الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 03 سا و 30 د

دورة: 2020

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع الأول على (04) صفحات (من الصفحة 1 من 8 إلى الصفحة 4 من 8)

التمرين الأول: (06 نقاط)

بُني جسر سيدي راشد بين 1908 و 1912 على ضفتي وادي الرمال بقسنطينة الذي يربط بين حي الكدية ومحطة القطار.

يهدف هذا التمرين إلى إيجاد ارتفاع الجسر.

زار التلاميذ جسر سيدي راشد في إطار رحلة مدرسية إلى مدينة قسنطينة فانبهرت "منى" من علو هذا الجسر وأرادت معرفة علوه. من أجل ذلك تركت حجرًا كتلته $m=100\,g$

 $t=4,67\,s$ وسجّات زمن سقوطه t=0 تقع على حافة الجسر نعتبرها مبدأ للفواصل في اللحظة

 $g = 9,80 \ m \cdot s^{-2}$: شدة الجاذبية الأرضية

دراسة السقوط الحر للحجر:

- 1. عرّف السقوط الحر للأجسام.
 - 2. من بين المراجع التالية:
- (أ) المرجع السطحي الأرضي، (ب) المرجع الجيومركزي، (ج) المرجع الهيليومركزي
 - 1.2. اختر المرجع المناسب لدراسة حركة سقوط الحجر.
 - 2.2. هل يمكن اعتبار المرجع المختار عطاليا؟ علّل.
 - 3. نعتبر سقوط الحجر حرًا في المعلم (Oz) المرتبط بمرجع الدراسة (الشكل 1).
 - 1.3. مثّل القوى الخارجية المطبقة على الجملة المادية (الحجر) أثناء السقوط.
 - 2.3. ذكِّر بنص القانون الثاني لنيوتن.
- 3.3. بتطبيق القانون الثاني لنيوتن على الجملة، جِد المعادلة التفاضلية التي تحققها سرعة مركز عطالة الجملة في كل لحظة t.

- 4.3. استنتج طبيعة حركة مركز عطالة الجملة واكتب المعادلة الزمنية لسرعته.
 - 4. اعتمادا على المعادلة الزمنية للسرعة:
- v = f(t) ارسم على ورقة ميليمترية منحنى تطور سرعة مركز عطالة الجملة v = f(t)
 - h ارتفاع الجسر عن سطح الارض. h
 - z(t) اكتب المعادلة الزمنية للحركة (3.4
 - 4.4. تأكد حسابيا من قيمة الارتفاع h.

التمرين الثاني: (07 نقاط)

يستعمل في حاجز الدرك الوطني اشارة ضوئية ذات ومضات للتنبيه بوجود حاجز أمني، تعتمد أساسا على عدة عناصر كهربائية من بينها المكثفات، النواقل الأومية، ...

الهدف من هذا التمرين هو دراسة دارة تحتوي العناصر الكهربائية السابقة.

نحقق الدارة الكهربائية (الشكل 2) والمكونة من:

- _ مولد التوتر الثابت قوته المحركة الكهربائية E = 5V .
- لا ناقلين أوميين مقاومة أحدهما R متغيرة ومقامة الآخر R' ثابتة؛
 - K_2 و المعتين K_1 و المعتين K_1 و K_2 و المعتين K_1

1. شحن المكثفة

نستعمل راسم اهتزاز ذي ذاكرة لمتابعة تطور التوتر الكهربائي بين طرفي المكثفة $u_c(t)$.

في اللحظة K_2 مفتوحة في اللحظة القاطعة في المنطقة مغتوحة في اللحظة المتعلق المتعلق

ونضبط $u_{c}=f(t)$ على القيمة $u_{c}=f(t)$ فنشاهد على شاشة راسم الاهتزاز المنحنى $u_{c}=f(t)$

- 1.1. أعد رسم الدارة على ورقة إجابتك ثم:
- وضح كيفية توصيل راسم الاهتزاز بالدارة لمشاهدة منحنى تطور التوتر الكهربائي بين طرفي المكثفة $u_{c}=f(t)$
 - _ بيّن جهة التيار الكهربائي المار في الدارة.
- _ مثّل بسهم التوتر الكهربائي بين طرفي كل عنصر.
 - 2.1. بتطبيق قانون جمع التوترات، اكتب المعادلة التفاضلية التي يحققها التوتر الكهربائي $u_{c}(t)$.

. $u_{C}(t) = A(1 - e^{-\frac{t}{B}})$ عبارة كل من الثابتين $u_{C}(t) = A(1 - e^{-\frac{t}{B}})$ عبارة كل من الثابتين $u_{C}(t) = A(1 - e^{-\frac{t}{B}})$

4.1. ماذا يمثل الثابت B وما مدلوله الفيزيائي؟

.5.1 حدّد وحدة الثابت B في النظام الدولي للوحدات (S.I) مستعملا التحليل البعدي.

.6.1 جد قيمة τ ثابت الزمن مع توضيح الطريقة المستعملة.

8.1. وضح كيف يتم شحن المكثفة السابقة بشكل أسرع.

2. تفريغ المكثفة

. K_2 ونغلق ونغلق K_1 بعد شحن المكثفة السابقة كليا وفي اللحظة ونغلق t=0

1.2. تتناقص الطاقة المخزنة في المكثفة خلال تفريغها (الشكل 4).

1.1.2. إلى أين ذهبت الطاقة المخزنة في المكثفة؟

2.1.2. عبارة التوتر بين طرفي المكثفة هي:

$$u_C(t) = E e^{-\frac{t}{\tau'}}$$

حيث τ ثابت الزمن. اكتب العبارة

 $E_{C}(t)$ اللحظية للطاقة المخزنة في المكثفة

 τ من البيان. استخرج قيمة ثابت الزمن τ

4.1.2. استنتج قيمة المقاومة ' R.

