# METODE DECISION TREE ALGORITMA C4.5 SEBAGAI PENENTUAN TEKNIK BUDIDAYA TANAMAN PADI

#### **SKRIPSI**

Digunakan Sebagai Syarat Maju Ujian Diploma IV Politeknik Negeri Malang

Oleh:

M. AZZAM AZIZI

NIM. 1641727019



# PROGRAM STUDI TEKNIK INFORMATIKA JURUSAN TEKNOLOGI INFORMASI POLITEKNIK NEGERI MALANG AGUSTUS 2017

# METODE DECISION TREE ALGORITMA C4.5 SEBAGAI PENENTUAN TEKNIK BUDIDAYA TANAMAN PADI

#### **SKRIPSI**

Digunakan Sebagai Syarat Maju Ujian Diploma IV Politeknik Negeri Malang

Oleh:

M. AZZAM AZIZI

NIM. 1641727019



# PROGRAM STUDI TEKNIK INFORMATIKA JURUSAN TEKNOLOGI INFORMASI POLITEKNIK NEGERI MALANG AGUSTUS 2017

#### **HALAMAN PENGESAHAN**

# METODE DECISION TREE ALGORITMA C4.5 SEBAGAI PENENTUAN TEKNIK BUDIDAYA TANAMAN PADI

#### Disusun oleh:

M. AZZAM AZIZI

NIM. 1641727019

## Skripsi ini telah diuji pada tanggal 31 Agustus 2017 Disetujui oleh:

| 1. | Penguji I     | : | <u>Dr.Eng. Faisal Rahutomo, ST., M.Kom</u><br>NIP. 19771116 200501 1 008   |  |
|----|---------------|---|----------------------------------------------------------------------------|--|
| 2. | Penguji II    | : | <u>Dimas Wahyu Wibowo, ST., MT</u><br>NIP. 19841009 201504 1 001           |  |
| 3. | Pembimbing I  | : | Ariadi Retno Tri Hayati Ririd, S.Kom, M.Kom.<br>NIP. 19810810 200501 2 002 |  |
| 4  | Pembimbing II | : | Dhebys Suryani Hormansyah, S.Kom, MT<br>NIP. 19831109 201404 2 001         |  |
|    |               |   |                                                                            |  |

Mengetahui,

Ketua Jurusan Teknologi Informasi Ketua Program Studi Teknik Informatika

<u>Rudy Ariyanto, S.T., M.Cs.</u>
NIP. 19711110 199903 1 002

<u>Ir. Deddy Kusbianto P.A., M.MKom.</u>
NIP. 19621128 198811 1 001

#### **PERNYATAAN**

Dengan ini saya menyatakan bahwa Skripsi ini tidak terdapat karya yang pernah diajukan untuk memperoleh gelar kesarjanaan di suatu Perguruan Tinggi dan sepanjang pengetahuan saya juga tidak terdapat karya atau pendapat yang pernah ditulis atau diterbitkan oleh orang lain, kecuali yang secara tertulis diacu dalam naskah ini dan disebutkan dalam daftar pustaka.

Malang, Agustus 2017

M. Azzam Azizi

#### **ABSTRAK**

Azizi, M. Azzam. "Metode *Decision Tree* Algoritma C4.5 Sebagai Penentuan Teknik Budidaya Tanaman Padi". **Pembimbing:** (1) Ariadi Retno Tri Hayati Ririd, S.Kom, M.Kom. (2) Dhebys Suryani Hormansyah, S.Kom, MT.

Skripsi, Program Studi Teknik Informatika, Jurusan Teknologi Informasi, Politeknik Negeri Malang, 2017.

Pertanian memiliki peranan penting bagi kehidupan manusia. Salah satu peranannya yaitu menghasilkan tanaman pangan pokok. Padi yang saat ini menjadi makanan utama orang Indonesia pada umumnya, setiap tahun kebutuhannya selalu bertambah karena populasi manusia yang terus bertambah. Petani yang akan menanam padi memiliki kriteria tertentu yang dijadikan sebagai bahan pertimbangan. Banyak metode tanam yang ada untuk meningkatkan hasil pertanian, namun petani bingung untuk menerapkannya pada lahan pertanian.

Dari permasalahan tersebut dibuat sebuah rekomendasi pada petani, berupa varietas padi dan metode tanamnya, yang mana petani bisa memilih hasil klasifikasinya untuk diterapkan pada lahan pertanian. Sistem rekomendasi ini menggunakan *Decision Tree* Algoritma C4.5. *Decision Tree* digunakan untuk menangani pengambilan keputusan yang membingungkan menjadi lebih sederhana.

Dari hasil pengujian 52 data varietas padi dengan 41 data *training* dan 11 data *testing* didapat nilai keakurasian, untuk data *training* sebesar 97,56% dan data *testing* sebesar 90,91%.

Kata Kunci: Padi, Decision Tree, Algoritma C4.5

#### **ABSTRACT**

Azizi, M. Azzam. "Decision Tree Algorithm C4.5 to Determine Rice Cultivation Technique". Advisors: (1) Ariadi Retno Tri Hayati Ririd, S.Kom, M.Kom., (2) Dhebys Suryani Hormansyah, S.Kom, MT.

Thesis, Informatics Engineering Study Programme, Department of Information Technology, State Polytechnic of Malang, 2017.

Agriculture has an important role in human life. One of its roles is to produce staple food crops. Rice is the Indonesian staple food, every year the need for rice keeps increasing because human population grows up. Farmers who will grow rice crops have certain criteria that are used as consideration. Many planting methods are exist to improve agricultural yields, but farmers are confused to apply which one of them are suitable for their farmland.

From these problems, a recommendation was given to the farmers, in the form of rice varieties and planting methods, in which farmers could choose their classification results to be applied in their agricultural land. This recommendation system uses the Decision Tree Algorithm C4.5. Which is used to simplify complicated decision making.

From the testing of 52 paddy variety data with 41 training data and 11 testing data, the study shows the accuracy value as follows. The training data obtained 97,56% accuracy value and the testing data obtained 90,91% accuracy value.

**Keywords**: Rice, Decision Tree, Algorithm C4.5

#### KATA PENGANTAR

Puji Syukur kami ucapkan kehadirat Allah SWT atas segala rahmat dan hidayah-Nya penulis dapat menyelesaikan skripsi dengan judul "Metode *Decision Tree* Algoritma C4.5 Sebagai Penentuan Teknik Budidaya Tanaman Padi". Skripsi ini penulis susun sebagai persyaratan untuk menyelesaikan studi program Diploma IV Program Studi Teknik Informatika, Jurusan Teknologi Informasi, Politeknik Negeri Malang.

Kami menyadari tanpa adanya dukungan dan kerja sama dari berbagai pihak, skripsi ini tidak akan dapat berjalan baik. Untuk itu kami ingin menyampaikan rasa terima kasih kepada:

- 1. Bapak Rudy Ariyanto, ST., M.Cs., selaku ketua jurusan Teknologi Informasi.
- 2. Bapak Ir. Deddy Kusbianto Purwoko Aji, M.Mkom, selaku ketua program studi Teknik Informatika.
- 3. Bapak Arief Prasetyo, S.Kom., M.Kom., selaku ketua pelaksana skripsi.
- 4. Ibu Ariadi Retno Tri Hayati Ririd, S.Kom., M.Kom., selaku pembimbing I yang telah memberikan bimbingan dan dukungan hingga penyusunan laporan ini selesai.
- 5. Ibu Dhebys Suryani Hormansyah, S.Kom., MT., selaku pembimbing II yang telah memberikan bimbingan dan dukungan hingga penyusunan laporan ini selesai.
- 6. Orang tua penulis Ibu Siti Nurjanah dan Bapak M. Zayin Sukri atas segala kebahagiaan yang tercurahkan, atas segala dukungan dan do'a yang senantiasa menyertai langkah saya menuju masa depan.
- 7. Kakak Afia Ulyzana dan Adik Warda Fatima Aulyzana yang senantiasa memotivasi dan menghibur dikala lelah sehingga saya merasa bersemangat dalam penyelesaian Skripsi ini.
- 8. Teman-teman seperjuangan TI 4F yang tidak dapat saya sebutkan satu-satu dan teman dekat saya Claudia yang telah berjuang bersama selama kuliah, memberi dorongan, semangat, dan motivasi.

9. Dan seluruh pihak yang telah membantu dan mendukung lancarnya pembuatan Skripsi dari awal hingga akhir yang tidak dapat saya sebutkan satu persatu.

Penulis menyadari bahwa dalam penyusunan laporan skripsi ini, banyak terdapat kekurangan di sisi sistematika penulisan maupun tata bahasa. Untuk itu penulis mengharapkan saran dan kritik dari berbagai pihak yang bersifat membangun demi penyempurnaan laporan ini. Semoga laporan skripsi ini dapat berguna bagi pembaca secara umum dan penulis secara khusus. Akhir kata, penulis ucapkan banyak terima kasih.

Malang, Agustus 2017

Penulis

## **DAFTAR ISI**

|          |                                         | Halaman |
|----------|-----------------------------------------|---------|
| SAMPUL D | DEPAN                                   | i       |
| HALAMAN  | N JUDUL                                 | i       |
|          | N PENGESAHAN                            |         |
|          | AAN                                     |         |
| ABSTRAK  |                                         | iv      |
| ABSTRACT |                                         | v       |
|          | GANTAR                                  |         |
|          | SI                                      |         |
| DAFTAR G | SAMBAR                                  | xi      |
|          | ABEL                                    |         |
|          | AMPIRAN                                 |         |
|          | IDAHULUAN                               |         |
|          | r Belakang                              |         |
|          | usan Masalah                            |         |
|          | san Masalah                             |         |
|          | an Penelitian.                          |         |
| J        | ematika Penulisan Laporan               |         |
|          | NDASAN TEORI                            |         |
|          | ıman Padi                               |         |
| 2.1.1    | Botani dan Morfologi                    |         |
| 2.1.2    | Syarat-Syarat Tumbuh                    |         |
|          | nik Penanaman Padi                      |         |
| 2.2.1    | Sistem Tanam Jajar Legowo               |         |
| 2.2.2    | Sistem Tanam SRI                        |         |
|          | ode Decision Tree                       |         |
|          | em Pakar                                |         |
| 2.4.1    | Keuntungan Sistem Pakar                 |         |
| 2.4.2    | Kelemahan Sistem Pakar.                 |         |
| 2.4.3    | Karakteristik Sistem Pakar              |         |
| 2.4.4    | Struktur Sistem Pakar                   |         |
| 2.4.5    | Komponen Sistem Pakar                   |         |
| 2.5 PHP  |                                         |         |
|          | ETODOLOGI PENELITIAN                    |         |
|          | odologi Penelitian                      |         |
| 3.1.1    | Analisis                                |         |
| 3.1.2    | Desain                                  |         |
| 3.1.3    | Pengkodean                              |         |
| 3.1.4    | Pengujian                               |         |
|          | ode Pengolahan Data                     |         |
| 3.2.1    | Proses Perhitungan Metode Decision Tree |         |
|          | NALISIS DAN PERANCANGAN                 |         |
|          | lisis Sistem                            |         |
| 4.1.1    | Deskripsi Sistem                        |         |
| 4.1.2    | Analisis Kebutuhan Sistem               |         |
|          | icie Data                               |         |

| 4.2.1      | Sumber Data                         | . 21 |
|------------|-------------------------------------|------|
| 4.2.2      | Pra Proses                          | . 22 |
| 4.3 Perhi  | tungan Decision Tree Algoritma C4.5 | . 23 |
| 4.4 Desa   | in Sistem                           | 40   |
| 4.3.1      | Work Breakdown Structure            | 40   |
| 4.3.2      | Conceptual Data Model               | 40   |
| 4.3.3      | Physical Data Model                 | 41   |
| 4.3.4      | Use Case Diagram                    | 42   |
| 4.5 Desa   | in Database                         | . 50 |
| 4.4.1      | Tabel Atribut                       | . 50 |
| 4.4.2      | Tabel Data Keputusan                | . 51 |
| 4.4.3      | Tabel Data Keputusan Perbandingan   | . 51 |
| 4.4.4      | Tabel Data Penentu Keputusan        |      |
| 4.4.5      | Tabel Data Asli                     |      |
| 4.4.6      | Tabel Data Survey                   | . 52 |
| 4.4.7      | Tabel Iterasi C4.5                  | . 53 |
| 4.4.8      | Tabel Mining C4.5                   | . 53 |
| 4.4.9      | Tabel Pohon Keputusan C4.5          |      |
| 4.4.10     | Tabel Rule C45                      |      |
| 4.4.11     | Tabel Rule Penentu Keputusan        |      |
| 4.4.12     | Tabel <i>User</i>                   |      |
| 4.6 Desa   | in Interface                        |      |
| 4.5.1      | Halaman Home                        |      |
| 4.5.2      | Halaman Semua Data                  | . 56 |
| 4.5.3      | Halaman Import Data                 |      |
| 4.5.4      | Halaman Hasil Proses                |      |
| 4.5.5      | Halaman Partisi Data                |      |
| 4.5.6      | Halaman Pohon Keputusan             |      |
| 4.5.7      | Halaman Kinerja                     |      |
| 4.5.8      | Halaman Penentu Keputusan           |      |
| BAB V. IMI | PLEMENTASI                          |      |
|            | ementasi Aplikasi                   |      |
|            | ementasi <i>Database</i>            |      |
| 5.2.1      | Tabel Atribut                       |      |
| 5.2.2      | Tabel Data Asli                     |      |
| 5.2.3      | Tabel Data Survey                   |      |
| 5.2.4      | Tabel Iterasi C4.5                  |      |
| 5.2.5      | Tabel Mining C4.5                   |      |
| 5.2.6      | Tabel Pohon Keputusan C4.5          |      |
| 5.2.7      | Tabel Data Keputusan                |      |
| 5.2.8      | Tabel Data Keputusan Perbandingan   |      |
| 5.2.9      | Tabel Data Penentu Keputusan        |      |
| 5.2.10     | Tabel Rule C45                      |      |
| 5.2.11     | Tabel Rule Penentu Keputusan        |      |
| 5.2.12     | Tabel <i>User</i>                   |      |
|            | face Program                        |      |
| 5.3.1      | Halaman Home                        |      |
| 5.3.2      | Halaman Semua Data                  |      |
|            |                                     |      |

| 5.3.3           | Halaman Import Data            | 66 |
|-----------------|--------------------------------|----|
| 5.3.4           | Halaman Partisi Data           | 67 |
| 5.3.5           | Proses Mining C4.5             |    |
| 5.3.6           | Halaman Hasil Perhitungan C4.5 | 68 |
| 5.3.7           | Halaman Pohon Keputusan        | 68 |
| 5.3.8           | Halaman Kinerja                | 70 |
| 5.3.9           | Halaman Tabel Penilaian        | 70 |
| 5.3.10          | Halaman Penentu Keputusan      | 71 |
| 5.3.11          | Halaman <i>Login</i>           |    |
| BAB VI. PE      | NGUJIAN DAN PEMBAHASAN         | 72 |
| 6.1 Peng        | ujian Sistem                   | 72 |
| 6.1.1           | Pengujian Lihat Semua Data     | 72 |
| 6.1.2           | Pengujian Import File          | 72 |
| 6.1.3           | Pengujian Proses Mining C4.5   | 73 |
| 6.1.4           | Pengujian Partisi Data         | 73 |
| 6.1.5           | Pengujian Hasil Perhitungan    | 73 |
| 6.1.6           | Pengujian Pohon Keputusan      | 74 |
| 6.1.7           | Perngujian Kinerja             | 74 |
| 6.1.8           | Pengujian Penentu Keputusan    | 75 |
|                 | ıasi                           |    |
|                 | ENUTUP                         |    |
| 7.2 Kesii       | npulan                         | 77 |
| 7.3 Saran       |                                |    |
| DAFTAR PUSTAKA7 |                                |    |
| LAMPIRAN        |                                | 79 |

## **DAFTAR GAMBAR**

|                                                              | Halaman |
|--------------------------------------------------------------|---------|
| Gambar 2.1 Contoh Struktur Decision Tree [5]                 | 8       |
| Gambar 3.1 Gambar tahapan metode Waterfall menurut Rossa [3] |         |
| Gambar 3.2 Alur Metode <i>Decision Tree</i> Algoritma C4.5   |         |
| Gambar 4.1 Root Umur Tanaman                                 |         |
| Gambar 4.2 Leaf Node Anakan Produktif                        |         |
| Gambar 4.3 Leaf Node Jarak Tanam                             |         |
| Gambar 4.4 Leaf Node Kerontokan                              |         |
| Gambar 4.5 Leaf Node Anakan Produktif                        |         |
| Gambar 4.6 Leaf Node Anakan Produktif                        |         |
| Gambar 4.7 Leaf Node Kerontokan                              |         |
| Gambar 4.8 Leaf Node Kerontokan                              | 37      |
| Gambar 4.9 Work Breakdown Structure                          | 40      |
| Gambar 4.10 Conceptual Data Model                            | 41      |
| Gambar 4.11 Physical Data Model                              | 42      |
| Gambar 4.12 Use Case Diagram                                 | 43      |
| Gambar 4.13 Halaman <i>Home</i>                              | 56      |
| Gambar 4.14 Halaman Semua Data                               | 56      |
| Gambar 4.15 Halaman Import                                   |         |
| Gambar 4.16 Halaman Hasil Proses                             | 57      |
| Gambar 4.17 Halaman Partisi Data                             | 57      |
| Gambar 4.18 Halaman Pohon Keputusan                          |         |
| Gambar 4.19 Halaman Kinerja                                  |         |
| Gambar 4.20 Halaman Penentu Keputusan                        |         |
| Gambar 5.1 Tabel Atribut                                     |         |
| Gambar 5.2 Tabel Data Asli                                   | 61      |
| Gambar 5.3 Tabel Data Survey                                 |         |
| Gambar 5.4 Tabel Iterasi C4.5                                |         |
| Gambar 5.5 Tabel Mining C4.5                                 |         |
| Gambar 5.6 Tabel Pohon Keputusan C4.5                        |         |
| Gambar 5.7 Tabel Data Keputusan                              |         |
| Gambar 5.8 Tabel Data Keputusan Perbandingan                 |         |
| Gambar 5.9 Tabel Data Penentu Keputusan                      |         |
| Gambar 5.10 Tabel Rule C45                                   |         |
| Gambar 5.11 Tabel Rule Penentu Keputusan                     |         |
| Gambar 5.12 Tabel <i>User</i>                                |         |
| Gambar 5.13 Halaman <i>Home</i>                              |         |
| Gambar 5.14 Halaman Semua Data                               |         |
| Gambar 5.15 Halaman Import Data                              |         |
| Gambar 5.16 Halaman Partisi Data                             |         |
| Gambar 5.17 Proses Mining C4.5                               |         |
| Gambar 5.18 Halaman Hasil Perhitungan C4.5                   |         |
| Gambar 5.19 Halaman Pohon Keputusan                          |         |
| Gambar 5.20 Halaman Kinerja                                  |         |
| Gambar 5.21 Halaman Tabel Penilaian                          |         |
| Gambar 5 22 Halaman Penentu Keputusan                        | 71      |

| Gambar 5.23 Halaman <i>Login</i>               | 7] |
|------------------------------------------------|----|
| Gambar 6.1 Alur Pengujian Metode Decision Tree | 75 |

## **DAFTAR TABEL**

|                                                              | Halaman |
|--------------------------------------------------------------|---------|
| Tabel 4.1 Tabel Atribut Varietas Padi                        | 21      |
| Tabel 4.2 Tabel Jumlah Kasus                                 | 24      |
| Tabel 4.3 Pembentukan <i>Node</i> Akar                       | 25      |
| Tabel 4.4 Pembentukan Leaf Node Umur Tanaman Cepat           | 27      |
| Tabel 4.5 Pembentukan Leaf Node Umur Tanaman Normal          |         |
| Tabel 4.6 Pembentukan Leaf Node Jarak Tanam Sedang           |         |
| Tabel 4.7 Pembentukan <i>Leaf Node</i> Jarak Tanam Renggang  |         |
| Tabel 4.8 Pembentukan <i>Leaf Node</i> Kerontokan Tahan      |         |
| Tabel 4.9 Pembentukan Leaf Node Anakan Produktif Sedikit     | 35      |
| Tabel 4.10 Pembentukan Leaf Node Anakan Produktif Banyak     |         |
| Tabel 4.11 Fungsi Aktor                                      |         |
| Tabel 4.12 Deskripsi Use Case "Login"                        | 44      |
| Tabel 4.13 Deskripsi <i>Use Case</i> "Beranda"               | 45      |
| Tabel 4.14 Deskripsi <i>Use Case</i> " Halaman Semua Data "  | 45      |
| Tabel 4.15 Deskripsi Use Case " Halaman Import Data "        | 46      |
| Tabel 4.16 Deskripsi Use Case "Halaman Partisi Data "        | 46      |
| Tabel 4.17 Deskripsi <i>Use Case</i> " Halaman Data Mining " | 47      |
| Tabel 4.18 Deskripsi Use Case "Halaman Hasil Perhitungan "   |         |
| Tabel 4.19 Deskripsi Use Case "Halaman Pohon Keputusan "     | 48      |
| Tabel 4.20 Deskripsi Use Case " Halaman Kinerja "            | 49      |
| Tabel 4.21 Deskripsi Use Case "Halaman Penentu Keputusan "   | 50      |
| Tabel 4.22 Atribut                                           | 51      |
| Tabel 4.23 Data Keputusan                                    | 51      |
| Tabel 4.24 Data Keputusan Perbandingan                       | 51      |
| Tabel 4.25 Data Penentu Keputusan                            | 52      |
| Tabel 4.26 Data Asli                                         | 52      |
| Tabel 4.27 Data Survey                                       | 52      |
| Tabel 4.28 Iterasi C4.5                                      | 53      |
| Tabel 4.29 <i>Mining</i> C4.5                                | 53      |
| Tabel 4.30 Pohon Keputusan C4.5                              |         |
| Tabel 4.31 Rule C45                                          |         |
| Tabel 4.32 Rule Penentu Keputusan                            | 55      |
| Tabel 4.33 User                                              |         |
| Tabel 6.1 Pengujian Data Semua                               |         |
| Tabel 6.2 Pengujian Import File                              |         |
| Tabel 6.3 Pengujian Proses <i>Mining</i> C4.5                |         |
| Tabel 6.4 Pengujian Partisi Data                             |         |
| Tabel 6.5 Pengujian Hasil Perhitungan                        | 73      |
| Tabel 6.6 Pengujian Pohon Keputusan                          |         |
| Tabel 6.7 Pengujian Kinerja                                  |         |
| Tabel 6.8 Pengujian Penentu Keputusan                        |         |
| Tabel 6.9 Akurasi 11 Data Testing                            | 76      |

### **DAFTAR LAMPIRAN**

Lampiran Tabel Data Varietas Padi Lampiran Source Code Lampiran Revisi Ujian Sidang Lampiran ACC Abstrak BIODATA

#### **BAB I. PENDAHULUAN**

#### 1.1 Latar Belakang

Pertanian mempunyai arti penting bagi kehidupan manusia, selama manusia hidup, selama itu juga pertanian tetap akan ada. Hal itu disebabkan karena makanan merupakan kebutuhan manusia paling pokok selain udara dan air. Makanan merupakan hasil dari pertanian yang mana setiap tahun kebutuhan makanan akan semakin meningkat karena populasi manusia sendiri yang terus tertambah. Secara khusus beras merupakan hasil dari tanaman padi yang digunakan sebagai makanan pokok manusia, terutama di daerah tropis dan subtropis. Dalam melakukan penanaman padi, ada berbagai teknik untuk melakukannya, diantaranya teknik penanaman menggunakan metode SRI dan Jajar Legowo.

Setiap petani yang akan menanam padi, memiliki kriteria tertentu yang dijadikan sebagai bahan pertimbangan. Pada saat memilih teknik budidaya tanaman padi, petani akan melihat detail metode dari setiap teknik budidaya tanaman padi yang ada dan meskipun mereka telah melihat metode teknik budidaya tanaman, petani masih bingung untuk menentukan teknik apa yang sesuai dengan kebutuhan mereka. Hal ini karena data-data yang ada belum diklasifikasikan dengan baik dan benar.

Dari permasalahan diatas maka akan dikembangkan suatu sistem yang dapat merekomendasikan teknik budidaya tanaman padi kepada petani berdasarkan kriteria yang ada pada masing-masing teknik budidaya tanaman padi yang telah diklasifikasikan. Sistem rekomendasi ini menggunakan metode *Decision Tree*. Penerapan konsep *Decision Tree* berguna untuk menangani pengambilan keputusan yang membingungkan/kompleks menjadi lebih sederhana dalam memberikan rekomendasi berdasarkan permasalahan.

