

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-114538

(43)公開日 平成10年(1998)5月6日

(51)Int.Cl.* 識別記号

F I

C 0 3 C 3/091

C 0 3 C 3/091

3/093

3/093

G 0 2 F 1/1333 5 0 0

G 0 2 F 1/1333 5 0 0

G 0 9 F 9/30 3 1 6

G 0 9 F 9/30 3 1 6 Z

審査請求 未請求 請求項の数2 FD (全5頁)

(21)出願番号 特願平9-116464

(71)出願人 000232243

(22)出願日 平成9年(1997)4月18日

日本電気硝子株式会社

滋賀県大津市晴嵐2丁目7番1号

(31)優先権主張番号 特願平8-239712

(72)発明者 中 淳

(32)優先日 平8(1996)8月21日

滋賀県大津市晴嵐2丁目7番1号 日本電
気硝子株式会社内

(33)優先権主張国 日本 (JP)

(72)発明者 山本 茂

滋賀県大津市晴嵐2丁目7番1号 日本電
気硝子株式会社内

(54)【発明の名称】 無アルカリガラス及びその製造方法

(57)【要約】

【課題】 清澄剤としてAs₂O₃を使用せず、しかも表示欠陥となる泡が存在しない無アルカリガラスを提供する。

【解決手段】 重量百分率でSiO₂ 40~70%、Al₂O₃ 6~25%、B₂O₃ 5~20%、MgO 0~10%、CaO 0~15%、BaO 0~30%、SrO 0~10%、ZnO 0~10%、SnO₂ 0.05~2%、Sb₂O₃ 0.05~3%の組成を有し、本質的にアルカリ金属酸化物を含有しないことを特徴とする。

【特許請求の範囲】

【請求項1】 重量百分率で SiO_2 40~70%、 Al_2O_3 6~25%、 B_2O_3 5~20%、 MgO 0~10%、 CaO 0~15%、 BaO 0~30%、 SrO 0~10%、 ZnO 0~10%、 SnO_2 0.05~2%、 Sb_2O_3 0.05~3%の組成を有し、本質的にアルカリ金属酸化物を含有しないことを特徴とする無アルカリガラス。

【請求項2】 重量百分率で SiO_2 40~70%、 Al_2O_3 6~25%、 B_2O_3 5~20%、 MgO 0~10%、 CaO 0~15%、 BaO 0~30%、 SrO 0~10%、 ZnO 0~10%の組成を有し、本質的にアルカリ金属酸化物を含有しないガラスとなるように調合したガラス原料調合物を溶融した後、成形する無アルカリガラスの製造方法において、ガラス原料調合物に清澄剤として SnO_2 を 0.05~2 重量% 及び Sb_2O_3 を 0.05~3 重量% 添加することを特徴とする無アルカリガラスの製造方法。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、無アルカリガラス、特にディスプレイ等の透明ガラス基板として使用される無アルカリガラスとその製造方法に関するものである。

【0002】

【従来の技術】 従来、液晶ディスプレイ等の透明ガラス基板として、無アルカリガラスが使用されている。ディスプレイ用途に用いられる無アルカリガラスには、耐熱性、耐薬品性等の特性の他に、表示欠陥となる泡のないことが要求される。

【0003】 このような無アルカリガラスとして、従来より種々のガラスが提案されており、本出願人も特開昭63-74935号において SiO_2 - Al_2O_3 - B_2O_3 - CaO - BaO 系の無アルカリガラスを提案している。

【0004】

【発明が解決しようとする課題】 泡のないガラスを得るために、ガラス化反応時から均質化溶融時にかけての温度域で清澄ガスを発生する清澄剤を使用することが重要である。つまりガラスの清澄は、ガラス化反応時に発生するガスを清澄ガスによってガラス融液中から追い出し、さらに均質化溶融時に残った微小な泡を再び発生させた清澄ガスによって泡径を大きくして浮上させて除去する。

【0005】 ところで液晶ディスプレイ用ガラス基板に使用されるような無アルカリガラスでは、ガラス融液の粘度が高く、アルカリ成分を含有するガラスに比べて溶融がより高温で行われる。このため、清澄剤には幅広い温度域(1200~1600°C程度)で清澄ガスを発生することができる As_2O_3 が広く使用されている。

