1) Control ségnals:-

Reg Dest = 0 - we repuire write register to write the result back into ALU source = 1 - ARU source = 1 inorder to get the sign extended bits. Memtoleg = 0 -> we are not accessing memory 20, 0 Regunite = 1 - we are uniting back into ang. so,1 Membrite = 0 — (We will block memory reading as well Membrite = 0 — (us writing as it is not rep in addi) Branch = 0 -> we are not branching ALUOPI = 0 -> given ALUOP2 = 0 -> Given

00	/
11)

	inputs I[31-25]						Outputs								
Instruction type	5do	op4	Edo	op2	op1	0do	RegDst	ALUSrc	MemtoReg	RegWrite	MemRead	MemWrite	Branch	ALUOp1	ALUOp0
R-format	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0
lw	1	0	0	0	1	1	0	1	1	1	1	0	0	0	0
sw	1	0	1	0	1	1	х	1	x	0	0	1	0	0	0
beq	0	0	0	1	0	0	Х	0	х	0	0	0	1	0	1
addi(i formiet)	0	0	1	0	0	0	0		0		0	0	0	0	0

i) Highest Performance (expressed in Instructions per sec.)

P2:
$$\frac{2.5411}{1.0} = \frac{2.5 \times 10^9}{1} = \frac{2.5 \times 10^9}{1.82 \times 10^9}$$
 instructions/sec
P3: $\frac{4.09112}{1.2} = \frac{4 \times 10^9}{2.2} = \frac{1.82 \times 10^9}{1.82 \times 10^9}$ instructions/sec

Instruction Court = <u>ceock Rate</u> × CPU Time

P1:
$$\frac{3442 \times 10}{1.5} = \frac{2 \times 10^9 \times 10}{1.5} = \frac{2 \times 10^{10}}{1.5}$$
 instruction
P2: $\frac{2.5446 \times 10}{1} = \frac{2.5 \times 10^9 \times 10}{1} = \frac{2.5 \times 10^{10}}{1}$ instruction
P3: $\frac{4946 \times 10}{2.2} = \frac{1.82}{4 \times 10^9 \times 10} = \frac{1.82 \times 10^{10}}{1.82}$ instruction

W)

CPU Time = Instruction Count x CPI crockPate

CPU time reduced by 30% 5 6.7 CPI increased by 20% > 1+ 20% 12 [1.2)

Clock Rate = Instruction Court × CPI

CPV Time

updated clock rates :-

PI >> 2×10° × (1.5×1.2) = 5.14×10° = 5.14 Coff = 5.14

 $P2 \Rightarrow 2.5 \times 10^{10} \times (1.0 \times 1.2) = 4.285 \times 10^{10} = 4.285 \times 10^$

P3 > 1.82 × 1010 × (2.2×1.2)

2 6.86 × 109 2 6.86 GHZ Am