Методы оптимизации. Семинар 1. Воспоминания из линейной алгебры.

Корнилов Никита Максимович

мфти фивт

4 сентября 2025г

Матрицы и векторы

Мы будем работать с векторами и матрицами:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n, \quad A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,m} \end{pmatrix} \in \mathbb{R}^{n \times m}.$$

- Складывать можно только матрицы одинаковых размерностей $A, B \in \mathbb{R}^{n \times m} : A + B \in \mathbb{R}^{n \times m}!$ Вектора тоже $x, y \in \mathbb{R}^n : x + y \in \mathbb{R}^n!$
- \bullet Перемножать матрицы A, B разных размерностей можно только если $A \in \mathbb{R}^{n \times m}$ и $B \in \mathbb{R}^{m \times k}$: $AB \in \mathbb{R}^{n \times k}$!!!
- ullet В общем случае, переставлять квадратные матрицы $A,B\in\mathbb{R}^{n\times n}$ при умножении нельзя: $AB \neq BA!!!$
- ullet Умножить матрицу $A \in \mathbb{R}^{n \times m}$ справа на вектор x можно только если $x \in \mathbb{R}^m : Ax \in \mathbb{R}^n!!!$
- ullet Слева матрицу $A \in \mathbb{R}^{n \times m}$ можно умножить на строку y^{\top} , где $v \in \mathbb{R}^n : v^{\top} A \in \mathbb{R}^{1 \times m}$.

Н. М. Корнилов 4 сентября 2025г

След матрицы

След квадратной матрицы $A \in \mathbb{R}^{n \times n}$ обозначается как $Tr : \mathbb{R}^{n \times n} \to \mathbb{R}$ и считается по формуле:

$$Tr(A) = \sum_{i=1}^{n} a_{ii}.$$

Свойства следа:

- \mathbf{O} $Tr(A^{\top}) = Tr(A), A \in \mathbb{R}^{n \times n},$
- 2 $Tr(A+B) = Tr(A) + Tr(B), A, B \in \mathbb{R}^{n \times n},$
- $Tr(cA) = cTr(A), \quad A \in \mathbb{R}^{n \times n}, c \in \mathbb{R},$
- Циклическое свойство: $Tr(A_1 A_2 ... A_{k-1} A_k) = Tr(A_k A_1 A_2 ... A_{k-1}), A_1, ..., A_k \in \mathbb{R}^{n \times n}.$

Скалярное произведение

• Стандартное скалярное произведение $\langle\cdot,\cdot\rangle:\mathbb{R}^n imes\mathbb{R}^n o\mathbb{R}$ считается по формуле

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i = x^{\top} y, \quad x, y \in \mathbb{R}^n.$$

Для матриц скалярное произведение $\langle\cdot,\cdot\rangle:\mathbb{R}^{n\times m} imes\mathbb{R}^{n\times m} o\mathbb{R}$ определено как

$$\langle X, Y \rangle = \sum_{i=1}^n \sum_{j=1}^m X_{ij} Y_{ij} = \langle Y, X \rangle = \operatorname{Tr}(X^\top Y), \quad X, Y \in \mathbb{R}^{n \times m}.$$

Перестановка матрицы А в скалярном произведении:

$$\langle Ax, y \rangle = \langle x, A^{\top}y \rangle \quad \langle AX, Y \rangle = \langle X, A^{\top}Y \rangle.$$

• Поэлементное умножение одинаковых по размерностям матриц обозначается как $\odot: \mathbb{R}^{n \times m} \times \mathbb{R}^{n \times m} \to \mathbb{R}^{n \times m}$:

$$(X \odot Y)_{ij} = X_{ij} * Y_{ij}, \quad X, Y \in \mathbb{R}^{n \times m}.$$

H. М. Корнилов 4 сентября 2025г 4 / 11

Ортогональные, симметричные и определенные матрицы

- Матрица $U \in \mathbb{R}^{n \times m}$ называется ортогональной или унитарной, если $U^{\top}U = I_m$. В случае квадратных матриц $U^{-1} = U^T$.
- Множество симметричных матриц \mathbb{S}^n :

$$A \in \mathbb{S}^n \iff A = A^{\top}.$$

• Множество положительно определённых \mathbb{S}^n_{++} :

$$A \in \mathbb{S}_{++}^n \iff A \in \mathbb{S}^n; \quad \forall x \neq 0 \in \mathbb{R}^n: \quad x^\top A x > 0.$$

Критерий Сильвестра: все угловые миноры имеют положительный определитель.

