Employee Attrition Classification

Aysenur Oya OZEN - 2107501

Zeynep TUTAR - 2106038

Introduction to Dataset

The objective of this project is to develop at least two predictive models to determine employee attrition. Additionally, it aims to identify and understand the key factors that contribute to employee turnover.

The dataset used for this project is a simulated dataset designed for the analysis and prediction of employee attrition.

It contains detailed information about various aspects of an employee's profile, including demographics, job-related features, and personal circumstances.

The dataset contains 74,498 samples and 22 features. Each record includes a unique Employee ID and features that influence employee attrition.

Description of the Features

Variable		Variable	Description
	1	Employee ID	A unique identifier assigned to each employee
	2	Age	The age of the employee, ranging from 18 to 60 years
	3	Gender	The gender of the employee
			The number of years the employee has been working at the
	4	Years at Company	company.
	5	Monthly Income	The monthly salary of the employee, in dollars
			The department or role the employee works in, encoded into
			categories such as Finance, Healthcare, Technology,
	6	Job Role	Education, and Media
			The employee's perceived balance between work and personal
	7	Work-Life Balance	life, (Poor, Below Average, Good, Excellent)
			The employee's satisfaction with their job: (Very Low, Low,
	8	Job Satisfactio	Medium, High)
			The employee's performance rating: (Low, Below Average,
	9	Performance Rating	Average, High)
	10	Number of Promotions	The total number of promotions the employee has received.
			The distance between the employee's home and workplace, in
	11	Distance from Home	miles.

Variable		Description
		The highest education level attained by the employee: (High
		School, Associate Degree, Bachelor's Degree, Master's
12	Education Level	Degree, PhD)
13	Marital Status	The marital status of the employee: (Divorced, Married, Single)
14	Job Level	The job level of the employee: (Entry, Mid, Senior)
15	Company Size	The job level of the employee: (Entry, Mid, Senior)
		The total number of years the employee has been working in
16	Company Tenure	the industry
17	Remote Work	Whether the employee works remotely: (Yes or No)
		Whether the employee has leadership opportunities: (Yes or
18	Leadership Opportunities	No)
		Whether the employee has opportunities for innovation: (Yes or
19	Innovation Opportunities	No)
		The employee's perception of the company's reputation: (Very
20	Company Reputation:	Poor, Poor, Good, Excellent)
		The level of recognition the employee receives: (Very Low, Low,
21	Employee Recognition	Medium, High)
		Whether the employee has left the company, encoded as 0
22	Attrition	(stayed) and 1 (Left)

Exploraty Data Anlaysis (EDA) Step by Step

Removing Columns

Employee.ID and Company.Tenure dropped as they are not useful for predictive modeling.Company.Tenure column gives logically incorrect numerical values.

Changing Features Type

Some numeric columns are converted that represent categories (Number.of.Promotions, Number.of.Dependents) to factors to treat them appropriately in analyses and visualizations.

Numerical and Categorical Variables Separation

Numerical and categorical variables were separated for targeted analysis. Summary statistics were then used to provide a quick overview of the distribution of numerical features.

Variable	Туре
Age	Numeric
Years.at.Company	Numeric
Monthly.Income	Numeric
Distance.from.Home	Numeric
Gender	Categoric
Job.Role	Categoric
Work.Life.Balance	Categoric
Job.Satisfaction	Categoric
Performance.Rating	Categoric
Number.of.Promotions	Categoric
Overtime	Categoric
Education.Level	Categoric
Marital.Status	Categoric
Number.of.Dependents	Categoric
Job.Level	Categoric
Company.Size	Categoric
Remote.Work	Categoric
Leadership.Opportunities	Categoric
Innovation. Opportunities	Categoric
Company.Reputation	Categoric
Employee.Recognition	Categoric
Attrition	Categoric

Summary Statistics for Numerical Variables

##	Age	Years.at.Company	Monthly.Income	Distance.from.Home
##	Min. :18.00	Min. : 1.00	Min. : 1226	Min. : 1.00
##	1st Qu.:28.00	1st Qu.: 7.00	1st Qu.: 5652	1st Qu.:25.00
##	Median :39.00	Median :13.00	Median : 7348	Median:50.00
##	Mean :38.53	Mean :15.72	Mean : 7299	Mean :49.99
##	3rd Qu.:49.00	3rd Qu.:23.00	3rd Qu.: 8876	3rd Qu.:75.00
##	Max. :59.00	Max. :51.00	Max. :16149	Max. :99.00

