TIME SERIES ANALYSIS OF WHEAT PRICES

Dhruv Akshay Pandit 58802 Gabriel Dias Pereira 58454 Maria Louro Pereira 53554 Johana Pertoldová 58966

WHEAT PRICES DATASET AND OUTLIERS

- Wheat is a fundamental commodity and the most widely grown crop overall
- Frequency: Monthly
- <u>Data</u>: from 1990 to 2022, (393 observations)
- <u>Prices</u> are period averages in nominal U.S. dollars
- Large volume of export
- <u>Units</u>: U.S. Dollars per Metric Ton, Not Seasonally Adjusted

Seasonality

Stationarity

ACF and PACF

Model Selection

Data Forecasting

Model Diagnostics

Exponential Smoothing

Forecasting (ES)

Model Comparisons

Future Outlook

Thank You

SEASONALITY OF DATA

- Possible seasonal component present
- Wheat prices could be related to the harvest season

- ACF of seasonal component repeats after n lags
- Plot shows us that seasonality of data is 12 (n = 12)
- This makes sense since our dataset is monthly

Dataset

Seasonality

Stationarity

ACF and PACF

Model Selection

Data Forecasting

Model Diagnostics

Exponential Smoothing

Forecasting (ES)

Model Comparisons

Future Outlook

Thank You

STATIONARITY OF DATA

- Define function within python to check stationarity
- Intitial data is non-stationary:
 - ADF test statistic: -2.271
 - P-value: 0.182
- Stabilise variance with log transformation and take first difference of obtained series
- Transformed data is stationary:
 - ADF test statistic:-15.727063808321123
 - P-value:1,3029254061006328e-28

Dataset

Seasonality

Stationarity

ACF and PACF

Model Selection

Data Forecasting

Model Diagnostics

Exponential Smoothing

Forecasting (ES)

Model Comparisons

Future Outlook

Thank You

ACF AND PACF OF TRANSFORMED DATA

- ACF of transformed data cuts off after lag 1
- Process could be MA (1), with seasonality of 12

- PACF of transformed data cuts off after lag 1
- Process could be AR (1), with seasonality of 12

Dataset

Seasonality

Stationarity

ACF and PACF

Model Selection

Data Forecasting

Model Diagnostics

Exponential Smoothing

Forecasting (ES)

Model Comparisons

Future Outlook

Thank You

OUR MODEL SELECTION

- Import auto_arima from pmdarima to select optimal SARIMAX model
- Define seasonal component to be 12 (m = 12)
- Results show that a SARIMAX model with order = (1, 1, 1) and seasonal order = (1, 0, 1, 12) with AIC of 3217.431 is the best model for the given data
- Model is fitted using the above parameters, and trained on the training set, defined for 80% of the observations

Dataset

Seasonality

Stationarity

ACF and PACF

Model Selection

Data Forecasting

Model Diagnostics

Exponential Smoothing

Forecasting (ES)

Model Comparisons

Future Outlook

Thank You

FORECASTING WHEAT PRICES USING THE MODEL

- Prediction shows a sufficient fit for our predicted values in green
- Our forecasted values for the wheat prices until 2029 exhibit a downward trend, with local seasonal peaks
- Confidence interval for our forecasted values is given in yellow
- RMSE obtained for the model is: 17.61

Dataset Seasonality Stationarity ACF and PACF Model Selection **Data Forecasting Model Diagnostics Exponential Smoothing** Forecasting (ES) Model Comparisons Future Outlook Thank You References

MODEL DIAGNOSTICS

- Our fitted model diagnostics are shown on the right
- The quantile-quantile (QQ) plot on the bottom left shows us that our data is not normal distributed
- The correlogram on the bottom right shows there is no autocorrelation in the residuals
 - Uncorrelated
 Residuals with mean
 close to zero

Dataset Seasonality Stationarity ACF and PACF Model Selection **Data Forecasting Model Diagnostics Exponential Smoothing** Forecasting (ES) Model Comparisons Future Outlook Thank You

