

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-130892

19.05.1998

(43) Date of publication of application:

(51)Int.CI.

C25D 15/02

F02F 5/00

F16J 9/26

(21)Application number: 08-314297

(71)Applicant: TEIKOKU PISTON RING CO

LTD

(22)Date of filing:

11.11.1996

(72)Inventor: HARAYAMA AKIRA

IMAI TOSHIAKI

(30)Priority

Priority number: 08255489

Priority date: 05.09.1996

Priority country: JP

(54) COMPOSITE CR PLATING FILM, AND SLIDING MEMBER HAVING THE **SAME**

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a composite Cr plating film in which hard grains are contained in the network cracks formed in a hard Cr plating film and which is excellent in wear resistance and seizure resistance and reduced in attacks on a mating material at sliding.

SOLUTION: A nitrided layer 2 is formed in the whole surface of a piston ring 1, and a composite Cr plating film 3 is formed on the nitrided layer 2, on the outside peripheral side. The composite Cr plating film 3 has network cracks 4 in its surface and inner part, and spherical aluminum grains 5 are contained and fixed in the cracks 4.

The average grain size of the spherical alumina grains 5 is 0.7-10µm, and the compounding ratio of the spherical alumina grains 5 is 3-15% by volume.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-130892

(43)公開日 平成10年(1998) 5月19日

(51) Int.Cl. ⁶		識別記号	FΙ		
C 2 5 D	15/02		C 2 5 D	15/02	G
F 0 2 F	5/00		F 0 2 F	5/00	F
F 1 6 J	9/26		F 1 6 J	9/26	С

審査請求 未請求 請求項の数5 FD (全 7 頁)

		台 互明	木明水 明水丸の数3 FD(宝 / 頁)
(21)出顧番号	特顯平8-314297	(71)出願人	000215785 帝国ピストンリング株式会社
(22)出願日	平成8年(1996)11月11日		東京都中央区八重洲1丁目9番9号
		(72)発明者	原山 章
(31)優先権主張番号	特願平8-255489		東京都中央区八重洲一丁目9番9号 帝国
(32)優先日	平8 (1996) 9月5日		ピストンリング株式会社内
(33)優先権主張国	日本(JP)	(72)発明者	今井 俊晶
			東京都中央区八重洲一丁目9番9号 帝国
			ピストンリング株式会社内
		(74)代理人	弁理士 岡部 健一

(54) 【発明の名称】 複合Crめっき皮膜およびこれを有する摺動部材

(57)【要約】

【課題】 硬質Crめっき皮膜に形成されている網目状のクラックに硬質粒子が含有されている複合Crめっき皮膜において、耐摩耗性・耐焼き付き性に優れ、しかも摺動相手材への攻撃性が小さい複合Crめっき皮膜を提供する。また、上記複合Crめっき皮膜を有する摺動部材を提供する。

【解決手段】 ピストンリング1の全表面に窒化層2を形成し、外周面の窒化層2上に複合Crめっき皮膜3を形成する。複合Crめっき皮膜3は、その表面および内部に網目状のクラック4を有しており、クラック4に球状のアルミナ粒子5が含有されて固定されている。球状アルミナ粒子5の平均粒径は0.7~10μmであり、球状アルミナ粒子5の複合比率は体積比率で3~15%である。

【特許請求の範囲】

【請求項1】 硬質Crめっき皮膜に形成されている網 目状のクラックに硬質粒子が含有されている複合C rめ っき皮膜において、

前記硬質粒子が球状粒子であり、

前記硬質粒子の平均粒径がO.7~10μmであり、 前記硬質粒子の複合比率が体積比率で3~15%である ことを特徴とする複合Crめっき皮膜。

【請求項2】 前記硬質粒子がアルミナからなることを 特徴とする請求項1記載の複合Crめっき皮膜。

【請求項3】 請求項1または2記載の複合Crめっき 皮膜が摺動面に形成されていることを特徴とする摺動部 材。

【請求項4】 前記摺動部材がピストンリングであり、 ピストンリングの摺動面である外周面に前記複合Crめ っき皮膜が形成されていることを特徴とする請求項3記 載の摺動部材。

【請求項5】 前記ピストンリングは上下面に窒化層が 形成されていることを特徴とする請求項4記載の摺動部 材。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、硬質Crめっき皮 膜に形成されている網目状のクラックに硬質粒子が含有 されている複合Crめっき皮膜、およびこの皮膜を被覆 した内燃機関用ピストンリングや圧縮機用ベーン等の摺

