

19 BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift _® DE 199 33 314 A 1

(f) Int. Cl.⁷: G 06 F 17/50

DEUTSCHES PATENT- UND MARKENAMT

199 33 314.9 (7) Aktenzeichen: (2) Anmeldetag: 16. 7. 1999

(43) Offenlegungstag: 15. 2.2001

(7) Anmelder:

DaimlerChrysler AG, 70567 Stuttgart, DE

(12) Erfinder:

Fix, Armin, Dr., 88662 Überlingen, DE

(56) Entgegenhaltungen:

LEITNER, E. u. SELBERHERR, S.: Mixed-Elemnet Descomposition Method für Three-Dimensional

Adaption;In:IEEE Trans. CAD of Integrated Circuits and Systems, Vol. 17, 7/98, S. 561-572, GOTTWALD, S., u.a. (Hsg): Handbuch der Mathematik,

VEB, 1986, S. 200,

RAMM, E., u.a. Schalntragwerk; In: Spektrum der Wissenschaft, 3/97, S. 98-100 u. 102,

PEREIRA, E.M.B.R. u.a.: A hybrid mixed finite element model based on legrendre Polynomials for Reissner-Mindlin plates; Abstr.; In: INSPEC,

PEREIRA, E.M.B.R. u.a.: Use of hybrid mixed finite

element models for the characterisation of the boundary laxer in Reissner-Mindlin plates; Abstr; In: INSPEG.

DOHRMANN, C.R. u.a.: A lesat-squares approach

uniform strain triangular abd tetrahedral finite elements; Abstr; In: INSPEC,

KEY, S.W., u.a.: A suitable low-order tetrahedral finite element for solids; In: INSPEG

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- Werfahren zur Berechnung von Strukturen mit Hilfe der Finiten-Elemente-Methode
- Verfahren zur Berechnung von Strukturen mit Hilfe der Finiten-Elemente-Methode mit den Schritten: Idealisierung der zu berechnenden Struktur durch Volumenelemente und Festlegung der Eck-Knotenpunkte in der idealisierten Struktur, Zerlegung der Volumenelemente mit Hexaeder-, Pentaeder- und Pyramiden-Form in Tetraeder, so daß die zu idealisierende Struktur eine Teilelement-Struktur aus Tetraedern ist, Beschreibung des Verschiebungszustands für jedes Tetraeder-Element durch ein vollständiges Polynom dritter Ordnung je Koordinatenrichtung, Bestimmung der Polynom-Koeffizienten durch Zuordnungen zwischen den Knotenfreiheitsgraden, den Faktoren zur Beschreibung der individuellen Tetraedergeometrie und den jeweiligen Polynom-Koeffizienten, wobei als Knotenfreiheitsgrad für jeden Knoten-Eckpunkt der Verschiebungsvektor und die drei Ableitungen dieses Vektors und der Verschiebungsvektor für die Flächenmitten-Knoten jedes Tetraederelements verwendet wird, Elimination der Flächenmitten-Knotenpunkte, Integration und Lösung des gestellten mechanischen Problems mittels der Systemmatrix.

Beschreibung

Die Erfindung betrifft ein Verfahren zur Berechnung von Strukturen mit Hilfe der Finiten-Elemente-Methode, das sich insbesondere auch zur Berechnung von Schalenstrukturen eignet.

Finite Elementeverfahren laufen üblicherweise in folgenden drei Schritten ab: einem Aufbereitungsschritt zur Idealisierung der zu berechnenden Struktur, einem Analyseschritt, d. h. einem Berechnungsschritt zur Berechnung der in der zu berechnenden Struktur auftretenden Verformungen, Spannungen, Dehnungen, Stabilitätsgrößen und dynamischen Lasten, und einem Auswertungsschritt zur Darstellung der Ergebnisse. In dem Berechnungsschritt werden bei der Finite-Elemente-Methode allgemein auf der Basis einer Vielzahl von finiten Elementen, die im Vorverarbeitungsschritt zur Idealisierung der zu berechnenden Struktur in einer räumlichen Anordnung definiert worden sind, Systemmatrizen und zusammen mit den äußeren Kräften Lastmatrizen gebildet, um daraus Verschiebunggrößen an den Knotenpunkten der gewählten finiten Elemente zu berechnen. Die Systemmatrizen werden dabei aus sogenannten Elementmatrizen zusammengesetzt, d. h. aus Matrizen, die aus jedem einzelnen zur Idealisierung der Struktur verwendeten finiten Element ermittelt werden.

Zur Bildung der Elementmatrizen wurden bisher Volumenelemente mit Polynom-Ansätzen niedriger Ordnung, d. h. bis zur zweiten Ordnung, verwendet. Dadurch konnte die berechnungstechnische Funktionsfähigkeit bei der Lösung der Ansätze beherrscht werden. Bei diesem Verfahren hatte der Benutzer die kinematischen Freiheitsgrade für jeden System-knoten der idealisierten Struktur manuel, dabei individuell festzulegen und zu steuern.

Bei dem Verfahren nach dem Stand der Technik werden für die finiten Elemente unterschiedliche geometrische Formen und kinematische Formulierungen verwendet. Als geometrische Formen können dabei beispielsweise Scheibenelemente, Plattenelemente, Schalenelemente, Stäbe oder Balken oder auch Volumenelemente vorgesehen sein. Die Auswahl der entsprechenden geometrischen Formen für die finiten Elemente erfolgt in Abhängigkeit der Gestalt und mechanischen Funktion der zu idealisierenden Struktur bzw. deren Strukturteile. Dabei werden beispielsweise bei schlanken Strukturteilen als finite Elemente Balken oder Stäbe verwendet, während bei flächigen Strukturen bzw. Strukturteilen Scheiben, Platten oder Schalen verwendet werden. Die Auswahl der jeweiligen geometrischen Formen steht im Ermessen des Benutzers, d. h. sie bemißt sich nach der Erfahrung und Einschätzung des Benutzers. In vielen Fällen stellt sich erst nach Durchführung eines Berechnungsdurchlaufes und nach Analyse der Ergebnisse sowie nach Vergleich mit Versuchsergebnissen heraus, welche Qualität die Idealisierung der Struktur und deren Berechnung aufweist. In vielen Fällen ist eine nochmalige verbesserte Idealisierung der Struktur nötig, die jedoch wiederum manuell aufgrund qualitativer Bewertungen der Berechnungs- und Versuchsergebnisse zu erfolgen hat. Diese Verfahren nach dem Stand der Technik sind somit sehr arbeitsaufwendig und machen umfangreiche Versuche an der zu berechnenden Struktur erforderlich, um die Berechnungsergebnisse zu perfektionieren. Zudem bleibt die Qualität der insgesamt erreichbaren Ergebnisse begrenzt und benutzerabhängig.

