$\rm MA_{557}$ Problem Set 1

Carlos Salinas

September 9, 2015

Problem 1.1

Show that rad(R[X]) = nil(R[X]).

Proof. We will first prove the following results (which can be found in Dummit and Foote, §7.3, p. 33):

Lemma 1. Let $f = a_n X^n + \dots + a_0 \in R[X]$. Then

- (a) f is nilpotent in R[X] if and only if $a_0, a_1, ..., a_n$ are nilpotent elements of R;
- (b) f is a unit in R[X] if and only if a_0 is a unit and $a_1, ..., a_n$ are nilpotent in R.

 $\begin{array}{ll} \textit{Proof of lemma.} \ \ (\textbf{a}) \ \Longleftrightarrow : \ \text{Suppose that} \ a_0,...,a_n \ \text{ are nilpotent.} \ \text{Then} \ a_0,...,a_n \in \text{nil}(R), \ \text{hence} \ f \in \text{nil}(R) \subset \text{nil}(R[X]). \ \Longrightarrow : \ \text{Conversely, if} \ f^k = 0 \ \text{for some positive integer} \ k, \ \text{then} \ (a_n X^n)^k = 0, \ \text{so} \ a_n x^n \in \text{nil}(R[X]) \ \text{so} \ f - a_n X^n \in \text{nil}(R[X]), \ \text{in particular} \ a_n \in \text{nil}(R[X]). \ \text{By induction on} \ n, \ a_0,...,a_n \in \text{nil}(R[X]). \end{array}$

(b) \Leftarrow : Suppose a_0 is unit and $a_1,...,a_n$ are nilpotent. Then, by (a), $f-a_0=a_nX^n+\cdots+a_1X$ is nilpotent so $f-a_0\in \operatorname{rad}(R[X])$. By Proposition 1.13, f is a unit. \Longrightarrow : On the other hand, if f is a unit, there exist $g=b_mX^m+\cdots+b_0$ in R[X] with fg=1. Now, let $\mathfrak p$ be an arbitrary prime ideal. Since f is a unit in $R[X], \bar f=\bar a_nX^n+\cdots+\bar a_0$ is a unit in $R[X]/\mathfrak p$. But since $R[X]/\mathfrak p$ is an integral domain and $\bar f$ is a unit, $\deg \bar f=0$ so $\bar a_i=0$ for every $i\in\{1,...,n\}$. Since $\mathfrak p$ was chosen arbitrarily,

By definition $\operatorname{rad}(R)$ is the intersection of every maximal (hence prime) ideal of R so, by Theorem 1.12, $\operatorname{rad}(R) \supset \operatorname{nil}(R)$. To see the reverse containment let $f = a_n X^n + \dots + a_0$ be in $\operatorname{rad}(R[X])$. By Proposition 1.13, 1+fg is a unit for every $g \in R[X]$. In particular, 1+fX is a unit, so by Lemma 1(b), a_0, \dots, a_n are nilpotent so $f \in \operatorname{nil}(R[X])$. (Alternatively, one can look at R[X] as a subring of R[X] and note that since 1-f is invertible and $(1-f)^{-1} = \sum f^k$ in the power series ring, $f^n = 0$ for some n since $(1-f)^{-1} \in R[X]$. That is, f is nilpotent.)

Problem 1.2

Let I and J be R-ideals. Show that

$$\sqrt{IJ} = \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}.$$

Proof. $\sqrt{IJ} = \sqrt{I \cap J}$: By contradiction, suppose that there exists some prime ideal $\mathfrak{p} \supset IJ$, but $\mathfrak{p} \not\supset I \cap J$. Then there exists some element $x \in I \cap J$ with $x \notin \mathfrak{p}$. However, $x^2 \in IJ$. This contradicts the primality of \mathfrak{p} . Hence, if \mathfrak{p} is a prime ideal containing IJ, it must also contain $I \cap J$ so $\sqrt{IJ} = \sqrt{I \cap J}$.

