Contents

1	Data Lakehouse1.1 Data Ingestion	3
2	Delta Lake 2.1 Key Features	4
	2.3 Change Data Feed (CDF)	4
3	Workflows 3.1 Compute	5
	3.2 Cluster 3.3 Jobs Features 3.4 Late Jobs 3.5 Run Job Task Type	5 6 6
	3.6 Databricks Asset Bundle (DAB)	
4	Delta Lake Table4.1 Anatomy	7
5	Optimizing Delta Lake Tables 5.1 Summary	8
6	Delta Live Table6.1Key Features6.1.1Medaillon Architecture6.2Data Quality and Validation Rules6.3Types of Exception Handling Actions and Syntax	10
7	Data Governance with Unity Catalog 7.1 Unity Catalog	11 11 11 11 12 12
	7.3 Define Access Control Policies in UC	13 13
8	Performance Tuning in Delta Lake 8.1 Avoiding Small File Problem	13 13 13

	8.3	Predictive Optimization	13
9		ormance Optimization with Spark	14
	9.1	Broadcast Variables	
	9.2	Minimize Data Shuffling	
	9.3	Avoiding Data Skew	
	9.4	Caching and Persistence	
	9.4	Partitioning and Repartitioning	
	5.0	Tartifolding and repartifolding	10
10	Spar	k Structured Streaming	16
	10.1	Process	16
		Ingesting Streaming Data	
	10.3	Reading from real-time Sources (Kafka)	17
11	Proc	cessing Streaming Data	18
12	SOI	Coding	19
12		Delta Table	_
	12.1	12.1.1 Creating a Delta Table or View	
		12.1.2 Reading a Delta Table	
		12.1.3 Optimizing Delta Tables	
		12.1.4 Tagging, Commenting, and Capturing Metadata	_
	12.2	Delta Live Table	
		12.2.1 Data Quality and Validation Rules	
	12.3	Unity Catalog	
		12.3.1 Create Catalog, Volume, View	
		12.3.2 Row Filtering	
		12.3.3 Column Masking	
13	Pvth	non Coding	25
13	_	Delta Table	
	10.1	13.1.1 Creating a Delta Table	
		13.1.2 Reading a Delta Table	
		13.1.3 Optimizing Delta Tables	
	13.2	Delta Live Table	
		Streaming	07

1 Data Lakehouse

Data management system that combines the benefits of Data Lakes and Data Warehouses.

- Provides scalable storage and processing capabilities
- Can establish a single source of truth, eliminate redundant costs, and ensure data freshness
- Often use data design pattern that incrementally improves, enriches, and refines data as it moves through layers of staging and transformation → Medaillon architecture

1.1 Data Ingestion

- Logical layer provides a place for (batch/streaming) data to land in its raw format
- Files are converted into Delta Tables and schema enforcement capabilities from Delta Lake can be used to check for missing or unexpected data
- Use Unity Catalog (UC) to register tables according to data governance model and require data isolation boundaries
- UC allows to track lineage and apply unified governance to keep sensitive data private and secure

2 Delta Lake

Delta Lake is an open source storage layer that supports ACID transactions, scalable metadata handling, and unification of streaming and batch data processing.

2.1 Key Features

- ACID transactions:
 - Atomicity: Entire transaction (either failing or succeeding) completes
 - Consistency: Data follows rules or will be rolled back
 - Isolation: One transaction completed before the start of another transaction
 - Durability: Data is saved in a persistent state once completed
- Problems solved by ACID:
 - Streamlined data append
 - Simplified data modification
 - Data integrity through job failures
 - Support for real-time operations
 - Efficient historical data version management
- DML Operations:
 - Modify data using multiple frameworks, services, and languages
 - CRUD-Operations: INSERT, UPDATE, DELETE, MERGE
- Data Skipping Index: Employs file statistics to optimize query performance by skipping unnecessary data scans
- Time Travel:
 - Delta Tables keep a transaction log for each version (writes) of the table
 - Historical querying possible by Delta transaction log
 - Snapshot Isolation
 - Useful for audits, regulatory compliance, and data recovery
- Schema evolution and enforcement:

- Evolution: Automatically adjusts the schema of Delta Table as data changes (adding new columns, rename columns, etc.)
- Enforcement: Ensures that any data written to the Delta Table matches the table's defined schema
- Scalable metadata:
 - Transaction log providing transactional consistency per ACID transaction
 - Efficient managing of metadata for large scale datasets without its operations impacting query or processing performance
- Audit history:
 - Detailed logs of all changes made to the data (who, what, when)
 - Crucial for compliance and regulatory requirements
- Incrementally improve quality of data
- ullet Data Objects: Metastore o Catalog o Schema (Database) o Table, View, Function
- Liquid Clustering:
 - Data layout to support efficient query access and reduce data management and tuning overhead
 - Flexible and adaptive to data pattern changes, scaling, and data skew
 - Most consistent data skipping
- Predictive I/O:
 - Automates OPTIMIZE and VACUUM operations
 - Uses ML to determine most efficient access pattern to read data

