

ECONOMIC LOT SCHEDULING

Economic lot sizing

□ Objective: minimize total cost

- setup costs
- inventory holding costs
- □Optimal schedule
 - Trade-off between the two objectives
 - Cyclic schedules are used often

Applications

- Continuous manufacturing: chemical, paper, pharmaceutical.
- Service industry: retail procurement (for each item)

João Miguel da Costa Sousa

261

Scheduling problem

- □ Determine the length of the runs (lot sizes)
 - gives lot sizes
- □ Determine the order of the runs
 - sequence to minimize setup cost
- $\begin{tabular}{l} \blacksquare E conomic \ Lot \ Scheduling \ Problem \ (ELSP) \end{tabular}$

João Miguel da Costa Sousa

262

Overview

☐ One type of item / one machine

- with and without setup time
- **□** Several types of items / one machine
 - rotation schedules
 - arbitrary schedules
 - with / without sequence dependent setup times / cost
- **□** Generalizations to multiple machines

João Miguel da Costa Sousa

263

One type of item

- ☐ Single machine
- ☐ Single item type
- ☐ Production rate *Q*/time
- ☐ Demand rate D/time
- **▶** Problem: determine the run length

João Miguel da Costa Sousa

Minimize cost

- \Box Let x denote the cycle time
- \Box Demand over a cycle = Dx
- Length of production run needed = $Dx/Q = \rho x$
- \square Maximum inventory level = (Q D)Dx/Q

Costs

- \square Setup cost is c and inventory holding cost per item per unit time is h.
- \square Average setup cost is c/x
- ☐ Average inventory holding cost:

$$\frac{1}{2}h\!\!\left(Dx\!-\!\frac{D^2x}{Q}\right)$$

☐ Total cost

$$\frac{1}{2}h\!\!\left(Dx\!-\!\frac{D^2x}{Q}\right)\!+\!\frac{c}{x}$$

João Miguel da Costa Sousa

200

Optimizing cost

- $\Box \text{Solve min} \left[\frac{1}{2} h \left(Dx \frac{D^2 x}{Q} \right) + \frac{c}{x} \right]$
- \Box Derivative with respect to x:

$$\frac{d}{dx}\left\{\frac{1}{2}h\left(Dx - \frac{D^2x}{Q}\right) + \frac{c}{x}\right\} = \frac{1}{2}hD\left(1 - \frac{D}{Q}\right) - \frac{c}{x^2}$$

□ Solving the minimization problem:

$$\frac{1}{2}hD\left(1-\frac{D}{Q}\right)-\frac{c}{x^2}=0$$

João Miguel da Costa Sousa

267

Optimal cycle time

$$\frac{1}{2}hD\left(1-\frac{D}{Q}\right) = \frac{c}{x^2}$$

$$x^2 = \frac{2Qc}{hD(Q-D)}$$

$$x = \sqrt{\frac{2Qc}{hD(Q - D)}}$$

João Miguel da Costa Sousa

268

Optimal lot size

- $\Box \text{Total production} \quad Dx = \sqrt{\frac{2DQc}{h(Q-D)}}$
- ■When production capabilities are unlimited:

$$\sqrt{\frac{2DQc}{h(Q-D)}} \xrightarrow{\varrho \to \infty} \sqrt{\frac{2c}{hD}}$$

□ Economic Lot Size (ELS) or Economic Order Quantity (EOQ):

 $Dx = \sqrt{\frac{2Dc}{h}}$

João Miguel da Costa Sousa

269

Setup time

- \square Setup time s
- □ Idle time of a machine during a cycle: x(1 D/Q)

 $\rho = \frac{D}{Q} = \text{utilization of machine}$

- \square If $s \le x(1-\rho)$ solution is still optimal
- Otherwise cycle length $x = \frac{s}{1-\rho}$ is optimal, i.e. machine is never idle.

