

Hybrid State Space and Frequency Domain System Level Synthesis for Sparsity-Promoting $\mathcal{H}_2/\mathcal{H}_{\infty}$ Control Design

Zhong Fang (z4fang@uwaterloo.ca), Michael W. Fisher

Electrical and Computer Engineering University of Waterloo

Optimal Linear State Feedback Mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ Controller Synthesis Is Valuable and Challenging

Renewable resources require performance and robustness for uncertainties

Wind Speed

Optimal Linear State Feedback Mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ Controller Synthesis Is Valuable and Challenging

Renewable resources require performance and robustness for uncertainties

Sunlight Intensity

Wind Speed

Mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ Synthesis

- has a long history
- o is valuable on applications
- o but challenging due to the nonconvexity

Our Objective: Improve Existing Mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ Synthesis

¹D. Youla, H. Jabr, and J. Bongiorno, "Modern wiener-hopf design of optimal controllers–part ii: The multivariable case," IEEE Transactions on Automatic Control, vol. 21, no. 3, pp. 319–338, 1976.

²J. Anderson, J. C. Doyle, S. H. Low, and N. Matni, "System level synthesis," Annual Reviews in Control, vol. 47, pp. 364–393, 2019.

³L. Furieri, Y. Zheng, A. Papachristodoulou, and M. Kamgarpour, "An input-output parametrization of stabilizing controllers: Amidst youla and system level synthesis," IEEE Control Systems Letters, vol. 3, no. 4, pp. 1014–1019, 2019.

¹D. Youla, H. Jabr, and J. Bongiorno, "Modern wiener-hopf design of optimal controllers–part ii: The multivariable case," IEEE Transactions on Automatic Control, vol. 21, no. 3, pp. 319–338, 1976.

²J. Anderson, J. C. Doyle, S. H. Low, and N. Matni, "System level synthesis," Annual Reviews in Control, vol. 47, pp. 364–393, 2019.

³L. Furieri, Y. Zheng, A. Papachristodoulou, and M. Kamgarpour, "An input–output parametrization of stabilizing controllers: Amidst youla and system level synthesis," IEEE Control Systems Letters, vol. 3, no. 4, pp. 1014–1019, 2019.

¹D. Youla, H. Jabr, and J. Bongiorno, "Modern wiener-hopf design of optimal controllers–part ii: The multivariable case," IEEE Transactions on Automatic Control, vol. 21, no. 3, pp. 319–338, 1976.

² J. Anderson, J. C. Doyle, S. H. Low, and N. Matni, "System level synthesis," Annual Reviews in Control, vol. 47, pp. 364–393, 2019.

³L. Furieri, Y. Zheng, A. Papachristodoulou, and M. Kamgarpour, "An input-output parametrization of stabilizing controllers: Amidst youla and system level synthesis," IEEE Control Systems Letters, vol. 3, no. 4, pp. 1014–1019, 2019.

Mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ Problem

$$\min_{K(z)} \left\| \begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} T_{w \to y}(z) - T_{\text{des}}(z) \\ T_{w \to u}(z) \end{bmatrix} \right\|_{\mathcal{H}_2/\mathcal{H}_{\infty}}$$
s.t. $T_{v \to x}(z), T_{v \to u}(z) \in \frac{1}{z} \mathcal{R} \mathcal{H}_{\infty}$

 $\circ\ Q,\ R$ can be chosen by the designer

Mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ Problem

$$\min_{K(z)} \left\| \begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} T_{w \to y}(z) - T_{\text{des}}(z) \\ T_{w \to u}(z) \end{bmatrix} \right\|_{\mathcal{H}_2/\mathcal{H}_{\infty}}$$
s.t. $T_{v \to x}(z), T_{v \to u}(z) \in \frac{1}{z} \mathcal{R} \mathcal{H}_{\infty}$

- $\circ\ Q,\ R$ can be chosen by the designer
- $\circ \ T_{\rm des}$ is the desired system dynamics and can be set as 0

Mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ Problem

$$\begin{bmatrix} \min_{K(z)} \left\| \begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} T_{w \to y}(z) - T_{\text{des}}(z) \\ T_{w \to u}(z) \end{bmatrix} \right\|_{\mathcal{H}_2/\mathcal{H}_{\infty}} \\ \text{s.t.} \quad T_{v \to x}(z), T_{v \to u}(z) \in \frac{1}{z} \mathcal{R} \mathcal{H}_{\infty} \end{bmatrix}$$

- $\circ~Q,~R$ can be chosen by the designer
- $\circ\ T_{\rm des}$ is the desired system dynamics and can be set as 0
- $\circ \ \| \bullet \|_{\mathcal{H}_2/\mathcal{H}_{\infty}} = \| \bullet \|_{\mathcal{H}_2} + \lambda \| \bullet \|_{\mathcal{H}_{\infty}} \text{, } \lambda \geq 0$

Mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ Problem

$$\begin{bmatrix} \min_{K(z)} \left\| \begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} T_{w \to y}(z) - T_{\text{des}}(z) \\ T_{w \to u}(z) \end{bmatrix} \right\|_{\mathcal{H}_2/\mathcal{H}_{\infty}} \\ \text{s.t.} \quad T_{v \to x}(z), T_{v \to u}(z) \in \frac{1}{z} \mathcal{R} \mathcal{H}_{\infty} \end{bmatrix}$$

- $\circ~Q,~R$ can be chosen by the designer
- $\circ \ T_{\rm des}$ is the desired system dynamics and can be set as 0
- $\circ \ \| \bullet \|_{\mathcal{H}_2/\mathcal{H}_{\infty}} = \| \bullet \|_{\mathcal{H}_2} + \lambda \| \bullet \|_{\mathcal{H}_{\infty}}, \ \lambda \geq 0$
- o $\frac{1}{z}\mathcal{RH}_{\infty}$ is rational strictly proper hardy space

LTI system G: $x(k+1) = Ax(k) + Bu(k) + \widehat{B}w(k)$ y(k) = Cx(k)

Mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ Problem

$$\begin{bmatrix} \min_{K(z)} \left\| \begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} T_{w \to y}(z) - T_{\text{des}}(z) \\ T_{w \to u}(z) \end{bmatrix} \right\|_{\mathcal{H}_2/\mathcal{H}_{\infty}} \\ \text{s.t.} \quad T_{v \to x}(z), T_{v \to u}(z) \in \frac{1}{z} \mathcal{R} \mathcal{H}_{\infty} \end{bmatrix}$$

- $\circ~Q,~R$ can be chosen by the designer
- $\circ \ T_{\rm des}$ is the desired system dynamics and can be set as 0
- $\circ \ \| \bullet \|_{\mathcal{H}_2/\mathcal{H}_{\infty}} = \| \bullet \|_{\mathcal{H}_2} + \lambda \| \bullet \|_{\mathcal{H}_{\infty}}, \ \lambda \geq 0$
- $\circ \frac{1}{2} \mathcal{RH}_{\infty}$ is rational strictly proper hardy space

Convex SLS Problem

$$\begin{array}{c} \text{SLS} \ni & \begin{array}{c} \Phi(z) \\ \underset{\Phi_{x}(z),\Phi_{u}(z)}{\text{min}} & \left\| \begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} C\Phi_{x}(z)\hat{B} - T_{\text{des}}(z) \\ \Phi_{u}(z)\hat{B} \end{bmatrix} \right\|_{\mathcal{H}_{2}/\mathcal{H}_{\infty}} \\ \text{s.t.} & (zI - A)\Phi_{x}(z) - B\Phi_{u}(z) = I \\ & \Phi_{x}(z), \Phi_{u}(z) \in \frac{1}{z}\mathcal{R}\mathcal{H}_{\infty} \end{array}$$

LTI system G:

$$x(k+1) = Ax(k) + Bu(k) + \hat{B}w(k)$$

$$y(k) = Cx(k)$$

Mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ Problem

$$\begin{bmatrix} \min_{K(z)} \left\| \begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} T_{w \to y}(z) - T_{\text{des}}(z) \\ T_{w \to u}(z) \end{bmatrix} \right\|_{\mathcal{H}_2/\mathcal{H}_{\infty}} \\ \text{s.t.} \quad T_{v \to x}(z), T_{v \to u}(z) \in \frac{1}{z} \mathcal{R} \mathcal{H}_{\infty} \end{bmatrix}$$

- $\circ Q$, R can be chosen by the designer
- \circ $T_{
 m des}$ is the desired system dynamics and can be set as 0
- $\circ \| \bullet \|_{\mathcal{H}_2/\mathcal{H}_{\infty}} = \| \bullet \|_{\mathcal{H}_2} + \lambda \| \bullet \|_{\mathcal{H}_{\infty}}, \ \lambda \geq 0$
- $\circ \frac{1}{z} \mathcal{RH}_{\infty}$ is rational strictly proper hardy space

