NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Teo Wei Hao

MA3111S Complex Analysis (version S) AY 2008/2009 Sem 2

Question 1

(a) Let $g_1, g_2, g_3, g_4 : \mathbb{C} \to \mathbb{C}$, $g_5 : \mathbb{C} - \{0\} \to \mathbb{C}$ be such that $g_1(z) = e^z$, $g_2(z) = \sin z$, $g_3(z) = z$, and $g_4(z) = (z - \pi)^2$ for all $z \in \mathbb{C}$; $g_5(z) = \frac{1}{z^2}$ for all $z \in \mathbb{C} - \{0\}$.

We notice that g_1, g_2, g_3, g_4, g_5 are all analytic functions on their respective domains.

Since $g_1 \circ g_5$ is well-defined on $\mathbb{C} - \{0\}$, $g_3(z) = 0$ only at z = 0, and $g_4(z) = 0$ only at $z = \pi$, we have a well-defined function $f : \mathbb{C} - \{0, \pi\} \to \mathbb{C}$ such that $f(z) = \frac{(g_1 \circ g_5)(z) \cdot g_2(z)}{g_3(z) \cdot g_4(z)}$.

Also, f is analytic on $\mathbb{C} - \{0, \pi\}$, i.e. f has singularities at most at $\{0, \tau\}$

For all $z \in \mathbb{C} - \{0\}$, we have by Taylor's Theorem,

$$g_1(g_5(z)) = \sum_{k=0}^{\infty} \frac{1}{k!} g_5(z)^k = \sum_{k=0}^{\infty} \frac{1}{k! z^{2k}}.$$

By uniqueness of Laurent series expansion, the above is the Laurent series expansion of $(g_1 \circ g_5)(z)$ at 0, and so it has an essential singularity at 0. Together with the fact that $\frac{g_2(z)}{g_3(z) \cdot g_4(z)}$ has a removable singularity at 0 with value $\frac{1}{\pi^2} \neq 0$, we have f to have essential singularity at 0.

For all $z \in B(\pi, 1)$, we have,

$$f(z) = \left(\frac{(g_1 \circ g_5)(z) \cdot g_2(z)}{g_3(z)}\right) \frac{1}{(z-\pi)^2}.$$

since $\frac{(g_1 \circ g_5)(z) \cdot g_2(z)}{g_3(z)}$ is analytic at π , f has a pole of order 2 at π .

(b) Let us denote $\operatorname{Ann}(1,1,2) = \{z \in \mathbb{C} \mid 1 < |z-1| < 2\}.$ For all $z \in \operatorname{Ann}(1,1,2)$, we have $\left|\frac{1}{z-1}\right| < 1$ and $\left|\frac{z-1}{2}\right| < 1$, and so,

$$\begin{split} \frac{1}{z^2 - z - 2} &= \frac{1}{(z - 2)(z + 1)} &= -\frac{1}{3(z + 1)} + \frac{1}{3(z - 2)} \\ &= -\frac{1}{6\left(1 + \frac{z - 1}{2}\right)} + \frac{1}{3(z - 1)\left(1 - \frac{1}{z - 1}\right)} \\ &= -\frac{1}{6}\sum_{k = 0}^{\infty} \left(-\frac{z - 1}{2}\right)^k + \frac{1}{3(z - 1)}\sum_{k = 0}^{\infty} \left(\frac{1}{z - 1}\right)^k \\ &= \sum_{k = 0}^{\infty} \frac{(-1)^{k + 1}}{6 \cdot 2^k} (z - 1)^k + \sum_{k = 1}^{\infty} \frac{1}{3(z - 1)^k}. \end{split}$$

By uniqueness of Laurent series expansion, the above is the Laurent series expansion of the function $\frac{1}{z^2-z-2}$ valid on the annulus Ann(1,1,2).

AY 2008/2009 Sem 2

Question 2

For $u, w \in \mathbb{C}$, let us denote the line segment $[u, w] = \{z \in \mathbb{C} \mid z = (1 - \alpha)u + \alpha w, \alpha \in [0, 1]\}.$ Let $a, b, c \in U$ such that the triangle $\triangle(a, b, c)$ lies in U.

