世界知的所有権機関 際 事 務 局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類7 B41M 5/26, G11B 7/24, 7/26, 9/04

(11) 国際公開番号 A1

WO00/54982

(43) 国際公開日

2000年9月21日(21.09.00)

(21) 国際出願番号

PCT/JP00/01489

JP

(22) 国際出願日

2000年3月10日(10.03.00)

(30) 優先権データ 特願平11/68146

1999年3月15日(15.03.99)

特願平11/293292

JР 1999年10月15日(15.10.99)

(71) 出願人 (米国を除くすべての指定国について)

松下電器産業株式会社

(MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.)

[JP/JP]

〒571-8501 大阪府門真市大字門真1006番地 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

山田 昇(YAMADA, Noboru)[JP/JP]

〒573-1104 大阪府枚方市楠葉丘1-4-2 Osaka, (JP)

児島理恵(KOJIMA, Rie)[JP/JP]

〒571-0030 大阪府門真市末広町35番地7号

グレースハイム井田402号室 Osaka, (JP)

松永利之(MATSUNAGA, Toshiyuki)[JP/JP]

〒571-0077 大阪府門真市大橋町28番25-524号 Osaka, (JP)

河原克巳(KAWAHARA, Katsumi)[JP/JP]

〒571-0067 大阪府門真市石原町21-31 Osaka, (JP)

(74) 代理人

池内寛幸, 外(IKEUCHI, Hiroyuki et al.)

〒530-0047 大阪府大阪市北区西天満4丁目3番25号

梅田プラザビル401号室 Osaka, (JP)

AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, (81) 指定国 CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調査報告書

(54) Title: INFORMATION RECORDING MEDIUM AND METHOD FOR MANUFACTURING THE SAME

情報記録媒体とその製造方法 (54)発明の名称

(57) Abstract

An information recording medium having such a recording material layer on a substrate where reversible phase transition between electrically or optically detectable states can be caused by electric energy or electromagnetic energy. The recording material forming the recording layer is either a material having a crystal structure including lattice defects in one phase of the reversible phase transition or a material having a complex phase composed of a crystal portion including a lattice defect in one phase of the reversible phase transition and an amorphous portion. Both portions contain a common element. A part of the lattice defects are filled with an element other than the element constituting the crystal structure. The recording medium having a recording thin film exhibits little variation of the recording and reproduction characteristics even after repetition of recording and reproduction excellent weatherability, strong resistance against composition variation, and easily controllable characteristics.

基板上に、電気エネルギー又は電磁波エネルギーによって電気的又は 光学的に検出可能な状態間で可逆的相転移を生起することが可能な記録 材料層を備えた情報記録媒体であって、前記記録層を形成する記録材料 が、前記可逆的相変化の一つの相において格子欠損を含む結晶構造を有 する材料、または前記可逆的相変化の一つの相において格子欠損を含む 結晶部分とアモルファス部分とから構成される複合相をとり、前記結晶 部分とアモルファス部分とが共通の元素を含む材料であり、かつ前記格 子欠損の少なくとも一部が前記結晶構造を構成する元素以外の元素で埋 められている情報記録媒体とすることにより、記録再生の繰り返しによ る記録特性や再生特性の変動が小さく、耐候性にも優れ組成変動に強く 、かつ特性の制御が容易な記録薄膜を備えた記録媒体を提供する。

```
PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)
  AE アラブ 首長国連邦
AG アラブ 首長国連邦
AL アルバニア
AM アルメニア
AT オーストリア
AU オーストラリア
AZ アゼルバイジャン
BB バルバドス
BB バルバドス
BF ブルギー・ファソ
BG ブルガリア
                                                                                                                                                                                                           カザフスタン
セントルシア
リヒテンシュタイン
スリ・ランカ
リベリア
                                                                              ドミニカ
アルジェリア
                                                                     DDEESIRABDEHMNRW
                                                                              アンミリア
エストニア
スペイン
フィンランド
フランス
ガポア
                                                                                                                        LRST UV ACD
                                                                                                                                  リベリア
レソト
リトアニア
ルクセンブルグ
ラトヴィア
モロッコ
モナトコ
モルドヴァ
マダガスル
マケドニア旧ユーゴスラヴィア
セカ阿
                                                                              フガ英ググガガギギギクハイアイイアイ日ケキ北韓フポ国レルーンニリニロンンイスンイタ本ニル朝国ンン ナジナビアシアアガドルラドスリ アギ鮮ス ダア ア・・チリネラエ ラア ターダー アド ド ンターファイン ア ヤーアンル ン ターファイ ア ヤーアド ド ンターファイ ア ヤーア ド ア ド ア ド ア
                                                                                                                                                                                                 SSTTTTM
                                                                                                                                                                                                           セネガル
スワジランド
チャード
                                                                                                                                                                                                            チャード
                                                                                                                                                                                                           タジキスタン
トルクメニスタン
                                                                                                                         MD
MG
MK
   BJ
BR
BR
CF
           ベナシン
ブラルルシ
カナダーシ
カナアフリカ
コンススコートシンボアール
                                                                                                                                                                                                 TR
TT
TZ
                                                                                                                                                                                                            トルコ
                                                                                                                                                                                                           トリニダッド・トバゴ
タンザニア
ウクライナ
ウガンダ
                                                                                                                         ML
MN
MR
MW
MX
MZ
                                                                     HR
HU
ID
                                                                                                                                  モンゴル
モーリタニア
マラウイ
メキシコ
モザンビーク
                                                                                                                                                                                                 UA
UG
US
UZ
VN
   ČĠ
CH
                                                                                                                                                                                                           リガンタ
米国
グズベキスタン
ヴェトナム
ユーゴースラヴィア
南アフリカ共和国
ジンバブエ
   CI
CM
CN
CR
CU
CY
                                                                     I LN S I T P K K P
           カメルーン
中国
コスタ・リカ
                                                                                                                         MNNNNPP
                                                                                                                                  ニジェー
オランダ
                                                                                                                                                ール
             コスタ・リ
キュース
キプロス
チェッ
デンマーク
                                                                                                                                   ノールウェー
ニュー・ジーランド
ボーランド
                                                                                                                                   ポルトガル
                                                                                                                         RO ルーマニア
```

明 細 書

情報記録媒体とその製造方法

技術分野

5

本発明は、レーザー光線の照射や高電界の印可等を手段とし、高密度 の情報記録、再生、消去、書き換えが可能な情報記録媒体とその製造方 法に関する。

背景技術

物質の可逆的相変化に伴う光学特性の変化をメモリとして応用する技 術は公知であり、これを応用した技術はDVD-RAM 等の相変化光ディスク として既に実用化されている。即ち、可逆的相変化を生起する記録薄膜 10 層を基板上に備えたディスク媒体を回転させ、これにサブミクロンサイ ズまで絞り込んだレーザビームを照射することによって信号の記録・再 生・書き換えが可能となる。相変化光ディスクの場合には、単一レーザ ビームによるオーバライト、即ち、情報信号に応じて照射するレーザパ ワーを高レベルと低レベル間の2値間で変調して照射すると、高パワー 15 で照射された部分ではアモルファス相が生じ、低パワーで照射された部 分では結晶相が生じ、ディスク上にはアモルファス部と結晶部とが交互 にならんだ信号列が記録される。アモルファス部と結晶部とでは光の透 過率や反射率が異なるので、この信号列に記録膜に変化を与えない程度 に弱めたレーザビームを連続照射すると、前記状態変化を透過光量の変 20 化又は反射光量の変化として読み取ることができる。

このような相変化光ディスクの特徴、即ち、

(1) 1本のレーザビームのみを用いて古い信号を消しながら新しい信号を記録するというオーバライト動作が可能であること、及び

10

15

20

25

(2) 信号の記録・再生原理がROM媒体と同じく反射率の変化で信号を再 生できること、

という特徴は、システム構成を簡単にするメリット、汎用性のある装置が実現しやすい等のメリットにつながり、今後ますます普及が進むことが予想されている。

相変化光ディスクの記録層に適用される記録材料としては、Te, Se, S 等のカルコゲン元素をベースとするカルコゲナイド半導体薄膜が一般的 である。1970年代初期には、Teを主成分としGe, Si, AsやSb等の添加材料 でTeのネットワーク構造を架橋しアモルファス状態を安定化する手法が 用いられた。但し、これらの材料は結晶化温度を高くしようとすると結 晶化速度が大きく低下して、書き換えが困難になるという問題があり、 また結晶化速度を上げようとすると結晶化温度が大きく低下してアモル ファス状態が室温で不安定になるという問題を有していた。その後、19 80年代の後半になって、これを解決する手段として化学量論の化合物組 成を適用することが提案された。例えばGe-Sb-Te系、In-Sb-Te系、GeTe 系等が開発されており、なかでもGe-Sb-Te系材料は高速の相転移が可能 であって、しかも繰り返しによっても穴があいたりすることがなく、し かも相分離や偏析を生じないという特長を有し、最も広く研究されてい Z(N. Yamada et al. Jpn. J. Appl. Phys. 26, Suppl. 26-4, 61 (1987)))。化学的量論組成でない材料組成としては、Ag-In-Sb-Te 系が開発さ れている。この材料は、消去性能が優れていることが報告されているが 、オーバライトを繰り返すと、相分離にともなう特性劣化が生じること がわかっている。

化学的量論組成を用いた場合にも、繰り返しに伴う特性劣化が観測される場合があるが、この場合の劣化メカニズムの一つとして、オーバライトの繰り返しに伴うミクロな物質移動現象がある。即ち、オーバライ

10

15

20

25

トを行うことによって、記録膜を構成する物質がわずかづつではあるが一定方向に流動するという現象を生起する。その結果、大きな繰り返しの後には、膜厚の局所的なむらができてしまうという。これを抑制する試みとして、記録層に添加物を行う方法が幾つか提案されている。その1つは成膜時に N_2 ガス添加を行う方法である(特開平4-10979号公報)。高融点の窒化物が記録膜を構成する結晶粒界にネットワークのように析出し、これが流動を抑制するメカニズムが発表されている(R. Kojima et al. Jpn. J. Appl. Phys. 37 Pt. 1, No. 4B, 2098(1998))。

また、特開平8-127176号公報では、記録材料よりも高融点の材料を添加する方法が提案されている。

後述するように、本発明との相違点は、その高融点材料は母材料とは 固溶せず母材料層の中に点在するような構成をとるということであって 、点在した高融点物質がオーバライトの繰り返しによる物質移動現象を 抑制し性能を向上する提案が行われている。また特開平7-214913号公報 では、メカニズムは明かされていないが、Ge-Sb-Te 膜にPt, Au, Cu, Niを わずかに添加することで繰り返し性能を低下させずに、アモルファス相 の安定化を向上することが提案されている。

しかしながら、繰り返し可能な回数は、記録密度を高めようとすると低下する傾向がある。即ち、最近では世代の異なるメディア間での互換性(コンパチビリティー)を維持する必要性から、同じ性能の光学ヘッド(即ち、同一波長のレーザビーム、同一開口数の対物レンズ)を用いて、より密度の高い記録を行うことが要求されてきている。記録密度を高めるためには記録マークのサイズを小さくする必要があるが、記録マークのサイズが小さくなればなるほど再生される信号強度は低下し、ノイズの影響を受けやすくなる。即ち、繰り返し記録を行った際に、これまでは問題にならなかったようなわずかな変動が読みとりエラーを引き起こ

10

15

20

すことになり、書き換えの繰り返し可能な回数が実質的に低下する問題が発生する。とくに、記録再生用のレーザビームを案内するために、基板上に形成した凹凸溝トラックの溝部(光入射側から見て近い側)とランド部(溝間)のいずれにも記録を行う、いわゆるランドーグルーブ記録の場合には、両者の間で熱的条件、光学的条件が異なるために、とくにランド部での繰り返し性能が低下しやすいという問題があった。

化合物材料を記録層を用いた場合のメリットは既に述べたが、反面、 記録層組成が化学量論組成から変動すると記録性能が大きく変化すると いう点が問題となる。即ち、化合物組成のメリットを保持しつつ、かつ 特性に対する組成許容幅の広い組成又は同じ記録膜を用いても、より厳 密に記録膜の性能をコントロール可能な記録方法が求められていた。

