同変シューベルト計算における組合せ論

京都大学大学院理学研究科数学·数理解析専攻 学籍番号 0530-35-6268 赤松 輝海

はじめに

はじめに

目次

1	同変コホモロジー	3
1.1	universal bundle	3
1.2	Borel 構成	4
1.3	有限次元近似	7
1.4	Weil model/Cartan model	8
1.5	Atiyah-Bott $\mathcal O$ localization	11
2	GKM の定理と同変 Schubert 計算	12
2.1	GKM の定理	12
2.2	Grassmann 多様体の同変コホモロジー	12
2.3	GKM 条件による Schubert Class の特徴づけ	14
3	同変 Schubert 計算における組合せ論	17
3.1	Schubert puzzle による方法	17
3.2	edge labeled tableaux による方法	19
3.3	weight preserving bijection の構成	24

1 同変コホモロジー

1.1 universal bundle

G をコンパクト Lie 群とする.以下考える位相空間はすべて CW 複体であるとする.本論文では特に断らない限りコホモロジーの係数はすべて $\mathbb Z$ である.

定義 1.1.1. 次の 2 つの条件を満たす主 G 束 $f: EG \to BG$ を universal G bundle という.

- (i) 任意の主 G 束 $E \to B$ に対して連続写像 $h: B \to EB$ が存在して $E \simeq h^*EG$ が成り立つ.
- (ii) $h_0, h_1: B \to EB$ に対して $h_0^*EG \simeq h_1^*EG$ ならば h_0, h_1 はホモトピックである.

定義 1.1.2. 連続写像 $f\colon X\to Y$ が弱ホモトピー同値であるとは,f が同型 $f_*\colon \pi_q(X)\to \pi_q(Y)$ をすべての $q=0,1,\cdots$ に対して誘導することをいう.特に,1 点への自明な写像 $X\to \mathrm{pt}$ が弱ホモトピー同値になるような空間 X を弱可縮であるという.

定理 1.1.3. (Steenrod [9]) 主 G 束 $E \to B$ が universal G bundle であるための必要十分条件は E が弱可縮であることである.

例 1.1.4. $S^{\infty *1}$ は可縮であるので、 $T = S^1$ に対して $S^{\infty} \to \mathbb{CP}^{\infty}$ は universal T bundle である.

G がコンパクト Lie 群の場合, universal G bundle は直交群 O(k) の universal bundle から構成できる.

 $V_k(\mathbb{R}^n)$ を \mathbb{R}^n の k 個の正規直交なベクトル (v_1,\cdots,v_k) のなす空間とし、 $\mathrm{Gr}_k(\mathbb{R}^n)$ を \mathbb{R}^n の k 次元部分空間全体のなす空間とする。 $V_k(\mathbb{R}^n)$ を Stiefel 多様体、 $\mathrm{Gr}_k(\mathbb{R}^n)$ を Grassmann 多様体という。 $(v_1,\cdots,v_k)\in V_k(\mathbb{R}^n)$ を $n\times k$ 行列とみなすことで,O(k) は $V_k(\mathbb{R}^n)$ に自由に右作用する。また $(v_1,\cdots,v_k)\in V_k(\mathbb{R}^n)$ に対して, v_1,\cdots,v_k の生成する部分空間を対応させることで写像 $V_k(\mathbb{R}^n)\to\mathrm{Gr}_k(\mathbb{R}^n)$ が定まる。

命題 1.1.5. $V_k(\mathbb{R}^n) \to \operatorname{Gr}_k(\mathbb{R}^n)$ は主 O(k) 束である.

Proof. 簡単のため、k=2, n=4 の場合に示す. $U_{1,2} \subset \operatorname{Gr}_2(\mathbb{R}^4)$ を

$$\begin{pmatrix} 1\\0** \end{pmatrix}, \quad \begin{pmatrix} 0\\1** \end{pmatrix} \tag{1}$$

の形のベクトルで生成される部分空間のなす集合とする.ここで * は任意の実数である.(1) に Schmidt の直交化法を施して得られるベクトルを v_1,v_2 とし,(1) に (v_1,v_2) を対応させれば,切断 $s_{1,2}\colon U_{1,2}\to V_k(\mathbb{R}^n)$ 得られる. $\phi_{1,2}\colon U_{1,2}\times O(2)\to V_2(\mathbb{R}^4)|_{U_{1,2}}$ を

$$\phi_{1,2}(\left\langle \begin{pmatrix} 1\\0** \end{pmatrix}, \begin{pmatrix} 0\\1** \end{pmatrix} \right\rangle, P) = (v_1, v_2)P$$

とすれば $\phi_{1,2}$ は像への同相であり、O(2) の右作用と可換である.

^{*1} 入る位相について明記?

同様に $U_{i,j}, s_{i,j}, \phi_{i,j}$ を $1 \le i < j \le 4$ に対して定義すれば G の作用と可換な局所自明化が得られる. \square

命題 1.1.6. $V_{k+1}(\mathbb{R}^{n+1}) \to S^n$ を $(v_0, \dots, v_k) \mapsto v_0$ とすると、 $V_k(\mathbb{R}^n)$ をファイバーとするファイバー束となり、 $\pi_i(V_k(\mathbb{R}^n)) = 0$ for $i = 0, 1, \dots, n-k-1$ である.

 $Proof.\ U_i = \{\ (x_0, \cdots, x_n) \in S^n \mid x_i \neq 0\ \}$ とすると、 $x = (x_0, \cdots, x_n) \in U_i$ の直交補空間の正規直交基底 u_1, \cdots, u_n を x_0, \cdots, x_n に関してなめらかにとることができる。行列 U(x) を $U(x) = (u_1, \cdots, u_n)$ とする。 $\phi_i \colon U_i \times V_k(\mathbb{R}^n) \to V_{k+1}(\mathbb{R}^{n+1})|_{U_i}$ を

$$\phi_i(x, (v_1, \cdots, v_k)) = (x, U(x)v_1, \cdots, U(x)v_k)$$

とすれば ϕ_i は像への同相である.

ホモトピー完全列

$$\cdots \longrightarrow \pi_{q+1}(S^n) \longrightarrow \pi_q(V_k(\mathbb{R}^n)) \longrightarrow \pi_q(V_{k+1}(\mathbb{R}^{n+1})) \longrightarrow \pi_q(S^n) \longrightarrow \cdots$$

において, $\pi_{q+1}(S^n) = 0$, (q+1 < n) であるから,

$$\pi_q(V_{k+1}(\mathbb{R}^{n+1})) \simeq \pi_q(V_k(\mathbb{R}^n))$$

よってq < n - kのとき

$$\pi_q(V_k(\mathbb{R}^n)) \simeq \pi_q(V_1(\mathbb{R}^{n-k+1})) \simeq \pi_q(S^{n-k}) = 0$$

 $V_k(\mathbb{R}^{\infty}) = \underline{\lim} V_k(\mathbb{R}^n), \, \mathrm{Gr}_k(\mathbb{R}^{\infty}) = \underline{\lim} \, \mathrm{Gr}_k(\mathbb{R}^n)$ とする.

命題 1.1.7. $V_k(\mathbb{R}^{\infty}) \to \operatorname{Gr}_k(\mathbb{R}^{\infty})$ は universal O(k) bundle である.

 $Proof.\ f\colon S^q \to V_k(\mathbb{R}^\infty)$ を連続写像とする. $V_k(\mathbb{R}^\infty)$ は各 $V_k(\mathbb{R}^n)$ を部分複体にもつような CW 複体の構造をもつ. $f(S^q)$ はコンパクトであるから $f(S^q) \subset V_k(\mathbb{R}^n)$ となる n が存在する [6]. 十分大きく n をとれば $\pi_q(V_k(\mathbb{R}^n))=0$ であるから f のホモトピー類も 0 である. よって定理 1.1.3 より $V_k(\mathbb{R}^\infty) \to \mathrm{Gr}_k(\mathbb{R}^\infty)$ は universal O(k) bundle になる.

定理 1.1.8. G を Lie 群, H を G の閉部分群とする. $EG \to EG/H$ は universal H bundle である.

 $Proof.\ H$ が閉部分群のとき $G \to G/H$ は主 H 束になり, $EG \to EG/H$ は局所的に $U \times G \to U \times (G/H)$ の形をしている (U は BG の開集合) から, $EG \to EG/H$ は主 H 束である.EG は弱可縮であるから,定理 1.1.3 より $EG \to EG/H$ は universal H bundle である.

任意のコンパクト Lie 群 G は十分大きい n に対して O(n) に埋め込めることが知られている [11]. 従って定理 1.1.7 と定理 1.1.8 から, $V_n(\mathbb{R}^\infty) \to V_n(\mathbb{R}^\infty)/G$ は universal G bundle である.

1.2 Borel 構成

定義 1.2.1. G が X に左から作用しているとき、G の $EG \times X$ への左作用を

$$g(x,e) := (gx, eg^{-1})$$
 for $g \in G, x \in X, e \in EG$

によって定める. $EG \times_G X := (EG \times X)/G$ としこれを X の homotopy quotient という. このとき $H_G^*(X) := H^*(EG \times_G X)$ を X の G 同変コホモロジーという.

例 1.2.2. 1 点集合 pt の G 同変コホモロジーは

$$EG \times_G pt = (EG \times pt)/G \approx BG$$

より

$$H_G^*(\mathrm{pt}) \simeq H^*(BG)$$

である。よって

$$H_{S^1}^*(\mathrm{pt}) \simeq H^*(\mathbb{CP}^\infty) \simeq \mathbb{Z}[y]$$

X の G 同変コホモロジーは主 G 束 $EG \to BG$ の取り方に拠らないことを示そう.

 $P \to B$ を主 G 束とする. 写像 $p\colon EG \times X \to EG \times_G X$ と $p_X\colon EG \times_G X \to BG$ を

$$p(x, e) := [x, e]$$

 $p_X([x, e]) := \pi(e)$

によって定める.

命題 1.2.3.

- (i) $p: EG \times X \to EG \times_G X$ は主 G 束である
- (ii) $p_X : EG \times_G X \to BG$ は X をファイバーとするファイバー東である

Proof.

