change in internal energy is %f KJ/mol",
     U1);
16
17 disp("ii.C(s) + 0.5O2 -> CO(g)");
18 // Given:
19 H2 = -110.5; //change in enthalpy [KJ/mol]
20 T2=298; //temperature [K]
21 n2=1-0.5; //change in no. of moles in reaction moving
       in forward direction
22 R=0.008314; //universal gas constant [KJ/K/mol]
23
24 //to find the change in internal energy (U) of given
       reaction
25 U2=H2-n2*R*T2;//change in internal energy [KJ]
```

```
26 printf("The change in internal energy is \%f KJ/mol", U2);
```

Scilab code Exa 3.9 numerical

```
1 // \text{example } 3.9
2
3 clear;
4 clc;
6 disp("The standard heat of combustion of");
7 disp("2C6H6(1) + 15O2(g) -> 12 CO2(g) + 6 H2O(1)");
8 disp("H1(standard heat of combustion)=-6536 \text{ KJ/mol}")
  //Given:
10 H1=-6536; //standard heat of combustion [KJ/mol]
11
12 //to find the standard heat of rxn for combustion of
       1 mole of C6H6
13 disp("C6H6(1) + 7.5 O2(g) -> 6 CO2(g) + 6 H2O(1)");
14 H2=H1/2; //standard heat of combustion [KJ/mol]
15 printf(" H2(standard heat of combustion for 1 mole
      of C6H6) = \%f KJ/mol", H2);
```

Scilab code Exa 3.10 numerical

```
1 //example 3.10
2
3 clear;
4 clc;
5 disp("N2(g)+3H2(g)-> 2NH3(g)");
6
7 //Given:
```

Scilab code Exa 3.11 numerical

```
1 // \text{example } 3.11
3 clear;
4 clc;
5
6 disp("C2H5OH(1)+3O2(g)->2CO2(g)+3H2O(1)");
7 // Given:
8 T=298; //temperature during the reaction [K]
9 Hw = -285.83; //standard heat of formation of liquid
      water [KJ/mol]
10 He = -277.69; //standard heat of formation of liquid
      ethanol [KJ/mol]
11 Hco2=-393.51; //standard heat of formation of carbon
      dioxide [KJ/mol]
12 Ho2=0; //standard heat of formation of oxygen gas [KJ/
      mol]
13
14 //to find the standard heat of reaction
15 H=2*Hco2+3*Hw-He-3*Ho2; //standard heat of reaction
16 printf("H(standard heat of reaction)=\%f KJ/mol",H);
```

Scilab code Exa 3.12 numerical

```
1 // \text{example } 3.12
2
3 clear;
4 clc;
6 disp("CO(g)+NO(g)->0.5N2(g)+CO2(g)");
7 // Given:
8 Hrxn=-374; //standard heat of reaction [KJ/mol]
9 Hno=90.25; //standard heat of formation of NO[KJ/mol]
10 Hco2=-393.51; //standard heat of formation of CO2[KJ/
     mol]
11 Hn2=0; //standard heat of formation of N2[KJ/mol]
12 T=298; //temperature of reaction [K]
13
14 //to find the value of standard heat of formation of
15 Hco=0.5*Hn2+Hco2-Hno-Hrxn;//standard heat of
      formation of CO[KJ/mol]
16 printf("Hco(standard heat of formation)=%f KJ/mol",
     Hco);
```

Scilab code Exa 3.13 numerical

```
gaseous propylene to propane [Kcal]
12 H2=-530.6; //the heat of combustion of propane [Kcal]
13 H3=-94.0; //the heat of formation of carbon dioxide
      Kcal]
14 H4=-68.3; //the heat of formation of liquid water
      Kcal
15
16
17 //to find the heat of combustion and formation of
      propylene
18 disp("C3H6(g)+4.5O2(g)->3CO2(g)+3H2O(l)");
19 H5 = [3*H3+4*H4] - [H1+H2]; // [Kcal]
20 printf("\n H(standard heat of combustion)=\%f Kcal.\n
      ", H5);
21 disp("3C(s)+3H2(g)->C3H6(g)");
22 \text{ H6=-H5+3*H3+3*H4;} // [Kcal]
23 printf("\n H(standard heat of formation)=\%f Kcal. \n
     ", H6);
```

Scilab code Exa 3.14 numerical

```
//to find the heat of formation of N2O5
//reacton:N2(g)+2.5O2(g)->N2O5(g)
H4=(2*H1+H2+2*H3)/2;//standard heat of formation of N2O5[KJ/mol]
printf("H(standard heat of formation of N2O5)=%f KJ/mol", H4);
```

Scilab code Exa 3.15 numerical

```
1 // example 3.15
2
3 clear;
4 clc;
5
6 // Given:
7 Hc=-5645; //standard enthalpy of combustion of
      reaction: C12H22O11(s) + 12O2(g) - > 12CO2(g) + 11H2O(1)
      [KJ/mol]
  Hf1=-393.51; //standard heat of formation of CO2: C(s
      +O2(g)->CO2(g) [KJ/mol]
  Hf2=-285.83; //standard heat of formation of H2O: H2(
      (g) + 0.5O2(g) - H2O(1) [KJ/mol]
10
11
12 //to find the standard heat of formaton of solid
      sucrose
13 / \text{reaction} : 12C(s) + 11H2(g) + 5.5O2(g) - C12H22O11(s)
14 Hf = 12 * Hf1 + 11 * Hf2 - Hc; // [KJ/mol]
15 printf("Hf(standard heat of formation of solid
      sucrose = \%f KJ/mol", Hf);
```

Scilab code Exa 3.16 numerical

```
//example 3.16
2
3
4 clear;
5 clc;
7 // Given:
  Hf1=-46.11; //standard heat of formation of NH3 at
      298K / reaction : 0.5 N2(g) + 1.5 H2(g) - NH3(g) [KJ/mol]
9 Cp1=29.125; //molar heat capacity at constant
      pressure for N2(g) [J/K/mol]
10 Cp2=28.824; //molar heat capacity at constant
      pressure for H2(g)[J/K/mol]
11 Cp3=35.06; //molar heat capacity at constant pressure
       for NH3(g)[J/K/mol]
12 T1=298; //initial temperature [K]
13 T2=400; // final temperature [K]
14
15
  //to find the standard heat of formation of NH3 at
      400K for same reaction
17 Cp = Cp3 - 0.5 * Cp1 - 1.5 * Cp2; // [J/K/mol]
18 T=T2-T1; //[K]
19 Hf2=Hf1+Cp*0.001*T;//standard heat of formation for
     NH3 at 400K[KJ/mol]
20 printf("\n Hf2(standard heat of formation for NH3 at
       400K = \%f KJ/mol. \n", Hf2);
```

Scilab code Exa 3.17 numerical

```
1 //example 3.17
2
3 clear;
4 clc;
```

```
5
6 // Given:
7 Cp1=poly([29.07, -0.836*10^{-3}, 20.1*10^{-7}], 'T', 'c');
      //heat capacity for H2(g)
8 Cp2=poly([25.72, 12.98*10^-3, -38.6*10^-7], 'T', 'c');
      //heat capacity for O2(g)
  Cp3=poly([30.36, 9.61*10^-3, 11.8*10^-7], 'T', 'c'); //
      heat capacity for H2O(g)
10 Hf1=-241820; //standard heat of formation H2O(g) at
      298K :
                             H2(g) + 0.5O2(g) -> H2O(g) [J/
      mol]
11 T1=298; // initial temperature [K]
12 T2=1273; // final temperature [K]
13
14 //to find the standard heat of formation of H2O(g)
      at 1273K
15 Cp=Cp3-0.5*Cp2-Cp1; //heat capacity for the formation
      [J/K/mol]
16 i = horner(Cp, 1273) - horner(Cp, 298); // [J/mol]
17 Hf2=(Hf1-i)*0.001; //[KJ/mol]
18 printf ("The heat of formation of H2O at 1273K = \%f
     KJ/mol", Hf2);
```

Scilab code Exa 3.18 numerical

