Assignment 5 Solution

Digital Communication System-I

May 2023

1. (a) The probability of receiving bit-1 and bit-0 after the first transition can be given by

$$Pr(y = 1) = Pr(y = 1|x = 0) * Pr(x = 0) + Pr(y = 1|x = 1) * Pr(x = 1) = 0.62$$

 $Pr(y = 0) = Pr(y = 0|x = 0) * Pr(x = 0) + Pr(y = 0|x = 1) * Pr(x = 1) = 0.38$

Hence, the probability of receiving bit-1 at node B is

$$Pr(z=1) = Pr(z=1|y=0)*Pr(y=0) + Pr(z=1|y=1)*Pr(y=1) = 0.572,$$
 and similarly, $Pr(z=0) = 0.428.$

2. (b) MAP and ML decision rules are same when all the messages are equiprobable, i.e., Pr(x=0) = Pr(x=1) = 0.5 The MAP decision rule is given as,

$$\hat{m} = \arg\max_{1 \le m \le M} \frac{P_m p(r \mid s_m)}{p(r)}.$$

Since p(r) is independent of m, then MAP decision rule can be written as, $\hat{m} = \arg \max_{1 \leq m \leq M} P_m p(r \mid s_m)$.

If the messages are equiprobable, the optimal decision rule reduces to, $\hat{m} = \arg \max_{1 \le m \le M} p(r \mid s_m)$, which is same as the ML decision rule.

Therefore, the statement: MAP decision rule is same as the ML decision rule if Pr(y=0|x=1) = Pr(y=1|x=0) = 0.5, is false.

- 3. (c) We need optimum detection rule to minimize the probability of error. The receiver makes an optimal decision to minimize the probability of disagreement between the transmitted message \hat{m} given by $P_e = P[\hat{m} \neq m]$.
- 4. (c) The bit error probability for BPSK modulated signal with coherent detection over an AWGN channel with the power spectral density of the channel noise is $N_0/2$ is

$$Q\left(\sqrt{\frac{2\mathcal{E}_b}{N_0}}\right) = 0.1586.$$

Therefore, $\frac{E_b}{N_0} = 0.5 \times Q^{-1}(0.1586) = 0.5 = -3 \text{ dB}.$

5. (a) The probability of error for equiprobable binary signaling scheme over AWGN channel is given as $P_b = Q\left(\sqrt{\frac{d_{12}^2}{2N_0}}\right)$.

Now, for orthogonal signaling scheme $d_{12} = \sqrt{4\epsilon_b}$.

$$\therefore P_b = Q\left(\sqrt{\frac{d_{12}^2}{2N_0}}\right) = Q\left(\sqrt{\frac{2\epsilon_b}{N_0}}\right).$$

- 6. (a) Probability of error depends on Euclidean distances among signal vectors in signal space diagram.
- 7. (d) $r_{th} = \frac{N_0}{4\sqrt{\mathcal{E}_b}} \ln\left(\frac{1-p}{p}\right) = \frac{N_0}{4\sqrt{\mathcal{E}_b}} \ln\left(\frac{0.8}{0.2}\right) = \frac{0.35N_0}{\sqrt{\mathcal{E}_b}}$.
- 8. (b) From the definition, $Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty \exp\left(-\frac{u^2}{2}\right) du$. Hence, we can write $Q(-x) = \frac{1}{\sqrt{2\pi}} \int_{-x}^\infty \exp\left(-\frac{u^2}{2}\right) du$, where 1 can be represented as $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty \exp\left(-\frac{u^2}{2}\right) du$. Therefore, Q(x) = 1 Q(-x). Hence, $Q(x) \neq Q(-x)$, and thus Q function is not an even function.

And, $Q'(x) = \frac{\partial Q(x)}{\partial x} = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$, where Q'(x) > 0 for x > 0. Hence, Q(x) is an increasing function.

9. (a) From MAP decision rule,

$$\hat{m} = \arg\max_{1 \le m \le M} \left[\frac{N_0}{2} \log (P_m) - \frac{1}{2} \mathcal{E}_m + r^T S_m \right]$$

If the signals are equiprobable, then $P_m = \frac{1}{M}$ and the ML decision rule is given as

$$\hat{m} = \arg\max_{1 \leq m \leq M} \left\lceil \frac{N_0}{2} \log \left(P_m \right) - \frac{1}{2} \left\lVert r - S_m \right\rVert^2 \right\rceil = \arg\min_{1 \leq m \leq M} \left\lVert r - S_m \right\rVert$$

Also from $\arg\min_{1\leq m\leq M}\|r-S_m\|^2 = \arg\min_{1\leq m\leq M}\left(\|r\|^2 - 2r^TS_m + \|S_m\|^2\right) = \arg\max_{1\leq m\leq M}\left(\int_0^T r(t)S_m(t)dt - \frac{1}{2}\int_0^T |S_m(t)|^2 dt\right)$. The correct option is only (a).

10. (d) Impulse response of matched filter is given as h(t) = s(T-t)

$$\therefore h(t) = \frac{A}{T}\sin 2\pi f_c(T-t)$$

 \therefore Output of matched filter at t = T is derived as

$$g(t=T) = h(T) * s(T) = \int_0^T \left(s(\tau)h(T-\tau) \right) d\tau$$

$$g(t=T) = \int_0^T \left(\frac{A}{T} \sin 2\pi f_c \tau \right) \left(\frac{A}{T} \sin 2\pi f_c (T-(T-\tau)) \right)$$

$$g(t=T) = \frac{A^2}{2T} - \frac{A^2}{8\pi f_c T^2} \sin(4\pi f_c T)$$