João Miguel da Costa Sousa

Example 7.2.1

- \square Production Q = 90/week
- \square Demand D = 50/week
- □ Setup cost c = 2000€
- ☐ Holding cost h = 20 €/item

$$x = \sqrt{\frac{2 \times 90 \times 2000}{20 \times 50 \times (90 - 50)}} = \sqrt{\frac{3600}{10 \times 40}} = \sqrt{\frac{36}{4}} = 3$$

João Miguel da Costa Sousa

271

Example with setup times

- Now assume setup time
- ☐ If s < 1.33 weeks (about 9 days) then 3 weeks cycle is still optimal
- ☐ Otherwise the cycle time must be:

$$x = \frac{s}{1-a}$$

- ☐ If setup last 2 weeks (maintenance and cleaning):
- $\Box x = 2/(1 5/9) = 4.5$ weeks

João Miguel da Costa Sousa

273

Example 7.2.2

 $\square Q = 0.3333, D = 0.10, c = 900, h = 50$

determine x, lot size

$$x = \sqrt{\frac{60}{0.5(0.3333 - 0.1)}} = 22.678$$

- □ Lot size: Dx = 2.2678.
- ■What happens in a discrete setting?

João Miguel da Costa Sousa

275

Example 7.2.2 (discrete)

- \square Time to produce one item is p = 1/Q = 3 days.
- □Demand rate is 1 item every 10 days.
- \square Lot size of k has to be produced every 10k days.
 - Total cost per day of lot size of 1 every 10 days is 90/10 = 9.
 - Total cost of lot size of 2 every 20 days is:

 $(90 + 7 \times 5)/20 = 6.25$

• Total cost of lot size of 3 every 30 days is: $(90 + 7 \times 5 + 14 \times 5)/30 = 6.5$

 \square So the optimal is to produce every 20 days a lot of 2.

João Miguel da Costa Sousa

Multiple items and rotation schedules

- \square Now assume n different items
- \square Demand rate for item j is D_i
- \square Production rate of item *j* is Q_i
- ☐ Setup independent of the sequence
- \square Length of production run of item j is $D_i x/Q_i$
- □ Rotation schedule: single run of each item

João Miguel da Costa Sousa

277

Scheduling decision

- □Cycle length determines the run length for each item
- \square Only need to determine the cycle length x
- \square *Average inventory level* of item *j*:

$$\frac{1}{2} \left(D_j x - \frac{D_j^2 x}{Q_j} \right)$$

 \square With cost c_i , the *total average cost* per unit time is

$$\sum_{j=1}^{n} \left(\frac{1}{2} h_j \left(D_j x - \frac{D_j^2 x}{Q_j} \right) + \frac{c_j}{x} \right)$$

João Miguel da Costa Sousa

...

Optimal lot size

■ Solving as in the previous case:

$$x = \sqrt{\left(\sum_{j=1}^{n} \frac{h_{j} D_{j} (Q_{j} - D_{j})}{2Q_{j}}\right)^{-1} \sum_{j=1}^{n} c_{j}}$$

☐ Machine idle time during a cycle:

$$x \left(1 - \sum_{j=1}^{n} \frac{D_j}{Q_j} \right)$$

João Miguel da Costa Sousa

279

Optimal lot size

 \Box Utilization factor of the machine due to item *j*:

$$\rho_j = \frac{D_j}{Q_j}$$

 \square With production capabilities unlimited ($Q_i \rightarrow \infty$):

$$x = \sqrt{\left(\sum_{j=1}^{n} \frac{h_{j} D_{j}}{2}\right)^{-1} \sum_{j=1}^{n} c_{j}}$$

João Miguel da Costa Sousa

280

Example 7.3.1

☐ Production rates, demand rates, holding costs and setup costs

items	1	2	3	4
D_j	50	50	60	60
Q_j	400	400	500	400
h_j	20	20	30	70
c_{j}	2000	2500	800	0

