mcpp_taller7_john_caro

October 15, 2016

1 Taller 7

Métodos Computacionales para Políticas Públicas - URosario Entrega: viernes 14-oct-2016 11:59 PM
[John Alexander Caro Becerra] [jhonalexbc@gmail.com]

1.1 Instrucciones:

- Guarde una copia de este *Jupyter Notebook* en su computador, idealmente en una carpeta destinada al material del curso.
- Modifique el nombre del archivo del notebook, agregando al final un guión inferior y su nombre y apellido, separados estos últimos por otro guión inferior. Por ejemplo, mi notebook se llamaría: mcpp_taller7_santiago_matallana
- Marque el *notebook* con su nombre y e-mail en el bloque verde arriba. Reemplace el texto "[Su nombre acá]" con su nombre y apellido. Similar para su e-mail.
- Desarrolle la totalidad del taller sobre este notebook, insertando las celdas que sea necesario debajo de cada pregunta. Haga buen uso de las celdas para código y de las celdas tipo markdown según el caso.
- Recuerde salvar periódicamente sus avances.
- Cuando termine el taller:
 - 1. Descárguelo en PDF. Si tiene algún problema con la conversión, descárguelo en HTML.
 - 2. Suba todos los archivos a su repositorio en GitHub, en una carpeta destinada exclusivamente para este taller, antes de la fecha y hora límites.

(Todos los ejercicios tienen el mismo valor.)	

Este taller tiene dos partes. Una obligatoria, relativamente fácil, y otra voluntaria y más retadora. Los invito a intentar desarrollar el taller en su totalidad.

En este taller exploraremos los datos de crimen de Chicago.

Descargue los datos de crimen del Chicago Data Portal solo para el año 2015 (https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2).

1.1.1 Parte obligatoria

1.1.2 1.

Calcule el número de crímenes en cada Community Area en 2015. Haga un gráfico de barras que lo ilustre.

```
In [1]: import pandas as pd
    import numpy as np
    from numpy.random import randn
    import matplotlib.pyplot as plt
    %matplotlib inline
    plt.rcParams["figure.figsize"] = [18.0, 10.0]
    plt.style.use('ggplot')

    crimes = pd.read_csv('Crimes_-_2001_to_present.csv', parse_dates=['Date'])
```

In [2]: numeros_crimenes_c_area = crimes.groupby('Community Area')['ID'].agg('count numeros_crimenes_c_area.plot(kind='bar',title="Número de Crimenes en Cada (

In [3]: numeros_crimenes_c_area.plot(kind='bar', figsize=(12,5),title="Número de Cr

1.1.3 2.

Ordene las Community Areas de acuerdo con el número de crímenes. ¿Qué Community Area (por nombre, idealmente) presenta el mayor número de crímenes? ¿El menor?

```
Out[4]: Community Area
         9
                   254
         47
                   380
         12
                   444
         55
                   506
         18
                   572
         74
                   608
         36
                   622
         13
                   828
         37
                   834
         64
                   927
         72
                   976
         57
                   986
         62
                  1030
         50
                  1037
         34
                  1057
         59
                  1063
         11
                  1140
         54
                  1173
```

```
10
        1259
52
        1303
39
        1340
45
        1356
5
        1375
48
        1458
41
        1493
60
        1590
76
        1622
17
        1626
20
        1703
4
       1747
       . . .
73
       3109
15
        3392
1
        3519
3
        3585
42
        3665
7
        3726
53
        3949
30
        4393
22
        4737
19
        4769
61
        4842
46
        5009
27
        5270
6
        5495
26
        5794
44
       5943
66
        6081
49
        6545
69
        6653
24
        6959
68
        6991
67
        7203
32
        7489
71
        7733
28
        7788
23
        8015
29
        8039
43
        8906
8
        8920
25
      17020
Name: ID, dtype: int64
```

In [5]: C_area_menor_crimenes

Out[5]: Community Area

```
254
        Name: ID, dtype: int64
In [6]: C_area_mayor_crimenes
Out[6]: Community Area
        25
              17020
        Name: ID, dtype: int64
```

1.1.4 3.

Cree una tabla cuyas filas sean días del año (yyyy-mm-dd) y las columnas las 77 Community Areas. En cada campo de la tabla deberá haber el correspondiente número de crímenes. Seleccione algunas Community Areas que le llamen la atención y haga un gráfico de serie de tiempo.