2.2 Change Data Capture (CDC)

- Technique to capture and process the changes made to data in a source database and deliver these changes in real time to a target system
- Enables to keep Data Lake or Warehouse in sync with operational databases
- Supports real-time analytics and data science
- Useful for data synchronization, replication, auditing, and analytics
- Delta Lake supports CDC through Change Data Feed (CDF), which allows Delta Tables to track low-level changes between versions of a Delta Table
- Challenges: Handling slowly changing dimensions (SCDs), which are dimensions that store both current and historical data over time in a Data Warehouse
- Syntax: APPLY CHANGES INTO

2.3 Change Data Feed (CDF)

- Gives ability to track changes to a DLT
- UPDATE, MERGE, DELETE operations will be put into a new _change_data folder, while APPEND operations already have their own entries in the table history
- Through this tracking, the combined operations can be read as a feed of changes from a table to use downstream
- Ability to only have the rows that have changed between versions makes downstream consumption of UPDATE, MERGE, DELETE operations extremely efficient
- CDF captures changes only from a Delta Table and is only forward-looking once enabled → it will capture changes once the table property is set up and not earlier

3 Workflows

3.1 Compute

3.1.1 Job (Automated) Cluster

- Created and terminated automatically for each job run reducing usage costs
- Best for automated jobs or data pipelines, and operational use cases
- Only job clusters should be used in production
- Single-user

3.1.2 All-purpose (Interactive) Cluster

- Can be shared by multiple users
- Best for interactive tasks, streaming workloads, data exploration, development, ad-hoc and ongoing analysis
- Should not be used in production as they are not cost-efficient
- Manually managed

3.1.3 Other

- Fully managed services that are operationally simpler and more reliable
- Serverless compute for notebooks: On-demand, scalable compute used to execute SQL and Python in notebooks
- Serverless compute for jobs: On-demand, scalable compute used to run Databricks jobs without configuring and deploying infrastructure
- Instance pools: Compute with idle, ready-to-use instances, used to start and autoscaling times
- Serverless SQL warehouses: On-demand elastic compute used to run SQL commands on data objects in the SQL editor or interactive notebooks
- Classic SQL warehouses: Used to run SQL commands on data objects in the SQL editor or interactive notebooks. Photon included, ad-hoc SQL and BI analytics

3.2 Cluster

- CPU should always be >80% utilization
- $8 \to 16$ cores per executor (depending on workload)
- Shared cluster:
 - Multiple users can work on a cluster in parallel
 - Python, SQL, SCALA
- Single user cluster:
 - Dedicated to a single user at creation time
 - Supports ML Runtimes, Spark submit jobs
 - Fine-grained access control
- SQL Warehouse (Classic, Pro, and Serverless):
 - Multiple users can work on a shared cluster in parallel
 - SQL only

3.3 Jobs Features

- Job parameters: Passed into each task within a job, formatting and behavior of the parameter is dependent on the task type
- Job contexts: Special set of templated variables that provide introspective metadata on the job and task run
- Task values: Custom parameters that can be shared between tasks in a Databricks job

3.4 Late Jobs

- Allows customers to define a **soft timeout** after which they receive a warning that a job task run takes longer than expected and can also be timed out
- No alerts will be triggered by default, but the event will be logged

3.5 Run Job Task Type

- With jobs-as-a-task, a job can be broken into 2 (or more) jobs, chained together
- Jobs triggered by a Run Job Task use their own cluster configuration
- Separate larger jobs into multiple components, as well as creating generalized, modular, reusable jobs that can be parameterized by other jobs

3.6 Databricks Asset Bundle (DAB)

- Collection of Databricks artifacts (e.g., jobs, ML models, DLT pipelines, and clusters) and assets (e.g., Python files, notebooks, SQL queries, and dashboards)
- These bundles are represented in a configuration file and can be co-versioned
- Using CLI, these bundles can be materialized across multiple workspaces like dev, staging and production enabling to integrate these into CI/CD and automation processes

3.7 Best Practices

- Automated/Job Clusters:
 - Automated/Job Clusters for production workloads
 - Interactive/All Purposes Clusters are for development only
- Prefer Multi-Task jobs:
 - Each task could run on its own cluster
 - Tailored job clusters enable each task to run independently without resource sharing bottlenecks
- Cluster reuse: Enable running tasks in a Databricks Job on the same cluster for more efficient cluster utilization and decreased job latency
- Enable Photon: High-performance vectorized query engine
- Repair and re-run only the failed tasks to reduce time and resources
- Late jobs
- Serverless Workflows:
 - Fully managed service operationally simpler and more reliable
 - Faster clusters and auto-scaling capabilities
- Triggers: Use file arrival and Delta Table triggers
- Modular orchestration: Reuse jobs and break down huge jobs into multiple smaller / manageable tasks

- Run as Service Principal
- CI/CD with DAB

4 Delta Lake Table

Open-source Data Lake storage format providing features such as transactional capabilities, schema evolution, time travel and concurrency control to provide a robust, scalable, and efficient storage solution.

