CS 135 Spring 2018: Quiz 2A Solutions.

NAME:

HONOR CODE STATEMENT:

Problem 1. (10 points) Point out the flaw in the following inductive argument (given that x > 0) Claim: $\forall n \ge 0$ $x^n = 1$.

Base case: n = 0. Since x > 0, it follows by definition that $x^0 = 1$.

(Strong) Inductive Hypothesis: For some $k \in \mathbb{N}$: $\forall i : 0 \le i \le k$: $x^i = 1$

Inductive Step: Note that $x^{k+1} = x^k \cdot \frac{x^k}{x^{k-1}}$

From the strong inductive hypothesis $x^k = 1$ and $x^{k-1} = 1$. Therefore, $x^{k+1} = 1 \cdot \frac{1}{1} = 1$, thereby establishing the inductive step.

The argument for the inductive step breaks down when k=0: $x^{0+1}=x^0\cdot\frac{x^0}{x^{-1}}$, but the inductive hypothesis does not apply to the denominator.

Problem 2. (15 points) Prove by induction the statement $\forall n \geq 5$: $2^n > n^2$.

a. State and establish the base case.

$$2^5 = 32 > 5^2 = 5^2$$

b. State the inductive hypothesis.

$$P(k): 2^k > k^2, k \ge 5$$

c. Establish the inductive step.

$$2^{k+1} = 2 \cdot 2^k$$

> $2 \cdot k^2$, (by the inductive hypothesis)

Now, since $k \ge 5$, it follows that $k^2 - 2k = k(k-2) > 1$, or $k^2 > 2k + 1$.

Thus, we have: $2^{k+1} > 2k^2 > k^2 + 2k + 1 = (k+1)^2$, thereby establishing the inductive step.

Problem 3. (10 points) Prove that if $a \equiv b \pmod{m}$ where $m \ge 2$ then $\gcd(a, m) = \gcd(b, m)$. (Hint: To get started, let $a = mq_1 + r_1$, $b = mq_2 + r_2$.)

$$a - b = m(q_1 - q_2) + (r_1 - r_2)$$

Since $a \equiv b \pmod{m}$ we have that $m \mid (a - b)$. It follows that $m \mid r_1 - r_2$ Furthermore, since $-m < r_1 - r_2 < m$, it follows that $r_1 - r_2 = 0$, or $r_1 = r_2$.

By the GCD lemma, we have that $gcd(a, m) = gcd(m, r_1)$ and $gcd(b, m) = gcd(m, r_2)$. Since $r_1 = r_2$ it follows that gcd(a, m) = gcd(b, m).

Problem 4. (15 points)

a. Find the inverse of 13 modulo 63. Show all steps of your calculation.

$$63 = 4 \cdot 13 + 11$$

$$13 = 11 + 2$$

$$11 = 5 \cdot 2 + 1$$

Therefore,

$$1 = 11 - 5 \cdot 2$$

$$= 11 - 5 \cdot (13 - 11)$$

$$= 6 \cdot 11 - 5 \cdot 13$$

$$= 6 \cdot (63 - 4 \cdot 13) - 5 \cdot 13$$

$$= 6 \cdot 63 - 29 \cdot 13$$

Thus, $13^{-1} \equiv -29 \equiv 34 \pmod{63}$

b. Solve the congruence $13x \equiv 5 \pmod{63}$.

Multiplying both sides by 13^{-1} gives us

$$x \equiv 13^{-1} \cdot 5 \pmod{63}$$

 $\equiv 34 \cdot 5 \pmod{63}$
 $\equiv 170 \pmod{63}$
 $\equiv 44 \pmod{63}$

CS 135 Spring 2018: Quiz 2B Solutions.

NAME:

HONOR CODE STATEMENT:

Problem 1. (10 points) Point out the flaw in the following inductive argument:

Claim: $\forall n \in \mathbb{N}: n^2 \leq n$.

Base Case: When n = 0, the statement $0^2 \le 0$ is true.

Inductive Hypothesis: For some $k \in \mathbb{N}$: $k^2 \le k$. Inductive Step: Working backwards, we have that:

 $(k+1)^2 \le k+1$

$$\Rightarrow k^2 + 2k + 1 \le k + 1$$
$$\Rightarrow k^2 + 2k \le k$$

Now, because $2k \ge 0$, it follows that

$$k^2 \le k^2 + 2k \implies k^2 \le k$$

By the inductive hypothesis, the last inequality is true. Therefore, the inductive step is established.

The inductive step calls for proving that $P(k) \Rightarrow P(k+1)$. The argument above instead shows that $P(k+1) \Rightarrow P(k)$. But this latter statement is true when its precedent is false. So besides establishing that P(0) is true, nothing else has been proven true.

Problem 2. (15 points) Prove by induction the statement $\forall n \geq 0$: $1+2+2^2+\cdots 2^n=2^{n+1}-1$

- a. State and establish the base case.
 - P(0): 1 = $2^{0+1} 1$, which is true as the RHS equals 1.
- b. State the inductive hypothesis.

$$P(k)$$
: $1 + \cdots + 2^k = 2^{k+1} - 1$

c. Establish the inductive step.

$$\begin{aligned} 1+\cdots+2^{k+1} &= \left(1+\cdots+2^k\right)+2^{k+1}\\ &= 2^{k+1}-1+2^{k+1} \quad \text{(using the inductive hypothesis)}\\ &= 2\cdot 2^{k+1}-1\\ &= 2^{(k+1)+1}-1 \text{, which establishes the inductive step.} \end{aligned}$$

Problem 3. (10 points) Prove that if $a \equiv b \pmod{m}$ where $m \geq 2$ then $\gcd(a,m) = \gcd(b,m)$. (Hint: To get started, let $a = mq_1 + r_1$, $b = mq_2 + r_2$.)

$$a - b = m(q_1 - q_2) + (r_1 - r_2)$$

Since $a \equiv b \pmod{m}$ we have that $m \mid (a-b)$. It follows that $m \mid r_1 - r_2$ Furthermore, since $-m < r_1 - r_2 < m$, it follows that $r_1 - r_2 = 0$, or $r_1 = r_2$.

