```
Mplus VERSION 8.4 (Mac)
MUTHEN & MUTHEN
08/05/2020 12:37 PM
INPUT INSTRUCTIONS
  TITLE: Measurement Models - School Conn PAF Int
  DATA: FILE = "All Variables 072720.dat";
  VARIABLE:
  NAMES = ff_id ThreatComp DepComp k6d2ag k6d2ai k6d2d k6d2j k6d2t
k6d2ac k6d2ak k6d2c
       k6d2n k6d2x p6b36 p6b40 p6b52 p6b53 p6b54 p6b68 p6b65 p6b66
k6d2ag_r k6d2ai_r
       k6d2d_r k6d2j_r k6d2t_r k6d2ac_r k6d2ak_r k6d2c_r k6d2n_r
k6d2x r k6d61a k6d61b
       k6d61c k6d61d k6d61e k6d61f k6d61g k6d61h k6d61i k6d61j k6d61k
k6d61l k6d61m
       k6d2a k6d2p k6d2r k6d2z k6d2ab k6d2aj k6d40 k6d48 k6f63 k6f68
k6f74 p6b35 p6b37
       p6b38 p6b39 p6b41 p6b42 p6b43 p6b44 p6b45 p6b57 p6b59 p6b49
p6b50 p6b51 p6b60
       p6b61 p6b62 p6b63 p6b64 p6b67 k6d2a_r k6d2p_r k6d2r_r k6d2z_r
k6d2ab_r k6d2aj_r
       k6d40_r k6d48_r k6f63_r k6f68_r k6f74_r k6d2b k6d2e k6d2f k6d2q
k6d2h k6d2i
       k6d2k k6d2l k6d2m k6d2o k6d2s k6d2u k6d2v k6d2w k6d2y k6d2aa
k6d2ad k6d2ae
       k6d2af k6d2ah k6d2b_r k6d2e_r k6d2f_r k6d2g_r k6d2h_r k6d2i_r
k6d2k_r k6d2l_r
       k6d2m r k6d2o r k6d2s r k6d2u r k6d2v r k6d2v r k6d2v r
k6d2aa r k6d2ad r
       k6d2ae r k6d2af r k6d2ah r k5e1a k5e1b k5e1c k5e1d k5e2a k5e2b
k5e2c k5e2d
       k6b1a k6b1b k6b1c k6b1d k6b32a k6b32b k6b32c k6b32d k6b32e
k6b32f k5e2a r
       k5e2b r k5e2c r k5e2d r k6b1a r k6b1b r k6b1c r k6b1d r;
  USEVARIABLES =
  !ThreatComp DepComp ! Not used in measurement model.
  ! SC15
  ! k6b1a_r k6b1b_r k6b1c_r k6b1d_r
  ! SC9
  ! k5e1a k5e1b k5e1c k5e1d
  ! Anxiety
   k6d2aq r k6d2ai_r k6d2d_r k6d2j_r k6d2t_r
  ! Depression
   k6d2ac_r k6d2ak_r k6d2c_r k6d2n_r k6d2x_r
```

! Internalizing CBCL

! Delinquency (Reverse Coded)

