ÖVEGES JÓZSEF Fizikaverseny

II. forduló 2014. április 12. VIII. osztály

JAVÍTÓKULCS

1. feladat

Igen, ha a skálabeosztás mellé odaírjuk a beosztásoknak megfelelő reális értékeket. A mutató egy beosztást mozdul el, 0,1 N erő hatására.

0,3 N erő hatására a hibás dinamóméter mutatója a 0,2 N beosztásnál (H) van.

1 p

2. feladat

$$F + G_{kocka} = F_a$$

$$F = l^3 g(\rho_v - \rho_{fa})$$

$$F = 5N$$
2 p

3. feladat

Igen, ha a test az edénybe helyezhető. Megmérjük a vonalzóval a test vízbe merülő részének *m* magasságát és a téglatest *c* magasságát. Jelölve a (hosszúság), b (szélesség), c (magasság).

$$G = F_A$$

$$\rho_x Vg = \rho V_1 g$$

$$\rho_x abc = \rho abm$$

$$\rho_x = \rho(m/c)$$
2 p

4. feladat

 $302\ g$ - $250\ g$ - $4\ g$ = $48\ g$ az edényben maradó víz tömege, annak térfogata $V=m/\rho=48\ cm^3$ Az edény, a víz eredeti térfogata $V=m/\rho=50g/1g/cm^3=50\ cm^3$ A kiömlött víz térfogata $2\ cm^3$, ezt a test térfogata határozza meg. A test sűrűsége: $\rho=4g/2cm^3=2\ g/cm^3$. $3\ p$ Az ismeretlen folyadék sűrűsége: $\rho_f=(450\ -250)g/50cm^3=4\ g/cm^3$. $2\ p$ A test sűrűsége $2\ g/cm^3$, az ismeretlen folyadéké $4\ g/cm^3$.

5. feladat

a mozgó csiga terhelése $2T = G_1 \Rightarrow G_1 = 1200 \text{ N}$

$$T = 600 \text{ N}$$

$$M_G + M_{Gg} = M_T$$

$$G \text{ OA} + G_g \frac{1}{2} = Tl$$

$$OA = (Tl - G_g \frac{l}{2})/G = 1,6 \text{ m}$$

$$1 \text{ p}$$

$$1 \text{ p}$$

$$1 \text{ p}$$

6. feladat

a) A másodikhoz viszonyítva az első 12 m/s - 7 m/s = 5 m/s sebességgel halad. 1 p b) Ha az M pontban találkoznak AM = v_1t $BM = v_2 t$ $v_1t - v_2t = AB$ $t = 50 \ m/(v_1 - v_2) = 10 \ s$ 1 p c) Az A ponthoz viszonyítva $v_1t = 12 \ m/s$, $10 \ s = 120 \ m$ 1 p B ponthoz viszonyítva 70 m 1 p d) $s_1' - s_2' = 25 m$ $v_1t' - v_2t' = 25 m$ t' = 5 s1 p Grafikonért (3 p), ahol kimutatva b, c, d eredményt (3p). Értéktáblázat az ábrázoláshoz. 2 p

t/(s)	0	2	4	6	8	10	12	14	16
$d_1(m)$ $v_1 = 12 \text{ m/s}$	0	24	48	72	96	120	144		
$d_2(m) v_2 = 7 \ m/s$	50	50+14	50+28	50+42	50+56	50+70			
		64	78	92	106	120			

7. feladat

Egyetlen égő nem világíthat, sem három égő egyszerre. Ha K_2 zárva két égő, B_3 és B_4 világít, ha mindkét kapcsoló zárva, világít mind a négy égő. 2 p

8. feladat

· Iciaaat			
a) $P = \Delta C / \Delta t$	$UI\Delta t = \Delta C$		
$\Delta \mathcal{E} = I_A{}^2 R_4 \Delta t$			0,5 p
$R_4 = \Delta \mathcal{E}/I_A^2 \Delta t$			0,5 p
$R_4 = 8.1 \Omega$			0,5 p
$R_4 = \rho 1/S$	$l = R_4 S/\rho$	$l = 60,55 \ m$	0,5 p

b) K nyitva

E -
$$I_1 r = I_1 (R_1 + R_2) + I_3 R_3$$
 0,5 p
 $I_A R_A + I_A R_4 - I_3 R_3 = 0$ 0,5 p
 $I_1 = I_A + I_3$ 0,5 P
 $I_1 = 2,82 \text{ A}$ $I_3 = 1,82 \text{ A}$ 1 P

K zárva

$$E - I_1'r = I_1'R + I_3'R_3$$

$$I_A'R_A + I_A'R_4 = I_3'R_3$$

$$I_1' = I_A' + I_3'$$

$$I_3' = 2,25 A$$

$$I_1' = 3,49 A$$

$$E = 2,82 r + 26,02$$

$$1 p$$

$$0,5 p$$

$$0,5 p$$

$$0,5 p$$

E = 3,49 r + 2	5,2 1	0,5 p
E = 29,39 V	$r=1,2 \Omega$	0,5 p

c) K nyitva	$R_e = 9.2 \Omega$	0,5 p
K zárva	$R_e' = 7.2 \Omega$	1 p