Exercice 1:

On note φ la fonction indicatrice d'Euler. $\varphi(n)=\#\{1\leq k\leq n\mid k\land n=1\}$

 $\varphi(n)$ est égal au nombre de nombre premiers avec n compris entre 1 et n

- 1) Soit $p \in \mathbb{P}$. Que vaut $\varphi(p)$
- 2) Soit $\alpha \in \mathbb{N}^*$, montrer que $\varphi(p^{\alpha}) = p^{\alpha} p$
- 3) Soit $n,m\in\mathbb{N}$, on admet que si $m\wedge n=1$ alors $\varphi(nm)=\varphi(n)\varphi(m)$ Soit $n=p_1^{\alpha_1}\times\ldots\times p_k^{\alpha_k}\in\mathbb{N}$. Donner la valeur de $\varphi(n)$.

Exercice 2:

- 1) Déterminer le nombre d'entiers inférieurs à 20 premiers avec 20.
- 2) Combien y-a-t-il d'éléments inversibles dans $\mathbb{Z}/20\mathbb{Z}$. On dit que ces éléments sont dans $(\mathbb{Z}/n\mathbb{Z})^*$
- 3) Déterminer le plus petit entier k strictement positif tel que $\overline{3}^k = \overline{1}$. Cet entier s'appelle l'ordre de $\overline{3}$ dans $(\mathbb{Z}/20\mathbb{Z})^*$.

Ps : Le théorème d'Euler montre que si $a\in\mathbb{Z}$ avec $a\land n=1$ alors $a^{\varphi(n)}\equiv 1$ [n] . Néanmoins rien n'assure qu'il s'agisse de la première puissance telle que $a^k\equiv 1[n]$