

A FIRST COURSE IN LINEAR ALGEBRA

An Open Text by Ken Kuttler

Spectral Theory: Eigenvalues and Eigenvectors

Lecture Notes by Karen Seyffarth*

Adapted by
LYRYX SERVICE COURSE SOLUTION

* Attribution-NonCommercial-ShareAlike (CC BY-NC-SA)
This license lets others remix, tweak, and build upon your work
non-commercially, as long as they credit you and license their new creations
under the identical terms.

Definition of Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors

Definition

Let A be an $n \times n$ matrix, λ a real number, and $X \neq 0$ an n-vector. If $AX = \lambda X$, then λ is an eigenvalue of A, and X is an eigenvector of A corresponding to λ , or a λ -eigenvector.

Eigenvalues and Eigenvectors

Definition

Let A be an $n \times n$ matrix, λ a real number, and $X \neq 0$ an n-vector. If $AX = \lambda X$, then λ is an eigenvalue of A, and X is an eigenvector of A corresponding to λ , or a λ -eigenvector.

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$$
 and $X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Then

$$AX = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 3X.$$

This means that 3 is an eigenvalue of A, and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of A corresponding to 3 (or a 3-eigenvector of A).

Suppose that A is an $n \times n$ matrix, $X \neq 0$ an n-vector, $\lambda \in \mathbb{R}$, and that $AX = \lambda X$.

Suppose that A is an $n \times n$ matrix, $X \neq 0$ an n-vector, $\lambda \in \mathbb{R}$, and that $AX = \lambda X$.

Then

$$\lambda X - AX = 0$$
$$\lambda IX - AX = 0$$
$$(\lambda I - A)X = 0$$

Suppose that A is an $n \times n$ matrix, $X \neq 0$ an n-vector, $\lambda \in \mathbb{R}$, and that $AX = \lambda X$.

Then

$$\lambda X - AX = 0$$
$$\lambda IX - AX = 0$$
$$(\lambda I - A)X = 0$$

Suppose $\lambda I - A$ has an inverse. Then,

$$X = IX$$

$$= ((\lambda I - A)^{-1}(\lambda I - A))X$$

$$= (\lambda I - A)^{-1}((\lambda I - A)X)$$

$$= (\lambda I - A)^{-1}0$$

$$= 0$$

Since $X \neq 0$, the matrix $\lambda I - A$ has no inverse, and thus

$$\det(\lambda I - A) = 0.$$

Since $X \neq 0$, the matrix $\lambda I - A$ has no inverse, and thus

$$\det(\lambda I - A) = 0.$$

Definition

The characteristic polynomial of an $n \times n$ matrix A is

$$c_A(x) = \det(xI - A)$$

Since $X \neq 0$, the matrix $\lambda I - A$ has no inverse, and thus

$$\det(\lambda I - A) = 0.$$

Definition

The characteristic polynomial of an $n \times n$ matrix A is

$$c_A(x) = \det(xI - A)$$

Theorem

Let A be an $n \times n$ matrix.

- The eigenvalues of A are the roots of $c_A(x)$.
- **2** The λ -eigenvectors X are the nontrivial solutions to $(\lambda I A)X = 0$.

Example

The characteristic polynomial of $A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$ is

$$c_A(x) = \det \left(\begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix} - \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix} \right)$$

$$= \det \begin{bmatrix} x - 4 & 2 \\ 1 & x - 3 \end{bmatrix}$$

$$= (x - 4)(x - 3) - 2$$

$$= x^2 - 7x + 10$$

Basic Eigenvectors

Definition

A basic eigenvector of an $n \times n$ matrix A is any nonzero multiple of a basic solution to $(\lambda I - A)X = 0$, where λ is an eigenvalue of A.

Basic Eigenvectors

Definition

A basic eigenvector of an $n \times n$ matrix A is any nonzero multiple of a basic solution to $(\lambda I - A)X = 0$, where λ is an eigenvalue of A.

Note: Any (nonzero) linear combination of basic eigenvectors of A is again an eigenvector of A.

Multiplicity of an Eigenvalue

Recall that the eigenvalues of A are the roots of the characteristic polynomial given by $c_A(x) = \det(xI - A)$.

Multiplicity of an Eigenvalue

Recall that the eigenvalues of A are the roots of the characteristic polynomial given by $c_A(x) = \det(xI - A)$.

