0,25

0,5

0,5

0,25

0,5

1

Page: 1/4

Durée: 4 heures

O Exercice 01: (03 points)

 \Rightarrow On considère dans \mathbb{Z}^2 l'équation :

$$(E): 143u - 840v = 1$$
.

- 1)- a)- Vérifier que : $143 \times 47 840 \times 8 = 1$.
 - **b)-** Résoudre dans \mathbb{Z}^2 l'équation (E) en précisant les différentes étapes .
 - c)- Résoudre dans $\frac{\mathbb{Z}}{840\mathbb{Z}}$ l'équation : (F): $\overline{143} \times d = \overline{1}$.
- **2)-** Soit *n* un entier naturel tel que : $n \wedge 899 = 1$.
 - a)- Montrer que : $n \wedge 29 = 1$ et $n \wedge 31 = 1$.
 - **b)** En déduire que : $n^{840} \equiv 1[899]$.
- 3) Déterminer un entier naturel n compris entre 100 et 1000 tel que : $n^{143} \equiv 2 \lceil 899 \rceil$.

O Exercice 02: (03 points)

 \Rightarrow Pour tout x et y de l'intervalle]0,1[, on pose :

$$x * y = \frac{2xy}{(1-x)(1-y) + 2xy} .$$

- 1)- Vérifier que * est une loi de composition interne sur]0,1[.
- 2)- Pour tout $x \in \mathbb{R}$, on pose: $f(x) = \frac{e^x}{2 + e^x}$.
 - a)- Montrer que f est une bijection de $\mathbb R$ vers]0,1[et déterminer sa bijection réciproque f^{-1} .
 - **b)-** Montrer que f est un homomorphisme de $(\mathbb{R},+)$ vers (]0,1[,*), puis en Déduire la structure de (]0,1[,*) (On précisera son élément neutre et Le symétrique de tout $x \in [0,1[$).
- 3)- On considère l'ensemble : $H = \left\{ \frac{3^n}{2+3^n} / n \in \mathbb{Z} \right\}$.
 - Montrer que (H,*)est un sous groupe de (]0,1[,*).
- **4)-** Pour tout $n \in \mathbb{N}^* \{1\}$, on pose: $x^{(n)} = \underbrace{x * x * ... * x}_{n = 1}$ Où $x \in]0,1[$.
 - \checkmark Exprimer $x^{(n)}$ en fonction de n et x, puis déterminer son symétrique Dans (]0,1[,*).

0,25

0,75

0,75

0,75

0,5

Durée: 4 heures

Bac Blanc N°03

O Exercice 03: (04 points)

MATHS SIGMA

✓ Les parties I et II sont indépendantes.

I- Dans l'ensemble des nombres complexes \mathbb{C} , on considère l'équation :

$$(E)$$
: $z^2 - [1 + m(1+i)]z + im^2 + m = 0$, où $m \in \mathbb{C}^* - \{i\}$.

- 1)- a)- Montrer que le discriminant de l'équation (E) est : $\Delta = (1 + (i-1)m)^2$.
 - **b)-** En déduire l'ensemble des solutions de l'équation (E).
- 2)- a)- Déterminer la nature des ensembles suivant :

$$(D) = \{ M(m) \in (P) / |1 + im| = |m| \}$$

Et $(\Gamma) = \{ M(m) \in (P) / \arg(1 + im) \equiv \arg(m)[\pi] \}$.

- b) Ecrire sous forme trigonométrique l'affixe de chacun des points d'intersection de (D) et (Γ) .
- II- Dans le plan complexe (P), on considère les points A(1) et B(1+i) et soit R la rotation de centre O et d'angle $\frac{5\pi}{6}$, on pose : A' = R(A) et B' = R(B).
- 1)- Montrer que : $(\overrightarrow{AB}, \overrightarrow{AO}) \equiv \frac{\pi}{2} [2\pi]$.
- 2)- Soient E et F les milieux respectifs des segments $\lceil AA' \rceil$ et $\lceil BB' \rceil$.
 - a)- Montrer que : $\frac{z_E}{z_B z_B} = i$, puis en déduire que $(OE) \perp (EF)$.
 - **b)-** Montrer que la droite (AA') coupe le segment [BB'] en F.
- 3)- Soit $(M_n)_{n\in\mathbb{N}}$ la suite de points définie par :

$$M_0(i)$$
 et $(\forall n \in \mathbb{N}), M_{n+1} = R(M_n)$.

- **a)-** Montrer que : $(\forall n \in \mathbb{N})$, $aff(M_n) = e^{i(\frac{\pi}{2} + \frac{5n \cdot \pi}{6})}$.
- **b)-** Résoudre dans \mathbb{Z}^2 , l'équation : (F): 12x 5y = 3.
- c)- En déduire l'ensemble des entiers naturels n tel que : $M_n \in [Ox)$.

