PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-311354

(43) Date of publication of application: 04.11.1992

(51)Int.Cl.

A23T 3/16

(21)Application number: 03-100275

(71)Applicant : FUJI OIL CO LTD

(22)Date of filing:

04.04.1991

(72)Inventor: NAKAMURA YASUSHI

SAMOTO MASAHIKO TERAJIMA MASAHIKO

(54) PRODUCTION OF SOYBEAN PROTEIN HAVING FORMABILITY

(57)Abstract:

PURPOSE: To obtain the title protein useful for cake, e.g. sponge cake made by foaming in an oil-containing system, having excellent foamability and foam stability by extracting a soybean protein dissolved in an aqueous salt solution at an acidic region and hydrolyzing the soluble fraction with a proteolytic enzyme.

CONSTITUTION: A solution obtained by dissolving a soybean protein in an aqueous salt solution having 0.05-1.0mol ionic strength is extracted in a condition kept at 5-50°C (preferably 20-30°C) temperature and at a pH of 2.0-5.0 and the soluble fraction is hydrolyzed with a proteolytic enzyme (preferably pepsin) while controlling the hydrolysis ratio of the soluble fraction to 40-80% expressed in terms of TCA solubility ratio to provide the objective protein.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection)

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-311354

(43)公開日 平成4年(1992)11月4日

(51) Int.Cl.⁵

A 2 3 J 3/16

識別記号 502 庁内整理番号 7236-4B FΙ

技術表示箇所

審査請求 未請求 請求項の数4(全 7 頁)

(21)出願番号	特願平3-100275	(71)出願人 000236768
		不二製油株式会社
(22)出顧日	平成3年(1991)4月4日	大阪府大阪市中央区西心斉橋2丁目1番5
		号
		(72)発明者 中村 靖
		大阪府泉南郡熊取町久保976
		(72)発明者 佐本 将彦
		大阪府泉南郡熊取町久保976
		(72)発明者 寺嶋 正彦
		大阪府大阪市城東区諏訪4-22-14
		(74)代理人 弁理士 松川 克明
		(4)10年入 开连工 松川 兄奶

(54) 【発明の名称】 起泡性大豆蛋白の製造方法

(57) 【要約】

【目的】 水系及び含油系下においても優れた起泡力, 起泡安定性及び泡保型性を有すると共に、色調及び風味 についても良好であり、様々な食品、特に、カステラ, ケーキ用生菓子等の含油系下で起泡させる菓子類におい ても好適に利用できる起泡性大豆蛋白を提供する。

【構成】 大豆蛋白を塩水溶液に溶解させた溶液を酸性 領域で抽出し、その可溶画分を蛋白分解酵素で加水分解 するようにし、特に、上配の抽出時における塩水溶液のイオン強度を $0.05\sim1.0$ モル、 $pHe2.0\sim5.0$ 及び温度を $5\sim50$ での範囲になるように調整する。

【特許請求の範囲】

【請求項1】 大豆蛋白を塩水溶液に溶解させた溶液を 酸性領域で抽出し、その可溶画分を蛋白分解酵素で加水 分解することを特徴とする起泡性大豆蛋白の製造方法。

1

【請求項2】 前記の塩水溶液のイオン強度が0.05 ~1. 0モルであることを特徴とする請求項1項に記載 の起泡性大豆蛋白の製造方法。

【請求項3】 大豆蛋白を塩水溶液に溶解させた溶液を 抽出するにあたり、そのpHを2.0~5.0の範囲に 調整すると共に、その温度を5~50℃の範囲になるよ 10 うに調整したことを特徴とする請求項1項又は2項に記 載の起泡性大豆蛋白の製造方法。

【請求項4】 前記蛋白分解酵素による分解率をTCA 可溶率 (5%三塩化酢酸水溶液に溶解する蛋白質の割 合) で40~80%の範囲に調整したことを特徴とする 請求項1~3項の何れか1項に配載の起泡性大豆蛋白の 製造方法。

【発明の詳細な説明】

[0001]

いて起泡剤として使用される起泡性大豆蛋白の製造方法 に係り、特に、水系及び含油系下において優れた起泡 力、起泡安定性及び泡保型性を有すると共に、色調や風 味に優れた起泡性大豆蛋白の製造方法に関するものであ る.

