ALGORYTMY KWANTOWE

Lista nr 6

1. Niech $|+\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle,\ |-\rangle=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle.$ Dokonaj w bazie $\{|+\rangle,|-\rangle\}$ pomiaru kubitu $|\varphi\rangle,$ gdzie

(a)
$$|\varphi\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{e^{\frac{i\pi}{4}}}{\sqrt{2}}|1\rangle$$

(b)
$$|\varphi\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

(c)
$$|\varphi\rangle = \frac{1+i}{2}|0\rangle + \frac{1-i}{2}|1\rangle$$

2. Niech $|\nwarrow\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{i}{\sqrt{2}}|1\rangle,$ $|\nearrow\rangle=\frac{1}{\sqrt{2}}|0\rangle-\frac{i}{\sqrt{2}}|1\rangle.$ Dokonaj w bazie $\{|\nwarrow\rangle,|\nearrow\rangle\}$ pomiaru kubitu $|\varphi\rangle$, gdzie

(a)
$$|\varphi\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{e^{\frac{i\pi}{4}}}{\sqrt{2}}|1\rangle$$

(b)
$$|\varphi\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

(c)
$$|\varphi\rangle = \frac{1+i}{2}|0\rangle + \frac{1-i}{2}|1\rangle$$

3. Dokonaj obrotu kubitu $|\varphi\rangle$ o kat θ , gdzie

(a)
$$|\varphi\rangle = |0\rangle$$
, $\theta = \frac{\pi}{4}$

(b)
$$|\varphi\rangle = \frac{1+i}{2}|0\rangle + \frac{1-i}{2}|1\rangle$$
, $\theta = \frac{\pi}{3}$

(c)
$$|\varphi\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$
, $\theta = \frac{\pi}{2}$

- 4. Opisz CHSH Game w klasycznej formie
- 5. Opisz CHSH Game w wersji kwantowej