Vor Anwendung von Finite-Elemente-Methoden wurde zur Berechnung von Strukturen eine sogenannte Kraftgrößenmethode angewendet, bei der als Unbekannte aus äußeren Kräften abgeleitete innere Kräfte verwendet werden. Aus diesen inneren Kräften wurden die Spannungen, Dehnungen und Verschiebungen ermittelt, wobei die Verschiebungen nur ungenau ermittelt werden konnten, da diese nur indirekt errechenbare Größen sind. Mit einer Verbesserung der Leistungsfähigkeit der verwendeten Rechenanlagen wurde die Kraftgrößenmethode durch die Finite-Elemente-Methode ersetzt, wobei eine sogenannte Verschiebungsmethode angewendet wurde, bei der Verschiebungen als Unbekannte verwendet werden. Bei dieser Methode werden in Abhängigkeit der ermittelten Verschiebungen die gesuchten Dehnungen und Spannungen berechnet. Außerdem sind nach dem Stand der Technik auch Kombinationen aus der Kraftgrößenmethode und der Verschiebungsmethode bekannt. Derartige kombinierte Verfahren bieten jedoch keine signifikante Verbesserung hinsichtlich der Ergebnisgenauigkeit im Vergleich zur reinen Verschiebungsmethode.

Ein Nachteil sowohl der Verschiebungsmethode als auch der kombinierten Verfahren ist, daß sie einen großen Rechenaufwand benötigen. Ein weiterer Nachteil ist, daß sie zu numerischer Empfindlichkeit neigen, d. h. die Ergebnisqualität
hängt im hohen Maße von der richtig gewählten Feinheit der Idealisierung der zu berechnenden Struktur ab, wobei sich
diese nach der Einschätzung des Benutzers bestimmt. Bei sehr feinmaschig idealisierten Strukturen werden häufig auch
unverhältnismäßig hohe Verformungswerte errechnet. Mit Verfahren nach dem Stand der Technik konnten weiterhin
viele Stabilitätsprobleme z. B. Beulprobleme nicht gelöst werden. Insbesondere die Berechnung von gekrümmten und
gefalteten Schalen konnte in vielen Fällen nicht gelöst werden, da die Faltung der Struktur zu Kompatibilitätsdefekten
bei der Analyse führte.

Es ist daher die Aufgabe der Erfindung, ein Verfahren zur Berechnung von Strukturen mit Hilfe der Finite-Elemente-Methode zu schaffen, die bei im Vergleich zum Stand der Technik vergleichbarer Rechenkapazität zu einer Steigerung der Ergebnisqualität führt, wobei die numerische Stabilität insbesondere bei schlanken Elementen gewährleistet sein muß. Mit dem zu schaffenden Verfahren sollen auch mathematisch aufwendige mechanische Stabilitätsprobleme gelöst werden können. Außerdem soll der Einfluß der benutzerabhängigen Vorgehensweise erheblich reduziert und eingegrenzt werden.

Diese Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst. Alternative Ausführungsformen sind in den Unteransprüchen angegeben.

Nach dem erfindungsgemäßen Verfahren entfällt die Auswahl der Element-Typen, d. h. der geometrischen Formen der finiten Elemente, bei der Idealisierung der zu berechnenden Struktur, da erfindungsgemäß ausschließlich Volumenelemente zur Idealisierung der Struktur verwendet werden. Das erfindungsgemäße Verfahren betrachtet die zur Idealisierung definierten Volumenelemente, soweit sie nicht als Tetraeder definiert worden sind, als Verbundelemente und setzt sie aus Tetraedern zusammen. Bei schlanken Strukturen und Schalenstrukturen ist es ausreichend, über die Dicke der Struktur nur eine Lage von Volumenelementen vorzusehen. Erfindungsgemäß werden also keine ein- und zweidimensionalen Elemente, also auch keine Schalenelemente oder Stabelemente, zur Idealisierung der Struktur verwendet. Dadurch wird die Durchführung der Idealisierung der zu berechnenden Struktur systematisiert und vereinfacht, ohne daß die Ergebnisgenauigkeit dadurch beeinträchtigt wird. Durch die Verwendung ausschließlich von Volumenelementen als Finite

Elemente für die idealisierte Struktur werden die nach dem Stand der Technik üblichen Einschränkungen der Kirchhoff'schen Biegung sowie der sogenannten Schubbiegung nach Reissner-Mindlin aufgegeben. Nach der Kirchhoff'schen Vorgehensweise wird angenommen, daß der ebene, normale Querschnitt der idealisierten Struktur bei einer Beanspruchungen, z. B. einer Biegung, normal und eben erhalten bleibt. Nach der Reissner-Mindlin-Annahme werden Schubverzerrungen bei Biegebeanspruchung zwar berücksichtigt, aber normale, ebene Querschnitte bleiben auch erhalten. Durch Verzicht auf diese Annahmen oder Einschränkungen zusammen mit der Verwendung von Polynom-Ansatzfunktionen dritter Ordnung für den Verschiebungszustand jedes Tetraeder-Teilelements bezüglich jeder Koordinatenrichtung lassen sich Unstetigkeiten in der Struktur berechnungstechnisch genauer modellieren. Nach dem Stand der Technik ist die Annahme, daß der Querschnitt der zu berechnenden Struktur eben bleibt, eine Einschränkung, durch die die Abweichungen bei der Berechnung der Strukturen groß werden, was zu unkalkulierbaren Ungenauigkeiten bei der Berechnung der Struktur führen kann. Auch bei der Beschreibung des Verschiebungszustandes jedes Tetraeder-Elements, wie es in einem nachfolgendem Schritt erfolgt, werden diese Einschränkungen auch nicht – wie im Stand der Technik – indirekt wieder eingeführt, da hierfür erfindungsgemäß Polynom-Ansatzfunktionen dritter Ordnung verwendet werden, die geeignet sind, den allgemeinen Verschiebungszustand ohne Einschränkungen zu beschreiben.

