Deadline: 28/10/19

Random variable generation

In the resolution of the following problems do not use any of the R random variable generation built-in functions, nor any R function referring to the densities of random variables.

Fix your R random seed to 123 in all simulations.

1. Some random variables can be generated from the exponential distribution (**exponential-based** method), which we know how to obtain from the U(0,1) distribution. Such is the case of the random variable $X \sim \chi^2_{2\nu}$:

If
$$Y_i \sim_{iid} Exp(1)$$
 then $X = 2 \sum_{i=1}^{\nu} Y_i \sim \chi_{2\nu}^2$, $\nu = 1, 2, ...$

- (a) Implement the **exponential-based** method in R for generating a sample from $\chi^2_{2\nu}$ (note that here $\nu \in \mathbb{N}$). Call your simulation routine sim.chi() and let it receive as input a generic sample size m and the χ^2 distribution ν parameter. Provide both algorithm and \mathbf{R} code.
- (b) Use routine sim.chi() to generate a sample of size m=10000 from $X\sim\chi_4^2$.
- (c) Plot the histogram referring to (b) with true p.d.f. superimposed.
- 2. Let $X \sim Gamma(\alpha, \theta)$, which has probability density function

$$f(x) = \frac{\theta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\theta x}, \qquad x \ge 0.$$

- (a) Describe the **acceptance-rejection** method for the continuous case. Proof that indeed the method generates a sample from the target density f.
- (b) Implement the **acceptance-rejection** method in R for generating a sample from f. Call your simulation routine sim.gam() and let it receive as input a generic sample size m and the Gamma α and θ parameters. Provide both algorithm and \mathbf{R} code.
- (c) Use routine sim.gam() to generate a sample of size m = 10000 of $X \sim Gamma(3/2, 1)$. Compute the rejection rate.
- (d) Plot the histogram referring to (c) with true p.d.f. superimposed.
- (e) Display the the hit-and-miss plot referring to sim.gam(10,3/2,1).

Monte Carlo integration

In the resolution of the problems in this section you may already use the R random variable generation built-in functions as well as any R function referring to the densities of random variables.

Fix your R random seed to 456 in all simulations.

3. Let
$$\mathcal{I} = \int_0^1 \frac{\sqrt{-\log(x)}}{2} \mathrm{d}x$$
.

- (a) Use the R function integrate() to compute the value of \mathcal{I} .
- (b) Describe and implement in R the Monte Carlo method of size m = 10000 for estimating \mathcal{I} . Report an estimate of the variance of the Monte Carlo estimator $\hat{\mathcal{I}}_{MC}$ of \mathcal{I} .
- (c) Describe and implement in R the Monte Carlo method of size m=10000 based on **importance sampling** for estimating \mathcal{I} . Take the importance function ϕ from the Beta(a,b) distribution family and explain your criteria for choosing the a,b parameters. Report an estimate of the variance of the Monte Carlo estimator $\hat{\mathcal{I}}_{IS}$ of \mathcal{I} .
- (d) What's the percentage of variance reduction that is achieved when using $\hat{\mathcal{I}}_{IS}$ instead of $\hat{\mathcal{I}}_{MC}$?

Hypothesis testing

In the resolution of the problems in this section you may already use the R random variable generation built-in functions as well as any R function referring to the densities of random variables.

Fix your R random seed to 789 in all simulations.

- 4. Let X_1, \ldots, X_n be a random sample from the population $X \sim N(3,1)$.
 - (a) Validate via a Monte Carlo simulation study that $T = \frac{\overline{X} 3}{S/\sqrt{n}} \sim t_{n-1}$. Consider in your study the number of simulations m = 1000 and a sample size of n = 20. For validation purposes provide:
 - the histogram of the simulated T_1, \ldots, T_{1000} with the theoretical density superimposed;
 - the plot of the empirical cumulative distribution (ecdf) of T_1, \ldots, T_{1000} with the theoretical cumulative probability function (pdf) superimposed (use the R built-in ecdf() function to create the sample ecdf);
 - perform a Kolmogorov-Smirnov two-sided test to test your hypothesis (use the R built-in ks.test() function);
 - Compute the theoretical quantiles 0.90, 0.95, 0.975 with the empirical quantiles (use the R built-in qchisq() and quantile() functions, respectively).

(b) Assume one wants to test the hypothesis

$$H_0: \mu \le 3$$
 $H_1: \mu > 3$

- at the significance level $\alpha=0.05$. Compute the empirical p-values for this test using the previous Monte Carlo simulation. Compute the empirical significance level $\hat{\alpha}$ and perform the binomial test to assess if $\hat{\alpha}$ departs significantly from α .
- (c) For the hypothesis test above and the m simulations, construct a power plot for the alternative values $\mu = 4, 5, \dots, 49, 50$. In face of these results, how far from H_0 does one need to be so that the power of the test gets higher than 85%?