本章教材习题全解

5-1 习题

- 1. 设集合 $A = \{1, 2, 3, \dots, 10\}$,问下面定义的二元运算 * 关于集合 A 是否封闭?
 - a) $x * y = \max(x, y)$.
 - b) $x * y = \min(x, y)$.
- c) x * y = GCD(x, y),
- d) x * y = LCM(x, y).
 - e) x * y = 质数 p 的个数,使得 $x \le p \le y$ 。
- 解: a) 封闭。b) 封闭。c) 封闭。d) 不封闭。例 LCM(3,6) = 18.e) 不封闭,例 6 * 6 = 0。
- 2. 在表 5-7 所列出的集合和运算中,请根据运算的是否封闭,在相应的位置上填写"是"或"否"(其中 N 是自然数集合,I 是整数集合)。

表 5-7

是否封闭			Water II.	运	算		
集合	+	_	x-y	y ,	max	min	x
I					- V-08	E Park	
N							
$\{x \mid 0 \leqslant x \leqslant 10\}$							
$\{x \mid -10 \leqslant x \leqslant 10\}$							
$\{2x \mid x \in I\}$	100						

解:见表5-8所示。

表 5-8

是否封闭			运	算		
集合	+	-	x-y	max	min	x
. 1	是	是	是	是	是	是
N	是	否	是	是	是	是
$\{x \mid 0 \leqslant x \leqslant 10\}$	否	否	是	是	是	是
$\{x \mid -10 \leqslant x \leqslant 10\}$	否	否	否 .	是	是	是
$\{2x\mid x\in I\}$	是	是	是	是	是	是

3. 试列举你所熟悉的一些代数系统。

解:例如复数集合及其加法和复数乘法构成的代数系统 $\langle C, +, \bullet \rangle$,整数集合 I 以及在该集合上的加法、乘法构成的代数系统 $\langle I, +, \bullet \rangle$ 等。

5-2 习题

1. 对于实数集合 R,表 5-9 所列的二元运算是否具有左边一列中的那些性质,请在相应的位置上填写"是"或"否"。

		+	- •	max	min	x-y
100	可结合性	- 1232			E21813	
em •	可交换性	11111				
	存在幺元					
	存在零元					

解:见表5-10所示。

表 5-10

	+	-		max	min	x-y
可结合性	是	否	是	是	是	否
可交换性	是	否	是	是	是	是
存在幺元	是	否	是	否	否	否
存在零元	否	否	是	否	否	否

2. 设代数系统 $\langle A, * \rangle$,其中 $A = \{a,b,c\}$, * 是A上的一个二元运算。对于由以下

第**5**章

几个表所确定的运算,试分别讨论它们的交换性、等幂性以及在 A 中关于 * 是否有幺元。如果有幺元,那么 A 中的每个元素是否有逆元。

	*	a	ь	с		*	а	b	с
	a	a	b	c	b)	а	a	ь	с
a)	ь	ь	c	a	D)	ь	ь	a	с
	с	с	а	ь		с	с	c	с
	*	a	ь	с		*	а	ь	С
	а	а	ь	c	d)	a	a	ь	с
c)	b	а	b	c	a)	ь	ь	Ь	c
	с	а	ь	С		с	с	c	b

- 解:a) 可交换,不等幂,a 为幺元,a 以自身为逆元,b 与 c 互为逆元。
 - b) 可交换,不等幂,a 为幺元,a 和b 均以自身为逆元,c 没有逆元。
 - c) 不可交换,等幂,没有幺元。
 - d) 可交换,不等幂,a 为幺元,a 以自身为逆元,b 和 c 没有逆元。
- 3. 证明定理5-2.2。

证明:由左零元定义可知: $\theta_l * \theta_r = \theta_l$,由右零元定义可知: $\theta_l * \theta_r = \theta_r$,所以 $\theta_l = \theta_r$

若有另一个零元 $\theta' = \theta' * \theta = \theta$,因此零元是唯一的。

- 4. 举日常生活的例子,分别说明幺元,零元和逆元。
- 解:例如:深颜色与浅颜色混合,则深颜色为零元,浅颜色为幺元。在钟表中,若将分针从零开始走了t分再走s分所指位置作为结果,若 $t+s \equiv \theta \pmod{60}$,则t与s 互为逆元。
- 5. 定义 I+ 上的两个二元运算为:

$$\begin{cases} a*b = a^b \\ a\triangle b = a \cdot b, a, b \in I_+ \end{cases}$$

试证明: * 对 △ 是不可分配的。

证明: $a*(b\triangle c) = a^{b \cdot c}$, $(a*b)\triangle (a*c) = a^b \cdot a^c = a^{b + c}$,而 $b \cdot c$ 不一定等于b + c, 所以 * 对 \triangle 于是不可分配的。

5-3 习题

- 1. 对于正整数 k, $N_k = \{0,1,2,\cdots,k-1\}$, 设 * $_k$ 是 N_k 上的一个二元运算, 使得 $a*_kb = 用 k$ 除 $a*_b$ 所得的余数, 这里 $a,b \in N_k$ 。
 - a) 当 k = 4 时,试造出 $*_k$ 的运算表。
- b) 对于任意正整数 k,证明: $\langle N_k, *_k \rangle$ 是一个半群。

解:a) 当 k = 4 时, $*_4$ 的运算表见表 5 - 11 所示。

表 5-11

* 4	0	1	2	3
0	0	0 .	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

b) 对于任意的 $a,b \in N_k$, $a *_k b = a \cdot b - nk = r$, 其中 $n \to k$ 除 $a \cdot b$ 的商, $r \to k$ 余数, $0 \le r \le k - 1$,所以 $*_k \to k$ 上封闭的。

对于任意的 $a,b,c \in N_k$,有

$$(a *_{k}b) *_{k}c = (a \cdot b - n_{1}k) *_{k}c$$

= $(a \cdot b - n_{1}k) *_{c}c - n_{2}k$
= $a \cdot b \cdot c - (n_{1}c + n_{2})k = r_{1}$,

$$= a \cdot b \cdot c - (n_1c + n_2)k = r_1,$$

$$a *_k (b *_k c) = a *_k (b \cdot c - n_3 k)$$

$$= a \cdot (b \cdot c - n_3 k) - n_4 k$$

$$= a \cdot b \cdot c - (an_3 - n_4)k = r_2,$$

因为 r_1 , r_2 都为 $a \cdot b \cdot c$ 除以k 所得的余数,所以 $r_1 = r_2$,即 $(a *_k b) *_k c = a *_k (b *_k c)$,即 *k满足结合律。

综上可知(N_k,*_k)是半群。

2. 设 $\langle S, * \rangle$ 是一个半群, $a \in S$,在 S 上定义一个二元运算 \square ,使得对于 S 中的任意元素 x 和 y,都有

$$x \square y = x * a * y$$

证明:二元运算 □ 是可结合的。

证明:因为(S,*)是一个半群,所以

$$(x \square y) \square z = (x * a * y) \square z = (x * a * y) * a * z = x * a * y * a * z,$$
 $x \square (y \square z) = x \square (y * a * z) = x * a * (y * a * z) = x * a * y * a * z,$
所以 $(x \square y) \square z = x \square (y \square z)$,即二元运算 \square 是可结合的。

3. 设 $\langle R,*\rangle$ 是一个代数系统,* 是R上的一个二元运算,使得对于R中的任意元素 a,b 都有

$$a * b = a + b + a \cdot b$$

证明:0是幺元且(R,*)是独异点。

证明:任给 $a \in R$,0 * a = 0 + a + 0 • a = a,a * 0 = a + 0 + a * 0 = a,所以 0 * a = a • 0 = a,即 0 是幺元;

任给 $a,b \in R$,因为在实数集上,"+"和"•"是封闭的,所以 a*b=a+b+a• $b \in R$,* 在 R 上封闭;

任给 $a,b,c \in R$,

 $(a*b)*c = (a+b+a \cdot b)*c$ $= a+b+a \cdot b+c+(a+b+a \cdot b) \cdot c$ $= a+b+c+a \cdot b+a \cdot c+b \cdot c+a \cdot b \cdot c$ $a*(b*c) = a*(b+c+b \cdot c)$ $= a+b+c+b \cdot c+a \cdot (b+c+b \cdot c)$ $= a+b+c+a \cdot b+a \cdot c+b \cdot c+a \cdot b \cdot c$ 所以(a*b)*c = a*(b*c),

即 * 在 R 上是可结合的,所以 $\langle R, * \rangle$ 是独异点。

4. 设 $X \neq \emptyset$,令 $S = t(X) = \bigcup_{n=0}^{\infty} X^n$,在 S定义二元运算 \triangle ,对任意 $\alpha = (x_1, x_2, \cdots, x_p) \in X^p$, $\beta = (y_1, y_2, \cdots, y_q) \in X^q$ 有

 $\alpha \triangle \beta = (x_1, x_2, \dots, x_p, y_1, y_2, \dots, y_q) \in X^{p+q}$

证明: $\langle S, \triangle \rangle$ 是一个独异点。

证明:对于任意的 $\alpha = (x_1, x_2, \dots, x_p), \beta = (y_1, y_2, \dots, y_q), \gamma = (z_1, z_2, \dots, z_r) \in S$ 有 $\alpha \triangle \beta = (x_1, x_2, \dots, x_p, y_1, y_2, \dots, y_q) \in X^{p+q} \in S$,即在 S 上封闭。 $(\alpha \triangle \beta) \triangle \gamma = (x_1, x_2, \dots, x_p, y_1, y_2, \dots, y_q) \triangle \gamma = (x_1, x_2, \dots, x_p, y_1, y_2, \dots, y_q, z_1, z_2, \dots, z_r)$ $\alpha \triangle (\beta \triangle \gamma) = \alpha \triangle (y_1, y_2, \dots, y_q, z_1, z_2, \dots, z_r) = (x_1, x_2, \dots, x_p, y_1, y_2, \dots, y_q, z_1, z_2, \dots, z_r)$

所以 $(\alpha \triangle \beta) \triangle \gamma = \alpha \triangle (\beta \triangle \gamma)$,即 \triangle 在 S 上可结合。

 $\partial \theta = () \in X^0 \in S, \text{所以} \theta \triangle \alpha = \alpha \triangle \theta = \alpha = (x_1, x_2, \dots, x_p) = X^p, \text{所以}, \theta 是幺元。$ 所以 $\langle S, \triangle \rangle$ 是一个独异点。

- 5. 设 $\langle A, * \rangle$ 是一个半群,而且对于 A 中的元素 a 和 b ,如果 $a \neq b$ 必有 $a * b \neq b * a$,试证明:
 - a) 对于 A 中的每个元素 a, 有 a * a = a。
 - b) 对于 A 中任何元素 a 和 b, 有 a*b*a=a。
 - c) 对于 A 中任何元素 a, b 和 c, 有 a*b*c=a*c。

证明:由题意可知:若a*b=b*a,则必有a=b。

- a) 因为 $\langle A, * \rangle$ 是半群,所以 * 满足结合律,即(a*a)*a=a*(a*a),所以 a*a=a。
- b) 由 a) 知 a * a = a,所以 a * (a * b * a) = (a * a) * (b * a)
 - = a * b * (a * a) = (a * b * a) * a, 所以 a * b * a = a。
 - c) (a * c) * (a * b * c) = (a * c * a) * (b * c) = a * (b * c)
 - = (a * b) * (c * a * c) = (a * b * c) * (a * c), fill a * b * c = a * c.
- 6. 如果 $\langle S, * \rangle$ 是半群,且 * 是可交换的,称 $\langle S, * \rangle$ 为可交换半群。证明:如果 S 中有元素 a,b,使得 a*a=a 和 b*b=b,则(a*b)*(a*b)=a*b。

证明: $\langle S, * \rangle$ 为可交换半群,所以 * 运算在 S 上满足结合律和交换律,所以 (a*b)*(a*b) = a*(b*a)*b = a*(a*b)*b = (a*a)*(b*b) = a*b.