Sistem yang dibuat cukup mudah untuk dipahami dan digunakan oleh orang awam, pengguna tinggal memasukkan data yang menjadi kriteria pemilihan dalam teknik budidaya tanaman padi, setelah pengguna memasukkan data, sistem akan memberikan hasil rekomendasi yang tepat kepada pengguna dalam menggunakan teknik penanaman padi. Jadi dengan metode tersebut sistem ini diharapkan dapat memudahkan dan dapat dipahami dengan baik oleh pengguna.

Sistem rekomendasi akan dibuat dalam sebuah aplikasi berbasis website. Oleh karena itu, saya sebagai penulis mengangkat judul "Metode Decision TreeAlgoritma C4.5 Sebagai Penentuan Teknik Budidaya Tanaman Padi". Dengan adanya sistem tersebut diharapkan dapat menjadi solusi dalam menentukan keputusan dan rekomendasi tentang teknik penanaman tanaman padi.

#### 1.2 Rumusan Masalah

Berdasarkan dari latar belakang diatas, maka dibuat rumusan masalah sebagai berikut :

- 1. Bagaimana mengelola data berdasarkan sumber dan metode untuk diterapkan pada sistem?
- 2. Bagaimana merancang sistem yang dapat memberikan rekomendasi teknik budidaya tanaman padi menggunakan *Decision Tree* Algoritma C4.5?

#### 1.3 Batasan Masalah

Berdasarkan latar belakang yang telah dijelaskan diatas, adapun batasan masalah dalam penelitian ini adalah :

- 1. Aplikasi dibuat berbasis website.
- 2. Memberikan rekomendasi tentang teknik penanaman tanaman padi.
- 3. Varietas padi yang digunakan yaitu padi sawah dan padi gogo.
- 4. Menggunakan *Decision Tree* Algoritma C4.5 untuk menghasilkan sistem rekomendasi dengan variabel yaitu : umur tanaman, anakan produktif, kerontokan, lahan, ketinggian, jarak tanam, musim, hasil potensi, dan teknik tanam.

#### 1.4 Tujuan Penelitian

Adapun tujuan dari pembuatan skripsi Metode *Decision Tree* Algoritma C4.5 Sebagai Penentuan Teknik Budidaya Tanaman Padi adalah sebagai berikut :

- Mengelola data berdasarkan sumber dan metode untuk diterapkan pada sistem.
- 2. Merancang sistem yang dapat memberikan rekomendasi untuk teknik penanaman tanaman padi menggunakan *Decision Tree* Algoritma C4.5.

#### 1.5 Sistematika Penulisan Laporan

Uraian dalam laporan skripsi penulis menyusun dengan sistematika penulisan sebagai berikut :

- BAB I PENDAHULUAN berisikan tentang latar belakang masalah, rumusan masalah, batasan masalah, tujuan penelitian, dan sistematika penulisan yang digunakan.
- BAB II LANDASAN TEORI berisikan berisi teori-teori yang mendasari dan berkaitan dengan masalah perencanaan dan pembuatan aplikasi yang digunakan acuan untuk mempermudah pemahaman dan pemecahan terhadap masalah yang ada.
- BAB III METODOLOGI PENELITIAN berisikan tentang metode yang digunakan dalam melakukan penelitian membangun aplikasi untuk menentukan teknik tanaman padi yang sesuai dengan kondisi lingkungan, berdasarkan kerangka acuan yang sudah dibuat.
- BAB IV ANALISIS DAN PERANCANGAN berisikan tentang analisis kebutuhan yang diperlukan untuk pembuatan skripsi serta perancangan mengenai aplikasi untuk menentukan teknik tanam padi.
- BAB V IMPLEMENTASImembahas tentang implementasi sistem yang telah direncanakan pada bab sebelumnya.
- BABVI PENGUJIAN DAN PEMBAHASAN membahas mengenai pengujian terhadap aplikasi untuk menentukan teknik tanam padi, serta analisis dari hasil uji coba aplikasi.
- BAB VII PENUTUP berisikan kesimpulan dari keseluruhan proses analisis hingga uji coba, serta saran yang dapat membantu dalam mengembangkan aplikasi ini kedepannya.

#### BAB II. LANDASAN TEORI

#### 2.1 Tanaman Padi

Tanaman Padi (*Oryza sativa L*.) merupakan tanaman semusim dengan morfologi berbatang bulat dan berongga yang disebut jerami. Daunnya memanjang dengan ruas searah batang daun. Pada batang utama dan anakan membentuk rumpun pada fase vegetatif dan membentuk malai pada fase generatif.

Air dibutuhkan tanaman padi untuk pembentukan karbohidrat di daun, menjaga hidrasi protoplasma, pengangkutan dan mentranslokasikan makanan serta unsur hara dan mineral. Air sangat dibutuhkan untuk perkecambahan biji. Pengisapan air merupakan kebutuhan biji untuk berlangsungnya kegiatan-kegiatan di dalam biji [2].

#### 2.1.1 Botani dan Morfologi

Botani tanaman padi dalam sistematika tumbuhan diklasifikasikan sebagai berikut:

Divisi : Spermatophyta

Sub divisi : *Angiospermae* 

Kelas : Monocotyledoneae

Keluarga : *Graminae* (*Poaceae*)

Genus : *Oryza Linn* 

Spesies : *Oryza sativa L*.

Tanaman padi sawah (*Oryza sativa L.*) merupakan tanaman semusim dengan morfologi berbatang bulat dan berongga yang disebut jerami. Daunnya memanjang dengan ruas searah batang daun. Pada batang utama dan anakan membentuk rumpun pada fase generatif dan membentuk malai. Akarnya serabut yang terletak pada kedalaman 20-30 cm. Malai padi terdiri dari sekumpulan bunga padi yang timbul dari buku paling atas. Bunga padi terdiri dari tangkai bunga, kelopak bunga *lemma* (gabah padi yang besar), *palae* (gabah padi yang kecil, putik, kepala putik, tangkai sari, kepala sari, dan bulu pada ujung *lemma*). Padi dapat dibedakan menjadi padi sawah dan padi gogo. Padi sawah biasanya ditanam di daerah dataran rendah yang memerlukan penggenangan, sedangkan padi gogo ditanam di dataran

tinggi pada lahan kering. Tidak terdapat perbedaan morfologis dan biologis antara padi sawah dan padi gogo, yang membedakan hanyalah tempat tumbuhnya.

Akar tanaman padi berfungsi menyerap air dan zat-zat makanan dari dalam tanah, terdiri dari 1) Akar tunggang yaitu akar yang tumbuh pada saat benih berkecambah. 2) Akar serabut yaitu akar yang tumbuh dari akar tunggang setelah tanaman berumur 5-6 hari.

#### 2.1.2 Syarat-Syarat Tumbuh

Syarat utama yang harus dipenuhi untuk menanam padi sawah adalah kebutuhan air yang harus tercukupi. Jika tidak maka pertumbuhan padi sawah yang ditanam akan terhambat dan produktivitasnya menurun. Berikut beberapa syarat tumbuh tanaman padi yang harus diperhatikan :

- a. Lokasi tanam, sesuai dengan namanya padi sawah, maka tanaman padi jenis ini harus ditanam di sawah dengan ketinggian optimal 0-1500 meter diatas permukaan laut.
- b. Kondisi tanah. Padi sawah ditanam di tanah berlumpur yang subur dengan ketebalan 18 22 cm. Tanah yang cocok untuk areal persawahan adalah tanah berlempung yang berat atau tanah yang memiliki lapisan keras 30 cm dibawah permukaan tanah sehingga air dapat tertampung diatasnya dan menciptakan lumpur.
- c. Iklim. Padi sawah dapat tumbuh dalam iklim yang beragam, terutama di daerah dengan cuaca panas, kelembaban tinggi dengan curah hujan 200 mm/bulan atau 1500 2000 mm/tahun. Tanaman padi dapat tumbuh baik pada suhu 23°C.
- d. Intetensitas cahaya matahari harus penuh sepanjang hari tanpa ada naungan.
- e. pH tanah harus berkisar antara 4.0 7.0 pH tanah yang tinggi atau diatas 7.0 akan mengurangi hasil produksi.
- f. Angin yang berpengaruh terhadap proses penyerbukan bunga padi. Karena itu lokasi sawah harus terbuka dan tidak terhalang sehingga angin dapat bertiup dengan bebas.
- g. Air harus tersedia setiap saat mencukupi untuk menggenangi tanah persawahan. Kekurangan dan kelebihan air akan dapat mengurangi hasil produksi. Karena itu diperlukan saluran irigasi yang baik untuk mengatur

keluar masuknya air kedalam lahan persawahan yang akan ditanami padi sawah.

#### 2.2 Teknik Penanaman Padi

#### 2.2.1 Sistem Tanam Jajar Legowo

Cara tanam jajar legowo untuk padi sawah secara umum bisa dilakukan dengan berbagai tipe yaitu : legowo (2:1), (3:1), (4:1), (5:1), (6:1) atau tipe lainnya. Namun dari hasil penelitian, tipe terbaik untuk mendapatkan produksi gabah tertinggi dicapai oleh legowo (4:1), dan untuk mendapatkan bulir gabar berkualitas benih dicapai oleh legowo (2:1).

- a. Tujuan tanam jajar legowo
  - Memanfaatkan sinar matahari bagi tanaman yang berada pada bagian pinggir barisan
  - 2) Mengurangi kemungkinan serangan hama, terutama tikus
  - 3) Menekan serangan penyakit
  - 4) Mempermudah pelaksanaan pemupukan dan pengendalian hama/penyakit
  - 5) Menambah populasi tanaman
- b. Keuntungan jajar legowo
  - Semua barisan rumpun tanaman berada pada bagian pinggir yang biasanya memberi hasil lebih tinggi
  - 2) Lebih mudah untuk mengendalikan hama, penyakit, dan gulma
  - 3) Menyediakan ruang kosong untuk pengaturan air, saluran pengumpulan keong emas atau mina padi
  - 4) Penggunaan pupuk lebih berdaya guna

#### 2.2.2 Sistem Tanam SRI

Jenal Mutakin (2008) mengatakan bahwa SRI adalah metode budidaya tanaman padi organik yang dilakukan secara intensif dan efisien dengan proses manajemen sistem perakaran yang berbasis pada pengelolaan tanah, tanaman, dan air. SRI ditemukan pertama kali di Madagaskar, Afrika kemudian diperkenalkan di Indonesia pada Februari 2000, oleh IPPHTI di kelompok Studi Petani Tirta Bumi Cikoneng, Ciamis, Jawa Barat. Tanaman padi sebenarnya mempunyai potensi yang besar untuk menghasilkan produksi dalam tahap tinggi, ini hanya bisa dicapai

apabila dilakukan dengan teknik penanaman dan budidaya yang baik. Melalui metode SRI, tanaman akan mendapatkan perlakuan yang baik, sehingga tanaman bukan hanya bertumbuh produktif tetapi juga memiliki kualitas.

- a. Prinsip budidaya tanaman padi metode SRI
  - 1) Tanaman bibit muda berusia kurang dari 12 hari setelah semai (HSS) ketika masih berdaun dua helai.
  - 2) Tanam bibit satu lubang satu bibit dengan jarak tanam lebar 30x30 cm, 35x35 cm ata lebih jarang lagi.
  - 3) Pindah tanam harus segera mungkin (kurang 30 menit) dan harus hati-hati agar tidak putus dan ditanam dangkal.
  - 4) Pemberian air maksimum 2 cm (macak-macak) dan periode tertentu dikeringkan sampai pecah (irigasi berselang/terputus).
  - 5) Penyiangan sejak awal sekitar umur 10 hari dan diulang 2-3 kali dengan interval 10 hari. Sedapat mungkin menggunakan pupuk organik dan pestisida organik.

#### b. Keunggulan budidaya metode SRI

- 1) Tanaman hemat air, selama pertumbuhan dari mulai tanam sampai panen pemberian air maksimum 2 cm paling baik macak-macak sekitar 5 mm dan ada periode pengeringan sampai tanah retak (irigasi terputus).
- 2) Hemat biaya, hanya butu benih 5kg/ha, tidak butuh biaya pencabutan bibit, tidak butuh biaya pindah bibit, tenaga tanam berkurang, dan lain-lain.
- 3) Hemat waktu ditanam bibit muda 5-12 hari setelah semai, dan waktu panen akan lebih awal.
- 4) Produksi meningkat di beberapa tempat mencapai 11 ton/ha.
- 5) Ramah lingkungan, serta bertahap penggunaan pupuk kimia (urea, Sp36, KCl) akan dikurangi dan digantikan dengan mempergunakan pupuk organik (kompos, kandang, dan MOL) begitu juga penggunaan pestisida.

#### 2.3 Metode Decision Tree

Decision Tree adalah algoritma yang paling banyak digunakan untuk masalah pengklasifikasian. Sebuah decision tree terdiri dari 3 node, yaitu:

a. *Root Node*, merupakan *node* paling atas, pada *node* ini tidak ada input dan bisa tidak mempunyai *output* atau mempunyai *output* lebih dari satu.

- b. *Internal Node*, merupakan *node* percabangan, pada *node* ini hanya terdapat satu *input* dan mempunyai *output* minimal dua.
- c. *Leaf Node* atau *Terminal Node*, merupakan *node* akhir, pada *node* ini hanya terdapat satu *input* dan tidak mempunyai *output*.

Banyak algoritma yang dapat dipakai dalam pembentukan pohon keputusan, antara lain ID3, CART, dan C-45. Data dalam pohon keputusan biasanya dinyatakan dalam bentuk tabel dengan atribut dan *record*. Atribut menyatakan suatu parameter yang dibuat sebagai kriteria dalam pembentukan pohon. Misalkan untuk menentukan main tenis, kriteria yang diperhatikan adalah cuaca, angin dan temperatur.

Seperti ditunjukkan dalam Gambar 2.1. *Decision Tree* tergantung pada aturan *if-then*, tetapi tidak membutuhkan parameter dan metrik. Strukturnya sederhana dan dapat ditafsirkan memungkinkan *decision tree* untuk memecahkan masalah atribut *multi-type*. *Decision tree* juga dapat mengelola nilai-nilai yang hilang atau data *noise* [5].



Gambar 2.1 Contoh Struktur *Decision Tree* [5]

Algoritma C4.5 dan pohon keputusan merupakan dua model yang tak terpisahkan, karena untuk membangun sebuah pohon keputusan dibutuhkan

algoritma C4.5. Ada beberapa tahapan dalam membuat sebuah pohon keputusan dalam algoritma C4.5, yaitu :

- a. Mempersiapkan data *training*. Data *training* biasanya diambil dari data histori yang pernah terjadi sebelumnya atau disebut data masa lalu dan sudah dikelompokkan dalam kelas-kelas tertentu.
- b. Menghitung akar dari pohon. Akar akan diambil dari atribut yang terpilih, dengan cara menghitung nilai *gain ratio* dari masing-masing atribut, nilai *gain ratio* yang paling tinggi yang akan menjadi akar pertama. Sebelum menghitung nilai *gain ratio* dari atribut, hitung dahulu nilai *entropy, info gain, dan split info*. Untuk menghitung nilai *entropy* digunakan rumus:

$$Entropy(S) = \sum_{i=1}^{n} -pi \log_2 pi$$
 (2.1)

Keterangan:

S = Himpunan Kasus

n = Jumlah partisi S

 $Pi = proporsi S_i terhadap S$ 

Kemudian hitung nilai gain menggunakan rumus:

$$Gain(S,A) = Entropy(S) - \sum_{i=1}^{n} \frac{|Si|}{|S|} * Entropy(S)$$
 (2.2)

Keterangan:

S = Himpunan Kasus

A = Fitur

n = Jumlah partisi atribut A

|Si| = Proporsi Si terhadap S

|S| = Jumlah kasus dalam S

Untuk rumus split info dan gain ratio, sebagai berikut :

$$Split\ Info\ (S,A) = -\sum_{i=1}^{n} \frac{|Si|}{|S|} log 2 \frac{|Si|}{|S|}$$
 (2.3)

Gain Ratio 
$$(S, A) = \frac{Gain(S, A)}{Split Info(S, A)}$$
 (2.4)

- c. Ulangi langkah ke 2 dan langkah ke 3 hingga semua *record* terpartisi.
- d. Proses partisi pohon keputusan akan berhenti saat :

Semua record dalam simpul N mendapat kelas yang sama

Tidak ada atribut di dalam *record* yang dipartisi lagi Tidak ada *record* di dalam cabang yang kosong

#### 2.4 Sistem Pakar

Sistem Pakar (*expert system*) adalah sistem yang berusaha mengadopsi pengetahuan manusia ke komputer, agar komputer dapat menyelesaikan masalah seperti yang biasa dilakukan oleh para ahli, dan sistem pakar yang baik dirancang agar dapat menyelesaikan suatu permasalahan tertentu dengan meniru kinerja dari para ahli [6].

Sebuah sistem pakar atau sistem berbasis pengetahuan kecerdasan (*intelligent knowledge based system*) merupakan salah satu bagian dari kecerdasan buatan yang memungkinkan komputer dapat berfikir dan mengambil kesimpulan dari sekumpulan aturan (aturan biasa atau meta). Dalam proses tersebut seorang pengguna dapat berkomunikasi secara interaktif dengan komputer untuk memecahkan suatu persoalan atau seolah-olah pengguna berhadapan dengan seorang ahli dengan masalah tersebut [7].

#### 2.4.1 Keuntungan Sistem Pakar

Secara garis besar, ada banyak keuntungan bila menggunakan sistem pakar, diantaranya adalah [9] :

- 1. Menjadikan pengetahuan dan nasihat lebih mudah didapat.
- 2. Meningkatkan *output* dan produktivitas.
- 3. Menyimpan kemampuan dan keahlian pakar.
- 4. Meningkatkan penyelesaian masalah yaitu menerusi paduan pakar, penerangan, sistem pakar khas.
- 5. Meningkatkan reliabilitas.
- 6. Memberikan respon/jawaban yang cepat.
- 7. Merupakan panduan yang *intelligence* (cerdas).
- 8. Dapat bekerja dengan informasi yang kurang lengkap dan mengandung ketidakpastian.
- 9. *Intelligence database* (basis data cerdas), bahwa sistem pakar dapat digunakan untuk mengakses basis data dengan cara cerdas.

#### 2.4.2 Kelemahan Sistem Pakar

Disamping memiliki beberapa keuntungan, sistem pakar juga memiliki beberapa kelemahan, antara lain :

- 1. Biaya yang diperlukan untuk membuat dan memeliharanya sangat mahal.
- 2. Sulit dikembangkan sistem pakar yang benar-benar berkualitas tinggi, hal ini tentu saja erat kaitannya dengan ketersediaan pakar di bidangnya.
- 3. Sistem pakar tidak dapat 100% bernilai benar.
- 4. Terkadang sistem tidak dapat membuat keputusan.
- 5. Pengetahua tidak selalu didapat dengan mudah karena pendekatan tiap pakar berbeda.

#### 2.4.3 Karakteristik Sistem Pakar

Sistem pakar mempunyai beberapa karakteristik dasar yang membedakan dengan program komputer biasa umumnya, yaitu [10]:

- 1. Mempunyai kepakaran maksudnya dalam menyelesaikan masalah bukan hanya mendapatkan solusi yang benar saja, namun juga bagaimana mendapatkan pemecahan dengan cepat dan mahir.
- 2. Sistem pakar mengutamakan kedalaman mengenai bidang tertentu.
- 3. Memiliki kemampuan mengolah data yang mengandung ketidakpastian kadang-kadang data yang tersedia tidak lengkap, sistem harus dapat memberikan pemecahan sesuai data yang tersedia dengan memberikan pertimbangan, saran atau anjuran sesuai dengan kondisi yang ada.
- 4. Dirancang untuk dapat dikembangkan secara bertahap program komputer dirancang untuk memberikan jawaban yang tepat setiap waktu. Sedangkan sistem pakar dirancang untuk berlaku sebagai seorang pakar, terkadang memberikan jawaban yang benar dan suatu saat mungkin tidak tepat.

#### 2.4.4 Struktur Sistem Pakar

Sistem pakar dapat ditampilkan dengan dua lingkugan, yaitu lingkungan pengembangan dan lingkungan konsultasi, Gambar 2.2. Lingkungan pengembangan digunakan oleh sistem pakar (ES) *builder* untuk membangun komponen dan memasukkan pengetahuan ke dalam basis pengetahuan. Lingkungan konsultasi digunakan oleh nonpakar untuk memperoleh pengetahuan dan nasihat pakar. Lingkungan ini dapat dipisahkan setelah sistem lengkap [10].



Gambar 2.2 Struktur Sistem Pakar

#### 2.4.5 Komponen Sistem Pakar

Komponen yang terdapat dalam sistem pakar adalah:

#### 1. Antarmuka pengguna (*User Interface*)

User Interface merupakan mekanisme yang digunakan untuk pengguna dan sistem pakar untuk berkomunikasi. Antarmuka menerima informasi dari pemakai dan mengubahnya ke dalam bentuk yang dapat diterima oleh sistem. Selain itu antarmuka menerima informasi dari sistem dan menyajikannya dalam bentuk yang dapat dimengerti oleh pemakai. Menurut [13], pada bagian ini terjadi dialog antara program dan pemakai, yang memungkinkan sistem pakar menerima instruksi dan informasi (input) dan pemakai juga memberikan informasi (output) kepada pemakai.

#### 2. Basis pengetahuan

Basis pengetahuan mengandung pengetahuan untuk pemahaman, formulasi dan penyelesaian masalah. Komponen sistem pakar ini disusun atas dua elemen dasar, yaitu fakta dan aturan. Fakta merupkana informasi tentang objek dalam area permasalahan tertentu, sedangkan aturan merupakan informasi tentang cara bagaimana memperoleh fakta baru dari fakta yang telah diketahui [9].

#### 3. Akuisisi pengetahuan

Akuisisi pengetahuan adalah akumulasi, transfer, dan transformasi keahlian dalam menyelesaikan masalah dari sumber pengetahuan ke dalam program komputer. Dalam tahap ini *knowledge engineer* ebrusaha menyerap pengetahuan untuk selanjutnya ditransfer ke dalam basis pengetahuan. Pengetahua diperoleh dari pakar, dilengkapi dengan buku, basis data, laporan penelitian dan pengalaman pemakai [9].

#### 4. Mesin inferensi

Komponen ini mengandung mekanisme pola pikir dan penalaran yang digunakan oleh pakar dalam menyelesaikan suatu masalah. Mesin inferensi adalah program komputer yang memberikan metodologi untuk penalaran tentang informasi yang ada dalam basis pengetahuan dan dalam workplace, dan untuk memformulasikan kesimpulan [10].

#### 5. Blackboard

Blackboard adalah area kerja memori yang disimpan sebagai database untuk deskripsi persoalan terbaru yang ditetapkan oleh data input, digunakan juga unuk perekam hipotesis dan keputusan sementara. Tiga tipe keputusan dapat direkam dalam blackboard, yaitu :

a. Rencana : bagaimana mengatasi persoalan

b. Agenda : tindakan potensial sebelum eksekusi

c. Solusi : hipotesis kandidat dan arahan alternatif yang telah dihasilkan sistem sampai saat ini

#### 6. Fasilitas penjelasan

Fasilitas penjelasan untuk komponen tambahan yang akan meningkatkan kemampuan sistem pakar. Komponen ini menggambarkan penalaran sistem kepada pemakai. Fasilitas penjelasan dapat menjelaskan perilaku sistem pakar dengan menjawab pertanyaan-pertanyaan sebagai berikut [10]:

- a. Mengapa pertanyaan tertentu ditanyakan oleh sistem pakar?
- b. Bagaimana kesimpulan tertentu diperoleh?
- c. Mengapa alternatif tertentu ditolak?
- d. Apa rencana untuk memperoleh penyelesaian?

#### 7. Perbaikan pengetahuan

Pakar memiliki kemampuan untuk menganalisis dan meningkatkan kinerjanya serta kemampuan untuk belajar dan kinerjanya. Kemampuan tersebut adalah penting dalam pembelajaran terkomputerisasi, sehingga program akan mampu menganalisis penyebab kesuksesan dan kegagalan yang dialaminya.

