Linear Algebra

Lecture Notes

Rostyslav Hryniv

Ukrainian Catholic University Computer Science Programme

> 3rd term Autumn 2017

Lecture 1. Systems of linear equations

Outline

- Systems of linear equations
 - Examples. Solutions. Substitution and elimination
 - Solutions in dimension 2
 - Solutions in dimension 3
- Gaussian and Gauss-Jordan elimination
 - Reduction to an echelon form
 - Pivot and free variables
 - A reduced echelon form
- Existence and uniqueness of solutions
 - Homogeneous and non-homogeneous systems
 - Existence and uniqueness of solutions
 - Nonsingular matrices. Rank of a matrix

Systems of linear equations

Many applied models postulate linear dependence on some variables (e.g., economic factors) x, y, z, ...:

$$ax + by + cz + \cdots = \alpha$$

Here a, b, c, \dots, α are given numbers, or scalars^a

^aCan be real (\mathbb{R}), complex (\mathbb{C}), quaternionic (\mathbb{H}), binary (\mathbb{Z}_2), in \mathbb{Z}_p ...

- For many (n) parameters, use notations x_1, x_2, \dots, x_n
- system of linear equations, or linear system

 $a_{m1}X_1 + a_{m2}X_2 + \cdots + a_{mn}X_n = b_m$

• usually x_1, \ldots, x_n are unknown; to be determined from (1)

Definition (Solution to a system)

A sequence $(x_1, x_2, ..., x_n)$ of numbers turning each equation in (1) into equality is a solution of the linear system (1).

Lavrentief model (Nobel prize in economics in 1973):

- in 1949, divided the American economy in N = 500 sectors
- analyzed distribution of the outcomes
- got the $N \times N$ linear system ($N \le 32$ feasible in 1949)

Production matrix for a simple economy model (N=3):

	Income Required per Dollar Output in		
	Manufacturing	Agriculture	Utilities
Manufacturing	\$ 0.50	\$ 0.10	\$ 0.10
Agriculture	\$ 0.20	\$ 0.50	\$ 0.30
Utilities	\$ 0.10	\$ 0.30	\$ 0.40

 x_1, x_2, x_3 : produced output; d_1, d_2, d_3 : demand

$$x_1 - (0.5x_1 + 0.1x_2 + 0.1x_3) = d_1$$

$$x_2 - (0.2x_1 + 0.5x_2 + 0.3x_3) = d_2$$

$$x_3 - (0.1x_1 + 0.3x_2 + 0.4x_3) = d_3$$

Balancing chemical reactions

Combustion of propane produces carbon dioxide and water:

$$C_3H_8$$
 + O_2 $ightarrow$ CO_2 + H_2O propane oxygen carbon dioxide water

To balance the equation, take x molecules of propane, y of oxygen, z of carbon dioxide and w of water; now equate the number of atoms on both sides to get

$$3x = z$$
 (Carbon)
 $8x = 2w$ (Hydrogen)
 $2y = 2z + w$ (Oxygen)

Many solutions, e.g. x = 1, y = 5, z = 3, and w = 4:

$$C_3H_8 + 5O_2 = 3CO_2 + 4H_2O$$

Polynomial approximation

Theorem

For any n given pairs $(x_1, y_1), \ldots, (x_n, y_n)$ with pairwise distinct x_k there exists a unique polynomial p(x) of degree at most n-1 such that $p(x_k) = y_k$ for every k = 1, ..., n.

Search for p of the form

$$p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1};$$

then we get

This is a linear system for the coefficients $a_0, a_1, \ldots, a_{n-1}$!

