Machine Learning for financial time series

Data Analytics, Capital Fund Management, Paris

May 14, 2020

Outline

Introduction
Database

Data Description

Data Preprocessing

Data Processing

Decomposition in long term and short term

Correlation analysis

Methodology

Model description

Estimation and Metrics

Benchmark Result

Conclusion

Introduction

Goal

Find the linear dynamics of **daily** liquidity metrics in the **future** market to provide a benchmark for further analyses.

- The liquidity metrics we consider are daily bid-ask spread, volume and volatility .
- Find a linear model using past values of liquidity metrics and some exogenous(Open interest, return) and deterministic parameters(day of week,etc) as regressors, we wish the model works for all future contract.
- In this presentation, we focus on linear model as benchmark. We will go to non-linear model(deep neural network) in the future.

Notation

- $F_t^i(T_j)$ represents price of a future contract j over underlying i at time t which has expiry T_j , and suppose that we have different contracts under a same underlying $T_0 < T_1 < T_2 < \dots$.
- $F_t^i(\delta) := F_t^i(T)$ where δ represents time to expiry T t.
- The same notation for these variables: bid-ask spread $S_t^i(T)$, volume $V_t^i(T)$, volatility $\sigma_t^i(T)$, open interest $O_t^i(T)$ and return $R_t^i(T)$.

Database

Data Description

- We have 4276 future contracts over 78 different underlyings.
- The underlyings contain different asset class, such as commodity and equity index, etc.
- Our dataset covers period of January 2011 to March 2020.

total numbers of underlying (i)	78
total numbers of future contract (i, T_j)	4276
total numbers of prodgen	302
avg numbers of observation per underlying	7654.69
avg numbers of observation per future contract	139.63
avg numbers of observation per prodgen	1951.20

Table 1: Dataset numbers

Data Preprocessing

- We have daily open, high, low, close, open interest, volume directly in the database.
- The return we consider is return of close. The spread is average spread in tick during a day.
- The volatility is estimated by Garman Klass estimator. We have encountered several problems, the negative price, and the open, close is not between low and high.

We show that several variables have a seasonality w.r.t time to expiry for example, spread, volume and open interest.

• Seasonality of spread for CAC 40 future contract.

• Seasonality of volume for CAC 40 future contract.

• We need remove seasonalities to focus on dynamics around this average behaviour. For variables spread, volume and open interest, we do

$$\bar{L}^{i}(\delta_{j}) = \langle L^{i}_{\cdot}(\delta_{k}) \rangle_{\delta_{k} = \delta_{j}}$$

$$\hat{L}^{i}_{t}(\delta_{j}) = \frac{L^{i}_{t}(\delta_{j})}{\bar{L}^{i}(\delta_{i})}$$

ullet The avg point in denominator is 33.58 .

Seasonalities we considered are unconditionnal,i.e., they don't depend on other variables. But what if the assumption fails? We consider $< L^i(\delta_k)|\sigma^i(\delta_k) \in I>_{\delta_k=\delta_j}$

We can model this phenomenon in the future.

The figure below shows the effects of the deseasonality for CAC 40.

deseasonalized spread for CAC 40 future contract

• deseasonalized volume for CAC 40 future contract

Decomposition in long term and short term

- In order to find a universal model, we'd better find a characteristic of a future contract to represent itself, so we decompose it into long term and short term, and the long term represent the future contract and short term is the random part we want to explicate.
- Firstly, we roll future contract by liquidity rank(maturity) r to get the prodgen.

$$\hat{\mathcal{L}}_t^i(r) = egin{cases} \hat{\mathcal{L}}_t^i(\mathcal{T}_{r+1}) & \mathcal{T}_0 < t \leq \mathcal{T}_1 \\ \hat{\mathcal{L}}_t^i(\mathcal{T}_{r+2}) & \mathcal{T}_1 < t \leq \mathcal{T}_2 \\ ... \end{cases}$$

Secondly, decompose prodgen in short term and long term using moving averge

$$LT(\hat{L}_{t}^{i}(r)) = \frac{1}{N} \sum_{k=0}^{N} \hat{L}_{t-k}^{i}(r)$$

$$ST(\hat{L}_t^i(r)) = \hat{L}_t^i(r)/LT(\hat{L}_t^i(r))$$

Choice of N in MA

- The key is to chose N to make $ST(\hat{L}_i(r))$ more stationnary possible. The N is different for variables.
- Here we have 302 prodgens in total. for a fix variable, we calculate augmented ADF statistic for these 302 prodgens for different Ns, an example for spread is shown below.

