

Data Science Foundations Lesson #2 - Data Science Platforms

Ivanovitch Silva August, 2017

Agenda

- Data Science War
- Anaconda
- My First Notebook
- Version Control System
- Intro to Python for Data Science

DataCamp Learn data analysis for free,

DATA SCIENCE WARS

R and Python are waging war:
while both programming languages are gaining prominence
in the data analytics community, they are fighting
to become data scientists' language of choice.

Which side are you taking?

Language Rank Types		Types	Spectrum Ranking
1.	С	□ 🖵 🛢	100.0
2.	Java	\bigoplus \square \square	98.1
3.	Python	₩ 🖵	98.0
4.	C++		95.9
5.	R	₽	87.9
6.	C#	\oplus \Box \Box	86.7
7.	PHP	(1)	82.8
8.	JavaScript		82.2
9.	Ruby	⊕ 🖵	74.5
10.	Go	₩ 🖵	71.9

IEEE Spectrum - Jul 2017 https://goo.gl/HSPLWe

Version 3.x (https://www.python.org/downloads/)

Modern open source analytics platform powered by Python

Why Anaconda?

What is a Jupyter Notebook?

Mix of code and rich elements (text, figures, links, equations, etc)

Aside from JUlia, PYThon and R (JUPYTER) notebook technology also supports many other languages. https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

JupyterHub

https://github.com/jupyterhub/jupyterhu

JupyterHub can be used to serve notebooks to a class of students, a corporate data science group, or a scientific research group.

Gallery

About

Pricing

Anaconda

Help

Download Anaconda

Sign In

Search Anaconda Cloud

Q

Where packages, notebooks, and environments are shared.

Powerful collaboration and package management for open source and private projects.

Public projects and notebooks are always free.

Private plans start at \$7/month.

Sign Up Sign In New to Anaconda Cloud? Sign up! Pick a username Your email Use at least one lowercase letter, one numeral, and seven characters. Create a password Confirm password I accept the Terms & Conditions Sign up!

By clicking "Sign up!" you agree to our privacy policy and terms of service. We will send you account related emails occasionally.

Refresh

Environments

Projects (beta)

Learning

Community

Documentation

Developer Blog

Feedback

An extremely brief tutorial

Introduction to Git

```
script.py
                                                               you
                                                    import math
if name == "__main__":
                                                    print(10 + 10)
   print("Welcome to a script!")
                                                    if name == " main ":
                                                        print("Welcome to a script!")
                  coworker
if name == "__main__":
    print("Welcome to a script!")
    print("Here's my amazing contribution to this project!")
                                   merge
               import math
               print(10 + 10)
               if name == " main ":
```

print("Here's my amazing contribution to this project!")

print("Welcome to a script!")

Installing Git

https://git-scm.com/downloads

First step: create a repository (repo)

- 1. Create a folder named DataScience.
- 2. Navigate into this folder and initialize a Git repository (git init)
- 3. Run Is -la to check the contents of the DataScience folder

Creating files in the repo

1. Create a file named **README.md** with the following content:

My first git project

2. Create a file named script.py with this content:

```
if __name__ == "__main__":
    print("10")
```


Checking file status

Verify the status of files: git status

- 1. Check the status of the repo.
- 2. Add script.py to the staging area.
- 3. Add README.md to the staging area.

Configuring identity in Git

git config --global user.email "your.email@domain.com"

git config --global user.name "Your name"

Committing changes

Type git commit -m "Initial commit. Added script.py and README.md" to make the first commit to the repository with an informative message.

Reviewing the commit history

Description:

1. Run git log to explore the commit history of the repository.

Remote repositories

- Share our code with others and build a portfolio
- Collaborate with others on a project and build code together.
- Download and use code others have created

Remote repositories

Here's how we'd typically clone the <u>Amazon Deep Learning repo</u> from GitHub:

• git clone https://github.com/amznlabs/amazon-dsstne.git

Remote repositories [exercise]

- 1. Clone the "fast style transfer" project from Github to your local repository.
- 2. https://github.com/lengstrom/fast-style-transfer
- 3. Show history from git log
- 4. Clone the material of course

... go back to "DataScience" repo!!!

Github integration

Create a Github account

- Create a personal account. Select a unique username and password and enter your email.
- Choose a plan. If you select the free plan, all of your code (which is organized in repositories) will be public. Select the free plan for now.
 You can always upgrade to a paid plan later on, which would allow you to have private repositories.
- Read the GitHub <u>Hello World guide</u>.

