

AFGL Atmospheric Constituent Profiles (0-120km)

G.P. ANDERSON

S.A. CLOUGH

J.H. CHETWYND E.P. SHETTLE

F.X. KNEIZYS

15 May 1986

Approved for public release; distribution unlimited.

OPTICAL PHYSICS DIVISION

PROJECT 7670

AIR FORCE GEOPHYSICS LABORATORY

HANSCOM AFB, MA 01731

					PAG	

	REPORT DOC	JMENTATION	PAGE		
1a. REPORT SECURITY CLASSIFICATIO		16. RESTRICTIVE			
UNCLASSIFIED					
2a. SECURITY CLASSIFICATION AUTH		3 : DISTRIBUTION : Approve	d for Publ		:
2b. DECLASSIFICATION / DOWNGRAD	ING SCHEDULE	Distribution Unlimited			
4. PERFORMING ORGANIZATION REP ERP, No. 954	ORT NUMBER(S)	5. MONITORING	ORGANIZATION	REPORT NUMB	ER(S)
AFGL-TR-86-0110					
6a. NAME OF PERFORMING ORGANIA Air Force Geophysics		7a. NAME OF MO	NITORING ORG	ANIZATION	
Laboratory	OPI				
6c. ADDRESS (City, State, and ZIP Coo	de)	7b. ADDRESS (Cit)	y, State, and Zil	Code)	
Hanscom AFB Massachusetts 01731					
8a. NAME OF FUNDING/SPONSORING		9. PROCUREMENT	INSTRUMENT II	DENTIFICATION	NUMBER
ORGANIZATION	(if applicable)				
Bc. ADDRESS (City, State, and ZIP Cod	e)	10. SOURCE OF F		RS	
		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WOR ACCE
11. TITLE (Include Security Classificat		62101F	7670	09	767
	A. CLOUGH, F.X. KNE 13b. TIME COVERED FROM TO	14. DATE OF REPORT	RT (Year, Month		
17. COSATI CODES FIELD GROUP SUB		ERIC CONSTIT	TUENTS,	nd identify by i	block numl
FIELD GROUP SUB	GROUP ATMOSPH TEMPERA' MODEL AT if necessary and identify by block	ERIC CONSTITURE PROFILE (MOSPHERES	TUENTS,	·	./
FIELD GROUP SUB	ATMOSPH TEMPERA' MODEL AT if necessary and identify by block case consisting of volume as been assembled for res, each defining tempe the U.S. Standard Supprange of climatological if CH4 have been subsettle analyses. The remain U.S. Standard condition measurements explicit	ERIC CONSTITURE PROFILE (MOSPHERES of number) The mixing ratio use with spectocrature, pressiplements, 1966 choices. Analoguently adapteding species arons. Because	os (06120km cral radiance sure and do and the U ogous zone ed from sat re defined I the entire	n) for twence transmicensity as a second control of the control of	nty eightance reference function and Atmosphere and for corofiles is preference and for corofiles and
An atmospheric data to minor and trace gases he six reference atmospherial titude (selected from the phere, 1976), provide a H ₂ O, O ₃ , N ₂ O, CO, and dynamical-photochemical usually appropriate for tially based on available	ATMOSPH TEMPERA' MODEL AT if necessary and identify by block has econsisting of volume as been assembled for res, each defining tempe the U.S. Standard Sup- range of climatological if CH4 have been subsett analyses. The remain U.S. Standard condition measurements, explicit intained.	ERIC CONSTITURE PROFILE MOSPHERES number) me mixing ratio use with spect plements, 1966 choices. Anal quently adapte ning species ar ons. Because t photochemics Labstract security L	os (06120km radianos	n) for twere transmirensity as a second control of twee control of the control of	nty eightance is ard Atmoscription and/or orofiles is preint the d
An atmospheric data to minor and trace gases he six reference atmospheric altitude (selected from the phere, 1976), provide a H2O, O3, N2O, CO, and dynamical-photochemical usually appropriate for tially based on available species has not been ma	ATMOSPH TEMPERA' MODEL AT if necessary and identify by block has econsisting of volume as been assembled for res, each defining tempe the U.S. Standard Sup- range of climatological if CH4 have been subsett analyses. The remain U.S. Standard condition measurements, explicit intained.	ERIC CONSTITURE PROFILE MOSPHERES number) ne mixing ratio use with spect perature, press plements, 1966 choices. Anal quently adapte ning species ar ons. Because t photochemics 21. ABSTRACT SEC UNCLASS 22b. TELEPHONE ((617) 377-233) until exhausted.	os (00120km cral radiance sure and de sure and the U ogous zone ed from sate defined in the entire al consistent	n) for twere transmirensity as a second control of twee control of the control of	nty eightance in function and Atroprofiles is predicted in the control of the con

Contents

1.	INTRODUCTION	1
2.	ATMOSPHERIC PROFILE DESCRIPTION	3
3.	ERROR/VARIABILITY ESTIMATES	16
4.	LIMITATIONS	16
RE	FERENCES	19
AP	PENDIX A: ATMOSPHERIC PROFILES Part I: Reference Atmospheric Model Profiles	21-35
	Temperature	. 23
	Density	24
	Pressure	25
	H ₂ O	26
	O_3^-	27
	N ₂ O	28
	CO	29
	CH ₄	30
	Part II: Constituent Profiles	
	H_2O , CO_2 , O_3 , N_2O	32
	CO , CH_4 , O_2 , NO	32
	SO ₂ , NO ₂ , NH ₃ , HNO ₃	
		33
	OH, HF, HC1, HBr	33
	HI, C10, OCS, H ₂ CO	34
	HOC1, N ₂ , HCN, CH ₃ C1	
	· · · · · · · · · · · · · · · · · · ·	34
	$^{\mathrm{H}_{2}\mathrm{O}_{2}}$, $^{\mathrm{C}_{2}\mathrm{H}_{2}}$, $^{\mathrm{C}_{2}\mathrm{H}_{6}}$, $^{\mathrm{PH}_{3}}$	35
APP	PENDIX B: BIBLIOGRAPHY	
	Part I. Subject Listing	37
	Part II. Alphabetical Listing	31

1. AFGL U.S. STD. Profiles $(H_2O, CO_2, O_3, N_2O, CO, CH_4, O_2)$

10

14

Tables

1.	Reference Atmospheric Model Profiles, including $T(K)$, $p(mb)$, $n(cm^3)$, and mixing ratios (ppmv) for H_2C , O_3 , N_2O , CO , and CH_4	
	a. Model 1. Tropical b. Model 2. Midlatitude Summer c. Model 3. Midlatitude Winter d. Model 4. Subarctic Summer e. Model 5. Subarctic Winter f. Model 6. U.S. Standard	4 5 6 7 8
2.	Constituent Profiles (ppmv) for:	
	a. H_2O , CO_2 , N_2O , CO , CH_4 , O_2	11
	b. NO, SO ₂ , NO ₂ , NH ₃ , HNO ₃ , OH, HF	12
	e. нс1, нвг, ні, с10, осs, н ₂ со, нос1	13
	d. N_2 , HCN, CH_3C1 , H_2O_2 , C_2H_2 , C_2H_6 , PH_3	14

Acces	sion	For	
NTIS	GRA8	εI	b
DTIC	TAB		
Unann	ounce	ed	
Justi	ricat	ion_	
Ву			
Distr	icuti	.on/	
Avai	labil	ity	Codes
Dist	Avai. Spe	l and	-
AI			

AFGL Atmospheric Constituent Profiles (0-120km)

1. INTRODUCTION

PRODUCTOR AMENDE AMENDAGE STREET, STREET, STREET,

Atmospheric radiance-transmittance spectral modeling requires an adequate description of the local thermal and constituent environment. A data base consisting of realistic vertical profiles for temperature and gas mixing ratios has been designed expressly for incorporation into such models. Its thermal structure is represented by a subset of the 1966 Atmospheric Supplements (tropical (15N), middle latitude (45N) summer and winter, subarctic (60N) summer and winter) and the U.S. Standard Model Atmosphere, 1976. The accompanying volume mixing ratio profiles rely as much as possible on current measurements and/or theoretical predictions (see Appendix B).

⁽Received for publication 14 May 1986)

^{1.} NASA (1966), U.S. Standard Atmosphere Supplements, 1966, U.S. Government Printing Office, Washington, DC.

^{2.} NASA (1976), U.S. Standard Atmosphere Supplements, 1976, U.S. Government Printing Office, Washington, DC.

More extensive literature reviews of atmospheric structure, variability, dynamics and chemistry are available (for example, Smith, 3 WMO, 4a, 4b and Brasseur and Solomon 5).

This compilation includes only those gases currently part of the AFGL molecular line parameter atlases 6 , 7 . The range of tabulated atmospheric values for water vapor (H_2O) , ozone (O_3) , nitrous oxide (N_2O) , and methane (CH_4) are primarily inferred from global satellite measurements 8 , 9 , 10 . The carbon monoxide (CO) seasonal profiles, however, rely on the predictions of a photochemical-dynamical model 11 . The remaining individual gas profiles have been derived from a variety of sources. All have been edited to produce the final tabulations; in most cases this consists of smoothing and interpolation to standard altitude levels. Some species, however, require additional extrapolation because of the unavailability of suitable data (particularly above the stratopause). In general, dayside estimates for diurnally varying species $(O_3$, NO, and NO_2 , for example) have been adopted.

STATES SECULAR CONTRACTOR CONTRACTOR

^{3.} Smith, M. A. H. (1982) Compilation of Atmospheric Gas Concentration Profiles From 0-50 km, NASA Tech Mem 83289.

⁴a. W. M. O. (1982) The Stratosphere 1981: Theory and Measurements, Report No. 11, NASA, Greenbelt, MD.

⁴b. W. M. O. (1986) Atmospheric Ozone 1985: Assessment of Our Understanding of the Processes Controlling its Present Distribution and Change, WMO Report No. 16, W. M. O., Geneva, Switzerland.

^{5.} Brasseur, G. and Solomon, S. (1984) Aeronomy of the Middle Atmosphere, D. Reidel Publishing Co, Dordrecht, Holland, Chapter 5: Composition & Chemistry, 440 pp.

^{6.} Rothman, L.S., Goldman, A., Gillis, J.R. Gamache, R.R., Pickett, H.M., Poynter, R.L., Husson, N. and Chedin, A. (1983b), AFGL trace gas compilation: 1982 version, Appl. Opt., 22, 1616-1627.

^{7.} Rothman, L.S., Gamache, R.R., Barbe, A., Goldman, A., Gillis, H.R., Brown, L.A., Toth, R.A., Flaud, J.-M. and Camy-Peyret, C. (1983a), AFGL atmospheric absorption line parameters compilation: 1982 edition, Appl. Opt., 22, 2247-2256.

^{8.} Russell III, J.M., Gille, J.C., Remsberg, E.E., Gordley, L.L., Baily, P.L., Fischer, H., Girard, A., Drayon, S.R., Evans, W.F.J. and Harries, J.E. (1984b) Validation of water vapor results measured by the LIMS experiment on Nimbus 7, J. Geophys. Res; 89, 5115-5120.

^{9.} Keating, G.M. and Young D.F. (1985) Interim reference ozone models for the middle atmosphere, Interim COSPAR Reference Atmosphere for Altitudes 20-120km, in preparation.

Jones, R.L. and Pyle, J.A. (1984) Observations of CH₄ and N₂O by the Nimbus 7 SAMS: A comparison with in situ data and two-dimensional numerical model calculations, J. Geophys. Res; 89, 5263-5379.

^{11.} Solomon, S., Garcia, R.R., Olivero, J.J., Bevilacqua, R.M., Schwartz, P.R., Clancy, R.T. and Mahleman, D.O. (1985) Photochemistry and transport of CO in the middle atmosphere, J. Atmos. Sci., 42, 1072-1083.

2. ATMOSPHERIC PROFILE DESCRIPTION

The six reference atmospheres, each with associated volume mixing ratio profiles for H_2O , O_3 , N_2O , CO, and CH_4 , are presented in Table 1. Along with CO_2 , these are the most radiatively active molecules. Sample profiles, appropriate for the U.S. Standard atmosphere conditions (Model 6), are shown in Figure 1. Because the mixing ratios of CO_2 and O_2 have been held seasonally invariant, they are listed in Table 2, as part of a set of single profiles numbered according to the AFGL Line Atlas 6, 7 numbering system; i.e. H_2O is 1, CO_2 is 2, etc. The first seven molecules in Table 2 are the same as those in Figure 1 for the U.S. Standard Atmosphere. The 21 additional species, as identified on the AFGL trace gas compilation 7, are; NO, SO_2 , NO_2 , NH_3 , HNO_3 , OH, HF, HCI, HBr, HI, CIO, OCS, H_2CO , HOCI, N_2 , HCN, CH_3CI , H_2O_2 , C_2H_2 , C_2H_6 , and PH_3 . Graphical representations for all the tabular data are available in Appendix A. (Note: although N_2 is the dominant atmospheric gas, it appears as only a trace spectral contributor.)

Table 1. Reference Model Atmospheric Profiles

Model = 1 Tropic (15N Annual Average)

Model = 2 Mid-Latitude Summer (45N July)

Model = 3 Mid-Latitude Winter (45N Jan)

Model = 4 Sub Arctic Summer (60N July)

Model = 5 Sub-Arctic Winter (60N Jan)

Model = 6 U.S. Standard (1976)

This tabular presentation includes: Altitude (km), Pressure (mb), Density (cm $^{-3}$), and mixing ratios (ppmv) for $\rm H_2O$, $\rm O_3$, $\rm N_2O$, CO, and $\rm CH_4$. Profiles for $\rm CO_2$ and $\rm O_2$ can be found in Table 2.

