Algebra of Set Operations

Algebra of Set Operations

Recall Useful laws from propositional colculus

- · Commutativity of V and N: PVQ = QVP, PAQ = QAP
- . Associativity of V and \wedge : $PV(QVR) \equiv (PVQ)VR$ $P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$
- . Distributive laws : $PV(QNR) \equiv (PVQ) \wedge (PVR)$ $P \wedge (QVR) \equiv (PAQ) \vee (PAR)$
- . De Morgan's laws : $\neg (PVQ) \equiv \neg P \land \neg Q$ $\neg (P \land Q) \equiv \neg P \lor \neg Q$

Not an Element

Proposition 1

Let A and B be sets and let x be any object. Then:

- **1** $x \notin A \cup B$ iff $x \notin A$ and $x \notin B$.
- $2 x \notin A \cap B \text{ iff } x \notin A \text{ or } x \notin B.$
- **3** $x \notin A \backslash B$ iff $x \notin A$ or $x \in B$.

Proof of
$$0$$
: Recall that $1 \in A \cup B$ means that $1 \in A$ or $1 \in B$. Then $1 \notin A \cup B$ iff $1 \in A \in A$ or $1 \in B$. Then
$$1 \notin A \cup B$$
 iff $1 \notin A \in A$ and $1 \notin B$ (by De Morgan's laws)

De Morgan's Laws for Sets

Top Think of "S\" as an analogue of negation.

Theorem 1 (De Morgan's Laws for Sets)

Let S. A. and B be sets. Then:

Note: Recall that A = B iff (Y2) (1 EA () 1 EB).

iff ZES and (X # A and X # B)

LESIA and LESIB

iff Le (S/A) n (S/B)

 $(x \in S \text{ and } x \notin A) \text{ and } (x \in S \text{ and } x \notin B)$

(by Prop.10) (by dist. law)

Proof of a For each element to. x∈S\(AUB) iff x∈S and 1 \ AUB

Distributive Laws for Unions and Intersections

Theorem 2 (Distributive Laws for Unions and Intersections)

Let S, A, and B be sets. Then:

$$2 S \cup (A \cap B) = (S \cup A) \cap (S \cup B).$$

```
Proof of \mathbb{O} For each \lambda,

\lambda \in S \cap (A \cup B) iff \lambda \in S and \lambda \in A \cup B

iff \lambda \in S and \lambda \in A or \lambda \in B)

iff \lambda \in S and \lambda \in A or \lambda \in B)

iff \lambda \in S \cap A or \lambda \in S \cap B

iff \lambda \in S \cap A or \lambda \in S \cap B

iff \lambda \in S \cap A or \lambda \in S \cap B
```

One way to prove that two sets are the same is: (X = Y)Proof For each x, 26 X 7ff --iff xeY

Associative Laws for Unions and Intersections

Proposition 2 (Associative Laws for Unions and Intersections)

Let A, B, and C be sets. Then:

Proof of (For each (object) to,

$$A \cap (B \cap C)$$

$$=A\cap (B\cap C)$$

 $(A \cap B) \cap C = A \cap (B \cap C)$

$$=A\cap (B\cap C)$$

$$\cap (B \cap C)$$

de (AUB) UC iff LE AUB or LE C)

If (d. EA or LEB) or LEC

iff LEA or XEBUC

off a ∈ AU(BUC)

iff xEA or (xEB or xEC) (by assoc. of prop. calc.)

Commutative Laws for Unions and Intersections

Proposition 3 (Commutative Laws for Unions and Intersections)

Let A and B be sets. Then:

- $2 A \cap B = B \cap A$