

oFlute: reconocimiento de señales aplicado al aprendizaje de la flauta dulce

José Tomás Tocino García Ingeniería Técnica en Informática de Sistemas

Septiembre de 2011

Índice

Introducción

Descripción

Calendario

Fundamentos teóricos

Desarrollo

Herramientas

Conclusiones y difusión

Bibliografía

Índice

Introducción

Descripción

Calendario

Fundamentos teóricos

Desarrollo

Herramientas

Bibliografía

•

Contexto social

Jóvenes en plena simbiosis con las nuevas tecnologías.

Contexto social

Jóvenes en plena simbiosis con las nuevas tecnologías.

Las TIC están llegando a los centros educativos.

Contexto social

Jóvenes en plena simbiosis con las nuevas tecnologías.

Las TIC están llegando a los centros educativos.

Técnicas docentes basadas en recursos multimedia e informáticos.

Idea

Hacer un juego educativo.

Idea

Hacer un juego educativo.

Primera cuestión

¿Sobre qué aspecto educativo? ¿Qué asignatura se beneficia?

Idea

Hacer un juego educativo.

Primera cuestión

¿Sobre qué aspecto educativo? ¿Qué asignatura se beneficia?

Idea

Hacer un juego educativo.

Primera cuestión

¿Sobre qué aspecto educativo? ¿Qué asignatura se beneficia?

Música

Aprendizaje de la flauta dulce

Adquisición de base de conocimientos.

- Adquisición de base de conocimientos.
- Módulo de análisis de sonido.

- Adquisición de base de conocimientos.
- Módulo de análisis de sonido.
- Sistema de interpretación de canciones.

- Adquisición de base de conocimientos.
- Módulo de análisis de sonido.
- Sistema de interpretación de canciones.
- Sistema de lecciones ampliable.

- Adquisición de base de conocimientos.
- Módulo de análisis de sonido.
- Sistema de interpretación de canciones.
- Sistema de lecciones ampliable.
- Interfaz de usuario amigable y fluida.

Motivaciones personales

- Representación digital del sonido.
- Programación de audio.

Motivaciones personales

- Representación digital del sonido.
- Programación de audio.
- Bases del DSP (Procesamiento digital de señales).
- Técnicas básicas de análisis de audio.

Motivaciones personales

- Representación digital del sonido.
- Programación de audio.
- Bases del DSP (Procesamiento digital de señales).
- Técnicas básicas de análisis de audio.
- Ampliar conocimientos sobre desarrollo de videojuegos.
- Aprender nuevas tecnologías.
- Aportar al software libre.

Índice

Introducatón

Descripción

Calendario

Fundamentos teóricos

Desarrollo

Herramientas

Bibliografía

•

oFlute

Herramienta lúdico-educativa para el aprendizaje de la flauta dulce.

Interacción del alumno con la flauta en tiempo real.

Analizador de notas

Analiza las notas en tiempo real, de forma individual.

Motor de lecciones

Motor de lecciones con recursos multimedia, totalmente ampliable y personalizable.

Motor de canciones

Motor de canciones ampliable, permite la interpretación interactiva de canciones.

Índice

Introducción

Descripcion

Calendario

Fundamentos teóricos

Desarrollo

Herramientas

Bibliografía (

•

Desarrollo iterativo.

Adquisición de base de conocimientos.

- Adquisición de base de conocimientos.
- Desarrollo de analizador básico.

- Adquisición de base de conocimientos.
- Desarrollo de analizador básico.
- Interfaz gráfica de usuario.

- Adquisición de base de conocimientos.
- Desarrollo de analizador básico.
- Interfaz gráfica de usuario.
- Motor de lecciones.

- Adquisición de base de conocimientos.
- Desarrollo de analizador básico.
- Interfaz gráfica de usuario.
- Motor de lecciones.
- Motor de canciones.

- Adquisición de base de conocimientos.
- Desarrollo de analizador básico.
- Interfaz gráfica de usuario.
- Motor de lecciones.
- Motor de canciones.

Diagrama de Gantt

Índice

Fundamentos teóricos

El sonido

El **sonido** es una vibración en forma de onda.

Frecuencia Oscilaciones por unidad de tiempo.

Amplitud Energía que transporta la onda.

Fase Desplazamiento respecto del origen.

Descomposición de sonidos

Los sonidos no suelen ser ondas puras, se componen de **parciales**.

Descomposición de sonidos

Los sonidos no suelen ser ondas puras, se componen de **parciales**.

La **frecuencia fundamental** es el menor de esos parciales. Dicta la **altura** general del sonido, esto es, la **nota**.

Descomposición de sonidos

Los sonidos no suelen ser ondas puras, se componen de **parciales**.

La **frecuencia fundamental** es el menor de esos parciales. Dicta la **altura** general del sonido, esto es, la **nota**.

