/home/nicole/Jupyter/JG3/Data/0.1/G/3

```
;ls
In [4]:
        Correlation.G5.G.C.txt
        Correlation.G5.G.J.txt
        Correlation.G5.G.JC.txt
        Correlation.G5.G.N.txt
        G0.Genotype.ID
        G0.ID
        G0.noGenotype.ID
        G1.Genotype.ID
        G1.ID
        G1.noGenotype.ID
        G2.Genotype.ID
        G2.ID
        G2.noGenotype.ID
        G3.Genotype.ID
        G3.ID
        G3.noGenotype.ID
        G4.Genotype.ID
        G4.ID
        G4.noGenotype.ID
        G5.Genotype.ID
        G5.ID
        G5.noGenotype.ID
        GenNF.txt
        PedAll.txt
        Phe.txt
        PheAll.txt
        Regression.G5.G.C.txt
        Regression.G5.G.J.txt
        Regression.G5.G.JC.txt
        Regression.G5.G.N.txt
        all.ID
        alphaEstimates
        genotype.ID
        meanOfSNPGAll
        meanOfSNPGG0
        meanOfSNPGG1
        meanOfSNPGG2
        meanOfSNPGG3
        meanOfSNPGG4
        meanOfSNPGG5
        noGenotype.ID
        sim.bv
        sim.phenotype
In [5]: ;awk '{print $1}' PedAll.txt | sort -b > all.ID
In [6]: | ;awk '{print $1}' GenNF.txt | sort -b > genotype.ID
In [7]:
        ;join -v1 all.ID genotype.ID > noGenotype.ID
In [8]: ;awk '{print $1,$2}' Phe.txt > sim.phenotype
```

```
In [9]: ;awk '{print $1,$3}' PheAll.txt > sim.bv
In [10]: ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [11]:
         ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
         ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
         ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [14]:
         ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
         ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [15]:
In [16]:
         ; join G0.ID genotype.ID > G0.Genotype.ID
         ; join G1.ID genotype.ID > G1.Genotype.ID
In [17]:
In [18]:
         ;join G2.ID genotype.ID > G2.Genotype.ID
In [19]:
         ; join G3.ID genotype.ID > G3.Genotype.ID
         ; join G4.ID genotype.ID > G4.Genotype.ID
In [20]:
In [21]:
         ; join G5.ID genotype.ID > G5.Genotype.ID
In [22]:
         ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]:
         ; join -v1 G1.ID genotype.ID > G1.noGenotype.ID
In [24]:
         ; join -v1 G2.ID genotype.ID > G2.noGenotype.ID
In [25]:
         ; join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [26]:
         ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [27]:
         ; join -v1 G5.ID genotype.ID > G5.noGenotype.ID
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc (
In [28]:
              200 1200 GO.Genotype.ID
               200 1200 G1.Genotype.ID
          200
               200 1200 G2.Genotype.ID
          200
          200
               200 1200 G3.Genotype.ID
               200 1200 G4.Genotype.ID
          200
               8000 48000 G5.Genotype.ID
```

```
In [29]:
         ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype
                7800 46800 G0.noGenotype.ID
          7800
                7800 46800 Gl.noGenotype.ID
          7800 7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
In [30]: ped, A Mats, numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreedia
         nothing
         y Vecs = make_yVecs("sim.phenotype",ped,numSSBayes)
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
         nothing
In [31]:
         vRes
                = 0.865
                = 7.792
         aHat3=SSBR.PBLUP(y_Vecs,Z_Mats,A_Mats,numSSBayes,vRes,vG);
In [32]: using DataFrames
In [33]: | df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',head
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [34]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat3[posAi])[1,1]
         reg1 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with (
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n",
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.504
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.219
Out[34]: 0.5044562828250235
In [35]: TBV = a[posAi]
         mean(TBV)
Out[35]: 10.273093
In [36]: EBV = aHat3[posAi]
         mean(EBV)
Out[36]: 1.4912123714742223
```

```
In [37]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header:
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat3[posAi])[1,1]
         reg2 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # |
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3:
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.227
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 0.134
Out[37]: 0.2272754021878997
In [38]: TBV = a[posAi]
         mean(TBV)
Out[38]: 11.03023777777776
In [39]: EBV = aHat3[posAi]
         mean(EBV)
Out[39]: 4.229564730441581
In [40]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',heade
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat3[posAi])[1,1]
         reg3 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 );
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.427
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.201
Out[40]: 0.42668409246873934
In [41]: TBV = a[posAi]
         mean(TBV)
Out[41]: 10.098367282051282
In [42]: EBV = aHat3[posAi]
         mean(EBV)
Out[42]: 0.8592849040202163
```

```
In [43]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi], aHat3[posAi])[1,1]
         reg4 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with ei
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.692
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.544
Out[43]: 0.691554025496496
In [44]: TBV = a[posAi]
         mean(TBV)
Out[44]: 9.244850249999999
In [45]: EBV = aHat3[posAi]
         mean(EBV)
Out[45]: -0.004324231494574525
In [46]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat3[posAi])[1,1]
         reg4 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with ei
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.332
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.128
Out[46]: 0.331512718554591
In [47]: TBV = a[posAi]
         mean(TBV)
Out[47]: 9.896761625
In [48]: EBV = aHat3[posAi]
         mean(EBV)
Out[48]: 0.6192933051816739
```

```
In [49]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat3[posAi])[1,1]
         reg5 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with ei
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.343
