Problem statement: Create a classification model to predict whether price range of mobile based on certain specifications

```
SUBMITTED BY: SYED FAIZAN UDDIN
In [83]:
           import pandas as pd
           import numpy as np
           import matplotlib.pyplot as plt
           import seaborn as sns
           from sklearn.metrics import confusion matrix, classification report
           from sklearn.model_selection import train_test_split
           from sklearn.linear model import LogisticRegression
           import scipy.stats as stats
           from sklearn.neighbors import KNeighborsClassifier
           from sklearn.svm import SVC
In [84]: df = pd.read_csv('mobile_price_range_data.csv')
In [85]: df.head(20)
Out[85]:
               battery_power blue clock_speed dual_sim
                                                           fc four_g int_memory m_dep mobile_wt n_cores ... px_height px_width
                                                                                                                                        ram sc h
            0
                         842
                                 0
                                            2.2
                                                        0
                                                                    0
                                                                                      0.6
                                                                                                 188
                                                                                                            2
                                                                                                                         20
                                                                                                                                  756
                                                                                                                                       2549
                                                                                                                                                 9
            1
                        1021
                                            0.5
                                                            0
                                                                               53
                                                                                      0.7
                                                                                                 136
                                                                                                            3
                                                                                                                        905
                                                                                                                                 1988
                                                                                                                                       2631
                                                                                                                                                17
            2
                                                            2
                                                                               41
                                                                                                            5 ...
                                            0.5
                                                                    1
                                                                                      0.9
                                                                                                 145
                                                                                                                       1263
                                                                                                                                       2603
                         563
                                                                                                                                 1716
                                                                                                                                                11
            3
                         615
                                            2.5
                                                        0
                                                            0
                                                                    0
                                                                               10
                                                                                      0.8
                                                                                                 131
                                                                                                            6 ...
                                                                                                                       1216
                                                                                                                                 1786
                                                                                                                                       2769
                                                                                                                                                16
            4
                        1821
                                            1.2
                                                        0
                                                           13
                                                                    1
                                                                               44
                                                                                      0.6
                                                                                                 141
                                                                                                            2 ...
                                                                                                                       1208
                                                                                                                                 1212
                                                                                                                                       1411
                                                                                                                                                8
            5
                                 0
                                                                    0
                                                                                      0.7
                                                                                                            1 ...
                                                                                                                       1004
                        1859
                                            0.5
                                                            3
                                                                               22
                                                                                                 164
                                                                                                                                 1654
                                                                                                                                       1067
                                                                                                                                                17
            6
                        1821
                                 0
                                            1.7
                                                        0
                                                            4
                                                                    1
                                                                               10
                                                                                      0.8
                                                                                                 139
                                                                                                            8 ...
                                                                                                                        381
                                                                                                                                 1018
                                                                                                                                       3220
                                                                                                                                                13
            7
                        1954
                                 0
                                            0.5
                                                            0
                                                                   0
                                                                               24
                                                                                      0.8
                                                                                                 187
                                                                                                            4 ...
                                                                                                                        512
                                                                                                                                 1149
                                                                                                                                        700
                                                                                                                                                16
                                                                                                            7 ...
            8
                        1445
                                            0.5
                                                        0
                                                            0
                                                                    0
                                                                               53
                                                                                      0.7
                                                                                                 174
                                                                                                                        386
                                                                                                                                  836
                                                                                                                                       1099
                                                                                                                                                17
            9
                         509
                                            0.6
                                                            2
                                                                                9
                                                                                      0.1
                                                                                                  93
                                                                                                            5 ...
                                                                                                                       1137
                                                                                                                                  1224
                                                                                                                                        513
                                                                                                                                                19
           10
                         769
                                            2.9
                                                            0
                                                                    0
                                                                                9
                                                                                      0.1
                                                                                                 182
                                                                                                            5 ...
                                                                                                                        248
                                                                                                                                  874
                                                                                                                                       3946
                                                                                                                                                5
           11
                                            2.2
                                                        0
                                                            5
                                                                               33
                                                                                      0.5
                                                                                                 177
                                                                                                            8 ...
                                                                                                                        151
                                                                                                                                  1005
                                                                                                                                       3826
                                                                                                                                                14
                        1520
           12
                        1815
                                 0
                                            2.8
                                                        0
                                                            2
                                                                    0
                                                                               33
                                                                                      0.6
                                                                                                 159
                                                                                                            4 ...
                                                                                                                        607
                                                                                                                                  748
                                                                                                                                       1482
                                                                                                                                                18
           13
                         803
                                                        0
                                                                   0
                                                                                      1.0
                                                                                                 198
                                                                                                            4 ...
                                                                                                                        344
                                                                                                                                 1440
                                                                                                                                       2680
                                            2.1
                                                                               17
                                                                                                                                                7
                                 0
                                                        0
                                                                    1
                                                                                      0.7
                                                                                                 185
           14
                        1866
                                            0.5
                                                           13
                                                                               52
                                                                                                            1 ...
                                                                                                                        356
                                                                                                                                  563
                                                                                                                                        373
                                                                                                                                                14
           15
                         775
                                            1.0
                                                        0
                                                            3
                                                                    0
                                                                               46
                                                                                      0.7
                                                                                                 159
                                                                                                            2 ...
                                                                                                                        862
                                                                                                                                  1864
                                                                                                                                        568
                                                                                                                                                17
           16
                         838
                                 0
                                            0.5
                                                        0
                                                                    1
                                                                               13
                                                                                      0.1
                                                                                                 196
                                                                                                            8 ...
                                                                                                                        984
                                                                                                                                 1850
                                                                                                                                                10
                                                            1
                                                                                                                                       3554
           17
                                 0
                                            0.9
                                                                                      0.1
                                                                                                 121
                                                                                                            3 ...
                                                                                                                        441
                         595
                                                                               23
                                                                                                                                  810
                                                                                                                                       3752
                                                                                                                                                10
           18
                        1131
                                 1
                                            0.5
                                                          11
                                                                    0
                                                                               49
                                                                                      0.6
                                                                                                 101
                                                                                                            5 ...
                                                                                                                        658
                                                                                                                                  878
                                                                                                                                       1835
                                                                                                                                                19
           19
                         682
                                            0.5
                                                                    0
                                                                               19
                                                                                       1.0
                                                                                                 121
                                                                                                            4 ...
                                                                                                                        902
                                                                                                                                 1064
                                                                                                                                       2337
                                                                                                                                                11
          20 rows × 21 columns
```

