Содержание

1	Линейные пространства. Пространства со скалярным произведением.		
	1.1	Неравенство Коши-Бунековского-Шварца	2
	1.2	Процесс ортогонализации Грама-Шмидта и QR-разложение матрицы	
	1.3	Матрица Грама и критерий линейной зависимости	4
	1.4	Общий вид скалярного произведения в конечномерном пространстве	Ę
	1.5	Задача о наилучшем приближении вектора на конечномерном подпро-	
		странстве в пространстве со скалярным произведением	6
2	Линейные операторы.		
	2.1	Матрица линейного оператора в паре базисов. Изменение матрицы опера-	
		тора при изменении пары базисов	7
	2.2	Эквивалентность матриц, подобие матриц и инварианты подобия	8
	2.3	Ядро и образ линейного оператора. Соотношение между рангом и дефек-	
		том линейного оператора	10
	2.4	Обратимый оператор. Критерий обратимости. Линейность обратного опе-	
		ратора.	11
	2.5	Оператор проектирования	11
	2.6	Собственные значения и собственные векторы. Характеристический мно-	
		гочлен линейного оператора (матрицы)	12
	2.7	Геометрическая и алгебраическая кратность собственного значения	13
	2.8	Операторы простой структуры и диагонализуемые матрицы. Критерий	
		диагонализуемости	14
	2.9	Верхняя треугольная форма матрицы линейного оператора в комплексном	
	0.10	пространстве	14
		Многочлен от линейного оператора (матрицы). Теорема Гамильтона-Кэли.	16
	2.11	Нильпотентные и квазискалярные операторы (матрицы). Критерий ниль-	1/
	0.10	потентности.	16
	2.12	Прямая сумма линейных операторов (матриц). Теорема о расщеплении	1,
	0.19	вырожденного оператора	17
		Корневое расщепление линейного оператора.	18
		Нерасщепляемые операторы и подпространства Крылова	19
	۷.13	нильпотентного оператора	20
	2 16	Максимальное расшепление и жорданова форма нильпотентного оператора	21

1 Линейные пространства. Пространства со скалярным произведением.

1.1 Неравенство Коши-Бунековского-Шварца.

Опр. Пусть V - вещественное линейное пространство, на котором каждой упорядоченной паре векторов $x,y \in V$ поставлено в соответствие вещественное число (x,y) таким образом, что:

- $(x,x) \ge 0 \,\forall x \in V; (x,x) = 0 \Leftrightarrow x = 0;$
- $(x,y) = (y,x) \forall x,y \in V$;
- $(x + y, z) = (x, z) + (y, z) \forall x, y, z \in V;$
- $(\alpha x, y) = \alpha(x, y) \, \forall \alpha \in \mathbb{R} \, \forall x, y \in V.$

Число(x,y) называется скалярным произведением векторов x,y. Вещественное линейное пространство со скалярным произведение называется евклидовым.

Опр. Пусть V - комплексное линейное пространство, на котором каждой упорядоченной паре векторов $x,y \in V$ поставлено в соответствие комплексное число (x,y) таким образом, что:

- $(x,x) \ge 0 \,\forall x \in V; (x,x) = 0 \Leftrightarrow x = 0;$
- $\bullet \ (x,y) = \overline{(y,x)} \, \forall x,y \in V;$
- $(x + y, z) = (x, z) + (y, z) \forall x, y, z \in V;$
- $\bullet \ (\alpha x,y) = \alpha(x,y) \, \forall \alpha \in \mathbb{C} \, \forall x,y \in V.$

 $\mathit{Число}(x,y)$ называется скалярным произведением векторов x,y. Комплексное линейное пространство со скалярным произведение называется унитарным.

Опр. В произвольном евклидовом или унитарном пространстве величина $|x| := \sqrt{(x,x)}$ называется длиной вектора.

Теорема (Неравенство Коши-Буняковского-Шварца). Скалярное произведение векторов и их длины связано неравенством $|(x,y)| \le |x||y|$. Равенство достигается в том и только в том случае, когда векторы x и у линейно зависимы.

 \mathcal{A} -во. Случай (x,y) = 0 очевиден. В противном случае запишем $(x,y) = |(x,y)|\xi$, где $\xi = e^{i\phi}$, и рассмотрим функцию вещественного аргумента $F(t) = (x + t\xi y, x + t\xi y) = (x,x) + t\xi \overline{(x,y)} + t\overline{\xi}(x,y) + t^2\xi\overline{\xi}(y,y) = t^2|y|^2 + 2t|(x,y)| + |x|^2$. В силу свойств скалярного произведения $F(t) \geq 0$ при всех вещественных t. Значит $D \leq 0$, $D = |(x,y)|^2 - |x|^2|y|^2 \leq 0 \implies |(x,y)| \leq |x||y|$. Равенство означает, что $D = 0 \implies (x + t\xi y, x + t\xi y) = 0 \implies x + t\xi y = 0$.

1.2 Процесс ортогонализации Грама-Шмидта и QR-разложение матрицы.

Теорема. Для любой линейно независимой системы векторов a_1, \ldots, a_m существует ортогональная система p_1, \ldots, p_m такая, что $L(p_1, \ldots, p_k) = L(a_1, \ldots, a_k), 1 \le k \le m$.

 \mathcal{A} -во. Положим, что $p_1 = a_1 \implies L(p_1) = L(a_1)$. Предположим, что уже постоена ортогональная система p_1, \ldots, p_{k-1} такая, что $L(p_1, \ldots, p_i) = L(a_1, \ldots, a_i)$ при $1 \le i \le k-1$. Тогда вектор

$$p_k = a_k - \sum_{i=1}^{k-1} \frac{(a_k, p_i)}{(p_i, p_i)} p_i.$$

будет ортогонален каждому из векторов p_1, \ldots, p_{k-1} :

$$(p_k, p_j) = (a_k, p_j) - \left(\sum_{i=1}^{k-1} \frac{(a_k, p_i)}{(p_i, p_i)} p_i, p_j\right) = (a_k, p_j) - \frac{(a_k, p_j)}{(p_j, p_j)} (p_j, p_j) = 0.$$

Кроме того,
$$p_k \in L(p_1, \dots, p_{k-1}, a_k) = L(a_1, \dots, a_{k-1}, a_k)$$
 и $a_k \in L(p_1, \dots, p_{k-1}, p_k) \implies L(p_1, \dots, p_{k-1}, p_k) = L(a_1, \dots, a_{k-1}, a_k)$.

Теорема об ортогонализации содержит, по существу, следующий алгоритм построения ортонормированной системы q_1, \ldots, q_m в линейной оболочке заданной линейно независимой системы a_1, \ldots, a_m :

$$p_k := a_k - \sum_{i=1}^{k-1} (a_k, q_i)q_i, \quad q_k := \frac{p_k}{|p_k|}, \quad k = 1, 2, \dots, m.$$

Этот алгоритм называется процессом ортогонализации Грама-Шмидта.

Пусть матрица A имеет линейно независимые столбцы a_1, \ldots, a_m , а процесс ортогонализации ее столбцов относительно естественного скалярного произведения дает ортонормированные столбцы q_1, \ldots, q_m . Процесс ортогоналиации устроен таким образом, что a_k есть линейная комбинация столбцов q_1, \ldots, q_k :

$$a_k = \sum_{i=1}^k r_{ik} q_i \Leftrightarrow A = QR, \ Q = [q_1, \dots, q_m], \ R = \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1m} \\ & r_{22} & \dots & r_{2m} \\ & & \ddots & \vdots \\ & & & r_{mm} \end{bmatrix}.$$

Опр. Разложение A = QR, где Q имеет ортонормированные столбцы, а R - верхняя треугольная матрица, называется QR-разложением матрицы A. Таким образом, для любой прямоугольной матрицы c линейно независимыми столбцами существует QR-разложение.

Теорема (Теорема о QR-разложении). Любая квадратная комплексная матрица представима в виде произведения унитарной и верхней треугольной матрицы.

