Natural Language Processing

Assist. Prof. Dr. Tuğba YILDIZ

ISTANBUL BİLGİ UNIVERSITY Department of Computer Engineering

April 19, 2019

2 Classification Examples

- studies how to automatically learn to make accurate predictions based on past observations
- make description
- Three different learning styles in machine learning algorithms:
 - Supervised Learning
 - 2 Unsupervised Learning
 - Semi-supervised Learning

- Three different learning styles in machine learning algorithms:
 - Supervised Learning
 - input data is called training data and has a known label or result such as spam/not-spam etc.
 - a model is prepared through a training process in which it is required to make predictions and is corrected when those predictions are wrong.
 - the training process continues until the model achieves a desired level of accuracy on the training data.
 - studies how to automatically learn to make accurate predictions based on past observations
- Decision trees, linear regression, naive bayes, knn

Machine Learning Algorithms for Classification

- text categorization (e.g., spam filtering)
- fraud detection
- optical character recognition
- machine vision (e.g., face detection)
- natural-language processing (e.g., spoken language understanding)
- market segmentation (e.g.: predict if customer will respond to promotion)
- bioinformatics (e.g., classify proteins according to their function)

- Three different learning styles in machine learning algorithms:
 - Unsupervised Learning
 - Input data is not labeled and does not have a known result.
 - A model is prepared by deducing structures present in the input data.
 - This may be to extract general rules. It may be through a mathematical process to systematically reduce redundancy, or it may be to organize data by similarity.
- Example: K-means, Apriori

- The goal is to create a model that predicts the value of a target variable based on several input variables.
- constructs a model of decisions made based on actual values of attributes in the data.

Day	Outlook	Temp.	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Weak	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cold	Normal	Weak	Yes
D10	Rain	Mild	Normal	Strong	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

- ID3, C4.5
- to choose the most informative feature. How?
 - information gain
 - gini index

- Information Gain
- Entropy
- $H(P_1, P_2, ..., P_s) = -\sum_{i=1}^s p_i log(p_i)$

- examples are in same class=0
- examples are distrubuted equally= 1
- examples are distrubted randomly 0<entropy<1</p>

- Entropy
- $H(p_1, p_2, ..., p_s) = -\sum_{i=1}^{s} p_i log(p_i)$
- In S, we have 14 examples: C0=9, C1=5
- examples are distrubuted equally= 1
- examples are distrubted randomly 0<entropy<1</p>
- H(p1,p2)= (9/14) Log2 (9/14) (5/14) Log2 (5/14) = 0.940

■ Information gain of Attribute A in S

$$Gain(S, A) = Entropy(S) - \sum_{v \in Value(A)} \frac{|Sv|}{|S|} Entropy(S_v)$$

- s1=9(yes), s2=5(no)
- Entropy(S) = (9/14) Log 2 (9/14) (5/14) Log 2 (5/14) = 0.940
- wind: weak=8, strong=6
- weak: no=2, yes=6
- strong: no=3, yes=3
- Entropy (S_{weak}) = (6/8)*log2(6/8) (2/8)*log2(2/8) = 0.811
- Entropy(S_{strong}) = (3/6)*log2(3/6) (3/6)*log2(3/6) = 1.00
- Entropy wind (S) = (8/14)*0.811 + (6/14)*1.00
- Gain(wind)=0.940 (8/14)*0.811 (6/14)*1.00

Gain(Outlook) = 0.246 Gain(Humidity) = 0.151 Gain(wind)=0.048 Gain(Temperature) = 0.029

- Decision Tree- Example
- $S_{sunny} = D1,D2,D8,D9,D11, Entropy(Ssunny)=0.970$
- humidity : high=3, normal=2
- high: no=3, yes=0
- normal: no=0, yes=2
- Entropy $(S_{high}) = 0$
- Entropy $(S_{normal}) = 0$
- $Gain(S_{sunny}, Humidity) = 0.970 (3/5)0.0 (3/5)0.0 = 0.970$

- Naive Bayes classifier assumes that the presence of a particular feature in a class is unrelated to the presence of any other feature
- It is a classification technique based on Bayes' Theorem with an assumption of independence among predictors.
- Naive Bayes model is easy to build and particularly useful for very large data sets.
- Along with simplicity, Naive Bayes is known to outperform even highly sophisticated classification methods.