handle null values

```
In [86]: df.isnull().sum()
```

```
Out[86]: battery_power
                           0
                           0
         clock speed
                          0
         dual sim
                           0
                           0
         fc
         four g
                           0
         int memory
                          0
         m dep
                           0
         mobile wt
                          0
         n cores
                          0
                          0
         рс
         px_height
                           0
         px_width
                          0
         ram
                          0
         sc h
                          0
         SC_W
                           0
         talk_time
                          0
         three_g
                          0
         touch screen
                          0
         wifi
                          0
         price_range
                          0
         dtype: int64
 In [5]: df.isnull().sum().sum()
 Out[5]: 0
 In [6]: df.shape
 Out[6]: (2000, 21)
 In [7]: df.columns
 Out[7]: Index(['battery_power', 'blue', 'clock_speed', 'dual_sim', 'fc', 'four_g',
                'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time', 'three_g',
                 'touch screen', 'wifi', 'price range'],
               dtype='object')
 In [8]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 2000 entries, 0 to 1999
         Data columns (total 21 columns):
          # Column Non-Null Count Dtype
         - - -
                              -----
          0 battery_power 2000 non-null int64
              blue
                             2000 non-null int64
                             2000 non-null float64
2000 non-null int64
          2
              clock_speed
              dual_sim
                             2000 non-null int64
2000 non-null int64
          3
             fc
          4
          5
            four_g
                              2000 non-null int64
          6
            int_memory
                             2000 non-null int64
          7
              m_dep
                              2000 non-null
                                              float64
          8
                              2000 non-null int64
              mobile wt
          9
              n cores
                              2000 non-null int64
                             2000 non-null int64
2000 non-null int64
          10 pc
          11
              px height
                           2000 non-null int64
          12 px width
                             2000 non-null int64
                             2000 non-null int64
          13 ram
          14 sc h
          15 sc_w
                             2000 non-null int64
          16 talk_time
          17 three_g
                              2000 non-null int64
                              2000 non-null
          18 touch_screen
                                             int64
          19 wifi
                              2000 non-null
                                              int64
          20 price range
                              2000 non-null int64
         dtypes: float64(2), int64(19)
         memory usage: 328.2 KB
 In [9]: df.describe()
```

