L'ion salicylate a pour formule chimique $C_6H_4OHCOO^-$. Il s'agit d'une espèce chimique que l'on retrouve dans certains médicaments utilisés pour traiter l'acné.

L'étiquette d'un flacon commercial de crème contenant des ions salicylate porte l'indication :

« Ion salicylate formulé à 1000 mg pour 100 g de crème ».

Cela correspond à un pourcentage massique $w_{ref} = 1 \%$.

Le but de cet exercice est de contrôler cette indication d'une teneur massique de 1,00 % fournie par le fabricant.

Pour simplifier, on notera HL⁻ l'ion salicylate dans tout l'exercice.

Données:

- Masse volumique de la crème : $\rho(\text{crème}) = 860 \text{ g} \cdot \text{L}^{-1}$
- L'ion salicylate en solution aqueuse est obtenu par dissolution du salicylate de sodium
- solide NaHL dans l'eau ;
- Masse molaire du salicylate de sodium : $M(\text{NaHL}) = 160,1 \text{ g} \cdot \text{mol}^{-1}$.
- Masse molaire de l'ion salicylate : $M(HL^{-}) = 137,1 \text{ g} \cdot \text{mol}^{-1}$.
- Concentration standard : $c^{\circ} = 1.0 \text{ mol} \cdot \text{L}^{-1}$
- Cercle chromatique :

L'ion salicylate absorbe dans le domaine des ultraviolets et ne peut donc pas être détecté par un spectrophotomètre fonctionnant dans le visible. Mais lorsqu'il réagit avec des ions Fe³⁺, l'ion salicylate HL⁻ forme une espèce colorée qu'il est possible de doser à l'aide du spectrophotomètre.

530 nm

Dans la **partie A**, on cherche à vérifier que la réaction entre l'ion Fe^{3+} et l'ion HL^- en solution aqueuse est totale.

Dans la partie B, on réalise le dosage spectrophotométrique de l'espèce colorée continue.

Partie A – Étude de la réaction entre l'ion Fe³⁺et l'ion HL⁻

L'équation de cette réaction est :

$$Fe^{3+}$$
 (aq) + HL^{-} (aq) \Rightarrow FeL^{+} (aq) + H^{+} (aq) (équation 1)
peu coloré incolore très coloré incolore

On note $K=10^{2,9}$ la constante d'équilibre de cette réaction à la température de 25 °C.

On prépare une solution aqueuse S_{fer} contenant des ions Fe^{3+} en solution aqueuse de concentration $C_{fer}=10,0~\text{mmol}\cdot\text{L}^{-1}=[Fe^{3+}].$

Cette solution est de plus une solution tampon dont la valeur du pH est pH = 3,0.

On dispose d'une solution aqueuse « mère » S_0 de salicylate de sodium (Na^+ , HL^-) de concentration $C_0 = 100 \, \text{mmol} \cdot L^{-1}$.

À partir de la solution S_0 , on prépare une solution diluée S_1 de concentration $C_1 = 10.0 \, \mathrm{mmol} \cdot \mathrm{L}^{-1}$.

- 1. Déterminer la masse m de salicylate de sodium NaHL solide qu'il a fallu peser pour préparer un volume $V_0 = 100,0 \, \mathrm{mL}$ de la solution aqueuse S_0 de concentration C_0 .
- 2. Identifier dans la liste ci-dessous la verrerie à utiliser pour préparer $V_1=50,0\,\mathrm{mL}$ de la solution S_{1_1} à partir de la solution mère S_0 . Justifier à l'aide d'un calcul.

Verrerie à disposition :

- Fioles jaugées de 10,0 mL et 50,0 mL
- Pipettes jaugées de 2,0 mL ; 5,0 mL ; 10,0 mL et 20,0 mL

Le milieu réactionnel est obtenu en mélangeant dans un bécher :

- un volume $V_{\rm fer}=10.0~{
 m mL}$ de la solution $S_{\rm fer}$ tamponnée de concentration $C_{\rm fer}$;
- un volume V = 0.100 mL de la solution diluée S_1 de concentration C_1 .
- 3. Justifier (après avoir rappelé les propriétés d'une solution tampon) que la valeur du pH du milieu réactionnel ne varie pas.
- 4. Compléter littéralement le tableau d'avancement de la réaction d'**équation 1**. On note $x_{\rm eq}$ l'avancement à l'état d'équilibre, exprimé en mol.

