$d: X_* X \rightarrow \mathbb{R}$ S: X * X -> Co, 1

L10: Spectral Clustering

- Hierarchical &C Jeff M. Phillips bo from - Up
- Assignment la sed February 13, 2019
- 3. Historichy

Graphs

Graphs

Mathematically: G = (V(E)) where

$$V = \{a, b, c, d, e, f, g\}$$
 and

Graphs

Mathematically:
$$G = (V, E)$$
 where

$$V = \{a, b, c, d, e, f, g\}$$
 and $V = V$

$$E = \left\{ \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{c, e\}, \{e, f\}, \{e, g\}, \{f, g\}, \{f, h\} \right\}.$$

Matrix-Style: As a matrix with 1 if there is an edge, and 0 otherwise. (For a directed graph, it may not be symmetric).

 $\alpha = 0.5$ $\alpha \in [0,1]$

adjacency

			-	auja	Ceric	<u>y</u>			
	/ 0	1	1	1	0	0	0	0	\
	1	0	0	1	0	0	0	0	١
	1	0	0	1	1	0	0	0	
4 _	1 0	1	1	0	0	0	0	0	
A =	0	0	1	0	0	1	1	0	
	0	0	0	0	1	0	1	1	
	0	0	0	0	1	1	0	0	
	/ 0	0	0	0	0	1	0	0	1

Unnormalized Laplacian Matrix

eigenvectors of L V λ scalar eigenvalue if NN = 1

Unnormalized Laplacian Matrix

eigs(L)

Unnormalized Laplacian Matrix 0.278 1.11 -.360.08 0.18 නරෙථ -.11С 0.08 0.17 -.370.36 -.080.31 -.510.50 0.73 h V_2 *V*3 X-axis Vzli) $v_2 = 1$ $v_2 = -1$

Normali zed

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

normalized Laplacian
$$L = I - D^{-1/2}AD^{-1/2} = D^{-1/2} \left(L_{o} \right)^{1/2} \left(D - A \right)^{1/2}$$

eigenvectors of \boldsymbol{L}

eigenvectors of L

λ	0	0.125	0.724	1.00	1.33	1.42	1.66	1.73
V	39	0.38	09	0.00	0.71	0.26	32	0.16
	32	0.36	27	0.50	0.00	51	0.38	18
	39	0.18	0.36	61	0.00	0.03	0.47	29
	39	0.38	09	0.00	71	0.26	32	0.16
	39	−.28	0.48	0.00	0.00	57	0.31	0.33
	39	48	29	0.00	0.00	0.05	31	65
	31			0.50	0.00	0.51	0.38	18
	22	32	61	35	0.00	07	0.27	0.51

Similarity 5 MXM madrix

X MXN madrix

 $\langle \quad \rangle$

"affinity"

 $A_{ij} = S(x_i, x_j)$