• Множество положительно полуопределённых \mathbb{S}^n_+ :

$$A \in \mathbb{S}^n_+ \iff A \in \mathbb{S}^n; \quad \forall x \in \mathbb{R}^n : \quad x^\top A x \ge 0.$$

Критерий Шварценеггера: все *главные* миноры имеют неотрицательный определитель. Главным минором называется определитель подматрицы, симметричной относительно главной диагонали.

Собственные числа

Для квадратичной матрицы $A \in \mathbb{R}^{n \times n}$ существует n (возможно комплексных) собственных чисел $\{\lambda_i(A)\}_{i=1}^n$, где $\lambda_i(A) - i$ -ое по модулю собственное число.

ullet Собственное значение $\lambda \in \mathbb{C}$ и собственный вектор $x
eq 0 \in \mathbb{C}^d$:

$$Ax = \lambda x \iff \det(A - \lambda I) = 0.$$

• Определитель и след матрицы *A* можно выразить через её собственные значения

$$\det(A) = \prod_{i=1}^n \lambda_i(A), \quad \mathsf{Tr}(A) = \sum_{i=1}^n \lambda_i(A).$$

• Для любой симметричной матрицы $A \in \mathbb{S}^n$ существует действительный ортонормированный базис из собственных векторов $S \in \mathbb{R}^{n \times n}$ и действительных собс. чисел:

$$A = S\Sigma S^{\top}, \quad S^{\top}S = I, \quad \Sigma$$
 — диагональная с собс. числами.

Векторные нормы

Норма $\|\cdot\|:\mathbb{R}^n \to \mathbb{R}$ — функция, удовлетворяющая свойствам: Неотрицательность, Умножение на скаляр, Неравенство треугольника.

ullet p-норма $\|\cdot\|_p$ на \mathbb{R}^n для $p\in [1,+\infty]$:

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}, \quad ||x||_\infty = \max_{i \in [1,n]} |x_i|.$$

Частные случаи: $\|x\|_2 = \sqrt{\sum\limits_{i=1}^n |x_i|^2} = \sqrt{\langle x, x \rangle}, \quad \|x\|_1 = \sum\limits_{i=1}^n |x_i|.$

- Сопряженная норма $\|\cdot\|_*$ для любой нормы $\|\cdot\|$: $\|y\|_*:=\sup_{\|x\|\leq 1}\langle x,y\rangle.$ Для p-нормы сопряженная это q-норма, $\frac{1}{p}+\frac{1}{q}=1.$
- Скалярное произведение $\langle \cdot, \cdot \rangle_A$ и квадратичная норма $\| \cdot \|_A$, определенная пол. опр. матрицей $A \in \mathbb{S}^n_+$:

$$\langle x, y \rangle_A := x^\top A y, \quad \|x\|_A = \sqrt{\langle x, x \rangle_A}.$$

H. М. Корнилов 4 сентября 2025г 7 /

Свойства норм

• Неравенства Гёльдера и Коши-Буняковского: Для векторов $x,y\in\mathbb{R}^n$ и чисел $p\in[1,+\infty], \frac{1}{q}+\frac{1}{p}=1$ выполняется неравенство

$$|\langle x,y\rangle| \leq \sum_{i=1}^{n} |x_i y_i| \leq ||x||_p ||y||_q.$$

В частности неравенство КБШ: $|\langle x, y \rangle| \le ||x||_2 ||y||_2$.

ullet Все нормы в \mathbb{R}^n эквивалентны, например, для $p < p' \in [1, +\infty]$:

$$||x||_{p'} \le ||x||_p \le n^{\frac{1}{p} - \frac{1}{p'}} ||x||_{p'}, \quad \forall x \in \mathbb{R}^n.$$

В частности, имеем:

$$||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2, \quad \forall x \in \mathbb{R}^n.$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Матричные нормы

Норма $\|\cdot\|_p:\mathbb{R}^{n\times m}\to\mathbb{R}$ — функция, удовлетворяющая свойствам: Неотрицательность, Умножение на скаляр, Неравенство треугольника.

