TECHNISCHE UNIVERSITÄT BERLIN

WS 2011/12

Fakultät II - Mathematik und Naturwissenschaften Institut für Mathematik

Dozenten: W. Böse · G. Penn-Karras · R. Schneider

Assistenten: H. Barbas · S. Schwinger

Stand: 7. Februar 2012

https://www.isis.tu-berlin.de/course/view.php?id=5293

Lösungsskizzen zur 12. Übung Analysis II für Ingenieure

(Koordinatentransformation, Skalare Oberflächenintegrale)

Hausaufgaben

1. Aufgabe (6 Punkte)

(i) Wir wählen ein kartesisches Koordinatensystem derart, daß die Kreisfläche der Halbkugeloberfläche in der xy-Ebene liegt und die Punkte der Menge nichtnegative z-Komponenten haben. Nun gehen wir auf Kugelkoordinaten über. Die Halbkugel ist dann

$$D = \{ (r, \phi, \theta) \in \mathbb{R}^3 : r \in [0, R], \phi \in [0, 2\pi), \theta \in [0, \frac{\pi}{2}] \}.$$

Da das Volumenelement $d\vec{x} = r^2 \sin \theta d(r, \phi, \theta)$ lautet, ergibt sich das Volumen zu

$$\iiint_D d\vec{x} = \int_0^{2\pi} \int_0^{\pi/2} \int_0^R r^2 \sin\theta dr d\theta d\phi$$
$$= 2\pi \int_0^{\pi/2} \int_0^R r^2 \sin\theta dr d\theta$$
$$= \frac{2\pi R^3}{3} \int_0^{\pi/2} \sin\theta d\theta$$
$$= \frac{2\pi R^3}{3}.$$

Wegen $(x, y, z) = (r \cos \phi \sin \theta, r \sin \phi \sin \theta, r \cos \theta)$ ist weiter

$$\iiint_{D} x d\vec{x} = \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{R} r^{3} \cos \phi \sin^{2} \theta dr d\theta d\phi$$
$$= \left(\int_{0}^{2\pi} \cos \phi d\phi \right) \int_{0}^{\pi/2} \int_{0}^{R} r^{3} \sin^{2} \theta dr d\theta$$
$$= 0,$$

$$\iiint_{D} y d\vec{x} = \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{R} r^{3} \sin \phi \sin^{2} \theta dr d\theta d\phi$$
$$= \left(\int_{0}^{2\pi} \sin \phi d\phi \right) \int_{0}^{\pi/2} \int_{0}^{R} r^{3} \sin^{2} \theta dr d\theta$$
$$= 0,$$

sowie

$$\iiint_{D} z d\vec{x} = \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{R} r^{3} \cos \theta \sin \theta dr d\theta d\phi$$

$$= 2\pi \int_{0}^{\pi/2} \int_{0}^{R} r^{3} \cos \theta \sin \theta dr d\theta$$

$$= \frac{\pi R^{4}}{2} \int_{0}^{\pi/2} \sin \theta (\cos \theta d\theta)$$

$$= \frac{\pi R^{4}}{4} \sin^{2} \theta \Big|_{0}^{\pi/2}$$

$$= \frac{\pi R^{4}}{4}.$$

Im gewählten Koordinatensystem liegt der Schwerpunkt somit bei $(0,0,\frac{3}{8}R)^{\top}$.

(ii) Wir wählen ein kartesisches Koordinatensystem derart, daß die Kreisfläche der Kegeloberfläche parallel zur xy-Ebene liegt und die Kegelspitze mit dem Ursprung zusammenfällt und die Punkte der Menge nichtnegative z-Komponenten haben. Nun gehen wir auf Zylinderkoordinaten über. Der Kegel ist dann

$$D = \{(r, \phi, z) \in \mathbb{R}^3 : r \in [0, zR/h], \phi \in [0, 2\pi), \in [0, h]\}.$$

Da das Volumen
element $d\vec{x}=r\mathrm{d}(r,\phi,z)$ lautet, ergibt sich das Volumen zu

$$\iiint_{D} d\vec{x} = \int_{0}^{2\pi} \int_{0}^{h} \int_{0}^{zR/h} r dr dz d\phi$$

$$= 2\pi \int_{0}^{h} \int_{0}^{zR/h} r dr dz$$

$$= \frac{\pi R^{2}}{h^{2}} \int_{0}^{h} z^{2} dz$$

$$= \frac{\pi h R^{2}}{3}.$$

Wegen $(x, y, z) = (r \cos \phi, r \sin \phi, z)$ ist weiter

$$\iiint_{D} x d\vec{x} = \int_{0}^{2\pi} \int_{0}^{h} \int_{0}^{zR/h} r^{2} \cos \phi dr dz d\phi$$
$$= \left(\int_{0}^{2\pi} \cos \phi d\phi \right) \int_{0}^{h} \int_{0}^{zR/h} r^{2} dr dz$$
$$= 0,$$