#### 2.5 PHP

PHP singkatan dari *Hypertext PreProcessor* merupakan bahasa pemrograman yang bersifat *open source*. Program ini bersifat *server side*, artinya tanpa adanya *server* yang berjalan disisinya *script* program PHP tidak dapat dijalankan [12]. PHP adalah *script* yang ditanamkan dalam HTML untuk membuat halaman *website* dinamis yang bekerja secara otomatis dan berfungsi sebagai pengelolaan data pada *server* dimana *script* tersebut dijalankan [11].

Beberapa kelebihan dari PHP sebagai berikut :

- 1. Kesederhanaan, mudah dipelajari karena banyak referensi serta bisa membuat *website* dinamis.
- 2. PHP bersifat *open source*, karena bersifat *open source* PHP mudah didapatkan dan tersedia dalam berbagai versi.
- 3. Stabilitas dan Kompatibilitas, PHP stabil di berbagai sistem operasi seperti Linux dan Mac selain itu PHP juga terintegrasi secara baik dengan berbagai macam *webserver* termasuk 2 yang paling populer yaitu IIS dan Apache.
- 4. Kemampuan proses cepat dalam menampilkan halaman web serta mampu berinteraksi banyak *database*.

#### BAB III. METODOLOGI PENELITIAN

#### 3.1 Metodologi Penelitian

Metode pengembangan sistem waterfall. Metode SDLC waterfall sering disebut model sequential linier. Model waterfall menyediakan pendekatan alur hidup perangkat lunak secara sequential atau urut dimulai dari analisis, desain, pengkodean, pengujian dan tahap support[3]. Berikut tahap-tahap metode waterfall menurut Rossa:



Gambar 3.1 Gambar tahapan metode Waterfall menurut Rossa [3]

#### 3.1.1 Analisis

Mengumpulkan kebutuhan secara lengkap kemudian dianalisis dan didefinisikan kebutuhan yang harus dipenuhi oleh aplikasi yang akan dibangun. Hal ini sangat penting mengingat aplikasi harus dapat berinteraksi dengan elemenelemen yang lain seperti manusia, *hardware*, *database*, dan sebagainya.

Pada fase ini melakukan pengumpulan data melalui buku-buku dan jurnal yang berkaitan dengan metode *decision tree* algoritma C4.5. Selain itu juga melakukan interview kepada salah satu dosen di Program Studi Tanaman Hortikultura di Politeknik Negeri Jember.

#### 3.1.2 Desain

Tahap ini dilakukan setelah selesai menganalisis data hasil interview. Proses desain lebih difokuskan pada *software*. Untuk mengetahui sifat dari program yang akan dibuat, maka *software engineer* harus mengerti tentang informasi dari *software*, misalnya fungsi yang dibutuhkan, user *interface* dan sebagainya. Dari dua aktivitas tersebut (pencarian kebutuhan sistem dan *software*) harus didokumentasikan dan ditunjukkan kepada *user*. Dengan menggunakan *Decision* 

Tree Algoritma C4.5 dihitung nilai entropy, inf gain, split info dan juga gain ratio untuk menentukan titik mana sebagai root node, internal node, dan leaf node. Berikut adalah gambaran alur flowchart dari metode decision treedan alur sistem yang akan dibangun:



Gambar 3.2 Alur Metode Decision Tree Algoritma C4.5

Pada gambar 3.2 menjelaskan alur dari metode *decision tree* algoritma C4.5. proses awal yaitu *input* data atribut varietas padi. Kemudian hitung *entropy* semua

data, hitung *entropy*, *info gain*, *split info*, dan *gain ratio* masing-masing atribut. Setelah dihitung, *gain ratio* tertinggi digunakan sebagai node akar/*root*. Mencari *entropy*, *info gain*, *split info* dan *gain ratio* dari masing-masing atribut. Terbentuk *nodeleaf*, apabila *gain ratio* pada *leaf* sama, hitung *entropy*, *info gain*, *split info* dan *gain ratio* masing-masing atribut lagi, jika tidak maka proses perhitungan selesai.

#### 3.1.3 Pengkodean

Desain program diterjemahkan ke dalam kode-kode dengan menggunakan bahasa pemrograman yang sudah ditentukan. Pada tahap ini, dibuat program atau dapat dikatakan mengimplementasikan tahap desain yang kemudian diterjemahkan ke dalam kode-kode program (*script*) dengan menggunakan bahasa pemrograman PHP dan MySQL sebagai media penyimpanan data. Pada tahap pengkodean ini dilakukan secara berkala, maksudnya akan dilakukan tahap demi tahap agar program dapat terselesaikan dengan baik.

#### 3.1.4 Pengujian

Pada tahap ini akan dilakukan pengujian pada program. Pengujian aplikasi ini menerapkan metode *black box*, metode ini digunakan unuk pengujian kesesuaian dan fungsi dari setiap fitur yang terdapat dalam sistem guna memenuhi kebutuhan pengguna.

#### 3.2 Metode Pengolahan Data

Dalam pengolahan data, menggunakan metode *Decision Tree* dan Algoritma C4.5 dengan langkah-langkah penyelesaian sebagai berikut :

- a. Hitung jumlah data, jumlah data berdasarkan anggota atribut hasil dengan syarat tertentu.
- b. Pilih atribut sebagai *node* akar.

Berikut rumus entropy untuk menentukan node akar:

$$Entropy(S) = \sum_{i=1}^{n} -pi \log_2 pi$$
(3.1)

Keterangan:

S = Himpunan Kasus

n = Jumlah partisi S

 $Pi = proporsi S_i terhadap S$ 

Kemudian hitung nilai gain menggunakan rumus :

$$Gain(S,A) = Entropy(S) - \sum_{i=1}^{n} \frac{|Si|}{|S|} * Entropy(S)$$
 (3.2)

Keterangan:

S = Himpunan Kasus

A = Fitur

n = Jumlah partisi atribut A

|Si| = Proporsi Si terhadap S

|S| = Jumlah kasus dalam S

Untuk rumus split info dan gain ratio, sebagai berikut :

Split Info 
$$(S,A) = -\sum_{i=1}^{n} \frac{|Si|}{|S|} log 2 \frac{|Si|}{|S|}$$
 (3.3)

$$Gain Ratio (S, A) = \frac{Gain(S, A)}{Split Info(S, A)}$$
(3.4)

- c. Buat cabang untuk masing-masing anggota dari node.
- d. Periksa apakah nilai *entropy* dari tiap anggota *node* ada yang bernilai 0, jika ada tentukan daun yang terbentuk. Jika seluruh nilai *entropy* anggota *node* adalah 0, maka proses pun berhenti.
- e. Jika ada anggota *node* yang memiliki nilai *entropy* lebih besar dari 0, maka ulangi lagi proses dari awal dengan node sebagai syarat sampai semua anggota dari *node* bernilai 0

#### 3.2.1 Proses Perhitungan Metode Decision Tree

Pada metode *decision tree* diperlukan sebuah data, data yang digunakan yaitu 52 data varietas padi. Contoh perhitungan dengan metode *decision tree* algoritma C4.5 adalah sebagai berikut:

- a. Hitung jumlah data, jumlah data yang dipakai yaitu sebanyak 52 data varietas padi, jumlah data dengan sistem tanam SRI sebanyak 38 data, dan jumlah data dengan sistem tanam Jajar Legowo sebanyak 14 data. Tabel jumlah data terdapat pada Tabel 4.1.
- b. Pilih atribut sebagai *node* akar. Pada tahap ini mencari node akar dengan menghitung *entropy*, *total info*, *split info*, dan *gain ratio*. *Gain ratio* tertinggi akan dijadikan *node* akar yaitu umur tanaman, dapat dilihat pada Tabel 4.2.
- c. Buat cabang untuk tiap-tiap anggota dari *node*. Setelah menentukan *node* akar, selanjutnya adalah mencari *node* cabang dengan cara yang sama, yaitu

- menghitung *entropy*, *total info*, *split info*, dan *gain ratio* dari tiap atribut selain atribut yang sudah menjadi *node* akar.
- d. Periksa apakah nilai *entropy* dari tiap anggota *node* yang ada bernilai 0, jika ada tentukan daun yang terbentuk. Jika seluruh nilai *entropy* anggota *node* adalah 0, maka proses berhenti. Proses akan berhenti jika ada *node* yang bernilai 0 sehingga dapat terbentuk sebuah *leaf* dari pohon keputsan.
- e. Jika ada anggota node yang memiliki nilai *entropy* lebih besar dari 0, ulangi lagi proses dari awal dengan *node* sebagai syarat sampai semua anggota dari *node* bernilai 0. Ulangi proses mencari *node* hingga semua cabang menjadi *leaf*, maka proses pembentukan pohon kepususan selesai.

#### BAB IV. ANALISIS DAN PERANCANGAN

Pada bab ini akan dibahas secara detail dan terperinci mengenai analisis dan perancangan Metode *Decision Tree* Algoritma C4.5 Sebagai Penentuan Teknik Budidaya Tanaman Padi yang akan mengimplementasikan dengan menerapkan konsep dan metode penelitian yang telah dijelaskan pada bab sebelumnya.

#### 4.1 Analisis Sistem

Pada bagian ini membahas kebutuhan perangkat lunak yang dibutuhkan dalam aplikasi dan perancangan desain sistem untuk membuat alur proses aplikasi.

#### 4.1.1 Deskripsi Sistem

Metode *Decision Tree* Sebagai Penentuan Teknik Budidaya Tanaman Padi Menggunakan Algoritma C4.5 adalah sebuah sistem yang dapat menganalisis data varietas padi berdasarkan atribut tertentu.

#### 4.1.2 Analisis Kebutuhan Sistem

Dalam analisis kebutuhan sistem terdapat kebutuhan perangkat keras dan kebutuhan perangkat lunak yang digunakan untuk membangun aplikasi ini

#### 4.1.2.1 Kebutuhan Perangkat Keras

• Processor : Intel(R) Core(TM) i7-4510U @2.6 GHz

• RAM : 8 GB

• Solid State Drive : 120 GB

• Chip Type : NVIDIA GeForce 820M

#### 4.1.2.2 Kebutuhan Perangkat Lunak

• Operating System : Windows 8.1 Pro 64 bit

XAMPP

• Sublime Text

• Web Browser Google Chrome

#### 4.2 Analisis Data

Dalam penyelesaian perhitungan decision tree algoritma C4.5, dicari nilai entropy, info gain, split info dan gain ratio dari masing-masing atribut. Hasil dari

perhitungan tersebut akan membantu untuk mengklasifikasikan teknik tanam padi yang sesuai, apakah SRI atau Jajar Legowo.

#### 4.2.1 Sumber Data

Data yang digunakan dalam skripsi ini yaitu 52 data varietas padi sawah dan padi gogo yang didapat dari literatur buku. Atribut yang digunakan dalam proses perhitungan *decision tree* algoritma C4.5 yaitu umur tanaman, anakan produktif, kerontokan, lahan, ketinggian, jarak tanam, musim, dan hasil potensi. Untuk penjelasannya sebagai berikut :

Tabel 4.1 Tabel Atribut Varietas Padi

| Atribut          | Keterangan                                                                                                                                          |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Umur Tanaman     | Merupakan atribut dari data varietas padi<br>yang akan dikategorikan menjadi 3,<br>yaitu: 90 – 105 hari, 106 – 124 hari, dan<br>125 – 150 hari      |
| Anakan Produktif | Merupakan atribut dari data varietas padi yang akan dikategorikan menjadi 3, yaitu : <=15 batang, 16 – 20 batang, dan >= 21 batang                  |
| Kerontokan       | Merupakan atribut dari data varietas padi<br>yang akan dikategorikan menjadi 4,<br>yaitu : mudah rontok, agak tahan,<br>sedang, dan tahan           |
| Lahan            | Merupakan atribut dari data varietas padi<br>yang akan dikategorikan menjadi 3,<br>yaitu : sawah irigasi, sawah tadah hujan,<br>sawah kering        |
| Ketinggian       | Merupakan atribut dari data varietas padi<br>yang akan dikategorikan menjadi 2,<br>yaitu : <500 mdpl dan >500 mdpl                                  |
| Jarak Tanam      | Merupakan atribut dari data varietas padi<br>yang akan dikategorikan menjadi 3,<br>yaitu: 25 x 25 cm, (20 – 40) x 10 cm,<br>dan (25 – 50) x 12,5 cm |
| Musim            | Merupakan atribut dari data varietas padi<br>yang akan dikategorikan menjadi 2,<br>yaitu : kemarau dan penghujan                                    |
| Hasil Potensi    | Merupakan atribut dari data varietas padi yang akan dikategorikan menjadi 3, yaitu : <6,5 ton/ha, 6,6 – 8.0 ton/ha, dan >8,1 ton/ha                 |

#### 4.2.2 Pra Proses

Dari data yang ada, kolom yang diambil sebagai atribut atau variabel keputusan adalah kolom teknik tanam, yang digunakan sebagai variabel penentu dalam pembentukan pohon keputusan. Ada beberapa tahapan dalam melakukan pra proses, yaitu:

#### 4.2.2.1 Data Selection

Dari data yang ada, proses pemilihan atribut untuk dijadikan proses *mining* sebagai berikut :

- Umur tanaman
- Anakan produktif
- Kerontokan
- Lahan
- Ketinggian
- Jarak tanam
- Musim
- Hasil potensi
- Teknik Tanam

## 4.2.2.2 Cleaning Data

Proses pembersihan data yang bersifat manual. Langkah prosesnya dengan membersihkan data yang termasuk *missing value*, maksudnya membersihkan datadata yang tidak lengkap atau ada *field* yang tidak memiliki data/kosong dan juga menghilangkan data yang *field* nya tidak sesuai dengan target atribut yang akan dipakai.

### 4.2.2.3 Transformasi Data

Transformasi data berfungsi untuk mengubah data numerik menjadi data kategorial. Data numerik yang berlanjut perlu dibagi-bagi menjadi beberapa interval. Maka dari itu perlu dilakukan pemilihan data yang diperlukan oleh teknik data mining yang dipakai. Transformasi data menentukan kualitas dari hasil proses data *mining*. Berikut adalah bentuk ketegorial dari data varietas padi :

### 1. Umur tanaman

90 – 105 hari : cepat
 106 – 124 hari : sedang

- 125 – 160 hari : lambat

2. Anakan produktif

- <= 15 batang : sedikit - 15 - 20 batang : sedang

- >= 20 : banyak

3. Ketinggian

<500 mdpl : rendah</li>
 >500 mdpl : tinggi

4. Jarak tanam

25 x 25 cm : rapat
 (20 - 40 cm) x 10 cm : sedang
 (25 - 50 cm) x 12.5 : renggang

5. Hasil potensi

- <=6.5 ton/ha : rendah
- 6.6 ton/ha - 8.0 ton/ha: sedang
- >=8.1 ton/ha : tinggi

## 4.2.2.4 Data Mining

Setelah semua terkategorikan dengan benar maka dilakukan proses perhitungan *mining*, dengan menghitung *entropy*, *total info*, *split info* dan *gain ratio*. Setelah perhitungan *mining* selesai, akan menghasilkan suatu pohon keputusan dan *rule*.

## 4.3 Perhitungan Decision Tree Algoritma C4.5

Secara umum tahapan algoritma C4.5 adalah sebagai berikut :

- 1. Hitung jumlah data, jumlah data berdasarkan anggota atribut hasil dengan syarat tertentu.
- 2. Pilih atribut sebagai *node*.
- 3. Buat cabang untuk tiap-tiap anggota dari *node*.
- 4. Periksa apakah nilai *entropy* dari tiap anggota node ada yang bernilai 0, jika ada tentukan daun yang terbentuk. Jika seluruh nilai *entropy* anggota *node* adalah 0, maka proses pun berhenti.

- 5. Jika ada anggota *node* yang memiliki nilai *entropy* lebih besar dari 0, ulangi lagi proses dari awal dengan *node* sebagai syarat sampai semua anggota dari *node* bernilai 0.
- 6. Membuat *rule* berdasarkan pohon keputusan.

Dalam kasus yang terdapat pada tabel 4.2 maka dibuatlah sebuah pohon keputusan untuk menentukan teknik tanam padi dengan melihat atribut umur tanaman, anakan produktif, kerontokan, lahan, ketinggian, jarak tanam, musim, hasil potensi. Untuk mencari atribut yang menjadi *root* maka dicari nilai *gain ratio* tertinggi dari semua atribut.

Sebelum menghitung *entropy*, *info gain*, *split info* dan *gain ratio* dari masing-masing atribut maka dihitung jumlah kasus dan jumlah masing-masing atribut teknik tanam padi, SRI dan Jajar Legowo. Terdapat pada tabel 4.2 berikut ini:

Tabel 4.2 Tabel Jumlah Kasus

| Atibut               | Jumlah<br>Kasus | SRI | Jajar<br>Legowo |
|----------------------|-----------------|-----|-----------------|
| Total                | 52              | 38  | 14              |
| Umur Tanaman         |                 |     |                 |
| ( 90 - 105 hari)     | 2               | 1   | 1               |
| (106 - 124 hari)     | 44              | 37  | 7               |
| (125 - 150 hari)     | 6               | 0   | 6               |
| Anakan Produktif     |                 |     |                 |
| <= 15 batang         | 14              | 8   | 6               |
| 16 - 20 batang       | 31              | 25  | 6               |
| >= 21 batang         | 7               | 5   | 2               |
| Kerontokan           |                 |     |                 |
| Mudah Rontok         | 8               | 7   | 1               |
| Agak Tahan           | 2               | 1   | 1               |
| Sedang               | 37              | 26  | 11              |
| Tahan                | 5               | 4   | 1               |
| Lahan                |                 |     |                 |
| Sawah Irigasi        | 41              | 29  | 12              |
| Sawah Tadah Hujan    | 10              | 9   | 1               |
| Sawah Kering         | 1               | 0   | 1               |
| Ketinggian           |                 |     |                 |
| <500 mdpl            | 34              | 24  | 10              |
| >500 mdpl            | 18              | 14  | 4               |
| Jarak Tanam          |                 |     |                 |
| 25 x 25 cm           | 15              | 14  | 1               |
| (20 - 40 cm) x 10 cm | 18              | 14  | 4               |

| (25 - 50 cm) x 12,5 cm      | 19 | 10 | 9  |
|-----------------------------|----|----|----|
| Musim                       |    |    |    |
| Kemarau                     | 20 | 10 | 10 |
| Penghujan                   | 32 | 28 | 4  |
| Hasil Potensi               |    |    |    |
| ( < 6.5 ton/ha )            | 8  | 6  | 2  |
| ( 6.6 ton/ha - 8.0 ton/ha ) | 38 | 30 | 8  |
| ( > 8.1 ton/ha )            | 6  | 2  | 4  |

Setelah menghitung jumlah kasus, maka selanjutnya menghitung *entropy*, *info gain*, *split info* dan *gain ratio* untuk masing-masing atribut. Tabel 4.3 menjelaskan perhitungan *entropy*, *info gain*, *split info* dan *gain ratio*.

Tabel 4.3 Pembentukan *Node* Akar

|   |                 | Jumla |    |        |       | Inform |       |       |
|---|-----------------|-------|----|--------|-------|--------|-------|-------|
|   |                 | h     | SR | Jajar  | Entro | ation  | Split | Gain  |
|   | Atibut          | Kasus | I  | Legowo | py    | Gain   | Info  | Ratio |
|   |                 |       |    |        | 0.840 |        |       |       |
|   | Total           | 52    | 38 | 14     | 4     |        |       |       |
| U | mur Tanaman     |       |    |        |       |        | 0.74  | 0.358 |
|   |                 |       |    |        |       | 0.2670 | 42    | 8     |
|   | Cepat           | 2     | 1  | 1      | 1     |        |       |       |
|   | _               |       |    |        | 0.632 |        |       |       |
|   | Sedang          | 44    | 37 | 7      | 1     |        |       |       |
|   | Lambat          | 6     | 0  | 6      | 0     |        |       |       |
| Α | nakan Produktif |       |    |        |       |        | 1.34  | 0.027 |
|   |                 |       |    |        |       | 0.0363 | 40    | 0     |
|   |                 |       |    |        | 0.985 |        |       |       |
|   | Sedikit         | 14    | 8  | 6      | 2     |        |       |       |
|   |                 |       |    |        | 0.708 |        |       |       |
|   | Sedang          | 31    | 25 | 6      | 8     |        |       |       |
|   |                 |       |    |        | 0.863 |        |       |       |
|   | Banyak          | 7     | 5  | 2      | 1     |        |       |       |
| K | erontokan       |       |    |        |       |        | 1.27  | 0.019 |
|   |                 |       |    |        |       | 0.0242 | 05    | 0     |
|   |                 |       |    |        | 0.543 |        |       |       |
|   | Mudah Rontok    | 8     | 7  | 1      | 6     |        |       |       |
|   | Agak Tahan      | 2     | 1  | 1      | 1     |        |       |       |
|   |                 |       |    |        | 0.878 |        |       |       |
|   | Sedang          | 37    | 26 | 11     | 0     |        |       |       |
|   |                 |       |    |        | 0.721 |        |       |       |
|   | Tahan           | 5     | 4  | 1      | 9     |        |       |       |
| L | ahan            |       |    |        |       |        | 0.83  | 0.074 |
|   |                 |       |    |        |       | 0.0625 | 74    | 6     |
|   |                 |       |    |        | 0.872 |        |       |       |
|   | Sawah Irigasi   | 41    | 29 | 12     | 2     |        |       |       |

| ĺ  | Sawah Tadah       |     |     |    | 0.469 |        |      |       |
|----|-------------------|-----|-----|----|-------|--------|------|-------|
|    | Hujan             | 10  | 9   | 1  | 0     |        |      |       |
|    | Sawah Kering      | 1   | 0   | 1  | 0     |        |      |       |
| K  | Letinggian        |     |     |    |       |        | 0.93 | 0.004 |
|    |                   |     |     |    |       | 0.0044 | 06   | 7     |
|    |                   |     |     |    | 0.874 |        |      |       |
|    | Rendah            | 34  | 24  | 10 | 0     |        |      |       |
|    |                   |     |     |    | 0.764 |        |      |       |
|    | Tinggi            | 18  | 14  | 4  | 2     |        |      |       |
| J  | arak Tanam        |     |     |    |       | 0.1004 | 1.57 | 0.069 |
|    | Г                 |     |     |    | 0.272 | 0.1092 | 79   | 2     |
|    |                   |     |     |    | 0.353 |        |      |       |
|    | Rapat             | 15  | 14  | 1  | 4     |        |      |       |
|    | G 1               | 1.0 | 1 / | 4  | 0.764 |        |      |       |
|    | Sedang            | 18  | 14  | 4  | 2     |        |      |       |
|    | Danagana          | 10  | 10  | 0  | 0.998 |        |      |       |
| _  | Renggang<br>Iusim | 19  | 10  | 9  | 0     |        | 0.96 | 0.126 |
| IN | Tusiiii           |     |     |    |       | 0.1212 | 12   | 0.120 |
|    | Kemarau           | 20  | 10  | 10 | 1     | 0.1212 | 12   | 1     |
|    | Kemarau           | 20  | 10  | 10 | 0.543 |        |      |       |
|    | Penghujan         | 32  | 28  | 4  | 6     |        |      |       |
| F  | Iasil Potensi     | 32  | 20  | Т  | 0     |        | 1.10 | 0.060 |
| 1  | ausii i otonsi    |     |     |    |       | 0.0670 | 56   | 6     |
|    |                   |     |     |    | 0.811 | 0.0070 |      |       |
|    | Rendah            | 8   | 6   | 2  | 3     |        |      |       |
|    |                   |     |     |    | 0.742 |        |      |       |
|    | Sedang            | 38  | 30  | 8  | 5     |        |      |       |
|    | -                 |     |     |    | 0.918 |        |      |       |
|    | Banyak            | 6   | 2   | 4  | 3     |        |      |       |

Pada tabel 4.3 menjelaskan hasil dari perhitungan *entropy* dan *gain*, untuk menentukan *node* akar. Didapatkan *gain* nilai tertinggi yaitu atribut umur tanaman. Selanjutnya *node* akar umur tanaman memiliki 3 *internal node*, yaitu 90 – 105 hari (Cepat), 106 - 124 hari (Sedang), dan 125 - 150 hari (Lambat).



Gambar 4.1 Root Umur Tanaman

Berdasarkan gambar 4.1 umur tanaman memiliki 3 cabang, cepat, normal dan lambat. Untuk cabang lambat terbentuk *leaf node* jajar legowo. Proses selanjutnya yaitu mencari *leaf* dari *internal node* umur tanaman cepat dan umur tanaman normal.

