

(12)特許協力条約に基づいて公開された国際出頭

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年6 月3 日 (03.06.2004)

PCT

(10) 国際公開番号 WO 2004/046714 A1

(51) 国際特許分類7: G01N 30/48, B01D 15/08, B01J 20/26

(21) 国際出願番号:

PCT/JP2003/014450

(22) 国際出願日:

2003年11月13日(13.11.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2002-334724

2002年11月19日(19.11.2002) JF

(71) 出願人 (米国を除く全ての指定国について): ダイセル化学工業株式会社 (DAICEL CHEMICAL INDUSTRIES, LTD.) [JP/JP]; 〒590-8501 大阪府 堺市 鉄砲町

1番地 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 鈴木 晋介 (SUZUKI,Shinsuke) [JP/JP]; 〒671-1234 兵庫県 姫 路市 網干区新在家 9 4 0 Hyogo (JP). 大西 敦 (ONISHI,Atsushi) [JP/JP]; 〒 305-0047 茨城県 つくば市 千現 1-1 4-1 4 Ibaraki (JP). 米田 和美 (YONEDA,Kazumi) [JP/JP]; 〒 676-0082 兵庫県 高砂市 曽根町 2 0 2 6-1 Hyogo (JP).

(74) 代理人: 古谷 聡、外(FURUYA,Satoshi et al.); 〒103-0007 東京都 中央区 日本橋浜町 2-1 7-8 浜町花長 ビル 6 階 Tokyo (JP).

(81) 指定国(国内): CN, IN, KR, US.

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: SEPARATING AGENT FOR OPTICAL ISOMER

(54) 発明の名称: 光学異性体用分離剤

(57) Abstract: A method for preparing a separating agent for an optical isomer, which comprises a step of contacting a dope of an optically active polymeric compound with a porous carrier, to allow the porous carrier to carry the optically active polymeric compound, and a subsequent step of irradiating the resultant product with a radiation ray. The method allows the preparation of a separating agent for an optical isomer, which combines high capability for optical resolution and satisfactory resistance to solvent.

separating agent for an optical isolated, which will be separating agent for an optical isolated, which is separating agent for an optical isolated agent for an optical iso

明細書

光学異性体用分離剤

発明の属する技術分野

本発明は光学異性体用分離剤、その製造法等に関する。 高速液体クロマトグラフィー (HPLC) に用いられる。

従来技術

従来から光学活性な高分子化合物、中でも多糖類やその誘導体、例えばセルロースやアミロースのエステル又はカルバメート誘導体が高い光学分割能力を示すことはよく知られている。またこれらをシリカゲル上に物理的に吸着、担持させたクロマトグラフィー用分離剤が幅広い光学分割能、高い段数、耐久性を示す優れた分離剤であることも、よく知られている(Y. Okamoto, M. Kawashima and K. Hatada, J. Am. Chem. Soc., 106, 5357, 1984)。

しかしながら、これらの分離剤は、光学活性な高分子化合物をシリカゲルに物理的な吸着によって担持させているために、光学活性な高分子化合物を溶解せしめる溶媒は移動相等に使用することができず、分離条件選択に制約があった。また試料を溶解する溶媒にも制限があり、移動相として使用可能な溶媒に対して溶解性の小さい試料では、特にクロマト分取時において大きな短所があった。さらに分離剤に強く吸着する汚染物質の洗浄においても、洗浄液が制限されるという欠点があった。これらの点から、耐溶媒性を兼ね備えた分離剤が強く求められていた。

このような問題を解決するために、光学活性な高分子化合物、例えば多糖誘導体を担体上で固定化させる方法がこれまでにも提案されている。例えば特開平

4-202141 号公報においては、多糖類の水酸基部位にエステル結合もしくはウレタン結合を介してビニル基を導入した多糖誘導体を、ビニル基を導入した多孔質担体に対して直接共重合しめた光学異性体用分離剤が開示されている。

また、本発明者らにあっても、先に特公平 7-30122 号公報において、イソシアネート誘導体を介して多糖誘導体をシリカゲルに化学的に結合させることにより両者の安定性を確保する技術を明らかにし、更に特開平 11-171800 号公報においては、セルロース誘導体を担持したシリカゲル上でスチレン、ジビニルベンゼンをラジカル共重合させて網掛けをして固定化する方法を提案している。

