EXAMEN TRAITEMENT DU SIGNAL - 1SN

Jeudi 16 janvier 2020 (8h30-9h30)

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1 (4 points)

On considère un signal aléatoire x(t) défini par

$$x(t) = \exp\left[j(2\pi f t + \phi)\right]$$

où f est une variable aléatoire de densité p(f) et ϕ est une phase constante appartenant à l'intervalle $]0,2\pi[$.

- 1. Exprimer la moyenne du signal x(t) en fonction de ϕ et de la transformée de Fourier inverse de p(f). Le signal x(t) est-il stationnaire ? Calculer la moyenne de x(t) dans les deux cas suivants
 - f est uniforme sur l'intervalle $[f_0 \Delta f, f_0 + \Delta f]$, où f_0 et Δf sont des constantes telles que $f_0 > \Delta f$
 - la densité de probabilité de f est gaussienne autour de la fréquence f_0 , i.e.,

$$p(f) = \exp[-\pi (f - f_0)^2], \quad f \in \mathbb{R}.$$

2. Calculer la fonction d'autocorrélation et la densité spectrale de puissance de x(t) dans le cas où f est uniforme sur l'intervalle $[f_0 - \Delta f, f_0 + \Delta f]$ avec $f_0 > \Delta f$.

Exercice 2 (3 points)

Un signal aléatoire x(t) stationnaire de moyenne nulle et de densité spectrale de puissance $s_x(f)$ doit être transmis dans un canal représenté par un bruit additif stationnaire b(t) de moyenne nulle et de densité spectrale de puissance $s_b(f)$. Afin d'améliorer le rapport signal sur bruit, on introduit un filtre à l'émission appelé filtre de préaccentuation de transmittance $H_p(f)$ et de réponse impulsionnelle $h_p(t)$. Afin de compenser l'effet de ce filtre, on introduit dans le récepteur un filtre appelé filtre de désaccentuation de transmittance $H_d(f)$ et de réponse impulsionnelle $h_d(t)$. Le système général est représenté ci-dessous

Figure 1: Système de préaccentuation/désaccentuation.

- 1. Déterminer la puissance du signal y(t) notée P_y en fonction de $H_p(f)$ et de $s_x(f)$.
- 2. Quelle relation doit-il y avoir entre $H_p(f)$ et $H_d(f)$ pour que la sortie du système s'écrive s(t) = x(t) + w(t) avec $w(t) = b(t) * h_d(t)$, où * désigne le produit de convolution. On supposera que cette relation est vérifiée dans la suite de cet exercice.

3. On admet que le filtre $H_d(f)$ minimisant la puissance de w(t) pour une puissance $P_y = P_0$ donnée est tel que

$$|H_d(f)|^2 = \sqrt{\lambda \frac{s_x(f)}{s_b(f)}}$$

avec $\lambda>0$. En utilisant la relation $P_y=P_0$, exprimer $\sqrt{\lambda}$ en fonction de P_0 , $s_x(f)$ et $s_b(f)$.

4. En déduire le module carré de la transmittance du filtre de désaccentuation $|H_d(f)|^2$ en fonction de P_0 , $s_x(f)$ et $s_b(f)$.

Exercice 3 (4 points)

On considère un filtre non-linéaire qui transforme un signal aléatoire X(t) en un signal aléatoire Y(t) tel que

$$Y(t) = X(t) - kX^3(t)$$

On supposera dans cet exercice que X(t) est un signal Gaussien stationnaire de moyenne nulle et de fonction d'autocorrélation $r_X(\tau)$. On rappelle que pour un tel processus, la loi du couple $(U,V)=(X(t),X(t-\tau))$ est gaussienne de densité de probabilité

$$f(u,v) = rac{1}{2\pi\sqrt{\det\Sigma}} \exp\left[-rac{1}{2}(u,v)\Sigma^{-1}(u,v)^T
ight]$$

où $(u,v)\in\mathbb{R}^2$ et où Σ est la matrice de covariance du couple (U,V) définie par

$$\Sigma = \begin{pmatrix} \operatorname{var}(U) & \operatorname{cov}(U, V) \\ \operatorname{cov}(U, V) & \operatorname{var}(V) \end{pmatrix}$$

- 1. Exprimer les éléments de Σ en fonction de $R_X(\tau)$ et $R_X(0)$. En déduire que l'autocorrélation du signal Y(t) ne dépend que de $R_X(\tau)$ et $R_X(0)$.
- 2. Déterminer la fonction d'autocorrélation de Y(t) en fonction de celle de X(t) et d'une constante additive notée C.

