Oxidation of Methanol to Formaldehyde on Vanadia Films Supported on CeO₂(111)

Gordon S. Wong, Mikael R. Concepcion, and John M. Vohs*

Department of Chemical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6393 Received: January 17, 2002; In Final Form: April 19, 2002

The reaction of methanol to formaldehyde on both V_2O_3 and V_2O_5 films supported on $CeO_2(111)$ was studied by temperature programmed desorption (TPD). Methanol was found to react on monolayer and submonolayer vanadia films to produce formaldehyde, while multilayer films were found to be inactive for this reaction. The kinetics and mechanism of the dehydrogenation of adsorbed methoxides was found to be dependent on the oxidation state of the vanadium cations in the supported vanadia layer. On films that contained V^{3+} (i.e., V_2O_3), adsorbed methoxy species produced via dissociative adsorption of methanol underwent dehydrogenation to formaldehyde at 600 K. In contrast, on films that contained predominantly V^{5+} (i.e., V_2O_5), adsorbed methoxy species underwent dehydrogenation to produce formaldehyde at 540 K. Kinetic parameters for the methoxide dehydrogenation to formaldehyde on both V_2O_3 and V_2O_5 films were determined from the TPD data. The TPD results also provide insight into the thermal stability of supported vanadia films and the role of adsorbed oxygen in the oxidation of methanol to formaldehyde.

Introduction

Vanadia films supported on a second metal oxide such as TiO₂, CeO₂, and ZrO₂ are excellent catalysts for a wide variety of chemical processes including selective oxidation of alcohols, ammoxidation of aromatic hydrocarbons, and the selective catalytic reduction of NO_x with ammonia (SCR).¹⁻⁶ An important aspect of these catalysts is that the active form requires mono- or submonolayer coverages of oxidized vanadium, whereas multilayer coverages are inactive. 1,6-10 The identity of the support also has a significant effect on reactivity. For example, vanadia monolayers supported on TiO2, CeO2, and ZrO₂ generally exhibit high activity, while those supported on Al₂O₃ and SiO₂ exhibit much lower activity.^{7,11-13} The origin of this support effect has yet to be fully elucidated. Numerous studies suggest, however, that it is not structural in nature, since the structure of monolayer vanadia films is nearly identical on all of these supports.^{3,12}

In an effort to both better understand the influence of the underlying oxide support on reactivity and to determine kinetic parameters for the oxidation of methanol to formaldehyde on supported vanadia, we have been studying model systems consisting of vanadia films grown on single-crystal metal oxide supports. Previously, we have presented results detailing the reactivity of V₂O₃ films grown on TiO₂(110).^{14,15} Those studies showed that submonolayer and monolayer V₂O₃ films were active for the oxidation of methanol to formaldehyde, whereas multilayer films were inactive. We have also recently reported on the growth of both V_2O_3 and V_2O_5 films on $CeO_2(111)$.¹⁶ In the work reported here we have extended our previous studies on the structure and electronic properties of vanadia films supported on CeO₂(111) to include temperature programmed desorption (TPD) studies of the reactivity of these films toward methanol.

Experimental Section

Experiments were conducted in two separate ultrahigh vacuum (UHV) surface analysis chambers. The background

pressure in each chamber was $\sim 2 \times 10^{-10}$ Torr, and each was equipped with a mass spectrometer (UTI), ion sputter gun (Physical Electronics), quartz crystal film thickness monitor (Maxtek), and vanadium metal deposition source. The UHV chamber used for the TPD experiments was also equipped with a cylindrical mirror electron energy analyzer (Omicron) for Auger electron spectroscopy (AES), while that used for X-ray photoelectron spectroscopy (XPS) contained an X-ray source (VG Microtech) and a hemispherical electron energy analyzer (Leybold-Heraeus).

