We start with the expression for the susceptibility for the intraband transitions,

$$\chi_{i,\text{abc}}^{s,\ell} = -\frac{e^3}{\Omega \hbar^2 \omega_3} \sum_{mnk} \frac{\mathcal{V}_{mn}^{\Sigma,\text{a},\ell}}{\omega_{nm}^S - \omega_3} \left(\frac{f_{mn} r_{nm}^{\text{b}}}{\omega_{nm}^S - \omega_\beta} \right)_{;k^{\text{c}}}, \tag{1}$$

where s denotes surface and S refers to the scissors correction. This expression diverges as $\omega_3 \to 0$. To eliminate this divergence we take the partial fraction expansion,

$$I = C \left[-\frac{1}{2(\omega_{nm}^S)^2} \frac{1}{\omega_{nm}^S - \omega} + \frac{2}{(\omega_{nm}^S)^2} \frac{1}{\omega_{nm}^S - 2\omega} + \frac{1}{2(\omega_{nm}^S)^2} \frac{1}{\omega} \right]$$

$$- D \left[-\frac{3}{2(\omega_{nm}^S)^2} \frac{1}{\omega_{nm}^S - \omega} + \frac{4}{(\omega_{nm}^S)^3} \frac{1}{\omega_{nm}^S - 2\omega} + \frac{1}{2(\omega_{nm}^S)^3} \frac{1}{\omega} - \frac{1}{2(\omega_{nm}^S)^2} \frac{1}{(\omega_{nm}^S - \omega)^2} \right], (2)$$

where $C = f_{mn} \mathcal{V}_{mn}^{\Sigma,a}(r_{nm}^{\text{LDA,b}})_{;k^c}$, and $D = f_{mn} \mathcal{V}_{mn}^{\Sigma,a} r_{nm}^b \Delta_{nm}^c$.

Time-reversal symmetry leads to the following relationships:

$$\mathbf{r}_{mn}(\mathbf{k}) = \mathbf{r}_{nm}(-\mathbf{k}),$$

$$\mathbf{r}_{mn;\mathbf{k}}(\mathbf{k}) = -\mathbf{r}_{nm;\mathbf{k}}(-\mathbf{k}),$$

$$\mathcal{V}_{mn}^{\Sigma,a}(-\mathbf{k}) = -\mathcal{V}_{nm}^{\Sigma,a}(\mathbf{k}),$$

$$\omega_{mn}^{S}(-\mathbf{k}) = \omega_{mn}^{S}(\mathbf{k}),$$

$$\Delta_{nm}^{a}(-\mathbf{k}) = -\Delta_{nm}^{a}(\mathbf{k}).$$

For a clean cold semiconductor, $f_n = 1$ for an occupied or valence (n = v) band, and $f_n = 0$ for an empty or conduction (n = c) band independent of \mathbf{k} , and $f_{nm} = -f_{mn}$.

The $\frac{1}{\omega}$ terms cancel each other out. We notice that the energy denominators are invariant under $\mathbf{k} \to -\mathbf{k}$, and then we only look at the numerators, then

$$C \to f_{mn} \mathcal{V}_{mn}^{\Sigma, a}(r_{nm}^{b})_{;k^{c}}|_{\mathbf{k}} + f_{mn} \mathcal{V}_{mn}^{\Sigma, a}(r_{nm}^{b})_{;k^{c}}|_{-\mathbf{k}} = f_{mn} \left[\mathcal{V}_{mn}^{\Sigma, a}(r_{nm}^{b})_{;k^{c}}|_{\mathbf{k}} + (-\mathcal{V}_{nm}^{\Sigma, a})(-(r_{mn}^{b})_{;k^{c}})|_{\mathbf{k}} \right]$$

$$= f_{mn} \left[\mathcal{V}_{mn}^{\Sigma, a}(r_{nm}^{b})_{;k^{c}} + \mathcal{V}_{nm}^{\Sigma, a}(r_{nm}^{b})_{;k^{c}} \right]$$

$$= f_{mn} \left[\mathcal{V}_{mn}^{\Sigma, a}(r_{nm}^{b})_{;k^{c}} + (\mathcal{V}_{mn}^{\Sigma, a}(r_{nm}^{b})_{;k^{c}})^{*} \right]$$

$$(3)$$

The last term in the second line of $\binom{pfi}{2}$ is dealt with as follows,

$$\frac{D}{2(\omega_{nm}^{S})^{2}} \frac{1}{(\omega_{nm}^{S} - \omega)^{2}} = \frac{f_{mn}}{2} \frac{\mathcal{V}_{mn}^{\Sigma,a} r_{nm}^{b}}{(\omega_{nm}^{S})^{2}} \frac{\Delta_{nm}^{c}}{(\omega_{nm}^{S} - \omega)^{2}} = \frac{f_{mn}}{2} \frac{\mathcal{V}_{mn}^{\Sigma,a} r_{nm}^{b}}{(\omega_{nm}^{S})^{2}} \left(\frac{1}{\omega_{nm}^{S} - \omega}\right)_{;k^{c}} \\
= -\frac{f_{mn}}{2} \left(\frac{\mathcal{V}_{mn}^{\Sigma,a} r_{nm}^{b}}{(\omega_{nm}^{S})^{2}}\right)_{;k^{c}} \frac{1}{\omega_{nm}^{S} - \omega}. \tag{4}$$

We use the fact that

$$(\omega_{nm}^S)_{;k^c} = (\omega_{nm}^{LDA})_{;k^c} = \frac{p_{nn}^c - p_{mm}^c}{m_e} \equiv \Delta_{nm}^c, \tag{5}$$

and for the last line, we performed an integration by parts over the Brillouin zone, where the contribution from the edges vanishes.

