Introduction to Statistical Machine Learning CSC/DSCC 265/465

<u>Lecture 13</u>: Unsupervised Learning – Part IV

Cantay Caliskan

Notes and updates

Notes and updates

- Any questions?
- Practice midterm will be posted on Wednesday (Wednesday, March 2, 2022)
- Midterm review: On Wednesday (Wednesday, March 2, 2022)
- Midterm date: Wednesday, March 16, 2022 (during class time)
- Quick clarification: Midterm will cover everything (including the lecture on Monday, March 14)

Plan for the next lectures

PCA

SVD

Plan for the next lectures

PCA

SVD

- Motivation for dimensionality reduction:
 - Sparse data (= a lot of zeros or NA's)
 - (High/extremely high) number of features
 - Highly correlated/redundant features
 - Noisy features
 - Features that are hard to describe
 - The need to know which feature is important
 - Interpretation / visualization
 - Computational burden
 - Curse of dimensionality

Different techniques:

- Missing Values Ratio
- Low Variance Filter
- High Correlation Filter
- Random Forests / Ensemble Trees
- Backward Feature Elimination
- Forward Feature Construction
- Linear Discriminant Analysis (LDA)
- Generalized Discriminant Analysis (GDA)
- T-Stochastic Neighbor Embedding (t-SNE)
- Principal Component Analysis (PCA)

- 1) Feature elimination
- 2) Feature extraction
- High Dimensions = Lots of Features
- Dimensionality reduction is helpful:
 - Often too many features to do a final classification
 - Higher #features -> more difficult to visualize
 - Higher #features -> more difficult to make classification

Example: Calculating the US GDP

- Let's say you want to predict the **gross domestic product (GDP)** of the United States for 2022. There is a lot of information available:
 - Recorded and unrecorded data
 - The US GDP for the first quarter of 2022
 - The US GDP for the entirety of 2021, 2020, 2019 etc.
 - Publicly available economic indicators:
 - Unemployment rate
 - Inflation rate
 - Etc.
 - US Census data from 2010 estimating how many Americans work in each industry
 - Stock price data, number of IPOs etc.

Example: Calculating the US GDP

- Question: How do I take all of the variable I have collected and focus on only a few of them?
 - You want to reduce dimensionality
 - To reduce the risk of overfitting ...
 - To reduce computational burden ...
- So, you need:
 - Feature elimination, OR
 - Feature extraction

Feature Elimination and Extraction

Feature Elimination:

- We drop the variables that we think are not needed to come up with a good explanatory / predictive model
- Disadvantage: Losing the information from the variables that you drop
 - e.g. your **R**² value may drop

Feature Extraction:

- We take all of our n independent variables, and create n new features
- Each feature is a weighted combination of each of the "old" independent variables
- We order these new variables by how well they predict the dependent variable and we drop the ones that are not doing a 'good job'

Principal Components Analysis (PCA)

What is Principal Components Analysis?

- A feature extraction technique
- Unsupervised technique for extracting variance structure from high dimensional datasets

- An orthogonal projection or transformation of the data into a (possibly lower dimensional) subspace so that the variance of the projected data is maximized.
 - Focus is on identifying the *correlations* in the dataset

Math: Principal Component Analysis (PCA)

- 1. Standardize the data (in most cases)
- 2. Calculate the covariance matrix
- 3. Find the eigenvalues and eigenvectors of the covariance matrix
- 4. Plot the eigenvectors / principal components over the scaled data

PCA: Mathematical Basics

Linear algebra:

- Eigenvectors
- Eigenvalues
- Matrix algebra

Statistics:

- Standard deviation
- Variance
- Covariance
- Covariance matrix

Review: Standardizing the data

Most common types:

- Standard score: $\frac{X \mu}{\sigma}$
- Min Max Feature scaling: $X' = \frac{X X_{min}}{X_{max} X_{min}}$
- Output Mean Which one to choose when?
 - Normality assumption
 - Spread of your data
 - Are you interested in the spread or controlling the spread?