- Bayes theorem provides a way of calculating posterior probability P(c|x) from P(c), P(x) and P(x|c).
- Look at the equation below:

- P(c|x) is the posterior probability of class (c, target) given predictor (x, attributes).
- P(c) is the prior probability of class.
- P(x|c) is the likelihood which is the probability of predictor given class.
- \blacksquare P(x) is the prior probability of predictor.

■ Naive Bayes Algorithm - example

```
Weather Play
Sunny No
Overcast Yes
Rainy Yes
Sunny Yes
Sunny Yes
Sunny No
Rainy No
Sunny No
Rainy No
No
Overcast Yes
Rainy No
```

- Naive Bayes Algorithm example
 - Convert the data set into a frequency table
 - Create Likelihood table by finding the probabilities
 - Now, use Naive Bayesian equation to calculate the posterior probability for each class. The class with the highest posterior probability is the outcome of prediction.

- Naive Bayes Algorithm example
 - Convert the data set into a frequency table

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

	ency Tabl	Frequency Table				
Weather	No	Yes				
Overcast		4				
Rainy	3	2				
Sunny	2	3				
Grand Total	- 5	9				

- Naive Bayes Algorithm example
 - Treate Likelihood table by finding the probabilities like Overcast probability = 0.29 and probability of playing is 0.64.

Weather	No	Yes
Overcast		4
Rainy	3	2
Sunny	2	3
Grand Total	5	9

Like				
Weather	No	Yes		
Overcast		4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
All	5	9		
	=5/14	=9/14	1	
	0.36	0.64	1	

- Naive Bayes Algorithm example
- Problem: Players will play if weather is sunny. Is this statement is correct?

- $P(Yes \mid Sunny) = (P(Sunny \mid Yes) * P(Yes)) / P(Sunny)$
- P (Sunny | Yes) = 3/9 = 0.33
- P(Sunny) = 5/14 = 0.36
- P(Yes) = 9/14 = 0.64
- P (Yes | Sunny) = 0.33 * 0.64 / 0.36 = 0.60, which has higher probability.

■ Naive Bayes Algorithm - example

Out	look		Temp	eratu	re	Hur	mid	ity			Windy		Pla	ıy
	Yes	No		Yes	No		Y	es	No		Yes	Νο	Yes	No
Sunny	2	3	Hot	2	2	High		3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal		6	1	True	3	3		
Rainy	3	2	Cool	3	1									
Sunny	2/9	3/5	Hot	2/9	2/5	High	3	/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6	/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5				look	Temp	Humidity			
								Sur	-	Hot	High High	Fal		
								Sur	rcast	Hot	High	Tru		
								Rai		Mild	High	Fai		
								Rai	ny	Cool	Normal	Fal	se Yes	
								Rai	ny	Cool	Normal	Tru	e No	
								Ove	rcast	Cool	Normal	Tru	e Yes	
								Sur	iny	Mild	High	Fal	se No	
								Sur	iny	Cool	Normal	Fall	se Yes	
								Rai	ny	Mild	Normal	Fall	se Yes	
								Sur		Mild	Normal	Tru		
									rcast	Mild	High	Tru		L.
								Ow	rcast	Hot	Normal	Fall	se Yes	5

■ Naive Bayes Algorithm - example

Out	look		Temp	eratu	re	Hur	nidity			Windy		Pl	ay
	Yes	No		Yes	Λю		Yes	Мо		Yes	Νο	Yes	Νο
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								
						Outlook	Temp	. 1	lumidity	Windy	Pla	У	
 Ye 	ni v	eri				Sunny	Cool		High	True	?		
(X) = P(X	$ C_i) \times F$	P(C;) =	$\prod_{k=1}^{n} P(x_{i}$	$ C_i \times i$	P(C _i)	P("no Normalize e P("ye	es" X) = " X) = 3 film iş ola s") = 0.	3/5 × 1 esiliklar 0053 /	1/5 × 4/5 : (0.0053	/9 × 3/9 5 × 3/5 × 3 + 0.020 + 0.020	5/14 =	= 0.0200 0.205	