Tabel 4.4 Pembentukan Leaf Node Umur Tanaman Cepat

|                  | Jumla |    |        |       | Inform |       |       |
|------------------|-------|----|--------|-------|--------|-------|-------|
|                  | h     | SR | Jajar  | Entro | ation  | Split | Gain  |
| Atibut           | Kasus | I  | Legowo | py    | Gain   | Info  | Ratio |
| Total            | 2     | 1  | 1      | 1     |        |       |       |
| Anakan Produktif |       |    |        |       |        |       |       |
|                  |       |    |        |       | 1      | 1     | 1     |
| Sedikit          | 1     | 0  | 1      | 0     |        |       |       |
| Sedang           | 1     | 1  | 0      | 0     |        |       |       |
| Banyak           | 0     | 0  | 0      | 0     |        |       |       |
| Kerontokan       |       |    |        |       |        |       |       |
|                  |       |    |        |       | 1      | 0     | 0     |
| Mudah Rontok     | 0     | 0  | 0      | 0     |        |       |       |
| Agak Tahan       | 0     | 0  | 0      | 0     |        |       |       |
| Sedang           | 2     | 1  | 1      | 0     |        |       |       |
| Tahan            | 0     | 0  | 0      | 0     |        |       |       |
| Lahan            |       |    |        |       |        |       |       |
|                  |       |    |        |       | 1      | 1     | 1     |
| Sawah Irigasi    | 1     | 1  | 0      | 0     |        |       |       |
| Sawah Tadah      |       |    |        |       |        |       |       |
| Hujan            | 0     | 0  | 0      | 0     |        |       |       |
| Sawah Kering     | 1     | 0  | 1      | 0     |        |       |       |
| Ketinggian       |       |    |        |       |        |       |       |
|                  |       |    |        |       | 1      | 0     | 0     |
| Rendah           | 2     | 1  | 1      | 0     |        |       |       |

|    | Tinggi        | 0 | 0 | 0 | 0 |   |   |   |
|----|---------------|---|---|---|---|---|---|---|
| Ja | arak Tanam    |   |   |   |   |   |   |   |
|    |               |   |   |   |   | 1 | 0 | 0 |
|    | Rapat         | 2 | 1 | 1 | 1 |   |   |   |
|    | Sedang        | 0 | 0 | 0 | 0 |   |   |   |
|    | Renggang      | 0 | 0 | 0 | 0 |   |   |   |
| N  | <b>I</b> usim |   |   |   |   |   |   |   |
|    |               |   |   |   |   | 0 | 0 | 0 |
|    | Kemarau       | 0 | 0 | 0 | 0 |   |   |   |
|    | Penghujan     | 2 | 1 | 1 | 1 |   |   |   |
| Н  | lasil Potensi |   |   |   |   |   |   |   |
|    |               |   |   |   |   | 1 | 1 | 1 |
|    | Rendah        | 1 | 0 | 1 | 0 |   |   |   |
|    | Sedang        | 1 | 1 | 0 | 0 |   |   |   |
|    | Banyak        | 0 | 0 | 0 | 0 |   |   |   |

Pada tabel 4.4 menjelaskan hasil dari perhitungan *entropy*, *info gain*, *split info* dan *gain ratio* untuk menentukan *leaf node* dari umur tanaman cepat. Didapatkan beberapa nilai *gain ratio* nilai tertinggi yaitu atribut anakan produktif, lahan dan hasil potensi. Namun nilai *gain ratio* tertinggi yang digunakan adalah atribut paling atas yaitu anakan produktif.



Gambar 4.2 Leaf Node Anakan Produktif

Gambar 4.2 menjelaskan *leaf node* anakan produktif memiliki 3 nilai atribut, yaitu sedikit, sedang dan banyak dengan keputusan untuk nilai atribut sedikit yaitu Jajar Legowo, nilai atribut sedang yaitu SRI dan untuk nilai atribut banyak *Null* karena tidak ada data pada nilai atribut banyak.

Tabel 4.5 Pembentukan *Leaf Node* Umur Tanaman Normal

|                      | Jumla |     |        |       | Inform |            |       |
|----------------------|-------|-----|--------|-------|--------|------------|-------|
|                      | h     | SR  | Jajar  | Entro | ation  | Split      | Gain  |
| Atibut               | Kasus | I   | Legowo | ру    | Gain   | Info       | Ratio |
|                      |       |     |        | 0.632 |        |            |       |
| Total                | 44    | 37  | 7      | 1     |        |            |       |
| Anakan Produktif     |       |     |        |       |        | 1.37       | 0.088 |
|                      |       |     |        |       | 0.1218 | 51         | 6     |
|                      |       | _   |        | 0.961 |        |            |       |
| Sedikit              | 13    | 8   | 5      | 2     |        |            |       |
|                      | 25    | 2.4 | 1      | 0.242 |        |            |       |
| Sedang               | 25    | 24  | 1      | 3     |        |            |       |
| D1-                  |       | _   | 1      | 0.650 |        |            |       |
| Banyak<br>Kerontokan | 6     | 5   | 1      | 0     |        | 1.20       | 0.006 |
| Kerontokan           |       |     |        |       | 0.0081 | 1.30<br>45 | 0.006 |
|                      |       |     |        | 0.543 | 0.0081 | 43         |       |
| Mudah Rontok         | 8     | 7   | 1      | 0.343 |        |            |       |
| Agak Tahan           | 1     | 1   | 0      | 0     |        |            |       |
| Agak Tallali         | 1     | 1   | U      | 0.650 |        |            |       |
| Sedang               | 30    | 25  | 5      | 0.030 |        |            |       |
| Scaling              | 30    | 23  | 3      | 0.721 |        |            |       |
| Tahan                | 5     | 4   | 1      | 9     |        |            |       |
| Lahan                |       | '   | 1      |       |        | 0.77       | 0.007 |
| Darran               |       |     |        |       | 0.0060 | 32         | 8     |
|                      |       |     |        | 0.672 | 0.0000 |            |       |
| Sawah Irigasi        | 34    | 28  | 6      | 3     |        |            |       |
| Sawah Tadah          |       |     | _      | 0.469 |        |            |       |
| Hujan                | 10    | 9   | 1      | 0     |        |            |       |
| Sawah Kering         | 0     | 0   | 0      | 0     |        |            |       |
| Ketinggian           |       |     |        |       |        | 0.94       | 0.003 |
|                      |       |     |        |       | 0.0037 | 57         | 9     |
|                      |       |     |        | 0.676 |        |            |       |
| Rendah               | 28    | 23  | 5      | 9     |        |            |       |
|                      |       |     |        | 0.543 |        |            |       |
| Tinggi               | 16    | 14  | 2      | 6     |        |            |       |
| Jarak Tanam          |       |     |        |       |        | 1.57       | 0.104 |
|                      |       |     |        |       | 0.1646 | 97         | 2     |
| Rapat                | 13    | 13  | 0      | 0     |        |            |       |
|                      |       |     |        | 0.353 |        |            |       |
| Sedang               | 15    | 14  | 1      | 4     |        |            |       |
|                      |       | 4.0 | -      | 0.954 |        |            |       |
| Renggang             | 16    | 10  | 6      | 4     |        | 0.00       | 0.044 |
| Musim                |       |     |        |       | 0.0277 | 0.90       | 0.041 |
|                      |       |     |        | 0.962 | 0.0377 | 24         | 8     |
| Vamarau              | 1.4   | 10  | A      | 0.863 |        |            |       |
| Kemarau              | 14    | 10  | 4      | 1     |        |            |       |

|   |               |    |    |   | 0.469 |        |      |       |
|---|---------------|----|----|---|-------|--------|------|-------|
|   | Penghujan     | 30 | 27 | 3 | 0     |        |      |       |
| Н | Iasil Potensi |    |    |   |       |        | 0.91 | 0.011 |
|   |               |    |    |   |       | 0.0102 | 88   | 1     |
|   |               |    |    |   | 0.650 |        |      |       |
|   | Rendah        | 6  | 5  | 1 | 0     |        |      |       |
|   |               |    |    |   | 0.591 |        |      |       |
|   | Sedang        | 35 | 30 | 5 | 7     |        |      |       |
|   |               | _  |    |   | 0.918 |        |      |       |
|   | Banyak        | 3  | 2  | 1 | 3     |        |      |       |

Pada tabel 4.5 menjelaskan hasil dari perhitungan *entropy*, *info gain*, *split info* dan *gain ratio* untuk menentukan *leaf node* dari umur tanaman normal. Didapatkan nilai *gain ratio* nilai tertinggi yaitu jarak tanam. Pada jarak tanam terdapat 3 cabang, yaitu jarak tanam rapat, jarak tanam sedang dan jarak tanam renggang. Untuk jarak tanam rapat hasil keputusannya yaitu SRI sedangkan untuk jarak tanam sedang dan renggang masih belum diketahui keputusannya, sehingga menjadi internal node.



Gambar 4.3 Leaf Node Jarak Tanam

Gambar 4.3 menjelaskan *leaf node* jarak tanam memiliki 3 nilai atribut, yaitu rapat, sedang dan renggang dengan keputusan untuk nilai atribut rapat yaitu SRI. Proses selanjutnya yaitu mencari *leaf* dari *internal node* jarak tanam sedang dan jarak tanam renggang.

Tabel 4.6 Pembentukan Leaf Node Jarak Tanam Sedang

|        | Jumla |    |        |       | Inform |       |       |
|--------|-------|----|--------|-------|--------|-------|-------|
|        | h     | SR | Jajar  | Entro | ation  | Split | Gain  |
| Atibut | Kasus | I  | Legowo | py    | Gain   | Info  | Ratio |
|        |       |    |        | 0.353 |        |       |       |
| Total  | 15    | 14 | 1      | 4     |        |       |       |

| Anakan Produktif             |    |    |   |       |         | 1.33 | 0.038 |
|------------------------------|----|----|---|-------|---------|------|-------|
|                              |    |    |   |       | 0.0514  | 83   | 4     |
| Sedikit                      | 4  | 4  | 0 | 0     |         |      |       |
|                              |    |    |   | 0.503 |         |      |       |
| Sedang                       | 9  | 8  | 1 | 3     |         |      |       |
| Banyak                       | 2  | 2  | 0 | 0     |         |      |       |
| Kerontokan                   |    |    |   |       |         | 1.10 | 0.199 |
|                              |    |    |   |       |         | 33   | 4     |
| Mudah Rontok                 | 2  | 2  | 0 | 0     |         |      |       |
| Agak Tahan                   | 0  | 0  | 0 | 0     |         |      |       |
| Sedang                       | 11 | 11 | 0 | 0     |         |      |       |
| Tahan                        | 2  | 1  | 1 | 1     |         |      |       |
| Lahan                        |    |    |   |       |         | 0.83 | 0.037 |
|                              |    |    |   | 0.420 |         | 66   | 1     |
| Convole Inimasi              | 11 | 10 | 1 | 0.439 |         |      |       |
| Sawah Irigasi<br>Sawah Tadah | 11 | 10 | 1 | 5     |         |      |       |
| Hujan                        | 4  | 4  | 0 | 0     |         |      |       |
| Sawah Kering                 | 0  | 0  | 0 | 0     |         |      |       |
| Ketinggian                   | 0  | 0  | U | U     |         | 0.97 | 0.052 |
| Trounggian                   |    |    |   |       |         | 10   | 9     |
|                              |    |    |   | 0.503 |         |      |       |
| Rendah                       | 9  | 8  | 1 | 3     |         |      |       |
| Tinggi                       | 6  | 6  | 0 | 0     |         |      |       |
| Musim                        |    |    |   |       |         | 0.83 | 0.037 |
|                              |    |    |   |       | 0.0311  | 66   | 1     |
| Kemarau                      | 4  | 4  | 0 | 0     |         |      |       |
|                              |    |    |   | 0.439 |         |      |       |
| Penghujan                    | 11 | 10 | 1 | 5     |         |      |       |
|                              |    |    |   |       | 0.00.40 |      | 0.010 |
| Hasil Potensi                |    |    |   |       | 0.0069  | 0.35 | 0.019 |
| D 11                         |    | ^  |   |       |         | 34   | 5     |
| Rendah                       | 0  | 0  | 0 | 0 271 |         |      |       |
| Sedana                       | 14 | 13 | 1 | 0.371 |         |      |       |
| Sedang                       |    |    |   |       |         |      |       |
| Banyak                       | 1  | 1  | 0 | 0     |         |      |       |

Pada tabel 4.6 menjelaskan hasil dari perhitungan *entropy*, *info gain*, *split info* dan *gain ratio* untuk menentukan *leaf node* dari jarak tanam sedang. Didapatkan nilai *gain ratio* nilai tertinggi yaitu kerontokan.



Gambar 4.4 Leaf Node Kerontokan

Gambar 4.4 menjelaskan *leaf node* kerontokan memiliki 4 nilai atribut, yaitu mudah rontok, agak tahan, sedang dan tahan dengan keputusan untuk nilai atribut mudah rontok yaitu SRI, nilai atribut agak tahan yaitu *Null* dan nilai atribut sedang yaitu SRI. Proses selanjutnya yaitu mencari *leaf* dari *internal node* kerontokan tahan.

Tabel 4.7 Pembentukan Leaf Node Jarak Tanam Renggang

|                  | Jumla |    |        |       | Inform |       |       |
|------------------|-------|----|--------|-------|--------|-------|-------|
|                  | h     | SR | Jajar  | Entro | ation  | Split | Gain  |
| Atibut           | Kasus | I  | Legowo | py    | Gain   | Info  | Ratio |
|                  |       |    |        | 0.954 |        |       |       |
| Total            | 16    | 10 | 6      | 4     |        |       |       |
| Anakan Produktif |       |    |        |       |        | 1.40  | 0.416 |
|                  |       |    |        |       | 0.5857 | 56    | 7     |
|                  |       |    |        | 0.650 |        |       |       |
| Sedikit          | 6     | 1  | 5      | 0     |        |       |       |
| Sedang           | 8     | 8  | 0      | 0     |        |       |       |
| Banyak           | 2     | 1  | 1      | 1     |        |       |       |
| Kerontokan       |       |    |        |       |        | 1.37  | 0.106 |
|                  |       |    |        |       | 0.1460 | 16    | 5     |
| Mudah Rontok     | 2     | 1  | 1      | 1     |        |       |       |
| Agak Tahan       | 1     | 1  | 0      | 0     |        |       |       |
|                  |       |    |        | 0.994 |        |       |       |
| Sedang           | 11    | 6  | 5      | 0     |        |       |       |
| Tahan            | 2     | 2  | 0      | 0     |        |       |       |
| Lahan            |       | _  |        |       |        | 0.69  | 0.001 |
|                  |       |    |        |       | 0.0012 | 62    | 8     |
|                  |       |    |        | 0.961 |        |       |       |
| Sawah Irigasi    | 13    | 8  | 5      | 2     |        |       |       |

|   | Sawah Tadah   |    |   |   | 0.918 |        |      |       |
|---|---------------|----|---|---|-------|--------|------|-------|
|   | Hujan         | 3  | 2 | 1 | 3     |        |      |       |
|   | Sawah Kering  | 0  | 0 | 0 | 0     |        |      |       |
| K | etinggian     |    |   |   |       |        | 0.95 | 0.003 |
|   |               |    |   |   |       | 0.0032 | 44   | 4     |
|   |               |    |   |   | 0.971 |        |      |       |
|   | Rendah        | 10 | 6 | 4 | 0     |        |      |       |
|   |               |    |   |   | 0.918 |        |      |       |
|   | Tinggi        | 6  | 4 | 2 | 3     |        |      |       |
| N | Iusim         |    |   |   |       |        | 1.00 | 0.048 |
|   |               |    |   |   |       | 0.0488 | 00   | 8     |
|   | Kemarau       | 8  | 4 | 4 | 1     |        |      |       |
|   |               |    |   |   | 0.811 |        |      |       |
|   | Penghujan     | 8  | 6 | 2 | 3     |        |      |       |
| Н | Iasil Potensi |    |   |   |       |        | 0.86 | 0.122 |
|   |               |    |   |   |       | 0.1059 | 84   | 0     |
|   | Rendah        | 1  | 0 | 1 | 0     |        |      |       |
|   |               |    | _ |   | 0.890 |        |      |       |
|   | Sedang        | 13 | 9 | 4 | 5     |        |      |       |
|   | Banyak        | 2  | 1 | 1 | 1     |        |      |       |

Pada tabel 4.7 menjelaskan hasil dari perhitungan *entropy*, *info gain*, *split info* dan *gain ratio* untuk menentukan *leaf node* dari jarak tanam renggang. Didapatkan nilai *gain ratio* nilai tertinggi yaitu anakan produktif. Atribut anakan produktif memiliki 3 cabang yaitu anakan produktif sedang, anakan produktif banyak dan anakan produktif sedikit. Pada cabang anakan produktif sedang terdapat keputusan teknik tanam SRI, sedangkan untuk cabang anakan produktif banyak dan anakan produktif sedikit keputusan belum diketahui.



Gambar 4.5 Leaf Node Anakan Produktif

Gambar 4.5 menjelaskan *leaf node* anakan produktif memiliki 3 nilai atribut, yaitu sedang, banyak, dan sedikit dengan keputusan untuk nilai atribut sedang yaitu

SRI. Proses selanjutnya yaitu mencari *leaf* dari *internal node* anakan produktif sedikit dan anakan produktif banyak.

Tabel 4.8 Pembentukan Leaf Node Kerontokan Tahan

|   |                  | Jumla |    |        |       | Inform |       |       |
|---|------------------|-------|----|--------|-------|--------|-------|-------|
|   |                  | h     | SR | Jajar  | Entro | ation  | Split | Gain  |
|   | Atibut           | Kasus | I  | Legowo | py    | Gain   | Info  | Ratio |
|   | Total            | 2     | 1  | 1      | 1     |        |       |       |
| A | Anakan Produktif |       |    |        |       | 1      | 1     | 1     |
|   | Sedikit          | 1     | 1  | 0      | 0     |        |       |       |
|   | Sedang           | 1     | 0  | 1      | 0     |        |       |       |
|   | Banyak           | 0     | 0  | 0      | 0     |        |       |       |
| L | ahan             |       |    |        |       | 1      | 1     | 1     |
|   | Sawah Irigasi    | 1     | 0  | 1      | 0     |        |       |       |
|   | Sawah Tadah      |       |    |        |       |        |       |       |
|   | Hujan            | 1     | 1  | 0      | 0     |        |       |       |
|   | Sawah Kering     | 0     | 0  | 0      | 0     |        |       |       |
| K | Ketinggian       |       |    |        |       | 0      | 0     | 0     |
|   | Rendah           | 2     | 1  | 1      | 1     |        |       |       |
|   | Tinggi           | 0     | 0  | 0      | 0     |        |       |       |
| N | Musim            |       |    |        |       | 0      | 0     | 0     |
|   | Kemarau          | 0     | 0  | 0      |       |        |       |       |
|   | Penghujan        | 2     | 1  | 1      |       |        |       |       |
| F | Iasil Potensi    |       |    |        |       | 0      | 0     | 0     |
|   | Rendah           | 0     | 0  | 0      | 0     |        |       |       |
|   | Sedang           | 2     | 1  | 1      | 1     |        |       |       |
|   | Banyak           | 0     | 0  | 0      | 0     |        |       |       |

Pada tabel 4.8 menjelaskan hasil dari perhitungan *entropy*, *info gain*, *split info* dan *gain ratio* untuk menentukan *leaf node* dari kerontokan tahan. Didapatkan nilai *gain ratio* nilai tertinggi yaitu anakan produktif. Anakan produktif memiliki 3 cabang, yaitu anakan produktif sedikit, anakan produktif sedang, dan anakan produktif banyak. Untuk anakan produktif sedikit terdapat keputusan teknik tanam SRI, anakan produktif sedang terdapat keputusan Jajar Legowo dan untuk anakan produktif banyak terdapat keputusan Null, dikarenakan tidak adanya data pada anakan produktif banyak.



Gambar 4.6 Leaf Node Anakan Produktif

Gambar 4.6 menjelaskan *leaf node* anakan produktif memiliki 3 nilai atribut, yaitu sedikit, sedang, dan banyak dengan keputusan untuk nilai atribut sedikit yaitu SRI, nilai atribut sedang yaitu Jajar Legowo dan nilai atribut banyak yaitu *Null*.

Tabel 4.9 Pembentukan Leaf Node Anakan Produktif Sedikit

|   |               | Jumla |    |        |       | Inform |       |       |
|---|---------------|-------|----|--------|-------|--------|-------|-------|
|   |               | h     | SR | Jajar  | Entro | ation  | Split | Gain  |
|   | Atibut        | Kasus | I  | Legowo | py    | Gain   | Info  | Ratio |
|   |               |       |    |        | 0.650 |        |       |       |
|   | Total         | 6     | 1  | 5      | 0     |        |       |       |
| K | Kerontokan    |       |    |        |       |        | 1.25  | 0.519 |
|   | T             |       |    |        |       | 0.6500 | 16    | 3     |
|   | Mudah Rontok  | 1     | 0  | 1      | 0     |        |       |       |
|   | Agak Tahan    | 1     | 1  | 0      | 0     |        |       |       |
|   | Sedang        | 4     | 0  | 4      | 0     |        |       |       |
|   | Tahan         | 0     | 0  | 0      | 0     |        |       |       |
| L | ahan          |       |    |        |       |        | 0.65  | 0.074 |
|   |               |       |    |        |       | 0.0484 | 00    | 5     |
|   |               |       |    |        | 0.721 |        |       |       |
|   | Sawah Irigasi | 5     | 1  | 4      | 9     |        |       |       |
|   | Sawah Tadah   |       |    |        |       |        |       |       |
|   | Hujan         | 1     | 0  | 1      | 0     |        |       |       |
|   | Sawah Kering  | 0     | 0  | 0      | 0     |        |       |       |
| K | Cetinggian    |       |    |        |       |        |       | 0.190 |
|   |               |       |    |        |       | 0.1909 | 1     | 9     |
|   | Rendah        | 3     | 0  | 3      | 0     |        |       |       |
|   |               |       |    |        | 0.918 |        |       |       |
|   | Tinggi        | 3     | 1  | 2      | 3     |        |       |       |
| N | <b>I</b> usim |       |    |        |       |        | 0.65  | 0.074 |
|   |               |       |    |        |       | 0.0484 | 00    | 5     |

|   |               |   |   |   | 0.721 |   |      |   |
|---|---------------|---|---|---|-------|---|------|---|
|   | Kemarau       | 5 | 1 | 4 | 9     |   |      |   |
|   | Penghujan     | 1 | 0 | 1 | 0     |   |      |   |
| Н | lasil Potensi |   |   |   |       |   | 0.43 |   |
|   |               |   |   |   |       | 0 | 08   | 0 |
|   | Rendah        | 0 | 0 | 0 | 0     |   |      |   |
|   |               |   |   |   | 0.650 |   |      |   |
|   | Sedang        | 6 | 1 | 5 | 0     |   |      |   |
|   | Banyak        | 1 | 0 | 1 | 0     |   |      |   |

Pada tabel 4.9 menjelaskan hasil dari perhitungan *entropy*, *info gain*, *split info* dan *gain ratio* untuk menentukan *leaf node* dari anakan produktif sedikit. Didapatkan nilai *gain ratio* nilai tertinggi yaitu kerontokan.



