Advanced Linear Algebra Week 14

Jamie Gabe

From now on \mathcal{F} denotes \mathbb{R} or \mathbb{C}

Complex conjugation is denoted by $\overline{\alpha}$ i.e. if $\alpha = \beta + i\gamma$ with $\beta, \gamma \in \mathbb{R}$, then $\overline{\alpha} = \beta - i\gamma$.

In particular, if $\alpha \in \mathbb{R}$ then $\overline{\alpha} = \alpha$.

Let V be a vector space over \mathcal{F} .

Definition

A map $\langle \cdot, \cdot \rangle \colon V \times V \to \mathcal{F}$ is an inner product on V if

- (a) $x \mapsto \langle x, y \rangle$ is a linear map $V \to \mathcal{F}$ for every $y \in \mathcal{F}$;
- (b) $\langle y, x \rangle = \langle x, y \rangle$ for all $x, y \in V$;
- (c) $\langle x, x \rangle > 0$ for every non-zero $x \in V$.

A vector space equipped with an inner product is called an inner product space.

Note that (a) means $\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$ and $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$ for all $x, x_1, x_2, y \in V$ and $\alpha \in \mathcal{F}$.

A map $\langle \cdot, \cdot \rangle \colon V \times V \to \mathcal{F}$ is an inner product on V if

- (a) $x \mapsto \langle x, y \rangle$ is a linear map $V \to \mathcal{F}$ for every $y \in \mathcal{F}$;
- (b) $\langle y, x \rangle = \overline{\langle x, y \rangle}$ for all $x, y \in V$;
- (c) $\langle x, x \rangle > 0$ for every non-zero $x \in V$.

Consider the complex vector space $\mathbb C$ and the product map $\langle\cdot,\cdot\rangle\mathbb C\times\mathbb C\to\mathbb C$ given by

$$\langle \alpha, \beta \rangle = \alpha \beta$$
 for $\alpha, \beta \in \mathbb{C}$.

Question: which of the following are true for the map $\langle \cdot, \cdot \rangle$ (multiple choice)?

- (1) (a) holds
- (2) (b) holds
- (3) (c) holds
- (4) None of (a), (b), (c) hold.

A map $\langle \cdot, \cdot \rangle \colon V \times V \to \mathcal{F}$ is an inner product on V if

- (a) $x \mapsto \langle x, y \rangle$ is a linear map $V \to \mathcal{F}$ for every $y \in \mathcal{F}$;
- (b) $\langle y, x \rangle = \overline{\langle x, y \rangle}$ for all $x, y \in V$;
- (c) $\langle x, x \rangle > 0$ for every non-zero $x \in V$.

Consider the complex vector space $\mathbb C$ and the product map $\langle \cdot, \cdot \rangle \mathbb C \times \mathbb C \to \mathbb C$ given by $\langle \alpha, \beta \rangle = \alpha \beta$ for $\alpha, \beta \in \mathbb C$.

(a): is $\alpha \mapsto \alpha\beta$ linear? We have

$$\langle \alpha_1 + \alpha_2, \beta \rangle = (\alpha_1 + \alpha_2)\beta = \alpha_1\beta + \alpha_2\beta = \langle \alpha_1, \beta \rangle + \langle \alpha_2, \beta \rangle.$$

So $\alpha \mapsto \alpha\beta$ is additive. Similarly it preserves scalar multiplication. So (a) holds.

(b): Is $\beta \alpha = \overline{\alpha \beta}$ for all $\alpha, \beta \in \mathbb{C}$? We know $\alpha \beta = \beta \alpha$, so the question is: is $\alpha \beta = \overline{\alpha \beta}$ for all $\alpha, \beta \in \mathbb{C}$?

Counter example: If $\alpha = 1$ and $\beta = i$, then $\alpha\beta = i$ and $\overline{\alpha\beta} = \overline{i} = -i$. So (b) does not hold.

A map $\langle \cdot, \cdot \rangle \colon V \times V \to \mathcal{F}$ is an inner product on V if

- (a) $x \mapsto \langle x, y \rangle$ is a linear map $V \to \mathcal{F}$ for every $y \in \mathcal{F}$;
- (b) $\langle y, x \rangle = \overline{\langle x, y \rangle}$ for all $x, y \in V$;
- (c) $\langle x, x \rangle > 0$ for every non-zero $x \in V$.

