Đề thi HK 171

Môn: Xử lý tín hiệu số với FPGA (MSMH: EE3041)

Ngày thi: 21/12/2017 - Thời gian làm bài: 90 phút

(SV KHÔNG được sử dụng tài liệu, Laptop, PC Tablet và điện thoại di động)

Câu 1: (2 đ) Hãy trải ra (unfold) DFG trong hình sau với hệ số J = 3.

Câu 2: (2 đ) Cho trước hệ thống ở hình sau (các số đi kèm bộ cộng nhân là số thứ tự của nút) với mỗi bộ nhân có pipeline 2 tầng và $T_M = 2u.t.$, mỗi bộ cộng có pipeline 1 tầng và $T_A = 1u.t.$

Hãy gấp (fold) DFG này với hệ số gấp N = 4 với các tập gấp sau:

$$S_M = \{M4, M1, M2, M3\}$$

 $S_A = \{A1, A4, A3, A2\}$

- a) Thực hiện tái định thì để các tập gấp cho kết quá chi có các trì hoàn không âm trong cấu truc gấp.
- b) Gấp DFG đã được tái định thì: chi lập bảng tinh thời gian T_{in} và T_{out} của mỗi nưt, không cản về hình **Ghi chú**:
 - Phương trình gấp D_F:

$$D_{\epsilon}(U \xrightarrow{e} V) = Nw(e) - P_{ij} + v - u$$

với w(e) là số phần từ Delay trên cạnh e, P_u là số tầng pipeline của nút U, v là số thứ tự của V trong tập gấp chứa V, và u là số thứ tự của U trong tập gấp chứa U.

• Công thức tính thời gian vào T_{in} và thời gian ra T_{out} tương ứng cho nút U:

$$T_{in} = u + P_u \quad \text{và} \quad T_{out} = u + P_u + \max_{v} \{D_F(U \rightarrow V)\}$$

Câu 3: (2 đ) Thiết kế mạch biến đôi ma trận 3 x 3 với 1 ngô vào và 1 ngô ra, theo quy tắc sau:

Ma trận vào

Ma trân ra

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \Rightarrow \begin{bmatrix} c & a & b \\ e & f & d \\ i & h & g \end{bmatrix}$$

- a) Lập bang thời gian sống và gian đồ thời gian sống, từ đó suy ra số thanh ghi cấn cho mạch này là bao nhiều?
- b) Lập bảng cấp phát thanh ghi thuận-nghịch. (Không cần về mạch)

Câu 4: (2 d) Xét 1 bộ lọc có phương trình ngỗ ra: y(n) = ax(n) + bx(n-2) + cx(n-4) + dx(n-6)

- a) Hãy vẽ DG của bộ lọc này. Lập công thức mô tả RIA (chuẩn ngỗ ra) tương đương cho giai thuật nay. Từ đó suy ra các cạnh cơ bản e_x, e_y và e_y?
- b) Cho trước $d = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$, tìm p và s. (Giá sử d, p và s phải thoa các điều kiện: $p^T d = \theta$; $s^T d \neq \theta$ và $s^T e \geq \theta$)
- c) Vẽ mảng tâm thu cần thiết kế.

Câu 5: (2 d)

Thiết kế mạch lọc FIR có 3 nhánh [re] (3-tap FIR filter)

$$y(n) = h_0x(n) + h_1x(n-1) + h_2x(n-2)$$

với các hệ số là $h_0 = 109$, $h_1 = 107$, và $h_2 = 111$.

- a) Với số học phân bố (distributed arithmetic), hãy cho biết cần dùng bang tra cứu (ROM hoặc bang LUT của FPGA) có kích thước bao nhiều và nội dung của bàng này.
- b) Viết mã Verilog cho mạch lọc này. (Giả sử ngô vào mỗi lần cung cấp 3 mẫu dữ liệu liên tiếp: x(n), x(n-1) và x(n-2).)