Choice of N for different variables

- spread: 30
- volume: 25
- volatility: 25
- open interest: 20
- return : 15

Correlation analysis

 Before linear model, we will look at correlation matrix between different variables in long term and short term over all prodgens.

- 0.8

- 0.6

- 0.4

- 0.2

-00

Correlation analysis

• Our focus is to predict short term of liquidity metrics, so we plot correlations between short term of the variables observed at the same time or with a delay.

Liqiu MA, CFM

Model description

We use a generalized VAR model which is

VAR Model

Let $Y_t = (y_{1t}, y_{2t}, \dots, y_{nt})'$ denote an $(n \times 1)$ vector of time series variables, D_t represents an $(I \times 1)$ matrix of deterministic components, X_t represents an $(m \times 1)$ matrix of exogenous variables, The mean-ajusted p-lag vector autoregressive VAR (p) model

$$Y_{t+1} = \sum_{k=0}^{p} \Pi_k Y_{t-k} + \Phi D_{t+1} + GX_t + \varepsilon.$$

where Π_i , Φ and G are parameter matrices and ε_t is an $(n \times 1)$ unobservable zero mean white noise vector process with time invariant covariance matrix Σ .

In reality, we use

- *Y* represents volume, spread, vol in short term (n=3).
- X represents volume, spread, vol in long term and open interest, return in long and short term (m=7).
- D represents time to expiry, day of week, week of month, week of year, is vacation, liquidity rank (I=6).

Liqiu MA, CFM

Estimation and Metrics

- First we divide the dataset(all prodgens) into different intervals of 300 days, we put first 150 consecutive trading days into in sample data and last 150 consecutive trading days as out of sample data.
- We use standard maximum-likelihood method to estimate parameters in the VAR model using in sample data.(During implementation, we used OLS for three variables in short term. We didn't use VAR alogrithm in statsmodel because it can't predict what we expect.)
- To choose lag(model order), we use the lag which minimizes Akaike Information Criteria(AIC)

$$AIC(p) = \ln |\hat{\Sigma}(p)| + \frac{2}{N_{obs}}(pn^2 + nl + nm)$$

= $\ln |\hat{\Sigma}(p)| + \frac{2}{N_{obs}}(9p + 39)$

	0	1	2	3	4	5	6	7	8	9	10
AIC	-7.899	-8.498	-8.526	-8.527*	-8.527	-8.523	-8.512	-8.496	-8.484	-8.470	-8.464

Benchmark Result

An example of OLS for predicting spread in short term.

Don Variable

Dep. Variable.	spread_res_5 i	ix-squareu.	0.300
Model:	OLS	Adj. R-squared:	0.306
Method:	Least Squares	F-statistic:	5844.
Date:	Thu, 14 May 2020	Prob (F-statistic):	0.00
Time:	19:27:31	Log-Likelihood:	46084.
No. Observations:	291889	AIC:	-9.212e+04
Df Residuals:	291866	BIC:	-9.188e+04
Df Model:	22		
Covariance Type:	nonrobust		

P causeod:

0.306

caroad roc ST

	coef	std err	t	$P{>}\left t\right $	[0.025]	0.975]
const	0.4123	0.003	126.664	0.000	0.406	0.419
$volume_res_ST_lag_1$	-0.0042	0.000	-9.010	0.000	-0.005	-0.003
volume_res_ST_lag_2	-0.0006	0.000	-1.263	0.207	-0.002	0.000
volume_res_ST_lag_3	-0.0004	0.000	-0.964	0.335	-0.001	0.000
spread_res_ST_lag_1	0.3558	0.002	192.806	0.000	0.352	0.359
spread_res_ST_lag_2	0.1581	0.002	81.643	0.000	0.154	0.162
spread_res_ST_lag_3	0.1143	0.002	62.149	0.000	0.111	0.118