• Матричная норма $\|\cdot\|_p$ для $A \in \mathbb{R}^{n \times m}$, индуцированная векторной нормой $\|\cdot\|_p$, определятся как

$$||A||_p := \sup_{||x||_p = 1} ||Ax||_p.$$

Можно привести замкнутые формы для классических норм

- $\bullet \|A\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{m} |a_{ij}|,$
- $||A||_1 = \max_{1 \le j \le m} \sum_{i=1}^n |a_{ij}|,$
- $\bullet \ \|A\|_2 = \sup_{\langle x,x\rangle=1} \sqrt{\langle Ax,Ax\rangle} = \sqrt{\lambda_{\mathsf{max}}(A^\top A)}.$
- ullet Норма Фробениуса для матрицы $A \in \mathbb{R}^{n imes m}$ определяется как

$$||A||_F^2 = \sum_{i=1}^n \sum_{j=1}^m A_{ij}^2 := \text{Tr}(A^\top A) = \sum_{i=1}^m \lambda_i (A^\top A).$$

H. М. Корнилов 4 сентября 2025г 9 / 11

SVD разложение матрицы

Числа $\sigma_i(A):=\sqrt{\lambda_i(A^\top A)}\geq 0, i\in\overline{1,m}$ называются сингулярными числами $A\in\mathbb{R}^{n\times m}$. В случае симметричной матрицы $A\in\mathbb{S}^m$: $\sigma_i(A)=|\lambda_i(A)|, i\in\overline{1,m}$.

Lemma

Матрица $A \in \mathbb{R}^{n \times m}$ представима в виде SVD-разложения:

$$A = U\Sigma V^{\top}$$
,

где $U \in \mathbb{R}^{n \times n}, V \in \mathbb{R}^{m \times m}$ — ортогональные, $\Sigma \in \mathbb{R}^{n \times m}$ — диагональная матрица, составленная из сингулярных чисел $\sigma_i(A) := \sqrt{\lambda_i(A^\top A)}, i \in \overline{1,m}$, расположенных в порядке убывания.

V - базис из собственных векторов $A^{\top}A$, U - базис из собственных векторов матрицы AA^{\top} .

H. М. Корнилов 4 сентября 2025г 10 / 11

Свойства матричных норм

• Индуцированные и Фробениусова нормы удовлетворяют свойству субмультипликативности (в общем случае - нет)

$$||AB|| \le ||A|| ||B||, \quad A \in \mathbb{R}^{n \times m}, B \in \mathbb{R}^{m \times k}.$$

- ullet Для любой $A\in\mathbb{R}^{n imes n}$ и индуцированной или Фробениусовой нормы $\|\cdot\|$ верно $|\lambda_{max}(A)|\leq \|A\|$.
- ullet Для любой $A\in\mathbb{R}^{n imes m}$ верно ортогональной $U\in\mathbb{R}^{k imes n}$ и нормы Фробениуса верно

$$\|UA\|_F=\|A\|_F.$$

- ullet Для любой $A \in \mathbb{R}^{n imes m}$ верно $\|A\|_2^2 \leq \|A\|_{\infty} \|A\|_1$.
- ullet Для любой $A \in \mathbb{R}^{n imes m}$ верно $\|A\|_2 \leq \|A\|_F \leq \sqrt{m} \|A\|_2.$

↓□▶ ↓□▶ ↓□▶ ↓□▶ □□ ♥ ♀○○