Programação Linear - dualidade e método simplex dual

Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

8 de Novembro de 2022

Dualidade e método simplex dual

antes

 O preço-sombra de uma restrição é um conceito fundamental, relacionado com o valor que se atribui a um recurso.

Guião

- Os preços-sombra são os valores óptimos das variáveis de um problema, que se designa por problema dual.
- O foco da *Dualidade* é determinar a melhor forma de valorizar a utilização dos recursos disponíveis.
- Quando existe um vértice admissível inicial para esse problema dual, pode usar-se o método simplex dual, semelhante ao método simplex.

depois

 O método simplex dual é usado em programação inteira, para reoptimizar o quadro simplex depois de inserir um plano de corte.

Motivação: relembrar o exemplo (de maximização)

Decomposição do gradiente da função objectivo \vec{c}

 Em cada vértice, há um conjunto de restrições activas, relativas a recursos que são integralmente usados.

Decompor \vec{c} segundo as direcções dos gradientes das restrições activas

• é equivalente a determinar os valores dos pesos pelos quais se devem multiplicar as funções lineares dessas restrições, de modo a que a adição das funções resultantes tenha como soma a função objectivo.

Vértice D: gradiente \vec{c} está contido no cone

Vértice *D* (intersecção das rectas $s_1 = 0$ e $s_2 = 0$)

Do lado esquerdo, obtemos a função objectivo:

maxz=	$12x_1$	+	$10x_2$			
	$-1x_{1}$			\leq	0	(0)
			$-1x_2$	\leq	0	(0)
	$3x_{1}$	+	$2x_{2}$	≤	120	(3.5)
	$1x_1$	+	$2x_{2}$	≤	80	(1.5)
	$1x_1$			\leq	30	(0)
	$12x_1$	+	$10x_2$	<u>≤</u>	540	

- e, do lado direito, obtemos 540; como os valores dos pesos são todos não-negativos, a 'inequação-soma' é válida.
- Qualquer solução que obedeça às restrições obedece também à 'inequação-soma'

 O valor do óptimo não pode exceder 540.

Vértice C: o gradiente \vec{c} não está contido no cone

Vértice C (intersecção das rectas $s_1 = 0$ e $s_3 = 0$)

Do lado esquerdo, obtemos a função objectivo:

max <i>z</i> =	$12x_1$	+	$10x_2$			
	$-1x_{1}$			<	0	(0)
			$-1x_{2}$	\leq	0	(0)
	$3x_{1}$	+	$2x_{2}$	≤	120	(5)
	$1x_1$	+	$2x_{2}$	\leq	80	(0)
	$1x_1$			≤	30	(-3)
	12x ₁	+	10x2	≰	510	

- mas a 'inequação-soma' não é válida, porque um dos pesos é negativo.
- nota: sabemos que há soluções admissíveis com valor da função objectivo maior do que 510.

Vértice I : não admissível e gradiente contido no cone

Vértice / (intersecção das rectas $s_2 = 0$ e $s_3 = 0$)

• Do lado esquerdo, obtemos a função objectivo:

max <i>z</i> =	$12x_1$	+	$10x_2$			
	$-1x_{1}$			\leq	0	(0)
			$-1x_2$	\leq	0	(0)
	$3x_1$	+	$2x_{2}$	\leq	120	(0)
	$1x_1$	+	$2x_{2}$	≤	80	(5)
	$1x_1$			≤	30	(7)
	12x ₁	+	$10x_2$	≤	610	

- e, do lado direito, obtemos 610; como os valores dos pesos são todos não-negativos, a 'inequação-soma' é válida,
- mas o vértice / não é um vértice admissível.

Uma nova estratégia de resolução

Uma condição de optimalidade

 O quadro simplex associado ao vértice determinado pela matriz B (resultante de um conjunto de variáveis básicas) é:

<i>B</i> ^{−1} <i>A</i>	B^{-1}	$B^{-1}b$
$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$

É condição de optimalidade, num problema de maximização, que

- todos os elementos dos vectores $c_B B^{-1} A c$ e $c_B B^{-1}$ sejam ≥ 0 .
- O valor da função objectivo do vértice é $c_B B^{-1} b$.

