Содержание

- Введение
 - История
- Основные принципы работы
 - о Файл метаданных
 - о Трекер
 - Алгоритм обмена данными
- Элементы протокола
- Расширения
 - Работа без трекера
- Классификация трекеров
 - Вопросы легальности
- Программное обеспечение
- Заключение

Введение (1)

Задача: передать один или несколько файлов от одного пользователя к другому через Интернет.

Решение: HTTP или FTP сервер: файлы хранятся на сервере, пользователи одновременно скачивают файлы

Проблемы:

- Пропускной канал сервера не бесконечен чем больше пользователей, тем меньше скорость скачивания каждого
- Если сервер «упадет» скачивание станет невозможным

Вывод: нужна альтернатива, которой и стали пиринговые сети, и BitTorrent в частности.

BitTórrent (англ. «битовый поток») — пиринговый (p2p) сетевой протокол для кооперативного обмена файлами через Интернет.

Введение (2)

Пиринговая (от англ. peer-to-peer, P2P — равный к равному) сеть

- это компьютерная сеть, основанная на равноправии участников.
- выделенные серверы отсутствуют
- каждый узел (peer) как клиент, так и сервер.
- файлы хранятся на каждом узле
- скачивание может производиться с любого количества узлов одновременно

История

- Napster 1999-2001 гг. первый широко используемый сервис свободного обмена музыкой. Остановлен по решению суда.
- Kad 2002г децентрализованная сеть поиска, используется совместно с сетью обмена eDonkey. Основана на реализации распределенной хэш таблицы Kademlia.
- eDonkey частично децентрализованная сеть обмена файлов, серверы используются только для координации клиентов. Отсутствует возможность модерации контента.
- Direct Connect гибридная сеть, состоящая из серверов хабов, и клиентов. Имеет развитый чат, наличие операторов, контролирующих соблюдение правил чата и файлообмена. Отсутствие шифрования данных.
- BitTorrent гибридная сеть, состоящая из серверов трекеров, и клиентов.

Протокол BitTorrent разработан в 2001 г. Бремом Коэном.

Общий принцип работы сети BitTorrent (1)

Задача: передать один или несколько файлов от одного пользователя к другому через Интернет.

Решение при помощи сети BitTorrent:

- 1. Источник файла/ов создает файл метаданных.
- Это множество файлов теперь называется раздачей.
- 2. Источник передает пользователям файл метаданных, связывая его с сервером трекером.
- 3. При помощи торрент клиента источник «встает на раздачу», и становится сидом.
- **Сид**, *сидер* (англ. *seeder* сеятель) пир, имеющий файл в полном объеме, источник раздачи.
- 4. Остальные пользователи начинают скачивать файлы, используя клиент, и становятся личерами
- **Лич**, личер (англ. leech пиявка) пир, не имеющий пока файлов целиком, т.е. продолжающий скачивание.
- 5. Личеры, полностью скачавшие файлы, становятся сидами.

Общий принцип работы сети BitTorrent (2)

Преимущества:

- Устранены проблемы решения «сервер-клиент»
- Эффективный распределенный обмен
 - Раздача делится на части одинакового размера сегменты (англ. pieces). По умолчанию размер 2¹⁸=256Кб
 - Сегменты делятся на части одинакового размера блоки (англ. blocks). Размер 64-4096Кб
 - Каждый пир скачивает каждый сегмент только один раз (при отсутствии ошибок)
- Проверка целостности скачанной раздачи и каждого сегмента в отдельности
- Отстутствие очередей и ограничений на скорость скачивания (в сравнении с eDonkey и DC сетей с квотами)
- Возможность создания сообщества на основе трекера
 - Контроль раздаваемого материала

Файл метаданных

- словарь в bencode формате с расширением .torrent

Содержит метаданные различного типа:

- информация о файлах в раздаче
 - имена
 - pasmep
 - расположение
 - хэш файлов и раздачи в целом
- ссылки на торрент трекеры
- данные используемые расширениями
 - поддержка альтернативных протоколов обмена
 - ДОПОЛНИТЕЛЬНЫЕ ОПЦИИ

