Conjugate Calculus Rules

3 0		
$g(\mathbf{x})$	$g^*(\mathbf{y})$	
$\sum_{i=1}^{m} f_i(\mathbf{x}_i)$	$\sum_{i=1}^m f_i^*(\mathbf{y}_i)$	
$\alpha f(\mathbf{x}) \ (\alpha > 0)$	$\alpha f^*(\mathbf{y}/\alpha)$	
$\alpha f(\mathbf{x}/\alpha) \ (\alpha > 0)$	$\alpha f^*(\mathbf{y})$	
$f(\mathcal{A}(\mathbf{x} - \mathbf{a})) + \langle \mathbf{b}, \mathbf{x} \rangle + c$	$f^*((\mathcal{A}^T)^{-1}(\mathbf{y} - \mathbf{b})) + \langle \mathbf{a}, \mathbf{y} \rangle - c - \langle \mathbf{a}, \mathbf{b} \rangle$	

Conjugate Functions

П	I	Conjugate Functions	T T
f	dom(f)	f^*	assumptions
e^x	\mathbb{R}	$y \log y - y \ (\operatorname{dom}(f^*) = \mathbb{R}_+)$	
$-\log x$	\mathbb{R}_{++}	$-1 - \log(-y) \left(\operatorname{dom}(f^*) = \mathbb{R}_{} \right)$	
$\max\{1-x,0\}$	\mathbb{R}	$y + \delta_{[-1,0]}(y)$	
$\frac{1}{p} x ^p$	\mathbb{R}	$\frac{1}{q} y ^q$	$p > 1, \frac{1}{p} + \frac{1}{q} = 1$
$-\frac{x^p}{p}$	\mathbb{R}_{+}	$-\frac{(-y)^q}{q} \left(\operatorname{dom}(f^*) = \mathbb{R}_{} \right)$	0
$\frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x} + \mathbf{b}^T\mathbf{x} + c$	\mathbb{R}^n	$\frac{1}{2}(\mathbf{y} - \mathbf{b})^T \mathbf{A}^{-1}(\mathbf{y} - \mathbf{b}) - c$	$\mathbf{A} \in \mathbb{S}_{++}^n, \ \mathbf{b} \in \mathbb{R}^n, c \in \mathbb{R}^n$
$\frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x} + \mathbf{b}^T\mathbf{x} + c$	\mathbb{R}^n	$\frac{1}{2}(\mathbf{y} - \mathbf{b})^T \mathbf{A}^{\dagger}(\mathbf{y} - \mathbf{b}) - c$ $(\text{dom}(f^*) = \mathbf{b} + \text{Range}(\mathbf{A}))$	$\mathbf{A} \in \mathbb{S}^n_+, \ \mathbf{b} \in \mathbb{R}^n, c \in \mathbb{R}^n$
$\sum_{i=1}^{n} x_i \log x_i$	\mathbb{R}^n_+	$\sum_{i=1}^{n} e^{y_i - 1}$	
$\sum_{i=1}^{n} x_i \log x_i$	Δ_n	$\log\left(\sum_{i=1}^n e^{y_i}\right)$	
$-\sum_{i=1}^{n} \log x_i$	\mathbb{R}^n_{++}	$-n - \sum_{i=1}^{n} \log(-y_i)$	
$\log\left(\sum_{i=1}^n e^{x_i}\right)$	\mathbb{R}^n	$\sum_{i=1}^{n} y_i \log y_i \ (\operatorname{dom}(f^*) = \Delta_n)$	
$\max_{i} \{x_i\}$	\mathbb{R}^n	$\delta_{\Delta_n}(\mathbf{y})$	
$\delta_C(\mathbf{x})$	C	$\sigma_C(\mathbf{y})$	$C \subseteq \mathbb{E}$
$\sigma_C(\mathbf{x})$	\mathbb{E}	$\delta_{\operatorname{cl}(\operatorname{conv}(C))}(\mathbf{y})$	$C \subseteq \mathbb{E}$
$\ \mathbf{x}\ $	\mathbb{E}	$\delta_{B_{\ \cdot\ _{*}}[0,1]}(\mathbf{y})$	
$-\sqrt{\alpha^2 - \ \mathbf{x}\ ^2}$	$B[0, \alpha]$	$\alpha \sqrt{\ \mathbf{y}\ _*^2 + 1}$	$\alpha > 0$
$\sqrt{\alpha^2 + \ \mathbf{x}\ ^2}$	\mathbb{E}	$-\alpha \sqrt{1 - \ \mathbf{y}\ _{*}^{2}}$ $(\operatorname{dom} f^{*} = B_{\ \cdot\ _{*}}[0, 1])$	$\alpha > 0$
$\frac{1}{2}\ \mathbf{x}\ ^2$	E	$\frac{1}{2}\ \mathbf{y}\ _*^2$	
$\frac{1}{2}\ \mathbf{x}\ ^2 + \delta_C(\mathbf{x})$	C	$\frac{1}{2} \ \mathbf{y}\ ^2 - \frac{1}{2} d_C^2(\mathbf{y})$	$\emptyset \neq C \subseteq \mathbb{E}, \mathbb{E}$ Euclidean
$\frac{1}{2} \ \mathbf{x}\ ^2 - \frac{1}{2} d_C^2(\mathbf{x})$	E	$\frac{1}{2}\ \mathbf{y}\ ^2 + \delta_C(\mathbf{y})$	$\emptyset \neq C \subseteq \mathbb{E} \text{ closed convex}$

