5)	$\int \cos^2 mx dx = 0$
	ó
6)_	$\int_{0}^{2\pi} \sin^{2} nx dx = 0$
7)	Sinna cosmada = 0
8)	Sinna cosnada = 0
9)	$\int e^{ax} \sinh x dx = e^{ax} \left\{ a \sinh x - b \cosh x \right\}$ $a^{2} + b^{2}$
10)	$\int e^{ax} \cosh x dx = e^{ax} \int a \cosh x + b \sinh x $
	Generalize rule of integration by parts $\int uv dx = u(v_1) - u'(v_2) + u''(v_3) - u'''(v_4) + \cdots$
12)	COSPTT = C-17"
13)	SinnT = 0
-	

A	Fourier series Expansion in the range (0,217)
- Parameter 1	$F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(\frac{a_n \cos nx + b_n \sin nx}{n} \right)$
4 8	where, $a_0 = \int_0^{2\pi} F(x)dx$, $a_0 = \int_0^{2\pi} F(x) \cos nx dx$, $b_0 = \int_0^{2\pi} F(x) \sin nx dx$
Ex.1	2
	Find power Series of $f(x) = x^2$ in the interval (0,217) and hence deduct that
	$\frac{11^2 = 1 + 1 + 1 - 1 + \cdots}{12 1^2 2^2 3^2 4^2}$
<u> </u>	Given, $F(x) = x^2$ and range is $(0, 2\pi)$
	Fourier series is given by
	$F(x) = \frac{\alpha_0}{2} + \sum_{n=1}^{\infty} \left(\frac{\alpha_n \cos nx + b_n \sin nx}{n} \right)$
	where, $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{2\pi} x^2 dx = \frac{1}{\pi} \left(\frac{x^3}{3} \right)_{0}^{2\pi} = \frac{1}{\pi} \left(\frac{8\pi^3}{3} \right)$
	$\therefore q_0 = 8\pi^2$
	$a_{n} = \frac{2\pi}{11} \int_{0}^{2\pi} \frac{2\pi}{11} \cos nx dx = \frac{2\pi}{11} \int_{0}^{2\pi} \frac{2\pi}{2} \cos nx dx$
	$= \frac{1}{11} \left\{ \frac{\chi^{2}(\sin nx) - 2x(-\cos nx) + 2(-\sin nx)}{n^{2}} \right\}_{0}^{211}$
	$= \frac{1}{\pi} \left\{ \begin{bmatrix} (2\pi)^2 \sin 2n\pi + 2(2\pi)\cos 2n\pi - 2\sin 2n\pi \\ n \end{bmatrix} - \frac{1}{\pi} \left\{ \begin{bmatrix} (2\pi)^2 \sin 2n\pi + 2(2\pi)\cos 2n\pi \\ n \end{bmatrix} - \frac{1}{\pi} \right\} \right\}$
	$\left[\begin{array}{cccc} 0 - 0 - 28iD0 \\ h^{3} \end{array}\right]$
	$= \frac{1}{17} \left\{ \left(0 + 4 \pi (1) - 0 \right) - 0 \right\}$
	$=\frac{1}{\Pi}\left(\frac{4\Pi}{52}\right)$
	$a_{n} = 4$ n^{2}
	li de la companya de

