Complex Numbers An imaginary number is a number of the form bi (i=V-i). A complex number is written in the form d+ bi. Complex numbers can be added or subtracted by adding/subtracting their real and imaginary parts. If 62-4ac <0 for ax2 +6x+ c=0, then it has two distinct complex roots, which are a complex conjugates pair. Z = a + 60 has a complex conjugate z* = a - 60 real evel-dents for ax 2 ba + C=0, if b2- lear 60 then the roots are two complex conjugate numbers. Obvious but easy to faget (x-x)(x-B) = ax2+ 6x+c for at a w3 + 6 w2 + cw + d=0, either all 3 roots ar real, or one root is real and 2 are a complex conjugate pair. for az# + 6 z3 + cz 2 + dz + e=6, either all 4 routs are real, 2 as and loss at a complex conjugate pair, or begon the 4 roots are 2 complex conjugate pairs. Argent diagrams You can represent complex numbers on an Argant diagram, the x-axis on an Argand Liagram is the real axis and the y-axis is the imagingry axis. $z = z + iy \rightarrow au$ be represented $|z| = \sqrt{z^2 + y^2}$ $tan(0) = \frac{5}{z}$ might have to include, somewhere her if in other quadrant -TI LO LT For a complex number @ Z=a+bi, where HARD 121=r and argz=6

the modulus - argument form of z is Z= o (coso + isino)

for any two complex numbers 2, and 22, (Z, Zz = (Z, ||Zz| ang (Z, Zz) = ang Z, + ang Zz $\frac{|Z_1|}{|Z_2|} = \frac{|Z_1|}{|Z_2|} = \frac{|Z_1|}{|Z_1|} = \frac{|Z_1|}{|Z_2|} = \frac{|Z_1|}{|Z_1|} = \frac{|Z_1|}{|Z_2|} = \frac{|Z_1|}{|Z_1|} = \frac{|Z_1|}{|Z_2|} = \frac{|Z_1|}{|Z_1|} = \frac{|Z_1|}{|$ 22-2, = distance between the points z, and zz Circle: Given Z = d, + iy, a circle with centre = (>1, y) Z-Z, [= C 12 - (2, xiy,) |= r & locus of points = [2 - x, -iy, |= r / Perpendicular bisector: Given Z. = ox, + iy, and Zz = oxz + iyz, the locus of the points 2 is the perpendicular bisector of the line segment joining Z, and Ze where: | Z-Z, |= | Z-Zz | La distance from z, to z = distance from z to z Half line . Given Z1 = X1 + iy, the locus of points 2 is a falf line from but not including, the fixed quid 2. Making an angle of with on live from the fixed point ze parallel to the real axis where: Arg (2-21) = 0 Im (ag (2 - 2,)

Further Complex numbers Euler's relation, e'= cos0 + isin0 Any complex number can be written Z = [(000 + isin0) = moding form, so: $Z = re^{i\theta} \qquad r = |Z|, \; \theta = \alpha \eta Z$ $if \quad Z_1 = r, \; e^{i\theta_1} \quad \text{and} \quad Z_2 = r_2 e^{i\theta_2}$ $Z_1 Z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)} \qquad Z_1 = r_2 e^{i(\theta_1 - \theta_2)}$ $\frac{Z}{Z} = \frac{\Gamma}{\Gamma} e^{i(\theta_1 - \theta_2)} = \frac{\Gamma}{\Gamma} \left(\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2) \right)$ De Moivre's Theorem: (r (cos 0 + isin 0)) = r" (cos no + isin no) $2\cos\theta = z + \frac{1}{z}$ $2\cos n\theta = z^{n} + \frac{1}{z^{n}}$ $2i\sin\theta = z - \frac{1}{z}$ $2i\sin\theta = z^{n} - \frac{1}{z^{n}}$ D WZ = W+WZ + WZ + ... + WZ - = W(Z'-1) W, ZEC $\sum_{r=0}^{\infty} WZ^{r} = W + WZ + WZ^{2} + ... = \frac{W}{1-7} |Z| < 1$ if W and Z are complex numbers (non-zero also) and n is a positive integer, then the equation Z' = W has a roots $Z = \Gamma(\cos\theta + i\sin\theta) = \Gamma(\cos(\theta + 2kn) + i\sin(\theta + 2kn))$ In general, the solutions to $z^n = 1$ are the $z = \cos\left(\frac{2\pi \kappa}{n}\right) + i\sin\left(\frac{2\pi \kappa}{n}\right) = e^{2\pi i \kappa}$.