しかし、これらの方法は、特別のイソシアネート誘導体を準備する必要がある、 更には製造工程が多いといった問題により工業的レベルでの生産には向かなかっ た。

一方、W097/04011 号公報において、光重合性官能基を持たない多糖類誘導体を光化学的に架橋させた多糖類誘導体及びその製造方法が開示されている。しかし、光重合性官能基を持たない多糖類誘導体を光化学的に架橋させる方法は、架橋率の制御が極めて困難であるため再現性よく製造することができず、光は透過性が低いため大量生産が極めて難しい等の問題点があり、やはり工業的レベルでの生産には向かなかった。

従って、光学活性な高分子化合物本来の高い光学分割能力を有し、かつ耐溶媒 性を兼ね備え、更には簡単に製造できる光学異性体用分離剤が強く望まれていた。

発明の開示

本発明の課題は、光学活性な高分子化合物本来の高い光学分割能力と十分な耐容媒性を兼ね備えた光学異性体用分離剤、及びその製造方法、前記分離剤を用いた光学異性体の分離方法を提供することである。

本発明は、多孔質担体に光学活性な髙分子化合物が担持されている光学異性体

用分離剤であり、光学活性な高分子化合物が、放射線の照射により不溶化されている光学異性体用分離剤を提供する。

また、本発明は、上記の光学異性体用分離剤の製造方法であり、

多孔質担体と光学活性な高分子化合物のドープとを接触させ、多孔質担体に光 学活性な高分子化合物を担持させる工程、

その後、放射線を照射する工程を具備する、光学異性体用分離剤の製造方法を 提供する。

本発明は特に高速液体クロマトグラフィー(HPLC)に好適に用いられる。 発明の詳細な説明

以下、本発明の光学異性体用分離剤の製造方法を説明し、合わせて本発明の光学異性体用分離剤についても説明する。なお、以下の各製造工程に加えて、当業者により行われる通常の処理を付加することができるほか、各製造工程は、それぞれが独立した別々の工程としても良く、連続した一つの工程としても良い。

第1工程は、多孔質担体と光学活性な高分子化合物のドープとを接触させ、多 孔質担体に光学活性な高分子化合物を担持させる工程である。

多孔質担体と光学活性な高分子化合物のドープとの接触方法は特に制限される ものではなく、適当な器具や装置を用い、多孔質担体に光学活性な高分子化合物 のドープを塗布する方法、容器内に多孔質担体を入れ、更に光学活性な高分子化 合物のドープを加えて、機械的又は人為的手段で攪拌混合する方法等を適用でき る。なお、多孔質担体に光学活性な高分子化合物を担持させた後、多孔質担体上 に光学活性な高分子化合物と共に残留する溶媒は揮発除去させることが好ましい。

この第1工程の処理により、多孔質担体の開孔内も含めた表面上に光学活性な高分子化合物が担持される。この担持状態は、多孔質担体と光学活性な高分子化合物との組み合わせにより異なり、多孔質担体に光学活性な高分子化合物が単に物理的な吸着等によって付着した状態のものから、多孔質担体と光学活性な高分

子化合物が化学的に結合されたものまである。

第1工程においては、所要量の光学活性な高分子化合物のドープを複数に分割し、多孔質担体にドープの一部を接触させ、乾燥する工程を一工程とし、この工程を複数回繰り返し、多孔質担体に光学活性な高分子化合物を担持させる工程にすることもできる。

光学活性な高分子化合物のドープは、好ましくは $2\sim 20$ 分割、より好ましくは $2\sim 10$ 分割する。

乾燥は、ドープを得るために用いた溶媒を揮発除去させるためのものであり、 常圧又は減圧下、常温又は加温下、更にガス気流のもとで行う。

多孔質担体にドープの一部を接触させ乾燥させる工程は、好ましくは2~20 回繰り返し、より好ましくは2~10回繰り返す。各回ごとのドープの使用量は、 同一でも異なっていても良い。

第1工程として、このような複数回に分けた担持方法を適用することにより、 多孔質担体の表面上の全体に対して、より均一に光学活性な高分子化合物を担持 させることができ、光学異性体用分離剤の分離性能が高められるため好ましい。

多孔質担体としては、多孔質有機担体又は多孔質無機担体を用いることができ、 好ましくは多孔質無機担体である。

多孔質有機担体として適当なものは、ポリスチレン、ポリアクリルアミド、ポリアクリレート等からなる高分子物質であり、多孔質無機担体として適当なものは、シリカ、アルミナ、マグネシア、ガラス、カオリン、酸化チタン、ケイ酸塩、ヒドロキシアパタイト等であるが、特に好ましいものはシリカゲルである。なお、シリカゲルを使用する場合は、シリカゲル表面における残存シラノールの影響を排除し、光学活性な高分子化合物との親和性を向上させるため、シリカゲルをシラン化処理(アミノプロピルシランを用いたシラン化処理等)、プラズマ処理により表面処理することが望ましいが、全く表面処理が施されていなくても問題な