【0006】 しかしながら As_2O_3 は毒性が非常に強

く、ガラスの製造工程や廃ガラスの処理時等に環境を汚染する可能性があり、その使用が制限されつつある。

【0007】 本発明の目的は、清澄剤として As_2O_3 を使用せず、しかも表示欠陥となる泡が存在しない無アルカリガラスとその製造方法を提供することである。

【0008】

【課題を解決するための手段】 本出願人は、種々の実験を行った結果、清澄剤として As_2O_3 の代わりに SnO_2 と Sb_2O_3 を併用することによって上記目的が達成できることを見だし、本発明として提案するものである。

【0009】 即ち、本発明の無アルカリガラスは、重量百分率で SiO_2 40~70%、 Al_2O_3 6~25%、 B_2O_3 5~20%、 MgO 0~10%、 CaO 0~15%、 BaO 0~30%、 SrO 0~10%、 ZnO 0~10%、 SnO_2 0.05~2%、 Sb_2O_3 0.05~3%の組成を有し、本質的にアルカリ金属酸化物を含有しないことを特徴とする。

【0010】 また本発明の無アルカリガラスの製造方法は、重量百分率で SiO_2 40~70%、 Al_2O_3 6~25%、 B_2O_3 5~20%、 MgO 0~10%、 CaO 0~15%、 BaO 0~30%、 SrO 0~10%、 ZnO 0~10%の組成を有し、本質的にアルカリ金属酸化物を含有しないガラスとなるように調合したガラス原料調合物を溶融した後、成形する無アルカリガラスの製造方法において、ガラス原料調合物に清澄剤として SnO_2 を 0.05~2 重量% 及び Sb_2O_3 を 0.05~3 重量% 添加することを特徴とする。

【0011】

【作用】 本発明において使用する SnO_2 と Sb_2O_3 は、1200°C以上の温度域で Sn イオンと Sb イオンの価数変化による化学反応により多量の酸素ガスを発生する。特に SnO_2 は 1400°C以上で、 Sb_2O_3 は 1200~1300°C付近で酸素ガスを多量に発生する。従って清澄剤として SnO_2 と Sb_2O_3 を併用することにより、比較的低温で起こるガラス化反応時から高温の均質化溶融時にかけての広い温度域で高い清澄効果が得られるため、表示欠陥となる泡が存在しない無アルカリガラスを得ることができる。

【0012】 次に、本発明の無アルカリガラスの製造方法を述べる。

【0013】 まず、所望の組成を有するガラスとなるようにガラス原料調合物を用意する。ガラスの組成範囲及びその限定理由を以下に述べる。

【0014】 SiO_2 はガラスのネットワークとなる成分であり、その含有量は 40~70%、好ましくは 45~65% である。 SiO_2 が 40% より少ないと耐薬品性が悪化するとともに、歪点が低くなつて耐熱性が悪くなり、70% より多いと高温粘度が大きくなつて溶融性

が悪くなるとともに、クリストバライトの失透物が析出し易くなる。

【0015】 Al_2O_3 はガラスの耐熱性、耐失透性を高める成分であり、その含有量は6~25%、好ましくは10~20%である。 Al_2O_3 が6%より少ないと失透温度が著しく上昇してガラス中に失透が生じ易くなり、25%より多いと耐酸性、特に耐バッファードフッ酸性が低下してガラス基板表面に白濁が生じ易くなる。

【0016】 B_2O_3 は融剤として働き、粘性を下げて溶融を容易にする成分であり、その含有量は5~20%、好ましくは6~15%である。 B_2O_3 が5%より少ないと融剤としての効果が不十分となり、20%より多いと耐塩酸性が低下するとともに、歪点が低下して耐熱性が悪化する。