!p6b36 p6b40 p6b52 p6b53 p6b54 p6b68 p6b65 p6b66

```
! k6d2a r k6d2p r k6d2r r k6d2z r k6d2ab r k6d2aj r
  ! Impulsivity
  ! k6d61a k6d61b k6d61c k6d61d k6d61e k6d61f k6d61g k6d61h
  ! k6d61i k6d61j k6d61k k6d61l k6d61m
  ! Substance Use (Dichotomous)
  ! k6d40_r k6d48_r k6f63_r k6f68_r k6f74_r
  ! Externalizing CBCl
  !p6b35 p6b37 p6b38 p6b39 p6b41 p6b42 p6b43 p6b44 p6b45 p6b57 p6b59
p6b49 p6b50
  !p6b51 p6b60 p6b61 p6b62 p6b63 p6b64 p6b67
  ! PAF
  ! k6d2b_r k6d2f_r k6d2g_r
  ! k6d2i_r k6d2k_r k6d2l_r k6d2m_r k6d2o_r
  ! k6d2s_r k6d2v_r k6d2w_r k6d2y_r
  ! k6d2aa_r k6d2ae_r k6d2af_r k6d2ah_r
  ! 9.24.2019 - I am removing te 4 items on the PAF engagement
subscale because
  ! they all have standard factor loadings below 0.3 and qualitatively
seem
  ! to be measuring something different. Those items are: k6d2e,
k6d2h, k6d2u, k6d2ad.
  CATEGORICAL =
  ! SC15
  ! k6b1a_r k6b1b_r k6b1c_r k6b1d_r
  ! k5e1a k5e1b k5e1c k5e1d
  ! Anxiety
  k6d2ag r k6d2ai r k6d2d r k6d2j r k6d2t r
  ! Depression
  k6d2ac r k6d2ak r k6d2c r k6d2n r k6d2x r
  ! Internalizing CBCL
  !p6b36 p6b40 p6b52 p6b53 p6b54 p6b68 p6b65 p6b66
  ! Delinquency (Reverse Coded)
  ! k6d2a r k6d2p r k6d2r r k6d2z r k6d2ab r k6d2aj r
  ! Impulsivity
  ! k6d61a k6d61b k6d61c k6d61d k6d61e k6d61f k6d61g k6d61h
  ! k6d61i k6d61j k6d61k k6d61l k6d61m
  ! Substance Use (Dichotomous)
  ! k6d40_r k6d48_r k6f63_r k6f68_r k6f74_r
  ! Externalizing CBCl
  !p6b35 p6b37 p6b38 p6b39 p6b41 p6b42 p6b43 p6b44 p6b45 p6b57 p6b59
p6b49 p6b50
  !p6b51 p6b60 p6b61 p6b62 p6b63 p6b64 p6b67
  ! PAF
  ! k6d2b_r k6d2f_r k6d2g_r
  ! k6d2i_r k6d2k_r k6d2l_r k6d2m_r k6d2o_r
  ! k6d2s r k6d2v r k6d2v r k6d2v r
  ! k6d2aa_r k6d2ae_r k6d2af_r k6d2ah_r
```

```
;
IDVARIABLE = ff_id;
MISSING=ALL(99);
MODEL:
! School Connectedness @ Age 15
! SC15 BY k6b1a_r* k6b1b_r k6b1c_r k6b1d_r;
! SC15 @ 1;
! School Connectedness @ Age 9
! SC9 BY k5e1a* k5e1b k5e1c k5e1d;
! SC9 @ 1;
! Internalizing @ Age 15
 Internalizing BY k6d2ag r* k6d2ai r k6d2d r k6d2j r k6d2t r
 k6d2ac_r k6d2ak_r k6d2c_r k6d2n_r k6d2x_r;
!p6b36 p6b40 p6b52 p6b53 p6b54 p6b68 p6b65 p6b66
 Internalizing @ 1;
! Externalizing @ Age 15 (Multi-informant)
! EXTERN BY k6d2a_r* k6d2p_r k6d2r_r k6d2z_r k6d2ab_r k6d2aj_r
! k6d61a k6d61b k6d61c k6d61d k6d61e k6d61f k6d61g k6d61h
! k6d61i k6d61j k6d61k k6d61l k6d61m
! k6d40_r k6d48_r k6f63_r k6f68_r k6f74_r;
!p6b35 p6b37 p6b38
!p6b39 p6b41 p6b42 p6b43 p6b44 p6b45 p6b57 p6b59 p6b49 p6b50
!p6b51 p6b60 p6b61 p6b62 p6b63 p6b64 p6b67
! EXTERN @ 1;
! PAF @ Age 15
! PAF BY k6d2b r* k6d2f r k6d2g r
! k6d2i r k6d2k r k6d2l r k6d2m r k6d2o r
! k6d2s_r k6d2v_r k6d2w_r k6d2y_r
! k6d2aa r k6d2ae r k6d2af r k6d2ah r;
! PAF @ 1;
OUTPUT: modindices (ALL) standardized sampstat;
SAVEDATA:
    FILE IS CFA_FactorScores_Int_080520.txt;
    save = fscores;
```

*** WARNING

Data set contains cases with missing on all variables. These cases were not included in the analysis. Number of cases with missing on all variables: 1461 1 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS

Measurement Models - School Conn PAF Int

SUMMARY OF ANALYSIS

Number of groups	1
Number of observations	3437
Number of dependent variables	10
Number of independent variables	0
Number of continuous latent variables	1

Observed dependent variables

Binary and ordered categorical (ordinal)
K6D2AG_R K6D2AI_R K6D2D_R K6D2J_R K6D2T_R
K6D2AC_R
K6D2AK_R K6D2C_R K6D2N_R K6D2X_R

Continuous latent variables INTERNAL

Variables with special functions

ID variable FF ID

Estimator WLSMV Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 Maximum number of iterations for H1 2000 Convergence criterion for H1 0.100D-03 Parameterization DELTA Link **PROBIT**

