import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import stats

df = pd.read_csv("/content/abalone.csv")

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shel
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	

df.tail()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Rings	4177 non-null	int64

dtypes: float64(7), int64(1), object(1)

memory usage: 293.8+ KB

df.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	
4							•

df.isnull().sum()

Sex	0
Length	0
Diameter	0
Height	0
Whole weight	0
Shucked weight	0
Viscera weight	0
Shell weight	0
Rings	0
dtype: int64	

sns.heatmap(df.isnull(),yticklabels=False,cmap='pink')

df.corr()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Ring
Length	1.000000	0.986812	0.827554	0.925261	0.897914	0.903018	0.897706	0.55672
Diameter	0.986812	1.000000	0.833684	0.925452	0.893162	0.899724	0.905330	0.57466
Height	0.827554	0.833684	1.000000	0.819221	0.774972	0.798319	0.817338	0.55746
Whole weight	0.925261	0.925452	0.819221	1.000000	0.969405	0.966375	0.955355	0.54039
Shucked weight	0.897914	0.893162	0.774972	0.969405	1.000000	0.931961	0.882617	0.42088
Viscera	0.903018	0.899724	0.798319	0.966375	0.931961	1.000000	0.907656	0.50381

```
df['Sex'].value_counts()
```

M 1528

I 1342

F 1307

Name: Sex, dtype: int64

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	0	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	0	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

df.tail()

		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
	4172	2	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
	4173	0	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
ADDING AGE COLUMN										
	447E	2	0 605	O 40E	0 150	1 0015	O E240	A 261A	U 20E0	10
df['A	ge'] =	df['	Rings']	+ 2.5						

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	Age
0	0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15	17.5
1	0	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	9.5
2	2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	11.5
3	0	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	12.5
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	9.5

df.columns

Data visualization

```
df['Sex'].value_counts().plot(kind='pie')
plt.legend()
plt.xlabel('Sex')
plt.ylabel('Count')
```

Text(0, 0.5, 'Count')

Sex

```
sns.distplot(df['Age'])
plt.xlabel('Age')
plt.ylabel('Count')
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)

Text(0, 0.5, 'Count')


```
sns.distplot(df['Rings'])
plt.xlabel('Rings')
plt.ylabel('Count')
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)

Text(0, 0.5, 'Count')

Bi-variate analysis

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	W
0	0	0.455	0.365	0.095	0.5140	0.2245	0.1010	
1	0	0.350	0.265	0.090	0.2255	0.0995	0.0485	
2	2	0.530	0.420	0.135	0.6770	0.2565	0.1415	
3	0	0.440	0.365	0.125	0.5160	0.2155	0.1140	
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	

sns.scatterplot(data=df, x='Length', y='Shucked weight', hue='Rings',)

<matplotlib.axes._subplots.AxesSubplot at 0x7f2250a2b710>

sns.boxplot(data=df, x='Whole weight', y='Shucked weight')

<matplotlib.axes._subplots.AxesSubplot at 0x7f225031a550>

sns.boxplot(data=df, x='Sex', y='Whole weight')

<matplotlib.axes._subplots.AxesSubplot at 0x7f2241d35490>

sns.scatterplot(data=df, x='Sex', y='Shucked weight')

<matplotlib.axes._subplots.AxesSubplot at 0x7f2241c9a550>

sns.boxplot(data=df, x='Sex', y='Shell weight')

<matplotlib.axes._subplots.AxesSubplot at 0x7f2241c69750>

Univariate analysis

sns.pairplot(data=df, hue='Rings')

df.describe()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4
mean	0.947091	0.523992	0.407881	0.139516	0.828742	0.359367	
std	0.822240	0.120093	0.099240	0.041827	0.490389	0.221963	
min	0.000000	0.075000	0.055000	0.000000	0.002000	0.001000	
25%	0.000000	0.450000	0.350000	0.115000	0.441500	0.186000	
50%	1.000000	0.545000	0.425000	0.140000	0.799500	0.336000	
75%	2.000000	0.615000	0.480000	0.165000	1.153000	0.502000	
max	2.000000	0.815000	0.650000	1.130000	2.825500	1.488000	
Shuc 0.20					1 .		500 - 6

df.corr()['Age']

Sex	0.034627
Length	0.556720
Diameter	0.574660
Height	0.557467
Whole weight	0.540390
Shucked weight	0.420884
Viscera weight	0.503819
Shell weight	0.627574
Rings	1.000000
Age	1.000000
Name: Age, dtype:	float64

df.shape

(4177, 10)

Checking outliers for the data

111

df.head()

(02) (02)

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	W
0	0	0.455	0.365	0.095	0.5140	0.2245	0.1010	
1	0	0.350	0.265	0.090	0.2255	0.0995	0.0485	
2	2	0.530	0.420	0.135	0.6770	0.2565	0.1415	
^	^	0 440	0 005	0 405	0.5400	0.0455	0.4440	

df.drop('Age',axis=1,inplace=True)

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shel
0	0	0.455	0.365	0.095	0.5140	0.2245	0.1010	
1	0	0.350	0.265	0.090	0.2255	0.0995	0.0485	
2	2	0.530	0.420	0.135	0.6770	0.2565	0.1415	
3	0	0.440	0.365	0.125	0.5160	0.2155	0.1140	
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	

sns.boxplot(x=df['Length'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f223f524090>


```
tenth_per = np.percentile(df['Length'], 10)
nine_per = np.percentile(df['Length'], 90)

df['Length'] = np.where(df['Length'] < tenth_per, tenth_per, df['Length'])
df['Length'] = np.where(df['Length'] > nine_per, nine_per, df['Length'])
```

