אלגוריתמים 1

תוכן העניינים

5	רק 1. אלגוריתמי BFS ו-DFS	פ
5	BFS - Breadth First Search .1	
10	DFS - Depth First Search .2	

DFS-ו BFS אלגוריתמי

BFS - Breadth First Search .1

 ${}^{\circ}G$ שאלה בגרף לא מכוון שני ביותר בין שני מסלול מסלול מכוון פאלה מכוון ישאלה

1.1. הגדרת המרחק בגרף לא מכוון.

(G בגרף בון צמתים u,v בגרף (המרחק בין במרחק 1.1 המדרה

 $u,v\in V$ ושתי צמתים G=(V,E) בהינתן גרף לא

v- ו u ביותר בין המסלול (מספר קשתות) הוא האורך הוא הוא \underline{G} - ביותר בין המרחק המרחק המרחק הוא $\delta_G(u,v)$ - או ב-G- מרחק המרחק המרחק הוא $\delta_G(u,v)$ - או ב-G- הוא המרחק המחק המחק הוא האורך הוא האורך הוא האורך הוא האורך הוא המחק הוא האורך ה

 $.u \in V$ אומת ליד כל מסומנים מסומנים בגרף א בגרף בגרף מצומת $\delta\left(s,u\right)$ מצומת מסומנים איור 1: המרחקים

טענה 1.1 (המקבילה לאי-שוויון המשולש)

ימתקיים: $e=(u,v)\in E$ קשת לכל היהי איהי זיהי גרף א מכוון, ויהי G=(V,E)יהי

$$\underbrace{\delta\left(s,v\right)}_{v\text{-}1\ s\ \text{-}i\ s\ \text{-}i\ s} \leq \underbrace{\delta\left(s,u\right)}_{u\text{-}i\ s\ \text{-}i\ s} + \underbrace{1}_{e\ \text{-}mupn}$$
 אורך הקשת

. הטענה מתקיימת הטענה $\delta\left(s,u\right)=\infty$ אז ב-sו- בין מסלול מסלול אם אין הטענה. אם הוכחת הטענה

 $.\delta\left(s,u\right)$ -ל שווה אחרת, היי Gב- u-ו s ו-ער ביותר קצר מסלול אחרת, אחרת, אחרת, פון s היי קצר מסלול קצר מסלול מסלול ב- s (s,)+1 את הקשת הקשת e- אחרכו אחרכו נשרשר ל- מערשר ל-

ש . $\delta\left(s,v\right)\leq\delta\left(s,u\right)+1$ שווה לאורך המסלול הקצר ביותר בין s ו-ע ביותר המסלול הקצר שווה לאורך המסלול הקצר ביותר בין

בגרף: פומת אלגוריתם BFS נרצה לחשב את המרחק בין צומת s לכל צומת בגרף:

- $s \in V$ וצומת G = (V, E) אמכוון
 - $.\delta_{G}\left(s,v
 ight)$ את $v\in V$ מטרה: לחשב לכל

. עצמו. אחיל מהצומת היחיד את יודעים את $\delta\left(s,?\right)$ את האינטואיציה: להתחיל מהצומת היחיד אינטואיציה: להתחיל

.BFS-ה אלגוריתם ה-1.3

. תור.
$$Q \leftarrow \{s\}\,, \ T \leftarrow \{s\}\,, \ \lambda\left(v\right) \leftarrow \begin{cases} 0 & v=s \\ \infty & v \neq s \end{cases}$$
 שתחול: •

- $:Q \neq \emptyset$ כל עוד •
- Q יהי u הצומת בראש התור (1)

$$v \not\in T$$
-ט כך פר $e=(u,v) \in E$ לכל קשת (2)

$$.T \leftarrow T \cup \{v\}$$
 (א)

$$\lambda\left(v\right)\leftarrow\lambda\left(u\right)+1$$
 (ב)

Q גו הכנס את לסוף התור (ג)

Q מהתור מהתור מהעור (3)

.1.4 נכונות האלגוריתם.

 $|V|=n,\;|E|=m$ נסמן, G=(V,E) עבור גרף עבור בקורס) נסמן, מקובל בקורס) און הערה 1.1 נסימון מקובל בקורס.

1.2 שאלה

- (1) מדוע האלגוריתם מחזיר תשובה נכונה?
- (2) עד כמה האלגוריתם יעיל? (בד"כ יעילות תתייחס לזמן)

<u>נתחיל מ-(2)</u>.