[(*) indicates subsequent extrapolation adopted for that species]

Table 1a. Reference Atmospheric Model Profiles, Model 1. Tropical

	apre ra.	Kelerei				s, Wodel	1. Tropic	
MODEL =	1	TROPICA	L					
ALT	PRES	TEMP	DENSITY	H20	03	N20	CO	CH4
(KM)	(MB)	(K)	(CM-3)	(PPMV)	(PPMV)	(PPMV)	(PPMV)	(PPMV)
	1.013E+03	299.7	2.450E+19	2.59E+04	2.87E-02	3.20E-01 3.20E-01	1.50E-01	1.70E+00 1.70E+00
	9.040E+02 8.050E+02	293.7 287.7	2.231E+19 2.028E+19	1.95E+04 1.53E+04	3.15E-02 3.34E-02	3.20E-01	1.45E-01 1.40E-01	1.70E+00
	7.150E+02	283.7	1.827E+19	8.60E+03	3.506-02	3.20E-01	1.35E-01	1.70E+00
4.00	6.330E+02	277.0	1,656E+19	4.44E+03	3.56E-02	3.20E-01	1.31E-01	1.70E+00
	5.590E+02	270.3	1.499E+19	3.35E+03	3.77E-02	3.20E-01	1.30E-01	1.70E+00
	4.920E+02 4.320E+02	263.6 257.0	1.353E+19 1.218E+19	2.10E+03 1.29E+03	3.99E-02 4.22E-02	3.20E-01 3.20E-01	1.29E-01 1.25E-01	1.70E+00 1.70E+00
	3.780E+02	250.3	1.095E+19	7.64E+02	4.47E-02	3.20E-01	1.19E-01	1.70E+00
	3.290E+02	243.6	9.789E+18	4.10E+02	5.00E-02	3.20E-01	1.09E-01	1.69E+00
	2.860E+02	237.0	8.747E+18	1.916+02	5.60E-02	3.18E-01	9.96E-02	1.69E+00
	2.470E+02	230.1	7.780E+18	7.31E+01	6.61E-02	3.14E-01	8.96E-02	1.68E+00
12.00	2.130E+02 1.820E+02	223.6 217.0	6.904E+18 6.079E+18	2.91E+01 9.90E+00	7.82E-02 9.29E-02	3.10E-01 3.05E-01	7.81E-02 6.37E-02	1.66E+00 1.65E+00
14.00	1.560E+02	210.3	5.377E+18	6.22E+00	1.05E-01	3.00€-01	5.03E-02	1.63E+00
15.00	1.320E+02	203.7	4.697E+18	4.00E+00	1.26E-01	2.94E-01	3.94E-02	1.61E+00
16.00	1.110E+02	197.0	4.084E+18	3.00E+00	1.44E-01	2.88E-01	3.07E-02	1.58E+00
	9.370E+01	194.8	3.486E+18	2.90E+00	2.50E-01	2.78E-01	2.49E-02	1.55E+00
	7.890E+01 6.660E+01	198.8 202.7	2.877E+18 2.381E+18	2.75E+00 2.60E+00	5.00E-01 9.50E-01	2.67E-01 2.53E-01	1.97E-02 1.55E-02	1.52E+00 1.48E+00
	5.650E+01	206.7	1.981E+18	2.60E+00	1.40E+00	2.37E-01	1.33E-02	1.42E+00
	4.800E+01	210.7	1.651E+18	2.65E+00	1.80E+00	2.19E-01	1.23E-02	1.36E+00
	4.090E+01	214.6	1.381E+18	2.80E+00	2.40E+00	2.05E-01	1.23E-02	1.27E+00
	3.500E+01	217.0	1.169E+18	2.90E+00	3.40E+00	1.97E-01	1.31E-02	1.19E+00
	3.000E+01 2.570E+01	219.2 221.4	9.920E+17 8.413E+17	3.20E+00 3.25E+00	4.30E+00 5.40E+00	1.88E-01 1.76E-01	1.40E-02 1.52E-02	1.12E+00 1.06E+00
	1.763E+01	227.0	5.6296+17	3.60E+00	7.80E+00	1.59E-01	1.72E~02	9.87E-01
	1.220E+01	232.3	3.807E+17	4.00E+00	9.30E+00	1.42E-01	2.00E-02	9.14E-01
	8.520E+00	237.7	2.598E+17	4.30E+00	9.85E+00	1.17E-01	2.27E-02	8.30E-01
	6.000E+00	243.1	1.789E+17	4.60E+00	9.70E+00	9.28E-02	2.49E-02	7.46E-01
	4.260E+00 3.050E+00	248.5 254.0	1.243E+17 8.703E+16	4.90E+00 5.20E+00	8.80E+00 7.50E+00	6.69E-02 4.51E-02	2.74E-02 3.10E-02	6.62E-01 5.64E-01
	2.200E+00	259.4	6.147E+16	5.50E+00	5.90E+00	2.75E-02	3.51E-02	4.61E-01
	1.59CE+00	264.8	4.352E+16	5.70E+00	4.50E+00	1.59E-02	3.99E-02	3.63E-01
	1.160E+00	269.6	3.119E+16	5.90E+00	3.45E+00	9 3BE-03	4.48E-02	2.77E-01
	8.540E-01	270.2	2.291E+16	6.00E+00	2.80E+00	4.75E-03*		2.10E-01
	4.560E-01	263.4	1.255E+16	6.005+00	1.80E+00	3.00E-03	5.99E-02	1.65E-01
	2.390E-01 1.210E-01	253.1 236.0	6.844E+15 3.716E+15	6.00E+00 5.40E+00	1.10E+00 6.50E-01	2.07E-03 1.51E-03	6.96E-02 9.19E-02	1.50E-01 1.50E-01
	5.800E-02	218.9	1.920E+15	4.50E+00	3.00E-01	1.15E-03	1.94E-01	1.50E-01
	2.600E-02	201.8	9.338E+14	3.30E+00	1.80E-01	8.89E-04	5.69E-01	1.50E-01
	1.100E-02	184.8	4.314E+14	2.10E+00	3.30E-01	7.06E-04	1.55E+00	1.50E-01
	4.400E-03	177.1	1.801E+14	1.30E+00	5.00E-01	5.72E-04	3.85E+00	1.50E-01
	1.720E-03 6.880E-04	177.0 184.3	7.043E+13 2.706E+13	8.50E-01 5.40E-01	5.20E-01 5.00E-01	4.71E-04 3.93E-04	6.59E+00	1.40E-01
	2.890E-04	190.7	1.098E+13	4.00E-01	4.00E-01	3.93E-04	1.04E+01 1.71E+01	1.30E-01 1.20E-01
	1.300E-04	212.0	4.445E+12	3.40E-01	2.00E-01	2.84E-04	2.47E+01	1.10E-01
110.00	6.470E-05	241.6	1.941E+12	2.80E-01	5.00E-02	2.44E-04	3.36E+01	9.50E-02
	3.600E-05	299.7	8.706E+11	2.40E-01	5.00E-03	2.12E-04	4.15E+01	6.00E-02
120.00	2.250E-05	380.0	4.225E+11	2.00E-01	5.00E-04	1.85E-04	5.00E+01	3.00E-02

Table 1b. Reference Atmospheric Model Profiles, Model 2. Midlatitude Summer

				المراجعية والمستقد المساولة الم				
MODEL	- 2	MIDLATI	TUDE SUMMER	1				
ALT (KM)	PRES (MB)	TEMP (K)	DENSITY (CM-3)	H2O (PPMV)	O3 (PPMV)	N2O (PPMV)	CO (PPMV)	CH4 (PPMV)
(KM) 0.00 1.00 2.00 3.00 6.00 7.00 8.00 9.00 11.00 13.00 15.00 15.00 17.00 18.00 22.00 22.00 24.00	(MB) 1.013E+03 9.020E+02 8.020E+02 7.100E+02 6.280E+02 4.870E+02 4.870E+02 3.720E+02 2.810E+02 2.430E+02 2.430E+02 2.430E+02 1.790E+02 1.300E+02 1.300E+02 1.110E+02 9.500E+01 6.950E+01 6.950E+01 6.950E+01 5.100E+01 4.370E+01 3.760E+01 3.760E+01 3.760E+01 3.760E+01 3.760E+01	(K) 284.2 289.7 285.2 279.2 267.2 261.2 254.7 235.3 228.3 215.7 215.7 215.7 216.8 217.9 220.4 221.8 223.9	(CM-3) 2.496E+19 2.257E+19 2.038E+19 1.843E+19 1.503E+19 1.351E+19 1.212E+19 1.212E+19 1.716E+18 8.656E+18 7.698E+18 6.012E+18 4.368E+18 5.141E+18 4.368E+18 3.192E+18 2.715E+18 2.715E+18 1.677E+18 1.677E+18 1.429E+18 1.042E+18	(PPMV) 1.88E+04 1.38E+04 9.68E+03 5.98E+03 3.8:103 1.51E+03 1.51E+03 1.51E+03 1.51E+02 4.13E+02 4.13E+02 9.56E+01 8.00E+00 3.40E+00 3.20E+00 3.20E+00 3.20E+00 3.20E+00 3.20E+00 3.20E+00 3.30E+00 3.20E+00 3.45E+00 3.65E+00 3.65E+00 4.00E+00	(PPMV) 3.02E-02 3.34E-02 4.22E-02 4.82E-02 5.51E-02 6.41E-02 7.76E-02 9.13E-01 1.30E-01 1.79E-01 2.23E-01 3.00E-01 4.40E-01 5.00E-01 6.00E-01 7.00E-01 1.00E+00 2.40E+00 2.40E+00 3.40E+00 4.00E+00	(PPMV) 3.20E-01 3.20E-01 3.20E-01 3.20E-01 3.20E-01 3.20E-01 3.20E-01 3.16E-01 2.94E-01 2.86E-01 2.86E-01 2.72E-01 2.61E-01 2.61E-01 1.61E-01 1.61E-01 1.61E-01 1.61E-01	(PPMV) 1.50E-01 1.45E-01 1.45E-01 1.35E-01 1.35E-01 1.30E-01 1.29E-01 1.29E-01 1.29E-01 1.29E-01 1.09E-02 8.96E-02 8.96E-02 8.96E-02 8.37E-02 8.37E-02 2.49E-02 1.55E-02 1.55E-02 1.55E-02 1.23E-02 1.23E-02 1.23E-02 1.31E-02 1.40E-02	(PPMV) 1.70E+00 1.70E+00 1.70E+00 1.70E+00 1.70E+00 1.69E+00 1.67E+00 1.63E+00 1.54E+00 1.54E+00 1.42E+00 1.42E+00 1.42E+00 1.36E+00 1.32E+00 1.32E+00 1.32E+00 1.32E+00 1.38E+00
25.00 27.50 30.00 32.50 35.00 47.50 47.50 50.00 55.00 65.00 75.00 80.00 95.00 105.00 105.00 115.00	6.520E+00 4.640E+00 3.330E+00 2.410E+00 1.760E+00 9.510E-01 5.150E-01 1.390E-01 6.700E-02 4.480E-03 6.250E-04 2.580E-04 1.170E-04 6.110E-05 3.560E-05	225.1 228.5 233.7 239.0 245.2 251.3 257.7 269.9 275.2 269.3 257.1 240.1 196.1 196.1 165.1 165.0 174.1 165.0 174.1 165.0 174.1 165.0 176.3 190.5 222.2 262.4 316.8 380.0	8.919E+17 6.050E+17 2.050E+17 2.820E+17 1.927E+17 1.3373E+16 6.624E+16 4.726E+16 3.398E+16 2.500E+16 1.386E+15 4.196E+15 2.227E+15 1.109E+14 4.967E+14 7.204E+13 2.541E+12 3.816E+12 3.816E+12 1.688E+11 8.16E+12 1.688E+11 1.330E+11	4.20E+000 4.45E+000 4.75E+000 5.00E+000 5.30E+000 5.30E+000 5.30E+000 5.35E+000 5.35E+000 5.35E+000 6.33E+000 6.33E+000 6.33E+001 6.340E-01 6.40E-01 6.40E-01 6.40E-01 6.40E-01 6.40E-01 6.40E-01 6.40E-01	4.80E+00 6.00E+00 8.10E+00 8.10E+00 8.70E+00 7.590E+00 3.50E+00 1.80E+00 1.80E+00 1.80E+01 1.90E-01 2.00E-01 2.00E-01 5.70E-01 2.00E-01 5.70E-01 5.70E-01 5.70E-01 5.70E-01 5.70E-01 5.70E-01	8.96E-02 8.01E-02 6.70E-02 4.96E-02 3.70E-02 1.16E-02 1.16E-03 5.32E-03 2.03E-03 1.02E-03 1.02E-03 1.02E-04 4.35E-04 4.35E-04 4.35E-04 2.84E-04 2.84E-04 2.52E-04 2.52E-04 2.84E-04 2.52E-04 2.84E-04 2.84E-04 2.84E-04	1.52E-02 1.72E-02 2.70E-02 2.49E-02 2.72E-02 2.72E-02 3.14E-02 3.49E-02 3.49E-02 3.49E-02 4.67E-02 4.67E-01 1.8E-01 1.47E+00 2.85E+00 1.01E+01 1.87E+01 2.86E+01 5.17E+01 2.86E+01 5.00E+01 5.00E+01	7.89E-01 7.05E-01 6.32E-01 5.59E-01 4.45E-01 3.39E-01 2.38E-01 1.94E-01 1.57E-01 1.50E-01 1.50E-01 1.50E-01 1.50E-01 1.50E-01 1.40E-01 1.30E-01 1.30E-01 1.10E-01 1.10E-01 1.10E-02 3.00E-02

Table 1c. Reference Atmospheric Model Profiles, Model 3. Midlatitude Winter

MODEL :	: 3	MIDLATI	TUDE WINTER				···	
ALT (KM)	PRES (MB)	TEMP (K)	DENSITY (CM-3)	H2O (PPMV)	O3 (PPMV)	N2O (PPMV)	CO (PPMV)	CH4 (PPMV)
0.00	1.018E+03	272.2	2.711E+19	4.32E+03	2.78E-02	3.20E-01	1.506-01	1.70E+00
2.00	8.973E+02 7.897E+C2	268.7 265.2	2.420E+19	3.45E+03 2.79E+03	2.80E-C2 2.85E-02	3.20E-01	1.45E-01 1.40E-01	1.70E+00 1.70E+00
3.00	6.938E+02	261.7	1.922E+19	2.095+03	3.20E-02	3.20E-01	1.35E-01	1.70E+00
4.00	6.081E+02	255.7	1.724E+19	1.28E+03	3.57E-02	3.20E-01	1.31E-01	1.70E+00
	5.313E+02	249.7	1.542E+19	8.24E+02	4.72E-02	3.20E-01	1.30E-01	1.69E+00
6.00 7.00	4.627E+02 4.016E+02	243.7	1.376E+19 1.225E+19	5.10E+02 2.32E+02	5.84E-02	3.208-01	1.29E-01 1.25E-01	1.67E+00 1.65E+00
8.00	3.473E+02	231.7	1.086E+19	1.08E+02	7.89E-02	3.20E-01	1.19E-01	1.63E+00
9.00	2.993E+02	225.7	9.612E+18	5.57E+01	1.57E-01	3,16E-01	1.09E-01	1.62E+00
10.00	2.568E+02	219.7	8.472E+18	2.96E+01	2.375-01	3.10E-01	9.96E-02	1.588+00
11.00	2.199E+02	219.2	7.271E+18	1.00E+01	3.62E-01	2.99E-01	8.96E-02	1.54E+00
12.00	1.882E+02 1.611E+02	218.7	6.237E+18 5.351E+18	6.00E+00 5.00E+00	5.23E-01 7.04E-01	2.94E-01 2.86E-01	7.81E-02 6.37E-02	1.51E+00 1.48E+00
14.00	1.378E+02	217.7	4.588E+18	4.80E+00	8.00E-01	2.80E-01	5.03E-02	1.45E+00
15.00	1,178E+02	217.2	3.931E+18	4.70E+00	9.00E-01	2.72E-01	3.94E-02	1.42E+00
	1.007E+02	216.7	3.368E+18	4.60E+00	1.10E+00	2.61E-01	3.07E-02	1.39E+00
	8.610E+01	216.2	2.886E+18	4.50E+00	1.40E+00	2.42E-01	2.49E-02	1.36E+00
	7.360E+01 6.280E+01	215.7 215.2	2.473E+18 2.115E+18	4.50E+00 4.50E+00	1.80E+00 2.30E+00	2.17E-01 1.84E-01	1.97E-02 1.55E-02	1.32E+00 1.28E+00
	5.370E+01	215.2	1.809E+18	4.50E+00	2.90E+00	1.62E-01	1.33€-02	1.22E+00
21.00	4.580E+01	215.2	1.543E+18	4.50E+00	3.50E+00	1.36E-01	1.23E-02	1.15E+00
	3.910E+01	215.2	1.317E+18	4.53E+00	3.90E+00	1.23E-01	1.23E-02	1.07E+00
	3.340E+01	215.2 215.2	1.125E+18 9.633E+17	4.55E+00 4.60E+00	4.30E+00 4.70E+00	1.12E-01 1.05E-01	1.31E-02	9.73E-01
	2.860E+01 2.440E+01	215.2	8.218E+17	4,65E+00	5.10E+00	9.66E-02	1.40E-02	8.80E-01 7.93E-01
	1.646E+01	215.5	5.536E+17	4.70E+00	5.60E+00	8.69E-02	1.60E-02	7.13E-01
	1.110E+01	217.4	3.701E+17	4.75E+00	6.10E+00	7.52E-02	1.71E-02	6.44E-01
	7.560E+00	220.4	2.486E+17	4.80E+00	6.80E+00	6.13E-02	1.85E-02	5.75E-01
	5.180E+00 3.600E+00	227.9 235.5	1.647E+17	4.85E+00 4.90E+00	7.10E+00 7.20E+00	5.12E-02 3.97E-02	2.00E-02 2.15E-02	5.05E-01 4.48E-01
	2.530E+00	243.2	7.540E+16	4.95E+C0	6.90E+00	3.00E-02	2.33E-02	3.93E-01
	1.800E+00	250.8	5.202E+16	5.00E+00	5.90E+00	2.08E-02	2.62E-02	3.40E-01
	1.290E+00	258.5	3.617E+16	5.00E+00	4.60E+00	1.31E-02	3.06E-02	2.88E-01
	9.400E-01	265.1	2.570E+16	5.00E+00	3.70E+00	8.07E-03	3.80E-02	2.39E-01
	6.830E-01 3.620E-01	265.7 260.6	1.863E+16	4.95E+00 4.85E+00	2.75E+00 1.70E+00	4.16E-03* 2.63E-03	6.25E-02 1.48E-01	1.94E-01 1.57E-01
	1.880E-01	250.8	5.433E+15	4.50E+00	1.00E+00	1.81E-03	2.93E-01	1.50E-01
	9.500E-02	240.9	2.858E+15	4.00E+00	5.50E-01	1.32E-03	5.59E-01	1.50E-01
70.00	4.700E-02	230.7	1.477E+15	3.30E+00	3.20E-01	1.01E-03	1.08E+00	1.50E-01
	2.220E-02	220.4	7.301E+14	2.70E+00	2.50E-01	7.88E-04	1.90E+00	1.50E-01
	1.030E-02 4.560E-03	199.8	3.553E+14	2.00E+00 1.33E+00	2.30E-01 5.50E-01	6.33E-04 5.19E-04	2.96E+00 4.53E+00	1.50E-01 1.50E-01
	1.980E-03	199.5	7.194E+13	8.50E-01	8.00E-01	4.33E-04	6.86E+00	1.40E-01
	8.770E-04	208.3	3.052E+13	5.40E-01	8.00E-01	3.67E-04	1.05E+01	1.30E-01
100.00	4.074E-04	218.6	1.351E+13	4.00E-01	4.00E-01	3.14E-04	1.71E+01	1.20E-01
	2.000E-04	237.1	6.114E+12	3.40E-01	2.00E-01	2.72E-04	2.47E+01	1.10E-01
	1.057E-04	259.5	2.952E+12	2.80E-01	5.00E-02	2.37E-04	3.36E+01	9.50E-02
	5.980E-05 3.600E-05	293.0 333.0	1.479E+12 7.836E+11	2.40E-01 2.00E-01	5.00E-03 5.00E-04	2.09E-04 1.85E-04	4.15E+01 5.00E+01	6.00E-02
	0.0000 00	200.0	7.0002	002 01	3.002 04		5.002.01	0.002

