Algebra II (ISIM), lista 8 (poniedziałek 11.12.2017, 12:15-14:00, sala 5 w II).

Teoria: Pierścienie przemienne z 1: definicja, przykłady. Pierścienie formalnych szeregów potęgowych, wielomianów, funkcji ciągłych, macierzy, boolowskie, modulo, End(G). Produkt pierścieni. Grupa R^* elementów odwracalnych (jednostek) pierścienia. Podzielność i stowarzyszenie. Dzielnik zera. Homomorfizmy pierścieni. Ideał. Pierścień ilorazowy. Zasadnicze twierdzenie o homomorfizmie pierścieni, twierdzenie o faktoryzacji homomorfizmu. Ideał główny, ideał skończenie generowany. Pierścienie ideałów głównych: $\mathbb{Z}, K[X], \mathbb{Z}_n$. Funkcja i twierdzenie Eulera.

- R, R' oznaczaja pierścienie przemienne z jednością.
- $1.\ -$ Udowodnić Uwagę 9.2z wykładu, odwołując się bezpośrednio do aksjomatów pierścienia.
- 2. Udowodnić, że R^* jest grupą.
- 3. (a) Niech $+, \cdot$ będą działaniami w zbiorze A takimi, że (A, +) jest grupą, zaś działanie \cdot jest łączne, obustronnie rozdzielne względem + i ma element neutralny $1 \in A$. Wykazać, że wtedy $(A, +, \cdot)$ jest pierścieniem. (wsk: wystarczy udowodnić przemienność +).
 - (b) Załóżmy, że $(A, +, \cdot)$ jest pierścieniem, w którym grupa addytywna (A, +) jest cykliczna. Udowodnić, że ten pierścień jest przemienny. Czy jest to pierścień z jednością?
- 4. Niech $a, b \in \mathbb{R}$ oraz $I \triangleleft R$. Udowodnić, że:
 - (a) $a|b \iff (b) \subseteq (a)$
 - (b) Jeśli $a \sim b$, to $a \in I \iff b \in I$.
 - (c) $a \sim b \iff (a) = (b)$.
 - (d) $a \sim b \iff a = \varepsilon b$ dla pewnego $\varepsilon \in R^*$. (e) I jest właściwy $\iff 1 \not\in I$.
- 5. * (a) Załóżmy, że R jest pierścieniem niekoniecznie przemiennym, w którym zachodzi równość $x^2 = x$. Udowodnić, że wtedy w R zachodzi równość x+x=0 oraz R jest przemienny.
 - (b) Załóżmy, że R jest pierścieniem boolowskim. Udowodnić, że istnieje algebra Boole'a A taka, że $R\cong (A,\triangle,\wedge)$. (wsk: zacząć od algbery Boole'a $A=(A,\wedge,\vee,',0,1)$. Zauważyć, że operacje \vee i ' można zdefiniować w pierścieniu boolowskim (A,\triangle,\wedge)).
 - (c) Sprawdzić, że pojęcie ideału w algebrze Boole'a A pokrywa się z pojęciem ideału (w sensie teorii pierścieni) w tejże algebrze traktowanej jako pierścień boolowski.
- 6. Załóżmy, że $a \in \mathbb{Z}_n \setminus \{0\}$. Udowodnić, że
 - (a) a jest odwracalny $\iff NWD(a, n) = 1$.
 - (b) a jest dzielnikiem zera $\iff NWD(a, n) > 1$.
- 7. (a) Udowodnić, że $\mathbb{R}[X]^*$ składa się z szeregów z niezerowym wyrazem wolnym.
 - (b) Obliczyć szeregi odwrotne do szeregów $\sum_{i} 2^{i} X^{i}$ i $\sum_{i} X^{i}$ w pierścieniu $\mathbb{R}[X]$.

- 8. Załóżmy, że R jest pierścieniem ideałów głównych oraz $f: R \to R'$ jest epimorfizmem pierścieni. Udowodnić, że R' też jest pierścieniem ideałów głównych. W szczególności każdy pierścień \mathbb{Z}_n jest pierścieniem ideałów głównych.
- 9. Wypisać klasy stowarzyszenia w pierścieniu \mathbb{Z}_{12} . Wypisać wszystkie ideały w tym pierścieniu oraz sporządzić diagram Hassego dla relacji inkluzji między nimi.
- 10. (a) Załóżmy, że n, m > 0 są względnie pierwsze, zaś $f: \mathbb{Z}_{n \cdot m} \to \mathbb{Z}_n \times \mathbb{Z}_m$ dana jest wzorem $f(k) = \langle r_n(k), r_m(k) \rangle$. Udowodnić, że f jest izomorfizmem pierścieni, korzystając z (b) i z tw. o faktoryzacji homomorfizmu.
 - (b) Sprawdzić, że $r_n: \mathbb{Z} \to \mathbb{Z}_n$ jest epimorfizmem pierścieni oraz $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$.
- 11. (Funkcja i twierdzenie Eulera). Dla n > 1 niech $\varphi(n)$ będzie liczbą liczb 0 < k < n względnie pierwszych z n. Udowodnić następujące stwierdzenia:
 - (a) $\varphi(n) = |\mathbb{Z}_n^*|$
 - (b) $(R \times R')^* = R^* \times R'^*$
 - (c) $\varphi(p^k) = (p-1)p^{k-1}$, gdzie p jest liczbą pierwszą.
 - (d) $\varphi(p_1^{\alpha_1}\cdots p_k^{\alpha_k}) = \varphi(p_1^{\alpha_1})\cdots \varphi(p_k^{\alpha_k})$, gdzie p_1,\ldots,p_k to różne liczby pierwsze, zaś $\alpha_i > 0$.
 - (e) (tw. Eulera) Gdy $n,k\in\mathbb{Z}$ sa względnie pierwsze i k>1, to $n^{\varphi(k)}\equiv 1\pmod k.$