Out[9]:		battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores
	count	2000.000000	2000.0000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000
	mean	1238.518500	0.4950	1.522250	0.509500	4.309500	0.521500	32.046500	0.501750	140.249000	4.520500
	std	439.418206	0.5001	0.816004	0.500035	4.341444	0.499662	18.145715	0.288416	35.399655	2.287837
	min	501.000000	0.0000	0.500000	0.000000	0.000000	0.000000	2.000000	0.100000	80.000000	1.000000
	25%	851.750000	0.0000	0.700000	0.000000	1.000000	0.000000	16.000000	0.200000	109.000000	3.000000
	50%	1226.000000	0.0000	1.500000	1.000000	3.000000	1.000000	32.000000	0.500000	141.000000	4.000000
	75%	1615.250000	1.0000	2.200000	1.000000	7.000000	1.000000	48.000000	0.800000	170.000000	7.000000
	max	1998.000000	1.0000	3.000000	1.000000	19.000000	1.000000	64.000000	1.000000	200.000000	8.000000

8 rows × 21 columns

In [10]: plt.figure(figsize=(20,20))
sns.heatmap(df.corr(), annot=True)

Out[10]: <AxesSubplot:>


```
Out[11]: 1
               500
               500
          3
               500
          0
               500
          Name: price_range, dtype: int64
In [12]: df['ram'].value_counts()
Out[12]: 1464
                  4
          3142
                  4
          2610
                  4
          2227
                  4
          1229
                  4
          2312
                  1
          2167
          3508
                  1
          297
                  1
          3919
                  1
          Name: ram, Length: 1562, dtype: int64
In [13]: sns.histplot(x=df['ram'].value_counts())
```

Out[13]: <AxesSubplot:xlabel='ram', ylabel='Count'>

In [14]: sns.scatterplot(x=df['ram'].value_counts(),y=df['price_range'])

In [15]: df['px_height'].value_counts().head(10)

```
Out[15]: 347
         179
         371
                6
         275
         674
                5
         286
                5
                5
         42
                5
         211
         649
         398
                5
         Name: px_height, dtype: int64
In [16]: sns.histplot(df['px_height'].value_counts().keys(), bins=15)
Out[16]: <AxesSubplot:ylabel='Count'>
            120
            100
             80
             60
             40
             20
              0
                                 500
                                        750
                                               1000
                                                      1250
                   0
                         250
                                                              1500
                                                                     1750
                                                                            2000
In [17]: df['px_width'].value_counts()
Out[17]: 874
                 7
         1247
         1383
                 6
         1463
         1469
                 6
         1125
                 1
         1367
                 1
         1569
                 1
```

Out[18]: <AxesSubplot:ylabel='Count'>

Name: px_width, Length: 1109, dtype: int64

In [18]: sns.histplot(df['px_width'].value_counts().keys(), bins=20)


```
In [19]: df['battery_power'].value_counts()
Out[19]: 1872
                  6
         618
                  6
         1589
                  6
5
5
         1715
         1807
         660
         1452
                  1
         1005
                  1
         1372
                  1
         858
         Name: battery_power, Length: 1094, dtype: int64
In [20]: sns.histplot(df['battery_power'].value_counts().keys(), bins=20)
```

Out[20]: <AxesSubplot:ylabel='Count'>

In [21]: sns.boxplot(df['ram'])

C:\Users\shaik\python\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable a s a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arg uments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[21]: <AxesSubplot:xlabel='ram'>

In [22]: sns.boxplot(df['battery power'])

C:\Users\shaik\python\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable a
s a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arg
uments without an explicit keyword will result in an error or misinterpretation.
warnings.warn(

