How many observations should I take? An application of the central limit theorem to human performance variables

Author: Ross Wilkinson

Introduction

The central limit theorem states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution converges to a normal distribution as the number of samples increases (Wikipedia).

Thus, we can assume that any measure of human performance will follow a normal distribution and that observations will regress toward a finite mean with a standard normal distribution of variance.

Example

We want to compare the maximal 1-s power output produced by a cyclist during a sprint on a traditional stationary ergometer under two different experimental conditions. But we are unsure of how many observations (number of sprints) we should take under each condition.

Can we take one sample?

We know that the subject's performance is likely to follow a normal distribution under each condition, so taking one sample (performing one sprint) under each condition has a ~68% chance of being within one standard deviation of their true mean and a ~95% chance of being within two standard deviations, and a ~99% chance of being within three standard deviations. But we have no idea of what the standard deviation is; is it 40 W, 100 W, etc.?

Can we emprically determine how many observations are sufficient?

The answer is yes. First, we need to verify that the subject's maximal power output follows a normal distribution; we can do this by taking as many observations as feasibly possible. Once we have an approximation of this distribution we can run simulations to test whether taking a certain number of samples is representative of the mean in the long run.

Our experiment

We decide that it is feasible for a subject to perform 12 sprints, each seperated by 3 minutes of rest, in one testing session without introducing any dependent variables like fatigue. Once we have our results we will visualize the data, check for any linear trends, fit a distribution, then run our simulations to decide on the number of observations we should take.

Our results

Here are the results from each of the 12 sprints in Watts.

```
maxPower = [1179; 1145; 1203; 1205; 1201; 1201; 1181;...
1172; 1221; 1163; 1211; 1171];
```

Visualize the data

Histogram

A histogram provides a quick visual insight into how a data set is distributed. The range of possible values is divided into intervals, or *bins*. Then a bar chart is created, where the height of each bar corresponds to how frequently values in that bin appear in the data.

Create a histogram of the results seperated into 3 bins.

```
histogram(maxPower,3)
xlabel('Maximal 1-s power output (W)')
ylabel('Number of observations within bin')
```


Scatter plots

A scatter plot explores how two variables are related to each other. In this case how maximal power output is related to the trial number.

Create a scatter plot of the results across trials 1 to 12.

```
scatter(1:12,maxPower)
xlabel('Trial number')
ylabel('Maximal 1-s power output (W)')
```


Box plots

A box plot is another way to visualize the distribution of a data set. The central box represents the middle 50% of observations, with the red line at the median. The "whisker" lines show the extent of ~99% of the data. Remaining outliers are shown individually with red crosses.

Create a box plot of the results.

```
boxplot(maxPower)
ylabel('Maximal 1-s power output (W)')
```


Measures of centrality and spread

Calculate the mean and median of the results

```
meanPwr = mean(maxPower)

meanPwr = 1.1878e+03

medPwr = median(maxPower)

medPwr = 1191
```

Calculate the standard deviation (STD) and interquartile range (IQR) of the results

```
stdPwr = std(maxPower)

stdPwr = 22.5998

iqrPwr = iqr(maxPower)

iqrPwr = 32.5000
```

The STD tells us that \sim 68% of the results will be within a \sim 46 W range from the mean of 1188 W, while the IQR tells us that 50% of the results will be within a \sim 33 W range from the median of 1191 W.

Linear correlation

If we are

Test whether there is a significant linear correlation between power output and the number of trials at the significance level 0.05.

```
nTrials = 1:12;
[r,p] = corrcoef(nTrials',maxPower)

r = 2x2
    1.0000    0.1110
    0.1110    1.0000

p = 2x2
    1.0000    0.7313
    0.7313    1.0000
```

This confirms that no significant linear correlation exists. Thus, taking a smaller number of samples will likely provide results that are normally distributed around the mean.

Data distribution

Fit and plot a normal distribution then compare it to a fitted distribution.

```
x = meanPwr-250:meanPwr+250;
pdfPwr = normpdf(x,meanPwr,stdPwr);
histogram(maxPower,5,"Normalization","pdf")
hold on
plot(x,pdfPwr,'k-','linewidth',2)
```

Fit a kernel distribution to the data

```
pd = fitdist(maxPower, 'Kernel');
kerPwr = pdf(pd,x);
plot(x,kerPwr,'r-','linewidth',2)
hold off
```


Test if results come from a standard normal distribution.

```
Z = zscore(maxPower);
[h,p] = kstest(Z)

h = logical
    0
p = 0.5290
```

Plot the empirical cdf and normal cdf for a visual comparison.

```
cdfplot(Z)
hold on
x_values = linspace(min(Z), max(Z));
plot(x_values, normcdf(x_values, 0, 1), 'r-')
legend('Empirical CDF', 'Standard Normal CDF', 'Location', 'best')
hold off
```


Run simulations to test if samples are significantly different

If the samples are similar then 10,000 t-test simulations should provide a uniform distribution of p-values.

Let's try two samples.

```
nSamples = 2;
for i = 1:10000
    x = random(pd,nSamples,1);
    y = random(pd,nSamples,1);
    [h,p,ci,stats] = ttest2(x,y);
    rho(i) = p;
end
histogram(rho,20)
xlabel('Count')
ylabel('p-values')
```


Test if p-value distribution is uniform

```
unipdf = makedist('uniform');
[h,p] = kstest(rho,'cdf',unipdf)

h = logical
    0
p = 0.1664
```

P-value is quite low. Let's try 3 samples.

```
nSamples = 3;
for i = 1:10000
    x = random(pd,nSamples,1);
    y = random(pd,nSamples,1);
    [h,p,ci,stats] = ttest2(x,y);
    rho(i) = p;
end
histogram(rho,20)
xlabel('Count')
ylabel('p-values')
```


Test if p-value distribution is uniform

```
unipdf = makedist('uniform');
[h,p] = kstest(rho,'cdf',unipdf)

h = logical
    0
p = 0.9346
```

Much better! It appears that taking 3 samples is sufficient.