4300337 - Lista de exercícios 3

Louis Bergamo Radial 8992822

7 de maio de 2024

Exercício 1

No contexto da mecânica Newtoniana, a massa inercial m_i de uma partícula é relacionada à força resultante que age nela pela segunda lei de Newton, $F = m_i a$. Com sua lei de gravitação, temos que a força gravitacional é dada por $F_g = -m_g \nabla \Phi$, onde m_g é a massa gravitacional e Φ é o potencial gravitacional. O Princípio de Equivalência Fraco diz que a massa inercial inercial e a massa gravitacional são iguais, de modo que qualquer partícula em queda livre tem aceleração dada por $a = -\nabla \Phi$. A série de experimentos por Eötvös no fim do século XIX verificou o Princípio de Equivalência Fraco com precisão de 5×10^{-9} , enquanto que atualmente a precisão é da ordem de 10^{-15} .

Ainda, em uma região suficientemente pequena, podemos aproximar o gradiente $-\nabla\Phi$ para uma constante g, de modo que nesta região todas as partículas em queda livre têm aceleração uniforme igual a g. Assim, um campo gravitacional homogêneo é equivalente à uma aceleração do sistema de referência. O Princípio de Equivalência de Einstein diz que, em regiões suficientemente pequenas do espaço-tempo, vale a Relatividade Restrita e e que é impossível detectar a existência de um campo gravitacional por experimentos locais. Isto é, localmente um campo gravitacional é indistinguível à um referencial uniformemente acelerado, ilustrado pelo Gedankenexperiment do elevador de Einstein.

O Princípio de Equivalência Forte diz que para uma trajetória de uma partícula massiva em queda livre em um campo gravitacional qualquer, é possível escolher um sistema de coordenadas localmente inercial, de modo que, em uma região do espaço-tempo suficientemente pequena ao redor desta trajetória, todas as leis físicas são equivalentes às suas formulações em sistemas de referência não acelerados na ausência da gravidade.

Sobre um espaço vetorial V de dimensão n, tensores de segunda ordem têm um total de n^2 componentes. Um tensor antissimétrico $A_{\omega\rho}$ deve satisfazer $A_{\omega\rho}=-A_{\rho\omega}$ para todo par de índices ω , ρ . Assim, temos que as n componentes $A_{\rho\rho}$ são nulas, e a condição das outras n^2-n componentes, $A_{\omega\rho}=-A_{\rho\omega}$ para $\rho\neq\omega$, reduz o número de componentes independentes para $\frac{n^2-n}{2}$. Semelhantemente, um tensor simétrico $S^{\mu\nu}$ deve satisfazer $S^{\mu\nu}=S^{\nu\mu}$ para todo par de índices μ,ν . Para $\mu=\nu$, esta condição é trivialmente satisfeita, de modo que o número de componentes independentes é $\frac{n^2+n}{2}$. Como exemplo, em um espaço vetorial de dimensão 4, tensores de segunda ordem antissimétricos têm seis componentes independentes e simétricos, dez.

Mostremos que a contração de um tensor simétrico com um tensor antissimétrico tem uma propriedade muito útil, $S^{\omega\rho}A_{\omega\rho}=0$. Por antissimetria e simetria temos

$$S^{\omega\rho}A_{\omega\rho} = -S^{\omega\rho}A_{\rho\omega} = -S^{\rho\omega}A_{\rho\omega}.$$

Como os índices estão sendo somados, podemos renomeá-los. Em particular, podemos renomear na soma à direita $\omega \to \rho$ e $\rho \to \omega$, obtendo

$$S^{\omega\rho}A_{\omega\rho}=-S^{\omega\rho}A_{\omega\rho},$$

isto é $S^{\omega\rho}A_{\omega\rho}=0$.

Coordenadas esféricas em \mathbb{R}^3

Consideremos coordenadas esféricas para o espaço tridimensional Euclidiano, dadas por

$$r = \sqrt{x^2 + y^2 + z^2}$$
, $\cos \theta = \frac{z}{r}$, $\cot \phi = \frac{y}{x}$.

Alternativamente, temos

$$x = r \sin \theta \cos \phi$$
, $y = r \sin \theta \sin \phi$, e $z = r \cos \theta$,

de modo que os vetores da base no sistema de coordenadas esféricas são dados por

$$e_r = \frac{\partial x}{\partial r} e_x + \frac{\partial y}{\partial r} e_y + \frac{\partial z}{\partial r} e_z$$

= $\sin \theta \cos \phi e_x + \sin \theta \sin \phi e_y + \cos \theta e_z$,

$$e_{\theta} = \frac{\partial x}{\partial \theta} e_x + \frac{\partial y}{\partial \theta} e_y + \frac{\partial z}{\partial \theta} e_z$$

= $r \cos \theta \cos \phi e_x + r \cos \theta \sin \phi e_y - r \sin \theta e_z$,

e

$$e_{\phi} = \frac{\partial x}{\partial \phi} e_x + \frac{\partial y}{\partial \phi} e_y + \frac{\partial z}{\partial \phi} e_z$$
$$= -r \sin \theta \sin \phi e_x + r \sin \theta \cos \phi e_y.$$

Com os vetores da base desse sistema de coordenadas, podemos obter os coeficientes da métrica por

$$g'_{ij} = g(e'_i, e'_i)$$

e utilizando os valores do tensor métrico na base de coordenadas cartesianas, dados por

$$g(e_x, e_x) = g(e_y, e_y) = g(e_z, e_z) = 1$$

e os demais são iguais a zero. Assim, os coeficientes da métrica Euclidiana nas coordenadas esféricas são obtidas por

$$g'_{rr} = g(e_r, e_r)$$

$$= \sin^2 \theta \cos^2 \phi + \sin^2 \theta \sin^2 \phi + \cos^2 \theta$$

$$= 1,$$

$$g'_{r\theta} = g(e_r, e_\theta)$$

$$= r \sin \theta \cos \theta \cos^2 \phi + r \sin \theta \cos \theta \sin^2 \phi - r \sin \theta \cos \theta$$

$$= 0,$$

$$g'_{r\phi} = g(e_r, e_{\phi})$$

$$= -r \sin^2 \theta \cos \phi \sin \phi + r \sin^2 \theta \cos \phi \sin \phi$$

$$= 0,$$

$$g'_{\theta\theta} = g(e_{\theta}, e_{\theta})$$

$$= r^2 \cos^{\theta} \cos^2 \phi + r^2 \cos^{\theta} \sin^2 \phi + r^2 \sin^2 \theta$$

$$= r^2,$$

$$g'_{\theta\phi} = g(e_{\theta}, e_{\phi})$$

$$= -r^{2} \cos \theta \sin \theta \cos \phi \sin \phi + r^{2} \cos \theta \sin \theta \cos \phi \sin \phi$$

$$= 0,$$

$$g'_{\phi\phi} = g(e_{\phi}, e_{\phi})$$

$$= r^{2} \sin^{2} \theta \sin^{2} \phi + r^{2} \sin^{2} \theta \cos^{2} \phi$$

$$= r^{2} \sin^{2} \theta,$$

e os outros por simetria do tensor métrico. Brevemente, obtemos a métrica dada por

$$ds^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2$$

do espaço Eucliadiano em coordenadas esféricas.

