Somatic Mutation	Residue	WT AA	Mutant AA	Sector	Compensating Mutation	Residue	WT AA	Mutant AA	Sector	Number of Sequences with Compensatory Mutation Pair
	180	Glu	Gln	1		49	Asn	Gap	0	26
	200	Asn	Gap	1		56	Thr	Asp	0	25
	200	Asn	Gap	1		56	Thr	Gap	0	17
	200	Asn	Gap	1		59	Asn	Thr	0	23
	200	Asn	Gap	1		108	Val	Gly	0	36
	200	Asn	Gap	1		291	Val	Pro	0	35
	220	Tyr	His	1		108	Val	Gly	0	15
	220	Tyr	His	1		291	Val	Pro	0	18
	235	Asn	Ser	1		100	Val	Thr	0	21
	240	Ser	Gly	1		81	Thr	Pro	0	22
	240	Ser	Gly	1		111	Met	lle	0	24
	270	Phe	Val	1		76	Met	Thr	0	18
	270	Phe	Val	1		80	Ser	Pro	0	27
	270	Phe	Val	1		81	Thr	Pro	0	27
	270	Phe	Val	1		94	Gln	lle	0	19
	270	Phe	Val	1		111	Met	lle	0	29
	270	Phe	Val	1		131	Asp	Lys	0	29
	363	Arg	Lys	5		73	Cys	Ser	0	17
	363	Arg	Lys	5		73	Cys	Gap	0	15
	363	Arg	Lys	5		76	Met	Thr	0	21
	363	Arg	Lys	5		80	Ser	Pro	0	35
	363	Arg	Lys	5		81	Thr	Pro	0	26
	363	Arg	Lys	5		90	Val	Met	0	15
	363	Arg	Lys	5		94	Gln	lle	0	19
	363	Arg	Lys	5		111	Met	lle	0	23
	363	Arg	Lys	5		111	Met	Leu	0	20
	363	Arg	Lys	5		131	Asp	Asn	0	23
	363	Arg	Lys	5		131	Asp	Lys	0	22

Table 1. Compensatory Mutation Candidates. This list of compensatory mutation candidates was generated from the coevolution matrix and somatic mutation list. There is no mutation in sector 2, 3, 4, or 6 that is compensated by other mutations, based on the criteria we used for screening.