Input data file(s)
 All_Variables_072720.dat

Input data format FREE

SUMMARY OF DATA

COVARIANCE COVERAGE OF DATA

Minimum covariance coverage value 0.100

PROPORTION OF DATA PRESENT

	Covariance Cove K6D2AG_R	erage K6D2AI_R	K6D2D_R	K6D2J_R
K6D2T_R				
K6D2AG_R K6D2AI_R	0.999 0.997	0.998		
K6D2A1_K	0.997 0.994	0.993	0.995	
K6D2J_R	0.985	0.984	0.981	0.985
K6D2T R	0.999	0.997	0.995	0.985
0.999				
K6D2AC_R	0.998	0.997	0.994	0.984
0.998				
K6D2AK_R	0.998	0.997	0.994	0.984
0.998 K6D2C R	0.987	0.986	0.984	0.977
0.987	0.907	0.900	0.904	0.9//
K6D2N R	0.997	0.996	0.994	0.983
0.998		0.000		0.000
K6D2X_R	0.998	0.997	0.994	0.984
0.998				
	Covariance Cov	erage		
	K6D2AC_R	K6D2AK_R	K6D2C_R	K6D2N_R
K6D2X_R	_	_	_	_
WCD24C 5	0.000			
K6D2AC_R	0.999	a 000		
K6D2AK_R K6D2C_R	0.997 0.987	0.999 0.987	0.988	
K6D2C_K K6D2N_R	0.987 0.997	0.987 0.997	0.986	0.998
K6D2N_R	0.998	0.997 0.997	0.987	0.997
0.999	31330	0.33,	0.507	3.337

UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

K6D2AG_R			
Category	1	0.555	1906.000
Category		0.192	659.000
Category		0.132	695.000
Category		0.051	174.000
K6D2AI_R	7	0.031	174.000
Category	1	0.575	1972.000
Category		0.191	654.000
Category		0.191 0.162	554.000
Category	4	0.073	250.000
K6D2D_R	1	0 504	2022 000
Category		0.594	2032.000
Category		0.186	635.000
Category		0.164	562.000
Category	4	0.056	192.000
K6D2J_R	_		
Category		0.314	1062.000
Category		0.271	919.000
Category		0.331	1122.000
Category	4	0.084	283.000
K6D2T_R			
Category		0.646	2218.000
Category		0.144	495.000
Category	3	0.153	527.000
Category	4	0.057	195.000
K6D2AC_R			
Category	1	0.690	2370.000
Category		0.134	461.000
Category		0.138	473.000
Category	4	0.038	129.000
K6D2AK_R			
Category	1	0.495	1698.000
Category	2	0.203	697.000
Category		0.219	750.000
Category		0.084	287.000
K6D2C_R			
Category	1	0.394	1338.000
Category		0.188	637.000
Category		0.304	1033.000
Category		0.114	388.000
K6D2N_R	-	•	
Category	1	0.585	2007.000
Category		0.199	683.000
Category		0.174	598.000
Category		0.042	143.000
K6D2X_R	•	01012	1431000
Category	1	0.844	2898.000
Category		0.078	268.000
Category		0.061	211.000
Category		0.016	55.000
category	T	0.010	331000

SAMPLE STATISTICS

ESTIMATED SAMPLE STATISTICS

	MEANS/INTERCEP	TS/THRESHOLDS		
K6D2AI_R	K6D2AG_R	K6D2AG_R	K6D2AG_R	K6D2AI_R
0.724	0.138	0.665	1.638	0.189
K6D2J_R\$	MEANS/INTERCEP K6D2AI_R	TS/THRESHOLDS K6D2D_R\$	K6D2D_R\$	K6D2D_R\$
-0.486	1.455	0.238	0.771	1.588
K6D2T_R\$	MEANS/INTERCEP K6D2J_R\$	TS/THRESHOLDS K6D2J_R\$	K6D2T_R\$	K6D2T_R\$
1.582	0.215	1.381	0.374	0.806
K6D2AK_R	MEANS/INTERCEP K6D2AC_R	TS/THRESHOLDS K6D2AC_R	K6D2AC_R	K6D2AK_R
0.518	0.497	0.933	1.780	-0.013
K6D2N_R\$	MEANS/INTERCEP K6D2AK_R	TS/THRESHOLDS K6D2C_R\$	K6D2C_R\$	K6D2C_R\$
	1.381	-0.269	0.206	1.204

K6D2X_R\$	MEANS/INTERO K6D2N_R\$	CEPTS/THRESHOLDS K6D2N_R\$	K6D2X_R\$	K6D2X_R\$
2.144	0.786	1.732	1.013	1.422
K6D2T_R	CORRELATION K6D2AG_R	MATRIX (WITH VARI K6D2AI_R	IANCES ON THE K6D2D_R	DIAGONAL) K6D2J_R
K6D2AG_R K6D2AI_R K6D2D_R K6D2J_R K6D2T_R K6D2AC_R 0.521 K6D2AK_R 0.379 K6D2C_R 0.382 K6D2N_R 0.496 K6D2X_R 0.451	0.531 0.531 0.475 0.647 0.631 0.421 0.434 0.626 0.505	0.417 0.375 0.480 0.453 0.333 0.369 0.452 0.412	0.441 0.567 0.477 0.365 0.494 0.495 0.399	0.393 0.451 0.336 0.432 0.506 0.344
K6D2X_R	CORRELATION K6D2AC_R	MATRIX (WITH VAR: K6D2AK_R	IANCES ON THE K6D2C_R	DIAGONAL) K6D2N_R
K6D2AK_R K6D2C_R K6D2N_R K6D2X_R	0.380 0.462 0.752 0.648	0.313 0.389 0.323	0.468 0.429	0.596

THE MODEL ESTIMATION TERMINATED NORMALLY

MODEL FIT INFORMATION

Number of Free Parameters

40

Chi-Square Test of Model Fit

Value 691.035*
Degrees of Freedom 35
P-Value 0.0000

* The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used

for chi-square difference testing in the regular way. MLM, MLR and WLSM $\,$

chi-square difference testing is described on the Mplus website. \mbox{MLMV} , \mbox{WLSMV} ,

and ULSMV difference testing is done using the DIFFTEST option.

