PCA

PCA 만.?

Principle 75 Component 42% Analysis 분석하자

Thinking..

무엇을 하고 싶으신가요?

왜 그렇게 생각했나요?

그럼, 이런 경우는 어떨까?

어떻게 선을 그을 수 있었을까요?

그냥 그렇게 해야 할 것 같았어요 그래야 마음이 편하거든요

그냥 머리 속에서 이렇게 하래요

두 그림의 차이는 무엇일까요?

가로로 퍼져 있음 (분포가) 넓어 보임 다음 점의 위치를 대략 알 수 있음

모여 있음 좁아 보임 어디로 튈 지 모르겠음

임의의 그래프에서

분산이 가장 큰 방향으로 선을 잡으면

이 방향(벡터)는 주어진 데이터에 대한 정보를 최대한 살릴 수 있으니

이것을 Principle Component 이라고 합시다

그럼 이건 ?

여러가지 경우를 생각해 볼 수 있죠.

임의의 데이터가

여러(많은) Principle Component로

구성되어 있다고 가정

데이터를 구성하고 있는 Principle들을 찾아서 그것을 토대로 데이터의 특짐을 알아보는 것!

Principle ₇ Component 42% Analysis 분석하자

그런데, 차원 축소라면서요..?

만약, 다 뽑을 수 없는 경우라면...

특출한 몇명만 뽑아야 합니다.

데이터를 구성하고 있는 Principle들을 찾아서 그것을 로대로 데이터의 특징을 알아보는 것!

그 중에서 가장 두드러진 Principle들 선택!

How..?

두드러진 Principle을 데이터의 정보를 많이 가지고 있을

분산이 최대인 방향을 가진 벡터를

n차원의 데이터

n x n 공분산 행렬 (Covariance Matrix)

고유 분해 (Eigen Decomposition)

Eigen Vector들 가운데서
Eigen Value가 가장 큰 벡터

분산을 가장 크게 만드는 벡터

공분산 행렬 (Covariance Matrix)

$$cov(x,y) = E[(x - m_x)(y - m_y)]$$

$$cov(X,Y) = \begin{bmatrix} cov(x_1,y_1) & \cdots & cov(x_1,y_n) \\ \vdots & & \vdots \\ cov(x_n,y_1) & \cdots & cov(x_n,y_n) \end{bmatrix}$$

두 변수의 퍼짐의 정도에 얼마나 삼관관계가 있나?

고유 분해 (Eigen Decomposition)

임의의 벡터를 행렬 A로 변환한다고 했을 때

어떤 벡터는 크기에 변화는 있을 뿐 그 방향은 전혀 변하지 않음

즉, 행렬이 변환하려는 방향과 벡터의 방향이 같음

고유 벡터 (Eigen Vector)

고유 분해 (Eigen Decomposition)

$$Av = \lambda v$$

따라서, 어떤 행렬 A의 변환에 대해서

스케일의 변화만 존재하는

행렬 A의 방향성을 잘 설명할 수 있는 특정 벡터를 찾는 과정

공분산 행렬 X 고유 분해

Covariance Matrix

데이터의 각 성분의 분산(퍼짐)의 정도

X

Eigen Decomposition

햄렬의 밤햠섬을 내포하는 특점 벡터를 찾는 과점

주어진 데이터에서 가장 큰 분산을 나타내는 벡터를 구할 수 있다!

그래서... PCA는요

방금의 과정을 통해서 만들어진 특출한 벡터 위로

데이터를 Projection하면

Principle Components로 만들어진 새로운 차원의 데이터 완성!

Kernel PCA ???

방금의 과정을 통해서 만들어진 특출한 벡터 위로 데이터를 Projection하려 했으나 선형적으로 해결할 수 있는 문제가 아니네

Kernel PCA ???

방금의 과정을 통해서 만들어진 특출한 벡터 위로 데이터를 Projection하려 했으나 선형적으로 해결할 수 있는 문제가 아니네

Kernel PCA ???

Polynomial kernel

$$k(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle^d$$

RBF kernel

$$k(\mathbf{x}, \mathbf{y}) = \exp\left\{-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2}\right\}$$

Sigmoid kernel

$$k(\mathbf{x}, \mathbf{y}) = \tanh(\kappa \langle \mathbf{x}, \mathbf{y} \rangle + \theta),$$

for suitable values of gain κ and threshold θ .

비선형 함수를 빌려 아예 Base를 변경

