Hong Kong Mathematics Olympiad (2013 – 2014) Final Event 1 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 求下圖中陰影部分的面積 α。

Determine the area of the shaded region, α , in the figure below.

2. 如果 10 個不同的正整數的平均值是 2α,

求這 10 個數中,最大的一個數 β 最大可能值。

If the average of 10 distinct positive integers is 2α ,

what is the largest possible value of the largest integer, β , of the ten integers?

3. 考慮兩組由正整數組成的有限數列: $1, 3, 5, 7, \dots, \beta$ 和 $1, 6, 11, 16, \dots, \beta+1$ 。 求它們之間相同數字的數目 γ。

Given that $1, 3, 5, 7, \dots, \beta$ and $1, 6, 11, 16, \dots, \beta + 1$ are two finite sequences of positive integers.

Determine γ , the numbers of positive integers common to both sequences.

若 $\log_2 a + \log_2 b \ge \gamma$, 求 a + b 的最小值 δ。 4. If $\log_2 a + \log_2 b \ge \gamma$, determine the smallest positive value δ for a + b. $\delta =$

FOR OFFICIAL USE

Score for Mult. factor for accuracy speed **Bonus** score

Team No.

Time

Min.

Sec.

Total score

Hong Kong Mathematics Olympiad (2013 – 2014) Final Event 2 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 求方程 $\sqrt{(x+\sqrt{x})} - \sqrt{(x-\sqrt{x})} = \sqrt{x}$ 的正實根 α 。
Determine the positive real root, α , of $\sqrt{(x+\sqrt{x})} - \sqrt{(x-\sqrt{x})} = \sqrt{x}$.

2. 下圖為兩個半徑為 4 的圓,其圓心相隔 $\frac{4}{\alpha}$ 。求陰影部分的面積 β 。

In the figure below, two circles of radii 4 with their centres placed apart by

Determine the area β , of the shaded region.

3. 求正整數 γ 的最小值,以使得方程 $\sqrt{x} - \sqrt{\beta \gamma} = 4\sqrt{2}$ 對 x 有正整數解。 Determine the smallest positive integer γ such that the equation $\sqrt{x} - \sqrt{\beta \gamma} = 4\sqrt{2}$ has an integer solution in x.

4. 求 $((\gamma^{\gamma})^{\gamma})^{\gamma}$ 的個位數 δ 。
Determine the units digit, δ , of $((\gamma^{\gamma})^{\gamma})^{\gamma}$.

2		
δ=		

FOR OFFICIAL USE

Score for accuracy

Mult. factor for speed

Team No.

Time

score

Total score

Bonus

Min.

Sec.

Hong Kong Mathematics Olympiad (2013 – 2014) Final Event 3 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 若數列 $10^{\frac{1}{11}} \cdot 10^{\frac{2}{11}} \cdot 10^{\frac{3}{11}} \cdot \dots \cdot 10^{\frac{\alpha}{11}}$ 中所有數字的乘積為 $1\ 000\ 000$,求正整數 α 的值。

 $\alpha =$

If the product of numbers in the sequence $10^{\frac{1}{11}}$, $10^{\frac{2}{11}}$, $10^{\frac{3}{11}}$, ..., $10^{\frac{\alpha}{11}}$ is 1 000 000, determine the value of the positive integer α .

 $\beta =$

- Determine the value of β if $\frac{\beta}{1\times2\times3} + \frac{\beta}{2\times3\times4} + \dots + \frac{\beta}{8\times9\times10} = \alpha$.
- 3. 在下圖的三角形 ABC 中, $\angle ABC = 2\beta^{\circ}$,AB = AD 及 CB = CE。 設 $\gamma^{\circ} = \angle DBE$,求 γ 的值。 In the figure below, triangle ABC has $\angle ABC = 2\beta^{\circ}$, AB = AD and CB = CE. If $\gamma^{\circ} = \angle DBE$, determine the value of γ .

4. 考慮數列 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, ...,求首 γ 項的和 δ 。 For the sequence 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, ..., determine the sum δ of the first γ terms.

δ =

FOR OFFICIAL USE

Score for accuracy × Mult. factor for speed = Team No.

+ Bonus score Time

Min.