Categorical Variables Distribution

Performance.Rating Distribution

Number.of.Promotions Distri

Job.Role Distribution

Gender Distribution

Numerical Variables Distribution

Age Distribution

Years.at.Company Distribution

Monthly.Income Distribution

Distance.from.Home Distribution

Target Value Distribution

Attrition Distribution

Age Boxplot Years.at.Company Boxplot

Monthly.Income Boxplot

Age Distribution

Monthly.Income Distribution

Distance.from.Home Boxplot

Years.at.Company Distribution

Distance.from.Home Distribution

Outlier Analysis

Age by Attrition

Years.at.Company by Attrition

Monthly.Income by Attrition

Distance.from.Home by Attrition

Transforming Numerical Variables into Categorical Variables

This methodology effectively transforms continuous numeric variables into categorical bins, facilitating better visualization and comparative analysis of attrition.

Correlation

Data Preparation

Handling Categorical Features

In order to use the categorical features in the model, we need to convert categorical features to numeric (ordinal or nominal) representations.

Normalization

Normalization scales the data values to a range between 0 and 1, which helps improve the performance and training stability.

Normalization Function

A custom function normalize is defined to scale numerical values. The function takes a numeric vector x and returns a normalized vector where each value is scaled between 0 and 1.

normalized_value $(x-\min(x))/(\max(x)-\min(x))$

Train-Test Split

To evaluate the performance of the predictive models, the dataset is split into training and testing sets. 80% of the rows in data as train and the remaining 20% of the data is used for the testing set.

Checking Dataset Dimensions and Balance

Before proceeding to the modeling step, it is essential to examine the dimensions and balance of the datasets. This helps ensure that the training and testing sets are appropriately sized and balanced for effective model training and evaluation.

Number of samples in training data: **59,598**Number of samples in testing data: **14,900**

Attrition	Percentage	
Left		47.33%
Stayed		52.67%
	y_train	

Attrition	Percentage	
Left		48.06%
Stayed		51.94%

y_test

Predictive Classification Models

Logistic Regression

Logistic regression is a model that estimates the odds of the dependent variable occurring and applies the logit (log-odds) transformation to express this relationship.

```
Call:
glm(formula = y.train ~ ., family = binomial, data = X.train)
Coefficients:
                                  Estimate Std. Error z value Pr(>|z|)
                                             0.064437 -8.593
(Intercept)
                                 -0.553730
                                  0.229757
GenderMale
                                  0.543694
                                             0.019788
Years.at.Company
                                  0.654574
                                             0.051922
                                                       12.607
                                                               < 2e-16 ***
Job.RoleFinance
                                  0.109910
                                             0.046309
                                                        2.373 0.017625 *
Job.RoleHealthcare
                                  0.061875
                                             0.040506
                                                        1.528 0.126628
Job.RoleMedia
                                  0.106027
                                             0.034483
                                                        3.075 0.002107 **
Job.RoleTechnology
                                             0.046401
                                                        2.121 0.033880 *
                                  0.098439
Monthly.Income
                                  0.018438
                                             0.117791
                                                        0.157 0.875614
Work.Life.Balance
                                 -0.565409
                                             0.031321 -18.052
                                                               < 2e-16 ***
Job.Satisfaction
                                 -0.365624
                                             0.024033 -15.213
Performance.Rating
                                 -0.289214
                                             0.030814
Number.of.Promotions
                                  0.928255
                                             0.039924 23.250
                                                               < 2e-16 ***
OvertimeYes
                                 -0.336407
                                             0.020902 -16.095
Distance.from.Home
                                 -0.886487
                                             0.033969 -26.097 < 2e-16 ***
Education.LevelBachelor.s.Degree -0.035818
                                             0.026276 -1.363 0.172835
Education.LevelHigh.School
                                  0.001582
                                             0.029370
                                                        0.054 0.957050
Education.LevelMaster.s.Degree
                                 -0.006862
                                             0.029087
                                                       -0.236 0.813509
Education.LevelPhD
                                  1.506973
                                             0.053149
                                                       28.354
                                                               < 2e-16 ***
Marital.StatusMarried
                                  0.257001
                                             0.028268
                                                        9.092
                                                               < 2e-16 ***
Marital.StatusSingle
                                 -1.409863
                                             0.030515 -46.203
Number.of.Dependents
                                  0.842765
                                             0.038204 22.060
                                                               < 2e-16 ***
Job.Level
                                  2.292477
                                             0.028636
                                                       80.056
Company.Size
                                 -0.193325
                                             0.027989
                                                       -6.907 4.94e-12 ***
Remote.WorkYes
                                  1.635385
                                             0.027848
                                                       58.726
                                                               < 2e-16 ***
Leadership.OpportunitiesYes
                                  0.162824
                                             0.045057
                                                        3.614 0.000302 ***
Innovation.OpportunitiesYes
                                  0.127904
                                             0.026574
                                                        4.813 1.49e-06 ***
Company.Reputation
                                 -0.342783
                                             0.033757 -10.154 < 2e-16 ***
Employee.Recognition
                                 -0.003910
                                             0.034468 -0.113 0.909677
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 82451 on 59597 degrees of freedom
Residual deviance: 62455 on 59569 degrees of freedom
AIC: 62513
```

