

Lógica Fuzzy com Python

de Rafael Noboro Tominaga

Projeto do Edital 02/2018/PROPPI/PROEX Câmpus Florianópolis : Programa de Integração da Pesquisa e Extensão ao Ensino do Câmpus Florianópolis

Apresentação disponível em github.com/PECCE-IFSC

Oficina SNCT 2019

Sumário

- Introdução
- Exemplo do Chuveiro
- Comparação com Lógica Booleana
- Processos da Lógica Fuzzy
- Implementação em Python
- Outras Aplicações

Precisão x Relevância

Precisão x Relevância

Definição

Lógica Difusa

COMPUTAÇÃO CIENTÍFICA APLICADA

- Lógica multivalorada
- Emula a capacidade cognitiva humana

Sumário

- Introdução
- Exemplo do Chuveiro
- Comparação com Lógica Booleana
- Processos da Lógica Fuzzy
- Implementação em Python
- Outras Aplicações

Quando tomamos banho

- Você é um controlador fuzzy!
- Variáveis de entrada:
 - Temperatura da água
 - Fluxo da água
- Variáveis de saída:
 - Regulador de temperatura
 - Válvula de fluxo

Temperatura

Temperatura

Frio

Temperatura

Temperatura

Menos Quente

Temperatura

Pouquinho Menos Quente

Temperatura

Perfeito!

Sumário

- Introdução
- Exemplo do Chuveiro
- Comparação com Lógica Booleana
- Processos da Lógica Fuzzy
- Implementação em Python
- Outras Aplicações

Água está fria?

Lógica Booleana

- {0,1}
- Sim (1);
- Não (0).

Lógica Fuzzy

- $\{x \in R \mid 0 \le x \le 1\}$
- Definitivamente frio (1);
- Muito frio (0,75);
- Medianamente frio (0,5);
- Pouco frio (0,25);
- Nem um pouco Frio (0).

Água está fria?

Lógica Booleana

Estados definidos

Lógica Fuzzy

Graus de pertinência

Fria

Morna

Quente

Lógica Booleana

Fria

Morna

Quente

Lógica Fuzzy

Fria

Morna

Quente

COMPUTAÇÃO CIENTÍFICA APLICADA

Fria, morna ou quente?

Lógica Booleana

Lógica Booleana

Lógica Fuzzy


```
def boolean(temperatura):
  if temperatura <= 15:
    frio = 1
    morno = 0
    quente = 0
  else:
    if temperatura <= 25:
      frio = 0
      morno = 1
      quente = 0
    else:
      frio = 0
      morno = 0
      quente = 1
  return [frio, morno, quente]
```


COMPUTAÇÃO CIENTÍFICA APLICADA

Fria, morna ou quente?

```
def fuzzy(temperatura):
                                                               #quente
                              #morno
                              if temperatura <=10:
                                                               if temperatura <= 20:
                                morno = 0
                                                                 quente = 0
#frio
                              else:
                                                               else:
if temperatura <= 10:
                                                                 if temperatura <= 30:
                                if temperatura <= 20:
  frio = 1
                                  morno = 0.1*temperatura-1
                                                                   quente = 0.1*temperatura-2
else:
                                else:
                                                                 else:
  if temperatura <= 20:
                                  if temperatura <= 30:
                                                                   quente = 1
    frio = -0.1*temperatura+2
                                    morno = -0.1*temperatura+3
  else:
                                  else:
                                                               return [frio, morno, quente]
    frio = 0
                                    morno = 0
```


Boolean(9) = [1, 0, 0]

Fuzzy(9) = [1, 0, 0]

Boolean(14) = [1, 0, 0]

Fuzzy(14) = [0.6, 0.4, 0]

Boolean(19) = [0, 1, 0]

Fuzzy(19) = [0.1, 0.9, 0]

Sumário

- Introdução
- Exemplo do Chuveiro
- Comparação com Lógica Booleana
- Processos da Lógica Fuzzy
- Implementação em Python
- Outras Aplicações

COMPUTAÇÃO CIENTÍFICA APLICADA

Processos da Lógica Fuzzy

Temperatura da água

Regras Nebulosas

- Se a água estiver MUITO fria:
 - Aumentar MUITO a potência do chuveiro
 - Se a água estiver fria:
 - Aumentar um POUCO a potência do chuveiro
- Se a água estiver morna:
 - Não efetuar ação
- Se a água estiver quente:
 - Diminuir um POUCO a potência do chuveiro
- Se a água estiver MUITO quente:
 - Diminuir MUITO a potência do chuveiro

COMPUTAÇÃO CIENTÍFICA APLICADA

Temperatura da água

Sumário

- Introdução
- Exemplo do Chuveiro
- Comparação com Lógica Booleana
- Processos da Lógica Fuzzy
- Implementação em Python
- Outras Aplicações

Importando os Módulos

!pip install networkx==1.9.0 --force-reinstall
!pip install scikit-fuzzy
import numpy as np
import skfuzzy as fuzz
from skfuzzy import control as ctrl

