						۰	٠		. US	LISTA 3			٠			0	٠
CHECKLIST							۰	٠							۰		
CHECKUST			۰			٠	۰	٠		۰		۰	٠	۰	٠	•	٠
I supertre	٦.	fig (٠ .		1	7	váp		f.~~J.	: 1		0	۰	۰	٠
minorate C	.	tro i		m	semb)	we	Ļ	J	Non	יאמי	י שוע	<i>د</i> ر		۰	٠	۰	٠
		• •	۰	•	• •	۰	۰	۰	• •	۰		۰	۰	0	۰	0	•
questão 1			0														
														٠			
			٠			٠	٠					٠			٠	۰	
questão 2			•			۰	۰	٠		۰		٠	۰	٠		۰	
			0				۰	۰				۰		0	0	0	۰
questão 3			•	•	• •	۰	۰	•		۰		۰	۰	0	۰	0	۰
· questas 3	W		۰	•	• •	٠	٠	٠	•	0	• •	۰	٠	0	٠	۰	٠
			•				٠	٠		٠		•		٠	٠	٠	•
questão 4			•									٠					
quasius .												۰					
			0			۰		۰				٠	۰	٠		٠	
questão 5	\cup		٠			۰	٠	٠		۰		٠	۰		۰	•	•
			۰			٠	۰	٠		۰		٠	٠	٠	٠	۰	•
questar 6			0				۰	۰		0		۰		0	0	0	۰
· driastar			0	•	• •		۰	٠			• •	۰	۰	0	۰	0	•
			۰	•		•	٠	٠		•		٠	•	٠	•	•	•
· questos · 7·															٠		
								٠							۰		
questão 8	<u>`</u>		0				0	٠				۰		۰			۰
· drostão 8	U		۰			۰	٠	•		۰		٠	۰	٠	٠	۰	•
			٠	•	• •	٠	٠	٠	• •	۰	• •	٠	٠	0	۰	۰	٠
questão 9			۰	•	• •	0	۰	٠	• •	۰	• •	۰	0	۰	٠	۰	٠
questos.						•							•		•		
			0														
questão 10			٠			٠	٠	٠				٠		۰	٠	۰	
• • • • •			۰			٠	٠			٠		٠	٠	٠		٠	٠
			0				٠	٠				۰	۰		۰		0
questão 11			0		• •	۰	۰	٠		0		۰	•	0	۰	0	۰
			0	•	• •		٠	٠	• •	۰		٠	0	۰	٠	۰	۰
			٠			٠	•			۰			•	٠	٠	•	
			-	-	-	-	-	-	-			-	-		-	-	-

MACO338 - ANALISE DE ALGORITMOS

Nome: Sabrina Arraújo da Silva nº USP: 12566182

MACO338 - ANÁLISE DE ALGORITMOS

LISTA 03

exercícios 1,6 a 8

1. Considere o seguinte algoritmo que determina o segundo maior elemento de um vetor v[1..n] com $n \ge 2$ números positivos distintos.

Algoritmo Máximo (v, n)

- 1. $maior \leftarrow 0$
- 2. $segundo_maior \leftarrow 0$
- 3. para $i \leftarrow 1$ até n faça
- 4. se v[i] > maior
- 5. **então** segundo_maior \leftarrow maior
- 6. $maior \leftarrow v[i]$
- 7. senão se $v[i] > segundo_maior$
- 8. **então** $segundo_maior \leftarrow v[i]$
- 9. devolva segundo_maior

Suponha que v é uma permutação de 1 a n escolhida ao acaso dentre todas as permutações de 1 a n, de acordo com a distribuição uniforme de probabilidade. Seja X o número de vezes que a variável $segundo_maior$ é alterada (ou seja, o número de execuções das linhas 5 e 8 do algoritmo) numa chamada de Máximo(v,n). Note que X é uma variável aleatória. Calcule o valor esperado de X.

