







## O MODELO COMPUTACIONAL BIG DATA

3

# Processamento de Grandes Volumes de Dados

- Processar grandes volumes de dados para tomada de decisão requer eficiência
  - Reduzir o tempo de processamento
  - Paralelismo de tarefas aparece como uma estratégia intuitiva
  - Dados podem ou não estar distribuídos
- Processos sequencias precisam ser modelados de forma paralela segundo o modelo de paralelismo a ser adotado

Л







- No processamento de grandes volumes de dados o custo de transferência pela rede deve ser minimizado
  - Chamamos de Localidade de dados ao processo de escalonamento de processos sobre os dados que favorece a execução nos locais em que os dados se encontram, i.e. minimize a movimentação







- Modelo de paralelismo define restrições para modelagem de problemas
  - Identificação de fragmentos do pipeline que podem ser executados independentemente;
  - Identificação de ponto de convergência global de dados
- Processamento dividido em
  - Fragmentos locais
  - Fragmentos globais





#### Limites de Programas M/R

- Algoritmos que requeiram a manutenção de um estado global atualizado a todo tempo
  - Pode ser mapeado para uma série de M/Rs
- Critério de particionamento de dados deve considerar necessidade de localização de dados pela aplicação
  - Estabelecimento de correlação de vizinhança
- Em essência, M/R deve limitar a troca de mensagens entre os nós de computação



- Problemas implementados na linguagem do framework
  - K-means
  - Regressão Linear
  - Operadores Relacionais: ex:Junção, agregação,...
- Descritos como um fluxo de dados
  - Na sua forma mais simples: Maps-Reduces
- Critério de particionamento influencia no algoritmo
  - Pontos de sincronismo entre os nós de processamento











#### **DATAFLOWS**

15

### Modelos Computacionais para BE processamento de grandes volumes de dados

- $Workflows\ científicos-processamento\ de\ dados\ realizado\ como\ parte\ de\ um\ experimento\ científico$ 
  - Nesta apresentação estaremos considerando processos automáticos, i.e., sem intervenção do usuário;
    - Topologia de um grafo direcionado, com ou sem ciclos, G=(N,E), onde N representa um conjunto de atividades e E a dependência entre as atividades espelhada na relação produtor/consumidor de dados;
      Programas desenvolvidos de forma independentes.
      Processamento de arquivos, sem interface comum
- Dataflows generalização de workflows científicos para outros domínios de aplicação

  - Senterialização de worknows cientínicos para outros dontrinos de aplicação
     Uso de linguagem (API) comum
     Compartilhamento de um Modelo de Dados
     Pode incluir um pouco mais de conhecimento dos programas e dados, se projetado com componentes internos à instituição;
- Consultas a BDs processamento dados em função de uma requisição externa (consulta ou atualização);

  - Processamento inteiramente automático
    Expresso em linguagem de alto nível (SQL ou variante)
    Topología arvore profunda ou equilibrada
    Conhecimento dos dados (modelo e estatísticas) e da semântica das operações (álgebra)
  - **Event Processing Systems** 
    - Modelo de Processamento baseado em eventos:
       Reação a dados de sensores (loT)
       streaming
       processos de negocio
- Frameworks Distribuidos

  - Intensivo de CPU
    Derivados de implementações em Ciência de Dados
    Com crescimento do volume de dados analisados evoluíram para framework complexos





- processados
- Atividades: ações de processamento de dados: programa; função etc
- Ordem Parcial: Atividades são ordenadas segundo uma relação produtor-consumidor
- Saída: conjunto resultado













#### **MODELO MAP/REDUCE**

23





- MapReduce é:
  - Um modelo de programação
  - Um ambiente de execução para aplicações desenvolvidas sob o modelo
- Map Reduce considera:
  - Uma arquitetura de clusters de máquinas sem compartilhamento
  - Um sistema distribuído executando o modelo (MR) sobre a arquitetura de clusters
  - Um mecanismo de tolerância à falhas
  - Um sistema de arquivo distribuído com particionamento de arquivos





### Quanto à linguagem: Problema

- Como integrar novas funcionalidades de um domínio à linguagens de programação?
  - DSL Domain Specific language
    - Integração à linguagens de proposito geral
      - Externas
        - SQL sintaxe e semântica próprias
      - Embedded
        - DSL integrada `a linguagem de propósito geral
          - · Spark, Flink

25

# Específicas de Domínio





Alexandrov, A, et al., Representations and Optimizations for Embedded Parallel Dataflow Languages, TODS, 2019









### Desafio quanto à aplicação

- Modelar como uma combinação das primitivas do modelo (API).
- No caso MapReduce, essencialmente:
  - map()
  - reduce()
  - combine()

29





### Modelo de Programação

- Modelo funcional de programação
  - Semântica de transformações implementada como funções
- Funções de primeira ordem implementadas pelos usuários:
  - map ((in\_key, in\_value), F) -> (inter\_key, inter\_value list)
  - reduce ((inter\_key, inter\_value list), F) ->
    (out\_key, out\_value list)
  - combine ((inter\_key, inter\_value list), F) ->
    (out\_key, out\_value list)

```
Funções Primeira ordem

function writeWords(key, value){
    StringTokenizer itr = new StringTokenizer(value.toString());
    while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one )
    }
}
```

```
Public static class LineToWordMapper
extends Mapper < LongWritable, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

Public void map(LongWritable key, Text value, Context context) throws IOException,
InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {

word.set(itr.nextToken());
context.write(word, one);
}

/* gera um par (chave: "word", valor:one) */
}

}
```

# Corresponde a

- for each line in fileIn
   for each key in line
   write(key, 1)
- Veja que o primeiro "for" que varre as linhas do dataset de entrada é implícito no Framework
  - As funções map/reduce operam sobre uma coleção cuja iteração é realizada pela implementação da função de segunda ordem

33



```
primeira ordem do tipo Reduce

public static class FrequencyReducer extends
Reducer<Text,IntWritable,Text,IntWritable>{

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values, Context context) throws
IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}
```







- Poucas funções
  - semântica sobrecarregada:
    - map pode : 1 -1; 1-n;
- Dataflow modelado como vários "jobs" MR
- Dataflow requer gravação de arquivos entre jobs (i.e. entre atividades)
  - ineficiência



