Corrigé de la feuille d'exercices 24

1 Généralités

Exercise 1. $C = (A \cup B) \setminus \{A \cap B\}$. Comme $A \cap B \subset A \cup B$, on a $P(C) = P(A \cup B) - P(A \cap B)$. Donc $P(C) = P(A) + P(B) - 2P(A \cap B)$.

Exercice 2. L'univers est $\Omega = \{1, ..., 6\}^6$. On le munit de la probabilité uniforme P ce qui correspond au fait que les dés sont équilibrés.

Notons A l'événement « toutes les faces exhibent un chiffre distinct. »

A est l'ensemble des 6-listes d'éléments distincts de [1, 6]. Ainsi, Card (A) = 6!. On a Card $(\Omega) = 6^6$.

Ainsi,
$$P(A) = \frac{6!}{6^6} = \frac{5}{324}$$

Exercice 3.

L'univers Ω est : « l'ensemble des parties de 4 chaussures parmi l'ensemble des 20 chaussures possibles ». On muni Ω de la probabilité uniforme car on choisit au hasard. On a Card $(\Omega) = \begin{pmatrix} 20 \\ 4 \end{pmatrix}$.

- 1. Notons E_1 : « Obtenir deux paires de chaussures » Pour réaliser E_1 , on :
 - choisit deux paires parmi les 10 possibles : $\binom{10}{2}$ choix.
 - prend les 2 chaussures de chaque paire : $\binom{2}{2}\binom{2}{2}$ choix.

On obtient ainsi : Card $(E_1) = {10 \choose 2} \times 1 \times 1$.

Finalement, on obtient : $P(E_1) = \frac{\binom{10}{2}}{\binom{20}{1}} = \frac{3}{323}$.

2. Notons E_2 : « Obtenir au moins une paire de chaussures » On commence par calculer $P(E_2)$.

 $\overline{E_2}$: « n'obtenir aucune paire de chaussure »

Pour réaliser $\overline{E_2}$:

- on choisit 4 paires de chaussures : $\binom{10}{4}$ choix.
- Pour chacune de ces paires, on choisit une chaussure parmi les $2: \binom{2}{1} \times \binom{2}{1} \times \binom{2}{1} \times \binom{2}{1}$.

On obtient ainsi : $\operatorname{Card}(\overline{E_2}) = 2^4 \binom{10}{4}$. Ainsi, $P(\overline{E_2}) = \frac{\operatorname{Card}(\overline{E_2})}{\operatorname{Card}(\Omega)} = \frac{224}{323}$.

On en déduit ainsi que $P(E_2) = 1 - P(\overline{E_2}) = \frac{99}{323}$

3. Notons E_3 : « Obtenir une et une seule paire de chaussures »

On a $E_2 = E_1 \cup E_3$. Or, E_1 et E_3 sont incompatibles. Ainsi, $P(E_2) = P(E_1) + P(E_3)$. On obtient alors $P(E_3) = P(E_2) - P(E_1) = \frac{99}{323} - \frac{3}{323} = \frac{96}{323}$.

Exercice 4. Notons $A: \ll Obtenir des numéros de la même parité <math>\gg$,

 $B: \ll Obtenir que des numéros pairs \gg$,

 $C: \ll \text{Obtenir que des numéros impairs} \gg$.

B et C sont des événements incompatibles et on a $A = B \cup C$.

1. L'univers Ω est ici l'ensemble des parties à 2 éléments de [1,9]. On muni cet univers de la probabilité uniforme (car on tire au hasard).

On a $B: \ll l$ 'ensemble des parties à 2 éléments de $\{2,4,6,8\} \gg$

 $C: \ll l$ 'ensemble des parties à 2 éléments de $\{1, 3, 5, 7, 9\} \gg$.

Ainsi, on a : Card
$$(\Omega) = \begin{pmatrix} 9 \\ 2 \end{pmatrix}$$
, Card $(B) = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ et Card $(C) = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$.

On obtient alors :
$$P(B) = \frac{\operatorname{Card}(B)}{\operatorname{Card}(\Omega)} = \frac{\binom{4}{2}}{\binom{9}{2}} = \frac{6}{36} \text{ et } P(C) = \frac{\operatorname{Card}(C)}{\operatorname{Card}(\Omega)} = \frac{\binom{5}{2}}{\binom{9}{2}} = \frac{10}{36}.$$

Finalement, on obtient :
$$P(A) = P(B) + P(C) = \frac{6+10}{36} = \frac{4}{9}$$
.

- 2. L'univers Ω est l'ensemble des 2-listes sans répétitions de [1,9]
 - On a $B: \ll l$ 'ensemble des 2-listes sans répétitions de $\{2,4,6,8\} \gg$
 - $C: \ll l$ 'ensemble des 2-listes sans répétitions de $\{1, 3, 5, 7, 9\} \gg$

Ainsi, on a : Card
$$(\Omega) = 9 \times 8 = 72$$
, Card $(B) = 4 \times 3 = 12$ et Card $(C) = 5 \times 4 = 20$.

On obtient alors :
$$P(B) = \frac{\operatorname{Card}(B)}{\operatorname{Card}(\Omega)} = \frac{12}{72}$$
 et $P(C) = \frac{\operatorname{Card}(C)}{\operatorname{Card}(\Omega)} = \frac{20}{72}$.

Finalement, on obtient :
$$P(A) = P(B) + P(C) = \frac{20 + 12}{72} = \frac{4}{9}$$

- 3. L'univers Ω est l'ensemble des 2-listes de [1, 9].
 - On a $B: \ll l$ 'ensemble des 2-listes de $\{2,4,6,8\} \gg$
 - $C: \ll l$ 'ensemble des 2-listes de $\{1,3,5,7,9\} \gg$

Ainsi, on a : Card
$$(\Omega) = 9^2 = 81$$
, Card $(B) = 4^2 = 16$ et Card $(C) = 5^2 = 25$.

C: « l'ensemble des 2-listes de
$$\{1, 3, 5, 7, 9\}$$
 »
Ainsi, on a : Card $(\Omega) = 9^2 = 81$, Card $(B) = 4^2 = 16$ et Card $(C) = 5^2 = 25$.

On obtient alors : $P(B) = \frac{\text{Card }(B)}{\text{Card }(\Omega)} = \frac{25}{81}$ et $P(C) = \frac{\text{Card }(C)}{\text{Card }(\Omega)} = \frac{16}{81}$.

Finalement, on obtient : $P(A) = P(B) + P(C) = \frac{25 + 16}{81} = \frac{41}{81}$.

Finalement, on obtient :
$$P(A) = P(B) + P(C) = \frac{25 + 16}{81} = \frac{41}{81}$$

Exercice 5. 1. L'univers
$$\Omega$$
 associé à cette expérience est : « l'ensemble des n -uplets d'éléments de $[\![1,M]\!]$.

- Ω est muni de la probabilité uniforme. On a Card $(\Omega) = M^n$.
- Notons A: « aucun jeton n'est tiré plus d'une fois »
- Ainsi, A correspond à l'ensemble des n listes d'éléments distincts de [1, M].

On a donc Card
$$(A) = M(M-1)...(M-n+1)$$
.
On obtient ainsi : $P(A) = \frac{M(M-1)...(M-n+1)}{M^n} = \left(1 - \frac{1}{M}\right)...\left(1 - \frac{(n-1)}{M}\right)$.

- 2. Les jetons sont ici remplacés par les étudiants et les numéros par les 365 jours de l'année.
 - Notons $B: \ll$ au moins deux élèves ont leur anniversaire le même jour ». On a $\overline{B}: \ll$ aucun étudiant a son anniversaire le même jour qu'un autre ».

D'après la question précédente,
$$P(B) = 1 - P(\overline{B}) = 1 - \left(1 - \frac{1}{365}\right) \dots \left(1 - \frac{(n-1)}{365}\right)$$
.