Importando os Módulos

!pip install networkx==1.9.0 --force-reinstall
!pip install scikit-fuzzy
import numpy as np
import skfuzzy as fuzz
from skfuzzy import control as ctrl

Definindo as Variáveis Fuzzy

```
flow = ctrl.Antecedent(np.arange(0, 20.1, 0.1), 'flow')
temperature = ctrl.Antecedent(np.arange(10, 50.1, 0.1), 'temperature')
water = ctrl.Consequent(np.arange(0, 10.1, 0.1), 'water')
```


Definindo as Variáveis Fuzzy

```
flow = ctrl.Antecedent(np.arange(0, 20.1, 0.1), 'flow')
temperature = ctrl.Antecedent(np.arange(10, 50.1, 0.1), 'temperature')
water = ctrl.Consequent(np.arange(0, 10.1, 0.1), 'water')
```

ctrl.antecedent → Entrada Fuzzy
ctrl.consequent → Saída Fuzzy

Definindo as Variáveis Fuzzy

```
flow = ctrl.Antecedent(np.arange(0, 20.1, 0.1), 'flow')
temperature = ctrl.Antecedent(np.arange(10, 50.1, 0.1), 'temperature')
water = ctrl.Consequent(np.arange(0, 10.1, 0.1), 'water')
```

```
np.arange(0, 12, 2) = [0, 2, 4, 6, 8, 10]

Início do intervalo

Final do intervalo

Espaçamento entre valores
```


Definindo as Variáveis Fuzzy

flow = ctrl.Antecedent(np.arange(0, 20.1, 0.1), 'flow')
temperature = ctrl.Antecedent(np.arange(10, 50.1, 0.1), 'temperature')
water = ctrl.Consequent(np.arange(0, 10.1, 0.1), 'water')

Variável	Vazão (I/min)	Temperatura (°C)	Água (nota)
Mínimo	0	10	0
Máximo	20	50	10


```
flow['low'] = fuzz.trimf(flow.universe, [0, 0, 10])
flow['medium'] = fuzz.trimf(flow.universe, [0, 10, 20])
flow['high'] = fuzz.trimf(flow.universe, [10, 20, 20])
```



```
flow['low'] = fuzz.trimf(flow.universe, [0, 0, 10])
flow['medium'] = fuzz.trimf(flow.universe, [0, 10, 20])
flow['high'] = fuzz.trimf(flow.universe, [10, 20, 20])
```

fuzz.trimf → Criar um Conjunto Fuzzy triangular


```
flow['low'] = fuzz.trimf(flow.universe, [0, 0, 10])
flow['medium'] = fuzz.trimf(flow.universe, [0, 10, 20])
flow['high'] = fuzz.trimf(flow.universe, [10, 20, 20])
```

	Vazão (I/min)	Valor Mínimo	Valor Máximo	Valor Mínimo
	Baixa	0	0	10
	Média	0	10	20
1	Alta	10	20	20

temperature['cold'] = fuzz.trapmf(temperature.universe, [10, 10, 15, 22.5])
temperature['normal'] = fuzz.trapmf(temperature.universe, [15, 22.5, 27.5, 35])
temperature['hot'] = fuzz.trapmf(temperature.universe, [27.5, 35, 50, 50])

temperature['cold'] = fuzz.trapmf(temperature.universe, [10, 10, 15, 22.5])
temperature['normal'] = fuzz.trapmf(temperature.universe, [15, 22.5, 27.5, 35])
temperature['hot'] = fuzz.trapmf(temperature.universe, [27.5, 35, 50, 50])

fuzz.trapmf → Criar um Conjunto Fuzzy trapezoidal

temperature['cold'] = fuzz.trapmf(temperature.universe, [10, 10, 15, 22.5])
temperature['normal'] = fuzz.trapmf(temperature.universe, [15, 22.5, 27.5, 35])
temperature['hot'] = fuzz.trapmf(temperature.universe, [27.5, 35, 50, 50])

	Temperatura (°				
	C)	Valor Mínimo	Valor Máximo	Valor Máximo	Valor Mínimo
	Fria	10	10	15	22,5
1	Normal	15	22,5	27,5	35
J	Quente	27,5	35	50	50


```
water['Bad'] = fuzz.gaussmf(water.universe, 0, 1.5)
water['Good'] = fuzz.gaussmf(water.universe, 5, 1.5)
water['Great'] = fuzz.gaussmf(water.universe, 10, 1.5)
```



```
water['Bad'] = fuzz.gaussmf(water.universe, 0, 1.5)
water['Good'] = fuzz.gaussmf(water.universe, 5, 1.5)
water['Great'] = fuzz.gaussmf(water.universe, 10, 1.5)
```

fuzz.gaussmf → Criar um Conjunto Fuzzy gaussiano


```
water['Bad'] = fuzz.gaussmf(water.universe, 0, 1.5)
water['Good'] = fuzz.gaussmf(water.universe, 5, 1.5)
```

water['Great'] = fuzz.gaussmf(water.universe, 10, 1.5)

