ST790-003, Homework 3 (Updated Feb 1 @ 10PM)

Due Monday, Feb 23, 2015 @ 11:59PM

Convex or Not?

Determine whether each of the following loss functions in statistics is convex or not. If it is convex, give a rigorous proof. If it is not convex, give a counter example. A concrete numerical example is perfect as a counter example. This is a *solo* homework. Discussion with fellow students is allowed but you have to write your code and report independently.

1. (Least squares, general least squares, and nonlinear least squares) Given data $y \in \mathbb{R}^n$ and $X \in \mathbb{R}^{n \times p}$, least squares criterion is

$$\ell(\boldsymbol{\beta}) = \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2 = \frac{1}{2} \sum_{i=1}^n (y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2.$$

General least squares criterion is

$$\ell(\boldsymbol{\beta}) = \frac{1}{2} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T \boldsymbol{\Omega}^{-1} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}),$$

where Ω is a fixed $n \times n$ positive definite matrix. Nonlinear least squares criterion is

$$\ell(\boldsymbol{\beta}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - f(\boldsymbol{x}_i, \boldsymbol{\beta}))^2.$$

2. $(\ell_p \text{ regression})$ For a fixed $p \in [0, \infty]$, ℓ_p regression finds the regression coefficients β that minimizes the ℓ_p norm of residual vector

$$\ell_n(\boldsymbol{\beta}) = \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|_p.$$

When p = 0, it is the best subset regression. When p = 1, it is the ℓ_1 regression. When p = 2, it is the least squares problem. When $p = \infty$, it is the ℓ_{∞} regression.

3. (Worst k error regression) Define absolute residuals $r_i(\beta) = |y_i - \boldsymbol{x}_i^T \boldsymbol{\beta}|$. If our primary interest is to reduce the k largest approximation errors, then we seek regression coefficients $\boldsymbol{\beta} \in \mathbb{R}^p$ that minimize

$$\ell(\boldsymbol{\beta}) = \sum_{i=1}^{k} r_{(i)}(\boldsymbol{\beta}),$$

where $r_{(1)} \ge r_{(2)} \ge \cdots \ge r_{(n)}$ are order statistics of absolute residuals. When k = 1, it reduces to ℓ_{∞} regression. When k = n, it reduces to ℓ_1 regression.

4. (Quantile regression) It is well known that the sample median of y_1, \ldots, y_n is the minimizer of the sum of absolute deviations $\sum_{i=1}^{n} |y_i - \xi|$. Therefore ℓ_1 regression is called the median regression. Likewise, the τ -th sample quantile, $\tau \in (0,1)$, is the minimizer of $\sum_{i=1}^{n} \rho_{\tau}(y_i - \xi)$,

where $\rho_{\tau}(z) = z(\tau - I_{\{z<0\}})$. This leads to the quantile regression problem that minimizes the loss function

$$\ell_{ au}(oldsymbol{eta}) = \sum_{i=1}^n
ho_{ au}(y_i - oldsymbol{x}_i^Toldsymbol{eta}).$$

The $\tau = 1/2$ case recovers the ℓ_1 regression.

Plot the function $\rho_{\tau}(z)$ for a couple of τ values and determine whether the loss function $\ell_{\tau}(\beta)$ is convex or not.

5. (Variance component model) Consider the multivariate normal model $Y \sim N(X\beta, \Omega)$, where

$$oldsymbol{\Omega} = \sum_{i=1}^m \sigma_i^2 V_i$$

and V_1, \ldots, V_m are m fixed positive semidefinite matrices. Parameters are mean effects $\beta \in \mathbb{R}^p$ and non-negative variance components $\sigma_1^2, \ldots, \sigma_m^2$. The negative log-likelihood function is

$$\ell(\boldsymbol{\beta}, \sigma_1^2, \dots, \sigma_m^2) = \frac{n}{2} \ln(2\pi) + \frac{1}{2} \ln \det \boldsymbol{\Omega} + \frac{1}{2} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T \boldsymbol{\Omega}^{-1} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}).$$

- 6. (Linear mixed model) Consider the model $Y = X\beta + Z\gamma + \epsilon$, where $\beta \in \mathbb{R}^p$ are fixed effects, $\gamma \sim N(\mathbf{0}, \mathbf{R})$ with \mathbf{R} unknown are random effects, and $\epsilon \sim N(\mathbf{0}, \sigma_0^2 \mathbf{I})$ are noises independent of γ . Write down the negative log-likelihood and determine wether it is convex or not.
- 7. (Gaussian mixture model) Gaussian mixture model assumes that a data point $\mathbf{y} \in \mathbf{R}^d$ comes from multivariate Gaussian distribution $N(\boldsymbol{\mu}_j, \boldsymbol{\Omega}_j)$ with probability π_j for $j = 1, \ldots, k$. Therefore the parameters of interested are k component probabilities (π_1, \ldots, π_k) , k component means $(\boldsymbol{\mu}_1, \ldots, \boldsymbol{\mu}_k)$, and k component covariance matrices $(\boldsymbol{\Omega}_1, \ldots, \boldsymbol{\Omega}_k)$. Write down the negative log-likelihood and determine wether it is convex or not.
- 8. (Logistic regression and GLM) The negative log-likelihood of the logistic regression model is

$$\ell(\boldsymbol{\beta}) = -\sum_{i=1}^{n} \left[y_i \boldsymbol{x}_i^T \boldsymbol{\beta} - \ln \left(1 + e^{\boldsymbol{x}_i^T \boldsymbol{\beta}} \right) \right].$$

How about the negative log-likelihood of any generalized linear model (GLM) with canonical link?

- 9. (Gaussian covariance estimation) Suppose $X_1, \ldots, X_n \in \mathbb{R}^p$ are iid multivariate normal $N(\mathbf{0}, \mathbf{\Sigma})$. Write down the negative log-likelihood function $\ell(\mathbf{\Sigma})$ and determine whether it is convex or not.
- 10. (Gaussian precision matrix estimation) Suppose $X_1, \ldots, X_n \in \mathbb{R}^p$ are iid multivariate normal $N(\mathbf{0}, \mathbf{\Omega}^{-1})$. Write down the negative log-likelihood function $\ell(\mathbf{\Omega})$ and determine whether it is convex or not.