Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Санкт-Петербургский политехнический университет Петра Великого»

УДК	УТВЕРЖДАЮ
$\mathcal{N}^{\underline{o}}$	Зав. НИЛ «Математическая биология
Инв. №	и биоинформатика», ИПММ
	ФГАОУ ВО «СПбПУ»,
	д.б.н.
	М. Г. Самсонова
	«» 2016 г.

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСНОЙ РАБОТЕ

по теме:

«Стохастическое моделирование экспрессии генов»

Выполнил сту	дент гр. №53601/4
Д. В	3. Яковлев
«»	2016 г.
Руководитель	НИР, к.фм.н.
B.B.	Гурский
« »	2016 г.

Санкт-Петербург 2016

РЕФЕРАТ

Отчёт 14 стр., 1 часть, 5 рис., 5 источников СТОХАСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЭКСПРЕССИИ ГЕНОВ В данной работе описываются реакции моделирования экспрессии генов. Приводятся результаты стохастического моделирования экспрессии генов.

СОДЕРЖАНИЕ

Введе	ение	4
1 M	[одель	5
1.1	Транскрипционные факторы	5
1.2	Транскрипция и трансляция	
1.3	Диффузия и деградация	6
2 И	нструменты для моделирования	9
2.1	StochPy, GillesPy	9
2.2	fern	9
2.3	StochKit	9
2.4	DEEP	9
3 Pe	езультаты	10
3.1	Описание реакций	
3.2	Разработка программного обеспечения	11
3.3	Анализ результатов	11
СПИС	СОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	15

Введение

Экспрессия генов - это процесс преобразования последовательности нуклеотидов ДНК в функциональный продукт РНК и белок.

Существует два основных направления моделирования экспрессии генов - аналитическое и стохастическое.

Цель научно-исследовательской работы:

- Описать реакции экспрессии генов
- Разработка программного обеспечения для стохастического моделирования экспресии генов.
- Анализ экспериментальных расчётов
- Выводы

1 Модель

В данной работе будут рассмотрены 5 основных видов реакций в процессе экспрессии генов:

- Присоединение и отсоединение транскрипционных факторов (Рис. 1)
- Начало транскрипции (Рис. 2)
- Трансляция (Рис. 2)
- Деградация белка и тф (Рис. 3)
- Диффузия между ядрами (Рис. 3)

1.1 Транскрипционные факторы

Наиболее важную роль в экспрессии генов играет присоединение транскрипционных факторов. Связывание происходит к специфичным участкам ДНК - сайтам. Основным вкладом транскрипционных факторов в экспрессию генов является запуск процесса транскрипции. В данной работе будет предполагаться, что транскрипционные факторы самостоятельно взаимодествуют, а не в комлексе. Стоит отметить, что для каждого белка свои сайты присоединения на ДНК, которые измевстны из экспериментальных расчётов.

Транскрипционные факторы делятся на два типа:

- **Активаторы** белки, которые активируют процесс транскрипции. В нашей работе это будут **cad** и **bcd**.
- **Репрессоры** белки, которые останавливают процесс транскрипции. В нашей работе это будут **tll**, **hkb**, **hb**, **Kr**, **gt**

Таким образом в экспрессии генов будут задействованы 7 транскрипционных факторов - cad, bcd, textbftll, hkb, hb, Kr, gt

1.2 Транскрипция и трансляция

Транскрипция - процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Как упоминалось ранее активаторами для старта транскрипции являются белки **cad** и **bcd**. В результате транскрипции образауется молекулы РНК, которые будут участвовать в реакции трансляции, а именно синтезировать молекулы белка.

Для каждого сайта определено какой ТФ может присоединиться. Сайтов – 611 и ТФ – 8.

Рисунок 1 – Процесс присоединения и отсоединения ТФ

1.3 Диффузия и деградация

Будем предполагать, что все молекулы у нас линейно расположены. Тогда между ядрами может происходить процесс диффузии - переход РНК в соседнее ядро. Так же под действием внешней среды может происходить распад РНК и белка.

Вероятность транскрипции зависит от количества присоединённых ТФ, трансляции – от количества РНК.

Рисунок 2 – Процесс транскрипции и трансляции

Диффузия:

Деградация:

Вероятности деградации и диффузии линейно зависят от концетраций.

Рисунок 3 – Процесс диффузии и деградации

2 Инструменты для моделирования

Были рассмотрены следующие пакеты для стохастического моделирования - fern[1], StochKit[2], StochPy[3], GillesPy[2]. Каждый из них рассчитан на языки программирования - java, c++, python соотвественно. Далее будет каждый пакет рассмотрен более подробно, но наш выбор остановился на StochKit, как на самом быстром.

2.1 StochPy, GillesPy

Является обвёрткой над пакетом StochKit с некоторыми модификациями. В комплекте с моделирование есть возможность строить графики. Содержит две модификации алгоритма гиллеспи. На вход не принимает файлы в формате sbml (нужно конвертировать в xml).

2.2 fern

Является самым медленным из предложенных пакетов стохастического моделирования. Содержит более семи модификаций алгоритма гиллеспи. На вход принимает файлы в формате sbml, что является большим плюсом. Данный пакет подходит для моделирования небольшого количества реакций.

