

BST Application

Range Query: 2D

昔者明王必尽知天下良士之名; 既知其名, 又知其数; 既知其数, 又知其所在。 邓 後 辑 deng@tsinghua.edu.cn

Planar Range Query

- \clubsuit Let $P = \{ p_1, p_2, p_3, \ldots, p_n \}$ be a planar set
- \clubsuit Given $R = (x_1, x_2] \times (y_1, y_2]$
 - COUNTING: $|R \cap P| = ?$
 - REPORTING: $R \cap P = ?$
- ❖ Binary search

 doesn't help this kind of query
- ❖ You might consider to expand the counting method using the Inclusion-Exclusion Principle

Preprocessing

 \bullet \forall point (x,y), let $n(x,y) = |((0,x] \times (0,y]) \cap P|$

❖ This requires O(n²) time/space

Domination

* A point (u, v) is called to be DOMINATED by point (x, y) if $u \le x \text{ and } v \le y$

Inclusion-Exclusion Principle

� Then for any rectangular range $\mathcal{R} = (x_1, x_2] imes (y_1, y_2]$, we have

$$|\mathcal{R} \cap \mathcal{P}| = n(x_1, y_1) + n(x_2, y_2) - n(x_1, y_2) - n(x_2, y_1)$$

Performance

- **\Leftrightarrow** Each query needs only $\mathcal{O}(\log n)$ time
- **\Leftrightarrow** Uses $\Theta(n^2)$ storage and even more for higher dimensions
- ❖ To find a better solution, let's go back to the 1D case ...

