1

LEGv8 Reference Data

CORE INSTRUCT	CION CET		hadiaal Oad		
CORE INSTRUC	HON SET				
NAME, MNE	MONIC	MAT	OPCODE (9	OPERATION (in Verilog)	Notes
ADD	ADD	R	(Hex) 458		
				R[Rd] = R[Rn] + R[Rm]	(2.0)
ADD Immediate	ADDI	I	488-489	R[Rd] = R[Rn] + ALUImm	(2,9)
ADD Immediate & Set flags	ADDIS	I	588-589	R[Rd], $FLAGS = R[Rn] + ALUImm$	(1,2,9)
ADD & Set flags	ADDS	R	558	R[Rd], $FLAGS = R[Rn] + R[Rm]$	(1)
AND	AND	R	450	R[Rd] = R[Rn] & R[Rm]	
AND Immediate	ANDI	I	490-491	R[Rd] = R[Rn] & ALUImm	(2,9)
AND Immediate & Set flags	ANDIS	I	790-791	R[Rd], $FLAGS = R[Rn]$ & $ALUImm$	(1,2,9)
AND & Set flags	ANDS	R	750	R[Rd], $FLAGS = R[Rn] & R[Rm]$	(1)
Branch	В	В	0A0-0BF	PC = PC + BranchAddr	(3,9)
Branch				if(FLAGS==cond)	
conditionally	B.cond	CB	2A0-2A7	PC = PC + CondBranchAddr	(4,9)
Branch with Link	BL	В	4A0-4BF	R[30] = PC + 4; PC = PC + BranchAddr	(3,9)
Branch to Register	BR	R	6B0	PC = R[Rt]	
Compare & Branch	ODM	CD	540 54E	if(R[Rt]!=0)	(1.0)
if Not Zero	CBNZ	CB	5A8-5AF	PC = PC + CondBranchAddr	(4,9)
Compare & Branch if Zero	CBZ	СВ	5A0-5A7	if(R[Rt]==0) PC = PC + CondBranchAddr	(4,9)
Exclusive OR	EOR	R	650		
Exclusive OR	NOA	K	030	$R[Rd] = R[Rn] \wedge R[Rm]$	
Immediate	EORI	I	690-691	$R[Rd] = R[Rn] \wedge ALUImm$	(2,9)
LoaD Register Unscaled offset	LDUR	D	7C2	R[Rt] = M[R[Rn] + DTAddr]	(5)
				DID 3 (SCN 6	
LoaD Byte Unscaled offset	LDURB	D	1C2	$R[Rt]=\{56'b0, M[R[Rn] + DTAddr](7:0)\}$	(5)
LoaD Half	LDURH	D	3C2	$R[Rt] = \{48'b0,$	(5)
Unscaled offset	DDOM	D	302	$M[R[Rn] + DTAddr]$ (15:0)}	(5)
LoaD Signed Word				$R[Rt] = \{ 32\{ M[R[Rn] + DTAddr] \}$	
Unscaled offset	LDURSW	D	5C4	[31]},	(5)
				$M[R[Rn] + DTAddr]$ (31:0)}	
LoaD eXclusive	LDXR	D	642	R[Rd] = M[R[Rn] + DTAddr]	(5,7)
Register					(*,.)
Logical Shift Left	LSL	R	69B	$R[Rd] = R[Rn] \ll shamt$	
Logical Shift Right	LSR	R	69A	R[Rd] = R[Rn] >>> shamt	
MOVe wide with				R[Rd] (Instruction[22:21]*16:	
Keep	MOVK	IM	794-797	Instruction[22:21]*16-15) =	(6,9)
				MOVImm	
MOVe wide with	MOVZ	IM	694-697	$R[Rd] = \{ MOVImm <<$	(6,9)
Zero				(Instruction[22:21]*16) }	(-,-)
Inclusive OR	ORR	R	550	$R[Rd] = R[Rn] \mid R[Rm]$	
Inclusive OR	ORRI	I	590-591	$R[Rd] = R[Rn] \mid ALUImm$	(2,9)
Immediate					(-,-)
STore Register	STUR	D	7C0	M[R[Rn] + DTAddr] = R[Rt]	(5)
Unscaled offset					(-)
STore Byte	STURB	D	1C0	M[R[Rn] + DTAddr](7:0) =	(5)
Unscaled offset				R[Rt](7:0)	(.)
STore Half	STURH	D	3C0	M[R[Rn] + DTAddr](15:0) =	(5)
Unscaled offset				R[Rt](15:0)	()
STore Word	STURW	D	5C0	M[R[Rn] + DTAddr](31:0) =	(5)
Unscaled offset				R[Rt](31:0)	
STore eXclusive Register	STXR	D	640	M[R[Rn] + DTAddr] = R[Rt]; R[Rm] = (atomic) ? 0 : 1	(5,7)
SUBtract	SUB	R	658	R[Rd] = R[Rn] - R[Rm]	
SUBtract					
Immediate	SUBI	I	688-689	R[Rd] = R[Rn] - ALUImm	(2,9)
SUBtract					
Immediate & Set	SUBIS	I	788-789	R[Rd], FLAGS = R[Rn] -	(1,2,9)
flags				ALUImm	
SUBtract & Set	SUBS	R	758	DIDAL ELAGS - DID-1 DID-1	(1)
flags	0000	K	130	R[Rd], $FLAGS = R[Rn] - R[Rm]$	(1)