2.3 StochKit

Является самым быстрым, так как написан на С и все остальные пакеты либо опираются на него, либо являются обвёрткой. В комплекте идёт программа, написанная на Matlab, для построения графиков, но к сожалению данные графики на неинтересны. В пакете реализовано несколько модификаций алгоритма гиллеспи. Выходом программы StochKit является текстовый файл с концентрациями веществ в любой момент времени (частота задаётся параметром).

2.4 DEEP

Наша модель будет содержать параметры и для моделирования мы воспользуемся генетическими алгоритмами, реализованными в DEEP [4].

3 Результаты

3.1 Описание реакций

Опишем реакции для одного ядра (для остальных ядер аналогично). Для каждого сайта присоединения реакции присоединения и отсоединения будут иметь одинаковый вид. Основным отличием будет какой именно ТФ присоединяется/отсоединяется. Для активаторов (в нашей работе это **cad** или **bcd**) реакции примут следующий вид:

$$N^{unbound} \xrightarrow{C_i \cdot N^{unbound}} N^{binded} + A$$

$$N^{binded} + A \xrightarrow{C_i \cdot N^{binded}} N^{unbound}$$

Для репрессоров реакции будут выглядеть так:

$$N^{unbound} \xrightarrow{C_i \cdot N^{unbound}} N^{binded} + R$$

$$N^{binded} + R \xrightarrow{C_i \cdot N^{binded}} N^{unbound}$$

где C_i - коэффициент присоединения к i-ому сайту, R - количество репрессоров и A - количество активаторов.

Теперь запишем реакции транскрипции и трансляции:

$$\varnothing \xrightarrow{p_{\lambda} \cdot p_{\alpha}^{A} \cdot p_{\beta}^{R}} mRNA$$

$$mRNA \xrightarrow{p_{\gamma} \cdot mRNA} N^{unbound}$$

где $p_{\lambda},\,p_{\alpha},\,p_{\beta},\,p_{\gamma}$ - коэффициенты транскрипции, активации, регрессии и трансляции соотвественно.

Реакции деградации:

$$mRNA \xrightarrow{p_{\theta} \cdot mRNA} \varnothing$$

$$N^{unbound} \xrightarrow{p_{\phi} \cdot N^{unbound}} \varnothing$$

где $p_{\theta},\,p_{\phi}$ - коэффициенты деградации мРНК и белка соотвественно.

Так же нужно учесть диффузию - перетекание белка в соседние ядра:

$$N_i \xrightarrow{p_{\xi} \cdot max(N_i - N_{i+1}, 0)} N_{i+1}$$

$$N_i \xrightarrow{p_{\xi} \cdot max(N_i - N_{i-1}, 0)} N_{i-1}$$

где p_{ξ} - параметр диффузии, i - номер ядра. В результате наша модель имеет 7 параметров - $p_{\lambda},\,p_{\alpha},\,p_{\beta},\,p_{\gamma},\,p_{\theta},\,p_{\phi},\,p_{\xi}.$

3.2 Разработка программного обеспечения

Пакет был разделён на четыре компоненты:

- Генерация системы реакций для пакета StochKit с помощью языка программирования Python
- Стохастическое моделирование с помощью пакета StochKit
- Оптимизация параметров модели с помощью DEEP
- Анализ результатов с помощью языка программирования R

Основной трудностью было наладить работу DEEP совместно с StochKit. Для этого нужно было изменить исходники StochKit, чтобы после каждого запуска он выводил ошибку моделирования при заданных параметрах.

3.3 Анализ результатов

В силу ограниченности возможности работы на кластере, было произведено несколько стартов. Было построены графики зависимости концентрации белка **kni** от ядра к концу моделирования (в нашем случае это 60 минута).

На графиках (4, 5) отчётливо видно, что поведение концентраций у белка **kni** и мРНК схожи с экспериментальными расчётами.

Рисунок 4 – Зависимость концентрации белка kni от ядра. Чёрным цветом - результат моделирования, красный цвет - экспериментальный расчёты

Рисунок 5 – Зависимость концентрации мРНК от ядра. Чёрным цветом - результат моделирования, красный цвет - экспериментальный расчёты

выводы

Основной сложностью моделирования является вычислительная сложность, так как в сумме получается нужно рассчитывать вероятности для 12404 реакций. Но даже при малом времение работы DEEP удалось подобрать параметры модели, чтобы концентрации белка **kni** и мРНК имели схожее поведение с экспериментальными рассчётами.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 FERN a Java framework for stochastic simulation and evaluation of reaction networks. https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-356. Accessed: 2016-30-04.
 - 2 StochKit. https://sourceforge.net/projects/stochkit/. Accessed: 2016-30-04.
 - 3 Stoch Py. — http://stochpy.sourceforge.net. — Accessed: 2016-30-04.
- 4 Kozlov K., Samsonov A. DEEP—differential evolution entirely parallel method for gene regulatory networks. http://link.springer.com/article/10.1007/s11227-010-0390-6. Accessed: 2016-30-04.