```
9 H3=385; //bond dissociation energy for:CH2->CH+H [KJ/mol]
10 H4=335; //bond dissociation energy for:CH->C+H [KJ/mol]
11
12
13 //to find the C-H bond energy of CH4 from the above bond energies
14 H=(H1+H2+H3+H4)/4; //the bond energy for C-H bond in CH4 [KJ/mol]
15 printf("\n H(the C-H bond energy in CH4)=%f KJ/mol.\n",H);
```

Scilab code Exa 3.19 numerical

```
1 // example 3.19
2
3 clear;
4 clc;
5
6 //Given:
7 H1=-84.68; // heat of formation : 2C(s)+3H2(g)->C2H6(g)
      ) [KJ/mol]
8 H2=2*716.68; //heat of formation : 2C(s)->2C(g) [KJ]
9 H3=3*436; //heat of formation : 3H2(g)->6H(g) [KJ]
10 H4=412; //taking it as bond energy for one C-H bond [
     KJ/mol]
11
12
13 //to find the C-C bond energy in ethane bond
14 H=H2+H3-H1; //heat of reaction : C2H6(g) - >2C(g) +6H(g)
       [KJ/mol]
15 H5=H-6*H4; //bond energy for one C-C bond in ethane
     bond [KJ/mol]
16 printf("\n Hc-c(bond energy for one C-C bond in
```

Scilab code Exa 3.20 numerical

```
//example 3.20
2
3 clear;
4 clc;
5
6 // Given:
  //MgBr2(s) -->Mg(s) + Br2(1) -->Mg(g) + Br2(1) -->Mg(g) + Br2
      (g) --> Mg(g) + 2Br(g) --> Mg + 2(g) + 2e(g) + 2Br(g) -->
     Mg+2(g) + 2Br-(g)
8 H1=-524; //enthalpy of formation of MgBr2(s) from its
       element [KJ/mol]
9 H2=148; //enthalpy of sublimation of Mg(s) [KJ/mol]
10 H3=31; //enthalpy of vaporization of Br2(1) [KJ/mol]
11 H4=193; //enthalpy of dissociation Br2 to 2Br(g) [KJ/
     mol
12 H5=2187; // enthalpy of ionization of Mg(g) to Mg+2(g)
       [KJ/mol]
13 H6=-650; //enthalpy of formation of Br-(g) [KJ/mol]
14
15 //to find the lattice enthalpy of magnesium bromide
16 H=-H1+H2+H3+H4+H5+H6; //lattice enthalpy [KJ/mol]
17 printf("\n H(lattice enthalpy of magnesium bromide)=
     %f KJ/mol.\n", H);
```

Scilab code Exa 3.21 numerical

```
1 //example 3.21
2
3 clear;
```

```
4 clc;
5
6 //Given:
7 Cp1=poly([26.0, 43.5*10^{\circ}-3, -148.3*10^{\circ}-7], 'T', 'c');
      //heat capacity for CO2(g)[J/K/mol]
8 Cp2=poly([30.36, 9.61*10^-3, 11.8*10^-7], 'T', 'c');//
      heat capacity for H2O(g)[J/K/mol]
9 Cp3=poly([27.30, -5.23*10^{-3}, -0.04*10^{-7}], 'T', 'c');
      //heat capacity for N2(g)[J/K/mol]
10 H1=-881.25; //heat of combustion of methane at 298K[
                                CH4 + 2O2(g) \longrightarrow CO2(g) +
      KJ/mol]:
       2H2O(1)
  H2=43.6; //heat of vaporization of water at 298K[KJ/
                    H2O(1) --> H2O(g)
12 T1=298; //initial temperature [K]
13
14
15 //to find the maximum flame temperature when one
      mole of methane is burnt completely in
      calculated amount of air (N2 to O2 ratio 4), at
      constant pressure
16 H=(H1+2*H2); // enthalpy of reaction: CH4 + 2O2(g) \longrightarrow
       CO2(g) + 2H2O(g) [KJ]
17 printf("H(enthalpy of reaction)=\%f KJ/mol.\n",H);
18 printf("H(enthalpy of heating)=\%f KJ/mol. \n",-H);
19 Cp = Cp1 + 2 * Cp2 + 8 * Cp3; // [J/K/mol]
20 P = poly([0, 305.12, 52.28*10^-3, -41.66*10^-7],
      T' , 'c');
21 i=horner(P,298);
22 c1 = -H * 1000 + i;
23 P1 = poly([-c1, 305.12, 52.28*10^-3, -41.66*10^-7]
      , 'T' , 'c');
24 T2=roots(P1)
25 printf("T2 (maximum flame temperature) = \%f K", T2(1))
```

Chapter 4

Defining Thermodynamic State The State Postulate

Scilab code Exa 4.1 numerical

```
1 // example 4.1
3 clear;
4 clc;
6 // Given:
7 M=2.5; //mass of the substance [Kg]
8 x=0.6;//mass fraction for vapour phase
9 P=7; // pressure [atm]
10 T=438; //temperature [K]
11
12 //to find the mass of substance present in liquid
     and vapour phase
13 Ml=(1-x)*M; //mass fraction of liquid phase [Kg]
14 Mg=x*M; //mass fraction of vapour phase [Kg]
15
16 printf("M(liquid phase)=%f Kg , M(vapour phase)=%f
     Kg", M1, Mg)
```

Scilab code Exa 4.2 numerical

```
//example 4.2
clear;
clc;
//Given:
Vl=0.0177;//specific volume of saturated liquid[m3/Kg]
Vg=4.43;//specific volume of saturated vapour[m3/Kg]
P=7;//pressure[atm]
T=438;//temperature[K]
x=0.6;//fraction of vapour phase
M=2.5;//mass of the substance[Kg]
//to find the total volume occupied by the mixture
V=[(1-x)*V1+x*Vg]*M;//total volume occupied [m3]
printf("Total volume occupied =%f m3", V)
```

Scilab code Exa 4.3 numerical

```
1 //example 4.3
2
3 clear;
4 clc;
5
6 //Given:
7 M=2.5; //mass of a substance [Kg]
8 x=0.6; //fraction of vapour phase
9 Ug=1105; // specific internal energy of saturated vapour [J/Kg]
```

Chapter 5

The Second Law of Thermodynamics

Scilab code Exa 5.1 numerical

```
1 // \text{example } 5.1
3 clear;
4 clc;
6 //given:
7 T1=373; //initial temperature [K]
8 T2=573; // final temperature [K]
9 Q2=750; //Heat absorbed by carnot engine [J]
10
11 //to find the workdone, heat rejected, and
      efficiency of the engine
12 = (T2-T1)/T2; //efficiency of the engine
13 W=e*Q2; //Workdone by the engine [J]
14 Q1=T1*Q2/T2; //Heat rejected by the engine [J]
15
16 printf ("Efficiency of the engine = %f", e);
17 printf("\n Workdone by the engine = \%f J", W);
18 printf("\n Heat rejected by the engine = \%f J", Q1);
```

Scilab code Exa 5.2 numerical

```
//example 5.2

clear;
clc;

//given:
T1=250;//temperature of heat rejection [K]
T2=1000;//temperature of heat absorption [K]

//to analyse the efficiency of the engine
e=1-(T1/T2);
printf("Efficiency of the corresponding carnot engine = %f\n",e);
disp("Therefore , the inventors claim of 80% efficiency is absurd. The patent application should be rejected");
```

Scilab code Exa 5.3 numerical

```
1 //example 5.3
2
3 clear;
4 clc;
5 6 //Given:
7 T1=323; //temperature [K]
8 T2=423; //temperature [K]
9 W=1.3; //work [KJ]
```

Scilab code Exa 5.5 numerical

```
//example 5.5

clear;
clc;
f/Given:
T=298;//Temperature [K]
n=1;//no. of moles
V1=500;//initial volume [cm3]
V2=1000;//final volume [cm3]
R=8.314;//Universal gas constant [J/mol/K]
//to find the molar entropy change
S=R*log(V2/V1)//molar entropy change at constant temperature[J/K]
printf("Molar entropy change of argon = %f J/K", S);
```

Scilab code Exa 5.6 numerical