Кодирование bencode

- Использует числа и ASCII символы
- Прост в кодировании и декодировании
- Легко расширяется

Поддерживаемые типы:

- Целое число
 - о Синтаксис: і<число>е
 - Примеры: i30e, i-42e, i0e
- Строка байтов
 - о Синтаксис <длина строки>:<строка>
 - o Примеры: 6:primat, 0:

Кодирование bencode (2)

Поддерживаемые типы:

- Список значений
 - о Синтаксис Ксписок > е
 - СПИСОК> ПОСЛЕДОВАТЕЛЬНОСТЬ bencoded значений
 - о Пример: **l**i30e3:fooi0e**e**
- Словарь
 - о синтаксис d<словарь>e
 - о <словарь> список пар <ключ><значение>
 - о Ключ байтовая строка
 - о Сортировку следует делать с
 - помощью бинарного, а не "естественного" (алфавитноцифрового),
 сравнения

Пример: **d**9:publisher3:bob18:publisher.location4:home 17:publisherwebpage15:www.example.com**e**

Кодирование bencode: вопросы

Как будет закодирован словарь

```
    {"cow" => "moo", "spam" => "eggs" }
    d3:cow3:moo4:spam4:eggse
    {"spam" => ["a", "b"] }
    d4:spam|11:a1:bee
```

Структура файла метаданных

- announce URL трекера
- info словарь
 - o name имя файла/имя корневой директории
 - piece length размер сегмента. Наиболее используемый 2¹⁸ байт = 256 Кб
 - pieces строка, составленная объединением всех SHA1 хешей (по одному на каждый кусок)
 - o length размер файла в байтах, если файл один в раздаче
 - files список словарей для каждого файла в раздаче.
 Структура каждого словаря:
 - path путь до файла относительно корневой директории
 - length размер файла в байтах
- announce-list, creation date, comment, created by

Все строки кодируются в UTF-8

Примеры структуры файла метаданных

```
Один файл
 'announce':
'http://tracker.site1.com/announce',
 'info': {
   'name': 'Disk.iso',
   'piece length': 262144,
   'length': 678301696,
   'pieces':<SHA-1 160-bit hash>
```

```
Несколько файлов
 'announce':
'http://tracker.site1.com/announce',
 'info': {
   'name': 'directoryName',
   'piece length': 262144,
   'files': [ {'path': '111.txt', 'length': 111},
          {'path': '222.txt', 'length': 222} ],
   'pieces': <SHA-1 160-bit hash x2>
```

BitTorrent-трекер

— веб-сервер, осуществляющий координацию клиентов BitTorrent.

Трекер (англ. tracker) - от track – отслеживать

Чаще всего работает при поддержке веб-сайта для пользователей – форума или каталога.

Роль и задачи:

- «Связывает» клиентов друг с другом
 - при отключении новые клиенты не могут друг друга «найти», при этом уже соединившиеся продолжают обмениваться файлами
- сохраняет в базе данных статистику раздач
 - о объёмы переданных данных

	Посл. обновл.	Сегодня	Вчера	Всего учтено
Скачано	0 B	0 B	555 MB	879.02 GB
Отдано	0 B	0 B	4.8 GB	7.382 TB

о количество узлов на каждой раздаче

Трекер никак не участвует в файлообмене и не хранит файлы из раздач!

Статистика раздачи					
Размер: 1.72 GB Зарегистрирован: 2 дня 19 часов .torrent скачан: 7397 р					
Сиды: 1061 [18 MB/s] Личи: 1514 [18 MB/s]					

Этапы работы протокола

- Обновление (англ. announce)
 - о Клиент подсоединяется к трекеру, сообщая информацию о файле
 - о Трекер сообщает клиенту адреса других клиентов
- Основной этап
 - о Клиенты обмениваются сегментами
 - Клиенты информируют трекер о ходе процесса и обновляют список адресов
- Завершение (режим End Game)
- Сидирование

Этап обновления (1)

• НТТР протокол между клиентом и трекером

BitTorrent KAMEHT GET Запрос Трекер

• Параметры запроса

15

Этап обновления (2)