Linear systems in dimension 2:

Lines in \mathbb{R}^2

- In the xy-plane, equation y = kx + m gives a line through (0, m) with the slope k
- If |a| + |b| > 0, then

$$ax + by = c$$

describes the line with slope k = -a/b through (0, c/b) if $b \neq 0$, or the line $x \equiv c/a$ otherwise

• this line is orthogonal to the vector (a, b)

Possible situations:

- Lines coincide ⇒ infinitely many solutions
- 2 Lines parallel \implies no solutions
- \odot Lines intersect \implies single solution

Solving linear systems in dimension 2:

By substitution:

From the second equation y = -1 and then the first gives x = 2

By elimination:

The two methods are only formally different

Linear systems in dimension 3:

Planes in \mathbb{R}^3

If |a| + |b| + |c| > 0, then the equation

$$ax + by + cz = d$$

describes in the *xyz*-space the plane orthogonal to the direction vector (a, b, c)

Systems in \mathbb{R}^3 :

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$

describes the common (intersection) points of three planes in $x_1x_2x_3$ -space

Possible situations

Solving linear systems in dimension 3:

By elimination:

$$2x + y = 3$$

$$4x -2y +3z = 4$$

$$4y -2z = 0$$

$$2x + y = 3$$

$$-4y +3z = -2$$

$$4y -2z = 0$$

$$+1 \times (r_2)$$

$$2x + y = 3$$

$$-4y +3z = -2$$

$$z = -2$$

$$2x + y = 3$$

$$z = -2$$

$$2x + y = 3$$

$$z = -2$$

$$2x + y = 3$$

$$z = -2$$

Solution: (2, -1, -2)

How to solve linear systems for large n, m?

In real-world applications m, n > 1000

Main questions:

- Is there any solution to such a linear system?
- 2 How many?
- Mow to find all/some special?

Idea:

Transform a system to simpler form without changing the set of solutions

Definition

- A system is called consistent if it possesses at least one solution
- Two linear systems are called equivalent if they possess the same set of solutions

Shorthand matrix notations for linear systems:

where

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
 is an $m \times n$ coefficient matrix

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = (x_1, x_2, \dots, x_n)^\top, \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} = (b_1, b_2, \dots, b_m)^\top$$

are the vector of unknowns and the (given) RHS vector resp.

Augmented coefficient matrix

Often it is more convenient to combine the matrix notation for the coefficient matrix *A* and the RHS **b** and to encode system (2) via the <u>augmented coefficient matrix</u>

$$(A \mid \mathbf{b}) = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \ a_{21} & a_{22} & \dots & a_{2n} & b_2 \ \dots & \dots & \dots & \dots & \vdots \ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}$$

Elementary row operations that simplify linear systems

- 1. Multiply an equation/a row through by a nonzero constant
- 2. Add a constant times one equation/row to another
- 3. Interchange two equations/rows

Definition

Matrices A and B are row equivalent if B can be obtained from A via elementary row operations

Properties

- Elementary row operations are reversible
- Lead to equivalent systems/augmented matrices

 $(r_2) \leftrightarrow (r_3)$

 $-2 \times (r_2) + (r_3)$

Χ

Example: elementary row operations

xample: elementary row operations
$$\begin{array}{rcl}
x + 2y - & z &=& 2 \\
2x + & y - & z &=& 1 & -2 \times (r_1) \\
x + & y - & z &=& 0 & -1 \times (r_1) \\
x + 2y - & z &=& 2 \\
-3y + & z &=& -3 & (r_2) \leftrightarrow (r_3)
\end{array}$$

$$= -3$$

= -2

$$\begin{array}{cccc}
 & - & y & = -2 \\
x + 2y - & z & = 2
\end{array}$$

$$\begin{array}{rcl}
- & y & = -2 \\
-3y + & z & = -3
\end{array}$$

$$x + 2y - z = 2$$

An echelon form

Definition

A rectangular matrix is in a row echelon form if it has the following three properties:

- All nonzero rows are above any zero row
- Each leading entry of a row (i.e., first nonzero entry in that row) is in the column to the right of the leading entry of the row above it
- 3 All entries in a column below a leading entry are zeros

Example (• stands for a nonzero number, * for any number)

$$\begin{pmatrix} \bullet & * & * & * & * \\ 0 & \bullet & * & * & * \\ 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 & \bullet & * & * & * & * \\ 0 & 0 & 0 & \bullet & * & * \\ 0 & 0 & 0 & 0 & \bullet & \bullet \\ 0 & 0 & 0 & 0 & 0 & * \end{pmatrix}$$

The first matrix is in echelon form, the second is not unless...

