1. Tipos de ecuaciones de primer grado

 \blacksquare De variables separadas: cuando se puede dejar t a un lado y x a otro, por ejemplo

$$x' = t^2 x \iff \frac{dx}{dt} = t^2 x \iff \frac{dx}{x} = t^2 dt$$

se

resuelven integrando a ambos lados.

- Exactas: son de la forma Mdx + Ndy = 0. Se resuelven encontrando G(x,t) = 0. Para ello hay dos caminos:
 - Si $M_y = N_x$, esto es, si $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ entonces G(x,y) se obtiene integrando $G(x,y) = \int M dy + H(x) = \int N dx + H(y)$.

2. Ecuaciones diferenciales ordinarias de grado n

 \blacksquare Una ecuación diferencial de grado n se puede escribir

$$x^{(n)} + a_{n-1}(t)x^{(n-1)} + \dots + a_2(t)x' + a_1(t)x = f(t)$$

Si el coeficiente de $x^{(n)}$ no es 0 se puede dividir por el para llegar a la forma anterior. Sino, se trata de una ecuación de grado n-1.

• Su ecuación homogénea asociada es

$$x^{(n)} + a_{n-1}(t)x^{(n-1)} + \dots + a_2(t)x' + a_1(t)x = 0$$

Las soluciones de esta ecuación están en un espacio vectorial de dimensión n. Esto significa que encontrando n soluciones linealmente independientes x_1, \ldots, x_n ya tenemos todas las soluciones de la ecuación homogénea que podemos escribir como la solución general

$$x_h(t) = c_1 x_1(t) + \dots + c_n x_n(t)$$

- En general, no hay un método para resolver ecuaciones en las que los coeficientes $a_1(t), \ldots, a_{n-1}(t)$ no son constantes pero algunas admiten trucos que se describen más adelante.
- \blacksquare En cualquier caso, la solución de una EDO (homogénea o no) de grado n siempre será

$$x(t) = x_h(t) + x_p(t)$$

donde x_h es una solución general de la ecuación homogénea asociada y x_p una solución particular de la EDO original.

- Si $a_1(t), \ldots, a_{n-1}(t)$ son en realidad constantes entonces la solución de la ecuación se obtiene con el siguiente procedimiento:
 - 1. Solución de general de la homogénea, e.d., base de un e.v. de dimensión n. Es de la forma

$$x_h(t) = c_1 x_1(t) + c_2 x_2(t) + \dots + c_n x_n(t)$$

para $c_1, \ldots, c_n \in \mathbb{R}$ y x_1, x_2, \ldots, x_n soluciones particulares linealmente independientes. Estas últimas se pueden obtener a partir de las soluciones de la ecuación característica $P(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_2\lambda + a_1 = 0$

• Si todas las raíces son reales y distintas entonces la solución es de la forma

$$x_h(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} + \dots + c_n e^{\lambda_n t}$$

• Si aparecen raíces λ con multiplicidad m>1 entonces la solución homogénea incluirá los términos

$$c_1e^{\lambda t} + c_2te^{\lambda t} + \cdots + c_mt^{m-1}e^{\lambda t}$$

para garantizar que el espacio de solucuiones siga teniendo dimensión n.

• Si aparecen dos raíces λ_1, λ_2 complejas entonces también serán conjugadas. Si decimos que $\lambda_1 = a + bi$ (y por tanto $\lambda_2 = a - bi$), la solución tendrá términos de la forma

$$c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} = e^{at} (\hat{c_1} \cos bt + \hat{c_2} \sin bt)$$

En este caso todas las constantes son reales (la parte imaginaria se cancela).

2. Solución particular de la EDO:

• Por variación de constantes utilizando el Wronskiano

$$\begin{pmatrix} x_1(t) & x_2(t) & \dots & x_n(t) \\ x'_1(t) & x'_2(t) & \dots & x'_n(t) \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{(n-1)}(t) & x_2^{(n-1)}(t) & \dots & x_n^{(n-1)}(t) \end{pmatrix} \begin{pmatrix} c'_1(t) \\ c'_2(t) \\ \vdots \\ c'_n(t) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ f(t) \end{pmatrix}$$

e integrando $c'_i(t)$ con respecto a t.