 $\sqrt{IJ} = \sqrt{I} \cap \sqrt{J} \text{: Let } x \in \sqrt{I} \cap \sqrt{J} \text{. Then } x^n \in I \text{ for some } n > 0 \text{ and } x^m \in J \text{ for some } m > 0.$ Then $x^{n+m} \in IJ$ so $x \in \sqrt{IJ}$. Hence $\sqrt{IJ} \supset \sqrt{I} \cap \sqrt{J}$. To see the reverse containment note that, by above, since $\sqrt{IJ} = \sqrt{I \cap J}$, then $x \in \sqrt{IJ}$ implies $x^n \in J$ an $x^n \in J$ for some n > 0, hence $x \in \sqrt{I} \cap \sqrt{J}$ so $\sqrt{IJ} = \sqrt{I} \cap \sqrt{J}$.

By transitivity of "=", it follows that $\sqrt{IJ} = \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$.

Problem 1.3

Let S be a subset of a ring R. Show that the following are equivalent:

- (i) $R \setminus S$ is a union of prime ideals.
- (ii) $1 \in S$, and for any elements x, y of $R, x \in S$ and $y \in S$ if and only if $xy \in S$.

Proof. (ii) \implies (i): Suppose that S is a saturated multiplicative subset of R. Then $S \supset R^{\times}$ so every element of $R \setminus S$ is a non-unit. By Corollary 1.5, for every $x \in R \setminus S$, there exists a maximal ideal $\mathfrak{m} \supset (x)$. Hence

$$R \smallsetminus S = \bigcup_{\mathfrak{m} \supset (x)} \mathfrak{m},$$

in particular $R \setminus S$ is a union of prime ideals.

(i) \implies (ii): Suppose that $R \setminus S$ is a union of prime ideals. Then, it is clear that $R^{\times} \subset S$ so $1 \in S$. Now $x, y \in S$ if and only if $x, y \notin R \setminus S$ if and only if $xy \notin \mathfrak{p}$ for some prime ideal $\mathfrak{p} \subset R \setminus S$. Hence, S is a saturated multiplicative subset of R, i.e., satisfies the conditions given in (ii).

 MA_{557} Problem Set 1

3

Problem 1.4

Show that the set of all zero divisors in a ring is a union of prime ideals.

Proof. By Problem 1.3, it suffices to show that the complement of the set of all zero-divisors, call it Z, of a ring R is a saturated multiplicative subset. It is clear that $R \setminus Z \supset R^{\times}$ (since, if $u \in R^{\times}$, ub = 0 if and only if b = 0: \implies is easily seen since $u^{-1}ub = 1 \cdot b = 0$ so b = 0; the converse is immediate). Now, xy in R is a zero-divisor if and only if x or y are zero-divisors, hence (by taking the negation of this statement) $xy \in R \setminus Z$ implies $x, y \in R \setminus Z$. Thus, $R \setminus Z$ is a saturated multiplicative subset of R.

 MA_{557} Problem Set 1

Problem 1.5

Let $\varphi \colon R \to S$ be a surjective homomorphism of rings.

- (a) Show that $\varphi(\operatorname{rad}(R)) \subset \operatorname{rad}(S)$, but that equality does not hold in general.
- (b) Show that $\varphi(\operatorname{rad}(R)) = \operatorname{rad}(S)$ if R is semilocal.

Proof. (a) The containment $\varphi(\operatorname{rad}(R)) \subset \operatorname{rad}(S)$ follows easily from Proposition 1.13: $x \in \operatorname{rad}(R)$ if and only if 1 + xy is a unit for every $y \in R$. Then

$$\varphi(1+xy) = \varphi(1) + \varphi(xy)$$
$$= \varphi(1) + \varphi(x)\varphi(y)$$
$$= 1 + \varphi(x)\varphi(y).$$

Since φ is surjective, $1 + \varphi(x)s$ is a unit for every $s \in S$ so $\varphi(x) \in rad(S)$.

