

Tema 7. Distribución Gaussiana

Percepción (PER)

Curso 2017/2018

Departamento de Sistemas Informáticos y Computación

- 1 Introducción y motivación ⊳ 3
- 2 Definición de la distribución gaussiana > 5
- 3 Clasificador gaussiano ▷ 9
- 4 Entrenamiento por máxima verosimilitud (MV) ▷ 13
- 5 Suavizado ▷ 16

- 1 Introducción y motivación ▷ 3
 - 2 Definición de la distribución gaussiana > 5
 - 3 Clasificador gaussiano ▷ 9
 - 4 Entrenamiento por máxima verosimilitud (MV) ▷ 13
 - 5 Suavizado ▷ 16

Introducción y motivación

Algunas tareas representan objetos por *vectores de características reales* (\mathbb{R}^D)

Ejemplo: Imágenes de 5×5 en escala de grises interpretadas como vectores reales de características de 25 dimensiones.

Ejemplo: Señal acústica mediante vectores de coeficientes cepstrales

Idea: usar la distribución gaussiana para modelizar la condicional $p(\boldsymbol{x}|c)$

- 1 Introducción y motivación ⊳ 3
- 2 Definición de la distribución gaussiana ▷ 5
 - 3 Clasificador gaussiano ▷ 9
 - 4 Entrenamiento por máxima verosimilitud (MV) ▷ 13
 - 5 Suavizado ▷ 16

Definición: distribución gaussiana unidimensional

Sea x una variable aleatoria unidimensional

Gaussiana unidimensional estandarizada

 $x \sim N(0,1)$ presenta una distribución de probabilidad

$$p(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x^2\right)$$

Gaussiana unidimensional general

 $x\sim N(\mu,\sigma)$, con media $\mu\in\mathbb{R}$ y varianza $\sigma^2\in\mathbb{R}^+$, presenta una distribución de probabilidad

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$$

Definición: distribución gaussiana multidimensional

Sea $\boldsymbol{x} = (x_1, \dots, x_D)^t$ una variable aleatoria D-dimensional

Gaussiana estandarizada

 ${\boldsymbol x} \sim N_D({\bf 0},I_D)$, donde $x_1,\ldots,x_D \sim N(0,1)$ independientes, presenta una distribución de probabilidad:

$$p(\boldsymbol{x}) = (2\pi)^{-\frac{D}{2}} \exp\left(-\frac{1}{2}\boldsymbol{x}^t\boldsymbol{x}\right)$$

Definición: distribución gaussiana multidimensional

Gaussiana general

Sean:

- $lacksquare z \sim N_D(\mathbf{0}, I_D)$
- $m{\mu} \in \mathbb{R}^D$
- $\bullet \ A \in \mathbb{R}^{D \times D} : |A| \neq 0$
- $\Sigma = AA^t$ (simétrica y definida positiva) con:
 - $\bullet \ A = W\Delta^{\frac{1}{2}}$
 - ullet W vectores propios de Σ
 - ullet Δ valores propios de Σ
- $x = Az + \mu$

 $x \sim N_D(\mu, \Sigma)$, con media μ y matriz de covarianzas Σ , presenta una distribución de probabilidad:

$$p(\boldsymbol{x}) = (2\pi)^{-\frac{D}{2}} |\Sigma|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^t \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$$

- 1 Introducción y motivación ⊳ 3
- 2 Definición de la distribución gaussiana > 5
- 3 Clasificador gaussiano ▷ 9
 - 4 Entrenamiento por máxima verosimilitud (MV) ▷ 13
 - 5 Suavizado ▷ 16

Clasificador gaussiano

Clasificador gaussiano: clasificador de Bayes donde la f.d. condicional $p(\boldsymbol{x}|c)$ es una gaussiana

$$p(\boldsymbol{x} \mid c) \sim N_D(\boldsymbol{\mu}_c, \Sigma_c), \quad c = 1, \dots, C.$$