Ironados procesa hecense incessos opposed apaceas appeable associa eccesa escapa. Esse

Table 1d. Reference Atmospheric Model Profiles, Model 4. Subarctic Summer

		C110 4 D C T						
MODEL :	: 4	 	IC SUMMER	 				
ALT (KM)	PRES (MB)	TEMP (K)	DENSITY (CM-3)	H2O (PPMV)	O3 (PPMV)	N2O (PPMV)	CO (PPMV)	CH4 (PPMV)
0.00	1.010E+03	287.2	2.549E+19	1.19E+04	2.41E-02	3.10E-01	1.50E-01	1.70E+00
1.00	8.960E+02	281.7	2.305E-19	8.70E+03	2.94E-02	3.10E-01	1.45E-01	1.70E+00
2.00	7.929E+02	276.3	2.080E+19	6.75E+03	3.38E-02	3.10E-01	1.40E-01	1.70E+00
3.00	7.000E+02	270.9	1.873E+19	4.82E+03	3.89E-02	3.10E-01	1.35E-01	1.70E+00
4.00	6.160E+G2	265.5	1.682E+19	3.38E+03	4.48E-02	3.08E-01	1.31E-01	1.70E+00
5.00 6.00	5.410E+02 4.740E+02	260.1 253.1	1.508E+19 1.357E+19	2.22E+03 1.33E+03	5.33E-02 6.56E-02	3.02E-01 2.91E-01	1.30E~01 1.29E~01	1.69E+00 1.67E+00
7.00	4.130E+02	246.1	1.216E+19	7.97E+02	7.74E-02	2.82E-01	1.25E-01	1.65E+00
8.00	3.590E+02	239.2	1.088E+19	4.00E+02	9.11E-02	2.76E-01	1.19E-01	1.63E+00
9.00	3.108E+02	232.2	9.701E+18	1.30E+02	1.42E-01	2.70E-01	1.09E-01	1.62E+00
10.00	2.677E+02	225.2	8.616E+18	4.24E+01	1.89E-01	2.65E-01	9.96E-02	1.58E+00
11.00	2.30CE+02	225.2	7.402E+18	1.33E+01	3.05E-01	2.60E-01	8.96E-02	1.54E+00
12.00 13.00	1.977E+02 1.700E+02	225.2	6.363E+18 5.471E+18	6.00E+00 4.45E+00	4.10E-01 5.00E-01	2.55E-01 2.49E-01	7.81E-02	1.51E+00
14.00	1.460E+02	225.2	4.699E+18	4.00E+00	6.00E-01	2.49E-01	6.37E-02 5.03E-02	1.47E+00 1.43E+00
15.00	1.260E+02	225.2	4.055E+18	4.00E+00	7.00E-01	2.36E-01	3.94E-02	1.39E+00
16.00	1.080E+02	225.2	3.476E+18	4.00E+00	8.50E-01	2.28E-01	3.07E-02	1.34E+00
	9,280E+01	225.2	2.987E+18	4.05E+00	1.00E+00	2.18E-01	2.49E-02	1.29E+00
18.00	7,980E+01	225.2	2.568E+18	4.30E+00	1.30E+00	2.04E-01	1.97E-02	1.23E+00
19.00	6.860E+01	225.2	2.208E+18	4.50E+00	1.70E+00	1.82E-01	1.55E-02	1.16E+00
20.00 21.00	5.900E+01 5.070E+01	225.2 225.2	1.899E+18 1.632E+18	4.60E+00 4.70E+00	2.10E+00 2.70E+00	1.57E-01 1.35E-01	1.33E-02 1.23E-02	1.07E+00 9.90E-01
22.00	4.360E+01	225.2	1.403E+18	4.80E+00	3.30E+00	1.22E-01	1.23E-02	9.17E-01
23.00	3.750E+01	225.2	1.207E+18	4.83E+00	3.70E+00	1.10E-01	1.31E-02	8.57E-01
24.00	3,228E+01	226.6	1.033E+18	4.85E+00	4.20E+00	9.89E-02	1.40E-02	8.01E-01
25,00	2.780E+01	228.1	8.834E+17	4.90E+00	4.50E+00	8.78E-02	1.51E-02	7.48E-01
27.50	1.923E+01	231.0	6.034E+17	4.95E+00	5.30E+00	7.33E-02	1.65E-02	6.96E-01
30.00 32.50	1.340E+01 9.400E+00	235.1	4.131E+17	5.00E+00	5.70E+00	5.94E-02	1.81E-02	6.44E-01
35.00	6.610E+00	240.0	2.839E+17 1.938E+17	5.00E+00 5.00E+00	6.90E+00 7.70E+00	4.15E-02 3.03E-02	2.00E-02 2.18E-02	5.89E-01 5.24E-01
37.50	4.720E+00	254.6	1.344E+17	5.00E+00	7.80E+00	1.95E-02	2.34E-02	4.51E-01
40.00	3.400E+00	262.1	9.402E+16	5.00E+00	7.00E+00	1.27E-02	2.50E-02	3.71E-01
42.50	2.480E+00	269.5	6.670E+16	5.00E+00	5.40E+00	9.00E-03	2.65E-02	2.99E-01
45.00	1.820E+00	273.6	4.821E+16	5.00E+00	4.20E+00	6.29E-03	2.81E-02	2.45E-01
47.50	1.340E+00	276.2	3.5162+16	5.00E+00	3.20E+00	4.56E-03	3.00E-02	2.00E-01
50.00 55.00	9.870E-01 5.370E-01	277.2 274.0	2.581E+16 1.421E+16	4.95E+00 4.85E+00	2.50E+00 1.70E+00	2.80E-03* 1.77E-03	3.22E-02 3.65E-02	1.66E-01 1.50E-01
60.00	2.880E-01	262.7	7.946E+15	4.50E+00	1.20E+00	1.21E-03	4.59E-02	1.50E-01
65.00	1.470E-01	239.7	4.445E+15	4.00E+00	8.00E-01	8.87E-04	6.38E-02	1.50E-01
70.00	7.100E-02	216.6	2.376E+15	3.30E+00	4.00E-01	6.76E-04	1.18E-01	1.50E-01
75.00	3.200E-02	i93.6	1.198E+15	2.70E+00	2.00E-01	5.54E-04	3.03E-01	1.50E-01
80.00	1.250E-02	170.6	5.311E+14	2.00E+00	1.80E-01	4.65E-04	7.89E-01	1.50E-01
85.00	4.510E-03	161.7	2.022E+14	1.33E+00	6.50E-01	3.98E-04	1.82E+00	1.50E-01
90.00 95.00	1.610E-03 6.060E-04	161.6 176.8	7.221E+13 2.484E+13	8.50E-01 5.40E-01	9.00E-01 8.00E-01	3.46E-04 3.05E-04	3.40E+00 5.92E+00	1.40E-01 1.30E-01
100.00	2.480E-04	190.4	9.441E+12	4.00E-01	4.00E-01	2.71E-04	1.04E+01	1.20E-01
105.00	1.130E-04	226.0	3.624E+12	3.40E-01	2.00E-01	2.44E-04	1.88E+01	1.10E-01
110.00	6.000E-05	270.1	1.610E+12	2.80E-01	5.00E-02	2.21E-04	2.876+01	9.50E-02
115.00	3.540E-05	322.7	7.951.E+11	2.40E-01	5.00E-03	2.02E-04	3.896+01	6.00E-02
120.00	2.260E-05	380.0	4.311E+11	2.00E-01	5.00E-04	1.85E-04	5.00E+01	3.00E-02

CONTINUE CONTINUE CONTINUE STATES BOURDED SECTION CONTINUES SECTION CONTINUES CONTINUE

Table 1e. Reference Atmospheric Model Profiles, Model 5. Subarctic Winter

MODEL =	5	SUBARCT	IC WINTER					
ALT (KM)	PRES (MB)	TEMP (K)	DENSITY (CM-3)	H2O (PPMV)	03 (PPMV)	N2O (PPMV)	CO (PPMV)	CH4 (PPMV
	1.013E+03	257.2	2.855E+19	1.41E+03	1.80E-02	3.20E-01	1.50E-01	1.70E+0
	B.878E+02	259.1	2.484E+19	1.625+03	2.07E-02	3.20E-01	1.45E-01	1.70E+0
	7.775E+02	255.9	2.202E+19	1.43E+03	2.34E-02	3.20E-01	1.40E-01	1.70E+0
	6.798E+02	252.7	1.950E+19	1.17E+03	2.77E-02	3.20E-01	1.35E-01	1.70E+0
	5.932E+02	247.7	1.736E+19	7.90E+02	3.25E-02	3.204-01	1.31E-01	1.70E+0
	5.158E+02 4.467E+02	240.9 234.1	1.552E+19 1.383E+19	4.31E+02 2.37E+02	3.80E-02 4.45E-02	3.20E-01	1.30E-01	1.69E+0
	3.853E+02	227.3	1.229E+19	1.47E+02	7.25E-02	3.20E-01 3.20E-01	1.29E-01 1.25E-01	1.67E+0
	3.308E+02	220.6	1.087E+19	3.38E+01	1.04E-01	3.20E-01	1.19E-01	1.63E+0
	2.829E+02	217.2	9.440E+18	2.98E+01	2.10E-01	3.16E-01	1.09E-01	1.62E+0
	2.418E+02	217.2	8.069E+18	2.00E+01	3.00E-01	3.10E-01	9.96E-02	1.58E+0
11.00 2	2.067E+02	217.2	6.898E+18	1.00E+01	3.50E-01	2.99E-01	8.96E-02	1.54E+0
12.00 1	1.766E+02	217.2	5.893E+18	6.005+00	4.00E-01	2.94E-01	7.81E-02	1.51E+0
13.00 1	1.510E+02	217.2	5.039E+18	4.45F+00	6.50E-01	2.86E-01	6.37E-02	1.47E+0
	1.291E+02	217.2	4.308E+18	4.502+00	9.00E-01	2.80E-01	5.03E-02	1.43E+0
	1.103E+02	217.2	3.681E+18	4.55E+00	1.20E+00	2.72E-01	3.94E-02	1.39E+0
	9.431E+01	216.6	3.156E+18	4.60E+00	1.50E+00	2.61E-01	3.07E-02	1.34E+0
	3.058E+01	216.0	2.704E+18	4.65E+00	1.90E+00	2.420-01	2.49E-02	1.29E+0
	6.882E+01	215.4	2.316E+18	4.70E+00	2.45E+00	2.17E-01	1.97E-02	1.23E+0
	5.875E+01	214.8	1.982E+18	4.75E+00	3.10E+00	1.84E-01	1.55E-02	1.16E+0
	5.014E+01	214.2	1.697E+18	4.80E+00	3.70E+00	1.62E-01	1.33E-02	1.08E+0
	4.277E+01	213.6	1.451E+18	4.85E+00	4.00E+00	1.38E-01	1.23E-02	1.01E+0
	3.647E+01	2:3.0	1.241E+18	4.90E+00	4.20E+00	1.23E-01	1.23E-02	9.56E-0
	3.109E+01 2.649E+01	212.4	1.061E+18 9.065E+17	4.95E+00	4.50E+00	1.12E-01	1.31E-02	9.01E-0
	2.256E+01	211.2	7.742E+17	5.00E+00 5.00E+00	4.60E+00 4.70E+00	1.04E-01 9.57E-02	1.40E-02	8.48E-0
	1.513E+01	213.6	5.134E+17	5.00E+00	4.90E+00	5.60E-02	1.52E-02 1.72E-02	7.96E-0 7.45E-0
	.020E+01	216.0	3.423E+17	5.00E+00	5.40E+00	7.31E-02	2.04E-02	6.94E-0
	3.910E+00	218.5	2.292E+17	5.00E+00	5.90E+00	5.71E-02	2.49E-02	6.43E-0
	1.701E+00	222.3	1.533E+17	5.00E+00	6.20E+00	4.67E-02	3.17E-02	5.88E-0
	3.230E+00	228.5	1.025E+17	5.00E+00	6.25E+00	3.44E-02	4.43E-02	5.24E-0
40.00 2	2.243E+00	234.7	6.927E+16	5.00E+00	5.90E+00	2.47E-02	6.47E-02	4.51E-0
42.50 1	.570E+00	240.8	4.726E+16	5.00E+00	5.10E+00	1.63E-02	1.04E-01	3.71E-0
	.113E+00	247.0	3.266E+16	5.00E+00	4.10E+00	1.07E-02	1.51E-01	3.00E-0
	.900E-01	253.2	2.261E+16	5.00E+00	3.00E+00	7.06E-03	2.16E-01	2.45E-0
	.719E-01	259.3	1.599E+16	4.95E+00	2.60E+00	3.97E-03*		1.98E-0
	2.990E-01	259.1	8.364E+15	4.85E+00	1.60E+00	2.51E-03	4.84E-01	1.59E-0
	.550E-01	250.9	4.478E+15	4.50E+00	9.50E-01	1.73E-03	7.15E-01	1.50E-0
	.900E-02	248.4 245.4	2.305E+15	4.00E+00	6.50E-01	1.26E-03	1.07E+00	1.50E-0
	.000E-02	234.7	1.181E+15 6.176E+14	3.30E+00 2.70E+00	5.00E-01	9.60E-04	1.52E+00	1.50E-0
	.660E-03	223.9	3.127E+14	2.70E+00	3.30E-01 1.30E-01	7.55E-04 6.10E-04	2.17E+00	1.50E-0
	.500E-03	213.1	1.531E+14	1.33E+00	7.50E-01	5.02E-04	3.06E+00 4.56E+00	1.50E-0 1.50E-0
	.022E-03	202.3	7.244E+13	8.50E-01	8.00E-01	4.21E-04	6.88E+00	1.40E-0
	.070F-04	211.0	3.116E+13	5.40E-01	8.00E-01	3.58E-04	1.06E+01	1.30E-0
	. 230E-04	218.5	1.403E+13	4.00E-01	4.00E-01	3.08E-04	1.71E+01	1.20E-0
	.070E-04	234.0	6.412E+12	3.40E-01	2.00E-01	2.68E-04	2.47E+01	1.10E-0
10.00 1	.080E-04	252.6	3.099E+12	2.80E-01	5.00E-02	2.35E-04	3.36E+01	9.50E-0
15.00 6	.000E-05	288.5	1.507E+12	2.40E-01	5.00E-03	2.08E-04	4.15E+01	6.00E-0
20.0013	.590E-05	333.0	7.814E+11	2.00E-01	5.00E-04	1.85E-04	5.00E+01	3.00E-0

