Machine-Level Programming III: Procedures

Mechanisms in Procedures

- Passing control
 - To beginning of procedure code
 - Back to return point
- Passing data
 - Procedure arguments
 - Return value
- Memory management
 - Allocate during procedure execution
 - Deallocate upon return
- Mechanisms all implemented with machine instructions
- **2** x86-64 implementation of a procedure uses only those mechanisms required

Today

- Procedures
 - Stack Structure
 - **Calling Conventions**
 - Passing control
 - Passing data
 - Managing local data
 - Illustration of Recursion

x86-64 Stack

- Region of memory managed with stack discipline
- Grows toward lower addresses
- Register %rsp contains lowest stack address
 - address of "top" element

Stack Pointer: %rsp

x86-64 Stack: Push

Stack "Bottom" pushq Src Fetch operand at Src **Increasing** Decrement %rsp by 8 **Addresses** Write operand at address given by %rsp Stack **Grows** Down Stack Pointer: %rsp Stack "Top"

x86-64 Stack: Pop

■ popq Dest

- Read value at address given by %rsp
- Increment %rsp by 8
- Store value at Dest (must be register)

Stack "Bottom"

Today

- Procedures
 - Stack Structure
 - **Calling Conventions**
 - Passing control
 - Passing data
 - Managing local data
 - Illustration of Recursion

Code Examples

```
void multstore
  (long x, long y, long *dest)
{
    long t = mult2(x, y);
    *dest = t;
}
```

```
      000000000000400540
      <multstore>:

      400540: push %rbx # Save %rbx

      400541: mov %rdx,%rbx # Save dest

      400544: callq 400550 <mult2> # mult2(x,y)

      400549: mov %rax,(%rbx) # Save at dest

      40054c: pop %rbx # Restore %rbx

      40054d: retq # Return
```

```
long mult2
  (long a, long b)
{
  long s = a * b;
  return s;
}
```

```
0000000000400550 <mult2>:
    400550: mov %rdi,%rax # a
    400553: imul %rsi,%rax # a * b
    400557: retq # Return
```

Procedure Control Flow

- Use stack to support procedure call and return
- Procedure call: call label
 - Push return address on stack
 - Jump to label
- Return address:
 - Address of the next instruction right after call
 - Example from disassembly
- Procedure return: ret
 - Pop address from stack
 - Jump to address


```
%rsp 0x120
%rip 0x400544
```

```
0000000000400550 <mult2>:
   400550: mov %rdi,%rax
   •
   400557: retq
```

400549: mov %rax, (%rbx)

Control Flow Example #2 0x1300000000000400540 <multstore>: 0x128 0×120 400544: callq 400550 <mult2> 0x118_ 0x400549400549: mov %rax, (%rbx) ← 0x118%rsp 0×400550 %rip 0000000000400550 <mult2>: 400550: mov %rdi,%rax < 400557: retq

Control Flow Example #3 0×130 0000000000400540 <multstore>: 0x128 0×120 400544: callq 400550 <mult2> 0x118_ 0x400549400549: mov %rax, (%rbx) ← 0x118%rsp 0x400557 %rip 000000000400550 <mult2>: 400550: mov %rdi,%rax 400557: retq

Control Flow Example #4

```
0000000000400550 <mult2>:
    400550: mov %rdi,%rax
    •
    400557: retq
```


Today

- Procedures
 - Stack Structure
 - **Calling Conventions**
 - Passing control
 - Passing data
 - Managing local data
 - Illustrations of Recursion & Pointers

Procedure Data Flow

Registers

First 6 arguments

%rdi %rsi %rdx %rcx %r8 %r9

Return value

%rax

Stack

Only allocate stack space when needed

Data Flow Examples

```
void multstore
  (long x, long y, long *dest)
{
    long t = mult2(x, y);
    *dest = t;
}
```

```
long mult2
  (long a, long b)
{
  long s = a * b;
  return s;
}
```

```
0000000000000400550 <mult2>:
    # a in %rdi, b in %rsi
400550: mov %rdi,%rax # a
400553: imul %rsi,%rax # a * b
# s in %rax
400557: retq # Return
```

Today

- Procedures
 - Stack Structure
 - **Calling Conventions**
 - Passing control
 - Passing data
 - Managing local data
 - Illustration of Recursion

Stack-Based Languages

- Languages that support recursion
 - e.g., C, Pascal, Java
 - Code must be "Reentrant"
 - Multiple simultaneous instantiations of single procedure
 - Need some place to store state of each instantiation
 - Arguments
 - Local variables
 - Return pointer

