# Math 322: Dépendence et indépendence linéaire

Paul CLAVIER, Edouard MARGUERITE

8 novembre 2012

#### Définition 1

Soient E un K-ev,  $n \in \mathbb{N}^*$ ,  $(x_1, \ldots, x_n) \in \mathbb{E}^n$ . On appelle combinaison linéaire de  $x_1, \ldots, x_n$  tout élément  $x_n$  de E tel qu'il existe  $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$  tel que

$$x_n = \sum_{i=1}^n \lambda_i x_i$$

## Proposition 1

Soient E un K-ev,  $F \in \beta(E)$ . Pour que F soit un sev de E il faut et il suffit que F soit non vide et que F soit stable par combinaison linéaire, ie :  $\forall (\lambda, \mu) \in \mathbb{K}^2, \forall (x, y) \in F^2, \lambda x + \mu y \in F$ .

2- Familles liées, familles libres

#### Définition 2

Soient E un K-ev,  $n \in \mathbb{N}^*$ ,  $(x_1, \ldots, x_n) \in E^n$ .

• On dit que la famille finie  $(x_1, \ldots, x_n)$  est *liée* si et seulement si  $\exists (\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n \setminus \{(0, \ldots, 0)\},$ 

$$\sum_{i=1}^n \lambda_i x_i = 0$$

② On dit que la famille finie  $(x_1, \ldots, x_n)$  est *libre* si et seulement si elle n'est pas liée.

## Définition 3

Une partie de A est dite *libre* si et seulement si la famille  $(x)_{x \in A}$  est libre.

# II - Sous espace engendré par une partie

### Définition 4

Soient E un K-ev,  $A \in \beta(e)$ . On appelle sev engendré par A, et on note Vect(A), l'intersection de tous les sev de E contenant A:

$$Vect(A) = \bigcap_{\substack{F \in V(E) \\ F \supset A}} F$$

avec V(E) l'ensemble des sev de E.

## Proposition 2

Soient E un K-ev,  $A \in \beta(E)$ .

- Vect(A) est le plus petit sev de E contenant A.
- Si A ≠ Ø, alors Vect(A) est l'ensemble des combinaisons linéaires d'éléments de A.
  - $Vect(\emptyset) = 0$ .

## Définition 5

Soient E un K-ev,  $(x_i)_{i \in I}$  une famille d'éléments de E. On appelle sev engendré par  $(x_i)_{i \in I}$ , et on note ici  $Vect((x_i)_{i \in I})$ , le sev engendré par la partie  $\{x_i, i \in I\}$  de E.

# Proposition 3

Soient E un K-ev,  $A, B \in \beta(E)$ . On a :

- ② A est un sev de E si et seulement si Vect(A) = A.
- $\bullet$  Vect(Vect(A)) = Vect(A).
- $Vect(A \cup B) = Vect(A) + Vect(B)$ .

# III - Familles génératrices, bases

#### Définition 6

Soient E un K-ev, A une famille d'éléments de E. On dit que A est une famille génératrice de E si et seulement si Vect(A) = E.

## Proposition 4

Si  $A = (x_1, ..., x_n)$  est une famille finie d'éléments d'un K-ev, A engendre si et seulement si :

$$\forall x \in E, \exists (\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n, x = \sum_{i=1}^n \lambda_i x_i$$

## Définition 7

On dit qu'une famille B d'éléments d'un K-ev est une base de E si et seulement si B est libre et génératrice de E.



## Proposition 5

Une famille  $B=(e_1,\ldots,e_2)$  d'éléments d'un K-ev E est une base de E si et seulement si :

$$\forall x \in E, \exists !(x_1, \ldots, x_n) \in \mathbb{K}^n, x = \sum_{i=1}^n x_i e_i$$

Si E admet une base finie  $\beta=(e_1,\ldots,e_n)$  pour tout x de E, les éléments  $x_1,\ldots,x_n$  définis ci dessus s'appellent les coordonnées de x dans la base  $\beta$ ;  $x_i$  s'appelant la  $i^{me}$  coordonnée de x dans la base  $\beta$ .