Table 1f. Reference Atmospheric Model Profiles, Model 6. U.S. Standard

MODEL :	6	U. S. S	TANDARD, 19	76				
ALT	PRES	TEMP	DENSITY	H20 (PPMV)	U3 (PPMV)	N2O (PPMV)	CO (PPMV)	CH4 (PPMV)
(KM)	(MB)	(K)	(CM-3)	(PPMV)	(PPMV)	(PPMV)	(PPMV)	(PPMV)
0.00	1.013E+03	288.2	2.548E+19	7.75E+03	2.66E-02	3,20E-01	1.50E-01	1.70E+00
1.00	8.988E+02	281,7	2,313E+19	6.07E+03	2.93E-02	3,20E-01	1.45E-01	1.70E+00
2.00	7.950E+02	275.2	2.094E+19	4.63E+03	3.24E-02	3,20E-01	1.40E-01	1.70E+00
3.00	7.012E+02	268.7	1.891E+19	3.18E+03	3.32E-02	3.20E-01	1.35E-01	1.702+00
4'.00 5.00	6,166E+02 5,405E+02	262.2 255.7	! 1.704E+19 1.532E+19	2.16E+03] 3.39E-02 3.77E-02	3,20E-01 3,20E-01	1.31E-01 1.30E-01	11.70E+00
6.00	4.722E+02	249.2	1.373E+19	9.256+02	4.11E-02	3.20E-01	1.29E-01	1.70E+00
7.00	4.111E+02	242.7	1,228E+19	5.72E+02	5.01E-02	3,20E-01	1.25E-01	1.70E+00
8.00	3.565E+02	236.2	1.094E+19	3.67E+02	5.97E-02	3.20E-01	1.19E-01	1.70E+00
9.00	3.080E+02	229.7	9.719E+18	1.58E+02	9.17E-02	3,20E-01	1.09E-01	1.69E+00
10,00	2.650E+02	223.3	8.602E+18	7.00E+01	1,31E-01	3.18E-01	9.96E-02	1.69E+00
11.00	2.270E+02	216.8	7.589E+18	3.61E+01	2.15E-01	3.14E-01	8.96E-02	1.68E+00
12.00	1.940E+02	216.7	6.489E+18	1.91E+01	3.10E-01	3.10E-01	7.81E-02	1.66E+00
13.00	1.658E+02	216.7	5.546E+18	1.09E+01	3.85E-01	3.05E-01	6.37E-02	1.65E+00
14.00	1.417E+02	216.7	4.739E+18	5.93E+00	5.03E-01	3,00E-01	5.03E-02	1.63E+00
15.00	1.211E+02	216.7	4.050E+18	5.000+00	6.51E-01	2.94E-01	3.94E-02	1.616+00
16.00	1.035E+02	216.7	3.462E+18	3.95E+00	8.70E-01	2.88E-01	3.07E-02	1.58E+00
17.00	8.850E+01	216.7	2.960E+18	3.85E+00	1.195+00	2.78E-01	2.49E-02	1.55E+00
18.00	7.565E+01	216.7	2.530E+18	3.83E+00	1.59E+00	2.67E-01	1.97E-02	1.52E+00
19.00	6.467E+01	216.7	2.163E+18	3.85E+00	2.03E+00	2.53E-01	1.55E-02	1.48E+00
20.00	5.529E+01	216.7	1.849E+18	3.90E+00	2.58E+00	2.37E-01	1.33E-02	1.42E+00
21.00	4.729E+01	217.6	1.575E+18	3.98E+00	3.03E+00	2.19E-01	1.23E-02	1.36E+00
22.00	4.047E+01	218.6	1.342E+18	4.07E+00	3.65E+00	2.05E-01	1.23E-02	1.27E+00
23.00	3.4675+01	219.6	1.144E+18	4.20E+00	4.17E+00	1.97E-01	1.31E-02	1.19E+00
24.00 25.00	2.972E+01 2.549E+01	220.6 221.6	9.765E+17	4.30E+00	4.63E+00	1.88E-01	1.40E-02	11.12E+00
27.50	1.743E+01	224.0	8.337E+17 5.640E+17	4.43E+00 4.58E+00	5.12E+00 5.80E+00	1.76E-01 1.59E-01	1.50E-02 1.60E-02	1.06E+00
30.00	1.197E+01	226.5	3.830E+17	4.73E+00	6.55E+00	1.42E-01	1.71E-02	9.14E-01
32.50	8.010E+G0	230.0	2.524E+17	4.83E+00	7.37E+00	1.17E-01	1.85E-02	8.30E-01
35.00	5.746E+00	236.5	1.761E+17	4.90E+00	7.84E+00	9.28E-02	2.01E-02	7.46E-01
37.50	4.150E+00	242.9	1.238E+17	4.95E+00	7.80E+00	6.69E-02	2.22E-02	6.62E-01
40.00	2.871E+00	250.4	8.310E+16	5.03E+00	7.30E+00	4.51E-02	2.50E-02	5.64E-01
42.50	2.060E+00	257.3	5.803E+16	5.15E+00	6.20E+00	2.75E-02	2.82E-02	4.61E-01
45.00	1.491E+00	264.2	4.090E+16	5.23E+00	5.25E+00	1.59E-02	3,24E-02	3.63E-01
47.50	1.090E+00	270.6	2.920E+16	5.25E+00	4.10E+00	9.38E-03	3.72E-02	2.77E-01
50.00	7.978E-01	270.7	2.136E+16	5.23E+00	3.10E+00	4.75E-03*	4.60E-02	2.10E-01
55.00	4.250E-01	260.8	1.181E+16	5.10E+00	1.80E+00	3.00E-03	6.64E-02	1.65E-01
60.00	2.190E-01	247.0	6.426E+15	4.75E+00	1.10E+00	2.07E-03	1.07E-01	1.50E-01
65.00	1.090E-01	233.3	3.386E+15	4.20E+00	7.00E-01	1.51E-03	1.86E-01	1.50E-01
70.00	5.220E-02	219.6	1.723E+15	3.50E+00	3.00€-01	1.15E-03	3.06€-01	1.50E-01
75.00	2.400E-02	208.4	8.347E+14	2.83E+00	2.502-01	8.89E-04	6.38E-01	1.50E-01
80.00	1.050E-02	198.6	3.832E+14	2.05E+00	3.00E-01	7.06E-04	1.50E+00	1.50E-01
85.00	4.460E-03	188.9	1.711E+14	1.33E+00	5.00E-01	5.72E-04	3.24E+00	1.50E-01
90.00	1.840E-03	186.9	7.136E+13	8.50E-01	7.00E-01	4.71E-04	5.84E+00	11.40E-01
95.00	7.600E-04	188.4	2.924E+13	5.40E-01	7.00E-01	3.93E-04	1.01E+01	1.30E-01
00.00	3.200E-04	195.1 208.8	1.189E+13	4.00E-01	4.00E-01	3.32E-04	1.69E+01	1.20E-01
105.00	7.100E-05	240.0	5.033E+12 2.144E+12	3.40E-01 2.80E-01	2.00E-01 5.00E-02	2.84E-04 2.44E-04	2.47E+01 3.36E+01	1.10E-01 9.50E-02
15.00	4.010E-05	300.0	9.688E+11	2.40E-01	5.00E-03	2.44E-04	4.15E+01	6.00E-02
20.00	2.540E-05	360.0	5.114E+11	2.00E-01	5.00E-03	1.85E-04	5.00E+01	3.00E-02
-0.00	5702-05	300.0	J. 1146*11	2.00E-01	3.00E-04	1.05E-U4	3.00E701	13.006-0

Figure 1. U.S. Standard Model Atmosphere Profiles for the mixing ratios of the major radiating atmospheric gases. This corresponds to Model 6 in Table 1; see text.

[(*) indicates extrapolation adopted for that species; see tabular data]

Table 2. Constituent Profiles (ppmv):

Molecules 1-7 are Model 6 (U.S. Standard) compatible and are repeated here because they duplicate the AFGL Line Parameter and Trace Gas numbering scheme. In addition, CO_2 and O_2 are only defined by a single profile so have not been included in Table 1.

Molecules 8-28 are provided as single representative profiles. Their natural variability can be very different from the selected profile.

[(*) indicates subsequent extrapolation adopted for that species]

THE LEGISLE STREET LEGISLE STREET STREET STREET

Table 2a. Constituent Profiles (ppmv), H_2O , CO_2 , O_3 , N_2O , CO, CH_4 , O_2

					ر بازد در	· · ·	
	1 H20	2 CO2	3 03	4 N2O	5 CO	6 CH4	7 02
(KM)	(PPMV)	(PPMV)	(PPMV)	(PPMV)	(PPMV)	(PPMV)	(PPMV)
0.0	7.75E+03	3.30E+02	2.68E-02	3.20E-01	1.50E-01	1.7GE+00	2.09E+05
1.0	6.07E+93 4.63E+03	3.30E+02	2.93E-02 3.24E-02	3.20E-01 3.20E-01	1.45E-01 1.40E-01	1.70E+00 1.70E+00	2.09E+05 2.09E+05
3.0	3.186+03	3.30E+02	3.32E-02	3.20E-01	1.35E-01	1.70E+00	2.09E+05
4.0	2.166+03	3.30E+02	3.39E-02	3.20E-01	1.31E-01	1.70E+00	2.096+05
5.0	1.40E+03	3.30E+02	3.77E-02	3.20E-01	1.30E-01	1.70E+00	2.092+05
6.0	9.25E+02	3.30E+02	4.11E-02	3.20E-01	1,39E-01	1.70E+00	2.09E+05
7.0	5.72E+02	3.30E+02	5.01E-02	3.20E-01	1.25E-01	1.70E+00	2.092+05
8.0 8.0	3.67E+02 1.58E+02	3.30E+02 3.30E+02	5.97E-02 9.17E-02	3.20E-01 3.20E-01	1.19E-01 1.09E-01	1.70E+00 1.693+00	2.09E+05 2.09E+05
10.0	7.00E+01	3.30E+02	1.31E-01	3.18E-01	9.96E-02	1.69E+00	2.092+05
11.0	3.61E+01	3.30E+02	2.15E-01	3.14E-01	8.96E-02	1.685+00	2.09E+05
12.0	1.91E+01	3.30E+02	3.10E-01	3.10E-01	7.81E-02	1.66E+00	2.09E+05
13.0	1.09E+01	3.30E+02	3.85E-01	3.05E-01	6.37E-02	1.658+00	2.09E+05
14.0	5.93E+00	3.30E+02	5.03E-01	3.00E-01	5.03E-02	1.630+00	2.09E+05
15.0	5.00E+00	3.30E+02	6.51E-01	2.94E-01	3.94E-02	1.61E+00	2.09E+05
16.0 17.0	3.95E+CO 3.85E+OO	3.30E+02 3.30E+02	8.70E-01 1.19E+00	2.88E-01 2.78E-01	3.07E-02 2.49E-02	1.58E+00 1.55E+00	2.09E+05
18.0	3.83E+00	3.30E+02	1.59E-00	2.67E~01	1.97E-02		2.09E+05 2.09E+05
19.0	3.85E+00	3.30E+02	2.03E+00	2.53E-01	1.55E-02	1.48E+00	2.09E+05
20.0	3.90E+00	3.30E+02	2.58E+00	2.37E-01	1.33E-02	1.425+00	2.09E+05
21.0	3.98E+00	3.30E+02	3.03E+00	2.19E-01	1.23E-U2	1.366+00	2.09E+05
22.0	4.07E+00	3.30E+02	3.65E+00	2.05E-01	1.23E-02	1.276+00	2.09E+05
23.0	4.20E+0G	3.30E+02	4.17E+00	1.97E-01	1.31E-02	1.196+00	2.09E+05
24.0 25.0	4.30E+00 4.43E+00	3.30E+02 3.30E+02	4.63E+00 5.12E+00	1.88E~01 1.76E~01	1.40E-02 1.50E-02	1.12E+00 1.06E+00	2.09E+05 2.09E+05
27.5	4.58E+00	3.30E+02	5.8CE+00	1.59E-01	1.60E-02	9.87E-01	2.09E+05
30.0	4.73E+00	3.30E+02	6.55E+00	1.42E-01	1.71E-02	9.14E-01	2.09E+05
32.5	4.83E+00	3.30E+02	7.37E+00	1.17E-01	1.85E-02	8.30E-01	2.09E+05
35.0	4.90E+00	3.30E+02	7.84E+00	9.28E-02	2.01E-02	7.46E-01	2.09E+05
37.5	4.95E+00	3.30E+02	7.80E+00	6.89E-02	2.22E-02	6.62E-01	2.09E+05
40.0	5.03E+00	3.30E+02	7.30E+00	4.51E-02	2.50E-02	5.64E-01	2.09E+05
42.5 45.0	5.15E+00 5.23E+00	3.30E+02 3.30E+02	8.20E+00 5.25E+00	2.75E-02 1.59E-02	2.82E-02 3.24E-02	4.61E-01 3.63E-01	2.09E+05 2.09E+05
47.5	5.25E+00	3.30E+02	4.10E+00	9.38E-03	3.72E-02	2.77E-01	2.09E+05
50.0	5.23E+00	3.30E+02	3.10E+00	4.75E-03*		2.10E-01	2.09E+05
55.0	5.10E+00	3.30E+02	1.80E+00	3.00E-03	6.64E-02	1.65E-01	2.09E+05
60.0	4.75E+00	3.30E+02	1.10E+00	2.07E-03	1.07E-01	1.50E-01	2.09E+05
65.0	4.20E+00	3.30E+02	7.00E-01	1.51E-03	1.86E-01	1.50E-01	2.09E+05
70.0	3.50E+00 2.83E+00	3.30E+02 3.30E+02	3.00E-01 2.50E-01	1.15E-03	3.06E-01	1.50E-01	2.09E+05
80.0	2.05E+00	3.30E+02	3.00E-01	8.89E-04 7.06E-04	6.38E-01 1.50E+00	1.50E-01 1.50E-01	2.09E+05 2.09E+05
85.0	1.33E+00	3.20E+02	5.00E-01	5.72E-04	3.24E+00	1.50E-01	2.00E+05
90.0	8.50E-01	3.10E+02	7.00E-01	4.71E-04	5.84E+00	1.40E-01	1.90E+05
95.0	5,40E-01	2.70E+02	7.00E-01	3.93E-04	1.01E+01	1.30E-01	1.80E+05
100.0	4.00E-01	1.95E+02	4.00E-01	3.328-04	1.69E+01	1.20E-01	1.60E+05
105.0	3.40E-01	1.10E+02	2.00E-01	2.84E-04	2.47E+01	1.10E-01	1.40E+05
110.0	2.80E-01	6.00E+01	5.00E-02	2.44E-04	3.36E+01	9.50E-02	1.20E+05
115.0	2.40E-01 2.00E-01	4.00E+01 3.50E+01	5.00E-03 5.00E-04	2.12E-04 1.85E-04	4.15E+01 5.00E+01	6.00E-02 3.00E-02	9.40E+04 7.25E+04
120.0	2,006-01	J. 30E TO	3.002-04	1.035-04	3.006701	J. UVE -UZ	7.206704

