

Ayudantía 9

Profesor: Mircea Petrache Ayudante: Diego Milla

Problema 1

Sean $A = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ y $B = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ bases para un espacio vectorial V, suponga que $\mathbf{a}_1 = 4\mathbf{b}_1 - \mathbf{b}_2$, $\mathbf{a}_2 = -\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3$ y $\mathbf{a}_3 = \mathbf{b}_2 - 3\mathbf{b}_3$

1. Encuentre la matriz de cambio de base de coordenadas de A a B.

2. Si
$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_A = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$
 determine $\begin{bmatrix} \mathbf{x} \end{bmatrix}_B$.

3. Encuentre la matriz de cambio de base de coordenadas de B a A.

4. Si
$$[\mathbf{x}]_B = \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}$$
 determine $[\mathbf{x}]_A$.

Problema 2

Sea
$$P = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$
 y $\mathbf{v}_1 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ y $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$.

- 1. Encuentre una base $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ para \mathbb{R}^3 tal que P es la matriz cambio de coordenadas de $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ a la base $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
- 2. Encuentre una base para \mathbb{R}^3 tal que P es la matriz cambio de coordenadas de $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ a la base $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.

Problema 3

Sean V de dimensión 3 y W de dimensión 4 espacios vectoriales tal que $V=\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ y $W=Gen\{\mathbf{w}_1,\mathbf{w}_2,\mathbf{w}_3,\mathbf{w}_4\}$. Sea $T:V\to W$ lineal tal que

$$T(\mathbf{v}_1 - \mathbf{v}_3) = \mathbf{w}_1 + \mathbf{w}_2$$

$$T(\mathbf{v}_1 - \mathbf{v}_2 - \mathbf{v}_3) = \mathbf{w}_1 + \mathbf{w}_3$$

$$T(\mathbf{v}_1 - \mathbf{v}_2 - 2\mathbf{v}_3) = \mathbf{w}_1 + \mathbf{w}_4$$

1. Encuentre bases en V y W tal que la matriz de la transformación lineal sea

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & -1 & 1 \\ -1 & 0 & -1 \end{bmatrix}.$$

2. ¿Es T es 1-1 ? ¿Es T sobre? Justifique.