

Neighbor-joining

Edson Delatorre

Lab. de Genética Molecular de Microrganismos Instituto Oswaldo Cruz/FIOCRUZ

delatorre.ioc@gmail.com

Rio de Janeiro – RJ, janeiro de 2019

Modelando a evolução

Métodos de Reconstrução de Filogenias

Métodos **baseados** em um modelo explícito de evolução

Métodos **sem base** em um modelo explícito de evolução Métodos baseados em caracteres

Máxima-verossimilhança Inferência Bayesiana

Máxima parcimônia

Métodos baseados em distância

Neighbor-Joining
Evolução mínima

UPGMA

Métodos baseados em distância

Ajustam uma árvore a uma matriz distâncias genéticas entre pares de diferentes OTUs

Algoritmos baseados em distância incluem:

- Evolução Mínima
- UPGMA
- Neighbor-joining

Evolução mínima

• A árvore com o comprimento mínimo, que é a soma do comprimento de todos os ramos da árvore, é escolhida como a melhor estimativa da árvore.

Trees =
$$\frac{(2n-3)!}{(2^{n-2}(n-2))!}$$

2 sequências: 3 3 sequências : 4 sequências: **15** 5 sequências : 105 6 sequências : 954 7 sequências : 10395 8 sequências : 135135 9 sequências : 2027025 10 sequências : 34459425

>1080

51 sequências:

 O NJ (Saitou and Nei, 1987) é um método de busca heurística para estimar a árvore de evolução mínima.

 O método de NJ está baseado no princípio evolução mínima e constrói em cada etapa novos nós internos juntando os vizinhos mais próximos, a partir de uma árvore tipo-estrela.

Matrix de distâncias genéticas P-distance

	A	В	C	D	E	F
Α	0	5	4	7	6	8
В	5	0	7	10	9	11
С	4	7	0	7	6	8
D	7	10	7	0	5	9
E	6	9	6	5	0	8
F	8	11	8	9	8	0

Uma nova matrix é computada, corrigida com base na taxa global de divergência

	А	В	С	D	E	F
Α	0	5	4	7	6	8
В	5	0	7	10	9	11
С	4	7	0	7	6	8
D	7	10	7	0	5	9
Е	6	9	6	5	0	8
F	8	11	8	9	8	0

	Α	В	С	D	Е	F
Α	0	-13	-11.5	-10	-10	-10.5
В	-13	0	-11.5	-10	-10	-10.5
С	-11.5	-11.5	0	-10.5	-10.5	-11
D	-10	-10	-10.5	0	-13	-11.5
Е	-10	-10	-10.5	-13	0	-11.5
F	-10.5	-10.5	-11	-11.5	-11.5	0

Div(A) =
$$\Sigma_i$$
 dist(A,i) = 5+4+7+6+8 = 30
Div(B) = Σ_i dist(B,i) = 5+7+10+9+11 = 42
Div(C) = Σ_i dist(C,i) = 32
Div(D) = Σ_i dist(D,i) = 38
Div(E) = Σ_i dist(E,i) = 34

 $Div(F) = \Sigma_i dist(F,i) = 44$

$$M(i,j) = dist(i,j) - \frac{(Div(i) + Div(j))}{N-2}$$

$$M(A,B) = 5-(30+42)/4 = -13$$

 $M(A,C) = 4-(30+32)/4=-11.5$
etc...

Os comprimentos dos ramos entre os OTUs A e B e seu ancestral são computados:

	_						_
	А	В	С	D	Е	F	
Α	0	5	4	7	6	8	
В	5	0	7	10	9	11	
С	4	7	0	7	6	8	
D	7	10	7	0	5	9	
Е	6	9	6	5	0	8	
F	8	11	8	9	8	0	
r	30	42	32	38	34	44	

	Α	В	С	D	Е	F
Α	0	-13	-11.5	-10	-10	-10.5
В	-13	0	-11.5	-10	-10	-10.5
С	-11.5	-11.5	0	-10.5	-10.5	-11
D	-10	-10	-10.5	0	-13	-11.5
Е	-10	-10	-10.5	-13	0	-11.5

$$S(AU) = dist(A,B)/2 + (Div(B) - Div(A))/2(N-2)$$

$$S(AU) = 5/2 + (42 - 30)/2(6-2) = 4$$

$$S(BU) = dist(A,B) - S(AU) = 1$$

Os comprimentos dos ramos entre os OTUs A e B e seu ancestral são computados:

As novas distâncias do nó U para cada um dos nós adjacentes é calculada:

	Α	В	С	D	E	F
А	0	5	4	7	6	8
В	5	0	7	10	9	11
С	4	7	0	7	6	8
D	7	10	7	0	5	9
Е	6	9	6	5	0	8
F	8	11	8	9	8	0
r	30	42	32	38	34	44

	Α	В	С	D	Е	F
Α	0	-13	-11.5	-10	-10	-10.5
В	-13	0	-11.5	-10	-10	-10.5
С	-11.5	-11.5	0	-10.5	-10.5	-11
D	-10	-10	-10.5	0	-13	-11.5
Е	-10	-10	-10.5	-13	0	-11.5
F	-10.5	-10.5	-11	-11.5	-11.5	0

$$dist(C,U) = (dist(A,C) + dist(B,C) - dist(A,B))/2 = (4 + 7 - 5)/2 = 3$$

$$dist(D,U) = (dist(A,D) + dist(B,D) - dist(A,B))/2 = (7 + 10 - 5)/2 = 6$$

$$dist(E,U) = (dist(A,E) + dist(B,E) - dist(A,B))/2 = (6 + 9 - 5)/2 = 5$$

$$dist(F,U) = (dist(A,F) + dist(B,F) - dist(A,B))/2 = (8 + 11 - 5)/2 = 7$$

Uma nova matrix de distância é computada, e posteriormente corrigida com base na taxa global de divergência

D E	5	7 6	5	5 0	9
С	3	0	7	6	8
U	0	3	6	5	7
	U	С	D	E	F

	U	С	D	E	F
U	0	-12	-10	-10	-10,7
С	-12	0	-11	-10	-10,7
D	-10	-11	0	-12	-10,7
Е	-10	-10	-12	0	-10,7
F	-10,7	-10,7	-10,7	-10,7	0

$$M(i,j) = dist(i,j) - \frac{(Div(i) + Div(j))}{N-2}$$

$$M(U,C) = 3 - (21+24)/3 = -12$$

 $M(U,D) = 6 - (21+27)/3 = -10$
etc...

Os comprimentos dos ramos entre os OTUs U e C e seu ancestral são computados:

_	U	С	D	Е	F
U	0	3	6	5	7
С	3	0	7	6	8
D	6	7	0	5	9
Е	5	6	5	0	8
F	7	8	9	8	0
r	21	24	27	24	32

	U	С	D	E	F
U	0	-12	-10	-10	-10,7
С	-12	0	-11	-10	-10,7
D	-10	-11	0	-12	-10,7
E	-10	-10	-12	0	-10,7
F	-10,7	-10,7	-10,7	-10,7	0

$$S(UV) = dist(C,U)/2 + (Div(U) - Div(C))/2(N-2)$$

$$S(UV) = 3/2 + (21 - 24)/2(5-2) = 1$$

$$S(CV) = dist(C,U) - S(UV) = 2$$

Os comprimentos dos ramos entre os OTUs U e C e seu ancestral são computados:

As novas distâncias do nó V para cada um dos nós adjacentes é calculada:

	U	С	D	Е	F
U	0	3	6	5	7
С	3	0	7	6	8
D	6	7	0	5	9
E	5	6	5	0	8
F	7	8	9	8	0
r	21	24	27	24	32

	U	С	D	E	F
U	0	-12	-10	-10	-10,7
С	-12	0	-11	-10	-10,7
D	-10	-11	0	-12	-10,7
Е	-10	-10	-12	0	-10,7
F	-10,7	-10,7	-10,7	-10,7	0

$$dist(V,D) = (dist(C,D) + dist(U,D) - dist(C,U))/2 = (7 + 6 - 3)/2 = 5$$

$$dist(V,E) = (dist(C,E) + dist(U,E) - dist(C,U))/2 = (6 + 5 - 3)/2 = 4$$

$$dist(V,F) = (dist(C,F) + dist(U,F) - dist(C,U))/2 = (8 + 7 - 3)/2 = 6$$

Uma nova matrix de distâncias é computada, e posteriormente corrigida com base na taxa global de divergência

	V	D	E	F
V	0	5	4	6
D	5	0	5	9
E	4	5	0	8
F	6	9	8	0
r	15	19	17	23

	V	D	E	F
V	0	-12	-12	-13
D	-12	0	-13	-12
Е	-12	-13	0	-12
F	-13	-12	-12	0

$$M(i,j) = dist(i,j) - \frac{(Div(i) + Div(j))}{N-2}$$

$$M(V,D) = 5 - (15+19)/2 = -12$$

 $M(V,E) = 4 - (15+17)/3 = -12$
etc...