17

多孔質担体、特にシリカゲルの粒径は、好ましくは $1\sim300\,\mu$ m、より好ましくは $2\sim100\,\mu$ m、さらに好ましくは $3\sim50\,\mu$ mであり、平均細孔径は、好ましくは $60\sim8000$ Å、より好ましくは $120\sim4000$ Å、さらに好ましくは $300\sim3000$ Åである。なお、多孔質担体の粒径が、実質的に分離剤の粒径になる。

多孔質担体の平均細孔径が前記範囲内であると、光学活性な高分子化合物溶液が細孔内に充分に浸透され、光学活性な高分子化合物が細孔内壁に均一に付着されやすくなるので好ましい。更に、細孔が閉塞されてしまうことがないため、分離剤の圧力損失を低く維持できる。

光学活性な高分子化合物としては、光学活性な高分子化合物が重合性不飽和基を含有していないものが好ましく、より好ましくは多糖誘導体を用いることができる。特に多糖誘導体の置換誘導体全でが同一の誘導体であることが、光学活性高分子の規則正しい高次構造を形成し易い点で好ましい。

多糖誘導体を導く多糖としては、合成多糖、天然多糖及び天然物変成多糖のいずれかを問わず、光学活性であればいかなるものでもよいが、好ましくは結合様式の規則性の高いものが望ましい。

例示すれば $\beta-1$, 4-グルカン(セルロース)、 $\alpha-1$, $4-\mathring{O}$ ルカン(アミロース、アミロペクチン)、 $\alpha-1$, $6-\mathring{O}$ ルカン(デキストラン)、 $\beta-1$, $6-\mathring{O}$ ルカン(グスツラン)、 $\beta-1$, $3-\mathring{O}$ ルカン(例えばカードラン、シゾフィラン等)、 $\alpha-1$, $3-\mathring{O}$ ルカン、 $\beta-1$, $2-\mathring{O}$ ルカン(Crown Gall 多糖)、 $\beta-1$, $4-\mathring{D}$ ラクタン、 $\beta-1$, $4-\mathring{D}$ フクタン、 $\beta-1$, $4-\mathring{D}$ フクタン(イヌリン)、 $\beta-2$, $6-\mathring{D}$ フクタン(レバン)、 $\beta-1$, $4-\mathring{D}$ 2・ $\beta-1$, $4-\mathring{D}$ 3・ $\beta-1$, $4-\mathring{D}$ 4・ $\beta-1$ 0・ $\beta-1$ 1, $3-\mathring{D}$ 4・ $\beta-1$ 2・ $\beta-1$ 3・ $\beta-1$ 4・ $\beta-1$ 5・ $\beta-1$ 5・ $\beta-1$ 7・ $\beta-1$

あり、アミロースを含有する澱粉も含まれる。

これらの中でも、高純度の多糖を容易に入手できるセルロース、アミロース、 $\beta-1$, 4-キシラン、 $\beta-1$, 4-キトサン、キチン、 $\beta-1$, 4-マンナン、イヌリン、カードラン等が好ましく、特にセルロース、アミロースが好ましい。

多糖の数平均重合度(1分子中に含まれるピラノースあるいはフラノース環の平均数)は、好ましくは5以上、より好ましくは10以上であり、特に上限はないが、1000以下であることが取り扱いの容易さの点で好ましく、より好ましくは $5\sim1$ 000、更に好ましくは10 ~1 000,特に好ましくは10 ~5 00である。

多糖誘導体は、上記した多糖の水酸基の一部又は全部に水酸基と反応可能な官能基を有する化合物を、エステル結合、ウレタン結合、エーテル結合等させることにより、得られるものを用いることができる。

水酸基と反応しうる官能基を有する化合物としては、イソシアン酸誘導体、カルボン酸、エステル、酸ハロゲン化物、酸アミド化合物、ハロゲン化合物、アルデヒド、アルコールあるいはその他脱離基を有する化合物であればいかなるものでもよく、これらの脂肪族、脂環族、芳香族、ヘテロ芳香族化合物を用いることができる。

