# **Executable Jupyter notebook 2: Medical data for regression**

In [1]:

```
# imports and plotting utility functions
%matplotlib inline
import warnings
import numpy as np
from scipy.linalg import norm
import pandas as pd
from sklearn.datasets import make regression
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2 score, mean squared error, mean absolute error
from sklearn.ensemble import RandomForestRegressor
from sklearn.cross validation import ShuffleSplit
from sklearn.linear model import Lasso
from statsmodels.regression.linear model import OLS
from matplotlib import pylab as plt
import seaborn as sns
warnings.filterwarnings('ignore')
rf cmp = RandomForestRegressor(n estimators=250, criterion='mse', bootstrap=True
, oob_score=True, random_state=0)
def plot lr(true coefs, est coefs, pvals, var names=None, rf cmp coef=None):
   n feat = len(est coefs)
   where sign = lr pvalues < 0.05
   plt.figure(figsize=(15, 7))
    # print non-significant betas
   plt.scatter(np.arange(X.shape[1]), est_coefs, s=150, color='red', label='est
imated betas', alpha=0.5)
    if true coefs is not None:
        plt.scatter(np.arange(X.shape[1]), true coefs, s=150, color='black', lab
el='true betas', alpha=0.5)
    if rf cmp coef is not None:
        plt.scatter(np.arange(X.shape[1]), rf_cmp_coef, s=150, marker='D', color
='steelblue', label='RandomForest importances', alpha=0.5)
    # print star significant betas and their values
   axes = plt.gca()
    #import pdb; pdb.set_trace()
   y min, y max = axes.get ylim()
   axes.set_ylim(y_min * 1.25, y_max * 1.25)
   sign y = np.sum(where sign) * [y min]
   plt.scatter(np.arange(X.shape[1])[where_sign], sign_y, color='red', label='s
ignificant at p<0.05', s=150, marker=(5, 1), alpha=0.75, linewidth=3)
    for i b, p in enumerate(pvals):
        plt.text(x=i b - 0.25, y=y min * 1.10, s='p=%.3f' % p)
   plt.xlabel('input variables')
    #plt.xticks(np.arange(n_feat)[::2], (np.arange(n_feat) + 1)[::2])
   if var names is None:
        plt.xticks(np.arange(n feat), (np.arange(n feat) + 1), fontsize=16)
   else:
        plt.xticks(np.arange(n feat), var names, fontsize=16)
   plt.grid(True)
   plt.title('Linear regression', fontsize=16)
   plt.legend(loc='upper right', fontsize=14, fancybox=True, framealpha=0.5)
```

```
def plot regr paths (coefs, accs, nonzeros, C grid, var names=None, unbiased accs
=None, metric=None):
   n cols = 2
   n rows = 1
    n verticals = len(coefs)
    n_feat = coefs.shape[1]
    my palette = np.array([
        '#F47D7D', '#FBEF69', '#98E466', '#000000',
        '#A7794F', '#CCCCCC', '#85359C', '#FF9300', '#FF0030', 'grey', 'blue',
'salmon', '#4BBCF6',
        'green', 'tomato', 'darkred', 'black', 'cyan', 'lime'
    my colors = np.array(['??????'] * coefs.shape[-1])
    i col = 0
    new_grp_pts_x = []
    new_grp_pts_y = []
    new grp pts col = []
    new grp pts total = []
    for i_vertical, (params, acc, C) in enumerate(zip(
        coefs, accs, C grid)):
        b notset = my colors == '??????'
        b nonzeros = params == 0
        b coefs of new grp = np.logical and(b notset, b nonzeros)
        #if i vertical >= 17:
             import pdb; pdb.set trace()
        if np.sum(b coefs of new grp) > 0:
            i col += 1
            # we found a new subset that became 0
            for new_i in np.where(b_coefs_of_new_grp == True)[0]:
                # color all coefficients of the current group
                cur col = my palette[i col]
                my colors[new i] = cur col
            new grp pts x.append(C)
            new grp pts y.append(acc)
            new grp pts col.append(cur col)
            new_grp_pts_total.append(np.sum(b_nonzeros))
    if var names is None:
        X colnames = np.arange(n feat) + 1
    else:
        X colnames = var names
    subplot xlabel = '#nonzero coefficients'
    f, axarr = plt.subplots(nrows=n rows, ncols=n cols,
        figsize=(15, 10), facecolor='white')
    t, i col = 0, 0
    for i_line in range(X.shape[-1]):
        axarr[i_col].plot(np.log10(C_grid),
            coefs[:, i line], label=X colnames[i line],
                color=my colors[i line], linewidth=1.5)
    # axarr[0].set_xticks(np.arange(len(C_grid)))
```

```
# axarr[0].set xticklabels(np.log10(C grid)) #, rotation=75)
   axarr[i col].set xlabel(subplot xlabel, fontsize=10)
   axarr[i col].legend(loc='lower left', fontsize=11, markerscale=10, fancybox=
True, framealpha=0.5)
   axarr[0].grid(True)
   # axarr[i col].set ylabel('Item groups', fontsize=16)
   axarr[0].set title('LASSO: Groups of selected variables', fontsize=16)
    axarr[0].set xticks(np.log10(C grid))
   axarr[0].set xticklabels(nonzeros)
    # axarr[1].axis('off')
   #import pdb; pdb.set trace()
   axarr[1].grid(True)
    if unbiased accs is not None:
        axarr[1].scatter(np.arange(len(unbiased accs)), unbiased accs, color='or
ange',
                     linewidth=4, label='prediction accuracy (unbiased)', zorder
=10)
   axarr[1].scatter(np.arange(len(accs)), accs, color='black',
                     linewidth=3, label='prediction accuracy', zorder=10)
   # axarr[1].set title('ACCURACY')
    if metric == mean absolute error:
        error_title = 'LASSO: Out-of-sample performance (MAD score)'
   else:
        axarr[1].set_ylim(-0.15, 1.05)
        error title = 'LASSO: Out-of-sample performance ($R^2$ score)'
    # axarr[1].set xticklabels(np.log10(C grid), '')
   axarr[1].set_xticks(np.arange(n_verticals))
   axarr[1].set xticklabels(nonzeros)
   axarr[1].set xlabel(subplot xlabel, fontsize=10)
   # axarr[1].set ylabel('Out-of-sample performance', fontsize=16)
    axarr[1].legend(loc='lower left', fontsize=14, markerscale=1, fancybox=True,
 framealpha=0.5)
   axarr[1].set title(error title, fontsize=16)
   return my_colors
def corrfunc(x, y, **kws):
    from scipy import stats
   r, _ = stats.pearsonr(x, y)
   ax = plt.gca()
    ax.annotate("r = {:.2f}".format(r),
                xy=(.1, .9), xycoords=ax.transAxes)
```

/Users/dengeman/anaconda3/lib/python3.5/site-packages/sklearn/cross\_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model\_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.

"This module will be removed in 0.20.", DeprecationWarning)

#### In [2]:

```
import statsmodels.api as sm
# https://datascience.stackexchange.com/questions/937/does-scikit-learn-have-for
ward-selection-stepwise-regression-algorithm
def fwd stepwise selection(X, y, initial list=[], verbose=True):
    """ Perform a forward-backward feature selection
    based on p-value from statsmodels.api.OLS
    Arguments:
        X - pandas.DataFrame with candidate features
        y - list-like with the target
        initial list - list of features to start with (column names of X)
        threshold in - include a feature if its p-value < threshold in
        threshold_out - exclude a feature if its p-value > threshold_out
        verbose - whether to print the sequence of inclusions and exclusions
    Returns: list of selected features
    included = list(initial list)
    while len(included) < X.shape[1]:</pre>
        # forward step
        excluded = list(set(X.columns)-set(included))
        new pval = pd.Series(index=excluded)
        for new column in excluded:
            model = sm.OLS(y, sm.add constant(pd.DataFrame(X[included + [new col
umn]]))).fit()
            new pval[new column] = model.pvalues[new column]
        best pval = new pval.min()
        best feature = new pval.argmin()
        included.append(best feature)
        if verbose:
            print('Add {:30} with p-value {:.6}'.format(best_feature, best_pval
))
    return included
```

In [3]:

```
# statistical helper functions
def compute_Lasso_regpath(X, y, C_grid, metric=None, verbose=True):
    coef list2 = []
    acc list2 = []
    acc unbiased list2 = []
    nonzero list2 = []
    if metric is None:
        metric = r2 score
    for i step, my C in enumerate(C grid):
        sample_accs = []
        sample accs unbiased = []
        sample coef = []
        for i subsample in range(100):
            folder = ShuffleSplit(n=len(y), n iter=100, test size=0.1,
                                             random state=i subsample)
            train inds, test inds = next(iter(folder))
            clf = Lasso(alpha=my C, random state=i subsample)
            clf.fit(X[train inds, :], y[train inds])
            acc = metric(
                    y true=y[test inds],
                    y pred=clf.predict(X[test inds]))
            # get out-of-sample accuracy from unbiased linear model with selecte
d inputs
            b_vars_to_keep = clf.coef_ != 0
            if np.sum(b vars to keep) > 0:
                unbiased lr = LinearRegression()
                unbiased lr.fit(
                  X[train inds, :][:, b vars to keep], y[train inds])
                unbiased acc = metric(
                    y true=y[test inds],
                    y pred=unbiased lr.predict(X[test inds][:, b vars to keep]))
            else:
                unbiased acc = 0
            sample accs.append(acc)
            sample accs unbiased.append(unbiased acc)
            sample coef.append(clf.coef )
        mean coefs = np.mean(np.array(sample coef), axis=0)
        coef list2.append(mean coefs)
        acc for C = np.mean(sample accs)
        acc for C unbaised = np.mean(sample accs unbiased)
        acc list2.append(acc for C)
        acc unbiased list2.append(np.mean(sample accs unbiased))
        notzero = np.count nonzero(mean coefs)
        nonzero list2.append(notzero)
        if verbose:
            print("alpha: %.4f acc: %.2f / %.2f (unbiased) active coefs: %i" % (
                my_C, acc_for_C, acc_for_C_unbaised, notzero))
    return np.array(coef list2), np.array(acc list2), np.array(nonzero list2), n
p.array(acc unbiased list2)
```

