Engineering Analytics & Machine Learning (ECSE202)
Seminar 7

Artificial Neural Network

Objective of Al

Human Learning

- Show sample of examples for learning
- Not for the kid to be fixed to the material
- Able to apply
- Able to extrapolate
- Able to adapt to similar cases
- Able to innovate

Fundamental

Single Perceptron

Type of Activation Function

Activation functions are transfer functions which is nonlinear that act as threshold. Desired characteristic:

- ✓ Mostly smooth, continuous, differentiable
- ✓ Fairly linear
- Activation functions are need as they provide the nonlinearities to handle complex problem.
- Layers of linear function is just a combined linear function
- A combined linear function can only learn linear transformation of the input

Type of Activation Function

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU $\max(0.1x, x)$

tanh

tanh(x)

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

 $\max(0,x)$

ELU
$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Squashes number to range from 0 to 1
- Historically popular as it could be interpreted as a "firing rate" of a neuron
- Issues:
 - Saturated Neuron "kill" the gradient
 - Output is not zero centered
 - Exponential is computational expensive

Activation Functions

tanh

- Squashes number to range from 0 to 1
- Zero centred
- Issues:
 - Saturated Neuron "kill" the gradient

Activation Functions

Relu

 $\max(0, x)$

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh
- Issues
 - Not zero centred

Fully Connected Multiple Layer Perceptron Network (MLP)

hidden layer 1 hidden layer 2 hidden layer 3

Source: https://hackernoon.com/training-an-architectural-classifier-iii-84dd5f3cf51c

Multi-Layer Perceptron(MLP)

Image Source: https://www.researchgate.net/figure/258524366_fig5_Neural-network-with-one-hidden-layer-of-neurons

Output of hidden layer:

$$h_i^1 = \emptyset(\sum_{j=0}^p v_{ij}x_j + b_i^1)$$

Output of output layer:

$$y_k = f(\sum_{j=0}^m w_{kj} y_j + b_k^o)$$

Classification Loss functions

Cross entropy loss function with sigmoid as output activation function:

$$E = -\sum_{i=1}^{N} (t_i \log y_i) + (1 - t_i) \log(1 - y_i))$$

Where t_i is the target vector where it is either 1 or 0 and yi is the output vector

Regression Loss functions

The loss function when the task is to predict real value such as measurement of houses or blood pressure:

$$E = \sum ||t_i - y_i||$$
 L1 Norm

$$E = \sum ||t_i - y_i||^2$$
 L2 Norm

Where ti is the target vector and y is the output vector

Gradient Descent (GD)

$$J(w) = \frac{1}{2} \sum_{i} (Target^{i} - Actual^{i})^{2}$$
$$\Delta w_{j} = -\mu \frac{\partial J}{\partial w_{j}}$$

$$w_j = w_j + \Delta w_j$$

Where μ is the learning rate

Source: https://www.quora.com/Whats-the-difference-between-gradient-descent-and-stochastic-gradient-descent

Stochastic Gradient Descent (SGD)

- GD is too computation expensive for the entire training set
- For SGD instead the entire training set is divide into mini-batch and weights are update in each mini-batch
- The name stochastic as the gradient is estimated by each sample (minibatch) rather the entire training set
- SGD had shown to almost surely converges to the global cost minimum if the cost function is convex (or pseudo-convex).

Backpropagation

Feedfoward

Backpropagation

Backpropagation was invented in the 1970s as a general optimization method for performing automatic differentiation of complex nested functions. However, it wasn't until 1986, with the publishing of a paper by Rumelhart, Hinton, and Williams, titled "Learning Representations by Back-Propagating Errors," that the importance of the algorithm was appreciated by the machine learning community at large.