Pista: El siguiente código puede serle útil.

```
In [7]: # Create function to strip time from date field, and use it to create another
        def to_day(timestamp):
            return timestamp.replace(minute=0, hour=0, second=0)
        crimes['Day'] = crimes['Date'].apply(to_day)
In [11]: crimes_by_community_day = crimes.groupby(['Community Area', 'Day'])
         crimes_by_community_day_count = crimes_by_community_day['ID'].agg('count')
         crimes_by_community_day_count
Out[11]: Community Area
                          Day
         1
                          2015-01-01
                                         13
                          2015-01-02
                                          5
                          2015-01-03
                                          7
                                         12
                          2015-01-04
                          2015-01-05
                                          6
                          2015-01-06
                                          7
                                          6
                          2015-01-07
                                          6
                          2015-01-08
                          2015-01-09
                                         10
                          2015-01-10
                                          6
                          2015-01-11
                                          8
                          2015-01-12
                                          3
                          2015-01-13
                                         10
                                         17
                          2015-01-14
                                          9
                          2015-01-15
                                         13
                          2015-01-16
                          2015-01-17
                                         12
                          2015-01-18
                                         12
                          2015-01-19
                                          3
                          2015-01-20
                                          8
                                         18
```

2015-01-21

```
2015-01-22
                                 7
                 2015-01-23
                                12
                 2015-01-24
                                14
                 2015-01-25
                                 5
                 2015-01-26
                                10
                                 6
                 2015-01-27
                 2015-01-28
                                15
                 2015-01-29
                                 9
                 2015-01-30
                                 8
77
                                 2
                 2015-12-01
                                 8
                 2015-12-02
                 2015-12-03
                                 4
                                 3
                 2015-12-04
                 2015-12-05
                                 4
                 2015-12-06
                                 9
                 2015-12-07
                                 6
                 2015-12-08
                                 9
                 2015-12-09
                                 6
                 2015-12-10
                                 2
                 2015-12-11
                                 9
                 2015-12-12
                                 3
                 2015-12-13
                                 5
                 2015-12-14
                                12
                 2015-12-15
                                 7
                                 5
                 2015-12-16
                                 7
                 2015-12-17
                 2015-12-18
                                 4
                 2015-12-19
                                 4
                 2015-12-20
                                 1
                 2015-12-21
                                 5
                 2015-12-22
                                 8
                                 7
                 2015-12-23
                 2015-12-24
                                 5
                 2015-12-25
                                 4
                 2015-12-26
                                 8
                                 2
                 2015-12-27
                 2015-12-28
                                 9
                 2015-12-29
                                 4
                                 5
                 2015-12-30
```

