Udo W. Pohl

Epitaxy of Semiconductors

Introduction to Physical Principles

Contents

1	Intr	oductio	n
	1.1	Epitax	y
		1.1.1	Roots of Epitaxy
		1.1.2	Epitaxy and Bulk-Crystal Growth
	1.2	Issues	of Epitaxy
		1.2.1	Convention on Use of the Term "Atom"
		1.2.2	Assembly of Atoms
		1.2.3	Tasks for Epitaxial Growth
	Refe	erences	
2	Stru	ictural l	Properties of Heterostructures
	2.1		Crystal Structures
		2.1.1	Notation of Planes and Directions
		2.1.2	Wafer Orientation
		2.1.3	Face-Centered Cubic and Hexagonal Close-Packed
			Structures
		2.1.4	Zincblende and Diamond Structures
		2.1.5	Rocksalt and Cesium-Chloride Structures
		2.1.6	Wurtzite Structure
		2.1.7	Thermal Expansion
		2.1.8	Structural Stability Map
		2.1.9	Polytypism
		2.1.10	Random Alloys and Vegard's Rule
		2.1.11	Virtual-Crystal Approximation
	2.2	Elastic	Properties of Heterostructures
		2.2.1	Strain in One and Two Dimensions
		2.2.2	Three-Dimensional Strain
		2.2.3	Hooke's Law
		2.2.4	Poisson's Ratio
		2.2.5	Pseudomorphic Heterostructures
		2.2.6	Critical Layer Thickness

viii Contents

		2.2.7	Approaches to Extend the Critical Thickness	. 39
		2.2.8	Partially Relaxed Layers and Thermal Mismatch	. 42
	2.3	Disloc	cations	. 44
		2.3.1	Edge and Screw Dislocations	. 45
		2.3.2	Dislocation Network	. 46
		2.3.3	Dislocations in the fcc Structure	. 47
		2.3.4	Dislocations in the Diamond and Zincblende Structures .	. 49
		2.3.5	Dislocation Energy	. 51
		2.3.6	Dislocations in the hcp and Wurtzite Structures	. 54
		2.3.7	Mosaic Crystal	
	2.4	Struct	ural Characterization Using X-Ray Diffraction	. 58
		2.4.1	Bragg's Law	. 58
		2.4.2	The Structure Factor	. 59
		2.4.3	The Reciprocal Lattice	. 61
		2.4.4	The Ewald Construction	. 63
		2.4.5	High-Resolution Scans in the Reciprocal Space	
		2.4.6	Reciprocal-Space Map	. 67
	2.5	Proble	ems Chap. 2	. 70
	2.6	Gener	ral Reading Chap. 2	. 73
	Refe	erences		. 74
2	T/Los	tnania	Description of Hotomostavisticans	70
3	3.1		Properties of Heterostructures	
	3.1	3.1.1	Properties	
		3.1.2	Strain Effects	
		3.1.3	Temperature Dependence of the Bandgap	
		3.1.4	Bandgap of Alloys	
	3.2		Offsets	
	5.2	3.2.1	Electron-Affinity Rule	
		3.2.2	Common-Anion Rule	
		3.2.3	Model of Deep Impurity Levels	. 93
		3.2.4	Interface-Dipol Theory	
		3.2.5	Model-Solid Theory	
		3.2.6	Offsets of Some Isovalent Heterostructures	
		3.2.7	Band Offset of Heterovalent Interfaces	
		3.2.8	Band Offsets of Alloys	
	3.3		onic States in Low-Dimensional Structures	
	5.5	3.3.1	Dimensionality of the Electronic Density-of-States	
		3.3.2	Characteristic Scale for Size Quantization	
		3.3.3	Quantum Wells	
		3.3.4	Quantum Wires	
		3.3.5	Quantum Dots	
	3.4		ems Chap. 3	
	3.5		ral Reading Chap. 3	
	1.010			. 14.

