Math 107-Lecture 21

Dr. Adam Larios

University of Nebraska-Lincoln

Announcements

 Quiz on Thursday will be about the alternating series test and the ratio test.

The direct comparison test (DCT)

Assume that we have $0 \le a_n \le b_n$ for all $n \ge 1$. Then

- If $\sum_{n=1}^{\infty} b_n$ converges then $\sum_{n=1}^{\infty} a_n$ converges (because it is smaller)
 - **Example:** $\sum_{n=1}^{\infty} \frac{e^{1/n}}{2n^2+1}$ converges because $\frac{e^{1/n}}{2n^2+1} \leq \frac{2}{2n^2}$ and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges (Why?).
- If $\sum_{n=1}^{\infty} a_n$ diverges then $\sum_{n=1}^{\infty} b_n$ diverges (because it is larger)
 - **Example:** $\sum_{n=1}^{\infty} \frac{3 \cos(n)}{n^{1/e} 1}$ diverges because $\frac{3 \cos(n)}{n^{1/e} 1} \ge \frac{2}{n^{1/e}}$ and

$$\sum_{n=1}^{\infty} \frac{2}{n^{1/e}}$$
 diverges (Why?).

The limit comparison test (LCT)

Assume that $a_n, b_n > 0$ for all $n \ge 1$ and that

$$\lim_{n\to\infty}\frac{a_n}{b_n}=L\in(0,\infty)$$

In other words, the two sequences have similar behavior at infinity.

Then

$$\sum_{n=1}^{\infty} a_n(\mathsf{C}) \iff \sum_{n=1}^{\infty} b_n(\mathsf{C}).$$

Example: We have $\sum_{n=1}^{\infty} \frac{n\sqrt{n^4+7}+1}{n^{20}+n^{3/2}}$ converges because

$$\lim_{n \to \infty} \frac{\frac{n\sqrt{n^4 + 7} + 1}{n^{20} + n^{3/2}}}{\frac{n^3}{n^{20}}} = 1 \in (0, \infty)$$

and $\sum_{n=1}^{\infty} \frac{n^3}{n^{20}}$ converges.

Clicker question #1

What can we say about

$$\sum_{n=5}^{\infty} \frac{n-2}{n^3+n+1}$$

- The series converges by the divergence test
- The series diverges because of the divergence test
- The series converges by the comparison test
- The series diverges by the comparison test
- We can not conclude convergence/divergence with the methods we learned so far.

Alternating series

Alternating Series Test (AST): Assume we have a sequence such that

$$c_1 \geq c_2 \geq c_3 \geq \ldots \geq 0$$
, and $\lim_{n \to \infty} c_n = 0$.

Then the series $\sum_{n=0}^{\infty} (-1)^n c_n$ converges.

Example 1: The series

$$\sum_{n=0}^{\infty} (-1)^n \frac{3}{n}$$

is convergent by AST.

Example 2: However, for the series

$$\sum_{n=0}^{\infty} (-1)^n \frac{\sin r}{n}$$

AST is inconclusive (Why?).

Absolute convergence

ullet If the series of absolute values $\sum_{n=n_0} |a_n|$ converges, then the original

series $\sum_{n=0}^{\infty} a_n$ also converges and we say it converges absolutely.

Example of absolute convergence: The series

$$\sum_{n=0}^{\infty} (-1)^n \frac{2}{n^3}$$

is convergent by AST; the series of absolute values $\sum_{n=0}^{\infty} \frac{2}{n^3}$ also converges (Why?).

Conditional convergence

• If the series of absolute values $\sum_{n=n_0} |a_n|$ diverges, but the original

series $\sum_{n=0}^{\infty} a_n$ converges, we say it converges conditionally.

Example of conditional convergence: The series

$$\sum_{n=0}^{\infty} (-1)^n \frac{3}{n}$$

is convergent by AST, however the series of absolute values $\sum_{n=0}^{\infty} \frac{3}{n}$ is divergent (Why?).

The ratio test

For situations when factorials are present, we have the following tool:

The ratio test. Let

$$\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}=\rho$$

- If $\rho < 1$ then the series converges absolutely.
- If $\rho > 1$ then the series diverges.
- If $\rho = 1$ then the test is <u>inconclusive</u>.

Example:
$$\sum_{n=1}^{\infty} \frac{n+1}{2n!}$$

The root test

For situations when we have terms raised to power n, we employ The root test. Let

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \rho.$$

- If $\rho < 1$ then the series converges absolutely.
- If $\rho > 1$ then the series diverges.
- If $\rho = 1$ then the test is <u>inconclusive</u>.

Example:
$$\sum_{n=2}^{\infty} \left(\frac{n+1}{2n} \right)^n$$

More examples

• Determine if the series converges and, if it does, whether it converges absolutely or conditionally.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

 Use the comparison and limit comparison tests to determine if the series below converges

$$\sum_{n=5}^{\infty} \frac{n-2}{n^3+n+1}$$

• Use the ratio test to study the series

$$\sum_{n=1}^{\infty} \frac{3^n}{(2n)!}$$

Clicker question #2

If
$$b_n = (2n)!$$
 then what is $\frac{b_{n+1}}{b_n}$?

- \bullet 4 $n^2 + 6n + 2$
- 2n+1
- 2n+2
- $(2n!) + 1 \over (2n!) = 1 + \frac{1}{(2n!)}$
- Neither of these