João Miguel da Costa Sousa

281

Û

Optimal cycle length

$$x = \sqrt{\left(\sum_{j=1}^{n} \frac{h_{j} D_{j} (Q_{j} - D_{j})}{2Q_{j}}\right)^{-1} \sum_{j=1}^{n} c_{j}}$$

$$= \sqrt{\left(2 \times \frac{10 \times 350}{8} + \frac{18 \times 440}{10} + \frac{42 \times 340}{8}\right)^{-1} 5300}$$

$$= \sqrt{\left(\frac{10 \times 350}{4} + \frac{18 \times 440}{10} + \frac{42 \times 340}{8}\right)^{-1} 5300}$$

$$= \sqrt{(3452)^{-1} 5300} = \sqrt{1.5353} = 1.24 \text{ months}$$

João Miguel da Costa Sousa

Solution

- \square Idle time is 0.48x = 0.595 months.
- ☐ The total average cost per time unit is:

$$\sum_{j=1}^{n} \left(\frac{1}{2} h_j \left(D_j x - \frac{D_j^2 x}{Q_j} \right) + \frac{c_j}{x} \right) =$$

= 2155 + 2559 + 1627 + 2213 = 8554

☐ As the setup cost of item 4 is zero, a rotation schedule makes no sense here. We will address this problem later.

João Miguel da Costa Sousa

With setup times

- ☐ With sequence independent setup costs and no setup times the sequence within each lot does not matter
 - ⇒ Only a lot sizing problem
- □ Even with setup times, if they are not job dependent then still only lot sizing

João Miguel da Costa Sousa

Job independent setup times

- ☐ If sum of setup times < idle time then our optimal cycle length remains optimal
- ☐ Otherwise we take it as small as possible.
- \square By increasing x until setup time is equal to idle time:

$$\sum_{j=1}^{n} s_j = x \left(1 - \sum_{j=1}^{n} \rho_j \right)$$

$$\Box \text{ The optimal } x^* \text{ is given by:}$$

$$x^* = \left(\sum_{j=1}^n s_j\right) / \left(1 - \sum_{j=1}^n \rho_j\right)$$

Job dependent setup times

- Now there is a sequencing problem
- **□Objective**: minimize sum of setup times
- ➤ Equivalent to the Traveling Salesman Problem (TSP):
- A salesman must visit *n* cities exactly once with the objective of minimizing the total travel time, starting and ending in the same city.

João Miguel da Costa Sousa

Equivalence to TSP

- \square Item = city
- ☐ Travel time = setup time
- ☐TSP is NP-hard
- ☐ If best sequence has

sum of setup times < idle time

⇒ optimal lot size and sequence

João Miguel da Costa Sousa

Long setup

- ☐ If sum of setups > idle time, then the optimal schedule has the property:
 - · Each machine is either producing or being setup for production
- ☐ The sequence is obtained by applying the **Shortest Setup Time first (SST).**
- ☐ This is an extremely difficult problem with arbitrary setup times.

João Miguel da Costa Sousa

Example 7.3.2

- \square Same data as Example 7.3.1 with setup times.
- \square Possible sequences as 3! = 6.
- **■**Setup times:

items	1	2	3	4
s_{1k}	-	0.064	0.405	0.075
s_{2k}	0.448	-	0.319	0.529
$s_{3k} \\$	0.043	0.234	-	0.107
S _{4k}	0.145	0.148	0.255	-

João Miguel da Costa Sousa

Solution

- Recall that without setup times:
 - Cycle time is 1.24 months
 - Total idle time is 0.595 months
- ☐ Six sequences can be **enumerated** to find the best one.
- ❖ Possible solutions:
 - Sequence 1, 4, 2, 3 requires a total setup of 0.585 months and is optimal.
 - If SST is applied, sequence 1, 2, 3, 4 is selected. It requires a total setup of 0.635 months: not optimal and exceeds idle time!