Let $\gamma:[0,3]\to\mathbb{C}$ be such that,

$$\gamma(t) = \begin{cases} (1-t)a+tb, & t \in [0,1]; \\ (2-t)b+(t-1)c, & t \in (1,2]; \\ (3-t)c+(t-2)a, & t \in (2,3]. \end{cases}$$

Then $\{\gamma\} = [a, b] \cup [b, c] \cup [c, a] = \partial \triangle(a, b, c)$.

Let $\varepsilon \in \mathbb{R}^+$.

Since [a, b], [b, c] and [c, a] are line segments in U, there exists $N \in \mathbb{Z}^+$ such that for all $k \in \mathbb{Z}_{\geq N}$, Since [a, b], [b, c] and [c, a] are the beginning for all $z \in \{\gamma\}$, we have $|f_k(z) - f(z)| < \frac{\varepsilon}{L(\gamma)}$.

Thus, by ML-estimate, and the fact that f_k is analytic on U, we have,

$$\left| \int_{\gamma} f(z) \, dz \right| = \left| \int_{\gamma} f_k(z) \, dz - \int_{\gamma} f_k(z) - f(z) \, dz \right|$$

$$\leq \left| \int_{\gamma} f_k(z) \, dz \right| + \left| \int_{\gamma} f_k(z) - f(z) \, dz \right|$$

$$< 0 + L(\gamma) \left(\frac{\varepsilon}{L(\gamma)} \right) = \varepsilon.$$

This give us $\int f(z) dz = 0$.

Therefore by Morera's Theorem, f is analytic on U.

Question 3

Assume on the contrary that there exists $w \in \mathbb{C}$ and $r \in \mathbb{R}^+$, such that for all $z \in \mathbb{C}$, we have $f(z) \not\in B(w,r)$.

This implies that for all $z \in \mathbb{C}$, we have $f(z) \neq w$.

Thus we can have a well-defined function $g: \mathbb{C} \to \mathbb{C}$ such that $g(z) = \frac{1}{f(z) - w}$.

Since f is entire, we have g to be entire.

Also, for all $z \in \mathbb{C}$, we have $|g(z)| = \left| \frac{1}{f(z) - w} \right| < \frac{1}{r}$, i.e. g is bounded.

Thus by Liouville Theorem, we have q to be a constant function, which implies that f is a constant function, a contradiction.

Question 4

For all $w \in S$, let the pole be of order $n_w \in \mathbb{Z}^+$. Let $M = \max\{|w| \mid w \in S\}$. We can define an entire function $F : \mathbb{C} \to \mathbb{C}$ such that $F(z) = f(z) \prod_{z \in S} (z - w)^{n_w}$ for all $z \in \mathbb{C} - S$,

since F has removable singularities on S now.

Let $G: \mathbb{C} - \{0\} \to \mathbb{C}$ be such that $G(z) = F\left(\frac{1}{z}\right)$, which is an analytic function on $\mathbb{C} - \{0\}$.

For all $z \in B'(0, M)$, we have $\frac{1}{z} \notin S$, and so $G(z) = f\left(\frac{1}{z}\right) \prod_{w \in S} \left(\frac{1}{z} - w\right)^{n_w} = g(z) \prod_{w \in S} \left(\frac{1}{z} - w\right)^{n_w}$.

Let g has a pole of order n at 0. Then G has a pole of order $N := n + \sum_{i=1}^{n} n_{i}$ at 0.

Thus, we can define an analytic function $H: \mathbb{C} \to \mathbb{C}$ such that $H(z) = z^N G(z)$ for all $z \in \mathbb{C} - \{0\}$.

Let $\varepsilon \in \mathbb{R}^+$. Since H is continuous, there exists $R \in \mathbb{R}^+$ such that for all $z_1 \in B\left(0, \frac{2}{R}\right)$, we have

$$H(z_1) \in B(H(0), 1)$$
. Let $z \in \mathbb{C}$ such that $|z| > K := \max \left\{ R, \frac{2^{N+1}(N+1)!(1+|H(0)|)}{\varepsilon} \right\}$.