(i) $EG \to BG$ は主 G 束であるので,局所的に $U \times G \to U$ の形をしている (U は BG の開集合). よって $EG \times X \to EG \times_G X$ は局所的に ($U \times G$) $\times X \to (U \times G) \times_G X$ である.($U \times G$) $\times_G X \to U \times X$ を

$$[(u,g),x] \mapsto (u,gx)$$

とすればこれは同相である。合成 $(U \times G) \times X \to (U \times G) \times_G X \to U \times X$, $((u,g),x) \mapsto (u,gx)$ は 切断 $U \times X \to (U \times G) \times X$, $(u,x) \mapsto ((u,e),x)$ を持つので自明束である。

(ii) $EG \to BG$ は局所的に $U \times G \to U$ の形であり, $(U \times G) \times_G X \approx U \times X$ であるから, p_X は局所的に $U \times X \to U$ である.

補題 1.2.4. E を弱可縮な G 空間とし、 $P \to B$ を主 G 束とする。このとき $P \times_G E \to B$ は弱ホモトピー同値である。

 $Proof.\ E$ をファイバーとするファイバー東 $p: P \times_G E \to B$ のホモトピー完全列

$$\cdots \longrightarrow \pi_{q+1}(E) \longrightarrow \pi_{q+1}(P \times_G E) \xrightarrow{p_*} \pi_{q+1}(B) \longrightarrow \pi_q(E) \longrightarrow \cdots$$

において,E は弱可縮であるから, $\pi_{q+1}(E)=\pi_q(E)=0$.よって $p_*:\pi_q(P\times_GE)\to\pi_q(B)$ は同型である.

定理 1.2.5. M を G 空間, $E \to B$, $E' \to B'$ を主 G 束で E, E' はともに弱可縮であるとする。このとき弱ホモトピー同値 $E \times_G M \to E' \times_G M$ が存在する

Proof. 主 G 束 $E \times M \to E \times_G M$ に補題 1.2.4 を用いて弱ホモトピー同値 $(E \times M) \times_G E' \to E \times_G M$ を得る。E と E' の役割を入れ替えて弱ホモトピー同値 $(E' \times M) \times_G E \to E' \times_G M$ を得る。また $(E \times M) \times_G E' \to (E' \times M) \times_G E$ を

$$[(e,m),e'] \mapsto [(e',m),e]$$

とすればこれは同相である.

 $E' \to B'$ は定理 1.1.3 より universal G bundle であるから,G equivariant な写像 $h\colon E \to E'$ であって各ファイバー上同型であるようなものが存在する.そこで $E\times_G M \to (E\times M)\times_G E'$ を

$$[e,m] \mapsto [(e,m),h(e)]$$

とする. このとき合成

$$E \times_G M \to (E \times M) \times_G E' \to E \times_G M$$

は恒等写像であり、 $(E \times M) \times_G E' \to E \times_G M$ は弱ホモトピー同値だから, $E \times_G M \to (E \times M) \times_G E'$ も弱ホモトピー同値である.

合成

$$E \times_G M \to (E \times M) \times_G E' \approx (E' \times M) \times_G E \to E' \times_G M$$

を考えれば、これは弱ホモトピー同値である.

定理 1.2.6. (Hatcher [6]) X,Y を CW 複体とする. 弱ホモトピー同値 $f\colon X\to Y$ は同型 $f^*\colon H^*(Y)\to H^*(X)$ を誘導する

定理 1.2.5 と定理 1.2.6 より、 $EG \rightarrow BG$ 、 $EG' \rightarrow BG'$ が universal G-bundle であるとき、

$$H^*(EG \times_G X) \simeq H^*(EG \times_G X')$$

であることがわかる。

X,Y を G 空間、 $f:X\to Y$ を G 写像とする。 $f_G:EG\times_GX\to EG\times_GY$ を

$$f_G([x,e]) = [f(x),e]$$

によって定めると f_G は well-defined な連続写像となる。したがって f_G は同変コホモロジーの準同型

$$f_G^* \colon H_G^*(Y) \to H_G^*(X)$$

を誘導する。通常のコホモロジーの関手性と同様、同変コホモロジーも関手性をもつ

命題 1.2.7.

- (i) $(id_X)_G^* = id_{H_G^*(X)}$
- (ii) $f: X \to Y, g: Y \to Z$ に対して $(g \circ f)_G^* = (f_G^*) \circ (g_G^*)$

任意の G 空間 X に対して、1 点集合 pt への自明な G 写像は,準同型 $H^*(BG)\simeq H^*_G(\mathrm{pt})\to H^*_G(X)$ を誘導する.したがって $H^*_G(X)$ は $H^*(BG)$ 代数の構造を持つ.

1.3 有限次元近似

セクション 1.1 より、G がコンパクト Lie 群の場合、G の universal bundle EG に対して、有限次元多様体からなる主 G 束の族 $EG_r \to BG_r, (r=1,2,\cdots)$ であって $EG_r \subset EG_{r+1}, BG_r \subset BG_{r+1}$ かつ $EG_{r+1}|_{BG_r} = EG_r$ となるようなものが存在する.

M を非特異射影多様体とし G は M に左から作用しているとする. $X \subset M$ を G 不変な既約代数多様体で $\operatorname{codim} X = k$ とする. $M_{G,r} = EG_r \times_G M$ とすると $X_{G,r} \subset M_{G,r}$ はコホモロジー類 $[X_{G,r}] \in H^k(M_{G,r})$ を定める [1]. $[X_{G,r+1}]|_{M_{G,r}} = [X_{G,r}]$ が成り立つから,その極限 $[X] \in H^k_G(M)$ が定まる.

 X^{sm} を X の非特異点のなす部分多様体とする.

命題 1.3.1. $G=(S^1)^n$ とし,p を X の非特異な点で G 固定点とする. $[X]|_p \in H^k_G(p)$ は $X^{sm} \subset M$ の法束の p におけるウェイトの積に等しい.

Proof. $[X]|_p$ を計算するために、その有限次元近似 $[X_{G,r}]|_{p_{G,r}}\in H^k(p_{G,r}=BG_r)$ を計算する。 $[X_{G,r}]|_{p_{G,r}}$ は $X^{sm}_{G,r}\subset M_{G,r}$ の法束 $\mathcal{N}_{G,r}$ を $p_{G,r}$ に制限したベクトル束 $\mathcal{N}_{G,r}|_{p_{G,r}}$ の Euler 類に他ならない。

よって G の表現 V に対して、ベクトル束 $V_{G,r}\to p_{G,r}=BG_r$ の Euler 類を計算する.簡単のため、n=1、 $V=\mathbb{C}$ で G の V への作用が

$$t \cdot v := t^m v \quad \text{for } t \in G, v \in \mathbb{C}$$

となっているとする. このとき, $V_{G,r}=S^{2r+1}\times_G V$, $BG_r=\mathbb{CP}^r$ である. $U_i=\{\ [z_0:\cdots:z_r]\in\mathbb{CP}^r\ |\ z_i\neq 0\ \}$ とし, $\phi_i:U_i\times\mathbb{C}\to V_{G,r}|_{U_i}$ を

$$\phi_i([z_0:\dots:z_i:\dots:z_r],v) = \left[\left(\frac{z_0|z_i|}{z_i N},\dots,\frac{|z_i|}{N},\dots,\frac{z_r|z_i|}{z_i N} \right),v \right]$$

とする. ここで $N = \sqrt{|z_0|^2 + \cdots + |z_i|^2 + \cdots + |z_r|^2}$ である. ϕ_i は同相であり、変換関数 $\phi_i^{-1}\phi_j: U_i \cap U_j \to \mathbb{C}^{\times}$ を計算すると、

$$\begin{aligned} \phi_{j}^{-1}\phi_{i}([z_{0}:\cdots:z_{r}],v) &= \phi_{j}^{-1} \left[\left(\frac{z_{0}|z_{i}|}{z_{i}N},\cdots,\frac{|z_{i}|}{N},\cdots,\frac{z_{j}|z_{i}|}{z_{i}N},\cdots\frac{z_{r}|z_{i}|}{z_{i}N} \right),v \right] \\ &= \phi_{j}^{-1} \left[\left(\frac{z_{0}|z_{j}|}{z_{j}N},\cdots,\frac{z_{i}|z_{j}|}{z_{j}N},\cdots,\frac{|z_{j}|}{N},\cdots\frac{z_{r}|z_{j}|}{z_{j}N} \right) \cdot \frac{z_{j}|z_{i}|}{|z_{j}|z_{i}},v \right] \\ &= \phi_{j}^{-1} \left[\left(\frac{z_{0}|z_{j}|}{z_{j}N},\cdots,\frac{z_{i}|z_{j}|}{z_{j}N},\cdots,\frac{|z_{j}|}{N},\cdots\frac{z_{r}|z_{j}|}{z_{j}N} \right), \left(\frac{z_{i}|z_{j}|}{|z_{i}|z_{j}} \right)^{m}v \right] \\ &= \left([z_{0}:\cdots:z_{r}], \left(\frac{z_{i}|z_{j}|}{|z_{i}|z_{j}} \right)^{m}v \right) \end{aligned}$$

したがって τ を \mathbb{CP}^r の tautological bundle とすると, $V_{G,r} \simeq \tau^{\otimes m}$ であることがわかる. よって $e(\tau)$ を τ の Euler 類とすると,

$$e(V_{G,r}) = me(\tau)$$

セクション 1.4 より, $u=e(\tau)$ とおくと $H^*(BG)\simeq S(\mathfrak{g}^\vee)\simeq \mathbb{Z}[u]$ である. $e(V_{G,r})=mu\in S(\mathfrak{g}^\vee)$ だから $e(V_{G,r})$ は表現 V のウェイトに等しい.

1.4 Weil model/Cartan model

定義 1.4.1. \mathfrak{g} を \mathbb{R} 上の Lie 代数とする. 可換な次数付き \mathbb{R} 代数 $A=\bigoplus_{k=0}^{\infty}A^{k}$ と線形写像

$$d: A^k \to A^{k+1}$$

$$\iota_X \colon A^k \to A^{k-1}, \quad \forall X \in \mathfrak{g}$$

$$\mathcal{L}_X \colon A^k \to A^k, \quad \forall X \in \mathfrak{g}$$

の組 $(A, d, \iota, \mathcal{L})$ が g-differential graded algebra であるとは,

- (i) $d^2 = 0$ かつ d は反微分. すなわち $d(ab) = (da)b + (-1)^{\deg a} a(db)$ を満たす.
- (ii) $\iota_A^2 = 0$ かつ ι_A は反微分.
- (iii) \mathcal{L}_A は Cartan の homotopy formula を満たす. すなわち $\mathcal{L}_A = \delta \circ \iota_A + \iota_A + \delta$.