5-4 习题

1. 设 $X = R - \{0,1\}$,在 X 上定义 6 个函数如下:

对于任意 $x \in X$, $f_1(x) = x$; $f_2(x) = x^{-1}$; $f_3(x) = 1 - x$; $f_4(x) = (1 - x)^{-1}$; $f_5(x) = (x - 1)x^{-1}$; $f_6(x) = x(x - 1)^{-1}$.

试证明: $\langle F, \bullet \rangle$ 是一个群。其中 $F = \{f_1, f_2, f_3, f_4, f_5, f_6\}$, \bullet 是函数的复合运算。证明:由函数的复合运算。的定义 $f \circ g(x) = f(g(x))$,可写出。在F上的运算表见表 5-12 所示。

表 5-12

		-		_		
. 0	f_1	f_2	f_3	f_4	f_5	f_6
f_1	f_1	f_2	f_3	f_4	f_5	f_6
f_2	f_2	f_1	f_4	f_3	$-f_6$	f_{5}
f_3	f_3	f_5	f_1	f_6	f_2	f_4
f_4	f_4	f_6	f_2	f_{S}	f_1	f_3
f_{5}	f_{S}	f_3	f_6	f_1	f_4	f_2
f_6	f_6	f_4	f_5	f_2	f_3	f_1

从运算表 5-12 可知运算。在 F 是封闭的、可结合的,且 f_1 是幺元, f_2 , f_3 , f_6 均以自身为逆元; f_4 与 f_5 互为逆元,由群的定义可知〈F,。〉是一个群。

- 2. 设 $\langle A, * \rangle$ 是半群, e 是左幺元且对每一个 $x \in A$, 存在 $\hat{x} \in A$, 使得 $\hat{x} * x = e$.
- a) 证明:对于任意的 $a,b,c \in A$,如果 a*b=a*c,则 b=c。
- b) 通过证明 e 是 A 中的幺元,证明: $\langle A, * \rangle$ 是群。
- 证明:a) 对于任意的 $a,b,c \in A$,由已知可得存在 \hat{a} ,使得 $\hat{a} * a = e$,所以由 a * b = a * c。可得 $\hat{a} * (a * b) = \hat{a} * (a * c)$,因为 $\langle A, * \rangle$ 是半群,所以 $(\hat{a} * a) * b = (\hat{a} * a) * c$,即 e * b = e * c,因为 e 是左幺元,所以 b = c。
 - b) 对于任意的 $x \in A, \hat{x} * (x * e) = (\hat{x} * x) * e = e * e = e = \hat{x} * x, 由 a)$ 可知: x * e = x,所以: e也是右幺元,即: e为幺元;对任意 $: x \in A, \hat{a}(x * \hat{x}) * x = x * (\hat{x} * x) = x * e = x = e * x.$ 所以 $: x * \hat{x} = e, \text{th} \hat{x} * x = x * \hat{x} = e,$ 所以对于任意的 $: x * \hat{x} = \hat{x} * \hat$
- 3. 设 $\langle G, * \rangle$ 是群,对任 $-a \in G$,令 $H = \{y \mid y * a = a * y, y \in G\}$,试证明: $\langle H, * \rangle$ 是 $\langle G, * \rangle$ 的子群。

证明:由题意可知 $H \subseteq G$,运算 * 在 H 中满足结合律。

对于任意的 $x,y \in H$,任意的 $a \in G$, $(x*y)*a = x*y*a = x*a*y = a*(x*y),所以 <math>x*y \in H$,* 关于 H 封闭。因为 e*a = a*e,所以 $e \in H$ 。对于任意的 $x \in H$,由于 x*a = a*x,所以 $x^{-1}*(x*a)*x^{-1} = x^{-1}*(a*x)*x^{-1}$,所以 $a*x^{-1} = x^{-1}*a$,即 $x^{-1} \in H$ 。

综上可知, $\langle H, * \rangle$ 是 $\langle G, * \rangle$ 的子群。

4. 设 $\langle H, \bullet \rangle$ 和 $\langle K, \bullet \rangle$ 都是群 $\langle G, \bullet \rangle$ 的子群,令 $HK = \{h \bullet k \mid h \in H, k \in K\}$,证明: $\langle HK, \bullet \rangle$ 是 $\langle G, \bullet \rangle$ 的子群的充要条件是 HK = KH。

证明:必要性:对于任意的 $k \cdot h \in KH$, $(k \cdot h)^{-1} = h^{-1} \cdot k^{-1} \in HK$, 因为 $\langle HK, \bullet \rangle$ 是群,所以 $((k \cdot h)^{-1})^{-1} \in HK$, 即 $k \cdot h \in HK$, 所以 $KH \subseteq HK$; 对于任意的 $h \cdot k \in HK$, $(h \cdot k)^{-1} \in HK$, 令 $(h \cdot k)^{-1} = h_1 \cdot k_1$, 则 $h \cdot k = (h_1 \cdot k_1)^{-1} = k_1^{-1} \cdot h_1^{-1} \in KH$, 所以 $HK \subseteq KH$, 总之 HK = KH.

充分性:对于任意的 $h_1 \cdot k_1 \in HK$, $h_2 \cdot k_2 \in HK$, $(h_2 \cdot k_2)^{-1} = k_2^{-1} \cdot h_2^{-1} \in KH$;又因为 HK = KH,所以必有 $h_3 \in H$, $k_3 \in K$, 使得 $k_2^{-1} \cdot h_2^{-1} = h_3 \cdot k_3$, 所以

$$(h_1 \cdot k_1) \cdot (h_2 \cdot k_2)^{-1} = (h_1 \cdot k_1) \cdot (h_3 \cdot k_3)$$

$$= h_1 \cdot (k_1 \cdot h_3) \cdot k_3$$

$$= h_1 \cdot (h_4 \cdot k_4) \cdot k_3$$

$$= (h_1 \cdot h_4) \cdot (k_4 \cdot k_3)$$

$$= h_5 \cdot k_5 \in HK$$

所以 $\langle HK, \bullet \rangle$ 是 $\langle G, \bullet \rangle$ 的子群。

5. 设(A,*) 是群,且 $|A|=2n,n\in I_+$ 。证明:在 A 中至少存在 $a\neq e$,使得 a*a=e,其中 e 是幺元。

证明:因为 $\langle A, * \rangle$ 是群,所以对于任意的 $x \in A$,均有 $x^{-1} \in A$,使得 $x * x^{-1} = x^{-1} * x = e$ 。因为互为逆元的两个不相等的元素是成对出现的,群中有唯一的幺元e,以它为自身逆元,|A| = 2n,所以至少存在一个元素以自身为逆元的,即必存在 $a \in A$, $a \neq e$,使得 a * a = e。

5-5 习题

1. 设 $\langle G, * \rangle$ 是一个独异点,并且对于 G 中的每一个元素 x 都有 x * x = e,其中 e 是幺元,证明: $\langle G, * \rangle$ 是一个阿贝尔群。

证明:对于任意的 $x \in G$,有x * x = e,所以 $x^{-1} = x$ 。

对于任意的 $a,b \in G, a * b = (a * b)^{-1} = b^{-1} * a^{-1} = b * a$ 。即运算 * 是可交换的。

所以(G,*)是阿贝尔群。

2. 证明:任何阶数分别为 1,2,3,4 的群都是阿贝尔群,并举一个 6 阶群,它不是阿贝尔群。

证明:阶数为1的群,群中存在唯一的元素是幺元e,e*e=e*e,显然为阿贝尔群。 阶数为2的群,群中除e外还有一个元素a $\neq e$,a的逆元是它本身,a*a=e=a*a,e*a=a*e=a,因此 $\langle \{a,e\},*\rangle$ 是阿贝尔群。

阶数为3的群 $\langle \{a,b,e\}, \star \rangle$,若a的逆元是a,b的逆元是b,则 $a^2=e,b^2=e$, $a\star b\neq e$,若 $a\star b=a$ 或 $a\star b=b$,得出b=e或a=e矛盾。所以a与b 互为逆元,即 $a\star b=b\star a=e$ 满足交换性, $\langle \{a,b,e\}, \star \rangle$ 是阿贝尔群。

阶数为 4 的群({a,b,c,e},*)有两种情况:

① 若a,b,c中有两个元素互为逆元,不妨设为a,b,则a*b=b*a=e,于是必有 $c*c=e,a*c\neq e$,所以a*c=b,同样可证c*a=b,故a*c=c*a。同理可证b*c=c*b,即 * 满足交换性。

