ESTRUCTURAS ALGEBRAICAS FaMAF-UNC – 2024

PRÁCTICO 5

Acciones de grupos.

- (1) Sean G grupo y $A \triangleleft G$, con A abeliano. Mostrar que G/A actúa sobre A por conjugación y obtener un homomorfismo $f: G/A \to \operatorname{Aut}(A)$.
- (2) Sea G grupo. Supongamos que un elemento a de G tiene exactamente dos conjugados. Probar que G contiene un subgrupo normal propio.
- (3) Sea H un subgrupo de un grupo G. Mostrar que $Z_G(H) \triangleleft N_G(H)$ y que $N_G(H)/Z_G(H)$ es isomorfo a un subgrupo de Aut(H).
- (4) En cada uno de los siguientes casos probar que \cdot es una acción del grupo G en el conjunto X. En cada ítem calcular la órbita y el estabilizador de cada elemento x de X. Además, determinar el conjunto $X^G := \{x \in X : g \cdot x = x \ \forall g \in G\}$.
 - (a) $G = \{f : \mathbb{R} \to \mathbb{R} : f(x) = ax + b, \ a \in \mathbb{R}^{\times}, \ b \in \mathbb{R}\}, \ X = \mathbb{R} \ y \ f \cdot x = f(x).$
 - (b) $G = \mathbb{R}^{\times}$, $X = \mathbb{R}_{>0}$ y $a \cdot x = x^a$.
 - (c) $G = \mathrm{SL}_2(\mathbb{Z}), X = \mathbb{Z} \times \mathbb{Z}$ y la acción dada por el producto de matrices.
- (5) Sea G un grupo actuando sobre un conjunto X y sea $N \triangleleft G$. Determinar una condición necesaria y suficiente para que exista una acción de G/N en X tal que $\overline{a} \cdot x = a \cdot x$, para todo $a \in G$ y $x \in X$.
- (6) Sea X un conjunto finito. Determinar el número de acciones de \mathbb{Z} sobre X.
- (7) Sean G grupo y $a \in G$, con $a \neq e_G$ y $|a| \neq 2$. Mostrar que G posee un automorfismo distinto de la identidad.
- (8) Sea G un grupo.
 - (a) Si |G| = m y p es el menor primo que divide a m, entonces todo subgrupo de índice p es normal.
 - (b) Si |G| = pn, con p primo y p > n, y H < G, con |H| = p, entonces $H \triangleleft G$.
 - (c) Si $|G| = p^k$, con p primo, y $N \triangleleft G$, con |N| = p, entonces $N \subseteq Z(G)$.

p-grupos y Teoremas de Sylow.

- (9) Si $N \triangleleft G$, y N y G/N son p-grupos, entonces G es un p-grupo.
- (10) ¿Es cierto que si G es un p-grupo entonces $|G| < \infty$?
- (11) Sean G un p-grupo finito y $H \triangleleft G$, con H no trivial. Probar que $H \cap Z(G) \neq \{e\}$.
- (12) Sean P un p-subgrupo de Sylow normal de un grupo finito G y $f: G \to G$ un homomorfismo. Probar que $f(P) \leq P$.
- (13) Sea G un grupo finito. Si cada p-subgrupo de Sylow de G es normal para cada primo p, entonces G es el producto de sus subgrupos de Sylow.
- (14) Si $|G| = p^n q$, con p > q primos, entonces G contiene un único subgrupo normal de índice q.

- (15) Cada grupo de orden 12, 28, 56 y 200 debe contener un subgrupo de Sylow normal, y, por lo tanto, no es simple.
- (16) ¿Cuántos elementos de orden 7 existen en un grupo simple de orden 168?
- (17) Caracterizar todos los grupos de orden p^2 .
- (18) Sea G un grupo de orden p^3 , con p primo.
 - (a) Si G posee más de un subgrupo normal de orden p, entonces G es abeliano y no cíclico.
 - (b) Si G no es abeliano, entonces |Z(G)| = p.
 - (c) Probar que Z(G) = [G, G].
 - (d) Calcular el conmutador [G, G], siendo $G = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}, a, b, c \in \mathbb{Z}_p \right\}.$
- (19) Calcular todos los p-subgrupos de Sylow de:

$$\mathbb{Z}_{12}$$
, $\mathbb{Z}_{21} \oplus \mathbb{Z}_{15}$, $\mathbb{S}_3 \times \mathbb{Z}_3$, $\mathbb{S}_3 \times \mathbb{S}_3$.

- (20) Sean p y q primos. Probar que ningún grupo G de orden p^2q es simple.
- (21) Probar que no existen grupos simples de los siguientes órdenes: 30, 36, 56, 96.
- (22) Sea G un grupo, |G| = pq, p > q primos tales que q no divide a p 1. Probar que G es cíclico.

EJERCICIOS ADICIONALES

- (23) Sean G grupo y $K \leq G$. Mostrar que
 - (a) $K \triangleleft N_G(K)$.
 - (b) $K \triangleleft G$ si y sólo si $N_G(K) = G$.
- (24) Sea G un grupo tal que |G| = 2n, G tiene n elementos de orden 2 y los restantes elementos forman un subgrupo H. Probar que n es impar y que $H \triangleleft G$.
- (25) Determinar si existe un grupo K tal que G sea el producto semidirecto $N \rtimes K$ en cada uno de los siguientes casos.
 - (a) $G = \mathbb{G}_{12} \text{ y } N = \mathbb{G}_3.$
 - (b) $G = \mathbb{C} \text{ y } N = \mathbb{R}.$
 - (c) $G = \mathbb{S}_4 \text{ y } N = \{1, (12)(34), (13)(24), (14)(23)\}.$
- (26) Sea G un p-grupo infinito. Probar que vale una de las siguientes dos condiciones:
 - (a) G tiene un subgrupo de orden p^n , para cada $n \in \mathbb{N}$.
 - (b) Existe $m \in \mathbb{N}$ tal que cada subgrupo finito tiene orden $\leq p^m$.
- (27) Probar que no existen grupos simples de los siguientes órdenes: 200, 204, 260, 2540.