Definition

The multiplicity of an eigenvalue λ of A is the number of times λ occurs as a root of $c_A(x)$.

Let A be an $n \times n$ matrix.

ullet Eigenvalues: Find λ by solving the equation

$$c_A(x) = \det(xI - A) = 0$$

Let A be an $n \times n$ matrix.

• **Eigenvalues:** Find λ by solving the equation

$$c_A(x) = det(xI - A) = 0$$

• **Eigenvectors:** For each λ , find $X \neq 0$ by finding the basic solutions to

$$(A - \lambda I)X = 0$$

Let A be an $n \times n$ matrix.

ullet Eigenvalues: Find λ by solving the equation

$$c_A(x) = \det(xI - A) = 0$$

• **Eigenvectors:** For each λ , find $X \neq 0$ by finding the basic solutions to

$$(A - \lambda I)X = 0$$

• **Check:** For each pair of λ , X check that $AX = \lambda X$.

Example

Find the eigenvalues and eigenvectors of the matrix

$$A = \left[\begin{array}{cc} 4 & -2 \\ -1 & 3 \end{array} \right]$$

Example

Find the eigenvalues and eigenvectors of the matrix

$$A = \left[\begin{array}{cc} 4 & -2 \\ -1 & 3 \end{array} \right]$$

Solution: Recall from earlier that the characteristic polynomial for *A* is given by

$$c_A(x) = x^2 - 7x + 10 = (x - 2)(x - 5)$$

Example

Find the eigenvalues and eigenvectors of the matrix

$$A = \left[\begin{array}{cc} 4 & -2 \\ -1 & 3 \end{array} \right]$$

Solution: Recall from earlier that the characteristic polynomial for *A* is given by

$$c_A(x) = x^2 - 7x + 10 = (x - 2)(x - 5)$$

We want to find the eigenvalues (λ) and eigenvectors (X) of A.

Example

Find the eigenvalues and eigenvectors of the matrix

$$A = \left[\begin{array}{cc} 4 & -2 \\ -1 & 3 \end{array} \right]$$

Solution: Recall from earlier that the characteristic polynomial for *A* is given by

$$c_A(x) = x^2 - 7x + 10 = (x - 2)(x - 5)$$

We want to find the eigenvalues (λ) and eigenvectors (X) of A.

Eigenvalues: To find λ , solve $c_A(x) = 0$

$$c_A(x) = x^2 - 7x + 10 = (x - 2)(x - 5) = 0$$

Therefore the roots are found by

$$x - 2 = 0 \rightarrow x = 2$$

$$x - 5 = 0 \rightarrow x = 5$$

A has eigenvalues $\lambda_1=2$ and $\lambda_2=5$. They each have multiplicity equal to 1.

Therefore the roots are found by

$$x - 2 = 0 \rightarrow x = 2$$

$$x - 5 = 0 \rightarrow x = 5$$

A has eigenvalues $\lambda_1=2$ and $\lambda_2=5$. They each have multiplicity equal to 1.

Eigenvectors: To find the basic eigenvector of A corresponding to $\lambda_1=2$, solve (2I-A)X=0. The matrix 2I-A is given by

$$\left[\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right] - \left[\begin{array}{cc} 4 & -2 \\ -1 & 3 \end{array}\right] = \left[\begin{array}{cc} -2 & -2 \\ 1 & -2 \end{array}\right]$$

Therefore the roots are found by

$$x - 2 = 0 \rightarrow x = 2$$

$$x - 5 = 0 \rightarrow x = 5$$

A has eigenvalues $\lambda_1=2$ and $\lambda_2=5$. They each have multiplicity equal to 1.

Eigenvectors: To find the basic eigenvector of A corresponding to $\lambda_1 = 2$, solve (2I - A)X = 0. The matrix 2I - A is given by

$$\left[\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right] - \left[\begin{array}{cc} 4 & -2 \\ -1 & 3 \end{array}\right] = \left[\begin{array}{cc} -2 & -2 \\ 1 & -2 \end{array}\right]$$

Solving the system (2I - A)X = 0 is done as follows.

$$\left[\begin{array}{cc|c} -2 & 2 & 0 \\ 1 & -1 & 0 \end{array}\right] \rightarrow \left[\begin{array}{cc|c} 1 & -1 & 0 \\ -2 & 2 & 0 \end{array}\right] \rightarrow \left[\begin{array}{cc|c} 1 & -1 & 0 \\ 0 & 0 & 0 \end{array}\right]$$