相変化材料のもう1つの応用分野として、カルコゲナイド材料を用いた電気的スイッチング素子、メモリ素子もよく知られている。これら電気的な現象は1968年に初めて報告されている。即ち、電極に挟み込んだas-depo. 状態の相変化材料薄膜に徐々に電圧を印加していくと、あるスレショールド電圧において、電極間の電気抵抗は急激に低下し大きな電流が流れるようになる(結晶化する)。この状態から元の低抵抗状態(0FF 状態)に戻す場合には、大きくて短い電流パルスを通じる。電流が通じた部分は一旦溶融した後、急冷化されてアモルファス状態となって電気抵抗が上昇する。電気抵抗の違いは通常の電気的手段で簡単に検出可能であるから、書換可能なメモリとして用いることができる。電気メモリに適用される材料組成としては、Teを主成分とするものが実用化されたが、いずれも結晶化に要する時間は μ sオーダーのものしか得られていなかった。

25 発明の開示

本発明は上記課題を解決するため、書き換えの繰り返し回数がより大

きく、かつ高速の曹換が可能な相変化メモリ材料を提供することを目的とする。メモリデバイスの構成は光メモリでも電気メモリでもいずれでもよい。本発明は前記した化学量論組成の優れた特徴をうまく生かし、多少の組成変動があっても特性への影響が小さい組成、即ち特性の制御が容易な組成を有する記録薄膜を基板上に備えた記録媒体の提供を目的とする。また本発明は、これら記録薄膜を備えた記録媒体の製造方法の提供を目的とする。

前記目的を達成するため、本発明の情報記録媒体は、基板上に、電気 エネルギー又は電磁波エネルギーによって電気的又は光学的に検出可能 な状態間で可逆的相転移を生起することが可能な記録材料層を備えた情 報記録媒体であって、

前記記録層を形成する記録材料が、下記A又はBの材料であり、かつ前記格子欠損の少なくとも一部が前記結晶構造を構成する元素以外の元素で埋められていることを特徴とする。

- 15 A. 前記可逆的相変化の一つの相において格子欠損を含む結晶構造を有する材料
 - B. 前記可逆的相変化の一つの相において格子欠損を含む結晶部分とアモルファス部分とから構成される複合相をとり、かつ前記結晶部分とアモルファス部分とが共通の元素を含む材料
- 20 次に本発明の情報記録媒体の製造方法は、基板上に、電気エネルギー 、電磁波エネルギーによって電気的または光学的に検出可能な状態間で 可逆的相転移を生起することが可能な記録材料層を備えた情報記録媒体 の製造方法であって、

前記可逆的相変化の一つの相が格子欠損を含んだ結晶構造をもつ記録 25 材料を用いて前記記録層を形成し、添加元素によって前記欠損の少なく とも一部を埋めることを特徴とする。

10

15

20

25

本発明は、材料層にレーザ照射や通電等を行うことによりアモルファス相ー結晶相間の可逆的相転移を生起する材料組成として以下のようなものを用いる。即ち、この材料組成は結晶化時において単一相を形成するものであり、しかもその結晶格子は必然としていくらかの欠損を含んでいる。また、前記格子欠損の少なくとも一部には母材料を構成する元素とは異なる元素が埋め込まれ、従来にはない新しい化合物相を呈するものである。母材料の格子中に添加物元素を埋め込むことで母材料の特性を基本的に変化させることが可能となる。

また、本発明は上記課題を解決する手段として、アモルファス状態の 材料層にレーザ照射や通電等を行うことにより結晶化する材料として、 上記結晶相が前記したような結晶内部に格子欠損を有する化合物相部分 とアモルファス相部分とを含む複合相(結晶相)を形成する材料相を用 いる。ここで、上記化合物相部分は添加元素を埋めこんだものであるこ とが重要であり好ましい。この際、アモルファス相は単一相である。上 記複合相中の結晶相に対するアモルファス相の割合はモル比にして2.0 以下(アモルファス相が結晶相の2倍まで)であることが好ましく、1.0以 下であることがさらに好ましい。

前記化合物の母材料としては、結晶相が単一相の場合か複合相の場合かに関わらず、結晶構造が格子欠損(vacancy)を含む構造を有する岩塩形(NaCl形)の材料が好ましい。前記したように、この母材料中に含まれる格子欠損の少なくとも一部に前記岩塩形構造の基本を成す元素以外の原子を埋め込んだものを用いる。この際、前記格子欠損を埋める元素としては、前記格子欠損を埋める元素のイオン半径をRin、前記岩塩形結晶を構成する元素のうちで最も小さいイオンのイオン半径をRncとするとき、RimがRncになるべく近いこと、例えば $0.7 < Rim \le 1.05 Rnc$ とすることが好ましい。また、前記格子欠損を埋める元素の融点をTin、

10

15

20

25

前記岩塩形結晶の融点をTncとするとき、TimとTncはなるべく近いこと、例えば | Tim- Tnc | \leq 100 $\mathbb C$ を満たすことが好ましい。また、前記格子欠損を埋める元素の添加濃度をDim、前記岩塩形結晶中の格子欠損の濃度をDdfとするとき、Dim \leq Ddf \times 1.5であることが好ましく、さらには $0.2\leq$ Dim \leq Ddfであることがより好ましい。

具体的材料としては、Teを含むことが好ましい。また複合相中のアモルファス相を形成する物質としては、Sb, Bi, In, Ge, Siの少なくとも1種またはこれらを含むことが望ましい。これらはその少なくとも一部が酸化物や窒化物やフッ化物や窒酸化物からなることも可能である。ここで重要なことは、化合物相とアモルファス相とが共通の構成元素を含むことが好ましいことである。例えば、結晶層を構成する元素がGe, Sb, Teの3元を主成分とするとき、アモルファス相はSbやGeを主成分とすることが好ましい。別の組合例としては、化合物相がGe, Sb及び/又はBi及びTeを含みアモルファス相がSb及び/又はBi又はGeを含むことがさらに好ましい。そして結晶相中にはSn, Cr, Mn, Pb, Ag, A1, In, Se, Moの中から選ばれる少なくとも1つの元素を含ませることが好ましい。

前記岩塩形結晶を構成する元素としては、母材料としてGeとTeを含むことが好ましく、さらにSb及びBiから選ばれる少なくとも1つを含むことが好ましい。なかでも前記岩塩形結晶の母材料組成が、 $GeTe-Sb_2Te_3$ 擬2元系組成、 $GeTe-Bi_2Te_3$ 擬2元系組成またはこれらの混合物にほぼ一致することが好ましい。また、前記岩塩形結晶を構成する元素がGe,Te e、Sbを含む場合、又はGe,Te Biを含む場合には、格子欠損を埋める元素が少なくともA1 Ag,Pb,Sn,Cr,Mn,Moの少なくとも1 種であることが好ましい。また、前記岩塩形結晶の母材料組成が、 $(GeTe)_{1-x}(M_2Te_3)_x$ 、ただし、 $0.2 \le x \le 0.9$ (MはSb,BiまたはA1から選ばれるいずれか1つの元素、または $2 \le x \le 0.9$ (MはSb,Biまたは $2 \le x \le 0.9$ (MはSb,Biまたな Bita)

10

15

20

25

く、さらに $(GeTe)_{1-x}(M_2Te_3)_x$ 、 $0.5 \le x \le 0.9$ にほぼ一致する方がより好ましい。また記録膜中には、さらに窒素(N)または酸素(0)を含むことが記録感度を向上するうえで好ましい。N原子の濃度Dnが、0.5atom% $\le Dn \le 5atom$ %の範囲にあることがさらに効果的であって好ましい。

格子にA1, Cr, Mnを埋め込んだ場合には繰り返し性能の向上を得る上で好ましく、Agを添加する場合には結晶相-アモルファス相間の光学的特性変化(信号振幅変化)を大きくする上で好ましく、SnまたはPbを埋め込んだ場合には結晶化速度を向上する上で効果があった。

格子欠損を埋める元素としては、同時に複数の元素を入れることが特性向上のためにより効果的である。Ge-Sb-Te系やGe-Bi-Te系をベース材料にする場合、例えばSn又はPbの少なくともいずれかとAl, CrまたはMnの少なくともいずれかを同時に適用することが結晶化速度の向上と繰り返し性能の向上を同時に達成する上で好ましい。またSn又はPbの少なくともいずれかとAgを同時に適用することが結晶化速度の向上と信号振幅の向上を同時に達成する上で好ましい。またAl, CrまたはMnの少なくともいずれかとAgとを同時に適用することは、繰り返し性能の向上と信号振幅の向上を同時に向上する上で好ましい。さらにまた、Al, CrまたはMnの少なくともいずれかとSnまたはPbの少なくともいずれかととAgを同時に添加することが、結晶化速度の向上、信号振幅の向上、繰り返し性能の向上を同時に達成するうえで好ましい。

これらの材料層の製造方法としては、蒸着やスパッタによる積層方法が望ましい。詳しくは、岩塩形結晶を構成する成分とその中に含まれる格子欠損を埋める元素とを含むターゲットからスパッタすることがさらに好ましい。ターゲットは岩塩形結晶をつくる元素として、少なくともGeとTeを含むことが好ましく、さらにAl,Sb,Biのいずれかを含むことが好ましい。また、格子欠損を埋める元素としてとくAg,Sn,Pb,Al,Cr,In,

10

15

20

Mn, Moが好ましい。その際、Arと N_2 を含むガス雰囲気中でスパッタすることがさらに好ましい。また、スパッタガス中に N_2 ガス及び 0_2 ガスから選ばれる少なくとも一つのガスを含ませることも好ましい。

本発明の光学的情報記録媒体では、基板上に前記記録材料薄膜を形成した単層媒体としても用いることが可能であるが、記録層を含む多層膜として用いることが望ましい。例えば、基板と記録層の間に基板の熱的ダメージを低減する目的や光干渉効果を利用する目的等で保護層を設けることが好ましく、また記録層の変形を抑制する目的や光干渉効果を利用する目的等で記録層の反対側にも保護層を設けることが好ましい。保護層としては酸化物、硫化物、窒化物、窒酸化物、炭化物、フッ化物等の中から熱的・化学的に安定性が高く光学的に透明な材料を用いるが、ZnS,SiO₂,ZnS-SiO₂,SiNO,SiN,SiC,GeN,Cr₂O₃,Al₂O₃等が好ましい。また、記録に用いるレーザ光等の利用効率を増大させる目的で保護層のさらに上側に反射層を設けることが好ましい。反射層としては金属材料膜でも誘電体材料を組合せた多層膜でもよい。金属材料としてはAu,Al,Agやこれらをベースとする合金を用いることができる。

本発明の電気的情報記録媒体では、基板上に電極材料、前記材料薄膜、電極材料を積層した構成であってもよいし、電極を兼ねた金属基板上 に、前記材料薄膜、電極材料を積層した構成であってもよい。

各層の材料は、光学的情報記録媒体の場合と同様にスパッタや蒸着等による積層方法が用いられる。本発明の電気的メモリ機構は、電気抵抗の変化を生起するものであることから、変更可能なプログラマブル回路の構成部品としても用いることが可能である。

図面の簡単な説明

25 図1は本発明の情報記録媒体に適用する代表的な記録膜の構造(結晶 化時の原子配置)の一例を説明するための模式図であって、結晶相が単

10

20

25

一相である場合に対応している。ここでは、結晶相は単一の化合物相(しかも岩塩形構造)で構成されていて、岩塩形構造(rock-salt type structure)を形成する格子位置の内、4aサイトはすべてTe原子1が占有し、4bサイトはGe原子2とSb原子3ならびに格子欠損4で占められている。本発明では、上記4bサイトを占める原子以外の別の原子を上記格子欠損に埋め込むことを特徴とする。

