本章转入课程的第二部分

数理统计

Difference between Probability & Statistics

§ 5.1数理统计学

数理统计学是一门应用性很强的学科.它是研究怎样以有效的方式收集、整理和分析带有随机性的数据,以便对所考察的问题作出推断和预测,直至为采取一定的决策和行动提供依据和建议.

数理统计不同于一般的资料统计,它 更侧重于应用随机现象本身的规律性进行 资料的收集、整理和分析.

由于大量随机现象必然呈现出它的规 律性,因而从理论上讲,只要对随机现象 进行足够多次观察,被研究的随机现象的 规律性一定能清楚地呈现出来. 但客观上 只允许我们对随机现象进行次数不多的观 察试验,也就是说,我们获得的只是局部 观察资料.

数理统计的任务就是研究怎样有效 地收集、整理、分析所获得的有限的资 料,对所研究的问题,尽可能地作出精 确而可靠的结论.

数 理 统 计 的 分

描述统计学

对随机现象进行观测、试验、以取得有代表性的观测值

推断统计学 Learning in computer science

对已取得的观测值进行整理、分析,作出 推断、决策,从而找出所研究的对象的规 律性

using data to infer the distribution that generated the data

Statistical inference

Statistical inference, or "learning" as it is called in computer science, is the process of *using data to infer the distribution that generated the data*. A typical statistical inference question is:

Given a sample $X_1, \ldots, X_n \sim F$, how do we infer F?

In some cases, we may want to infer only some feature of F such as its mean.

参数估计

假设检验

方差分析

回归分析

推断统计学

§ 5.2 总体与样本

总体和样本

总体 —— 研究对象全体元素组成的集合

所研究的对象的某个(或某些)数量指标的全体,它是一个**随机变量**(或多维随机变量).记为*X*.

X 的分布函数和数字特征称为总体的分布函数和数字特征.

个体 —— 组成总体的每一个元素

即总体的每个数量指标,可看作随机变量 X 的某个取值.用 X_i 表示.

例如:一个个体 X_i 指一个人,每个人有2维特征{身高、体重}

样本sample —— 从总体中抽取的部分个体.

用 $(X_1,X_2,...,X_n)$ 表示, n 为样本容量.

 $\pi(x_1,x_2,...,x_n)$ 为总体 X 的一个容量为n的样本**观测值**, 或称**样本的一个实现**.

例如: 从全体人中抽取了n个人, 及n个人对应的{身高、体重}

样本空间 —— 样本所有可能取值的集合.

例如: 所有人, 所有的特征可能的取值

总体和样本都是随机变量,观测后才是观测值

简单随机样本

若总体 X 的样本 $(X_1, X_2, ..., X_n)$ 满足:

- $(1) X_1, X_2, ..., X_n$ 与X有相同的分布
- $(2) X_1, X_2, ..., X_n$ 相互独立

则称 $(X_1, X_2, ..., X_n)$ 为简单**随机**样本.

一般,对有限总体,放回抽样所得到的样本为简单随机样本,但使用不方便,常用不放回抽样代替.而代替的条件是

$$N/n \geq 10.$$

总体中个体总数

| | 样本容量

设总体 X 的分布函数为F(x),则样本 $X_1, X_2, ..., X_n$ 的联合分布函数为

$$F_{\not\boxtimes}(x_1,x_2,\cdots,x_n)=\prod_{i=1}^n F(x_i)$$

若总体X 的d.f.为 f(x),则样本的联合 d.f.为

$$f_{\mathbb{H}}(x_1, x_2, \dots, x_n) = \prod_{i=1}^n f(x_i)$$

同分布i.i.d.

§5.3 统计量与抽样分布

统计量

数字特征

定义

设 $(X_1,X_2,...,X_n)$ 是取自总体X的一个样本, $g(r_1,r_2,...,r_n)$ 为一实值连续函数,且<u>不含有</u>未知参数,

则称随机变量 $g(X_1,X_2,...,X_n)$ 为**统计**量.

