: Unnamed	ead_csv(path) ('module_5_auto.csv') t_numeric_data() d: Unnamed: symboling normalized- wheel- length width height curb- weight size stroke compression- ratio horsepower peak- city- highway- price mpg mpg price	L/1
0.3 0 1 2 3 4	1 0 Symboling losses base length with height weight size stoke ratio losepower rpm mpg mpg price 1 0 0 3 122 88.6 0.811148 0.890278 48.8 2548 130 2.68 9.0 111.0 5000.0 21 27 13495.0 1 1 3 122 88.6 0.811148 0.890278 48.8 2548 130 2.68 9.0 111.0 5000.0 21 27 16500.0 2 2 1 1 122 94.5 0.822681 0.909722 52.4 2823 152 3.47 9.0 154.0 5000.0 19 26 16500.0 3 3 2 164 99.8 0.848630 0.919444 54.3 2337 109 3.40 10.0 102.0 5500.0 24 30 13950.0 4 4 4 2 164 99.4 0.848630 0.92222 54.3 2824 136 3.40 8.0 115.0 5500.0 18 22 17450.0	11.19 11.19 12.30 9.79
Function def Distr.	idgets import interact, interactive, fixed, interact_manual ibutionPlot(RedFunction, BlueFunction, RedName, BlueName, Title):	
<pre>width heigh plt.f. ax1 = ax2 = plt.t. plt.x.</pre>	<pre>t = 12 t = 10 tigure(figsize=(width, height)) s sns.kdeplot(RedFunction, color="r", label=RedName) # update distplot s sns.kdeplot(BlueFunction, color="b", label=BlueName, ax=ax1) # update distplot itle(Title) clabel('Price (in dollars)')</pre>	
plt.y. plt.si plt.c. def Pollyi width heigh	<pre>rlabel('Proportion of Cars') how() rlose() Plot(xtrain, xtest, y_train, y_test, lr,poly_transform):</pre>	
#poly_ xmax= xmin=	<pre>digure(figsize=(width, height)) /_transform: polynomial transformation object /max([xtrain.values.max(), xtest.values.max()]) /min([xtrain.values.min(), xtest.values.min()]) // arange(xmin, xmax, 0.1)</pre>	
plt.p. plt.y. plt.y. plt.y.	<pre>lot(xtrain, y_train, 'ro', label='Training Data') lot(xtest, y_test, 'go', label='Test Data') lot(x, lr.predict(poly_transform.fit_transform(x.reshape(-1, 1))), label='Predicted Function') lim([-10000, 60000]) label('Price') egend()</pre>	
: y_data = 0		
: from sklea x_train, :	<pre>idrop('price',axis=1) arn.model_selection import train_test_split x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.10, random_state=1) mber of test samples :", x_test.shape[0])</pre>	
<pre>print("number of number of from sklea</pre>	<pre>mber of training samples:",x_train.shape[0]) test samples: 21 training samples: 180 arn.linear_model import LinearRegression rRegression()</pre>	
▼ LinearR LinearReg	<pre>regression gression() (x_test[['horsepower']], y_test)</pre>	
0.6619724	(x_train[['horsepower']], y_train)	
To Creat	2: Overfitting, Underfitting and Model Selection te Multiple Linear Regression objects and train the model using 'horsepower', 'curb-weight', 'engine-size' and 'high features.	ıwa
lr.fit(x_ ▼ LinearR	arRegression() train[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']], y_train) egression gression()	
yhat_train array([74 34! yhat_test yhat_test	426.6731551 , 28323.75090803, 14213.38819709, 4052.34146983, 500.19124244]) = lr.predict(x_test[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']])	
import ma %matplot1 import se	565.79920282]) tplotlib.pyplot as plt	
	Distribution Plot of Predicted Value Using Training Data vs Training Data Distribution' ionPlot(y_train, yhat_train, "Actual Values (Train)", "Predicted Values (Train)", Title) 5 Distribution Plot of Predicted Value Using Training Data vs Training Data Distribution	
6 -		
f Cars - 4		
Proportion of Cars		
2 -		
1 - 0 - -10000		
: Title='Di	Price (in dollars) Plot of predicted values using the training data compared to the actual values of the training data. stribution Plot of Predicted Value Using Test Data vs Data Distribution of Test Data' ionPlot(y_test, yhat_test, "Actual Values (Test)", "Predicted Values (Test)", Title) Distribution Plot of Predicted Value Using Test Data vs Data Distribution of Test Data	