1. L'univers Ω associé à cette expérience aléatoire est l'ensemble des parties à 3 boules parmi les 15 Exercice 6. possibles. On munit Ω de la probabilité uniforme. On a Card $(\Omega) = \binom{15}{3} = 455$.

- (a) Pour réaliser A, on choisit :
 - la seule boule noire de l'urne : $\binom{1}{1} = 1$ choix.
 - une boule blanche : $\binom{5}{1}$ choix
 - une boule rouge : $\binom{9}{1}$ choix.

Ainsi, Card
$$(A) = 1 \times 5 \times 9 = 45$$
. On obtient finalement : $P(A) = \frac{45}{455} = \frac{9}{91}$.
(b) On décompose B en fonction du nombre de boules rouges. $B = B_1 \cup B_2$ où B_1 : « Piocher exactement une

- boule rouge, une boule noire \gg , B_2 « Piocher exactement une boule noire et deux boules rouges \gg . B_1 et B_2 sont incompatibles. Ainsi, $P(B) = P(B_1) + P(B_2)$. Or, $B_1 = A$.
 - De plus, pour réaliser B_2 , on choisit :
 - la seule boule noire : $\binom{1}{1} = 1$ choix possible.
 - deux boules rouges : $\binom{9}{2}$ = 36 choix possibles.

Finalement,
$$P(B) = \frac{\operatorname{Card}(B_1) + \operatorname{Card}(B_2)}{\operatorname{Card}(\Omega)} = \frac{45 + 36}{455} = \frac{81}{455}.$$

(c) Il n'y a qu'une boule noire donc pour piocher 3 boules de la même couleur, les trois boules sont soit rouges ou blanches. Notons C_1 : « Piocher 3 boules blanches » et C_2 : « Piocher 3 boules rouges ».

Or,
$$P(C_1) = \frac{\operatorname{Card}(C_1)}{\operatorname{Card}(\Omega)} = \frac{\binom{5}{3}}{\binom{15}{3}} = \frac{10}{455} \text{ et } P(C_2) = \frac{\operatorname{Card}(C_2)}{\operatorname{Card}(\Omega)} = \frac{\binom{9}{3}}{\binom{15}{3}} = \frac{84}{455}.$$

Or,
$$C_1$$
 et C_2 sont incompatibles donc $P(C) = P(C_1) + P(C_2) = \frac{10}{455} + \frac{84}{455} = \frac{94}{455}$

- Or, C_1 et C_2 sont incompatibles donc $P(C) = P(C_1) + P(C_2) = \frac{10}{455} + \frac{84}{455} = \frac{94}{455}$ 2. L'univers Ω associé à cette expérience aléatoire est l'ensemble des 3-listes de boules de l'ensemble des 15 boules disponibles dans l'urne. On munit toujours Ω de la probabilité uniforme. On a Card $(\Omega) = 15^3 = 3375$.
 - (a) Pour réaliser A, on choisit :
 - la seule boule noire : 1 choix.
 - une boule blanche: 5 choix
 - une boule rouge : 9 choix.
 - un ordre pour ces trois boules : 3! = 6 choix possibles.

Ainsi, Card
$$(A) = 1 \times 5 \times 9 \times 6 = 45 \times 6 = 270$$
. On obtient finalement : $P(A) = \frac{270}{3375} = \frac{2}{25}$

(b) On reprend les notations de la question précédente.

On a toujours $B_1 = A$.

De plus, pour réaliser B_2 , on choisit :

- la seule boule noire : 1 choix possible.
- deux boules rouges : 9² choix possibles.
- la position de la boule noire dans la 3-liste : 3 possibilités.

Finalement,
$$P(B) = \frac{\operatorname{Card}(B_1) + \operatorname{Card}(B_2)}{\operatorname{Card}(\Omega)} = \frac{270 + 3 \times 81}{3375} = \frac{270 + 243}{3375} = \frac{513}{3375} = \frac{19}{125}$$
.

Finalement,
$$P(B) = \frac{\operatorname{Card}(B_1) + \operatorname{Card}(B_2)}{\operatorname{Card}(\Omega)} = \frac{270 + 3 \times 81}{3375} = \frac{270 + 243}{3375} = \frac{513}{3375} = \frac{19}{125}$$
.
(c) On reprend les notations de la question précédente et on note C_3 : « Piocher 3 boules noires ».
On a: $P(C_1) = \frac{\operatorname{Card}(C_1)}{\operatorname{Card}(\Omega)} = \frac{5^3}{15^3} = \frac{125}{3375}$, $P(C_2) = \frac{\operatorname{Card}(C_2)}{\operatorname{Card}(\Omega)} = \frac{9^3}{15^3} = \frac{729}{3375}$ et $P(C_3) = \frac{1^3}{15^3} = \frac{1}{3375}$.
Or, C_1 , C_2 et C_3 sont deux à deux incompatibles donc $P(C) = P(C_1) + P(C_2) + P(C_3) = \frac{125 + 729 + 1}{3375} = \frac{855}{3375} = \frac{19}{75}$

donc
$$P(C) = P(C_1) + P(C_2) + P(C_3) = \frac{125 + 729 + 1}{3375} = \frac{855}{3375} = \frac{19}{75}$$

1. (a) Pour réaliser A_k : Exercice 7.

- On choisit le boule k:1 possibilité
- On choisit les p-1 autres boules parmi celles ayant un numéro inférieur ou égal à $k-1:\binom{k-1}{p-1}$

Ainsi, on a Card
$$(A_k) = \binom{k-1}{p-1}$$
 donc $P(A_k) = \frac{\binom{k-1}{p-1}}{\binom{n}{p}}$.

(b) $(A_k)_{k \in \llbracket p,n \rrbracket}$ forme un système complet d'événements. Ainsi, $\sum_{k=p}^n P(A_k) = \sum_{k=p}^n \frac{\binom{k-1}{p-1}}{\binom{n}{k-1}} = 1$.

Donc:
$$\sum_{k=n}^{n} \binom{k-1}{p-1} = \binom{n}{p}.$$

2. Pour tout $k \in [p, n]$, on note $A_k : \ll$ Le maximum des boules piochées est $k \gg$.

 $E: \ll \text{Piocher au } p \text{ ième tirage un numéro supérieur au } p-1 \text{ précédents.} \gg$

On a $E \cap A_k$: « La p-ième boule a le plus grand numéro et ce numéro vaut $k \gg$. Pour réaliser $E \cap A_k$, on choisit :

- la 1-ère boule dans [1, k-1]: k-1 possibilités
- la 2-ème boule dans [1, k-1] et différente de la 1ère : k-2 possibilités
- la p-1-ème boule : k-p+1 possibilités
- la p-ième boule vaut k:1 possibilité

Ainsi, on a : Card
$$(E \cap A_k) = \frac{(k-1)!}{(k-p)!}$$
.
D'où : $P(E \cap A_k) = \frac{\frac{(k-1)!}{(k-p)!}}{\frac{n!}{(n-p)!}} = \frac{(n-p)!(k-1)!}{(k-p)!n!}$.

De plus, $(A_k)_{k \in [p,n]}$ forme un système complet d'événements. Donc on a :

$$P(E) = \sum_{k=p}^{n} P(E \cap A_k)$$

$$= \sum_{k=p}^{n} \frac{(n-p)!(k-1)!}{(k-p)!n!}$$

$$= \frac{(n-p)!}{n!} \sum_{k=p}^{n} \frac{(k-1)!}{(k-p)!}$$

$$= \frac{(n-p)!(p-1)!}{n!} \sum_{k=p}^{n} \frac{(k-1)!}{(k-p)!(p-1)!}$$

$$= \frac{(n-p)!(p-1)!}{n!} \sum_{k=p}^{n} \binom{k-1}{p-1}$$

$$= \frac{(n-p)!(p-1)!}{n!} \times \binom{n}{p}$$

$$= \frac{(n-p)!(p-1)!}{n!} \times \frac{n!}{p!(n-p)!}$$

$$= \frac{1}{p}$$

2 Formules fondamentales

2.1 Formule des probabilités composées

Exercice 8. Pour $i \in \{1, 2\}$, on note N_i , l'événement : « Piocher une boule noire au i-ème tirage ». On obtient :

$$P(N_1 \cap N_2) = P(N_1)P_{N_1}(N_2) = \frac{2}{6} \times \frac{3}{7} = \frac{1}{7}$$

car avant le second tirage, l'urne contient 4 boules blanches et 3 boules noires.