The general solution, in parametric form, is

$$X = \left[egin{array}{c} t \ t \end{array}
ight] = t \left[egin{array}{c} 1 \ 1 \end{array}
ight] \; ext{where} \; t \in \mathbb{R}.$$

The general solution, in parametric form, is

$$X = \left[egin{array}{c} t \ t \end{array}
ight] = t \left[egin{array}{c} 1 \ 1 \end{array}
ight] \; ext{where} \; t \in \mathbb{R}.$$

Therefore, the basic eigenvector of A associated with $\lambda_1=2$ is

$$X_1 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right]$$

The general solution, in parametric form, is

$$X = \left[egin{array}{c} t \ t \end{array}
ight] = t \left[egin{array}{c} 1 \ 1 \end{array}
ight] \; ext{where} \; t \in \mathbb{R}.$$

Therefore, the basic eigenvector of A associated with $\lambda_1=2$ is

$$X_1 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right]$$

To find the basic eigenvector of A corresponding to $\lambda_2 = 5$, solve (5I - A)X = 0:

$$\left[\begin{array}{cc|c}1&2&0\\1&2&0\end{array}\right]\rightarrow\left[\begin{array}{cc|c}1&2&0\\0&0&0\end{array}\right]$$

The general solution, in parametric form, is

$$X = \begin{bmatrix} -2s \\ s \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
 where $s \in \mathbb{R}$.

The general solution, in parametric form, is

$$X = \left[egin{array}{c} -2s \ s \end{array}
ight] = s \left[egin{array}{c} -2 \ 1 \end{array}
ight] \; ext{where} \; s \in \mathbb{R}.$$

Therefore the basic eigenvector corresponding to $\lambda_2=5$ is

$$X_2 = \left[\begin{array}{c} -2 \\ 1 \end{array} \right]$$

The general solution, in parametric form, is

$$X = \left[egin{array}{c} -2s \ s \end{array}
ight] = s \left[egin{array}{c} -2 \ 1 \end{array}
ight] \ ext{where} \ s \in \mathbb{R}.$$

Therefore the basic eigenvector corresponding to $\lambda_2=5$ is

$$X_2 = \left[\begin{array}{c} -2 \\ 1 \end{array} \right]$$

Check: Check that $AX_1 = \lambda_1 X_1$.

$$\begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

You can also check that $AX_2 = \lambda_2 X_2$.

Example For
$$A=\begin{bmatrix}3&-4&2\\1&-2&2\\1&-5&5\end{bmatrix}$$
 , find $c_A(x)$ and the eigenvalues and eigenvectors of A .

Example

For
$$A = \begin{bmatrix} 3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5 \end{bmatrix}$$
, find $c_A(x)$ and the eigenvalues and eigenvectors

of A.

Solution: Eigenvalues:

$$\det(xI - A) = \begin{vmatrix} x - 3 & 4 & -2 \\ -1 & x + 2 & -2 \\ -1 & 5 & x - 5 \end{vmatrix} = \begin{vmatrix} x - 3 & 4 & -2 \\ 0 & x - 3 & -x + 3 \\ -1 & 5 & x - 5 \end{vmatrix}$$

Example

For
$$A = \begin{bmatrix} 3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5 \end{bmatrix}$$
, find $c_A(x)$ and the eigenvalues and eigenvectors

of A.

Solution: Eigenvalues:

$$\det(xI - A) = \begin{vmatrix} x - 3 & 4 & -2 \\ -1 & x + 2 & -2 \\ -1 & 5 & x - 5 \end{vmatrix} = \begin{vmatrix} x - 3 & 4 & -2 \\ 0 & x - 3 & -x + 3 \\ -1 & 5 & x - 5 \end{vmatrix}$$

$$= \begin{vmatrix} x-3 & 4 & 2 \\ 0 & x-3 & 0 \\ -1 & 5 & x \end{vmatrix} = (x-3) \begin{vmatrix} x-3 & 2 \\ -1 & x \end{vmatrix}$$

Example

For
$$A = \begin{bmatrix} 3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5 \end{bmatrix}$$
, find $c_A(x)$ and the eigenvalues and eigenvectors

of A.