1 Generalized Derivative

Using the chain rule we obtain

$$\left(\frac{\mathcal{V}_{mn}^{\Sigma,a}r_{nm}^{b}}{(\omega_{nm}^{S})^{2}}\right)_{,bc} = \frac{r_{nm}^{b}}{(\omega_{nm}^{S})^{2}} \left(\mathcal{V}_{mn}^{\Sigma,a}\right)_{;k^{c}} + \frac{\mathcal{V}_{mn}^{\Sigma,a}}{(\omega_{nm}^{S})^{2}} \left(r_{nm}^{b}\right)_{;k^{c}} - \frac{\mathcal{V}_{mn}^{\Sigma,a}r_{nm}^{b}}{2(\omega_{nm}^{S})^{3}} \left(\omega_{nm}^{S}\right)_{;k^{c}}.$$
(6) Chrn

The individual terms for this expression can be expanded as follows. First,

$$\left(\omega_{nm}^S\right)_{.k^c} = \Delta_{nm}^{\mathrm{LDA},c},\tag{7}$$

and,

$$(r_{nm}^{\rm b})_{;k^{\rm a}} \approx \frac{r_{nm}^{\rm a} \Delta_{mn}^{\rm LDA,b} + r_{nm}^{\rm b} \Delta_{mn}^{\rm LDA,a}}{\omega_{nm}^{\rm LDA}} + \frac{i}{\omega_{nm}^{\rm LDA}} \sum_{\ell} \left(\omega_{\ell m}^{\rm LDA} r_{n\ell}^{\rm a} r_{\ell m}^{\rm b} - \omega_{n\ell}^{\rm LDA} r_{n\ell}^{\rm b} r_{\ell m}^{\rm a} \right). \tag{8}$$

1.1 Generalized derivative for $\mathcal{V}_{nm}^{\Sigma,\mathbf{a},\ell}$

We must include the generalized derivative for $\mathcal{V}_{nm}^{\Sigma,a,\ell}$. We can separate the expression into its components,

$$\left(\mathcal{V}_{nm}^{\Sigma,\mathbf{a},\ell}\right)_{:k^{\mathbf{b}}} = \left(\mathcal{V}_{nm}^{\mathrm{LDA},\mathbf{a},\ell}\right)_{:k^{\mathbf{b}}} + \left(\mathcal{V}_{nm}^{S,\mathbf{a},\ell}\right)_{:k^{\mathbf{b}}},\tag{9}$$

where,

$$\left(\mathcal{V}_{nm}^{\text{LDA,a}} \right)_{;k^{\text{b}}} = \frac{1}{2} \sum_{q} \left((v_{nq}^{\text{LDA,a}})_{;k^{\text{b}}} \mathcal{F}_{qm}^{\ell} + v_{nq}^{\text{LDA,a}} (\mathcal{F}_{qm}^{\ell})_{;k^{\text{b}}} + (\mathcal{F}_{nq}^{\ell})_{;k^{\text{b}}} v_{qm}^{\text{LDA,a}} + \mathcal{F}_{nq}^{\ell} (v_{qm}^{\text{LDA,a}})_{;k^{\text{b}}} \right),$$
 (10) \[\begin{array}{c} \text{a.2} \end{array} \]

and
$$\left(v_{nn}^{\text{LDA,a}}\right)_{:k^{\text{b}}}$$
 is given by

$$(v_{nn}^{\text{LDA,a}})_{;k^{\text{b}}} = \frac{\hbar}{m_e} \delta_{\text{ab}} - \sum_{\ell \neq n} \omega_{\ell n}^{\text{LDA}} \left(r_{n\ell}^{\text{a}} r_{\ell n}^{\text{b}} + r_{n\ell}^{\text{b}} r_{\ell n}^{\text{a}} \right).$$
 (11)

Lastly,

$$\mathcal{V}_{nm}^{S,\mathrm{a},\ell} = \frac{1}{2} \sum_{q} \left((v_{nq}^{S,\mathrm{a}})_{;k^{\mathrm{b}}} \mathcal{F}_{qm} + v_{nq}^{S,\mathrm{a}} (\mathcal{F}_{qm})_{;k^{\mathrm{b}}} + (\mathcal{F}_{nq})_{;k^{\mathrm{b}}} v_{qm}^{S,\mathrm{a}} + \mathcal{F}_{nq} (v_{qm}^{S,\mathrm{a}})_{;k^{\mathrm{b}}} \right), \tag{12}$$

where $\left(v_{nm}^{S,a}\right)_{;k^{\mathrm{b}}}$ is given by

$$(v_{nm}^{S,a})_{:k^{b}} = i\Delta f_{mn}(r_{nm}^{a})_{:k^{b}}.$$
 (13)