Oxford A1 - Differential Equations

Dan Davison

November 5, 2017

1 Sheet 1

1.1 Let [a, b] be a closed and bounded interval of the real line and let $\{y_n\}_{n\geq 0}$ be a sequence of real-valued functions, each of which is defined on [a, b]. What does it mean to say that **the sequence converges uniformly on** [a, b] **to a limit function** y? If each y_n is continuous on [a, b] show that the uniform limit y is continuous on [a, b] and that, when $n \to \infty$,

$$\int_a^b |y_n(x) - y(x)| dx \to 0, \quad \int_a^b y_n(x) dx \to \int_a^b y(x) dx.$$

(a) Definition of uniform convergence

The sequence of functions $\{y_n\}_{n\geq 0}$ converges uniformly on [a,b] to y if and only if for every $\epsilon > 0$ there exists an $m \in \mathbb{N}$ such that for every n > m, y_n differs from y by no more than ϵ at every point in [a,b].

(b) Show that the limit function is continuous

The claim is that if each y_n is continuous on [a, b] then y is continuous on [a, b]. We are told that

1. $\{y_n\}_{n\geq 0}$ converges uniformly to y, and

2. each y_n is continuous on [a, b].

Informal illustration of proof:

Fix arbitrary $\epsilon > 0$ and $x_0 \in [a, b]$.

Let $m \in \mathbb{N}$ be such that $|y_m(x_0) - y(x_0)| < \epsilon/3$. Such an m exists because the $\{y_n\}$ converge uniformly to y.

Let δ be such that $|x - x_0| < \delta \implies |y_m(x) - y_m(x_0)| < \epsilon/3$. Such a δ exists because y_m is continuous on [a, b].

Fix an arbitrary x such that $|x - x_0| < \delta$.

Now we have the following:

- 1. $|y(x_0) y_m(x_0)| < \epsilon/3$ by convergence of the $\{y_n\}$
- 2. $|y_m(x_0) y_m(x)| < \epsilon/3$ by continuity of y_m
- 3. $|y_m(x) y(x)| < \epsilon/3$ by convergence of the $\{y_n\}$

Therefore $|y(x_0) - y(x)| < \epsilon$, proving continuity of y on [a, b].

(Approximate time taken for reading and producing an answer: 4hrs)

(c) Show limit of definite integral I

Let
$$I_n = \int_a^b |y_n(x) - y(x)| \, dx$$
.

The claim is that $\lim_{n\to\infty} I_n = 0$.

In other words $\forall \epsilon > 0 : \exists m \in \mathbb{N} : \forall n > m : |I_n - 0| < \epsilon$.

Fix an $\epsilon > 0$.

Since the $\{y_n\}$ converge uniformly to y, there exists an $m \in \mathbb{N}$ such that for all n > m and for all $x \in [a, b]$

$$|y_n(x) - y(x)| < \epsilon/(b - a).$$

Therefore $\int_a^b |y_n(x) - y(x)| dx < \epsilon$ for all n > m, as required.

(d) Show limit of definite integral II

The claim is that $\lim_{n\to\infty} \int_a^b y_n(x) dx = \int_a^b y(x) dx$.

In other words: $\forall \epsilon > 0 : \exists m \in \mathbb{N} : \forall n > m :$

$$\left| \left(\int_a^b y_n(x) \, \mathrm{dx} \right) - \left(\int_a^b y(x) \, \mathrm{dx} \right) \right| < \epsilon.$$

This is equivalent to: $\forall \epsilon > 0 : \exists \ m \in \mathbb{N} : \forall \ n > m :$

$$A_1 := \left| \int_a^b (y_n(x) - y(x)) \, \mathrm{d}x \right| < \epsilon.$$

From part (c) above, we know that: $\forall \epsilon > 0 : \exists m \in \mathbb{N} : \forall n > m :$

$$A_2 := \int_a^b |y_n(x) - y(x)| \, \mathrm{d} x < \epsilon.$$

Now if the sign of $y_n(x) - y(x)$ is constant for all $x \in [a, b]$ (i.e. the graphs do not cross over), then $A_1 = A_2 < \epsilon$. Otherwise, there is some cancellation in the integral A_1 and $0 \le A_1 < A_2 < \epsilon$. So the same choice of m as was used in part (c) works here, since for that value of m, we have $A_1 < \epsilon$ as required.

(Approximate time taken for (c) and (d): 2hrs)

^aHow do I prove this section properly?

If [a,b] = [0,1] and $y_n(x) = nxe^{-nx^2}$ show that, for each $x \in [0,1], y_n(x) \to 0$ but $\int_0^1 y_n(x) dx \to \frac{1}{2}$. Thus the convergence must be non-uniform. Show that

$$\max_{0 \le x \le 1} y_n(x) = \sqrt{\frac{n}{2e}}$$

and sketch the graph of $y_n(x)$ versus x.

To show that $y_n(x) := \frac{nx}{e^{nx^2}} \to 0$ for all $x \in [0, 1]$, first note that it is true for x = 0 since $y_n(0) = 0$ for all $n \in \mathbb{N}$. So we have to show it is true for $x \in (0, 1]$.

Fix $x \in (0,1]$ and define $f(\alpha) = \frac{\alpha x}{e^{\alpha x}}$ for $\alpha \in \mathbb{R}$. $\lim_{\alpha \to \infty} f(\alpha)$ is an indeterminate form $\frac{\infty}{\infty}$ and we can use l'Hôpital's rule, differentiating with respect to α :

$$\lim_{\alpha \to \infty} \frac{\alpha x}{e^{\alpha x^2}} = \lim_{\alpha \to \infty} \frac{x}{x^2 e^{\alpha x^2}} = 0.$$

Since $f(\alpha) = y_n$ at integer values of α it follows that $\lim_{n\to\infty} y_n(x) = 0$ for all $x \in (0,1]$.

For the limit of the definite integral we have

$$\int_0^1 nxe^{-nx^2} dx = \left[-\frac{1}{2}e^{-nx^2} \right]_0^1 = \frac{1}{2}(1 - e^{-n}),$$

and so $\lim_{n\to\infty} \int_0^1 y_n(x) dx = \frac{1}{2}$.

To find the maximum value attained by $y_n(x)$ for $x \in [0,1]$, note that the derivative is

$$\frac{\mathrm{d} y_n(x)}{\mathrm{d} x} = nx(-2nx)e^{-nx^2} + ne^{-nx^2} = ne^{-nx^2}(1 - 2nx^2),$$

and therefore that the only solution to $\frac{dy_n(x)}{dx} = 0$ for $x \in [0,1]$ is $x = \frac{1}{\sqrt{2n}}$.

The second derivative is

$$ne^{-nx^2}(-4nx) - 2n^2xe^{-nx^2}(1-2nx^2) = 2n^2xe^{-nx^2}(2nx^2-3)$$
.

This is negative at the critical point $x = \frac{1}{\sqrt{2n}}$ showing that it is a maximum. Therefore

$$\max_{x \in [0,1]} y_n(x) = n \frac{1}{\sqrt{2n}} e^{-n(\frac{1}{\sqrt{2n}})^2} = \sqrt{\frac{n}{2e}}. \quad \Box$$

(Approximate time for reading and producing answer: 3 hrs)