Weiterhin werden erfindungsgemäß für die Verformungen Polynomansätze verwendet, die zumindest dritte Ordnung aufweisen. Dadurch ergibt sich zum Vergleich beim Stand der Technik eine wesentlich bessere Annäherung der realen Verformungszustände für die zu berechnende Struktur.

Erfindungsgemäß werden für die Eck-Knotenpunkte der idealisierten Struktur als Freiheitsgrade die Translationen in allen drei Richtungen des Raumes sowie die Ableitungen erster Ordnung zu diesen Translationen vorgesehen. Zusätzlich werden nach der Erfindung die Verschiebungen der Flächen-Mittenknoten der Tetraeder-Idealisierungs- und -Teilemente vorübergehend eingeführt. Demgegenüber sind die Freiheitsgrade bei Verfahren nach dem Stand der Technik abhängig von den jeweils verwendeten Finite-Elementtypen zu definieren. Aus diesem Grund mußten bei Verfahren nach dem Stand der Technik die Freiheitsgrade durch den Benutzer mit relativ großen Überlegungsaufwand eingegeben oder gesteuert werden, da beispielsweise an Übergangsstellen verschiedenartiger Finite-Element-Typen, z. B. beim Übergang von Stabelementen zu Scheibenelementen, schwer zu ermittelnde Übergangs-Randbedingungen vorzugeben sind. Ähnliche Probleme ergeben sich bei Verwendung von Elementtypen, die in bestimmten Richtungen nur eine sehr geringe oder gar keine Steifigkeit aufweisen. Bei dem Verfahren nach der Erfindung dagegen sind wegen der Verwendung von Volumenelementen alle Steifigkeiten in allen Richtungen a priori vorhanden, so daß keine von den verwendeten Elementtypen abhängige Überlegungen anzustellen sind. Vielmehr ergibt sich die Möglichkeit einer einheitlichen Vorgehensweise für sämtliche Strukturtypen, die auch automatisiert werden kann.

Ein weiterer Vorteil der Erfindung ist, daß durch die Verwendung ausschließlich von Volumenelementen mit heute üblichen Konstruktions-Werkzeugen auf die Ergebnisse des erfindungsgemäßen Verfahrens angewendet werden können, so daß das im erfindungsgemäßen Verfahren entwickelte dreidimensionale Modell natürlich, d. h. formgetreu übernommen werden kann.

Im folgenden wird die Erfindung anhand der beigefügten Figuren beschrieben. Es zeigen:

Fig. 1 eine schematische Darstellung eines Hexaeders als eines erfindungsgemäß zur Struktur-Idealisierung verwendeten Verbund- oder Volumenelements in perspektivischer Darstellung, das nach einer ersten Variante in fünf Tetraeder – vier peripheren und einem zentralen Tetraeder im Volumeninnern – nach dem erfindungsgemäßen Verfahren geteilt wird, wobei der fünfte, vollständig im Inneren des Hexaeders liegende Tetraeder separat dargestellt ist,

Fig. 2 eine perspektivische Darstellung eines Hexaeders als eines erfindungsgemäß zur Struktur-Idealisierung verwendeten Volumenelements, das nach einer zweiten Variante – in systematischer Ergänzung/Abwandlung der ersten Variante nach der Fig. 1 – nach der Erfindung in fünf Tetraeder geteilt wird, wobei der fünfte, vollständig im Inneren des Hexaeders liegende Tetraeder separat dargestellt ist,

Fig. 3 eine perspektivische Darstellung eines Pentaeders, der alternativ als Verbundelement vorgesehen werden kann, der erfindungsgemäß nach einer ersten Variante in drei Tetraeder geteilt wird,

45

50

55

Fig. 4 eine perspektivische Darstellung eines als Verbunedelement verwendeten Pentaeders, das neben der Teilungsnaht der ersten Variante der Fig. 3 nach einer zweiten Variante aus drei entegegengesetzt orientierten Tretraedern geteilt wird.

Fig. 5 eine perspektivische Darstellung eines als Verbundelement verwendeten Pyramide, die erfindungsgemäß nach einer ersten Variante in zwei Tetraeder geteilt wird,

Fig. 6 eine perspektivische Darstellung einer als Verbundelement verwendbaren Pyramide, die erfindungsgemäß nach einer zweiten Variante aus zwei systematisch alternativen Tetraedern zusammengesetzt ist,

Fig. 7 eine Draufsicht auf einen Tretraeder, der erfindungsgemäß sowohl als Verbundelement als auch als Teilelement eines Verbundelements nach den Fig. 1 bis 6 verwendbar ist und

Fig. 8 eine schematische Darstellung des Ablaufs des erfindungsgemäßen Verfahrens.

Die Fig. 1 bis 7 zeigen verschiedene Ausführungsformen für Volumenelemente, die dem erfindungsgemäßen Verfahren zur Berechnung von Strukturen mittels der Finite-Element-Methode verwendbar sind. Dabei werden in der zu idealisierenden Struktur Knotenpunkte definiert, die die Eckpunkte für die jeweils verwendeten Volumenelemente bilden. In dem erfindungsgemäßen Verfahren werden die als Idealisierungs-Elemente verwendeten Volumenelemente, soweit diese nicht selbst Tetraeder sind, in Gruppen aus Tetraedern zerlegt. Da diese Volumenelemente aus Tetraedern zusammengesetzt sind, werden sie als Verbundelemte bezeichnet. In den Fig. 1 und 2 ist beispielhaft dargestellt, wie ein als Verbundoder Volumenelement verwendeter Hexaeder aus führ Tetraedern aufgebaut sein kann. Der Aufbau aus Tetraedern ist in den Fig. 3 und 4 für den Pentaeder und in den Fig. 5 und 6 für die Pyramide gezeigt. Das erfindungsgemäße finite Element-Verfahren erfolgt dann auf der Basis der Tetraeder-Anordungen. In der Darstellung der Fig. 1 bis 7 stellen die dikken durchgezogenen Linien sichtbare Kanten, die dünnen durchgezogenen Linien sichtbare Diagonalen, die gestrichelten Linien unsichtbare Kanten und die gepunkteten Linien unsichtbare Diagonalen dar.

Das in der Fig. 1 dargestellte Idealisierungs-Element ist ein Hexaeder 1. In der Fig. 1 ist dargestellt, wie dieses erfindungsgemäß in Tetraeder zerlegt wird. Dabei bleiben die Eckpunkte 2, 3, 4, 5, 6, 7, 8, 9 als Eck-Knotenpunkte für die Te-

traeder-Teilelemente 11, 12, 13, 14, 15 erhalten.