```
1 //example 5.6
2
3 clear;
4 clc;
```

```
5
6 //Given:
7 W=1728; //Isothermal and reversible work done[J/mol]
8 T=298; //Isothermal temperature[K]
9
10 //to find the change in molar entropy when the gas expands isothermally and reversibly
11
12 S=W/T; //change in molar entropy for isothermal and reversible process
13 printf("The change in molar entropy = %f J/mol/K", S);
```

Scilab code Exa 5.7 numerical

```
1 // \text{example } 5.7
2
3 clear;
4 clc;
5
6 // Given:
7 H=-92.22; //Standard reaction enthalpy [KJ]
8 T=298; // Temperature [K]
9
10
11 //To find the change in entropy of the surroundings
      at 298K
12 //standard reaction enthalpy is H. Therefore, heat
      gained by the surroundings at 298K is -H
13 S=-H*1000/T; // Change in entropy [J/K]
14 printf("Change in entropy of the surroundings at 298
      k = \%f J/K,s);
```

Scilab code Exa 5.8 numerical

```
//example 5.8
2
3 clear;
4 clc;
5
6 //Given:
7 T1=298; // Initial Temperature [K]
8 T2=573; // Final Temperature [K]
9 Cv=29.1; // Specific Heat capacity of argon gas [J/K/
10 n=1; //no. of moles
11
12
13 //To find the change in entropy for argon gas
14 S=n*Cv*log(T2/T1); //Change in entropy [J/K]
15 printf ("The change in entropy of the argon gas is %f
       J/K",S);
```

Scilab code Exa 5.9 numerical

```
//example 5.9
clear;
clc;
fo //Given:
T1=276; // Initial temperature [K]
Tf=278.7; // Freezing point temperature [K]
Tb=353.3; // Boiling point temperature [K]
T2=373; // Final temperature [K]
Hf=9870; // Standard enthalpy of fusion [J/mol]
W=30800; // Standard enthalpy of vaporization [J/mol]
Cp=136.1; // Specific heat capacity of benzene [J/K/mol]
```

```
14 mol.wt=78; //molecular weight of benzene[g/mol]
15 mass=200;//weight of solid benzene[g]
16 disp("
              Cp does not change within this temp limit"
     );
17
18 //To find the total entropy change of solid
19 n=mass/mol.wt;//no. of moles
20 S1=n*Cp*log(Tf/T1); // entropy change in heating [J/K]
21 S2=n*Hf/Tf; //entropy change in melting [J/K]
22 S3=n*Cp*log(Tb/Tf); //entropy change in heating [J/K]
23 S4=n*Hv/Tb; //entropy change in vaporization [J/K]
24 S5=n*Cp*\log(T2/Tb); //entropy change in heating [J/K]
25 S=S1+S2+S3+S4+S5; //total entropy change in heating
     from 276 to 373K
26
27 printf ("Total entropy change in heating 200g benzene
       from 3 to 100 °C is %f J/K",S);
```

Scilab code Exa 5.10 numerical

```
//example 5.10

clear;
clc;

//Given:
mass=32;//weight of methane gas[gm]
P1=6*10^5;//Initial temperature[N/m2]
P2=3*10^5;//Final pressure[N/m2]
mol.wt=16;//molecular weight of methane gas[g/mol]
T=298;//Temperature[K]
//Isothermal process
R=8.314;//Universal gas constant[J/K/mol]
```

Scilab code Exa 5.11 numerical

```
//example 5.11

clear;
clc;

//Given:
N=3;//Total no. of balls
Nb=2;//Black balls
Nw=1;//white ball

//To find the total no. possible configuration
w=prod(1:N)/prod(1:Nb)/prod(1:Nw);

printf("The total no. of possible configurations are %f",w);
```

Scilab code Exa 5.12 numerical

```
1 //example 5.12
2
3 clear;
4 clc;
5
6 //Given:
7 n=1;//no. of moles
```

```
8 T=273; //temperature [K]
9 Hf=6000; //enthalpy of fusion at 273K [J/mol]
10 k=1.38*(10^-23); //boltzmann constant [J/K]
11
12 //To find the relative number of distinguishable
    quantum states in 1 mole of water and ice at 273K
13
14 p=Hf/(k*T)/2.303;
15 w=10^(p); //w is the relative no. of distinguishable
    quantum states
16 printf("The relative no. of distinguishable quantum
    states in 1 mole of water and ice at 273K is %f",
    w);
```

Scilab code Exa 5.13 numerical

```
//example 5.13

clear;
clc;

//Given:
T=300; //temperature [K]
n=4; //no. of moles of an ideal gas
P1=2.02*10^5; //initial pressure [N/m2]
P2=4.04*10^5; //final pressure [N/m2]
R=8.314; // Universal gas constant [J/K/mol]
//To find the value of Gibb's free energy
G=n*R*T*log(P2/P1); // [J]
printf(" The change in Gibbs free energy is %f J",G);
```

Scilab code Exa 5.14 numerical

```
1 // \text{example } 5.14
2
3 clear;
4 clc;
5
6 // Given:
7 n=1; //no. of moles
8 T=300; //temperature [K]
9 V1=2; //initial volume [m3]
10 V2=20; // final volume [m3]
11 R=8.314; // Universal gas constant [J/K/mol]
12
13
14 //To find the work function or Helmholts free energy
15 A=-n*R*T*log(V2/V1); //Change in work function[J/mol]
16 printf("The change in Helmholts free energy is %f J/
      mol", A);
```

Scilab code Exa 5.15 numerical

```
//example 5.15

clear;
clc;
disp("C6H12O6(s) + 6O2(g) --> 6CO2(g) + 6H2O(1)");
//Given:
T=298;//Temperature[k]
R=8.314;//Universal gas constant[J/K/mol]
S=182.45;//standard entropy change at 298K[J/K]
U=-2808;//change in internal energy at 298K[KJ/mol]
//reaction is taking place in bomb calorimeter so no volume change
```

```
// therefore U=Q at constant volume
//To find the energy change that can be extracted as heat and work
//To find the energy change that can be extracted as heat and work
// Energy extracted as heat [KJ/mol]
// Wmax=A; //work done [KJ/mol]
// dn=6-6; //change in no. of moles
// H=U+dn*R*T; //Change in enthalpy of the bomb calorimeter [KJ]
// printf("The energy change that can be extracted as heat is %f KJ/mol", A);
// Printf("\nThe energy change that can be extracted as work is %f KJ/mol", -A);
// printf("\nThe change in enthalpy of bomb calorimeter is %f KJ/mol", H);
```

Scilab code Exa 5.16 numerical

```
1 // \text{example } 5.16
2
3 clear;
4 clc;
6 disp("C8H18(g)+12.5O2(g)-->8CO2(g)+9H2O(l)");
7 // Given:
8 T=298; //temperature [K]
9 S=421.5; // change in entropy [J/K]
10 H=-5109000; //Heat of reaction [J]
11 R=8.314; // Universal gas constant [J/K/mol]
12 dn=8-(1+12.5); //change in no. of moles
13
14
15 //To find the helmholts free energy and Gibbs free
      energy
16 U=H; //[J]
```

Scilab code Exa 5.17 numerical

```
1 // example 5.17
2
3 clear;
4 clc;
6 disp("C3H6(g)+4.5O2(g)-->3CO2(g)+3H2O(1)");
7 // Given:
8 S=-339.23; // standard change in entropy [J/K]
9 T=298; //temperature [K]
10 Hf1=20.42; // enthalpy of formation of C3H6(g)[J]
11 Hf2=-393.51; //enthalpy of formation of CO2(g)[J]
12 Hf3=-285.83; //enthalpy of formation of H2O(1)[J]
13 dn=3-4.5-1; //change in no. of moles
14 R=8.314; // Universal gas constant [J/K/mol]
15
16 //To find the Helmholts free energy and Gibbs free
      energy
17 H=3*Hf2+3*Hf3-Hf1; // Enthalpy of the reaction [J]
18 U=H-dn*R*0.001*T; // Change in internal energy of the
      reaction [J]
19 A=U-T*S*0.001; // Helmholts free energy change [J]
20 G=A+dn*R*0.001*T;//Gibbs free energy change[J]
21 printf("The change in Helmholts free energy is %f J"
      , A);
22 printf("\nThe change in Gibbs free energy is %f J ",
     G);
```

Scilab code Exa 5.19 numerical