Pivot and free variables

Question

Is an echelon form of a matrix unique?

- No, because it depends on what elementary row operations and in what order were applied
- However, the positions of the leading entries are fixed!

Definition

Let *A* be a matrix of a linear system. A pivot column of *A* is a column with a leading entry in an echelon form of *A*. The corresponding variable is called a pivot variable. Otherwise a variable is called free.

Example (Columns corresponding to free variables are in red)

$$\begin{pmatrix} \bullet & * & * & * & * \\ 0 & \bullet & * & * & * \\ 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & \bullet & * & * & * & * \\ 0 & 0 & 0 & \bullet & * & * \\ 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & * \end{pmatrix}$$

Why free variables are free?

$$\begin{pmatrix} 1 & 2 & -2 & 1 & 0 \\ 0 & 0 & 1 & -1 & 2 \end{pmatrix} \iff \begin{matrix} x_1 & +2x_2 & -2x_3 & +x_4 & =0 \\ x_3 & -x_4 & =2 \end{matrix}$$

Therefore

- $2 x_1 = -2x_2 + 2x_3 x_4 = 4 2x_2 + x_4$
- 3 by introducing parameters s and t via $x_2 := s$ and $x_4 := t$, we get the following parametric representation of general solutions of the system for every values of s and t:

$$x_1 = 4 - 2s + t$$

$$x_2 = s$$

$$x_3 = 2 + t$$

$$x_4 = t$$

A reduced echelon form

Definition

A rectangular matrix in an echelon form is in a reduced row echelon form if in addition:

- The leading entry in each nonzero row is 1
- 2 Each leading 1 is the only nonzero element in its column

Example (* stands for any number)

$$\begin{pmatrix} 1 & 0 & * & * & 0 \\ 0 & 1 & * & * & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 0 & 1 & * & 0 & * & 0 \\ 0 & 0 & 0 & 1 & * & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- Matrix in echelon form can be transformed to a reduced echelon form using elementary row operations
- 2 A reduced echelon form of a matrix is unique
- If the augmented matrix is in the reduced echelon form, solutions are easy to write in terms of free variables

Gaussian and Gauss-Jordan elimination

Forward substitution → an echelon form

Example (Gaussian elimination \iff substitution)

$$\begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 \\ 0 & -2 & -2 \end{pmatrix}$$

Backward substitution → reduced echelon form

Example (Gauss–Jordan elimination \iff back substitution)

Solution set of homogeneous systems

- A homogeneous system Ax = 0 always has a trivial solution x = 0 (is always consistent)
- If $\mathbf{x} = (x_1, \dots, x_n)^{\top}$ is a solutions, then for every scalar \mathbf{k} , $\mathbf{k}\mathbf{x} = (\mathbf{k}x_1, \dots, \mathbf{k}x_n)^{\top}$ is a solution as well: $a_{i1}(\mathbf{k}x_1) + \dots + a_{in}(\mathbf{k}x_n) = \mathbf{k}(a_{i1}x_1 + \dots + a_{in}x_n) = 0$
- If $\mathbf{x} = (x_1, \dots, x_n)^{\top}$ and $\mathbf{y} = (y_1, \dots, y_n)^{\top}$ are solutions, then so is $\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_n + y_n)^{\top}$: $a_{i1}(x_1 + y_1) + \dots + a_{in}(x_n + y_n)$ $= (a_{i1}x_1 + \dots + a_{in}x_n) + (a_{i1}y_1 + \dots + a_{in}y_n) = 0$
- Thus the solution set of a homogeneous linear system is a linear space

Theorem (Solutions to a homogeneous system)

A homogeneous system $A\mathbf{x} = \mathbf{0}$ may have one solution (the trivial solution $\mathbf{x} = \mathbf{0}$) or infinitely many solutions; moreover, its solution set is linear.

