CS 225

Some Definitions and Theorems from Chapter 4 By Nathan Taylor

Fall 2020

From 4.1:

Assumptions:

- Basic laws of algebra from appendix A (I assume we do not have to cite these–I listed some on the last page of this document)
- Properties of equality: x = x, $x = y \implies y = x$, x = y and $y = z \implies x = z$
- Principle of substitution: if x = y, then we can substitute in y wherever x appears.
- The integers are closed under addition, subtraction and multiplication. (The book also mentions that there is no integer between 0 and 1–does that need to be an assumption??)

Definitions:

- An integer n is **even** if and only if it can be written as n = 2k for some integer k.
- An integer n is **odd** if and only if it can be written as n = 2k + 1 for some integer k.
- An integer n is **prime** if and only if n > 1 and for all positive integers r and s, if n = rs, then either r or s equals n.
- An integer n is **composite** if and only if n > 1 and n = rs for some integers r and s with 1 < r < n and 1 < s < n.

Theorem 4.1.1

The sum of any two even integers is even.

From 4.2:

Theorem 4.2.1:

The difference of any odd integer and any even integer is odd.

From 4.3:

Definition:

A real number r is **rational** if and only if there are integers a and b with $b \neq 0$ so that $r = \frac{a}{b}$

Property:

The zero product property is: if neither of two real numbers is zero, then their product is also not zero. (this is T11 in appendix A)

Theorem 4.3.1:

Every integer is a rational number.

Theorem 4.3.2:

The sum of any two rational numbers is a rational number.

Corollary 4.2.3:

The double of a rational number is a rational number.

Result of Exercise 12:

The square of any rational number is a rational number.

Result of Exercise 13:

The negative of any rational number is a rational number.

Result of Exercise 14:

The cube of any rational number is a rational number.

Result of Exercise 15:

The product of any two rational numbers is a rational number.

Result of Exercise 17:

The difference of any two rational numbers is a rational number.

From 4.4:

Definition:

If n and d are integers, then n is **divisible by** d if and only if $d \neq 0$ and n = kd for some integer k.

Some synonyms for "d divides n":

- n is a multiple of d
- d is a factor of n
- d is a divisor of n
- \bullet d divides n
- *d* | *n*

The notation $d \nmid n$ means "d does not divide n".

Theorem 4.4.1:

For all integers a and b, if a and b are positive and a divides b then $a \leq b$.

Theorem 4.4.2:

The only divisors of 1 are 1 and -1.

Theorem 4.4.3:

For all integers a, b and c, if a divides b and b divides c, then a divides c.

Theorem 4.4.4:

Any integer n > 1 is divisible by a prime number.

Theorem 4.4.5:

Given any integer n > 1 there exists a positive integer k, distinct prime numbers p_1, p_2, \ldots, p_k , and positive integers e_1, e_2, \ldots, e_k such that

$$n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k} = \prod_{i=1}^k p_i^{e_i}$$

and any other expression for n as a product of prime numbers is identical to this except perhaps for the order in which the factors are written.

Definition:

Given any integer n > 1, the standard factored form of n is an expression of the form

$$n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k} = \prod_{i=1}^k p_i^{e_i}$$

where k is a positive integer, p_1, \ldots, p_k are prime numbers, e_1, \ldots, e_k are positive integers, and $p_1 < p_2 < \cdots < p_k$.

From 4.7:

Theorem 4.7.1:

There is no greatest integer.

Theorem 4.7.2:

There is no integer that is both even and odd.

Theorem 4.7.3:

The sum of any rational number and any irrational number is irrational.

Proposition 4.7.4:

For every integer n, if n^2 is even then n is even.

From 4.8:

Theorem 4.8.1:

 $\sqrt{2}$ is irrational.

Proposition 4.8.2:

 $1 + 3\sqrt{2}$ is irrational.

Proposition 4.8.3:

For any integer a and any prime number p, if $p \mid a$ then $p \nmid (a+1)$.

Theorem 4.8.4:

The set of prime numbers is infinite (i.e. there are infinitely many prime numbers).

From Appendix A:

- Field Axioms for real numbers:
 - F1 Commutative laws for addition and multiplication
 - F2 Associative laws for addition and multiplication
 - F3 Distributive laws
 - F4 Existence of an identity for addition and multiplication
 - F5 Existence of additive inverses (negative numbers)
 - F6 Existence of multiplicative inverses (reciprocals)
- Other theorems:
 - T1 Cancellation law for addition: $a + b = a + c \implies b = c$
 - T2 Possibility of subtraction: There is a unique solution to a+x=b (namely x=b-a)
 - T3 b a = b + (-a)
 - T4 (-a) = a
 - T5 a(b-c) = ab ac
 - T6 $0 \cdot a = a \cdot 0 = 0$
 - T7 Cancellation law for multiplication: ab = ac and $a \neq 0 \implies b = c$
 - T8 Possibility of division: If $a \neq 0$, there is a unique solution to ax = b. (namely x = b/a)
 - T9 If $a \neq 0$, $\frac{b}{a} = b \cdot a^{-1}$
 - T10 If $a \neq 0$, $(a^{-1})^{-1} = a$
 - T11 Zero product property: If ab = 0, then a = 0 or b = 0
 - T12 (-a)b = a(-b) = -(ab), (-a)(-b) = ab,

$$-\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b}$$

5

- T13 Equivalent fractions property: $\frac{a}{b} = \frac{ac}{bc}$ if $b \neq 0$ and $c \neq 0$
- T14 Fraction addition: $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$ if $b \neq 0$ and $d \neq 0$
- T15 Multiplying fractions: $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$
- T16 Dividing fractions: $\frac{a/b}{c/d} = \frac{a}{b} \cdot \frac{d}{c}$
- \bullet Order Axioms (see the appendix on page A-2)
- \bullet Order Theorems (see the appendix A-3)
- Least upper bound axiom (see the appendix A-3)