These are known as the n^{th} roots of unity (roots of unity all have makelys = 1) If n is a positive integer, then there is an not not of anity warm w = e such that! "The " roots of unity are 1, w, w", - , w" o 1, w, w, who form the vertices of a regular n-gen hard 0 /+ W + W 2 + -.. + W n-1 = 0 The nth roots of any complex numbers lie on the verticies of a regular n-gon with its center at the origin. If Z, is one root of the equation Z= S, and I, W, W, ..., w" are the not roots of unity, then the roots of z"= s are Z, Z, W, Z, W, ..., Z, W

Series Sum of a series of constant terms: $\sum_{n=1}^{\infty} 1 = N$. Formula for the sum of the first n natural numbers : I r = { n (n+1) Sum of a series that does not state at r=1: $\sum_{r=1}^{r} f(r) = \sum_{r=1}^{r} f(r) - \sum_{r=1}^{r} f(r)$ Rearrange: $\sum_{r=1}^{\infty} |kf(r)| = |k| \sum_{r=1}^{\infty} |f(r)| + g(r) = \sum_{r=1}^{\infty} |f(r)|$ Sum of squares of natural numbers is: \(\frac{1}{2} \rac{1}{6} \h (n+1) (Zn+1)\) Sum of cubes of the first natual numbers: Et r3 = 4 n2 (n+1)2 Roots of polynamials Root notation: the not of an equation are written & B, Y, 8 ax^2 tbx t C = 0 $ax^3 + bx^2 + cx + d = 0$ $ax^4 + bx^3 + cx^2 + dx + e = 0$ XB18 = a in general: d" x B" x y" --- = (dBY--)" pairs: & B + & 8 + ... = & Sumof squares: $d^2+\beta^2+\cdots+=(d+\beta+\cdots)^2-2(d\beta+\cdots)$ trigles: & By + & B5 + ... = -d Sum of cubes: 23+133+ ... + = (x+B+-)3-3 (a+B-) (2B quads & BYS = e + 3(0,8800) if " has not & , B and Y -" = 91 ngles 2 - 3/sigles xpain + 3to "- find equation with roots f(x), f(B), f(x)" just do w= f(a) => x=f-'(w) then sub a into original equation

if y = f(x) is rotated about the anti between $\alpha = \alpha$, and $\alpha = b$ through ZTT radians

Volume = $\pi \int_{-\alpha}^{\alpha} y^2 dx$ if y=f(st) is notated about the y-axis between y=a and y=b through 200 radio Cylinder volume: V = TTr2h Cone volume: V= = Trih If x = f(t), y = g(t) is retated 211 between x = a and x = b about x - axisVolume = $\pi \int_a^b y^2 dx = \pi \int_g^b y^2 \frac{dx}{dx} dt$ If x = f(t), y = g(t) is rotated an between x = a and x = b about y - axisVolume = $\pi \int_{a}^{b} x^{2} dy = \pi \int_{a}^{b} x^{2} dx dt$ don't forget to change the limits Proof by Induction You can use poof by induction to prove that a general statement is true for all gositive integers. 1. Basis: prove that the statement is true for n=1 [p(1) is true] 2. Assumption: Assume that the statement is true for n= K [assume p(k) is true] 3. Inductive: Show that the general statement is true for n=k+1 [p(k+1) is true given 4. Conclusion: Therefore the statement is true for all positive integers, n EN Matrickes Square matrix: a matrix where the number of rows and columns are the same Zero metrix: a matrix where all of the numbers are O (denoted by O) Identity metrix: a square matrix in which athe numbers in the leading diagonal are I and the rest are O (denoted by I'm where K describes the size) Is = (0 0 0) Size can be denoted by no-rows x no-columns eq (0) has zize 3x2

