Konečné automaty

Adrián Boros

xboros03@stud.fit.vutbr.cz

Vysoké učení technické v Brne Fakulta informačních technológií

27. dubna 2018

Obsah

- Konečný automat
- Formálna definícia
- Varianty automatov
- Zobrazovanie automatov
- Mooreov konečný automat
- Mealyho konečný automat
- Implementácia

Konečný automat

- automaton, finit state machine
- abstraktný model výpočetného stroja (počítača/programu), který číta vstupní data a na základe prečítaných symbolov prechádza z jedného stavu do druhého

Konečný automat

- automaton, finit state machine
- abstraktný model výpočetného stroja (počítača/programu), který číta vstupní data a na základe prečítaných symbolov prechádza z jedného stavu do druhého
- najčastejšie použitie:
 - konštrukcia (sekvenčných) digitálnych obvodov
 - prvý krok návrhu je zostavenie automatového modelu funkcie obvodu
 - programovanie
 - konečný automat je modelom niektorých softwareových častí, je možné pomocou neho popísať chovanie ľubovoľnej SW časti

Formálna definícia

• Konečný automat KA je šestica $KA = \langle X, Y, Q, \delta, \lambda, Q_0 \rangle$, kde:

Formálna definícia

- Konečný automat KA je šestica $KA = \langle X, Y, Q, \delta, \lambda, Q_0 \rangle$, kde:
 - X je vstupná abeceda (konečná množina vstupných písmen),
 - Y je výstupná abeceda (konečná množina výstupných písmen),
 - Q je konečná množina vnútorných stavov
 - δ je stavovo prechodová funkcia, $X \times Q \longrightarrow Q$
 - λ je výstupná funkcia, $X \times Q \longrightarrow Y$
 - $Q_0 \in Q$ je počiatočný vnútorný stav

Medvedeov automat

Medvedeov automat

- nemá množinu výstupných písmen ani definovanú výstupnú funkciu zpracovaní vstupnej postupnosti nás zaujíma, v akom vnútornom stave sa automat nachádza (tzv. transducer)
- tento model sa využíva ako napr. lexikálny analyzátor v prekladačoch programovacích jazykov

Medvedeov automat

- nemá množinu výstupných písmen ani definovanú výstupnú funkciu zpracovaní vstupnej postupnosti nás zaujíma, v akom vnútornom stave sa automat nachádza (tzv. transducer)
- tento model sa využíva ako napr. lexikálny analyzátor v prekladačoch programovacích jazykov

Autonómny automat

Medvedeov automat

- nemá množinu výstupných písmen ani definovanú výstupnú funkciu zpracovaní vstupnej postupnosti nás zaujíma, v akom vnútornom stave sa automat nachádza (tzv. transducer)
- tento model sa využíva ako napr. lexikálny analyzátor v prekladačoch programovacích jazykov

Autonómny automat

- nemá množinu vstupných písmen a prechody sú definované len "zo stavu do stavu": $Q_{t+1} = \delta(Q_t)$
- takýto automat môže byť modelom pri návrhu autonómnych čítačov

Stochastický automat

má definované jednotlivé prechody pomocou pravdepodobnosti

Fuzzy automat

- stavovo prechodová a výstupná funkcia sú definované pomocou operácií fuzzy logiky
- stavy, vstupy a výstupy sú definované ako fuzzy množiny

grafom prechodov a výstupov

grafom prechodov a výstupov

- orientovaný graf
- uzly = stavy, hrany = prechody medzi stavmi
- Mooreov automat
 - ohodnotenie hrán: vstupy: podmienky prechodu
 - ohodnotenie uzlov: výstupy odpovedajúce stavom
- Mealyho automat
 - ohodnotenie hrán: vstupy podmienky prechodu a výstupy

grafom prechodov a výstupov

- orientovaný graf
- uzly = stavy, hrany = prechody medzi stavmi
- Mooreov automat
 - ohodnotenie hrán: vstupy: podmienky prechodu
 - ohodnotenie uzlov: výstupy odpovedajúce stavom
- Mealyho automat
 - ohodnotenie hrán: vstupy podmienky prechodu a výstupy
- tabuľkou prechodov a výstupov

Automat vyjadrený vo forme tabuľky prechodov a výstupov

	0	1	Υ
Q_0	Q_0	Q_1	0
Q_1	Q_0	Q_2	1
Q_2	Q_0	Q_2	0

Automat vyjadrený pomocou grafu

Mooreov konečný automat

- jednoduché zariadenie s konečným počtom vnútorných stavov, medzi ktorými se prechádza na základe vstupných symbolov
- každý vnútorný stav má definovanú práve jednu hodnotu na výstupu
- automat musí mať definovaný východzí stav, v ktorom sa nachádza pred zadáním prvého vstupného symbolu

Mealyho konečný automat

- zobecnenie Moorovho konečného automatu
- líši se len tým, že výstup nezávisí len na vnútornom stave, ale i na vstupe
- vo formálnej definícii se táto odlišnosť prejavuje iným definičným oborom výstupnej funkcie

9/10

Implementácia

- softwarovo sa konečný automat implementuje takto:
 - vnútorný stav ukladáme do premennej, spravidla výčtového dátového typu
 - činnosť automatu predstavuje cyklus s príkazom vetvenia v jeho tele
 - najprv sa prepíname podľa stavov a potom podľa vnútorných premenných

Použitá literatúra

Konečný automat

```
https://matematika.cz/konecny-automat
http://slideplayer.cz/slide/3442954/
http://voho.eu/wiki/konecny-automat/
```

Mealyho automat

```
http://voho.eu/wiki/mealy/
```

Mooreov automat

```
http://voho.eu/wiki/moore/
```