Combo 12

3 de julio de 2024

1. Enunciado

Defina cuándo un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -computable, cuándo es llamado Σ -enumerable y defina "el programa \mathcal{P} enumera a S".

2. Resolución

2.1. Conjunto Σ -computable

Un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ será llamado Σ -computable cuando la función $\chi_S^{\omega^n\times\Sigma^{*m}}$ sea Σ -computable.

2.2. Conjunto Σ -enumerable

Un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ será llamado Σ -enumerable cuando sea vacío o haya una función $F: \omega \to \omega^n \times \Sigma^{*m}$ tal que $I_F = S$ y $F_{(i)}$ sea Σ -computable, para cada $i \in \{1, ..., n+m\}$.

2.3. Programa que enumera a S

Sea $S \subseteq \omega^n \times \Sigma^{*m}$ un conjunto no vacio. Entonces son equivalentes:

- (1) S es Σ -enumerable
- (2) Hay un programa $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$ tal que:
 - a) Para cada $x \in \omega$, tenemos que \mathcal{P} se detiene partiendo desde el estado ||x|| y llega a un estado de la forma $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...))$, donde $(x_1,...,x_n,\alpha_1,...,\alpha_m) \in S$.
 - b) Para cada $(x_1,...x_n,\alpha_1,...,\alpha_m) \in S$ hay un $x \in \omega$ tal que \mathcal{P} se detiene partiendo desde el estado ||x|| y llega a un estado de la forma $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...))$

En este caso, decimos que el programa \mathcal{P} descripto enumera a S.