高等数学——函数极限

Weiwen Wang(王伟文)

暨南大学

2025 年秋季学期

自变量趋于有限值时函数的极限

定义

设函数 f(x) 在点 x_0 的某一去心邻域内有定义,如果存在常数 A,对于任意给定的正数 ϵ ,总存在正常数 δ ,使得当 x 满足不等式 $0 < |x - x_0| < \delta$ 时,对应的函数值 f(x) 都满足不等式

$$|f(x)-A|<\epsilon$$
,

则常数 A 就叫做函数 f(x) 当 $x \to x_0$ 时的极限. 记作

$$\lim_{x \to x_0} f(x) = A \quad \text{ if } f(x_0) \to A(x \to x_0).$$

• 去心邻域: 设 $x_0 \in \mathbb{R}$, $\delta > 0$, 开区间 $(x_0 - \delta, x_0 + \delta)$ 称为点 x_0 的邻域, 记作 $U(x_0, \delta)$; 开区间 $(x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)$ 称为点 x_0 的去心邻域, 记作 $\mathring{U}(x_0, \delta)$; δ 称为邻域的半径.

- 去心邻域: 设 $x_0 \in \mathbb{R}$, $\delta > 0$, 开区间 $(x_0 \delta, x_0 + \delta)$ 称为点 x_0 的邻域, 记作 $U(x_0, \delta)$; 开区间 $(x_0 \delta, x_0) \cup (x_0, x_0 + \delta)$ 称为点 x_0 的去心邻域, 记作 $\mathring{U}(x_0, \delta)$; δ 称为邻域的半径.
- 极限 $\lim_{x\to x_0} f(x)$ 与函数 f 在 x_0 处是否有定义无关.

- 去心邻域: 设 $x_0 \in \mathbb{R}$, $\delta > 0$, 开区间 $(x_0 \delta, x_0 + \delta)$ 称为点 x_0 的邻域, 记作 $U(x_0, \delta)$; 开区间 $(x_0 \delta, x_0) \cup (x_0, x_0 + \delta)$ 称为点 x_0 的去心邻域, 记作 $\mathring{U}(x_0, \delta)$; δ 称为邻域的半径.
- 极限 $\lim_{x\to x_0} f(x)$ 与函数 f 在 x_0 处是否有定义无关.
- $\lim_{x \to x_0} f(x) = A \Leftrightarrow \forall \epsilon > 0, \exists \delta > 0$, 当 $0 < |x x_0| < \delta$ 时, 有 $|f(x) A| < \epsilon$.

- 去心邻域: 设 $x_0 \in \mathbb{R}$, $\delta > 0$, 开区间 $(x_0 \delta, x_0 + \delta)$ 称为点 x_0 的邻域, 记作 $U(x_0, \delta)$; 开区间 $(x_0 \delta, x_0) \cup (x_0, x_0 + \delta)$ 称为点 x_0 的去心邻域, 记作 $\mathring{U}(x_0, \delta)$; δ 称为邻域的半径.
- 极限 $\lim_{x\to x_0} f(x)$ 与函数 f 在 x_0 处是否有定义无关.
- $\lim_{x \to x_0} f(x) = A \Leftrightarrow \forall \epsilon > 0, \exists \delta > 0$, 当 $0 < |x x_0| < \delta$ 时, 有 $|f(x) A| < \epsilon$.
- 几何解释: 考虑点 x_0 , 给定 $\epsilon > 0$, 存在一个区间 $(x_0 \delta, x_0) \cup (x_0, x_0 + \delta)$, 使得函数 f(x) 在该区间内的图像落在直线 $y = A \epsilon$ 和 $y = A + \epsilon$ 之间.

证明
$$\lim_{x\to 1} \frac{x^2-1}{x-1} = 2$$

要证明原式成立, 只要证明对于任意**给定** $\epsilon > 0$, 能找到一个正常数 $\delta > 0$, 使得当 $0 < |x - 1| < \delta$ 时, 总有

$$\left| \frac{x^2 - 1}{x - 1} - \mathbf{2} \right| < \epsilon.$$

要证明原式成立, 只要证明对于任意给定 $\epsilon > 0$, 能找到一个正常数 $\delta > 0$, 使得当 $0 < |x - 1| < \delta$ 时, 总有

$$\left| \frac{x^2 - 1}{x - 1} - \mathbf{2} \right| < \epsilon.$$

要使得上述不等式成立,即使

$$|x-1| < \epsilon \quad (x \neq 1).$$

要证明原式成立, 只要证明对于任意**给定** $\epsilon > 0$, 能找到一个正常数 $\delta > 0$, 使得当 $0 < |x - 1| < \delta$ 时, 总有

$$\left| \frac{x^2 - 1}{x - 1} - \frac{2}{2} \right| < \epsilon.$$

要使得上述不等式成立,即使

$$|x-1| < \epsilon \quad (x \neq 1).$$

故取 $\delta = \epsilon$, 当 $0 < |x-1| < \delta$ 时, 总有

$$\left|\frac{x^2-1}{x-1}-\mathbf{2}\right|<\epsilon.$$

继.