複合Crめっき皮膜厚さ:10~1000μm

・網目状クラックの幅

・硬質粒子の粒径

·硬質粒子

【0006】そして上記複合Crめっき皮膜は、欧州に おいて、低負荷のディーゼルエンジン用の一部のピスト ンリングに実用化されている。この複合Crめっき皮膜 の諸元は、次の通りである。

・皮膜厚さ $: 100 \sim 200 \mu m$

・皮膜硬さ : HV850~HV1000

・硬質粒子 : アルミナ粉砕粉 $: 4.5 \mu m$ ・硬質粒子の平均粒径 ・硬質粒子の複合比率 : 体積比率で5%

[0007]

【発明が解決しようとする課題】ところが、この複合C rめっき皮膜を被覆したピストンリングは、自身の耐摩 耗性・耐焼き付き性が優れる特長があるが、相手材への 攻撃性が大きく、シリンダボアの摩耗量が著しく増大す る不都合がある。このため、高負荷のディーゼルエンジ ンやガソリンエンジンに上記複合Crめっき皮膜を形成 したピストンリングを使用することができない。

【0008】この複合Crめっきの相手材攻撃性には、

動部材に関する。

[0002]

【従来の技術】硬質Crめっき皮膜中に硬質粒子を分散 させて、Crめっき皮膜の耐摩耗性を改善しようとする 試みがある。硬質Crめっき皮膜中に硬質粒子を分散さ せる方法は、これまでに以下のものが提案されている。

- ・硬質粒子を共析固着させる比較的低い電流密度と、C rめっきが通常の速度で電着する電流密度と、を用いて 繰り返し電解させるパルス電解法(特公昭59-028 640号参照)。
- · C rめっき浴に希土類元素またはその化合物を添加す る方法(特開昭61-003895号参照)。
- ・3価のCrめっき浴に硬質粒子と自己潤滑性粒子を加 える方法(特開昭62-120498号参照)。

【0003】しかし、これらの方法はいずれも実用化し ていず、我々の追試においても再現性に乏しかったり、 複合比率が極端に低かったり、あるいはめっき速度が極 めて低い等の問題があった。

【0004】以上の複合Crめっきは、硬質Crめっき 皮膜中に一様に硬質粒子を分散させることを意図してい るが、硬質Crめっき皮膜に形成された網目状のクラッ クを拡大形成し、その中に硬質粒子を含有させたものが ある(特開昭62-56600号参照)。この方法によ る複合Crめっきは、再現性・複合比率の制御性・めっ き速度等が満足しうるものである。

【0005】上記公報に以下の事項が開示されている。

: 0. 5µm以上 中でも1 μm以上

 $: 0.5 \sim 15 \mu m$

実施例では、0.5~5µm

: WC, $Al_2 O_3$, SiC, $Si_3 N_4$,

BC, ダイヤモンド

硬質粒子の形状や含有量が影響すると考えられるが、上 記公報は、これらについては全く記載していない。そし てこの複合Crめっきは、従来のNi系あるいはNi-Co-P系の複合めっきと異なり、硬質粒子の分布状態 やマトリックス金属が異なるので、従来の複合めっきの 知識を利用して相手攻撃性を低減することができない。 【0009】本発明の目的は、硬質Crめっき皮膜に形 成されている網目状のクラックに硬質粒子が含有されて いる複合Crめっき皮膜において、耐摩耗性・耐焼き付 き性に優れ、しかも摺動相手材への攻撃性が小さい複合 Crめっき皮膜を提供することにある。さらに本発明の 目的は、上記複合Crめっき皮膜を有するピストンリン グ等の摺動部材を提供することにある。

[0010]

【課題を解決するための手段】本発明は、硬質Crめっ き皮膜に形成されている網目状のクラックに硬質粒子が 含有されている複合C rめっき皮膜において、前記硬質 粒子が球状粒子であり、前記硬質粒子の平均粒径が0.

7~10μmであり、前記硬質粒子の複合比率が体積比率で3~15%であることを特徴とする。

【0011】上記複合Crめっき皮膜は内燃機関用ピストンリングや圧縮機用ベーン等の摺動部材の摺動面に被覆される。

【0012】本発明の複合Crめっき皮膜は、所定の硬質粒子を分散させて含有しているCrめっき浴を用いて、複合Crめっき工程とエッチング工程とを繰り返し行うことによって形成できる。