 \mathcal{A} -60. Любая квадратная матрица A является пределом последовательности невырожденных матриц $A_k = A - \alpha_k I$, так как заведомо имеется последовательность чисел $\alpha_k \to 0$, отличных от собственных значений матрицы A. Для каждой невырожденной матрицы A_k , как мы уже знаем, существует QR-разложение: $A_k = Q_k R_k$. Последовательность Q_k принадлежит компактному множеству матриц, поэтому из нее можно выделить сходящуюся подпоследовательность $Q_{k_l} \to Q$. Матрица Q будет, конечно, унитарной, а предел последовательности $R_{k_l} = Q_{k_l}^* A_{k_l} \to Q^* A$ является, очевидно, верхней треугольной матрицей.

1.3 Матрица Грама и критерий линейной зависимости.

Теорема (теорема о перпендикуляре). Для любого вектора x в произвольном пространстве со скалярным произведением и любого конечномерного подпространства $L \subset V$ существуют и единственны перпендикуляр h и проекция z такие, что

$$x = z + h, z \in L, h \perp L, |x - z| = |h| \le |x - y| \, \forall y \in L.$$

 \mathcal{A} -во. Если $x\in L$, то полагаем z=x и h=0. Пусть v_1,\ldots,v_k - базис подпространства L. В случае $x\not\in L$ система v_1,\ldots,v_k,x будет линейно независимой. Применив к ней процесс ортогонализации Грама-Шмидта, получим ортонормированную системы q_1,\ldots,q_k,q_{k+1} такую, что $L=L(q_1,\ldots,q_k)$ и $x\in L(q_1,\ldots,q_k,q_{k+1})$, а искомые проекция и перпендикуляр получаются из разложения $x=\alpha_1q_1+\cdots+\alpha_kq_k+\alpha_{k+1}q_{k+1}$ очевидным образом: $z=\alpha_1q_1+\cdots+\alpha_kq_k, h=\alpha_{k+1}q_{k+1}$.

Единственность: если x=z+h=z'+h', где $z,z'\in L$ и $h,h'\perp L$, то $c:=z-z'=h'-h\in L\cap L^\perp\implies v=0$.

Наконец, для любого $y \in L$ находим x-y=(z-y)+h, и, согласно теореме Пифагора, $|x-y|^2=|z-h|^2+|h|^2\geq |h|^2$. Равенство, очевидно, имеет место в том и только в том случае, когда y=z.

Если v_1, \ldots, v_k - произвольный базис подпространства L, то ортогональная проекция $z = x_1v_1 + \cdots + x_kv_k$ вектора x на L однозначно определяется уравнением $x - z \perp L$. Для этого необходимо и достаточно, чтобы вектор x - z был ортогонален каждому из векторов v_1, \ldots, v_k :

$$\begin{cases} (v_1, v_1)x_1 + \dots + (v_k, v_1)x_k = (x, v_1) \Leftrightarrow (x - z, v_1) = 0 \\ (v_1, v_2)x_1 + \dots + (v_k, v_2)x_k = (x, v_2) \Leftrightarrow (x - z, v_2) = 0 \\ \dots \\ (v_1, v_k)x_1 + \dots + (v_k, v_k)x_k = (x, v_k) \Leftrightarrow (x - z, v_k) = 0 \end{cases}$$

Из теоремы о перпендикуляре следует, что эта система линейных алгебраических уравнений имеет и притом единственное решение, определяющее коэффициенты x_1, \ldots, x_k .

Опр. Матрицы $A = [a_{ij}]$ полученной нами системы линейны алгебраических уравнений имеет элементы $a_{ij} = (v_i, v_j)$. Матрица такого вида называется матрицей Грама системы векторов v_1, \ldots, v_k .

Теорема. Для линейно независимой системы матрица Грама невырождена.

 \mathcal{A} -60. Сразу следует из теоремы о перпендикуляре, так как система должна иметь единственное решение.

Теорема. Матрица Грама неотрицательно определена для любой системы векторов и положительно определена в том и только в том случае, когда система линейно независима.

 \mathcal{A} -во. Пусть A - матрица Грама системы v_1, \ldots, v_k и x - вектор столбец с элементами x_1, \ldots, x_k . Тогда $x^*Ax = \sum\limits_{i,j=1}^k \overline{x}_i a_{ij} x_j = \sum\limits_{i,j=1}^k \overline{x}_i (v_i, v_j) x_j = \sum\limits_{i=1}^k \overline{x}_i \left(v_i, \sum\limits_{j=1}^k \overline{x}_j v_j\right) = \sum\limits_{i=1}^k \overline{x}_i (v_i, v) = \left(\sum\limits_{i=1}^k \overline{x}_i v_i, v\right) = (v, v) \ge 0, v = \overline{x}_1 v_1 + \cdots + \overline{x}_k v_k.$

1.4 Общий вид скалярного произведения в конечномерном пространстве.

Теорема. Пусть V - вещественное скалярное или комплексное пространство размерности n и e_1, \ldots, e_n - произвольный фиксированный базис V. Тогда для произвольной положительно определенной матрицы A порядка n формула

$$(x,y) = [y]_e^* A[x]_e = [\overline{y}_1, \dots, \overline{y}_n] A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \ \partial e \ x = \sum_{j=1}^n x_j e_j, \ y = \sum_{j=1}^n y_j e_j,$$

задает некоторое скалярное произведение на V и для произвольного скалярного произведения является тождеством, в котором A является матрица Γ рама базиса e_1, \ldots, e_n .

 \mathcal{A} -во. Пусть A — эрмитова положительно определенная матрица и $f(u,v)=v^*Au$ — функция от векторов-столбцов $u,v\in\mathbb{C}^n$. Проверка свойств скалярного произведения для данной функции выполняется непосредственно: линейность по первому аргументу очевидна, а положительная определенность и симметричность вытекает их положительной определенности и эрмитовости матрицы.

В тоже время, проивольное скалярное произведение векторов $x=\sum\limits_{i=1}^n x_ie_i$ и $y=\sum\limits_{i=1}^n y_1e_i$ имеет вид

$$(x,y) = \left(\sum_{i=1}^n x_j e_j, \sum_{i=1}^n y_i e_i\right) = \sum_{i,j=1}^n \overline{y}_i(e_j, e_i) x_j = \left[\overline{y}_1 \dots y_n\right] A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

A - матрица с элементами $a_{ij} = (e_j, e_i)$.

1.5 Задача о наилучшем приближении вектора на конечномерном подпространстве в пространстве со скалярным произведением.

Опр. Пусть V - нормированное пространство и M - непустое подмножество векторов из V. Вектор $z \in M$ называется элементом наилучшего приближения вектора $x \in V$ на множестве M, если $||x-z|| \le ||x-y|| \ \forall y \in M$.

Теорема. Для любого $x \in V$ и любого конечномерного подпространства $M \in V$ существует единственное наилучшее приближение.

 \mathcal{A} -во. Если M состоит из одного вектора, то он и является наилучшим приближением. Далее полагаем, что в M больше одного вектора. Пусть $y,z\in M$. Представим z в виде $z=y+h,\ h\in .$ Тогда

$$(x-z,x-z) = (x-y-h,x-y-h) = (x-y,x-y) - (x-y,h) - (h,x-y) + (h,h)$$
$$||x-z||^2 = ||x-y||^2 - (x-y,h) - (h,x-y) + ||h^2||.$$

Если $(x-y,h)=0 \ \forall h\in M,$ то $||x-y||\leq ||x-z|| \forall z\in M.$

Если $||x-y|| \le ||x-z|| \ \forall z \in M$, то $-(x-y,h)-(h,x-y)+(h,h) \ge 0 \ \forall h \in M$. Заменим что вектор h на $h_1 = \frac{(x-y,h)}{||h||^2}h$. Получим

$$\begin{split} -\left(x-y,\frac{(x-y,h)}{||h||^2}h\right) - \left(\frac{(x-y,h)}{||h||^2}h,x-y\right) + \left(\frac{(x-y,h)}{||h||^2}h,\frac{(x-y,h)}{||h||^2}h\right) = \\ = -\frac{\overline{(x-y,h)}}{||h^2||}(x-y,h) - \frac{(x-y,h)}{||h||^2}\overline{(x-y,h)} + \frac{|(x-y,h)|^2}{||h||^4}(h,h) = \\ = -2\frac{|(x-y,h)|^2}{||h^2||} + \frac{|(x-y,h)|^2}{||h||^2} = -\frac{|(x-y,h)|^2}{||h||^2} \ge 0 \end{split}$$

Полученное неравенство верно только при (x - y, h) = 0.

