Devoir à la maison n° 3

Problème 1 —

On note $\mathbb{P} = \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\} \text{ et } \mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}.$

On appelle homographie toute fonction h de \mathbb{C} dans \mathbb{C} qui à tout $z \in \mathbb{C}$ tel que $cz + d \neq 0$ associe $h(z) = \frac{az + b}{cz + d}$ où a, b, c, d sont des complexes tels que $ad - bc \neq 0$.

Partie I – Un exemple

- 1. Soit h l'homographie définie par $h(z) = i\frac{1+z}{1-z}$.
 - **a.** Montrer que $\forall z \in \mathbb{U} \setminus \{1\}, \ h(z) \in \mathbb{R}$.
 - **b.** Montrer que $\forall z \in \mathbb{D}$, $h(z) \in \mathbb{P}$.
 - c. Déterminer les points fixes de h, c'est-à-dire les complexes z tels que h(z) = z.
 - **d.** Pour quels $Z \in \mathbb{C}$, l'équation h(z) = Z d'inconnue z admet-elle une solution?
- 2. Soit g l'homographie définie par $g(z) = \frac{z i}{z + i}$.
 - **a.** Montrer que $\forall z \in \mathbb{R}, \ g(z) \in \mathbb{U}$.
 - **b.** Montrer que $\forall z \in \mathbb{P}, \ g(z) \in \mathbb{D}$.

Partie II – Homographies conservant \mathbb{U}

- 1. Soit $\theta \in \mathbb{R}$ et h l'homographie définie par $h(z) = \frac{e^{\mathrm{i}\theta}}{z}$. Montrer que $\forall z \in \mathbb{U}, \ h(z) \in \mathbb{U}$.
- **2.** Soient $\alpha \in \mathbb{C} \setminus \mathbb{U}$, $\theta \in \mathbb{R}$ et l'homographie h définie par $h(z) = e^{i\theta} \frac{z + \alpha}{\overline{\alpha}z + 1}$.
 - ${\bf a.}\,$ Montrer que ${\bf h}$ est bien une homographie et que ${\bf h}$ est définie sur $\mathbb{U}.$
 - **b.** Montrer que $\forall z \in \mathbb{U}, h(z) \in \mathbb{U}$.
- 3. Inversement, on souhaite montrer que les seules homographies conservant $\mathbb U$ sont celles des questions II.1 et II.2. Soit donc h une homographie définie par $h(z) = \frac{az+b}{cz+d}$ où a,b,c,d sont des complexes tels que $ad-bc \neq 0$ et vérifiant : $\forall z \in \mathbb U$, $h(z) \in \mathbb U$.
 - $\mathbf{a.} \ \, \mathrm{Montrer} \ \, \mathrm{que} \, \left\{ \begin{array}{c} \overline{\alpha} b = \overline{c} \, d \\ |\alpha|^2 + |b|^2 = |c|^2 + |d|^2 . \end{array} \right.$
 - **b.** Montrer que si $\mathfrak{a}=\mathfrak{0},$ alors \mathfrak{h} est du type présenté dans la question II.1.
 - **c.** On suppose maintenant $a \neq 0$.
 - i. Montrer que $(|a|^2 |c|^2)(|a|^2 |d|^2) = 0$.
 - ii. Montrer que $|a| \neq |c|$.
 - iii. En déduire que $\mathfrak h$ est du type présenté dans la question II.2.