

32 位微控制器 HC32F460_A460_F451_F452 系列 冷启动判断方法

应用笔记

Rev1.0 2023年09月

适用对象

产品系列	产品型号	产品系列	产品型号	
	HC32F460JCTA HC32F460JETA HC32F460JEUA		HC32A460PETB	
HC32F460	HC32F460KCTA HC32F460KETA HC32F460KEUA HC32F460PCTB HC32F460PEHB HC32F460PETB	HC32A460		
HC32F451	HC32F451FEUB HC32F451JEUB HC32F451KETB HC32F451PETB HC32F452FEUB HC32F452JEUB HC32F452KETB HC32F452PETB		HC32F452JEUB HC32F452KETB	

应用笔记 2/9

声明

- ★ 小华半导体有限公司(以下简称: "XHSC")保留随时更改、更正、增强、修改小华半导体产品和/或本 文档的权利,恕不另行通知。用户可在下单前获取最新相关信息。XHSC 产品依据购销基本合同中载明 的销售条款和条件进行销售。
- ★ 客户应针对您的应用选择合适的 XHSC 产品,并设计、验证和测试您的应用,以确保您的应用满足相应 标准以及任何安全、安保或其它要求。客户应对此独自承担全部责任。
- ★ XHSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- ★ XHSC 产品的转售,若其条款与此处规定不同,XHSC 对此类产品的任何保修承诺无效。
- ★ 任何带有"®"或"™"标识的图形或字样是 XHSC 的商标。所有其他在 XHSC 产品上显示的产品或服务名称均为其各自所有者的财产。
- ★ 本通知中的信息取代并替换先前版本中的信息。

©2023 小华半导体有限公司 保留所有权利

应用笔记 3/9

目 录

适用	对象	2
	明	
	录	
	概述	
_	冷启动判断方法	
	参考代码	
4	总结	. 8
版本	修订记录	9

1 概述

MCU 芯片的启动可以分为冷启动和热启动。

冷启动也称上电启动,一般是接通电源后芯片的第一次启动,冷启动时需要完成加电、自检、硬件初始 化等操作。

热启动是指芯片在运行过程中重新启动系统,可以是一次有准备的硬件复位、软件复位,也可能是系统保护机制触发的预料外的软件复位。

在实际应用中,需判断 MCU 的启动方式是热启动还是冷启动,来决定是否需要对某些外设进行初始化。 本文将介绍 HC32F460、HC32A460、HC32F451、HC32F452 系列 MCU 的冷启动方式判断方法。

应用笔记 5/9

2 冷启动判断方法

HC32F460、HC32A460、HC32F451、HC32F452系列MCU,上电复位标志位(PORF)会被NRST引脚复位清零,如此情况发生,无法通过PORF来判断MCU的启动方式。需结合调试控制器模块中DBGC_MCUSTPCTL寄存器来判断。DBGC_MCUSTPCTL寄存器中保留位bit16,可通过写1置位,写0清零,以及上电复位和掉电复位清零。对DBGC_MCUSTPCTL.bit16写1,再次上电后,如果DBGCMCUSTPCTL.bit16==0U且RMURSTF0.PDRF为0,则MCU是冷启动复位方式。

判断 MCU 冷启动方式的流程如下图所示。

图 1-1 冷启动判断流程图

应用笔记 6/9

3 参考代码

HC32F460、HC32A460、HC32F451、HC32F452 系列 MCU 冷启动判断方法的参考代码如下:

```
uint32_t u32PorFlag;
uint32_t u32PdrFlag;
u32PorFlag = READ REG32(bCM RMU->RSTF0 b.PORF);
u32PdrFlag = READ_REG32(bCM_RMU->RSTF0_b.PDRF );
/* Clear reset flag */
RMU ClearStatus();
if (1UL == u32PorFlag) {
    SET_REG32_BIT(CM_DBGC->MCUSTPCTL, (1UL << 16U));</pre>
    /* Cold start process */
} else if (1UL == ((CM_DBGC->MCUSTPCTL & 0x00010000UL) >> 16U)) {
    /* Warm start process */
} else if (1UL == u32PdrFlag) {
    /* Warm start process */
} else {
    SET_REG32_BIT(CM_DBGC->MCUSTPCTL, (1UL << 16U));</pre>
    /* Cold start process */
}
```

应用笔记 7/9

4 总结

本文档主要介绍了 HC32F460、HC32A460、HC32F451、HC32F452 系列 MCU 冷启动判断方法,给客户实际应用提供了参考。

应用笔记 8/9

版本修订记录

版本号	修订日期	修订内容
Rev1.0	2023/09/08	初版发布。

应用笔记 9/9