<u>Dashboard</u> / My courses / <u>Mathematics Dept</u> / <u>Maths-even-sem-20-21</u> / <u>LA-even-sem-20-21</u> / <u>8 March - 14 March</u>

/ Linear Algebra Test-01 (2020-21)

Started on Friday, 12 March 2021, 8:30 AM

State Finished

Completed on Friday, 12 March 2021, 9:20 AM

Time taken 49 mins 35 secs

Grade 16.00 out of 20.00 (**80**%)

Question 1

Correct

Mark 2.00 out of 2.00

Drag the correct values in the increasing order

The rank of the following matrix is 1 if and only if the value of x is -4 \checkmark or 4

$$A = \begin{pmatrix} 2x & 4 \\ 8 & x \end{pmatrix}$$

The correct answer is:

Drag the correct values in the increasing order

The rank of the following matrix is 1 if and only if the value of x is [-4] or [4]

$$A = \begin{pmatrix} 2x & 4 \\ 8 & x \end{pmatrix}$$

Question ${\bf 2}$

Correct

Mark 2.00 out of 2.00

Fill in the blanks

The set of vectors $\{(1, 2, 3), (3, 2, 1), (2, 1, 3)\}$ is linearly

Independent

✓ in the vector space

R^3

~

Question 3					
Incorrect					
Mark 0.00 ou	Mark 0.00 out of 2.00				
Complex each ent	Complex square matrix A is called Hermitian matrix if $A = (\overline{A})^T$ where \overline{A} is matrix obtained from A by taking complex conjugate of each entry of A . What is dimension of vector space of 2×2 Hermitian matrices over \mathbb{R} .				
Answer:	X				
The corr	ect answer is: 4				
Question 4					
Correct					
Mark 2.00 ou	ut of 2.00				
What is the dimension of vector space of 5x5 real matrices with sum of entries of each row is zero? Answer: 20 ✓ The correct answer is: 20					
Question 5					
Incorrect					
Mark 0.00 ou	ut of 1.00				
True or F	False				
Every up	Every upper triangular matrix is in a row echelon form!				
	Select one:				
True	True ▼				
False					
The corr	ect answer is 'False'.				

Question	6
Correct	

Mark 2.00 out of 2.00

Choose the correct answer.

Suppose that B is a 3×3 matrix with the property that $B^2 = B$. Which of the following statements about the matrix B MUST be true.

- B is only the identity matrix.
- $(B^T)^2 = B^T$
- |B| = 0
- |B|=1

The correct answer is: $(B^T)^2 = B^T$

Question **7**

Correct

Mark 1.00 out of 1.00

Select True or False:

True	False		
	Ox	Given u and v are solutions of AX = b then u + $k(u - v)$ is also a solution of AX = b	•

Given u and v are solutions of AX = b then u + k(u - v) is also a solution of AX = b: True

Question ${\bf 8}$

Correct

Mark 3.00 out of 3.00

Select True or False:

True	False		
	Ox	The system of equations $3x + 4y + 5z = a$; $4x + 5y + 6z = b$; $5x + 6y + 7z = c$ are consistent only if a, b, c are in arithmetic progression	✓

The system of equations

3x + 4y + 5z = a; 4x + 5y + 6z = b; 5x + 6y + 7z = c

are consistent only if a, b, c are in arithmetic progression: True

/2021	Linear Algebra Test-01 (2020-21): Attempt review			
Question 9				
Correct				
Mark 1.00 out of 1.00				
Select True or False:				
If a subspace of a real	vector space contains a non-zero vector t	hen it must be an infinite set.		
Select one:				
True ✓				
○ False				
The correct answer is '	True'.			
Question 10				
Correct				
Mark 2.00 out of 2.00				
Drag the correct answ	er			
For what value of k an	d a, b, c the given system has a unique so	lution		
2x + y = a; x + ky - z	= b ; y +2z = c			
k not equal	to 0 and for all values of a , b , c	√		
		k = 0 and for any value of a , b , c		
k not e	qual to 0 and for a = b = c	k not equal to 0 and for any value of a not equal to b and c=1		
The correct answer is:				
Drag the correct answ	er			
	d a, b, c the given system has a unique so	lution		
2x + y = a; x + ky - z				
[k not equal to 0 and f	[k not equal to 0 and for all values of a , b , c]			
Question 11				
Incorrect				
Mark 0.00 out of 1.00				
If a matrix A is non-si	If a matrix $m{A}$ is non-singular, then there exists a nonzero matrix $m{B}$ such that $m{A}m{B}$ is the zero matrix.			
Select one:				
True X				
○ False				

The correct answer is 'False'.

Question 12 Correct Mark 1.00 out of 1.00	
Walk 1.00 Out of 1.00	
Determine whether the following statement is True or False.	
Set of vectors $\{(0,1),(1,1),(0,0)\}$ forms a basis of \mathbb{R}^2 .	
FalseTrue	~
O nue	
The correct answer is: False	
◄ Linear Algebra - Live and Recorded Lectures using Webex	
Jump to	

Linear algebra(20-21): TEST-2 ►