Advanced Control Systems (Examples)

T. H. Lee

(in collaboration with colleagues & students)

Centre for Intelligent Control

(C&S, M&A, ACT Labs)

Department of Electrical & Computer Engineering
National University of Singapore

aircraft canopy polishing

Fukuda & co-workers (Nagoya)
Lewis & co-workers (Arlington)
Moore & co-workers (Utah)
Grimble & co-workers (Strathclyde)
Tso & co-workers (Hong Kong)
C.W. de Silva & co-workers (UBC)

Advanced Control Systems projects: prototypes being refined in different stages

Other Systems (at CIC, NUS)

Gladiator Robots

Some of the other fun things our students work on...

Pole-balancing Robot

ADAPTIVE NEURAL NETWORK CONTROL OF ROBOTIC MANIPULATORS

SSGE, TH LEE & CJ HARRIS

World Scientific

Tan Kok Kiong, Lee Tong Heng, Dou Huifang and Huang Sunan

·ADVANCES IN INDUSTRIAL

CO

PRECISION MOTION CONTROL

Design and Implementation

Advances in Industrial Control

Microdrives (Toshiba 0.85-inch HDD, 4 GB)

Modeling and Identification

Basically, the HDD VCM actuator displays both linear and nonlinear features in its dynamic model. At the low-frequency range, it behaves as a double integrator (<u>linear</u>), a typical behaviour of servomechanism, and at the high frequencies, it has many resonance modes. <u>Nonlinearities</u> associated with the system are friction and those from data flex cable...

HDD Control Systems

An HDD control system involves two main tasks: <u>track following</u> (**linear control**) and <u>track seeking</u> (**nonlinear control**)...

Details described in:

2002 2006

Semiconductor Manufacturing Process

Source: Sematech, Inc.

International Technology Roadmap for Semiconductors: 2002 Update Grand Challenge:

Process control, particularly for overlay and linewidths, also represents a major challenge. It is unclear whether metrology, which is fundamental for process control, will be upgraded adequately to meet future requirements.

International Panel on Future Directions in Control, Dynamics and Systems, AFOSR, 2002:

...use of control is critical to future progress in the semiconductor sector. Modeling plays a crucial role and control techniques must make use of more in-situ measurements to control at a variety of temporal and spatial scales.

Semiconductor Manufacturing Process

Source: Sematech, Inc.

Scope

- Issues in Lithography:
 - Temperature Control
 - Photoresist Thickness
 - Wafer Warpage

Temperature Control

New Thermal System Design

In-situ thickness measurement

UAV (Helicopter) control system

UAV System

Onboard

- inertial measurement
- servo driving
- automatic control
- communication
- data logging

Helicopter

Ground Station

Ground Station

- data transferring (background)
- user interface (foreground)

Linear State-Variable Model

Linear model for helicopter under specific flight condition

$$\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}$$

where

$$\mathbf{x} = (u, v, p, q, \phi, \theta, a_s, b_s, w, r, r_f, \zeta_a, \zeta_e, \zeta_u)$$

$$\mathbf{u} = (\delta_a, \delta_e, \delta_u, \delta_r)$$

UAV (Helicopter) Control

x, y, z – position of the helicopter respective to ground frame (North-East-Down frame)

u, v, w - velocity of helicopter along axis in body frame

 ϕ , θ , ψ - roll, pitch and heading angle of helicopter (NED frame)

p, q, r - roll, pitch and yaw rate of helicopter along axis in body frame

 δ_a , δ_e , δ_u , δ_r – control signal for aileron, elevator, collective pitch and rudder

helicopter state – $(x, y, z, u, v, w, \phi, \theta, \psi, p, q, r)$

MORE SYSTEMS (at CIC, NUS)

KKTan & students

Prahlad & students (won 1st Prize at FIRA Competition, Austria; 7 Oct 2003)

MORE SYSTEMS (at CIC, NUS)

Gyro-stabilized line-of-sight pointing system

