

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

PROGRAMA SINTÉTICO

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA CAMPUS COAHUILA;

(UPIIC), ESCUELA SUPERIOR DE COMPUTO (ESCOM), UNIDAD PROFESIONAL

INTERDISCIPLINARIA EN INGENIERÍA CAMPÚS TLAXCALA (UPIIT)

PROGRAMA ACADÉMICO: Ingeniería en Inteligencia Artificial

UNIDAD DE APRENDIZAJE: Redes neurales y aprendizaje profundo SEMESTRE: VI

ONIDAD DE AL REIN	IDIZAGE: Nedes 1	- Iouraroo	y apronaize	2,0 p.0	JEMESTICE:	••		
Evalúa modelos de r desempeño.					E APRENDIZAJE: la arquitectura, el modo de	aprendizaje y su		
CONTENIDOS:	II. EI p III. Mod IV. Mod	erceptró delos su delos no	os de redes on pervisados supervisad onales profi	os	les			
	Métodos de en	señanza	1		Estrategias de aprendiz	aje		
	a) Inductivo				a) Estudio de casos			
ORIENTACIÓN DIDÁCTICA:	b) Deductivo			Х	b) Aprendizaje Basado	en Problemas		
DIDACTICA.	c) Analógico				c) Aprendizaje Orientad	o a Proyectos	Х	
	d) Heurístico			Х	d)			
	Diagnóstica			Х	Saberes Previamente A	dquiridos	Х	
	Solución de ca	Solución de casos		Х	Organizadores gráficos		х	
	Problemas res	Problemas resueltos Problemarios						
EVALUACIÓN Y ACREDITACIÓN:	Reporte de pro	yectos		Х	Exposiciones		х	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Reportes de indagación				Otras evidencias a evaluar:			
	Reportes de pr	ácticas		Х				
	Evaluaciones e	scritas						
	Autor(es)	Año		Título	del documento	Editorial/IS	BN	
	Aggarwal, C.	2018	textbook.		s and Deep Learning: a	Springer / 97833199446	23	
	Livshin, I.	2019			Networks with Java: tools al network applications.	Apress / 97814842442	03	
BIBLIOGRAFÍA BÁSICA:	Michelucci, U.	Advance		Applional ne	Applied Deep Learning: Apress / 978148424			
	Michelucci, U.	2018	Applied D	eep Le	pep Learning: a case-based Apress / 978148423			
	Soares, M. & Souza, F.	2016	Neural Ne	etwork	rk Programming with Java. Packt Publishing 9781785880902			

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

PROGRAMA DE ESTUDIOS

UNIDAD DE APRENDIZAJE:	Redes neurales y aprendizaje profundo	HOJA	2	DE	8
UNIDAD DE AFRENDIZAJE.	Redes riediales y aprendizale profutido	ПОЈА	_		0

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA CAMPUS COAHUILA; (UPIIC), ESCUELA SUPERIOR DE COMPUTO (ESCOM), UNIDAD PROFESIONAL

INTERDISCIPLINARIA EN INGENIERÍA CAMPUS TLAXCALA (UPIIT)

PROGRAMA ACADÉMICO: Ingeniería en Inteligencia Artificial

SEMESTRE: VI

AREA DE FORMACIÓN:

Profesional

MODALIDAD:

Escolarizada

TIPO DE UNIDAD DE APRENDIZAJE:

Teórica-Práctica/Obligatoria

VIGENTE A PARTIR DE: CRÉDITOS:

Agosto 2022 **Tepic:** 7.5 **SATCA:** 6.3

INTENCIÓN EDUCATIVA

La unidad contribuye al perfil de egreso de la Ingeniería en Inteligencia Artificial con el desarrollo de los elementos prácticos para la implementación de sistemas basados en conocimiento que resuelvan problemas de clasificación, asociación, agrupación y/u optimización a partir de modelos de aprendizaje de redes neuronales. Todo ello asumiendo una actitud de responsabilidad y ética en su desempeño profesional y personal.