التمرين التجريبي: (07 نقاط)

الجزءان 1 و2 مستقلان

الجزء 1: يُباع في الأسواق مُنتج تجاري لتصبِير الزيتون، يتكون أساسا من محلول مائي لهيدروكسيد الصوديوم (الصودا الكاوية) ($(Na^+(aq) + HO^-(aq))$)، البطاقة الملصقة على قارورته لا تحمل معلومات عن تركيزه المولي.

. يهدف هذا الجزء إلى تعيين c_0 التركيز المولي لمحلول تصبير الزيتون

 $25^{\circ}C$ عند كل المحاليل مأخوذة

البروتوكول التجريبي:

- نأخذ بواسطة ماصة عيارية حجما $V_0 = 5mL$ من المنتج التجاري تركيزه المولي - فأخذ بواسطة ماصة عيارية حجما

 c_1 مرة، للحصول على محلول (S) تركيزه المولى – نُخفف المنتج التجاري 50 مرة، للحصول على محلول

- نأخذ حجما $V_1 = 20mL$ من المحلول (S) ونعايره بمحلول حمض كلور الهيدروجين ($V_1 = 20mL$ تركيزه المولي $V_1 = 20mL$ المولي $c_a = 0.1 mol \cdot L^{-1}$ وباستعمال أزرق البروموتيمول ككاشف ملون، نلاحظ أن لون المحلول يتغير عند إضافة حجم $V_2 = 20mL$ من محلول حمض كلور الهيدروجين.

- 1. أعط مدلول العبارة المكتوبة على الملصقة "يجب ارتداء قفازات ونظارات عند استعمال هذه المادة".
 - 2. ارسم الشكل التخطيطي لتركيب المعايرة موضحا عليه البيانات الكافية.
 - 3. اكتب معادلة تفاعل المعابرة.
 - .4 جد قيمة c_0 ثم استنتج التركيز المولى للمُنتج التجاري.
 - 5. ما الهدف من تخفيف المحلول التجاري؟

الجزء 2: يستعمل حمض الميثانويك (HCOOH) في صناعة الأصبغة والمطاط ومنتجات أخرى.

 $c_0 = 2 \, mol \cdot L^{-1}$ لدينا محلول تجاري (S_0) لحمض الميثانويك تركيزه المولي

نحضر محلولا مائيا (S_0) تركيزه المولي c وذلك بتخفيف المحلول التجاري (S_0) مرات.

يهدف هذا الجزء إلى دراسة تأثير التركيز المولى الابتدائي على انحلال الحمض في الماء.

- 1. عرّف الحمض حسب برونشتد.
- 2. اكتب معادلة انحلال حمض الميثانويك في الماء.
 - $\cdot(S)$ المحلول التركيز المولى المحلول العرب التركيز المولى العرب التركيز
 - 4. توجد في المخبر الزجاجيات التالية:
 - _ ماصات عيارية: 10mL ،5mL عيارية
- _ حوجلات عيارية: 1000mL ،500mL ،500mL _ حوجلات اختر الزجاجيات اللازمة لتحضير المحلول (S)، علّل.
- 5. انطلاقا من المحلول (S) نحضر عدة محاليل مخففة ذات تراکیز مولیة مختلفة ثم نقیس قیمهٔ pH کل منها ونحسب نسبة التقدم النهائي au_{f} لكل محلول فنتحصل على المنحني au_{f} الممثل النطور نسبة التقدم النهائي البياني $au_{f} = f\left(pH\right)$ بدلالة pH (الشكل 5).
- $au_f = \frac{10^{-pH}}{c}$: انشئ جدولا لتقدم التفاعل وبيّن أن نسبة التقدم النهائي au_f للتفاعل تكتب بالعبارة:
- مة استنج $pH_2=5,0$ و $pH_1=2,9$ ثم استنج كين بنانيا نسبة التقدم النهائي au_f لكل من المحلولين المميزين بنا التركيز المولى الابتدائي لكل من المحلولين.
 - 3.5. استنتج تأثير التركيز المولي الابتدائي على انحلال الحمض في الماء.

انتهى الموضوع الأول

(الموضوع الثاني

يحتوي الموضوع الثاني على (04) صفحات (من الصفحة 5 من 8 إلى الصفحة 8 من 8)

التمرين الأول: (06 نقاط)

الشكل 1

تُعرف المحطة الفضائية الدولية (الشكل 1) اختصارا بـ ISS التي تدور حول الأرض بحركة نعتبرها دائرية منتظمة على ارتفاع h من سطح الأرض. بإمكان هذه المحطة أن تحمل رواد فضاء لعدة أشهر. تستعمل لتدريب الرواد لقضاء أوقات طويلة في الفضاء وإجراء تجارب علمية.

معطيات:

- $M_{\rm T} = 6 \times 10^{24} kg$ كتلة الأرض
- $R_{\rm T} = 6.4 \times 10^3 \, km$ نصف قطر الأرض
- $G = 6,67 \times 10^{-11} SI$ ثابت التجاذب الكونى
- $m = 4.15 \times 10^5 kg$ كتلة المحطة الفضائية $m = 4.15 \times 10^5 kg$ كتلة
- $h = 400 \, km$ ارتفاع المحطة عن سطح الأرض
- 1. اقترح مرجعا مناسبا لدراسة حركة المحطة الفضائية S حول الأرض T .
- 2. ارسم كيفيا شعاع القوة $\vec{F}_{T_{S}}$ التي تؤثر بها الأرض T على المحطة S ثم احسب شدتها.
- $R_{\rm T}$ ، $F_{T/S}$ ، m بدلالة S بدلالة بدلالة S بدلالة S بدلالة S بدلالة بدلالة S بدلالة بدلالة بدلالة بدلالة كالمالة بدلالة بدلالة بدلالة بدلالة بدلالة بدلالة
- 4. اكتب عبارة T دور المحطة بدلالة $h \cdot R_{\rm T}$ و v ثم احسب قيمته واستنتج عدد الدورات المنجزة من طرف المحطة في اليوم الواحد.
 - 5. يخضع رواد الفضاء عند عودتهم إلى الأرض لفحص طبي شامل. في أحد اختباراته، يُحقن رائد الفضاء بعينة مشعة كتلتها g^- وبنصف عمر g^- المميز بالنمط الإشعاعي g^- وبنصف عمر g^- وبنصف عمر 8 jours مشعة كتلتها g^-

