

MSE6701H, Multiscale Materials Modeling and Simulation-

Electronic DFT

Atomistic MD

Mesoscale PF

Lecture 10-P1

Molecular Dynamics under T, P constraints

Guisen Liu (刘桂森)

2021.12.1

Review

- ✓ Solution to Newton's equation → NVE
 - Basic MD run under NVE

$$\begin{vmatrix} \dot{\mathbf{r}}_i = \mathbf{p}_i / m_i \\ \dot{\mathbf{p}}_i = m_i \ddot{\mathbf{r}}_i = \mathbf{F}_i \end{vmatrix}$$

- However, isolated system with constant E is uncommon.
- In lab condition, control T or P is easier than control energy
- Physical ensembles
 - ✓ Biological reactions occur under constant Temperature: NVT
 - How to control T
 - How to analyze structure
 - Chemical reactions occur open to atmosphere (P): NPT

Contents

- Pressure control
 - Berendsen
 - Andersen (Nose-Hoover)

Goals

- Apply P constraints to specific problems
- Understand how pressure influences MD simulation results

Barostat: pressure in MD

- P for a classical N-body system
- $\langle P \rangle = \frac{1}{V} N k_B \langle T \rangle + \frac{1}{3V} \langle \sum_{i=1}^{N} \sum_{j>i}^{N} \mathbf{r}_{ij} \cdot \mathbf{F}_{ij} \rangle$
- Clausius virial theorem (note):
 - 1st term: pressure of an ideal gas (no interaction between molecules)
 - 2nd term: pairwise additive interactions
- ho P is a second order tensor (similar to stress) $\mathbf{P} = egin{pmatrix} \mathbf{P}_{xx} & \mathbf{P}_{xy} & \mathbf{P}_{xz} \\ \mathbf{P}_{yx} & \mathbf{P}_{yy} & \mathbf{P}_{yz} \\ \mathbf{P}_{zx} & \mathbf{P}_{zy} & \mathbf{P}_{zz} \end{pmatrix}$
 - Pxy: force along *y*-axis acting on the surface whose normal is *x*-axis.
- P is usually anisotropic unless Pxx = Pyy = Pzz such as hydrostatic pressure.

Note: R. LeSar, Introduction to computational materials science: fundamentals to applications, Cambridge University Press2013. (Appendix G)

Phase Transformations in NiTi alloys

Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys, Acta Mater 123 (2017) 90-101.

Control pressure in MD

- Modify equation of motion similar to control T
- \triangleright Modify P in MD by scaling inter atomic distances \mathbf{r}_{ij} .

- NOT change box shape, but rescale box length
 - 1) Berendsen barostat. independent from thermostat, weak coupling
 - 2) Andersen (Nose-Hoover) barostat. strong coupling
- Change box shape
 - 3) Parrinello-Rahman barostat

1.1 The Berendsen barostat (1)

Rescale coordinates and box length at each step

$$\mathbf{r}_i \to \mu \mathbf{r}_i, L \to \mu L, V \to \mu^3 V$$

- μ: rescale factor
- β : isothermal compressibility = 1/B
- \blacksquare P_0 : desired pressure
- lacktriangle Δt : integrator time-step
- τ_p : time constant, rise time of the barostat

$$\mu = \left[1 + \frac{\beta \Delta t \left(P(t) - P_0 \right)}{\tau_p} \right]^{1/3}$$

1.1 The Berendsen barostat (2)

 \triangleright Effect of parameter τ_p (time constant)

$$\mu = \left[1 + \frac{\beta \Delta t \left(P(t) - P_0 \right)}{\tau_p} \right]^{1/3}$$

- If $P > P_0$, increase dimension
- If P < P₀, decrease dimension

- > P, T, V and U_{pot} all fluctuate
- ✓ In equilibrium with large τ_p , Berendsen gives realistic fluctuations in T & P.

H. J. C. Berendsen, et al "Molecular dynamics with coupling to an external bath", Journal of Chemical Physics 81 pp. 3684-3690 (1984).

