WHAT IS CLAIMED IS:

1	1.	A method of forming a semiconductor device, the method comprising:
2		providing a substrate having a gate electrode formed thereon;
3		performing a first ion implant wherein the gate electrode acts as a mask;
4		forming a first spacer on the substrate adjacent to the gate electrode;
5		forming an etch stop layer on the substrate;
6		forming a sacrificial spacer on the second etch stop layer on the substrate adjacent to the
7	first s	pacer;
8		performing a second ion implant wherein the sacrificial spacer and the first spacer acts as
9	a mas	k;
10		removing the sacrificial spacer; and
11		performing a third ion implant wherein the first spacer acts as a mask.
1	2.	The method of claim 1, wherein the step of forming the first spacer includes forming a
2	dielectric liner on the substrate, forming a first spacer layer, and etching the first spacer layer	
3	where	ein the dielectric liner acts as an etch stop.
1	3.	The method of claim 2, wherein exposed portions of the dielectric liner are removed after
2	formi	ing the first spacer.

The method of claim 1, wherein the etch stop layer covers a shallow trench isolation. 1 4. The method of claim 1, wherein the third ion implant is performed before the second ion 5. 1 2 implant. 1 6. The method of claim 1, wherein the first spacer comprises a material selected from the group consisting of silicon nitride, silicon oxynitride, silicon oxime, a nitrogen containing 2 material, and a combination thereof. 3 1 7. The method of claim 1, wherein the etch stop layer is an oxide. 8. 1 The method of claim 1, wherein the sacrificial spacer comprises a material selected from the group consisting of silicon nitride, silicon oxynitride, silicon oxime, a nitrogen containing 2 3 material, and a combination thereof. 9. The method of claim 1, wherein the step of forming the sacrificial spacer includes 1 2 depositing a layer of Si3N4 and performing an anisotrophic dry etch. 1 10. The method of claim 1, wherein the etch stop layer is an oxide formed by chemical vapor

deposition techniques.

2

1	11.	The method of claim 1, wherein the step of removing the sacrificial layer is performed by
2	an etcl	n process using a solution of phosphoric acid.

1	12. A method of forming a semiconductor device, the method comprising:		
2	providing a substrate having a gate electrode and a shallow trench isolation (STI) formed		
3	thereon;		
4	forming a lightly doped drain in the substrate adjacent to the gate electrode;		
5	forming a first spacer on the substrate adjacent to the gate electrode;		
6	forming an etch stop layer on the substrate and over the STI;		
7	forming a sacrificial spacer on the etch stop layer adjacent to the first spacer, the etch		
8	stop layer preventing damage to the STI;		
9	performing a second ion implant wherein the first spacer and the sacrificial spacer act as		
10	a mask;		
11	removing the sacrificial spacer, the etch stop layer preventing damage to the STI; and		
12	performing a third ion implant wherein the first spacer acts as a mask.		
1	13. The method of claim 12, wherein the step of forming the first spacer includes forming a		
2	dielectric liner on the substrate, forming a first spacer layer, and etching the first spacer layer		
3	wherein the dielectric liner acts as an etch stop.		
1	14. The method of claim 13, wherein exposed portions of the dielectric liner are removed		
1	14. The method of claim 13, wherein exposed portions of the dielectric liner are removed		
2	after forming the first spacer.		

The method of claim 12, wherein the third ion implant is performed before the second ion 15. 1 2 implant. The method of claim 12, wherein the step of forming the sacrificial spacer includes 1 16. forming a sacrificial layer and patterning the sacrificial layer to form the sacrificial spacer by 2 3 performing an anisotrophic dry etch. 1 17. The method of claim 16, wherein the step of removing the sacrificial spacer is performed 2 using a solution of phosphoric acid. 18. The method of claim 12, wherein the sacrificial spacer comprises a material selected from 1 the group consisting of silicon nitride, silicon oxynitride, silicon oxime, a nitrogen containing 2 3 material, and a combination thereof. 1 19. The method of claim 12, wherein the second etch stop layer is an oxide.

1

2

20.

techniques.

The method of claim 19, wherein the oxide is formed by chemical vapor deposition