所以
$$\lim_{x\to 1} \frac{x^2-1}{x-1} = 2$$

定义 (左极限)

设函数 f(x) 在点 x_0 的某一去心左邻域内有定义,如果存在常数 A,对于任意给定的正数 ϵ ,总存在正常数 δ ,使得当 x 满足不等式 $x_0 - \delta < x < x_0$ 时,对应的函数值 f(x) 都满足不等式

$$|f(x)-A|<\epsilon$$
,

则常数 A 就叫做函数 f(x) 当 $x \to x_0$ 时的左极限, 记作

$$\lim_{x \to x_0^-} f(x) = A \quad \text{ if } f(x_0^-) = A.$$

• $x \rightarrow x_0^-$ 表示 x 从 x_0 的左侧趋于 x_0

定义 (右极限)

设函数 f(x) 在点 x_0 的某一去心右邻域内有定义,如果存在常数 A,对于任意给定的正数 ϵ ,总存在正常数 δ ,使得当 x 满足不等式 $x_0 < x < x_0 + \delta$ 时,对应的函数值 f(x) 都满足不等式

$$|f(x)-A|<\epsilon$$
,

则常数 A 就叫做函数 f(x) 当 $x \to x_0$ 时的右极限, 记作

$$\lim_{x \to x_0^+} f(x) = A$$
 $\vec{\boxtimes} f(x_0^+) = A$.

• $x \rightarrow x_0^+$ 表示 x 从 x_0 的右侧趋于 x_0

左右极限统称单侧极限.

定理 7 (极限存在的充分必要条件)

函数 f(x) 当 $x \to x_0$ 时极限存在的充分必要条件时左右极限各自存在并且相等, 即

$$f(x_0^-) = f(x_0^+).$$

随堂练习

观测相应的函数图像, 计算极限

(1)
$$\lim_{x \to 1} \ln x$$
 (2) $\lim_{x \to 0} (x^2 + 1)$

(3)
$$\lim_{x \to 0} \sin x$$
 (4) $\lim_{x \to 0^{-}} e^{x}$

随堂练习

观测相应的函数图像, 计算极限

$$(1)\lim_{x\to 1}\ln x=0$$

$$(2)\lim_{x\to 0}(x^2+1)=1$$

$$(3)\lim_{x\to 0}\sin x=0$$

$$(4) \lim_{x \to 0^{-}} e^{x} = 1$$

随堂练习

观测相应的函数图像, 计算 $x \to 0$ 时函数 f(x) 的左、右极限, 并判断 $x \to 0$ 时, 函数极限是否存在.

(1)
$$f(x) = \begin{cases} 1, & x < 0 \\ e^x, & x \ge 0 \end{cases}$$
 (2) $f(x) = \begin{cases} x, & x < 0 \\ e^x, & x \ge 0 \end{cases}$

(1)
$$f(0^{-}) = \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} 1 = 1;$$

 $f(0^{+}) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} e^{x} = 1;$
 $\lim_{x \to 0} = f(0^{-}) = f(0^{+}).$

(1)
$$f(0^{-}) = \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} 1 = 1;$$
 (2) $f(0^{-}) = \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} x = 0;$ $f(0^{+}) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} e^{x} = 1;$ $f(0^{+}) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} e^{x} = 1;$ $\lim_{x \to 0} f(0^{-}) = f(0^{-}) = f(0^{+}).$ $f(0^{-}) \neq f(0^{+}), \lim_{x \to 0}$

自变量趋于无穷大时函数的极限

定义

设函数 f(x) 当 |x| 大于某一正数时有定义. 如果存在常数 A, 对于任意给定的正数 ϵ , 总存在正数 X, 使得当 x 满足不等式 |x| > X 时, 对应的函数值满足不等式

$$|f(x)-A|<\epsilon$$
,

那么常数 A 就叫做函数 f(x) 当 $x \to \infty$ 时的极限. 记作

$$\lim_{x \to \infty} f(x) = A \quad \text{if } f(x) \to A(x \to \infty).$$

• $\lim_{x \to \infty} f(x) = A \Leftrightarrow \forall \epsilon > 0, \exists X > 0, \, \text{当} |x| > X$ 时, 有 $|f(x) - A| < \epsilon$.