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.074
90 Percent C.I. 0.069 0.079
Probability RMSEA <= .05 0.000

CFI/TLI

CFI 0.970 TLI 0.961

Chi-Square Test of Model Fit for the Baseline Model

Value 21571.282
Degrees of Freedom 45
P-Value 0.0000

SRMR (Standardized Root Mean Square Residual)

Value 0.035

Optimum Function Value for Weighted Least-Squares Estimator

Value 0.56042366D-01

MODEL RESULTS

Two-Tailed Estimate S.E. Est./S.E. P-Value

INTERNAL BY

K6D2AG_R	0.796	0.009	85.272	0.000
K6D2AI_R	0.613	0.014	43.605	0.000
K6D2D R	0.681	0.013	52.383	0.000
K6D2J_R	0.606	0.013	46.339	0.000
K6D2T_R	0.717	0.012	57.872	0.000
K6D2AC_R	0.828	0.010	84.859	0.000
K6D2AC_R	0.511	0.016	32.651	0.000
K6D2C_R	0.606	0.014		0.000
K6D2C_R K6D2N R				0.000
_	0.818	0.009		
K6D2X_R	0.690	0.016	42.398	0.000
Thresholds				
K6D2AG_R\$1	0.138	0.021	6.449	0.000
K6D2AG_R\$1	0.665	0.023	28.662	0.000
K6D2AG_R\$2	1.638	0.036	45.630	0.000
·				
K6D2AI_R\$1	0.189	0.022		0.000
K6D2AI_R\$2	0.724	0.024		0.000
K6D2AI_R\$3	1.455	0.032	45.389	0.000
K6D2D_R\$1	0.238	0.022	10.984	0.000
K6D2D_R\$2	0.771	0.024	32.239	0.000
K6D2D_R\$3	1.588	0.035	45.619	0.000
K6D2J_R\$1	-0.486	0.022	-21.592	0.000
K6D2J_R\$2	0.215	0.022	9.892	0.000
K6D2J_R\$3	1.381	0.031	44.628	0.000
K6D2T_R\$1	0.374	0.022	17.038	0.000
K6D2T_R\$2	0.806	0.024	33.422	0.000
K6D2T_R\$3	1.582	0.035	45.714	0.000
K6D2AC_R\$1	0.497	0.022	22.203	0.000
K6D2AC_R\$2	0.933	0.025	37.113	0.000
K6D2AC_R\$3	1.780	0.040	44.902	0.000
K6D2AK R\$1	-0.013	0.021	-0.615	0.539
K6D2AK_R\$2	0.518	0.022		0.000
K6D2AK_R\$3	1.381	0.031		0.000
K6D2C_R\$1	-0.269	0.022	-12.341	0.000
K6D2C_R\$2	0.206	0.022		0.000
K6D2C_R\$3	1.204	0.028		0.000
K6D2N_R\$1	0.215	0.022		0.000
K6D2N_R\$1	0.786	0.024		0.000
K6D2N_R\$2 K6D2N_R\$3	1.732			0.000
K6D2X_R\$1	1.013			0.000
K6D2X_R\$2	1.422			
K6D2X_R\$3	2.144	0.053	40.087	0.000
Variances				
INTERNALIZ	1.000	0.000	999.000	999.000
TIMICINAMETA	1.000	0.000	3331000	3331000

