机器学习中的优化问题

2025年4月16日

Homework 8

Question 1.

1. Backtracking 停止条件. backtracking line search 终止条件为:

$$f(\boldsymbol{x} + t\Delta \boldsymbol{x}) \le f(\boldsymbol{x}) + \alpha t \nabla f(\boldsymbol{x})^T \Delta \boldsymbol{x},$$

其中常数 $\alpha \in (0, \frac{1}{2})$ 。

我们利用函数在点x处的二阶泰勒展开:

$$f(\boldsymbol{x} + t\Delta \boldsymbol{x}) = f(\boldsymbol{x}) + t\nabla f(\boldsymbol{x})^T \Delta \boldsymbol{x} + \frac{1}{2}t^2 \Delta \boldsymbol{x}^T \nabla^2 f(\boldsymbol{\xi}) \Delta \boldsymbol{x},$$

其中 ξ 是位于 x 与 $x + t\Delta x$ 之间的某个点。

因为 $\nabla^2 f(\boldsymbol{\xi}) \leq M \boldsymbol{I}$,因此

(1)
$$f(\boldsymbol{x} + t\Delta \boldsymbol{x}) \leq f(\boldsymbol{x}) + t\nabla f(\boldsymbol{x})^T \Delta \boldsymbol{x} + \frac{1}{2}Mt^2 \|\Delta \boldsymbol{x}\|^2.$$

当 $t \leq \frac{-\nabla f(x)^T \Delta x}{M||\Delta x||^2}$ 时,因为 $\alpha \in (0, \frac{1}{2})$,所以 $t \leq \frac{-2(1-\alpha)\nabla f(x)^T \Delta x}{M||\Delta x||^2}$. 代入 (1),有

$$f(\boldsymbol{x} + t\Delta \boldsymbol{x}) \leq f(\boldsymbol{x}) + t(\nabla f(\boldsymbol{x})^T \Delta \boldsymbol{x} + \frac{1}{2} M t \|\Delta \boldsymbol{x}\|^2)$$

$$\leq f(\boldsymbol{x}) + t(\nabla f(\boldsymbol{x})^T \Delta \boldsymbol{x} - (1 - \alpha) \nabla f(\boldsymbol{x})^T \Delta \boldsymbol{x})$$

$$= f(\boldsymbol{x}) + \alpha t \nabla f(\boldsymbol{x})^T \Delta \boldsymbol{x},$$

2. Backtracking **迭代次数上界**. 假设初始步长为 t_0 ,每次回溯将当前步长乘以 $\beta \in (0,1)$,第 k 次回溯后的步长为 $t_k = \beta^k t_0$.

迭代停止时有

$$t_k = \beta^k t_0 \le \frac{-\nabla f(\boldsymbol{x})^T \Delta \boldsymbol{x}}{M \|\Delta \boldsymbol{x}\|^2}.$$

解不等式得

$$k \le \left\lceil \log_{1/\beta} \left(\frac{Mt_0 \|\Delta \boldsymbol{x}\|^2}{-\nabla f(\boldsymbol{x})^T \Delta \boldsymbol{x}} \right) \right\rceil.$$

Question 2.

定义函数 $\varphi(\alpha) = f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)})$,则 α_k 是 $\varphi(\alpha)$ 的极小点,因此 $\varphi'(\alpha_k) = 0$. 根据链式法则,

$$\varphi'(\alpha) = \nabla f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)})^T \cdot \mathbf{d}^{(k)},$$

代入 α_k , 得到

$$\nabla f(\mathbf{x}^{(k+1)})^T \cdot \mathbf{d}^{(k)} = 0.$$

由于 $\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} = \alpha_k \mathbf{d}^{(k)}$,可得

$$\nabla f(\mathbf{x}^{(k+1)})^T \cdot (\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) = \alpha_k \nabla f(\mathbf{x}^{(k+1)})^T \cdot \mathbf{d}^{(k)} = 0.$$

所以

$$\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \perp \nabla f(\mathbf{x}^{(k+1)}).$$

Question 3.

