

Introducción

Arquitectura Interna de Linux - 2016

Contenido

1 Historia de Unix/Linux

2 Diseño del kernel

Contenido

1 Historia de Unix/Linux

2 Diseño del kernel

Historia de Unix (I)

- Multics Multiplexed Information and Computing Service (1965)
- Unics Unix (1969)
 - Creado por Ken Thompson y portado a "C" (Dennis Ritchie) en 1973
 - V6 (1975): Código fuente público (licencia AT&T)
 - Distribuciones BSD (Billy Joy)
 - Libro de John Lions sobre UNIX V6

Claves del éxito

- 1 Licencia económica
- 2 Código fuente disponible
- ArTe(3 Código simple y relativamente fácil de modificar
 - 4 Requiere pocos recursos HW

Historia de Unix (II)

- Unix (Cont.)
 - V7 (1979): AT&T prohibe que se estudie su código
- Xenix (1980)
 - Microsoft
 - SCO
- Unix System III (1982)
- Unix System V (1983)
 - HP-UX, IBM's AIX, Sun's Solaris

Historia de Unix (III)

- Proyecto GNU (1983) Richard Stallman
 - SO GNU: Emacs, GNU compiler collection (GCC), GNU Hurd (kernel)
- X/Open (1984)
 - Bull, Ollivetti, Philips,...
 - Sistemas Abiertos
- Minix v1 (1987) Andrew Tanenbaum
 - Minimal Unix-like OS (Clon de Unix)
 - Fines docentes. Estructura más modular
 - Unix/Linux \rightarrow eficiencia \neq Minix \rightarrow diseño comprensible
 - Compatible con Unix V7 (nivel usuario), evolucionó posteriormente hacia el estándar POSIX
 - 1987 (Minix1 i8088), 1997 (Minix2 i386)

Richard Stallman

Andrew Tanembaum

Llamadas al Sistema Minix

- 53 llamadas: 6 Categorías + Especiales
 - Gestión de procesos
 - fork, waitpid, exec, exit, brk, getpid, getgprg, setsid, ptrace
 - Señales
 - sigaction, sigreturn, sigprocmask, sigpending, sigsuspend, kill, alarm, pause
 - Gestión de Ficheros
 - creat, mknod, open, close, read, write, lseek, stat, fstat, dup, pipe, ioctl, access, rename, fcntl
 - Gestión Dir y Sistemas de Ficheros
 - mkdir, rmdir, link, unlink, mount, umount, sync, chdir, chroot
 - Protección
 - chmod, getuid, getgid, setuid, setgid, chown, umask
 - Gestión de Tiempos
 - time, stime, utime, times

Historia de Unix (IV)

Unix Wars (1987-1996)

- Unix International:
 - \blacksquare Unix System V Release 4 (SVR4) USL (AT&T) + Sun + SCO
 - SVR3, BSD, Sun OS, Xenix
 - Open Look
- Open Software Foundation:
 - OSF/1 (DEC, IBM, HP, Bull,...)
 - OSF/1 (Mach 2.5)
 - Motif

Historia de Unix (V)

- Net-1 (1989), Net-2 (1991) y 386BSD (1992)
 - Hasta 4.3BSD--Tahoe, BSD no era una distribución libre
 - Necesario licencia de las fuentes de Unix (AT&T)
 - Net-2: casi todo el kernel y todas las utilidades
 - 386BSD Bill Jolitz (faltaban 6 ficheros)
- Litigio entre USL y BSDI / Universidad de California Berkeley (1991-1994)
 - Novell adquiere USL y su propiedad intelectual en 1993 y se llega a acuerdo en 1994
- 4.4BSD-Lite (1994)
 - FreeBSD, NetBSD, OpenBSD, Darwin

Y Aparece Linux... (1991)

■ Unos meses después de liberarse Minix 1 se crea en comp.os.minix

From: torva...@klaava.Helsinki.FI (Linus Benedict Torvalds)
Date: 25 Aug 91 20:57:08 GMT Local: Sun, Aug 25 1991 9:57 pm
Subject: What would you like to see most in minix?

