

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

11260962 A

(43) Date of publication of application: 24, 09, 99

(51) Int. CI H01L 23/12 (71) Applicant: (21) Application number. 10060846

(72) Inventor:

HITACHI LTD

YAGUCHI AKIHIRO HARUTA AKIRA ICHITANI MASAHIRO TANAKA TADAYOSHI

(54) BALL GRID ARRAY TYPE OF SEMICONDUCTOR DEVICE

(22) Date of filing: 12 . 03 . 98

COPYRIGHT: (C)1999,JPO

(57) Abstract:

PROBLEM TO BE SOLVED: To materialize a highly, reliable BGA(ball grid array)-type semiconductor device, by suppressing disconnection of conductive wiring and the breakage of an external terminal.

SOLUTION: Individual insulating films 3 which cover individual lands 2b are separated from one another, and besides dummy wiring 10 is projected, in addition to conductive wiring 2 connected to the land 2b, from the flank 3b of the insulating film 3 covering the land 2b. Hereby, the rate of occupation of the wiring material large in rigidity inside the insulating film 3 can be enlarged, and the restriction of thermal transformation of the insulating film 3 itself can be reinforced by the dummy wiring 10. Moreover, the peeling of the flank 3b of the insulating film can be suppressed by the conductive wiring 2 and the dummy wiring 10, and the increase of the quantity of thermal transformation of the insulating film 3 by the occurrence of the peeling of the flank 3b can be suppressed.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-260962

(43)公開日 平成11年(1999) 9月24日

(51) Int.Cl.⁵

識別記号

H01L 23/12

FΙ

H01L 23/12

Q

L

審査請求 未請求 請求項の数16 OL (全 15 頁)

(21)出願番号

特願平10-60846

(22)出願日

平成10年(1998) 3月12日

(71)出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(72)発明者 矢口 昭弘

茨城県土浦市神立町502番地 株式会社日

立製作所機械研究所内

(72)発明者 春田 亮

東京都小平市上水本町五丁目20番地1号

株式会社日立製作所半導体事業部内

(72)発明者 一谷 昌弘

東京都小平市上水本町五丁目20番地1号

株式会社日立製作所半導体事業部内

(74)代理人 弁理士 春日 譲

最終頁に続く

(54) 【発明の名称】 ボールグリッドアレイ型半導体装置

(57) 【要約】

【課題】導電性配線の断線、および外部端子の破断を、 抑制し、信頼性の高いBGA型の半導体装置を実現す る。

【解決手段】個々のランド2bを覆う個々の絶縁膜3は、互いに分離されており、かつ、ランド2bを覆う絶縁膜3の側面3bから、ランド2bに接続される導電性配線2の他にダミー配線10を突出させる。これによって、絶縁膜3内部で剛性の大きな配線材料が占める割合を大きくすることができ、絶縁膜3自体の熱変形の拘束を、ダミー配線10により強化することができるようになる。また、絶縁膜側面3bの剥離を導電性配線2とダミー配線10とによって抑制することができ、側面3bの剥離発生による絶縁膜3の熱変形量の増加を抑制することができる。

【特許請求の範囲】

【請求項1】ボールグリッドアレイ型半導体装置において.

複数のパッド及び複数のランドと、

少なくとも半導体素子の面内で上記複数のランドのそれ ぞれを覆うように形成され、互いに分離された複数の絶 縁膜と、

上記複数のランドのそれぞれから延長されて上記絶縁膜 から突出する複数の導電性部材を有する絶縁性テープ と、

上記絶縁性テープの表面に接着部材によって固着され、 金属細線によって上記パッドを介して上記導電性部材と 電気的に接続される方形の半導体素子と、

上記半導体素子の周囲と上記絶縁性テープの半導体素子 固着面とを封止する封止樹脂と、

上記ランドに接合された外部端子と、

を備えることを特徴とするボールグリッドアレイ型半導 体装置。

【請求項2】請求項1記載のボールグリッドアレイ型半導体装置において、上記複数のランドのそれぞれから延長されて上記絶縁膜から突出する複数の導電性部材のうち、少なくとも1本の導電性部材を上記半導体素子と電気的に接続し、他の導電性部材を、少なくとも上記電気的に接続される導電性部材を挟む位置に形成することを特徴とするボールグリッドアレイ型半導体装置。

【請求項3】請求項2記載のボールグリッドアレイ型半導体装置において、1つのランドの中心点から上記電気的に接続される導電性部材とを結ぶ直線に対して、上記中心点を回転中心として、上記直線の一方の側に90°回転させた領域内に、少なくとも1本の他の導電性部材を形成し、上記直線の他方の側に90°回転させた領域内に、少なくとも1本の他の導電性部材を形成することを特徴とするボールグリッドアレイ型半導体装置。

【請求項4】請求項1又は2記載のボールグリッドアレイ型半導体装置において、上記絶縁膜から突出する上記 導電性部材の絶縁膜内部における幅を、絶縁膜外部の幅 より広くしたことを特徴とするボールグリッドアレイ型 半導体装置。

【請求項5】ボールグリッドアレイ型半導体装置において、

導電性配線と、

導電性配線に接続されるパッド及び突起が形成されたランドと、

上記導電性配線及び絶縁膜を有する絶縁性テープと、

上記絶縁性テープの表面に接着部材によって固着され、 金属細線によって上記導電性配線と電気的に接続された 方形の半導体素子と、

上記半導体素子の周囲と上記絶縁性テープの半導体素子 固着面とを封止する封止樹脂と、

上記ランドに接合される外部端子と、

を備えることを特徴とするボールグリッドアレイ型半導 体装置。

【請求項6】複数のパッド及び複数のランドと、少なくとも半導体素子の面内で上記複数のランドを覆う絶縁膜と、上記パッド及びランドに接続される導電性配線を有する絶縁性テープと、上記絶縁性テープの表面に接着部材によって固着され、金属細線によって上記導電性配線と電気的に接続される方形の半導体素子と、上記半導体素子の周囲と上記絶縁性テープの半導体素子固着面とを封止する封止樹脂と、上記ランドに接合された外部端子とを有するボールグリッドアレイ型半導体装置において、

上記絶縁膜は、互いに分離された複数の絶縁膜であって、それぞれの絶縁膜は、個々の上記ランドを覆うように形成されるとともに、上記ランドに上記絶縁膜から突出する突起が形成されることを特徴とするボールグリッドアレイ型半導体装置。

【請求項7】請求項6記載のボールグリッドアレイ型半 導体装置において、上記ランドに形成する突起は複数で あり、少なくとも上記導電性配線を挟む位置に形成した ことを特徴とするボールグリッドアレイ型半導体装置。

【請求項8】請求項7記載のボールグリッドアレイ型半導体装置において、1つのランドの中心点から上記導電性配線とを結ぶ直線に対して、上記中心点を回転中心として、上記直線の一方の側に90°回転させた領域内に、少なくとも1つの上記突起を形成し、上記直線の他方の側に90°回転させた領域内に、少なくとも1つの上記突起を形成することを特徴とするボールグリッドアレイ型半導体装置。

7 【請求項9】請求項5、6、7又は8記載のボールグリッドアレイ型半導体装置において、上記ランドに接続される導電性配線の絶縁膜内部における幅を、絶縁膜外部の幅より広くしたことを特徴とするボールグリッドアレイ型半導体装置。

【請求項10】ボールグリッドアレイ型半導体装置において

複数の導電性配線と、

上記導電性配線に接続される複数のパッド及びランド

40 絶縁膜を有し、基板実装面側にスリットを形成した絶縁 性テープと、

上記絶縁性テープの表面に接着部材によって固着され、 金属細線によって上記導電性配線と電気的に接続される 方形の半導体素子と、

上記半導体素子の周囲と上記絶縁性テープの半導体素子 固着面とを封止する封止樹脂と、

上記ランドに接合された外部端子と、

を備えることを特徴とするボールグリッドアレイ型半導体装置。

50 【請求項11】ボールグリッドアレイ型半導体装置にお

.

