In [1]:	# For Data manipulations import numpy as np import pandas as pd # For Data visualizations import matplotlib.pyplot as plt import seaborn as sns plt.style.use('fivethirtyeight')
In [2]:	<pre># For interactivity import ipywidgets from ipywidgets import interact Reading the Dataset # lets read the dataset data = pd.read_csv('data.csv') # lets check the shape of the dataset print("Shape of the Dataset :", data.shape)</pre>
<pre>In [3]: Out[3]:</pre>	Shape of the Dataset : (2200, 8) # lets check the head of the dataset data.head() N P K temperature humidity ph rainfall label 0 90 42 43 20.879744 82.002744 6.502985 202.935536 rice 1 85 58 41 21.770462 80.319644 7.038096 226.655537 rice 2 60 55 44 23.004459 82.320763 7.840207 263.964248 rice 3 74 35 40 26.491096 80.158363 6.980401 242.864034 rice
	4 78 42 42 20.130175 81.604873 7.628473 262.717340 rice on for each of the columns in the Dataset N - ratio of Nitrogen content in soil P - ratio of Phosphorous content in soil K - ration of Potassium content in soil temperature - temperature in degree Celsius humidity in alue of the soil rainfall - rainfall in mm # lets check if there is any missing value present in the dataset data.isnull().sum() N
In [5]: Out[5]:	Albel
	muskmelon 100 watermelon 100 grapes 100 banana 100 pomegranate 100 lentil 100 blackgram 100 mungbean 100 mothbeans 100 pigeonpeas 100 kidneybeans 100 chickpea 100 coffee 100 Name: label, dtype: int64
In [6]:	# lets check the Summary for all the crops print("Average Ratio of Nitrogen in the Soil : {0:.2f}".format(data['N'].mean())) print("Average Ratio of Phosphorous in the Soil : {0:.2f}".format(data['P'].mean())) print("Average Ratio of Potassium in the Soil : {0:.2f}".format(data['k'].mean())) print("Average Tempature in Celsius : {0:.2f}".format(data['temperature'].mean())) print("Average Relative Humidity in % : {0:.2f}".format(data['humidity'].mean())) print("Average PH Value of the soil : {0:.2f}".format(data['ph'].mean())) Average Ratio of Nitrogen in the Soil : 50.55
In [7]:	Average Ratio of Phosphorous in the Soil: 53.36 Average Ratio of Potassium in the Soil: 48.15 Average Tempature in Celsius: 25.62 Average Relative Humidity in %: 71.48 Average PH Value of the soil: 6.47 Average Rainfall in mm: 103.46 # lets check the Summary Statistics for each of the Crops @interact def summary(crops = list(data['label'].value_counts().index)): x = data[data['label'] == crops] print("
	<pre>print("Average Nitrogen required :", x['N'].mean()) print("Maximum Nitrogen required :", x['N'].max()) print("</pre>
	<pre>print("Average Temperature required : {0:.2f}".format(x['temperature'].mean())) print("Maximum Temperature required : {0:.2f}".format(x['temperature'].max())) print("</pre>
In [8]:	<pre>print("Average Rainfall required : {0:.2f}".format(x['rainfall'].mean())) print("Maximum Rainfall required : {0:.2f}".format(x['rainfall'].max())) ## Lets compare the Average Requirement for each crops with average conditions @interact def compare(conditions = ['N', 'P', 'K', 'temperature', 'ph', 'humidity', 'rainfall']): print("Average Value for", conditions, "is {0:.2f}".format(data[conditions].mean())) print("</pre>
