وزارة التربية الوطنية

امتحان شهادة بكالوريا التعليم الثانوي دورة 2008

الشعبة : تقني رياضي

المدة : 04 ساعات و 30 د

الحتبار في مادة : الوياضيات

على المترشح أن يختار أحد الموضوعين التالبين : الموضوع الأول

تمرين 1: (4 نقاط)

لَتَكُنُّ فِي مجمُّوعَةَ الأعداد المركبة ۞ المعادلة (*) المعرفة كما يلي:

$$Z^3 + (2-4i)Z^2 - (6+9i)Z + 9(-1+i) = 0$$
 ... (*)

(*) بَيْن أَن $Z_0=3i$ هو حل المعادلة $Z_0=3i$

 $|Z_1| < |Z_2|$ على الشكل الأسى حيث $|Z_1| < |Z_2|$ على الشكل الأسى حيث $|Z_1| < |Z_2|$

كا نتكن $A: A: Z_1 \circ Z_1 \circ Z_2$ على الترتيب في مستو منسوب إلى معلم متعامد $C: B: A: X_1 \circ X_2 \circ X_1 \circ X_2 \circ X_1 \circ X_2 \circ X_1 \circ X_2 \circ X_2 \circ X_2 \circ X_1 \circ X_2 \circ X_2$

$$\{(A,1);(B,1);(C,-1)\}$$
 مين النقطة G مرجح الجملة $\{(C,0);(C,-1)\}$.

 $AM^2 + BM^2 - CM^2 = -13$; $\Delta M = M^2 + BM^2 - CM^2 = -13$

(E) بين أنّ النقطة A تنتسي إلى المجموعة (E) ثمّ أنشئ (E).

ركتمقق أنّ النقط B:O في استقامية ثمّ عين صورة المجموعة (E) بالتحاكي الذي مركزه النقطة O ويحول B إلى C محددا عناصره العميزة.

تمرين 2: (5 نقاط)

 $\left(O; ec{i}, ec{j}, ec{k}
ight)$ نعتبر الفضاء منسوب إلى معلم متعامد ومتجانس

يقط من هذا القضاء. C(1,3,3) ، B(3,2,1) ، A(1,2,2)

1/ برهن أن النقط ٥ ، B ، برهن أن النقط ٥ ، B ، برهن أن النقط عليكار تية.

 (P_1) و (P_2) المعرفين بمعادلتيهما الديكارتيتين (P_1)

$$(P_1): x-2y+2z-1=0$$

$$(P_2)$$
: $x-3y+2z+2=0$

 (Δ) بيّن أنّ (P_1) و (P_2) يتقاطعان وفق مستقيم

(۵) بين أن التقطة c تنتمي إلى المستقيم (۵).

 $u(\Delta)$ بين أنّ الشعاع u(2,0,-1) هو أحد أشعة توجيه المستقيم $u(\Delta)$.

5/ استنتج أن التمثيل الوسيطى للمستقيم (۵) هو الجملة:

$$\begin{cases} x = 2k+1 \\ y = 3 \\ z = -k+3 \end{cases}$$

 $(k\in\mathbb{R})$ حيث

 \overline{u} و \overline{M} منقطة من المستقيم (Δ) ، أوجد قيمة الوسيط k حتى يكون الشعاعان \overline{M} و متعامدين، ثم استنتج المسافة بين النقطة M والمستقيم (Δ).

يمرين 3: (7 نقاط)

 $f(x) = \frac{2x+3}{x+2}$ نعتبر الدالة العددية f المعرقة على المجال [0;2] بالعبارة

1/ أ- ادرس تغيرات الذالة تر على المجال [2;0]

ب- أنشى (C) المنحنى الممثل للذالة f في معلم متعامد ومتجانس $(C; \overline{i}, \overline{j})$. (الوحدة على المحورين 4cm)

 $f(x) \in [0;2]$ فإن $x \in [0;2]$ فإن $x \in [0;2]$

 $egin{aligned} U_0 &= 0 &: egin{aligned} \mathbb{N} & \mathbb{N} & \mathbb{N} & \mathbb{N} & \mathbb{N} \end{aligned}$ على $\mathbb{N} & \mathbb{N} &$

 $egin{align} U_{m1} = f(U_n) \ U_n = U_n \end{pmatrix}$ أ - برزر وجود المنتالية U_n احسب الحدين $U_n = U_n$ و $U_n = U_n$ المناه والمناه والم

(C) بالاستعانة بالمنحنى $U_1 \circ U_2 \circ U_3$ بالاستعانة بالمنحنى y=x . y=x

ج - ضع تخمينا حول اتجاه تغيّر (U_s) و تقاربها انطلاقا من التمثيل السابق.

