Analysis 2 W1-1

fat

February 20, 2024

1 Differentiation and Integration

Recall that if f is continuous, then $F(x) = \int_a^x f(t)dt$ is differentiable. f Lebesgue integrable?

The derivative of F is the limit

$$\lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t)dt$$
 (1)

$$=\frac{1}{|I|}\int_{I}f(t)dt\tag{2}$$

where I = (x, x + h). The average should $\to f(x)$ as $|I| \to 0$. But this would not hold of all x if f is just Lebesgue integrable. (f is just defined a.e.).

Want: Understand the set of x s.t. the convergence holds.

Problem: Given f in $L^1(\mathbb{R}^d)$, for which x one has

$$\lim_{m(B)\to 0, x\in B}\frac{1}{m(B)}\int_B f(y)dy=f(x)$$

If f is continuous, this holds for all $x \in \mathbb{R}^d$. In general, need to understand how the averages of f behave.

2 Hardy-Littlewood maximal function

Definition 1. If $f \in L^1(\mathbb{R}^d)$, we define its **maximal function** f^* by

$$f^*(x) = \sup_{B \ni x} \frac{1}{m(B)} \int_B |f(y)| dy$$
 (3)

Claim. f^* is measurable.

Proof. Wil show $\{f^* > \alpha\}$ is open. Let $y \in \{f^* > \alpha\}$. Then exists ball $B \in y$ s.t.

$$\frac{1}{m(B)}\int_{B}|f(t)|dt>\alpha$$

If x is sufficiently close to y, then $x \in B$. $\Rightarrow f^*(x) > \alpha$. $\Rightarrow \{f^* > \alpha\}$ is open.

Theorem 1. For all $\alpha > 0$,

$$m(\{x \in \mathbb{R}^d : f^*(x) > \alpha\}) \le \frac{3^d}{\alpha} ||f||_{L^1(\mathbb{R}^d)}$$

Some discussions:

- We have $f^*(x) < \infty$ for a.e. x: Let $\alpha \to \infty$ on both sides. $RHS \to 0$, $LHS \to m(\{x: f^*(x) = \infty\})$.
- For any $f \in L^1(\mathbb{R}^d)$, for any $\alpha > 0$,

$$m(\{x \in \mathbb{R}^d : |f(x)| > \alpha\}) \le \frac{1}{\alpha} ||f||_{L^1}$$
 (4)

Proof. Chebyshev/Markov inequality

$$\int_{\mathbb{R}^d} |f| = \int_{\{|f| > \alpha\}} |f| + \int_{\{|f| < \alpha\}} |f| \le \int_{\{|f| > \alpha\}} \alpha = \alpha m(\{|f| > \alpha\})$$

Will show later that $f^*(x) \leq |f(x)|$ for a.e. x. So the inequality in Theorem is sharper in general. In fact, $f^*(x) \notin L^1$ in general.

• f^* is of weak L^1 .

Definition 2. A function g is of weak L^1 if

$$\sup_{\alpha>0} \alpha m(\{x \in \mathbb{R}^d : |g(x)| > \alpha\}) < \infty$$

 $L^1 \Rightarrow \text{weak } L^1$, converse does not hold.

Notation: If B = B(x, r) is a ball and if c > 0, we write cB = B(x, cr).

Lemma 1 (Vitali). Suppose that $\mathcal{B} = \{B_1, ..., B_N\}$ is a finite collection of open balls in \mathbb{R}^d , exists a disjoint subcollection $\{B_{i_1}, ..., B_{i_k}\}$ of \mathcal{B} s.t.

$$\bigcup_{l=1}^{N} B_l \in \bigcup_{j=1}^{k} 3B_{i_j}$$

and hence

$$m(\bigcup_{l=1}^{N} B_l) \le 3^d \sum_{j=1}^{k} m(B_{i_j})$$

Proof. Observation: if B and B' are balls that intersect, and if $B' \leq \text{radius}$ of B, then $B' \subset 3B$. Pick a ball B_{i_1} in B with maximal radius. Remove the ball B_{i_1} and any ball that intersects B_{i_1} from B. All balls we removed are contained in $3B_{i_1}$. In the remaining collection of balls, pick B_{i_2} with maximal radius. Repeat the same procedure.