 $M(^{131}\mathrm{I}) = 131 \, g \cdot mol^{-1}$ يعطى: ثابت أفوغادرو $N_{\mathrm{A}} = 6,02 \times 10^{23} \, mol^{-1}$ ، الكتلة المولية الذرية لنظير اليود

رمز العنصر	Sb	Te	I	Xe
العدد الذري Z	51	52	53	54

- $^{\circ}\beta$ ماذا يمثل. 1.5
- 2.5. اكتب معادلة تفكك اليود 131 مستعينا بالجدول المقابل.
- مدد الأنوية الابتدائية للعينة المشعة ثم استنتج قيمة N_o عدد الأنوية الابتدائي . A_o نشاطها الإشعاعي الابتدائي .
- 4.5. بعد مدة زمنية t_1 تفقد العينة المشعة 80% من نشاطها الإشعاعي الابتدائي.
- $A(t_1)$ عند اللحظة عند اللحظة $A(t_1)$ النشاط الإشعاعي للعينة عند اللحظة الخطة .1.4.5
 - $.t_1$ احسب المدة الزمنية. .2.4.5

التمرين الثانى: (07 نقاط)

ايثانوات الايثيل مركب عضوي سائل عديم اللون له رائحة مميّزة صيغته المجملة $C_4H_8O_2$. ويُعد من أحد المذيبات المُهمة في الصناعات الكيميائية.

يهدف هذا التمرين إلى الدراسة الحركية لتفاعل ايثانوات الايثيل مع محلول هيدروكسيد الصوديوم.

عند اللحظة c_0 عند اللحظة و النوعية ال

معطيات:

$$\rho = 0.90 \, g \cdot mL^{-1}$$
: الكتلة الحجمية لإيثانوات الايثيل $M(C_4H_8O_2) = 88 \, g \cdot mol^{-1}$

:
$$mS \cdot m^2 \cdot mol^{-1}$$
 بالناقليات النوعية المولية الشاردية عند الدرجة 25^0C بي الناقليات النوعية المولية الشاردية عند الدرجة جميعة المولية المولي

1. ثنمذج التحول الكيميائي الحادث والذي نعتبره تاماً بالمعادلة الكيميائية التالية:

$$C_4H_8O_2(l) + HO^-(aq) = CH_3CO_2^-(aq) + C_2H_6O(aq)$$

- 1.1. حدّد الأنواع الكيميائية المسؤولة عن ناقلية المزيج.
- .2.1 كيف تتطور الناقلية النوعية σ للمزيج التفاعلي مع مرور الزمن؟ علّل.
 - n_1 مادة ايثانوات الايثيل الابتدائية n_1 مادة ايثانوات الابتدائية n_1
 - 4.1. أنشئ جدولاً لتقدم التفاعل.
 - : (V_0 أمام V_1 أمام V_0) $V=V_0$ التفاعلي $V=V_0$
 - الناقلية النوعية الابتدائية للمزيج عند اللحظة σ_0 بدلالة م $\lambda_{{
 m Ho}^+}$ ، $\lambda_{{
 m Ho}^+}$ ، $\lambda_{{
 m No}^+}$ ، t=0
 - $\sigma(t)$ النوعية النوعية (النوعية على جدول التقدم أنّ الناقلية النوعية (النوعية النوعية النوعي

$$\sigma(t) = \left(\frac{\lambda_{\text{CH}_3\text{CO}_2^-} - \lambda_{\text{HO}^-}}{V}\right) x(t) + \sigma_0$$

t عند اللحظة x(t) عند اللحظة عند اللحظة

- د. يُمثل بيان الشكل 2 تطور x(t) بدلالة المُقاسة.
- النوعية البيان حدّد قيمة كل من الناقلية النوعية σ_0 والنهائية σ_0 والنهائية الابتدائية الابتدائية النهائية النهائية عنون النهائية ال
- 2.3. استنج التركيز المولي c_0 لمحلول هيدروكسيد الصوديوم.
 - 3.3. حدّد المُتفاعل المُحد.

- 4. هل الاقتراحات التالية صحيحة أم خاطئة؟ علّل.
- السرعة الحجمية للتفاعل في اللحظة t = 0 معدومة.
 - ـ السرعة الحجمية للتفاعل في نهايته أعظمية.
 - 5. اذكر العامل الحركي المؤثر في التفاعل.

التمرين التجريبي: (07 نقاط)

تُستعمل الوشائع، المكثفات والنواقل الأومية في كثير من الأجهزة الكهربائية، وتختلف وظائف هذه التراكيب حسب كيفية ربطها ومجالات استعمالاتها.

يهدف التمرين إلى دراسة الدارة RL.