特に好ましい多糖誘導体として、セルロースエステル誘導体、セルロースカル バメート誘導体、アミロースエステル誘導体、及びアミロースカルバメート誘導 体よりなる群から選択される少なくとも1種を挙げることができる。

光学活性な高分子化合物のドープ(本発明では、溶液乃至は分散液を意味する。)を調製するために用いる溶媒は、光学活性な高分子化合物を溶解乃至は分散することができるものであれば特に制限されず、下記のものを用いることができる。

ケトン系溶媒としては、アセトン、エチルメチルケトン、アセトフェノン等;

エステル系溶媒としては、酢酸エチル、酢酸メチル、酢酸プロピル、プロピオン酸メチル、安息香酸メチル、酢酸フェニル等;エーテル系溶媒としては、テトラヒドロフラン、1,4-ジオキサン、ジエチルエーテル、tert-ブチルメチルエーテル等;アミド系溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等;イミド系溶媒としては、N,N-ジメチルイミダゾリジノン等;ハロゲン系溶媒としては、クロロホルム、塩化メチレン、四塩化炭素、1,2-ジクロロエタン等;炭化水素系溶媒としては、ペンタン、石油エーテル、ヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレン、メシチレン等;尿素系溶媒としては、テトラメチル尿素等;アルコール系溶媒としては、メタノール、エタノール、プロパノール、ブタノール等;酸系溶媒としては、酢酸、トリフルオロ酢酸、ギ酸、フェノール、カテコール等;アミン系溶媒としてはジエチルアミン、トリエチルアミン、ピリジン等を用いることができる。

光学活性な高分子化合物と溶媒との混合比率は、光学活性な高分子化合物100質量部に対して、溶媒は、好ましくは300~10,000質量部、より好ましくは300~1,000質量部である。

多孔質担体と光学活性な高分子化合物のドープとの割合は、多孔質担体100 質量部に対して、光学活性な高分子化合物のドープは、好ましくは50~500 0質量部、より好ましくは100~100質量部である。

第2工程は、第1工程の処理により得られた被処理物に対して、放射線を照射する工程である。第2工程の処理により、光学活性な高分子化合物同士で架橋反応による化学結合が形成される。なお、このとき、多孔質担体と光学活性な高分子化合物との間で架橋による化学結合が形成されても良い。

放射線としては、 α 線、 β 線、 γ 線、X線、電子線等が挙げられ、これらの中でも特に γ 線と電子線が好適に用いられ、 γ 線が最も好適に用いられる。

照射するγ線の線量は、好ましくは1KGy~2000KGy、より好ましくは10KGy

~1000KGy、更に好ましくは 50KGy~500KGyである。500KGy 以上の線量を照射 する場合は、電子線を用いることが好ましい。

放射線を照射する際は、放射線による架橋反応を促進するような第三成分、例えば、ジフェニルメタンジイソシアナート、エピクロルヒドリン、マレイン酸クロライド、イソシアナート、エポキシ、ジカルボン酸を添加しても良い。これらの第三成分の添加量は、多孔質担体と高分子化合物の合計100質量部に対して、好ましくは0.01~50質量部、より好ましくは0.05~20質量部、更に好ましくは0.1~10質量部である。

第2工程の処理では、第1工程で得られた被処理物を溶媒中に分散させた状態で放射線を照射することができる。このように溶媒中に分散させた状態で放射線を照射することにより、被処理物の全体に対して均一に放射線を照射できるので好ましく、特に工業的レベルの製造のように被処理物の量が大量であるときに適している。一度に放射照射できる被処理物の量は、約1g~約100kgの範囲に設定することが好ましいが、前記範囲外であっても良い。

このような処理をするときは、第2工程の処理に先立って、第1工程の処理後、 多孔質担体に光学活性な高分子化合物を担持させたものを溶媒中に分散させる工程を設ける。

分散溶媒としては、水、アルコール系溶媒、エステル系溶媒、エーテル系溶媒等が挙げられるが、その中でも、水及びアルコール系溶媒が好適に用いられる。アルコール系溶媒の中では、メタノール、エタノール及び2ープロパノールが特に好適に用いられる。

分散液の濃度は、30~80質量%が好ましく、特に好ましい範囲は50~70質量%である。分散液の濃度が30質量%以上のときは、分散剤量が適当量であるため、照射効率が良く、照射コストの面でも有利となり、80質量%以下のときは、多孔質担体表面の光学活性な高分子化合物の溶媒による浸漬が十分とな

