Linear algebra and gradients

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Overview

• Notation: vector, matrix

Definition: vector and matrix operations

Gradients and chain rule

What is a vector?

An array of numbers

• Notation: v

bold lower case

• Size: $size(\mathbf{v}) = n$

• Order: $\dim(\mathbf{v}) = 1$

• Indexing: V

 $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

4.31.29.92.3

1.2 4.4

What is a matrix?

An 2D array of numbers

• Notation:

bold upper case

• Size: $size(\mathbf{M}) = n \times m$

• Order: $dim(\mathbf{M}) = 2$

• Indexing: \mathbf{M}_{ii} 1.2 1.1 4.4 3.2

 1
 4

 2
 5

 3
 6

Vector norm

$$|\mathbf{v}| = \sqrt{\sum_{i}^{n} v_i^2}$$

Element wise operations

$$\mathbf{v} + \mathbf{w} = \begin{bmatrix} v_0 + w_0 \\ v_1 + w_1 \\ \dots \\ v_n + w_n \end{bmatrix} \quad \mathbf{v} * \mathbf{w} = \begin{bmatrix} v_0 * w_0 \\ v_1 * w_1 \\ \dots \\ v_n * w_n \end{bmatrix} \quad \cdots$$

$$\mathbf{v} - \mathbf{w} = \begin{bmatrix} v_0 - w_0 \\ v_1 - w_1 \\ \dots \\ v_n - w_n \end{bmatrix} \quad \mathbf{v} / \mathbf{w} = \begin{bmatrix} v_0 / w_0 \\ v_1 / w_1 \\ \dots \\ v_n / w_n \end{bmatrix} \quad \cdots$$

Inner product

$$\mathbf{v} \cdot \mathbf{w} = v_0 \cdot w_0 + v_1 \cdot w_1 + \dots + v_n \cdot w_n$$

Outer product

$$\mathbf{v} \otimes \mathbf{w} = \begin{bmatrix} v_0 w_0 & v_0 w_1 & \dots & v_0 w_n \\ v_1 w_0 & v_1 w_1 & \dots & v_1 w_n \\ & & & \dots & & \\ v_n w_0 & v_n w_1 & \dots & v_n w_n \end{bmatrix}$$

Frobenius norm

$$|\mathbf{M}| = \sqrt{\sum_{i}^{n} \sum_{j}^{m} M_{ij}^{2}}$$

Transpose

 $\mathbf{M}^{ op}$

$$\begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \end{bmatrix} \qquad \begin{bmatrix} a_{00} & a_{10} \\ a_{01} & a_{11} \\ a_{02} & a_{12} \end{bmatrix}$$

Matrix multiplication

$$\begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \end{bmatrix} \begin{bmatrix} b_{00} & b_{01} & b_{02} \\ b_{10} & b_{11} & b_{12} \\ b_{20} & b_{21} & b_{22} \\ b_{30} & b_{31} & b_{32} \end{bmatrix} = \begin{bmatrix} c_{00} & c_{01} & c_{02} \\ c_{10} & c_{11} & c_{12} \end{bmatrix}$$

2x4

4x3

2×3

Matrix-vector multiplication

$$\begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \end{bmatrix} \begin{bmatrix} b_{00} \\ b_{10} \\ b_{20} \\ b_{30} \end{bmatrix} = \begin{bmatrix} c_{00} \\ c_{10} \end{bmatrix}$$

2×4

4

2

Vector operations

- Length / norm: |v|
- Element-wise operations: v + w, v w, ...
- Inner (dot) product: $\mathbf{v}^{\mathsf{T}}\mathbf{w} = \mathbf{v} \cdot \mathbf{w}$
- Outer product: $\mathbf{v}\mathbf{w}^{\top} = \mathbf{v} \otimes \mathbf{w}$

Matrix Operations

- Frobenius norm |M|
- ullet Transpose \mathbf{M}^{\top}
- Matrix multiplication AB Av

Functions of vectors

• Definition: $f: \mathbf{x} \to \mathbf{y}$

Derivatives of vector valued functions

Gradient of scaler function

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f}{\partial \mathbf{x}_0} & \frac{\partial f}{\partial \mathbf{x}_1} & \dots & \frac{\partial f}{\partial \mathbf{x}_n} \end{bmatrix}$$

• Jacobian: Derivative of vector g(x) by vector x:

$$\frac{\partial \mathbf{g}(\mathbf{x})}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{g}}{\partial \mathbf{x}_0} & \frac{\partial \mathbf{g}}{\partial \mathbf{x}_1} & \dots & \frac{\partial \mathbf{g}}{\partial \mathbf{x}_n} \end{bmatrix}$$
 vector

Chain rule for scalar functions

- Nested functions: f(g(x))
 - where $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$
 - and y = g(x)
- Derivative: $\frac{\partial f(g(x))}{\partial x} = \frac{\partial f(y)}{\partial y} \frac{\partial g(x)}{\partial x}$

Chain rule for vector-valued functions

- Nested functions: $f(g(\mathbf{x}))$
 - where $f: \mathbb{R}^m \to \mathbb{R}^n$ and $g: \mathbb{R}^p \to \mathbb{R}^m$
 - and y = g(x)
- Derivative: $\frac{\partial f(g(\mathbf{x}))}{\partial \mathbf{x}} = \frac{\partial f(\mathbf{y})}{\partial \mathbf{y}} \frac{\partial g(\mathbf{x})}{\partial \mathbf{x}}$

nxp nxm mxp

Summary

- Vector v
- Matrix M
- Gradients $\frac{\partial f(x)}{\partial x}$
- Chain rule $\frac{\partial f(g(x))}{\partial x} = \frac{\partial f(y)}{\partial y} \frac{\partial g(x)}{\partial x}$
- More reading
 [The Matrix Cookbook, Petersen and Pedersen 2012]