

Politecnico di Milano

a.a. 2017-2018 - Scuola di Ingegneria Industriale e dell'Informazione Corso di Laurea in Ingegneria Fisica

Fisica Sperimentale I II prova in itinere – 21/06/2018

Giustificare le risposte e scrivere in modo chiaro e leggibile. Sostituire i valori numerici solo alla fine, dopo aver ricavato le espressioni letterali. Scrivere in stampatello nome, cognome, matricola e firmare ogni foglio.

Esercizio 1

Un disco di massa M e raggio R inizialmente rotola senza strisciare lungo un piano orizzontale scabro (con coefficienti di attrito statico e dinamico μ_s e μ_d). La sua velocità angolare iniziale è ω_0 . Al centro del disco viene ora applicata una forza F orizzontale, con lo scopo di rallentarne il moto.

- (a) Calcolare il valore massimo F_0 della forza F per cui il disco continua a rotolare senza strisciare. $[F_0 = 3\mu_s Mg]$
- (b) Nel caso in cui F=F₀/2, determinare l'accelerazione del centro di massa del disco, e lo spazio percorso fino al suo totale arresto. [a = $\mu_s g$; s = $(\omega_0^2 R^2)/(2\mu_s g)$]
- (c) Calcolare l'accelerazione del centro di massa del disco nel caso in cui $F = 2F_0$. [a = $(6\mu_s \mu_d)g$]

Esercizio 2

Si dispone di un cilindro munito di pistone di massa trascurabile libero di scorrere verticalmente senza attrito. All'interno del cilindro è presente una mole di gas ideale che occupa tutto il volume V a disposizione. Le pareti laterali del cilindro sono adiabatiche, mentre quella inferiore, diatermana, è posta a contatto con una sorgente termica composta da una miscela di acqua e ghiaccio. Il gas subisce due trasformazioni:

 $A \rightarrow B$ compressione fino ad un volume finale V/3;

 $B \rightarrow A$ espansione fino al volume iniziale V.

Alla fine di queste due trasformazioni si osserva che si è sciolta una quantità di ghiaccio di massa pari a m = 5g. Calcolare:

- (a) il calore totale Q ed il lavoro totale W scambiati dal gas durante il ciclo; [W = Q = -1667.5 J]
- (b) la variazione di entropia ΔS dell'universo durante il ciclo; $\Delta S = 6.104 \text{ J/K}$

Si osserva inoltre che la variazione di entropia dell'universo lungo la compressione è uguale alla variazione di entropia dell'universo lungo l'espansione. Calcolare:

- (c) la quantità di ghiaccio mg che si scioglie in compressione e la quantità di acqua ma che solidifica in espansione; [mg = 9.98 g; ma = 4.98 g]
- (d) i calori ed i lavori scambiati dal gas lungo le due trasformazioni. [$Q_{AB}=W_{AB}=-3328.33$ J; $Q_{BC}=W_{BC}=1660.83$ J] (calore latente di fusione del ghiaccio $\lambda_f^g=333.5$ kJ/kg)

Esercizio 3

Un'asta di legno di lunghezza d e sezione S è incernierata sul fondo di un contenitore, riempito con acqua fino a un livello 1/2 d. L'asta ha una densità che vale $\rho(x) = 1/2(1+x/d)$ ρ_{acqua} , dove x è la distanza rispetto alla cerniera.

(b) Trovare l'angolo θ di equilibrio che si instaura fra l'asta e il fondo del contenitore. [$sen\theta = sqrt(3/10)$]

Esercizio 4

Una macchina termica utilizza come fluido termodinamico n=2 moli di gas perfetto, che P compie la trasformazione ciclica reversibile rappresentata da una ellisse, come in figura. La temperatura del punto O è T_0 =400K, mentre A e B sono alla temperatura T_H =500K.

(a) Determinare il lavoro prodotto in un ciclo, e le temperature dei punti C e D (si ricordi che l'area di un'ellisse di semiassi a e b vale πab) [W= π nR(T_H-T₀)²/T₀=1305.7 J; T_O=T_D=2T_O-T_U]

Il lavoro prodotto in un ciclo dalla macchina termica alimenta poi un ciclo di un frigorifero V irreversibile, che trasferisce calore da un termostato a T_1 =250K a uno a T_2 =300K. Per ogni ciclo, la variazione di entropia dell'universo è 1J/K.

- (b) Calcolare il calore scambiato con le due sorgenti, specificando se si tratta di calore assorbito o ceduto. $[Q_2 = -6333]$ J ceduto a T_2 ; $Q_1 = 5027$ J assorbito da T_1
- (c) Quanti cicli servono per assorbire 1000 kJ dal termostato freddo? [199 cicli]