

## Sorting

Data Structures and Algorithms

#### Warmup

Discuss with your neighbors:

What considerations do we think about when choosing a sorting algorithm?

So far we have seen: selection sort, insertion sort, and heap sort. What is the "main idea" behind each one? What are their properties? In which contexts are they better or worse?

### Warmup

| Algorithm      | Main Idea                                                           | Best Case                                                  | Worst Case                          | Average Case                     | In Place?                                | Stable? |
|----------------|---------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|----------------------------------|------------------------------------------|---------|
| Selection Sort | Repeatedly find the next smallest element and put in front.         | O(n^2)  always traverses                                   | O(n^2) entire list to be sure of    | O(n^2)<br>given element is a min | Yes                                      | Yes     |
| Insertion Sort | Pull the next unsorted element and insert into the proper position. | O(n) already sorted (ascordescending dependence) algorithm |                                     | O(n^2) sorted in reverse order   | Yes                                      | Yes     |
| Heap Sort      | Repeatedly pull the min element from a heap.                        | O(n log n)                                                 | O(n log n) or consistent sorting to | O(n log n)                       | Can Be but reverses order using min heap | TO NO   |
| Merge Sort     | Recursively sort then merge the left and right halves.              | O(n log n)*                                                | O(n log n)                          | O(n log n)                       | No                                       | ???     |
| 6              |                                                                     |                                                            |                                     |                                  |                                          |         |

<sup>\*</sup> there are O(n) best case variants of merge-sort used in practice

#### Announcements

Individual Homework Due Tonight

Project 2 is assigned – it's a one week project (so due on Friday)

Also by Friday: sign up for partner for project 3! <a href="https://goo.gl/forms/KYVCv4QddVN5Rbyi1">https://goo.gl/forms/KYVCv4QddVN5Rbyi1</a>

- Remember to sign up for a partner you won't automatically be re-partnered with the same person
- (for random partnering, we'll assume your availability is the same as last time)

Course format change: Smaller homeworks, more frequently

- Should keep HW content closer to lecture content

### Review: Selection Sort and Insertion Sort

https://visualgo.net/en/sorting

#### https://www.youtube.com/watch?v=XaqR3G\_NVoo

### Merge Sort



### Merge Sort

```
mergeSort(input) {
   if (input.length == 1)
      return
   else
      smallerHalf = mergeSort(new [0, ..., mid])
      largerHalf = mergeSort(new [mid + 1, ...])
      return merge(smallerHalf, largerHalf)
}
```

Worst case runtime?

Best case runtime?  $T(n) = \begin{cases} 1 & \text{if } n < 1 \\ 2T(n/2) + n & \text{otherwise} \end{cases}$ 

Average runtime?

Stable? Yes

In-place? No



### Merge Sort Optimization

Use just two arrays – swap between them



Another Optimization: Switch to Insertion Sort for small arrays (e.g. n < 10)

### Merge Sort Benefits

Useful for massive data sets that cannot fit on one machine

Works well for linked-lists and other sequentially accessible data sets

A O(n log n) stable sort!

Easy to implement!

```
mergeSort(input) {
   if (input.length == 1)
      return
   else
      smallerHalf = mergeSort(new [0, ..., mid])
      largerHalf = mergeSort(new [mid + 1, ...])
      return merge(smallerHalf, largerHalf)
}
```

# Quick Sort



Main Idea: Divide and Conquer – "smaller" "half" and "bigger" "half"



"smaller" and "bigger" relative to some **pivot** element

"half" doesn't always mean half, but the closer it is to half, the better

#### Quick Sort



#### Quick Sort



if (input.length == 1) return else pivot = getPivot(input) smallerHalf = quickSort(getSmaller(pivot, input)) largerHalf = quickSort(getBigger(pivot, input)) return smallerHalf + pivot + largerHalf

quickSort(input) {

Worst case runtime? 
$$T(n) = \begin{cases} 1 & \text{if } n < 1 \\ n + T(n-1) & \text{otherwise} \end{cases}$$

Best case runtime?

$$T(n) = \begin{cases} 1 & \text{if } n < 1 \\ n + 2T(n/2) & \text{otherwise} \end{cases}$$

 Average runtime?

Stable?

No

In-place?

No

CSE 373 SP 18 - KASEY CHAMPION

### Can we do better?

#### Pick a better pivot

- Pick a random number
- Pick the median of the first, middle and last element

Sort elements by swapping around pivot in place

#### Better Quick Sort



# Project 2: Invariants, Pre-conditions, and post-conditions





#### Introduction to Graphs

#### Inter-data Relationships

#### Arrays

Categorically associated

Sometimes ordered

Typically independent

Elements only store pure data, no connection info

0 1 2 A B C

#### Trees

Directional Relationships

Ordered for easy access

Limited connections

Elements store data and connection info





Multiple relationship connections

Relationships dictate structure

Connection freedom!

Both elements and connections can store data



### Graph: Formal Definition

A graph is defined by a pair of sets G = (V, E) where...

- V is a set of vertices
  - A vertex or "node" is a data entity

$$V = \{ A, B, C, D, E, F, G, H \}$$

- E is a set of edges
  - An edge is a connection between two vertices

$$E = (A, B) (A, C), (A, D), (A, H),$$
  
 $(C, B), (B, D), (D, E), (D, F),$   
 $(F, G), (G, H)$ 



### Applications

#### Physical Maps

- Airline maps
  - Vertices are airports, edges are flight paths
- Traffic
  - Vertices are addresses, edges are streets

#### Relationships

- Social media graphs
  - Vertices are accounts, edges are follower relationships
- Code bases
  - Vertices are classes, edges are usage

#### Influence

- Biology
  - Vertices are cancer cell destinations, edges are migration paths

#### Related topics

- Web Page Ranking
  - Vertices are web pages, edges are hyperlinks
- Wikipedia
  - Vertices are articles, edges are links

SO MANY MORREEEE www.allthingsgraphed.com







### Graph Vocabulary

#### **Graph Direction**

- Undirected graph – edges have no direction and are two-way

$$V = \{ A, B, C \}$$

$$E = \{ (A, B), (B, C) \}$$
 inferred  $(B, A)$  and  $(C,B)$ 

- Directed graphs – edges have direction and are thus one-way

$$V = \{ A, B, C \}$$

$$E = \{ (A, B), (B, C), (C, B) \}$$

#### Degree of a Vertex

- Degree – the number of edges containing that vertex

- In-degree – the number of directed edges that point to a vertex

- Out-degree – the number of directed edges that start at a vertex

#### Undirected Graph:



### Food for thought

Is a graph valid if there exists a vertex with a degree of 0? Yes







A has an "in degree" of 0

B has an "out degree" of 0

C has both an "in degree" and an "out degree" of 0

Is this a valid graph?



Yes!





# Graph Vocabulary

**Self loop** – an edge that starts and ends at the same vertex



Parallel edges – two edges with the same start and end vertices



Simple graph – a graph with no self-loops and no parallel edges