Lista 4 - Álgebra Linear

Assuntos:

- 1. Autovalores e Autovetores
- 2. Matrizes ortogonais, simétricas, diagonais e matrizes com posto 1
- 3. Teorema Espectral
- 4. Diagonalização
- 5. Eliminação de Gauss (Escalonamento)
- 6. Espaço Nulo de matrizes
- 7. Espaço Coluna de matrizes
- 8. Espaço Linha de matrizes
- 9. dimR(A) + dimN(A) = 0 (Relações entre os espaços de uma matriz)
- 10. Transformações Lineares ((T(x) = Ax))
- **Exemplo 1**: A é uma matriz anti-simétrica se $A^T = -A$. Podemos escrever qualquer matriz como a soma de uma matriz simétrica com uma anti-simétrica.

<u>Resposta</u>: $A = \frac{1}{2}(A + A^T) + \frac{1}{2}(A - A^T)$, $(A + A^T)$ é simétrica e $(A - A^T)$ é anti-simétrica.

Exemplo 2: Se M é uma matriz simétrica, então $M = \sum_{i=0}^{n} \lambda_i v_i v_i^T$, onde $\lambda_1 \dots \lambda_n$ são os autovalores de A e $\{v_1 \dots v_n\}$ é a base ortonormal de autovetores de A (Teorema Espectral) (Ele VAI cobrar em uma questão).

Exemplo 3 : Se M é matriz simétrica, sem eigenvalue nulo, então podemos escrever M^-1 como $\sum_{i=0}^n \frac{1}{\lambda_i} v_i v_i^t$.

<u>Prova</u>: Queremos provar que $(\sum_{i=0}^{n} \frac{1}{\lambda_i} v_i v_i^t) M = I$. Então $(\sum_{j=0}^{n} \lambda_j v_j v_j^t) (\sum_{i=0}^{n} \frac{1}{\lambda_i} v_i v_i^t)$.

Quando $i \neq j$ o termo zera, pois a base é ortonormal. Quando i = j, temos $\sum_{i=j=0}^{n} \lambda_i \frac{1}{\lambda_i} v_i v_i^T v_i v_i^T = \sum_{i=j=0}^{n} \lambda_i \frac{1}{\lambda_i} v_i v_i^T = \sum_{i=j=0}^{n} v_i v_i^T = I(1).$

(1) Seja
$$M = \sum_{i=0}^{n} v_i v_i^T$$
. $Mx = x$, para qualquer vetor x .

Matrizes com Posto 1 (Revisão):

Sempre $M = a.b^T \Rightarrow$

$$\Rightarrow Mb = ||b||^2a$$

 $\Rightarrow Ma = (b^T a)a \Rightarrow \text{Então}$, o vetor a é um eigenvector, com eigenvalue $\lambda = b^T a$.

Os autovalores de A são: $\{b^Ta, 0, 0, \dots, 0\}$, com o 0 tendo multiplicidade n-1.