4

いて、

導電性配線と、

上記導電性配線に接続されるパッド及びランドと、

上記ランドの外周部分を少なくとも覆うように形成され た絶縁膜を有する絶縁性テープと、

上記絶縁性テープの表面に接着部材によって固着され、 金属細線によって上記導電性配線と電気的に接続される 方形の半導体素子と、

上記半導体素子の周囲と上記絶縁性テープの半導体素子 固着面とを封止する封止樹脂と、

上記ランドに接合された外部端子と、

を備えることを特徴とするボールグリッドアレイ型半導 体装置。

【請求項12】導電性配線と、上記導電性配線に接続されるパッド及びランドと、絶縁膜を有する絶縁性テープと、上記絶縁性テープの表面に接着部材によって固着され、上記導電性配線と金属細線によって電気的に接続される方形の半導体素子と、上記半導体素子の周囲と上記絶縁性テープの半導体素子固着面とを封止する封止樹脂と、上記ランドに接合された外部端子と、を有するボールグリッドアレイ型半導体装置において、

上記封止樹脂の線膨張係数は、上記絶縁性テープの線膨 張係数と同等であることを特徴とするボールグリッドア レイ型半導体装置。

【請求項13】導電性配線と、上記導電性配線に接続されるパッド及びランドと、絶縁膜を有する絶縁性テープと、上記絶縁性テープの表面に接着部材によって固着され、上記導電性配線と金属細線によって電気的に接続される方形の半導体素子と、上記半導体素子の周囲と上記絶縁性テープの半導体素子固着面とを封止する封止樹脂 30と、上記ランドに接合された外部端子と、を有するボールグリッドアレイ型半導体装置において、

上記絶縁膜の線膨張係数は、上記接着部材の線膨張係数 と同等であることを特徴とするボールグリッドアレイ型 半導体装置。

【請求項14】ボールグリッドアレイ型半導体装置において、

導電性配線と、

上記導電性配線に接続されるパッド及びランドと、 絶縁膜を有する絶縁性テープと、

上記絶縁性テープの表面に接着部材によって固着され、 上記導電性配線と電気的に接続される方形の半導体素子 レ

上記絶縁性テープ表面に形成される変形拘束部材と、 上記半導体素子及び上記変形拘束部材の周囲と上記絶縁 性テープの半導体素子固着面とを封止する封止樹脂と、 上記ランドに接合される外部端子と、

を備えることを特徴とするボールグリッドアレイ型半導 体装置。

【請求項15】複数の導電性配線と、上記導電性配線に 50 成した絶縁性テープなどが使用されている。

接続される複数のパッド及びランドと、絶縁膜を有する絶縁性テープと、上記絶縁性テープの表面に接着部材によって固着され、金属細線によって上記導電性配線と電気的に接続される方形の半導体素子と、上記半導体素子の周囲と上記絶縁性テープの半導体素子固着面とを封止する封止樹脂と、上記ランドに接合される複数の外部端子と、を有するボールグリッドアレイ型半導体装置において

上記半導体素子側面から上記封止樹脂側面までの距離 10 を、上記外部端子どうしの間隔以上とし、少なくとも、 上記半導体素子側面から上記封止樹脂側面までの間に、 上記外部端子を配置したことを特徴とするボールグリッ ドアレイ型半導体装置。

【請求項16】複数のパッド及び複数のランドと、少なくとも半導体素子の面内で上記複数のランドを覆う絶縁膜と、上記パッド及びランドに接続される導電性配線を有する絶縁性テープと、上記絶縁性テープの表面に接着部材によって固着され、金属細線によって上記導電性配線と電気的に接続される方形の半導体素子と、上記半導を封止する封止樹脂と、上記ランドに接合された外部端子とを有するボールグリッドアレイ型半導体装置において

上記絶縁膜は、互いに分離された複数の絶縁膜であって、それぞれの絶縁膜は、個々の上記ランドを覆うように形成されるとともに、上記ランドに接続される導電性配線は、絶縁膜内部における幅を、絶縁膜外部の幅より広いことを特徴とするボールグリッドアレイ型半導体装置。

30 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体素子と外部端子とを電気的に接続するための、導電性配線を備えた絶縁性テープによって構成された半導体装置であり、特に外部端子を球状はんだなどから形成したボールグリッドアレイ型半導体装置に関する。

[0002]

【従来の技術】半導体装置の高密度実装化に対応するため、多ピン化、小型化および高速化に適したボールグリッドアレイ(BGA)型の半導体装置が実用化されている。このBGA型半導体装置は、半導体装置の面内に、はんだバンプなどから成る外部端子をアレイ状に2次元配置した構造となっている。

【0003】BGA型半導体装置では、半導体素子と外部端子との電気的接続のため、表面、あるいは表面および内部に導電性配線が形成されているインターポーザと呼ばれる部材が用いられている。インターポーザにはガラス/エポキシなどを基材とするプリント配線基板や、ポリイミドなどを基材として表面などに導電性配線を形成した絶縁性テープなどが使用されている。

6

5

【0004】導電性配線が形成された絶縁性テープによって半導体装置を構成した例が特開平9-121002 号公報に示されている。図18は、従来の絶縁性テープを用いたBGA型半導体装置の概略断面図である。図18において、BGA型半導体装置は、半導体素子1と、表面に導電性配線2が形成され、ボンディングパッド部2aなどの一部を開口するように形成された絶縁膜3を有する絶縁性テープ4と、半導体素子1を絶縁性テープ4の表面に固着する接着部材5と、半導体素子1と導電性配線2とを電気的に接続する金属細線6と、半導体素子1と金属細線6と絶縁性テープ4の半導体素子固着面4aとを封止する封止樹脂7と、外部端子8とから構成されている。

【0005】導電性配線2には、金属細線6が接続されるボンディングパッド2aと外部端子8が接続されるランド2bとが連なっている。

【0006】絶縁膜3は、ソルダーレジストあるいはフォトレジストなどと呼ばれており、スクリーン印刷法、フォト法などによって形成される。絶縁膜3にはエポキシ樹脂、ポリイミド樹脂、ポリブタジエン樹脂などの材 20料が用いられる。外部端子8には主にはんだ材料(PbーSn系共晶はんだ)が用いられる。

【0007】金属細線6と導電性配線2とは、半導体素子1の面外に配置されているボンディングパッド2aで接続されている。ボンディングパッド2aの部分では、絶縁膜3に開口部3aが形成されており、金属細線6とボンディングパッド2aとが接合できるようになっている。

【0008】外部端子8は、絶縁性テープ4の実装面4 bにアレイ状に設けられ、半導体素子1の下側で、その 面内に配置されている。半導体素子1面内に配置される 外部端子8と半導体素子1とを電気的に接続するため、 導電性配線2はボンディングパッド2aから半導体素子 1の面内に位置するランド2bまで連続して形成されて いる。

【0009】ランド2bが形成されている絶縁性テープ4の実装面4b側には、ランド2bに達する閉口部9が設けられており、この開口部9においてランド2bと外部端子8とが接合できるようになっている。

[0010]