Name: ID, dtype: int64

Out[12]: Community Area 1 2 3 4 5 6 7 8 9 10

Day
2015-01-01 13.0 7.0 11.0 4.0 5.0 22.0 12.0 43.0 1.0 5.0

0015 01 00	F 0	0 0	0 0	2 0	0 0	100	0 0	07.0		0 0
2015-01-02	5.0	9.0	8.0	3.0	2.0	10.0	9.0	27.0	NaN	2.0
2015-01-03	7.0	11.0	9.0	7.0	4.0	6.0	11.0	27.0	1.0	3.0
2015-01-04	12.0	7.0	9.0	10.0	3.0	15.0	5.0	16.0	1.0	4.0
2015-01-05	6.0	7.0	5.0	4.0	5.0	15.0	7.0	11.0	1.0	3.0
2015-01-06	7.0	8.0	6.0	5.0	NaN	13.0	7.0	13.0	NaN	4.0
2015-01-07	6.0	2.0	4.0	5.0	1.0	8.0	6.0	17.0	1.0	2.0
2015-01-08	6.0	6.0	3.0	5.0	NaN	6.0	5.0	8.0	1.0	NaN .
2015-01-09	10.0	5.0	10.0	2.0	4.0	14.0	6.0	21.0	NaN	3.0
2015-01-10	6.0	12.0	8.0	NaN	1.0	10.0	5.0	24.0	2.0	2.0
2015-01-11	8.0	6.0	11.0	5.0	4.0	20.0	4.0	26.0	1.0	2.0
2015-01-12	3.0	6.0	6.0	6.0	1.0	7.0	11.0	17.0	NaN	6.0
2015-01-13	10.0	10.0	9.0	5.0	4.0	8.0	6.0	15.0	NaN	3.0
2015-01-14	17.0	8.0	9.0	4.0	3.0	5.0	11.0	15.0	1.0	3.0
2015-01-15	9.0	8.0	8.0	6.0	7.0	9.0	11.0	18.0	1.0	4.0
	13.0									
2015-01-16		6.0	12.0	5.0	5.0	12.0	12.0	22.0	1.0	8.0
2015-01-17	12.0	5.0	5.0	2.0	5.0	16.0	7.0	30.0	1.0	4.0
2015-01-18	12.0	6.0	12.0	7.0	5.0	14.0	8.0	18.0	1.0	2.0
2015-01-19	3.0	12.0	7.0	3.0	5.0	10.0	11.0	25.0	NaN	3.0
2015-01-20	8.0	8.0	9.0	10.0	3.0	13.0	12.0	31.0	NaN	4.0
2015-01-21	18.0	8.0	8.0	10.0	9.0	12.0	9.0	29.0	2.0	2.0
2015-01-22	7.0	7.0	6.0	9.0	7.0	14.0	10.0	21.0	NaN	6.0
2015-01-23	12.0	11.0	6.0	4.0	6.0	8.0	6.0	27.0	1.0	5.0
2015-01-24	14.0	9.0	7.0	8.0	4.0	11.0	15.0	23.0	NaN	4.0
2015-01-25	5.0	9.0	3.0	5.0	2.0	20.0	6.0	29.0	NaN	2.0
2015-01-26	10.0	8.0	5.0	4.0	3.0	13.0	5.0	13.0	1.0	NaN .
2015-01-27	6.0	8.0	6.0	3.0	3.0	6.0	3.0	13.0	NaN	3.0
2015-01-28	15.0	9.0	10.0	1.0	1.0	9.0	11.0	26.0	NaN	1.0
2015-01-29	9.0	9.0	11.0	2.0	3.0	11.0	7.0	26.0	1.0	6.0
2015-01-30	8.0	11.0	6.0	5.0	3.0	12.0	10.0	21.0	NaN	6.0
2015-12-02	12.0	7.0	11.0	4.0	7.0	12.0	11.0	23.0	1.0	1.0
2015-12-03	6.0	11.0	9.0	2.0	4.0	12.0	7.0	32.0	1.0	1.0
2015-12-04	8.0		8.0	4.0	5.0	10.0	4.0	26.0	NaN	3.0
2015-12-05	9.0	7.0	5.0	5.0	5.0	8.0	13.0	33.0	1.0	2.0
2015-12-06	9.0	11.0	11.0	2.0	NaN	20.0	8.0	24.0	NaN	2.0
2015-12-07	7.0	10.0	8.0	1.0	6.0	10.0	8.0	19.0	1.0	3.0
2015-12-08	5.0	9.0	4.0	3.0	6.0	17.0	12.0	33.0	3.0	7.0
2015-12-09	12.0	11.0	7.0	8.0	9.0	15.0	12.0	24.0	NaN	5.0
2015-12-10	3.0	6.0	9.0	8.0	6.0	25.0	13.0	29.0	1.0	3.0
2015-12-10	11.0	7.0	11.0	6.0	5.0	19.0	10.0	29.0	NaN	2.0
		5.0								
2015-12-12	10.0		7.0	8.0	4.0	25.0	15.0	38.0	1.0	2.0
2015-12-13	7.0	12.0	10.0	3.0	4.0	21.0	9.0	38.0	NaN	6.0
2015-12-14	15.0	12.0	11.0	9.0	6.0	9.0	10.0	27.0	1.0	4.0
2015-12-15	10.0	6.0	11.0	5.0	3.0	10.0	21.0	24.0	NaN	9.0
2015-12-16	6.0	7.0	12.0	5.0	4.0	19.0	9.0	20.0	1.0	3.0
2015-12-17	8.0	8.0	8.0	7.0	5.0	18.0	19.0	28.0	NaN	3.0
2015-12-18	13.0	7.0	6.0	6.0	2.0	17.0	19.0	27.0	NaN	3.0
2015-12-19	7.0	11.0	6.0	3.0	1.0	10.0	12.0	41.0	2.0	3.0