が成り立つことをいう. ここで A が可換であるとは, $ab = (-1)^{(\deg a)(\deg b)}ba$ が成り立つことをいう.

例 1.4.2. G を連結なコンパクト Lie 群, \mathfrak{g} を G の Lie 代数,M を G が作用するなめらかな多様体とする. $\Omega(M)=\bigoplus_{k=0}^\infty \Omega^k(M)$ を M の de Rham 複体, $d\colon \Omega^k(M)\to \Omega^{k+1}(M)$ を外微分とする.

$$A \in \mathfrak{g}$$
 に対して、 $\iota_A : \Omega^k(M) \to \Omega^{k-1}(M)$ を

$$\iota_A\omega(X_1,\cdots,X_{k-1})=\omega(A,X_1,\cdots,X_{k-1})$$

とする. ここで A は A の基本ベクトル場である. すなわち, $p \in M$ に対して

$$\underline{A}_p = \frac{d}{dt} \exp(-At)p \Big|_{t=0}$$

で定まるベクトル場である.

 $\mathcal{L}_A := d \circ \iota_A + \iota_A \circ d$ として, $(\Omega(M), d, \iota, \mathcal{L})$ は \mathfrak{g} -differential graded algebra になる.

例 1.4.3. \mathfrak{g} を Lie 代数とする. \mathfrak{g} の基底 X_1, \dots, X_n を固定し、その双対基底を $\alpha_1, \dots, \alpha_n$ とおく. $\bigwedge(\mathfrak{g}^\vee) = \bigoplus_{k=0}^n \bigwedge^k(\mathfrak{g}^\vee)$ を \mathfrak{g}^\vee の交代テンソル空間、 $S(\mathfrak{g}) = \bigoplus_{k=0}^\infty S^k(\mathfrak{g}^\vee)$ を \mathfrak{g}^\vee の対称テンソル空間とする. $W(\mathfrak{g}) = \bigwedge(\mathfrak{g}^\vee) \otimes S(\mathfrak{g}^\vee)$ とし、

$$\theta_i = \alpha_i \otimes 1 \in \bigwedge(\mathfrak{g}^{\vee}) \otimes S(\mathfrak{g}^{\vee})$$
$$u_i = 1 \otimes \alpha_i \in \bigwedge(\mathfrak{g}^{\vee}) \otimes S(\mathfrak{g}^{\vee})$$

とおく.積の記号 \otimes を省略して, θ_i を $\alpha_i \in \bigwedge(\mathfrak{g}^\vee)$ と同一視し, u_i を $\alpha_i \in S(\mathfrak{g}^\vee)$ と同一視する. $\bigwedge(\mathfrak{g}^\vee)$ は $\theta_1, \cdots, \theta_n$ で生成される交代テンソル代数 $\bigwedge(\theta_1, \cdots, \theta_n)$ に同型であり, $S(\mathfrak{g}^\vee)$ は u_1, \cdots, u_n で生成される 多項式環 $\mathbb{R}[u_1, \cdots, u_n]$ に同型である. θ_i の次数は 1, u_i の次数は 2 であるから, $W(\mathfrak{g})$ は次のような次数付き代数の構造をもつ.

$$W(\mathfrak{g}) = \bigoplus_{k=0}^{\infty} W^k(\mathfrak{g}) \simeq \bigoplus_{k=0}^{\infty} \bigoplus_{n+2n=k} \bigwedge^p (\theta_1, \cdots, \theta_n) \otimes S^q(u_1, \cdots, u_n)$$

 c_{ij}^k を $\mathfrak g$ の X_1,\cdots,X_n に関する構造定数とする.すなわち, $[X_i,X_j]=\sum_{k=1}^n c_{ij}^k X_k$ とする.線形写像 $\delta\colon W^m(\mathfrak g) o W^{m+1}(\mathfrak g)$ を

$$\delta\theta_k := u_k - \frac{1}{2} \sum_{i,j} c_{ij}^k \theta_i \theta_j, \quad \delta u_k := \sum_{i,j} c_{ij}^k u_i \theta_j$$

として, p+2q=m なる p,q に対して

$$\delta(\theta_{i_1} \cdots \theta_{i_p} \cdot u_{j_1} \cdots u_{j_q}) := \sum_{x=1}^p (-1)^{x-1} \theta_{i_1} \cdots (\delta \theta_{i_x}) \cdots \theta_{i_p} \cdot u_{j_1} \cdots u_{j_q}$$
$$+ (-1)^p \sum_{y=1}^q \theta_{i_1} \cdots \theta_{i_p} \cdot u_{j_1} \cdots (\delta u_{j_y}) \cdots u_{j_q}$$

によって定義する.

次に $A \in \mathfrak{g}$ に対して、線形写像 $\iota_A : W^m(\mathfrak{g}) \to W^{m-1}(\mathfrak{g})$ を

$$\iota_A(\theta_i) := \alpha_i(A), \quad \iota_A(u_i) = 0$$

として, p+2q=m なる p,q に対して

$$\iota_{A}(\theta_{i_{1}}\cdots\theta_{i_{p}}\cdot u_{j_{1}}\cdots u_{j_{q}}) := \sum_{x=1}^{p}(-1)^{x-1}\theta_{i_{1}}\cdots(\iota_{A}\theta_{i_{x}})\cdots\theta_{i_{p}}\cdot u_{j_{1}}\cdots u_{j_{q}}$$

$$+ (-1)^{p}\sum_{y=1}^{q}\theta_{i_{1}}\cdots\theta_{i_{p}}\cdot u_{j_{1}}\cdots(\iota_{A}u_{j_{y}})\cdots u_{j_{q}}$$

によって定義する.

最後に $A \in \mathfrak{g}$ に対して \mathcal{L}_A : $W^m(\mathfrak{g}) \to W^m(\mathfrak{g})$ を $\mathcal{L}_A := \delta \circ \iota_A + \iota_A \circ \delta$ として, $(W(\mathfrak{g}), \delta, \iota, \mathcal{L})$ は \mathfrak{g} -differential graded algebra になる.

例 1.4.4. $(A_1, d_1, \iota_1, \mathcal{L}_1), (A_2, d_2, \iota_2, \mathcal{L}_2)$ を \mathfrak{g} -differential graded algebra とする. $A_1 \otimes A_2$ に

$$(a_1 \otimes a_2) \cdot (b_1 \otimes b_2) := (-1)^{(\deg a_2)(\deg b_1)} a_1 b_1 \otimes a_2 b_2$$

によって積を入れ、次数を $\deg(a_1\otimes a_2):=\deg a_1+\deg a_2$ とすると $A_1\otimes A_2$ は可換な次数付き代数の構造をもつ。 $d(a_1\otimes a_2):=d_1a_1\otimes a_2+(-1)^{\deg a_1}a_1\otimes d_2a_2,\ \iota_X(a_1\otimes a_2):=\iota_{1,X}a_1\otimes a_2+(-1)^{\deg a_1}a_1\otimes \iota_{2,X}a_2,$ $\mathcal{L}_X:=d\circ\iota_X+\iota_X\circ d$ によってそれぞれを定義すれば、 $(A_1\otimes A_2,d,\iota,\mathcal{L})$ は \mathfrak{g} -differential graded algebra となる.

定義 1.4.5. $(A, d, \iota, \mathcal{L})$ を \mathfrak{g} -differential graded algebra とする. $\alpha \in A$ が basic であるとは,

$$\iota_X(\alpha) = 0, \quad \mathcal{L}_X(\alpha) = 0, \quad \forall X \in \mathfrak{g}$$

が成り立つことをいう. $A_{bas} = \{ \alpha \in A \mid \alpha \text{ is basic} \}$ とおき, d, ι, \mathcal{L} をすべて A_{bas} に制限すると, $(A_{bas}, d, \iota, \mathcal{L})$ は \mathfrak{g} -differential graded algebra になる.

定義 1.4.6. M を G が作用するなめらかな多様体とする. \mathfrak{g} -differential graded algebra $(W(\mathfrak{g})\otimes\Omega(M))_{bas}$ を Weil model と呼ぶ.

定理 1.4.7. (Equivariant de Rham の定理 [2]) G が連結なコンパクト Lie 群の場合,次数付き代数の同型

$$H_G^*(M;\mathbb{R}) \simeq H^*(\{(W(\mathfrak{g}) \otimes \Omega(M))_{bas}, d\})$$

が存在する.