若 (x_1,x_2,\ldots,x_n) 是一个样本值,

称 $g(x_1,x_2,\ldots,x_n)$

为统计量 $g(X_1,X_2,...,X_n)$ 的一个样本值

例 $X \sim N(\mu, \sigma^2)$, μ, σ^2 是未知参数, $(X_1, X_2, ..., X_n)$ 是一样本,则

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \qquad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

是统计量, 其中 $X_i \sim N(\mu, \sigma^2)$

但
$$\frac{1}{\sigma^2}\sum_{i=1}^n(X_i-\mu)^2$$
 不是统计量.

若 μ,σ已知,则为统计量

常用的统计量

设 $(X_1,X_2,...,X_n)$ 是来自总体 X 的容量为 n 的样本,称统计量

$$(1) \quad \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

为**样本均值**(sample mean)

注意与E(X)的区别

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2 \vec{\boxtimes} S^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$$

样本标准差

重要

(3)
$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

为样本的k阶原点矩 (moment)

例如

$$A_1 = \overline{X}$$

两者的区别? 分别代表: 样本与总体

(4)
$$B_k = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^k$$
为样本的 k 阶中心矩

例如

$$B_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 = S_n^2 \qquad = \frac{n-1}{n} S^2$$

$$E((X-E(X))^k)$$
—总体 X 的 k 阶中心矩

1)
$$S^{2} = \frac{n}{n-1} S_{n}^{2}$$

$$S_{n}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{n} (\sum_{i=1}^{n} X_{i}^{2} - n \overline{X}^{2})$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{n-1} (\sum_{i=1}^{n} X_{i}^{2} - n \overline{X}^{2})$$

推导
$$\sum_{i=1}^{n} (X_i - \overline{X})^2 = \sum_{i=1}^{n} (X_i^2 - 2X_i \overline{X} + \overline{X}^2)$$

$$= \sum_{i=1}^{n} X_i^2 - 2\overline{X} \sum_{i=1}^{n} X_i + \sum_{i=1}^{n} \overline{X}^2 = \sum_{i=1}^{n} X_i^2 - 2n\overline{X}^2 + n\overline{X}^2$$

$$= \sum_{i=1}^{n} X_i^2 - n\overline{X}^2$$

$$\therefore S_n^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \overline{X}^2$$

$$E(\overline{X})$$
 $D(\overline{X})$ $E(S^2)$

2)
$$E(\overline{X}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = E(X)$$
 $D(\overline{X}) = \frac{1}{n}D(X)$

推导 简单随机抽样的样本

$$E(\bar{X}) = E(\frac{1}{n}\sum_{i=1}^{n}X_i) = \frac{1}{n}\sum_{i=1}^{n}E(X_i) = \frac{1}{n}\cdot n\cdot E(X) = E(X)$$

$$D(\bar{X}) = D(\frac{1}{n} \sum_{i=1}^{n} X_i) = \frac{1}{n^2} \sum_{i=1}^{n} D(X_i) = \frac{1}{n^2} \cdot n \cdot D(X) = \frac{1}{n} D(X)$$

3)
$$E(S_n^2) = \frac{n-1}{n}D(X)$$
 $E(S^2) = D(X)$

推导

$$E(S^{2}) = E(\frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}) = \frac{1}{n-1} E(\sum_{i=1}^{n} (X_{i} - \bar{X})^{2})$$

$$= \frac{1}{n-1} E[X_{1}^{2} + X_{2}^{2} + X_{3}^{2} + \dots + X_{n}^{2} + n\bar{X}^{2} - 2(X_{1} + X_{2} + \dots + X_{n})\bar{X}]$$

$$= \frac{1}{n-1} E(X_{1}^{2} + X_{2}^{2} + X_{3}^{2} + \dots + X_{n}^{2} - n\bar{X}^{2})$$