2015-12-20	12.0	8.0	13.0	7.0	3.0	18.0	10.0	21.0	1.0	2.0
2015-12-21	6.0	2.0	11.0	4.0	NaN	6.0	11.0	32.0	NaN	3.0
2015-12-22	13.0	11.0	15.0	5.0	4.0	13.0	9.0	26.0	NaN	NaN
2015-12-23	12.0	11.0	14.0	6.0	5.0	18.0	12.0	28.0	NaN	3.0
2015-12-24	8.0	11.0	2.0	6.0	3.0	19.0	11.0	26.0	NaN	7.0
2015-12-25	2.0	6.0	3.0	3.0	NaN	5.0	5.0	10.0	1.0	5.0
2015-12-26	6.0	11.0	12.0	1.0	1.0	17.0	5.0	26.0		9.0
2015-12-27	14.0	8.0	6.0	3.0	1.0	16.0	11.0	32.0		1.0
2015-12-28	7.0	8.0	5.0	2.0	2.0	10.0	8.0	19.0	NaN	3.0
2015-12-29	6.0	7.0	12.0	8.0	3.0	8.0	5.0	25.0	NaN	1.0
2015-12-30	5.0	8.0	7.0	4.0	1.0	11.0	15.0	27.0	1.0	6.0
2015-12-31	NaN	NaN	NaN	NaN	NaN	1.0	NaN	NaN	NaN	NaN
	6.0	6.0	7.0	7.1	7.0	7.0	7.4	7.5	7.6	7.7
Community Area	68	69	70	71	72	73	74	75	76	77
Day	00 0	22.0	0 0	4.4.0	0 0	0 0	0 0	г о	<i>c</i> 0	0 0
2015-01-01	29.0	23.0	9.0	44.0	2.0	8.0	2.0	5.0	6.0	8.0
2015-01-02	12.0	21.0	5.0	17.0	1.0	11.0	1.0	2.0	6.0	5.0
2015-01-03	23.0	12.0	8.0	18.0	NaN	8.0	1.0	7.0	3.0	3.0
2015-01-04	13.0	15.0	9.0	12.0	1.0	5.0	NaN	1.0	6.0	1.0
2015-01-05	16.0	12.0	8.0	17.0	NaN	5.0	2.0	2.0	7.0	5.0
2015-01-06	15.0	14.0	6.0	11.0	2.0	8.0	2.0	3.0	6.0	4.0
2015-01-07	11.0	7.0	4.0	16.0	3.0	7.0	NaN	3.0	7.0	1.0
2015-01-08	9.0	9.0	6.0	10.0	2.0	4.0	1.0	5.0	3.0	3.0
2015-01-09	18.0	14.0	10.0	20.0	1.0	9.0	2.0	8.0	5.0	2.0
2015-01-10	9.0	13.0	6.0	28.0	3.0	3.0	1.0	5.0	5.0	2.0
2015-01-11	17.0	8.0	11.0	17.0	2.0	10.0	2.0	4.0	2.0	4.0
2015-01-12	12.0	18.0	6.0	19.0	3.0	5.0	1.0	4.0	4.0	3.0
2015-01-13	19.0	12.0	9.0	11.0	2.0	6.0	NaN	4.0	6.0	6.0
2015-01-14	21.0	16.0	6.0	24.0	NaN	5.0	1.0	1.0	2.0	6.0
2015-01-15	19.0	20.0	4.0	21.0	3.0	7.0	2.0	6.0	6.0	5.0
2015-01-16	18.0	17.0	8.0	16.0	4.0	5.0	NaN	5.0	7.0	3.0
2015-01-17	29.0	13.0	7.0	15.0	2.0	6.0	2.0	5.0	10.0	3.0
2015-01-18	20.0					11.0				4.0
2015-01-19	24.0		3.0	28.0	NaN	13.0	NaN	6.0	8.0	4.0
2015-01-20	19.0	15.0	5.0	23.0	1.0	10.0	NaN	8.0	6.0	7.0
2015-01-21	11.0	12.0	7.0	29.0	5.0	2.0	2.0	6.0	3.0	9.0
2015-01-22	19.0	13.0	11.0	22.0	1.0	5.0	1.0	6.0	4.0	6.0
2015-01-23	26.0	18.0	6.0	20.0	1.0	7.0	3.0	4.0	6.0	8.0
2015-01-24	10.0	13.0	5.0	17.0	1.0	8.0	NaN	3.0	5.0	10.0
2015-01-25	15.0	13.0	7.0	15.0	3.0	4.0	1.0	6.0	3.0	5.0
2015-01-26	18.0	16.0	10.0	29.0	1.0	8.0	1.0	9.0	2.0	8.0
2015-01-27	20.0	16.0	9.0	20.0	2.0	11.0	2.0	6.0	3.0	5.0
2015-01-28	13.0	16.0	3.0	18.0	2.0	7.0	1.0	6.0	5.0	6.0
2015-01-29	19.0	20.0	4.0	24.0	2.0	6.0	1.0	8.0	4.0	5.0
2015-01-30	20.0	22.0	6.0	20.0	5.0	7.0	NaN	6.0	2.0	4.0
	•••		• • •	•••		• • •				
2015-12-02	23.0	13.0	6.0			8.0	4.0	6.0	6.0	8.0
2015-12-03	16.0	19.0	7.0	17.0	2.0	7.0	3.0	3.0	2.0	4.0

2015-12-04	18.0	15.0	3.0	21.0	1.0	7.0	NaN	6.0	2.0	3.0
2015-12-05	13.0	20.0	5.0	26.0	3.0	9.0	3.0	5.0	2.0	4.0
2015-12-06	19.0	20.0	6.0	22.0	5.0	10.0	1.0	1.0	4.0	9.0
2015-12-07	20.0	21.0	3.0	30.0	3.0	8.0	2.0	6.0	4.0	6.0
2015-12-08	9.0	16.0	9.0	29.0	1.0	6.0	2.0	1.0	1.0	9.0
2015-12-09	11.0	16.0	3.0	20.0	6.0	7.0	1.0	4.0	4.0	6.0
2015-12-10	19.0	16.0	8.0	20.0	2.0	8.0	4.0	5.0	3.0	2.0
2015-12-11	17.0	19.0	3.0	19.0	4.0	10.0	3.0	4.0	10.0	9.0
2015-12-12	17.0	16.0	9.0	19.0	1.0	7.0	2.0	NaN	5.0	3.0
2015-12-13	17.0	17.0	7.0	14.0	NaN	2.0	3.0	3.0	5.0	5.0
2015-12-14	18.0	29.0	11.0	12.0	4.0	4.0	2.0	6.0	3.0	12.0
2015-12-15	19.0	19.0	11.0	14.0	NaN	8.0	1.0	7.0	3.0	7.0
2015-12-16	18.0	15.0	10.0	23.0	1.0	9.0	2.0	4.0	4.0	5.0
2015-12-17	15.0	19.0	4.0	15.0	NaN	10.0	NaN	6.0	7.0	7.0
2015-12-18	15.0	16.0	7.0	19.0	3.0	9.0	NaN	4.0	5.0	4.0
2015-12-19	10.0	12.0	5.0	21.0	1.0	7.0	NaN	2.0	3.0	4.0
2015-12-20	15.0	23.0	5.0	15.0	3.0	7.0	2.0	2.0	5.0	1.0
2015-12-21	12.0	15.0	3.0	18.0	2.0	9.0	1.0	1.0	2.0	5.0
2015-12-22	26.0	16.0	3.0	16.0	2.0	6.0	NaN	5.0	2.0	8.0
2015-12-23	18.0	23.0	8.0	19.0	1.0	9.0	4.0	8.0	2.0	7.0
2015-12-24	16.0	22.0	4.0	19.0	3.0	3.0	2.0	5.0	3.0	5.0
2015-12-25	13.0	15.0	3.0	18.0	1.0	5.0	NaN	6.0	3.0	4.0
2015-12-26	15.0	18.0	6.0	17.0	1.0	10.0	NaN	3.0	7.0	8.0
2015-12-27	11.0	19.0	3.0	26.0	2.0	8.0	2.0	1.0	4.0	2.0
2015-12-28	12.0	22.0	9.0	14.0	2.0	6.0	2.0	2.0	3.0	9.0
2015-12-29	18.0	16.0	7.0	18.0	NaN	8.0	3.0	2.0	2.0	4.0
2015-12-30	11.0	23.0	6.0	14.0	2.0	8.0	1.0	7.0	5.0	5.0
2015-12-31	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

[365 rows x 77 columns]

In [14]: community_timeseries.describe()

Community Area

C:\Users\Usuario\Anaconda3\lib\site-packages\numpy\lib\function_base.py:3834: RuntimeWarning)

					,
Out[14]: Community Area	. 1	2	3	4	5
count	364.000000	364.000000	364.000000	357.000000	347.000000
mean	9.667582	8.403846	9.848901	4.893557	3.962536
std	3.396959	3.024070	3.656267	2.318680	2.097696
min	2.000000	2.000000	2.000000	1.000000	1.000000
25%	NaN	NaN	NaN	NaN	Nal
50%	NaN	NaN	NaN	NaN	Nai
75%	NaN	NaN	NaN	NaN	Nal
max	20.000000	21.000000	29.000000	13.000000	12.00000