るため、放射線の照射による架橋反応が良好に進行する。

第2工程の後、第2工程の処理を経た被処理物に対して、更に光学活性な高分子化合物を溶解できる有機溶媒にて洗浄する工程を設けることができる。この工程の処理により、第2工程の放射線の照射により化学結合しなかった光学活性な高分子化合物を除去することができる。

光学活性な高分子化合物を溶解できる有機溶媒としては、第1工程と同じもの を用いることができる。

被処理物の容量に対する有機溶媒の使用量は、好ましくは5~15倍量である。 洗浄方法は特に制限されないが、被処理物に有機溶剤を注ぎながら自然濾過又 は吸引濾過する方法、有機溶剤中で加温下攪拌する方法、一旦カラム管に充填後、 溶剤をポンプで通液する方法等を適用することができる。このような洗浄は、必 要に応じて複数回繰り返すことができる。

洗浄処理は、洗浄処理後の分離剤に対し、光学活性な高分子化合物を溶解せしめる溶媒を1000ml通液したときの光学活性な高分子化合物の溶出量が1000ppm以下、好ましくは700ppm以下、より好ましくは500ppm以下になるように行うことが好ましい。前記の光学活性な高分子化合物の溶出量が1000ppm以下であると、得られた光学異性体用分離剤を用いて光学異性体を分離するときの不純物混入を阻止する点から有効である。

本発明の光学異性体用分離剤における光学活性な高分子化合物の担持量(光学 異性体用分離剤中に含まれる光学活性な高分子化合物の質量の割合)は、好まし くは3~40質量%、より好ましくは5~35質量%、更に好ましくは10~3 0質量%である。

本発明の光学異性体用分離剤は、カラムに充填して使用するものであるが、本 発明の光学異性体用分離剤を1本又は複数本のカラムに充填したものを組み合わ せて、各種クロマトグラフィーに適用できる。 本発明の光学異性体用分離剤は、ガスクロマトグラフィー、液体クロマトグラフィー、超臨界クロマトグラフィー、擬似移動床式クロマトグラフィー、薄層クロマトグラフィー等のクロマトグラフィー用の分離剤として有用であるが、特に液体クロマトグラフィー用の分離剤として用いるのが好ましい。

本発明の光学異性体用分離剤は、高い光学分割能力と十分な耐溶媒性を兼ね備え、更に簡単に製造できるため、各種の光学異性体の分離に有用である。

実施例

以下、本発明を実施例によって詳細に説明するが、本発明はこれら実施例に限 定されるものではない。

実施例1

(第1工程)

シリカゲルへのアミロース トリス [(S) -フェニルエチルカルバメート] の担 持

①シリカゲル表面処理

多孔質シリカゲル(粒子径 20μm)を 3-アミノプロピルトリエトキシシランと 反応させることにより、アミノプロピルシラン処理(APS 処理)を施した。得られた APS 処理シリカゲルをイソシアネート化合物と反応させ、カルバモイル表面 処理が施されたシリカゲルを得た。

②アミロース トリス [(S) -フェニルエチルカルバメート] の合成 アミロース 2 0 g 及び乾燥ピリジン 5 0 0 m l の混合物に、窒素雰囲気下、 (S) -フェニルエチルイソシアネート 1 0 9 g (アミロース水酸基に対して 2 当 量)を添加し、ピリジンの還流温度にて、 2 4 時間加熱攪拌を行った。反応混合

物を放冷後、メタノールに注ぎ込むことで、目的のアミロース トリス [(S) -フェニルエチルカルパメート] を析出させ、これをグラスフィルターで濾取した。

(収率93%)を得た。

③アミロース トリス [(S) -フェニルエチルカルバメート] のシリカゲルへの 担持

上記②で得たアミロース トリス [(S) -フェニルエチルカルバメート] 20gをテトラヒドロフラン (THF) に溶解させ、ポリマードープを調製した。このポリマードープを2分割し、半量を①で得たシリカゲル40gに対し、メカニカルスターラーを用いて塗布した。塗布後、THFの減圧留去を行った。更に、残り半量のポリマードープを同様に均一塗布後、THFを留去することで、目的のアミロース トリス [(S) -フェニルエチルカルバメート] をシリカゲルに担持させたものを得た。

(第2工程)

第1工程で得られた被処理物20gを乾燥させた後、メタノール200m1を加えて、1時間放置した。その後、吸引濾過により、余分なメタノールを取り除いた。その後、被処理物をポリエチレン製のチャック付き袋に入れ、300kGyの γ 線〔コバルト60を線源とした照射装置(線源装荷能力 37PBq)〕を照射し、光学異性体用分離剤を得た。

