LOW DROP FIXED AND ADJUSTABLE POSITIVE VOLTAGE **REGULATORS**

DESCRIPTION

The UTC LD1117/A is a LOW DROP Voltage Regulator able to provide up to 0.8/1.0A of Output Current, available even in adjustable version (Vref=1.25V). Concerning fixed versions, are offered the following Output Voltages: 1.8V, 2.5V, 2.85V, 3.0V, 3.3V and 5.0V. The 2.85V type is ideal for SCSI-2 lines active termination. The device is supplied in: SOT-223, TO-252, SOP8 and TO-220. The SOT-223 and TO-252 surface mount packages optimize the thermal characteristics even offering a relevant space saving effect. High efficiency is assured by NPN pass transistor. In fact in the case, unlike than PNP one, the Quiescent Current flows mostly into the load. Only a very common $10\mu F$ minimum capacitor is needed for stability. On chip trimming allows the regulator to reach a very tight output voltage tolerance, within ±1% at 25°C. The ADJUSTABLE LD1117/A is pin to pin compatible with the other standard Adjustable voltage regulators maintaining the better performances in terms of Drop and Tolerance.

FEATURES

- *Low dropout voltage (1V Typ.)
- *2.85V device performances are suitable for SCSI-2 active termination
- *Output current up to 0.8/1.0A
- *Fixed output voltage of: 1.8V,2.5V, 2,85V, 3.0V, 3.3V, 5.0V
- *Adjustable version availability (Vref=1.25V)
- *Internal current and thermal limit
- *Available in ±1%(at 25°C) and 2% in all temperature range
- *Supply voltage rejection: 75dB (TYP)
- *Temperature range: 0°C to 125°C

SOP-8 1: GND; 2,3,6,7: Vout;

MARKING INFORMATION

	I CICIVI					
PACKAGE	VOLTAGE	PIN CODE	PIN 1	PIN 2	PIN 3	MARKING
	CODE					
	18:1.8V	А	GND	OUT	IN	
SOT-223 28:2.8 30:3.0	25:2.5V 28:2.85V	В	OUT	GND	IN	CURRENT LD1117 CODE PIN CODE
	30:3.0V	С	GND	IN	OUT	VOLTAGE DATE CODE
	33:3.3V 50:5.0V	D	IN	GND	OUT	1 2 3
	AD:ADJ	Α	GND	OUT	IN	LITO
TO-252		В	OUT	GND	IN	UTCcurrent
		С	GND	IN	OUT	VOLTAGE CODE DATE CODE
		D	IN	GND	OUT	1 2 3
		Α	GND	OUT	IN	LITC
TO-220		В	OUT	GND	IN	UTC CURRENT CODE
.0 ==0		С	GND	IN	OUT	VOLTAGE DATE CODE
		D	IN	GND	OUT	1 2 3

Note: The current code "A" means output current up to 1.0A, while without "A" means output current up to 0.8A.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
DC Input Voltage	VIN	15	V
Power Dissipation	Ptot	12	W
Storage temperature	Tstg	-65 ~ + 150	°C
Operating Junction Temperature	Тор	0 ~ +125	°C

Note: Absolute Maximum Ratings are those value beyond which damage to the device may occur. Functional operation under there condition is not implied. Over the above suggested Max Power Dissipation a Short Circuit could definitively damage the device.

THERMAL DATA

PARAMETER	SYMBOL	VALUE	UNIT
Thermal Resistance Junction-case	Rth-case		
SOT-223		15	°C/W
SOP-8		20	°C/W
TO-252		8	°C/W
TO-220		3	°C/W
Thermal Resistance Junction-ambient	Rthj-amb		
TO-220		50	°C/W

UTC UNISONIC TECHNOLOGIES CO., LTD.