[0002]

【従来の技術】従来より、大豆蛋白を蛋白分解酵素によ って部分加水分解したものが起泡性を有するということ が知られていた。そして、このように部分加水分解して 得られた起泡性大豆蛋白は、様々な食品製造の分野にお 30 いて起泡剤として利用されていた。

【0003】そして、上配のような起泡性大豆蛋白を製 造するにあたっては、米国特許第2489173号、同 第2502029号, 同第3814816号, 特開昭4 9-109551号公報等に示される方法が一般に知ら れていた。ここで、これらに示される方法は一般に、脱 脂大豆を原料として用い、この脱脂大豆を蛋白分解酵素 によって加水分解した後、その不溶画分を除去し、可溶 画分だけを取り出すようになっていた。

大豆蛋白は、その色調及び風味が悪く、起泡性等も充分 ではなく、様々な食品において起泡剤として使用した場 合、充分な起泡力が得られなかったり、その食品に大豆 特有の背臭味が付いたり、その食品が褐色に変化する等 の問題があった。

【0005】また、上記のようにして製造された記泡性 大豆蛋白は、特に含油系下における起泡力、起泡安定 性、泡保型性が充分でなく、例えば、カステラ、ケーキ 用生菓子、泡立てクリーム、ヌガー、マシュマロ、フラ

いう問題があった。

[0006]

【発明が解決しようとする課題】この発明は、大豆蛋白 を部分加水分解して得られる起泡性大豆蛋白における上 配のような問題を解決することを課題とするものであ

【0007】すなわち、この発明においては、水系及び 含油系下においても優れた起泡力、起泡安定性及び泡保 型性を有すると共に、色額及び風味についても良好であ り、様々な食品、特に、カステラ、ケーキ用生菓子等の 含油系下で起泡させる菓子類においても好適に利用でき る起泡性大豆蛋白を提供することを課題とするものであ る.

[0008]

【課題を解決するための手段】この発明においては、上 記のような課題を解決するため、大豆蛋白を塩水溶液に 溶解させた溶液を酸性領域で抽出し、その可溶画分を蛋 白分解酵素で加水分解させるようにしたのである。

【0009】ここで、上記大豆蛋白としては、脱脂大 【産業上の利用分野】この発明は、食品製造の分野にお 20 豆、濃縮大豆蛋白等を使用することもできるが、得られ る起泡性大豆蛋白の風味や色調を高めるためには、脱脂 大豆を熱水抽出し、これをpH4. 5付近で等電点沈殿 させてホエー分を除いた分離大豆蛋白を用いるようにす ることが好ましい。

> 【0010】また、上記大豆蛋白を溶解させる塩水溶液 としては、ナトリウム塩、カリウム塩等の水溶液を用い ることができる。そして、このような塩水溶液に上記大 豆蛋白を溶解させた後、酸性領域で可溶画分を取り出す にあたっては、上記塩水溶液のイオン強度が弱すぎる と、起泡性に悪影響を及ぼす画分が抽出されるようにな る一方、塩水溶液の濃度が高すぎると可溶画分の抽出が 困難になって収率が悪くなるため、上記塩水溶液のイオ ン濃度が0.05~1.0モルになるように調整するこ とが好ましい。

【0011】そして、上記のように大豆蛋白を溶解させ た塩水溶液から可溶画分を酸性領域で抽出するにあたっ ては、そのpHが高すぎても、低すぎても起泡性に悪影 響を及ぼす画分が可溶画分として抽出されるため、好ま しくは、そのpHが2.0~5.0の範囲に、より好ま 【0004】しかし、このようにして製造された起泡性 40 しくはそのpHが3, $0\sim3$, 5の範囲になるように関 整する。

