Jacobi

Calcola la soluzione di un sistema lineare Ax = b, con A matrice quadrata sparsa, utilizzando l'algoritmo di Jacobi.

Sintassi

```
x = jacobi(A,b)
x = jacobi(A,b,TOL)
x = jacobi(A,b,TOL,x0)
x = jacobi(A,b,TOL,x0,MAXITER)

[x,niter] = jacobi(A,b,TOL,x0,MAXITER)

[x,niter,resrel] = jacobi(A,b,TOL,x0,MAXITER)
```

Descrizione

- x = jacobi(A,b): risolve il sistema di equazioni lineari A*x = b. A (matrice dei coefficienti) deve essere una matrice quadrata sparsa, b (vettore dei termini noti) deve essere un vettore colonna avente lo stesso numero di righe di A. La soluzione è corretta a meno di un errore dovuto agli elementi che compongono la matrice A e di conseguenza al malcondizionamento della matrice A.
- x = jacobi(A,b,TOL): usa TOL per determinare l'accuratezza della soluzione. Se non specificato, TOL=1e-6.
- x = jacobi(A,b,TOL,x0): usa TOL per determinare l'accuratezza della soluzione e x0 come soluzione di partenza per determinare la soluzione del sistema. x0 deve essere un vettore colonna avente lo stesso numero di righe di A. Se non specificati,TOL=1e-6 e x0 è un vettore nullo.
- x = jacobi(A,b,TOL,x0,MAXITER): usa TOL per determinare l' accuratezza della soluzione, x0 come soluzione di partenza e MAXITER per fissare il numero massimo di iterazioni che l'algoritmo può compiere idipendentemente dal fatto che abbia trovato una soluzione accurata o meno. Se non specificati, TOL=1e-6, x0 è un vettore nullo e MAXITER=500.
- [x,niter] = jacobi(____): restituisce, oltre alla soluzione del sistema lineare, anche il numero di iterazioni eseguite per ottenere la soluzione con il grado di accuratezza richiesto.
- [x,niter,resrel] = jacobi(____): restituisce, oltre alla soluzione del sistema lineare e il numero di iterazioni, anche il residuo relativo calcolato come norm(b-A*x)/norm(b).

Esempi

Soluzione di un sistema lineare con A sparsa

```
A = sparse([2 0 9 1; 6 -1 -5 0; 0 0 1 0; -2 1 0 6]);
b = [6; -1; -10; 1];
x = jacobi(A,b)
```

```
x = 4 \times 1
78.2499
```

```
520.5003
-10.0000
-60.5001
```

Soluzione di un sistema lineare con A sparsa, visualizzazione del numero di iterazioni

```
A = sparse([2 0 9 1; 6 -1 -5 0; 0 0 1 0; -2 1 0 6]);
b = [6; -1; -10; 1];

[x,niter] = jacobi(A,b)

x = 4×1
    78.2499
    520.5003
    -10.0000
    -60.5001
niter = 66
```

Soluzione di un sistema lineare con A sparsa, visualizzazione del residuo relativo

```
A = sparse([2 0 9 1; 6 -1 -5 0; 0 0 1 0; -2 1 0 6]);
b = [6; -1; -10; 1];
[x,niter,resrel] = jacobi(A,b)
```

```
x = 4×1
    78.2499
520.5003
-10.0000
-60.5001
niter = 66
resrel = 9.6396e-05
```

Argomenti di input

A - Matrice dei coefficienti (Matrice di reali, sparsa, dimensione NxN)

Matrice dei coefficienti del sistema lineare da risolvere. La matrice A deve essere una matrice sparsa contenente numeri reali. La matrice A deve essere ben condizionata, cioè deve avere un indice di condizionamento piccolo (cond(A) [1]), per poter ottenere una soluzione accurata indipendentemente dal numero massimo di iterazioni e dalla tolleranza richiesta.

```
Esempio: spdiags(rand(n,1),0,n,n);
Data Types: single | double
```

b - Vettore dei termini noti (Array di reali di dimensione N)

Vettore dei terminini noti, deve essere un vettore colonna avente lo stesso numero di righe della matrice A.

```
Esempio: [ 2 3 4 ]';
```

Esempio: [2; 3; 4]';

Data Types: single | double

TOL - Accuratezza (reale)

Valore di tolleranza per il calcolo della soluzione x. Il valore di default è 1e-6.

Nota: il risultato potrebbe non raggiungere il livello di accuratezza desiderato a causa del raggiungimento del limite massimo di iterazioni o di errori dovuti al malcondizionamento della matrice A.

Parametro facoltativo.

Data Types: double

xO - Vettore dei valori iniziali (Array di reali di dimensione N)

Soluzione iniziale del sistema, deve essere un vettore colonna avente lo stesso numero di righe della matrice A.

Parametro facoltativo.

Data Types: single | double

MAXITER - Limite iterazioni (integer)

Numero massimo di iterazioni. Il valore di default è 500.

Parametro facoltativo.

Data Types: integer

Argomenti di output

x - Soluzione del sistema (Array di double di dimensione N)

Soluzione del sistema di equazioni tale che Ax = b. Tale soluzione è corretta a meno di un errore dovuto al malcondizionamento della matrice A.

Data Types: single | double

niter - Numero di iterazioni eseguite (integer)

Numero di iterazioni eseguite dall'algoritmo per ottenere la soluzione con l'accuratezza specificata

Data Types: integer

resrel - residuo relativo (reale)

Residuo relativo della soluzione, calcolato come $\frac{\|b-\mathbf{A}\mathbf{x}\|}{\|b\|}$.

Data Types: single | double

Errori e Warning

La funzione restituisce errore nei seguenti casi:

- La matrice A non è quadrata;
- La matrice A non è sparsa ;
- La matrice A contiene valori non validi (Inf o NaN);
- La matrice A contiene uno o più zeri sulla diagonale;
- La dimensione di b non coincide con quella di A;
- Il vettore b contiene valori non validi (Inf o NaN);
- La dimensione di x0 non è coerente con quella di A;
- Il vettore x0 contiene valori non validi (Inf o NaN);
- Il valore di TOL non è valido (Inf o NaN);
- Il valore di MAXITER non è valido (Inf o NaN);

La funzione stampa un warning nei seguenti casi:

- Il valore specificato per TOL è minore di eps. TOL viene posto uguale a 1e-6;
- Il valore specificato per TOL è maggiore 1;
- Il valore specificato per MAXITER è molto piccolo o molto grande;
- Il numero di iterazioni effettuate dall'algoritmo è uguale a MAXITER.

Riferimenti

[1] Matlab Documentation, https://it.mathworks.com/help/matlab/ref/cond.html

Autore

Gabriele Previtera