- $\lim_{x \to \infty} f(x) = A \Leftrightarrow \forall \epsilon > 0, \exists X > 0, \mathring{\exists} |x| > X$ 时,有 $|f(x) A| < \epsilon$.
- 若将定义中的 "|x| > X" 改为 "x > X", 则得到 $\lim_{x \to +\infty} f(x) = A$ 的定义.

- $\lim_{x \to \infty} f(x) = A \Leftrightarrow \forall \epsilon > 0, \exists X > 0, \mathring{\exists} |x| > X$ 时,有 $|f(x) A| < \epsilon$.
- 若将定义中的 "|x| > X" 改为 "x > X", 则得到 $\lim_{x \to +\infty} f(x) = A$ 的定义.
- 若将定义中的 "|x| > X" 改为 "x < -X", 则得到 $\lim_{x \to -\infty} f(x) = A$ 的定义.

- $\lim_{x \to \infty} f(x) = A \Leftrightarrow \forall \epsilon > 0, \exists X > 0, \, \text{当} |x| > X$ 时, 有 $|f(x) A| < \epsilon$.
- 若将定义中的 "|x| > X" 改为 "x > X", 则得到 $\lim_{x \to +\infty} f(x) = A$ 的定义.
- 若将定义中的 "|x| > X" 改为 "x < -X",则得到 $\lim_{x \to -\infty} f(x) = A$ 的定义.
- 几何解释: 任意给定 $\epsilon > 0$,作直线 $y = A \epsilon$ 和 $y = A + \epsilon$,则总有一个正数 X 存在,使得当 x > X 或 x < -X 时,函数 y = f(x) 的图像位于这两条直线之间,称 y = A 为函数 y = f(x) 的图形的水平渐近线.

证明
$$\lim_{x\to\infty} \frac{1}{x} = 0$$

证明
$$\lim_{x\to\infty} \frac{1}{x} = 0$$

证明.

给定任意 $\epsilon > 0$, 要证存在 X > 0, 使得当 |x| > X 时, $\left| \frac{1}{x} - 0 \right| < \epsilon$.

证明
$$\lim_{x\to\infty} \frac{1}{x} = 0$$

证明.

给定任意 $\epsilon>0$, 要证存在 X>0, 使得当 |x|>X 时, $\left|\frac{1}{x}-0\right|<\epsilon$. 又因为

$$\left| \frac{1}{x} - 0 \right| < \epsilon \Longleftrightarrow |x| > \frac{1}{\epsilon}$$

证明
$$\lim_{x \to \infty} \frac{1}{x} = 0$$

证明.

给定任意 $\epsilon > 0$, 要证存在 X > 0, 使得当 |x| > X 时, $\left|\frac{1}{x} - 0\right| < \epsilon$. 又因为

$$\left| \frac{1}{x} - 0 \right| < \epsilon \Longleftrightarrow |x| > \frac{1}{\epsilon}$$

故取 $X = \frac{1}{\epsilon}$,当 $|x| > X = \frac{1}{\epsilon}$ 时, $\left| \frac{1}{x} - 0 \right| < \epsilon$.

函数极限的性质

定理 (函数极限的唯一性)

如果 $\lim_{x \to x_0} f(x)$ 存在, 那么这极限唯一.

如果 $\lim_{x \to x_0} f(x) = A$, 那么存在常数 M > 0 和 $\delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时, 有 $|f(x)| \le M$.

如果 $\lim_{x \to x_0} f(x) = A$, 那么存在常数 M > 0 和 $\delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时, 有 $|f(x)| \le M$.

证明.

取 $\epsilon = 1$, $\exists \delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时 |f(x) - A| < 1

如果 $\lim_{x \to x_0} f(x) = A$, 那么存在常数 M > 0 和 $\delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时, 有 $|f(x)| \le M$.

证明.

取 $\epsilon = 1$, $\exists \delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时 |f(x) - A| < 1

$$|f(x)| = |f(x) - A + A| \le |f(x) - A| + |A| \le 1 + |A|$$

如果 $\lim_{x \to x_0} f(x) = A$, 那么存在常数 M > 0 和 $\delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时, 有 $|f(x)| \le M$.

