Summarizing:

We can reduce polynomials mod M to polynomial mod Mi (: EI)

By Prime factorization of positive integers, we have a bijection:

(2 i solve polynomials in IFp?

- · Linear V
- · Audratic?

modular Hensel lifting reduction

{ Roots of f(T) in IF, }

Quadratic Residues

Defn. Let p be a prime number.

• Say an integer n (or the congusence class $[n]_p$) is a quadratic residue (QR) modulo p if $T^2 \equiv n \mod p$ (or equivalently, $T^2 - [n]_p = 0$) has a solution.

Rmk: this property does not dependent on the choice of rep. n.

· Otherwise, ne say n (or the conqueence class [n],) is a quadratic non-residue (QNR) modulo p

$$e. g. p = 7 | F_1 = \{ \overline{o}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6} \}$$

$$x \mod 7$$
 $\overline{0}$ $\overline{1}$ $\overline{2}$ $\overline{3}$ $\overline{4}$ $\overline{5}$ $\overline{6}$ $\overline{6}$ $x^2 \mod 7$ $\overline{0}$ $\overline{1}$ $\overline{4}$ $\overline{9} = \overline{2}$ $\overline{16} = \overline{2}$ $\overline{25} = \overline{4}$ $\overline{36} = \overline{1}$

Hence, the quadratic residues are

$$3,5,6$$
 3 all of them $6.\overline{4}(7)$

4 = 0 + 3Loop them e = (7)

Theorem (Euler)

Let p be an odd prime number, and a $\in \mathcal{J}(p)$. Then

(i) a is a quadratic residue mod p if and only if $a^{\frac{p-1}{2}} \equiv 1 \mod p$

(ii) a is a quadratic non-residue mod p if and only if $\alpha^{\frac{p-1}{2}} \equiv -1 \mod p$

Rmk: By Fermat Little Theorem, we always have q(p) = p-1 $\alpha'' = 1 \mod p$

Since p is odd, $\frac{p-1}{2} \in \mathbb{Z}$ and we have $a^{\frac{p-1}{2}} \equiv \text{either } 1 \text{ or } -1 \text{ mod } p.$ Hence, (i) \Leftrightarrow (ii). $b \in a \text{ solution of } T^2 - 1 \text{ (mod } p)$

Method of Partnership

e.g. Compate 1+2+ ··· +49. = 50 · 24 + 25 = 1225.

~

e.g. Compute 1.2.3.4.5.6.7.8.9.10 mod 11

```
Theorem (Wilson)
     Let p be a prime number. Then
                   (P-1)! \equiv -1 \mod P
  Proof. Consider \overline{\mathcal{D}}(P) = \{1, 2, \dots, P-1\}.
        Partner x and y when xy \equiv 1 \mod p.
      Note that: any x \in \mathcal{F}(p) has a unique mult inverse in \mathcal{F}(p).
   Q: Which & G I(p) is left over? 72-1 => ±1
    A: It is \iff \chi^2 \equiv 1 \mod p \iff \chi = \text{either } 1 \text{ or } p-1
 If | > 2, (| > -1)! = the product of all elements in <math>\overline{\Phi}(p)
= 1 \cdot (| > -1) \cdot (partnered pairs)
                        \equiv -1 \mod p \leq 1 \mod p
                                                                         17.
```

Prop. Let p be an odd prime number.

Then, exactly half (i.e. $\frac{p-1}{2}$) of $\mathfrak{F}(p)$ are QR, the other half are QNR.

Proof. Consider the map
$$\overline{\mathcal{D}(P)} \xrightarrow{x \longmapsto \text{not. sep of } x^2 \mod P} \overline{\mathcal{D}(P)}$$

Claim: this map is two-to-one. Hence, the # of its image, which are exactly the QRs, is exactly half of $\overline{\Psi}(P)$.

$\overline{\Psi}(P): \# QR = 2:1$ Broof of the claim:

For each QR $\alpha \in \mathcal{I}(p)$, consider the polynomial $T^2 - \overline{\alpha}$.

Then the preimage of a are exactly the roots of $T^2 - \overline{a}$.

the natural rep. # roots < 2

Since a is a QR, there is $b \in \overline{\mathcal{A}}(p)$ s.t. $b^2 \equiv a \mod p$. This gives a most b of T2-a.

On the other hand, we have
$$(p-b)^2 \equiv b^2 \equiv a \mod p$$

Since p is odd, p-b + b. Since b G I (p), so is p-b.

This gives another root $\overline{p-b}$ of $T^2-\overline{a}$.

But there are at most two roots of $T^2 - \overline{\alpha}$ since it has degree 2.

Hence, there are no more preimage of a.

Defn. Let p be a prime number, and $a, x, y \in \overline{p}(p)$. Say x and y are a-partners if $xy \equiv a \mod p$ e.g. p=7

$$\alpha = 2$$
 $1 - 2$ $3 - 4$ $5 - 6$

$$a=3$$
 1 2 3 4 5

Rmk: Every $x \in \overline{\mathcal{J}}(P)$ has an α -partner. Why? $xT \equiv \alpha \mod P$

Theorem (Euler)

Let p be an odd prime number, and a $\in \mathcal{J}(p)$. Then

(i) a is a quadratic residue mod p if and only if $a^{\frac{p-1}{2}} \equiv 1 \mod p$

(ii) a is a quadratic non-resolute mod p if and only if $a^{\frac{p-1}{2}} = -1 \mod p$

Rmk: By Fermat Little Theorem, we always have $a'' = 1 \mod p$.

Since p is odd, $\frac{p-1}{2} \in \mathbb{Z}$ and we have $a^{\frac{p-1}{2}} = \text{either 1 or } -1 \mod p.$

Hence, (i) (=> cii).

Proof: If a is a QR, then there is $x \in \mathcal{J}(p)$ s.t $x^2 \equiv a \mod p$. Hence, $\alpha^{\frac{p-1}{2}} \equiv x^{p-1} \mod p$ = 1 mod p. (By Fermet's little theorem) If a is a QNR, then for every x E I(p), x2 \$ a mod p.

Hence, the a-partner of x is distinct from x. $xy \equiv a \mod p$. Then product of elements in $\mathcal{I}(p)$ Since there are $\frac{P-1}{2}$ such pairs, we have $a^{\frac{P-1}{2}} \equiv (P-1)! \equiv -1 \mod P \pmod P$ (By Wilson Theorem)

To apply Euler's theorem, we need to compute a mod p.

To do that, we use the "taking square" trick: $\frac{41-1}{2}=21$ $\frac{21}{2}=\frac{21}{2}$

 $3' \qquad 3 = 3$ $\equiv (-20) \cdot (-5) \cdot 3 \mod 45$ $3' \qquad 9$ $3' \qquad 81 \equiv -5$ $3'' \qquad 300 \qquad \mod 45$ $3'' \qquad 3'' \qquad 300 \qquad \mod 45$

Hence 3 is a QNR mod 43

Coro: Let p be an odd prime number,

Then $T^2 + \overline{1} \in F_p[T]$ is irreducible if and only if $P \equiv 3 \mod 4$

Proof. $T^2 + \bar{1}$ is irreducible $\iff -1$ is a QNR

By Euler's theorem, this is equivalent to

$$(-1)^{\frac{p-1}{2}} \equiv -1 \mod p. \tag{*}$$

But
$$(-1)^{\frac{p-1}{2}} = \begin{cases} 1 & \text{if } \frac{p-1}{2} \text{ is even}, \\ -1 & \text{if } \frac{p-1}{2} \text{ is odd}. \end{cases}$$

Hence, (*) = 3 mod 4.

```
Kmark: Suppose P is a prime number and P \equiv 1 \mod 4
  How to find a \overline{\chi} \in \mathbb{F}_{p} s.t. \overline{\chi}^{2} + \overline{1} = 0?
         Namely, how to find a "square root of -1 mod p"
                                                            terms
                  A = 1-3.5. ..... (P-2)
                  B = 2 \cdot 4 \cdot 6 \cdot \cdots \cdot (P-1)
even numbers in \mathcal{E}(p)
   Note that
                  2 = - (19-2) mod ? ,
                4 = - (1-4) mod P,
                                                \Rightarrow B \equiv (-1)^{2} A \mod P
\equiv A \mod P \pmod{4}
               P-3=-3 mod p,
P-1=-1 mod p.
                                                       A is a squae vort of -1 mod p"
   (In the other hand AB = (1-1)! = -1 \mod p (Wilson theorem)
```