In der Fig. 2 ist eine alternative Zerlegung eines Hexaeders 1 als Idealisierungs-Element dargestellt. Auch hier bleiben die Eck-Knotenpunkte 2, 3, 4, 5, 6, 7, 8, 9 bei der Zerlegung des Hexaeders 1 in die Tetraeder 11, 12, 13, 14 erhalten. Eine Zerlegung eines Pentaeders 21 mit den Eckpunkten 22, 23, 24, 25, 26, 27 in die Tetraeder 28, 29, 30 ist in Fig. 3

dargestellt. Eine alternative Zerlegung dazu ist in der Fig. 4 dargestellt.

Eine Zerlegung einer Pyramide 30 in zwei Tetraeder 31, 32 mit den Eck-Knotenpunkten 33, 34, 35, 36, 37 ist in der Fig. 5 dargestellt. Eine alternative Zerlegung ist in der Fig. 6 gezeigt.

In der Fig. 7 ist ein Tetraeder 40 dargestellt, der entweder Idealisierungs-Element oder ein Teilelement ist, in das bzw. in die Volumenelemente wie Hexaeder, Pentaeder, Pyramiden erfindungsgemäß zerlegt werden. Der Tetraeder hat die Eck-Knotenpunkte 41, 42, 43, 44 und die Flächen-Mittenknoten 46, 47, 48, 49, wobei der Flächenmitten-Knoten 49 in der Darstellung der Fig. 7 durch den Eck-Knotenpunkt 42 verdeckt und nicht gezeigt ist.

Zur Durchführung der erfindungsgemäßen Berechnungsverfahren anhand der Tetraeder-Volumenelemente (Fig. 7) werden die vier Eckpunkte der jeweiligen Tetraeder, d. h. die primären Knotenpunkte, und sogenannte Flächenmittenknoten, d. h. sekundäre Knotenpunkte, als geometrische Bezugspunkte oder Strukturkoppelpunkte verwendet. Dabei werden erfindungsgemäß allgemeine Tetraeder-Formen, insbesondere unregelmäßige und auch schlanke, spitze Formen verwendet.

Allgemein basieren Finite-Elemente-Verfahren auf einem Energieansatz, nach dem die durch äußere Kräfte auf die Struktur und den durch diese bewirkten Weg gebildete äußere Energie mit einer inneren Energie der Struktur gleichgesetzt wird. Dabei ist die innere Energie = E e², wobei E das jeweilige elastizitätsmodul und e gleich der Dehnung als Ableitung der Verschiebung an einem beliebigen Punkt des Volumenelements ist. Mit Hilfe dieses Ansatzes läßt sich auf den Verschiebungszustand beliebiger Punkte innerhalb der Struktur schließen. Um den Verschiebungszustand in einem beliebigen Strukturpunkt zu berechnen, werden allgemein Funktionen für den Verschiebungszustand bei einem beliebigen Punkt innerhalb eines finiten Elements aufgestellt. Bei diesen Ansatzfunktionen werden Funktionen mit unbekannten Polynomkoeffizienten verwendet, die in eindeutiger Beziehung zu den Freiheitsgraden in den Knotenpunkten des jeweiligen Volumenelements stehen. Diese Relation zwischen den unbekannten Polynomkoeffizienten und den Freiheitsgraden an den Knotenpunkten des jeweiligen Volumenelements, d. h. den Knotenfreiheitsgraden, wird bestimmt durch die geometrische Form des verwendeten Volumenelements und die Art der Ansatzfunktion.

Bei der erfindungsgemäßen Idealisierung der zu berechnenden Struktur ist die idealisierte Struktur gegebenenfalls nach einer Zerlegung der zunächst verwendeten Volumenelemente in Tetraeder gemäß Fig. 1 bis 6 vollständig aus Tetraedern aufgebaut. Dabei werden für den Verschiebungszustand, d. h. für die Verschiebungen im gesamten Bereich eines Tetraeders als Ansatzfunktion für jede Koordinatenrichtung ein vollständiges Polynom dritter Ordnung, die sogenannte kubische Polynom-Form, verwendet. Die Ansatzfunktion unter Berücksichtigung der Diskretisierungsmatrix beinhaltet eine geometrische Beschreibung des betreffenden Tetraeders, insbesondere dessen Verschiebungszustandes. Sie wird gebildet mittels bekannter Methoden unter Verwendung der sogenannten Pascal'schen Funktionalschemen. In verkürzter Schreibweise hat dieses Polynom für den Verschiebungsansatz folgende Form:

 $R = \lfloor f \rfloor f \cdot \{q\} = a_1 + a_2x + a_3y + a_4z + a_5x^2 + a_6xy + a_7y^2 \dots + a_{20}z^3$, wobei R eine Verschiebungskomponete in einer Koordinaten-Richtung an einer beliebigen Stelle im Tetraeder-Element, $\lfloor f \rfloor$ eine Zeilenmatrix für die Polynom-Ansatzfunktionen und $\{q\}$ eine Spaltenmatrix für die Polynom-Koeffizienten ist.

Die voranstehende Polynom-Ansatzfunktion bezieht sich dabei lediglich auf eine Raumkoordinate; bei Betrachtung aller drei Koordinaten ergeben sich somit für jedes Volumenelement sechzig Unbekannte.

Die Koeffizienten a₁ bis a₂₀ je Raumkoordinate bilden die zunächst unbekannten Polynom-Ansatzkoeffizienten. Bei einem Ansatz in Form des vollständigen kubischen Polynoms für das Tetraedervolumen, wie er erfindungsgemäß vorgesehen ist, ergeben sich dabei immer für jede Koordinate zwanzig unbekannte Polynom-Ansatzkoeffizienten. Diese dreimal zwanzig Polynom-Ansatzkoeffizienten sind für jedes Tetraederelement zu bestimmen. Dafür sind mathematisch dreimal zwanzig Zuordnungen oder Bestimmungsgleichungen erforderlich.