Bộ môn Điện Từ

KT GV ra để

Hồ Trung Mỹ

<u>Đáp án của Đề thị HK 171</u> <u>Môn:</u> Xữ lý tín hiệu số với FPGA (MSMH: EE3041)

Ngày thị: 21/12/2017 <u>Thời gian làm bài:</u> 90 phút (SV KHÔNG được sử dụng tài liệu, Laptop, PC Tablet và diện thoại di động)

Câu 1: (2 đ)

Vì có phần tử Delay nổi với khóa, ta thêm nút giá F:

Thực hiện trải ra DFG theo bảng sau với J = 3: (0.5 d)

$$U_i \xrightarrow{W} V_i \Rightarrow U_i \xrightarrow{W} V_k$$

	Bảng dạng 1				
i	W	k = (i + w)%3	w' = (i + w)/3		
0	3	0	1		
1	3	1	1		
2	3	2	1		
0	4	1	1		
1	4	2	1		
2	4	0	2		
0	5	2	1		
1	5	0	2		
2	5	1	2		

	Ban	g dang	2
	w	k .	w
0	3	0	1
C	4	1	1
0		2	
1	. 3	1	ï
1	4	2	1
1	5	U	2
. 2	3	2	î
2	4	U	2
2	5	1	2

Thực hiện trải ra DFG cho các nút B, E và C với khóa theo các thời điểm sau

$$WI + u = J(W'I + \lfloor u/J \rfloor) + (u\%J)$$

Ta có: $W = W'J \implies W' = W/J = 6/3 = 2$. Từ đó ta có báng sau: (0.5 d)

Vị trí khóa	Các thơi điểm chuyên mach	
Bật lên	6l + 0 = 3(2l + 0) + 0 $6l + 2 = 3(2l + 0) + 2$ $6l + 4 = 3(2l + 1) + 1$;
Bật xuống	6l + 1 = 3(2l + 0) + 1 $6l + 3 = 3(2l + 1) + 0$ $6l + 5 = 3(2l + 1) + 2$!

Câu 2: (2 đ)

Thứ tự trong tập gấp:

$$S_A = \{A1, A4, A3, A2\}$$

 $S_M = \{M4, M1, M2, M3\}$

Nếu đánh số nút theo thứ tự: 1 → 4 tương ứng với A1 → A4 và 5 → 8 tương ứng với M1 → M4. Như vậy ta có tập gấp cho các nút:

$$S_A = \{1, 4, 3, 2\}$$

 $S_M = \{8, 5, 6, 7\}$

Khi đó ta có bằng sau:

(0.5 đ) Phương trình gấp D _F	(0.5 đ) Sau khi retiming – Phương trình gặp D
$D_F(U \xrightarrow{e} V) = Nw(e) - P_u + v - u$	$D_F(U \xrightarrow{c} U) = Nv(c) - P_i - v - a$
$D_F(1 \rightarrow 3) = 4(0) - 1 + 2 - 0 = 1$	$D_F(1 \to 3) = 4 (1) -1 + 2 - 0 = 5$
$D_F(1 \rightarrow 5) = 4(1) - 1 + 1 - 0 = 4$	$D_F(1 \rightarrow 5) = 4(0) -1 + 1 - 0 = 0$
$D_F(1 \rightarrow 7) = 4(1) - 1 + 3 - 0 = 6$	$Dr(1 \rightarrow 7) = 4(0) - 1 + 3 - 0 = 2$
$D_F(1 \rightarrow 6) = 4(2) - 1 + 2 - 0 = 9$	$D_t(1 \rightarrow 6) = 4(0) \cdot (1 + 2 \cdot 0) = 1$
$D_F(1 \rightarrow 8) = 4(2) - 1 + 0 - 0 = 7$	$D_F(1 \rightarrow 8) = 4(1) - 1 + 0 - 0 = 3$
$D_F(2 \rightarrow 1) = 4(0) -1 + 0 - 3 = -4$ (*)	$D_r(2 - 1) = 4(1) - 1 + 0 - 3 = 0$
$D_F(4 \rightarrow 3) = 4(0) -1 + 2 - 1 = 0$	$D_F(4 \rightarrow 3) = 4(1) -1 + 2 - 1 = 4$
$D_F(5 \rightarrow 2) = 4(0) - 2 + 3 - 1 = 0$	$\frac{1}{1}D_{F}(5 \rightarrow 2) = \div(0) -2 \cdot \cdots $
$D_F(6 \rightarrow 2) = 4(0) -2 + 3 - 2 = -1(^{\circ})$	$D_{\ell}(6 \to 2) = 4(1) \cdot 2 + 3 \cdot 2 = 3$
$D_F(7 \rightarrow 4) = 4(0) -2 + 1 - 3 = -4(*)$	$D_F(7 \rightarrow 4) = 4(1) -2 + 1 - 3 = 0$
$D_F(8 \rightarrow 4) = 4(0) -2 + 1 - 0 = -1(*)$	$D_F(8 \rightarrow 4) = 4(1) - 2 + 1 - 0 = 3$