Итак, чтобы вектор $y \in M$ был наилучшим приближением к вектору $x \in V$ необходимо и достаточно, чтобы $(x-y,h)=0 \ \forall h \in M$ (вектор x-y должен быть ортогонален подпространству M).

Докажем, что вектор y, удовлетворяющий условию $(x-y,h)=0 \ \forall h\in M$ однозначно определяется вектором x.

Пусть $(x-y,h)=0 \ \forall h\in M$ и существует вектор еще один вектор $\widetilde{y}\in M$ такой, что

 $(x-\widetilde{y},h)=0\ \forall h\in M.$ Тогда $(y-\widetilde{y},h)=0\ \forall h\in M.$ Пологая $h=y-\widetilde{y},$ получим, что $(y-\widetilde{y},y-\widetilde{y})=0\implies y=\widetilde{y}.$

Докажем теперь, что существует вектор $y \in M$, удовлетворяющий условию $(x - y, h) = 0 \ \forall h \in M$.

Пусть e_1, \ldots, e_m - базис M. Условие $(x-y,h)=0 \ \forall h\in M$ эквивалентно тому, что $(x-y,e_k)=0, \ k=\overline{1,m}$. Будем искать y в виде разложения по базису: $y=\sum_{i=1}^m y_i e_i$. Тогда

$$\left(\sum_{i=1}^{m} y_i e_i, e_k\right) = (x, e_k), \ k = \overline{1, m}.$$

$$\sum_{i=1}^{m} y_i(e_i, e_k) = (x, e_k), \ k = \overline{1, m}.$$

— СЛАУ относительно y_1, \ldots, y_m , в которой матрица коэффициентов A — матрица Грама векторов e_1, \ldots, e_m . A невырождена \Longrightarrow система имеет единственное решение. \square

2 Линейные операторы.

2.1 Матрица линейного оператора в паре базисов. Изменение матрицы оператора при изменении пары базисов.

Пусть $e = (e_1, \ldots, e_n)$ и $f = (f_1, \ldots, f_n)$ - базисы пространств V и W. Линейный оператор $A \in L(V, W)$ однозначно определяется заданием векторов Ae_1, \ldots, Ae_n . В свою очередь векторы $Ae_i, i = 1, \ldots, n$, однозначно определяются своими координатами в базисе f, т.е. коэффициентами разложений

$$\begin{cases}
Ae_1 = a_{11}f_1 + a_{21}f_2 + \dots + a_{m1}f_m, \\
Ae_2 = a_{12}f_1 + a_{22}f_2 + \dots + a_{m2}f_m, \\
\dots \\
Ae_n = a_{1n}f_1 + a_{2n}f_2 + \dots + a_{mn}f_n.
\end{cases}$$

Опр. Матрица

$$A_{fe} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

называется матрицей оператора A в паре базисов e u f.

Пусть e и $t = C_{et}^{-1}e$ - два базиса пространства V с матрицей перехода C_{et} , а f и $s = D_{fs}^{-1}f$ - два базиса пространства W с матрицей перехода D_{fs} . Одному и тому же линейному оператору $A \in L(V, W)$ в паре базисов e и f соответствует матрица A_{ef} , а в паре базисов t и s - матрица A_{st} .

Теорема. Матрицы A_{fe} и A_{st} линейного оператора в различных парах базисов связаны соотношением

$$A_{st} = D_{fs}^{-1} A_{fe} C_{et}.$$

 \mathcal{A} -во. Для произвольного вектора $x \in V$ и его образа y = Ax имеем

$$y_f = A_{fe}x_e, \quad y_s = A_{st}x_t.$$

В свою очередь, $x_e = C_{et}x_t$, $y_f = D_{fs}y_s$. Подставив эти соотношения, получим, что $D_{fs}y_s = A_{fe}C_{et}x_t$ или $D_{fs}A_{st}x_t = A_{fe}C_{et}x_t$. Так как это соотношение имеет место при любых x_t , то $D_{fs}A_{st} = A_{fe}C_{et}$. В силу невырожденности матрицы перехода получаем, что $A_{st} = D_{fs}^{-1}A_{fe}C_{et}$.

2.2 Эквивалентность матриц, подобие матриц и инварианты подобия.

Опр. Две матрицы $A, B \in \mathbb{P}^{m \times n}$ называются эквивалентными, если существуют невырожденные матрицы P и Q такие, что A = PBQ.

Утверждение. Эквивалентность матриц является соотношением эквивалентности.

 \mathcal{A} -во. (рефлексивность) $A \sim A$, т.к. A = IAI. (симметричность) $A \sim B \implies \exists P, Q$, т.ч. $|P| \neq 0$, $|Q| \neq 0$, $A = PBQ \implies B = P^{-1}AQ^{-1} \implies B \sim A$. (транзитивность) $A \sim B$, $B \sim C \implies$, \exists невырожденные P_1, P_2, Q_1, Q_2 , т.ч. $A = P_1BQ_1$, $B = P_2CQ_2 \implies A = (P_1P_2)B(Q_1Q_2) \implies A \sim C$.

Теорема. Две матрицы A и B над полем \mathbb{P} одинакового размера эквивалентны тогда и только тогда, когда они являются матрицами одного линейного оператора $A \in L(V,W)$, где V и W - линейные пространства над полем \mathbb{P} размерностей n и m соответственно.

 \mathcal{A} -во. (\Longrightarrow) Пусть $A,B\in\mathbb{P}^{m\times n}$ и $B=D^{-1}AC$. Рассмотрим любые линейные пространства V и W над полем \mathbb{P} такие, что $\dim V=n, \dim W=m$. Возьмем в пространстве V произвольный базис e, а в пространстве W - базис f. В силу взаимной однозначности соответствия между $\mathbb{P}^{m\times n}$ и L(V,W) существует единственный оператор $A\in L(V,W)$, который в паре базисов e и f имеет матрицу A. Тогда матрица B будет матрицей этого же оператора в паре базисов t=Ce и s=Df.

 (\Leftarrow) Пусть A и B - матрицы линейного оператора $A \in L(V,W)$ в парах базисов e,f и t,s соответственно. Причем $t=C^{-1}e, s=D^{-1}f$. Тогда $B=D^{-1}AC \implies$ матрицы A и B эквивалентны.

Теорема. Любая невырожденная матрица $A \in \mathbb{P}^{m \times n}$ ранга r эквивалентна матрице $I_r \in \mathbb{P}^{m \times n}$ вида

 \mathcal{A} -во. Любую матрицу можно привести к диагональному виду элементарными преобразованиями. Если привести матрицу A к диагональному виду, а затем поделить каждую ненулевую строку на ненулевой элемент в ней, то получится матрица вида I_r . Это означает, что существу, матрицы элементарных преобразований Q_1, \ldots, Q_k и P_1, \ldots, P_s , такие, что $I_r = Q_1 \ldots Q_k A P_1 \ldots P_s$. Значит $A \sim I_r$.

Теорема. Две матрицы $A, B \in \mathbb{P}^{m \times n}$ эквивалентны тогда и только тогда, когда их ранги совпадают.

 \mathcal{A} -60. (\Longrightarrow) Вытекает из того, что умножение на невырожденную матрицу не меняет ранга матрицы.

(⇐) Следует из предыдущей теоремы и транзитивности эквивалентности матриц. 🗆

Опр. Матрицы $A, B \in \mathbb{P}^{n \times n}$ называются подобными, если существует невырожденная матрица $C \in \mathbb{P}^{n \times n}$, т.ч. $A = C^{-1}BC$.

