Algoritmi e Strutture Dati

a.a. 2013/14

Compito del 08/09/2014

Cognome:	Nome:
Matricola:	E-mail:

Parte I

(30 minuti; ogni esercizio vale 2 punti)

- 1. Dare la definizione di max-heap e dire se (23,17,14,6,13,10,1,5,7,12) è un max-heap giustificando la risposta.
- 2. Per un certo problema sono stati trovati due algoritmi risolutivi (A₁ e A₂) con i seguenti tempi di esecuzione:

A₁:
$$T(n) = 3 \cdot T(n/2) + n^2$$

A₂:
$$T(n) = 4 \cdot T(n/2) + n^2$$

Si dica, giustificando tecnicamente la risposta, quale dei due algoritmi è preferibile per input di dimensione sufficientemente grande.

3. Si definiscano le classi P, NP, NPC e si stabilisca, giustificando formalmente la risposta, quale delle seguenti relazioni è ritenuta vera (o verosimile):

Algoritmi e Strutture Dati

a.a. 2013/14

Compito del 08/09/2014

Cogno	me: Nome:		
Matric	ola: E-mail:		
	Parte II		
	(2.5 ore; ogni esercizio vale 6 punti)		
1.	Dato un albero binario, scrivere un procedura efficiente che cancelli il figlio sinistro di ogni nodo se è una foglia e contiene la stessa chiave del nodo padre.		
	Calcolare la complessità al caso pessimo della funzione indicando la corrispondente relazione di ricorrenza.		
	La rappresentazione dell'albero binario utilizza esclusivamente i campi left, right e key e il prototipo della procedura è:		
	void cancella(Node u)		

2. Progettare un algoritmo **efficiente** che, dato un array *A* di *n* numeri interi e un intero *x*, determini se esistono due elementi in *A* (in posizioni diverse) la cui somma è esattamente *x*.

Calcolare la complessità al caso pessimo dell'algoritmo.

Per l'esame da **12 CFU**, deve essere fornita **una procedura C**. Per l'esame da **9 CFU**, è sufficiente specificare lo pseudocodice.

- 3. Sia G = (V, E) un grafo orientato e pesato, sia $s \in V$ un vertice "sorgente" e si supponga che G sia stato inizializzato con INIT-SINGLE-SOURCE(G, s). Si stabilisca se la seguente affermazione è vera o falsa: «Se G non contiene un ciclo di peso negativo raggiungibile dalla sorgente s, allora nessuna sequenza di passi di rilassamento potrà assegnare al campo d[s] un valore diverso da s.» Nel primo caso si fornisca una dimostrazione, nel secondo un controesempio.
- 4. Si vuole costruire una rete stradale che colleghi cinque città (A-E), minimizzando i costi complessivi di realizzazione. I costi per la costruzione di una strada tra due città sono sintetizzati nella seguente tabella (dove +∞ significa che la strada è irrealizzabile):

	A	В	C	D	Е
Α	0	3	5	11	9
В	3	0	3	9	8
С	5	3	0	+∞	10
D	11	9	$+\infty$	0	7
Е	9	8	10	7	0

Si formuli il problema dato in termini di un problema di ottimizzazione su grafi, e si descriva un algoritmo per la sua soluzione discutendone correttezza e complessità. Infine, si simuli accuratamente l'algoritmo presentato per determinare una soluzione del problema.