STANDARDIZED MODEL RESULTS

STDYX Standardization

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
INTERNAL BY				
K6D2AG_R	0.796	0.009	85.272	0.000
K6D2AG_R K6D2AI R	0.790	0.014	43.605	0.000
_				
K6D2D_R	0.681	0.013	52.383	0.000
K6D2J_R	0.606	0.013	46.339	0.000
K6D2T_R	0.717	0.012	57.872	0.000
K6D2AC_R	0.828	0.010	84.859	0.000
K6D2AK_R	0.511	0.016	32.651	0.000
K6D2C_R	0.606	0.014	44.574	0.000
K6D2N_R	0.818	0.009		
K6D2X_R	0.690	0.016	42.398	0.000
Thresholds				
K6D2AG_R\$1	0.138	0.021	6.449	0.000
K6D2AG_R\$2	0.665	0.023	28.662	0.000
K6D2AG_R\$3	1.638	0.036	45.630	0.000
K6D2AI_R\$1	0.189	0.022	8.772	0.000
K6D2AI_R\$2	0.724	0.024	30.734	0.000
K6D2AI_R\$3	1.455	0.032	45.389	0.000
K6D2D_R\$1	0.238	0.022	10.984	0.000
K6D2D_R\$2	0.230 0.771	0.024	32.239	0.000
K6D2D_R\$2 K6D2D_R\$3	1.588	0.024	45.619	0.000
K6D2J_R\$1	-0.486	0.022	-21.592	0.000
K6D2J_R\$2	0.215	0.022	9.892	0.000
K6D2J_R\$3	1.381	0.031	44.628	0.000
K6D2T_R\$1	0.374	0.022	17.038	0.000
K6D2T_R\$2	0.806	0.024	33.422	0.000
K6D2T_R\$3	1.582	0.035	45.714	0.000
K6D2AC_R\$1	0.497	0.022	22.203	0.000
K6D2AC_R\$2	0.933	0.025	37.113	0.000
K6D2AC_R\$3	1.780	0.040	44.902	0.000
K6D2AK_R\$1	-0.013	0.021	-0.615	0.539
K6D2AK_R\$2	0.518	0.022	23.061	0.000
K6D2AK_R\$3	1.381	0.031	44.927	0.000
K6D2C_R\$1	-0.269	0.022	-12.341	0.000
K6D2C_R\$2	0.206	0.022	9.500	0.000
K6D2C_R\$3	1.204	0.028	42.620	0.000
K6D2N R\$1	0.215	0.022	9.946	0.000
K6D2N_R\$2	0.786	0.024	32.772	0.000
K6D2N_R\$3	1.732	0.038	45.216	0.000
K6D2X_R\$1	1.013	0.026	39.102	0.000
K6D2X_R\$2	1.422	0.031	45.220	0.000
K6D2X_R\$3	2.144	0.053	40.087	0.000
1.002/_1.45	411 77	01055	101007	31000

Variances

STDY Standardization

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
INTERNAL BY				
K6D2AG_R	0.796	0.009	85.272	0.000
K6D2AI R	0.613	0.014	43.605	0.000
K6D2D_R	0.681	0.013	52.383	0.000
K6D2J_R	0.606	0.013	46.339	0.000
K6D2T_R	0.717	0.012	57.872	0.000
K6D2AC_R	0.828	0.010	84.859	0.000
K6D2AK_R	0.511	0.016	32.651	0.000
K6D2C_R	0.606	0.014	44.574	0.000
K6D2N_R	0.818	0.009	92.757	0.000
K6D2X_R	0.690	0.016	42.398	0.000
Thresholds				
K6D2AG_R\$1	0.138	0.021	6.449	0.000
K6D2AG_R\$2	0.665	0.023	28.662	0.000
K6D2AG_R\$3	1.638	0.036	45.630	0.000
K6D2AI_R\$1	0.189	0.022	8.772	0.000
K6D2AI_R\$2	0.724	0.024	30.734	0.000
K6D2AI_R\$3	1.455	0.032	45.389	0.000
K6D2D_R\$1	0.238	0.022	10.984	0.000
K6D2D_R\$2	0.771	0.024	32.239	0.000
K6D2D_R\$3	1.588	0.035	45.619	0.000
K6D2J_R\$1	-0.486	0.022	-21.592	0.000
K6D2J_R\$2	0.215	0.022	9.892	0.000
K6D2J_R\$3	1.381	0.031	44.628	0.000
K6D2T_R\$1	0.374	0.022	17.038	0.000
K6D2T_R\$2	0.806	0.024	33.422	0.000
K6D2T_R\$3	1.582	0.035	45.714	0.000
K6D2AC_R\$1	0.497	0.022	22.203	0.000
K6D2AC_R\$2	0.933	0.025	37.113	0.000
K6D2AC_R\$3	1.780	0.040	44.902	0.000
K6D2AK_R\$1	-0.013	0.021	-0.615	0.539
K6D2AK_R\$2	0.518	0.022	23.061	0.000
K6D2AK_R\$3	1.381	0.031	44.927	0.000
K6D2C_R\$1	-0.269	0.022	-12.341	0.000
K6D2C_R\$2	0.206	0.022	9.500	0.000
K6D2C_R\$3	1.204	0.028	42.620	0.000
K6D2N_R\$1	0.215	0.022	9.946	0.000
K6D2N_R\$2	0.786	0.024	32.772	0.000
K6D2N_R\$3	1.732	0.038	45.216	0.000
K6D2X_R\$1	1.013	0.026	39.102	0.000
K6D2X_R\$2	1.422	0.031	45.220	0.000