Consider the complex vector space \mathbb{C} and the product map $\langle \cdot, \cdot \rangle \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ given by $\langle \alpha, \beta \rangle = \alpha \beta$ for $\alpha, \beta \in \mathbb{C}$.

(c): Is $\alpha \alpha = \alpha^2 > 0$ for every non-zero $\alpha \in \mathbb{C}$?

Counter example: Take $\alpha = i$. Then

$$\alpha^2 = i^2 = -1$$

which is not > 0. Hence (c) does not hold.

A map $\langle \cdot, \cdot \rangle \colon V \times V \to \mathcal{F}$ is an inner product on V if

- (a) $x \mapsto \langle x, y \rangle$ is a linear map $V \to \mathcal{F}$ for every $y \in \mathcal{F}$;
- (b) $\langle y, x \rangle = \overline{\langle x, y \rangle}$ for all $x, y \in V$;
- (c) $\langle x, x \rangle > 0$ for every non-zero $x \in V$.

What could we do instead?

We could have instead defined $\langle \alpha, \beta \rangle = \alpha \overline{\beta}$ on \mathbb{C} . Then (a) holds just as before.

(b):
$$\langle \beta, \alpha \rangle = \beta \overline{\alpha} = \overline{\alpha \overline{\beta}} = \overline{\langle \alpha, \beta \rangle}$$

(c):
$$\langle \alpha, \alpha \rangle = \alpha \overline{\alpha} = |\alpha|^2 > 0$$
 whenever $\alpha \neq 0$ in \mathbb{C} .

A map $\langle \cdot, \cdot \rangle \colon V \times V \to \mathcal{F}$ is an inner product on V if

- (a) $x \mapsto \langle x, y \rangle$ is a linear map $V \to \mathcal{F}$ for every $y \in \mathcal{F}$;
- (b) $\langle y, x \rangle = \langle x, y \rangle$ for all $x, y \in V$;
- (c) $\langle x, x \rangle > 0$ for every non-zero $x \in V$.

More generally: Consider $V = \mathbb{C}^n$. There is a standard inner product $\langle \cdot, \cdot \rangle \colon \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ given by

$$\left\langle \left(\begin{array}{c} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{array} \right), \left(\begin{array}{c} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{array} \right) \right\rangle = \sum_{i=1}^n \alpha_i \overline{\beta_i} = \alpha_1 \overline{\beta}_1 + \alpha_2 \overline{\beta}_2 + \dots + \alpha_n \overline{\beta}_n.$$

This is the usual "dot product" or "scalar product". The same can be done with the real vector space \mathbb{R}^n , but here we do not need complex conjugation.

If $\langle \cdot, \cdot \rangle \colon V \times V \to \mathcal{F}$ is an inner product, then $y \mapsto \langle x, y \rangle$ is anti-linear, meaning that

$$\langle x, y_1 + y_2 \rangle = \langle x, y_1 \rangle + \langle x, y_2 \rangle$$
 additive
$$\langle x, \alpha y \rangle = \overline{\alpha} \langle x, y \rangle.$$

This can easily be proved using (a) and (b) in the definition of inner products.

Let V be an inner product space (so we have a fixed inner product on V).

- (a) The length (or norm) of $x \in V$ is $||x|| := \sqrt{\langle x, x \rangle}$.
- (b) Two vectors $x, y \in V$ are orthogonal if $\langle x, y \rangle = 0$. We write $x \perp y$.
- (c) If $X \subseteq V$ is a subset then $X^{\perp} := \{ y \in V \mid \forall x \in X : x \perp y \}.$

Note:

$$\|\alpha x\| = \sqrt{\langle \alpha x, \alpha x \rangle} = \sqrt{\alpha \langle x, \alpha x \rangle} = \sqrt{\alpha \overline{\alpha} \langle x, x \rangle} = |\alpha| \|x\|.$$

And:

$$x \perp y \quad \Leftrightarrow \quad \langle x, y \rangle = 0 \quad \Leftrightarrow \quad \overline{\langle x, y \rangle} = 0 \quad \Leftrightarrow \quad y \perp x.$$

So orthogonality is symmetric.

Lemma (8.3 (Pythogoras' identity))

If $x \perp y$ then $||x + y||^2 = ||x||^2 + ||y||^2$.

Proof.

For all $x, y \in V$ we have

$$||x+y||^2 = \langle x+y, x+y \rangle = \underbrace{\langle x, x \rangle}_{||x||^2} + \langle x, y \rangle + \langle y, x \rangle + \underbrace{\langle y, y \rangle}_{||y||^2}.$$

Hence if $x \perp y$ then the identity follows.