Table 2b. Constituent Profiles (ppmv), NO, SO₂, NO₂, NH₃, HNO₃, OH, HF

				·			
	8 NO	9 502	10 NO2	11 NH3	12 HN03	13 OH	14 HF
(KM)	(PPMV)						
0.0	3.00E-04	3.00E-04	2.30E-05	5.00E-04	80-900.	4.40E-08	1.00E-08
1.0	3.00E-04 3.00E-04	2.74E-04 2.36E-04	2.30E-05 2.30E-05	5.00E-04 4.63E-04	5.96E-05 6.93E-05	4.40E-08	1.00E-08 1.23E-08
3.0	3.00E-04	1,90E-04	2.30E-05	3.80E-04	7.91E-05	4.405-08	1.97E-08
4.0	3.00E-04	1.46E-04	2.308-05	2.88E-04	8.87E-05	4.40E-08	3.186-08
5.0	3.00E-04	1.18E-04	2.30E-05	2.04E-04	9.75E-05	4.40E-08	5.63E-08
6.0	3.00E-04	9.71E-05	2.30E-05	1.46E-04	1.11E-04	4.40E-08	9.18E-08
7.0	3.00E-04	8.30E-05	2.30E-05	9.88E-05	1.26E-04	4.41E-08	1.53E-07
8.0	3.00E-04	7.21E-05	2.30E-05	6.48E-05	1.39E-04	4.45E-08	2.410-07
9.0	3.00E-04	6.56E-05	2.32E-05	3.77E-05	1.53E-04	4.56E-08	4.04E-07
10.0	3.00E-04	6.08E-05	2.38E-05	2.03E-05	1.74E-04	4.68E-08	6.57E-07
11.0	3.00E-04	5.79E-05	2.62E-05	1.09E-05	2.02E-04	4.80E-08	1.20E-06
12.0	3.00E-04	5.60E-05	3.156-05	6.30E-06	2.41E-04	4.94E-08	1.96E-06
14.0	2.99E-04 2.95E-04	5.59E-05 5.64E-05	4.45E-05 7.48E-05	3.12E-06 1.11E-06	2.76E-04 3.33E-04	5.19E-08 5.65E-08	3.12E-06 4.62E-06
15.0	2.83E-04	5.75E-05	1.71E-04	4.47E-07	4.52E-04	6.75E-08	7.09E-06
16.0	2.68E-04	5.75E-05	3.19E-04	2.11E-07	7.37E-04	8.25E-08	1.05E-05
17.0	2.52E-04	5.37E-05	5.19E-04	1.10E-07	1.31E-03	1.04E-07	1.69E-05
18.0	2.40E-04	4.78E-05	7.71E-04	6.70E-08	2.11E-03	1.30E-07	2.57E-05
19.0	2.44E-04	3.97E-05	1.06E-03	3.97E-08	3.17E-03	1.64E-07	4.02F. 05
20.0	2.55E-04	3.19E-05	1.39E-03	2.41E-08	4.20E-03	2.16E-07	5.77F-05
21.0	2.77E-04	2.67E-05	1.76E-03	1.92E-08	4.94E-03	3.40E-07	7.77E-05
22.0	3.07E-04	2.28E-05	2.16E-03	1.72E-08	5.46E-03	5.09E-07	9.90E-05
23.0	3.60E-04	2.07E-05	2.58E-03	1.59E-08	5.74E-03	7.59E-07	1.23E-04
24.0	4.51E-04	1.80E-05	3.06E-03	1.44E-08	5.84E-03	1.16E-06	1.50E-04
25.0	6.85E-04	1.75E-05	3.74E-03	1.23E-08	5.61E-03	2.185-06	1.82E-04
27.5 30.0	1.28E-03 2.45E-03	1.54E-05	4.81E-03	9.37E-09	4.82E-03	5.00E-06	2.30E-04
32.5	4.53E-03	1.34E-05 1.21E-05	6.16E-03 7.21E-03	6.35E-09 3.68E-09	3.74E-03 2.59E-03	1.17E-05	2.83E-04
35.0	7.14E-03	1.16E-05	7.28E-03	1.82E-09	1.64E~03	3.40E-05 8.35E-05	3.20E-04 3.48E-04
37.5	9.34E-03	1.21E-05	6.26E-03	9.26E-10	9.68E-04	1.70E-04	3.72E-04
40.0	1.12E-02	1.36E-05	4.03E-03	2.94E-10+	5.33E-04	2.85E-04	3.95E-04
42.5	1.19E-02	1.65E-05	2.17E-03	8.72E-11	2.52E-04	4.06E-04	4.10E-04
45.0	1.17E-02	2.10E-05	1.15E-03	2.98E-11	1.21E-04	5.11E-04	4.21E-04
47.5	1.10E-02	2.77E-05	6.66E-04	1.30E-11	7.70E-05	5.79E-04	4.24E-04
50.0	1.03E-02	3.56E-05	4.43E-04*	7.13E-12	5.55E-05*	6.75E-04	4.25E-04*
55.0	1.01E-02	4.59E-05	3.39E-04	4.80E-12	4.45E-05	9.53E-04	4.25E-04
60.0	1.01E-02	5.15E-05	2.85E-04	3.66E-12	3.84E-05	1.76E-03	4.25E-04
65.0	1.03E-02	5.11E-05	2.53E-04	3.00E-12	3.49E-05	3.74E-03	4.25E-04
70.0 75.0	1.15E-92	4.32E-05	2.31E-04	2.57E-12	3.27E-05	7.19E-03	4.25E-04
80.0	1.61E-02 2.68E-02	2.83E-05 1.33E-05	2.15E-04 2.02E-04	2.27E-12	3.12E-05	1.12E-02	4.25E-04
85.0	7.01E-02	5.56E-06	1.92E-04	2.04E-12 1.85E-12	3.01E-05 2.92E-05	1.13E-02 6.10E-03	4.25E-04 4.25E-04
90.0	2.13E-C1	2.24E-06	1.83E-04	1.71E-12	2.84E-05	1.51E-03	4.25E-04 4.25E-04
95.0	7.126-01	8.96E-07	1.76E-04	1.59E-12	2.78E-05	2.42E-04	4.25E-04
100.0	2.08E+00	3.58E-07	1.70E-04	1.48E-12	2.73E-05	4.47E-05	4.25E-04
105.0	4.50E+00	1.43E-07	1.64E-04	1.40E-12	2.68E-05	1.77E-05	4.25E-04
110.0	7.985+00	5.73E-08	1.59E-04	1.32E-12	2.84E-05	1.19E-05	4.25E-04
115.0	1.00E+01	2.29E-08	1.55E-04	1.25E-12	2.60E-05	1.35E-05	4.25E-04
120.0	1.00E+01	9.17E-09	1.51E-04	1.19E-12	2.57E-05	2.20E-05	4.25E-04

Table 2c. Constituent Profiles (ppmv), HCl, HPr, HI, ClO, OCS, H2CO, HOCl

55.0								
0.0		15 HCL	16 HBR	17 HI	18 CLO	19 OCS	20 H2CO	21 HOCL
1.0	(KM)	(PPMV)	(PPMV)	(PPMV)	(PPMV)	(PPMV)	(PPMV)	(PPMV)
65.0	0.0 12.0 3.0 4.0 0.0 10.0 11.0 10.0 11.0 10.0 10.0	(PPMV) 1.00E-03 7.49E-04 5.61E-04 4.22E-04 1.79E-04 1.79E-04 1.79E-05 7.48E-05 7.48E-05 4.59E-05 4.59E-05 4.59E-04 1.63E-04 1.79E-03 1.79E-03 1.79E-03 1.79E-03 1.79E-03 1.80E-03 1.80E-03	(PPMV) 1.70E-08	(PPMV) 3.00E-06	(PPMV) 1.00E-08 1.05E-08 1.07E-08 1.07E-05 1.04E-06 1.07E-05 1.04E-06 1.07E-05 1.05E-04 1.07E-05 1.08E-04 1.09E-04 1.09E-04 1.09E-04	(PPMV) 6.00E-04 5.90E-04 5.90E-04 5.70E-04 5.62E-04 5.35E-04 5.32E-04 5.32E-04 5.32E-04 5.32E-04 4.98E-04 4.98E-04 4.86E-04 4.98E-04 4.86E-04 1.37E-04 1.88E-04 1.37E-04 1.37E-04 1.37E-05 1.21E-05 4.31E-06 6.71E-07 2.34E-07 2.47E-07	(PPMV) 2.40E-03 1.07E-03 4.04E-04 1.40E-04 1.40E-04 1.40E-05 5.01E-05 3.63E-05 3.63E-05 3.50E-05 3.62E-05 3.50E-05 3.62E-05 3.68E-05 5.66E-05 5.66E-05 5.66E-05 5.66E-05 5.66E-05 5.66E-05 5.66E-06 5.10E-06 5.10E-06 5.10E-06	(PPMV) 7.70E-06 1.06E-05 1.22E-05 1.14E-06 8.01E-06 8.01E-06 6.42E-06 4.70E-06 4.70E-06 4.70E-06 4.70E-06 5.22E-06 5.22E-06 5.22E-06 5.22E-05 1.262E-05
85.0 1.80E-03 7.15E-06 3.00E-06 4.30E-05 1.92E-07 3.09E-07 90.0 1.80E-03 7.15E-06 3.00E-06 4.16E-05 1.89E-07 2.76E-07 95.0 1.80E-03 7.15E-06 3.00E-06 4.03E-05 1.87E-07 2.50E-07 100.0 1.80E-03 7.15E-06 3.00E-06 3.93E-05 1.85E-07 2.30E-07	55.0 60.0 65.0 70.0 75.0	1.80E-03 1.80E-03 1.80E-03 1.80E-03	7.15E-06 7.15E-06 7.15E-06 7.15E-06 7.15E-06	3.00E-06 3.00E-06 3.00E-06 3.00E-06 3.00E-06	7.69E-05 6.30E-05 5.52E-05 5.04E-05 4.72E-05	2.28E-07 2.16E-07 2.08E-07 2.03E-07 1.98E-07	2.00E-06 1.05E-06 6.86E-07 5.14E-07 4.16E-07	1.50E-05 1.05E-05 8.34E-06 7.11E-06 6.33E-06
105.0 1.80E-03 7.15E-06 3.00E-06 3.83E-05 1.83E-07 2.13E-07 110.0 1.80E-03 7.15E-06 3.00E-06 3.75E-05 1.81E-07 1.98E-07 115.0 1.80E-03 7.15E-06 3.00E-06 3.68E-05 1.80E-07 1.86E-07	85.0 90.0 95.0 100.0 105.0 110.0	1.80E-03 1.80E-03 1.80E-03 1.80E-03 1.80E-03 1.80E-03	7.15E-06 7.15E-06 7.15E-06 7.15E-06 7.15E-06 7.15E-06	3.00E-06 3.00E-06 3.00E-06 3.00E-06 3.00E-06 3.00E-06	4.30E-05 4.16E-05 4.03E-05 3.93E-05 3.83E-05 3.75E-05	1.92E-07 1.89E-07 1.87E-07 1.85E-07 1.83E-07 1.81E-07	3.09E-07 2.76E-07 2.50E-07 2.30E-07 2.13E-07 1.98E-07	5.78E-06 5.37E-06 5.05E-06 4.78E-06 4.56E-06 4.37E-06 4.21E-06 4.06E-06

