Big Hypothesis Testing with Kernel Embeddings

Dino Sejdinovic

Department of Statistics University of Oxford

9 January 2015 UCL Workshop on the Theory of Big Data

Heiko Strathmann

Soumyajit De

Wojciech Zaremba Matthew Blaschko Arthur Gretton

Making Hard Inference Possible

many dimensions

highly non-linear assocations

low signal-to-noise ratio

higher-order interactions

Making Hard Inference Possible

many dimensions

highly non-linear assocations

low signal-to-noise ratio

higher-order interactions

need an expressive model and a very large number of observations

Making Hard Inference Possible

many dimensions

low signal-to-noise ratio

highly non-linear assocations

higher-order interactions

need an expressive model and a very large number of observations cannot use batch algorithms

Overview

- Mernel Embeddings and MMD
- Scaling up Kernel Tests
- Experiments

Outline

Kernel Embeddings and MMD

- 2 Scaling up Kernel Tests
- 3 Experiments

Kernel Embedding

• feature map: $x \mapsto k(\cdot, x) \in \mathcal{H}_k$ instead of

$$x \mapsto (\varphi_1(x), \dots, \varphi_s(x)) \in \mathbb{R}^s$$

• $\langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}_k} = k(x, y)$ inner products easily **computed**

Kernel Embedding

- feature map: $x \mapsto k(\cdot, x) \in \mathcal{H}_k$ instead of $x \mapsto (\varphi_1(x), \dots, \varphi_s(x)) \in \mathbb{R}^s$
- $\langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}_k} = k(x, y)$ inner products easily **computed**
- embedding: $P \mapsto \mu_k(P) = \mathbb{E}_{X \sim P} k(\cdot, X) \in \mathcal{H}_k$ instead of $P \mapsto (\mathbb{E} \varphi_1(X), \dots, \mathbb{E} \varphi_s(X)) \in \mathbb{R}^s$
- $\langle \mu_k(P), \mu_k(Q) \rangle_{\mathcal{H}_k} = \mathbb{E}_{X,Y} k(X,Y)$ inner products easily **estimated**

Kernel MMD (1)

Definition

Kernel metric (MMD) between P and Q:

$$\mathsf{MMD}_{k}^{2}(P, Q) = \|\mathbb{E}k(\cdot, X) - \mathbb{E}k(\cdot, Y)\|_{\mathcal{H}_{k}}^{2}$$
$$= \mathbb{E}_{XX'}k(X, X') + \mathbb{E}_{YY'}k(Y, Y') - 2\mathbb{E}_{XY}k(X, Y)$$

Kernel MMD (2)

- A polynomial kernel $k(z,z') = \left(1+z^{\top}z'\right)^s$ captures the difference in first s moments only
- For a certain family of kernels (characteristic): $\mathsf{MMD}_k(P,Q) = 0$ if and only if P = Q: Gaussian $\exp(-\frac{1}{2\sigma^2} \|z z'\|_2^2)$, Laplacian, inverse multiquadratics, $B_{2\,n+1}$ splines...
- Under mild assumptions, k-MMD metrizes weak* topology on probability measures (Sriperumbudur, 2010):

$$\mathsf{MMD}_k(P_n,P) \to 0 \Leftrightarrow P_n \leadsto P$$

Nonparametric two-sample tests

- Testing H_0 : $P = \mathbb{Q}$ vs. H_A : $P \neq \mathbb{Q}$ based on samples $\{x_i\}_{i=1}^{n_X} \sim P$, $\{y_i\}_{i=1}^{n_y} \sim \mathbb{Q}$.
- Test statistic is an estimate of $\mathrm{MMD}_k^2(P,Q) = \mathbb{E}_{XX'}k(X,X') + \mathbb{E}_{YY'}k(Y,Y') 2\mathbb{E}_{XY}k(X,Y')$:

$$\widehat{\text{MMD}} = \frac{1}{n_{x}(n_{x}-1)} \sum_{i \neq j} k(x_{i},x_{j}) + \frac{1}{n_{y}(n_{y}-1)} \sum_{i \neq j} k(y_{i},y_{j}) - \frac{2}{n_{x}n_{y}} \sum_{i,j} k(x_{i},y_{j}).$$

- $O(n^2)$ to compute $(n = n_x + n_y)$
- Degenerate U-statistic: $\frac{1}{\sqrt{n}}$ -convergence to MMD under $\mathbf{H_A}$, $\frac{1}{n}$ -convergence to 0 under $\mathbf{H_0}$.

