Math 254 Tutorial 9

Honours Analysis 1

WRITTEN BY

DAVID KNAPIK

 $McGill\ University \\ 260607757 \\ david.knapik@mail.mcgill.ca$

Functional Limits

We begin with the $\epsilon - \delta$ definition for functional limits:

Definition 1.0.1. Let $A \subset \mathbb{R}$ and let $f: A \to \mathbb{R}$. Let $c \in \mathbb{R}$ be a cluster point of A. We say that a real number L is a limit of f at c (denoted $\lim_{x\to c} f(x) = L$) if for all $\epsilon > 0$ there exists $\delta > 0$ such that $\forall x \in A$ satisfying $0 < |x - c| < \delta$, one has $|f(x) - L| < \epsilon$.

Now, we introduce some tools which we shall use in examples:

Theorem 1.0.1 (Sequential Criterion for Functional Limits). Given a function $f: A \to \mathbb{R}$ and a cluster point c of A, the following two statements are equivalent:

- 1. $\lim_{x\to c} f(x) = L$
- 2. For all sequences (x_n) in A satisfying $x_n \neq c$ and $(x_n) \rightarrow c$, it follows that $f(x_n) \rightarrow L$.

Corollary 1.0.1 (Divergence Criterion for Functional Limits). Let $f: A \to \mathbb{R}$ and c be a cluster point of A. If there exist two sequences (x_n) and (y_n) in A with $x_n \neq c$ and $y_n \neq c$ and

$$\lim x_n = \lim y_n = c$$
 but $\lim f(x_n) \neq \lim f(y_n)$

then we can conclude that the functional limit $\lim_{x\to c} f(x)$ does not exist.

Theorem 1.0.2 (Algebraic Limit Theorem for Functional Limits). Let $A \subset \mathbb{R}$ and let c be a cluster point of A. Let $f: A \to \mathbb{R}$ and $g: A \to \mathbb{R}$ such that

$$\lim_{x \to c} f(x) = L \quad and \quad \lim_{x \to c} g(x) = M$$

Then the following holds:

- 1. $\lim_{x\to c} kf(x) = kL \text{ for all } k \in \mathbb{R}$
- 2. $\lim_{x\to c} (f(x) + g(x)) = L + M$
- 3. $\lim_{x\to c} (f(x)g(x)) = LM$
- 4. $\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{L}{M}$ provided $M \neq 0$ and $g(x) \neq 0$ for all $x \in A$

Example 1 1.1

Compute the limit or state that it does not exist: $\lim_{x\to 2} \frac{|x-2|}{x-2}$.

Let $x_n = 2 - \frac{1}{n}$ and $y_n = 2 + \frac{1}{n}$ (note that $x_n \neq 2$ and $y_n \neq 2$). We have that $\lim_{n \to \infty} (x_n) = 2$ $\lim(y_n)$. However:

$$\lim f(x_n) = \lim \frac{\left|\frac{-1}{n}\right|}{\frac{-1}{n}} = \lim \frac{\frac{1}{n}}{\frac{-1}{n}} = -1$$

and

$$\lim f(y_n) = \lim \frac{\left|\frac{1}{n}\right|}{\frac{1}{n}} = \lim \frac{\frac{1}{n}}{\frac{1}{n}} = 1$$

So by the Corollary (Divergence Criterion), we conclude that the functional limit $\lim_{x\to 2} \frac{|x-2|}{x-2}$ does not exist.

Example 2 1.2

Compute the limit or state that it does not exist: $\lim_{x\to\frac{7}{4}}\frac{|x-2|}{|x-2|}$.

We shall show (via the $\epsilon - \delta$ definition) that the limit is -1. To that end, let $\epsilon > 0$ be

arbitrary and take $0 < \delta < \frac{1}{4}$.

We note that $0 < |x - \frac{7}{4}| < \delta < \frac{1}{4}$ gives $x - \frac{7}{4} < \frac{1}{4}$ (so x < 2) and $\frac{7}{4} - x < \frac{1}{4}$ (so $x > \frac{3}{2}$). Hence, x satisfying $0 < |x - \frac{7}{4}| < \delta$ here means $x \in (\frac{3}{2}, 2)$.