Solution: Eigenvalues:

$$\det(xI - A) = \begin{vmatrix} x - 3 & 4 & -2 \\ -1 & x + 2 & -2 \\ -1 & 5 & x - 5 \end{vmatrix} = \begin{vmatrix} x - 3 & 4 & -2 \\ 0 & x - 3 & -x + 3 \\ -1 & 5 & x - 5 \end{vmatrix}$$

$$= \begin{vmatrix} x-3 & 4 & 2 \\ 0 & x-3 & 0 \\ -1 & 5 & x \end{vmatrix} = (x-3) \begin{vmatrix} x-3 & 2 \\ -1 & x \end{vmatrix}$$

$$c_A(x) = (x-3)(x^2-3x+2) = (x-3)(x-2)(x-1)$$

Solving for the roots of $c_A(x)$, we find that the eigenvalues of A are $\lambda_1 = 3, \lambda_2 = 2$, and $\lambda_3 = 1$. All these eigenvalues have multiplicity of 1.

Solving for the roots of $c_A(x)$, we find that the eigenvalues of A are $\lambda_1=3, \lambda_2=2$, and $\lambda_3=1$. All these eigenvalues have multiplicity of 1.

Eigenvectors: Find the eigenvector corresponding to $\lambda_1 = 3$: solve (3I - A)X = 0.

$$\begin{bmatrix} 0 & 4 & -2 & 0 \\ -1 & 5 & -2 & 0 \\ -1 & 5 & -2 & 0 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & -\frac{1}{2} & 0 \\ 0 & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Solving for the roots of $c_A(x)$, we find that the eigenvalues of A are $\lambda_1=3, \lambda_2=2$, and $\lambda_3=1$. All these eigenvalues have multiplicity of 1.

Eigenvectors: Find the eigenvector corresponding to $\lambda_1 = 3$: solve (3I - A)X = 0.

$$\begin{bmatrix} 0 & 4 & -2 & 0 \\ -1 & 5 & -2 & 0 \\ -1 & 5 & -2 & 0 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & -\frac{1}{2} & 0 \\ 0 & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus
$$X = \begin{bmatrix} \frac{1}{2}t \\ \frac{1}{2}t \\ t \end{bmatrix} = t \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 1 \end{bmatrix}$$
, $t \in \mathbb{R}$. The basic eigenvector is $\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 1 \end{bmatrix}$.

Recall that any nonzero multiple of a basic eigenvector is again an

eigenvector. Choosing t=2 gives us $X_1=\begin{bmatrix}1\\1\\2\end{bmatrix}$ as an eigenvector corresponding to $\lambda_1=3$.

Find the eigenvector corresponding to $\lambda_2 = 2$: solve (2I - A)X = 0.

$$\begin{bmatrix} -1 & 4 & -2 & 0 \\ -1 & 4 & -2 & 0 \\ -1 & 5 & -3 & 0 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Find the eigenvector corresponding to $\lambda_2 = 2$: solve (2I - A)X = 0.

$$\begin{bmatrix} -1 & 4 & -2 & 0 \\ -1 & 4 & -2 & 0 \\ -1 & 5 & -3 & 0 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus
$$X = \begin{bmatrix} 2s \\ s \\ s \end{bmatrix} = s \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$
, $s \in \mathbb{R}$.

Find the eigenvector corresponding to $\lambda_2 = 2$: solve (2I - A)X = 0.

$$\begin{bmatrix} -1 & 4 & -2 & 0 \\ -1 & 4 & -2 & 0 \\ -1 & 5 & -3 & 0 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus
$$X = \begin{bmatrix} 2s \\ s \\ s \end{bmatrix} = s \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$
, $s \in \mathbb{R}$.

The basic eigenvector is $\begin{bmatrix} 2\\1\\1 \end{bmatrix}$. Again, we can take a multiple of this.

Choosing s=3 gives us $X_2=\left[\begin{array}{c} 6\\3\\3\end{array}\right]$ as an eigenvector corresponding to

$$\lambda_2 = 2$$
.

Basic eigenvectors corresponding to $\lambda_3 = 1$: solve (I - A)X = 0.

$$\begin{bmatrix} -2 & 4 & -2 & 0 \\ -1 & 3 & -2 & 0 \\ -1 & 5 & -4 & 0 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Basic eigenvectors corresponding to $\lambda_3 = 1$: solve (I - A)X = 0.

$$\begin{bmatrix} -2 & 4 & -2 & 0 \\ -1 & 3 & -2 & 0 \\ -1 & 5 & -4 & 0 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus
$$X = \begin{bmatrix} r \\ r \\ r \end{bmatrix} = r \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $r \in \mathbb{R}$.

