Steps for Classification Model with Sklearn

import library

```
In [1]:
```

```
import numpy as np
import pandas as pd
```

import CSV as DataFrame

```
In [2]:
```

```
df = pd.read_csv(r'https://github.com/YBI-Foundation/Dataset/raw/main/Fruits.csv')
```

Get the first five rows of Dataframe

```
In [3]:
```

```
df.head()
```

Out[3]:

	Fruit Category	Fruit Name	Fruit Weight	Fruit Width	Fruit Length	Fruit Colour Score
0	1	Apple	192	8.4	7.3	0.55
1	1	Apple	180	8.0	6.8	0.59
2	1	Apple	176	7.4	7.2	0.60
3	1	Apple	178	7.1	7.8	0.92
4	1	Apple	172	7.4	7.0	0.89

Get Information of Dataframe

In [4]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 59 entries, 0 to 58
Data columns (total 6 columns):
```

#	Column	Non-Null Count	Dtype
0	Fruit Category	59 non-null	int64
1	Fruit Name	59 non-null	object
2	Fruit Weight	59 non-null	int64
3	Fruit Width	59 non-null	float64
4	Fruit Length	59 non-null	float64
5	Fruit Colour Score	59 non-null	float64

dtypes: float64(3), int64(2), object(1)

memory usage: 2.9+ KB

Get the Summary Statistics

In [5]:

```
df.describe()
```

Out[5]:

	Fruit Category	Fruit Weight	Fruit Width	Fruit Length	Fruit Colour Score
count	59.000000	59.000000	59.000000	59.000000	59.000000
mean	1.949153	141.796610	7.105085	7.693220	0.762881
std	0.775125	67.335951	0.816938	1.361017	0.076857
min	1.000000	58.000000	5.800000	4.000000	0.550000
25%	1.000000	82.000000	6.600000	7.200000	0.720000
50%	2.000000	154.000000	7.200000	7.600000	0.750000
75%	3.000000	167.000000	7.500000	8.200000	0.810000
max	3.000000	362.000000	9.600000	10.500000	0.930000

Get Shape of Dataframe

In [6]:

df.shape

Out[6]:

(59, 6)

Get Columns Names

Get Unique Values(class or Label) in y Variable

```
In [8]:

df['Fruit Category'].value_counts()

Out[8]:

2    24
1    19
3    16
Name: Fruit Category, dtype: int64

In [9]:

df.groupby('Fruit Category').mean()
```

Out[9]:

Fruit Weight Fruit Width Fruit Length Fruit Colour Score

Fruit Category

1	165.052632	7.457895	7.342105	0.783684
2	170.333333	7.220833	7.195833	0.776250
3	71.375000	6.512500	8.856250	0.718125

Define y(dependent or label or target variable) and X(independent or features or attribute Variable)

```
In [10]:
y = df['Fruit Category']

In [11]:
y.shape
Out[11]:
(59,)
```

In [12]:

у

- Out[12]:

- 2 2 2

```
55
      3
      3
56
57
      3
58
Name: Fruit Category, dtype: int64
In [13]:
X = df[['Fruit Weight','Fruit Length','Fruit Length','Fruit Colour Score']]
In [14]:
X = df.drop(['Fruit Category','Fruit Name'], axis=1)
In [15]:
X.shape
Out[15]:
(59, 4)
```

Х

Out[16]:

	Fruit Weight	Fruit Width	Fruit Length	Fruit Colour Score
0	192	8.4	7.3	0.55
1	180	8.0	6.8	0.59
2	176	7.4	7.2	0.60
3	178	7.1	7.8	0.92
4	172	7.4	7.0	0.89
5	166	6.9	7.3	0.93
6	172	7.1	7.6	0.92
7	154	7.0	7.1	0.88
8	164	7.3	7.7	0.70
9	152	7.6	7.3	0.69
10	156	7.7	7.1	0.69
11	156	7.6	7.5	0.67
12	168	7.5	7.6	0.73
13	162	7.5	7.1	0.83
14	162	7.4	7.2	0.85
15	160	7.5	7.5	0.86
16	156	7.4	7.4	0.84
17	140	7.3	7.1	0.87
18	170	7.6	7.9	0.88
19	86	6.2	4.7	0.80
20	84	6.0	4.6	0.79
21	80	5.8	4.3	0.77
22	80	5.9	4.3	0.81
23	76	5.8	4.0	0.81
24	342	9.0	9.4	0.75
25	356	9.2	9.2	0.75
26	362	9.6	9.2	0.74
27	204	7.5	9.2	0.77
28	140	6.7	7.1	0.72
29	160	7.0	7.4	0.81
30	158	7.1	7.5	0.79
31	210	7.8	8.0	0.82
32	164	7.2	7.0	0.80
33	190	7.5	8.1	0.74

	Fruit Weight	Fruit Width	Fruit Length	Fruit Colour Score
34	142	7.6	7.8	0.75
35	150	7.1	7.9	0.75
36	160	7.1	7.6	0.76
37	154	7.3	7.3	0.79
38	158	7.2	7.8	0.77
39	144	6.8	7.4	0.75
40	154	7.1	7.5	0.78
41	180	7.6	8.2	0.79
42	154	7.2	7.2	0.82
43	97	7.2	10.3	0.70
44	70	7.3	10.5	0.72
45	93	7.2	9.2	0.72
46	80	7.3	10.2	0.71
47	98	7.3	9.7	0.72
48	87	7.3	10.1	0.72
49	66	5.8	8.7	0.73
50	65	6.0	8.2	0.71
51	58	6.0	7.5	0.72
52	59	5.9	8.0	0.72
53	60	6.0	8.4	0.74
54	58	6.1	8.5	0.71
55	58	6.3	7.7	0.72
56	58	5.9	8.1	0.73
57	76	6.5	8.5	0.72
58	59	6.1	8.1	0.70

Get Train Test Split

In [17]:

```
from sklearn.model_selection import train_test_split
```

In [18]:

```
X_train,X_test,y_train,y_test = train_test_split(X,y, test_size = 0.3, random_state=2527)
```

```
In [19]:
X_train.shape, X_test.shape, y_train.shape, y_test.shape
Out[19]:
((41, 4), (18, 4), (41,), (18,))
Get Model Train
In [20]:
from sklearn.linear_model import LogisticRegression
In [21]:
model = LogisticRegression(max_iter = 500)
In [22]:
model.fit(X_train,y_train)
Out[22]:
LogisticRegression(max_iter=500)
Get Model prediction
In [23]:
y_pred = model.predict(X_test)
In [24]:
y_pred.shape
Out[24]:
(18,)
In [25]:
y_pred
Out[25]:
```

Get Probability of Each Predicted Class

array([1, 2, 2, 3, 2, 2, 3, 2, 1, 2, 3, 2, 3, 2, 2, 2, 2, 3], dtype=int64)

```
In [26]:
model.predict proba(X test)
Out[26]:
array([[7.23681943e-01, 2.76313802e-01, 4.25561303e-06],
       [1.53278000e-01, 8.46722000e-01, 6.27408228e-14],
       [2.78026327e-01, 7.21905037e-01, 6.86359051e-05],
       [5.39138800e-03, 7.67942375e-04, 9.93840670e-01],
       [2.48086478e-01, 7.51661185e-01, 2.52337034e-04],
       [3.39645937e-01, 6.60159459e-01, 1.94603589e-04],
       [5.42029491e-03, 9.77024714e-03, 9.84809458e-01],
       [4.39377245e-01, 5.60243234e-01, 3.79521145e-04],
       [5.75887906e-01, 4.23535002e-01, 5.77092478e-04],
       [4.45714562e-01, 5.54163571e-01, 1.21866709e-04],
       [7.23751518e-02, 2.04706462e-02, 9.07154202e-01],
       [1.82769229e-01, 8.17201254e-01, 2.95171210e-05],
       [2.89539753e-03, 6.40223274e-03, 9.90702370e-01],
       [3.24418625e-01, 6.75553718e-01, 2.76560565e-05],
       [1.60776110e-01, 8.39163268e-01, 6.06211689e-05],
       [2.67374666e-01, 7.32377243e-01, 2.48091176e-04],
       [2.99848194e-01, 6.99675536e-01, 4.76269559e-04],
       [2.81049181e-02, 8.02066540e-03, 9.63874417e-01]])
Get Model Evaluation
In [27]:
from sklearn.metrics import confusion_matrix, classification_report
In [28]:
print(confusion_matrix(y_test,y_pred))
[[2 7 0]
 [0 4 0]
 [0 0 5]]
In [29]:
print(classification_report(y_test,y_pred))
              precision
                           recall f1-score
                                               support
           1
                   1.00
                             0.22
                                        0.36
                                                     9
           2
                   0.36
                             1.00
                                        0.53
                                                     4
           3
                   1.00
                                                     5
                             1.00
                                        1.00
                                        0.61
                                                    18
    accuracy
                   0.79
                             0.74
                                        0.63
   macro avg
                                                    18
```

0.58

18

Get Future Predictions

0.86

weighted avg

0.61

```
Steps to follow
1.Extract a random row using sample function
2.Separate X and y
3.Predict
In [30]:
df_new = df.sample(1)
In [31]:
df_new
Out[31]:
     Fruit Category Fruit Name Fruit Weight Fruit Width Fruit Length Fruit Colour Score
                                                           7.5
                                                                           0.72
 51
                                     58
                                               6.0
                      Lemon
In [32]:
X_new = df_new[['Fruit Weight','Fruit Width','Fruit Length','Fruit Colour Score']]
In [34]:
X_new.shape
Out[34]:
(1, 4)
In [36]:
y_pred_new = model.predict(X_new)
In [37]:
y_pred_new
Out[37]:
array([3], dtype=int64)
In [38]:
model.predict_proba(X_new)
Out[38]:
array([[0.00542029, 0.00977025, 0.98480946]])
In [ ]:
```