Gambar 4.7 Leaf Node Kerontokan

Gambar 4.7 menjelaskan *leaf node* kerontokan memiliki 4 nilai atribut, yaitu mudah rontok, agak tahan, sedang, dan tahan dengan keputusan untuk nilai atribut mudah rontok yaitu Jajar Legowo, nilai atribut agak tahan yaitu SRI, nilai atribut sedang yaitu Jajar Legowo dan nilai atribut tahan yaitu *Null*.

|     |                                       | Jumla |    |        |       | Inform |       |       |
|-----|---------------------------------------|-------|----|--------|-------|--------|-------|-------|
|     |                                       | h     | SR | Jajar  | Entro | ation  | Split | Gain  |
|     | Atibut                                | Kasus | I  | Legowo | py    | Gain   | Info  | Ratio |
|     | Total                                 | 2     | 1  | 1      | 1     |        |       |       |
| K   | Kerontokan                            |       |    |        |       |        |       |       |
|     |                                       |       |    |        |       | 0      | 0     | 0     |
|     | Mudah Rontok                          | 0     | 0  | 0      | 0     |        |       |       |
|     | Agak Tahan                            | 0     | 0  | 0      | 0     |        |       |       |
|     | Sedang                                | 2     | 1  | 1      | 1     |        |       |       |
|     | Tahan                                 | 0     | 0  | 0      | 0     |        |       |       |
| 1 - | · · · · · · · · · · · · · · · · · · · | 1     |    | 1      |       |        |       |       |

0

0

0

Lahan

Tabel 4.10 Pembentukan Leaf Node Anakan Produktif Banyak

|   | Sawah Irigasi | 2 | 1 | 1 | 1 |   |   |   |
|---|---------------|---|---|---|---|---|---|---|
|   | Sawah Tadah   |   |   |   |   |   |   |   |
|   | Hujan         | 0 | 0 | 0 | 0 |   |   |   |
|   | Sawah Kering  | 0 | 0 | 0 | 0 |   |   |   |
| K | etinggian     |   |   |   |   |   |   |   |
|   |               |   |   |   |   | 1 | 1 | 1 |
|   | Rendah        | 1 | 0 | 1 | 0 |   |   |   |
|   | Tinggi        | 1 | 1 | 0 | 0 |   |   |   |
| N | <b>I</b> usim |   |   |   |   |   |   |   |
|   |               |   |   |   |   | 0 | 0 | 0 |
|   | Kemarau       | 0 | 0 | 0 | 0 |   |   |   |
|   | Penghujan     | 2 | 1 | 1 | 1 |   |   |   |
| Н | lasil Potensi |   |   |   |   |   |   |   |
|   |               |   |   |   |   | 1 | 1 | 1 |
|   | Rendah        | 1 | 0 | 1 | 0 |   |   |   |
|   | Sedang        | 1 | 1 | 0 | 0 |   |   |   |
|   | Banyak        | 0 | 0 | 0 | 0 |   |   |   |

Pada tabel 4.10 menjelaskan hasil dari perhitungan *entropy*, *info gain*, *split info* dan *gain ratio* untuk menentukan *leaf node* dari anakan produktif banyak. Didapatkan nilai *gain ratio* nilai tertinggi yaitu ketinggian.



Gambar 4.8 Leaf Node Kerontokan

Gambar 4.8 menjelaskan *leaf node* ketinggian memiliki 2 nilai atribut, yaitu rendah dan tinggi dengan keputusan untuk nilai atribut rendah yaitu Jajar Legowo, dan nilai atribut tinggi yaitu SRI.

Berdasarkan hasil perhitungan, maka pohon keputusan yang telah terbentuk dapat dijelaskan sebagai berikut :

```
umur_tanaman = cepat : ?
anakan_produktif = sedikit : Jajar Legowo
anakan_produktif = sedang : SRI
anakan_produktif = banyak : Null
umur_tanaman = normal : ?
| jarak_tanam = rapat : SRI
| jarak_tanam = sedang : ?
| | kerontokan = mudah rontok : SRI
| | kerontokan = agak tahan : Null
| | kerontokan = sedang : SRI
| | kerontokan = tahan : ?
| | | anakan_produktif = banyak : Null
| jarak_tanam = renggang : ?
| | anakan_produktif = sedikit : ?
| | | kerontokan = mudah rontok : Jajar Legowo
| | | kerontokan = agak tahan : SRI
| | | kerontokan = sedang : Jajar Legowo
| | kerontokan = tahan : Null
| | anakan_produktif = sedang : SRI
| | anakan_produktif = banyak : ?
| | | ketinggian = rendah : Jajar Legowo
| | | ketinggian = tinggi : SRI
umur_tanaman = lambat : Jajar Legowo
```

Rule yang berhasil dibentuk berdasarkan pohon keputusan diatas adalah sebagai berikut :

- IF (umur\_tanaman == cepat AND anakan\_produktif == sedikit) THEN Jajar Legowo
- 2. IF (umur\_tanaman == cepat AND anakan\_produktif == sedang) THEN SRI
- 3. IF (umur\_tanaman == cepat AND anakan\_produktif == banyak) THEN Null

- 4. IF (umur\_tanaman == normal AND jarak\_tanam == rapat) THEN SRI
- 5. IF (umur\_tanaman == normal AND jarak\_tanam == sedang AND kerontokan == mudah rontok) THEN SRI
- 6. IF (umur\_tanaman == normal AND jarak\_tanam == sedang AND kerontokan == agak tahan) THEN Null
- 7. IF (umur\_tanaman == normal AND jarak\_tanam == sedang AND kerontokan == sedang) THEN SRI
- 8. IF (umur\_tanaman == normal AND jarak\_tanam == sedang AND kerontokan == tahan AND anakan produktif == sedikit) THEN SRI
- 9. IF (umur\_tanaman == normal AND jarak\_tanam == sedang AND kerontokan == tahan AND anakan\_produktif == sedang) THEN Jajar Legowo
- 10. IF (umur\_tanaman == normal AND jarak\_tanam == sedang AND kerontokan == tahan AND anakan\_produktif == banyak) THEN Null
- 11. IF (umur\_tanaman == normal AND jarak\_tanam == renggang AND
  anakan\_produktif == sedikit AND kerontokan == mudah rontok) THEN
  Jajar Legowo
- 12. IF (umur\_tanaman == normal AND jarak\_tanam == renggang AND anakan\_produktif == sedikit AND kerontokan == agak tahan) THEN SRI
- 13. IF (umur\_tanaman == normal AND jarak\_tanam == renggang AND
   anakan\_produktif == sedikit AND kerontokan == sedang) THEN Jajar
   Legowo
- 14. IF (umur\_tanaman == normal AND jarak\_tanam == renggang AND anakan\_produktif == sedikit AND kerontokan == tahan) THEN Null
- 15. IF (umur\_tanaman == normal AND jarak\_tanam == renggang AND anakan\_produktif == sedang) THEN SRI
- 16. IF (umur\_tanaman == normal AND jarak\_tanam == renggang AND
  anakan\_produktif == banyak AND ketinggian == rendah) THEN Jajar
  Legowo
- 17. IF (umur\_tanaman == normal AND jarak\_tanam == renggang AND anakan\_produktif == banyak AND ketinggian == tinggi) THEN SRI
- 18. IF (umur\_tanaman == lambat) THEN Jajar Legowo

#### 4.4 Desain Sistem

Pada tahap ini menjelaskan desain dari sistem yang akan dibuat. Di dalamnya berisikan alur sistem, *Conceptual Data Model*, dan *Physical Data Model* 

#### 4.3.1 Work Breakdown Structure



Gambar 4.9 Work Breakdown Structure

Pada Gambar 4.9 menjelaskan fitur-fitur pada aplikasi yang akan dibuat. Dalam gambar tersebut dapat dijelaskan pada menu awal terdapat menu dashboard, data survey, C45, penentu keputusan dan about program. Dalam menu data survey memiliki sub menu import data, lihat data survey, data hasil proses, dan partisi data survey. Pada sub menu data hasil proses memiliki sub menu lagi, yang berisi lihat semua data, lihat data *training*, lihat data *testing*. Untuk menu C45 terdapat sub menu lakukan mining C45, hasil perhitungan, pohon keputusan dan *rule*, serta kinerja. Dalam sub menu kinerja memiliki sub menu lagi yang berisikan kinerja C45 dan tabel penilaian. Selain itu memiliki menu penentu keputusan dan juga menu about program.

## 4.3.2 Conceptual Data Model

CDM (*Conceptual Data Model*) adalah model yang dibuat berdasarkan anggapan bahwa dunia nyata terdiri dari koleksi objek-objek dasar yang dinamakan entitas (*entity*) serta hubungan (*relationship*) antara entitas satu dengan entitas lain yang memiliki keterkaitan.



Gambar 4.10 Conceptual Data Model

Gambar 4.10 menjelaskan keterkaitan/relasi antara 1 tabel dengan lainnya. Tabel data asli hasil proses import berisikan data tanpa proses pengelompokan, hasil pengelompokan kategori akan tersimpan pada tabel data survey. Tabel mining C4.5 berfungsi sebagai tempat penyimpanan sementara saat proses mining berlangsung. Hasil proses mining akan tersimpan pada tabel iterasi C4.5. Setelah iterasi terbentuk, maka akan terbentuk juga pohon keputusan yang tersimpan pada tabel pohon keputusan C4.5, sedangkan untuk rule dari hasil pohon keputusan akan tersimpan pada tabel rule. Tabel data keputusan dan data keputusan perbandingan berfungsi sebagai lokasi penyimpanan untuk mengolah penentu keputusan.

#### 4.3.3 Physical Data Model

PDM (*Physical Data Model*) merupakan model yang menggunakan sejumlah tabel untuk menggambarkan data serta hubungan antara data-data tersebut. Setiap tabel mempunyai sejumlah kolom dimana setiap kolom memiliki nama yang unik.



Gambar 4.11 Physical Data Model

Gambar 4.11 menjelaskan keterkaitan/relasi antara 1 tabel dengan lainnya. Tabel data asli hasil proses import berisikan data tanpa proses pengelompokan, hasil pengelompokan kategori akan tersimpan pada tabel data survey. Tabel mining C4.5 berfungsi sebagai tempat penyimpanan sementara saat proses mining berlangsung. Hasil proses mining akan tersimpan pada tabel iterasi C4.5. Setelah iterasi terbentuk, maka akan terbentuk juga pohon keputusan yang tersimpan pada tabel pohon keputusan C4.5, sedangkan untuk rule dari hasil pohon keputusan akan tersimpan pada tabel rule. Tabel data keputusan dan data keputusan perbandingan berfungsi sebagai lokasi penyimpanan untuk mengolah penentu keputusan.

## 4.3.4 *Use Case* Diagram

Use Case Diagram adalah diagram yang menyajikan interaksi antara use case dan aktor. Dimana aktor dapat berupa orang, peralatan atau sistem lain yang berinteraksi dengan sistem yang sedang dibangun. Use case menggambarkan fungsi

dari sistem atau syarat yang harus dipenuhi sistem dari pandangan pemakai. Pada Gambar 4.12 menampilkan *use case* yang telah dibuat berdasarkan sistem. Terdapat 2 *user* pada *use case*, yaitu admin (pakar) dan user (petani).



Gambar 4.12 Use Case Diagram

Deskripsi dari aktor *use case* diatas dijelaskan pada tabel 4.11 dibawah ini.

Tabel 4.11 Fungsi Aktor

| No. | Aktor         | Kebutuhan Fungsional                                                                                                                                                                                               |  |  |  |
|-----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1   | User (Pakar)  | Pakar yang bertugas untuk mengolah data berup input data varietas padi, melakukan partisi data yan akan digunakan, proses mining C4.5, melakuka proses kinerja dari aplikasi, dan mencoba prose penentu keputusan. |  |  |  |
| 2   | User (Petani) | Melakukan login, kemudian dapat langsung melakukan penentu keputusan.                                                                                                                                              |  |  |  |

Selanjutnya adalah deskripsi secara detail tentang *usecase* yang terdapat pada gambar 4.12, disajikan dalam tabel-tabel berikut:

Tabel 4.12 Deskripsi Use Case "Login"

| Use Case Name:      | ID: UC.01      | Importance Level: |
|---------------------|----------------|-------------------|
| Login               | Siklus1        | High              |
| Primary Actor: User | Use Case Type: |                   |

#### Stakeholder and Interest:

Pakar masuk untuk dapat melakukan pengolahan data, yaitu input data, melakukan proses C4.5, melakukan proses kinerja dan melakukan penentu keputusan.

Petani masuk untuk melakukan proses penentu keputusan.

### Brief Description:

Menjelaskan proses untuk melakukan login User

*Trigger*: Pakar masuk untuk mengelola data varietas padi menggunakan metode decision tree algoritma C4.5.

Petani masuk untuk melakukan penentu keputusan.

*Type*: internal

#### *Relationship*:

Association: User

Include: Extend:

Extena:

Generalization:

#### *Normal flow of event:*

- 1. User inputkan username dan password.
- 2. User menekan tombol *enter* pada *keyboard* atau menekan tombol "Login" untuk *login*.
- 3. Sistem memeriksa kebenaran data yang di inputkan
- 4. Jika data yang dimasukkan sesuai dengan data yang ada di *database*, maka *login* diterima.
- 5. Sistem menampilkan halaman yang sesuai dengan hak akses masing masing *user*.

## Subflows:

## *Alternate / exeption flows (risks)*:

- 1. Jika *username* dan *password* yang diinputkan kosong, maka akan muncul notifikasi bahwa username dan password tidak benar dan login gagal.
- 2. Jika *username* dan *password* yang diinputkan salah, maka akan muncul notifikasi bahwa username dan password tidak benar dan login gagal.

Berikut merupakan penjelasan dari *use case* Beranda/*Dashboard* yang ditunjukkan pada tabel 4.13.

Tabel 4.13 Deskripsi *Use Case* "Beranda"

| Use Case Name:                                       | ID: UC.02                                         | Importance Level: |  |  |  |  |
|------------------------------------------------------|---------------------------------------------------|-------------------|--|--|--|--|
| Beranda                                              | Siklus2                                           | High              |  |  |  |  |
| Primary Actor: User                                  | Use Case Type:                                    | ,                 |  |  |  |  |
| Stakeholder and Interest:                            |                                                   |                   |  |  |  |  |
| User menampilkan halaman be                          | randa.                                            |                   |  |  |  |  |
| Brief Description:                                   |                                                   |                   |  |  |  |  |
| Menjelaskan proses untuk men                         | ampilkan halaman bera                             | anda.             |  |  |  |  |
| Trigger: User menampilkan hal                        | laman beranda.                                    |                   |  |  |  |  |
| Type: internal                                       |                                                   |                   |  |  |  |  |
| Relationship:                                        |                                                   |                   |  |  |  |  |
| Association: User                                    |                                                   |                   |  |  |  |  |
| Include:                                             |                                                   |                   |  |  |  |  |
| Extend:                                              |                                                   |                   |  |  |  |  |
| Generalization:                                      |                                                   |                   |  |  |  |  |
| Normal flow of event:                                |                                                   |                   |  |  |  |  |
| <ol> <li>User meng-klik menu</li> </ol>              | 1. User meng-klik menu halaman dashboard/ beranda |                   |  |  |  |  |
| 2. Sistem akan menampilkan halaman beranda/dashboard |                                                   |                   |  |  |  |  |
| Subflows:                                            |                                                   |                   |  |  |  |  |
| Alternate / exeption flows (risks):                  |                                                   |                   |  |  |  |  |
|                                                      |                                                   |                   |  |  |  |  |

Berikut merupakan penjelasan dari *usecase* Halaman Semua Data yang ditunjukkan pada tabel 4.14.

Tabel 4.14 Deskripsi *Use Case* " Halaman Semua Data "

| Use Case Name:                          | ID: UC.03                 | Importance Level:       |  |  |  |
|-----------------------------------------|---------------------------|-------------------------|--|--|--|
| Halaman Semua Data                      | Siklus3                   | High                    |  |  |  |
| Primary Actor: User                     | Use Case Type:            |                         |  |  |  |
| Stakeholder and Interest:               |                           |                         |  |  |  |
| User menampilkan halaman ser            | nua data, termasuk me     | enghapus semua data.    |  |  |  |
| Brief Description:                      |                           |                         |  |  |  |
| Menjelaskan proses untuk mensemua data. | nampilkan halaman se      | emua data dan menghapus |  |  |  |
| Trigger: User menampilkan hal           | aman beranda.             |                         |  |  |  |
| <i>Type</i> : internal                  | Type: internal            |                         |  |  |  |
| Relationship:                           |                           |                         |  |  |  |
| Association: User                       |                           |                         |  |  |  |
| Include: Hapus Semua D                  | Include: Hapus Semua Data |                         |  |  |  |
| Extend:                                 |                           |                         |  |  |  |

#### Generalization:

## *Normal flow of event:*

- 1. User meng-klik menu halaman semua data.
- 2. User meng-klik tombol hapus semua data
- 3. Sistem akan menampilkan halaman beranda/dashboard
- 4. Sistem akan menghapus semua data.

## Subflows:

Alternate / exeption flows (risks):

Berikut merupakan penjelasan dari *usecase* Halaman *Import* Data yang ditunjukkan pada tabel 4.15.

Tabel 4.15 Deskripsi Use Case "Halaman Import Data"

| Use Case Name:      | ID: UC.04      | Importance Level: |
|---------------------|----------------|-------------------|
| Halaman Import Data | Siklus4        | High              |
| Primary Actor: User | Use Case Type: |                   |

#### Stakeholder and Interest:

User menampilkan halaman *import* data, termasuk mengkosongkan tabel yang sebelumnya, memilih file dan mengimport file.

## Brief Description:

Menjelaskan proses untuk menampilkan halaman *import* data, termasuk mengkosongkan tabel yang sebelumnya, memilih file dan mengimport file.

Trigger: User menampilkan halaman import data.

*Type*: internal

## *Relationship*:

Association: User

Include: Kosongkan Tabel, Memilih File, Import Data

Extend:

Generalization:

## *Normal flow of event:*

- 1. User meng-klik tombol halaman import data.
- 2. Sistem akan menampilkan halaman *import* data.
- 3. Sistem akan menampilkan data yang berhasil diimport.

Berikut merupakan penjelasan dari *usecase* Halaman Partisi Data yang ditunjukkan pada tabel 4.16.

Tabel 4.16 Deskripsi *Use Case* " Halaman Partisi Data "

| Use Case Name:       | ID: UC.05 | Importance Level: |
|----------------------|-----------|-------------------|
| Halaman Partisi Data | Siklus5   | High              |

| Primary Actor: User                              | Use Case Type:                 |  |  |  |
|--------------------------------------------------|--------------------------------|--|--|--|
| Stakeholder and Interest:                        |                                |  |  |  |
| User menampilkan halaman par                     | rtisi data.                    |  |  |  |
| Brief Description:                               |                                |  |  |  |
| Menjelaskan proses untuk men                     | ampilkan halaman partisi data. |  |  |  |
| Trigger: User menampilkan hal                    | aman partisi data.             |  |  |  |
| Type: internal                                   |                                |  |  |  |
| Relationship:                                    |                                |  |  |  |
| Association: User                                |                                |  |  |  |
| Include:                                         |                                |  |  |  |
| Extend:                                          |                                |  |  |  |
| Generalization:                                  |                                |  |  |  |
| Normal flow of event:                            |                                |  |  |  |
| 1. User meng-klik menu halaman partisi data.     |                                |  |  |  |
| 2. Sistem akan menampilkan halaman partisi data. |                                |  |  |  |
| Subflows:                                        |                                |  |  |  |
| Alternate / exeption flows (risks):              |                                |  |  |  |
|                                                  |                                |  |  |  |

Berikut merupakan penjelasan dari *usecase* Halaman Data Mining yang ditunjukkan pada tabel 4.17.

Tabel 4.17 Deskripsi *Use Case* " Halaman Data Mining "

Importance Level:

ID: UC.06

Use Case Name:

|                                                                                       |                        | T                 |  |
|---------------------------------------------------------------------------------------|------------------------|-------------------|--|
| Halaman Data Mining                                                                   | Siklus6                | High              |  |
| Primary Actor: User                                                                   | Use Case Type:         |                   |  |
| Stakeholder and Interest:                                                             |                        |                   |  |
| User menampilkan halaman da                                                           | ta mining termasuk pro | oses data mining. |  |
| Brief Description:                                                                    |                        |                   |  |
| Menjelaskan proses untuk menampilkan halaman data mining termasuk proses data mining. |                        |                   |  |
| Trigger: User menampilkan halaman data mining.                                        |                        |                   |  |
| Type: internal                                                                        |                        |                   |  |
| Relationship:                                                                         |                        |                   |  |
| Association: User                                                                     |                        |                   |  |
| Include: Proses Data Mining                                                           |                        |                   |  |
| Extend:                                                                               |                        |                   |  |
| Generalization:                                                                       |                        |                   |  |
| Normal flow of event:                                                                 |                        |                   |  |
| 1. User meng-klik menu halaman data mining.                                           |                        |                   |  |

- 2. Sistem akan menampilkan halaman data mining.
- 3. Sistem akan memproses data mengguanakan metode decision tree algoritma C4.5.

Subflows:

*Alternate / exeption flows (risks)*:

Berikut merupakan penjelasan dari *usecase* Halaman Hasil Perhitungan yang ditunjukkan pada tabel 4.18.

Tabel 4.18 Deskripsi *Use Case* " Halaman Hasil Perhitungan "

| Use Case Name:            | ID: UC.07      | Importance Level: |
|---------------------------|----------------|-------------------|
| Halaman Hasil Perhitungan | Siklus7        | High              |
| Primary Actor: User       | Use Case Type: |                   |

Stakeholder and Interest:

User menampilkan halaman hasil perhitungan termasuk hapus tabel perhitungan.

**Brief Description:** 

Menjelaskan proses untuk menampilkan halaman hasil perhitungan termasuk hapus tabel perhitungan.

*Trigger*: User menampilkan halaman hasil perhitungan termasuk hapus tabel perhitungan.

*Type*: internal

*Relationship*:

Association: User

Include: Hapus Tabel Perhitungan

Extend:

Generalization:

*Normal flow of event:* 

- 1. User meng-klik menu hasil perhitungan.
- 2. Sistem akan menampilkan halaman hasil perhitungan.
- 3. Sistem akan memproses hasil perhitungan.

Subflows:

*Alternate / exeption flows (risks):* 

Berikut merupakan penjelasan dari *usecase* Halaman Pohon Keputusan yang ditunjukkan pada tabel 4.19.

Tabel 4.19 Deskripsi Use Case "Halaman Pohon Keputusan "

| Use Case Name:          | ID: UC.08 | Importance Level: |
|-------------------------|-----------|-------------------|
| Halaman Pohon Keputusan | Siklus8   | High              |

Primary Actor: User Use Case Type:

Stakeholder and Interest:

User menampilkan halaman pohon keputusan termasuk hapus tabel perhitungan.

## Brief Description:

Menjelaskan proses untuk menampilkan halaman pohon keputusan termasuk hapus pohon keputusan.

*Trigger*: User menampilkan halaman pohon keputusan termasuk hapus pohon keputusan.

*Type*: internal

## Relationship:

Association: User

Include: Hapus pohon keputusan

Extend:

Generalization:

## Normal flow of event:

- 1. User meng-klik menu pohon keputusan.
- 2. Sistem akan menampilkan halaman pohon keputusan.
- 3. Sistem akan memproses pohon keputusan.

Subflows:

*Alternate / exeption flows (risks)*:

Berikut merupakan penjelasan dari *use case* Halaman Kinerja yang ditunjukkan pada tabel 4.20.

Tabel 4.20 Deskripsi *Use Case* " Halaman Kinerja "

| Use Case Name:      | ID: UC.09      | Importance Level: |
|---------------------|----------------|-------------------|
| Halaman Kinerja     | Siklus9        | High              |
| Primary Actor: User | Use Case Type: |                   |

Stakeholder and Interest:

User menampilkan halaman kinerja termasuk hapus tabel perhitungan.

## **Brief Description:**

Menjelaskan proses untuk menampilkan halaman kinerja termasuk kinerja data training, kinerja data testing, dan hapus semua data.

*Trigger*: User menampilkan halaman kinerja termasuk kinerja data training, kinerja data testing, dan hapus semua data.

*Type*: internal

# Relationship:

Association: User

Include: Kinerja Data Training, Kinerja Data Testing, Hapus Semua Data

Extend:

#### Generalization:

## *Normal flow of event:*

- 1. User meng-klik menu kinerja.
- 2. Sistem akan menampilkan halaman kinerja.
- 3. Sistem akan memproses kinerja data training, kinerja data testing, dan hapus semua data.

# Subflows:

*Alternate / exeption flows (risks):* 

Berikut merupakan penjelasan dari *use case* Halaman Penentu Keputusan yang ditunjukkan pada tabel 4.21.

Tabel 4.21 Deskripsi Use Case " Halaman Penentu Keputusan "

| Use Case Name:            | ID: UC.10      | Importance Level: |
|---------------------------|----------------|-------------------|
| Halaman Penentu Keputusan | Siklus10       | High              |
| Primary Actor: User       | Use Case Type: |                   |

#### Stakeholder and Interest:

User menampilkan halaman penentu keputusan, termasuk input dan hapus keputusan.

# Brief Description:

Menjelaskan proses untuk menampilkan halaman penentu keputusan termasuk proses input dan hapus keputusan.

*Trigger*: User menampilkan halaman penentu keputusan termasuk proses input dan hapus keputusan.

