Spatial sensitivity analysis Course and practical application

Author

Institut

OpenMOLE

June 22, 2019

- Introduction
- Spatial synthetic data
- Perturbation of data
- Spatial indicators for model outputs
- 5 Application: sensitivity to spatial configuration

- Introduction
- Spatial synthetic data
- Perturbation of data
- Spatial indicators for model outputs
- 5 Application: sensitivity to spatial configuration

Classical problems in geography / spatial sciences : MAUP, scale dependency, spatial non-stationarity

New approach by OpenMOLE

- => spatial configuration are parameters too
- Space matters Synthetic generators Sensitivity to data noise

Contents of this module

- Introduction
- Spatial synthetic data
- Perturbation of data
- Spatial indicators for model outputs
- 5 Application: sensitivity to spatial configuration

- Introduction
- Spatial synthetic data
- Perturbation of data
- Spatial indicators for model outputs
- 5 Application: sensitivity to spatial configuration

General context

Generating building layouts

At the microscopic scale (district): building layouts [Raimbault and Perret, 2019]

Results

Point cloud

Population grid

- *At the mesoscopic scale: population grid* [Raimbault, 2018]
- Reaction-diffusion model Urban form measures

PSE on the morphological space

Synthetic systems of cities

- *At the macroscopic scale: systems of cities*
- Evolutive urban theory: systems of cities follow general stylized facts rank-size law central place theory

- Introduction
- Spatial synthetic data
- Perturbation of data
- Spatial indicators for model outputs
- 5 Application: sensitivity to spatial configuration

Real data perturbation

- *How does noise in real data impacts the result ?*
- WIP
- *How does perturbation of real data allows to explore scenario* Forcity example

- Introduction
- Spatial synthetic data
- Perturbation of data
- Spatial indicators for model outputs
- 5 Application: sensitivity to spatial configuration

Spatial statistics

- *In the spatial approach, spatial model indicators are also important: what kind of spatial structure does the model produce ?*
- previous form indicators at different scales spatial statistics

Spatial form as indicators

spatial correlations ?

Spatial statistics

(examples)

Spatial autocorrelation at a given range Given spatial weights w_{ij}

$$I = \frac{N}{\sum_{i,j} w_{ij}} \cdot \frac{\sum_{i,j} w_{ij} \cdot (X_i - \bar{X})(X_j = \bar{X})}{\sum_i (X_i - \bar{X})^2}$$

Optimal autocorrelation spatial scales

Ripley K function

Quantifying level of clustering regarding a null model

Geographically Weighted Regression

- Introduction
- Spatial synthetic data
- Perturbation of data
- Spatial indicators for model outputs
- 5 Application: sensitivity to spatial configuration

Method flowchart

Relative distance of phase diagrams

$$d_r\left(\mu_{\vec{\alpha}_1}, \mu_{\vec{\alpha}_2}\right) = 2 \cdot \frac{d(\mu_{\vec{\alpha}_1}, \mu_{\vec{\alpha}_2})^2}{Var\left[\mu_{\vec{\alpha}_1}\right] + Var\left[\mu_{\vec{\alpha}_2}\right]}$$

Application: Schelling model

Why could the Schelling model be sensitive to space ? [Banos, 2012]

Sensitivity of the Schelling model

Application: Sugarscape model

A model of resource collection

References I

Network effects in schelling's model of segregation: new evidence from agent-based simulation.

Environment and Planning B: Planning and Design, 39(2):393–405.

Raimbault, J. (2018).
Calibration of a density-based model of urban morphogenesis.

PloS one, 13(9):e0203516.

Raimbault, J. and Perret, J. (2019). Generating urban morphologies at large scales. Forthcoming in proceedings of Artificial Life 2019. arXiv:1903.06807.