Math 2H HW 6.

Let X,--- Xn be i'd from V.Co. &].

Let $L'_n = (0.025^{\frac{1}{1}} - 0.975^{\frac{1}{1}}) \times (n)$ $L''_n = (\frac{1}{1 - 0.975^{\frac{1}{1}}} - \frac{1}{1 - 0.025^{\frac{1}{1}}}) \times (1)$ At which eve two lengths of two confidence intervals.

- D. Find a sequence of kin s.t. & kin Lin't is tight, but not convergence in probability.
 - 2). Show that Ln is op(1) but Ln is not op(1).

Step 1: Find the asymptotic distribution of $X_{(n)}$ & $X_{(n)}$.

Consider the event $\{X_{(i)} > \frac{t}{n}\} = \{nX_{(i)} > t\}$.

we have $P(X_{(i)} > \frac{t}{n}) = P(nX_{(i)} > t)$ $= [1-P(X_{i} < \frac{t}{n})]^{n} = [1-\frac{t/\theta}{n}]^{n} \rightarrow e^{-\frac{t}{\theta}}$

This indicates that $n \times m \to Exp(\frac{1}{\theta})$, which is exponential distribution with parameter $\frac{1}{\theta}$.

By symmetry. Whitehall $n(\theta - X(n)) \xrightarrow{d} Exp(h)$. This also indicates that $X(n) \xrightarrow{P} \theta$.

Step 2: Determine the order of the coefficients.

Consider
$$a_{n} = (0.025^{\frac{1}{10}} - 0.975^{-\frac{1}{10}}) = (e^{-\frac{1}{10}log0.025} - e^{-\frac{1}{10}log0.975})$$

$$= e^{-\frac{1}{100}logv.975} (e^{\frac{1}{10}(logv.975-log0.025)} - 1)$$

$$e^{x-1} \sim x$$

when $x \rightarrow 0$

$$t_1(logv.975-log0.025)$$

$$\sim t_1$$

$$b_n = (\frac{1}{1-0.975}t_1 - \frac{1}{1-0.025}t_1) = (\frac{1}{1-e^{\frac{1}{10}log0.975}} - \frac{1}{1-e^{\frac{1}{10}log0.925}})$$

$$= \frac{e^{\frac{1}{10}logv.975} - e^{\frac{1}{10}log0.025}}{(e^{\frac{1}{10}log0.975}-1)(e^{\frac{1}{10}log0.025}-1)} = \frac{e^{\frac{1}{10}log0.975}}{(e^{\frac{1}{10}log0.925}-1)(e^{\frac{1}{10}log0.025}-1)}$$

$$=\frac{e^{\frac{1}{h}\log 0.975}-e^{\frac{1}{h}\log 0.025}}{(e^{\frac{1}{h}\log 0.975}-1)(e^{\frac{1}{h}\log 0.025}-1)}=\frac{e^{\frac{1}{h}\log 0.975}(e^{\frac{1}{h}\log 0.975}-\log 0.025)}{(e^{\frac{1}{h}\log 0.975}-1)(e^{\frac{1}{h}\log 0.025}-1)}$$

$$=\frac{e^{\frac{1}{h}\log 0.975}(e^{\frac{1}{h}\log 0.975}-\log 0.025)}{(e^{\frac{1}{h}\log 0.975}-1)(e^{\frac{1}{h}\log 0.025}-1)}$$

$$=\frac{e^{\frac{1}{h}\log 0.975}(e^{\frac{1}{h}\log 0.975}-\log 0.025)}{(e^{\frac{1}{h}\log 0.975}-\log 0.025)}$$

$$=\frac{e^{\frac{1}{h}\log 0.975}(e^{\frac{1}{h}\log 0.025})}{(e^{\frac{1}{h}\log 0.025}-\log 0.025)}$$

$$=\frac{e^{\frac{1}{h}\log 0.975}(e^{\frac{1}{h}\log 0.025})}{(e^{\frac{1}{h}\log 0.025}-\log 0.025)}$$

$$=\frac{e^{\frac{1}{h}\log 0.975}(e^{\frac{1}{h}\log 0.025})}{(e^{\frac{1}{h}\log 0.025}-\log 0.025)}$$

$$=\frac{e^{\frac{1}{h}\log 0.975}(\log 0.025)}{(\log 0.975-\log 0.025)}$$

Step 3: combine the results. We get $L_n^{(2)} \sim \ln \chi_{(n)} \qquad L_n^{(2)} \sim \ln \chi_{(n)}.$ Therefore it suffices to take $k_n' = n \cos n \rho$ on $k_n' = 1$.

Also, since $\chi_{(n)} \stackrel{P}{\to} 0$, then $L_n' \sim \ln \chi_{(n)} \stackrel{P}{\to} 0$, which is just & $L_n' = o \rho(1)$. Memorbile $L_n' \sim n \chi_{(n)} \stackrel{P}{\to} 0$ Exp($\frac{1}{0}$), which is disch is clearly not op(1).