So, noting that $f(x) = \frac{|x-2|}{x-2} = -1$ for all $x \in (\frac{3}{2}, 2)$, we have the following: for all x satisfying $0 < |x - \frac{7}{4}| < \delta,$

$$|f(x) - (-1)| = |-1 + 1| = 0 < \epsilon$$

So we have that $\lim_{x\to\frac{7}{4}}\frac{|x-2|}{x-2}=-1$.

1.3 Example 3

Compute the limit or state that it does not exist: $\lim_{x\to 0} (-1)^{\frac{1}{x}}$.

Let $x_n = \frac{1}{2n+1}$ and $y_n = \frac{1}{2n}$ (note that $x_n \neq 0$ and $y_n \neq 0$). We have that $\lim(x_n) = 0$

$$\lim f(x_n) = \lim (-1)^{2n+1} = -1$$

and

$$\lim f(y_n) = \lim (-1)^{2n} = 1$$

So by the Corollary (Divergence Criterion), we conclude that the functional limit $\lim_{x\to 0} (-1)^{\frac{1}{x}}$ does not exist.

1.4 Example 4

Compute the limit or state that it does not exist: $\lim_{x\to 0} x^{\frac{1}{3}} (-1)^{\frac{1}{x}}$.

We shall show (via the $\epsilon - \delta$ definition) that the limit is 0. To that end, let $\epsilon > 0$ be arbitrary and take $0 < \delta = \epsilon^3$. Then for all x satisfying $0 < |x| < \delta$,

$$|f(x) - 0| = |x^{\frac{1}{3}}(-1)^{\frac{1}{x}}| = |x^{\frac{1}{3}}| < \epsilon$$

So we have that $\lim_{x\to 0} x^{\frac{1}{3}} (-1)^{\frac{1}{x}} = 0$.

1.5 Example 5

Compute the limit or state that it does not exist: $\lim_{x\to 0} x^2$.

We shall show (via the $\epsilon - \delta$ definition) that the limit is 0. To that end, let $\epsilon > 0$ be arbitrary and take $0 < \delta = \min\{\epsilon, 1\}$.

We note that if $0 < |x| < \delta$, then since $\delta \le 1$ we have that |x| < 1. So $|x^2| = |x|^2 < |x|$. And since $\delta \le \epsilon$, we have $|x| < \epsilon$.

So, for all x satisfying $0 < |x| < \delta$,

$$|f(x) - 0| = |x^2| = |x|^2 < |x| < \epsilon$$

In conclusion, we have that $\lim_{x\to 0} x^2 = 0$.

1.6 Example 6

Compute the limit or state that it does not exist: $\lim_{x\to 0} |x|$.

We shall show (via the $\epsilon - \delta$ definition) that the limit is 0. To that end, let $\epsilon > 0$ be arbitrary and take $\delta = \epsilon$.

So for all x satisfying $0 < |x| < \delta$,

$$|f(x) - 0| = ||x|| = |x| < \epsilon$$

In conclusion, we have that $\lim_{x\to 0} |x| = 0$.

1.7 Example 7

Compute the limit or state that it does not exist: $\lim_{x\to 0} \sin(\frac{1}{x})$.

Let $x_n = \frac{1}{\pi n}$ and $y_n = \frac{1}{2\pi n + \frac{\pi}{2}}$ (note that $x_n \neq 0$ and $y_n \neq 0$). We have that $\lim(x_n) = 0 = \lim(y_n)$. However:

$$\lim f(x_n) = \lim \sin(\pi n) = \lim 0 = 0$$

and

$$\lim f(y_n) = \lim \sin \left(2\pi n + \frac{\pi}{2}\right) = \lim 1 = 1$$

So by the Corollary (Divergence Criterion), we conclude that the functional limit $\lim_{x\to 0} \sin(\frac{1}{x})$ does not exist.

2

Squeeze Theorem

Theorem 2.0.1 (Squeeze Theorem). Let $A \subset \mathbb{R}$ and c be a cluster point of A. Let $f: A \to \mathbb{R}$, $g: A \to \mathbb{R}$, and $h: A \to \mathbb{R}$ be functions such that $f(x) \leq g(x) \leq h(x)$ for all $x \in A$. If

$$\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$$

then we have that $\lim_{x\to c} g(x) = L$.