Équation	Fe ³⁺ (aq)	HL ⁻ (aq)	=	FeL ⁻ (aq)	+ H ⁺ (aq)
État initial	$C_{\mathrm{fer}} \times V_{\mathrm{fer}}$	$C_1 \times V$		0	n(H ⁺)
État d 'équilibre					constante

5. Montrer qu'à l'équilibre du système chimique, la constante d'équilibre K de cette réaction peut se mettre sous la forme :

$$K = \frac{x_{\text{eq}} \times [\text{H}^+] \times (V + V_{\text{fer}})}{(C_{\text{fer}} \times V_{\text{fer}} - x_{\text{eq}}) \times (C_1 \times V - x_{\text{eq}})}$$

L'application numérique conduit à l'égalité suivante (qui n'est pas à démontrer) :

$$K = 10^{2.9} = \frac{x_{\text{eq}} \times 1,01 \times 10^{-5}}{(1,00 \times 10^{-6} - x_{\text{eq}}) \times (1,0 \times 10^{-4} - x_{\text{eq}})}$$

Mathématiquement, cette équation en $x_{\rm eq}$ admet deux solutions que l'on peut écrire :

$$x_1 = 9,999 \times 10^{-7} \text{ mol et } x_2 = 9,999 \times 10^{-5} \text{ mol.}$$

6. Indiquer pourquoi il convient de ne retenir que la valeur x_1 et déduire de cette valeur que la réaction peut être considérée comme totale.

Partie B - Dosage spectrophotométrique des ions salicylate HL⁻

La **partie A** a permis de conclure que la réaction entre l'ion Fe^{3+} et l'ion HL^- peut être considérée comme totale. Pour la réaction d'**équation 1**, on a donc l'égalité :

$$n(\text{FeL}^+)_{\text{produit}} = n(\text{HL}^-)_{\text{réagi}}$$

L'espèce produite FeL⁺ est dosée par spectrophotométrie et étalonnage.

Le spectre d'absorption de l'espèce FeL⁺ est présenté sur la **figure 1** ci-dessous.

Figure 1 - Spectre d'absorption de l'espèce FeL+

Pour tracer la courbe d'étalonnage, on a préparé cinq solutions étalons en mélangeant :

- un volume $V_{
 m fer}$ = 10,0 mL de solution $S_{
 m fer}$;
- un volume V = 0.100 mL d'une solution de salicylate de sodium de concentration C_i connue ;

Pour $\lambda_{max} = 535$ nm, on a mesuré l'absorbance de chaque solution étalon, ce qui a permis de tracer le graphique en **figure 2** présentant l'évolution de l'absorbance en fonction de laconcentration en ion HL^- .

Figure 2 - Courbe d'étalonnage de l'espèce HL⁻

Pour déterminer la teneur en ion salicylate HL^- dans la crème étudiée, on mesure l'absorbance d'une solution test préparée de la même manière que les solutions étalons, soit en mélangeant :

- un volume $V_{\text{crème}} = 0,100 \text{ mL}$ de la crème étudiée contre l'acné ;
- un volume $V_{\text{fer}} = 10.0 \text{ mL}$ de solution S_{fer} .

L'absorbance mesurée à $\lambda_{\max}=535$ nm de cet échantillon a pour valeur : $A_{\text{crème}}=0.83$.

- 7. Indiquer la couleur de l'espèce chimique FeL⁺ à partir de son spectre d'absorption (**figure 1**).
- 8. À partir de la **figure 2**, déterminer la quantité de matière en ion salicylate HL^- présente dans la crème et en déduire le pourcentage massique mesuré $w_{\rm mes}$ en ions salicylate dans la crème contre l'acné.

Il est possible de comparer une valeur expérimentale (w_{mes}) à la valeur de référence (w_{ref}) en utilisant le quotient $\frac{|w_{\text{mes}} - w_{\text{ref}}|}{u(w)}$, où u(w) est l'incertitude-type sur le résultat expérimental.

Dans le cas présent, on considère que la valeur mesurée $w_{\rm mes}$ est compatible avec la valeur $w_{\rm ref}$ si le quotient est inférieur ou égal à 2.

On admet que, pour ce dosage, u(w) = 0.02 %.

9. Comparer le résultat obtenu expérimentalement à celui indiqué sur l'étiquette du flacon.