

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

terms of n other quantities b_1, \ldots, b_n , then is the space of the first quantities identical with that of the last quantities. But if the n quantities a_1, \ldots, a_n can be expressed in terms of less than n quantities b_1, \ldots, b_n , then a_1, \ldots, a_n are not independent, and some of them can be numerically expressed in terms of others.

- 20. Two quantities of a space of the nth order are equal to each other when and only when their numerical coefficients of the same units are equal. This is analogous to the algebraic theorem which says that two complex numbers are equal only when their real parts are equal and also their imaginary parts.
- 21. If the coefficients x_1, \ldots, x_n by which an extensive quantity x is expressed in terms of the units e_1, \ldots, e_n satisfy an equation of the mth degree $f(x_1, \ldots, x_n) = 0$, then the coefficients y_1, \ldots, y_n by which x is expressed in terms of a_1, \ldots, a_n of the same space also satisfy an equation of the mth degree, and if the first equation is homogeneous, the latter is also.

PROOF. Let $a_1 = \sum \alpha_{1r} e_r$, Then we have

$$x_1e_1 + x_2e_2 + \dots + y_1 \sum \alpha_1 re_r + y_2 \sum \alpha_2 re_r + \dots = \sum y_r \alpha_{r1} \cdot e_1 + \sum y_r \alpha_{r2} \cdot e_2 + \dots$$

$$\therefore x_1 = \sum y_r \alpha_{r1}, \ x_2 = \sum y_r \alpha_{r2}, \ \dots \qquad (Art. 20).$$

But if these values are substituted in $f(x_1, \ldots, x_n)=0$, we get an equation of the *m*th degree in y_1, y_2, \ldots, y_n and, indeed, homogeneous if the first equation is homogeneous.

[To be Continued.]

DEPARTMENTS.

SOLUTIONS OF PROBLEMS.

ARITHMETIC.

112. Proposed by G. B. M. ZERR, A. M., Ph. D., Professor of Mathematics and Science, Chester High School, Chester, Pa.

The cost of an article is \$4. $\frac{.297}{1.002}$. The selling price is \$6. $\frac{1000}{38837}$. What is the gain %?

I. Solution by COOPER D. SCHMITT, A. M., Professor of Mathematics, University of Tennessee, Knoxville Tenn., and the PROPOSER.

$$297 = \frac{2}{9} \frac{9}{7} \frac{7}{9} = \frac{11}{37}; 1.003 = 1 \frac{1}{300} = \frac{3}{3} \frac{0}{10}.$$

$$\frac{1}{37} \div \frac{3}{3} \frac{0}{10} = \frac{3}{10} \frac{3}{10} \frac{0}{37}; 1\frac{3}{10} \frac{3}{10} \frac{7}{10} = \frac{3}{10} \frac{3}{10} \frac{7}{37}.$$

$$\therefore \$4.\frac{\cancel{297}}{\cancel{1003}} = \$4_{\cancel{11133}} = \$4_{\cancel{111337}}^{44878} = \text{cost price.}$$

 $$6.\frac{1000}{33337}$ $$6\frac{100}{33337}$ \$200122 selling price.

$$(\frac{19891644}{108344437} \div \frac{14878}{11877})$$
 of $100\% = 48\frac{18649328}{18647338}\%$.

Also solved by O. S. WESTCOTT and ALOIS F. KOVARIK.

113. Proposed by B. F. SINE, Principal of Normal School, Capon Bridge, W. Va.

In what time can a note of \$5280, bearing 6% interest, be paid by paying \$600 a year? [Solve by arithmetic].

Solution by WALTER H. DRANE, Graduate Student, Harvard University, Cambridge, Mass.

Let Q be the principal, r the rate, n the number of years, and P annual payment. Then

Q(1+r) = amount due at end of first year.

Q(1+r)-P=principal to run second year.

 $Q(1+r)^2 - P(1+r) =$ amount due at end of second year.

 $Q(1+r)^2-P(1+r)-P$ =principal to run third year.

$$Q(1+r)^n-P(1+r)^{n-1}...P(1+r)-P$$
=amount to run $(n+1)$ th year.

But the debt is cancelled. Hence

$$Q(1+r)^n-P(1+r)^{n-1}-\ldots P(1+r)-P=0.$$

$$\therefore P\left[\frac{(1+r)^n-1}{r}\right] = Q(1+r)^n.$$

$$\therefore (P-Qr)(1+r)^n = P.$$

$$\therefore n = \frac{\log P - \log(P - Qr)}{\log(1+r)}.$$

In the problem P=\$600, Q=\$5280, r=.06.

$$\therefore n = \frac{\log 600 - \log (600 - 5280 \times .06)}{\log (1.06)} = 12.88 \text{ years.}$$

Also solved by G. B. M. ZERR, COOPER D. SCHMITT, and J. SCHEFFER.

ALGEBRA.

93. Proposed by CHARLES C. CROSS, Whaleyville, Va.

Given $x^x+y^y=285$, and $y^x-x^y=14$, to find the values of x and y. [From Bonnycastle's Algebra, 1841].

I. Solution by A. H. BELL, Hillsboro, Ill.

The two equations give

$$(285-y^y)^y=(y^x-14)^x....(1).$$