*Type*: internal

#### *Relationship*:

Association: User

*Include*: Input dan hapus data penentu keputusan

Extend:

Generalization:

## Normal flow of event:

- 1. User meng-klik menu penentu keputusan.
- 2. Sistem akan menampilkan halaman penentu keputusan.
- 3. Sistem akan memproses input dan hapus keputusan

#### 4.5 Desain Database

#### 4.4.1 Tabel Atribut

Tabel atribut adalah tabel yang berfungsi menampung nilai-nilai setiap atribut yang didapat dari tabel data\_survey dimana setiap iterasi akan ada penghapusan

atribut sampai proses perhitungan iterasi selesai pada saat proses *mining*. Berikut ditunjukkan pada tabel 4.22 Atribut.

Tabel 4.22 Atribut

| Field         | Tipe Data              |
|---------------|------------------------|
| Id            | Int (3) auto_increment |
| Atribut       | Varchar (100)          |
| Nilai_atribut | Varchar (100)          |

## 4.4.2 Tabel Data Keputusan

Tabel data keputusan berfungsi sebagai lokasi penyimpanan keputusan dari proses penentu keputusan. Keputusan yang didapat berasal dari proses *mining* yang telah dilakukan. Berikut ditunjukkan pada tabel 4.23 Data Keputusan.

Tabel 4.23 Data Keputusan

| Field            | Tipe Data                  |
|------------------|----------------------------|
| Id               | Varchar (50)auto_increment |
| Umur_tanaman     | Varchar (50)               |
| Anakan_produktif | Varchar (50)               |
| Kerontokan       | Varchar (50)               |
| Lahan            | Varchar (50)               |
| Ketinggian       | Varchar (50)               |
| Jarak_tanam      | Varchar (50)               |
| Musim            | Varchar (50)               |
| Hasil_potensi    | Varchar (50)               |
| Keputusan_c45    | Varchar (25)               |
| Id_rule_c45      | Int (10)                   |

# 4.4.3 Tabel Data Keputusan Perbandingan

Tabel data keputusan perbandingan berfungsi untuk menyimpan hasil dari proses perbandingan, yang dimana nilai untuk membandingkannya diambil dari proses rule yang telah terbentuk.

Tabel 4.24 Data Keputusan Perbandingan

| Field           | Tipe Data              |
|-----------------|------------------------|
| Id              | Int (4) auto_increment |
| Id_data_survey  | Int (5)                |
| Keputusan_asli  | Varchar (25)           |
| Keputusan_pohon | Varchar (25)           |
| Id_rule_pohon   | Int (10)               |

| Pohon | Varchar (25) |
|-------|--------------|
| Ponon | varchar (25) |

# 4.4.4 Tabel Data Penentu Keputusan

Tabel data penentu keputusan adalah tabel yang berfungsi untuk menyimpan keputusan dari proses perhitungan *mining*.

Tabel 4.25 Data Penentu Keputusan

| Field         | Tipe Data              |
|---------------|------------------------|
| Id            | Int (5) auto_increment |
| Atribut       | Varchar (255)          |
| Nilai_atribut | Varchar (255)          |

## 4.4.5 Tabel Data Asli

Tabel data survey merupakan salah satu tabel untuk menyimpan data asli, tanpa ada pengelompokan data. Berikut ditunjukkan pada tabel 4.26 Data Asli.

Tabel 4.26 Data Asli

| Field            | Tipe Data                  |
|------------------|----------------------------|
| Id               | Varchar (50)auto_increment |
| Umur_tanaman     | Varchar (50)               |
| Anakan_produktif | Varchar (50)               |
| Kerontokan       | Varchar (50)               |
| Lahan            | Varchar (50)               |
| Ketinggian       | Varchar (50)               |
| Jarak_tanam      | Varchar (50)               |
| Musim            | Varchar (50)               |
| Hasil_potensi    | Varchar (50)               |
| Teknik_tanam     | Varchar (50)               |

# 4.4.6 Tabel Data Survey

Tabel data survey merupakan tabel yang berisi data hasil pengelompokan nilai atribut. Data pada tabel ini didapat dari tabel data\_survey. Berikut ditunjukkan pada tabel 4.27 Data Survey.

Tabel 4.27 Data Survey

| Field            | Tipe Data                  |
|------------------|----------------------------|
| Id               | Varchar (50)auto_increment |
| Umur_tanaman     | Varchar (50)               |
| Anakan_produktif | Varchar (50)               |
| Kerontokan       | Varchar (50)               |
| Lahan            | Varchar (50)               |

| Ketinggian    | Varchar (50) |
|---------------|--------------|
| Jarak_tanam   | Varchar (50) |
| Musim         | Varchar (50) |
| Hasil_potensi | Varchar (50) |
| Teknik_tanam  | Varchar (50) |
| Keputusan     | Varchar (50) |

## 4.4.7 Tabel Iterasi C4.5

Tabel iterasi C4.5 berfungsi menyimpan seluruh perhitungan iterasi awal hingga akhir yang berasal dari tabel *mining*\_c45. Isi dari tabel ini akan ditampilkan pada tampilan tabel perhitungan guna menjabarkan secara rinci iterasi perhitungan yang terjadi selama proses *mining*.

Tabel 4.28 Iterasi C4.5

| Field                  | Tipe Data              |
|------------------------|------------------------|
| Id                     | Int (11)auto_increment |
| Iterasi                | Varchar (3)            |
| Atribut_gain_ratio_max | Varchar (255)          |
| Atribut                | Varchar (100)          |
| Nilai_atribut          | Varchar (100)          |
| Jml_kasus_total        | Varchar (5)            |
| Jml_sri                | Varchar (5)            |
| Jml_jarwo              | Varchar (5)            |
| Entropy                | Varchar (10)           |
| Inf_gian               | Varchar (10)           |
| Split_info             | Varchar (10)           |
| Gain_ratio             | Varchar (10)           |

## 4.4.8 Tabel Mining C4.5

Tabel *mining* C4.5 adalah tabel yang berfungsi menyimpan data hasil kalkulasi sementara selama proses iterasi dilakukan oleh sistem. Tabel ini akan mengosongkan setiap proses iterasi berjalan. Berikut ditunjukkan pada tabel 4.29 *Mining* C4.5.

Tabel 4.29 Mining C4.5

| Field         | Tipe Data               |
|---------------|-------------------------|
| Id            | Int (11) auto_increment |
| Atribut       | Varchar (100)           |
| Nilai_atribut | Varchar (100)           |

| Jml_kasus_total | Varchar (5)  |
|-----------------|--------------|
| Jml_sri         | Varchar (5)  |
| Jml_jarwo       | Varchar (5)  |
| Entropy         | Varchar (10) |
| Inf_gain        | Varchar (10) |
| Inf_gain_temp   | Varchar (10) |
| Split_info      | Varchar (10) |
| Split_info_temp | Varchar (10) |
| Gain_ratio      | Varchar (10) |

# 4.4.9 Tabel Pohon Keputusan C4.5

Tabel pohon keputusan C4.5 memiliki fungsi untuk menyimpan atribut *root* dan *subtree* yang diperoleh dari proses *mining*. Isi dari tabel ini akan ditampilkan secara hirarki pada menu pohon keputusan. Berikut ditunjukkan pada tabel 4.30 Pohon Keputusan C4.5.

Tabel 4.30 Pohon Keputusan C4.5

| Field           | Tipe Data             |
|-----------------|-----------------------|
| Id              | Int (4)auto_increment |
| Atribut         | Varchar (100)         |
| Nilai_atribut   | Varchar (100)         |
| Id_parent       | Char (3)              |
| Jml_sri         | Varchar (5)           |
| Jml_jarwo       | Varchar (5)           |
| Keputusan       | Varchar (100)         |
| Diproses        | Varchar (10)          |
| Kondisi_atribut | Varchar (255)         |
| Looping_kondisi | Varchar (15)          |

## 4.4.10 Tabel Rule C45

Tabel *rule* c45 berfungsi untuk menyimpan aturan/*rule* yang didapat dari proses *mining* c45. Nantinya *rule* tersebut digunakan sebagai pembuat pohon keputusan berdasarkan urutan id *parent*. Berikut ditunjukkan pada tabel 4.31 *Rule* C4.5.

Tabel 4.31 *Rule* C45

| Field     | Tipe Data             |
|-----------|-----------------------|
| Id        | Int (4)auto_increment |
| Id_parent | Int (4)               |

| Rule      | Varchar (255) |
|-----------|---------------|
| Keputusan | Varchar (25)  |

# 4.4.11 Tabel *Rule* Penentu Keputusan

Tabel *rule* penentu keputusan berfungsi untuk menyimpan *rule* untuk digunakan sebagai menentukan keputusan saat uji data. Berikut ditunjukkan pada tabel 4.32 *Rule* Penentu Keputusan.

Tabel 4.32 Rule Penentu Keputusan

| Field         | Tipe Data              |
|---------------|------------------------|
| Id            | Int (5) auto_increment |
| Id_rule       | Int (5)                |
| Aribut        | Varchar (255)          |
| Nilai_atribut | Varchar (255)          |
| Keputusan     | Varchar (25)           |
| Cocok         | Varchar (15)           |
| Pohon         | Varchar (50)           |

## 4.4.12 Tabel *User*

Tabel *user* berfungsi untuk hak akses pada aplikasi. *User* yang dapat menggunakan aplikasi hanya *user* yang terdaftar pada tabel *user* di *database*. Berikut ditunjukkan pada tabel 4.33 *User*.

Tabel 4.33 User

| Field    | Tipe Data    |
|----------|--------------|
| Id_user  | Varchar (25) |
| Password | Varchar (50) |
| Level    | Varchar (15) |

## 4.6 Desain *Interface*

## 4.5.1 Halaman Home

Pada halaman ini hanya menampilkan menu-menu saja yang terlatak di sisi kiri halaman. Berikut ditunjukkan pada gambar 4.13 Halaman Home.



Gambar 4.13 Halaman Home

#### 4.5.2 Halaman Semua Data

Pada halaman ini akan menampilkan seluruh data *training* dari varietas padi yang akan digunakan untuk proses *mining*. Data yang tampil pada halaman ini diambil dari tabel hasil proses, karena tabel tersebut telah dikelompokkan berdasarkan kategori. Berikut ditunjukkan pada gambar 4.14 Halaman Semua Data.



Gambar 4.14 Halaman Semua Data

## 4.5.3 Halaman Import Data

Pada halaman ini berfungsi untuk menambahkan data *training* baru dengan cara import file berformat xls. Berikut ditunjukkan pada gambar 4.15 Halaman Import.



Gambar 4.15 Halaman Import

#### 4.5.4 Halaman Hasil Proses

Pada halaman ini menampilkan tabel yang berisi nilai hasil proses *mining* yang telah dilakukan, seperti nilai *entropy*, *info gain*, *split info*, dan *gain ratio*. Berikut ditunjukkan pada gambar 4.16 Halaman Hasil Proses.



Gambar 4.16 Halaman Hasil Proses

## 4.5.5 Halaman Partisi Data

Halaman ini berfungsi untuk membagi data training yang akan digunakan pada proses *mining*. Berikut ditunjukkan pada gambar 4.17 Halaman Partisi Data.



Gambar 4.17 Halaman Partisi Data

## 4.5.6 Halaman Pohon Keputusan

Halaman ini menampilkan pohon keputusan dari proses *mining* yang telah dilakukan. Selain itu juga menampilkan *rule* yang didapat dari hasil pohon keputusan yang telah dibentuk. Pada tampilan dari halaman pohon keputusan, untuk keputusan SRI akan ditunjukkan dengan warna hijau, keputusan Jajar Legowo berwarna merah, dan keputusan Null berwarna hitam. Berikut ditunjukkan pada gambar 4.18 Halaman Pohon Keputusan.



Gambar 4.18 Halaman Pohon Keputusan

## 4.5.7 Halaman Kinerja

Halaman kinerja menampilkan keputusan perbandingan berdasarkan pohon keputusan, nantinya akan didapat nilai akurasi data yang telah dilakukan *mining*. Berikut ditunjukkan pada gambar 4.19 Halaman Kinerja.



Gambar 4.19 Halaman Kinerja

## 4.5.8 Halaman Penentu Keputusan

Halaman ini menampilkan masukan data baru, nantinya data tersebut akan ditentukan keputusannya berdasarkan *rule* yang ada. Data yang dapat dimasukkan yaitu umur tanaman, anakan produktif, kerontokan, lahan, ketinggian, jarak tanam,

musim, dan hasil potensi. Berikut ditunjukkan pada gambar 4.20 Halaman Penentu Keputusan.



Gambar 4.20 Halaman Penentu Keputusan

## **BAB V. IMPLEMENTASI**

Implementasi merupakan proses pembuatan aplikasi berdasarkan hasil analisis dan perancangan yang telah dilakukan pada bab sebelumnya. implementasi berisikan berbagai uraian mengenai proses dan *interface* dari Metode *Decision Tree* Algoritma C4.5 Sebagai Penentuan Teknik Budidaya Tanaman Padi.

## 5.1 Implementasi Aplikasi

Implementasi aplikasi dilakukan berdasarkan perancangan aplikasi yang telah dibuat pada sebelumnya. Proses ini memuat berbagai uraian mengenai data, alur program, dan *interface* pada skripsi yang berjudul Metode *Decision Tree* Algoritma C4.5 Sebagai Penentuan Teknik Budidaya Tanaman Padi.

## 5.2 Implementasi *Database*

Pembuatan *database* ini berfungsi untuk mempermudah proses pengelolaan metode yang berjalan di aplikasi. Seperti menyimpan jumlah kasus, *entropy*, *infogain*, *split info*, *gain ratio* dan pohon keputusan. Pada aplikasi ini penyimpanan data menggunakan *server* local PHPMyAdmin. Berikut tabel yang telah dibuat:

## 5.2.1 Tabel Atribut

Tabel atribut memiliki *field* id dengan tipe data *integer*, atribut dan nilai atribut dengan tipe data *varchar*.

| Field         | Jenis        | Penyortiran       | Atribut | Kosong | Default | Ekstra         |
|---------------|--------------|-------------------|---------|--------|---------|----------------|
| <u>id</u>     | int(3)       |                   |         | Tidak  | None    | auto_increment |
| atribut       | varchar(100) | latin1_swedish_ci |         | Tidak  | None    |                |
| nilai_atribut | varchar(100) | latin1_swedish_ci |         | Tidak  | None    |                |

Gambar 5.1 Tabel Atribut

#### 5.2.2 Tabel Data Asli

Tabel data asli berisi data *training* dan data *testing* yang belum dilakukan proses kategorial. Memiliki *field* id, umur tanaman, anakan produktif, kerontokan, lahan, ketinggian, jarak tanam, musim, hasil potensi, teknik tanam dan status data. Status data berisi nilai data training dan data testing.

| Field            | Jenis        | Penyortiran       | Atribut | Kosong | Default | Ekstra         |
|------------------|--------------|-------------------|---------|--------|---------|----------------|
| <u>id</u>        | int(5)       |                   |         | Tidak  | None    | auto_increment |
| umur_tanaman     | varchar(50)  | latin1_swedish_ci |         | Tidak  | None    |                |
| anakan_produktif | varchar(50)  | latin1_swedish_ci |         | Tidak  | None    |                |
| kerontokan       | varchar(50)  | latin1_swedish_ci |         | Tidak  | None    |                |
| lahan            | varchar(50)  | latin1_swedish_ci |         | Tidak  | None    |                |
| ketinggian       | varchar(50)  | latin1_swedish_ci |         | Tidak  | None    |                |
| jarak_tanam      | varchar(50)  | latin1_swedish_ci |         | Tidak  | None    |                |
| musim            | varchar(50)  | latin1_swedish_ci |         | Tidak  | None    |                |
| hasil_potensi    | varchar(50)  | latin1_swedish_ci |         | Tidak  | None    |                |
| teknik_tanam     | varchar(50)  | latin1_swedish_ci |         | Tidak  | None    |                |
| status_data      | varchar(100) | latin1_swedish_ci |         | Tidak  | None    |                |

Gambar 5.2 Tabel Data Asli

## 5.2.3 Tabel Data Survey

Gambar 5.3 tabel data survey dibawah ini merupakan tabel yang berisi data *training* dan data *testing* yang telah dilakukan kategorial. Terdapat 12 *field* terdiri dari id, umur tanaman, anakan produktif, kerontokan, lahan, ketinggian, jarak tanam, musim, hasil potensi, teknik tanam, dan status data.

| Field            | Jenis        | Penyortiran       | Atribut | Kosong | Default | Ekstra         |
|------------------|--------------|-------------------|---------|--------|---------|----------------|
| <u>id</u>        | int(5)       |                   |         | Tidak  | None    | auto_increment |
| umur_tanaman     | varchar(50)  | latin1_swedish_ci |         | Tidak  | None    |                |
| anakan_produktif | varchar(50)  | latin1_swedish_ci |         | Tidak  | None    |                |
| kerontokan       | varchar(50)  | latin1_swedish_ci |         | Tidak  | None    |                |
| lahan            | varchar(50)  | latin1_swedish_ci |         | Tidak  | None    |                |
| ketinggian       | varchar(50)  | latin1_swedish_ci |         | Tidak  | None    |                |
| jarak_tanam      | varchar(50)  | latin1_swedish_ci |         | Tidak  | None    |                |
| musim            | varchar(50)  | latin1_swedish_ci |         | Tidak  | None    |                |
| hasil_potensi    | varchar(50)  | latin1_swedish_ci |         | Tidak  | None    |                |
| teknik_tanam     | varchar(50)  | latin1_swedish_ci |         | Tidak  | None    |                |
| status_data      | varchar(100) | latin1_swedish_ci |         | Tidak  | None    |                |

Gambar 5.3 Tabel Data Survey

## 5.2.4 Tabel Iterasi C4.5

Gambar 5.4 tabel iterasi C4.5 dibawah ini berisikan nilai hasil proses dari perhitungan *mining* C4.5. Terdapat 12 *field*, terdiri dari id, iterasi, atribut gain ratio max, atribut, nilai atribut, jml kasus total, jml sri, jml jarwo, entropy, info gain, split info, dan gain ratio. Id sebagai *primary key auto increment*. Untuk semua *field* tidak boleh terdapat nilai kosong.

| Field                  | Jenis        | Penyortiran       | Atribut | Kosong | Default | Ekstra         |
|------------------------|--------------|-------------------|---------|--------|---------|----------------|
| <u>id</u>              | int(11)      |                   |         | Tidak  | None    | auto_increment |
| iterasi                | varchar(3)   | latin1_swedish_ci |         | Tidak  | None    |                |
| atribut_gain_ratio_max | varchar(255) | latin1_swedish_ci |         | Tidak  | None    |                |
| atribut                | varchar(100) | latin1_swedish_ci |         | Tidak  | None    |                |
| nilai_atribut          | varchar(100) | latin1_swedish_ci |         | Tidak  | None    |                |
| jml_kasus_total        | varchar(5)   | latin1_swedish_ci |         | Tidak  | None    |                |
| jml_sri                | varchar(5)   | latin1_swedish_ci |         | Tidak  | None    |                |
| jml_jarwo              | varchar(5)   | latin1_swedish_ci |         | Tidak  | None    |                |
| entropy                | varchar(10)  | latin1_swedish_ci |         | Tidak  | None    |                |
| inf_gain               | varchar(10)  | latin1_swedish_ci |         | Tidak  | None    |                |
| split_info             | varchar(10)  | latin1_swedish_ci |         | Tidak  | None    |                |
| gain_ratio             | varchar(10)  | latin1_swedish_ci |         | Tidak  | None    |                |

Gambar 5.4 Tabel Iterasi C4.5

## 5.2.5 Tabel Mining C4.5

Gambar 5.5 tabel *mining* berisi nilai sementara hasil dari perhitungan *mining* C4.5. Terdapat 12 *field* terdiri dari id, atribut, nilai atribut, jml kasus total, jml sri, jml jarwo, entropy, inf gain, inf gain temp, split info, split info temp, dan gain ratio.

| Field           | Jenis        | Penyortiran       | Atribut | Kosong | Default | Ekstra         |
|-----------------|--------------|-------------------|---------|--------|---------|----------------|
| <u>id</u>       | int(11)      |                   |         | Tidak  | None    | auto_increment |
| atribut         | varchar(100) | latin1_swedish_ci |         | Tidak  | None    |                |
| nilai_atribut   | varchar(100) | latin1_swedish_ci |         | Tidak  | None    |                |
| jml_kasus_total | varchar(5)   | latin1_swedish_ci |         | Tidak  | None    |                |
| jml_sri         | varchar(5)   | latin1_swedish_ci |         | Tidak  | None    |                |
| jml_jarwo       | varchar(5)   | latin1_swedish_ci |         | Tidak  | None    |                |
| entropy         | varchar(10)  | latin1_swedish_ci |         | Tidak  | None    |                |
| inf_gain        | varchar(10)  | latin1_swedish_ci |         | Tidak  | None    |                |
| inf_gain_temp   | varchar(10)  | latin1_swedish_ci |         | Tidak  | None    |                |
| split_info      | varchar(10)  | latin1_swedish_ci |         | Tidak  | None    |                |
| split_info_temp | varchar(10)  | latin1_swedish_ci |         | Tidak  | None    |                |
| gain_ratio      | varchar(10)  | latin1_swedish_ci |         | Tidak  | None    |                |

Gambar 5.5 Tabel Mining C4.5

## 5.2.6 Tabel Pohon Keputusan C4.5

Gambar 5.6 tabel pohon keputusan C4.5 berfungsi menyimpan pohon keputusan hasil perhitungan C4.5. Terdapat 10 *field* terdiri dari id, atribut, nilai atribut, id parent, jml sri, jml jarwo, keputusan, diproses, kondisi atribut, looping kondisi. Id sebagai *primary key auto increment*.

| Field           | Jenis        | Penyortiran       | Atribut | Kosong | Default | Ekstra         |
|-----------------|--------------|-------------------|---------|--------|---------|----------------|
| <u>id</u>       | int(4)       |                   |         | Tidak  | None    | auto_increment |
| atribut         | varchar(100) | latin1_swedish_ci |         | Tidak  | None    |                |
| nilai_atribut   | varchar(100) | latin1_swedish_ci |         | Tidak  | None    |                |
| id_parent       | char(3)      | latin1_swedish_ci |         | Ya     | NULL    |                |
| jml_sri         | varchar(5)   | latin1_swedish_ci |         | Tidak  | None    |                |
| jml_jarwo       | varchar(5)   | latin1_swedish_ci |         | Tidak  | None    |                |
| keputusan       | varchar(100) | latin1_swedish_ci |         | Tidak  | None    |                |
| diproses        | varchar(10)  | latin1_swedish_ci |         | Tidak  | None    |                |
| kondisi_atribut | varchar(255) | latin1_swedish_ci |         | Tidak  | None    |                |
| looping_kondisi | varchar(15)  | latin1_swedish_ci |         | Tidak  | None    |                |

Gambar 5.6 Tabel Pohon Keputusan C4.5

## 5.2.7 Tabel Data Keputusan

Gambar 5.7 tabel data keputusan berfungsi untuk menyimpan keputusan yang telah dimasukkan pada aplikasi. Terdapat 11 *field* terdiri dari id, umur tanaman, anakan produktif, kerontokan, lahan, ketinggian, jarak tanam, musim, hasil potensi, keputusan C4.5, id rule C4.5.

| Field            | Jenis       | Penyortiran       | Atribut | Kosong | Default | Ekstra         |
|------------------|-------------|-------------------|---------|--------|---------|----------------|
| <u>id</u>        | int(4)      |                   |         | Tidak  | None    | auto_increment |
| umur_tanaman     | varchar(50) | latin1_swedish_ci |         | Tidak  | None    |                |
| anakan_produktif | varchar(50) | latin1_swedish_ci |         | Tidak  | None    |                |
| kerontokan       | varchar(50) | latin1_swedish_ci |         | Tidak  | None    |                |
| lahan            | varchar(50) | latin1_swedish_ci |         | Tidak  | None    |                |
| ketinggian       | varchar(50) | latin1_swedish_ci |         | Tidak  | None    |                |
| jarak_tanam      | varchar(50) | latin1_swedish_ci |         | Tidak  | None    |                |
| musim            | varchar(50) | latin1_swedish_ci |         | Tidak  | None    |                |
| hasil_potensi    | varchar(50) | latin1_swedish_ci |         | Tidak  | None    |                |
| keputusan_c45    | varchar(25) | latin1_swedish_ci |         | Tidak  |         |                |
| id_rule_c45      | int(10)     |                   |         | Tidak  | 0       |                |

