

BCJ-0203 Fenômenos Eletromagnéticos

Experimento 2 Capacitor Variável de Placas Paralelas

	Nota
Destance	Dete
Professor	Data / / 2018
Grupo	
Nome	RA

Introdução e Objetivos

O capacitor é um componente que tem como finalidade armazenar energia elétrica. Os capacitores se apresentam numa variedade de formas e tamanhos. O mais comum, entretanto, é formado por duas placas condutoras paralelas, de área *A*, também denominadas de *armaduras*, separadas de uma distância *d* por um material isolante ou *dielétrico*, como mostrado na Figura 1a.

Na Figura 1b está ilustrado como as linhas do campo elétrico, \vec{E} , se distribuem em um capacitor desse tipo. Quando a distância entre as placas for menor que suas dimensões, a distorção do campo elétrico nas bordas do capacitor é desprezível.

Figura 1 – (a) Um capacitor de placas paralelas carregado; (b) vista lateral do campo elétrico \vec{E} .

Quando um capacitor está carregado, suas placas possuem cargas iguais e opostas, +Q e -Q, embora nossa referência à carga do capacitor seja expressa simplesmente por Q. Como as placas são condutoras, há uma *diferença de potencial* V_{ab} (Figura 1a) entre as mesmas. A carga, Q, e a diferença de potencial, V_{ab} , para um capacitor são proporcionais, podendo a relação entre elas ser escrita como:

$$Q = C \cdot V_{ab} \tag{1}$$

A constante de proporcionalidade C é chamada de capacitância do capacitor e representa uma medida da quantidade de carga que pode ser armazenada em suas placas quando entre elas houver uma diferença de potencial V_{ab} , ou seja, a constante C dá uma medida da capacidade de armazenamento do capacitor.

O objetivo principal desse experimento é o de verificar a real relação que existe entre a distância das placas d de um capacitor variável de placas paralelas e sua capacitância C, analisando os limites de validade da Eq. (2), obtida para um caso idealizado.

Questão 1 (10 pontos)

Partindo EXPLICITAMENTE da lei de Gauss, demonstre que

$$C = \varepsilon_0 \frac{A}{d} \tag{2}$$

para um capacitor de placas paralelas ideal no vácuo, onde A é a área de cada uma das placas, d a distância de separação entre elas e ε_0 é a permissividade do vácuo.

Procedimento Experimental, Coleta e Análise de Dados

Neste experimento, utilizaremos um capacitor de placas paralelas, que consiste de dois discos de metal fixados em torres isolantes móveis paralelamente entre si, em que a distância entre os discos pode ser variada.

Identifique os materiais que serão utilizados*, os procedimentos e cuidados conforme vídeo explicativo: http://www.youtube.com/watch?v=NEeb8NXk6n0

ATIVIDADE

Primeiramente, meça o valor da <u>capacitância residual</u>[†].da sua montagem experimental e sua respectiva incerteza.

$$C_{\text{residual}} = (\underline{\qquad} \pm \underline{\qquad}) pF$$

Movimente os discos do capacitor até encostá-los um no outro. (Nos equipamentos dotados de parafuso de ajuste da distância entre as discos, tenha o cuidado de NÃO FORÇAR DEMASIADAMENTE o mesmo!)

Posicione os discos de modo a deixar uma distância de 1 mm entre eles (nos equipamentos dotados de parafuso de ajuste, gire a chave uma volta completa). Conecte o capacitor ao multímetro e meça a capacitância. Desconecte um dos cabos e, com um paquímetro, meça a distância de separação entre as placas em 3 pontos distintos da borda dos discos, conforme explicado no vídeo. Repita esse procedimento mais nove vezes, aumentando a distância entre os discos de 1 mm em 1 mm aproximadamente.

Questão 2 (20 pontos)

Preencha a tabela abaixo com os dados obtidos pelo procedimento acima.

^{*} Capacitor variável de placas paralelas; 1 multímetro digital com medida de capacitância; cabos para conexão; paquímetro; folhas de papel.

[†] Nota: Para melhorar a precisão da medida de pequenos valores de capacitância, registre a leitura com os cabos de prova desconectados do capacitor. O valor da capacitância do capacitor será o valor medido quando este é conectado ao multímetro, C_{medido} , subtraído dessa capacitância residual, ou seja, $C_{Capacitor} = C_{medido} - C_{residual}$

Tabela1:			
•			

Medida	d_1	d_2	d_3	\bar{d}	$\sigma_{ar{d}}$	C _{Capacitor}	$\sigma C_{Capacitor}$
#	(mm)	(mm)	(mm)	(mm)	(mm)	(pF)	(pF)
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							

Questão 3 (10 pontos)

Meça o diâmetro das placas do capacitor, escolha e indique uma das linhas de dados da tabela anterior e determine a permissividade elétrica do ar. Compare o valor encontrado com o valor da permissividade do vácuo ϵ_0 (ϵ_0 = 8,85 x 10⁻¹² F.m⁻¹).

Questão 4 (20 pontos).

Construa um gráfico da capacitância em função da distância *d* entre as placas.

Gráfico 1.

Questão 4 (20 pontos)

Construa o gráfico da capacitância, C, em função do inverso da distância entre as placas do capacitor, w = 1/d. Para isso, preencha a tabela abaixo com os dados da tabela 1, determinando a incerteza em w por propagação de erro.

Tabela 2:			
_			

$w = 1/d \ (m^{-1})$	$\sigma_{w}\left(m^{\text{-}1}\right)$	$C_{Capacitor}(pF)$	$\sigma C_{Capacitor}(\mathrm{pF})$

Gráfico 2.			

Questão 5 (10 pontos)

(a)	(7 pontos) No gráfico de C versus 1/d (w), desenhe a reta que m	elhor s	se aj	justa
	aos dados e determine seu coeficiente angular.			

(b) (3 pontos) Qual o significado desse coeficiente?
Questão 6 (10 pontos)
Ajuste a distância entre as placas para aproximadamente 1 mm.
(a) (3 pontos) O que ocorre com a capacitância ao inserimos uma folha de papel
entre as placas?
(b) (7 pontos) Explique o fenômeno observado a nível microscópico.
(b) (7 portos) Explique o lenomeno observado a filver filicroscopico.

Referências

^[1] VUOLO, José Henrique. *Fundamentos da teoria de erros*. 2ª. ed. São Paulo: Edgar Blücher, 1996. 249 p. ISBN 8521200560.

^[2] YOUNG, Hugh D., FREEDMAN, Roger A., FORD, A. Lewis, Sears & Zemansky – Física III, 12ª ed. São Paulo: Pearson Education do Brasil, 2009. 245 p. ISBN 978-85-88639-34-8.
[3] HALLIDAY, RESNICK, WALKER, Fundamentos de Física – vol. 3, 8ª ed. Rio de Janeiro: LTC – Livros Técnicos e Científicos Editora Ltda., 2009. 395 p. ISBN 978-85-216-1607-8.