

Построение линейных избыточных кодов при помощи обучения с подкреплением

Буянтуев Александр Алексеевич Научный руководитель: Онегин Евгений Евгеньевич, инженер ключевых проектов, ООО «Техкомпания Хуавей»

Предметная область

Коммуникация в режиме реального времени (RTC) — позволяет пользователям обмениваться информацией с минимальной задержкой.

Forward Error Correction (FEC) — добавление избыточных данных для улучшения надежности передачи.

- В рамках окна нужно передать как можно больше полезной информации.
- Кодирование/декодирование должно быть энергоэффективным.

Используемые методы

Линейные коды — преобразуют сообщение s_n в сообщение c_{n+m} при помощи порождающей матрицы G:

$$c_{n+m} = s_n G_{n \times (n+m)}$$

Метод	Особенность	Граница восстановимости	Кодирование/декодирование
коды Рида- Соломона	Принадлежат к классу MDS-кодов	m	операции в \mathbb{F}_{256}
LDPC-коды	Малая плотность проверочной матрицы	< m	операции в \mathbb{F}_2
FlexFEC	Применяется во фреймворке WebRTC	< m	операции в \mathbb{F}_2

Принцип подхода RL-FEC

При помощи обучения с подкреплением (RL) решаем задачу дискретной оптимизации:

- 1. Выбираем модель потерь М.
- 2. Фиксируем параметры линейного кода, определяющие порождающую матрицу $G-n,m,\mathbb{F}_2.$
- 3. Задаем функцию f(G; M) для оценки линейных кодов.
- 4. Находим порождающую матрицу G^* , такую что:

$$G^* = \arg\max_{G} f(G; M)$$

R Мотивация

Подход RL-FEC позволяет моделировать различные ограничения канала при помощи модели потерь M и оценивать коды относительно различных параметров при помощи функции f(G; M).

RL уже использовали для решения задачи дискретной оптимизации. 1,2

Порождающих матриц очень много:

$$\binom{2^n-1}{m}$$
 \times м! перестановки столбцов матрицы

С практической точки зрения необходимо найти набор порождающих матриц под заданные параметры и ограничения, для существующих методов кодирования есть только асимптотические оценки.

¹Darvariu Victor-Alexandru et. al. Goal-directed graph construction using reinforcement learning

²Fawzi Alhussein et. al. Discovering faster matrix multiplication algorithms with reinforcement learning

В Цель и задачи

Цель: Разработать программное обеспечение RL-FEC для построения линейных избыточных кодов над полем \mathbb{F}_2 .

Задачи:

- 1. Разработать цикл обучения с подкреплением. Для этого необходимо сделать RL-агента и среду для построения и модификации линейных кодов.
- 2. Выбрать критерий для оценки оптимальности линейных кодов и разработать эффективный алгоритм для его проверки.
- 3. Провести эксперименты на различных моделях потерь.

В рамках исследования рассматривались различные алгоритмы обучения с подкреплением: DQN, DoubleDQN, SAC, PPO и др.

Среда для построения линейных кодов

Задача агента — сформировать m столбцов порождающей матрицы $G_{n\times(n+m)}$.

Состояние среды S:

- вектор из 0 и 1 длины 2ⁿ
- позиции, на которых стоят 1 десятичные представления столбцов порождающей матрицы

Начальное состояние S_0 – произвольный вектор, содержащий < m единиц.

$$\underbrace{(0,0,0,1,0,0,1,1)}_{S} \to \underbrace{(3,6,7)}_{\substack{\text{десятичные} \\ \text{представления} \\ \text{столбцов}}} \to \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

Сессия агента — из состояния S_0 попасть в состояние S, содержащее ровно m единиц.

Критерий для оценки линейных кодов

Метрика $success\ rate\ (SR)$ — оценка вероятности успешной передачи сообщения через канал с потерями.

Эксперимент по передаче сообщения:

- 1. Преобразуем исходное сообщение s_n в закодированное c_{n+m} при помощи порождающей матрицы.
- 2. Генерируем маску потери при помощи модели M, получаем сообщение $c_{n+m}^{'}$
- 3. Пытаемся восстановить из $c_{n+m}^{'}$ исходное сообщение s_{n} .

$$SR = \frac{K}{N}$$
, K — кол-во успешных экспериментов

Награда R для агента при оптимизации метрики SR:

$$\mathit{R} = -1 \cdot \mathit{t} + \mathit{SR}, \; \mathit{t} - \mathsf{ко}\mathit{n}$$
-во повторяющихся действий

Алгоритм для расчета SR

Алгоритм использует свойство о покрывающих множествах. ³

Реализация алгоритма позволяет:

- Обрабатывать несколько запросов одновременно
- Использовать $\forall n, m : n + m \le 64$
- ullet Проводить $N pprox 10^8$ экспериментов примерно за 1 сек.

³Dumer Ilya et. al. Erasure Correction Performance of Linear Block Codes.

Каждый пакет теряется с какой-то вероятностью р

модель Гильберта

Хорошее — пакет доставлен Плохое — пакет потерян

Процесс обучения агента

В качестве примера предоставлены графики при обучении агента для следующих параметров: n=5, m=14, BEC(p=0.4). Доверительный интервал ($\alpha=0.05$)

Результаты экспериментов (ВЕС)

Результаты экспериментов (модель Гильберта)

В Анализ

- На ВЕС при помощи RL-FEС получилось найти линейные коды, сравнимые по метрике SR с другими методами, использующими операции в \mathbb{F}_2 .
- С увеличением n, m агент имеет тенденцию недообучаться на ВЕС. В дальнейшем планируется исследовать другие состояния среды для построения линейных кодов. 4
- На модели Гильберта найденные при помощи RL-FEC линейные коды показали превышение относительно других методов, использующих операции в \mathbb{F}_2 .
- Разница с кодами Рида-Соломона достигает менее 1%.

 $^{^4}$ Hanjun Dai et. al. Discriminative Embeddings of Latent Variable Models for Structured Data

Результаты

В рамках дипломной работы были получены следующие результаты:

- 1. Разработано программное обеспечение RL-FEC:
 - Разработана среда для построения и модификации линейных кодов
 - Разработан RL-агент для исследования среды
- 2. Разработан алгоритм для оценки эффективности линейных кодов на основе метрики SR.
- 3. Проведены эксперименты на ВЕС и модели Гильберта:
 - В сравнении с подходами, использующими только операции в \mathbb{F}_2 , получено превышение до 3%.
 - Разница с кодами Рида-Соломона достигает менее 1%.