Basic Logistic Classifier

Number of Fisher Scoring iterations: 4

R2 provides an indication of how well the independent variables in the model explain the variability of the dependent variable.

A higher *R*² value indicates a better fit of the model to the data.

With the full model the value of R2 **24.25**% indicates that approximately 24.25% of the variance in the target can be explained by the features in the model.

It suggests that the model is not capturing much of the underlying pattern in the data.

Evaluating Multicollinearity Using VIF Values

	features	VIF		
7	Job.RoleTechnology	4.317840		
5	Job.RoleHealthcare	3.028354		
8	Monthly.Income	3.014476		
4	Job.RoleFinance	2.699408		
20	Marital.StatusSingle	2.164088		
19	Marital.StatusMarried	2.085912	9	Work.Life.Balance 1.007059
6	Job.RoleMedia	1.682568	10	Job.Satisfaction 1.005314
15	Education.LevelBachelor.s.Degree	1.528098	13	OvertimeYes 1.005171
17	Education.LevelMaster.s.Degree	1.434283	27	Company.Reputation 1.002671
16	Education.LevelHigh.School	1.424799	11	Performance.Rating 1.001850
3	Years.at.Company	1.405468	23	Company.Size 1.001579
1	Age	1.403168	25	Leadership.OpportunitiesYes 1.000932
18	Education.LevelPhD	1.124677	28	Employee.Recognition 1.000568
22	Job.Level	1.098028	26	Innovation.OpportunitiesYes 1.000566
24	Remote.WorkYes	1.060436		
2	GenderMale	1.013155		
14	Distance.from.Home	1.011754		
12	Number.of.Promotions	1.009919		
21	Number.of.Dependents	1.009231		

A VIF value of 1 indicates no correlation, values between 1 and 5 indicate moderate correlation, and values above 5 suggest significant multicollinearity, leading to unreliable coefficient estimates.