Table 2d. Constituent Profiles (ppmv), N2, HCN, CH3Cl, H2O2, C2H2, C2H6, PH3

	22 N2	23 HCN	24 CH3CL	25 H2O2	26 C2H2	27 C2H6	28 PH3
(KM)	(PPMV)	(PPMV)	(PPMV)	(PPMV)	(PPMV)	(PPMV)	(PPMV)
0.0	7.81E+05	1.70E-04	7.00E-04	2.00E-04	3.00E-04	2.00E-03	1.00E-14*
1.0	7.81E+05	1.65E-04	6.70E-04	1.95E-04	1.72E-04	2.00E-03	1.00E-14
2.0 3.0	7.81E+05 7.81E+05	1.63E-04 1.61E-04	6.43E-04 6.22E-04	1.92E-04	9.57E-05 6.74E-05	2.00E-03	1.00E-14
4.0	7.81E+05	1.60E-04	6.07E-04	1.84E-04	5.07E-05	1.98E-03	1.00E-14
5.0	7.81E+05	1.60E-04	6.02E-04	1.77E-04	3.996-05	1.95E-03	1.00E-14
6.0	7.81E+05	1.60E-04	6.00E-04	1.66E-04	3.196-05	1.90E-03	1.00E-14
7.0	7.81E+05	1.60E-04	6.00E-04	1.49E-04	2.80E-05	1.85E-03	1.00E-14
8.0	7.81E+Q5	1.60E-04	5.98E-04	1.23E-04	2.558-05	1.79E-03	1.00E-14
9.0	7.81E+05	1.60E-04	5.94E-04	9.09E-05	2.40E-05	11.72E-03	1.00E-14
10.0	7.81E+05 7.81E+05	1.60E-04	5.88E-04 5.79E-04	5.79E-05	2.27E-05 2.08E-05	1.58E-03	1.00E-14 1.00E-14
12.0	7.81E+05	1.60E-04	5.66E-04	1.95E-05	1.76E-05	9.86E-04	1.00E-14
13.0	7.81E+05	1.59E-04	5.48E-04	1.08E-05	1.23E-05	7.22E-04	1.00E-14
14.0	7.816+05	1.57E-04	5.28E-04	6.59E-06	7.32E-06	4.96E-04	1.00E-14
15.0	7.81E+05	1.55E-04	5.03E-04	4.20E-06	4.52E-06	3.35E-04	1.00E-14
16.0	7.816+05	1.52E-04	4.77E-04	2.94E-06	2.59E-06	2.14E-04	1.00E-14
17.0	7.81E+05	1.49E-04	4.49E-04	2.30E-06	1.55E-06	1.49E-04	1.00E-14
18.0 19.0	7.81E+05 7.81E+05	1.45E-04 1.41E-04	4.21E-04 3.95E-04	2.24E-06 2.68E-06	8.63E-07 5.30E-07	1.05E-04 7.96E-05	1.00E-14
20.0	7.81E+05	1.37E-04	3.69E-04	3.68E-06	3.10E-07	6.01E-05	1.00E-14
21.0	7.81E+05	1.34E-04	3.43E-04	5.62E-06	1.89E-07	4.57E-05	1.00E-14
22.0	7.81E+05	1.30E-04	3.17E-04	1.03E-05	1.04E-07	3.40E-05	1.00E-14
23.0	7.81E+05	1.25E-04	2.86E-04	1.97E-05	5.75E-08	2.60E-05	1.00E-14
24.0	7.81E+05	1.19E-04	2.48E-04	3.70E-05	2.23E-08	1.89E-05	1.00E-14
25.0	7.81E+05	1.13E-04	1.91E-04	6.20E-05	8.51E-09	1.22E-05	1.00E-14
27.5 30.0	7.81E+05 7.81E+05	1.05E-04 9.73E-05	1.10E-04 4.72E-05	1.03E-04	4.09E-09 2.52E-09	5.74E-06	1.00E-14 1.00E-14
32.5	7.81E+05	9.04E-05	1.79E-05	1.36E-04	1.86E-09	8.49E-07	1.00E-14
35.0	7.81E+05	8.46E-05	7.35E-06	1.13E-04	1.52E-09	3.42E-07	1.00E-14
37.5	7.815+05	8.02E-05	3.03E-06	8.51E-05	1.32E-09	1.34E-07	1.00E-14
40.0	7.81E+05	7.63E-05	1.32E-06	6.37E-05	1.18E-09	5.39E-08*	1.00E-14
42.5	7.81E+05	7.30E-05	8.69E-07	5.17E-05	1.08E-09	2.25E-08	1.00E-14
45.0	7.81E+05	7.00E-05	6.68E-07	4.44E-05	9.97E-10	1.04E-08	1.00E-14
47.5 50.0	7.81E+05 7.81E+05	6.70E-05 6.43E-05*	5.60E-07 4.94E-07*	3.80E-05 3.48E-05	9.34E-10 8.83E-10*	6.57E-09 4.74E-09	1.00E-14 1.00E-14
55.0	7.81E+05	6.43E-05	4.56E-07	3.48E-05	8.43E-10	3.79E-09	1.00E-14
60.0	7.81E+05	6.02E-05	4.32E-07	5.25E-05	8.10E-10	3.28E-09	1.00E-14
65.0	7.81E+05	5.88E-05	4.17E-07	1.26E-04	7.83E-10	2.98E-09	1.00E-14
70.0	7.81E+05	5.75E-05	4.05E-07	3.77E-04	7.60E-10	2.79E-09	1.00E-14
75.0	7.81E+05	5.62E-05	3.96E-07	1.12E-03	7.40E-10	2.86E-09	1.00E-14
80.0	7.81E+05	5.50E-05	3.89E-07	2.00E-03	7.23E-10	2.56E-09	1.00E-14
85.0 90.0	7.81E+05	5.37E-05 5.25E-05	3.83E-07 3.78E-07	11.68E-03 4.31E-04	7.07E-10 6.94E-10	2.49E-09 2.43E-09	1.00E-14 1.00E-14
95.0	7.80E+05 7.79E+05	5.12E-05	3.78E-07	4.98E-05	6.81E-10	2.43E-09	1.00E-14
100.0	7.77E+05	5.00E-05	3.69E-07	6.76E-06	6.70E-10	2.33E-09	1.00E-14
105.0	7.74E+05	4.87E-05	3.66E-07	8.38E-07	6.59E-10	2.29E-09	1.00E-14
110.0	7.70E+05	4.75E-05	3.62E-07	9.56E-08	6.49E-10	2.25E-09	1.00E-14
115.0	7.65E+05	4.62E-05	3.59E-07	1.00E-08	6.40E-10	2.22E-09	1.00E-14
120.0	7.60E+05	4.50E-05	3.56E-07	1.00E-09	6.32E-10	2.19E-09	1.00E-14

second leavests because seconds seconds section repress section seconds

The altitude increments for both Table 1 and Table 2 are 1km between 0 and 25km, 2.5km between 25 and 50km, and 5km between 50 and 120km. These increments (and the subset of reference atmospheres themselves) have been chosen for their compatability with existing profiles in other radiation models (particularly LOWTRAN6 12a , 12b), facilitating validation and intercomparison tests. The units are: altitude in (km), temperature in (K), pressure in (mb), and mixing ratios in (ppmv). In addition to this document, this profile set is available from AFGL/OPI $^{\neq}$ in computer-accessible formats, either as tables or FORTRAN data statements appropriate for direct incorporation into computer simulations (e.g. FASCOD2 13).

A two-part bibliography appears in Appendix B. The first portion is divided by subject: (a) radiance-transmittance models, (b) other constituent compilations and/or photochemical models, (c) reference atmosphere (temperature-pressure) compilations and (d) individual constituents. Each species is followed by the set of journal references which contributed either directly or indirectly to the tabulated profiles. These are generally sequenced according to their influence with secondary sources provided for estimating natural variability and/or uncertainty. For instance, the water vapor profiles incorporate the LOWTRAN6¹² values in the tropopause, satellite measurements (LIMS)⁸ in the stratosphere, and photochemical estimates throughout the mesosphere and lower thermosphere ^{14, 15}. The particular tabulated values are unique to this compilation, having undergone smoothing, interpolation, and averaging. Similarly, the tropospheric ozone profiles from LOWTRAN have been combined with a composite climatology based on satellite measurements of the stratosphere (SBUV¹⁶, LIMS¹⁷) and

THE RESIDENCE CONTRACTOR CONTRACTOR SECTIONS SECTIONS SECTIONS SECTIONS SECTIONS

[#] AFGL/OPI Hanscom Air Force Base, MA 01731

¹²a. Kneizys, F.X., Shettle, E.P., Gallery, W.O., Chetwynd, J.H., Abreu, L.W., Selby, J.E.A., Fenn, R.W., and McClatchey, R.A. (1980), Atmospheric Transmittance/Radiance: Computer Code LOWTRAN5, AFGL-TR-80-0067.

(NTIS AD A088215).

¹²b. Kneizys, F.X., Shettle, E.P., Gallery, W.O., Chetwynd, J.H., Abreu, L.W., Selby, J.E.A., Clough, S.A. and Fenn, R.W. (1983), Atmospheric Transmittance/Radiance: Computer Code LOWTRAN6, AFGL-TR-83-0187, (NTIS AD A137796).

^{13.} Clough, S.A., Kneizys, F.X., Shettle, E.P., Anderson, G.P., (1986), Atmospheric radiance and transmittance: FASCOD2, <u>Proc. of the Sixth Conference on Atmospheric Radiation</u>, Williamsburg, VA., American Meteorological Society, Boston, MA., 141-144.

^{14.} Allen, M., Lunine, J.I. and Yung, U.L. (1984) The vertical distribution of ozone in the mesophere and lower thermosphere, J. Geophys. Res; 89, 4841-4872.

^{15.} Garcia, R.R. and Solomon, S. (1983) A numerical model of the zonally averaged dynamical and chemical structure of the middle atmosphere, J. Geophys. Res; 88, 1379-1400.

^{16.} McPeters, R.D., Heath, D.F. and Bhartia, P.K. (1984) Average ozone profiles for 1979 from the Numbus 7 SBUV instrument, J. Geophys. Res; 89, 5199-5214.

^{17.} Remsberg, E.E., Russell III, J.M., Gille, J.C., Gordley, L.L., Baily, P.L., Planet, W.G. and Harries, J.E. (1984a) The validation of Nimbus 7 LIMS measurements of ozone, J. Geophys. Res; 89, 5161-5178.

mesosphere (SME¹⁸); however, in the thermosphere all six ozone profiles are identical, based on a single in situ rocket determination (ALADDIN^{19, 20}). The N₂O and CH₄ profiles follow the Smith³ compilation in the tropopause and rely on satellite-derived latitudinal distributions in the stratosphere ¹⁰. Above the stratopause the CH₄ profile is photochemically determined ^{14, 15} while N₂O has been extrapolated (see subsequent discussion). The second part of the bibliography is an alphabetical listing of all referenced materials; those publications that can be associated with particular molecules are so identified.

3. ERROR ESTIMATES/VARIABILITY

The practical accuracies of these tabulated values vary with species and altitude. At their best they offer approximately 10-30% relative consistency for U.S. Standard Atmosphere conditions throughout the troposphere and stratosphere; exceptions include PH_q which is unmeasured in the earth's atmosphere. The mesospheric and thermospheric profiles are much less certain and, in fact, are only defined for temperature, pressure, and the following constituents: H2O, CO2, O3, CO, CH4, O2, NO, SO₂, OH, and H₂O₂. Mixing ratios for the remaining species have been extrapolated from measurements (usually near the stratopause) using a logarithmically decreasing mixing ratio scale height; the onset of such profile extrapolations is marked by asterisks (*) in the tables and figures. This, of course, leads to unsupported estimates of abundance in the upper atmosphere. [The adopted logarithmic extrapolation scheme is a compromise between using either (a) constant or (b) constantly decreasing mixing ratios. The former introduces erroneous relative changes between extrapolated species. The latter, while obviously connoting the lack of data, introduces an abrupt discontinuity into the profiles.] The mixing ratios of all extrapolated species are, in any case, very small.

4. LIMITATIONS

enteres constant betermine befores and the sources of the sources of the sources of the sources of the sources

Representative profiles do not necessarily resemble in situ environments, leading to constraints on their general applicability. WMO and COSPAR will release new sets of

Thomas, R.J., Barth, C.A. and Solomon, S. (1984) Seasonal variations of O₃ in the upper mesosphere and gravity waves, Geophys. Res. Letts., 11, 673-676.

^{19.} Weeks, L.H., Good, R.E., Randhawa, J.S. and Trinks, A. (1978) Ozone measurements in the stratosphere, mesosphere, and lower thermosphere during Aladdin 74, J. Geophys. Res; 83, 978-982.

^{20.} Allen, M., Private Communication.

standard temperature-density profiles in 1986 which provide significant enhancements to the NASA. 1966 Supplements and CIRA, 1972 Reference Atmospheres²¹. (A subset of the CIRA, 1972 profiles is available in this format.) However, a more detailed climatology does not ensure adequate simulation of observed variability. Particularly in disturbed winter conditions, dynamic wave activity can bring about rapid changes in temperature and pressure, which can then propagate from the troposphere into and through the stratosphere.

In addition to any tropospheric meteorologically-driven changes in temperature, the water vapor and anthropogenic pollutants (CO, CO₂, O₃, nitrogen-oxygen compounds, etc) exhibit factors of 100 or more local variability. Dynamic perturbations are less extreme in the stratosphere; however, horizontal gradients on local, latitudinal or seasonal scales often exceed factors of 2-10. In the mesophere and lower thermosphere, in addition to the extrapolated data, natural excursions brought about by responses to dynamic and solar influences can be substantial. Calculated radiances or transmittances which rely upon default choices represent only a reasonable set of possibilities; they do not replicate actual measurement conditions. When detailed comparisons between theoretical radiance/transmittance calculations and actual data are required, supporting sources (radiosondes, thermosondes, in situ measurements) are recommended.

の名人へ公と

^{21.} CIRA 1972, (1972) Ed. A.C. Strickland, Akademie-Verlag, Berlin, 450 pp.

References

- 1. NASA (1966), U.S. Standard Atmosphere Supplements, 1966, U.S. Government Printing Office, Washington, D.C.
- 2. NASA (1976), U.S. Standard Atmosphere Supplements, 1976, U.S. Government Printing Office, Washington, D.C.
- 3. Smith, M.A.H. (1982) Compilation of atmospheric gas concentration profiles from 0-50km, NASA Tech Mem 83289, 70 pp.
- 4a. W.M.O. (1982) The Stratosphere 1981: Theory and Measurements, Report No. 11, NASA, Greenbelt, MD.
- 4b. W.M.O. (1986) Atmospheric Ozone 1985: Assessment of Our Understanding of the Processes Controlling its Present Distribution and Change, WMO Report No. 16, W.M.O., Geneva, Switzerland.
- 5. Brasseur, G. and Solomon, S. (1984) Aeronomy of the Middle Atmosphere, D. Reidel Publishing Co, Dordrecht, Holland, Chapter 5: Composition & Chemistry, 440 pp.
- 6. Rothman, L.S., Goldman, A., Gillis, J.R., Gamache, R.R., Pickett, H.M., Poynter, R.L., Husson, N. and Chedin, A. (1983b), AFGL trace gas compilation: 1982 version, Appl. Opt., 22, 1616-1627.
- 7. Rothman, L.S., Gamache, R.R., Barbe, A., Goldman, A., Gillis, H.R., Brown, L.A., Toth, R.A., Flaud, J.-M. and Camy-Peyret, C. (1983a), AFGL atmospheric absorption line parameters compilation: 1982 edition, Appl. Opt., 22, 2247-2256.
- 8. Russell III, J.M., Gille, J.C., Remsberg, E.F., Gordley, L.L., Bailey, P.L., Fischer, H., Girard, A., Drayon, S.R., Evans, W.F.J. and Harries, J.E. (1984b) Validation of water vapor results measured by the LIMS experiment on Nimbus 7, J. Geophys. Res; 89, 5115-5120.
- 9. Keating G.M. and Young D.F. (1985) Interim reference ozone models for the middle atmosphere, Interim COSPAR Reference Atmosphere for Altitudes 20-120km, in preparation.
- 10. Jones, R.L. and Pyle, J.A. (1984) Observations of CH₄ and N₂O by the Nimbus 7 SAMS: A comparison with in situ data and two-dimensional numerical model calculations, J. Geophys. Res; 89, 5263-5379.

- 11. Solomon, S., Garcia, R.R., Olivero, J.J., Bevilacqua, R.M., Schwartz, P.R., Clancy, R.T. and Mahleman, D.O. (1985) Photochemistry and transport of CO in the middle atmosphere, <u>J. Atmos. Sci.</u>, 42, 1072-1083.
- 12a. Kneizys, F.X., Shettle, E.P., Gallery, W.O., Chetwynd, J.H., Abreu, L.W., Selby, J.E.A., Fenn, R.W., and McClatchey, R.A. (1980), Atmospheric Transmittance/Radiance: Computer Code LOWTRAN5, AFGL-TR-80-0067, (NTIS AD A088215).
- 12b. Kneizys, F.X., Shettle, E.P., Gallery, W.O., Chetwynd, J.H., Abreu, L.W., Selby, J.E.A., Clough, S.A. and Fenn, R.W. (1983), Atmospheric Transmittance/Radiance: Computer Code LOWTRAN6, AFGL-TR-83-0187, (NTIS AD A137796).
- 13. Clough, S.A., Kneizys, F.X., Shettle, E.P., Anderson, G.P., (1986) Atmospheric radiance and transmittance: FASCOD2, Proc. of the Sixth Conference on Atmospheric Radiation, Williamsburg, VA., American Meteorological Society, Boston, MA., 141-144.
- 14. Allen, M., Lunine, J.I. and Yung, Y.L. (1984) The vertical distribution of ozone in the mesosphere and lower thermosphere, J. Geophys. Res; 89, 4841-4872.
- 15. Garcia, R.R. and Solomon, S. (1983) A numerical model of the zonally averaged dynamical and chemical structure of the middle atmosphere, J. Geophys. Res; 88, 1379-1400.
- 16. McPeters, R.D., Heath, D.F. and Bhartia, P.K. (1984) Average ozone profiles for 1979 from the Numbus 7 SBUV instrument, J. Geophys. Res; 89, 5199-5214.
- 17. Remsberg, E.E., Russell III, J.M., Gille, J.C., Gordley, L.L., Bailey, P.L., Planet, W.G. and Harries, J.E. (1984a) The validation of Nimbus 7 LIMS measurements of ozone, J. Geophys. Res; 89, 5161-5178.
- 18. Thomas, R.J., Barth, C.A. and Solomon, S. (1984) Seasonal variations of O₃ in the upper mesosphere and gravity waves, Geophys. Res. Letts., 11, 673-676.
- 19. Weeks, L.H., Good, R.E., Randhawa, J.S. and Trinks, A. (1978) Ozone measurements in the stratosphere, mesosphere, and lower thermosphere during Aladdin 74, J. Geophys. Res; 83, 978-982.
- 20. Allen, M., Private Communication.