【0013】複合Crめっき工程とエッチング工程で形成される網目状のクラックの密度は、めっき面と平行な線分(長さ1mm)と交わるクラックの本数で簡易的に表すことができ、0(クラックレス)~200本/mm(マイクロクラックめっき)の範囲にある。クラック密度が高いとめっき皮膜の強度低下を生じ、逆に低いと硬質粒子の複合比率を高くできなくなる。本発明のクラック密度の望ましい範囲は、40~90本/mmである。【0014】クラックは断面が略V字状をなしており、その開口幅は硬質粒子の粒径よりも大きくなければならない。開口幅が小さいと硬質粒子の複合比率を上げることができず、逆に大きすぎると皮膜強度が低下する。一般的に開口幅の望ましい範囲は、4~10 μ mの範囲である。

【0015】複合Crめっき皮膜は硬質粒子の先端面が 1次摺動面をなし、Crめっき面は2次摺動面をなす。 【0016】複合Crめっき皮膜の摺動相手材への攻撃 性は粒子の形状によって差異が生じると考えられる。同 程度の粒径・複合比率で、形状が異なるアルミナ粒子を 複合した複合Crめっきに関する試験で、粒子先端部が 鋭利な角を有すると、相手材を過度に摩耗させることを 確認した。したがって、硬質粒子の形状は鋭利な角を有 さない球状粒子がよい。

【0017】球状硬質粒子の複合比率が増加しても相手攻撃性は増加しない。ちなみに、アルミナ等の粉砕粉(粒子が鋭利な角を有している。以下同じ。)の硬質粒子の場合は複合比率が増加すると相手攻撃性が高くなる。耐摩耗性・耐焼き付き性を良好にするために、硬質粒子の複合比率は高い方が望ましい。球状の硬質粒子を体積比率で3%以上複合したCrめっき皮膜は、従来のアルミナ等の粉砕粉の硬質粒子を複合したCrめっき皮膜に比べて相手攻撃性が極めて小さい。

【0018】複合比率を増加させるにはクラックを大きくしなければならないが、これには一定の限界があるので、体積比率で15%を越えて複合することはできない。

【0019】また、硬質粒子の粒径が大きいと相手攻撃性が高くなり、小さいと自身の摩耗が増加する。硬質粒子の平均粒径(粉末粒度)の望ましい範囲は、0.7~10μmである。

[0020]

【発明の実施の形態】図1は本発明の一実施形態を示し、ピストンリングの一部分を示す縦断面図である。ピストンリング1の全表面に窒化層2が形成され、外周面の窒化層2上に複合Crめっき皮膜3が形成されている。複合Crめっき皮膜3は、めっき面に垂直な方向から見て、その表面および内部に網目状のクラック4を有しており、鋭利な角を有さない球状のアルミナ粒子5がクラック4に含有されて固定されている。球状アルミナ粒子5の平均粒径は0.7~10μmであり、球状アルミナ粒子5の複合比率は体積比率で3~15%である。【0021】次に、上記ピストンリング1の複合Crめっき皮膜3のめっき処理について説明する。

【0022】ピストンリングの外周面に、(複合Crめっき)→(複合Crめっき工程-エッチング工程の繰り返し)を行う。

【0023】複合Crめっきのめっき浴組成、および複合Crめっき工程とエッチング工程の各条件の一例を下記に示す。なお、最初の複合Crめっきは、ストライクめっきで、通常3~10分であり、他の条件は下記に示す条件と同じである。

[0024]

②めっき浴組成

 CrO3
 250g/1

 H2 SO4
 1.0g/1

 H2 SiF6
 5g/1

 硬質粒子(球状アルミナ)
 20g/1

硬質粒子の平均粒径は0.7μmである。フッ化物を含有するめっき浴によると、(複合Crめっき工程-エッチング工程)のサイクルによるCrめっき層間の密着性が優れている。

②複合Crめっき

電流密度 60A/d m² めっき浴温 55℃ めっき時間 10分

③エッチング

電流密度 50A/dm² 55℃ 55℃ 1分 1分

【0025】上記の条件で、複合Crめっき工程→エッチング工程の1サイクルを行うと、図2(a)に示されているように、複合Crめっき層3Aがピストンリング1の外周面の窒化層2上に形成される。複合Crめっき層3Aは、表面に網目状に延びているクラック4が形成されており、このクラック4には球状アルミナ粒子5が固定されている。

【0026】更に、複合Crめっき工程→エッチング工程が繰り返して行われると、図2(b)に示されているように、最初の1サイクルの工程で形成された複合Crめっき層3Aの上に更に複合Crめっき層3Aのクラ

ック4内にある球状アルミナ粒子5は層内に閉じ込められて固定される。そして二層目の複合C rめっき層3B は、表面に網目状に延びているクラック4を有しており、このクラック4に球状アルミナ粒子5が固定されている。