実施例2

分散溶媒をメタノールからメタノール/水=50/50(容量比)の混合溶媒に替えた他は、実施例1と同様の方法で光学異性体用分離剤を得た。

実施例3

分散溶媒をメタノールから水に替えた他は、実施例1と同様の方法で光学異性 体用分離剤を得た。

比較例1

実施例1の第1工程の処理後のもの(第2工程の処理をしていないもの)を分離剤とした。

応用例1

実施例1~3、比較例1で作製した光学異性体用分離剤を、長さ25cm、内径1.0cmのステンレス製カラムにスラリー充填法で充填し、光学異性体用分離カラムを作製した。得られた光学異性体用分離カラムを用い、下記4種類の化合物(ラセミ体1~ラセミ体4)の光学分割を行った。

ラセミ体 1

ラセミ体2

ラセミ体3

ラセミ体 4

式中、phはフェニル基を示す。

<分析条件>

移動相:n-ヘキサン/2-プロパノール=9/1

カラム温度:25℃

流速:1.0ml/min.

UV 検出器: 254nm

液体クロマトグラフィー分離装置における分離係数 α は、以下により定義される。上記条件により得られた分離係数 α を表 1 に示した。

 $\alpha = k2' / k1'$

ここで、 $k l' = (t_1 - t_0) / t_0$ 、 $k l' = (t_2 - t_0) / t_0$ である。 t_1 、 t_2 は各光学異性体の溶出時間を示し、 t_0 はトリーter t-プチルベンゼンの溶出時間を示す。

表1

		実施例1	実施例2	実施例3	比較例1
α	ラセミ体1	1.34	1.35	1.34	1.47
	ラセミ体2	2.3	2.31	2.34	2.47
	ラセミ体3	2.41	2.44	2.4	2.26
	ラセミ体4	2.12	2.12	2.09	2.88

実施例4

実施例3で得られた光学異性体用分離剤 6.5gをグラスフィルター上に置き、THF50mlを加え、数分間の攪拌後、吸引濾過〔吸引圧力4kPa (= 30 Torr)、差圧 97kPa (= 730 Torr)〕を行った。これを 3 回繰り返した。得られた充填剤を用い、応用例 1 と同様の方法により、分離係数 α を求めた。結果を表 2 に示した。

比較例2

比較例1の光学異性体用分離剤を用いた他は、実施例4と同様の方法により洗 浄を行った後、分離係数αを求めた。結果を表2に示した。

表 2

ラセミ体	実施例4	比較例2
1	1.0_	1.0
2	1.58	1.0
3	2.05	1.0
4	1.68	1.0

実施例5

(第1工程)

シリカゲルへのアミロース トリス (3, 5-ジメチルフェニルカルバメート) をシ リカゲルの担持

①シリカゲル表面処理

合成例1の①と同様の方法にてシリカゲルの表面処理を行った。

②アミロース トリス (3,5-ジメチルフェニルカルパメート) の合成

窒素雰囲気下、アミロース10.0gと3,5-ジメチルフェニルイソシアネート82.2g(3当量)とを、乾燥ピリジン360ml中、ピリジンの還流温度下、60時間加熱攪拌を行った後、メタノール6.0Lに注ぎ込んだ。析出した固体をグラスフィルターで濾取し、メタノールで数回の洗浄後、真空乾燥(80℃、5時間)を行った。その結果、若干黄色がかった白色固体、35.3g(収率95%)が得られた。

③アミロース トリス(3,5-ジメチルフェニルカルバメート) のシリゲルへの担持

上記②で得たアミロース トリス (3,5-ジメチルフェニルカルパメート) 10g

を酢酸エチルに溶解させ、ポリマードープを調製した。このポリマードープの全量を、メカニカルスターラーを用いて、①で得たシリカゲル40.0gに塗布した。塗布後、溶媒を減圧留去することで、目的のアミローストリス(3,5-ジメチルフェニルカルバメート)をシリカゲルに担持させたものを得た。

(第2工程)

第1工程で得られた被処理物を乾燥させた後、直接γ線を照射し、γ線を照射 した光学異性体用分離剤を得た。γ線の照射条件は実施例1と同様であった。

実施例6

実施例5で作製した光学異性体用分離剤を用いた以外は、応用例1と同様の方法で分離係数αを求めた。結果を表3に示した。

比較例3

実施例 5 の第 1 工程の処理後のもの(第 2 工程の処理をしていないもの)を分離剤とし、応用例 1 と同様の方法で分離係数 α を求めた。結果を表 3 に示した。表 3

