Project 1

Olav K. Arnesen (Dated: September 10, 2022)

List a link to your github repository here!

PROBLEM 1

To check whether $u(x) = 1 - (1 - e^{-10})x - e^{-100x}$ is a solution or not we insert it into the Poisson equation:

$$f(x) = -\frac{d^2 u(x)}{dx^2}$$

$$= -\frac{d^2}{dx^2} \left[1 - \left(1 - e^{-10} \right) x - e^{-10x} \right]$$

$$= -\frac{d}{dx} \left[1 - e^{-10} + 10e^{-10x} \right]$$

$$= 100e^{-10x}$$
(1)

which is the expected solution.

PROBLEM 2

Using n = 1000 steps between x = 0 and x = 1 we got Fig. 1.

PROBLEM 3

The second derivative of $u(x_i) = u_i$, where $i = 1, 2 \dots n$, is given numerically by

$$u_i'' = \frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} + O(h^2)$$
(2)

where $h = \frac{x_n - x_1}{n}$ and $O(h^2)$ are all terms of order h^2 or higher. Inserting the Poisson equation and removing higher order terms we get the equation

$$-v_{i+1} + 2v_i - v_{i-1} = h^2 f_i (3)$$

where $v_i \approx u_i$ and $f(x_i) = f_i$. We can rename $h^2 f_i$ to g_i to get a discretized Poission equation

$$-v_{i+1} + 2v_i - v_{i-1} = g_i (4)$$

PROBLEM 4

We can write out the discretized Poisson equation for all i:

$$i = 1 : 2v_1 - v_2 + 0 + 0 \cdots + 0 + 0 = g_1$$

$$i = 2 : -v_1 + 2v_2 - v_3 + 0 \cdots + 0 + 0 = g_2$$

$$i = 3 : 0 - v_2 + 2v_3 - v_3 \cdots + 0 + 0 = g_3$$

$$\vdots$$

$$i = n : 0 + 0 + 0 + 0 \cdots - v_{n-1} + 2v_n = g_n$$

FIG. 1. The function u(x) from x = 0 to x = 1.

If we define two vectors $\vec{v} = (v_0, v_1, \dots v_n)$ and $\vec{g} = (g_0, g_1, \dots g_n)$ we can clearly see these equations can be represented by

$$\begin{pmatrix} 2 & -1 & 0 & 0 & \dots & 0 \\ -1 & 2 & -1 & 0 & \dots & 0 \\ 0 & -1 & 2 & -1 & \dots & 0 \\ & & \vdots & & & \\ 0 & 0 & 0 & 0 & \dots & 2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} g_1 \\ g_2 \\ g_3 \\ \vdots \\ g_n \end{pmatrix}$$
 (5)

where the left-hand matrix is a tri-diagonal $n \times n$ -matrix, where all elements in the main diagonal is 2 and the elements in the sub- and superdiagonal are -1. If we call the matrix **A** we can write the vector equation as

$$\mathbf{A}\vec{v} = \vec{g} \tag{6}$$

PROBLEM 5

a)

 \vec{v}^* being a complete solution means it includes the endpoints x=0 and x=1, while \vec{v} does not (though that was not obvious to me without help from a teacher). This means m=n+2.

b)

When we solve for \vec{v} we find the middle part of \vec{v}^* , i.e. not the endpoints. We could write $\vec{v}^* = (0, v_1, v_2, \dots, v_n, 0)$.

PROBLEM 6

a)

Algorithm derived in lecture on 2.09.2022.

Algorithm 1 Gaussian elimination

Subdiagonal: $\vec{a} = (a_2, a_3, \dots, a_n)$ Main diagonal: $\vec{b} = (b_1, b_2, \dots, b_n)$ Superdiagonal: $\vec{c} = (c_1, c_2, \dots, c_{n-1})$ $\tilde{g_1} = g_1$ $\tilde{b_1} = b_1$ for $i = 2, \dots, n$ do $\tilde{g_i} = g_i - \frac{a_i}{b_{i-1}} g_{i-1}$ $\tilde{b_i} = b_i - \frac{a_i}{b_{i-1}} c_{i-1}$ $v_n = \frac{g_n}{b_n}$ for $i = n - 1, \dots, 1$ do $v_i = \frac{g_i - c_i v_{i+1}}{b_i}$ \Rightarrow Back substitution

b)

The number of FLOPs from forward substitution is $(n-1)\cdot 2\cdot 3$, (3 in $\tilde{g_i}$, 3 in $\tilde{b_i}$, n-1 times). From back substitution there are $(n-1)\cdot 3+1$, (3 in v_i , (n-1) times, plus v_n). The total number of FLOPs is $(n-1)\cdot 2\cdot 3+(n-1)\cdot 3+1=7n-6\approx 7n$ for large n.

PROBLEM 7

a)

Using the algorithm for n = 1000 non-endpoints and plotting the results gives us Fig. 2.

FIG. 2. The function v(x) from x = 0 to x = 1.