 $0 \leqslant U_{n} \leqslant \sqrt{3}$: أ - بر هن بالتراجع على العدد الطبيعي n أنَ : $0 \leqslant U_{n} \leqslant \sqrt{3}$

. $U_{n+1} > U_n$: فإن $U_n = U_{n+1} > U_n$ فإن $U_n = U_{n+1} > U_n$ مأذا تستنتج بالنسبة إلى تقارب U_n ؟

ج – تحقق أن: $(U_s - \sqrt{3}) \leqslant \frac{2 - \sqrt{3}}{U_s + 2}$ من أجل كل عدد طبيعي $u_s = -\sqrt{3} = \frac{2 - \sqrt{3}}{U_s + 2}$

 $|U_{n+1}-\sqrt{3}|\leqslant k|U_n-\sqrt{3}|$: بحيث: |0;1[بحيث عدد حقيقيا k من |0;1[بحيث $|U_n-\sqrt{3}|\leqslant k^n|U_0-\sqrt{3}|$ بين أنه من أجل $|U_n-\sqrt{3}|\leqslant k^n|U_0-\sqrt{3}|$ بين أنه من أجل $|U_n-\sqrt{3}|$

تمرين 4: (4 نقاط)

n عدد طبيعي أكبر من 5.

b=2n+3 و a=n-2 و معددان طبیعیان حیث a=n-2

أ - ما هي القيم الممكنة للقاسم المشترك الأكبر للعددين a و 6 ؟

ب - بيّن أنّ العددين a و b من مضاعفات 7 إذا وفقط إذا كان 4 م مضاعفا للعدد 7 ـ

PGCD(a;b) = 7 ج عيّن قيم n التي يكون من أجلها

2/ نعتبر العددين الطبيعيين p و p حيث:

 $q = n^2 - 7n + 10$ $p = 2n^2 - 7n - 15$

n-5 أ مبين أن كل من العددين p و p يقبل القسمة على

. PGCD(p;q) ، n وبدلالة n وبدلالة ب عين تبعا لقيم n

التمرين الأول: (04 نقاط)

4x - 9y = 319 (I) الصحيحين x و y : (I) (I)

أ - تأكد أن الثنائية (1, 82) حل للمعادلة (1).

حل المعادلة (1).

 $4a^2 - 9b^2 = 319$ (II) : عين الشائيات (a, b) الصحيحة احلول المعادلة (2

3) استنتج الثانيات (x_0, y_0) حلول المعادلة (١) بحيث $x_0 \in \mathcal{Y}$ مربعين تامين.

التمرين الثاني: (04 نقاط)

رعم السافين وجهاء ABCDEF موشور قائم قاعدته المثلث ABC القائم في A والمتساوي السافين وجهاء ABCDEF ACFD مربعان مثقايسان طول ضلع كل منهما $r \in \mathbb{R}^+$ ACFD (انظر الشكل)

- G يرمز I إلى منتصف G G و G إلى مركز ثقل الرباعي G . بين أن G مرجح الجملة $\{(A;2),(B;1),(C;1),(D;2),(E;1),(F;1)\}$ هو منتصف $\{(A;2),(B;1),(C;1),(D;2),(E;1),(F;1)\}$
 - $A; \ \overline{AB}, \ \overline{AC}, \ \overline{AD})$ ينسب القضاء إلى المعلم المتعامد المتجانس (2)
 - $+F \cdot E \cdot D \cdot C \cdot B \cdot A$ عين إحداثيات النقط -
 - عين مجموعة النقط M من الفضعاء التي تحقق :

 $2MA^2 + MB^2 + MC^2 + 2MD^2 + ME^2 + MF^2 = 10r^2$

التمرين الثالث : (04 نقاط)

م عدد حقیقی موجب نماما و heta عدد حقیقی کیفی au

أ) حل في مجموعة الأعداد المركبة ۞ المعادلة ذات المجهول :

 $z^2 - 2i \left(r \cos \frac{\theta}{2}\right)z - r^2 = 0$

اكتب الحلين على الشكل الأسى،

2) في المستوي المركب المنسوب آلى المعلم المتعامد والمتجانس $(O; \overline{u}, \overline{v})$ نعتبر النقطتين A و B صورتي الحلين.

عين 6 حتى يكون المثلث OAB متقايس الأضلاع.

للتمرين الرابع: (08 نقاط)

• $f(x) = \frac{x^2 + 5}{x + 2}$ الدالة العددية المعرفة على $f(x) = \frac{x^2 + 5}{x + 2}$

 C_{j} منحنى f في المستوي المنسوب إلى المعلم المتعامد و المتجانس C_{j} ،

(وحدة الأطوال 2cm)

 $\hat{j} = 1$ ا $\hat{j} = 1$ الدالم $\hat{j} = 1$ عند أطراف مجموعة التعريف $\hat{j} = 1$

ب – ادرس اتجاه تغيّر ﴿ ثُمَّ شَكُلُ جَدُولُ تَغَيْرِ اتَّهَا.

 C_j و C_j بين أن المستقيم (D) الذي معادلته x-2 و مقارب للمنحنى C_j ثم ارسم و C_j و

 $\left[1;\frac{5}{2}\right]$ محتواة في المجال محتواة المجال محتواة المجال محتواة المجال المجال المجال المجال المحتواة المجال المحتواة المجال المحتواة المحتواة

 $U_{0}=1$ ومن أجل كل عدد طبيعي $U_{0}=1$ ألمعرفة بحدها الأول $U_{0}=1$ ومن أجل كل عدد طبيعي $U_{0}=1$ أدينا: $U_{0}=1$

اً – باستخدام C_{j} و المستقيم ذي المعادلة y=x مثل U_{0} و U_{1} على حامل محور الفواصل (ox).

 $r(U_n)$ جمن اتجاء تغير وتقارب المنتالية

 $U_n \leqslant rac{5}{2}$ ج $U_n \leqslant rac{5}{2}$ ج بين أنه من أجل كل عند طبيعي n فإن:

د - استنتج آن (U_n) متقاربة و احسب U_n د - استنتج