Topics Covered:

- Product Structure of Transformations
- Inverse Transformation

Additional Reading:

- Lynch, K.M. and Park, F.C. Modern Robotics: Section 3.3.1
- Craig, J.J. Introduction to Robotics: 2.3
- Murray et al. A Mathematical Introduction to Robotic Manipulation: Chapter 2, Section 3.1

Review

Last class we introduced how you can conduct multiple transformations. To review, let's consider the following example:

Multiple Displacements Derivation

when a rigid body experiences a displacement g, the point \vec{p} undergoes a transformation:

$$\vec{p}' = g \cdot \vec{p} = (\vec{d}, R) \cdot \vec{p} = \underbrace{\vec{d}}_{\text{translation}} + \underbrace{R}_{\text{rotation}} \vec{p}$$

where \cdot defines an operation that goes from (\vec{d}, R) and \vec{p} to \vec{p} '.

(We will drop the vector hats $(\vec{\cdot})$ on the points for the sake of simplicity)

Considering only single transformations, we can obtain:

$$p_C$$
 in frame B is $p_C^B = \vec{d}_{BC}^B + R(\theta_{BC})\vec{p}$
 p_B in frame A is $p_B^A = \vec{d}_{AB}^A + R(\theta_{AB})\vec{p}$

But what if we want to find p_C in frame A? We can use the following relationship:

$$\begin{split} p_C^A &= \vec{d}_{AB}^A + R(\theta_{AB}) p_C^B \\ &= \vec{d}_{AB}^A + R(\theta_{AB}) \left(\vec{d}_{BC}^B + R(\theta_{BC}) \vec{p} \right) \\ &= \underbrace{\vec{d}_{AB}^A + R(\theta_{AB}) \vec{d}_{BC}^B}_{\vec{d}_{AC}^A} + \underbrace{R(\theta_{AB}) R(\theta_{BC})}_{R(\theta_{AC})} \vec{p} \end{split}$$

We can write this multiple transformation in vector coordinate form as:

$$g_{AC} = g_{AB} \cdot g_{BC}$$

$$= (\vec{d}_{AB}^A, R(\theta_{AB})) \cdot (\vec{d}_{BC}^B, R(\theta_{BC}))$$

$$= (\vec{d}_{AB}^A + R(\theta_{AB})\vec{d}_{BC}^B, R(\theta_{AB})R(\theta_{BC}))$$

$$= (\vec{d}_{AC}^A, R(\theta_{AC}))$$

Product Structure of Transformations

In summary, if a rigid body undergoes two displacements g_1 and g_2 , then the total displacement g_1 and the individual displacements are related by:

$$g = g_1 \cdot g_2 = (\vec{d_1}, R_1) \cdot (\vec{d_2}, R_2) = (\vec{d_1} + R_1 \vec{d_2}, R_1 R_2)$$

Note: order matters!

$$(\vec{d_2}, R_2) \cdot (\vec{d_1}, R_1) = (\vec{d_2} + R_1 \vec{d_1}, R_2 R_1) \neq (\vec{d_1}, R_1) \cdot (\vec{d_2}, R_2) = (\vec{d_1} + R_1 \vec{d_2}, R_1 R_2)$$

Example

Let's consider an example that applies these concepts to manipulation. Specifically, consider the planar robot shown in the figure below. This robot has 2 rotary joints and two links.