In [23]: sns.boxplot(df['px_height'])

C:\Users\shaik\python\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable a
s a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arg
uments without an explicit keyword will result in an error or misinterpretation.
warnings.warn(

Out[23]: <AxesSubplot:xlabel='px_height'>

In [24]: sns.boxplot(df['px_width'])

C:\Users\shaik\python\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable a
s a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arg
uments without an explicit keyword will result in an error or misinterpretation.
warnings.warn(

Out[24]: <AxesSubplot:xlabel='px_width'>

In [25]: sns.scatterplot(x=df['battery_power'],y=df['px_height'],hue=df['price_range'])

Out[25]: <AxesSubplot:xlabel='battery_power', ylabel='px_height'>


```
In [26]: sns.barplot(x=df['price_range'], y = df['px_height'])
```

Out[26]: <AxesSubplot:xlabel='price_range', ylabel='px_height'>

In [27]: sns.barplot(x=df['price_range'], y = df['px_width'])

Out[27]: <AxesSubplot:xlabel='price_range', ylabel='px_width'>

In [28]: sns.barplot(x=df['price_range'], y = df['battery_power'])

Out[28]: <AxesSubplot:xlabel='price_range', ylabel='battery_power'>

5 rows × 21 columns

print(df.shape)

In [32]:

```
In [29]: df.groupby(["price_range"]).count()
Out[29]:
                                                                                                          battery_power blue clock_speed dual_sim
                                                                                                                                                                                                                                                                                                       fc four_g int_memory m_dep mobile_wt n_cores pc px_height px_width r
                                                   price_range
                                                                                             0
                                                                                                                                                    500
                                                                                                                                                                             500
                                                                                                                                                                                                                                       500
                                                                                                                                                                                                                                                                                   500
                                                                                                                                                                                                                                                                                                        500
                                                                                                                                                                                                                                                                                                                                            500
                                                                                                                                                                                                                                                                                                                                                                                                   500
                                                                                                                                                                                                                                                                                                                                                                                                                                      500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               500 5
                                                                                                                                                     500
                                                                                                                                                                             500
                                                                                                                                                                                                                                        500
                                                                                                                                                                                                                                                                                    500
                                                                                                                                                                                                                                                                                                         500
                                                                                                                                                                                                                                                                                                                                            500
                                                                                                                                                                                                                                                                                                                                                                                                   500
                                                                                                                                                                                                                                                                                                                                                                                                                                      500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               500
                                                                                             2
                                                                                                                                                                             500
                                                                                                                                                                                                                                        500
                                                                                                                                                                                                                                                                                                         500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               500
                                                                                                                                                     500
                                                                                                                                                                                                                                                                                    500
                                                                                                                                                                                                                                                                                                                                            500
                                                                                                                                                                                                                                                                                                                                                                                                   500
                                                                                                                                                                                                                                                                                                                                                                                                                                      500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    500
                                                                                                                                                     500
                                                                                                                                                                             500
                                                                                                                                                                                                                                         500
                                                                                                                                                                                                                                                                                    500
                                                                                                                                                                                                                                                                                                         500
                                                                                                                                                                                                                                                                                                                                            500
                                                                                                                                                                                                                                                                                                                                                                                                   500
                                                                                                                                                                                                                                                                                                                                                                                                                                      500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               500 5
In [30]: df1 = df.drop([1960], axis=0)
In [31]: df.head()
Out[31]:
                                                               battery\_power \quad blue \quad clock\_speed \quad dual\_sim \quad fc \quad four\_g \quad int\_memory \quad m\_dep \quad mobile\_wt \quad n\_cores \quad ... \quad px\_height \quad px\_width \quad px\_widt
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ram
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           sc_h s
                                                   0
                                                                                                           842
                                                                                                                                            0
                                                                                                                                                                                               2.2
                                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                                                      0
                                                                                                                                                                                                                                                                                                                                                                                         0.6
                                                                                                                                                                                                                                                                                                                                                                                                                                        188
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2 ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         756
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2549
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         9
                                                                                                      1021
                                                                                                                                                                                               0.5
                                                                                                                                                                                                                                                                   0
                                                                                                                                                                                                                                                                                                                                                         53
                                                                                                                                                                                                                                                                                                                                                                                        0.7
                                                                                                                                                                                                                                                                                                                                                                                                                                        136
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3 ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             905
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1988
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2631
                                                   2
                                                                                                           563
                                                                                                                                                                                                0.5
                                                                                                                                                                                                                                                   1
                                                                                                                                                                                                                                                                   2
                                                                                                                                                                                                                                                                                                      1
                                                                                                                                                                                                                                                                                                                                                         41
                                                                                                                                                                                                                                                                                                                                                                                         0.9
                                                                                                                                                                                                                                                                                                                                                                                                                                         145
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1263
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1716
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2603
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     11
                                                   3
                                                                                                           615
                                                                                                                                                                                                 2.5
                                                                                                                                                                                                                                                                   0
                                                                                                                                                                                                                                                                                                                                                          10
                                                                                                                                                                                                                                                                                                                                                                                         0.8
                                                                                                                                                                                                                                                                                                                                                                                                                                         131
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1216
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1786
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2769
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     16
                                                                                                      1821
                                                                                                                                                                                                                                                  0 13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2 ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         8
                                                                                                                                                                                                 1.2
                                                                                                                                                                                                                                                                                                                                                         44
                                                                                                                                                                                                                                                                                                                                                                                         0.6
                                                                                                                                                                                                                                                                                                                                                                                                                                         141
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1208
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1212 1411
```

```
print(df1.shape)

(2000, 21)
(1999, 21)

In [33]: x = df1[['battery_power','px_height','px_width','ram']]
y = df1['price_range']

In [34]: x
```

