A cotação de 0 a 20 para cada pergunta está indicada na margem esquerda dentro de um quadrado. Duração: 2 horas.

- 1. O objetivo deste exercício é criar um schema numa base de dados Oracle, constituído por 2 tablespaces, 2 datafiles e um user. Considere os pressupostos seguintes:
 - Cada tablespace é constituído pelo respetivo datafile.
 - O tablespace primário deverá ter a denominação aebd_teste e o seu datafile deverá ser denominado aebd_teste_01.dbf. O tamanho do tablespace deverá ser de 400M.
 - O tablespace temporário deverá ter a denominação aebd_teste_tmp e o seu datafile deverá ser denominado aebd_teste_tmp_01.dbf. O tamanho do tablespace deverá ser de 100M.
 - O nome do user deverá ser aebd_teste e a password definida pelo utilizador.
 - Considere os devidos privilégios para o user utilizar o schema criado.
- |4|(a) Crie o referido schema.
 - 2. A BD oracle 12c estudada nas aulas apresenta a estrutura da Figura 1.

Figura 1: Estrutura de uma base de dados Oracle 12c.

- |2|(a) Indique a principal vantagem nesta estrutura (ContainerDatabase + PluqqableDatabases).
- 2 (b) Aproveite para indicar a estrutura correta que deve ser utilizada para criar o schema solicitado na questão 1.

- 3 3. (a) Identifique e descreva os métodos estudados para gerir (aumentar) o espaço em disco disponível para uma base de dados.
 - 4. A tabela seguinte ilustra a forma como deve ser calculado o custo de uma operação relacional em termos do número de acessos ao disco.

Expressão	Custo
t_1	$card(t_1)$ se t_1 é um operando simples
t_1	$custo(t_1)$ se t_1 é uma operação
$t_1 \otimes t_2$	$card(t_1) * card(t_2) + custo(t_1) + custo(t_2)$
$t_1 \bowtie_{A_i} t_2$	$card(t_1) + card(t_2) + custo(t_1) + custo(t_2)$
$t_1 \cup t_2$	$card(t_1) + card(t_2) + custo(t_1) + custo(t_2)$
$t_1 \setminus t_2$	$card(t_1) + card(t_2) + custo(t_1) + custo(t_2)$
$\sigma_{Cond}(t_1)$	$card(t_1) + custo(t_1)$
$\Pi_{A_i,,A_j} t_1$	$custo(t_1)$

Considere as tabelas R1(A, B, C) e R2(C, D) e considere a seguinte expressão em Àlgebra Relacional: $\sigma_{A=1}(R1 \bowtie_C R2)$. Considere também:

$$card(R1) = 1000000$$

 $card(R2) = 500$
 $card(\sigma_{A=1}(R1)) = 200$.
 $card(R1 \bowtie R2) = 10000000$
 $card(\sigma_{A=1}(R1 \bowtie_C R2)) = 200$.

- (a) Calcule o custo da expressão $\sigma_{A=1}(R1 \bowtie_C R2)$.
- (b) Reescreva a expressão com uma expressão equivalente e que considere à partida mais eficiente.
- (c) Calcule o custo da nova expressão.
- [2] 5. (a) O administrador da base de dados é responsável, entre outras tarefas, de garantir a alta disponibilidade da base de dados. Enumere as atividades da responsabilidade do administrador da base de dados no dia a dia e apresente uma arquitectura de base de dados que garanta essa alta disponibilidade.
- (b) Atendendo ao facto da clínica funcionar 7 dias por semana e 24 horas por hora, como é possível fazer cópias de segurança e como se deve actuar em situação de actualização de software ou mesmo de avaria de hardware?

Cotação:

Pergunta	1	2	3	4	5	Total
Pontos	4	4	3	5	4	20
Pontos Obtidos						