In [4]:

```
def infpred plot(unbiased acc list, lr pvalues, coef list, feat names, acc offse
t=0.1, annot_ha='center'):
    fig = plt.figure(figsize=(9, 9))
    sorter = unbiased acc list.argsort()[::-1]
    colors = plt.cm.viridis r(np.linspace(0.1, 0.9, len(sorter)))
    unique nonzero = {}
    size = 20
    for ii, idx in enumerate(sorter):
        acc = unbiased acc list[idx]
        non zero = np.where(coef list[idx])[0]
        if tuple(non zero) not in unique nonzero:
            unique_nonzero[tuple(non_zero)] = non_zero
        else:
            print('skipping', ii)
            continue
        xx = -np.log10(lr pvalues[non zero])
        this_acc = np.array([acc] * len(xx))
        size *= 0.9
        plt.plot(xx + np.random.sample(len(xx)) * 0.01,
                 this acc,
                 marker='o', linestyle='None',
                 color=colors[ii], zorder=-ii,
                 alpha=0.9,
                 mfc='None',
                 mew=1,
                 markersize=size)
        if ii == 0:
            psorter = np.argsort(lr_pvalues)
            feat names = [feat names[kk] for kk in psorter]
            xx2 = -np.log10(lr pvalues[psorter])
            for jj, (this_name, this_x) in enumerate(zip(feat_names_, xx2)):
                print(this x)
                plt.annotate(
                    this name, xy=(this x, acc + acc offset),
                    xycoords='data', rotation=90,
                    verticalalignment='bottom' if jj % 2 else 'top',
                    ha=annot ha,
                    fontsize=14)
    plt.axvline(
        -np.log10(0.05), color='red', linestyle='--', linewidth=3)
    plt.annotate('p < 0.05', xy=(-np.log10(0.045), 0.03), color='red', fontsize=
16)
    plt.xlabel(r'significance [$-log_{10}(p)$]', fontsize=20, fontweight=150)
    plt.ylabel(r'prediction [$R^2$]', fontsize=20, fontweight=150)
    plt.ylim(0, 1)
    plt.grid(True)
    ax = plt.gca()
    ax.set_yticks([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1])
    ax.set_yticks(np.arange(0.01, 1, 0.01), minor=True);
    return fig
```

## Diabetes: 2 very predictive, but only 1 significant variable

Dataset summary: Ten baseline variables, age, sex, body mass index, average blood pressure, and six blood serum measurements were obtained for each of n = 442 diabetes patients, as well as the response of interest, a quantitative measure of disease progression one year after baseline.

Data Set Characteristics:

:Number of Instances: 442

:Number of Attributes: First 10 columns are numeric predictive values

:Target: Column 11 is a quantitative measure of disease progression one year after baseline

:Attributes: :Age: :Sex: :Body mass index: :Average blood pressure: :S1: :S2: :S3: :S4: :S5: :S6:

Note: Each of these 10 feature variables have been mean centered and scaled by the standard deviation times n samples (i.e. the sum of squares of each column totals 1).

Source URL: <a href="http://www4.stat.ncsu.edu/~boos/var.select/diabetes.html">http://www4.stat.ncsu.edu/~boos/var.select/diabetes.html</a>)

For more information see: Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani (2004) "Least Angle Regression," Annals of Statistics (with discussion), 407-499. (http://web.stanford.edu/~hastie/Papers/LARS/LeastAngle 2002.pdf

(http://web.stanford.edu/~hastie/Papers/LARS/LeastAngle\_2002.pdf))

#### In [5]:

```
import sklearn.datasets as ds
bun = ds.load_diabetes()
X, y = bun.data, bun.target
X = StandardScaler().fit_transform(X)
feat_names = bun.feature_names
```

#### In [6]:

```
g = sns.pairplot(pd.DataFrame(X, columns=feat_names), kind="reg", diag_kind="kd
e")
g.map_lower(sns.kdeplot, cmap="Blues_d")
g.map_lower(corrfunc)
```

#### Out[6]:

#### <seaborn.axisgrid.PairGrid at 0x127db7278>



#### In [7]:

```
# ordinary least squares
model = OLS(y, X)
res = model.fit()
lr coefs = res.params
lr pvalues = res.pvalues
snr = (norm(a=lr coefs, ord=2) ** 2) / (norm(a=res.resid, ord=2) ** 2)
print('Signal-to-noise ratio: %.4f' % snr)
rf cmp.fit(X, y)
rf cmp.feature importances
# compute Lasso regularization paths
C grid = np.logspace(-2, 2, 25)
coef list, acc list, nonzero list, unbiased acc list = compute Lasso regpath(X,
y, C_grid)
plot lr(None, lr coefs, lr pvalues, feat names, rf cmp coef=rf cmp.feature impor
tances_ * 10 * np.mean(np.abs(lr_coefs)))
path colors = plot regr paths(coef list, acc list, nonzero list, C grid, feat na
mes, unbiased acc list)
```

Signal-to-noise ratio: 0.0004 alpha: 0.0100 acc: 0.45 / 0.45 (unbiased) active coefs: 10 alpha: 0.0147 acc: 0.45 / 0.45 (unbiased) active coefs: 10 alpha: 0.0215 acc: 0.45 / 0.45 (unbiased) active coefs: 10 alpha: 0.0316 acc: 0.45 / 0.45 (unbiased) active coefs: 10 alpha: 0.0464 acc: 0.45 / 0.45 (unbiased) active coefs: 10 alpha: 0.0681 acc: 0.45 / 0.45 (unbiased) active coefs: 10 alpha: 0.1000 acc: 0.46 / 0.45 (unbiased) active coefs: 10 alpha: 0.1468 acc: 0.46 / 0.46 (unbiased) active coefs: 10 alpha: 0.2154 acc: 0.46 / 0.45 (unbiased) active coefs: 10 alpha: 0.3162 acc: 0.46 / 0.45 (unbiased) active coefs: 10 alpha: 0.4642 acc: 0.46 / 0.46 (unbiased) active coefs: 9 alpha: 0.6813 acc: 0.46 / 0.45 (unbiased) active coefs: 9 alpha: 1.0000 acc: 0.46 / 0.45 (unbiased) active coefs: 9 alpha: 1.4678 acc: 0.46 / 0.46 (unbiased) active coefs: 10 alpha: 2.1544 acc: 0.46 / 0.46 (unbiased) active coefs: 8 alpha: 3.1623 acc: 0.45 / 0.45 (unbiased) active coefs: 8 alpha: 4.6416 acc: 0.45 / 0.45 (unbiased) active coefs: 7 alpha: 6.8129 acc: 0.43 / 0.44 (unbiased) active coefs: 6 alpha: 10.0000 acc: 0.42 / 0.45 (unbiased) active coefs: 5 alpha: 14.6780 acc: 0.38 / 0.43 (unbiased) active coefs: 4 alpha: 21.5443 acc: 0.32 / 0.42 (unbiased) active coefs: 3 alpha: 31.6228 acc: 0.19 / 0.42 (unbiased) active coefs: 2 alpha: 46.4159 acc: -0.03 / 0.03 (unbiased) active coefs: 1 alpha: 68.1292 acc: -0.03 / 0.00 (unbiased) active coefs: 0 alpha: 100.0000 acc: -0.03 / 0.00 (unbiased) active coefs: 0







```
In [8]:
```

- 2.00836758255
- 0.99805835067
- 0.831173523726
- 0.711931965772
- 0.277160066083
- 0.193251734924
- 0.145088838637
- 0.134406512913
- 0.0581639211354
- 0.0196968809084
- skipping 2
- skipping 4
- skipping 5
- skipping 7
- skipping 8
- skipping 9
- skipping 10
- skipping 11
- skipping 12
- skipping 13
- skipping 14
- skipping 15
- skipping 16
- skipping 24

## Diabetes Data Predictive and some significant



#### In [9]:

```
C_grid = np.logspace(-2, 2, 25)
coef_list, acc_list, nonzero_list, unbiased_acc_list = compute_Lasso_regpath(X,
y, C_grid, metric=mean_absolute_error, verbose=False)
plot_regr_paths(coef_list, acc_list, nonzero_list, C_grid, feat_names, unbiased_acc_list, metric=mean_absolute_error)
```

#### Out[9]:





#### In [10]:

```
sel w pvals = fwd stepwise selection(pd.DataFrame(X, columns=feat names), y, ver
bose=True)
print('Forward-stepwise selection: ' + ' -> '.join(sel w pvals))
    bmi
Add
                                    with p-value 3.46601e-42
Add
    s5
                                    with p-value 3.03968e-20
Add bp
                                    with p-value 3.74192e-05
Add s1
                                    with p-value 0.00145437
Add sex
                                    with p-value 0.00922919
Add s2
                                    with p-value 0.000272264
Add s4
                                    with p-value 0.261918
Add s6
                                    with p-value 0.304022
Add s3
                                    with p-value 0.638562
Add age
                                    with p-value 0.867
Forward-stepwise selection: bmi -> s5 -> bp -> s1 -> sex -> s2 -> s4
-> s6 -> s3 -> age
```

### conclusions

- only var 3 significant, prediction: this one is selected too but as predictive as var 9 and similar to 4 and 7 -> S5 is as predictive as bmi but not significant, same goes for bp and s3
- bp has a lower p-value than s5, but s5 is nevertheless more predictive than bp (partly explained by their correlation of 0.39)
- bmi is significant, but alone R2 is less 0.05 !!!!!!!!!!!!
- · some of the most correlated input variables are neither significant nor predictive

#### In [11]:

res.summary(xname=feat\_names)

Out[11]:

#### **OLS Regression Results**

| Dep. Variable:    | у                | R-squared:          | 0.106    |
|-------------------|------------------|---------------------|----------|
| Model:            | OLS              | Adj. R-squared:     | 0.085    |
| Method:           | Least Squares    | F-statistic:        | 5.100    |
| Date:             | Sun, 20 May 2018 | Prob (F-statistic): | 4.72e-07 |
| Time:             | 17:29:08         | Log-Likelihood:     | -2873.9  |
| No. Observations: | 442              | AIC:                | 5768.    |
| Df Residuals:     | 432              | BIC:                | 5809.    |
| Df Model:         | 10               |                     |          |
| Covariance Type:  | nonrobust        |                     |          |

|     | coef     | std err | t      | P> t  | [0.025   | 0.975]  |
|-----|----------|---------|--------|-------|----------|---------|
| age | -0.4762  | 8.560   | -0.056 | 0.956 | -17.301  | 16.348  |
| sex | -11.4070 | 8.771   | -1.301 | 0.194 | -28.647  | 5.832   |
| bmi | 24.7263  | 9.532   | 2.594  | 0.010 | 5.991    | 43.461  |
| bp  | 15.4297  | 9.373   | 1.646  | 0.100 | -2.992   | 33.852  |
| s1  | -37.6804 | 59.697  | -0.631 | 0.528 | -155.014 | 79.653  |
| s2  | 22.6765  | 48.573  | 0.467  | 0.641 | -72.792  | 118.145 |
| s3  | 4.8062   | 30.449  | 0.158  | 0.875 | -55.041  | 64.653  |
| s4  | 8.4221   | 23.134  | 0.364  | 0.716 | -37.048  | 53.892  |
| s5  | 35.7347  | 24.628  | 1.451  | 0.148 | -12.671  | 84.140  |
| s6  | 3.2166   | 9.453   | 0.340  | 0.734 | -15.364  | 21.797  |

| Omnibus:       | 1.506 | Durbin-Watson:    | 0.223 |
|----------------|-------|-------------------|-------|
| Prob(Omnibus): | 0.471 | Jarque-Bera (JB): | 1.404 |
| Skew:          | 0.017 | Prob(JB):         | 0.496 |
| Kurtosis:      | 2.726 | Cond. No.         | 21.7  |

## Prostata dataset: not significant, but predictive

Prostate Cancer Data Description These data come from a study that examined the correlation between the level of prostate specific antigen and a number of clinical measures in men who were about to receive a radical prostatectomy. It is data frame with 97 rows and 9 columns.

Usage data(Prostate) Format The data frame has the following components:

Icavol log(cancer volume) Iweight log(prostate weight) age age lbph log(benign prostatic hyperplasia amount) svi seminal vesicle invasion Icp log(capsular penetration) gleason Gleason score pgg45 percentage Gleason scores 4 or 5 lpsa log(prostate specific antigen) Source Stamey, T.A., Kabalin, J.N., McNeal, J.E., Johnstone, I.M., Freiha, F., Redwine, E.A. and Yang, N. (1989) Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate: II. radical prostatectomy treated patients, Journal of Urology 141(5), 1076–1083.

Lasso paths from Hastie et al. 2001



In [12]:

```
import pandas as pd
df_prostate = pd.read_csv('dataset_prostate.csv')
y = df_prostate['lpsa']
feat_names = ['lcavol', 'lweight', 'age', 'lbph', 'svi', 'lcp', 'gleason', 'pgg4
5']
X = StandardScaler().fit_transform(df_prostate[feat_names])
```

In [13]:

df\_prostate

#### Out[13]:

20.5.2018

|    | Unnamed: |           |          |     |           |     |           |         |       |     |
|----|----------|-----------|----------|-----|-----------|-----|-----------|---------|-------|-----|
|    | 0        | lcavol    | lweight  | age | lbph      | svi | lcp       | gleason | pgg45 |     |
| 0  | 1        | -0.579818 | 2.769459 | 50  | -1.386294 | 0   | -1.386294 | 6       | 0     | -0. |
| 1  | 2        | -0.994252 | 3.319626 | 58  | -1.386294 | 0   | -1.386294 | 6       | 0     | -0. |
| 2  | 3        | -0.510826 | 2.691243 | 74  | -1.386294 | 0   | -1.386294 | 7       | 20    | -0. |
| 3  | 4        | -1.203973 | 3.282789 | 58  | -1.386294 | 0   | -1.386294 | 6       | 0     | -0. |
| 4  | 5        | 0.751416  | 3.432373 | 62  | -1.386294 | 0   | -1.386294 | 6       | 0     | 0.3 |
| 5  | 6        | -1.049822 | 3.228826 | 50  | -1.386294 | 0   | -1.386294 | 6       | 0     | 0.7 |
| 6  | 7        | 0.737164  | 3.473518 | 64  | 0.615186  | 0   | -1.386294 | 6       | 0     | 0.7 |
| 7  | 8        | 0.693147  | 3.539509 | 58  | 1.536867  | 0   | -1.386294 | 6       | 0     | 3.0 |
| 8  | 9        | -0.776529 | 3.539509 | 47  | -1.386294 | 0   | -1.386294 | 6       | 0     | 1.0 |
| 9  | 10       | 0.223144  | 3.244544 | 63  | -1.386294 | 0   | -1.386294 | 6       | 0     | 1.0 |
| 10 | 11       | 0.254642  | 3.604138 | 65  | -1.386294 | 0   | -1.386294 | 6       | 0     | 1.2 |
| 11 | 12       | -1.347074 | 3.598681 | 63  | 1.266948  | 0   | -1.386294 | 6       | 0     | 1.2 |
| 12 | 13       | 1.613430  | 3.022861 | 63  | -1.386294 | 0   | -0.597837 | 7       | 30    | 1.2 |
| 13 | 14       | 1.477049  | 2.998229 | 67  | -1.386294 | 0   | -1.386294 | 7       | 5     | 1.6 |
| 14 | 15       | 1.205971  | 3.442019 | 57  | -1.386294 | 0   | -0.430783 | 7       | 5     | 1.6 |
| 15 | 16       | 1.541159  | 3.061052 | 66  | -1.386294 | 0   | -1.386294 | 6       | 0     | 1.4 |
| 16 | 17       | -0.415515 | 3.516013 | 70  | 1.244155  | 0   | -0.597837 | 7       | 30    | 1.4 |
| 17 | 18       | 2.288486  | 3.649359 | 66  | -1.386294 | 0   | 0.371564  | 6       | 0     | 1.4 |
| 18 | 19       | -0.562119 | 3.267666 | 41  | -1.386294 | 0   | -1.386294 | 6       | 0     | 1.5 |
| 19 | 20       | 0.182322  | 3.825375 | 70  | 1.658228  | 0   | -1.386294 | 6       | 0     | 1.5 |
| 20 | 21       | 1.147402  | 3.419365 | 59  | -1.386294 | 0   | -1.386294 | 6       | 0     | 1.6 |
| 21 | 22       | 2.059239  | 3.501043 | 60  | 1.474763  | 0   | 1.348073  | 7       | 20    | 1.6 |
| 22 | 23       | -0.544727 | 3.375880 | 59  | -0.798508 | 0   | -1.386294 | 6       | 0     | 1.6 |
| 23 | 24       | 1.781709  | 3.451574 | 63  | 0.438255  | 0   | 1.178655  | 7       | 60    | 1.7 |
| 24 | 25       | 0.385262  | 3.667400 | 69  | 1.599388  | 0   | -1.386294 | 6       | 0     | 1.7 |
| 25 | 26       | 1.446919  | 3.124565 | 68  | 0.300105  | 0   | -1.386294 | 6       | 0     | 1.7 |
| 26 | 27       | 0.512824  | 3.719651 | 65  | -1.386294 | 0   | -0.798508 | 7       | 70    | 1.8 |
| 27 | 28       | -0.400478 | 3.865979 | 67  | 1.816452  | 0   | -1.386294 | 7       | 20    | 1.8 |
| 28 | 29       | 1.040277  | 3.128951 | 67  | 0.223144  | 0   | 0.048790  | 7       | 80    | 1.8 |
| 29 | 30       | 2.409644  | 3.375880 | 65  | -1.386294 | 0   | 1.619388  | 6       | 0     | 1.8 |
|    |          |           |          |     |           |     |           |         |       |     |
| 67 | 68       | 2.198335  | 4.050915 | 72  | 2.307573  | 0   | -0.430783 | 7       | 10    | 2.9 |