	<pre>print("Coconut : {0:.2f}".format(data[(data['label'] == 'coconut')][conditions].mean())) print("Apple : {0:.2f}".format(data[data['label'] == 'apple'][conditions].mean())) print("Waskmelon : {0:.2f}".format(data[data['label'] == 'grapes')][conditions].mean())) print("Grapes : {0:.2f}".format(data[data['label'] == 'grapes')][conditions].mean())) print("Watermelon : {0:.2f}".format(data[data['label'] == 'watermelon'][conditions].mean())) print("Kidney Beans: {0:.2f}".format(data[data['label'] == 'watermelon'][conditions].mean())) print("Wang Beans : {0:.2f}".format(data[data['label'] == 'kidneybeans')][conditions].mean())) print("Oranges : {0:.2f}".format(data[data['label'] == 'range')][conditions].mean())) print("Chick Peas : {0:.2f}".format(data[data['label'] == 'chickpea'][conditions].mean())) print("Lentils : {0:.2f}".format(data[data['label'] == 'lentil')][conditions].mean())) print("Cotton : {0:.2f}".format(data[data['label'] == 'cotton'][conditions].mean())) print("Maize : {0:.2f}".format(data[data['label'] == 'cotton'][conditions].mean())) print("Moth Beans : {0:.2f}".format(data[data['label'] == 'mothbeans'][conditions].mean())) print("Pigeon Peas : {0:.2f}".format(data[data['label'] == 'mothbeans'][conditions].mean())) print("Pigeon Peas : {0:.2f}".format(data[data['label'] == 'mothbeans'][conditions].mean())) print("Mango : {0:.2f}".format(data[data['label'] == 'pigeonpeas')][conditions].mean()))</pre>
In [9]:	<pre>print("Pomegranate : {0:.2f}".format(data[(data['label'] == 'pomegranate')][conditions].mean())) print("Coffee : {0:.2f}".format(data[data['label'] == 'coffee'][conditions].mean())) # lets make this funtion more Intuitive @interact def compare(conditions = ['N', 'P', 'K', 'temperature', 'ph', 'humidity', 'rainfall']): print("Crops which require greater than average", conditions, '\n') print("data[data[conditions] > data[conditions].mean()]['label'].unique()) print("Crops which require less than average", conditions, '\n') print("Crops which require less than average", conditions, '\n') print(data[data[conditions] <= data[conditions].mean()]['label'].unique())</pre>
In [10]:	Analyzing Agricultural Conditions ### Lets check the distribution of Agricultural Conditions import warnings warnings("ignore") plt.rcParams['figure.figsize'] = (15, 7) plt.subplot(2, 4, 1) sns.distplot(data('N'), color = 'yellow') plt.xlabel('Ratio of Nitrogen', fontsize = 12) plt.grid()
	<pre>plt.subplot(2, 4, 2) sns.distplot(data['P'], color = 'skyblue') plt.xlabel('Ratio of Phosphorous', fontsize = 12) plt.grid() plt.subplot(2, 4, 3) sns.distplot(data['k'], color = 'seagreen') plt.xlabel('Ratio of Potassium', fontsize = 12) plt.grid() plt.subplot(2, 4, 4) sns.distplot(data['temperature'], color = 'black') plt.xlabel('Temperature', fontsize = 12) plt.grid()</pre>
	<pre>plt.subplot(2, 4, 5) sns.distplot(data['rainfall'], color = 'red') plt.subplot(2, 4, 6) sns.distplot(data['humidity'], color = 'blue') plt.xlabel('Humidity', fontsize = 12) plt.grid() plt.subplot(2, 4, 7) sns.distplot(data['ph'], color = 'purple') plt.xlabel('ph Level', fontsize = 12) plt.grid()</pre>
	Distribution for Agricultural Conditions Distribution for Agricultural Conditions 0.015 0.015 0.015 0.015 0.005 0.005 0.005 0.005 0.005 0.005 0.001 0.005 0.001 0.005
	0.000 0 100 0.000 0 100 200 40 Temperature 0.0125 0.0075 0.0050 0.0050 0.001
In [11]:	<pre>print("Some Interesting Patterns") print("</pre>
In [12]:	Crops which requires very High Ratio of Nitrogen Content in Soil: ['cotton'] Crops which requires very High Ratio of Phosphorous Content in Soil: ['grapes' 'apple'] Crops which requires very High Ratio of Potassium Content in Soil: ['grapes' 'apple'] Crops which requires very High Rainfall: ['rice' 'papaya' 'coconut'] Crops which requires very Low Temperature: ['grapes' 'papaya'] Crops which requires very High Temperature: ['grapes' 'papaya'] Crops which requires very Low ph: ['mothbeans'] Crops which requires very Low ph: ['mothbeans'] ### Lets understand which crops can only be Grown in Summer Season, Winter Season and Rainy Season print("Summer Crops") print(data[(data['temperature'] > 30) & (data['humidity'] > 50)]['label'].unique())