Với bảng trên ta thấy việc tái định thì sẽ phai xảy ra với các tập saister a label bact

Tái định thì DFG theo các CS (0.5 d)

Tính thời gian Tin và Tout của mỗi nút để tôi thiêu hoa thanh ghi 10.5 đ).

$D_F(U \underline{w} V) = Nw - P_v + v - u$	Nút	T
$D_F(1 \rightarrow 3) = 4(1) - 1 + 2 - 0 = 5$	1	7 0
$D_{F}(1 \rightarrow 5) = 4(0) - 1 + 1 - 0 = 0$	2	9 4
$D_F(1 \rightarrow 7) = 4(0) - 1 + 3 - 0 = 2$	3	
$D_F(1 \rightarrow 6) = 4(0) -1 + 2 - 0 = 1$	4 :	
$D_F(1 \rightarrow 8) = 4(1) - 1 + 0 - 0 = 3$	5	
$D_F(2 \rightarrow 1) = 4(1) - 1 + 0 - 3 = 0$	6	4 7
$D_F(4 \rightarrow 3) = 4(1) - 1 + 2 - 1 = 4$		
$D_F(5 \rightarrow 2) = 4(0) - 2 + 3 - 1 = 0$		to the state of th
$D_F(6 \rightarrow 2) = 4(1) - 2 + 3 - 2 = 3$	8	$\mathcal{L}_{\mathcal{L}}}}}}}}}}$
$D_F(7 \rightarrow 4) = 4(1) - 2 + 1 - 3 = 0$		
$D_F(8 \rightarrow 4) = 4(1) - 2 + 1 - 0 = 3$	#	

Với $T_{in} = u + Pu \text{ và } T_{out} = u + Pu + \text{max}_{V} \{DF(U \rightarrow V)\}$

Câu 3:

Báng thời gian sống:

Mẫu	T_{m}	Tzlout	T _{diff}	Tout	Doi song
а	0	1	1	3	0 3
b	1	2	1	4	1 4
С	2	0	-2	2	2 . 2
d	3	5	2	7	3 , 7
е	4	3	-1	5	4 . 5
f	5	4	-1	6	5 წ
g	6	8	2	10	6 - 16
h	7	7	0	9	7 9
i	8	6	-2	8	8 - 8

Giản đồ thời gian sống:

Mẫu	Đời sống	
а	0 → 3	
b	1 → 4	
С	2 → 2	
d	3 → 7	
е	4 → 5	
f	5 → 6	
g	6 → 10	
h	7 → 9	
ı	8 → 8	

Như vậy số thanh ghi cần sứ dụng là 2.

• Bảng cấp phát thanh ghi thuận-nghịch

Cycle	Input	RI	R2	Output
0	а			
1	b	а		
2	С	b	а	С
3	d	а	b	a
4	е	d	b	b
5	f	е	d	e
6	g	f	d	f
7	h	g	d	d
8	i	h	g	1
9		g	h	h
10			g	g

Câu 4: (2 đ)

a) Ta có: y(n) = ax(n) + bx(n-2) + cx(n-4) + dx(n-6)Suy ra DG:

$$e_x = [0 \ 1]^T$$
, $e_w = [1 \ 0]^T$, $va e_v = [2 \ -1]^T$ (0.25 d)

