期中模拟考试参考答案

一. (每题3分,共27分)

1.
$$\underline{2}$$
 2. $\begin{cases} z^2 + 5z + 2y + 9 = 0 \\ x = 0 \end{cases}$ 3. $x^2 + z^2 - 2y^2 = 1$

4.
$$2\sqrt{3}$$
 5. $x-4y+6z=21$ 6. $\frac{x-1}{1} = \frac{y+1}{3} = \frac{z-2}{-2}$

7.
$$20\pi$$
 8. $\int_0^1 dx \int_0^{-\frac{1}{2}x + \frac{1}{2}} dy \int_0^{\frac{1}{3}(1 - x - 2y)} f(x, y, z) dz$ 9. $\frac{\sqrt{2}}{2}\pi$

三. (8 分)解: 因直线
$$L$$
 与直线 $L_1: x = \frac{y}{2} = \frac{z}{3}$ 相交,由直线 L_1 的参数方程:
$$\begin{cases} x = t \\ y = 2t \\ z = 3t \end{cases}$$

可设直线 L 与 L_1 的交点 P 坐标为 $(t_0, 2t_0, 3t_0)$ 。

则由点P和点 P_0 的坐标,可知直线L的方向向量可表示为 $\vec{s} = \{t_0 - 1, 2t_0 - 1, 3t_0 - 1\}$.

因直线 L 与直线 L_2 垂直,且直线 L_2 的方向向量为 $\bar{s}_2 = \{2,1,4\}$,可知:

$$\vec{s} \cdot \vec{s}_2 = 2(t_0 - 1) + (2t_0 - 1) + 4(3t_0 - 1) = 0$$
,可得 $t_0 = \frac{7}{16}$,

带入交点 P 的坐标,可得 $P(\frac{7}{16},\frac{7}{8},\frac{21}{16})$ 。由直线 L 过点 P 和点 P_0 ,可得 L 直线的方程为:

$$\frac{x-1}{\frac{9}{16}} = \frac{y-1}{\frac{1}{8}} = \frac{z-1}{-\frac{5}{16}} \qquad \text{ if } \qquad \frac{x-1}{9} = \frac{y-1}{2} = \frac{z-1}{-5} \text{ o}$$

四. (8分)解:
$$\frac{\partial u}{\partial x} = \frac{1}{y} f_1' + 2x \sin y f_2';$$
 $\frac{\partial u}{\partial y} = -\frac{x}{y^2} f_1' + x^2 \cos y f_2';$

故
$$du = (\frac{1}{y}f_1' + 2x\sin yf_2')dx + (-\frac{x}{y^2}f_1' + x^2\cos yf_2')dy$$
.

由
$$\frac{\partial u}{\partial x} = \frac{1}{y} f_1' + 2x \sin y f_2'$$
 , 两边对 y 求导,可得:

$$\frac{\partial^2 u}{\partial x \partial y} = -\frac{1}{y^2} f_1'' + \frac{1}{y} \left(-\frac{x}{y^2} f_{11}'' + x^2 \cos y f_{12}'' \right) + 2x \cos y f_2'' + 2x \sin y \left(-\frac{x}{y^2} f_{21}'' + x^2 \cos y f_{22}'' \right)$$

$$= -\frac{1}{y^2} f_1'' + 2x \cos y f_2'' - \frac{x}{y^3} f_{11}'' + \frac{x^2}{y} \cos y f_{12}'' - \frac{2x^2}{y^2} \sin y f_{21}'' + x^3 \sin 2y f_{22}''$$

五. (8 分) 解: 由
$$\begin{cases} z'_x = 6x^2 + 6x - 36 = 0 \\ z'_y = -\frac{3}{2}y^2 + 3y = 0 \end{cases}$$
 可得驻点为 (-3,0), (-3,2), (2,0), (2,2).

因为
$$z_{xx}'' = 12x + 6$$
, $z_{xy}'' = 0$, $z_{yy}'' = -3y + 3$, 所以

在
$$(-3,0)$$
 点处, $A=-30$, $B=0$, $C=3$, $AC-B^2<0$,

在
$$(-3,2)$$
 点处, $A = -30$, $B = 0$, $C = -3$, $AC - B^2 > 0$, $A < 0$,

在
$$(2.0)$$
 点处, $A = 30$, $B = 0$, $C = 3$, $AC - B^2 > 0$, $A > 0$,

在(2,2)点处,
$$A=30, B=0, C=-3$$
, $AC-B^2<0$,

所以, z(-3,2) = 83 为极大值, z(2,0) = -44 为极小值。

六. (16 分, 每题 8 分) 1. 解: 积分区域如图所示,交换积分次序

$$\int_{0}^{1} dy \int_{y}^{1} \frac{\tan x}{x} dx = \iint_{D} \frac{\tan x}{x} dx dy = \int_{0}^{1} dx \int_{0}^{x} \frac{\tan x}{x} dy = \int_{0}^{1} \tan x dx = -\ln(\cos x) \Big|_{0}^{1}$$