| _  |               | niipieu_appi_iegi |          |     |           |     |           | 1       |       |     |
|----|---------------|-------------------|----------|-----|-----------|-----|-----------|---------|-------|-----|
|    | Unnamed:<br>0 | lcavol            | lweight  | age | lbph      | svi | lcp       | gleason | pgg45 |     |
| 68 | 69            | -0.446287         | 4.408547 | 69  | -1.386294 | 0   | -1.386294 | 6       | 0     | 2.§ |
| 69 | 70            | 1.193922          | 4.780383 | 72  | 2.326302  | 0   | -0.798508 | 7       | 5     | 2.§ |
| 70 | 71            | 1.864080          | 3.593194 | 60  | -1.386294 | 1   | 1.321756  | 7       | 60    | 3.0 |
| 71 | 72            | 1.160021          | 3.341093 | 77  | 1.749200  | 0   | -1.386294 | 7       | 25    | 3.0 |
| 72 | 73            | 1.214913          | 3.825375 | 69  | -1.386294 | 1   | 0.223144  | 7       | 20    | 3.0 |
| 73 | 74            | 1.838961          | 3.236716 | 60  | 0.438255  | 1   | 1.178655  | 9       | 90    | 3.0 |
| 74 | 75            | 2.999226          | 3.849083 | 69  | -1.386294 | 1   | 1.909543  | 7       | 20    | 3.2 |
| 75 | 76            | 3.141130          | 3.263849 | 68  | -0.051293 | 1   | 2.420368  | 7       | 50    | 3.3 |
| 76 | 77            | 2.010895          | 4.433789 | 72  | 2.122262  | 0   | 0.500775  | 7       | 60    | 3.3 |
| 77 | 78            | 2.537657          | 4.354784 | 78  | 2.326302  | 0   | -1.386294 | 7       | 10    | 3.∠ |
| 78 | 79            | 2.648300          | 3.582129 | 69  | -1.386294 | 1   | 2.583998  | 7       | 70    | 3.∠ |
| 79 | 80            | 2.779440          | 3.823192 | 63  | -1.386294 | 0   | 0.371564  | 7       | 50    | 3.5 |
| 80 | 81            | 1.467874          | 3.070376 | 66  | 0.559616  | 0   | 0.223144  | 7       | 40    | 3.5 |
| 81 | 82            | 2.513656          | 3.473518 | 57  | 0.438255  | 0   | 2.327278  | 7       | 60    | 3.5 |
| 82 | 83            | 2.613007          | 3.888754 | 77  | -0.527633 | 1   | 0.559616  | 7       | 30    | 3.5 |
| 83 | 84            | 2.677591          | 3.838376 | 65  | 1.115142  | 0   | 1.749200  | 9       | 70    | 3.5 |
| 84 | 85            | 1.562346          | 3.709907 | 60  | 1.695616  | 0   | 0.810930  | 7       | 30    | 3.5 |
| 85 | 86            | 3.302849          | 3.518980 | 64  | -1.386294 | 1   | 2.327278  | 7       | 60    | 3.6 |
| 86 | 87            | 2.024193          | 3.731699 | 58  | 1.638997  | 0   | -1.386294 | 6       | 0     | 3.6 |
| 87 | 88            | 1.731656          | 3.369018 | 62  | -1.386294 | 1   | 0.300105  | 7       | 30    | 3.7 |
| 88 | 89            | 2.807594          | 4.718052 | 65  | -1.386294 | 1   | 2.463853  | 7       | 60    | 3.9 |
| 89 | 90            | 1.562346          | 3.695110 | 76  | 0.936093  | 1   | 0.810930  | 7       | 75    | 3.9 |
| 90 | 91            | 3.246491          | 4.101817 | 68  | -1.386294 | 0   | -1.386294 | 6       | 0     | 4.( |
| 91 | 92            | 2.532903          | 3.677566 | 61  | 1.348073  | 1   | -1.386294 | 7       | 15    | 4.1 |
| 92 | 93            | 2.830268          | 3.876396 | 68  | -1.386294 | 1   | 1.321756  | 7       | 60    | 4.3 |
| 93 | 94            | 3.821004          | 3.896909 | 44  | -1.386294 | 1   | 2.169054  | 7       | 40    | 4.6 |
| 94 | 95            | 2.907447          | 3.396185 | 52  | -1.386294 | 1   | 2.463853  | 7       | 10    | 5.1 |
| 95 | 96            | 2.882564          | 3.773910 | 68  | 1.558145  | 1   | 1.558145  | 7       | 80    | 5.∠ |
| 96 | 97            | 3.471966          | 3.974998 | 68  | 0.438255  | 1   | 2.904165  | 7       | 20    | 5.5 |

97 rows × 10 columns

#### In [14]:

g = sns.pairplot(pd.DataFrame(X, columns=feat\_names), kind="reg", diag\_kind="kd
e")
g.map\_lower(corrfunc)

#### Out[14]:

<seaborn.axisgrid.PairGrid at 0x130a7bb38>



#### In [15]:

```
# ordinary least squares
model = OLS(y, X)
res = model.fit()
lr coefs = res.params
lr pvalues = res.pvalues
snr = (norm(a=lr coefs, ord=2) ** 2) / (norm(a=res.resid, ord=2) ** 2)
print('Signal-to-noise ratio: %.4f' % snr)
rf cmp.fit(X, y)
rf cmp.feature importances
# compute Lasso regularization paths
C grid = np.logspace(-4, 0.25, 25)
coef list, acc list, nonzero list, unbiased acc list = compute Lasso regpath(X,
y, C_grid)
plot lr(None, lr coefs, lr pvalues, feat names, rf cmp coef=rf cmp.feature impor
tances_ * 10 * np.mean(np.abs(lr_coefs)))
plot regr paths(coef list, acc list, nonzero list, C grid, feat names, unbiased
acc list)
fig = infpred_plot(unbiased_acc_list, lr_pvalues, coef_list, feat_names)
fig.suptitle('Prostata Data\nPredictive but not significant',
             fontsize=24, fontweight=150)
fig.savefig('reg-case2.pdf', bbox_inches='tight')
```

```
Signal-to-noise ratio: 0.0011
alpha: 0.0001 acc: 0.42 / 0.42 (unbiased) active coefs: 8
alpha: 0.0002 acc: 0.42 / 0.42 (unbiased) active coefs: 8
alpha: 0.0002 acc: 0.42 / 0.42 (unbiased) active coefs: 8
alpha: 0.0003 acc: 0.42 / 0.42 (unbiased) active coefs: 8
alpha: 0.0005 acc: 0.42 / 0.42 (unbiased) active coefs: 8
alpha: 0.0008 acc: 0.42 / 0.42 (unbiased) active coefs: 8
alpha: 0.0012 acc: 0.42 / 0.42 (unbiased) active coefs: 8
alpha: 0.0017 acc: 0.42 / 0.42 (unbiased) active coefs: 8
alpha: 0.0026 acc: 0.42 / 0.42 (unbiased) active coefs: 8
alpha: 0.0039 acc: 0.42 / 0.42 (unbiased) active coefs: 8
alpha: 0.0059 acc: 0.43 / 0.42 (unbiased) active coefs: 8
alpha: 0.0089 acc: 0.43 / 0.42 (unbiased) active coefs: 8
alpha: 0.0133 acc: 0.43 / 0.42 (unbiased) active coefs: 8
alpha: 0.0200 acc: 0.43 / 0.41 (unbiased) active coefs: 8
alpha: 0.0301 acc: 0.43 / 0.42 (unbiased) active coefs: 8
alpha: 0.0453 acc: 0.43 / 0.41 (unbiased) active coefs: 7
alpha: 0.0681 acc: 0.44 / 0.41 (unbiased) active coefs: 8
alpha: 0.1024 acc: 0.44 / 0.41 (unbiased) active coefs: 7
alpha: 0.1540 acc: 0.43 / 0.39 (unbiased) active coefs: 5
alpha: 0.2315 acc: 0.40 / 0.41 (unbiased) active coefs: 5
alpha: 0.3481 acc: 0.32 / 0.38 (unbiased) active coefs: 3
alpha: 0.5233 acc: 0.20 / 0.35 (unbiased) active coefs: 2
alpha: 0.7867 acc: -0.07 / 0.25 (unbiased) active coefs: 1
alpha: 1.1828 acc: -0.14 / 0.00 (unbiased) active coefs: 0
alpha: 1.7783 acc: -0.14 / 0.00 (unbiased) active coefs: 0
1.09052420155
0.387620170856
0.31702692195
0.20088814274
0.191418331703
0.119070652787
0.10376282393
0.0269610992509
skipping 1
skipping 2
skipping 3
skipping 4
skipping 5
skipping 6
skipping 7
skipping 8
skipping 9
skipping 10
skipping 11
skipping 12
skipping 13
skipping 16
skipping 17
skipping 19
skipping 24
```







## Prostata Data Predictive but not significant



#### In [16]:

```
C_grid = np.logspace(-4, 0.25, 25)
coef_list, acc_list, nonzero_list, unbiased_acc_list = compute_Lasso_regpath(X,
y, C_grid, metric=mean_absolute_error, verbose=False)
plot_regr_paths(coef_list, acc_list, nonzero_list, C_grid, feat_names, unbiased_acc_list, metric=mean_absolute_error)
```

#### Out[16]:





#### In [17]:

```
sel_w_pvals = fwd_stepwise_selection(pd.DataFrame(X, columns=feat_names), y, ver
bose=True)
print('Forward-stepwise selection: ' + ' -> '.join(sel_w_pvals))
```

```
Add lcavol
                                    with p-value 1.11861e-17
Add lweight
                                    with p-value 0.00160649
Add svi
                                    with p-value 0.00202903
Add lbph
                                    with p-value 0.11213
Add age
                                    with p-value 0.169527
Add pgg45
                                    with p-value 0.253309
Add lcp
                                    with p-value 0.251271
Add gleason
                                    with p-value 0.77506
Forward-stepwise selection: lcavol -> lweight -> svi -> lbph -> age
-> pgg45 -> lcp -> gleason
```

### conclusions:

- no significants (trending significant at 0.08 is also single most predictive variable)
- ~5 items not full set of 9 variables were clearly very predictive -> the widely practiced Gleason score (?) comes up as disturbing prediction
- second-most important variable diverged in fwd-stepwise selection and Lasso selection -> tiny difference

#### In [18]:

res.summary(xname=feat\_names)

Out[18]:

#### **OLS Regression Results**

| Dep. Variable:    | lpsa             | R-squared:          | 0.116   |
|-------------------|------------------|---------------------|---------|
| Model:            | OLS              | Adj. R-squared:     | 0.036   |
| Method:           | Least Squares    | F-statistic:        | 1.456   |
| Date:             | Sun, 20 May 2018 | Prob (F-statistic): | 0.185   |
| Time:             | 17:29:40         | Log-Likelihood:     | -229.14 |
| No. Observations: | 97               | AIC:                | 474.3   |
| Df Residuals:     | 89               | BIC:                | 494.9   |
| Df Model:         | 8                |                     |         |
| Covariance Type:  | nonrobust        |                     |         |

|         | coef    | std err | t      | P> t  | [0.025 | 0.975] |
|---------|---------|---------|--------|-------|--------|--------|
| Icavol  | 0.6883  | 0.390   | 1.764  | 0.081 | -0.087 | 1.464  |
| lweight | 0.2245  | 0.318   | 0.706  | 0.482 | -0.407 | 0.856  |
| age     | -0.1454 | 0.313   | -0.464 | 0.644 | -0.768 | 0.477  |
| lbph    | 0.1545  | 0.319   | 0.484  | 0.630 | -0.480 | 0.789  |
| svi     | 0.3155  | 0.381   | 0.828  | 0.410 | -0.441 | 1.072  |
| lcp     | -0.1467 | 0.479   | -0.306 | 0.760 | -1.099 | 0.805  |
| gleason | 0.0324  | 0.428   | 0.076  | 0.940 | -0.818 | 0.883  |
| pgg45   | 0.1270  | 0.470   | 0.270  | 0.787 | -0.806 | 1.060  |

| Omnibus:       | 0.235  | Durbin-Watson:    | 0.104 |
|----------------|--------|-------------------|-------|
| Prob(Omnibus): | 0.889  | Jarque-Bera (JB): | 0.026 |
| Skew:          | -0.017 | Prob(JB):         | 0.987 |
| Kurtosis:      | 3.073  | Cond. No.         | 4.12  |