【発明が解決しようとする課題】ところで、図18に示した従来のBGA型半導体装置では、シリコン(Si)からなる半導体素子1の線膨張係数は $2\sim3\times10^{-6}$ ° Cであり、ポリイミド樹脂などから絶縁性テープ4の線膨張係数は 10×10^{-6} ′ C程度であるため、両者の線膨張係数に大きな差異がある。

【0011】このような構成の従来のBGA型半導体装置に温度変化が加わると、半導体素子1と絶縁性テープ4との線膨張係数差に起因した熱応力が、両者の界面に発生するようになり、両者を接着している接着部材5に50

亀裂や剥離などが発生する場合がある。 【0012】また、図18に示した従来の

【0012】また、図18に示した従来のBGA型半導体装置では、絶縁性テープ4の半導体素子固着面側4aにのみ封止樹脂7が形成されている。このため、BGA型半導体装置に温度変化が加わると、封止樹脂7の膨張・収縮によって半導体装置に反り変形が発生し、これによって、絶縁性テープ4には引張り・圧縮の荷重が作用するようになる。

【0013】絶縁性テープ4は剛性の大きな半導体素子 1と接着部材5で接着されているため、両者の界面に大 きな応力が発生し、接着部材5に亀裂や剥離が発生する ようになる。

【0014】このように、図18に示した従来のBGA型半導体装置では、少なくとも上述したどちらか一方の原因によって接着部材5に亀裂や剥離が発生する可能性が大であった。

【0015】接着部材5に亀裂や剥離が発生すると、線膨張係数の大きな絶縁膜3は接着部材5による拘束を受けなくなるため自由に熱変形できるようになる。このため、半導体素子1と絶縁膜3との線膨張係数差に起因して発生する応力が、絶縁膜3の端部に集中するようになる。

【0016】絶縁膜3が半導体素子1の下面すべてを覆 うように形成され、絶縁膜3の端部が半導体素子1の端 部とほぼ一致している場合は、半導体素子1の端部に大 きな応力が発生するようになる。

【0017】そこで、半導体素子1の端部に応力が集中 するのを防止するため、少なくとも半導体素子1の面内 の個々のランド2bを覆うように絶縁膜3を設けて、絶 30 縁膜3を互いに独立して形成するように構成することが 考えられる。

【0018】ところで、上述したように、接着部材5による拘束が無くなった絶縁膜3は自由に熱変形するようになる。特に、冷却過程において、絶縁膜3自体の収縮によって絶縁膜3と接着部材5の側面側界面を開口させる力が生じる。さらに、封止樹脂7の収縮による半導体装置の変形によって絶縁テープ4が外側に引張りを受ける。

【0019】このため、上述したように、絶縁膜3を互40 いに独立して形成するように構成すると、絶縁膜3の側面側界面には、さらに開口方向の力が加わるようになり、この繰り返しによって絶縁膜3の側面に剥離が発生するようになる。

【0020】さらに、温度変化の繰り返しを受けることによって、絶縁膜3側面の剥離先端から導電性配線2内部へ進行する亀裂が発生し、断線を引き起こす場合がある。導電性配線2が断線すると半導体装置が正常に機能しなくなり、BGA型半導体装置の信頼性を著しく低下させることになる。

【0021】本願発明者は、図18に示した従来のBG

A型半導体装置について、20分間で150°C→-5 5° Cに温度変化させ、これを1サイクルとして、実験 したところ、約500サイクルで導電性配線2に断線が 発生したものがあった。

【0022】また、図18に示した従来のBGA型半導 体装置では、半導体素子1の面内に外部端子8が配置さ れた構造となっている。半導体装置は、通常、ガラス/ エポキシ樹脂などを基材とする実装基板に実装して使用 される。実装された状態の半導体装置に温度変化が加わ ると、半導体装置と実装基板との線膨張係数差に起因し た応力が外部端子8に発生するようになる。

【0023】この応力は、半導体装置の中でも線膨張係 数が最も小さい半導体素子1の端部に位置する外部端子 8で最も大きくなり、外部端子8に破断が発生する可能 性が大きくなっている。外部端子8に破断が発生する と、半導体装置が正常に機能しなくなり、半導体装置の 信頼性を著しく低下させることになる。

【0024】本発明の目的は、導電性配線の断線、およ び外部端子の破断を抑制し、信頼性の高いBGA型の半 導体装置を実現することである。

[0025]

【課題を解決するための手段】上記した目的は、接着部 材に亀裂や剥離が発生したことによって生じる絶縁膜の 熱変形量を、低減又は拘束する手段を採用することによ って解決することができる。また、半導体装置の反り変 形量を低減する手段を採用することによって解決するこ とができる。

【0026】上記目的を達成するため、本発明は、次よ うに構成される。

(1) ボールグリッドアレイ型半導体装置において、複 30 材に発生する応力を平準化して低減することができる。 数のパッド及び複数のランドと、少なくとも半導体素子 の面内で上記複数のランドのそれぞれを覆うように形成 され、互いに分離された複数の絶縁膜と、上記複数のラ ンドのそれぞれから延長されて上記絶縁膜から突出する 複数の導電性部材を有する絶縁性テープと、上記絶縁性 テープの表面に接着部材によって固着され、金属細線に よって上記パッドを介して上記導電性部材と電気的に接 続される方形の半導体素子と、上記半導体素子の周囲と 上記絶縁性テープの半導体素子固着面とを封止する封止 樹脂と、上記ランドに接合された外部端子と、を備え る。

【OO27】導電性部材は銅(Cu)もしくは銅の表面 にめっきを施した材料によって形成され、これら導電性 部材に用いられる材料は、絶縁膜に用いられる材料より 通常弾性係数が大きくなっている。

【0028】そのため、温度変化時の絶縁膜の変形は、 絶縁膜が覆っている導電性配線によって少なからず拘束 されるようになっている。

【0029】各ランドを覆うように形成されている絶縁 膜から複数の導電性部材を、絶縁膜の側面を横切るよう に突出させることにより、絶縁膜側面の剥離が抑制され るようになる。絶縁膜側面の剥離が抑制されることによ って、剥離面積が減少し、絶縁膜の熱変形量が低減す る。また、絶縁膜内部で導電性部材が占める割合も増加 するため、絶縁膜の熱変形量が導電性部材の拘束によっ て低減するようになる。

【0030】各ランドから延びる導電性部材は、すべて を半導体素子と電気的に接続する必要はない。絶縁膜か ら突出して絶縁膜の熱変形を拘束できようであれば、導 電性部材の突出端が途切れていても差し支えない。この ような電気的に接続されない導電性部材は、ダミー配線 として絶縁性テープ表面に形成される。

【0031】(2)好ましくは、上記(1)において、 上記複数のランドのそれぞれから延長されて上記絶縁膜 から突出する複数の導電性部材のうち、少なくとも1本 の導電性部材を上記半導体素子と電気的に接続し、他の 導電性部材を、少なくとも上記電気的に接続される導電 性部材を挟む位置に形成する。

【0032】(3)また、好ましくは、上記(2)にお 20 いて、1つのランドの中心点から上記電気的に接続され る導電性部材とを結ぶ直線に対して、上記中心点を回転 中心として、上記直線の一方の側に90°回転させた領 域内に、少なくとも1本の他の導電性部材を形成し、上 記直線の他方の側に90°回転させた領域内に、少なく とも1本の他の導電性部材を形成する。

【0033】少なくとも1本の導電性部材を上記半導体 素子と電気的に接続し、他の導電性部材を、少なくとも 上記電気的に接続される導電性部材を挟む位置に形成す れば、絶縁膜の熱変形をバランス良く拘束し、導電性部