STD Standardization Estimate S.E. Est./S.E. P-Value INTERNAL BY K6D2AG_R 0.796 0.009 85.272 0.06 K6D2AI_R 0.613 0.014 43.605 0.06 K6D2D_R 0.681 0.013 52.383 0.06 K6D2J_R 0.606 0.013 46.339 0.06 K6D2T_R 0.717 0.012 57.872 0.06 K6D2AC_R 0.828 0.010 84.859 0.06 K6D2AK_R 0.511 0.016 32.651 0.06 K6D2AK_R 0.511 0.016 32.651 0.06 K6D2N_R 0.818 0.009 92.757 0.06 K6D2X_R 0.818 0.009 92.757 0.06 K6D2X_R 0.690 0.016 42.398 0.06 Thresholds K6D2AG_R\$1 0.138 0.021 6.449 0.06 K6D2AG_R\$2 0.665 0.023 28.662 0.06 K6D2AG_R\$3 1.638 0.036 45.630 0.06 K6D2AI_R\$1 0.189 0.022 8.772 0.06 K6D2AI_R\$1 0.189 0.022 8.772 0.06 K6D2AI_R\$2 0.724 0.024 30.734 0.06 K6D2AI_R\$3 1.455 0.032 45.389 0.06 K6D2AI_R\$3 1.455 0.032 45.389 0.06 K6D2D_R\$1 0.238 0.022 10.984 0.06 K6D2D_R\$2 0.771 0.024 32.239 0.06 K6D2D_R\$3 1.588 0.035 45.619 0.06 K6D2J_R\$3 1.588 0.035 45.619 0.06 K6D2J_R\$1 0.486 0.022 -21.592 0.06 K6D2J_R\$2 0.215 0.022 9.892 0.06 K6D2J_R\$3 1.381 0.031 44.628	K6D2X_R\$3	2.144	0.053	40.087	0.000
Estimate S.E. Est./S.E. Two-Tail		1.000	0.000	999.000	999.000
INTERNAL BY K6D2AG_R K6D2AI_R K6D2D_R K6D2J_R K6D2T_R K6D2AC_R K6D2C_R K6D	STD Standardization	1			
K6D2AG_R 0.796 0.009 85.272 0.00 K6D2AI_R 0.613 0.014 43.605 0.00 K6D2D_R 0.681 0.013 52.383 0.00 K6D2J_R 0.606 0.013 46.339 0.00 K6D2T_R 0.717 0.012 57.872 0.00 K6D2AC_R 0.828 0.010 84.859 0.00 K6D2AK_R 0.511 0.016 32.651 0.00 K6D2C_R 0.606 0.014 44.574 0.00 K6D2N_R 0.818 0.009 92.757 0.00 K6D2X_R 0.690 0.016 42.398 0.00 Thresholds K6D2AG_R\$1 0.138 0.021 6.449 0.00 K6D2AG_R\$2 0.665 0.023 28.662 0.00 K6D2AG_R\$3 1.638 0.036 45.630 0.00 K6D2AI_R\$1 0.189 0.022 8.772 0.00 K6D2AI_R\$2 0.724 0.024 30.734 0.00 K6D2AI_R\$3 1.455 0.032 45.389		Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
K6D2T_R\$2 0.806 0.024 33.422 0.06 K6D2T_R\$3 1.582 0.035 45.714 0.06 K6D2AC_R\$1 0.497 0.022 22.203 0.06 K6D2AC_R\$2 0.933 0.025 37.113 0.06 K6D2AC_R\$3 1.780 0.040 44.902 0.06 K6D2AK_R\$1 -0.013 0.021 -0.615 0.53 K6D2AK_R\$2 0.518 0.022 23.061 0.06 K6D2AK_R\$3 1.381 0.031 44.927 0.06 K6D2C_R\$1 -0.269 0.022 -12.341 0.06 K6D2C_R\$2 0.206 0.022 9.500 0.06 K6D2C_R\$3 1.204 0.028 42.620 0.06	K6D2AG_R K6D2AI_R K6D2D_R K6D2J_R K6D2T_R K6D2AK_R K6D2AK_R K6D2AK_R K6D2X_R Thresholds K6D2AG_R\$1 K6D2AG_R\$2 K6D2AG_R\$3 K6D2AI_R\$1 K6D2AI_R\$2 K6D2AI_R\$3 K6D2D_R\$1 K6D2D_R\$3 K6D2D_R\$3 K6D2D_R\$1 K6D2D_R\$3 K6D2J_R\$1 K6D2J_R\$2 K6D2J_R\$3 K6D2J_R\$1 K6D2J_R\$2 K6D2J_R\$3 K6D2J_R\$1 K6D2J_R\$3 K6D2J_R\$1 K6D2J_R\$3 K6D2J_R\$3 K6D2J_R\$1 K6D2J_R\$3 K6D2J_R\$1 K6D2J_R\$3 K6D2J_R\$1 K6D2J_R\$3 K6D2J_R\$1 K6D2J_R\$3 K6D2J_R\$1 K6D2J_R\$3 K6D2J_R\$1 K6D2J_R\$3 K6D2AC_R\$3 K6D2AC_R\$3 K6D2AC_R\$3	0.613 0.681 0.606 0.717 0.828 0.511 0.606 0.818 0.690 0.138 0.665 1.638 0.189 0.724 1.455 0.238 0.771 1.588 -0.486 0.215 1.381 0.374 0.806 1.582 0.497 0.933 1.780 -0.013 0.518 1.381 -0.269 0.206 1.204	0.014 0.013 0.013 0.012 0.010 0.016 0.014 0.009 0.016 0.021 0.023 0.022 0.024 0.035 0.022 0.024 0.035 0.022 0.024 0.035 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021	43.605 52.383 46.339 57.872 84.859 32.651 44.574 92.757 42.398 6.449 28.662 45.630 8.772 30.734 45.389 10.984 32.239 45.619 -21.592 9.892 44.628 17.038 33.422 45.714 22.203 37.113 44.902 -0.615 23.061 44.927 -12.341 9.500 42.620	0.000 0.000