4.1 Anatomy

- Data files:
 - Store data in Parquet file format
 - Files are stored in a distributed cloud or on-premises file storage system such as HDFS,
 AWS S3, etc.
- Transaction (Delta) log:
 - Ordered record of every transaction performed on a DLT
 - Ensures ACID properties by recording all changes to a table in a series of JSON files
 - Each transaction is recorded as new JSON file in the _delta_log directory
- Metadata:
 - Includes information about the table's schema, partitioning, and configuration settings
 - Stored in the transaction log and can be retrieved using SQL, Spark, Rust, and Python APIs
 - Helps manage and optimize table by providing information for schema enforcement and evolution, partition strategies, and data skipping
- Schema evolution:
 - Defines the table's structure, including its columns, data types, etc.
 - Enforced on write, ensuring that all data written to the table adheres the defined structure
- Checkpoints:
 - Periodic snapshots of transaction log helping to speed up the recovery process
 - Delta Lake consolidates the state of the transaction log by default every 10 transactions
 - Stored as Parquet files
- SQL-Implementierung
- Python-Implementierung

5 Optimizing Delta Lake Tables

• OPTIMIZE:

- Compact and sort data in the Delta Table
- Merges smaller files into larger ones \rightarrow reducing storage overhead and enhance query performance

• ZORDER:

- Organizes data based on selected columns to improve query performance
- Groups related data together physically, reducing the amount of data/files it takes to read or scan during queries
- Data write optimization that requires considering query patterns and selected columns for optimal results
- Identify columns that are commonly used in query predicates and have a high cardinality
- Z-Ordering is more effective when the query predicates are selective and the data is skewed

• Partitioning:

- Organize data files in a table or Data Lake based on specific column values
- Optimizes query performance by reducing the amount of data that needs to be scanned during queries
- Data of partitioned tables are physically stored in directories that correspond to the unique value of the partitioned column

• VACUUM:

- Remove stale files that are no longer referenced by the table
- Use RETAIN to specify number of hours to retain the history of a table
- SQL-Implementierung
- Python-Implementierung

5.1 Summary

- \bullet Performance impact: Both OPTIMIZE and ZORDER operations can be resource-intensive and time-consuming \to may impact query performance on tables with heavy workloads
- Choose right column for ZORDER
- Data distribution: Partitions should not end up with larger files than others \rightarrow skew
- Data evolution: ZORDER is not dynamic; it remains static after the data is written. If data distribution changes significantly over time, initial well-optimized Z-Ordering may become less effective
- ullet Running OPTIMIZE twice on the same dataset, the second run will have no effect ightarrow idempotent operation

6 Delta Live Table

Delta Live Table (DLT) is a Data Engineering pipeline framework running on top of a Delta Lake. It is a materialized view for the Lakehouse as well as defined by a SQL query and created/kept up to date by a pipeline.

6.1 Key Features

- Allows users to write SQL queries by extending standard SQL syntax with unified declarative way of specifying data definition language (DDL) and data manipulation language (DML) operations
- Combines incremental ingestion, streamlined ETL, and automated data quality processes like expectations
- Rather than building out a processing pipeline piece by piece, the declarative framework allows to simply define tables and views with less syntax
- Manages compute resources, data quality monitoring, processing pipeline health, and optimizes task orchestration
- ACID transactions, schema enforcement, time travel, and unified batch and streaming processing
- Materialized view (DLT):
 - Stores results of a query and can be refreshed periodically or on demand to reflect latest state of the entire data
 - Only available in the pipeline, not persistent to the metastore
- Streaming table:
 - Processes streaming data incrementally and continuously updates the results of a query based on new data arriving
 - Only supports reading from append-only streaming sources and only reads input batch once
 - Can perform operations on the table outside the managed DLT pipeline
- Use CREATE OR REFRESH STREAMING LIVE TABLE to define a streaming table that processes each record exactly once
- Read a table with STREAM() to denote that we only want to process the incremental/new data and not the full table (append-only)
- Use CREATE OR REFRESH LIVE TABLE to define a materialized view that processes records as required
- General syntax for DLT query in SQL:

6.1.1 Medaillon Architecture

Data design pattern that organizes data in a Lakehouse into bronze, silver and, gold layers.

