Remaining ...

Chapter 6. Calculus of Variations

- A topic in mathematics: Find the function that minimizes an integral.
- Solved by Leonhard Euler and Joseph-Louis Lagrange.
- Applies to a range of interesting problems.

Chapter 7.

Lagrange's Equations

- Lagrange developed a powerful method for deriving the equations of motion, which can be applied to generalized coordinates.
- It's related to the calculus of variations, by Hamilton's principle of least action

Chapter 8. Motion with a Two-body Central Force

 For example, the motion of the planets

Chapter 6. The Calculus of Variations

Read Chapter 6.

We'll spend only one week on Chapter 6.

THE VARIATIONAL PROBLEM

Consider a quantity S of this form,

$$S = \int_{x_1}^{x_2} f(y(x), y'(x), x) dx$$

where y(x) is a function whose values are specified at x_1 and x_2 ,

$$y(x_1) = y_1$$
 and $y(x_2) = y_2$;
also $y'(x) \equiv dy/dx$.

Terminology

S[y] is an example of a *functional*.

a function:
$$u \rightarrow g(u)$$

a functional: $y(x) \rightarrow S[y]$

There are an infinite number of functions from (x_1,y_1) to (x_2,y_2)

and the value of S varies as the function varies.

The "variational problem" is to find the function y(x) for which S is minimum (or, maximum).

In the calculations below I'll assume that we seek the *minimum of S*; but the same equations apply for the *maximum*.

We say, "S is stationary".

Let y(x) denote the function that makes S minimum.

S[y(x)] = minimum value of S;

for any function (\dagger) $\varepsilon(x)$,

 $S[y(x) + \varepsilon(x)] = S[y(x)] + \delta S$

where $\delta S > 0$.

Now let $\varepsilon(x)$ be very small ("infinitesimal") and calculate δS to linear accuracy in $\varepsilon(x)$.

(†) but we must keep the endpoints fixed; that is, $\varepsilon(x_1) = 0$ and $\varepsilon(x_2) = 0$.

Define
$$\delta S = S[y + \varepsilon] - S[y]$$

The condition for y(x) to be the function for which S has the minimum value, is that the <u>linear approximation of δS </u> must be equal to 0 for any $\varepsilon(x)$.

In other words, $\delta S = O(\epsilon^2)$.

Or,
$$\delta S = 0$$
 to linear order.

Analogy: The minimum of a function g(u) occurs where dg/du = 0.

The minimum of a functional S[y] occurs where

$$\frac{\delta S}{\delta y(x)} = 0$$
 for all x.

Additional justification:

 $\delta y(x) = \varepsilon(x)$; and so $\delta S/\delta y$ is the coefficient of the linearized approximation. If this coefficient is 0 then y(x) is at the minimum.

OK, now calculate δS to linear order...

$$\delta S = \int_{x_1}^{x_2} f[y + \epsilon, y' + \epsilon', x] dx$$

$$- \int_{x_1}^{x_2} f(y, y', x) dx$$

$$\xi apply Taylor's theorem to linear order$$

$$SS = \int_{x_1}^{x_2} \left\{ f(y, y', x) + \epsilon \frac{\partial f}{\partial y} + \epsilon' \frac{\partial f}{\partial y'} \right\} dx$$

$$- \int_{x_1}^{x_2} f(y, y', x) dx$$

$$SS = \int_{x_1}^{x_2} \left\{ \epsilon(x) \frac{\partial f}{\partial y} + \frac{d\epsilon}{dx} \frac{\partial f}{\partial y'} \right\} dx$$

$$SS = \int_{x_1}^{x_2} \left\{ \epsilon(x) \frac{\partial f}{\partial y} + \frac{d\epsilon}{dx} \frac{\partial f}{\partial y'} \right\} dx$$

$$Integration by parts$$

$$\frac{d\epsilon}{dx} \frac{\partial f}{\partial y'} = \frac{d}{dx} \left[\epsilon \frac{\partial f}{\partial y'} \right] = \epsilon(x) \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right)$$

$$\frac{d \in \partial f}{dx} = \frac{d}{dx} \left[\in \frac{\partial f}{\partial y'} \right] = \mathcal{E}(x) \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right)$$

$$\int_{x_1}^{x_2} (") = 0 \text{ because } = \in \frac{\partial f}{\partial y'} \int_{x_1}^{x_2}$$

$$\mathcal{E}(x_1) = \mathcal{E}(x_2) = 0$$

$$(\text{fixed endpoints})$$

$$\delta_x = \int_{x_1}^{x_2} \mathcal{E}(x) \left[\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) \right] dx$$

We demand
$$SS = 0$$
 for any $E(x)$.