## **FEV:** significant but largely ignorable for prediction

In [19]:

```
import pandas as pd
df_fev = pd.read_csv('dataset_FEV.csv')
df_fev.drop(labels='id', axis=1, inplace=True)
```

In [20]:

df\_fev

#### Out[20]:

|     | 000 | fev   | hoight | 004    | amaka              |
|-----|-----|-------|--------|--------|--------------------|
|     | age |       | height | sex    | smoke              |
| 0   | 9   | 1.708 | 57.0   | female | non-current smoker |
| 1   | 8   | 1.724 | 67.5   | female | non-current smoker |
| 2   | 7   | 1.720 | 54.5   | female | non-current smoker |
| 3   | 9   | 1.558 | 53.0   | male   | non-current smoker |
| 4   | 9   | 1.895 | 57.0   | male   | non-current smoker |
| 5   | 8   | 2.336 | 61.0   | female | non-current smoker |
| 6   | 6   | 1.919 | 58.0   | female | non-current smoker |
| 7   | 6   | 1.415 | 56.0   | female | non-current smoker |
| 8   | 8   | 1.987 | 58.5   | female | non-current smoker |
| 9   | 9   | 1.942 | 60.0   | female | non-current smoker |
| 10  | 6   | 1.602 | 53.0   | female | non-current smoker |
| 11  | 8   | 1.735 | 54.0   | male   | non-current smoker |
| 12  | 8   | 2.193 | 58.5   | female | non-current smoker |
| 13  | 8   | 2.118 | 60.5   | male   | non-current smoker |
| 14  | 8   | 2.258 | 58.0   | male   | non-current smoker |
| 15  | 7   | 1.932 | 53.0   | male   | non-current smoker |
| 16  | 5   | 1.472 | 50.0   | male   | non-current smoker |
| 17  | 6   | 1.878 | 53.0   | female | non-current smoker |
| 18  | 9   | 2.352 | 59.0   | male   | non-current smoker |
| 19  | 9   | 2.604 | 61.5   | male   | non-current smoker |
| 20  | 5   | 1.400 | 49.0   | female | non-current smoker |
| 21  | 5   | 1.256 | 52.5   | female | non-current smoker |
| 22  | 4   | 0.839 | 48.0   | female | non-current smoker |
| 23  | 7   | 2.578 | 62.5   | male   | non-current smoker |
| 24  | 9   | 2.988 | 65.0   | female | non-current smoker |
| 25  | 3   | 1.404 | 51.5   | male   | non-current smoker |
| 26  | 9   | 2.348 | 60.0   | male   | non-current smoker |
| 27  | 5   | 1.755 | 52.0   | male   | non-current smoker |
| 28  | 8   | 2.980 | 60.0   | female | non-current smoker |
| 29  | 9   | 2.100 | 60.0   | female | non-current smoker |
|     |     |       |        |        |                    |
| 624 | 15  | 3.985 | 71.0   | male   | non-current smoker |
| 625 | 18  | 4.220 | 68.0   | male   | non-current smoker |

|     | age | fev   | height | sex    | smoke              |
|-----|-----|-------|--------|--------|--------------------|
| 626 | 17  | 4.724 | 70.5   | male   | non-current smoker |
| 627 | 15  | 3.731 | 67.0   | male   | non-current smoker |
| 628 | 17  | 3.406 | 69.0   | male   | current smoker     |
| 629 | 17  | 3.500 | 62.0   | female | non-current smoker |
| 630 | 16  | 3.674 | 67.5   | female | non-current smoker |
| 631 | 17  | 5.633 | 73.0   | male   | non-current smoker |
| 632 | 15  | 3.122 | 64.0   | female | current smoker     |
| 633 | 15  | 3.330 | 68.5   | female | current smoker     |
| 634 | 16  | 2.608 | 62.0   | female | current smoker     |
| 635 | 16  | 3.645 | 73.5   | male   | non-current smoker |
| 636 | 15  | 3.799 | 66.5   | male   | current smoker     |
| 637 | 18  | 4.086 | 67.0   | male   | current smoker     |
| 638 | 15  | 2.887 | 63.0   | female | non-current smoker |
| 639 | 16  | 4.070 | 69.5   | male   | current smoker     |
| 640 | 17  | 3.960 | 70.0   | male   | non-current smoker |
| 641 | 16  | 4.299 | 66.0   | male   | non-current smoker |
| 642 | 16  | 2.981 | 66.0   | female | non-current smoker |
| 643 | 15  | 2.264 | 63.0   | female | current smoker     |
| 644 | 18  | 4.404 | 70.5   | male   | current smoker     |
| 645 | 15  | 2.278 | 60.0   | female | current smoker     |
| 646 | 16  | 4.504 | 72.0   | male   | non-current smoker |
| 647 | 17  | 5.638 | 70.0   | male   | non-current smoker |
| 648 | 16  | 4.872 | 72.0   | male   | current smoker     |
| 649 | 16  | 4.270 | 67.0   | male   | current smoker     |
| 650 | 15  | 3.727 | 68.0   | male   | current smoker     |
| 651 | 18  | 2.853 | 60.0   | female | non-current smoker |
| 652 | 16  | 2.795 | 63.0   | female | current smoker     |
| 653 | 15  | 3.211 | 66.5   | female | non-current smoker |

654 rows × 5 columns

#### In [21]:

```
feat_names = ['age', u'fev', u'height', u'sex', u'smoke']
df_part1 = pd.DataFrame(StandardScaler().fit_transform(df_fev[feat_names[:-2]].v
alues), columns=feat_names[:-2])
df_part2 = pd.get_dummies(df_fev[feat_names[-2:]], drop_first=True)
#pd.concat([df_part1, df_part2], axis=1)
y = StandardScaler().fit_transform(df_part1['fev'].values[:, None])[:, 0]
df_part1.drop(labels='fev', axis=1, inplace=True)
X = np.hstack((df_part1.values, df_part2.values))
feat_names = list(df_part1.columns) + list(df_part2.columns)
```

#### In [22]:

```
g = sns.pairplot(pd.DataFrame(np.hstack((X, y[:, None])), columns=feat_names + [
'out']))
g.map_lower(corrfunc)
```

#### Out[22]:

<seaborn.axisgrid.PairGrid at 0x12e9dad30>



In [23]:

```
# ordinary least squares
model = OLS(y, X)
res = model.fit()
lr coefs = res.params
lr pvalues = res.pvalues
snr = (norm(a=lr coefs, ord=2) ** 2) / (norm(a=res.resid, ord=2) ** 2)
print('Signal-to-noise ratio: %.4f' % snr)
rf cmp.fit(X, y)
rf cmp.feature importances
# compute Lasso regularization paths
C grid = np.logspace(-4, 0.25, 25)
coef list, acc list, nonzero list, unbiased acc list = compute Lasso regpath(X,
y, C grid)
plot lr(None, lr coefs, lr pvalues, feat names, rf cmp coef=rf cmp.feature impor
tances * np.mean(np.abs(lr coefs)))
path_colors = plot_regr_paths(coef_list, acc_list, nonzero list, C grid, feat na
mes, unbiased_acc_list)
fig = infpred plot(unbiased acc list, lr pvalues, coef list, feat names[:-1] + [
'smoker'],
                   -0.11, annot ha='left')
fig.suptitle('FEV Data\nsignificant but largely ignorable for prediction',
             fontsize=24, fontweight=150)
fig.savefig('reg-case3.pdf', bbox_inches='tight')
```

```
Signal-to-noise ratio: 0.0037
alpha: 0.0001 acc: 0.76 / 0.76 (unbiased) active coefs: 4
alpha: 0.0002 acc: 0.76 / 0.76 (unbiased) active coefs: 4
alpha: 0.0002 acc: 0.76 / 0.76 (unbiased) active coefs: 4
alpha: 0.0003 acc: 0.76 / 0.76 (unbiased) active coefs: 4
alpha: 0.0005 acc: 0.76 / 0.76 (unbiased) active coefs: 4
alpha: 0.0008 acc: 0.76 / 0.76 (unbiased) active coefs: 4
alpha: 0.0012 acc: 0.76 / 0.76 (unbiased) active coefs: 4
alpha: 0.0017 acc: 0.76 / 0.76 (unbiased) active coefs: 4
alpha: 0.0026 acc: 0.76 / 0.76 (unbiased) active coefs: 4
alpha: 0.0039 acc: 0.76 / 0.76 (unbiased) active coefs: 4
alpha: 0.0059 acc: 0.76 / 0.76 (unbiased) active coefs: 4
alpha: 0.0089 acc: 0.76 / 0.76 (unbiased) active coefs: 4
alpha: 0.0133 acc: 0.76 / 0.76 (unbiased) active coefs: 3
alpha: 0.0200 acc: 0.76 / 0.76 (unbiased) active coefs: 3
alpha: 0.0301 acc: 0.76 / 0.76 (unbiased) active coefs: 3
alpha: 0.0453 acc: 0.75 / 0.75 (unbiased) active coefs: 3
alpha: 0.0681 acc: 0.75 / 0.75 (unbiased) active coefs: 2
alpha: 0.1024 acc: 0.74 / 0.75 (unbiased) active coefs: 2
alpha: 0.1540 acc: 0.73 / 0.75 (unbiased) active coefs: 2
alpha: 0.2315 acc: 0.70 / 0.75 (unbiased) active coefs: 2
alpha: 0.3481 acc: 0.62 / 0.74 (unbiased) active coefs: 2
alpha: 0.5233 acc: 0.47 / 0.74 (unbiased) active coefs: 1
alpha: 0.7867 acc: 0.12 / 0.74 (unbiased) active coefs: 1
alpha: 1.1828 acc: -0.02 / 0.00 (unbiased) active coefs: 0
alpha: 1.7783 acc: -0.02 / 0.00 (unbiased) active coefs: 0
81.2194667249
9.29516356507
4.50372664111
2.02312839329
skipping 1
skipping 2
skipping 4
skipping 5
skipping 6
skipping 7
skipping 8
skipping 9
skipping 10
skipping 11
skipping 12
skipping 13
skipping 14
skipping 15
skipping 17
skipping 18
skipping 19
skipping 21
skipping 22
skipping 24
```