Exercice 9. Pour tout $i \in \{1, 2, 3\}$, notons B_i l'événement « on pioche une boule blanche au *i*-ième tirage » On a $N = B_1 \cap B_2 \cap \overline{B_3}$.

$$P(N) = P(B_1)P(B_2|B_1)P(\overline{B}_3|B_1 \cap B_2) = \frac{4}{6} \times \frac{3}{5} \times \frac{2}{4} = \frac{1}{5}.$$

Exercice 10.

Pour $k \in [1, n]$, on note $A_k \ll \text{La}$ porte s'ouvre exactement à la k-ième tentative ». On a $A_k = \overline{A_1} \cap ... \cap \overline{A_{k-1}} \cap A_k$.

Par la formule des probabilités composées, on a :

$$\begin{split} P(A_k) &= P(\overline{A_1} \cap \ldots \cap \overline{A_{k-1}} \cap A_k) \\ &= P(\overline{A_1}) P_{\overline{A_1}}(\overline{A_2}) \ldots P_{\overline{A_1} \cap \ldots \cap \overline{A_{k-1}}}(A_k) \\ &= \frac{n-1}{n} \times \frac{n-2}{n-1} \times \ldots \times \frac{n-k+2}{n-k} \times \frac{1}{n-k+1} \\ &= \frac{1}{n} \end{split}$$

Cette probabilité ne dépend donc pas de k.

Remarque : cela était prévisible car cela revient à tirer au sort le numéro de la tentative à laquelle la porte s'ouvre. Or, il y a n clés donc n tentatives possibles. Ainsi, pour une tentative donnée, la probabilité que la porte s'ouvre à cette tentative vaut $\frac{1}{n}$.

Exercice 11. 1. Pour tout $k \in \mathbb{N}^*$, on note A_k l'événement : « Trouver la nourriture à l'étape k exactement. »

On a
$$P(A_1) = \frac{1}{3}$$
.

Soit $k \geq 2$.

On a : $A_k = \overline{A_1} \cap \cdots \cap \overline{A_{k-1}} \cap A_k$ Par la formule des probabilités composées, on a :

$$P(A_k) = P(\overline{A_1} \cap \dots \cap \overline{A_{k-1}} \cap A_k)$$

= $P(\overline{A_1})P(\overline{A_2}|\overline{A_1})\dots P(A_k|\overline{A_1} \cap \dots \cap \overline{A_{k-1}})$

Comme le rat n'a aucun souvenir des étapes précédentes, il a à chaque étape deux chances sur trois d'avoir une décharge électrique. Ainsi :

 $\forall p \in [1, k-2], \ P(\overline{A_{p+1}}|\overline{A_1} \cap \dots \cap \overline{A_p}) = \frac{2}{3}$

Et:

$$P(A_k|\overline{A_1}\cap\cdots\cap\overline{A_{k-1}})=\frac{1}{3}$$

Donc:

$$P(A_k) = \frac{2}{3} \times \dots \times \frac{2}{3} \times \frac{1}{3}$$
$$= \frac{2^{k-1}}{3^k}.$$

(cette formule reste valable pour k = 1).

2. On a toujours $P(A_1) = \frac{1}{3}$.

Soit $k \geq 2$. On reprend le calcul précédent.

Comme le rat se souvient de l'expérience précédente, on a :

$$\forall p \in [1, k-2], \ P(\overline{A_{p+1}}|\overline{A_1} \cap \dots \cap \overline{A_p}) = \frac{1}{2}$$

(puisque l'un des couloirs est éliminé).

Et:

$$P(A_k|\overline{A_1}\cap\cdots\cap\overline{A_{k-1}})=\frac{1}{2}.$$

Ainsi, on obtient alors:

$$P(A_k) = P(\overline{A_1} \cap \dots \cap \overline{A_{n-1}} \cap A_k)$$

$$= P(\overline{A_1})P(\overline{A_2}|\overline{A_1}) \dots P(A_k|\overline{A_1} \cap \dots \cap \overline{A_{k-1}})$$

$$= \frac{2}{3} \times \frac{1}{2} \dots \times \frac{1}{2} \times \frac{1}{2}$$

$$= \frac{1}{2^{k-2} \times 3}.$$

3. Comme le rat se souvient des deux expériences précédentes, il réussit en au plus 3 essais. On a donc :

$$P(A_1) = \frac{1}{3}$$

$$P(A_2) = P(A_2|\overline{A_1})P(\overline{A_1}) = \frac{1}{2} \times \frac{2}{3} = \frac{1}{3}$$

$$P(A_3) = P(A_3|\overline{A_1} \cap \overline{A_2})P(\overline{A_2}|\overline{A_1})P(\overline{A_1}) = 1 \times \frac{1}{2} \times \frac{2}{3} = \frac{1}{3}.$$

Et:

$$\forall k > 3, \ P(A_k) = 0.$$

2.2 Formule des probabilités totales

Exercice 12. On définit les événements suivants :

- C_1 : « le composant est produit par la machine M_1 »
- C_2 : « le composant est produit par la machine M_2 »
- C_3 : « le composant est produit par la machine M_3 »

• $D : \ll \text{le composant est défectueux} \gg$.

Les données de l'exercice permettent d'écrire :

$$P(C_1) = \frac{50}{100}, \quad P(C_2) = \frac{30}{100}, \quad P(C_3) = \frac{20}{100}, \quad P_{C_1}(D) = \frac{2}{100}, \quad P_{C_2}(D) = \frac{3}{100}, \quad P_{C_3}(D) = \frac{5}{100}$$

1. (C_1, C_2, C_3) forme une système complet d'événements. D'après la formule des probabilités totales, on obtient :

$$\begin{split} P(D) &= P_{C_1}(D)P(C_1) + P_{C_2}(D)P(C_2) + P_{C_3}(D)P(C_3) \\ &= \frac{2}{100} \times \frac{50}{100} + \frac{3}{100} \times \frac{30}{100} + \frac{5}{100} \times \frac{20}{100} \\ &= \frac{10 + 9 + 10}{1000} \\ &= \frac{29}{1000} \end{split}$$

2. On a:

$$P(D \cap C_1) = P(C_1) \times P_{C_1}(D)$$

$$= \frac{50}{100} \times \frac{2}{100}$$

$$= \frac{10}{1000} = \frac{1}{100}$$

Remarque : $P(C_1) \times P(D) \neq P(D \cap C_1)$. Ainsi, les événements D et C_1 ne sont pas indépendants.

3. Par définition des probabilités conditionnelles :

$$P_D(C_1) = \frac{P(D \cap C_1)}{P(D)}$$

$$= \frac{\frac{1}{100}}{\frac{29}{1000}}$$

$$= \frac{10}{29}$$

On aurait également utiliser la formule de Bayes : $P_D(C_1) = \frac{P_{C_1}(D)P(C_1)}{P(D)}$.

