第十课时教学设计

课型	社团课	学时	1	授课年级	九年级
教学目标	能借助展板、实验数据在5分钟路演中完整展示钱币保护方案,准确包含历				
	史背景、化学原理和工程方案三部分内容;				
	通过路演答辩培养跨学科表达能力,能使用专业术语正确回答评委提问;				
	能完成方案的自评与互评,通过评分表和 AI 评价系统客观指出至少 2 个优				
	点和1个改进点。				
学习环境与	场景布置:				
教学资源	模拟"博物馆修复成果展"(环形展台+电子屏轮播海报)				
	每组1个实物展位(含保护箱成品、钱币样本、实验记录册)				
	技术工具:				
	实时数据大屏(显示各保护箱传感器监测数据)				
	AI 评委系统(提前录入专业问题库,随机抽题)				

教学过程 教学环节 教师活动 学生活动 教学意图 开幕式 (教师 1. 播放课程回顾短片(混 1. 观看课程回顾短片时, 1. 情境建构: 扮演博物馆馆 通过"馆长"角色 剪各环节实验/设计花絮) 回忆并确认本组在各实验 长主持) (5 2. "馆长"宣布发布会规 环节的关键数据 扮演和短片回顾, 则:每组5分钟展示+3分 分钟) 2. 快速组内分工确认: 主 建立博物馆成果 钟答辩 讲人、数据操作员、答辩记 发布会的真实职 录员等角色 业情境; 3. 检查展位设备(保护箱 强化社团课程的 传感器、电子屏连接等)确 项目式学习(PBL) 保演示正常 属性 2. 规则内化: 明确路演答辩的 时限要求,培养时 间管理能力;

			植入学术规范意
			识(如数据引用需
			来自实验记录册)
小组路演(25	1. 展示板 (每组自选形	1. 展示环节:	1. 学科融合:
分钟)	式):	历史: 用时间轴展板/数字	通过"历史侦探→
	① 历史侦探: 钱币身份档	故事呈现钱币历史档案	化学药剂师→技
	案(朝代/材质/现存环境/	化学:现场调取实验数据大	术工程师"角色
	历史价值历史事件关联的	屏的温湿度变化曲线	链,强制触发多学
	腐蚀案例)	技术工程:操作保护箱传感	科视角切换;
	② 化学药剂师:氧化实验	器进行实时环境监测演示	检验 STEM 教育中"
	数据图+还原剂选择依据	2. 创新环节:	工程设计流程"的
	(播放除锈过程摄影)	用情景剧或其他形式演绎"	实践应用
	③ 技术工程师: 保护箱功	穿越古代"改进方案(如扮	2. 高阶思维培养:
	能演示(现场用传感器检	演宋代钱监官员)	"穿越古代"环节
	测温湿度/氧气浓度变化)	设计广告语并配合肢体语	激活历史想象力
	2. 创新环节:	言完成"1句话商业提案"	与技术批判性思
	"如果穿越回古代": 用本		维;
	组方案如何改进当时钱币		"1 句话提案"训练
	保存(如宋代海贸铁钱防		核心观点提炼能
	盐蚀)		カ
	"商业提案":用1句话推		
	销方案		
互动答辩(15	1. AI 馆长挑战: 系统	1. 应对 AI 提问	1. 认知冲突解
分钟)	随机提问(如"为什么维生	2. 回应观众质疑	决:
	素 C 能还原铜锈但可能损		AI 随机提问制造
	伤银币?")		认知缺口,驱动
	2. 观众提问: 其他小组/		知识再建构(如
	教师针对方案漏洞提问		维生素 C 对铜/银
	(如"高温高湿环境下的失		的不同作用);

	效风险")		通过同伴质疑暴
			露方案漏洞,促
			进元认知发展
			2. 实时评估反
			馈:
			传感器数据大屏
			提供客观评价依
			据,避免主观评
			分偏差;
			模拟学术会议问
			答环节,培养学
			术对话能力
颁奖典礼(10	1. 公布传感器监测数据排	1. 根据排名分析本组技术	1. 多元智能激励:
分钟)	名(最佳防护效果奖)	参数优劣	分设历史考据/化
	2. 颁发跨学科奖项:	2. 根据奖项设置进行交叉	学创新等专项奖,
	历史考据奖(钱币与历史	评价:用评分表给其他组的	肯定不同智能类
	事件关联性最强)	历史考据/化学创新等维度	型的贡献;
	化学创新奖(还原方案最	打分	数据排名强化"技
	环保高效)	3. 领奖	术参数可视化"的
	工程突破奖(保护箱设计		工程思维
	最具实用性)		2. 评价素养培育:
	最佳演说奖(展示逻辑最		交叉评价实践让
	清晰)		学生体验评分维
			度的设计逻辑

闭幕式(5分	1. 发布个人勋章	1. 领取勋章	1. 白皮书赋予项
钟)	2. 发布"古币救援白皮书"	2. 在白皮书电子文档中标	目社会实用价值,
	(汇编所有方案供博物馆	注本组方案的核心贡献点	强化学习意义感
	参考)	3. 拍摄"文物修复师团队"	2. 主题合影固化
		主题合影	社团归属感,为后
			续课程延续铺垫