MSCI152: Introduction to Business Intelligence and Analytics

Lecture 2: Sampling Methods

Lancaster University Management School

Overview

- Collecting sample data
- Bias and uncertainty
- Sampling Process
- Sampling Methods

Collecting sample data

Sample: A subset of members selected from a population

- Exhibits characteristics typical of those possessed by the population of interest
- Data is collected from the sample with the objective to analyse and make inferences about the population
- Sample must be well selected to well represent the population

Examples of data from samples

- Annual inflation rate
- Annual GDP (Gross Domestic Product)
- Immigration and emigration figures
- Results of medical experiments
- Weight of infants at birth by country
- · Satisfaction of customers purchasing at Amazon online
- Conversion rate of British Pound against Euro
- Interest rate on car loans

Sampling: Data collection from samples

Types of sampling

 Activity we conduct to access a sample (or samples) within the population.

Methods of sampling

 Action we take to construct a sample (or samples) within the population

Difference between uncertainty and bias

Uncertainty:

- Limits of knowledge due to using a sample rather than the whole population
- Can be measured ("sampling variation"): see textbook, not covered this year
- Can be reduced (at a cost) by taking a larger sample and structuring the sample (e.g., stratified sampling)

Bias:

- Nature of the method means that the sample results are likely to be systematically different to the population
- To get rid of bias need to change the method

Difference between uncertainty and bias

Suppose we want to estimate accurately the average height of Lancaster undergraduates

Method 1: High uncertainty (but not biased)

- List of all undergraduate students
- Choose 2 people at random as the sample
- Measure the average height of the sample

Method 2: Biased (but low uncertainty)

- Reduce the list of students by including only male students
- Choose 100 at random as the sample
- Measure the average height of the sample

Stages of the sampling process

Defining the population of interest

Planning stage

- Specify a set of elements that are possible to measure
- Specify a sampling method for selecting the elements
- Determining the sample size

Implementing the sampling plan

Conducting sampling (i.e., collecting data!)

Sampling Methods

We want the sample to be a fair representation of the whole population (no bias)

We also want the process to be efficient

Useful sampling methods:

- Simple random sampling
- Systematic sampling
- Stratified sampling
- Cluster sampling
- Convenience sampling
- Voluntary response sampling
- Quota sampling

Simple Random Sampling

Selection so that each individual member of the population has an equal chance of being selected

Hence, every subset of size n ($n \ge 1$) elements has an equal chance of selection from population of size N ($n \le N$)

Simple Random Sampling

Examples of how to achieve it:

- Flip a coin
- Throw a die
- Pull names from a hat
- Use random numbers on a computerised list

Examples of use:

- Select staff members from a company for a detailed interview
- Jury service: random selection from electoral register

Simple Random Sampling

Advantages:

- Pure form of sampling, conceptually simple
- No inherent bias
- Can analyse well mathematically
- The textbooks like this method best !!

Disadvantages:

- Need to be able to list the whole population
 - often impractical, time-consuming or impossible
- Subject to sampling variation
 - may get an unusual sample by chance
 - some other methods can make this less likely
 - particularly an issue if relatively small sample

Systematic Sampling

How to achieve it:

- Choose an **integer positive number** *k*
- Select some starting point (often at random)
- Then select **every** k^{th} **element** in the population
- e.g., k = 3 (a 1 in 3 sample)

Systematic Sampling

How to get a "1 in k" sample

- Find a random number r between 1 and k
- Include the r^{th} , the $(k+r)^{\text{th}}$, $(2k+r)^{\text{th}}$, etc.
- ullet e.g., if k=100 let r=57, then take the $57^{
 m th}$, $157^{
 m th}$, $257^{
 m th}$, ...

For example, every k^{th} person arriving at a shop, every k^{th} item manufactured, etc.

Every item still has an equal chance of being selected

But not every combination has equal chance

e.g.: if you are chosen then the person sitting next to you cannot be

Use of Systematic Sampling

Quality control:

- examine every 100th car produced
- Not suitable for smaller items (e.g., every 100th nail)

Local council checking up on loft insulation grants:

- Every 4th recipient checked if they already had loft insulation
- Every 9th recipient checked afterwards to see if they had actually installed it
- So every 36th recipient got checked both ways

Museum wanting to know views of customers:

- Interview every 50th visitor (e.g., with a financial incentive)
- e.g., every customer whose ticket number ends in 33 or 83

Systematic Sampling

Advantages:

- You can do it as you go along
- You do not have to have the complete population available
- Conceptually simple
- Easy to do it and easy to explain how to do it
- May be very convenient
 - e.g., for the museum interviewees do not accumulate
- May make variety more likely than simple random sampling
 - e.g., for the museum we get visitors all day long

May have to be careful to avoid fixed patterns

 e.g., if you check on the typesetting of a newspaper every 28 days you always get the same day of the week

Stratified Sampling

Stratum \sim level, layer, region, etc

Population is heterogeneous and composed of strata (e.g., gender, income, religion, education).

How to achieve it:

- Divide your population into "strata"
- Sample within each stratum (random or systematic)

Divide your population into "strata"

- Results from each stratum are expected to be different
- More variation is expected between strata than within strata
- Each member of the population in one stratum only
- E.g., for sampling buying preferences we could have 6 strata:

```
 \begin{aligned} & \{ \textit{female} \leq 25 \}, \ \{ 25 < \textit{female} \leq 50 \}, \ \{ \textit{female} > 50 \}, \\ & \{ \textit{male} \leq 25 \}, \ \{ 25 < \textit{male} \leq 50 \}, \{ \textit{male} > 50 \} \end{aligned}
```

Stratified Sampling

Defining your strata: Think carefully

- stratum for people whose names begin with J: no sense unless studying names
- Geographical strata may make sense when sampling housing costs, but may not when sampling favourite films
- It needs to be practical, i.e., you need to know into which stratum each individual falls

Sampling within each stratum

- Either: sample proportionately get a sample of the same size from every stratum
- Or: sample disproportionately extrapolate strata separately (get larger samples from strata that might be expected to vary more; this will give a more reliable final outcome)

Stratified Sampling: Example

Quality control in a pie company

- It wants to assess the quality of pies it produces
- Different types of pie may be different
- Pies produced in different factories may be different
- Pies produced on different days of the week may be different

So, define three strata

- By (1) pie type, (2) factory, and (3) day of production
- E.g., {Pork pie, Lancaster, Tuesday}
- Take a sample within each stratum

Stratified Sampling

Advantages:

- Good at reducing sampling variation
- Sample is more representative and so we can be more confident about extrapolating results
- Avoids the problem that a simple random sample could be unusual by chance
- Covers variety in population
- May give much more useful information
- whether about pies or about shopping habits

Disadvantages:

- Need to identify relevant strata
- Need stratified information about the population

Cluster Sampling

How to achieve it:

- Divide the population into clusters
- (Randomly) select some of those clusters
- Sample or take all from selected clusters

Assumes clusters are "mini populations"

Cluster Sampling

Single-stage:

- Divide population into clusters
- Select clusters to sample from at random
- Choose (or sample from) all the members of selected clusters

Multi-stage:

- Several stages of selecting clusters at random
- Clusters within clusters
- Final stage may be random sample of individuals

Cluster Sampling

Examples of clusters:

- **Geographical:** province, county, town, district, street, etc.
- Organisation: company, school, university, etc.
- Products: batch, carton, box, etc.

Advantage:

Often cheaper and quicker

Disadvantage:

- Clusters may not be truly representative
- depends on differences between the clusters

Stratified vs. Cluster Sampling

Both divide population into groups, but

Stratified sampling:

- Groups have different characteristics
- Choose members from each group

Cluster sampling:

- Each group is a mini version of the whole population
- Choose some groups only and ignore the others

Convenience Sampling

Basic: Choose anyone/anything

Market research

- Choose people who look friendly?
- Ignore the fact that some people do not want to talk to you, or return your questionnaire
- often inevitable; called a "voluntary response" sample

Quality control:

- Choose items that are easy to access (those on top of a pile)
- Companies wanting to know about new products
- Easiest to ask current customers
- but really want to know about potential new customers

Voluntary Response Sampling

Invite a group to respond

 e.g. Internet surveys, customer satisfaction surveys, TV/radio phone-in polls

Advantage:

Cheap and quick

Disadvantage:

- Problem is low response rate, e.g. may only get 5%
- Those with strong opinions are more likely to respond
- Those with negative opinions may be more likely to respond

Quota Sampling

How to achieve it:

- Stratified sample, select strata
- Within each stratum do convenience sampling until a given quota (number) is reached

E.g., surveys in the high street: six strata

- $\{females < 25\}, \{25 \le females < 50\}, \{females \ge 50\}, \{males < 25\}, \{25 \le males < 50\}, \{males \ge 50\}$
- get 100 in each stratum

E.g., surveys in Lancaster University: two strata

- {female students 60%}, {male students 40%}
- get 60 females and 40 males into a sample of 100

Very hard to avoid serious bias

• but a lot better than basic convenience sampling

Other Sampling Issues

How to collect the data?

post / phone / Internet / interviews / questionnaires

How much data do you need?

The more the better (as long as the computer can handle it)

Non-response

- For some methods, may only get 5% or lower response rate
- Need to consider if that introduces bias
- How can it be minimised?

Questionnaire design

Much harder than most people think

Wrap up

Here we:

Discussed Sampling methods

Next time:

Sampling issues