	$b_{n} = \int_{0}^{2\pi} F(x) \sin nx dx = \int_{0}^{2\pi} x^{2} \sin nx dx$
	$= \frac{1}{\Pi} \left\{ \frac{2^{2}(-\cos nx) - 2x(-\sin nx) + 2(\cos nx)}{n} \right\}_{0}^{2\Pi}$
-	$= \int_{\Pi} \left[-(2\pi)^{2} \cos 2n\Pi + 2(2\pi) \sin 2n\Pi + 2\cos 2n\Pi \right]$ $= \int_{\Pi} \left[-(2\pi)^{2} \cos 2n\Pi + 2(2\pi) \sin 2n\Pi + 2\cos 2n\Pi \right]$
, the i	-[-0 + 0 + 2 COS2niT]
	$= \frac{1}{11} \left\{ \left(-\frac{4\pi^2(1)}{5} + 0 + \frac{2(1)}{5} \right) - \frac{2(1)}{5} \right\}$
	$= \frac{1}{\Pi} \left(\frac{-4\Pi^2 + 2 - 2}{D} \right)$
	$=\frac{1}{\pi}\left(-\frac{4\pi^2}{5}\right)$
	$b_{D} = -4\pi$
	:. Eqn () becomes
	$F(x) = x^{2} = \frac{1}{2} \left(\frac{6\pi^{2}}{3} \right) + \sum_{h=1}^{\infty} \left(\frac{4 \cos nx - 4\pi \sin nx}{h^{2}} \right) - \boxed{5}$
	which is required fourier Series.
	Putting x=m
	$T^{2} = 4T^{2} + \sum_{n=1}^{\infty} 4\cos nT$
	$\sum_{n=1}^{\infty} \frac{\cos n\pi}{n^2} = \frac{1}{4} \left(\frac{\pi^2 - 4\pi^2}{3} \right) = \frac{1}{4} \left(-\frac{\pi^2}{3} \right) = -\frac{\pi^2}{12}$
	COST + COSAT + COSAT + COSATT + = + 172
	$\frac{\cos \pi + \cos 2\pi + \cos 3\pi + \cos 4\pi + \cdots = +\pi^{2}}{1^{2}}$
	$-1 + 1 - 1 + 1 - \dots = -\pi^2$
	$\frac{-1 + 1 - 1 + 1 - 1 - 1}{1^2 2^2 3^2 4^2}$
	$\frac{1}{12} = \frac{1}{1^2} = \frac{1}{2^2} = \frac{1}{3^2} + \frac{1}{4^2} = \frac{1}{4^2} + \frac{1}{$
	12 12 22 32 42
B-11	

	KH. 178 (K)7 1 - 1d
Ex·I	Find the fourier Series of the function F(x) = x
	in the enterval (0,211)
	→ Given.
	f(x) = 2 and the range (0,217)
	Couries Sesies is given by
	$F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) - 0$
	11=1
7	Scopere (14012) 1 + [b Ticle 2007] - 7 1 2
	$a_{n} = 1 \int f(x) dx = 1 \int x dx$
	TT 6 S 5 TT (6) THS - 2 1 -
	cohere, $a_0 = \frac{2\pi}{\pi} \int_0^{2\pi} f(x) dx = \frac{2\pi}{\pi} \int_0^{2\pi} x dx$ $= \frac{1}{\pi} \left(\frac{\chi^2}{2} \right)_0^{2\pi} = \frac{1}{\pi} \left(\frac{4\pi^2 - 0}{2} \right)$
	TT 20 TT 2
	$= 1 (2\pi^2)$
	$= \frac{1}{\Pi} \left(2\Pi^2 \right)$
	ab = 21
	V2002 (8-7 + x020)(0) (2 + (12)
	$a_{n} = \frac{1}{11} \int_{0}^{2\pi} f(x) \cos nx dx$
	$\pi = \pi + \pi = (x)$
	$a_{n} = \frac{1}{\Pi} \int_{0}^{2\pi} \frac{2\pi}{2\pi} \cos nx dx$ $= \frac{1}{\Pi} \int_{0}^{2\pi} 2 \sin nx dx$ $= \frac{1}{\Pi} \int_{0}^{2\pi} 2 \sin nx dx$
	11) 21 21 7
	= 1 S [2 Sinna] = Sinna (1) dx }
	21 C 22 22 22 7 7 2 5
	$= \frac{1}{11} \left\{ \left[\frac{2 \sin n}{n} \right] - \frac{1}{n} \left(\frac{-\cos n}{n} \right) \right\}$
	= 1 S(21 Sin 2n1 - 0] + 1 [COS2n1 - COS0] }
	$= \frac{1}{\pi} \frac{\left[2\pi \sin 2\eta \pi - 0 \right] + 1}{h} \frac{1}{h^2} \frac{\cos 2\eta \pi - \cos 0}{h}$
	= 150 + 1(1-1)?
	IT 1 102 100
	= 15(6) 5 1 1 - 551 11 1 - 551
	U & Uiyaka waxaa
	au ₂ = 0
	ine contract the same
	als record to the second secon

