Special Discrete Random Variables (Ch. 5.1)

Dason Kurkiewicz

Special Discrete Random Variables (Ch. 5.1)

Dason Kurkiewicz

Iowa State University

June 6, 2013

Outline

Binomial Distribution

Special Discrete Random Variables (Ch. 5.1)

Dason Kurkiewicz

Binomial Distribution

- ▶ A Bin(n, p) random variable counts the number of successes in *n* success-failure trials that:
 - are independent of one another.
 - each succeed with probability p.
- Examples:
 - Number of conforming hexamine pellets in a batch of n = 50 total pellets made from a pelletizing machine.
 - Number of runs of the same chemical process with percent yield above 80%, given that you run the process a total of n = 1000 times.
 - Number of rivets that fail in a boiler of n = 25 rivets within 3 years of operation. (Note; "success" doesn't always have to be good.)

▶ $X \sim \text{Binomial}(n, p) - \text{i.e.}$, X is distributed as a binomial random variable with parameters n and p (0 if:

$$f_X(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & x = 0, \dots, n \\ 0 & \text{otherwise} \end{cases}$$

where:

- ▶ $n! = n \cdot (n-1) \cdot \cdots \cdot 2 \cdot 1$, the factorial function.
- ightharpoonup E(X) = np
- ▶ Var(X) = np(1 p)

The Binomial Distribution

Special Discrete Random Variables (Ch. 5.1)

Dason Kurkiewicz

Binomial Distribution

Geometric Distribution

Distribution

- | 3 | | 4 | | 5 | | 6 | | 7
 - Suppose you have a machine with 10 independent components in series. The machine only works if all the components work.
 - \triangleright Each component succeeds with probability p = 0.95 and fails with probability 1 - p = 0.05.
 - ▶ Let Y be the number of components that succeed in a given run of the machine. Then:

$$Y \sim \mathsf{Binomial}(n = 10, p = 0.95)$$

$$P(\text{machine succeeds}) = P(Y = 10)$$

$$= \binom{10}{10} p^{10} (1 - p)^{10-10}$$

$$= p^{10}$$

$$= 0.95^{10}$$

$$= 0.5987$$

This machine isn't very reliable.

Example: machine with 10 components

- ▶ What if I arrange these 10 components in parallel? This machine succeeds if at least 9 of the components succeed.
- ▶ What is the probability that the new machine succeeds?

Special Discrete Random Variables (Ch. 5.1)

Dason Kurkiewicz

Binomial Distribution

$$P(\text{improved machine succeeds})$$

$$= P(Y \ge 9)$$

$$= P(Y = 9) + P(Y = 10)$$

$$= {10 \choose 9} p^9 (1 - p) + {10 \choose 10} p^{10} (1 - p)^{10-10}$$

$$= (10) \cdot 0.95^9 \cdot 0.05 + (1) \cdot 0.95^{10}$$

$$= 0.9139$$

By allowing just one component to fail, we made this machine far more reliable.

If we allow up to 2 components to fail:

P(improved machine succeeds)

$$= P(Y \ge 8)$$

$$= P(Y = 8) + P(Y = 9) + P(Y = 10)$$

$$= {10 \choose 8} p^8 (1 - p)^{10 - 8} + {10 \choose 9} p^9 (1 - p) + {10 \choose 10} p^{10} (1 - p)^{10 - 10}$$

$$= {10! \over (10 - 8)!8!} \cdot 0.95^8 \cdot 0.05^2 + (10) \cdot 0.95^9 \cdot 0.05 + (1) \cdot 0.95^{10}$$

$$= 0.9885$$

Special Discrete Random Variables (Ch. 5.1)

Dason Kurkiewicz

Binomial Distribution

- $E(Y) = np = 10 \cdot 0.95 = 9.5$. So the number of components to fail per run on average is 9.5.
- $Var(Y) = np(1-p) = 10 \cdot 0.95 \cdot (1-0.95) = 0.475.$
- $ightharpoonup SD(Y) = \sqrt{Var(Y)} = \sqrt{np(1-p)} = 0.689.$

Outline

Geometric Distribution

Special Discrete Random Variables (Ch. 5.1)

Dason Kurkiewicz

Geometric Distribution

- For an indefinitely-long sequence of independent, success-failure trials, each with P(success) = p, X is the number of trials it takes to get a success.
- Examples:
 - Number of rolls of a fair die until you land a 5.
 - Number of shipments of raw material you get until you get a defective one.
 - ▶ The number of enemy aircraft that fly close before one flies into friendly airspace.
 - Number hexamine pellets you make before you make one that does not conform.
 - Number of buses that come before yours.