- Bronze:
 - Contains raw data from multiple sources (raw ingestion and history)
 - Replaces traditional data lake
 - Provides efficient storage and querying of full, unprocessed history of data
- Silver:

- Contains validated and conformed data (filtered, cleaned, augmented)
- Reduces data storage complexity, latency, and redundancy
- Optimizes ETL throughput and analytic query performance
- Preserves grain of original data
- Enforces production schema, data quality checks

• Gold:

- Curated and enriched data for analytics and AI (business-level aggregates)
- Powers ML applications, reporting, dashboards, ad-hoc analysis
- Refined views of data, typically with aggregations
- Reduces strain on production systems
- Optimizes query performance for business-critical data

6.2 Data Quality and Validation Rules

- Define and enforce data quality rules on datasets using expectations → optional clauses that check the quality of each record in a query
- Specify actions, such as warning, dropping, failing, or quarantining the record
- SQL-Implementierung

6.3 Types of Exception Handling Actions and Syntax

- Warn (default):
 - Result: Invalid records are written to the target; the dataset reports the failure as a metric

```
# SQL
CONSTRAINT <expectation > EXPECT (<expectation_expr >);

# Python
Odlt.expect(<description > , <constraint > )
Odlt.expect_all(expectations)
```

• Drop:

 Result: Invalid records are not written to the target; the dataset reports the failure as a metric

```
# SQL
CONSTRAINT <expectation > EXPECT (<expectation_expr >)
ON VIOLATION DROP ROW;
# Python
Odlt.expect_or_drop(<description >, <constraint >)
```

• Fail:

 Result: Invalid records stop the update from completing. Fix issue before re-running the query

```
# SQL
CONSTRAINT expectation EXPECT (<expectation_expr>)
ON VIOLATION FAIL UPDATE;
```

```
4 | 5 | # Python | @dlt.expect_or_fail(<description>, <constraint>)
```

7 Data Governance with Unity Catalog

7.1 Unity Catalog

- UC is a universal catalog for data and AI on a Lakehouse
- Helps to control, audit, trace, and discover data across Databricks
- Set up data access rules in one place and enforce them in all workspaces, following ANSI SQL standards
- Create and manage storage credentials, external locations, storage locations, and volumes using SQL or UC UI
- Access data from various cloud platforms and storage formats
- Apply fine-grained access control and data governance policies
- Unified governance for data and AI:
 - Assets within UC include catalogs, databases (schemas), tables, notebooks, work-flows, queries, dashboards, filesystem volumes, ML models, etc.
 - Protect data and AI assets with UC's built-in governance and security with unified solution
- SQL-Implementierung

7.2 Create and Manage Catalogs, Schemas, Volumes and Tables using UC

7.2.1 Metastore

- Centralized metadata layer
- Provides ability to catalog and share data assets across the Lakehouse
- Convention: $\{catalog\}.\{schema\}.\{table\}\ or\ \{catalog\}.\{schema\}.\{volume\} \to organize\ data\ and\ asset\ hierarchically$
- Hierarchy enables data applications to read and join across boundaries that traditionally required copying data between Hive tables

7.2.2 Catalog

- Object that groups data assets in the first level of structure
- Can include schemas, tables or volumes
- Can also specify a storage location that is used by default for its schemas, tables or volumes

7.2.3 Table

- Access tabular data stored in cloud object storage
- Managed table:
 - Backed by a managed storage location
 - Automatically deleted when the table is dropped
 - Only DELTA format

• External table:

- Backed by an external location
- Is not deleted when the table is dropped
- Introduced by keyword LOCATION when created
- Supports many file formats

7.2.4 Volume

- UC object representing a logical volume of storage in a cloud object storage location
- Provide capabilities for accessing, storing, governing, and organizing files (non-tabular, (semi-/un-) structured data)
- A managed volume is backed by a managed storage location and automatically deleted when the volume is dropped
- An external volume is backed by an external location but not deleted when the volume is dropped

7.2.5 View

- Read-only object that is the result of a query over one or more tables and views in a UC metastore
- Materialized views: Incrementally calculate and update results returned by the defining query
- Temporary views: Has limited scope and persistence and is not registered to a schema or catalog
- Dynamic views: Used to provide row- and column-level access control, in addition to data masking

7.3 Define Access Control Policies in UC

- Use ANSI SQL to grant permissions to existing Data Lake
- Fine-grained access control method controls who can access data based on multiple conditions or entitlements
- Allows to specify policies for each data item and attribute and apply them consistently across all workspaces and platforms
- Use GRANT and REVOKE statements to manage privileges on securable objects to principals
- Securable objects can be a catalog, schema, table or view
- Principal is a user, a service principal, or a group that can have privileges
- General Syntax:

```
GRANT <privilege > ON <securable_object > TO <principal >;
REVOKE <privilege > ON <securable_object > FROM <principal >;
```

with privilege: e.g., SELECT, ALL PRIVILEGES, APPLY TAG, CREATE SCHEMA, USE CATALOG

- Inheritance model: lower-level objects inherit from higher-level objects
- UC object ownership:
 - Object owners get all privileges on their own objects by default and can give privileges to their own objects and any objects inside them
 - Schema owners do not automatically have all privileges over the tables in the schema, but can give themselves privileges over the tables in the schema