Esta unidad de aprendizaje se relaciona de manera antecedente con Aprendizaje de máquina; de manera lateral con Metodología de la investigación y divulgación científica; y de manera consecuente con Reconocimiento de voz.

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE

Evalúa modelos de redes neuronales con base en la aplicación, la arquitectura, el modo de aprendizaje y su desempeño.

TIEMPOS ASIGNADOS

HORAS TEORÍA/SEMANA: 3.0

HORAS PRÁCTICA/SEMANA:

1.5

HORAS TEORÍA/SEMESTRE:

54.0

HORAS PRÁCTICA/SEMESTRE:

27.0

HORAS APRENDIZAJE

AUTÓNOMO: 24.0

HORAS TOTALES/SEMESTRE:

81.0

UNIDAD DE APRENDIZAJE DISEÑADA POR: Comisión de Diseño

del Programa Académico.

APROBADO POR:

Comisión de Programas Académicos del H. Consejo General Consultivo del IPN AUTORIZADO Y VALIDADO POR:

Mtro. Mauricio Igor Jasso Zaranda Director de Educación

Director de Educación Superior

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Redes neurales y aprendizaje profundo

HOJA

3 **DE**

8

UNIDAD TEMÁTICA I Fundamentos de redes	CONTENIDO		S CON ENTE	HRS
neurales		Т	P	_ ^^_
Examina redes neuronales con base en sus modelos, aplicaciones y desempeño.	1.1 Modelos de red neuronal 1.1.1 Modelo biológico 1.1.2 Modelo artificial	1.0		
	1.2 Aplicaciones generales de las redes neurales 1.2.1 Clasificación 1.2.2 Asociación y agrupación 1.2.3 Optimización	0.5		
	1.3 Desempeño de una red neuronal artificial1.3.1 Habilidad de aproximación1.3.2 Tiempo de aprendizaje1.3.3 Complejidad de la red	1.0		
	1.4 Modelo McCulloch-Pitts 1.4.1 Arquitectura 1.4.2 Aplicaciones	2.0		1.0
	Subtotal	4.5	0.0	1.0

UNIDAD TEMÁTICA II El perceptrón	CONTENIDO			HORAS CON DOCENTE			
Ei perception			Т	Р	AA		
UNIDAD DE COMPETENCIA	2.1 Arquitectura		0.5				
Implementa el modelo de	2.2 Regla de aprendizaje		1.5	0.5			
perceptrón en problemas de clasificación con base en su	2.3 Simple		1.5	1.5	1.0		
arquitectura y su regla de aprendizaje.	2.4 Multicapa		1.5	1.5	1.0		
	2.5 Aplicaciones		1.0	1.0	1.0		
	Sub	total	6.0	4.5	3.0		

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Redes neurales y aprendizaje profundo HOJA 4 DE 8

UNIDAD TEMÁTICA III	CONTENIDO		HORA: DOCI	HRS	
Modelos supervisados			Т	Р	AA
UNIDAD DE COMPETENCIA	3.1 Modelo de propagación hacía atrás 3.1.1 Arquitectura		1.5		
Implementa una red neuronal supervisada en problemas de asociación a partir de su arquitectura y su regla de aprendizaje.	3.2.2 Generalización		3.0	2.0	1.0
aprendizaje.	3.3 Funciones de base radial 3.3.1 Arquitectura 3.3.2 Regla de aprendizaje 3.3.3 Aplicaciones		1.5	2.0	2.0
	3.4 Recurrentes 3.4.1 Memoria de Hopfield 3.4.2 Perceptrón multicapa recurrente 3.4.3 Recurrente con propagación hacía atrás		4.5	2.0	1.5
	3.5 Aplicaciones		1.5	3.0	1.0
		Subtotal	12.0	9.0	5.5

