

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (Joint Major) Degree in Chemistry & Physics

Fourth Year - Semester I Examination - October/November 2015

PHY 4209 - PHYSICS OF ELECTRONIC DEVICES

Answer all four questions

Time: Two hours

Use of a non programmable calculator is permitted.
Unless otherwise specified, all the symbols have their usual meaning.

Some fundamental constants;

Electron rest mass $m_e = m_0 = 9.1 \times 10^{-31} \, kg$ Elementary charge $e = 1.6 \times 10^{-19} \, C$ Electron volt $eV = 1.6 \times 10^{-19} \, J$ Permittivity of free space $\varepsilon_0 = 8.85 \times 10^{-12} \, C^2 \, N^{-1} \, m^{-2}$ Boltzmann Constant $k = 1.38 \times 10^{-23} \, J \, K^{-1}$

(1) (a) i. Derive the expression for the position of the Fermi level relative to the center of the band gap as a function of temperature in an intrinsic semiconductor.

[10 marks]

- ii. Calculate the displacement of E_F from the center of the gap in Si at 300 K assuming $m_e^* = 1.1 m_e$ and $m_h^* = 0.56 m_e$. ($kT \sim 0.026$ eV at 300 K) [06 marks]
- (b) The electron and hole mobilities in a Si sample are 0.135 and 0.048 m² V⁻¹ s⁻¹ respectively. Determine the conductivity of intrinsic Si at 300 K, if the intrinsic carrier concentration is 1.5 x 10¹⁶ atoms/m³. The sample is then doped with 10²³ phosphorus atoms/m³. Determine the equilibrium hole concentration, conductivity and position of the Fermi level relative to the intrinsic level.

Hint:
$$E_F - E_i = kT \ln \left(\frac{n}{n_i} \right)$$

[09 marks]

Contd.

- (2) (a) Show that the curvature of the energy band in which the particle (electron or hole) moves is inversely proportional to the mass of the particle. [08 marks]
 - (b) A hypothetical energy band can be fitted approximately to the expression $E(k) = E_0[1 \exp(-2a^2k^2)]$ where a is the lattice constant of the crystal.

Calculate

i the effective mass at k = 0, [06 marks] ii the value of k for maximum electron velocity, and [05 marks] iii the effective mass at the edge of the Brillouin zone. [06 marks]

- (3) (a) In has a valency of III and is a metal. Sb is also a metal and has a valency of V. The compound InSb is a semiconductor with each atom bonding to four neighbors, just as in Si. Explain how this is possible and why InSb is a semiconductor and not just a metal alloy. [10 marks]
 - (b) If there are no acceptors and N_d donors per unit volume are present in a doped semiconductor at very low temperature, then the density of electrons in the conduction band is $n(T) = N_d e^{-\Delta E/2kT}$ where ΔE is the binding energy of the donor level relative to the edge of the conduction band with the assumption of $\Delta E >> kT$. Explain why then the low temperature behavior of n(T) changes to $n(T) = (N_d N_a)e^{-\Delta E/kT}$, when there are N_d donors and N_a acceptors per unit volume with $N_a < N_d$.
- (4) Write short notes on the following.
 - (a) The impact of heavy doping on the density of states. [09 marks]
 - (b) Kronig-Penny model [08 marks]
 - (c) Advantages of using quantum wells in optoelectronic applications. [08 marks]

.....END.....