ON THE DISTRIBUTION OF FEKETE POINTS

BJÖRN E. J. DAHLBERG

1. Introduction

Let $E \subset R^n$, $n \ge 3$, be a compact set and N a given positive integer. A system of points $P_1, \cdots, P_N \in E$ which minimizes $\sum_{i \ne j} |P_i - P_j|^{2-n}$ is called a system of Fekete points of E. (Notice that this represents a stable equilibrium distribution of N equal point charges on E). The purpose of this note is to find estimates of the distance E from a Fekete point E to its closest neighbour E. Using complex methods, Kövari and Pommerenke [1] found that if $E \subset R^2$ is a sufficiently smooth curve then $C_1N^{-1} \le d \le C_2N^{-1}$. In the case when E and E is a closed E surface, Sjögren [3] found the estimate E is a closed E where E is a surface, Sjögren [3] found the estimate E is a closed E in E in the case when E is a closed E in E in

THEOREM. Let $S \subset \mathbb{R}^n$, $n \geq 3$, be a closed, compact $C^{1,\alpha}$ -surface, where $0 < \alpha < 1$, that separates \mathbb{R}^n into two components. Then there are positive numbers $C_i = C_i(S)$, i = 1, 2, such that if N is a positive integer and P_1, \dots, P_N is a system of Fekete points of S then

(1.1)
$$C_1 r_N \leq |P_i - P_i^*| \leq C_2 r_N, \ 1 \leq i \leq N,$$
 where $r_N = N^{-1/(n-1)}$.

2. The main result

We start by recalling that a $C^{1,\alpha}$ -surface in R^n is a closed, bounded (n-1)-dimensional surface S such that S can be covered by finitely many open right circular cylinders whose bases have a positive distance to S and to each cylinder C there is an orthonormal coordinate system $(x, y), x \in R^{n-1}, y \in R$, such that the y-axis is parallel to the axis of symmetry of C and $C \cap S = C\{(x, y): y = \phi(x)\}$, where $\phi: R^{n-1} \to R$ is a C^1 -function such that $|\nabla \phi(x) - \nabla \phi(z)| \le M|x-z|^{\alpha}$, where ∇ denotes the gradient.

We shall from now on assume that $S \subset \mathbb{R}^n$, $n \ge 3$, is a $C^{1,\alpha}$ -surface for some α , $0 < \alpha < 1$, such that S separates \mathbb{R}^n into two components D and D_{∞} where D_{∞} denotes the unbounded one. We denote by dS the surface measure element on S and by λ the equilibrium measure of S, i.e., the unique positive measure on S with total mass 1 minimizing

Received October 15, 1977. Revision received March 14, 1978.

If μ is a measure we put $K\mu(P)=\int |P-Q|^{2-n}d\mu(Q)$. If V^{-1} denotes the capacity of S then $K\lambda=V$ in \bar{D} . If $v=V-K\lambda$ then v is positive and harmonic in D_{∞} and it is a classical fact that grad v has a Hölder continuous extension to \bar{D}_{∞} and

$$(2.1) -(\partial/\partial n)v \ge c > 0 \text{ on } S,$$

where *n* denotes the unit normal to *S* pointing into D_{∞} . For the methods of proving these facts see e.g., Widman [4].

Let now P_1, \dots, P_N be a system of Fekete points of S and denote by μ the mass distribution consisting of point masses N^{-1} at each P_i . Put

$$V_N = \inf_{S} K\mu.$$

Then it is known that there is a number C = C(S) > 0 such that

$$(2.2) V_N \ge V - Cr_N.$$

For a proof of this fact we refer to Sjögren [3]. From the maximum principle we have

$$(2.3) K\mu \ge V_N \omega$$

where $\omega = K\lambda/V$. From the smoothness of ω and (2.2) follows now the existence of a number C = C(S) > 0 such that if $d(P) \le r_N$ then

$$(2.4) K\mu(P) \ge V - Cr_N.$$

Here d(P) denotes the distance from P to D.

We shall now prove the left hand side inequality of (1.1).