Теорема. Инварианты подобия:

- 1. Ранг матрицы;
- 2. Опрделитель матрицы;
- 3. След матрицы.

Д-во. 1) Сразу следует из предыдущей теоремы.

2)
$$|A| = |P^{-1}BP| = |P^{-1}||B||P| = |P^{-1}P||B| = |B|$$
.

$$\operatorname{tr}(A) = \operatorname{tr}(P^{-1}BP) = \sum_{i=1}^{n} (P^{-1}BP)_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} (P^{-1})_{ij} (BP)_{ji} =$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} (P^{-1})_{ij} \sum_{k=1}^{n} b_{jk} (P)_{ki} = \sum_{j=1}^{n} \sum_{k=1}^{n} b_{jk} \sum_{i=1}^{n} (P)_{ki} (P)_{ij} =$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} b_{jk} (I)_{kj} = \sum_{j=1}^{n} b_{jj} = \operatorname{tr}(B)$$

2.3 Ядро и образ линейного оператора. Соотношение между рангом и дефектом линейного оператора.

Опр. Образом линейного оператора называется множество im $A = \{y \in W \mid \exists x \in V : Ax = y\}$. Ядром линейного оператора называется множество ker $A = \{x \in V \mid Ax = 0\}$. Рангом линейного оператора называется размерность его образа, а дефектом - размерность его ядра.

Теорема. Если $A \in L(V, W)$, то ker A - линейное подпространство пространства V, im A - линейное подпространство пространства W.

 \mathcal{A} -во. Для того чтобы подмножество было подпространством достаточно, чтобы применение операций сложения векторов и умножения вектора на число давало результат в подмножестве. Для данных подмножеств данные условия легко проверяются.

Теорема. Если e_1, \ldots, e_n - базис пространства V, то im $A = L(Ae_1, \ldots, Ae_n)$.

Д-60. Достаточно показать для множеств im A и $L(Ae_1, \ldots, Ae_n)$ имеет место двухстороннее вложение. С одной стороны, если $y \in \operatorname{im} A$, то $y = Ax = A\sum_{i=1}^n x_i e_i = \sum_{i=1}^n x_i Ae_i \in$

 $L(Ae_1,\ldots,Ae_n)$. С другой стороны, если $y\in L(Ae_1,\ldots,Ae_n)$, то $y=\sum_{i=1}^n x_iAe_i=A\sum_{i=1}^n x_ie_i=Ax\in\operatorname{im} A$.

Теорема. Если $A \in L(V, W)$, то rank $A + \operatorname{def} A = \dim V$.

 \mathcal{A} -60. Пусть $\ker A \neq \{\theta\}$ и e_1, \ldots, e_k - базис $\ker A$. Дополним его до базиса $e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$ пространства V. $\operatorname{im} A = L(Ae_1, \ldots, Ae_k, Ae_{k+1}, \ldots, Ae_n) = L(Ae_{k+1}, \ldots, Ae_n)$. Покажем, что векторы Ae_{k+1}, \ldots, Ae_n линейно независимы. Пусть это не так. Тогда для нетривиальной линейной комбинации этих векторов имеет место соотношение $\alpha_{k+1}Ae_{k+1}+\cdots+\alpha_nAe_n=A(\alpha_{k+1}e_{k+1}+\cdots+\alpha_ne_n)=\theta$. Следовательно, $\alpha_{k+1}e_{k+1}+\cdots+\alpha_ne_n\in \ker A$. Это означает, что вектор $\alpha_{k+1}e_{k+1}+\cdots+\alpha_ne_n$ линейно выражается через e_1,\ldots,e_k , что невозможно в силу линейной независимости e_1,\ldots,e_n . Таким образом, $\dim \ker A=k$, $\dim \operatorname{im} A=n-k$.

Теорема. Пусть M — конечномерное линейное пространство над полем \mathbb{P} . Тогда для любых его линейных подпространств V_1 и V_2 , m.ч. $\dim V_1 + \dim V_2 = \dim V$, существует линейный оператор $A \in L(V,V)$: $\operatorname{im} A = V_1$, $\operatorname{ker} A = V_2$.

 \mathcal{A} -во. Пусть $\dim V_1 = p$, $\dim V_2 = q$, $\dim V = n$, n = p + q и e_{p+1}, \ldots, e_n - базис V_2 . Дополним его до базиса $V: e_1, \ldots, e_p, e_{p+1}, \ldots, e_n$. Выберем произвольный базис $V_1: g_1, \ldots, g_p$ и зададим линейный оператор $A \in L(V, V)$:

$$\begin{cases} Ae_1 = g_1, \dots, Ae_p = g_p \\ Ae_{p+1} = Ae_{p+2} = \dots = Ae_n = 0 \end{cases}$$

Тогда im $A = L(Ae_1, \dots, Ae_p) = A(g_1, \dots, g_p) = V_1$ и ker $A = L(e_{p+1}, \dots, e_n) = V_2$.

2.4 Обратимый оператор. Критерий обратимости. Линейность обратного оператора.

Опр. Оператор $A:V\to W$ называется обратимым ил невырожденный, если существует оператор $B:W\to V$ такой, что $AB=I_W$ и $BA=I_V$.

Утверждение. Если линейный оператор обратим, то обратный оператор определен однозначно и является линейным.

 \mathcal{A} -60. 1) Пусть $A \in L(V, W)$ и $B_1, B_2 \in L(W, V)$ обратные к A. Тогда

$$B_1AB_2 = (B_1A)B_2 = I_VB_2 = B_2$$

 $B_1AB_2 = B_1(AB_2) = B_1I_W = B_2$ $\Longrightarrow B_1 = B_2.$

2) Пусть $A \in L(V,W)$ и $B \in L(W,V)$ — обратный к A. Тогда $\forall y_1,y_2 \in W \ \exists x_1,x_2 \in V: y_1 = Ax_1, \ y_2 = Ax_2,$ значит $By_1 = x_1, \ By_2 = x_2. \ \forall \alpha_1,\alpha_2 \in \mathbb{P}$:

$$B(\alpha_1 y_1 + \alpha_2 y_2) = B(\alpha_1 A x_1 + \alpha_2 A x_2) = B(A(\alpha_1 x_1 + \alpha_2 x_2)) =$$

$$= (BA)(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 x_1 + \alpha_2 x_2 =$$

$$= \alpha_1 B y_1 + \alpha_2 B y_2.$$

Теорема. Пусть V и W — конечномерные пространства над общим полем. Тогда для обратимости линейного оператора $A \in L(V,W)$ необходимо и достаточно, чтобы $\dim V = \dim W$ и $\ker A = \{\theta\}$

 \mathcal{A} -во. (\Longrightarrow) Если $x_0 \in \ker A$, то $\forall x \in V : A(x+x_0) = Ax + Ax_0 = Ax + \theta = Ax = y \in W$. Значит $A^{-1}y = x = x + x_0$, т.е. $x_0 = \theta$. im $A = L(Ae_1, \ldots, Ae_{\dim V}) \subseteq W \implies \dim W \ge \dim V$ и im $A^{-1} = L(A^{-1}f_1, \ldots, A^{-1}f_{\dim W}) \subseteq V \implies \dim V \ge \dim W$. Значит $\dim V = \dim W$.

(\iff) Пусть $\dim V = \dim W$ и $\ker A = \{\theta\}$. Согласно теореме о размерности ядра и образа: $\operatorname{rank} A = n \implies$ оператор сюръективен и инъективен, а значит для каждого $y\exists !x = x(y) \in V: Ax = y$. Пусть оператор $B: W \to V$ определяется правилом By = x(y). Тогда $(AB)y = y, (BA)x = x \implies$ выполнены условия обратимости оператора A.

2.5 Оператор проектирования.

Опр. Пусть $V = L \oplus M$. Тогда любой вектор $x \in V$ однозначно представляется в виде суммы x = u + v, где $u \in L$, $v \in M$. Оператор P, переводящий x в u называется оператором проектирования на подпространство L параллельно подпространству M.