ننجز التركيب التجريبي الموضح في الشكل 3 والمتكوّن من:

- مولد للتّوتر الثابت قوته المحركة الكهربائية E
 - وشيعة صافية ذاتيتها L ؛
- ي ناقلان أوميان مقاومتهما Ω Ω و $R_1=60$ مجهولة؛
 - ـ قاطعة K .
 - 1. عمليا كيف يمكن التأكد من أن الوشيعة صافية؟
- 2. ما هو التوتر الكهربائي بين طرفي القاطعة K في الحالتين التاليتين:
 - القاطعة K مفتوحة؟
 - ـ القاطعة K مغلقة؟
 - 3. عند اللحظة t=0، نغلق القاطعة K وبواسطة راسم اهتزاز ذي ذاكرة نتحصل على المنحنيين (a) و (a) الممثلين في الشكل (b).
 - 1.3. أعد رسم الدّارة مع تمثيل اتجاه التيّار الكهربائي وبسهم التوتر بين طرفي كل عنصر كهربائي.
 - 2.3. بتطبيق قانون جمع التوترات جِد المعادلة التفاضلية التي يحققها $u_{R_{\rm l}}(t)$ التوتر بين طرفي المقاومة $u_{R_{\rm l}}(t)$
 - 3.3. اعتمادا على الشكل 4 حدد:
 - .1.3.3 المنحنى الممثل لتطور ($u_{R_1}(t)$ مع التعليل.
 - .2.3.3 قيمة الشدّة الأعظمية للتيار I_0 المار في الدّارة.
 - au . au قيمة كل من au وثابت الزمن au

- $.\,L$ وذاتية الوشيعة R_{2} وذاتية الوشيعة 4
- 5. برّر تساوي قيمتي التوتّرين الممثّلين في النظام الدّائم.
- 6. تتصرّف الوشيعة الصّافية في النظام الدائم تصرّف:
 - أ) قاطعة مفتوحة،
 - ب) سلك ناقل،
 - ج) مولّد تيار كهربائي.
 - اختر الإجابة الصحيحة.
- 7. احسب الطاقة المخزنة في الوشيعة في النظام الدائم.

انتهى الموضوع الثاني

العلامة		(tříti o . in . ti) ž da Ni . dio		
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)		
0.5	0.5	التمرين الأول: (06 نقاط)		
0,5	0,5	1. تعريف السقوط الحر: نقول عن جسم صلب أنه يسقط سقوطا حرا إذا خضع لثقله فقط (تهمل دافعة أرخميدس والاحتكاك مع الهواء).		
0,75	0,25	 المرجع المناسب: (أ) المرجع السطحي الأرضي. 		
0,73	0,25	2.2. نعم يمكن اعتبار المرجع المختار عطاليا		
	0,25	التعليل: لأن مدة الدراسة صغيرة جدا أمام دور الأرض.		
	0,25	3		
	0,5	2.3. نص القانون الثاني لنيوتن: " في معلم عطالي، المجموع الشعاعي للقوى الخارجية المطبقة على جملة مادية يساوي جداء كتلتها في شعاع تسارع مركز عطالتها. " $\sum \vec{F}_{ext} = m \cdot \vec{a}_G$		
2,75	0, 25 0, 25 0, 25 0, 25	ي كل لحظة t : المعادلة التفاضلية التي تحققها سرعة مركز عطالة الجملة في كل لحظة t : $\sum_{i} \vec{F}_{ext} = m \cdot \vec{a}_{G}$ بتطبيق القانون الثاني لنيوتن $\vec{P} = m \cdot \vec{a}_{G}$ $mg = ma_{G}$ بالإسقاط وفق محور الحركة نجد $\frac{dv}{dt} = g$ ومنه $\frac{dv}{dt} = g$		
	0, 25 0, 25 0, 25	4.3 – تحديد طبيعة الحركة: المسار مستقيم والتسارع ثابت موجب، الحركة مستقيمة متسارعة بانتظام $v(t)=at+v_0$ – المعادلة الزمنية للسرعة: $v(t)=at+v_0$ من الشروط الابتدائية $v_0=0$		
	0,25	v(t) = at = 9.8t ومنه:		

اِمة	العلا	/ t = £ t
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
	0,5	v(m/s) : $v = f(t)$ الكرية الكرية $t(s)$
		2.4. إيجاد ارتفاع الجسر عن سطح الأرض بيانيا: $t = 4,67s$ و $t = 4,67s$ و مخطط السرعة يمثل مساحة الجزء المحصورة بين المستقيمين $t = 4,67s$ و $t = 4,67s$
2	0,25	$h = \frac{4,67 \times 45,766}{2}$ ومنه: $v = f(t)$
	0,25	$h = 106,86m \approx 107 m$
	0,5	3.4. المعادلة الزمنية للحركة: $z = \frac{1}{2} g t^2$
		t=4,67s التأكد من قيمة h حسابيا: عند 4.4.
	0,25	$h = \frac{1}{2} \times 9.8 \times \left(4.67\right)^2$
	0,25	$h = 106, 86 \approx 107 m$
	0,25×4	التمرين الثاني: (07 نقاط) Y .1 X_1 .1 X_2 .1 X_3 .1 X_4
5 5		$u_{\scriptscriptstyle C}$ المعادلة التفاضلية يحققها : $u_{\scriptscriptstyle C}$
5,5	0,25 0,25 0,25	$E = u_C + u_R$ $E = u_C + Ri$ $E = u_C + RC \frac{du_C}{dt}$
		$\frac{du_C}{dt} + \frac{1}{RC}u_C = \frac{E}{RC}$

