## Particle spectrograph

## Wave operator and propagator



|                                    |                                  |                                  |                                     |                                         | $\bigcirc$ I                                        |                                |                                                      |
|------------------------------------|----------------------------------|----------------------------------|-------------------------------------|-----------------------------------------|-----------------------------------------------------|--------------------------------|------------------------------------------------------|
| $\tau_{1}^{\#2}{}_{\alpha}$        | 0                                | 0                                | 0                                   | $-\frac{2i}{kr_1+2k^3r_1}$              | $\frac{i\sqrt{2}(3k^2r_1-2t_3)}{k(1+2k^2)^2r_1t_3}$ | 0                              | $\frac{6k^2r_{1}-4t_3}{(1+2k^2)^2r_{1}t_3}$          |
| $\tau_{1}^{\#1}{}_{\alpha}$        | 0                                | 0                                | 0                                   | 0                                       | 0                                                   | 0                              | 0                                                    |
| $\sigma_{1^{-}\alpha}^{\#2}$       | 0                                | 0                                | 0                                   | $-\frac{\sqrt{2}}{k^2 r_1 + 2 k^4 r_1}$ | $\frac{3k^2r_{1}-2t_3}{(k+2k^3)^2r_1t_3}$           | 0                              | $-\frac{i\sqrt{2}(3k^2r_1-2t_3)}{k(1+2k^2)^2r_1t_3}$ |
| $\sigma_{1^{-}\alpha}^{\#1}$       | 0                                | 0                                | 0                                   | $-\frac{1}{k^2 r_1}$                    | $-\frac{\sqrt{2}}{k^2 r_1 + 2 k^4 r_1}$             | 0                              | $\frac{2i}{kr_1+2k^3r_1}$                            |
| $\tau_{1}^{\#1}{}_{\alpha\beta}$   | $3i\sqrt{2}k$ $(3+k^2)^2t_2$     | $\frac{3ik}{(3+k^2)^2t_2}$       | $\frac{3k^2}{(3+k^2)^2t_2}$         | 0                                       | 0                                                   | 0                              | 0                                                    |
| $\sigma_{1}^{\#2}{}_{+}$           | $\frac{3\sqrt{2}}{(3+k^2)^2t_2}$ | $\frac{3}{(3+k^2)^2 t_2}$        | $-\frac{3ik}{(3+k^2)^2t_2}$         | 0                                       | 0                                                   | 0                              | 0                                                    |
| $\sigma_{1}^{\#1}{}_{\alpha\beta}$ | $\frac{6}{(3+k^2)^2 t_2}$        | $\frac{3\sqrt{2}}{(3+k^2)^2t_2}$ | $-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$ | 0                                       | 0                                                   | 0                              | 0                                                    |
|                                    | $\sigma_1^{\#1} + \alpha \beta$  | $\sigma_1^{\#2} + \alpha \beta$  | $\tau_1^{\#_1} + \alpha \beta$      | $\sigma_{1}^{\#_{1}} +^{\alpha}$        | $\sigma_{1}^{\#2} +^{lpha}$                         | $\tau_{1}^{\#_{1}} +^{\alpha}$ | $\tau_1^{\#2} +^{\alpha}$                            |

| $f_{1}^{\#2}$                      | 0                                | 0                                 | 0                                 | $-\frac{2}{3}$ Ikt $_3$                  | $\frac{1}{3}\bar{l}\sqrt{2}kt_3$ | 0                     | $\frac{2k^2t_3}{3}$               |
|------------------------------------|----------------------------------|-----------------------------------|-----------------------------------|------------------------------------------|----------------------------------|-----------------------|-----------------------------------|
| $f_{1}^{\#1}$                      | 0                                | 0                                 | 0                                 | 0                                        | 0                                | 0                     | 0                                 |
| $\omega_{1^{\bar{-}}\alpha}^{\#2}$ | 0                                | 0                                 | 0                                 | $-\frac{\sqrt{2}t_3}{3}$                 | <del>[3</del> ]                  | 0                     | $-\frac{1}{3}\bar{l}\sqrt{2}kt_3$ |
| $\omega_{1^{-}}^{\#1}{}_{\alpha}$  | 0                                | 0                                 | 0                                 | $-k^2 r_1 + \frac{2t_3}{3}$              | $-\frac{\sqrt{2}t_3}{3}$         | 0                     | 2 i k t 3<br>3                    |
| $f_1^{\#1}$                        | $\frac{1}{3}\bar{l}\sqrt{2}kt_2$ | <i>i kt</i> 2<br>3                | $\frac{k^2 t_2}{3}$               | 0                                        | 0                                | 0                     | 0                                 |
| $\omega_1^{\#_+^2}$                | $\frac{\sqrt{2} t_2}{3}$         | 4 <u>7</u>                        | $-\frac{1}{3}$ $i$ $k$ $t_2$      | 0                                        | 0                                | 0                     | 0                                 |
| $\omega_1^{\#1}{}_+\alpha_\beta$   | $\frac{2t_2}{3}$                 | $\frac{\sqrt{2} t_2}{3}$          | $-\frac{1}{3}\bar{l}\sqrt{2}kt_2$ | 0                                        | 0                                | 0                     | 0                                 |
|                                    | $\omega_1^{#1} + \alpha^{\beta}$ | $\omega_1^{\#2} + \alpha^{\beta}$ | $f_1^{#1} + \alpha^{\beta}$       | $\omega_{1^{\bar{-}}}^{\#_1} +^{\alpha}$ | $\omega_1^{\#2} +^{\alpha}$      | $f_{1}^{#1} + \alpha$ | $f_1^{#2} + \alpha$               |

