

Fitness effects of mutations to SARS-CoV-2 proteins

Jesse D. Bloom^{1,2,3*} and Richard A. Neher^{4,5*}

¹Basic Sciences and Computational Biology, Fred Hutchinson Cancer Center ²Department of Genome Sciences, University of Washington ³Howard Hughes Medical Institute ⁴Biozentrum, University of Basel ⁵Swiss Institute of Bioinformatics

doi: https://doi.org/10.1101/2023.01.30.526314

BASIC IDEA

- experimentally measuring single mutational effects is hopeless
 - deep mutational scanning data only available for two SARS-CoV-2 proteins

idea:

- there are now so many SARS-CoV-2 sequences, that all non-deleterious
 single-nucleotide mutations are expected to independently occur many times
- → frequent mutations are beneficial while rare ones are deleterious
- what does "frequent" mean?
 - compare the expected number of mutations given no selection
 - with the actual number of observed mutations

CALCULATING FITNESS EFFECTS

- use the phylogenetic tree of (~ 7 million) public SARS-CoV-2 sequences
 - only count **individual occurrences** of mutations

- expected mutation counts: from four-fold degenerate sites
 - no protein-level selection
- 1. take all four-fold degenerate sites along the genome
- 2. choose the ones with original nucleotide x
- 3. count the number of individual mutations with nucleotide *y* at these sites
- 4. divide by the number of relevant sites

cDNA Codon Table

CALCULATING FITNESS EFFECTS

actual mutation counts: same technique for all possible genomic sites

- synonymous (including 4-fold deg.) ~ expected
- nonsynonymous mutations are rare
- stop-codon mutations are even rarer

purifying selection

CALCULATING FITNESS EFFECTS

- converting to AA counts from nucleotide counts
 - sum all nucleotide mutation counts that encode the same AA mutation.
 - exclude any mutations that are not from the clade-founder codon identity
- **overall estimate**: sum for all possible clades
- ullet estimated fitness: $\Delta f = \log\Bigl(rac{n_{actual} + 0.5}{n_{expected} + 0.5}\Bigr)$

https://jbloomlab.github.io/ SARS2-mut-fitness/

ROBUSTNESS

- correlations between subsampled datasets are reasonably high
 - o differences due to statistical noise? → limiting data to high-confidence mutations
 - subsetting by geography → correlation consistently increases
 - subsetting by clade → correlation increases for non-spike, but remains lower for spike
 - o correlations decline for clades with higher protein divergence
 - epistasis? changes in the selective landscape?

PURIFYING SELECTION ON PROTEINS

- synonymous mutations are usually neutral
- nonsynonymous mutations have varied effects
- stop-codon mutations are deleterious

structural and non-structural proteins are under strong purifying selection

accessory proteins are under little constraint

PURIFYING SELECTION ON PROTEINS

MUTATIONS FIXED IN CLADES

MUTATION EFFECT VS. DMS

 for Spike: correlation between fitness effect and experiments is similar to that of between different experiments

- for Mpro: correlation between experiments is higher than between fitness effect and experimental results
 - ← systematic experimental artefacts?

MUTATION EFFECT VS. OTHER PREDICTORS

MUTATION EFFECT VS. OTHER PREDICTORS

- fitness effect moderately correlates with other predictors of mutational effect
- fitness effect outperforms all other predictors when correlated to experimental DMS results

Maher et al:

(already discussed) <u>LINK</u> no epistasis

Rodriguez-Rivas et al: considers epistasis

Thadani et al: LINK

EVEscape deep learning model trained on sequences available before 2020 supposedly "captures" epistasis