1. 累乗根

 $x^n=a$ となる x を a の n 乗根といい, $\sqrt[n]{a}$ と表す.

問題: 次の値を根号を用いて表せ

A. 7 の平方根

B. π の立方根

C. -16 の 4 乗根

2. 累乗根の性質

$$\bullet \ (\sqrt[n]{a})^n = a$$

$$ullet (\sqrt[n]{a})^m = \sqrt[n]{a^m}$$

$$ullet \sqrt[n]{a}\sqrt[n]{b}=\sqrt[n]{ab}$$

$$\bullet \ \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

(a>0,b>0 で m,n が 2 以上の整数のとき)

問題: 次の式を簡単にせよ.

A. $\sqrt[4]{27}\sqrt[4]{3}$

B.
$$\frac{\sqrt[3]{24}}{\sqrt[3]{3}}$$

C.
$$\frac{\sqrt[3]{147}\sqrt[3]{63}}{7}$$

3. 指数の拡張

- $a^0 = 1$
- ullet $a^{-n}=rac{1}{a^n}$ (nは正の整数)
- ullet $a^{rac{m}{n}}=\sqrt[n]{a^m}$ (a>0,m は整数,n は 2 以上の整数)

4. 指数法則

- $ullet \ a^p a^q = a^{p+q}$
- $ullet rac{a^p}{a^q}=a^{p-q}=rac{1}{a^{q-p}}$
- $\bullet \ (a^p)^q = a^{pq}$
- $\bullet \ (ab)^p = a^p b^p$

(a>0,b>0 で p,q が 実数のとき)

問題 ${f I}$: 次の計算をせよ.(ただし x>0,y>0)

A.
$$\{(x^{-2})^3\}^{-1}$$

B. $(x^2y)(xy^{-2})$	
C. $\frac{x^{-3}}{(x^2)^{-1}}$	
D. $15^{rac{1}{2}} \cdot 5^{-rac{1}{2}} \cdot 3^{rac{1}{2}}$	
問題II: 次の各式を $\sqrt[n]{a^m}$ の形に表せ. (ただし a	> 0)
A. $a^{0.375}$	
B. $\frac{1}{a^{0.75}}$	

指数関数

$$y=a^x$$
 (ただし $a>0, a
eq 1$)

a > 1 のとき

問題

A.
$$y=(rac{8}{5})^x$$
 のグラフをかけ

B. $y=(rac{5}{8})^x$ のグラフをかけ

対数の性質

基本性質

•
$$\log_a 1 = 0$$
, $\log_a a = 1$

$$ullet \ \log_a MN = \log_a M + \log_a N$$
, $\log_a rac{M}{N} = \log_a M - \log_a N$

$$\bullet \, \log_a M^n = n \log_a M$$

底の変換

$$ullet \ \log_a b = rac{\log_c b}{\log_c a}$$

$$(a>0, a
eq 1, \quad M,N>0$$
 のとき)

問題I: 次の値を求めよ

A. $\log_2 128$

B. $\log_2 0.25$

問題II: 次の式を計算せよ

A.
$$\log_3 6 + \log_3 \frac{3}{2}$$

B.
$$\log_7(49^{-2}) + \log_7(\sqrt{7})$$

対数関数

 $m = \log_a x$ (ただし a>0, a
eq 1)a>1 のとき

0 < a < 1 のとき

問題I: 次の関数のグラフをかけ

A. $y = \log_5 x$

