

밑바닥부터 시작하는 딥러닝

CH3. 신경망

INDEX

•••

목차

목차1 퍼셉트론에서 신경망으로

목차2 활성화 함수

목차3 다차원 배열의 계산

목차4 3층 신경망 구현하기

목차5 출력층 설계하기

목차5 손글씨 글자인식

•••

신경망

신경망의 구조

•••

입력층, 출력층, 그리고 은닉층

여러개의 뉴런들의 복합적 구조 # 출력층 노드의 수는 클래스의 개수 # 은닉층으로 인한 복잡한 분류의 가능

• • •

활성화 함수

퍼셉트론과 신경망의 주된 차이

$$a = b + w_1 x_1 + w_2 x_2$$
$$y = h(a)$$

활성화 함수의 처리 과정

•••

가중합과 비선형함수

입력 신호의 총합을 출력 신호로 변환하는 함수 # 입력 신호의 총합이 활성화를 일으키는지 결정

활성화 함수의 처리 과정

• • •

가중합과 비선형함수

입력 신호의 총합을 출력 신호로 변환하는 함수 # 입력 신호의 총합이 활성화를 일으키는지 결정

시그모이드함수

• • •

$$h(x) = \frac{1}{1 + \exp(-x)}$$

계단 함수

ReLU 함수

계단 함수 VS 시그모이드 함수

공통점 - 출력 O에서 1 사이

- 입력이 작을 때는 출력이 O에 가깝거나 O이고 입력이 커지면 출력이 1에 가까 워지거나 1 (같은 모양)

- 비선형 함수

차이점 - 계단 함수 : O과 1 중 하나의 값

- 시그모이드 함수 : 연속적인 실수

선형 함수 : f(x) = ax + b

비선형 함수 : 직선 1개로는 그릴 수 없는 함수

신경망 활성화 함수 -> 비선형 함수 : 선형 함수를 이용하면 신경망의 층을 깊게 하는 의미가 없어짐.

$$h(x) = cx$$
를 활성화 함수로 사용한 3층 네트워크
 $y(x) = h(h(h(x)))$
 $y(x) = c * c * c * x$

$$y(x) = ax$$
와 똑같은 식 $a = c^3$

계단 함수 VS 시그모이드 함수

공통점 - 출력 O에서 1 사이

- 입력이 작을 때는 출력이 O에 가깝거나 O이고 입력이 커지면 출력이 1에 가까 워지거나 1 (같은 모양)

- 비선형 함수

차이점 - 계단 함수: O과 1 중 하나의 값

- 시그모이드 함수 : 연속적인 실수

다차원 배열의 계산

presentation_photo

행렬곱

lacktriangledown

기본 연산

앞행렬의 열수와 뒷행렬의 행수가 같아야함 # 가중합의 연산에서 기본이 되는 연산

presentation_photo

행렬곱

•••

기본 연산

앞행렬의 열수와 뒷행렬의 행수가 같아야함 # 가중합의 연산에서 기본이 되는 연산

lacktriangledown

$$A^{(1)} = XW^{(1)} + B^{(1)}$$

$$\mathbf{A}^{(1)} = (a_1^{(1)} \ a_2^{(1)} \ a_3^{(1)}), \ \mathbf{X} = (x_1 \ x_2), \ \mathbf{B}^{(1)} = (b_1^{(1)} \ b_2^{(1)} \ b_3^{(1)})$$


```
def init_network():
   network = \{\}
   network['W1'] = np.array([[0.1, 0.3, 0.5], [0.2, 0.4, 0.6]])
   network['b1'] = np.array([0.1, 0.2, 0.3])
   network['W2'] = np.array([[0.1, 0.4], [0.2, 0.5], [0.3, 0.6]])
   network['b2'] = np.array([0.1, 0.2])
   network['W3'] = np.array([[0.1, 0.3], [0.2, 0.4]])
   network['b3'] = np.array([0.1, 0.2])
   return network
def forward(network, x):
   W1, W2, W3 = network['W1'], network['W2'], network['W3']
   b1, b2, b3 = network['b1'], network['b2'], network['b3']
   a1 = np.dot(x, W1) + b1
   z1 = sigmoid(a1)
   a2 = np.dot(z1, W2) + b2
   z2 = sigmoid(a2)
   a3 = np.dot(z2, W3) + b3
                                           def identity_function(x):
   y = identity function(a3)
                                               return x
   return y
network = init_network()
x = np.array([1.0, 0.5])
y = forward(network, x)
print(y) # [ 0.31682708  0.69627909]
```