$$\iiint_{D} y d\vec{x} = \int_{0}^{2\pi} \int_{0}^{h} \int_{0}^{zR/h} r^{2} \sin \phi dr dz d\phi$$
$$= \left(\int_{0}^{2\pi} \sin \phi d\phi \right) \int_{0}^{h} \int_{0}^{zR/h} r^{2} dr dz$$
$$= 0,$$

sowie

$$\iiint_{D} z d\vec{x} = \int_{0}^{2\pi} \int_{0}^{h} \int_{0}^{zR/h} z r dr dz d\phi$$
$$= 2\pi \int_{0}^{h} \int_{0}^{zR/h} z r dr dz$$
$$= \frac{\pi R^{2}}{h^{2}} \int_{0}^{h} z^{3} dz$$
$$= \frac{\pi R^{2} h^{2}}{4}.$$

Im gewählten Koordinatensystem liegt der Schwerpunkt somit bei $(0,0,\frac{3}{4}h)^{\top}$.

2. Aufgabe (6 Punkte)

(i) Die Halbsphäre kann mittels

$$[0, 2\pi) \times [0, \pi/2] \ni (\phi, \theta) \mapsto \begin{pmatrix} r \cos \phi \sin \theta \\ r \sin \phi \sin \theta \\ r \cos \theta \end{pmatrix}$$

parametrisiert werden. Man erhält

$$\left| \frac{\partial \vec{x}}{\partial \phi} \times \frac{\partial \vec{x}}{\partial \theta} \right| = \left| \begin{pmatrix} -r \sin \phi \sin \theta \\ r \cos \phi \sin \theta \\ 0 \end{pmatrix} \times \begin{pmatrix} r \cos \phi \cos \theta \\ r \sin \phi \cos \theta \\ -r \sin \theta \end{pmatrix} \right|$$

$$= \left| \begin{pmatrix} -r^2 \cos \phi \sin^2 \theta \\ -r^2 \sin \phi \sin^2 \theta \\ -r^2 \cos \theta \sin \theta \end{pmatrix} \right|$$

$$= r^2 \left(\sin^4 \theta + \cos^2 \theta \sin^2 \theta \right)^{1/2}$$

$$= r^2 |\sin \theta|$$

Dies führt auf das Integral

$$\iint_{O} (x^{2} + y^{2}) dO = \int_{0}^{2\pi} \int_{0}^{\pi/2} r^{2} \sin^{2} \theta (\sin^{2} \phi + \cos^{2} \phi) (r^{2} |\sin \theta|) d\theta d\phi = 2\pi r^{4} \int_{0}^{\pi/2} \sin^{3} \theta d\theta.$$

Mit partieller Integration $\int \sin^3 \theta d\theta = -\frac{1}{3}(\cos \theta \sin^2 \theta + 2\cos \theta)$ ergibt sich

$$\iint_{O} (x^2 + y^2) dO = \frac{4\pi r^4}{3}.$$

(ii) Das Ellipsoid kann mittels

$$[0, 2\pi) \times [0, \pi) \ni (\phi, \theta) \mapsto \begin{pmatrix} a\cos\phi\sin\theta \\ b\sin\phi\sin\theta \\ c\cos\theta \end{pmatrix}$$

parametrisiert werden. Man erhält

$$\left| \frac{\partial \vec{x}}{\partial \phi} \times \frac{\partial \vec{x}}{\partial \theta} \right| = \left| \begin{pmatrix} -a \sin \phi \sin \theta \\ b \cos \phi \sin \theta \\ 0 \end{pmatrix} \times \begin{pmatrix} a \cos \phi \cos \theta \\ b \sin \phi \cos \theta \\ -c \sin \theta \end{pmatrix} \right|$$

$$= abc \left| \begin{pmatrix} a^{-1} \cos \phi \sin^2 \theta \\ b^{-1} \sin \phi \sin^2 \theta \\ c^{-1} \cos \theta \sin \theta \end{pmatrix} \right|$$

$$= abc \left| \sin \theta \right| \left| \begin{pmatrix} a^{-1} \cos \phi \sin \theta \\ b^{-1} \sin \phi \sin \theta \\ c^{-1} \cos \theta \end{pmatrix} \right|$$

$$= abc \left| \sin \theta \right| \left(\frac{\cos^2 \phi \sin^2 \theta}{a^2} + \frac{\sin^2 \phi \sin^2 \theta}{b^2} + \frac{\cos^2 \theta}{c^2} \right)^{1/2}$$