Basic eigenvectors corresponding to $\lambda_3 = 1$: solve (I - A)X = 0.

$$\begin{bmatrix} -2 & 4 & -2 & 0 \\ -1 & 3 & -2 & 0 \\ -1 & 5 & -4 & 0 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus
$$X = \begin{bmatrix} r \\ r \\ r \end{bmatrix} = r \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $r \in \mathbb{R}$.

The basic eigenvector is $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Choosing r=4, we have that

$$X_3 = \begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix}$$
 is an eigenvector corresponding to $\lambda_3 = 1$.

Basic eigenvectors corresponding to $\lambda_3 = 1$: solve (I - A)X = 0.

$$\begin{bmatrix} -2 & 4 & -2 & 0 \\ -1 & 3 & -2 & 0 \\ -1 & 5 & -4 & 0 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus
$$X = \begin{bmatrix} r \\ r \\ r \end{bmatrix} = r \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $r \in \mathbb{R}$.

The basic eigenvector is $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Choosing r=4, we have that

$$X_3 = \begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix}$$
 is an eigenvector corresponding to $\lambda_3 = 1$.

Remember that you can (and should!) check your work!

Eigenvalues and Eigenvectors for Special Types of Matrices

Similar Matrices

Definition

Let A, and B be $n \times n$ matrices. Suppose there exists an invertible matrix P such that

$$A = P^{-1}BP$$

Then A and B are called similar matrices.

Similar Matrices

Definition

Let A, and B be $n \times n$ matrices. Suppose there exists an invertible matrix P such that

$$A = P^{-1}BP$$

Then A and B are called similar matrices.

How do similar matrices help us in spectral theory?

Similar Matrices

Definition

Let A, and B be $n \times n$ matrices. Suppose there exists an invertible matrix P such that

$$A = P^{-1}BP$$

Then A and B are called similar matrices.

How do similar matrices help us in spectral theory?

Suppose A and B are similar matrices. Then A and B have the same eigenvalues.

Using Similar and Elementary Matrices

Example

Find the eigenvalues for the matrix

$$A = \left[\begin{array}{rrr} 33 & 105 & 105 \\ 10 & 28 & 30 \\ -20 & -60 & -62 \end{array} \right]$$

Using Similar and Elementary Matrices

Example

Find the eigenvalues for the matrix

$$A = \left[\begin{array}{rrr} 33 & 105 & 105 \\ 10 & 28 & 30 \\ -20 & -60 & -62 \end{array} \right]$$

Solution: We will use elementary matrices to simplify A before finding the eigenvalues. Left multiply A by E(2,2), and right multiply by the inverse of E(2,2).

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 33 & 105 & 105 \\ 10 & 28 & 30 \\ -20 & -60 & -62 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 33 & -105 & 105 \\ 10 & -32 & 30 \\ 0 & 0 & -2 \end{bmatrix}$$

Notice that the resulting matrix and A are similar matrices (with E(2,2) playing the role of P) so they have the same eigenvalues.

We do this step again, on the resulting matrix above.

$$\begin{bmatrix} 1 & -3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 33 & -105 & 105 \\ 10 & -32 & 30 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 15 \\ 10 & -2 & 30 \\ 0 & 0 & -2 \end{bmatrix} = B$$

We do this step again, on the resulting matrix above.

$$\begin{bmatrix} 1 & -3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 33 & -105 & 105 \\ 10 & -32 & 30 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 15 \\ 10 & -2 & 30 \\ 0 & 0 & -2 \end{bmatrix} = B$$

Again by properties of similar matrices, the resulting matrix here (labeled *B*) has the same eigenvalues as our original matrix *A*. The advantage is that it is much simpler to find the eigenvalues of *B* than *A*. Finding these eigenvalues follows the usual procedure and is left as an exercise.

Eigenvalues for a Triangular Matrix

Recall that the determinant of a triangular matrix is found by multiplying the entries on the main diagonal. Similarly, there is a "shortcut" to finding eigenvalues of a triangular matrix.