図2は本発明の情報記録媒体に適用する代表的な記録膜の構造(結晶化時の原子配置)の別の一例を説明するための模式図であって、記録層が結晶相において複合相をとる場合に相当する。即ち、図2中、(a)は結晶相100を示す。結晶相は図1に示したものと基本的に同じ化合物構造を持つ成分110とアモルファス成分120からなる複合相(混合物相)100になっている。(b)はアモルファス相200を示す。ここでは単一相を形成している。

図3A~図3Dは、図2の構造をより具体的に示した例である。

15 図4A~4Jは本発明の光学的情報記録媒体の層構成例を示すための 媒体の断面図を示す。図中、7は基板、8は記録層(相変化材料層)、9,10 は保護層、11は反射層、12はオーバコート層、13は接着層、14は保護板 、15は表面層、16,17は界面層、18は光吸収層、19は反射層(光入射側) 、20,21はいずれも上記各種薄膜の多層膜を示している。

図5は本発明の情報記録媒体に適用される記録膜中の添加元素が結晶 相中のどこに位置するかを説明する結晶構造の模式図である。22は岩塩 形結晶格子中の格子欠損中を埋めた原子位置を示す。

図6A~図6Cは本発明の光学的情報記録媒体の記録性能を評価した レーザ変調波形を示す図である。図6Aは3Tパルスの場合の記録性能 、図6Bは4Tパルスの場合の記録性能、図6Cは5T~11Tパルス の場合の記録性能である。

15

20

25

図7は本発明の情報記録媒体中の格子欠損濃度と適正添加物濃度の関係の一例を説明する図である。

図8A~F及び図9A~Eは、本発明の情報記録媒体に適用する記録 膜の結晶構造例を示す図である。ここで、図示されている各構造は、図 1及び図2中のいずれの化合物相にも対応する。

図10は本発明の電気的メモリデバイス(電気抵抗の可逆変化メモリ)の基本構造を示す図である。図中、23は基板、24,27は電極、25は絶縁体、26は相変化材料膜、28,29はスイッチ、30はパルス電源、31は抵抗測定器である。

10 発明を実施するための最良の形態

図2は本発明の光学的情報記録媒体の具体的な一実施例(層構成)を示 す断面図である。光透過性のポリカーボネイト樹脂, アクリル系樹脂、 ポリオレフィン系樹脂、ガラス板等の基板7上に前記した構成を持つ記 録層8を形成した媒体構成を基本とし、その記録層の少なくともいずれ かの側に保護層9,10を形成した例、保護層の上部に反射層11を形成した 例、最上層にオーバコート12を施したもの、オーバコートに替えて接着 層13を介して保護板14を貼り合わせたものがある。基板表面には、記録 再生に用いるレーザビームをガイドするために、スパイラル状又は同心 円状の凹凸の溝トラック、ピット列、トラックアドレス等を形成するこ とができる。この記録媒体へレーザ照射を行い、記録層に結晶相-アモ ルファス相間の加虐的な相変化を生起させることで、情報の書き換えを 行うことができる。結晶化する場合には、記録媒体にパルス的にレーザ 照射を行ない、照射部を暫時結晶化転移温度以上にキープする。また、 アモルファス化する場合には、結晶化する場合よりも強いパワーでかつ 同等以下の期間のレーザ照射を行ない、照射部を瞬時溶融させた後に急 冷する。この可逆的相変化は、反射率や透過率の変化として検出するこ

10

15

20

25

とができる。この再生動作は、記録媒体に付加的な影響を与えない程度 に弱くしたレーザ照射を行い、照射部からの反射光強度の変化、又は透 過光強度の変化を検出することで行う。

本発明の光学的情報記録媒体は図4A~J中、記録層8を構成する材 料組成及びその内部構造で特徴づけることができる。その代表的な実施 例としてGe-Sb-Te系材料を用いて説明する。Ge-Sb-Te材料がレーザ照射 によって準安定的に面心立方構造に結晶することは既に報告されている が(N. Yamada et al., J. Appl. Phy. 69(5), 2849 (1991))、最近の著者 の研究(MRS-Bulletin, 21(9), 48(1996))に示したように、又は野中等 の研究(第10回相変化記録シンポジウム講演論文集P63)に述べられてい るように、前記準安定相では多くの格子欠損(vacancy)が必然的に含ま れる。即ち、代表的組成としてGe2Sb2Te5の化学的量論化合物組成につ いて説明すると、この材料の準安定相は岩塩形(NaCl形)であり、図1に 示すように、C1原子に相当する格子位置(4aサイト)はすべてTe原子1が 占め、Na原子に相当する格子位置(4bサイト)をGe原子2とSb原子3とが 組成比に応じてランダムに占めることになる。ところが、Ge原子とSb原 子を合わせた数はTe原子の数よりも大きいため、必然として4aサイトに は、20%ほどの格子欠損4(全サイトの10%程度)ができることになる。こ の格子欠損の位置もランダムに存在している(図中、4aサイトの原子位 置は一例である)。

従来、本発明者等はこのGe-Sb-Te系では組成を変化させても、ほぼ同一の面心立方構造を有する結晶になることを報告していたが、ごく最近の研究によって、この欠損を埋めようとして、たとえば $Ge_2Sb_{2+x}Te_5(0<x\le 1)$ のような形でSb濃度を添加しても、Sb原子は結晶格子には入らず、添加したSb原子は結晶粒子の界面に別の構造で存在することがわかった。とくにレーザ結晶化の場合にはアモルファス相として存在するこ

10

15

20

25

とが明らかになった。即ち、詳細なX線回折法による観測結果では、化学的量論組成 $Ge_2Sb_2Te_5$ 薄膜にSbを加えても、そのSb原子は結晶格子に入って格子欠損を完全に埋めるということにはならず、その結果として、結晶状態における記録膜の構造は $Ge_2Sb_2Te_5$ 結晶とSbの 2 相共存となる。通常、2 相共存組成の場合、溶融一凝固プロセスを繰り返すと相分離を生起して局所的に組成が変動するというような変化を生起する原因になるが、この場合には、SbとGe-Sb-Te中にもSbが含まれるという理由で相分離が進行しないという利点が得られる。

添加物を行った場合に見られる、上記結晶成長の抑制効果は、Sbばかりでなく他の元素でも観察されているが、Sbとは様相が異なるものが多い。例えば、特開平7-214913号公報ではPdの添加を行うことが開示されているが、ここでは添加量が2atom%を越えると結晶化が困難になるという旨の記載が開示されているが、ここで示されたわずかの添加物で急激な特性変化を生起するという事実は、Pdは格子欠損に入ることなく存在していると考えられる。即ち、例えわずかな量であっても、PdはGe-Sb-Teを主成分とする結晶格子には入らず、PdとGe-Sb-Teとに完全に分離していることを示しているものと考えられる。Pdが微量な間は目立たないが、濃度が2atom%程度になると、高融点材料であるPdの特性が顕著になり、原子の動きを束縛して結晶化を非常に困難にするのであろう。また、記録消去を繰り返すと、たやすくGe-Sb-TeとPdの2相に相分離してしまう。即ち、格子に入らない添加物は特性をコントロールする上で必ずしも適していない。

一方、Sbの場合には、その添加濃度と結晶化特性の変化の関係は比較 的緩やかであり特性の制御が容易に行えるだけでなく、高い繰り返し性 能を保つことができる。即ち、添加物によって広くかつ連続的に特性を

10

15

20

25

変化させようとするならば、添加物元素の融点が母材料に対して高すぎないことが重要と考えられる。また、添加物元素は結晶格子の中に入り込むものであること、特に別の結晶相を生じないものであることが重要であると考えられる。また、別の観点からは、格子欠損を有用な原子で埋めておくことで、入っては困る原子の進入を防ぐことができるという効果も生じる。

本発明者らは、上記観点から記録材料を見直した結果、ある条件下に おいては、添加元素が結晶格子の中に入り込み連続的な特性制御が精度 高く実現できることを見いだした。また、添加物によっては、それと入 れ替わりに母材料の構成元素を格子外にはじき出させることが可能であ り、しかもはじき出させる元素を変化させることが可能であることを見 いだした。しかも、そのはじき出された元素の状態や濃度をコントロー ルすることで結晶化温度や結晶化速度を制御できること、即ち望ましい 記録消去性能を得ることが可能であることを見出した。当然ながら、こ の場合には、結晶中で化合物を形成する元素の一部と、化合物外にパー ジされ、たとえば粒界にアモルファス相となって存在する元素とは共通 することになる。このことは結晶相とアモルファス相との間で相変化が 生じる場合に、常に組成の場所的な均一性が保たれやすいことを意味す る。即ち、添加物を添加した結果として結晶相が複合相となっても相分 離が進行しないこと、引いては良好な繰り返し特性が維持できることを 意味している。このことは、発想を変えて考えれば、単一相であって、 しかも格子欠損を必然として含む母材料があれば、別の元素をうまくそ の格子欠損を埋めることで、従来にない特性が得られることを意味して いる。また、ある添加物を行うことで、従来にない構造を有する材料を 形成することが可能であることを意味している。

以下、記録層8を構成する、より具体的な材料組成について説明する

15

20

25

。本発明の材料としての必要条件の第1は、まず、格子欠損を多く含む 母材料を得ることであるが、GeTe-M₂Te₃(Mは例えばSb, Bi, A1等)で表す ことが可能な材料。例えば、GeTe-Sb₂Te₃系組成を中心とするGe-Sb-Te 系材料やGeTe-Bi₂Te₃系組成を中心とするGe-Bi-Te材料、又はGeTe-Al₂T e3系を中心とするGe-Te-A1系材料においては格子欠損を含む結晶相が準 安定相として出現する。また、これらの混合物組成Ge-Sb-Bi-Te系やGe-Sb-Al-Te, Ge-Bi-Al-Te, Ge-Sb-Bi-Al-Teの場合にも同じく格子欠損を含 む結晶相が準安定相として出現することがわかった。さらに、Teの一部 をSeで置き換えたGe(Te, Se)-M2(Te, Se)3材料、例えばGe-Te-Se-Sb, Ge-T e-Se-Bi, Ge-Te-Se-Sb-Bi, Ge-Te-Se-Al, Ge-Te-Se-Sb-Al, Ge-Te-Se-Bi-Al ,Ge-Te-Se-Sb-Bi-Al等の場合にも同様の構成が得られた。また、Geの一 部をSnやPbで置き換えたGe-Sn-Te-Sb, Ge-Sn-Te-Sb-Al, Ge-Pb-Te-Sb, Ge-Pb-Te-Sb-A1等の場合にも同様の効果が得られた。また、これらにNを含 ませた系においても同様な構造が得られた。これらは、いずれも準安定 的に面心立方形構造(岩塩形構造)に結晶するが、既に述べたように、岩 塩形構造の4bサイトはTe(又はSe)が占め、4aサイトを他の元素量が占め ることになるとすると、Te(又はSe)の原子数は、Mの原子数よりも多い ため必然として4aサイトには格子欠損が生じることになる。この格子欠 損は、前述したSb等の元素では完全に埋めることができない。その理由 はまだ明確ではないが、岩塩形の準安定相が成立する条件として、内部 に一定の格子欠損が必須であることが考えられる。即ち、欠損を埋めよ うとすると、全体のエネルギが高くなってしまい、岩塩形構造を保てな くなるということが予想される。

本発明者らは、様々な分析や実験を積み重ねた結果、格子を埋めることのできる元素と埋めることのできない条件とが存在し、その一つの条件としてイオン半径が重要であるらしいことをつきとめた。具体的にい

えば、母材料を構成する元素の中で、例えば4aサイトに格子欠損がある場合には、4aサイトを占めている元素の内で最も小さいイオン半径を有する元素のイオン半径をRnc、添加元素のイオン半径をRimとするとき、RimがRncに十分近ければ前記母材料の欠損格子を埋めやすい。例えば丸善株式会社発刊の改訂 3 版化学便覧基礎編IIによれば、配位数 6 の場合には Ge^{4+} イオンのイオン半径は0.67であるが、 Sb^{5+} イオンのイオン半径は0.74 μ m、 Te^{2-} イオンのイオン半径は2.07 μ mであり、Ge-Sb-Te系の場合には、この中で4aサイトの原子であるGeとSbのうち、イオン半径の小さい方であるGeイオンと同程度またはあまり小さくなりすぎない範囲で、それ以下のイオン半径を有する元素であれば格子の中に入りやすい。

