

# Mathematical Foundations of Artificial Intelligence



Eric Li <sup>1</sup> Al Research Team <sup>1</sup>

<sup>1</sup>School of Artificial Intelligence, Nanjing University

### Introduction

This poster template is modified from the original FSU Mathematics template by Rafiq Islam[1] for Nanjing University AI School presentations[2]. Artificial Intelligence encompasses the development of systems that can perform tasks requiring human intelligence, including learning, reasoning, perception, and decision-making.

#### Mathematical Foundations

The core of modern Al lies in mathematical optimization and linear algebra. The fundamental neural network forward propagation is:

$$a^{(l)} = \sigma(W^{(l)}a^{(l-1)} + b^{(l)})$$

where  $\sigma$  is the activation function,  $W^{(l)}$  are weight matrices, and  $b^{(l)}$  are bias vectors.

Backpropagation uses gradient descent to minimize the loss function:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} J(\theta)$$

#### Neural Network Architecture



# Research Objectives

- ► Develop advanced deep learning architectures
- ► Improve natural language understanding capabilities
- ► Enhance computer vision systems for real-world applications
- ▶ 推动人工智能理论创新 (Advancing AI theoretical innovation)

## Why Artificial Intelligence?

Artificial Intelligence is revolutionizing multiple industries and creating new possibilities:

- ► Healthcare: Early disease detection and personalized treatment
- ► Transportation: Autonomous vehicles and smart traffic systems
- ► Education: Adaptive learning platforms and intelligent tutoring

#### Methodology

Our research methodology follows a systematic approach:

- 1. Problem formulation and mathematical modeling
- 2. Data collection and preprocessing
- 3. Algorithm design and implementation
- 4. Experimental evaluation and performance analysis
- 5. Theoretical analysis and generalization studies

#### Al Research Areas



## Learning And Mining from DatA

图 2: NJU LAMDA Research Team (Photo credit: LAMDA)

- ► Machine Learning and Deep Learning
- ► Natural Language Processing
- Computer Vision and Robotics
- ► Knowledge Representation and Reasoning

#### **Performance Comparison**

| Model          | Accuracy | Precision | Recall |
|----------------|----------|-----------|--------|
| CNN            | 94.2%    | 93.8%     | 94.5%  |
| RNN            | 91.5%    | 90.2%     | 92.1%  |
| Transformer    | 96.8%    | 96.5%     | 97.1%  |
| Traditional ML | 87.3%    | 86.1%     | 88.2%  |

表 1: Performance comparison of different AI models on benchmark datasets

#### **Theoretical Foundations**

The mathematical foundation of deep learning involves optimization theory and linear algebra. The learning process minimizes the loss function:

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f_{\theta}(x_i), y_i) + \lambda R(\theta)$$
 (1)

where  $\mathcal L$  is the loss function,  $R(\theta)$  is the regularization term, and  $\lambda$  controls regularization strength.



This visualization shows typical learning curves where both training and validation losses decrease over epochs, indicating successful model convergence.

#### Conclusion and Future Work

- ▶ Deep learning models demonstrate superior performance across various tasks
- ► Transformer architectures excel in natural language processing
- ► Continued research needed for explainable and trustworthy Al
- ► Future directions include multimodal learning and Al safety

#### References

Rafiq Islam.

Fsu mathematics general poster design.

Technical report, Florida State University, 2025.

🖺 Eric Li.

Nju general poster design.

Technical report, Nanjing University, 2025.