```
1 // \text{example } 5.19
2
3 clear;
4 clc;
6 disp("CH4(g)+2O2(g)-->CO2(g)+2H2O(1)");
8 // Given:
9 S1=-242.98;//standard entropy change for the
      combustion reaction [J/K]
10 Hf1=-74.81; //Enthalpy of formation of CH4(g) [KJ/mol]
11 Hf2=-393.51; // Enthalpy of formation of CO2(g) [KJ/mol
12 Hf3=-285.83; //Enthalpy of formation of H2O(1)[KJ/mol
13 T=298; //temperature [K]
14
15 //To find the total entropy change
16 H=Hf2+2*Hf3-Hf1; // Change in enthalpy of reaction [KJ]
17 S2=-H*1000/T; // Change in entropy of the surrounding
      J/K
18 Stotal=(S1+S2)*0.001; // Total entropy change
19 printf ("The total change in entropy is %f KJ/K",
      Stotal);
```

Scilab code Exa 5.20 numerical

```
1 //example 5.20
```

```
3 clear;
4 clc;
6 disp("2H2(g)+O2(g)-->2H2O(l)");
7 // Given:
8 Hf1=-285.83; //standard enthalpy of formation of H2O(
     1) [KJ/mol]
9 S=-327; // Standard entropy change for the same
      reaction [J/K]
10 T=298; //temperature [K]
11
12
13 //To find the spontanity of the reaction
14 H=2*Hf1-0-0; // Enthalpy of the reaction [KJ/mol]
15 G=H-T*S*0.001; //Change in Gibbs free energy [KJ]
16 printf ("The change in Gibbs free energy is %f KJ\n"
      ,G);
17 disp("As change in Gibbs free energy is negative.
      Therefore, the reaction is spontaneous")
```

Scilab code Exa 5.21 numerical

```
1 //example 5.21
2
3 clear;
4 clc;
5
6 disp("CH4(g)+2O2(g)-->CO2(g)+2H2O(1)");
7 //Given:
8 S=-242.98;//standard entropy change for reaction [J/K]
9 T=298;//temperature[K]
10 Gf1=-50.72;//standard Gibbs free energy of formation for CH4(g)[KJ/mol]
11 Gf2=-394.36;//standard Gibbs free energy of
```

Scilab code Exa 5.22 numerical

```
1 // \text{example } 5.22
2
3 clear;
4 clc;
6 disp("C6H12O6(s)+6O2(g)-->6CO2(g)+6H2O(l)");
7 // Given:
8 mass=25; //mass of glucose for combustion under
     standard condition [gm]
9 T=298; //temperature [K]
10 Gf1=-910; //Standard Gibbs free energy of formation
      for C6H12O6[KJ/mol]
11 Gf2=-394.4; //Standard Gibbs free energy of formation
       for CO2(g) [KJ/mol]
12 Gf3=-237.13; //Standard Gibbs free energy of
     formation for H2O(1)[KJ/mol]
13 mol.wt=180; //molecular weight of glucose [gm/mol]
14
15 //To find the maximum energy that can be extracted
     as non-expansion work is equal to the change in
     free energy of the system
```

```
16 G=6*Gf2+6*Gf3-Gf1
17 n=mass/mol.wt;//no. of moles
18 Gactual=G*n;//Gibbs free energy for the combustion
        of 0.139 mol of glucose
19 printf("The energy that can be extracted as non-
        expansion work is %f KJ",-Gactual);
```

Scilab code Exa 5.23 numerical

```
//example 5.23
clear;
clc;
//Given:
a=1.39*10^-2;//constant for a vanderwaal's gas[lit2.atm/mol2]
b=3.92*10^-2;//constant for a vanderwaal's gas[lit2.atm/mol2]
R=0.082;//Universal gas constant[lit.atm/deg/mol]
//To find the value of the inversion temperature for the gas
Ti=(2*a)/(R*b);//inversion temperature [K]
printf("The inversion temperature for the gas is %f K",Ti);
```

Scilab code Exa 5.26 numerical

```
1 //example 5.26
2 
3 
4 clear;
```

```
5 clc;
6
7 // Given:
8 T=169.25; // Boiling point [K]
9 R=8.314; // Universal gas constant [J/K/mol]
10 \operatorname{disp}(\operatorname{"dlnP}/\operatorname{dT}=\operatorname{He}/\operatorname{R}*\operatorname{T}^2");
11 disp("dlnP/dT=(2.303*834.13/T^2)+(1.75/T)
       -(2.30*8.375*10^{-3})");
12 disp ("Therefore using these two equations we
       calculate the He(enthalpy) of ethylene");
13
14 //To find the Enthalpy of vaporization of ethylene
15 x = (2.303*834.13/T^2) + (1.75/T) - (2.30*8.375*10^-3); //
       it is dlnP/dT
16 He=R*0.001*T^2*x; // Enthalpy of vaporization [J/mol]
17 printf("\n\nThe Enthalpy of vaporization of ethylene
        at its boiling point is %f KJ/mol", He);
```

Scilab code Exa 5.27 numerical

```
//example 5.27

clear;
clc;
//Given:
P1=101.3; // Initial Pressure [KPa]
P2=60; // Final Pressure [KPa]
He=31.8; // Enthalpy of vaporization [KJ/mol]
R=8.314; // Universal gas constant [J/K/mol]
T1=353.2; // boiling point of benzene at 101.3KPa[K]
//To find the boiling point of b/enzene at 60KPa
x=(T1^-1)-(R*0.001*log(P2/P1)/He);
T2=x^-1; // Boiling point of benzene at 60KPa
```

```
16 printf("The boiling point of benzene at 60KPa is %f
K",T2);
```

Scilab code Exa 5.28 numerical

```
1 // \text{example } 5.28
3 clear;
4 clc;
5
6 //Given:
7 P1=0.016; //Vapour pressure of pure ethanol at 273K[
8 P2=0.470; //Vapour pressure of pure ethanol at 333K[
      bar]
9 T1=273; //initial temperature [K]
10 T2=333; //final temperature [K]
11 R=8.314; // Universal gas constant [J/K/mol]
12 P=1.01; //vapour pressure at normal boiling point [bar
13
14
15 //To find the molar enthalpy of vapourization
16 x = (T2^-1) - (T1^-1);
17 He=-R*0.001*\log(P2/P1)/x; //molar enthalpy of
      vaporization [J/mol]
18 t=(T2^-1)-(R*0.001*log(P/P2)/He);
19 T=(t^-1)-273; //normal boiling point [C]
20 printf ("The molar enthalpy of vapourization is %f J/
      \operatorname{mol} ", He);
21 printf("\n\nThe normal boiling point for pure
      ethanol is %f C",T);
```

Scilab code Exa 5.29 numerical

```
1 // \text{example } 5.29
2
3 clear;
4 clc;
5
6 // Given:
7 T2=353.2; //normal boiling point of benzene at
      1.01325 bar [K]
8 T1=298; //temperature [K]
9 R=8.314; // Universal gas constant [J/K/mol]
10 P2=1.01325; // Vapour pressure of benzene [bar]
11 //benzene obey's Trouton's rule
12 disp(" from Troutons rule, ");
13 disp("He/Tb=85J/K/mol");
14
15 //To find the vapour pressure of benzene at 298K
16 He=85*T2; //molar enthalpy of vapourization [J/K/mol]
17 x = (T2^-1) - (T1^-1);
18 t=-He*x/R;
19 P1=P2/exp(t);
20 printf("\nThe vapour pressure of benzene at 298K is
      %f bar", P1);
```

Scilab code Exa 5.30 numerical

```
1 //example 5.30
2
3 clear;
4 clc;
5
6 //Given:
7 c=1;//no. of components(only CO2)
8 p=2;//no. of phases(liquid + gas)
```