【0027】以下、複合Crめっき工程→エッチング工程が所定回数、繰り返して行われると、ピストンリング1の外周面の窒化層2上に所定厚さで複合Crめっき皮膜3が形成される。

【0028】上記の条件で、複合Crめっき工程 \rightarrow エッチング工程の1サイクルを行うと、 10μ m程度のめっき厚さを得ることができるので、例えば複合Crめっき皮膜3の完成厚さ 100μ mを得るためには、研磨代を加えて 120μ mのめっき厚さが必要であるので、12サイクル繰り返す。

【0029】次に、往復動摩擦試験機を使用して摩耗試験を行った結果を説明する。

【0030】図3は、試験に使用した往復動摩擦試験機の概要を示す。ピン状の上試験片10は固定ブロック11により保持され、上方から油圧シリンダ12により下向きの荷重が加えられて、下試験片13に押接される。一方、平盤形状の下試験片13は可動ブロック14によ

り保持され、クランク機構15により往復動させられる。16はロードセルである。

【0031】試験条件は以下の通りである。

荷重 : 98N

速度 :600cpm

ストローク : 50mm

時間 : 1時間

潤滑油 : 軽油相当粘度の軸受油

【0032】(1)摩耗試験1

硬質粒子の形状および含有量が、相手材摩耗に及ぼす影響を上記往復動摩擦試験機を使用して試験した。

【0033】 ①試験片

上試験片:シリンダライナ用鋳鉄材

下試験片:ピストンリング用鋼製の下試験片に複合Crめっきを施した。上記の試験片の上下関係によると、上試験片の摩耗が促進されるので、複合Crめっき皮膜による相手材の摩耗を評価するのに好都合である。

【0034】 20複合C rめっき

前記本発明の一実施形態で説明したピストンリング1に おける複合Crめっき処理と同じ。ただし、めっき浴中 の硬質粒子は表1の通りである。

[0035]

表1

種類	平均粒径 µm	形状	製造メーカおよび仕様
アルミナ	1. 0	粉砕粉	昭和電工(株)、ホワイトモラン ダム(登録商標)WA#8000
アルミナ	0. 7	球状粉	(株) アドマテックス、高純度合 成球状アルミナ AO-502

【0036】3試験方法

上記往復動摩擦試験機を使用し、硬質粒子の複合比率 (体積比率)を変えて、摩耗試験を行った。

【0037】 **④**結果

硬質粒子の複合比率に対する上試験片(相手材)の摩耗 量の結果を図4に示す。なお、試験は下試験片に通常の 硬質Crめっき皮膜を被覆した場合についても行ってお り、図4の摩耗比は、下試験片に硬質Crめっき皮膜を 被覆したときの上試験片の摩耗量を1としている。図4 に示されているように、粉砕粉からなるアルミナ粒子を 含有した複合Crめっき皮膜は、含有量が増加すると、 上試験片(相手材)摩耗量が急激に増加することがわか る。これに対して、球状粉からなるアルミナ粒子を含有 した複合Crめっき皮膜は、含有量が増加しても、上試 験片(相手材)摩耗量は増加しないことがわかる。

【0038】(2)摩耗試験2

硬質粒子の形状が、相手材摩耗および自身の摩耗に及ば す影響を上記往復動摩擦試験機を使用して試験した。

【0039】①試験片

上試験片:ピストンリング用鋼製の上試験片の表面に複合Crめっきを施した。

下試験片:シリンダライナ用鋳鉄材

【0040】 2複合Crめっき

前記本発明の一実施形態で説明したピストンリング1に おける複合Crめっき処理と同じ。ただし、めっき浴中 の硬質粒子は表2の通りである。

[0041]

粉末記号	種類	平均粒 径 μm	複合比率 体積%	形状	製造メーカおよび仕様
A	アルミナ	1.0	7.5	粉砕粉	昭和電工(株)、ホワイトモランダム(登録商標) WA#8000
В	アルミナ	10.0	5. 0	球状粉	昭和電工(株)、球状アルミナ AS-50
С	アルミナ	0. 7	10.5	球状粉	(株) アドマテックス、高純度 合成球状アルミナ A0-502

(5)