Smooth Functions

$f(\mathbf{x})$	dom(f)	parameter	norm
$\frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x} + \mathbf{b}^T\mathbf{x} + c$	\mathbb{R}^n	$\ \mathbf{A}\ _{p,q}$	l_p
$(\mathbf{A} \in \mathbb{S}^n, \mathbf{b} \in \mathbb{R}^n, c \in \mathbb{R})$			
$\langle \mathbf{b}, \mathbf{x} \rangle + c$	\mathbb{E}	0	any norm
$(\mathbf{b} \in \mathbb{E}^*, c \in \mathbb{R})$			
$\frac{1}{2} \ \mathbf{x}\ _p^2, \ p \in [2, \infty)$	\mathbb{R}^n	p-1	l_p
$\sqrt{1+\ \mathbf{x}\ _2^2}$	\mathbb{R}^n	1	l_2
$\log(\sum_{i=1}^{n} e^{x_i})$	\mathbb{R}^n	1	l_2, l_{∞}
$\frac{1}{2}d_C^2(\mathbf{x})$	E	1	Euclidean
$\emptyset \neq C \subseteq \mathbb{E} \text{ closed convex}$			
$\frac{1}{2} \ \mathbf{x}\ ^2 - \frac{1}{2} d_C^2(\mathbf{x})$	E	1	Euclidean
$\emptyset \neq C \subseteq \mathbb{E} \text{ closed convex}$			
$H_{\mu}(\mathbf{x}) \ (\mu > 0)$	E	$\frac{1}{\mu}$	Euclidean

Strongly Convex Functions

$f(\mathbf{x})$	dom(f)	s.c.	norm
		parameter	
$\frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x} + 2\mathbf{b}^T\mathbf{x} + c$	\mathbb{R}^n	$\lambda_{\min}(\mathbf{A})$	l_2
$(\mathbf{A} \in \mathbb{S}^n_{++}, \mathbf{b} \in \mathbb{R}^n, c \in \mathbb{R})$			
$\frac{1}{2}\ \mathbf{x}\ ^2 + \delta_C(\mathbf{x})$	C	1	Euclidean
$(\emptyset \neq C \subseteq \mathbb{E} \text{ convex})$			
$-\sqrt{1-\ \mathbf{x}\ _2^2}$	$B_{\ \cdot\ _2}[0,1]$	1	l_2
$\frac{1}{2} \ \mathbf{x}\ _p^2 \ (p \in (1,2])$	\mathbb{R}^n	p-1	l_p
$\sum_{i=1}^{n} x_i \log x_i$	Δ_n	1	l_2 or l_1

