

智能无人集群系统开发与实践基于RflySim平台的全栈开发案例

第6讲 外部控制与轨迹规划

大纲

- 1. 实验平台配置
- 2. 关键接口介绍(免费版)
- 3. 基础实验案例(免费版)
- 4. 进阶案例实验(集合版)
- 5. 扩展案例(完整版)
- 6. 小结

1.1 需要安装的组件

- · Visual Studio 2017 (体验版和完整版都需要安装)
- · 为MATLAB配置C++编译器(体验版和完整版都需要安装)
- Matlab 2023a*(高级完整版安装)

下面介绍Visual Studio 2017的安装方法(需要联网): 在本平台中,已经放置了Visual Studio 2017的安装包

1.2 Visual Studio 2017的安装方法

- 首先,我们可以打开平台安装的位置,找到*:\PX4PSP\RflySimAPIs此处位置, 此处放置的是平台中的一些例程以及软件的安装包
- 之后, 我们可以打开第四章的内容, 找到基础版的例程, 4.RflySimModel\1.BasicExps, 我们可以在其中找到名为VS2017Installer的文件夹, 其中便是Visual Studio 2017的安装包。

1.2 Visual Studio 2017的安装方法

- 安装Visual Studio 2017 (也可以 用其他版本, MATLAB能识别 即可)。
- 后续课程很多地方都需要用到 Visual Studio编译器,例如 MATLAB S-Function Builder模 块的使用、Simulink自动生成 C/C++模型代码等
- 本课程内容只需勾选右图的 "C++的桌面开发"即可。

1.2 Visual Studio 2017的安装方法

- •注意:高版本MATLAB也可安装VS2019,但是MATLAB只能识别到低于自己版本的Visual Studio,因此MATLAB 2017b无法识别VS 2019。
- •注意:请不要更改VS默认安装 目录(例如装到D盘),会导致MATLAB无法识别。
- 不能使用Mingw编译器,需VS

- 1.3 为MATLAB 配置C++ 编译器
- 在MATLAB的命令行窗 口中输入指令 "mex setup"
- ·一般来说会自动识别并安装上VS 2017编译器,如右图所示显示"MEX 配置使用'Microsoft Visual C++2017'以进行编译"说明安装正确
- •若有其他编译器,本页面还可以切换选择 VS 2013/2015等其他编译器

```
命令行窗口
  >> mex -setup
  哌x 配置为使用 'Microsoft Visual C++ 2017 (C)' 以进行 C 语言编译。
  警告: MATLAB € 和 Fortran API 已更改,现可支持
       包含 2/32-1 个以上元素的 MATLAB 变量。您需要
       更新代码以利用新的 API。
       %可以在以下网址找到更多的相关信息:
       http://www.mathworks.com/help/matlab/matlab_external/upgrading-mex-files-to-use-64-bit
   要选择不同的 C 编译器,请从以下选项中选择一种命令:
                              mex -setup:D:\MATLAB\R2017b\bin\win64\mexopts\msvc2013.xm1 C
  Microsoft Visual C++ 2013 (C)
  Microsoft Visual C++ 2015 (C)
                             mex -setup:D:\MATLAB\R2017b\bin\win64\mexopts\msvc2015.xm1 C
  Microsoft Visual C++ 2017 (C)
                             mex -setup:C:\Users\dream\AppData\Roaming\MathWorks\MATLAB\R2
  要选择不同的语言,请从以下选项中选择一种命令:
   mex -setup C++
   mex -setup FORTRAN
f_{\mathbf{x}} >>
```


- 1.4 Matlab 2023a的安装方法
- · MATLAB 安装包下载路径:
- https://ww2.mathworks.cn/pr
 oducts/matlab.html

大纲

- 1. 实验平台配置
- 2. 关键接口介绍(免费版)
- 3. 基础实验案例(免费版)
- 4. 进阶案例实验(集合版)
- 5. 扩展案例(完整版)
- 6. 小结

2.0 基础实验总览

包括基础功能接口"RflySimAPIs/6.RflySimExtCtrl/0.Api Exps"以及基础例程"RflySim APIs\6.RflySimExtCtrl\1.BasicE xps"