APPLICATION CIRCUIT

UTC LD1117/A-1.8 ELECTRICAL CHARACTERISTICS

(refer to the test circuits, Tj=0 to 125°C, Co=10 μF unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vo	Vin=3.8V, Io=10mA, Tj=25°C	1.782	1.800	1.818	V
Output Voltage	Vo	Io=0 to 800/1000mA, Vin=3.2 to 10V	1.764		1.836	V
Line Regulation	ΔVo	Vin=3.2 to 10V, Io=0mA		1	6	mV
Load Regulation	ΔVo	Vin=3.2V, Io=0 to 800/1000mA		1	10	mV
Temperature stability	ΔVo			0.5		%
Long Term Stability	ΔVo	1000 hrs, Tj=125°C		0.3		%
Operating Input Voltage	Vin	Io=100mA			15	V
Quiescent Current	ld	Vin≤10V		5	10	mΑ
Output Current	lo	Vin=6.8V, Tj=25°C	800	950	1200	mA
Output Noise Voltage	eN	B=10Hz to 10KHz, Tj=25°C		100		μV
Supply Voltage	SVR	Io=40mA, f=120Hz, Tj=25°C, Vin=4.8V,	60	75		dB
Rejection		Vripple=1Vpp				
Dropout Voltage	Vd	Io=100mA		1.00	1.10	V
		Io=500mA		1.05	1.15	V
		Io=800mA		1.10	1.20	V
		Io=1000mA		1.15	1.25	V
Thermal Regulation		Ta=25°C, 30ms Pulse		0.01	0.10	%/W

UTC LD1117/A-2.5 ELECTRICAL CHARACTERISTICS

(refer to the test circuits, Tj=0 to 125°C, Co=10μF unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
Output Voltage	Vo	Vin=4.5V, Io=10mA, Tj=25°C	±1%	2.475	2.500	2.525	V
			$\pm 2\%$	2.450	2.500	2.550	V
Output Voltage	Vo	Io=0 to 800/1000mA,	± 2 %	2.450		2.550	V
		Vin=3.9 to 10V	$\pm 4\%$	2.400		2.600	V
Line Regulation	ΔVo	Vin=3.9 to 10V, Io=0mA			1	6	mV
Load Regulation	ΔVo	Vin=3.9V, Io=0 to 800/1000mA			1	10	mV
Temperature stability	ΔVo				0.5		%
Long Term Stability	ΔVo	1000 hrs, Tj=125°C			0.3		%
Operating Input Voltage	Vin	Io=100mA				15	V
Quiescent Current	ld	Vin≤10V	•		5	10	mA
Output Current	lo	Vin=7.5V, Tj=25°C		800	950	1200	mA

UTC UNISONIC TECHNOLOGIES CO., LTD.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Output Noise Voltage	eN	B=10Hz to 10KHz, Tj=25°C		100		μV
Supply Voltage	SVR	Io=40mA, f=120Hz, Tj=25°C, Vin=5.5V,	60	75		dB
Rejection		Vripple=1Vpp				
Dropout Voltage	Vd	Io=100mA		1.00	1.10	V
		Io=500mA		1.05	1.15	V
		Io=800mA		1.10	1.20	V
		Io=1000mA		1.15	1.25	V
Thermal Regulation		Ta=25°C, 30ms Pulse		0.01	0.10	%/W

UTC LD1117/A-2.85 ELECTRICAL CHARACTERISTICS

(refer to the test circuits, Tj=0 to 125°C, Co=10μF unless otherwise specified)

(10101 to this toot on ounts)	.,	e, ee repar armeee emermee epeemea,				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vo	Vin=4.85V, Io=10mA, Tj=25°C	2.82	2.85	2.88	V
Output Voltage	Vo	Io=0 to 800/1000mA,Vin=4.25 to 10V	2.79		2.91	V
Line Regulation	ΔVo	Vin=4.25 to 10V, Io=0mA		1	6	mV
Load Regulation	ΔVo	Vin=4.25V, Io=0 to 800/1000mA		1	10	mV
Temperature stability	ΔVo			0.5		%
Long Term Stability	ΔVo	1000 hrs, Tj=125°C		0.3		%
Operating Input Voltage	Vin	Io=100mA			15	V
Quiescent Current	ld	Vin≤10V		5	10	mA
Output Current	lo	Vin=7.85V, Tj=25°C	800	950	1200	mA
Output Noise Voltage	eN	B=10Hz to 10KHz, Tj=25°C		100		μV
Supply Voltage	SVR	Io=40mA, f=120Hz, Tj=25°C, Vin=5.85V,	60	75		DB
Rejection		Vripple=1Vpp				
Dropout Voltage	Vd	Io=100mA		1.00	1.10	V
		Io=500mA		1.05	1.15	V
		Io=800mA		1.10	1.20	V
		Io=1000mA		1.15	1.25	V
Thermal Regulation		Ta=25°C, 30ms Pulse		0.01	0.10	%/W

