

รายงานการทดลอง

Computer Assignment 2

261456 (Introduction to Computational Intelligence)

โดย

ปิยะนันท์ ปิยะวรรณ์โณ 650610845

เสนอ

รศ.ดร. ศันสนีย์ เอื้อพันธ์วิริยะกุล

ภาคเรียนที่ 1 ปีการศึกษา 2567 มหาวิทยาลัยเชียงใหม่

การทดลองทำระบบการเปลี่ยนเกียร์อัตโนมัติของรถ โดยใช้ Fuzzy logic

ลักษณะการทำงาน

เป็นโปรแกรมแบบ 2 Input 1 output โดยมี input คือ Speed (ความเร็ว ของรถ) และ throttle (%การเปิดของคันเร่ง) แล มี output เป็น gear (เกียร์ที่ใช้) โดยมี Membership ดังนี้

```
Speed = { low , medium , mid-high , high , high-af }

Throttle = { tap , light , medium , high , full-send }

Gear = { first , second , third , fourth , fifth , sixth }

และมี Membership function ดังนี้
```

- Membership function ของ Speed

- Membership function ของ Throttle

- Membership function ของ Gear

และมี Rule คือ

- Fuzzy rule table for Gear Shift

	Тар	Light	Medium	Heavy	Fullsend
Low	First Gear	First Gear	First Gear	First Gear	First Gear
Medium	Second Gear	Second Gear	Third Gear	Second Gear	Second Gear
Mid-High	Third Gear	Third Gear	Third Gear	Fourth Gear	Third Gear
High	Sixth Gear	Fourth Gear	Fifth Gear	Fourth Gear	Fifth Gear
High-AF	Sixth Gear	Sixth Gear	Sixth Gear	Sixth Gear	Fifth Gear

การทดลอง

ทดลองโดยมี test case และ expect output ดังนี้

Test Case Table and Gear Shift Outputs

Speed (km/h)	Throttle (%)	Expected Gear
20	40	First
120	80	Fourth
180	100	Fifth
60	30	Second
10	10	First
130	40	Third
350	100	Fifth
50	60	Third
90	20	Second
200	85	Fourth
-10	50	First
150	-5	Sixth
400	50	Sixth
130	120	Fourth

ได้ output จากโปรแกรมเป็น ดังนี้

```
Test 1: Speed: 20 km/h, Throttle: 40% => Gear: First

Test 2: Speed: 120 km/h, Throttle: 80% => Gear: Fourth

Test 3: Speed: 180 km/h, Throttle: 100% => Gear: Fifth

Test 4: Speed: 60 km/h, Throttle: 30% => Gear: Second

Test 5: Speed: 10 km/h, Throttle: 10% => Gear: First

Test 6: Speed: 130 km/h, Throttle: 40% => Gear: Third

Test 7: Speed: 350 km/h, Throttle: 100% => Gear: Fifth

Test 8: Speed: 50 km/h, Throttle: 60% => Gear: Third

Test 9: Speed: 90 km/h, Throttle: 20% => Gear: Second

Test 10: Speed: 200 km/h, Throttle: 85% => Gear: Fourth

Test 11: Speed: -10 km/h, Throttle: 50% => Gear: Sixth

Test 13: Speed: 400 km/h, Throttle: 50% => Gear: Sixth

Test 14: Speed: 130 km/h, Throttle: 120% => Gear: Fourth
```