$$b_{n} = \frac{2\pi}{\pi} \int_{0}^{2\pi} F(x) \sin nx dx$$

$$= \frac{1}{\pi} \int_{0}^{2\pi} x \sin nx dx$$

$$= \frac{1}{\pi} \left\{ \frac{(-x \cos nx)^{2\pi}}{n} - \frac{1}{n} \frac{(-\cos nx) dx}{n} \right\}$$

$$= \frac{1}{11} \left\{ \frac{(-217\cos 2ni7 - 0) + 1}{n} \left(\frac{(8in2ni7 - 8in0)}{n^2} \right) \right\}$$

$$= 15 - 2\pi(1) + 0$$

$$F(x) = \frac{1}{2}(2\pi) + \sum_{n=1}^{\infty} (n) \cos nx + (-\frac{2}{n}) \sin nx$$

$$\frac{f(x)}{} = \frac{1}{1} + \sum_{n=1}^{\infty} -2 \sin nx$$

Ex.2 Obtain the fourier series for
$$f(x) = e^{x}$$
 in the range $(0, 2\pi)$

where

$$\frac{\alpha_0 = 1}{\Pi} \int_0^{H} f(x) dx = 1 \int_0^{H} e^{-\chi} dx$$

$$= \frac{1}{\pi} \left(\frac{e^2}{e^2} \right)^{2\pi} = -\frac{1}{\pi} \left(\frac{e^{-2\pi} - e^0}{e^{-2\pi} - e^0} \right)$$

$$\alpha_0 = \frac{1}{\Pi} \left(1 - \frac{2\Pi}{e} \right)$$


```
= \frac{1}{11} \frac{5}{100} e^{2} \left( -\cos nx + 0.910nx \right)^{2} \frac{7}{100}
     = \frac{1}{11} \int_{1+n^{2}}^{2} \left[ \cos n(2\pi) + n \sin 2n\pi - (-\cos x + n \sin x) \right]
= \frac{1}{11} \int_{1+n^{2}}^{2} \left[ -(+0 + 1 - 0) + n \sin x + (-\cos x + n \sin x) \right]
 \frac{1}{\pi(1+n^2)} \left\{ \frac{e^{24\pi} \left(-\cos 2n\pi + n\sin n\pi\right) - e^{\circ} \left(-\cos 0 + n\sin 0\right)}{\pi(1+n^2)} \right\}
= \frac{1}{\pi(1+b^2)} \left\{ \frac{e^{2\pi}(-1+0) - 1(-1+0)}{e^{-1+0}} \right\}
   = \frac{1}{\pi} \frac{\int_{-\infty}^{\infty} e^{-x}}{(-\sin nx - n\cos nx)} 
    = \frac{1}{\pi(1+n^2)} \frac{5e^{2\pi}(0-n(1))-1(0-n(1))}{7}
     \frac{b_0 = h(1 - e^{2\Pi})}{\pi(1 + h^2)}
  . fourier series becomes
```

Tribura session processo

Fourier series Expansion in the Range (-11, 11) The Fourier Series expansion in the range (-IT, IT) is given by $F(x) = \frac{q_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$ where, $a_0 = \int_{T}^{T} F(x) dx$ $a_n = \int_{-\pi}^{\pi} f(x) \cos nx \, dx$ $b_n = \frac{1}{11} \int_{-1}^{11} F(x) \sin nx \, dx$ Case-I: 9F F(x) is an Even function, then $a_0 = 2 \int F(x) dx$ F(x) Cosnxdx case=II = 9F F(x) is an odd Function, then 20 = 0 bn = 2 | f(x) sinnx dx Obtain the fourier series for the function F(x)= x2 -IT < x < IT, and hence show that 12 32 52 72 50 8 \Rightarrow Given, $f(x) = x^2$ and the range is (-17< x<17) Potucies Genies is gainen $F(-2) = 2^2 = F(2)$: F(x) is an even function