7.4 Data Lineage

- Describes the transformations and refinements of data from source to insight and includes the metadata and events associated with the data lifecycle
- Benefits:
 - Impact analysis: Users can see downstream consumers of a dataset
 - Data understanding: Users gain better context and thrustworthiness of data
 - Data provenance and governance: Users can access lineage data through Catalog Explorer or REST API
- Lineage include source and destination tables and columns, notebooks, workflows, and dashboards related to a query
- Audit logs include user, timestamp, action, and query details for each access
- Users need the SELECT privilege on a table to see its lineage

7.5 Accessing System Tables

- System tables are an analytical store hosted by Databricks containing account's operational data
- Audit logs include records for all audit events (user actions, cluster events, job runs, and notebook executions)
- Table and column lineage includes records for each read or write event on a UC table or path, as well as source and destination columns involved in the event
- Clusters include full history of cluster configurations over time
- Node types include currently available node types with basic hardware information

8 Performance Tuning in Delta Lake

8.1 Avoiding Small File Problem

- Too many small files greatly increase overhead for reads
- Too few large files reduce parallelism on reads
- Databricks automatically tunes the size of DLT and compacts small files on write with auto-optimize

8.2 Table Statistics

- Collects statistics on all columns in a table
- Helps Adaptive Query Execution:
 - Spark automatically breaks down larger partitions into smaller, similar sized partitions
 - Choose proper join type
 - Select correct build in a hash-join
 - Calibrating the join order in a multi-way join
 - Syntax: ANALYZE TABLE COMPUTE STATISTICS FOR ALL COLUMNS

8.3 Predictive Optimization

• Refers to using predictive analytics techniques to automatically optimize and enhance performance of systems, processes, or workflow

- Involves data-driven insights to proactively identify and implement optimizations, improving efficiency, cost-effectiveness, and overall system performance
- Maintenance operations like OPTIMIZE to improve query performance by optimizing file size and VACUUM to reduce storage costs by deleting unused data

9 Performance Optimization with Spark

9.1 Broadcast Variables

- Feature allowing to send read-only data to all the executors in a cluster to be cached in memory and used for local operations → useful when working with a large data set used in multiple tasks
- Will not be sent over the network for each tasks
- Cache the data on each executor node rather than sending it with every task \rightarrow reduces network traffic and improves performance
- Once the data is distributed, it is cached on each executor node in a serialized form
- When a task needs to access the data, it describilizes it and uses it in the computation
- Data remains cached until the broadcast variable is destroyed
- Broadcast variables are read-only and cannot be modified once created

9.1.1 Limitations and Best Practice

- Are not automatically garbage collected → destroy them using destroy method of Broadcast class when done
- Not checkpointed → If an executor node fails and restarts, it needs to fetch the data again from another node or from the driver
- Use them sparingly and carefully \rightarrow too many variables can consume a lot of memory

9.2 Minimize Data Shuffling

- Data shuffling is the process of transferring data across different partitions or nodes
- Can be expensive and time-consuming as it involves network, disk, and (de-)serialization of data
- Shuffling occurs when performing a
 - join on two or more DataFrames
 - global aggregations
 - repartition or coalesce operations
- Reduce shuffling by using
 - a broadcast join or coalesce join instead of a sort-merge join or shuffled hash join
 - partial or approximate aggregation instead of exact aggregations
 - optimal partitioning \rightarrow dividing data into smaller logical units processed in parallel by different executors or cores
 - broadcast join: Send a copy of a small table to each executor node in the cluster so that it can be cached in memory and used for local join operations with the larger table
- Reduce the number of partitions to avoid creating too many files or tasks

- Increase number of partitions to avoid creating too few large files or tasks that can cause data skew or memory issues
- Reduce network IO by using fewer, larger workers

9.3 Avoiding Data Skew

- Occurs when the data being processed is not evenly distributed (inconsistent file size) across partitions, resulting in some tasks taking much longer than others and wasting cluster resources
- Can be caused by operations that require shuffling or repartitioning the data (join, groupBy or orderBy)
- How to handle skewed data:
 - Isolate the skewed data from the rest of the data and process it separately \rightarrow avoid shuffling the skewed data and reduce load on the cluster
 - Broadcast hash join: broadcast one of the DataFrames to each executor and build hash table in memory
 - Key salting: modifies the join key column by adding a random suffix (salt) to each value → create more partitions and distribute the data more evenly across them

9.4 Caching and Persistence

- Allow Spark to store some or all of the data in memory or on disk → can be reused without computing
- Store some intermediate results in memory or other more durable storage, e.g., disk space \rightarrow avoid recomputing

