let X he a net, let A and B_i are numbers of X where $i \in I$ for some index set I. Then $A \cap (\bigcup_{i \in I} B_i) = \bigcup_{i \in I} (A \cap B_i)$,

proof.

ANBICA and ANBICUBI.

= ANB: CAN (UB:)

on the other hand,

If $x \in A \cap (Y_{e_{\overline{z}}} B_i)$, then $x \in A$ and $x \in Y_{e_{\overline{z}}} B_i$. 40 $x \in A$ and $x \in B_i$. for some $i \in I$. Hence $x \in A \cap B_i$, and so $x \in Y (A \cap B_i)$. Thus $(VHS) \subseteq (RHS)$. \square .