$$= -\ln(\cos x)$$

2. 解: 由题意可知,区域
$$\Omega$$
:
$$\begin{cases} (x,y) \in D_z \\ 2 \le z \le 8 \end{cases}$$
,其中 D_z :
$$\begin{cases} 0 \le r \le \sqrt{2z} \\ 0 \le \theta \le 2\pi \end{cases}$$
. 用截面法,

$$I = \iiint_{\Omega} (x^2 + y^2) dv = \int_{2}^{8} dz \iint_{D_{z}} (x^2 + y^2) dx dy = \int_{2}^{8} dz \int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{2z}} r^3 dr$$
$$= 2\pi \int_{2}^{8} z^2 dz = 336\pi$$

七. (8 分)解: 因为立体 Ω 关于 yoz 面对称,函数 $\rho_1(x,y,z)=xy$ 关于变量 x 是奇函数,所以物体的质量

$$M = \iiint_{\Omega} (xy + z)dv = \iiint_{\Omega} xydv + \iiint_{\Omega} zdv = 0 + \iiint_{\Omega} zdv = \iiint_{\Omega} zdv.$$

联立方程 $z=\sqrt{x^2+y^2}$, z=4 ,可知 Ω 在 xoy 面上的投影域为 $D_{xy}: x^2+y^2 \leq 16$,

故在柱坐标系下, Ω : $\begin{cases} \rho \leq z \leq 4 \\ 0 \leq \rho \leq 4 \\ 0 \leq \varphi \leq 2\pi \end{cases}$ 所以

$$M = \iiint_{\Omega} z dv = \int_{0}^{2\pi} d\varphi \int_{0}^{4} \rho d\rho \int_{\rho}^{4} z dz = 2\pi \int_{0}^{4} (8\rho - \frac{1}{2}\rho^{3}) d\rho = 64\pi$$

八. (9分)解: 设平面 x + y + z = 1 上的任一点为 P(x, y, z),则

$$\begin{split} \left| PP_1 \right| &= \sqrt{(x-1)^2 + y^2 + (z-1)^2} \,, \quad \left| PP_2 \right| = \sqrt{(x-2)^2 + (y-1)^2 + z^2} \,, \quad \text{那么由题意可知,} \\ &= \text{需要求} \, u(x,y,z) = (x-1)^2 + y^2 + (z-1)^2 + (x-2)^2 + (y-1)^2 + z^2 \, \text{在条件下的最小值。} \\ &F(x,y,z,\lambda) = u(x,y,z) + \lambda(x+y+z-1) \,, \end{split}$$

則由
$$\begin{cases} F_x' = 2(x-1) + 2(x-2) + \lambda = 0 \\ F_y' = 2y + 2(y-1) + \lambda = 0 \\ F_z' = 2(z-1) + 2z + \lambda = 0 \\ F_\lambda' = x + y + z - 1 = 0 \end{cases}$$
 可得唯一驻点为(1,0,0).

根据题意可知,点(1,0,0)就是与两定点 P_1 、 P_2 的距离的平方和最小的点.

九. (7 分)解: 由
$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases}$$
可得:
$$\frac{\partial z}{\partial \rho} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial \rho} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial \rho} = \frac{\partial f}{\partial x} \cos \varphi + \frac{\partial f}{\partial y} \sin \varphi.$$

将上式两边同乘以
$$\rho$$
,得: $\rho \frac{\partial z}{\partial \rho} = \frac{\partial f}{\partial x} \rho \cos \varphi + \frac{\partial f}{\partial y} \rho \sin \varphi = x f_x' + y f_y'$.

于是有
$$I = \iint_{D_{\varepsilon}} \frac{xf'_x + yf'_y}{x^2 + y^2} dxdy = \iint_{D_{\varepsilon}} \frac{1}{\rho^2} \rho \frac{\partial z}{\partial \rho} \rho d\rho d\phi = \int_0^{2\pi} d\phi \int_{\varepsilon}^1 \frac{\partial z}{\partial \rho} d\rho$$

$$= \int_{0}^{2\pi} f(\cos\varphi, \sin\varphi) d\varphi - \int_{0}^{2\pi} f(\varepsilon\cos\varphi, \varepsilon\sin\varphi) d\varphi = -\int_{0}^{2\pi} f(\varepsilon\cos\varphi, \varepsilon\sin\varphi) d\varphi$$

由积分中值定理, $I = -2\pi f(\varepsilon \cos \varphi_1, \varepsilon \sin \varphi_1)$,其中 $0 \le \varphi_1 \le 2\pi$,故

$$\lim_{\varepsilon \to 0^+} \frac{1}{2\pi} \iint_{D_c} \frac{xf_x' + yf_y'}{x^2 + y^2} dxdy = -\lim_{\varepsilon \to 0^+} f(\varepsilon \cos \varphi_1, \varepsilon \sin \varphi_1) = -f(0,0) = 1.$$