Third homework

zhangxiaorui0112

Abstract

Use rmarkdown to produce a report, and this report is about the Monte Carlo methods to approximate the standard normal distribution function.

Monte Carlo methods

Consider approximation of the distribution function of N(0,1),

$$\Phi(t) = \int_{\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy,$$
(1,1)

by the Monte Carlo methods:

$$\hat{\Phi}(t) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \le t),$$

where X_i 's are a random sample from N(0,1), and $I(\cdot)$ is the indicator function.

Results

Experiment with the approximation at $n \in \{10^2, 10^3, 10^4\}$ at $t \in \{0.0, 0.67, 0.84, 1.28, 1.65, 2.32, 2.58, 3.09, 3.72\}$ to form a table.

##		100	1000	10000	true_value
##	0	0.44	0.498	0.498	0.500
##	0.67	0.79	0.767	0.750	0.749
##	0.84	0.83	0.770	0.800	0.800
##	1.28	0.88	0.906	0.899	0.900
##	1.65	0.88	0.946	0.951	0.951
##	2.32	0.99	0.992	0.990	0.990
##	2.58	1.00	0.995	0.995	0.995
##	3.09	1.00	0.999	0.998	0.999
##	3.72	1.00	1.000	1.000	1.000

