MATH-307 Midterm 01

Created by Pierre-O. Parisé Summer 2022

Last name: Solutions
First name:

Question:	1	2	3	4	5	6	Total
Points:	20	20	20	20	10	10	100
Soores							

Instructions: Make sure to write your complete name on your copy. You must answer all the questions below and write your answers directly on the questionnaire. At the end of the 80 minutes, hand out your copy.

No devices such as a smart phone, cell phone, laptop, or tablet can be used during the exam. You are not allowed to use the lecture notes, the textbook. You may bring one 2-sided cheat sheet of handwriting notes. You may use a digital calculator (no graphical calculator or symbolic calculator will be allowed).

You must show ALL your work to have full credit. An answer without justification worth no point.

May the Force be with you!

Pierre-Olivier Parisé

Your Signature:

Using the Gauss-Jordan Elimination Method, say if the following systems of linear equations has one solution, more than one solution, or no solution. If the system has solution(s), writethe solution(s) explicitly.

(a) (/ 10)
$$\begin{cases} 2x + 3y - 4z = 3\\ 2x + 3y - 2z = 3\\ 4x + 6y - 2z = 7 \end{cases}$$

(b)
$$(/10)$$

$$\begin{cases} 4x - 2y + 3z = 0 \\ 2x + 2y - 4z = 0 \end{cases}$$

(a)
$$\begin{pmatrix} 2 & 3 & -4 & 3 \\ 2 & 3 & -2 & 3 \end{pmatrix}$$
 $\sim \begin{pmatrix} 2 & 3 & -4 & 3 \\ 0 & 0 & 2 & 0 \\ 4 & 6 & -2 & 7 \end{pmatrix}$ $\sim \begin{pmatrix} 2 & 3 & -4 & 3 \\ 0 & 0 & 6 & 1 \end{pmatrix}$ $R_3 \cdot 2R_1 \rightarrow R_3$ $\sim \begin{pmatrix} 2 & 3 & -4 & 3 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ $R_3 \cdot 2R_2 \rightarrow R_3$

(b)
$$\begin{bmatrix} 4 - 2 & 3 & 0 \\ 2 & 2 & -4 & 0 \end{bmatrix} \sim \begin{bmatrix} 4 - 2 & 3 & 0 \\ 0 & 6 & -11 & 0 \end{bmatrix} 2R_2 - R_1 \rightarrow R_2$$

 $\sim \begin{bmatrix} 12 & 0 & -2 & 0 \\ 0 & 6 & -11 & 0 \end{bmatrix} 3R_1 + R_2 \rightarrow R_1$

$$\Rightarrow | 70x - 2z = 0 \Rightarrow | x = \frac{z}{6}$$

$$| 4 = \frac{11z}{6}$$

Suppose we have the following system of linear equations:

$$\begin{cases} 2x - y + 3z = 42 \\ x + y - 2z = 42 \\ x + y + 5z = 21 \end{cases}.$$

- / 5). Write the system in its matrix form.
- / 10) Find the inverse of the matrix of coefficients.
- (c) (/ 5) Find the solution to the system using the inverse.

(a)
$$A = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 1 & -2 \\ 1 & 1 & 5 \end{bmatrix}$$
 $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ $A = \begin{bmatrix} 42 \\ 42 \\ 21 \end{bmatrix}$

System 15 the AD AX= B.

(b)
$$[AII] = \begin{bmatrix} 2-1 & 3 & 1 & 0 & 0 \\ 1 & 1 & -2 & 0 & 1 & 0 \\ 1 & 1 & 5 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2-1 & 3 & 1 & 0 & 0 \\ 0 & 3 & -7 & -1 & 2 & 0 \\ 2R_3 - R_1 \rightarrow R_3 \end{bmatrix} \begin{bmatrix} 2R_2 - R_1 \rightarrow R_2 \\ 2R_3 - R_1 \rightarrow R_3 \end{bmatrix}$$

Thus,
$$A^{-1} = \begin{bmatrix} 1/3 & 8/2 & 1 & 1/2 \\ -1/3 & 1/3 & 1/3 \\ 0 & -1/7 & 1/7 \end{bmatrix}$$
Page 3

$$X = A^{-1}B = \begin{bmatrix} 1/3 & 8/2 & 1/2 \\ -1/3 & 1/3 & 1/3 \\ 0 & -1/7 & 1/7 \end{bmatrix} \begin{bmatrix} 2/2 \\ 4/2 \\ 21 \end{bmatrix}$$

$$= \begin{bmatrix} 29 \\ 7 \\ -3 \end{bmatrix}$$

Suppose we have the following matrices:

$$A = \begin{bmatrix} -3 & 0 & 4 \\ 2 & -1 & 3 \\ 4 & 0 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 0 \\ -3 & 2 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & -1 & 0 & 6 \\ 0 & 0 & 0 & 5 \\ 0 & -5 & 0 & 1 \\ 3 & 4 & 0 & 3 \end{bmatrix}.$$

(a) (/ 5) Compute 2A.