表1 各種イオン種のイオン半径と元素の融点

	配位数 6	イオン	元素の		配位数6	イオン	元素の
No.	Ø	半径	融点	No.	O	半径	融点
	イオン種	(nm)	(°C)		イオン種	(nm)	(°C)
1	N5+	2, 7	-209. 86	41	Ta ⁵⁺	7.8	2990
2	γ5+	5. 0	1890	42	Nn3+h	7. 9	1240
3	S ⁴⁺	5. 1	112. 8	43	Co2+1	7. 9	1490
4	Si ⁴⁺	5. 4	1410	44	Fe3+h	7. 9	1540
5	P3+	5. 8	44.1	45	Tc4+	7. 9	2170
6	Be ²⁺	5. 9	1280	46	No4+	7. 9	2620
7	As ⁵⁺	6. 0	817	47	₩4+	8. 0	3400
8	Se ⁴⁺	6. 4	217	48	Mn ²⁺¹	8. 1	1240
9	Ge4+	6. 7	937. 4	49	Ti3+	8.1	1660
10	Mn ⁴⁺	6. 7	1240	50	Rh ³⁺	8. 1	1970
11	Re ⁷⁺	6. 7	3180	51	Ru3+	8. 2	2310
12	A13+	6.8	660. 37	52	Ir ³⁺	8. 2	2410
13	Co3+1	6. 9	1490	53	Nb4+	8. 2	2470
14	Fe ³⁺¹	6. 9	1540	54	Ta ⁴⁺	8. 2	2990
15	Cr4+	6. 9	1860	55	Sn ⁴⁺	8. 3	231. 96
16	Re ⁶⁺	6. 9	3180	56	Ni ²⁺	8. 3	1450
17	Те ⁶⁺	7.0	449. 5	57	Mo ³⁺	8. 3	2620
18	Ni3+1	7.0	1450	58	Hf ⁴⁺	8. 5	2230
19	Λs ³⁺	7. 2	817	59	Mg ^{2÷}	8. 6	648. 8
20	Mn3+1	7. 2	1240	60	Zr ⁴⁺	8. 6	1850
21	y4+	7. 2	1890	61	№3+	8. 6	2470
22	Mo6+	7. 3	2620	62	Та ³⁺	8. 6	2990
23	Sb ⁵⁺	7.4	630. 74	63	Ge ²⁺	8. 7	937. 4
24	Ni ^{3+h}	7.4	1450	64	Cu ²⁺	8. 7	1083. 4
25	Rh ⁴⁺	7.4	1970	65	լյ 5 +	8. 7	1132. 3
26	₩6+	7.4	3400	66	Cr ²⁺¹	8. 7	1860
27	Co ^{3+h}	7.5	1490	67	Zn ²⁺	8.8	419. 58
28	Fe ²⁺¹	7.5	1540	68	Sc ³⁺	8.8	1540
29	Ti ⁴⁺	7. 5	1660	69	Co ^{2+h}	8. 9	1490
30	No ⁵⁺	7. 5	2620	70	Li ⁺	9. 0	180. 54
31	Ga ³⁺	7.6	29. 78	71	Bi6+	9. 0	271. 3
32	Pd ⁴⁺	7.6	1550	72	Sb ³⁺	9.0	630. 74
33	Cr ³⁺	7.6	1860	73	Pd3+	9. 0	1550
34	Ru ⁴⁺	7.6	2310	74	Cu ⁺	9. 1	1083. 4
35	₩5+	7.6	3400	75	Pb ⁴⁺	9. 2	327. 502
36	Pt4+	7. 7	1770	76	Fe ^{2+h}	9. 2	1540
37	Ir ⁴⁺	7. 7	2410	77	v 2+	9. 3	1890
38	0s ⁴ +	7. 7	3045	78	In ^{3÷}	9. 4	156. 61
39	γ3+	7.8	1890	79	Pt ²⁺	9.4	1770
40	Nb ⁵⁺	7.8	2470	80	Cr ^{2+h}	9. 4	1860

10

15

20

25

岩塩形構造中の原子は6配位と考えられる。表 1 に配位数が6で0. 67近傍のイオン種をイオン半径の順にならべたものを示す。 Ge^{4+} イオンのイオン半径は0. 67であるが、その70%程度のバナジウムイオン V^{5+} から105%程度の Ni^{3+} イオンくらいの範囲であれば、格子中に入る可能性が大きい。即ち、V, S, Si, P, Be, As, Se, Ge, Mn, Re, Al, Co, Te, Cr, Ni が有効である。以上の中で、毒性が問題となるかもしれないBe, As, P、母材料であるGe, Te、放射線元素であるRe等を除けば、V, S, Si, Mn, Al, Co, Cr, Ni 等が適合する。

もちろん、格子を埋めることのできる元素であれば、この限りではなく、前記条件は入りやすさの1つの条件にすぎないことはいうまでもない。例えば岩塩形構造をとる化合物をつくる元素の場合には格子に入りやすいことが観測できている。具体的にはAgSbTe2を作るAgの場合、SnTeをつくるSnの場合、PbTeをつくるPbの場合等は格子に入ることが観測できた。

格子を埋めることができるか否かということとならんで、添加元素として大切な要件には融点がある。相変化光ディスクでアモルファスマークを形成する場合には記録膜を溶融した後に急冷するというプロセスが必要であるが、この際には添加物の融点と記録膜全体の融点(より好ましくは構成するすべての元素の融点)が近いことが望ましい。例えば、添加物の融点が全体の融点と、かけ離れて高い場合には、溶融一固化を繰り返すあいだに相分離が進行しやすく、たとえイオン半径が近くても格子の中に安定して存在することは難しくなる。即ち、相分離が起こり、添加物の多く含まれる領域とわずかしか含まない領域が生じる。融点の差はなるべく小さいことが望ましいが、100℃程度の差であれば、相分離を生じることなく、格子欠損を埋めることが可能である。又は、例え単一相を形成しなくても非常に均一な混合相を形成することが可能と

なる。ここで、 $Ge_2Sb_2Te_5$ の場合を考えると、その融点は約630 $\mathbb C$ くらいであるから、添加物の融点としては $530\mathbb C$ から $730\mathbb C$ くらいの間にあることが望ましい。表 2 は、前記 6 配位のイオンを形成する元素を融点の低い順にならべたものである。この表からNo. 25 のSb からNo. 31 のBa までがこの範囲に入る。即ち、Sb, Pu, Mg, A1, Ba が対応するが、放射線元素であるPu、母材料であるSbを除いたMg, A1, Ba等が適合する。

表2 各種元素の融点とイオン種のイオン半径

	配位数 6	イオン	元素の		配位数6	イオン	元素の
No.	Ø	半径	融点	No.	Ø	半径	融点
	イオン種	(nm)	(°C)		イオン種	(nm)	(℃)
1	Cs ⁺	18. 1	28. 4	41	Ge ²⁺	8. 7	937. 4
2	Ga ³⁺	7. 6	29. 78	42	Ge ⁴⁺	6. 7	937. 4
3	Rb ⁺	16. 6	38. 89	43	Ag ⁺	12. 9	961. 93
4	P3+	5. 8	44.1	44	Ag ²⁺	10.8	961. 93
5	K+	15. 2	63. 65	45	Nd3+	11. 2	1020
6	Na ⁺	11.6	97. 81	46	Ac ³⁺	12. 6	1050
7	S ²⁻	17.0	112.8	47	Au ⁺	15. 1	1064. 43
8	S ⁴⁺	5. 1	112.8	48	Cu ⁺	9. 1	1083. 4
9	I-	20.6	113. 5	49	Cu ²⁺	8. 7	1083. 4
10	In ³⁺	9. 4	156. 61	50	η3+	11. 7	1132. 3
. 11	Li ⁺	9. 0	180. 54	51	ղ4+	10.3	1132. 3
12	Se ²⁻	18. 4	217	52	ŋ5+	8. 7	1132. 3
13	Se ⁴⁺	6. 4	217	53	Mn2+1	8. 1	1240
14	Sn4+	8. 3	231. 96	54	∦n2+h	9.7	1240
15	Bi ³⁺	11. 7	271. 3	55	Mn3+1	7. 2	1240
16	Bi ⁶⁺	9. 0	271.3	56	Mn3+h	7. 9	1240
17	T1+	16. 4	303. 5	57	¥n ⁴⁺	6. 7	1240
18	T13+	10. 3	303.5	58	Be ²⁺	5. 9	1280
19	Cd ²⁺	10. 9	320.9	59	Gd ³⁺	10.8	1310
20	Pb ²⁺	13. 3	327. 502	60	Dy ³⁺	10.5	1410
21	Pb ⁴⁺	9. 2	327. 502	61	Si ⁴⁺	5. 4	1410
22	Zn ²⁺	8.8	419. 58	62	Ni ²⁺ Ni ³⁺¹	8. 3	1450
23	Те ²⁻	20. 7	449. 5	63		7.0	1450
24	Те ⁶⁺	7. 0	449. 5	64	Ni3+h	7. 4	1450
25	Sb ³⁺	9. 0	630. 74	65	Co ²⁺¹	7. 9	1490
26	Sb ⁵⁺	7. 4	630. 74	66	Co ^{2+h}	8. 9	1490
27	Pu ³⁺	11. 4	639. 5	67	Co3+1	6. 9	1490
28	Pu ⁴⁺	10.0	639. 5	68	Co3+h	7. 5	1490
29	Ng ²⁺	8.6	648. 8	69	ү3+	10.4	1520
30	A13+	6.8	660. 37	70	Sc ³⁺	8.8	1540
31	Ba ²⁺	14. 9	725	71	Fe ²⁺¹	7. 5	1540
32	Sr ²⁺	13. 2	769	72	Fe ^{2+h}	9. 2	1540
33	Ce ³⁺	11.5	799	73	Fe ³⁺¹	6. 9	1540
34	Ce ⁴⁺	10.9	799	74	Fe ^{3+h}	7. 9	1540
35	As3+	7. 2	817	75	Pd ²⁺	10.0	1550
36	As5+	6.0	817	76	Pd3+	9. 0	1550
37	Eu ²⁺	13. 1	822	77	Pd ⁴⁺	7. 6	1550
38	Eu ³⁺	10.9	822	78	Lu ³⁺	10.0	1660
39	Ca ²⁺	11.4	839	79	Ti ²⁺	10.0	1660
40	La ³⁺	11. 7	921	80	Ti ³⁺	8. 1	1660

10

15

20

25

即ち、例えば母材料が $Ge_2Sb_2Te_5$ 組成であれば、上記イオン半径と融点という2つの条件を同時に満足することができ、かつ毒性や放射性でない元素としてA1が存在することがわかる。 $GeTe-Sb_2Te_3$ 系の場合には、 $Ge_2Sb_2Te_5$ の場合と同様のことが成立している。この系の融点は593 $Ce_2Sb_2Te_5$ の範囲で連続した変化をしているが、ここでもA1が格子欠損を埋めやすいという効果を発揮した。これ以外にも、前記材料組成の内のGe とTe をベースとするものは、いずれも同様にA1が格子欠損を埋める元素として効果的であった。もちろん、A1 以外の元素でも格子中に入る効果のあることは確認されている。Ag, Cr, Mn, Sn, Pb, Mo, In, Se においては、格子内に入ることが認められた。

格子欠損を埋める元素は1種である必要はなく、同時に複数の元素を入れることができる。本発明者らの実験によれば、Ge-Sb-Te系やGe-Bi-Te系をベース材料にする場合、たとえばSn(またはPb)を格子に埋め込むことで結晶化速度の大きな向上を得ることができるし、Crを格子に埋め込むことで繰り返し性能の向上を得ることができたが、Sn(またはPb)とCrを同時に埋め込むことで結晶化速度の向上と繰り返し性能の向上を同時に達成することが可能となった。Crに変えてMnを結晶格子に埋め込んだ場合にも同様な効果が得られた。Agを埋め込んだ場合には、結晶相一アモルファス相間の光学的反射率変化の大きさ向上(記録信号振幅の向上)が得られたが、AgとSn(またはPb)を添加することで記録信号振幅の向上と結晶化速度の向上が同時に達成された。また、AgとCr(またはMn)を同時に埋め込むことで信号振幅の向上と繰り返し性能の向上が同時に達成された。そしてSn(またはPb)とAgとCr(またはMn)を同時に達成された。そしてSn(またはPb)とAgとCr(またはMn)を同時に添加することで、結晶化速度の向上、信号振幅の向上、繰り返し性能の向上が同時に達成することができた。

