Semantic Segmentation and Adversarial Domain Adaptation

Student: Yifan Bao Rui Feng Professor: Min Chi

Introduction

Image Segmentation: Deep learning-based image segmentation models, like deeplab family, often achieving the highest accuracy, have received a lot of attention.

Figure 1: Examples of Image Segmentation.

Domain Adaptation: To reduce the labeling cost, unsupervised domain adaptation (UDA) approaches are proposed to transfer knowledge from labeled synthesized datasets to unlabeled real-world datasets.

Datasets

Cityscapes: It includes 5,000 annotated images with 2048 × 1024 resolution, grouped into 8 categories.

SYNTHIA: We use the SYNTHIA-RANDCITYSCAPES subset consisting of 9,400 1280×760 synthetic images.

Metrics

Intersection over Union (IoU) is defined as

$$IoU = \frac{Intersection}{Union} = \frac{TP}{TP + FP + FN}$$

where TP (true positive) represents a pixel that is correctly predicted to belong to the given class. Similar as FP and FN.

Mean-loU (mloU) is defined as the average loU over all classes. $\sum I_0U_i$

 $mIoU == \frac{\sum_{n} IoU_{i}}{n}$

where n is the number of classes and IoU_i is the IoU metric for the i-th class

Model Framework

AdaptSegNet: Figure 2 shows that AdaptSegNet consists of two parts: one is the **segmentation network**, the other is the **domain adaptation module.** We use DeepLabV2 and DeepLabV3+ as the segmentation network separately

Figure 2: Adapt Segnet Architecture

Qualitativie and Quantitative Results

Figure 3 shows the training results of DeeplabV2 model on SYNTHIA dataset.

Figure 3: Segmentation Result of DeeplabV2 on SYNTHIA.

Qualitativie and Quantitative Results (Cond)

Figure 4 compares the segmentation results with and without domain adaptation. We can see that adversarial training along with DeeplabV3+ achieves the best visual results on target domain.

Figure 4: Qualitative Image Segmentation Results on the Cityscapes Dataset.

Table1 is our quantitative results. As expected, the adaptation model along with DeeplabV3+ have the best mIoU(mean intersection over union) results.

Table1: Quantitative Results for SYNTHIA-to-Cityscapes experiments

| Method | Seg Model | Seg Model

Conclusion

- For segmentation before adaptation, DeeplabV2 performs better due to our limited time for fine-tuning DeeplabV3+ model.
- Results show that domain adaptation with DeeplabV3+ model performs favorably against DeeplabV2(which is used in the original paper) even it is less accurate before adaptation.
- The adversarial domain adaptation works well on big datasets with relatively big domain discrepancy.