Pumping Lemma

Definición formal

Dado un lenguaje regular finito L, existe un número entero p que llamaremos longitud crítica tal que

para cualquier cadena/string $w \in L$ con $|w| \ge p$ podemos escribir como $w = x \cdot y \cdot z$ con $|x \cdot y| \le p \cdot y |y| \ge 1$

TAL QUE x . y^{i} . $z \in L$ para i = 0, 1, 2, ...

Lenguajes NO regulares

$$L = \{vv^R : v \in \Sigma^*\}$$

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Cómo mostramos que no son lenguajes regulares?

Lenguajes NO regulares

$$L = \{vv^R : v \in \Sigma^*\}$$

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Cómo mostramos que no son lenguajes regulares?

Vamos a usar el Pumping Lemma:)

Otro ejemplo

Tomemos como ejemplo L = { $a^nb^lc^{n+1} : n, l \ge 0$ }

Una forma posible de pensar esta demostración es **asumir** que es regular y **por contradicción** mostrar que no lo es.

Dado que L es infinito, podemos aplicar el Pumping Lemma

Primer ejemplo

Tomemos como ejemplo L = $\{a^nb^n: n \ge 0\}$

Una forma posible de pensar esta demostración es **asumir** que es regular y **por contradicción** mostrar que no lo es.

Dado que L es infinito, podemos aplicar el Pumping Lemma

Sea p la longitud crítica de L, tomamos un string w = x y z tal que $w \in L y |w| \ge p$ con $|xy| <= p y |y| \ge 1$ tal que $x y^i z \in L$.

- 1) Elegimos inteligentemente $w = a^pb^p$
- 2) Dividimos la cadena w como $\mathbf{w} = \mathbf{a}^{\mathbf{q}} \mathbf{a}^{(\mathbf{p}-\mathbf{r}-\mathbf{q})} \mathbf{b}^{\mathbf{p}}$, donde $\mathbf{a}^{\mathbf{q}} = \mathbf{x}$, $\mathbf{a}^{\mathbf{r}} = \mathbf{y}$ e $\mathbf{a}^{(\mathbf{p}-\mathbf{r}-\mathbf{q})} \mathbf{b}^{\mathbf{p}} = \mathbf{z}$
 - a) Notar que |xy| >= q + r <= p y que |y| = r >= 1
 - b) $q \ge 0, r \ge 0, q + r \le p$
- 3) "Bombeamos" y (a^r), es decir, repetimos y una cantidad i de veces para supuestamente obtener una cadena de L

Primer ejemplo - "Bombeo"

Si repetimos la cadena y una cantidad i de veces, obtenemos w' = $x y^i z = a^{q+ir} a^{(p-r-q)} b^p$ que es igual a $a^{p(i-1)r} b^p$

NOTAR que como i > 1 y r > 0, la cantidad de as en la primera parte de la cadena será estrictamente mayor a la cantidad de bs de la segunda parte de la cadena. Por lo tanto esta cadena no estaría dentro de L y por lo tanto llegaríamos a una contradicción.

Entonces nuestra suposición sobre la regularidad de L era falsa y concluimos que L no es un lenguaje regular

Tomemos como ejemplo L = $\{a^nb^lc^{n+1}: n, l \ge 0\}$

Una forma posible de pensar esta demostración es asumir que es regular y por contradicción mostrar que no lo es.

Dado que L es infinito, podemos aplicar el Pumping Lemma

Sea p la longitud crítica de L, tomamos un string w tal que $w \in L$ y $|w| \ge p$, por ejemplo, elegimos $w = a^p b^p c^{2p}$

Por el Pumping Lemma,
$$w = a^p b^p c^{2p} = x \ y \ z$$
 donde $|x \ y| \le p, \ |y| \ge 1$

 $y = a^k$, $1 \le k \le p$

Entonces podemos pensar la cadena w como

$$w = xyz = \underbrace{a...aa...aa...ab...bc...cc...a}_{p} \underbrace{p}_{2p}$$

Por el Pumping Lemma x yⁱ z \in L para i = 0, 1, 2, ... (osea que puede extenderse infinito). Vemos que $xy^0z = xz \in L$

$$xz \in L$$

$$p-k \quad p \quad 2p$$

$$xz = a...aa...ab...bc...cc...c \in L$$

Esto significa que $a^{p-k}b^pc^{2p} \in L$ con $k \ge 1$

PERO siguiendo la definición de L, $L = \{a^n b^l c^{n+l} : n, l \ge 0\}$ vemos que $a^{p-k} b^p c^{2p} \notin L$

Lo que es una contradicción!

Como encontramos una contradicción asumiendo que L era regular (y por lo tanto, pudiendo aplicar el pumping lemma en el), nuestra asunción de que L es regular necesariamente tiene que ser FALSA.

En conclusión, vemos que L NO es un lenguaje regular

Otro ejemplito :D

Tomemos como ejemplo L = { $a^{n!}$: $n \ge 0$ }, podemos sospechar que no es regular... $n! = 1 \cdot 2 \cdot \cdots (n-1) \cdot n$

Lo probamos usando el Pumping Lemma:)

Vamos a asumir que L es un lenguaje regular y, usado el Pumping lemma decimos, "sea p la longitud crítica de L"

Tomamos un w que nos sirva tal que $|w| \ge p$, $w = a^{p!}$

Por el lema sabemos que $w = a^{p!} = x y z$ donde $|xy| \le p$, $|y| \ge 1$ y que se puede pensar así:

$$w = xyz = a^{p!} = \underbrace{a...aa...aa...aa...aa...a}_{x \quad y \quad z} \qquad y = a^{k}, \quad 1 \le k \le p$$

Entonces como x y $z = a^{p!}$ e $y = a^k$, $1 \le k \le p$ por el Pumping Lemma sabemos que x y^i $z \in L$ osea que x y^2 $z \in L$ que puede pensarse como i = 0, 1, 2, ...

$$xy^{2}z = \overbrace{a...aa...aa...aa...aa...aa...aa...aa}^{p+k} p!-p$$

Entonces $a^{p!+k} \in L$ pero para que esto suceda **debería existir un z!** tal que p!+k=z!

 $\leq p! + p!$

Pero.. $p!+k \le p!+p$

$$\langle p! p + p!$$

= $p!(p+1)$ $p!+k \neq z!$

Universidad Nacional de Quilmes

 $= (p+1)! \longrightarrow p! + k < (p+1)!$ Lenguajes Formales y Autómatas - S2 - 2023

Por contradicción vemos que $a^{p!+k} \notin L$

Y por lo tanto, nuestra asunción de que L es un lenguaje regular necesariamente tiene que ser FALSA

Entonces concluimos que L no es un lenguaje regular