详细参见<u>API.pdf</u>以及<u>Read</u> me.pdf

1.PX4MavCtrlAPITest	2023/11/16 10:17	文件夹
2.PX4ComAPITest	2023/11/16 10:59	文件夹
3.PX4MavGPSCtrlTest	2023/11/16 10:17	文件夹
4.PX4RcCtrlAPITest	2023/11/16 10:17	文件夹
5.PX4MultiUavTest	2023/11/16 10:17	文件夹
6.PX4MavAccCtrlTest	2023/11/16 10:17	文件夹
7.PX4MavAttCtrlTest	2023/11/16 10:17	文件夹
8.GeoAPITest	2023/11/16 10:17	文件夹
9.UDPMode1TestShootBall	2023/11/16 10:48	文件夹
10.UDPMode0Test	2023/11/16 10:17	文件夹
11.UDPMode1Test	2023/11/16 10:17	文件夹
12.UDPMode2DefaultTest	2023/11/16 10:17	文件夹
13.UDPMode3Test	2023/11/16 10:51	文件夹
14.UDPMode4Test	2023/11/16 10:58	文件夹
15.Cam Obj Get	2023/11/16 11:14	文件夹
16.ReadTimeStmpGet	2023/11/16 10:17	文件夹
e0_ExtAPIUsage	2023/11/16 10:17	文件夹
= e1_PosCtrl	2023/11/16 10:17	文件夹
e2_VelCtrl	2023/11/16 10:17	文件夹
e3_RCCtrl	2023/11/16 10:17	文件夹
== e4_PyOffboardCtrl	2023/11/16 17:41	文件夹
== e5_RackFlyCtrl	2023/11/16 10:17	文件夹
e6_PathTrackingCtrl	2023/11/16 18:19	文件夹
== e7_MutUAVRemoteCtrl	2023/11/16 10:17	文件夹

2.1无人机控制接口调试实验 熟悉无人机 offboard 模式控制、 状态数据获取和 RflySim3 D 的控制接口, 了解 SITL 通信框 架。

详细操作及实验效果见 <u>0.ApiExps\1.PX4MavCtrlAPITe</u> <u>st\Readme.pdf</u>

2.2数传连接 Pixhawk 6C 飞控 硬件在环仿真实验

用 MicroUSB 线连接电脑和 Pixhawk 6C飞控, 开启一个飞机的硬件在环仿真。

详细操作及实验效果见

0.ApiExps\2.PX4ComAPITest\R
eadme.pdf

2.3无人机飞行控制实验 通过 RflySim 平台提供的 SendPosGlobal 函数接口实现控 制无人机移动。

具体实验操作及效果见 0.ApiExps\3.PX4MavGPSCtrlT est\Readme.pdf

2.4无人机电机转速 PWM 控制实验

利用平台提供的 SendRCPwms 函数接口对无人机电机的 PWM 控制,首先打开 MAVLink 以监控 CopterSim 数据并实时更新。然后设置 PWM 值,接着开启 RCOver ride 模式,开始发送 RC pwms 值,然后进行无人机的解锁进行控制, 发送指令让飞控退出 Offbo ard 模式,并且停止监听 MAVLin k 数据。详细操作及实验效果见①.

ApiExps\4.PX4RcCtrlAPITest\Readme.pdf

2.5多机 SITL 软件在环控制实验

根据平台提供的接口函数进行四个飞机的 offboard 模式下的位置控制以及速度控制 SITL 软件在环仿真。

具体实验操作及效果见 0.ApiExps\5.PX4MultiUavTest\ Readme.pdf mavList[0].sendUE4Cmd(b'RflyChangeViewKeyCmd S')
mavList[0].sendUE4Cmd(b'RflyChangeViewKeyCmd T')
18

2.6无人机飞行加速度控制实验 通过使用平台提供的接口函数, 通过 SendAccPX4 接口给飞机 发送加速度指令。

具体实验操作见文件

0.ApiExps\6.PX4MavAccCtrlTe
st\Readme.pdf

2.7无人机飞行控制实验

通过利用 RflySim 平台提供的 SendAttPX4 接口给飞机发送期 望姿态和油门数据。

具体实验操作见文件

0.ApiExps\7.PX4MavAttCtrlTes
t\Readme.pdf

```
13 mav.InitMavLoop()
14 time.sleep(0.5)
15
16 mav.initOffboard()
17 time.sleep(1)
18
19 mav.SendPosNED(0,0,-20)# 原地起飞,到20米高度
20 time.sleep(15)
```

```
print('Current Thrust: ',mav.uavThrust) # 获取当前的悬停油门
mav.SendAttPX4([0,-10,0],mav.uavThrust) # 设置俯仰角为10度,油门为悬停值
print('Send atttude command!')
time.sleep(2)
print('Current attitude: ', mav.uavAngEular[0]/math.pi*180, mav.uavAngEular[1]/math.pi*180, mav.uavAngEular[2]/math.pi*1
print('Current altitude: ',mav.uavPosNED[2])
time.sleep(5)

# From PX4 Web: Acceleration setpoint values are mapped to create a normalized
# thrust setpoint (i.e. acceleration setpoints are not "properly" supported).

# Display Position information received from CopterSim
print(mav.uavPosNED)
time.sleep(8)

mav.SendAttPX4([0,-10,0],-5,0,1)# 设置俯仰角为10度,保持高度为-5米
```