- O(n) :האתחול
- $O(\deg(u)):Q$ וצא מ-u בה איטרציה בה יוצא מ-

כמו כן,

- . אחת פעם היותר לכל ל-Q לכל לכנס סל פעם סל \bullet
 - Q- כל צומת שנכנס ל-Q גם יוצא מ-Q.

סך הכל זמן ריצה:

נתמקד בטענה (1), ונוכיח אותה תוך שימוש בטענות העזר הבאות:

 $s\in V$ יהי (ע. הא צומת אוו, ותהא גרף א גרף איהי למטה") יהי אזי: G=(V,E) יהי למטה") אזי: $\forall v\in V,\ \lambda(v)$ יהיי לע. אזי:

$$\lambda(v) \geq \delta(s, v), \ \forall v \in V$$

 $v \in V$ הוכחה. יהי

. אם $\lambda\left(v
ight)=\infty$ יתקיים Q, והטענה נכונה אם v

אם אם הטענה האינדוקציה פעם אחת), נוכיח את הטענה באינדוקציה על כנס ל-Q (וזה קורה בדיוק פעם אחת), נוכיח אם על סדר כניסת הצמתים ל-Q:

ואז: v=s נכנס ראשון לתור (המקרה ש-s), ואז:

$$\lambda\left(s\right) = \underbrace{0}_{\text{הגדרת האלגוריתם}} = \delta\left(s,s\right)$$

, אונים עבור עבור k הצמתים הראשונים שהוכנסו לתור אעד: נניח נכיח עבור k+1 שהוכנסה לתור.

:ברגע ההכנסה של v ל-Q, נסמן ב-u את הצומת שבראש v ונקבל

$$\lambda\left(v\right) \underbrace{\sum}_{\text{ הגדרת האלגוריתם}} \lambda\left(u\right) + 1 \underbrace{\geq}_{\text{ הנחת אינדוקציה}} \delta\left(s,u\right) + 1 \underbrace{\geq}_{\text{ עבור }s} \delta\left(s,v\right)$$
 עבור s עבור s

s- אזי: מרG על BFS איי בשלב כלשהו של בשלב Q תוכן (v_1, v_2, \ldots, v_k) יהי

$$\lambda(v_1) \le \lambda(v_2) \le \ldots \le \lambda(v_k)$$
 (1)

$$\lambda(v_k) \le \lambda(v_1) + 1$$
 (2)

:Q-הוצאה הכנסה/הוצאה של סדר הפעולות של הכנסה/הוצאה מ-

- . ריק. מתקיימים באופן (1) ו-(2) מכיל רק את מכיל כש-Q מכיל הוא בסיס: σ
 - r+1הפעולה ה-פעולה ונוכיח עבור הפעולה הראשונות, הפעולה ה-ריש פעד: נניח נכונות הפעולה ה-ריש הפעולות הראשונות, ונוכיח אינו ש

אז: u התור, אז: v הייתה הכנסה, נניח שהכנסנו את א הראש התור, אז:

$$\lambda\left(v\right) = \lambda\left(u\right) + 1$$

לפי הגדרת האלגוריתם.

v הוספת בגלל שלפני הוספת (1) ו-(2) התקיימו, זה יתקיים גם לאחר הוספת בגלל

(2) ו-(1) אם ההפעלה ה-r+1 הייתה הוצאה, אז ברור שמהנחת האינדוקציה ו-(1) יתקיימו גם לאחריה.

משפט 1.1 (הוכחת נכונות אלגוריתם BFS)

 $.s \in V$ - יהי היי היי G = (V,E) יהי היי היי שוח היים או שר שור היצת בסיום ריצת של G

$$\forall v \in V, \ \lambda(v) = \delta(s, v)$$

הוכחת המשפט משתמשת בטענות 1 ו-2.

s- מרחקן לפי ההוכחה: נסתכל על נסתכל נסתכה רעיון ההוכחה:

$$V_k \triangleq \{u \in V : \delta(s, u) = k\}$$

איור s שכבות של גרף לא מכוון לדוגמה עבור צומת ביות איור 2:

 $.\delta\left(s,v\right)=\infty\iff v$ ו- בין s הין מסלול שב-G נניח שב-G. נניח המשפט נכון לפי טענה $(v)=\infty$ לפי ש- $\lambda\left(v\right)\geq\infty$ ש-טענה 1 נקבל ש-

. $\delta\left(s,v\right)=k$ ונסמן vו- בין מסלול שב-Gיש מסלול נניח את השפט באינדוקציה על נוכיח את המשפט באינדוקציה א

- $\lambda\left(s
 ight)=0$, אז א אז א המשפט מתקיים מפני שבאתחול מוגדר ייס. אז א גk=0 . בסיס:
 - :עד: נניח כי $v \in V_k$ ונסמן •

$$A \triangleq \{u \in V_{k-1} | (u, v) \in E\}$$

כאשר הגדרת A אינה תלויה באלגוריתם.