【0034】(4)また、好ましくは、上記(1)又は (2) において、上記絶縁膜から突出する上記導電性部 材の絶縁膜内部における幅は、絶縁膜外部の幅より広

【0035】絶縁膜から突出する導電性部材の幅を、絶 縁膜の内部において外部より広く形成すると、絶縁膜内 での導電性部材が占める割合を、多くすることになり、 絶縁膜の変形量を低減することができる。

【0036】導電性部材の幅広化は絶縁膜の変形量低減 40 効果の他に、導電性部材に亀裂が発生しても断線に至る までの寿命(温度変化の繰り返し回数)を長くできる効 果も得られる。

【0037】(5)また、ボールグリッドアレイ型半導 体装置において、導電性配線と、導電性配線に接続され るパッド及び突起が形成されたランドと、上記導電性配 線及び絶縁膜を有する絶縁性テープと、上記絶縁性テー プの表面に接着部材によって固着され、金属細線によっ て上記導電性配線と電気的に接続された方形の半導体素 子と、上記半導体素子の周囲と上記絶縁性テープの半導 50 体素子固着面とを封止する封止樹脂と、上記ランドに接

合される外部端子と、を備える。

【0038】(6)また、複数のパッド及び複数のラン ドと、少なくとも半導体素子の面内で上記複数のランド を覆う絶縁膜と、上記パッド及びランドに接続される導 電性配線を有する絶縁性テープと、上記絶縁性テープの 表面に接着部材によって固着され、金属細線によって上 記導電性配線と電気的に接続される方形の半導体素子 と、上記半導体素子の周囲と上記絶縁性テープの半導体 素子固着面とを封止する封止樹脂と、上記ランドに接合 された外部端子とを有するボールグリッドアレイ型半導 体装置において、上記絶縁膜は、互いに分離された複数 の絶縁膜であって、それぞれの絶縁膜は、個々の上記ラ ンドを覆うように形成されるとともに、上記ランドに上 記絶縁膜から突出する突起が形成される。

【0039】絶縁膜で覆われるランドに、ランドから延 びる導電性配線の他に突起を形成することによって、導 電性配線と同じ材料である突起が絶縁膜を拘束するよう になり、絶縁膜の熱変形量を低減することができる。

【0040】絶縁膜が個々のランドを覆う場合は、各ラ ような突起を形成することによって、絶縁膜側面のはく 離が分断されるため、絶縁膜の熱変形量を低減させるこ とができる。

【0041】(7)好ましくは、上記(6)において、 上記ランドに形成する突起は複数であり、少なくとも上 記導電性配線を挟む位置に形成する。

【0042】(8) また、好ましくは、上記(7) にお いて、1つのランドの中心点から上記導電性配線とを結 ぶ直線に対して、上記中心点を回転中心として、上記直 線の一方の側に90°回転させた領域内に、少なくとも 1つの上記突起を形成し、上記直線の他方の側に90° 回転させた領域内に、少なくとも1つの上記突起を形成 する。

【0043】ランドに形成する突起は、ランドから延び る導電性配線を挟み込むような位置であって、導電性配 線の両側少なくとも2個所に形成することにより、少な くとも導電性配線周囲の絶縁膜の熱変形量を低減でき、 絶縁膜側面の下端部に位置する導電性配線に大きな応力 が生じるのを防ぐことができる。

【0044】(9)また、好ましくは、上記(5)、 (6)、(7)又は(8)において、上記ランドに接続 される導電性配線の絶縁膜内部における幅は、絶縁膜外 部の幅より広い。

【0045】絶縁膜から突出する導電性配線の幅を、絶 縁膜の内部において外部より広く形成すると、絶縁膜内 での導電性配線が占める割合を、多くすることになり、 絶縁膜の変形量を低減することができる。

【0046】(10)また、ボールグリッドアレイ型半 導体装置において、複数の導電性配線と、上記導電性配 線に接続される複数のパッド及びランドと、絶縁膜を有

し、基板実装面側にスリットを形成した絶縁性テープ と、上記絶縁性テープの表面に接着部材によって固着さ れ、金属細線によって上記導電性配線と電気的に接続さ れる方形の半導体素子と、上記半導体素子の周囲と上記 絶縁性テープの半導体素子固着面とを封止する封止樹脂 と、上記ランドに接合された外部端子と、を備える。

【0047】上述したように、ボールグリッドアレイ型 半導体装置では、封止樹脂の収縮による半導体装置の変 形によって絶縁テープが引張り荷重を受けるようにな 10 る。絶縁性テープの基板実装面側にスリットを設ける と、半導体装置の変形による引張り荷重はスリット位置 から外側の絶縁性テープが受け持つようになる。

【0048】したがって、スリットを適切な位置に設け ることにより、導電性配線の断線発生個所における絶縁 性テープの外側への引張り荷重を緩和することができる ようになる。これによって、絶縁膜側面の下端部に発生 する応力を低減することが可能となる。

【0049】(11)また、ボールグリッドアレイ型半 導体装置において、導電性配線と、上記導電性配線に接 ンドに絶縁膜から突出するように突起を形成する。この 20 続されるパッド及びランドと、上記ランドの外周部分を 少なくとも覆うように形成された絶縁膜を有する絶縁性 テープと、上記絶縁性テープの表面に接着部材によって 固着され、金属細線によって上記導電性配線と電気的に 接続される方形の半導体素子と、上記半導体素子の周囲 と上記絶縁性テープの半導体素子固着面とを封止する封 止樹脂と、上記ランドに接合された外部端子と、を備え る。

> 【0050】半導体素子の面内に配置されているランド においては、絶縁膜を、ランドの外周部分を覆うように 30 形成し、ランドの中央部分では接着部材がランドを覆う ように形成する。これにより、絶縁膜の体積を減少する ことができ、絶縁膜自体の熱変形量を低減することがで きる。

【0051】また、接着部材の熱変形量は、絶縁膜の熱 変形量より通常小さくなっていることから、ランド中央 部を覆う接着部材によって絶縁膜の熱変形を拘束するこ とができる。

【0052】(12)また、導電性配線と、上記導電性 配線に接続されるパッド及びランドと、絶縁膜を有する 40 絶縁性テープと、上記絶縁性テープの表面に接着部材に よって固着され、上記導電性配線と金属細線によって電 気的に接続される方形の半導体素子と、上記半導体素子 の周囲と上記絶縁性テープの半導体素子固着面とを封止 する封止樹脂と、上記ランドに接合された外部端子と、 を有するボールグリッドアレイ型半導体装置において、 上記封止樹脂の線膨張係数は、上記絶縁性テープの線膨 張係数と同等である。

【0053】絶縁性テープの半導体素子固着面を封止す る封止樹脂の線膨張係数を、絶縁性テープの線膨張係数 と同等にすると、半導体装置は熱物性的にバランスがと

れた構造となる。

【0054】これによって、封止樹脂の収縮による半導体装置の反り変形量を低減することができ、絶縁性テープに生じる引張り荷重を緩和することができる。

11

【0055】(13)また、導電性配線と、上記導電性配線に接続されるパッド及びランドと、絶縁膜を有する絶縁性テープと、上記絶縁性テープの表面に接着部材によって固着され、上記導電性配線と金属細線によって電気的に接続される方形の半導体素子と、上記半導体素子の周囲と上記絶縁性テープの半導体素子固着面とを封止する封止樹脂と、上記ランドに接合された外部端子と、を有するボールグリッドアレイ型半導体装置において、上記絶縁膜の線膨張係数は、上記接着部材の線膨張係数と同等である。