Dies führt auf das Integral

$$\iint_{O} \sqrt{\frac{x^{2}}{a^{4}} + \frac{y^{2}}{b^{4}} + \frac{z^{2}}{c^{4}}} dO = \int_{0}^{2\pi} \int_{0}^{\pi} \left(\frac{\cos^{2}\phi \sin^{2}\theta}{a^{2}} + \frac{\sin^{2}\phi \sin^{2}\theta}{b^{2}} + \frac{\cos^{2}\theta}{c^{2}} \right)^{1/2} \times \\
\times abc |\sin\theta| \left(\frac{\cos^{2}\phi \sin^{2}\theta}{a^{2}} + \frac{\sin^{2}\phi \sin^{2}\theta}{b^{2}} + \frac{\cos^{2}\theta}{c^{2}} \right)^{1/2} d\theta d\phi \\
= abc \int_{0}^{\pi} \int_{0}^{2\pi} \left(\frac{\cos^{2}\phi \sin^{2}\theta}{a^{2}} + \frac{\sin^{2}\phi \sin^{2}\theta}{b^{2}} + \frac{\cos^{2}\theta}{c^{2}} \right) d\phi \sin\theta d\theta \\
= 2\pi abc \int_{0}^{\pi} \left(\frac{\sin^{2}\theta}{2a^{2}} + \frac{\sin^{2}\theta}{2b^{2}} + \frac{\cos^{2}\theta \sin\theta}{c^{2}} \right) \sin\theta d\theta \\
= 2\pi abc \int_{0}^{\pi} \left(\frac{\sin^{3}\theta}{2a^{2}} + \frac{\sin^{3}\theta}{2b^{2}} + \frac{\cos^{2}\theta \sin\theta}{c^{2}} \right) d\theta \\
= 2\pi abc \left(-\frac{2\cos\theta}{2 \cdot 3a^{2}} \Big|_{0}^{\pi} - \frac{2\cos\theta}{2 \cdot 3b^{2}} \Big|_{0}^{\pi} - \frac{\cos^{3}\theta}{3c^{2}} \Big|_{0}^{\pi} \right) \\
= \frac{4\pi}{3} abc \left(\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} \right)$$

3. Aufgabe (8 Punkte)

(i) Die entstehende Rotationsfläche läßt sich durch

$$[0,R] \times [0,2\pi) \ni (r,\phi) \mapsto \vec{x}(r,\phi) = \begin{pmatrix} r\cos\phi \\ r\sin\phi \\ g(r) \end{pmatrix}$$

parametrisieren. Es folgt das Oberflächenelement $\left|\frac{\partial \vec{x}}{\partial r} \times \frac{\partial \vec{x}}{\partial \phi}\right| = \left|\begin{pmatrix} \cos \phi \\ \sin \phi \\ g'(r) \end{pmatrix} \times$

$$\begin{pmatrix} -r\sin\phi \\ r\cos\phi \\ 0 \end{pmatrix} = \begin{pmatrix} -rg'(r)\cos\phi \\ -rg'(r)\sin\phi \\ r\sin^2\phi + r\cos^2\phi \end{pmatrix} = \sqrt{r^2[g'(r)]^2 + r^2} = r\sqrt{1 + [g'(r)]^2}.$$

Integration liefert

$$|F| = \iint_F dO = \int_0^R \int_0^{2\pi} r\sqrt{1 + [g'(r)]^2} d\phi dr = 2\pi \int_0^R r\sqrt{1 + [g'(r)]^2} dr.$$

(ii) Wir führen ein kartesisches Koordinatensystem derart ein, daß der Punkt \vec{x}_0 in der xy-Ebene liegt und der Zylindermantel parallel zur z-Achse verläuft. Der Betrag der Gravitationskraft zwischen Mantelflächenpunkt \vec{x} und \vec{x}_0 ist

$$F(\vec{x}) = \frac{\rho}{|\vec{x} - \vec{x}_0|^2} = \frac{\rho}{z^2 + (d/2)^2}.$$

Der Fußpunkt von \vec{x} auf der xy-Ebene, \vec{x} selber und \vec{x}_0 spannen ein rechtwinkliges Dreieck auf. Das Verhältnis von dessen Hypothenuse und dessen Seite der Länge z entspricht gerade dem Verhältnis der Kraft F und seiner Axialkomponente F_a . Demnach ist $F_a(\vec{x}) = \frac{zF(\vec{x})}{\sqrt{z^2 + (d/2)^2}}$.

Wir parametrisieren den Zylindermantel

$$\{\vec{x} = (x, y, z)^{\top} \in \mathbb{R}^3 : x = \frac{d}{2}\cos\phi, y = \frac{d}{2}\sin\phi, \phi \in [0, 2\pi), 0 \le z \le h\}$$

und erhalten für $\left|\frac{\partial \vec{x}}{\partial z} \times \frac{\partial \vec{x}}{\partial \phi}\right| = (d/2) |(\cos\phi,\sin\phi,0)^\top| = d/2$:

$$\iint_{M} F_{a} dO = \int_{0}^{2\pi} \int_{0}^{h} \frac{z\rho}{(z^{2} + (d/2)^{2})^{3/2}} \frac{d}{2} dz d\phi$$

$$= d\pi \rho \int_{0}^{h} \frac{z}{(z^{2} + (d/2)^{2})^{3/2}} dz$$

$$= -\frac{d\pi \rho}{(z^{2} + (d/2)^{2})^{1/2}} \Big|_{0}^{h}$$

$$= 2\pi \rho - \frac{d\pi \rho}{\sqrt{h^{2} + d^{2}/4}}.$$