Hello everybody out there using minix - I'm doing a (free) operating system (just a hobby, won't be big and professional like gnu) for 386(486) AT clones. This has been brewing since april, and is starting to get ready. I'd like any feedback on things people like/dislike in minix, as my OS resembles it somewhat (same physical layout of the file-system (due to practical reasons) among other things). I've currently ported bash(1.08) and gcc(1.40), and things seem to work. This implies that I'll get something practical within a few months, and I'd like to know what features most people would want. Any suggestions are welcome, but I won't promise I'll implement them:)

Linus (torva...@kruuna.helsinki.fi)

PS. Yes it's free of any minix code and it has a multi-threaded fs. It is NOT portable (uses 386 task switching, etc), and it probably never support anything other than AT-harddisks, as that's all I have :(.

Y Aparece Linux... (1991)

- Claves Éxito
 - Unix Wars
 - Litigio BSD
 - Competencia Windows NT (enemigo común)
 - Licencia GPL
 - Internet
 - ???

Y Aparece Linux... (1991)

- Pero Linux es sólo el kernel...
 - GNU/Linux..., IBM/RedHat/HP/....Linux..
- Distros (kernel + selección de herramientas precompiladas)
 - MCC Interim Linux 1992,
 - Slackware (Patrick Volkerding) , Debian (Ian Murdock) 1993
 - S.U.S.E, Red Hat (Marc Erwing, Bob Young) 1994
- Entornos de Escritorio
 - Xfree86 Thomas Roel 1991
 - KDE Matthias Ettrich 1996
 - Gnome Miguel de Icaza 1997
 - ...

¿Qué es Unix?

- Fin de Unix Wars 1996 (Competencia con Windows NT)
 - 1994: Novell Trasfiere derechos de marca registrada Unix a X/Open, que crea la **Single Unix Specification (SUS)**
 - 1994: Unix international y OSF se fusiona en nueva OSF
 - 1996: OSF y X/Open se fusiona en **Open Group**
- Open Group
 - Propietario actual marca registrada UNIX
 - Certificación SUS
- Unificación SUS / IEEE Posix en 2001 (SUS Version 3)
- Unix es quien se comporta como Unix
 - Mac OS X Leopard (primer derivado de BSD que puede llamarse Unix)
 - Z/OS IBM

Contenido

1 Historia de Unix/Linux

2 Diseño del kernel

Soporte Hardware para el Sistema Operativo

- Muchas funciones del SO que requieren soporte HW:
 - Permitir la ejecución de varios procesos, posiblemente multiplexando el uso de CPU
 - Proteger el acceso a memoria entre procesos
 - Permitir que dos o más procesos compartan memoria
 - Permitir a los procesos que utilicen los dispositivos de E/S, garantizando que el SO arbitre el uso de los mismos
 - Evitar que los procesos de usuario corrompan el código y las estructuras de datos del SO

Tres mecanismos HW esenciales:

- 1 Distintos modos de ejecución del procesador
- 2 Soporte HW para memoria virtual (MMU)
- Tel 3 Temporizador del sistema (interrupciones periódicas)

Modos de ejecución del procesador

- El procesador ofrece un conjunto de modos de ejecución para proporcionar distintos niveles de acceso a los recursos de la máquina
- Cada modo de ejecución está caracterizado por:
 - Subconjunto de instrucciones del repertorio disponibles
 - Acceso al mapa de E/S
 - Acceso a los registros de soporte de gestión de memoria
 - Permiso de cambio de modo (Bits del registro de estado)
- En GNU/Linux, el núcleo del SO se ejecuta en el modo menos restrictivo ("modo kernel") y los programas de usuario en el más restrictivo ("modo usuario")
- Las arquitecturas x86 (Intel y AMD) ofrecen 4 niveles de privilegio (ring levels): 0, 1, 2 y 3.
 - Modo usuario: ring level 3
 - Modo kernel: ring level 0

Modo usuario vs. Modo kernel

Programación en modo kernel

A beast of a different nature

- Tanto rendimiento como portabilidad son aspectos sumamente críticos
- No pueden utilizarse muchas de las abstracciones utilizadas en las aplicaciones de usuario
 - Sin libc*
 - Sin protección de memoria no hay SIGSEGV –
 - Espacio de pila limitado y de tamaño fijo
 - Métodos de depuración menos elaborados
 - ...

Diseño del Kernel

Diseño del Kernel

- **Kernel:** Parte esencial de un sistema operativo que provee los servicios más básicos del sistema
 - Gestor de memoria
 - Planificador de procesos
 - Gestión básica de E/S
 - ...
- Se han explorado diferentes estructuras
 - 1 Monolítico
 - 2 Microkernel (Cliente/Servidor)
 - 3 Máquinas Virtuales
 - 4 Exokernel

Estructura Monolítica (I)

Estructura Monolítica

- Todo el kernel reside en un único espacio de direcciones
 - Se distinguen distintos componentes (hay una estructura, depende del SO)
 - ...pero la "comunicación" entre componentes es por invocación directa de las funciones (no hay ocultación, con los riesgos que eso tiene asociado)
 - Convencional: el bootloader carga la imagen del kernel en memoria a partir de un único binario
- Diseño tradicional: simple y buen rendimiento
 - Kernels Unix tradicionales (SVR4), derivados (SunOS, HP-UX) y clones (familia BSD, Linux)
 - DOS, Windows 9x

Estructura Monolítica (II)

Estructura Monolítica (III)

- Estructura funcional Tanembaum (Seccion 1.5.1)
 - count = read (fd, buffer, nbytes)

Microkernel / Cliente Servidor (I)

- Sistema operativo = Microkernel + Servidores
 - Kernel ligeros (micro-kernel) con funcionalidad mínima
 - Multiprogramación: Scheduling + Dispatcher (Cambio de Contexto)
 - Memoria Virtual
 - Mecanismos IPC básicos (mensajes)
 - Procesos servidores que ofrecen los servicios tradicionales a los proc. usuario
 - Idealmente se ejecutan en espacio de usuario

Microkernel / Cliente Servidor (II)

Microkernel / Cliente Servidor (III)

- Potenciales Ventajas
 - Mayor modularidad
 - Potenciales ventajas asociadas: Portabilidad, Extensibilidad, Fiabilidad
 - Mayor protección/seguridad
 - idealmente sólo el micro-kernel modo supervisor
 - Mayor tolerancia a fallos
 - Si falla un servidor/driver no tiene porque fallar todo el sistema
 - Se adaptan de forma natural a sistemas distribuidos
 - Comunicación entre procesos explícita a través de la red
 - Facilidad de desarrollo
 - Los servidores se pueden depurar

Microkernel / Cliente Servidor (IV)

- Limitaciones
 - Costes asociados con los mecanismos IPC limitan la aplicabilidad Micro-kernels puros
- Implementaciones reales (primera generación)
 - Los kernels de Windows NT y Mach (MAC OS X) utilizan diseño Micro-kernel
 - En sus últimas versiones ninguno de los servidores corren en espacio de usuario
 - La comunicación entre servidores es por invocación directa de funciones.
- Nuevas Generaciones
 - Familia L4: http://en.wikipedia.org/wiki/L4_microkernel

Referencias (I)

Historia de Unix/Linux

- Aspectos más relevantes de los 40 años de Historia de Unix en ComputerWorld.
- Referencia clásica sobre OpenSource. Entre otros, se incluye una extensa descripción de los origenes y evolución de Unix, BSD, el proyecto GNU y Linux
- Multics: The Multiplexed Information and Computing Service
- Descripción de las primeras versiones de Unix por Dennis M. Ritchie
- Entrevista a Steve Bourne, creador del popular bourne shell (sh)
- Entrevista a Dennis Ritchie en IEEE Spectrum
- Debate Tanembaum-Torvalds

Referencias (II)

Arquitectura del SO

- Sección 1.5 de Operating Systems Design and Implementation.
 A.S. Tanenbaum y A.S. Woodhull.
- Exokernel: An Operating System Architecture for Application-Level Resource Management
- The Multikernel: A new OS architecture for scalable multicore systems

Licencia

Arquitectura Interna de Linux - Introducción Versión 0.3

©J.C. Sáez, M. Prieto

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 Spain License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/es/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,USA.

Esta obra está bajo una licencia Reconocimiento-Compartir Bajo La Misma Licencia 3.0 España de Creative Commons. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-sa/3.0/es/ o envíe una carta a Creative Commons, 171 Second Street, Suite 300, San Francisco. California 94105. USA.

Este documento (o uno muy similar) está disponible en https://cv4.ucm.es/moodle/course/view.php?id=70009

