The PEACE Protocol¹

A protocol for decentralized encrypted data exchange.

Logical Mechanism LLC²

October 22, 2025

 $^{^1{\}rm This}$ project was funded in Fund 14 of Project Catalyst. $^2{\rm Contact:}$ support@logicalmechanism.io

Contents

1	Abstract	-
Bil	oliography	I

1 Abstract

Test Citation [1]

Inline sanity: let $x \in \mathbb{Z}_q$, $u \in \mathbf{G}_1$, $Q \in \mathbf{G}_2$, and $E = mc^2$.

$$c = AEAD_k(m; nonce, ad).$$
 (1.1)

As in (1.1), we encrypt with key k derived via HKDF:

$$ikm = H(ECDH(u, pk_B)), (1.2)$$

$$k = \text{HKDF}(\text{salt, ikm, "PEACE-AES-GCM", 32}).$$
 ()

$$\mathrm{Dec}_k(c) \ = \ \begin{cases} m, & \text{if AEAD_Dec}_k(c; \text{ nonce, ad) verifies,} \\ \bot, & \text{otherwise.} \end{cases}$$

$$M = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \|u\|_2 \le 1, \quad \Pr[\text{forge}] \le 2^{-\lambda}.$$

$$S(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \qquad \int_{0}^{1} x^{2} dx = \frac{1}{3}.$$

Bibliography

[1] C.-P. Schnorr, "Efficient signature generation by smart cards," *Journal of Cryptology*, vol. 4, no. 3, pp. 161–174, 1991, doi: 10.1007/BF00196725.