

• Distance > |displacement|

A particle moves from A to B in a circular path of radius R covering an angle θ with uniform speed \bot

• Ratio of Displacement to Distance = Sin $\left(\frac{v}{2}\right)$

Average Velocity = _

• Average Acceleration = $U^2 \sin \left(\frac{\theta}{2} \right)$

For uniform motion

Displacement = velocity x time

Average speed = |average velocity|=|instantaneous velocity|

Time average speed

$$\mathbf{V}^{\text{ov}} = \frac{\textbf{Total distance covered}}{\textbf{Total time elapsed}} \quad = \frac{\mathbf{S}_1 + \mathbf{S}_2 + \mathbf{S}_3 + \ldots + \mathbf{S}_n}{\mathbf{t}_1 + \mathbf{t}_2 + \mathbf{t}_3 + \ldots + \mathbf{t}_n} \quad = \frac{\mathbf{v}_1 \mathbf{t}_1 + \mathbf{v}_2 \mathbf{t}_2 + \mathbf{v}_3 \mathbf{t}_3 + \ldots}{\mathbf{t}_1 + \mathbf{t}_2 + \mathbf{t}_3 + \ldots + \mathbf{t}_n}.$$

$$\mathbf{If} \ \mathbf{t}_1 = \mathbf{t}_2 = \mathbf{t}_3 = \ldots = \mathbf{t}_n$$

 $\mathbf{v}_{av} = \frac{\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \ldots + \mathbf{v}_n}{\mathbf{v}_{av}}$

for v_1 & v_2 , $v_{avg} = \frac{v_1 + v_2}{2}$ (Arithmetic mean of speeds)

Distance average speed

$$\begin{aligned} & v_{av} = \frac{\text{Total distance covered}}{\text{Total time elapsed}} = \frac{s_1 + s_2 + s_3 + \ldots + s_n}{t_1 + t_2 + t_3 + \ldots + t_n} = \frac{s_1 + s_2 + s_3 + \ldots + s_n}{\frac{s_1}{v_1} + \frac{s_2}{v_2} + \frac{s_3}{v_3} + \ldots + \frac{s_n}{v_n}} \end{aligned}$$

Motion with constant acceleration: Equations of motion

(i) v=u+at

(ii) $S = ut + \frac{1}{5} at^2$

• A Person travels from A to B covers unequal distances in equal interval of time with constant acceleration a then

initial velocity
$$U = \frac{3S_1 - S_2}{2t}$$

 $S_2 - S_1$

(iii) $v^2=u^2+2a.s$

• The number of planks required to stop the bullet

• The two ends of a train moving with constant acceleration pass a certain point with velocities u and v. The velocity with which the middle point of the train passes the same point is

$$V_{Mid} = \sqrt{\frac{u^2 + v^2}{2}}$$

• Calculation of stopping distance $s = \frac{u^2}{2a}$ $u \rightarrow s$ 0

(iv)
$$s_n = u + \frac{a}{2}(2n-1)$$

• Ratio of distance travelled in equal interval of time in a uniformly accelerated motion from rest

$$S_1:S_2:S_3 = 1:3:5$$

• for uniform accelerated motion

$$v_{avg} = \frac{u+v}{2}$$

Different Cases	v-t graph	s-t graph
1. Uniform motion	v = constant	\$ sent
2. Uniformly accelerated motion with u =0 at t=0	** v zat	$\begin{array}{c} s & s = \frac{1}{2} \alpha t^2 \\ \\ \end{array}$
 Uniformly accelerated with u ≠ 0 at t=0 & s=0 at t=0 	u V V TUX QT	s=ut+\frac{1}{2}at^2
 Uniformly accelerated motion with u≠0 and s=s₀ at t=0 	u V v u x at	$s = s_0 + ut + \frac{1}{2}at^2$
5. Uniformly retarded motion till velocity becomes zero	u v v to	$\begin{array}{c} \uparrow S & S = U \uparrow - \frac{1}{2} \alpha \uparrow^2 \\ \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \end{array}$
6. Uniformly retarded then accelerated in opposite direction	u	AS S=ut-½at² →t

Important points about graphical analysis of motion

• Instantaneous velocity is the slope of position-time curve |∆x=∫vdt|

• Area of v-t curvegives displacement.

• Slope of velocity-time curve = instantaneous

• Area of a-t curve gives change in velocity. |∆v=∫adt|

MOTION STRAIGH

A car accelerates from rest at a constant rate α for some time, after which it decelerates at a constant rate β , to come to rest. If the total time elapsed is t, then

$$V_{\text{max}} = \frac{\alpha\beta}{\alpha + \beta}$$

$$V_{\text{max}} = \frac{\alpha\beta}{\alpha+\beta} t$$
Total Distance $=\frac{1}{2} \left(\frac{\alpha\beta}{\alpha+\beta} \right) t^2$
 v_{max}

MOTION UNDER GRAVITY

Sign Convention

acceleration

(i) initial velocity

+ve = upward motion -ve = downward motion

(ii) Acceleration

Always -ve

(iii) Displacement

+ve = final position is above initial position

-ve = final position is below initial position

Zero = final position & initial position are at same level

Object is dropped from top of a tower

(i) Ratio of displacement in equal interval of time $S_1:S_2:S_3...=1:3:5...$

(ii) Ratio of time of covering equal distance

(iii) Ratio of total distance covered at the end of time t: 2t: 3t: ... = 1²: 2²: 3²...

• If a body is thrown vertically up with a velocity u in the uniform gravitational field (neglecting air resistance) then

(i) Maximum height attained $H = \frac{u^2}{2a}$

(ii) Time of ascent = time of descent $\frac{u}{a}$

(iii) Total time of flight = $\frac{1}{920}$

(iv) Velocity of fall at the point of projection = u (downwards)

• At any point on its path the body will have same speed for upward journey and downward journey. If a body thrown upwards crosses a point in time t, & t, respectively then

height of point $h=\frac{1}{2}gt_1t_2$ Maximum height $H=\frac{1}{8}g(t_1+t_2)^2$ Time of flight = $t_1 + t_2 = \frac{2u}{q}$

 A body is thrown upward, downward & horizontally with same speed takes time t₁, t₂ & t₃ respectively to reach the ground then

 $t_3 = \sqrt{t_1 t_2}$ & height from where the particle was throw is $t_2 = \frac{1}{2} 9 t_1 t_2$