Review: Eigenvalues and Eigenvectors

■ <u>Definition</u>: If T is a linear transformation from a vector space V over a field F into itself and \mathbf{v} is a vector in V that is not the zero vector, then \mathbf{v} is an eigenvector of T if $T(\mathbf{v})$ is a scalar multiple of \mathbf{v}

$$\circ T(\boldsymbol{v}) = \boldsymbol{\lambda} v$$

- Where: λ is the eigenvalue
- If the vector space V is finite-dimensional, then the linear transformation T can be represented as a square matrix A, and the vector v by a column vector:
 - $\bullet Av = \lambda v$

Review: Eigenvalues and Eigenvectors

- Example: Shear mapping
- Any vector that points directly to the right or left with no vertical component is an eigenvector
- Length of vector: eigenvalue
- Eigenvalue: (sort of) measure of distortion
- Eigenvector: (sort of) orientation of distortion

Variance – Covariance Matrix

- Let's say: You have a 3-dimensional data set, you can measure covariance between each dimension:
 - Covariance between x and y dimensions
 - Covariance between *y and z* dimensions
 - Covariance between x and z dimensions
- So you can construct a *variance covariance matrix* that looks like:

$$\begin{bmatrix} cov(x,x) & cov(x,y) & cov(x,z) \\ cov(y,x) & cov(y,y) & cov(y,z) \\ cov(z,x) & cov(z,y) & cov(z,z) \end{bmatrix}$$

The diagonal is the variances ...

■ You get the variance — covariance matrix by multiplying your meanstandardized matrix (P) by its transpose (P^T)

Why (bother)?

- Why bother with calculating covariance when we could just plot the 2 values to see their relationship?
- In *lower dimensions* -> There are many options, no need for complicated analysis
- In higher dimensions -> You need to convert your data to be able to analyze it
- Big motivation -> Visualization: Only possible in 2D or 3D (or 1D, but no one likes that).

Principal Component

Definition:

- Direction of maximum variance in the input space
- Principal eigenvector of the covariance matrix
- But, how can we relate these two definitions?
- *Variance*: We have:
 - A random variable fluctuating about its mean value
 - Average of the square of fluctuations
- *Covariance*: We have:
 - Pair of random variables each fluctuating about their mean values
 - Average of product of products

Principal Components

Remember (from two slides ago) ©:

$$A = \begin{bmatrix} cov(x,x) & cov(x,y) & cov(x,z) \\ cov(y,x) & cov(y,y) & cov(y,z) \\ cov(z,x) & cov(z,y) & cov(z,z) \end{bmatrix}$$
 We have the variance – covariance matrix.

We have the

And let's find the eigenvectors with k largest eigenvalues

$$\begin{array}{ll} A \ v_1 = \ \pmb{\lambda} \ v_1 \\ A \ v_2 = \ \pmb{\lambda} \ v_2 \\ \dots \\ A \ v_k = \ \pmb{\lambda} \ v_k \end{array}$$

 $A v_N = \lambda v_N$

The first **k** components explain most of the variance in the dataset.

And each component is **independent** from each other.

The first **k** components are called the principal components!

Step 1:

Decide on the following:

- Only dimension reduction ?
 - Keep all data points
- *First* dimension reduction, *then* prediction?
 - Separate the outcome variable Y from the rest of your dataset (X's)

Step 2:

Subtract the mean of each variable from itself. So, each variable would have a mean zero (prestandardization).