Erfindungsgemäß werden für jedes Tetraederelement diese dreimal zwanzig Zuordnungen aus zwei Beiträgen gebildet: Zum einen wird jeder Knotenpunkt beschrieben durch einen Verschiebungsvektor sowie durch die drei Ableitungen dieses Raumvektors nach den drei verwendeten Koordinaten, zum andern werden für jeden Tetraeder sekundäre Knotenpunkte definiert. Diese sekundären Knotenpunkte sind Flächenmitten-Knoten oder Schwerpunkte aller vier Seitenflächen jedes Tetraederelements. Für jeden dieser Mittenknoten werden lediglich die Freiheitsgrade der Verschiebungen eingebracht, nicht aber deren Ableitungen. Somit ergeben sich pro Tetraeder und pro Koordinatenrichtung 16 + 4 = 20 Zuordnungen. Werden insgesamt alle drei Koordinatenrichtungen betrachtet, ergeben sich somit 60 Zuordnungen. Diese Zuordnungen ergeben sich nach üblichen mathematischen Verfahren, die im Stand der Technik bekannt sind. In Form einer mathematischen Formulierung haben sie folgende Form:

5 {Verschiebungs-Vektor f\u00fcr die prim\u00e4ren und sekund\u00e4ren Knotenfreiheitsgrade} = [Formmatrix oder Diskretisierungsmatrix, die die inviduelle Tetraedergeometrie enth\u00e4lt] {Vektor der Polynomkoeffizienten}.

Da diese Zuordnung, die durch die Diskretisierungs- oder Form-Matrix beschrieben wird, eindeutig ist, kann diese Gruppe von Zuordnungen invertiert werden, d. h. nach den Vektor mit dem unbekannten Polynomkoeffizienten aufgelöst werden, wobei die Verschiebungsgrößen als unbekannte Rechengrößen eingeführt werden. Auf diese Weise sind diese Polynomkoeffizienten aufgrund von Matrizenoperationen bestimmbar.

Die Bildung von Formmatrizen aus gegebenen geometrischen Elementen, sowie die Definition von Zuordnungen zwischen Freiheitsgraden der verwendeten geometrischen Elemente und den Unbekannten von Ansatzfunktionen bezüglich deren Knotenpunkten, sind allgemein nach dem Stand der Technik bekannt. Erfindungsgemäß werden jedoch bestimmte Finite-Elementtypen, nämlich Tetraeder, zur Idealisierung von zu berechnenden Strukturen verwendet, für deren innere Verschiebungszustände ganz speziell ein Ansatz mit vollständigem kubischen Polynom und 20 Ansatzfuntionen gewählt wird. Zur Definition der erforderlichen Zuordnungen zur Bestimmung der Polynomkoeffizienten werden erfindungsgemäß primäre und sekundäre Knoten definiert.

Dabei sind die primären Knoten die geometrischen Eckpunkte der Tetraeder. Diese primären Knoten werden mittels

deren räumlichen Verschiebung sowie der Ableitungen dieser räumlichen Verschiebung nach den Koordinatenrichtungen erster Ordnung definiert. Die Freiheitsgrade in den primären Knoten sind wie folgt definiert:

5

1	2	3	4 .	5	6	7	8	9	10	11	12
u	δυ/δχ	δυ/δγ	δu/δz	V	δν/δχ	δν/δy	δν/δΖ	w	δw/δx	δw/δy	δw/δz

Die Größen x, y, z stehen für die drei Raumkoordinaten und die Größen u, v, w für die Komponenten des zugeordneten Verschiebungsvektors.

Die sekundären Knoten gehen dagegen nur mit ihren Verschiebungen in die Zuordnungen ein. Diese werden mit Verfahren nach dem Stand der Technik zur Vereinfachung des weiteren Ablaufs durch Kondensation und/oder Reduktion am Verbundelement, z. B. am Hexaeder nach den Fig. 1 und 2, am Pentaeder nach den Fig. 3 und 4, an der Pyraminde nach den Fig. 5 und 6, eliminiert. Wenn der Tetraeder als Volumenelement verwendet wird, werden die Flächenmitten-Knoten durch Reduktion eliminiert. Dies geschieht dadurch, daß die Verschiebungen in den Flächenknoten durch die Verschiebungen in den benachbarten Eckknoten beschrieben werden. Bei der Kondensation handelt es sich um eine exakte Elimination der Gleichungen für die Flächenmitten-Knoten durch entsprechende mathematische Operationen. Bei der Reduktion werden die Verschiebungen in den Flächenmitten-Knoten durch die davon unabhängigen Verschiebungen in den benachbarten Eckknoten ausgedrückt. Da die Kondensationsverfahren exakt sind, besteht grundsätzlich das Ziel, soweit wie möglich die Flächen-Mittenknoten durch Kondensation zu eliminieren. Diese Verfahrensschritte sind Stand der Technik.

In den nächsten Verfahrenschritten werden nach üblicherweise verwendeten Energieprinzipien aus den ermittelten Gleichungen für die Tetraeder-Eckknoten, die den Verschiebungszustand für den jeweiligen gegebenenfalls aus dem entsprechenden Verbundelement gebildeten Tetraeder beschreiben, Volumenintegrale über jeden dieser Tetraeder gebildet. Daraus werden die sogenannten Element-Streifigkeitsmatrizen für jeden dieser Tetraeder definiert. Die Energieanteile jedes Tetraeders werden gegebenenfalls zu den Energieanteilen eines Verbundelements, also z. B. eines Hexaeders, eines Pentaeders oder einer Pyramide, zusammengesetzt. Aus den Verbundelement-Streifigkeitsmatrizen werden wiederum die System-Streifigkeitsmatrizen zusammengesetzt, wobei die gleichen Energiemethoden verwendet werden. Die System-Streifigkeitsmatrizen bilden bekanntermaßen die Grundlage für die Lösungsgleichungen des jeweils gestellten Strukturproblems. Beispielsweise können bei Vorgabe äußerer Kräfte mittels der System-Streifigkeitsmatrix die Verschiebungen in den Knotenpunkten der idealisierten Struktur berechnet werden.

Zur Verbesserung der Ergebnisgenauigkeit kann zusätzlich folgender Verfahrensschritt vorgesehen werden: An Stellen der zu berechnenden Struktur an denen diese mittels Verbundelementen idealisiert worden sind, die in Tetraeder als Teilelemente zerlegt werden, erfolgt diese Zerlegung erfindungsgemäß je Verbundelement aufgrund beider Zerlegungsvarianten. Beispielsweise erfolgt die Zerlegung eines zur Idealisierung verwendeten Hexaeders nach der ersten (Fig. 1) und in einer weiteren Idealsierung nach der zweiten Variante (Fig. 2). Ebenso erfolgt die Zerlegung jedes Pantaeders sowohl nach Fig. 2 als auch nach Fig. 3. Die Zerlegung der Pyramide erfolgt sowohl nach Fig. 5 als auch nach Fig. 6. Dadurch wird eine durch den Benutzer idealisierte Struktur durch das erfindungsgemäße Verfahren auf zwei sich ergänzende Weisen in Tetraeder zerlegt. Auf diesen beiden aufgrund verschiedener Zerlegungen der verwendeten Verbundelemente hervorgegangenen Teilelement-Strukturen werden die beschriebenen Berechnungsverfahren jeweils eigens angewendet, so daß jede idealisierte Struktur zweimal berechnet wird.

