

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Компьютерные системы и сети

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 «Синхронные одноступенчатые триггеры со статическим и динамическим управлением записью»

Студент Гурова Наталия Алексеевна

Группа ИУ7 – 34Б

Преподаватель Попов Алексей Юрьевич

Цель работы

Изучить схемы асинхронного RS-триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

Задание

1. Исследовать работу **асинхронного RS-триггера** с инверсными входами в статическом режиме.

Таблица переходов			
S_n	R_n	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	х
1	1	1	х

Асинхронный RS - триггер сохраняет одно из устойчивых состояний независимо от многократного изменения информационного сигнала на одном входе при нулевом значении информационного сигнала на другом входе.

Можно заметить, что при S = 0 и R = 0 триггер находится в режиме сохранения, иначе S устанавливает состояние 1, а R состояние 0. S = 1, R = 1 — запрещенное состояние.

Файл: 1.ms14

2. Исследовать работу **синхронного RS-триггера** в статическом режиме.

Таблица переходов				
<i>C</i> _n	S_n	R_n	Q_n	Q_{n+1}
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	Х
1	1	1	1	Х

Если С = 0, то будет сохраняться предыдущее состояние.

Если С = 1, то синхронный триггер переключается как асинхронный.

Одновременная подача сигналов C = S = R = 1 запрещена.

При S = R = 0 триггер не изменит своего состояния.

Файл: 2.ms14

3. Исследовать работу синхронного **D-триггера** в статическом режиме.

Таблица переходов			
C _n	D_n	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Можно заметить, что состояние D-триггера с каждым синхронизирующим импульсом передается на выход, то есть выходные сигналы представляют собой задержанные входные.

Файл: 3.ms14

4. Исследовать схему синхронного **D-триггера с динамическим управлением** записью в статическом режиме.

Таблица переходов			
D_n	C_n	Q_{n+1}	
0	0	0	
0	1	0	
1	0	1	
1	1	1	
Х	Х	Х	

Изменение состояния триггера происходит в момент изменения синхросигнала С с 0 на I или с I на 0.

Файл: 4.ms14

5. Исследовать схему **синхронного DV-триггера с динамическим управлением** записью в динамическом режиме.

При С = 0 сохраняется предыдущее состояние.

При C = 0 и V = 1 сохраняется предыдущее состояние.

При C = V = 1 триггер сохраняется сигнал, который пришел на вход D.

Файл: 5.ms14

6. Исследовать работу **DV-триггера**, включенного по схеме **TV-триггера**.

Асинхронный Т-триггер переход в противоположное состояние каждый раз при подаче на Т-вход сигнала 1

Синхронный Т-триггер имеет вход С. Он переключается в противоположное состояние, если на входе Т действует единичный сигнал.

Файлы: 6.ms14 и 7.ms14