② 若a,b,c 中每个元素都以自身为逆元,则有:a*b=b*a=c,b*c=c*b=a,a*c=c*a=b,* 运算满足交换性。

综上两种情况,*运算都满足交换性,所以〈 $\{a,b,c,e\}$,*〉是阿贝尔群。 下面构造一个 6 阶群,它不是阿贝尔群。

定义在集合 $S = \{a,b,c\}$ 上的所有双射函数为:

$$f_0: f_0(a) = a, f_0(b) = b, f_0(c) = c;$$

$$f_1: f_1(a) = a, f_1(b) = c, f_1(c) = b;$$

$$f_2: f_2(a) = b, f_2(b) = a, f_2(c) = c;$$

$$f_3: f_3(a) = b, f_3(b) = c, f_3(c) = a;$$

$$f_4: f_4(a) = c, f_4(b) = a, f_4(c) = b;$$

$$f_5: f_5(a) = c, f_5(b) = b, f_5(c) = a;$$

于是集合 $F = \{f_0, f_1, f_2, f_3, f_4, f_5\}$ 关于函数的复合运算。构成 6 阶群,其运算表如表 5 - 13,运算表中元素关于对角线不对称,显然此 6 阶群不是阿贝尔群。

表5-13

0	f_0	f_1	f_2	f_3	f_4	f_5
f_0	f_0	f_1	f ₂	f_3	f4	f_5
f_1	f_1	f_0	f_4	f_5	f_2	f_3
f_2	f_2	f_3	f_0	f_1	f_5	f_4
f_3	f_3	f_2	f_5	f_4	f_0	f_1
f_4	f_4	f_5	f_1	f_0	f_3	f_2
f_5	f_5	f_4	f_3	f_2	f_1	f_0

3. 设 $\langle G, * \rangle$ 是一个群,证明:如果对任意的 $a,b \in G$ 都有 $a^3 * b^3 = (a * b)^3$, $a^4 * b^4 = (a * b)^4$ 和 $a^5 * b^5 = (a * b)^5$,则 $\langle G, * \rangle$ 是一个阿贝尔群。

证明:对于任意元素 $a,b \in G$,

因为
$$a^3 * b^3 = (a * b)^3$$
,所以 $a^{-1} * (a^3 * b^3) * b^{-1} = a^{-1} * (a * b)^3 * b^{-1}$,即 $a^2 * b^2 = (b * a)^2$ 。

同理:由 $a^4 * b^4 = (a * b)^4$ 可得 $a^3 * b^3 = (b * a)^3$,

由
$$a^5 * b^5 = (a * b)^5$$
 可得 $a^4 * b^4 = (b * a)^4$,

所以
$$a^3 * b^3 = (b * a)^2 * (b * a) = a^2 * b^2 * (b * a) \Rightarrow a * b^3 = b^3 * a$$
,

$$a^4 * b^4 = (b * a)^3 * (b * a) = a^3 * b^3 * (b * a) \Rightarrow a * b^4 = b^4 * a,$$

所以 $(a*b)*b^3 = a*b^4 = b^4*a = b*(b^3*a) = b*(a*b^3) = (b*a)*b^3, 故得 <math>a*b = b*a$ 。 所以 $\langle G, * \rangle$ 是阿贝尔群。

4. 设 $G = \{[1],[2],[3],[4],[5],[6]\}$, G上的二元运算 \times_7 如表 5-14 所示。问 $\langle G, \times_7 \rangle$ 是循环群吗?若是,试找出它的生成元。

表5-14

X ₇	[1]	[2]	[3]	[4]	[5]	[6]
[1]	[1]	[2]	[3]	[4]	[5]	[6]
[2]	[2]	[4]	[6]	[1]	[3]	[5]
[3]	[3]	[6]	[2]	[5]	[1]	[4]
[4]	[4]	[1]	[5]	[2]	[6]	[3]
[5]	[5]	[3]	[1]	[6]	[4]	[2]
[6]	[6]	[5]	[4]	[3]	[2]	[1]

解: $\langle G, \times_7 \rangle$ 是循环群,生成元为[3] 和[5]。

注意:判断一个群是不是循环群,即在G中看能否找到一个元素a,使得G中的任意元素都有a的幂组成,一个循环群的生成元可以不是唯一的。

5. 证明:循环群的任何子群必定也是循环群。

证明:设 $\langle G, * \rangle$ 为循环群,其生成元是 a,设 $\langle S, * \rangle$ 是 $\langle G, * \rangle$ 的子群,若 $S = \{e\}$ 或 S = G 时,显然 S 是循环群。

当 $S \neq \{e\}$ 且 $S \neq G$ 时,存在最小正整数 m,使得 $a^m \in S$,对于任意的 $a^l \in S$,必有 l = tm + r, $0 \le r < m$,t > 0,故 $a^r = a^{l-m} = a^l * (a^m)^{-l} \in S$,因为 $m \neq a^m \in S$ 的最小正整数,所以只能有 r = 0,即得 $a^l = (a^m)^l$,所以 S 中的任意元素都是 a^m 的乘幂,因此 $\{S, *\}$ 是以 a^m 为生成元的循环群。

5-6 习题

1. 设有{a,b,c,d,e} 的置换如下:

$$\begin{aligned}
& \text{\mathbf{m}} : \alpha \circ \beta = \begin{pmatrix} a & b & c & d & e \\ b & c & a & e & d \end{pmatrix}; \beta \circ \alpha = \begin{pmatrix} a & b & c & d & e \\ b & c & a & e & d \end{pmatrix}; \\
& \alpha \circ \alpha = \begin{pmatrix} a & b & c & d & e \\ c & a & b & d & e \end{pmatrix}; \gamma \circ \beta = \begin{pmatrix} a & b & c & d & e \\ e & d & c & a & b \end{pmatrix};
\end{aligned}$$

$$\delta^{-1} = \begin{pmatrix} a & b & c & d & e \\ c & b & a & e & d \end{pmatrix}; \alpha \circ \beta \circ \gamma = \begin{pmatrix} a & b & c & d & e \\ d & e & a & c & b \end{pmatrix};$$

$$x = \alpha^{-1} \circ \beta = \begin{pmatrix} a & b & c & d & e \\ c & a & b & e & d \end{pmatrix};$$

$$y = \delta \circ \gamma^{-1} = \begin{pmatrix} a & b & c & d & e \\ c & b & a & e & d \end{pmatrix} \circ \begin{pmatrix} a & b & c & d & e \\ e & d & c & b & a \end{pmatrix} = \begin{pmatrix} a & b & c & d & e \\ d & e & a & b & c \end{pmatrix}$$

2. 设p是质数,证明:从a种颜色不同的珠子中选取p粒串成手镯,只有同色手镯保持旋转不变。

证明:由p 粒珠子串成的手镯,其珠子颜色分别记为 C_1,C_2,\cdots,C_p ,如图 5 - 7 所示。

顺时针方向旋转一粒珠子的位置后,若要不变,必有 $C_2 = C_1$, $C_3 = C_2$,…, $C_p = C_{p-1}$, $C_1 = C_p$,即 $C_1 = C_2 = C_3 = \cdots = C_p$,所以,只能用同色珠子串成的手镯才能保持旋转一粒珠子位置后不变。

由于 p 是质数,故不可能有 k, 1 < k < p,使得 p 是 k 的倍数,因此不可能实现: $C_1 = C_k = C_{2k} = \cdots = -$ 种颜色,而 $C_2 = C_{k+1} = C_{2k+1} = \cdots =$ 另一种颜色,…,即不可能用不同颜色的珠子串成的手镯,而使该 p 粒珠子串成的手镯保持旋转 k 粒珠子位置后不变,只有同色手镯才能保持旋转不变。

图 5一

3. 哪些对称群是阿贝尔群?

解: $\langle S_1, \circ \rangle$ 和 $\langle S_2, \circ \rangle$ 是阿贝尔群。

对于任意的 $n,n \ge 4$, $\langle S_n, \circ \rangle$ 中总有置换 $\begin{pmatrix} a_1 & a_2 & a_3 & a_4 & \cdots & a_n \\ a_2 & a_1 & a_3 & a_4 & \cdots & a_n \end{pmatrix}$ 和 $\begin{pmatrix} a_1 & a_2 & a_3 & a_4 & \cdots & a_n \\ a_2 & a_3 & a_1 & a_4 & \cdots & a_n \end{pmatrix}$,而这两个置换之间的运算是不可交换的。因此, $\langle S_n, \circ \rangle, n \ge 4$,都不是阿贝尔群。

4. 用 4 种不同颜色中的一种或几种来涂一根六节的棍棒, 问有多少种不同的涂法?

图 5-8

每一节上可以有 4 种涂色法,因此棍棒的所有涂色法共有 4^6 种。然而,只要是 C_1 色与 C_6 色相同, C_2 色与 C_6 色相同, C_6 色相同, C_6 色相同, C_8 色与 C_6 色相同,那么该棍棒倒向后的 涂色情况不会改变的。因此,构造置换群〈 $\{\pi_0,\pi_1\}$,。〉其中 π_0 是幺置换,它将 每一种涂色棍棒的情况 $C_1C_2C_3C_4C_5C_6$ 仍映照成 $C_1C_2C_3C_4C_5C_6$ 的情况,所以 在 π_0 作用下的不变元个数为 4^6 ;而 π_1 是这样的一个置换,它将每一种涂色棍棒的情况 $C_1C_2C_3C_4C_5C_6$ 映照成 $C_6C_5C_4C_3C_2C_1$ 的情况,所在 π_1 作用下的不变元是 $C_1 = C_6$, $C_2 = C_5$, $C_3 = C_4$ 的情况,故在 π_1 作用下的不变元个数为 4^3 ,因此由伯恩赛德定理可知,该棍棒不同涂色法的总数应是种 $\frac{1}{2}(4^6+4^3)=2080$ 种。

5. a) 2×2 的棋盘,用白色或黑色涂在每一个方格内,在考虑旋转等价的条件下, 试确定每个方格涂上颜色的不同棋盘的数目。

b) 对于 4×4 的棋盘呢?

