fat tails und Marktrisiko

Vortrag am 7.12.2011

Outline

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

alpha stable distribution

Generalized Hyperbolic distribution

DAX-VaR bei investierten 10.000 Euro

Stefan Harinko Eigenleistung zur Vorlesung monetäre Risikomaße TU Dresden

1

Literatur

- Vortrag basiert auf:
- Artikel von Haas, Pigorsch: "Financial Economics, Fat-Tailed Distributions", Complex Systems in Finance and Econometrics 2011
- und Buch "Quantitative Risk Management" von McNeil, Frey, Embrechts

Outline

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

alpha stable distribution

Generalized Hyperbolic distribution

- fat-tail Motivation
- Charakterisierung Kurtosis vs. tail-index
- verschiedene Verteilungen mit heavy tails
- VaR zum Aktienindex DAX
- Outline
- 2 Motivation
- 3 Charakterisierung Kurtosis vs. tail-index
- 4 Kurtosis
- 5 tail-index
- 6 alpha stable distribution
- Generalized Hyperbolic distribution
- 8 DAX-VaR bei investierten 10.000 Euro

Juline

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

alpha stable distribution

Generalized

Hyperbolic distribution

Normalverteilung für tägl. DAX-Renditen

Motivation

- Warum Verteilungen mit schweren Verteilungsenden?
- Beispiel aus Buch: "Quantitative Risk Management"
- Beispiel: DAX

Outline

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

alpha stable distribution

Generalized

Hyperbolic distribution

DAX-VaR bei

investierten 10.000 Euro

α	0.90	0.95	0.975	0.99	0.995
VaR_{α} (normal model) VaR_{α} (t model)	162.1 137.1			294.3 335.1	325.8 411.8
ES_{α} (normal model) ES_{α} (t model)	222.0 223.4	260.9 286.3	295.7 356.7	337.2 465.8	365.8 563.5

Figure: aus QRM p.47, N(0, $\frac{0.2}{\sqrt{(T)}}$), t(4)

Outline

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

alpha stable distribution

Generalized Hyperbolic distribution

Figure: Dax Renditen von 26.11.1990 bis 30.11.2011

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

alpha stable distribution

Generalized Hyperbolic distribution

Figure: N(-0.00016,0.0129) und Kerndichteplots

Notivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

alpha stable distribution

Generalized Hyperbolic distribution

Figure: Zoom

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

alpha stable distribution

Generalized Hyperbolic distribution

Figure: Student's t-Verteilung mit 3 Parameter (orange)

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

alpha stable distribution

Generalized Hyperbolic distribution

Figure: Zoom in Student's t-Verteilung mit 3 Parameter (orange)

Motivation |

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

alpha stable distribution

Generalized Hyperbolic distribution

- Aus Kerndichteschätzung erkennt man, dass Renditen eher aus einer leptokurtischen Verteilung kommen
- Leptokurtose bezeichnet mehr Peaks in der Mitte und schwere Ränder
- Kurtosis: $K[X] = \frac{E[(X-\mu)^4]}{\sigma^4}$
- Normalverteilung hat Kurtosis K=3
- oft wird K > 3, die excess Kurtosis betrachtet (in DAX-Daten: 4.66577)
- darauf aufbauend auch z.B. Jarque-Bera-Test auf Normalität (DAX-Daten: X-squared = 4836.325, df = 2, p-value < 2.2e-16)
- wichtig: ist eine Verteilung leptokurtisch dann hat sie Excess-Kurtosis
- K>3 ist zusammen mit Satz von Finuncan (Dichefkt schneiden sich zwei mal) mehr ein Indiz

Motivation

Charakterisierung Kurtosis vs. tail-index

urtosis

tail-index

alpha stable distribution

Generalized Hyperbolic distribution

- betrachte P(X > x) also $1 F_X(x)$ für große/extreme x, also $x \to \infty$ bei Renditen ist 10% oft groß genug
- $1 F_X(x) = x^{-\alpha}L(x), L(x)$ "slowly varying"
- α ist der tail-index, der bestimmt wie schnell (falls) der tail gegen 0 abfällt
- es gibt leptokurtische (peaked und breiter als Normal-tails)
 Verteilungen, die aber trotzdem noch leicht nach dem tail-index-Maß sind
- Pareto Verteilung hat dieses Tail-Verhalten mit L(x) = const.
- L(x) = c + o(1) asymptotisch Pareto wie Cauchy & t-Verteilung

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-inde

alpha stable distribution

Generalized Hyperbolic distribution

tail-plot

- betrachte P(|return| > x) also $1 F_{return}(x)$ der empirischen Daten auf log-log-Skala
- da 1 $F_{return}(x) \approx cx^{-\alpha}$ sollte das Verhalten linear sein

Outline

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-inde

alpha stable

distribution

Generalized Hyperbolic distribution

Figure: log(1-CDF(|returns|)), log(|returns|)

