Quick Intro to Probability

Data 3402- Lecture 6

Some terms

- Probability: Mathematical framework for quantifying likelihood of future events.
- Statistics: Analysis of data using language of probability. Why? Answer questions, quantifying uncertainty, predict future events.
- Data: Observations / Measurements of past events.
 - Experiment: Controlled setup to test specific hypothesis.
 - Data Collection can be seen as type of an experiment.
- Modeling:
 - Theoretical Model: Captures assumptions or best understanding, possibly with no/little quantitive input from data.
 - Empirical model: Based purely on pervious observations.
 - Statistical modeling: Predicting probability of future events using pervious data.
 - Generative model: Create new data based on a model.
 - Simulation: Using theory to create new data.
 - Monte Carlo Simulation: Use probabilistic model to create new data. Can be statistical or first principles.
- Science: At core, using data to test / enhance theoretical models -> improve our best understanding of phenomena.
 - Scientific Process: Propose model. Devise experiment to test model (focus on weakness). Make a prediction (hypothesis). Perform statistical analysis to gleam answer to test from data with uncertainties. Update model. Repeat.
- Beyond science: use previous data and/or theoretical models to predict future events.

Probability Theory

- Probability Theory → Analyze frequency of "events"
- Probability p of event x happening
 - → Repeatable observations of event
 - \rightarrow p ~ fraction that x would be the outcome.
 - Example: Frequency of a disease in a population: 1 in 1000 → "Frequentist"
- What if you got a test → How do you interpret? You can't repeat.
 - Accuracy of test
 - Frequency of disease
 - → Degree of belief → "Bayesian"

Basic Definitions

- Set S w subsets A and B
 - P(S) = 1
 - For all $\forall A: A \subset S \Rightarrow P(A) > 0$
 - $P(\bar{A}) = 1 P(A)$
 - Bar means not in A.
 - $\circ P(A \cup \bar{A}) = 1$
 - $P(\emptyset) = 0$
 - If there is no overlap between sets A and B

$$\circ \ A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$$

- ∩ is overlap
- U is union
- $A \subset B \Rightarrow P(A) \leq P(B)$
 - means subset
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Conditional Probablilty

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- Example:
 - Dice Roll (6-sided)
 - You are told rolled 3 or less
 - What is the Probability that you roled a 1?

•
$$P(1) = \frac{P(<1 \text{ in 6 rolls})}{P(<3 \text{ in 6 rolls})} = \frac{\frac{1}{6}}{\frac{3}{6}} = \frac{1}{3}$$
.

• If
$$A \cup B = \emptyset \Rightarrow$$

$$P(A, B) = P(A)P(B)$$

$$P(A|B) = \frac{P(A)P(B)}{P(B)} = P(A)$$

Interpretation

- Relative Frequency:
 - lacksquare lacksquare
 - $P(A) = \lim_{n \to \infty} \frac{\text{Times outcome is } A}{n}$
- Subjective Probabilty:
 - \blacksquare A, B are hypotheses (True/False) Statements.
 - P(A) is degree of belief that A is true.

Bayes Theorem

- $\bullet \ P(A|B) = \frac{P(A \cap B)}{P(B)}$
- $P(B|A) = \frac{P(B \cap A)}{P(A)}$
- Since $P(A \cap B) = P(B \cap A)$
 - $\Rightarrow P(A|B)P(B) = P(B|A)P(A)$
 - $\Rightarrow P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

Bayes Example

Recall
$$\Rightarrow P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- Example: Disease Testing
 - Prior Knowledge about Population
 - \circ $A := \{sick, not sick\}$
 - \circ P(sick) = 0.001
 - \circ P(not sick) = 0.999
 - Test
 - $\circ B := \{+, -\}$
 - True Positive: P(+ | sick) = 0.98
 - False Negative: P(- | sick) = 0.02
 - False Positive: P(+ | not sick) = 0.03
 - True Negative: P(- | not sick) = 0.97
 - You get a postitive result -> what is the probablity that you are indeed sick?

$$P(\operatorname{sick} | +) = \frac{P(+|\operatorname{sick})P(\operatorname{sick})}{P(+|\operatorname{sick})P(\operatorname{sick})+P(+|\operatorname{not sick})P(\operatorname{not sick})}$$

$$P(\operatorname{sick} | +) = \frac{(0.98)(0.001)}{(0.98)(0.001)+(0.03)(0.999)} = 0.032$$

- Why: because of the prior.
- So why should I ever believe a test?
 - Because P(sick | symptoms) is high.

Data

- Use students as example
- Data can be viewed a table
 - Rows are students (data points)
 - Columns are features
- The features are Random Variables
- Make a distribution

Instance	Name	Age	Major	GPA	
1	XXX	XXX	XXX	XXX	
2	XXX	XXX	XXX	XXX	
3	XXX	XXX	XXX	XXX	
■ ■	XXX	XXX	XXX	XXX	