Course 2: Supervised Learning

Summary

Last session

- Al definition
- 2 Applications
- 3 Deep learning
- Open issues

Today's session

- Learning from labeled examples
- Challenges of supervised learning

Notations

Notations

Notations

Vector space (\mathbb{R}^d)

Definition

Supervised learning methods use **labels** $\hat{\mathbf{y}}$ associated with examples \mathbf{x} to learn a function f such as $\hat{\mathbf{y}} \approx f(\mathbf{x})$, with the aim of **generalizing** (\neq memorizing) to unlabeled examples.

- Regression (y is scalar)
- Classification (y is categorical)
- Tons of applications
 - Pattern recognition
 - Prediction...

Definition

Supervised learning methods use **labels** $\hat{\mathbf{y}}$ associated with examples \mathbf{x} to learn a function f such as $\hat{\mathbf{y}} \approx f(\mathbf{x})$, with the aim of **generalizing** (\neq memorizing) to unlabeled examples.

- **Regression** (**y** is scalar)
- Classification (y is categorical)
- Tons of applications:
 - Pattern recognition,
 - Prediction...

Definition

Supervised learning methods use **labels** $\hat{\mathbf{y}}$ associated with examples \mathbf{x} to learn a function f such as $\hat{\mathbf{y}} \approx f(\mathbf{x})$, with the aim of **generalizing** (\neq memorizing) to unlabeled examples.

- Regression (y is scalar)
- Classification (y is categorical)
- Tons of applications:
 - Pattern recognition,
 - Prediction...

Definition

Supervised learning methods use **labels** $\hat{\mathbf{y}}$ associated with examples \mathbf{x} to learn a function f such as $\hat{\mathbf{y}} \approx f(\mathbf{x})$, with the aim of **generalizing** (\neq memorizing) to unlabeled examples.

- Regression (y is scalar)
- Classification (y is categorical)
- Tons of applications:
 - Pattern recognition,
 - Prediction...

Definition

Supervised learning methods use **labels** $\hat{\mathbf{y}}$ associated with examples \mathbf{x} to learn a function f such as $\hat{\mathbf{y}} \approx f(\mathbf{x})$, with the aim of **generalizing** (\neq memorizing) to unlabeled examples.

- Regression (y is scalar)
- Classification (y is categorical)
- Tons of applications:
 - Pattern recognition,
 - Prediction...

Definition

Supervised learning methods use **labels** $\hat{\mathbf{y}}$ associated with examples \mathbf{x} to learn a function f such as $\hat{\mathbf{y}} \approx f(\mathbf{x})$, with the aim of **generalizing** (\neq memorizing) to unlabeled examples.

- Regression (y is scalar)
- Classification (y is categorical)
- Tons of applications:
 - Pattern recognition,
 - Prediction...

An ill-defined problem

- An infinity of potential solutions, one must be the "best one" but is unreachable,
- ⇒ requires **priors or constraints**.

An ill-defined problem

- An infinity of potential solutions, one must be the "best one" but is unreachable,
- ⇒ requires **priors or constraints**.

An ill-defined problem

- An infinity of potential solutions, one must be the "best one" but is unreachable,
- ⇒ requires **priors or constraints**.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: overfitting problem.

Bias/variance trade-off

- A simple solution that almost matches is better than a complex one that fully matches,
- Mimicking is not learning: **overfitting** problem.

Crossvalidation

- To detect overfitting, split training dataset in two parts:
 - A first part is used to train,
 - A second part is used to validate,

Curse of dimensionality

- Geometry is not intuitive in high dimension,
- Efficient methods in 2D are not necessarily still valid.

$$V_d^s = \frac{\pi^{d/2}R^d}{\Gamma(d/2+1)}$$
 versus $V_d^c = (2R)^d$

Curse of dimensionality

- Geometry is not intuitive in high dimension,
- Efficient methods in 2D are not necessarily still valid.