2.1 Example 1

Prove $\lim_{x\to 0} x^{\frac{3}{2}} = 0 \ (x > 0)$

Proof. Let $g(x) = x^{\frac{3}{2}}$ for x > 0. We note that $x < x^{\frac{1}{2}} \le 1$ for $0 < x \le 1$. Hence $x^2 \le x^{\frac{3}{2}} \le x$ for $0 < x \le 1$. But we know that $\lim_{x\to 0} x^2 = \lim_{x\to 0} x = 0$. Hence by the Squeeze Theorem we have that $\lim_{x\to 0} x^{\frac{3}{2}} = 0$.

2.2 Example 2

Prove $\lim_{x\to 0} \cos x = 1$

Proof. (Most likely later in the course), we will show that $1 - \frac{1}{2}x^2 \le \cos(x) \le 1$ for all $x \in \mathbb{R}$. But by the Algebraic Limit Theorem for Functional Limits, we know that

$$\lim_{x \to 0} \left(1 - \frac{1}{2} x^2 \right) = \lim_{x \to 0} 1 - \frac{1}{2} \lim_{x \to 0} x^2 = 1 - 0 = 1 \tag{2.1}$$

where we have used our previous example that $\lim_{x\to 0} x^2 = 0$. Hence by the Squeeze Theorem we have that $\lim_{x\to 0} \cos x = 1$.

2.3 Example 3

Prove $\lim_{x\to 0} \frac{\cos x - 1}{x} = 0$

Proof. First note that we cannot use the Algebraic Limit Theorem!! However, by the previous problem, we know that

1.
$$\frac{-1}{2}x \le \frac{\cos(x)-1}{x} \le 0 \text{ for } x > 0$$

2.
$$0 \le \frac{\cos(x)-1}{x} \le -\frac{1}{2}x$$
 for $x < 0$

So let $f(x) := \frac{-x}{2}$ for $x \ge 0$ and f(x) := 0 for x < 0. Let h(x) := 0 for $x \ge 0$ and $h(x) := -\frac{x}{2}$ for x < 0. Then we have that:

$$f(x) \le \frac{\cos(x) - 1}{x} \le h(x)$$

for $x \neq 0$. But it is easy to see that $\lim_{x\to 0} f(x) = \lim_{x\to 0} h(x) = 0$. Hence by the Squeeze Theorem, we have that $\lim_{x\to 0} \frac{\cos x - 1}{x} = 0$.

2.4 Example 4

Prove $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right) = 0$

Proof. Since $-1 \le \sin(z) \le 1$ for all $z \in \mathbb{R}$, we have that $-|x| \le x \sin\left(\frac{1}{x}\right) \le |x|$ for all $x \in \mathbb{R}$, $x \ne 0$. From a previous example we showed that $\lim_{x\to 0} |x| = 0$, and thus we also know by the Algebraic Limit Theorem that $\lim_{x\to 0} -|x| = 0$. Hence by the Squeeze Theorem, we have that $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right) = 0$.

3

Bonus Proof

Theorem 3.0.1. Let $A \subset \mathbb{R}$, let $f : A \to \mathbb{R}$, and let $c \in \mathbb{R}$ be a cluster point of A. If $\lim_{x\to c} f$ exists, and if |f| denotes the function defined for $x \in A$ by |f|(x) := |f(x)|, then

$$\lim_{x \to c} |f| = \left| \lim_{x \to c} f \right|$$

Proof. Since $\lim_{x\to c} f$ exists, lets say $\lim_{x\to c} f(x) = L$. So by definition, for all $\epsilon > 0$, there exists $\delta > 0$ such that $\forall x \in A$ satisfying $0 < |x-c| < \delta$, we have $|f(x)-L| < \epsilon$. Also recall the Reverse Triangle Inequality : $||a|-|b|| \le |a-b|$ for $a,b \in \mathbb{R}$.

So, let $\epsilon > 0$ be arbitrary. For all x satisfying $0 < |x - c| < \delta$, we have:

$$||f(x)| - |L|| \le |f(x) - L|$$
 (by the Reverse Triangle Inequality)

Hence, $\lim_{x\to c} |f(x)| = |L| = |\lim_{x\to c} f(x)|$.

Remark. To prove the Reverse Triangle Inequality: note that $|b| = |a+b-a| \le |a| + |b-a|$ and hence

$$|b| - |a| \le |b - a| = |a - b|$$

Similarly, $|a| = |b + a - b| \le |b| + |a - b|$ and hence

$$|a| - |b| \le |a - b|$$

In conclusion, we have that $||a| - |b|| \le |a - b|$.