João Miguel da Costa Sousa

Arbitrary schedules

- ☐ Sometimes a rotation schedule does not make sense (remember problem with no setup cost)
- ☐ For example, we might want to allow a cycle 1,4,2,4,3,4 if item 4 has no setup cost
- The problem is NP-hard: no efficient algorithms exist.

João Miguel da Costa Sousa

Problem formulation

- ☐ Assume sequence-independent setup cost and times
- ☐ Formulate as a nonlinear program:

min min COST

s.t.

demand met over the cycle demand is met between production runs

João Miguel da Costa Sousa

Notation

 \square Recall that $\rho_i = D_i/Q_i$. A feasible solution exists iff:

$$\rho = \sum_{j=1}^{n} \rho_{j} < 1$$

$$\Box$$
 Setup cost and setup times

$$c_{jk} = c_k, \ s_{jk} = s_k.$$

☐ Define a sequence as:

$$j_1,...,j_{\nu}$$
 ($\nu \ge n$)

• if $j_l = k$, then item k is produced in the l-th position of the sequence

João Miguel da Costa Sousa

Notation

 \square Item *k* produces in *l*-th position:

$$Q^l = Q_{j_l} = Q_k$$

- \square Setup cost: c^l ,
- \square Setup time: s^l ,
- \square Production time: t^{\dagger}
- \square Idle time: u^l

João Miguel da Costa Sousa

Inventory cost

- \Box Let *x* be the cycle time
- \Box Let v be the time between production of item k in j^l -th position:

 $v = \frac{Q^l \tau^l}{D^l} = \frac{Q_k \tau^l}{D_k}$

■ The highest inventory level is $(Q^l - D^l) \tau^l$, and the total inventory cost for item k is

$$\frac{1}{2}h^l(Q^l-D^l)\left(\frac{Q^l}{D^l}\right)(\tau^l)^2$$

Mathematical Program

$$\min_{S} \min_{x,\tau',u'} \frac{1}{x} \left(\sum_{l=1}^{v} \frac{1}{2} h^{l} (Q^{l} - D^{l}) \left(\frac{Q^{l}}{D^{l}} \right) (\tau^{l})^{2} + \sum_{l=1}^{v} c^{l} \right)$$

$$\sum_{i \in I} Q_k \tau^j = D_k x.$$

$$k = 1, ..., n$$

subject to
$$\sum_{j \in I_k} Q_k \tau^j = D_k x, \qquad k = 1, ..., n$$

$$\sum_{j \in I_k} (\tau^j + s^j + u^j) = \left(\frac{Q^l}{D^l}\right) \tau^l, \quad l = 1, ..., v$$

$$\sum_{j=1}^{\nu} (\tau^j + s^j + u^j) = x$$

Mathematical Program

- $\square I_k$ is the set of all positions in the sequence in which item k is produced.
- $\Box L_l$ are all the positions in the sequence starting with position l (when item k is produced) up to the position in the sequence where item k is produced next.
- $\square S$ is the set of all possible cyclic schedules.
- 1st constraint: meet demand of item k over cycle
- 2nd constraint: meet demand of item k over v
- 3rd constraint: cycle length

João Miguel da Costa Sousa

Two problems

- □ELSP master problem
 - finds the best sequence $j_1,...,j_v$
- □ELSP subproblem
 - finds the best production times, idle times, and cycle length (τ^l, u^l, x) given the sequence
- > Key idea: think of them separately!