本発明の光学的情報記録媒体に適用される記録層の、もう1つの好ま

10

15

20

25

しい実施形態例を図2を用いて説明する。図2は、図4A~Iのレーザ - 照射部における記録層8の局所的な微視的構造を模式的に表しており 、図2の(a)は化合物成分110とアモルファス成分120とが混在する結晶 相(複合相)100、下側が他の1つの相である単一アモルファス相200を示 す。ここで。記録材料層はGe、Sb、Te、Snの4元素から構成されている が、複合相100中の結晶成分110はGe-Sb-Te-Snの4元素からなるNaC1形 構造を有しており、NaC1形構造の4aサイト(C1に相当するサイト)はTe が占め、4bサイト (Naに相当するサイト) はGe、Sb、Snがランダムに占 めている。また、4bサイトには原子の入らない格子欠損が存在し、全体 の密度を小さくすることに寄与している。これにより、結晶相とアモル ファス相との間の体積変動を小さくし、相変態に伴う変形や穴あき等が 抑制される。結晶粒界には格子に入りきらない成分がアモルファス状態 で存在する。ここでは、Sbがアモルファスとして存在している。アモル ファス成分と結晶成分とは分子数比にしてアモルファス成分が結晶成分 の2倍を越えないことが望ましい。即ち、結晶成分の分子数をC、アモ ルファス成分をAとするとA/C≤2、より好ましくはA/C≤1である。アモ ルファス成分の比率が2を越えて大きくなりすぎると結晶化速度が大き く低下する。また、その比率が0に近づくと結晶化速度が大きくなりす ぎる。A/C≥0.01が好ましい。ここで、結晶層中にアモルファス成分と して出てくる元素はSbではなくGeの場合もあって、Geの場合には、結晶 化温度を高める効果や繰り返し性能を高める効果に優れている。これは 、アモルファスGeの持つ大きな粘性が寄与しているのではないかと思わ れる。Geを析出させる添加元素としてはMn、Cr等が確認されている。

単一アモルファス相200の中では、全ての元素がマクロにはほぼ均一に配置された状態となっている。情報を記録したり、書き換えたりする際には記録膜が少なくとも上記2つの状態間を可逆的に変化することが

10

15

20

25

重要である。この際、複合相100の中のアモルファス相120を形成する元素と化合物成分110を形成する元素の間に共通する元素を含ませることにより、相変態の際における原子拡散距離を小さくして変化を速やかに完了させることが可能となる。また数多くの書換えを繰り返した際にも局所的に大きな組成偏析が生起することを抑制する上で効果的である。

記録層を形成する材料層としては、複合相中の結晶相を形成する材料としてMa-Mb-Mc-α系というフォーマットで表したときに、MaとしてGe 及びSnまたはPbの内の少なくとも1つ、MbとしてSb、Biの内の少なくとも1つ、McとしてTe、Seの内の少なくとも1つからなり、必要に応じて他の元素を含んでもよい。例えばMn, Cr, Ag, Al, In等を含んだものを用いる。また複合相中のアモルファス相を形成する材料としては母材料がGe-Sb-Te系ならばSbまたはGeが適当であるし、母材料がGe-Bi-Te系で有ればGeまたはBiが適当である。AgInSbTe系であれば、Inも可能である。

図4B~I中で、保護層9,10に用いられる材質は誘電体材料が一般的であって、従来の光ディスク媒体において保護層として提案されているものは、そのまま適用することが可能である。例えばA1, Mg, Si, Nb, Ta, Ti, Zr、Y, Ge等の酸化物単独または複合酸化物等からなる材料層、A1, B, Nb, Si, Ge, Ta, Ti, Zr等の窒化物又は窒酸化物からなる材料層、ZnS, PbS等の硫化物、ZnSe等のセレン化物、SiC等の炭化物、CaF₂, LaF等のフッ化物、又はこれらの間の混合物、例えばZnS-SiO₂、ZnSe-SiO₂等を用いることができる。

反射層11には、主として金属が用いられ、Au, Al, Ag, Cu, Ni, Cr, Pd, Pt, Si, Ge又は、これらの間の合金としてAu-Cr, Ni-Cr, Al-Cr, Al-Ta, Al-Ti, Ag-Pd, Ag-Pd-Cu, Si-W, Si-Ta等を用いることができる。

オーバコート層12としては、例えば光硬化性の樹脂を用いることができる。接着剤13としては紫外線硬化樹脂等の光硬化性の樹脂やホットメ

10

15

20

25

ルト接着剤等を用いることができる。保護板14は基板と同じものを用いることができる。記録層を形成した側からレーザ光を照射して記録再生を行うことを前提にした構成の場合には、基板としては必ずしも透明である必要ななく、前記の基板材料以外にもA1やCu等の軽金属またはこれらをベースにした合金板や $A1_20_3$, $Mg0_2$ 等のセラミックス板等も用いることができる。この時には、基板上に形成する各層の順番は通常の場合の逆になる。

また、最上層には、光ヘッドとの接触による破壊を防ぐ目的で、表面 層15を構成することができるが必須ではない。表面層としては、ダイア モンドライクカーボン等や高分子材料からなる潤滑材料を用いることが できる。

記録層と保護層との間の原子拡散を防止する等の理由で、記録層と保護層との少なくとも一方の層間に界面層16,17を形成することができる。界面層としては窒化物、窒素酸化物、炭化物が優れている。例えば、Ge-N-(0),A1-N-(0),Si-C-N,Si-C等やこれらにCrやA1等を添加した材料、例えばGe-C-N,Si-A1-等を用いることができる。記録層がアモルファス状態にあるときの光吸収Aaを結晶状態にあるときの光吸収Acよりも相対的に小さくするための方法として記録層の上側保護層の上側に光吸収層18を用いる構成、記録層の光入射側に半透過性の反射層19を用いる構成も用いることができる。

光吸収層としてはSiやGeをベースとする合金材料、Teをベースとする合金材料を用いることができる。反射層としては上述の材料をそのまま適用可能であるが、 $Si0_2/ZnS$ - $Si0_2/Si0_2$ のように屈折率の異なる誘電体膜を重ねた構成で代用することもできる。また、これらの多層膜20, 21 を備えた記録媒体を接着層13で貼り合わせた両面を用いるタイプの媒体も構成することができる。

10

15

20

25

本発明の光学的情報記録媒体に適用される多層膜は、通常の薄膜形成 方法を用いて形成することができる。例えばマグネトロンスパッタリン グ、DCスパッタリング、電子ビーム蒸着、抵抗加熱蒸着、CVD、イオン プレーティング等の方法を用いることができる。特に本発明の記録層の 形成には、合金ターゲットを用いたマグネトロンスパッタ法、DCスパッ タ法が均質な膜を得る方法として優れていた。スパッタリングに用いる ターゲットは、上述の岩塩形構造を形成する材料を主成分として含み、 これに格子欠損を埋める元素を含んだもので構成することができる。例 えば、Ge、Te、Sb及びAl又はGe、Sb、Sn、Cr及びTe、又はGe、Sb、Te、 Sn及びAgのように各成分元素粉末を適当な割合で固めたものを用いるこ とができる。ターゲット中の成分比はおおよそ記録膜の組成に一致させ るが、装置依存性があるので、その都度、装置に合わせて微調整が必要 である。例えば、結晶層にある膜中に含ませる添加物の濃度をDin、格 子欠損の濃度をDdf、ターゲット中の添加物の濃度をDadと、DadはD im≤Ddf×1.5にほぼ等しい。成膜直後の状態では通常アモルファス状 態の単一相が形成されるが、一般にはこれを結晶化転移させておく処理 (初期化処理)を行う。方法としては高密度エネルギー束を照射するこ とにより、上記結晶相とアモルファス相とが混在する相を形成すること ができる。この場合の高密度エネルギー束の照射条件としては、なるべ く短時間に高温状態を通過させることが重要であって、レーザ照射やフ ラッシュ照射による処理が適している。

図10は本発明の電気的メモリデバイス(電気抵抗の可逆変化メモリ)の基本構造を示す図である。図10中、23は基板であって、ガラス板、A1₂0₃等のセラミック板、SiやCu等、各種金属板を用いることができる。ここでは基板としてアルミナ基板を用いた場合について説明する。この図では、基板上に電極24としてAu層をスパッタ法で形成した後、金属

10

15

20

25

製マスクを介してSiO2やSiN等の絶縁体層25を形成し、さらに上述の光学的情報記録媒体の記録層と同様の相変化材料からなる記録層26、電極(Au)27を積層する。電極24と27の間には、スイッチ28を介してパルス電源30が接続されている。as-depo. 状態で高抵抗状態にある記録膜を結晶化し低抵抗状態に変換するためには、スイッチ28を閉じ(スイッチ29は開)、電極間に電圧を印加する。抵抗値はスイッチ28を開き、スイッチ29を閉じて抵抗測定器31により検出できる。低抵抗状態から、再度高抵抗状態に戻す場合には、結晶化時よりも相対的に高い電圧を同等以下の期間で印加する。抵抗値の変化はスイッチ28を開き、スイッチ29を閉じて抵抗測定器31により検出できる。このメモリデバイスをマトリクス的に多数配置することで大容量メモリを構成することができる。

以下、より具体的な例を用いて本発明を詳しく説明する。

(実施例1)

最初の実施例として、本発明の光学的情報記録媒体を形成する方法について述べる。基板として厚さ $0.6\,\mathrm{mn}$ 、直径 $120\,\mathrm{mn}$ 、内径 $15\,\mathrm{mm}$ のディスク状のポリカーボネイト樹脂基板を用いた。多層膜が形成される面には、スパイラル状の溝トラックとして深さ $70\,\mathrm{nm}$ 、溝部の幅 $0.74\,\mu\,\mathrm{m}$ 、ランド部の幅 $0.74\,\mu\,\mathrm{m}$ の凹凸溝がほぼ全面に形成されている。情報信号を記録再生するためのレーザビームは、この凹凸形状から得たサーボ信号によってディスク上の任意の位置へと移動できる。基板上に、厚さ $150\,\mathrm{nm}$ の $2\,\mathrm{nS}$: $20\,\mathrm{mo}$ 1 $8\,\mathrm{Si}$ 0 $_2\,\mathrm{R}$ 2 $6\,\mathrm{R}$ 2 $6\,\mathrm{R}$ 3 $6\,\mathrm{R}$ 3 $6\,\mathrm{R}$ 4 $6\,\mathrm{R}$ 3 $6\,\mathrm{R}$ 4 $6\,\mathrm{R}$ 5 $6\,\mathrm{R}$ 3 $6\,\mathrm{R}$ 5 $6\,\mathrm{R}$ 5 $6\,\mathrm{R}$ 5 $6\,\mathrm{R}$ 6 $6\,\mathrm{R}$ 5 $6\,\mathrm{R}$ 6 $6\,\mathrm{R}$ 7 $6\,\mathrm{R}$ 7 $6\,\mathrm{R}$ 8 $6\,\mathrm{R}$ 7 $6\,\mathrm{R}$ 8 $6\,\mathrm{R}$ 9 $6\,\mathrm{R}$ 9