Sec.

Total score

Hong Kong Mathematics Olympiad (2013 – 2014) Final Event 4 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 若 $\frac{6\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}=3\sqrt{\alpha}-6$,求 α 的值。

 $\alpha =$

- If $\frac{6\sqrt{3}}{3\sqrt{2}+2\sqrt{3}} = 3\sqrt{\alpha} 6$, determine the value of α .
- 2. 考慮形如 $\frac{n}{n+1}$ 的分數,當中n 是一個正整數。若同時把該分數的分子和分母減 $\beta = \pm 1$,得出的分數是小於 $\frac{\alpha}{7}$,且大於 0,求這樣的分數的數目 β 。

Consider fractions of the form $\frac{n}{n+1}$, where n is a positive integer. If 1 is subtracted from both the numerator and the denominator, and the resultant fraction remains positive and is strictly less than $\frac{\alpha}{7}$, determine, β , the number of these fractions.

- 3. 一個等邊三角形和一個正六邊形的周長相同。若該等邊三角形的面積為 β 平方單位,求正六邊形的面積 γ (平方單位)。 The perimeters of an equilateral triangle and a regular hexagon are equal. If the area of the triangle is β square units, determine the area, γ , of the hexagon in square units.

δ =

FOR OFFICIAL USE

Hong Kong Mathematics Olympiad (2013–2014) Final Event 1 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

若一個等腰三角形對應底邊(不是兩條等腰邊)的高是 8,且周長是32, 1. 求該三角形的面積。

area =

If an isosceles triangle has height 8 from the base, not the legs, and perimeters 32, determine the area of the triangle.

若 $f(x) = \frac{\left(x + \frac{1}{x}\right) - \left(x^6 + \frac{1}{x^6}\right) - 2}{\left(x + \frac{1}{x}\right)^3 + \left(x^3 + \frac{1}{x^3}\right)}$ 當中 x 是一個正實數, 求 f(x) 的最小值。

minimum =

If $f(x) = \frac{\left(x + \frac{1}{x}\right)^6 - \left(x^6 + \frac{1}{x^6}\right) - 2}{\left(x + \frac{1}{x}\right)^3 + \left(x^3 + \frac{1}{x^3}\right)}$ where x is a positive real number,

determine the minimum value of f(x).

3. 求 81 位數 111...1 除以 81 的餘數。 remainder =

Determine the remainder of the 81-digit integer 111...1 divided by 81.

 $a_{100} =$

- 4. 給定一實數數列 a1, a2, a3, ··· , 它滿足
 - 1) $a_1 = \frac{1}{2}$, &
 - 對 $k \ge 2$,有 $a_1 + a_2 + \cdots + a_k = k^2 a_k$ 。

求 a100 的值。

Given a sequence of real numbers a_1, a_2, a_3, \cdots that satisfy

- $a_1 = \frac{1}{2}$, and 1)
- $a_1 + a_2 + \cdots + a_k = k^2 a_k$, for $k \ge 2$. 2)

Determine the value of a_{100} .

FOR OFFICIAL USE

Score for Mult. factor for Team No. accuracy speed **Bonus** Time score Min. Total score Sec.

Hong Kong Mathematics Olympiad (2013 – 2014) Final Event 2 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. \ddot{z} $= \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{10} + \frac{1}{12}$ 中删去若干項後剩 1, 求删去各項的乘積。

Product =

By removing certain terms from the sum, $\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{10} + \frac{1}{12}$, we can get 1.

What is the product of the removed term(s)?

2. 若 $S_n = 1 - 2 + 3 - 4 + ... + (-1)^{n-1} n$,當中 n 是正整數,求 $S_{17} + S_{33} + S_{50}$ 的值。 If $S_n = 1 - 2 + 3 - 4 + ... + (-1)^{n-1} n$, where n is a positive integer, determine the value of $S_{17} + S_{33} + S_{50}$.

