

Hall Effect Sensor IC

in CMOS technology

Common Features:

- switching offset compensation at 62 kHz
- operates from 3.8 V to 24 V supply voltage
- overvoltage and reverse-voltage protection
- extremely robust against mechanical stress
- short-circuit protected open-drain output
- operates with magnetic fields from DC to 10 kHz
- on-chip temperature compensation circuitry minimizes shifts in on and off points and hysteresis over temperature and supply voltage
- the decrease of magnetic flux density caused by rising temperature in the sensor system is compensated by a built-in negative temperature coefficient of hysteresis
- ideal sensor for ignition timing, anti-lock brake systems and revolution counting in extreme automotive and industrial environments
- EMC corresponding to DIN 40839

Specifications

The types differ according to the magnetic flux density values for the magnetic switching points, the temperature behavior of the magnetic switching points, and the mode of switching.

HAL501

- switching type: bipolar, very sensitive
- output turns low with magnetic south pole on branded side of package
- output state can change if magnetic field is removed

HAL502, HAL503, HAL505

- switching type: latch
- output turns low with magnetic south pole on branded side of package
- output state does not change if magnetic field is removed

HAL504, HAL506, HAL508

- switching type: unipolar
- output turns low with magnetic south pole on branded side of package
- output turns high if magnetic field is removed

Marking Code

Туре	Tem	perature Ra	ange
	Α	E	С
HAL501S, HAL501UA	501A	501E	501C
HAL502S, HAL502UA	502A	502E	502C
HAL503S, HAL503UA	503A	503E	503C
HAL504S, HAL504UA	504A	504E	504C
HAL 505S, HAL 505UA	505A	505E	505C
HAL 506S, HAL 506UA	506A	506E	506C
HAL 508S, HAL 508UA	508A	508E	508C

Operating Junction Temperature Range

A: $T_J = -40 \, ^{\circ}\text{C}$ to +170 $^{\circ}\text{C}$

E: $T_J = -40 \, ^{\circ}\text{C}$ to $+100 \, ^{\circ}\text{C}$

C: $T_J = 0$ °C to +100 °C

Designation of Hall Sensors

Example: HAL501UA-E

 \rightarrow Type: 501

→ Package: TO-92UA

 \rightarrow Temperature Range: T_J = -40 °C to +100 °C

Solderability

- Package SOT-89A: according to IEC68-2-58
- Package TO-92UA: according to IEC68-2-20

Fig. 1: Pin configuration

Fig. 2: HAL50x block diagram

Functional Description

This Hall effect sensor is a monolithic integrated circuit that switches in response to magnetic fields. If a magnetic field with flux lines at right angles to the sensitive area is applied to the sensor, the biased Hall plate forces a Hall voltage proportional to this field. The Hall voltage is compared with the actual threshold level in the comparator. The temperature-dependent bias increases the supply voltage of the Hall plates and adjusts the switching points to the decreasing induction of magnets at higher temperatures. If the magnetic field exceeds the threshold levels, the open drain output switches to the appropriate state. The built-in hysteresis eliminates oscillation and provides switching behavior of output without bounce.

Magnetic offset caused by mechanical stress is compensated for by using the "switching offset compensation technique". Therefore, an internal oscillator provides a two phase clock. The hall voltage is sampled at the end of the first phase. At the end of the second phase, both sampled and momentary hall voltages are averaged and compared with the actual switching point. Subsequently, the open drain output switches to the appropriate state. The time from crossing the magnetic switch level to switching of output can vary between zero and $1/f_{\rm OSC}$.

Shunt protection devices clamp voltage peaks at the Output-Pin and V_{DD} -Pin together with external series resistors. Reverse current is limited at the V_{DD} -Pin by an internal series resistor up to -15 V. No external reverse protection diode is needed at the V_{DD} -Pin for values ranging from 0 V to -15 V.

