COMSOL Day Orange County

Thursday May 17, 2018 8:30AM-4:00PM

Low-Frequency Electromagnetics with COMSOL Multiphysics®

Ping Chu Los Angeles, COMSOL, Inc.

Low Frequency or High Frequency?

What is low frequency?

 The device does not "see" the direction of an electromagnetic wave but just a uniform time varying electric field

Electrical

size

Electromagnetics is Extended by Add-on Modules

Built-in Physics Interfaces

- AC/DC Module
 - Electrostatics¹, Electrostatics BEM
 - Electric Currents¹
 - Electric Currents Shell
 - Electrical Circuit
 - Magnetic Fields, No Currents (FEM/BEM)
 - Magnetic Fields¹
 - Magnetic and Electric Fields
 - Rotating Machinery, Magnetic
 - Magnetic Field Formulation
 - Joule Heating^{1,2}
 - Induction Heating²
 - Magnetostriction²

1 This physics interface is included with the core COMSOL Multiphysics® package but has added functionality for this module.

2 This physics interface is a predefined multiphysics coupling that automatically adds all of the physics interfaces and coupling features required.

AC/DC Module Applications: (Static, Low Frequency, Some Transient)

Resistive and Capacitive Devices (Including Touchscreens)

Inductors and Coils

Nonlinear Magnetic Material

Magnets

Motors and Actuators

Multiphysics: Heating and Magnetostriction

Poisson's Equation

- We get a conservation law for stationary electric currents
- Other examples:
 - Magnetostatics
 - Electrostatics
 - Heat transfer

$$-\nabla \cdot (\boldsymbol{\sigma} \nabla V) = Q_j$$

$$\nabla \cdot (\boldsymbol{\sigma} \boldsymbol{E}) = Q_j$$

$$\nabla \cdot \boldsymbol{J} = Q_j$$

Maxwell's Equations

Skin Depth, Wavelength, Relaxation Time

- Skin depth δ
- Wavelength λ
- Charge relaxation time au

$$\delta = \frac{1}{Re(\sqrt{i\omega\mu_0\mu_r(\sigma + i\omega\varepsilon_0\varepsilon_r)})} \approx \sqrt{\frac{2}{\omega\mu\sigma}} \approx \frac{503}{\sqrt{\sigma\mu_r f}}, \quad J(d) = J_s e^{-d/\delta}$$

$$\lambda_0 = \frac{c}{f}, \qquad \lambda = \frac{\lambda_0}{n}$$

$$\tau = \frac{\varepsilon}{\sigma}, \qquad \rho_f(t) = \rho_0 e^{-t/\tau}$$

Whenever there are Electromagnetic Losses, there is a Rise in Temperature

• Specialized user interfaces and solvers address the two-way coupled frequency-domain electromagnetic and stationary or time-domain thermal problems

Full and Reduced Field excitations

https://www.comsol.com/model/iron-sphere-in-a-13-56-mhz-magnetic-field-12835

- Full and Reduced Field excitations
- Infinite Elements

Tip: if the energy is stored in the center core, the air domain can be roughly

3 to 5 times the size of the core without Infinite Element Domain.

- Full and Reduced Field excitations
- Infinite Elements
- Coils: Single Conductor Coil

Input

- 1. Specify the voltage across the boundary
- 2. Specify the current through the boundary
- 3. Options to connect to the lumped electrical circuit

- Full and Reduced Field excitations
- Infinite Elements
- Coils: Homogenized Multi-Turn Coil

Feature Overview: Data Extraction and Imports

- Resistance, Capacitance, Inductance, and Mutual Inductance
- Impedance, Admittance, and S-parameters (optional Touchstone file export)
- Electromagnetic torque and force calculation due to EM field
- Coupling to Electrical Circuits (supports SPICE netlist)

Magnetic Forces

Lumped Parameters

Feature Overview: Material Models

- Constitutive relations $H \leftrightarrow B$
 - Relative permeability (user defined)
 - Relative permeability (effective medium)
 - Magnetic losses
 - H(B) curve, B(H) curve (user defined)
 - H(B) curve, B(H) curve (external)
 - Remanent flux density
 - Magnetization
 - Effective H(B) curve
 - H(B) nonlinear permanent magnet
 - Hysteresis (Jiles-Atherton model)

- Constitutive relations $I \leftrightarrow E$
 - Electrical conductivity (user defined)
 - Electrical conductivity (effective medium)
 - Electrical conductivity (Archie's law)
 - (Linearized) resistivity
 - E(J) characteristic
- Constitutive relations $D \leftrightarrow E$
 - Relative permittivity (user defined)
 - Relative permittivity (effective medium)
 - Dielectric losses
 - Loss tangent, loss angle
 - Loss tangent, dissipation factor
 - Remanent electric displacement
 - Polarization

Demo: Inductive Heating

 AC current through a coil heats up the copper core:

$$\sigma = \frac{1}{[\rho_0(1 + \alpha(T - T_0))]}$$

- Multiphysics model
 - Electromagnetics: small time scale
 - Heat transfer: large time scale
- Frequency-Transient analysis

Summary of Workflow

- Select Dimension, Physics, Study
- Create/Import Geometry
- Apply Materials
- Set up Physics
- Mesh
- Solve
- Extract Results

Concluding Remarks: Static Field Modeling

- **Electrostatics** solves for electric fields in perfect insulators
- Stationary **Electric Currents** solves for steady current flow in conductors
- Stationary Magnetic Fields solves for the magnetic fields around magnets, and the fields around current carrying objects

Parallel Plate Capacitor, Electrostatics

Inductor, DC current flow and Magnetostatics

Permanent Magnet, Magnetostatics

Concluding Remarks: Low Frequency Modeling

- **Electric Currents** solved in the frequency domain considers both conduction and displacement currents in conductive and dielectric media
- Magnetic Fields can be solved for in the frequency domain to find the conduction, displacement, and induction currents
- Magnetic and Electric Fields can be solved to find magnetic and electric fields resulting from an applied electric
 potential

Concluding Remarks: Transient Modeling

- Transient Electric Currents solves for conduction and displacement currents in conductive and dielectric media
- Transient **Magnetic Fields** is suitable for modeling current pulses and nonlinear material response to field strength
- Rotating Machinery considers the rotary velocity and acceleration of material

Questions?