2.8UE 地图坐标系与无人机坐标系转换实验

熟悉无人机控制原点和 UE 地图原点坐标系转换。

具体实验操作见文件

0.ApiExps\8.GeoAPITest\Read me.pdf

2.9视觉控制撞击小球实验 通过调用平台接口进行对 RflySim3D 软件内图像的捕获, 并利用 opencv 进行图像处理, 并进行控制指令解算,控制无 人机运动。

具体实验操作见文件

0.ApiExps\9.UDPMode1TestSho
otBall\Readme.pdf

2.10无人机通过 UDP_Full 通信 实验

通过使用平台提供的接口函数, 通过 UDP_Full 通信给飞机发送 指令。

具体实验操作见文件

0.ApiExps\10.UDPMode0Test\R
eadme.pdf

2.11无人机通过 UDP_Simple 通信实验

通过使用平台提供的接口函数,通过 UDP_Simple 通信给飞机发送指令。

具体实验操作见文件

0.ApiExps\11.UDPMode1Test\R eadme.pdf

2.12无人机通过 MAVLink_Full 通信实验

通过使用平台提供的接口函数,通过 MAVLink_Full 通信给飞机发送指令。

具体实验操作见文件

0.ApiExps\12.UDPMode2Defaul
tTest\Readme.pdf

2.13无人机通过 MAVLink_Simple 通信实验 通过使用平台提供的接口函数, 通过 MAVLink_Simple 通信给 飞机发送指令。

具体实验操作见文件

0.ApiExps\13.UDPMode3Test\R
eadme.pdf

2.14 CopterSim-UDP 通信模式 通过使用平台提供的接口函数, 通过 MAVLink_NoSend模式对 CopterSim 给飞机发送指令。 具体实验操作见文件 0.ApiExps\14.UDPMode4Test\R eadme.pdf

2.15飞机、物体、相机信息获取实验

通过python接口获取飞机、物体和相机的信息。

具体实验操作见文件

0.ApiExps\15.CamObjGet\Read
me.pdf

2.16时间戳获取实验

通过调用

StartTimeStmplisten(self,cpID=0)接口,开始监听 20005 端口以获取 CopterID的 rflytimestamp 如果 cpID == 0,则只监听当前 CopterID。如果 cpID >0,则监听所需 CopterID 的时间戳。然后调

用 mav.RflyTime.SysCurrentTime

属性即为无人机的当前时间戳。 具体实验操作见文件

0.ApiExps\16.ReadTimeStmpGet\
Readme.pdf

大纲

- 1. 实验平台配置
- 2. 关键接口介绍(免费版)
- 3. 基础实验案例(免费版)
- 4. 进阶案例实验(集合版)
- 5. 扩展案例(完整版)
- 6. 小结

3.1.1 MAVLink 模块封装实验

MAVLink (Micro Air Vehicle Link)是一种用于小型无人载具的通信协议,于2009年首次发布。该协议广泛应用于地面站(Ground Control Station,GCS)与无人载具(Unmanned vehicles)之间的通信,同时也应用在载具上机载计算 消息进行数据发送模块和数据解析模块两部分。

具体实验操作见文件<u>1.BasicExps\e0</u> ExtAPIUsage\1.MavLinkPackSimulink\ Readme.pdf

3.1.2 MAVLink 数据发接实验

MAVLink(Micro Air Vehicle Link)是一种用于小型无人载具的通信协议,于2009年首次发布。该协议广泛应用于地面站(Ground Control Station,GCS)与无人载具(Unmanned vehicles)之间的通信,同时也应用在载具上机载计算机与Pixhawk之间的内部通信中,协议以消息库的形式定义了参数传输的规则。MAVLink协议支持无人固定翼飞行器、无人旋翼飞行器、无人车辆等多种载具。本实验将基于"*\PX4PSP\RflySimAPIs\7.RflySimExtCtrl\1.Ba

"*\PX4PSP\RflySimAPIs\7.RflySimExtCtrl\1.Ba sicExps\e0_ExtAPIUsage\1.MavLinkPackSimulin k"实验中建立的两个模块,模拟发送 MAVLINK_MSG_ID_HIL_ACTUATOR_CONT ROLS 消息并进行接收消息。

具体实验操作见文件

1.BasicExps\e0 ExtAPIUsage\2.MavlinkCodeDecode\Readme.pdf

3.2 Offboard 模式控制无人机位置控制实验

Offboard 模式是无人机的一种控制模式,通常给机载计算机或地面计算机(上位机)实时控制飞机的速度、位置、姿态等,可以把飞机当成一个整体对象,专注于顶层的视觉与集群算法开发。该实验主要讲位置控制实验。