```
9
10 //To find the degrees of freedom
11 F=c-p+2; //degree of freedom
12 printf("Degrees of freedom is %f \n\n",F);
13 disp("Degrees of freedom 1 means that either
        pressure or temperature can be varied
        independently, i.e. when temperature is fixed,
        pressure is automatically fixed");
```

Scilab code Exa 5.31 numerical

```
//example 5.31

clear;
clc;

//Given:
c=1;//no. of components
p=1;//no. of phases

//To find the values of degrees of freedom
F=c-p+2;//Degrees of freedom
printf("Degrees of freedom is %f\n\n",F);
disp("Degrees of freedom 2 means both the pressure and temperature can be varied independently");
```

Scilab code Exa 5.32 numerical

```
1 //example 5.32
2
3 clear;
4 clc;
```

```
6 //Given:
7 P=1.75*10^-5; //Vapour pressure of pure water at 293K
      [torr]
8 dP=1.1*10^-7; //Lowering in vapour pressure of water
9 //To find the mole fraction of sucrose, so that the
      vapour pressure of water will be lowered by dP
10 x=dP/P; //mole fraction of sucrose
11 disp(x,'The mole fraction of sucrose is ');
```

Scilab code Exa 5.33 numerical

```
1 // \text{example } 5.33
3 clear;
4 clc;
5
6 // Given:
7 P=94.6; //The vapour pressure of pure benzene at 298K
      [torr]
8 n1=20; //no. of moles of pure benzene
9 n2=5;//no. of moles of pure naphthalene
10
11 //To find the partial vapour pressure of benzene
      over the solution
12 \text{ x=n1/(n1+n2)}; //(\text{mole fraction of benzene})
13 p=x*P; //the partial vapour pressure of benzene[torr]
14 printf ("The partial vapour pressure of benzene is %f
       torr",p);
```

Scilab code Exa 5.34 numerical

```
\frac{1}{2} //example 5.34
```

```
3 clear;
4 clc;
5
6 //Given:
7 x=0.28;//mole fraction of solute
8 R=8.314;//Universal gas constant[J/K/mol]
9 T=298;//temperature[K]
10
11 //To find the reduction in chemical potential
12 du=R*T*log(1-x);//reduction in chemical potential[J/mol]
13 printf("The reduction in chemical potential is %f J/mol",-du);
```

Scilab code Exa 5.35 numerical

```
1 // \text{example } 5.35
3 clear;
4 clc;
6 // Given:
7 Kb=0.51; //ebullioscopic constant of water [K*Kg/mol]
8 n=155/180; //no. of moles of glucose
9 m=n/1; //[mol/Kg]
10 Ti=373; // Boiling point temperature of water [K]
11
12 //To find the boiling point of the solution which is
       made by dissolving 155g of glucose in 1000g of
      water
13 Tf = (Ti + Kb*m) - 273; // boiling point temperature of the
      solution [C]
14 printf ("The boiling point of the solution is %f C",
      Tf);
```

Scilab code Exa 5.36 numerical

```
//example 5.36

clear;
clc;
//Given:
Ti=5.44;//freezing point of pure benzene[K]
Tf=4.63;//freezing point of solution[K]
m1=2.12;//mass of the solute[gm]
m2=125;//mass of the benzene[gm]
Kf=5.12;//cryoscopic constant of pure benzene[K*Kg/mol]

//To find the molar mass of solute(M2)
dTf=Ti-Tf;//depression in freezing point[K]
M2=(m1*1000*Kf)/(m2*dTf);//molar mass of solute
printf("The molar mass of solute is %f",M2);
```

Scilab code Exa 5.38 numerical

```
10 R=8.314; // Universal gas constant [J/K/mol]
11
12 //To find the Kp value of the above reaction
13 Gf=2*Gf1//Gibb's free energy for the reaction [KJ]
14 x=Gf/R/T
15 Kp=exp(-x);
16 disp(Kp, 'The Kp for above reaction is ');
```

Scilab code Exa 5.39 numerical

```
1 // \text{example } 5.39
3 clear;
4 clc;
6 disp("0.5 \text{ N2}(g) + 1.5 \text{H2}(g) < > \text{NH3}(g)");
7 // Given:
8 T=298; // Temperature [K]
9 Kp=900; // Equilibrium constant for above reaction
10 P1=0.32; // partial pressure of N2(g) [bar]
11 P2=0.73; // partial pressure of H2(g)[bar]
12 P3=0.98; // partial pressure of NH3(g) [bar]
13 R=8.314; // Universal gas constant [J/K/mol]
14
15 //To find the reaction Gibb's energy
16 G=-R*T*log(Kp);
17 x=(P1^0.5)*(P2^1.5);
18 p=P3/x;
19 Gr = (G+R*T*log(p))*0.001;
20 printf ("The reaction Gibbs free energy is %f KJ/mol
      ",Gr);
```

Scilab code Exa 5.40 numerical

```
1 // \text{example } 5.40
2
3 clear;
4 clc;
6 disp("N2(g)+3H2(g)<=>2NH3(g)");
8 // Given:
9 Kp1=5.85*10^5; // equilibrium constant at 298K
10 H1=-46.11; //standard enthalpy of formation of NH3(g)
      [KJ/mol]
11 T1=298; // Initial temperature [K]
12 T2=423; // Final temperature [K]
13 R=8.314; // Universal gas constant [J/K/mol]
14
15 //To find the Kp at 423K temperature
16 H=2*H1; //enthalpy for reaction; [KJ]
17 t=(T1^-1)-(T2^-1);
18 x=-H*t/(R*0.001);
19 Kp2=Kp1*exp(x);
20 disp(Kp2, 'The Equilibrium constant for reaction
      423K is ');
```

Scilab code Exa 5.41 numerical

```
1 //example 5.41
2
3 clear;
4 clc;
5
6
7 disp("Zn(s) | ZnCl2(aq) | | CdSO4(aq) | Cd(s)");
8 //For Zn(s) | ZnCl2(aq) | | CdSO4(aq) | Cd(s)
9 //Given:
10 T=298; //Temperature [K]
```

```
11 R=8.314; // Universal gas constant [J/K/mol]
12 E1=-0.7618; //Standard electrode potential for Zn2+/
     Zn [volts]
13 E2=-0.403; //Standard electrode potential for Cd2+/Cd
      [volts]
14 F=96500; //Faraday 's constant [coulomb/mol]
15 n=2; //no. of electrons balancing
16 //To find the Standard Free energy and equilibrium
     constant
17 Ei=E2-E1; //Standard potential for the reaction [volts
18 Gi=-n*F*Ei; //Standard Gibb's Free Energy [KJ/mol]
19 Ki=exp(-Gi/R/T);//Equilibrium constant
20 printf ("The Free energy for the rection is %f KJ/mol
     ",Gi*0.001);
  disp(Ki, 'The value of equilibrium constant is ');
22
23
24 disp("Cd(s) | CdSO4(aq), Hg2SO4(s) | Hg(l)");
25 //For Cd(s) | CdSO4(aq), Hg2SO4(s) | Hg(1)
26 // Given:
27 E3=0.6141; //Standard electrode potential for Hg2SO4(
     s), SO4^2-/Hg(1) [volts]
28 //To find the standard free energy and equilibrium
      constant
29 Eii=E3-E2; // Standard potantial for the reaction [
      volts
30 Gii=-n*F*Eii; //Standard Gibb's free energy [KJ/mol]
31 Kii=exp(-Gii/R/T);//Equilibrium constant
32 printf ("The Free energy for the rection is %f KJ/mol
     ",Gii*0.001);
33 disp(Kii, 'The value of equilibrium constant is');
```

Scilab code Exa 5.42 numerical

```
1 // \text{example } 5.42
2
3 clear;
4 clc;
5
6 //Given:
7 disp("Zn(s) | ZnCl2(soln) | | AgCl(s) | Ag-Ag | AgCl(s) | ZnCl2
      (\operatorname{soln}) | \operatorname{Zn}(s)");
8 m1=0.02; //concentration [M]
9 Y1=0.65; //mean ionic activity coefficient
10 m2=1.5; //concentration [M]
11 Y2=0.29; //mean ionic activity coefficient
12 R=8.314; // Universal gas constant [J/K/mol]
13 T=298; // Temperature [K]
14 F=96500; //Faraday 's constant [coulomb/mol]
15
16 //To find the overall e.m. f of the above cell
17 E=R*T*(log(m2*Y2/m1/Y1))*3/2/F; //[volts]
18 printf("The overall e.m. f of the cell is %f volts", E
      );
```

Scilab code Exa 5.43 numerical