The $CeO_2(111)$ single crystal, which was obtained from Commercial Crystal Laboratories, was mounted in a tantalum metal sample holder that was attached to a UHV sample manipulator. The temperature was monitored using a chromel—alumel thermocouple that was glued to the back surface of the $CeO_2(111)$ sample. Heating was achieved via conduction from the resistively heated tantalum holder. The sample was cleaned using cycles of sputtering with 2 kV Ar^+ ions and annealing at 750 K.

The vanadium metal source consisted of a tungsten filament that was wrapped with a piece of vanadium wire. The tungsten filament was heated resistively to a temperature sufficient to cause vaporization of the vanadium. The quartz crystal film thickness monitor was used to determine the amount of vanadium deposited. One monolayer of vanadium was defined to be 1.5×10^{15} atoms/cm², which is the density of vanadium atoms on the close packed V(110) surface. The sample was maintained at 300 K during vanadium deposition. To produce a vanadium oxide layer, the sample was annealed in 10^{-7} – 10^{-3} Torr of O_2 following vanadium deposition. As will be discussed below, either V_2O_5 or V_2O_3 could be produced depending on the O_2 pressure during the oxidation step.

XP spectra were collected using Al K α X-rays. The binding energy scale in the XP spectra was referenced to the primary $3d_{5/2}$ photoemission peak of the Ce⁴⁺ cations in the CeO₂(111) support, which occurs at 916.96 eV.^{17,18} Satellites of the O 1s peak resulting from photoemission excited by Al K α_3 and K α_4 X-rays fall in the same region of the spectrum as the V 2p peaks. Since these peaks tend to obscure the V 2p peaks, especially

^{*} Corresponding author. Fax: 1-215-573-2093. E-mail: vohs@seas.upenn.edu.

Figure 1. V 2p and O 1s XP spectra (a) for clean CeO₂(111), (b) for a 0.5 monolayer vanadium film on CeO₂(111) following exposure to 10^{-7} Torr of O₂ at 550 K for 1 h, and (c) after exposing the sample in (b) to 10^{-3} Torr of O₂ at 400 K for 1 h.

for low vanadium coverages, they were subtracted from the O(1s)/V(2p) spectra presented below using standard techniques.

Methanol (Fisher, HPLC grade) and deuterated methanol (Acros Organics, 99.6%) were purified using repeated freeze—pump—thaw cycles prior to use and were admitted into the vacuum system using a variable leak valve. For TPD experiments, the sample was exposed to 20 langmuir of either methanol or deuterated methanol at 300 K and then heated at a rate of 4.5 K/s. This exposure was found to be sufficient to saturate the surface. Multiple *m/e* values were monitored during each TPD experiment in order to identify the various products. The TPD curves presented below have been corrected for overlapping cracking patterns and scaled to account for differences in the sensitivity factors for each product.

Results and Discussion

We have previously reported detailed XPS results for vapordeposited vanadia films supported on CeO₂(111). ¹⁶ In that study it was shown that the films grow in a layer-by-layer fashion and that for coverages up to one monolayer, either V₂O₃ or V₂O₅ films could be produced depending on the growth conditions. This is illustrated in Figure 1 which displays O 1s and V 2p spectra for a 0.5 monolayer vanadia film on CeO₂(111). Spectrum a in this figure corresponds to clean CeO₂(111), while spectrum b corresponds to a vanadia film produced by oxidizing a 0.5 monolayer vapor-deposited vanadium film in 10^{-7} Torr of O₂ at 550 K for 1 h. The V 2p_{3/2} peak in this spectrum is centered at 515.7 eV, which is consistent with the vanadium cations being in the +3 oxidation state (i.e., V₂O₃). ^{19,20} It was found that oxidation treatments that consisted of annealing in less than 10⁻⁷ Torr of O₂ were insufficient to produce films with vanadium cations in higher oxidation states. 16 Films containing V⁵⁺ (i.e., V₂O₅) could be produced, however, by annealing in 10⁻³ Torr of O₂ at 400 K for 1 h. Spectrum c in Figure 1 was obtained from a 0.5 monolayer vanadia film following this oxidation treatment. Note that the V 2p_{3/2} peak has shifted to 516.9 eV, which is consistent with V⁵⁺.¹⁹ For multilayer vanadia films on CeO₂(111) it was found that only V₂O₃ films could be produced by annealing in O₂ at pressures less than 10⁻³ Torr. ¹⁶