To see that equality does not hold in general, take R to be \mathbf{Z} and S to be $\mathbf{Z}/(6)$. Then the canonical projection $\pi\colon R\to S$ is a surjection. Since R is a domain, $\mathrm{rad}(R)=0$, but $\mathrm{rad}(S)=3S\cap 2S\neq 0=\varphi(0)=\varphi(\mathrm{rad}(R))$.

(b) By part (a) we have that $\varphi(\operatorname{rad}(R)) \subset \operatorname{rad}(S)$ so we need only show the reverse containment. Now, suppose R is semilocal with maximal ideals $\mathfrak{m}_1, ..., \mathfrak{m}_n$. Then, by Corollary 1.15, $\operatorname{rad}(R) = \bigcap_{i=1}^n = \mathfrak{m}_1 \cdots \mathfrak{m}_n$. Now, by the Homeomorphism Theorem, $S \cong R/\ker \varphi$ so, by Proposition 1.2, the maximal ideals of S are in one-one correspondence with the maximal ideals of R that contain $\ker \varphi$. Assuming $S \neq 0$, $\ker \varphi \neq R$ so, by Corollary 1.5, at least one of the maximal ideals $\mathfrak{m}_i \supset \ker \varphi$. Without loss of generality, assume the first k maximal ideals $\mathfrak{m}_1, ..., \mathfrak{m}_k$ contain $\ker \varphi$ and the last $\mathfrak{m}_{k+1}, ..., \mathfrak{m}_n$ do not. Since $\ker \varphi \not\subset \mathfrak{m}_i$ for $k+1 \leq i \leq n$, $\ker \varphi + \mathfrak{m}_i = R$, i.e., $\ker \varphi$ and \mathfrak{m}_i are comaximal, so there exits elements $y \in \ker \varphi$ and $x_i \in \mathfrak{m}_i$ such that $y + x_i = 1$. Then

$$\begin{split} \varphi(\operatorname{rad}(R)) &= \varphi\big(\mathfrak{m}_1 \cdots \mathfrak{m}_k \mathfrak{m}_{k+1} \cdots \mathfrak{m}_n\big) \\ &= \mathfrak{n}_1 \cdots \mathfrak{n}_k \varphi\big(\mathfrak{m}_{k+1} \cdots \mathfrak{m}_n\big) \\ &= \mathfrak{n}_1 \cdots \mathfrak{n}_k R \\ &= \mathfrak{n}_1 \cdots \mathfrak{n}_k \end{split}$$

MA557 Problem Set 1

Problem 1.6

An element $e \in R$ is called *idempotent* if $e^2 = e$. Show that in a local ring, 0 and 1 are the only idempotents.

Proof. Suppose R is a local ring with maximal ideal \mathfrak{m} . Suppose, by contradiction, that there exists some $e \in R$, $e \neq 0$ or 1, with $e^2 = e$. Then $e^2 - e = e(e-1) = 0$ so e and e-1 are zero-divisors, in particular, e and e-1 are non-units and hence contained in the maximal ideal \mathfrak{m} . But then $e-(e-1)=1 \in \mathfrak{m}$. This contradicts the maximality of \mathfrak{m} .

Problem 1.7

Let I be an R-ideal. Show that I is finitely generated and $I^2 = I$ if and only if I = Re with e idempotent.

Proof. The direction \Leftarrow (that is I=(e) with e idempotent) is immediate by the definition of the product of ideals (namely $I^2 \subset I$, but, since $e^2=e, e \in I^2$ so $I^2 \supset I$).

 \implies Conversely, by Nakayama's lemma (Theorem 2.2), if we view I as a finitely generated R-module, then $I=I^2$ if and only if xI=0 for some $x\in 1+I$. First, note that 1-x is idempotent since

$$(1-x)(1-x) = 1-x.$$

Now, for any element $y \in I$, we have

$$(1-x)y = y - xy = y.$$

This implies that any element of I is of the form (1-x)z for $z \in R$. This gives the inclusion $I \subset (1-x)$. Thus, since $I \supset (1-x)$, we have that I = (1-x).

MA557 Problem Set 1