```
//example 5.43

clear;
clc;

//Given:
m1=0.02;//concentration[M]
y1=0.88;//mean ionic activity coefficient
m2=1;//concentration[M]
y2=0.81;//mean ionic activity coefficient
R=8.314;//universal gas constant[J/K/mol]
```

```
13 T=298; // Temperature [K]
14 F=96487; // Faraday's constant [coulombs/mol]
15 t=0.178; // Tranference number of Cl-1
16
17 // To find the e.m. f of the cell
18 E=-2*t*R*T*(log(m1*Y1/m2/Y2))/F; // e.m. f of the cell[volts]
19 printf("The e.m. f of the cell is %f volts", E);
```

Scilab code Exa 5.44 numerical

```
1 // \text{example } 5.44
3 clear;
4 clc;
6 disp("The values for reaction that goes on within
      the cadmium cell");
7 // Given:
8 n=2; //no. of moles
9 E=1.01463; //standard cadmium cell potential [volts]
10 d=-5*10^-5; //i e d=dE/dT[V/K]
11 F=96500; // [coulomb/mol]
12 T=298; // Temperature [K]
13
14 //To find the values of dG, dS and dH
15 dG=-n*E*F; // Change in Gibb's free energy [J]
16 dS=n*F*d; // Change in entropy [J/K]
17 dH=dG+T*dS; //change in enthalpy [J]
18 printf(" dG=\%f J", dG);
19 printf("\n dS=\%f J/K", dS);
20 printf("\n dH=\%f J",dH);
```

Chapter 6

The Question of Ideality

Scilab code Exa 6.2 numerical

```
1 // \text{example } 6.2
3 clear;
4 clc;
6 // Given:
7 T=500; // Temperature [K]
8 P=100; // Pressure [atm]
9 a=3.61; //van der waals constant for CO2[atm.L^2.mol
      ^{-2}
10 b=0.0429; //van der waals constant for CO2[L.mol^-1]
11 R=0.082; // Universal gas constant [atm.K-1.mol^-1]
12
13 //To find the molar volume of CO2
14 x=b+(R*T/P);
15 y=a/P;
16 z=a*b/P;
17 p2 = poly([-z y -x 1], 'Vm', 'c');
18 t = roots(p2);
19 printf("The value of molar volume of CO2 is %f L.mol
      ^{-1}",t(3));
```

Scilab code Exa 6.5 numerical

```
1 // \text{example } 6.5
3 clear;
4 clc;
6 // Given:
7 b=0.0391; //Van der waals constant [dm3/mol]
8 R=0.082; // Universal gas constant [dm3*atm/mol]
9 P2=1000; // pressure [atm]
10 P1=0; // pressure [atm]
11 T=1273; // Temperature [K]
12
13 //To find the fugacity and fugacity coefficient
14 x=b*(P2-P1);
15 y = R * T;
16 fc = exp(x/y); // fugacity coefficient
17
18 f=P2*fc;//fugacity[atm]
19 printf("The fugacity is %f atm",f);
20 printf("\n The fugacity coefficient is %f",fc);
```

Scilab code Exa 6.10 numerical

```
1 //example 6.10
2
3 clear;
4 clc;
5
6 //Given:
```

```
7 m1=0.03; //mass of CO2(g)[gm]
8 w1=44.01; //molecular weight of CO2(g)[gm/mol]
9 m2=250; //mass of water[gm]
10 w2=18.02; //molecular weight of water[gm/mol]
11 k=1.25*10^6; //Henry's law constant[Torr]
12 T=298; //Temperature[K]
13
14 //To find the partial pressure of CO2 gas
15 n1=m1/w1; //no. of moles of CO2
16 n2=m2/w2; //no. of moles of water
17 x1=n1/(n1+n2); //mole fraction of CO2
18 Pco2=k*x1; // Partial pressure of CO2[Torr]
19 printf("The partial pressure of CO2 gas is %f Torr", Pco2);
```

Scilab code Exa 6.11 numerical

```
1 //example 6.11
2
3 clear;
4 clc;
5
6 //Given:
7 W=1000; // Total mass of a solution [gm]
8 x1=0.5; // mole fraction of Chloroform
9 x2=0.5; // mole fraction of Acetone
10 V1m=80.235; // Partial molar volume of chloroform [cm3/mol]
11 V2m=74.166; // Partial molar volume of Acetone [cm3/mol]
12 M1=119.59; // molecular weight of chloroform [gm/mol]
13 M2=58; // molecular weight of Acetone [gm/mol]
14
15 //To find the Volume of the solution
16 nT=W/(x1*M1+x2*M2); // Total no. of moles
```

```
17 V=nT*(x1*V1m+x2*V2m);//Total volume[cm3]
18 printf("The volume of the solution is %f cm3",V);
```

Scilab code Exa 6.12 numerical

Scilab code Exa 6.14 numerical

```
1 //example 6.14
2
3 clear;
4 clc;
5
6 //Given:
7 m1=0.01; //molality [m]
8 v11=1;
9 v12=2;
10 Y1=0.71;
11 m2=0.005; //molality [m]
12 v21=1;
```

```
13 v22=1;
14 \quad Y2 = 0.53;
15
16
17 //To find the activity, molality of the
      electrolytes
18 v1 = (v11) + (v12);
19 v2 = (v21) + (v22);
20 a1=(m1^v1)*(v11^v11)*(v12^v12)*(Y1^v1);
21 a2=(m2^v2)*(v21^v21)*(v22^v22)*(Y2^v2);
22 x = 1/v1;
23 a1m=a1^x;
24 m1m=m1*(v11^v11*v12^v12)^x;//molality[m]
25 \text{ y} = 1/\text{v}2;
26 m2m=m2*(v21*v21*v22^v22)^y;//molality[m]
27 \quad a2m=a2^y;
28 disp(a1, 'The activity of the electrolyte ZnCl2 is');
29 disp(alm, 'The mean activity of ZnCl2 is ');
30 disp(m1m, 'The mean molality of ZnCl2 in [m] ');
31 disp(a2, 'The activity of the electrolyte CuSO4 is ')
32 disp(a2m, 'The mean activity of CuSO4 is ');
33 disp(m2m, 'The mean molality of CuSO4 in [m]');
```

Scilab code Exa 6.15 numerical

```
1 //example 6.15
2
3 clear;
4 clc;
5
6 //Given:
7 m2=3; //mass of the sucrose [gm]
8 m1=0.1; //mass of water [Kg]
9 Kf=1.86; //cryoscopic constant of water [K*Kg/mol]
```

```
10 dTf=0.16; // Lowering in freezing point [K]
11
12 //To find the molecular weight of sucrose
13 a=m1*dTf;
14 b=Kf*m2;
15 M2=b/a; // molecular weight
16 printf("M2=molecular weight, then M2=%f", M2);
```

Scilab code Exa 6.16 numerical

```
1 // \text{example } 5.16
3 clear;
4 clc;
6 // Given:
7 dTf=0.088; //Lowering in freezing point [K]
8 m2=0.45; //mass of sulphur [gm]
9 m1=0.09955; //mass of benzene [gm]
10 Kf=5.07; //cryoscopic constant for benzene [K*Kg/mol]
11
12 //To find the molecular formula of sulphur
13 \quad a=m1*dTf;
14 b = Kf * m2;
15 M2=b/a; // molecular weight of sulphur
16 printf ("The molecular weight of sulphur is \%f", M2);
17 x=M2/32; //no. of sulphur atoms
18 printf("\n The molecular formula of sulphur is S\%f",
      x);
```

Scilab code Exa 6.17 numerical