 \blacktriangleright X \sim Geometric(p) – that is, X has a geometric distribution with parameter p (0 < p < 1) – if its pmf is:

$$f_X(x) = \begin{cases} p(1-p)^{x-1} & x = 1,2,3,\dots \\ 0 & \text{otherwise} \end{cases}$$

and its cdf is:

$$F_X(x) = \begin{cases} 1 - (1-p)^x & x = 1, 2, 3, \dots \\ 0 & \text{otherwise} \end{cases}$$

- ► $E(X) = \frac{1}{p}$
- $Var(X) = \frac{1-p}{p^2}$

A look at the Geom(p) distribution

Special Discrete Random Variables (Ch. 5.1)

Dason Kurkiewicz

Geometric Distribution

- An experimental program was successful in reducing the percentage of manufactured NiCad cells with internal shorts to around 1%.
- Let T be the test number at which the first short is discovered. Then, $T \sim \text{Geom}(p)$.

$$P(1 ext{st or 2nd cell tested is has the 1st short}) = P(T=1 ext{ or } T=2)$$

$$= f(1) + f(2)$$

$$= p + p(1-p)$$

$$= 0.01 + 0.01(1-0.01)$$

$$= 0.02$$

$$P(\text{at least } 50 \text{ cells tested w/o finding a short}) = P(T > 50)$$

$$= 1 - P(T \le 50)$$

$$= 1 - F(50)$$

$$= 1 - (1 - (1 - p)^x)$$

$$= (1 - p)^x$$

$$= (1 - 0.01)^{50}$$

$$= 0.61$$

Special Discrete Random Variables (Ch. 5.1)

Dason Kurkiewicz

Binomial

Geometric Distribution

Distribution

Geometric Distribution

$$E(T) = \frac{1}{p} = \frac{1}{0.01}$$

= 100 tests for the first short to appear, on avg.

$$SD(T) = \sqrt{Var(T)} = \sqrt{\frac{1-p}{p^2}}$$

$$= \sqrt{\frac{1-0.01}{0.01^2}} = 99.5 \text{ tested batteries}$$

Outline

(Ch. 5.1) Dason Kurkiewicz

Special Discrete

Random Variables

Poisson Distribution

Poisson Distribution

June 6, 2013

- A Poisson(λ) random variable counts the number of occurrences that happen over a fixed interval of time or space.
- These occurrences must:
 - ▶ be independent
 - be sequential in time (no two occurrences at once)
 - occur at the same constant rate, λ .
- λ, the rate parameter, is the expected number of occurrences in the specified interval of time or space.

 \blacktriangleright X \sim Poisson(λ) – that is, X has a poisson distribution with parameter $\lambda > 0$ — if its pmf is:

$$f_X(x) = egin{cases} rac{\mathrm{e}^{-\lambda}\lambda^x}{x!} & x = 0, 1, 2, 3, \dots \\ 0 & \text{otherwise} \end{cases}$$

- \triangleright $E(X) = \lambda$
- $ightharpoonup Var(X) = \lambda$

A look at the Poisson distribution

Special Discrete Random Variables (Ch. 5.1)

Dason Kurkiewicz

Poisson Distribution

- \blacktriangleright Y is the number of shark attacks off the coast of CA next year. $\lambda=100$ attacks per year.
- ▶ Z is the number of shark attacks off the coast of CA next month. $\lambda = 100/12 = 8.3333$ attacks per month
- ▶ *N* is the number of β particles emitted from a small bar of plutonium, registered by a Geiger counter, in a minute. $\lambda = 459.21$ particles/minute.
- ▶ *J* is the number of particles per three minutes. $\lambda = ?$

$$\begin{split} \lambda &= \frac{\text{459.21 (units particle)}}{1 \text{ (unit minute)}} \cdot \frac{3 \text{ (units minute)}}{1 \text{ (unit of 3 minutes)}} \\ &= \frac{1377.63 \text{ (units particle)}}{1 \text{ (unit of 3 minutes)}} = 1377.62 \text{ particles per 3 minutes} \end{split}$$

▶ The average number of particles per 8 minutes was $\lambda = 3.87$ particles / 8 min.

Let $S \sim \text{Poisson}(\lambda)$, the number of particles detected in the next 8 minutes.

$$f(s) = \begin{cases} \frac{e^{-3.87}(3.87)^s}{s!} & s = 0, 1, 2, \dots \\ 0 & \text{otherwise} \end{cases}$$

P(at least 4 particles recorded)

= 0.54

$$= P(S \ge 4)$$

$$= f(4) + f(5) + f(6) + \cdots$$

$$= 1 - f(0) - f(1) - f(2) - f(3)$$

$$= 1 - \frac{e^{-3.87}(3.87)^0}{0!} - \frac{e^{-3.87}(3.87)^1}{1!}$$

$$- \frac{e^{-3.87}(3.87)^2}{2!} - \frac{e^{-3.87}(3.87)^3}{3!}$$

Special Discrete Random Variables (Ch. 5.1)