Contents

4	The	rmodyı	namics of Epitaxial Layer-Growth	. 131
	4.1	Phase	Equilibria	. 131
		4.1.1	Thermodynamic Equilibrium	. 132
		4.1.2	Gibbs Phase Rule	. 134
		4.1.3	Gibbs Energy of a Single-Component System	. 135
		4.1.4	Phases Boundaries in a Single-Component System	. 139
		4.1.5	Driving Force for Crystallization	. 140
		4.1.6	Two-Component System	. 143
	4.2	Crysta	alline Growth	. 148
		4.2.1	Homogeneous Three-Dimensional Nucleation	. 148
		4.2.2	Heterogeneous Three-Dimensional Nucleation	. 152
		4.2.3	Growth Modes	. 154
		4.2.4	Equilibrium Surfaces	. 155
		4.2.5	Two-Dimensional Nucleation	. 161
		4.2.6	Island Growth and Coalescence	. 164
		4.2.7	Growth without Nucleation	. 166
		4.2.8	Ripening Process After Growth Interruption	. 168
	4.3	Proble	ems Chap. 4	. 168
	4.4	Gener	al Reading Chap. 4	. 169
	Refe	erences		. 169
5	Ato	mistic A	Aspects of Epitaxial Layer-Growth	. 171
	5.1	Surfac	e Structure	. 171
		5.1.1	The Kink Site of a Kossel Crystal	. 172
		5.1.2	Surfaces of a Kossel Crystal	. 173
		5.1.3	Relaxation and Reconstruction	. 175
		5.1.4	Electron-Counting Model	. 176
		5.1.5	Denotation of Surface Reconstructions	. 179
		5.1.6	Reconstructions of the GaAs(001) Surface	. 181
		5.1.7	The Silicon (111)(7 \times 7) Reconstruction	. 184
	5.2	Kineti	c Process Steps in Layer Growth	. 186
		5.2.1	Kinetics in the Terrace-Step-Kink Model	. 186
		5.2.2	Atomistic Processes in Nucleation and Growth	. 188
		5.2.3	Adatoms on a Terraced Surface	. 192
		5.2.4	Growth by Step Advance	
		5.2.5	The Ehrlich-Schwoebel Barrier	. 197
		5.2.6	Effect of the Ehrlich-Schwoebel Barrier on Surface Steps	. 199
		5.2.7	Roughening of Surface Steps	. 201
		5.2.8	Growth of a Si(111)(7 \times 7) Surface	. 204
		5.2.9	Growth of a GaAs(001) β 2(2 × 4) Surface	
	5.3	Self-or	rganized Nanostructures	
		5.3.1	Stranski-Krastanow Island Growth	. 209
		5.3.2	Thermodynamics Versus Kinetics in Island Formation	. 215
		5.3.3	Wire Growth on Non-planar Surfaces	. 217

x Contents

	5.4	Problems Chap. 5
	5.5	General Reading Chap. 5
	Refe	erences
6	Don	ing, Diffusion, and Contacts
v	6.1	Doping of Semiconductors
	0.1	6.1.1 Thermal Equilibrium Carrier-Densities
		6.1.2 Solubility of Dopants
		6.1.3 Amphoteric Dopants
		6.1.4 Compensation by Native Defects
		6.1.5 DX Centers
		6.1.6 Fermi-Level Stabilization Model
		6.1.7 Delta Doping
	6.2	Diffusion
	0.2	6.2.1 Diffusion Equations
		6.2.2 Diffusion Mechanisms
		6.2.3 Effective Diffusion Coefficients
	()	6.2.4 Disordering of Heterointerfaces
	6.3	Metal-Semiconductor Contact
		6.3.1 Ideal Schottky Contact
		6.3.2 Real Metal-Semiconductor Contact
		6.3.3 Practical Ohmic Metal-Semiconductor Contact
		6.3.4 Epitaxial Contact Structures
	6.4	Problems Chap. 6
	6.5	General Reading Chap. 6
	Refe	erences
7	Met	hods of Epitaxy
	7.1	Liquid-Phase Epitaxy
		7.1.1 Growth Systems
		7.1.2 Congruent Melting
		7.1.3 LPE Principle
		7.1.4 LPE Processes
	7.2	Metalorganic Vapor-Phase Epitaxy
		7.2.1 Metalorganic Precursors
		7.2.2 The Growth Process
		7.2.3 Mass Transport
	7.3	Molecular Beam Epitaxy
		7.3.1 MBE System and Vacuum Requirements 300
		7.3.2 Beam Sources
		7.3.3 Uniformity of Deposition
		7.3.4 Adsorption of Impinging Particles
	7.4	Problems Chap. 7
	7.5	General Reading Chap. 7
		erences

Contents	xi	
C 111 - 1111		

Appendix	Answers to Problems						 						315
Index													319
Fundamen	tal Physical Constants				,								325