Source: https://brilliant.org/wiki/backpropagation/

$$q = w_1 * x + w_{2*}y$$

$$z = q * w_3 = (w_1 * x + w_{2*}y) * w_3$$

$$E = \frac{1}{2}(z_t - z)^2$$

$$e = (z_t - z)$$

Where z_t is the desired output

Objective is to find:

$$\Delta w_j = -\mu \frac{\partial E}{\partial w_j}$$

Where μ is the learning rate

$$\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial q} * \frac{\partial q}{\partial w_1} \qquad \text{chain rule}$$

$$\frac{\partial q}{\partial w_1} = x$$

$$\frac{\partial E}{\partial w_1} = e * w_3 * x$$

$$q = w_1 * x + w_{2*}y = 0.5 * 0.5 + 0.1 * 0.9 = 0.34$$

$$z = q * w_3 = 0.272$$

$$e = (z_t - z) = 0.428$$

$$\frac{\partial E}{\partial w_3} = -q * e = -0.14552$$

$$\frac{\partial E}{\partial w_2} = e * w_3 * y = 0.03424$$

$$\frac{\partial E}{\partial w_1} = e * w_3 * x = 0.1712$$

$$w_3 = w_3 - \mu \frac{\partial E}{\partial w_3} = 0.8 - 0.01 * (0.1712) = 0.801712$$

$$w_2 = w_2 - \mu \frac{\partial E}{\partial w_2} = 0.8996576$$

$$w_1 = w_1 - \mu \frac{\partial E}{\partial w_1} = 0.498288$$

$$q = w_1 * x + w_{2*}y = 0.4996576$$

 $z = q * w_3 = 0.4005814938112$
 $e = (z_t - z) = 0.3994185061888$

- Initially the e=0.428
- With the updated weights, e=0.399 which show an improvement of 0.029 (6.78%)

Demo: Backpropagation

One-Hot Encoding

Not onehot encoding case

explanation variable

Fruits	numeric(x)				
apple	0				
meat	1				
grape	2				

Simple linear classification
$$y = wx$$

_	
	possible value
	y = 0
)	y = w
	y = 2w

classification
 threshold

y > constant

y <= constant</pre>

possible classification result							
Class1	Class2		Class1	Class2			
apple meat	grape		apple	meat grape			
apple meat grape				apple meat grape			

never happen apple classification case Class1 Class2 meat

onehot encoding case

explanation variable

Fruits	numeric(x)		
apple	001		
meat	010		
grape	100		

Simple linear classification

$$y = w_{apple} x_{apple} + w_{meat} x_{meat} + w_{grape} x_{grape}$$

$$w_{apple} = 0.5, w_{meat} = 0, w_{grape} = 0.5$$

$$\frac{\text{Class1}}{\text{apple}}$$

$$\frac{\text{Class2}}{\text{grape}}$$
 meat

onehot encoding is needed for categorical data in neural network classification

One-Hot Encoding example

Al Frameworks

Al Framework

	Languages	Tutorials and training materials	CNN modeling capability	RNN modeling capability	Architecture: easy-to-use and modular front end	Speed	Multiple GPU support	Keras compatible
Theano	Python, C++	++	++	++	+	++	+	+
Tensor- Flow	Python	+++	+++	++	+++	++	++	+
Torch	Lua, Python (new)	+	+++	++	++	+++	++	
Caffe	C++	+	++		+	+	+	
MXNet	R, Python, Julia, Scala	++	++	+	++	++	+++	
Neon	Python	+	++	+	+	++	+	
CNTK	C++	+	+	+++	+	++	+	

Source: https://www.kdnuggets.com/2017/03/getting-started-deep-learning.html

Al Framework

Deep learning framework search interest

Source: https://twitter.com/fchollet/status/871089784898310144

Tensorflow

Tensorflow Layers

- TensorFlow[™] is an open source software library for high performance numerical computation.
- Its flexible architecture allows easy deployment of computation across a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers to mobile and edge devices.
- Originally developed by researchers and engineers from the Google Brain team within Google's Al organization.
- it comes with strong support for machine learning and deep learning and the flexible numerical computation core is used across many other scientific domains.

You can access link below the access the official site: https://www.tensorflow.org/

Resources

CS231n: Convolutional Neural Networks for Visual Recognition (http://cs231n.stanford.edu/)

NUS SoC CS6101 Deep Learning vis Fast.Al (http://www.comp.nus.edu.sg/~kanmy/courses/6101_2017_2/)

Coursera Deep Learning Specialization https://www.coursera.org/specializations/deep-learning

Fast.ai http://www.fast.ai/

Awesome Al Papers (Deep Learning, Computer Vision, Robotics, NLP etc.) https://www.facebook.com/groups/awesomeaipapers/

My archive of papers to be read https://github.com/coolingozone/readingdeeplearning

http://www.deeplearningbook.org/
TP Library Open Shelf, Level 7 Q325.5 Goo