Convex SLS Problem

SLS
$$\Rightarrow$$

$$\min_{\substack{\Phi_x(z), \Phi_u(z) \\ \text{s.t.}}} \left\| \begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} C\Phi_x(z)\hat{B} - T_{\text{des}}(z) \\ \Phi_u(z)\hat{B} \end{bmatrix} \right\|_{\mathcal{H}_2/\mathcal{H}_\infty}$$
s.t. $(zI - A)\Phi_x(z) - B\Phi_u(z) = I$

$$\Phi_x(z), \Phi_u(z) \in \frac{1}{z}\mathcal{R}\mathcal{H}_\infty$$

LTI system G:

$$x(k+1) = Ax(k) + Bu(k) + \underbrace{\hat{B}w(k)}^{v(k)}$$
$$y(k) = Cx(k)$$

Mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ Problem

$$\min_{K(z)} \left\| \begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} T_{w \to y}(z) - T_{\text{des}}(z) \\ T_{w \to u}(z) \end{bmatrix} \right\|_{\mathcal{H}_2/\mathcal{H}_{\infty}}$$
s.t. $T_{v \to x}(z), T_{v \to u}(z) \in \frac{1}{z} \mathcal{R} \mathcal{H}_{\infty}$

- $\circ~Q,~R$ can be chosen by the designer
- \circ $T_{\rm des}$ is the desired system dynamics and can be set as 0
- $\circ \ \| \bullet \|_{\mathcal{H}_2/\mathcal{H}_{\infty}} = \| \bullet \|_{\mathcal{H}_2} + \lambda \| \bullet \|_{\mathcal{H}_{\infty}} \text{, } \lambda \geq 0$
- o $\frac{1}{z}\mathcal{RH}_{\infty}$ is rational strictly proper hardy space

Convex SLS Problem

Simple Pole Approximation⁴ Addresses the Limitations of Finite Impulse Response

Finite Impulse Response (FIR)

closed-loop poles all lie at the origin

- infeasibility for stabilizable but uncontrollable systems
- high computational cost in systems with large separation of time scales
- unknown to incorporate prior knowledge about optimal closed-loop poles

⁴M. W. Fisher, G. Hug, and F. Dörfler, "Approximation by simple poles—part i: Density and geometric convergence rate in hardy space," IEEE Transactions on Automatic Control, vol. 69, no. 8, pp. 4894–4909, 2024.

Simple Pole Approximation⁴ Addresses the Limitations of Finite Impulse Response

Finite Impulse Response (FIR)

closed-loop poles all lie at the origin

- infeasibility for stabilizable but uncontrollable systems
- high computational cost in systems with large separation of time scales
- unknown to incorporate prior knowledge about optimal closed-loop poles

Simple Pole Approximation (SPA)

any finite selection of stable poles that is closed under complex conjugation

- o can apply for stabilizable but uncontrollable systems
- o low computational cost in practice
- o can easily include prior knowledge

⁴M. W. Fisher, G. Hug, and F. Dörfler, "Approximation by simple poles—part i: Density and geometric convergence rate in hardy space," IEEE Transactions on Automatic Control, vol. 69, no. 8, pp. 4894–4909, 2024.

Simple Pole Approximation⁴ Addresses the **Limitations of Finite Impulse Response**

Finite Impulse Response (FIR)

closed-loop poles all lie at the origin

- o infeasibility for stabilizable but uncontrollable systems
- high computational cost in systems with large separation of time scales
- unknown to incorporate prior knowledge about optimal closed-loop poles

Simple Pole Approximation (SPA)

any finite selection of stable poles that is closed under complex conjugation

- o can apply for stabilizable but uncontrollable systems
- low computational cost in practice
- can easily include prior knowledge

The closed-loop system responses are

$$\Phi_x(z) = \sum_{p \in \mathcal{P}} \frac{G_p}{z-p}, \ \Phi_u(z) = \sum_{p \in \mathcal{P}} \frac{H_p}{z-p}, \quad \begin{array}{ll} G_p \ \text{and} \ H_p \ \text{are} \\ \text{complex} \\ \text{matrices} \end{array}$$

⁴M. W. Fisher, G. Hug, and F. Dörfler, "Approximation by simple poles—part i: Density and geometric convergence rate in hardy space," IEEE Transactions on Automatic Control, vol. 69, no. 8, pp. 4894–4909, 2024.

Increased Suboptimality in Prior Work⁵ Due to Finite Time Horizon Approximation

Finite Time Horizon Approximation

T:= time horizon

 $\mathcal{I}_T := \text{ impulse response of size } T$

 $\mathcal{C}_T := ext{ convolution matrix of size } T$

⁵M. W. Fisher, G. Hug, and F. Dörfler, "Approximation by simple poles – part ii: System level synthesis beyond finite impulse response," IEEE Transactions on Automatic Control, pp. 1–16, 2024.