Dason Kurkiewicz

Binomial Distribution

Poisson Distribution

- ► Some students' data indicate that between 12:00 and 12:10 P.M. on Monday through Wednesday, an average of around 125 students entered a library at lowa State University library.
- ▶ Let *M* be the number of students entering the ISU library between 12:00 and 12:01 PM next Tuesday.
- ▶ Model $M \sim \text{Poisson}(\lambda)$.
- Having observed 125 students enter between 12:00 and 12:10 PM last Tuesday, we might choose:

$$\begin{split} \lambda &= \frac{125 \text{ (units of student)}}{1 \text{ (unit of 10 minutes)}} \cdot \frac{1 \text{ (unit of 10 minutes)}}{10 \text{ (units of minute)}} \\ &= \frac{12.5 \text{ (units of student)}}{1 \text{ (unit minute)}} = 12.5 \text{ students per minute} \end{split}$$

Poisson Distribution

▶ Under this model, the probability that between 10 and 15 students arrive at the library between 12:00 and 12:01 PM is:

$$P(10 \le M \le 15) = f(10) + f(11) + f(12) + f(13) + f(14) + f(15)$$

$$= \frac{e^{-12.5}(12.5)^{10}}{10!} + \frac{e^{-12.5}(12.5)^{11}}{11!} + \frac{e^{-12.5}(12.5)^{12}}{12!} + \frac{e^{-12.5}(12.5)^{13}}{13!} + \frac{e^{-12.5}(12.5)^{14}}{14!} + \frac{e^{-12.5}(12.5)^{15}}{15!}$$

$$= 0.60$$

- ▶ Let *X* be the number of unprovoked shark attacks that will occur off the coast of Florida next year.
- ▶ Model $X \sim \text{Poisson}(\lambda)$.
- ► From the shark data at http://www.flmnh.ufl.edu/fish/sharks/statistics/FLactivity.htm, 246 unprovoked shark attacks occurred from 2000 to 2009.
- ► Hence, I calculate:

$$\begin{split} \lambda &= \frac{246 \text{ (units attack)}}{1 \text{ (unit of 10 years)}} \cdot \frac{1 \text{ (unit of 10 years)}}{10 \text{ (units year)}} \\ &= \frac{24.6 \text{ (units attack)}}{1 \text{ (unit year)}} = 24.6 \text{ attacks per year} \end{split}$$

 ≈ 0.9999996

 ≈ 0.1193

$$P(\text{no attacks next year}) = f(0) = e^{-24.6} \cdot \frac{24.6^0}{0!}$$

$$\approx 2.07 \times 10^{-11}$$

$$P(\text{at least 5 attacks}) = 1 - P(\text{at most 4 attacks})$$

$$= 1 - F(4)$$

$$= 1 - f(0) - f(1) - f(2) - f(3) - f(4)$$

$$= 1 - e^{-24.6} \frac{24.6^0}{0!} - e^{-24.6} \frac{24.6^1}{1!} - e^{-24.6} \frac{24.6^2}{2!}$$

$$- e^{-24.6} \frac{24.6^3}{2!} - e^{-24.6} \frac{24.6^4}{4!}$$

P(more than 30 attacks) = 1 - P(at least 30 attacks)

 $=1-e^{-24.6}\sum_{x}^{30}\frac{24.6^{x}}{x!}=1-e^{-24.6}\cdot 4.251\times 10^{10}$

- ▶ Now, let *Y* be the total number of shark attacks in Florida during the next 4 months.
- Let $Y \sim \mathsf{Poisson}(\theta)$, where θ is the true shark attack rate per 4 months:

$$\begin{split} \theta &= \frac{24.6 \text{ (units attack)}}{1 \text{ (unit year)}} \cdot \frac{1/3 \text{ (unit year)}}{1 \text{ (unit of 4 months)}} \\ &= \frac{8.2 \text{ (units attack)}}{1 \text{ (unit of 4 months)}} = 8.2 \text{ attacks per 4 months} \end{split}$$

$$\begin{split} &P(\text{no attacks next year}) = f(0) = e^{-8.2} \cdot \frac{8.2^0}{0!} \\ &\approx 0.000275 \\ &P(\text{at least 5 attacks}) = 1 - P(\text{at most 4 attacks}) \\ &= 1 - F(4) \\ &= 1 - f(0) - f(1) - f(2) - f(3) - f(4) \\ &= 1 - e^{-8.2} \frac{8.2^0}{0!} - e^{-8.2} \frac{8.2^1}{1!} - e^{-8.2} \frac{8.2^2}{2!} \\ &- e^{-8.2} \frac{8.2^3}{3!} - e^{-8.2} \frac{8.2^4}{4!} \\ &\approx 0.9113 \\ &P(\text{more than 30 attacks}) = 1 - P(\text{at least 30 attacks}) \\ &= 1 - e^{-8.2} \sum_{i=1}^{30} \frac{8.2^i}{i!} = 1 - e^{-8.2} \cdot 4.251 \times 10^{10} \end{split}$$

 $\approx 9.53 \times 10^{-10}$