(c) (/ 5) Compute det(C). BAT

(b) (/ 5) Compute AB^{\top} .

(d) (/ 5) Compute $\det(A^{\perp}B)$.

(a)
$$2A = \begin{bmatrix} 2(-3) & 2(0) & 2(1) \\ 2(2) & 2(-1) & 2(3) \\ 2(4) & 2(0) & 2(5) \end{bmatrix} = \begin{bmatrix} -6 & 0 & 8 \\ 4 & -2 & 6 \\ 8 & 0 & 10 \end{bmatrix}$$

(b)
$$BT = \begin{bmatrix} 2 & 0 & -3 \\ -1 & 1 & 2 \\ 3 & 0 & 1 \end{bmatrix}$$
 $ABT = \begin{bmatrix} -3 & 0 & 4 \\ 2 & -1 & 3 \\ 4 & 0 & 5 \end{bmatrix} \begin{bmatrix} 2 & 0 & -3 \\ -1 & 1 & 2 \\ 3 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 6 & 0 & 13 \\ 14 & -1 & -5 \\ 23 & 0 & -7 \end{bmatrix}$

$$= \frac{det(BAT)}{det(BAT)} = \frac{det(ABT)}{|4-1-5|} = \frac{(-1)|6|3|}{|23-7|} = \frac{(-1)|3|}{|341|}$$

Use Cramer's rule to solve the following system of linear equations:

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 - 3 \\ 2 & 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 - 3 \\ 2 & 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 - 3 \\ 2 & 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 - 3 \\ 2 & 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 - 3 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 - 3 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 - 3 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1 & 0 \\ 0 & 1 \end{cases}$$

$$A = \begin{cases} 3 - 1$$

$$\frac{2}{2} = \frac{3}{9} \cdot \frac{1}{2} = \frac{3}{9} = \frac{3}$$

QUESTION 5

(10 pts)

Answer the following following

- (a) (/ 5) Suppose A and B are $n \times n$ symmetric matrices. Show that $(AB)^{\top} = BA$.
- (b) (/ 5) Find two matrices A and B such that $AB \neq BA$.

(a) We have $(AB)^T = B^T A^T$.

$$(AB)^T = BTA^T$$

But AT=A & BT=B because A & B are symmetric.

(b)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

$$d B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 12 \\ 34 \end{pmatrix} \begin{pmatrix} 01 \\ 10 \end{pmatrix} = \begin{pmatrix} 21 \\ 43 \end{pmatrix}$$

$$BA = \begin{pmatrix} 01 \\ 12 \\ -34 \end{pmatrix}$$

$$BA = \binom{0}{1}\binom{1}{3}\binom{1}{3} = \binom{3}{4}\binom{4}{2}$$

Thus, we see for there two matrices

AB + BA .