	<pre>print("</pre>
In [13]:	Clustering Similar Crops ### Lets try to Cluster these Crops # lets import the warnings library so that we can avoid warnings import warnings warnings.filterwarnings('ignore') # Lets select the Spending score, and Annual Income Columns from the Data x = data.loc[:, ['N','P','K','temperature','ph','humidity','rainfall']].values # let's check the shape of x print(x.shape)
Out[13]:	# lets convert this data into a dataframe x_data = pd.DataFrame(x) x_data.head() (2200, 7)
In [14]:	<pre># lets determine the Optimum Number of Clusters within the Dataset from sklearn.cluster import KMeans plt.rcParams['figure.figsize'] = (10, 4) wcss = [] for i in range(1, 11): km = KMeans(n_clusters = i, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0) km.fit(x) wcss.append(km.inertia_) # lets plot the results plt.plot(range(1, 11), wcss,color="maroon") plt.title('The Elbow Method', fontsize = 20,color="green")</pre>
	plt.ylabel('wcss') plt.show() 1e7
In [15]:	# lets implement the K Means algorithm to perform Clustering analysis km = KMeans(n_clusters = 4, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0) y_means = km.fit_predict(x) # lets find out the Results a = data['label'] y_means = pd.DataFrame(y_means) z = pd.concat([y_means, a], axis = 1)
	<pre>z = z.rename(columns = {0: 'cluster'}) # lets check the Clusters of each Crops print("Lets check the Results After Applying the K Means Clustering Analysis \n") print("Crops in First Cluster:", z[z['cluster'] == 0]['label'].unique()) print("Crops in Second Cluster:", z[z['cluster'] == 1]['label'].unique()) print("Crops in Third Cluster:", z[z['cluster'] == 2]['label'].unique()) print("Crops in Forth Cluster:", z[z['cluster'] == 3]['label'].unique())</pre> Lets check the Results After Applying the K Means Clustering Analysis Crops in First Cluster: ['maize' 'chickpea' 'kidneybeans' 'pigeonpeas' 'mothbeans' 'mungbean'
In [16]:	<pre>'blackgram' 'lentil' 'pomegranate' 'mango' 'orange' 'papaya' 'coconut'] Crops in Second Cluster: ['maize' 'banana' 'watermelon' 'muskmelon' 'papaya' 'cotton' 'coffee'] Crops in Third Cluster: ['grapes' 'apple'] Crops in Forth Cluster: ['rice' 'pigeonpeas' 'papaya' 'coconut' 'jute' 'coffee'] # Hard Clustering print("Results for Hard Clustering\n") counts = z[z['cluster'] == 0]['label'].value_counts() d = z.loc[z['label'].isin(counts.index[counts >= 50])] d = d['label'].value_counts() print("Crops in Cluster 1:", list(d.index))</pre>
	<pre>print("</pre>
In [17]:	Results for Hard Clustering Crops in Cluster 1: ['chickpea', 'kidneybeans', 'mothbeans', 'mungbean', 'blackgram', 'lentil', 'pomegranate', 'mango', 'orange'] Crops in Cluster 2: ['maize', 'banana', 'watermelon', 'muskmelon', 'cotton'] Crops in Cluster 3: ['grapes', 'apple'] Crops in Cluster 4: ['rice', 'pigeonpeas', 'papaya', 'coconut', 'jute', 'coffee'] Visualizing the Hidden Patterns ### Data Visualizations
	<pre>plt.rcParams['figure.figsize'] = (15, 8) plt.subplot(2, 4, 1) sns.barplot(data['N'], data['label']) plt.ylabel('') plt.xlabel('Ratio of Nitrogen', fontsize = 10) plt.yticks(fontsize = 10) plt.subplot(2, 4, 2) sns.barplot(data['P'], data['label']) plt.ylabel('') plt.xlabel('Ratio of Phosphorous', fontsize = 10) plt.yticks(fontsize = 10) plt.subplot(2, 4, 3) plt.subplot(2, 4, 3)</pre>
	<pre>sns.barplot(data['K'], data['label']) plt.ylabel(' ') plt.xlabel('Ratio of Potassium', fontsize = 10) plt.subplot(2, 4, 4) sns.barplot(data['temperature'], data['label']) plt.ylabel(' ') plt.xlabel('Temperature', fontsize = 10) plt.ylabel('Temperature', fontsize = 10) plt.yticks(fontsize = 10) plt.subplot(2, 4, 5) sns.barplot(data['humidity'], data['label']) plt.ylabel(' ') plt.ylabel(' ') plt.ylabel(' Humidity', fontsize = 10) plt.yticks(fontsize = 10)</pre>
