

The Green Mile: A Multi-Layered Quest to Reveal, Measure, and Slash Carbon Emissions in Al Training & Inference

Subramanyam Sahoo¹ Sonal Singh² Joel Jojo²

¹NIT Hamirpur ²Liverpool John Moores University

"THE GREATEST THREAT TO OUR PLANET IS THE BELIEF THAT SOMEONE ELSE WILL SAVE IT." — ROBERT SWAN

Introduction

Al model $\xrightarrow{\text{computation}}$ energy usage $\xrightarrow{\text{greenhouse gas emissions}}$ environmental impact (1)

- The neural scaling law enhances model efficiency, but higher energy demands during training raise power usage and carbon emissions, emphasizing sustainable AI practices.
- The ICT industry accounts for 1.4% of global greenhouse gas emissions.

Figure 1. 3 levels of impact on emission

Figure 2. CNN with 6.99 Million Parameters

Measuring Carbon Intensity

"CodeCarbon" uses the following formula:-

Energy Consumption(kWh) =
$$\sum_{i=1}^{n} \left(\text{Power Usage}_i(W) \times \text{Runtime}_i(\text{hours}) \times \frac{1}{1000} \right)$$
 (2)

Total Carbon Emissions(gCO_2) = Energy Consumption(kWh)×Carbon Intensity(gCO_2/kWh)

 Training was conducted using the Adam optimizer with a learning rate of 0.0001, batch size of 10, over 50 epochs.

Hyperparameter Tuning

Tree-structured Parzen Estimator (TPE) is used

Parameter	Value
Number of Input Time Steps	1
Learning Rate	0.0046
Optimizer	SGD

Table 1. Optimal Hyperparameters

Hyperparameter Pruning

Figure 7. CNN with TPE search

Figure 8. CNN with 10th percentile TPE pruner

Strategy	Num Input Time Steps	Learning Rate	Optimizer	RMSE
Not pruned	1	0.004626	SGD	0.252572
Pruned	1	0.004626	SGD	0.256914

Table 2. Comparison of RMSE for pruned vs. not pruned strategies

Tracking Emissions from *Model Training*

Model	Emission Rate (in Kg CO ₂ eq)	RMSE Score
Linear Regression model	0.00003	0.284815
CNN Model	0.004014	0.285503
Pruned CNN Model	0.004188	0.285000
CNN Model + Early Stopping	0.002287	0.298000
CNN Model + Hyperparameter Tuning	0.03407	0.252572
CNN Model + Hyperparameter Pruning	0.01600	0.256914

Table 3. Tracking Emissions and RMSE from Model Training

Tracking Emissions from Model Inference

- Linear Regression model 7.5714×10^{-8} kg CO $_2$ eq
- CNN Model $9.8744 \times 10^{-6} \text{ kg CO}_2 \text{eq}$

Related Works

Model	Energy Use	Greenhouse Gas Emissions
T5	86	47
GShard	24	4.3
Switch Transformer	179	59
GPT-3	1287	552

Table 4. Estimates of models by Patterson et al., 2021

Unit for Energy Use & Greenhouse Gas Emissions is (MWh) and (tCO2eq) respectively.

Conclusion

WHAT IF IT WERE A STANDARD PROCEDURE FOR ALL RESEARCH PAPERS TO DISCLOSE EMISSIONS !!!

Recommendation

- 1. Work on Open Problems
- 2. Socio-technical approach > > > Techno-solutionist approach

