

aims

To come away with an intuitive* understanding of:

- (1) maximum likelihood
- (2) Bayes Theorem
- (3) what they mean for phylogenetic inference
- (4) a basis for understanding how** they work

*as little mathematics as possible **requires equations

We find the set of trees that maximise the Lh

$$p(X|\theta) = Lh$$

X = data

 θ = model parameters

{tree topology, branch lengths, node values} {mathematical description of change}

Calculating the likelihood X = observed data

A: Matrix

	a	b	С	d	е	f	g	h	1	j	
Paiwan	0	0	1	0	1	1	0	0	0	0	
Tagalog	0	1	1	0	0	1	1	0	1	0	
Manggarai	0	0	1	1	0	0	0	1	0	0	
Motu	1	1	1	0	1	0	0	0	0	0	
Fijian	1	1	1	1	1	0	0	0	0	0	
Samoan	1	0	1	1	0	0	0	0	0	1	
Maori	1	0	1	0	1	0	0	0	0	0	
	(

Calculating the site likelihood θ_1 = trees (some hypotheses about history)

Calculating the site likelihood θ_2 = node states and θ_3 = model of change

We combine a model of character change with some node values

C: Ancestral States

L(a) = P(0 \rightarrow 0lb1) x P(0 \rightarrow 0lb2) x P(0 \rightarrow 0lb3) x P(0 \rightarrow 0lb4) x P(0 \rightarrow 0lb5) x P(0 \rightarrow 1lb6) x P(1 \rightarrow 1lb7) x P(1 \rightarrow 1lb8) x P(1 \rightarrow 1lb9) x P(1 \rightarrow 1lb10) x P(1 \rightarrow 1lb11) x P(1 \rightarrow 1lb12)

L(a) = P(0 \rightarrow 0lb1) x P(0 \rightarrow 0lb2) x P(1 \rightarrow 1lb3) x P(1 \rightarrow 0lb4) x P(0 \rightarrow 0lb5) x P(0 \rightarrow 0lb6) x P(0 \rightarrow 0lb7) x P(0 \rightarrow 1lb8) x P(1 \rightarrow 1lb9) x P(1 \rightarrow 1lb10) x P(1 \rightarrow 1lb11) x P(1 \rightarrow 1lb12)

IN WORDS: the likelihood of character (a) is equal to the probability of (a) staying in state 0 along branch 1, multiplied by the probability of (a) staying in state 0 along branch 2 (...), multiplied by the probability of (a) changing to state 1 on branch 6, multiplied by the probability of it staying in state 0 on branch 7 ...

from Greenhill & Gray 2009

Calculating the site likelihood Lh = node values over all possible values ($\Pi\theta_2$)

D: Site Likelihood

... multiplied over all the possible node values for the character.

Calculating the tree likelihood $Lh = \Sigma$ site likelihoods

E: Tree Likelihood

IN WORDS: The likelihood of the tree is the sum of the likelihood of each site on that tree.

Calculating the maximum likelihood Find the tree with the best Lh

E: Tree Likelihood

The higher the likelihood (closer to zero) the more we prefer a tree. We retain that tree and tweak it in an iterative fashion.

We infer character state changes, so innovations and retentions are incorporated in the model.

from Greenhill & Gray 2009

Finding the maximum likelihood is computationally expensive

the good and the not-so-good of maximum likelihood

- desirable statistical properties
- explicit expression of model
- model-testing framework (LRT)
- lots of data > converge on MLE

- non-intuitive
- computationally expensive
- how do we integrate over trees?
- how to account for uncertainty

the Bayesian approach

- explicit expression of model
- model-testing framework
- retains advantages of ML
- computationally efficient
- can integrate over trees
- can account for uncertainty
- best for linguistic/cultural data

• intuitive statistical reasoning?

the Bayesian outlook

WORLD CUP WINNERS

World Cup fever

Greg Becker and Arminder Kainth ask who is likely to win the 2010 FIFA World Cup in South Africa? Can you get an answer from a model?

intensive - and arguably more accurate

- approach. What is the best approach,

Our assumptions were simple, and

■ We assumed that the probability of

winning, drawing or losing a match

hopefully familiar to statisticians:

who will win? We'll let you be the referee!

f a football fan makes a few heroic assumptions, a model can be used to estimate the likelihood of each team winning the World Cup. The attentive reader will no doubt find plenty of dubious decisions to debate but, then again, models are just models and they ought to be debated.