- FLAGS are 4 condition codes set by the ALU operation: Negative, Zero, oVerflow, Carry ALUImm = { 52'b0, ALU_immediate } BranchAddr = { 36'f8R_address { 25}}, BR_address, 2'b0 } CondBranchAddr = { 34'COND_BR_address { 25}}, COND_BR_address, 2'b0 } DTAddr = { 55'[DT_address [8]], DT_address { }} MOVImm = { 48'b0, MOV_immediate } Atomic test&set pair, R[Rm] = 0 if pair atomic, 1 if not atomic operands considered unsigned numbers (vs. 2's complement) Since I, B, and CB instruction formats have opcodes narrower than 11 bits, they occupy a range of 11-bit oncodes

(10) If neither is operand a NaN and Value! == Value2, FLAGS = 4'b0110; If neither is operand a NaN and Value! < Value2, FLAGS = 4'b1000; If neither is operand a NaN and Value1 > Value2, FLAGS = 4'b0010; If an operand is a Nan, operands are unordered

ARITHMETIC CORE	INSTR	UCTIO	N SET		(2)
NAME, MNEMON	IC.	FOR-	OPCODE/ SHAMT (Hex)	OPERATION (in Verilog)	Notes
Floating-point ADD Single	FADDS	R	0F1 / 0A	S[Rd] = S[Rn] + S[Rm]	
Floating-point ADD Double	FADDD	R	0F3 / 0A	D[Rd] = D[Rn] + D[Rm]	
Floating-point CoMPare Single	FCMPS	R	0F1 / 08	FLAGS = (S[Rn] vs S[Rm])	(1,10
Floating-point CoMPare Double	FCMPD	R	0F3 / 08	FLAGS = (D[Rn] vs D[Rm])	(1,10
Floating-point DIVide Single	FDIVS	R	0F1/06	S[Rd] = S[Rn] / S[Rm]	
Floating-point DIVide Double	FDIVD	R	0F3 / 06	D[Rd] = D[Rn] / D[Rm]	
Floating-point MULtiply Single	FMULS	R	0F1 / 02	S[Rd] = S[Rn] * S[Rm]	
Floating-point MULtiply Double	FMULD	R	0F3 / 02	D[Rd] = D[Rn] * D[Rm]	
Floating-point SUBtract Single	FSUBS	R	0F1 / 0E	S[Rd] = S[Rn] - S[Rm]	
Floating-point SUBtract Double	FSUBD	R	0F3 / 0E	D[Rd] = D[Rn] - D[Rm]	
LoaD Single floating-point	LDURS	R	7C2	S[Rt] = M[R[Rn] + DTAddr]	(5
LoaD Double floating-point	LDURD	R	7C0	D[Rt] = M[R[Rn] + DTAddr]	(5
MULtiply	MUL	R	4D8 / 1F	R[Rd] = (R[Rn] * R[Rm]) (63:0)	
Signed DIVide	SDIV	R	4D6 / 02	R[Rd] = R[Rn] / R[Rm]	
Signed MULtiply High	SMULH	R	4DA	R[Rd] = (R[Rn] * R[Rm]) (127:64)	
STore Single floating-point	STURS	R	7E2	M[R[Rn] + DTAddr] = S[Rt]	(5
STore Double floating-point	STURD	R	7E0	M[R[Rn] + DTAddr] = D[Rt]	(5
Unsigned DIVide	UDIV	R	4D6 / 03	R[Rd] = R[Rn] / R[Rm]	(8
Unsigned MULtiply High	UMULH	R	4DE	R[Rd] = (R[Rn] * R[Rm]) (127:64)	(8
CORE INSTRUCTION	FORM	IATS			
R opcode		Rm	sh	amt Rn	Rd