Lemma (The parallelogram law)

For all $x, y \in V$ we have

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Proof.

 $||x-y||^2 = \langle x-y, x-y \rangle = ||x||^2 - \langle x, y \rangle - \langle y, x \rangle + ||y||^2.$

Adding this to $||x + y||^2$ from the previous proof, and we get the identity.

Let $x, y \in V$. Then $|\langle x, y \rangle| \le ||x|| ||y||$.

Proof.

If $\langle x,y\rangle=0$ then the inequality is trivial, so we may assume WLOG $\langle x,y\rangle\neq0$.

Also, $|\langle x,y\rangle|\leq \|x\|\|y\|$ iff $|\langle \frac{1}{\|x\|}x,\frac{1}{\|y\|}y\rangle|\leq 1$. Since $\|\frac{1}{\|x\|}x\|=\|\frac{1}{\|y\|}y\|=1$ we may assume WLOG that $\|x\|=\|y\|=1$.

Let $x, y \in V$. Then $|\langle x, y \rangle| \leq ||x|| ||y||$.

Proof.

We have shown: WLOG $\langle x, y \rangle \neq 0$ and ||x|| = ||y|| = 1.

Let
$$\alpha = \frac{\overline{\langle x,y \rangle}}{|\langle x,y \rangle|}$$
. Then $|\alpha| = \frac{\overline{|\langle x,y \rangle|}}{|\langle x,y \rangle|} = \frac{|\langle x,y \rangle|}{|\langle x,y \rangle|} = 1$, hence $||\alpha x|| = |\alpha| ||x|| = 1$. Also

$$\langle \alpha x, y \rangle = \alpha \langle x, y \rangle = \frac{\overline{\langle x, y \rangle}}{|\langle x, y \rangle|} \langle x, y \rangle = \frac{|\langle x, y \rangle|^2}{|\langle x, y \rangle|} = |\langle x, y \rangle|.$$

$$0 \le \|\alpha x - y\|^2 = \underbrace{\|\alpha x\|^2}_{1} + \underbrace{\|y\|^2}_{1} - \underbrace{\langle \alpha x, y \rangle}_{|\langle x, y \rangle|} - \underbrace{\langle y, \alpha x \rangle}_{\overline{\langle \alpha x, y \rangle} = |\langle x, y \rangle}$$

So
$$0 \le 2 - 2|\langle x, y \rangle|$$
 or equivalently $|\langle x, y \rangle| \le 1 = ||x|| ||y||$.

Let $x, y \in V$. Then $|\langle x, y \rangle| \le ||x|| ||y||$.

We saw in the proof that

$$0 \le \|\alpha x - y\|^2 = 2(\|x\| \|y\| - |\langle x, y \rangle|)$$
. Hence

$$|\langle x,y\rangle|=\|x\|\|y\|$$
 implies that $\|\alpha x-y\|=0$ and thus $\alpha x=y$.

In conclusion: If one has equality in the Cauchy-Schwarts inequality, then x and y are proportionate (i.e. one is a scalar multiple of the other).

This is actually "if and only if".

Let $x, y \in V$. Then $|\langle x, y \rangle| \le ||x|| ||y||$.

Consider the real vector space $C([0,1],\mathbb{R})$ of continuous functions $f:[0,1]\to\mathbb{R}$.

There is an inner product given by

$$\langle f,g \rangle := \int_0^1 f(t)g(t)dt.$$

Question: What does the Cauchy-Schwartz inequality say in this case?

- (1) For a positive function f, $\int_0^1 f(t) dt > 0$;
- (2) $\left| \int_0^1 f(t) dt \right| \le \max_{t \in [0,1]} f(t)$;

(3)
$$\left| \int_0^1 f(t)g(t) dt \right| \le \left(\int_0^1 f(t)^2 dt \right)^{1/2} \left(\int_0^1 g(t)^2 dt \right)^{1/2}$$
. SDU

Let $x, y \in V$. Then $|\langle x, y \rangle| \le ||x|| ||y||$.

Consider the real vector space $C([0,1],\mathbb{R})$ of continuous functions $f:[0,1]\to\mathbb{R}$.

