Group A

Course : Laboratory Practice V

Assignment No: 3

Start I	Date of C	ompletion:	
Title o	of the Assignment: Implement Min, Max, Sum and Average	operations using Parallel	
Reduc	action.		
Objec	ective of the Assignment: To understand the concept of paralle	el reduction and how it can be used	
to perf	rform basic mathematical operations on given data sets.		
Prere	equisite:		
1.	Parallel computing architectures		
2.	Parallel programming models		
3.	Proficiency in programming languages		
	tents for Theory:		
1.	What is parallel reduction and its usefulness for mathematic	at is parallel reduction and its usefulness for mathematical operations on large data?	
2.	Concept of OpenMP		
3.	How do parallel reduction algorithms for Min, Max, Sum, and Average work, and what are their advantages and limitations?		

Parallel Reduction.

Here's a **function-wise manual** on how to understand and run the sample C++ program that demonstrates how to implement Min, Max, Sum, and Average operations using parallel reduction.

1. Min_Reduction function

• The function takes in a vector of integers as input and finds the minimum value in the vector using parallel reduction.

Course: Laboratory Practice V

- The OpenMP reduction clause is used with the "min" operator to find the minimum value across all threads.
- The minimum value found by each thread is reduced to the overall minimum value of the entire array.
- The final minimum value is printed to the console.

2. Max Reduction function

- The function takes in a vector of integers as input and finds the maximum value in the vector using parallel reduction.
- The OpenMP reduction clause is used with the "max" operator to find the maximum value across all threads.
- The maximum value found by each thread is reduced to the overall maximum value of the entire array.
- The final maximum value is printed to the console.

3. Sum_Reduction function

- The function takes in a vector of integers as input and finds the sum of all the values in the vector using parallel reduction.
- The OpenMP reduction clause is used with the "+" operator to find the sum across all threads.
- The sum found by each thread is reduced to the overall sum of the entire array.
- The final sum is printed to the console.

4. Average_Reduction function

- The function takes in a vector of integers as input and finds the average of all the values in the vector using parallel reduction.
- The OpenMP reduction clause is used with the "+" operator to find the sum across all threads.

- The sum found by each thread is reduced to the overall sum of the entire array.
- The final sum is divided by the size of the array to find the average.
- The final average value is printed to the console.

5. Main Function

- The function initializes a vector of integers with some values.
- The function calls the min_reduction, max_reduction, sum_reduction, and average_reduction functions on the input vector to find the corresponding values.
- The final minimum, maximum, sum, and average values are printed to the console.

6. Compiling and running the program

Compile the program: You need to use a C++ compiler that supports OpenMP, such as g++ or clang. Open a terminal and navigate to the directory where your program is saved. Then, compile the program using the following command:

\$ g++ -fopenmp program.cpp -o program

This command compiles your program and creates an executable file named "program". The "-fopenmp" flag tells the compiler to enable OpenMP.

Run the program: To run the program, simply type the name of the executable file in the terminal and press Enter:

\$./program

Conclusion: We have implemented the Min, Max, Sum, and Average operations using parallel reduction in C++ with OpenMP. Parallel reduction is a powerful technique that allows us to perform these operations on large arrays more efficiently by dividing the work among multiple threads running in parallel. We presented a code example that demonstrates the implementation of these operations using parallel reduction in C++ with OpenMP. We also provided a manual for running OpenMP programs on the Ubuntu platform.

Assignment Question

- 1. What are the benefits of using parallel reduction for basic operations on large arrays?
- 2. How does OpenMP's "reduction" clause work in parallel reduction?
- 3. How do you set up a C++ program for parallel computation with OpenMP?
- 4. What are the performance characteristics of parallel reduction, and how do they vary based on input size?
- 5. How can you modify the provided code example for more complex operations using parallel reduction?