K6D2N_R\$3 K6D2X_R\$1 K6D2X_R\$2 K6D2X_R\$3	1.732 1.013 1.422 2.144	0.038 0.026 0.031 0.053	45.216 39.102 45.220 40.087	0.000 0.000 0.000 0.000
INTERNALIZ R-SQUARE	1.000	0.000	999.000	999.000
Observed Residual Variable Variance	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
K6D2AG_R 0.367 K6D2AI_R 0.624	0.633 0.376	0.015 0.017	42.636 21.803	0.000 0.000
K6D2D_R 0.536 K6D2J_R 0.633	0.464 0.367	0.018 0.016	26.191 23.170	0.000 0.000
K6D2T_R 0.486 K6D2AC_R 0.315	0.514 0.685	0.018 0.016	28.936 42.430	0.000 0.000
K6D2AK_R 0.739 K6D2C_R 0.633	0.261 0.367	0.016 0.016	16.326 22.287	0.000 0.000
K6D2N_R 0.331 K6D2X_R 0.524	0.669 0.476	0.014 0.022	46.379 21.199	0.000 0.000

QUALITY OF NUMERICAL RESULTS

Condition Number for the Information Matrix 0.120E-01

(ratio of smallest to largest eigenvalue)

MODEL MODIFICATION INDICES

Minimum M.I. value for printing the modification index 10.000

M.I. E.P.C. Std E.P.C. StdYX

E.P.C.

ON Statements

_	ON	K6D2AI_R	21.833	0.061	0.061
0.061 K6D2AG_R	ON	K6D2T_R	89.095	0.120	0.120
0.120 K6D2AG R	ON	K6D2AC_R	10.775	-0.044	-0.044
-0.044		-			
K6D2AG_R -0.061	ON	K6D2C_R	18.163	-0.061	-0.061
K6D2AG_R -0.056	ON	K6D2X_R	11.450	-0.056	-0.056
	ON	K6D2AG_R	21.828	0.061	0.061
${\sf K6D2AI_R}$	ON	K6D2T_R	13.108	0.051	0.051
0.051 K6D2AI_R	ON	K6D2AC_R	20.644	-0.069	-0.069
-0.069					
K6D2AI_R	ON	K6D2N_R	20.346	-0.065	-0.065
-0.065					
K6D2D_R	ON	K6D2T_R	61.557	0.107	0.107
0.107	٥	1/6D016 D			0.440
K6D2D_R	ON	K6D2AC_R	51.166	-0.112	-0.112
-0.112	ON 1	KCD2C D	62 444	0 105	0 105
K6D2D_R	OIN	K6D2C_R	62.441	0.105	0.105
0.105	ΟNΙ	K6D2N_R	22 027	-0.084	-0.084
K6D2D_R -0.084	UN	KODZIN_K	32.937	-0.004	-0.004
K6D2D_R	UNI	K6D2X_R	20.332	-0.083	-0.083
-0.083	OIV	NODZX_N	20.332	-0.003	-0:003
K6D2J_R	ON	K6D2T_R	11.243	-0.051	-0.051
-0.051	0.1	1.0521 <u>-</u> 1.	1112.5	0.031	0.031
K6D2J R	ON	K6D2AC_R	18.017	-0.064	-0.064
$-0.06\overline{4}$		_			
K6D2J_R	ON	K6D2C_R	43.241	0.083	0.083
0.083					
K6D2J_R	ON	K6D2X_R	21.332	-0.084	-0.084
-0.084					
K6D2T_R	ON	K6D2AG_R	89.089	0.120	0.120
0.120					
K6D2T_R	ON	K6D2AI_R	13.109	0.051	0.051
0.051	ONI	KCD2D D	C1 FF0	0 107	0 107
K6D2T_R	UIN	K6D2D_R	61.559	0.107	0.107
0.107	UVI	K6D2J_R	11.244	-0.051	-0.051
K6D2T_R -0.051	UN	NUDZJ_N	11.244	_0.07I	דכש.ש-
K6D2T R	UN	K6D2AC_R	38.842	-0.096	-0.096
-0.096	J1 V	NODZNC_N	301072	01090	01030

