Set Theory, Probability, and Single Experiment

1.1 From Set to Probability (of the single experiment)

Set Theory	Probability
Element	Outcome
Subset	Event
Universal Set	Sample Space (Ω)

- 1. There are three Set Operations: $A \cup B$, $A \cap B$, A^{c} .
- 2. A probability $\mathbb{P}(\cdot)$ is a function that maps events in the sample space to real numbers such that $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\text{Event}) \geq 0$, and $\mathbb{P}(\Omega) = 1$, where \emptyset is null set has no element (i.e., event has no outcome).
- 3. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(AB)$, where $\mathbb{P}(AB) = \mathbb{P}(A \cap B)$.
- 4. Union Bound: $\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$. And $\mathbb{P}(\bigcup_{i=1}^{N} A_i) \leq \sum_{i=1}^{N} \mathbb{P}(A_i)$ for more than two sets.

1.2 Set Properties and corresponding Probability Properties

- 1. Mutually Exclusive: $A \cap B = \emptyset \Rightarrow \mathbb{P}(A \cap B) = 0$, which implies $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$.
- 2. Pairwise Mutually Exclusive: $A_i \cap A_j = \emptyset$ for $i \neq j$.
- 3. Outcomes are always Pairwise Mutually Exclusive since they are the smallest units (i.e., Elements) in the Set.
- 4. Collectively Exhaustive: $\bigcup_{i=1}^N A_i = \Omega \Rightarrow \mathbb{P} \left(\bigcup_{i=1}^N A_i \right) = 1.$
- 5. Partitions (i.e., Mutually Exclusive & Collectively Exhaustive): $\mathbb{P}(\bigcup_{i=1}^{N} A_i) = \sum_{i=1}^{N} \mathbb{P}(A_i) = 1$.

1.3 Conditional Probability and Bayes' Theorem

- 1. $\mathbb{P}(A \mid B) = \mathbb{P}(AB)/\mathbb{P}(B)$.
- 2. If A_i are Mutually Exclusive: $\mathbb{P}(A \mid B) = \mathbb{P}(\bigcup_{i=1}^N A_i \mid B) = \sum_{i=1}^N \mathbb{P}(A_i \mid B)$.

3. If B_i are Partitions (Law of Total Number),

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)}$$
 (Definition of Conditional Probability)

$$= \mathbb{P}(AB)$$
 (B is Collectively Exhaustive so $\mathbb{P}(B) = 1$)

$$= \mathbb{P}(A \cdot \cup_{i=1}^{N} B_i)$$
 (B is Mutually Exclusive)

$$= \sum_{i=1}^{N} \mathbb{P}(AB_i)$$
 (B is Partition)

$$= \sum_{i=1}^{N} \mathbb{P}(A \mid B_i)\mathbb{P}(B_i).$$
 (Definition of Conditional Probability)

4. Bayes' Theorem:

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B)}.$$

1.4 Independent

- 1. $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.
- 2. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A)\mathbb{P}(B)$.
- 3. $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)\mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A).$
- 4. If A and B are independent then A^{c} and B are independent and so on.

$$\begin{split} \mathbb{P}(B) &= \mathbb{P}((A \cup A^{\mathsf{c}}) \cap B) = \mathbb{P}(AB) + \mathbb{P}(A^{\mathsf{c}}B) & (A \text{ and } A^{\mathsf{c}} \text{ are partitions}) \\ &\Rightarrow \mathbb{P}(A^{\mathsf{c}}B) = \mathbb{P}(B) - \mathbb{P}(AB) \\ &= \mathbb{P}(B) - \mathbb{P}(A)\mathbb{P}(B) \\ &= \mathbb{P}(B) \left(1 - \mathbb{P}(A)\right) \\ &= \mathbb{P}(B)\mathbb{P}(A^{\mathsf{c}}). \end{split}$$