presentation_photo

신경망 코드

3층 신경망

init_network()를 통한 초기값 설정 # forward(network, x)를 통한 순전파 출력값 연산

출력층 설계하기

일반적으로 회귀에는 항등함수, 분류에는 소프트맥스 함수 사용

항등함수

$$a_2$$
 $\sigma()$ y_2

$$(a_3)$$
 $\sigma()$ y_3

소프트맥스 함수

$$y_k = \frac{\exp(a_k)}{\sum_{i=1}^n \exp(a_i)} = \frac{C \exp(a_k)}{C \sum_{i=1}^n \exp(a_i)}$$
$$= \frac{\exp(a_k + \log C)}{\sum_{i=1}^n \exp(a_i + \log C)}$$
$$= \frac{\exp(a_k + C')}{\sum_{i=1}^n \exp(a_i + C')}$$

구현 시 오버플로 문제 (큰 값 -> 결과 수치 '불안정')

어떤 정수를 더하거나 빼도 결과 동일

C': 일반적으로 입력 신호 중 최댓값 이용

```
def softmax(a):
    c = np.max(a)
    exp_a = np.exp(a - c) # 오버플로 대책
    sum_exp_a = np.sum(exp_a)
    y = exp_a / sum_exp_a

return y
```


소프트맥스 함수

출력은 0에서 1 사이의 실수 출력의 총합은 1

'확률'

지수 함수 : 단조 증가 함수 -> 적용해도 각 원소의 대소 관계 동일

->> 추론 단계에서 출력층의 소프트맥스 함수는 생략 가능

출력층 노드의 수는 분류하고 싶은 클래스의 수

뉴런의 회색 농도가 해당 뉴런의 출력 값의 크기 의미

손글씨 숫자 인식

MNIST 이미지 데이터셋

손글씨 데이터셋

- # 60000개의 훈련이미지
- # 10000개의 테스트 이미지
- # 정답에 해당하는 레이블이 있는 지도학습 (분류)

x의 형상

```
>>> x.shape
(10000, 784)
>>> x[0].shape
(784,)
>>> W1.shape
(784, 50)
>>> W2.shape
(50, 100)
>>> W3.shape
(100, 10)
```

#이미지 1개

이미지 100개

배치: 하나로 묶은 입력 데이터

```
def get_data():
   (x_train, t_train), (x_test, t_test) = \
       load_mnist(normalize=True, flatten=True, one_hot_label=False)
   return x_test, t_test
def init_network():
    with open("sample_weight.pkl", 'rb') as f:
       network = pickle.load(f)
   return network
def predict(network, x):
   W1, W2, W3 = network['W1'], network['W2'], network['W3']
   b1, b2, b3 = network['b1'], network['b2'], network['b3']
   a1 = np.dot(x, W1) + b1
   z1 = sigmoid(a1)
   a2 = np.dot(z1, W2) + b2
   z2 = sigmoid(a2)
   a3 = np.dot(z2, W3) + b3
   y = softmax(a3)
   return y
```

presentation_photo

신경망으로 추론(분류)

MNIST 손글씨 데이터셋

```
# normalize=T를 통한 정규화 (0~1)
# flatten=T를 통한 일차원 배열로의 전환
# one_hot_label=T를 하면 클래스에 해당하는 컬럼이
원핫인코딩됨 (열개 컬럼으로)
```

#입력층 뉴런 784개 (이미지 크기 28X28) #출력층 뉴런 10개(0~9) # 첫번째 은닉층 50개뉴런, 두번째 은닉층 100개 뉴런

Thank you