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-inde

alpha stable distribution

Generalized Hyperbolic distribution

α -stable

- Namensgebung: alpha stable distributions or stable Paretian or Levy stable or stable laws
- verschiedene Paramter führen zu verschiedenen "Unterklassen" von Verteilungen: bekannte wie Normal- oder Cauchyverteilungen (α = 2bzw.α = 1, β = 0)
- und exotischere wie: tempered stable, modified stable (generalized inverse Gaussian), ...
- für $\alpha < 2$: $P(X > x) \approx c^{\alpha} d(1 + \beta) x^{-\alpha}$

$$E[exp(itX)] = \begin{cases} exp(-c^{\alpha}|t|^{\alpha}(1 - i\beta sign(t)tan(\frac{\pi\alpha}{2})) + i\tau t & \alpha \neq 1 \\ exp(-c|t|(1 + i\beta\frac{2}{\pi}sign(t)ln(|t|)) + i\tau t & \alpha = 1 \end{cases}$$

Outline

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

Ipha stable

Generalized Hyperbolic distribution

Figure: aus Haas/Pigorsch: alphastable mit verschiedenen Parametern

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis tail-index

alpha stable

Generalized Hyperbolic distribution

Generalized Hyperbolic distribution

- normal variance-mean mixture
- $X = \mu + \beta V + \sqrt{V}Z$ mit Z normalverteilt, V positive Zufallsvariable
- mit V \sim "generalized inverse Gaussian" (entsteht aus alpha-stabil mit Escher-Transformation)
- $V \sim GIG(\lambda, \delta, \gamma), \gamma = \sqrt{\alpha^2 \beta^2}$ und $Z \sim N(0, 1)$ unabhängig von V
- liefert $x \sim GH(\lambda, \alpha, \beta, \mu, \delta)$

$$f_{GH}(x; \lambda, \alpha, \beta, \mu, \delta) = \frac{(\delta \gamma)^{\lambda} (\delta \alpha)^{\frac{1}{2-\lambda}}}{\sqrt{2\pi} \delta K_{\lambda}(\delta \gamma)} (1 + \frac{(x - \mu)^{2}}{\delta^{2}})^{\frac{\lambda}{2} - \frac{1}{4}} *$$

$$*K_{\lambda - 1/2}(\alpha \delta \sqrt{1 + \frac{(x - \mu)^{2}}{\delta^{2}}}) exp(\beta(x - \mu))$$

wobei K: modified Bessel function of the third kind and or order $\lambda \in \mathcal{R}$

$$K_{\lambda}(x) = \frac{1}{2} \int_{0}^{\infty} y^{\lambda - 1} exp(-\frac{1}{2}z(y + y^{-1})) dy$$

Outline

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

alpha stable distribution

Hyperbolic distribution

GH tail Verhalten

- · GH hat semi-heavy tails: zwischen Normal- und Pareto-tails
- bestimmte Paramter liefern Hyperbolic, NIG(normal inverse gaussian)
- Parameter Grenzwerte u.a. variance gamma, skew t, gamma, reciprocal gamma, Dirac measure
- Normal, Cauchy

Outline

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

alpha stable distribution

Generalized

perbolic distribution

Table 1: Maximum-likelihood parameter estimates of the iid model.

Table 1. Maximum—likelihood parameter estimates of the lid model.						
loglik			arameters	P8		distribution
-7479.2	$\delta = 1.152 \atop (0.139)$	$\hat{\beta}$ -0.046 (0.022)	$\hat{\alpha}$ 0.322 (0.222)	$\hat{\mu}_{0.087} \\ {}_{(0.018)}$	$\hat{\lambda}$ -1.422 (0.351)	GH
-7479.7		$\hat{\alpha}$ -0.041 (0.021)	$\frac{\bar{\lambda}}{3.445}_{\substack{(0.181)}}$	$\delta \atop 1.271 \atop {}_{(0.052)}$	$\hat{\mu} = 0.084 \atop {}_{(0.018)}$	t_{GH}
-7480.0		$\hat{\beta}$ 0.091 (0.049)	$\hat{\sigma}$ 0.684 (0.012)	$\hat{\mu}$ 0.098 (0.025)	$\hat{\nu}$ 3.348 (0.179)	t_{JF}
-7480.1		$\hat{\beta}$ -0.123 (0.068)	$\hat{\sigma}$ 0.687 (0.013)	$\hat{\mu} = 0.130 \atop (0.042)$	$\hat{\nu}$ 3.433 (0.180)	t_{AC}
-7480.3		$ar{eta} \ 0.972 \ {}_{(0.017)}$	$\hat{\sigma}$ 0.684 (0.012)	$\hat{\mu}_{0.085} \atop {}_{(0.020)}$	$\hat{\nu}$ 3.432 (0.180)	t_{FS}
-7481.7			σ̂ 0.684 (0.012)	μ̂ 0.056 (0.011)	$\hat{\nu}$ 3.424 (0.179)	symmetric t