Fourier Series is given by

$$F(x) = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} \cos x + b \sin x \right)$$

where, $a_0 = \frac{1}{2} \prod_{p(x)} f(x) dx = \frac{1}{2} \prod_{p(x)} \frac{1}{2} dx$

$$= \frac{1}{2} \left(\frac{x^2}{3} \right)^{\frac{1}{1}}$$

$$= \frac{1}{2} \left(\frac{x^3}{3} \right)^{\frac{1}{2}}$$

$$= \frac{1}{2} \left(\frac{x^3}{3} \cos x dx \right)$$

$$= \frac{1}{2} \left(\frac{x^2}{3} \sin x \right) - 2x \left(\frac{\cos x}{3} \right) + 2 \left(-\frac{\sin x}{3} \right)^{\frac{1}{2}}$$

$$= \frac{1}{2} \left(\frac{x^2}{3} \sin x \right) - 2x \left(\frac{\cos x}{3} \right) + 2 \left(-\frac{\sin x}{3} \right)^{\frac{1}{2}}$$

$$= \frac{1}{2} \left(\frac{x^2}{3} \sin x \right) - 2x \left(\frac{\cos x}{3} \right) + 2 \left(-\frac{\sin x}{3} \right)^{\frac{1}{2}}$$

$$= \frac{1}{2} \left(\frac{x^2}{3} \sin x \right) - 2x \left(\frac{\cos x}{3} \right) + 2 \left(-\frac{\sin x}{3} \right)^{\frac{1}{2}}$$

$$= \frac{1}{2} \left(\frac{x^2}{3} \cos x \right) + 2 \left(\frac{\cos x}{3} \right) + 2 \left(\frac{\cos x}{3} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} \cos x \right) + 2 \left(\frac{\cos x}{3} \right) + 2 \left(\frac{\cos x}{3} \right)$$

$$= \frac{1}{2} \left(\frac{2\pi^2}{3} \right) + \frac{1}{2} \left(\frac{-1}{3} \cos x \right)$$

$$= \frac{1}{2} \left(\frac{2\pi^2}{3} \right) + \frac{1}{3} \left(\frac{-1}{3} \cos x \right)$$

$$= \frac{1}{2} \left(\frac{2\pi^2}{3} \right) + \frac{1}{3} \left(\frac{-1}{3} \cos x \right)$$

$$= \frac{1}{2} \left(\frac{2\pi^2}{3} \right) + \frac{1}{3} \left(\frac{-1}{3} \cos x \right)$$

$$= \frac{1}{2} \left(\frac{2\pi^2}{3} \right) + \frac{1}{3} \left(\frac{-1}{3} \cos x \right)$$

$$= \frac{1}{3} \left(\frac{-1}{3} \cos x \right) + \frac{1}{3} \left(\frac{-1}{3} \cos x \right)$$

$$= \frac{1}{3} \left(\frac{-1}{3} \cos x \right) + \frac{1}{3} \left(\frac{-1}{3} \cos x \right)$$

$$= \frac{1}{3} \left(\frac{-1}{3} \cos x \right) + \frac{1}{3} \left(\frac{-1}{3} \cos x \right)$$

$$= \frac{1}{3} \left(\frac{-1}{3} \cos x \right) + \frac{1}{3} \left(\frac{-1}{3} \cos x \right)$$

$$= \frac{1}{3} \left(\frac{-1}{3} \cos x \right) + \frac{1}{3} \left(\frac{-1}{3} \cos x \right)$$

$$= \frac{1}{3} \left(\frac{-1}{3} \cos x \right) + \frac{1}{3} \left(\frac{-1}{3} \cos x \right)$$

$$= \frac{1}{3} \left(\frac{-1}{3} \cos x \right) + \frac{1}{3} \left(\frac{-1}{3} \cos x \right)$$

$$= \frac{1}{3} \left(\frac{-1}{3} \cos x \right) + \frac{1}{3} \left(\frac{-1}{3} \cos x \right)$$

$$= \frac{1}{3} \left(\frac{-1}{3} \cos x \right) + \frac{1}{3} \left(\frac{-1}{3} \cos x \right)$$

$$= \frac{1}{3} \left(\frac{-1}{3} \cos x \right) + \frac{1}{3} \left(\frac{-1}{3} \cos x \right)$$

$$= \frac{1}{3} \left(\frac{-1}{3} \cos x \right) + \frac{1}{3} \left(\frac{-1}{3} \cos x \right)$$

$$= \frac{1}{3} \left(\frac{-1}{3} \cos x \right) + \frac{1}{3} \left(\frac{-1}{3} \cos x \right)$$

$$= \frac{1}{3} \left(\frac{-1}{3} \cos x \right) + \frac{1}{3} \left(\frac{-1}{3} \cos x \right)$$

$$= \frac{1}{3} \left(\frac{-1}{3} \cos x \right) + \frac{1}{3} \left(\frac{-1}{3} \cos x \right)$$

$$= \frac{1}{3} \left(\frac{-1}{3} \cos x \right)$$

$$\frac{\Pi^{2} = \Pi^{2} + 4 \sum_{h=1}^{\infty} (-1)^{h} \cos n\pi}{3}$$

$$\frac{1}{4} \left(\frac{\Pi^{2} - \Pi^{2}}{3}\right) = \sum_{h=1}^{\infty} (-1)^{h} (-1)^{h}$$

$$\frac{1}{4} \left(\frac{\Pi^{2} - \Pi^{2}}{3}\right) = \frac{1}{2} \left(\frac{\Pi^{2} - \Pi^$$

$$\frac{1}{4} \left(\frac{\Pi^2 - \Pi^2}{3} \right) = \sum_{h=1}^{\infty} \frac{(-1)^h (-1)^h}{h^2}$$

$$\frac{1}{4} \left(\frac{2\pi^2}{3} \right) = \sum_{h=1}^{\infty} \frac{(-1)^{2h}}{h^2}$$

$$\frac{\pi^2}{6} = \sum_{p=1}^{\infty} \frac{1}{p^2}$$

$$\frac{1}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$$

(2) put
$$x = 0$$

$$0 = \pi^2 + 4 \sum_{p=1}^{\infty} (-1)^p \cos 0$$

$$-\frac{\Pi^2}{3x4} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

$$-\frac{12}{12} = -\frac{1}{12} + \frac{1}{12} - \frac{1}{12} + \frac{1}{12} - \frac{1}{1$$

$$\frac{\Pi^2 = 1 - 1 + 1 - 1 + \cdots - (4)}{12 \quad 1^2 \quad 2^2 \quad 3^2 \quad 4^2}$$

$$\frac{\Pi^2 + \Pi^2 = 2 \left(\frac{1}{12} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots \right)}{6 \quad 12}$$

$$\frac{3\Pi^2 = 2\left(\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots\right)}{12}$$

$$\frac{\Pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$$

Maria	
Obtain the fourier Series for the function f(z) given by	
- TT < 2 < 0	
$F(x) = \begin{cases} 1 + 2x & -\pi < x < 0 \\ \pi & -\pi < x < 0 \end{cases}$ $1 - 2x & 0 \le x \le \pi$	
1- 22 0 62517	
T 10/1 2 - 5 10/1	
and prove that $\Pi^2 = 1 + 1 + 1 + \cdots$	
=> Let F(x) = 1+ 2x , -1T < x < 0	
9 1 - 1 + 1 + 1 + 1 + 2 17 ·	
pur 2 = -2	
F(-x) = 1-2x , -T <-x < 0 0 = 0 107	
$F(x) = 1 - 2x , 0 \le x \le \pi$	
$F(\alpha) = 1 - \frac{2\alpha}{\Pi}, 0 \le \alpha \le \Pi$	
F'(-x) = F(x)	
: F(x) is an even function	
Fourier Series is given by	
$f(x) = \frac{q_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$	
where, $q_0 = 2$ $\prod_{n=1}^{\infty} F(x) dx = 2$ $\prod_{n=1}^{\infty} \left(1 - \frac{2x}{n}\right) dx$	
$= \frac{2}{\Pi} \left(\frac{\chi - 2 \chi^2}{\Pi 2} \right)_0^{\Pi}$	·
$= \frac{2}{\pi} \left(\pi - \frac{2}{\pi} \cdot \pi^2 \right)$	
$\frac{2}{\pi} \left(\frac{1 - 2 \cdot 1}{\pi} \right)$	
$= 2 (\pi - \pi)$	
$a_b = 0$	
an = 2 F(x) coshada	
o	
$= 2 \int_{0}^{\pi} \left(1 - 2x\right) \cos nx dx$	