Q את מהתור ב- u^* את הצומת ב-A שהיא הראשונה לצאת מהתור

נשים לב ש-A אינה יכולה להיות ריקה, ולפי הנחת האינדוקציה, k-1 השווה לבע ישנו ערך λ השווה ל- λ השווה לכן בהכרח כל אחד מהם הוכנס לתור λ

 $\lambda\left(v\right)=\infty$ ש מתקיים v מתקיים התור נמצא בראש נמצא u^* שבה שבאיטרציה נראה נראה ער מצא נמצא ומצא u^* התגלה").

נניח בשלילה שזה לא המצב, ולכן יש איטרציה קודמת לזו ש- u^* נמצא בה בראש נניח בשלילה שזה לתור ש-w נמצא בראש התור Q באיטרציה זו).

 $0 \leq j \leq k-1$ בגלל בחירת u^* , מתקיים ש-w הוא שכן של של בשכבה u^* כך ש- u^* (נובע מלמה 1.2).

לפי הנחת האינדוקציה (u^{*}) לפי הנחת האינדוקציה

$$\lambda\left(v\right) \underbrace{=}_{\text{הגדרת האלגוריתם}} \lambda\left(w\right) + 1 < \lambda\left(u^*\right) + 1 \underbrace{=}_{\text{הגדרת האלגוריתם}} \left(k-1\right) + 1 = k = \delta\left(s,v\right)$$
 עבור u^*

.1.1 סה"כ קיבלנו $\lambda\left(v
ight)<\delta\left(s,v
ight)$ חזו סתירה מלמה

באיטרציה שבה א $\lambda\left(v\right)=\infty$ מקיימת v מקיימת בראש בראש בראש בראש בראש באיטרציה בראש u^* שבה באיטרציה אין יוכנס ל- $\lambda\left(v\right)=k$ ויוכנס ל-vיקבל סימון יוכנס ל-

DFS - Depth First Search .2

משימה: למצוא רכיבים קשירים היטב של גרף מכוון בזמן לינארי.

.2.1 חותמות זמן: זמני גילוי וסיום של צומת (במהלך אלגוריתם סריקה).

u אומת של הגילוי של - $s\left(u\right)$ אומת הגדרה הגדרה

u אומת של סיום של - $f\left(u\right)$ אומת הגדרה 1.3

.2.2 האלגוריתם.

- אתחול:
- $\forall u \in V, \text{ status } (u) \leftarrow \text{unvisited}$ (1)

$$\forall u \in V, \begin{array}{c} p\left(u\right) \leftarrow \text{NULL} \\ t \leftarrow 0 \end{array}$$
 (2)

- .visit (u) בצע :status (u) = unvisited- בעע u בעע
 - :visit (u) •

$$s(u) \leftarrow t$$
 - (1)

$$t \leftarrow t+1$$
 -

status
$$(u) \leftarrow \text{visited}$$

.visit (v) גום, $p(v) \leftarrow u$ אז ,status (v) = unvisited אם , $(u \rightarrow v) \in E$ לכל קשת (2)

$$\begin{cases} f\left(u\right) \leftarrow t \\ t \leftarrow t+1 \end{cases} \tag{3}$$

.DFS איור 3: דוגמת הרצה של אלגוריתם

 $u \in V$ אומת לכל אומן על גרף מכוון DFS מסקנה 1.1 מסקנה

יקרא בדיוק פעם אחת. (u)

.2.3 זמן ריצה.

- מה זמן הריצה של אלגוריתם ה-DFS?
- עכור עומת V עכור עומת לבצע (u) עכור לוקח לבצע (אס ישן כפה אמן כפה אמן עבור עומת עובעות (אס ישן לוקח לבצע ($O(1)+O(\deg_{\mathrm{out}}(u))$ עבור עות מעוני
 - עוצר). (ובפרט האלגוריתם עוצר) $O\left(n+m\right)$

הערה 1.2 לאלגוריתם ה-DFS דרגות חופש רבות.

חותמות הזמן s,f מהוות תיעוד של היסטוריית האלגוריתם.

