Neural networks

An introduction

Carlos Martin and Lucas Schuermann

Single-layer perceptrons

Example

Multiple layers

$$x_i^{(n)} = \sum_j w_{ij}^{(n-1)} y_j^{(n-1)}$$

$$x^{(n)} = w^{(n-1)} \cdot y^{(n-1)}$$

$$x_i^{(n)} = \sum_j w_{ij}^{(n-1)} y_j^{(n-1)}$$

$$x^{(n)} = w^{(n-1)} \cdot y^{(n-1)}$$

Activation functions

XOR network

Bias neurons

Do we need more than 1 hidden layer?

Universal approximation theorem

Any continuous function on a compact interval

can be approximated by a feed-forward neural

network with a single hidden layer

For any *f* and ε there exist *a*, *b*, and *c* such that

$$g(x) = \sum_{i} c_i \varphi(a_i \cdot x + b_i)$$

$$|g(x) - f(x)| < \varepsilon$$

for all x in the interval

Training neural networks:

Backpropagation

Initializing weights

Draw from normal distribution

$$w_{ij}^{(n)} \sim \mathcal{N}(0,\sigma)$$

More inputs → Less variance

$$\sigma^2 = \frac{1}{N^{(n)}}$$

Prevents saturation

Backpropagation

Gradient descent

Automatic differentiation (chain rule)

Overall error

$$c = \frac{1}{2}(y_N - t)^2$$

Error gradient of inputs

$$\delta_n = \frac{\partial c}{\partial x_n}$$

Error gradient at last layer

$$\delta_N = (y_N - t)f'(x_N)$$

Error gradient at inner layer

$$\delta_n = \delta_{n+1} w_n f'(x_n)$$

Error gradient

$$\delta_n = f'(x_n) \begin{cases} (y_N - t) & \text{if } n = N \\ \delta_{n+1} w_n & \text{if } n < N \end{cases}$$

Error gradient of weights

$$\frac{\partial c}{\partial w_n} = \delta_{n+1} y_n$$

Adjusting the weights (gradient descent)

$$\Delta w_n = -\alpha \delta_{n+1} y_n$$

Data sets

333333333333 29888888888P188884

Convolutional networks and deep learning