Coordenadas em rotação no espaço-tempo de Minkowski

Consideremos agora a métrica da relatividade restrita $\eta_{\mu\nu}$ e as coordenadas em rotação

$$\begin{cases} t' = t \\ x' = \sqrt{x^2 + y^2} \cos(\phi - \omega t) \\ y' = \sqrt{x^2 + y^2} \sin(\phi - \omega t) \\ z' = z \end{cases}$$

onde $\tan \phi = \frac{y}{x}$. Notemos que

$$x' = x \cos \omega t + y \sin \omega t$$
 e $y' = -x \sin \omega t + y \cos \omega t$

então ao tomar combinações lineares das equações acima e utilizando t' = t, temos

$$\begin{cases} t = t' \\ x = x' \cos \omega t' - y' \sin \omega t' \\ y = x' \sin \omega t' + y' \cos \omega t' \\ z = z' \end{cases}$$

Assim, os vetores da base são dados por $e_{\mu'} = \frac{\partial x^{\nu}}{\partial x^{\mu'}} e_{\nu}$, isto é

da base sao dados por
$$e_{\mu'} = \frac{\omega x}{\partial x^{\mu'}} e_{\nu}$$
, isto e_{ν}

$$\begin{cases} e_{0'} = e_0 - \omega(x' \sin \omega t' + y' \cos \omega t') e_1 + \omega(x' \cos \omega t' - y' \cos \omega t') e_2 \\ e_{1'} = \cos \omega t' e_1 + \sin \omega t' e_2 \\ e_{2'} = -\sin \omega t' e_1 + \cos \omega t' e_2 \\ e_{3'} = e_3 \end{cases}$$

Utilizando a bilinearidade do tensor métrico e que $g(e_{\mu},e_{\nu})=\eta_{\mu\nu}$, temos que $g_{\mu'\nu'}=\frac{\partial x^{\alpha}}{\partial x'^{\mu'}}\frac{\partial x^{\beta}}{\partial x'^{\nu'}}\eta_{\alpha\beta}$. Calculemos explicitamente a componente 0'0':

$$\begin{split} g_{0'0'} &= g(e_{0'}, e_{0'}) = g(e_{0'}, e_0 - \omega(x' \sin \omega t' + y' \cos \omega t') e_1 + \omega(x' \cos \omega t' - y' \cos \omega t') e_2) \\ &= -1 + \omega^2 \left(x' \sin \omega t' + y' \cos \omega t' \right)^2 + \omega^2 \left(x' \cos \omega t' - y' \cos \omega t' \right)^2 \\ &= -1 + \omega^2 \left(x'^2 + y'^2 \right). \end{split}$$

Repetindo o mesmo procedimento para as outras componentes, obtemos as componentes da métrica nas coordenadas em rotação

$$g_{\mu'\nu'} = \begin{pmatrix} -1 + \omega^2(x'^2 + y'^2) & -\omega y' & \omega x' & 0 \\ -\omega y' & 1 & 0 & 0 \\ \omega x' & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}_{\mu'\nu'}.$$

Desse modo, obtemos as componentes da métrica inversa $g^{\mu'\nu'}$ por escalonamento, resultando em

$$g^{\mu'\nu'} = \begin{pmatrix} -1 & -\omega y' & \omega x' & 0 \\ -\omega y' & 1 - \omega^2 y'^2 & \omega^2 x' y' & 0 \\ \omega x' & \omega^2 x' y' & 1 - \omega^2 x'^2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{\mu'\nu'}.$$

4

Para uma conexão de Levi-Civita, isto é, simétrica e compatível com o tensor métrico, os seus coeficientes $\Gamma^{\rho}_{\ \alpha\beta}$ são dados por

$$\Gamma^{\rho}_{\alpha\beta} = -\frac{1}{2}g^{\rho\sigma} \left(\partial_{\sigma}g_{\alpha\beta} - \partial_{\alpha}g_{\beta\sigma} - \partial_{\beta}g_{\sigma\alpha} \right)$$

para todas as triplas de índices ρ , α , β .

Para uma métrica diagonal, isto é, $g_{\mu\nu}=0\iff \mu\neq\nu$, temos $g^{\mu\nu}=0\iff \mu\neq\nu$, de modo que os coeficientes da conexão são dados por

$$\Gamma^{\rho}_{\alpha\beta} = -\frac{1}{2g_{\rho\rho}} \left(\partial_{\rho} g_{\alpha\beta} - \partial_{\alpha} g_{\beta\rho} - \partial_{\beta} g_{\rho\alpha} \right)$$

neste caso, e nesta expressão índices repetidos não são somados. Podemos simplificar adiante separando em casos: sejam μ, ν, λ índices todos distintos, então

$$\Gamma^{\lambda}_{\lambda\lambda} = -\frac{1}{2g_{\lambda\lambda}} \left(\partial_{\lambda}g_{\lambda\lambda} - \partial_{\lambda}g_{\lambda\lambda} - \partial_{\lambda}g_{\lambda\lambda} \right) \qquad \qquad \Gamma^{\lambda}_{\mu\lambda} = -\frac{1}{2g_{\lambda\lambda}} \left(\partial_{\lambda}g_{\mu\lambda} - \partial_{\mu}g_{\lambda\lambda} - \partial_{\lambda}g_{\lambda\mu} \right)$$

$$= \frac{\partial_{\lambda}g_{\lambda\lambda}}{2g_{\lambda\lambda}} = \partial_{\lambda} \ln \sqrt{|g_{\lambda\lambda}|} \qquad \qquad = \frac{\partial_{\mu}g_{\lambda\lambda}}{2g_{\lambda\lambda}} = \partial_{\mu} \ln \sqrt{|g_{\lambda\lambda}|}$$

$$\Gamma^{\lambda}{}_{\mu\mu} = -\frac{1}{2g_{\lambda\lambda}} \left(\partial_{\lambda} g_{\mu\mu} - \partial_{\mu} g_{\mu\lambda} - \partial_{\mu} g_{\lambda\mu} \right) \qquad \qquad \Gamma^{\lambda}{}_{\mu\nu} = -\frac{1}{2g_{\lambda\lambda}} \left(\partial_{\lambda} g_{\mu\nu} - \partial_{\mu} g_{\nu\lambda} - \partial_{\nu} g_{\lambda\mu} \right)$$

$$= -\frac{\partial_{\lambda} g_{\mu\mu}}{2g_{\lambda\lambda}} \qquad \qquad = 0$$

são todos os coeficientes da conexão para o caso de uma métrica diagonal.