Increased Suboptimality in Prior Work⁵ Due to Finite Time Horizon Approximation

Finite Time Horizon Approximation

T:= time horizon $\mathcal{I}_T:= \text{ impulse response of size } T$ $\mathcal{C}_T:= \text{ convolution matrix of size } T$ impulse response $\|\Phi(z)\|_{\mathcal{H}_2}=\lim_{T\to\infty}\|\mathcal{I}_T\|_F$ $\|\Phi(z)\|_{\mathcal{H}_\infty}=\lim_{T\to\infty}\|\mathcal{C}_T\|_2$

- suboptimality bound is derived under the assumption of solving problem exactly
- suboptimality may not tend to zero as the number of poles diverges

time

⁵M. W. Fisher, G. Hug, and F. Dörfler, "Approximation by simple poles – part ii: System level synthesis beyond finite impulse response," IEEE Transactions on Automatic Control, pp. 1–16, 2024.

Increased Suboptimality in Prior Work⁵ Due to Finite Time Horizon Approximation

Finite Time Horizon Approximation

T:= time horizon $\mathcal{I}_T:= \text{ impulse response of size } T$ $\mathcal{C}_T:= \text{ convolution matrix of size } T$ impulse response $\|\Phi(z)\|_{\mathcal{H}_2}=\lim_{T\to\infty}\|\mathcal{I}_T\|_F$ $\|\Phi(z)\|_{\mathcal{H}_\infty}=\lim_{T\to\infty}\|\mathcal{C}_T\|_2$

- suboptimality bound is derived under the assumption of solving problem exactly
- suboptimality may not tend to zero as the number of poles diverges
- degraded performance
- higher memory and storage requirements and longer runtime

time

⁵M. W. Fisher, G. Hug, and F. Dörfler, "Approximation by simple poles – part ii: System level synthesis beyond finite impulse response," IEEE Transactions on Automatic Control, pp. 1–16, 2024.

Increased Suboptimality in Prior Work⁵ Due to **Finite Time Horizon Approximation**

Finite Time Horizon Approximation

T:= time horizon

 $\mathcal{I}_T := \text{ impulse response of size } T$

- suboptimality bound is derived under the assumption of solving problem exactly
- suboptimality may not tend to zero as the number of poles diverges
- degraded performance
- higher memory and storage requirements and longer runtime

Goal: eliminate the error of finite time horizon approximation

⁵M. W. Fisher, G. Hug, and F. Dörfler, "Approximation by simple poles – part ii: System level synthesis beyond finite impulse response." IEEE Transactions on Automatic Control, pp. 1-16, 2024.

KYP Lemma⁶ Expresses $\mathcal{H}_2/\mathcal{H}_{\infty}$ Norms as LMIs

For given transfer function $\Phi(z)=\tilde{C}(zI-\tilde{A})^{-1}\tilde{B}$, if \tilde{A} is stable in the discrete time then the following statements hold.

⁶C. Scherer and S. Weiland, "Linear matrix inequalities in control," Lecture Notes, Dutch Institute for Systems and Control, Delft, The Netherlands, vol. 3, no. 2, 2000.

KYP Lemma⁶ Expresses $\mathcal{H}_2/\mathcal{H}_{\infty}$ Norms as LMIs

For given transfer function $\Phi(z)=\tilde{C}(zI-\tilde{A})^{-1}\tilde{B}$, if \tilde{A} is stable in the discrete time then the following statements hold.

1) $\|\Phi(z)\|_{\mathcal{H}_2} < \gamma_1$ if and only if there exist $K_1 \in \mathbb{S}^{n \times |\mathcal{P}|}$, $Z \in \mathbb{S}^m$, such that

$$\operatorname{Trace}(Z) < \gamma_1, \begin{bmatrix} K_1 & K_1 \tilde{A} & K_1 \tilde{B} \\ \tilde{A}^{\mathsf{T}} K_1 & K_1 & 0 \\ \tilde{B}^{\mathsf{T}} K_1 & 0 & \gamma_1 I \end{bmatrix} \succ 0, \begin{bmatrix} K_1 & 0 & \tilde{C}^{\mathsf{T}} \\ 0 & I & 0 \\ \tilde{C} & 0 & Z \end{bmatrix} \succ 0.$$

⁶C. Scherer and S. Weiland, "Linear matrix inequalities in control," Lecture Notes, Dutch Institute for Systems and Control, Delft, The Netherlands, vol. 3, no. 2, 2000.

KYP Lemma⁶ Expresses $\mathcal{H}_2/\mathcal{H}_{\infty}$ Norms as LMIs

For given transfer function $\Phi(z)=\tilde{C}(zI-\tilde{A})^{-1}\tilde{B}$, if \tilde{A} is stable in the discrete time then the following statements hold.

1) $\|\Phi(z)\|_{\mathcal{H}_2}<\gamma_1$ if and only if there exist $K_1\in\mathbb{S}^{n imes|\mathcal{P}|}$, $Z\in\mathbb{S}^m$, such that

$$\operatorname{Trace}(Z) < \gamma_1, \begin{bmatrix} K_1 & K_1 \tilde{A} & K_1 \tilde{B} \\ \tilde{A}^{\mathsf{T}} K_1 & K_1 & 0 \\ \tilde{B}^{\mathsf{T}} K_1 & 0 & \gamma_1 I \end{bmatrix} \succ 0, \begin{bmatrix} K_1 & 0 & \tilde{C}^{\mathsf{T}} \\ 0 & I & 0 \\ \tilde{C} & 0 & Z \end{bmatrix} \succ 0.$$

2) $\|\Phi(z)\|_{\mathcal{H}_{\infty}} < \gamma_2$ if and only if there exists $K_2 \in \mathbb{S}^{n \times |\mathcal{P}|}$,

$$\begin{bmatrix} K_2 & 0 & \tilde{A}^{\intercal}K_2 & \tilde{C}^{\intercal} \\ 0 & \gamma_2 I & \tilde{B}^{\intercal}K_2 & 0 \\ K_2\tilde{A} & K_2\tilde{B} & K_2 & 0 \\ \tilde{C} & 0 & 0 & \gamma_2 I \end{bmatrix} \succ 0$$

⁶C. Scherer and S. Weiland, "Linear matrix inequalities in control," Lecture Notes, Dutch Institute for Systems and Control, Delft, The Netherlands, vol. 3, no. 2, 2000.

 $(\bar{A},\bar{B},\bar{C}_x,0)$ is a real state space realization of $\Phi_x(z)$ $(\bar{A},\bar{B},\bar{C}_u,0)$ is a real state space realization of $\Phi_u(z)$

$$(A,B,C_x,0)$$
 is a real state space realization of $\Phi_x(z)$ $(\bar{A},\bar{B},\bar{C}_u,0)$ is a real state space realization of $\Phi_u(z)$

$$\tilde{A} = \begin{bmatrix} \bar{A} & 0 \\ 0 & A_{\mathrm{des}} \end{bmatrix}, \quad \tilde{B} = \begin{bmatrix} \bar{B}\hat{B} \\ B_{\mathrm{des}} \end{bmatrix}, \quad \tilde{C} = \begin{bmatrix} QC\bar{C}_x & -QC_{\mathrm{des}} \\ R\bar{C}_u & 0 \end{bmatrix}, \quad \Phi(z) = \begin{bmatrix} \tilde{A} & \tilde{B} \\ \tilde{C} & 0 \end{bmatrix}$$

Objective

$$\min_{\Phi(z) \in \frac{1}{z} \mathcal{RH}_{\infty}} \|\Phi(z)\|_{\mathcal{H}_{2}} + \lambda \|\Phi(z)\|_{\mathcal{H}_{\infty}}$$

Objective

$$\min_{\Phi(z) \in \frac{1}{z} \mathcal{RH}_{\infty}} \|\Phi(z)\|_{\mathcal{H}_{2}} + \lambda \|\Phi(z)\|_{\mathcal{H}_{\infty}}$$

is equivalent to

$$\begin{aligned} \min_{\gamma_1, \gamma_2, \Phi(z) \in \frac{1}{z} \mathcal{R} \mathcal{H}_{\infty}} \gamma_1 + \lambda \gamma_2 \\ \text{s.t.} \quad & \| \Phi(z) \|_{\mathcal{H}_2} < \gamma_1 \\ & \| \Phi(z) \|_{\mathcal{H}_{\infty}} < \gamma_2 \end{aligned}$$

Objective

$$\min_{\Phi(z) \in \frac{1}{z} \mathcal{RH}_{\infty}} \|\Phi(z)\|_{\mathcal{H}_{2}} + \lambda \|\Phi(z)\|_{\mathcal{H}_{\infty}}$$

is equivalent to

$$\begin{aligned} \min_{\gamma_1,\gamma_2,\Phi(z)\in\frac{1}{z}\mathcal{R}\mathcal{H}_\infty} & \gamma_1+\lambda\gamma_2\\ \text{s.t.} & \|\Phi(z)\|_{\mathcal{H}_2}<\gamma_1\\ & \|\Phi(z)\|_{\mathcal{H}_\infty}<\gamma_2 \end{aligned}$$

Objective

SLS Constraint

$$\min_{\Phi(z) \in \frac{1}{z} \mathcal{RH}_{\infty}} \|\Phi(z)\|_{\mathcal{H}_2} + \lambda \|\Phi(z)\|_{\mathcal{H}_{\infty}}$$

$$(zI - A)\Phi_x(z) - B\Phi_u(z) = I$$

is equivalent to

$$\begin{aligned} \min_{\gamma_1,\gamma_2,\Phi(z)\in\frac{1}{z}\mathcal{R}\mathcal{H}_\infty} & \gamma_1 + \lambda\gamma_2 \\ \text{s.t.} & & \|\Phi(z)\|_{\mathcal{H}_2} < \gamma_1 \\ & & \|\Phi(z)\|_{\mathcal{H}_\infty} < \gamma_2 \end{aligned}$$

Objective

$$\min_{\Phi(z) \in \frac{1}{z} \mathcal{RH}_{\infty}} \|\Phi(z)\|_{\mathcal{H}_{2}} + \lambda \|\Phi(z)\|_{\mathcal{H}_{\infty}}$$

is equivalent to

$$\begin{aligned} \min_{\gamma_1,\gamma_2,\Phi(z)\in\frac{1}{z}\mathcal{R}\mathcal{H}_\infty} & \gamma_1+\lambda\gamma_2\\ \text{s.t.} & \|\Phi(z)\|_{\mathcal{H}_2} < \gamma_1\\ & \|\Phi(z)\|_{\mathcal{H}_\infty} < \gamma_2 \end{aligned}$$

SLS Constraint

Objective

$$\min_{\Phi(z) \in \frac{1}{z} \mathcal{RH}_{\infty}} \|\Phi(z)\|_{\mathcal{H}_{2}} + \lambda \|\Phi(z)\|_{\mathcal{H}_{\infty}}$$

is equivalent to

$$\min_{\gamma_1,\gamma_2,\Phi(z)\in\frac{1}{z}\mathcal{R}\mathcal{H}_{\infty}}\gamma_1+\lambda\gamma_2$$
 s.t.
$$\|\Phi(z)\|_{\mathcal{H}_2}<\gamma_1$$

$$\|\Phi(z)\|_{\mathcal{H}_{\infty}}<\gamma_2$$

$$\mathsf{KYP}$$

SLS Constraint

Hybrid Domain Control Design Yields a SDP

$$\min_{K_{1}, K_{2}, Z, G_{p}, H_{p}, \gamma_{1}, \gamma_{2} } \gamma_{1} + \lambda \gamma_{2}$$
subject to
$$\operatorname{Tr}(Z) < \gamma_{1}$$

$$\begin{bmatrix} K_{1} & K_{1} \tilde{A} & K_{1} \tilde{B} \\ \tilde{A}^{\mathsf{T}} K_{1} & K_{1} & 0 \\ \tilde{B}^{\mathsf{T}} K_{1} & 0 & \gamma_{1} I \end{bmatrix} \succ 0$$

$$\begin{bmatrix} K_{1} & 0 & \tilde{C}(G_{p}, H_{p})^{\mathsf{T}} \\ 0 & I & 0 \\ \tilde{C}(G_{p}, H_{p}) & 0 & Z \end{bmatrix} \succ 0$$

$$\begin{bmatrix} K_{2} & 0 & \tilde{A}^{\mathsf{T}} K_{2} & \tilde{C}(G_{p}, H_{p})^{\mathsf{T}} \\ 0 & \gamma_{2} I & \tilde{B}^{\mathsf{T}} K_{2} & 0 \\ K_{2} \tilde{A} & K_{2} \tilde{B} & K_{2} & 0 \\ \tilde{C}(G_{p}, H_{p}) & 0 & 0 & \gamma_{2} I \end{bmatrix} \succ 0$$

$$\sum_{p \in \mathcal{P}} G_{p} = I$$

$$(pI - A) G_{p} - B H_{p} = 0$$

Hybrid Domain Control Design Yields a SDP

Optimization Structure

- o objective is a linear combination of new

Hybrid Domain Control Design Yields a SDP

$$\sum_{p \in \mathcal{P}} G_p = I - \text{affine}$$

$$(pI - A) G_p - BH_p = 0 - \text{linear}$$

Optimization Structure

- o objective is a linear combination of new

- semidefinite program (SDP)

The Control Design Method

- o can be solved efficiently
- eliminates the error of finite time horizon approximation

Suboptimality Bound⁷ **Works for Our Method**

Spiral Pole Selection

 $\mathcal{P}_n \coloneqq \mathsf{selected}\ n$ poles on the spiral in the complex conjugate

⁷M. W. Fisher, G. Hug, and F. Dörfler, "Approximation by simple poles – part ii: System level synthesis beyond finite impulse response," IEEE Transactions on Automatic Control, pp. 1–16, 2024.

Suboptimality Bound⁷ **Works for Our Method**

Spiral Pole Selection

 $\mathcal{P}_n \coloneqq \mathsf{selected}\ n \ \mathsf{poles}\ \mathsf{on}\ \mathsf{the}\ \mathsf{spiral}\ \mathsf{in}\ \mathsf{the}\ \mathsf{complex}\ \mathsf{conjugate}$

Suboptimality Bound

 $J^* := \text{ ground-truth optimal cost}$ $J(\mathcal{P}_n) := \text{ optimal cost with approximating } \mathcal{P}_n$

Then under mild assumptions there exists a constant K>0 and N>0 such that $n\geq N$ implies

$$\frac{J\left(\mathcal{P}_{n}\right) - J^{*}}{J^{*}} \le \frac{K}{\sqrt{n}}$$

⁷M. W. Fisher, G. Hug, and F. Dörfler, "Approximation by simple poles – part ii: System level synthesis beyond finite impulse response," IEEE Transactions on Automatic Control, pp. 1–16, 2024.

Suboptimality Bound⁷ **Works for Our Method**

Spiral Pole Selection

 $\mathcal{P}_n \coloneqq \mathsf{selected}\ n \ \mathsf{poles}\ \mathsf{on}\ \mathsf{the}\ \mathsf{spiral}\ \mathsf{in}\ \mathsf{the}\ \mathsf{complex}\ \mathsf{conjugate}$

Suboptimality Bound

 $J^* := \text{ ground-truth optimal cost}$ $J(\mathcal{P}_n) := \text{ optimal cost with approximating } \mathcal{P}_n$

Then under mild assumptions there exists a constant K>0 and N>0 such that $n\geq N$ implies

$$\frac{J\left(\mathcal{P}_{n}\right) - J^{*}}{J^{*}} \le \frac{K}{\sqrt{n}}$$

- o applies directly to our method
- o ensures that the suboptimality converges to zero as the number of poles approaches infinity

⁷M. W. Fisher, G. Hug, and F. Dörfler, "Approximation by simple poles – part ii: System level synthesis beyond finite impulse response," IEEE Transactions on Automatic Control, pp. 1–16, 2024.

The Number of Poles ↑

- increases the computational cost of the design problem
- reduces the robustness of the resulting controller

The Number of Poles ↑

- increases the computational cost of the design problem
- reduces the robustness of the resulting controller

Sparsity constraints:

$$\sum_{p \in \mathcal{P}} \mathbb{1}(G_p) \le l, \quad \sum_{p \in \mathcal{P}} \mathbb{1}(H_p) \le l$$

⁸M. Yin, A. Iannelli, M. Khosravi, A. Parsi, and R. S. Smith, "Linear time-periodic system identification with grouped atomic norm regularization," IFAC-PapersOnLine, vol. 53, no. 2, pp. 1237–1242, 2020.

The Number of Poles ↑

- increases the computational cost of the design problem
- reduces the robustness of the resulting controller

Sparsity constraints:

$$\sum_{p \in \mathcal{P}} \mathbb{1}(G_p) \le l, \quad \sum_{p \in \mathcal{P}} \mathbb{1}(H_p) \le l$$

nonconvex ↓ group lasso⁸

Sparsity penalty function:

$$\gamma_1 + \lambda \gamma_2 + \sigma_x \sum_{p \in \mathcal{P}} \|G_p\|_F^2 + \sigma_u \sum_{p \in \mathcal{P}} \|H_p\|_F^2$$

⁸M. Yin, A. Iannelli, M. Khosravi, A. Parsi, and R. S. Smith, "Linear time-periodic system identification with grouped atomic norm regularization," IFAC-PapersOnLine, vol. 53, no. 2, pp. 1237–1242, 2020.

The Number of Poles 个

- increases the computational cost of the design problem
- reduces the robustness of the resulting controller

Sparsity constraints:

$$\sum_{p \in \mathcal{P}} \mathbb{1}(G_p) \le l, \quad \sum_{p \in \mathcal{P}} \mathbb{1}(H_p) \le l$$

nonconvex ↓ group lasso⁸

Sparsity penalty function:

$$\gamma_1 + \lambda \gamma_2 + \sigma_x \sum_{p \in \mathcal{P}} \|G_p\|_F^2 + \sigma_u \sum_{p \in \mathcal{P}} \|H_p\|_F^2$$

Optimal Sparse Selection

$$\min_{K_1, K_2, Z, G_p, H_p, \gamma_1, \gamma_2} \gamma_1 + \lambda \gamma_2 + \sigma_x \sum_{p \in \mathcal{P}} \|G_p\|_F^2 + \sigma_u \sum_{p \in \mathcal{P}} \|H_p\|_F^2$$

s.t.

