Terminale NSI - Algorithmique

Diviser pour régner.

2020/04/26

Diviser pour régner

Diviser pour régner

Diviser pour régner:

Classe d'algorithme où l'on découpe un problème en sous problèmes qui s'énoncent de la même manière et qu'on recompose à la fin pour former une solution

C'est une approche "du haut vers les bas".

Généralement, les algorithmes sont récursifs

liste

Recherche du maximum dans une

Recherche du maximum dans une liste

On dispose d'un tableau de nombres, on en cherche le plus grand élément.

tableau = [5, 71, 23, 45, 28, 89, 63, 39]

Algorithme itératif naturel

On a déjà vu un algorithme en première :

- On initialise max = tableau[0], on parcourt élément par élément,
- 2. Pour chaque élément elt du tableau,

```
Si elt > max alors max = elt
```

3. On retourne max

Version diviser pour régner

fonction maximum: tableau ---> entier

- 0. Le maximum d'un tableau de taille 1 est son unique élément.
- On sépare le tableau en deux parties (sensiblement de même taille),
- 2. on retourne le plus grand des maxima des parties gauche et droite.

tableau = [5, 71, 23, 45, 28, 89, 63, 39]

1. séparer

2. Recombiner : on ne garde que le plus grand de chaque paire

```
[5, 71], [23, 45], [28, 89], [63, 39]
 [71] [45] [89] [63]
    [71, 45]
                 [89, 63]
        [71]
                    [89]
            [71, 89]
               [89]
```

Est-ce plus efficace ? Non... c'est même plus lent !

Recherche d'un élément dans une liste (pas forcément trié)

On dispose d'un tableau d'entiers. On cherche à savoir s'il contient un élément.

Version itérative (cf première)

```
fonction chercher: (tableau, clé) ----> booléen
```

- 1. on initialisé trouvé = Faux
- 2. on parcourt le tableau élément par élément:
 - Si élément == clé, alors trouvé = Vrai
- 3. on retourne trouvé

Version diviser pour régner

```
fonction chercher: (tableau, clé) ----> booléen
```

- 1. Pour un tableau de taille 1, il contient la clé si valeur est la clé
- 2. On sépare le tableau en deux parties sensiblement de même taille (gauche et droite)
- Le tableau contient la clé si chercher(gauche, clé) ou chercher(droite, clé) est vrai.

Exemple

```
tableau = [4, 10, 20, 5] clé = 10
```

A-t-on clé dans tableau?

Exemple

```
clé = 10
                 [4, 10, 20, 5]
diviser
             [4, 10]
                           [20, 5]
                  [10]
diviser
            [4]
                           [20]
                                   [5]
combiner Faux ou Vrai | Faux ou Faux
combiner
               Vrai
                             Faux
                       ou
combiner
                      Vrai
```

C'est mieux cette fois ??? Toujours pas.

Pourquoi est-ce inefficace dans ces cas?

- Pour le maximum, on fait autant de comparaison que dans la méthode itérative.
- Pour la recherche on fait autant de comparaison ET on ajoute n-1 "Vrai ou Faux".

Quand est-ce intéressant ?

- Quand on a une structure particulière,
- Quand on peut éviter beaucoup d'étapes
- Quand on peut remplacer un calcul coûteux par un calcul moins coûteux,

Dichotomie : c'est diviser pour régner

En première on a vu la recherche dichotomique, rappelons rapidement le principe

On cherche dans un tableau trié la présence d'un élément.

- On initialisé trouvé = False
- On regarde l'élément central du tableau,
- S'il est égal à la clé : trouvé = Vrai
- S'il est plus grand que la clé, on cherche entre le début et la valeur centrale,
- Sinon, on cherche entre la valeur centrale et la fin,

Dichotomie: récursif

La version que nous avions étudiée était itérative.

On peut l'écrire en récursif.

En Python, ce n'est pas plus rapide :(

Python, n'est pas un langage *fonctionnel*, les récursions ne sont pas optimisées.

Mais

Calculer la puissance d'un nombre

Comment calculer 3⁷ ?

$$3^7 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$$

C'est déjà un algorithme !

Algorithme na $\ddot{i}f$ pour y^n

Puissance : $(y, n) \mapsto y^n$

- 1. On initialise p = 0 et i = 0
- 2. Tant que i < n faire
 - $p = p \times y$
 - i = i + 1
- 3. Retourner *p*

Complexité?

Clairement linéaire. Une seule boucle qui itère autant de fois que la puissance voulue.

Exponentiation rapide

ExpoRapide :
$$(y, n) \mapsto y^n$$

Si
$$n = 0$$
 alors

retourner 1

Sinon si n est pair

- a = ExpoRapide(y, n//2)
- retourner a × a

Sinon

• retourner y * ExpoRapide(y, n-1)

Vitesses

Conclusion

La méthode diviser pour régner :

- découper le problème en sous-problèmes qui s'énoncent de la même manière
- résoudre les cas limites
- combiner les solutions

Algorithmes récursifs, implémentation

Algorithmes

Les algorithmes présentés s'énoncent facilement de manière récursive.

Implémentation

Elle n'est pas toujours plus efficace. Cela dépend du langage employé.