

TEST REPORT

Product: Bluetooth Speaker

Trade mark : NUU, Whyrless, DOCKIN, ENERGY SISTEM Model/Type reference : BOOM BOX, W2. Whyrless BOOM, DOCKIN

D Fine, ENERGY SISTEM BOOM BOX

Serial Number : N/A

Report Number : EED32l00229002 FCC ID : YQB0SCl1000007

Date of Issue : Oct. 18, 2016

Test Standards : 47 CFR Part 15Subpart C (2015)

Test result : PASS

Prepared for:

SUN CUPID (SHENZHEN) ELECTRONIC LTD

10A, No.3 Bldg, China Academy of Sci &Tech Development, No.1 HighTech South St., Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tom – chen
Tom chen (Test Project)

Compiled by:

Ware Xin (Project Engineer)

1

Kevin yang (Reviewer)

Approved by:

Sheek Luo (Lab supervisor)

Oct. 18, 2016

Check No.: 2496551428

2 Version

Version No.	Date	Description
00	Oct. 18, 2016	Original
	(7)	

Report No.: EED32I00229002 Page 3 of 40

3 Test Summary

Test Summary				
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample and the sample information are provided by the client.

Model No.: BOOM BOX, W2. Whyrless BOOM, DOCKIN D Fine, ENERGY SISTEM BOOM BOX Only the model BOOM BOX was tested, since the PCB, Schematic, Hardware etc were identical for the above models, BOOM BOX, W2. Whyrless BOOM, DOCKIN D Fine, ENERGY SISTEM BOOM BOX are named differently due to difference agent and marketing purposes.

Report No.: EED32I00229002 Page 4 of 40

4 Content

1 COVER PAGE				1
2 VERSION			,	2
TEST SUMMARY	•••••			3
4 CONTENT			•••••	4
TEST REQUIREMENT				
5.1 TEST SETUP				
	etup			
	ons test setupsions test setup			
5.2 TEST ENVIRONMENT	Z			
5.3 Test Condition				
6 GENERAL INFORMATION				7
6.1 CLIENT INFORMATION				7
6.2 GENERAL DESCRIPTION OF				
6.3 PRODUCT SPECIFICATION S	UBJECTIVE TO THIS STANDARD			7
6.4 DESCRIPTION OF SUPPORT				
6.5 TEST LOCATION				
6.6 TEST FACILITY				
6.8 ABNORMALITIES FROM STANDAR				
6.9 OTHER INFORMATION REQU				
6.10 MEASUREMENT UNCERTAI				
7 EQUIPMENT LIST	······································	•••••	•••••	11
RADIO TECHNICAL REQUIR	EMENTS SPECIFICATION		•••••	13
Appendix A): 6dB Occupie	d Bandwidth			14
	eak Output Power			
	r RF Conducted Emissions			
, ,	d Spurious Emissions			
	al Density			
	uirement ne Conducted Emission			
	nds around fundamental frec			
	ious Emissions			
PHOTOGRAPHS OF TEST SET				
PHOTOGRAPHS OF EUT CON	STRUCTIONAL DETAILS		•••••	40
		(6)		(C)

Report No.: EED32I00229002 Page 5 of 40

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		(6)
Temperature:	23°C	
Humidity:	50% RH	
Atmospheric Pressure:	1010mbar	l I

5.3 Test Condition

Test channel:

Test Mode	Tx	RF Channel				
) IX ((**))	Low(L)	Middle(M)	High(H)		
GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40		
	2402WH2 ~2460 WH2	2402MHz	2440MHz	2480MHz		
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.					

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint Call: 0755-33681700 \\ Call: 0755-336817$

Report No. : EED32I00229002 Page 7 of 40

6 General Information

6.1 Client Information

Applicant:	SUN CUPID (SHENZHEN) ELECTRONIC LTD						
Address of Applicant:	10A, No.3 Bldg, China Academy of Sci &Tech Development, No.1 High-Tech South St., Shenzhen, China						
Manufacturer:	Foshan Sun Cupid Electronics Fty Ltd						
Address of Manufacturer:	Block 7 No.127 Zhangcha 1 Road, Chancheng District, Fosha Guangdong, China.						
Factory:	Foshan Sun Cupid Electronics Fty Ltd						
Address of Factory:	Block 7 No.127 Zhangcha 1 Road, Chancheng District, Foshan, Guangdong, China.						

