Q15 Design a combinational circuit that converts a 4-bit gray cool to a 4-bit binary number. write the verilog dota flow model of the reruit



module  $Q_{-15}(G_3, G_1, G_1, G_0, G_1, G_0, G_3, B_1, B_1, B_0, G_0)$ ;
input  $G_3, G_2, G_1, G_0$ ;
output  $B_3, B_2, B_1, B_0$ ;
ossign  $B_3 = G_3$ ;
ussign  $B_1 = G_3$ ;

usign  $\theta_1 = G_3 \cap G_2$ ;
usign  $\theta_1 = G_3 \cap G_2 \cap G_1$ ;

ornign 80 = 63 1 62 1 6, 1 60;

Endnovelle

Q16 Construit a decoder of 5-to-32 with four 3-to-8 line decoder and a 2-to-4 line decoder. Use black diagram for the components

A1 204

A2 204

A4 308

Q17 Use decoder and enternal yates, design the Combinational circuit defined by the following three boolean function



 $\frac{6}{5} = \frac{(y'+y)^2}{5} = \frac{y'z}{4} + \frac{xz}{2}$   $\frac{1}{5} = \frac{(x+y)^2}{5} = \frac{xz}{4} + \frac{yz}{4}$ 





4-bit priority encoder wruit green below.



module encoder goter (Juput x, y, V, on input. O, D, D, D, O). ruire W, , D2 - ret; not (Oz-not, Oz); or (x, D, , D3); or (V, Do, O, , 2); ond (U1, O2- net, O1); or (y, D3, W1); Endmodule Q20 An 8X1 multiplexer has inputs A, O and C Connected to selectives input S2, S, and So. The data inputs To to I = ore as follows (a) I,= I,= I,= 0; I ,= I, = 1

$$I_{6} = D'$$

$$I_{1}$$

$$I_{1}$$

$$I_{3}$$

$$I_{4}$$

$$I_{5}$$

$$I_{6}$$

$$I_{7}$$

$$I_{1}$$

$$I_{1}$$

$$I_{1}$$

$$I_{2}$$

$$I_{3}$$

$$I_{4}$$

$$I_{5}$$

$$I_{6}$$

$$I_{7}$$

$$I_{1}$$

$$I_{1}$$

$$I_{2}$$

$$I_{3}$$

$$I_{4}$$

$$I_{5}$$

$$I_{5}$$

$$I_{5}$$

$$I_{5}$$

$$I_{5}$$

$$I_{5}$$

$$I_{5}$$

 $I_0 = I_4 = D$ 

(b) 
$$I_1 = I_2 = 0$$
  
 $I_3 = I_7 = 1$   
 $I_4 = I_5 = D$   
 $I_0 = I_0 = 0'$ 