Utilizando os resultados do exercício anterior, os coeficientes da conexão de Levi-Civita para as coordenadas esféricas no espaço Euclidiano são dados por

$$\begin{split} \Gamma^r_{\ \theta\theta} &= -\frac{\partial_r(r^2)}{2} = -r \\ \Gamma^\theta_{\ \theta r} &= \frac{\partial_r(r^2)}{2r^2} = \frac{1}{r} \\ \Gamma^\phi_{\ \phi r} &= \frac{\partial_r(r^2\sin^2\theta)}{2r^2} = -\sin\theta\cos\theta \\ \Gamma^\phi_{\ \phi r} &= \frac{\partial_r(r^2\sin^2\theta)}{r^2\sin^2\theta} = \frac{1}{r} \\ \Gamma^\phi_{\ \phi \theta} &= \frac{\partial_\theta(r^2\sin^2\theta)}{2r^2} = -\sin\theta\cos\theta \\ \Gamma^\phi_{\ \phi \theta} &= \frac{\partial_\theta(r^2\sin^2\theta)}{r^2\sin^2\theta} = \cot\theta, \end{split}$$

e os outros termos são ou nulos ou obtidos pela simetria da conexão. Seja uma curva

$$\gamma: I \subset \mathbb{R} \to \mathbb{R}^3$$
$$\lambda \mapsto (x^r(\lambda), x^{\theta}(\lambda), x^{\phi}(\lambda)).$$

Assim, para que γ seja uma geodésica, devemos ter

$$\frac{\mathrm{d}^2 x^k}{\mathrm{d}\lambda^2} + \Gamma^k_{ij} \frac{\mathrm{d}x^i}{\mathrm{d}\lambda} \frac{\mathrm{d}x^j}{\mathrm{d}\lambda} = 0$$

para k igual a r, θ e ϕ . Assim, de forma explícita, as equações da geodésica são dadas por

$$\begin{cases} \ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2\sin^2\theta = 0 \\ \ddot{\theta} + \frac{2}{r}\dot{r}\dot{\theta} - \dot{\phi}^2\sin\theta\cos\theta = 0 \\ \ddot{\phi} + \frac{2}{r}\dot{r}\dot{\phi} + 2\dot{\phi}\dot{\theta}\cot\theta = 0 \end{cases} \implies \begin{cases} \ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2\sin^2\theta = 0 \\ r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\dot{\phi}^2\sin\theta\cos\theta = 0 \\ r\ddot{\phi}\sin\theta + 2\dot{r}\dot{\phi} + 2\dot{\phi}\dot{\theta}\cos\theta = 0 \end{cases},$$

onde, para simplificar, denotamos $r=x^r$, $\theta=x^\theta$ e $\phi=x^\phi$ e os pontos sobre as variáveis denotam que estas funções componente foram derivadas em relação ao parâmetro afim λ .

Em analogia ao movimento de uma partícula em mecânica clássica, sabemos que as equações acima especificam uma partícula se movendo ao longo de uma curva γ com aceleração nula, isto é, cada equação é uma componente da aceleração desta partícula. Desse modo, como o parâmetro λ é afim, uma vez que buscamos uma geodésica, sabemos que o vetor tangente à curva é constante. Integrando mais uma vez, obtemos que a solução deste sistema de equações é uma reta.

Um espaço topológico é uma dupla (M, O_M) composta por um conjunto M e uma topologia O_M . Um subconjunto U de M é dito ser aberto em relação a este espaço topológico se $U \in O_M$. Uma aplicação $f: M \to N$ entre espaços topológicos (M, O_M) e (N, O_N) é dita contínua se sua pré-imagem de um aberto é aberta, e é dita um homeomorfismo se for bijetiva e tanto f quanto f^{-1} forem contínuas. Se existe um homeomorfismo entre dois espaços topológicos, estes são ditos homeomorfos.

Se existe um número inteiro n tal que todo aberto $U \in O_M$ é homeomorfo a \mathbb{R}^n , em relação à topologia usual do espaço Euclidiano, dizemos que (M,O_M) é um espaço topológico localmente Euclidiano de dimensão n. Ainda, para cada aberto $U \in O_M$ existe um homeomorfismo $x: U \to x(U) \subset \mathbb{R}^n$, e chamamos o par (U,x) de carta local. Um atlas \mathscr{A}_M é uma coleção de cartas locais tal que a união dos abertos cobre o conjunto M.

Consideremos agora duas cartas $(U, x), (V, x) \in \mathcal{A}_M$ tal que $U \cap V \neq \emptyset$.

Como uma composição de homeomorfismos, segue que a aplicação de transição $y \circ x^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ é um homeomorfismo, isto é, contínua. Como uma função em \mathbb{R}^n , podemos utilizar análise usual para decidir se esta função é diferenciável. Duas cartas locais (U,x),(V,y) são ditas C^k -compatíveis se ou $U \cap V \neq \emptyset$ e a aplicação de transição $y \circ x^{-1}$ é de classe C^k ou se $U \cap V = \emptyset$. Ainda, um atlas é dito C^k -compatível se todo par de cartas locais são C^k -compatíveis.

Uma variedade diferenciável (M, O_M, \mathcal{A}_M) é um espaço topológico (M, O_M) localmente Euclidiano munido de um atlas maximal suave \mathcal{A}_M , isto é, um atlas C^∞ -compatível com a propriedade de que se uma carta (U, x) é compatível com uma carta $(V, y) \in \mathcal{A}_M$, então $(U, x) \in \mathcal{A}_M$. A estrutura diferencial dada pelo atlas permite definir em todo ponto $p \in M$ um espaço vetorial T_pM , chamado de espaço tangente no ponto p, cujos elementos são derivações na álgebra $C^\infty(M)$ de funções suaves $f: M \to \mathbb{R}$. Geometricamente, cada elemento $X \in T_pM$ é um operador de derivada direcional ao longo de alguma curva suave $\gamma: (-\varepsilon, \varepsilon) \to M$ que passa por $p = \gamma(0)$. O espaço dual T_p^*M é chamado de espaço cotangente no ponto p, cujos elementos são relacionados com as curvas de nível de funções suaves $C^\infty(M)$.

Utilizando o atlas da variedade, podemos definir um atlas para a união disjunta dos espaços tangentes, construindo assim o fibrado tangente TM, que é também uma variedade diferenciável. Uma aplicação suave $p\mapsto X_p$ que associa um ponto p da variedade a um vetor $X_p\in T_pM\subset TM$ do fibrado tangente é chamada de campo de vetores. Analogamente, definimos o fibrado cotangente T^*M , em que uma aplicação suave $p\mapsto \omega_p$ que associa um ponto $p\in M$ a um elemento $\omega_p\in T_p^*M\subset T^*M$ é chamada de 1-forma diferencial, ou campo de covetores. Uma função multilinear de campos de vetores e de 1-formas diferenciais é chamada de tensor na variedade.