Ответ трекера – bencoded словарь

- 1. Ошибка:
 - o failure reason строка с информацией
- 2. Успех:
 - o interval интервал времени в секундах до следующего запроса
 - tracker id строка, которую клиент должен посылать обратно последующих оповещениях
 - peers список словарей. Структура словаря каждого пира:
 - peer_id уникальный идентификатор пира
 - ір ір адрес пира
 - port порт пира

Протокол scrape

- дополнительный протокол запроса клиента к трекеру, при котором трекер сообщает клиенту общее количество сидов и пиров на раздаче

Scrape – соскоб (от прагерм. skrapojan «скрести»)

В отличие от announce, запрос scrape:

- не имеет прямого отношения к скачиванию раздачи
- является необязательным
- может запрашиваться и для остановленных в клиенте заданий
- отнимает меньше ресурсов у клиента и трекера
- может одним запросом получить информацию сразу по нескольким торрентам (multi-scrape)

Этап обмена данными

- На транспортном уровне используется протокол ТСР
- Соединения между пирами симметричны
- Протокол оперирует сегментами и блоками по индексу
- Обмен ведется блоками

№	Размер	Блоков	Полоса загрузки блоков
146	2.00 MB	128	
523	2.00 MB	128	

Стадии обмена

- Приветствие соединение пиров, обмен информации об имеющихся сегментах
- Обмен данными по специальному алгоритму
- Проверка скачанных данных

Алгоритм обмена данными (1)

Входные данные:

Соединение между 2-мя клиентами: «мы» и пир Параметры соединения с каждой стороны:

 choking – «мы» душим пира, т. е. не желаем передавать ему данные

peer_choking := 1, peer_interested := 0

```
Choke – душить
```

 interested – «мы» заинтересованы в пире, у него есть сегменты или блоки, которые «нам» нужны

Изначально все друг друга душат и не интересуются am_choking := 1, am_interested := 0

Алгоритм обмена данными (2)

Основная идея алгоритма:

Пока есть не все сегменты

- 1. Обновление параметров соединения
 - обновление битов заинтересованности при появлении у пира требуемых сегментов (даже если он нас душит)
 - обновление битов удушения по эвристикам и правилам
- 2. Передача данных
 - 1. условие передачи от нас к пиру am_choking = 0, peer_interested = 1
 - 2. выбор сегментов для обмена
 - приоритет редким сегментам
 - среди редких выбор случаен

Обновление состояния удушения

- Каждый пир должен стремиться отдать столько же сколько и скачать – работает идиома «ты мне – я тебе» (англ. Tit-for-tat-ish)
- Если пир нарушает эту идиому к нему применяется удушение – временная блокировка отдачи.
- Разблокировка происходит как только пир выравнивает отношение скачанного к отданному (англ. upload rate).
- Оптимистическая разблокировка (англ. optimistic unchoking)
 - o Всегда есть пир разблокированный независимо от upload rate
 - о Этот пир регулярно меняется каждые 30 сек
- Проблема «пренебрежения» (англ. anti-snubbing) все пиры в состоянии choking с нами.
 - Если пир не передает нам данные больше минуты, он нами пренебрегает: прекращаем ему передавать в ответ
 - Мы получим хотя бы один optimistic unchoke и продолжим скачивание

Протокол обмена данными

- 1. Приветствие (англ. Handshaking рукопожатие)
 - о префикс ASCII символ с кодом 19
 - о строка "BitTorrent protocol"
 - o SHA-1 hash в bencoded форме из метафайла
 - o peerid

2. Обмен сообщениями

- Keepalives сообщения длины 0, для поддержания соединения. Обычно посылаются с таймаутом 2 минуты
- Non-keepalives сообщения ненулевой длины. Состоят из типа и данных. Тип – число от 0 до 8, размер – байт. Размер данных зависит от типа.