Matrices cont. To add or subtract natrices, you add or subtract the corresponding elements in each matrix (you can only do this with motrices of the same size eg. (b) + (d) = (a+c)) To multiply by a scular, you multiply every element by that scalar eg 3(1) = (30) Matrices can be wultiplied together if the number of columns in the first is equal to the number of rows in the second matrix (here they are multiplicatively conforms To multiply two metrices you multiply the elements in the left-hand matrix by the rows by the coresponding elements in each column in the right-hand matrix, then add the resul eq. $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e \\ f \end{pmatrix} = \begin{pmatrix} ae + 6f \\ ce + df \end{pmatrix}$ Note - det (M) can be written Determinants For a 2×2 matrix $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ det(M) = ad - bcFor a 3×3 matrix $A = \begin{pmatrix} a & b \\ a & c \end{pmatrix}$ $det(A) = a \left[minor(a) \right] = b \left[minor(b) \right] + c \left[minor(c) \right]$ If det A = O, A is singular. If det A = O, A is non-signalar. The minor of an element in a 3×3 matrix is the determinant of the 2×2 matrix left over AM when that elements row and column are removed if A = (ed) Hen A = detA (d - b) => A = detA (d - b) Inversion if $A = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}$, then $A^{-1} = \frac{1}{\det A} \begin{pmatrix} C_{minor} \end{pmatrix}^T \Rightarrow A^{-1} = \frac{1}{\det A} \begin{pmatrix} C_{minor} \end{pmatrix}^T$ $MM^{-1} = M^{-1}M = I$ (Cminor) To construct a matrix of minor (replace each element with)

If and and B are non-singular Form a matrix of cofactors (multiply the matrix of minors by) $(AB)^{-1} = B^{-1}A^{-1}$ Transpose this matrix $\begin{pmatrix} a & b & b \\ d & e & b \end{pmatrix} = 7 \begin{pmatrix} a & d & g \\ b & e & b \end{pmatrix}$ I+ A (=)=V, (=)=A-V A system of linear equation is consistent if there is at least one set of value, that satisfies all simultan Plane consistency If det A = 0, then they are consistent and have I solution i plane, met all a point Sheat: equations are consistent with infinite solutions = all equation are not equivalent All same plane: equations are consistent with infinite solutions all equations equivalent it det A = 0 Prism: equations are inconsistent, and here no solutions 2+ purallel # and not some : equation are inconsistent and have no solutions

Vectors cont. Reflections of points and lines in planes - Make one of the points P the Points - Find shortest distance from P to place
the shortest line group to It.

- Find vector equalion of the bear lits in intersection of the line and the plane the direction of normal and pages through P) - Find the point of intersection of so you don't have to reflect it PARAMERICAN THE Line and - Make the other point Q by arbitarily setting & to O premious plane by substituting in I from line inter I - M = K to find - Now find the equation of the li 7. (let this point be a) passing through Pund Q - Reflection of P has position rector # # 2 Constant & F' = f +2(q-p) Further Series If the general term, ur, of a series cun be represented as f(r)-flored than \(\hat{\text{L}} \) ur = \(\hat{\text{L}} \) (f(r) - f(r+1)) $u_1 = f(1) - f(2) \Rightarrow \hat{z} u_r = f(1) = f(n+1)$ U2 = 1/2)- HS) Uni = wf(n-1) -f(n) Un = flot = f(n+1) Maclaurin series: $f(x) = f(0)x^{\alpha} + f'(0)x + f'(0)x^{\alpha} + \dots + f'(0)x^{\alpha}$ e = 1+x+ = for all x $I_{\gamma}(t+1) = \chi - \frac{\chi^{2}}{2} + \frac{\chi^{3}}{3} - \dots + (-1)^{r+1} \frac{\chi^{r}}{r} + \dots - 1 \ Z \times \{1\}$ $S_{\gamma} \neq 2 \times \frac{\chi^{3}}{3!} + \frac{\chi^{5}}{5!} - \dots + (-1)^{r} \frac{\chi^{2rei}}{r} + \dots \quad \text{for all } \chi$ $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$ for all x $veta_1 x = x - \frac{x^3}{34} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + (-1)^r \frac{x^{2r+1}}{7^{r+1}} + \dots -1 \le x \le 1$