Resumindo de forma mais informal, uma variedade diferenciável é um conjunto M que localmente se parece com algum espaço Euclidiano \mathbb{R}^n , e no qual podemos definir ponto a ponto um espaço vetorial, que é intimamente relacionado à estrutura diferencial fornecida à M por um atlas de cartas de coordenadas locais. Um tensor no contexto de uma variedade diferenciável é uma função multilinear de vetores e 1-formas definida em todo ponto da variedade.

Consideremos duas cartas locais de coordenadas locais (U, x) e (U, x'), com

$$\partial_{\alpha} = \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \partial'_{\mu} \quad e \quad g_{\alpha\beta} = \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} g'_{\mu\nu}.$$

Pela definição dos coeficientes da conexão de Levi-Civita em uma carta \tilde{x} ,

$$\tilde{\Gamma}^{\lambda}{}_{\rho\sigma} = \frac{1}{2} \tilde{g}^{\lambda\omega} \left(\tilde{\partial}_{\rho} \tilde{g}_{\omega\sigma} + \tilde{\partial}_{\sigma} \tilde{g}_{\omega\sigma} - \tilde{\partial}_{\omega} \tilde{g}_{\rho\sigma} \right),$$

podemos obter a transformação destes coeficientes. Temos

$$\begin{split} \partial_{\gamma}g_{\alpha\beta} &= \partial_{\gamma} \left(\frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} g'_{\mu\nu} \right) \\ &= \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} \partial_{\gamma} g'_{\mu\nu} + g'_{\mu\nu} \partial_{\gamma} \left(\frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} \right) \\ &= \frac{\partial x'^{\lambda}}{\partial x^{\gamma}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} \partial'_{\lambda} g'_{\mu\nu} + g'_{\mu\nu} \left(\frac{\partial^{2} x'^{\mu}}{\partial x^{\gamma} \partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} + \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial^{2} x'^{\nu}}{\partial x^{\gamma} \partial x^{\beta}} \right) \end{split}$$

portanto, por permutações cíclicas de α , β , γ e renomeando alguns índices que estão sendo somados, temos

$$\begin{split} \partial_{\alpha}g_{\beta\gamma} &= \frac{\partial x'^{\lambda}}{\partial x^{\alpha}} \frac{\partial x'^{\mu}}{\partial x^{\beta}} \frac{\partial x'^{\nu}}{\partial x^{\gamma}} \partial_{\lambda}' g'_{\mu\nu} + g'_{\mu\nu} \left(\frac{\partial^{2} x'^{\mu}}{\partial x^{\alpha} \partial x^{\beta}} \frac{\partial x'^{\nu}}{\partial x^{\gamma}} + \frac{\partial x'^{\mu}}{\partial x^{\beta}} \frac{\partial^{2} x'^{\nu}}{\partial x^{\alpha} \partial x^{\gamma}} \right) \\ &= \frac{\partial x'^{\lambda}}{\partial x^{\gamma}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} \partial_{\mu}' g'_{\nu\lambda} + g'_{\nu\mu} \left(\frac{\partial^{2} x'^{\nu}}{\partial x^{\alpha} \partial x^{\beta}} \frac{\partial x'^{\mu}}{\partial x^{\gamma}} + \frac{\partial x'^{\nu}}{\partial x^{\beta}} \frac{\partial^{2} x'^{\mu}}{\partial x^{\alpha} \partial x^{\gamma}} \right) \\ &= \frac{\partial x'^{\lambda}}{\partial x^{\gamma}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} \partial_{\mu}' g'_{\nu\lambda} + g'_{\mu\nu} \left(\frac{\partial^{2} x'^{\nu}}{\partial x^{\alpha} \partial x^{\beta}} \frac{\partial x'^{\mu}}{\partial x^{\gamma}} + \frac{\partial x'^{\nu}}{\partial x^{\beta}} \frac{\partial^{2} x'^{\mu}}{\partial x^{\alpha}} \frac{\partial^{2} x'^{\mu}}{\partial x^{\gamma}} \right) \end{split}$$

e

$$\begin{split} \partial_{\beta}g_{\gamma\alpha} &= \frac{\partial x'^{\lambda}}{\partial x^{\beta}} \frac{\partial x'^{\mu}}{\partial x^{\gamma}} \frac{\partial x'^{\nu}}{\partial x^{\alpha}} \partial_{\lambda}' g_{\mu\nu}' + g_{\mu\nu}' \left(\frac{\partial^{2}x'^{\mu}}{\partial x^{\beta} \partial x^{\gamma}} \frac{\partial x'^{\nu}}{\partial x^{\alpha}} + \frac{\partial x'^{\mu}}{\partial x^{\gamma}} \frac{\partial^{2}x'^{\nu}}{\partial x^{\beta} \partial x^{\alpha}} \right) \\ &= \frac{\partial x'^{\lambda}}{\partial x^{\gamma}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} \partial_{\nu}' g_{\lambda\mu}' + g_{\nu\mu}' \frac{\partial^{2}x'^{\nu}}{\partial x^{\beta} \partial x^{\gamma}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} + g_{\mu\nu}' \frac{\partial x'^{\mu}}{\partial x^{\gamma}} \frac{\partial^{2}x'^{\nu}}{\partial x^{\beta} \partial x^{\alpha}} \\ &= \frac{\partial x'^{\lambda}}{\partial x^{\gamma}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} \partial_{\nu}' g_{\lambda\mu}' + g_{\mu\nu}' \left(\frac{\partial^{2}x'^{\nu}}{\partial x^{\beta} \partial x^{\gamma}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} + \frac{\partial x'^{\mu}}{\partial x^{\gamma}} \frac{\partial^{2}x'^{\nu}}{\partial x^{\beta} \partial x^{\alpha}} \right), \end{split}$$

onde utilizamos que as componentes da métrica são simétricos. Utilizando o guia dos termos sublinhados, obtemos a transformação dos coeficientes da conexão sob mudança de cartas,