Proof of Theorem. Write $E_{\alpha} = \{x \in \mathbb{R}^d : f^*(x) > \alpha\}$. If $x \in E_{\alpha}$, \exists a ball $B_x \ni x$ s.t.

$$\frac{1}{m(B_x)} \int_{B_x} |f(y)| dy > \alpha$$

$$\Leftrightarrow m(B_x) < \frac{1}{\alpha} \int_{B_x} |f(y)| dy$$

Let $K \subset E_{\alpha}$ be compact. Since $K \subset \bigcup_{x \in E_{\alpha}} B_x$, exists a finite subcover of K, say $K \subset \bigcup_{l=1}^N B_l$. By Vitali's covering lemma, exists a disjoint subcollection of balls $B_{i_1}, ..., B_{i_k}$ s.t.

$$\begin{split} m(\bigcup_{l=1}^N B_l) &\leq 3^d \sum_{i=1}^k m(B_{i_j}) \\ \Rightarrow m(K) &\leq m(\bigcup_{l=1}^N B_l) \leq 3^d \sum_{j=1}^k m(B_{i_j}) \leq \frac{3^d}{\alpha} \sum_{j=1}^k \int_{B_{i_j}} |f(y)| dy \\ &\stackrel{\text{disjointness}}{=} \frac{3^d}{\alpha} \int_{\bigcup_{j=1}^k B_{i_j}} |f(y)| dy \leq \frac{3^d}{\alpha} \int_{\mathbb{R}^d} |f(y)| dy = \frac{3^d}{\alpha} ||f||_{L^1} \end{split}$$

So $m(K) \leq \frac{3^d}{\alpha} ||f||_{L^1}$ for all compact $K \subset E_{\alpha}$.

Fact: $m(E_{\alpha}) = \sup\{m(K) : K \subset E_{\alpha} \text{compact}\}$. (inner regularity). So $m(E_{\alpha}) \leq \frac{3^d}{\alpha} ||f||_{L^1}$.

Theorem 2 (Lebesgue differentiation). If $f \in L^1(\mathbb{R}^d)$, then for a.e. x,

$$\lim_{m(B)\to 0, B\ni x} \frac{1}{m(B)} \int_{B} f(y)dy = f(x)$$

Proof. For $\alpha > 0$, define

$$E_{\alpha} = \left\{ x : \limsup_{m(B) \to 0, x \in B} \left| \frac{1}{m(B)} \int_{B} f(y) dy - f(x) \right| > \alpha \right\}$$

Will show $m(E_{\alpha}) = 0 \forall \alpha > 0$ If this holds, $\bigcup_{n=1}^{\infty} E_{\frac{1}{n}}$ has measure zero. This implies the theorem. Fix $\alpha > 0$. Recall for each $\epsilon > 0$, exists a continuous g of compact support s.t. $||f - g||_{L^{1}} < \epsilon$. Continuity of g

$$\Rightarrow \lim_{m(B)\to 0, x\in B} \frac{1}{m(B)} \int_B g(y) dy = g(x) \forall x$$

$$\frac{1}{m(B)} \int_b f(y) dy - f(x) = \left[\frac{1}{m(B)} \int_B (f(y) - g(y)) dy \right] + \left[\frac{1}{m(B)} \int_B g(y) dy - g(x) \right] + \left[g(x) - f(x) \right]$$

Where the first term is $(f-g)^*(x)$ and the second term goes to 0 since g is continuous.

$$\Rightarrow \limsup_{m(B) \rightarrow 0, x \in B} \left| \frac{1}{m(B)} \int_{B} f(y) dy - f(x) \right| \leq (f - g) * (x) + |g(x) - f(x)|$$

Let $F_{\alpha} = \{x : (f-g)^*(x) > \frac{\alpha}{2}\}, G_{\alpha} = \{x : |g(x) - f(x)| > \frac{\alpha}{2}\}.$ Observe: $E_{\alpha} \subset F_{\alpha} \bigcup G_{\alpha}$.

$$m(G_{\alpha}) \le \frac{2}{\alpha} ||g - f||_{L^{1}} \le \frac{2\epsilon}{\alpha}$$

$$m(F_{\alpha}) \leq \frac{2 \cdot 3^d}{\alpha} ||f - g||_{L^1} \leq \frac{2 \cdot 3^d \epsilon}{\alpha}$$