例 1.4.8. $G=S^1$ とする. $\mathfrak g$ の基底 X を固定すると $\mathfrak g=\mathbb R X$ であり、構造定数 c^k_{ij} はすべて 0 である. よって

$$d\theta = u, \quad du = 0$$

$$\iota_X \theta = 1, \quad \iota_X u = 0$$

$$\mathcal{L}_X \theta = 0, \quad \mathcal{L}_X u = 0$$

である.

$$W(\mathfrak{g}) \simeq \bigwedge(\theta) \otimes S(u) \simeq \mathbb{R}[u] \oplus \mathbb{R}[u]\theta$$

より,

$$W(\mathfrak{g}) \otimes \Omega(M) \simeq \Omega(M)[u] \oplus \Omega(M)[u]\theta$$

である. $\alpha \in W(\mathfrak{g})$ を $\alpha = f(u) + \theta g(u)$ とおく. ただし $f(u), g(u) \in \Omega(M)[u](\Omega(M))$ を係数とする u の多項式環) である.

$$\iota_X(\alpha) = \iota_X f(u) + g(u) - \theta(\iota_X g(u))$$

であるから、 $\iota_X \alpha = 0$ ならば、

$$g(u) = -\iota_X f(u), \quad \iota_X g(u) = 0$$

である. 逆に $g(u) = -\iota_X f(u)$ なら自動的に $\iota_X g(u) = 0$ であるので,

$$\iota_X \alpha = 0 \Leftrightarrow g(u) = -\iota_X f(u)$$

また,

$$\mathcal{L}_X \alpha = \mathcal{L}_X f(u) + \theta \mathcal{L}_X g(u)$$

より、 $\mathcal{L}_X \alpha = 0$ ならば

$$\mathcal{L}_X f(u) = 0, \quad \mathcal{L}_X g(u) = 0$$

である. ここで, $\iota_X\alpha=0$ であるとき, $g(u)=-\iota_Xf(u)$ だから,

$$\mathcal{L}_X g(u) = -\iota_X \mathcal{L}_X f(u) = 0$$

したがって,

$$\alpha$$
 is basic $\Leftrightarrow g(u) = -\iota_X f(u), \quad \mathcal{L}_X f(u) = 0$

そこで、 $\Omega(M)^G$ を $\mathcal{L}_X \eta = 0$ を満たす微分形式のなす部分複体とすれば、

$$(W(\mathfrak{g}) \otimes \Omega(M))_{bas} = \{ (1 - \theta \iota_X) f(u) \mid f(u) \in \Omega(M)^G[u] \}$$

である. とくに $F:(W(\mathfrak{g})\otimes\Omega(M))_{bas}\to\Omega(M)^G[u]$ を $F((1-\theta\iota_X)f(u))=f(u)$ とすれば、F は次数付き代数の同型になる [2]. このとき、

$$F \circ d \circ F^{-1}(f(u)) = F \circ d(f(u) - \theta \iota_X f(u))$$

$$= F(df(u) - u \iota_X f(u) + \theta d\iota_X f(u))$$

$$= F(df(u) - u \iota_X f(u) - \theta \iota_X df(u))$$

$$= F((1 - \theta \iota_X)(df(u) - u \iota_X f(u)))$$

$$= (d - u \iota_X) f(u)$$

であるから、 $d_X: \Omega^G(M)[u] \to \Omega^G(M)[u]$ を

$$d_X(f(u)) = (d - u\iota_X)f(u)$$

 $(\Omega^G(M)[u], d_X)$ は differential graded algebra として $(W(\mathfrak{g}) \otimes \Omega(M))_{bas}$ と同型である。これを Cartan model と呼び、 $f(u) \in \Omega^G(M)[u]$ を equivariant differential form と呼ぶ。また、 $\alpha \in \Omega^G(M)[u]$ が $d_X\alpha = 0$ をみたすとき、 α を equivariantly closed であるという。

例 1.4.9. 同様に $G=(S^1)^n$ の場合, $d_{X_1,\cdots,X_n}\colon \Omega^G(M)[u_1,\cdots,u_n]\to \Omega^G(M)[u]$ を

$$d_{X_1,\dots,X_n}f(u_1,\dots,u_n)=(d-\sum_i u_i\iota_{X_i})f(u_1,\dots,u_n)$$

とし、 $F: (W(\mathfrak{g}) \otimes \Omega(M))_{bas} \to \Omega^G(M)[u_1, \cdots, u_n]$ を

$$F(f(u_1, \dots, u_n) + \sum_{I} \theta_I f(u)) = f(u), \quad I = (i_1 < \dots < i_p), \theta_I = \theta_{i_1} \cdots \theta_{i_p}$$

とすれば F は differential graded algebra の同型となる.

例 1.4.10. $G=(S^1)^n$, M= pt とすると, $\Omega(M)\simeq\mathbb{R},\ d_{X_1,\cdots,X_n}=0$ であるから, $H_G^*(M)\simeq\Omega^G(M)[u_1,\cdots,u_n]\simeq\mathbb{R}[u_1,\cdots,u_n]\simeq S(\mathfrak{g}^\vee)$

1.5 Atiyah-Bott Φ localization

 $G = (S^1)^n$ とし、M を G が作用する向き付けられたコンパクト多様体で、 $\dim M = 2d$ とする.

定義 1.5.1. $\alpha \in \Omega^G(M)[u_1, \cdots, u_n]$ に対して、 $\int_M \alpha : \mathfrak{g} \to \mathbb{R}$ を

$$\left(\int_{M} \alpha\right)(X) := \int_{M} \alpha(X)$$

によって定義する.

定理 1.5.2 (Atiyah-Bott). M の固定点の集合 M^G が有限であるとする. G の表現 T_pM のウェイトを $w_{1,p},\cdots,w_{d,p}\in S(\mathfrak{g}^\vee)$ とおく. equivariantly closed form $\alpha\in S(\mathfrak{g}^\vee)\otimes\Omega^G(M)$ に対して,

$$\int_{M} \alpha = \sum_{p \in M^G} \frac{\alpha|_{p}}{w_{1,p} \cdots w_{d,p}}$$

が成り立つ.

2 GKM の定理と同変 Schubert 計算

2.1 GKM **の定理**

同変コホモロジーに関するいくつかの定理を援用する. $T=(S^1)^n$ とする. Y をなめらかな射影多様体とし T は Y に代数的に作用し、さらに固定点は孤立していると仮定する. このとき次が成り立つ

定理 2.1.1. (Goresky-Kottwitz-MacPherson[8])

- (i) $H_T^*(Y)$ は自由 $H_T^*(\mathrm{pt})$ 加群であり、 $H_T^*(\mathrm{pt})$ 加群の同型 $\phi\colon H_T^*(Y)\simeq H^*(Y)\otimes H_T^*(\mathrm{pt})$ が存在する.
- (ii) $H_T^*(Y) \to H_T^*(Y^T) \simeq \bigoplus_{f \in Y^T} H_T^*(\mathrm{pt})$ は単射である.
- (iii) Y^T が有限であり、1 次元の T 軌道も有限個であるとする.このとき各 1 次元 T 軌道 E は \mathbb{C}^\times に同型であり、 \overline{E} は 2 つの固定点 x_0, x_∞ を持っている.したがって \overline{E} は \mathbb{CP}^1 に同型である.T の表現 $T_{x_0}\overline{E}$ のウェイトを w とするとき,任意の $\alpha \in H_T^*(Y) \subset \bigoplus_{f \in Y^T} H_T^*(\mathrm{pt})$ に対して $\alpha|_{x_0} \alpha|_{x_\infty} \in H_T^*(\mathrm{pt})$ は w で割り切れる.
- (iv) 逆に $\alpha \in \bigoplus_{f \in Y^T} H_T^*(\mathrm{pt})$ について,すべての 1 次元 T 軌道 E に対して, $\alpha|_{x_0} \alpha|_{x_\infty} \in H_T^*(\mathrm{pt})$ が w で割り切れるならば, $\alpha \in H_T^*(Y)$ である.また,この条件を GKM 条件と呼ぶ.

定理 2.1.1-(iii) については、localization theorem(定理 1.5.2) からすぐにわかる. 実際、 $\alpha \in H_T^*(Y)$ に対して、

$$H_T^*(\mathrm{pt}) \ni \int_E \alpha = \frac{\alpha|_{x_0}}{w_{x_0}} + \frac{\alpha|_{x_\infty}}{w_{x_\infty}} = \frac{\alpha|_{x_0} - \alpha|_{x_\infty}}{w}$$

となるから、右辺は割り切れなければならない.

2.2 Grassmann 多様体の同変コホモロジー

 $\operatorname{Gr}_k(\mathbb{C}^n) = \{ V \subset \mathbb{C}^n \mid \dim V = k \}$ を Grassmann 多様体という. T は \mathbb{C}^n に

$$(t_1,\cdots,t_n)\cdot(x_1,\cdots,x_n)=(t_1x_1,\cdots,t_nx_n)$$

によって左から作用する。この作用は自然に $\operatorname{Gr}_k(\mathbb{C}^n)$ への作用を誘導し, $\operatorname{Gr}_k(\mathbb{C}^n)$ は T 空間となる。 $\operatorname{Gr}_k(\mathbb{C}^n)$ の T 同変コホモロジーの構造は組み合わせ的に決定することができる。 $\binom{n}{k}$ を 0 と 1 からなる n 文字の文字 列のうち,1 が k 個使われている文字列の集合とする。 $\lambda = \lambda_1 \cdots \lambda_n \in \binom{n}{k}$ に対して置換 $\sigma \in \mathfrak{S}_n$ の作用を $\sigma \lambda = \lambda_{\sigma^{-1}(1)} \cdots \lambda_{\sigma^{-1}(n)}$ で定める。 また, $\binom{n}{k}$ に順序を $\lambda \geq \mu \Leftrightarrow \sum_{i=1}^s \lambda_i \geq \sum_{i=1}^s \mu_i$,($\forall s = 1, \cdots, n$) に よって定める。 $\lambda = \lambda_1 \cdots \lambda_n \in \binom{n}{k}$ に対して,

$$\Omega_{\lambda}^{\circ} = \{ V \in Gr_k(\mathbb{C}^n) \mid \dim(V \cap F_i) = \dim(\mathbb{C}^{\lambda} \cap F_i), \quad \forall i \in \{1, \dots n\} \}$$

を Schubert cell という. ここで、 $\mathbb{C}^{\lambda} = \langle \lambda_1 e_1, \cdots, \lambda_n e_n \rangle$, $F_i = \langle e_1, \cdots, e_i \rangle$ である.

命題 **2.2.1.** $\operatorname{inv}(\lambda) = \{(i,j) \mid \lambda_i = 1, \lambda_j = 0, i < j\}$ とすると Ω_{λ}° は $\mathbb{C}^{\binom{n}{k} - |\operatorname{inv}(\lambda)|}$ に同相であり

$$Gr_k(\mathbb{C}^n) = \bigsqcup_{\lambda \in \binom{n}{k}} \Omega_{\lambda}^{\circ} \tag{2}$$

となる. またこれによって $Gr_k(\mathbb{C}^n)$ は CW-複体の構造をもつ.

Proof. M(k,n) をランク k の $k \times n$ 複素行列全体のなす集合とする. $\operatorname{GL}_k(\mathbb{C})$ は自然に M(k,n) に左作用するが $\operatorname{Gr}_k(\mathbb{C}^n)$ は自然に $M(k,n)/\operatorname{GL}_k(\mathbb{C})$ と同一視される. λ を左から読んで $1 \leq i_1 < \cdots < i_k \leq n$ 番目に 1 が現れるとする. このとき Ω°_{λ} は次の形の行列で代表される $M(k,n)/\operatorname{GL}_k(\mathbb{C})$ の点の集合と同一視できる.