UNIDAD TEMÁTICA IV Modelos no supervisados	CONTENIDO		HORAS CON DOCENTE			
Wodelos no supervisados		Т	Р	AA		
UNIDAD DE COMPETENCIA Implementa un modelo neuronal no supervisado en problemas de agrupación con base en la teoría de la resonancia adaptativa, mapas auto-organizativos y	4.1 Teoría de la resonancia adaptativa (ART) 4.1.1 El modelo ART discreto 4.1.2 El modelo ART continuo 4.1.3 El modelo ART difuso 4.2 Mapas auto-organizativos de Kohonen 4.2.1 Regla de aprendizaje 4.2.2 Modelo en una dimensión 4.2.3 Modelo en dos dimensiones	3.5	2.0	1.5		
aplicaciones.						
	4.3 Aplicaciones	2.0	2.0	1.5		
	Subtotal	9.0	6.0	4.5		

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Redes neurales y aprendizaje profundo HOJA 5 DE 8

UNIDAD TEMÁTICA V Redes neuronales profundas	CONTENIDO		HORA: DOC	HRS AA	
redes fiedionales profundas				Р	~~
UNIDAD DE COMPETENCIA	5.1 Redes convolucionales 5.1.1 Mecanismo de aprendizaje		4.5	1.5	2.0
Implementa una red neuronal profunda en problemas de	5.2 Métodos de regularización		4.5	1.5	2.0
clasificación, asociación y optimización a partir de	5.3 Autoencoders		4.5	1.5	2.0
métodos de regularización autoencoders, redes	5.4 Recurrentes		4.5	1.5	2.0
recurrentes y recursivas.	5.5 Recursivas		4.5	1.5	2.0
	S	ubtotal	22.5	7.5	10.0

ESTRATEGIAS DE APRENDIZAJE	EVALUACIÓN DE LOS APRENDIZAJES
Estrategia de Aprendizaje Orientado a Proyectos	Evaluación diagnóstica.
El alumno desarrollará las siguientes actividades:	Portafolio de evidencias:
 Desarrollo de conceptos teóricos e indagación documental con lo que elaborará organizadores gráficos. Análisis de casos de estudio de los temas que sean vistos en clase. Desarrollo de un proyecto donde se implemente una red neuronal o sistema de aprendizaje profundo. Presentación oral del proyecto final. Realización de prácticas. 	 Mapas mentales, mapas conceptuales, cuadros sinópticos, mapas cognitivos. Solución de los casos. Reporte de proyecto final. Reporte de exposición. Reporte de prácticas.

RELACIÓN DE PRÁCTICAS							
PRÁCTICA No.	NOMBRE DE LA PRÁCTICA	UNIDADES TEMÁTICAS	LUGAR DE REALIZACIÓN				
1	Red de McCulloch-Pitts	I					
2	Perceptrón multicapa	ll II					
3	Propagación hacía atrás	III					
4	Funciones de base radial	III					
5	Memoria de Hopfield	III					
6	ART (modelo a escoger y cambiar)	IV	Laboratorio de cómputo				
7	Modelo de Kohonen en dos dimensiones	IV					
8	Red convolucional	V					
9	Red profunda recurrente	V					
10	Red profunda recursiva	V					
		TOTAL DE HORAS:	27.0				

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Redes neurales y aprendizaje profundo

