中国科学技术大学

2019—2020学年第二学期期末试卷

	考试科目	概率论与数理统计B	得分			
	院系	学号	姓名			
一. 填空	> 题(每题3分, 共30%	分,答案请写在答题纸上):				
1.	若事件 A 和事件 B	3 相互独立, 己知P(B) = 0	$0.3, P(\bar{A} \cup B) = 0.8, 则$			
	$P(A) = \underline{\hspace{1cm}}$					
2.	设随机变量X与Y	独立,且 $EX = EY = 0, V$	arX = VarY = 1。若记			
	$W_1 = X + Y, \ W_2$	$=X-Y$,则 W_1 与 W_2 的相	目关系数为			
3.			eta 机变量,若要使得 $T=a(X_1-2X_2)^2$ Db的值应为	+		
4.	本均值 $\bar{x} = 20$	$($ 分钟 $)$,无偏方差的标 σ^2 $),其中\mu,\sigma^2均未知,$	南站的搭乘出租车所用的时间, 算得 活准差 $s=3$ (分钟). 若假设此样本 则参数 μ 的置信水平为 0.95 的置信区	来		
5.	设 X_1, X_2, \ldots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本, 如分别用 $2X_2 - X_1, \overline{X}, X_1$ 个为 μ 的估计量时, 其中最有效的是					
	· 某总体是一个离散分布,它有10个不同的取值,且其分布中含有2个未知参数. 若采用拟合优度检验判断一组简单随机样本是否服从该离散总体,所使用的卡方检验统计量的自由度应为					
7.	1. 将数字 $1,2,3,,n$ 任意排成一列,定义 $X_i = \begin{cases} 1, & \text{第i} \land \text{位置恰是数字i}, \\ 0, & \text{第i} \land \text{位置不是数字i}. \end{cases}$ 令 $Y = \sum_{i=1}^{n} X_i$. 则随机变量 Y 的数学期望为					
8.	设 $P(X \ge 0, Y \ge 0)$		$X \ge 0) = 4/7, \text{ MP}(\max\{X, Y\} \ge 0)$			
9.	若 $F(x)$ 和 $G(x)$ 都是	台分布函数,则以下函数中	不一定是分布函数的为			
		(C)aF(x) + (1-a)G(x)				
	(B) $[F(x)]^6[G(x)]^8;$	$(D)bF(x) + \frac{1}{b}G(x), 其$	中, $b > 1$;			
10.		,下列说法正确的是 类错误也可能犯第二类错误				

(B)如果备择假设是正确的, 但作出的决策是拒绝备择假设, 则犯了第一类错误.

- (C)增大样本容量,则犯两类错误的概率都不变.
- (D)如果原假设是错误的, 但作出的决策是接受备择假设, 则犯了第二类错误.
- 二. (10分)设市区某公寓楼有100户居民用电,各户用电情况相互独立. 已知每户每日用电量 X_i (单位:度)服从区间 [0,12]上的均匀分布,请运用中心极限定理求这100户居民每日总用电量超过500度的概率. (结果可用标准正态分布函数 $\Phi(\cdot)$ 的值表示).
- 三. (15分)设随机变量 X 和 Y 独立同分布于参数为 1 的指数分布, 他们的密度函数为 $f(x) = e^{-x}, x > 0$. 记 U = X + Y, V = X/(X + Y).
 - (1) 求随机向量 (U,V) 的联合密度;
 - (2) 分别求出随机变量X和Y的边缘密度, 并判断随机变量 U 和 V 是否相互独立.
- 四. (20分) 设 X_1, \dots, X_n 为来自于均匀分布总体 $U(0, \theta)$ 的一个样本容量为n的简单随机样本。
 - (1) 求 θ 的矩估计 $\hat{\theta}_1$ 和最大似然估计 $\hat{\theta}_2$:
 - (2) 验证 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 是否具有无偏性, 若为有偏估计请将其修正为无偏估计.
- **五.** (15分) 为了解甲、乙两家企业基层职工的工资水平, 分别从两家企业各随机抽取若干名基层职工进行调查, 得如下月收入数据(单位:元):

甲企业: 2800, 3100, 2900, 2900, 3200, 3100, 3000

乙企业: 3000, 2900, 3100, 2800, 3200, 3600, 3900, 3100

设两家企业基层职工工资分别服从正态分布 $N(\mu_1, \sigma^2)$ 和 $N(\mu_2, \sigma^2)$,两个总体独立且均值和方差皆未知. 试根据以上数据检验: 甲企业基层职工平均工资是否低于乙企业基层职工平均工资? (显著性水平 $\alpha=0.05$)

六. (10分) 为了解男性和女性对三种类型的啤酒:淡啤酒、普通啤酒和黑啤酒的偏好有没有差异,分别调查了180位男士和120位女士的喜好,得如下数据

	淡啤酒	普通啤酒	黑啤酒
男性	49	31	100
女性	51	20	49

请问男性和女性对这三种类型的啤酒的偏好有显著差异吗? $(\alpha = 0.05)$

附录:参考分位数的数值如下:

 $u(0.05) = 1.64, u(0.025) = 1.96, t_8(0.05) = 1.86, t_8(0.025) = 2.30, t_9(0.05) = 1.83, t_9(0.025) = 2.26, t_{13}(0.05) = 1.77, t_{13}(0.025) = 2.16, t_{14}(0.05) = 1.76, t_{14}(0.025) = 2.15, t_{15}(0.05) = 1.75, t_{15}(0.025) = 2.13, \chi_2(0.05) = 5.99, \chi_2(0.025) = 7.38, \chi_5(0.05) = 11.07, \chi_5(0.025) = 12.83, \chi_6(0.05) = 12.59, \chi_6(0.025) = 14.45.$