Conformal Field Theory

Lecture notes

Marc Gillioz

Spring semester 2022

[Lectures] are fantastically good for learning physics. The lecturer learns a lot of physics. After my first few studies, just about everything I learned about physics came from teaching it. I don't know if the students learned a lot, but I certainly did. So I consider teaching physics very important. — Leonard Susskind

Contents

1	Inti	roduction	3
	1.1	What is conformal field theory?	3
	1.2	Examples of conformal field theories	3
	1.3	Outline	3
2	Cla	ssical conformal symmetry	3
3	Non-perturbative quantum field theory		
	3.1	Spectral representation	4
	3.2	Scale symmetry	4
	3.3	Special conformal symmetry	4
	3.4	Exercises	4
	3.5	Bibliography	
4	Correlation functions		
	4.1	Spectral representation for spinning operators	5
	4.2	From momentum to position	5
	4.3	From Minkowski to Eulidean space	5
	4.4	Embedding-space formalism	5
5	Sta	te-operator correspondence and OPE	5
6	The	e conformal bootstrap	5
	6.1	Conformal blocks	5
	6.2	The numerical boostrap	5
	6.3	Results	
7	Sele	ected advanced topics	5

1 Introduction

1.1 What is conformal field theory?

Introduction: What is CFT? Why is it useful. Examples of CFT. Where does it fit into modern theoretical physics.

in the last few years, CFT has been dominated by

string theory: 2d CFT

holography: geometric approach condensed matter physics: Euclidean

here focus on the "old" quantum field theory approach

links with: lattice, perturbation theory, etc.

fun fact: the conformal bootstrap was invented by particle physicists

strongly-coupled QFT no need for action principle

1.2 Examples of conformal field theories

perturbative examples: ϕ^n theory in non-integer d

Caswell-Banks-Zaks superconformal: $\mathcal{N} = 4$

1.3 Outline

originally covered in 14 periods of 45 minutes each split into 7 chapters?

2 Classical conformal symmetry

Poincaré symmetry: physics is the same in every coordinate frame linear transformation of the coordinates

$$x'^{\mu} = x^{\mu} + \omega^{\mu}_{\nu} x^{\nu} + a^{\mu} \tag{2.1}$$

infinitesimal line element $dx^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu}$ is invariant:

$$dx'^2 = dx^2 (2.2)$$

scale symmetry:

$$x^{\prime \mu} = \lambda x^{\mu} \tag{2.3}$$

special conformal symmetry:

conformal Killing vectors: (see Osborn's notes) infinitesimal transformation

$$x'^{\mu} = x^{\mu} + v^{\mu}(x) \tag{2.4}$$

$$\partial^{\mu}v^{\nu} + \partial^{\nu}v^{\mu} = 2\sigma\eta^{\mu\nu} \tag{2.5}$$

3 Non-perturbative quantum field theory

Wightman axioms

operators are not necessarily invariant under conformal symmetry, but they transform unitarily

unitary representations on Hilbert space (e.g. pair of point-like particle no action principle (i.e. no need for "quantization") only deal with **local** operators

3.1 Spectral representation

operator vs. field

3.2 Scale symmetry

comment on scale vs. conformal invariance correlation functions: no need for action principle

3.3 Special conformal symmetry

Mack's classification in 4d

3.4 Exercises

3.5 Bibliography

itzikson zuber

4 Correlation functions

T-products vs. Wightman functions use retarded products and micro-causality

4.1 Spectral representation for spinning operators

unitary bounds

4.2 From momentum to position

taking fourier transforms

4.3 From Minkowski to Eulidean space

Osterwalder-Schrader

analytic continuation of Wightman functions vs. Wick rotation of T-products

reflection positivity

note that this is usually done in the other direction!

4.4 Embedding-space formalism

in position space

2- and 3-point functions

invariant cross-ratios for 4-point functions

5 State-operator correspondence and OPE

important remark on OPE convergence in Euclidean space!

6 The conformal bootstrap

6.1 Conformal blocks

6.2 The numerical boostrap

generalized free fields/Gaussian

6.3 Results

7 Selected advanced topics

light-cone limit and?

Virasoro symmetry in 2d: