

Discrete Mathematics LECTURE 4 Functions

Assistant Professor Gülüzar ÇİT

Outline

- **→** Functions
 - **→** Function
 - ➤one-to-one function
 - >onto function
- **≻** References

Functions

→ Function

- > a relation that maps each element of set A to only one element of set B
- \triangleright denoted by $f: A \rightarrow B$
- ➤also called *f maps A* to *B*.
- > set A is called the **definition/domain**
- >set B is called the value/codomain
- → if b is the unique element of B assigned by the function f to the element a
 of A
 - \triangleright we write f (a) = b
 - > we say that b is the image of a
 - we say a is a preimage of b.
 - ➤ the range, or image of f is the set of all images of elements of A.

b = f(a)

▶ Function...

- \triangleright A function f is said to be **one-to-one** or an **injunction**
 - if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f.
 - ➤ Such a function is said to be **injective**
 - In functions that never assign the same value to two different domain elements.

> Function...

- ➤ A function f is said to be **onto** or an **surjection**
 - if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b
 - > such a function is said to be surjective

> Function...

Example: Different types of correspondences

one-to-one, not onto

one-to-one and onto

neither one-toone nor onto

not a function

▶ Function...

- **Example:** Let $A = \{1,2,3\}$, $B = \{a,b,c,d\}$ and $f = \{(1,b),(2,a),(3,d)\}$. Is this function one-to-one?
- \triangleright if f is one-to one, $\forall x_1, x_2 \in A, x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$

$$ightharpoonup x_1 = 1 \text{ and } x_2 = 2 \Longrightarrow 1 \neq 2 \Longrightarrow f(1) \neq f(2) \Longrightarrow b \neq a$$

$$rightarrow x_1 = 1$$
 and $x_2 = 3 \Longrightarrow 1 \ne 3 \Longrightarrow f(1) \ne f(3) \Longrightarrow b \ne d$

$$ightharpoonup x_1 = 2$$
 and $x_2 = 3 \Longrightarrow 2 \ne 3 \Longrightarrow f(2) \ne f(3) \Longrightarrow a \ne d$

>f is one-to-one ✓

▶Function...

- **Example:** Let $A = \{1,2,3\}$, $B = \{a,b,c,d\}$ and $f\{(1,b),(2,a),(3,c),(4,b)\}$. Is this function onto?
- \triangleright if f is one-to one, $\forall y (y \in B \Longrightarrow \exists x \in A), f(x) = y$

$$ightharpoonup y = a \Rightarrow f(2) = a \Rightarrow 2 \in A$$

$$y = b \Rightarrow f(1) = b \Rightarrow 1 \in A \text{ and } y = b \Rightarrow f(4) = b \Rightarrow 4 \in A$$

$$ightharpoonup y = c \Rightarrow f(3) = c \Rightarrow 3 \in A$$

 $\triangleright f$ is onto \checkmark

References

- ➤ K.H. Rosen, Discrete Mathematics and Its Applications, Seventh Edition, Mc Graw Hill, 2012.
- R.P. Grimaldi, Discrete and Combinatorial Mathematics, An Applied Introduction, Fifth Edition, Pearson, 2003.
- ➤S.S. Epp, Discrete Mathemtics with Applications, Fouth Edition, 2010.
- ➤ N. Yurtay, "Ayrık İşlemsel Yapılar" Lecture Notes, Sakarya University.