Linear separability and need for embedding

Computation time

Example on ImageNet, simply going through all images:

- $n = 10.000.000, d \approx 1.000.000,$
- ho pprox ppr
- ho pprox 2h45 on a modern processor.

Scalability

- Finding the best solution to a problem would be feasible with unlimited computation time,
- But searching through the space of possible functions is often untractable,
- Solutions must be computationally reasonable, which is the true challenge today.

Challenges of supervised learning (5/5)

Computation time

Example on ImageNet, simply going through all images:

- $n = 10.000.000, d \approx 1.000.000,$
- ho pprox ppr
- ho pprox 2h45 on a modern processor.

Scalability

- Finding the best solution to a problem would be feasible with unlimited computation time,
- But searching through the space of possible functions is often untractable,
- Solutions must be computationally reasonable, which is the true challenge today.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The VC dimension is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The **VC dimension** is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Definition

- Let us fix d,
- The **VC dimension** is a measure of the genericity of a method,
- It is the maximum cardinality of a set of vectors that the method is able to shatter in any possible way.

Consider for example lines to shatter set of points with d = 2.

×

×

Inputs/outputs

- Often: inputs are raw signals or feature vectors,
- Often: outputs are vectors which highest value indicate the category of the input.

Inputs/outputs

- Often: inputs are raw signals or feature vectors,
- Often: outputs are vectors which highest value indicate the category of the input.

Inputs/outputs

- Often: inputs are raw signals or feature vectors,
- Often: outputs are vectors which highest value indicate the category of the input.

Inputs/outputs

- Often: inputs are raw signals or feature vectors,
- Often: outputs are vectors which highest value indicate the category of the input.

Loss and targets

- Labels are encoded as one-hot-bit vectors and called targets,
- Outputs are **softmaxed**: $\mathbf{y}_i \leftarrow \exp(\mathbf{y}_i) / \sum_j \exp(\mathbf{y}_j)$,
- Loss is typically **cross-entropy**: $-\log(\hat{\mathbf{y}}^{\top}\mathbf{y})$.

Inputs/outputs

- Often: inputs are raw signals or feature vectors,
- Often: outputs are vectors which highest value indicate the category of the input.

Loss and targets

- Labels are encoded as one-hot-bit vectors and called targets,
- Outputs are **softmaxed**: $\mathbf{y}_i \leftarrow \exp(\mathbf{y}_i) / \sum_j \exp(\mathbf{y}_j)$,
- Loss is typically **cross-entropy**: $-\log(\hat{\mathbf{y}}^{\top}\mathbf{y})$.

Inputs/outputs

- Often: inputs are raw signals or feature vectors,
- Often: outputs are vectors which highest value indicate the category of the input.

Loss and targets

- Labels are encoded as one-hot-bit vectors and called targets,
- Outputs are **softmaxed**: $\mathbf{y}_i \leftarrow \exp(\mathbf{y}_i) / \sum_j \exp(\mathbf{y}_j)$,
- Loss is typically **cross-entropy**: $-\log(\hat{\mathbf{y}}^{\top}\mathbf{y})$.

Metrics

In supervised learning: per class metric

Non-symmetric PyRat without walls / mud

Both players follow a deterministic greedy algorithm. Supervised learning - Two tasks

- Lab 2a Predict the outcome of a game from the start configuration.
- Lab 2b Learn the next move using a dataset of winners 🗈

Lab Session 2 and assignments for Session 3

Lab Supervised Learning

- Basics of machine learning using sklearn (including new definitions / concepts)
- Tests on PyRat datasets : winner prediction task

Project 1 (P1)

You will choose a supervised learning method. You have to prepare a Jupyter Notebook on this method, including:

- A brief description of the theory behind the method,
- Basic tests on simulated data to show the influence of parameters and hyperparameters
- Tests on PyRat Datasets on the winner prediction task

During Session 3 you will have 7 minutes to present your notebook.