Los **armónicos** son parciales múltiplos de la frecuencia fundamental, enriquecen y caracterizan el sonido.

Descomposición de sonidos

Los sonidos no suelen ser ondas puras, se componen de **parciales**.

La **frecuencia fundamental** es el menor de esos parciales. Dicta la **altura** general del sonido, esto es, la **nota**.

Los **armónicos** son parciales múltiplos de la frecuencia fundamental, enriquecen y caracterizan el sonido.

Objetivo: Descomponer el sonido para obtener la frecuencia fundamental.

Herramientas de análisis armónico

Trabajan en el **dominio de la frecuencia**: se representa una señal respecto a su espectro de frecuencias.

Herramientas de análisis armónico

Trabajan en el **dominio de la frecuencia**: se representa una señal respecto a su espectro de frecuencias.

La **transformada de Fourier** es la herramienta más conocida: descompone una señal en sus componentes senoidales.

Herramientas de análisis armónico

Trabajan en el **dominio de la frecuencia**: se representa una señal respecto a su espectro de frecuencias.

La **transformada de Fourier** es la herramienta más conocida: descompone una señal en sus componentes senoidales.

Algoritmo más habitual: **FFT - Fast Fourier Transform**. En nuestro caso usamos la versión discreta, **DFT - Discrete Fourier Transform**.

Ejemplo de aplicación de FFT

Función ventana

Se aplica sobre el conjunto de entrada, suaviza la señal.

Hay muchos tipos, según la respuesta de salida: Hann, Hamming, gausiana, Tukey, Lanczos...

Ejemplo de ventana de Hann:

En oFlute no se utiliza.

Índice

Introducción

Descripción

Calendario

Fundamentos teóricos

Desarrollo

Herramientas

Bibliografía

Analizador básico

Objetivo

Desarrollar un módulo que capture el sonido del micrófono, lo analice y detecte la nota que se está tocando.

Analizador básico

Objetivo

Desarrollar un módulo que capture el sonido del micrófono, lo analice y detecte la nota que se está tocando.

Primer paso: capturar el audio

- Se utilizó la API de PulseAudio.
- Abrimos un flujo de entrada.
- Creamos un búffer para recoger los datos.
- Procesamos los datos cuando se llena el búffer.

Analizador básico

Segundo paso: analizar el sonido

- Trabajamos con el contenido del búffer.
- Aplicamos el algoritmo DFT.
- Aislamos la frecuencia fundamental.
- Comparamos la frecuencia fundamental con una tabla de frecuencias para la flauta dulce.
- Devolvemos la nota detectada.

oFlute utiliza Gosu como sistema gráfico.

oFlute utiliza Gosu como sistema gráfico.

Problema: Gosu no permite cargar fuentes TrueType en GNU/Linux.

oFlute utiliza Gosu como sistema gráfico.

Problema: Gosu no permite cargar fuentes TrueType en GNU/Linux.

Solución: se implementa un módulo propio para carga y pintado de fuentes TrueType.

oFlute utiliza **Gosu** como sistema gráfico.

Problema: Gosu no permite cargar fuentes TrueType en GNU/Linux.

Solución: se implementa un módulo propio para carga y pintado de fuentes TrueType.

Este módulo se liberó y pasó a formar parte oficial de Gosu.

```
// Used for custom TTF files
// Adapted from customFont class by Jose Tomas Tocino Garcia
class SDLTTFRenderer : boost::noncopyable
```

Problema: uno de los objetivos era tener interfaces amigables, fluidas y minimalistas.

Problema: uno de los objetivos era tener interfaces amigables, fluidas y minimalistas.

Solución: se desarrolla un sistema de animaciones mediante interpolaciones de movimiento.

Problema: uno de los objetivos era tener interfaces amigables, fluidas y minimalistas.

Solución: se desarrolla un sistema de animaciones mediante interpolaciones de movimiento.

Permite movimientos de aceleración, deceleración, uniformes, etcétera. Es extensible a un número arbitrario de atributos.

Problema: uno de los objetivos era tener interfaces amigables, fluidas y minimalistas.

Solución: se desarrolla un sistema de animaciones mediante interpolaciones de movimiento.

Permite movimientos de aceleración, deceleración, uniformes, etcétera. Es extensible a un número arbitrario de atributos.

Se basó en las ecuaciones de Robert Penner, liberadas bajo licencia BSD.

Internacionalización

Problema: con miras a otros países, resultaría necesario internacionalizar el proyecto.

¹http://hdl.handle.net/10498/10772

Internacionalización

Problema: con miras a otros países, resultaría necesario internacionalizar el proyecto.

Solución: se utilizó **GNU Gettext** como sistema estándar de internacionalización.

¹http://hdl.handle.net/10498/10772

Internacionalización

Problema: con miras a otros países, resultaría necesario internacionalizar el proyecto.

