2D TRANSFORMATIONS AND MATRICES

Representation of Points:

2 x 1 matrix: |x|

General Problem: |B| = |T| |A|

|T| represents a generic operator to be applied to the points in A. T is the geometric transformation matrix. A & T are know, want to find B, the transformed points. $\begin{vmatrix} a & c & x \\ b & d & y \end{vmatrix} = \begin{vmatrix} x' \\ y' \end{vmatrix}$

General Transformation of 2D points:

$$x' = ax + cy$$
$$y' = bx + dy$$

Special cases of 2D Transformations:

- 1) T= identity matrix, a=d=1, b=c=0 x'=x, y'=y so far, what we would expect!
- Reflection

2) Scaling & Reflections: b=0, c=0 x' = a.x, y' = d.y; This is scaling by a in x, d in y. Scale matrix: let S_x =a, S_y=d

> | S_x 0 | | 0 S_v|

What if S_x and/ or $S_y < 0$? Get reflections through an axis or plane

Only diagonal terms involved in scaling and reflections

a = d = 1

let, c = 0, b = 2

$$Sh_{x}^{f = c}$$
 Sh_{y}^{f}

$$x' = x$$

 $y' = bx + y$

y' depends linearly on x

Similarly for b=0, c not equal to zero.

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$x' = ax + cy >$$

$$y' = bx + dy$$

ROTATION

$$x' = x\cos(\theta) - y\sin(\theta)$$

 $y' = x\sin(\theta) + y\cos(\theta)$

In matrix form, this is:

Positive Rotations: counter clockwise about the origin

For rotations,
$$det|T| = 1$$
 and $|T|^T = |T|^{-1}$

Translations

$$B = A + T_r$$
, where $T_r = |tx ty|^T$

Note: we can not directly represent translations as matrix multiplication, as we can rotations and scalings

Where else are translations introduced?

here else are translations introduçeu : (1)

1) Rotations - when object not centered at the origin.

2) Scaling - when objects / lines not centered at the

about a guirant part of the g

- line from (2,1) to (4,1) scaled by 2 in x & y.
- If line intersects the origin, no translation.
- Scaling is about the origin.

Can we represent translations in our general transformation matrix?

Yes, by using homogeneous coordinates

HOMOGENEOUS COORDINATES

We have
$$x' = ax + cy + tx$$

 $y' = bx + cy + ty$

We have
$$x = ax + cy + tx$$

$$y' = bx + cy + ty$$
Use a 3 x 3 matrix:
$$\begin{bmatrix} x' \\ y' \\ Z' \end{bmatrix} = \begin{bmatrix} a & c & t_x \\ b & d & t_y \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Each point is now represented by a triple: (x, y, W) x/W, y/W are called the Cartesian coordinates of the homogeneous points.

Two homogeneous coordinates (x1, y1, w1) & (x2,2y, w2) may represent the same point, iff they are multiples of one another: (1,2,3) & (3,6,9).

Pok: There is no unique homogeneous representation of a point.

All triples of the form (tx, ty, tW) form a line in x,y,W space.

Cartesian coordinates are just the plane w=1 in this space.

W=0, are the points at infinity

COMPOSITE TRANSFORMATIONS

$$T_1 \rightarrow T_2 \rightarrow T_3$$

ant to apply a series of transformations in,

We can do it 2 ways:

1) We can calculate p'=T1*p, p" = T2*p', p"=T3*p''

T4*T2*T3 then p"= T*p. If we want to apply a series of transformations T1, T2, T3 to a set of points, We can do it 2 ways:

Method 2, saves large number of adds and multiplies. Approximately 1/3 as many operations. Therefore, we concatenate or compose the matrices into one final transformation matrix that we apply to the points.

slations: $T_1 = 2^{12}$ T_2 Translate the points by tx1, ty1, then by tx2, ty2:

$$\theta \quad (tx1 + tx2)$$

$$1 \quad (tx1 + tx2)$$

Rotation about an arbitrary point P in space

As we mentioned before, rotations are about the origin. So to rotate about a point P in space, translate so that P coincides with the origin, then rotate, then translate back:

$$T = T1(Px,Py) * T2(q) * T3(-Px, -Py)$$

Translate by (-Px, -Py)
Rotate
Translate by (Px, Py)
$$\begin{bmatrix}
1 & 0 & Px \\
0 & 1 & Py \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\cos(\theta) & -\sin(\theta) & 0 \\
\sin(\theta) & \cos(\theta) & 0 \\
0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & -Px \\
0 & 1 & -Py \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
\cos(\theta) & -\sin(\theta) & Px * (1 - \cos(\theta)) + Py * (\sin(\theta)) \\
\sin(\theta) & \cos(\theta) & Py * (1 - \cos(\theta)) - Px * \sin(\theta) \\
0 & 0 & 1
\end{bmatrix}$$

back to P_1

Scaling about an arbitrary point in Space

Again,

- Translate P to the origin
- Scale
- Translate P back

$$T = T1(Px,Py)^* T2(sx, sy)^*T3(-Px, -Py)$$

Commutivity of Transformations

If we scale, then translate to the origin, then translate back, is that equivalent to translate to origin, scale, translate back?

When is the order of matrix multiplication unimportant?

When does T1*T2 = T2*T1?

Cases where T1*T2 = T2*T1:

Order: R-G-B

COORDINATE SYSTEMS

Screen Coordinates: The coordinate system used to address the screen (device coordinates)

World Coordinates: A user-defined application specific coordinate system having its own units of measure, axis, origin, etc.

Window: The rectangular region of the world that is visible.

Viewport: The rectangular region of the screen space that is used to display the window.

WINDOW TO VIEWPORT TRANSFORMATION

Want to find the transformation matrix that maps the window in world coordinates to the viewport in screen coordinates.

Viewport: (u, v space) denoted by: u_{min} , v_{min} , u_{max} , v_{max} Window: (x, y space) denoted by: x_{min} , y_{min} , x_{max} , y_{max}

The transformation:

- Translate the window to the origin
- Scale it to the size of the viewport
- Translate it to the viewport location

 $S_y = (V_{\text{max}} - V_{\text{min}})/(y_{\text{max}} - y_{\text{min}});$

Translate it to the viewport location $M_{WV} = \begin{bmatrix} S_x & 0 & (-x_{\min} * S_x + U_{\min}) \\ 0 & S_y & (-y_{\min} * S_y + V_{\min}) \\ 0 & 0 & 1 \end{bmatrix}$

Transformations of Parallel Lines