9.5 Partitioning and Repartitioning

- Partitioning: Split data into multiple chunks that can be processed in parallel by different nodes in a cluster
- Repartitioning: Change the number or distribution of partitions in an existing dataset
- Partitioning drawbacks:
 - Increases metadata cost of managing data, as each partition adds an entry to the Delta Lake transaction log
 - It may introduce data skew or imbalance if some partitions are much larger or smaller than others
- Best practices:
 - Select column with high cardinality, low skew, and high selectivity
 - Avoid partitioning by a column with low cardinality, high skew, and low selectivity (column is rarely used for filtering or joining)
 - Use partitioning scheme that matches query patterns, e.g., if most of the queries filter by a single column, use a single-column partitioning scheme
 - Monitor and optimize partitioning scheme over time:
 - * ANALYZE TABLE to collect statistics on partitions,
 - * VACUUM to remove obsolete files from partitions,
 - * OPTIMIZE to coalesce small files into larger ones
 - * ZORDER to reorder data within partitions based on a column
 - Try to keep each partition less than 1TB and greater than 1GB

10 Spark Structured Streaming

10.1 Process

- When streaming, Spark
 - represents streaming computation as a series of transformations on an unbounded table
 - translates logical plan into a series of micro-batch jobs or continuous tasks running on the cluster
- \bullet Physical plan is then optimized \to predicate pushdown, project pruning, and join reordering
- Depending on source type and options, Spark will append new data from the source and append them to an internal buffer → acts as an input table for streaming query
- Depending on trigger type and options, Spark then periodically processes new data from the buffer and updates an internal state store → keeps track of intermediate results such as aggregates, windows, and joins
- Depending on sink type and options, Spark periodically writes new data from the state store to the destination

10.2 Ingesting Streaming Data

- Use spark.readStream to create streaming DataFrame and specify source type, options, and schema
- Use spark.writeStream to write the output of the streaming DataFrame to the destination and specify sink type, options, and trigger
- Source types:
 - file, socket, rate, memory, delta
 - Syntax: spark.readStream.format("<source>").load()
- Sink types:
 - console, file, memory, delta, for each, foreachBatch \rightarrow write transformed output to external storage systems
 - Syntax: spark.writeStream.format("<source>").start()
- Output modes:
 - append: writes only new records to the destination, does not modify existing rows,
 e.g., no aggregations
 - update: writes only updated records to the destination, adds new rows based on values in the stream, e.g., aggregations with windows
 - complete: write all records to the destination, e.g., aggregations without windows
 - Syntax: .outputMode("<mode>")
- Trigger types:
 - Processing time triggers:
 - * Executes a micro-batch at a regular interval based on the processing time
 - * Syntax: .trigger(processingTime="30 seconds").start()
 - One-time trigger:
 - * Executes a single micro-batch and then terminates the query
 - * Syntax: .trigger(once=True)
 - Default trigger:
 - * Executes a micro-batch as soon as the previous one finishes

- * Maximizes throughput of a streaming application by processing data as fast as possible
- Schema inference when using from_json or from_avro to perform schema validation and evolution
- Offset management (checkpoints):
 - Ensure that the query can resume from where it left off in case of failures or restarts
 - Save intermediate state of a query to a durable storage system that should be accessible from all nodes in the cluster (e.g., HDFS, S3, Azure Blob Storage)
 - Allow streaming query to be modified and still resume from where it left off \rightarrow recovery semantics
 - Allow streaming query to report its progress asynchronously to an external system
 → asynchronous progress tracking
 - Syntax: .option("checkpointLocation", "<path>/checkpoint")

• Watermark:

- Handles late data in streams and allows to specify threshold of how late the data can still be considered for processing
- Trade-off between latency and completeness
- Works well for streaming apps that have a bounded delay in the data source (e.g., sensors)
- Does not work well for applications that have an unbounded delay (e.g., historical data, user data)
- Syntax: df.withWatermark("<column>", "<expression>")

10.3 Reading from real-time Sources (Kafka)

- spark-sql-kafka-0-10 library provides source and sink for Kafka
- Source allows to read data from Kafka topics or partitions as a stream of records → each
 consists of a key, value, offset, partition, timestamp, and optional headers
- Sink allows to write data to Kafka topics as a stream of records \rightarrow each consists of a key, value, and optional headers
- When creating a DataFrame from Kafka using readStream, specify options such as bootstrap servers, topic name/pattern, and the starting/ending offset:
 - Bootstrap server: Address of the Kafka brokers that the source connects to
 - Topic name/pattern: Determines which topics or partitions to subscribe to
 - Start/end offsets: Determine range of records to read from each partition, e.g.,
 earliest, latest or none
- When writing output of the stream destination using writeStream, specify output mode, format, trigger, and interval → determines how output table is updated when new data arrives
- Format determines destination system, e.g., console, filesystem (PARQUET, CSV, JSON), database (jdbc), or Kafka
- Phyton implementation

11 Processing Streaming Data

- Delta Lake as sink:
 - Uses transaction log to keep track of all changes made to a table (ordered list of atomic, deterministic, and serializable commits that have occurred in the table)
 - Ensures that only one writer can commit at a time by using optimistic concurrency control (OCC)
- Idempotent stream: the same data can be written to a Delta Table multiple times without changing the final result \rightarrow useful for exactly-once processing data