Os comprimentos dos ramos entre os OTUs D e E e seu ancestral são computados:

	V	D	E	F
V	0	-12	-12	-13
D	-12	0	-13	-12
Е	-12	-13	0	-12
F	-13	-12	-12	0

$$S(DW) = dist(D,E)/2 + (div(D) - div(E))/2(N-2)$$

$$S(DW) = 5/2 + (19 - 17)/2(4-2) = 3$$

$$S(EW) = dist(D,E) - S(DW) = 2$$

Os comprimentos dos ramos entre os OTUs D e E e seu ancestral são computados:

As novas distâncias do nó W para cada um dos nós adjacentes é calculada:

	V	D	Е	F
V	0	5	4	6
D	5	0	5	9
Е	4	5	0	8
F	6	9	8	0
r	15	19	17	23

	V	D	E	F
V	0	-12	-12	-13
D	-12	0	-13	-12
Е	-12	-13	0	-12
F	-13	-12	-12	0

$$dist(V,W) = (dist(D,V) + dist(E,V) - dist(D,E))/2 = (5 + 4 - 5)/2 = 2$$

$$dist(F,W) = (dist(D,F) + dist(E,F) - dist(D,E))/2 = (9 + 8 - 5)/2 = 6$$

Uma nova matrix de distâncias é computada, e posteriormente corrigida com base na taxa global de divergência

	W	V	F
W	0	2	6
V	2	0	6
F	6	6	0
r	8	8	12

	W	V	F
W	0	-14	-14
V	-14	0	-14
F	-14	-14	0

$$M(i,j) = dist(i,j) - \frac{(Div(i) + Div(j))}{N-2}$$

$$M(W,V) = 2 - (8+8)/1 = -14$$

 $M(W,F) = 6 - (8+12)/1 = -14$

$$M(V,F) = 6 - (8+12)/1 = -14$$

Os comprimentos dos ramos entre os OTUs D e E e seu ancestral são computados:

	W	V	F
W	0	-14	-14
V	-14	0	-14
F	-14	-14	0

$$S(VX) = dist(F,V)/2 + (div(V) - div(F))/2(N-2)$$

$$S(VX) = 6/2 + (8 - 12)/2(3-2) = 1$$

$$S(FX) = dist(F,V) - S(VX) = 5$$

Os comprimentos dos ramos entre os OTUs D e E e seu ancestral são computados:

dist(W,X) = (dist(F,W) + dist(V,W) - dist(F,V))/2 = (6 + 2 - 6)/2 = 1

Topologia retangular enraizada

Métodos baseados em distância

Vantagens:

- Rapidez
- Útil para analisar grandes datasets (> 5000 sequências)

Desvantagens:

- não temos qualquer garantia de encontrar a árvore de ME
- só produz uma árvore e não temos ideia sobre outras árvores potenciais (igualmente prováveis)

Confiabilidade da topologia da árvore

- O teste mais frequentemente utilizado para avaliar a confiabilidade da topologia da árvore filogenética é o bootstrap.
- O bootstrap é uma técnica estatística que utiliza reamostragem aleatória dos dados para determinar o erro amostral ou intervalos de confiança para algum parâmetro estimado:
 - 1) É realizada uma amostragem com substituição das posições de um alinhamento de forma de criar muitas **réplicas do dataset**.
 - 2) Se constrói uma árvore filogenética de cada dataset replicado aleatoriamente.
 - 3) É computada a frequência com que os grupos são encontrados nas análises do conjunto de dados replicados (valores de bootstrap).

Bootstrap

Bootstrap

- Valores elevados de bootstrap (≥ 75%) são indicativos de forte sinal filogenético nos dados em favor de um determinado cluster filogenético.
- Em algumas circunstâncias, no entanto, um cluster pode apresentar um valor de bootstrap elevado, mesmo se for um erro (por exemplo, o agrupamento de sequências com viés de composição de bases similar, ou com um aumento da taxa evolutiva).
- Contrariamente, um valor de bootstrap baixo não significa necessariamente que a relação filogenética é falsa, só que é mal suportada (sinal filogenético fraco nos dados).