Auf diese Weise wird jeder Knotenpunkt der idealisierten Struktur systematisch gleich gewichtet, da jede Vierecksfläche eines Verbundelements auf beide möglichen Arten in Dreiecksflächen zerlegt wird. Bei einer Zerlegung eines Verbundelements, z. B. eines Hexaeders, sind einzelne Eck-Knoten einer viereckigen Seitenfläche Teilnehmer an mehreren Tetraeder-Elementen. Z. B. ist der Eck-Knoten 2 des Hexaeders der Fig. 1 an den Tetraedern 11, 13, 15 beteiligt, während der Eck-Knoten 3 nur dem Tetraeder 11 zugeordnet ist. Werden die beschriebene Berechnung nur aufgrund einer bestimmten Zerlegung eines Verbundelements durchgeführt, ergibt sich numerisch eine unterschiedliche Bewertung von zu mehreren Tetraedern gehörende Eck-Knoten im Vergleich zu anderen. Diese unterschiedliche Bewertung führt zu Ungenauigkeiten, die durch die zweifache Idealisierung beseitigt werden können.

Berechnungstechnisch werden bei der Bildung von Teilelement-Strukturen nach beiden Varianten die jeweils ermittelten Teilelemente (Tetraeder)-Steifigkeiten addiert. Die Steifigkeiten der Tetraeder, die zur Idealisierung der Struktur ursprünglich verwendet worden sind, werden verdoppelt. Daraus ergibt sich in etwa der doppelte Wert für die jeweilige Teilelement-Steifigkeit bzw. deren inneren Energie sowie für die Gesamt-Steifigkeit bzw. die innere Energie der gesamten Struktur. Dieser doppelte Wert wird im weiteren Verfahren dadurch eliminiert, daß beispielsweise dieser Wert wiederum halbiert wird oder die äußeren Lasten verdoppelt werden. Auch andere mathematische Verfahren sind möglich.

Das erfindungsgemäße Verfahren wird im folgenden zusammenfassend anhand der Fig. 8 beschrieben: Bei dem erfindungsgemäßen Verfahren zur Berechnung von Strukturen mit Hilfe der Finiten-Elemente-Methode wird vorzugsweise zunächst eine Finiten-Elemente-Methode (FEM)-Vorverarbeitung 101 durchgeführt. Dabei wird die zu berechnende Struktur für nachfolgende Schritte vorbereitet, wobei z. B. Konturlinien oder Außenkonturen geglättet oder unwichtige Details der zu berechnenden Struktur entfernt werden. Das durch die FEM-Vorverarbeitung 101 aufbereitete Modell 102 wird dann in einem Schritt der Idealisierung 103 durch ein Maschennetz beschrieben. Das Maschennetz definiert sich durch die Idealisierung der zu berechnenden Struktur durch Volumenelemente, die aus Hexaedern, Pentaedern, Pyramiden oder Tetraedern gestaltet sind. Die Größe und Form der Volumenelemente ergibt sich aus der Form der zu berechnenden Struktur bzw. des aufbereiteten Modells 102, wobei das aus der Idealisierung 103 entstehende idealisierte Modell 104 mit seinen Eck-Knotenpunkten von der Kontur des aufbereiteten Modells 102 bestimmt ist. Das idealisierte Modell 104 stellt eine möglichst gute Annäherung an die räumliche Gestalt des aufbereiteten Modells 102 dar. Es können bei der Idealisierung jedoch auch andere Aspekte nach bestehendem Fachwissen eine Rolle spielen, z. B. angenommene Kraftverläufe oder Gesichtspunkte der Lagerung der Struktur. Das idealisierte Modell 104 ist – soweit es das beschriebene Be-

rechnungsversahren betrifft - ausschließlich aus Volumenelemente gebildet. Dabei haben die Volumenelemente, die selbst wieder aus Tetraedern zusammengestzt werden können, in den nachfolgenden Schritten die Funktion von Verbundelementen. In einem nachfolgenden Schritt erfolgt eine Zerlegung 105 der Volumenelemente, soweit sie in dem idealisierten Modell 104 nicht als Tetraeder ausgestaltet sind, bzw. der Verbundelemente in Tetraeder nach den voranstehenden anhand der Fig. 1 bis 6 gemachten Ausführungen. Das Ergebnis der Zerlegung 105 ist, das idealisierte Modell 104 in eine Teil-Element-Struktur 106 ausschließlich aus Tetraedern umgeformt ist. Gegebenenfalls werden Zusatzinformationen 107 über die verwendeten Volumenelementen, also über die verwendeten Hexaeder, Pentaeder und Pyramiden, berücksichtigt und der Zerlegung 105 zugeführt. In einem nachfolgenden Schritt 108 erfolgt die Beschreibung des Verschiebungszustands für jedes Tetraeder-Element durch ein vollständiges Polynom 109 dritter Ordnung je Koordinantenrichtung. In einem weiteren Schritt 110 erfolgt die Bestimmung der Polynom-Koeffizienten durch Zuordnungen zwischen den Knotenfreiheitsgraden, Faktoren zur Beschreibung der individuellen Tetraeder-Geometrie und dem jeweiligen Polynom-Koeffizienten. Als Knotenfreiheitsgrad wird für jeden Knoten-Eckpunkt der Verschiebungsvektor und die drei Ableitungen dieses - Vektors sowie der Verschiebungsvektor für die Flächenmitten-Knoten jedes Tetraeder-Elements verwendet. In einem Schritt 111 werden die Teilelement-Tetraeder, soweit sie im Schritt 105 aus einer Zerlegung hervorgegangen sind, wieder in die Volumenelemente, wie sie im Schritt 105 erzeugt worden sind, bzw. in Verbundelemente zusammengesetzt, so daß sich ein Verbundaufbau 112 daraus ergibt. Gleichfalls wird im Schritt 111 eine Elimination der Flächenmitten-Knotenpunkte vorgenommen. Im nachfolgenden Schritt 113 erfolgt der Aufbau der Systemmatrix aus den Verbundelementen 112, d. h. die Verschiebungen und Ableitungen werden über alle Volumenelemente aufsummiert und dadurch die Systemmatrix gebildet. Abschließend erfolgt im Schritt 115 die Lösung des gestellten mechanischen Problems mittels der Systemmatrix 114.