Question: What is the end-effectors configuration in reference to the origin frame?

$$g_e = \begin{cases} l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2) \\ l_1 \sin(\theta_1) + l_2 \sin(\theta_1 + \theta_2) \\ \theta_1 + \theta_2 \end{cases}$$
 (vector form of x, y, θ)

But there's a more programmatic way to do this.

$$g_1^0 = \left(\begin{cases} 0 \\ 0 \end{cases}, R(\theta_1) \right)$$

$$g_2^1 = \left(\begin{cases} l_1 \\ 0 \end{cases}, R(\theta_2) \right)$$

$$g_3^2 = \left(\begin{cases} l_2 \\ 0 \end{cases}, I \right)$$

We can then compute the product of these ransformations:

$$g_{e} = g_{1}^{0} \cdot g_{2}^{1} \cdot g_{3}^{2}$$

$$= (d_{1}, R_{1}) \cdot (d_{2}, R_{2}) \cdot (d_{3}, R_{3})$$

$$= (0, R_{1}) \cdot (d_{2}, R_{2}) \cdot (d_{3}, I)$$

$$= (R_{1}d_{2}, R_{1}R_{2}) \cdot (d_{3}, I)$$

$$= (R_{1}d_{2} + R_{1}R_{2}d_{3}, R_{1}R_{2})$$

$$= \begin{cases} l_{1}\cos(\theta_{1}) + l_{2}\cos(\theta_{1} + \theta_{2}) \\ l_{1}\sin(\theta_{1}) + l_{2}\sin(\theta_{1} + \theta_{2}) \\ \theta_{1} + \theta_{2} \end{cases}$$

Inverse Transformation

Now that we have a product structure for transformations, we derive how to apply an inverse transformation.

First, we must start with deriving an identity transformation. We will do this by solving for the transformation e such that $e \cdot g = g$:

$$(\vec{d}_{e}, R_{e}) \cdot (\vec{d}, R) = (\vec{d}, R)$$
?
 $(\vec{d}_{e} + R_{e}\vec{d}, R_{e}R) = (\vec{d}, R)$

To have this be true, it must mean the following:

$$R_e R = R$$

$$\implies R_e = 1$$

and thus,

$$\vec{d_e} + R_e \vec{d} = \vec{d}$$

$$\vec{d_e} + \mathbb{1}\vec{d} = \vec{d}$$

$$\implies d_e = 0$$

Thus, an identity transformation is e = (0, 1).

Now we can use this identity transformation e to derive the form of an inverse transformation.

Specifically, we will solve for the inverse transformation g^{-1} that satisfies the relationship $(g^{-1} \cdot g = e)$:

$$(\vec{d_i}, R_i) \cdot (\vec{d}, R) = (0, 1)$$

 $(\vec{d_i} + R_i \vec{d}, R_i R) = (0, 1)$

For this equation to be true, it must hold that:

$$R_i R = 1 \implies R_i = R^{-1}$$

$$\vec{d_i} + R_i \vec{d} = 0 \implies \vec{d_i} = -R_i \vec{d} = -R^{-1} \vec{d}$$

Thus, the inverse transformation is $g_i = (-R^{-1}\vec{d}, R^{-1})$ and is denoted by g^{-1} . Note that this transformation aligns with the inverse rotation element from our SO(2) group, $R^{-1} = R^T$.

Example

Let's consider the following example for how to use an inverse transformation.

An interpretation of the diagram above would be you sitting at a table with a friend. Your perspective is coordinate frame B, and your friend's perspective is coordinate frame C. We're then going to move the table.

Assume that you know how your position moves $g_{\rm BB'}$ and you know the transformation between you and your friend (h).

Question: How can you solve for the displacement of your friend with respect to their own reference frame (i.e., $g_{CC'}$)?

Can we use these operations to understand how to change reference frame of a displacement? Let's consider the following example:

Answer: follow the arrows

- 1. Start at frame C
- 2. Apply transformation h
- 3. Apply transformation $g_{BB'}$
- 4. Apply the inverse transformation h^{-1}

Together this results in the overall transformation:

$$g_{CC'} = h \cdot g_{BB'} \cdot h^{-1}$$

This operation is formally termed the *Adjoint Operation* and is defined as follows:

$$Ad_h g = hgh^{-1}$$
 (this is implicitly $h \cdot g \cdot h^{-1}$, but we will drop · from now on)

The adjoint operation $Ad_h g$ is conducted when we want to change the coordinate frame of a transformation g by the transformation h.