A CONTROL OF STREET, S

21. CIRA 1972, (1972) Ed. A.C. Strickland, Akademie-Verlag, Berlin, 450 pp.

Appendix A

Graphical representation for all tabular data; see the text for description.

Part I: Reference Atmospheric Model Profiles:

	Model No.	(1-3)	(4-6)			
Temperature Profiles	(fig. #'s)	A1	A 2	(Page #'s)	24	
Density Profiles		A 3	A4		25	
Pressure Profiles		A5	A6		26	
H ₂ O Mixing Ratios		A7	A8		27	
o_3^-		A 9	A10		28	
N ₂ O		A11	A12		29	
cō		A 13	A14		30	
СН ₄		A 15	A 16		31	

Part II: Constituent Profiles (U.S. Standard Atm. ONLY)

H_2O , CO_2 , O_3 , N_2O	(fig. #'s)	A17	(Page #'s)	34
CO, CH ₄ , O ₂ , NO		A 18		34
so ₂ , No ₂ , NH ₃ , HNO ₃		A19		35
OH, HF, HCl, HBr		A 20		35
HI, ClO, OCS, H ₂ CO		A21		36
HOC1, N ₂ , HCN, CH ₃ Cl		A 22		36
H ₂ O ₂ , C ₂ H ₂ , C ₂ H ₆ , PH3		A 23		37

Appendix A: Part I

Reference Atmospheric Model Profiles

the present assessed transfers transfers are the property assessed the property and the

Figure A1. Temperature Profiles (1-3)

Figure A2. Temperature Profiles (4-6)

Figure A3. Density Profiles (1-3)

Figure A4. Density Profiles (4-6)

Figure A5. Pressure Profiles (1-3)

Figure A6. Pressure Profiles (4-6)

Figure A7. H₂O Mixing Ratios (1-3)

Figure A8. H₂O Mixing Ratios (4-6)

Figure A9. O₃ (1-3)

AFGL 03 PROFILES (4-6)

Figure A10. O₃ (4-6)

Figure A11. N₂O (1-3)

AFGL N20 PROFILES (4-6)#

Figure A12. N₂O (4-6)

[(*) indicates extrapolation adopted for that species]

Figure A13. CO (1-3)

al establish expressed increases interaction increases.

Figure A14. CO (4-6)

Figure A15. CH₄ (1-3)

Figure A16. CH₄ (4-6)

Appendix A: Part II

Constituent Profiles (U.S. Standard Atmosphere ONLY)

PARTICION CONTRACTO IN CONTRACTO CONTRACTOR

Figure A17. H₂O, CO₂, O₃, N₂O

Figure A18. CO, CH₄, O₂, NO

[(*) indicates extrapolation adopted for that species, see tabular data]

Figure A19. SO₂, NO₂, NH₃, HNO₃

CONTRACT SECRETARIA INTERNAL INCOME. INDICATE SECRETARIA SECRETARIA

Figure A20. OH, HF, HCl, HBR

[(*) indicates extrapolation adopted for that species, see tabular data]

Figure A21. HI, ClO, OCS, H₂CO

Figure A22. HOC1, N_2 , HCN, CH_3C1

[(*) indicates extrapolation adopted for that species, see tabular data]

Figure A23. H_2O_2 , C_2H_2 , C_2H_6 , PH_3^{\dagger}

- [(*) indicates extrapolation adopted for that species, see tabular data] [(†) mixing ratio for PH $_3$ is 1×10^{-14} PPMV]

Appendix B

Bibliography

The tabulated profiles (see text) are, in most cases, derived from more than one literature source. This bibliography provides a list of all references considered when formulating these profiles and is provided as an aide to evaluating species variability, measurement techniques, and/or modeling efforts. In general the final profiles have undergone merging, editing, smoothing, interpolation, and often extrapolation. They can not, therefore, be directly attributed to single sources.

Part I of the Bibliography lists the source data by author and year, separated into four categories: (A) Radiance-Transmittance Models and Line Parameters; (B) Literature Reviews and/or Photochemical Models; (C) Atmospheric Temperature/Pressure Profiles; and (D) Constituent Profiles. The order in which the references appear may reflect their impact upon the adopted profile (see text).

Part II provides the actual alphabetized references with appropriate species identification for cross indexing.

Part I: Subject Listing

A COLOR COLOR

200 CO

CENTRAL SERVICE STRUCTURES (BESTURES CONTROL

A. Radiance-Transmittance Models and Line Parameters

Clough, et al., 1981; Clough, et al., 1985; Kneizys, et al., 1980; Kneizys, et al., 1983; Rothman, et al., 1983a; Rothman, et al., 1983b.

B. Literature Reviews/Photochemical Models

Allen, et al., 1984. (subsequently referred to as A)
Brasseur and Solomon, 1984. (referred to as BS)
Crutzen and Gidel, 1983. (referred to as CG)
Garcia and Solomon, 1983. (referred to as GS)
Logan, et al., 1981. (referred to as L)
Smith, 1982. (referred to as Sm)
WMO, 1982. (referred to as WMO)
WMO, 1986.

C. Atmospheric Temperature/Pressure Profiles

NASA, 1966.

CIRA, 1972.

NASA, 1976.

D. Constituent Profiles

- [A11] (Sm); (WMO); (BS)
- [H₂O] Kneizys, et al., 1980; Remsberg, et al., 1984b; Farmer, et al., 1980; Girard and Louisnard, 1984; Grossman, et al., 1985; Lippens, et al., 1984; Louisnard, et al., 1983; Russell, et al., 1984b; Stordal, et al., 1985; Weinreb, et al., 1984; Degges and Nadile, in press; Philbrick, private communication; (A); (GS); (L); (Sm); (WMO).
- [CO₂] Farmer, et al., 1980; Komhyre, et al., 1985; Lippens, et al., 1984; (Sm); (WMO).
- [O₃] Keating and Young, in press; Bojkov, in press; Fishman, 1985; Girard and Louisnard, 1984; Louisnard, et al., 1983; McPeters, et al., 1984; Remsberg, et al., 1984a; Seiler and Fishman, 1981; (A); (BS); (CG); (GS); (L); (Sm); (WMO).
- [N₂O] Jones and Pyle, 1984; Farmer, et al., 1980; Guthrie, et al., 1984; Louisnard, et al., 1983; Rinsland, et al., 1982a; Stordal, et al., 1985; (BS); (Sm); (WMO).
- [CO] Solomon, et al., 1985; Bevilacqua, et al., 1985; Clancy, et al., 1982; Farmer, et al., 1980; Fishman, 1985; Lippens, et al., 1984; Louisnard, et al., 1983; Seiler and Fishman, 1981; Wattenbach, et al., 1984; (A), (BS); (CG); (L); (Sm); (WMO).

```
[CH<sub>4</sub>]
             Jones and Pyle, 1984; Farmer, et al., 1980; Louisnard, et al., 1983;
               Stordal, et al., 1985; (BS); (CG); (Sm); (WMO).
             NASA, 1976., Allen, private communication; Philbrick, private
[0,]
              communication; (A), (BS); (CG); (Sm); (WMO).
[NO]
             Grossman, et al., 1985; Hameed and Stewart, 1983; Laurent, et al.,
               1985; Logan, 1983; Louisnard, et al., 1983; Philbrick, private
               communication; Rinsland, et al., 1984; (BS); (CG); (L); (Sm);
               (WMO).
[SO<sub>2</sub>]
             Chatfield and Crutzen, 1984; Turco, et al., 1979; (BS); (CG);
               (Sm): (WMO).
[NO_2]
             Hameed and Stewart, 1983; Laurent, et al., 1985; Logan, 1983;
               Louisnard, et al., 1993; Naudet, et al., 1980; Russell, et al.,
               1984a; Russell, et al., 1984c; Solomon, et al., 1984; Weis, et al.,
               1984; (BS); (CG); (L); (Sm); (WMO).
             Arijs, et al., 1982; Farmer and Dawson, 1982; Oelhaf, et al., 1983;
[NH_3]
               (BS); (Sm); (WMO).
[HNO<sub>3</sub>]
             Gille, et al., 1984; Girard and Louisnard, 1984; Goldman, et al.,
               1984; Logan, 1983; Weinreb, et al., 1984; (BS); (Sm); (WMO).
             Chatfield and Crutzen, 1984; Hameed and Stewart, 1983; Herman
[OH]
               and McQuillan, 1985; Philbrick, private communication; Solomon,
               et al., 1982; (BS); (CG); (L); (Sm); (WMO).
             Farmer, et al., 1980; Mankin and Coffey, 1993; (BS); (Sm); (WMO).
[HF]
             Farmer, et al., 1980; Herman and McQuillan, 1985; Mankin and
[HCI]
               Coffey, 1983.
[HBr]
             (BS); (Sm); (WMO).
[HI]
             (BS); (Sm); (WMO).
             Herman and McQuillan, 1985; Weinstock, et al., 1981; (BS); (Sm);
[C10]
               (WMO).
[OCS]
             Louisnard, et al., 1983; Turco, et al., 1979; (BS); (Sm); (WMO).
[H,CO]
             (BS); (Sm); (WMO).
[HOC1]
             Herman and McQuillan, 1985; (BS); (Sm); (WMO).
[N<sub>2</sub>]
             (BS); (Sm); (WMO).
[HCN]
             Rinsland, et al., 1982; Smith and Rinsland, 1985; (BS); (Sm);
               (WMO).
[CH,Cl]
             (CG), (L), (Sm), (WMO).
             Chatfield and Crutzen, 1984; (BS); (Sm); (WMO).
[H_{0}O_{2}]
             Brewer, et al., 1983; Goldman, et al., 1981; Rasmussen, et al.,
[C_2H_2]
               1983; (BS); (Sm); (WMO).
[C2H6]
             Rasmussen, et al., 1983; (BS); (L); (Sm); (WMO).
[PH<sub>2</sub>]
             (Sm).
```

CANADA STATE

al Laterson Cassessal Indonésia, Paparen Caparen Caparen Cassessa Managar

- Abbas, M.M., Guo, J., Nolt, J.G. (1984) Far infrared remote sounding of stratospheric temperature and trace gas distribution, J. Atmos. Chem., 2, 145-162. [OH, HC1].
- Allen, M., Lunine, J.I. and Yung, Y.L. (1984) The vertical distribution of ozone in the mesosphere and lower thermosphere, J. Geophys. Res., 89, 4841-4872. $[O_3, H_2O_2, H_2O]$
- Allen, M., Yung, Y.L. and Waters, J.W. (1981) Vertical transport and photochemistry in the terrestrial mesosphere and lower thermosphere (50-120km), J. Geophys. Res., 86, 3617-3627. [CO]
- Arijs, E., Nevejans, D. and Ingles, J. (1982) Stratospheric positive ion composition measurements, ion abundances and related trace gas detection, J. Atmos. Terrestrial Phys., 44, 45-53. [NH₃]
- Bevilacqua, R.M., Stark, A.A. and Schwartz, P.R. (1985) The variability of carbon monoxide in the terrestrial mesosphere as determined from ground-based observations of the $J=1\rightarrow0$ emission line, J. Geophys. Res; 90, 577-5782. [CO]
- Bojkov, R.D. (in press), Tropospheric Ozone, its changes and possible radiative effects, WMO Special Environmental Report #16. $[O_3]$
- Brasseur, G. and Solomon, S. (1984) Aeronomy of the Middle Atmosphere, D. Reidel Publishing CO, Dordrecht, Holland, Chapter 5: Composition & Chemistry, 440 pp. [ClO, HCl, HOCl, others]
- Brewer, D.A., Augustsson, T.R. and Levine, J.S. (1983) The photochemistry of anthropogenic nonmethane hydrocarbons in the troposphere, \underline{J} . Geophys. Res., 88, 6683-6695. $[C_2H_2]$
- Chatfield, R.B. and Crutzen, P.J. (1984) Sulfur dioxide in remote oceanic air: cloud transport of reactive precursors, J. Geophys. Res; 89, 7111-7132. [OH, H₂O₂, SO₂]
- Cicerone, R.J. and Zellner, R. (1983) The atmospheric chemistry of hydrogen cyanide (HCN), J. Geophys. Res; 88, 10689-10696. [HCN]
- CIRA 1972, (1972) Ed. A.C. Strickland, Akademie-Verlag, Berlin, 450 pp.
- Clancy, R.T. Muhleman, D.O. and Berge, G.L. (1982) Microwave spectra of terrestrial mesospheric CO, J. Geophys. Res; 87, 5009-5014. [CO]
- Clough, S.A., Kneizys, F.X., Rothman, L.S. and Gallery, W.O. (1981), Atmospheric spectral transmittance and radiance: FASCOD1B, SPIE, 277, Pg. 152-166.
- Clough, S.A., Kneizys, F.X., Shettle, E.P., Anderson, G.P., (1986) Atmospheric radiance and transmittance: FASCOD2, <u>Proc. of the Sixth Conference on Atmospheric Radiation</u>, Williamsburg, VA., American Meteorological Society, Boston, MA., 141-144.
- Crutzen, P.J. and Gidel, L.T. (1983) A two-dimensional photochemical model of the atmosphere 2: The tropospheric budgets of the anthropogenic chlorocarbons CO, CH₄, CH₃Cl and the effects of various NO_X sources on tropospheric ozone, J. Geophys. Res; 88, 6641-6661. [NO, CO, CH₄, CH₃Cl, O₃, HNO₃, OH, N₂O₅]
- Degges, T.C. and Nadile, R. (in preparation) Determination of mesospheric water vapor concentrations from earth limb radiance measurements at 6.3 and 2.7 micrometers. $[{\rm H}_2{\rm O}]$
- Ehhalt, D.H., Roth, E.P., Schmidt, U. (1983) On the temporal variance of stratospheric trace gas concentrations, J. Atmos. Chem., 1, 27-51. [N₂O, CH₄]
- Farmer, J.C. and Dawson, G.A. (1982) Condensation sampling of soluble atmospheric trace gases, <u>J. Geophys. Res</u>; <u>87</u>, 8931-8942. [NH₃]