Suppose that $|P_i - P_i^*| \le r_N/4$, otherwise there is nothing to prove. Put $h(P) = K\mu(P) - N^{-1}|P - P_i|^{2-n}$ and $f(P) = h(P) - N^{-1}|P - P_i^*|^{2-n}$. Since P_1, \dots, P_N is a system of Fekete points it follows that $h(P_i) = \inf_{S} h$. We note that

 $h = K\mu^*$, where μ^* is a positive measure with total mass less than 1. Hence we have from Fubini's theorem that

$$\int_{S} (h - V)d\lambda = \int_{S} K(\mu^* - \lambda)d\lambda = \int_{S} V d(\mu^* - \lambda) < 0,$$

which gives that

$$(2.5) h(P_i) = \inf_{S} h < V.$$

Let $B = B(P_i, r_N)$ be the ball with radius r_N and center at P_i . If $P \in \partial B$ then it follows from the definition of f that $f(P) \ge K\mu(P) - (1 + (4/3)^{n-2})r_N$. Taking into account (2.4) we have

$$\inf_{\partial B} f \geq V - Cr_N.$$

Since f is superharmonic, it follows from the minimum principle that

$$(2.6) f(P_i) \ge V - Cr_N.$$

We now find from (2.5) and (2.6) that

$$V \geq h(P_i) = f(P_i) + N^{-1}|P_i - P_i^*|^{2-n} \geq V - Cr_N + N^{-1}|P_i - P_i^*|^{2-n},$$

which yields that $|P_i - P_i^*| \ge cr_N$. Hence the left side inequality of (1.1) is proven.

In passing, let us note that since h > f, it follows from (2.5) and (2.6) that

$$(2.7) V - Cr_N \le h(P_i) \le V.$$

We can now choose a constant $\alpha > 0$ independent of N such that $|P_i - P_i^*| \ge 10\alpha r_N$. Put $\rho_N = \alpha r_N$ and put

$$\left| \nabla_2 h \right| = \sum_{i,j} \left| \partial^2 h / \partial x_i \partial x_j \right|.$$

It's easily seen that

$$\left| \nabla_2 h(P) \right| \leq C \sum_{k \neq i} r_N^{n-1} |P - P_k|^{-n}.$$

If $P \in B(P_i, \rho_N)$ and $Q \in B(P_k, \rho_N)$, $k \neq i$ then

$$|P_i - Q| \le |P_i - P| + |P - P_k| + |P_k - Q| \le 2\rho_N + |P - P_k|.$$

Since $|P_i - Q| \ge |P_i - P_k| - |P_k - Q| \ge 9\rho_N$, it follows that $|P_i - Q| \le 2|P - P_k|$. Hence

$$\sup\{|\nabla_2 h(P)|: P \in B(P_i, \rho_N)\} \le C \sum_{k \neq i} r_N^{n-1} \inf\{|Q - P_i|^{-n}: Q \in B(P_k, \rho_N)\}.$$

Since

$$\int_{B(P_j,\rho_N)\,\cap\,S}\,dS\geq C\,\,r_N^{n-1},$$

it follows that

$$\max_{B(P_i,\rho_N)} |\nabla_2 h(P)| \leq C \int_{S-B(P_i,\rho_N)} |P_i - Q|^{-n} dS(Q) \leq C r_N^{-1}.$$

From this estimate it follows that if \hat{P} denotes the point such that $P + \hat{P} = 2 P_i$ and $P \in B(P_i, \rho_N)$ then

$$(2.8) |h(P) + h(\tilde{P}) - 2h(P_i)| \le C r_N^2 \sup\{|\nabla_2 h(P)| : P \in B(P_i, \rho_N)\} \le Cr_N.$$

Since $h(Q) = K\mu(Q) - \alpha^{2-n}r_N$ for $Q \in \partial B(P_i, \rho_N)$ it follows from (2.7) and (2.8) that $|K\mu(P) + K\mu(\tilde{P}) - 2V| < Cr_N$. From (2.4) follows that $K\mu(Q) - V \ge - Cr_N$ for $Q \in \partial B(P_i, \rho_N)$ which yields that

$$|K\mu(P) - V| \le C r_N \quad \text{for} \quad P \in \partial B(P_i, \, \rho_N).$$