There is an inner product given by

$$\langle f,g \rangle := \int_0^1 f(t)g(t)dt.$$

Note that

$$||f|| = \langle f, f \rangle^{1/2} = (\int_0^1 f(t)f(t)dt)^{1/2} = (\int_0^1 f(t)^2 dt)^{1/2}.$$

Hence Cauchy-Schwartz states:

$$\underbrace{|\int_0^1 f(t)g(t)dt|} \leq ||f|||g|| = \left(\int_0^1 f(t)^2 dt\right)^{1/2} \left(\int_0^1 g(t)^2 dt\right)^{1/2}.$$

Theorem (8.5 (the triangle inequality))

Let $x, y \in V$. Then $||x + y|| \le ||x|| + ||y||$.

Proof.

$$||x + y||^2 = ||x||^2 + ||y||^2 + \langle x, y \rangle + \langle y, x \rangle.$$

Hence

$$||x + y||^{2} \leq ||x||^{2} + ||y||^{2} + |\langle x, y \rangle| + |\langle y, x \rangle|$$

$$\leq ||x||^{2} + ||y||^{2} + ||x|||y|| + ||y|||x||$$

$$= ||x||^{2} + ||y||^{2} + 2||x|||y||$$

$$= (||x|| + ||y||)^{2}.$$

Taking square roots we get $||x + y|| \le ||x|| + ||y||$.

A vector $x \in V$ is called normal if ||x|| = 1.

A subset $X \subseteq V$ is orthonormal if all its vectors are normal and orthogonal to each other.

Lemma (8.6)

Let $X \subseteq V$ be orthonormal.

- (i) If $z = \sum_{i=1}^{n} \alpha_i x_i$ with distinct vectors x_i from X, then $\alpha_j = \langle z, x_j \rangle$, $j = 1, \ldots, n$;
- (ii) X is linearly independent;
- (iii) If X is finite then $y \sum_{x \in X} \langle y, x \rangle x \in X^{\perp}$ for all $y \in V$.

Proof.

(i): Since
$$\langle x_i, x_j \rangle = \begin{cases} \|x_i\|^2 = 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$
 we get

$$\langle z, x_j \rangle = \langle \sum_{i=1}^{n} \alpha_i x_i, x_j \rangle = \sum_{i=1}^{n} \alpha_i \langle x_i, x_j \rangle = \alpha_j.$$

Lemma (8.6)

Let $X \subseteq V$ be orthonormal.

- (i) If $z = \sum_{i=1}^{n} \alpha_i x_i$ with distinct vectors x_i from X, then $\alpha_j = \langle z, x_j \rangle$, $j = 1, \dots, n$;
- (ii) X is linearly independent;
- (iii) If X is finite then $y \sum_{x \in X} \langle y, x \rangle x \in X^{\perp}$ for all $y \in V$.

Proof.

- (ii): If z = 0 then $\alpha_j = 0$ for all j by (i). Hence X is linearly independent.
- (iii): Let $y \in V$ and $z := \sum_{x \in X} \langle y, x \rangle x$. By (i) we have $\langle y, x \rangle = \langle z, x \rangle$ for all $x \in X$. Hence $\langle y z, x \rangle = 0$ for all $x \in X$, so $y z \in X^{\perp}$.

Gram-Schmidt orthonomalisation: a process to take linearly independent vectors y_1, \ldots, y_n and obtain an orthonormal set $\{x_1, \ldots, x_n\}$ s.t. $\mathrm{Span}\{y_1, \ldots, y_k\} = \mathrm{Span}\{x_1, \ldots, x_k\}$ for $k = 1, \ldots, n$.

We do this by recursion: let $x_1 = \frac{1}{\|y_1\|} y_1$ (this is called to normalise y_1).

Suppose we have found orthonormal x_1, \ldots, x_k such that $\operatorname{Span}\{x_1, \ldots, x_k\} = \operatorname{Span}\{y_1, \ldots, y_k\}$. Then $x'_{k+1} := y_{k+1} - \sum_{i=1}^k \langle y_{k+1}, x_i \rangle x_i \in \{x_1, \ldots, x_k\}^{\perp}$ by Lemma 8.6(iii). As $y_{k+1} \notin \operatorname{Span}\{y_1, \ldots, y_k\} = \operatorname{Span}\{x_1, \ldots, x_k\}$, we have $x'_{k+1} \neq 0$. Let $x_{k+1} = \frac{1}{\|x'_{k+1}\|} x'_{k+1}$. It is easy to check that $\operatorname{Span}\{y_1, \ldots, y_{k+1}\} = \operatorname{Span}\{x_1, \ldots, x_{k+1}\}$.