رمة	العلا	(+ " £ + (- · · · · · · · · · · · · · · · · · ·
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		3.1. إيجاد عبارة كل من الثابتين A و B :
		نعوض عبارة $u_{c}(t)$ نعوض عبارة القاضلية التفاضلية فنجد:
	0,25	$\frac{du_C}{dt} = \frac{A}{B}e^{-\frac{t}{B}}$
	0,25	$Ae^{-\frac{t}{B}}(\frac{1}{B} - \frac{1}{RC}) + \frac{A}{RC} = \frac{E}{RC}$
	0,25	$\frac{A}{RC} = \frac{E}{RC} \implies A = E$
	0,25	$\frac{1}{B} - \frac{1}{RC} = 0 \implies B = RC$
	0,25	. يمثل الثابت B ثابت الزمن B ثابت الزمن
	0,25	مدلوله الفيزيائي: هو الزمن اللازم لبلوغ التوتر بين طرفي المكثفة 63% من قيمته
	0,28	الأعظمية اثناء الشحن.
		5.1. وحدة الثابت B : باستعمال التحليل البعدي
	0,25	$\llbracket\tau\rrbracket\!=\!\llbracket R \rrbracket\!\cdot\!\llbracket C \rrbracket$
	0,25	$egin{bmatrix} \left[au ight] = & rac{\left[extbf{U} ight]}{\left[extbf{I} ight]} \cdot & \left[extbf{T} ight] \cdot \left[extbf{T} ight] \\ \left[extbf{U} ight] = & \left[extbf{T} ight] \end{split}$
		فهو متجانس مع الزمن وحدته الثانية (s).
		الزمن مع تحديد الطريقة المستعملة $ au$ ثابت الزمن مع تحديد الطريقة المستعملة $ au$
	0,25	$u_{\scriptscriptstyle C}(au)=0.63E=3.15$ من البيان قيمة $ au$ تمثل فاصلة النقطة التي ترتيبها
	0,25	au=200ms ومنه
		أو: يمكن استعمال طريقة المماس.
		رماب قيمة C سعة المكثفة: C سعة المكثفة:
	0.25	$C = \frac{\tau}{R} = \frac{200 \times 10^{-3}}{100}$
	0, 25 0, 25	R = 100 $C = 2 \times 10^{-3} \text{F} = 2000 \mu\text{F}$
	0,23	- استنتاج الطاقة المخزنة في المكثفة عند نهاية الشحن:
		$\mathbf{E}_C = \frac{1}{2}C \cdot E^2$
	0,25	$E_C = 25 \times 10^{-3} J$
	0,25	L _C - 25 ^ 10 J
	0,25	8.1. يتم شحن المكثفة بالدارة السابقة بشكل أسرع بالخفض من قيمة R.

العلامة		/ t=\$t(- : t() I (b)(-1:-
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
	0,25	 2. تفريغ المكثفة 1.2. 1.1.1. أثناء التفريغ، تتناقص الطاقة المخزنة في المكثفة حيث تستهلك في الناقل الأومي على شكل حرارة بفعل جول.
1,5	0,5	على سدن حروة بعض جون. 2.1.2. العبارة اللحظية للطاقة المخزنة في المكثفة: $ E_C(t) = \frac{1}{2} C u_C^2(t) = \frac{1}{2} C E^2 e^{-\frac{2t}{\tau}} = \frac{1}{2} C E^2 e^{-\frac{t}{\tau / 2}} $
	0,25	$\dfrac{ au'}{2} = 0.4 s$ قيمة ' $ au$: من البيان $ au' = 0.8 s$ ومنه: $ au' = 0.8 s$
	0,25	R' قيمة المقاومة $R'=rac{ au'}{C}$
0,25	0,25	R'= 400Ω التمرين التجريبي: (07 نقاط) الجزء 1: 1. مدلول العبارة: يجب لبس القفازات لأن المادة كاوية وحارقة، ويجب لبس نظارات لمنع تعرض العين لهذه المادة
0,5	0,25 0,25	2. التركيب التجريبي لعملية المعايرة: - التجهيز - البيانات - البيانات المزيج التفاعلي
0,25	0,25	$H_3O^+(aq) + HO^-(aq) = 2H_2O(\ell)$.3 عادلة تفاعل المعايرة:
	0,25	: عند التكافؤ $c_1V_1=c_aV_{aE}$ ومنه: c_1 التركيز المولي للمحلول c_1 عند التكافؤ: $c_1V_1=c_aV_{aE}$ ومنه: $c_1=\frac{c_aV_{aE}}{V_1}$
1	0,25 0,25 0,25	$c_1 = \frac{0.1 \times 20}{20} = 0.1 mol \cdot L^{-1}$ $c_0 = 50 c_1$ $c_0 = 50 \times 0.1 = 5 mol \cdot L^{-1}$ $c_0 = 50 \times 0.1 = 5 mol \cdot L^{-1}$

العلامة			/ • = = = =	* ***	4.0	
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأقل)				
0,25	0,25	c_0^{2}	صعبة التحقيق نظرا لقيما	جاري: عملية المعايرة	، المحلول التح	5. الهدف من تخفيف
0,23	0,23	التكافؤ.	معاير للوصىول الى نقطة	, كبير من المحلول الم	، إضافة حجم	الكبيرة وهذا ما يتطلب
0,25	0,25	الجزء 2: 1. تعريف الحمض: هو كل فرد كيميائي (شاردي أم جزيئي) قادر على فقدان بروتون ⁺ H او أكثر خلال تحول كيميائي.				
0.5				ك في الماء:	**	2. معادلة انحلال حم
0,5	0,5		$HCOOH(\ell) + H$	$H_2O(\ell) = H_3O^+(aq)$		
					حلول المخفف	3. التركيز المولي للم
0,5	0,25 0,25			$c = \frac{c_0}{10}$ $c = 0, 2 mol \cdot L^{-1}$		
	0.25			(S) محلول		4. الزجاجيات المناسب
0,75	0,25 0,25					ماصىة عيارية حوجلة عيارية م
	0,25	10	لى حوجلة عيارية 00mL	S) 10 مرات يحتاج إ		
					عل:	 جدول تقدم التفا.
		المعادلة	$HCOOH(\ell)$	$+ H_2O(\ell) = H_3$	$O^+(aq) + H^-$	$COO^{-}(aq)$
		الحالة		ة المادة (mol)	كميا	
	0,25	ح. ابتدائية	cV		0	0
		ح. انتقالية	cV - x	بوفرة	x	x
2.55	0,25	ح. نهائية	$cV - x_f$		\mathcal{X}_f	x_f
2,75						$: au_f$ عبارة =
	0,25			$\tau_f = \frac{x_f}{x_{max}}$		
	0,25			$\tau_f = \frac{n_{f(\mathrm{H_3O_{(\mathrm{aq})}^+})}}{n_0}$		
	0,25			$\tau_f = \frac{\left[\mathbf{H}_3 \mathbf{O}_{(aq)}^+ \right]_f V}{cV}$		
	0,25			$\tau_f = \frac{10^{-pH}}{c}$		