Objectivo na nova estratégia:

• Encontrar o valor mínimo da função objectivo quando o domínio é o conjunto de soluções que cumprem esta condição de optimalidade.

- ullet A matriz $oldsymbol{A}$ e o vector $oldsymbol{c}$ são dados do problema.
- Só $c_B B^{-1}$ é que representa uma escolha, que resulta da matriz B.

$$\mathbf{y} = (y_1, \dots, y_m) = \mathbf{c}_B \mathbf{B}^{-1}$$

$B^{-1}A$	B^{-1}	$B^{-1}b$
$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$

- A condição de optimalidade (maximização) é
- ullet A função objectivo que associa um valor a cada solução $oldsymbol{y}$ é

- ullet A matriz $oldsymbol{A}$ e o vector $oldsymbol{c}$ são dados do problema.
- Só $c_B B^{-1}$ é que representa uma escolha, que resulta da matriz B.

$$\mathbf{y} = (y_1, \dots, y_m) = \mathbf{c}_B \mathbf{B}^{-1}$$

$B^{-1}A$	B^{-1}	$B^{-1}b$
$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$

- A condição de optimalidade (maximização) é $yA c \ge 0$ e $y \ge 0$.
- ullet A função objectivo que associa um valor a cada solução $oldsymbol{y}$ é

- A matriz **A** e o vector **c** são dados do problema.
- Só $c_B B^{-1}$ é que representa uma escolha, que resulta da matriz B.

$$\mathbf{y} = (y_1, \dots, y_m) = \mathbf{c}_B \mathbf{B}^{-1}$$

$B^{-1}A$	B^{-1}	$B^{-1}b$
$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$

- A condição de optimalidade (maximização) é $yA c \ge 0$ e $y \ge 0$.
- A função objectivo que associa um valor a cada solução y é yb.
- O modelo para encontrar o valor mínimo é:

- ullet A matriz $oldsymbol{A}$ e o vector $oldsymbol{c}$ são dados do problema.
- Só $c_B B^{-1}$ é que representa uma escolha, que resulta da matriz B.

Vamos designar por y o vector de variáveis de decisão:

$$\mathbf{y} = (y_1, \dots, y_m) = \mathbf{c}_B \mathbf{B}^{-1}$$

$B^{-1}A$	B^{-1}	$B^{-1}b$
$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$

- A condição de optimalidade (maximização) é $yA c \ge 0$ e $y \ge 0$.
- A função objectivo que associa um valor a cada solução y é yb.
- O modelo para encontrar o valor mínimo é:

min
$$yb$$

suj. a $yA \ge c$
 $y \ge 0$

• Este problema designa-se por problema dual.

Exemplo

$\begin{array}{c c} PRIMAL: \\ \text{max} & \textbf{cx} \\ \text{suj. a} & \textbf{Ax} \leq \textbf{b} \\ & x \geq \textbf{0} \end{array}$	max suj. a	$ \begin{array}{rcl} 12x_1 & +10x_2 \\ 3x_1 & +2x_2 & \leq & 120 \\ 1x_1 & +2x_2 & \leq & 80 \\ 1x_1 & & \leq & 30 \\ x_1, x_2 \geq 0 \end{array} $
$DUAL:$ min yb suj. a $yA \ge c$ $y \ge 0$		$\begin{bmatrix} y_3 & y_4 & y_5 \end{bmatrix} * \begin{bmatrix} 120 \\ 80 \\ 30 \end{bmatrix}$ $\begin{bmatrix} y_3 & y_4 & y_5 \end{bmatrix} * \begin{bmatrix} 3 & 2 \\ 1 & 2 \\ 1 & 0 \end{bmatrix} \ge \begin{bmatrix} 12 & 10 \end{bmatrix}$
	min	$y_3, y_4, y_5 \ge 0$
		$120y_3 + 80y_4 + 30y_5$
	suj. a	$3y_3 + 1y_4 + 1y_5 \ge 12$
		$ \begin{array}{rcl} 2y_3 & +2y_4 & \ge & 10 \\ y_3, y_4, y_5 \ge 0 \end{array} $

• Vamos designar o problema original por problema primal.

