Surveillance simulation equations

May 2020

 $\Delta S_t = -S_t \lambda$

 σ

 $\Delta E_t = S_t \lambda - m E_t$

 $\Delta I_{At} = \alpha m E_t - (\psi_A + \gamma_A) I_{At}$

			. ,
ΔA_{At}	=	$\psi_A I_{At} - \gamma_A A_{At}$	(4)
ΔI_{Pt}	=	$(1-\alpha)mE_t - (\sigma_P + \psi_P)I_{Pt}$	(5)
ΔA_{Pt}	=	$\psi_P I_{Pt} - \sigma_P A_{Pt}$	(6)
ΔI_{Mt}	=	$\sigma_P I_{Pt} - (\sigma_M + \psi_M + \gamma_M) I_{Mt}$	(7)
ΔA_{Mt}	=	$\sigma_P A_{Pt} + \psi_M I_{Mt} - (\sigma_M + \gamma_M) A_{Mt}$	(8)
ΔI_{Ct}	=	$\sigma_M I_{Mt} - (\gamma_C + \psi_C + \mu_C) I_{Ct}$	(9)
ΔA_{Ct}	=	$\psi_C I_{Ct} + \sigma_M A_{Mt} - (\gamma_C + \mu_C) A_{Ct}$	(10)
ΔR_t	=	$\gamma_A I_{At} + \gamma_M I_{Mt} + \gamma_C I_{Ct}$	(11)
ΔR_{At}	=	$\gamma_A A_{At} + \gamma_M A_{Mt} + \gamma_C A_{Ct}$	(12)
ΔD_t	=	$\mu_C I_{Ct}$	(13)
ΔD_{At}	=	$\mu_C A_{Ct}$	(14)
/ -	-		
$\lambda = \beta \frac{(I_A + I_A)}{I_A}$	$\vdash I_P$	$+I_M + I_C) + r(A_A + A_P + A_M + A_C)$	(15)
_		N	>
$\sigma = \text{Progression rates between infectious compartments}$			(16)
		$\gamma = \text{Recovery rates}$	(17)
$\psi = Ascertainment rates$			(18)
$\mu = \text{Death rates}$			(19)
			(20)

(1)

(2)

(3)