Wavelet Scattering Transforms

Haixia Liu

Department of Mathematics
The Hong Kong University of Science and Technology

February 5, 2018

Outline

- Problem
- Wavelet Scattering Transform
 - Review of Multiscale Wavelet Transform
 - Why Wavelets?
 - Wavelet Convolutional Networks
- Oigit Classification: MNIST by Joan Bruna et al.
- 4 MATLAB code of Wavelet convolutional Networks

Digit classification

Digit classification

- Translation
- Deformation

Digit classification

- Translation
- Deformation

AIM: Classify correctly although translation and deformation, i.e.,

- Globally invariant to the translation group
- Locally invariant to small deformation

Wavelet Scattering Transform

Haar wavelet transform

Haar Filtering

$$Hx(u) = x * h(2u)$$
 and $Gx(u) = x * g(2u)$

where h is a low frequency and g is a high frequency.

Review of Multiscale Wavelet Transform

wavelet filters $\{\psi_{\lambda}\}_{\lambda}$

- Dilated Wavelets: $\psi_{\lambda}(t) = 2^{j}\psi(2^{j}t)$ with $\lambda = 2^{j}$.
- Multiscale and oritented wavelet filters with $\lambda = 2^{j}\theta$

$$\psi_{\lambda} = 2^{j} \psi(2^{j} \theta x)$$

where $\theta \in \mathcal{R}(\mathbb{R}^2)$ be a rotation matrix and $\lambda = (2^j, \theta)$.

$$x * \psi_{\lambda}(\omega) = \int x(u)\psi_{\lambda}(\omega - u) \Rightarrow \widehat{x * \psi_{\lambda}}(\omega) = \widehat{x} \cdot \widehat{\psi_{\lambda}}$$

• Wavelet transform:

$$Wx = \begin{bmatrix} x * \phi_{2^{J}(t)} \\ x * \psi_{\lambda}(t) \end{bmatrix}_{\lambda < 2^{J}}$$

Advantages of Wavelets

- Wavelets separate multiscale information
- Wavelets provide sparse representation
- Wavelets are uniformly stable to deformations. If $\psi_{\lambda,\tau} = \psi_{\lambda}(t \tau(t))$, then

$$\|\psi_{\lambda} - \psi_{\lambda,\tau}\| \le C \sup_{t} |\nabla \tau|$$

• Modulus guarantees Wavelets translation invariance

$$|W|x = \begin{bmatrix} x * \phi_{2^{J}(t)} \\ |x * \psi_{\lambda}(t)| \end{bmatrix}_{\lambda \le 2^{J}}$$

Scattering Coefficients

• first-layer scattering coefficients

$$S_{1,J}((\lambda_1),x) = |X * \psi_{\lambda_1}| * \phi_J(x)$$

• second-layer scattering coefficients

$$S_{2,J}((\lambda_1,\lambda_2),x) = ||X * \psi_{\lambda_1}| * \psi_{\lambda_2}| * \phi_J(x)$$

• *m*-th layer scattering coefficients

$$S_{2,J}((\lambda_1,\lambda_2,\cdots,\lambda_m),x)=||X*\psi_{\lambda_1}|\cdots*\psi_{\lambda_m}|*\phi_J(x)$$

Renormalization

$$\tilde{S}_{1,J}((\lambda_1)) = S_{1,J}((\lambda_1))$$

and

$$\tilde{S}_{2,J}((\lambda_1,\lambda_2)) = \frac{S_{2,J}((\lambda_1,\lambda_2))}{S_{1,J}((\lambda_1))}$$

Paper *Deep Scattering Spectrum* points out second coefficients can be decorrelated to increase their invariance through a renormalization.

Features based on Scattering Coefficients

One choice is to take spatial averages of scattering coefficients

$$\bar{S}_{m,J} = \sum_{x} \tilde{S}_{m,J}((\lambda_1,\cdots,\lambda_m),x).$$

- dimension reduction
- destroy the spatial information contained in scattering coefficients

Classifiers

There are a lot of classifiers can be used if features are extracted

- PCA
- SVM
- LDA
- Sparse PCA
- Sparse SVM
- Sparse LDA
- and so on · · ·

Numerical results

Training	x		Wind. Four.		Scat. $m_{\text{max}} = 1$		Scat. $m_{\rm max}=2$		Conv.
size	PCA	SVM	PCA	SVM	PCA	SVM	PCA	SVM	Net.
300	14.5	15.4	7.35	7.4	5.7	8	4.7	5.6	7.18
1000	7.2	8.2	3.74	3.74	2.35	4	2.3	2.6	3.21
2000	5.8	6.5	2.99	2.9	1.7	2.6	1.3	1.8	2.53
5000	4.9	4	2.34	2.2	1.6	1.6	1.03	1.4	1.52
10000	4.55	3.11	2.24	1.65	1.5	1.23	0.88	1	0.85
20000	4.25	2.2	1.92	1.15	1.4	0.96	0.79	0.58	0.76
40000	4.1	1.7	1.85	0.9	1.36	0.75	0.74	0.53	0.65
60000	4.3	1.4	1.80	0.8	1.34	0.62	0.7	0.43	0.53

Figure: Results from paper Invariant Scattering Convolution Networks

Software

Code can be downloaded from

http://www.di.ens.fr/data/software/.

Thank you!!!