Figure 2. CH₃OH TPD from 0.5 monolayer $V_2O_3/CeO_2(111)$. Shown here are the O_2 , H_2CO , and CH_3OH desorption curves.

TPD spectra obtained from a CH₃OH-dosed 0.5 monolayer vanadia film supported on CeO₂(111) are shown in Figure 2. For this sample, the vanadia film was annealed in 10^{-7} Torr of O₂ at 550 K for 1 h. As noted above, this procedure produces a film that contains V³⁺ cations. The only gaseous products detected during CH₃OH TPD with this sample were CH₃OH and CH₂O, which desorbed at 600 and 605 K, respectively. The ratio of CH₂O to CH₃OH produced was roughly 6:1. Since CH₃OH does not adsorb on stoichiometric CeO₂(111) at 300 K,²¹ these peaks can be assigned to reactions taking place on the vanadia. Neither water nor hydrogen desorption were detected during this TPD experiment. The H2O signal did increase slowly, however, at temperatures greater than 400 K. An increasing H₂O signal with temperature was not observed in blank experiments in which the sample was not dosed with methanol. It is, therefore, likely that reaction of methanol on the surface also resulted in the production of some water.

Methanol TPD results for a more highly oxidized vanadia film supported on CeO₂(111) are displayed in Figure 3. The data in the upper half of this figure were obtained from a 0.5 monolayer V₂O₅ film that was produced by annealing the vanadia layer in 10⁻³ Torr of O₂ at 400 K for 1 h prior to the TPD experiment. During CH₃OH TPD with this sample, CH₃OH and CH₂O were produced at 530 and 540 K, respectively. The H₂O signal again increased at temperatures above 400 K, suggesting that some water may also have been produced. Note that the CH₃OH and CH₂O peak temperatures are about 70 K less than those obtained from the 0.5 monolayer V₂O₃/ CeO₂(111) sample. The ratio of the areas of the CH₂O to CH₃OH peaks was 2:1. In addition to these products, O₂ desorption was also observed during the TPD experiment. Molecular oxygen desorbed in a large peak centered at 450 K. This peak temperature is identical to that reported previously for oxygen desorption from vanadia films pretreated in 10^{-3} Torr of O₂. 16 XPS studies show that desorption of O₂ at 450 K does not result in the reduction of the vanadia layer. Thus, this peak is most likely due to desorption of molecularly adsorbed oxygen.

The lower half of Figure 3 displays the results of a CH₃OH TPD run that was performed immediately following the run shown in the upper half of the figure. Oxygen desorption did

Figure 3. O₂, H₂CO, and CH₃OH desorption spectra obtained from a CH₃OH-dosed 0.5 monolayer V₂O₅ film on CeO₂(111). The top panel displays spectra from the first run of a freshly oxidized sample, while the bottom panel displays spectra obtained in the subsequent run.

not occur in this TPD run. Methanol and formaldehyde peaks are centered at 590 and 595 K, respectively, and both contain broad leading edges, suggesting that the peaks are composed of overlapping features. Note that except for the broad leading edges, this set of TPD results is similar to that in Figure 2 for 0.5 monolayer $V_2O_3/CeO_2(111)$. This indicates that the V_2O_5 film underwent reduction during the first TPD run and that the predominant oxidation state of the vanadium cations in the film was +3. These results demonstrate that the temperature at which formaldehyde is produced during methanol TPD on supported vanadia films can be used as a chemical probe for the oxidation state of the vanadium cations.