cada permutação de v tem probabilidade 1

X = número total de accerções da Dinha 5 a 8 = Y+W

Y = número total de execuções da linha 5

8 sonnil as assurance et latat axemium = W

Yi = { 1, vs. " vegundo-moior + moior i s verentado

airaithea eus , 0)

Y = Y1 + ... + Yn

[i] ... 1] v me amixàm ajer [i] v eye et ababilidade de que v[i] veja màxim em v[i] v

= \frac{1}{2}

 $E[\lambda] = E[\lambda^{7} + \cdots + \lambda^{4}] = E[\lambda^{7}] + \cdots + E[\lambda^{4}]$

 $= \frac{2}{4} + \dots + \frac{1}{4} < 0m n$

Wi = [1, ve" regundo-maior < v[i]" i executado

0, cous contrávio

[i...t] v me amixàm abayes o ajer l'il veja o regundo máximo em v[1...t]

$$= \frac{i}{\sqrt{1-i}}, \frac{i-\sqrt{1-i}}{\sqrt{1-i}} = \frac{i}{\sqrt{1-i}}$$

(prob de não escecutar a linha 5.

E[W] = E[W1+...+Wn] = E[W1]+...+E[Wn]

$$= \frac{1}{2} + \dots + \frac{1}{n} < \ell_{n}$$

E[X] = E[X] + E[M] < lm m + lm m

2 2 m

2. Considere o seguinte algoritmo que calcula o maior e o menor elemento de um vetor v[1..n] com elementos distintos.

Algoritmo MaiorMenor (v, n)

- 1. $maior \leftarrow v[1]$
- 2. $menor \leftarrow v[1]$
- 3. para $i \leftarrow 2$ até n faça
- 4. se v[i] > maior
- 5. **então** maior $\leftarrow v[i]$
- 6. senão se v[i] < menor
- 7. **então** $menor \leftarrow v[i]$
- 8. devolva maior, menor

Suponha que a entrada do algoritmo é uma permutação de 1 a n escolhida uniformemente dentre todas as permutações de 1 a n.

Qual é o número esperado de comparações executadas na linha 6 do algoritmo? Qual é o número esperado de atribuições efetuadas na linha 7 do algoritmo?

entiraple de comparaçõe executadas na linha 6 de algoritme

× = número total de execuções da linha 6

Xi = { 1 ve v[i] ≤ maior 0 caso contrário

 $X = X_1 + \cdots + X_n$

ELXII = probabilidade de que v[i] = maior

 $= \left(1 - \frac{1}{2}\right)$

 $E[X] = E[X_1 + + X_n]$

$$= \sum_{i=2}^{n} 1 - \frac{1}{i} = \sum_{i=2}^{n} 1 - \sum_{i=2}^{n} \frac{1}{i} < n - \ln n = O(n)$$

Número esperado de atribuições efetuadas na linha 7

Y = número total de execuções da linha 7

 $y_i = \begin{cases} 1 & \text{we viil} < \text{memor} \\ 0 & \text{case contrasio} \end{cases}$

Y = Y + ··· + γ γν

ELYI] = probabilidade de V[i] < maior e V[i] < menor

$$= \left(1 - \frac{1}{i}\right) \cdot \frac{1}{i} = \frac{i - 1}{i \cdot x}$$

ELY] = E[Y1 + ... + Yn]

$$= \sum_{i=2}^{n} \frac{i-1}{i^2} = \frac{1}{4} + \frac{2}{9} + \frac{3}{16} + \dots + \frac{i-1}{i^2} < \ln n = O(\ln n)$$

- 5. Qual é o consumo de espaço do QUICKSORT no pior caso?
- · A complexidade de espaço é de ordem (logn).
- · Uma uez que todas as operações são feitas in-place, ou seja, diretamente no veter a que a cada particionamento temos um vetor monor a ver ordenado.

