Homework-02 ENGR 117 Due date 02/21/2022

5 Questions 20 points each

Q-1 Find the average power delivered by the ideal current source in the circuit

 $i_g = 8 \cos 5000t$ A

Here 8 is the max value

W	5000 rad/s
L	100 mH
С	160 nF

ig	=	8 + j 0.0000000	=	8.0000	L	0	Α
R1	=	500 + j 0.0000000	=	500.0000	L	0 Deg	Ω
R2	=	1000 + j 0.0000000	=	1000.0000	L	0 Deg	Ω
ZL	=	0 + j 500.0000000	=	500.0000	L	90 Deg	Ω
ZC	=	0 + j -1250.0000000	=	1250.0000	L	-90 Deg	Ω
ZL + R2	=	1000 500.0000000	=	1118.0340	L	26.56505 Deg	Ω
1/(ZL+R2)	=	0.0008 + j -0.0004000	=	0.0009	L	-26.5651	Ω
1/ZC	=	4.90059E-20 + j 0.0008000	=	0.0008	L	90 Deg	mho
I/Zx	=	0.0008 + j 0.0004000	=	0.0009	L	26.56505 Deg	mho
Zx	=	1000 + j -500.0000000	=	1118.0340	L	-26.5651 Deg	Ω
Zeq	=	1500 + j -500.00	=	1581.1388	L	-18.4349 Deg	Ω

Q-2 Find the average power dissipated in the 60Ω resistor in the circuit $i_g = 6 \cos 20,000t \text{ A}.$

Here 6 is the max value

		w	20000	rad/s			
		ii .		mH			
		C	1250				
ig	=	6 + j 0.0000000	=	6.0000	L	0	Α
R	=	60 + j 0.0000000	=	60.0000	L	0 Deg	Ω
			=				Ω
ZL	=	0 + j 10.0000000	=	10.0000	L	90 Deg	Ω
ZC	=	0 + j -40.0000000	=	40.0000	L	-90 Deg	Ω
ZC + R	=	60 + j -40.0000000	=	72.1110	L	-33.6901 Deg	Ω
ZL(ZC+R)	=	400 + j 600.0000000	=	721.1103	L	56.30993	Ω
1/ZL	=	6.12574E-18 + j -0.1000000	=	0.1000	L	-90 Deg	mho
I/(ZC+R)	=	0.011538462 + j 0.0076923	=	0.0139	L	33.69007 Deg	mho
1/(ZL)(ZC+R) = XXX	=	0.000769231 + j -0.0011538	=	0.0014	L	-56.3099 Deg	
30(XXX)	=	0.023076923 + j -0.0346154	=	0.0416	L	-56.3099 Deg	
сссс	=	-0.011538462 + j -0.057692308	=	0.0588	L	258.6901 Deg	
V				101.9804		-258.69	
V		-20 + j 100.0000000		101.9804	L	101.3099 Deg	
Idelta		10 + j 2.0000000		10.1980	L	11.30993 Deg	
I 60 = Ig-Idelta		-4 + j -2		4.4721	L	206.5651 Deg	
P 60-ohm	=	600 Watt					

Q-3 Find the average power, the reactive power, and the apparent power supplied by the voltage source in the circuit $v_g = 40 \cos 10^6 t \text{ V}.$