IQR

sns.boxplot(x=df['Length'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f223f5fab50>

sns.boxplot(x=df['Diameter'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f223dcd1750>


```
tenth_per = np.percentile(df['Diameter'], 10)
nine_per = np.percentile(df['Diameter'], 90)

df['Diameter'] = np.where(df['Diameter'] < tenth_per, tenth_per, df['Diameter'])

df['Diameter'] = np.where(df['Diameter'] > nine_per, nine_per, df['Diameter'])

sns.barplot(x=df['Diameter'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f223dcad3d0>

sns.boxplot(x=df['Height'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f223dc82150>


```
tenth_per = np.percentile(df['Height'], 10)
nine_per = np.percentile(df['Height'], 90)

df['Height'] = np.where(df['Height'] < tenth_per, tenth_per, df['Height'])
df['Height'] = np.where(df['Height'] > nine_per, nine_per, df['Height'])
```

sns.boxplot(x=df['Height'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f223dbe7e50>

sns.boxplot(x=df['Whole weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f223db5b1d0>


```
tenth_per = np.percentile(df['Whole weight'], 10)
nine_per = np.percentile(df['Whole weight'], 90)
```

```
df['Whole weight'] = np.where(df['Whole weight'] < tenth_per, tenth_per, df['Whole weight'
df['Whole weight'] > nine_per, nine_per, df['Whole weight'])
```

sns.boxplot(x=df['Whole weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f223db40510>

sns.boxplot(x=df['Shucked weight'])

sns.boxplot(x=df['Shucked weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f223da27d90>

sns.boxplot(x=df['Viscera weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f223d999c90>


```
tenth_per = np.percentile(df['Viscera weight'], 10)
nine_per = np.percentile(df['Viscera weight'], 90)
```

df['Viscera weight'] = np.where(df['Viscera weight'] < tenth_per, tenth_per, df['Viscera w
df['Viscera weight'] = np.where(df['Viscera weight'] > nine_per, nine_per, df['Viscera weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f223d972590>

sns.boxplot(df['Shell weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning


```
tenth_per = np.percentile(df['Shell weight'], 10)
nine_per = np.percentile(df['Shell weight'], 90)
```

df['Shell weight'] = np.where(df['Shell weight'] < tenth_per, tenth_per, df['Shell weight'
df['Shell weight'] = np.where(df['Shell weight'] > nine_per, nine_per, df['Shell weight'])
sns.boxplot(df['Shell weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f223d870390>

sns.boxplot(df['Rings'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f223d83db10>


```
tenth_per = np.percentile(df['Rings'], 10)
nine_per = np.percentile(df['Rings'], 90)

df['Rings'] = np.where(df['Rings'] < tenth_per, tenth_per, df['Rings'])
df['Rings'] = np.where(df['Rings'] > nine_per, nine_per, df['Rings'])
sns.boxplot(df['Rings'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

df.describe()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4
mean	0.947091	0.527491	0.410466	0.139701	0.807958	0.348481	
std	0.822240	0.099873	0.083713	0.031559	0.418877	0.185356	
min	0.000000	0.355000	0.265000	0.090000	0.205000	0.086500	
25%	0.000000	0.450000	0.350000	0.115000	0.441500	0.186000	
50%	1.000000	0.545000	0.425000	0.140000	0.799500	0.336000	
75%	2.000000	0.615000	0.480000	0.165000	1.153000	0.502000	
max	2.000000	0.660000	0.522000	0.185000	1.478200	0.647000	

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shel
0	0	0.455	0.365	0.095	0.5140	0.2245	0.1010	
1	0	0.355	0.265	0.090	0.2255	0.0995	0.0485	
2	2	0.530	0.420	0.135	0.6770	0.2565	0.1415	
3	0	0.440	0.365	0.125	0.5160	0.2155	0.1140	
4	1	0.355	0.265	0.090	0.2050	0.0895	0.0433	

Outlier treatment

df['Age'] = df['Rings'] + 2.5

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	W
0	0	0.455	0.365	0.095	0.5140	0.2245	0.1010	
1	0	0.355	0.265	0.090	0.2255	0.0995	0.0485	
2	2	0.530	0.420	0.135	0.6770	0.2565	0.1415	
3	0	0.440	0.365	0.125	0.5160	0.2155	0.1140	
4	1	0.355	0.265	0.090	0.2050	0.0895	0.0433	

```
X = df.drop('Age', axis=1)
y = df['Age']
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.3, random_state=101)
X_train.shape
     (2923, 9)
X_test.shape
     (1254, 9)
y_train.shape
     (2923,)
y_test.shape
     (1254,)
from sklearn.linear_model import LinearRegression
model1 = LinearRegression()
model1.fit(X_train,y_train)
     LinearRegression()
y pred1 = model1.predict(X test)
y_pred1
     array([12.5, 9.5, 12.5, ..., 8.5, 16.5, 12.5])
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
print(mean_absolute_error( y_test, y_pred1))
print(mean_squared_error(y_test, y_pred1))
     7.592721418808088e-16
     1.4544229767711159e-30
print(r2_score( y_test,y_pred1))
     1.0
```

from sklearn.ensemble import RandomForestRegressor

```
model2 = RandomForestRegressor(n_estimators=500)
model2.fit(X_train, y_train)

   RandomForestRegressor(n_estimators=500)

y_pred2 = model2.predict(X_test)

y_pred2

array([12.5, 9.5, 12.5, ..., 8.5, 16.5, 12.5])

print(r2_score( y_test,y_pred2))

1.0
```

Colab paid products - Cancel contracts here

✓ 0s completed at 17:54

X