Stack discipline

- State for given procedure needed for limited time
 - From when called to when return
- Callee returns before caller does
- Stack allocated in *Frames*
 - state for single procedure instantiation

Call Chain Example

```
who(...)
{
    amI();
    amI();
    amI();
}
```

Procedure amI () is recursive

Example Call Chain

Stack Frames

Contents

- Return information
- Local storage (if needed)
- Temporary space (if needed)

Previous Frame

Frame Pointer: %rbp

(Optional)

Frame for proc

Stack Pointer: %rsp

- Space allocated when enter procedure
 - "Set-up" code
 - Includes push by call instruction
- Deallocated when return
 - "Finish" code
 - Includes pop by ret instruction

Stack

yoo

who

amI

amI

%rbp

%rsp

amI

x86-64/Linux Stack Frame

- Current Stack Frame ("Top" to Bottom)
 - "Argument build:"
 Parameters for function about to call
 - Local variables
 If can't keep in registers
 - Saved register context
 - Old frame pointer (optional)
- Caller Stack Frame
 - Return address
 - Pushed by call instruction
 - Arguments for this call

Example: incr

```
long incr(long *p, long val) {
    long x = *p;
    long y = x + val;
    *p = y;
    return x;
```

```
incr:
 movq (%rdi), %rax
 addq %rax, %rsi
 movq %rsi, (%rdi)
 ret
```

Register	Use(s)
%rdi	Argument p
%rsi	Argument val , y
%rax	x, Return value

Example: Calling incr #1

```
long call_incr() {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return v1+v2;
}
```

Initial Stack Structure

```
Rtn address ← %rsp
```

```
call_incr:
    subq    $16, %rsp
    movq    $15213, 8(%rsp)
    movl    $3000, %esi
    leaq    8(%rsp), %rdi
    call    incr
    addq    8(%rsp), %rax
    addq    $16, %rsp
    ret
```

Resulting Stack Structure

Example: Calling incr #2

```
long call_incr() {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return v1+v2;
}
```

```
call_incr:
    subq    $16, %rsp
    movq    $15213, 8(%rsp)
    movl    $3000, %esi
    leaq    8(%rsp), %rdi
    call    incr
    addq    8(%rsp), %rax
    addq    $16, %rsp
    ret
```

Stack Structure

Register	Use(s)
%rdi	&v1
%rsi	3000

Example: Calling incr #3

```
long call_incr() {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return v1+v2;
}
```

```
call_incr:
    subq    $16, %rsp
    movq    $15213, 8(%rsp)
    movl    $3000, %esi
    leaq    8(%rsp), %rdi
    call    incr
    addq    8(%rsp), %rax
    addq    $16, %rsp
    ret
```

Stack Structure

Register	Use(s)
%rdi	&v1
%rsi	3000

Example: Calling incr #4

Stack Structure

```
long call_incr() {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return v1+v2;
}
```

call_incr:	
subq	\$16, %rsp
movq	\$15213, 8(%rsp)
movl	\$3000, %esi
leaq	8(%rsp), %rdi
call	incr
addq	8(%rsp), %rax
addq	\$16, %rsp
ret	

Register	Use(s)
%rax	Return value

Updated Stack Structure

Example: Calling incr #5

```
long call_incr() {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return v1+v2;
}
```

Updated Stack Structure


```
call_incr:
    subq $16, %rsp
    movq $15213, 8(%rsp)
    movl $3000, %esi
    leaq 8(%rsp), %rdi
    call incr
    addq 8(%rsp), %rax
    addq $16, %rsp
    ret
```

Register	Use(s)
%rax	Return value

Final Stack Structure

Register Saving Conventions

- When procedure yoo calls who:
 - yoo is the caller
 - **who** is the *callee*
- Can register be used for temporary storage?

```
yoo:

movq $15213, %rdx
call who
addq %rdx, %rax

ret
```

```
who:

• • •

subq $18213, %rdx

• • •

ret
```

- Contents of register %rdx overwritten by who
- This could be trouble → something should be done!
 - Need some coordination

Register Saving Conventions

- When procedure yoo calls who:
 - yoo is the caller
 - **who** is the *callee*
- Can register be used for temporary storage?
- Conventions
 - "Caller Saved"
 - Caller saves temporary values in its frame before the call
 - "Callee Saved"
 - Callee saves temporary values in its frame before using
 - Callee restores them before returning to caller

x86-64 Linux Register Usage #1

x86-64 Linux Register Usage #2

- % %rbx, %r12, %r13, %r14
 - Callee-saved
 - Callee must save & restore
- %rbp
 - Callee-saved
 - Callee must save & restore
 - May be used as frame pointer
 - Can mix & match
- %rsp
 - Special form of callee save
 - Restored to original value upon exit from procedure