Only way that can be true is if

 $\frac{\partial f}{\partial y} = \frac{d}{dx} \left(\frac{\partial f}{\partial y^{\prime}} \right) = 0$ Euler Lagrange.

Squartan

Result

Given the functional

$$S[y] = \int_{x_1}^{x_2} f(y(x), y'(x), x) dx$$

where $y(x_1) = y_1$ and $y(x_2) = y_2$ are fixed; the function y(x) such that S[y] is stationary obeys the *Euler-Lagrange* equation

$$\frac{\mathrm{d}}{\mathrm{dx}} \frac{\partial \mathbf{f}}{\partial \mathbf{y'}} = \frac{\partial \mathbf{f}}{\partial \mathbf{y}}$$

Preview of Chapter 7

Calculus of Variations (Ch 6)

$$S = \int_{1}^{y_{1}} f(y, y', x) dx$$

$$SS = 0 \iff \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = \frac{\partial f}{\partial y}$$

In Chapter 7 we'll learn that the equation of motion for a mechanical system can be written as the Euler-Lagrange equation with

$$S = \int_{t_1}^{t_2} (T - U) dt$$

$$T(x) \quad \text{or use generalized accordinates}$$

$$\delta S = 0 \quad \text{"principle of least action"}$$

Example

the shortest distance between 2 points

Consider two points in 2 dimensions, $P_1: (x_1,y_1)$ and $P_2: (x_2,y_2)$.

Use the Euler-Lagrange equations to determine the path from P₁ to P₂ that has the shortest distance.

(Of course you know the answer, but get it from the E.-L. equation.)

Arclength S;
$$(ds)^2 = (dx)^2 + (dy)^2$$

y ds = $\sqrt{(dx)^2 + (dy)^2}$
= $\sqrt{1 + (dy/dx)^2} dx$
Length = $\int_{x_1}^{x_2} \sqrt{1 + y/2} dx$
 $f(y, y', x) = \sqrt{H(y')^2}$
 $\frac{\partial f}{\partial y} = 0$ and $\frac{\partial f}{\partial y'} = \frac{1}{2} \left[1 + (y')^2 \right]^{\frac{1}{2}} 2y'$

first integral E-L. quation dx (VI+141)2 = 0 Therefore (...) = constant; there fore y' = another constant Solution y(x) = mx + b where $y_1 = mx + b$ 1-8., the straight line from P_1 to P_2 .

A couple of special cases

In general, f(y(x), y'(x), x)

☐ We need to solve the differential equation

$$\frac{\partial f}{\partial y} = \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right)$$

(★)

Do you see that this is a second-order diff. equation?

In two special cases we can reduce (\star) to a *first-order diff. equation*, with an unknown constant that we can find from the initial conditions (or other information).

<u>First special case:</u> when *f* does not depend explicitly on y

Second special case: when f does not depend explicitly on x

Other comments...

- ☐ Fermat's Principle is an application of Euler's equation in classical optics.
- The *Euler-Lagrange equations* apply when we seek the stationary points of a functional. (A "point" in function space, means a function.)
- ☐ Functional analysis in the path-integral form of quantum mechanics (R. P. Feynman) is based on exp{ i S / ħ } = the weighting of paths

Homework Assignment #11 due in class Friday November 18 [50] a problem [51] Problem 6.7 * [52] Problem 6.8 * [53] Problem 6.10 * and 6.20 ** [54] Problem 6.1* and 6.16 ** [55] Problem 6.19 ** [56] Problem 6.25 ***

Use the cover sheet.

Due Friday Nov. 11:

- *** Homework Assignment #10**
- *** Extra Credit for Exam 2**