João Miguel da Costa Sousa

Subproblem (lot sizing)

■ Sequence is fixed.

$$\min_{x,\tau',u'} \frac{1}{x} \left(\sum_{l=1}^{\nu} \frac{1}{2} h^{l} (Q^{l} - D^{l}) \left(\frac{Q^{l}}{D^{l}} \right) (\tau^{l})^{2} + \sum_{l=1}^{\nu} c^{l} \right)$$

subject to
$$\sum_{j \in L_l} (\tau^j + s^j + u^j) = \left(\frac{Q^l}{D^l}\right) \tau^l, \quad l = 1, ..., \nu$$

$$\sum_{i=1}^{\nu} (\tau^j + s^j + u^j) = x$$

➤ But first: determine a sequence

João Miguel da Costa Sousa

Master problem

- Sequencing complicated
- Heuristic approach
- ☐ Frequency Fixing and Sequencing (FFS)
- ☐ Focus on how often to produce each item
- Phases:
 - 1. Computing relative frequencies
 - 2. Adjusting relative frequencies
 - 3. Sequencing

João Miguel da Costa Sousa

1. Computing relative frequencies

- \square Let y_k denote the number of times item k is produced
- \square If runs of k are of equal length and equally spaced, frequency y_k and cycle time x determines run time τ_k :

$$\tau_k = \frac{\rho_k x}{y_k}$$

- ■We will
 - simplify the objective function by substituting

$$a_k = \frac{1}{2}h_k(Q_k - D_k)\rho_k$$

drop the second constraint ⇒ sequence no longer important

João Miguel da Costa Sousa

Rewriting objective function

$$\min_{x,\tau',u^l} \frac{1}{x} \left(\sum_{l=1}^{\nu} \frac{1}{2} h^l (Q^l - D^l) \left(\frac{Q^l}{D^l} \right) (\tau^l)^2 + \sum_{l=1}^{\nu} c^l \right)$$

tem
$$k$$
: y_k times

item k:
$$y_k$$
 times
$$= \frac{1}{x} \left(\sum_{k=1}^n \frac{1}{2} y_k h_k (Q_k - D_k) \left(\frac{Q_k}{D_k} \right) \tau_k^2 + \sum_{k=1}^n c_k y_k \right)$$

substitute:
$$a_{\nu}$$
, ρ_{ν}

substitute:
$$a_k, \rho_k = \frac{1}{x} \left(\sum_{k=1}^n a_k y_k \frac{\tau_k^2}{\rho_k^2} + \sum_{k=1}^n c_k y_k \right)$$

substitute:
$$\tau_{\scriptscriptstyle k}$$

$$= \sum_{k=1}^{n} \frac{a_k x}{y_k} + \sum_{k=1}^{n} \frac{c_k y_k}{x}$$

Assumption for each item

production runs of equal length and evenly spaced

João Miguel da Costa Sousa

Mathematical program

□ Reduces to the nonlinear programming problem:

$$\min_{y_k, x} \sum_{k=1}^{n} \frac{a_k x}{y_k} + \sum_{k=1}^{n} \frac{c_k y_k}{x}$$

subject to

$$\sum_{k=1}^{n} \frac{S_k y_k}{x} \le 1 - \rho$$

João Miguel da Costa Sousa

Solution

□ Using Lagrangean multiplier λ :

$$y_k = x \sqrt{\frac{a_k}{c_k + \lambda s_k}}$$

- ☐ Adjust cycle length for frequencies
- \square If there are idle times then $\lambda = 0$
- \square With no idle times, λ must satisfy

$$\sum_{k=1}^{n} \left(s_k \sqrt{\frac{a_k}{c_k + \lambda s_k}} \right) = 1 - \rho, \quad \text{since } \sum_{k=1}^{n} s_k y_k = (1 - \rho)x$$

João Miguel da Costa Sousa

2. Adjusting the frequencies

- ☐ Adjust the frequencies such that they are
 - integer
 - powers of 2
 - e.g. such that smallest $y_k = 1$
- Cost is within 6% of optimal cost
- New frequencies and run times:

$$y_k$$
 and τ_k

João Miguel da Costa Sousa

3. Sequencing

- Variation of LPT
- Let

$$y_{\text{max}} = \max(y_1, ..., y_n)$$

- \square Consider the problem with y_{\max} machines in parallel and y_k jobs of length τ_k **evenly spaced**
- \square Example: when $y_{\text{max}} = 6$, and $y_k = 3$, then there are two
 - assign 3 jobs to machines (1,3,5) or to (2,4,6)