解:a)设2×2的棋盘如图5-9所示。

1	3
2	4

图 5-9

令 C_i 表示棋盘中第i 格所涂的颜色,现构造置换群为〈 $\{\pi_0,\pi_1,\pi_2,\pi_3\}$,。〉,其中 π_i (0 $\leq i \leq 3$) 是将棋盘映照到按顺时针方向旋转 $i \times 90^\circ$ 所得的棋盘,那么,在 π_i 作用下,不变元的个数分别如下:

πο:不转,不变元的个数是 24。

 π_1 :顺时针转 90°,只有当 $C_1=C_2=C_3=C_4$ 时为不变元,所以不变元的个数是 2。 π_2 :顺时针转 180°,只有当 $C_1=C_3$, $C_2=C_4$ 时为不变元,所以不变元的个数是 2°。 π_3 :顺时针转 270°,只有当 $C_4=C_4=C_3=C_2$ 时为不变元,所以不变元的个数是 2。

因此,由伯恩赛德定理可知,不相同的2×2棋盘数

是
$$\frac{1}{4}(2^4+2+4+2)=6$$
。

b) 设 4×4 的棋盘如图 5-10 所示。

类似于 a),构造置换群 $\langle \{\pi_0, \pi_1, \pi_2, \pi_3\}, \circ \rangle$,那么在 π_i 作用下,不变元的个数分别如下:

πο: 不转, 不变元的个数是 216。

 π_1 : 顺时针转 90°, 不变元要求 $C_1 = C_4 = C_7 = C_{10}$,

 $C_2 = C_5 = C_8 = C_{11}$, $C_3 = C_6 = C_9 = C_{12}$, $C_- = C_- = C_- = C_-$, 故不变元的个数应等于四组涂两色的个数,即为 2^4 。

 π_2 :顺时针转 180° ,不变元要求 $C_1 = C_7$, $C_2 = C_8$, $C_3 = C_9$, $C_4 = C_{10}$, $C_5 = C_{11}$, $C_6 = C_{12}$, $C_- = C_-$, $C_- = C_{10}$, 故不变元的个数应等于八组涂两色的个数,即为 2^8 。

 π_3 :顺时针转 270°,不变元要求 $C_1=C_{10}=C_7=C_4$, $C_2=C_{11}=C_8=C_5$, $C_3=C_{12}=C_9=C_6$, $C_{-}=C_{20}=C_{-}$,故不变元的个数应等于四组涂两色的个数,即为 2^4

因此,由伯恩赛德定理可知,不相同的 4×4 棋盘数是 $\frac{1}{4}(2^{16} + 2^4 + 2^8 + 2^4) = 16456$ 。

5-7 习题

- 1. 设 $G = \{ \varphi \mid \varphi : x \rightarrow ax + b,$ 其中 $a,b \in R$ 且 $a \neq 0, x \in R \}$, 二元运算。是映射的复合。
 - a) 证明 $\langle G, \circ \rangle$ 是一个群。
- b) 若 S 和 T 分别是由 G 中 a=1 和 b=0 的所有映射构成的集合,证明: $\langle S, \circ \rangle$ 和 $\langle T, \circ \rangle$ 都是子群。
 - c) 写出 S 和 T 在 G 中所有的左陪集。
 - 证明:a) ① 对于任意的 $\varphi_1, \varphi_2 \in G$,设 $\varphi_1(x) = a_1x + b_1, a_1 \neq 0, \varphi_2(x) = a_2x + b_2,$ $a_2 \neq 0, \varphi_1 \circ \varphi_2(x) = \varphi_1(\varphi_2(x)) = \varphi_1(a_2x + b_2) = a_1(a_2x + b_2) + b_1 = (a_1a_2)x + a_1b_2 + b_1$,因为 $a_1a_2 \in R, a_1b_2 + b_1 \in R$ 且 $a_1a_2 \neq 0$ 。所以 $\varphi_1 \circ \varphi_2 \in G$ 满足封闭性。
 - ② 对于任意的 $\varphi_1, \varphi_2, \varphi_3 \in G$ 有 $(\varphi_1 \circ \varphi_2) \circ \varphi_3(x) = (\varphi_1 \circ \varphi_2)(\varphi_3(x)) = \varphi_1(\varphi_2(\varphi_3(x))),$ 而 $\varphi_1 \circ (\varphi_2 \circ \varphi_3)(x) = \varphi_1(\varphi_2 \circ \varphi_3(x)) = \varphi_1(\varphi_2(\varphi_3(x))),$ 所 以 $(\varphi_1 \circ \varphi_2) \circ \varphi_3 = \varphi_1 \circ (\varphi_2 \circ \varphi_3)$ 满足结合性。
 - ③ 设 $\varphi_e = x$,对于任意的 $\varphi \in G$,设 $\varphi(x) = ax + b$,则 $\varphi_e \circ \varphi(x) = \varphi_e(ax + b) = ax + b$, $\varphi \circ \varphi_e(x) = \varphi(x) = ax + b$,所以 $\varphi_e \circ \varphi = \varphi \circ \varphi_e$,所以 $\varphi_e = x$ 是 幺元。
 - ① 对于任意的 $\varphi \in G$, 设 $\varphi(x) = ax + b, a \neq 0$, 于是存在 $\varphi^{-1} \in G$, 使得 $\varphi^{-1}(x) = \frac{1}{a}x \frac{b}{a}, \varphi \circ \varphi^{-1}(x) = \varphi(\varphi^{-1}(x)) = \varphi\left(\frac{1}{a}x \frac{b}{a}\right) = a\left(\frac{1}{a}x \frac{b}{a}\right) + b = x, \varphi^{-1} \circ \varphi(x) = \varphi^{-1}(ax + b) = \frac{1}{a}(ax + b) \frac{b}{a} = x,$ 所以 $\varphi^{-1} \circ \varphi = \varphi \circ \varphi^{-1} = \varphi$, 逆元存在,

综上可知(G, 。) 是一个群。

b) 对于任意的 $\varphi_1, \varphi_2 \in S, \varphi_1(x) = x + b_1, \varphi_2(x) = x + b_2, 有 \varphi_2^{-1}(x) = x - b_2, \varphi_1 \circ \varphi_2^{-1}(x) = \varphi_1(\varphi_2^{-1}(x)) = x - b_2 + b_1 = x + (b_1 - b_2) \in S$, 即 $\varphi_1 \circ \varphi_2^{-1}(x) \in S$ 。

因此, $\langle S, \bullet \rangle$ 是 $\langle G, \bullet \rangle$ 是子群。

对于任意的 $\varphi_1, \varphi_2 \in T$,设 $\varphi_1(x) = a_1 x, \varphi_2(x) = a_2 x, a_1 \neq 0, a_2 \neq 0$,于是 $\varphi_2^{-1}(x) = \frac{1}{a_2} x, \varphi_1 \circ \varphi_2^{-1}(x) = \varphi_1(\varphi_2^{-1}(x)) = \varphi_1\left(\frac{1}{a_2}x\right) = a_1 \frac{1}{a_2} x = \frac{a_1}{a_2} x, \frac{a_1}{a_2} \neq 0$,所以 $\varphi_1 \circ \varphi_2^{-1} \in T$,因此 $\langle T, \circ \rangle$ 也是 $\langle G, \circ \rangle$ 的子群。

c) S 的左陪集应为: $\varphi \circ S$, $\varphi \in G$,对于任意的 $\varphi \in G$,设 $\varphi(x) = ax + b$, $a \neq 0$,那么

$$\varphi \circ S = \{ \varphi \circ \varphi' \mid \varphi' \in S \}$$

$$= \{ \varphi \circ \varphi' \mid \varphi' : x \to x + b', b' \in R, x \in R \}$$

$$= \{ \bar{\varphi} \mid \bar{\varphi} : x \to a(x + b') + b, a \in R \coprod a \neq 0, b \in R, b' \in R, x \in R \}$$

$$= \{ \bar{\varphi} \mid \bar{\varphi} : x \to ax + c, a \in R \coprod a \neq 0, c \in R, x \in R \}$$
FIGURE 5.7. C. This first TRAB 1. (2.1.2. This product of R. H. a. \(\phi \) 0. C. P.

所以,S在G中的所有左陪集为: $\{\tilde{\varphi} \mid \tilde{\varphi}: x \to ax + c, a \in R \ \exists \ a \neq 0, c \in R, x \in R\}$ 。

T 的左陪集应为: $\varphi \circ T$, $\varphi \in G$,对于任意的 $\varphi \in G$,设 $\varphi(x) = ax + b$, $a \neq 0$,那么

$$\varphi \circ T = \{ \varphi \circ \varphi' \mid \varphi' \in T \}$$

$$= \{ \varphi \circ \varphi' \mid \varphi' : x \to a'x, a' \in R, x \in R \}$$

$$= \{ \overline{\varphi} \mid \overline{\varphi} : x \to a(a'x) + b, a \in R \coprod a \neq 0, b \in R, a' \in R, x \in R \}$$

$$= \{ \overline{\varphi} \mid \overline{\varphi} : x \to cx + b, c \in R \coprod c \neq 0, b \in R, x \in R \}$$

所以,T在G 中的所有左陪集为: $\{\tilde{\varphi} \mid \tilde{\varphi}: x \to cx + b, c \in R \ \exists \ c \neq 0, b \in R, x \in R\}$ 。

2. 设〈 Z_6 , $+_6$ 〉是一个群,这里 $+_6$ 是模 6 加法, $Z_6 = \{[0],[1],[2],[3],[4],[5]\},$ 试写出〈 Z_6 , $+_6$ 〉中每个子群及其相应的左陪集。

解:子群有: $\langle\{[0]\}, +_6\rangle, \langle\{[0], [3]\}, +_6\rangle, \langle\{[0], [2], [4]\}, +_6\rangle$ 和 $\langle Z_6, +_6\rangle$ 。

{[0]}的左陪集为:{[0]},{[1]},{[2]},{[3]},{[4]},{[5]},

{[0],[3]}的左陪集为:{[0],[3]},{[1],[4]},{[2],[5]},

{[0],[2],[4]}的左陪集为:{[0],[2],[4]},{[1],[3],[5]},

Z₆ 的左陪集就是 Z₆ 本身。

3. 设 $\langle G, * \rangle$ 是任一群,定义 $R \subseteq G \times G$ 为 $R = \{\langle \sigma, \varphi \rangle \mid$ 存在 $\theta \in G$ 使得 $\varphi = \theta * \sigma * \theta^{-1} \}$,验证 $R \not\in G$ 上的等价关系。

证明:设 $\langle G, * \rangle$ 是任一群,e为幺元,对于任意的 $a \in G$,有 $a = e * a * e^{-1}$,所以 $\langle a, a \rangle \in R$,即 R 是自反的。

若 $\langle a,b\rangle \in R$,由 R 的定义可知,存在 $\theta \in R$,使得: $b = \theta * a * \theta^{-1}$ 所以有 $a = \theta^{-1} * b * \theta = \theta^{-1} * b * (\theta^{-1})^{-1}$,说明 $\langle b,a\rangle \in R$,即 R 是对称的。