$$= \frac{2}{\pi} \left\{ \frac{(1-2x)(\sin nx) - (-\frac{2}{\pi})(-\cos nx)}{h^2} \right\}_{0}^{\pi}$$

$$= \frac{2}{\pi} \left\{ \frac{(1-2\pi)(\sin n\pi) + \frac{2}{\pi}(-\cos n\pi)}{h^2} \right\}_{0}^{\pi}$$

$$= \frac{2}{\pi} \left\{ \frac{(1-2\pi)(\sin n\pi) + \frac{2}{\pi}(-\cos n\pi)}{h^2} \right\}_{0}^{\pi}$$

$$= \frac{2}{\pi} \left\{ \frac{(1-0)\sin n\pi}{n^2} + \frac{2}{n^2}(-\cos n\pi)}{h^2} \right\}_{0}^{\pi}$$

$$= \frac{2}{\pi} \left\{ \frac{(-1)6 - \frac{2}{\pi}(-1)^{h}}{h^2} - 0 + \frac{2}{n^2\pi} \right\}_{0}^{\pi}$$

$$= \frac{2}{\Pi} \left(\frac{2}{h^2\Pi} - \frac{2(-1)^n}{\Pi h^2} \right)$$

$$a_n = \frac{4^n}{h^2 \Pi^2} \left(1 - (-1)^n \right)$$

Fourier Series becomes 1200

$$F(x) = \frac{4}{2} (0) + \sum_{n=1}^{\infty} \frac{4}{n^2 \pi^2} (1 - (-n^n)) \cos nx$$

$$\frac{F(m) = 4 \sum_{n=1}^{\infty} (1 - (-n^n)) \cos(mx) + 3 \sum_{n=1}^{\infty} \cos(nx)}{\sum_{n=1}^{\infty} (n^n + n^n)^2 + 3 \sum_{n=1}^{\infty} \cos(nx)} = \cos(nx)$$

put
$$x = 0$$

$$\frac{p(0) = 4}{\pi^2} \sum_{n=1}^{\infty} \frac{(1 - (-1)^n)}{n^2} \cos n$$

$$\frac{n^2}{4} p(0) = \sum_{n=1}^{\infty} \frac{(1 - (-1)^n)}{n^2} \cos n$$

$$\frac{n^2}{4} = \sum_{n=1}^{\infty} \frac{(1 - (-1)^n)}{n^2} \cos n$$

$$\frac{n^2}{4} = \sum_{n=1}^{\infty} \frac{(1 - (-1)^n)}{n^2} \cos n$$

$$\frac{\Pi^2}{4} F(0) = \sum_{n=1}^{\infty} (1 - (-1)^n)$$

$$\frac{\Pi^{2}(1) = 1 - (-1)^{2} + 1 - 1^{2} + 1 - (-1)^{2} + 1 - 1^{2} + \cdots}{4}$$

$$\frac{\Pi^2 = 2 + 2 + 2 + 2 + \cdots}{2} + \frac{1^2 - 3^2 + 5^2}{5^2}$$

$$\frac{11^2 = 1}{3^2} + \frac{1}{5^2}$$


```
Ex 3
       find fourier series of
                                  -IT 6260
                                    OCXLIT
         Given
                                   -TLXX0
                        COSX
                F(x) =
                                    0 < 2 < 1
                         COSX
         Replace
                                     -11 4-240
                         Cos(-2)
                F(-2) =
                                      0 4-2<1
                        - Cos(-2)
                                        0<2<11
                         COSX
                         - cosx
               F(x) =- F(x)
          .. Fa is an odd function
                    series is given by
        cohere
                          Cosx sinmada
                         2 cosx finmedx
```