$$D(X) = E(X^{2}) - E^{2}(X) \qquad E(X^{2}) = D(X) + E^{2}(X) = D(X) + E^{2}(X) = \sigma^{2} + \mu^{2}$$

$$E(S^{2}) = \frac{1}{n-1} \times [n(\sigma^{2} + \mu^{2}) - nE(\bar{X}^{2})]$$

$$E(\bar{X}^{2}) = D(\bar{X}) + E^{2}(\bar{X}) = \frac{\sigma^{2}}{n} + \mu^{2}$$

$$E(S^{2}) = \sigma^{2}$$

统计量既然是依赖于样本的,而后者又是随机变量,故统计量也是随机变量,故统计量也是随机变量,因而就有一定的分布,这个分布叫做统计量的**抽样分布**.

统计中常用分布

(1) 正态分布

若
$$X_1, X_2, \dots, X_n \sim N(\mu_i, \sigma_i^2)$$

$$\sum_{i=1}^{n} a_i X_i \sim N\left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2\right)$$

特别地,

特別地,
$$\text{独立同分布}$$
 若 X_1, X_2, \dots, X_n $\text{i.i.d.} X_i \sim N(\mu, \sigma^2)$

贝
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 或 $\sum_{k=1}^{n} X_k \sim N(n\mu, n\sigma^2)$

或
$$Y_n = \frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n\sigma}} \sim N(0,1)$$
 中心极限定理

(2) χ²分布 (卡方分布)

重要

χ²分布是由正态分布派生出来的一种分布.

定义: 设 $X_1, X_2, ..., X_n$ 相互独立, 都服从正态

分布N(0,1),则称随机变量:

$$\chi^2 = X_1^2 + X_2^2 + \dots + X_n^2$$

所服从的分布为自由度为n的 χ^2 分布.

记为
$$\chi^2 \sim \chi^2(n)$$

n=1 时,其密度函数为

$$f(x) = \begin{cases} \frac{1}{\sqrt{2\pi}} x^{-\frac{1}{2}} e^{-\frac{x}{2}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

n=2 时,其密度函数为

$$f(x) = \begin{cases} \frac{1}{2}e^{-\frac{x}{2}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

为参数为1/2的指数分布.

自由度为n的 $\chi^2(n)$ 的密度函数为

$$f(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} e^{-\frac{x}{2}} x^{\frac{n}{2}-1}, & x > 0 \\ 0, & x \le 0 \end{cases}$$
 Gamma

其中,
$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

E(x) = 0时收敛,称为I函数,具有性质

$$\Gamma(x+1) = x\Gamma(x), \quad \Gamma(1) = 1, \quad \Gamma(1/2) = \sqrt{\pi}$$
$$\Gamma(n+1) = n! \quad (n \in N)$$

χ^2 分布的性质:

1°
$$E(\chi^2(n)) = n, D(\chi^2(n)) = 2n$$

$$2^{\circ}$$
 若 $X_1 = \chi^2(n_1), X_2 = \chi^2(n_2), X_1, X_2$ 相互独立,则 $X_1 + X_2 \sim \chi^2(n_1 + n_2)$

$$3^{\circ}$$
 $n \to \infty$ 时, $\chi^2(n) \to$ 正态分布

什么样的正态分布?

对于给定的 $\alpha(0 < \alpha < 1)$, 称满足条件:

$$P\{\chi^2 > \chi_\alpha^2(n)\} = \alpha$$

的点 $\chi^2_{\alpha}(n)$ 为 $\chi^2(n)$ 分布的 $\underline{L}\alpha$ 分位点。

例如

$$\chi^2_{0.05}(10) = 18.307$$

$$P(\chi^2(10) > 18.307) = 0.05$$

(3) t 分布 (Student 分布)

 $X \sim N(0,1), Y \sim \chi^{2}(n), X, Y$ 独立,则称随机变量

$$T = \frac{X}{\sqrt{\frac{Y}{n}}}$$

为服从自由度是n的 t – 分布,记作T ~ t(n).