10

合ガスをスパッタガスとする反応性のマグネトロンスパッタ法を適用した。いずれの場合にも、スパッタガスとして N_2 ガスを添加することもできる。成膜終了後、紫外線硬化樹脂をスピンコートし、基板と同じポリカーボネイト板を保護板として張り合わせた後、紫外線ランプを照射して硬化させ、その後このディスクをレーザ照射によって初期結晶化処理を施した。これによって、後に述べるように、レーザ照射により記録再生が可能な光学的情報記録媒体を得ることができた。初期結晶化した部分の状態をX線回折で調べたところ、わずかにハローピークの見られるものの、NaCl形の単一結晶相であり、Alが結晶格子に入っていることがわかった。他の添加元素についても同様の方法で調べたところ、Mn、Ag、Cr、Sn、Bi、Pbについて同様な結果が確認された。

(実施例2)

石英基板上にGe₂Sb₂Te₅Al_xの組成式でA1:x=0.0、A2:x=0.2、A3:x=0.5、A4:x=1.0、A5:x=1.5、A6:x=2.0、A7:x=2.5、A8:x=3.0の8種類の材料薄膜をDCスパッタ法により形成した。ベース真空度を1.33×10⁻⁴Paとし、Arを導入して1.33×10⁻¹Paとした条件で、カソードと直径100mmφの合金ターゲット間に100Wのパワーを投入し、厚さ20nmの薄膜を形成した。これらの試料を50℃/分の昇温速度で加熱しながらHe-Neレーザ光線を用いて透過光強度の変化をモニターし、結晶化に伴って透過率が大きく減少する温度を計測した。結果を表3に示す。

表3 GeoSboTes薄膜中のA1濃度と結晶化温度・結晶化速度の関係

		4 4 9					· · · · · · · · · · · · · · · · · · ·	
試料	A 1	A 2	A 3	A 4	A 5	A 6	A 7	A 8
A l 濃度	0 %	2.2 %	5.3 %	10 %	14.3 %	18. 2 %	21.7 %	25 %
Tx	180℃	183℃	189℃	200℃	227℃	255℃	305℃	350℃
Tcrv	0	0	0	0	0	Δ	×	×

10

15

20

結晶温度はA1添加濃度とともに増大するが、試料Eの濃度くらいから 勾配が急になる様子を示している。この組成の場合、格子欠損の濃度D dfは全サイト数の10% (4bサイトの20%) であって、各試料でA1原子が格 子欠損を埋める率はDdfに対して、A1:0、A2:0.2×Ddf、A3:0.5× Ddf, $A4:1.0\times Ddf$, $A5:1.5\times Ddf$, $A6:2.0\times Ddf$, $A7:2.5\times Ddf$ 、A8:3.0×Ddfであり、試料A5~A8では格子欠損を埋めて余ることに なる。また。各試料において、A1原子の全体組成に占める割合は、A1: 0% A2: 2.2% A3: 5.3% A4: 10% A5: 14.3% A6: 18.2% A7: 21.7% 、A8:25%である。

試料A3及びA4に対して、X線回折を用いた詳細な構造同定をリートベ ルド(Rietveld)法によって行い、いずれの試料でもAlが結晶サイトに入 っていることが確かめられた。図5にその様子を模式的に示した。格子 欠損が添加物によって占められる確率もまたランダムである。試料A5、 A6、A7、A8では結晶格子に入りきらず格子から吐き出された原子が結晶 粒子の間に存在することになる。吐き出される原子は必ずしもAlでなな く、A1と置き換わる形で他の元素、例えばSbやGeが析出する可能性もあ る。結晶化が生じるに必要なレーザ照射時間はAl濃度とともに長くなる ことがわかった。表中には、70ns以下で結晶化した場合を◎、100ns以 下の場合を○、200ns以下の場合を△、それ以上かかる場合を×で表し ている。光の有効スポット長を1/e²で表した場合、現在のDVD-RAMで用 いられている光学系は波長が660nm、対物レンズのNAが0.6であるから、 理想的には0.95μm程度になる。このレーザスポットがDVD-RAMに相当す る線速度6m/sで回転しているディスクを横切る時間は、約160nsである から、○のディスクであれば、現行のDVD-RAMシステムへ適用可能であ る。また、線速度9m/s以上のシステムでも対応可能である。◎のディス 25 クならば、さらに高速の線速度12m/s以上の条件にも対応可能である。

10

(実施例3)

上記実施例1の方法に実施例2の組成を適用し、8枚の光ディスクal ~a8を用意した。これらのディスク媒体を線速度9m/sで回転させ、波長660nmのレーザダイオードから発した光線をNAO.6の対物レンズを含む光学系を用いてディスク上に集光した。この際、図6A~図6Cに示すように、3T信号から11信号までの信号波形に対応したマルチパルス波形を適用した8-16変調方式(ビット長:0.3μm)でオーバライト記録を行った。ピークパワー、バイアスパワーは以下のようにして決めた。まず、振幅の飽和値に対して一3dBの振幅を与えるパワーに1.3を乗じた値をピークパワーとした。次に、ピークパワーを固定、バイアスパワーを可変として、3T記録を行い、この上に同じパワーで11T記録を行った時の3T信号の減衰比を測定し消去率とした。消去率は徐々に大きくなり略平坦領域を経て減少するという傾向を示したので、消去率が20dBを越える下限パワーと上限パワーの中心値をバイアスパワーとした。

15 表4に各ディスクのランド記録時の記録パワー(ピークパワー/バイアスパワー)、C/N、消去率の最大値、ランダム信号を繰り返しオーバライト記録した時に、ジッター値が13%を越えない回数を示す。

表 4 GegSbgTe5薄膜中のAl濃度とディスク性能の関係

ディスク	a 1	a 2	a 3	a 4	a 5	a 6	a 7	a 8
Al濃度	0 %	2.2 %	5. 3 %	10 %	14.3 %	18. 2 %	21. 7 %	25 %
パワー	10. 5/4. 5	10.5/4.5	10. 5/4. 5	10. 5/4. 5	10. 1/4. 6	10.0/4.9	·	
mW	mW	m\	mW	m¥	п¥	υA		
C/N	50 dB	51. 5 dB	52 dB	52. 5 dB	52. 5 dB	52. 5dB	52.0 dB	
消去率	25dB	30 dB	34 dB	35 dB	29 dB	21 dB	10 dB	
回数	3×10 ⁴	1×10 ⁵	>1×10 ⁵	>1×10 ⁵	1×10 ⁵	2×10 ⁴		

10

この結果から、A1を添加することで消去率が向上し、繰り返し可能な回数が増大することがわかる。A1添加濃度が格子欠損の濃度である10%以内である場合には、ディスクa2、a3、a4とも30dBを越える消去率と10万回を越える繰り返し回数が得られた。また、C/N、消去率、繰り返し回数とも最も良い数値はA1添加濃度が格子欠損の濃度 D df と一致する場合に得られることがわかった。また、A1濃度が格子欠損の濃度以上になっても、1.5倍程度までの間は高速結晶化性能が保たれ、ディスクa5では無添加の場合よりも大きな繰り返し回数が得られた。添加濃度が大きくなりすぎると結晶化速度が低下する結果として消去率が小さくなりジッターも大きくなる。ディスクa7、a8では、ジッターは初期から13%を越えた。これら、繰り返し性能が改善されたディスクでは物質移動の抑制されていることが観測された。

(実施例4)

上記実施例1の記録膜の組成を(GeTe) x(Sb2Te3)1-xとし、xの値を0~10間で変化させた様々なディスクを試作し、それぞれの場合にA1添加濃度の適正範囲D1とその中でも特に優れた最適範囲D2を調べた。添加濃度は、まず0.2%と0.5%で行い、以降0.5%の刻みで1%、1.5%、2%、2.5%……と変化させた。適正範囲は、実施例2と実施例3で示した方法に基づき、繰り返し回数が無添加の場合よりも改善される添加濃度の範囲とした。さらに、最適範囲は繰り返し回数が少なくとも無添加の場合の2倍以上に伸び、かつ、高い結晶化速度が得られる範囲、即ち150ns以下のレーザ照射で結晶化可能な添加濃度の範囲とした。

表5	(GeTe) _x (Sb ₂ Te ₃) _(1-x) への最適なA	1 添加濃度

x値	NaC1構造を仮定 した時のDdf	適正範囲の A l 濃度:D1	最適範囲 のAl濃度:D2	備考
0	16.7 %			Sb2Te3そのもの
0.1	16.1 %	0.2 %≤D1≤24.0 %	3.0 %≤D2≤16.0 %	
0.2	15. 4 %	0.2 %≤D1≤23.0 %	3.0 %≤D2≤15.0 %	
0.33	14.3 %	0.2 %≤D1≤22.0 %	3.0 %≤D2≤14.0 %	GeSb4Te7
0.5	12.5 %	0.2 %≤D1≤19.5 %	2. 0 %≤ D2≤12. 5 %	GeSb ₂ Te ₄
0.67	10.0 %	0.2 %≤D1≤16.0 %	1.5 %≤D2≤11.0 %	Ge ₂ Sb ₂ Te ₅
0.8	7.1 %	0.2 %≤D1≤11.5 %	0.5 % ≤ D2 ≤ 8.5 %	
0.9	4.2 %	0.2 %≤D1≤ 6.5 %	0.2 %≤D2≤ 4.5 %	
0.91	3.8 %	0.2 %≤D1≤ 6.0 %	0.2 %≤D2≤ 4.0 %	
1	0 %			GeTeそのもの

表 5 に実験結果を示す。表中にはこれらの材料薄膜がレーザ照射によって岩塩形の準安定相を形成すると仮定した場合に、結晶構造の必然として形成される格子欠損の濃度 D dfの計算結果も示した。表よりわかるように、格子欠損の濃度 D dfは $(GeTe)_x(Sb_2Te_3)_{1-x}$ 擬 2 元系組成のGeTe 側から Sb_2Te_3 側に近づくにしたがって増大していく。これに対して、A1 添加量の適正範囲は欠損濃度よりも高い領域まで広がっており、約1.5 × D df程度まで特性向上効果があった。

図7は、これらの関係をグラフにしたもので、実線はDdf、●は適正範囲の上限値、△は最適範囲の上限値を示している。最適範囲の上限値は、xの値が小さくてDdfの絶対値が大きな間は、ほぼ Ddfの値に一致しているが、xの値が大きくなって Ddfの値が小さくなると、 Ddfよりも20%程度大きめの値を示すようになっている。これは、A1添加物の一部が酸化や窒化を受ける等の結果、結晶格子に入る確率が低下するため、やや多めの添加が必要になるからだと推測される。

25 (実施例5)

15

20

実施例4のディスクにマーク長0.3μmの単一周波数信号を10000回オ

15

25

ーバライト記録してCN比を測定した後、温度90℃・湿度80%R Hの恒温槽に200時間放置した後、同一トラックのCN比を測定した。結果を表 6に示す。表中、◎は初期のCN比が50dB以上で、かつ200時間の加速試験によってもCN比の低下が1dB以下であったこと、○は初期のCN比が50dB以上で100時間の加速試験でCN比の低下が3dB以下であったこと、△は初期CN比は50dB以上であったが、加速試験の結果3dB以上のCN比低下が観測されたこと、×は初期10000回のオーバライトの間にCN比が低下する等の問題を生起したものを示す。

表6	A I 添加を行った(GeT	(SbyTea) (1	-ャ)系ディスクの加込	恵試験結果
表 6	A I 添加を行った(Ge)	(Sbylea) (1	-*)米ナイスクの加	出政规范

		~~ •	- 14-452 -		- A -	<u> </u>	^/				
10	х	0	0. 1	0. 2	0. 33	0.5	0.67	0.8	0. 9	0.91	1
10	結果	Δ	Δ	0	0	0	0	0	0	×	×

(実施例6)

上記実施例 4 の記録膜の組成を $(GeTe)_x(Bi_2^Te_3)_{1-x}$ として同様の実験を行い、A1添加効果及びその適正添加濃度について、同様の結果が得られた。

(実施例7)

上記実施例4の記録膜の組成を(GeTe)_x(M₂Te₃)_{1-x}(M:SbとBiの任意組成の混合物)として同様の実験を行い、Al添加効果及びその適正添加濃度について、同様の結果が得られた。

20 (実施例8)

記録層の組成を $(GeTe)_{0.8}(Sb_2Te_3)_{0.2}$ に7%の Λ 1添加を行ったものとし、 Λ rガスと N_2 ガスの分圧を変えることにより、膜中のN濃度を変えたディスクを準備した。膜中のN濃度の同定はSIMSを用いて行った。得られたディスクについて、記録パワーを $11nW(l^2-2)/5nW(i^2-2)$ パワー)とし、線速度9n/sの条件で、ビット長を $0.26\mu n$ のランダム信号を記録し、オーバライト特性を調べた。評価した結果を表7に示す。

N添加によって、記録感度が向上することが確認できる。ただし、Nを添加しすぎると光学定数が小さくなり、C/Nが低下した。N添加効果は0.5%からあらわれ、高々5%くらいであることが好ましいことがわかった。

表7 記録薄膜中のN濃度とディスク性能	の関係	
---------------------	-----	--

5	ディスク	Α	В	С	D	E	F	G	H
J	N濃度	0 %	0.1 %	0.5 %	1 %	3 %	5 %	10 %	20 %
	C/N	51.0 dB	51.0 dB	52.0 dB	52.0 dB	52. 5 dB	52. 5dB	49. 5 dB	45.0 dB
	パワー	11. 5/5. 0	11. 4/4. 9	11. 1/4. 6	10. 8/4. 4	10. 5/4. 1	10.0/4.0	10.0/4.2	10/4.4
	n¥	m₩	m y	mW	m¥	m¥	m¥	mW	m¥ .