Para construir o problema dual,

PRIMAL DUAL			
max <i>cx</i>	min yb		
suj.a A x ≤ b	suj. a yA≥c		
<i>x</i> ≥ 0	<i>y</i> ≥ 0		
max $12x_1 + 10x_2$	min 120 <i>y</i> ₃ +80 <i>y</i> ₄ +30 <i>y</i> ₅		
suj. a $3x_1 + 2x_2 \le 120$	suj. a $3y_3 + 1y_4 + 1y_5 \ge 12$		
$1x_1 + 2x_2 \le 80$	$2y_3 +2y_4 \ge 10$		
$1x_1 \leq 30$	$y_3, y_4, y_5 \ge 0$		
$x_1, x_2 \ge 0$			

o problema original deve estar na Forma Canónica:

• Problema de max com todas as restrições do tipo de ≤.

O dual do dual é o primal

• Partindo do problema dual, e colocando-o na Forma Canónica:

DUAL	DUAL na Forma Canónica	
min yb	− max − yb	
suj. a yA≥ c	suj. a - yA ≤ - c	
<i>y</i> ≥ 0	<i>y</i> ≥ 0	
min 120 <i>y</i> ₃ +80 <i>y</i> ₄ +30 <i>y</i> ₅	$-\max -120y_3 -80y_4 -30y_5$	
suj. a $3y_3 + 1y_4 + 1y_5 \ge 12$	suj. a $-3y_3 -1y_4 -1y_5 \le -12$	
$2y_3 +2y_4 \ge 10$	$-2y_3 -2y_4 \qquad \leq -10$	
$y_3, y_4, y_5 \ge 0$	$y_3, y_4, y_5 \ge 0$	

• se se usar a regra do *slide* anterior, obtém-se o problema primal.

Portanto, basta usar a seguinte regra:

 O dual de um Problema de min com <u>todas</u> as restrições de ≥ é um Problema de max com <u>todas</u> as restrições de ≤.

lembrete: min yb = -max - yb

• Qualquer problema de minimização, em que se pretende $\min f(x)$, pode ser transformado num problema de maximização, em que se optimiza a função objectivo simétrica da original, $\max -f(x)$:

• Solução óptima x^* é a mesma, mas o valor da função objectivo da solução óptima é o simétrico $f(x^*) = \min f(x) = -\max -f(x)$

Uma condição de optimalidade

 O quadro simplex associado ao vértice determinado pela matriz B (resultante de um conjunto de variáveis básicas) é:

$B^{-1}A$	B^{-1}	$B^{-1}b$
$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$

É condição de optimalidade, num problema de maximização, que

- todos os elementos dos vectores $c_B B^{-1} A c$ e $c_B B^{-1}$ sejam ≥ 0 .
- O valor da função objectivo do vértice é $c_B B^{-1} b$.

Objectivo na nova estratégia:

• Encontrar o valor mínimo da função objectivo quando o domínio é o conjunto de soluções que cumprem esta condição de optimalidade.

- A matriz **A** e o vector **c** são dados do problema.
- Só $c_B B^{-1}$ é que representa uma escolha, que resulta da matriz B.

$$\mathbf{y} = (y_1, \dots, y_m) = \mathbf{c}_B \mathbf{B}^{-1}$$

$B^{-1}A$	B^{-1}	$B^{-1}b$
$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$

- A condição de optimalidade (maximização) é
- ullet A função objectivo que associa um valor a cada solução $oldsymbol{y}$ é

- ullet A matriz $oldsymbol{A}$ e o vector $oldsymbol{c}$ são dados do problema.
- Só $c_B B^{-1}$ é que representa uma escolha, que resulta da matriz B.