针对 $\alpha = 0.1, \beta = 0.3$ 给出 $\log(f(x) - p^*)$ 和步长随迭代次数的变化。

图 1. $\alpha = 0.1, \beta = 0.3$ 的 $\log(f(x) - p^*)$ 随迭代次数的变化

图 2. $\alpha = 0.1, \beta = 0.3$ 的步长随迭代次数的变化

我们选取了 $\alpha \in [0.01, 0.1, 0.3, 0.49], \beta \in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]$ 绘制迭代次数和参数的关系。实验中,我们选取的停止标准是 $\nabla f(x) \leq \eta = 10^{-4}$,迭代次数上限是 1000 次。

图 3. Backtracking 参数 α, β 对迭代次数的影响¹

能够发现, $\nabla f(x) \leq \eta = 10^{-4}$ 的停止标准相对来说比较严苛。Backtracking 参数选取上,更加接近 0.5 的 β 和 α 收敛更快。在 β 较小时, α 的选择对收敛行为影响较大,其他情况则主要依赖于 β ,但迭代次数变化的范围整体来看较小。

Question 4.

先给出伪代码。

图 4. Backtracking 参数 α, β 对迭代次数的影响

Algorithm 1: Steepest Descent in ℓ_{∞} -norm

Input: Objective function f(x), gradient $\nabla f(x)$, initial point x_0 , tolerance η , backtracking parameters α , β

Output: Approximate minimizer x

 $x \leftarrow x_0;$

repeat

```
\begin{split} g &\leftarrow \nabla f(x); \\ d &\leftarrow -\mathrm{sign}(g); \\ t &\leftarrow 1; \\ \mathbf{while} \ f(x+td) > f(x) + \alpha t g^T d \ \mathbf{do} \\ & \  \  \, \bigsqcup \ t \leftarrow \beta t; \\ x &\leftarrow x + t d; \end{split}
```

until $||g||_2 \leq \eta$;

类似上一题, 针对 $\alpha = 0.1$, $\beta = 0.1$ 给出 $\log(f(x) - p^*)$ 和步长随迭代次数的变化。

图 5. $\alpha = 0.1, \beta = 0.1$ 的 $\log(f(x) - p^*)$ 随迭代次数的变化

图 6. $\alpha = 0.1, \beta = 0.1$ 的步长随迭代次数的变化

我们选取了 $\alpha \in [0.01, 0.1, 0.3, 0.49], \beta \in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]$ 绘制迭代次数和参数的关系。实验中,我们选取的停止标准是 $\nabla f(x) \leq \eta = 10^{-4}$,迭代次数上限是 1000 次。

图 7. Backtracking 参数 α, β 对迭代次数的影响²

图 8. Backtracking 参数 α, β 对迭代次数的影响

能够发现, $\nabla f(x) \leq \eta = 10^{-4}$ 的停止标准相对来说依旧比较严苛。Backtracking 参数选取上,较小的 α 和 β 收敛更快。在 β 较大时, α 的选择对收敛行为影响较大,其他情况迭代次数的整体波动不大。

Question 5.

根据题意,我们分别采取 Damped Newton 法和 Gauss Newton 法求解优化问题,并展示求解结果。在 Damped Newton 法中,我们需要选择 Backtracking 的参数,这里选择的参数是 $\alpha=0.3,\beta=0.5$,根据课本中的典型参数值,同时希望能够较快收敛。(事实上,选取更小的 β 能够(在时间上)更快收敛。)根据结果(图9、10),Gauss Newton 法在解决非线性最小平方问题上确实表现上佳。

图 9. 收敛行为随迭代次数变化

图 10. 收敛行为随时间变化

Question 6.