Sequential Experiments

- 1. Tree Diagrams
- 2. Counting Methods (Essentially the outcomes in each experiment (i.e., sample space) are equiprobable)
 - (a) Multiplication: $n \times k_1 \times k_2 \times \dots$
 - (b) Sampling without Replacement
 - i. Permutation: $\frac{n!}{(n-k)!}$.
 - ii. Combination: $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \binom{n}{n-k}$.
 - iii. Combination is Permutation without order. Combination is also called n choose k.
 - (c) Sampling with Replacement: n^k
 - (d) Multiple Combination:
 - i. $\binom{n}{k_1,k_2,\dots,k_m} = \frac{n!}{k_1!k_2!\dots k_m!}$ where $n = \sum_{i=1}^m k_i.$
 - ii. For the two cases situation, $n = k_1 + k_2 \Rightarrow \binom{n}{k_1 k_2} = \frac{n!}{k_1! k_2!} \iff \binom{n}{k_1} \iff \binom{n}{k_2}$.
- 3. Independent Trails (Essentially the outcomes in each sample space are not necessarily equiprobable)
 - (a) Theorem 2.8: The Probability of k_0 failures and k_1 successes in $n = k_0 + k_1$ Independent Trails with success rate p is

$$\mathbb{P}(k_0, k_1) = \binom{n}{k_0} (1-p)^{k_0} p^{k_1} = \binom{n}{k_1} (1-p)^{k_0} p^{k_1}.$$

(b) Theorem 2.9: $n = k_1 + k_2 + \cdots + k_m$ and success rates are p_1, p_2, \dots, p_m , where $\sum_{i=1}^m p_i = 1$ has

$$\mathbb{P}(k_1, k_2, \dots, k_m) = \binom{n}{k_1, k_2, \dots, k_m} p_1^{k_1} p_2^{k_2} \dots p_m^{k_m}.$$

Discrete Random Variables

- 1. Discrete Random Variables: Assign numerical value to discrete outcomes
- 2. Probability Mass Function (PMF):

$$\sum_{x \in X} P_X(x) = 1.$$

- 3. Families of Discrete Random Variables and their PMF
 - (a) Bernoulli (p): **E.g.**, **Flip a coin**

$$P_X(x) = \begin{cases} 1 - p & x = 0, \\ p & x = 1, \\ 0 & otherwise. \end{cases}$$

(b) Binomial (n, p): Get **x** successes in **n** Bernoulli (p) experiments \iff independent trails

$$P_X(\mathbf{x}) = \begin{cases} \binom{n}{\mathbf{x}} p^x (1-p)^{n-x} & x = 0, 1, \dots, n \\ 0 & otherwise. \end{cases}$$

Note: Bernoulli $(p) \iff$ Binomial (1,p).

(c) Poisson (α): Binomial (n, p) with small p, large n, and $\alpha = np$

$$P_X(x) = \begin{cases} \frac{\alpha^x e^{-\alpha}}{x!} & x = 0, 1, \dots \\ 0 & otherwise. \end{cases}$$

(d) Geometric (p): Get the **1st** success at the **xth** Bernoulli (p) experiment

$$P_X(x) = \begin{cases} p(1-p)^{x-1} & x = 1, 2, \dots \\ 0 & otherwise. \end{cases}$$

(e) Pascal (k, p): Get the **kth** success at the **xth** Bernoulli (p) experiment

$$P_X(x) = \begin{cases} \binom{x-1}{k-1} p^k (1-p)^{x-k} & x = k, k+1, k+2, \dots \\ 0 & otherwise. \end{cases}$$

Note: Geometric $(p) \iff \operatorname{Pascal}(1, p)$.

(f) Discrete Uniform (k, l): outcomes are uniformly distributed on range (k, l) E.g., Roll a Die

$$P_X(x) = \begin{cases} 1/(l-k+1) & x = k, k+1, k+2, \dots, l \\ 0 & otherwise. \end{cases}$$

4. Cumulative Distribution Function (CDF):

$$F_X(x) = P_X[X \le x] = \sum_{k=0}^x P_X(k).$$

$$F_X(b) - F_X(a) = \sum_{k=0}^b P_X(k) - \sum_{k=0}^a P_X(k) = \sum_{k=a+1}^b P_X(k) = P_X(a < X \le b).$$

The CDF of Geometric (p) is worth to remember

$$F_X(x) = P_X[X \le x]$$

$$= 1 - P_X[X > x]$$

$$= 1 - \sum_{i=x+1}^{\infty} p(1-p)^{i-1}$$

$$= 1 - (1-p)^x \sum_{i=1}^{\infty} p(1-p)^{i-1}$$

$$= 1 - (1-p)^x.$$

- 5. Average and Expectations
 - (a) In ordinary language, an **Average** is a single number taken as representative of a list of numbers.
 - i. Mode: The outcome appears the most often in the sample space

$$P_X(x_{\text{mode}}) \ge P_X(x)$$
.