Утверждение. P является линейным оператором.

A-60. $y_1, y_2 \in L$, $z_1, z_2 \in M$, $x_1 = z_1 + y_1$, $x_2 = y_2 + z_2$, $\lambda x_1 = \lambda y_1 + \lambda z_1$:

$$P(x_1 + x_2) = y_1 + y_2 = Px_1 + Px_2$$

 $P(\lambda x_1) = \lambda y_1 = \lambda Px_1$

Теорема. Для того чтобы линейный оператор $P \in L(V, V)$ был оператором проектирования, необходимо и достаточно, чтобы $P^2 = P$.

 \mathcal{A} -60. (\Longrightarrow) $V=L\oplus M\ \forall x\in V\ \exists !u\in L,\ v\mathrm{im}\ M: x=u+v\ u\ Px=u.$ Значит Pu=u ($u=u+\theta$) и $P^2x=P(Px)=Pu=u=Px$, т.е. $P^2=P$. (\Longleftrightarrow) Пусть $P^2=P$. Положим $L=\mathrm{im}\ P,\ M=\ker P.$ Тогда $\dim L+\dim M=\dim V.$ Если $w\in L\cap M$, то w=Px и $Pw=\theta.$ Поэтому $Pw=P^2x=Px=2=\theta.$ Значит $L\oplus M=V.$

2.6 Собственные значения и собственные векторы. Характеристический многочлен линейного оператора (матрицы).

Опр. Пусть V - линейное пространство над полем \mathbb{P} . $A \in L(V,V)$. Число $\lambda \in \mathbb{P}$ и вектор $\theta \neq v \in V$ называются собственным значением и собственным вектором оператора A, если $Av = \lambda v$.

Теорема. Собственные вектора $x_1, ..., x_k$, отвечающие различным собственным значениям $\lambda_1, ..., \lambda_k$ линейно независимы.

 \mathcal{A} -во. Применим индукцию по k. Для k=1 утверждение очевидно. Пусть оно верно для любой системы из k-1 векторов. Докажем его для k векторов x_1,\ldots,x_k . Приравняем нулевому вектору линейную комбинацию этих векторов: $\alpha_1x_1+\cdots+\alpha_kx_k=\theta$. Под действием оператора A это равенство перейдет в равенство $\alpha_1\lambda_1x_1+\cdots+\alpha_k\lambda_kx_k=\theta$ (*). $(*)-\lambda_k(*)=\alpha_1(\lambda_1-\lambda_k)+\cdots+\alpha_k(\lambda_{k-1}-\lambda_k)x_{k-1}=\theta$. В силу индуктивного предположения отсюда следует, что $\alpha_1=\cdots=\alpha_{k-1}=0$. Значит и $\alpha_k=0$. Значит x_1,\ldots,x_k линейно независимы.

Следствие. Линейный оператор, действующий в n-марном пространстве, не может иметь более чем n различных собственных векторов.

Опр. Характеристическим многочленом матрицы $A \in \mathbb{P}^{m \times n}$ называется функция $f(\lambda) = |A - \lambda I|$.

Теорема. Характеристический многочлен матрицы является инвариантом подобия.

 \mathcal{A} -во. Пусть $B=P^{-1}AP$. Тогда

$$|B - \lambda I| = |(P^{-1}AP) - \lambda P^{-1}P| = |P^{-1}(A - \lambda I)P| = |P^{-1}||A - \lambda I||P| =$$
$$= |P^{-1}||P||A - \lambda I| = |P^{-1}P||A - \lambda I| = |A - \lambda I|.$$

Свойства характеристического многочлена.

- Характеристический многочлен индуцированного оператора является делителем характеристического многочлена порождающей его матрицы.
- Если $V = L_1 \oplus \cdots \oplus L_k$, где L_1, \ldots, L_k инвариантные подпространства относительно оператора $A \in L(V, V)$, то характеристический многочлен $f(\lambda)$. Равен произведению характеристических многочленов $f_1(\lambda), \ldots, f_k(\lambda)$ индуцированных операторов $A|L_1, \ldots, A|L_k$.

Теорема. Пусть V - линейное пространство над полем \mathbb{P} . Число $\lambda \in \mathbb{P}$ является собственным значением оператора $A \in L(V,V)$ тогда и только тогда, когда λ - корень его характеристического многочлена.

 \mathcal{A} -во. Число λ является собственным значением оператора A тогда и только тогда, когда существует вектор x, удовлетворяющий условиям

$$\begin{cases} Ax = \lambda x, \\ x \neq \theta, \\ \lambda \in \mathbb{P}. \end{cases} \Leftrightarrow \begin{cases} (A - \lambda I)x = \theta, \\ x \neq 0, \\ \lambda \in \mathbb{P}. \end{cases}$$

Это равносильно вырожденности оператора $A - \lambda I$ при некотором λ , т.е. $|A - \lambda I| = 0$. \square

2.7 Геометрическая и алгебраическая кратность собственного значения.

Опр. Пусть λ_0 - собственное значение оператора A. Множество $W_{\lambda_0} = \{x \in V : Ax = \lambda_0 x\}$ называется собственным подпространством оператора A, отвечающим собственному значению λ_0 .

Очевидно, что $W_{\lambda_0} = \ker(A - \lambda_0 I)$, поэтому собственное подпространство является линейным подпространством пространства V.

Опр. Размерность собственного подпространства W_{λ_0} называется геометрической кратностью собственного значения λ_0 , а кратность λ_0 как корня характеристического многочлена - его алгебраической кратностью.

Теорема. Геометрическая кратность собственного значения не превосходит его алгебраической кратности.

 \mathcal{A} -во. Пусть m и s - алгебраическая и геометрическая кратность собственного значения λ_0 оператора $A \in L(V,V)$. Собственное подпространство W_{λ_0} инвариантно относительно оператора A, следовательно, можно рассматривать индуцированный оператор $A|W_{\lambda_0}$. Найдем его характеристический многочлен $f_1(\lambda)$. Пусть e_1,\ldots,e_s - базис W_{λ_0} . Тогда матрица оператора $A|W_{\lambda_0}$ в этом базисе будет диагональной матрицей s-го порядка с элементами λ_0 на главной диагонали. Следовательно, $f_1(\lambda) = (\lambda_0 - \lambda)^s$. $(\lambda_0 - \lambda)^s$ является делителем характеристического многочлена $f(\lambda)$ оператора A, но $(\lambda_0 - \lambda)$ входит в характеристический многочлен $f(\lambda)$ ровно m раз. Значит, $s \leq m$.

2.8 Операторы простой структуры и диагонализуемые матрицы. Критерий диагонализуемости.

Опр. Линейный оператор $A \in L(V, V)$ называется оператором простой структуры, если в пространстве V существует базис из собственных векторов оператора A.

Теорема. Линейный оператор $A \in L(V, V)$ имеет простую структуру тогда и только тогда, когда в пространстве V существует базис, в котором он имеет диагональную матрицу.

 \mathcal{A} -во. Пусть $\dim V = n$. Согласно определению оператор A имеет простую структуру тогда и только тогда, когда он имеет n линейно независимых собственных векторов e_1, \ldots, e_n , в котором матрица A_e оператора A имеет вид

$$A_e = \begin{bmatrix} \lambda_1 & & & O \\ & \lambda_2 & & \\ & & \ddots & \\ O & & & \lambda_n \end{bmatrix},$$

где $\lambda_1, \ldots, \lambda_n$ — собственные значения, соответствующие собственным векторам e_1, \ldots, e_n .

Следствие. В *п-мерном пространстве линейный оператор*, *имеющий п различных* значений, являетя оператором простой структуры.

Следствие. Если матрица порядка n имеет n попарно различных собственных значений, то она диагонализируема.

Теорема. Линейный оператор $A \in L(V,V)$ имеет простую структуру тогда и только тогда, когда $W_{\lambda_1} \oplus \cdots \oplus W_{\lambda_p} = V$.