Although the data in Figure 3 demonstrate the influence of the oxidation state of the vanadium cations on reactivity toward methanol, they also raise several questions. For example it is not clear whether the adsorbed oxygen species plays a role in the oxidation of the adsorbed methoxides in the case of the V₂O₅/CeO₂(111) sample. It is also not clear if the reduction of the V₂O₅ film to V₂O₃ that occurred during the first TPD run was a result of the reaction of methanol on the surface, heating the sample to 750 K, or a combination of the two.

To assess the influence of the O₂ species on the reactivity of the supported V₂O₅ film, the following series of experiments were performed. A 0.5 monolayer V₂O₅/CeO₂(111) sample was prepared by oxidizing in 10^{-3} Torr of O_2 . The sample was then flashed to 500 K in order to desorb the O2 species. The O2 desorption curve obtained while flashing is displayed in the upper portion of Figure 4. The sample was then dosed with CH₃OH at room temperature and a TPD experiment was performed. Methanol, formaldehyde, and oxygen desorption curves obtained in this TPD run are displayed in the lower portion of Figure 4. Note that in this TPD experiment, even though O2 desorption at 450 K was not detected, formaldehyde was still produced at 540 K. This is the same temperature as that for samples in which the oxygen species was present on the surface. This result demonstrates that the adsorbed oxygen species does not play a role in the oxidation of methoxides to formaldehyde on the V₂O₅/CeO₂(111) model catalyst.

As described earlier, a CH₃OH TPD experiment in which the sample is heated to 750 K results in reduction of supported

Figure 4. (Upper panel) O2 desorption curve from a freshly prepared 0.5 monolayer V₂O₅/CeO₂(111) sample. The temperature ramp in this run was stopped at 500 K. Immediately after this run, the sample was dosed with CH₃OH and a TPD run was performed. The desorption curves from this second run are shown in the lower panel.

Figure 5. H₂CO desorption curves from two consecutive CH₃OH TPD runs with a 0.5 monolayer V₂O₅/CeO₂(111) sample. The temperature ramp was stopped at 600 K in the first run (spectrum A) and 640 K in the second run (spectrum B).

V₂O₅ to V₂O₃ (see Figure 3) and a shift in the temperature at which CH₂O is produced from 540 to 595 K. To provide additional insight into the effect of annealing temperature on reactivity and the extent of reduction of the vanadia layer, a CH₃OH TPD experiment was performed using a freshly prepared V₂O₅/CeO₂(111) sample in which the temperature ramp was stopped at 600 K and then a second CH₃OH TPD run was performed. The CH₂O desorption curve from the first run in this set of experiments is displayed at the top of Figure 5 and contains a CH₂O peak centered at 540 K, as would be expected for a fully oxidized vanadia film. As shown in the lower panel of the figure, the CH2O peak in the spectrum from the second run is shifted slightly upward to 550 K. Although this shift suggests some reduction of the vanadia layer occurred during the first TPD run, the magnitude of the shift is significantly

Figure 6. H₂CO desorption curves from CH₃OH-dosed 0.5 monolayer VO₃/CeO₂(111). In this set of experiments a reduced V₂O₅/CeO₂(111) sample was dosed with O₂ and then a CH₃OH TPD run was performed. The oxygen dose consisted of exposing the sample to the $P_{\rm O_2}$ specified in the figure for 30 s.

less than that obtained following a TPD run in which the sample was heated to 750 K (see Figure 3). These results, therefore, demonstrate that in the runs in which the sample was heated to 750 K, reduction of the vanadia layer is primarily thermally induced and not due to reaction of methanol on the surface. This conclusion is consistent with our previous XPS results, which also show that reduction of the supported V_2O_5 layer occurs upon heating to temperatures in excess of 650 K. 16