若 $\langle a,b \rangle \in R$ 且 $\langle b,c \rangle \in R$,则存在 θ_1 , θ_2 ,使得 $b = \theta_1 * a * \theta_1^{-1}$, $c = \theta_2 * b * \theta_2^{-1}$ 所以 $c = \theta_2 * b * \theta_2^{-1} = \theta_2 * (\theta_1 * a * \theta_1^{-1}) * \theta_2^{-1} = (\theta_2 * \theta_1) * a * (\theta_2 * \theta_1)^{-1}$ 即 $\langle a,c \rangle \in R$,即 R满足传递性。

综上可知,R是G上的等价关系。

4. 设 S_n 是一个对称群,G是保持某一个元素不变的置换群,求出G在 S_n 中的所有

左陪集。

解:设G是使第i个元素不变的置换群,因为 $|S_n|=n!$, |G|=(n-1)!,由拉格朗日定理可知 G 在 S_n 中的左陪集共有 n 个,即为 G 以及 π_k • G

$$= \left\{ \begin{pmatrix} 1 & 2 \cdots & i \cdots n \\ k_1 & k_2 \cdots k \cdots k_n \end{pmatrix} \middle| k_1, k_2, \cdots, k_{i-1}, k_{i+1}, \cdots, k_n \not\equiv 1, 2, \cdots, k-1, k+1, \right.$$

 \dots, n 的任一置换排列 $(k = 1, 2, \dots, i - 1, i + 1, \dots, n)$

5. 设 $\langle H, * \rangle$ 是群 $\langle G, * \rangle$ 的一个子群,如果 $A = \{x \mid x \in G, x * H * x^{-1} = H\}$,证明: $\langle A, * \rangle$ 是 $\langle G, * \rangle$ 的一个子群。

证明: 显然 $A \subseteq G$,对于任意的 $a,b \in A$,有 $a * H * a^{-1} = H,b * H * b^{-1} = H$ 。由 $b * H * b^{-1} = H$ 可得 $b^{-1} * H * b = H$,所以 $(a * b^{-1}) * H * (a * b^{-1})^{-1} = a * (b^{-1} * H * (b^{-1})^{-1}) * a^{-1} = a * H * a^{-1} = H$,即 $a * b^{-1} \in A$,因此(A, *)是(G, *)的一个子群。

6. 证明:在由群 $\langle G, * \rangle$ 的一个子群 $\langle S, * \rangle$ 所确定的陪集中,只有一个陪集是子群。

证明:任取元素 $a \in G$,aS 是a 所确定的左陪集,取a 为G 中幺元e,即a = e,则aS = eS = S,S 是一个陪集。

假设另外一个元素 $a \neq e$,由 a 确定的左陪集 aS 也是G 的子群,则 $e \in aS$,由 陪集定义,存在 s_1 ,使得: $a * s_1 = e$,即 $a = s_1^{-1}$ 。

下证 aS = S,对于任意的 $a * s \in aS$,则 $a * s = s_1^{-1} * s \in S$,即有 $aS \subseteq S$ 。反 之,对于任意的 $s \in S$,有 $s = a * a^{-1} * s = a * (a^{-1} * s) = a * (s_1 * s) \in aS$,即有 $S \subseteq aS$,所以 aS = S。即 S 的左陪集中只有一个是子群,即 S 本身。

7. 设 aH 和 bH 是 H 在 G 中的两个左陪集,证明:要么 $aH \cap bH = \emptyset$,要么 aH = bH。

证明:对于 aH 和 bH, 具有两种情况:

 $\bigcirc aH \cap bH = \emptyset$,

② $aH \cap bH \neq \emptyset$,则必存在 h_1 和 h_2 ,使得 $ah_1 = bh_2$,即 $a = bh_2h_1^{-1}$,对于任意的 $ah \in aH$,有 $ah = bh_2h_1^{-1}h = bh_3 \in bH$,故有 $aH \subseteq bH$,同理可证 $bH \subseteq aH$ 。所以 aH = bH。

8. 设 p 是质数,证明: p™ 阶群中一定包含着一个 p 阶子群。

证明:设 p^m 阶群为 $\langle G, * \rangle$,对于任意 $a \in G, a \neq e$,若a的阶数为n,即 $a^n = e$,则 $n \mid p^m$,因为p是质数,所以 $n = p^t (t \geq 1, t$ 为整数)。

若 t=1, 则 n=p,即循环群 $\langle \{a,a^2,\cdots,a^n\}, * \rangle$ 是 $\langle G, * \rangle$ 的 p 阶子群。

若 t > 1,则令 $b^p = (a^{pr-1})^p = a^p = a^p = e$,所以循环群 $(\{b, b^2, \dots, b^p\}, *)$ 是(G, *)的p阶子群。

9. 设 $\langle S, * \rangle$ 和 $\langle T, * \rangle$ 分别是群 $\langle G, * \rangle$ 的 s阶和 t 阶子群,并且 $S \cap T$ 和 $S \cup T$ 的阶分别为 μ 和 v,证明 ; $x > \mu v$ 。

证明:由包含排斥原理得: $|S \cup T| = |S| + |T| - |S \cap T|$,即 $v = s + t - \mu$, 因为 $|S \cap T| \le |S|$, $|S \cap T| \le |T|$,即 $\mu \le s$, $\mu \le t$, 因此 $\mu \omega = \mu(s + t)$ $t-\mu)=\mu(s-\mu)-t(s-\mu)+st=st-(t-\mu)(s-\mu)\leqslant st, \text{ then } s\geqslant\mu\omega.$

5-8 习题

1. 证明:如果 f 是由〈A,★〉到〈B,*〉的同态映射,g 是由〈B,*〉到〈C,△〉的同态映射,那么,g。f 是由〈A,★〉到〈C,△〉的同态映射。

证明:因为 f 是由 $\langle A, \bigstar \rangle$ 到 $\langle B, * \rangle$ 的同态映射,g 是由 $\langle B, * \rangle$ 到 $\langle C, \triangle \rangle$ 的同态映射, 所以 $g \circ f(a \bigstar b) = g(f(a \bigstar b)) = g(f(a) * f(b)) = g(f(a)) \triangle g(f(b)) = g \circ f(a) \triangle g \circ f(b)$

因此, $g \circ f$ 是由 $\langle A, ★ \rangle$ 到 $\langle C, \triangle \rangle$ 的同态映射。

2. 设 $\langle G, * \rangle$ 是一个群, 而 $a \in G$, 如果 f 是从G 到G 的映射, 使得对于每一个 $x \in G$, 都有

$$f(x) = a * x * a^{-1},$$

试证明:f是一个从G到G上的自同构。

证明:对于任意 $x,y \in G$,若 $x \neq y$,则 $f(x) = a * x * a^{-1} \neq a * y * a^{-1} = f(y)$,即 f 是入射。

对于任意 $y \in G$, 由封闭性得 $a^{-1} * y * a \in G$, 令 $a^{-1} * y * a = x$, 因为 $\langle G, * \rangle$ 是群, 所以有 $y = a * x * a^{-1}$, 所以对于任意 $y \in G$ 都能找到一个x, 使得 $y \in f(x)$, 即 $f \not\in G$ 上的满射。

所以 f 是G 上的双射。

另外,对于任意的 $x,y \in G$,有

$$f(x*y) = a*(x*y)*a^{-1} = (a*x*a^{-1})*(a*y*a^{-1})$$

= $f(x)*f(y)_{\circ}$

因此,f是从G到G的一个自同构。

3. 试证由表 5-15 所给出的两个群 $\langle G, \bigstar \rangle$ 和 $\langle S, * \rangle$ 是同构的。

表 5-15

*	p ₁	p ₂	p ₃	p4
p_1	<i>p</i> ₁	<i>p</i> ₂	p ₃	<i>p</i> ₄
p_2	<i>p</i> ₂	p_1	<i>p</i> ₄	p ₃
p_3	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₁	p ₂
p4	<i>p</i> ₄	p ₃	p ₂	p_1
		$\langle G, \bigstar \rangle$		
*	q_1	q_2	q_3	q_4
q_1	q_3	q_4	q_1	q_2
q_2	q_4	q_3	q_2	q_1
q_3	q_1	q_2	q_3	q_4
q_4	q_2	q_1	94	q_3

证明:作 G 到 S 的映射 f 为: $f(p_1) = q_3$, $f(p_2) = q_2$, $f(p_3) = q_1$, $f(p_4) = q_4$ 。 由表 5-15 可知 f 是一个双射。

易证:
$$f(p_1 \bigstar p_1) = f(p_1) = q_3 = q_3 * q_3 = f(p_1) * f(p_1),$$

 $f(p_1 \bigstar p_2) = f(p_2) = q_2 = q_3 * q_2 = f(p_1) * f(p_2),$
 $f(p_3 \bigstar p_2) = f(p_4) = q_4 = q_1 * q_2 = f(p_3) * f(p_2),$

 $f(p_4 \bigstar p_2) = f(p_3) = q_1 = q_4 * q_2 = f(p_4) * f(p_2),$ 等等,其余可类似验证。

所以 $\langle G, \star \rangle$ 和 $\langle S, \star \rangle$ 同构。

4. 设 f_1 , f_2 都是从代数系统 $\langle A, \bigstar \rangle$ 到代数系统 $\langle B, * \rangle$ 的同态。设 g 是从 A 到 B 的一个映射,使得对任意 $a \in A$,都有 $g(a) = f_1(a) * f_2(a)$ 。

证明:如果 $\langle B, * \rangle$ 是一个可交换半群,那么 g是一个由 $\langle A, \bigstar \rangle$ 到 $\langle B, * \rangle$ 的同态。证明:因为对于任意的 $a,b \in A$,都有

$$g(a \bigstar b) = f_1(a \bigstar b) * f_2(a \bigstar b) = f_1(a) * f_1(b) * f_2(a) * f_2(b)$$

= $f_1(a) * f_2(a) * f_1(b) * f_2(b)$
= $g(a) * g(b)$

所以,g 是 $\langle A, \bigstar \rangle$ 到 $\langle B, * \rangle$ 的同态。

- 5. $\langle R, + \rangle$ 是实数集上的加法群,设 $f: x \to e^{2\pi i x}, x \in R, f$ 是同态否?如果是,请写出同态象和同态核。
 - 解:由定义可知:f是实数集R到复数C的一个映射。

对于任意 $a,b \in R$,有 $f(a+b) = e^{2\pi i(a+b)} = e^{2\pi ia} \cdot e^{2\pi ib} = f(a) \cdot f(b)$ 所以 $f \not\in (R, +)$ 到 (C, \bullet) 是同态,这里的 (C, \bullet) 是复数集上的乘法群。

因为 $f(R) = \{e^{2\pi ix} \mid x \in R\} = \{\cos 2\pi x + i\sin 2\pi x \mid x \in R\}$

所以 f 的同态象为〈 $\{\cos 2\pi x + i\sin 2\pi x \mid x \in R\}$, •〉,它是一个群,其幺元为 1。 所以同态核为 $Ker(f) = \{x \mid x \in R \text{ 且 } \cos 2\pi x + i\sin 2\pi x = 1\}$,即有 $\cos 2\pi x = 1$, $\sin 2\pi x = 0$ 。因此 $2\pi x = 2k\pi(k$ 为整数),所以当 x 为整数时,f(x) = 1,即 f 的同态核为整数集 I。

- 6. 证明:循环群的同态象必定是循环群。
- 证明: 设代数系统 $\langle A, \bullet \rangle$ 为循环群, 生成元为 a, 同态映射为 f, 同态象为 $\langle f(A), * \rangle$ 。

则对任意的 $a^n, a^m \in A$,有 $f(a^n \cdot a^m) = f(a^n) * f(a^m), n, m \ge 0$ 且为整数,下用数学归纳法证明 $f(a^n) = f^n(a), n \in N$ 。

n=2 $\exists f, f(a^2) = f(a \cdot a) = f(a) * f(a) = f^2(a)$.

