Reproducing Simulations for the Two-Universe Cosmological Framework

Frederico L. Cabral

December 4, 2024

Introduction

This document provides a step-by-step guide for reproducing the numerical simulations described in the paper *Entropy Dynamics and Gravitational Interactions in a Two-Universe Cosmological Framework*. The scripts are written in Python and cover scalar field dynamics, gravitational wave production, and energy transfer between the universes.

1 Requirements

To run the simulations, ensure the following requirements are met:

- Python 3.8 or later
- Libraries: numpy, matplotlib

Install the required libraries using:

pip install numpy matplotlib

2 Repository and Setup

The simulation scripts are available in the GitHub repository:

https://github.com/fredluiscabral/2USim

Clone the repository and navigate to the folder:

git clone https://github.com/fredluiscabral/2USim
cd 2USim

Ensure all the scripts (setup_simulation.py, scalar_field_simulation.py, gravitational_wave energy_transfer_simulation.py) are in the folder.

3 Simulations

Each simulation corresponds to a physical process described in the paper. Follow the instructions for each script below.

3.1 Scalar Field Dynamics

Run the script scalar_field_simulation.py to simulate the evolution of the scalar field $\phi(t)$ under the influence of different entropy balance functions f(t).

Steps:

- 1. Open scalar_field_simulation.py.
- 2. Select the desired form of f(t) by modifying the line:

```
f_t = config['entropy_functions']['sinusoidal']
```

Options include:

- 'constant'
- 'exponential'
- 'sinusoidal'
- 'stochastic'
- 3. Run the script:

```
python scalar_field_simulation.py
```

4. View the plot of $\phi(t)$ versus time.

3.2 Gravitational Wave Dynamics

Run the script gravitational_wave_simulation.py to simulate the amplitude of gravitational waves h(t) generated by entropy transfer.

Steps:

- 1. Open gravitational_wave_simulation.py.
- 2. Select the desired form of f(t):

```
f_t = config['entropy_functions']['exponential']
```

3. Run the script:

```
python gravitational_wave_simulation.py
```

4. View the plot of h(t) versus time.

3.3 Energy Transfer Between Universes

Run the script energy_transfer_simulation.py to simulate energy density evolution in U_1 and U_2 .

Steps:

- 1. Open energy_transfer_simulation.py.
- 2. Select the desired form of f(t):

```
f_t = config['entropy_functions']['constant']
```

3. Run the script:

```
python energy_transfer_simulation.py
```

4. View the plots of $\rho_1(t)$ and $\rho_2(t)$ versus time.

4 Extending the Simulations

The scripts are modular, allowing you to modify parameters or add new entropy functions. For example:

- Modify the scalar field potential $V(\phi)$ in setup_simulation.py.
- Add a new form of f(t):

```
def new_function(t):
    return some_expression
entropy_functions['new'] = new_function
```

• Update initial conditions for $\phi(t)$, ρ_1 , or ρ_2 .

5 Troubleshooting

- Ensure all required libraries are installed.
- Verify the selected form of f(t) is defined in setup_simulation.py.
- Check the terminal output for error messages and follow debugging suggestions.

6 Support and Contributions

For support or to contribute improvements, create an issue or pull request on the GitHub repository:

https://github.com/fredluiscabral/2USim

Conclusion

By following this guide, you can reproduce the simulations presented in the paper and explore the dynamics of the two-universe cosmological framework. Modify and extend the scripts to investigate additional scenarios and further validate the model's predictions.