تابع للإجابة النموذجية لموضوع اختبار مادة: العلوم الفيزيائية/ الشعب(ة): علوم تجريبية/ بكالوريا 2020

زمة	العلا	/ t " fri
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		:اینایب $ au_f$ عیدید .2.5
		$ au_{fI} = 0.14$ $pH_1 = 2.9$ من أجل
	0,25 0,25	$ au_{f2} = 0.96$ $pH_2 = 5.0$ من أجل
	0,23	- استنتاج التركيز المولي لكل محلول:
		$c=rac{10^{ au_H}}{ au_f}$ من عبارة نسبة تقدم التفاعل
		$c_1 = 8,99 \times 10^{-3} mol \cdot L^{-1}$
	0,25	$c_2 = 1,04 \times 10^{-5} mol \cdot L^{-1}$
	0,25	-
	0,25	3.5. كلما مددنا المحلول الابتدائي كلما ازداد انحلال الحمض في الماء.

العلامة		/ *1 ² *** - * *1\ 7
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثّاني)
		التمرين الأول: (06 نقاط)
0,25	0,25	1. المرجع المناسب هو المرجع الجيومركزي.
		$\overline{F_{T_{\infty}}}$ تمثیل شعاع القوة تمثیل شعاع القوة دری التحقیق التحقیق تمثیل شعاع التحقیق التحقیق تمثیل شعاع التحقیق التحقیق التحقیق تحقیق التحقیق الی
0,75	0,25	$\overline{F_{T_N}}$ سدة القوة $\overline{F_{T_N}}$
0,73	0,25×2	الأرض $F_{T/S} = \frac{GM_T m}{(R_T + h)^2} = 3,59 \times 10^6 \mathrm{N}$
		3. إيجاد عبارة السرعة:
		بتطبيق القانون الثاني لنيوتن
	0,25	$\sum \vec{\mathrm{F}} = m\vec{a}$
	0,25	$\overrightarrow{\mathbf{F}_{T/S}} = m\overrightarrow{a}$
1,25	0,25	$F_{T_S} = ma_n = m \frac{v^2}{(R_T + h)}$ بالإسقاط على الناظم
, -	0,25	$v = \sqrt{\frac{\mathrm{F}_{\mathrm{T/S}}}{m}.(R_T + h)}$
		حساب السرعة المدارية:
		$v = \sqrt{\frac{3,59 \times 10^6 (6,4 \times 10^6 + 0,4 \times 10^6)}{4,15 \times 10^5}}$
	0,25	$v = 7,67 \times 10^3 m \cdot s^{-1}$
		4. كتابة عبارة الدور:
	0,25	$T=rac{2\pi(R_{_T}+h)}{v}$
1	0,25	$T = 5.56 \times 10^3 s$: حساب الدور
1		عدد الدورات المنجزة في اليوم الواحد
	0,25×2	$N = \frac{24 \times 3600}{T} = \frac{24 \times 3600}{5,56 \times 10^3} = 15,5$ دورة

لة التفكك $I o {}^{131}_{53} I o {}^{A}_{Z} X + {}^{0}_{-1} e$ $0,25$ $A = 131$	5. 3.1.5 هو إلك
الة التفكك $\frac{131}{53}$ $I o \frac{A}{2}X + \frac{0}{1}e$ $A = 131$	
الة التفكك $\frac{131}{53}$ $I o \frac{A}{2}X + \frac{0}{1}e$ $A = 131$	حداد الأهو الك
$0,25$ $ \begin{array}{c} {}^{131}I \rightarrow {}^{A}_{Z}X + {}^{0}_{-1}e \\ A = 131 \end{array} $	
0,25 $A = 131$	2.5. كتابة معادل
Z = 54	
	النواة الناتجة هي
د الأنوية الابتدائية:	3.5. حساب عدد
$N_o = \frac{m_o}{M}.N_A$	
, 20 IVI	
$N_o = \frac{0.8}{131} \times 6,023 \times 10^{23}$	
$=3,68\times10^{21}$ noyaux	
	${\sf A}_0$ استنتاج
$A_o = \lambda . N_o$	
$A_o = \frac{ln2}{t_{1/2}}.N_o$	
$A_0 = 3,69 \times 10^{15} \mathrm{Bq}$	
	.4.5
	1.4.5. إثبات الع
$A(t_1) = A_0 e^{-\lambda t_1}$	
$\frac{A(t_I)}{A_0} = e^{-\lambda t_I}$	
$ \begin{array}{c c} ln \frac{A(t_1)}{A_0} = -\lambda t_1 \\ \end{array} $	
$ln\frac{A_0}{A(t_1)} = \frac{ln2}{t_{1/2}}t_1$	
$0,25 t_1 = \frac{t_{1/2}}{\ln 2} \ln \frac{A_0}{A(t_1)}$	
$A(t_1) = 0.2 \times A_0 \qquad \qquad t$	t ₁ حساب .2.4.5
$t_1 = \frac{8}{\ln 2} \times \ln 5$	
$\begin{array}{c c} ln2 \\ t_1 = 18,6 jours \end{array}$	

