7. Critical Values

Cheng Peng

West Chester University

Contents

1	Review Topics	1
2	Increasing and decreasing functions	2
3	Critival Value	3
4	Relative (Local) Maximum and Minimum Values	4

1 Review Topics

We first review the Five Rules of Derivative

These rules of the derivative will be used frequently throughout the semester.

Rules of Derivative-Review

Power Rule	$(x^a)'=ax^{a-1}$
Additive Rule	[f(x) + g(x)]' = f'(x) + g'(x)
Multiplicative Rule	[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)
Quotient Rule	$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) + f(x)g'(x)}{[g(x)]^2}$
Chain Rule	$\{f[g(x)]\}'=f[g(x)]\times g'(x)$

We will apply derivatives to solve real-world optimization problems maximizing profit or revenue and minimizing the cost, etc. This note focuses on the concepts of critical values and using derivation to find critical values.

2 Increasing and decreasing functions

We reviewed monotonic function in the first week. The following figures demonstrate increasing and decreasing functions.

If the input *a* is less than the input *b*, then the output for *a* is less than the output for *b*.

If the input a is less than the input b, then the output for a is greater than the output for b.

Using the definition of the derivative, we can see that

- If f(x) is increasing over [a, b], then f'(x) > 0 over [a, b];
- If f(x) is decreasing over [a, b], then f'(x) < 0 over [a, b].

Graphically, we have the following figures explain the above observation

$$\text{Increasing}: \frac{f\left(b\right)-f(a)}{b-a}>0. \qquad \text{Decreasing}: \frac{f\left(b\right)-f(a)}{b-a}<0.$$

We next formalize the above observation and present the following theorem.

Theorem 1: Let f(x) be differential over interval I = [a, b]

- 1. If f'(x) > 0 for all x in I = [a, b], then f(x) is increasing over I = [a, b]
- 2. If f'(x) < 0 for all x in I = [a, b], then f(x) is deceasing over I = [a, b].

Example 1: Using the above Theorem 1 to find the intervals on which the function $f(x) = x^3/3 - x + 2/3$.

Solution: The following figure answers the above question.

f is increasing over the intervals $(-\infty, -1)$ and $(1, \infty)$; slopes of tangent lines are positive.

f is decreasing over the interval (-1, 1); slopes of tangent lines are negative.

3 Critival Value

In the above curve, two points A and B are special because the monotonicity of the function changed at these points (from increasing to decreasing at A and from decreasing to increasing at B). If the derivative of a function exists over an interval [a, b], if the function changes its monotonicity, its sign of derivative also changes. That means, there exists a value, say c, in [a, b] that satisfies f'(c) = 0.

Definition: A **critical value** of a function f(x) is any number c in the **domain** of f(x) for which the tangent line at (c, f(c)) is horizontal or for which the derivative does **not** eixst. That is, c is a **critical** value if f(c) exists and

$$f'(c) = 0$$
 or $f'(c)$ does not exist

If c is a critical value of f(x), then (c, f(c)) is called a **critical point**.

All labeled points on the above figure are critical points since the corresponding derivative is either 0 or does not exist.

- 1. f'(x) = 0 for $x = c_1, c_2, c_4, c_7$ and c_8 . That is, the tangent line to the graph is horizontal at these values.
- 2. f'(x) does not exist for $x = c_3, c_5$ and c_6 . The tangent line is vertical at c_3 and there are corners at both c_5 and c_6 .

Example 2 Find critical values of the function $f(x) = x^3/3 - x + 2/3$.

Solution: By the definition, we need to the solution to f'(x) = 0 and those values on which the derivative of f(x) does not exist.

Note that $f'(x) = x^2 - 1$. Therefore, equation $x^2 - 1 = 0$ has solutions $x = \pm 1$. These two critical values are the same as shown in example 1.

4 Relative (Local) Maximum and Minimum Values

Graphically, the local maximum and minimum are the second coordinates of the points that are labeled in the following figure.

Here, $f(c_2)$ and $f(c_4)$ are each an example of a **relative**, or **local**, **maximum** (**plural**: **maxima**), and $f(c_1)$, $f(c_3)$ and $f(c_5)$ are each an example of a relative, or local, **minimum** (**plural**: **minima**). Collectively, maximum and minimum values are called **extrema** (**singular**: **extremum**). Note that a relative minimum

can be greater than a relative maximum; for example, $f(c_5) > f(c_2)$ in the graph at the bottom of the preceding page.

Note that x-values at which a continuous function has relative extrema are those values for which the derivative is 0 or for which the derivative does not exist—the critical values.

Theorem: If a function f(x) has a relative extreme value f(c) on an **open interval**, then c is a critical value, and

$$f'(c) = 0$$
 or $f'(c)$ does not exist.

The next theorem gives a test for relative extrema: The First-Derivative Test for Relative Extrema

Theorem: For any continuous function f(x) that has exactly one critical value c over an **open interval** (a,b):

- 1. f(x) has a relative minimum at c if f'(x) < 0 on (a, c) and f'(x) > 0 on (c, b). That is, f(x) is decreasing to the left of c and increasing to the right of c.
- 2. 1. f(x) has a relative maximum at c if f'(x) > 0 on (a, c) and f'(x) < 0 on (c, b). That is, f(x) is increasing to the left of c and decreasing to the right of c.
- 3. f(x) has neither a relative maximum nor a relative minimum at c if f'(x) has the same sign on both sides of c.

Example 3: Consider the relative maximum and relative minimum of function $f(x) = 4x^3 - 9x^2 - 30x + 25$. **Solution** The derivative $f'(x) = 12x^2 - 18x - 30 = 6(2x^2 - 9x - 5) = 6(ax - 5)(x + 1)$. Set f'(x) = 0, we have 6(ax - 5)(x + 1) = 0, therefore, x = 2.5 or x = -1.

