

Институт за математику и информатику Природно-математички факултет Универзитет у Крагујевцу

МАСТЕР РАД

Примена алгоритама препознавања облика у неутронској дозиметрији

Студент: Никола Николић Професор: др Милош Ивановић

Садржај

1	Увод	2
2	Обрада слика употребом OpenCV библиотеке	3
	2.1 Сиво скалирана слика	4
	2.2 Сегментација слике	
	2.3 Детекција контура	4
	2.4 Сегментација спојених трагова	4
	2.4.1 Ерозија	4
	2.4.2 Слив	4
	2.5 Одређивање угла слике	4
3	Развој корисничког интерфејса употребом Qt фрејмворка	5
4	Софтвер за детекцију трагова неутронске дозиметрије	6
5	Тестирање	7
6	Закључак	8

Увод

Обрада слика употребом OpenCV библиотеке

OpenCV (Open Source Computer Vision Library) је библиотека отвореног кода која садржи имплеметације више стотина алгоритама рачунарског вида (computer vision). Библиотека је написана у C++ програмском језику, али подржава и итерфејс ка C, Python, MATLAB програмским језицима, а у разоју су и интерфејси за CUDA и OpenCL језике. Подржана је на свим видећим операстивним системима Windows, Linux, Android и Mac OS. Библиотека је објављена под BSD лиценцом, те је стога погодна и за академску и за комерцијалну употребу.

Имплементирани алгоритми се могу користити за препознавање облика, детекцију и препознавање лица, праћење покрета при видео снимку, спајање више слика у једну, препознавање маркера за проширену стварност и слично. Такви алгоритми су примењени у бројним програмима попут програма за видео надзор, навигацију и аутоматизацију рада робота, проверу призвода у фабрикама, асистенцију при вожњи аутомобила и тд.

Рачунарски вид помаже у прикупљању релевантних информација са слика и доношењу одлука базираним на тим подацима. Циљ рачунарског вида је да омогући да рачунар посматра ствари на исти начин као и људи. Основни кораци система базираног на рачунарском виду су:

- прикуљање слика
- манипулација сликама
- извлачење релевантних информација
- доношење одлука

NAPOMENA: Ukljuci sliku cv.png

Као што се види из наведеног, за један такав систем јако су важни и алгоритми машинсог учења (machine learning) као и алгоритми обраде слика (image processing). ОрепСV библиотека садржи такве алгоритме. Обрада слика је процес манипулације подацима слике у сврху пружања информација дањем току алгоритама рачунарског вида. Компонента која нас занима је управо обрада слика.

2.1 Сиво скалирана слика

Први корак за већину алгоритама обрада слика је рачунање сиво скалиране слике на основу оригиналне слике, слике која садржи црвену, зелену и плаву компоненту. У даљем процесу користи се само сиво скалирана слика. На тај начин постиже се значајна уштеда у меморији јер слика која се обрађује може бити копирана више пута, самим тим постижу се боље перформансе, а добија се и на једноставности алгоритама.

Изворни код 2.1: Рачунање сиво скалиране слике

```
1 // Load BGR image.
2 Mat bgrImage = imread(path, CV_LOAD_IMAGE_COLOR);
3
4 // Convert image to grayscale.
5 Mat gsImage;
6 cvtColor(bgrImage, gsImage, CV_BGR2GRAY);
```

Сиво скалирана слика рачуна се као:

$$Y \leftarrow 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B \tag{2.1}$$

где су Y - сиво скалирана слика, R - црвена компонента оригиналне слике, G - зелена компонента оригиналне слике и B - плава компонента оригиналне слике. Коефицијенти представљају измерену перцепцију интензитета код трохроматских људи. Конкретно, људски вид је најосетљивији на зелену, а најмање на плаву боју.

NAPOMENA: Ukljuci sliku original-gray.png

2.2 Сегментација слике

Сегментација слике је процес раздвајања објеката од позадине слике.

2.3 Детекција контура

2.4 Сегментација спојених трагова

- 2.4.1 Ерозија
- 2.4.2 Слив

2.5 Одређивање угла слике

Развој корисничког интерфејса употребом Qt фрејмворка

Софтвер за детекцију трагова неутронске дозиметрије

Тестирање

Закључак

Литература

- [1] Lars Vogel, Android Service and Broadcast Receiver, www.vogella.de, 2011.
- [2] ...
- [3] http://opencv.org, OpenCV званична веб страна