EXTRA PRACTICE

Math 10 · Mr. Merrick · September 11, 2025

- 1. $12^{2x+1} = 2^{3x+7} \cdot 3^{3x-4}$ [Write $12 = (2^2 \cdot 3)$. Then $12^{2x+1} = 2^{4x+2} \cdot 3^{2x+1}$. Match prime exponents with RHS $2^{3x+7} \cdot 3^{3x-4}$: $4x+2=3x+7 \Rightarrow x=5$ and $2x+1=3x-4 \Rightarrow x=5$.]
- 2. If $x^3y^5 = 2^{11}3^{13}$ and $\frac{x}{y^2} = \frac{1}{27}$, find x and y. [Let $x = 2^a3^b$, $y = 2^c3^d$. Then $\frac{x}{y^2} = 3^{-3}$ gives a 2c = 0, b 2d = -3. Also x^3y^5 gives 3a + 5c = 11, 3b + 5d = 13. Solve: from a = 2c, so $6c + 5c = 11 \Rightarrow c = 1$, hence a = 2. From b = 2d 3 and $3(2d 3) + 5d = 13 \Rightarrow 11d = 22 \Rightarrow d = 2$, so b = 1. Thus $x = 2^2 \cdot 3 = 12$, $y = 2 \cdot 3^2 = 18$.]
- 3. $y = ax^r$ passes through (2,1) and (32,4). Find r. $\left[\frac{1}{4} = \frac{a2^r}{a32^r} = (\frac{1}{16})^r$. So $16^r = 4 = 2^2 \Rightarrow 2^{4r} = 2^2 \Rightarrow r = \frac{1}{2}$.
- 4. Solve for x and y: $2^{x+3} + 2^x = 3^{y+2} 3^y$ [Factor: $2^x(8+1) = 3^y(9-1) \Rightarrow 9 \cdot 2^x = 8 \cdot 3^y$. Writing $9 = 3^2$, $8 = 2^3$, we get $2^{x-3} 3^2 = 3^y$. Hence $2^{x-3} = 1 \Rightarrow x = 3$ and then $3^2 = 3^y \Rightarrow y = 2$.]
- 5. If $f(x) = 2^{4x-2}$, find $f(x) \cdot f(1-x)$ in simplest form. $[f(1-x) = 2^{4(1-x)-2} = 2^{2-4x}]$. Product $= 2^{(4x-2)+(2-4x)} = 2^0 = 1$.
- 6. Solve for x and y: $3^{x+2} + 2^{x+2} + 2^x = 2^{x+5} + 3^x$ [Group: $(3^{x+2} 3^x) = (2^{x+5} (2^{x+2} + 2^x))$. That is $3^x(9-1) = 2^x(32-4-1)$, i.e. $8 \cdot 3^x = 27 \cdot 2^x$. Thus $(\frac{3}{2})^x = \frac{27}{8} = (\frac{3}{2})^3 \Rightarrow x = 3$.]
- 7. Solve for x: $5^{x-1} = 125 \cdot 25^x$ [Convert to base 5: RHS = $5^3 \cdot (5^2)^x = 5^{2x+3}$. So $5^{x-1} = 5^{2x+3} \Rightarrow x 1 = 2x + 3 \Rightarrow x = -4$.]
- 8. If $p^2q^3 = 2^6 \cdot 3^9$ and $\frac{p}{q} = 6$, find p and q. Answer in positive index form. [No integer solution. Let $p = 2^a 3^b$, $q = 2^c 3^d$. From $p/q = 2 \cdot 3$ we get a c = 1, b d = 1. From p^2q^3 we get 2a + 3c = 6, 2b + 3d = 9. Solve to get $c = \frac{4}{5}$, $d = \frac{7}{5}$, so $q = 2^{4/5} 3^{7/5}$ and $p = 6q = 2^{9/5} 3^{12/5}$.]
- 9. The function $y = k \cdot a^x$ passes through (0,3) and (2,12). Find a. [From (0,3), k = 3. Then $12 = 3a^2 \Rightarrow a^2 = 4 \Rightarrow a = 2$ (positive base).]
- 10. $7^{m+1} 7^m = 6 \cdot 7^2$. Solve for m. [Factor $7^m(7-1) = 6 \cdot 49 \Rightarrow 6 \cdot 7^m = 294 \Rightarrow 7^m = 49 \Rightarrow m = 2$.]
- 11. If $g(x) = 3^{2x+1}$, compute $\frac{g(x+1)}{g(x-1)}$. $\left[\frac{3^{2(x+1)+1}}{3^{2(x-1)+1}} = 3^{(2x+3)-(2x-1)} = 3^4 = 81.\right]$
- 12. Solve for integers x, y: $2^x + 2^y = 10$. [WLOG $x \le y$. Then $2^x (1 + 2^{y-x}) = 10 = 2 \cdot 5$. Hence $2^x = 2 \Rightarrow x = 1$ and $1 + 2^{y-1} = 5 \Rightarrow 2^{y-1} = 4 \Rightarrow y = 3$. Also the symmetric pair (3, 1).]
- 13. If $h(x) = \frac{4^x + 2^{2x}}{8^x}$, simplify h(x). $[4^x = 2^{2x}$, so numerator $= 2^{2x} + 2^{2x} = 2^{2x+1}$. Divide by 2^{3x} to get 2^{1-x} .
- 14. Solve for x: $9^{x-1} \cdot 3^{2x} = 81$. $[9 = 3^2, 81 = 3^4]$. LHS = $3^{2(x-1)} \cdot 3^{2x} = 3^{4x-2}$. Set exponents equal: $4x 2 = 4 \Rightarrow x = \frac{3}{2}$.

1

- 15. If $y = ab^x$ passes through (1,6) and (3,54), find a and b. [Divide: $\frac{54}{6} = b^{3-1} \Rightarrow b^2 = 9 \Rightarrow b = 3$ (positive). Then a = 6/b = 2.]
- 16. Suppose $2^p = 3^q$. Express p in terms of q using logarithms. [Take \log_2 : $p = \log_2(3^q) = q \log_2 3$.]
- 17. Solve for x: $4^{x+2} = 2^{3x}$. $[4 = 2^2 \Rightarrow 2^{2x+4} = 2^{3x} \Rightarrow 2x + 4 = 3x \Rightarrow x = 4]$
- 18. If $M = 2^5 3^4$ and $N = 2^2 3^6$, find $\frac{M}{N}$ in simplest form. $\left[\frac{2^5 3^4}{2^2 3^6} = 2^3 3^{-2} = \frac{8}{9}\right]$
- 19. Evaluate $(27)^{-2(3^{-1})}$. $[27^{-2/3} = (3^3)^{-2/3} = 3^{-2} = \frac{1}{9}]$.
- 20. Solve for x: $\left(\frac{5}{8}\right)^x \left(\frac{25}{64}\right)^2 = \frac{5}{8} \left[\frac{25}{64} = \left(\frac{5}{8}\right)^2 \Rightarrow \text{LHS} = \left(\frac{5}{8}\right)^{x+4} = \left(\frac{5}{8}\right)^1 \Rightarrow x+4=1 \Rightarrow x=-3.\right]$
- 21. Order 4^{40} , 3^{50} , 2^{80} from least to greatest. $[4^{40} = (2^2)^{40} = 2^{80}$, and $\frac{2^{80}}{3^{50}} = (\frac{256}{243})^{10} > 1$. Hence $3^{50} < 4^{40} = 2^{80}$.
- $22. \text{ If } a=9^{12} \text{ and } b=12^9 \text{, which is larger? } \left[\frac{a}{b} = \frac{3^{24}}{(3\cdot 4)^9} = \frac{3^{15}}{4^9} > 1 \text{ (e.g., } (\frac{243}{64})^3 > 1), \text{ so } a > b. \right]$
- 23. Evaluate $(81)^{-3(4^{-1})}$. $[81^{-3/4} = (3^4)^{-3/4} = 3^{-3} = \frac{1}{27}]$.
- 24. Solve for x: $\left(\frac{7}{9}\right)^x \left(\frac{49}{81}\right)^3 = \frac{7}{9} \left[\frac{49}{81} = \left(\frac{7}{9}\right)^2 \Rightarrow \left(\frac{7}{9}\right)^{x+6} = \left(\frac{7}{9}\right)^1 \Rightarrow x = -5.\right]$
- 25. Order 6^{20} , 3^{30} , 2^{60} from least to greatest. $\left[\frac{2^{60}}{6^{20}} = \left(\frac{4}{3}\right)^{20} > 1 \text{ so } 2^{60} \text{ is largest; also } \frac{6^{20}}{3^{30}} = \frac{2^{20}}{3^{10}} > 1, \text{ so } 3^{30} < 6^{20} < 2^{60}$.
- 26. Evaluate $(125)^{-4(3^{-1})}$. $[125^{-4/3} = (5^3)^{-4/3} = 5^{-4} = \frac{1}{625}]$
- 27. Which is larger: 7^{12} or 14^9 ? $\left[\frac{7^{12}}{14^9} = \frac{7^{12}}{2^97^9} = \frac{7^3}{2^9} = \frac{343}{512} < 1 \Rightarrow 14^9 > 7^{12}.\right]$