Let $\gamma:[0,2\pi]\to\mathbb{C}$ be the path $\gamma(t)=2|z|e^{it}$. We have $L(\gamma)=2\pi(2|z|)=4\pi|z|$.

Then for all $w \in \{\gamma\}$, we have |w| = 2|z|, $|w - z| \ge |w| - |z| = |z|$, and $\frac{1}{w} \in B'\left(0, \frac{2}{R}\right)$, and so,

$$\left|\frac{F(w)}{(w-z)^{N+2}}\right| \leq \frac{1}{|z|^{N+2}} \left|G\left(\frac{1}{w}\right)\right| = \frac{1}{|z|^{N+2}} \left|w^N H\left(\frac{1}{w}\right)\right| = \frac{2^N |z|^N}{|z|^{N+2}} \left|H\left(\frac{1}{w}\right)\right| \leq \frac{2^N}{|z|^2} (1 + |H(0)|).$$

Thus, by Cauchy Integral Formula for Derivatives and ML-estimate, we have,

$$|F^{(N+1)}(z)| = \left| \frac{(N+1)!}{2\pi i} \int_{\gamma} \frac{F(w)}{(w-z)^{N+2}} dw \right|$$

$$\leq \frac{(N+1)!}{2\pi} (4\pi |z|) \left(\frac{2^N}{|z|^2} (1+|H(0)|) \right)$$

$$= \frac{2^{N+1} (N+1)!}{|z|} (1+|H(0)|) < \varepsilon.$$

As a consequence, $F^{(N+1)}$ is bounded on $\{z \in \mathbb{C} \mid |z| > K\}$.

Since $F^{(N+1)}$ is entire, it is continuous on \mathbb{C} .

Since $\overline{B(0,K)}$ is a closed and bounded (compact) set, $F^{(N+1)}$ is bounded on $\overline{B(0,K)}$.

Combining with the above, $F^{(N+1)}$ is bounded on $\mathbb{C} = \overline{B(0,K)} \cup \{z \in \mathbb{C} \mid |z| > K\}$.

Thus by Liouville's Theorem, $F^{(N+1)}$ is a constant function, in particular, $|F^{(N+1)}(z)| < \varepsilon$ for all $z \in \mathbb{C}$.

This implies that $F^{(N+1)}(z) = 0$ for all $z \in \mathbb{C}$, and so F is a polynomial of degree at most N.

Thus f is a rational function, i.e. $f(z) = \frac{P(z)}{Q(z)}$ for all $z \in \mathbb{C} - S$, where P(z) = F(z) and $Q(z) = \prod_{z \in S} (z - w)^{n_w}$ are polynomials.

Question 5

Let $f: \mathbb{C} \to \mathbb{C}$ be such that $f(z) = \frac{1 + iz - e^{iz}}{z^2}$ for all $z \in \mathbb{C} - \{0\}$; $f(0) = \frac{-1}{2}$.

Then f is an entire function.

Let $R \in \mathbb{R}^+$, $\gamma_{R_1} : [0, \pi] \to \mathbb{R}$ and $\gamma_{R_2} : [-R, R] \to \mathbb{R}$ be such that,

$$\gamma_{R_1}(t) = Re^{it};
\gamma_{R_2}(t) = t.$$

Then $\gamma_{R_1} + \gamma_{R_2}$ is a closed contour, and so $\int_{\gamma_{R_1} + \gamma_{R_2}} f(z) dz = 0$.

Also, we have,

$$\int_{\gamma_{R_1}} \frac{iz}{z^2} dz = \int_{\gamma_{R_1}} \frac{i}{z} dz = i(\operatorname{Log}(Re^{i\pi}) - \operatorname{Log}(R)) = i(i\pi) = -\pi.$$

Let $\varepsilon \in \mathbb{R}^+$. Let $R = \frac{4\pi}{\varepsilon}$.

