

MECHANICAL DATA

Dimensions in mm (inches)

GENERAL PURPOSE PNP SILICON TRANSISTOR

DESCRIPTION

The BCY70, BCY71 & BCY72 are silicon planar epitaxial PNP tranistors in Jedec TO18 metal case.

TO18 PACKAGE(TO-206AA)

Underside View

PIN 2 - Base PIN 1 - Emitter PIN 3 - Collector

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise stated)			BCY70 BCY71	
V _{CBO}	Collector - Base Voltage (I _E = 0)	-50V -45V -25V		
V_{CEO}	Collector - Emitter Voltage(I _B = 0)	-40V	-45V	-25V
V_{EBO}	Emitter - Base Voltage(I _C = 0)	-5V		
I_{CM}	Collector Peak Current	-200mA		
P_{tot}	Total Power Dissipation @ T _{amb} < 25°C	350mW		
T_J , T_STG	Operating and Storage Junction Temperature Range	−65 to +200°C		
THERMAL	DATA			
Rth-j-Case	Thermal Resistance Junction -case	150°C/W max		
Rth-j-amb	Thermal Resistance Junction -ambient	500°C/W max		

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

Document Number 3297 E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

BCY70 BCY71 BCY72

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise stated)

	Parameter	Test Con	ditions	Min.	Тур.	Max.	Unit
		V _{CE} = -20V	BCY70			-10	nA
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = -50V	BC170			-500	
		$V_{CE} = -20V$	BCY71			-100	nA
		V _{CE} = -45V				-10	μΑ
		$V_{CE} = -20V$	BCY72			-100	nA
		V _{CE} = -25V				-10	μΑ
I _{EBO}	Emitter Cutoff Current (I _C = 0)	$V_{EB} = -5V$				-10	μΑ
V _{CE(sat)} *	Collector – Emitter Saturation Voltage	"	$I_B = -1mA$			-0.25	V
• CE(Sai)			$I_B = -5mA$			-0.5	
		$I_C = -10mA$	$I_B = -1mA$				
V _{BE(sat)} *	Base – Emitter Saturation Voltage	BCY70 AND	BCY71 ONLY	-0.6		-0.9	V
		$I_C = -50 \text{mA}$	$I_B = -5mA$			-1.2	
			BCY70				
		$I_{C} = -0.1 \text{mA}$		40			
		$I_C = -1mA$		45			
		I _C = -10mA		50			
		$I_C = -50 \text{mA}$	$V_{CE} = -1V$	15			
			BCY71]
	DC Current Gain	$I_{C} = -0.01 \text{mA}$	$V_{CE} = -1V$		60		
h _{FE} *		$I_{C} = -0.1 \text{mA}$		80			_
		$I_C = -1mA$	$V_{CE} = -1V$	90			
		$I_C = -10mA$	$V_{CE} = 1V$	100		600	
		I _C = -50mA	$V_{CE} = -1V$	15			
			BCY72				
		$I_C = -1mA$	$V_{CE} = -1V$	40			
		I _C = -10mA	$V_{CE} = -1V$	50			
h.	Small Signal Current	$I_C = -1mA$	V _{CE} = -10V	100		400	_
h _{fe}		f = 1KHz		100		400	
f _T	Transition Frequency	$I_C = -0.1 \text{mA}$	V _{CE} = -20V	15			
		f = 10.7MHz	BCY71	15			
		I _C = -10mA	V _{CE} = -20V				MHz
		f = 100MHz	BCY70	250			
		BCY71 an	d BCY72	200			
C _{EBO}	Emitter-Base Capacitance	I _C = 0	V _{EB} = -1V			8	
		f = 1MHz					
C _{CBO}	Collector-Base Capacitance	I _E = 0	V _{CB} = -10V			6	pF
		f = 1MHz				6	

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Website: http://www.semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk

Document Number 3297

BCY70 BCY71 BCY72

ELECTRICAL CHARACTERISTICS continued (T_A = 25°C unless otherwise stated)

	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
		$I_C = -0.1 \text{mA}$ $V_{CE} = -5 \text{V}$				
NF		$R_g = 2K\Omega$				
	Noise Figure	f = 10 to 10000 Hz				dB
		BCY70 AND BCY71			6	
		BCY70			2	
h _{ie}	Input Impedance	$I_C = -1 \text{mA}$ $V_{CE} = -10 \text{V}$	2		12	ΚΩ
	input impedance	f = 1kHz BCY71 ONLY			12	
h _{re}	Reverse Voltage Ratio	$I_C = -1mA$ $V_{CE} = -10V$			20 x 10 ⁻⁴	
		f = 1kHz BCY71 ONLY				
h _{oe}	Output Admittance	$I_C = -1 \text{mA}$ $V_{CE} = -10 \text{V}$	10		60	μS
	Output Admittance	f = 1kHz BCY71 ONLY	. •			
		$I_C = -10$ mA $V_{EE} = 3V$				
t _d	Delay Time	I _{B1} = -1mA		23	35	ns
		BCY70 AND BCY72 ONLY				
		$I_C = -10 \text{mA}$ $V_{EE} = 3 \text{V}$				
t _r	Rise Time	I _{B1} = -1mA		25	35	ns
		BCY70 AND BCY72 ONLY				
t _s		$I_C = -10 \text{mA}$ $V_{EE} = 3 \text{V}$		270	350	ns
	Storage Time	$I_{B1} = -I_{B2} = -1 \text{mA}$				
		BCY70 AND BCY72 ONLY				
		$I_C = -10 \text{mA}$ $V_{EE} = 3 \text{V}$				
t _f	Fall Time	$I_{B1} = -I_{B2} = -1 \text{mA}$		50	80	ns
		BCY70 AND BCY72 ONLY				
		$I_C = -10 \text{mA}$ $V_{EE} = 3 \text{V}$				
t _{on}	Turn-on Time	I _{B1} = -1mA		48	65	ns
		BCY70 AND BCY72 ONLY				
t _{off}		$I_C = -10 \text{mA}$ $V_{EE} = 3 \text{V}$			420	ns
	Turn-Off Time	$I_{B1} = -I_{B2} = -1 \text{mA}$		320		
		BCY70 AND BCY72 ONLY				

NOTES:

* Pulse test: $t_p \leq 300 \mu s$, $\delta \leq 1\%$

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

 Semelab plc.
 Telephone +44(0)1455 556565.
 Fax +44(0)1455 552612.

 E-mail: sales@semelab.co.uk
 Website: http://www.semelab.co.uk

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

TT Electronics: