Departemen Statistika

Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor

PEMODELAN KLASIFIKASI PERTEMUAN #1

PENGANTAR

Bagus Sartono

bagusco@apps.ipb.ac.id
2020

DESKRIPSI MATA KULIAH

Deskripsi: Mata kuliah ini mendiskusikan beberapa algoritma dalam analisis data dan data mining untuk tujuan klasifikasi, yaitu menentukan kelas atau kelompok dari setiap amatan. Topik yang akan dibahas meliputi pendekatan un-supervised dan supervised, dengan penekanan lebih banyak pada yang kedua. Algoritma un-supervised yang akan dibahas adalah kmeans, sedangkan algoritma supervised meliputi k-NN, regresi logistik, pohon klasifikasi, pengenalan support vector machine, dan naïve bayesian classifier. Juga akan didiskusikan pendekatan ensemble yaitu bagging, boosting, dan random forest. Tidak hanya algoritma yang akan dipelajari tetapi juga membahas proses evaluasi dan validasi model. Mata kuliah ini memiliki sks praktikum yang didalamnya akan mendiskusikan penggunaan software R.

PENGAJAR

Dr. Bagus Sartono

Dr. Anang Kurnia

BAGUS SARTONO

- Dosen di Departemen Statistika FMIPA IPB University
- Koordinator Working Group Data Mining FMIPA IPB University
- Wakil Ketua FORSTAT (Forum Penyelenggara Pendidikan Tinggi Statistika)
- Pendidikan:
 - S1, Statistika IPB
 - S2, Statistika IPB
 - PhD, Applied Economics Univ of Antwerp

SILABUS

- Pengantar
- Oun-supervised Classification: k-means
- OPengantar mengenai supervised classification
- ok-NN
- OPenilaian kebaikan dugaan klasifikasi
- Analisis Diskriminan
- ORegresi Logistik
- Diskretisasi
- Pohon Klasifikasi
- Bagging
- Boosting
- Random Forest dan Rotation Forest
- OPengenalan Support Vector Machine
- OPengenalan Naïve Bayes Classifier

PENDEKATAN PEMBELAJARAN

- Integrasi antara ceramah teori dan praktek
- Memerlukan (dan menuntut) keaktifan mahasiswa
- Di setiap pertemuan mahasiswa membawa komputer/laptop, dan dosen akan menyiapkan data dan programnya
- Menggunakan R

BAHAN BACAAN

Trevor Hastie, Robert Tibshirani, Jerome Friedman. 2013. The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer.

Daniel T. Larose, Chantal D. Larose. 2015. Data Mining and Predictive Analytics. Wiley.

John D. Kelleher & Brian Mac Namee & Aoife D'Arcy. 2015. Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. The MIT Press.

PENILAIAN

Komponen	Bobot
Keaktifan di Kelas	15%
Presentasi	20%
Laporan-laporan Tugas	25%
Laporan Tugas Akhir	20%
Kualitas Prediksi Tugas Akhir	20%

PENGANTAR

ANALISIS KLASIFIKASI

Tujuan analisis: menentukan keanggotaan grup/kelompok dari suatu individu

Tipe metode

- Unsupervised, tidak terdapat informasi mengenai kelompok/grup dari amatan pada data yang digunakan. Analisis dilakukan untuk menentukan keanggotaan grup dari amatan tersebut. Sering juga dikenal sebagai analisis gerombol (clustering, cluster analysis)
- Supervised, data memiliki informasi mengenai kelompok/grup sesungguhnya dari amatan. Analisis dilakukan untuk menentukan pembeda antar grup, dan aturan pembeda tersebut dapat dimanfaatkan untuk menentukan keanggotaan dari amatan lain yang tidak ada dalam data.

KEGUNAAN ANALISIS KLASIFIKASI

Before Propensity Modeling

Blanket Marketing Communications efforts to all prospects

After Propensity Modeling

Target prospects likely to respond to Marketing Communications efforts

PREDICTIVE ANALYTICS IN BUSINESS

CREDIT scoring

- Scoring model to predict the risk level of debtors
- Classification model involving predictors: sociodemographical variables, historical payment, other transaction records
- Scores
 - Good/Excellent Risk
 - Bad/Poor Risk
- Common algorithms:
 - Logistic Regression
 - Classification Tree

PREDICTIVE ANALYTICS IN BUSINESS

- Propensity model to predict the likelihood-to-buy of individuals
 - Up-Sell / Cross-Sell campaign
- Selective campaign
 - High propensity → give the offering
 - Low propensity → no offer
- Common algorithms: Random Forest, Boosted Tree

PREDICTIVE ANALYTICS IN BUSINESS

- Identifying the probability of dormant cards to be active
- Recall Campaign to the prospective active card holder
- Common Algorithm:
 - k-Nearest Neighbor

COMMON CLASSIFICATION MODEL ALGORITHMS

Logistic Regression

Classification Tree

Support Vector Machine

Random Forest

Neural Network

Bayesian Classifier

k-Nearest Neighbor

Boosting