- Farmer, C.B., Raper, O.F., Robbins, B.D., Toth, R.A. and Muller, C. (1980) Simultaneous spectroscopic measurements of stratospheric species: O₂, CH₄, CO, CO₂, N₂O, HCl and HF at northern and southern mid latitudes, J. Gedphys. Res; 85, 1621-1632. [H₂O, HCl, HF, O₃, CH₄, CO, CO₂, N₂O]
- Fishman, J. (1985) Ozone in the troposphere, in Ozone in the Free Atmosphere, ed R.C. Whitten & S. Prasad, Von Nostrand Rheinhold Pub. [CO, O₂]
- Gallery, W.O., Kneizys, F.X. and Clough, S.A. (1983), Air Mass Transmittance/ Radiance Calculation: FASCAT, AFGL-TR-83-3065, (NTIS AD A132108).
- Garcia, R.R. and Solomon, S. (1983) A numerical model of the zonally averaged dynamical and chemical structure of the middle atmosphere, J. Geophys. Res; 88, 1379-1400. [HO₂, NO₂, H₂O₂, NO, HNO₃, OH, CH₄, H₂O, H₂]
- Gille, J.C., Russell III, J.M., Bailey, P.L., Remsberg, E.E., Gordley, L.L., Evans, W.F.J., Fischer, H., Gandrud, B.W., Girard, A., Harries, J.E. and Beck, S.A. (1984) Accuracy & precision of the nitric acid concentrations determined by the LIMS experiment on Nimbus 7, J. Geophys. Res; 89, 5179-5190. [HNO₃]
- Girard, A. and Louisnard, N. (1984) Stratospheric water vapor, nitrogen dioxide, nitric acid, and ozone measurements deduced from spectroscopic observations, J. Geophys. Res; 89, 5109-5114. [H₂O, NO₂, HNO₃, O₃]
- Goldman, A., Murcray, F.J., Blatherwick, R.D., Gillis, J.R., Bonomo, F.S., Murcray, F.H. and Murcray, D.G. (1981) Identification of acetylene (C₂H₂) in infrared atmospheric absorption spectra, J. Geophys. Res; 86, 12143-12146. [C₂H₂]
- Goldman, A., Gillis, J.R., Rinsland, C.P., Murcray, F.J. and Murcray, D.G. (1984) Stratospheric HNO₃ quantification from line-by-line nonlinear least-squares analysis of high resolution balloon-borne solar absorption spectra in the 870 cm⁻¹ region, Applied Optics, 23, 3252-3255. [HNO₃]
- Goldman, A., Rinsland, C.P., Murcray, F.J., Murcray, D.G., Coffey, M.T., Mankin, W.A. (1984) Balloon-borne and aircraft infrared measurements of ethane (C_2H_6) in the upper troposphere and lower stratosphere, <u>J. Atmos. Chem.</u> (2), 211-221. $[C_2H_6]$

STREET STREET STATES TO STORY STORY

- Grossman, K.U., Frings, W.G., Offermann, D., Andre, L., Kopp, E. and Krankowsky, D. (1985) Concentrations of H₂O and NO in the mesosphere and the lower thermosphere at high latitudes, J. Atmos. Terr. Phys; 47, 291-300. [H₂O, NO]
- Guthrie, P.D., Jackman, C.H., Herman, J.R. and McQuillan, C.J. (1984) A diabatic circulation experiment in a two-dimensional photochemical model, J. Geophys. Res: 89, 9589-9602. [N₂O]
- Hameed, S. and Stewart, R.W. (1983) Latitudinal variation of tropospheric ozone in a photochemical model, J. Geophys. Res; 88, 5153-5162. [OH, NO, NO₂]
- Herman, J.R. and McQuillan, C.J. (1985) Atmospheric chlorine & stratospheric ozone nonlinearities and trend detections, J. Geophys. Res; 90, 5721-5732. [ClO, HOCl, OH, HCl]
- Jones, R.L. and Pyle, J.A. (1984) Observations of CH₄ and N₂O by the Nimbus 7 SAMS: A comparison with in situ data and two-dimensional numerical model calculations, J. Geophys. Res; 89, 5263-5379. [CH₄, N₂O]
- Keating, G.M. and Young D.F. (1985) Interim reference ozone models for the middle atmosphere, Interim COSPAR Reference Atmosphere for Altitudes 20-120km, in preparation. [O₃]
- Kneizys, F.X., Shettle, E.P., Gallery, W.O., Chetwynd, J.H., Abreu, L.W., Selby, J.E.A., Fenn, R.W., and McClatchey, R.A. (1980), Atmospheric Transmittance/Radiance: Computer Code LOWTRAN5, AFGL-TR-80-0067, (NTIS AD A088215).

- Kneizys, F.X., Shettle, E.P., Gallery, W.O., Chetwynd, J.H., Abreu, L.W., Selby, J.E.A., Clough, S.A. and Fenn, R.W. (1983), Atmospheric Transmittance/Radiance: Computer Code LOWTRANS, AFGL-TR-83-0187, (NTIS AD A137798).
- Komhyre, W.D., Gammon, R.H., Harris, T.B., Waterman, L.S., Conway, T.J., Taylor, W.R. and Thoning (1985) Global atmospheric CO₂ distribution and variations from 1968-1982 NOAA/GMCC CO₂ flask sample data, J. Geophys. Res., 90, 5567-5596. [CO₂]
- Laurent, J., Lemaitre, M.P., Besson, J., Girard, A., Lippens, C., Muller, C., Vercheval, J. and Ackerman, M. (1985) Middle atmospheric NO and NO₂ observed by the spacelab grille spectrometer, Nature, 315, 126-127. [NO, NO₂]
- Lippens, C., Muller, C., Vercheval, J., Ackerman, M., Laurent, J., Plemaitre, M., Besson, J. and Girard, A. (1984) Trace constituents measurements deduced from spectrometric observations on-board spacelab, Adv. Space Res., 4, 75-79. [CO, CO₂, H₂O]
- Logan, J.A. Prather, M.J. Wofsy, S.A. and McElroy, M.B. (1981) Tropospheric chemistry: A global perspective, J. Geophys. Res; 86, 7210-7254. [H₂O₂, CH₃Cl, C₂H₆, NO, NO₂, OH, HO₂, H₂O, O₃, CO, HNO₃]
- Logan, J.A. (1983) Nitrogen oxides in the troposphere: global & regional budgets, J. Geophys. Res; 88, 10785-10807. [NO, NO₂, HNO₃, NO₃]
- Louisnard, N., Fergant, G., Girard, A., Gramont, L., Lado-Bordowsky, O., Laurent, J., LeBoiteux, S. and Lemaitre, M.P. (1983) Infrared absorption spectroscopy applied to stratospheric profiles of minor constituents, <u>J. Geophys. Res</u>; 88, 5365-5376. [CO, COS, CH₄, H₂O, O₃, NO, NO₂, N₂O, HNO₃]
- Mankin, W.G. and Coffey, M.T. (1983) Latitudinal distributions and temporal changes of stratospheric HCl and HF, J. Geophys. Res; 88, 10776-10784. [HCl, HF]
- McPeters, R.D., Heath, D.F. and Bhartia, P.K. (1984) Average ozone profiles for 1979 from the Numbus 7 SBUV instrument, J. Geophys. Res; 89, 5199-5214. [O₃]
- NASA (1966), U.S. Standard Atmosphere Supplements, 1966, U.S. Government Printing Office, Washington, DC.
- NASA (1976), U.S. Standard Atmosphere Supplements, 1976, U.S. Government Printing Office, Washington, DC.
- Naudet, J.P., Rigaud, P. and Huguenin, D. (1980) Stratospheric NO₂ at night from stellar spectra in the 440nm region, Geophys. Res. Letts; 7, 701-701. [NO₂]
- Oelhaf, H., Lenpolt, A. and Fischer, H. (1983) Discrepancies between balloon-borne IR atmospheric spectra and corresponding synthetic spectra calculated line-by-line around 825 cm⁻¹, Appl. Opt; 21, 674-649. [NH₃]
- Philbrick, C.R. private communication based on Keneshea, T.J., Zimmerman, S.P. and Philbrick, C.R. (1979) A dynamic model of the mesosphere and lower thermosphere, Planet. Space. Sci; 27, 285-401. [CO, O, O₂, O₃, H₂O, NO, OH]
- Rasmussen, R.A., Khalil, M.A.K., and Fox, R.J. (1983) Altitudinal & temporal variation of hydrocarbons and other gaseous tracers of arctic haze, Geophys. Res. Lett; 10, 144-147. [C₂H₂, C₂H₆, C₂Cl₄I
- Remsberg, E.E., Russell III, J.M., Gille, J.C., Gordley, L.L., Bailey, P.L., Planet, W.G. and Harries, J.E. (1984a) The validation of Nimbus 7 LIMS measurements of ozone, J. Geophys. Res; 89, 5161-5178. [O₃]
- Remsberg, E.E., Russell III, J.M., Gordley, L.L., Gille, J.C. and Bailey, P.L. (1984b) Implications of the stratospheric water vapor distribution as determined from the Nimbus 7 LIMS experiment, J. Atmos. Sci; 41, 2934-2945. [H₂O]

- Rinsland, C.P., Goldman, A., Murcray, F.J., Murcray, D.G., Smith, M.A.H., Seals, R.K., Larsen, J.C. and Rinsland, P.L. (1982a) Stratospheric N₂O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880 cm⁻¹, Appl. Opt; 21, 4351-4355. [N₂O]
- Rinsland, C.P., Smith, M.A.H., Rinsland, P.L., Goldman, A., Brault, J.W. and Stokes, G.M. (1982) Ground-based infrared spectroscopy measurements of atmospheric hydrogen cyanide, J. Geophys. Res; 87, 11119-11125. [HCN]
- Rinsland, C.P., Boughner, R.E., Larsen, J.C., Stokes, G.M. and Brault, J.W. (1984) Diurinal variations of atmospheric NO: ground-based infrared spectroscopic measurements and their interpretation with time-dependent photochemical model calculations, J. Geophys. Res; 89, 9613-9622. [NO]
- Rothman, L.S., Goldman, A., Gillis, J.R., Gamache, R.R., Pickett, H.M., Poynter, R.L., Husson, N. and Chedin, A. (1983b), AFGL trace gas compilation: 1982 version, Appl. Opt., 22, 1616-1627.
- Rothman, L.S., Gamache, R.R., Barbe, A., Goldman, A., Gillis, H.R., Brown, L.A., Toth, R.A., Flaud, J.-M. and Camy-Peyret, C. (1983a), AFGL atmospheric absorption line parameters compilation: 1982 edition, Appl. Opt., 22, 2247-2256.
- Rudolph, J., Ehhalt, D.H., Chedin, A. (1984) Vertical profiles of acetylene in the troposphere and stratosphere, <u>J. Atmos. Chem.</u>, 2, 117-124. [C₂H₂]
- Russell III, J.M., Gille, J.C., Remsberg, E.E., Gordley, L.L., Bailey, P.L., Drayson, S.R., Fischer, H., Girard, A., Harries, J.E. and Evans, W.F.J. (1984a) Validation of nitrogen dioxide results measured by the LIMS experiment on Nimbus 7, J. Geophys. Res; 89, 5099-5108. [NO₂]
- Russell III, J.M., Gille, J.C., Remsberg, E.E., Gordley, L.L., Bailey, P.L., Fischer, H., Girard, A., Drayon, S.R., Evans, W.F.J. and Harries, J.E. (1984b) Validation of water vapor results measured by the LIMS experiment on Nimbus 7, J. Geophys. Res; 89, 5115-5120. [H₂O]
- Russell III, J.M., Solomon, S., Gordley, L.L., Remsberg, E.E. and Callis, L.B. (1984c) The variability of stratospheric and mesospheric NO₂ in the polar winter night observed by LIMS, J. Geophys. Res; 89, 7267-7276. [NO₂]
- Seiler, W. and Fishman, J. (1981) The distribution of carbon monoxide and ozone in the free troposphere, J. Geophys. Res; 86, 7255-7666. [CO, O₃]

- Smith, M.A.H. (1982) Compilation of atmospheric gas concentration profiles from 0-50km, NASA Tech Mem 83289, 70 pp. [all]
- Smith, M.A.H. and Rinsland, C.P. (1985), Spectroscopic measurements of atmospheric HCN at northern and southern latitudes, Geophys. Res. Lett., 12, 5-8. [HCN]
- Solomon, S., Crutzen, P.J. and Roble, R.G. (1982) Photochemical coupling between the thermosphere and the lower atmosphere: I. Odd nitrogen from 50-120 km, J. Geophys. Res; 87, 7206-7221. [OH]
- Solomon, S., Garcia, R.R., Olivero, J.J., Bevilacqua, R.M., Schwartz, P.R., Clancy, R.T. and Mahleman, D.O. (1985) Photochemistry and transport of CO in the middle atmosphere, J. Atmos. Sci., 42, 1072-1083. [CO]
- Solomon, S., Mount, G.H. and Zawodny, J.M. (1984) Measurements of stratospheric NO₂ from the Solar Mesospheric Explorer (SME) satellite, 2, General morphology of observed NO₂ and derived N₂O₅, J. Geophys. Res; 89, 7317-7321. [NO₂]
- Stordal, F., Isaksen, I.S.A. and Horntveth, K. (1985) A diabatic circulation two-dimensional model with photochemistry: simulations of ozone and long-lived tracers with surface sources, J. Geophys. Res: 90, 5757-5776. [CH₄, N₂O, H₂O]

- Thomas, R.J., Barth, C.A., Rusch, D.W. and Sanders, R.W. (1984) Solar Mesospheric Explorer (SME) near-infrared spectrometer: Measurements of 1.27 μ m radiances and the inference of mesospheric ozone, J. Geophys. Res; 89, 9569-9580. [O₃]
- Thomas, R.J., Barth, C.A. and Solomon, S. (1984) Seasonal variations of O₃ in the upper mesosphere and gravity waves, <u>Geophys. Res. Letts.</u>, <u>11</u>, 673-676. [O₃]
- Turco, R.P., Hamill, P., Toon, O.B., Whitten, R.C. and Kiang, C.S. (1979) One-dimensional model describing aerosol formation and evolution in the stratosphere:

 I. Physical processes and mathematical processes and mathematical analogs,

 J. Atmos. Sci., 36, 699-717. [HSO₃, H₂SO₄, SO₂, OCS]
- Vukovich, F.M. Fishman, J. and Browell, E.V. (1985) The reservoir of ozone in the boundary layer of the Eastern United States and its potential impact on the global tropospheric ozone budget, J. Geophys. Res; 90, 5687-5698. [O_q]
- Wattenbach, R., Durwen, E.J., Roser, H.P. and Schultz, G.V. (1984) Observation of the CO (J=6+5) rotational transition in the earth's upper atmosphere, J. Geophys. Res; 89, 7285-7290. [CO]
- Weeks, L.H., Good, R.E., Randhawa, J.S. and Trinks, A. (1978) Ozone measurements in the stratosphere, mesosphere, and lower thermosphere during Aladdin 74, J. Geophys. Res; 83, 978-982. [O₂]
- Weinreb, M.P., Morgan, W.A. Chang, I-Lok, Johnson, L.D., Bridges, P.A. and Neuendorffer, A.C. (1984) High-altitude balloon test of satellite solar occulation instrument for monitoring stratospheric O₃, H₂O and HNO₃, J. Atmos. & Oceanic Tech, 1, 87-100. [H₂O, HNO₃, O₃]
- Weinstock, E.M., Phillips, M.J. and Anderson, J.G. (1981) In situ observations of ClO in the stratosphere: a review of recent results, J. Geophys. Res; 86, 7273-7278. [ClO]
- Weis, R.F. (1984) The temporal & spatial distribution of tropospheric nitrous oxide, J. Geophys. Res; 86, 7185-7196. [NO₂]
- W.M.O. (1982), The Stratosphere 1981: Theory and Measurements, Report No. 11, NASA, Greenbelt, MD.
- W.M.O. (1986), Atmospheric Ozone 1985: Assessment of our understanding of the processes controlling its present distribution and change, WMO Report No. 16, W.M.O., Geneva, Switzerland.