]:		battery_power	px_height	px_width	ram
	0	842	20	756	2549
	1	1021	905	1988	2631
	2	563	1263	1716	2603
	3	615	1216	1786	2769
	4	1821	1208	1212	1411
	1995	794	1222	1890	668
	1996	1965	915	1965	2032
	1997	1911	868	1632	3057
	1998	1512	336	670	869
	1999	510	483	754	3919

1999 rows × 4 columns

Out[34

Splitting data between training and testing set

#Apply the following models on the training dataset and generate the predicted value for the test dataset

a) Logistic Regression

```
In [39]: m1 = LogisticRegression()
                             m1.fit(x_train,y_train)
                             y pred = m1.predict(x test)
                             print("Training Score:",m1.score(x_train,y_train))
                             print("Testing Score:",ml.score(x test,y test))
                             Training Score: 0.9606404269513009
                             Testing Score: 0.962
                             \verb|C:\Users\shaik\python\lib\site-packages\sklearn\linear_model\_logistic.py: 814: Convergence \verb|Warning: lbfgs failed| | Convergence 
                             to converge (status=1):
                             STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
                             Increase the number of iterations (max iter) or scale the data as shown in:
                                         https://scikit-learn.org/stable/modules/preprocessing.html
                             Please also refer to the documentation for alternative solver options:
                                         https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
                                n_iter_i = _check_optimize_result(
In [40]: print("Confusion Matrix:")
                             print(confusion matrix(y test,y pred))
                             Confusion Matrix:
                             [[114 3 0 0]
                                [ 0 126 0 0]
                                [ 0 5 121
                                                                               5]
                                [ 0 0 6 120]]
In [41]: print("Classification report: ")
                             print(classification_report(y_test,y_pred))
```

```
Classification_report:
                        precision
                                     recall f1-score
                                                        support
                     0
                             1.00
                                       0.97
                                                 0.99
                                                             117
                     1
                             0.94
                                       1.00
                                                 0.97
                                                             126
                                                 0.94
                     2
                             0.95
                                       0.92
                                                             131
                     3
                             0.96
                                       0.95
                                                 0.96
                                                             126
                                                 0.96
                                                             500
             accuracy
                             0.96
                                       0.96
                                                 0.96
                                                             500
            macro avg
         weighted avg
                             0.96
                                       0.96
                                                 0.96
                                                             500
In [42]: test1 = pd.DataFrame()
In [43]: test1['price_org'] = y_test
In [44]: test1['logistic_pred'] = y_pred
In [45]: test1
Out[45]:
               price_org logistic_pred
          256
                     0
                                0
          352
                     0
                                0
          298
                     0
                                0
          581
                     3
                                3
         1288
                     1
         1613
                     2
                                2
          692
                                3
         1553
                     0
                                0
          931
                     2
                                2
         1682
         500 rows × 2 columns
In [80]: m1.score(x_test,y_test)
Out[80]: 0.962
         b) KNN Classification
In [46]: m2 = KNeighborsClassifier(n_neighbors=21)
         m2.fit(x_train,y_train)
Out[46]: KNeighborsClassifier(n_neighbors=21)
In [47]: y_predkn = m1.predict(x test)
```

```
print("Training Score : ",m1.score(x_train,y_train))
         print("Testing Score : ",ml.score(x_test,y_test))
         Training Score : 0.9606404269513009
         Testing Score: 0.962
In [48]: matrix = confusion_matrix(y_test,y_predkn)# x_test goes into the rows
         print(matrix)
         [[114 3 0
                        01
         [ 0 126 0
                        0]
         [ 0
               5 121
                        51
               0
                   6 120]]
            0
In [49]: print(classification_report(y_test,y_predkn))
```

```
3
                                 0.96
                                            0.95
                                                       0.96
                                                                    126
                                                        0.96
                                                                    500
               accuracy
                                 0.96
                                            0.96
                                                        0.96
              macro avq
                                                                     500
                                            0.96
                                                       0.96
           weighted avg
                                 0.96
                                                                    500
In [50]: test1['kn pred'] = y predkn
           test1
Out[50]:
                price_org logistic_pred kn_pred
                       0
            256
                                    0
                                             0
            352
                       0
                                    0
                                             0
            298
                       0
                                    0
                                             0
            581
                       3
                                    3
                                             3
           1288
                                     1
                       2
           1613
                                    2
                                             2
            692
                       3
                                    3
                       0
                                    0
                                             0
           1553
           931
                       2
                                    2
                                             2
           1682
          500 rows × 3 columns
```

