Dans toute la fiche, on considère un repère orthonormé du plan.

Expression analytique du produit scalaire

Propriété: Dans un repère orthonormé, soient deux vecteurs $\overrightarrow{u}\begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v}\begin{pmatrix} x' \\ y' \end{pmatrix}$. Le produit scalaire de ces deux vecteurs est donné par :

$$\overrightarrow{u}.\overrightarrow{v}=xx'+yy'$$

El Considérons les vecteurs

Calculez les produits scalaires suivants :

- a. $\overrightarrow{u} \cdot \overrightarrow{v}$
- c. $3\overrightarrow{v}\cdot\overrightarrow{w}$
- d. $\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w})$
- e. $(\overrightarrow{w}-\overrightarrow{v})\cdot(\overrightarrow{w}+\overrightarrow{u})$ f. $(4\overrightarrow{u}-3\overrightarrow{v})\cdot(-2\overrightarrow{w})$

E2 Considérons les points

A(1;2)

- B(-3;4)
- C(-5;-1)

Calculez les produits scalaires suivants :

- a. $\overrightarrow{AB} \cdot \overrightarrow{AC}$ b. $\overrightarrow{BC} \cdot \overrightarrow{AB}$ c. $\overrightarrow{AC} \cdot \overrightarrow{BC}$ d. \overrightarrow{AB}
- E3 Considérons les vecteurs suivants :

Lesquels de ces vecteurs sont orthogonaux entre

E4 Considérons les points

- - B(-1;-6) M(-3;0)N(5; -4)

Montrez que les droites (AB) et (MN) sont

perpendiculaires.

E5 Considérons les points suivants :

A(1; -2)

- B(-2; 2)
- C(7; 2,5)

a. Calculez les carrés scalaires des vecteurs formés par les sommets du triangle ABC.

b. En déduire que le triangle ABC est rectangle

c. Montrez que le triangle ABC est rectangle en A d'une autre manière.

Vecteur normal à une droite

Définition : Un vecteur normal à une droite dest un vecteur orthogonal à tout vecteur directeur de d.

Propriété : Si un vecteur \overrightarrow{n} est orthogonal à un vecteur directeur \overrightarrow{u} d'une droite d, alors \overrightarrow{n} est normal à la droite.

E6 Dans chaque situation, déterminez si oui ou non le vecteur \overrightarrow{n} est normal à la droite d.

a. $\overrightarrow{n} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ et d est la droite passant par A(1;2)

et de vecteur directeur $\overrightarrow{u} \begin{pmatrix} 4 \\ 6 \end{pmatrix}$.

b. $\overrightarrow{n} \left(egin{array}{c} -5 \ 3 \end{array}
ight)$ et d est la droite passant par les points A(-3;4) et B(5;1).

c. $\overrightarrow{\pi} \begin{pmatrix} 9 \\ 2 \end{pmatrix}$ et d est la droite d'équation cartésienne 3x-2y-5=0.

Propriété: Considérons une droite passant par un point A et de vecteur normal \overrightarrow{n} . Un point M appartient à cette droite si et seulement si $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$.

E7 On considère la droite passant par le point A(5;-2) et de vecteur normal \overrightarrow{n} (

a. Notons M(x;y) un point du plan. Exprimez $\overrightarrow{AM}\cdot\overrightarrow{n}$ en fonction de x et y .

b. En déduire une équation cartésienne de la droite d.

Propriété : Soit d une droite de vecteur normal $\overrightarrow{n}inom{a}{b}$. Une équation cartésienne de dest ax+by+c=0, où c est un réel. Propriété : (réciproque) Soit d une droite d'équation cartésienne ax + by + c = 0. Un vecteur normal à d est $\overrightarrow{n}ig(egin{array}{c} a \ {}_{\!\scriptscriptstyle L} \end{array}ig)$

lacksquare Soit d la droite de vecteur normal et passant par le point A(3;4). On se propose de déterminer une équation cartésienne de

n est un vecteur normal à d on peut donc écrire une équation cartésienne de d sous la forme

$$\underline{}x + \underline{}y + c = 0$$

où c est un réel à déterminer. A appartient à d, donc ses coordonnées vérifient cette équation cartésienne. On a donc

$$\underline{} \times \underline{} + \underline{} \times \underline{} + c = 0$$

En remplaçant les coordonnées de A dans cette équation, on obtient c =___. Une équation cartésienne de d est donc

$$\underline{}x + \underline{}y + \underline{} = 0$$

lacksquare On considère la droite d d'équation cartésienne 3x-8y+5=0. Déterminez un vecteur normal à cette droite.