- K nearest neighbors is a simple algorithm that stores all available cases and classifies new cases based on a similarity measure (e.g., distance functions).
- the task of classifying a new object among a number of known examples

Distance Functions:

Distance functions

Euclidean
$$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$

$$\qquad \qquad \sum_{i=1}^k \left| x_i - y_i \right|$$

- K-NN Algorithm Example:
 - Determine parameter K=number of nearest neighbors
 - Calculate the distance between the query-intance and all the training samples
 - Sort the distance and determine nearest neighbors based on the K-th mininmum distance
 - 4 Gather the category Y of the nearest neighbors
 - 5 Use simple majority of the category of nearest neighbors as the prediction value of the query instance

■ K-NN Algorithm - Example:

X1=acid	X2=strength	Y=Classification
7	7	Bad
7	4	Bad
3	4	Good
1	4	Good

K-NN Algorithm - Example:

X1=acid	X2=strength	Y=Classification
7	7	Bad
7	4	Bad
3	4	Good
1	4	Good
3	7	?

- K-NN Algorithm Example:
- Determine parameter K=number of nearest neighbors (suppose K=3)

X1=acid	X2=strength	Y=Classification
7	7	Bad
7	4	Bad
3	4	Good
1	4	Good
3	7	7

- K-NN Algorithm Example:
- Calculate the distance between the query-intance and all the training samples

X1=acid	X2=strength	Distance(3,7)
7	7	$\sqrt{(7-3)^2+(7-7)^2}=16$
7	4	$\sqrt{(7-3)^2+(4-7)^2}$ =25
3	4	$\sqrt{(3-3)^2+(4-7)^2}=9$
1	4	$\sqrt{(1-3)^2+(4-7)^2}=13$

K-Nearest Neighbor Algorithm

- K-NN Algorithm Example:
- Sort the distance and determine nearest neighbors based on the K-th minimum distance

X1=acid	X2=strength	Distance(3,7)	Rank	is in 3-N
7	7	$\sqrt{(7-3)^2+(7-7)^2}=16$	3	Yes
7	4	$\sqrt{(7-3)^2+(4-7)^2}$ =25	4	No
3	4	$\sqrt{(3-3)^2+(4-7)^2}=9$	1	Yes
1	4	$\sqrt{(1-3)^2+(4-7)^2}=13$	2	Yes

K-Nearest Neighbor Algorithm

- K-NN Algorithm Example:
- Gather the category Y of the nearest neighbors

X1	X2	Distance(3,7)	Rank	is in 3-NN?	Υ
7	7	$\sqrt{(7-3)^2+(7-7)^2}=16$	3	Yes	Bad
7	4	$\sqrt{(7-3)^2+(4-7)^2}$ =25	4	No	-
3	4	$\sqrt{(3-3)^2+(4-7)^2}=9$	1	Yes	Good
1	4	$\sqrt{(1-3)^2+(4-7)^2}$ =13	2	Yes	Good

K-Nearest Neighbor Algorithm

- K-NN Algorithm Example:
- Use simple majority of the category of nearest neighbors as the prediction value of the query instance
- We have two Good, one Bad. So Class = Good

Clustering

- Clustering is the process of partitioning a group of data points into a small number of clusters.
- is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters)

- Clustering is the process of partitioning a group of data points into a small number of clusters.
- The Lloyd's algorithm, mostly known as k-means algorithm, is used to solve the k-means clustering problem
- In the begining, we determine number of cluster K
- And algorithm works as follows:
 - 1 Determine the centroid coordinate
 - 2 Determine the distance of each object to the centroids
 - 3 Group the object based on minimum distance

K-Means Algorithm Process

- K-Means Algorithm Example:
- K = 2

```
Object X Y
Medicine A 1 1
Medicine B 2 1
Medicine C 4 3
Medicine D 5 4
```

■ K-Means Algorithm Process

- 1. Initial value of centroids: Suppose we use medicine A and B as first centroids.
- Let C1 and C2 denote the coordinate of the centroid, then C1=(1,1) and C2=(2,1)