$$= -\frac{1}{\pi} \left\{ \begin{bmatrix} -\cos((1+n)\pi + \cos((1-n)\pi) \\ 1+n \end{bmatrix} - \begin{bmatrix} -\cos((1+n)\pi + \cos((1-n)\pi)$$

. Fourier Series becomes.

$$F(x) = 0 + \sum_{n=1}^{\infty} 2n [1 + (-1)^n] \sin nx$$

$$= 2 \sum_{n=1}^{\infty} n [1 + (-1)^n] \sin nx$$

$$= 1 - n^2$$

Find the Fou	ries series for fax in the interval
(-11, 11), when	to this of about he was been been been been been been been bee
	(T+2 , -T<2<0
F(x) =	and the second of the second of
46.7	T-x, 0 <x<t< td=""></x<t<>
Given.	
	(T+2 , -T<2<0
F(x) =	<u> </u>
	L π-2 0 L2Cπ
Replace 2	by -2
	(T-2, -T-2<0
F(-2)	= {
7	l π+2, 0 <-2 < Π
7	
17-1-	(11-x , 0<2<1T
	= {
	L TT+2, -TC2C0
F(-2	P(x) = P(x) (Prom(1))
: F(x) is	an even function
Fourier Serie	is given by
	Ce C
$f(x) = \frac{q_0}{2}$	$\sum (a_n \cos n\alpha + b_n \sin n\alpha)$ — (2)
	D=1
where,	
Cl6 = 2) F(x)dx
	0
	2 (π-2)dz
	0
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	2 S H 2 H 2 2 - 2 H 2
	$\frac{2}{\pi} \left\{ \begin{array}{c} \pi^{2} & \pi^{2} \\ 2 & \pi^{2} \end{array} \right\} = \frac{2}{\pi} \times \frac{\pi^{2}}{2}$
-	π
$a_n = 2$	F(x) Cosmada
1	
= 2	$\int_{\Gamma}^{\Pi} (\Pi - \chi) \cos n\chi d\chi$
71	
- 2	$\left\{ \frac{(\Pi-z)(\sin nz) - (-1)(-\cos nz)}{n} \right\}^{\frac{1}{1}}$

15 (811	$= 2 \left\{ (0 - \cos n\pi) - (\pi \sin 0 - \cos n\pi) \right\}$
	$\frac{-1}{\pi} = \frac{2}{h^2} \left\{ \frac{-(-1)^h + 1}{h^2} \right\}$
	$\frac{1}{110^2} \left(1 - (-15^0) \right) \left(\frac{1}{110} + \frac{11}{110} \right)$
	: Equation @ becomes
	$f(x) = 1 (\pi) + \sum_{h=1}^{\infty} 2 (1 - (-1)^h)$
	$F(x) = \frac{\pi}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \left(\frac{1 - (-1)^{\frac{2n}{2}}}{h^2} \right)$
	(1-) is = a
	find the fourier series for the function f(x) = x+x2,
	-TEXXXITICELED 1 - classification 1 - del
, =	9 41.017
1/ 001200	F(x) = x+22 - TC22[T (CO+C)]
9(1	Penlace 7 by - x
	$F(-x) = -x + x^2, -\pi < -x < \pi$
1	$F(-x) = -x + x^2$, $-\pi < x < 11$
1	: f(x) is neither even or nor odd,
	Fourier Cepies is given by
	C / 2 n + 11 - 11 - 1 1 1 2 2 2 2 2 1
	$F(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$
1	2 net (18-) training 1
	cohere, $a_0 = \frac{1}{11} \int f(x) dx = \frac{1}{11} \int (x+x^2) dx$ $\pi - \pi$
	$= \frac{1}{11} \left\{ \frac{2^2 + \chi^3}{2} \right\}_{\Pi}^{\Pi}$
\frac{1}{2} \sigma	$\frac{1}{\pi} \left\{ \frac{(\pi^2 + \pi^3)}{2} - \left(\frac{\pi^2 - \pi^3}{3} \right) \right\}$
	$\frac{1}{\pi} \left\{ \begin{array}{c} \frac{1}{2} + \frac{\pi^2}{3} - \frac{\pi^2}{3} + \frac{\pi^3}{3} \right\}$
	$= \frac{1}{\pi} \times \frac{2\pi^3}{3}$
	$a_0 = 2\pi^2$
	$a_n = \int_{\Pi} \frac{f(x) \cos nx dx}{f(x) \cos nx dx} = \int_{\Pi} \frac{(x + x^2) \cos nx dx}{\Pi - \Pi}$
	П_П