假设 n = k - 1 时, $f(a^{k-1}) = f^{k-1}(a)$ 。

則当n = k时, $f(a^k) = f(a^{k-1} \cdot a) = f^{k-1}(a) * f(a) = f^k(a)$ 。

所以 f(A) 中的每个元素都可以表示为 $f^*(a)$,〈f(A),*〉是以 f(a) 为生成元的循环群。

- 7. $\langle R-\{0\}, \times \rangle$ 与 $\langle R, + \rangle$ 同构吗?
- 解:设f是 $\langle R, + \rangle$ 与 $\langle R \{0\}, \times \rangle$ 的同构映射。

则对于任意的 $a \in R$,有 $f(a) = f(0+a) = f(0) \times f(a) = f(a) \times f(0)$

所以, f(0) 是 $\langle R - \{0\}, \times \rangle$ 中的幺元, f(0) = 1。

对于 $-1 \in R-\{0\}$,必存在 $b \in R$,使得f(b) = -1,则有 $f(b+b) = f(b) \times f(b) = -1 \times (-1) = 1$,所以有b+b = 0,即b = 0,也就是f(0) = -1,这与f(0) = 1矛盾。

所以 $\langle R, + \rangle$ 与 $\langle R - \{0\}, \times \rangle$ 不可能同构。

8. 证明:一个集合上任意两个同余关系的交也是一个同余关系。

证明:设 $\langle A, * \rangle$ 上的任意两个同余关系为 R_1 和 R_2 ,即对于任意 $\langle a_1, b_1 \rangle \in R_1$, $\langle a_2, b_2 \rangle \in R_1$,有 $\langle a_1 * a_2, b_1 * b_2 \rangle \in R_1$;对于任意 $\langle c_1, d_1 \rangle \in R_2$, $\langle c_2, d_2 \rangle \in R_2$,有 $\langle c_1 * c_2, d_1 * d_2 \rangle \in R_2$ 。

所以,对于任意的 $\langle a,b\rangle \in R_1 \cap R_2, \langle c,d\rangle \in R_1 \cap R_2, \langle a,b\rangle \in R_1, \langle c,d\rangle \in R_1 且 \langle a,b\rangle \in R_2, \langle c,d\rangle \in R_2,$ 所以 $\langle a*c,b*d\rangle \in R_1 且 \langle a*c,b*d\rangle \in R_2$,即 $\langle a*c,b*d\rangle \in R_1 \cap R_2$ 。

因此,一个集合上任意两个同余关系的交仍是一个同余关系。

- 9. 证明:定理 5-8.4 中在 B上所定义的二元运算 * 是唯一确定的。
- 证明:对于任意的 A_i , $A_j \in B$, 任取 $a_1 \in A_i$, $a_2 \in A_j$, 若 $a_1 \bigstar a_2 \in A_k$, 则定义 $A_i * A_j = A_k$ 。

另取 $a_1' \in A_i$, $a_2' \in A_j$, 则有 $\langle a_1 , a_1' \rangle \in R$ 和 $\langle a_2 , a_2' \rangle \in R$, 又因 $R \not\equiv A \perp$ 的同余关系,所以 $\langle a_1 \not\equiv a_2 , a_1' \not\equiv a_2' \rangle \in R$, 因此可知,若 $a_1 \not\equiv a_2 \in A_k$,则 $a_1' \not\equiv a_2' \in A_k$,这表明,不论怎样选取 $a_1 \in A_i$, $a_2 \in A_j$,总有 $a_1 \not\equiv a_2 \in A_k$ 。因此上述在 B 上定义的二元运算 * 是唯一确定的。

- 10. 考察代数系统 $\langle I, + \rangle$,以下定义在I上的二元关系R是同余关系吗?
- a) $\langle x, y \rangle \in R$ 当且仅当 $(x < 0 \land y < 0) \lor (x \geqslant 0 \land y \geqslant 0)$ 。
- b) $\langle x,y \rangle \in R$ 当且仅当 |x-y| < 10。
- c) $\langle x, y \rangle \in R$ 当且仅当 $(x = y = 0) \lor (x \neq 0 \land y \neq 0)$ 。
- d) $\langle x, y \rangle \in R$ 当且仅当 $x \geqslant y$ 。
- 解:a) 因为 $\langle -3, -1 \rangle \in R, \langle 2, 5 \rangle \in R, \langle 2,$
 - 以 R 不是同余关系。 b) 因为 $\langle 1,5 \rangle \in R$, $\langle 2,10 \rangle \in R$ (因为 |1-5|=4 < 10,|2-10|=8 < 10),
 - 但 $\langle 1+2,5+10 \rangle = \langle 3,15 \rangle \notin R$ 。| 3-15 | = 12 > 10,所以 R 不是同余关系。c) 因为 $\langle -3,2 \rangle \in R$ 且 $\langle 3,4 \rangle \in R$,但 $\langle -3+3,2+4 \rangle = \langle 0,6 \rangle \notin R$,所以 R 不是同余关系。
 - d) $\langle 4,1 \rangle$ ∈ R, 但 $\langle 1,4 \rangle$ ∉ R, 对称性不成立, R 不是等价关系, 必不是同余关系。

注意:若 R 是代数系统 $\langle A, \bigstar \rangle$ 上的同余关系,则必满足 ① R 是 A 上的等价关系。② 当 $\langle a_1, a_2 \rangle \in R, \langle b_1, b_2 \rangle \in R$ 时, $\langle a_1 \bigstar b_1, a_2 \bigstar b_2 \rangle \in R$ 。

11. 设 f 和 g 都是群 $\langle G_1, \bigstar \rangle$ 到群 $\langle G_2, * \rangle$ 的同态,证明: $\langle C, \bigstar \rangle$ 是 $\langle G_1, \bigstar \rangle$ 的一个子群,其中 $C = \{x \mid x \in G_1 \text{ 且 } f(x) = g(x)\}_{\circ}$

证明:显然 $C \subseteq G$,对于任意的 $a,b \in C$,有 f(a) = g(a), f(b) = g(b)。

因为 f 和 g 都是同态映射,所以有, $f(b^{-1}) = f(b)^{-1}$, $g(b^{-1}) = g(b)^{-1}$,又因

f(b) = g(b), 所以 $f(b)^{-1} = g(b)^{-1}$, 即 $f(b^{-1}) = g(b^{-1})$, 由此可得 $f(a \bigstar b^{-1}) = f(a) * f(b^{-1}) = g(a) * g(b^{-1}) = g(a \bigstar b^{-1})$,即 $a \bigstar b^{-1} \in C$, 因此 $\langle C, \bigstar \rangle$ 是 $\langle G_1, \bigstar \rangle$ 的子群。

12. 设 f 为从群 $\langle G_1, * \rangle$ 到 $\langle G_2, \triangle \rangle$ 的同态映射,则 f 为人射当且仅当 $Ker(f) = \{e\}$ 。其中,e 是 G_1 中的幺元。

证明: 必要性,设 f 是入射。因为 f(e) = e,所以 $e \in Ker(f)$ 。

设存在 $a \in G_1$, $a \neq e$, 使得 f(a) = e, 则 f(e) = f(a) 与 f 是人射相矛盾,所以 $Ker(f) = \{e\}$ 。

充分性,设 $Ker(f) = \{e\}$,对于任意 $a,b \in G_1$,若 f(a) = f(b),因为 f 是同态映射,则有 $f(a*b^{-1}) = f(a) \triangle f(b)^{-1} = f(b) \triangle f(b^{-1}) = f(e)$,即 $a*b^{-1} = e$,则 a = b,因此 f 是入射。

5-9 习题

1. 已知一个环 $(\{a,b,c,d\},+,\bullet)$,它的运算由表 5-16 给出:

表 5-16

+	a	b	c	d
a	a	b	С	d
ь	ь	с	d	a
c	c	d	a	b
d	d	a	ь	с

•	a	b	с	d
a	a	a	a	a
b	a	c	а	c
c	a	a'	a	a
d	a	c	a	c

它是一个交换环吗?它有乘法幺元吗?这个环中的零元是什么?并求出每个元素的 加法逆元。

- 解:因为•运算是对称的,所以环 $\langle \{a,b,c,d\},+,\bullet \rangle$ 是交换环,没有乘法幺元,环中零元是a,a和c以自身为加法逆元,b和d互为加法逆元。

证明:先证明(1, 金) 为阿贝尔群。

对于任意 $a,b \in I$, $a \triangle b = a + b - 1 \in I$, 满足封闭性;

$$a \triangle b = a + b - 1 = b + a - 1 = b \triangle a$$
,满足交换性;

对于任意 $a,b,c \in I$,

$$(a \triangle b) \triangle c = (a+b-1) \triangle c$$

$$=a+b-1+c-1$$

$$=a+b+c-2$$

$$a \triangle (b \triangle c) = a \triangle (b+c-1)$$

$$=a+b+c-1-1$$

$$= a + b + c - 2$$

所以 $(a \triangle b) \triangle c = a \triangle (b \triangle c)$,满足结合性;

