Econ 301 - Microeconomic Theory 2

Winter 2018

Lecture 14: February 28, 2018

Lecturer: Jean Guillaume Forand

Notes By: Harsh Mistry

14.1 Welfare Continued

Example 14.1 Say $\omega^A = (3,1), \ \omega^B = (1,2), \ u^A(x_1^A,x_2^A) = \min\{x_1^A,x_2^A\}, \ and \ u^B(x_1^B,x_2^B) = x_1^B + x_2^B + x_2^B$

- ullet Fix any allocations y^A and y^B
- If $y_1^A > y_2^A$, allocations y^A and y^B are pareto-dominated by allocations $x^A = \left(\frac{y_1^A + y_2^A}{2}, \frac{y_1^A + y_2^A}{2}\right)$ and $x^B = \left(4 x_1^A, 3 x_2^A\right)$
- ullet Pareto set is the allocations x^A and x^B such that $x_1^A=x_2^A$

14.1.1 First Welfare Theorem

In-Class Numbering: 3.1

• Question: what is the relationship between Pareto-efficient allocations and competitive equilibrium allocations?

Theorem 14.2 FWT: Suppose that consumers' preferences are monotone and that price p^* and allocations x^{A*} and x^{B*} form a competitive equilibrium. Then x^{A*} and x^{B*} are Pareto-efficient.

• Competitive Equilibria must exhaust gains from trade

Proof: By Contradiction. Suppose p^* , x^{A*} and x^{B*} are a competitive equilibrium where x^{A*} and x^{B*} are not Pareto-efficient. Then there exists feasible allocations y^A and y^B such that $u^J(y_1^J, y_2^J) \geq u^J(x_1^{J*}, x_2^{J*})$ for all J=1,2, with one strict inequality . Say $u^A(y_1^A, y_2^A) > u^A(x_1^{A*}, x_2^{A*})$

- Since $y^A > x^{A*}$, then we must have $p_1^* y_1^A + p_2^* y_2^A > p_1^* x_1^{A*} + p_2^* x_2^{A*}$
- We have $y^A \succeq x^{B*}$
 - If $y^B > x^{*B}$, then $p_1 y_1^B + p_2^* y_2^B > p_1^* x_1^{B*} + x_2^{B*}$
 - If $y^B \sim x^{B*}$, then we must have $p_1 * x_1^{B*} + p_2^* x_2^{B*}$ [< contradicts optimality of monotonicity]
 - Then,

$$p_1^* y_1^A + p_2^* y_2^A + p_1^* y_1^B + p_2^* y_2^B > p_1^* x_1^{A*} + p_2^* x_2^{A*} + p_1^* x_1^{B*} + p_2^* x_2^{B*}$$

$$= p_1^* \omega_1^A + p_2^* \omega_2^A + p_1^* \omega_2^B + p_2^* \omega_2^B$$

- So we have,

$$p_1^*[y_1^A + y_1^B - \omega_1^A - \omega_2^B] + p_2^*[y_2^A + y_2^B - \omega_2^A - \omega_2^B] > 0$$

Contradiction, feasibility of y^A, y^B is violated. Basically, this statement implies we have more of a good than what actually exists.

Note: Proof is included to supplement the First Welfare Theorem to make understanding it easier. The proof itself, despite the awesomeness of mathematical proofs, is not a testable topic. It can essentially be ignored.

- First Welfare Theorem says that competitive equilibrium allocations reproduce the outcomes of <u>some</u> bargaining protocol
- In bargaining, computing outcomes (P-E Allocations) requires a lot of information about consumers preferences and aggregate endowments.
- Markets only require consumers to know their own preferences and endowments.
- Prices aggregate economy-wide information.