ГЕОМЕТРИЯ

- I. Безкрайни елементи в равнината и пространството. Линейни трансформации. Централно проектиране.
- 1 зад. В разширената евклидова равнина E_2^* са дадени точките: A(0,2,3) и B(-1,1,2). Да се намери общо уравнение на правата AB и координатите на безкрайната точка на тази права.
- 2 зад. В разширената евклидова равнина E_2^* са дадени точките:
 - M(-1,0,2), N(2,1,-1), P(0,1,2)и Q(2,0,1). Да се намери общо уравнение на правата ${\bf g}$, определена от точките M и N. Да се намерят координатите на безкрайната точка ${\bf U}$ на правата ${\bf P}{\bf Q}$. Да се намери аналитично представяне на централно проектиране ${\bf \psi}$ на E_2^* върху правата ${\bf g}$ с център точката ${\bf U}$. За получената матрица да се проверят свойствата на централно проектиране.
- 3 зад. В разширената евклидова равнина E_2^* са дадени точките: A(1,0,0), B(0,1,0), E(1,-1,1)и O(0,0,1). Да се намери аналитично представяне на линейната трансформация ϕ на E_2^* под действие, на която точките A, B, E и O се изобразяват съответно в B, A, O и E. Да се определят неподвижните точки и прави на ϕ .
- 4 зад. В разширената евклидова равнина E_2^* са дадени точките O(0,0,1) и P(0,-4,1), и правата g:y+2t=0. Да се намери аналитично представяне на линейната трансформация ϕ на E_2^* под действие, на която правата g е поточково неподвижна, т.O се изобразява в т.P, а т.P се изобразява в т.O.
- 5 зад. В разширеното евклидово пространство E_3^* са дадени точките: A(4,3,2,1) и B(1,2,3,2). Да се намерят координатни параметрични уравнения на правата AB и координатите на безкрайната точка на тази права.
- 6 зад. В разширеното евклидово пространство E_3^* са дадени точките M(1,2,5,1), N(2,1,1,1)и P(3,2,5,3). Да се намери общо уравнение на равнината α , определена от точките M, N и P. Да се намерят координатни параметрични уравнения на безкрайната права на равнината α .
- 7 зад. В разширеното евклидово пространство E_3^* да се намерят координатите на общите безкрайни точки на равнините:
 - a) $\alpha: 2x 3z + t = 0$ и $\beta: 3x + 2y 2t = 0$;
 - b) $\alpha: x 2y + 2z 3t = 0$ и $\beta: -2x + 4y 4z + t = 0$.
- 8 зад. В разширеното евклидово пространство E_3^* са дадени точка P(3,2,1,1) равнините:

$$\pi$$
: $y - 2z + 5t = 0$, β : $x + 3y - z + 2t = 0$ и γ : $2x + 2z - 3t = 0$. Да се намерят:

- a) Общо уравнение на равнината a, която минава през точката P и през безкрайната права на равнината π ;
- b) Координатите на общата безкрайна точка U на равнините β и γ ;
- c) Аналитично представяне на централно проектиране ψ на E_3^* върху равнината α с център точката U. За получената матрица да се проверят свойствата на централно проектиране.

9 зад. В разширеното евклидово пространство E_3^* са дадени точката Q(1,0,2,1) и правата \boldsymbol{a} с уравнения:

a:
$$\begin{cases} x = 2\lambda + 3\mu \\ y = \lambda - 2\mu \\ z = -\lambda - \mu \\ t = 3\lambda + \mu \end{cases}$$

- а) Да се намери общо уравнение на равнината α , минаваща през точката Q и правата a;
- b) Да се намерят координатни параметрични уравнения на правата b, която е успоредна на правата a и минава през точката Q.

10 зад. В разширеното евклидово пространство E_3^* са дадени правите a и b с координатни параметрични

уравнения:
$$a: \begin{cases} x = \mu \\ y = 2\lambda \\ z = \lambda \\ t = \mu \end{cases}$$
 $b: \begin{cases} x = 2p + 3q \\ y = p \\ z = p + q \\ t = -q \end{cases}$. Да се намери уравнение на равнината α ,

определена от правите a и b.

11 зад. В разширеното евклидово пространство E_3^* е дадено централно проектиране ψ с матрица:

$$C = \begin{pmatrix} 0 & -4 & 4 & 4 \\ 3 & -7 & 3 & 3 \\ 2 & -2 & -2 & 2 \\ 1 & -1 & 1 & -3 \end{pmatrix}$$

Да се намерят координатите на центъра S на централното проектиране ψ и уравнение на равнината α , върху която се проектира.