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 0.137
Out[49]: 0.3428213110190552
In [50]: TBV = a[posAi]
         mean(TBV)
Out[50]: 10.160266124999998
In [51]: EBV = aHat3[posAi]
         mean(EBV)
Out[51]: 0.9442809367487798
In [52]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat3[posAi])[1,1]
         reg6 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with ep
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.327
         SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = 0.126
Out[52]: 0.3273641268646264
In [53]: TBV = a[posAi]
         mean(TBV)
Out[53]: 10.491404249999999
In [54]: EBV = aHat3[posAi]
         mean(EBV)
Out[54]: 1.333228125165852
```

```
In [55]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat3[posAi])[1,1]
         reg7 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with ei
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation = 0.327
         SSBRJC from Gibbs - G4.ID: regression of TBV on GEBV = 0.113
Out[55]: 0.3267323449780272
In [56]: TBV = a[posAi]
         mean(TBV)
Out[56]: 10.792163
In [57]: EBV = aHat3[posAi]
         mean(EBV)
Out[57]: 1.7566763326009833
In [58]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat3[posAi])[1,1]
         reg8 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with ep
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.170
         SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = 0.107
Out[58]: 0.1699729756602978
In [59]: TBV = a[posAi]
         mean(TBV)
Out[59]: 11.053112749999999
In [60]: EBV = aHat3[posAi]
         mean(EBV)
Out[60]: 4.298119760642618
```

```
In [61]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat3[posAi])[1,1]
         reg9 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.674
         SSBRJC from Gibbs - G0.Genotype.ID: regression of TBV on GEBV = 0.662
Out[61]: 0.6739333272468536
In [62]: TBV = a[posAi]
         mean(TBV)
Out[62]: 10.552165
In [63]: EBV = aHat3[posAi]
         mean(EBV)
Out[63]: 1.6908748605275778
In [64]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat3[posAi])[1,1]
         reg9 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.578
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 0.644
Out[64]: 0.5780175672817572
In [65]: TBV = a[posAi]
         mean(TBV)
Out[65]: 10.43231999999999
In [66]: EBV = aHat3[posAi]
         mean(EBV)
Out[66]: 2.8947602673326838
```

```
In [67]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat3[posAi])[1,1]
         reg10 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.590
         SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = 0.575
Out[67]: 0.5895486621323692
In [68]: TBV = a[posAi]
         mean(TBV)
Out[68]: 10.804575000000002
In [69]: EBV = aHat3[posAi]
         mean(EBV)
Out[69]: 3.2998421051273716
In [70]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat3[posAi])[1,1]
         reg11 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.617
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 0.510
Out[70]: 0.6173461760659938
In [71]: TBV = a[posAi]
         mean(TBV)
Out[71]: 11.123205
In [72]: EBV = aHat3[posAi]
         mean(EBV)
Out[72]: 3.6957364168075237
```

```
In [73]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat3[posAi])[1,1]
         reg12 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.065
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 0.051
Out[73]: 0.06490785710408924
In [74]: TBV = a[posAi]
         mean(TBV)
Out[74]: 11.323925
In [75]: EBV = aHat3[posAi]
         mean(EBV)
Out[75]: 6.824408794371275
In [76]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat3[posAi])[1,1]
         reg13 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.170
         SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = 0.107
Out[76]: 0.1699729756602978
In [77]: writedlm("Correlation.G5.G.PBLUP.txt",cor13)
In [78]: | writedlm("Regression.G5.G.PBLUP.txt",reg13)
In [79]: TBV = a[posAi]
         mean(TBV)
Out[79]: 11.053112749999999
In [80]: EBV = aHat3[posAi]
         mean(EBV)
Out[80]: 4.298119760642618
```

```
In [81]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat3[posAi])[1,1]
         reg14 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.675
         SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = 0.530
Out[81]: 0.6749683593951911
In [82]: TBV = a[posAi]
         mean(TBV)
Out[82]: 9.21132935897436
In [83]: EBV = aHat3[posAi]
         mean(EBV)
Out[83]: -0.04779087487975794
In [84]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat3[posAi])[1,1]
         reg14 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.321
         SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = 0.123
Out[84]: 0.32075820612261946
In [85]: TBV = a[posAi]
         mean(TBV)
Out[85]: 9.883029358974357
In [86]: EBV = aHat3[posAi]
         mean(EBV)
Out[86]: 0.5609479984598532
```

```
In [87]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat3[posAi])[1,1]
         reg15 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor1!
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.330
         SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = 0.131
Out[87]: 0.3296563936448919
In [88]: TBV = a[posAi]
         mean(TBV)
Out[88]: 10.143745384615382
In [89]: EBV = aHat3[posAi]
         mean(EBV)
Out[89]: 0.8838819324313801
In [90]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat3[posAi])[1,1]
         reg16 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.313
         SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = 0.120
Out[90]: 0.31284501842838675
In [91]: TBV = a[posAi]
         mean(TBV)
Out[91]: 10.47520423076923
In [92]: EBV = aHat3[posAi]
         mean(EBV)
Out[92]: 1.2726509894827323
```

```
In [93]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat3[posAi])[1,1]
         reg17 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.316
         SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = 0.114
Out[93]: 0.3160191044830972
In [94]: TBV = a[posAi]
         mean(TBV)
Out[94]: 10.778528076923077
In [95]: EBV = aHat3[posAi]
         mean(EBV)
Out[95]: 1.6267344746068735
In [96]: numSSBayes
Out[96]: SSBR.NumSSBayes(54925,45925,9000,40000,39000,1000,0)
```