

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Ecuaciones Diferenciales I Examen XIX

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2024-2025

Asignatura Ecuaciones Diferenciales I

Curso Académico 2017-18.

Grupo B.

Profesor Rafael Ortega Ríos.

Descripción Parcial C.

Fecha 29 de Mayo de 2018.

Ejercicio 1. Calcula la solución de

$$x'' - x = \sin t$$
, $x(0) = 1$, $x'(0) = 2$

Ejercicio 2. Encuentra la matriz fundamental principal en $t_0 = 0$ del sistema x' = Ax donde

$$A = \begin{pmatrix} 2 & 0 \\ 3 & -1 \end{pmatrix}$$

Ejercicio 3. Calcula el determinante de la matriz e^A si:

$$A = \begin{pmatrix} 2 & 0 & 2 & 0 \\ 2 & 0 & 2 & 0 \\ 2 & 0 & 2 & 0 \\ 2 & 0 & 2 & 0 \end{pmatrix}$$

Ejercicio 4. Se considera la sucesión de funciones $\{f_n\}_{n\geqslant 0}$ donde $f_n:\mathbb{R}\to\mathbb{R}$ está definida por la recurrencia

$$f_0(t) = 0$$
, $f_n(t) = 7 + \frac{1}{3}[f_{n-1}(t-1)\cos t + f_{n-1}(t+1)\sin t] \text{ si } n \ge 1$

válida para todo $t \in \mathbb{R}$. Demuestra que esta sucesión converge uniformemente a una función f(t) continua en todo \mathbb{R} .

Ejercicio 5. Dadas dos matrices $A, B \in \mathbb{R}^{N \times N}$ se define su conmutador como [A, B] = AB - BA. Dadas $A, X_0 \in \mathbb{R}^{N \times N}$ se considera el problema

$$X_0 = [X, A], \quad X(0) = X_0$$

La incógnita $X: \mathbb{R} \to \mathbb{R}^{N \times N}$ es una función derivable con valores matriciales. Demuestra que este problema admite una única solución. Encuentra dicha solución en el caso de que las matrices A y X_0 conmuten.