3. Sequencing

- \square List pairs (y_k, τ_k) in decreasing order
- \square Pairs with equal y_k are listed in decreasing order of processing time τ_k
- ☐ Schedule one at a time considering spacing
- □ Equal lot sizes is possible only if for all machines:

assigned processing time $<\frac{x}{y_{\text{max}}}$

João Miguel da Costa Sousa

307

Example 7.4.1

□ Consider example 7.3.1 *without rotation schedule*.

items	1	2	3	4
D_j	50	50	60	60
Q_j	400	400	500	400
h_j	20	20	30	70
c_{j}	2000	2500	800	0

João Miguel da Costa Sousa

U

Example (cont.)

- □ From Ex. 7.3.1: $(1 \rho) x = 0.48 x$
- ☐ As:

$$a_k = \frac{1}{2} h_k (Q_k - D_k) \rho_k$$

■ We can compute:

	2				
Q_j 400 400 500 400 h_j 20 20 30 70 c_j 2000 2500 800 0 ρ_j 0.125 0.125 0.12 0.15	items	1	2	3	4
h_j 20 20 30 70 c_j 2000 2500 800 0 ρ_j 0.125 0.125 0.12 0.15	D_j	50	50	60	60
c _j 2000 2500 800 0 p 0.125 0.125 0.12 0.15	Q_j	400	400	500	400
ρ _j 0.125 0.125 0.12 0.15	h_j	20	20	30	70
,	c_{j}	2000	2500	800	0
a _j 437.5 437.5 792 1785	P	0.125	0.125	0.12	0.15
	a_j	437.5	437.5	792	1785

João Miguel da Costa Sousa

INCENTION OF THE CHIEF

Example (cont.)

- ☐ It follows that:
 - $y_1 = 0.47 x$
 - $y_2 = 0.42 x$
 - $y_3 = 0.99 x$
 - y₄ = ∞
- \square Suppose that cycle time *x* is 2 months.
- □ Approximate values: $y_1 = y_2 = 1$, $y_3 = 2$, $y_4 = 16$.

João Miguel da Costa Sousa

310

Example (cont.)

- \square Run times are $\tau_k = \frac{\rho_k x}{y_k}$:
- $\Box \tau_1 = \tau_2 = 0.25, \ \tau_3 = 0.12, \ \tau_4 = 0.3/16.$
- ☐ Application of LPT heuristic
 - Number of machines in parallel $y_{\text{max}} = 16$.
 - Item 4 is assigned to all 16 machines with processing times 0.3/16.
 - Item 3 is assigned to machines 1 and 9.
 - Item 2 is put in machine 5 and item 1 in machine 13.
 - Cyclic schedule: |4,3|4|4|4|,1|4|4|4,3|4|4|4|,2|4|4|4|4|

João Miguel da Costa Sousa

Example: another solution

- ☐ The total average cost per time unit is: 1875 + 2125 + 1592 + 190 = 5782
- ☐ It was 8554 in Example 7.3.1!

João Miguel da Costa Sousa

313

Example 7.4.2: with setup times

 \square The setup times s_i are sequence independent.

items	1	2	3	4
D_j	50	50	60	60
Q_j	400	400	500	400
h_j	20	20	30	70
c_{j}	2000	2500	800	0
s_j	0.5	0.2	0.1	0.2
ρ_{j}	0.125	0.125	0.12	0.15
a_i	437.5	437.5	792	1785

João Miguel da Costa Sousa

314

Solution

- ☐ Item 4 cannot be arbitrarily high as before.
- \Box Find λ that satisfies:

$$\sum_{k=1}^{n} \left(s_k \sqrt{\frac{a_k}{c_k + \lambda s_k}} \right) = 1 - \mu$$

