Teorema de Cantor

Clase 15

IIC 1253

Prof. Diego Bustamante

Outline

Obertura

Conjuntos no numerables

Teorema de Cantor

Epílogo

Segundo Acto: Relaciones Conjuntos, relaciones y funciones

Objetivos de la clase

- □ Demostrar la existencia de conjuntos no numerables.
- □ Comprender la técnica de diagonalización.
- Comprender el teorema de Cantor y sus consecuencias sobre la jerarquía de cardinalidades.
- □ Demostrar el teorema de Cantor.

Outline

Obertura

Conjuntos no numerables

Teorema de Cantor

Epílogo

¿Existen conjuntos infinitos no enumerables?

Teorema

El intervalo real $(0,1) \subseteq \mathbb{R}$ es infinito y no enumerable.

Ejercicio

Demuestre el teorema.

Teorema

El intervalo real $(0,1) \subseteq \mathbb{R}$ es infinito y no enumerable.

Por contradicción, supongamos que (0,1) es enumerable.

Entonces existe una lista infinita de los reales en (0,1):

$$r_0, r_1, r_2, r_3, \dots$$

donde cada real en (0,1) aparece exactamente una vez.

Notemos que cada r_i es un número decimal de la forma

$$r_i = 0, d_{i0}d_{i1}d_{i2}d_{i3}\dots$$
, con $d_{ij} \in \{0,\dots,9\}$

Reales	Representación decimal								
<i>r</i> ₀	0,	d_{00}	d_{01}	d_{02}	d_{03}	d_{04}	•••		
r_1	0,	d_{10}	d_{11}	d_{12} d_{22}	d_{13}	d_{14}	•••		
<i>r</i> ₂	0,	d_{20}	d_{21}	d_{22}	d_{23}	d_{24}	•••		
<i>r</i> ₃	0,			d_{32}		d_{34}			
<i>r</i> ₄	0,	d_{40}	d_{41}	d_{42}	d_{43}	d_{44}			
:		÷	÷	÷	÷	:	·		

Reales	Representación decimal									
r ₀	0,	d_{00}	d ₀₁	d_{02}	d ₀₃	d ₀₄	•••			
r_1	0,	d_{10}	d_{11}	d_{12}	d_{13}	d_{14}				
<i>r</i> ₂	0,	d_{20}	d_{21}	d_{12} d_{22} d_{32} d_{42}	d_{23}	d_{24}				
<i>r</i> ₃	0,	d_{30}	d_{31}	d_{32}	d ₃₃	d_{34}				
r_4	0,	d_{40}	d_{41}	d_{42}	d_{43}	d ₄₄	•••			
÷		÷	:	÷	÷	:	٠.			

Para cada
$$i \ge 0$$
, definimos $d_i = \begin{cases} d_{ii} + 1 & d_{ii} < 9 \\ 0 & d_{ii} = 9 \end{cases}$

Sea ahora el número real r = 0, $d_0 d_1 d_2 d_3 d_4 d_5 d_6 \dots$

Para cada
$$i \ge 0$$
, definimos: $d_i = \begin{cases} d_{ii} + 1 & d_{ii} < 9 \\ 0 & d_{ii} = 9 \end{cases}$

Sea ahora el número real r = 0, $d_0d_1d_2d_3d_4d_5d_6...$

¿Aparece r en la lista?

- $r = r_0$? No, porque difieren en el primer dígito decimal.
- $r = r_1$? No, porque difieren en el segundo dígito decimal.
- **...**
- $r = r_i$? No, porque el *i*-ésimo digito de r es distinto al de r_i :

$$d_i \neq d_{ii}$$

Por lo tanto, r no aparece en la lista $\rightarrow \leftarrow$

Como (0,1) no puede ponerse en una lista, no es enumerable.

El argumento anterior se llama diagonalización (es una demostración por contradicción o resolución).

- ¿Por qué?
- Es clave para establecer muchos resultados en matemáticas y computación.

Usando estas ideas se puede demostrar que un computador no puede resolver todo problema.

 \cite{L} Qué otros conjuntos tienen la misma cardinalidad que (0,1)?

Teorema

 $(0,1) \approx \mathbb{R} \approx \mathcal{P}(\mathbb{N}).$

Outline

Obertura

Conjuntos no numerables

Teorema de Cantor

Epílogo

Entonces, ¿dónde hay más elementos, en \mathbb{N} o en \mathbb{R} ?

