MATH 11 WORKSHEET: 3d & spheres

A) Write the formula for the distance from P=(h,k,l) of the point Q=(x,y,z):

Thus write the Cartesian equation for a sphere radius r and center (h,k,l):

- B) Describe the object given the equation, or vise versa:
 - i) $(x+1)^2 + y^2 + z^2 = 1$
 - ii) plane passing through (-1,-2,-3) pravalled to yz-plane
 - ii) 0 ≤ y ≤ 2
 - iv) y2+22 = 4
- Find (x,y,z) coords of the vector of length 1 lying in xy plane, 60° from the x-axis (& with y>0):

This vector is now rotated 45° up towards z-axis; find (x,y,z):

MATH 11 WORKSHEET: 3d & spheres	9/22/10 Barrett
~ SOLUTIONS ~	
A) Write the formula for the distance from P=(h,k,l) of the point Q=(x	,y,z):
dist = \((x-h)^2 + (y-k)^2 + (z-l)^2	
Thus write the Cartesian equation for a sphere radius r and center (h, means all plo is 183 with dist r f	(k, l):
ic $(x-h)^2 + (y-k)^2 + (2-l)^2 = r^2$	on (n, sl
B) Describe the object given the equation, or vice versa:	
i) $(x+1)^2 + y^2 + z^2 = 1$ sphere radius 1 center (-1, 0, 6)	2
	9)
ii) plane passing through (-1,-2,-3) parallel to yz-plane note sign.	
(iii) $0 \le y \le 2$	
iv) $y^2 + z^2 = 4$ the slab' (y=2	
iv) $y^2 + z^2 = 4$ note: $x = anything!$ but not a circle. Cylinder. Find (x = anything) Find (x = anything) A circle extended along x: Cylinder.	
but not a circle. Since extended along x: Cylinder. Find (x,y2) coords of the vector of length 1	C0°
Find (x,y,2) coords of the vector of length 1 lying in xy plane from the x-axis (& with y>0):)
This vector is now rotated 45° up towards z-axis; find (x,y,z): into I factor cos 45 = \$\frac{1}{2}\$ = \$\left(\frac{1}{2\sqrt{2}}\right) \frac{1}{2\sqrt{2}}\right) \frac{1}{2\sqrt{2}}\right.	