- ☐ It has the value λ ≈ 8000.
- ☐ The frequencies are given by

$$y_k = x \sqrt{\frac{a_k}{c_k + \lambda s_k}}$$

João Miguel da Costa Sousa

315

Solutions

- □ Thus: $y_1 = 0.27x$, $y_2 = 0.33x$, $y_3 = 0.70x$ and $y_4 = 1.05x$.
- \square If cycle time is three months, solutions can be: (1,1,2,2) or (1,1,2,4), all power of 2
- \square Solution (1,1,2,2) has the sequence 1,3,4,2,3,4
 - Idle time before considering setups is $0.48 \times 3 = 1.44$
 - Total amount of setup time required is 1.3
 - ➤ Schedule is feasible.
 - ➤ Cycle time can be slightly reduced.

João Miguel da Costa Sousa

31

Solutions (concl.)

- \square Solution (1,1,2,4) has the sequence 1,4,3,4,2,4,3,4
 - Total amount of setup time required is 1.7 and schedule is not feasible in a cycle length of 3 months.
 - The cycle length should be larger (see Exercise 7.10)

João Miguel da Costa Sousa

317

More general ELSP models

- ☐ So far, all models are single machine models
- ☐ Extensions to multiple machines
 - parallel machines
 - flow shop
 - flexible flow shop

João Miguel da Costa Sousa

Parallel machines

- $\square m$ identical machines in parallel
- ☐ There are setup cost but no setup time
- \square Item process on only one of the m machines
- \square For item j, utilization factor is again $\rho_i = D_i/Q_i$.
- □ Condition for a feasible solution is:

$$\sum_{j=1}^{n} \rho_{j} \leq m$$

João Miguel da Costa Sousa

319

Decision variables

- Assume
 - rotation schedule
 - equal cycle for all machines
- ☐ Same as previous multi-item problem
- ☐ Addition: assignment of items to machines
- □ Objective: balance the load
- \triangleright Use heuristic LPT with ρ_i as processing times.

João Miguel da Costa Sousa

221

Different cycle lengths

- ☐ Allow different cycle lengths for machines
- ☐ Intuition: should be able to reduce cost
- ☐ Objective: assign items to machines to balance the load
- ☐ Complication: should not assign items that favor short cycle to the same machine as items that favor long cycle

João Miguel da Costa Sousa

321

Heuristic balancing

- □ Compute cycle length for each item
- □ Rank in decreasing order
- ☐ Allocate jobs sequentially to the machines until capacity of each machine is reached
- ☐ Adjust balance if necessary

João Miguel da Costa Sousa

322

Further generalizations

☐ Sequence dependent setup

- ■Must consider:
 - preferred cycle time
 - machine balance
 - setup times
- ☐ Problem is unsolved
- \square General schedules \Rightarrow even harder!
- ☐ This problem requires more research!

João Miguel da Costa Sousa

323

Flow shop

- Machines configured in series
- ☐ Assume no setup time
- ☐ Assume production rate of each item is identical for every machine
 - ⇒ Can be synchronized
- ➤ Problem is reduced to single machine problem with setup cost:

 $c_j = \sum_{i}^m c_{ij}$

João Miguel da Costa Sousa

Variable production rates

- ☐ Production rate for each item *not* equal for every machine
- ☐ Difficult problem
- ☐ Little research
- ☐ Flexible flow shop: need even more stringent conditions

João Miguel da Costa Sousa

Discussion

- ■Lot sizing models
 - demand assumed known, which determines throughput
 - make-to-stock systems: due date of little importance/not available
 - Objective: minimize inventory and setup costs (time).
- ☐ Practical problems are a combination of make-to-stock and make-to-order.
 - In these problems facilities are set up in series. This area of research is known as:

Supply Chain Management

João Miguel da Costa Sousa