	$= \frac{1}{\pi} \left\{ (x+x^2) \left(\frac{\sin nx}{n} \right) - (1+2x) \left(-\frac{\cos nx}{n^2} \right) + 2 \left(-\frac{\sin nx}{n^3} \right) \right\}_{\pi}^{\pi}$
	$= \frac{1}{\pi} \left[(\pi + \pi^2)(0) + (1 + 2\pi) \cos \pi - 2(0) \right] - \frac{1}{\pi} \left[\frac{1}{\pi} \left(\frac{1}{\pi} + \frac{1}{\pi} \right) \cos \pi \right] - \frac{1}{\pi} \left[\frac{1}{\pi} + \frac{1}{\pi} \right] \left[\frac{1}{\pi} + \frac{1}{\pi} + \frac{1}{\pi} \right] \left[\frac{1}{\pi} + \frac{1}{\pi} + \frac{1}{\pi} + \frac{1}{\pi} + \frac{1}{\pi} \right] \left[\frac{1}{\pi} + $
	$\left[(-\Pi + \Pi^2)(0) - (1-2\Pi) \cosh\Pi + 2(0) \right] $
	$= \frac{1}{\pi} \left\{ \begin{array}{c} 0 + (1+2\Pi) \cos n\Pi - (1-2\Pi) \cos n\Pi \\ 0 \end{array} \right\}$
	= 1 COSDIT (1+2T-1+2T)
	$= \frac{1 \cdot Cosn\pi}{\pi \cdot n^2} \times 4\pi$
6	$a_{0} = 4(-1)^{0}$
	$\frac{b_{1}=1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nx dx = \frac{1}{\pi}\int_{-\pi}^{\pi}(x+x^{2})\sin nx dx - \frac{1}{\pi}\int_{-\pi}^{\pi}f(x+x^{2})\sin nx dx$
	$= \frac{1}{\pi} \left\{ (2+2^2) \left(-\cos nz \right) - (1+2z) \left(-\sin nz' \right) + 2 \left(\cos nz \right) \right\}$
	$= \frac{1}{\pi} \left\{ \frac{(\Pi + \Pi^2) \cos n\Pi + 0 + 2 \cos n\Pi}{n} \right\} - \frac{1}{\pi}$
12.19	$\frac{(-(\Pi + \Pi^2) \cos D\Pi + 0 + 2 \cos D\Pi)}{D}$
×.	$= \frac{1}{\pi} \left\{ \frac{\cos \rho \pi}{\rho} \left(-\pi \div \pi^2 - \pi + \pi^2 \right) \right\}$
· ·	= 1 Cosnit (-21T)
	= - 2 (-1) ^h
	. Equation (2) becomes
	$f(x) = \frac{1}{2} \times \frac{2\Pi^2}{3} + \sum_{n=1}^{\infty} \frac{5}{n^2} \frac{4(-1)^n \cos nx + -2(-1)^n \sin nx}{n}$
	$= \frac{\pi^2 + \sum_{n=1}^{\infty} \left\{ \frac{4(-1)^n \cos nx - 2(-1)^n \sin nx}{5^2} \right\}}{3}$
	110
	Har to de-