SS 16

Luke Hain

12. April 2016

Inhaltsverzeichnis

Ι	Computer Networks	3
1	Vorlesung 1.1 Einführung	4 4 5
2	Übung 2.1 Einführung 2.1.1 2.1.2 2.1.3 2.1.4	66 66 77 88
II	Theoretical Informatic and Logic	10
3	Vorlesung 3.1 Prädikatenlogik erster Stufe	11 11 12
4	Übung 4.1 Prädikatenlogik	14 14
II	I Computer Architecture	15
5	Vorlesung 5.1 Einführung	16 16
6	Übung 6.1 Einführung	17 17

IV	V Database	18
7	Vorlesung 7.1 Einführung	19 19
8	Übung 8.1 Einführung	20 20
\mathbf{V}	Hardware Internship	21
V	${ m I} { m C++4CG}$	22

Teil I Computer Networks

Vorlesung

1.1 Einführung

- Anwendungsfelder Rechnernetze (1.4)
 - Geschäftsanwendungen gemeinsame Nutzung von Resourcen
 - Privatbereich Informationszugriff (z.B. WWW, IM)
 - Mobile Benutzer Textnachrichten, ...
 - Gesellschaftliche Aspekte Copyright, Profile, ...
- Client Server Modell (1.5)
- Peer-to-Peer Communication (1.6)
- Basis-Netzstruktur (1.7)
 - Übertragungsmodi
 - * Verbindungsorientiert
 - * Verbindungslos (z.B. IP)
 - * Leitungsvermittelt
 - * Paketvermittelt (flexibler, ressourcenschonend)
- Schichtenarchitektur ISO/OSI Referenzmodell (1.8)
 - International Organization for Standardization
 - Open Systems Interconnection
 - Schichtenübersicht auf 1.8 ff.
- Integriertes Referenzmodell (Tanenbaum) (1.11)
 - Protokollimplementierung oft abweichend vom Referenzmodell

- Besipiel Datenübertragung (1.12)
- Schichteneffizienz (1.13)
- Dienste Begriffsklärung (1.14)
 - Beispiel Ablaufdiagramm (1.15)
- Netzkopplung Basis-Topologien
 - Punkt-zu-Punkt-Kanäle (Unicast)
 - Rundsendekanäle (Broadcast)
 - Klassifizierung nach Ausdehnung (1.17)
 - * Pan Personal Area Network
 - * LAN Local Area Network
 - * MAN Metropolitan Aria Network
 - * WAN Wide Area Network (1.18)
 - Mobilität || Leistung (1.19)
 - Konzepte Layer-N-Gateway (1.20)
 - Beispiel (1.21)
- Internet(1.22 ff)
 - Internet
 - * Geschichte des Internet (1.24 ff)
 - * Normen (1.26)
 - Intranet (1.22)

1.2 Bitübertragungsschicht

Übung

2.1 Einführung

timo.schick@tu-dresden.de

2.1.1

- a) Sterntopologie: Ein zentrales Element(Sternkoppler), jeder Rechner benötigt eine Leitung zu Sternkoppler $\to 5$
- b) Jeder mit Jedem = 4 + 3 + 2 + 1 = 10
- c) (1) l(n) = n bei Sterntopologie
 - (2) $l(n) = \sum ... = (n*(n-1))/2$ bei vollvermaschter Topologie
- d) (1) LAN
 - Reichweite: 10m
 - Reaktionszeit: niedrig
 - Datenrate: hoch
 - Topologien: Sterntopologie
 - (2) MAN
 - Reichweite: 10km
 - Reaktionszeit: mittel
 - Datenrate: mittel
 - Topologien: hierarchische Topologie
 - (3) WAN
 - \bullet Reichweite: $100 \mathrm{km} 10.000 \mathrm{km}$
 - Reaktionszeit: hoch
 - Datenrate: niedrig
 - Topologien: Vollvermaschte Topologie

2.1.2

- a) Dienst und Protokoll
 - siehe Musterlösung
- b) OSI Schichtenmodell
 - Schichtenmodell siehe Folie 1.8ff
 - Protokoll:
 - ist eine Sprache zur horizontalen Kommunikation zwischen Prozessen derselben Schicht auf verschiedenen Hosts
 - Dienst
 - dient der vertikalen Kommunikation zwischen zwei Schichten auf einem Host
 - Aufteilung des Bitstroms: Schicht 2 Sicherungsschicht
 - Ende-zu-Ende Kommunkation: Schicht 4 Transportschicht
 - Wegewahl: Schicht 3 Vermittlungsschicht
- c) keine inhaltliche Bearbeitung, sondern nur Informationsweiterleitung

2.1.3

- a) siehe Folie 1.15;
 - Initiator (Prozess A), ...
 - Responder (Prozess B), ...
- b) (1) Zustände bestimmen
 - idle
 - connected
 - prepare(Initiator)
 - prepare(Responder)
 - (2) Übergänge bestimmen (Knoten, Pfad, Knoten)
 - (idle, conReq, prep(Init))
 - (idle, ConInd, prep(Resp))
 - (prep(Resp), conRsp, connected)
 - (prep(Init), conCnf, connected)
 - (connected, dataRep/dataInd, connected)
 - (prep(Resp)/prep(Init)/connected, disRep/disInd, idle)
- c) (1) Ablaufdiagramm

- c1) + zeitlicher Ablauf
- c2) es werden n Diagramme benötigt
- c3) -
- (2) Zustandsdiagramm
 - c1) -
 - c2) + alle Abläufe in einem Diagramm darstellbar
 - c3) +