【0056】絶縁膜の線膨張係数と接着部材の線膨張係数とを同等にすると、半導体装置に温度変化が加わった場合、絶縁膜と接着部材の熱変形量がほぼ同じとなるため、絶縁膜と接着部材との界面に剥離が発生しなくなる。特に、絶縁膜側面に剥離が発生しなくなることにより、絶縁膜側面の直下部分での応力集中を低減することができる。

【0057】(14) また、ボールグリッドアレイ型半導体装置において、導電性配線と、上記導電性配線に接続されるパッド及びランドと、絶縁膜を有する絶縁性テープと、上記絶縁性テープの表面に接着部材によって固着され、上記導電性配線と電気的に接続される方形の半導体素子と、上記絶縁性テープ表面に形成される変形拘束部材と、上記半導体素子及び上記変形拘束部材の周囲と上記絶縁性テープの半導体素子固着面とを封止する封止樹脂と、上記ランドに接合される外部端子と、を備える

【0058】変形拘束部材を、絶縁性テープの表面に形成し、半導体装置の反り変形量を低減する。これによって、絶縁性テープに生じる引張り荷重を緩和することができる。また、外部端子であるはんだバンプなどに発生するひずみを低減することができる。

【0059】(15) また、複数の導電性配線と、上記 導電性配線に接続される複数のパッド及びランドと、絶 縁膜を有する絶縁性テープと、上記絶縁性テープの表面 に接着部材によって固着され、金属細線によって上記導 電性配線と電気的に接続される方形の半導体素子と、上 記半導体素子の周囲と上記絶縁性テープの半導体素子固 着面とを封止する封止樹脂と、上記ランドに接合される 複数の外部端子と、を有するボールグリッドアレイ型半 導体装置において、上記半導体素子側面から上記封止樹 脂側面までの距離を、上記外部端子どうしの間隔以上と し、少なくとも、上記半導体素子側面から上記封止樹脂 側面までの間に、上記外部端子を配置する。 半導体素 子の下面外、つまり、半導体素子の側面から上記封止樹 脂の側面までの間に、上記外部端子を配置することによ って、半導体装置を基板に実装した場合に、半導体素子 の下面外に位置する外部端子が半導体装置の変形を拘束 するようになる。

【0060】これによって、半導体素子の下面内に位置する外部端子に発生するひずみを低減することができ、外部端子の破断を防止することができる。

【0062】導電性配線の幅を、絶縁膜の内部において 外部より広く形成すると、絶縁膜内での導電性配線が占 める割合を、多くすることになり、絶縁膜の変形量を低 減することができる。

【0063】導電性配線の幅広化は絶縁膜の変形量低減 効果の他に、導電性配線に亀裂が発生しても断線に至る までの寿命を長くできる効果も得られる。

[0064]

【発明の実施の形態】以下、本発明の実施形態を、添付 図面を用いて説明する。図1は、本発明によるボールグ リッドアレイ型半導体装置の第1の実施形態を示す図で あり、半導体素子と、封止樹脂と、絶縁膜とを取り除い た状態での平面図である。また、図2は図1に示した半 導体装置の断面図である。

【0065】図1及び図2に示すように、本発明の第1の実施形態である半導体装置は、導電性配線2が形成された絶縁性テープ4と、接着部材5によって絶縁性テープ4に固着された半導体素子1と、半導体素子1と導電性配線2を電気的に接続する金属細線6と、半導体素子401と金属細線6と絶縁性テープ4の表面とを覆う封止樹脂7と、外部端子8とを備えている。

【0066】絶縁性テープ4の半導体素子1側の固着面4 aには、金属細線6が接合されるボンディングパッド2 a と、複数の外部端子8のそれぞれが接合される複数のランド2 b と、導電性配線2とが設けられている。ボンディングパッド2 a より中央側で半導体素子1の下面内に位置するランド2 b の、それぞれの上面及び側面は、1つのランド2 b 毎に設けられた絶縁膜3で覆われている。また、導電性配線2は、ランド2 b とボンディングパッド2 a 間を電気的に接続するために絶縁性テー

プ4の表面で引き延ばされている。

【0067】半導体素子1の面内に位置するランド2b からは、ボンディングパッド2aと電気的に接続される 導電性配線2の他に、ボンディングパッド2aとは繋が っていないダミー配線10が引き延ばされている。ダミ 一配線10は、ランド2bを覆う絶縁膜3の側面3bか ら突出しており、その先端は絶縁膜3の外部まで延ばさ れている。つまり、ダミー配線10の長さは、ランド2 bの側面から絶縁膜3の側面の外部に露出する程度の長 さとなっている。ダミー配線10は、導電性配線2と同 様に絶縁性テープ4の表面に設けられており、導電性配 線2と同一のプロセスによって形成される。

【0068】導電性配線2には、銅(Cu)箔あるいは 表面に金(Au)、ニッケル(Ni)などのメッキを施 した銅箔などが用いられる。 導電性配線 2 に連なるボン ディングパッド2aおよびランド2bも同じ材料で形成 されるが、接合性を高めるなどのため各個所に応じたメ ッキなどを施す場合がある。

【0069】絶縁性テープ4の実装面4bにはランド2 bまで貫通した開口部9が形成されており、ランド2b には開口部9を介して外部端子8が接合されている。し たがって、外部端子8は半導体素子1の下部に形成され るようになり、図1のようにアレイ状に配置される。

【0070】外部端子8には、はんだ材料(例えばPb - Sn系共晶はんだ)などを使用し、球状のはんだ材も しくはペースト状のはんだ材を開口部9に配置した後、 はんだを溶融させてランド2bと接合させる。

【0071】半導体素子1は、絶縁性テープ4の半導体 素子固着面4aに接着部材5によって固着されている。 形成されており、この電極と絶縁性テープ4の表面のボ ンディングパッド2aとを金属細線6で接続することに よって、半導体素子1と導電性配線2とが電気的に接続 される。

【0072】なお、接着部材5には、例えばエポキシ樹 脂を基材とする材料を用いる。また、金属細線6には、 金(Au)、銀(Ag)あるいはアルミ(A1)などの 材料を用いる。

【0073】封止樹脂7は、半導体素子1と金属細線6 と絶縁性テープ4の半導体素子固着面4aとを覆うよう に形成されている。この封止樹脂7には熱硬化性樹脂で あるエポキシ樹脂にシリカ粒子を充てんした材料などが 用いられ、トランスファモールド法あるいはポッティン グ法によって形成される。

【0074】以上のように、本発明の第1の実施形態に おける半導体装置によれば、個々のランド2 b を覆う個 々の絶縁膜3は、互いに分離されており、かつ、ランド 2 b を覆う絶縁膜3の側面3 b から、ランド2 b に接続 される導電性配線2の他にダミー配線10を突出させる ことによって、絶縁膜3内部で剛性の大きな配線材料が 50

占める割合を大きくすることができ、絶縁膜3自体の熱 変形の拘束を、ダミー配線10により強化することがで きるようになる。

【0075】また、絶縁膜側面3bの剥離を導電性配線 2とダミー配線10とによって抑制することができ、側 面3bの剥離発生による絶縁膜3の熱変形量の増加を抑 制することができる。

【0076】これによって、半導体装置に温度変化が加 わった場合に、絶縁膜3の側面下端部で発生する導電性 10 配線2の断線不良を防止することが可能となり、導電性 配線の断線を抑制し、信頼性の高いBGA型の半導体装 置を実現することができる。

