

Continuously Generalizing Buildings to Built-up Areas by Aggregating and Growing

Dongliang Peng¹, Guillaume Touya²

¹Chair of Computer Science I, University of Würzburg, Germany ²COGIT, IGN, France

zoom out

(Google Maps)

Map Generalization...

... is about deriving a smaller-scale map from an exsiting map.

Map Generalization...

... is about deriving a smaller-scale map from an exsiting map.

Typical generalization operators (ESRI 1996):

Continuous Map Generalization...

... is to derive a series of maps with smooth changes.

Continuous Map Generalization...

... is to derive a series of maps with smooth changes.

input

input

input goal

input

$$t = 0$$
 $t = 0.1$ $t = 0.2$ $t = 0.3$ $t = 0.4$ $t = 0.5$ goal

Outline

Introduction

Methodology

- Case Study
- Concluding Remarks

Three Join Types of Buffering

rectangle

Three Join Types of Buffering

buffering using miter joins to keep right angles

$$d_{G,t} = t \cdot d_{G}$$

 d_{G} : input

buffering using miter joins to keep right angles

$$d_{G,t} = t \cdot d_{G}$$

 d_{G} : input

buffering using miter joins to keep right angles

squaring if spikes are too long: distance larger than $\alpha d_{G,t}$, where we set $\alpha = 1.5$

$$d_{\mathsf{E},t} = t \cdot \frac{\ell}{2} M_{\mathsf{g}}$$

 $\ell = 0.3 \, \mathsf{mm}$

avoid breaking:

$$d_{\mathrm{D},t} = rac{d_{\mathrm{G},t} - d_{\mathrm{E},t}}{lpha - 1}$$


```
\Box
\Box
original buildings
t=0
```


bridge
$$t = 0.6$$

bridge grow
$$t = 0.6$$

Aggregating Buildings by Adding Bridges

 Bridges and buildings constitute a minimum spanning tree (MST)

Aggregating Buildings by Adding Bridges

 Bridges and buildings constitute a minimum spanning tree (MST)

two buildings are too close: distance $< d_{\varepsilon,t}$

two buildings are too close: distance $< d_{\varepsilon,t}$

Simplifying Based on Imai-Iri Algorithm

Finding all valid shortcuts

Simplifying Based on Imai-Iri Algorithm

- Finding all valid shortcuts
- Finding a sequence of valid shortcus with the least number using breadth-first search

$$d_{\ell,t} = \ell \cdot M_t$$

 $\ell = 0.3 \,\mathrm{mm}$

Clipping by Goal Shape

Use the goal shape, at time t=1, to clip the intermediate-scale results

Clipping by Goal Shape

Use the goal shape, at time t=1, to clip the intermediate-scale results

In this way, we avoid that intermediate-scale results may leave the goal shapes

Eliminating Small Buildings and Holes

• We eliminate a group building (or "building complex") if its total area at time t is smaller than a_t . $a_t = a \cdot M_t^2$, where $a = 0.16 \, \mathrm{mm}^2$

Eliminating Small Buildings and Holes

• We eliminate a group building (or "building complex") if its total area at time t is smaller than a_t . $a_t = a \cdot M_t^2$, where $a = 0.16 \, \text{mm}^2$

• We remove a hole if its area is less than $a_{h,t}$ $a_{h,t} = a_h \cdot M_t^2$, where $a_h = 8 \text{ mm}^2$

Running Time

• *n* is total number of edges, overall input buildings

Running Time

- *n* is total number of edges, overall input buildings
- Operations like growing, dilation, eorsion, merge, and clip cost time $O(n^2)$. We may need to do each operation O(n) times.

Running Time

- *n* is total number of edges, overall input buildings
- Operations like growing, dilation, eorsion, merge, and clip cost time $O(n^2)$. We may need to do each operation O(n) times. => total runtime $O(n^3)$

Running Time

- *n* is total number of edges, overall input buildings
- Operations like growing, dilation, eorsion, merge, and clip cost time $O(n^2)$. We may need to do each operation O(n) times. => total runtime $O(n^3)$
- Our version of Imai–Iri line simplification algorithm takes time $O(n^3)$.

Outline

Introduction

Methodology

Case Study

Concluding Remarks

Case Study

Environment

- C# (using the .NET Framework 4.5)
- ArcObjects SDK 10.4.1
- Windows 7, 3.3 GHz dual core CPU, 8 GB RAM
- Time measure: Stopwatch (a class in C#)
- CLIPPER: buffering, dilation, erosion, and merge

Data

four towns in France,at scale 1 : 15,000,from IGN, 2,590 buildings, in total 19,255 edges, we set $d_G=25\,\mathrm{m}$, and thus $d_{\mathrm{D},t}=t\cdot35\,\mathrm{m}$ and $d_{\mathrm{E},t}=t\cdot7.5\,\mathrm{m}$

Result

• 93.6 s for computing the goal shapes, where Imai–Iri algorithm simplifies 2,095 edges to 1,102 edges

Result

- 93.6 s for computing the goal shapes, where Imai–Iri algorithm simplifies 2,095 edges to 1,102 edges
- 668.2 s for computing a sequence of 10 maps

A sequence of maps

Outline

- Our Example Problem
- Methodology
- Case Study
- Concluding Remarks

Advantages of our method:

- The buildings grow continuously and are simplified.
- Right angles of buildings are preserved during growing
- Distances between buildings are larger than a specified threshold.

Advantages of our method:

- The buildings grow continuously and are simplified.
- Right angles of buildings are preserved during growing
- Distances between buildings are larger than a specified threshold.

Open problems:

- For a given map and scale, how many buildings should be kept after generalization?
- Again, how much total area of buildings should be kept?
 What about the total number of edges?
- How to design a meaningful user study to evaluate results?

Thank you!

Advantages of our method:

- The buildings grow continuously and are simplified.
- Right angles of buildings are preserved during growing
- Distances between buildings are larger than a specified threshold.

Open problems:

- For a given map and scale, how many buildings should be kept after generalization?
- Again, how much total area of buildings should be kept? What about the total number of edges?
- How to design a meaningful user study to evaluate results?

Thank you!

Advantages of our method:

- The buildings grow continuously and are simplified.
- Right angles of buildings are preserved during growing
- Distances between buildings are larger than a specified threshold.

Open problems:

- For a given map and scale, how many buildings should be kept after generalization?
- Again, how much total area of buildings should be kept? What about the total number of edges?
- How to design a meaningful user study to evaluate results?

Looking for a position!