ここで * は任意の複素数である。また、各 cell は T 不変であることもわかる。

次に (2) が $Gr_k(\mathbb{C}^n)$ の CW 構造となることを示す. $E_\lambda \subset M(k,n)$ を次の形の行列のなす集合とする.

ここで、 $x_i \ge 0$ であり、行ベクトルは正規直交であるとする.

 E_{λ} が closed ball に同相であることを示す. $H_a=\left\{\,(z_1,\cdots,z_a,0,\cdots,0)\in\mathbb{C}^n\;\middle|\;\sum|z_j|^2=1,z_a\geq 0\,
ight\}$

とする. $\pi\colon E_\lambda\to H_{i_1}$ を 1 行目を取り出す写像とし, $v=(0,\cdots,0,\overbrace{1},0,\cdots,0)$ とおく.このとき $E_\lambda\approx H_{i_1}\times\pi^{-1}(v)$ が成り立つ ([7]). さらに $\lambda'\in\binom{n-1}{k-1}$ を i_2-1,\cdots,i_k-1 番目に 1 が現れる文字列とすると $\pi^{-1}(v)=E_{\lambda'}$ であるから

$$E_{\lambda} \approx H_{i_1} \times E_{\lambda'}$$

となる. よって帰納的に E_{λ} が closed ball に同相であるとわかる.

自然な写像 φ : $E_{\lambda} \to \operatorname{Gr}_{k}(\mathbb{C}^{n})$ によって E_{λ}° は Ω_{λ}° に写されるが, φ : $E_{\lambda}^{\circ} \to \Omega_{\lambda}^{\circ}$ は全単射である.実際 (3) の行ベクトルに Schmidt の直交化法を施せば (4) の形が得られ,逆の手順を施せば (4) から (3) が得られる. したがって φ は同相である.また $\varphi(\partial E_{\lambda}) \subset \bigcup_{u>\lambda} \Omega_{\mu}^{\circ}$ であることも明らか.

したがって $H^*(\operatorname{Gr}_k(\mathbb{C}^n))$ は Schubert cell の定めるホモロジー類の Poincare 双対 σ_λ たちで \mathbb{Z} 上生成される. $\Omega_\lambda:=\overline{\Omega^\circ_\lambda}=\bigcup_{\mu\leq\lambda}\Omega^\circ_\mu$ は T 不変な既約代数多様体である [1] から, Ω_λ の定める同変コホモロジー類を S_λ とし,これを Schubert class という.定理 2.1.1 より同型 $\phi\colon H^*_T(\operatorname{Gr}_k(\mathbb{C}^n))\simeq H^*(\operatorname{Gr}_k(\mathbb{C}^n))\otimes H^*_T(\operatorname{pt})$ が存在する. $S_\lambda\in H^*(ET\times_T\operatorname{Gr}_k(\mathbb{C}))$ は各ファイバーに制限すると σ_λ に一致するから

$$\phi(S_{\lambda}) = \sigma_{\lambda} + \sum_{I} c_{I} y^{I}$$

と展開できる.ここで $c_I\in H^*(\mathrm{Gr}_k(\mathbb{C}^n))$ の次数は $|\lambda|$ より小さい.よって帰納的に σ_λ が $\{\phi(S_\lambda)\}_\lambda$ の線形結合で表せることがわかるので, $\{S_\lambda\}_\lambda$ は $H^*_T(\mathrm{Gr}_k(\mathbb{C}^n))$ の基底となる.

2 つの Schubert class の積 $S_{\lambda}S_{\mu}$ を $\{S_{\nu}\}_{\nu\in\binom{n}{i}}$ の $\mathbb{Z}[y_1,\cdots,y_n]$ 係数の線形結合で

$$S_{\lambda}S_{\mu} = \sum_{\nu \in \binom{n}{k}} C_{\lambda\mu}^{\nu} S_{\nu} \tag{5}$$

このように表したとき、係数 $C^{\nu}_{\lambda\mu}$ を計算する組み合わせ的手法を紹介することが本論文の目的である.

2.3 GKM 条件による Schubert Class の特徴づけ

 $p_{\lambda}=\mathbb{C}^{\lambda}\in \mathrm{Gr}_k(\mathbb{C}^n)$ とする. $\mathrm{Gr}_k(\mathbb{C}^n)$ の T 作用における固定点は $\{p_{\lambda}\}_{\lambda\in\binom{n}{k}}$ であるから, [GKM] より $H_T^*(\mathrm{Gr}_k(\mathbb{C}^n))$ は $\bigoplus_{\lambda\in\binom{n}{k}}H_T^*(\mathrm{pt})$ の部分代数である. GKM の定理を適用するために $\mathrm{Gr}_k(\mathbb{C}^n)$ の T 不変な \mathbb{CP}^1 を計算する.

命題 2.3.1. $\lambda, \mu \in \binom{n}{k}$ に対して p_{λ} と p_{μ} を結ぶ T 不変な \mathbb{CP}^1 が存在するための必要十分条件は、ある $(i,j) \in \operatorname{inv}(\lambda)$ に対して $\mu = (i,j)\lambda$ 、またはある $(i,j)\operatorname{inv}(\mu)$ に対して $\lambda = (i,j)\mu$ となっていることである.

Proof. $\mu=(i,j)\lambda$ となっているとする. 文字列 λ を左から読んだとき, $a_1<\dots< a_k$ 番目に 1 が現れるとする. $e_1,\dots,e_n\in\mathbb{C}^n$ を標準基底とする. $a_p=i$ であるとして, $Y\subset\operatorname{Gr}_k(\mathbb{C}^n)$ を

$$Y = \left\{ \left\langle e_{a_1}, e_{a_2}, \cdots, x e_{a_p} + y e_j, \cdots, e_{a_k} \right\rangle \mid [x : y] \in \mathbb{CP}^1 \right\}$$
 (6)

とする. Y は T 不変かつ \mathbb{CP}^1 に同型であり, p_{λ} と p_{μ} 固定点にもつ.

逆に $Z \subset \operatorname{Gr}_k(\mathbb{C}^n)$ を (複素)1 次元の T 軌道であって $p_\lambda, p_\mu \in \overline{Z}$ となるようなものとする. $Z = T \cdot p$ となる点 $p \in \operatorname{Gr}_k(\mathbb{C}^n)$ をとる. $1 \leq i_1 < \cdots < i_k \leq n$ に対して $U_{i_1, \cdots i_k} \subset \operatorname{Gr}_k(\mathbb{C}^n)$ を次の形の行列で代表される点の集合とする.

 U_{i_1,\cdots,i_k} は T 不変であり, $\mathrm{Gr}_k(\mathbb{C}^n)=\bigcup_{1\leq i_1<\cdots< i_k\leq n}U_{i_1,\cdots,i_k}$ である.よって $p\in U_{i_1,\cdots i_k}$ であるとすれば $Z\subset U_{i_1,\cdots,i_k}$ である. \overline{Z} が (6) の形になることを示す.簡単のため, $k=2,n=4,i_1=1,i_2=3$ の場合に示す.このとき p は

$$p = \left(\begin{array}{ccc} 1 & x & 0 & y \\ 0 & z & 1 & w \end{array}\right)$$

となるが, $t = (t_1, t_2, t_3, t_4) \in T$ に対して,

$$t \cdot p = \begin{pmatrix} 1 & t_2 t_1^{-1} x & 0 & t_4 t_1^{-1} y \\ 0 & t_2 t_3^{-1} z & 1 & t_4 t_3^{-1} w \end{pmatrix}$$

であるから $\dim Z=1$ であるためには x,y,z,w は 1 つをのぞき 0 でなければならない. たとえば x 以外すべて 0 であるとして, Z は

$$Z = \left\{ \left(\begin{array}{ccc} t_1 & t_2x & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right) \in \operatorname{Gr}_k(\mathbb{C}^n) \, \middle| \, t_1, t_2 \in \mathbb{C}^\times \, \right\}$$

となる. したがって

$$\overline{Z} = \left\{ \left(\begin{array}{ccc} a & b & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right) \in \operatorname{Gr}_k(\mathbb{C}^n) \, \middle| \, [a:b] \in \mathbb{CP}^1 \, \right\}$$

である.

 $\lambda, \lambda' = (i, j) \lambda \in \binom{n}{k}, \ ((i, j) \in \operatorname{inv}(\lambda))$ に対して、 p_{λ} と $\mathbb{C}^{\lambda'}$ を結ぶ T 不変な \mathbb{CP}^1 を Z とする。Z における p_{λ} の接空間を $T_{\lambda}Z$ とする。T の $T_{\lambda}Z$ への作用のウェイトを w_{λ} とする。

$$w_{\lambda} = y_j - y_i$$

である。ただし、 ${\rm Lie}(T)$ の基底 X_1,\cdots,X_n を $X_i=(0,\cdots,\overbrace{1}^{i\text{-th}},\cdots,0)$ となるように取り、その双対基底を y_1,\cdots,y_n とする。

例 2.3.2. $n=4, \ k=2, \ \lambda=0110, \ \lambda'=0101$ とする. このとき

$$Z = \left\{ \left(\begin{array}{ccc} 0 & 1 & 0 & 0 \\ 0 & 0 & u & v \end{array} \right) \in \operatorname{Gr}_2(\mathbb{C}^4) \mid [u:v] \in \mathbb{CP}^1 \right\}$$

である. $t = (t_1, t_2, t_3, t_4) \in T$ に対して,

$$t \cdot \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & v \end{array} \right) = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & t_3 & t_4 v \end{array} \right) = \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & t_4 t_3^{-1} v \end{array} \right)$$

このとき $w_{\lambda} = y_4 - y_3$ である.