Exercice 13. 1. Soit $n \in \mathbb{N}^*$. Déterminons une relation de récurrence entre p_{n-1} et p_n . $(M_{n-1}, \overline{M_{n-1}})$ forme un système complet d'événements. On applique la formule des probabilités totales :

$$P(M_n) = P(M_n | M_{n-1}) P(M_{n-1}) + P(M_n | \overline{M}_{n-1}) P(\overline{M}_{n-1})$$

Or, on sait que $P(M_n|M_{n-1})=a$ et $P(\overline{M}_n|\overline{M}_{n-1})=b$. d'où $P(M_n|\overline{M}_{n-1})=1-b$. On obtient donc :

$$p_n = ap_{n-1} + (1-b)(1-p_{n-1}) = (a+b-1)p_{n-1} + 1-b$$

La suite $(p_n)_{n\in\mathbb{N}}$ est donc une suite arithmético-géométrique. Soit $\alpha\in\mathbb{R}$:

$$\alpha = (a+b-1)\alpha + 1 - b \iff (a+b-2)\alpha = b - 1$$

$$\iff \alpha = \frac{b-1}{a+b-2} = \frac{1-b}{2-a-b} \quad \text{car } 2 - a - b \neq 0$$

Posons $\alpha = \frac{b-1}{a+b-2}$. Pour tout $n \in \mathbb{N}$, on pose $v_n = p_n - \alpha$. Soit $n \in \mathbb{N}^*$,

$$v_n = p_n - \alpha$$

$$= (a+b-1)p_{n-1} + 1 - b - ((a+b-1)\alpha + 1 - b)$$

$$= (a+b-1)(p_{n-1} - \alpha)$$

$$= (a+b-1)v_{n-1}$$

Ainsi,
$$(v_n)_{n \in \mathbb{N}}$$
 est géométrique de raison $a + b - 1$.
De plus, $v_0 = p_0 - \frac{b-1}{a+b-2} = 1 - \frac{b-1}{a+b-2} = \frac{a-1}{a+b-2} = \frac{1-a}{2-a-b}$.

Donc on a:

$$\forall n \in \mathbb{N}, \ v_n = v_0(a+b-1)^n = \frac{1-a}{2-a-b}(a+b-1)^n.$$

D'où:

$$\forall n \in \mathbb{N}, \ p_n = \frac{1-b}{2-a-b} + \frac{1-a}{2-a-b}(a+b-1)^n$$

2. Comme $a+b-1 \in]-1,1[$, $\lim_{n\to+\infty}(a+b-1)^n=0$. La suite $(p_n)_{n\in\mathbb{N}}$ converge vers $\frac{1-b}{2-a-b}$.

Exercice 14.

Pour $k \in [0, 2]$, on note A_k : « on transfère k boules blanches de l'urne B dans l'urne A»

1. On a
$$P(A_0) = \frac{\binom{8}{2}}{\binom{12}{2}} = \frac{44}{33}$$
, $P(A_1) = \frac{\binom{8}{1}\binom{4}{1}}{\binom{12}{2}} = \frac{16}{33}$ et $P(A_2) = \frac{\binom{4}{2}}{\binom{12}{2}} = \frac{1}{11}$. De plus, on note B l'événement « on pioche une boule blanche de l'urne A ».

$$P(B|A_0) = \frac{6}{13}, P(B|A_1) = \frac{7}{13} \text{ et } P(B|A_2) = \frac{8}{13}.$$

 $P(B|A_0) = \frac{6}{13}$, $P(B|A_1) = \frac{7}{13}$ et $P(B|A_2) = \frac{8}{13}$. Or, (A_0, A_1, A_2) forme un système complet d'événements. Ainsi, par la formule des probabilités totales, on a :

$$P(B) = P(B|A_0)P(A_0) + P(B|A_1)P(A_1) + P(B|A_2)P(A_2) = \frac{220}{429}$$

2. $C: \ll$ l'une au moins des boules transférées est blanche ».

On a : $C = A_1 \cup A_2$. Ainsi :

$$P(C|B) = P(A_1 \cup A_2|B) = P(A_1|B) + P(A_2|B) \text{ car } A_1 \text{ et } A_2 \text{ sont incompatibles}$$

$$= \frac{P(B|A_1)P(A_1)}{P(B)} + \frac{P(B|A_2)P(A_2)}{P(B)}$$

$$= \frac{\frac{16}{33} \times \frac{7}{13}}{\frac{220}{429}} + \frac{\frac{1}{11} \times \frac{8}{13}}{\frac{220}{429}}$$

$$= \frac{28}{55} + \frac{6}{55}$$

$$= \frac{34}{55}$$

1. Pour tout $i \in [1, n]$, on note $A_i : \emptyset$ la boule tirée au r-ième tirage est la boule numéro $i \gg 1$. $(A_1,...,A_n)$ forme un système complet d'événements. Ainsi, la formule des probabilités totales nous donne :

$$P(E_r) = \sum_{i=1}^{r} P(E_r|A_i)P(A_i)$$

Soit $i \in [1, r]$. $P(A_i) = \frac{1}{n}$. De plus, sachant A_i réalisée, E_r est réalisé si au cours des r-1 premiers tirages, on pioche des nombres compris entre i et n. Or, à un tirage donné, la probabilité de piocher une boule ayant un numéro compris entre i et nvaut $\frac{n-i+1}{n}$

De plus, les différents tirages sont indépendants. Ainsi, on obtient : $P(E_r|A_i) = \left(\frac{n-i+1}{n}\right)^{r-1}$.

Finalement, on trouve:

$$P(E_r) = \frac{1}{n} \sum_{i=1}^n \left(\frac{n-i+1}{n} \right)^{r-1} = \frac{1}{n} \sum_{j=1}^n \left(\frac{j}{n} \right)^{r-1} = \frac{1}{n^r} \sum_{j=1}^n j^{r-1}$$

2. Pour r = 2, on a:

$$P(E_r) = \frac{1}{n^2} \sum_{i=1}^{n} j = \frac{1}{n^2} \times \frac{n(n+1)}{2} = \frac{n+1}{2n}$$

3. Soit $n \in \mathbb{N}^*$.

$$P(E_r) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{j}{n}\right)^{r-1} = \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{j}{n}\right)$$

où $f: x \to x^{r-1}$.

Donc d'après le résultat sur les sommes de Riemann, on obtient :

$$\lim_{n \to +\infty} P(E_r) = \int_0^1 t^{r-1} dt = \left[\frac{t^r}{r} \right]_0^1 = \frac{1}{r}.$$

On peut vérifier que cette limite est valable pour r=2 à l'aide de la question précédente.

Exercice 16. 1. Soit $n \in \mathbb{N}$, (A_n, B_n, C_n) est un système complet d'événements donc :

$$\forall n \in \mathbb{N}, \ a_n + b_n + c_n = 1.$$

2. Soit $n \in \mathbb{N}$, par la formule des probabilités totales, on a

$$a_{n+1} = P(A_{n+1}) = P(A_{n+1}|A_n)P(A_n) + P(A_{n+1}|B_n)P(B_n) + P(A_{n+1}|C_n)P(C_n)$$

= $\frac{2}{3}a_n + \frac{1}{6}b_n + \frac{1}{6}c_n$.

De même,

$$b_{n+1} = P(B_{n+1}) = P(B_{n+1}|A_n)P(A_n) + P(B_{n+1}|B_n)P(B_n) + P(B_{n+1}|C_n)P(C_n)$$

= $\frac{1}{6}a_n + \frac{2}{3}b_n + \frac{1}{6}c_n$.