Benchmark Result

	coef	std err	t	P> t	[0.025	0.975]
$GK_vol_res_ST_lag_1$	0.0051	0.001	7.673	0.000	0.004	0.006
GK_vol_res_ST_lag_2	0.0057	0.001	8.401	0.000	0.004	0.007
GK_vol_res_ST_lag_3	0.0042	0.001	6.356	0.000	0.003	0.006
volume_res_LT	0.0077	0.001	9.569	0.000	0.006	0.009
spread_res_LT	-0.0463	0.001	-32.491	0.000	-0.049	-0.044
GK_vol_res_LT	0.2887	0.051	5.629	0.000	0.188	0.389
interest_res_LT	0.0014	0.001	1.981	0.048	1.48e-05	0.003
return_res_LT	0.4400	0.101	4.347	0.000	0.242	0.638
interest_res_ST	-0.0186	0.001	-26.718	0.000	-0.020	-0.017
return_res_ST	8.914e-08	1.46e-07	0.613	0.540	-1.96e-07	3.74e-07
time_to_expiry	2.141e-06	3.61e-06	0.592	0.554	-4.94e-06	9.23e-06
day_of_week	0.0021	0.000	7.684	0.000	0.002	0.003
$week_of_month$	0.0007	0.000	2.329	0.020	0.000	0.001
week_of_year	-8.395e-05	2.64e-05	-3.186	0.001	-0.000	-3.23e-05
is_vacation	0.0961	0.003	37.455	0.000	0.091	0.101
liquidity_rank	0.0003	0.000	0.972	0.331	-0.000	0.001

Benchmark Result

• We have got R-squared for different model order.

• We have used AIC to select the model order. The bette order is 3, the correspond R-squared result is shown below.

R-squared	volume	volatility	spread
in sample	0.236	0.103	0.305
out of sample	0.221	0.104	0.315

Analysis of source error

• We have predicted the liquidity metrics in short term. To predict the variable itself, we use

$$pred(L_{t+1}^{i}(r)) = pred(ST(L_{t+1}^{i}(r))) \times LT(L_{t}^{i}(r))) \times \bar{L}^{i}(\delta_{j})$$

The R-square is shown in table below.

R-squared	volume	volatility	spread
in sample	0.653	0.440	0.653
out of sample	0.647	0.335	0.565

• Here we have two source errors, one part is the prediction of short term, the second is the assumption that long term is constant. In order to analysis the source of error, we do

$$\mathit{pred}(L^i_{t+1}(r)) = \mathit{pred}(\mathit{ST}(L^i_{t+1}(r))) \times \mathit{LT}(L^i_{t+1}(r))) \times \bar{L}^i(\delta_j)$$

The new R-square is shown in table below.

R-squared	volume	volatility	spread
in sample	0.679	0.494	0.677
out of sample	0.672	0.372	0.609

Conclusion

Conclusion

- We can see that linear model has a better prediction on short term of spread and volume, but it has a fair performance on volatility.
- This model will be used as a benchmark for the comparison with deep model.

An example of OLS for predicting volume in short term.

Dep. Variable:

const

Dep. Variable.	VOIGITICEI COLO I	re squarea.	0.231
Model:	OLS	Adj. R-squared:	0.237
Method:	Least Squares	F-statistic:	4119.
Date:	Thu, 14 May 2020	Prob (F-statistic):	0.00
Time:	19:47:27	Log-Likelihood:	-3.7463e+05
No. Observations:	291889	AIC:	7.493e + 05
Df Residuals:	291866	BIC:	7.495e + 05
Df Model:	22		
Covariance Type:	nonrobust		

R-squared:

50.430

0.237

[0.025]

0.667

P > |t|

0.000

0.975]

0.721

volume_res_ST

coef

0.6937

volum	e_res_ST_lag_1	0.3271	0.002	165.958	0.000	0.323	0.331
volum	e_res_ST_lag_2	0.0988	0.002	49.247	0.000	0.095	0.103
volum	e_res_ST_lag_3	0.0624	0.002	32.948	0.000	0.059	0.066
spread	l_res_ST_lag_1	-0.1089	0.008	-13.966	0.000	-0.124	-0.094
spread	l_res_ST_lag_2	-0.0163	0.008	-1.993	0.046	-0.032	-0.000
spread	l_res_ST_lag_3	-0.0184	0.008	-2.365	0.018	-0.034	-0.003