 \mathcal{A} -во. (\Longrightarrow) Пусть A имеет простую структуру. Тогда в пространстве V существует базис e_1,\ldots,e_n , состоящий из собственных векторов оператора A. Рассмотрим подпространство $W_{\lambda_1}+\cdots+W_{\lambda_p}$, оно содержится в V. С другой стороны, каждый вектор базиса e_1,\ldots,e_n принадлежит одному из собственных подпространств, поэтому $P\subset\sum_{i=1}^nW_{\lambda_i}\implies W_{\lambda_1}+W_{\lambda_p}=V$. Эта сумма прямая, т.к. собственные подпространства $W_{\lambda_1},\ldots,W_{\lambda_p}$ имеют тривиальное пересечение.

2.9 Верхняя треугольная форма матрицы линейного оператора в комплексном пространстве.

Вопрос о существовании собственных векторов сводится к вопросу о существовании корней характеристического многочлена, принадлежащих основному полю. В алгебраическом поле $\mathbb C$ любой многочлен степени $n\geq 1$ имеет n корней. Отсюда вытекает следующее утверждение. **Теорема.** Произвольный линейный оператор, действующий в n-мерном комплексном пространстве, имеет:

- 1. п собственных значений, если каждое собственное значение считать столько раз, какова его кратность как корня характеристического многочлена;
- 2. Хотя бы один собственный вектор;
- 3. На любом своем инвариантном подпространстве хотя бы один собственный вектор.

Лемма. Линейный оператор, действующий в n-мерном комплексном пространстве, обладает инвариантным пространством размерности n-1.

 \mathcal{A} -60. Линейный оператор A действующий в комплексном пространстве V, имеет собственное значение λ . Значит, $|A-\lambda I|=0$ и $\mathrm{rank}\,(A-\lambda I)\leq n-1$. Следовательно, $\dim\mathrm{im}\,(A-\lambda I)\leq n-1$ и в пространстве V существует подпространство L размерности n-1, которое содержит $\mathrm{im}\,(A-\lambda I)$. Очевидно, что L инвариантно относительно оператора $A-\lambda I$. Покажем, что оно инвариантно и относительно A. Пусть $x\in L$, тогда $(A-\lambda I)x=y\in L \implies Ax=\lambda x+y\in L$.

Теорема. В n-метрном комплексном пространстве V для любого линейного оператора $A \in L(V,V)$ существует система n вложенных друг в друга инвариантных подпространств L_1, \ldots, L_n всех размерностей от 1 до n, m.e. таких, что $L_1 \subset L_2 \subset \cdots \subset L_n = V$, где $\dim L_k = k$, $k = 1, \ldots, n$.

 \mathcal{A} -во. Используем индукцию по n. \mathcal{A} ля n=1 утверждение теоремы очевидно. Пусть теорема верна для всех линейных операторов размерности n-1. Тогда, согласно лемме оператор A, действующий в n-мерном комплексном пространстве V, имеет инвариантное пространство L_{n-1} размерности n-1. Тогда для индуцированного оператора $A|L_{n-1}$ существует система вложенных инвариантных подпространств $L_1 \subset L_2 \subset \cdots \subset L_{n-1}$. Так как действия операторов A и $A|L_{n-1}$ совпадают, то подпространства L_1, \ldots, L_{n-1} инвариантны относительно оператора A. Остается добавить, что $L_{n-1} \subset L_n = V$.

Теорема. Для любого комплексного оператора A, действующего в комплексном пространстве, существует базис, в котором матрица линейного оператора имеет треугольную форму.

 \mathcal{A} -во. Для оператора A найдется система инвариантных подпространств L_1,\ldots,L_n таких, что $\dim L_k=k$ и $L_1\subset L_2\subset\cdots\subset L_n=V$. Искомый базис e_1,\ldots,e_n строим так: в качестве вектора e_1 берем любой базис L_1 , в качестве $e_k,\ k>1$ - вектор, дополняющий базис L_{k-1} до базиса L_k . В силу инвариантности подпространств L_1,\ldots,L_n матрица A_e имеет верхнюю треугольную форму.

2.10 Многочлен от линейного оператора (матрицы). Теорема Гамильтона-Кэли.

Опр. Зафиксируем квадратную матрицу $A \in \mathbb{P}^{n \times n}$. Рассмотрим произвольный многочлен $f(\lambda) = \sum_{i=0}^k f_i \lambda^i$ и поставим ему в соответствие матрицу $\sum_{i=0}^n f_i A^i = f(A)$. f(A) называется многочленом от матрицы A, соответствующий многочлену $f(\lambda)$ с коэффициентами из поля \mathbb{P} . Если f(A) = 0 $f(\lambda) \not\equiv 0$, то говорят, что многочлен f аннулирует матрицу A.

Утверждение. Для любой матрицы можно найти многочлен, который ее аннулирует.

 \mathcal{A} -во. Рассмотрим матрицы $I=A^0,\,A^1=A,\,A^2,\ldots,A^{n^2}.$ Их n^2+1 штука \Longrightarrow они \mathcal{A} 3 \Longrightarrow \exists нетривиальный набор $a_0,\ldots,a_{n^2},\,$ т.ч. $a_0I+a_1A+\cdots+a_{n^2}A^{n^2}=O$ — искомый многочлен, т.к. $f(\lambda)\not\equiv 0$ в силу нетривиальности набора $a_0,\ldots,a_{n^2}.$

Опр. Многочлен, аннулирующий матрицу A и имеющий минимальную степень среди всех аннулирующий ее многочленов, называется минимальным многочленом матрицы A.

Теорема. Линейный оператор, действующий в комплексном (или в вещественном) пространстве, является корнем своего характеристического многочлена.

Д-во. 1. Докажем сначала для комплексного пространства V. Пусть $A \in L(V, V)$ и его характеристический многочлен имеет вид $f(\lambda) = (\lambda_1 - \lambda)^{m_1} \dots (\lambda_j - \lambda)^{m_j}$. $V = K_{\lambda_1} \oplus \dots \oplus K_{\lambda_p}$ и, следовательно, для любого вектора $x \in V$ имеет место разложение $x = x_1 + \dots + x_p$, где $x_j \in K_{\lambda_j}$, $k = 1, \dots, p$. Тогда

$$f(A)x = f(A)x_1 + \dots + f(A)x_j + \dots + f(A)x_p.$$

Каждое слагаемое в этом разложении равно нулевову вектору, так как $f(A)x_j=(\lambda_1 I-A)^{m_1}\dots(\lambda_j I-A)^{m_j}\dots(\lambda_p I-A)^{m_p}x_j=\theta$, ибо операторы в этом произведении перестановочны, а $(A-\lambda_j I)^{m_j}x_j=\theta$. Следовательно, $f(A)x=\theta \ \forall x\in V$, т.е. f(A)=O. 2. Пусть V - вещественное линейное пространство. Возьмем какой-либо базис e пространства V, и пусть A_e - матрица оператора A в этом базисе. Рассмотрим любое комплексное пространство V_1 той же размерности. Пусть f - произвольный базис V_1 , тогда матрица A_e является матрицей оператора $B\in L(V_1,V_1)$ в базисе f, т.е. $A_e=B_f$. Значит характеристические многочлены операторов A и B совпадают, и согласно п. 1, $f(A_e)=O$.

2.11 Нильпотентные и квазискалярные операторы (матрицы). Критерий нильпотентности.

Опр. Пусть линейный оператор A действует в n-мерном пространстве. Если он имеет только одно собственное значение λ кратности n, то будем называть его квазискалярным.

Опр. Линейный оператор $A \in L(V, V)$ называется нильпотентным, если существует число $q \in \mathbb{N}$ такое, что $A^n = O$. Наименьшее число q, обладающее таким свойством, называется индексом нильпотентности (высотой) оператора A.

Теорема. В комплексном пространстве линейный оператор нильпотентен тогда и только тогда, когда он является квазискалярный с единственным собственным значением равным нулю.