Callee-Saved Example #1

```
long call_incr2(long x) {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return x+v2;
}
```

Initial Stack Structure

```
Rtn address ← %rsp
```

```
call_incr2:
   pushq %rbx
   subq $16, %rsp
   movq %rdi, %rbx
   movq $15213, 8(%rsp)
   movl $3000, %esi
   leaq 8(%rsp), %rdi
   call incr
   addq %rbx, %rax
   addq $16, %rsp
   popq %rbx
   ret
```

Resulting Stack Structure

Callee-Saved Example #2

Resulting Stack Structure

```
long call_incr2(long x) {
    long v1 = 15213;
    long v2 = incr(&v1, 3000);
    return x+v2;
}
```

```
call_incr2:
  pushq %rbx
  subq $16, %rsp
  movq %rdi, %rbx
  movq $15213, 8(%rsp)
  movl $3000, %esi
  leaq 8(%rsp), %rdi
  call incr
  addq %rbx, %rax
  addq $16, %rsp
  popq %rbx
  ret
```


Pre-return Stack Structure

Today

- Procedures
 - Stack Structure
 - **2** Calling Conventions
 - Passing control
 - Passing data
 - Managing local data
 - Illustration of Recursion

Recursive Function

```
pcount r:
 movl $0, %eax
 testq %rdi, %rdi
        .L6
  jе
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq %rdi
 call
        pcount r
 addq
         %rbx, %rax
         %rbx
 popq
.L6:
 ret
```


Recursive Function Terminal Case

```
pcount r:
 movl $0, %eax
 testq %rdi, %rdi
 je .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
        %rdi
 shrq
 call
        pcount r
        %rbx, %rax
 addq
        %rbx
 popq
. L6:
```

ret

Register	Use(s)	Туре
%rdi	x	Argument
%rax	Return value	Return value

Recursive Function Register Save

```
pcount r:
 movl $0, %eax
 testq %rdi, %rdi
 jе
        .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq
        %rdi
 call
        pcount r
 addq
         %rbx, %rax
         %rbx
 popq
.L6:
 ret
```

Register	Use(s)	Туре
%rdi	x	Argument

Recursive Function Call Setup

```
pcount r:
 movl $0, %eax
 testq %rdi, %rdi
 je .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq %rdi
 call
        pcount r
 addq
        %rbx, %rax
        %rbx
 popq
. L6:
 ret
```

Register	Use(s)	Туре
%rdi	x >> 1	Rec. argument
%rbx	x & 1	Callee-saved

Recursive Function Call

```
pcount r:
 movl $0, %eax
 testq %rdi, %rdi
 je .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
        %rdi
 shrq
 call
        pcount r
 addq
        %rbx, %rax
        %rbx
 popq
. L6:
 ret
```

Register	Use(s)	Туре
%rbx	x & 1	Callee-saved
%rax Recursive call return value		

Recursive Function Result

```
pcount r:
 movl $0, %eax
 testq %rdi, %rdi
 je .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
        %rdi
 shrq
 call
        pcount r
 addq %rbx, %rax
        %rbx
 popq
. L6:
 ret
```

Register	Use(s)	Туре
%rbx	x & 1	Callee-saved
%rax	Return value	

Recursive Function Completion

```
pcount r:
         $0, %eax
 movl
 testq %rdi, %rdi
 jе
        . L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq
        %rdi
 call
         pcount r
 addq %rbx, %rax
         %rbx
 popq
.L6:
 ret
```

Register	Use(s)	Туре
%rax	Return value	Return value

Observations About Recursion

Handled Without Special Consideration

- Stack frames mean that each function call has private storage
 - Saved registers & local variables
 - Saved return pointer
- Register saving conventions prevent one function call from corrupting another's data
 - Unless the C code explicitly does so (e.g., buffer overflow in Lecture 9)
- Stack discipline follows call / return pattern
 - If P calls Q, then Q returns before P
 - Last-In, First-Out

Also works for mutual recursion

P calls Q; Q calls P

x86-64 Procedure Summary

- Important Points
 - Stack is the right data structure for procedure call / return
 - If P calls Q, then Q returns before P
- Recursion (& mutual recursion) handled by normal calling conventions
 - Can safely store values in local stack frame and in callee-saved registers
 - Put function arguments at top of stack
 - Result return in %rax
- Pointers are addresses of values
 - On stack or global

