Session 3

Spring 1400 by Matin Zivdar

Table of Contents

Train/Dev/Test

Bias and Variance

Regularization

Train/Dev/Test

```
# layers
```

hidden units

Learning rates

Activation functions

. . .

Train/Dev/Test (cont.)

Split Ratio?

98%-1%-1% For big dataset in order of 1,000,000

Bias and Variance

Bias and Variance (cont.)

Cat classification

Dev set error:	1%	15%	15%	0.5%
Train set error:	11%	16%	30%	1%
	High Variance	High Bias	High Bias & High Variance	Low Bias & Low Variance

Basic recipe for machine learning

Regularization

- L2 Regularization
- Dropout Regularization

Logistic Regression

$$\min_{w,b} J(w, b)$$

$$J(w, b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \|w\|_{2}^{2}$$

$$\|w\|_2^2 = \sum_{j=1}^{n_x} w_j^2 = w^T. w$$

$$w \in \mathbb{R}^{n_X}, b \in \mathbb{R}$$

Neural Network

$$J(w^{[1]}, b^{[1]}, \dots, w^{[l]}, b^{[l]}) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \sum_{l=1}^{L} \|w^{[l]}\|_{F}^{2}$$

$$\|w^{[l]}\|_F^2 = \sum_{i=1}^{n[l-1]} \sum_{j=1}^{n[l]} (w_{ij}^{[l]})^2$$

$$dw^{[l]} = (\text{from backprop}) + \frac{\lambda}{m} w^{[l]}$$

 $w^{[l]} = w^{[l]} - \alpha dw^{[l]}$

Why does it work?

$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \sum_{l=1}^{L} ||w^{[l]}||_{F}^{2}$$

Dropout Regularization

No dropout at Test time!

