M.E. 530.646 Final Project Report

Bo Lei

1. Goal

The goal is to move the UR5 robot through the trajectory I set, so that it is able to draw a picture of a heart with a Chinese word inside if it. Here is the pattern, which is composed of a lot of points and lines connecting the consecutive points:

2. Basic idea

1. Inverse Kinematics

Move the robot to a very close end-effector position. Move the end-effector through the trajectory step by step.

2. Resolved-Rate Control

Move the robot with a small step each time. The position change in spatial frame is

$$\begin{aligned} x_{t+1} - x_t &= J\dot{\theta} = J(\theta_{t+1} - \theta_t) \\ & \to \theta_{t+1} = J^{-1}(x_{t+1} - x_t) + \theta_t \end{aligned}$$

In this way, we can move the end-effector through the trajectory by moving the joint angles each time.

2. Calculations relating to the code

1. homogenous transformation from body frame to spatial frame Given the plane normal \mathbf{n}_0 , and a point \mathbf{P}_0 , compute the transformation between the body frame and the spatial frame:

Body Frame normal:
$$n_b = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Ratation Axis:
$$\mathbf{n_r} = -\mathbf{n_0} \times \mathbf{n_b}$$

Rotation Angle:
$$\theta = \arccos(\frac{-\mathbf{n0} \cdot \mathbf{nb}}{||\mathbf{n0}|| ||\mathbf{nb}||})$$

Then we can get the homogenous transformation from body frame to spatial frame:

$$g_{sb} = \begin{bmatrix} \exp(\widehat{n_r}\theta) & p_0 \\ 0 & 1 \end{bmatrix}$$

2. When finishing drawing a pattern, move away from the board with height h:

$$p_{h} = g_{sb} \left(p_{current} + \begin{bmatrix} 0 \\ 0 \\ h \end{bmatrix} \right)$$

- 3. Inverse and forward kinematics have been reported in previous lab.
- 4. Spatial Jacobian:

File: Ad.m, getJacobian.m

$$J = [\xi_{1} \xi_{2}^{'} \xi_{3}^{'} \xi_{4}^{'} \xi_{5}^{'} \xi_{6}^{'}]$$

$$\xi_{i}^{'} = Ad_{e^{\xi_{1}\theta_{1}} \circ e^{\xi_{i-1}\theta_{i-1}}}^{\wedge} \xi_{i}$$

 $e^{\hat{\xi_i}\theta_i}$ is computed in forward kinwmatics

$$Ad_{g} = \begin{bmatrix} R & \widehat{\mathbf{p}}R \\ \mathbf{1} & R \end{bmatrix}$$

3. Screen shots showing the results

Inverse Kinematics(Using the 4th inverse kinematics solution): File: DummyMain IK.m

$$p0 = [0;-0.3;0.5];n = [0;1;0];$$

Resolved-Rate Control:

File: DummyMain_jacobian.m

p0 = [0; -0.5; 0.5]; n = [0; 1; 1];

4. Drawing result

Inverse Kinematics:

Resolved-Rate Control:

5. Lab video

Inverse Kinematics: https://www.youtube.com/watch?v=9RyKTatm_xo
Resolved-Rate Control: https://www.youtube.com/watch?v=xy0HFCJL9QM