> 【0012】また、上記のようにして可溶画分を抽出す るにあたり、塩水溶液の温度が低すぎると、可溶画分の 抽出が困難になり、収率が悪くなる一方、その温度が高 すぎると、起泡性に悪影響を及ぼす画分が可溶画分とし て抽出されるようになるため、好ましくは上記塩水溶液 の温度が5~50℃、より好ましくは20~30℃にな るように調整する。

【0013】次いで、このようにして得られた可溶画分 ッペ等の含油系下で起泡させる食品の製造に適しないと 50 を蛋白分解酵素によって加水分解するにあたっては、そ

の蛋白分解酵素として、公知のものを使用することがで きるが、得られる記泡性大豆蛋白の苦み等を少なくする ためには、上記蛋白分解酵素として、エンド型プロテア ーゼを使用することが好ましく、特にペプシンを用いる ようにすることが好ましい。

3

【0014】また、上記のように抽出された可溶画分を 蛋白分解酵素によって加水分解する場合、その分解率が あまり高いと、低分子量のものが多くなりすぎて、起泡 性大豆蛋白による起泡安定性が悪くなる一方、その分解 率が低いと、低分子量のものが少なく、起泡性大豆蛋白 10 による起泡力が悪くなるため、上記分解率がTCA可溶 率(5%三塩化酢酸水溶液に溶解する蛋白質の割合)で 40~80%、より好ましくは60~70%になるよう にする。

【0015】なお、上記のように可溶画分を蛋白分解酵 素によって加水分解した後は、この蛋白分解酵素を失活 させ、その後これを噴霧乾燥等により乾燥させて起泡性 大豆蛋白を製造する。ここで、蛋白分解酵素を失活させ るあたっては、加水分解された溶液のpHを通常2.0 ~7. 0、好ましくは2. 0~5. 5、より好ましくは 20 によって採取した。 2. 0~3. 5の範囲にして行なうようにする。このよ うにすると、製造された起泡性大豆蛋白における起泡熱 安定性が向上する。また、噴霧乾燥等により乾燥させる 場合においては、そのpHを5.0~6.0の範囲にし て行なうようにすることが望ましい。

[0016]

【作用】この発明のようにして起泡性大豆蛋白を製造す ると、風味や色調を害するホエー等の成分が除去される と共に、起泡力、起泡安定性及び泡保型性等に対して悪 影響を及ばす画分も除去されるようになり、水系下及び 30 霧乾燥させて32gの起泡性大豆蛋白を得た。 含油系下において優れた起泡力、起泡安定性及び泡保型 性を有すると共に、色調や風味も良好な起泡性大豆蛋白 が得られるようになる。

【0017】特に、上記のようにして起泡性大豆蛋白を 製造する場合において、噴霧乾燥等による乾燥を行なう 前の段階において、可溶画分のpHを3.0~6.0に し、その際に生じた沈殿物を除去すると、起泡性大豆蛋 白における起泡熱安定性が向上し、例えば、起泡させた 大豆蛋白に130℃程度の水あめを加えても破泡すると いうことがなく、起泡状態が安定する。

[0018]

【実施例】以下、この発明に係る起泡性大豆蛋白の製造 方法に関する実施例を具体的に説明すると共に、比較例 を挙げ、この発明の実施例によって製造された起泡性大 豆蛋白が優れていることを明らかにする。

【0019】 (実施例1) この実施例においては、不二 製油株式会社製の脱脂大豆フレーク2kgに40℃の温 水20リットルを加え、これに5規定の水酸化ナトリウ ム溶液を加えてそのpHを7、0に調整し、これをゆる