Logistic Regression with Backward Stepwise Search

Call:

```
glm(formula = y.train ~ Age + GenderMale + Years.at.Company +
    Work.Life.Balance + Job.Satisfaction + Performance.Rating +
    Number.of.Promotions + OvertimeYes + Distance.from.Home +
    Education.LevelPhD + Marital.StatusMarried + Marital.StatusSingle +
    Number.of.Dependents + Job.Level + Company.Size + Remote.WorkYes +
    Leadership.OpportunitiesYes + Innovation.OpportunitiesYes +
    Company.Reputation, family = binomial, data = X.train)
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.48883	0.05177	-9.442	< 2e-16 ***
Age	0.22990	0.03930	5.849	4.94e-09 ***
GenderMale	0.54243	0.01978	27.423	< 2e-16 ***
Years.at.Company	0.65402	0.05191	12.599	< 2e-16 ***
Work.Life.Balance	-0.56426	0.03131	-18.022	< 2e-16 ***

Backward stepwise selection is a greedy algorithm that iteratively removes the least significant features to develop a predictive model. The goal is to find the best subset of features that improve model performance.

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 82451 on 59597 degrees of freedom Residual deviance: 62476 on 59578 degrees of freedom

AIC: 62516

Number of Fisher Scoring iterations: 4

Backward Stepwise Search Results

	features	VIF
12	Marital.StatusSingle	2.163022
11	${\tt Marital.StatusMarried}$	2.085498
3	Years.at.Company	1.405299
1	Age	1.402928
14	Job.Level	1.097342
16	Remote.WorkYes	1.060083
10	Education.LevelPhD	1.015134
2	GenderMale	1.012783
9	Distance.from.Home	1.011547
7	Number.of.Promotions	1.009742

This method decreased VIF scores, p-values, and the AIC score. Although *R*2 slightly decreased to **24.23%**, this is expected with fewer features. Most importantly, reducing the variance inflation factor makes the model more stable.

Logistic Regression with Shrinkage Methods

Shrinkage methods prevent overfitting by adding a penalty for large coefficients, thus reducing their variance and enhancing generalizability.

Ridge Regression: Adds a penalty to shrink all coefficients, useful for keeping all features in the model.

Lasso Regression: Introduces a penalty that can shrink some coefficients to zero, aiding in feature selection.

Elastic Net: Combines Ridge and Lasso penalties, allowing for feature selection and handling multicollinearity, leveraging the strengths of both methods.

Comparison of Logistic Classifiers

The ROC curve is a tool for assessing the performance of binary classification models, plotting true positive rate against false positive rate at various thresholds.

The Area Under the Curve (AUC) provides a measure of the model's ability to predict the target values, with higher values indicating better performance.

Logistic Model Performance Metrics at Different Thresholds

Threshold	Accuracy	F1.Score	Precision	Recall
0.2	0.6401	0.7367	0.5941	0.9692
0.3	0.6912	0.7554	0.6417	0.9179
0.4	0.7215	0.7593	0.6889	0.8456
0.5	0.7313	0.7456	0.7337	0.7578
0.6	0.7263	0.7120	0.7850	0.6515

Threshold	Accuracy	F1.Score	Precision	Recall
0.2	0.6395	0.7363	0.5937	0.9691
0.3	0.6907	0.7549	0.6414	0.9170
0.4	0.7226	0.7601	0.6901	0.8458
0.5	0.7323	0.7467	0.7343	0.7595
0.6	0.7270	0.7129	0.7855	0.6525
0.3 0.4 0.5	0.6907 0.7226 0.7323	0.7549 0.7601 0.7467	0.6414 0.6901 0.7343	0.91 0.84 0.75

Basic Logistic Classifier

Feature Selection with Backward Stepwise Search

Threshold	Accuracy	F1.Score	Precision	Recall
0.2	0.6266	0.7306	0.5842	0.9748
0.3	0.6829	0.7524	0.6328	0.9278
0.4	0.7214	0.7609	0.6864	0.8536
0.5	0.7316	0.7462	0.7332	0.7598
0.6	0.7247	0.7083	0.7876	0.6435

Elastic Net Shrinkage Method

Linear Discriminant Analysis (LDA)

LDA is a classification algorithm that finds a linear combination of features that best separates two or more classes.

It assumes that the features follow a multivariate normal distribution with a common mean and variance for all classes.

Accuracy	F1.Score	Precision	Recall	
0.7328	0.7462	0.7365	0.756	

LDA Results

Quadratic Discriminant Analysis (QDA)

QDA is similar to LDA but allows for different mean and variance for each class. This results in quadratic decision boundaries.

Accuracy	F1.Score	Precision	Recall
0.7121	0.6958	0.7712	0.6338

QDA Results

Conclusion

This study compares the performance of multiple predictive models for employee attrition classification, focusing on Logistic Regression , LDA, and QDA. Each model was evaluated using Accuracy, F1 Score, Precision, and Recall.

Three variations were examined: Basic Logistic Classifier, Logistic Regression with Backward Stepwise Search, and Logistic Regression with Elastic Net Regularization.

In conclusion, the Elastic Net regularization approach in logistic regression (gml.ELNET) emerged as the best performer due to its optimal balance of generalization, precision, and recall. This model is recommended for practical applications in predicting employee attrition and devising targeted retention strategies.

Model	Accuracy	F1_Score	Precision	Recall
Basic Logistic Classifier	0.7215	0.7593	0.6889	0.8456
Logistic Regression with Backward Stepwise Search	0.7226	0.7601	0.6901	0.8458
Logistic Regression with Elastic Net	0.7214	0.7609	0.6864	0.8536
Linear Discriminant Analysis	0.7336	0.7471	0.7315	0.7633
Quadratic Discriminant Analysis	0.7130	0.6968	0.6923	0.7012

Thanks!

Do you have any questions?