(実施例9)

10 Ge₂Sb₂Te₅記録膜にAlに代えて様々な添加物を行い、その記録性を調べた。添加物としてはイオン半径の近い元素からV, S, Si, P, Se, Ge, Mn, Re, Al, Co, Te, Cr, Ni、融点の近い元素としてSb, Pu, Mg, Al, Ba、そしてこれらとは別のグループに属するものとしてAg, Pb, Spを選び、それぞれ5atom%程度添加した効果を調べた。

実施例1、3に準じてディスクを作成し、オーバライトの繰り返し性能を調べたところ、イオン半径が近くても融点のかけはなれた元素は、繰り返しの間に相分離が進行しやすい傾向を示した。融点が近くてもイオン半径の離れた元素では、やはり繰り返しによる物質移動劣化が見られた。Pb又はSnを添加した場合は、結晶化速度が向上するとともに、繰り返し性能が向上したが、結晶化温度が低下する傾向が観察された。Agの場合は、信号振幅の向上が認められた。また、わずかに繰り返し回数の向上が見られた。結局、イオン半径、融点のいずれもが近いAl添加を行ったディスクでは、最も大きな繰り返し回数が得られた。

(実施例10)

25

Ge3Al2Te6記録膜に様々な添加物を行い、その記録性を調べた。添加物としては、熱的に平衡な状態でTeとの岩塩形結晶構造を形成する元素

10

15

20

25

として、Sn(SnTeを形成)、Pb(PbTeを形成)、Ag(AgSbTe2を形成)を選び、それぞれ5%と8.5%の2つの濃度で添加した。実施例1、3に準じてディスクを作成し、レーザ結晶部を調べたところ単一相の岩塩形結晶が観測された。また、オーバライトの繰り返し性能を調べたところ、1万回以上の繰り返しでも物質移動は観測されなかった。

図8A~F及び図9A~Eに実施例10、11に示した代表的な実施例についての結晶構造を示す。図中、格子欠損を含む場合とそうでない場合があるのは、特に意味がなく、組成に依存することを示しているだけである。また、各原子の位置は、TeまたはSeは4aサイトに、それ以外と格子欠損(vacancy)は4bサイトを占め、組成に応じた確率で各サイトをランダムに占めている。

(実施例11)

上記実施例 4 でSbをA1に置き換え、記録膜の組成を $(GeTe)_x(A1_2Te_3)_{(1-x)}$ (x=0.67,0.8) として記録膜を形成し、これにレーザ照射を行って準安定な単一相を得た。実施例 3 に準じてディスク性能を評価したところ、線速9m/s でのオーバライト記録を行うことができた。この組成にSbまたはBiを3at%添加したディスクでは、いずれの場合にも記録感度が10%程度高くなることが観測された。

(実施例12)

実施例1に準じて、 $[(Ge+Sn)_4Sb_2Te_7]_{(100-y)}$ Cry (yは原子%) の組成式でSnの組成全体に占める割合をxとするとき、

x = 0, 1, 2, 3, 4, 5, 8, 10, 15, 20%

y = 0, 1, 2, 3, 4, 5, 8, 10, 15, 20%

に対応する様々な(100種)光ディスクを試作した。基板として厚さ0.6mm 、直径120mm、内径15mmのディスク状のポリカーボネイト樹脂基板を用 いた。多層膜が形成される面には、スパイラル状の溝トラックとして深 AziAl (ace)

10

15

さ70nm、溝部の幅0.615 µm、ランド部の幅0.615 µmの凹凸溝がほぼ全面 に形成されている。情報信号を記録再生するためのレーザビームは、こ の凹凸形状から得たサーボ信号によってディスク上の任意の位置へと移 動できる。基板上に、厚さ100nmのZnS:20mol%SiO2保護層、厚さ5nmのG eNを主成分とする界面層、厚さ9nmの上記組成を有する記録層、厚さ5nm のGeN界面層、厚さ40nmのZnS:20mol%SiOg保護層、厚さ40nmのGeまたは Siを主成分とする合金層、厚さ80nmのAgを主成分とする金属反射層を順 次形成した。ディスクの特性評価は、信号の大きさ、繰り返し回数、書 換感度の安定性(80℃、90%RHで200Hでの環境テスト後)の3項目により 行った。y=0, z=0のディスクを標準として評価したところ、Sn濃度が 増大するほど結晶化速度が上昇するが大きすぎるとアモルファス状態の 安定性が低下した。また、Cr濃度が増大するほど結晶化速度や信号振幅 が低下し、環境試験による書換感度の低下が観測されるようになったが 、アモルファスの安定性と繰り返し回数は増大した。結局、Sn濃度が3% ~15%、かつ、Cr濃度が1%~10%の範囲に選べば3つの試験項目の全てで 同等以上の性能が得られることが確かめられた。とりわけ、Sn濃度5%~ 10%、Cr濃度1%~5%の範囲では繰り返し回数の向上と書換感度の安定性 をともに向上する上で大きな効果が得られた。

(実施例13)

実施例12に準じて、 $[(Ge+Sn)_4Sb_2Te_7)]_{(100-z)}$ Ag $_z$ (zは原子%)の組成式でSnの組成全体に占める割合をxとするとき、

x=0, 1, 2, 3, 4, 5, 8, 10, 15, 20%

z=0, 1, 2, 3, 4, 5, 8, 10, 15, 20%

に対応する100種の光ディスクを試作した。各層の膜厚ならびに評価項 25 目は同じである。この結果、Sn濃度が増大するほど結晶化速度が上昇す ること、濃度が大きすぎるとアモルファス状態の安定性が低下すること

15

25

がわかった。またAg濃度が増大するほど信号の大きさが増大すること、 但し添加濃度が大きすぎると繰り返し性能が低下することがわかった。

結局、Sn濃度が3%~15%、かつ、Ag濃度が1%~10%の範囲に選べば3つの試験項目の全てにおいて、添加物のない場合に比較して同等以上の性能が得られることが確かめられた。とりわけ、Sn濃度5%~10%、Ag濃度1%~3%の範囲では信号振幅の大きさ向上と、書換感度の安定性をともに向上する上で大きな効果が得られた。

(実施例14)

実施例12、13に準じて、 $[(Ge+Sn)_4Sb_2Te_7)]_{(100y-z)}^{Cr_yAg_z}(yt)$ 原子%)の組成式でSnの組成全体に占める割合をxとするとき、

x=0, 1, 2, 3, 4, 5, 8, 10, 15, 20%

y = 0, 1, 2, 3, 4, 5, 8, 10, 15, 20%

z=0, 1, 2, 3, 4, 5, 8, 10, 15, 20%

に対応する1000種の光ディスクを試作した。各層の膜厚ならびに評価項目は同じである。結局、Sn濃度が3%~15%、かつ、Cr濃度が1~5%、Ag濃度が1%~10%の範囲に選べば3つの試験項目の全てで同等以上の性能が得られることが確かめられた。とりわけ、Sn濃度5%~10%、Cr濃度1%~3%、Ag濃度1%~3%の範囲では信号振幅の大きさ向上と、書換感度の安定性、さらに繰り返し性能をともに向上する上で大きな効果が得られた。

20 (実施例15)

実施例12,13,14に準じてCrをMnに置き換えて同様な結果が得られた。 (実施例16)

実施例12,13,14,15の実験を、母材料を(GeTe) $\mathbf{x}(\mathrm{Sb}_2\mathrm{Te}_3)_{(1-\mathbf{x})}$ 擬 2 元 系材料 $(0<\mathbf{x}<1)$ 、GeTe-Bi $_2\mathrm{Te}_3$ 擬 2 元系材料 $(0<\mathbf{x}<1)$ に置き換えて行ない、同様な効果を確認した。とりわけ、 $0.5 \leq \mathbf{x} \leq 0.9$ の範囲では、繰り返し特性、アモルファスの安定性を両立できることがわかった。

ここでSn濃度は母材料のGe濃度の1/2を越えるとアモルファス相の安定性が低下するので、1/2を越えないことが好ましいことがわかった。

(実施例17)

厚さ0.6mmのポリカーボネイト基板上に、厚さ $1\mu m$ の $Ge_{19}Sn_{2.1}Sb_{26.3}$ Te_{52.6} (atom%) 薄膜をスパッタ法により形成した。この膜の全面にレ 5 ーザ照射を行い結晶化処理した後、x線回折パターンを観察し、リート ベルト法(モデル物質をいくつか測定し、目的とする物質と比較して同 定する方法)ならびにWPPF法 (whole-powder-peak-fitting法)を用いて 構造解析を行ったところ、上記膜はNaC1形の結晶相とアモルファス相か ら構成されていること、4bサイトには20%程度の格子欠損が存在するこ 10 とが分かった。上記薄膜組成は(Ge+Sn)₂Sb₂₅Te₅と表すことが可能で あるが、この場合にはSb2.5モルの内の約0.5モルが格子に入りきらずア モルファス成分となって析出する。このとき、複合相中におけるアモル ファス相部分の結晶相部分に対する組成のモル比の割合 r は0.5/1=0.5 程度である。上記組成をベースにSb濃度を振った実験を行った結果、実 15 験的には、r=2.0以下であれば結晶化特性が確保できること、r=1.0以 下であればさらに高速結晶化が可能であることが分かった。

(実施例18)

実施例17の記録膜組成を様々に変えて同様に解析を行った。表8に 実験結果を示す。表中、一番右側の列はレーザ照射によって結晶化が生 起する速度を示しており、100ns以下で結晶化が生起するものを◎、200 ns以下を○、500ns以下を△、それ以上を×としている。最近のシステ ムでは○であることが望ましいが、△でもシステムを組むことは可能で ある。表から分かるように、これらの組成はすべて内部に格子欠損を含 んでおり、1つの相はNaCl形結晶相とアモルファス相との複合相を形成 する。複合相を構成するアモルファス相の結晶相に対する割合rが1以下 の場合は高速結晶化が可能であるが、2を越えると結晶化が困難になった。

