

Introduction to cloud computing

Daniel Hagimont

Application

France

Platform

France

Platform

France

France

Colored Computing

Colored Computing

hagimont@ensee iht.fr

Cloud computing: the idea

- Amazon (around 2002)
 - Rent to external users a part of its computing facilities during periods of low use
 - Creation of Amazon Web Services (AWS) (initially for data storage, then for computing)
- My car
 - It could be rented to people who don't have a car
 - It exists!
 - Drivy
 - BlaBlaCar
- Generally
 - An under-used resource (computer, car) can be rented to other users on demand
 - Augment its utilisation rate, therefore its rentability

Principles of the cloud

- Mutualize efforts and resources
 - Share an equipment
 - Utilization as needed
- Avantages
 - Reduce costs and wastings
 - Push the limits (alone, this would have been impossible)
- Applied to computer science
 - Shared computers (data centers)
 - Externalize (local => remote)

General scheme: externalization

Access based on REST API or a Web portal from the cloud platform

First services

- Amazon EC2 (Elastic Compute Cloud)
 - Sell virtual machines (VMs)
 - The client connects to a VM and uses it as he wishes
 - Comparable to a dedicated server
 - The most widespread service

Definition of Cloud

- Just one of many
- Set of resources/applications/services which execute in a distributed environment (hosting center), accessible though web standard protocols, which globally provide a service with the following characteristics:
- Pay as you go (according to quantity and duration)
- Illusion of an infinity of resource (scalability)
- Abstraction of the hardware infrastructure
- Mutualization between many users

Roles in the cloud

- **Cloud providers**: provide a hardware infrastructure and a set of services on top
 - Eg: Amazon Web Services (AWS), Microsoft Azure, CloudWatt
- Cloud Clients: use resources of cloud platforms
 - Eg: private users, companies
- Cloud resellers: build and sell services, relying on existing cloud plaforms
 - They are both cloud users and cloud providers
 - Eg: RightScale, Scalr
- Cloud developers: produce tools (deployment, selfrepair, etc) for the cloud
 - Eg: VMware, research labs & companies (Roboconf)

Costs reduction

- For the client
 - Equipments, administration, place, energy, licences ...
- For the provider (data center)
 - Do more with less (profits)
 - Especially energy

Major benefit for the client: pay as you go

- Easy to use and flexible
 - Allocation/de-allocation (fast and on demand) of resources
 - No administrative procedure
 - Accessible from everywhere via internet (24/7)
- Reduced TCO (Total Cost of Ownership)
 - No need of important investments
 - Less staff, no need to manage a local infrastructure
 - Less software licences to pay
- Billing
 - According to usage
 - Monthly/annually
 - Discount VM (spot VM)

Classification wrt property

 Community cloud: the cloud is built to be shared between several organizations

Eg: UnivCloud

- Private cloud: the cloud is built by a company (or an institution) for its internal use
- Public cloud: the cloud is built by a company for business purpose and it is open to all users

Eg: Amazon web services, Microsoft Azure, Eolas, etc.

 Hybrid cloud: combination of a private cloud, extended with one or several public clouds

Classification wrt provided service

- laaS (Infrastructure as a Service): the cloud provides storage and computing facilities. Users can rent machines (or virtual machines)
 - Ex.: Amazon EC2, Windows Azure
- PaaS (Platform as a Service): the cloud provides a platform for the construction and execution of applications in the underlying infrastructure
 - Ex.: Google App Engine, Windows Azure web role
- SaaS (Service as a Service): the cloud directly provides the application that the user needs
 - Ex.: Google docs, SalesForce

From IaaS to SaaS, this is a story of responsibility transfer from the client to the provider

Classification wrt service

Some numbers

- Fast growth of the number of datacenters
 - Salesforce (2009): 54.000 companies on 1000 servers
 - Amazon EC2 (2012): 500.000 servers
 - Google (2011): 900.000 servers
- Energy (2017) :
 - 10% of the electric production for IT
 - 1,8% for datacenters

In the heart of clouds

Microsoft Azure Dublin (Ireland)

Opened in 2009, the Microsoft Azure datacenter represents a capacity of $39\,000\,\text{m}^2$ of computing rooms. The equivalent of 8 football fields. $80\,\text{Microsoft}$ employees work on this site.