- 2. Objects-Centroids distance : we calculate the distance between cluster centroid to each object.
- Let us use Euclidean distance, then we have distance matric at iteration 0

$$\begin{aligned} \mathbf{D}^0 = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 1 & 0 & 2.83 & 4.24 \end{bmatrix} & \mathbf{Z} \\ \mathbf{r}_1 & 0 & 2.83 & 4.24 \end{bmatrix} & \mathbf{r}_2 = (2.1) & \textit{group} - 1 \\ \mathbf{r}_2 & = (2.2.1) & \textit{group} - 2 \end{aligned}$$

- Exm: A=(1,1)
- C1=(1,1) is $\sqrt{(1-1)^2+(1-1)^2}=0$
- C2=(2,1) is $\sqrt{(1-2)^2+(1-1)^2}=1$
- Exm: C=(4,3)
- C1=(1,1) is $\sqrt{(4-1)^2+(3-1)^2}=3.61$
- C2=(2,1) is $\sqrt{(4-2)^2+(3-1)^2}=2.83$

- 3. Objects-Clustering: We assign each object based on the minimum distance.
- A is assigned to Group 1, B to Group 2, C is Group2 and D is Group 2
- Let us use Euclidean distance, then we have distance matric at iteration 0

$$\mathbf{G}^{0} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} group - 1 \\ group - 2 \end{array}$$

- 4. Iteration-1, determine centroids: Knowing the members of each group
- we compute the new centroid of each group based on these new membership
- C1 = (1,1)
- C2 = ((2+4+5)/3, (1+3+4)/3) = (11/3, 8/3)

■ 5. Iteration-1, Objects-Centroids distance : The next step is to compute the distance of all abjects to the new centroids.

$$\begin{split} \mathbf{D^1} = & \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 3.14 & 2.36 & 0.47 & 1.89 \end{bmatrix} & \mathbf{c_1} = (1.1) & group - 1 \\ A & B & C & D \\ & \begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} & X \end{split}$$

• 6. Iteration-1, Objects clustering: Similar to step 3, we assign each object based on the minimum distance.

$$\mathbf{G}^{1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} group - 1 \\ group - 2 \end{array}$$

$$A \quad B \quad C \quad D$$

- 7. Iteration-2, determine centroids : Repeat step 4
- \blacksquare C1 = ((1+2)/2, (1+1)/2)= (3/2,1)
- C2 = ((4+5)/2, (3+4)/2) = (9/2, 7/2)

■ 8. Iteration-2, Objects-Centroids distance: Repeat 2

$$\begin{aligned} \mathbf{D}^2 = \begin{bmatrix} 0.5 & 0.5 & 3.20 & 4.61 \\ 4.30 & 3.54 & 0.71 & 0.71 \end{bmatrix} & \mathbf{c_1} = (1\frac{1}{2}, 1) & group - 1 \\ \mathbf{c_2} = (4\frac{1}{2}, 3\frac{1}{2}) & group - 2 \\ & A & B & C & D \\ & \begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} & Y \end{aligned}$$

 9. Iteration-2, Objects clustering: Similar to step 3, we assign each object based on the minimum distance.

$$\mathbf{G}^{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} group - 1 \\ group - 2 \end{array}$$

- lacksquare We obtain result that $G^2=G^1$
- K-means reached its stability and no more iteration is needed
- We get final grouping

$$\mathbf{G}^{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} group - 1 \\ group - 2 \end{array}$$

$$A \quad B \quad C \quad D$$

Object	Χ	Υ	Group
Medicine A	1	1	1
Medicine B	2	1	1
Medicine C	4	3	2
Medicine D	5	4	2

References

- Speech and Language Processing (3rd ed. draft) by D. Jurafsky & J. H. Martin (web.stanford.edu)
- http:people.revoledu.comkarditutorialKNNKNN_Numericalexample.html
- https://www.analyticsvidhya.com/blog/2015/09/naive-bayesexplained/
- www.cs.princeton.edu/schapire/.../picasso-minicourse.pdf
- http://machinelearningmastery.com/a-tour-of-machinelearning-algorithms/