【0017】 MgO は歪点を下げずに高温粘度を下げてガラスの溶融を容易にする成分であり、その含有量は0~10%、好ましくは0~7%である。 MgO が10%より多いとガラスの耐バッファードフッ酸性が著しく低下する。 CaO も MgO と同様の働きをし、その含有量は0~15%、好ましくは0~10%である。 CaO が15%より多いとガラスの耐バッファードフッ酸性が著しく低下する。 BaO はガラスの耐薬品性を向上させるとともに失透性を改善する成分であり、その含有量は0~30%、好ましくは0~20%である。 BaO が30%より多いと歪点が低下して耐熱性が悪くなる。 SrO は BaO と同様の効果があり、その含有量は0~10%、好ましくは0~7%である。 SrO が10%より多いと失透性が増すため好ましくない。 ZnO は耐バッファードフッ酸性を改善するとともに失透性を改善する成分であり、その含有量は0~10%、好ましくは0~7%である。 ZnO が10%より多いと逆にガラスが失透し易くなり、また歪点が低下して耐熱性が得られなくなる。なお MgO 、 CaO 、 BaO 、 SrO および ZnO の含有量が5%より少ないと高温粘性が高くなつて溶融性が悪化するとともに、ガラスが失透し易くなり、30%より多いと耐熱性及び耐酸性が悪くなり好ましくない。

【0018】また上記成分の他に、 ZrO_2 、 TiO_2 、 Fe_2O_3 等を含有量で5%まで添加することができる。

【0019】次にガラス原料調合物に SnO_2 と Sb_2O_3 を添加する。 SnO_2 及び Sb_2O_3 の添加量は、

ガラス原料調合物100重量%に対して0.05~2重量%及び0.05~3重量%である。その理由は、 Sb_2O_3 が0.05%より少ないとガラス化反応時に発生したガスを追い出し難くなり、また SnO_2 が0.05%より少ないと均質化溶融時にガラス融液中に残った泡を除去し難くなる。また SnO_2 が2%及び Sb_2O_3 が3%より多いと揮発量が増えてガラスが変質し易くなるためである。

【0020】続いて調合したガラス原料を溶融する。ガラス原料を加熱していくとまずガラス化反応が起こるが、このとき Sb_2O_3 の価数変化による化学反応によって多量の酸素ガスが発生し、ガラス化反応時に発生したガスが融液中から追い出される。さらにより高温の均質化溶融時には、 SnO_2 の価数変化による化学反応で多量の酸素ガスが発生してガラス融液中に残存する微小な泡が除去される。

【0021】その後、溶融ガラスを所望の形状に成形する。ディスプレイ用途に使用する場合、フュージョン法、ダウンドロー法、フロート法、ロールアウト法等の方法を用いて薄板状に成形する。

【0022】このようにして、重量百分率で SiO_2 40~70%、 Al_2O_3 6~25%、 B_2O_3 5~20%、 MgO 0~10%、 CaO 0~15%、 BaO 0~30%、 SrO 0~10%、 ZnO 0~10%、 SnO_2 0.05~2%、 Sb_2O_3 0.05~3%の組成を有し、本質的にアルカリ金属酸化物を含有しない本発明の無アルカリガラスを得ることができる。

【0023】

【実施例】以下、実施例に基づいて本発明を説明する。

【0024】(実施例1) 表1は、 SnO_2 と Sb_2O_3 の効果を示したものであり、試料aは As_2O_3 を清澄剤として添加した従来の無アルカリガラス、試料bは試料aから As_2O_3 を除いて作製した無アルカリガラス、試料cは SnO_2 のみを添加した無アルカリガラス、試料dは Sb_2O_3 のみを添加した無アルカリガラス、試料eは SnO_2 と Sb_2O_3 を併用した本発明の無アルカリガラスを示している。

【0025】

【表1】

試料		a	b	c	d	e
ガラス 組成 (重量%)	SiO ₂	60.0	60.0	60.0	60.0	60.0
	Al ₂ O ₃	16.0	16.0	16.0	16.0	16.0
	B ₂ O ₃	8.5	8.5	8.5	8.5	8.5
	MgO	4.0	4.0	4.0	4.0	4.0
	CaO	1.0	1.0	1.0	1.0	1.0
	BaO	8.0	6.0	6.0	6.0	6.0
	SrO	3.5	3.5	3.5	3.5	3.5
	ZnO	1.0	1.0	1.0	1.0	1.0
	SnO ₂	—	—	0.3	—	0.3
	Sb ₂ O ₃	—	—	—	0.3	0.3
	As ₂ O ₃	0.3	—	—	—	—
清澄性	1500°C・1 hr	○	×	△	△	○
	1650°C・1 hr	○	×	○	△	○

