- 1. Trobeu els polinomis de Taylor d'ordre 4 de les funcions següents en el punt que s'indica:
 - (a) $f(x) = \sin(x^2)$ en el punt a = 0,
 - (b) $f(x) = x \ln x$ en el punt a = 1,
- 2. (a) Calculeu les fórmules de Taylor amb restes de Lagrange d'ordres 3 i 5, de la funció $f(x) = \cos(x)$.
 - (b) Demostreu que per a tot $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ es compleix

$$1 - \frac{x^2}{2} \le \cos(x) \le 1 - \frac{x^2}{2} + \frac{x^4}{24}.$$

- **3.** Sigui $f: (-\pi/2, \pi/2) \to \mathbb{R}$ definida per $f(x) = \ln(1 + \sin x)$.
 - (a) Calculeu els polinomis de Taylor d'ordre 2 i 3, i els corresponents termes complementaris de Lagrange, en el punt a=0.
 - (b) Deduïu que $\frac{1}{2} \le \ln(1 + \sin 1) \le \frac{2}{3}$.
- 4. a) Trobeu el polinomi de Taylor de segon grau, $p_2(x)$, al voltant de $x_0 = 0$ per a la funció $f(x) = e^x \cos x$.
 - b) Useu $p_2(0.5)$ per aproximar f(0.5). Trobeu una cota de l'error $|f(0.5) p_2(0.5)|$ usant la fórmula de l'error i compareu-la amb l'error real.
 - c) Trobeu una cota de l'error $|f(x) p_2(x)|$ en l'interval [0, 1].
 - d) Quants termes hauríem de sumar per calcular f(0.5) amb un error més petit de 10^{-4} ?
- **5.** Proveu les desigualtats següents:
 - (a) $1 + x/2 x^2/8 < \sqrt{1+x} < 1 + x/2$, per a tot x > 0,
 - (b) $x^2 x^6/6 < \sin(x^2) < x^2$, per a tot $x \neq 0$.
- **6.** Demostreu que, per a tot $x \in \mathbb{R}$, es satisfà la designaltat

$$0 \le e^x - 1 - x - \frac{x^2}{2} - \frac{x^3}{6} \le \frac{e^{|x|}}{24} x^4.$$

7. Utilitzeu els desenvolupaments de Taylor adients per a calcular els límits següents:

(a)
$$\lim_{x\to 0} \frac{\cos x - e^{-x^2/2}}{x^4}$$

(b)
$$\lim_{x \to 1} \frac{\log x - (x - 1)}{(x - 1)^2}$$

(a)
$$\lim_{x \to 0} \frac{\cos x - e^{-x^2/2}}{x^4}$$
 (b) $\lim_{x \to 1} \frac{\log x - (x-1)}{(x-1)^2}$ (c) $\lim_{x \to \frac{\pi}{2}} \frac{(\cos x) \log \left(\frac{2x}{\pi}\right)}{\left(x - \frac{\pi}{2}\right)^2}$

8. Siguin $m, n \ge 1$ nombres naturals. Discutiu l'existència dels límits següents i calculeu el seu valor quan existeixin.

(a)
$$\lim_{x \to 0} \frac{\left((1+x)^{1/2} - 1 - \frac{x}{2}\right)^{6m}}{x^n}$$
, (b) $\lim_{x \to 0} \frac{\left(\ln(1+x) - x + \frac{x^2}{2}\right)^{2m}}{(1-\cos x)^n}$.

9. Calculeu el polinomi de Taylor d'ordre 4 de la funció y(x) en el punt $x_0=0$ si sabem que y(x) satisfà el problema de valors inicials

$$\begin{cases} y'(x) = (x+1)y, \\ y(0) = 2. \end{cases}$$

- 10. Sigui la funció $f(x) = \sqrt{1+x^2}$.
 - (a) Calculeu el polinomi de Taylor d'ordre 3 de la funció f(x) a l'entorn del punt a=0.
 - (b) Demostreu les desigualtats

$$1 + \frac{x^2}{2} - \frac{x^4}{8} \le \sqrt{1 + x^2} \le 1 + \frac{x^2}{2}, \qquad x \in \mathbb{R}.$$

(c) Calculeu el valor del límit

$$\lim_{x \to 0} \frac{\sqrt{1+x^2} - 1 - x^2/2}{(\sin x)^3} \ .$$