As noted above, production of a V₂O₅ film on CeO₂(111) required oxidation of a vapor-deposited vanadium layer in 10^{-3} Torr of O2 at 400 K. Annealing in lower pressures of oxygen produced films that contained only V3+ (i.e., V2O3). It was observed, however, that V2O3 layers that were produced by heating a V₂O₅/CeO₂(111) sample to 750 K could be at least partially reoxidized using less stringent conditions. This is illustrated in Figure 6, which displays the CH2O desorption curves obtained for CH₃OH TPD runs with V₂O₅/CeO₂(111) samples that had been reduced by a previous CH₃OH TPD run and then reoxidized. The reoxidation treatments consisted of exposing the reduced sample to 10^{-8} , 10^{-7} , 10^{-6} , and 10^{-3} Torr of O₂ for 30 s. For comparison, the CH₂O TPD curve obtained from a reduced sample, prior to reoxidation, is also included in the figure. The data in this figure show that even small doses of O₂ are sufficient to partially reoxidize the vanadia layer. For example, the CH₂O spectrum obtained following exposure of a reduced sample to 10^{-8} Torr of O₂ for 30 s (0.3 langmuir) can be resolved into two overlapping peaks centered at 540 and 600 K. These peaks can be assigned to reactions taking place on V^{5+} and V^{3+} , respectively. The ratio of the area of the lowtemperature peak to that at high temperature in this run was approximately 1:2. This ratio increased with increasing oxygen exposure in the reoxidation step. An O_2 exposure of 10^{-3} Torr of O₂ for 30 s was sufficient to completely reoxidize the vanadia film and only the low-temperature CH2O peak, indicative of reaction on V⁵⁺, was observed in the spectrum from this sample. These results suggest that after a V₂O₅/CeO₂(111) sample has initially been synthesized, it is relatively easy to cycle the oxidation state of the vanadium cations between +5 and +3. One possible explanation for this observation is that a structural rearrangement of the vanadia layer must take place during the

Figure 7. H₂CO and D₂CO desorption spectra from 0.5 monolayer vanadia film supported on CeO₂(111), when dosed with CH₃OH or CD₃OD, respectively. The data in the top panel were obtained from a $V_2O_3/CeO_2(111)$ sample, while data in the bottom panel were obtained from a $V_2O_3/CeO_2(111)$ sample.

first oxidation treatment in order to form V_2O_5 and this makes it more difficult to initially synthesize the fully oxidized film.

The influence of the vanadia coverage on the reactivity of $VO_x/CeO_2(111)$ was also investigated. For vanadia coverages up to 1 monolayer the TPD results for both V_2O_5 and V_2O_3 films were similar to those reported above for a 0.5 monolayer film. The only difference being the intensity of the high-temperature CH_2O and CH_3OH desorption peaks. The intensity of these peaks increased with vanadia coverage for coverages up to 0.5 monolayer and then slowly decreased with further increases in vanadia coverage. Multilayer V_2O_3 films on $CeO_2(111)$ were found to be unreactive and methanol adsorbed only molecularly on these films. As noted above, it was not possible to produce multilayer V_2O_5 films on $CeO_2(111)$.

To provide additional insight into the mechanism of the reaction that produces CH₂O at 540 K on the V₂O₅ films and 600 K on the V₂O₃ films, TPD experiments were conducted in which CD₃OD was used as the reactant. Figure 7 presents a comparison of the formaldehyde desorption curves obtained when using CH₃OH and CD₃OD as the reactants for 0.5 monolayer V_2O_5 (upper panel) and V_2O_3 (lower panel) films. Note that a kinetic isotope effect is observed for both the oxidized and partially reduced samples. For V₂O₅/CeO₂(111), CH₂O is produced at 540 K, while CD₂O is produced at 560 K. For the $V_2O_3/CeO_2(111)$ sample, the peak temperature for CD₂O, 610 K, is again 20 K higher than that for CH₂O, which was at 590 K. These results demonstrate that C-H bond cleavage is the rate-limiting step in the formation of CH₂O from adsorbed methoxide intermediates on both V₂O₅/CeO₂(111) and $V_2O_3/CeO_2(111)$.