Solution set of non-homogeneous systems

- A non-homogeneous system Ax = b need not be consistent (may not have any solutions)
- If $\mathbf{x} = (x_1, \dots, x_n)^{\top}$ and $\mathbf{y} = (y_1, \dots, y_n)^{\top}$ are solutions, then $\mathbf{x} \mathbf{y} = (x_1 y_1, \dots, x_n y_n)^{\top}$ solves the homogeneous system $A\mathbf{x} = \mathbf{0}$:

$$a_{i1}(x_1 - y_1) + \cdots + a_{in}(x_n - y_n)$$

= $(a_{i1}x_1 + \cdots + a_{in}x_n) - (a_{i1}y_1 + \cdots + a_{in}y_n)$
= $b_i - b_i = 0$

 The solution set of a non-homogeneous linear system is an affine set (shifted linear set)

Theorem (Solutions to a non-homogeneous system)

A non-homogeneous system $A\mathbf{x} = \mathbf{b}$ may have no solutions, one solution, or infinitely many solutions. Any solution has the form $\mathbf{x} = \mathbf{x}_{par} + \mathbf{x}_{hom}$, where \mathbf{x}_{par} is a particular solution, and \mathbf{x}_{hom} is any solution to a homogeneous system $A\mathbf{x} = \mathbf{0}$

Existence of solutions

- A homogeneous system $A\mathbf{x} = \mathbf{0}$ is always consistent
- A non-homogeneous system $A\mathbf{x} = \mathbf{b}$ is consistent
 - \iff an echelon form of its augmented matrix $(A \mid \mathbf{b})$ has no row $(0 \dots 0 \mid \bullet)$ with a non-zero \bullet
- ullet A system $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b}
 - \iff an echelon form of A has no zero rows
 - ← A has a pivot position in every its row
- For every A, the system Ax = b is consistent for some choice of b.

Uniqueness of solutions

- A homogeneous system Ax = 0 has a unique solution
 there is no free variables
- A non-homogeneous system $A\mathbf{x} = \mathbf{b}$ has a unique solution
 - \iff no rows $(0 \dots 0 | \bullet)$ in echelon form of $(A | \mathbf{b})$ and no free variables
- A system Ax = b has a unique solution for every b
 - no zero rows in an echelon form of A and no free variables
 - \implies A must be a square matrix (m = n)

Nonsingular matrices

Definition

A coefficient matrix A is called nonsingular if the linear system $A\mathbf{x} = \mathbf{b}$ has a unique solution for *every* choice of \mathbf{b} .

Theorem

An $m \times n$ matrix A is nonsingular if and only if m = n and A has m pivot columns

Proof:

- should be no free variables (otherwise nonuniqueness)
- an echelon form of A should contain no zero rows (otherwise nonexistence)

Example

$$\begin{pmatrix} 1 & 2 & a \\ 3 & b & 0 \\ c & 0 & 0 \end{pmatrix} \overset{c\neq 0}{\sim} \begin{pmatrix} 1 & 2 & a \\ 0 & b & 0 \\ 1 & 0 & 0 \end{pmatrix} \overset{b\neq 0}{\sim} \begin{pmatrix} 1 & 2 & a \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & a \\ 0 & 1 & 0 \\ 0 & 0 & a \end{pmatrix}$$

Thus A is nonsingular \iff abc \neq 0

Rank of a matrix

Definition

The number of nonzero rows in an echelon form of a matrix *A* is called its rank and denoted rank *A*.

Theorem (Some properties of the rank)

Assume that A is the $m \times n$ coefficient matrix of a linear system and \hat{A} is the corresponding augmented matrix. Then

- rank $A \leq \min\{m, n\}$ and rank $A \leq \operatorname{rank} \hat{A}$
- 2 a solution of $A\mathbf{x} = \mathbf{b}$ exists \iff rank $A = \operatorname{rank} \hat{A}$
- **3** $A\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \iff \operatorname{rank} A = m$
- **3** $A\mathbf{x} = \mathbf{b}$ has at most one solution for every $\mathbf{b} \iff \text{rank } A = n$
- **5** A is nonsingular \iff rank A = m = n.