6

count	365.000000	364.000000	364.000000	180.000000	352.000000
mean	15.054795	10.236264	24.505495	1.411111	3.576705
std	6.664426	3.826715	7.202117	0.707414	1.924448
min	1.000000	2.000000	5.000000	1.000000	1.000000
25%	10.000000	NaN	NaN	NaN	Nal
50%	14.000000	NaN	NaN	NaN	Nal
75%	19.000000	NaN	NaN	NaN	Nal
max	71.000000	21.000000	53.000000	5.000000	10.000000
Community Area		68	69	70	71
count		364.000000	364.000000	364.000000	364.000000
mean		19.206044	18.277473	6.260989	21.244505
std		5.626469	5.052609	2.679483	5.210510
min		7.000000	5.000000	1.000000	10.000000
25%		NaN	NaN	NaN	NaN
50%		NaN	NaN	NaN	NaN
75%		NaN	NaN	NaN	NaN
max	• • •	41.000000	33.000000	16.000000	44.000000
Community Area	72	73	74	75	76
count	332.000000	364.000000	289.000000	362.000000	360.000000
mean	2.939759	8.541209	2.103806	5.668508	4.505556
std	1.820324	3.082154	1.275961	2.567764	2.141244
min	1.000000	1.000000	1.000000	1.000000	1.000000
25%	NaN	NaN	NaN	NaN	Nal
50%	NaN	NaN	NaN	NaN	Nal
75%	NaN	NaN	NaN	NaN	Nal
max	9.000000	20.000000	9.000000	15.000000	11.000000
C	7.7				

Community Area	77
count	362.00000
mean	6.10221
std	2.55641
min	1.00000
25%	NaN
50%	NaN
75%	NaN
max	14.00000

[8 rows x 77 columns]

In [15]: community_timeseries[[9,6,72]].plot();

1.1.5 Parte voluntaria

6

Descargue la base de datos de información socioeconómica (https://data.cityofchicago.org/Health-Human-Services/Census-Data-Selected-socioeconomic-indicators-in-C/kn9c-c2s2).

1.1.6 4.

Cree una tabla que agregue el número de crímenes por Community Area. Una esa tabla con la de datos socioeconómicos y cree un "scatter plot" de número de crímenes vs ingreso per cápita. Explique la relación en palabras.

```
In [79]: n_c=numeros_crimenes_c_area
In [41]: crimes2 = pd.read_csv('Census_Data_-_Selected_socioeconomic_indicators_in_
In [49]: crimes2
Out [49]:
             Community Area Number
                                         COMMUNITY AREA NAME
                                                               PERCENT OF HOUSING CROW
         0
                                 1.0
                                                  Rogers Park
         1
                                 2.0
                                                   West Ridge
         2
                                                       Uptown
                                 3.0
         3
                                 4.0
                                              Lincoln Square
         4
                                 5.0
                                                 North Center
         5
                                 6.0
                                                    Lake View
```

Lincoln Park

7.0

7	Near North Side
	9.0 Edison Park
	0.0 Norwood Park
	1.0 Jefferson Park
	2.0 Forest Glen
	3.0 North Park
	1.0 Albany Park
	5.0 Portage Park
	5.0 Irving Park
	7.0 Dunning
	3.0 Montclaire
	9.0 Belmont Cragin
	0.0 Bermone Cragin
	Avondale
	2.0 Logan Square
	Humboldt park
	4.0 West Town
	Austin
	5.0 West Garfield Park
	7.0 East Garfield Park
	Near West Side
	North Lawndale
29 30	South Lawndale
	Roseland
	Pullman
	South Deering
	2.0 East Side
	West Pullman
	Riverdale
	5.0 Hegewisch
	Garfield Ridge
56 5	Archer Heights
	Brighton Park
58 59	McKinley Park
59 60	Bridgeport
60 61	New City
61 62	2.0 West Elsdon
62 63	Gage Park
63	1.0 Clearing
64 65	5.0 West Lawn
65 66	Chicago Lawn
66	7.0 West Englewood
67 68	Englewood
68 69	0.0 Greater Grand Crossing
69 70).0 Ashburn
70 73	Auburn Gresham
71 72	2.0 Beverly
	-

72 73 74 75 76 77		7 4 7 5 7 6 7 7	3.0 4.0 5.0 5.0 7.0		ngton Hei nt Greenv Morgan F O'F Edgewa CHIO	wood Park Hare ater			
	PERCENT HOUSE	CHOLDS	BELOW	POVERTY	PERCENT	AGED	16+	UNEMPLOYED	\
0				23.6				8.7	
1				17.2				8.8	
2				24.0				8.9	
3				10.9				8.2	
4				7.5				5.2	
5				11.4				4.7	
6				12.3				5.1	
7				12.9				7.0	
8 9				3.3				6.5	
9 10				5.4 8.6				9.0 12.4	
11				7.5				6.8	
12				13.2				9.9	
13				19.2				10.0	
14				11.6				12.6	
15				13.1				10.0	
16				10.6				10.0	
17				15.3				13.8	
18				18.7				14.6	
19				20.5				13.1	
20				15.3				9.2	
21				16.8				8.2	
22				33.9				17.3	
23				14.7				6.6	
24				28.6				22.6	
25				41.7				25.8	
26 27				42.4				19.6 10.7	
28				20.6 43.1				21.2	
29				30.7				15.8	
				•••				•••	
48				19.8				20.3	
49				21.6				22.8	
50				29.2				16.3	
51				19.2				12.1	
52				25.9				19.4	
53				56.5				34.6	
54				17.1				9.6	
55				8.8				11.3	
56				14.1				16.5	