機にかけて不溶画分を除去し、可溶画分を採取した。

【0020】そして、このように採取した可溶画分に塩 酸を加えてそのpHを4.5に調整し、これによって生 じた蛋白質沈殿物を遠心分離機によって採取し、このよ うに採取した大豆蛋白沈殿物に水を加えてよく懸濁させ た後、再度遠心分離機を用いて大豆蛋白沈殿物を採取 し、分離大豆蛋白カードを得た。なお、この分離大豆蛋 白カードにおいては、固形分が30重量%であり、この 固形分中における粗蛋白質純度が96重量%であった。

【0021】次いで、このようにして得た分離大豆蛋白 カードを使用し、分離大豆蛋白が10重量%になった溶 液を調製し、この溶液2リットルに対して塩化ナトリウ ムを58.4g加え、更に塩酸を使用してそのpHを 5に關整し、20℃で約1時間撹拌して抽出を行な い、これを遠心分離機にかけて可溶画分と不溶画分とに 分画し、可溶画分を採取するようにした。

【0022】そして、このように採取した可溶画分に5 規定の水酸化ナトリウムを加えてそのpHを4.5に調 整し、これによって生じた大豆蛋白沈殿物を遠心分離機

【0023】次いで、このように採取した大豆蛋白沈殿 物に水と塩酸を加えてpHが2.0になった溶液400 mlを調製し、これに1万ユニットのペプシン (和光純 薬社製) 141mgを添加し、50℃で約3時間かけて 部分加水分解を行なった。

【0024】そして、このようにして得られた部分加水 分解物を、pH2. 0の酸性領域で80℃にして1時間 加熱し、酵素を失活させた後、5規定の水酸化ナトリウ ムを加えてそのpHを5.0に調整し、その後これを噴

【0025】 (比較例1) この比較例においては、米国 特許3814816号に示される方法に準じて起泡性大 豆蛋白を製造するようにした。

【0026】この比較例においては、不二製油株式会社 製の脱脂大豆フレーク2kgに30℃の温水20リット ルを加え、これに5規定の水酸化ナトリウム溶液を加え てそのpHを7.0に調整し、これをゆるやかに約1時 間撹拌して抽出を行ない、これを遠心分離機にかけて不 溶画分を除去し、可溶画分を採取した。

【0027】そして、このように採取した可溶画分を8 0℃に加熱し、これに35%の過酸化水素水20gをす ばやく撹拌しながら加え、10分間放置した後、5規定 の水酸化ナトリウムでそのpHを8.5に調整し、その 後これを80℃で30分間ゆるやかに撹拌した。

【0028】次いで、これに10%の硫酸を加えてその pHを4. 4に調整し、生じた大豆蛋白沈殿物を遠心分 離機によって採取し、この大豆蛋白沈殿物に20リット ルの水を加えて懸濁させ、再び遠心分離機にかけて大豆 蛋白沈殿物を採取し、大豆蛋白カードを得た。なお、こ やかに約1時間撹拌して抽出を行ない、これを遠心分離 50 のようにして得た大豆蛋白カードは、その固形分が28

5 重量%で、固形分中における粗蛋白質純度が96重量%

【0029】そして、この大豆蛋白カード2、43kg に水と塩酸でを加えてpHが1.3になった6800m 1の溶液を関製し、これに1万ユニットのペプシン(和 光純菜株式会社製) 2. 38gを20mlの水に溶解さ せたものを添加し、これを30℃で20時間撹拌した。 なお、この撹拌は、上記ペプシンを添加した後、4時間 行ない、その後は、3時間おきに1時間撹拌するように 1. 3~1. 8の間に保つようにした。

【0030】このようにして上記ペプシンにより大豆蛋 白を部分加水分解した後は、これを70℃で1時間加熱 して上記酵素を失活させ、その後、5規定の水酸化ナト リウムを加えてそのpHを5.0に調整し、不溶画分を 沈殿させた。

