Programowanie dyskretne

Dotyczy problemów decyzyjnych, w których pewne zmienne decyzyjne mogą przyjmować tylko dyskretne wartości np.:

- całkowitoliczbowe
- binarne (0 lub 1)

W zależności od rodzaju występujących zmiennych wyróżniamy zadania programowania

- całkowitoliczbowego
- binarnego
- mieszanego występują zmienne ciągłe i dyskretne

Przykład

$$\max_{\substack{z=7x_1+8x_2\\3x_1+4x_2\leq 4\\x_1,x_2\geq 0}} +8x_2$$

Rozwiązanie: $x_1=4/3$, $x_2=0$, z=28/3.

Przy dodatkowym warunku x_1 oraz x_2 całkowitoliczbowe

Rozwiązanie: x_1 =0, x_2 =1, z=8.

Sytuacje, w których stosuje się zmienne dyskretne

- natura poszukiwanych rozwiązań jest dyskretna
 - wyznaczanie liczby niepodzielnych obiektów np.
 procesorów, zadań, pracowników itp.
 - określanie permutacji lub kombinacji pewnego
 zbioru obiektów problemy kombinatoryczne
- wybór decyzji spośród wielu wariantów
- modelowanie funkcji kawałkami liniowych, np. uwzględnianie kosztów stałych

Metody rozwiązywania problemów dyskretnych

- algorytmy specjalizowane
- programowanie sieciowe
- metody przeglądu
 - metoda podziału i oszacowań (branch & bound)
 - branch & cut, branch & price i inne odmiany
 - programowanie w logice ograniczeń
- metody odcięć
- programowanie dynamiczne
- metody heurystyczne specjalizowane
- metaheurystyki
 - algorytmy genetyczne (ewolucyjne)
 - przeszukiwanie "tabu search"
 - symulowane wyżarzanie (wychładzanie)
 - algorytmy randomizowane, np. GRASP

Problem P

$$z(P) = \max f(x)$$
$$x \in F(P)$$

Relaksacja

Problem A

$$z(A) = \max g(x)$$

$$x \in F(A)$$

jest relaksacją problemu P jeżeli

- (i) $f(x) \le g(x)$ dla każdego $x \in F(P)$
- (ii) $F(P) \subseteq F(A)$

Restrykcja

Problem B

$$v(B) = \max h(x)$$

$$x \in F(B)$$

jest restrykcją problemu P jeżeli

- (i) $f(x) \ge h(x)$ dla każdego $x \in F(B)$
- (ii) $F(P) \supseteq F(B)$

Metoda podziału i oszacowań

(dla zadania maksymalizacji)

- 1. Wybór podproblemu P_i do analizy (na początku $P_0 = P$).
- 2. Oszacowanie optymalnej wartości funkcji celu dla podproblemu P_i
 - od dołu \underline{z}_i z rozwiązania dopuszczalnego (dobrego);
 - od góry \bar{z}_i z relaksacji (np. relaksacji liniowej);
- 3. Sondaż podproblemu P_i
 - gdy P_i niedopuszczalny zamykamy jego analizę;
 - gdy $\underline{z}_i = \overline{z}_i$ podproblem rozwiązany zamykamy jego analizę. Jeżeli $\underline{z}_i > \underline{z}_0$, to znaleźliśmy lepsze rozwiązanie dopuszczalne problemu P, a więc $\underline{z}_0 := \underline{z}_i$;
 - $-\operatorname{gdy} \ \overline{z}_i \leq \underline{z}_0 \operatorname{w} \ \operatorname{podproblemie} \ \operatorname{nie} \ \operatorname{ma} \ \operatorname{lepszych} \ \operatorname{rozwiązań} \ \operatorname{niż} \ \operatorname{dotychczas} \ \operatorname{znalezione} \ (o \ \operatorname{wartości} \ \operatorname{funkcji} \ \operatorname{celu} \ \underline{z}_0). \ \operatorname{Zamykamy} \ \operatorname{analize} \ \operatorname{podproblemu};$
 - $-\operatorname{gdy}\ \overline{z}_i > \underline{z}_0,\ \underline{z}_i < \overline{z}_i$ dokonujemy podziału podproblemu P_i na podproblemy P_j (nowe gałęzie drzewa), tak aby $\bigcup_j F(P_j) = F(P_i)$
- 4. Jeżeli wszystkie podproblemy są zamknięte to STOP. W przeciwnym przypadku idziemy do 1.

Dla zadania minimalizacji analiza oszacowań jest oparta na odwrotnych relacjach.

Przykład

$$\max z = 2x_1 + 3x_2$$

$$5x_1 + 7x_2 \le 35$$

$$4x_1 + 9x_2 \le 36$$

$$x_1, x_2 \ge 0 \quad calkowite$$

Kwestie do rozstrzygnięcia

- wybór podproblemu do analizy
- rodzaj stosowanych oszacowań
 - rodzaj relaksacji kompromis między czasem obliczeń a dokładnością
 - strategia wyznaczania dobrych rozwiązań dopuszczalnych
- sposób podziału na podproblemy drzewo binarne, wielogałęziowe itd.
- wybór zmiennej, względem której następuje podział

Przykład – problem plecakowy

Sformułowanie

Które spośród n przedmiotów o wartościach $c_1, c_2,...,c_n$ i ważących odpowiednio $a_1, a_2,...,a_n$ należy zapakować do plecaka o ładowności b, aby łączna wartość zapakowanych przedmiotów była jak największa?

Model Programowania Binarnego

$$\max z = \sum_{i=1}^{n} c_i x_i$$

$$\sum_{i=1}^{n} a_i x_i \le b$$

$$x_i \in \{0,1\}, \quad i = 1, ..., n$$

Relaksacja liniowa problemu plecakowego

$$\max z = \sum_{i=1}^{n} c_i x_i$$

$$\sum_{i=1}^{n} a_i x_i \le b$$

$$0 \le x_i \le 1, \quad i = 1, \dots, n$$

Właściwości relaksacji liniowej

• Niech uporządkowanie przedmiotów będzie takie, że

$$c_1/a_1 \ge c_2/a_2 \ge \dots \ge c_n/a_n$$

Wtedy rozwiązanie

$$x_1=1, x_2=1, ..., x_{p-1}=1, x_p=(b-\sum_{i=1}^{p-1}a_i)/a_p, x_{p+1}=0, ..., x_n=0$$

gdzie
$$p = \min\{ j : \sum_{i=1}^{j} a_i > b \}$$

jest optymalnym rozwiązaniem **relaksacji liniowej** problemu plecakowego

• Zachłanny algorytm rozwiązywania

Powłoka wypukła

Najmniejszy zbiór wypukły zawierający zbiór rozwiązań dopuszczalny problemu dyskretnego

Właściwości

Relaksacja liniowa problemu ograniczonego do powłoki wypukłej daje rozwiązanie optymalne problemu dyskretnego.

Idea metod odcięć

(kolejne "przybliżanie" powłoki wypukłej)

- 1. rozwiązanie relaksacji liniowej;
- 2. jeżeli rozwiązanie dopuszczalne (całkowitoliczbowe), to STOP. W przeciwnym przypadku idź do 3;
- 3. generacja i dodawanie ograniczenia odcinającego uzyskane rozwiązanie, ale nie naruszające powłoki wypukłej. Idź do 1;