$$\mathbf{y} = (y_1, \dots, y_m) = \mathbf{c}_B \mathbf{B}^{-1}$$

$B^{-1}A$	B^{-1}	$B^{-1}b$
$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$

- A condição de optimalidade (maximização) é $yA c \ge 0$ e $y \ge 0$.
- ullet A função objectivo que associa um valor a cada solução $oldsymbol{y}$ é

- A matriz **A** e o vector **c** são dados do problema.
- Só $c_B B^{-1}$ é que representa uma escolha, que resulta da matriz B.

$$\mathbf{y} = (y_1, \dots, y_m) = \mathbf{c}_B \mathbf{B}^{-1}$$

$B^{-1}A$	B^{-1}	$B^{-1}b$
$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$

- A condição de optimalidade (maximização) é $yA c \ge 0$ e $y \ge 0$.
- A função objectivo que associa um valor a cada solução y é yb.
- O modelo para encontrar o valor mínimo é:

- ullet A matriz $oldsymbol{A}$ e o vector $oldsymbol{c}$ são dados do problema.
- Só $c_B B^{-1}$ é que representa uma escolha, que resulta da matriz B.

Vamos designar por y o vector de variáveis de decisão:

$$\mathbf{y} = (y_1, \dots, y_m) = \mathbf{c}_B \mathbf{B}^{-1}$$

$B^{-1}A$	B^{-1}	$B^{-1}b$
$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$

- A condição de optimalidade (maximização) é $yA c \ge 0$ e $y \ge 0$.
- A função objectivo que associa um valor a cada solução y é yb.
- O modelo para encontrar o valor mínimo é:

min
$$yb$$

suj. a $yA \ge c$
 $y \ge 0$

• Este problema designa-se por problema dual.

Exemplo

 $y_3, y_4, y_5 \ge 0$

• Vamos designar o problema original por problema primal.

Elementos do vector $c_B B^{-1} A - c$ são as folgas do dual

Problema dual

sendo $u \in \mathbb{R}^{1 \times n}_+$ um vector de variáveis de folga da mesma dimensão que $c \in \mathbb{R}^{1 \times n}$.

As variáveis do problema dual são:

- variáveis de decisão: $\mathbf{y} = \mathbf{c}_B \mathbf{B}^{-1}$,
- variáveis de folga: $\boldsymbol{u} = \boldsymbol{c}_B \boldsymbol{B}^{-1} \boldsymbol{A} \boldsymbol{c}$

$$(u = yA - c)$$
.

• Solução do problema dual é admissível quando $y, u \ge 0$.

Resolver o primal também resolve o dual,

porque o quadro simplex da resolução do primal fornece os valores de:

- variáveis de decisão do dual $c_B B^{-1}$: $y^* = (y_3, y_4, y_5)^* = (3.5, 1.5, 0)$
- variáveis de folga do dual $c_B B^{-1} A c$: $u^* = (u_1, u_2)^* = (0, 0)$
- função objectivo da solução dual $(c_B B^{-1})b$: $y^*b = 540$.

		Z	<i>x</i> ₁	<i>X</i> 2	<i>s</i> ₁	<i>s</i> ₂	s 3	
		0	0	1	-0.25	0.75	0	30
Solução óptima:	<i>5</i> 3	0	0	0	-0.5	0.5	1	10
	x_1	0	1	0	0.5	-0.5	0	20
		1	0	0	3.5	1.5	0	540

Método simplex dual

- Estratégia
- Algoritmo
- Exemplo

Método simplex dual: estratégia

Estratégia:

- O método simplex dual percorre uma sequência de vértices admissíveis para o problema dual até atingir uma solução que seja admissível para o primal.
- Assumpção: conhece-se um vértice admissível para o problema dual.

Algoritmo simplex dual (informal)

- seleccionar um vértice inicial admissível para o problema dual
- enquanto (o vértice não for admissível para o problema primal)
 mudar para um vértice adjacente mais próximo de uma solução admissível para o primal

No método simplex dual não se optimiza,

o que se faz é resolver um problema de admissibilidade.