57 58 59 60 61 62 63 64 65 66 67 68 970 71	23.6 18.7 18.9 29.0 15.6 23.4 8.9 14.9 27.9 34.4 46.6 29.6 10.4 27.6 5.1 16.9	13.9 13.4 13.7 23.0 16.7 18.2 9.5 9.6 17.1 35.9 28.0 23.0 11.7 28.3 8.0 20.8
73	3.4	8.7
74	13.2	15.0
75	15.4	7.1
76 77	18.2 19.7	9.2 12.9
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	18.2 20.8 11.8 13.4 4.5 2.6 3.6 2.5 7.4 11.5 13.4 4.9 14.4 32.9 19.3 22.4 16.2 23.5 37.3 41.6 24.7 14.8 35.4 12.9 24.4	

27						9.6			
28						27.6			
29						54.8			
• • 48						16.9			
49						13.1			
50						21.0			
51						31.9			
52						20.5			
53						27.5			
54						19.2			
55 56						19.3 35.9			
57						45.1			
58						32.9			
59						22.2			
60						41.5			
61						37.0			
62						51.5			
63 64						18.8			
64 65						33.6 31.2			
66						26.3			
67						28.5			
68						16.5			
69						17.7			
70						18.5			
71						3.7			
72 73						13.7 4.3			
74						10.8			
75						10.9			
76						9.7			
77						19.5			
	DERCENT	ACFD	IINDEB	18 0	R OVER 64	PER CAPITA	TNCOME	HARDSHIP	TNDEX
0	I DICCEIVI	ПОПР	ONDER	10 0	27.5		23939		39.0
1					38.5		23040		46.0
2					22.2		35787		20.0
3					25.5		37524		17.0
4					26.2		57123		6.0
5 6					17.0 21.5		60058 71551		5.0 2.0
7					22.6		88669		1.0
8					35.3		40959		8.0
9					39.5		32875		21.0

24.5

21.3

25

26

10	35.5	27751	25.0
11	40.5	44164	11.0
12	39.0	26576	33.0
13	32.0	21323	53.0
14	34.0	24336	35.0
15	31.6	27249	34.0
16	33.6	26282	28.0
17	38.6	22014	50.0
18	37.3	15461	70.0
19	36.4	15089	71.0
20	31.0	20039	42.0
21	26.2	31908	23.0
22	38.0	13781	85.0
23	21.7	43198	10.0
24	37.9	15957	73.0
25	43.6	10934	92.0
26	43.2	12961	83.0
27	22.2	44689	15.0
28	42.7	12034	87.0
29	33.8	10402	96.0
		• • •	
48	41.2	17949	52.0
49	38.6	20588	51.0
50	39.5	14685	65.0
51	42.8	17104	64.0
52	42.1	16563	62.0
53	51.5	8201	98.0
54	42.9	22677	44.0
55	38.1	26353	32.0
56	39.2	16134	67.0
57	39.3	13089	84.0
58	35.6	16954	61.0
59	31.3	22694	43.0
60	38.9	12765	91.0
61	37.7	15754	69.0
62	38.8	12171	93.0
63	37.6	25113	29.0
64	39.6	16907	56.0
65	40.6	13231	80.0
66	40.7	11317	89.0
67	42.5	11888	94.0
68	41.0	17285	66.0
69	36.9	23482	37.0
70	41.9	15528	74.0
71	40.5	39523	12.0
72	42.6	19713	48.0
73	36.8	34381	16.0

40.3

74

30.0

27149

```
      75
      30.3
      25828
      24.0

      76
      23.8
      33385
      19.0

      77
      33.5
      28202
      NaN
```

[78 rows x 9 columns]

In [69]: precapita=crimes2.loc[0:76,['Community Area Number', "PER CAPITA INCOME "]]