Nonparametric independence tests

- H₀ : X ⊥ Y
- H_A : X / Y

Nonparametric independence tests

- $H_0: X \perp \!\!\!\perp Y \Leftrightarrow P_{XY} = P_X P_Y$
- $H_A: X \perp \!\!\! \perp Y \Leftrightarrow P_{XY} \neq P_X P_Y$
- Test statistic: $\operatorname{HSIC}(X,Y) = \left\| \mu_{\kappa}(\hat{P}_{XY}) \mu_{\kappa}(\hat{P}_{X}\hat{P}_{Y}) \right\|_{\mathcal{H}_{\kappa}}^{2},$ with $\kappa = k \otimes l$

Gretton et al (2005, 2008); Smola et al (2007)

Nonparametric independence tests

- $H_0: X \perp \!\!\!\perp Y \Leftrightarrow P_{XY} = P_X P_Y$
- $H_A : X \perp \!\!\! \perp Y \Leftrightarrow P_{XY} \neq P_X P_Y$
- Test statistic: $\mathrm{HSIC}(X,Y) = \left\| \mu_{\kappa}(\hat{P}_{XY}) \mu_{\kappa}(\hat{P}_{X}\hat{P}_{Y}) \right\|_{\mathcal{H}_{\kappa}}^{2},$ with $\kappa = k \otimes I$ Gretton et al (2005, 2008); Smola et al (2007)

$$k(0,0) \quad l(0,0)$$

$$\kappa(0,0,0) = k(0,0) \times l(0,0)$$

Extensions: conditional independence testing (Fukumizu, Gretton, Sun and Schölkopf, 2008; Zhang, Peters, Janzing and Schölkopf, 2011), three-variable interaction (DS, Gretton and Bergsma, 2013)

Outline

Mernel Embeddings and MMD

- Scaling up Kernel Tests
- 3 Experiments

Test threshold

• under H_0 : P = Q:

$$\frac{n_x n_y}{n_x + n_y} \widehat{\mathsf{MMD}}_k \leadsto \sum_{r=1}^{\infty} \lambda_r \left(Z_r^2 - 1 \right), \quad \{ Z_r \} \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$$

- $\{\lambda_r\}$ depend on both k and P.
- expensive threshold computation:
 - Estimate leading λ_r 's (requires eigendecomposition of the kernel matrix): $O(n^3)$
 - Permutation test: #shuffles $\times O(n^2)$

Limited data, unlimited time

$$\mathsf{MMD}_k^2(P, \mathbf{Q}) = \mathbb{E}_{XX'}k(X, X') + \mathbb{E}_{\mathbf{YY'}}k(\mathbf{Y}, \mathbf{Y}') - 2\mathbb{E}_{X\mathbf{Y}}k(X, \mathbf{Y})$$

Estimate with

$$\widehat{\mathsf{MMD}} = \frac{1}{n_{x}(n_{x}-1)} \sum_{i \neq j} k(x_{i},x_{j}) + \frac{1}{n_{y}(n_{y}-1)} \sum_{i \neq j} k(y_{i},y_{j}) - \frac{2}{n_{x}n_{y}} \sum_{i,j} k(x_{i},y_{j}).$$

• Complexity: $O(n^2)$.

Limited time, unlimited data

- Process mini-batches of size B at a time: $\hat{\eta}_k = \frac{B}{n} \sum_{b=1}^{n/B} \widehat{MMD}_{k,b}$
- Complexity: O(nB).
- Provided $B/n \to 0$: $\frac{1}{\sqrt{n}}$ -convergence to MMD if $\text{MMD} \neq 0$, $\frac{1}{\sqrt{nB}}$ -convergence to 0 under $\mathbf{H_0}$.
- A.Gretton, B.Sriperumbudur, DS, H.Strathmann, S.Balakrishnan, M.Pontil and K.Fukumizu, Optimal kernel choice for large-scale two-sample tests, NIPS 2012.
- W. Zaremba, A. Gretton, M. Blaschko, **B-test: A Non-Parametric, Low Variance Kernel Two-Sample Test**, *NIPS* 2013.