其密度函数为

$$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \qquad -\infty < t < \infty$$

t 分布的图形(红色的是标准正态分布)

t 分布的性质

 $f_n(t)$ 是偶函数,

$$n \to \infty, f_n(t) \to \phi(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$

不难看到,当n充分大时,t 分布近似N(0,1)分布. 但对于较小的n,t分布与N(0,1)分布相差很大.

对于给定的 $\alpha(0 < \alpha < 1)$, 称满足条件:

$$P\{t > t_{\alpha}(n)\} = \alpha$$

的点 $t_{\alpha}(n)$ 为t分布的上 α 分位点。

由概率密度的对称性知: $t_{1-\alpha}(n) = -t_{\alpha}(n)$

(4) F 分布 (Ronald.A.Fisher)

若 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2), X, Y$ 独立,

则称随机变量

$$F = \frac{X / n_1}{Y / n_2}$$

为服从自由度是 n_1, n_2 的F-分布,

记作 $F \sim F(n_1, n_2)$.

若 $F\sim F(n_1,n_2)$, X的概率密度为

$$f(x) = \begin{cases} \frac{\Gamma(\frac{n_1 + n_2}{2})}{\Gamma(\frac{n_1}{2}) \Gamma(\frac{n_2}{2})} {\binom{n_1}{n_2}} {\binom{n_1}{n_2}} {\binom{n_1}{n_2}} x)^{\frac{n_1}{2} - 1} \left(1 + \frac{n_1}{n_2} x\right)^{-\frac{n_1 + n_2}{2}} & x \ge 0\\ 0 & & & & x < 0 \end{cases}$$

f(1, 2)

F 分布的性质

由定义可见,

若 $F \sim F(n_1, n_2)$,则 $1/F \sim F(n_2, n_1)$.

0.1

0.0 +

演示

对于给定的 $\alpha(0 < \alpha < 1)$,称满足条件:重要

$$P\{F > F_{\alpha}(n_1, n_2)\} = \alpha$$

的点 $F_{\alpha}(n_1,n_2)$ 为F分布的上 α 分位点。

证明
$$F_{1-\alpha}(n,m) = \frac{1}{F_{\alpha}(m,n)}$$

证 根据分位点定义

派 核指分型無差义
$$F_{1-\alpha}(n,m) \Rightarrow P(F^{n,m} \ge F_{1-\alpha}(n,m)) = P\left(\frac{1}{F^{n,m}} \le \frac{1}{F_{1-\alpha}(n,m)}\right)$$

$$= 1 - P\left(\frac{1}{F^{n,m}} \ge \frac{1}{F_{1-\alpha}(n,m)}\right) = 1 - \alpha$$

$$\therefore P\left(\frac{1}{F^{n,m}} \ge \frac{1}{F_{1-\alpha}(n,m)}\right) = \alpha \quad \because \frac{1}{F^{n,m}} \sim F(m,n)$$

$$\therefore P\left(F^{m,n} \ge \frac{1}{F_{1-\alpha}(n,m)}\right) = \alpha$$

$$\therefore P\bigg(F^{m,n} \geq \frac{1}{F_{1-\alpha}(n,m)}\bigg) = \alpha$$

$$X :: F_{\alpha}(m,n) \Rightarrow P(F^{m,n} \geq F_{\alpha}(m,n)) = \alpha$$

因而
$$\frac{1}{F_{1-\alpha}(n,m)} = F_{\alpha}(m,n)$$

正态总体的抽样分布

(I) 一个正态总体

定理5.3.1 设 X_1, \dots, X_n 是总体 $N(\mu, \sigma^2)$ 的样本,

 \bar{X}, S^2 分别是样本均值与样本方差,则有:

(1)
$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$
. $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$
(2) $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$

$$(2) \frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$$

(3) \bar{X} 与 S^2 独立

$$(4) \frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

(1) $\overline{X} \sim N(\mu, \frac{\sigma^2}{})$. 证明:

- (1) $:: \sum_{i=1}^{n} X_i$ 是相互独立的正态分布的和
 - $: \sum X_i$ 也服从正态分布

:
$$E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) = n\mu$$
 $D(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} D(X_i) = n\sigma^2$

$$\therefore \sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2)$$

$$\therefore \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \frac{\sigma^2}{n})$$

将
$$\bar{X}$$
标准化
$$U = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

证明: (2)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

(2)
$$\Leftrightarrow Z_i = \frac{X_i - \mu}{\sigma} (i = 1, 2, \dots, n)$$

则 Z_1,Z_2,\cdots,Z_n 相互独立,且都服从N(0,1)。从

$$\overline{\square}$$
 $\overline{Z} = \frac{1}{n} \sum_{i=1}^{n} Z_i = \frac{\overline{X} - \mu}{\sigma}$

$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^n \left(X_i - \overline{X}\right)^2}{\sigma^2} = \sum_{i=1}^n \left[\frac{\left(X_i - \mu\right) - \left(\overline{X} - \mu\right)}{\sigma}\right]^2$$

$$=\sum_{i=1}^{n} \left(Z_{i} - \overline{Z}\right)^{2}$$

$$=\sum_{i=1}^{n}Z_{i}^{2}-n\overline{Z}^{2}$$

取一n阶正交矩阵 $A=(a_{ij})_{n*n}$,其中第n行元素均为 $\frac{1}{\sqrt{n}}$,作正交变换 Y=AZ

其中
$$Y=(Y_1,Y_2,\cdots,Y_n)^T$$
, $Z=(Z_1,Z_2,\cdots,Z_n)^T$ 。

由于
$$Y_i = \sum_{j=1}^n a_{ij} Z_j (i = 1, 2, \dots, n)$$
, 故 Y_1, Y_2, \dots, Y_n 也服从正态分布。 由 $Z \sim N_n(0, E_n)$ 知,

$$E(Y)=E(AZ)=AE(Z)=0$$

 $Cov(AX,BY)=ACov(X,Y)B^{T}$

$$D(Y) = \text{Cov}(Y, Y) = \text{Cov}(AZ, AZ) = A\text{Cov}(Z, Z)A^T = AE_nA^T = E_n$$

由正交矩阵的性质,故 Y_1,Y_2,\cdots,Y_n 两两不相关,而且

$$Y_i \sim N(0,1)(i=1,2,...,n)$$
.

Cov为单位矩阵,相关系数为0

又由于 $Y=(Y_1,Y_2,\cdots,Y_n)^T$ 是由 $Z=(Z_1,Z_2,\cdots,Z_n)^T$ 经过线性变换而得到的,于是由 Y_1,Y_2,\cdots,Y_n 两两不相关(+正态)可推得 Y_1,Y_2,\cdots,Y_n 相互独立。

$$\overrightarrow{\text{III}} \qquad Y_n = \sum_{j=1}^n a_{nj} Z_j = \sum_{j=1}^n \frac{1}{\sqrt{n}} Z_j = \sqrt{n} \overline{Z}$$

$$\sum_{i=1}^{n} Y_{i}^{2} = Y^{T}Y = (AZ)^{T} (AZ) = Z^{T} (A^{T}A)Z = Z^{T}E_{n}Z = Z^{T}Z = \sum_{i=1}^{n} Z_{i}^{2}$$

于是
$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n Z_i^2 - n\overline{Z}^2 = \sum_{i=1}^n Y_i^2 - Y_n^2 = \sum_{i=1}^{n-1} Y_i^2$$