【0031】そして、このように沈殿した不溶画分を遠 心分離機によって除去した後、上記の加水分解物を噴霧 乾燥して起泡性大豆蛋白を得た。

【0032】 (比較例2) この比較例においては、特別 20 昭49-109551号公報に示される方法に準じて起 泡性大豆蛋白を製造するようにした。

【0033】ここで、この比較例のものにおいては、分 離大豆蛋白が6重量%の溶液5リットルに塩酸を加えて そのpHを1.5に調整し、次いでこれに1万ユニット のペプシン (和光純薬株式会社製) 130gを添加し、 40℃で24時間部分加水分解を行なった。

【0034】そして、この加水分解物に5規定の水酸化 ナトリウムを加えてそのpHを4.5に調整し、80℃* *で30分間加熱して上記酵素を失活させた後、遠心分離 機を用いて不溶画分を除去し、可溶画分を採取した。

【0035】次に、この可溶固分に5規定の水酸化ナト リウムを加えてそのpHを8.5に顕整し、これによっ て生じた沈殿物を遠心分離機によって除去し、その後こ れに塩酸を加えてそのpHを6.5に調整した後、これ を噴霧乾燥させて起泡性大豆蛋白を得た。

【0036】次に、上記のようにして製造された実施例 1及び比較例1,2の各起泡性大豆蛋白の水系及び含油 した。また、撹拌を行なっている間はそのpHを常に 10 系下における起泡性を測定すると共に、含油系下におけ る起泡安定性を測定し、さらにその泡の硬さ、色調及び 風味を調べ、その結果を下記の表1に示した。

【0037】ここで、水系下における起泡性を測定する にあたっては、実施例1及び比較例1.2の各起泡性大 豆蛋白を水に加えて、それぞれ起泡性大豆蛋白が5重量 %になった水溶液を100ml調製し、これをホモゲナ イザー (日本精機株式会社製) により10000rpm で1分間処理した後、これをメスシリンダーに移して発 生した泡の容量 (m1) を測定するようにした。一方、 含油系下における起泡性については、上記水に代えて油 を15重量%加えた水溶液を使用し、それ以外について は上記の水系下における場合と同様にして泡の容量(m

【0038】また、含油系下における起泡安定性につい ては、上記のように含油系下において起泡させたものに つき、それぞれ1時間経過後及び2時間経過後における 泡の容量(m1)を測定するようにした。

[0039]

1)を測定するようにした。

【表1】

		実施例 1	比較例1	比較例2
起泡性	(水 系)	530m1	510m1	490m1
	(含油系)	5 2 0 m 1	360ml	460m1
起袍	(1時間後)	500m1	250ml	380m1
安定性	(2時間後)	480ml	200m1	290m1
泡の硬さ		非常に硬い	やや飲かい	硬い
泡の色調		白っぽく 光沢あり	褐色	淡黄色
風味		苦みなく	雑味	少し
		すっきりした味	苦みあり	苦みあり

【0040】この結果から明らかなように、上記実施例 1の起泡性大豆蛋白は、比較例1.2の各起泡性大豆蛋 白に比べて、含油系下における起泡性及び起泡安定性が 特に優れており、また泡の硬さ色間及び風味の点におい 50 のにおいては、大豆蛋白を溶解させる塩水溶液のイオン

ても、比較例1,2の起泡性大豆蛋白に比べて優れてい た。

【0041】 (実施例2~5及び比較例3) これらのも

強度の影響を調べるようにした。

[0042] ここで、実施例2~5及び比較例3のもの においては、分離大豆蛋白が10重量%になった溶液を 使用するようにした。そして、この溶液に塩化ナトリウ ムを加えるにあたり、実施例2においてはそのイオン強 度が0.05モル、実施例3においては0.1モル、実 施例4においては0.5モル、実施例6においては1. 6モルになるように調整する一方、比較例2においては 塩化ナトリウムを加えないようにした。

