BOOK OF PROOF EXERCISES

Charles Kelley

Contents

1	Sets															3																		
	1.1	Exercises																																3

Purpose

I am studying the BOOK OF PROOF as preparation for the mathematical portion of Machine Learning studies that I have based on the Carnegie Mellon Machine Learning masters program. Specifically, this is part of my effort to prepare for studying materials covered in the '36-700 Probability & Mathematical Statistics or 36-705 Intermediate Statistics' course requirement.

After completing this survey in forming mathematical proofs, I will begin studying probability, mathematical stattistics and calculus as they comprise the bulk of the mathematical underpinnings of machine learning.

Chapter 1

Sets

1.1 Exercises

A. Write each of the following sets by listing their elements between braces.

1.
$$\{5x-1: x \in \mathbb{Z}\} = \{\ldots, -16, -11, -6, -1, 4, 9, 14, \ldots\}$$

2.
$$\{3x+2: x \in \mathbb{Z}\} = \{\ldots, -7, -4, -1, 2, 5, 8, 11, \ldots\}$$

3.
$$\{x \in \mathbb{Z} : -2 \le x < 7\} = \{-2, -1, 0, 1, 2, 3, 4, 5, 6\}$$

4.
$$\{x \in \mathbb{N} : -2 < x <= 7\} = \{1, 2, 3, 4, 5, 6\}$$

5.
$$\{x \in \mathbb{R} : x^2 = 3\} = \{-\sqrt{3}, \sqrt{3}\}$$

6.
$$\{x \in \mathbb{R} : x^2 = 9\} = \{-\sqrt{9}, \sqrt{9}\}$$

7.
$$\{x \in \mathbb{R} : x^2 + 5x = -6\} = \{-2\}$$

8.
$$\{x \in \mathbb{R} : x^3 + 5x^2 = -6x\} = \{-3, -2, 0\}$$

9.
$$\{x \in \mathbb{R} : \sin \pi x = 0\} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

10.
$$\{x \in \mathbb{R} : \cos x = 1\} = \{\dots, -3\pi, -2\pi, -1\pi, 0, 1\pi, 2\pi, 3\pi, \dots\}$$

11.
$$\{x \in \mathbb{Z} : |x| < 5\} = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$$

12.
$$\{x \in \mathbb{Z} : |2x| < 5\} = \{-2, -1, 0, 1, 2\}$$

13.
$$\{x \in \mathbb{Z} : |6x| < 5\} = \{0\}$$

14.
$$\{5x : x \in \mathbb{Z}, |2x| \le 8\} = \{-20, -15, -10, -5, 0, 5, 10, 15, 20\}$$

15.
$$\{5a+2b: a, b \in \mathbb{Z}\} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

16.
$$\{6a+2b: a, b \in \mathbb{Z}\} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

B. Write each of the following sets in set builder notation.

17.
$$\{2, 4, 8, 16, 32, 64, \ldots\} = \{2x : x \in \mathbb{N}\}\$$

18.
$$\{0, 4, 16, 36, 64, 100, \ldots\} = \{x^2 : x \in 2\mathbb{Z}, x >= 0\}$$

19.
$$\{\ldots, -6, -3, 0, 3, 6, 9, 12, 15, \ldots\} = \{3x : x \in \mathbb{Z}\}$$

20.
$$\{\ldots, -8, -3, 2, 7, 12, 17, \ldots\} = \{5x + 2 : x \in 2\mathbb{Z}\}$$

21.
$$\{0, 1, 4, 9, 16, 25, 36, \ldots\} = \{x^2 : x \in 2\mathbb{Z}, x >= 0\}$$

22.
$$\{3, 6, 11, 18, 27, 38, \ldots\} = \{x^2 + 2 : x \in 2\mathbb{Z}, x > 0\}$$

23.
$$\{3,4,5,6,7,8\} = \{x \in 2\mathbb{Z} : 3 \le x \le 8\}$$

24.
$$\{-4, -3, -2, -1, 0, 1, 2\} = \{x \in 2\mathbb{Z} : -4 \le x \le 2\}$$

25.
$$\{\ldots, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, 8, \ldots\} = \{2^x : x \in \mathbb{Z}\}$$

26.
$$\{\ldots, \frac{1}{27}, \frac{1}{9}, \frac{1}{3}, 1, 3, 9, 27, \ldots\} = \{3^x : x \in \mathbb{Z}\}$$

27.
$$\{\ldots, -\pi, -\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, \frac{2}{\pi}, \frac{5\pi}{2}, \ldots\} = \{\frac{x\pi}{2} : x \in \mathbb{Z}\}$$

28.
$$\{\ldots, -\frac{3}{2}, -\frac{3}{4}, 0, \frac{3}{4}, \frac{3}{2}, \frac{9}{4}, 3, \frac{15}{4}, \frac{9}{2}, \ldots\} = \{\frac{3x}{4} : x \in \mathbb{Z}\}$$

C. Find the following cardinalities.

29.
$$|\{\{1\}, \{2, \{3, 4\}\}, \emptyset\}| = 3$$

30.
$$|\{\{1,4\}, a, b, \{\{3,4\}\}, \{\emptyset\}\}| = 5$$

31.
$$|\{\{\{1\},\{2,\{3,4\}\},\emptyset\}\}|=1$$

32.
$$|\{\{\{1,4\},a,b,\{\{3,4\}\},\{\emptyset\}\}\}\}|=1$$

33.
$$|\{x \in \mathbb{Z} : |x| < 10\}| = 19$$

34.
$$|\{x \in \mathbb{N} : |x| < 10\}| = 9$$

35.
$$|\{x \in \mathbb{Z} : x^2 < 10\}| = 7$$

36.
$$|\{x \in \mathbb{N} : x^2 < 10\}| = 3$$

37.
$$|\{x \in \mathbb{N} : x^2 < 0\}| = 0, \emptyset$$

38.
$$|\{x \in \mathbb{N} : 5x \le 20\}| = 4$$