What is M/2 we would like to know, but · setting: - quantities Y cannot (earily) me usur response - quantities X we can measure and or related to Y ·idea: learn function y' = f(x) such that $y'_i \approx y'_i$ *traditional science: ash expert to design f(x) · machine leasuring: - choose a "universal function family" F - F has parameters & => find parameter & that fit data G = [0,6,6]

why is probabilistic prediction important?
reality is full of uncertainty, on 4 levels
- fundamental: nature is not fully predictable
· quantum physics · de les ministic chaos · combinatorial
- fundamental: nature is not fully predictable quantum physics eleterministic chaos combinational explosion - data: finite, noisy, incomplete, ambiguous
- model: subulions (3, PB are imperked (function family bo
- model: structions & , & are imperfect (function family be) may not have converged perfectly, halve has changed small) in the mean time)
- goal: disagreement about what is relevant / deginable?

handing uncertainty is central challenge of Al and ML

Market Mar Arras X	the for each instance in (n=1. N), features) (j=1, , D) rows instances, columns halves, X = R N x D
1 Alice 17 2 (height) 1 Alice 17 2 1 305 18 2 N=3 Max 1.9 2	3 (genles) in Python all floor, discrete latels => One-holemodeing 1 1 (hagh) 2 (f) 3 (m) 4 (d) 1 1 7 3 0 0 elements Xi 1 1 7 3 0 1 0

The same of the sa

response: Yi vou vector for instance i, response elements in (m=11,, M)
i mostly. M=1 scalar response (exception: one-hol encoding of discrete labels)
tasks according to type of response. 2) yi district label /=4, KES1, Collegories
tasks according to type of response. (2) Yi clistick label Yi=4, KES1. C. S rumber of calegories 1) Yi E IRM Y = fo(x) "ven ression" (2) Yi clistick label Yi=4, KES1. C. S rumber of calegories "classification" (2) Yi clistick label Yi=4, KES1. C. S rumber of calegories (3) Yi E IRM Y = fo(x) "ven ression" (2) Yi clistick label Yi=4, KES1. C. S rumber of calegories (3) Yi E IRM Y = fo(x) "ven ression" (4) Yi Classification" (5) Vin clistick label Yi=4, KES1. C. S rumber of calegories (6) Yi E IRM Y = fo(x) "ven ression" (7) Yi E IRM Y = fo(x) "ven ression" (8) Yi Classification" (8) Vin clistick label Yi=4, KES1. C. S rumber of calegories (9) Vin clistick label Yi=4, KES1. C. S rumber of calegories (9) Vin clistick label Yi=4, KES1. C. S rumber of calegories (9) Vin clistick label Yi=4, KES1. C. S rumber of calegories (1) Vin clistick label Yi=4, KES1. C. S rumber of calegories (1) Vin clistick label Yi=4, KES1. C. S rumber of calegories (1) Vin clistick label Yi=4, KES1. C. S rumber of calegories (1) Vin clistick label Yi=4, KES1. C. S rumber of calegories (1) Vin clistick label Yi=4, KES1. C. S rumber of calegories (1) Vin clistick label Yi=4, KES1. C. S rumber of calegories (2) Vin clistick label Yi=4, KES1. C. S rumber of calegories (2) Vin clistick label Yi=4, KES1. C. S rumber of calegories (3) Vin clistick label Yi=4, KES1. C. S rumber of calegories (4) Vin clistick label Yi=4, KES1. C. S rumber of calegories (5) Vin clistick label Yi=4, KES1. C. S rumber of calegories (6) Vin clistick label Yi=4, KES1. C. S rumber of calegories (6) Vin clistick label Yi=4, KES1. C. S rumber of calegories (7) Vin clistick label Yi=4, KES1. C. S rumber of calegories (8) Vin clistick label Yi=4, KES1. C. S rumber of calegories (8) Vin clistick label Yi=4, KES1. C. S rumber of calegories (8) Vin clistick label Yi=4, KES1. C. S rumber of calegories (8) Vin clistick label Yi=4, KES1. C. S rumber of calegories (8) Vin clistick label Yi=4, KES1. C. S rumber of calegories (8) Vin clistick label
training x1: TS= \{ \(\times \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
training x1: TS= \(\times \) \(\times \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\

3 supervised learning approaches

To supervised learning: true responses are known in TS = { (Xi, Yi)} 1=1

To unsupervised learning: only features are known in TS = { Xi} N

Elearning ally needs to find structured in the dark on its own "data unining", Vescarch few solutions that guaranted to work: representation learning compath better features

X = P(X), ex. dimmnon reduction dim(X) < dim(X)

Clustering group summar in stances into clusters"

There is a tumor in CT, and some instances, Coarsetables. "there is a tumor in CT, and some instances, ex. large language models.

The self-supervised define auxiliary tooks where Y, are easy to delermine, ex. large language models.

The self-supervised define auxiliary tooks where Y, are easy to delermine, ex. large language models.