Variograma Matern

Salvador Pintos

marzo 2012

1. Definición

El variograma Matern aparece en la literatura geoestadística como:

$$variog(h) = sill \left(1 - \frac{1}{2^{\nu - 1}\Gamma(\nu)} \left(\frac{h}{pr} \right)^{\nu} K_{\nu} \left(\frac{h}{pr} \right) \right)$$
 (1)

depende de 3 parámetros:

- sill varianza del proceso
- \blacksquare ν parámetro de forma
- pr parámetro de escala asociado al rango ya que participa en la expresión del variograma en el cociente $\frac{h}{pr}$.

Siendo K_{ν} la función de Bessel modificada de segunda clase. Esta función está codificada en los paquetes matemáticos y estadísticos; en Matlab, por ejemplo, es besselk.

1.1. Propiedades

Cuando $z\Rightarrow 0$ $K_{\nu}(z)\sim 0.5\Gamma(\nu)\left(\frac{z}{2}\right)^{-\nu}$ entonces $\lim_{h\to 0}variog(h)=0$, aunque no está definida en 0.

El parámetro de forma ν es un parámetro de suavidad ya que mayor ν implica menor variog(h), y en consecuencia mayor continuidad espacial.

En la figura 1 se observa la forma de los variogramas para $\nu \leq 1$. Se resalta en azul el caso $\nu=0.5$ que corresponde al modelo exponencial. Ya a partir de $\nu=0.6$ se observa un cambio en la concavidad. Los modelos son con pendiente no nula en el origen. La figura 2 muesta las formas de las curvas para valores crecientes de $\nu=1,\,2,\,3,\,4,\,6,\,10,\,40$. En azul el caso $\nu=1$ y en rojo los restantes aumentando la continuidad espacial con ν . Se ha agregado además en negro el caso del variograma gaussiano para que se observe que cuando $\nu \Rightarrow +\infty$ el variograma Matern converge al variograma gaussiano.

Fijados el sill y el rango, el agregar un parámetro adicional permite una familia de curvas versátiles de variograma que van desde las de concavidad negativa (como la exponencial) a las que se inician con concavidad positiva para

Figura 1: Variogramas Matern para $\nu = 0,1,\,0,2....,\,1$ sill = 20 Rango = 100

luego cambiar a negativa, como la gaussiana. Estos dos modelos antes mencionados son casos particulares del modelo Matern, $\nu=0.5$ para la exponencial, y $\nu \Rightarrow +\infty$ para la gaussiana.

1.2. Relación entre pr y el rango

Puesto que el parámetro de escala no es directamente el rango, es necesario establecer la relación entre el rango experimental del modelo y los parámetros. Resolver numéricamente la ecuación variog(h) = 0.95 conduce a una función $Rango(\nu)/pr$ dada por el cuadro 1, para valores de ν entre 0 y 1.

Para $\nu>1$ la relación entre $(Rango(\nu)/pr)^2$ y ν es lineal y con un excelente ajuste:

$$(Rango(\nu)/pr)^2 = a + b\nu$$

con $a = 5{,}1634$ y $b = 12{,}0324$. De la ecuación anterior se obtiene:

$$pr = \frac{Rango(\nu)}{\sqrt{a+b\nu}} \tag{2}$$

Luego, dado un variograma cualquiera, por la forma se tendrá un ν tentativo, y con éste y el Rango se deduce pr.

Cuando $\nu \geqq 1$ la ecu. 2 permite calcular el parámetro p
r para distintos valores del Rango y $\nu.$

Cuadro 1: Relación Rango(ν)/pr para $\nu=0,1,\,0,2,\,....,\,1$

ν	$Rango(\nu)/pr$
0.1	1.393
0.2	2.0
0.3	2.407
0.4	2.7262
0.5	3.0
0.6	3.233
0.7	3.447
0.8	3.644
0.9	3.827
1.0	4.0

Figura 2: Variograma matern para $\nu=1,\,2,\,3,\,4,\,6,\,10,\,40$

Figura 3: Variograma experimental

1.3. Ejemplo

La figura 3 presenta un variograma experimental. Los primeros valores hacen dudar de un modelo exponencial o esférico ya que la concavidad es nula en vez de negativa. Se observa un $sill \sim 0,002$, un posible $\nu \sim 0,9$, y un $rango \sim 10$.

Con la tabla de relación para $\nu=0.9$ se obtiene un $pr\sim\frac{10}{3.827}=2.613$.

Con los valores iniciales de los parámetros se ajusta el variograma Matern por mínimos cuadrados y se obtiene los parámetros finales:

$$\begin{array}{cc} sill & 0{,}0018 \\ \nu & 1 \\ pr & 2{,}4 \end{array}$$

que por la relación dada en la tabla corresponde a un rango=9.6

Para visualizar el ajuste se presenta en la figura 4 el variograma experimental, el variograma Matern hallado (en rojo) y el exponencial (en azul). La natural concavidad negativa del variograma exponencial impide un buen ajuste en los primeros valores 0 < h < 8; no así el Matern que ajusta perfectamente.

Optimizar el modelo de Variograma Matern (3 parámetros) es una mejor opción que anidar un exponencial más un gaussiano (4 parámetros).

Figura 4: Variograma Matern y exponencial ajustado a la data experimental