Типы сообщений

- choke(0), unchoke(1), interested(2), not interested(3).
 Сопутствующие данные отсутствуют.
- 2. bitfield(4). Посылается единожды в начале. Данные битовая маска сегментов, имеющихся у пира.
- 3. have(5) информирует пира о новом полученном и проверенном сегменте. Данные число, индекс сегмента.
- 4. request(6) запрос блока. Данные индекс сегмента, смещение и размер.
- 5. piece(7) получение части сегмента. Данные индекс сегмента, смещение, данные
- 6. cancel(8) отмена запроса. Данные индекс, смещение, размер
- 7. (9-255) сообщения доступные расширениям

Режим End Game

Специальный режим в конце скачивания

- Клиент запрашивает все оставшиеся блоки у всех подключенных пиров
- После получения блока отменяет запрос всем остальным пирам
- Условие входа не фиксировано спецификацией.
 Варианты:
 - 1. Все сегменты запрошены
 - 2. Кол-во оставшихся блоков меньше кол-ва передаваемых блоков, но не больше чем 20

Режим сидирования

Режим клиента, когда он владеет всеми сегментами в раздаче.

- отдает данные
- производит обновление на трекере
- не делает choke по рейтингу

Режим супер-сида (super-seed mode)

Сид маскируется под пира, не имеющего никаких сегментов.

При подключении пира, оповещает его о наличии единственного сегмента, которого еще ни у кого нет.

- Разные пиры получают разные сегменты
- Режим отлично подходит для старта большой раздачи с единственным источником
- Время первого скачивания раздачи уменьшается в 1,5-2 раза

25

Расширения протокола

- Расширения поддерживаются различными клиентами
- Определение поддерживаемых расширений во время приветствия – новое тип сообщения extended, данные – 64 бита – маска поддерживаемых расширений
- Официальные расширения поддерживаются всеми клиентами
 - Fast Peers
 - Добавляет сообщения: Have All (0x0E), Have None (0x0F),
 Suggest piece (0x0D), Reject Request (0x10), Allowed Fast (0x11)
 - o Distributed Hash Table расширение безтрекерного обмена
 - о Шифрование соединения
- Неофициальные расширения
 - WebSeeding
 - Extension protocol
 - BitTorrent Location protocol
 - BitComet extension protocol
 - Azureus messaging protocol

Безтрекерный обмен

Реализован при помощи расширений

- 1. DHT Distributed Hash Table механизм обнаружения и соединения пиров, в основе реализация Kademlia
- 2. PEX Peer exchange расширение протокола для обмена списками известных пиров
- 3. Magnet links ссылка на файлы, находящиеся у источника в р2р сети.

Классификация трекеров

Без регистрации

Трекеры

С регистрацией

Свободная регистрация

- Большая часть трекеров с регистрацией по приглашениям
- Трекеры с регистрацией учитывают отношение скачанного к розданному – рейтинг.
 - Пользователям приходится находиться на раздаче
 - о Почти нет мертвых раздач
- Пути окупаемости затрат на содержание трекера
 - о Реклама
 - о Продажа рейтинга
 - о Продажа инвайтов

Большинство трекеров работают только благодаря энтузиазму владельцев и добровольным пожертвованиям пользователей!

Вопросы легальности

Файлообмен в сетях BitTorrent трудноконтролируем, причем только через трекеры. Безтрекерный обмен неподвластен контролю.

Дилемма:

Разрешить трекеры – допустить пиратство и нарушение авторского права.

Запретить трекеры – уничтожить очень удобный доступ обмена легальной информацией.

Формально, протокол и трекеры НЕ нарушают никаких законов.

Примеры:

- Закрытие Napster
- Судебный процесс над создателями ThePirateBay.org
- Перспективы развития трекеров в России

Программное обеспечение

φ μTorrent

- Торрент клиенты
 - o µTorrent
 - BitTorrent
 - Vuze/Azureus
 - BitComet
 - o Transmission
 - o Xunlei

- Торрент трекеры
 - XBT Tracker (XBTT)
 - OpenTracker
 - Bitstorm
 - MonoTracker

Подробнее:

http://en.wikipedia.org/wiki/Comparison of BitTorrent clients http://en.wikipedia.org/wiki/BitTorrent_tracker_software