```
1 // \text{example } 6.17
```

```
3 clear;
4 clc;
5
6 // Given:
7 m2=1.35;//mass of a macromolecule[gm]
8 V=100; //volume of solution [cm<sup>3</sup>]
9 R=82; // Universal gas constant [atm.cm^3.K^-1]
10 T=300; // Temperature [K]
11 II=9.9; //osmotic pressure of the solution [cm]
12 d=1; //density
13 p=1013250; // Atmospheric pressure
14 g=980.67; // gravitational field
15
16
17 //To find the molar mass of macromolecule
18 \ a=m2*R*T*p;
19 b = V * 9.9 * d * g;
20 M2=a/b;//molar mass of macromolecule
21 printf(" M2 = molar mass of macromolecule,
      therefore M2 = \%f g \cdot mol^-1, M2);
```

Scilab code Exa 6.18 numerical

```
//example 6.18

clear;
clc;

//Given:
R=82;//Universal gas constant[atm.ml.K^-1.mol^-1]
T=298;//Temperature[K]
V=250;//volume of water[ml]
m2=2.6;//mass of the protein
M2=85000;//molar mass of protein[g.mol^-1]
```

```
12
13
14 //To find the osmotic pressure of a solution
15 n2=m2/M2;//no. of moles of protein
16 II=(n2*R*T)/V;//Osmotic pressure of a solution[atm]
17 printf("The osmotic pressure is %f atm ",II);
```

Scilab code Exa 6.19 numerical

```
1 // \text{example } 6.19
2
3 clear;
4 clc;
6 // Given:
7 R=8.314; // Universal gas constant [J.K^{-1.mol}-1]
8 Tb=373.15; // Boiling point temperature [K]
9 M1=0.018; // mass of water [kg]
10 Hvap=40.7; //Enthalpy of vaporization [KJ.mol^-1]
11
12 //To find the Ebullioscopic constant of water
13 a=R*0.001*Tb^2*M1;
14 \text{ b=Hvap};
15 Kb=a/b; // Ebullioscopic constant of water [K. Kg. mol
16 printf ("The Ebullioscopic constant of water is %f K.
      \operatorname{Kg.mol}-1", \operatorname{Kb});
```

Scilab code Exa 6.20 numerical

```
1 //example 6.20
2
3 clear;
```

Scilab code Exa 6.21 numerical

```
1 //example 6.21
3 clear;
4 clc;
5
6 // Given:
7 R=8.314; // Universal gas constant [J/K/mol]
8 T=298; // Temperature [K]
9 F=96500; //Faraday 's constant
10 Eo=0.98; //Standard e.m. f of the cell [Volts]
11 E=1.16; //e.m. f of the cell [Volts]
12 m = 0.01;
13
14 //To find the mean activity coefficient of ZnCl2
      solution
15 a=R*T;
16 b = 2 * F;
17 x=a/b;
```

Scilab code Exa 6.22 numerical

```
1 // \text{example } 6.22
3 clear;
4 clc;
6 // Given:
7 M1=0.01; //no. of moles of KCl
8 M2=0.005; //no. of moles of MgCl2
9 M3=0.002; //no. of moles of MgSO4
10 M=0.1; //mass of water [Kg]
11 z11=1;
12 z12=1;
13 z21=2;
14 z22=1;
15 z31=2;
16 z32=2;
17
18 //To find the ionic strength in a solution
19 m1=M1/M; //molality of KCL[m]
20 m2=M2/M; // molality of MgCl2[m]
21 m3=M3/M; // molality of MgSO4[m]
22
I = 0.5*[(m1*z11^2+m1*z12^2+m2*z21^2+2*m2*z22^2+m3*z31)]
      ^2+m3*z32^2)]; // [mol/Kg]
24
25 printf ("The Ionic strength of a solution is %f mol/
      Kg", I);
```

Scilab code Exa 6.23 numerical

```
1 // \text{example } 6.23
3 clear;
4 clc;
6 // Given:
7 T=298; // Temperature [K]
8 P=1; // pressure [atm]
9 m=0.02; // Ionic strength of HCl solution in CH3OH[mol
      /Kg]
10 E=32.6; //Di-electric constant
11 d=0.787; //Density[gm/cm3]
12
13 //To find the mean activity coefficient
14 I=0.5*(0.02*1*1+0.02*1*1); //Ionic strength of HCl
      solution [mol/Kg]
15 \ a=I*d;
16 b=(E^3)*(298^3);
17 x=(a/b)^0.5;
18 Y=10^{(-1.825*1000000*1*1*x)}; //mean activity
      coefficient
19 printf("The mean activity coefficient is %f ",Y);
```

Chapter 7

Statistical Thermodynamics

Scilab code Exa 7.1 numerical

```
1 // \text{example } 7.1
3 clear;
4 clc;
6 // Given:
7 N=20; //no, of particles
8 N1=4; //no. of particles in E1 energy level
9 N2=4;//no. of particles in E2 energy level
10 N3=6; //no. of particles in E3 energy level
11 N4=3; //no. of particles in E4 energy level
12 N5=3; //no. of particles in E5 energy level
13 //To find the number of ways of distributing N
      particles
14 \ N! = prod(1:N);
15 N1!=prod(1:N1);
16 \text{ N2!} = \text{prod}(1:\text{N2});
17 N3! = prod(1:N3);
18 \text{ N4!} = \text{prod}(1:\text{N4});
19 N5!=prod(1:N5);
20 n=N1!*N2!*N3!*N4!*N5!;
```

```
21 W=N!/n;//no. of ways of distributing
22 disp(W, 'The no. of ways of distributing the
particles is ');
```

Scilab code Exa 7.2 numerical

```
1 // \text{example } 7.2
3 clear;
4 clc;
6 // Given:
7 T=298; // Temperature [K]
8 v=6.5*10^13; // Frequency in [sec -1]
9 //Consider zero point energy = 0.
10 h=6.627*10^-34; //planck's constant [J.s]
11 k=1.381*10^-23; //Boltzmann constant
12 N=1; //Since N=summation(gj*exp(-Ej/kT))
13
14 //To find the fraction of molecules present in
      vibrational level
15 E1=h*v; // for energy level 1[J]
16 E2=2*h*v; // for energy level 2[J]
17 x=k*T;
18 g1=1;
19 g2=1;
20 N1 = [g1 * exp(-E1/x)]; //molecules present in energy
      level 1
21 N2 = [g2 * exp(-E2/x)]; //molecules present in energy
      level 2
22 n1=N1/N; //fraction of molecules present in energy
23 n2=N2/N; // fraction of molecules present in energy
      level 2
24 printf("The fraction of molecule s present in
```

```
energy level 1 is %f",n1);
25
26
27 disp(n2, 'The fraction of molecules present in energy level 2 is ');
```

Scilab code Exa 7.3 numerical

```
1 // \text{example } 7.3
2
3 clear;
4 clc;
6 // Given:
7 dE=4.3*10^-20; // difference in energy levels [J]
8 T1=0.000001; // Initial Temperature [K] (approximately
      zero, needed for execution)
9 T2=300; // Final Temperature [K]
10 k=1.381*10^-23; //Boltzmann constant [J/K]
11
12 //To find the ratio of no. of particle per state for
       two states separated by an energy dE
13 x1=k*T1;
14 r1 = exp(-dE/x1);
15 x2=k*T2;
16 r2 = exp(-dE/x2);
17 disp(r1, 'The ratio of no. of particles per state at
      0K is ');
18 disp(r2, 'The ratio of no. of particles per state at
      300K is ');
```

Scilab code Exa 7.4 numerical

```
1 // \text{example } 7.4
2
3
4 clear;
5 clc;
7 // Given:
8 T1 = 273; //[K]
9 T2=14273; //[K]
10 E1=-13.6; //Energy of ground state [eV]
11 k=8.617*10^-5; //Boltzmann constant [eV/K]
12 g2=8; //total no. of states with energy E2
13 g1=2; //total no. of states with energy E1
14
15
16 //To find the no. of atoms in first-excited singlet
      state
17 E2=E1/(2^2); // Energy for n=2 (i.e. E2=E1/n2)
18 x1=k*T1;
19 r1 = (g2/g1) * exp(-(E2-E1)/x1);
20 x2=k*T2;
21 r2=(g2/g1)*exp(-(E2-E1)/x2);
22 disp(r1, 'The fraction of atoms present in level n=2
      at 273K is ');
23 disp("Therefore total 3*10^25 atoms we say
                                      state");
      all are present at ground
24 printf("\n\nThe fraction of atoms present in level n
     =2 at 14273 is \%f \ n", r2);
25 x=r2*3*10^25;
26 disp(x, 'Therefore no. of atoms in level n=2 is ');
```

Scilab code Exa 7.5 numerical