- Por coeficientes indeterminados
- 3. Concluir que la solución general de la EDO es $x(t) = x_h(t) + x_p(t)$.
- Las constantes c_1, \ldots, c_n de la solución general de la EDO original se determinan a partir de un PVI en el que aparecen n condiciones (por ejemplo de la forma $x(0) = x_0, x'(0) = x_1, \ldots, x^{(n-1)}(0) = x_{n-1}$.

3. Sistemas de ecuaciones lineales

3.1. Sistemas lineales con coeficientes constantes

■ Un sistema lineal de EDOs se ecribe

$$X'(t) = AX(t) + B(t)$$

donde X(t) es una función vectorial de n variables, X'(t) su derivada con respeco de t y B un vector de funciones en t.

- Un sistema lineal es homogéneo si B(t) es nulo.
 - \bullet Las soluciones de un sistema lineal homogéneo de n EDOs es un espacio vectorial de dimensión n.
 - Se obtiene una base de este espacio a partir de la ecuación característica en λ . En el caso de los sistemas la ecuación característica es el polinomio característico de la matriz \mathbb{A} igualado a 0:

$$\det(\mathbb{A} - \lambda I) = 0$$

- o Para cada λ_i autovalor de \mathbb{A} con multiplicidad 1 se obtiene una solución $X_i(t) = e^{\lambda_i t} V_i$ donde V_i es el autovector asociado a λ_i .
- o Para cada λ_i autovalor de \mathbb{A} con multiplicidad m se obtiene una solución de la forma $X_i(t) = e^{\lambda_i t}(V_1 + tV_2 + \cdots + t^{m-1}V_m$. Los vectores V_1, \ldots, V_{m-1} se obtienen de plantear el sistema:

$$\begin{cases} \frac{d}{dt}e^{\lambda_i t}V_1 = \mathbb{A}V_1 \\ \frac{d}{dt}e^{\lambda_i t}(V_1 + tV_2) = \mathbb{A}(V_1 + tV_2) \\ \dots \\ \frac{d}{dt}e^{\lambda_i t}(V_1 + tV_2 + \dots + t^{m-1}V_m) = \mathbb{A}(V_1 + tV_2 + \dots + t^{m-1}V_m) \\ \begin{cases} \lambda_i V_1 = \mathbb{A}V_1 \\ \lambda_i (V_1 + tV_2) = \mathbb{A}(V_1 + tV_2) \\ \dots \\ \lambda_i (V_1 + \dots + t^{m-1}V_m = \mathbb{A}(V_1 + \dots + t^{m-1}V_m) \end{cases}$$

- o Si λ_i es complejo
- La solución general de un sistema lineal homogéneo puede darse por la matriz fundamental principal $e^{t\mathbb{A}}$.

3.2. Sistemas lineales con coeficientes variables

- En general no se pueden resover por el mismo procedimiento.
- Si en realidad son sistemas no ligados, sí que se pueden resolver, por ejemplo el ejercicio 12 de la hoja 4 en el que una ecuación es $y'_1 = y_1$.

4. Teorema general de existencia y unicidad

Sea $f:I\subset\mathbb{R}\to\mathbb{R}$ una función. Definimos su norma infinito

$$||f||_{\infty} = \sup_{x \in I} f(x)$$

que es una norma como otra cualquiera y cumple las propiedades habituales. Sea $\{f_n\}_{n=1}^{\infty}$ una sucesión de funciones sobre un intervalo I

• $\{f_n\}$ converge punto a punto a $f(x) \iff$

$$\forall x \in I, \ f_n(x) \xrightarrow{n \to \infty} f(x)$$

• $\{f_n\}$ converge uniformemente a $f(x) \iff \forall \varepsilon > 0, \exists N \in \mathbb{N}$ tal que