6.2 General Description of EUT

Product Name:	Bluetooth Sp	Bluetooth Speaker					
Model No.(EUT):	BOOM BOX BOOM BOX	BOOM BOX, W2. Whyrless BOOM, DOCKIN D Fine, ENERGY SISTEM BOOM BOX					
Test Model No.:	воом вох	(0.)	6.	0.			
Trade mark:	NUU, Whyrle	NUU, Whyrless, DOCKIN, ENERGY SISTEM					
EUT Supports Radios application:	Bluetooth V3	Bluetooth V3.0+EDR & Bluetooth V4.0 BLE					
Power Supply:	Adapter:	Model: M150240W11 Input: 100-240V, 50-6 Output: 15V 2400m	60Hz, 1.2A				
	Battery:	11.1V, 2200mAh					
Sample Received Date:	Oct. 11, 2016	6	/°>	(2)			
Sample tested Date:	Oct. 11, 2016	6 to Oct. 18, 2016	(21)	(2)			

6.3 Product Specification subjective to this standard

2402MHz~2480MHz	
4.0	
DSSS	(6,)
GFSK	
40	
255(manufacturer declare)	(3
CSR blue suite (manufacturer declare)	(6,7)
PCB Antenna	
0dBi	
AC 120V/60Hz, AC 230V/50Hz	(0)
	4.0 DSSS GFSK 40 255(manufacturer declare) CSR blue suite (manufacturer declare) PCB Antenna 0dBi

Report No. : EED32I00229002 Page 8 of 40

1:0						-/:3	
Operation F	requency eac	h of channe	l	(6))	(6))
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

Page 9 of 40 Report No.: EED32I00229002

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096. Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions None.

6.9 Other Information Requested by the Customer None.

Report No. : EED32I00229002 Page 10 of 40

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	DE nower conducted	0.31dB (30MHz-1GHz)		
	RF power, conducted	0.57dB (1GHz-18GHz)		
2	Dedicted Courieus emission test	4.5dB (30MHz-1GHz)		
3	3 Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)		
4	Conduction ancicaion	3.6dB (9kHz to 150kHz)		
-4	Conduction emission	3.2dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test 2.8%			
7	DC power voltages	0.025%		

7 Equipment List

		70.7			47.7		
RF test system							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017		
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017		
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017		
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017		
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017		
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017		
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017		
BT&WI-FI Automatic control	R&S	OSP120	101374	04-01-2016	03-31-2017		
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017		
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017		

Conducted disturbance Test							
Equipment Manufacturer Model No. Serial Cal. date Cal. Due							
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017		
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017		
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017		
Voltage Probe	R&S	ESH2-Z3		07-09-2014	07-07-2017		
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017		
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017		

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

	3M :	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/10711 112		01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	(F)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001	(C.)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-12-2016	01-11-2017

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title						
1	FCC Part15C (2015)	Subpart C-Intentional Radiators						
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices						

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note		
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)		
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)		
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)		
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)		
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)		
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)		
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)		
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around 3.10 fundamental frequency (Radiated Emission)		Appendix H)		
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)		

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6890	1.0507	PASS	CON.
BLE	MCH	0.6892	1.0476	PASS	Peak
BLE	нсн	0.6901	1.0468	PASS	detector

Test Graphs

Page 15 of 40

Report No. : EED32I00229002 Page 16 of 40

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict			
BLE	LCH	1.149	PASS			
BLE	MCH	1.437	PASS			
BLE	НСН	1.580	PASS			

Test Graphs

Page 17 of 40

Report No. : EED32I00229002 Page 18 of 40

Appendix C): Band-edge for RF Conducted Emissions

Result Table

0.5	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
1	BLE	LCH	0.570	-63.252	-19.43	PASS
_	BLE	HCH	-0.876	-55.097	-20.88	PASS

Test Graphs

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	0.52	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	0.598	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	-1.033	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Report No. : EED32I00229002 Page 20 of 40

Page 21 of 40

Report No. : EED32I00229002 Page 22 of 40

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-14.969	8	PASS
BLE	MCH	-14.490	8	PASS
BLE	НСН	-13.589	8	PASS

Test Graphs

Page 23 of 40

Report No. : EED32I00229002 Page 24 of 40

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB Antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.