Rappel: on pourra utiliser l'expression de fonction d'autocorrélation de la sortie du quadrateur (déterminée en cours)

$$E[X^{2}(t)X^{2}(t-\tau)] = 2R_{X}^{2}(\tau) + R_{X}^{2}(0)$$

3. On rappelle que les moments d'un signal Gaussien de moyenne nulle X(t) vérifient la relation suivante

$$m_{2n} = E[X^{2n}(t)] = [(2n-1)(2n-3) \times ... \times 5 \times 3 \times 1] R_X^n(0)$$

En déduire la valeur de C.

Transformée de Fourier

$$X(f) = \int_{\mathbb{R}} x(t)e^{-i2\pi ft}dt$$
 $x(t) = \int_{\mathbb{R}} X(f)e^{i2\pi ft}df$

		· II
x(t) réelle paire	\rightleftharpoons	X(f) réelle paire
x(t) réelle impaire	=	X(f) imaginaire pure impaire
x(t) réel		Re $\{X(f)\}$ paire
	\rightleftharpoons	Im $\{X(f)\}$ impaire
		X(f) pair
		$\{X(f)\}$ impaire
ax(t) + by(t)	\rightleftharpoons	aX(f) + bY(f)
$x(t-t_0)$	\rightleftharpoons	$X(f)e^{-i2\pi ft_0}$
$x(t)e^{+i2\pi f_0t}$	\Rightarrow	$X(f-f_0)$
$x^*(t)$	\rightleftharpoons	$X^*(-f)$
$x(t) \cdot y(t)$	\Rightarrow	X(f) * Y(f)
x(t) * y(t)	\rightleftharpoons	$X(f) \cdot Y(f)$
x(at)	\rightleftharpoons	$\frac{1}{ a }X\left(\frac{f}{a}\right)$
$\frac{dx^{(n)}(t)}{dt^n}$	\rightleftharpoons	$(i2\pi f)^n X(f)$
$\left(-i2\pi t\right)^n x(t)$	\rightleftharpoons	$\frac{dX^{(n)}(f)}{df^n}$

Formule de Parseval
$\int_{\mathbb{R}} x(t)y^*(t)dt = \int_{\mathbb{R}} X(f)Y^*(f)df$
$\int_{\mathbb{R}} x(t) ^2 dt = \int_{\mathbb{R}} X(f) ^2 df$

Série de Fourier		
$x(t) = \sum c_n e^{+i2\pi n f_0 t} \rightleftharpoons X(f) = \sum c_n \delta(f - n f_0)$		
$n{\in}\mathbb{Z}$ $n{\in}\mathbb{Z}$		
avec $c_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-i2\pi n f_0 t} dt$		

T.F.

		li
1	\rightleftharpoons	$\delta\left(f ight)$
$\delta\left(t ight)$	\rightleftharpoons	1
$e^{+i2\pi f_0 t}$	\rightleftharpoons	$\delta \left(f-f_{0} ight)$
$\delta\left(t-t_{0} ight)$	\rightleftharpoons	$e^{-i2\pi f t_0}$
$\sum_{k \in \mathbb{Z}} \delta\left(t - kT\right)$	=	$rac{1}{T} \sum_{k \in \mathbb{Z}} \delta\left(f - rac{k}{T} ight)$
$\cos\left(2\pi f_0 t\right)$	\rightleftharpoons	$\frac{1}{2}\left[\delta\left(f-f_0\right)+\delta\left(f+f_0\right)\right]$
$\sin\left(2\pi f_0 t\right)$	\rightleftharpoons	$\frac{1}{2i}\left[\delta\left(f-f_0\right)-\delta\left(f+f_0\right)\right]$
$e^{-a t }$	\rightleftharpoons	$\frac{2a}{a^2+4\pi^2f^2}$
$e^{-\pi t^2}$	\rightleftharpoons	$e^{-\pi f^2}$
$\Pi_{T}\left(t ight)$	\rightleftharpoons	$T\frac{\sin(\pi Tf)}{\pi Tf} = T\sin c \left(\pi Tf\right)$
$\Lambda_{T}\left(t ight)$	\rightleftharpoons	$T\sin c^2\left(\pi Tf\right)$
$B\sin c \left(\pi Bt\right)$	₹	$\Pi_{B}\left(f ight)$
$B\sin c^2 (\pi Bt)$	=	$\Lambda_{B}\left(f ight)$

!!!!!! Attention !!!!!

