Recall: Stability of fixed points

Solutions flow towards or away from fixed points.

- Stable fixed points attract nearby solutions.
- Unstable fixed points repel nearby solutions.

ex:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y\left(5 - y\right)$$

Two Fixed Points:

$$y^* = 0$$
 (unstable)

and

$$y^* = 5$$
 (stable)

Qualitative behaviour of solutions: Stability

The origin $\vec{0}$ is always a fixed point for the system $\frac{d}{dt}\vec{x} = \mathbf{A}(t)\vec{x}$.

Q: Do solutions approach or move away from this fixed point? A: It depends on the eigenvalues, λ , of **A**.

- If all λ 's have $\operatorname{Re}(\lambda) < 0$, solutions approach $\vec{0}$ as $t \to \infty$.
 - Stable fixed point
- If any λ 's have $\operatorname{Re}(\lambda) > 0$, solutions move away from $\vec{0}$ as $t \to \infty$.
 - Unstable fixed point
- If a complex conjugate λ pairs exists, solutions exhibit oscillations around $\vec{0}$.
 - Spiral fixed point

Classifying Fixed Points

The origin $\vec{0}$ is always a fixed point for the system $\frac{d}{dt}\vec{x} = \mathbf{A}(t)\vec{x}$.

If all eigevalues are real and ...

- they have the same sign, the fixed point is called a node
 - All λ 's < 0 \Rightarrow stable node (sink)
 - All λ 's > 0 \Rightarrow unstable node (source)

 \bullet some λ 's have opposite signs, the fixed point is called a **saddle**

Classifying Fixed Points

The origin $\vec{0}$ is always a fixed point for the system $\frac{d}{dt}\vec{x} = \mathbf{A}(t)\vec{x}$.

If a pair of eigenvalues are complex conjugates, $\lambda_{1,2} = r \pm i\omega$, then the fixed point is called a **spiral** (or focus).

- For a 2×2 matrix, with
 - r < 0 \Rightarrow stable spiral (spiral sink)
 - r > 0 \Rightarrow unstable spiral (spiral source)
 - r = 0 \Rightarrow **neutral spiral** (spiral center)

2D Vector Fields

The ODE

$$\frac{\mathsf{d}}{\mathsf{d}t}\vec{x} = \mathbf{A}(t)\vec{x}$$

gives us a derivative for each point in $\vec{x} \in \mathbb{R}^n$

Restricting ourselves to \mathbb{R}^2 with constant **A**, we can draw an arrow parallel to the derivative at many points in the (x, y)-plane.

Then we can visualize approximate solution flows in the plane.

$$\lambda_{1,2} \in \mathbb{R}$$
 with $|\lambda_2| > |\lambda_1|$

Each eigenvalue/eigenvector is associated with an eigendirection

• Solutions flow as straight lines along the eigendirection

Unstable Node: $0 < \lambda_1 < \lambda_2$

Stable Node: $\lambda_2 < \lambda_1 < 0$

Line of fixed-points (non-isolated fixed points).

$$\lambda_{1,2} \in \mathbb{R} \text{ with } |\lambda_1| < |\lambda_2|$$

Saddle: $\lambda_1 < 0 < \lambda_2$

- Eigendirections with $Re(\lambda) > 0$ are repelling
- Eigendirections with $Re(\lambda) < 0$ are attracting

Repeated Eigenvalue (Degenerate Node)

$$\lambda_1 = \lambda_2 \in \mathbb{R}$$

Far from the origin, solutions align with the eigendirection. Near the origin, they can rotate.

Spiral Fixed-Points ($\lambda_{1,2} = r \pm i\omega$)

r > 0

1111111111 1111111111 1111/1------1111/1-----+++xxxxxxxx

Unstable spiral

Stable spiral

***+++*//////////

r < 0

We will see how the eigenvectors dictate the direction of rotation shortly.

The origin has neutral stability. Solutions travel around the origin indefinitely.

Sketching Solutions in the Plane

For a 2 × 2 system $\frac{d}{dt}\vec{x} = \mathbf{A}\vec{x}$ with real distinct eigenvalues

- 1. Find the eigenvalues/vectors of the matrix **A**.
- 2. Draw the eigendirections (eigenvectors) of the system.
 - Eigendirections with $\lambda > 0$ are repelling
 - Eigendirections with $\lambda > 0$ are attracting
- 3. Draw a few sample solution flows.
 - As solutions get closer to an eigendirection, they align themselves with that direction.

Sketch the solution behaviours for

for
$$\frac{\frac{dx}{dt} = rx + -2y}{\frac{dy}{dt} = 2x + ry}$$

$$\vec{x}_1 = e^{rt} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \cos(2t) - \begin{bmatrix} 0 \\ -1 \end{bmatrix} \sin(2t) \right) \qquad \vec{x}_2 = e^{rt} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \sin(2t) + \begin{bmatrix} 0 \\ -1 \end{bmatrix} \cos(2t) \right)$$

$$\vec{x}_1(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\vec{x}_1(\pi/4) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$r > 0$$

Qualitative behaviour of solutions: Chirality

With $\lambda_{1,2} = r \pm i\omega$ and $\vec{v}_{1,2} = \vec{a} \pm i\vec{b}$ we get

$$\vec{x}_1 = e^{rt} \left(\cos(\omega t) \vec{a} - \sin(\omega t) \vec{b} \right)$$
 and $\vec{x}_2 = e^{rt} \left(\sin(\omega t) \vec{a} + \cos(\omega t) \vec{b} \right)$

Evaluate either eigensolution at t=0 and $\omega t=\pi/2$, the path joining those two points tells you the direction of rotation.

Two possibilities:

Clockwise (right-handed)

Counter-clockwise (left-handed)

Sketch solutions to

in the phase-plane $\frac{dt}{dt} = x - y$ $\frac{dy}{dt} = x + 3y$