Kinetic parameters for the rate-limiting step in the formation of CH_2O from adsorbed methoxide species on both the V_2O_3 and V_2O_5 films were deduced from the TPD results. This was done by simulating TPD curves and adjusting the preexponential factor and activation energy in order to obtain the best fit to the experimental data. These simulation results along with the experimental data are presented in Figure 8. The upper panel in this figure presents the TPD simulation results for CH_2O desorption from a 0.5 monolayer V_2O_3 film supported on $CeO_2(111)$. Note that the simulated TPD curve obtained using a preexponential factor of 10^{13} s⁻¹ and an activation energy of

Figure 8. H₂CO desorption spectra from CH₃OH-dosed 0.5 monolayer V₂O₃ and V₂O₅ films on CeO₂(111). Curve fits used to determine the kinetic parameters for the H2CO desorption peaks are also displayed in the figure.

158 kJ/mol provides an excellent fit to the data. On the basis of transition state theory, the magnitude of the preexponential factor depends on the entropy of activation (ΔS^{\ddagger}). A ΔS^{\ddagger} value of zero produces a preexponential factor that is approximately 10^{13} s⁻¹. Thus, these results indicate that ΔS^{\ddagger} for the dehydrogenation of a surface methoxide to produce formaldehyde on V₂O₃/CeO₂(111) is very small. This in turn suggests that the transition state for this reaction resembles the reactant (i.e., there is an early transition state).

In addition to being at a lower temperature, the CH₂O desorption peak from a 0.5 monolayer V₂O₅ film on CeO₂(111) is much broader than that from V₂O₃/CeO₂(111). As shown in the lower panel of Figure 8, the CH₂O peak from V₂O₅/ CeO₂(111) cannot be adequately fit using a preexponential factor of 10¹³ s⁻¹. The simulated TPD curve obtained using a preexponential factor of 10¹³ s⁻¹ and an activation energy of 139.5 kJ/mol gives the correct peak temperature but produces a peak that is much narrower than that in the experimental data. A much lower value for the preexponential factor is needed in order to obtain a good fit to the data. As shown in the figure, a simulated TPD curve obtained using a preexponential factor of 2×10^7 s⁻¹ and an activation energy of 83.7 kJ/mol provides an excellent fit to the data. Since these values for the preexponential factor and activation energy were determined by fitting to a rather limited data set (i.e., one TPD run), one needs to be cautious in interpreting this result. Other factors such as defects and a distribution of vanadium oxidation states in the film (e.g., a mixture of V⁵⁺ and V⁴⁺) might also produce broad peaks. The fact that the calculated activation energy, 83.7 kJ/ mol, is nearly identical to the reported value of the apparent activation energy for this reaction determined from steady-state kinetics data using a high surface area vanadia/ceria catalyst, 11,12 however, provides some additional credence to the kinetic parameters determined from the TPD data.

Finally, it is interesting to compare the results obtained in the present study to those reported previously for the reaction of methanol on monolayer films of V₂O₃ and V₂O₅ supported on TiO₂(110). Wang et al. have performed CH₃OH TPD on a 1 monolayer V₂O₅/TiO₂(110) sample and found that CH₂O was

produced at 517 K.²² We have previously shown that during TPD, methanol also reacts on mono- and submonolayer V₂O₃ films supported on TiO₂(110) to produce CH₂O between 600 and 700 K.^{14,15} In this case, the CH₂O desorption temperature was found to be dependent on the vanadia coverage, with lower coverages giving slightly higher temperatures. Note that these results are similar to those reported here for VO_x/CeO₂(111) and also demonstrate that the activation energy for dehydrogenation of methoxides to formaldehyde is lower on supported V₂O₅ relative to that on supported V_2O_3 .