由于 $Y_1, Y_2, \cdots, Y_{n-1}$ 相互独立,且 $Y_i \sim N(0,1)(i=1,2,\ldots,n-1)$,

$$\therefore \sum_{i=1}^{n-1} Y_i^2 \sim \chi^2 (n-1)$$

$$\therefore \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

证明: (3) \bar{X} 与 S^2 独立

(3)
$$\because \overline{X} = \sigma \overline{Z} + \mu = \frac{\sigma}{\sqrt{n}} Y_n + \mu$$
 只依赖于 Y_n

而
$$S^2 = \frac{\sigma^2}{n-1} \sum_{i=1}^{n-1} Y_i^2$$
 仅依赖于 Y_1, Y_2, \dots, Y_{n-1}

 $\therefore \overline{X}$ 与 S^2 相互独立

证明:
$$(4) \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

(4) 曲于
$$U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1) \qquad \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

而且两者相互独立,根据t分布的定义得

$$\frac{U}{\sqrt{\frac{(n-1)S^2}{\sigma^2}/(n-1)}} = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

(II)两个正态总体

定理2

设 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2), 且X与Y独立,$ $X_1, X_2, ..., X_n$ 是取自X的样本, $Y_1, Y_2, ..., Y_n$ 是 取自Y的样本, \overline{X} 和 \overline{Y} 分别是这两个样本的样本 均值, S_1^2 和 S_2^2 分别是这两个样本的样本方差, 则有 $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$

$$\sigma_1^2 = \sigma_2^2$$

$$\frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}} \sim t(n_1 + n_2 - 2)$$

5.3.1设 X_1, X_2, X_3, X_4 是来自正态总体N(0,9)的样本,

 $Y=a(X_1-X_2)^2+b(3X_3+4X_4)^2$,问当a,b各为多少时,统计量Y服从 $\chi^2(2)$ 分布?

$$X_1 - X_2 \sim N(0, 2*3^2),$$
 $\mathbb{N} \frac{X_1 - X_2}{3\sqrt{2}} \sim N(0, 1)$

$$3X_3 + 4X_4 \sim N(0, 25*3^2),$$
 $\mathbb{P}\frac{3X_3 + 4X_4}{15} \sim N(0, 1)$

根据χ²(2)分布定义

$$Y = \left(\frac{X_1 - X_2}{3\sqrt{2}}\right)^2 + \left(\frac{3X_3 + 4X_4}{15}\right)^2 \sim \chi^2(2)$$

$$Y = \frac{1}{18}(X_1 - X_2)^2 + \frac{1}{225}(3X_3 + 4X_4)^2$$

$$\therefore a = \frac{1}{18}, b = \frac{1}{225}$$

5.3.2设随机变量X和Y相互独立且都服从正态分布N(0,9),而 $X_1, X_2, ... X_9$ 和 $Y_1, Y_2, ... Y_9$ 分别是来自总体X和Y的简单随机样本,则统计量U服从什么分布? $U = \frac{X_1 + X_2 + ... + X_9}{\sqrt{Y_1^2 + Y_2^2 + ... + Y_9^2}}$

5.3.3设总体X~N(0,2²), $X_1,X_2,...,X_{15}$ 是来自总体X的样本,则统计量

$$\overline{Y} = \frac{2(X_1^2 + X_2^2 + \dots + X_5^2)}{X_6^2 + X_7^2 + \dots + X_{15}^2}$$

服从什么分布?

$$S_1^2 = \left(\frac{X_1}{2}\right)^2 + \left(\frac{X_2}{2}\right)^2 + \dots + \left(\frac{X_5}{2}\right)^2 \sim \chi^2(5)$$

$$S_2^2 = \left(\frac{X_6}{2}\right)^2 + \left(\frac{X_7}{2}\right)^2 + \dots + \left(\frac{X_{15}}{2}\right)^2 \sim \chi^2(10)$$

$$\therefore Y = \frac{2(X_1^2 + X_2^2 + \dots + X_5^2)}{X_6^2 + X_7^2 + \dots + X_{15}^2} = \frac{2S_1^2}{S_2^2} = \frac{S_1^2/5}{S_2^2/10} \sim F(5,10)$$