定理 2.1.1 より

$$H_T^*(\mathrm{Gr}_k(\mathbb{C}^n)) = \left\{ \left. (f_\lambda)_{\lambda \in \binom{n}{k}} \in \bigoplus_{\lambda \in \binom{n}{k}} H_T^*(\mathrm{pt}) \, \right| \, f_\lambda - f_{\lambda'} \text{ is divisible by } w_\lambda \text{ for } \lambda' = (i,j)\lambda, \, (i,j) \in \mathrm{inv}(\lambda) \, \right\}$$

である。

また,命題 1.3.1 より, $S_{\lambda}|_{p_{\lambda}}$ は p_{λ} における $\Omega_{\lambda} \subset \operatorname{Gr}_{k}(\mathbb{C}^{n})$ の法束のウェイトの積に等しい.(3) と (7) より,

$$S_{\lambda}|_{p_{\lambda}} = \begin{cases} \prod_{(i,j) \in \text{inv}(\lambda)} (y_j - y_i) & \text{if } \lambda \neq 0^{n-k} 1^k \\ 1 & \text{if } \lambda = 0^{n-k} 1^k \end{cases}$$
 (8)

である. さらに, $p_{\mu} \in \Omega_{\lambda} \Leftrightarrow \mu \geq \lambda$ であるから, $S_{\lambda}|_{p_{\mu}} \neq 0$ であるなら $\mu \geq \lambda$ である. また $S_{\lambda} \in H_{T}^{*}(\mathrm{Gr}_{k}(\mathbb{C}^{n}))$ の次数は $2|\mathrm{inv}(\lambda)|$ だから $S_{\lambda}|_{p_{\mu}}$ は y_{i} に関して次数 $|\mathrm{inv}(\lambda)|$ の同次式である $(y_{i} \in H_{T}^{*}(\mathrm{pt}))$ の次数は 2 である.). 逆に次が成り立つ.

命題 2.3.3 (Knutson-Tao[3]). 各 $\lambda \in \binom{n}{k}$ に対して次の 3 つの条件をみたす $\alpha_{\lambda} = (\alpha_{\lambda}|_{p_{\mu}})_{\mu \in \binom{n}{k}} \in \bigoplus_{\mu \in \binom{n}{k}} H_T^*(\mathrm{pt})$ はただ一つである.

- (i) α_{λ} は GKM 条件を満たす. すなわち $\alpha_{\lambda} \in H_T^*(Gr_k(\mathbb{C}^n))$
- (ii) $\alpha_{\lambda}|_{p_{\mu}} \neq 0$ ならば $\mu \geq \lambda$ かつ $\alpha_{\lambda}|_{p_{\mu}}$ は次数 $|\text{inv}(\lambda)|$ の同次式である.
- (iii) $\alpha_{\lambda}|_{p_{\lambda}} = \prod_{(i,j) \in \text{inv}(\lambda)} (y_j y_i)$ for $\lambda \neq 0^{n-k} 1^k$, $\alpha_{\lambda}|_{p_{\lambda}} = 1$ for $\lambda = 0^{n-k} 1^k$

このとき $\{\alpha_{\lambda}\}_{\lambda \in \binom{n}{k}}$ は $H_T^*(\mathrm{Gr}_k(\mathbb{C}^n))$ の $H_T^*(\mathrm{pt})$ -基底をなす.

Proof. $\alpha,\beta\in H_T^*(\mathrm{Gr}_k(\mathbb{C}^n))$ がともに (i) から (iii) を満たしたとする。 $f=\alpha-\beta$ とし,もし $f|_{p_\mu}\neq 0$ となる μ が存在したとする。 μ をそのようなものの中で極小のものとする。 (ii),(iii) より $\mu>\lambda$ である。 GKM 条件と μ の極小性から, $f|_{p_\mu}$ は y_j-y_i ,((i,j) \in inv(μ)) で割り切れる。よって $f|_{p_\mu}$ は $|\mathrm{inv}(\mu)|$ 以上の次数をもつが, $\mu>\lambda$ より (ii) に矛盾する。

 $\{lpha_\lambda\}_{\lambda\in \binom{n}{k}}$ の一次独立性を示す. $f=\sum_{\lambda\in \binom{n}{k}}c_\lambdalpha_\lambda$ とおき, f=0 であるとする. (ii) より

$$f|_{p_{\mu}} = \sum_{\lambda \in \binom{n}{\mu}} c_{\lambda} \alpha_{\lambda}|_{p_{\mu}} = \sum_{\lambda \le \mu} c_{\lambda} \alpha_{\lambda}|_{p_{\mu}}$$

よって特に、 $w=0^{n-k}1^k$ として $f|_{p_w}=c_w\alpha_w|_{p_w}$ だから $c_w=0$. したがって帰納的にすべての λ に対して $c_\lambda=0$ である.

次に $\{\alpha_{\lambda}\}_{\lambda\in\binom{n}{k}}$ が $H_T^*(\mathrm{Gr}_k(\mathbb{C}^n))$ を生成することを示す。 $f\in H_T^*(\mathrm{Gr}_k(\mathbb{C}^n))$ について, $f|_{\mu}\neq 0$ となる極小の μ をとる.このとき GKM 条件より $f|_{\mu}$ は,ある $c\in H_T^*(\mathrm{pt})$ で

$$f|_{\mu} = c \prod_{(i,j) \in \text{inv}(\mu)} (y_j - y_i) = c\alpha_{\mu}|_{\mu}$$

と表せる.よって $f-c\alpha_\mu$ は μ 以下の λ においてすべて消えている.この操作を繰り返せば $f-(\sum_{\lambda\in\binom{n}{t}}c_\lambda\alpha_\lambda)=0$ を満たすように c_λ を定めることができる.

例 2.3.4. $\operatorname{Gr}_2(\mathbb{C}^4)$ の Schubert class を書き出す.

$$\binom{4}{2} = \{1100, 1010, 1001, 0110, 0101, 0011\}$$

である. 各固定点 λ に対応する Schuber class S_λ の μ への制限 $S_{\lambda}|_{p_\mu}$ は次の表のとおりになる.

$\lambda \backslash \mu$	1100	1010	1001	0110	0101	0011
1100	$(y_4 - y_2)(y_4 - y_1)$ $(y_3 - y_2)(y_3 - y_1)$	0	0	0	0	0
1010	$(y_4 - y_2)(y_4 - y_1) \ (y_3 - y_1)$	$(y_4 - y_3)(y_4 - y_1) (y_2 - y_1)$	0	0	0	0
1001	$(y_4-y_1)(y_3-y_1)$	$(y_4 - y_1)(y_2 - y_1)$	$(y_3-y_1)(y_2-y_1)$	0	0	0
0110	$(y_4 - y_3)(y_4 + y_3 - y_2 - y_1) + (y_3 - y_2)(y_3 - y_1)$	$(y_4 - y_3)(y_4 - y_1)$	0	$(y_4 - y_3)(y_4 - y_2)$	0	0
0101	$y_4 + y_3 - y_2 - y_1$	$y_4 - y_1$	$y_3 - y_1$	$y_4 - y_2$	$y_3 - y_2$	0
0011	1	1	1	1	1	1

表 1 $\operatorname{Gr}_2(\mathbb{C}^4)$ の Schubert class

3 同変 Schubert 計算における組合せ論

3.1 Schubert puzzle による方法

定義 3.1.1. 図1の8種類のラベル付きの図形を puzzle piece と呼ぶ.

図1 8種類の puzzle piece.

ただし、puzzle piece のうち三角形のものは 1 辺の長さが 1 の正三角形であり、平行四辺形のものは 1 辺の長さが 1 で鋭角は 60 度であるとする.また puzzle piece のうち 0 を equivariant piece という.

定義 3.1.2. いくつかの puzzle piece を(同一種の piece は何個用いてもよい)同じラベルを持つ辺に沿って貼り合わせ,一つの大きな正三角形を作ったものを puzzle と呼ぶ. puzzle P を上向きの正三角形となるように見たとき,P の左上の辺上に存在するラベルたちを下から上に読んで得られる文字列を λ ,P の右上の辺上に存在するラベルたちを上から下に読んで得られる文字列を μ ,下の辺上に存在するラベルたちを左から右に読んで得られる文字列を ν とする. このとき $\partial P = \Delta^{\nu}_{\lambda \mu}$ と表す.

例 3.1.3. $\partial P = \Delta_{0110,1001}^{1010}$ をみたす puzzle は図 2 の puzzle のみである.

定義 3.1.4. 1 辺の長さが n の puzzle P に含まれる equivariant piece p に対して,そのウェイト $\operatorname{wt}(p) \in \mathbb{Z}[y_1,\cdots,y_n]$ を次のように定義する。p の重心から,P の下辺に向かって P の左上の辺と平行な直線を引き,その交点が位置する puzzle piece の辺が左から数えて i 番目にあるとする。次に p の重心から,P の下辺に向かって P の右上の辺と平行な直線を引き,その交点が位置する puzzle piece の辺が左から数えて j 番目にあるとする。このとき

$$\operatorname{wt}(p) = y_i - y_i$$

とする (図3).

図 2 $\partial P = \Delta^{1010}_{0110,1001}$ をみたすただ一つの puzzle

図 3 equivariant piece のウェイトの定義. 図の equivariant piece のウェイトは $\operatorname{wt}(p)=y_6-y_2$ である.

定義 3.1.5. puzzle P に対してそのウェイト $\operatorname{wt}(P)$ を

$$\operatorname{wt}(P) := \prod_{p: \text{ equivariant piece}} \operatorname{wt}(p)$$

とする.

式 (5) の係数 $C^{\nu}_{\lambda\mu}$ に関して次が成り立つ.

定理 3.1.6. (Knutson-Tao [3])

$$C_{\lambda\mu}^{\nu} = \prod_{\substack{P: \text{ puzzle} \\ \partial P = \Delta_{\lambda\mu}^{\nu}}} \text{wt}(P)$$

が成り立つ.

3.2 edge labeled tableaux による方法

定義 3.2.1. n の分割 $\lambda = (\lambda_1 \ge \cdots \ge \lambda_k > 0)$ に対して,1 行目に λ_1 個の箱を,2 行目に λ_2 個の箱を,順に k 行目まで左寄せで書いた図を Young 図形という.以降分割と Young 図形を同一視して同じ記号で表す. λ の各箱に,各行について左から右に単調増大,各列について上から下に単調増大となるように相異なる数字を 1 回ずつ書き入れたものを standard tableaux という.

例 3.2.2.