2.1.4

- a) siehe Folie 1.10
 - (1) PDU(N) = SDU(N-1)
 - (2) IDU(N) = ICI(N) + SDU(N)
- b) Seitenaufruf: http://www.heise.de/software
 - (1) httpRequest
 - i. GET/software/http/1.1
 - ii. Host: www.heise.de
 - (2) ICI
 - i. ip: 193.99.144.85 port:80
 - (3) SDU
 - i. GET/software/http/1.1
 - ii. Host: www.heise.de
 - (4) IDU
 - i. ICI
 - ii. SDU
 - (5) TCP-PDU
 - i. src:80, dest:80,...
 - ii. SDU
 - iii. Data

$$b_0 = 125 \frac{\text{Mbit}}{\text{s}}$$

$$b_1 = b_0 \cdot 0, 8$$

$$b_2 = b_1 \frac{(55 + 99)0, 01}{2}$$

$$b_3 = b_2 \frac{(57 + 99)0, 01}{2}$$

$$b_4 = b_3 \frac{(23 + 99)0, 01}{2} = 36, 4 \frac{\text{Mbit}}{\text{s}}$$

$$b_4 = b_{goodput}$$

$$b_{extra} = b_2 \frac{(23 + 99)0, 01}{2} = 46, 7 \frac{\text{Mbit}}{\text{s}}$$

Teil II Theoretical Informatic and Logic

Vorlesung

3.1 Prädikatenlogik erster Stufe

- Syntax
 - Ein Alphabet der Prädikatenlogik besteht aus ... (2)
 - forall heist universeller Quantor, exists heißt existenzieller Quantor
 - Funktions- und Relationssymbolen ist eine Stelligkeit n el N
 - Nullstellige Funktionssymbole werden als ... (3)
- Terme
 - Definition 4.2 prädikatenlogische Terme (4)
 - Ein Term ist abgeschlossen oder grundinstanziiert, wenn in ihm keine Variablen vorkommen
 - Die Menge der abgeschlossenen Terme wird mit T (F) bezeichnet
- Prädikatenlogische Atome (5)
- Prädikatenlogische Formeln (6)
 - prädikatenlogische Formeln
- Strukturelle Rekursion
 - Rekursionssätze lassen sich für T(F, V) und L(R,F,V) formulieren
 - Es gibt genau eine Funktion foo die die folgenden Bedingungen erfüllt: (7)
 - * Rekursionsanfang
 - * Rekursionsschritt
 - Beispiele (8/9)

3.2 Prädikatenlogik erster Stufe

- Strukturelle Induktion
 - Induktionssätze lassen sich für T(F,V) und L(R,F,V) formulieren
 - jeder Term besitzt die Eigenschaft E, wenn: (10)
 - analog für prädikatenlogische Formeln
- Aufgabe (11)
 - Beweisen Sie, dass $\forall F \in L(R, F, V)$ die Aussage l'(m(F)) > l(F) gilt
- Teilterme und Teilformeln (12)
 - Die Def. 3.8 lässt sich auf Terme und Formeln übertragen
 - Beispiel
- Freie und gebundene Vorkommen einer Variablen (13)
 - Def. 4.5 Die freien Vorkommen einer Variablen in einer prädikatenlogischen Formel sind wie folgt definiert: (13)
- Abgeschlossene Terme und Formeln (14)
 - nach Def. 4.2: Ein abgeschlossener Term ist ein Term, in dem keine Variable vorkommt
 - Def. 4.6 Eine abgeschlossene Formel (oder kurz ein Satz) der Sprache L(R,F,V) ist eine Formel der Sprache L(R,F,V), in der jedes Vorkommen einer Variablen gebunden ist
- Substitutionen (19)
 - Def. 4.7: Eine **Substitution** ist eine Abbildung $\sigma: V \to T(F, V)$, die bis auf endlich viele Stellen mit der Identitätsabbildung übereinstimmt
 - Beispiel
- Instanzen
 - Statt $\sigma(X)$ schreiben wirn in der Folge $X\sigma$
 - Def. 4.8: Sei sigma eine Substitution $\sigma: V \to T(F, V)$ kann wie folgt zu einer Abbildung $\sigma dach: T(F, V) \to T(F, V)$ erweitert werden: (25)
 - Grundinstanz
 - Proposition
- Komposition von Substitutionen

- Def. 4.10: Seien σ und θ zwei Substitutionen Die Komposition $\sigma\theta$ von σ und θ ist die Substitution: (30)
- Aufgaben
- Komposition von Substitutionen (33)

Übung

4.1 Prädikatenlogik

Teil III Computer Architecture

Vorlesung

5.1 Einführung

5.1.1 Big Data

"Big Data hat die Chance die geistige Mittelschicht in Hartz IV zu bringen"

Übung

6.1 Einführung

Teil IV
Database

Vorlesung

7.1 Einführung

Gründe für DBS-Einsatz:

- Effizienz und Skalierbarkeit
- Fehlerbehandlung und Fehlertoleranz
- Mehrbenutzersynchronisation

ANSI - Database

• Standard siehe 1VL

Geschichte der Datenbanktechnologie

• siehe 1VL(28 ff.)

Databases vs Information Retrieval

- Information Retrieval 1VL(44)
 - Suche nach Dokumenten
 - Nimmt ständig zu
 - In welchem Datenbstadn wird gesucht? etc...

Databases vs Big Data

• Big Data 1VL(47)

Übung

8.1 Einführung

$\label{eq:TeilV} \mbox{Hardware Internship}$

 $\begin{array}{c} \text{Teil VI} \\ \text{C++4CG} \end{array}$