std err

0.014

	coef	std err	t	$P \! > t $	[0.025	0.975]
GK_vol_res_ST_lag_1	0.0034	0.003	1.193	0.233	-0.002	0.009
GK_vol_res_ST_lag_2	-0.0014	0.003	-0.485	0.628	-0.007	0.004
GK_vol_res_ST_lag_3	-0.0130	0.003	-4.636	0.000	-0.019	-0.008
volume_res_LT	-0.1862	0.003	-54.746	0.000	-0.193	-0.180
spread_res_LT	-0.0106	0.006	-1.759	0.079	-0.022	0.001
GK_vol_res_LT	1.4327	0.217	6.609	0.000	1.008	1.858
interest_res_LT	0.0684	0.003	22.667	0.000	0.062	0.074
return_res_LT	-0.8127	0.428	-1.900	0.057	-1.651	0.026
interest_res_ST	0.1455	0.003	49.338	0.000	0.140	0.151
return_res_ST	4.754e-08	6.15e-07	0.077	0.938	-1.16e-06	1.25e-06
time_to_expiry	-1.051e-05	1.53e-05	-0.688	0.492	-4.04e-05	1.94e-05
day_of_week	0.0007	0.001	0.573	0.566	-0.002	0.003
week_of_month	0.0029	0.001	2.277	0.023	0.000	0.005
week_of_year	-0.0013	0.000	-11.647	0.000	-0.002	-0.001
is_vacation	-0.2816	0.011	-25.965	0.000	-0.303	-0.260
liquidity_rank	0.0003	0.001	0.279	0.780	-0.002	0.003
					79 /	

Liqiu MA, CFM

An example of OLS for predicting volatility in short term.

Dep. Variable:	$GK_{vol_res_ST}$	R-squared:	0.104
Model:	OLS	Adj. R-squared:	0.104
Method:	Least Squares	F-statistic:	1533.
Date:	Thu, 14 May 2020	Prob (F-statistic):	0.00
Time:	19:50:48	Log-Likelihood:	-2.5916e+05
No. Observations:	291889	AIC:	5.184e + 05
Df Residuals:	291866	BIC:	5.186e + 05
Df Model:	22		
Covariance Type:	nonrobust		

	coef	std err	t	$P{>}\left t\right $	[0.025]	0.975
const	0.6252	0.009	67.506	0.000	0.607	0.643
volume_res_ST_lag_1	0.0112	0.001	8.447	0.000	0.009	0.014
volume_res_ST_lag_2	0.0035	0.001	2.567	0.010	0.001	0.006
volume_res_ST_lag_3	0.0029	0.001	2.245	0.025	0.000	0.005
spread_res_ST_lag_1	0.0326	0.005	6.210	0.000	0.022	0.043
spread_res_ST_lag_2	0.0148	0.006	2.687	0.007	0.004	0.026
spread_res_ST_lag_3	-0.0113	0.005	-2.167	0.030	-0.022	-0.001

	coef	std err	t	P> t	[0.025	0.975]
GK_vol_res_ST_lag_1	0.2375	0.002	125.500	0.000	0.234	0.241
GK_vol_res_ST_lag_2	0.1041	0.002	53.850	0.000	0.100	0.108
GK_vol_res_ST_lag_3	0.0618	0.002	32.709	0.000	0.058	0.066
volume_res_LT	-0.0315	0.002	-13.758	0.000	-0.036	-0.027
spread_res_LT	-0.0268	0.004	-6.595	0.000	-0.035	-0.019
GK_vol_res_LT	-2.2362	0.146	-15.321	0.000	-2.522	-1.950
interest_res_LT	0.0131	0.002	6.443	0.000	0.009	0.017
return_res_LT	-2.4265	0.288	-8.424	0.000	-2.991	-1.862
interest_res_ST	-0.0025	0.002	-1.281	0.200	-0.006	0.001
return_res_ST	-3.845e-07	4.14e-07	-0.929	0.353	-1.2e-06	4.27e-07
time_to_expiry	1.236e-05	1.03e-05	1.201	0.230	-7.8e-06	3.25e-05
day_of_week	0.0077	0.001	9.910	0.000	0.006	0.009
week_of_month	-0.0028	0.001	-3.267	0.001	-0.005	-0.001
week_of_year	-0.0006	7.5e-05	-8.205	0.000	-0.001	-0.000
is_vacation	-0.1055	0.007	-14.446	0.000	-0.120	-0.091
liquidity_rank	-0.0006	0.001	-0.717	0.474	-0.002	0.001