Answer with True or False the following statements. Write your answer on the horizontal line at the end of each statement. Justify your answer in the white space underneath the statement. (a) (/ 2) If A is a 2 × 2 upper triangular matrix and B is a 2 × 2 lower triangular matrix, then AB is upper triangular. $A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} - D AB = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 6 & 9 \end{pmatrix} \text{rof} \text{upper}$ (b) (/ 2) If A is a 5 × 3 matrix and B is a 3 × 5 matrix, then AB is well-defined. (a) False. (b) False. (c) (/ 2) If A is a n × n matrix, then A ^T A is a symmetric matrix. We have $A^{T}A^{T} = A^{T}A^{T} = A^{T}A$ (c) True. (d) (/ 2) Suppose A and B are n × n matrices. If A is invertible and B is invertible, then (AB) ⁻¹ = A ⁻¹ B ⁻¹ . From Leventh Notes, the true identity is (AB) ⁻¹ = B ⁻¹ A ⁻¹ . (e) (/ 2) Prof. Parisé is surfing at Ala Moana. (No justification needed) **Eroglick grammar mostale as my hard. Every body got the 20th.	
line at the end of each statement. Justify your answer in the white space underneath the statement. (a) (/ 2) If A is a 2 × 2 upper triangular matrix and B is a 2 × 2 lower triangular matrix, then AB is upper triangular. $A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} - D AB = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 6 & 9 \end{pmatrix} \text{rot} \text{upper}$ (a) $AB = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 6 & 9 \end{pmatrix} \text{rot} \text{upper}$ (b) (/ 2) If A is a 5 × 2 matrix and B is a 6 × 5 matrix, then AB is well-defined. Ab. column of A + Nb. of rows of B. (c) (/ 2) If A is a $n \times n$ matrix, then A^TA is a symmetric matrix. Where $AB = A^TA = $	WODDITON O
then AB is upper triangular. $A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$ $AB = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 6 & 9 \end{pmatrix} rot upper partial of the properties of the pro$	line at the end of each statement. Justify your answer in the white space underneath the
(a) $\frac{7}{alse}$. (b) (/2) If A is a 5×3 matrix and B is a 6×5 matrix, then AB is well-defined. (b) Column of $A \neq Nb$. of rows of B . (c) (/2) If A is a $n \times n$ matrix, then A^TA is a symmetric matrix. We have $(A^TA)^T = A^T A^T = A^T A$ (d) (/2) Suppose A and B are $n \times n$ matrices. If A is invertible and B is invertible, then $(AB)^{-1} = A^{-1}B^{-1}$. From Lecture Notes, the free identity is $(AB)^T = B^TA^{-1}$ (e) (/2) Prof. Parisé is surfing at Ala Moana. (No justification needed)	
(a) $\frac{7}{alse}$. (b) (/2) If A is a 5×3 matrix and B is a 6×5 matrix, then AB is well-defined. (b) Column of $A \neq Nb$. of rows of B . (c) (/2) If A is a $n \times n$ matrix, then A^TA is a symmetric matrix. We have $(A^TA)^T = A^T A^T = A^T A$ (d) (/2) Suppose A and B are $n \times n$ matrices. If A is invertible and B is invertible, then $(AB)^{-1} = A^{-1}B^{-1}$. From Lecture Notes, the free identity is $(AB)^T = B^TA^{-1}$ (e) (/2) Prof. Parisé is surfing at Ala Moana. (No justification needed)	$A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$ $AB = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 6 & 9 \end{pmatrix} \text{ not uppure}$ $B = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 6 & 9 \end{pmatrix} \text{ not uppure}$
(c) (/ 2) If A is a $n \times n$ matrix, then $A^{T}A$ is a symmetric matrix. We have $(A^{T}A)^{T} = A^{T}(A^{T})^{T} = A^{T}A$ (c) True. (d) (/ 2) Suppose A and B are $n \times n$ matrices. If A is invertible and B is invertible, then $(AB)^{-1} = A^{-1}B^{-1}$. From Lecture Notes, the true identity is $(AB)^{T} = B^{-1}A^{-1}$ (e) (/ 2) Prof. Parisé is surfing at Ala Moana. (No justification needed) Auris	
(c) (/ 2) If A is a $n \times n$ matrix, then $A^{T}A$ is a symmetric matrix. We have $(A^{T}A)^{T} = A^{T}(A^{T})^{T} = A^{T}A$ (c) Thus. (d) (/ 2) Suppose A and B are $n \times n$ matrices. If A is invertible and B is invertible, then $(AB)^{-1} = A^{-1}B^{-1}$. From Lecture Notes, the true identity is $(AB)^{T} = B^{-1}A^{-1}$ (e) (/ 2) Prof. Parisé is surfing at Ala Moana. (No justification needed) $Aur + S$	
We have $(A^TA)^T = A^T(A^T)^T = A^TA$. (c) True. (d) $(/2)$ Suppose A and B are $n \times n$ matrices. If A is invertible and B is invertible, then $(AB)^{-1} = A^{-1}B^{-1}$. From Leveur Notes, the true identity is $(AB)^{-1} = B^{-1}A^{-1}$. (e) $(/2)$ Prof. Parisé is surfing at Ala Moana. (No justification needed) pur is	(b) Folse.
(d) (/2) Suppose A and B are $n \times n$ matrices. If A is invertible and B is invertible, then $(AB)^{-1} = A^{-1}B^{-1}$. From Leviure Notes, the true identity is $(AB)^{-1} = B^{-1}A^{-1}$. (e) (/2) Prof. Parisé is surfing at Ala Moana. (No justification needed) pur is	we have
(d) (/ 2) Suppose A and B are $n \times n$ matrices. If A is invertible and B is invertible, then $(AB)^{-1} = A^{-1}B^{-1}$. From Lecture Notes, the true identity is $(AB)^{-1} = B^{-1}A^{-1}$. (e) (/ 2) Prof. Parisé is surfing at Ala Moana. (No justification needed) Auris	$(A^TA)^T = A^T(A^T)^T = A^TA.$
$(AB)^{-1} = A^{-1}B^{-1}$. From Lecture Notes, the true identity is $(AB)^{-1} = B^{-1}A^{-1}$. (e) (/ 2) Prof. Parisé is surfing at Ala Moana. (No justification needed) pur is	
(e) (/ 2) Prof. Parisé is surfing at Ala Moana. (No justification needed)	$(AB)^{-1} = A^{-1}B^{-1}.$
(e) (/ 2) Prof. Parisé is surfing at Ala Moana. (No justification needed)	N N
(e) (/ 2) Prof. Parisé is surfing at Ala Moana. (No justification needed)	$(AB)^{-1}=B^{-1}A^{-1}$
ρατής	To the second se
* English grammar mistable on my hand. Every body got the 2pt. (e) The.	
* English grammar mistable on my hand. Every body got the 2pt. (e) Thee.	
	* English grammar mistable on my hand. Every body got the 2pt. (e) Thue.