Progressi sulla congettura di Calabri

Matilde Calabri, Filippo \mathcal{L} . Troncana

A.A. 2024/2025

Definizione 0.1: Numeri binari

Sia $n \in \mathbb{Z}_+$, questo si dice *numero binario in base* b se

$$n = \sum_{i \in I} b^i$$

Con $I\subset\mathbb{N}$ finito. Chiamiamo rango di n il valore $\mathrm{rk}(n):=\max I$ Alternativamente possiamo definire l'insieme B_b dei numeri binari per induzione

$$\frac{1}{1}[B_b 0] \qquad \frac{n}{bn}[B_b 1] \qquad \frac{n}{bn+1}[B_b 2]$$

Osservazione 0.1

Tutti i numeri binari in base b rappresentati in base b hanno come cifre solo 0 e 1.

Definizione 0.2: Funzione conta divisori

Definiamo la funzione

$$D: \mathbb{Z}_+ \to \mathbb{Z}_+$$
 come $D(n) = \#\{d \in \mathbb{Z}_+ : d|n\}$

Lemma 0.1: Parità di D

Abbiamo che D(n) è dispari se e solo se n è un quadrato perfetto.

Dimostrazione

Automaticamente, $D(n) = 1 \Leftrightarrow n = 1$, quindi poniamo n > 1.

Per il teorema fondamentale dell'aritmetica possiamo scrivere n come

$$n = \prod_{i \in I} p_i^{q_i}$$
 dove p_i è primo per ogni $i \in I$

E dato che D è evidentemente moltiplicativa sui coprimi, abbiamo:

$$D(n) = \prod_{i \in I} D(p_i^{q_i}) = \prod_{i \in I} \{p^0, ..., p^{q_i}\} = \prod_{i \in I} (q_i + 1)$$

Dato che un prodotto di interi è dispari se e solo se tutti i fattori sono dispari, abbiamo che ogni q_i deve essere $2k_i$ per qualche k, ovvero

$$n = \prod_{i \in I} p_i^{2k_i} = \left(\prod_{i \in I} p_i^{k_i}\right)^2 = m^2$$
 per qualche $m \in \mathbb{Z}_+$

Congettura 0.1: Congettura di Calabri I

Sia $n \in B_{10}$ tale che $n \cong 1 \mod 2$. Allora $D(n) \cong 0 \mod 2$.

Assumiamo che $n \in B_{10}$ sia un controesempio della congettura di Calabri, dunque D(n) è dispari, e sappiamo già che n deve essere dispari; ricordando che un quadrato è dispari se e solo se la sua radice è dispari, abbiamo che

 $n = (2k+1)^2 = 4k^2 + 4k$ per qualche $k \in \mathbb{Z}_+$.

A questo punto possiamo notare che $n-1=4(k^2+k)$ dunque 4|n-1 e al contempo 10|n-1, perciò vale 100|n-1 e perciò $25|k^2+k$. Automaticamente possiamo vedere che i casi sono due:

1.

$$k \cong 0 \mod 25 \Rightarrow k = 25x \Rightarrow n = 4((25x)^2 + 25x) \Rightarrow n = 100(25x^2 + x)$$

2.

$$k \cong -1 \mod 25 \Rightarrow k = 25x - 1 \Rightarrow n = 4((25x - 1)^2 + 25x - 1) \Rightarrow n = 100(25x^2 - x)$$

Dato che $n-1 \in B_{10}$, dobbiamo indagare i numeri binari della forma $25x^2 \pm x$. Osserviamo che devono essere necessariamente pari, in quanto

$$25x^2 \pm x \cong x^2 \pm x \cong x(x \pm 1) \cong 0 \mod 2$$

Allora x = 2y per qualche y e dunque $n - 1 = 100(100y^2 + 2y)$ e quindi $n = (100y)^2 + 2(100y) + 1 = (100y + 1)^2$. Abbiamo dunque l'uguaglianza

$$n=(2k+1)^2=(100y+1)^2 \Rightarrow k=50y$$
 per l'iniettività di $m\mapsto (m+1)^2$ su \mathbb{Z}_+

Abbiamo quindi che $\frac{n-1}{100} \in B_{10}$ e inoltre $\frac{n-1}{100} \cong 0 \mod 2$, dunque 1000|n-1, perciò Abbiamo

Congettura 0.2: Congettura di Calabri II

Gli unici numeri binari in base 10 che sono anche quadrati perfetti sono della forma 10^{2n} .

Osserviamo che la congettura 0.2 implica la 0.1