【0077】本願発明者の実験によれば、図1に示した 第1の実施形態であるBGA型半導体装置について、2 O分間で150° C→-55° Cに温度変化させ、これ を1サイクルとしたところ、約2000サイクルでも導 電性配線2に断線が発生することは無かった。

【0078】なお、図1、図2に示した第1の実施形態 では、ランド2bに連なるダミー配線10を、半導体素 20 子1の面内に配置されているランド2bに設ける例を示 している。これは、第1の実施形態のような構成の半導 体装置では、半導体素子1の面内に位置するランド2 b に接続された導電性配線2に断線不良が発生する可能性 が大きいためである。

【0079】しかしながら、ダミー配線の形成は半導体 素子1の面内に配置されるランド2bに限定させるもの ではなく、面外に配置されているランド2bにもダミー 配線10を形成しても差し支えはない。さらに、ダミー 配線10を導電性配線2と同じようにボンディングパッ また、半導体素子1の上面には図示されていない電極が 30 ド2aに接続しても良いし、他のランド2bもしくはダ ミー配線10どうし、さらには導電性配線2と接続して も良い。

> 【0080】また、図1及び図2に示した第1の実施形 態では、ランド2bに接合される外部端子8が半導体素 子1の面外と面内の両方に配置された半導体装置の例を 示したが、外部端子8が半導体素子1の面内のみに配置 される例にも、もちろん適用可能である。

【0081】つまり、本発明の第1の実施形態は、図3 に示すように、すべての外部端子8が半導体素子1の面 40 内に配置された構成の半導体装置であっても同様に適用 することができる。この図3に示した例では、すべての ランド2bにダミー配線10が形成されている。

【0082】図4は、図1、図2に示した第1の実施形 態の他の態様を示す平面図である。図1、図2に示した 例では、ランド2bに接続されたダミー配線10を、半 導体素子1の面内に配置されているランド2bについて は、それぞれ4本づつ設ける例を示してある。絶縁膜3 の熱変形を拘束する効果は、ダミー配線10の数が多く なるほど向上するようになる。

【0083】しかしながら、ランド2bどうしの間隔が

15

狭い場合などは、多くのダミー配線10をランド2bに 形成することができなくなる。ダミー配線10は、絶縁 膜3自体の熱変形を拘束し、導電性配線2の断線を防止 できれば、その数は1本であっても複数本であっても良 い。

【0084】しかしながら、絶縁膜3の熱変形をバランス良く拘束し、導電性配線2に発生する応力を平準化して低減するためには、図4に示すように導電性配線2の両側近傍部分に、導電性配線2を挟み込むように少なくとも2本のダミー配線10を形成するのが望ましい。

【0085】つまり、ランド2bの中心点から導電性配線2の延長線とを結ぶ直線に対して、上記中心点を回転中心として、絶縁性テープ4の表面上で、上記直線の一方の側に90°回転させた領域内に、一本のダミー配線10を形成し、上記直線の他方の側に90°回転させた領域内に、他の一本のダミー配線10を形成する。好ましくは、上記直線の一方又は他方の側に45°回転させた領域内にダミー配線10を形成する。

【0086】図5および図6は、図1、図2に示した本発明の第1の実施形態の他の態様を説明する図であり、ランド2bに接続する導電性配線2とダミー配線10との形状を示す平面図である。

【0087】図5において、ランド2bには導電性配線2とダミー配線10とが接続されており、これらは絶縁膜3から突出して引き延ばされている。導電性配線2は、絶縁膜3の内部における幅aが外部の幅bよりも広くなっており、この外部の幅は徐々に狭くなり、一定値となる。導電性配線2の幅をこのような構成にすることによって、少なくとも導電性配線2近傍における絶縁膜3自体の熱変形量を、導電性配線2の拘束によって低減する機能を増加させることができる。

【0088】また、絶縁膜3から突出する部分近傍の配線幅を広くすることによって、配線に亀裂が生じた場合であっても、完全に断線に至るまでの寿命を増加させることができ、通常の使用期間内での不良発生を防止することが可能となる。

【0089】図6は、ランド2bから延びる導電性配線2の他に、ダミー配線10にも絶縁膜3内部の幅aが外部の幅bより広くなるような幅広部を形成した例である。このような構成によって、絶縁膜3の熱変形量をさらに低減することができるようになる。

【0090】なお、導電性配線2及びダミー配線10の 絶縁膜3内部の幅a及び外部の幅bは、広ければ広い 程、絶縁膜3の熱変形量の低減効果が大きくなると考え られるが、大とすればする程、ノイズが混入する可能性 が大きくなる。また、隣接するランド2b等の配線との 関係から、これら幅a及びbの大きさが制限される。し たがって、上述したノイズの混入及び他の配線等との関 係から幅a及びbが決定される。

【0091】図7は、本発明によるボールグリッドアレ 50

イ型半導体装置の第2の実施形態を示す図であり、半導体素子と、封止樹脂と、絶縁膜とを取り除いた状態での 平面図である。また、図8は図7に示した半導体装置の 断面図である。

【0092】図7及び図8に示すように、本発明の第2の実施形態である半導体装置は、第1の実施形態と同様に、導電性配線2が形成された絶縁性テープ4と、接着部材5によって絶縁性テープ4に固着された半導体素子1と、半導体素子1と導電性配線2を電気的に接続する 20金属細線6と、半導体素子1と金属細線6と絶縁性テープ4の表面とを覆う封止樹脂7と、外部端子8とを備えている。

【0093】図1及び図2に示した第1の実施形態と、この第2の実施形態との異なる点は、少なくとも半導体素子1の下面内に配置されているランド2bについては、ランド2bを覆う絶縁膜3から突出する複数個の突起11を形成したことである。他の構成については、第1の実施形態と第2の実施形態とは同様となっている。突起11は、ランド2bおよび導電性配線2と同じよう20に銅(Cu)箔などから構成される。

【0094】このように、ランド2bに複数個の突起11を形成することによって、絶縁膜3内部で剛性の大きな配線材料が占める割合を大きくすることができ、絶縁膜3自体の熱変形をより拘束することができるようになる。また、絶縁膜3の側面3bの剥離を導電性配線2と突起11とによって抑制することができ、側面3bの剥離発生による絶縁膜3の熱変形量の増加を抑制することができる。

【0095】これによって、半導体装置に温度変化が加わった場合に、絶縁膜3の側面下端部で発生する導電性配線2の断線不良を防止することが可能となり、導電性配線の断線を抑制し、信頼性の高いBGA型の半導体装置を実現することができる。

【0096】なお、突起11は、絶縁膜3自体の熱変形を拘束し、導電性配線2の断線を防止できれば、その数は1本であっても複数本であっても良い。しかしながら、絶縁膜3の熱変形をバランス良く拘束し、導電性配線2に発生する応力を平準化して低減するためには、図9に示すように導電性配線2の両側近傍部分に、導電性40配線2を挟み込むように少なくとも2本の突起11を形成するのが望ましい。

【0097】つまり、ランド2bの中心点から導電性配線2の延長線とを結ぶ直線に対して、上記中心点を回転中心として、絶縁性テープ4の表面上で、上記直線の一方の側に90°回転させた領域内に、一本の突起11を形成し、上記直線の他方の側に90°回転させた領域内に、他の一本の突起11を形成する。好ましくは、上記直線の一方又は他方の側に45°回転させた領域内に突起11を形成する。

