実験レポート:高機能テンプレート

氏名

2025年8月13日

目次

1	はじめに	2
2	実験方法	2
2.1	実験装置	2
2.2	測定手順	2
3	結果と考察	3
3.1	測定データ	3
3.2	グラフと回帰分析	3
3.3	考察	4
4	CSV データからの表とグラフの自動生成	4
4.1	CSV データから生成した表	4
4.2	CSV データから生成したグラフ	4
5	結論	5
付録 A	補足情報:数式とグラフのサンプル	6
A .1	様々な数式の表現 (amsmath)	6
A.2	様々なグラフの描画 (pgfplots)	7
A.3	アルゴリズムの記述 (algorithmicx)	8

1 はじめに

このドキュメントは、LuaLaTeX を使用した技術レポートのテンプレートです。特に、pgfplots パッケージを用いて、測定データの表と回帰直線付きグラフを自動で生成する機能に焦点を当てています。技術文書の作法に従い、句読点には「.」と「,」を使用します。また、和文中のカッコには全角(例:VDEC(VLSI Design and Education Center))を用い、物理量の添え字(例: $V_{\rm pp}$ 、pp は peak-to-peak の略)はローマン体で記述します。数式 $V_{\rm pp}=3$ V のように、単位の前には半角スペースを入れます。

図2や表2のように、図表の相互参照が可能です。参考文献の引用も簡単です[1].

2 実験方法

ここでは、実験に用いた装置や手順について説明します.

2.1 実験装置

実験に用いた回路を図2に示します.

各素子のパラメータは表1の通りです.回り込み図のサンプルを図1に示します.文章の途中に図を配置することで、紙面を有効に活用できます.回り込みを終えたい場所で、適宜改行を挟んでください.

図1 回り込み図の例

図2 RLC並列回路

表 1 素子のパラメータ例

素子	記号	値
抵抗	R	100Ω
インダクタ	L	$10\mathrm{mH}$
キャパシタ	C	1 μF

2.2 測定手順

測定の手順をここに記述します.

1. 手順1

- 2. 手順 2
- 3. 手順 3

3 結果と考察

ここでは、測定結果のデータと、それをグラフ化したものを提示し、考察を述べます.

3.1 測定データ

測定結果を表2に示します.この表は、上で生成されたデータから自動的に作成されます.

表 2 測定データと回帰分析の結果

<i>V</i> [V]	I [mA]
1	$7.60 \cdot 10^{0}$
2	$7.95\cdot 10^0$
3	$1.06\cdot 10^1$
4	$1.22\cdot 10^1$
5	$1.50\cdot 10^1$
6	$1.80\cdot 10^1$
7	$1.63\cdot 10^{1}$
8	$2.06\cdot 10^1$
9	$2.39\cdot 10^{1}$
10	$2.50\cdot 10^{1}$
11	$2.60\cdot 10^1$
12	$2.79\cdot 10^{1}$
13	$3.12\cdot 10^1$
14	$3.38\cdot 10^{1}$
15	$3.26\cdot 10^1$

3.2 グラフと回帰分析

測定データをプロットし、線形回帰分析を行った結果を図3に示します.グラフと回帰直線は、表2のデータを用いて自動的に描画されます.

図3 測定結果のグラフと回帰直線

3.3 考察

図 3 から、電圧 V と電流 I の間には強い正の相関が見られます。回帰直線の傾きは 1.97 であり、これは回路のコンダクタンスに相当すると考えられます。

4 CSV データからの表とグラフの自動生成

4.1 CSV データから生成した表

外部 CSV ファイル 'my_data.csv' のデータを元に、自動的に生成された表です.

表 3 my_data.csv から読み込んだデータ

<i>V</i> [V]	I [mA]
0	0
1	2.1
2	3.9
3	6.2
4	7.8
5	10.1
6	11.8
7	14.2

4.2 CSV データから生成したグラフ

'my_data.csv' のデータを元に、自動的に生成されたグラフと回帰直線です.

図 4 my_data.csv のデータから作成したグラフ

5 結論

本レポートでは、 $\bigcirc\bigcirc$ の実験を行い、 $\triangle\triangle$ という結果を得た.考察から、 $\bigcirc\Box$ ということが示唆された.

