Al Response:

Kinematics is a branch of mechanics that focuses on the motion of objects witho

```
### Key Concepts
```

- 1. **Displacement**: A vector quantity that represents the change in position of a
- 2. **Distance**: A scalar quantity that describes the total length of the path trave
- 3. **Velocity**: A vector quantity that refers to the rate of change of displacemen \[v = \frac{\Delta x}{\Delta t} \]

where \(\Delta x \) is the change in position and \(\Delta t \) is the change in til

- 4. **Speed**: A scalar quantity that represents how fast an object is moving, calc
 \[
 \text{Speed} = \frac{\text{Distance}}{\Delta t}
 \]
- 5. **Acceleration**: A vector quantity that represents the rate of change of velocity a = \frac{\Delta v}{\Delta t}
 \]
 where \(\Delta v \) is the change in velocity.

Equations of Motion

For objects moving with constant acceleration, the kinematic equations can be u

- \(v = u + at \)
 (Final velocity = Initial velocity + Acceleration × Time)
- 2. \(s = ut + \frac{1}{2} a t^2 \)
 (Displacement = Initial velocity × Time + 0.5 × Acceleration × Time²)
- 3. \(v^2 = u^2 + 2as \)
 (Final velocity squared = Initial velocity squared + 2 × Acceleration × Displacer
- 4. \(s = \frac{(u + v)}{2} \times t \)(Displacement = Average of initial and final velocity × Time)

Types of Motion

1 ** I Iniform Mation **: Mation at a constant anged in a straight line