R	opcode		Rm	shamt		Rn		Rd	
	31	21	20 16	15	10	9	5 4		0
	opcode		ALU_ir	nmediate		Rn		Rd	
	31	22 21			10	9	5 4		0
D	opcode		DT_ad	ldress	op	Rn		Rt	
	31	21 2	20	12	11 10	9	5 4		(
3	opcode			BR_ad	dress				
	31 26 25			3000					(
CB	Opcode		COND	BR_addre	SS			Rt	
	31 24 23						5 4		(
W	opcode			MOV_imn	nediat	e		Rd	
	31	21 2	20				5 4		0

PSEUDOINSTRUCTION SI	ET	
NAME	MNEMONIC	OPERATION
CoMPare	CMP	FLAGS = R[Rn] - R[Rm]
CoMPare Immediate	CMPI	FLAGS = R[Rn] - ALUImm
LoaD Address	LDA	R[Rd] = R[Rn] + DTAddr
MOVe	MOV	R[Rd] = R[Rn]
		rigranj

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	AME NUMBER USE		PRESERVED ACROSS A CALL?
X0 - X7	0-7	Arguments / Results	No
X8	8	Indirect result location register	No
X9 - X15	9-15	Temporaries	No
X16 (IP0)	16	May be used by linker as a scratch register; other times used as temporary register	No
X17 (IP1)	17	May be used by linker as a scratch register; other times used as temporary register	No
X18	18	Platform register for platform independent code; otherwise a temporary register	No
X19-X27	19-27	Saved	Yes
X28 (SP)	28	Stack Pointer	Yes
X29 (FP)	29	Frame Pointer	Yes
X30 (LR)	30	Return Address	Yes
XZR	31	The Constant Value 0	N.A.

OPCODES IN NUMERICAL ORDER BY OPCODE

OPCODES	IN NUMI	ERICAL ORI	ER BY OPCO	DE	111110	Q
Instruction			code	Shamt	11-bit C Range	
Mnemonic	Format	Width (bits)	Binary	Binary	Start (Hex)	
R	В	6	000101	Billary	0A0	0BF
MULS	R	11	000101	000010	0F	
FDIVS	R	11	00011110001	000110	0F	
FCMPS	R	11	00011110001	001000	0F	
FADDS	R	11	00011110001	001010	0F	
	R	11	00011110001	001010	0F	
FSUBS	R	11	00011110001	000010	0F	
FMULD	R	11			0F	
PDIVD	R		00011110011	000110		
FCMPD	R	11 11	00011110011	001000	0F	
FADDD			00011110011	001010	0F	
FSUBD	R	11	00011110011	001110	0F	
STURB	D	11	00111000000		1C	
LDURB	D	11	00111000010		1C	
3.cond	CB	8	01010100		2A0	2A7
STURH	D	11	01111000000		3C	
LDURH	D	11	01111000010		3C	
AND	R	11	10001010000		45	
ADD	R	11	10001011000		45	
ADDI	I	10	1001000100		488	489
ANDI	I	10	1001001000		490	491
BL	В	6	100101		4A0	4BF
SDIV	R	11	10011010110	000010	4D	
JDIV	R	11	10011010110	000011	4D	
4UL	R	11	10011011000	011111	4D	
SMULH	R	11	10011011010		4D.	
MULH	R	11	10011011110		4D	E
ORR	R	11	10101010000		55	0
ADDS	R	11	10101011000		55	8
ADDIS	I	10	1011000100		588	589
DRRI	1	10	1011001000		590	591
CBZ	CB	8	10110100		5A0	5A7
CBNZ	CB	8	10110101		5A8	5AF
STURW	D	11	10111000000		5C	0
LDURSW	D	11	10111000100		5C	4
STURS	R	11	101111100000		5E	0
DURS	R	11	10111100010		5E	2
STXR	D	11	11001000000		64	0
LDXR	D	11	11001000010		64	2
EOR	R	11	11001010000		65	0
SUB	R	11	11001011000		65	
SUBI	I	10	1101000100		688	689
SORI	Ī	10	1101001000		690	691
40VZ	IM	9	110100101		694	697
SR	R	11	11010011010		69,	
LSL	R	11	11010011011		69	
BR .	R	11	110101110000		6B	
NDS	R	11	11101010000		75	
SUBS	R	11	11101010000		75	
UBIS	I	10	1111000100		788	789
ANDIS	I	10	111100100		790	791
rolls box	IM	9	1111001000		790	797
IOVK	D	11			794 7C	
TUR			111111000000			1/4
DUR	D	11	111111000010		7C	
STURD	R	11	111111100000		7E	
LDURD	R	11	111111100010		7E	