Por tanto:

$$\begin{split} c^*(\boldsymbol{x}) &= \underset{c=1,...,C}{\operatorname{argmax}} \; \log \, P(c) + \log \, p(\boldsymbol{x} \mid c) \\ &= \underset{c=1,...,C}{\operatorname{argmax}} \; \log \, P(c) - \frac{D}{2} \log 2\pi - \frac{1}{2} \log |\Sigma_c| - \frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_c)^t \Sigma_c^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_c) \\ &= \underset{c=1,...,C}{\operatorname{argmax}} \; \log P(c) - \frac{1}{2} \log |\Sigma_c| - \frac{1}{2} \boldsymbol{x}^t \Sigma_c^{-1} \boldsymbol{x} + \boldsymbol{\mu}_c^t \Sigma_c^{-1} \boldsymbol{x} - \frac{1}{2} \boldsymbol{\mu}_c^t \Sigma_c^{-1} \boldsymbol{\mu}_c \\ &= \underset{c=1,...,C}{\operatorname{argmax}} \; - \frac{1}{2} \boldsymbol{x}^t \Sigma_c^{-1} \boldsymbol{x} + \boldsymbol{\mu}_c^t \Sigma_c^{-1} \boldsymbol{x} + \left(\log P(c) - \frac{1}{2} \log |\Sigma_c| - \frac{1}{2} \boldsymbol{\mu}_c^t \Sigma_c^{-1} \boldsymbol{\mu}_c \right) \end{split}$$

Clasificador gaussiano

$$c^*(\boldsymbol{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \ -\frac{1}{2} \boldsymbol{x}^t \boldsymbol{\Sigma}_c^{-1} \boldsymbol{x} + \boldsymbol{\mu}_c^t \boldsymbol{\Sigma}_c^{-1} \boldsymbol{x} + \left(\log P(c) - \frac{1}{2} \log |\boldsymbol{\Sigma}_c| - \frac{1}{2} \boldsymbol{\mu}_c^t \boldsymbol{\Sigma}_c^{-1} \boldsymbol{\mu}_c\right)$$

Clasificador *cuadrático* con *x*:

$$c^*(\boldsymbol{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \ g_c(\boldsymbol{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \ \boldsymbol{x}^t \ W_c \ \boldsymbol{x} + \boldsymbol{w}_c^t \ \boldsymbol{x} + w_{c0}$$

Con:

$$W_c = -\frac{1}{2}\Sigma_c^{-1}$$
 $\boldsymbol{w}_c = \Sigma_c^{-1}\boldsymbol{\mu}_c$

$$w_{c0} = \log P(c) - \frac{1}{2} \log |\Sigma_c| - \frac{1}{2} \mu_c^t \Sigma_c^{-1} \mu_c$$

Clasificador gaussiano

Caso particular: matriz de covarianzas común, $\Sigma_c = \Sigma$

En ese caso, tanto $-\frac{1}{2} {m x}^t \Sigma^{-1} {m x}$ como $-\frac{1}{2} \log |\Sigma|$ son independientes de c

$$c^*(\boldsymbol{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \ \boldsymbol{\mu}_c^t \boldsymbol{\Sigma}^{-1} \boldsymbol{x} + \left(\log P(c) - \frac{1}{2} \boldsymbol{\mu}_c^t \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_c \right)$$

El clasificador gaussiano es *lineal*:

$$c^*(\boldsymbol{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \ g_c(\boldsymbol{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \ \boldsymbol{w}_c^t \, \boldsymbol{x} + w_{c0}$$

Con:

$$\boldsymbol{w}_c = \Sigma^{-1} \boldsymbol{\mu}_c$$
 $w_{c0} = \log P(c) - \frac{1}{2} \boldsymbol{\mu}_c^t \Sigma^{-1} \boldsymbol{\mu}_c$

- 1 Introducción y motivación ⊳ 3
- 2 Definición de la distribución gaussiana > 5
- 3 Clasificador gaussiano ▷ 9
- 4 Entrenamiento por máxima verosimilitud (MV) ▷ 13
 - 5 Suavizado ▷ 16

