RECEIVED
CENTRAL FAX CENTER

FEB 2 0 2007

Appln. No. 10/677,966 Docket No. 14XZ126398/GEM-0171

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

- 1. (currently amended) A method for [[the]] <u>a</u> space-time filtering of <u>noise</u> in radiography comprising:
- a. for each pixel having coordinates (x,y) of a first image, a weighting is performed on [[the]] coefficients U(k,l) of a first convolution core with a dimension D, equivalent to a low-pass filter, as a function of a coefficient G which is a function of [[the]] a difference computed between I(x,y) and I(x+k, y+l), where I(x,y) is [[the]] an intensity of the pixel with coordinates (x,y) of the first image, and k and l are indices used to explore the coefficients of the first convolution core, a second convolution core with coefficients Up(k,l) being thus obtained;
- b. for each pixel with coordinates (x,y) of the first image, a weighting is performed on the coefficients U(k,l) of the first convolution core as a function of the coefficient G which is a function of the difference computed between I(x,y) and I'(x+k, y+l), where I'(x,y) is [[the]] an intensity of the pixel with coordinates (x,y) of a second image, a third convolution core with coefficients Up'(k,l) being thus obtained; and
 - c. [[the]] a filtered value of I(x,y) is computed by the formula:

$$F(x,y) = \left(\sum_{k=-L}^{L} \sum_{l=-L}^{L} (\gamma * Up(k,l) . I(x+k,y+l) + (1-\gamma) * Up'(k,l) . I'(x+k,y+l))\right) / N....(1)$$

$$L = \frac{(D-1)}{2}(2)$$

$$\gamma \in [0,1](3)$$

$$N = \sum_{k=-L}^{L} \sum_{l=-L}^{L} (\gamma * Up(k,l) + (1-\gamma) * Up'(k,l))....(4)$$

where F(x,y) is the filtered value of I(x,y); and wherein D is greater than 1.

2. (currently amended) The method according to claim 1 wherein:

Up(k,l) = U(k,l)xG(I(x+k,y+l)-I(x,y);
$$\sigma$$
(I(x,y))); and [[U'p(k,l)]] Up'(k,l) = U(k,l)xG(I'(x+k,y+l)-I(x,y); $\lambda \sigma$ (I(x,y)))

with G as a weighting function depending on a difference between the value of the pixel to be filtered and its neighborhood and depending on a noise statistic for the value of the pixel to be filtered.

- 3. (currently amended) The method according to claim 2 wherein G is a function of [[the]] a difference ϵ computed and of a known noise statistic σ for I(x,y), the coefficient G being then written as [[the]] a function G(ϵ , σ), where G is therefore [[the]] a value in terms of ϵ of a Gaussian curve centered on 0 and having a standard deviation σ .
- 4. (original) The method according to claim 2 wherein G is a function of the computed difference ϵ of the following type:

$$G(\epsilon) = -a. \ \epsilon + 1$$
, with $a > 0$, et $Up(k,l) = U(k,l)xG(I(x+k,y+l)-I(x,y))$, and $U'p(k,l) = U(k,l)xG(I'(x+k,y+l)-I(x,y))$.

- 5. (original) The method according to claim 2 wherein λ is a real number.
- 6. (original) The method according to claim 3 wherein λ is a real number.
- 7. (original) The method according to claim 4 wherein λ is a real number.

8. (original) The method according to claim 1 wherein equation (1) becomes:

$$F(x,y) = \left(\sum_{k=-L}^{L} \sum_{l=-L}^{L} (y * Up(k,l).I(x+k,y+l) + (1-\gamma) * Up'(k,l).F'(x+k,y+l))\right) / N$$
 where F'(x,y) is the filtered intensity of the pixel with coordinates (x,y) of the second image.

9. (original) The method according to claim 2 wherein equation (1) becomes:

$$F(x,y) = \left(\sum_{k=-L}^{L} \sum_{l=-L}^{L} \left(y * Up(k,l).I(x+k,y+l) + (1-\gamma) * Up'(k,l).F'(x+k,y+l)\right)\right) / N$$

where F'(x,y) is the filtered intensity of the pixel with coordinates (x,y) of the second image.

10. (original) The method according to claim 3 wherein equation (1) becomes:

$$F(x,y) = \left(\sum_{k=-L}^{L} \sum_{l=-L}^{L} (\gamma * Up(k,l).I(x+k,y+l) + (1-\gamma) * Up'(k,l).F'(x+k,y+l))\right) / N$$

where F'(x,y) is the filtered intensity of the pixel with coordinates (x,y) of the second image.