Figure: aus Haas/Pigorsch S&P500 maximum likelihood Schätzungen

Outline

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

alpha stable distribution

Generalized Hyperbolic distribution

NIG	$\hat{\mu}$ 0.088 (0.018)	$\hat{\alpha} = 0.784 \atop (0.043)$	$\frac{\bar{\beta}}{-0.048}$ $\frac{(0.022)}{(0.022)}$	$\frac{\bar{\delta}}{\delta}$ 0.805 (0.028)		-7482.0
НҮР	μ̂ 0.090 (0.018)	$\hat{\alpha}$ 1.466 (0.028)	β -0.053 (0.023)	$\frac{\delta}{\delta}$ 0.176 (0.043)		-7499.5
VG	$\hat{\mu}$ 0.092 (0.013)	$\hat{\alpha}$ 1.504 (0.048)	β -0.054 (0.019)	$\hat{\lambda}$ 1.115 (0.054)		-7504.2
alpha stable	$\hat{\alpha}$ 1.657 (0.024)	$\hat{\beta}$ -0.094 (0.049)	ĉ 0.555 (0.008)	$\hat{\tau}$ 0.036 (0.015)		-7522.5
finite mixture $(k=2)$	λ_1 0.872 (0.018)	$\hat{\mu}_1$ 0.063 (0.012)	$\hat{\mu}_2$ -0.132 (0.096)	$\frac{\hat{\sigma_1}^2}{0.544}$ (0.027)	$\frac{\hat{\sigma_2}^2}{4.978}$ (0.530)	-7580.8
Cauchy	$\hat{\mu}$ 0.060 (0.010)	$\hat{\sigma}$ 0.469 (0.008)				-7956.6
normal	μ̂ 0.039 (0.014)	$\hat{\sigma}$ 1.054 (0.010)				-8168.9

Figure: aus Haas/Pigorsch S&P500 maximum likelihood Schätzungen

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

alpha stable distribution

Generalized Hyperbolic distributior

Figure: aus Haas/Pigorsch verschiedene Verteilungen

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

alpha stable distribution

Generalized

 $\begin{array}{c} 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.0 \end{array}$

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

alpha stable distribution

∍eneralizea Ivperbolic distributi

Figure: aus Haas/Pigorsch verschiedene Verteilungen

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

alpha stable distribution

Generalized Evperbolic distributio

distribution	$U_{0.001}$	$U_{0.0025}$	$U_{0.005}$	$U_{0.01}$	$U_{0.025}$	$U_{0.05}$
GH	0.04	0.11**	0.24***	0.73*	2.70	5.89***
t_{GH}	0.07	0.11**	0.22***	0.75^{*}	2.75	5.96***
t_{JF}	0.04	0.11**	0.31**	0.88	2.64	5.32
t_{AC}	0.04	0.11**	0.26**	0.84	2.48	5.16
t_{FS}	0.07	0.13^{*}	0.33**	0.95	2.77	5.38
symmetric t	0.07	0.15	0.31**	0.92	3.08**	6.35***
NIG	0.07	0.15	0.26**	0.70**	2.35	5.34
HYP	0.13	0.24	0.51	0.95	2.50	5.16
VG	0.13	0.24	0.51	0.92	2.46	5.10
alpha stable	0.04	0.11**	0.33**	0.75*	2.44	4.90
finite mixture $(k=2)$	0.04	0.07***	0.11***	0.37***	2.99**	6.40***
Cauchy	0.00***	0.00***	0.00***	0.00***	0.09***	0.88***
normal	0.48****	0.64***	0.97***	1.36**	2.44	4.02***
GARCH(1,1) Models						
distribution	$U_{0.001}$	$U_{0.0025}$	$U_{0.005}$	$U_{0.01}$	$U_{0.025}$	$U_{0.05}$
normal	0.40***	0.66***	0.92***	1.36**	2.95*	4.57
GED	0.20*	0.33	0.44	0.79	2.48	4.79

Figure: aus Haas/Pigorsch S&P500 backtesting

0.40

0.92

2.86

5.45

0.26

0.11

symmetric t

Outline

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

Euro

alpha stable distribution

Generalized

DAX-VaR bei investierten 10.000

example DAX VaRs bei investierten 10.000 Euro

• Marktrisiko: statt $P[V \le VaR_{\alpha}] = \alpha$

• ungefaehr: $P[r * V \le VaR_{\alpha}] = 1 - \alpha = P[r \le -\frac{VaR_p}{V}] = 1 - \alpha$

	unbedingte Anpassung	GARCH(1,1)
normal	335.1349	542.5062
t	381.1684	599.1886

Outline

Motivation

Charakterisierung Kurtosis vs. tail-index

Kurtosis

tail-index

alpha stable distribution

Generalized Hyperbolic distribution

DAX-VaR bei investierten 10.000