Et

$$c_{n+1} = P(C_{n+1}) = P(C_{n+1}|A_n)P(A_n) + P(C_{n+1}|B_n)P(B_n) + P(C_{n+1}|C_n)P(C_n)$$
$$= \frac{1}{6}a_n + \frac{1}{6}b_n + \frac{2}{3}c_n.$$

3. Soit $n \in \mathbb{N}$, on a:

$$a_{n+1} - b_{n+1} = \frac{2}{3}a_n + \frac{1}{6}b_n + \frac{1}{6}c_n - \left(\frac{1}{6}a_n + \frac{1}{6}b_n + \frac{2}{3}c_n\right)$$
$$= \frac{1}{2}(a_n - b_n)$$

Et

$$a_{n+1} - c_{n+1} = \frac{2}{3}a_n + \frac{1}{6}b_n + \frac{1}{6}c_n - \left(\frac{1}{6}a_n + \frac{1}{6}b_n + \frac{2}{3}c_n\right)$$
$$= \frac{1}{2}(a_n - c_n)$$

4. D'après la question précédente, on sait que les suite $(a_n - b_n)_{n \in \mathbb{N}}$ et $(a_n - c_n)_{n \in \mathbb{N}}$ sont géométriques de raison $\frac{1}{2}$. De plus, sait que $a_0 = 1$, $b_0 = 0$ et $c_0 = 0$.

De plus, sait que $a_0=1$, $b_0=0$ et $c_0=0$. Soit $n\in\mathbb{N}$, on a : $a_n-b_n=\frac{1}{2^n}$ et $a_n-c_n=\frac{1}{2^n}$. De plus d'après la question $1:a_n+b_n+c_n=1$. Or,

$$\begin{cases} a_n - b_n = \frac{1}{2^n} \\ a_n - c_n = \frac{1}{2^n} \\ a_n + b_n + c_n = 1 \end{cases} \iff \begin{cases} b_n = a_n - \frac{1}{2^n} \\ c_n = a_n - \frac{1}{2^n} \\ 3a_n = \frac{1}{2^{n-1}} + 1 \end{cases}$$

$$\iff \begin{cases} b_n = a_n - \frac{1}{2^n} \\ 3a_n = \frac{1}{2^{n-1}} + 1 \end{cases}$$

$$\iff \begin{cases} c_n = \frac{1}{3} \left(1 - \frac{1}{2^n}\right) \\ c_n = \frac{1}{3} \left(1 - \frac{1}{2^n}\right) \\ a_n = \frac{1}{3} \left(\frac{1}{2^{n-1}} + 1\right) \end{cases}$$

Ainsi, on a:

$$\forall n \in \mathbb{N}, \ a_n = \frac{1}{3} \left(\frac{1}{2^{n-1}} + 1 \right) \quad b_n = \frac{1}{3} \left(1 - \frac{1}{2^n} \right) \quad c_n = \frac{1}{3} \left(1 - \frac{1}{2^n} \right)$$

Exercice 17.

1. Notons I_2 : « l'espèce a totalement disparu à l'issue de la deuxième génération »

On a ainsi :
$$P(E_0) = \frac{1}{8}$$
, $P(E_1) = \frac{3}{8}$, $P(E_2) = \frac{3}{8}$ et $P(E_3) = \frac{1}{8}$.

Pour $k \in [0,3]$, on note $E_k : \ll$ la deuxième génération se compose de k individus \gg . On a ainsi : $P(E_0) = \frac{1}{8}$, $P(E_1) = \frac{3}{8}$, $P(E_2) = \frac{3}{8}$ et $P(E_3) = \frac{1}{8}$. De plus, sachant E_k réalisé, l'espèce disparait totalement à l'issue de la deuxième génération si et seulement si chacun de ces k individus n'a aucun descendant.

Pour un individu donné, la probabilité de n'avoir aucun descendant est de $\frac{1}{8}$

De plus, le nombre de descendant est indépendant d'un individu à l'autre.

Ainsi,
$$P(I_2|E_k) = \left(\frac{1}{8}\right)^k = x_1^k$$
.

 (E_0, E_1, E_2, E_3) forme un système complet d'événements. Ainsi, d'après la formule des probabilités totales, on trouve:

$$x_2 = P(I_2) = P(E_0)P(I_2|E_0) + P(E_1)P(I_2|E_1) + P(E_2)P(I_2|E_2) + P(E_3)P(I_2|E_3)$$

$$= \frac{1}{8} \times 1 + \frac{3}{8}x_1 + \frac{3}{8}x_1^2 + \frac{1}{8}x_1^3$$

$$= \frac{1}{8} + \frac{3}{8} \times \frac{1}{8} + \frac{3}{8} \left(\frac{1}{8}\right)^2 + \frac{1}{8} \left(\frac{1}{8}\right)^3$$

$$= \frac{729}{4096}$$

2. Soit $n \in \mathbb{N}^*$, notons $I_n : \ll$ l'espèce disparait totalement à l'issue de la n-ième génération ».

On discute en fonction du nombre d'individus à la deuxième génération.

Soit $k \in [0,2]$. Sachant E_k réalisée, la probabilité que l'espèce ait totalement disparue à l'issue de la (n+1)-ième génération est la probabilité que les lignées de chacun de ces k individus disparaissent à l'issue de n générations. Au départ, l'espèce se compose d'un seul individu. Ainsi, la probabilité que tous les descendants d'un individu disparaissent à l'issue de n générations est x_n .

Par indépendance, on obtient : $P(I_{n+1}|E_k) = x_n^k$

Par la formule des probabilités totales :

$$x_2 = P(I_2) = P(E_0)P(I_2|E_0) + P(E_1)P(I_2|E_1) + P(E_2)P(I_2|E_2) + P(E_3)P(I_2|E_3)$$

$$= \frac{1}{8} \times 1 + \frac{3}{8}x_n + \frac{3}{8}x_n^2 + \frac{1}{8}x_n^3$$

 $\begin{array}{ccc} f: & [0,1] & \to & \mathbb{R} \\ & x & \mapsto & \frac{1}{8} + \frac{3}{8}x + \frac{3}{8}x^2 + \frac{1}{8}x^3 = \frac{1}{8}(1+x)^3 \end{array}.$ Déterminons les points fixes de f: soit $x \in \mathbb{R}$,

$$f(x) = x \iff \frac{1}{8} + \frac{3}{8}x + \frac{3}{8}x^2 + \frac{1}{8}x^3 = x$$
$$\iff \frac{1}{8} - \frac{5}{8}x + \frac{3}{8}x^2 + \frac{1}{8}x^3 = 0$$

On remarque que 1 est racine évidente du polynôme $\frac{1}{\varrho} - \frac{5}{\varrho}X + \frac{3}{8}X^2 + \frac{1}{\varrho}X^3$.

On a alors:
$$\frac{1}{8} - \frac{5}{8}X + \frac{3}{8}X^2 + \frac{1}{8}X^3 = \frac{1}{8}(X - 1)(X^2 - 4X - 1).$$

$$f(x) = x \iff x = 1 \text{ ou } x = -2 + \sqrt{5} \text{ ou } x = -2 \pm \sqrt{5}$$

 $x_1 \in [0, -2 + \sqrt{5}]$ et $[0, -2 + \sqrt{5}]$ est stable par f. Ainsi, pour tout $n \in \mathbb{N}^*, x_n \in [0, -2 + \sqrt{5}]$. De plus, f est croissante sur $[0, -2 + \sqrt{5}]$, ainsi, (x_n) est monotone.

 $x_2 = \frac{729}{1096} < \frac{1}{8} = x_1$. Ainsi, (x_n) est croissante.

De plus (x_n) est majorée donc (x_n) converge par le théorème de la limite monotone. Notons l sa limite. On a $l \in [0, -2 + \sqrt{5}]$ car pour tout $n \in \mathbb{N}^*$, $x_n \in [0, -2 + \sqrt{5}]$ et par passage à la limite dans les inégalités.

De plus, f est continue sur $[0, -2 + \sqrt{5}]$. Ainsi, f(l) = l donc $l = -2 + \sqrt{5}$. Ainsi la probabilité que l'espèce disparaisse est de $-2 + \sqrt{5} \approx 24\%$. L'espèce ne disparait pas de façon certaine.