العا		/	- 11 71) N 91 10-		
مجزأة		التاني)	به (الموصوع	عناصر الإجا		
				(7	ن الثاني: (07 نقاه	التمرير
0.25×3	• Na ⁺ , HO ⁻	. CH,CO,-	ة المزيح التفاعل	يؤولة عن ناقلي	لأنواع الكيميائية المي	.1. 1.1.1
0,23 \ 3	,	·	-			
	$\lambda_{_{ m HO^{+}}} > \lambda_{_{ m CH_{2}C}}$		-			
0,5	,	2				
			(n_1) لابتدائية	انوات الايثيل ا	ساب كمية مادة ايث	3.1 د
0,25		$n_1 = \frac{\rho \cdot V_1}{M}$	ومنه: $m_1 = \mu$	$ ho \cdot V_{\scriptscriptstyle 1}$ أي: $ ho =$	$=\frac{m_1}{V_1}$ $\sigma_1=\frac{m_1}{M}$	
0.25					1	
0,23		00	4.1 ح			
0,25	المعادلة	$C_4H_8O_{2(I)}$	$+ HO^{-}_{(aa)} =$	$CH_3CO_2^{-}_{(aa)}$	'	
	ح.إ	n_1	C_0V_0	0	0	
	ح.و	$n_1 - x$	C_0V_0-x	X	x	-
0,25	ح.ن	$n_1 - x_f$	$C_0V_0-x_f$	x_f	x_f	
,						.2
0,25	110	·				2.1.2
	[Na']	30 L 30			$\int_{0}^{\infty} + \lambda_{\text{HO}} \cdot \left[\text{HO}^{-} \right]_{0}^{\infty}$	
0,25			216	-110		
0,25	$\sigma(t)$		•			2.2. 2
0.25		_		- (<i>i</i>)	2 – –(1)	
0,25		(*)	,	V		
0,25	$\sigma(t) = \lambda$,			ı
			$\sigma(t) = c_0(\lambda_{\mathrm{Na}^+})$	$+\lambda_{\text{HO}^-})+\frac{(\lambda_{\text{HO}})}{(\lambda_{\text{HO}})}$	$\frac{\left(\frac{1}{V} + \lambda_{\text{CH}_3\text{CO}_2}\right)}{V} \cdot x(t)$	
0,25	$\sigma(t) = \frac{(\lambda_{_{ m HO}}}{}$	$\frac{1}{1} + \lambda_{\text{CH}_3\text{CO}_2^{-1}}$	$x(t)+\sigma_0$:رمنه	$\sigma_0 = c_0(\lambda_{_{M_n+}})$	علما أن: (λ_{HO^-}	,
	رية 0,25×3 0,25 0,25 0,25 0,25 0,25 0,25 0,25	مجزأة $0,25 \times 3$. Na+, HO- $0,5$ $\lambda_{HO} > \lambda_{CH_3C}$ $0,25$	الثاني) مجزأة 0,25×3 . Na ⁺ , HO ⁻ , CH ₃ CO ₂ , and a construction of the product of	ر (الموضوع الثّاني) مجزأة ر (الموضوع الثّاني) مجزأة المزيج التفاعلي مع مرور الزمن: $ \lambda_{HO} > \lambda_{CH_3CO_2} $ عمر مرور الزمن التثبت في نهاية التحول عند قيمة مع مرور الزمن لتثبت في نهاية التحول عند قيمة المربية (n_1) $ \lambda_{HO} > \lambda_{CH_3CO_2} $ عن نهاية التحول عند قيمة (n_1) $ \lambda_{HO} > \lambda_{CH_3CO_2} $ المعادية (n_1) $ \lambda_{HO} > \lambda_{CH_3CO_2} $ المعادية المحادية المعادية المحادية المحادي	عناصر الإجابة (الموضوع الثّاني) (لا	عناصر الإجابة (الموضوع الثاني) (مجزاة الكني: (10 نقاط) (مجزاة الثاني: (10 نقاط) (مجزاة الثاني: (10 نقاط) (مجزاة الثاني: الثاني: المسؤولة عن ناقلية المزيج التقاعلي مع مرور الزمن: (من) (مجراة الثاني: المسؤولة النوعية (م) للمزيج التقاعلي مع مرور الزمن المثبت في نهاية التحول عند قيمة عند قيمة المولية النوعية (م) المزيج الثقاط) (مجرومة الثقاط: المولية النوعية (م) المزيج الثقاط: (م): (م): (م): (م): (م): (م): (م): (م)