support

117

126

131

In [82]: m2.score(x_test,y_test)

precision

1.00

0.94

0.95

0

1

2

recall f1-score

0.99

0.97

0.94

0.97

1.00

0.92

eduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it ac ts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `a xis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set keepdims` to True or False to avoid this warning. mode, _ = stats.mode(_y[neigh_ind, k], axis=1)

Out[82]: 0.916

c) SVM Classifier with linear and rbf kernel

```
In [51]: s1 = SVC(kernel='linear',C=1)
         s1.fit(x train,y train)
Out[51]: SVC(C=1, kernel='linear')
In [52]: y predsvm = s1.predict(x test)
In [53]: print("Training Score : ",s1.score(x_train,y_train))
         print("Testing Score : ",sl.score(x_test,y_test))
         Training Score : 0.961974649766511
         Testing Score: 0.966
In [54]: matrix = confusion_matrix(y_test,y_predsvm)
         print(matrix)
         [[115
                 2
                         0]
          [ 0 126
                    0
                         01
            0
                 5 122
                         4]
          [ 0
                0 6 120]]
In [55]: print(classification report(y test,y predsvm))
```

```
0
                              1.00
                                        0.98
                                                  0.99
                                                              117
                     1
                              0.95
                                        1.00
                                                  0.97
                                                              126
                              0.95
                                        0.93
                                                  0.94
                     2
                                                              131
                     3
                                        0.95
                              0.97
                                                  0.96
                                                              126
                                                  0.97
                                                              500
              accuracy
                              0.97
                                        0.97
                                                  0.97
                                                              500
             macro avg
                                        0.97
                                                  0.97
                                                              500
          weighted avg
                              0.97
In [76]: test1['svm pred'] = y predsvm
          test1
               price_org logistic_pred kn_pred svm_pred rbf_pred
Out[76]:
          256
                     0
                                 0
                                         0
                                                  0
                                                          0
          352
                     0
                                 0
                                                  0
                                                          0
          298
                     0
                                 0
                                         0
                                                  0
                                                          0
                                 3
          581
                     3
                                         3
                                                  3
                                                          3
          1288
                     1
                                 1
                                                  1
                     2
                                 2
                                         2
                                                  2
                                                          2
          1613
          692
                     3
                                 3
                                                  3
                                                          3
                     0
                                 0
                                         0
                                                  0
                                                          0
          1553
          931
                     2
                                 2
                                         2
                                                  2
                                                          2
          1682
         500 rows × 5 columns
In [78]: s1.score(x_test,y_test)
Out[78]: 0.966
In [57]: s2 = SVC(kernel='rbf',gamma=0.00001,C=10)
          s2.fit(x_train,y_train)
Out[57]: SVC(C=10, gamma=1e-05)
In [67]: y_predrbf = s2.predict(x_test)
Out[67]: 0
                  1
                  2
          2
                  2
          3
                  2
          4
                  1
          1995
                  0
          1996
                  2
          1997
                  3
          1998
                  0
          1999
                  3
          Name: price_range, Length: 1999, dtype: int64
In [59]: print("Training Score : ",s1.score(x_train,y_train))
          print("Testing Score : ",sl.score(x test,y test))
          Training Score : 0.961974649766511
          Testing Score : 0.966
In [60]: matrix = confusion_matrix(y_test,y_predrbf) # x_test goes into the rows
          print(matrix)
          [[109
                 8
                          0]
          [ 3 119
                      4
                          0]
             0
                 6 119
                          6]
          [
             0
                      9 117]]
In [61]: print(classification_report(y_test,y_predrbf))
```