12 SQL Coding

12.1 Delta Table

12.1.1 Creating a Delta Table or View

```
CREATE TABLE <schema>.  (
     id LONG,
3
     country STRING,
     capital STRING
4
5
  ) USING DELTA;
6
  # Load data - INSERT INTO
  INSERT INTO <schema>.  VALUES
     (1, "UK", "London"),
9
10
     (2, "Canada", "Toronto");
11
12
13 # Alternatively
14 INSERT INTO <schema>. <table_name>
15 SELECT * FROM <file_format>. '<source_table>.<file_format>';
16
17 # CTAS - Combines creation and insertion into single operation
18 CREATE TABLE <schema>.<new_table>
19 USING DELTA
20 AS SELECT * FROM <schema>. ;
21
22 # Alternative
23 CREATE TABLE  USING DELTA
24 AS SELECT *
25 FROM read_files(
26
     "<file_path>",
     format => "<format>",
27
     sep => "<sep>"
28
29)
30
31 # Temp View
32 CREATE OR REPLACE TEMP VIEW <view> AS
33 SELECT *
34 FROM <format > . '<file_path > ';
```

12.1.2 Reading a Delta Table

```
SELECT * FROM <file_format>. '<file_path>'
LIMIT 10;

# Alternativ
SELECT * FROM <schema>.;
```

```
6
  # Time Travel
  SELECT DISTINCT <column> from <schema>.
9 VERSION AS OF 1;
10
11 # Update data
12 UPDATE default.countries
13 SET {country = "U.K"}
14 WHERE id = 1;
15
16 # COPY INTO
17 COPY INTO 
18 FROM "<file_path>"
19 FILEFORMAT <file_format>
20 COPY_OPTIONS("..." = "...")
21
22 # Delete
23 DELETE FROM <schema>. 
24 WHERE id=1;
```

12.1.3 Optimizing Delta Tables

```
# Compaction
OPTIMIZE "file_path"

# Z-Ordering
OPTIMIZE "<file_path>"
ZORDER BY (<column>)

# Partitioning
```

12.1.4 Tagging, Commenting, and Capturing Metadata

```
# Add a comment on a table
COMMENT ON TABLE <catalog>.<schema>.
IS <comment>;

# Add a tag to a table
ALTER TABLE <catalog>.<schema>.
SET TAGS (
    "<tag1>"="<description1>",
    "<tag2>"="<description2>"

| Remove a tag from a table
```

```
13 ALTER TABLE <catalog>.<schema>.
14 UNSET TAGS ("<tag1>", "<tag2>");
15
16 # Add comments to table columns
17 ALTER TABLE <catalog>.<schema>.
18 ALTER COLUMN <column> COMMENT "<comment>";
19
20 # Add tags to column
21 ALTER TABLE <catalog>.<schema>.
22 ALTER COLUMN <column> SET TAGS (
    "<tag>"="<description>"
23
24 )
25
26 \mid # Remove tag from column
27 ALTER TABLE <catalog>.<schema>.
28 ALTER COLUMN <col> UNSET TAGS ("<tag>");
```

12.2 Delta Live Table

12.2.1 Data Quality and Validation Rules

```
1 # Create Live Table for customer data
  CREATE OR REFRESH LIVE TABLE customers (
3 CONSTRAINT
     valid_customer_key
     EXPECT (c_custkey IS NOT NULL)
     ON VIOLATION DROP ROW,
6
7
  CONSTRAINT
8
     <expectation_name>
9
     EXPECT (<EXPECTATION_EXPRESSION >)
     ON VALIDATION <ACTION>
11 ) AS SELECT * FROM <catalog>. <schema>. customers;
12
13 # Deduplicate records
14 CREATE TEMPORARY LIVE TABLE duplicate_customers_test (
     CONSTRAINT unique_customer_key
15
16
     EXCPECT (cnt=1)
17
     ON VIOLATION DROP ROW
18) AS
19 SELECT
20
     c_custkey, count(*) AS cnt
21 FROM
22
     live.customers
23 GROUP ALL;
```

12.3 Unity Catalog

12.3.1 Create Catalog, Volume, View

```
1 # Create a catalog
2 CREATE CATALOG <catalog>;
4 # Create a schema
5 USE CATALOG <catalog>;
6 CREATE SCHEMA <schema>;
8 # Create a volume
9 CREATE VOLUME <catalog>.<schema>.<volume>
10| LOCATION "<path>";
11
12 # Create a table
13 USE CATALOG <catalog>;
14 USE SCHEMA <schema>;
15 CREATE TABLE IF NOT EXISTS  (
16
     <col_1> <TYPE>,
17
     <col_2> <TYPE>
18);
19 INSERT INTO 
20 VALUES (<value>, <value>);
21
22 # Create a view
23 CREATE OR REPLACE VIEW  (<col_1>, <col_2>)
24 COMMENT "<comment>"
25 AS SELECT <col_1>, ...
26 FROM ;
```

12.3.2 Row Filtering

```
# Row filtering - create function
CREATE FUNCTION <function> (<column_name> <column_type>, ...)
RETURN {<filter_clause_whose_input_must_be_a_boolean>};

# Apply filtering
ALTER TABLE  SET ROW FILTER <function_nyme> ON
(<column_name>, ...);

# Modify row filters
CREATE OR REPLACE FUNCTION
<function> (<column_name> <column_type>);

# Delete row filter
ALTER TABLE  DROP ROW FILTER;
DROP FUNCTION <function>;
```

Perform ALTER TABLE DROP ROW FILTER before dropping the function or the table will be in an inaccessible state.