K6D2T_R -0.063	ON	K6D2C_R	16.356	-0.063	-0.063
K6D2T_R -0.122	ON	K6D2N_R	65.241	-0.122	-0.122
	ON	K6D2AG_R	10.780	-0.044	-0.044
-0.069		K6D2AI_R	20.644	-0.069	-0.069
K6D2AC_R -0.112		_	51.170		
K6D2AC_R -0.064		_	18.022		
K6D2AC_R -0.096		K6D2AK_R	38.847 10.015		
-0.052 K6D2AC_R		_	11.067		
-0.050 K6D2AC_R				0.168	
0.168 K6D2AC_R				0.116	
0.116 K6D2AK_R		K6D2AC_R	10.012	-0.052	-0.052
	ON	K6D2AG_R	18.167	-0.061	-0.061
-0.061 K6D2C_R 0.105	ON	K6D2D_R	62.440	0.105	0.105
K6D2C_R 0.083	ON	K6D2J_R	43.237	0.083	0.083
K6D2C_R -0.063	ON	K6D2T_R	16.358	-0.063	-0.063
K6D2C_R -0.050		K6D2AC_R	11.067		
K6D2N_R -0.065		K6D2AI_R	20.346		
K6D2N_R -0.084		K6D2D_R	32.940		
K6D2N_R -0.122		K6D2T_R	65.248		
K6D2N_R 0.168 K6D2X_R		K6D2AC_R K6D2AG_R	207.099 11.454		
-0.056 K6D2X R		K6D2D_R	20.333		
-0.083 K6D2X_R		K6D2J_R	21.335		
-0.084 K6D2X_R		K6D2AC_R		0.116	
0.116					

WITH Statements

K6D2AI_R 0.127	WITH	K6D2AG_R	21.828	0.061	0.061
	WITH	K6D2AG_R	89.085	0.120	0.120
	WITH	K6D2AI_R	13.108	0.051	0.051
K6D2T_R 0.209	WITH	K6D2D_R	61.556	0.107	0.107
K6D2T_R -0.091	WITH	K6D2J_R	11.245	-0.051	-0.051
	WITH	K6D2AG_R	10.779	-0.044	-0.044
	WITH	K6D2AI_R	20.643	-0.069	-0.069
K6D2AC_R -0.272	WITH	K6D2D_R	51.168	-0.112	-0.112
K6D2AC_R -0.142	WITH	K6D2J_R	18.021	-0.064	-0.064
K6D2AC_R -0.246	WITH	K6D2T_R	38.845	-0.096	-0.096
	WITH	K6D2AC_R	10.015	-0.052	-0.052
	WITH	K6D2AG_R	18.167	-0.061	-0.061
K6D2C_R 0.181	WITH	K6D2D_R	62.440	0.105	0.105
K6D2C_R 0.131	WITH	K6D2J_R	43.238	0.083	0.083
K6D2C_R -0.114	WITH	K6D2T_R	16.358	-0.063	-0.063
K6D2C_R -0.112	WITH	K6D2AC_R	11.066	-0.050	-0.050
	WITH	K6D2AI_R	20.345	-0.065	-0.065
K6D2N_R -0.198	WITH	K6D2D_R	32.938	-0.084	-0.084
K6D2N_R -0.303	WITH	K6D2T_R	65.245	-0.122	-0.122
K6D2N_R 0.521	WITH	K6D2AC_R	207.104	0.168	0.168
K6D2X_R -0.127	WITH	K6D2AG_R	11.454	-0.056	-0.056
K6D2X_R -0.157	WITH	K6D2D_R	20.334	-0.083	-0.083
K6D2X_R -0.147	WITH	K6D2J_R	21.336	-0.084	-0.084
	WITH	K6D2AC_R	63.783	0.116	0.116

SAMPLE STATISTICS FOR ESTIMATED FACTOR SCORES

SAMPLE STATISTICS

	Means INTERNAL	INTERNAL
	0.029	0.399
	Covariances INTERNAL	INTERNAL
INTERNAL INTERNAL	0.768 -0.075	0.010
	Correlations INTERNAL	INTERNAL
INTERNAL INTERNAL	1.000 -0.860	1.000

SAVEDATA INFORMATION

Save file
 CFA_FactorScores_Int_080520.txt

Order and format of variables

K6D2AG_R K6D2AI R	F10.3 F10.3
K6D2D_R	F10.3
K6D2J_R	F10.3
K6D2T_R	F10.3
K6D2AC_R	F10.3
K6D2AK_R	F10.3
K6D2C_R	F10.3
K6D2N_R	F10.3
K6D2X_R	F10.3
INTERNALIZIN	F10.3
INTERNAL_SE	F10.3
FF_ID	I6

Save file format 12F10.3 I6

Save file record length 10000

Beginning Time: 12:37:41 Ending Time: 12:37:41 Elapsed Time: 00:00:00

MUTHEN & MUTHEN 3463 Stoner Ave. Los Angeles, CA 90066

Tel: (310) 391-9971 Fax: (310) 391-8971 Web: www.StatModel.com

Support: Support@StatModel.com

Copyright (c) 1998-2019 Muthen & Muthen