 \mathcal{A} -60. (\Longrightarrow) Если λ - собственное значение нильпотентного оператора $A \in L(V,V)$ индекса q и x - собственное значение соответствующее ему, то $Ax = \lambda x \implies A^2x = \lambda^2x \implies \cdots \implies A^qx = \lambda^qx$. Отсюда следует, что $\lambda^qx = 0$. Так как $x \neq 0$, то $\lambda = 0$. (\Longleftrightarrow) Рассмотрим базис e комплексного пространства V, в котором оператор A имеет верхнюю треугольную матрицу с нулями на главной диагонали. Итак,

$$A_e = \begin{bmatrix} 0 & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & 0 & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{n-1,n} \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}.$$

Нетрудно проверить, что при последовательном возведении этой матрицы в степени $q=2,3,\ldots,n$ нетривиальный треугольник расположенный над главной диагональю, перемещается каждый раз на одну диагональ выше, так что $(A_e)^n=O$. Значит, $A^n=O$.

2.12 Прямая сумма линейных операторов (матриц). Теорема о расщеплении вырожденного оператора.

Опр. Если $V = L_1 \oplus L_2 \oplus \cdots \oplus L_p$ - прямая сумма подпространств L_1, \ldots, L_p инвариантных относительно линейного оператора $A \in L(V, V)$, то оператор A называется прямой суммой индуцированных операторов $A|L_1, \ldots, A|L_p$.

Теорема. Вырожденный и не нильпотентный оператор $A \in L(V, V)$ является прямой суммой нильпотентного и обратимого операторов, причем это разложение единственно.

 \mathcal{A} -60. Для доказательства теоремы необходимо показать, что существует единственная пара подпространств L_1, L_2 , инвариантных относительно линейного оператора A и таких, что $V = L_1 \oplus L_2$, $A|L_1$ нильпотентен, $A|L_2$ обратим.

Cуществование. Обозначим для $k \in \mathbb{N}$: $N_k = \ker A^k$, $T_k = \operatorname{im} A^k$.

- 1. Покажем, что подпространства N_k строго вложены друг в друга до некоторого момента q, начиная с которого все N_k совпадают, т.е. $N_1 \subset N_2 \subset \cdots \subset N_q = N_{q+1} = \cdots$
- а) Вложение $N_k \subseteq N_{k+1}$ очевидно, так как если $A^k x = \theta$, то $A^{k+1} x = A(A^k x) = A\theta = \theta$.
- б) Пусть $N_k=N_{k+1},$ Тогда $N_{k+1}=N_{k+2},$ так как $N_{k+1}\subseteq N_{k+2},$ $N_{k+2}\subseteq N_{k+1}.$ Второе

из этих вложений следует из того, что если $x \in N_{k+2}$, то $A^{k+2}x = \theta$, т.е. $A^{k+1}(Ax) = \theta$. Значит, $Ax \in N_{k+1} = N_k$, откуда $A^k(Ax) = \theta$, т.е. $A^{k+1}x = \theta$.

Из а и б следует, что подпространство N_k либо строго вложено в N_{k+1} , либо совпадает со всеми последующими ядрами. Так как в конечномерном пространстве размерности подпространств N_k не могут бесконечно возрастать, то наступит момент q, начиная с которого все ядра N_k будут совпадать с N_q .

2. Зафиксируем этот момент q и покажем, что $V = N_q \oplus T_q$.

Действительно, $\dim V = \dim N_q + \dim T_q$ в силу теоремы о ранге и дефекте, при этом $N_q \cap T_q = \{\theta\}$, так как если $y \in N_q \cap T_q$, то $A^q y = \theta$, $y = A^q x$, т.е. $A^{2q} x = \theta$. Значит, $x \in N_{2q} = N_q$ и $A^q x = \theta = y$.

- 3. Подпространства N_q и T_q инвариантны относительно A, т.к.:
- а) если $x \in N_q$, то $x \in N_{q+1} = N_q \implies A^{q+1}x = \theta$, т.е. $A^q(Ax) = \theta \implies Ax \in N_q$.
- б) если $y \in T_q$, то $y = A^q x$ и $Ay = A^{q+1} y = A^q (Ax) = A^q x_1$, где $x_1 = Ax$, следовательно, $Ay \in T_q$.
- 4. Оператор $A|N_q$ нильпотентный оператор индекса q, т.к.:
- a) $A^q x = \theta \, \forall x \in N_q;$
- б) $\exists x_0 \in N_q$ такой, что $A^{q-1}x_0 \neq \theta$, ибо $N_{q-1} \neq N_q$.
- 5. Оператор $A|T_q$ обратим, так как его ядро состоит только из нулевого вектора. Действительно, если $y \in \ker A|T_q$, то $y \in T_q$, $Ay = \theta$, т.е. $y = A^qx$ и $A^{q+1}x = \theta$, Отсюда следует, что $x \in N_{q+1} = N_q$, т.е. $A^qx = \theta$ и $y = \theta$.

Утверждения 2-5 доказывают существование искомого разложения: $L_q = N_q$, $L_2 = T_q$. Eдинственность. Пусть существует другое разложение $V = N \oplus T$, обладающее всеми свойствам первого.

- 1. Нильпотентность оператора A|N означает, что $A^kx = \theta \, \forall x \in N$, при некотором $k \in \mathbb{N}$. Следовательно, $N \subseteq N_k \subseteq N_q$ и dim $N \leq \dim N_q$.
- 2. Обратимость оператора A|T означает, что $\operatorname{im} A|T = T$. Следовательно, для любого вектора $y \in T$ имеет место представление $y = Ay_1$, где $y_1 \in T$. Используя такое же представление для вектора y_1 и всех последующих, получаем, что $y = Ay_1 = A^2y_2 = \cdots = A^qy_q$. Таким образом, $T \subseteq T_q$ и $\dim T \le \dim T_q$.

Так как $\dim V = \dim N + \dim T = \dim N_q + \dim T_q$ и $\dim N \leq \dim N_q$, $\dim T \leq \dim T_q$, то $N = N_q$ и $T = T_q$.

2.13 Корневое расщепление линейного оператора.

Опр. Пусть λ_j - собственное значение оператора A. Вектор $x \in V$ называется корневым вектором оператора A, отвечающим собственному значению λ_j , если $(A - \lambda_j I)^k x = \theta$ при некотором $k \in \mathbb{N} \cup \{0\}$. Высотой корневого вектора называется наименьшее k, обладающее указанным свойством.

Опр. Множество $K_{\lambda_j} = \{x \in V \mid \exists k \in \mathbb{N} \cup \{0\} : (A - \lambda_j I)^k x = \theta\}$ называется корневым подпространством оператора A, отвечающим собственному значению λ_j .

Утверждение. Корневое подпространство K_{λ_i} инвариантно относительно A.

$$\mathcal{A}$$
-so. $v \in K_{\lambda_j} \Longrightarrow \exists q_j : (A - \lambda_j I)^{q_j} v = \theta \Longrightarrow (A - \lambda_j I)^{q_j} (Av) = A(A - \lambda_j I)^{q_j} v = A \cdot \theta = \theta \Longrightarrow Av \in K_{\lambda_j}.$

Оператор $B=A-\lambda_j I$ - вырожденный, но не нильпотентный. Следовательно, к оператору B применима теорема о прямой сумме нильпотентного и обратимого оператора. Согласно этой теореме, если $N_k=\ker B^k$, $T_k\mathrm{im}\,B^k$, то $N_1\subset N_2\subset\cdots\subset N_q=N_{q+1}=\ldots$ $V=N_q\oplus T_q$, где N_q и T_q - инвариантны относительно B. Вернемся к оператору A.

 N_1 состоит из корневых векторов оператора A высоты не превосходящей 1, т.е. совпадающим собственному значению λ_j . Таким образом $N_1 = W_{\lambda_1}$ и, следовательно, dim $N_1 = s_j$, где s_j - геометрическая кратность собственного значения λ_j .