11. (original) The method according to claim 4 wherein equation (1) becomes:

$$F(x,y) = \left(\sum_{k=-L}^{L} \sum_{l=-L}^{L} (y * Up(k,l).I(x+k,y+l) + (1-\gamma) * Up'(k,l).F'(x+k,y+l))\right) / N$$

where F'(x,y) is the filtered intensity of the pixel with coordinates (x,y) of the second image.

12. (original) The method according to claim 5 wherein equation (1) becomes:

$$F(x,y) = \left(\sum_{k=-L}^{L} \sum_{l=-L}^{L} (y * Up(k,l).I(x+k,y+l) + (1-\gamma) * Up'(k,l).F'(x+k,y+l))\right) / N$$

where F'(x,y) is the filtered intensity of the pixel with coordinates (x,y) of the second image.

- 13. (original) The method according to claim 1 wherein a value of γ equal to 0 implies a zero temporal dependence.
- 14. (original) The method according to claim 2 wherein a value of γ equal to 0 implies a zero temporal dependence.
- 15. (original) The method according to claim 3 wherein a value of γ equal to 0 implies a zero temporal dependence.

Appln. No. 10/677,966

Docket No. 14XZ126398/GEM-0171

- 16. (original) The method according to claim 4 wherein a value of γ equal to 0 implies a zero temporal dependence.
- 17. (original) The method according to claim 5 wherein a value of γ equal to 0 implies a zero temporal dependence.
- 18. (original) The method according to claim 8 wherein a value of γ equal to 0 implies a zero temporal dependence.
- 19. (currently amended) The method according to claim 1 wherein the first and second images are successive images of a sequence of images, the first image having a date time t, and the second image having a date time t-1.
- 20. (currently amended) The method according to claim 2 wherein the first and second images are successive images of a sequence of images, the first image having a date time t, and the second image having a date time t-1.
- 21. (currently amended) The method according to claim 3 wherein the first and second images are successive images of a sequence of images, the first image having a date time t, and the second image having a date time t-1.
- 22. (currently amended) The method according to claim 4 wherein the first and second images are successive images of a sequence of images, the first image having a date time t, and the second image having a date time t-1.
- 23. (currently amended) The method according to claim 5 wherein the first and second images are successive images of a sequence of images, the first image having a date time t, and the second image having a date time t-1.

- 24. (currently amended) The method according to claim 8 wherein the first and second images are successive images of a sequence of images, the first image having a date time t, and the second image having a date time t-1.
- 25. (currently amended) The method according to claim 13 wherein the first and second images are successive images of a sequence of images, the first image having a date time t, and the second image having a date time t-1.
 - 26. (original) The method according to claim 1 wherein D is equal to 5.
 - 27. (original) The method according to claim 2 wherein D is equal to 5.
 - 28. (original) The method according to claim 3 wherein D is equal to 5.
 - 29. (original) The method according to claim 4 wherein D is equal to 5.
 - 30. (original) The method according to claim 5 wherein D is equal to 5.
 - 31. (original) The method according to claim 8 wherein D is equal to 5.
 - 32. (original) The method according to claim 13 wherein D is equal to 5.
 - 33. (original) The method according to claim 19 wherein D is equal to 5.
 - 34. (original) The method according to claim 1 wherein D is greater than 5.
 - 35. (original) The method according to claim 2 wherein D is greater than 5.

- 36. (original) The method according to claim 3 wherein D is greater than 5.
- 37. (original) The method according to claim 4 wherein D is greater than 5.
- 38. (original) The method according to claim 5 wherein D is greater than 5.
- 39. (currently amended) The method according to claim [[5]] 8 wherein D is greater than 5.
- 40. (currently amended) The method according to claim [[8]] <u>13</u> wherein D is greater than 5.
 - 41. (original) The method according to claim 19 wherein D is greater than 5.
 - 42. (cancelled)
 - 43. (original) The method according to claim 1 wherein D is an odd number.
 - 44. (original) The method according to claim 2 wherein D is an odd number.
 - 45. (original) The method according to claim 3 wherein D is an odd number.
 - 46. (original) The method according to claim 4 wherein D is an odd number.
 - 47. (original) The method according to claim 5 wherein D is an odd number.
 - 48. (original) The method according to claim 8 wherein D is an odd number.
 - 49. (original) The method according to claim 13 wherein D is an odd number.

Appln. No. 10/677,966

Docket No. 14XZ126398/GEM-0171

- 50. (original) The method according to claim 19 wherein D is an odd number.
- 51. (original) The method according to claim 26 wherein D is an odd number.
- 52. (original) The method according to claim 34 wherein D is an odd number.
- 53. (original) A space-time convolution filter designed according to the method of claim 1.
 - 54. (original) A scanner for radiography having a filter according to claim 53.
 - 55. (cancelled)

stored in the medium, the computer program product comprising:

USPTO Cantor Colburn LLP

02/20/07 16:19:35

- 56. (currently amended) A computer program product comprising a computer useable readable medium having computer readable program code means embodied
- computer readable program code means embodied stored in the medium for causing a computer to provide for each pixel having coordinates (x,y) of a first image, a weighting is performed on [[the]] coefficients U(k,1) of a first convolution core with a dimension D, equivalent to a low-pass filter, as a function of a coefficient G which is a function of [[the]] \underline{a} difference computed between I(x,y) and I(x+k, y+1), where I(x,y) is [[the]] an intensity of the pixel with coordinates (x,y) of the first image, and k and l are indices used to explore the coefficients of the first convolution core, a second convolution core with coefficients Up(k,l) being thus obtained;
- computer readable program code means embodied stored in the medium for causing a computer to provide for each pixel with coordinates (x,y) of the first image, a weighting is performed on the coefficients U(k,1) of the first convolution core as a function of the coefficient G which is a function of the difference computed between I(x,y) and I'(x+k, y+l), where I'(x,y) is [[the]] an intensity of the pixel with coordinates (x,y) of a second image, a third convolution core with coefficients Up'(k,l) being thus obtained; and
- c. computer readable program code means embodied stored in the medium for causing a computer to provide [[the]] a filtered value of I(x,y) is computed by the formula:

$$F(x,y) = \left(\sum_{k=-Ll=-L}^{L} \left(\gamma * Up(k,l) J(x+k,y+l) + (1-\gamma) * Up'(k,l) J'(x+k,y+l)\right)\right) / N....(1)$$

$$L = \frac{(D-1)}{2}(2)$$

$$\gamma \in [0,1]....(3)$$

$$N = \sum_{k=-Ll=-L}^{L} \left(\gamma * Up(k,l) + (1-\gamma) * Up'(k,l)\right)....(4)$$

where F(x,y) is the filtered value of I(x,y); and wherein D is greater than 1.

8602860115->

- 57. (currently amended) An article of manufacture for use with a computer system, the article of manufacture comprising a computer readable medium having computer readable program code means embedied stored in the medium, the program code means comprising:
- a. computer readable program code means embedied stored in the medium [[foor]] for causing a computer to provide for each pixel having coordinates (x,y) of a first image, a weighting is performed on [[the]] coefficients U(k,l) of a first convolution core with a dimension D, equivalent to a low-pass filter, as a function of a coefficient G which is a function of [[the]] a difference computed between I(x,y) and I(x+k, y+l), where I(x,y) is [[the]] an intensity of the pixel with coordinates (x,y) of the first image, and k and l are indices used to explore the coefficients of the first convolution core, a second convolution core with coefficients Up(k,l) being thus obtained;
- b. computer readable program code means embedied stored in the medium [[foor]] for causing a computer to provide for each pixel with coordinates (x,y) of the first image, a weighting is performed on the coefficients U(k,l) of the first convolution core as a function of the coefficient G which is a function of the difference computed between I(x,y) and I'(x+k, y+l), where I'(x,y) is [[the]] an intensity of the pixel with coordinates (x,y) of a second image, a third convolution core with coefficients Up'(k,l) being thus obtained; and
- c. computer readable program code means embodied stored in the medium [[foor]] for causing a computer to provide [[the]] a filtered value of I(x,y) is computed by the formula:

Appin. No. 10/677,966

02/20/07 16:20:01

Docket No. 14XZ126398/GEM-0171

$$F(x,y) = \left(\sum_{k=-Ll=-L}^{L} (\gamma * Up(k,l) J(x+k,y+l) + (1-\gamma) * Up'(k,l) J'(x+k,y+l))\right) / N....(1)$$

$$L = \frac{(D-1)}{2}(2)$$

$$\gamma \in [0,1]....(3)$$

$$N = \sum_{k=-Ll=-L}^{L} (\gamma * Up(k,l) + (1-\gamma) * Up'(k,l))....(4)$$

where F(x,y) is the filtered value of I(x,y); and wherein D is greater than 1.

- 58. (new) The method according to claim 1 wherein a value of γ is greater than 0 and less than 1.
- (new) The computer program product according to claim 56 wherein a value of γ 59. is greater than 0 and less than 1.
- 60. (new) The article of manufacture according to claim 57 wherein a value of γ is greater than 0 and less than 1.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER: ____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.