Práctico 7: Funciones de varias variables: representaciones gráficas, límites y continuidad

Sea $f: U \subset \mathbb{R}^n \to \mathbb{R}$ una función, se define el conjunto de nivel *a* como:

$$C_a = \{ p \in U : f(p) = a \}$$

1. Dibuje el dominio, los conjuntos de nivel y la gráfica de las siguientes funciones:

(a)
$$x^2 + y^2$$
 (b) $x^2 - y^2$ (c) x^2 (d) y/x (e) xy (f) $\max\{x^2, y^3\}$ (g) $\max\{x^2, x + y\}$

2. Hallar el dominio y los conjuntos de nivel de las siguientes funciones:

(a)
$$\frac{x}{x-y-z}$$
 (b) $sen(x^2+y^2+z^2)$ (c) $\frac{x+y+z}{1-x^2-y^2-z^2}$ (d) $\frac{x+y}{\min\{x,y\}}$

3. Dibuje el dominio y los conjuntos de nivel de las siguientes funciones:

(a)
$$\frac{1}{\sqrt{x^2 + y^2}}$$
 (b) $\log \left(\frac{1 - x^2 - y^2}{x^2 + y^2} \right)$ (c) $\cosh \left(x^2 - y^2 \right)$ (d) $tg \left(\frac{x^2}{y} \right)$

(e)
$$\operatorname{arccos}\left(\sqrt{\frac{x}{y}}\right)$$
 (f) $\operatorname{arctg}\left(\frac{x^2}{y}\right)$ (g) $x^{(y^2)}$

- 4. Sea $f: U \subseteq \mathbb{R}^2 \to \mathbb{R}$ una función definida en una bola reducida $U = B_R^*((0,0))$ de centro (0,0) y radio R. Mediante el cambio de variable $x = r\cos\theta$, $y = r\sin\theta$, se obtiene $g: V \subseteq \mathbb{R}^2 \to \mathbb{R}$, $g(r,\theta) = f(r\cos\theta, r\sin\theta)$, donde $V = (0,R) \times [0,2\pi)$.
 - (a) Probar que $\lim_{(x,y)\to(0,0)} f(x,y) = L$ sii $\forall \ \varepsilon > 0 \ \exists \ \delta > 0$ tal que $|g(r,\theta)-L| < \varepsilon \ \forall \ r \in (0,\delta), \theta \in [0,2\pi)$.
 - (b) Probar que si $\lim_{(x,y)\to(0,0)} f(x,y) = L$ entonces $\lim_{r\to 0^+} g(r,\theta) = L \ \forall \ \theta \in [0,2\pi)$.
 - (c) Se consideran las funciones f siguientes

(i)
$$f(x,y) = \frac{x}{\sqrt{x^2 + y^2}}$$
 (ii) $f(x,y) = \begin{cases} y/x & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$ (iii) $f(x,y) = \begin{cases} 1 & \text{si } 0 < y < x^2 \\ 0 & \text{en otro caso} \end{cases}$

Calcular, cuando existan, $\lim_{(x,y)\to(0,0)} f(x,y)$ y $\lim_{r\to 0^+} g(r,\theta)$, éste último en función de $\theta\in[0,2\pi)$.

- (d) Probar que es falso el recíproco de la parte (b).
- (e) En el caso particular en el que g tiene la forma $g(r,\theta) = h(r)k(\theta)$, con h y k funciones $h: (0,R) \to \mathbb{R}$ y $k: [0,2\pi) \to \mathbb{R}$, probar que si k es una función acotada y $\lim_{r\to 0^+} h(r) = 0$ entonces $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.
- (f) Calcular:

(i)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$$
 (ii) $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$

5. Probar que en los siguientes casos NO existe $\lim_{(x,y)\to(0,0)} f(x,y)$:

(a)
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
 (b) $f(x,y) = \frac{2x^3y}{(x^2 + y^2)^2}$ (c) $f(x,y) = \begin{cases} \frac{xy}{x+y}, & \text{si } x + y \neq 0 \\ 0, & \text{si } x + y = 0 \end{cases}$

6. (a) Probar que si $\lim_{x\to p} f(x) = 0$ y g es una función acotada en una bola reducida de centro p, entonces $\lim_{x\to p} f(x)g(x) = 0$.

(b) Calcular los límites de las siguientes funciones para $(x, y) \rightarrow (0, 0)$:

(a)
$$x \operatorname{sen}\left(\frac{1}{x^2 + y^2}\right)$$
 (b) $\frac{xy^2}{x^2 + y^2}$ (c) $\frac{xy^3}{x^2 + y^4} = y \frac{xy^2}{x^2 + y^4}$

7. Decidir si los límites siguientes existen y en caso afirmativo calcularlos.

(a)
$$\lim_{(x,y,z)\to(2,5,3)} \frac{x-y}{x^2+y-z}$$
 (b) $\lim_{(x,y,z)\to(1,0,1)} \frac{\operatorname{sen}(x^2+e^y-z)}{x^2+\operatorname{tan}(\frac{1}{\cos(xyz)})}$ (c) $\lim_{(x,y,z)\to(0,0,0)} \frac{x^2yz-z^4}{x^4+y^4+z^4}$