LEMMA 1. Let $V_N = \inf_S K\mu$. Then there are positive numbers 1 and L such that if $r_N \le t \le 2r_N$ then

$$(2.10) {K\lambda > V - 1t} \subset {K\mu > V_N - t} \subset {K\lambda > V - Lt}.$$

Proof. We have from (2.3) that $K\mu > V_N K\lambda V^{-1}$. Hence the left hand side inclusion of (2.10) holds whenever $0 < 1 < V_N^{-1}V$.

From (2.1) and the smoothness of $K\lambda$ follows the existence of a neighbourhood Ω of \bar{D} such that if $P \in \Omega$ then

$$(2.11) C_1 d(P) \le V - K\lambda(P) \le C_2 d(P).$$

From (2.9) and the maximum principle it follows that if $P \in \bigcup_{j} B(P_{j}, \rho_{N})$ then $K\mu(P) \leq V + Cr_{N}$. In particular we have that

$$\sup\{K\mu(P): d(P) = \rho_N\} \le V + Cr_N.$$

From (2.11) it follows that

$$\inf\{K\lambda(P): d(P) = \rho_N\} \geq V - Cr_N.$$

The maximum principle therefore yields that if $d(P) > \rho_N$ then

$$K\mu(P) \leq (1 - Cr_N)^{-1}K\lambda(P).$$

Recalling the estimate $V_N \ge V - C r_N$ we see that if L is chosen large enough, and if $K\mu(P) > V_N - t$, $d(P) > \rho_N$ then $K\lambda(P) > V - Lt$. Also, it follows from (2.11) that if L is chosen large enough then $\{K\lambda > V - Lt\}$ contains the set $\{d(P) < \rho_N\}$ which yields the Lemma.

For each N we choose a number t^* , $r_N \le t^* \le 2r_N$ such that $\{K\mu > V_N - t^*\}$ = D^* has a smooth boundary. (The possibility of doing so follows from Sard's theorem).

LEMMA 2. Fix a point $P^* \in D$. If u is non-negative and harmonic in a neighbourhood of \bar{D}^* then there is a constant C only depending on P^* and D such that

$$u(P^*) \leq C \int u \ d\mu.$$

Proof. Put $q = K\mu - V_N + t^*$. There is a positive number γ , only depending on n such that $\Delta q = -\gamma \mu$. Hence it follows from Green's formula that

$$\gamma \int u \ d\mu = \int_{\partial D^*} u(\partial/\partial n) \ q \ ds,$$

where *n* denotes the unit inward normal on ∂D^* . Define ϕ by $\phi = 0$ on ∂D^* , $\phi = t^*$ in \bar{D} and ϕ is harmonic in $D^* - \bar{D}$. Then $\phi \leq q$ in $D^* - D$ which implies that

$$\gamma \int u \ d\mu \geq \int_{\partial D^*} u(\partial/\partial n) \ \phi dS.$$

For $P \in S$ let n(P) denote the unit normal to S pointing into D_{∞} . We have on $S(\partial/\partial n)\phi < 0$. From the above we have

(2.12)
$$\gamma \int u \ d\mu \geq - \int_{S} u(\partial/\partial n) \phi \ dS.$$

From Lemma 1 follows the existence of a number $m_0 > 0$ such that

$$m_0(V - K\lambda) \le t^* \text{ on } \partial D^*.$$

Hence $t^* - \phi \ge m_0(V - K\lambda)$ in $D^* - \bar{D}$, which together with (2.1) implies that $-(\partial/\partial n)\phi \ge m > 0$ on S. Hence the Lemma follows from (2.12).