Orthogonal Projections

П	Orthogonal Projections	
set(C)	$P_C(\mathbf{x})$	assumptions
\mathbb{R}^n_+	$[\mathbf{x}]_+$	_
$\mathrm{Box}[oldsymbol{\ell},\mathbf{u}]$	$P_C(\mathbf{x})_i = \min\{\max\{x_i, \ell_i\}, u_i\}$	$\ell_i \le u_i$
$B_{\ \cdot\ _2}[\mathbf{c},r]$	$\mathbf{c} + rac{r}{\max\{\ \mathbf{x} - \mathbf{c}\ _2, r\}}(\mathbf{x} - \mathbf{c})$	$\mathbf{c} \in \mathbb{R}^n, r > 0$
$\{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}\}$	$\mathbf{x} - \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1} (\mathbf{A} \mathbf{x} - \mathbf{b})$	$\mathbf{A} \in \mathbb{R}^{m \times n}, \ \mathbf{b} \in \mathbb{R}^m,$ $\mathbf{A} \text{ full row rank}$
$\{\mathbf{x}: \mathbf{a}^T \mathbf{x} \le b\}$	$\mathbf{x} - rac{[\mathbf{a}^T\mathbf{x} - b]_+}{\ \mathbf{a}\ ^2}\mathbf{a}$	$0 eq \mathbf{a} \in \mathbb{R}^n, b \in \mathbb{R}$
Δ_n	$[\mathbf{x} - \mu^* \mathbf{e}]_+$ where $\mu^* \in \mathbb{R}$ satisfies $\mathbf{e}^T [\mathbf{x} - \mu^* \mathbf{e}]_+ = 1$	
$H_{\mathbf{a},b} \cap \mathrm{Box}[\boldsymbol{\ell},\mathbf{u}]$	$P_{\text{Box}[\ell,\mathbf{u}]}(\mathbf{x} - \mu^* \mathbf{a}) \text{ where } \mu^* \in \mathbb{R}$ satisfies $\mathbf{a}^T P_{\text{Box}[\ell,\mathbf{u}]}(\mathbf{x} - \mu^* \mathbf{a}) = b$	$\mathbf{a} \in \mathbb{R}^n \setminus \{0\}, b \in \mathbb{R}$
$H_{\mathbf{a},b}^- \cap \mathrm{Box}[\ell,\mathbf{u}]$	$\begin{cases} P_{\text{Box}[\ell, \mathbf{u}]}(\mathbf{x}), & \mathbf{a}^T \mathbf{v}_{\mathbf{x}} \leq b, \\ P_{\text{Box}[\ell, \mathbf{u}]}(\mathbf{x} - \lambda^* \mathbf{a}), & \mathbf{a}^T \mathbf{v}_{\mathbf{x}} > b, \end{cases}$ $\mathbf{v}_{\mathbf{x}} = P_{\text{Box}[\ell, \mathbf{u}]}(\mathbf{x}), & \mathbf{a}^T P_{\text{Box}[\ell, \mathbf{u}]}(\mathbf{x} - \lambda^* \mathbf{a}) \end{cases}$	$\mathbf{a} \in \mathbb{R}^n \setminus \{0\}, b \in \mathbb{R}$
	$\lambda^* \mathbf{a}) = b, \lambda^* > 0$	
$B_{\ \cdot\ _1}[0,lpha]$	$\begin{cases} \mathbf{x}, & \ \mathbf{x}\ _{1} \leq \alpha, \\ \mathcal{T}_{\lambda^{*}}(\mathbf{x}), & \ \mathbf{x}\ _{1} > \alpha, \\ \ \mathcal{T}_{\lambda^{*}}(\mathbf{x})\ _{1} = \alpha, \lambda^{*} > 0 \end{cases}$	$\alpha > 0$
$\{\mathbf{x}: \boldsymbol{\omega}^T \mathbf{x} \leq \beta, \ -\boldsymbol{lpha} \leq \mathbf{x} \leq \boldsymbol{lpha} \}$	$\begin{cases} \mathbf{v}_{\mathbf{x}}, & \boldsymbol{\omega}^{T} \mathbf{v}_{\mathbf{x}} \leq \beta, \\ \mathcal{S}_{\lambda^{*}}\boldsymbol{\omega},\boldsymbol{\alpha}(\mathbf{x}), & \boldsymbol{\omega}^{T} \mathbf{v}_{\mathbf{x}} > \beta, \end{cases}$ $\mathbf{v}_{\mathbf{x}} = P_{\text{Box}[-\boldsymbol{\alpha},\boldsymbol{\alpha}]}(\mathbf{x}),$ $\boldsymbol{\omega}^{T} \mathcal{S}_{\lambda^{*}}\boldsymbol{\omega},\boldsymbol{\alpha}(\mathbf{x}) = \beta, \lambda^{*} > 0$	$\boldsymbol{\omega} \in \mathbb{R}^n_{++}, \ \boldsymbol{\alpha} \in [0, \infty]^n, \ \boldsymbol{\beta} \in \mathbb{R}_{++}$
	$\begin{cases} \mathbf{x}, & \mathbf{x} \in C, \\ \left(\frac{x_j + \sqrt{x_j^2 + 4\lambda^*}}{2}\right)_{j=1}^n, & \mathbf{x} \notin C, \\ \Pi_{j=1}^n \left((x_j + \sqrt{x_j^2 + 4\lambda^*})/2\right) & = \\ \alpha, \lambda^* > 0 \end{cases}$	$\alpha > 0$
$\ \{ (\mathbf{x}, s) : \ \mathbf{x}\ _2 \le s \}$	$ \begin{pmatrix} \frac{\ \mathbf{x}\ _{2}+s}{2\ \mathbf{x}\ _{2}}\mathbf{x}, & \frac{\ \mathbf{x}\ _{2}+s}{2} \end{pmatrix} \text{ if } \ \mathbf{x}\ _{2} \geq s $ $ (0,0) \text{ if } s < \ \mathbf{x}\ _{2} < -s, $ $ (\mathbf{x},s) \text{ if } \ \mathbf{x}\ _{2} \leq s. $ $ \begin{cases} (\mathbf{x},s), & \ \mathbf{x}\ _{1} \leq s, \\ (\mathcal{T}_{\lambda^{*}}(\mathbf{x}), s + \lambda^{*}), & \ \mathbf{x}\ _{1} > s, \\ \ \mathcal{T}_{\lambda^{*}}(\mathbf{x})\ _{1} - \lambda^{*} - s = 0, \lambda^{*} > 0 \end{cases} $	