In [70]: precapita

Out[70]:		Community	Area	Number	PER	CAPITA	INCOME
	0			1.0			23939
	1			2.0			23040
	2			3.0			35787
	3			4.0			37524
	4			5.0			57123
	5			6.0			60058
	6			7.0			71551
	7			8.0			88669
	8			9.0			40959
	9			10.0			32875
	10			11.0			27751
	11			12.0			44164
	12			13.0			26576
	13			14.0			21323
	14			15.0			24336
	15			16.0			27249
	16			17.0			26282
	17			18.0			22014
	18			19.0			15461
	19			20.0			15089
	20			21.0			20039
	21			22.0			31908
	22			23.0			13781
	23			24.0			43198
	24			25.0			15957
	25			26.0			10934
	26			27.0			12961
	27			28.0			44689
	28			29.0			12034
	29			30.0			10402
	• •						• • •
	47			48.0			28887
	48			49.0			17949
	49			50.0			20588
	50			51.0			14685
	51			52.0			17104
	52			53.0			16563

53	54.0	8201
54	55.0	22677
55	56.0	26353
56	57.0	16134
57	58.0	13089
58	59.0	16954
59	60.0	22694
60	61.0	12765
61	62.0	15754
62	63.0	12171
63	64.0	25113
64	65.0	16907
65	66.0	13231
66	67.0	11317
67	68.0	11888
68	69.0	17285
69	70.0	23482
70	71.0	15528
71	72.0	39523
72	73.0	19713
73	74.0	34381
74	75.0	27149
75	76.0	25828
76	77.0	33385

[77 rows x 2 columns]

In [77]: n_c.iloc[0:77,]

Out [77]:			ID
	Community	Area	
	1		3519
	2		3059
	3		3585
	4		1747
	5		1375
	6		5495
	7		3726
	8		8920
	9		254
	10		1259
	11		1140
	12		444
	13		828
	14		2501
	15		3392
	16		2960
	17		1626
	12 13 14 15		444 828 2501 3392 2960

18 19 20 21 22 23 24 25 26 27 28 29 30		572 4769 1703 2232 4737 8015 6959 17020 5794 5270 7788 8039 4393
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74		1458 6545 1037 1900 1303 3949 1173 506 1796 986 2706 1063 1590 4842 1030 2334 927 2027 6081 7203 6991 6653 2279 7733 976 3109 608
75 76 77		2052 1622 2209

[77 rows x 1 columns]

In [60]: precapita

Out[60]:	Community	Area Number	PER CAPITA	INCOME
	0	1.0		23939
	1	2.0		23040
	2	3.0		35787
	3	4.0		37524
	4	5.0		57123
	5	6.0		60058
	6	7.0		71551
	7	8.0		88669
	8	9.0		40959
	9	10.0		32875
	10	11.0		27751
	11	12.0		44164
	12	13.0		26576
	13			21323
		14.0		
	14	15.0		24336
	15	16.0		27249
	16	17.0		26282
	17	18.0		22014
	18	19.0		15461
	19	20.0		15089
	20	21.0		20039
	21	22.0		31908
	22	23.0		13781
	23	24.0		43198
	24	25.0		15957
	25	26.0		10934
	26	27.0		12961
	27	28.0		44689
	28	29.0		12034
;	29	30.0		10402
	• • 4 7	48.0		28887
	48	49.0		
	49			17949
		50.0		20588
	50	51.0		14685
	51	52.0		17104
	52	53.0		16563
	53	54.0		8201
	54	55.0		22677
	55	56.0		26353
	56	57.0		16134
	57	58.0		13089
	58	59.0		16954
	59	60.0		22694
	60	61.0		12765
	61	62.0		15754
	62	63.0		12171

```
63
                                   64.0
                                                          25113
          64
                                   65.0
                                                          16907
                                   66.0
          65
                                                          13231
          66
                                   67.0
                                                          11317
                                   68.0
          67
                                                          11888
          68
                                   69.0
                                                          17285
                                   70.0
          69
                                                          23482
                                   71.0
          70
                                                          15528
          71
                                   72.0
                                                          39523
          72
                                   73.0
                                                          19713
          73
                                   74.0
                                                          34381
          74
                                   75.0
                                                          27149
          75
                                   76.0
                                                          25828
                                   77.0
          76
                                                          33385
          [77 rows x 2 columns]
In [94]: precapita["Crimes"]=n_c.iloc[0:77,]
          #df_tmp["tmp_factorial"] = df_tmp["tmp"].apply(np.math.factorial)
In [97]: plt.scatter(precapita["Crimes"], precapita["PER CAPITA INCOME "])
          plt.show()
    100000
     80000
     60000
     40000
     20000
       0 -,
-5000
                                                 10000
                                                               15000
```

La relación que se puede observar es que a medida que el ingreso per capita aumenta, el número de crimenes disminuye, en cambio en donde el ingreso per capita es muy bajo, el número de crimenes es mayor.