ラセミ体	実施例6	比較例3
1	3.24	3.11
_2	1.24	1.28
3	1.71	1.79
4	1.3	1.31

実施例7

実施例 5 で得られた光学異性体用分離剤 6.5 gをグラスフィルター上に置き、THF50mlを加え、数分間の攪拌後、吸引濾過〔吸引圧力 4kPa(= 30 Torr)、差圧 97kPa(= 730Torr)〕を行った。これを 3回繰り返した。得られた充填剤を用い、応用例 1と同様の方法により、分離係数 α を求めた。結

果を表4に示した。

比較例4

比較例3の光学異性体用分離剤を用いた他は、実施例7と同様の方法により洗 浄を行った後、分離係数αを求めた。結果を表4に示した。

表4

ラセミ体	実施例7	比較例4
1	2.56	1.0
2	1.0	1.0
3	1.42	1.0
4	1.19	1.0

請求の範囲

- 1. 多孔質担体に光学活性な高分子化合物が担持されている光学異性体用分離剤であり、光学活性な高分子化合物が、放射線の照射により不溶化されている光学異性体用分離剤。
- 2. 放射線がγ線及び/又は電子線である請求項1記載の光学異性体用分離剤。
- 3. 光学活性な高分子化合物が重合性不飽和基を含有していない請求項1又は 2記載の光学異性体用分離剤。
- 4. 光学活性な高分子化合物が多糖誘導体である請求項1~3のいずれか1項 記載の光学異性体用分離剤。
- 5. 多糖誘導体が、セルロースエステル誘導体、セルロースカルバメート誘導体、アミロースエステル誘導体、及びアミロースカルバメート誘導体よりなる群から選択される少なくとも1種である請求項4記載の光学異性体用分離剤。
- 6. 請求項1~5のいずれか1項記載の光学異性体用分離剤の製造方法であり、 多孔質担体と光学活性な高分子化合物のドープとを接触させ、多孔質担体に光 学活性な高分子化合物を担持させる工程、

その後、放射線を照射する工程を具備する、光学異性体用分離剤の製造方法。

7. 請求項1~5のいずれか1項記載の光学異性体用分離剤の製造方法であり、 所要量の光学活性な高分子化合物のドープを複数に分割し、多孔質担体にドー プの一部を接触させ、乾燥する工程を一工程とし、この工程を複数回繰り返し、 多孔質担体に光学活性な高分子化合物を担持させる工程、

その後、放射線を照射する工程を具備する、光学異性体用分離剤の製造方法。

8. 多孔質担体に光学活性な高分子化合物を担持させる工程の後に、多孔質担体に光学活性な高分子化合物を担持させたものを分散溶媒中に分散させる工程を 具備しており、その後、放射線を照射する工程を具備する、請求項6又は7記載

の光学異性体用分離剤の製造方法。

- 9. 放射線を照射した後、更に光学活性な高分子化合物を溶解できる有機溶媒にて洗浄する工程を具備する請求項6~8のいずれか1項記載の光学異性体用分離剤の製造方法。
- 10. 分散溶媒が、水、アルコール系溶媒、エステル系溶媒及びエーテル系溶媒よりなる群から選択される少なくとも一種である請求項8又は9記載の光学異性体用分離剤の製造方法。
- 11. 放射線の線量が 1~2000KGyである請求項6~10のいずれか1項記載の光学異性体用分離剤の製造方法。
- 12. 請求項1~5のいずれか1項記載の光学異性体用分離剤、又は請求項6~11のいずれか1項記載の製造方法により得られた光学異性体用分離剤を用いて光学異性体を分離する方法。