図 4 $\lambda = (5,3,3,1)$ の Young 図形とその上の standard tableaux の例

定義 3.2.3. 分割 λ, μ に対して、 $\lambda \leq \mu \Leftrightarrow \lambda_i \leq \mu_i$ ($\forall i$) によって順序を定める. $\lambda < \mu$ を満たす Young 図形 に対して、 μ の Young 図形から λ に相当する部分を取り除いた図形を歪 Young 図形といい μ/λ で表す.整数 n>0 を固定する.歪 Young 図形の各箱に 1 から n までの数字を書き入れ、水平方向の各辺に $\{1,\cdots,n\}$ の部分集合 (空でもよい) を書き入れたものを、equivariant filling という.equivariant filling のうち、次の条件を満たすものを equivariant standard tableaux という.

- 1 から n までの各数字が,いずれかの箱のラベルに現れるか,またはいずれかの辺のラベルの要素になっている.また 1 から n までの各数字がちょうど 1 回現れる.
- 各箱のラベルについて、左隣の箱のラベルよりも大きい.
- 各箱のラベルについて、上辺のラベルが空でないなら、その最大値よりも大きい. 空であるならば、すぐ上の箱のラベルより大きい.
- 各辺のラベルについて、そのすべての数字がすぐ上の箱に書かれたラベルよりも大きい.

形が μ/λ で 1 から n までの数字が書かれた equivariant standard tableaux の全体の集合を EqSYT($\mu/\lambda, n$) とする.

例 3.2.4. 図 5 は (4,3,3,1)/(2,2,1) 上の equivariant standard tableaux の例と (4,4,2)/(3,3,1) 上の equivariant standard tableaux の例である.

定義 3.2.5. λ の箱 x が $T \in \text{EqSYT}(\mu/\lambda, n)$ の内隅であるとは,x のすぐ右とすぐ下の箱が λ の箱でないことをいう.また μ/λ の箱 x が外隅であるとは,x のすぐ右とすぐ下の箱が存在しないことをいう.T の内隅 x

図 5 (4,3,3,1)/(2,2,1) 上の equivariant standard tableaux の例 (左) と (4,4,2)/(3,3,1) 上の equivariant standard tableaux の例 (右)

に対して,次の操作を考える:

- (i) x の下辺のラベル l が空でないなら、l の最小値を x のラベルに移す
- (ii) x の下辺のラベルが空であるとし、x のすぐ右の箱を y, すぐ下の箱を z とする。y と z のうち、ラベルの小さい方の箱を x と交換する (このとき辺のラベルは交換しない)。
- (i) の操作が行われる,もしくはx が外隅になるまで (i),(ii) を繰り返してできる tableaux をT のx による equivariant jeu de taquin といい,EqJdt $_x(T)$ と書く.
- 定義 3.2.6. λ の箱を各列に沿って下から上に、右から左に数えて x_1, \dots, x_m とする. $T \in \text{EqSYT}(\mu/\lambda, n)$ に対して、T の equivariant rectification を x_1 から順に x_m まで equivariant jeu de taquin を行って得られる tableaux とする. すなわち

$$\mathrm{EqRect}(T) := \mathrm{EqJdt}_{x_m}(\mathrm{EqJdt}_{x_{m-1}}(\cdots(\mathrm{EqJdt}_{x_1}(T))\cdots))$$

を T の equivariant rectification という.

例 3.2.7. 図 5 左の tableaux の equivariant rectification を図示する (図 6).

図6 図5左のtableauxのrectification.

次に $T \in \text{EdSYT}(\mu/\lambda, n)$ に対してそのウェイトを定義する.

定義 3.2.8. 正の整数 m,k を固定する. $\Lambda = \overbrace{(m,\cdots,m)}^{\kappa \text{ copted}}$ とする. Λ の箱 x に対して

$$\beta(x) = y_{i+1} - y_i \in \mathbb{Z}[y_1, \cdots, y_{m+k}]$$

とする. ここで i は Λ の右上の隅の箱から x までの Manhattan 距離である (図 7).

4	3	2	1
5	4	3	2
6	5	4	3

定義 3.2.9. $T \in \text{EqSYT}(\mu/\lambda, n), (\mu \leq \Lambda = \underbrace{(m, \cdots, m)}^{k\text{-copies}})$ を固定し、l を T の辺のラベルに含まれる要素とする。 $factor(l) \in \mathbb{Z}[y_1, \cdots, y_{m+k}]$ を次のように定義する。EqRect(T) を計算する過程において、

- (i) l が含まれる列にある λ の箱をすべて equivariant jeu de taquin したあとも,l が辺のラベルであるなら factor(l) = 0 とする.また l が含まれる列に λ の箱がない場合も factor(l) = 0 とする.
- (ii) l が含まれる列にある λ の箱をすべて equivariant jeu de taquin するとき,l が通った箱を下から順に x_1,\cdots,x_s とする. x_s と同じ行で x_s の右側にある T の箱を左から順に y_1,\cdots,y_t とする.このとき factor(l) = $\beta(x_1)+\cdots+\beta(x_s)+\beta(y_1)+\cdots+\beta(y_t)$ とする.

定義 3.2.10. $T \in \text{EqSYT}(\mu/\lambda, n)$ に対して

$$\operatorname{wt}(T) = \prod_{l: \text{ edge label}} \operatorname{factor}(l)$$

とする.

例 3.2.11. 例 3.2.7 の計算より,

のウェイトは

$$factor(3) = factor(5) = factor(7) = 0$$

より0である.

例 3.2.12. 図 5 右の tableaux の equivariant rectification を図示する (図 8).

図8 図5右の tableaux の rectification.

 $T \leq (4,4,4)$ とみなして $\operatorname{wt}(T)$ を計算すると、上記の計算過程より

factor(3) =
$$y_4 - y_1$$

factor(5) = $y_6 - y_3$
factor(7) = $y_6 - y_5$

 $factor(1) = y_7 - y_1$

であるから

$$\operatorname{wt}(T) = (y_4 - y_1)(y_6 - y_3)(y_6 - y_5)(y_7 - y_1)$$

分割 μ に対して、1 行目の箱に左から順に $1,2,\cdots,\mu_1$ を書き入れ、2 行目の箱に左から順に $\mu_1+1,\mu_1+2,\cdots,\mu_1+\mu_2$ を書き入れ、と続けて得られる standard tableaux を T_μ とする (図 9).

正の整数
$$m,k$$
 を固定する. 分割 $\lambda \leq \Lambda = \overbrace{(m,\cdots,m)}$ に対して、

$$i_a = m - \lambda_a + a$$
, for $a = 1, \dots, k$

1	2	3	4
5	6	7	
8	9	10	
11			•

図 9 $T_{(4,3,3,1)}$ の図示.

とすると $i_1<\dots< i_k$ である. $l\in \binom{m+k}{k}$ を,左から数えて i_1,\dots,i_k 番目に 1 が現れ,それ以外はすべて 0 であるような文字列とする. λ と l を対応させることで $\binom{m+k}{k}$ と $\lambda \leq \Lambda$ を満たす分割 λ の集合を同一視する.式 (5) の係数 $C^{\nu}_{\lambda\mu}$ に関して次が成り立つ.

定理 3.2.13. (Thomas-Yong [4])

$$C_{\lambda,\mu}^{\nu} = \sum_{\substack{T \in \text{EqSYT}(\nu/\lambda, |\mu|) \\ \text{EqRect}(T) = T_{\mu} \\ \text{wt}(T) \neq 0}} \text{wt}(T)$$

が成り立つ.

3.3 weight preserving bijection の構成

このセクションではセクション 3.3 と 3.4 で構成した計算方法が、本質的に同じものであることを証明する. すなわち, $\mathcal{P}^{\nu}_{\lambda\mu}=\left\{\,P: \mathrm{puzzle} \,\middle|\, \partial P=\Delta^{\nu}_{\lambda\mu}\,\right\}$, $\mathcal{T}^{\nu}_{\lambda\mu}=\left\{\,T\in\mathrm{EqSYT}(\nu/\lambda,|\mu|)\,|\,\mathrm{EqRect}(T)=T_{\mu},\,\mathrm{wt}(T)\neq0\,\right\}$ とするとき、全単射 $\varphi\colon\mathcal{P}^{\nu}_{\lambda\mu}\to\mathcal{T}^{\nu}_{\lambda\mu}$ であって次の性質を満たすものを構成する.

$$\operatorname{wt}(\varphi(P)) = \operatorname{wt}(P) \quad \text{for all } P \in \mathcal{P}^{\nu}_{\lambda \mu}$$
 (9)

 $\lambda,\mu,\nu\in\binom{n}{k}$ とする.puzzle $P\in\mathcal{P}^{\nu}_{\lambda\mu}$ は一般に図 10 の形をしている ([10]).

P の の puzzle piece からなる連結領域を path と呼び、 で挟まれた部分を segment と呼ぶ。また segment に含まれる の puzzle piece の個数をその segment の長さと 呼ぶ (図 11). segment s に対してその長さを |s| と書く.

図 10 puzzle の一般形 [10]. ここで,水色の領域は 0 、灰色の領域は 1 、灰色の領域は 1 、 灰色の領域は 1 、 黄色の領域は 0 、 黄色の領域は 0 、 黄色の領域は 0 の のそれぞれのからなり, a_j^i, b_j^i, c_j^i は各 puzzle piece の個数を表す. l_i, m_i, n_i はそれぞれの部分における 0 の個数である.

図 11 path p とその segment s_1, s_2, s_3, s_4 . s_3 の長さは 0 である.

puzzle P の path を左側から順に p_1, \dots, p_t とする. 次の操作を行って得られる edge labeled tableaux を $\varphi(P)$ とする.

 p_1 の segment を上から順に $s_1,\cdots,s_a,\ (a\leq k)$ とする。 s_1 に と こ がそれぞれ a_1,a_2,\cdots,a_u 個, b_1,b_2,\cdots,b_u 個交互に現れ, 」 が c 個現れるとする。ただし $a_i,b_j,c\geq 0$ であるとする。

 $\Lambda = (n, \dots, n)$ の k 行目に次のように edge label と box label を書き入れていく.まず左から a_1 個の box の下辺の edge label に 1 から a_1 を 1 つずつ,左から単調増大になるように入れる.次の右隣りの b_1 個の box には何もせず,次の a_2 個の box の edge label に a_1+1 から a_1+a_2 を単調増大になるように入れていく.これを b_u まで行ったのち,c 個の box に $a_1+\dots+a_u+1$ から $a_1+\dots+a_u+c$ までを左から単調増大になるように入れる(図 12).