6. Escreva uma função que recebe um vetor com n letras A's e B's e, por meio de trocas, move todos os A's para o início do vetor. Sua função deve consumir tempo O(n).

usia V[1...n] e veter com n letras A's a B's

$$\dot{\mathbf{x}} = \dot{\mathbf{x}} - 1$$

$$L - \dot{s} = \dot{s}$$

7. Escreva uma função que rearranje um vetor $v[p\mathinner{.\,.} r]$ de inteiros de modo que tenhamos $v[p\mathinner{.\,.} j-1]\leq 0$ e $v[j\mathinner{.\,.} r]>0$ para algum j em $p\mathinner{.\,.} r+1$. Faz sentido exigir que j esteja em $p\mathinner{.\,.} r?$ Procure fazer uma função rápida que não use vetor auxiliar. Repita o exercício depois de trocar $v[j\mathinner{.\,.} r]>0$ por $v[j\mathinner{.\,.} r]\geq 0$. Faz sentido exigir que v[j] seja 0?

2). não

8. Sejam X[1..n] e Y[1..n] dois vetores, cada um contendo n números ordenados. Escreva um algoritmo $O(\lg n)$ para encontrar uma das medianas de todos os 2n elementos nos vetores X e Y.

MEDIANA (X,Y, ix, fx, iy, fy)

- SE ix É IGUAL A iy
- 2 DEVOLVA O MÍNIMO ENTRE IX E IY
- 3 // MEDIANAS DE X E Y
- $4 \qquad mx = (ix + fx)/2$
- 5 my = (iy + fy)/2
- 6 x = X [i]
- 7 y = Y[8]
- 8 SE x = = 4
- 9 DEVOLUA &
- 5€ x < y
- DEVOLVA MEDIANA (X,Y, mx, fx , iy , my)
- 12 se y < oc
- 13 DEVOLUA MEDIANA (X,Y, ix, mx, my, fy)

9. Para esta questão, vamos dizer que a mediana de um vetor $A[p\mathinner{.\,.} r]$ com número inteiros é o valor que ficaria na posição $A[\lfloor (p+r)/2 \rfloor]$ depois que o vetor $A[p\mathinner{.\,.} r]$ fosse ordenado.

Dado um algoritmo linear "caixa-preta" que devolve a mediana de um vetor, descreva um algoritmo simples, linear, que, dado um vetor $A[p\mathinner{.\,.} r]$ de inteiros distintos e um inteiro k, devolve o k-ésimo mínimo do vetor. (O k-ésimo mínimo de um vetor de inteiros distintos é o elemento que estaria na k-ésima posição do vetor se ele fosse ordenado.)

KESINO (A, K, or)

PARTICIONE (A, P, a)

ideia da velect aleaterizada

oc CAIXA PRETA (A)

peróm na chamada do particione

į ← P-7

mis . cam. avaitable is own. avig . 0.

•••

.a. mediana que a olgoritmo

caixa : preta encentra.

10. (CLRS 8.3-2) Quais dos seguintes algoritmos de ordenação são estáveis: insertionsort, mergesort, heapsort, e quicksort. Descreva uma maneira simples de deixar qualquer algoritmo de ordenação estável. Quanto tempo e/ou espaço adicional a sua estratégia usa?

estáveis: vinsertion sort, meragesort instavel: heapsort, quicksort

qualquer algoritmo pode ver estavel, mas há um parço

exemple: comazenar es úndices originais em um reter e ordernax

comparando com esses vindias

gasta tempo e espaço adicional de ordem (n)

- 11. Qual a diferença de consumo de tempo entre uma busca binária em um vetor com n elementos e uma busca binária em um vetor com n^2 elementos?
 - . O consumo de tempo entre uma busca bináxia em um veter com n^2 elementes e almentes e com n^2 elementes e
 - proporcional a lan, pois la transforma multiplicações um isomas.
 - Por example, ve a busca em um veter de tamanho n'escige C comparações, entõe a busca em um veter de tamanho 2n

escigirá apenas C+1 comparações, em um unter de tamanho 100 n