$$\begin{split} &\Gamma^{\rho}_{\alpha\beta} = \frac{1}{2} g^{\rho\gamma} \left(\partial_{\alpha} g_{\beta\gamma} + \partial_{\beta} g_{\gamma\alpha} - \partial_{\gamma} g_{\alpha\beta} \right) \\ &= \frac{1}{2} \left(\frac{\partial x^{\rho}}{\partial x'^{\sigma}} \frac{\partial x^{\gamma}}{\partial x'^{\xi}} g'^{\sigma\xi} \right) \left[\frac{\partial x'^{\lambda}}{\partial x^{\gamma}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} \left(\partial'_{\mu} g'_{\nu\lambda} + \partial'_{\nu} g'_{\lambda\mu} - \partial'_{\lambda} g'_{\mu\nu} \right) + 2 g'_{\mu\nu} \left(\frac{\partial^{2} x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\gamma}} \right) \right] \\ &= \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \left[\frac{1}{2} \frac{\partial x^{\gamma}}{\partial x'^{\xi}} \frac{\partial x'^{\lambda}}{\partial x^{\gamma}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} g'^{\sigma\xi} \left(\partial'_{\mu} g'_{\nu\lambda} + \partial'_{\nu} g'_{\lambda\mu} - \partial'_{\lambda} g'_{\mu\nu} \right) + \frac{\partial x^{\gamma}}{\partial x'^{\xi}} \frac{\partial x'^{\nu}}{\partial x^{\gamma}} g'^{\sigma\xi} g'_{\mu\nu} \left(\frac{\partial^{2} x'^{\mu}}{\partial x^{\alpha}} \frac{\partial^{2} x'^{\mu}}{\partial x^{\beta}} \right) \right] \\ &= \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \left[\frac{1}{2} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} \delta^{\lambda}_{\xi} g'^{\sigma\xi} \left(\partial'_{\mu} g'_{\nu\lambda} + \partial'_{\nu} g'_{\lambda\mu} - \partial'_{\lambda} g'_{\mu\nu} \right) + \delta^{\nu}_{\xi} g'^{\sigma\xi} g'_{\mu\nu} \left(\frac{\partial^{2} x'^{\mu}}{\partial x^{\alpha}} \frac{\partial^{2} x'^{\mu}}{\partial x^{\beta}} \right) \right] \\ &= \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} \left[\frac{1}{2} g'^{\sigma\lambda} \left(\partial'_{\mu} g'_{\nu\lambda} + \partial'_{\nu} g'_{\lambda\mu} - \partial'_{\lambda} g'_{\mu\nu} \right) \right] + \frac{\partial x^{\rho}}{\partial x'^{\sigma}} g'^{\sigma\nu} g'_{\mu\nu} \left(\frac{\partial^{2} x'^{\mu}}{\partial x^{\alpha}} \frac{\partial^{2} x'^{\mu}}{\partial x^{\beta}} \right) \\ &= \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x'^{\nu}}{\partial x^{\beta}} \Gamma'^{\sigma}_{\mu\nu} + \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \frac{\partial^{2} x'^{\sigma}}{\partial x^{\alpha}} \frac{\partial^{2} x'^{\sigma}}{\partial x^{\alpha}} \frac{\partial^{2} x'^{\sigma}}{\partial x^{\beta}}, \end{split}$$

então pela presença do termo afim $\frac{\partial x^{\rho}}{\partial x'^{\sigma}} \frac{\partial^{2} x'^{\sigma}}{\partial x^{\alpha} \partial x^{\beta}}$ não necessariamente nulo, estes coeficientes não se transformam como tensores.

Para um vetor V^{ρ} , consideremos o objeto $\partial_{\alpha}V^{\rho}$ na carta local de coordenadas x. Em outra carta de coordenadas x', temos

$$V^{\rho} = \frac{\partial x^{\rho}}{\partial x^{\prime \nu}} V^{\prime \nu},$$

de modo que

$$\begin{split} \partial_{\alpha}V^{\rho} &= \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \partial'_{\mu} \left(\frac{\partial x^{\rho}}{\partial x'^{\sigma}} V'^{\sigma} \right) \\ &= \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \partial'_{\mu} V'^{\sigma} + \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial^{2} x^{\rho}}{\partial x'^{\mu} \partial x'^{\sigma}} V'^{\sigma}, \end{split}$$

e por conta do termo afim $\frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial^2 x^{\rho}}{\partial x'^{\mu} \partial x'^{\sigma}} V'^{\sigma}$ não necessariamente nulo, este objeto não se transforma como um tensor.

Mostremos que $\nabla_{\alpha}V^{\rho} = \partial_{\alpha}V^{\rho} + \Gamma^{\rho}_{\alpha\beta}V^{\beta}$ se transforma como um tensor. Notemos que

$$\Gamma^{\rho}_{\alpha\beta}V^{\beta} = \left(\frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\frac{\partial x'^{\nu}}{\partial x^{\beta}}\Gamma'^{\sigma}_{\mu\nu} + \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial^{2}x'^{\sigma}}{\partial x^{\alpha}\partial x^{\beta}}\right)V^{\beta}$$
$$= \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\Gamma'^{\sigma}_{\mu\nu}V'^{\nu} + \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial^{2}x'^{\sigma}}{\partial x^{\alpha}\partial x^{\beta}}V^{\beta}.$$

Assim, temos que

$$\begin{split} \nabla_{\alpha}V^{\rho} &= \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \left(\partial'_{\mu}V'^{\sigma} + \Gamma'^{\sigma}{}_{\mu\nu}V'^{\nu} \right) + \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \frac{\partial^{2}x'^{\sigma}}{\partial x^{\alpha} \partial x^{\beta}} V^{\beta} + \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial^{2}x^{\rho}}{\partial x'^{\mu} \partial x'^{\sigma}} V'^{\sigma} \\ &= \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \nabla'_{\mu}V'^{\sigma} + \left(\frac{\partial x^{\rho}}{\partial x'^{\sigma}} \frac{\partial^{2}x'^{\sigma}}{\partial x^{\alpha} \partial x^{\beta}} + \frac{\partial x'^{\sigma}}{\partial x^{\beta}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial^{2}x^{\rho}}{\partial x'^{\mu} \partial x'^{\sigma}} \right) V^{\beta} \\ &= \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \nabla'_{\mu}V'^{\sigma} + \left(\frac{\partial x^{\rho}}{\partial x'^{\sigma}} \frac{\partial x^{\rho}}{\partial x^{\alpha}} \frac{\partial x'^{\sigma}}{\partial x^{\beta}} + \frac{\partial x'^{\sigma}}{\partial x^{\beta}} \frac{\partial x^{\rho}}{\partial x^{\alpha}} \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \right) V^{\beta} \\ &= \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \nabla'_{\mu}V'^{\sigma} + \left(\partial_{\alpha}\delta^{\rho}{}_{\beta} \right) V^{\beta} \\ &= \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \nabla'_{\mu}V'^{\sigma} + \left(\partial_{\alpha}\delta^{\rho}{}_{\beta} \right) V^{\beta} \\ &= \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \nabla'_{\mu}V'^{\sigma} , \end{split}$$

já que o $\partial_{\alpha}\delta^{\rho}_{\ \beta}$ = 0. Segue que este objeto se transforma como um tensor.