Solución: se utilizó **GNU Gettext** como sistema estándar de internacionalización.

Su estudio derivó en la publicación del documento *Traducción* de proyectos con GNU gettext en 15 minutos ¹.

¹http://hdl.handle.net/10498/10772

Índice

Introducción

Calendario

Fundamentos teóricos

Desarrollo

Herramientas

Bibliografía

Herramientas

Lenguaje de programación: C++

- Pros Mayor familiaridad.
 - Muy eficiente.
 - Gran cantidad de herramientas y soporte.

Contras

- Desarrollo más lento que en lenguajes de script.
- Gestión de memoria manual.

Herramientas

Biblioteca gráfica: Gosu

- Pros Multiplataforma.
 - Muy orientada a objetos.
 - Aceleración gráfica por hardware.

Contras

- Alcance limitado: solo gráficos y E/S.
- Inconsistencias entre sistemas.
- Poco soporte.

Herramientas

Acceso a flujos de audio

PulseAudio, muy bajo nivel.

Procesado de XML

PugiXML, sencilla y rápida, con acceso XPath.

Cálculo de DFT

Tras probar una implementación propia, se pasó a KissFFT, por eficiencia.

Propósito general

Boost se utilizó de forma extensa.

Índice

Conclusiones a nivel de proyecto

Objetivos cumplidos

Se completaron todos los objetivos propuestos:

- Se creó un módulo de análisis de notas eficiente.
- El sistema de canciones integró el módulo de análisis de forma efectiva.
- Desarrollamos un sistema de lecciones muy completo.
- Se mantuvo en todo momento una interfaz agradable y fluida.

Conclusiones a nivel de proyecto

Posibles mejoras

Hay lugar para ampliar el proyecto:

- Extender el sistema de lecciones para añadir, por ejemplo, vídeos y otros elementos multimedia.
- Mejorar la jugabilidad del sistema de canciones.
- Portar el juego a otras plataformas.

Conclusiones a nivel personal

- Proyecto muy longevo.
- Mucho conocimiento nuevo adquirido: DSP, programación de audio, hilos, matemáticas...
- Mucho conocimiento generado.
- Cercano a proyectos reales.

Se ha generado mucho conocimiento a raíz del proyecto.

Se ha generado mucho conocimiento a raíz del proyecto.

Taller de Boost

Se explicaron las partes más importantes de esta colección de bibliotecas, con numerosos ejemplos.

Se ha generado mucho conocimiento a raíz del proyecto.

Taller de Boost

Se explicaron las partes más importantes de esta colección de bibliotecas, con numerosos ejemplos.

Taller de Gosu

Afluencia de más de 50 personas, se desarrolló un clon del Arkanoid.

Se ha generado mucho conocimiento a raíz del proyecto.

Taller de Boost

Se explicaron las partes más importantes de esta colección de bibliotecas, con numerosos ejemplos.

Taller de Gosu

Afluencia de más de 50 personas, se desarrolló un clon del Arkanoid.

Tutorial de Gettext

Completo manual de internacionalización de proyectos.

También se hizo un taller sobre el mismo tema.

Proyectos derivados

A partir del código de oFlute se desarrolló el proyecto **Freegemas**, un clon libre y multiplataforma de Bejeweled.

Su desarrollo dio lugar a **tres publicaciones** en la revista Linux Magazine, y su inclusión oficial en **Guadalinex**.

Difusión

Social media

- Blog: oflute.wordpress.com, 5500 visitas en total.
- 3 vídeos en YouTube, aprox. 700 reproducciones.

Difusión

Social media

- Blog: oflute.wordpress.com, 5500 visitas en total.
- 3 vídeos en YouTube, aprox. 700 reproducciones.

Concurso Universitario de Software Libre

- Mención especial a nivel nacional.
- Accésit al mejor proyecto de innovación en la fase local.

Difusión

Social media

- Blog: oflute.wordpress.com, 5500 visitas en total.
- 3 vídeos en YouTube, aprox. 700 reproducciones.

Concurso Universitario de Software Libre

- Mención especial a nivel nacional.
- Accésit al mejor proyecto de innovación en la fase local.

Guadalinex

oFlute se encuentra en los repositorios de Guadalinex.

Índice

Bibliografía

Bibliografía y referencia

- Comp.DSP Newsgroup
 http://www.dsprelated.com/compdsp.php
- Learning UML 2.0 Miles & Hamilton, O'Reilly, 2006
- Digital Signal Processing, a Computer Science Perspective Jonathan Stein, Wiley-Interscience, 2000
- Understanding Digital Signal Processing Richard Lyons, Prentice Hall, 2001.
- Design Patterns Erich Gamma y asociados., Addison Wesley, 1994

Demostración

Gracias por su atención ¿Preguntas?

http://oflute.googlecode.com
http://oflute.wordpress.com