:כאשר: (יער ה-DFS) נסתכל על הגרף (ער ה-1.4 (יער ה-1.5 (יער ה-1.4 (iu)))))))

$$E_{p} = \{(p(v) \rightarrow v) \in E : p(v) \neq \text{NULL}\}$$

 G_p נשים לב ש- G_p הוא תת-גרף של

V הוא יער מכוון אשר פורש את כל צמתי (תרגיל) את משפט 1.2 משפט משפט הוא יער מכוון איר מכוון אור מ

.DFS סוגי קשתות ביער ה-2.4

G שאלה 1.3 כיצד ניתן לסווג את קשתות בהינתן ריצה מסוימת של PDFS?

 $p\left(v
ight)=u$ אם עץ, אם היא קשת עץ, אם ($u
ightarrow v
ight)\in E$ (קשת עץ) אם 1.5 הגדרה

היא קשת קדמית, אם אינה קשת עץ, הגדרה 1.6 (קשת קדמית) היא קשת אינה קשת עץ, הגדרה $u o v \in E$ (קשת קדמית) אב קדמון של v ביער ביער v

.DFS - היא של u צאצא של u ביער החורית, אם u ביער היא קשת $(u o v) \in E$ (קשת אחורית)

הגדרה 1.8 (קשת חוצה) כל שאר הקשתות מכונות קשתות חוצות.

הערה 1.3 כאשר מבצעים DFS על גרף לא מכוון, יווצרו רק קשתות עץ וקשתות אחוריות (ללא הוכחה).

.DFS-ה אפיון יחסי אב-צאצא ביער ה-2.5

,DFS משפט 1.3 לכל גרף מכוון לכל ריצת 1.3 משפט

שכל הצמתים ל-v שכל מ-u מסלול מ-u אם בזמן גילוי אם בזמן ער ה-DFS, אם ביער ה-u שכל הצמתים ער שוחינוות מיש (פרט ל-u עצמו).

 $u,v\in V$ ולכל DFS למה הכל מכוון G, לכל גרף מכוון ביוק אחד משלושת הבאים מתקיים:

- - .v אטעא של ., $s\left(v
 ight) < s\left(u
 ight) < f\left(u
 ight) < f\left(v
 ight)$ (2)
 - .u אצא של י-1, $s\left(u
 ight) < s\left(v
 ight) < f\left(v
 ight) < f\left(u
 ight)$ (3)

. (ניח בימטרי) $s\left(u\right) < s\left(v\right)$ סימטרי).

 $oxed{ \mathbf{s} \; (v) < f \, (u) } \; :$ מקרה ראשון •

נרצה להראות שאנחנו במקרה ג'.

.($s\left(v\right) < f\left(u\right)$ ברגע גילוי ע, עדיין לא סיימנו את visit (u) אסיימנו עדיין לא סיימנו ברגע גילוי

- .visit (u) נקרא מתוך שרשרת קריאות אחוד ישרשרת מתוך visit (v)
 - .visit (u) מסתיים לפני visit $(v) \Leftarrow=$
 - $f\left(v\right) < f\left(u\right) \Longleftarrow$

$$s(u) < s(v) < f(v) < f(u) \iff$$

u מדוע v הוא צאצא של

.visit (v) ל-visit (u) שבוצעו בין visit שבוצעו לפי מספר הקריאות לפי מספר באינדוקציה לפי

.visit (u) בסיס: visit (v) בוצע ישירות מתוך

u של צאצא v ולכן $p\left(v
ight)=u$ אפלגוריתם, של

.visit (w) נקרא מתוך visit (v) צעד: נניח כי

w של (צאצא) ישיר הוא ילד הוא v כלומר , $p\left(v
ight)=w$

u אצא של v, ולכן ולכן u צאצא של של של של של של של

 $\left| f\left(u
ight) < s\left(v
ight)
ight|$ מקרה שני:

נרצה להראות שאנחנו במקרה א'.

חייב להתקיים:

$$s\left(u\right) < f\left(u\right) < s\left(v\right) < f\left(v\right)$$

מכיוון שלא ניתן לסיים צומת לפני שמגלים אותו.

:נראה ש-v אינו צאצא של u (המקרה ההפוך - סימטרי):

 $\mathrm{visit}\,(v)$ - אם נניח בשלילה שv- הוא כן צאצא של א צריך להתקיים שv- מסתיים מסתיים $\mathrm{visit}\,(v)$ ובפרט $\mathrm{visit}\,(v)$ מסתיים בשרשרת קריאות רקורסיביות שמקורן בf(u) > f(v) , v- מסתיים לפני סיום v- א"א י"א י"א v- בסתירה!

מסקנה 1.2 (מטענת העזר)

 $s\left(u
ight) < s\left(v
ight) < f\left(v
ight) < f\left(u
ight) \iff u$ צאצא של ע צאצא ע v