0.0001		
0.0000	98 -	
Proportion of Cars O O O O O O O O O O O O O O O O O O O	06 -	
0.0000)4 -	
0.0000		
0.0000 Figure 2: I	Plot of predicted value using the test data compared to the actual values of the test data.	
: from sklea	ng Figure 1 and Figure 2, it is evident that the distribution of the test data in Figure 1 is much better at fitting the data. This difference in Fint in the range of 5000 to 15,000. This is where the shape of the distribution is extremely different. Let's see if polynomial regression also drop in the prediction accuracy when analysing the test dataset. Sarn.preprocessing import PolynomialFeatures	gure
pr = Poly x_train_p	<pre>x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.45, random_state=0) momialFeatures(degree=5) r = pr.fit_transform(x_train[['horsepower']])</pre>	
Polynomia poly = Li	cynomialFeatures alFeatures(degree=5) nearRegression() x_train_pr, y_train)	
<pre>LinearReg yhat = po yhat[0:5] array([65]</pre>	gression() ly.predict(x_test_pr) 728.7450134 , 7308.0678859 , 12213.81567729, 18893.11763607, 995.80011736])	
print("Proprint("Tro	edicted values:", yhat[0:4]) ue values:", y_test[0:4].values) values: [6728.7450134 7308.0678859 12213.81567729 18893.11763607]	
	<pre>values: [6728.7450134 7308.0678859 12213.81567729 18893.11763607] es: [6295. 10698. 13860. 13499.] (x_train[['horsepower']], x_test[['horsepower']], y_train, y_test, poly,pr)</pre>	
	es: [6295. 10698. 13860. 13499.] (x_train[['horsepower']], x_test[['horsepower']], y_train, y_test, poly,pr) Training Data Test Data Predicted Function	
PollyPlot	es: [6295. 10698. 13860. 13499.] (x_train[['horsepower']], x_test[['horsepower']], y_train, y_test, poly,pr) Training Data Test Data Predicted Function	
50000 50000 40000 30000	es: [6295. 10698. 13860. 13499.] (x_train[['horsepower']], x_test[['horsepower']], y_train, y_test, poly,pr) Training Data Test Data Test Data Predicted Function	
50000 50000 50000	es: [6295. 18698. 13860. 13499.] (x_train[['horsepower']], x_test[['horsepower']], y_train, y_test, poly,pr) Training Data Test Data Predicted Function	
FollyPlot 6000 5000 4000 2000 1000	es: [6295. 18698. 13860. 13499.] (x_train[['horsepower']], x_test[['horsepower']], y_train, y_test, poly,pr) Training Data Test Data Predicted Function	
Figure 3: Aprediction	(x_train[[horsepower']], x_test[[horsepower']], y_train, y_test, poly,pr) Training Data Training Data Training Data Predicted Function Training Data	node
Figure 3: Aprediction We see the R^2 of the	A polynomial regression model where red dots represent training data, green dots represent test data, and the blue line represents the mat the estimated function appears to track the data but around 200 horsepower, the function begins to diverge from the data points. et training r, y train)	node
Figure 3: / prediction We see the R^2 of the poly.score	(c. train(C) hor seposer 131, a. train (C) for seposer 131, y. train, y. test, puly,pr) Training Data Test Data Predicted Function A polynomial regression model where red dots represent training data, green dots represent test data, and the blue line represents the nata the estimated function appears to track the data but around 200 horsepower, the function begins to diverge from the data points. a training data: (C,trait_pr,trait_) (C,trait_pr,trait_) (C,trait_pr,trait)	
Figure 3: Aprediction We see the R^2 of the poly.score 0.55677169 poly.score 29.871658 We see the sign of over the sign of	(x_train 'norsepower' , x_test 'norsepower' , y_train, y_test, poly,sr) Training Data	