In the heart of clouds

Google IOWA (USA)

The Google datacenter of Council Bluffs, IOWA, covers more than 10 000 m². It is used to host Google's search engine and YouTube.

Cooling

Google IOWA (USA)

2 % of electricity in the US, half for cooling

In the datacenter of The Dalles, pipes are binging and evacuating water. This is the cooling system of the datacenter: blue pipes for cold water and red pipes for hot water.

Challenges of cloud

 Security & Trust (mentionned by 70 % of queried people in an IDC study)

- Where are stored my data?
- Is privacy ensured?
- What about the laws in these countries?
- Service guarantee (SLA = Service Level Agreement)
 - The SLA should be enforced
 - The client should trust this guarantee
- Impact on energy: in 2017, 1.8% of worldwide electricity consumption
 - For powering servers
 - For cooling
 - Generate more CO2 than air transport

Challenges of cloud

- Precise monitoring for billing
 - The cloud is multi-tenant (shared resources)
 - Billing should be reliable
- Standardization
 - Each provider develop its own APIs
 - How to interoperability and portability?
- Customization (eg. hardware)
 - Very large companies develop specific hardware for private clouds
 - How can it be used in public (multi-tenant) clouds?

The cloud should be elastic

- Fluctuation of the load
 - Applications in the cloud are more or less used over time
 - Examples
 - An e-commerce application
 - Computation of payslips for a company
- For the client : elastic applications
 - Avoid over-booking
 - Allocate resources (machines) on demand
 - Allocation/de-allocation
 - Reduce costs
- For the provider: elastic cloud
 - Optimize his infrastructure
 - Adapt his spendings according to sold resources (especially energy)

Elastic applications

- An elastic application
 - We augment its capacity by adding machines
 - We reduce its capacity by removing machines
 - The application should adapt according to the load (like a lung)

- Example of elastic application
 - Replicated web server
 - Load balancing
 - Adaptation of the number of replica
 - Manage automatically by a tool

Virtualisation: motivations

- Historically
 - A cloud was selling physical machines
 - A machine was used by one user only
- Wasting
 - Many under-loaded applications (only one machine)
 - An application uses in average 10-15 % of its resources (source VMware)

Me: Do you track server and CPU utilization?

Wall Street IT Guru: Yes

Me: So it's a metric you report on with other infrastructure KPIs? Wall Street IT Guru: No way, we don't put it in reports. If people knew how low it really is, we'd all get fired.

Virtualisation: principles

- Virtual machines (VM)
 - Simulate several machines (virtual) on one machine (physical)
 - Users are allocated virtual machines
- Challenges: isolation
 - Security: a VM is protected against potential attacks from other VMs
 - Performance: one VM's performance is not affected by other VMs
 - Failure: one VM's failure should not affect other VMs

An elastic cloud

- Better physical machine occupation
 - With several VMs, the capacity of a physical machine can be fully used
 - In some way, the provider sells fractions of machines
- Consolidation of physical machines
 - VMs can be moved between physical machines (migrated)
 - We can pack VMs on physical machines (according to resources really used)
 - Unused physical machines can be switched-off or suspended
 - Energy savings
- Ideally
 - Physicall machines are used at 100 % of their capacity
 - Other machine are off
 - A provider can sell more resources than available in the datacenter (overbooking as in airline companies)

Consolidation

Is the cloud panacea?

- Opposition
 - Centralization
 - The cloud
 - Passive terminals
 - Decentralization
 - Personal computers
 - Opensource software
- Richard Stallman
 - Cloud computing = careless computing