UTC LD1117/A-3.0 ELECTRICAL CHARACTERISTICS

(refer to the test circuits, Tj=0 to 125°C, Co=10μF unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
Output Voltage	Vo	Vin=5V, Io=10mA, Tj=25°C	±1%	2.97	3.00	3.03	V
			$\pm 2\%$	2.94	3.00	3.06	V
Output Voltage	Vo	Io=0 to 800/1000mA,	±2%	2.94		3.06	V
		Vin=4.5 to 10V	$\pm 4\%$	2.88		3.12	V
Line Regulation	ΔVo	Vin=4.5 to 12V, Io=0mA			1	6	mV
Load Regulation	ΔVo	Vin=4.5V, Io=0 to 800/1000mA			1	10	mV
Temperature stability	ΔVo				0.5		%
Long Term Stability	ΔVo	1000 hrs, Tj=125°C			0.3		%
Operating Input Voltage	Vin	Io=100mA				15	V
Quiescent Current	ld	Vin≤12V			5	10	mA
Output Current	lo	Vin=8V, Tj=25°C		800	950	1200	mA
Output Noise Voltage	eN	B=10Hz to 10KHz, Tj=25°C			100		μV
Supply Voltage	SVR	Io=40mA, f=120Hz, Tj=25°C, Vir	n=6V,	60	75		dB
Rejection		Vripple=1Vpp					

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Dropout Voltage	Vd	Io=100mA		1.00	1.10	V
		Io=500mA		1.05	1.15	V
		Io=800mA		1.10	1.20	V
		Io=1000mA		1.15	1.25	V
Thermal Regulation		Ta=25°C, 30ms Pulse		0.01	0.10	%/W

UTC LD1117/A-3.3 ELECTRICAL CHARACTERISTICS

(refer to the test circuits, Tj=0 to 125°C, Co=10 μ F unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vo	Vin=5.3V, Io=10mA, Tj=25°C \pm 1%	3.267	3.300	3.333	V
		±2%	3.235	3.300	3.365	V
Output Voltage	Vo	Io=0 to 800/1000mA, $\pm 2\%$	3.235		3.365	V
		Vin=4.75 to 10V $\pm 4\%$	3.160		3.440	V
Line Regulation	ΔVo	Vin=4.75 to 15V, Io=0mA		1	6	mV
Load Regulation	ΔVo	Vin=4.75V, Io=0 to 800/1000mA		1	10	mV
Temperature stability	ΔVo			0.5		%
Long Term Stability	ΔVo	1000 hrs, Tj=125°C		0.3		%
Operating Input Voltage	Vin	Io=100mA			15	V
Quiescent Current	ld	Vin≤15V		5	10	mA
Output Current	lo	Vin=8.3V, Tj=25°C	800	950	1200	mA
Output Noise Voltage	eN	B=10Hz to 10KHz, Tj=25°C		100		μV
Supply Voltage	SVR	Io=40mA, f=120Hz, Tj=25°C, Vin=6.3V,	60	75		DB
Rejection		Vripple=1Vpp				
Dropout Voltage	Vd	Io=100mA		1.00	1.10	V
		Io=500mA		1.05	1.15	V
		Io=800mA		1.10	1.20	V
		Io=1000mA		1.15	1.25	V
Thermal Regulation		Ta=25°C, 30ms Pulse		0.01	0.10	%/W

UTC LD1117/A-5.0 ELECTRICAL CHARACTERISTICS

(refer to the test circuits, Tj=0 to 125°C, Co=10µF unless otherwise specified)

| PARAMETER | SYMBOL | TEST CONDITIONS | MIN. | TYP. | MAX. | LINIT

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
Output Voltage	Vo	Vin=7V, Io=10mA, Tj=25°C	±1%	4.95	5.00	5.05	V
		∃ ∃	±2 %	4.90	5.00	5.10	V
Output Voltage	Vo	Io=0 to 800/1000mA,	$\pm 2\%$	4.90		5.10	V
		Vin=6.5 to 15V	$\pm 4\%$	4.80		5.20	V
Line Regulation	ΔVo	Vin=6.5 to 15V, Io=0mA			1	10	mV
Load Regulation	ΔVo	Vin=6.5V, Io=0 to 800/1000mA			1	15	mV
Temperature stability	ΔVo				0.5		%
Long Term Stability	ΔVo	1000 hrs, Tj=125°C			0.3		%
Operating Input Voltage	Vin	Io=100mA				15	V
Quiescent Current	ld	Vin≤15V			5	10	mΑ
Output Current	lo	Vin=10V, Tj=25°C		800	950	1200	mΑ
Output Noise Voltage	eN	B=10Hz to 10KHz, Tj=25°C			100		μV
Supply Voltage	SVR	Io=40mA, f=120Hz, Tj=25°C, Vin=8	8V,	60	75		dB
Rejection		Vripple=1Vpp					