Condições de optimalidade

Vimos que:

um quadro simplex de maximização é óptimo se:

- os coeficientes do lado direito forem todos ≥ 0,
- os coeficientes da linha da função objectivo forem todos ≥ 0, e
- a matriz identidade existir.
- Formalmente, como iremos depois provar:

Teorema

A solução de um problema de Programação Linear é óptima se e só se:

- for admissível para o problema primal,
- o for admissível para o problema dual, e
- obedecer ao teorema da folga complementar.

Aplicação do método simplex dual

Colocar o problema na forma canónica (max,≤)

• Obter restrições do tipo \leq (i.e., matriz $I_{m \times m}$ no quadro simplex):

$$min z = cx$$

$$-Ax + u = -b$$

$$x, u \ge 0$$

• Transformar num problema de maximização:

$$-\max(-z) = -cx$$

$$-Ax + u = -b$$

$$x, u \ge 0$$

Se o problema inicial de minimização tiver $c \ge 0$,

• o quadro simplex apresenta uma solução dual admissível.

Exemplo (quadro simplex de maximização)

• Dado o quadro simplex sem uma matriz identidade ($I_{m \times m}$) em que a função objectivo é expressa como max(-z) = -cx:

	(-z)	y_1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
	0	-1		3	1	1	12
	0	0	-1	2	2	0	10
$\overline{(-z)}$	1	0	0	+120	+80	+30	0

• obtém-se a $I_{m \times m}$ multiplicando as equações das restrições por (-1):

				<i>y</i> 3		<i>y</i> 5	
<i>y</i> ₁	0	1	0	-3	-1	-1	-12
<i>y</i> ₂	0	0	1	-3 -2	-2	0	-10
(-z)	1	0	0	+120	+80	+30	0

A selecção do elemento pivô no método simplex dual destina-se a:

- procurar obter uma solução primal admissível (lado direito ≥ 0);
- manter a solução dual admissível (linha função objectivo ≥ 0).

Exemplo: primeiro pivô do método simplex dual

• nota: o elemento pivô tem sempre valor **negativo**. porquê?

	(-z)	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₁	0	1	0	-3 -2	-1	-1	-12
<i>y</i> ₂	0	0	1	-2	-2	0	-10
(-z)	1	0	0	+120	+80	+30	0

- Linha pivô: linha de y_1 (coeficiente mais negativo é -12).
- Coluna pivô: coluna de y₅ (menor valor absoluto das razões negativas é 30):
 - coluna de $y_3: |+120/-3| = 40$
 - coluna de $y_4: |+80/-1| = 80$
 - coluna de y_5 : |+30/-1| = 30

	(-z)	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> ₅	
<i>y</i> 5	0	-1	0	3	1	1	12
<i>y</i> 2	0	0	1	-2	-2	0	-10
(-z)	1	+30	0	+30	+50	0	-360

Exemplo: restantes iterações do método simplex dual

	(-z)	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₅	0	-1	0	3	1	1	12
<i>y</i> ₂	0	0	1	-2	-2	0	-10
(-z)	1	+30	0	+30	+50	0	-360
	(-z)	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> 5	0	-1	1.5	0	-2	1	-3
<i>y</i> 3	0	0	-0.5	1	1	0	5
$\overline{(-z)}$	1	+30	+15	0	+20	0	-510
	(-z)	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> 4	0	0.5	-0.75	0	1	-0.5	1.5
<i>y</i> 3	0	-0.5	0.25	1	0	0.5	3.5
(-z)	1	+20	+30	0	0	+10	-540

- Solução óptima é $y_3 = 3.5$, $y_4 = 1.5$, e restantes variáveis iguais a 0.
- Valor da solução óptima: $\min cx = -\max -cx = -(-540) = 540$.