 $\Pi_T(t)$ est de support égal à T. $\Lambda_T(t)$ est de support égal à 2Tet on a $\Pi_T(t) * \Pi_T(t) = T \Lambda_T(t)$

$$\delta(t) = \begin{cases} 0 \text{ si } t \neq 0 \\ +\infty \text{ si } t = 0 \end{cases} \text{ et } \int_{\mathbb{R}} \delta(t) dt = 1$$

$$\delta(t - t_0) f(t) = \delta(t - t_0) f(t_0)$$

$$\delta(t - t_0) * f(t) = f(t - t_0)$$

On remarques a que dans les deux cos ci-desses, XII) ex mon-stationnaire Fonction d'autocorrèlation

$$E[\chi H \chi^*/t-T] = E[e^{\frac{1}{2}} e^{\frac{1}{2}} H - \frac{1}{2} e^{\frac{1}{2}} H - \frac{1}{2}]$$

$$= E[e^{\frac{1}{2}} H - \frac{1}{2}]$$

$$= \int_{0}^{\infty} e^{\frac{1}{2}} H - \frac{1}{2}$$

$$= \int_{0}^{\infty} e^{\frac{1}{2}} H - \frac{1}{2}$$

$$= \int_{0}^{\infty} e^{\frac{1}{2}} H + \frac{1}{2}$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} e^{\frac{1}{2}} H + \frac{1}{2}$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} e^{\frac{1}{2}} H + \frac{1}{2}$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} e^{\frac{1}{2}} \int_{0}^{\infty} e^{\frac{1}{2}} \int_{0}^{\infty} \int_{0}^{\infty} e^{\frac{1}{2}} \int_{0}^{\infty} \int_{0}^{\infty} e^{\frac{1}{2}} \int_{0}^{\infty} \int_{0}^{\infty} e^{\frac{1}{2}} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} e^{\frac{1}{2}} \int_{0}^{\infty} \int_{0}^{\infty} e^{\frac{$$

On en déduit
$$3\times 141=5(4-fo)*24 1124 (for d'où $3\times (h-1)*24 (f-fo)$$$

Ex2 1) Py =) sy(+) df Dapis Wiener les sylf) = south (Hp(f))2 donc

2) la sortie du système s'enit Alt) = (516) + 616)) * halt)

= bit) + hditi + xit) + hp(t) + hd(t) Pour avoir slt) = with + relt , il suffer d'avoir

3) Prisque Py=Po, ona

$$P_0 = \int dx (t) |Mp(t)|^2 dt = \int \frac{dx(t)}{|Ha(t)|^2} dt$$

On en diduit
$$P_0 = \int \frac{3\pi(\xi) \sqrt{3b(\xi)} d\xi}{\sqrt{4} \sqrt{3\pi(\xi)}}$$

4) On an conduct

$$|Hd(t)|^2 = \sqrt{\lambda} \frac{|\Delta_{\lambda}(t)|}{|\Delta_{\lambda}(t)|} = \frac{1}{|\Delta_{\lambda}(t)|} \sqrt{|\Delta_{\lambda}(t)|} \sqrt{|\Delta_{\lambda}(t)|}$$

1)
$$Var U = E[X^{2}[H] - E[X]H] + [2x[0])$$

$$Var V = E[X^{2}[H-T]] - E^{2}[X]H-T] = [2x[0])$$

$$Cov(U,V) = E[X]H X[H-T] - E[X]H E[X]H-T] = [2x[T])$$

2)
$$\frac{\partial P_{y}(n)}{\partial R_{y}(t)} = E[(1-3kx^{2}kt)(1-3kx^{2}lt-t))]$$

= $1-3kE[x^{2}kt) - 3kE[x^{2}lt-t] + 9k^{2}R_{y}^{2}lt]$
 $R_{x}(0)$ $R_{x}(0)$ $R_{y}(0)$ $R_{y}^{2}lt$

En utilisant la fonction d'autocorrelation du quadrateur, on en deduit

$$\frac{\partial n_{y}(t)}{\partial n_{x}(t)} = \frac{1 - 6k \kappa_{x}(0) + 9k^{2} R_{x}^{2}(0) + 18k^{2} R_{x}^{2}(t)}{\left[1 - 3k R_{x}(0)\right]^{2}}$$

over
$$R_{7}(0) = E(Y^{2}H) = E(X^{2}H) - 2k X^{4}|t| + k^{2}X^{6}|t|$$

$$= R_{x}(0) - 2k M_{4} + k^{2}M_{6}$$

$$= R_{x}(0) - 6k R_{x}^{4}(0) + 15k^{2}R_{x}^{3}(0)$$

 $= R_{x}(0) - 6k_{x}^{2}(0) + 15k_{x}^{2}R_{x}^{3}(0)$

done $C = R_{x}(0) - 6k R_{x}^{2}(0) + 15k^{2} R_{x}^{3}(0) - (R_{x}(0)) - 6k R_{x}^{2}(0) + 9k^{2} R_{x}^{3}(0))$ + 662 Rx (0)

1 por