Problem Set 5

Adam Ten Hoeve

Introduction

As an application of some of the properties of expected values, this problem set steps through a proof that the expected value of the random variable that defines sample variance is the population variance, given that the population variance is defined.

For each of these questions, let $X_1, X_2, ... X_n$ be independent, identically distributed random variables with mean μ and variance σ^2 .

Please complete the following tasks regarding the data in R. Please generate a solution document in R markdown and upload the .Rmd document and a rendered .doc, .docx, or .pdf document. Please turn in your work on Canvas.

These questions were rendered in R markdown through RStudio (https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf, http://rmarkdown.rstudio.com).

Question 1 (10 points)

Let $X_1, X_2, ... X_n$ be independent, identically distributed random variables with mean μ and variance σ^2 , and define the random variable \bar{X} by $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Justify the equality

$$E\left[\sum_{i=1}^{n} (X_i - \bar{X})^2\right] = E\left[\sum_{i=1}^{n} X_i^2\right] - 2E\left[\sum_{i=1}^{n} \bar{X}X_i\right] + E\left[\sum_{i=1}^{n} \bar{X}^2\right]$$

$$E\left[\sum_{i=1}^{n} (X_i - \bar{X})^2\right] = E\left[\sum_{i=1}^{n} (X_i^2 - 2\bar{X}X_i + x_i^2)\right]$$

$$= E\left[\sum_{i=1}^{n} X_i^2 - \sum_{i=1}^{n} 2X_i\bar{X} + \sum_{i=1}^{n} \bar{X}^2\right]$$

$$= E\left[\sum_{i=1}^{n} X_i^2\right] - 2E\left[\sum_{i=1}^{n} X_i\bar{X}\right] + E\left[\sum_{i=1}^{n} \bar{X}^2\right] \checkmark$$

Question 2 (10 points)

Let $X_1, X_2, ... X_n$ be independent, identically distributed random variables with mean μ and variance σ^2 .

In terms of μ and σ^2 , what is the value of $E[X_i^2]$? Note that $Var[X_i] = E[X_i^2] - E[X_i]^2$, while $Var[X_i] = \sigma^2$ and $E[X_i] = \mu$. Please justify your answer.

Confirm numerically that your answer is correct for $X_i \sim exponential(rate = \frac{1}{3})$ which has mean equal to 3 and variance equal to 9.

$$Var[X_i] = E[X_i^2] - E[X_i]^2$$

 $E[X_i^2] = Var[X_i] + E[X_i]^2$
 $E[X_i^2] = \sigma^2 + \mu^2$

If we have random variables $X_i \sim exp(1/3)$, then we can expect $E[X_i^2] = \sigma^2 + \mu^2 = 9 + (3)^2 = 18$. Let's check if our answer is correct.

```
f2<-function(x){x^2*dexp(x,1/3)}
integrate(f2,0,Inf)</pre>
```

18 with absolute error < 0.00054

Question 3 (5 points)

Assuming that $E[X_i^2] = \sigma^2 + \mu^2$ for all i, what is $E\left[\sum_{i=1}^n X_i^2\right]$. Recall that $E\left[\sum_{i=1}^n Y_i\right] = \sum_{i=1}^n E[Y_i]$ for any random variables $Y_i, Y_2...Y_n$ with defined means.

$$\begin{split} E[\sum_{i=1}^{n} X_{i}^{2}] &= \sum_{i=1}^{n} E[X_{i}^{2}] \\ &= \sum_{i=1}^{n} (\sigma^{2} + \mu^{2}) \\ &= n(\sigma^{2} + \mu^{2}) \end{split}$$

Question 4 (5 points)

Define the random variable \bar{X} by $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. What is the value of $E\left[\sum_{i=1}^{n} \bar{X}^2\right]$? Please justify your answer.

Recall that the mean of \bar{X} equals μ and the variance equals $\frac{\sigma^2}{n}$. The fact that $E\left[\sum_{i=1}^n Y_i\right] = \sum_{i=1}^n E[Y_i]$ mentioned above may also be useful. Further, \bar{X} is constant with respect to the index i in the sum.

$$E\left[\sum_{i=1}^{n} \bar{X}^{2}\right] = \sum_{i=1}^{n} E[\bar{X}^{2}]$$

$$= \sum_{i=1}^{n} \left(Var[\bar{X}] + E[X]^{2}\right)$$

$$= \sum_{i=1}^{n} \left(\frac{\sigma^{2}}{n} + \mu^{2}\right)$$

$$= n\left(\frac{\sigma^{2}}{n} + \mu^{2}\right)$$

Question 5 (10 points)

Why is

$$E\left[\sum_{i=1}^{n} \bar{X}X_{i}\right] = E\left[\bar{X}\sum_{i=1}^{n} X_{i}\right] = E\left[n\bar{X}^{2}\right]$$

Because \bar{X} is a constant with respect to the index i, we can pull it out of the summation. Then recall $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \to \sum_{i=1}^{n} X_i = n\bar{X}$. If we can substitute that into our equation, then we get the resulting $E[n\bar{X}^2]$.

Question 6 (5 points)

Assuming that $E\left[\sum_{i=1}^{n}X_{i}^{2}\right]=n\left(\sigma^{2}-\mu^{2}\right)$, that $E\left[\sum_{i=1}^{n}\bar{X}^{2}\right]=n\left(\frac{\sigma^{2}}{n}-\mu^{2}\right)$, and that $E\left[\sum_{i=1}^{n}\bar{X}X_{i}\right]=E\left[n\bar{X}^{2}\right]=n\left(\frac{\sigma^{2}}{n}-\mu^{2}\right)$, please simplify $E\left[\sum_{i=1}^{n}X_{i}^{2}\right]-2E\left[\sum_{i=1}^{n}\bar{X}X_{i}\right]+E\left[\sum_{i=1}^{n}\bar{X}^{2}\right]$.

$$E\left[\sum_{i=1}^{n} X_{i}^{2}\right] - 2E\left[\sum_{i=1}^{n} \bar{X}X_{i}\right] + E\left[\sum_{i=1}^{n} \bar{X}^{2}\right] = n(\sigma^{2} + \mu^{2}) - 2n(\frac{\sigma^{2}}{n} + \mu^{2}) + n(\frac{\sigma^{2}}{n} + \mu^{2})$$

$$= n\sigma^{2} - 2\sigma^{2} + \sigma^{2} + n\mu^{2} - 2n\mu^{2} + n\mu^{2}$$

$$= (n-1)\sigma^{2}$$

Question 7 (5 points)

If $E\left[\sum_{i=1}^{n}X_{i}^{2}\right]-2E\left[\sum_{i=1}^{n}\bar{X}X_{i}\right]+E\left[\sum_{i=1}^{n}\bar{X}^{2}\right]=(n-1)\sigma^{2}$, what is the value of $E\left[\frac{1}{n-1}\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right]$?

$$E\left[\frac{1}{n-1}\sum_{i=1}^{n} (X_i - \bar{X})^2\right] = \frac{1}{n-1}\left[(n-1)\sigma^2\right] = \sigma^2$$