- b) (0.5 d) Tim p và s khí d = $[1 \ 0]^{\text{T}}$
 - Điều kiện $p^{T}d = 0 \implies [p1 \quad p2] [1 \quad 0]^{T} = 0 \implies p1 = 0.$ Nếu chọn $p2 = 1 \implies p = [0 \quad 1]^{T}$
 - Điều kiên của s:
 - $ho s^{T} d \neq 0 \Rightarrow [s1 \ s2] [1 \ 0]^{T} \neq 0 : s1 \neq 0.$
 - r $s^Te \ge 0$:

E	s [™] e ≥ 0
$e_x = [0 1]^T$	s2 · 0
$e_w = [1 0]^T$	s1 0
$e_7 = [2 -1]^T$	2s1 - s2 · 0

Kết hợp các bất đẳng thứ trên, ta chọn s1 = 1 $\pm 0 + s2 + 2s1$ hay 0 = s2 + 2Như vậy chọn s2 = 1 $\pm s = [1 \quad 1]^{T}$. Kết luận: $p = [0 \quad 1]^{T}$ và $s = [1 \quad 1]^{T}$.

c) Màng tâm thu cần thiết kế:

Bảng ánh xạ cạnh với $p^{T} = [0 1] \text{ và s}^{T} = [1 1] (0.5 \text{ d})$

е		$p^{\dagger}e$	$s^{\tau}e$
$e_x = [0]$	1] [†]	1	1
e _w = [1	0]1	0	1
$e_z = [2]$	-1] [⊺]	_1	1

Sơ đổ mảng tâm thu: (0.5 đ)

Câu 5: (2 d)

a) (0.5 d)

Trường hợp dữ liệu lớn nhất là tổng các hệ số h là:

$$109 + 107 + 111 = 327$$
 và $2^8 - 1 (= 255) < 327 < 2^9 - 1 (= 511)$

Suy ra bảng tra cứu phải có độ rộng dữ liệu là 9 và số đường địa chỉ là 3 (do có 3 tạp). Nếu gọi các bit địa chỉ là A₂A₁A₀ thì nội dung tại ô nhờ là A₂h₂ + A₁h₁ + A₅h; Như vậy ROM hoặc LUT có kích thước: 2³ x 6

Từ đó ta có bảng ghi ROM cho FIR có các hệ số (109, 107, 111) như sau:

Địa chí (Binary)	Dur lieti (Decimal)
000	0
001	109
010	107
011	216
100	111
101	220
110	218
111	327

Đáp án của DSP-FPGA Thi HK171 - trang 5/6

```
b) (1.5 d) Mã Verilog cho hệ cần thiết kết
                                              y(n) = h0x(n) + h^4x(n) 1 = h2x(n)
module(clk1, clk2, reset, xn, xn 1, xn 2, yn);
input clk1, clk2, reset;
input [7:0] xn, xn_1, xn_2;
output [15:0] yn; reg [15:0] yn; reg [7:0] dn, dn | 1, dn | 2;
reg [7:0] counter; reg [15:0] sum;
wire [5:0] data;
// có 9 clock clk2 giữa 2 cạnh len của clk1
rom d1(clk2, {dn_2[0], dn_1[0], dn[0]}, data)
always@(posedge clk1)
begin
       dn \le xn;
       dn 1 <= xn 1;
       dn 2 \le xn 2;
end
always@(negdge clk2)
begin
      if (reset)
              begin
                     counter <= 8:
                     sum <= 0;
              end
       else
             if (counter == 0)
                     yn <= sum;
             else
             begin
                     counter <= counter - 1;
                     sum < = sum + data;
             end
end
always@(posdge clk2)
begin
      dn <= dn << 1;
       dn_1 <= dn_1 << 1;
       dn 2 <= dn 2 << 1;
end
endmodule
module rom (en, addr. data); // tinh A2h2 + A1h1 + A0h0
input en;
input [2:0] addr;
output [5:0] data;
reg [5:0] data;
always @(posedge en)
      case(addr)
              3'b000: data = 0:
              3'b001: data = 6'd109;
             3'b010: data = 6'd107;
             3'b011: data = 6'd216;
             3'b100: data = 6'd111;
              3'b101: data = 6'd220;
              3'b110: data = 6'd218;
              3'b111: data = 6'd327;
              default: data = 6'bXXXXXX;
         endcase
endmodule
                               GV ra để và soạn đáp án: Hồ Trung Mỹ
```