Full statistic vs. mini-batch statistic

	<i>U</i> -statistic	mini-batch
time	$O(n^2)$	O(nB)
storage	$O(n^2)$	$O(B^2)$
null distribution	infinite sum of chi-squares	normal
computing p-value	$O(n^3)$ or $\#$ shuffles $ imes O(n^2)$	O(nB)
convergence rate	1/n	$1/\sqrt{nB}$

- $\frac{n_x n_y}{(n_x + n_y)^{3/2}} \sqrt{B} \hat{\eta}_k \rightsquigarrow \mathcal{N}\left(0, \sigma_k^2\right)$ under $\mathbf{H_0}$
- σ_k^2 (depends on k and P) can be unbiasedly estimated on each block in $O(B^2)$ time

Asymptotic efficiency criterion

A. Gretton, B. Sriperumbudur, DS, H. Strathmann, S. Balakrishnan, M. Pontil and K. Fukumizu, Optimal kernel choice for large-scale two-sample tests, NIPS 2012.

Proposition

For given P and Q. Let $\eta_k = MMD_k^2(P,Q)$, and let σ_k^2 be the asymptotic variance of the linear-time statistic $\hat{\eta}_k$. Then

$$k_* = \arg\max_{k \in \mathcal{K}} \eta_k / \sigma_k$$

minimizes the asymptotic Type II error probability on K.

Asymptotic efficiency criterion

A. Gretton, B. Sriperumbudur, DS, H. Strathmann, S. Balakrishnan, M. Pontil and K. Fukumizu, Optimal kernel choice for large-scale two-sample tests, NIPS 2012.

Proposition

For given P and Q. Let $\eta_k = MMD_k^2(P,Q)$, and let σ_k^2 be the asymptotic variance of the linear-time statistic $\hat{\eta}_k$. Then

$$k_* = \arg\max_{k \in \mathcal{K}} \eta_k / \sigma_k$$

minimizes the asymptotic Type II error probability on K.

- We only have estimates of η_k and σ_k !
- Will the kernel optimization using plug-in esimates be consistent?
- Over what families of kernels can we perform such optimization efficiently?

Asymptotic efficiency criterion

A. Gretton, B. Sriperumbudur, DS, H. Strathmann, S. Balakrishnan, M. Pontil and K. Fukumizu, Optimal kernel choice for large-scale two-sample tests, NIPS 2012.

Proposition

For given P and Q. Let $\eta_k = MMD_k^2(P,Q)$, and let σ_k^2 be the asymptotic variance of the linear-time statistic $\hat{\eta}_k$. Then

$$k_* = \arg\max_{k \in \mathcal{K}} \eta_k / \sigma_k$$

minimizes the asymptotic Type II error probability on K.

- We only have estimates of η_k and σ_k !
- Will the kernel optimization using plug-in esimates be consistent? yes!
- Over what families of kernels can we perform such optimization efficiently? linear combinations (MKL)

Outline

Kernel Embeddings and MMD

- 2 Scaling up Kernel Tests
- 3 Experiments

Hard-to-detect differences: Gaussian blobs

Difficult problems: lengthscale of the *difference* in distributions not the same as that of the distributions.

Hard-to-detect differences: Gaussian blobs

Difficult problems: lengthscale of the *difference* in distributions not the same as that of the distributions.

We distinguish grids of Gaussian blobs with different covariances.

Figure : 3×3 blobs, ratio $\varepsilon = 3.2$ of largest-to-smallest eigenvalues of blobs in Q.

Gaussian blobs (2)

 12×12 blobs with $\varepsilon = 1.4$. Linear time statistic vs. Quadratic time statistic. Fixed kernel.

Gaussian blobs (2)

 12×12 blobs with $\varepsilon=$ 1.4. Linear time statistic vs. Quadratic time statistic. Fixed kernel.

	m per trial	Type II error	Trials
Quadratic 5,000		[0.7996, 0.8516]	820
	10,000	[0.5161, 0.6175]	367
	> 10,000	Buy more RAM!	

Gaussian blobs (2)

 12×12 blobs with $\varepsilon=1.4$. Linear time statistic vs. Quadratic time statistic. Fixed kernel.

	m per trial	Type II error	Trials
Quadratic 5,000		[0.7996, 0.8516]	820
	10,000	[0.5161, 0.6175]	367
	> 10,000	Buy more RAM!	
Linear	$\sim 100,000,000$	[0.2250, 0.3049]	468
	\sim 200,000,000	[0.1873, 0.2829]	302
	:	:	i !
	$\sim 500,000,000$	0.0270 ± 0.0302	111

Gaussian blobs (3)

Figure : m=10,000; family generated by gaussian kernels with bandwiths $\{2^{-5},\ldots,2^{15}\}$.