International application No.
PCT/JP03/14450

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ G01N30/48, B01D15/08, B01J20/26				
According to	International Patent Classification (IPC) or to both nat	tional classification and IPC		
B. FIELDS	SEARCHED			
Minimum do	ocumentation searched (classification system followed b	oy classification symbols)		
	on searched other than minimum documentation to the tyo Shinan Koho 1926–1996	extent that such documents are include Toroku Jitsuyo Shinan Kol		
Kokai	Jitsuyo Shinan Koho 1971-2003	Jitsuyo Shinan Toroku Kol		
Electronic d	ata base consulted during the international search (name	e of data base and, where practicable, se	arch terms used)	
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap		Relevant to claim No.	
х	<pre>JP 2001-296288 A (Daicel Che Ltd.),</pre>	mical Industries,	1-6,11,12	
1	26 October, 2001 (26.10.01),	•		
	Claims; page 3, column 3, lin	e 21 to page 4,		
	column 5, line 46 (Family: none)	•		
x	JP 57-197034 A (Director Gen	eral. Agency of	1-6,12	
	Industrial Science and Techno	ology),		
	03 December, 1982 (03.12.82), Claims; page 3, upper left co			
	the bottom to upper right column, line 5 (Family: none)			
	•			
			·	
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.	_L	
	categories of cited documents:	"T" later document published after the in	ternational filing date or	
	ent defining the general state of the art which is not ared to be of particular relevance	priority date and not in conflict with understand the principle or theory up		
	document but published on or after the international filing	"X" document of particular relevance; the considered novel or cannot be consi	e claimed invention cannot be	
"L" docum	ent which may throw doubts on priority claim(s) or which is bestablish the publication date of another citation or other	step when the document is taken alo	ne	
special	special reason (as specified) considered to involve an inventive step when the document is			
means combination being obvious to a person skilled in the art				
than the priority date claimed				
Date of the actual completion of the international search 05 January, 2004 (05.01.04) Date of mailing of the international search report 20 January, 2004 (20.01.04)				
	Name and mailing address of the ISA/ Authorized officer			
Japa	Japanese Patent Office			
Facsimile N	o.	Telephone No.		

International application No. PCT/JP03/14450

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
х .	WO 99/51316 A1 (BIOSEPRA INC.), 14 October, 1999 (14.10.99), Claims; page 10, line 29 to page 11, line 8; page 14, lines 1 to 6 & US 2002/104801 A1 & EP 1071500 A1 & CA 2327327 A1 & JP 2002/510787 A & AU 3471999 A	1-6,11,12
P,X	JP 2003-98167 A (Daicel Chemical Industries, Ltd.), 03 April, 2003 (03.04.03), Page 3, column 3, line 23 to page 4, column 6, line 18 (Family: none)	1-7,11,12
A	JP 6-308108 A (Showa Denko Kabushiki Kaisha), 04 November, 1994 (04.11.94), Full text (Family: none)	1-12
A	JP 6-154591 A (Dow Corning Toray Silicone Co., Ltd.), 03 June, 1994 (03.06.94), Full text (Family: none)	1-12

発明の属する分野の分類(国際特許分類(IPC))

Int. Cl' G01N30/48, B01D15/08, B01J20/26

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' G01N30/48, B01D15/08, B01J20/26

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1926-1996

日本国公開実用新案公報

1971-2003

日本国登録実用新案公報

1994-2003

日本国実用新案登録公報

1996-2003

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号		
Х	JP 2001-296288 A (ダイセル化学工業株式会社) 2001.10.26 特許請求の範囲、第3頁第3欄第21行ー同4頁第5欄第46行 (ファミリーなし)	1-6, 11, 12		
x	JP 57-197034 A (工業技術院長) 1982.12.03 特許請求の範囲、第 3頁左上欄下から4行ー同頁右上欄第5行(ファミリーなし)	1-6, 12		

|X|| C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 国際調査報告の発送日 20. 1. 2004 05.01.04 特許庁審査官(権限のある職員) 国際調査機関の名称及びあて先 9040 日本国特許庁(ISA/JP) 中村 泰三 郵便番号100-8915 東京都千代田区段が関三丁目4番3号 電話番号 03-3581-1101 内線 3466

	国際嗣 宣 報音			
C(続き).	関連すると認められる文献			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときに	は、その関連する箇所の表示	関連する 請求の範囲の番号	
x	WO 99/51316 A1 (BIOSEPRA INC) 1999.10. 10頁第29行一第11頁第8行、第14頁第1—67 US 2002/104801 A1 & EP 1071500 A1 & CA JP 2002-510787 A & AU 3471999 A	行 &	1-6, 11, 12	
PX	JP 2003-98167 A (ダイセル化学工業株式会社 欄第23行-第4頁第6欄第18行 (ファミリ		1-7, 11, 12	
A	JP 6-308108 A (昭和電工株式会社) 1994. ーなし)	11.04 全文(ファミリ	1-12	
A	JP 6-154591 A (東レ・ダウコーニング・シリコーン株式 (ファミリーなし)	会社)1994.06.03 全文	1-12	
			·	