Branch on repository

- Every Git repository consists of one or more branches.
- The main branch of a Git repo is typically called master.
- Use the git branch command to visualize the current branch of project

Pushing repo to Github

Pushing repo to Github [Exercise]

- Use the git remote command to visualize information about the repo.
- Create a repository in Github

```
git remote add origin https://github.com/<your_github_user>/hello-world.git git push -u origin master
```


See the following notebooks for additional info

Git and a Version Control - Introduction to Git.ipynb Git and a Version Control - Git Remotes.ipynb Git and a Version Control - Git Branches.ipynb

Warming up

- Python versions
- Basic data types
- List
- Files and Loops
- If statements
- Dictionaries
- Functions and Packages

Notebook: "Warming_up.ipynb"

Lists

```
# Create the areas list
areas = ["hallway", 11.25, "kitchen", 18.0, "living room",
         20.0, "bedroom", 10.75, "bathroom", 9.50]
# Print out areas
print(areas)
# Print out the type of areas
print(type(areas))
# Print out second element from areas
print(areas[1])
# Print out last element from areas
print(areas[-1])
# Print out the area of the living room
print(areas[-5])
# Add two new elements to the end of the list
areas.append("laundry")
areas.append(8.75)
```


Files and Loops

```
#create an empty list
int_crime_rates=[]

#print the rate of crimes for each city using a list(int)
for i in rows:
    int_crime_rates.append(int(i.split(",")[1]))
```


Dictionaries

(key,value)

```
# From string in countries and capitals, create dictionary europe
europe = {'spain':'madrid','france':'paris','germany':'berlin','norway':'oslo'}

# Print europe
print(europe)

# Print out the keys in europe
print(europe.keys())

# Print out value that belongs to key 'norway'
print(europe['norway'])
```


Dictionaries of Dictionaries

```
# Dictionary of dictionaries
europe = { 'spain': { 'capital':'madrid', 'population':46.77 },
           'france': { 'capital':'paris', 'population':66.03 },
           'germany': { 'capital': 'berlin', 'population':80.62 },
           'norway': { 'capital':'oslo', 'population':5.084 } }
# Print out the capital of France
print(europe['france']['capital'])
# Create sub-dictionary data
data = {'capital':'rome', 'population':59.83}
# Add data to europe under key 'italy'
europe['italy'] = data
```


Loop over dictionaries

Modules

```
#Import the math module as m
import math as m

#Use the sqrt() function from the math module
root = m.sqrt(33)

print(root)
```


Introduction to Python for Data Science

- Set
- Missing Values
- Try/Except blocks
- Enumerate
- List comprehensions

Notebook "Introduction to Python for Data Science Lipynb"

Set

When exploring data, it's often useful to extract the unique elements in a list

```
["Dog", "Cat", "Hippo", "Dog", "Cat", "Dog", "Dog", "Cat"]
```



```
["Dog", "Cat", "Hippo"]
```


Set

```
unique_animals = set(["Dog", "Cat", "Hippo", "Dog", "Cat", "Dog", "Cat"])
print(unique_animals)

unique_animals.add("Tiger")

unique_animals.remove("Dog")

unique_animals.add("Tiger")
```


Missing values

Missing values are very common in real world data analysis, since the people compiling the datasets often don't have full information. What to do when it occurs?

```
rows = [
     ["Bassett", "Richard", "1745-04-02", "M", "sen", "DE", "Anti-Administrat
ion"],
     ["Bland", "Theodorick", "1742-03-21", "", "rep", "VA", ""]
]
for row in rows:
    if row[6] == "":
        row[6] = "No Party"
```


Try/Excpet blocks

```
numbers = [1,2,3,4,5,6,7,8,9,10]
for i in numbers:
    try:
        int('')
    except Exception:
        print("There was an error")
```


Enumerate

```
animals = ["Dog", "Tiger", "SuperLion", "Cow", "Panda"]
viciousness = [1, 5, 10, 10, 1]
for animal in animals:
    print("Animal")
    print(animal)
    print("Viciousness")

???? how to print viciousness??
```


Enumerate

```
animals = ["Dog", "Tiger", "SuperLion", "Cow", "Panda"]
viciousness = [1, 5, 10, 10, 1]
for i, animal in enumerate(animals):
    print("Animal")
    print(animal)
    print("Viciousness")
    print(viciousness[i])
```


List Comprehensions

```
animals = ["Dog", "Tiger", "SuperLion", "Cow", "Panda"]
animal_lengths = []
for animal in animals:
    animal_lengths.append(len(animal))
```



```
animal lengths = [len(animal) for animal in animals]
```


References

- http://rogerdudler.github.io/git-guide/
- http://product.hubspot.com/blog/git-and-github-tutorial-for-beginners
- http://www.dataquest.io/
- http://www.datacamp.com/
- https://www.datacamp.com/community/tutorials/tutorial-jupyter
 -notebook#gs.2H4cgDM
- http://nbviewer.jupyter.org/github/jakevdp/PythonDataScienceH andbook/blob/master/notebooks/Index.ipynb

References

- http://www.kdnuggets.com/2017/06/7-steps-mastering-data-preparation-python.html
- https://blog.codecentric.de/en/2017/07/combining-social-networ k-analysis-topic-modeling-characterize-codecentrics-twitter-frien ds-followers/
- https://medium.com/intuitionmachine/why-teaching-will-be-the-sexiest-job-of-the-future-a-i-economy-b8e1c2ee413e

Lesson #2