precision

recall f1-score

support

	1	0.89	0.94	0.92	126		
	2	0.90	0.91	0.90	131		
	3	0.95	0.93	0.94	126		
	accuracy			0.93	500		
	macro avg	0.93	0.93	0.93	500		
	weighted avg	0.93	0.93	0.93	500		
In [62]:	test1.head(20))					
Out[62]:	price_org	logistic_pred	kn_pred svm	_pred			
	256 0	0	0	0			

support

117

Out[62]:		price_org	logistic_pred	kn_pred	svm_pred
	256	0	0	0	0
	352	0	0	0	0
	298	0	0	0	0
	581	3	3	3	3
	1288	1	1	1	1
	1765	2	2	2	2
	420	1	1	1	1
	1587	1	1	1	1
	65	3	3	3	3
	1611	2	2	2	2
	56	0	0	0	0
	1998	0	0	0	0
	1117	2	2	2	2
	582	0	0	0	0
	1232	2	2	2	2
	316	1	1	1	1
	744	2	2	2	2
	128	3	3	3	3
	1442	1	1	1	1
	1512	3	3	3	3

precision

0.97

recall f1-score

0.95

0.93

```
In [79]: s2.score(x_test,y_test)
```

Out[79]: 0.928

In [71]:

print svm accuracy: 0.95

d) Decision Tree Classifier

```
In [64]: from sklearn.tree import DecisionTreeClassifier
dt=DecisionTreeClassifier()
dt.fit(x_train,y_train)
```

Out[64]: DecisionTreeClassifier()

In [65]: print("Decision Tree Classifier Accuracy: ", dt.score(x_test,y_test))

Decision Tree Classifier Accuracy: 0.874

e) Random Forest Classifier

```
In [72]: from sklearn.ensemble import RandomForestClassifier
    rf=RandomForestClassifier(n_estimators=100, random_state=1)
In [73]: rf.fit(x_train,y_train)
Out[73]: RandomForestClassifier(random_state=1)
In [74]: print("Random Forest Accuracy: ", rf.score(x_test,y_test))
```

4)Predict the price range for test data

test1['rbf_pred'] = y_predrbf test1.head(20) price_org logistic_pred kn_pred svm_pred rbf_pred Out[75]:

6)Report the model with the best accuracy

a)Logistic Regression Score(in percentage): 96.2% b)KNN Score(in percentage): 91.6% c)(i)SVM Classifier with linear(in percentage)=96.6% (ii)SVM Classifier with rbf kernel(in percentage)=92.8% d)Decision Tree score(in percentage):87.4% e)Random Forest score(in percentage):92% Therefore SVM Classifier with linear model scoring high accuracy so SVM Classifier with linear model is a best accuracy model

In []:
In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js