Appendix G): AC Power Line Conducted Emission

- 1		
IACT	Procedu	rΔ·

Test frequency range: 150KHz-30MHz

- 1)The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

Fraguency range (MHz)	Limit (c	dΒμV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Hotline: 400-6788-333

CII

Report No.: EED32I00229002

AC 120V/60Hz Live line:

No.	Freq.	Reading_Level (dBuV)		Correct Factor	N	Measurement (dBuV)		Limit (dBuV)		Margin (dB)				
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	47.34		29.82	9.80	57.14		39.62	65.99	55.99	-8.85	-16.37	Р	
2	0.2140	38.34		13.76	9.80	48.14		23.56	63.04	53.04	-14.90	-29.48	Р	
3	0.6140	29.08		19.16	9.90	38.98		29.06	56.00	46.00	-17.02	-16.94	Р	
4	1.1740	18.11		8.24	9.75	27.86		17.99	56.00	46.00	-28.14	-28.01	Р	
5	4.2260	17.23		6.92	10.00	27.23		16.92	56.00	46.00	-28.77	-29.08	Р	
6	14.8980	24.71		13.27	10.10	34.81		23.37	60.00	50.00	-25.19	-26.63	Р	

Page 27 of 40

Neutral line:

	No.	Freq.		ling_Le dBuV)	evel	Correct Factor	M	leasurem (dBuV)	nent	Limit (dBuV)		Margin (dB)			
-		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.1580	47.16		26.09	9.80	56.96		35.89	65.56	55.56	-8.60	-19.67	Р	
Ī	2	0.2180	38.96		21.47	9.80	48.76		31.27	62.89	52.89	-14.13	-21.62	Р	
ì	3	0.5780	25.54		13.80	9.90	35.44		23.70	56.00	46.00	-20.56	-22.30	Р	
	4	3.2380	16.40		5.22	10.00	26.40		15.22	56.00	46.00	-29.60	-30.78	Р	
	5	14.7740	23.28		10.93	10.10	33.38		21.03	60.00	50.00	-26.62	-28.97	Р	
	6	20.5700	19.28		8.16	9.80	29.08		17.96	60.00	50.00	-30.92	-32.04	Р	

Page 28 of 40

AC 230V/50Hz Live line:

	No.	Freq.	Reading_Level (dBuV)		Correct Factor	M	Measurement (dBuV)		Limit Mar (dBuV) (d		rgin dB)				
-		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
_	1	0.1539	44.00		25.02	9.80	53.80		34.82	65.78	55.78	-11.98	-20.96	Р	
9	2	0.1980	37.92		18.48	9.80	47.72		28.28	63.69	53.69	-15.97	-25.41	Р	
	3	0.2644	41.22		21.56	9.80	51.02		31.36	61.29	51.29	-10.27	-19.93	Р	
	4	0.6380	24.62		10.49	9.90	34.52		20.39	56.00	46.00	-21.48	-25.61	Р	
-	5	4.9699	19.00		6.14	10.00	29.00		16.14	56.00	46.00	-27.00	-29.86	Р	
	6	19.3420	33.09		22.94	9.84	42.93		32.78	60.00	50.00	-17.07	-17.22	Р	

Neutral line:

No. Fred		Freq.	Reading_Level req. (dBuV)		Correct Measurement Factor (dBuV)		ent	Limit (dBu∀)		Margin (dB)					
-		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
Ī	1	0.1700	41.55		24.93	9.80	51.35		34.73	64.96	54.96	-13.61	-20.23	Р	
Ī	2	0.2660	33.57		18.94	9.80	43.37		28.74	61.24	51.24	-17.87	-22.50	Р	
8	3	0.6540	25.39		14.07	9.90	35.29		23.97	56.00	46.00	-20.71	-22.03	Р	
6	4	2.8980	16.19		6.01	10.00	26.19		16.01	56.00	46.00	-29.81	-29.99	Р	
-	5	11.2020	15.33		4.36	10.02	25.35		14.38	60.00	50.00	-34.65	-35.62	Р	
_	6	19.3860	33.47		23.27	9.84	43.31		33.11	60.00	50.00	-16.69	-16.89	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)								
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-pea	k		
	Ab 4011-	Peak	1MHz	3MHz	Peak	-07		
	Above 1GHz	Peak	1MHz	10Hz	Average	(3)		
Test Procedure:	a. The EUT was placed at a 3 meter semi-andetermine the position b. The EUT was set 3 means mounted on the c. The antenna height is determine the maxim polarizations of the additional determine the maxim polarizations of the additional determine was tuned from 0 deception of the antenna was tuned from 0 deception of the deception of the extension of the antenna was tuned from 0 deception of the deception of the deception of the following states and the frequency to show of bands. Save the specific semi-andetermine the position of the extension of the following states and the following states are states as a semi-andetermine the position of the extension of the following states are states as a semi-andetermine the position of the extension of th	 at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground determine the maximum value of the field strength. Both horizontal and variations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case are the antenna was tuned to heights from 1 meter to 4 meters and the rotate was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 						
	Above 1GHz test proce g. Different between above 18GHz the distance h. Test the EUT in the i. The radiation measure Transmitting mode, as j. Repeat above proce	pove is the test site amber change forn is 1 meter and tabl towest channel, to trements are perfor and found the X ax	n table 0.8 e is 1.5 met the Highest rmed in X, kis positioni	meter to 1 ter). t channel Y, Z axis p ing which i	.5 meter(Ab positioning for t is worse ca	or ase.		
Limit:	Frequency	Limit (dBµV/	\	- /	mark			
	30MHz-88MHz	40.0	/	1	eak Value			
	88MHz-216MHz	43.5		<u> </u>	eak Value			
	216MHz-960MHz	46.0)	Quasi-pe	eak Value			
	960MHz-1GHz	54.0) (3	Quasi-pe	eak Value			
	Al 4011	54.0		Averag	je Value			
	Above 1GHz	74.0)	Peak	Value			
(*)		-0			· >			

Report No.: EED32I00229002 Page 31 of 40

Test plot as follows:

Worse case mode:	GFSK					
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak			

Worse case mode:	GFSK						
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak				

Report No.: EED32I00229002 Page 32 of 40

Worse case mode:	GFSK	(25)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(6,2)	Above 1GHz	Peak	1MHz	3MHz	Peak	
	Above IGHZ	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	ш

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	100	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(4-1)	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Horizontal

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_									
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	35.499	13.49	0.80	7.83	22.12	40.00	-17.88	Horizontal	
2	71.581	10.10	1.47	11.82	23.39	40.00	-16.61	Horizontal	
3	137.420	10.46	1.58	20.10	32.14	43.50	-11.36	Horizontal	
4	287.990	13.25	2.37	14.03	29.65	46.00	-16.35	Horizontal	
5	338.400	14.52	2.64	16.35	33.51	46.00	-12.49	Horizontal	
6 рр	515.437	18.46	3.16	14.89	36.51	46.00	-9.49	Horizontal	

Test mode:	Transmitting	Vertical	((1))
------------	--------------	----------	-------

		AIIC	Capie	iveau		LIMIT	over		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	33.680	13.18	0.92	20.98	35.08	40.00	-4.92	Vertical	
2	75.977	9.30	1.52	25.30	36.12	40.00	-3.88	Vertical	
3	102.719	12.97	1.57	22.10	36.64	43.50	-6.86	Vertical	
4 pp	138.874	10.37	1.58	29.10	41.05	43.50	-2.45	Vertical	
5	193.095	11.37	2.13	17.75	31.25	43.50	-12.25	Vertical	
6	515.437	18.46	3.16	15.18	36.80	46.00	-9.20	Vertical	