In this article we will cover a model and its assumptions, data, statistical approach and results, before kicking it into the crowd and considering a less mathematically

>>> Brazil — even with the historical record of winning 70% and drawing 15% of their World Cup matches — has a 13% chance of not progressing <<

2	Table tean		ple of the int	eraction of	two					
	Mexico									
_			23%	23%	54%					
South Africa			Win	Draw	Lose					
	22%	Win	096	0%	40%					
	44%	Draw	096	34%	0%					
	33%	Lose	2696	096	046					

could be estimated using likelihood estimation techniques leveraging past data

■ We naively assumed that past World Cup Final results are a data set that can be used to estimate future results (but is the past a good predictor of the future, given that players retire, different teams are at

reasoning about probability and updating our reasoning as new information becomes available

talking in maths*

probability

"forward" probability

M = 10 black, 5 white

X = 5 black then 5 white

$$p(X|M) = 10/15 * 9/15 * ... * 1/6 = 0.00033$$

i.e. what is the probability of these balls (data) given this model (urn)?

probability

"converse" probability

$$M = ?$$

$$X = 5$$
 black, 5 white

How do we find p(M|X)??? Impossible unless we know something about M!

i.e. given these balls (data) what can we infer about what's in the urn (model)?

probability

"converse" probability

The historical sciences regularly deal with this situation.

i.e. given these balls (data) what can we infer about what's in the urn (model)?

X are the Data
O the model Parameters

$$f(\theta \mid X) = \frac{f(\theta)f(X \mid \theta)}{\int f(\theta)f(X \mid \theta)d\theta}$$
posterior
$$\int f(\theta)f(X \mid \theta)d\theta$$
normalizing constant

J. Bayes.

Take another deep breath

conditional probability
$$p(X|M) = \frac{p(XM)}{p(M)}$$

joint probability
$$p(M) \times p(X|M) = p(XM)$$

similarly
$$p(X) \times p(M|X) = p(XM)$$

remember the balls (X) and urn (M) situation: \mathcal{D}

joint probability
$$p(M) \times p(X|M) = p(XM)$$

similarly $p(X) \times p(M|X) = p(XM)$

Bayes Theorem

$$p(M|X) = \frac{p(XM)}{p(X)}$$

$$p(M|X) = \frac{p(M) \times p(X|M)}{p(X)}$$

$$p(M|X) = \frac{p(M) \times p(X|M)}{p(X)}$$
Theorem
$$p(\theta|X) = \frac{p(X|\theta) p(\theta)}{p(X)}$$

Bayes Theorem
$$p(\theta|X) = \frac{p(X|\theta) p(\theta)}{p(X)}$$

$$p(\theta|X) = \frac{p(X|\theta) p(\theta)}{\sum \{(p(X|\theta_1)p(\theta_1)) + (p(X|\theta_2)p(\theta_2)) + ...\}}$$

$$p(\theta|X) = \frac{p(X|\theta) p(\theta)}{\int p(X) \text{ over all } \theta}$$

$$p(\text{you}) = \text{argh!} = 1.0$$

Bayes Theorem
$$p(\theta|X) = \frac{p(X|\theta) p(\theta)}{p(X)}$$

the probability of the data given the hypothesis

the probability of the hypothesis

posterior probability =

the probability of the hypothesis, given the data

likelihood of data x prior

marginal likelihood

the unconditional (over all hypotheses) probability of the data

the troublesome marginal likelihood

calculating the Lh(site) is analytically intractable

for 100 taxa, there are 4.02×10^{59} possible ancestral state configurations for one site

we need to sample this parameter space

random sampling is wasteful (huge space, lots of low probability)

MCMC to the rescue!

the posterior probability distribution as a landscape

the posterior probability distribution as a landscape

the posterior probability distribution as a landscape

Markov chain Monte Carlo sampler

parameters

modelling change in discrete characters I

we want to estimate these transition rate parameters!

Markov process

"A mathematical model of infrequent changes of discrete states over time, in which future events occur by chance and depend only on the current state, and not on the history of how that state was reached."

state at \mathbf{t}_{t+1} only depends on state \mathbf{t}

Markov chain Monte Carlo sampler I

- [1] Start at an arbitrary point in parameter space
- [2] Make a small random move in one parameter
- [3] Calculate proposal ratio (R) of new state to old state:
 - [a] if R > I then the new state is accepted
 - [b] if R < I then the new state is accepted with probability R
 - [c] If new state not accepted, stay in the old state

Markov chain Monte Carlo sampler 2

[3] Calculate proposal ratio (R) of new state to old state

 $R = min[I, Lh ratio \times prior ratio \times proposal ratio]$

[a] if R > I then the new state is accepted

[b] Generate random variable U[0,1]*

If R > U then the new state is accepted

[c] If new state not accepted, stay in the old state

* allows us to fully characterise the marginal distribution

Markov chain Monte Carlo sampler 3

- [1] Start at an arbitrary point in parameter space
- [2] Make a small random move in one parameter
- [3] Calculate proposal ratio (R) of new state to old state: Accept or not based on R, U
- [4] Repeat many, many times: a Markov chain

The proportion of time the MCMC procedure samples from a particular parameter region is an estimate of that region's posterior probability density

Markov chain Monte Carlo sampler 4

Bayesian Posterior Probability for model I (BPP $_{model\ I}$)= 4/6

Sampling the MCMC provides a valid approximation for the posterior distribution of trees (over 100,000s – 1,000,000s of generations) without having to know the denominator

but what is a prior?

