روشهای بهبود آموزش (Regularization)

مبانی یادگیری عمیق (Deep Learning)
سعید محققی / بهار 1401

روشهای بهبود آموزش

هدایت و کنترل بهینهسازی

Transfer learning

Batch Normalization

L1 – L2 Regularization

Dropout

Dropout

حذف تصادفی تعدادی از نورونها در هر تکرار آموزش

مزایا:

- آموزش مستقل وزنها جلوگیری از Over fitting

(a) Standard Neural Network

(b) Network after Dropout

L1 / L2 Regularization

محدود کردن مقادیر وزن ها

مزایا:

- جلوگیری از Over–fitting
- روش L1، وزن ها یا ویژگی های غیر ضروری را حذف می کند (در تعداد پارامترهای بالا، مفید است)
 - روش L2، همه وزن ها را یکنواخت می کند (برای پایداری مدل، مفید است)

L1
$$Loss = Error(y, \hat{y}) + \lambda \sum_{i=1}^{N} |w_i|$$

L2
$$Loss = Error(y, \hat{y}) + \lambda \sum_{i=1}^{N} w_i^2$$

Batch Normalization

- حفظ مقادیر خروجی لایهها در محدوده نرمال
 - جلوگیری از over-fitting
 - افزایش سرعت و دقت آموزش

Batch Normalization

- نرمالکردن خروجی هر لایه
- بر اساس میانگین و واریانس هر Batch

روشهای Normalization

• بر اساس نحوه محاسبه میانگین و واریانس

• رفع مشکل کمبود دادههای آموزش

• تعداد کم دادهها

• تعداد متوسط دادهها

https://modelzoo.co

https://keras.io/api/applications

VGG

ResNet

Yolo

Mask R-CNN

Pix2Pix

• • •

مدلهای آموزش دیده قابل استفاده