Fig. 3: Timing diagram

Outline Dimensions

Fig. 4:
Plastic Small Outline Transistor Package (SOT-89A)
Weight approximately 0.04 g
Dimensions in mm

Fig. 5:
Plastic Transistor Single Outline Package (TO-92UA)
Weight approximately 0.12 g
Dimensions in mm

Absolute Maximum Ratings

Symbol	Parameter	Pin No.	Min.	Max.	Unit
V _{DD}	Supply Voltage	1	–15	28 ¹⁾	V
-V _P	Test Voltage for Supply	1	-24 ²⁾	_	V
-I _{DD}	Reverse Supply Current	1	_	50 ¹⁾	mA
I _{DDZ}	Supply Current through Protection Device	1	-300 ³⁾	300 ³⁾	mA
V _{OH}	Output High Voltage	3	_	28 ¹⁾	V
I _O	Continuous Output On Current	3	_	30	mA
I _{Omax}	Peak Output On Current	3	_	250 ³⁾	mA
I _{OZ}	Output Current through Protection Device	3	-300 ³⁾	300 ³⁾	mA
T _S	Storage Temperature Range		– 65	150	°C
TJ	Junction Temperature Range		-40 -40	150 170 ⁴⁾	°C

¹⁾ as long as T_Jmax is not exceeded

Stresses beyond those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions/Characteristics" of this specification is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Symbol	Parameter	Pin No.	Min.	Тур.	Max.	Unit
V _{DD}	Supply Voltage	1	3.8	-	24	V
Io	Continuous Output On Current	3	0	_	20	mA

Extended Operational Range

Within the extended operating range, the ICs operate as mentioned in the functional description. The functionality has been tested on samples, whereby the characteristics may lie outside the specified limits.

Symbol	Parameter	Pin No.	Min.	Тур.	Max.	Unit
V _{DD}	Supply Voltage	1	3.3	ı	25	٧
Io	Continuous Output On Current	3	ı	ı	30	mA

 $^{^{2)}}$ with a 220 Ω series resistance at pin 1 corresponding to test circuit 1

 $^{^{3)}}$ t < 2 ms

⁴⁾ t<1000h

Electrical Characteristics at $T_J = -40~^{\circ}C$ to +170 $^{\circ}C$, $V_{DD} = 3.8~V$ to 24 V, as not otherwise specified Typical Characteristics for $T_J = 25~^{\circ}C$ and $V_{DD} = 12~V$

Symbol	Parameter	Pin No.	Min.	Тур.	Max.	Unit	Test Conditions
I _{DD}	Supply Current	1	2.6	3.2	3.8	mA	T _J = 25 °C
I _{DD}	Supply Current over Temperature Range	1	1.6	3.2	5.2	mA	
V_{DDZ}	Overvoltage Protection at Supply	1	-	28.5	32	V	I_{DD} = 25 mA , T_J = 25 °C, t = 20 ms
V _{OZ}	Overvoltage Protection at Output	3	_	28	32	V	I_{OH} = 25 mA , T_J = 25 °C, t = 20 ms
V _{OL}	Output Voltage	3	_	130	180	mV	I _{OL} = 20 mA, T _J = 25 °C, V _{DD} = 4.5 V to 24 V
V _{OL}	Output Voltage over Temperature Range	3	-	130	400	mV	I _{OL} = 20 mA
I _{OH}	Output Leakage Current	3	-	0.06	0.1	μА	B< B _{OFF,} T _J = 25 °C, V _{OH} = 3.8 to 24 V
Іон	Output Leakage Current over Temperature Range	3	-	_	10	μА	B< B _{OFF,} T _J ≤ 150 °C, V _{OH} = 3.8 to 24 V
f _{osc}	Internal Oscillator Chopper Frequency	-	52	62.5	73	kHz	T _J = 25 °C, V _{DD} = 4.5 V to 24 V
f _{osc}	Internal Oscillator Chopper Frequency over Temperature Range	-	45	62.5	79	kHz	V _{DD} = 3.8 V to 24 V
t _{en(O)}	Enable Time of Output after Setting of V _{DD}	1	-	30	70	μs	V _{DD} = 12 V, B < B _{ON} - 2 mT, B > B _{OFF} + 2 mT
t _r	Output Rise Time	3	_	75	400	ns	V _{DD} = 12 V, RL = 820 Ohm, C _L = 20 pF
t _f	Output Fall Time	3	-	50	400	ns	V _{DD} = 12 V, RL = 820 Ohm, C _L = 20 pF
R _{thJSB} case SOT-89A	Thermal Resistance Junction to Substrate Backside	-	-	150	200	K/W	Fiberglass Substrate 30 mm x 10 mm x 1.5mm, pad size see Fig. 7
R _{thJA} case TO-92UA	Thermal Resistance Junction to Soldering Point	-	-	150	200	K/W	

Magnetic Characteristics at T_J = -40 °C to +170 °C, V_{DD} = 3.8 V to 24 V, Typical Characteristics for V_{DD} = 12 V

Magnetic flux density values of switching points.