ii. Median: The outcome which separates the higher half from the lower half of a sample space

$$P_X[X \le x_{\text{med}}] \ge 1/2,$$
 $P_X[X \ge x_{\text{med}}] \ge 1/2.$

iii. (Arithmetic) mean: The sum of all the outcomes divided by the number of outcomes

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

- (b) Expectation: Weighted (Arithmetic) mean
 - i. Definition:

$$\mu_x = \mathbb{E}[X] = \sum_{x \in S_X} x P_X(x).$$
 (First Moment of X)

$$\mathbb{E}[X^2] = \sum_{x \in S_X} x^2 P_X(x).$$
 (Second Moment of X)

- ii. Important Expectations
 - A. Bernoulli (p):

$$\mathbb{E}[X] = 0 \cdot P_X(0) + 1 \cdot P_X(1) = 0(1-p) + 1(p) = p.$$

B. Binomial (n, p):

$$\mathbb{E}[X] = np.$$

C. Poisson (α) :

$$\mathbb{E}[X] = \alpha.$$

D. Geometric (p):

$$\mathbb{E}[X] = 1/p.$$

E. Pascal (k, p):

$$\mathbb{E}[X] = k/p.$$

F. Discrete Uniform (k, l):

$$\mathbb{E}[X] = (k+l)/2.$$

- (c) From an engineering perspective, **Mean (including Expectations, etc.)** is numerically easier to calculate, either using human brain or computers, than Mode and Median, when the sample space is humongous.
- (d) In most cases, average, mean and expectation refer to the same concept.
- 6. Derived Random Variable: Y = g(X)

(a)
$$P_Y(y) = P[Y = y] = P[Y = g(x)] = P[g^{-1}(Y) = g^{-1}(g(x))] = P[X = x] = P_X(x)$$

(b)
$$\mathbb{E}[Y] = \sum y P_Y(y) = \sum g(x) P_X(x)$$

(c)
$$\mathbb{E}[X - \mu_x] = \sum_{x \in S_X} (x - \mu_x) P_X(x) = \sum_{x \in S_X} x P_X(x) - \mu_x \sum_{x \in S_X} P_X(x) = \mathbb{E}[X] - \mu_x \cdot 1 = \mu_x - \mu_x = 0$$

(d)
$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b \Rightarrow \mathbb{E}[b] = \mathbb{E}[0 \cdot X + b] = b$$

7. Variance (σ_x^2) and Standard Deviation (σ_x)

(a)

$$\begin{split} \sigma_x^2 &= \operatorname{Var}[X] \\ &= \mathbb{E}\big[(X - \mu_x)^2\big] \\ &= \mathbb{E}\big[X^2 - 2\mu_x X + \mu_x^2\big] \\ &= \mathbb{E}\big[X^2\big] - 2\mu_x \mathbb{E}[X] + \mathbb{E}\big[\mu_x^2\big] \\ &= \mathbb{E}\big[X^2\big] - 2\mu_x^2 + \mu_x^2 \\ &= \mathbb{E}\big[X^2\big] - \mu_x^2 \end{split}$$

- (b) $Var[X] \ge 0$
- (c) $Var[aX + b] = a^2 Var[X]$
- (d) Important Variance:
 - i. Bernoulli (p):

$$Var[X] = p(1-p).$$

ii. Binomial (n, p):

$$Var[X] = np(1-p).$$

iii. Poisson (α) :

$$Var[X] = \alpha$$
.

iv. Geometric (p):

$$Var[X] = (1 - p)/p^2$$
.

v. Pascal (k, p):

$$Var[X] = k(1-p)/p^2.$$

vi. Discrete Uniform (k, l):

$$Var[X] = (l - k)(l - k + 2)/12.$$

Continuous Random Variables

4.1 Continuous sample space

Axiom. A random variable X is continuous if the range S_X consists of one or more intervals. For $x \in S_X$, $\mathbb{P}(X = x) = 0$.

4.2 The Cumulative Distribution Function

Definition 4.1 (Cumulative Distribution Function (CDF)). The CDF of random variable X is

$$F_X(x) = \mathbb{P}(X \le x).$$

Theorem 4.2. For any random variable X,

- 1. $F_X(-\infty) = 0$
- 2. $F_X(\infty) = 1$
- 3. $\mathbb{P}(x_1 < X \le x_2) = F_X(x_2) F_X(x_1)$

4.3 Probability Density Function

Start with a continuous random variable X with CDF $F_X(x)$. The probability of "X with volume \triangle " is defined as:

$$\mathbb{P}(x < X \le x + \triangle) = F_X(x + \triangle) - F_X(x)$$
$$= \frac{F_X(x + \triangle) - F_X(x)}{(x + \triangle) - x} \cdot \triangle.$$

Definition 4.3 (Probability Density Function (PDF)).

$$f_X(x) = \lim_{\Delta \to 0} \frac{F_X(x + \Delta) - F_X(x)}{\Delta}$$
$$= \frac{\mathrm{d}F_X(x)}{\mathrm{d}x}.$$

Theorem 4.4. For a continuous random variable X with PDF $f_X(x)$,

- 1. $f_X(x) \ge 0$ for all x
- 2. $F_X(x) = \int_{-\infty}^x f_X(u) du$

3.
$$\int_{-\infty}^{\infty} f_X(x) \, \mathrm{d}x = 1$$

Theorem 4.5.

$$\mathbb{P}(x_1 < X \le x_2) = \int_{x_1}^{x_2} f_X(x) \, \mathrm{d}x.$$

4.4 Expected Value

Definition 4.6 (Expected value).

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) \, \mathrm{d}x.$$

Theorem 4.7 (Derived Random Variable).

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) \, \mathrm{d}x.$$

Theorem 4.8. For any random variable X,

- 1. $\mathbb{E}[X \mu_x] = 0$,
- 2. $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b,$
- 3. $Var[X] = \mathbb{E}[X^2] \mu_x^2$,
- 4. $Var[aX + b] = a^2 Var[X]$.

4.5 Families of Continuous Random Variables

1. Continuous Uniform $\mathsf{Unif}(k,l)$: A continuous counterpart of Discrete Uniform

$$f_X(x) = \begin{cases} \frac{1}{l-k} & k \le x \le l\\ 0 & otherwise. \end{cases}$$

$$F_X(x) = \frac{x-k}{l-k}. \qquad x \in (k,l)$$

$$\mathbb{E}[X] = (l+k)/2.$$

$$\operatorname{Var}[X] = (l-k)^2/12.$$

2. Exponential $\mathsf{Exp}(\lambda)$: A continuous counterpart of $\mathsf{Geom}(1-e^{-\lambda})$

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & otherwise. \end{cases}$$
$$F_X(x) = 1 - e^{-\lambda x}.$$
$$\mathbb{E}[X] = 1/\lambda.$$
$$Var[X] = 1/\lambda^2.$$

3. Erlang Erlang (n, λ) : A continuous counterpart of Pascal $(n, 1 - e^{-\lambda})$

$$f_X(x) = \begin{cases} \frac{\lambda(\lambda x)^{n-1}e^{-\lambda x}}{(n-1)!} & x \ge 0\\ 0 & otherwise. \end{cases}$$

$$F_X(x) = 1 - \sum_{k=0}^{n-1} \frac{(\lambda x)^k e^{-\lambda x}}{k!} = \mathbb{P}_{\mathbf{poisson}}(k \ge n).$$

$$\mathbb{E}[X] = n/\lambda.$$

$$\operatorname{Var}[X] = n/\lambda^2.$$

4.6 Gaussian Random Variables

Theorem 4.9 (Gaussian Integral).

$$\int_{-\infty}^{\infty} e^{-x^2} \, \mathrm{d}x = \sqrt{\pi}.$$

Definition 4.10 (Gaussian Random Variable). X is a $\mathsf{Gaussian}(\mu, \sigma)$ random variable if the PDF of X is

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2}).$$

X is also called $Normal(\mu, \sigma)$ random variable. We will use $N(\mu, \sigma)$ in the following content.

Theorem 4.11 (The Expectation and Variance of $X \sim N(\mu, \sigma)$).

$$\mathbb{E}[X] = \mu, \quad \operatorname{Var}[X] = \sigma^2.$$

Theorem 4.12. If X is $N(\mu, \sigma)$, Y = aX + b is $N(a\mu + b, a\sigma)$.

Theorem 4.13 (Standard Normal Random Variable). The $N(\mu, \sigma)$ with $\mu = 0, \sigma = 1$ is called standard normal random variable $Z \sim N(0, 1)$. The PDF is,

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2}).$$

And the CDF is

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp(-\frac{u^2}{2}) du.$$

Theorem 4.14. If X is $N(\mu, \sigma)$, the CDF of X is

$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right).$$

The probability that X is in the interval (a,b) is

$$\mathbb{P}(a < X \le b) = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right).$$

Theorem 4.15. $\Phi(-z) = 1 - \Phi(z)$.

4.7 Delta Function, Mixed (Being Discrete and Continuous at the same time) Random Variable

Definition 4.16 (Unit Impulse (Delta) Function). Let

$$d_{\epsilon}(x) = \begin{cases} 1/\epsilon & -\epsilon/2 \le x \le \epsilon/2 \\ 0 & otherwise. \end{cases}$$

The unit impulse function is

$$\delta(x) = \lim_{\epsilon \to 0} d_{\epsilon}(x).$$

Since

$$\int_{-\infty}^{\infty} \delta(x) \, \mathrm{d}x = 1.$$

The $\delta(x)$ is indeed a PDF given it is also non-negative.

Theorem 4.17. For any continuous function g(x),

$$\int_{-\infty}^{\infty} g(x)\delta(x-x_0) \, \mathrm{d}x = g(x_0).$$

Definition 4.18 (Unit Step Function). The unit step function is

$$u(x) = \begin{cases} 0 & x < 0, \\ 1 & x \ge 0. \end{cases}$$

Theorem 4.19 (CDF of $\delta(x)$ and connection to the unit step function).

$$\int_{-\infty}^{x} \delta(v) \, \mathrm{d}v = u(x).$$

And thus

$$\delta(x) = \frac{\mathrm{d}u(x)}{\mathrm{d}x}.$$

Corollary 4.20. The theorem 4.19 allows us to define a generalized PDF that applies to discrete random variables as well as to continuous random variables. Consider the CDF of a discrete random variable, X. It is constant (let's say 0 for now) everywhere except at point $x_i \in S_X$, where it has jumps of height $P_X(x_i)$. Using the unit step function, the CDF of X is

$$F_X(x) = \sum_{x_i \in S_X} P_X(x_i) u(x - x_i).$$

And the PDF can be defined with $\delta(x)$ as

$$f_X(x) = \sum_{x_i \in S_X} P_X(x_i) \delta(x - x_i).$$

Then the Expectation will be

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \sum_{x_i \in S_X} P_X(x_i) \delta(x - x_i) \, dx$$

$$\mathbb{E}[X] = \sum_{x_i \in S_X} \int_{-\infty}^{\infty} x P_X(x_i) \delta(x - x_i) \, dx$$

$$= \sum_{x_i \in S_X} x_i P_X(x_i)$$

 $\textbf{Theorem 4.21.} \ \textit{For a random variable} \ \textit{X} \ \textit{(not specified whether it is discrete or continuous), we have}$

$$q = \mathbb{P}(X = x_0)$$
 (General expression)
 $= P_X(x_0)$ (PMF)
 $= F_X(x_0^+) - F_X(x_0^-)$ (CDF)
 $= f_X(x_0) = q\delta(0)$. (PDF & delta function)

Theorem 4.22. X is a **mixed** random variable if and only if $f_X(x)$ contains both impulses and nonzero, finite values.

Multiple Random Variables

5.1 Joint CDF

Definition 5.1 (Joint CDF). The joint CDF of random variables X and Y is

$$F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y).$$

The joint CDF is a **complete** probability model for any pair of random variables X and Y.

Theorem 5.2. For any pair of random variables, X and Y, the following properties hold:

- (a) $0 \le F_{X,Y}(x,y) \le 1$,
- (b) $F_{X,Y}(\infty,\infty) = 1$,
- (c) $F_{X,Y}(-\infty, y) = F_{X,Y}(x, -\infty) = 0$,
- (d) $F_X(x) = F_{X,Y}(x, \infty)$ and $F_Y(y) = F_{X,Y}(\infty, y)$,
- (e) $F_{X,Y}(x,y)$ is non-decreasing in x and y.

5.2 Joint PMF

Definition 5.3 (Joint PMF). The joint PMF of random variables X and Y is

$$P_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y).$$

The joint PMF is a **complete** probability model for any pair of discrete random variables X and Y.

Theorem 5.4. For discrete random variables X and Y and any set B in the X, Y plane, the probability of the event is

$$\mathbb{P}(\{B\}) = \sum_{(x,y) \in B} P_{X,Y}(x,y).$$

Apparently, the joint PMF is non-negative and sums to one.

$$\sum_{x \in S_X} \sum_{y \in S_Y} P_{X,Y}(x,y) = 1.$$

5.3 Marginal PMF

Theorem 5.5. For discrete random variables X and Y with joint PMF $P_{X,Y}(x,y)$,

$$P_X(x) = \sum_{y \in S_Y} P_{X,Y}(x,y), \qquad P_Y(y) = \sum_{x \in S_X} P_{X,Y}(x,y).$$

For discrete random variables, the marginal PMF $P_X(x)$ and $P_Y(y)$ are probability models for the individual random variables X and Y, but they only provide an **incomplete** probability model for the pair of random variables X and Y.

5.4 Joint PDF

Definition 5.6 (Joint PDF). The joint CDF of continuous random variables X and Y is a function $f_{X,Y}(x,y)$ with the property

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u,v) \, \mathrm{d}u \, \mathrm{d}v.$$

Apparently, we can then derive the joint PDF as follows,

$$f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y).$$

The joint PDF is a **complete** probability model for any pair of continuous random variables X and Y.

Theorem 5.7. The probability that the continuous random variables (X,Y) are in A

$$\mathbb{P}(\{A\}) = \iint_A f_{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

The joint PDF is non-negative and integrates to one.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y = 1.$$

5.5 Marginal PDF

Theorem 5.8. For continuous random variables X and Y with joint PDF $f_{X,Y}(x,y)$,

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy, \qquad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx.$$

For continuous random variables, the marginal PDFs $f_X(x)$ and $f_Y(y)$ are probability models for the individual random variables X and Y, but they only provide an **incomplete** probability model for the pair of random variables X and Y.

5.6 Independent Random Variables

Definition 5.9 (Independent Random Variables). Random variables X and Y are independent if and only if

$$P_{X,Y}(x,y) = P_X(x)P_Y(y);$$
 (Discrete)
 $f_{X,Y}(x,y) = f_X(x)f_Y(y).$ (Continuous)

It's easy to show that if X and Y are independent, then

$$F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X \le x)\mathbb{P}(Y \le y) = F_X(x)F_Y(y).$$

5.7 Expected Value of a Function of Two Random Variables

Theorem 5.10 (Expected Value of a Function of Two Random Variables). The expected value of a function g(X,Y) of two random variables X and Y is

$$\mathbb{E}[g(X,Y)] = \sum_{x \in S_X} \sum_{y \in S_Y} g(x,y) P_{X,Y}(x,y);$$
 (Discrete)

$$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$
 (Continuous)

Theorem 5.11.

$$\mathbb{E}\left[\sum_{i=1}^{n} a_i g_i(X, Y)\right] = \sum_{i=1}^{n} a_i \mathbb{E}[g_i(X, Y)].$$

Theorem 5.12. For any two random variables X and Y,

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y].$$

5.8 Covariance, Correlation and Independent

Definition 5.13 (Covariance). The covariance of two random variables X and Y is

$$\sigma_{xy} = \operatorname{Cov}[X, Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

Theorem 5.14. The variance of the sum of two random variables is

$$Var[aX + bY] = a^2 Var[X] + b^2 Var[Y] + 2ab Cov[X, Y].$$

Definition 5.15 (Correlation Coefficient). The correlation coefficient of two random variables X and Y is

$$\rho_{xy} = \operatorname{Corr}[X, Y] = \frac{\operatorname{Cov}[X, Y]}{\sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}.$$

Note: In some definition of correlation coefficient, ρ_{xy} is defined as $\rho_{xy} = \sigma_{xy}$ (e.g., in stochastic analysis where state space is unit free).

Theorem 5.16.

$$-1 \le \rho_{xy} \le 1$$
.

Theorem 5.17. If X and Y are independent, then

- (a) $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$,
- (b) Cov[X,Y] = 0, this is also called uncorrelated since the $\rho_{xy} = 0$
- (c) $\operatorname{Var}[aX + bY] = a^2 \operatorname{Var}[X] + b^2 \operatorname{Var}[Y]$.
- (d) Uncorrelatedness does not imply independence. e.g., $X \sim \mathsf{Unif}[-1,1]$ and $Y = X^2$.
- (e) Specifically, Uncorrelatedness is known as linear independent. But independent includes both linear and nonlinear independent.