priors I

information formalised as a distribution

informative prior

we have some good information

priors 2

information formalised as a distribution

informative prior

we have some bad information

priors 3

information formalised as a distribution

uniform prior

sometimes we don't know anything

priors 4

modelling change in discrete characters 2

Parameters can vary:

- (I) across sites (characters)
- (2) across the tree (heterotachy)

$$q01 = \alpha$$

$$q10 = \beta$$

rate variation across sites

residence

descent

$$q01 = \alpha = 1$$

$$q10 = \beta = 2$$

$$q01 = \alpha = 1$$

$$q10 = \beta = 2$$

characters have same rates

$$q01 = \alpha = 1$$

 $q10 = \beta = 2$

$$q01 = \alpha = 4$$

$$q10 = \beta = 1$$

characters have different rates

The Gamma Solution:

a relative rate multiplier for branches

- shrinks branches for faster rates of evolution, stretches for lower
- draw multipliers from a gamma distribution, magically approximated by actually just four rates

rate variation across the tree

residence

descent

$$q01 = \alpha = 1$$

$$q10 = \beta = 2$$

$$q01 = \alpha = 1$$

$$q10 = \beta = 2$$

characters have same rates ...

$$q01 = \alpha = 4$$

$$q10 = \beta = 1$$

$$q01 = \alpha = 4$$

$$q10 = \beta = 1$$

... but rates differ across the tree

rate variation across the tree

rate variation across the tree

residence

descent

$$q01 = \alpha = 1$$

$$q10 = \beta = 2$$

$$q01 = \alpha = 1$$

$$q10 = \beta = 2$$

characters have same rates ...

$$q01 = \alpha = 4$$

$$q10 = \beta = 1$$

$$q01 = \alpha = 4$$

$$q10 = \beta = 1$$

... but rates differ across the tree

The Covarion Solution:

sites are switched on/off at different parts of the tree

posterior probability distribution I

posterior probability distribution 2

diagnostics

chains
burn-in
convergence
acceptance rates
sampling / ESS
prior influence
MC3

summary

Lh tracer plots
all parameters
histograms
credibility interval
marginal likelihood

interpret

Bayes factors posterior:prior model plots

Tracer is very useful http://tree.bio.ed.ac.uk/software/tracer/

diagnostics I: chains

- [1] As many as you can
- [2] As long as you can run it
- [3] Sample to reduce autocorrelation
- [4] Use MC³ for hot/cold chains in one run if possible

diagnostics 2: trace plots

Generation

diagnostics 3: acceptance rates & effective sample size

[1] Acceptance of the proposed move has a rate [2] Aim for 20-70% acceptance [3] Use the tuning parameter to hit this target (e.g. ratedev in BayesTraits)

```
[1] ESS: effective sample size
[2] Each chain step is correlated with the previous
[3] Sample from the chain at large-ish intervals to reduce autocorrelation
[4] Plot θ<sub>t</sub> by θ<sub>t+1</sub> to assess
```

diagnostics 4: examples

- [1] As many as you can
- [2] As long as you can run it
- [3] Sample to reduce autocorrelation
- [4] Use MC³ for hot/cold chains in one run if possible

summary I: PPD histograms and 95%CI

95% credibility interval contains the true values with 95% probability

summary 2: the marginal likelihood

Approximate the marginal likelihood of the PPD with the harmonic mean of the likelihoods

$$H = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}} = \frac{n}{\sum_{i=1}^n 1/x_i}, \quad x_i > 0 \text{ for all } i.$$

harmonic mean = reciprocal of the arithmetic mean of all reciprocals

- [1] gives more weight to small values
- [2] minimises the effect of large values
- [3] not without contention!

interpretation I: model comparison and the Bayes factor

$$BF_{ij} = \frac{P(D|M_i)}{P(D|M_j)}$$

$$2\log_e(BF)$$

It can be useful to consider twice the natural logarithm of the Bayes factor, which is on the same scale as the familiar deviance and likelihood ratio test statistics. Rounding and using 20 rather than 10 as the requirement for strong evidence, we then obtain a slight modification:

$2\log_e(B_{10})$	(B_{10})	Evidence against H_0
0 to 2	1 to 3	Not worth more than a bare mention
2 to 6	3 to 20	Positive
6 to 10	20 to 150	Strong
>10	>150	Very strong

From our own experience, these categories seem to furnish appropriate guidelines.

Bayes factor

An evaluation of the support for one model over another.

No penalties are needed for extra parameters, because a more parameter-rich model has a larger parameter space and therefore a lower prior probability density.

interpretation 2: model plots for BayesTraits

Metropolis-coupled MCMC (MC3)

Imagine the PPD surface is made of wax

Multiple MCMC robots descend

Heat distorts the joint PPD and flattens it

> this makes it easier to explore regions of low probability

The cold chain (which could be stuck in a local optimum) can escape when a proposed swap with a hot chain is successful.