In dem bestehenden Verfahren ist eine Tetraeder-Schleife 121 und eine Volumenelement-Schleife 122 eingebaut. Bei der Tetraeder-Schleife 121 geht es um die Berechnung der Tetraeder, aus denen die Volumenelemente zusammengesetzt sind. Die Tetraeder-Schleife 121 ist also nur erforderlich für die Volumenelemente, die im Schritt 105 in Tetraeder zerlegt worden sind. Für jeden aus einem Volumenelement in der Zerlegung 105 entstehenden Tetraeder ist eine Schleife 121 durchzuführen. Auf diese Weise liegen als Ergebnis des Schritts 111 die Steifigkeiten für die Volumenelemente, wie sie im idealisierten Modell 104 vorgesehen waren, vor. Um im Schritt 113 die Systemmatrix zu bilden, ist die Volumenelement-Schleife 122 erforderlich. Es ist für jedes Volumenelement, wie es im idealisierten Modell 104 vorgesehen ist, ein Anteil an Steifigkeit oder Energie für die Systemmatrix vorzusehen und je Volumenelemt aufzuaddieren. Nachdem die Schleife 122 für jedes Volumenelement durchlaufen ist, sind alle Anteile in der Systemmatrix 114 eingebracht. Der abschließende Schritt der Systemlösung und der Nachbearbeitung 115 erfolgt nach Verfahren nach dem Stand der Technik. Zur Systemlösung gehört die Berechnung der unbekannten Verschiebungen und zur Nachbearbeitung gehört die Auswertung der Verschiebungs- und Spannungsergebnisse.

Das erfindungsgemäße Verfahren kann mit anderen Verfahren nach dem Stand der Technik kombiniert sein. So kann ein Teil einer zu berechnenden Struktur mit dem erfindungsgemäßen Verfahren und ein anderer Teil der Struktur mit einem Verfahren nach dem Stand der Technik berechnet werden, bei dem auch andere Elemente als Volumenelemente zur Idealisierung der Struktur verwendet werden.

Ein Vorteil der Erfindung ist, daß die kleinsten Volumenelemente, über deren Volumen zur Bildung deren Steifigkeitsmatrizen integriert wird, erfindungsgemäß ausschließlich Tetraeder sind, so daß sich eine hohe numerische Stabilität des erfindungsgemäßen Verfahrens ergibt, da Tetraeder sogenannte Simplexformen sind, über die mathematisch exakt, beispielsweise mittels Bessel-Funktionen, integriert werden kann. Nur bei Verwendung von Tetraedern als Idealisierungsoder auch als Teil-Elemente, können die Polynom-Ansatzfunktionen dritter Ordnung numerisch stabil verarbeitet werden. Zur Eliminierung der Flächenmittenknoten der Tetraeder-elemente werden wahlweise Kondensations- oder Reduktionsverfahren nach dem Stand der Technik angewendet. Vorzugsweise werden Kondensationsverfahren angewendet, die exakt sind, so daß sie die numerische Stabilität des Programms verbessern.

Die Verwendung von Tetraedern als kleinste Volumenelemente, über die zu den Elementsteifigkeitsmatrizen integriert werden, liegt darin, daß auch sehr schlanke Tetraeder, d. h. Tetraeder mit einem Höhen-Seitenverhältnis von über 100, noch numerisch stabil sind. Der Grund liegt darin, daß die Tetraeder numerisch exakt integriert werden können.

Durch die hohe Rechengenauigkeit, die das erfindungsgemäße Verfahren auf der Basis der vollständigen kubischen Polynom-Ansatzfunktionen unter Einführung der vollen Ableitungsfreiheitsgrade liefert, wird die erfolgreiche Analyse aller bekannten statischen und dynamischen Festigkeits- und Stabilitätsprobleme ermöglicht. Unter letzterem Begriff sind auch die mathematisch sensiblen Formulierungen zur geometrisch nichtlinearen Problematik der großen Verformungen und der Strukturstabilität zu verstehen.

Die hohe Ergebnisqualität des erfindungsgemäßen Verfahrens aufgrund der kubischen Polynom-Ansatzfunktionen eröffnet die Möglichkeit, alle auf der Basis von 3D-Modellen nach heutigen Verfahren erstellte Konstruktionen direkt, d. h. mit einem sehr geringen Umformungs- und Formalisierungsaufwand, als 3D-Volumen-Modelle in der FE-Berechnungstechnik zu simulieren. Die bislang übliche Modellierung der Strukturen als Stabwerke, spezielle Schalen, Faltwerke und 3D-Teilanalysen kann entfallen und wird durch eine einheitliche Volumenmodellierung ersetzt. Durch diese Vorgehensweise werden anwenderabhängige und modellierungsbedingte Ungenauigkeiten weitgehend reduziert. Der hohe Ansatzgrad der Polynom-Ansastzfunktionen ermöglicht es, relativ grobe Maschennetze zur Idealisierung der zu berechnenden Struktur einzuführen. So genügt über die Dicke allgemeiner Schalenstrukturen eine Elementreihe aus Verbundelementen, z. B. Hexaedern, zur Idealisierung der Struktur.

Die Spannungen in den Knotenpunkten der idealisierten Struktur, werden durch das erfindungsgemäße Verfahren eindeutig berechnet und brauchen nicht wie bei konventionellen Verfahren elementabhängig ermittelt zu werden. Der Grund liegt darin, daß bei dem erfindungsgemäßen Verfahren die Ableitungen der Verschiebungen in den Systemknoten der idealisierten Struktur eindeutig definiert sind, so daß daraus auch die Dehnungen und über die Werkstoffgesetze auch die Spannungen in diesen Punkten eindeutig definiert sind. Da diese Lösungen in bezug auf die System-Knotenpunkte vorliegen, sind sie unabhängig von dem zu dem jeweiligen System-Knotenpunkt gehörenden Finite-Element. Dadurch erübrigt sich die Mittelwertbildung bzw. Extrapolation an diesen System-Knotenpunkten, wie sie im Stand der Technik

vorgenommen werden muß, da die Dehnungen, Verschiebungen und Spannungen an diesen Punkten elementabhängig ausgerechnet werden. Dies ist dadurch möglich, da die Ableitungen in den Freiheitsgraden verwendet werden und in die Polynom-Ansatzfunktionen eingegangen sind, rechentechnisch direkt erfaßt werden können. Demgegenüber sind beim Stand der Technik die Ableitungen der Verschiebungen näherungsweise für die Elemente auf der Systemebene in einem Postprozessingverfahren zu bestimmen.

