1 Einleitung

1.1 Chemie der Nichtmetalle

1.1.1 Was ist ein Metall?

- Duktil
- Metallischer Glanz
- Temperatur Abhängigkeit der elektrischen Leitfähigkeit
- Metallatome geben leicht Elektronen ab
- Zur erreichung der Edelgaskonfiguration
- Kleine Ionisierungsenergien
- Chemie dominiert von positiv geadenen Teilchen
- Metalle haben kleine Elektronegativität

1.2 Chemie der Elektronegativität der Elemente

1.2.1 Elektronegativität

Sehr nützliches Konzept Es ist keine experimentell observable Pauling:

$$\Delta D = D(\mathbf{A} - \mathbf{B}) - \frac{1}{2}(D(\mathbf{A} - \mathbf{A}) + D(\mathbf{B} - \mathbf{B}))$$

 ΔD Maß ionische Anteile der polaren Bindungen

$$\Delta EN = \sqrt{\Delta D}$$

$$0 \le EN \ge 4$$

Metalle: EN < 1.9(1) Nichtmetalle: EN > 2.1(1)

1.3 Grundegende Konzepte/Bindungstheorie

1.3.1 Die unpolare kovalente Bindung

Beispiel: MO-Diagramme

1.3.2 Die polare kovalente Bindung

Beispiel: MO-Schema für Fluor-Wasserstoff

1.3.3 Atom/Kovalenzradien

$$E - X$$

• größerer Radius bei X

E ----- E

• gleichgroß verteilt

$$r_{kov}(E) + r_{kov}(X)$$

1.3.3.1 Kovalenzradientrends

- Trend 1: innerhalb einer Gruppe nimmt r_{kov} zu
- Trend 2: innerhalb einer Periode fällt der r_{kov}
- Z_{eff} steigt innerhalb einer Periode
- Valenzelektronen außen spüren mehr vom Kern
 - Stärkere Kontraktion

2. Periode e^ können nur kleine Konzentrationszahlen (KZ) realisieren
 ${\rm AlF_6}^{3-}$ ${\rm BF_6}^{3-}$ gibt es nicht
 -> KZ = 4

Einschub Z_{eff}

Real gespürte elektrostatische Anziehung eines Valenzelektrons vom Kern "Z"

$$Z_{\text{eff}} = Z - \sigma$$

1.3.3.2 Ionenradien H⁻ $r_{ion} = 207$ pm Pauling

 $r_{ion} = 139 \text{ pm}$

 $r_{ion} \approx 149 \pm 20 \text{ pm}$

1.3.3.3 Die Bindungsenergien von ElementElement Einfachbindungen

Freie Elektronenpaare die nahe zur Bindung liegen destabilisieren diese durch elektrostatische Wechselwirkungen.

1.3.3.4 Ionisierungsenergien & Elektronenaffinitäten

 $|E: Ag \longrightarrow Ag^+ + e^- 5-25eV$

EA: $Ag + e^- \longrightarrow Ag^-$

1.4 Der Wasserstoff

1.4.1 Allgemeines H hydrogenium

hydro = Wasser

genium = erzeugen

- \bullet Häufigstes Element Massenprozent70%
 - -Erdhydrosphäre0.75%

3 Isotope:

- ${}_{1}^{1}\text{H} \approx 99.98\% \ r_{kov} = 37 \text{ pm}$
- ${}^{2}_{1}H = D \approx 0.02\%$
- $\begin{array}{l} \bullet \ \ _{1}^{3}\mathrm{H}=\mathrm{T}\ \tau_{\frac{1}{2}}=12.5\ \mathrm{Jahre} \\ ^{14}\mathrm{N}+\mathrm{n} \longrightarrow {}^{\mathrm{R}}\mathrm{C}+{}^{3}\mathrm{H}\,/\,\mathrm{T} \\ {}^{6}\mathrm{Li}+\mathrm{n} \longrightarrow {}^{4}\mathrm{He}+\mathrm{T}+5\ \mathrm{MeV} \end{array}$

H — H Δ E = 440 $\frac{kJ}{mol}$ Bindungslänge: 74 pm Smp 14K Sdp 20K 1765 Cavendish: $2\,M+2\,HCl \longrightarrow H_2+2\,MCl$

1.4.2 Darstellung

 $2\,HCl + Zn \longrightarrow H_2 + ZnCl_2$ Elektrolyse von H_2O in verdünnten Säuren / Laugen

- Kathode $H^+ + e^- \longrightarrow \frac{1}{2} H_2$
- Anode $H_2O \longrightarrow \frac{1}{2}O_2 + 2e^- + 2H^+$

1.4.3 großtechnische Produktion von H_2

1.4.4 Reaktivität von H₂