Version with markings to show changes made.

Original Drawings

Remarks / Arguments

The first modifications from the original drawings were done in response to the office action of 1-17-01. The modification at that time entailed the resizing of the drawings that were referred to as illegible. The drawings submitted at that time were (still) not in the required format.

Additional modifications have been performed to comply with the office action of 8-13-01. The equations have been removed from the specification and included with the drawings. Each (drawing) entry is properly identified with a "FIG." Preceding the drawing number. All of the drawing entries were modified so that they are clear and legible, and displayed in portrait orientation. All text was removed from the drawings. The drawings are now displayed in the proper format.

In this marked-up original, any material that has been removed (for the clean version) is surrounded with brackets ({}). New/added material that was not in the original is underlined(_). Comments are surrounded by asterisks (*).

```
DRAWINGS
*Graph modified*
```

}

Figure 1

1

revised graph

FIG.1

Drawing modified

{

2 liter Fernbach Flask

Oxygen transfer is limited by the small surface area on the top, and the foam that forms.

Figure 2

}

<u>2/10</u>

Revised drawing

FIG.2

Equation added

3/10

 $\begin{bmatrix} 100 \text{ grams sugar} \\ +3.75 \text{ grams ammonia} \\ +64.95 \text{ grams oxygen} \end{bmatrix} \Rightarrow \begin{bmatrix} 46.88 \text{ grams water} \\ +50.93 \text{ liters carbon dioxide} \\ +30 \text{ grams yeast} \end{bmatrix}$

FIG.3

Table modified

}

Time During Fermentation	Yield	Ammonia Needed	Water Produced	CO₂ Produced	Yeast Produced (C ₆ H ₁₀ O ₃ N)	Ethanol Produced (C ₂ H ₆ O)
	(g cells/ g sugar)	(grams)	(grams)	(liters)	(grams dry wt.)	(grams)*
1st 3rd	.15	18.70	5.1	22.51	15.04	41.19
2nd 3rd	.052	.65	1.79	25.54	5.20	47.68
3rd 3rd	.023	.29	.79	26.44	2.30	49.61
Overall	.05	.626	1.72	25.60	5.00	48.52

^{*} For ethanol volume, divide weight (in grams) by its' density (0.789 grams/ml)

Table 1

5

Revised table

Time During Fermentation	Yield (g cells/ g sugar)	Ammonia Needed (grams)	Water Produced (grams)	CO₂ Produced (liters)	Yeast Produced (C ₆ H ₁₀ O ₃ N) (grams dry wt.)	Ethanol Produced (C ₂ H ₆ O) (grams)*
1st 3rd	.15	18.70	5.1	22.51	15.04	41.19
2nd 3rd	.052	.65	1.79	25.54	5.20	47.68
3rd 3rd	.023	.29	.79	26.44	2.30	49.61
Overall	.05	.626	1.72	25.60	5.00	48.52

FIG.4

Equations added

$$CO_2$$
 solubility (in ICO_2/IH_2O) = $-1.06556266071 \times In(°F) + 5.38424482284$

FIG.5

4/10

$$\frac{\text{Change in yeast mass}}{\text{Change in time}} = \frac{\Delta X}{\Delta t} = \mu \times X$$

$$\ln\left[\frac{X}{X^{\circ}}\right] = \mu \times (t - t_{lag})$$

FIG.6

$$t_{d} = \frac{\ln{(2)}}{\mu}$$

FIG.7

Ratio
$$\left[\frac{1\text{CO}_2}{\text{g sugar}}\right] = 0.271599039164 - (0.310674946821 \times \text{Yield})$$

<u>5/10</u>

Specific Gravity = $(3.65201035996 \times 10^{-4}) \times S + 0.999953627005$

FIG.9

$$Y = \frac{\Delta X}{\Delta S}$$

FIG.10

$$\left[\frac{\Delta X (for \ decay)}{\Delta time}\right] = b \times X$$

<u>6/10</u>

$$Y = \left[\frac{\Delta X}{\Delta S}\right] = \left[\frac{5.14794}{24.644}\right] = 0.20889 \frac{g X}{g S}$$

FIG.12

Graph modified

{

EQXchrgd

Xchrgd = 0.504076447609 × EXP(- 0.0816252748703 × Ratio)

Figure 3 / Equation 10

}

Revised graph

 $Xchrgd = 0.504076447609 \times EXP(-0.0816252748703 \times Ratio)$

FIG.13

Table modified

Sample Name	Time (hours)	X weight (grams)	S.G. Reading (g S/I, see EQSG)	Measured CO2 Flow (ml / min)
			<u> </u>	
to	0	1.415	183.59	0
t_1	15.75	2.73	178.11	3.944
t ₂	21.03	5.1	158.94	12.344
t ₃	24.5	6.18	147.99	15.074
t ₄	44.08	8.38	95.965	7.234

