Exam	2
Calculus	Ш

Printed Name (Last, First):	 Student ID:	
TA Name:	Drill Time:	

<u>Instructions:</u> This exam has a total of 160 points. You have 50 minutes. **CLEARLY SHOW ALL YOUR WORK** to receive full credit. Put a <u>box</u> around your final answer. You may use any result covered in class. The points attached to each problem are indicated beside the problem.

Question	Score	Question	Score
1		5	
2		6	
3		7	
4		8	

1. [20 points] Find the arc length of the curve with parametrization given by $\overrightarrow{r}(t)$ from t = 1 to t = 3.

$$\vec{r}(t) = \left\langle \frac{1}{2} t^2 - t , \frac{4}{3} t^{3/2} \right\rangle$$

2. [20 points] Show the following limit does not exist

$$\lim_{(x,y)\to(0,0)}\frac{x+2y}{x-2y}.$$

3. [20 points total] Shown here are several level curves of a function $f: \mathbb{R}^2 \to \mathbb{R}$. Values of f are shown on some of the level curves. Six points on the plot are labeled A thru F.

- (a) What is the approximate value of f at the point labeled C?
- (b) Which point(s) is/are local maxima of f?
- (c) Which point(s) is/are saddle points of f?
- (d) At which point(s) does the gradient have the largest length?
- (e) At which labeled point(s) does the gradient point southeast?

4	[10	1 т .	c/	\ 1 /	(4 + 2	2)	1 →	/0 -	1\
4.	[10 points each	Let	f(x,y)	$) = \ln($	$(4 + x^2 -$	⊢ <i>y</i> -′)	and $u =$	⟨2, .	L⟩.

(a) Compute $\nabla f(-1,2)$.

(b) Find the directional derivative of f at (-1,2) in the direction of \vec{u} .

5. [20 points] Find an equation of the plane tangent to the surface defined by $z = \sin(xy) + 2$ at the point (1,0,2).

6.	[10	points each] Assume w is a	function of x	z and u , and	that each o	of x, y is a	functions of	of s and	d t
υ.	ITO	pomus each	Assume w is a	ι runction of ι	i and y , and	mai each c	x,y is a.	tunetions (or s am	

(a) Draw a labeled tree diagram showing the relationships among the variables. Use this to write the Chain Rule formula for $\frac{\partial w}{\partial s}$.

(b) Suppose that w(x,y)=xy and x=2s+t and y=s+t. Use your answer to part 6a to find $\frac{\partial w}{\partial s}$ at the point s=2,t=4.

7. [20 points] Find all critical points of the function

$$f(x,y) = y^4 - 2y^2 + x^2 - 4x + 5.$$

For each critical point, use the second derivative test to classify it as either a local minimum, a local maximum, or a saddle point.

8. [20 points] Find the maximum and minimum values of the function

$$f(x,y) = x^2 + y^2 - 2x + 4y + 5$$

subject to the constraint $x^2 + y^2 = 1$.