Positive flux density values refer to the magnetic south pole at the branded side of the package.

Parameter		-40 °C			25 °C			100 °C			170 °C		Unit
	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	
On point B _{ON} HAL501 HAL502 HAL503 HAL504 HAL505 HAL506 HAL508	-0.8 1 6.4 10.3 11.8 4.3 15.5	0.65 3 8.6 13 15 5.9	2.5 5 10.8 15.7 18.3 7.7 21.9	-0.35 1 6 9.5 11 3.8 15	0.63 2.75 8 12 14 5.5	2.25 4.5 10 14.5 17 7.2 20.7	-0.88 0.95 5.6 9 10.2 3.6 13.9	0.59 2.6 7.2 11.1 13 5.1 16.65	2.5 4.4 9.7 14.1 16.6 7 20.4	-0.9 0.9 5.1 8.5 9.4 3.4 12.7	0.55 2.4 6.4 10.2 12 4.7 15.3	2.5 4.3 9.3 13.7 16.1 6.8 20	mT mT mT mT mT mT
Off point B _{OFF} HAL501 HAL502 HAL503 HAL504 HAL505 HAL506 HAL508	-2.5 -5 -10.8 5.3 -18.3 2.1	-0.65 -3 -8.6 7.5 -15 3.8	0.8 -1 -6.4 9.6 -11.8 5.4 20	-2.25 -4.5 -10 5 -17 2 13.5	-0.63 -2.75 -8 7 -14 3.5	0.35 -1 -6 9 -11 5	-2.5 -4.4 -9.7 4.6 -16.6 1.85 12.5	-0.59 -2.6 -7.2 6.45 -13 3.3 14.8	0.88 -0.95 -5.6 8.75 -10.2 4.9 18.7	-2.5 -4.3 -9.3 4.2 -16.1 1.7 11.4	-0.55 -2.4 -6.4 5.9 -12 3 13.6	0.9 -0.9 -5.1 8.5 -9.4 4.7 18.3	mT mT mT mT mT
Hysteresis B _{HYS} HAL501 HAL502 HAL503 HAL504 HAL505 HAL506 HAL508	0.5 4.5 14.6 4.4 26 1.6	1.3 6 17.2 5.4 30 2.1 2.1	2 7.2 20.6 6.5 34 2.8 2.8	0.5 4.5 13.6 4 24 1.5	1.25 5.5 16 5 28 2	1.9 7 18 6.5 32 2.7 2.7	0.5 4 12.3 3.6 22 1.2	1.18 5.2 14.8 4.7 26 1.9 1.85	1.85 6.8 17.6 6.4 31.3 2.6 2.6	0.5 3.5 11 3.2 20 1.0	1.1 4.8 13.6 4.3 24 1.7	1.8 6.8 17.6 6.4 31.3 2.6 2.6	mT mT mT mT mT mT
Magnetic Offset (B _{ON} + B _{OFF})/2 HAL501 HAL502 HAL503 HAL504 HAL505 HAL506 HAL508		0 0 0 10.1 0 4.8 18.1		-1.3 -1.5 -1.5 7.2 -1.5 3 14	0 0 0 9.5 0 4.5	1.3 1.5 1.5 11.8 1.5 6.2 20		0 0 0 8.75 0 4.18 15.8		- - - - -	0 0 0 8 0 3.85 14.5		mT mT mT mT mT mT

Fig. 6: Definition of magnetic switching points and hysteresis

Fig. 7: Recommended pad size SOT-89A Dimensions in mm

Note: In the following diagrams "Magnetic switch points versus ambient temperature" on pages 8 and 9, the curves for B_{ON} min, B_{ON} max, B_{OFF} min, and B_{OFF} max refer to junction temperature, whereas typical curves refer to ambient temperature.