对于任意 $a \in I$,存在 $1 \in I$,使得

$$1 \triangle a = 1 + a - 1 = a = a + 1 - 1 = a \triangle 1$$
,

所以1是1中关于A的幺元;

对于任意 $a \in I$,存在 $2-a \in I$,使得

$$a \triangle (2-a) = a+2-a-1 = 1,$$

$$(2-a) \triangle a = 2-a+a-1=1,$$

所以a \triangle (2-a) = (2-a) \triangle a = 1,2-a 是a 的逆元;

因此(1, A)是阿贝尔群。

再证明(I, △) 是半群

对于任意 $a,b \in I$, $a \triangle b = a+b-a \cdot b \in I$, 满足封闭性;

对于任意 $a,b,c \in I$,

$$(a \triangle b) \triangle c = (a+b-a \cdot b) \triangle c$$

$$= (a+b-a \cdot b) + c - (a+b-a \cdot b) \cdot c$$

$$=a+b+c-a \cdot b-a \cdot c-b \cdot c+a \cdot b \cdot c$$

$$a \triangle (b \triangle c) = a \triangle (b+c-b \cdot c) = a+b+c-b \cdot c - a \cdot (b+c-b \cdot c)$$
$$= a+b+c-b \cdot c - a \cdot b - a \cdot c + a \cdot b \cdot c$$

所以 $a \triangle (b \triangle c) = (a \triangle b) \triangle c$,满足结合性;

所以(I, A) 是半群。

又因为 $a \triangle b = a + b - a \cdot b = b + a - b \cdot a = b \triangle a$,满足交换性,

又因为 $0 \triangle a = 0 + a - 0 \cdot a = a$, $a \triangle 0 = a + 0 - a \cdot 0 = a$, 所以 0 是关于运算 \triangle 的幺元

因此(1, △)是含么元可交换半群。

对于任意 $a,b,c \in I$,有

$$a \triangle (b \triangle c) = a \triangle (b+c-1)$$

$$= a+b+c-1-a \cdot (b+c-1)$$

$$= 2 \cdot a + b + c - a \cdot b - a \cdot c - 1,$$

$$a(\triangle b) \triangle (a \triangle c) = (a+b-a \cdot b) \triangle (a+c-a \cdot c)$$

$$=a+b-a \cdot b+a+c-a \cdot c-1$$

$$= 2 \cdot a + b + c - a \cdot b - a \cdot c - 1,$$

即有 $a \triangle (b \triangle c) = (a \triangle b) \triangle (a \triangle c)$,

同理可证 $(b \triangle c) \triangle a = (b \triangle a) \triangle (c \triangle a)$,即运算 \triangle 关于运算 \triangle 是可分配的。

因此 $\langle I, A, \Delta \rangle$,是有幺元的交换环。

3. 设 $\langle R, +, \bullet \rangle$ 是一个环,证明:如果 $a,b \in R$,则 $(a+b)^2 = a^2 + a \cdot b + b \cdot a + b^2$ 。其中, $x^2 = x \cdot x$ 。

证明:
$$(a+b)^2 = (a+b) \cdot (a+b)$$

= $(a+b) \cdot a + (a+b) \cdot b$

$$= a \cdot a + b \cdot a + a \cdot b + b \cdot b$$
$$= a^{2} + a \cdot b + b \cdot a + b^{2}$$

4. 设 $\langle A, +, \bullet \rangle$ 是一个代数系统,其中 $+, \bullet$ 为普通的加法和乘法运算,A 为下列集合:

- a) $A = \{x \mid x = 2n, n \in I\}$.
- b) $A = \{x \mid x = 2n + 1, n \in I\}$
- c) $A = \{x \mid x \geqslant 0 \perp x \in I\}$.
- d) $A = \{x \mid x = a + b \sqrt[4]{5}, a, b \in R\}$.
- e) $A = \{x \mid x = a + b \sqrt{3}, a, b \in R\}$.

问(A,+,•)是整环吗?为什么?

- 解:a) 没有乘法幺元,不是整环。
 - b) 对于加法不封闭,不是整环。
 - c) 对于任意 $x \neq 0$,不存在加法逆元,不是整环。
 - d) 是整环。
 - e) 是整环。
- 5. 证明:⟨{0,1},⊕,⊙⟩ 是一个整环,其中运算 ⊕ 和 ⊙ 由表 5-17 定义。

表 5-17

(0	1
0	0	1
-1	1	0

0	0	1
0	0	0
1	0	1

证明:先证({0,1}, (+)) 是阿贝尔群。

由①的运算表可知运算满足封闭性,可交换性,且幺元为0,0和1均以自身为逆元。

- $(0 \oplus 0) \oplus 0 = 0 \oplus (0 \oplus 0), (0 \oplus 0) \oplus 1 = 0 \oplus (0 \oplus 1),$
- $(0 \oplus 1) \oplus 0 = 1 = 0 \oplus (1 \oplus 0)$ 其余类似可验证,结合性成立。

所以〈{0,1},⊕〉是阿贝尔群。

再考察({0,1},⊙)。

由 \odot 的运算表可知运算满足封闭性、交换性、结合性,幺元为 1,所以 $\langle \{0, 1\}, \odot \rangle$ 是可交换独异点,又因为 $1\odot 1 = 1 \neq 0$,故满足是无零因子条件。

另外,对于任意的 $x,y \in \{0,1\}$ 。

$$0 \odot (x \oplus y) = 0 = 0 \oplus 0 = (0 \odot x) \oplus (0 \odot y)$$

对于
$$1 \odot (x \oplus y)$$
,若 $x = y$,则 $1 \odot (x \oplus y) = 1 \odot 0 = 0 = \begin{cases} 0 \oplus 0 \\ 1 \oplus 1 \end{cases}$

$$= \left\{ \begin{array}{c} (1 \odot 0) \oplus (1 \odot 0) \\ (1 \odot 1) \oplus (1 \odot 1) \end{array} \right\} = (1 \odot x) \oplus (1 \odot y),$$

若
$$x \neq y$$
,则 $1 \odot (x \oplus y) = 1 \odot 1 = 1 = {1 \oplus 0 \choose 0 \oplus 1} = {(1 \odot 1) \oplus (1 \odot 0) \choose (1 \odot 0) \oplus (1 \odot 1)} =$

 $(1 \odot x) \oplus (1 \odot y),$

所以对于任意 $x,y,z \in \{0,1\}$,都有 $z \odot (x \oplus y) = (z \odot x) \oplus (z \odot y)$,同理可证, $(x \oplus y) \odot z = (x \odot z) \oplus (y \odot z)$,所以运算 \odot 对于运算 \oplus 是可分配的。

因此({0,1},⊕,⊙)是整环。

- 6. 设 $\langle A, +, \cdot \rangle$ 是一个环,并且对于任意的 $a \in A$,都有 $a \cdot a = a$,证明:
- a) 对于任意的 $a \in A$,都有 $a + a = \theta$,其中 θ 是加法幺元。
- b) (A, +, •) 是可交换环。

- b) 对于任意 $a,b \in A, a+b \in A, a(a+b) \cdot (a+b) = a+b$,所以 $a \cdot a+a \cdot b+b \cdot a+b \cdot b=a+b$,即 $a+a \cdot b+b \cdot a+b=a+b$,所以 $a \cdot b+b \cdot a=a+b$,所以 $a \cdot b+b \cdot a=a+b$,所以 $a \cdot b=a+b \cdot a$,由 $a \cdot b=a+b \cdot a$,所以 $a \cdot b=a \cdot a$,即 $a \cdot b=a \cdot a$,即
- 7. 设 $\langle A, +, \bullet \rangle$ 是一个代数系统,其中 $+, \bullet$ 为普通的加法和乘法运算,A为下列集合:
- a) $A = \{x \mid x \ge 0, x \in I\}$.
 - b) $A = \{x \mid x = a + b \sqrt{3}, a, b 均为有理数 \}$ 。
 - c) $A = \{x \mid x = a + b \sqrt[3]{5}, a, b 均为有理数\}$ 。
 - d) $A = \{x \mid x = a + b \sqrt{5}, a, b 均为有理数\}$ 。
 - c) $A = \{x \mid x = \frac{a}{b}, a, b \in I_+ \ \text{I.} \ a \neq k \cdot b\}$.

问(A,+,•)是域否?为什么?

- 解:a) 对于任何x > 0,没有加法逆元,所以不是域。
 - b) 易证 $\langle A, +, \bullet \rangle$ 是环,又因乘法幺元是 $1, a+b\sqrt{3}$ 的乘法逆元是 $\frac{a-\sqrt{3}b}{a^2-3b^2}$,所以 $\langle A, +, \bullet \rangle$ 是域。
 - c) b≠0时a+b 3/5 的乘法逆元不存在,因此不是域。
 - d) 易证 $\langle A, +, \bullet \rangle$ 是环,乘法幺元是 1, a+b $\sqrt{5}$ 的乘法逆元是 $\frac{a-\sqrt{5}b}{a^2-5b^2}$,所以 $\langle A, +, \bullet \rangle$ 是域。
 - e) 无乘法幺元,不是域。
- 8. 设 $\langle F, +, \bullet \rangle$ 是一个域 $, S_1 \subseteq F, S_2 \subseteq F, \mathbb{L}\langle S_1, +, \bullet \rangle, \langle S_2, +, \bullet \rangle$ 都构成域,证明: $\langle S_1 \cap S_2, +, \bullet \rangle$ 也构成一个域。
 - 证明:因为 $\langle S_1, + \rangle$, $\langle S_2, + \rangle$ 都是 $\langle F, + \rangle$ 的子群,且都为阿贝尔群。 $\langle S_1, \bullet \rangle$, $\langle S_2, \bullet \rangle$ 都是 $\langle F, \bullet \rangle$ 的子群,且都为阿贝尔群。所以 $\langle S_1 \cap S_2, + \rangle$ 和 $\langle S_1 \cap S_2, \bullet \rangle$ 分别是 $\langle F, + \rangle$ 和 $\langle F, \bullet \rangle$ 的子群,且为阿贝尔群。

在 $\langle S_1, +, \bullet \rangle$ 中,运算•对于运算+是可分配的,在 $\langle S_2, +, \bullet \rangle$ 中运算•对于运算+是可分配的,所以在 $\langle S_1 \cap S_2, +, \bullet \rangle$ 中,运算•对于运算+是可分配的。

因此 $(S_1 \cap S_2, +, \bullet)$ 构成域。

9. 设 $\langle A, \bigstar, * \rangle$ 是一个关于运算 \bigstar 和 * 分别具有幺元 e_1 和 e_2 的代数系统,并且运算 \bigstar 和 * 彼此之间是可分配的,证明:对于 A 中所有的 x,式 $x \bigstar x = x * x = x$ 成立。

证明: 因为 $e_2 = e_1 \bigstar e_2 = (e_1 * e_2) \bigstar e_2 = (e_1 \bigstar e_2) * (e_2 \bigstar e_2) = e_2 * (e_2 \bigstar e_2)$ = $e_2 \bigstar e_2$,

 $e_1 = e_2 * e_1 = (e_2 \bigstar e_1) * e_1 = (e_2 * e_1) \bigstar (e_1 * e_1) = e_1 \bigstar (e_1 * e_1)$ = $e_1 * e_1$,

所以对于A中任意x,有 $x \bigstar x = (x * e_2) \bigstar (x * e_2) = x * (e_2 \bigstar e_2) = x * e_2$ = x.