Água (nota)	Média	Sigma
Ruim	0	1,5
Boa	5	1,5
Ótimo	10	1,5


```
flow.view()
temperature.view()
water.view()
```


flow.view() temperature.view() water.view() 1.0 0.8 Membership 0.4 low medium high 0.2 0.0 17.5 2.5 5.0 7.5 10.0 12.5 15.0 20.0 0.0

flow.view() temperature.view() water.view() 1.0 cold normal hot 0.8 0.2 0.0 25 15 20 30 50 10 35

temperature

flow.view() temperature.view() water.view() 0.8 Membership Bad Good Great 0.2 0.0

water


```
rule1 = ctrl.Rule(flow['low'] & temperature['cold'], water['Bad'])
rule2 = ctrl.Rule(flow['low'] & temperature['normal'], water['Good'])
rule3 = ctrl.Rule(flow['low'] & temperature['hot'], water['Bad'])
rule4 = ctrl.Rule(flow['medium'] & temperature['cold'], water['Good'])
rule5 = ctrl.Rule(flow['medium'] & temperature['normal'], water['Great'])
rule6 = ctrl.Rule(flow['medium'] & temperature['hot'], water['Good'])
rule7 = ctrl.Rule(flow['high'] & temperature['cold'], water['Bad'])
rule8 = ctrl.Rule(flow['high'] & temperature['normal'], water['Good']) # modo ECO
rule9 = ctrl.Rule(flow['high'] & temperature['hot'], water['Bad'])
```


Variável	Vazão	Temperatura	Água
Regra 1	Baixa	Fria	Ruim
Regra 2	Baixa	Normal	Воа
Regra 3	Baixa	Quente	Ruim
Regra 4	Média	Fria	Воа
Regra 5	Média	Normal	Ótima
Regra 6	Média	Quente	Воа
Regra 7	Alta	Fria	Ruim
Regra 8	Alta	Normal	Воа
Regra 9	Alta	Quente	Ruim

shower_ctrl = ctrl.ControlSystem([rule1, rule2, rule3, rule4, rule5, rule6, rule7, rule8, rule9])

shower = ctrl.ControlSystemSimulation(shower_ctrl)

shower_ctrl = ctrl.ControlSystem([rule1, rule2, rule3, rule4, rule5, rule6, rule7, rule8, rule9])

shower = ctrl.ControlSystemSimulation(shower_ctrl)


```
shower.input['flow'] = 8
shower.input['temperature'] = 22
shower.compute()
print(shower.output['water'])
```



```
shower.input['flow'] = 8
shower.input['temperature'] = 22
shower.compute()
print(shower.output['water'])
```


flow.view(sim=shower)
temperature.view(sim=shower)
water.view(sim=shower)

flow.view(sim=shower)

temperature.view(sim=shower)

water.view(sim=shower)

flow.view(sim=shower)

temperature.view(sim=shower)

water.view(sim=shower)

Sumário

- Introdução
- Exemplo do Chuveiro
- Comparação com Lógica Booleana
- Processos da Lógica Fuzzy
- Implementação em Python
- Outras Aplicações

Controle em Tanque para criação de Camarões

Wardhany, V. A; et al. Fuzzy Logic Based **Control System Temperature, pH and Water** Salinity on Vanammei Shrimp Ponds. IEEE: 2018. Disponível em:

https://ieeexplore.ieee.org/document/86154 64>. Acesso em 08 jul 2019.

Controle em Tanque para criação de Camarões

INSTITUTO FEDERAL

Santa Catarina

COMPUTAÇÃO CIENTÍFICA APLICADA

Controle em Tanque para criação de Camarões

Rule	Pin Spool Rule			
Number	Temperature	pН	Pin Spool	
Rule 0	\leq 24 0 C	6,5 – 8,5	ON	
Rule 1	$25^{\circ} - 31 {}^{\circ}\text{C}$	6,5 – 8,5	OFF	
Rule 2	\geq 32 $^{0}\mathrm{C}$	6,5 – 8,5	ON	
Rule 3	\leq 24 0 C	< 6,5	ON	
Rule 4	$25^{0} - 31$ 0 C	< 6,5	ON	
Rule 5	\geq 32 $^{0}\mathrm{C}$	< 6,5	ON	

Controle de Tráfego

Patil, R; Srinivasaraghavan, A. Smart traffic controller using fuzzy inference
 system(STCFIS). IEEE: 2016. Disponível em:

https://ieeexplore.ieee.org/document/78774

37>. Acesso em 08 jul 2019.

Controle de Tráfego

Controle de Tráfego

Fig.11. Membership Function for Input and Output

Fig.12. Fuzzy Rules

Lógica Fuzzy com Python

Email: rafael.noboro@gmail.com

http://sites.florianopolis.ifsc.edu.br/pecce/

Projeto do Edital 02/2018/PROPPI/PROEX Câmpus Florianópolis : Programa de Integração da Pesquisa e Extensão ao Ensino do Câmpus Florianópolis