Prox Calculus Rules

$f(\mathbf{x})$	$\mathrm{prox}_f(\mathbf{x})$	assumptions
$\sum_{i=1}^{m} f_i(\mathbf{x}_i)$	$\operatorname{prox}_{f_1}(\mathbf{x}_1) \times \cdots \times \operatorname{prox}_{f_m}(\mathbf{x}_m)$	
$g(\lambda \mathbf{x} + \mathbf{a})$	$\frac{1}{\lambda} \left[\operatorname{prox}_{\lambda^2 g} (\mathbf{a} + \lambda \mathbf{x}) - \mathbf{a} \right]$	$\lambda \neq 0, \mathbf{a} \in \mathbb{E}, g \text{ proper}$
$\lambda g(\mathbf{x}/\lambda)$	$\lambda \operatorname{prox}_{g/\lambda}(\mathbf{x}/\lambda)$	$\lambda \neq 0, g \text{ proper}$
$g(\mathbf{x}) + \frac{c}{2} \mathbf{x} ^2 + \langle \mathbf{a}, \mathbf{x} \rangle + \gamma$	$\operatorname{prox}_{\frac{1}{c+1}g}(\frac{\mathbf{x}-\mathbf{a}}{c+1})$	$\mathbf{a} \in \mathbb{E}, c > 0, \gamma \in \mathbb{R},$
	·	g proper
$g(\mathcal{A}(\mathbf{x}) + \mathbf{b})$	$\mathbf{x} + \frac{1}{lpha} \mathcal{A}^T (\operatorname{prox}_{lpha g} (\mathcal{A}(\mathbf{x}) + \mathbf{b}) - \mathcal{A}(\mathbf{x}) - \mathbf{b})$	$\mathbf{b} \in \mathbb{R}^m, \mathcal{A} : \mathbb{V} \to \mathbb{R}^m,$
		g proper closed convex,
		$\mathcal{A} \circ \mathcal{A}^T = \alpha I, \alpha > 0$
$g(\ \mathbf{x}\)$	$\begin{aligned} & \operatorname{prox}_g(\ \mathbf{x}\) \frac{\mathbf{x}}{\ \mathbf{x}\ }, & \mathbf{x} \neq 0 \\ & \{\mathbf{u} : \ \mathbf{u}\ = \operatorname{prox}_g(0)\}, & \mathbf{x} = 0 \end{aligned}$	g proper closed convex,
	Ü	$dom(g) \subseteq [0, \infty)$

