GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

- 1	NOMBRE DE LA ASIGNATURA
	INOMBRE DE LA ASIGNATORA
	Managiaman
	Mecanismos

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Cuarto Semestre	140402	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante el conocimiento y la habilidad para conocer, comprender y resolver problemas relacionados con la teoría de mecanismo, mediante la enseñanza de las leyes y principio empleados en sus análisis, que le permitan su aplicación a situaciones reales.

TEMAS Y SUBTEMAS

1. Introducción

- 1.1 Terminología, definiciones e hipótesis.
 - 1.1.1 Cuerpo rígido
 - 1.1.2 Eslabones
 - 1.1.3 Pares cinemáticos
- 1.2 Grados de libertad
- 1.3 Inversión cinemática
- 1.4 Condición de Grashof
- 1.5 Tipos de mecanismos

2. Síntesis cinemática de mecanismos

- 2.1 Introducción
- 2.2 Tipos de síntesis cinemáticas
 - 2.2.1 Generación de función
 - 2.2.2 Generación de trayectoria
 - 2.2.3 Generación de movimiento
- 2.3 Síntesis gráfica y analítica de mecanismos con acoplados con dos posiciones prescritas 2.3.1 Solución de las ecuaciones
- 2.4 Síntesis gráfica y analítica de un generador de trayectoria para un mecanismo dado
- 2.5 Síntesis gráfica y analítica de un generador de función para un mecanismo de cuatro barras
- 2.6 Proyectos de síntesis gráfica y analítica de mecanismos

3. Cinemática de mecanismos

- 3.1 Introducción
- 3.2 Cinemática de posición
 - 3.2.1 Posición y desplazamiento
 - 3.2.2 Análisis gráfico y analítico de posición
- 3.3 Cinemática diferencial
 - 3.3.1 Definiciones
 - 3.3.2 Análisis gráfico y analítico de velocidad
 - 3.3.3 Análisis gráfico y analítico de aceleración
- 3.4 Métodos numéricos en el análisis cinemático
- 3.5 Proyectos de cinemática de mecanismos

4. Diseño de levas

4.1 Introducción

- 4.1.1 Definiciones de mecanismos de leva
- 4.2 Análisis del mecanismo leva-seguidor de punta y con seguidor de carretilla
- 4.3 Análisis del mecanismo leva-seguidor de cara plana
- 4.4 Síntesis del mecanismo leva-seguidor de punta y con seguidor de carretilla. Método de Newton-Raphson
- 4.5 Síntesis del mecanismo leva-seguidor de cara plana. Método de Runge-Kutta
- 4.6 Restricción en el ángulo de presión y en la excentricidad del punto de contacto
- 4.7 Introducción al diseño óptimo de levas
- 4.8 Proyectos de diseño de levas

5. Trenes de engranes

- 5.1 Introducción
- 5.2 Ley fundamental del engranaje
- 5.3 Nomenclatura de engranes
- 5.4 Tipos de engranes
 - 5.4.1 Engranes rectos, helicoidales y espirales
 - 5.4.2 Engranes de tornillo sinfín
 - 5.4.3 Piñon y cremallera
 - 5.4.4 Transmisiones de banda y de cadena
- 5.5 Trenes de mecanismos de tipo simple
- 5.6 Trenes de mecanismos de tipo compuesto
- 5.7 Eficiencia de los trenes de engranes
- 5.8 Ejercicios

ACTIVIDADES DE APRENDIZAJE

Sesiones de clases dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, los retroproyectores y la videograbadora. Asimismo, se desarrollarán programas computacionales sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrá una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final.

Además se considerará el trabajo extra-clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL, AÑO Y Nº DE EDICIÓN)

Libros Básicos:

Diseño de Maquinaria: Una introducción a la Síntesis y al Análisis de Mecanismos y Máquinas, Norton, R. L., México: McGraw-Hill, Segunda Edición, 2000.

Diseño de Mecanismos: Análisis y Síntesis, Erdman, A. G. y Sandor, G. N., México: Ed. McGraw Hill, 1998. Fundamentos de Mecanismos y Máquinas para Ingenieros, Calero Pérez, R., España: McGraw Hill, 1999.

Libros de Consulta:

Mechanism Design Analysis and Synthesis, Erdman, A. G. y Sandor, G. N., USA: Prentice Hall Inc., Vo. 1, Forth Edition, 2001.

Theory of Machines and Mechanisms, Uicker, John J.; Pennock, Gordon R y Shigley, Joseph E., Oxford University Press Publication, Third Edition, 2003.

Design of machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines, Norton, R. L., USA: McGraw-Hill Companies, Third Edition, 2003.

Kinematic Design of machines and mechanisms, Eckardt, H. D., USA: Ed. McGraw Hill Companies, Second Edition, 1998.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero Mecánico con postgrado en Ingeniería Mecánica o equivalente, preferentemente con experiencia en diseño mecánico.