Meetup Etude des algorithmes fondamentaux

Session du lundi 7 novembre 2016

but Notre

Apprendre ensemble des algorithmes fondamentaux

En s'aidant les uns les autres

Au programme, ce soir

- Qu'est-ce qu'un graphe?
- Des algorithmes de recherche de parcours
 - Algorithmes naifs
 - Bellman-Ford
 - Dijkstra
 - A*
- Un exemple avec Neo4j et métro parisien

Pour la présentation : https://goo.gl/aydtl0

On fait d'autres trucs!

Meetup Étude des Design Patterns

http://www.meetup.com/fr-FR/design-patterns/

Un graphe est un ensemble de noeuds ou sommets (en: node, vertex/vertices, points) liés par des arcs (en: edges, arcs, or lines).

orienté (en: directed) et non-orienté (en: undirected)

Les arcs peuvent être valués ou non

Qu'est-ce qu'un graphe?

Implémentons notre graphe!

Des idées?

Comment trouver le chemin optimal en un minimum de temps pour aller d'un noeud à l'autre?

On cherche à avancer le plus possible et si on est coincé, on revient en arrière

Deux manières de faire...

Algorithme Bellman-Ford

Plus court chemin d'un noeud vers tous les autres

- Arc négatif
- ♥ Cycle négatif

Algorithme Bellman-Ford


```
n := nb \ Noeud, \ E : ensemble des arcs
Init: \ dist[n] = \infty
Répéter \ n - 1 \ fois
Pour \ chaque \ arc \ (u,v) \in E
if \ dist(v) > dist(u) + l(u,v)
dist(v) := dist(u) + l(u,v)
```

⇒ Complexité du pire cas?

Algorithme Bellman-Ford

Noeud	S	А	В	С	D	Е	Commentaires
S	0	10	∞	∞	∞	8	
А	0	10	∞	12	∞	8	$dist(C) = \infty$, $dist(A) + I(A, C) = 12$
В	0	10	∞	12	∞	8	dist(B) = ∞
С	0	10	10	12	∞	8	$dist(B) = \infty, dist(C) + I(C, B) = -2$
D	0	10	10	12	∞	8	
Е	0	10	10	12	9	8	$dist(D) = \infty$, $dist(E) + I(E, D) = 1$

Algorithme Dijkstra

Plus court chemin d'un noeud vers tous les autres

M Arc négatif

♥ Cycle négatif

Algorithme Dijkstra vs BF

Djisktra: greedy/glouton

Bellman-Ford

Algorithme Dijkstra


```
n := nb Noeud, N : { noeuds }
Init: dist[n] = \infty, précuseur[n] = {}
Répéter tant que N != {}
    u \in N / dist(u) = min dist
    N := N - \{u\}
    Pour chaque arc (u,v) \in E
        if dist(v) > dist(u) + I(u,v)
            dist(v) := dist(u) + I(u,v)
```

Algorithme A*

Approximation du chemin le plus court

Algorithme A*


```
n := nb Noeud, N : { noeuds }
Init: dist[n] = \infty, estimated[n] = ?,
précuseur[n] = \{\}
Répéter tant que N != {}
    u \in N / dist(u) = min (dist + estimated)
    N := N - \{u\}
    Pour chaque arc (u,v) \in E
        if dist(v) > dist(u) + I(u,v)
            dist(v) := dist(u) + I(u,v)
```

Un exemple

Neo4j + métro parisien

Ressources

Cours "introduction to algorithms" de Sedgewick