HOJA

DE

8

			Bibliografía				
			Do	cume	nto		
Tipo	Autor(es)	Año	Título del documento	Editorial	Libro	Antología	Otros
В	Aggarwal, C.	2018	Neural Networks and Deep Learning: a textbook.	Springer / 9783319944623	Х		
С	Kim, P.	2017	Matlab Deep Learning with Machine Learning, neural networks and artificial intelligence.	Apress / 9781484228449	X		
В	Livshin, I.	2019	Artificial Neural Networks with Java: tools for building neural network applications.	Apress / 9781484244203	Х		
В	Michelucci, U.	2019	Advanced Applied Deep Learning: convolutional neural networks and object detection.	Apress / 9781484249758	Х		
В	Michelucci, U.	2018	Applied Deep Learning: a case-based approach to understanding deep neural networks.	Apress / 9781484237892	Х		
С	Moolayil, J.	2019	Learn Keras for Deep Neural Networks: A fast-track approach to modern deep learning with Python.	Apress / 9781484242391	Х		
В	Soares, M. & Souza, F.	2016	Neural Network Programming with Java.	Packt Publishing / 9781785880902	Х		
С	Tadeusi, R., Chaki, R. & Chaki, N.	2015	Exploring Neural Networks with C#.	CRC Press / 9781482233407	X		

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Redes neurales y aprendizaje profundo HOJA 7 DE 8

Recursos digitales								
Autor, año, título y Dirección Electrónica	Texto	Simulador	Imagen	Tutorial	Video	Presentación	Diccionario	Otro
Google Inc. (2019). Cloud AutoML - Custom Machine Learning Models. https://cloud.google.com/automl.								Х
Kriesel, D. (2007). A brief introduction to neural networks. http://www.dkriesel.com/en/science/neural_networks	Х							
Microsoft Inc. (2019). Azure Machine Learning Microsoft Azure. https://azure.microsoft.com/en-us/services/machine-learning/								Х
Nielsen, M. (2015). Neural Networks and Deep Learning. http://neuralnetworksanddeeplearning.com/	Х							
Rapidminer. (2016). RapidMiner Best Data Science & Machine Learning Platform. https://rapidminer.com/.								Х
Stacy, S. (2018). <i>The Best Public Datasets for Machine Learning and Data Science</i> . https://medium.com/towards-artificial-intelligence/the-50-best-public-datasets-for-machine-learning-d80e9f030279 .								Х
Universidad Carnellige Mellon. (2020). <i>Machine Learning and AI: Find Datasets</i> . https://guides.library.cmu.edu/machine-learning/datasets.								Х
Universidad de Califonia Irvine. (1987). <i>Machine Learning Repository, Machine Learning Repository</i> . http://archive.ics.uci.edu/ml/index.php.								Х
University of Waikato. (2019). Weka 3 - Data Mining with Open Source Machine Learning Software in Java. R. https://www.cs.waikato.ac.nz/ml/weka/ .								Х

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

DE

UNIDAD DE APRENDIZAJE:

Redes neurales y aprendizaje profundo

HOJA

8

8

PERFIL DOCENTE: Ingeniería en Informática, Ingeniería en Sistemas Computacionales, carrera afín o posgrado afín

EXPERIENCIA PROFESIONAL	CONOCIMIENTOS	HABILIDADES DIDÁCTICAS	ACTITUDES
Mínima de dos años en el área profesional. Mínima de dos años de docencia a Nivel Superior.	En Inteligencia artificial. En computación. En desarrollo de sistemas. En el Modelo Educativo Institucional (MEI).	Discursivas Investigativas Metodológicas Conducción del grupo Planificación de la enseñanza Manejo de estrategias didácticas centradas en el aprendizaje Evaluativas Manejo de las TIC	Compromiso social e Institucional Congruencia Empatía Honestidad Respeto Responsabilidad Tolerancia Disponibilidad al cambio Vocación de servicio Liderazgo

ELABORÓ	REVISÓ	AUTORIZÓ
Dr. Eric Manuel Rosales Peña Alfaro Coordinador		Ing. Carlos Alberto Paredes Treviño Director Interino de la UPIIC
M. en C. Edgar Armando Catalán Salgado Participante	M. en C. Iván Giovanni Mosso García Subdirector Académico ESCOM	M. en C. Andrés Ortigoza Campos Director ESCOM
	Ing. Enrique Lima Morales Subdirector Académico UPIIT	Dr. Edgar Alfredo Portilla Flores Director de la UPIIT