図 12 $a_1 = 2, b_1 = 3, a_2 = 2, c = 2$ の場合の segment に対する処理.

次の segment s_2 に対して, Λ の k-1 行目の edge label $\mathcal E$ box label を同様の方法で書き入れていく.ただし k 行目で最後に処理を行った box のすぐ右上の box から処理を始める.また s_1 の長さが 0 であった場合は,k-1 行目の最も左にある箱から処理を行う.同様にしてすべての segment に対して edge label $\mathcal E$ box label を書き入れていく. s_i の長さが 0 であったなら,k-i+1 行の処理はスキップして, s_{i+1} に対する処理は,直前に処理を行った box のすぐ右の列にある k-i 行目の box から始める (図 13).

図 13 図 11 の path に対する処理. 青い領域の box の下辺に edge label が入り、黄色い領域の box には box label が入っている. 灰色の領域の box には何も書かれていない. また、 s_3 の長さが 0 であるから、図のように下から 3 行目に対する処理をスキップする.

次に p_2 に対して同じ操作を行う。ただし p_1 に対する操作で最後に書き入れたラベルを l とすると, p_2 に対する操作で書き入れる label は l+1 から始める。すべての path に対して同様の操作を行い,box label の入った領域を含む左上の部分を $\varphi(P)$ とする.作り方から $\varphi(P)$ が定義 3.2.3 にあるラベルに関する条件を満たすことは明らかである.

例 3.3.1. 図 14 の puzzle P に対して $\varphi(P)$ を計算する.

 $\boxtimes 14$ puzzle $P \in \mathcal{P}_{01010100,01001100}^{11010000}$

Pの path は図 15の p_1, p_2, p_3 の 3つである.

 $\boxtimes 15$ $P \oslash path <math>p_1, p_2, p_3$.

 p_1,p_2,p_3 に対して操作を行う (図 16) と $\varphi(P) \in \text{EqSYT}((5,5,4)/(4,3,2),8)$ であることがわかる (図 17).

図 16 左から順に p_1, p_2, p_3 に対して操作を行った結果.

 $\boxtimes 17 \quad \varphi(P) \in \text{EqSYT}((5,5,4)/(4,3,2),8)$

命題 3.3.2. $\lambda, \mu, \nu \in \binom{n}{k}$ とする. $P \in \mathcal{P}^{\nu}_{\lambda\mu}$ に対して $\varphi(P) \in \operatorname{EqSYT}(\nu/\lambda, |\mu|)$ である.

Proof. 文字列 λ は左から読んで i_1,\cdots,i_k 番目に 1 が現れるとする. このとき

$$l_j = i_{j+1} - i_j - 1, \quad (j = 1, \dots, k-1)$$

 $l_k = n - i_k$

とおく. 同様に μ に対しても m_1, \cdots, m_k, ν に対しても n_1, \cdots, n_k を定義する.

puzzle $P \in \mathcal{P}^{\nu}_{\lambda\mu}$ の path を左から順に p_1, \cdots, p_k , p_i の segment を上から順に $s_{i1}, \cdots, s_{i,k-i+1}$, さらに s_{ij} の部分を s^{v}_{ij} , の部分を $s^{\mathrm{bg}}_{i,j}$ とおく. このとき

$$|s_{i,j}| = |s_{i+1,j}^{\text{bg}}| + |s_{i+1,j-1}^{\text{y}}| \text{ if } 1 < j < k-i+1$$
 (10)

$$|s_{i,1}| = |s_{i+1,1}^{\text{bg}}| \quad \text{if } i < k$$
 (11)

$$|s_{i,k-i+1}| = n_i + |s_{i+1,k-i}^{\mathbf{y}}| \quad \text{if } i < k$$
 (12)

$$|s_{k,1}| = n_k \tag{13}$$

$$|s_{1,i}^{\text{bg}}| + |s_{1,i-1}^{\text{y}}| = l_{k-i+1} \quad \text{if } i > 1$$
 (14)

$$|s_{1,1}^{\operatorname{bg}}| = l_k \tag{15}$$

である (図 10).

式 (10), (11) より $\varphi(P)$ は図 18 のような形をしている.

図 18 図 10 の puzzle P に対する $\varphi(P)$. 黄色の box には box label が入っており、白い box には box label は入っていない.

 $\varphi(P)$ の形が ν/λ であることを示す. $\varphi(P)$ の box label が入った領域の k 行目の長さを計算すると

$$\begin{split} |s_{11}^{\text{bg}}| + |s_{11}^{\text{y}}| + |s_{21}^{\text{y}}| + \dots + |s_{k,1}^{\text{y}}| &= |s_{11}| + |s_{21}^{\text{y}}| + \dots + |s_{k,1}^{\text{y}}| \\ &= |s_{21}^{\text{bg}}| + |s_{21}^{\text{y}}| + \dots + |s_{k,1}^{\text{y}}| \\ &= |s_{21}| + |s_{31}^{\text{y}}| + \dots + |s_{k,1}^{\text{y}}| \\ &\vdots \\ &= |s_{k,1}| \\ &= n_k \end{split}$$

であり、k-1 行目は

$$\begin{split} &(|s_{12}^{\text{bg}}| + |s_{12}^{\text{y}}| + |s_{22}^{\text{y}}| + \dots + |s_{k-1,2}^{\text{y}}|) - (|s_{21}^{\text{y}}| + |s_{31}^{\text{y}}| + \dots + |s_{k1}^{\text{y}}|) \\ &= (|s_{22}^{\text{bg}}| + |s_{22}^{\text{y}}| + \dots + |s_{k-1,2}^{\text{y}}|) - (|s_{31}^{\text{y}}| + \dots + |s_{k1}^{\text{y}}|) \\ &\vdots \\ &= (|s_{k-1,2}^{\text{bg}}| + |s_{k-1,2}^{\text{y}}|) - (|s_{k,1}^{\text{y}}|) \\ &= |s_{k-1,2}| - |s_{k,1}^{\text{y}}| \\ &= n_{k-1} \end{split}$$

同様に i 行目の長さは n_i になっていることがわかる。また式 (14) と (15) より $\varphi(P)$ の box label の入っていない領域の形が λ になっていることもわかる (図 19).

図 19

次に $\varphi(P)$ のラベルが 1 から $|\mu|$ までであることを示す。 $\varphi(P)$ の構成方法から,P が \square と \lozenge を $|\mu|$ 個 含んでいることを示せばよい。 path p_i に含まれる \square と \lozenge の個数は $m_i+\dots+m_k$ に等しい(図 10)から,P に含まれる \square と \lozenge の個数は $|\mu|$ である。

命題 3.3.3. $P \in \mathcal{P}^{\nu}_{\lambda \mu}$ に対して $\operatorname{EqRect}(\varphi(P)) = T_{\mu}$ である.

Proof. $I_{\mu}=\{\;(\lambda,\nu)\,|\,\lambda,\mu\leq\nu\;\}$ とする. I_{μ} には辞書式順序で順序を定める. $\varnothing:=0^{n-k}1^k$ とおくと, (\varnothing,μ) は I_{μ} の最小限であり, $\mathcal{P}^{\mu}_{\varnothing,\mu}$ はただ一つの puzzle P_0 からなり(図 20), $\varphi(P_0)=T_{\mu}$ である.

次に $P \in \mathcal{P}^{\nu}_{\lambda\mu}$ に対して、x を $T := \varphi(P)$ の equivariant rectification で最初に動かす内隅であるとする.

 $T'=\mathrm{EqJdt}_x(T)\in\mathrm{EqSYT}(\nu'/\lambda',|\mu|)$ とおくと, $(\lambda',\nu')\in I_\mu$ かつ $(\lambda',\nu')<(\lambda,\nu)$ である.よって,ある $P'\in\mathcal{P}_{\lambda'\mu}^{\nu'}$ であって $T'=\varphi(P')$ をみたすようなものが存在することを示せば帰納法により主張が従う.

 λ を左から読んで初めて現れる 10 に注目する.このとき P の左下部分を拡大すると,図 21 のようになっている.赤枠で囲われた領域を P の stripe と呼ぶ.P の cutting path を次の規則で変形した puzzle を P' とする.

図 21 $\lambda = 00 \cdots 011 \cdots 10 \cdots$ とし、puzzle P の左下部分を拡大したもの.

stripe は、図 22 にある 4 種類のパーツから構成されている.

図 22 stripe を構成する 4 種類のパーツ.

命題 3.3.4. $\varphi \colon \mathcal{P}^{\nu}_{\lambda\mu} \to \mathcal{T}^{\nu}_{\lambda\mu}$ は全単射である.

命題 3.3.5. $\operatorname{wt}(\varphi(P)) = \operatorname{wt}(P)$ である.

32

謝辞

参考文献

- [1] W. Fulton, Young Tableaux: With Applications to Representation Theory and Geometry. Cambridge: Cambridge University Press, (1996).
- [2] L. W. Tu and A. Arabia, Introductory Lectures on Equivariant Cohomology. Princeton University Press, (2020).
- [3] A. Knutson and T. C. Tao, Puzzles and (equivariant) cohomology of Grassmannians, Duke Math. J. 119 (2003), no. 2, 221–260
- [4] H. Thomas and A. T. F. Yong, Equivariant Schubert calculus and jeu de taquin, Ann. Inst. Fourier (Grenoble) **68** (2018), no. 1, 275–318
- [5] J. Milnor. Construction of Universal Bundles, II. Annals of Mathematics 63, no. 3 (1956): 430 36.
- [6] Hatcher Topology
- [7] Hatcher Vector Bundle
- [8] GKM
- [9] N. Steenrod, The Topology of Fibre Bundles, Princeton Math. Series 14, Princeton Univ. Press, Princeton, New Jersey, (1951).
- [10] V. Kreiman, Equivariant Littlewood-Richardson skew tableaux
- [11] A. W. Knapp, Representation Theory of Semisimple Groups: An Overview Based on Examples (PMS-36). REV-Revised, Princeton University Press, (1986).