Theorem (8.7)

Every finite-dimensional inner product space V contains an orthonormal basis.

Proof.

Apply Gram-Schmidt to any basis for V.

Definition (8.8)

An orthogonal direct sum in an inner product space V is a direct sum $U \oplus W$ of subspaces for which $U \perp W$ i.e. $u \perp w$ for all $u \in U$ and $w \in W$. When $V = U \oplus W$ is orthogonal, we say that W is an orthogonal complement of U.

Lemma (8.9)

If $V = U \oplus W$ is an orthogonal direct sum, then $W = U^{\perp}$.

Proof.

By assumption $W\subseteq U^\perp$. Let $y\in U^\perp$. Write $y=u+w\in U+W$. Since $w\in U^\perp$ we have $u=y-w\in U\cap U^\perp=\{0\}$. Hence u=0 and thus $y=w\in W$.

Warning: in general V is not equal to $U + U^{\perp}$!

Recall: if $V = U \oplus W$, then there is a unique linear

 $E \in \operatorname{End}(V)$ called the projection onto U along W, given by E(v) = u where v = u + w is the unique decomposition.

These were characterised abstractly as idempotents:

 $E\in \mathrm{End}(V)$ satisfying $E=E^2$. In this case,

 $V = R(E) \oplus N(E)$ and E is the projection onto R(E) along N(E).

Definition

An orthogonal projection is an idempotent $E \in \operatorname{End}(V)$ for which

$$R(E) \perp N(E)$$

or equivalently for which $V = R(E) \oplus N(E)$ is an orthogonal direct sum.

E is called the orthogonal projection onto R(E).

Note: There is no need for the "along N(E)" since $N(E) = R(E)^{\perp}$ by Lemma 8.9.

Theorem (8.11)

Let $U \subseteq V$ be a subspace. Let $v \in V$ and $u \in U$. Then $v - u \in U^{\perp}$ if and only if

$$||v - u|| = \min_{x \in U} ||v - x||.$$

Proof.

" \Rightarrow ": Assume $v - u \in U^{\perp}$ and let $x \in U$. Then $v - u \perp u - x$. Hence by Pythagoras

$$||v-x||^2 = ||(v-u)+(u-x)||^2 = ||v-u||^2 + ||u-x||^2 \ge ||v-u||^2.$$

So $||v - u|| \le \min_{x \in U} ||v - x||$. As $u \in U$, $||v - u|| \ge \min_{x \in U} ||v - x||$.

Theorem (8.11)

Let $U \subseteq V$ be a subspace. Let $v \in V$ and $u \in U$. Then $v - u \in U^{\perp}$ if and only if $\|v - u\| = \min_{x \in U} \|v - x\|$.

Proof

"\(\infty\)": Assume $||v-u|| = \min_{x \in U} ||v-x||$. In particular, $||v-u|| \le ||v-x||$ for all $x \in U$.

We want $\langle v-u,x\rangle=0$ for all $x\in U$. It suffices to check this for normal $x\in U$. Let $z:=\langle v-u,x\rangle x\in U$. Then $\{x\}$ is orthonormal, so by Lemma 8.6(iii), $(v-u)-z\perp x$. In particular, $(v-u)-z\perp z$. By Pythagoras

$$\|\underline{z + ((v - u) - z)}\|^2 \stackrel{Pyt}{=} \|z\|^2 + \|v - (\underline{u + z})\|^2 \ge \|z\|^2 + \|v - u\|^2.$$

This forces ||z|| = 0 so z = 0. Hence $\langle v - u, x \rangle = 0$.

Recall that in general V is not equal to $U \oplus U^{\perp}$. However Theorem (8.12)

Assume U is a finite dimensional subspace of V. Then $V = U \oplus U^{\perp}$.

Proof.

U is itself an inner product space, so by Theorem 8.7 it has an orthonormal basis $\{x_1, \ldots, x_r\}$.

For $y \in V$ let $u := \sum_{i=1}^r \langle y, x_i \rangle x_i \in U$. By Lemma 8.6(iii), $y - u \in U^{\perp}$.

Hence
$$y = u + (y - u) \in U + U^{\perp}$$
. Consequently $V = U + U^{\perp}$ and $U \cap U^{\perp} = \{0\}$, so $V = U \oplus U^{\perp}$.