Para um tensor Q^{ρ}_{τ} , a sua derivada covariante é dada por

$$\nabla_{\alpha} Q^{\rho}_{\tau} = \partial_{\alpha} Q^{\rho}_{\tau} + \Gamma^{\rho}_{\alpha\beta} Q^{\beta}_{\tau} - \Gamma^{\gamma}_{\alpha\tau} Q^{\rho}_{\gamma}.$$

Em relação à carta de coordenadas x', temos

$$\begin{split} \partial_{\alpha}Q^{\rho}{}_{\tau} &= \partial_{\alpha} \left(\frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \frac{\partial x^{\prime \xi}}{\partial x^{\tau}} Q^{\prime \sigma}{}_{\xi} \right) \\ &= \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \frac{\partial x^{\prime \xi}}{\partial x^{\tau}} \frac{\partial x^{\prime \mu}}{\partial x^{\alpha}} \partial_{\mu}^{\prime} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \frac{\partial^{2} x^{\prime \xi}}{\partial x^{\alpha} \partial x^{\tau}} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\prime \xi}}{\partial x^{\sigma}} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\prime \xi}}{\partial x^{\sigma}} Q^{\prime \sigma}{}_{\xi} \partial_{\alpha} \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \\ &= \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \frac{\partial x^{\prime \xi}}{\partial x^{\tau}} \frac{\partial x^{\prime \mu}}{\partial x^{\alpha}} \partial_{\mu}^{\prime} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \frac{\partial^{2} x^{\prime \xi}}{\partial x^{\alpha} \partial x^{\tau}} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\prime \xi}}{\partial x^{\sigma}} \frac{\partial x^{\prime \sigma}}{\partial x^{\beta}} \frac{\partial x^{\delta}}{\partial x^{\prime \xi}} Q^{\beta}{}_{\delta} \partial_{\alpha} \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \\ &= \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \frac{\partial x^{\prime \xi}}{\partial x^{\tau}} \frac{\partial x^{\prime \mu}}{\partial x^{\alpha}} \partial_{\mu}^{\prime} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \frac{\partial^{2} x^{\prime \xi}}{\partial x^{\alpha} \partial x^{\tau}} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\prime \sigma}}{\partial x^{\beta}} Q^{\beta}{}_{\tau} \partial_{\alpha} \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \\ &= \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \frac{\partial x^{\prime \xi}}{\partial x^{\tau}} \frac{\partial x^{\prime \mu}}{\partial x^{\alpha}} \partial_{\mu}^{\prime} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \frac{\partial^{2} x^{\prime \xi}}{\partial x^{\alpha} \partial x^{\tau}} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\prime \sigma}}{\partial x^{\beta}} Q^{\beta}{}_{\tau} \partial_{\alpha} \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \\ &= \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \frac{\partial x^{\prime \mu}}{\partial x^{\sigma}} \partial_{\mu}^{\prime \sigma} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \partial_{\mu}^{\prime \sigma} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \partial_{\mu}^{\prime \sigma} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \partial_{\mu}^{\prime \sigma} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \partial_{\mu}^{\prime \sigma} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \partial_{\mu}^{\prime \sigma} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \partial_{\mu}^{\prime \sigma} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \partial_{\mu}^{\prime \sigma} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \partial_{\mu}^{\prime \sigma} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \partial_{\mu}^{\prime \sigma} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \partial_{\mu}^{\prime \sigma} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \partial_{\mu}^{\prime \sigma} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \partial_{\mu}^{\prime \sigma} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \partial_{\mu}^{\prime \sigma} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \partial_{\mu}^{\prime \sigma} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \partial_{\mu}^{\prime \sigma} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \partial_{\mu}^{\prime \sigma} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime \sigma}} \partial_{\mu}^{\prime \sigma} Q^{\prime \sigma}{}_{\xi} + \frac{\partial x^{\rho}}{\partial x^{\prime$$

$$\begin{split} \Gamma^{\rho}_{\alpha\beta}Q^{\beta}_{\tau} &= \left(\frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\frac{\partial x'^{\nu}}{\partial x^{\beta}}\Gamma'^{\sigma}_{\mu\nu} + \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial^{2}x'^{\sigma}}{\partial x^{\alpha}\partial x^{\beta}}\right)Q^{\beta}_{\tau} \\ &= \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\frac{\partial x'^{\nu}}{\partial x^{\beta}}\Gamma'^{\sigma}_{\mu\nu}\frac{\partial x^{\beta}}{\partial x'^{\lambda}}\frac{\partial x'^{\xi}}{\partial x^{\tau}}Q'^{\lambda}_{\xi} + \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial^{2}x'^{\sigma}}{\partial x^{\alpha}\partial x^{\beta}}Q^{\beta}_{\tau} \\ &= \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\xi}}{\partial x^{\tau}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\Gamma'^{\sigma}_{\mu\nu}Q'^{\nu}_{\xi} + \frac{\partial x^{\rho}}{\partial x'^{\sigma}}Q^{\beta}_{\tau}\partial_{\alpha}\frac{\partial x'^{\sigma}}{\partial x^{\beta}} \end{split}$$

$$\begin{split} \Gamma^{\gamma}{}_{\alpha\tau}Q^{\rho}{}_{\gamma} &= \left(\frac{\partial x^{\gamma}}{\partial x'^{\omega}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\frac{\partial x'^{\xi}}{\partial x^{\tau}}\Gamma^{\prime\omega}{}_{\mu\xi} + \frac{\partial x^{\gamma}}{\partial x'^{\omega}}\frac{\partial^{2}x'^{\omega}}{\partial x^{\alpha}}\frac{\partial^{2}x'^{\omega}}{\partial x^{\tau}}\right) \left(\frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\zeta}}{\partial x^{\gamma}}Q^{\prime\sigma}{}_{\zeta}\right) \\ &= \frac{\partial x^{\gamma}}{\partial x'^{\omega}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\frac{\partial x'^{\xi}}{\partial x^{\tau}}\frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\zeta}}{\partial x^{\gamma}}\Gamma^{\prime\omega}{}_{\mu\xi}Q^{\prime\sigma}{}_{\zeta} + \frac{\partial x^{\gamma}}{\partial x'^{\omega}}\frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\zeta}}{\partial x^{\gamma}}Q^{\prime\sigma}{}_{\zeta}\frac{\partial^{2}x'^{\omega}}{\partial x^{\alpha}\partial x^{\tau}} \\ &= \frac{\partial x^{\rho}}{\partial x'^{\sigma}}\frac{\partial x'^{\xi}}{\partial x^{\tau}}\frac{\partial x'^{\mu}}{\partial x^{\alpha}}\Gamma^{\prime\zeta}{}_{\mu\xi}Q^{\prime\sigma}{}_{\zeta} + \frac{\partial x^{\rho}}{\partial x'^{\sigma}}Q^{\prime\sigma}{}_{\zeta}\frac{\partial^{2}x'^{\zeta}}{\partial x^{\alpha}\partial x^{\tau}} \end{split}$$

