3

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2008 DIGITAL ELECTRONICS & INTEGRATED CIRCUITS SEMESTER - 4

Time: 3 Hours]	•	•	.	Full Marks: 70

GROUP - A

(Multiple Choice Type Questions)

		e correct alternatives i				10 × 1 = 10
i)		minimum number of	NAND gates	requ	ired to implement (A	+ AB' + AB' C')
	is		•	2,783		
	a)	zero	•	b)	one	
	(c)	four		d)	seven.	
ii)	Con	version of (36.532) ₈	into equiva	lent h	exadecimal number i	
	a)	(1F·AE) ₁₆	•	b)	(1E·AD) ₁₆	
	c)	(1F·AD) ₁₆		d)	None of these.	
iii)	Con	version of (564) ₁₀ int	o Gray code	e is		
	a)	1100101110		b)	1110100110	
	c)	0111001011		d)	1000110100.	
iv)	If t,	, is the pulse width, Δ	t is the pro	paga	tion delay and T is th	e period of pulse
	trair	1, then which one of	the follow	ing c	onditions can avoid	the race around
	cond	litions?				
i.	a)	$t_p = \Delta t = T$		b)	$2t_p > \Delta t > T$	
* . *	c)	$t_p < \Delta t < T$		d)	$2t_p < \Delta t < T$.	
v)	The	equation $\sqrt{213} = 13$ is	valid for wh	nich o	ne of the number syst	ems with base?
	a)	Base 8	:. 1	b)	Base 6	
	c)	Base 5		d)	Base 4.	

TV-247922 (9A)

www.makaut.com

	a)	Ex-3 code	b)	Gray code	
		8421 code			
	c)	8421 code	d)	None of these.	
vii)	A cl	ock frequency of 100	kHz is applied to	MOD - 8 followed by a	a decade counter
	Wha	at will be the output fi	requency?		
	a)	12·5 kHz	b)	10 kHz	
	c)	1·25 kHz	d)	None of these.	
viii)	A 3-	bit synchronous cour	nter uses flip-flop	ps with propagation de	lay time of 20 ns
	eacl	n. The maximum poss	ible time require	d for change of state w	ll be
	a)	60 ns	b)	40 ns	
	c)	20 ns	d)	none of these.	
ix)	if th	ne negative logic is	used, the diode	gate shown in the	given figure will
		esent			
	•				
•	:		₩		
•	٠	<u></u>	₩ = -5v		
	a)	OR gate	b)	AND gate	
	c)	NOR gate	d)	NAND gate.	
•	C,	NON Bate	ω,	Italio gaio.	
x)	The	minimum number o	of NAND gates i	required to implement	A+AB+ABC is
	equa	al to			
	a)	0	b)	1	•
	c)	4	d)	7.	
1732	2 (3A	57			

CS/B.T	BCH (ES	- XEW)/8	EM-4/BC (EE) 402/08	5		
,	xi)	In st	andard TTL, the "totem pol	le" stage refe	ers to the	-1001
		a)	multi-emitteer i/p stage	b)	phase splitter	
	•	c)	o/p buffer	d)	open collector o/p stage.	
•	xii)	The	SOP form of logical expre	ssion is mo	st suitable for designing l	ogic circuits
		usin	g only			
		a)	XOR gates	b)	NOR gates	
		c)	NAND gaes	d)	OR gates.	
						•
-21			G	ROUP - B	er en	
			(Short Answ	ver Type Qu	estions)	
			Answer any	three of the	following.	$3 \times 5 = 15$
2.	Wha	t is fa	n out ? What is the basic	difference (of a latch and edge trigger	ed flip-flop?
	Desig	gn a 9	-bit even parity generator	circuit.		1+1+3
3.	Desi	gn BC	D-Excess 3 code converter	using basic	logic gates with proper tru	th table. 5
4.	What	t is Ra	ace Around condition? Exp	olain the wo	rking of Master-Slave Flip-	flop. $1+4$
	•					
5.	Draw	a ne	at diagram of a R-2R ladde	r type DAC	and explain its operation.	5

Draw the neat diagram of a 4 bit Bi-directional Shift register using mode control (M).

When M is logic zero then left shift and right shift for M are logic one.

IV-247322 (3A)

6.

5

6

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

a) What do you mean by Prime implicant? Simplify the following Boolean expression using K-map:

 $F(A, B, C, D) = \Sigma m(0, 2, 3, 6, 8, 11, 12, 14) + d(1, 4, 9, 10)$

- b) Design full adder using two half adders and necessary gate.
- c) Draw a network using only NAND gate to generate the function $Y = (\overline{A} + BC)$.

(2+5)+4+4

- 3. a) What are the advantage and disadvantage of totem pole?
 - b) What are the output voltages caused by logic 1 in each bit position in an 8 bit ladder if the input level for 0 level is 0 volt and for level 1 is 10 volt?
 - c) Compare the maximum conversion period of an 8 bit Digital ramp ADC and 8 bit successive approximation ADC if both utilize 1 MHz clock frequency?
 - d) With proper circuit diagram explain the operation of NMOS NAND gate.3 + 3 + 4 + 5
- 9. a) Perform the conversion of D flip-flop to J-K flip-flop.
 - b) What is presettable counter? Design a MOD-5 counter that counts its natural count sequence from 000 to 100.
 - c) Distinguish between a ripple counter and synchronous counter.

5 + 8 + 2

- 10. a) What are the differences between the Decoder and Demultiplexer?
 - b) Form a multiplexer tree to give 4X1 MUX from two 2X1 MUX.
 - c) Show how a 16 input MUX is used to generate the function

$$F = (A,B,C,D) = \overline{ABCD} + BCD + A\overline{BC} + AB\overline{CD}$$
.

5 + 5 + 5

- 11. a) What are RAM and ROM? What is the basic difference between EPROM and EEROM?
 - b) What is the major difference between the two classes of finite state machines and proper state diagram?
 - c) What is Schmitt Trigger?

(2+3)+(4+4)+2

END

IV-247322 (3A)