Figure 3: / 2000 Figure 3: / 2000 1000 1000 Figure 3: / prediction We see th R^2 of the poly.score 0.55677163 poly.score -29.871653 We see th sign of ove Request order = [ifor n in i	(a. Errange, Jesses, 1999). In control the representation of the data but around 200 horsepower, the function begins to diverge from the data points. It is the estimated function appears to track the data but around 200 horsepower, the function begins to diverge from the data points. It is the estimated function appears to track the data but around 200 horsepower, the function begins to diverge from the data points. It is the estimated function appears to track the data but around 200 horsepower, the function begins to diverge from the data points. It is the estimated function appears to track the data but around 200 horsepower, the function begins to diverge from the data points. It is the estimated function appears to track the data but around 200 horsepower, the function begins to diverge from the data points. It is the estimated function appears to track the data but around 200 horsepower, the function begins to diverge from the data points. It is the estimated function appears to track the data but around 200 horsepower, the function begins to diverge from the data points. It is the estimated function appears to track the data but around 200 horsepower, the function begins to diverge from the data points. It is the estimated function appears to track the data but around 200 horsepower, the function begins to diverge from the data points. It is the estimated function appears to track the data but around 200 horsepower, the function begins to diverge from the data points.	
Figure 3: / 50006 50006 40006 30006 30006 20006 10006 10006 10006 Figure 3: / prediction We see th R^2 of the poly.score 0.55677166 poly.score -29.871658 We see th sign of ove Rsqu_test order = [: for n in for pr = [] x_train x_train x_train x_train x_train plt.plot(plt.xlabe. plt.ylabe. plt.ylabe. plt.ylabe. plt.title plt.text(:)	A polynomial regression model where rod dots represent training data, green dots represent test data, and the thus fine represents the model. A polynomial regression model where rod dots represent training data, green dots represent test data, and the thus fine represents the model. The straining data: 1. **Training data:** 1. **Training da	
Figure 3: / 5000 4000 4000 3000 1000 Figure 3: / prediction We see th R^2 of the poly.score 0.55677168 poly.score -29.871658 We see th sign of ove Rsqu_test order = [: for n in pr = [:	Training Data Total from seasoner (1), x_Lest(fflor seasoner (1), y_Listain, y_Lest, poly,pr) Training Data Test Data Predicted Function A polynomial regression model where red data represent training data, green dots represent test data, and the blue line represents the research of the estimated function appears to track the data but around 200 horsepower, the function begins to diverge from the data points of training data. (x_rear_pr, y_rear) **Training data** (x_rear_pr, y_rear_pr) **Training data** (x_rear_pr, y_rear_pr) **Training data** (x_rear_pr, y_rear_pr) **Training data**	
Figure 3: Apprediction We see the R^2 of the poly.score Double poly.score Po	Training Data Total from seasoner (1), x_Lest(fflor seasoner (1), y_Listain, y_Lest, poly,pr) Training Data Test Data Predicted Function A polynomial regression model where red data represent training data, green dots represent test data, and the blue line represents the research of the estimated function appears to track the data but around 200 horsepower, the function begins to diverge from the data points of training data. (x_rear_pr, y_rear) **Training data** (x_rear_pr, y_rear_pr) **Training data** (x_rear_pr, y_rear_pr) **Training data** (x_rear_pr, y_rear_pr) **Training data**	