EXPONENTIAL SMOOTHING METHODS

- We estimated three different exponential methods: simple, with trend, and with trend and seasonal components
- We used the 'statsmodels' python package
- We trained and analyzed the models with the same time intervals for training and test set as in SARIMA (so, both results are comparable)

Exponential method	RMSE
Simple exponential	80.32 (alpha=0.2)
W/ trend (Holt)	87.91
W/ trend and seasonal (Winters)	87.13

Dataset Seasonality Stationarity ACF and PACF Model Selection **Data Forecasting** Model Diagnostics **Exponential Smoothing** Forecasting (ES) Model Comparisons Future Outlook Thank You References

FORECASTING (EXPONENTIAL SMOOTHING)

- We decided to use the Holt-Winters method to forecast future values
- We chose the best seasonal method with the train-test approach, then, trained the model again to predict the next 24 months
- The best fitted model was using additive seasonal method
- The 24-month forecast shows an upward trend (in opposite to the downward trend of the SARIMAX output), with seasonal cycles

Dataset Seasonality Stationarity ACF and PACF Model Selection **Data Forecasting** Model Diagnostics **Exponential Smoothing** Forecasting (ES) Model Comparisons Future Outlook Thank You References

MODEL COMPARISONS

SARIMAX

- The SARIMA model showed better fitting results out-of-sample in comparison to the exponential smoothing methods
- Showed root mean squared error of 17.61
- Predicted values closely follow observations from test dataset
- Forecasted values exhibit a downward trend

EXPONENTIAL SMOOTHING

- Exponential smoothing model demonstrated poorer fitting
- Lowest root mean squared error of 80.32, while chosen mothed showed RMSE of 87.91
- Predicted values differ from observations
- Forecasted values exhibit an upward trend

Dataset Seasonality Stationarity ACF and PACF Model Selection **Data Forecasting** Model Diagnostics **Exponential Smoothing** Forecasting (ES)

Future Outlook

Thank You

FUTURE CONSIDERATIONS

- Addition of exogenous variables to the dataset to train the SARIMAX model could improve the foracasted values
 - Possible variables could be oil prices, inflation data and the USD value
- Expand dataset from monthly to daily
- Investigate other methods of forecasting data, perhaps implementing machine learning

Dataset Seasonality Stationarity ACF and PACF Model Selection **Data Forecasting Model Diagnostics Exponential Smoothing** Forecasting (ES) Model Comparisons **Future Outlook** Thank You

THANK YOU

Questions? —

Dhruv, Gabriel, Maria, and Johana

REFERENCES

- Crain, Susan J. and Lee, Jae Ha, Volatility in Wheat Spot and Futures Markets, 1950-1993: Government Farm Programs, Seasonality, and Causality. J. OF FINANCE, Vol. 51 No.1, March 1996, Available at SSRN: https://ssrn.com/abstract=7123
- Ghoshray, A. (2010) A reexamination of trends in primary commodity prices, Journal of Development Economics. North-Holland. Available at: https://www.sciencedirect.com/science/article/pii/S0304387810000386
- International Monetary Fund, Global price of Wheat, retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/PWHEAMTUSDM, November 22, 2022.
- Jian Yang, Michael S. Haigh & David J. Leatham (2001) Agricultural liberalization policy and commodity price volatility: a GARCH application, Applied Economics Letters, 8:9, 593-598, DOI: 10.1080/13504850010018734
- Prem, K. (2018) Price elasticity of supply of paddy, wheat, cotton and mustard. Economic & Political Weekly. Available at: https://www.researchgate.net/figure/Price-Elasticity-of-Supply-of-Paddy-Wheat-Cotton-and-Mustard_tbl2_329586223
- (2022) Wheat crisis: Wheat prices increased in international market, Ground Report. Available at: https://groundreport.in/wheat-crisis-wheat-prices-increased-in-international-market/ (Accessed: November 23, 2022).

Dataset Seasonality Stationarity ACF and PACF Model Selection **Data Forecasting** Model Diagnostics **Exponential Smoothing** Forecasting (ES) Model Comparisons Future Outlook Thank You