Estadística Inferencial

Capítulo X - Ejercicio 03

Aaric Llerena Medina

Se seleccionó una muestra aleatoria de 16 observaciones de una población normal con media μ y varianza 400. Si para realizar la prueba de la hipótesis nula: $H_0: \mu=60$ se utiliza la región de rechazo $RC=\bar{X}>70.6$.

- a) Determine la probabilidad de error tipo I.
- b) Determine la probabilidad de error tipo II, si realmente, $\mu = 75$.

Solución:

Los parámetros conocidos son:

- Tamaño de la muestra: n = 16.
- Varianza poblacional: $\sigma^2 = 400$, por lo que $\sigma = 20$.
- Región de rechazo: $\bar{X} > 70.6$.
- Hipótesis alternativa: $H_1: \mu > 60$.

La desviación estándar del error estándar de la media es:

$$SE = \frac{\sigma}{\sqrt{n}} = \frac{20}{\sqrt{16}} = \frac{20}{4} = 5$$

a) El error tipo I ocurre cuando se rechaza H_0 siendo verdadera. La probabilidad es:

$$\alpha = P(\bar{X} > 70.6 \mid H_0)$$

Calculando el estadístico z bajo H_0 :

$$z = \frac{\bar{X}_c - \mu_0}{SE} = \frac{70.6 - 60}{5} = \frac{10.6}{5} = 2.12$$

Usando tablas de la distribución normal estándar, se tiene:

$$P(Z > 2.12) = 1 - P(Z < 2.12) = 1 - 0.9830 = 0.017$$

Por lo tanto, la probabilidad de error tipo I es: $\alpha = 0.017$.

b) El error tipo II ocurre cuando no se rechaza H_0 siendo falsa. Supongamos que $\mu=75$. La probabilidad de error tipo II es:

$$\beta = P(\bar{X} < 70.6 \mid H_1)$$

Calculando el estadístico z bajo H_1 :

$$z = \frac{\bar{X}_c - \mu_1}{SE} = \frac{70.6 - 75}{5} = \frac{-4.4}{5} = -0.88$$

Usando tablas de la distribución normal estándar, se tiene:

$$P(Z < -0.88) = 0.1894$$

Por lo tanto, la probabilidad de error tipo II es: $\beta = 0.1894$.