【0043】そして、このように調製したものについ 10 て、それぞれ塩酸を加えてそのpHを3.5に調整し、 これを20℃で1時間撹拌した後、遠心分離機を用いて 可溶画分と不溶画分に分画して、可溶画分を採取した。

【0044】次いで、このように採取した各可溶画分に 水酸化ナトリウムを加え、そのpHを4.5に調整して 等電点沈殿させた後、この沈殿物を回収し、これに水を 加えて濃度10重量%の溶液を調整した。

*【0045】そして、このように関製した各溶液に塩酸 を加えてそのpHを2.0に調整した後、溶液中におけ る粗蛋白の重量に対して1万ユニットのペプシンを0. 35%の割合で加え、これを50℃にして3時間部分加 水分解を行なった。

【0046】次に、このようにして得られた各加水分解 物を80℃で30分間加熱して上記ペプシンを失活させ た後、これに水酸化ナトリウムを加えてそのpHを5. 5 に關整し、その後これを噴霧乾燥させて各起泡性大豆 蛋白を製造した。

【0047】そして、このようにして製造された実施例 2~5及び比較例3の各起泡性大豆蛋白の抽出収率を求 めると共に、上記の場合と同様にして、水系下及び含油 系下における紀泡性及び含油系下における紀泡安定性や 泡の硬さを測定し、その結果を下記の表2に表示した。 [0048]

【表2】

	実施例2	実施例3	実施例4	実施例 5	比較例3
イオン強度(モル)	0. 05	0. 1	0. 5	1. 0	0
抽出収率(%)	3 5	2 7	18	2 0	40
起泡性 (水 系) (含油系)	500ml 450ml	520ml 490ml	530m1 520m1	520ml 520ml	480ml 400ml
起泡 (1時間後) 安定性 (2時間後)	400ml 360ml	460ml 440ml	500m1 480m1	490ml 470ml	200ml 40ml
泡の硬さ	ややいな嫌	硬い	非常に硬い	硬い	飲かい

【0049】この結果から明らかなように、大豆蛋白に 塩類を加えて抽出を行なうようにした実施例2~5の各 起泡性大豆蛋白は、塩類を加えなかった比較例3の起泡 性大豆蛋白に比べて、特に、含油系下における配泡性及 び起泡安定性が優れており、泡の硬さも硬くなってい

【0050】 (実施例6~11) これらの実施例におい 40 製造した。 ては、大豆蛋白を塩水溶液に溶解させた溶液を酸性領域 で抽出する際におけるpHの影響を調べるようにした。

【0051】これらの実施例においては、分離大豆蛋白 が10重量%になった溶液に塩化ナトリウムを加えてそ のイオン強度を0.5モルに調整した後、これに塩酸を 加えてそのpHを調整するようにした。ここで、実施例 6においてはそのpHを2.0、実施例7においてはp

Hを3. 0、実施例8においてはpHを3. 5、実施例 9においてはpHを3.75、実施例10においてはp Hを4. 5、実施例11においてはpHを5. 5に調整 するようにした。

【0052】その後は、これらを使用して、上記実施例 2~5の場合と全く同じようにして各起泡性大豆蛋白を

【0053】そして、このようにして製造された実施例 6~11の各起泡性大豆蛋白の抽出収率を求めると共 に、前記の場合と同様にして、水系下及び含油系下にお ける起泡性及び含油系下における起泡安定性や泡の硬さ を測定し、その結果を下配の表3に表示した。

[0054]

【表3】

9

•							
	実 施 例				I		
	6	7	8	9	10	11	
рН	2.0	3.0	3. 5	3. 75	4.5	5. 5	
抽出収率(%)	38	2 7	18	20	2 0	4 2	
起泡性 (水 系) (合油系)	420ml 400ml	510ml 500ml	530ml 520ml	510ml 500ml	500ml 490ml	420ml 400ml	
起泡 (1時間後)安定性(2時間後)	360ml 300ml	470ml 440ml	500ml 480ml	480ml 450ml	450ml 420ml	300ml 150ml	
泡の硬さ	飲かい	硬い	非常に硬い	やや 硬い	やや	軟かい	