```
1 //example 7.5
2
```

```
3 clear;
4 clc;
5
6 //Given:
7 r1=0.001;//the population of the states at a higher energy to that at a lower energy
8 dE=8*10^-20;//The difference in energy[J]
9 k=1.381*10^-23;//Boltzmann constant [J/K]
10
11
12 //To find the Temperature at this condition
13 x=k*log(r1);
14 T=-dE/x;//[K]
15 printf("The Temperature at this condition is %f K",T);
```

Scilab code Exa 7.6 numerical

```
1 // \text{example } 7.6
2
3 clear;
4 clc;
5
7 / section (1)
8 // Given:
9 //The energy levels are not degenerate
10 w=1; //no. of ways of distributing the molecules
11 k=1.381*10^-23; //Boltzmann constant [J/K]
12 //To find the entropy of the system
13 S1=k*log(w); //Entropy of system at 0K
14 printf("The Entropy of System at 0K and non-
      degenerate eng level is %f J/K/mol",S1);
15
16 / \operatorname{section}(2)
```

```
// Here the energy levels are degenerate
18 n=2;
19 R=8.314; // Universal gas constant [J/K/mol]
20
21 //To find the entropy of the system
22 //S=klog(n^N)=>S=R*log(n)
23 S2=R*log(n); // Entropy of the system [J/K/mol]
24 printf("\nThe Entropy of system at OK and degenerate eng level is %f J/K/mol", S2);
```

Scilab code Exa 7.9 numerical

```
1 // \text{example } 7.9
2
3 clear;
4 clc;
5
6 // Given:
7 V=0.001; //Volume of vessel[m3]
8 T=300; // Temperature [K]
9 k=1.381*10^-23; //Boltzmann constant [J/K]
10 mol.wt=32; // molecular mass of oxygen molecule
11 h=6.626*10^-34; //planck's constant [J.s]
12
13
14
15 //To find the Transitional partition function of an
      oxygen molecule confined in a 1-litre vessel at
      300K
16 m=32*1.66*(10^-27); //mass of oxygen molecule [Kg]
17 x = [(2*3.14*m*k*T)^{(3/2)}]*V;
18 y=h^3;
19 zt=x/y; // Transitional partition function of an
      oxygen molecule
20 disp(zt, 'The Transitional partition function of an
```

```
oxygen molecule confined in a 1-litre vessel at 300\mathrm{K} is ')
```

Scilab code Exa 7.12 numerical

```
1 //example 7.12
2
3 clear;
4 clc;
5
6 // Given:
7 R=1.99; // Universal gas constant [cal/K]
8 e=2.718;
9 V=22414; //volume [cm3]
10 L=6.023*10^23;
11 h=6.626*10^-27; // Planck 's constant [erg.sec]
12 m=6.63*10^-23; //mass[gm]
13 k=1.381*10^-16; //Boltzmann constant [erg/K]
14 T=273.2; // Temperature [K]
15
16 //To find the Entropy of argon at 273K and 1
      atmospheric pressure
17 x=V*(e^2.5);
18 y=L*(h^3);
19 z=(2*3.14*m*k*T)^1.5;
20 S=R*log(x*z/y); //Entropy [cal/degree/mol]
21 printf("The Entropy of argon at 273K and 1 atm is %f
       cal/degree/mol",S);
```

Scilab code Exa 7.14 numerical

```
\frac{1}{2} //example 7.14
```

```
3 clear;
4 clc
6 // Given:
7 T=298; // Temperature [K]
8 I=1.9373*10^--46;//moment of inertia of O2 gas [Kg/m2]
9 h=6.626*10^-34; // Planck 's constant [J.s]
10 k=1.381*10^-23; //Boltzmann constant [J/K]
11 R=8.314; // Universal gas constant [J/K/mol]
12 u=2; // Homonuclear diatomic molecule
13
14
  //To find the rotational entropy and free energy for
       O<sub>2</sub> gas
16 Sr=R+R*\log (8*3.14*3.14*I*k*T/(u*h*h)); //[J/K/mol]
17 Gr = -R*0.001*T*log(8*3.14*3.14*I*k*T/(u*h*h)); // [KJ/
18 printf ("The rotational entropy for O2 gas is %f J/K/
      mol", Sr);
19 printf("\nThe rotational free energy for O2 gas is
      %f KJ/mol", Gr);
```

Scilab code Exa 7.15 numerical

```
1 //example 7.15
2
3 clear;
4 clc;
5
6 //Given:
7 T=298; //Temperature [K]
8 v=892.1*3*10^10; //frequency [sec -1]
9 h=6.626*10^-27; //Planck's constant [J.s]
10 k=1.381*10^-16; //Boltzmann constant [erg/K]
```

```
11 e=2.718;
12 R=1.998; // Universal gas constant [cal/K]
13 //To find the vibrational contribution to the
        entropy of F2 at 298K
14 x=h*v/(k*T);
15 a=R*x*e^-x/(1-e^-x); //a=E-Eo/T
16 b=R*log(1-e^-x); //b=G-Eo/T
17 S=a-b; // [cal/deg]
18 printf("The vibrational contribution to the entropy
        of F2 is %f cal/deg",S);
```

Scilab code Exa 7.16 numerical

```
1 // example 7.16
3 clear;
4 clc;
6 // Given:
7 T=1273; // Temperature [K]
8 h=6.26*10^-27; // Planck 's constant [J.s]
9 k=1.381*10^-16; //Boltzmann constant [erg/K]
10 T=1000; // Temperature [degrees]
11 m=3.82*10^-23;//mass of Na [gm]
12 I = (1.91*10^-23)*(3.078*10^-8)^2; //moment of inertia
     gm.cm2
13 dE=0.73*1.602*10^-12; // [erg]
14 v=159.23*(3*10^10); // frequency [s-1]
15 R=82; // universal gas constant [cm3.atm/deg]
16 u=2;//symmetry number
17 L=6.023*10^23; //avogadro 's number
18
19 //To find the equilibrium constant
20 p=((3.14*m*k*T)^1.5)/h/h/h;
21 s=R*u*h*h/L/8/3.14/3.14/I/k;
```

```
22 q=1-(exp(-h*v/k/T));
23 r=exp(-dE/k/T);
24 Kp=p*s*q*r;//Equilibrium constant
25 printf("The equilibrium constant is %f",Kp);
```

Scilab code Exa 7.17 numerical

```
1 // example 7.17
3 clear;
4 clc;
6 // Given:
7 T=298; // Temperature [K]
8 m1 = 32;
9 m2 = 36;
10 \text{ m}3 = 34;
11 u1=8;
12 u2=9;
13 u3=16*18/34;
14 z1=0.99924;
15 \quad z2=0.99951;
16 z3=0.99940;
17 h=6.26*10^-27; // Planck 's constant [J.s]
18 c=3*10^10; //Speed of light [m/s]
19 k=1.38*10^-16; //Boltzman's constant [erg/K]
20 vo1=1535.8; //vibration frequency of 16O18O [cm-1]
21 vo2=1580.4; //vibration frequency of 16O2 [cm-1]
22 vo3=1490.0; // vibration frequency of 18O2 [cm-1]
23 dE=0.5*h*c*(2*vo1-vo2-vo3); //[erg]
24 r=dE/k/T;
25
26
27 //To find the equilibrium constant for isotopic
      exchange reaction
```

```
28 a=m3^3/m2^1.5/m1^1.5;
29 b=(u3^2)*4/u2/u1;
30 c=z3^2/z2/z1;
31 Kp=a*b*c*exp(-r);
32 printf("The value of equilibrium constant for isotopic exchange reaction is %f", Kp);
```