By the GCD lemma, we have that $gcd(a, m) = gcd(m, r_1)$ and $gcd(b, m) = gcd(m, r_2)$. Since $r_1 = r_2$ it follows that gcd(a, m) = gcd(b, m).

Problem 4. (15 points)

a. Find the inverse of 13 modulo 57. Show all steps of your calculation.

$$57 = 4 \cdot 13 + 5$$
 $13 = 2 \cdot 5 + 3$
 $5 = 3 + 2$
 $3 = 2 + 1$

Therefore,

$$1 = 3 - 2$$

$$= 3 - (5 - 3)$$

$$= 2 \cdot 3 - 5$$

$$= 2(13 - 2 \cdot 5) - 5$$

$$= 2 \cdot 13 - 5 \cdot 5$$

$$= 2 \cdot 13 - 5(57 - 4 \cdot 13)$$

$$= 22 \cdot 13 - 5 \cdot 57$$

Thus, $13^{-1} \equiv 22 \ (mod\ 57)$

b. Solve the congruence $13x \equiv 5 \pmod{57}$.

Multiplying both sides by 13^{-1} gives us:

$$x \equiv 13^{-1} \cdot 5 \pmod{57}$$

 $\equiv 22 \cdot 5 \pmod{57}$
 $\equiv 110 \pmod{57}$
 $\equiv 53 \pmod{57}$

CS 135 Spring 2018: Quiz 2C Solutions.

NAME:

HONOR CODE STATEMENT:

Problem 1. (10 points) Point out the flaw in the following inductive argument (given that x > 0) Claim: $\forall n \ge 0$ $x^n = 1$.

Base case: n=0. Since x>0, it follows by definition that $x^0=1$. (Strong) Inductive Hypothesis: For some $k\in\mathbb{N}$: $\forall i\colon 0\leq i\leq k$: $x^i=1$

Inductive Step: Note that $x^{k+1} = x^k \cdot \frac{x^k}{x^{k-1}}$

From the strong inductive hypothesis $x^k = 1$ and $x^{k-1} = 1$. Therefore, $x^{k+1} = 1 \cdot \frac{1}{1} = 1$, thereby establishing the inductive step.

The argument for the inductive step breaks down when k=0: $x^{0+1}=x^0\cdot\frac{x^0}{x^{-1}}$, but the inductive hypothesis does not apply to the denominator.

Problem 2. (15 points) Prove by induction the statement $\forall n \geq 4$: $n! > 2^n$. (Recall that $n! = n(n-1)\cdots 1$)

a. State and establish the base case.

$$P(4): 4! > 2^4$$

This is true because the LHS is 24 while the RHS is 16.

b. State the inductive hypothesis.

$$P(k): k! > 2^k, k \ge 4$$

c. Establish the inductive step.

$$(k+1)! = (k+1)k!$$

> 2 · k! since $k+1 > 2$

 $> 2 \cdot 2^k$ from the inductive hypothesis

 $= 2^{k+1}$ thus establishing the inductive step

Problem 3. (10 points) Prove that if $a \equiv b \pmod{m}$ where $m \ge 2$ then $\gcd(a, m) = \gcd(b, m)$. (Hint: To get started, let $a = mq_1 + r_1$, $b = mq_2 + r_2$.)

$$a-b=m(q_1-q_2)+(r_1-r_2)$$
 Since $a\equiv b\pmod m$ we have that $m\mid (a-b)$. It follows that $m\mid r_1-r_2$ Furthermore, since $-m< r_1-r_2< m$, it follows that $r_1-r_2=0$, or $r_1=r_2$.

By the GCD lemma, we have that $gcd(a, m) = gcd(m, r_1)$ and $gcd(b, m) = gcd(m, r_2)$. Since $r_1 = r_2$ it follows that gcd(a, m) = gcd(b, m).

Problem 4. (15 points)

a. Find the inverse of 11 modulo 63. Show all steps of your calculation.

$$63 = 5 \cdot 11 + 8$$

$$11 = 8 + 3$$

$$8 = 2 \cdot 3 + 2$$

$$3 = 2 + 1$$

Therefore,

$$1 = 3 - 2$$

$$= 3 - (8 - 2 \cdot 3)$$

$$= 3 \cdot 3 - 8$$

$$= 3(11 - 8) - 8$$

$$= 3 \cdot 11 - 4 \cdot 8$$

$$= 3 \cdot 11 - 4(63 - 5 \cdot 11)$$

$$= 23 \cdot 11 - 4 \cdot 63$$

Therefore, $11^{-1} \equiv 23 \pmod{63}$

b. Solve the congruence $11x \equiv 5 \pmod{63}$.

Multiplying both sides by 11^{-1} we get:

$$x \equiv 11^{-1} \cdot 5 \pmod{63}$$

 $\equiv 23 \cdot 5 \pmod{63}$
 $\equiv 115 \pmod{63}$
 $\equiv 52 \pmod{63}$