具体实验操作见文件

1.BasicExps\e1_PosCtrl\readme.pdf

3.3 Offboard 模式控制无人机速度控制实验

Offboard 模式是无人机的一种控制模式,通常给机载计算机或地面计算机(上位机)实时控制飞机的速度、位置、姿态等,可以把飞机当成一个整体对象,专注于顶层的视觉与集群算法开发。该实验主要讲速度控制实验。

具体实验操作见文件1.BasicExps

e2_VelCtrl\readme.pdf

3.4遥控器模式单机控制

遥控器模式是人为操作无人机的 一种控制方式,在一些无人机特技表 演中有较好的效果,本节使用的遥控 器是"美国手"的操作方式,即左侧 摇杆对应的油门与偏航控制量,而右 侧摇杆对应滚转与俯仰。本次实验由 控制器代替遥控器进行试验。

具体实验操作见文件1.BasicExps\

e3_RCCtrl\readme.pdf

3.5 Python-Offboard 单机控制实验

Offboard 模式是无人机的一种控制模式,通常给机载计算机或地面计算机(上位机)实时控制飞机的速度、位置、姿态等,可以把飞机当成一个整体对象,专注于顶层的视觉与集群算法开发。Python 控制无人机是通过编程语言与无人机进行通信,其基本原理是通过串口或网络连接无人机建立通信,以获取无人机的状态信息和执行命令。使用PX4的OffboardAPI来控制车辆预期速度和位置的演示程序。

具体实验操作见文件

1.BasicExps\e4 PyOffboardCtrl\readme.pdf

3.6单机控制台架实验

本实验通过在 MATLAB/Sim ulink 中搭建多旋翼飞行控制器, 并通过 Simulink 发送控制指令, 控制转台上的四旋翼无人机姿 态。熟练掌握 MAVLINK 通信 运用,熟练掌握四旋翼无人机 姿态控制与参数整定。具体实 验操作见文件1.BasicExps\e5 R ackFlyCtrl\Readme.pdf

3.7多旋翼路径跟踪控制器仿真实验

了解给定的多旋翼三通道线 性化传递函数仿真模型和相应 的轨迹跟踪控制器,进行轨迹 跟踪。

具体实验操作见文件<u>1.Basic</u> Exps\e6 PathTrackingCtrl\Rea dme.pdf

大纲

- 1. 实验平台配置
- 2. 关键接口介绍(免费版)
- 3. 基础实验案例(免费版)
- 4. 进阶案例实验(集合版)
- 5. 扩展案例(完整版)
- 6. 小结

4.进阶案例实验

4.1MAVSfun 解锁 HIL 实验

MAVLink (Micro Air Vehicle Link)是一种用于小型无人载具的通信协议,于2009年首次发布。该协议广泛应用于地面站(Ground Control Station,GCS)与无人载具(Unmanned vehicles)之间的通信,同时也应用在载具上机载协算的通信,同时也应用在载具上机载协议,以消息库的形式定义了参数传输飞机,以消息库的形式定义了参数传输飞机。MAVLink协议支持无人重等多种代数,不会实验将通过 CopterSim 软件在硬件可以以及外域的方式,在 CopterSim 软件中显示解锁信息。

具体实验操作见文件2.AdvExps\e1 ExtAPIAdvUsage\1.MavSfunTest Arm\ Readme.pdf

4.进阶案例实验

4.2MAVLink 控制 HIL 实验

MAVLink (Micro Air Vehic le Link) 是一种用于小型无人 载具的通信协议,于2009年首 次发布。本实验将基于 CopterS im 软件在硬件在环仿真时。通 过 MAVLink 封装模块 UDP 的 方式,实现无人机姿态控制。 具体实验操作见文件2 Con\Readme.pdf

大纲

- 1. 实验平台配置
- 2. 关键接口介绍(免费版)
- 3. 基础实验案例(免费版)
- 4. 进阶案例实验(集合版)
- 5. 扩展案例(完整版)
- 6. 小结

5.扩展案例

正在开发中

大纲

- 1. 实验平台配置
- 2. 关键接口介绍(免费版)
- 3. 基础实验案例(免费版)
- 4. 进阶案例实验(集合版)
- 5. 扩展案例(完整版)
- 6. 小结

7. 小结

• 本讲主要对无人机系统的外部控制与轨迹规划进行讲解,分为基础实验、进阶实验和扩展案例三部分,可以实现模型故障注入以及飞控源码注入教程。

如有疑问,请到https://doc.rflysim.com/查询更多信息。

RflySim更多教程

扫码咨询与交流

飞思RflySim技术交流群

谢谢!