To complete the proof of the Theorem we next observe the following. It is known that if Ω is a $C^{1,\alpha}$ -domain and if G denotes the Green function of Ω and if ∇ denotes the gradient then

where $\delta(P)$ denotes the distance from P to $\partial\Omega$. Also the constant $M(\Omega)$ depends on certain geometrical facts of Ω , see e.g., Widman [4, Theorem 2.3]. If we now recall that $\nabla K\lambda$ is $C^{1,\alpha}$ up to \bar{D}_{∞} (see Widman [4, Theorem (2.4) and (2.1)] we can now make the estimates of the Green functions of the domain $\{K\lambda > V - \epsilon\}$ = D_{ϵ} uniform in ϵ , $0 < \epsilon < \epsilon_0$. In particular we have from (2.13) that

$$|\nabla_{Q}G_{\epsilon}(P, Q)| \leq C \delta_{\epsilon}(P)|P - Q|^{-n}, \ 0 < \epsilon < \epsilon_{0},$$

where G_{ϵ} denotes the Green function of D_{ϵ} and δ_{ϵ} denotes the distance to ∂D_{ϵ} . In the same way, it follows that if $P^* \in D$ is fixed, then

$$(2.15) (\partial/\partial n_0)G_{\epsilon}(P^*, O) \ge C > 0, 0 < \epsilon < \epsilon_0, O \in \partial D_{\epsilon},$$

where n_Q denotes the unit inward normal to ∂D_{ϵ} , c.f. Widman [4, Theorem 2.5]. The constants C which appear in (2.14) and (2.15) are independent of ϵ .

To prove the Theorem, it now remains to prove that the numbers $\eta > 0$, for which $B(Q, \eta r_N)$, $Q \in S$, does not meet $\{P_1, \dots, P_N\}$ are uniformly bounded from above.

From Lemma 1 follows the existence of a number $\beta > 0$ such that $\Omega = \{K\lambda > V - \beta r_N\} \supset \overline{D^*}$. We shall assume that β has been chosen so large that

$$(2.16) \qquad \bigcup_{j} B(P_{j}, 2\rho_{N}) \subset \Omega.$$

Suppose now that $Q \in S$ and $B(Q, \eta r_N)$ does not meet $\bigcup_j B(P_j, \rho_N)$ for some $\eta \ge 1$. Let $Z \in \partial \Omega$ be a point such that $|Q - Z| = \operatorname{dist}(Q, \partial \Omega)$. Define $u(P) = (\partial/\partial n_Z)G(P, Z)$, where G is the Green function of Ω . From (2.16) and Harnack's inequality follows now that

$$u(P_i) \leq C \inf\{u(P): P \in B(P_i, \rho_N)\}.$$

Since the surface measure of $S \cap B(P_i, \rho_N)$ is larger than $Cr_N^{n-1} = CN^{-1}$ and the balls $B(P_i, \rho_N)$ are pairwise disjoint, it follows

$$\int u \ d\mu \le C \int u \ dS.$$

$$S - B(Q, \eta r_N)$$

From the definition of Ω and (2.11) follows that $|Q - Z| \le M r_N$, where M is independent of N. Suppose now that $\eta \ge 2M$. Then $|P - Q| \le 2|P - Z|$ if $P \in S - B(Q, \eta r_N)$. From (2.14) we now have

$$\int u d\mu \leq C r_N \int_{S-B(Q,\eta r_N)} |P-Q|^{-n} dS(P) \leq C \eta^{-1}.$$

From Lemma 2 follows that

$$u(P^*) \le C\eta^{-1}$$

which taken together with (2.15) shows that η is uniformly bounded from above, which yields the remaining part of the Theorem.

REFERENCES

- 1. T. KÖVARI AND CH. POMMERENKE, On the distribution of Fekete Points, Mathematika 15(1958), 70-75.
- 2. N. S. LANDKOF, Foundations of Modern Potential Theory, Springer-Verlag, Berlin, 1972.
- 3. P. Sjögren, On the regularity of the distribution of the Fekete points of a compact surface in \mathbb{R}^n , Ark. Mat. 10(1972), 59-77.
- 4. K.-O. WIDMAN, Inequalities for the Green function and boundary continuity of the gradient of solution of elliptic equations, Math. Scand. 21(1967), 17-37.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104