Assim, ao somar os dois primeiros termos e subtrair o terceiro, os termos sublinhados em verde são cancelados e os termos sublinhados em laranja também uma vez que

$$\frac{\partial x'^{\sigma}}{\partial x^{\beta}} \partial_{\alpha} \frac{\partial x^{\rho}}{\partial x'^{\sigma}} + \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \partial_{\alpha} \frac{\partial x'^{\sigma}}{\partial x^{\beta}} = \partial_{\alpha} \left(\frac{\partial x'^{\sigma}}{\partial x^{\beta}} \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \right) = \partial_{\alpha} \delta^{\rho}_{\ \beta} = 0,$$

portanto segue que restam apenas os termos sublinhados em rosa, obtendo

$$\nabla_{\alpha}Q^{\rho}_{\ \tau} = \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \frac{\partial x'^{\xi}}{\partial x^{\tau}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \left(\partial'_{\mu}Q'^{\sigma}_{\ \xi} + \Gamma'^{\sigma}_{\ \mu\nu}Q'^{\nu}_{\ \xi} + \Gamma'^{\zeta}_{\ \mu\xi}Q'^{\sigma}_{\ \zeta} \right) = \frac{\partial x^{\rho}}{\partial x'^{\sigma}} \frac{\partial x'^{\xi}}{\partial x^{\alpha}} \frac{\partial x'^{\mu}}{\partial x^{\alpha}} \nabla'_{\alpha}Q'^{\sigma}_{\ \xi}.$$

Dessa forma, verificamos a transformação tensorial da derivada covariante de um tensor Q^{ρ}_{τ} .

Consideremos a *D*-forma $dx^0 \wedge \cdots \wedge dx^{D-1}$, então em outra carta de coordenadas x', temos

$$dx^{0} \wedge \cdots \wedge dx^{D-1} = \left(\frac{\partial x^{0}}{\partial x'^{\mu_{0}}} dx'^{\mu_{0}}\right) \wedge \cdots \wedge \left(\frac{\partial x^{D-1}}{\partial x'^{\mu_{D-1}}} dx'^{\mu_{D-1}}\right)$$

$$= \epsilon^{\mu_{0} \dots \mu_{D-1}} \left(\frac{\partial x^{0}}{\partial x'^{\mu}_{0}} \dots \frac{\partial x^{D-1}}{\partial x'^{\mu_{D-1}}}\right) dx'^{0} \wedge \cdots \wedge dx'^{D-1}$$

$$= \int dx'^{0} \wedge \cdots \wedge dx'^{D-1},$$

onde J é o determinante do jacobiano $\frac{\partial x^{\alpha}}{\partial x'^{\beta}}$, isto é, $J = \epsilon^{\mu_0 \dots \mu_{D-1}} \frac{\partial x^0}{\partial x'^{\mu_0}} \dots \frac{\partial x^{D-1}}{\partial x'^{\mu_{D-1}}}$. Consideremos agora a transformação da métrica $g_{\mu\nu}$ das coordenadas x para as coordenadas x'

$$g_{\mu\nu} = \frac{\partial x^{\prime\alpha}}{\partial x^{\mu}} \frac{\partial x^{\prime\beta}}{\partial x^{\nu}} g_{\alpha\beta}^{\prime}.$$

Notemos que podemos arranjar esta última equação como uma multiplicação matricial

$$(g_{\mu\nu}) = \left(\frac{\partial x'^{\alpha}}{\partial x^{\mu}}\right)^{\mathsf{T}} (g'_{\alpha\beta}) \left(\frac{\partial x'^{\beta}}{\partial x^{\nu}}\right),\,$$

donde segue que

$$g = J^{-2}g',$$

onde g e g' são os valores absolutos dos determinantes das matrizes que representam a métrica nas cartas de coordenadas locais $x \in x'$. Desse modo, o objeto \sqrt{g} se transforma de forma inversa à D-forma considerada. Nesse caso, obtemos a regra de transformação

$$\sqrt{g} dx^0 \wedge \cdots \wedge dx^{D-1} = \sqrt{g'} dx'^0 \wedge \cdots \wedge dx'^{D-1}$$

isto é, \sqrt{g} d $x^0 \wedge \cdots \wedge x^{D-1}$ se transforma como um escalar, então podemos utilizar este objeto como uma medida invariante para integrais em uma variedade.

Por exemplo, consideremos o círculo unitário submerso no plano Euclidiano $S^1 \subset \mathbb{R}^2$ e a carta

$$\psi: S^1 \setminus \{(1,0)\} \subset \mathbb{R}^2 \to (0,2\pi)$$
$$(\cos \theta, \sin \theta) \mapsto \theta.$$

Então o vetor da base induzida por esta carta é $e_{\theta} = (-\sin \theta, \cos \theta)$, que é unitário em relação à métrica Euclidiana. Isto é, a métrica induzida em S^1 é dada por seu único elemento $g_{\theta\theta}=1$, e cujo determinante é g=1. Desse modo, o elemento de linha para o círculo unitário é $ds=\sqrt{g} d\theta=d\theta$, como esperado.

Com a medida invariante podemos também determinar volumes invariantes. Por exemplo, para uma métrica $ds^2 = a^2 dx^2 + b^2 dy^2 + c^2 dz^2$, temos $g = a^2 b^2 c^2$, portanto o volume invariante de um cubo infinitesimal de lados dx, dy, dz é

$$abc dx \wedge dy \wedge dz$$
.

Notemos que a derivada direcional $W^{\mu}\partial_{\mu}\phi$ para um campo escalar ϕ na direção dada pelo campo vetorial W é um escalar. De fato, em relação à outra carta de coordenadas temos

$$W^{\mu}\partial_{\mu}\phi = \left(\frac{\partial x^{\mu}}{\partial x'^{\alpha}}W'^{\alpha}\right)\left(\frac{\partial x'^{\beta}}{\partial x^{\mu}}\partial_{\beta}'\right)\phi = W'^{\alpha}\partial_{\alpha}'\phi,$$

uma vez que o campo escalar é independente da escolha de cartas.

Desse modo, com o resultado do exercício anterior, segue que a integral

$$\int_{M} d^{D}x \sqrt{g} W^{\mu} \partial_{\mu} \phi$$

é invariante. Suponhamos agora que o suporte de ϕ é contido no domínio de uma carta x, então por integração por partes temos

$$\int_{M} d^{D}x \sqrt{g} W^{\mu} \partial_{\mu} \phi = \int_{\partial M} d^{D-1}x \sqrt{g} n_{\mu} W^{\mu} \phi - \int_{M} d^{D}x \phi \partial_{\mu} \left(\sqrt{g} W^{\mu} \right)$$
$$= \int_{\partial M} d^{D-1}x \sqrt{g} n_{\mu} W^{\mu} \phi - \int_{M} d^{D}x \sqrt{g} \phi \frac{\partial_{\mu} \left(\sqrt{g} W^{\mu} \right)}{\sqrt{g}}$$

onde n_{μ} é a 1-forma definida pela fronteira ∂M . Equivalentemente temos

$$\int_{\partial M} \mathrm{d}^{D-1} x \sqrt{g} n_{\mu} W^{\mu} \phi = \int_{M} \mathrm{d}^{D} x \sqrt{g} \left[W^{\mu} \partial_{\mu} \phi + \phi \frac{\partial_{\mu} (\sqrt{g} W^{\mu})}{\sqrt{g}} \right],$$

então pelo teorema do divergente,

$$\int_{\partial M} d^{D-1}x \sqrt{g} n_{\mu} W^{\mu} \phi = \int_{M} d^{D}x \sqrt{g} \operatorname{div}(\phi W),$$

segue que

$$\operatorname{div}(\phi W) = W^{\mu} \partial_{\mu} \phi + \phi \frac{\partial_{\mu} (\sqrt{g} W^{\mu})}{\sqrt{g}}.$$