Algoritmo simplex dual (problema de maximização):

```
Algoritmo 1 algoritmo simplex dual (esquema)
input: A, b, c
                                                            ➤ modelo
  construir solução dual admissível inicial (todos os coeficientes da linha
  da função objectivo do quadro são não-negativos, i.e., \geq 0)
  while existirem coeficientes negativos do lado direito do
     seleccionar linha pivô (coeficiente lado direito mais negativo)
                             if todos coeficientes linha piv\hat{o} \ge 0 then
         return problema é impossível
     else
         seleccionar coluna pivô (menor valor absoluto da razão)
                     razão (coef. linha f.objectivo)/(coef. linha pivô)
     end if
     efectuar pivô para obter nova solução
                                                ▶ eliminação de Gauss
  end while
  return solução óptima
```

Coluna pivô: se não existir ... o problema é impossível

Um problema (primal) é impossível se existir:

- uma linha com um coeficiente negativo do lado direito e com todos os coeficientes das variáveis não-básicas não-negativos (≥0).
- nota: a linha não tem nenhum elemento pivô negativo.
- Exemplo:

	(-z)	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₁	0	1	0	3	1	1	-12
<i>y</i> 2	0	0	1	-2	-2	0	-10
$\overline{(-z)}$	1	0	0	+120	+80	+30	0

- Na linha de y_1 , os coeficientes das variáveis y_3, y_4 e y_5 são todos ≥ 0 .
- O problema é impossível, porque nenhum conjunto de valores de $y_1, y_2, y_3, y_4, y_5 \ge 0$ satisfaz a restrição: $y_1 + 3y_3 + y_4 + y_5 = -12$.

Conclusão

- No método simplex (primal), os quadros simplex mantêm uma solução primal admissível, e procura-se encontrar uma solução dual admissível.
- No método simplex dual, os quadros simplex mantêm uma solução dual admissível, e procura-se encontrar uma solução primal admissível.
- Se o quadro inicial não tiver nem uma solução primal admissível, nem uma solução dual admissível, então o método das 2 Fases é uma estratégia de solução.

Apêndice

Método Simplex Dual ou 2 Fases?

- O método simplex dual só pode ser usado se os coeficientes da linha da função objectivo do quadro simplex de maximização forem todos não-negativos (≥ 0).
- Caso haja algum coeficiente da linha da função objectivo que não tenha o sinal devido, o Método Simplex Dual não pode ser usado;
- é necessário recorrer ao Método das 2 Fases, ou seja, usar a primeira fase para obter uma solução admissível inicial para o problema primal, e depois usar o método simplex (primal).

◀ Voltar

O valor da solução óptima $c_B B^{-1} b$

Cálculos no primal e no dual, respectivamente:

- $c_B(B^{-1}b) = f(valor vars decisão (c_{ij}), nível vars decisão (x_{ij}))$
- $(c_B B^{-1}) b = f(valor recursos (y_i), nível recursos (b_i))$
- Exemplo:

max:
$$12x1 + 10x2$$
; $x_2 = 0 = 0$ $x_2 = 0$ $x_3 = 0$ $x_4 = 0$ $x_5 = 0$ $x_6 = 0$ $x_6 = 0$ $x_6 = 0$ $x_7 = 0$ $x_8 = 0$

• Uso de recursos e valor dos recursos:

	act.1	act.2	folga	qto	d.rec.	valor rec.
tmaquina:	3(20)	+2(30)		_	120	120(3.5)
maodobra:	1(20)	+2(30)		=	80	+80(1.5)
material:	1(20)		+10	=	30	+30(0)
valor f.obj.:	12(20)	+10(30)			:	= 540

Exemplo

DUAL:
min
$$yb$$

suj. a $-u + yA = c$
 $u, y \ge 0$

min $[u_1 \ u_2 \ y_3 \ y_4 \ y_5] * \begin{bmatrix} 0 \\ 0 \\ 120 \\ 80 \\ 30 \end{bmatrix}$
suj. a $[u_1 \ u_2 \ y_3 \ y_4 \ y_5] * \begin{bmatrix} -1 \ 0 \\ 0 \ -1 \\ 3 \ 2 \\ 1 \ 2 \\ 1 \ 0 \end{bmatrix} = [12 \ 10]$

$$u_1, u_2, y_3, y_4, y_5 \ge 0$$

Fim