Die Brauchbarkeit der erfindungsgemäß ermittelten Spannungen an dem System-Knotenpunkten wird auch dann gewährleistet, wenn bei der Idealisierung der Struktur ein grobes Maschennetz verwendet wurde, da die Spannungen nicht aus einer Mittelwertbildung oder Extrapolation ermittelt werden. Daraus ergeben sich signifikante Vorteile bei Analysen zu einem Rißfortschritt oder zu Kerbspannungen in der zu berechnenden Struktur, weil Spannungsspitzen erfindungsgemäß zuverlässig identifiziert werden.

Darüber hinaus besteht durch das erfindungsgemäße Verfahren die Möglichkeit, die Automatisierung für die Erstellung des Finite-Element-Modells vollständig zu perfektionieren und weitgehend unabhängig von den individuellen Gepflogenheiten des Anwenders zu machen. Neben der Steigerung der Ergebnisgenauigkeit werden dadurch potentionelle Fehlerquellen durch unsachgemäße Struktur-Idealisierungen ausgeschlossen.

Bei Verfahren nach dem Stand der Technik vernachlässigte geometrische Strukturdetails wie Dickensprünge, Exzentzitäten, Radiusübergänge können in der Finite-Element-Methode wegen der Idealisierung der Struktur ausschließlich mit Volumenelementen quantitativ berücksichtigt werden. Auch Materialinhomogenitäten, wie diese bei Faserverbundwerkstoffen und Plastizierungen auftreten, können simuliert werden.

Patentansprüche

- 1. Verfahren zur Berechnung von Strukturen mit Hilfe der Finiten-Elemente-Methode mit den Schritten:
 - Idealisierung der zu berechnenden Struktur durch Volumenelemente, die die Form eines Hexaeders, Pentaeders, einer Pyramide oder eines Tetraeders besitzen, und Festlegung der Eck-Knotenpunkte in der idealisierten Struktur.
 - Zerlegung der Volumenelemente mit Hexaeder-, Pentaeder- und Pyramiden-Form in Tetraeder, so daß die zu idealisierende Struktur nur Teilelemente in Tetraeder-Form aufweist,
 - Beschreibung des Verschiebungszustands für jedes Tetraeder-Element durch ein vollständiges Polynom dritter Ordnung je Koordinatenrichtung,
 - Bestimmung der Polynom-Koeffizienten durch Zuordnungen zwischen den Knotenfreiheitsgraden, Faktoren zur Beschreibung der individuellen Tetraedergeometrie und den jeweiligen Polynom-Koeffizienten, wobei als Knotenfreiheitsgrad für jeden Knoten-Eckpunkt der Verschiebungsvektor und die drei Ableitungen dieses Vektors, und der Verschiebungsvektor für die Flächenmitten-Knoten jedes Tetraederelements verwendet wird,
 Elimination der Flächenmitten-Knotenpunkte,
 - Addition der Verschiebungen und Ableitungen jedes Tetraeder-Teilelements und Bildung der Systemmatrix,
 Lösung des gestellten mechanischen Problems mittels der Systemmatrix.
- 2. Verfahren zur Berechnung von Strukturen mit Hilfe der Finiten-Elemente-Methode nach dem Anspruch 1, dadurch gekennzeichnet, daß die Ansatzfunktionen dritter Ordnung vollständig sind und mittels des Pascal'schen Funktionalsschema erstellt werden.
- 3. Verfahren zur Berechnung von Strukturen mit Hilfe der Finiten-Elemente-Methode nach den Ansprüchen 1 oder 40. dadurch gekennzeichnet, daß die Elimination der Flächenmitten-Knoten mittels Reduktionsverfahren erfolgt.
- 4. Verfahren zur Berechnung von Strukturen mit Hilfe der Finiten-Elemente-Methode nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Elimination der Flächenmitten-Knoten mittels Kondensationsverfahren erfolgt.
- 5. Verfahren zur Berechnung von Strukturen mit Hilfe der Finiten-Elemente-Methode nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Bildung der Teilelemente aus einem Volumenelement in zwei sich ergänzenden geometrischen Varianten erfolgt und die nachfolgenden Schritte aufgrund einer Überlagerung der aus beiden Varianten resultierenden Ergebnisse erfolgt.

Hierzu 8 Seite(n) Zeichnungen

55

50

5

20

25

60

65

- Leerseite -

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

METHOD OF CALCULATING STRUCTURES USING THE FINITE ELEMENT METHOD

Patent number:

DE19933314

Publication date:

2001-02-15

Inventor:

FIX ARMIN (DE)

Applicant:

DAIMLER CHRYSLER AG (DE)

Classification:

- international:

G06T17/20; G06T17/20; (IPC1-7): G06F17/50

- european:

G06T17/20

Application number:

DE19991033314 19990716

Priority number(s):

DE19991033314 19990716

Report a data error here

Also published as:

| WO0106420 (A2)|

Abstract not available for DE19933314

Abstract of corresponding document: WO0106420

The invention relates to a method of calculating structures using the finite element method. The inventive method comprises the following steps: idealizing the structure to be calculated by volume elements and fixing the corner nodes in the idealized structure, breaking down the volume elements that have a hexahedron, pentahedron or pyramidal shape into tetrahedrons so that the structure to be idealized is a partial element structure made up of tetrahedrons, describing the displacement state for every tetrahedron element by a complete third order polynomial per coordinate axis, determining the polynomial coefficients by establishing correlations between the node degrees of freedom, the factors for describing the individual tetrahedron geometries and the respective polynomial coefficients, with the displacement vector and the three derivatives of said vector being used as the node degree of freedom of every node corner and the displacement vector for the centroid nodes of every tetrahedron element being used, eliminating said centroid nodes, integrating and solving the respective mechanical problem by means of the system matrix.

Data supplied from the esp@cenet database - Worldwide