FEV Data significant but largely ignorable for prediction



#### In [24]:

```
C_grid = np.logspace(-4, 0.25, 25)
coef_list, acc_list, nonzero_list, unbiased_acc_list = compute_Lasso_regpath(X,
y, C_grid, metric=mean_absolute_error, verbose=False)
plot_regr_paths(coef_list, acc_list, nonzero_list, C_grid, feat_names, unbiased_acc_list, metric=mean_absolute_error)
```

### Out[24]:

```
array(['#000000', '#A7794F', '#98E466', '#FBEF69'], dtype='<U7')
```





### In [25]:

```
sel_w_pvals = fwd_stepwise_selection(pd.DataFrame(X, columns=feat_names), y, ver
bose=True)
print('Forward-stepwise selection: ' + ' -> '.join(sel_w_pvals))
```

```
Add height with p-value 1.57456e-200
Add age with p-value 4.11176e-09
Add sex_male with p-value 1.4463e-06
Add smoke_non-current smoker with p-value 0.141391
Forward-stepwise selection: height -> age -> sex_male -> smoke_non-current smoker
```

## conclusions:

- 4/4 input variables are highly significant, but height alone (ignoring other 3 variables) has virtually identical accuracy in predicting FEV
- the prediction regime may miss the significant mechanistic relevance of smoking -> predictive algorithms are much more pragmatic
- high significance of all input variables is partly due to comparably high sample sizes facilitating low p values
- scientific knowledge production / scientific discovery recovers the ground truth (all 4 variables are important)
- intensive care unit: the medical doctor wants to know what to do next with the respiration machine (=prediction)

### In [26]:

res.summary(xname=feat\_names)

Out[26]:

### **OLS Regression Results**

| Dep. Variable:    | у                | R-squared:          | 0.773     |
|-------------------|------------------|---------------------|-----------|
| Model:            | OLS              | Adj. R-squared:     | 0.771     |
| Method:           | Least Squares    | F-statistic:        | 552.3     |
| Date:             | Sun, 20 May 2018 | Prob (F-statistic): | 2.10e-207 |
| Time:             | 17:29:53         | Log-Likelihood:     | -443.60   |
| No. Observations: | 654              | AIC:                | 895.2     |
| Df Residuals:     | 650              | BIC:                | 913.1     |
| Df Model:         | 4                |                     |           |
| Covariance Type:  | nonrobust        |                     |           |

|                          | coef    | std err | t      | P> t  | [0.025 | 0.975] |
|--------------------------|---------|---------|--------|-------|--------|--------|
| age                      | 0.1946  | 0.031   | 6.313  | 0.000 | 0.134  | 0.255  |
| height                   | 0.6953  | 0.031   | 22.245 | 0.000 | 0.634  | 0.757  |
| sex_male                 | 0.1575  | 0.038   | 4.193  | 0.000 | 0.084  | 0.231  |
| smoke_non-current smoker | -0.0735 | 0.028   | -2.602 | 0.009 | -0.129 | -0.018 |

| Omnibus:       | 25.938 | Durbin-Watson:    | 1.630    |
|----------------|--------|-------------------|----------|
| Prob(Omnibus): | 0.000  | Jarque-Bera (JB): | 56.330   |
| Skew:          | 0.192  | Prob(JB):         | 5.86e-13 |
| Kurtosis:      | 4.386  | Cond. No.         | 3.28     |

# Low birth weight: significant, but hard to predict

Dataset description (R community): The birthwt data frame has 189 rows and 10 columns. The data were collected at Baystate Medical Center, Springfield, Mass during 1986.

low indicator of birth weight less than 2.5 kg.

age mother's age in years.

lwt mother's weight in pounds at last menstrual period.

race mother's race (1 = white, 2 = black, 3 = other).

smoke smoking status during pregnancy.

ptl number of previous premature labours.

ht history of hypertension.

ui presence of uterine irritability.

ftv number of physician visits during the first trimester.

bwt birth weight in grams.

Source Hosmer, D.W. and Lemeshow, S. (1989) Applied Logistic Regression. New York: Wiley

References Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

```
In [27]:
```

```
import pandas as pd
df_birth = pd.read_csv('dataset_birthwt.csv')
```

```
In [28]:
```

```
df_part1 = StandardScaler().fit_transform(df_birth[['age', 'lwt']])
df_part2 = df_birth[['race', 'smoke', 'ptl', 'ht', 'ui', 'ftv']]
#pd.concat([df_part1, df_part2], axis=1)
feat_names = ['age', 'lwt'] + list(df_part2.columns)
y = StandardScaler().fit_transform(df_birth['bwt'].values[:, None])[:, 0]
X = np.hstack((df_part1, df_part2))
```

In [29]:

df\_birth

Out[29]:

|     | Unnamed: 0 | low | age | lwt | race | smoke | ptl | ht | ui | ftv | bwt  |
|-----|------------|-----|-----|-----|------|-------|-----|----|----|-----|------|
| 0   | 85         | 0   | 19  | 182 | 2    | 0     | 0   | 0  | 1  | 0   | 2523 |
| 1   | 86         | 0   | 33  | 155 | 3    | 0     | 0   | 0  | 0  | 3   | 2551 |
| 2   | 87         | 0   | 20  | 105 | 1    | 1     | 0   | 0  | 0  | 1   | 2557 |
| 3   | 88         | 0   | 21  | 108 | 1    | 1     | 0   | 0  | 1  | 2   | 2594 |
| 4   | 89         | 0   | 18  | 107 | 1    | 1     | 0   | 0  | 1  | 0   | 2600 |
| 5   | 91         | 0   | 21  | 124 | 3    | 0     | 0   | 0  | 0  | 0   | 2622 |
| 6   | 92         | 0   | 22  | 118 | 1    | 0     | 0   | 0  | 0  | 1   | 2637 |
| 7   | 93         | 0   | 17  | 103 | 3    | 0     | 0   | 0  | 0  | 1   | 2637 |
| 8   | 94         | 0   | 29  | 123 | 1    | 1     | 0   | 0  | 0  | 1   | 2663 |
| 9   | 95         | 0   | 26  | 113 | 1    | 1     | 0   | 0  | 0  | 0   | 2665 |
| 10  | 96         | 0   | 19  | 95  | 3    | 0     | 0   | 0  | 0  | 0   | 2722 |
| 11  | 97         | 0   | 19  | 150 | 3    | 0     | 0   | 0  | 0  | 1   | 2733 |
| 12  | 98         | 0   | 22  | 95  | 3    | 0     | 0   | 1  | 0  | 0   | 2751 |
| 13  | 99         | 0   | 30  | 107 | 3    | 0     | 1   | 0  | 1  | 2   | 2750 |
| 14  | 100        | 0   | 18  | 100 | 1    | 1     | 0   | 0  | 0  | 0   | 2769 |
| 15  | 101        | 0   | 18  | 100 | 1    | 1     | 0   | 0  | 0  | 0   | 2769 |
| 16  | 102        | 0   | 15  | 98  | 2    | 0     | 0   | 0  | 0  | 0   | 2778 |
| 17  | 103        | 0   | 25  | 118 | 1    | 1     | 0   | 0  | 0  | 3   | 2782 |
| 18  | 104        | 0   | 20  | 120 | 3    | 0     | 0   | 0  | 1  | 0   | 2807 |
| 19  | 105        | 0   | 28  | 120 | 1    | 1     | 0   | 0  | 0  | 1   | 2821 |
| 20  | 106        | 0   | 32  | 121 | 3    | 0     | 0   | 0  | 0  | 2   | 2835 |
| 21  | 107        | 0   | 31  | 100 | 1    | 0     | 0   | 0  | 1  | 3   | 2835 |
| 22  | 108        | 0   | 36  | 202 | 1    | 0     | 0   | 0  | 0  | 1   | 2836 |
| 23  | 109        | 0   | 28  | 120 | 3    | 0     | 0   | 0  | 0  | 0   | 2863 |
| 24  | 111        | 0   | 25  | 120 | 3    | 0     | 0   | 0  | 1  | 2   | 2877 |
| 25  | 112        | 0   | 28  | 167 | 1    | 0     | 0   | 0  | 0  | 0   | 2877 |
| 26  | 113        | 0   | 17  | 122 | 1    | 1     | 0   | 0  | 0  | 0   | 2906 |
| 27  | 114        | 0   | 29  | 150 | 1    | 0     | 0   | 0  | 0  | 2   | 2920 |
| 28  | 115        | 0   | 26  | 168 | 2    | 1     | 0   | 0  | 0  | 0   | 2920 |
| 29  | 116        | 0   | 17  | 113 | 2    | 0     | 0   | 0  | 0  | 1   | 2920 |
|     |            |     |     |     |      |       |     |    |    |     |      |
| 159 | 44         | 1   | 20  | 80  | 3    | 1     | 0   | 0  | 1  | 0   | 2211 |
| 160 | 45         | 1   | 17  | 110 | 1    | 1     | 0   | 0  | 0  | 0   | 2225 |