7 【0098】さらに、導電性配線2には、図10に示す

ような絶縁膜3内部の幅aが外部の幅bよりも広くなる ような幅広部を形成するのが望ましい。この導電性配線 2は、絶縁膜3の内部における幅aが外部の幅bよりも 広くなっており、この外部の幅は徐々に狭くなり、一定 値となる。

【0099】このような構成によって、少なくとも導電 性配線2近傍における絶縁膜3自体の熱変形量を、幅広 部を設けた導電性配線2の拘束によって低減することが できる。また、配線に亀裂が生じた場合であっても、完 全に断線に至るまでの寿命を増加させることができ、通 10 ことができるという効果が得られる。 常の使用期間内での不良発生を防止することが可能とな

【0100】図11は、本発明によるボールグリッドア レイ型半導体装置の第3の実施形態を示す図であり、半 導体素子と、封止樹脂とを取り除いた状態での平面図で ある。また、図12は図11に示した半導体装置の断面 図である。

【0101】図11及び図12に示すように、本発明の 第3の実施形態である半導体装置は、導電性配線2が形 成された絶縁性テープ4と、接着部材5によって絶縁性 テープ4に固着された半導体素子1と、半導体素子1と 導電性配線2を電気的に接続する金属細線6と、半導体 素子1と金属細線6と絶縁性テープ4の表面とを覆う封 止樹脂7と、外部端子8とを備えている。

【0102】絶縁性テープ4の半導体素子1側の固着面 4 a には、ボンディングパッド2 a と複数のランド2 b と導電性配線2とが設けられており、ボンディングパッ ド2aより中央側で半導体素子1の下面内に位置するラ ンド2bを覆うように絶縁膜3が設けられている。この 絶縁膜3は、1つのランド2b毎に設けられている。こ れらのランド2bを覆う絶縁膜3のランド2bの上面中 央部分には開口部12が形成されており、開口部12の 内部に接着部材5が侵入しており、この接着部材5は、 ランド2bの上面と接している。

【0103】したがって、絶縁膜3はランド2bの外周 部分を覆うように構成されている。導電性配線2は、ラ ンド2bとボンディングパッド2aとの間を電気的に接 続するために絶縁性テープ4の表面で引き延ばされてい る。絶縁性テープ4の実装面4bにはランド2bまで貫 通した開口部9が形成されており、ランド2bには開口 部9を介して外部端子8が接合されている。

【0104】半導体素子1は、絶縁性テープ4の半導体 素子固着面4aに接着部材5によって固着されている。 半導体素子1の上面には図示されていない電極が形成さ れており、この電極と絶縁性テープ4表面のボンディン グパッド2aとを金属細線6で接続することによって、 半導体素子1と導電性配線2とが電気的に接続されてい る。

【0105】また、封止樹脂7は、半導体素子1と金属 細線6と絶縁性テープ4の半導体素子固着面4aとを覆 50 となり、導電性配線の断線を抑制し、信頼性の高いBG

うように形成されている。

【0106】この第3の実施形態のように、絶縁膜3 は、ランド2 b 上面の中央部分に対応する部分に開口部 12を有し、この開口部12に接着部材5を侵入させる 構成とすることによって、絶縁膜3の体積減少による絶 縁膜3自体の熱変形量を低減させることができ、半導体 装置に温度変化が加わった場合に、導電性配線2の断線 不良を防止することが可能となり、導電性配線の断線を 抑制し、信頼性の高いBGA型の半導体装置を実現する

18

【0107】なお、絶縁膜3はエポキシ樹脂、ポリイミ ド樹脂またはポリブタジエン樹脂などの材料から構成さ れる。一方、接着部材5には、無機質のガラスなどが充 てんされたエポキシ樹脂あるいはポリイミド樹脂材料な どが用いられる。通常、接着部材5用の材料の線膨張係 数は、絶縁膜3用の材料より小さくなっているため、接 着部材5の熱変形量は絶縁膜3の熱変形量より小さくな る。したがって、ランド2b上面の中央部分の開口部1 2に侵入した接着部材5によって絶縁膜3の変形を拘束 20 することができる。

【0108】図13は、本発明によるボールグリッドア レイ型半導体装置の第4の実施形態を示す断面図であ り、図14は図13に示した半導体装置の半導体素子 と、絶縁膜と、封止樹脂とを取り除いた状態での平面図

【0109】この第4の実施形態による半導体装置の基 本的な構成は、上述した第1の実施形態と同じである が、第1の実施形態と異なる点は、ダミー配線は形成さ れていないことと、絶縁性シート4の実装面4b側か 30 ら、この絶縁性シート4にスリット13を形成したこと

【0110】スリット13は絶縁性テープ4の実装面4 bに、図14に示すように、半導体素子1の外形4辺に 沿ってロ字型などに形成し、実装面4bから半導体素子 1の固着面4aに貫通しないように形成するのが望まし い。また、スリット13は、断線不良が発生するランド 2 b の直ぐ外側に形成するのが望ましい。

【0111】このようなスリット13を絶縁性テープ4 に形成することによって、半導体装置が冷却された場合 40 の封止樹脂7の収縮により、絶縁性テープ4に作用する 引張り荷重をスリット13の変形によって緩和すること ができる。

【0112】これによって、半導体素子1の下面側にお いて、スリット13より中央寄りにある絶縁性テープ4 に大きな引張り荷重が作用しなくなり、この部分に配置 されている絶縁膜3の側面下端部に発生する応力を低減 することができる。

【0113】つまり、半導体装置に温度変化が加わった 場合に、導電性配線2の断線不良を防止することが可能 A型の半導体装置を実現することができるという効果が 得られる。

【0114】図15は、本発明によるボールグリッドアレイ型半導体装置の第5の実施形態を示す断面図であり、図16は図15に示した半導体装置の半導体素子と、絶縁膜と、封止樹脂と、変形拘束部材とを取り除いた状態での平面図である。

【0115】この第5の実施形態による半導体装置の基本的な構成は、上述した第1の実施形態と同じであるが、第1の実施形態と異なる点は、ダミー配線は形成されていないことと、絶縁性シート4の半導体素子固着面4aに、枠状の変形拘束部材14を、半導体素子1の外周部分に形成したことである。

【0116】変形拘束部材14は、銅(Cu)などの金属材料から成り、ボンディングパッド2aより外側の絶縁性テープ4の半導体素子固着面4aに図示されていない接着剤によって接着される。変形拘束部材14は、絶縁性テープ4への接着後、半導体素子1および金属細線6とともに封止樹脂7によって封止される。

【 0 1 1 7 】 また、変形拘束部材 1 4 は、絶縁性テープ 4 より剛性が大きくなるように構成し、厚さ 0 . 1 mm ~ 0 . 2 mm程度の金属板を所定の形状に加工したもの を使用する。

【0118】このような変形拘束部材14を半導体素子1の外周部分に設けることによって、半導体装置に温度変化が加わった際の反り変形量を低減することができ、冷却時に絶縁性テープ4に生じる引張り荷重を緩和することができる。

【0119】これにより、絶縁膜3側面の下端部に発生する応力を低減することができる。また、はんだなどから形成される外部端子8に発生するひずみのうち、半導体装置の反り変形に起因するひずみ成分を低減することができる。したがって、導電性配線の断線、および外部端子の破断を、抑制し、信頼性の高いBGA型の半導体装置を実現することができる。

【0120】なお、本発明によるボールグリッドアレイ型半導体装置では、封止樹脂7と絶縁性テープ4の線膨張係数が同等となるような材料でそれぞれを構成することが望ましい。