And decide if you want to standardize:

- Interested in the variance of your variables?
 - Don't standardize
- Interested in central tendency?
 - Standardize

Step 3:

<u>Calculate the variance – covariance</u> matrix:

- Take the ("standardized / nonstandardized") data you created
- Put it into matrix format (P)
- Take matrix P and transpose it (P^T)
- Calculate P^TP and find the variance – covariance matrix

Step 4:

Technical step:

- Transform P^TP into a ZDZ⁻¹ format
 - **Z**: matrix of eigenvectors
 - D: diagonal matrix with eigenvalues on the diagonal
- This procedure is called eigendecomposition

Step 5:

Take a look at the eigenvalues:

- λ_1 , λ_2 , λ_3 , ..., λ_n
- Sort the eigenvalues from the largest to the smallest
- Find the column in Z that corresponds to the largest eigenvalue and place it in the first position (most important vector)
- Call this a sorted matrix Z*

Step 6:

Another technical step:

- Calculate a new matrix P* = PZ*
- This new matrix is a centered/standardized version of X and each observation is a weighted combination of original variables
- Weights are determined by eigenvectors
- And columns of P* are independent

Step 7 – Final Step:

How many columns do we want to keep?

- We created a new matrix P* where columns are independent from each other
- We have several options:
 - Arbitrarily select the number of columns we want to keep
 - Calculate the <u>proportion of variance explained</u> and pick a *threshold*
 - Find the cumulative proportion of variance explained and set a *threshold*
 - Find the elbow in the graph!

This is called a *scree plot*Question: How do we calculate
the proportion of variance
explained?

Answer: From the Var-Cov matrix (P*) of the standardized X matrix.

Scree Plot

- Take a look at the cumulative proportion of variance
- Find the <u>biggest</u> slope change
- Choose the number of components k
 before the <u>biggest</u> slope change
 - <u>Here</u>: **k** = **3**

When should you use PCA? (Methodologically)

- 1. Do you want to reduce the number of variables, but aren't able to identify which variables you can remove from your consideration?
- 2. Do you want to ensure your variables are independent of one another?
- 3. Are you comfortable making your independent variables less interpretable?
- If you answered "yes" to all -> try PCA
- If you answered "no" to question 1 and/or question 2 -> you can still use PCA
- If you answered "no" to question 3 -> do not use PCA

Should We Use It? (Technically)

Advantages:

- It helps in data compression, and hence reduced storage space
- It reduces computation time
- It helps to remove redundant features, if any
- You can use the new variables in a linear regression setting!

Disadvantages:

- It may lead to some amount of data loss
- PCA tends to find linear correlations between variables, which is sometimes undesirable
- PCA fails in cases where mean and covariance are not enough to define datasets
- We may not know how many principal components to keep- in practice, some thumb rules are applied

Kaggle Competition and Team Building

Kaggle Competition

- Goal: Classifying fake news by topic (multi-class classification problem)
 - Original dataset contains ~10,000 fake news
 - Plan: You will be provided with ~5,000 observations
 - Expectation: Predict the topics for the rest of the news!
 - You can work in a team of two (2) people
 - And, you are encouraged to work in a team!
 - Dataset contains:
 - Date
 - Origin (Country)
 - Origin (Media Source)
 - Brief information
 - Long information
 - Topic class (~30 different topics)

Kaggle Competition

Expectations

- A descriptive analysis
 - One section for undergraduate students
 - Two sections for graduate students
- A prediction challenge
 - Plan: You will be able to choose any classification model you would like
 - Two separate lists of ranking for undergraduates and graduates
- A report
 - Summarize your findings and strategies with a final report

Team Building

- Have you met any people from the classroom?
- Would you like to get to know more people?
- Have you checked the class Facebook?

Not this Facebook! ©

- There is a link on BlackBoard that you can use to identify your team
 - Content Menu -> Kaggle Teams
- Let's use the remainder of the time for team building.

Team Building Exercise

- If you are looking for a *team partner* for:
 - Kaggle Competition
 - Final Project
- Instructions:
 - Please come to the front (in a few minutes), and:
 - Meet with at least three (3) people
 - Submit their names and surnames, programs and majors, and a 'selfie' [as a message] on BlackBoard
 - Reminder: Upload the 'selfie' as well!
 - Deadline: 3:30 PM today
 - You will receive some extra credit