For all
$$z \in \{\gamma_{R_1}\}$$
, since $|e^{iz}| \le e^0 = 1$, we have $\left|\frac{1 - e^{iz}}{z^2}\right| \le \frac{1 + |e^{iz}|}{|z|^2} \le \frac{2}{R^2} \le \frac{\varepsilon}{2\pi R}$.

By ML-estimate, we have,

$$\left| \int_{\gamma_{R_1}} \frac{1 - e^{iz}}{z^2} \right| \leq (\pi R) \left(\frac{\varepsilon}{2\pi R} \right) < \varepsilon.$$

Thus, we have,

$$\begin{split} \left| \int_{\gamma_{R_2}} f(z) \; dz - \pi \right| &= \left| \int_{\gamma_{R_1} + \gamma_{R_2}} f(z) \; dz - \int_{\gamma_{R_1}} f(z) \; dz - \pi \right| \\ &\leq \left| \int_{\gamma_{R_1} + \gamma_{R_2}} f(z) \; dz \right| + \left| \int_{\gamma_{R_1}} \frac{1 - e^{iz}}{z^2} \; dz + \int_{\gamma_{R_1}} \frac{iz}{z^2} \; dz + \pi \right| \\ &\leq 0 + \left| \int_{\gamma_{R_1}} \frac{1 - e^{iz}}{z^2} \; dz \right| + \left| \int_{\gamma_{R_1}} \frac{iz}{z^2} \; dz + \pi \right| < 0 + \varepsilon = \varepsilon. \end{split}$$

We notice that $x \in [-R, R]$ iff $z = x + i0 \in \{\gamma_{R_2}\}$. Also, Re $f(z) = \operatorname{Re}\left(\frac{1 - ix - e^{ix}}{x^2}\right) = \frac{1 - \cos x}{x^2}$. Therefore $\int_{-\infty}^{\infty} \frac{1 - \cos x}{x^2} \ dx = \lim_{R \to \infty} \int_{-R}^{R} \frac{1 - \cos x}{x^2} \ dx = \operatorname{Re} \left(\lim_{R \to \infty} \int_{\gamma_{P_0}} f(z) \ dz \right) = \pi.$

Question 6

Let $w = x_w + iy_w \in \mathbb{C} - U$. Let $u : U \to \mathbb{C}$ be such that $u(x,y) = \text{Log } \sqrt{(x-w_x)^2 + (y-x_y)^2}$.

Let
$$w = x_w + iy_w \in \mathbb{C} - U$$
. Let $u : U \to \mathbb{C}$ be such that $u(x, y) = \text{Log } \sqrt{(x - w_x)^2 + (y - w_y)^2} + (y - w_y)^2 \neq 0$.
Thus we have $u_x(x, y) = \frac{x - w_x}{(x - w_x)^2 + (y - w_y)^2}$ and $u_y(x, y) = \frac{y - w_y}{(x - w_x)^2 + (y - w_y)^2}$.
So, $u_{xx}(x, y) = \frac{(y - w_y)^2 - (x - w_x)^2}{((x - w_x)^2 + (y - w_y)^2)^2}$ and $u_{yy} = \frac{(x - w_x)^2 - (y - w_y)^2}{((x - w_x)^2 + (y - w_y)^2)^2}$.
This give us $u_{xx} + u_{yy} = 0$, i.e. u is harmonic on U .

Thus, there exists analytic $F: U \to \mathbb{C}$ such that u is the real part of F.

This give us for all $z = x + iy \in U$, we have $F'(z) = u_x(x,y) - iu_y(x,y) = \frac{1}{z - w}$.

Therefore, given any closed contour $\gamma:[0,1]\to\mathbb{C}$ in U, by Fundamental Theorem of Calculus, we have $n(\gamma,w)=\frac{1}{2\pi i}\int_{\gamma}\frac{1}{z-w}\;dz=\frac{1}{2\pi i}(F(1)-F(0))=0.$

Therefore U is simply connected.