

第7章 交流电动机

电气工程学院 刘宇

• 判断对错

- 1.交流铁心线圈的功率损耗主要有铜损和铁损两种,其中,铜损可表达为 $\Delta P_{cu} = RI^2$
- 2.对于变压器,下列表达是否正确

$$U_1/U_2 = K \checkmark I_1/I_2 = K X$$

3.变压器的效率可以表达为

$$\eta = \frac{P_2}{P_1} = \frac{P_2}{P_2 + \Delta P_{\text{Cu}} + \Delta P_{\text{Fe}}}$$

• 提纲

- 7.1 三相异步电动机的构造
- 7.2 三相异步电动机的转动原理
- 7.3 三相异步电动机的电路分析
- 7.4 三相异步电动机转矩与机械特性
- 7.5 三相异步电动机的起动
- 7.6 三相异步电动机的调速
- 7.7 三相异步电动机的制动
- 7.8 三相异步电动机铭牌数据
- 7.9 三相异步电动机的选择
- 7.10 同步电动机(略)
- 7.11 单相异步电动机

本章要求:

- 1. 了解三相交流异步电动机的基本构造和转动原理。
- 2. 理解三相交流异步电动机的机械特性,掌握起动和反转的基本方法,了解调速和制动的方法。
- 3. 理解三相交流异步电动机铭牌数据的意义。

电动机的分类:

异步交流电动机授课内容:

基本结构、工作原理、机械特性、控制方法

7.1 三相异步电动机的构造

异步电动机的发展历史

1.定子

铁心:由内周有槽的硅钢片叠成。

三相绕组 $\begin{cases} U_1 - U_2 \\ V_1 - V_2 \\ W_1 - W_2 \end{cases}$

机座: 铸钢或铸铁

2.转子

笼型

绕线型

铁心: 由外周有槽的硅钢片叠成。

(1)笼型转子

铁芯槽内放铜条,端 部用短路环形成一体, 或铸铝形成转子绕组。

(2) 绕线型转子

同定子绕组一样,也分为三相,并且接成星形。

转子: 在旋转磁场作用下, 产生感应电动势或电

笼型转子

绕线式转子

東南大學電氣工程學院

10

笼型电动机与绕线型电动机的的比较:

笼型:

结构简单、价格低廉、工作可靠;不能人为改变电动机的机械特性。

绕线型:

结构复杂、价格较贵、维护工作量大;转子外加电阻可人为改变电动机的机械特性。

应用实例: Tesla汽车驱动电机

48 slots

7.2 三相异步电动机的转动原理

7.2.1 旋转磁场

1.旋转磁场的产生 定子三相绕组通入三 相交流电(星形联接)

$$\begin{cases} i_1 = I_{\rm m} \sin \omega t \\ i_2 = I_{\rm m} \sin(\omega t - 120^{\circ}) \\ i_3 = I_{\rm m} \sin(\omega t + 120^{\circ}) \end{cases}$$

 $i: "+" \rightarrow 首端流入,尾端流出。$

 $i: "-" \rightarrow$ 尾端流入,首端流出。

(•)电流出

三相电流合成磁场 的分布情况

 $\omega t = 0$

60° 60° W

 $\omega t = 60^{\circ}$

合成磁场旋转60°

 $\omega t = 90^{\circ}$

合成磁场旋转90°

合成磁场方向向下 東南大學電氣工程學院

分析可知: 三相电流产生的合成磁场是一旋转的磁场

即:一个电流周期,旋转磁场在空间转过360°

2.旋转磁场的旋转方向

任意调换两根电源进线 (电路如图)

结论:任意调换两根电源 进线,则旋转磁场反转。

取决于三相电流的相序

3.旋转磁场的极对数P

当三相定子绕组按 图示排列时,产生一对 磁极的旋转磁场,即:

若定子每相绕组由两个线圈串联,绕组的始端之间互差60°,将形成两对磁极的旋转磁场。

极对数 p=2

旋转磁场的磁极对数 **j三相绕组的排列有关**

4.旋转磁场的转速(同步转速)

旋转磁场的转速取决于磁场的极对数

p=1时

 $n_0 = 60 f_1$ (转/分)

工频: $f_1 = 50$ Hz

 $n_0 = 3000 (转/分)$

南京 四牌楼2号 http://ee.seu.edu.cn

旋转磁场转速 n_0 与极对数p的关系

$$n_0 = \frac{60f_1}{p} \ (转/分)$$

极对数	每个电流周期 磁场转过的空间角度	同步转速 $(f_1 = 50$ Hz)
p=1	360°	3000 (转/分)
p=2	180°	1500 (转/分)
p=3	120°	1000 (转/分)
p=4	90°	750(转/分)

可见:旋转磁场转速加与频率加极对数力有关。

7.2.2 电动机的转动原理

1. 转动原理

定子三相绕组通入三相交流电

旋转磁场
$$\begin{cases} n_0 = \frac{60f_1}{p} \text{ (转/分)} \\ \text{方向:顺时针} \end{cases}$$

→切割转子导体

感应电流 I₂ 旋转磁场

 \longrightarrow 电磁转矩T

7.2.3 转差率

由前面分析可知,电动机转子转动方向与磁场旋转的方向一致,但转子转速n不可能达到与旋转磁场的转速相等,即 $n < n_0 \Longrightarrow$ 异步电动机

如果: $n=n_0$

- 等子与旋转磁场间没有相对运动,磁通不切割转子导条
- **一** 无转子电动势和转子电流
- **二** 无转矩

因此,转子转速与旋转磁场转速间必须要有差别。

旋转磁场的同步转速和电动机转子转速之差与

旋转磁场的同步转速之比称为转差率。

转差率S

转子转速亦可由转差率求得

$$n = (1 - S)n_0$$

异步电动机运行中: $s = (1 \sim 9)\%$

例1: 一台三相异步电动机,其额定转速 n=975 r/min,电源频率 $f_1=50$ Hz。试求电动机的极对数和额定负载下的转差率。

解:根据异步电动机转子转速与旋转磁场同步转

速的关系可知: $n_0=1000 \text{ r/min}$, 即 p=3

额定转差率为

$$S = \frac{n_0 - n}{n_0} \times 100\% = \frac{1000 - 975}{1000} \times 100\% = 2.5\%$$

总结

第七章-Part 1-结束