Prox Computations

	Frox Computations				
$f(\mathbf{x})$	dom(f)	$\operatorname{prox}_f(\mathbf{x})$	assumptions		
$\frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x} + \mathbf{b}^T\mathbf{x} + c$	\mathbb{R}^n	$(\mathbf{A} + \mathbf{I})^{-1}(\mathbf{x} - \mathbf{b})$	$\mid \mathbf{A} \in \mathbb{S}_{+}^{n}, \ \mathbf{b} \in \mathbb{R}^{n}, \ c \in \mid$		
			\mathbb{R}		
λx^3	\mathbb{R}_+	$\frac{-1+\sqrt{1+12\lambda[x]_+}}{6\lambda}$	$\lambda > 0$		
μx	$[0,\alpha]\cap\mathbb{R}$	$\min\{\max\{x-\mu,0\},\alpha\}$	$\mu \in \mathbb{R}, \alpha \in [0, \infty]$		
$\lambda \ \mathbf{x}\ $	\mathbb{E}	$\left(1 - \frac{\lambda}{\max\{\ \mathbf{x}\ , \lambda\}}\right)\mathbf{x}$	$\ \cdot\ $ - Euclidean, $\lambda > 0$		
$-\lambda \ \mathbf{x}\ $	\mathbb{E}	$\left(1 + \frac{\lambda}{\ \mathbf{x}\ }\right)\mathbf{x}, \mathbf{x} \neq 0,$ $\{\mathbf{u} : \ \mathbf{u}\ = \lambda\}, \mathbf{x} = 0.$	$\ \cdot\ $ - Euclidean, $\lambda>0$		
$\lambda \ \mathbf{x}\ _1$	\mathbb{R}^n	$\mathcal{T}_{\lambda}(\mathbf{x}) = [\mathbf{x} - \lambda \mathbf{e}]_{+} \odot \operatorname{sgn}(\mathbf{x})$	$\lambda > 0$		
$\ \boldsymbol{\omega}\odot\mathbf{x}\ _1$	$\text{Box}[-\boldsymbol{lpha}, \boldsymbol{lpha}]$	$\mathcal{S}_{oldsymbol{\omega},oldsymbol{lpha}}(\mathbf{x})$	$\boldsymbol{\alpha} \in [0,\infty]^n, \boldsymbol{\omega} \in \mathbb{R}^n_{++}$		
$\lambda \ \mathbf{x}\ _{\infty}$	\mathbb{R}^n	$\mathbf{x} - \lambda P_{B_{\ \cdot\ _1}[0,1]}(\mathbf{x}/\lambda)$	$\lambda > 0$		
$\lambda \ \mathbf{x}\ _a$	\mathbb{E}	$\mathbf{x} - \lambda P_{B_{\ \cdot\ _{a,*}[0,1]}}(\mathbf{x}/\lambda)$	$\ \mathbf{x}\ _a - \text{norm}, \ \lambda > 0$		
$ \lambda \mathbf{x} _0$	\mathbb{R}^n	$H_{\sqrt{2\lambda}}(x_1) \times \cdots \times H_{\sqrt{2\lambda}}(x_n)$	$\lambda > 0$		
$\lambda \ \mathbf{x}\ ^3$	\mathbb{E}	$\frac{2}{1+\sqrt{1+12\lambda\ \mathbf{x}\ }}\mathbf{X}$	$\ \cdot\ $ - Euclidean, $\lambda > 0$		
$-\lambda \sum_{j=1}^{n} \log x_j$	\mathbb{R}^n_{++}	$\left(\frac{x_j + \sqrt{x_j^2 + 4\lambda}}{2}\right)_{j=1}^n$	$\lambda > 0$		
$\delta_C(\mathbf{x})$	\mathbb{E}	$P_C(\mathbf{x})$	$\emptyset \neq C \subseteq \mathbb{E}$		