 N_2 состоит из корневых векторов оператора A высоты, не превосходящей 2, а N_q состоит из векторов всех высот, т.е. q - максимальная высота коневого вектора, отвечающего собственному вектору λ_j , и N_q совпадает со всем корневым подпространством K_{λ_j} . Таким образом, $K_{\lambda_j} = N_q$.

Из свойств подпространства N_q вытекают важные свойства корневых подпространств: если характеристический многочлен оператора A имеет вид $f(\lambda) = (\lambda_1 - \lambda)^{m_1} \dots (\lambda_j - \lambda)^{m_j} \dots (\lambda_p - \lambda)^{m_p}$, то

- а) подпространство K_{λ_j} инвариантно относительно оператора A (в силу инвариантности относительно оператора $A \lambda_j I$).
- б) характеристический многочлен оператора $A|K_{\lambda_j}$ имеет вид $f_j(\lambda)=(\lambda_j-\lambda)^{m_j}$ (т.к. $f_{A|N_q}(\lambda)=(-\lambda)^{m_1},\ F_{A|T_q}=(\lambda_2-\lambda)^{m_2}\dots(\lambda_p-\lambda)^{m_p})$ в) $\dim K_{\lambda_j}=m_j.$

Теорема. Если A - линейный оператор, действующий в комплексном пространстве V $u f(\lambda) = (\lambda_1 - \lambda)^{m_1} \dots (\lambda_p - \lambda)^{m_p}$, $\lambda_i \neq \lambda_k$, при $i \neq k$ - его характеристический многочлен, то пространство V разлагается в прямую сумму его корневых подпространств: $V = K_{\lambda_1} \oplus \dots \oplus K_{\lambda_p}$.

 \mathcal{A} -во. Воспользуемся индукцией по p. Для p=1, понятно, что $V=K_{\lambda_1}$. Пусть теорема верна для оператора, имеющего p-1 различных собственных значений. Докажем ее для оператора A. Выделим корневое подпространство $K_{\lambda_p}=N_q=\ker(A-\lambda_p I)^{m_p}$. Тогда $V=K_{\lambda_p}\oplus T_q,\,T_q=\operatorname{im}\,(A-\lambda_p I)^{m_p}$. Обозначим $V_1=T_q$. Пространство V_1 инвариантно относительно оператора $A-\lambda_p I$, а, следовательно, оно инвариантно и относительно A, при этом характеристический многочлен оператора $A_1=A|V_1$ имеет вид $f_1(\lambda)=(\lambda_1-\lambda)^{m_1}\dots(\lambda_{p-1}-\lambda)^{m_{p-1}}$. Оператор A_1 имеет p-1 различных собственных значений, и для него теорема верна. Если учесть, что корневые пространства оператора A_1 совпадают с корневыми подпространствами $K_{\lambda_1},\dots,K_{\lambda_{p-1}}$ оператора A, то $V_1=K_{\lambda_1}\oplus\dots\oplus K_{\lambda_{p-1}}$ и $V=K_{\lambda_1}\oplus\dots\oplus K_{\lambda_{p-1}}\oplus K_{\lambda_p}$.

2.14 Нерасщепляемые операторы и подпространства Крылова.

В максимальном расщеплении линейного оператора каждое инвариантное подпространство не может быть прямой суммой ненулевых инвариантных подпространств. Такие

подпространства и сужение оператора на них естественно называть нерасщепляемыми. Согласно теореме о корневом расщеплении, нерасщепляемый оператор обязан быть квазискалярным.

Опр. Инвариантное подпространство M = M(A, x) оператора A, содержащие заданные ненулевой вектор x, называется минимальным, если данное подпространство содержится в любом инвариантном подпространстве, которому принадлежит вектор x.

Минимальное инвариантное подпространство M(A,x) должно содержать последовательность векторов x,Ax,A^2x,\ldots Векторы такого вида принято называть векторами Крылова, а линейные оболочки $L_k(A,x)=L(x,Ax,A^2x,\ldots A^{k-1}x)$ — пространствами Крылова.

Лемма. Минимальное инвариантное подпространство M(A, x) совпадает с пространством Крылова $L_x(A, x)$, содержащим вектор $A^k x$. Его размерность равна минимальному значению k, при котором $A^k x \in L_k(A, x)$.

 \mathcal{A} -во. Пусть $x, Ax, \ldots, A^{k-1}x$ — ЛНЗ, а вектор A^kx выражается в виде их линейной комбинации. Ясно, что $\sim L_k(A,x) = k$. Условие $A^kx \in L_k(A,x)$ обеспечивает инвариантность подпространства $L_k(A,x)$. В то же время, любое инвариантное подпространство, содержащие вектор x, обязано содержать все пространство Крылова $\implies M(A,x) = L_k(A,x)$.

Лемма. Минимальное инвариантное подпространство M(A, x) нерасщепляемо в том и только в том случае, когда сужение оператора A на нем квазискалярно.

Пемма. Квазискалярность является необходимым условием нерасщепляемости. До-кажем его достаточность в случае подпространства M(A,x). $M=M(A,x)=L_k(A,x)$, где $k=\dim L_k(A,x)$ и $A^kx\in L_k(A,x)$. Пусть единственное собственное значение оператора A на M равно λ . Тогда $B=A-\lambda I$ - нильпотентный на M, $M=L_k(B,x)$, система $x,Bx,\ldots,B^{k-1}x$ - ЛНЗ и индекс нильпотентности B|M не больше k. Значит $B^kx=\theta$. Пусть $L\subseteq M$ — произвольное ненулевое инвариантное подпространство B. Возьмем ненулевой вектор $\theta\neq z\in L$, $z=\sum\limits_{j=0}^{k-1}\alpha_jB^jx$, пусть i — минимальное число такое, что $\alpha_i\neq 0$. Тогда $B^{k-1-i}z=\alpha_iB^{k-1}x\in L$ $\Longrightarrow B^{k-1}x\in L$. Таким образом, любое инвариантное подпространство $L\subseteq M$ оператора B содержит общий вектор $B^{k-1}x$. Значит M нельзя представить в виде прямой суммы двух ненулевых инвариантных подпространств оператора B. Каждое инвариантное пространство оператора A является инвариантным и для оператора $B=A-\lambda I$.

2.15 Условие линейной независимости составной системы векторов Крылова нильпотентного оператора.

Лемма. Пусть A - линейный оператор и k_1, \ldots, k_t - его индексы нильпотентности на ненулевых векторах x_1, \ldots, x_t . Тогда для линейной независимости составной си-

стемы векторов Крылова: $x_1, Ax_1, \dots, A^{k_1-1}x_1, \dots, x_t, Ax_t, \dots, A^{k_t-1}x_t$ (1) необходима и достаточна линейная независимость векторов $A^{k_1-1}x_1, \dots, A^{k_t-1}x_t$ (2).

 \mathcal{A} -во. (\Longrightarrow) Из системы (1) очевидно следует линейная независимость системы (2). (\Longleftrightarrow) Пусть (2) линейно независима и $k=\max_{1\leq i\leq t}k_i$. Индукция по k. При k=1 системы (1) и (2) совпадают. Пусть $k\geq 2$ и $I_k=\{i:k_i=k,i=\overline{1,t}\}$. Пусть $\theta=y=\sum_{i=1}^t\sum_{j=1}^{k_i-1}\alpha_{ij}A^jx_i$ (*). Тогда $\theta=A^{k-1}y=\sum_{i\in I_k}\alpha_{i0}A^{k-1}x_i$ \Leftrightarrow $\alpha_{i0}=0$ $\forall i\in I_k$. Из системы (1) удалим все векторы $x_i,\,i\in I_k$. Оставшаяся система — составная система векторов Крылова, но индексы нильпотентности A на векторах $x_i,\,i\notin I_k$ и векторах $Ax_i,\,i\in I_k$ меньше k. По предположению индукции для векторов, оставшихся в (*) (в силу ЛНЗ) $\alpha_{ij}=0,\,\forall i,j:1\leq i\leq t,\,0\leq j\leq k_i-1$.

2.16 Максимальное расщепление и жорданова форма нильпотентного оператора.