$$|f_n(x) - f(x)| < \varepsilon, \ \forall n > N, \ \forall x \in I$$

- 1. Si $\{f_n\}$ converge uniformemente a f entonces $\{f_n\}$ también converge punto a punto a f.
- 2. Si $\{f_n\}$ converge uniformemente a f y cada f_n es continua entonces la función límite f también es continua.
- 3. Como el límite (punto a punto o uniforme) de una sucesión $\{f_n\}$ es único, si $\{f_n\}$ converge punto a punto a f entonces f es la única candidata a límite uniforme de $\{f_n\}$.
- 4. De 1., 2. y 3. se deduce que si $\{f_n\}$ con f_n continua es convergente punto a punto a f y f no es continua entonces $\{f_n\}$ no puede ser convergente uniformemente a f.
- 5. $\{f_n\}$ converge uniformemente a $f\iff \|f_n-f\|_\infty\to 0$, es decir, si $\lim_{n\to\infty}\sup|f_n-f|=0$.
 - Si queremos probar que f_n converge uniformemente a f tenemos que encontrar dicho supremo y ver que tiende a 0 cuando n tiende a ∞ (por ejemplo, igualando $f'_n = 0$ y mirando también en los extremos del intervalo).
 - Si queremos probar que f_n no converge uniformemente vale con encontrar un $x_0 \in I$ para el que

$$\lim_{n \to \infty} |f_n(x_0) - f(x_0)| \neq 0$$

6. Si estamos en un espacio vectorial normado por $\|\cdot\|_{\infty}$ que además es completo (de Banach) (por ejemplo $C([a,b]) \equiv$ las funciones continuas de [a,b] en \mathbb{R}) entonces

$$\{f_n\}$$
 de Cauchy $\iff \{f_n\}$ uniformemente convergente

• Una función $f:I\subset\mathbb{R}^m\to\mathbb{R}^n$ es Lipschitz $\iff \exists L\in\mathbb{R}$ tal que

$$||f(x) - f(y)||_n \le L||x - y||_m, \ \forall x, y \in I$$

- 1. f Lipschitz $\Longrightarrow f$ continua
- 2. f derivadas parciales acotadas $\implies f$ Lipschitz
 - Si f es C^1 (las derivadas parciales son continuas) entonces en un compacto también son acotadas y por tanto f es Lipschitz en ese compacto.
- f es localmente Lipschitz si para todo punto existe un entorno en el que se cumple la condición de Lipschitz.
- Teorema de existencia y unicidad global. Sea $F : [a,b] \times \mathbb{R}^d \to \mathbb{R}^d$, $(t,X) \mapsto F(t,X)$ una función Lipschitz con respecto a $X \in \mathbb{R}^d$ y sea el PVI

$$\begin{cases} X'(t) = F(t, X(t)), \ \forall t \in [a, b] \\ X(t_0) = X_0, \ t_0 \in [a, b] \end{cases}$$

Entonces existe una única $X:[a,b]\to\mathbb{R}^d$ de clase C^1 que verifica el PVI anterior.

- 3 resultados sobre prolongabilidad de soluciones en R^2 . Sea D la banda $D = (a,b) \times \mathbb{R}$ y sea x' = f(t,x) con $f:(a,b) \to \mathbb{R}$. Si se cumple cualquiera de las 3 siguientes condiciones, entonces existe una solución maximal definida $\forall t \in (a,b)$.
 - 1. |f(t,x)| < L para algún $L \in \mathbb{R}$
 - 2. $|f(t,x)| + \alpha(t)|x| + \beta(t) \cos \alpha, \beta \text{ continuas en } (a,b).$
 - 3. $|f(x_1,t_1)-f(x_2,t_2)| \le K(t)|x_1-x_2|$ con K continua en (a,b)

Observar que las dos últimas condiciones permiten asíntotas verticales en t=a y t=b.

■ Corolario del Lema de Gronwall para acotación de soluciones. Sea F(t, u(t)) una función Lipschitz con constante L (no necesariamente la menor) y sean $x_1(t), x_2(t)$ tales que se verifica

$$|x_1'(t) - F(t, x_1(t))| < \varepsilon_1 |x_2'(t) - F(t, x_2(t))| < \varepsilon_2$$

donde $\varepsilon_1, \varepsilon_2$ son constantes. Entonces

$$|x_1(t) - x_2(t)| < |x_1(a) - x_2(a)|e^{L(t-a)} + \frac{e^{L(t-a)} - 1}{L}(\varepsilon_1 + \varepsilon_2)$$