 $S_{17} + S_{33} + S_{50} =$

3. A, B, C, D, E 和 F 六人根據英文字母的順序輪班工作。A 在第一個星期日當值, 然後 B 在星期一當值,如此類推。A 於第 50 個星期的哪一天當值?(答案以數字 0 代表星期日,數字 1 代表星期一,.....,數字 6 代表星期六)。

Day

Six persons A, B, C, D, E and F are to rotate for night shifts in alphabetical order with A serving on the first Sunday, B on the first Monday and so on. In the fiftieth week, which day does A serve on? (Represent Sunday by 0, Monday by 1, ..., Saturday by 6 in your answer.)

4. 在下圖中,D 以直綫連接著等邊三角形 ABC 的頂點,當中 AB = AD。 設 $\angle BDC = \alpha^{\circ}$,求 α 的值。

In the figure below, vertices of equilateral triangle ABC are connected to D in straight line segments with AB = AD. If $\angle BDC = \alpha^{\circ}$, determine the value of α .

FOR OFFICIAL USE

Score for accuracy

Mult. factor for speed

Team No.

Time

score

Total score

Min.

Sec.

Hong Kong Mathematics Olympiad (2013 – 2014) Final Event 3 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 求乘積 $\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdots\left(1-\frac{1}{10^2}\right)$ 的值。

Product =

Determine the value of the product $\left(1 - \frac{1}{2^2}\right)\left(1 - \frac{1}{3^2}\right)\cdots\left(1 - \frac{1}{10^2}\right)$.

2. 求和 $\frac{1}{\log_2 100!} + \frac{1}{\log_3 100!} + \frac{1}{\log_4 100!} + \dots + \frac{1}{\log_{100} 100!}$ 的值, 當中 $100! = 100 \times 99 \times 98 \times \dots \times 3 \times 2 \times 1$ 。 Sum =

Determine the value of the sum $\frac{1}{\log_2 100!} + \frac{1}{\log_2 100!} + \frac{1}{\log_4 100!} + \cdots + \frac{1}{\log_{100} 100!}$ where

 $100! = 100 \times 99 \times 98 \times ... \times 3 \times 2 \times 1.$

3. 在下圖中,ABCD 是一個正方形,ADE 是一個等邊三角形,且 E 是正方形 ABCD 外的一點。設 $\angle AEB = \alpha^\circ$,求 α 的值。

In the figure below, ABCD is a square, ADE is an equilateral triangle and E is a point outside of the square ABCD. If $\angle AEB = \alpha^{\circ}$, determine the value of α .

4. 把不同的非零個位數填進下表白色的正方格內,使所有橫、直的等式均成立。 求 α 的值。

Fill the white squares in the figure below with distinct non-zero digits so that the arithmetical expressions, read both horizontally and vertically, are correct.

What is the value of α ?

FOR OFFICIAL USE

Hong Kong Mathematics Olympiad (2013 – 2014) Final Event 4 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

在下圖,ABCD 是一個邊長為 2 的正方形。先以 A 為圓心書出弧 BD, 1. 再以 CD 的中點 M 為圓心從 C 到 D 畫出一個半圓。弧 BD 和弧 DC 相交於 P。 求P與AD的最短距離,即PZ的長度。

In the figure below, ABCD is a square of side length 2. A circular arc with centre at A is drawn from B to D. A semicircle with centre at M, the midpoint of CD, is drawn from C to D and sits inside the square. Determine the shortest distance from P, the intersection of the two arcs, to side AD, that is, the length of PZ.

- 若 $x = \frac{\sqrt{5} + 1}{2}$ 及 $y = \frac{\sqrt{5} 1}{2}$, 求 $x^3y + 2x^2y^2 + xy^3$ 的值。
 - If $x = \frac{\sqrt{5} + 1}{2}$ and $y = \frac{\sqrt{5} 1}{2}$, determine the value of $x^3y + 2x^2y^2 + xy^3$.

若 a,b,c 及 d 是不同的個位數,且 3.

aabcd

-daabc2014d

求 d 的值。 If a, b, c and d are distinct digits and

aabcd

-daabc2014d

determine the value of d.

求方程 $x^4 + (x-4)^4 = 32$ 所有實根的乘積。 4. Determine the product of all real roots of the equation $x^4 + (x-4)^4 = 32$. d =

Product =

FOR OFFICIAL USE

Score for Mult. factor for Team No. accuracy speed **Bonus** Time score Total score Min. Sec.