Methods in calculus The integral In flat da is improper if eithe: · one or both of the limits is infinite • f(x) is undefined at x=a, x=b or at another point in the interval [a,Mean value of fly over the internal [a, b]: mean = 1 for fla) dx (= arca/width) It f(x) has a mean value fover the interval [a, 6], and K, is a real constant, then: o f(x) + h has mean value f + ko k f(x) has mean value k fo m - f(x) has mean value -f(x) $\frac{d}{dx}\left(\operatorname{arcsin}x\right) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\left(\operatorname{arccos}x\right) = \frac{-1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\left(\operatorname{arctan}x\right) = \frac{1}{1+x^2}$ $\int_{a^2+r^2}^{1} dx = \frac{1}{\alpha} \arctan\left(\frac{x}{a}\right) + \zeta, \quad a70, \quad |x| \leq \alpha$ $\int_{\left(a^{2}-x^{2}\right)}^{1} dz = a\pi \sin\left(\frac{x}{a}\right) + C$ Polar Coordinates $r \cos \theta = x$ and $r \sin \theta = y$ $r^2 = x^2 + y^2$ $\theta = \arctan(\frac{y}{x})$ $\epsilon = \arctan(\frac{y}{x})$ $\epsilon = \arctan(\frac{y}{x})$ Circle centre O radius a: r=a Over half-line through O with angle a: 6 = & spiral starting at 0: r= a0 Area bounded by polar curve, 0=0, and 0=p; Area = 2 12 r2.d0 To find a tangent parallel to the initial line: do = 0 To find a targent perpendicular to the initial line: de = 0 Eurres with equations of the form r= a (p+ gros D) are defined for all D if p 79 **Costieds** The curve is convex (egg shaped) if p 7,2g and concave if 297 p 7,9 Convex = Concave =

Differential Equations First Order You can solve first-order differential equations of the form $\frac{dy}{dx} + P(x)y = Q(x)$ by multiplying every term by the integrating factor (IF) Seand Order Homogeneous The second order homogeneous differential equation a dist + 6 ds + cy = 0 can be written as an auxillary equation (AU) am2 + 6m + c=0. The roots of AU determine the general solution of the differential equation 2 distinct real roots & and B GS => y = Aexx + BeBx I repeated root & GS= y = (A+Bx)exx 2 complex conjugate roots p ± 9i Case 3: 65 => 'y = epx (A cosq > + B sing x) Second Order Non-homogeneous Equations of the form $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$ are non-homogeneous. First you need to find the general solution of the corresponding homogeneous differential equation, a die + 6 dx + cy = 0. This is called the complimentary function (CE) Next you need to find a particular integral (PI). This is a function Aut satisfies the differential equation. PI depends on flx). Form of PI e if this form ran be found already tound in the CF, you need to multiply by x or a2. A+Mx Ptqx P+2x + rx2 7+Mx+ Dzz At K2 PEOSW= + 95.1 W= Acoswa + Msinux

To then find the GS: y = CF + PI

/				
	Using Differential Equations to Model:			
	Simple Harmonic Mot. 81			
	S.H.M: Mot.on in which the acceleration of a particle P is always			
36	towards a break might of the line of the D. The reduction			
	is proportional to the displacement of P from O.			
	is proportional to the displacement of P from O. $ \dot{x} = -W^2 x \qquad \dot{x} = V \frac{dv}{dx} \qquad \dot{x} = \frac{dz}{dt} = V $ $ \dot{z} = \frac{dz}{dt^2} = \frac{dv}{dt} = a $			
	Damped Harmoic Mot. on $ \frac{d^2x}{dt^2} = -\frac{x}{dt} + \frac{x}{dt} = $			
	$\omega = k$			
V	proportional proportional to			
	to aumping force restorning porce or dez + K dz + w2x = 0			
	$\frac{d^2x}{dt^2} + K \frac{dx}{dt} + w^2 x = 0$			
	Z17			
	AU: m2 + km + w2 = 0			
		Distinct Roots	Equal Roots	No Roots
edi e e je (m	Roots of auxiliary	κ²-4ω² 70	K-4w=0	κ2-4ω2 LO
-Lingui - F	Form of resulting Solution	x=Aet+Best	2 = (A+86)ext	z = Aext sin (Bx+ Y)
\checkmark	Type of	Heavy damping	Critical damping	Light damping
	damping	(no oscillations)	the limit for which there are no agaillation	(some geillation)
	Sketch of x	Sa doant reach	* 1	* 1
	against t	***		
	Forced Harmonic Motion			
	$\frac{d^2x}{dt} + \frac{dx}{dt} + \frac{d^2x}{dt} = \frac{f(t)}{2} = $			
	f-a/	11,14,	11, 12, 12, 13, 13, 14	
	76 14 140-	The state of		