	<pre>plt.subplot(2, 4, 6) sns.barplot(data['ph'], data['label']) plt.ylabel(' ') plt.ylabel(' 'PH of Soil', fontsize = 10) plt.yticks(fontsize = 10) plt.subplot(2, 4, 7) sns.barplot(data['rainfall'], data['label']) plt.ylabel('') plt.ylabel('') plt.xlabel('Rainfall', fontsize = 10) plt.yticks(fontsize = 10) plt.suptitle('Visualizing the Impact of Different Conditions on Crops', fontsize = 15,color="green") plt.show()</pre>
	Visualizing the Impact of Different Conditions on Crops fice
	coconut cotton ute ute ute cotton
In [18]:	Predictive Modelling # lets split the Dataset for Predictive Modelling y = data['label'] x = data.drop(['label'], axis = 1) print("Shape of x:", x.shape) print("Shape of y:", y.shape)
In [19]:	Shape of x: (2200, 7) Shape of y: (2200,) # lets create Training and Testing Sets for Validation of Results from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 0) print("The Shape of x train:", x_train.shape) print("The Shape of x test:", x_test.shape) print("The Shape of y train:", y_train.shape) print("The Shape of y train:", y_train.shape) print("The Shape of y test:", y_test.shape)
In [20]: In [21]:	The Shape of x train: (1760, 7) The Shape of x test: (440, 7) The Shape of y train: (1760,) The Shape of y train: (1760,) The Shape of y test: (440,) # lets create a Predictive Model from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(x_train, y_train) y_pred = model.predict(x_test) # lets evaluate the Model Performance
	<pre>from sklearn.metrics import classification_report, confusion_matrix # lets print the Confusion matrix first plt.rcParams['figure.figsize'] = (10, 10) cm = confusion_matrix(y_test, y_pred) sns.heatmap(cm, annot = True, cmap = 'flare') plt.title('Confusion Matrix for Logistic Regression', fontsize = 15) plt.show() # lets print the Classification Report also cr = classification_report(y_test, y_pred) print(cr) Confusion Matrix for Logistic Regression 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>
	20 21 20 20 20 20 20 20 20 20 20 20 20 20 20
	01
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	jute 0.84 1.00 0.91 21 kidneybeans 1.00 1.00 1.00 20 lentil 0.94 0.94 0.94 17 maize 0.94 0.89 0.91 18 mango 1.00 1.00 1.00 21 mothbeans 0.88 0.92 0.90 25 mungbean 1.00 1.00 1.00 17 muskmelon 1.00 1.00 1.00 23 orange 1.00 1.00 1.00 23 papaya 1.00 0.95 0.98 21 pigeonpeas 1.00 1.00 1.00 22 pomegranate 1.00 1.00 1.00 23 rice 1.00 0.84 0.91 25 watermelon 1.00 1.00 1.00 23
In [22]: Out[22]:	Real time Predictions Real
In [23]:	1 85 58 41 21.770462 80.319644 7.038096 226.655537 rice 2 60 55 44 23.004459 82.320763 7.840207 263.964248 rice 3 74 35 40 26.491096 80.158363 6.980401 242.864034 rice 4 78 42 42 20.130175 81.604873 7.628473 262.717340 rice prediction = model.predict((np.array([[90, 40, 20, 80, 70])))
<pre>In [24]: Out[24]:</pre>	print("The Suggested Crop for Given Climatic Condition is :", prediction) The Suggested Crop for Given Climatic Condition is : ['rice'] # lets check the Model for Oranges data[data['label'] == 'orange'].head() N P K temperature humidity ph rainfall label 1600 22 30 12 15.781442 92.510777 6.354007 119.035002 orange 1601 37 6 13 26.030973 91.508193 7.511755 101.284774 orange 1602 27 13 6 13.360506 91.356082 7.335158 111.226688 orange 1603 7 16 9 18.879577 92.043045 7.813917 114.665951 orange
In [25]:	# lets do some Real time Predictions prediction = model.predict((np.array([[20,