FollyPlot 6000 5000 4000 3000 3000 1000 Figure 3: / prediction We see th R^2 of the poly.score 0.55677163 We see th sign of ove 1000 Resqu_test order = [information in the color in the col	Training data. A potential represent model of the read data september training data, given data represent test data, and the data pairs. A potential represent model of the read data september training data, given data represent test data, and the data pairs. A potential represent model of the read data september training data, given data represent test data, and the data pairs. A potential represent model of the read data but around 200 forespower the function begins to diverge from the data pairs. A potential represent model of the data but around 200 forespower the function begins to diverge from the data pairs. A potential representation appears to track the data but around 200 forespower the function begins to diverge from the data pairs. A potential representation appears to track the data but around 200 forespower the function begins to diverge from the data pairs. A potential representation appears to track the data but around 200 forespower the function begins to diverge from the data pairs. B tracking data. B tracking data. B tracking data to 0.5567 while the R*2 on the test data was 20.87. The lower the R*2, the notice the model. A requirementation appears to the tracking around the data pairs around the data pairs around the data pairs. B tracking data the data pairs around th	
Figure 3: / 50000 40000 40000 30000 30000 10000 Figure 3: / prediction We see the R^2 of the poly.score 0.556771650 We see the sign of ove 1	Training data. It states, 12 response of the season of th	
Figure 3: / 5000 4000 4000 3000 3000 5igure 3: / 2000 1000 Figure 3: / 2000 1000 Figure 4: / 2000	The second process of the control of	
### PollyPlot ### 60000 ### 50000 ### 50000 ### 30000 ### 20000 #### 20000 #### 20000 #### 20000 #### 20000 #### 20000 #### 20000 #### 20000 #### 20000 #### 20000 #### 20000 #### 20000 #### 20000 #### 20000 ##### 20000 ##### 20000 ##### 20000 ##### 20000 ##########	Training Date Traini	
## PollyPlot ## 60000 ## 50000 ## 40000 ## 30000 ## 20000	See 25.00. 1905. 1905. 1905. 1905. 1906. 1	
## PollyPlot ## 60000 ## 50000 ## 30000 ## 30000 ## 20000 ##	and the control of the state of the control of the	
## PollyPlot ## 60000 ## 50000 ## 40000 ## 40000 ## 20000 ##	A 1807 A 1805 DOMES 1909 10 Principles 10	
## PollyPlot ## 6000 ## 5000 ## 5000 ## 4000 ## 3000 ## 3000 ## 2000 #	The control of the co	
## PollyPlot ## 6000 ## 5000 ## 5000 ## 3000 ## 2000 #	Programment of the control of the co	
## PollyPlot ## 6000 ## 5000 ## 5000 ## 3000 ## 3000 ## 3000 ## 2000 #	The plant of the plant of the plant of the PS on the PS	
## PollyPlot ## 6000 ## 5000 ## 3000 ## 3000 ## 3000 ## 3000 ## 2000 #	The plant of the plant of the plant of the PS on the PS	
## PollyPlot ## 6000 ## 50000 ## 50000 ## 30000 ## 20000	Control Contro	
## PollyPlot ## 6000 ## 5000 ## 3000	Control Contro	
## PollyPlot ## 6000 ## 5000 ## 3000 #	Control Contro	
### PollyPlot ### 6000 ### 50000 ### 50000 ### 7000	Control Contro	
## PollyPlot ## 6000 ## 6000 ## 30000 ## 30000 ## 20000 #	Control Contro	
## PollyPlot ## 6000 ## 6000 ## 5000 ## 6000 #	The control of the co	
### PollyPlot ### 6000 ### 600	The control of the co	
### PollyPlot ### 6000 ### 600	The control of the co	
### PollyPlot ### 6000 #### 6000 #### 6000 #### 6000 #### 6000 #### 6000 #### 6000 #### 6000 #### 6000 #### 6000 #### 6000 #### 6000 #### 6000 #### 6000 ##### 6000 ##########	The control of the co	
# PollyPlot	Application of the control of the co	
### ### ##############################	The control of the co	