付録 A 補足情報:数式とグラフのサンプル

この付録では、レポート作成時に役立つ様々な数式やグラフの記述例を示します.

A.1 様々な数式の表現 (amsmath)

amsmath パッケージを用いることで、以下のような複雑な数式を記述できます.

A.1.1 微分・積分

常微分と偏微分:

$$\frac{\mathrm{d}^2 f(x)}{\mathrm{d}x^2} + \frac{\partial^2 f(x, y)}{\partial y^2} = 0 \tag{1}$$

時間積分と周回積分:

$$\Phi = \int_{S} \vec{B} \cdot d\vec{S}, \quad \oint_{C} \vec{E} \cdot d\vec{l} = -\frac{d\Phi_{B}}{dt}$$
 (2)

A.1.2 総和・総乗

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad n! = \prod_{k=1}^{n} k$$
 (3)

A.1.3 行列・ベクトル・行列式

行列 (pmatrix):

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix} \tag{4}$$

行列式 (vmatrix):

$$\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \tag{5}$$

A.1.4 場合分け

$$f(x) = \begin{cases} x^2 & (x \ge 0) \\ -x^2 & (x < 0) \end{cases}$$
 (6)

A.1.5 数式の打ち消し線 (cancel)

cancel パッケージは、数式における項の消去や約分を視覚的に示す際に有用です。特に、分数の約分や多項式の因数分解による簡約化の過程を明示するのに役立ちます。

スラッシュで打ち消す (\cancel):

$$\frac{x^2}{x'} = x \tag{7}$$

多項式の約分の例:

$$\frac{(x+1)(x-1)}{(x-1)} = x+1 \quad (x \neq 1)$$
 (8)

打ち消し線の上から文字を書く(\cancelto):

$$\frac{x^{-1}}{2x^{-1}} = \frac{1}{2} \tag{9}$$

A.1.6 電気電子工学における数式表現

電気電子工学では、複素数、ラプラス変換、伝達関数、デシベル表現などが頻繁に用いられます.

■複素数 交流回路の解析では、複素数を用いた表現が不可欠です.

$$Z = R + jX = |Z|e^{j\phi} \tag{10}$$

ここで、j は虚数単位 ($j^2=-1$)、R は抵抗、X はリアクタンス、|Z| はインピーダンスの大きさ、 ϕ は位相角を表します.

■ラプラス変換 線形時不変システム(LTI システム)の解析に用いられるラプラス変換の例です.

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty f(t)e^{-st}dt$$
 (11)

■伝達関数 システムの入出力関係を表す伝達関数 H(s) の例です.

$$H(s) = \frac{V_{\text{out}}(s)}{V_{\text{in}}(s)} = \frac{1}{RCs + 1}$$
 (12)

■デシベル表現 ゲインや減衰量を対数スケールで表現するデシベルの定義です.

$$G_{\rm dB} = 20\log_{10}\left(\frac{V_{\rm out}}{V_{\rm in}}\right) \tag{13}$$

A.2 様々なグラフの描画 (pgfplots)

A.2.1 片対数グラフ

片対数グラフ (指数関数)

図5 y軸を対数スケールにしたグラフ

A.2.2 両対数グラフ

両対数グラフ (べき乗則)

図 6 x 軸と y 軸を対数スケールにしたグラフ

A.2.3 媒介変数表示のグラフ

媒介変数表示 (リサジュー図形)

図7 媒介変数 t によって x と y が定義されるグラフ

A.3 アルゴリズムの記述 (algorithmicx)

algorithm と algorithmicx パッケージを用いると,論文などで見られるような疑似コードを記述できます.

Algorithm 1 Euclid の互除法

```
1: procedure Euclid(a, b)
2: r ← a (mod b)
3: while r ≠ 0 do
4: a ← b
5: b ← r
6: r ← a (mod b)
7: end while
8: return b
9: end procedure
```

参考文献

[1] P. Scherz and S. Monk, "Practical Electronics for Inventors," 2nd ed., McGraw-Hill, 2006.