Estimadores consistentes y el Teorema de Cramér-Rao

Consistencia de un Estimador

Un estimador es una regla o fórmula que se utiliza para estimar un parámetro de la población basado en una muestra. Un estimador es consistente si, a medida que el tamaño de la muestra aumenta indefinidamente, el estimador se aproxima al valor real del parámetro que intenta estimar.

Condiciones necesarias para probar la consistencia de un estimador

1. **Insesgado asintóticamente:** Un estimador es asintóticamente insesgado si, a medida que el tamaño de la muestra tiende a infinito, la esperanza matemática del estimador tiende al valor verdadero del parámetro. Formalmente:

$$\lim_{n\to\infty} \mathbb{E}[\hat{\theta}_n] = \theta$$

2. Varianza que tiende a cero: A medida que el tamaño de la muestra n aumenta, la varianza del estimador debe disminuir. Esto significa que la dispersión de las estimaciones alrededor del valor verdadero se reduce con más datos:

$$\lim_{n \to \infty} \operatorname{Var}(\hat{\theta}_n) = 0$$

3. Convergencia en probabilidad: Un estimador $\hat{\theta}_n$ es consistente si, para cualquier $\epsilon > 0$, la probabilidad de que $\hat{\theta}_n$ se desvíe de θ en más de ϵ converge a cero cuando n tiende a infinito:

$$\lim_{n \to \infty} \mathbb{P}(|\hat{\theta}_n - \theta| > \epsilon) = 0$$

Teorema de Cramér-Rao

El Teorema de Cramér-Rao establece un límite inferior para la varianza de un estimador insesgado de un parámetro poblacional. La varianza de un estimador insesgado $\hat{\theta}$ está limitada por el inverso de la información de Fisher, $I(\theta)$, que mide la cantidad de información que la muestra proporciona sobre θ . La cota de Cramér-Rao se expresa como:

$$\operatorname{Var}(\hat{\theta}) \ge \frac{1}{I(\theta)}$$

Donde la información de Fisher $I(\theta)$ se define como:

$$I(\theta) = -\mathbb{E}\left[\frac{\partial^2}{\partial \theta^2} \log f(X|\theta)\right]$$

Ejemplos

Ejemplo 1: Media muestral como estimador consistente

Sea una variable aleatoria X con distribución normal $N(\mu, \sigma^2)$. La media muestral $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$ es un estimador insesgado de μ . La varianza de $\hat{\mu}$ es $\text{Var}(\hat{\mu}) = \frac{\sigma^2}{n}$.

Cota de Cramér-Rao: En este caso, la información de Fisher sobre μ es $I(\mu)=\frac{n}{\sigma^2}$, por lo que la cota de Cramér-Rao es $\frac{\sigma^2}{n}$. Esto muestra que la media muestral alcanza la cota de Cramér-Rao y es un estimador eficiente y consistente.

Ejemplo 2: Varianza muestral corregida como estimador consistente

Para una variable aleatoria X con distribución normal $N(\mu, \sigma^2)$, la varianza muestral corregida $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ es un estimador insesgado de σ^2 .

Aunque es insesgado, su varianza no alcanza la cota de Cramér-Rao. Para σ^2 , la información de Fisher es $I(\sigma^2) = \frac{n}{2\sigma^4}$, y la cota de Cramér-Rao es $\frac{2\sigma^4}{n}$. Aunque S^2 no es eficiente, sigue siendo un estimador consistente de σ^2 .

Ejercicios

- 1. Sea X_1, X_2, \ldots, X_n una muestra de una distribución normal $N(\mu, \sigma^2)$. Demuestra que la media muestral $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$ es un estimador eficiente al alcanzar la cota de Cramér-Rao para μ .
- 2. Para una muestra de una distribución normal $N(\mu, \sigma^2)$, demuestra que la varianza muestral corregida $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ no alcanza la cota de Cramér-Rao, pero sigue siendo un estimador consistente.
- 3. Considera una muestra X_1, X_2, \ldots, X_n de una distribución exponencial con parámetro λ . Demuestra que el estimador de máxima verosimilitud $\hat{\lambda} = \frac{1}{X}$ es consistente y calcula su varianza. Verifica si alcanza la cota de Cramér-Rao para λ .
- 4. Sea X_1, X_2, \ldots, X_n una muestra de una variable binomial con parámetro p. Prueba que la proporción muestral $\hat{p} = \frac{1}{n} \sum_{i=1}^n X_i$ es un estimador consistente de p y calcula la cota de Cramér-Rao para p. ¿La proporción muestral alcanza esta cota?
- 5. Considera un estimador sesgado T_n de un parámetro θ tal que $\mathbb{E}[T_n] = \theta + \frac{1}{n}$ y su varianza es $\text{Var}(T_n) = \frac{1}{n^2}$. ¿Es T_n un estimador consistente y eficiente? Compara su varianza con la cota de Cramér-Rao.