【0121】絶縁性テープ4の半導体素子固着面側4a を封止する封止樹脂7の線膨張係数を、絶縁性テープ4の線膨張係数と同等にすると、半導体装置は熱物性的にバランスがとれた構造となる。これによって、封止樹脂7の収縮による半導体装置の反り変形量を低減することができ、絶縁性テープ4に生じる引張り荷重を小さくする効果が得られる。

【0122】また、はんだバンプなどから形成される外部端子8に発生するひずみのうち、半導体装置の反り変形に起因するひずみ成分を低減することができる。

【0123】なお、封止樹脂7にはシリカ粒子が充填さ

れるが、このシリカ粒子の充填率を調整することにより、封止樹脂7の線膨張係数を、絶縁性テープ4の線膨 張係数と同等にすることができる。

【0124】さらに、本発明によるボールグリッドアレイ型半導体装置では、絶縁膜3と接着部材5の線膨張係数が同等となるような材料でそれぞれを構成することが望ましい。

【0125】絶縁膜3と接着部材5の線膨張係数を同等にすると、半導体装置に温度変化が加わった場合、絶縁10 膜3と接着部材5の熱変形量がほぼ同じであるため、絶縁膜3と接着部材5の界面に剥離が生じなくなる。特に、絶縁膜側面3bに剥離が発生しなくなることにより、絶縁膜3の側面下部での応力集中を低減できる効果が得られる。

【0126】なお、接着部材5に無機質のガラス粒子等を充填し、このガラス粒子の充填率を調整することにより、絶縁膜3と接着部材5の線膨張係数を同等とすることができる。

【0127】図17は、本発明によるボールグリッドアレイ型半導体装置の第6の実施形態を説明するための断面図である。図17に示す第6の実施形態の半導体装置は、導電性配線2が形成された絶縁性テープ4と、接着部材5によって絶縁性テープ4に固着された半導体素子1と、半導体素子1と導電性配線2を電気的に接続する金属細線6と、半導体素子1と金属細線6と絶縁性テープ4の表面を覆う封止樹脂7と、外部端子8とを備えている。

【0128】絶縁性テープ4の半導体素子固着面4aには、ボンディングパッド2aと、ランド2bと、導電性30 配線2とが設けられており、ボンディングパッド2aを除く領域は絶縁膜3で覆われている。

【0129】絶縁性テープ4の実装面4bにはランド2bまで貫通した開口部9が形成されており、ランド2bには開口部9を介して外部端子8が接合されている。

【0130】半導体素子1は、絶縁性テープ4の半導体素子固着面4aに接着部材5によって固着されている。また、半導体素子1の上面には図示されていない電極が形成されており、この電極と絶縁性テープ4表面のボンディングパッド2aとを金属細線6で接続することによって、半導体素子1と導電性配線2とが電気的に接続されている。

【0131】封止樹脂7は、半導体素子1と金属細線6と絶縁性テープの半導体素子固着面4aとを覆うように形成されている。

【0132】この第6の実施形態では、半導体素子1の側面から封止樹脂7の側面までの距離cを、外部端子8 どうしの間隔d以上とし、半導体素子1の下面内のみならず半導体素子1の下面外にも外部端子8を配置できるようにする。つまり、半導体素子1の側面から封止樹脂 7の側面までの間であって、半導体装置の実装面側にも

外部端子8を配置する。

【0133】このように、半導体素子1の下面外にも外部端子8を配置することによって、半導体装置を基板に実装した場合に、半導体素子1の面外に位置する外部端子8が半導体装置の変形を拘束するようになる。

【0134】これによって、半導体素子の面内に位置する外部端子に発生するひずみのうち、半導体装置の反り変形によるひずみ成分が減少するため、外部端子8の破断を防止することができる。

【0135】したがって、導電性配線の断線、および外部端子の破断を、抑制し、信頼性の高いBGA型の半導体装置を実現することができる。

【0136】本発明の第7の実施形態としては、上述した第1の実施形態において、ダミー配線10を設けず、 導電性配線2は、絶縁膜3の内部における幅aが外部の 幅bよりも広くなっており、この外部の幅は徐々に狭く なり、一定値となるように構成するものがある。

【0137】すなわち、図5に示す例のランド2bから、ダミー配線10のみ除外した例である。この第7の実施形態によっても、導電性配線2近傍における絶縁膜 203自体の熱変形量を、導電性配線2の拘束によって低減する機能を増加させることができ、導電性配線の断線を抑制し、信頼性の高いBGA型の半導体装置を実現することができる。

[0138]

【発明の効果】本発明は、以上説明したように構成されているため、次のような効果がある。ボールグリッドアレイ型半導体装置に温度変化が加わった際の絶縁膜の変形量を小さくすることができ、さらに半導体装置の面外の変形量を低減して絶縁性テープに生じる引張り荷重を小さくすることができる。これにより、絶縁膜側面の下端部に発生する応力を低減できるので、絶縁膜から突出する導電性配線の断線発生を防止することが可能となる。

【0139】また、半導体装置の変形を低減することに よって、半導体素子端部に位置する外部端子に発生する ひずみを低減することができ、外部端子の破断発生を防 止することができる。

【0140】したがって、導電性配線の断線、および外部端子の破断を抑制し、信頼性の高いBGA型の半導体装置を実現することができる。

【図面の簡単な説明】

【図1】本発明による半導体装置の第1の実施形態の平面図である。

【図2】図1に示した半導体装置の断面図である。

【図3】図1に示した第1の実施形態の他の態様を示す断面図である。

【図4】図1に示した第1の実施形態の他の様態を示す

絶縁テープ上部の部材を取り除いた平面図である。

【図5】図1に示した第1の実施形態による半導体装置の、他の導電性配線形状の例を示す部分平面図である。

【図6】図1に示した第1の実施形態による半導体装置の、さらに他の導電性配線形状の例を示す部分平面図である

【図7】本発明による半導体装置の第2の実施形態の平面図である。

【図8】図7に示した半導体装置の断面図である。

【図9】図7に示した第2の実施形態の他の態様を示す 部分平面図である。

【図10】図7に示した第2の実施形態のさらに他の様態を示す部分平面図である。

【図11】本発明による半導体装置の第3の実施形態の 平面図である。

【図12】図11に示した半導体装置の断面図である。

【図13】本発明による半導体装置の第4の実施形態の 断面図である。

【図14】図13に示した半導体装置の平面図である。

20 【図15】本発明による半導体装置の第5の実施形態の 断面図である。

【図16】図15に示した半導体装置の平面図である。

【図17】本発明による半導体装置の第6の実施形態の 断面図である。

【図18】従来のボールグリッドアレイ型半導体装置を 説明するための断面図である。

【符号の説明】

- 1 半導体素子
- 2 導電性配線
- 30 2 a ボンディングパッド
 - 2 b ランド
 - 3 絶縁膜
 - 3 a ボンディングパッド部の絶縁膜開口部
 - 3 b 絶縁膜の側面
 - 4 絶縁性テープ
 - 4 a 絶縁性テープの半導体素子固着面
 - 4 b 絶縁性テープの実装面
 - 5 接着部材
 - 6 金属細線
 - 7 封止樹脂
 - 8 外部端子
 - 9 絶縁性テープの開口部
 - 10 ダミー配線
 - 11 突起
 - 12 絶縁膜の閉口部
 - 13 スリット
 - 14 変形拘束部材

【図7】

【図11】

【図12】

【図13】

【図14】

【図15】

【図17】

半導体素子1の側面から封止樹脂7側面までの距離:C ≧外部端子8の間隔:d

【図16】

【図18】

フロントページの続き

(72)発明者 田中 直敬

茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内