$\lambda \sigma_C(\mathbf{x})$	\mathbb{E}	$\mathbf{x} - \lambda P_C(\mathbf{x}/\lambda)$	$\lambda > 0, C \neq \emptyset$ closed convex		
$\lambda \max\{x_i\}$	\mathbb{R}^n	$\mathbf{x} - P_{\Delta_n}(\mathbf{x}/\lambda)$	$\lambda > 0$		
$\frac{\lambda \max\{x_i\}}{\lambda \sum_{i=1}^k x_{[i]}}$	\mathbb{R}^n	$\mathbf{x} - I_{\Delta_n}(\mathbf{x}/\lambda)$ $\mathbf{x} - \lambda P_C(\mathbf{x}/\lambda),$	$\lambda > 0$ $\lambda > 0$		
	11/2	$C = H_{\mathbf{e},k} \cap \text{Box}[0, \mathbf{e}]$	X > 0		
$\lambda \sum_{i=1}^{k} x_{\langle i \rangle} $	\mathbb{R}^n	$\mathbf{x} - \lambda P_C(\mathbf{x}/\lambda),$	$\lambda > 0$		
		$C = B_{\ \cdot\ _1}[0, k] \cap \operatorname{Box}[-\mathbf{e}, \mathbf{e}]$			
$\lambda M_f^{\mu}(\mathbf{x})$	\mathbb{E}	$\mathbf{x} + \frac{\lambda}{\mu + \lambda} \left(\operatorname{prox}_{(\mu + \lambda)f}(\mathbf{x}) - \mathbf{x} \right)$	$\lambda, \mu > 0, f$ proper closed convex		
$\lambda d_C(\mathbf{x})$	\mathbb{E}	$\mathbf{x} + \min\left\{\frac{\lambda}{d_C(\mathbf{x})}, 1\right\} \left(P_C(\mathbf{x}) - \mathbf{x}\right)$	$\emptyset \neq C$ closed convex, $\lambda > 0$		
$rac{\lambda}{2}d_C^2(\mathbf{x})$	\mathbb{E}	$\frac{\lambda}{\lambda+1}P_C(\mathbf{x}) + \frac{1}{\lambda+1}\mathbf{x}$	$\emptyset \neq C$ closed convex, $\lambda > 0$		
$\lambda H_{\mu}(\mathbf{x})$	\mathbb{E}	$\left(1 - \frac{\lambda}{\max\{\ \mathbf{x}\ , \mu + \lambda\}}\right)\mathbf{x}$	$\lambda, \mu > 0$		
$\rho \ \mathbf{x}\ _1^2$	\mathbb{R}^n	$\left(\frac{v_i x_i}{v_i + 2\rho}\right)_{i=1}^n,$	$\rho > 0$		
		$\mathbf{v} = \left[\sqrt{\frac{\rho}{\mu}} \mathbf{x} - 2\rho\right]_{+}^{i=1}, \mathbf{e}^{T}\mathbf{v} = 1 \ (0$			
		when $\mathbf{x} = 0$)			
$\ \mathbf{A}\mathbf{x}\ _2$	\mathbb{R}^n	$\mathbf{x} - \mathbf{A}^T (\mathbf{A} \mathbf{A}^T + \alpha^* \mathbf{I})^{-1} \mathbf{A} \mathbf{x}, \alpha^* = 0$	$\mathbf{A} \in \mathbb{R}^{m \times n}$ with full		
		if $\ \mathbf{v}_0\ _2 \le \lambda$; otherwise, $\ \mathbf{v}_{\alpha^*}\ _2 =$	row rank		
		$\lambda; \mathbf{v}_{\alpha} \equiv (\mathbf{A}\mathbf{A}^T + \alpha \mathbf{I})^{-1}\mathbf{A}\mathbf{x}$			