Source constraints/gauge genera

SO(3) irreps

| $\sigma_{0}^{\#1}$ | 0                    |                                            | 0                            | 0                  | $\frac{1}{k^2 r_2 +}$ |   | _                                                                               |                               |                             |                                         |                        |                                                                     |                                   |                       |
|--------------------|----------------------|--------------------------------------------|------------------------------|--------------------|-----------------------|---|---------------------------------------------------------------------------------|-------------------------------|-----------------------------|-----------------------------------------|------------------------|---------------------------------------------------------------------|-----------------------------------|-----------------------|
| $\tau_0^{\#2}$     | 0                    |                                            | 0                            | 0                  | 0                     |   | $\int_{-1}^{t_1} \alpha \beta \chi$                                             | 0                             | 0                           | $k^2 r_1$                               |                        | $\alpha eta \chi$                                                   | 0                                 |                       |
| $\tau_0^{\#1}$     | 1 1/2 K              | +2 <i>K</i> <sup>-</sup> ) <sup>-</sup> 53 | $\frac{2k^2}{(1+2k^2)^2t_3}$ | 0                  | 0                     |   | $\omega_{2}^{\#1}_{\alpha\beta} \ f_{2}^{\#1}_{\alpha\beta} \ \omega_{2}^{\#1}$ | 0                             | 0                           | 0                                       | 1 #1                   | $\sigma_2^{-+} \alpha_\beta \Gamma_2^{-+} \alpha_\beta \sigma_2^{}$ | 0                                 |                       |
|                    | - 1                  | +                                          |                              |                    |                       |   | $^{1}_{+}\alpha \beta f_{2}^{\dagger}$                                          | 0                             | 0                           | 0                                       | #                      | $\alpha \beta \zeta_2$                                              | 0                                 |                       |
| $\sigma_{0}^{\#1}$ | 1 (1+2) 1/2 1/2 /-   | ( VZ+T)                                    | $\sqrt{1+2k^2}$ $t_3$        | 0                  | 0                     |   |                                                                                 |                               |                             |                                         | #                      | $0^{\frac{1}{2}}$                                                   |                                   |                       |
|                    | $\sigma_{0}^{\#1}$ † | )                                          | $\tau_{0}^{\#1}$ †           | $\tau_{0}^{\#2}$ † | $\sigma_{0}^{\#1}$ †  |   |                                                                                 | $\omega_2^{\#_1} +^{lphaeta}$ | $f_2^{#1} + ^{\alpha\beta}$ | $\omega_{2}^{#1} +^{\alpha \beta \chi}$ |                        |                                                                     | $\sigma_{2}^{\#1} + \alpha \beta$ | 1                     |
|                    |                      |                                            |                              |                    |                       |   |                                                                                 |                               |                             |                                         |                        |                                                                     |                                   |                       |
| auge generators    | Multiplicities       |                                            |                              |                    |                       |   |                                                                                 |                               |                             |                                         | $\omega_{0^{-}}^{\#1}$ | , c                                                                 |                                   | 0                     |
| e gei              | ltiplic              |                                            |                              |                    |                       |   |                                                                                 |                               |                             |                                         | f#2                    |                                                                     |                                   | 0                     |
| aug                | Σ                    | _                                          | П                            | 3                  | 3                     | 3 | 3                                                                               | 2                             | 2                           | 24                                      | <del></del>            | 17                                                                  | N 13                              | <i>t</i> <sup>3</sup> |

 $\int_{1}^{\#_{1}} \alpha \beta + i k \, \sigma_{1}^{\#_{1}} \alpha \beta == 0$ 

 $\tau_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#2}{}^{\alpha} = 0$ 

0 ==

 $\frac{-#^{1}}{0} - 2 i k \sigma_{0}^{\#1} = 0$ 

 $\sigma_1^{\#2}\alpha\beta$ 

| $\omega_{0^{\text{-}}}^{\#1}$ | 0                         | 0               | 0              | $k^2 r_2 + t_2$           |
|-------------------------------|---------------------------|-----------------|----------------|---------------------------|
| $f_{0}^{\#2}$                 | 0                         | 0               | 0              | 0                         |
| $f_0^{\#1}$                   | -i $\sqrt{2} k t_3$       | $2 k^2 t_3$     | 0              | 0                         |
| $\omega_{0}^{\#1}$            | <i>t</i> <sup>3</sup>     | $i\sqrt{2}kt_3$ | 0              | 0                         |
|                               | $\omega_{0}^{\#1}\dagger$ | $f_{0}^{\#1}$ † | $f_{0}^{#2} +$ | $\omega_{0}^{\#1}\dagger$ |

 $\sigma_2^{\#1}\alpha\beta == 0$ 

Fotal constraints:

0 ==

0

0

0

 $\tau_2^{\#1} + ^{\alpha\beta}$ 

## Massive and massless spectra



(No massless particles)

## Unitarity conditions