Entrenamiento por máxima verosimilitud

Sean N muestras de entrenamiento aleatoriamente extraídas de C distribuciones gaussianas independientes

$$\{({m x}_n,c_n)\}_{n=1}^N$$
 i.i.d. $p({m x},c)=P(c)\,p({m x}|c), \quad p({m x}|c)\sim N_D({m \mu}_c,\Sigma_c)$

Conjunto de parámetros a estimar Θ :

- Probabilidades a priori: $P(1), \dots, P(C)$
- Medias para cada clase: μ_1, \ldots, μ_C
- Matrices de covarianza para cada clase: $\Sigma_1, \ldots, \Sigma_C$

Por criterio de máxima verosimilitud (MV), se estima Θ como:

$$\hat{P}(c) = \frac{N_c}{N}$$
 (1) $\hat{\mu}_c = \frac{1}{N_c} \sum_{n:c_n=c} x_n$ (2)

$$\hat{\Sigma}_c = \frac{1}{N_c} \sum_{n: c_n = c} (\boldsymbol{x}_n - \hat{\boldsymbol{\mu}}_c) (\boldsymbol{x}_n - \hat{\boldsymbol{\mu}}_c)^t = \left(\frac{1}{N_c} \sum_{n: c_n = c} \boldsymbol{x}_n \boldsymbol{x}_n^t \right) - \hat{\boldsymbol{\mu}}_c \hat{\boldsymbol{\mu}}_c^t \qquad (3)$$

Entrenamiento por máxima verosimilitud

En el caso de Σ común para todas las clases ($\Sigma_c = \Sigma$), el conjunto de parámetros a estimar Θ es:

- Probabilidades a priori: $P(1), \dots, P(C)$
- Medias para cada clase: μ_1, \ldots, μ_C
- lacktriangle Matriz de covarianza común: Σ

Por criterio de máxima verosimilitud, la estimación de Θ se calcula como en el caso general (Ecuaciones (1) y (2) para $\hat{P}(c)$ y $\hat{\mu}_c$, respectivamente) y :

$$\hat{\Sigma} = \sum_{c} \hat{P}(c) \, \hat{\Sigma}_{c} = \frac{1}{N} \sum_{n} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{t} - \sum_{c} \hat{P}(c) \, \hat{\boldsymbol{\mu}}_{c} \hat{\boldsymbol{\mu}}_{c}^{t}$$
(4)

Con $\hat{\Sigma}_c$ calculada según Ecuación (3).

- 1 Introducción y motivación ⊳ 3
- 2 Definición de la distribución gaussiana > 5
- 3 Clasificador gaussiano ▷ 9
- 4 Entrenamiento por máxima verosimilitud (MV) ▷ 13
- 5 Suavizado ▷ 16

Suavizado

Umbralizado de covarianza [Duda01, pág. 113]

Covarianzas con magnitud de la correlación no cercana a uno valen cero:

$$\tilde{\sigma}_{cdd'}^2 = \begin{cases} \hat{\sigma}_{cdd'}^2 & \text{si } |\hat{\rho}_{cdd'}| > 1 - \epsilon \\ 0 & \text{otro caso} \end{cases} \qquad \forall c, d, d' = 1, \dots, D; \ d \neq d'$$

Donde:

- ϵ es una constante pequeña no negativa ($\epsilon=0
 ightarrow \Sigma$ diagonal)
- Coeficiente de correlación: $\hat{\rho}_{cdd'} = \frac{\hat{\sigma}_{cdd'}^2}{\hat{\sigma}_{cdd}\,\hat{\sigma}_{cd'd'}}$

Flat smoothing

Combinación lineal de cada $\hat{\Sigma}_c$ y $\tilde{\Sigma}$ (matriz de covarianza global suavizada):

$$\tilde{\Sigma}_c = \alpha \, \hat{\Sigma}_c + (1 - \alpha) \, \tilde{\Sigma} \qquad \forall c \ \alpha \in [0, 1]$$

Donde:
$$\tilde{\Sigma} = \beta \hat{\Sigma} + (1 - \beta)I$$
, $\beta \in [0, 1]$