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Dropout Voltage	Vd	Io=100mA		1.00	1.10	V
		Io=500mA		1.05	1.15	V
		Io=800mA		1.10	1.20	V
		Io=1000mA		1.15	1.25	V
Thermal Regulation		Ta=25°C. 30ms Pulse		0.01	0.10	%/W

UTC LD1117/A-ADJUSTABLE ELECTRICAL CHARACTERISTICS

(refer to the test circuits, Tj=0 to 125°C, Co=10μF unless otherwise specified)

Trefer to the test circuits, 1j=0 to 125 C, C0=10µ1 driless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Reference Voltage	Vref	Vin-VO=2V, Io=10mA, Tj=25°C	1.238	1.25	1.262	V
Reference Voltage	Vref	lo=10 to 800/1000mA, Vin-Vo=1.4 to 10V	1.225		1.275	>
Line Regulation	ΔVo	Vin-Vo=1.5 to 13.75V, Io=10mA		0.035	0.200	%
Load Regulation	ΔVo	Vin-Vo=3V, Io=10 to 800/1000mA		0.10	0.400	%
Temperature stability	ΔVo			0.50		%
Long Term Stability	ΔVo	1000 hrs, Tj=125°C		0.3		%
Operating Input Voltage	Vin				15	V
Adjustment Pin Current	ladj	Vin≤15V		60	120	μΑ
Adjustment Pin Current Change	∆ladj	Vin-Vo=1.4 to 10V, Io=10 to 800/1000mA		1	5	μΑ
Minimum Load Current	lo(min)	Vin=15V		2	5	mA
Output Current	lo	Vin-Vo=5V, Tj=25°C	800	950	1200	mA
Output Noise (%Vo)	eN	B=10Hz to 10KHz, Tj=25°C		0.003		%
Supply Voltage Rejection	SVR	Io=40mA, f=120Hz, Tj=25°C, Vin-Vo=3V, Vripple=1Vpp	60	75		dB
Dropout Voltage	Vd	Io=100mA		1.00	1.10	V
		Io=500mA		1.05	1.15	V
		Io=800mA		1.10	1.20	V
		Io=1000mA		1.15	1.25	V
Thermal Regulation		Ta=25°C, 30ms Pulse		0.01	0.10	%/W

TYPICAL APPLICATIONS

FIG.1 Negative Supply

UTC UNISONIC TECHNOLOGIES CO., LTD.

7

FIG.2 Active Terminator for SCSI-2 BUS

FIG.3 Circuit for Increasing Output Voltage

FIG.4 Voltage Regulator With Reference

FIG.5 Battery Backed-up Regulated Supply

FIG.6 Post-Regulated Dual Supply

10

LD1117/A ADJUSTABLE APPLICATION NOTE

The LD1117/A ADJUSTABLE has a thermal stabilized 1.25 \pm 0.012V reference voltage between the OUT and ADJ pins. I_{ADJ} is 60 μ A typ. (120 μ A max.) and Δ I_{ADJ} is 1 μ A typ. (5 μ A max.).

R1 is normally fixed to 120Ω . From figure 7 we obtain:

 $V_{OUT} = V_{REF} + R2(I_{ADJ} + I_{R1}) = V_{REF} + R2(I_{ADJ} + V_{REF} / R1) = V_{REF}(1 + R2/R1) + R2 \times I_{ADJ}$

In normal application R2 value is in the range of few Kohm,, so the R2 X I_{ADJ} product could not be considered in the V_{OUT} calculation; then the above expression becomes: $V_{OUT}=V_{REF}(1+R2/R1)$

In order to have the better load regulation it is important to realize a good Kelvin connection of R1 and R2 resistors. In particular R1 connection must be realized very close to OUT and ADJ pin, while R2 ground connection must be placed as near as possible to the negative Load pin. Ripple rejection can be improved by introducing a 10μ F electrolytic capacitor placed in parallel to the R2 resistor (See Fig. 8)

FIG.7 Adjustable Output Voltage Application Circuit

FIG.8 Adjustable Output Voltage Application with improved Ripple Rejection.

UTC UNISONIC TECHNOLOGIES CO., LTD. 11