表 8 材料組成と構造及び結晶化性能

	表 8 材料組成と構造及び結晶化性能					
	No.	トータル組成	複合相の構造	格子	r	結晶化
5				欠損		性能
	1	Ge3Sb2, 5Te6	NaC1形結晶相1モル	16%	0. 5	0
		5 2.0	+Sbアモルファス相0.5モル			
	2	GegBi2 8Te6	NaC1形結晶相1モル	16%	0.8	0
			+Bi アモルファス相0.8モル			
	3	GeSb _{2, 5} Bi ₂ Te ₇	NaC1形結晶相1モル	28%	0.5	0
			+Sb+Biアモルファス相0.5モル			
	4	GegSnBi2, 7Te7	NaCl形結晶相1モル	16%	0. 7	0
			+Sbアモルファス相0.7モル			
10	5	Ge2Sb2Cr0, 3Te5	NaCl形結晶相1モル	20%	0.3	0
			+Sbアモルファス相0.3モル			
	6	GeSb2In0 2Te4	NaC1形結晶相1モル	25%	0. 2	0
			+Sbアモルファス相0.1モル			
	7	GePb _{0_1} Bi ₂ Te ₄	NaC1形結晶相1モル	25%	0. 1	0
			+Bi アモルファス相0. 1モル			
	8	GeSb ₂ , ₂ Se ₀ , ₁ Te ₃ , ₉	NaCl形結晶相1モル	20%	0. 2	0
	1		+Sbアモルファス相0.2モル			
20	9	Ge3, 5Sn0, 01Sb3Te7	NaC1形結晶相1モル	16%	0.01	©
			+Sbアモルファス相0.01モル			
	10	Ge3, 5Sn0, 1Sb3, 5Te7	NaC1形結晶相1モル	16%	0.3	. ©
	- 1		+Sbアモルファス相0.3モル			
	11	Geg. 5Snq. 5SbgTe7	NaCl形結晶相1モル	16%	1.0	0
			+Sbアモルファス相1.0モル			
	12	Ge3, 5Sn0, 5Sb3, 5Te7	NaCl形結晶相1モル	16%	1. 5	0
			+Sbアモルファス相1.5モル			
	13	Geg. 5Sno. 5Sb4Te7	NaCl形結晶相1モル	16%	2. 0	Δ
			+Sbアモルファス相2.0モル			
	14	Geg. 5Sno. 5Sb4. 5Te7	NaCl形結晶相1モル	16%	2. 5	×
			+Sbアモルファス相2.5モル			

(実施例19)

表面に深さ60nm、幅 0.6μ mの連続溝を形成した直径120nm、厚さ0.6nm のポリカーボネイトディスク基板上に実施例 1.8 のNo.9-No.14の記録膜を含む多層膜構成を順次スパッタ法で形成し、紫外線硬化樹脂を用いて保護板を貼り合わせた後、レーザ照射を行って記録層を結晶化させた。多層構成はいずれも共通であって、基板の上に、厚さ90nmのZnS $-SiO_2$: 20mo1%層、厚さ5nmのGe-N層、厚さ20nmの記録層、厚さ5nmのGe-N層、厚さ25nmのZnS-SiO $_2$: 20mo1%層、厚さ20nmのZnS-SiO $_2$: 20mo1%層、厚さ20nmのZnS-SiO $_3$: 20mo1% 層、厚さ20nmのZnS-SiO $_3$: 20moZnS-SiO $_3$: 20moZnS

7ィスクの特性を評価するデッキは、波長650nmの赤色半導体レーザとNA: 0.6の対物レンズを搭載した光学ヘッドを持っている。各ディスクとも、回転速度を変化させて記録消去(オーバライト)が可能な線速度範囲を調べた。方法としては、いずれの線速度条件に対しても、記録マークが0.6μm及び2.2μmとなるような変調周波数(f1及びf2)を選択し、交互に記録を行ってC/Nと消去率をもとに繰り返し性能を調べた。ここでは、記録部は溝部とした。また、記録後にDC消去を行った。結果を表9に示す。表9中、示されている線速度は、f1でアモルファス化記録したC/Nが48dBを越え、同時にf1信号のDC消去率(結晶化)が25dBを越えることの可能な線速度の上限である。

20 表 9 から分かるように、r値の変化に伴って、適用可能な線速度範囲 が連続的に任意に選べることが示された。また、それぞれの最大線速条 件において、いずれのディスクも1万回を越す高い繰り返し性能を示し た。

0.3

m/s

13

14

表9 材料組成と適用可能な線速度限界 繰り返し回数 線速度限界 r 0.01 >50万 50.0 m/s

5万

1万

No. 組成 Geg 5Snn n1Sb3Te7 >50万 $30.0 \, \text{m/s}$ Geg. 5Sno. 1Sbg. 5Te7 0.3 $10.0 \, \mathrm{m/s}$ 1.0 30万 Geg_5Sn0_5Sb3Te7 1.5 10万 $3.0 \, \text{m/s}$ 12 Geg_5Sno_5Sbg_5Te7 2. 0 1.0 m/s

2.5

5

10

15

20

(実施例20)

Geg_5Sn0_5Sb4Te7

Ge3_5Sn0_5Sb4_5Te7

図10に説明した装置を組んだ。ここでは、表面を窒化処理したSi基 板上に、電極としてAuをO.1μmの厚さにスパッタ法で形成したのち、こ の上に直径0.5mmの円形穴を有する金属マスクを介しSiO₉膜を100nmの厚 さに形成した。次に、この上に、 $(Ge_3Sn_1Sb_2Te_7)_{95}Cr_5$ 膜を 0.5μ mの厚 さに形成し、さらにAu電極を0.5μmの厚さにスパッタし、各電極にAuリ ード線をボンディングした。この電極間にパルス幅100nsの時間、500mV の電圧を印加したところ、素子の抵抗が高抵抗状態から低抵抗状態に転 移した。次に、この素子にパルス幅80nsの時間、100mAの電流を通電し たところ、素子の抵抗が低抵抗状態から高抵抗状態に反転した。

産業上の利用可能性

以上説明したように、本発明によって、記録再生の繰り返しによる記 録特性や再生特性の変動が小さく、かつ耐候性にも優れた光学的情報記 録媒体とその製造方法の提供が可能となった。また、本発明によって、 組成変動に強く、かつ特性の制御が容易な記録薄膜を備えた記録媒体を 提供することが可能となった。また、この材料は電気メモリにも応用可 能である。

15

請求の範囲

1. 基板上に、電気エネルギー又は電磁波エネルギーによって電気的又は光学的に検出可能な状態間で可逆的相転移を生起することが可能な記録材料層を備えた情報記録媒体であって、

前記記録層を形成する記録材料が、下記A又はBの材料であり、かつ前記格子欠損の少なくとも一部が前記結晶構造を構成する元素以外の元素で埋められていることを特徴とする情報記録媒体。

- A. 前記可逆的相変化の一つの相において格子欠損を含む結晶構造を有 10 する材料
 - B. 前記可逆的相変化の一つの相において格子欠損を含む結晶部分とア モルファス部分とから構成される複合相をとり、かつ前記結晶部分とア モルファス部分とが共通の元素を含む材料
 - 2. 前記B成分の複合相の中の前記結晶相部分に対する前記アモルファス相部分のモル比が2.0以下である請求項1に記載の情報記録媒体。
 - 3. 前記B成分の可逆的相転移が前記複合相と単一相との間で生起する 請求項1に記載の情報記録媒体。
 - 4. 前記格子欠損を含む結晶構造がNaC1形である請求項1に記載の情報 記録媒体。
- 20 5. 前記格子欠損を含む結晶構造中にTeまたはSeを含む請求項1に記載の情報記録媒体。
 - 6. 前記B成分の複合相を形成する前記アモルファス相部分がSb, Bi, Ge 及びInから選ばれる少なくとも一つの元素を含む請求項1に記載の情報 記録媒体。
- 25 7. 前記格子欠損を含む結晶構造がGe, Sb及びTeを含む請求項1に記載 の情報記録媒体。

10

- 8. 前記格子欠損を含む結晶構造がGe, Sb, Bi及びTeから選ばれる少なくとも一つの元素を含み、かつ前記複合相中のアモルファス成分がGe, Sb及びBiから選ばれる少なくとも一つの元素を含む請求項1に記載の情報記録媒体。
- 9. 前記格子欠損を含む結晶構造がさらにSn, Cr, Mn, Ag, A1, Pb, In及びSe から選ばれる少なくとも一つの元素を含む請求項7に記載の情報記録媒体。
 - 10. 前記格子欠損を含む結晶構造が、さらにSn-Cr, Sn-Mn, Sn-Ag, Mn-Ag, Cr-Ag, Sn-Mn及びSn-Cr-Ag から選ばれる少なくとも一つの組み合わせの元素を含む請求項9に記載の情報記録媒体。
 - 11. 前記格子欠損の少なくとも一部を埋める元素が、Teと安定な化学 的量論の岩塩形結晶を形成する元素である請求項1に記載の情報記録媒 体。
- 12. 前記格子欠損の少なくとも一部を埋める元素のイオン半径をRim 、前記結晶構造を構成する元素のイオン半径の最小値をRncとするとき 、0.7Rnc<Rim≤1.05Rnc の関係を満たす請求項1に記載の情報記 録媒体。
 - 13. 前記格子欠損の少なくとも一部を埋める元素の融点をTin、前記結晶構造をなす結晶の融点をTncとするとき、 | Tim-Tnc | ≤100℃の関係を満たす請求項1に記載の情報記録媒体。
 - 14. 前記格子欠損の少なくとも一部を埋める元素のイオン半径をRim 、融点をTim、前記結晶構造を構成する元素のイオン半径の最小値をR nc、融点をTncとするとき、
- 0.7Rnc<Rim≤1.05Rnc かつ | Tim-Tnc | ≤100℃の関係を満たす請求項1に記載の情報記録媒体。
 - 15.前記格子欠損を埋める元素の添加濃度をDim、前記結晶構造の中

の格子欠損の濃度をDdfとするとき、Dim≤Ddf×1.5 の関係を満た す請求項1に記載の情報記録媒体。

- 16. 前記Dimが、0.2≤Dim≤Ddf の関係を満たす請求項15に記載の情報記録媒体。
- 5 17. 前記格子欠損を埋める元素がAg, Sn及びPbから選ばれる少なくとも1つの元素である請求項11に記載の情報記録媒体。
 - 18. 前記格子欠損を含む結晶構造がGeTe-Sb₂Te₃擬2元系組成、GeTe-Bi₂Te₃擬2元系組成及びGeTe-Al₂Te₃擬2元系組成から選ばれる少なくとも1組みの元素である請求項11に記載の情報記録媒体。
- 10 19. 格子欠損を埋める元素がA1である請求項18に記載の情報記録媒体。
 - 20. 前記前記格子欠損を含む結晶構造が $(GeTe)_{(1-x)}(N_2Te_3)_x$ (ただし、MはSb, Bi, Alのうちの1つの元素、又はSb, Bi, Alの任意の混合組成)を含み、xの値が $0.2 \le x \le 0.9$ を満たす請求項18に記載の情報記録媒体。
- 15 21. 前記xの値が0.5≤x≤0.9を満たす請求項20に記載の情報記録媒体。
 - 22. 前記記録膜中にさらにNを含む請求項1に記載の情報記録媒体。
 - 23. 前記N原子の濃度 Dn (atom%) が0.5≦ Dn≦5の範囲にある請求項22に記載の情報記録媒体。
- 20 24. 基板上に、電気エネルギー、電磁波エネルギーによって電気的または光学的に検出可能な状態間で可逆的相転移を生起することが可能な 記録材料層を備えた情報記録媒体の製造方法であって、

前記可逆的相変化の一つの相が格子欠損を含んだ結晶構造をもつ記録 材料を用いて前記記録層を形成し、添加元素によって前記欠損の少なく とも一部を埋めることを特徴とする情報記録媒体の製造方法。

25. 前記記録層を形成した後、さらに前記添加元素によって前記結晶

格子から前記結晶格子を構成する元素を格子外に析出させる請求項24 に記載の情報記録媒体の製造方法。

26. 前記記録層はスパッタ法を用いて形成され、前記スパッタ法におけるスパッタターゲットとして、前記結晶構造を構成する元素と前記添加元素を含むターゲットを用いる請求項24に記載の情報記録媒体の製造方法。

27. スパッタガス中に N_2 ガス及び 0_2 ガスから選ばれる少なくとも一つのガスを含ませる請求項26に記載の情報記録媒体の製造方法。

10

5

15

20

FIG. 1

FIG. 2

FIG. 5

FIG. 6C

FIG. 7

FIG. 8A

FIG. 8B

FIG. 8C

FIG. 8D

FIG. 8E

FIG. 8F

FIG. 9A

FIG. 9B

FIG. 9C

FIG. 9D

FIG. 9E

FIG. 10