Gambar 5.7 Tabel Data Keputusan

## 5.2.8 Tabel Data Keputusan Perbandingan

Gambar 5.8 tabel data keputusan perbandingan berfungsi untuk menyimpan proses keputusan. Data keputusan asli akan dibandingkan dengan data keputusan pohon yang telah dibentuk. Terdapat 6 *field* terdiri dari id, id data survey, keputusan asli, keputusan pohon, id rule pohon dan pohon. Id sebagai *primary key auto increment*.

| Field           | Jenis       | Penyortiran       | Atribut | Kosong | Default | Ekstra         |
|-----------------|-------------|-------------------|---------|--------|---------|----------------|
| <u>id</u>       | int(4)      |                   |         | Tidak  | None    | auto_increment |
| id_data_survey  | int(5)      |                   |         | Tidak  | None    |                |
| keputusan_asli  | varchar(25) | latin1_swedish_ci |         | Tidak  | None    |                |
| keputusan_pohon | varchar(25) | latin1_swedish_ci |         | Tidak  | None    |                |
| id_rule_pohon   | int(10)     |                   |         | Tidak  | None    |                |
| pohon           | varchar(25) | latin1_swedish_ci |         | Tidak  | None    |                |

Gambar 5.8 Tabel Data Keputusan Perbandingan

## 5.2.9 Tabel Data Penentu Keputusan

Gambar 5.9 tabel data penentu keputusan berfungsi untuk menyimpan penentu keputusan dari proses mining C4.5. Terdapat 3 *field* terdiri dari id, atribut dan nilai atribut.

| Field         | Jenis        | Penyortiran       | Atribut | Kosong | Default | Ekstra         |
|---------------|--------------|-------------------|---------|--------|---------|----------------|
| <u>id</u>     | int(5)       |                   |         | Tidak  | None    | auto_increment |
| atribut       | varchar(255) | latin1_swedish_ci |         | Tidak  | None    |                |
| nilai_atribut | varchar(255) | latin1_swedish_ci |         | Tidak  | None    |                |

Gambar 5.9 Tabel Data Penentu Keputusan

#### 5.2.10 Tabel Rule C45

Gambar 5.10 tabel rule C4.5 berfungsi untuk menyimpan rule dari pohon keputusan yang telah dibentuk. Terdapat 3 *field* terdiri dari id, id parent, rule dan keputusan.

| Field     | Jenis        | Penyortiran       | Atribut | Kosong | Default | Ekstra         |
|-----------|--------------|-------------------|---------|--------|---------|----------------|
| <u>id</u> | int(4)       |                   |         | Tidak  | None    | auto_increment |
| id_parent | int(4)       |                   |         | Tidak  | None    |                |
| rule      | varchar(255) | latin1_swedish_ci |         | Tidak  | None    |                |
| keputusan | varchar(25)  | latin1_swedish_ci |         | Tidak  | None    |                |

Gambar 5.10 Tabel Rule C45

## 5.2.11 Tabel Rule Penentu Keputusan

Gambar 5.11 tabel rule penentu keputusan terdapat 7 *field* terdiri dari id, id rule, atribut, nilai atribut, keputusan, cocok dan pohon. Tabel rule penentu keputusan berfungsi untuk menyimpan proses kinerja. Hasil yang didapat yaitu keputusan data testing akan dibandingkan dengan data training yang telah dilakukan proses mining C4.5. Selanjutnya akan menampilkan hasil akurasi data yang sesuai antara data testing dengan rule.

| Field         | Jenis        | Penyortiran       | Atribut | Kosong | Default | Ekstra         |
|---------------|--------------|-------------------|---------|--------|---------|----------------|
| <u>id</u>     | int(5)       |                   |         | Tidak  | None    | auto_increment |
| id_rule       | int(5)       |                   |         | Tidak  | None    |                |
| atribut       | varchar(255) | latin1_swedish_ci |         | Tidak  | None    |                |
| nilai_atribut | varchar(255) | latin1_swedish_ci |         | Tidak  | None    |                |
| keputusan     | varchar(25)  | latin1_swedish_ci |         | Tidak  | None    |                |
| cocok         | varchar(15)  | latin1_swedish_ci |         | Tidak  | None    |                |
| pohon         | varchar(50)  | latin1_swedish_ci |         | Tidak  | None    |                |

Gambar 5.11 Tabel Rule Penentu Keputusan

## 5.2.12 Tabel User

Tabel *user* berisi hak akses siapa yang dapat menjalankan aplikasi yang dibuat. Hanya *user* yang terdaftar di tabel ini yang dapat mengakses aplikasi.



Gambar 5.12 Tabel User

## 5.3 Interface Program

*Interface* program berisi potongan gambar dari skripsi Metode *Decision Tree* Algoritma C4.5 Sebagai Penentuan Teknik Budidaya Tanaman Padi.

## 5.3.1 Halaman *Home*

Halaman *home* menampilkan deskripsi sederhana tentang aplikasi.



Gambar 5.13 Halaman Home

## 5.3.2 Halaman Semua Data

Halaman ini menampilkan seluruh data *training* yang telah diinputkan. Data yang ditampilkan yaitu data yang telah dikategorikan.



Gambar 5.14 Halaman Semua Data

## 5.3.3 Halaman Import Data

Halaman *import* data berfungsi melakukan *input* data. Data yang akan dimasukkan hanya *file* berekstensi xls. Saat proses *import* data asli yang berupa angka akan terkategori. Data yang terkategorikan yaitu umur tanaman, anakan produktif, ketinggian, jarak tanam dan hasil potensi.



Gambar 5.15 Halaman Import Data

## 5.3.4 Halaman Partisi Data

Halaman partisi data berfungsi untuk membagi data. Berapa persen data training yang akan digunakan di proses mining c45.



Gambar 5.16 Halaman Partisi Data

## 5.3.5 Proses Mining C4.5

Tampilan berikut menampilkan proses *mining* apabila berhasil melakukan perhitungan C4.5.



Gambar 5.17 Proses Mining C4.5

```
$rumusEntropy = (-($perbandingan_sri) *
log($perbandingan_sri,2)) + (-($perbandingan_jarwo) *
log($perbandingan_jarwo,2));
$getEntropy = round($rumusEntropy,4);
```

```
$getInfGain = (-(($getJumlahKasusTotalEntropy /
$getJumlahKasusTotalInfGain) * ($getEntropy)));
$getInfGainFix = round(($getEntropy + $getAtributInfGain),4);
```

```
$getSplitInfo = (($getJumlahKasusTotalEntropy /
$getJumlahKasusTotalInfGain) *
(log(($getJumlahKasusTotalEntropy /
$getJumlahKasusTotalInfGain),2)));
$getSplitInfoFix = -(round($getAtributSplitInfo,4));
```

```
$getGainRatio = round(($rowGainRatio['inf_gain'] /
$rowGainRatio['split_info']),4);
```

## 5.3.6 Halaman Hasil Perhitungan C4.5

Halaman ini menampilkan nilai hasil perhitungan C4.5. Dapat dilihat jumlah data yang telah dihitung, *entropy*, *info gain*, *split info*, serta *gain ratio*. Data-data tersebut akan dibentuk sebagai pohon keputusan. *Gain ratio* tertinggi akan digunakan sebagai *root*.



Gambar 5.18 Halaman Hasil Perhitungan C4.5

## 5.3.7 Halaman Pohon Keputusan

Halaman ini menampilkan hasil pembentukan pohon keputusan yang telah dibentuk dari perhitungan mining C4.5. Selain itu juga menampilkan *rule* yang diperoleh dari nilai pohon keputusan. Untuk keputusan teknik tanam SRI akan ditampilkan dengan warna hijau, dan keputusan teknik tanam Jajar Legowo akan ditampilkan dengan warna merah.



Gambar 5.19 Halaman Pohon Keputusan

```
function generatePohon($idparent, $spasi)
    $result = mysql query("select * from pohon keputusan c45
where id parent= '$idparent'");
   while($row=mysql_fetch_row($result)){
        for($i=1;$i<=$spasi;$i++){
        if ($row[6] === 'SRI') {
            $keputusan = "<font color=green>$row[6]</font>";
        } elseif ($row[6] === 'Jajar Legowo') {
            $keputusan = "<font color=red>$row[6]</font>";
        } elseif ($row[6] === '?') {
            $keputusan = "<font color=blue>$row[6]</font>";
        } else {
            $keputusan = "<b>$row[6]</b>";
        echo "<font color=red>$row[1]</font> = $row[2] (SRI =
$row[4], Jajar Legowo = $row[5]) : <b>$keputusan</b><br>";
        generatePohon($row[0], $spasi + 1);
```

```
$sqlLihatRule = mysql query("select * from rule c45");
while($rowLihatRule=mysql fetch array($sqlLihatRule)){
    if ($rowLihatRule['keputusan'] === 'SRI') {
        $keputusan = "<font</pre>
color=green>$rowLihatRule[keputusan]</font>";
    } elseif ($rowLihatRule['keputusan'] === 'Jajar Legowo') {
        $keputusan = "<font</pre>
color=red>$rowLihatRule[keputusan]</font>";
    } elseif ($rowLihatRule['keputusan'] === '?') {
        $keputusan = "<font</pre>
color=blue>$rowLihatRule[keputusan]</font>";
    } else {
        $keputusan = "<b>$rowLihatRule[keputusan]</b>";
    echo "<b>$no.</b> IF <b>(</b>$rowLihatRule[rule]<b>)</b>
THEN <b>$keputusan</b> <font color=blue>(id =
$rowLihatRule[id])</font><br>";
```

## 5.3.8 Halaman Kinerja

Halaman kinerja berfungsi untuk menghitung kesesuaian data berdasarkan keputusan yang telah dibentuk dari proses *mining*. Proses kinerja yang dapat dilakukan yaitu kinerja data training dan kinerja data testing.



Gambar 5.20 Halaman Kinerja

## 5.3.9 Halaman Tabel Penilaian

Halaman tabel penilaian menampilkan nilai keakurasian kinerja data testing atau data training. Data tersebut dibandingkan dengan rule dari proses mining yang telah dilakukan.



Gambar 5.21 Halaman Tabel Penilaian

## 5.3.10 Halaman Penentu Keputusan

Halaman penentu keputusan berfungsi untuk memberikan keputusan apa yang sesuai terhadap data training yang diuji.



Gambar 5.22 Halaman Penentu Keputusan

## 5.3.11 Halaman Login

Halaman *login* digunakan untuk memberikan hak akses terhadap pengguna. Diharuskan pengguna untuk memasukkan *username* dan *password* yang benar. Apabila *login* sebagai admin maka dapat menggunakan semua fitur dari aplikasi. Sedangkan *login* sebagai user hanya dapat menggunakan fitur penentu keputusan.



Gambar 5.23 Halaman Login

## BAB VI. PENGUJIAN DAN PEMBAHASAN

Pada bab ini berisi mengenai analisa dan hasil uji coba penerapan metode *decision tree* algoritma C4.5 pada aplikasi yang telah dibuat.

## 6.1 Pengujian Sistem

## 6.1.1 Pengujian Lihat Semua Data

Tabel 6.1 Pengujian Data Semua

| No | Skenario                                  | Test                                      | Hasil Yang                               | Ha           | sil   |
|----|-------------------------------------------|-------------------------------------------|------------------------------------------|--------------|-------|
|    | Pengujian                                 | Case                                      | Diharapkan                               | Berhasil     | Tidak |
| 1  | User menampilkan<br>halaman semua<br>data | Klik<br>menu<br>navigasi<br>semua<br>data | Menampilkan<br>halaman semua<br>data     | $\checkmark$ |       |
| 2  | User menghapus<br>seluruh data            | Klik<br>tombol<br>hapus<br>semua<br>data  | Menghapus<br>semua data<br>varietas padi | V            |       |

## 6.1.2 Pengujian Import File

Tabel 6.2 Pengujian Import File

| No | Skenario                                                      | Test Case                               | Hasil Yang                                                      | Ha       | sil   |
|----|---------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------|----------|-------|
|    | Pengujian                                                     |                                         | Diharapkan                                                      | Berhasil | Tidak |
| 1  | User<br>menampilkan<br>halaman <i>import</i><br>data          | Klik menu<br>navigasi<br>import<br>data | Menampilkan<br>halaman import<br>data                           | V        |       |
| 2  | User memilih file<br>yang akan di<br>inputkan                 | Klik<br>tombol<br>pilih file            | Melakukan<br>pencarian file<br>dengan format<br>.xls            | V        |       |
| 3  | User melakukan<br>proses import data                          | Klik<br>tombol<br>import                | Melakukan<br>proses<br>penyimpanan<br>data ke dalam<br>database | V        |       |
| 4  | User memilih<br>opsional<br>kosongkan file<br>terlebih dahulu | Centang<br>kosongkan<br>tabel           | Menghapus<br>data<br>sebelumnya,<br>sebelum                     | V        |       |

| terlebih<br>dahulu | melakukan<br>input data yang |  |
|--------------------|------------------------------|--|
|                    | baru                         |  |

## 6.1.3 Pengujian Proses *Mining* C4.5

Tabel 6.3 Pengujian Proses *Mining* C4.5

| No | Skenario                                       | Test                                     | Hasil Yang                                                                                  | Hasil    |       |
|----|------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------|----------|-------|
|    | Pengujian                                      | Case                                     | Diharapkan                                                                                  | Berhasil | Tidak |
| 1  | User memilih<br>menu navigasi<br>proses mining | Klik<br>menu<br>proses<br>mining<br>c4.5 | Melakukan proses mining c4.5 untuk menghitung entropy, info gain, split info dan gain ratio | V        |       |

## 6.1.4 Pengujian Partisi Data

Tabel 6.4 Pengujian Partisi Data

| No | Skenario                                                           | <b>Test Case</b>                | Hasil Yang                                                                     | Ha       | sil   |
|----|--------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------|----------|-------|
|    | Pengujian                                                          |                                 | Diharapkan                                                                     | Berhasil | Tidak |
| 1  | User memilih<br>menu navigasi<br>partisi data                      | Klik<br>menu<br>partisi<br>data | Menampilkan<br>halaman partisi<br>data                                         | V        |       |
| 2  | User<br>memasukkan<br>berapa persen<br>data yang akan<br>digunakan | Masukkan<br>nilai 1-<br>100     | Data survey<br>yang akan<br>digunakan<br>terpartisi                            | V        |       |
| 3  | User memilih<br>tombol proses                                      | Klik<br>tombol<br>proses        | Melakukan<br>proses partisi<br>data<br>berdasarkan<br>nilai yang<br>dimasukkan |          |       |

## 6.1.5 Pengujian Hasil Perhitungan

Tabel 6.5 Pengujian Hasil Perhitungan

| No | Skenario                  |                                  |                                     |  | Hasil Yang                                          | Hasil    |       |
|----|---------------------------|----------------------------------|-------------------------------------|--|-----------------------------------------------------|----------|-------|
|    | Pengujian                 |                                  |                                     |  | Diharapkan                                          | Berhasil | Tidak |
| 1  | User<br>menu<br>hasil per | memilih<br>navigasi<br>rhitungan | Klik<br>navigas<br>hasil<br>perhitu |  | Menampilkan<br>tabel hasil<br>perhitungan<br>mining | V        |       |

| 2 | User r      | nemilih | Klik to     | mbol | Menghapu   | IS    |           |  |
|---|-------------|---------|-------------|------|------------|-------|-----------|--|
|   | tombol      | hapus   | hapus       |      | semua      |       |           |  |
|   | semua       | data    | semua       | data | perhitunga | ın    | $\sqrt{}$ |  |
|   | perhitungan |         | perhitungan |      | yang       | telah | V         |  |
|   |             |         |             |      | dilakukan  |       |           |  |
|   |             |         |             |      | mining     |       |           |  |

## 6.1.6 Pengujian Pohon Keputusan

Tabel 6.6 Pengujian Pohon Keputusan

| No | Skenario                                         | Test                                           | Hasil Yang                                    | Hasil     |       |  |
|----|--------------------------------------------------|------------------------------------------------|-----------------------------------------------|-----------|-------|--|
|    | Pengujian                                        | Case                                           |                                               |           | Tidak |  |
| 1  | User memilih<br>menu navigasi<br>pohon keputusan | Klik<br>menu<br>navigasi<br>pohon<br>keputusan | Menampilkan<br>pohon<br>keputusan dan<br>rule | $\sqrt{}$ |       |  |
| 2  | User memilih<br>hapus pohon<br>keputusan         | Klik<br>tombol<br>hapus<br>pohon<br>keputusan  | Menghapus<br>pohon<br>keputusan dan<br>rule   | V         |       |  |

## 6.1.7 Perngujian Kinerja

Tabel 6.7 Pengujian Kinerja

| No | Ske                        | nario                        | Test                                           | Hasil Yang                                                           | Ha       | sil   |
|----|----------------------------|------------------------------|------------------------------------------------|----------------------------------------------------------------------|----------|-------|
|    | Pengujian                  |                              | Case                                           | Diharapkan                                                           | Berhasil | Tidak |
| 1  | User<br>menu<br>kinerja    | memilih<br>navigasi          | Klik<br>menu<br>navigasi<br>kinerja            | Menampilkan<br>tabel<br>perbandingan<br>keputusan                    | V        |       |
| 2  | User<br>tombol<br>proses k | memilih<br>lakukan<br>inerja | Klik<br>tombol<br>lakukan<br>proses<br>kinerja | Melakukan<br>proses<br>perbandingan<br>keputusan                     | V        |       |
| 3  | User<br>tombol<br>data     | memilih<br>hapus             | Klik<br>tombol<br>hapus<br>data                | Melakukan<br>proses hapus<br>data tabel<br>perbandingan<br>keputusan | V        |       |

## 6.1.8 Pengujian Penentu Keputusan

Tabel 6.8 Pengujian Penentu Keputusan

| No | Skenario                                              | Test                                             | Hasil Yang                                     | Ha       | sil   |
|----|-------------------------------------------------------|--------------------------------------------------|------------------------------------------------|----------|-------|
|    | Pengujian                                             | Case Diharapkan                                  |                                                | Berhasil | Tidak |
| 1  | User memilih<br>menu navigasi<br>penentu<br>keputusan | Klik<br>menu<br>navigasi<br>penentu<br>keputusan | Menampilkan<br>halaman<br>penentu<br>keputusan | V        |       |
| 2  | User memilih tombol input                             | Klik<br>tombol<br>input                          | Melakukan<br>proses simpan                     | V        |       |
| 3  | User memilih<br>tombol hapus<br>semua data            | Klik<br>tombol<br>hapus<br>semua<br>data         | Melakukan<br>proses hapus<br>semua data        | V        |       |

### 6.2 Evaluasi

Setelah diimplementasikan baik algoritma maupun penerapan dalam bentuk aplikasi, penulis mengevaluasi aplikasi ini dengan melakukan perbandingan keputusan hasil *mining* C4.5 dengan 52 data varietas padi yang teknik tanamnya sesuai dengan aslinya. Dalam pengujian dengan 52 data varietas padi, dibagi menjadi data training dan data testing. Digunakan 41 jenis varietas padi sebagai data training untuk membentuk pohon keputusan dan aturan, dan 11 data testing untuk diuji cobakan terhadap 41 data training.

Dari hasil evaluasi diatas, dapat dijelaskan dalam bentuk diagram bagaimana proses dalam menentukan nilai keakurasian data testing sebagai berikut :



Gambar 6.1 Alur Pengujian Metode Decision Tree

Pada gambar 6.1 dapat dijelaskan pada 52 data varietas padi, 41 data digunakan sebagai data training dan 11 data sebagai data testing. Selanjutnya yaitu 41 data training dilakukan proses mining dengan algoritma C4.5 kemudian didapatkan hasil pohon keputusan dan rule/aturan. Untuk 11 data testing diuji/dibandingkan dengan rule yang telah terbentuk dari proses perhitungan 41 data training, yang dimana nantinya akan didapatkan nilai akurasi.

Untuk mendapatkan nilai keakurasian data testing terhadap data training, digunakan perhitungan sebagai berikut :

$$Akurasi = \frac{jumlah \ keputusan \ sesuai}{jumlah \ data \ keseluruhan} x 100 \tag{6.1}$$

Tabel 6.9 Akurasi 11 Data Testing

|                                    | Diidentifikasi Jajar<br>Legowo | Diidentifikasi SRI |
|------------------------------------|--------------------------------|--------------------|
| Keputusan Asli Jajar<br>Legowo (3) | 3                              | 0                  |
| Keputusan Asli SRI (8)             | 1                              | 7                  |

Akurasi = (3 + 7) / (8 + 3) \* 100% = 90.91 %

## BAB VII. PENUTUP

Bab VII menjelaskan tentang kesimpulan yang didapat pada saat pengerjaan skripsi melalui uji coba yang dilakukan dan analisa yang dilakukan dalam penelitiannya. Bab ini juga berisi saran yang bisa dilakukan untuk penelitian di masa yang akan datang.

## 7.2 Kesimpulan

Berdasarkan hasil pengujian skripsi yang berjudul Metode *Decision Tree* Algoritma C4.5 Sebagai Penentuan Teknik Budidaya Tanaman Padi secara fungsional berjalan dengan baik. Untuk pengujian dengan menggunakan 52 data varietas padi, didapatkan suatu *rule* dan pohon keputusan dari hasil proses perhitungan mining C4.5. Hasil uji coba sistem mengolah 52 data varietas padi dengan 41 data training dan 11 data testing didapat nilai akurasi sebesar 90.91%. Selain itu, fitur penentu keputusan dapat digunakan untuk membantu menentukan keputusan data baru yang masuk, dengan menggunakan rule yang sudah terbentuk.

#### 7.3 Saran

Adapun saran untuk penelitian selanjutnya yang akan membahas atau mengembangkan topik yang sama dengan penelitian ini agar lebih baik lagi, antara lain:

- 1. Disarankan untuk menambahkan variabel lain yang lebih mendukung untuk diproses dalam penentuan teknik yang akan digunakan.
- 2. Untuk penelitian lebih lanjut disarankan untuk mencoba algoritma lain, membandingkan dengan algoritma lain, atau meningkatkan jumlah data kasusnya dengan algoritma yang sama.

## **DAFTAR PUSTAKA**

- [1] Arafah. 2009. *Pedoman Teknis Perbaikan Kesuburan Lahan Sawah Berbasis Jerami*. Jakarta: PT. Gramedia. 238 Hlm
- [2] A.G Kartasapoetra. 1988. *Pengantar Ekonomi Produksi Pertanian*. Jakarta : Bina Aksara.
- [3] A.S Rossa dan Shalahuddin M. 2011. *Modul Pembelajaran Rekayasa Perangkat Lunak (Terstruktur dan Berorientasi Objek)*. Bandung : Modula.
- [4] Badan Ketahanan Pangan dan Penyuluhan Pertanian Aceh Bekerja Sama Dengan Balai Pengkajian Teknologi Pertanian NAD. Budidaya Tanaman Padi. 2009.
- [5] Dua, S. & Xian Du. 2011. *Data Mining and Machine Learning in Cybersecurity*. USA: Taylor & Fancis Group. ISBN-13: 978-1-4398-3943-0.
- [6] Kusumadewi, Sri. 2003. *Artificial Intelligence (Teknik dan Aplikasinya)*. Yogyakarta: Graha Ilmu.
- [7] Marimin. 2005. Teori dan Aplikasi Sistem Pakar Dalam Teknologi Manajerial.

  Bogor: IPB Press.
- [8] Junarto. 2015. Perancangan dan Pembuatan Aplikasi Data Mining Berbasis Web Menggunakan Algoritma C4.5 Untuk Memprediksi Kelulusan Mahasiswa S-1 Pada Universitas Darma Persada. Jakarta: Universitas Darma Persada.
- [9] Arhami, Muhammad. 2005. *Konsep Dasar Sistem Pakar*. Penerbit Andi: Yogyakarta.
- [10] Turban, Efraim. 1995. *Decision Support System and Expert System*. New Jersey: Prentice Hall International.
- [11] Anhar. 2010. PHP dan MySql Secara Otodidak. Jakarta: PT TransMedia.
- [12] Bhuono, Agung Nugroho. 2005. Strategi Jitu Memilih Metode Statistik Penelitian dengan SPSS. Penerbit Andi: Yogyakarta.
- [13] Mcleod, Ray Jr. 1995. Sistem Informasi Manajemen. Jakarta: PT Prenhalindo.