Pela propriedade do divergente

$$\operatorname{div}(\phi W) = W^{\mu} \partial_{\mu} \phi + \phi \operatorname{div}(W) = W^{\mu} \partial_{\mu} \phi + \phi \operatorname{div}(W),$$

obtemos

$$\underline{W^{\mu}\partial_{\mu}\phi} + \phi \mathrm{div}(W) = \underline{W^{\mu}\partial_{\mu}\phi} + \phi \frac{\partial_{\mu}(\sqrt{g}W^{\mu})}{\sqrt{g}} \implies \phi \left[\mathrm{div}(W) - \frac{\partial_{\mu}(\sqrt{g}W^{\mu})}{\sqrt{g}}\right] = 0.$$

Como o campo escalar é arbitrário, temos

$$\operatorname{div}(W) = \frac{\partial_{\mu}(\sqrt{g}W^{\mu})}{\sqrt{g}}.$$

Notemos que

$$\operatorname{div}(W) = \partial_{\mu}W^{\mu} + \frac{\partial_{\nu}\sqrt{g}}{\sqrt{g}}W^{\nu}.$$

Nas coordenadas normais de Riemann, temos $\tilde{g}=1$ e $\tilde{\partial}_{\mu}\tilde{g}=0$, portanto

$$\operatorname{div}(W) = \tilde{\partial}_{\mu} \tilde{W}^{\mu}.$$

Assim, em uma carta de coordenadas arbitrária temos

$$\operatorname{div}(W) = \nabla_{\mu} W^{\mu}$$
.

Comparando $\nabla_{\mu}W^{\mu} = \partial_{\mu}W^{\mu} + \Gamma^{\mu}_{\ \mu\nu}W^{\nu}$ com a expressão para o divergente, temos

$$\Gamma^{\mu}_{\ \mu\nu} = \frac{\partial_{\nu}\sqrt{g}}{\sqrt{g}}.$$

Substituindo W^{μ} pelo gradiente de um campo escalar $(\operatorname{grad}\psi)^{\mu}=g^{\mu\nu}\partial_{\nu}\psi$, obtemos a expressão para o seu laplaciano, dado por

$$\nabla_{\mu}\nabla^{\mu}\psi = \frac{1}{\sqrt{g}}\partial_{\mu}\left(\sqrt{g}g^{\mu\nu}\partial_{\nu}\psi\right).$$

Podemos utilizar estas identidades para encontrar as expressões para o divergente e laplaciano em coordenadas esféricas para o espaço Euclidiano,

$$ds^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2$$

onde a métrica tem determinante dado por $g = r^4 \sin^2 \theta$. Para um campo de vetores

$$W = W^r e_r + W^{\theta} \frac{e_{\theta}}{r} + W^{\varphi} \frac{e_{\varphi}}{r \sin \theta},$$

isto é, cujas componentes na base ortonormal $\{e_r, \frac{1}{r}e_\theta, \frac{1}{r\sin\theta}e_\varphi\}$ são dadas por W^r, W^θ, W^φ , temos

$$\operatorname{div}(W) = \frac{1}{r^2 \sin \theta} \partial_{\mu} \left(r^2 \sin \theta W^{\mu} \right)$$

$$= \frac{1}{r^2 \sin \theta} \partial_{r} \left(r^2 \sin \theta W^{r} \right) + \frac{1}{r^2 \sin \theta} \partial_{\theta} \left(r^2 \sin \theta \frac{W^{\theta}}{r} \right) + \frac{1}{r^2 \sin \theta} \partial_{\varphi} \left(r^2 \sin \theta \frac{W^{\varphi}}{r \sin \theta} \right)$$

$$= \frac{1}{r^2} \partial_{r} \left(r^2 W^{r} \right) + \frac{1}{r \sin \theta} \partial_{\theta} \left(W^{\theta} \sin \theta \right) + \frac{1}{r \sin \theta} \partial_{\varphi} W^{\varphi}.$$

O gradiente de um campo escalar ψ é dado por

$$(\operatorname{grad}\psi)^{\mu} = g^{\mu\nu}\partial_{\nu}\psi,$$

portanto em coordenadas esféricas temos

$$\operatorname{grad}\psi = \frac{\partial \psi}{\partial r} e_r + \frac{1}{r^2} \frac{\partial \psi}{\partial \theta} e_\theta + \frac{1}{r^2 \sin^2 \theta} \frac{\partial \psi}{\partial \varphi} e_\varphi$$
$$= \frac{\partial \psi}{\partial r} e_r + \frac{1}{r} \frac{\partial \psi}{\partial \theta} \frac{e_\theta}{r} + \frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \varphi} \frac{e_\varphi}{r \sin \theta}.$$

Portanto, tomando $W^r = \frac{\partial \psi}{\partial r}$, $W^\theta = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$ e $W^\varphi = \frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \varphi}$, temos pelo resultado anterior que

$$\begin{split} \nabla^2 \psi &= \frac{1}{r^2} \partial_r \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r \sin \theta} \partial_\theta \left(\frac{1}{r} \frac{\partial \psi}{\partial \theta} \sin \theta \right) + \frac{1}{r \sin \theta} \partial_\varphi \left(\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \varphi} \right) \\ &= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\frac{\partial \psi}{\partial \theta} \sin \theta \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \varphi^2}. \end{split}$$

Consideremos a métrica de um espaço em expansão

$$ds^{2} = -dt^{2} + t^{2q} (dx^{2} + dy^{2} + dz^{2}),$$

com $q \in (0,1)$ e $t \in (0,\infty)$. Para um intervalo tipo luz ao longo do eixo x, temos

$$dt^2 = t^{2q} dx^2 \implies t^{-q} dt = \pm dx \implies t^{-q} \frac{dt}{dx} = \pm 1,$$

isto é, uma equação diferencial para a coordenada temporal. Integrando em relação à posição obtemos

$$\frac{t^{1-q}}{1-q} = \pm (x-\xi) \implies t = \left[\pm (1-q)(x-\xi)\right]^{\frac{1}{1-q}},$$

onde ξ é uma constante de integração.

Figura 1: Diagrama de espaço-tempo.

Pelo diagrama de espaço-tempo mostrado na Figura 1, notamos que para pontos distintos não é necessário que haja interseção de seus passados.