Table 2

<u>7/10</u>

Revised table

}

Sample Name	Time (hours)	X weight (grams)	S.G. Reading (g S/I, see EQSG)	Measured CO2 Flow (ml / min)
to	0	1.415	183.59	0
t ₁	15.75	2.73	178.11	3.944
t ₂	21.03	5.1	158.94	12.344
t ₃	24.5	6.18	147.99	15.074
<u>t</u>	44.08	8.38	95.965	7.234

Graph & table modified, and positions switched

WAREFOLD & SUBSTREE Used Valority Years

OSS

ONE AND THE PROPERTY OF THE PROP

Comparison of the four data points with the yield curve (EQ%used) $Y = -6.67814305038 \times 10^{-2} \times [ln(\%used)] + 0.284841059276$ log fit; r^2 : -.9924

Figure 4

}

{

Table changed to portrait orientation {

	v mass b?					
	G Charge what new mass b?	(EQXchrgd)	0.471	0.475	0.5	0.493
on Data	F Ratio new X/Start X	(Starting X + E) / Starting X	1.9923	1.88925	1.22457	1.434307
Fest Fermentation Data	E Sub-total new mass	(B + D)	1.404145	2.4276576	1.14528	2.6840176
Test F	C D Total hours of Mass lost from	starting X decay	0.089145	0.0576576	0.06528	0.4840176
	C Total hours of	interval	15.75	5.28	3.2	19.58
	B Observed New X		1.315	2.37	1.08	2.2
b=.004/hr	A Interval		5 - £	يد ر - به	t- ts	t3 - t4

A Interval	H Decay of new mass	l Total new	Amount of sugar	Average % S	K Yield	L Yield (fm curve)	M % of actual
	$(E \times G \times C \times .004)$	(E + H)	(l/6)	Delineilos	g X/g S	8 6 / X 6	
to - t1	0.0416652	1.4458102	5.48	1.4925	0.263833977	0.258098264	97.83%
t ₁ - t ₂	0.024354261	2.45201186	19.17	8.206	0.127908809	0.144275124	112.80%
t2 - t3	0.007329792	1.152609792	10.95	16.409	0.105261168	0.097997972	93.10%
t3 - t4	0.103634643	2.7876522	52.025	33.56	0.053582936	0.05021553	93.72%

Table 3

<u>8/10</u>

Revised table a	and graph	
------------------	------------	--

A interval	B Observed New X	C Total hours of interval	Mass lost from starting X decay
to - t1	1.315	15.75	0.089145
t ₁ - t ₂	2.37	5.28	0.0576576
to - ta	1.08	3.2	0.06528
13-14	2.2	19.58	0.4840176

A Interval	E Sub-total new mass (B + D)	F Ratio new X/Start X (Starting X + E) / Starting X	G Charge what new mass b? (EQXchrgd)
t ₀ - t ₁	1.404145	1.9923	0.471
t ₁ - t ₂	2.4276576	1.88925	0.475
t ₂ - t ₃	1.14528	1.22457	0.5
t3 - t4	2.6840176	1.434307	0.493

A Interval	H Decay of new mass (E x G x C x .004)	l Total new mass yield (E + H)	Amount of sugar used (g/l)
t ₀ - t ₁	0.0416652	1.4458102	5.48
t ₁ - t ₂	0.024354261	2.45201186	19.17
t ₂ - t ₃	0.007329792	1.152609792	10.95
t ₃ - t ₄	0.103634643	2.7876522	52.025

A Interval	J Average % S consumed	K Yield g X / g S	L Yield (fm curve) g X / g S
t ₀ - t ₁	1.4925	0.263833977	0.258098264
t ₁ - t ₂	8.206	0.127908809	0.144275124
t ₂ - t ₃	16.409	0.105261168	0.097997972
t ₃ - t ₄	33.56	0.053582936	0.05021553

A Interval	M % of actual Yield
t ₀ - t ₁	97.83%
t ₁ - t ₂	112.80%
t ₂ - t ₃	93.10%
t ₃ - t ₄	93.72%

-<u>9/10</u>

 $Y = \left\{ -6.67814305038 \times 10^{-2} \times [ln(\%used)] \right\} + 0.284841059276$

FIG.16

Table changed to portrait orientation {

Table 4

Evaluation of Test Fermentation

Total new X	(grams)
Ratio fm EQYId	(I CO ₂ /g X)
Yield fm EQ%used	
% fraction of S	
Interval	

			-
1.445803	2.452006	1.1526299	2.787623
0.79324921	1.52663404	2.3594534	5.00801093
0.2580973	0.14427497	0.097998	0.0502161
1.4925	8.206	16.409	33.56
to - t ₁	t, - t2	t ₂ - t ₃	t3 - t4

liters CO ₂ predicted fm avg of measured	CO ₂ flow rate at this interval	
Average measured CO ₂	(ml / min)	
liters CO ₂ predicted	by actual Yield	
liters CO ₂ predicted	fm model (g X x Ratio)	
Interval		