【0055】この結果から明らかなように、大豆蛋白を 塩水溶液に溶解させた溶液を酸性領域で抽出するにあた 20 $\mathbb C$ 、実施例 14 においては $20\mathbb C$ 、実施例 15 において り、そのpHを3.0~4.5の範囲に調整すると、含 油系下における起泡性及び起泡安定性に優れ、泡の硬さ もある硬い起泡性大豆蛋白が得られた。

【0056】 (実施例12~17) これらの実施例にお いては、大豆蛋白を塩水溶液に溶解させた溶液を酸性質 域で抽出する際における温度の影響を調べるようにし た。

【0057】これらの実施例においては、分離大豆蛋白 が10重量%になった溶液に塩化ナトリウムを加えてそ のイオン強度を0.5モルに調整すると共に、この溶液 30 【0061】 に塩酸を加えてそのpHを3.5に調整した。

【0058】そして、このように調整した各溶液を、実

施例12においては5℃、実施例13においては10 は30℃、実施例16においては40℃、実施例17に おいては50℃に調整するようにした。

10

【0059】その後は、上記実施例2~5の場合と全く 同じようにして各起泡性大豆蛋白を製造した。

【0060】そして、このようにして製造された実施例 12~17の各起泡性大豆蛋白の抽出収率を求めると共 に、前記の場合と同様にして、水系下及び含油系下にお ける起泡性及び含油系下における起泡安定性や泡の硬さ を測定し、その結果を下記の表4に表示した。

【表4】

-292-

					_		
		実 施 例					
		12	13	14	15	16	17
温度	(°C)	5	10	20	3 0	4 0	50
抽出収率	(%)	4	7	18	2 2	2 6	3 5
起泡性	(水 系) (含油系)	500m1 470m1	510ml 490ml	530ml 520ml	530ml 520ml	490ml 450ml	470ml 440ml
起泡 (1	1時間後)	430ml 390ml	460ml 410ml	500ml 480ml	500ml 480ml	420ml 380ml	390ml 360ml
泡の硬さ		非常に硬い	非常に硬い	非常に硬い	非常に硬い	飲かい	非常に軟かい

【0062】この結果から明らかなように、大豆蛋白を り、抽出を行なう際の温度を高くすると、抽出収率が向 上する一方、起泡性、起泡安定性及び泡の硬さが低下 し、逆に温度を低くし過ぎると抽出効率が著しく低下す るため、上記の抽出は20~30℃の温度で行なうよう にすることが好ましかった。

[0063]

【発明の効果】以上詳述したように、この発明に係る起 泡性大豆蛋白の製造方法においては、大豆蛋白を塩水溶 液に溶解させ、このように大豆蛋白が溶解された塩水溶 液について酸性領域でその可溶画分を抽出し、抽出され 30 ようになった。 た可溶画分を蛋白分解酵素で加水分解するようにしたた

め、風味や色調を害するホエー等の成分が除去されると 塩水溶液に溶解させた溶液を酸性領域で抽出するにあた 20 共に、起泡性大豆蛋白における起泡力、起泡安定性、泡 保型性等に対して悪影響を及ぼす画分も除去されるよう になり、水系下及び含油下において優れた起泡力、起泡 安定性、泡保型性を有すると共に、色調や風味も良好な 起泡性大豆蛋白が得られるようになる。

> 【0064】この結果、この発明によって得られた起泡 性大豆蛋白は、様々な食品に有効に利用でき、特に、カ ステラ、ケーキ用生菓子、泡立てクリーム、ヌガー、マ シュマロ等の含油下で起泡させる菓子類等の製造におい て、これらの起泡剤として好適に使用することができる