Expressing linear equations in Matrix form $Ax = 6 \longrightarrow x = A^{-1}6$ A-'Ax= A-'6 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \times_{1} = e$ cancel out $\int \int ax_1 + bx_2 = e \int f_e$ c'' - reduce $c'x_1 + \frac{bc}{a}x_2 = e c/a$ "c"-reduce matrix to oppertriangular, cx, +dx2 = f form.— is dx2-36x2=-e4+f equivalent to these steps:

both vectors are \bot to rows of U?

For $X_2=1 \rightarrow -3$ $X_2=0 \rightarrow 0$ $X_4=0 \rightarrow 0$ $X_4=1 \rightarrow 1/3$ inhomogeneous solution $Lc=b \rightarrow c=b_1$ $b_3-2b_2+5b_1$ Solve Ux=c with $X_2=X_4=0$

to get X= Uc+x

Pivots in the "echelon" upper triangular Matrix $\begin{cases}
1 & 3 & 3 & 2 \\
2 & 6 & 9 & 5
\end{cases}$ $\begin{bmatrix}
2 & 6 & 9 & 5
\end{bmatrix}$ $\begin{bmatrix}
-1 & -3 & 3 & 0
\end{bmatrix}$ $\begin{cases}
6 & 4 & 5
\end{bmatrix}$ $6 & 4 & 5
\end{bmatrix}$ $\begin{bmatrix} 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 3 & 2 \\ 2 & 1 & 0 & 0 & 0 & 3 \end{bmatrix} + 1 = 0$