Exercice 18. 1. Soit $n \in llbracket1, N-1$], D'après l'énoncé, on sait que $P(I_{n+1}|I_n)=1-p$. En effet, cela correspond à la probabilité de ne pas bruiter le signal lors du passage dans le n+1-ième canal.

Et on a $P(I_{n+1}|\overline{I_n}) = p$ car cela correspond à la probabilité de bruiter le signal lors du passage dans le n+1-ième canal.

 $(I_n, \overline{I_n})$ forme un système complet d'événements. Ainsi, par la formule des probabilités totales, on a :

$$p_{n+1} = P(I_{n+1}) = P(I_{n+1}|I_n)P(I_n) + P(I_{n+1}|\overline{I_n})P(\overline{I_n})$$

= $(1-p)p_n + p(1-p_n)$
= $p + (1-2p)p_n$

2. D'après la question précédente, $(p_n)_{n\in\mathbb{N}}$ est une suite arithmético-géométrique. Soit $\alpha\in\mathbb{R}$:

$$\alpha = (1 - 2p)\alpha + p \quad \Longleftrightarrow \quad 2p\alpha = p$$

$$\iff \quad \alpha = \frac{1}{2} \quad \text{car } p \neq 0$$

Posons $\alpha = \frac{1}{2}$.

Pour tout $n \in [1, N]$, on pose $v_n = p_n - \alpha$.

Soit $n \in [1, N-1],$

$$v_{n+1} = p_{n+1} - \alpha$$

$$= (1 - 2p)p_n + p - (1 - 2p)\alpha + p)$$

$$= (1 - 2p)(p_n - \alpha)$$

$$= (1 - 2p)v_n$$

Ainsi, $(v_n)_{n\in \llbracket 1,N\rrbracket}$ est géométrique de raison 1-2p.

De plus, $v_1 = p_1 - \frac{1}{2} = 1 - p - \frac{1}{2} = \frac{1}{2} - p$.

Donc on a:

$$\forall n \in [1, N], \ v_n = v_1(1 - 2p)^{n-1} = \frac{1}{2}(1 - 2p)^n.$$

D'où :

$$\forall n \in [1, N], \ p_n = \frac{1}{2}(1 - 2p)^n + \frac{1}{2}$$

On a donc : $p_N = \frac{1}{2}(1 - 2p)^N + \frac{1}{2}$.

Comme $p \in]0, 1[$, on a : $1 - 2p \in]-1, 1[$. Ainsi, $\lim_{N \to +\infty} p_N = \frac{1}{2}$

2.3 Formule de Bayes

Exercice 19.

Notons T l'événement « le test est positif », et M « la personne est malade »On cherche à calculer P(M|T). Par la formule de Bayes, on a

$$P(M|T) = \frac{P(T|M)P(M)}{P(T|M)P(M) + P(T|\overline{M})P(\overline{M})} = \frac{\frac{99}{100} \times \frac{1}{1000}}{\frac{99}{100} \times \frac{1}{1000} + \frac{2}{1000} \frac{999}{1000}} = \frac{990}{2988} = \frac{495}{1494}.$$

Exercice 20. Notons P_1 , P_2 et P_3 les portes avec P_1 la porte choisie par le candidat.

Pour tout $i \in \{1, 2, 3\}$, on note V_i l'événement « la voiture est derrière la porte $i \gg$ et O_i l'événement « le présentateur a ouvert la porte $i \gg$.

On a $P(O_2|V_1) = P(O_3|V_1) = \frac{1}{2}$, $P(O_2|V_2) = P(O_3|V_3) = 0$ et $P(O_2|V_3) = P(O_3|V_2) = 1$.

Ainsi, la probabilité que la voiture soit derrière la porte 3 sachant que le présentateur a ouvert la porte 2 est

$$P(V_3|O_2) = \frac{P(O_2|V_3)P(V_3)}{\sum_{i=1}^3 P(O_2|V_i)P(V_i)} = \frac{1 \times \frac{1}{3}}{\frac{1}{2} \times \frac{1}{3} + \frac{1}{3}} = \frac{2}{3}.$$

Le candidat doit donc changer son choix.

Exercice 21.

1. Notons G_0 : « la gain du joueur est nul ».

Pour tout $k \in [0, 2]$, on note A_k : « on obtient k pile lors du premier lancer ». On a: $P(A_0) = \frac{1}{4}$ (on obtient (F, F)), $P(A_1) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$ (on obtient (F, F)) ou (F, P), $P(A_2) = \frac{1}{4}$ (on obtient (P,P)) par indépendance des lancers de chacune des pièces.

 (A_0,A_1,A_2) forme un système complet d'événements. Ainsi, par la formule des probabilités totales, on a :

$$P(G_0) = P(G_0|A_0)P(A_0) + P(G_0|A_1)P(A_1) + P(G_0|A_2)P(A_2)$$

Or, $P(G_0|A_0) = 1$, $P(G_0|A_1) = \frac{1}{4}$ (il faut alors obtenir deux faces lors du second lancer),

 $P(G_0|A_2) = \frac{1}{4} \times \frac{1}{4}$ (il faut obtenir deux faces lors des deux lancers des deux pièces).

$$P(G_0) = \frac{1}{4} + \frac{1}{4} \times \frac{1}{2} + \frac{1}{16} \times \frac{1}{4} = \frac{16 + 8 + 1}{64} = \frac{25}{64}$$

2. Notons G_1 : « Obtenir un seul pile à la seconde étape :

D'après la formule de Bayes, on a donc :

$$P(A_2|G_1) = \frac{P(G_1|A_2)P(A_2)}{P(G_1|A_0)P(A_0) + P(G_1|A_1)P(A_1) + P(G_1|A_2)P(A_2)}$$

Or, $P(G_1|A_2) = \frac{4}{4^2} = \frac{1}{4}$. En effet, on obtient ((P,F),(F,F)) ou ((F,P),(F,F)) ou ((F,F),(P,F)) ou ((F,F),(F,F)).

On a également $P(G_1|A_0) = 0$ puis $P(G_1|A_1) = \frac{1}{2}$. En effet, il nous faut obtenir (P,F) ou (F,P).

On obtient ainsi:

$$P(A_2|G_1) = \frac{\frac{1}{4} \times \frac{1}{4}}{\frac{1}{4} \times 0 + \frac{1}{2} \times \frac{1}{2} + \frac{1}{4} \times \frac{1}{4}} = \frac{\frac{1}{16}}{\frac{5}{16}} = \frac{1}{5}$$

3 Indépendance

Exercice 22. L'univers Ω associée à cette expérience aléatoire est $[1,6]^2$. On le munit de la probabilité uniforme.

On a : $A = \{2, 4, 6\} \times [1, 6]$ et $B = [1, 6] \times \{3\}$.

Ainsi, on trouve Card $A = 3 \times 6 = 18$ et donc $P(A) = \frac{18}{36} = \frac{1}{2}$, Card B = 6 et donc $P(B) = \frac{6}{36} = \frac{1}{6}$. De plus, $A \cap B = \{(2,3), (4,3), (6,3)\}$, on obtient :

$$P(A \cap B) = \frac{3}{36} = \frac{1}{12} = P(A)P(B)$$

Les événements A et B sont indépendants.

1. La probabilité de tirer une boule blanche dépend de la composition de l'urne. Exercice 23.

Pour $k \in \{0, 1, 2, 3\}$, notons U_k l'événement « L'urne contient k boules noires ».

On a $P(U_0) = P(U_3) = \frac{1}{8}$ (probabilité de faire trois fois pile ou trois fois face de suite) et $P(U_1) = P(U_2) = \frac{3}{8}$ (probabilité de faire un pile et deux faces ou l'inverse).