		·	
1.8635	2.58	2.6321	13.1037
1.972	8.144	13.709	11.154
1.1192	4.2872	2.5095	12.9849
1.1469	3.7433	2.71968	13.9604
to - t ₁	t, - t2	t ₂ - t ₃	t3 - t4

<u>10/10</u>

t ₀ - t ₁ 1.4925 0.2580973 0.79324921 t ₁ - t ₂ 8.206 0.14427497 1.52663404 t ₂ - t ₃ 16.409 0.097998 2.3594534 t ₃ - t ₄ 33.56 0.0502161 5.00801093 Interval Total new X (grams) liters CO ₂ predicted fm model (g X x Ratio) liters CO ₂ predicted by actual Yield t ₀ - t ₁ 1.445803 1.1469 1.1192 t ₁ - t ₂ 2.452006 3.7433 4.2872 t ₂ - t ₃ 1.1526299 2.71968 2.5095 t ₃ - t ₄ 2.787623 13.9604 12.9849 Average measured CO ₂ (ml / min) liters CO ₂ predicted fm avg of measured CO ₂ flow rate at this interval t ₀ - t ₁ 1.972 1.8635 t ₁ - t ₂ 8.144 2.58 t ₂ - t ₃ 13.709 2.6321 t ₃ - t ₄ 11.154 13.1037	interval	% fraction of S	Yield fm EQ%used	Ratio fm EQYId (I CO ₂ /g X)
t ₁ - t ₂ 8.206 0.14427497 1.52663404 t ₂ - t ₃ 16.409 0.097998 2.3594534 t ₃ - t ₄ 33.56 0.0502161 5.00801093 Interval (grams) Total new (grams) liters CO ₂ predicted fm model (g X x Ratio) t ₀ - t ₁ 1.445803 1.1469 1.1192 t ₁ - t ₂ 2.452006 3.7433 4.2872 t ₂ - t ₃ 1.1526299 2.71968 2.5095 t ₃ - t ₄ 2.787623 13.9604 12.9849 Average measured CO ₂ (ml / min) liters CO ₂ predicted fm avg of measured CO ₂ flow rate at this interval t ₀ - t ₁ 1.972 1.8635 t ₁ - t ₂ 8.144 2.58 t ₂ - t ₃ 13.709 2.6321	t ₀ - t ₁	1.4925	0.2580973	0.79324921
Total new liters CO2 predicted fm model (g X x Ratio)		8.206	0.14427497	1.52663404
Total new X liters CO2 predicted fm model (g X x Ratio) liters CO2 predicted by actual Yield		16.409	0.097998	2.3594534
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		33.56	0.0502161	5.00801093
t ₁ - t ₂ 2.452006 3.7433 4.2872 t ₂ - t ₃ 1.1526299 2.71968 2.5095 t ₃ - t ₄ 2.787623 13.9604 12.9849 Interval Average measured CO ₂ (ml / min) liters CO ₂ predicted fm avg of measured CO ₂ flow rate at this interval t ₀ - t ₁ 1.972 1.8635 t ₁ - t ₂ 8.144 2.58 t ₂ - t ₃ 13.709 2.6321	Intervai	x		
t ₁ - t ₂ 2.452006 3.7433 4.2872 t ₂ - t ₃ 1.1526299 2.71968 2.5095 t ₃ - t ₄ 2.787623 13.9604 12.9849 Average measured CO ₂ (ml / min) liters CO ₂ predicted fm avg of measured CO ₂ flow rate at this interval t ₀ - t ₁ 1.972 1.8635 t ₁ - t ₂ 8.144 2.58 t ₂ - t ₃ 13.709 2.6321	to - t1	1.445803	1.1469	1.1192
t2 - t3 1.1526299 2.71968 2.5095 t3 - t4 2.787623 13.9604 12.9849 Interval Average measured CO2 (ml / min) liters CO2 predicted fm avg of measured CO2 flow rate at this interval t0 - t1 1.972 1.8635 t1 - t2 8.144 2.58 t2 - t3 13.709 2.6321			3.7433	4.2872
Total Average Measured CO2 (ml / min) Measured CO2 (ml / min) Measured CO2 Measured CO3 Measured CO4 Measured CO5 Measured CO5 Measured Measured			2.71968	2.5095
		2.787623	13.9604	12.9849
t ₁ - t ₂ 8.144 2.58 t ₂ - t ₃ 13.709 2.6321	Interval	measured CO ₂	measured	
t ₁ - t ₂ 8.144 2.58 t ₂ - t ₃ 13.709 2.6321		4.070	1 9625	-
t ₂ - t ₃ 13.709 2.6321				-
				4
				4

FIG.17