0,5

0,25

0,75

0,5

0,25

0,5

0,5

0,25

0,25 0,25

A.S: 2018-2019

Durée: 4 heures

O Exercice 04: (05 points)

 \Rightarrow Soit $n \in \mathbb{N}^* - \{1\}$ et f_n la fonction définie sur $[1, +\infty[$ par :

$$f_n(x) = \ln(x-1) + P_n(x)$$
, où $P_n(x) = \sum_{k=1}^n \frac{x^k}{k}$.

1)- a)- Calculer $\lim_{x\to 1^+} f_n(x)$ et $\lim_{x\to +\infty} f_n(x)$

b)- Montrer que f_n est dérivable sur $]1, +\infty[$ et que :

$$(\forall x \in]1, +\infty[), f_n'(x) = \frac{x^n}{x-1}.$$

Puis en déduire que la fonction f_n est une bijection de $]1,+\infty[$ vers $\mathbb R$.

2)- a)- Montrer que l'équation (E): $f_n(x) = 0$ admet une solution unique a_n dans L'intervalle $]1, +\infty[$.

b)- Montrer que : $(\forall n \in \mathbb{N}^* - \{1\})$, $f_n(a_{n+1}) = \frac{-a_{n+1}}{n+1}$, puis en déduire que La suite $(a_n)_{n \in \mathbb{N}^* - \{1\}}$ est strictement décroissante .

c)- Montrer que : $(\forall n \in \mathbb{N}^* - \{1\})$, $\ln(n+1) \leq P_n(1)$, puis en déduire que :

$$(\forall n \in \mathbb{N}^* - \{1\}), 1 < a_n \le 1 + \frac{1}{n+1}.$$

d)- Montrer que la suite $(a_n)_{n\in\mathbb{N}^*-\{1\}}$ est convergente et préciser sa limite .

3)- a)- Déterminer la monotonie de la fonction f'_{n+1} sur l'intervalle $\left[1,1+\frac{1}{n+1}\right]$.

b)- En appliquant le théorème des accroissements finis à f_{n+1} sur $[a_{n+1}, a_n]$ Montrer que : $a_{n+1} - 1 \le (n+1)(a_n - a_{n+1}) \le a_n - 1$.

c)- En déduire la limite suivante : $\lim_{n \to +\infty} n \cdot (a_n - a_{n+1})$.

b)- Vérifier que : $\frac{n.a_n + 1}{n+1} \le a_{n+1} \le \frac{(n+1)a_n + 1}{n+2}$

Puis donner un encadrement de a_3 .

0,5

0,75

0,25

0,5

0,75

0,25

0,5

0,75

0,25

0,5

Durée: 4 heures

O Exercice 05: (05 points)

 \Rightarrow Soit F la fonction définie sur $[-1, +\infty]$ par :

$$F\left(-1\right) = \frac{1}{e} \operatorname{et}\left(\forall x \in]-1, +\infty[\right), F\left(x\right) = \int_{x}^{2x+1} \frac{e^{t}}{2t+1} dt.$$

1)- Montrer que :
$$(\forall x \in]-1, +\infty[), \int_{x}^{2x+1} \frac{1}{t+1} dt = \ln 2$$
.

2)-a)- Montrer que :
$$(\forall x \in]-1, +\infty[), e^x \cdot \ln 2 \le F(x) \le e^{2x+1} \cdot \ln 2$$
.

b)- Déduire que F est continue à droite en $x_0 = -1$.

3)- Calculer
$$\lim_{x\to +\infty} F(x)$$
 et $\lim_{x\to +\infty} \frac{F(x)}{x}$, puis déduire la nature de la branche infini De la courbe (C_F) au voisinage de $+\infty$.

4)-a)- Justifier soigneusement que F est dérivable sur $]-1,+\infty[$ et que :

$$(\forall x \in]-1, +\infty[), F'(x) = \frac{e^x(e^{x+1}-1)}{x+1}.$$

b)- Dresser le tableau de variation de F en justifiant votre réponse.

5)- a)- Montrer que :
$$(\forall x \in]-1, +\infty[), \frac{1}{e} \le \frac{F(x) - F(-1)}{x+1} \le e^{2x+1}$$
 (On pourra Utiliser le théorème des accroissements finis deux fois)

b)- Déduire que F est dérivable à droite en $x_0 = -1$, puis interpréter le résultat obtenu géométriquement.

c)- Tracer la courbe (C_F) dans un repère orthonormé (O, \vec{i}, \vec{j}) .

Fin Du Sujet.

0,5

0,25

0,75

0,75

0,5

0,75

0,5

0,75