Or, (U_0, U_1, U_2, U_3) forme un système complet d'événements. Ainsi, , la formule des probabilités totales donne

$$P(B_1) = P(B_1|U_0)P(U_0) + P(B_1|U_1)P(U_1) + P(B_1|U_2)P(U_2) + P(B_1|U_3)P(U_3)$$

$$= 1 \times \frac{1}{8} + \frac{2}{3} \times \frac{3}{8} + \frac{1}{3} \times \frac{3}{8} + 0 \times \frac{1}{8}$$

$$= \frac{1}{2}$$

De même, $P(B_2) = \frac{1}{2}$ puisque la composition de l'urne est la même (on tire avec remise).

Toujours avec la formule des probabilités totales, on a ensuite :

$$P(B_1 \cap B_2) = P(B_1 \cap B_2 | U_0) P(U_0) + P(B_1 \cap B_2 | U_1) P(U_1) + P(B_1 \cap B_2 | U_2) P(U_2) + P(B_1 \cap B_2 | U_3) P(U_3)$$

$$= P(B_1 | U_0) P(B_2 | U_0) P(U_0) + P(B_1 | U_1) P(B_2 | U_1) P(U_1) + P(B_1 | U_2) P(B_2 | U_2) P(U_2)$$

$$+ P(B_1 | U_3) P(B_2 | U_3) P(U_3)$$

(par indépendance des tirages pour une composition d'urne fixée)

$$= 1^{2} \times \frac{1}{8} + \frac{2^{2}}{3^{2}} \times \frac{3}{8} + \frac{1^{2}}{3^{2}} \times \frac{3}{8} + 0^{2} \times \frac{1}{8}$$
$$= \frac{1}{3}$$

Comme $P(B_1 \cap B_2) \neq P(B_1)P(B_2)$, les événement B_1 et B_2 ne sont pas indépendants.

Les événements B_1, \ldots, B_n ne sont donc pas deux à deux indépendants.

2. On a $B^n = B_1 \cap \cdots \cap B_n$. Cependant, les événements ne sont pas mutuellement indépendants (sinon ils le seraient deux à deux) donc on ne peut pas utiliser ceci pour calculer $P(B^n)$. Là encore, on utilise la formule des probabilités totales :

$$P(B^{n}) = P(B^{n}|U_{0})P(U_{0}) + P(B^{n}|U_{1})P(U_{1}) + P(B^{n}|U_{2})P(U_{2}) + P(B^{n}|U_{3})P(U_{3})$$

$$= 1 \times \frac{1}{8} + \frac{2^{n}}{3^{n}} \times \frac{3}{8} + \frac{1}{3^{n}} \times \frac{3}{8} + 0 \times \frac{1}{8}$$

$$= \frac{3^{n-1} + 2^{n} + 1}{3^{n-1} \times 8}.$$

3. On cherche la probabilité $P(U_0|\overline{B_1} \cap \overline{B_2} \cap \overline{B_3})$. D'après la formule de Bayes, on a :

$$P(U_0|B^3) = \frac{P(B^3|U_0)P(U_0)}{P(B^3)} = 1 \times 4 \times \frac{1}{8} = \frac{1}{2}.$$

4. On cherche la probabilité $P(B_4|B^3)$.

$$P(B_4|B^3) = \frac{P(B_4 \cap B^3)}{P(B^3)} = \frac{P(B^4)}{P(B^3)} = \frac{\frac{1+2^4+3^3}{3^3 \times 8}}{\frac{1+2^3+3^2}{3^2 \times 8}} = \frac{44}{3 \times 18} = \frac{44}{54} = \frac{22}{27}.$$

1. On a: $A = \{2, 4, 6\} \times [1, 6], B = [1, 6] \times \{1, 3, 5\}, C = (\{2, 4, 6\} \times \{1, 3, 5\}) \cup (\{1, 3, 5\} \times \{2, 4, 6\})$ Exercice 24.

$$P(A) = \frac{3 \times 6}{36} = \frac{1}{2} \quad P(B) = \frac{3 \times 6}{36} = \frac{1}{2} \quad P(C) = \frac{3 \times 3 + 3 \times 3}{36} = \frac{18}{36} = \frac{1}{2}$$

 $A \cap B = A \cap C = B \cap C = \{2, 4, 6\} \times \{1, 3, 5\}, \text{ ainsi }:$

$$P(A \cap B) = P(A \cap C) = P(B \cap C) = \frac{9}{36} = \frac{1}{4} = P(A)P(B) = P(A)P(C) = P(B)P(C)$$

Donc les événements A, B et C sont deux à deux indépendants.

2. Les événements A, B et C ne sont pas mutuellement indépendants. En effet, $A \cap B \cap C = A \cap B$. Ainsi,

$$P(A \cap B \cap C) = \frac{9}{36} = \frac{1}{4}$$
 et $P(A)P(B)P(C) = \frac{1}{8}$.

Exercice 25. Pour tout $i \in [1, n]$, on note P_i : « Obtenir pile au *i*-ème lancer ». Les événements P_1, \ldots, P_n sont mutuellement indépendants, donc $P_1, \ldots, P_{n-1}, \overline{P_n}$ aussi. Ainsi

$$P(P_1 \cap \cdots \cap P_{n-1} \cap \overline{P_n}) = P(P_1) \dots P(P_{n-1}) P(\overline{P_n}) = \frac{1}{3^{n-1}} \times \frac{2}{3} = \frac{2}{3^n}.$$

1. Pour tout $k \in \mathbb{N}$, on note A_k « la somme des dés est égales à 6 au k-ième tirage »,

 $B_k \ll \text{la somme des dés est égales à 7 au } k\text{-ième tirage} \gg$

 $C_k \ll \text{la sommes des dés est différente de 6 et 7 au k-ième tirage} \gg$.

Soit $k \in \mathbb{N}$, au k-ième tirage, A_k est réalisé si l'on obtient : (1,5),(5,1),(2,4),(4,2),(3,3),

 B_k est réalisé si l'on obtient : (1,6), (6,1), (2,5), (5,2), (3,4), (4,3). Ainsi, $P(A_k) = \frac{5}{36}, P(B_k) = \frac{6}{36}$.

Ainsi,
$$P(A_k) = \frac{5}{36}$$
, $P(B_k) = \frac{6}{36}$.

 (A_k, B_k, C_k) est un système complet d'événement, ainsi, $P(C_k) = 1 - P(A_k) - P(B_k) = \frac{25}{36}$

Pour tout $n \in \mathbb{N}^*$, on note $G_1^n : \ll \text{le joueur 1 gagne au } n \text{ ième coup } \gg.$

Soit $n \in \mathbb{N}^*$.

$$P(G_1^n) = P(C_1 \cap \dots \cap C_{n-1} \cap A_n).$$

Or, les événements $C_1, ..., C_{n-1}, A_n$ sont indépendants.

$$P(G_1^n) = P(C_1)...P(C_{n-1})P(A_n) = \left(\frac{25}{36}\right)^{n-1} \frac{5}{36}$$

2. $p_n = P\left(\bigcup_{k=1}^n G_1^k\right) = \sum_{k=1}^n P(G_1^k)$ car les événements $G_1^1, ..., G_1^n$ sont deux à deux incompatibles. Ainsi,

$$p_n = \sum_{k=1}^n \left(\frac{25}{36}\right)^{k-1} \frac{5}{36} = \frac{5}{36} \sum_{k=0}^{n-1} \left(\frac{25}{36}\right)^k = \frac{5}{36} \frac{1 - \left(\frac{25}{36}\right)^n}{1 - \left(\frac{25}{36}\right)} = \frac{5}{11} \left(1 - \left(\frac{25}{36}\right)^n\right)$$

3. Pour tout $n \in \mathbb{N}^*$, on note G_2^n : « le joueur 2 gagne au n ième coup ».

$$P(G_2^n) = P(C_1 \cap \dots \cap C_{n-1} \cap B_n).$$

Or, les événements $C_1, ..., C_{n-1}, B_n$ sont indépendants.