Eigenvalues for a Triangular Matrix

Recall that the determinant of a triangular matrix is found by multiplying the entries on the main diagonal. Similarly, there is a "shortcut" to finding eigenvalues of a triangular matrix.

Example

Let

$$A = \left[\begin{array}{rrr} 4 & 5 & -44 \\ 0 & 3 & 176 \\ 0 & 0 & 2 \end{array} \right]$$

Find the eigenvalues of A.

Eigenvalues for a Triangular Matrix

Recall that the determinant of a triangular matrix is found by multiplying the entries on the main diagonal. Similarly, there is a "shortcut" to finding eigenvalues of a triangular matrix.

Example

Let

$$A = \left[\begin{array}{rrr} 4 & 5 & -44 \\ 0 & 3 & 176 \\ 0 & 0 & 2 \end{array} \right]$$

Find the eigenvalues of A.

Solution: As usual, we need to solve det(xI - A) = 0.

$$\det(xI - A) = \det \begin{bmatrix} x - 4 & -5 & 44 \\ 0 & x - 3 & -176 \\ 0 & 0 & x - 2 \end{bmatrix} = (x - 4)(x - 3)(x - 2) = 0$$

$$(x-4)(x-3)(x-2)=0$$

Therefore the eigenvalues of A are $\lambda_1 = 4, \lambda_2 = 3$, and $\lambda_3 = 2$.

$$(x-4)(x-3)(x-2)=0$$

Therefore the eigenvalues of A are $\lambda_1 = 4, \lambda_2 = 3$, and $\lambda_3 = 2$.

Notice that these are the entries of the main diagonal of A!

$$(x-4)(x-3)(x-2)=0$$

Therefore the eigenvalues of A are $\lambda_1 = 4, \lambda_2 = 3$, and $\lambda_3 = 2$.

Notice that these are the entries of the main diagonal of A!

This is true in general! The eigenvalues of a triangular matrix A are exactly the entries of the main diagonal of A.

Geometric Interretation of Eigenvalues and Eigenvectors

Geometric Interpretation of Eigenvalues and Eigenvectors

Let A be a 2×2 matrix. Then A can be interpreted as a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 .

Problem

How does the linear transformation affect the eigenvectors of the matrix?

Geometric Interpretation of Eigenvalues and Eigenvectors

Let A be a 2×2 matrix. Then A can be interpreted as a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 .

Problem

How does the linear transformation affect the eigenvectors of the matrix?

Definition

Let V be a nonzero vector in \mathbb{R}^2 . We denote by L_V the unique line in \mathbb{R}^2 that contains V and the origin.

Geometric Interpretation of Eigenvalues and Eigenvectors

Let A be a 2×2 matrix. Then A can be interpreted as a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 .

Problem

How does the linear transformation affect the eigenvectors of the matrix?

Definition

Let V be a nonzero vector in \mathbb{R}^2 . We denote by L_V the unique line in \mathbb{R}^2 that contains V and the origin.

Lemma

Let $V = \begin{bmatrix} a \\ b \end{bmatrix}$ be a nonzero vector in \mathbb{R}^2 . Then L_V is the set of all scalar multiples of V, i.e.,

$$L_V = \mathbb{R}V = \{tV \mid t \in \mathbb{R}\}.$$

Let A be a 2×2 matrix and L a line in \mathbb{R}^2 through the origin. Then L is said to be A-invariant if the vector AX lies in L whenever X lies in L,

Let A be a 2×2 matrix and L a line in \mathbb{R}^2 through the origin. Then L is said to be A-invariant if the vector AX lies in L whenever X lies in L, i.e., AX is a scalar multiple of X,

Let A be a 2×2 matrix and L a line in \mathbb{R}^2 through the origin. Then L is said to be A-invariant if the vector AX lies in L whenever X lies in L, i.e., AX is a scalar multiple of X, i.e., $AX = \lambda X$ for some scalar $\lambda \in \mathbb{R}$,

Let A be a 2×2 matrix and L a line in \mathbb{R}^2 through the origin. Then L is said to be A-invariant if the vector AX lies in L whenever X lies in L, i.e., AX is a scalar multiple of X, i.e., $AX = \lambda X$ for some scalar $\lambda \in \mathbb{R}$, i.e., X is an eigenvector of A.