Observe: $E_{\alpha} \subset F_{\alpha} \bigcup G_{\alpha}$.

$$m(G_{\alpha}) \leq \frac{2}{\alpha}||g - f||_{L^{1}} \leq \frac{2\epsilon}{\alpha} \text{(Chebyshev)}$$

$$m(F_{\alpha}) \leq \frac{2 \cdot 3^{d}}{\alpha}||f - g||_{L^{1}} \leq \frac{2 \cdot 3^{d}}{\alpha} \epsilon \text{(Theorem)}$$

$$\Rightarrow m(E_{\alpha}) \leq C\epsilon$$

Let $\epsilon \to 0$, we get $m(E_{\alpha}) = 0$.

Corollary 1. One has $f^*(x) \leq |f(x)|$ for a.e. x.

Proof. Apply the Lebesgue diff theorem to |f|.

We cam weaken the assumption a bit.

Definition 3. A measurable function f on \mathbb{R}^d is **locally integrable** if for every ball B, the function $f\chi_B$ is integrable.

$$L^1_{loc}(\mathbb{R}^d) = \{ \text{locally integrable functions} \}$$

The Lebesgue differentiation theorem holds for locally integrable functions. f(x) = x is locally integrable but not integrable.

Definition 4. If $E \subset \mathbb{R}^d$ is measurable and $x \in \mathbb{R}^d$, we say that x is a **density point** of E if

$$\lim_{m(B)\to 0, x\in B}\frac{m(B\bigcap E)}{m(B)}=1$$

Intuition: If x is a density point, then $m(B \cap E) \sim m(B)$. E covers a large portion of B.

Corollary 2 (Lebesgue density theorem). Suppose that $E \subset \mathbb{R}^d$ is measurable. Then a.e. $x \in E$ is a density point of E, a.e. $x \notin E$ is not a density point of E.

Proof. Apply the Lebesgue diff theorem to χ_E .

Definition 5. Let $f \in L^1_{loc}(\mathbb{R}^d)$. The **Lebesgue set** of f is the set of all points $x \in \mathbb{R}^d$ s.t. $|f(x)| < \infty$ and

$$\lim_{m(B)\to 0, x\in B} \frac{1}{m(B)} \int_{B} |f(y) - f(x)| dy = 0$$

Write the set Leb(f).

Corollary 3. If $f \in L^1_{loc}(\mathbb{R}^d)$, then $x \in Leb(f)$ for a.e. x.

Proof. For each $r \in \mathbb{Q}$, there exists E_r of measure zero s.t.

$$\frac{1}{m(B)}\int_{B}|f(y)-r|dy=|f(x)-r|$$

for all $x \notin E_r$. Then $E \equiv \bigcup_{r \in \mathbb{Q}} E_r$ is also of measure zero. Suppose that $x \notin E$ and $|f(x)| < \infty$. Let $\epsilon > 0$ be given. Then $\exists r \in \mathbb{Q}$ s.t. $|f(x) - r| < \frac{\epsilon}{2}$.

$$\begin{split} \frac{1}{m(B)} \int_{B} |f(y) - f(x)| dx &\leq \frac{1}{m(B)} \int_{B} |f(y) - r| dy + \frac{1}{m(B)} \int_{B} |r - f(x)| dy \\ \\ \Rightarrow \lim_{m(B) \to 0, x \in B} \int_{B} |f(y) - f(x)| dx &\leq 2|f(x) - r| < \epsilon \end{split}$$

$$\Rightarrow x \in Leb(f)$$

 $E^c \subset Leb(f)$, E has measure zero. So a.e. point $x \in Leb(f)$.

Remark 1. $f \in L^1(\mathbb{R}^d)$ are equivalence classes. But the set of points where the limit $\lim_{m(B)\to 0, x\in B} \frac{1}{m(B)} \int_B f(y) dy$ exists is independent of the representation of f chosen. But Leb(f) depends on the representation function f.

3 Approximations to the identity

Definition 6. A family of functions $(K_{\delta})_{\delta>0}$ is called an **approximation to the identity** if they are integrable and $\exists A \in \mathbb{R}$ s.t.