$$P(G_2^n) = P(C_1)...P(C_{n-1})P(B_n) = \left(\frac{25}{36}\right)^{n-1} \frac{6}{36}$$

On obtient alors : $q_n = P\left(\bigcup_{k=1}^n G_2^k\right) = \sum_{k=1}^n P(G_2^k)$ car les événements $G_2^1, ..., G_2^n$ sont deux à deux incompatibles. Ainsi,

$$q_n = \sum_{k=1}^n \left(\frac{25}{36}\right)^{k-1} \frac{1}{6} = \frac{1}{6} \sum_{k=0}^{n-1} \left(\frac{25}{36}\right)^k = \frac{1}{6} \frac{1 - \left(\frac{25}{36}\right)^n}{1 - \left(\frac{25}{36}\right)} = \frac{6}{11} \left(1 - \left(\frac{25}{36}\right)^n\right)$$

4. Comme $0 \le \frac{25}{36} < 1$. Ainsi, $\lim_{n \to +\infty} \left(\frac{25}{36}\right)^n = 0$. Donc $\lim_{n \to +\infty} p_n = \frac{5}{11}$ et $\lim_{n \to +\infty} q_n = \frac{6}{11}$. On remarque que $\lim_{n \to +\infty} (p_n + q_n) = 1$. Si l'on réalise un très grand nombre de lancers, l'un des deux joueurs

gagne.

Exercice 27. Pour tout $k \in \mathbb{N}^*$, on note :

 A_k : « le joueur A gagne au k-ième lancer »

 B_k : « le joueur B gagne au k-ième lancer »

 I_k : « Obtenir 1 ou 2 au $k\text{-}\mathrm{i\grave{e}me}$ lancer »

 S_k : « Obtenir 3,4 ou 5 au k-ième lancer »

1. On remarque tout d'abord que comme le joueur A démarre et que A et B lance les dés successivement, A lance les dés lors des tirages impairs et B lance les dés lors des tirages pairs.

Ainsi, A ne peut gagner que lors d'un lancer impair et B ne peut gagner que lors d'un lancer pair. Commençons par déterminer les probabilités pour le joueur A.

• Si n est pair, on a : $P(A_n) = 0$.

• Si n est impair : n = 2k + 1 avec $k \in \mathbb{N}$, on a : $A_{2k+1} = \overline{I_1} \cap \overline{S_2} \cap \cdots \cap \ldots \cap \overline{I_{2k-1}} \cap \overline{S_{2k}} \cap I_{2k+1}$.

Or, ces événements sont mutuellement indépendants (par indépendance des différents lancers. Ainsi,

$$P(A_n) = P(A_{2k+1}) = P\left(\overline{I_1} \cap \overline{S_2} \cap \dots \cap \overline{I_{2k-1}} \cap \overline{S_{2k}} \cap I_{2k+1}\right)$$

$$= P\overline{I_1}P(\overline{S_2})\dots P(\overline{I_{2k-1}})P(\overline{S_{2k}})P(I_{2k+1})$$

$$= \left(\prod_{i=0}^{k-1} P(\overline{I_{2i+1}})\right) \left(\prod_{j=1}^{k} P(\overline{S_{2j}})\right)P(I_{2p+1})$$

$$= \frac{2}{6} \prod_{i=0}^{k-1} \left(\frac{4}{6}\right) \prod_{j=1}^{k} \left(\frac{3}{6}\right)$$

$$= \frac{1}{3} \left(\frac{2}{3}\right)^k \left(\frac{1}{2}\right)^k$$

$$= \left(\frac{1}{3}\right)^{k+1}$$

Déterminer les probabilités pour le joueur B.

- Si n est impair, on a : $P(B_n) = 0$.
- Si n est pair : n = 2k avec $k \in \mathbb{N}^*$, on a : $B_{2k} = \overline{I_1} \cap \overline{S_2} \cap \cdots \cap ... \cap \overline{I_{2k-1}} \cap \overline{S_{2k-2}} \cap \overline{I_{2k-1}} \cap S_{2k}$. Or, ces événements sont mutuellement indépendants (par indépendance des différents lancers. Ainsi,

$$P(B_n) = P(B_{2k}) = P\left(\overline{I_1} \cap \overline{S_2} \cap \dots \cap \dots \cap \overline{S_{2k-2}} \cap \overline{I_{2k-1}} \cap S_{2k}\right)$$

$$= P\overline{I_1}P(\overline{S_2})\dots P(\overline{S_{2k-2}})P(\overline{I_{2k-1}})P(S_{2k})$$

$$= \left(\prod_{i=0}^{k-1} P(\overline{I_{2i+1}})\right) \left(\prod_{j=1}^{k-1} P(\overline{S_{2j}})\right)P(S_{2p})$$

$$= \frac{3}{6} \prod_{i=0}^{k-1} \left(\frac{4}{6}\right) \prod_{j=1}^{k-1} \left(\frac{3}{6}\right)$$

$$= \frac{1}{2} \left(\frac{2}{3}\right)^k \left(\frac{1}{2}\right)^{k-1}$$

$$= \left(\frac{1}{3}\right)^k$$

2. Notons $C_n: A$ gagne en moins de n lancers. $D_n: B$ gagne en moins de n lancers B. Soit $B \in \mathbb{N}$, on a :

$$1 \le 2p + 1 \le n \iff 0 \le p \le \frac{n-1}{2}$$
 $\iff 0 \le p \le \left\lfloor \frac{n-1}{2} \right\rfloor \quad \text{car } p \in \mathbb{N}$

Ainsi, on a:

$$P(C_n) = \sum_{k=1}^{n} P(A_k)$$

$$= \sum_{p=0}^{\lfloor \frac{n-1}{2} \rfloor} P(A_{2p+1})$$

$$= \sum_{p=0}^{\lfloor \frac{n-1}{2} \rfloor} \left(\frac{1}{3}\right)^{p+1}$$

$$= \frac{1}{3} \sum_{p=0}^{\lfloor \frac{n-1}{2} \rfloor} \left(\frac{1}{3}\right)^{p}$$

$$= \frac{1}{3} \frac{1 - \left(\frac{1}{3}\right)^{\lfloor \frac{n-1}{2} \rfloor + 1}}{1 - \frac{1}{3}}$$

$$= \frac{1}{2} \left(1 - \left(\frac{1}{3}\right)^{\lfloor \frac{n-1}{2} \rfloor + 1}\right)$$

De même, pour B : Soit $p \in \mathbb{N}$, on a :

$$1 \le 2p \le n \quad \Longleftrightarrow \quad \frac{1}{2} \le p \le \frac{n}{2}$$

$$\iff \quad 1 \le p \le \left\lfloor \frac{n}{2} \right\rfloor \quad \text{car } p \in \mathbb{N}$$

Ainsi, on a:

$$P(D_n) = \sum_{k=1}^n P(B_k)$$

$$= \sum_{p=1}^{\lfloor \frac{n}{2} \rfloor} P(B_{2p})$$

$$= \sum_{p=1}^{\lfloor \frac{n}{2} \rfloor} \left(\frac{1}{3}\right)^p$$

$$= \frac{1}{3} \frac{1 - \left(\frac{1}{3}\right)^{\lfloor \frac{n}{2} \rfloor}}{1 - \frac{1}{3}}$$

$$= \frac{1}{2} \left(1 - \left(\frac{1}{3}\right)^{\lfloor \frac{n}{2} \rfloor}\right)$$

On a $\lim_{n \to +\infty} P(C_n) = \frac{1}{2}$ et $\lim_{n \to +\infty} P(D_n) = \frac{1}{2}$. Ainsi, $\lim_{n \to +\infty} (P(C_n) + P(D_n)) = 1$. Ainsi, en un temps infini, un des deux joueurs finit par gagner.