12.3.3 Column Masking

Apply masking functions (UDFs) to table columns, such as replacing, hashing, or redacting original values in order to control visibility of sensitive data.

```
# Create function
  CREATE FUNCTION <function> (<column_name>, <column_type>, ...)
3
  RETURN {<expression_with_same_type_as_first_column};</pre>
  # Apply column mask
  ALTER TABLE  ALTER COLUMN <column>
  SET MASK <function>;
9
  # Or apply when creating the table
  CREATE TABLE  (
11
     <column> <column_type> MASK <function>
12);
13
14 # Remove column mask from column
15 ALTER TABLE  ALTER COLUMN <column_where_mask_is_applied>
16 DROP MASK;
17 DROP FUNCTION <function>;
```

13 Python Coding

13.1 Delta Table

13.1.1 Creating a Delta Table

```
delta_table = (DeltaTable.create(spark)
2
     .tableName("<schema>.")
3
     .addColumn("id", dataType=LongType(), nullable=False)
4
     .addColumn("country", dataType=StringType(), nullable=False)
5
     .addColumn("capital", dataType=StringType(), nullable=False)
6
     .execute()
7
  )
8
9
  # Load data - INSERT INTO
10 data = [
     (1, "UK", "London"),
11
12
     (2, "Canada", "Toronto")
13 ]
14 schema = ["id", "country", "capital"]
|15| df = spark.createDataFrame(data, schema=schema)
16 (df.write
17
     .format("delta")
     .insertInto("<schema>.")
18
19)
20
21 # Alternatively
22 # Read data into a DataFrame and write it to Delta Table
23 df = (spark.read
     .format("<file_format>")
24
     .option("header", "true")
25
26
     .load("file_path")
27)
28
  (df.write
     .format("delta")
29
     .mode("overwrite")
30
     .saveAsTable("<schema>.")
31
32)
33
34 # Append data
35 data = [(3, "United_\States", "Washington_\D.C.")]
36 schema = ["id", "country", "capital"]
37 df = spark.createDataFrame(data, schema=schema)
38 (df.write
     .format("delta")
39
     .mode("append")
40
41
     .saveAsTable("<schema>.")
42
```

13.1.2 Reading a Delta Table

```
df = spark.read.format("<file_format>").load("<file_path>")
2
3 # Alternativ
4 from delta.tables import DeltaTable
6 delta_table = DeltaTable.forName(spark, "<schema>.")
  delta_table.toDF().show()
8
9
  # Time travel
10 (spark.read
     .option("versionAsOf", "1")
11
12
     .load(".<file_format>")
     .select("<column>").distinct()
13
14)
15
16 # Anzahl Rows zu bestimmtem Zeitpunkt
17 (spark.read
18
     .option("timestampAsOf", "YYYY-MM-DD")
     .load(".<file_format>")
19
     .count()
20
21)
22
23 # Restore Table
24 delta_table = DeltaTable.forPath(spark, "<file_path>")
25 delta_table.restoreToVersion(3)
26
27 # Update table
28 delta_table_df.update(
     condition = "id=1",
29
     set = {"country": "'U.K.'"}
30
31)
32
33 # Delete from table
34 delta_table.delete(F.col("id") == 1)
```

13.1.3 Optimizing Delta Tables

```
1 # Compaction
2 delta_table = DeltaTable.forPath(spark, "<file_path>")
3 delta_table.optimize().executeCompaction()
5 # Z-Ordering
6 delta_table = DeltaTable.forPath(spark, "<file_path>")
  delta_table.optimize().executeZOrderBy("<column>")
9
  # Partitioning
10 | df = (spark.read)
     .format("<file_format>")
11
12
     .option(...)
     .load("<file_path>")
13
14)
15
  (df.write
16
17
     .format("delta")
     .mode("overwrite")
18
     .partitionBy("<column>")
19
20
      .save("<file_path>")
21)
```

13.2 Delta Live Table

13.3 Streaming

```
1 # Create streaming DataFrame
  df = (spark.readStream
3
      .format(...)
4
      .option(...)
5
      .load()
6
7
8
  # Write output
9
  query = (df.writeStream
10
      .outputMode(...)
      .format(...)
11
12
      .start()
13)
```