12

Application Note

For electromagnetic immunity, it is recommended to apply a 4.7 nF capacitor between V_{DD} (pin 1) and Ground (pin 2).

For automotive applications, a 220 Ω series resistor to pin 1 is recommended.

The series resistor and the capacitor should be placed as close as possible to the IC.

Ambient Temperature

Due to the internal power dissipation, the temperature on the silicon chip (junction temperature T_J) is higher than the temperature outside the package (ambient temperature T_A).

$$T_J = T_A + \Delta T$$

At static conditions, the following equations are valid:

- for SOT-89A:
$$\Delta T = I_{DD} * V_{DD} * R_{thJSB}$$

- for TO-92UA: $\Delta T = I_{DD} * V_{DD} * R_{thJA}$

For typical values, use the typical parameters. For worst case calculation, use the max. parameters for I_{DD} and R_{th} , and the max. value for V_{DD} from the application.

Test Circuits for Electromagnetic Compatibility Test pulses V_{EMC} corresponding to DIN 40839.

Fig. 8: Test circuit 2: test procedure for class A

Fig. 9: Test circuit 1: test procedure for class C

Interferences conducted along supply lines in 12 V onboard systems

Product standard: DIN 40839 part 1

Pulse	Level	U _s in V	Test circuit	Pulses/ Time	Function Class	Remarks
1	IV	-100	1	5000	С	5 s pulse interval
2	IV	100	1	5000	С	0.5 s pulse interval
3a	IV	-150	2	1 h	А	
3b	IV	100	2	1h	А	
4	IV	-7	2	5	А	
5	IV	86.5	1	10	С	10 s pulse interval

Electrical transient transmission by capacitive and inductive coupling via lines other than the supply lines

Product standard: DIN 40839 part3

Pulse	Level	U _s in V	Test circuit	Pulses/ Time	Function Class	Remarks
1	IV	-30	2	500	А	5 s pulse interval
2	IV	30	2	500	А	0.5 s pulse interval
3a	IV	-60	2	10 min	А	
3b	IV	40	2	10 min	А	

Radiated Disturbances

Product standard: DIN 40839 part4

Test Conditions

- Temperature: Room temperature (22...25 °C)

Supply voltage: 13 V

– Lab Equipment: TEM cell 220 MHz (VW standard)

with adaptor board 455 mm, device 80 mm over ground

- Frequency range: 5...220 MHz; 1 MHz steps

- Test circuit 2 with $R_L = 1.2 \text{ k}\Omega$ - tested with static magnetic fields

Tested Devices and Results

Туре	Field Strength	Modulation	Result		
HAL 50x	> 200 V/m	_	output voltage stable on the level high or low1)		
HAL 50x > 200 V/m 1 kHz 80 % output voltage stable on the level high or low ¹⁾					
$^{1)}$ low level < 0.4 V, high level > 90% of V_{DD}					

MICRONAS INTERMETALL

Data Sheet History

1. Final data sheet: "HAL501...HAL506, HAL508 Hall Effect Sensor ICs", May 5, 1997, 6251-405-1DS. First release of the final data sheet.

MICRONAS INTERMETALL GmbH Hans-Bunte-Strasse 19 D-79108 Freiburg (Germany) P.O. Box 840 D-79008 Freiburg (Germany) Tel. +49-761-517-0 Fax +49-761-517-2174

E-mail: docservice@intermetall.de Internet: http://www.intermetall.de

Printed in Germany by Simon Druck GmbH & Co., Freiburg (05/97) Order No. 6251-405-1DS All information and data contained in this data sheet are without any commitment, are not to be considered as an offer for conclusion of a contract nor shall they be construed as to create any liability. Any new issue of this data sheet invalidates previous issues. Product availability and delivery dates are exclusively subject to our respective order confirmation form; the same applies to orders based on development samples delivered. By this publication, MICRONAS INTERMETALL GmbH does not assume responsibility for patent infringements or other rights of third parties which may result from its use. Reprinting is generally permitted, indicating the source. However, our prior consent must be obtained in all cases.

End of Data Sheet

Back to Summary