العلامة		/ •1 ² **ti
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثّاني)
	0,5 0,5	: σ_f و σ_0 و σ_0 : 1.3 .1.3 . $\sigma_0=27,5m{ m S}\cdot m^{-1}$: لما $\sigma_0=27,5m{ m S}\cdot m^{-1}$: لما $\sigma_f=10m{ m S}\cdot m^{-1}$ ، بالإسقاط نجد : $\sigma_f=10m{ m S}\cdot m^{-1}$.
2,25	0,25	$c_0 = \frac{\sigma_0}{(\lambda_{\text{Na}^+} + \lambda_{\text{HO}^-})} : c_0 = \sigma_0 = c_0 (\lambda_{\text{Na}^+} + \lambda_{\text{HO}^-})$ $c_0 = \frac{27.5}{(5.0 + 20.0)} \Rightarrow c_0 = 1.1 \text{mol} \cdot \text{m}^{-3} = 1.1 \times 10^{-3} \text{mol} \cdot \text{L}^{-1}$
	0, 25 0, 25 0, 25	: تحديد المُتفاعل المُحد: $n_f(\mathrm{HO^-}) = c_0 V_0 - x_f = 1,1 \times 10^{-3} \times 200 - 0,22 = 0$ $n_f(\mathrm{C_4H_8O_2}) = n_1 - x_f = 10 - 0,22 \neq 0$ HO HO
0,5	0,25	4. $v_{V}(0) = 0$: خاطئة لأن في البداية تكون التصادمات الفعالة كثيرة وبالتالي السرعة الحجمية تكون أعظمية.
0,3	0,25	- $v_V(t_f)$ أعظمية: خاطئة لأن في نهاية التفاعل يكون المتفاعل المحد قد أستهلك كليا وبالتالي السرعة الحجمية تكون معدومة.
0,5	0,5	5. العامل الحركي: تراكيز المتفاعلات.
0,25	0,25	التمرين التجريبي: (07 نقاط) 1. يمكن اعتبار الوشيعة صافية بربط طرفيها بالأوم متر حيث يشير هذا الأخير إلى قيمة صغيرة.
0,5	0, 25 0, 25	$u_{\scriptscriptstyle K}=E$: القاطعة مفتوحة $u_{\scriptscriptstyle K}=0$ القاطعة مغلقة $u_{\scriptscriptstyle K}=0$

العلامة		/ a, = 0, \ ** 4
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0,25×4	$u_{R_2} \downarrow \begin{matrix} i \\ \\ \\ \\ \end{matrix} \begin{matrix} x_1 \\ \\ \\ \end{matrix} \begin{matrix} y_1 \\ \\ \\ \end{matrix} \begin{matrix} x_2 \\ \\ \end{matrix} \begin{matrix} x_1 \\ \\ \\ \end{matrix} \begin{matrix} x_2 \\ \\ \end{matrix} \begin{matrix} x_1 \\ \\ \end{matrix} \begin{matrix} x_2 \\ \\ \end{matrix} \begin{matrix} x_2 \\ \\ \end{matrix} \begin{matrix} x_3 \\ \\ \end{matrix} \begin{matrix} x_4 \\ \\ \end{matrix} \end{matrix} \begin{matrix} x_4 \\ \\ \end{matrix} \begin{matrix} x_4 \\ \\ \end{matrix} \end{matrix} \begin{matrix} x_4 \\ \\ \end{matrix} \begin{matrix} x_4 \\ \\ \end{matrix} \end{matrix} \begin{matrix} x_4 \\ \end{matrix} \begin{matrix} x_4 \\ \\ \end{matrix} \end{matrix} \begin{matrix} x_4 \\ \end{matrix} \begin{matrix} x_4 \\ \\ \end{matrix} \end{matrix} \begin{matrix} x_4 \\ \end{matrix} \end{matrix} \end{matrix} \begin{matrix} x_4 \\ \end{matrix} \end{matrix} \end{matrix} \begin{matrix} x_4 \\ \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} x_4 \\ \end{matrix} \end{matrix} \end{matrix} \begin{matrix} x_4 \\ \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} x_4 \\ \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} x_4 \\ \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} x_4 \\ \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} x_4 \\ \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} x_4 \\ \end{matrix} $
	0,25 0,25	: u_{R_1} المعادلة التفاضلية ل $u_{R_1}+u_{R_2}+u_L=E$ $u_{R_1}+R_2i+L\frac{di}{dt}=E$
4	0,25	$u_{R_1} + R_2 \frac{u_{R_1}}{R_1} + \frac{L}{R_1} \frac{du_{R_1}}{dt} = E$
	0,25	$\frac{du_{R_1}(t)}{dt} + \left(\frac{R_1 + R_2}{L}\right)u_{R_1}(t) = \frac{R_1}{L}E$
	0,25 0,25	3.3. المنحنى الذي يمثل $u_{R_1}(t)$ هو المنحنى (b) التعليل: $t=0, i=0 \Rightarrow u_{R_1}(t)$ الوشيعة تعرقل مرور التيار في النظام الانتقالي)
	0,25×2	$I_0 = \frac{u_{R_{\rm l_{max}}}}{R_{\rm l}} = \frac{6}{60} = 0.1A$: في النظام الدائم: $I_0 = \frac{u_{R_{\rm l_{max}}}}{R_{\rm l}} = \frac{6}{60} = 0.1A$
	$0,5 \times 2$	au=10 ms ، $E=10$ V (a) عن $ au: au$ و $ au: au$ من المنحنى $ au: au$
	0,25	$I_0=rac{E}{R_1+R_2}$ \Rightarrow $R_2=rac{E}{I_0}-R_1$: L و R_2
1	0,25	$R_2 = 40\Omega$
	0,25 0,25	$L = \tau(R_1 + R_2) = 0.01 \times 100$ L = 1H
0,5	0,25	5. التبرير : في النظام الدائم: $u_{y_1}=u_{R_1}(t)+u_L(t)=u_{R_1}=R_1I_0 \ ; u_L=0 \ : y_1$ على المدخل – على المدخل -
0,5	0,25	$u_{y_2} = u_{R_1}(t) = R_1 I_0$; y_2 على المدخل $u_{y_1} = u_{y_2}$ ومنه: $u_{y_1} = u_{y_2}$
0,25	0,25	وقت . $u_{y_1} - u_{y_2}$. تتصرف الوشيعة الصافية في النظام الدائم: (ب) سلك ناقل.
		7. الطاقة المخزنة في الوشيعة في النظام الدائم:
0,5	0,25	$E_L = \frac{1}{2}LI_0^2$
	0,25	$E_L = 5 \times 10^{-3} \mathrm{J}$