根据 Conjugate Direction 方法,有 $\boldsymbol{d}^{(k+1)} = -\boldsymbol{g}^{(k+1)} + \beta_k \boldsymbol{d}^{(k)}, k \geq 1$,所以根据共轭方向的性质 $\boldsymbol{d}^{(k)} \boldsymbol{Q} \boldsymbol{d}^{(k-1)} = 0$ 能够得到

$$d^{(k)}Qd^{(k)} = -d^{(k)}Qg^{(k)} + \beta_k d^{(k)}Qd^{(k-1)} = -d^{(k)}Qg^{(k)}, k \ge 1.$$

当
$$k=0$$
 时,由 $\boldsymbol{d}^{(0)}=-\boldsymbol{g}^{(0)}$, $\boldsymbol{d}^{(0)}\boldsymbol{Q}\boldsymbol{d}^{(0)}=-\boldsymbol{d}^{(0)}\boldsymbol{Q}\boldsymbol{g}^{(0)}$ 。 因此对 $\forall k, \boldsymbol{d}^{(k)}\boldsymbol{Q}\boldsymbol{d}^{(k)}=-\boldsymbol{d}^{(k)}\boldsymbol{Q}\boldsymbol{g}^{(k)}$ 。

Question 7.

根据 Opt_book.pdf 中引理 146, 我们有

(2)
$$\mathbf{g}^{(k+1)^T} \mathbf{d}^{(j)} = 0, \quad j = 0, 1, \dots, k.$$

根据算法,对 $1 \le j \le k-1$

$$\mathbf{d}^{(j)} = -\mathbf{g}^{(j)} + \beta_{j-1}\mathbf{d}^{(j-1)},$$

所以

$$0 = \mathbf{g}^{(k+1)^T} \mathbf{d}^{(j)} = -\mathbf{g}^{(k+1)^T} \mathbf{g}^{(j)} + \beta_{j-1} \mathbf{g}^{(k+1)^T} \mathbf{d}^{(j-1)}.$$

由于 $\mathbf{g}^{(k+1)^T}\mathbf{d}^{(j-1)} = 0$,有

$$\mathbf{g}^{(k+1)^T}\mathbf{g}^{(j)} = 0, 1 \le j \le k-1.$$

$$j = 0$$
 时, $\mathbf{d}^{(0)} = -\mathbf{g}^{(0)}$,所以 $\mathbf{g}^{(k+1)^T}\mathbf{g}^{(0)} = -\mathbf{g}^{(k+1)^T}\mathbf{d}^{(0)} = 0$ 也成立。

Question 8.

Backtracking 参数 $\alpha = 0.3, \beta = 0.5$,最多搜索 20 次;共轭梯度法的停止标准是 $\nabla f(x) \leq 10^{-6}$,最大迭代次数 20000 次。

我们测试了函数中的 $\alpha \in [1,100,10000]$ 三种情况下三种 β 方法的表现。总体来讲 FR 方法初期下降最快,但接近目标值时速度放缓,HS 方法恰恰相反,初期下降较慢,但最终收敛最快,PR 中期较慢,其他时期介于两者之间。 α 的变化影响目标函数的条件数,相对来讲 α 越大问题条件数越差,收敛速度也就越慢。

表 1. 不同 α 和 β 方法组合下的共轭梯度法结果对比

α	β方法	迭代次数	最终梯度范数	耗时 (s)	最终函数值
10000	FR	157	5.03×10^{-7}	0.1632	2.54×10^{-13}
	PR	130	2.94×10^{-7}	0.1388	1.90×10^{-16}
	$_{ m HS}$	68	6.67×10^{-7}	0.0711	8.09×10^{-17}
100	FR	137	8.37×10^{-7}	0.1199	7.34×10^{-13}
	PR	58	1.85×10^{-7}	0.0525	3.37×10^{-14}
	$_{ m HS}$	33	7.78×10^{-8}	0.0256	2.12×10^{-16}
1	FR	34	6.93×10^{-7}	0.0302	6.95×10^{-13}
	PR	31	6.82×10^{-7}	0.0234	3.63×10^{-14}
	$_{ m HS}$	30	4.10×10^{-7}	0.0231	7.85×10^{-14}

(A) $\alpha = 10000$ 时的收敛行为

(B) $\alpha = 100$ 时的收敛行为

(c) $\alpha = 1$ 时的收敛行为

图 11. 共轭梯度法在不同 α 下的收敛行为对比