【0042】30試験方法

上記往復動摩擦試験機を使用し、摩耗試験を行った。 【0043】 **②**結果

上試験片および下試験片の摩耗量の結果を図5に示す。 なお、試験は上試験片に通常の硬質Crめっき皮膜を被覆した場合についても行っており、図5の摩耗比は、上試験片に硬質Crめっき皮膜を被覆したときの摩耗量を 1としている。図5に示されているように、粉砕粉のアルミナ粒子を含有した複合Crめっき皮膜は、硬質Crめっき皮膜に対して自身の摩耗が1/3になるが、相手材摩耗は5倍となる。これに対して、球状粉のアルミナ粒子を含有した複合Crめっき皮膜は、硬質Crめっき皮膜に対して自身の摩耗が約1/3になり、相手材摩耗が同等である。このように、球状のアルミナ粒子を含む複合Crめっき皮膜は自身の摩耗および相手材摩耗とも優れていることがわかる。

【0044】次に、高面圧焼き付き試験機を使用して焼

回転速度 8 m/s

荷重 20kgfより開始

10kgf/minの割合で段階的に増加

潤滑油 軽油

油温 80℃

【0048】(1)焼き付き試験

硬質粒子の形状が、焼き付き特性に及ぼす影響を上記焼き付き試験機を使用して試験した。

【0049】00試験片

試験片:ピストンリング用鋼製の試験片の表面に複合Crめっきを施した。相手試験片:シリンダライナ用鋳鉄材

【0050】②複合Crめっき 前記摩耗試験2の場合と同じ。

【0051】3試験方法

上記高面圧焼き付き試験機を使用し、焼き付き試験を行った。

【0052】 @結果

き付き試験を行った結果を説明する。

【0045】図6は、試験に使用した高面圧焼き付き試験機の概要を示す。試験片20はロータ21により保持され、ロータ21の回転により回転させられる。一方、相手試験片22はステータ23により保持され、油圧装置により所定荷重Pでロータ21側に押し付けられる。【0046】このような装置において、ステータ23に形成されている注油孔24から摺動面に所定量の給油をしながら、試験片20を回転させる。一定時間毎に試験片20に作用させる荷重を段階的に増加させ、試験片20と相手試験片22との摺動により発生するトルクをトルクメータで測定し、記録計に記録させる。焼き付き現象が発生するとトルクが急激に上昇する。したがって、トルクが急激に上昇するときの試験片20に作用する荷重を焼き付き荷重とし、この焼き付き荷重の大小で焼き付き特性の良否を判定する。

【0047】試験条件は次の通りである。

焼き付き試験で得られた各試験片の焼き付き荷重を図7に示す。なお、試験は試験片に通常の硬質Crめっき皮膜を被覆した場合についても行っており、図7に示されているように、アルミナ粒子を含有した複合Crめっき皮膜は硬質Crめっき皮膜よりも耐焼き付き性が優れていることがわかり、さらに、複合Crめっき皮膜は硬質粒子が粉砕粉よりも球状粉の方が耐焼き付き性が優れていることがわかる。そして、真球状である(C)のアルミナ粒子を含んでいる複合Crめっき皮膜が最も高い焼き付き荷重を示している。

[0053]

【発明の効果】以上説明したように本発明の複合Crめっき皮膜は、耐摩耗性・耐焼き付き性に優れ、しかも摺

動相手材への攻撃性が小さいという効果を有している。 したがって、この複合Crめっき皮膜を高負荷のディー ゼルエンジンやガソリンエンジンのピストンリングある いは圧縮機のベーン等の摺動部材に適用すれば、優れた 摺動特性を備えた摺動部材を提供できる。

【図面の簡単な説明】

【図1】本発明の一実施形態を示しており、(a)はピストンリングの一部分を示す縦断面図、(b)はピストンリングにおける複合Crめっき皮膜の一部をめっき面と垂直な方向から見た拡大図である。

【図2】上記ピストンリングにおける複合C rめっき皮膜の製造工程を説明する斜視図であり、(a) は複合C rめっき工程→エッチング工程の1 サイクル後を示し、(b) は同工程の2サイクル後を示す。

【図3】往復動摩擦試験機の説明図である。

【図4】摩耗試験1の試験結果を示すグラフである。

【図5】摩耗試験2の試験結果を示すグラフである。

【図6】高面圧焼き付き試験機の説明図である。

【図7】焼き付き試験の試験結果を示すグラフである。

【符号の説明】

- 1 ピストンリング
- 2 窒化層
- 3 複合C rめっき皮膜
- 4 クラック
- 5 球状アルミナ粒子
- 10 上試験片
- 11 固定ブロック
- 12 油圧シリンダ
- 13 下試験片
- 14 可動ブロック
- 15 クランク機構
- 16 ロードセル
- 20 試験片
- 21 ロータ
- 22 相手試験片
- 23 ステータ
- 24 注油孔

【図1】

【図2】