Hard-to-detect differences: UCI HIGGS

 P. Baldi, P. Sadowski, and D. Whiteson. Searching for Exotic Particles in High-energy Physics with Deep Learning. Nature Communications 5, 2014.

- benchmark dataset for distinguishing a signature of Higgs boson vs. background
- ullet joint distributions of the azimuthal angular momenta arphi for four particle jets: low-signal, low-level features
- Do joint angular momenta carry any discriminating information?

Hard-to-detect differences: UCI HIGGS

 P. Baldi, P. Sadowski, and D. Whiteson. Searching for Exotic Particles in High-energy Physics with Deep Learning. Nature Communications 5, 2014.

- benchmark dataset for distinguishing a signature of Higgs boson vs. background
- ullet joint distributions of the azimuthal angular momenta arphi for four particle jets: low-signal, low-level features
- Do joint angular momenta carry any discriminating information?

sample size:	1e4	5e4	1e5	5e5	1e6
p-value (gauss-med):	.757	.217	.475	.391	.074

Hard-to-detect differences: UCI HIGGS

- P. Baldi, P. Sadowski, and D. Whiteson. Searching for Exotic Particles in High-energy Physics with Deep Learning. Nature Communications 5, 2014.

- benchmark dataset for distinguishing a signature of Higgs boson vs. background
- ullet joint distributions of the azimuthal angular momenta arphi for four particle jets: low-signal, low-level features
- Do joint angular momenta carry any discriminating information?

sample size:	1e4	5e4	1e5	5e5	1e6
p-value (gauss-med):	.757	.217	.475	.391	.074

train/test size:	2e3/8e3	1e4/4e4	2e4/8e4	1e5/4e5	2e5/8e5
p-value (gauss-opt):	.139	.476	.035	6.12e-5	1.02e-18

Experiment: Independence Test $(\sum sign \Pi)$

• $X \sim \mathcal{N}\left(0, I_d\right)$, $Y = \sqrt{\frac{2}{d}} \sum_{j=1}^{d/2} \operatorname{sign}\left(X_{2j-1}X_{2j}\right) |Z_j| + Z_{\frac{d}{2}+1}$, where $Z \sim \mathcal{N}\left(0, I_{\frac{d}{2}+1}\right)$

Experiment: Independence Test ($sine \Sigma$)

• $X_1, X_2 \overset{i.i.d.}{\sim} \text{Unif } [0, 2\pi],$ $Y = \sin(X_1 + X_2) + 10Z$, with $Z \sim \mathcal{N}(0, 1)$.

sine \sum , $B=100$	brown: $q=1$	brown: opt	gauss: med	gauss: opt
N = 5e5, 1-Type II	$.277 \pm .059$	$.675\pm.065$	$.190\pm.054$	$.740\pm.061$
Type I	$.035 \pm .025$	$.025\pm.022$	$.085\pm.039$	$.040 \pm .027$
N=1e6, 1-Type II	$.460 \pm .069$	$.915\pm.039$	$.325 \pm .065$	$.905\pm.041$
Type I	$.055 \pm .032$	$.050\pm.030$	$.025 \pm .022$	$.060 \pm .033$

Shogun

- Written in C++ with interfaces to Python, Matlab, Java, R.
- Google Summer of Code (2012, 2014).

 Hypothesis testing based on kernel embeddings reveals hard-to-detect differences between distributions and non-linear low-signal associations.

- Hypothesis testing based on kernel embeddings reveals hard-to-detect differences between distributions and non-linear low-signal associations.
- A simple mini-batch procedure allows us to run the tests on large-scale problems and on streaming data.

- Hypothesis testing based on kernel embeddings reveals hard-to-detect differences between distributions and non-linear low-signal associations.
- A simple mini-batch procedure allows us to run the tests on large-scale problems and on streaming data.
- Can select kernel parameters on-the-fly in order to explicitly maximise test power.

- Hypothesis testing based on kernel embeddings reveals hard-to-detect differences between distributions and non-linear low-signal associations.
- A simple mini-batch procedure allows us to run the tests on large-scale problems and on streaming data.
- Can select kernel parameters on-the-fly in order to explicitly maximise test power.
- Both kernel selection and testing in O(n) time and O(1) storage (if B = const).