Introdução à Teoria da Informação

Teoria da Informação - AULA 01 (Parte 2) Prof^a. Verusca Severo

> Universidade de Pernambuco Escola Politécnica de Pernambuco

> > 16 de junho de 2021

Exercício 1

- Considere uma variável aleatória discreta X que pode assumir dois valores distintos, X = a e X = b. Considere que P(X = a) = p e, naturalmente, P(X = b) = 1 p. Calcule a entropia H(X) quando:
 - p = 0
 - p = 0, 2
 - 3 p = 0.4
 - p = 0.5
 - p = 0, 6
 - p = 0.8
 - p = 1

Exercício 1 - SOLUÇÃO:

$$H(X) = -P(X = a) \log_2 P(X = a) - P(X = b) \log_2 P(X = b)$$

Exercício 1 - SOLUÇÃO:

$$H(X) = -P(X = a) \log_2 P(X = a) - P(X = b) \log_2 P(X = b)$$

•
$$p = 0$$
, $\log P(X = a) = 0$ e $P(X = b) = 1$
$$H(X) = -0 \log_2(0) - 1 \log_2(1) = 0$$

Exercício 1 - SOLUÇÃO:

$$H(X) = -P(X = a) \log_2 P(X = a) - P(X = b) \log_2 P(X = b)$$

•
$$p = 0$$
, $\log P(X = a) = 0$ e $P(X = b) = 1$
$$H(X) = -0 \log_2(0) - 1 \log_2(1) = 0$$

②
$$p = 0, 2$$
, logo $P(X = a) = 0, 2$ e $P(X = b) = 0, 8$
 $H(X) = -0, 2\log_2(0, 2) - 0, 8\log_2(0, 8) = 0, 7216$

Exercício 1 - SOLUÇÃO:

$$H(X) = -P(X = a) \log_2 P(X = a) - P(X = b) \log_2 P(X = b)$$

②
$$p = 0, 2$$
, logo $P(X = a) = 0, 2$ e $P(X = b) = 0, 8$
 $H(X) = -0, 2\log_2(0, 2) - 0, 8\log_2(0, 8) = 0, 7216$

1
$$p = 0, 4$$
, logo $P(X = a) = 0, 4$ e $P(X = b) = 0, 6$
$$H(X) = -0, 4 \log_2(0, 4) - 0, 6 \log_2(0, 6) = 0,971$$

4
$$p = 0, 5$$
, logo $P(X = a) = 0, 5$ e $P(X = b) = 0, 5$

$$H(X) = -0.5 \log_2(0.5) - 0.5 \log_2(0.5) = 1$$

$$p = 0, 6, \log_2 P(X = a) = 0, 6 \text{ e } P(X = b) = 0, 4$$

$$H(X) = -0, 6 \log_2(0, 6) - 0, 4 \log_2(0, 4) = 0,971$$

$$p = 0, 6, \log_2 P(X = a) = 0, 6 \text{ e } P(X = b) = 0, 4$$

$$H(X) = -0, 6 \log_2(0, 6) - 0, 4 \log_2(0, 4) = 0,971$$

$$p = 0,8, \log_2 P(X = a) = 0,8 \text{ e } P(X = b) = 0,2$$

$$H(X) = -0,8 \log_2(0,8) - 0,2 \log_2(0,2) = 0,7216$$

$$p = 1$$
, logo $P(X = a) = 1$ e $P(X = b) = 0$

$$H(X) = -1\log_2(1) - 0\log_2(0) = 0$$

Exercício 1 - SOLUÇÃO:

$$p = 1$$
, logo $P(X = a) = 1$ e $P(X = b) = 0$
$$H(X) = -1\log_2(1) - 0\log_2(0) = 0$$

• Logo:

P(X = a)	H(X)
0	0
0,2	0,7216
0,4	0,971
0,5	1
0,6	0,971
0,8	0,7216
1	0

Exercício 1 - SOLUÇÃO:

• Graficamente, a entropia de X em função da probabilidade p:

- Do exercício anterior, temos que:
 - A entropia tende a zero nos extremos, nos quais não há incerteza

$$H(X)
ightarrow 0$$
, quando $p
ightarrow 0$ ou $p
ightarrow 1$

② A entropia é máxima no caso equiprovável (considere X com m valores)

$$H(X) = H(X)_{\text{max}}$$
, quando $p = \frac{1}{m}$

O valores de entropia são SEMPRE maiores ou iguais a zero

$$H(X) \geq 0$$