(1) Since I, B, and CB instruction formats have opcodes narrower than 11 bits, they occupy a range of 11-bit opcodes, e.g., the 6-bit B format occupies 32 (2⁵) 11-bit opcodes.

IEEE 754 FLOATING-POINT STANDARD

3

IEEE 754 Symbols

4

 $(-1)^8 \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023

Exponent	Fraction	Object
0	0	± 0
0	≠ 0	± Denorm
l to MAX - 1	anything	± F1. Pt. Num.
MAX	0	± ∞
MAX	≠ 0	NaN
C D MAY - 25	S DD MAY	= 2047

IEEE Single Precision and Double Precision Formats:

ле	Tieci	SIUII J	ormats.		S.P. MAA – 255, D.P. MAA -	- 2047
	S		Exponent		Fraction	
	31	30	23	22		0
	S		Exponent		Fraction	
_	63	62		52	. 51	0

DATA ALIGNMENT

				Double	e Word				
		Wo	ord			W	ord/		
Н	Halfword		Halfword		Halt	Halfword		Halfword	
Byt	e	Byte	Byte Byte		Byte Byte		Byte Byte		
0	1		2	3	4	5	6	7	
1	√alue	of three	e least sig	nificant b	oits of byt	e address	(Big End	lian)	

EXCEPTION SYNDDOME DECISTED (ESD)

Exception Class (EC)		Instruction Length (IL)		Instruction Specific Syndrome field (ISS)	
31	26	25	24		0

EXCEPTION CLASS

CEPI	TON CLAS	5			
EC	Class	Cause of Exception	Number	Name	Cause of Exception
0	Unknown	Unknown	34	PC	Misaligned PC exception
7	SIMD	SIMD/FP registers disabled	36	Data	Data Abort
14	FPE	Illegal Execution State	40	FPE	Floating-point exception
17	Sys	Supervisor Call Exception	52	WPT	Data Breakpoint exception
32	Instr	Instruction Abort	56	BKPT	SW Breakpoint Exception

SIZE PREFIXES AND SYMBOLS

E PKEF	IXES AND SY	MBOLS			
SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL
10 ³	Kilo-	K	210	Kibi-	Ki
10 ⁶	Mega-	M	220	Mebi-	Mi
10 ⁹	Giga-	G	2 ³⁰	Gibi-	Gi
10 ¹²	Tera-	T	2 ⁴⁰	Tebi-	Ti
10 ¹⁵	Peta-	P	250	Pebi-	Pi
10^{18}	Exa-	Е	2^{60}	Exbi-	Ei
10^{21}	Zetta-	Z	270	Zebi-	Zi
10^{24}	Yotta-	Y	280	Yobi-	Yi
10 ⁻³	milli-	m	10-15	femto-	f
10 ⁻⁶	micro-	μ	10-18	atto-	a
10-9	nano-	n	10-21	zepto-	Z
10-12	nico-	n	10-24	vocto-	V