8. Calcular:

(a)
$$\lim_{(x,y)\to(1,2)} \frac{x^2 + xy + 1}{x^2 - x - y}$$
 (b) $\lim_{(x,y)\to(0,0)} x y \log|y|$ (c) $\lim_{(x,y)\to(1,1)} \frac{x^2 + xy - 2y^2}{x^2 - y^2}$

(d)
$$\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2}$$
 (e) $\lim_{(x,y)\to(0,0)} \frac{e^{x-y}-1}{x^2-y^2}$ (f) $\lim_{(x,y)\to(0,0)} \frac{\log(1+x^2+y^2)}{x^2+y^2+x^3y}$

9. Se considera la función

$$f(x,y) = \frac{ax + y + by^2}{\operatorname{sen} y + \log(1+x)} \quad a, b \in \mathbb{R}.$$

- a) Determinar a y b para que todos los límites direccionales de f en (0,0) sean iguales.
- b) Para los a y b determinados en la parte anterior, probar que f carece de límite.
- 10. Discutir según $\alpha, \beta \in \mathbb{R}$ la existencia del límite:

$$\lim_{(x,y)\to(0,0)} \frac{x^{\alpha}y^{\beta}}{x^2 + xy + y^2}$$

11. Determinar en qué puntos de \mathbb{R}^2 las siguientes funciones $f: \mathbb{R}^2 \mapsto \mathbb{R}$ son continuas y discontinuas.

(a)
$$f(x,y) = \begin{cases} (4x^2y^3)/(4x^2 + y^6) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

(b) $f(x,y) = \begin{cases} x/y & \text{si } y \neq 0 \\ 0 & \text{si } y = 0 \end{cases}$
(c) $f(x,y) = \begin{cases} x^2 + 2y - 1 & \text{si } x \geq 0 \\ 3x + y^2 & \text{si } x < 0 \end{cases}$

12. ¿Cuáles de las siguientes funciones se pueden extender en forma continua a todo el plano?

(a)
$$\frac{\text{sen}(x^2 + y^2)}{x^2 + y^2}$$
 (b) $x^2 \log(x^2 + y^2)$ (c) $\frac{\text{sen}(x^4 + y^4)}{x^2 + y^2}$

13. Sea $\varphi: \mathbb{R} \to \mathbb{R}$ una función derivable con derivada continua.

$$f(x,y) = \begin{cases} (\varphi(y) - \varphi(x))/(y - x) & \text{si } x \neq y \\ \varphi'(x) & \text{si } x = y \end{cases}$$

Determinar en qué puntos f es continua.

- 14. Sea $f:(0,+\infty)\times[0,2\pi)\to\mathbb{R}^2\setminus\{(0,0)\}$ definida por $f(\rho,\theta)=(\rho\cos(\theta),\rho\sin(\theta))$
 - a) Verificar que es continua y probar que es biyectiva.
 - b) Calcular las imágenes de las rectas $\rho = cte$ y $\theta = cte$
 - c) Calcular la función inversa $f^{-1}: \mathbb{R}^2 \setminus \{(0,0)\} \to (0,+\infty) \times [0,2\pi)$. Es continua f^{-1} ?
- 15. a) Probar que $f: \mathbb{R}^n \to \mathbb{R}^m$ es continua si y sólo si $\forall A \subseteq \mathbb{R}^m$ abierto $f^{-1}(A)$ es abierto en \mathbb{R}^n .
 - b) Probar que $f: \mathbb{R}^n \to \mathbb{R}^m$ es continua si y sólo si $\forall C \subseteq \mathbb{R}^m$ cerrado $f^{-1}(C)$ es cerrado en \mathbb{R}^n .
 - c) Demostrar que el conjunto de puntos (x, y, z) de \mathbb{R}^3 que verifican

$$\begin{cases} x^2 + y^3 < 4 \\ y^2 + z^3 > 2 \end{cases}$$

es un conjunto abierto.

Ejercicios opcionales

1. Sea $C \subseteq \mathbb{R}^n$ cerrado y $f: C \to \mathbb{R}^m$ una función continua. Demostrar que el gráfico de f,

$$graf(f) = \{(x, f(x)) : x \in C\},\$$

es un subconjunto cerrado de \mathbb{R}^{n+m} .