Same Constraints

⁸M. Yin, A. Iannelli, M. Khosravi, A. Parsi, and R. S. Smith, "Linear time-periodic system identification with grouped atomic norm regularization," IFAC-PapersOnLine, vol. 53, no. 2, pp. 1237–1242, 2020.

The Number of Poles 个

- increases the computational cost of the design problem
- reduces the robustness of the resulting controller

Sparsity constraints:

$$\sum_{p \in \mathcal{P}} \mathbb{1}(G_p) \le l, \quad \sum_{p \in \mathcal{P}} \mathbb{1}(H_p) \le l$$

nonconvex ↓ group lasso⁸

Sparsity penalty function:

$$\gamma_1 + \lambda \gamma_2 + \sigma_x \sum_{p \in \mathcal{P}} \|G_p\|_F^2 + \sigma_u \sum_{p \in \mathcal{P}} \|H_p\|_F^2$$

Optimal Sparse Selection

$$\min_{K_1, K_2, Z, G_p, H_p, \gamma_1, \gamma_2} \gamma_1 + \lambda \gamma_2 + \sigma_x \sum_{p \in \mathcal{P}} \|G_p\|_F^2 + \sigma_u \sum_{p \in \mathcal{P}} \|H_p\|_F^2$$

s.t.

Same Constraints

conic program

⁸M. Yin, A. Iannelli, M. Khosravi, A. Parsi, and R. S. Smith, "Linear time-periodic system identification with grouped atomic norm regularization," IFAC-PapersOnLine, vol. 53, no. 2, pp. 1237–1242, 2020.

Numerical Example: Wind Turbine Interfaced to the Power Grid

$$A = \begin{bmatrix} {}^{0.8046 & 0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{1177} & {}^{-0.0112} & {}^{-0.1332} \\ {}^{1} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \end{bmatrix}, B = \begin{bmatrix} {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \end{bmatrix},$$

$$C = \begin{bmatrix} {}^{0} & {}^{0.9066} & {}^{-0.0364} & {}^{1.0218} & {}^{0} & {}^{0} & {}^{1.0069} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0$$

A wind turbine interfaced to the power grid via a power converter

Numerical Example: Wind Turbine Interfaced to the Power Grid

$$A = \begin{bmatrix} {}^{0.8046\ 0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{1177} & {}^{-0.0112} & {}^{-0.1332} \\ {}^{1} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \end{bmatrix}, B = \begin{bmatrix} {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{1} & {}^{0} \end{bmatrix},$$

$$C = \begin{bmatrix} {}^{0} & {}^{0} & {}^{9} & {}^{6} & {}^{0} & {}^{1} & {}^{0} & {}^{1} & {}^{0} & {}^{1} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} \\ {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} & {}^{0} &$$

A wind turbine interfaced to the power grid via a power converter

Pole Selection: first incorporate the plant poles and the poles of the desired transfer function

Spiral Method
select the remaining 10 poles along an Archimedes spiral

Sparse Hybrid Method Outperforms Finite Time Horizon Method

Conclusion

We developed a novel hybrid state space and frequency domain method for mixed $\mathcal{H}_2/\mathcal{H}_\infty$ control design which

- o reduced suboptimality
- o improved performance
- o less computational cost

Hybrid Domain Method

State Space	Frequency Domain
\circ mixed $\mathcal{H}_2/\mathcal{H}_\infty$ norm	\circ SLS constraint
	 objective
LMIs	Linear/Affine

Semidefinite Program

Conclusion

We developed a novel hybrid state space and frequency domain method for mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ control design which

- reduced suboptimality
- o improved performance
- o less computational cost

Hybrid Domain Method		Sparsity-Promoting Method
State Space \circ mixed $\mathcal{H}_2/\mathcal{H}_\infty$ norm LMIs	Frequency Domain SLS constraint objective Linear/Affine	optimally select
Semidefinit	te Program	Conic Program

Conclusion

We developed a novel hybrid state space and frequency domain method for mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ control design which

- reduced suboptimality
- o improved performance
- o less computational cost

Both Can Be Solved Efficiently

We demonstrated on the test case of control design for a wind turbine with power converter interface, and showed superior performance compared to the prior methods.

Ongoing Work

Ongoing Work

A recent work on \mathcal{H}_2 and \mathcal{H}_∞ synthesis combining SLS and SPA in continuous time⁹

while we focus on

- \circ Mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ synthesis in continuous time
- Suboptimality bound for SPA combined with SLS is nontrivial and has been certified

An upcoming manuscript is coming soon!

⁹Y. Du and J. S. Li, "State feedback system level synthesis in continuous time," arXiv preprint arXiv:2410.08135, 2024.

Thank you for your attention

Zhong Fang (z4fang@uwaterloo.ca), Michael W. Fisher

Electrical and Computer Engineering University of Waterloo