- (a) $\int K_{\delta} = 1$,
- (b) $|K_{\delta}(x)| \leq A\delta^{-d}$ for all $\delta > 0$ and all $x \in \mathbb{R}^d$,
- (c) $|K_{\delta}(x)| \leq \frac{A\delta}{|x|^{d+1}}$ for all $\delta > 0$ and all $x \in \mathbb{R}^d$.

Observations:

 $\int |K_{\delta}| \leq A'$.

Proof. Recall: $\exists c > 0$ s.t. $\forall \epsilon > 0$,

$$\int_{\{|x| \ge \epsilon\}} \frac{dx}{|x|^{d+1}} \le \frac{C}{\epsilon}$$

$$|K_{\delta}| = \int_{\{|x| < \delta\}} |K_{\delta}| + \int_{\{|x| \ge \delta\}} |K_{\delta}|$$

$$\le A\delta^{-d} \int_{\{|x| < \delta\}} 1 + A\delta \int_{\{|x| \ge \delta\}} \frac{dx}{|x|^{d+1}} = A'$$

For every $\eta > 0$,

$$\lim_{\delta \to 0} \int_{\{|x| > n\}} |K_{\delta}| = 0$$

5

Proof.

$$\int_{\{|x| \geq \eta\}} |K_{\delta}| \leq A\delta \int_{\{|x| \geq \eta\}} \frac{dx}{|x|^{d+1}} \leq \frac{C\delta}{\eta} \overset{\delta \to 0}{\to} 0$$

An example:

$$K_{\delta}(x) = \frac{1}{\delta^d} \phi(\frac{x}{\delta})$$

 ϕ is a nonnegative bounded function in \mathbb{R}^d s.t. $\int \phi = 1$.

The mapping

$$f \to f * K_{\delta}$$

converges to the identity map $f \to f$ as $\delta \to 0$ in various senses. As $\delta \to 0$, K_{δ} converges to the "Dirac delta function" D, informally defined by

$$D(x) = \begin{cases} \infty & \text{if} \quad x = 0\\ 0 & \text{if} \quad x \neq 0 \end{cases}$$

and $\int D(x)dx = 1$. Doesn't make sense when we think of D as an integrable function. Can think of

$$f * D = \int f(x - y)D(y)dy = 0 (y \neq 0)$$

The mass of D is concentrated at 0. Intuitively, (f * D)(x) = f(x). (Think of D as the identity element for convolutions.) Can be rigorously defined, but we need abstract measure theory and functional analysis.

Theorem 3. If $(K_{\delta})_{\delta>0}$ is an approximation to the identity and $f\in L^1(\mathbb{R}^d)$, then

$$(f * K_{\delta})(x) \to f(x) \forall x \in Leb(f)$$

In particular, the convergence holds for a.e. x.

Lemma 2. Suppose that $f \in L^1(\mathbb{R}^d)$ and $x \in Leb(f)$. For r > 0, define

$$A(r) = \frac{1}{r^d} \int_{\{|y| < r\}} |f(x - y) - f(x)| dy$$

then A is continuous in r and $A(r) \to 0$ as $r \to 0$. Moreover, $\exists M > 0$ s.t. $A(r) \le M \ \forall r > 0$.

Proof.

Recall: If $f \in L^1(\mathbb{R}^d)$, then $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. $m(E) < \delta \Rightarrow \int_E |f| < \epsilon$. (Absolute continuity). Check that A is continuous by using this. If $x \in Leb(f)$,

$$\lim_{m(b) \to 0, x \in B} \frac{1}{m(B)} \int_{B} |f(y) - f(x)| dy = \lim_{r \to 0} \frac{1}{c_d r^d} \int_{\{|y - x| \le r\}} |f(y) - f(x)| dy$$

$$= \lim_{r \to 0} \frac{1}{c_d r^d} \int_{\{|z| \le r\}} |f(x - z) - f(x)| dz = 0$$

This, together with continuity, shows that A is bounded for $0 < r \le 1$. Why is A bounded for r > 1?

$$A(r) = \frac{1}{r^d} \int_{\{|y| < r\}} |f(x - y) - f(x)| dy$$

$$\leq \frac{1}{r^d} \int_{\{|y| < r\}} |f(x - y)| dy + \frac{1}{r^d} m(\{|y| < r\}) |f(x)| \leq \frac{1}{r^d} ||f||_{L^1} + c_d |f(x)|$$

So A(r) is bounded.