| .2018 |            |     |     |     |      |       |     | infpre | ea_ar | gr  |      |
|-------|------------|-----|-----|-----|------|-------|-----|--------|-------|-----|------|
|       | Unnamed: 0 | low | age | lwt | race | smoke | ptl | ht     | ui    | ftv | bwt  |
| 161   | 46         | 1   | 25  | 105 | 3    | 0     | 1   | 0      | 0     | 1   | 2240 |
| 162   | 47         | 1   | 20  | 109 | 3    | 0     | 0   | 0      | 0     | 0   | 2240 |
| 163   | 49         | 1   | 18  | 148 | 3    | 0     | 0   | 0      | 0     | 0   | 2282 |
| 164   | 50         | 1   | 18  | 110 | 2    | 1     | 1   | 0      | 0     | 0   | 2296 |
| 165   | 51         | 1   | 20  | 121 | 1    | 1     | 1   | 0      | 1     | 0   | 2296 |
| 166   | 52         | 1   | 21  | 100 | 3    | 0     | 1   | 0      | 0     | 4   | 2301 |
| 167   | 54         | 1   | 26  | 96  | 3    | 0     | 0   | 0      | 0     | 0   | 2325 |
| 168   | 56         | 1   | 31  | 102 | 1    | 1     | 1   | 0      | 0     | 1   | 2353 |
| 169   | 57         | 1   | 15  | 110 | 1    | 0     | 0   | 0      | 0     | 0   | 2353 |
| 170   | 59         | 1   | 23  | 187 | 2    | 1     | 0   | 0      | 0     | 1   | 2367 |
| 171   | 60         | 1   | 20  | 122 | 2    | 1     | 0   | 0      | 0     | 0   | 2381 |
| 172   | 61         | 1   | 24  | 105 | 2    | 1     | 0   | 0      | 0     | 0   | 2381 |
| 173   | 62         | 1   | 15  | 115 | 3    | 0     | 0   | 0      | 1     | 0   | 2381 |
| 174   | 63         | 1   | 23  | 120 | 3    | 0     | 0   | 0      | 0     | 0   | 2410 |
| 175   | 65         | 1   | 30  | 142 | 1    | 1     | 1   | 0      | 0     | 0   | 2410 |
| 176   | 67         | 1   | 22  | 130 | 1    | 1     | 0   | 0      | 0     | 1   | 2410 |
| 177   | 68         | 1   | 17  | 120 | 1    | 1     | 0   | 0      | 0     | 3   | 2414 |
| 178   | 69         | 1   | 23  | 110 | 1    | 1     | 1   | 0      | 0     | 0   | 2424 |
| 179   | 71         | 1   | 17  | 120 | 2    | 0     | 0   | 0      | 0     | 2   | 2438 |
| 180   | 75         | 1   | 26  | 154 | 3    | 0     | 1   | 1      | 0     | 1   | 2442 |
| 181   | 76         | 1   | 20  | 105 | 3    | 0     | 0   | 0      | 0     | 3   | 2450 |
| 182   | 77         | 1   | 26  | 190 | 1    | 1     | 0   | 0      | 0     | 0   | 2466 |
| 183   | 78         | 1   | 14  | 101 | 3    | 1     | 1   | 0      | 0     | 0   | 2466 |
| 184   | 79         | 1   | 28  | 95  | 1    | 1     | 0   | 0      | 0     | 2   | 2466 |
| 185   | 81         | 1   | 14  | 100 | 3    | 0     | 0   | 0      | 0     | 2   | 2495 |
| 186   | 82         | 1   | 23  | 94  | 3    | 1     | 0   | 0      | 0     | 0   | 2495 |
| 187   | 83         | 1   | 17  | 142 | 2    | 0     | 0   | 1      | 0     | 0   | 2495 |
| 188   | 84         | 1   | 21  | 130 | 1    | 1     | 0   | 1      | 0     | 3   | 2495 |

189 rows × 11 columns

### In [30]:

```
g = sns.pairplot(pd.DataFrame(np.hstack((X, y[:, None])), columns=feat_names + [
'out']))
g.map_lower(corrfunc)
```

### Out[30]:

<seaborn.axisgrid.PairGrid at 0x12ea6bf28>



### In [31]:

```
# ordinary least squares
model = OLS(y, X)
res = model.fit()
lr coefs = res.params
lr pvalues = res.pvalues
snr = (norm(a=lr coefs, ord=2) ** 2) / (norm(a=res.resid, ord=2) ** 2)
print('Signal-to-noise ratio: %.4f' % snr)
rf cmp.fit(X, y)
rf cmp.feature importances
# compute Lasso regularization paths
C grid = np.logspace(-2.5, 0.25, 25)
coef list, acc list, nonzero list, unbiased acc list = compute Lasso regpath(X,
y, C_grid)
plot lr(None, lr coefs, lr pvalues, feat names, rf cmp coef=rf cmp.feature impor
tances * np.mean(np.abs(lr coefs)))
path_colors = plot_regr_paths(coef_list, acc_list, nonzero list, C grid, feat na
mes, unbiased acc list)
fig = infpred_plot(unbiased_acc_list, lr_pvalues, coef_list, feat_names)
fig.suptitle('Birthweight Data\nsignificant, but hard to predict',
             fontsize=24, fontweight=150)
fig.savefig('reg-case4.pdf', bbox_inches='tight')
```

```
Signal-to-noise ratio: 0.0062
alpha: 0.0032 acc: 0.07 / 0.07 (unbiased) active coefs: 8
alpha: 0.0041 acc: 0.07 / 0.07 (unbiased) active coefs: 8
alpha: 0.0054 acc: 0.08 / 0.07 (unbiased) active coefs: 8
alpha: 0.0070 acc: 0.08 / 0.07 (unbiased) active_coefs: 8
alpha: 0.0091 acc: 0.08 / 0.07 (unbiased) active coefs: 8
alpha: 0.0118 acc: 0.08 / 0.07 (unbiased) active coefs: 8
alpha: 0.0154 acc: 0.08 / 0.07 (unbiased) active coefs: 8
alpha: 0.0200 acc: 0.08 / 0.07 (unbiased) active coefs: 8
alpha: 0.0261 acc: 0.07 / 0.08 (unbiased) active coefs: 8
alpha: 0.0340 acc: 0.05 / 0.06 (unbiased) active coefs: 8
alpha: 0.0442 acc: 0.04 / 0.03 (unbiased) active coefs: 8
alpha: 0.0576 acc: 0.03 / 0.05 (unbiased) active coefs: 7
alpha: 0.0750 acc: -0.00 / 0.06 (unbiased) active coefs: 6
alpha: 0.0976 acc: -0.04 / -0.05 (unbiased) active coefs: 5
alpha: 0.1271 acc: -0.05 / -0.04 (unbiased) active coefs: 3
alpha: 0.1655 acc: -0.07 / -0.08 (unbiased) active coefs: 2
alpha: 0.2154 acc: -0.06 / -0.04 (unbiased) active coefs: 2
alpha: 0.2805 acc: -0.06 / 0.00 (unbiased) active coefs: 0
alpha: 0.3652 acc: -0.06 / 0.00 (unbiased) active coefs: 0
alpha: 0.4754 acc: -0.06 / 0.00 (unbiased) active coefs: 0
alpha: 0.6190 acc: -0.06 / 0.00 (unbiased) active coefs: 0
alpha: 0.8058 acc: -0.06 / 0.00 (unbiased) active coefs: 0
alpha: 1.0491 acc: -0.06 / 0.00 (unbiased) active coefs: 0
alpha: 1.3659 acc: -0.06 / 0.00 (unbiased) active coefs: 0
alpha: 1.7783 acc: -0.06 / 0.00 (unbiased) active coefs: 0
2.63386052717
1.91596042715
1.74389488205
0.578152099724
0.540222476357
0.326220298512
0.167438270664
0.151079649374
skipping 1
skipping 2
skipping 3
skipping 4
skipping 5
skipping 6
skipping 7
skipping 8
skipping 9
skipping 12
skipping 14
skipping 15
skipping 16
skipping 17
skipping 18
skipping 19
skipping 20
skipping 24
```







# Birthweight Data significant, but hard to predict



### In [32]:

```
C_grid = np.logspace(-2.5, 0.25, 25)
coef_list, acc_list, nonzero_list, unbiased_acc_list = compute_Lasso_regpath(X,
y, C_grid, metric=mean_absolute_error, verbose=False)
plot_regr_paths(coef_list, acc_list, nonzero_list, C_grid, feat_names, unbiased_
acc_list, metric=mean_absolute_error)
```

### Out[32]:





### In [33]:

```
sel_w_pvals = fwd_stepwise_selection(pd.DataFrame(X, columns=feat_names), y, ver
bose=True)
print('Forward-stepwise selection: ' + ' -> '.join(sel w pvals))
```

```
Add ui
                                    with p-value 7.51844e-05
Add race
                                    with p-value 0.0099902
Add smoke
                                    with p-value 0.000239631
Add ht
                                    with p-value 0.01275
Add lwt
                                    with p-value 0.038581
Add ptl
                                    with p-value 0.614145
Add ftv
                                    with p-value 0.732379
Add age
                                    with p-value 0.977929
Forward-stepwise selection: ui -> race -> smoke -> ht -> lwt -> ptl
-> ftv -> age
```

## conclusion:

- significant, but challenging to predict (10% population variance)
- not explained by sample size that is relatively low (n=189)
- 3/8 input variables significant, but 7/8 necessary for low R=0.1 accuracy
- in CS, also the in-sample R^2 score is bad (!): 0.141
- It is an example that significance offers only weak insight on predictability -> we are missing additional information

### In [34]:

res.summary(xname=feat\_names)

Out[34]:

### **OLS Regression Results**

| Dep. Variable:    | у                | R-squared:          | 0.141    |
|-------------------|------------------|---------------------|----------|
| Model:            | OLS              | Adj. R-squared:     | 0.103    |
| Method:           | Least Squares    | F-statistic:        | 3.724    |
| Date:             | Sun, 20 May 2018 | Prob (F-statistic): | 0.000468 |
| Time:             | 17:30:11         | Log-Likelihood:     | -253.78  |
| No. Observations: | 189              | AIC:                | 523.6    |
| Df Residuals:     | 181              | BIC:                | 549.5    |
| Df Model:         | 8                |                     |          |
| Covariance Type:  | nonrobust        |                     |          |

|       | coef    | std err | t      | P> t  | [0.025 | 0.975] |
|-------|---------|---------|--------|-------|--------|--------|
| age   | 0.0275  | 0.073   | 0.378  | 0.706 | -0.116 | 0.171  |
| lwt   | 0.1773  | 0.074   | 2.387  | 0.018 | 0.031  | 0.324  |
| race  | 0.0322  | 0.045   | 0.721  | 0.472 | -0.056 | 0.120  |
| smoke | -0.1462 | 0.130   | -1.120 | 0.264 | -0.404 | 0.111  |
| ptl   | -0.0613 | 0.148   | -0.413 | 0.680 | -0.354 | 0.232  |
| ht    | -0.7446 | 0.294   | -2.534 | 0.012 | -1.325 | -0.165 |
| ui    | -0.6217 | 0.201   | -3.089 | 0.002 | -1.019 | -0.225 |
| ftv   | 0.0683  | 0.064   | 1.065  | 0.288 | -0.058 | 0.195  |

| Omnibus:       | 0.618  | Durbin-Watson:    | 0.417 |
|----------------|--------|-------------------|-------|
| Prob(Omnibus): | 0.734  | Jarque-Bera (JB): | 0.748 |
| Skew:          | -0.080 | Prob(JB):         | 0.688 |
| Kurtosis:      | 2.737  | Cond. No.         | 9.62  |