 $x * x = (x \bigstar e_1) * (x \bigstar e_1) = x \bigstar (e_1 * e_1) = x \bigstar e_1 = x$, 所以 $x \bigstar x = x * x = x$ 成立。

10. 设〈A,★,*〉是一个代数系统,且对于任意的 $a \in A$,有 a★b = a,证明:二元运算 * 对于 ★ 是可分配的。

证明:对于任意 $a,b,c \in A,a*(b \bigstar c) = a*b = (a*b) \bigstar (a*c),$

 $(a \bigstar b) * c = a * c = (a * c) \bigstar (b * c),$

即二元运算 * 对于★是可分配的。

历年考研真题评析

1. 设 f 和 g 都是 $\langle G_1, \bigstar \rangle$ 到 $\langle G_2, * \rangle$ 的群同态,且 $H_1 = \{x \mid x \in G_1 \land f(x) = g(x)\}$,试证 $\langle H_1, \bigstar \rangle$ 是 $\langle G_1, \bigstar \rangle$ 的子群。(大连理工大学考研真题)

《分析》 判断子群有三种方法:

第一种:1) H是一个有限子集;2) 运算★在 H上封闭。

第二种:子集 H 中的任意元素 a 和 b 有 a ★ b⁻¹ ∈ H。

第三种:根据子群的定义,即证明子集 H上的代数结构〈H,★〉是一个群。

- 证明: 显然 $H_1 \subseteq G_1$, (1) 对于任意的 $a,b \in H_1$, 有 f(a) = g(a), f(b) = g(b)。因为 f 和 g 都是群同态映射,所以有 $f(a \not b) = f(a) * f(b) = g(a) * g(b) = g(a \not b)$,所以 $a \not b \in H_1$,运算封闭;
 - $(2)H_1$ 是 G_1 的子集, 所以在 H_1 上保持可结合性;
 - (3) 设 $e \not\in G_1$ 的幺元, $e' \not\in G_2$ 的幺元,则有 f(e) = e' = g(e),所以 $e \in H_1$, 即 $e \not\in H_1$ 的幺元;
 - (4) 对于任意的 $a \in H_1$,有 f(a) = g(a),所以 $f(a)^{-1} = g(a)^{-1}$,即 $f(a^{-1}) = g(a^{-1})$,即 $a^{-1} \in H_1$,存在逆元;

综上所述, $\langle H_1, \bigstar \rangle$ 是 $\langle G_1, \bigstar \rangle$ 的子群。

2. 设 $\langle G, * \rangle$ 为群,R 为G 上等价关系且对任意 $x,y,z \in G$,若(x*z)R(y*z),则 zRy,设 $H = \{h \mid h \in G$ 且 $hRe\}$,求证 $\langle H, * \rangle$ 为 $\langle G, * \rangle$ 的子群。其中e 是 $\langle G, * \rangle$ 的幺元。(山东大学考研真题)

【分析】 判断子群有三种方法:

第一种:1) H是一个有限子集;2) 运算 * 在 H上封闭。

第二种:子集 H 中的任意元素 a 和 b 有 $a * b^{-1} \in H$ 。

第三种:根据子群的定义,即证明子集 H上的代数结构(H,*)是一个群。

证明:显然 $H \ge G$ 的 子集,任给 $h_1, h_2 \in H$,则有 h_1Re 和 h_2Re ,因为 R 是等价关系,则有 eRh_2 ,即有 h_1Rh_2 ,即 $h_1 * h_2^{-1} * h_2Re * h_2$,则有 $h_1 * h_2^{-1}Re$,所以 $h_1 * h_2^{-1} \in H$,因此 $\langle H, * \rangle$ 为 $\langle G, * \rangle$ 的子群。

3. G 是奇数阶的 Abel 群,证明 G 中所有元素之积为单位元。(南京大学考研真题) 【分析】 群 G 的阶为奇数设为 2m+1,G 的所有元素之积中,只有 a 与 a^{-1} 是不同元素才能消掉 a,因此需要判断 a 与其逆元。

证明:由于*G*为奇数阶交换群,由拉格朗日定理知,不存在元素 a 满足 $a^2 = e$,因此任给 $a \in G$ 且 $a \neq e$,则有 $a \neq a^{-1}$,即 a 与 a^{-1} 是两个不同的元素,G 为交换群,群G 的 阶设为 2m+1,因此G 的所有元素之积 $= e * a_1 * a_1^{-1} * a_2 * a_2^{-1} * \cdots * a_m * a_m^{-1} = e$,其中 $a_1 \in G - \{e\}$, $a_2 \in G - \{e\}$, \cdots , $a_m \in G - \{e\}$.

4. ① $\langle G, * \rangle$ 是个群,H,K 是其子群,在 G 上定义二元关系 $R: \forall a,b \in G,aRb \Leftrightarrow$ 存在 $h \in H,k \in K$,使得 b = h * a * k,证明:R 是G 上的等价关系。

② 在 ① 中,若 |H|=m,|K|=n,|G|=mn,m与n 互素,且 R 的某个等价类 在 G 的乘法运算下构成 G 的一个子群,则 $R=G\times G$ 。(中科院计算机技术研究所考研 事題)

【分析】 证明一个关系为等价关系,即需要证明这个关系满足自反性,对称性和传递性。

(2) 若 $aRb \Rightarrow$ 存在 $h \in H, k \in K$, 使得 $b = h * a * k \Rightarrow a = h^{-1} * b * k^{-1}$, 由于 H, K 为 G 的子群, 所以 $h^{-1} \in H, k^{-1} \in K$, 所以有 bRa,满足对称性;

(3) 若 aRb, $bRc \Rightarrow 存在 h_1$, $h_2 \in H$, k_1 , $k_2 \in K$, 使得 $b = h_1 * a * k_1$, $c = h_2 * b * k_2$, 由于 H, K 为G 的子群, 所以 $h_2 * h_1 \in H$, $k_1 * k_2 \in K$, 使得 $c = (h_2 * h_1) * a * (k_1 * k_2)$, 所以 aRc, 满足传递性;

综上所述,R是等价关系。

② 设是 G 的子群的那个 R 的等价类为 $[a]_R = \{x \mid x \in G \land aRx\} = \{x \mid x \in G$

同理,K为 $[a]_R$ 的子群,所以 $m||[a]_R|,n||[a]_R|,而<math>m$ 与n互 $\Rightarrow mn||[a]_R|,$ 即 |G| $|[a]_R$ | , $\chi[a]_R$ 为 G 的子群,因此 $|[a]_R$ |||G| , 从而 $|G| = |[a]_R|$, 从而 $[a]_R = G$,即 $\forall g \in G$ 。有 aRg,而 R 为等价关系, $\forall g_1, g_2 \in G$,由对称性 $aRg_1 \Rightarrow g_1 Ra$ 。由传递性, $aRg_1 \wedge aRg_2 \Rightarrow g_1 Ra \wedge aRg_2 \Rightarrow g_1 Rg_2$ 。所以 $R = G \times G$ 。

- 5. G 为群, $a,b,c \in G$,ab = cba,ac' = ca,bc = cb.
- (1) 证明:若a,b的阶分别为m,n,则c的阶整除m与n的最大公因子(m,n)。
- (2) 若 a,b,c 的阶均为 2,给出集合 $S = \{a,b,c\}$ 的生成子群。(中国科学院软件研 究所考研真题)
 - (1) 证明:由于ac = ca,bc = cb,所以c与a,b均可交换,又由于ab = cba,则等 式右边同时乘 n-1 次 b 得, $ab^n = dab^{n-1} = dcbab^{n-2} = c^2b^2ab^{n-2} = \cdots$ $=c^nb^na$,从而 $c^n=e$,

同理,左乘m-1次a得, $a^mb=c^mba^m$,因此 $c^m=e$,由于c的阶k是满足 $c^k = e$ 的最小正整数,可推得 $k \mid m, k \mid n, \text{即 } k \mid (m, n)$ 。

(2) $\bowtie S = \{e,a,b,c,ab,ac,bc,abc\}$

为[a]R的子群。

- 6. $\langle G, * \rangle$ 是群, $\langle H, * \rangle$ 是 $\langle G, * \rangle$ 的子群,对于任意的 $a \in G$,有 aH = Ha 的充 要条件是对于任意的 $a \in G, h \in H, 有 a^{-1} * h * a \in H$ 。(上海交通大学考研真题)
 - 证明. (1) 若有 aH = Ha,则对于任意的 $a \in G, h \in H$,有 $h * a \in aH = Ha$,则存 在 $h_1 \in H$ 使得 $h * a = a * h_1$,即 $a^{-1} * h * a = h_1$,也就有 $a^{-1} * h * a \in H$; (2) 若对于任意的 $a \in G, h \in H, 若 h * a \in Ha$, 而 $a^{-1} * h * a \in H$, 设 $a^{-1} * h * a = h_1 \in H$, $\emptyset h * a = a * h_1 \in aH$, $\emptyset Ha \subseteq aH$; 若 $a * h \in aH$,而 $a * h * a^{-1} \in H$,设 $a * h * a^{-1} = h_2 \in H$,则 $a * h = h_2 * a$ \in Ha, 即 aH \subseteq Ha;

即 aH = Ha。

如需其他课本详解,请扫描下列二维码进入《心悦书屋》

淘宝二维码

微店二维码

谢谢您对心悦书屋的支持,如有店铺欠缺书籍,请联系客服 QQ: 2556693184,为您赶作,及时更新!