## LAMPIRAN

## Lampiran Tabel Data Varietas Padi

|    | Umur      | Anakan    |            |         |            | Jarak          |           | Hasil   | Teknik |
|----|-----------|-----------|------------|---------|------------|----------------|-----------|---------|--------|
| No | Tanaman   | Produktif | Kerontokan | Lahan   | Ketinggian | Tanam          | Musim     | Potensi | Tanam  |
|    |           |           |            | sawah   |            |                |           |         |        |
|    | 110 - 120 | 14 - 19   | mudah      | tadah   |            |                |           | 5.8     |        |
| 1  | hari      | batang    | rontok     | hujan   | <500 mdpl  | 25 x 25 cm     | penghujan | ton/ha  | SRI    |
|    | 135 - 140 | 15 - 20   |            | sawah   |            | (20 - 40 cm) x |           | 7.0     | Jajar  |
| 2  | hari      | batang    | sedang     | irigasi | <500 mdpl  | 10 cm          | kemarau   | ton/ha  | Legowo |
|    | 135 - 145 | 20 - 25   |            | sawah   |            | (25 - 50 cm) x |           | 7.0     | Jajar  |
| 3  | hari      | batang    | sedang     | irigasi | <500 mdpl  | 12,5 cm        | kemarau   | ton/ha  | Legowo |
|    |           |           |            | sawah   |            |                |           |         |        |
|    | 110 - 120 | 20 - 25   |            | tadah   |            |                |           | 6.0     |        |
| 4  | hari      | batang    | sedang     | hujan   | <500 mdpl  | 25 x 25 cm     | penghujan | ton/ha  | SRI    |
|    | 110 - 126 | 20 - 35   |            | sawah   |            |                |           | 6.0     |        |
| 5  | hari      | batang    | tahan      | irigasi | <500 mdpl  | 25 x 25 cm     | penghujan | ton/ha  | SRI    |
|    | 117 - 125 | 18 - 25   |            | sawah   |            | (25 - 50 cm) x |           | 6.5     | Jajar  |
| 6  | hari      | batang    | sedang     | irigasi | <500 mdpl  | 12,5 cm        | penghujan | ton/ha  | Legowo |

|    | 110 - 120 | 14 - 17 |            | sawah   |           |                |           | 5.5    |        |
|----|-----------|---------|------------|---------|-----------|----------------|-----------|--------|--------|
| 7  | hari      | batang  | sedang     | irigasi | <500 mdpl | 25 x 25 cm     | penghujan | ton/ha | SRI    |
|    | 115 - 120 | 17 - 20 |            | sawah   |           | (25 - 50 cm) x |           | 7.5    |        |
| 8  | hari      | batang  | sedang     | irigasi | <500 mdpl | 12,5 cm        | penghujan | ton/ha | SRI    |
|    | 117 - 126 | 10 - 15 |            | sawah   |           | (25 - 50 cm) x |           | 7.0    | Jajar  |
| 9  | hari      | batang  | sedang     | irigasi | >500 mdpl | 12,5 cm        | kemarau   | ton/ha | Legowo |
|    | 115 - 125 | 10 - 15 |            | sawah   |           | (20 - 40 cm) x |           | 7.0    |        |
| 10 | hari      | batang  | sedang     | irigasi | <500 mdpl | 10 cm          | penghujan | ton/ha | SRI    |
|    | 110 - 120 | 10 - 20 |            | sawah   |           | (20 - 40 cm) x |           | 9.0    |        |
| 11 | hari      | batang  | sedang     | irigasi | <500 mdpl | 10 cm          | penghujan | ton/ha | SRI    |
|    | 126 - 130 | 15 - 20 |            | sawah   |           | (25 - 50 cm) x |           | 7.0    | Jajar  |
| 12 | hari      | batang  | agak tahan | irigasi | <500 mdpl | 12,5 cm        | kemarau   | ton/ha | Legowo |
|    | 115 - 125 | 15 - 18 |            | sawah   |           | (25 - 50 cm) x |           | 8.0    |        |
| 13 | hari      | batang  | sedang     | irigasi | <500 mdpl | 12,5 cm        | penghujan | ton/ha | SRI    |
|    | 115 - 125 | 17 - 20 |            | sawah   |           | (20 - 40 cm) x |           | 7.0    |        |
| 14 | hari      | batang  | sedang     | irigasi | <500 mdpl | 10 cm          | penghujan | ton/ha | SRI    |
|    | 116 - 125 | 14 - 17 |            | sawah   |           | (25 - 50 cm) x |           | 8.5    | Jajar  |
| 15 | hari      | batang  | sedang     | irigasi | <500 mdpl | 12,5 cm        | kemarau   | ton/ha | Legowo |
|    |           | 15 - 20 |            | sawah   |           | (20 - 40 cm) x |           | 7.0    | Jajar  |
| 16 | 118 hari  | batang  | tahan      | irigasi | <500 mdpl | 10 cm          | penghujan | ton/ha | Legowo |

|    | 115 - 125 | 17 - 20 | mudah  | sawah   |           |                |           | 7.0    |        |
|----|-----------|---------|--------|---------|-----------|----------------|-----------|--------|--------|
| 17 | hari      | batang  | rontok | irigasi | <500 mdpl | 25 x 25 cm     | penghujan | ton/ha | SRI    |
|    | 105 - 115 | 16 - 22 | mudah  | sawah   |           |                |           | 7.0    |        |
| 18 | hari      | batang  | rontok | irigasi | <500 mdpl | 25 x 25 cm     | kemarau   | ton/ha | SRI    |
|    | 105 - 115 | 18 - 25 | mudah  | sawah   |           | (20 - 40 cm) x |           | 7.0    |        |
| 19 | hari      | batang  | rontok | irigasi | <500 mdpl | 10 cm          | kemarau   | ton/ha | SRI    |
|    | 105 - 110 | 14 - 18 | mudah  | sawah   |           |                |           | 6.5    |        |
| 20 | hari      | batang  | rontok | irigasi | <500 mdpl | 25 x 25 cm     | penghujan | ton/ha | SRI    |
|    | 120 - 130 | 16 - 23 |        | sawah   |           | (20 - 40 cm) x |           | 9.0    | Jajar  |
| 21 | hari      | batang  | sedang | irigasi | <500 mdpl | 10 cm          | kemarau   | ton/ha | Legowo |
|    | 110 - 120 | 15 - 22 | mudah  | sawah   |           | (20 - 40 cm) x |           | 8.4    |        |
| 22 | hari      | batang  | rontok | irigasi | <500 mdpl | 10 cm          | penghujan | ton/ha | SRI    |
|    | 85 - 90   | 9 - 11  |        | sawah   |           |                |           | 5.5    | Jajar  |
| 23 | hari      | batang  | sedang | kering  | <500 mdpl | 25 x 25 cm     | penghujan | ton/ha | Legowo |
|    | 115 - 125 | 17 - 20 |        | sawah   |           |                |           | 7.0    |        |
| 24 | hari      | batang  | sedang | irigasi | <500 mdpl | 25 x 25 cm     | penghujan | ton/ha | SRI    |
|    | 115 - 125 | 16 - 20 |        | sawah   |           |                |           | 7.0    |        |
| 25 | hari      | batang  | sedang | irigasi | <500 mdpl | 25 x 25 cm     | penghujan | ton/ha | SRI    |
|    | 110 - 120 | 15 - 18 |        | sawah   |           | (20 - 40 cm) x |           | 8.0    |        |
| 26 | hari      | batang  | sedang | irigasi | <500 mdpl | 10 cm          | kemarau   | ton/ha | SRI    |

|    | 108 - 112 | 15 - 28 |        | sawah   |           | (20 - 40 cm) x |           | 7.5    |     |
|----|-----------|---------|--------|---------|-----------|----------------|-----------|--------|-----|
| 27 | hari      | batang  | sedang | irigasi | <500 mdpl | 10 cm          | penghujan | ton/ha | SRI |
|    | 100 - 110 | 15 - 20 |        | sawah   |           |                |           | 6.5    |     |
| 28 | hari      | batang  | sedang | irigasi | <500 mdpl | 25 x 25 cm     | penghujan | ton/ha | SRI |
|    | 115 - 125 | 16 - 24 |        | sawah   |           | (25 - 50 cm) x |           | 7.5    |     |
| 29 | hari      | batang  | tahan  | irigasi | <500 mdpl | 12,5 cm        | kemarau   | ton/ha | SRI |
|    | 110 - 120 | 16 - 22 |        | sawah   |           | (25 - 50 cm) x |           | 7.5    |     |
| 30 | hari      | batang  | tahan  | irigasi | <500 mdpl | 12,5 cm        | kemarau   | ton/ha | SRI |
|    |           |         |        | sawah   |           |                |           |        |     |
|    | 110 - 118 | 13 - 19 |        | tadah   |           | (25 - 50 cm) x |           | 7.5    |     |
| 31 | hari      | batang  | sedang | hujan   | <500 mdpl | 12,5 cm        | kemarau   | ton/ha | SRI |
|    |           |         |        | sawah   |           |                |           |        |     |
|    | 115 - 125 | 16 - 18 |        | tadah   |           | (20 - 40 cm) x |           | 8.0    |     |
| 32 | hari      | batang  | sedang | hujan   | >500 mdpl | 10 cm          | kemarau   | ton/ha | SRI |
|    |           |         |        | sawah   |           |                |           |        |     |
|    | 115 - 125 | 14 - 16 |        | tadah   |           | (20 - 40 cm) x |           | 8.0    |     |
| 33 | hari      | batang  | sedang | hujan   | >500 mdpl | 10 cm          | kemarau   | ton/ha | SRI |
|    |           |         |        | sawah   |           |                |           |        |     |
|    | 112 - 119 | 16 - 20 |        | tadah   |           |                |           | 7.0    |     |
| 34 | hari      | batang  | sedang | hujan   | >500 mdpl | 25 x 25 cm     | penghujan | ton/ha | SRI |

|    | 115 - 125 | 12 - 19 |            | sawah   |           | (25 - 50 cm) x   |           | 8.1    |        |
|----|-----------|---------|------------|---------|-----------|------------------|-----------|--------|--------|
| 35 | hari      | batang  | agak tahan | irigasi | >500 mdpl | 12,5 cm          | kemarau   | ton/ha | SRI    |
|    | 100 - 117 | 14 - 19 |            | sawah   |           | (20 - 40 cm) x   |           | 7.6    |        |
| 36 | hari      | batang  | sedang     | irigasi | >500 mdpl | 10 cm            | penghujan | ton/ha | SRI    |
|    | 97 - 120  | 13 - 19 |            | sawah   |           | (20 - 40 cm) x   |           | 7.8    |        |
| 37 | hari      | batang  | sedang     | irigasi | >500 mdpl | 10 cm            | penghujan | ton/ha | SRI    |
|    |           |         |            | sawah   |           |                  |           |        |        |
|    | 120 - 128 | 9 - 16  | mudah      | tadah   |           | (25 - 50 cm) x   |           | 8.1    | Jajar  |
| 38 | hari      | batang  | rontok     | hujan   | <500 mdpl | 12,5 cm          | penghujan | ton/ha | Legowo |
|    |           |         |            | sawah   |           |                  |           |        |        |
|    | 110 - 120 | 8 - 12  |            | tadah   |           | (20 - 40 cm) x   |           | 7.5    |        |
| 39 | hari      | batang  | tahan      | hujan   | <500 mdpl | 10 cm            | penghujan | ton/ha | SRI    |
|    | 116 - 125 | 13 - 16 |            | sawah   |           | (25 - 50 cm) x   |           | 8.4    | Jajar  |
| 40 | hari      | batang  | sedang     | irigasi | <500 mdpl | 12,5 cm          | kemarau   | ton/ha | Legowo |
|    |           |         |            | sawah   |           |                  |           |        |        |
|    | 110 - 125 | 15 - 20 | mudah      | tadah   |           | (25 - 50  cm)  x |           | 8.0    |        |
| 41 | hari      | batang  | rontok     | hujan   | >500 mdpl | 12,5 cm          | penghujan | ton/ha | SRI    |
|    |           |         |            | sawah   |           |                  |           |        |        |
|    | 108 - 125 | 16 - 20 |            | tadah   |           | (20 - 40 cm) x   |           | 8.0    |        |
| 42 | hari      | batang  | sedang     | hujan   | >500 mdpl | 10 cm            | penghujan | ton/ha | SRI    |

|    |           |           |        | sawah   |           | (25 - 50 cm) x |           | 10     |        |
|----|-----------|-----------|--------|---------|-----------|----------------|-----------|--------|--------|
| 43 | 108 hari  | 16 batang | sedang | irigasi | <500 mdpl | 12,5 cm        | penghujan | ton/ha | SRI    |
|    |           |           |        | sawah   |           |                |           | 7.3    |        |
| 44 | 115 hari  | 15 batang | sedang | irigasi | >500 mdpl | 25 x 25 cm     | kemarau   | ton/ha | SRI    |
|    |           |           |        | sawah   |           |                |           | 7.52   |        |
| 45 | 110 hari  | 17 batang | sedang | irigasi | >500 mdpl | 25 x 25 cm     | penghujan | ton/ha | SRI    |
|    |           |           |        | sawah   |           | (25 - 50 cm) x |           | 8.8    |        |
| 46 | 115 hari  | 16 batang | sedang | irigasi | >500 mdpl | 12,5 cm        | penghujan | ton/ha | SRI    |
|    |           |           |        | sawah   |           |                |           | 7.2    |        |
| 47 | 115 hari  | 15 batang | sedang | irigasi | >500 mdpl | 25 x 25 cm     | penghujan | ton/ha | SRI    |
|    |           |           |        | sawah   |           | (25 - 50 cm) x |           | 12     | Jajar  |
| 48 | 118 hari  | 15 batang | sedang | irigasi | >500 mdpl | 12,5 cm        | kemarau   | ton/ha | Legowo |
|    | 110 - 115 |           |        | sawah   |           | (20 - 40 cm) x |           | 8.7    |        |
| 49 | hari      | 16 batang | sedang | irigasi | >500 mdpl | 10 cm          | penghujan | ton/ha | SRI    |
|    |           | 15 - 21   |        | sawah   |           | (25 - 50 cm) x |           | 9.3    | Jajar  |
| 50 | 125 hari  | batang    | sedang | irigasi | >500 mdpl | 12,5 cm        | kemarau   | ton/ha | Legowo |
|    |           | 16 - 22   |        | sawah   |           | (20 - 40 cm) x |           | 9.9    | Jajar  |
| 51 | 125 hari  | batang    | sedang | irigasi | >500 mdpl | 10 cm          | kemarau   | ton/ha | Legowo |
|    | 108 - 116 | 17 - 25   |        | sawah   |           | (25 - 50 cm) x |           | 7.0    |        |
| 52 | hari      | batang    | sedang | irigasi | >500 mdpl | 12,5 cm        | penghujan | ton/ha | SRI    |

## **Lampiran Source Code**

## miningC45.php

```
// perhitungan entropy
               $sqlEntropy = mysql query("SELECT
jml_kasus_total, jml_kasus_sri, jml_kasus_jarwo FROM mining_c45");
               while($rowEntropy
mysql_fetch_array($sqlEntropy)) {
                   $getJumlahKasusTotalEntropy
$rowEntropy['jml_kasus_total'];
                   $getJumlahKasusSriEntropy
$rowEntropy['jml kasus sri'];
                   $getJumlahKasusJarwoEntropy
$rowEntropy['jml kasus jarwo'];
                   $idEntropy = $rowEntropy['id'];
                   // jika jml kasus = 0 maka entropy = 0
                   if
                                                     ==
                      ($getJumlahKasusTotalEntropy
$getJumlahKasusSriEntropy == 0 OR $getJumlahKasusJarwoEntropy == 0)
                       q = 0;
                   // jika jml kasus sri = jml kasus jarwo, maka
entropy = 1
                      else
                            if ($getJumlahKasusSriEntropy ==
$getJumlahKasusJarwoEntropy) {
                       $getEntropy = 1;
                    } else { // jika jml kasus != 0, maka hitung
rumus entropy:
                       $perbandingan sri
$getJumlahKasusSriEntropy / $getJumlahKasusTotalEntropy;
                       $perbandingan_jarwo
$getJumlahKasusJarwoEntropy / $getJumlahKasusTotalEntropy;
                       $rumusEntropy = (-($perbandingan_sri)
log($perbandingan_sri,2)) + (-($perbandingan_jarwo)
log($perbandingan_jarwo,2));
                       $getEntropy = round($rumusEntropy,4); // 4
angka di belakang koma
// perhitungan information gain
               // ambil nilai entropy dari total (jumlah kasus
total)
               $sqlJumlahKasusTotalInfGain = mysql query("SELECT
jml kasus total, entropy FROM mining c45 WHERE atribut = 'Total'");
               $rowJumlahKasusTotalInfGain
mysql fetch array($sqlJumlahKasusTotalInfGain);
               $getJumlahKasusTotalInfGain
$rowJumlahKasusTotalInfGain['jml kasus total'];
               // rumus information gain
               $getInfGain = (-(($getJumlahKasusTotalEntropy /
$getJumlahKasusTotalInfGain) * ($getEntropy)));
// update inf gain temp (utk mencari nilai masing2 atribut)
               mysql query("UPDATE mining c45 SET inf gain temp =
$getInfGain WHERE id = $idEntropy");
               $getEntropy
$rowJumlahKasusTotalInfGain['entropy'];
```

```
// jumlahkan masing2 inf_gain_temp atribut
               $sqlAtributInfGain = mysql query("SELECT
SUM(inf gain temp) as inf gain FROM mining c45 WHERE atribut =
'$getAtribut'");
               while
                                ($rowAtributInfGain
mysql_fetch_array($sqlAtributInfGain)) {
                   $getAtributInfGain
                                                                =
$rowAtributInfGain['inf gain'];
                    // hitung inf gain
                    $getInfGainFix = round(($getEntropy
$getAtributInfGain),4);
// rumus split info
                $getSplitInfo = (($getJumlahKasusTotalEntropy /
$qetJumlahKasusTotalInfGain) * (log(($qetJumlahKasusTotalEntropy /
$getJumlahKasusTotalInfGain),2)));
mysql query("UPDATE mining c45 SET split info temp = $getSplitInfo
WHERE id = $idEntropy");
               // jumlahkan masing2 split info temp dari tiap
atribut
               $sqlAtributSplitInfo = mysql query("SELECT
SUM(split info temp) as split info FROM mining c45 WHERE atribut =
'$getAtribut'");
                                ($rowAtributSplitInfo
               while
mysql fetch array($sqlAtributSplitInfo)){
                    $getAtributSplitInfo
$rowAtributSplitInfo['split info'];
                    // split info fix (4 angka di belakang koma)
                    $getSplitInfoFix
(round($getAtributSplitInfo,4));
$sqlGainRatio = mysql query("SELECT id, inf gain, split info FROM
mining c45");
           while ($rowGainRatio
                                                                =
mysql fetch array($sqlGainRatio)) {
                $idGainRatio = $rowGainRatio['id'];
                // jika nilai inf gain == 0 dan split info == 0,
maka gain ratio = 0
                     ($rowGainRatio['inf gain'] == 0
$rowGainRatio['split info'] == 0){
                   $getGainRatio = 0;
                } else {
                   // rumus gain ratio
                   $qetGainRatio
round(($rowGainRatio['inf_gain']
$rowGainRatio['split_info']),4);
                }
```

## Lampiran Revisi Ujian Sidang



# KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI POLITEKNIK NEGERI MALANG JURUSAN TEKNOLOGI INFORMASI PROGRAM STUDI TEKNIK INFORMATIKA



JL. Soekarno Hatta PO Box 04 Malang Telp. (0341) 404424 pes. 1122

| FORM | DEVICE | CKDIDCI |
|------|--------|---------|

No. Skripsi: 184

| Nama  | Mahasiswa |
|-------|-----------|
| Tomas | A Witter  |

: M. Azzam Azizi **NIM** : 1641727019 : 3\/\%\.\%\.\%\.\.

Judul

: Metode Decision Tree Algoritma C4.5 Sebagai

Penentuan Teknik Budidaya Tanaman Padi

| NO | SARAN PERBAIKAN                       | PARAF |
|----|---------------------------------------|-------|
| ,  | coribation ulary testing C.45         | 1     |
| -  | but position data training talk radon |       |
|    | halan radom tinji be drapa hali       | TA    |
| -  | bayen ponjujui                        | )  '  |
| -  | centation implementar C.95 d'enveron  |       |
|    |                                       |       |
|    |                                       |       |
|    |                                       | ,     |
|    |                                       |       |

Malang, 31/8( 27)+.... Dosen Penguji,

( FAISPL PATUTONO)

FORM VERIFIKASI:
Laporan Akhir telah diperbaiki sesuai dengan saran perbaikan dari dosen penguji.

| PENGUJI/PEMBIMBING | NAMA           | TTD      | TANGGAL  |
|--------------------|----------------|----------|----------|
| Penguji            | FAISAC RATWOON | MIL      | 6/9/2017 |
| Pembimbing 1       | Ariah          | (//107 . |          |
| Pembimbing 2       |                | TOR      |          |



# KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI POLITEKNIK NEGERI MALANG JURUSAN TEKNOLOGI INFORMASI PROGRAM STUDI TEKNIK INFORMATIKA JL. Sockarno Hatta 10 Box 04 Malang Telp. (0341) 404424 pes. 1122



#### FORM REVISI SKRIPSI

No. Skripsi: 184

| Nama Mahasiswa |  |
|----------------|--|
| Tonggol Hitian |  |

: M. Azzam Azizi NIM : 1641727019

Judul

: Metode Decision Tree Algoritma C4.5 Sebagai Penentuan Teknik Budidaya Tanaman Padi

.....

| NO | SARAN PE           | ERBAIK  | AN         |          |     | PARAF      |
|----|--------------------|---------|------------|----------|-----|------------|
| 2  | tata tul<br>Atuga. | lis mye | di rapihan | Sescahan | dgn | <b>→</b> . |
|    |                    |         |            |          | 1   |            |
|    |                    |         |            |          |     |            |

| Malang, | 6- | 9- | 20 | 17 |
|---------|----|----|----|----|
| Dosen P |    |    |    |    |

FORM VERIFIKASI: Laporan Akhir telah diperbaiki sesuai dengan saran perbaikan dari dosen penguji.

| PENGUJI/PEMBIMBING | NAMA          | TTD    | TANGGAL  |
|--------------------|---------------|--------|----------|
| Penguji            | Diman wahyu w | 202    | 6-9-2017 |
| Pembimbing 1       | Ariadi        | CIMI . |          |
| Pembimbing 2       |               | MR.    |          |

## Lampiran ACC Abstrak



#### KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI POLITEKNIK NEGERI MALANG JURUSAN TEKNOLOGI INFORMASI PROGRAM STUDI TEKNIK INFORMATIKA JL. Soekarno Hatta PO Box 04 Malang Telp. (0341) 404424 pes. 1122



No. Skripsi : 184

## FORM VERIFIKASI

## ABSTRAK BAHASA INGGRIS DAN TATA TULIS BUKU SKRIPSI

Nama Mahasiswa : M.

: M. Azzam Azizi

NIM : 1641727019

Tanggal Ujian

: 31 Agustus 2017

Judul

: Metode Decision Tree Algoritma C4.5 Sebagai Penentuan Teknik Budidaya

Tanaman Padi

| NO | BAGIAN YANG DIVERIFIKASI  | NAMA<br>VERIFIKATOR                             | TANGGAL<br>VERIFIKASI | TTD   |
|----|---------------------------|-------------------------------------------------|-----------------------|-------|
| 1  | Abstrak Berbahasa Inggris | Farida Ulfa, S.Pd., M.Pd.                       | 18 Sept 2017          | 9690  |
| 2  | Tata Tulis Buku Skripsi   | Ariadi Retno Tri Hayati<br>Ririd, S.Kom., M.Kom | 20 Sept 2017          | allen |

## **BIODATA**

## Data Pribadi

Nama Lengkap : M. Azzam Azizi

Tempat, Tanggal Lahir : Jember, 9 November 1994

Jenis Kelamin : Laki - Laki

Kewarganegaraan : Indonesia

Alamat : Perumahan Mastrip Blok N-2, RT/RW 02/18, Kec.

Sumbersari, Kel. Sumbersari, Kab. Jember, Jawa Timur

Email : azzamazizi09@gmail.com

## Riwayat Pendidikan

2016 – 2017 : D4 Alih Jenjang – Politeknik Negeri Malang

2013 – 2016 : D3 – Politeknik Negeri Jember

2010 – 2013 : SMAN Negeri 5 Jember

2007 – 2010 : SMPN Negeri 3 Jember

2001 – 2007 : SD Muhammadiyah 1 Jember

1999 – 2001 : TK Adh - Dhuha