Let A be a 2×2 matrix and L a line in \mathbb{R}^2 through the origin. Then L is said to be A-invariant if the vector AX lies in L whenever X lies in L, i.e., AX is a scalar multiple of X, i.e., $AX = \lambda X$ for some scalar $\lambda \in \mathbb{R}$, i.e., X is an eigenvector of A.

Theorem

Let A be a 2×2 matrix and let $V \neq 0$ be a vector in \mathbb{R}^2 . Then L_V is A-invariant if and only if V is an eigenvector of A.

Let A be a 2×2 matrix and L a line in \mathbb{R}^2 through the origin. Then L is said to be A-invariant if the vector AX lies in L whenever X lies in L, i.e., AX is a scalar multiple of X, i.e., $AX = \lambda X$ for some scalar $\lambda \in \mathbb{R}$, i.e., X is an eigenvector of A.

Theorem

Let A be a 2×2 matrix and let $V \neq 0$ be a vector in \mathbb{R}^2 . Then L_V is A-invariant if and only if V is an eigenvector of A.

This theorem provides a geometrical method for finding the eigenvectors of a 2×2 matrix.

Example

Let $m \in \mathbb{R}$ and consider the linear transformation $Q_m : \mathbb{R}^2 \to \mathbb{R}^2$, i.e., reflection in the line y = mx.

Example

Let $m \in \mathbb{R}$ and consider the linear transformation $Q_m : \mathbb{R}^2 \to \mathbb{R}^2$, i.e., reflection in the line y = mx.

The matrix that induces Q_m is

$$A = \frac{1}{1+m^2} \left[\begin{array}{cc} 1-m^2 & 2m \\ 2m & m^2-1 \end{array} \right].$$

Example

Let $m \in \mathbb{R}$ and consider the linear transformation $Q_m : \mathbb{R}^2 \to \mathbb{R}^2$, i.e., reflection in the line y = mx.

The matrix that induces Q_m is

$$A = \frac{1}{1+m^2} \left[\begin{array}{cc} 1-m^2 & 2m \\ 2m & m^2-1 \end{array} \right].$$

Claim.
$$X_1 = \begin{bmatrix} 1 \\ m \end{bmatrix}$$
 is an eigenvector of A corresponding to eigenvalue $\lambda = 1$.

Example

Let $m \in \mathbb{R}$ and consider the linear transformation $Q_m : \mathbb{R}^2 \to \mathbb{R}^2$, i.e., reflection in the line y = mx.

The matrix that induces Q_m is

$$A = \frac{1}{1+m^2} \left[\begin{array}{cc} 1-m^2 & 2m \\ 2m & m^2-1 \end{array} \right].$$

Claim. $X_1 = \begin{bmatrix} 1 \\ m \end{bmatrix}$ is an eigenvector of A corresponding to eigenvalue $\lambda = 1$.

The reason for this: $X_1 = \begin{bmatrix} 1 \\ m \end{bmatrix}$ lies in the line y = mx, and hence

$$Q_m \left[\begin{array}{c} 1 \\ m \end{array} \right] = \left[\begin{array}{c} 1 \\ m \end{array} \right], \text{ implying that } A \left[\begin{array}{c} 1 \\ m \end{array} \right] = 1 \left[\begin{array}{c} 1 \\ m \end{array} \right].$$

More generally, any vector $\begin{bmatrix} k \\ km \end{bmatrix}$, $k \neq 0$, lies in the line y = mx and is an eigenvector of A.

Another way of saying this is that the line y = mx is A-invariant for the matrix

$$A = \frac{1}{1+m^2} \left[\begin{array}{cc} 1-m^2 & 2m \\ 2m & m^2-1 \end{array} \right].$$

Another Geometric Example

Example

Let θ be a real number, and $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ rotation through an angle of θ , induced by the matrix

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Another Geometric Example

Example

Let θ be a real number, and $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ rotation through an angle of θ , induced by the matrix

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Claim. A has no real eigenvectors unless θ is an integer multiple of π , i.e., $\pm \pi, \pm 2\pi, \pm 3\pi$, etc.

Another Geometric Example

Example

Let θ be a real number, and $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ rotation through an angle of θ , induced by the matrix

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Claim. A has no real eigenvectors unless θ is an integer multiple of π , i.e., $\pm \pi, \pm 2\pi, \pm 3\pi$, etc.

The reason for this: a line L in \mathbb{R}^2 is A invariant if and only if θ is an integer multiple of π .