Definición

Dados conjuntos A y B, diremos que $A \le B$ (A no es más grande que B) si existe una función inyectiva $f: A \to B$.

¿Es ≤ una relación de orden?

Si $A \le B$, diremos que $|A| \le |B|$.

Definición

Dados conjuntos A y B, diremos que A < B (A es menos numeroso que B) si $A \le B$ y $A \not \models B$.

¿Cómo se define esta noción usando funciones?

- **E**xiste función inyectiva $f: A \rightarrow B...$
- . . . pero no existe función biyectiva $g: A \rightarrow B$.

Si A < B, diremos que |A| < |B|.

Ejemplo

 $\mathbb N$ es menos numeroso que $\mathbb R$, y por lo tanto decimos que $|\mathbb N|<|\mathbb R|$.

¡Hay estrictamente menos números naturales que reales!

Corolario

 $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})|$.

Demostramos algo parecido para el caso finito. . . veremos que aplica para **todo conjunto**.

Cardinalidad de A vs $\mathcal{P}(A)$

Dado un conjunto A (no necesariamente finito):

Teorema (Cantor)

A es menos numeroso que su conjunto potencia $(|A| < |\mathcal{P}(A)|)$.

¡Podemos repetir este proceso ad eternum! $|A| < |\mathcal{P}(A)| < |\mathcal{P}(\mathcal{P}(A))| < |\mathcal{P}(\mathcal{P}(\mathcal{P}(A)))| < \cdots$

Cardinalidad de A vs $\mathcal{P}(A)$

Teorema (Cantor)

A es menos numeroso que su conjunto potencia $(|A| < |\mathcal{P}(A)|)$.

Ejercicio

Demuestre el teorema.

Primero, es claro que $|A| \leq |\mathcal{P}(A)|$. Basta tomar

$$f: A \to \mathcal{P}(A)$$
 dada por $f(a) = \{a\}$

la cual es claramente inyectiva.

Ahora mostraremos que no existe una función biyectiva entre A y $\mathcal{P}(A)$.

Por contradicción, supongamos que sí existe una biyección f entre A y $\mathcal{P}(A)$.

Diagonalización entre A y $\mathcal{P}(A)$

Considere el siguiente conjunto:

Definición (complemento de la diagonal)

$$\bar{D} = \{ a \in A \mid a \notin f(a) \}$$

Notemos que $\bar{D} \subseteq A$, y por lo tanto $\bar{D} \in \mathcal{P}(A)$. Luego, como f es biyectiva, debe existir $x \in A$ tal que $f(x) = \bar{D}$. Considere ahora los siguientes casos:

- Si $x \in f(x)$, entonces $x \in \overline{D}$ (porque $f(x) = \overline{D}$), pero por definición de $\overline{D}, x \notin f(x)$.
- Si $x \notin f(x)$, entonces $x \notin \bar{D}$ (porque $f(x) = \bar{D}$), pero por definición de $\bar{D}, x \in f(x)$.

Luego, $x \in f(x)$ si y sólo si $x \notin f(x)$, lo cual es una contradicción. Por lo tanto, no existe una biyección entre A y $\mathcal{P}(A)$.

Reflexiones finales

Dos preguntas

- ¿Cuántos "infinitos" existen?
- ¿Hay algún infinito entre |N| y |R|?

Infinitos!

???

Hipótesis del continuo

No existe conjunto A tal que $|\mathbb{N}| < |A| < |\mathbb{R}|$.

¿Por qué se llama hipótesis?

Reflexiones finales

- ¿Qué implica todo lo anterior para la computación?
 - ¿Qué cosas es capaz de hacer un computador?
 - ¿Qué cosas **no** es capaz de hacer?
 - ¿Existen problemas computacionales para los cuales no existan algoritmos que los resuelvan?
 - Respuesta: IIC2213:)

Outline

Obertura

Conjuntos no numerables

Teorema de Cantor

Epílogo

Objetivos de la clase

- □ Demostrar la existencia de conjuntos no numerables.
- □ Comprender la técnica de diagonalización.
- Comprender el teorema de Cantor y sus consecuencias sobre la jerarquía de cardinalidades.
- □ Demostrar el teorema de Cantor.