证明.

取 $\epsilon = 1$, $\exists \delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时 |f(x) - A| < 1

$$|f(x)| = |f(x) - A + A| \le |f(x) - A| + |A| \le 1 + |A|$$

故取 M = 1 + |A|, 当 $0 < |x - x_0| < \delta$ 时, $|f(x)| \le M$.

定理 (函数极限的局部保号性)

如果 $\lim_{x\to x_0} f(x) = A$, 且 A > 0 (或 A < 0), 那么存在常数 $\delta > 0$, 使得当 $0 < |x-x_0| < \delta$ 时, f(x) > 0 (或 f(x) < 0).

定理 (函数极限的局部保号性)

如果 $\lim_{x\to x_0} f(x) = A$, 且 A > 0(或 A < 0), 那么存在常数 $\delta > 0$, 使得当 $0 < |x-x_0| < \delta$ 时, f(x) > 0(或 f(x) < 0).

证明.

此处只证明 A > 0 的情形.

取
$$\epsilon = \frac{A}{2}$$
, $\exists \delta > 0$, 使得当 $0 < |x - x_0| < \delta$, $|f(x) - A| < \epsilon = \frac{A}{2}$, 即

$$-\frac{A}{2} + A < f(x) < A + \frac{A}{2} \Rightarrow f(x) > \frac{A}{2} > 0.$$

推论

如果 $\lim_{x\to x_0} f(x) = A(A \neq 0)$, 那么就存在 x_0 的某一个去心邻域 $\mathring{U}(x_0)$,

当 $x \in \mathring{U}(x_0)$ 时, 就有 $|f(x)| > \frac{|A|}{2}$.

推论

如果在 x_0 的某去心邻域内 $f(x) \ge 0$ (或 $f(x) \le 0$), 而且 $\lim_{x \to x_0} f(x) = A$, 那么 $A \ge 0$ (或 $A \le 0$).

● 为什么是 "≥", 而不是 ">0"? 反证法结合保号性.

定理 (函数极限与数列极限的关系)

如果极限 $\lim_{x\to x_0} f(x)$ 存在, $\{x_n\}$ 为函数 f(x) 定义域内任一收敛于 x_0 的数列, 且满足 $x_n\neq x_0 (n\in\mathbb{N}_+)$, 那么函数值数列 $\{f(x_n)\}$ 必收敛, 且 $\lim_{n\to\infty} f(x_n) = \lim_{x\to x_0} f(x)$.

记 $\lim_{x\to x_0} f(x) = A$, 则由函数极限定义,

给定 $\epsilon > 0$, 存在 $\delta > 0$, 当 $0 < |x - x_0| < \delta$ 时, $|f(x) - A| < \epsilon$.

记 $\lim_{x\to x_0} f(x) = A$, 则由函数极限定义,

给定 $\epsilon > 0$, 存在 $\delta > 0$, 当 $0 < |x - x_0| < \delta$ 时, $|f(x) - A| < \epsilon$.

又因为 $\lim_{n\to\infty} x_n = x_0$ 且 $x_n \neq x_0 (n \in \mathbb{N}_+)$, 由数列极限定义,

对于 $\delta > 0$, 存在正整数 $N \in \mathbb{N}_+$, 当 n > N 时, $0 < |x_n - x_0| < \delta$

从而 $|f(x_n)-A|<\epsilon$.

记 $\lim_{x\to x_0} f(x) = A$, 则由函数极限定义,

给定 $\epsilon > 0$, 存在 $\delta > 0$, 当 $0 < |x - x_0| < \delta$ 时, $|f(x) - A| < \epsilon$.

又因为 $\lim_{n\to\infty} x_n = x_0$ 且 $x_n \neq x_0 (n \in \mathbb{N}_+)$, 由数列极限定义,

对于 $\delta > 0$, 存在正整数 $N \in \mathbb{N}_+$, 当 n > N 时, $0 < |x_n - x_0| < \delta$

从而 $|f(x_n) - A| < \epsilon$.

综合可得

给定 $\epsilon > 0$, 存在整数 $N \in \mathbb{N}_+$, 当 n > N 时, $|f(x_n) - A| < \epsilon$,

作业

- 例题 3, 教材 Page 29;
- 抄写函数极限定义, 教材 Page 28;
- 教材习题 1-3: 1; 3(1)(3); 4;5(1).