【0026】各試料は次のようにして調製した。

【0027】表の組成を有するようにガラス原料を調合し、電気炉にて溶融した。このとき、ガラス化反応時の清澄性を評価するために1500°Cで1時間溶融したものと、均質化溶融時の清澄性を評価するために1550°Cで1時間溶融したものとの2種類を用意した。次いで、溶融ガラスをカーボン台上に流しだし、徐冷した後、ガラス中に残存している泡の個数を計数し、ガラス100g中の泡が1000個を越えるものを×、101~1000個のものを△、100個以下のものを○で評価した。結果を表1に示す。

【0028】表1から明らかなように、SnO₂とSb₂O₃を添加しない試料bのガラスは清澄性が著しく悪

かった。SnO₂のみを添加した試料cのガラスはガラス化反応時の清澄性が良くなかった。Sb₂O₃のみを添加した試料dのガラスはガラス化反応時及び均質化溶融時の清澄性が良くなかった。一方、SnO₂とSb₂O₃の両方を添加した試料eのガラスは、As₂O₃を添加した試料aのガラスと同様、ガラス化反応時及び均質化溶融時の何れにおいても清澄性が良好であった。

【0029】(実施例2)表2は、本発明の方法により得られる無アルカリガラスの実施例(試料No. 1~6)を示している。

【0030】

【表2】

試料No.		1	2	3	4	5	6
ガラス組成 (重量%)	SiO ₂	54.0	58.3	58.7	62.3	64.4	58.4
	Al ₂ O ₃	19.6	10.7	18.5	17.5	19.5	16.5
	B ₂ O ₃	10.5	8.4	8.3	8.5	6.6	9.0
	MgO	-	-	3.7	4.5	0.3	-
	CaO	3.1	5.4	1.0	-	5.9	2.1
	BaO	1.8	18.0	6.8	1.1	0.3	3.5
	SrO	8.9	4.2	3.1	0.6	0.6	6.5
	ZnO	-	1.3	0.9	2.7	-	0.5
	SnO ₂	1.2	0.3	0.8	1.5	1.8	1.0
清澄性	1600°C・1 hr	○	○	○	○	○	○
	1550°C・1 hr	○	○	○	○	○	○
歪点 (°C)		677	628	662	671	710	885
耐塩酸性		○	○	○	○	○	○
耐バッファードフッ酸		○	○	○	○	○	○

【0031】各試料は次のようにして調製した。

【0032】表の組成を有するガラスとなるようにガラス原料を調合し、実施例1と同様にして清澄性を評価した。またこれらのガラス原料調合物を電気炉にて1550～1600°Cで16～24時間溶融し、成型して試料を得た。

【0033】このようにして得られた各試料について、耐熱性及び耐薬品性を評価した。結果を表2に示す。

【0034】表2から明らかなように、各試料とも清澄性に優れ、しかも耐熱性、耐薬品性の特性についても良好であった。

【0035】なお耐熱性は、歪点をASTM C336-71の方法に基づいて測定した。耐薬品性は、耐塩酸性について各試料を80°Cに保持された10重量%塩酸水溶液に24時間浸漬した後、ガラス基板の表面状態を観察することによって評価し、ガラス基板表面の変色し

たものを×、全く変色のないものを○で示した。また耐バッファードフッ酸性は、各試料を20°Cに保持された3.8.7重量%フッ化アンモニウムと1.6重量%フッ酸からなるバッファードフッ酸に30分間浸漬した後、ガラス基板の表面状態を観察することによって評価し、ガラス基板表面が白濁したものを×、全く変化しなかったものを○で示した。

【0036】

【発明の効果】以上説明したように、本発明の方法によれば、清澄剤としてSnO₂とSb₂O₃を併用するため清澄性に優れ、表示欠陥となる泡が存在しない無アルカリガラスを製造することが可能である。

【0037】また、本発明の無アルカリガラスは、表示欠陥となる泡がなく、かつ優れた耐熱性、耐薬品性を有しており、特にディスプレイ用透明ガラス基板として好適である。