- 2. Si $A \subseteq \mathbb{R}^n$ es acotado, se define el *diámetro* de A como diam $(A) = \sup(\{d(x,y) : x,y \in A\})$.
 - a) Probar que si $C \subset \mathbb{R}^n$ es compacto entonces existen $x, y \in C$ tal que diam(C) = d(x, y).
 - *b*) Sea $C \subseteq \mathbb{R}^n$ y $f: C \to C$ una función tal que

$$||f(x) - f(y)|| > ||x - y|| \quad \forall \ x \neq y \in C.$$

Probar que C no puede ser compacto. Dar un ejemplo de una función en estas hipótesis

- 3. Se considera la función determinante $det: \mathbb{R}^4 \to \mathbb{R}$ tal que det(a,b,c,d) = ad bc
 - a) Probar que det es una función continua en \mathbb{R}^4 .
 - b) Sean $\mathcal{A} = \{A \in \mathcal{M}_{2\times 2}(\mathbb{R}) : A \text{ es invertible}\}\$ y $\mathcal{B} = \{A \in \mathcal{M}_{2\times 2}(\mathbb{R}) : det(A) = 0\}.$ Investigar si \mathcal{A} y \mathcal{B} son abiertos, cerrados o ninguna de las dos cosas. Aquí el espacio de matrices se considera como \mathbb{R}^4 .
- 4. Sea $\varepsilon \colon \mathbb{R} \to \mathbb{R}$ tal que $\varepsilon(x) \to 0$ cuando $x \to 0$, pero $\varepsilon(0) = 1$. Se considera la función

$$f(x,y) = \frac{3x^2\varepsilon(y) - y^2\varepsilon(x)}{\log(x^2 + y^2 + 1)}$$

- a) Analizar si f tiene límite en (0,0) según el conjunto $C = \{(x,y) \in \mathbb{R}^2 : xy \neq 0\}$.
- b) Analizar si f tiene límite en (0,0).
- 5. Sea $C \subset \mathbb{R}^n$. Probar que si toda función continua $f: C \to \mathbb{R}$ es acotada entonces C es compacto.
- 6. Sea $C \subseteq \mathbb{R}^n$. Se llama *camino* (o *arco*) continuo en C a toda función continua $\alpha : [0,1] \to C$. Si $a,b \in C$ y α es un camino en C tal que $\alpha(0) = a$ y $\alpha(1) = b$, se dice que α conecta a con b. Se dice que C es *conexo por caminos* (o *arcoconexo*) sii $\forall a,b \in C \exists \alpha$ camino en C que conecta a con b.
 - *a*) Sean $C \subseteq \mathbb{R}^n$ conexo por caminos y $f: C \to \mathbb{R}$ continua. Probar que si $a, b \in C$ y $\mu \in \mathbb{R}$ son tales que $f(a) \le \mu \le f(b)$ entonces existe $c \in C$ tal que $f(c) = \mu$. Sugerencia: considerar $f \circ \alpha$ con α un camino de a a b.
 - b) Probar que si C es arcoconexo y $f: C \to \mathbb{R}^m$ es continua entonces $f(C) \subseteq \mathbb{R}^m$ es arcoconexo.
 - c) Sean $S^1 = \{a \in \mathbb{R}^2 : ||a|| = 1\}$ y $a_0 \in S^1$. Probar que S^1 y $S^1 \setminus \{a_0\}$ son arcoconexos.
 - *d*) Probar que no existe $f: S^1 \to [0,1]$ continua y biyectiva. Sugerencia: suponer por absurdo que existe una tal f, sacar un punto de $a_0 \in S^1$ conveniente y considerar la restricción de f a este nuevo conjunto.
 - e) Sean P y Q dos puntos de \mathbb{R}^2 y m la mediatriz del segmento PQ. Demostrar que cualquier camino α que una P con Q debe intersectar a m. Sugerencia: demostrar que la función $f(t) = d(Q, \alpha(t)) d(P, \alpha(t))$ tiene una raíz $t_0 \in [0, 1]$.
- 7. Un teorema de punto fijo.

Sea $C \subseteq \mathbb{R}^n$ un conjunto cerrado y $f: C \to C$ una contracción, esto es, existe $k \in (0,1)$ tal que

$$||f(x) - f(y)|| \le k||x - y|| \quad \forall \ x, y \in C.$$

a) Sea a un punto cualquiera de C. Se define la sucesión $(x_n)_{n\geq 0}$ de la siguiente forma: $x_0 = a$ y $x_n = f(x_{n-1})$, si $n \geq 1$. Probar que

$$||x_{n+1} - x_n|| \le k^n ||x_1 - x_0|| \quad \forall \ n \ge 0.$$

b) Deducir que (x_n) es una sucesión de Cauchy y que existe $p \in C$ tal que $\lim_n x_n = p$.

- c) Demostrar que existe un único punto $p \in C$ tal que f(p) = p. Sugerencia: observar que f es continua y tomar p como en la parte anterior.
- d) Analizar si el resultado anterior es válido si C no fuese cerrado.
- 8. *a*) Sean V y W espacios vectoriales normados y $T: V \to W$ una transformación lineal. Probar que las siguientes afirmaciones son equivalentes.
 - 1) T es continua en V.
 - 2) T es continua en el vector nulo de V.
 - 3) Existe $k \ge 0$ tal que $||T(x)|| \le k||x||$, $\forall x \in V$.
 - 4) Existe $k \ge 0$ tal que $||T(x) T(y)|| \le k||x y||$, $\forall x, y \in V$.
 - 5) T(A) es acotado $\forall A \subseteq V$ acotado.
 - b) Probar que toda transformación lineal de \mathbb{R}^n en \mathbb{R}^m es uniformemente continua. Deducir que los subespacios propios de \mathbb{R}^n son conjuntos cerrados con interior vacío.