1.2 The Andersen barostat (1)

- ➤ The system volume V varies with the position of a fictional piston (mass Q)
- The piston has kinetic and potential energy $E_k^{pis} = \frac{1}{2} Q \dot{V}^2, \quad E_p^{pis} = P_0 V$
- Atom positions and velocities in reduced coordinates \mathbf{s} $\mathbf{r}_i = V^{1/3}\mathbf{s}_i$, $\mathbf{v}_i = V^{1/3}\dot{\mathbf{s}}_i$

- > Modified equation of motion $\ddot{\mathbf{s}}_i = \frac{\mathbf{F}_i}{m_i V^{1/3}} \frac{2}{3} \frac{\dot{\mathbf{s}}_i V}{V}, \quad \ddot{V} = \frac{P(t) P_0}{Q}$
- \triangleright Energy of the extended system (\widetilde{H}) is conserved

$$\tilde{H} = \sum_{i=1}^{N} \frac{1}{2} m_i \left| \mathbf{v}_i \right|^2 + U\left(\left\{ \mathbf{r}_i \right\} \right) + E_k^{pis} + E_p^{pis}$$

H. C. Andersén, J. Chem. Phys. 72, 2384 (1980) W. G. Hoover. Phys. Rev. A 31 (1986), 1695 G. J.

1.2 The Andersen barostat (2)

$$\ddot{\mathbf{s}}_{i} = \frac{\mathbf{F}_{i}}{m_{i}V^{1/3}} - \frac{2}{3}\frac{\dot{V}}{V}\dot{\mathbf{s}}_{i}, \quad \ddot{V} = \frac{P(t) - P_{0}}{Q}$$

$$\ddot{\mathbf{r}}_{i} = \frac{\mathbf{F}_{i}}{m_{i}} - \lambda \dot{\mathbf{r}}_{i}, \quad \dot{\lambda} = \frac{T(t) - T_{0}}{M_{s}}$$

- ightharpoonup If P >desired P_0 , increase V, expand the volume
- ightharpoonup If P < desired P_0 , decrease V, shrink the volume
- Mass of the piston Q
 - Large Q: slow convergence
 - Small Q: wide oscillations
- Nose-Hoover barostat is based on Andersen method

1.3 The Parrinello-Rahman barostat

- > Allow dynamic change of size and **shape**
 - Cell size and shape: $\mathbf{H} = \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
 - Scaled coordinates: $\mathbf{s}_i = \mathbf{H}^{-1}\mathbf{r}_i$
 - Modify EOM, with fictional mass Q

$$\ddot{\mathbf{s}} = \mathbf{H}^{-1}\mathbf{F}_{i} / m_{i} - \mathbf{G}^{-1}\dot{\mathbf{G}}\dot{\mathbf{s}}, \text{ with } \mathbf{G} = \mathbf{H}^{T}\mathbf{H}$$

$$\ddot{\mathbf{H}} = \frac{\mathbf{P} - p\mathbf{I}}{\mathbf{Q}} V \left(\mathbf{H}^{-1}\right)^T - \mathbf{H} \mathbf{\Sigma}, \text{ with hydrostatic } p = \frac{P_{11} + P_{22} + P_{33}}{3}$$

$$\Sigma = \mathbf{H}_0^{-1} (\mathbf{S} - p\mathbf{I}) (\mathbf{H}_0^{-1})^T V_0$$
, **S** is external pressure tensor

- Mass Q controls the rate of change of the pressure
- ✓ solid phase transformation

M. Parrinello and A. Rahman: Phys. Rev. Lett. 45 (1980) 1196; J. Appl. Phys. 52 (1981) 7182; J. Chem. Phys. 76 (1982) 2662.

Summary of T & P constraint methods

method	pros	cons
Berendsen P	Fast, smooth first-order	Less reliable for
Andersen T	approach to equilibrium	simulation at equilibrium
	Maintain NVT, or NPT	
Nosé-Hoover T & P	Most reliable for	Slow, second-order
Parinello-Rahman P	a. equilibrium simulation	approach to equilibrium
	b. thermodynamic properties	S

Choose proper ones for your specific problem/simulation conditions!

Comments on thermostat and barostat

- > Do not use any trivial quenching scaling methods, which suppress fluctuations, and do not provide physical ensembles.
- General approach
 - Start with weak coupling, rapidly relax the system to the desired temperature or pressure we are interested in (relatively large fluctuation).
 - Continue with strong coupling (small fluctuation) to obtain the equilibrium properties we desired.
 - If equilibration time is not too long (near equilibration), use strong coupling.
- Which one to use?
 - Thermostat: Andersen is fast. Nose-Hoover is more accurate.
 - Barostat
 - Orthogonal: Berendsen is fast. Andersen (Nose-Hoover) is proper.
 - Shear pressure or crystal structure change: use Parrinello-Rahman

Example: Berendsen method

Example: NPT ensemble

MD: overall flow chart

