

Relación Ángulo - Radio de Giro

Actividad 2

Materiales

- Regla o calibrador vernier.
- Transportador.
- Prototipo piñón cremallera.

Objetivos

- Determinar el ángulo de Ackerman del prototipo.
- Obtener una función algebraica del radio de giro en función de los ángulos.
- Establecer las ecuaciones dinámicas en el sistema del automóvil.

Entregable 1

Esta actividad te servirá para vaciar la información y elaborar tu reporte del Entregable 1.

1. Ángulos de Ackerman del prototipo

En los siguientes diagramas se presentan las variables que intervienen en el mecanismo de dirección de un automóvil.

Diagrama 1: Mecanismo de dirección (Fig 1):

- 2a: distancia entre las articulaciones de las llantas llamado vía (A'-B').
- Llanta izquierda A y llanta derecha B.
- b: longitud del brazo de la dirección.
- θ_A y θ_B : ángulos de orientación de las llantas A y B (ángulo del eje de giro).
- α : ángulo de Ackermann.

Fig 1. Mecanismo de dirección.

Brazos de dirección y rotación de los brazos en sentido positivo. Como se muestra, los ángulos de las llantas A y B se consideran positivos. Se muestra el ángulo de Akerman α y el tamaño de los brazos b los cuales son parte del diseño de la dirección.

Diagrama 2: Considerando la geometría mostrada en la figura 2. Encuentra los triángulos rectángulos necesarios para encontrar los valores solicitados.

Fig 2. Trapecio de Ackerman.

Ángulo de Ackermann: El ángulo de Akerman α es el ángulo entre el segmento A'B' y A'H (o el segmento B'A' y B'H) a partir de la vía y la distancia entre ejes.

De acuerdo con los diagramas anteriores y las mediciones de tu prototipo llena la tabla 1:

Tabla 1.

Datos de entrada del prototipo		
Vía	2a (mm)	
Ataque	<i>L</i> (mm)	
Ángulo de Ackermann	α (rad)	

Para tu entregable 1 es muy importante dar respuesta el siguiente cuestionamiento:

¿Por qué deben ser diferentes los ángulos de las llantas A y B?

2. Radio de giro en función del ángulo de la llanta

En la figura 3 se presentan las variables que intervienen en el mecanismo de dirección de un automóvil.

Diagrama 3. Se define el radio de giro respecto la llanta C:

Fig 3. Radio de giro.

A partir de la figura anterior obtén lo que se pide en los siguientes incisos:

- a) El ángulo de dirección de la llanta A a partir de la distancia entre ejes L y la distancia del eje de giro de la llanta C (Rc).
- b) El ángulo de dirección de la llanta B a partir de la distancia entre ejes y la distancia del eje de giro de la llanta C (R_C) y la vía (2a)
- c) De las dos últimas relaciones encuentra una relación para los dos ángulos θ_A y θ_B .