Transmitter Emission above 1GHz

Worse case	mode:	GFSK		Test chann	nel:	Lowest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1225.860	30.29	2.54	34.94	46.36	44.25	74.00	-29.75	Pass	Н
1719.783	31.26	3.02	34.50	46.11	45.89	74.00	-28.11	Pass	Н
4804.000	34.69	5.11	34.35	42.96	48.41	74.00	-25.59	Pass	Н
5732.974	35.70	6.83	34.30	41.79	50.02	74.00	-23.98	Pass	Н
7206.000	36.42	6.66	34.90	41.72	49.90	74.00	-24.10	Pass	Н
9608.000	37.88	7.73	35.08	38.61	49.14	74.00	-24.86	Pass	Н
1238.405	30.32	2.56	34.92	46.66	44.62	74.00	-29.38	Pass	V
1495.101	30.86	2.82	34.68	45.81	44.81	74.00	-29.19	Pass	V
4804.000	34.69	5.11	34.35	43.42	48.87	74.00	-25.13	Pass	V
5895.771	35.82	7.20	34.30	41.38	50.10	74.00	-23.90	Pass	V
7206.000	36.42	6.66	34.90	38.57	46.75	74.00	-27.25	Pass	V
9608.000	37.88	7.73	35.08	38.34	48.87	74.00	-25.13	Pass	V

Worse case	mode:	GFSK		Test chani	nel:	Middle	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1225.860	30.29	2.54	34.94	47.52	45.41	74.00	-28.59	Pass	−° #
1702.361	31.24	3.00	34.51	45.32	45.05	74.00	-28.95	Pass	H)
4880.000	34.85	5.08	34.33	42.21	47.81	74.00	-26.19	Pass	H
6331.329	36.07	7.10	34.51	40.96	49.62	74.00	-24.38	Pass	Н
7320.000	36.43	6.77	34.90	41.92	50.22	74.00	-23.78	Pass	Н
9760.000	38.05	7.60	35.05	40.57	51.17	74.00	-22.83	Pass	Н
1235.257	30.31	2.56	34.93	46.40	44.34	74.00	-29.66	Pass	V
1918.716	31.58	3.17	34.35	45.63	46.03	74.00	-27.97	Pass	V
4880.000	34.85	5.08	34.33	41.24	46.84	74.00	-27.16	Pass	V
5956.109	35.87	7.33	34.30	39.88	48.78	74.00	-25.22	Pass	V
7320.000	36.43	6.77	34.90	39.38	47.68	74.00	-26.32	Pass	V
9760.000	38.05	7.60	35.05	38.55	49.15	74.00	-24.85	Pass	V

201			100		20%		70			
Worse case	mode:	GFSK	GFSK		Test channel:		Remark: P	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1222.743	30.28	2.54	34.94	46.87	44.75	74.00	-29.25	Pass	- Н	
1913.838	31.57	3.17	34.36	44.90	45.28	74.00	-28.72	Pass	H	
4960.000	35.02	5.05	34.31	42.28	48.04	74.00	-25.96	Pass	Н	
5940.967	35.86	7.30	34.30	40.82	49.68	74.00	-24.32	Pass	Н	
7440.000	36.45	6.88	34.90	39.56	47.99	74.00	-26.01	Pass	Н	
9920.000	38.22	7.47	35.02	39.51	50.18	74.00	-23.82	Pass	Н	
1232.117	30.30	2.55	34.93	45.72	43.64	74.00	-30.36	Pass	V	
1702.361	31.24	3.00	34.51	43.53	43.26	74.00	-30.74	Pass	V	
4960.000	35.02	5.05	34.31	44.62	50.38	74.00	-23.62	Pass	V	
5971.290	35.88	7.37	34.30	39.75	48.70	74.00	-25.30	Pass	V	
7440.000	36.45	6.88	34.90	37.06	45.49	74.00	-28.51	Pass	V	
9920.000	38.22	7.47	35.02	36.56	47.23	74.00	-26.77	Pass	V	

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.

Report No.: EED32I00229002 Page 38 of 40

PHOTOGRAPHS OF TEST SETUP

Test model No.: BOOM BOX

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(Below 1GHz)

Report No. : EED32I00229002 Page 39 of 40

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Report No.: EED32I00229002 Page 40 of 40

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32I00229001 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced

