

GRAPH KERNELS BASED ON LINEAR PATTERNS: THEORETICAL AND EXPERIMENTAL COMPARISONS

Linlin Jia (Linlin.jia@insa-rouen.fr)

Advisors : Benoit Gaüzère & Paul Honeine LITIS Lab, INSA Rouen & Université de Rouen, Normandy, France

1. Abstract

Graph kernels are powerful tools to bridge the gap between machine learning and data encoded as graphs. Most graph kernels are based on a decomposition of graphs into a set of patterns. The similarity between graphs is then deduced from the similarity of corresponding patterns. Among different possible sets of patterns, linear patterns based kernels often constitute a good trade off between time consumption and accuracy performance.

Figure 1: Tasks in chemoinformatics

In this work, we propose a thorough study and comparison of the existing graph kernels based on different linear patterns, namely walks and paths. This work leads to a clear comparison of pros and cons of different proposed kernels.

2. Graph Kernels Based on Linear Patterns

Figure 2: Linear Graph Kernels

- $lacksymbol{ ext{Common walk kernels:}} K_{ imes}(G_1,G_2) = \sum_{i,j=1}^{|V_{ imes}|} \left[\sum_{h=1}^{\infty} \lambda_h A_{ imes}^h
 ight]_{ij}$
 - Feature space: all possible walk sequences in graphs
- Marginalized kernels: $K(G_1, G_2) = \sum_{w_1 \in W(G_1)} \sum_{w_2 \in W(G_2)} k_W(w_1, w_2) p_{G_1}(w_1) p_{G_2}(w_2)$
 - Feature space: infinite dimensional random walk count vectors
- \blacksquare Random walk kernels: $K(G,G') = \sum_{k=0}^{\infty} (k) q_{\times}^{\top} W_{\times}^k p_{\times}$
 - -Feature space: random walks
 - -A unified framework of common walk kernels and marginalized kernels
- $lacksymbol{ extstyle Shortest path kernels:} K_{sp}(S_1,S_2) = \sum_{e_1 \in E_1} \sum_{e_2 \in E_2} k_w(e_1,e_2)$
 - -Feature space: all paths of length 1
- \bigcirc Structural SP kernels: $K_{ssp}(G_1,G_2)=rac{1}{n_1}rac{1}{n_2}\sum_{i:p_i\in P_1}\sum_{j:p_j\in P_2}k_p(p_i,p_j)$
 - -Feature space: all shortest paths
- Path kernels up to length h: $K_{path}(G_1, G_2) = \sum_{i: p_i \in P_1} \sum_{j: p_j \in P_2} k_p(p_i, p_j)$
 - -Feature space: all paths up to length h

Table 1: Comparison of linear graph kernels

	Substructures			Labeling						D 1	
Kernels	linear non-linear cycli		evelie	symbolic non-sym			ymbolic Directed		Complexity	Explicit Representation	Weighting
	mcar	nodes edges nodes edges								rtoprosentation	
Common walk	√	X	X	√	√	X	X	√	$\mathcal{O}(n^6)$	Х	a prior
Marginalized	√	X	X	√	√	X	X	√	polynomial	X	X
Random walk	√	X	X	/	1	X	X	√	$\mathcal{O}(n^3)$	X	>
Shortest path	√	X	X	√	X	√	X	√	$\mathcal{O}(n^4)$	X	X
Structural shortest path	√	X	X	/	1	V	√	√	$\mathcal{O}(\lambda n^4 + nm)$	X	X
Path kernel up to length h	√	X	Х	/	/	X	X	√	$\mathcal{O}(hnm)$	√	√

3. Comparison of Linear Graph Kernels

• On different graph kernels:

- Mathematical expressions
- -Time complexity analysis
- -Pros and cons of each kernel
- -Relationships between kernels
- -From walks to paths: tottering and halting problems

• On different types of graph datasets (accuracy and time complexity):

- -Labeled and unlabeled graphs
- -Directed and undirected graphs
- -Graphs with different numbers of nodes
- -Graph with different average degrees
- -Graphs with symbolic and non-symbolic attributes
- -Cyclic and acyclic graphs

Choose graph kernels properly based on properties of datasets

4. Github Library: Implementation

Functions of Graph Kernels

- Common walk kernels (commonwalkkernel):
 - -Direct product of labeled graphs
 - -Two computation methods based on exponential series and geometric series
- Marginalized kernels (marginalizedkernel):
- -Remove tottering by graph transformation
- Random walk kernels (randomwalkkernel):

-Five methods to speed up kernel computation: Sylvester equation methods, conjugate gradient methods, fixed-point iterations, spectral decomposition method, nearest Kronecker product approximation.

■ Shortest path kernels (spkernel):

- -Support non-symbolic node attributes
- -Support missing values of node/edge labels
- -Apply the Fast Computation of Shortest Path Kernel (FCSP) method to speed up computation

■ Path kernels up to length *h* (untilhpathkernel):

- -Implement Tanimoto kernel and MinMax kernel
- -Implement suffix tree to speed up (linear time complexity in theory)

Other Functions of Tools

- Methods to retrieve graphs from different dataset structures (loadDataset)
- A method to obtain graph dataset attributes (get_dataset_attributes)
- A model selection function for pre-computed kernel matrices (model_selection_for_precomputed_kernel)

Github Link https://github.com/jajupmochi/py-graph

5. Experimental Results

Table 2: Results with minimal test RMSE for each kernel on dataset Acyclics

Kernels	Train Perf	Valid Perf	Test Perf	Parameters	Gram Matrix Time
Common walk	9.38 ± 0.40	14.68 ± 1.15	14.45 ± 4.58	method: 'geo', γ : 0.32, α : 1.00e-08	54.55 " ± 18.30 "
Marginalized	12.95 ± 0.37	19.02 ± 1.73	18.24 ± 5.00	p_quit: 0.2, α : 1.00e-04	447.44 " ± 5.32 "
Random walk	31.07 ± 0.55	32.09 ± 0.78	32.99 ± 5.18	λ : 0.03, q: 0.9, α : 1.00e-07	7.67 " ± 0.24 "
Shortest path	7.43 ± 0.22	10.66 ± 0.54	$10.32{\pm}2.38$	α : 0.01	11.70"
Structural shortest path	8.71 ± 0.63	19.28 ± 1.75	17.42 ± 6.57	α : 2.82e-02	21.94"
Path kernel up to length h	5.76 ± 0.27	9.89 ± 0.87	10.21 ± 4.16	$h: 2.0, k_{\text{func}}: \text{'MinMax'}, \alpha: 0.1$	$1.16"\pm0.75"$

- Dataset: A database of acyclic molecules with hetero atoms, consisting of 183 molecules. The task is boiling point prediction.
- Experimental method: A two layer nested cross validation + 90% of the dataset as train set and remaining 10% as test set.