Here 40 is the max value

	w 1000000 rad/s						
		L 0.08 mH					
		С	25	nF			
Vg	=	40 + j 0.0000000	=	40.0000	L	0	Α
R1	=	40 + j 0.0000000	=	40.0000	L	0 Deg	Ω
R2	=	100 + j 0.0000000	=	100.0000	L	0 Deg	Ω
ZL	=	0 + j 80.0000000	=	80.0000	L	90 Deg	Ω
ZC	=	0 + j -40.0000000	=	40.0000	L	-90 Deg	Ω
ZL + R2	=	100 + j 80	=	128.0625	L	38.65981 Deg	Ω
1/ZC	=	1.53144E-18 + j 0.0250000	=	0.0250	L	90 Deg	Ω
1/R1	=	0.025 + j 0.0000000	=	0.0250	L	0 Deg	mho
1/X = (1/R1)+(1/ZC)	=	0.025 + j 0.025	=	0.0354	L	_ 45 Deg	mho
X	=	20 + j20.0000000	=	28.2843	L	-45 Deg	
Zeq	=	120 + j 60	=	134.1641	L	26.56505 Deg	
Ig = Vg/Zeq	=	0.2667 + j -0.1333	=	0.2981	L	-26.5651 Deg	
lg (Conj)	=	0.2667 + j 0.1333	=	0.2981	L	26.56505 Deg	
Sg = 1/2 (Vg * Ig(conj))	=	5.3333 + j 2.6667	=	5.9628	L	26.56505 Deg	
P(avg)	=	5.3333 Watts					
Q(reactive)	=	2.6667 VAR					
S (Apparent)	=	5.9628 VA					

A single-phase source is applied to a two-terminal, passive circuit with equivalent impedance $Z = 2.0/-45^{\circ}$ Ω measured from the terminals. The source current is $i(t) = 4\sqrt{2}\cos(\omega t)$ kA. Determine the (a) instantaneous power, (b) real power, and (c) reactive power delivered by the source. (d) Also determine the source power factor.

Here current is max value representation

$$Z = 2L-45$$
 52
 $\dot{c}(t) = 4/2 \cos \omega t \text{ KA} \Rightarrow Izms = 4 \text{ KA}$
 $V(t) = (4/2 \cos \omega t)(2L-45) = 24 (4/2 Lo)(2L-45)$
 $V(t) = 8/2 L-45 \text{ KV} \Rightarrow Vzms = 8 \text{ KV}$
 $\Theta_V = -45^\circ \Theta_i = 0^\circ \Rightarrow \Theta_V - \Theta_i = \Phi = -45^\circ$
 $(a) \ P(t) = 22.63 + 32 \cos(2\omega t - 45) \text{ MW}$
 $(b) \ P = Vzms Izms \cos \Phi = 8 \times 4 \cos(-45) = 22.62 \text{ MWatt}$
 $(c) \ Q = Vzms Izms \sin \Phi = 8 \times 4 \sin(-45) = -22.62 \text{ MWatt}$
 $(c) \ Q = Vzms Izms \sin \Phi = 8 \times 4 \sin(-45) = -22.62 \text{ MWAR}$

Q-5 The real power delivered by a source to two impedances, $Z_1 = 3 + j4 \Omega$ and $Z_2 = 10 \Omega$, connected in parallel, is 1100 W. Determine (a) the real power absorbed by each of the impedances and (b) the source current.

Here V is RMS value representation

$$I_{1} = \frac{V}{Z_{1}} \implies I_{1}^{*} = \frac{V^{*}}{5L - 53.13}$$

$$\overline{S}_{1} = VI_{1}^{*} = V \times \frac{V^{*}}{5L - 53.13} = V^{2} (0.2 \angle 53.13)$$

$$\overline{S}_{1} = V^{2} (0.12 + 0.16)$$

$$P_{1} = 0.12 V^{2} = 0.12 \times (70.71)^{2} = 600 \text{ Watt}$$

$$I_{2} = \frac{V}{Z_{2}} = \frac{V}{10L^{0}} = 0.1 V L^{0} \implies I_{2}^{*} = 0.1 V L^{0}$$

$$\overline{S}_{2} = VI_{2}^{*} = V \cdot V^{*} (0.1 L^{0}) = V^{2} (0.1 + 0.1)$$

$$P_{2} = 0.1 V^{2} = 0.1 \times (70.71)^{2} = 500 \text{ Watt}$$

b)
$$I = \frac{V}{Z_T}$$

 $I = 19.23 L - 36.03 A$