Conclusions

The results of this study demonstrate that submonolayer and monolayer coverages of vanadia supported on CeO₂(111) are active for the oxidation of methanol to formaldehyde. The mechanism of this reaction, however, was found to be dependent on the oxidation state of the vanadium cations in the supported vanadia film. Methanol adsorbs dissociatively on monolayer and submonolayer V₂O₃ films on CeO₂(111) and the resulting surface methoxides undergo dehydrogenation near 600 K to produce formaldehyde. Analysis of the TPD data indicates that the preexponential factor and activation energy for this reaction are 1013 s-1 and 158 kJ/mol, respectively. In contrast to supported V₂O₃, adsorbed methoxide intermediates produced via dissociative adsorption of methanol on submonolayer and monolayer V₂O₅ films on CeO₂(111), undergo dehydrogenation to produce formaldehyde at 540 K. The preexponential factor and activation energy for this reaction on supported V₂O₅ were found to be $2 \times 10^7 \text{ s}^{-1}$ and 83.7 kJ/mol, respectively.

Acknowledgment. We gratefully acknowledge the financial support of the National Science Foundation (Grant No. CTS-9712774) and the Laboratory for Research on the Structure of Matter at the University of Pennsylvania for the use of its facilities.

References and Notes

- (1) Bond, G. C.; Tahir, S. F. Appl. Catal. A 1991, 71, 1.
- (2) Bond, G. C. Appl. Catal. A 1997, 157, 91.
- (3) Wachs, I. E.; Weckhuysen, B. M. Appl. Catal. A 1997, 157, 67.
- (4) Centi, G. Appl. Catal. A 1996, 147, 267.
- (5) Blasco, T.; Lopez Nieto, J. M. Appl. Catal. A 1997, 157, 117.
- (6) Forzatti, P.; Tronconi, E.; Elmi, A. S.; Busca, G. Appl. Catal. A 1997, 157, 387.
 - (7) Deo, G.; Wachs, I. E. J. Catal. 1991, 129, 307.
- (8) Khodakov, A.; Olthof, B.; Bell, A. T.; Iglesia, E. J. Catal. 1999, 181, 205,
- (9) Went, G. T.; Leu, L.; Rosin, R. R.; Bell, A. T. J. Catal. 1992, 134, 492.
- (10) Roozeboom, F.; Cordingley, P. D.; Gellings, P. J. J. Catal. 1981, 68, 464.
 - (11) Burcham, L. J.; Wachs, I. E. Catal. Today 1999, 49, 467.
- (12) Wachs, I. E.; Deo, G.; Juskelis, M. V.; Weckhuysen, B. M. Stud. Surf. Sci. Catal. 1997, 109, 305.
 - (13) Deo, G.; Wachs, I. E. J. Catal. 1994, 146, 323.
- (14) Wong, G. S.; Kragten, D. D.; Vohs, J. M. Surf. Sci. 2000, 452, L293.
- (15) Wong, G. S.; Kragten, D. D.; Vohs, J. M. J. Phys. Chem. B 2001, 105, 1366.
 - (16) Wong, G. S.; Vohs, J. M. Surf. Sci. 2002, 498, 266.
 - (17) Pfau, A.; Schierbaum, K. D. Surf. Sci. 1994, 321, 71.
- (18) Pfau, A.; Schierbaum, K. D.; Gopel, W. Surf. Sci. Spectra 1998, 4, 288.
 - (19) Sawatsky, G. A.; Post, D. Phys. Rev. B 1979, 20, 1546.
- (20) Demeter, M.; Neumann, M.; Reichelt, W. Surf. Sci. 2000, 454-456, 41.
- (21) Ferrizz, R. M.; Wong, G. S.; Egami, T.; Vohs, J. M. Langmuir **2001**, 17, 2464.
 - (22) Wang, Q.; Madix, R. J. Surf. Sci. 2001, 474, L213.