

Ayudantía 4 - Repaso I1

12 de abril de 2024

Martín Atria, Paula Grune, Caetano Borges

Resumen

1. Lógica de Predicados - I1 2023-2

Dado un conjunto Σ de oraciones (fórmulas sin variables libres) en lógica de predicados, diremos que Σ es satisfacible si existe una interpretación \mathcal{I} tal que $\mathcal{I} \models \varphi$ para toda $\varphi \in \Sigma$. En caso contrario, decimos que Σ es inconsistente.

Dados un conjunto de oraciones Σ y una oración φ , demuestre que

$$\Sigma \models \varphi$$
 si y solo si $\Sigma \cup \{\neg \varphi\}$ es inconsistente.

2. Lógica de Predicados - I1 2018-2

Sea $R(\cdot, \cdot)$ un predicado binario. Considere el siguiente conjunto de fórmulas en lógica de predicados:

$$\Sigma = \{ \forall x \exists y (R(x, y)), \\ \forall x \forall y (R(x, y) \to R(y, x)), \\ \forall x \forall y \forall z ((R(x, y) \land R(y, z)) \to R(x, z)) \}$$

y la fórmula $\varphi = \forall x (R(x, x))$. Demuestre que $\Sigma \vDash \varphi$.

3. Inducción - I2 2023-1

Para un conjunto finito $D = \{a_1, ..., a_n\} \subseteq \mathbb{N}$ tal que n es impar y $a_1 < ... < a_n$ se define median(D) como la mediana del conjunto D tal que: median(D) = $a_{\frac{n+1}{2}}$. Por ejemplo, si D

= $\{1, 4, 8, 11, 15\}$ entonces median(D) = 8. Además, un intervalo de naturales I = [a, b] es el conjunto de naturales consecutivos entre a y b, incluyéndolos. Por ejemplo, [3, 6] = $\{3, 4, 5, 6\}$. Demuestre usando inducción fuerte que para todo conjunto finito D y para todo intervalo de naturales I, si I contiene más de la mitad de los elementos de D, entonces la mediana de D está en el intervalo I. Formalmente, demuestre que si $|I \cap D| > \frac{|D|}{2}$, entonces median(D) \in I.

4. Lógica Proposicional - I1 2023-1

Para una fórmula proposicional α con variables proposicionales $\{p_1, \ldots, p_n\}$ se define el conjunto:

valuaciones(
$$\alpha$$
) = { $\vec{v} \mid \vec{v}(\alpha) = 1$ }

En otras palabras, valuaciones(α) es el conjunto de todas las valuaciones que satisfacen a α .

Dadas α_1 y α_2 dos fórmulas en lógica proposicional, decimos que α_1 es #-equivalente a α_2 si se cumple que el número de valuaciones que satisfacen a α_1 es igual al número de valuaciones que satisfacen a α_2 . Es decir |valuaciones(α_1)| = |valuaciones(α_2)|. Si α_1 y α_2 son #-equivalentes, escribiremos $\alpha_1 \equiv_{\#} \alpha_2$.

- a. Sea $\alpha_1, \alpha_2, \ldots, \alpha_n$ una secuencia de fórmulas proposicionales tal que $\alpha_i \vDash \alpha_{i+1}$ para cada $1 \le i \le n$. Demuestre que si $\alpha_1 \equiv_{\#} \alpha_n$, entonces $\alpha_i \equiv \alpha_j$, para todo $i \ne j$.
- b. Demuestre que $\equiv_{\#}$ no cumple con el teorema de composición. En otras palabras, que no cumple que para todo par de fórmulas $\alpha_1(p_1,\ldots,p_n)$ y $\alpha_2(p_1,\ldots,p_n)$, si $\alpha_1(p_1,\ldots,p_n) \equiv_{\#}$ $\alpha_2(p_1,\ldots,p_n)$, entonces $\alpha_1(\beta_1,\ldots,\beta_n) \equiv_{\#} \alpha_2(\beta_1,\ldots,\beta_n)$ para β_1,\ldots,β_n fórmulas cualquiera.