# **Additional Excericse: Primary biliary cirrhosis**

In [35]:

import pandas as pd
df\_cir = pd.read\_excel('sources\_medical\_datasets/\_Mayo\_Clinic\_primary\_biliary\_ci
rrhosis\_pbc.xls')

\*\*\* No CODEPAGE record, no encoding override: will use 'ascii'

In [36]:

df\_cir

### Out[36]:

|    | bili      | albumin | stage | protime | sex    | fu.days | age       | spiders | hepaton |
|----|-----------|---------|-------|---------|--------|---------|-----------|---------|---------|
| 0  | 14.500000 | 2.60    | 4.0   | 12.2    | female | 400     | 58.765228 | present | present |
| 1  | 1.100000  | 4.14    | 3.0   | 10.6    | female | 4500    | 56.446270 | present | present |
| 2  | 1.400000  | 3.48    | 4.0   | 12.0    | male   | 1012    | 70.072556 | absent  | absent  |
| 3  | 1.800000  | 2.54    | 4.0   | 10.3    | female | 1925    | 54.740589 | present | present |
| 4  | 3.400000  | 3.53    | 3.0   | 10.9    | female | 1504    | 38.105408 | present | present |
| 5  | 0.800000  | 3.98    | 3.0   | 11.0    | female | 2503    | 66.258728 | absent  | present |
| 6  | 1.000000  | 4.09    | 3.0   | 9.7     | female | 1832    | 55.534565 | absent  | present |
| 7  | 0.300000  | 4.00    | 3.0   | 11.0    | female | 2466    | 53.056812 | absent  | absent  |
| 8  | 3.200000  | 3.08    | 2.0   | 11.0    | female | 2400    | 42.507870 | present | absent  |
| 9  | 12.600000 | 2.74    | 4.0   | 11.5    | female | 51      | 70.559891 | present | absent  |
| 10 | 1.400000  | 4.16    | 4.0   | 12.0    | female | 3762    | 53.713894 | present | present |
| 11 | 3.600000  | 3.52    | 4.0   | 13.6    | female | 304     | 59.137577 | present | absent  |
| 12 | 0.700000  | 3.85    | 3.0   | 10.6    | female | 3577    | 45.689255 | absent  | absent  |
| 13 | 0.800000  | 2.27    | 4.0   | 11.0    | male   | 1217    | 56.221767 | absent  | present |
| 14 | 0.800000  | 3.87    | 3.0   | 11.0    | female | 3584    | 64.646133 | absent  | absent  |

|     | bili      | albumin | stage | protime | sex    | fu.days | age       | spiders | hepatom |
|-----|-----------|---------|-------|---------|--------|---------|-----------|---------|---------|
| 15  | 0.700000  | 3.66    | 3.0   | 10.8    | female | 3672    | 40.443531 | absent  | absent  |
| 16  | 2.700000  | 3.15    | 4.0   | 10.5    | female | 769     | 52.183437 | absent  | present |
| 17  | 11.400000 | 2.80    | 4.0   | 12.4    | female | 131     | 53.930183 | present | present |
| 18  | 0.700000  | 3.56    | 3.0   | 11.0    | female | 4232    | 49.560574 | absent  | present |
| 19  | 5.100000  | 3.51    | 4.0   | 13.0    | female | 1356    | 59.953457 | absent  | present |
| 20  | 0.600000  | 3.83    | 4.0   | 11.4    | male   | 3445    | 64.188911 | present | present |
| 21  | 3.400000  | 3.63    | 4.0   | 11.6    | female | 673     | 56.276524 | present | absent  |
| 22  | 17.400000 | 2.94    | 4.0   | 11.7    | female | 264     | 55.967144 | present | present |
| 23  | 2.100000  | 4.00    | 2.0   | 9.9     | male   | 4079    | 44.520191 | absent  | present |
| 24  | 0.700000  | 4.10    | 2.0   | 11.3    | female | 4127    | 45.073238 | absent  | absent  |
| 25  | 5.200000  | 3.68    | 3.0   | 9.9     | female | 1444    | 52.024639 | present | present |
| 26  | 21.600000 | 3.31    | 4.0   | 12.0    | female | 77      | 54.439426 | present | present |
| 27  | 17.200001 | 3.23    | 4.0   | 13.0    | female | 549     | 44.947296 | present | present |
| 28  | 0.700000  | 3.78    | 2.0   | 10.6    | female | 4509    | 63.876797 | absent  | absent  |
| 29  | 3.600000  | 2.54    | 4.0   | 11.0    | female | 321     | 41.385353 | present | present |
|     |           |         |       |         |        |         |           |         |         |
| 388 | 0.700000  | 3.06    | 4.0   | 10.0    | female | 1581    | 67.000000 | NaN     | NaN     |

|     | bili     | albumin | stage | protime | sex    | fu.days | age       | spiders | hepatom |
|-----|----------|---------|-------|---------|--------|---------|-----------|---------|---------|
| 389 | 3.000000 | 3.15    | 3.0   | 10.0    | male   | 1419    | 68.000000 | NaN     | NaN     |
| 390 | 1.200000 | 2.80    | 2.0   | 11.0    | female | 1443    | 41.000000 | NaN     | NaN     |
| 391 | 0.400000 | 3.03    | 3.0   | 10.9    | female | 1368    | 69.000000 | NaN     | NaN     |
| 392 | 0.700000 | 2.96    | 4.0   | 9.9     | female | 193     | 52.000000 | NaN     | NaN     |
| 393 | 2.000000 | 3.07    | 4.0   | 12.1    | female | 1367    | 57.000000 | NaN     | NaN     |
| 394 | 1.400000 | 3.98    | 1.0   | 11.0    | female | 1329    | 36.000000 | NaN     | NaN     |
| 395 | 1.600000 | 3.48    | 2.0   | 10.2    | female | 1343    | 50.000000 | NaN     | NaN     |
| 396 | 0.500000 | 3.65    | 4.0   | 10.2    | female | 1328    | 64.000000 | NaN     | NaN     |
| 397 | 7.300000 | 3.49    | 4.0   | 10.9    | female | 1375    | 62.000000 | NaN     | NaN     |
| 398 | 8.100000 | 2.82    | 2.0   | 10.4    | female | 1260    | 42.000000 | NaN     | NaN     |
| 399 | 0.500000 | 3.34    | 2.0   | 10.6    | female | 1223    | 44.000000 | NaN     | NaN     |
| 400 | 4.200000 | 3.19    | 4.0   | 11.1    | female | 935     | 69.000000 | NaN     | NaN     |
| 401 | 0.800000 | 3.01    | 3.0   | 10.6    | female | 943     | 52.000000 | NaN     | NaN     |
| 402 | 2.500000 | 3.33    | 4.0   | 10.8    | female | 1141    | 66.000000 | NaN     | NaN     |
| 403 | 4.600000 | 3.60    | 3.0   | 10.4    | female | 1092    | 40.000000 | NaN     | NaN     |
| 404 | 1.000000 | 3.64    | 3.0   | 10.6    | female | 1150    | 52.000000 | NaN     | NaN     |
| 405 | 4.500000 | 2.68    | 4.0   | 11.5    | female | 703     | 46.000000 | NaN     | NaN     |
| 406 | 1.100000 | 3.69    | 3.0   | 10.8    | male   | 1129    | 54.000000 | NaN     | NaN     |

|     | 1 -11 - 0 |         |       |         |        |         |           |         |         |  |
|-----|-----------|---------|-------|---------|--------|---------|-----------|---------|---------|--|
|     | bili      | albumin | stage | protime | sex    | fu.days | age       | spiders | hepatom |  |
| 407 | 1.900000  | 3.17    | 3.0   | 10.7    | female | 1086    | 51.000000 | NaN     | NaN     |  |
| 408 | 0.700000  | 3.73    | 3.0   | 10.8    | female | 1067    | 43.000000 | NaN     | NaN     |  |
| 409 | 1.500000  | 3.81    | 3.0   | 10.8    | female | 1072    | 39.000000 | NaN     | NaN     |  |
| 410 | 0.600000  | 3.57    | 3.0   | 10.6    | female | 1119    | 51.000000 | NaN     | NaN     |  |
| 411 | 1.000000  | 3.58    | 3.0   | 10.8    | female | 1097    | 67.000000 | NaN     | NaN     |  |
| 412 | 0.700000  | 3.23    | 3.0   | 10.8    | female | 989     | 35.000000 | NaN     | NaN     |  |
| 413 | 1.200000  | 2.96    | 3.0   | 10.9    | female | 681     | 67.000000 | NaN     | NaN     |  |
| 414 | 0.900000  | 3.83    | 4.0   | 11.2    | female | 1103    | 39.000000 | NaN     | NaN     |  |
| 415 | 1.600000  | 3.42    | 3.0   | 9.9     | female | 1055    | 57.000000 | NaN     | NaN     |  |
| 416 | 0.800000  | 3.75    | 3.0   | 10.4    | female | 691     | 58.000000 | NaN     | NaN     |  |
| 417 | 0.700000  | 3.29    | 4.0   | 10.6    | female | 976     | 53.000000 | NaN     | NaN     |  |

418 rows × 19 columns