จะเห็นได้ว่าโปรแกรมตาม Rule ที่ตั้งไว้ และให้ output ได้ถูกต้อง

โปรแรม

<u>SPHSTR/Computer_Intelligence_Fuzzy</u>

ใช้ libraly skfuzzy

```
import numpy as np
import skfuzzy as fuzz
from skfuzzy import control as ctrl
import matplotlib.pyplot as plt
import pandas as pd
speed = ctrl.Antecedent(np.arange(0, 351, 1), 'speed') # Speed from 0 to 350 km/h
throttle = ctrl.Antecedent(np.arange(0, 101, 1), 'throttle') # Throttle from 0% to 100%
gear = ctrl.Consequent(np.arange(1, 7, 1), 'gear')
speed['low'] = fuzz.trimf(speed.universe, [-10, 20, 50])
speed['medium'] = fuzz.trimf(speed.universe, [40, 80, 100])
speed['midhigh'] = fuzz.trimf(speed.universe, [90, 120, 150])
speed['high'] = fuzz.trimf(speed.universe, [120, 180, 230])
speed['highaf'] = fuzz.trimf(speed.universe, [200, 350, 350])
throttle['tap'] = fuzz.trimf(throttle.universe, [0, 0, 20])
throttle['light'] = fuzz.trimf(throttle.universe, [10, 40, 60])
throttle['medium'] = fuzz.trimf(throttle.universe, [40, 55, 70])
throttle['heavy'] = fuzz.trimf(throttle.universe, [60, 75, 90])
throttle['fullsend'] = fuzz.trimf(throttle.universe, [85, 100, 100])
 gear['first'] = fuzz.trimf(gear.universe, [1, 1, 1])
 gear['second'] = fuzz.trimf(gear.universe, [2, 2, 2])
 gear['third'] = fuzz.trimf(gear.universe, [3, 3, 3])
 gear['fourth'] = fuzz.trimf(gear.universe, [4, 4, 4])
 gear['fifth'] = fuzz.trimf(gear.universe, [5, 5, 5])
 gear['sixth'] = fuzz.trimf(gear.universe, [6, 6, 6])
```

```
rules = [
    ctrl.Rule(speed['low'] & throttle['tap'], gear['first']),
    ctrl.Rule(speed['low'] & throttle['light'], gear['first']),
    ctrl.Rule(speed['low'] & throttle['medium'], gear['first']),
    ctrl.Rule(speed['low'] & throttle['heavy'], gear['first']),
    ctrl.Rule(speed['low'] & throttle['fullsend'], gear['first']),
    ctrl.Rule(speed['medium'] & throttle['tap'], gear['second']),
    ctrl.Rule(speed['medium'] & throttle['light'], gear['second']),
    ctrl.Rule(speed['medium'] & throttle['heavy'], gear['second']),
    ctrl.Rule(speed['medium'] & throttle['fullsend'], gear['second']),
    ctrl.Rule(speed['medium'] & throttle['medium'], gear['third']),
    ctrl.Rule(speed['midhigh'] & throttle['light'], gear['third']),
    ctrl.Rule(speed['midhigh'] & throttle['medium'], gear['third']),
    ctrl.Rule(speed['midhigh'] & throttle['fullsend'], gear['third']),
    ctrl.Rule(speed['midhigh'] & throttle['tap'], gear['third']),
    ctrl.Rule(speed['high'] & throttle['light'], gear['fourth']),
    ctrl.Rule(speed['midhigh'] & throttle['heavy'], gear['fourth']),
    ctrl.Rule(speed['high'] & throttle['heavy'], gear['fourth']),
    ctrl.Rule(speed['high'] & throttle['fullsend'], gear['fifth']),
    ctrl.Rule(speed['highaf'] & throttle['fullsend'], gear['fifth']),
    ctrl.Rule(speed['highaf'] & throttle['medium'], gear['sixth']),
    ctrl.Rule(speed['highaf'] & throttle['tap'], gear['sixth']),
    ctrl.Rule(speed['highaf'] & throttle['light'], gear['sixth']),
    ctrl.Rule(speed['highaf'] & throttle['heavy'], gear['sixth']),
    ctrl.Rule(speed['high'] & throttle['tap'], gear['sixth']),
gear ctrl = ctrl.ControlSystem(rules)
gear shift = ctrl.ControlSystemSimulation(gear ctrl)
gear names = {
    1: "First",
    2: "Second",
    3: "Third",
    4: "Fourth",
    5: "Fifth",
    6: "Sixth"
```

```
# Simulate the gear shift system with output as words

def get_gear(speed_input, throttle_input):

try:

# Limit inputs within valid range

speed_input = np.clip(speed_input, 0, 350)

throttle_input = np.clip(throttle_input, 0, 100)

# Set inputs for speed and throttle

gear_shift.input['speed'] = speed_input

gear_shift.input['throttle'] = throttle_input

# Compute the result

gear_shift.compute()

# Get the integer gear output and map it to a word

gear_output = int(round(gear_shift.output['gear']))

return gear_names.get(gear_output, "Invalid Gear")

except KeyError as e:

print(f"Error: {e}")

return "Error"
```

```
# Test cases to validate the system

test_cases = [

(20, 40),  # Low speed, light throttle
(120, 80),  # High speed, medium throttle
(120, 80),  # High speed, full throttle
(60, 30),  # Medium speed, light throttle
(60, 30),  # Medium speed, light throttle
(130, 40),  # Boundary case, high speed with light throttle
(350, 100),  # Maximum speed, full throttle
(50, 60),  # Medium-low speed, medium throttle
(90, 20),  # Boundary between medium and mid-high speed, tap throttle
(200, 85),  # High-af speed, heavy throttle
(-10, 50),  # Negative speed (edge case)
(150, -5),  # Negative throttle (invalid input)
(400, 50),  # Out-of-range speed (above 350 km/h)
(130, 120)  # Throttle exceeding 100% (invalid input)

# Run the extended test cases
for i, (speed_input, throttle_input) in enumerate(test_cases):
    gear_selected = get_gear(speed_input, throttle_input)
print(f"Test {i+1}: Speed: {speed_input} km/h, Throttle: {throttle_input}% => Gear: {gear_selected}")
```

```
def plot_speed_mf():
    plt.figure(figsize=(10, 5))
    plt.plot(speed.universe, speed['low'].mf, label='Low')
    plt.plot(speed.universe, speed['medium'].mf, label='Medium')
    plt.plot(speed.universe, speed['midhigh'].mf, label='Mid-High')
    plt.plot(speed.universe, speed['high'].mf, label='High')
    plt.plot(speed.universe, speed['highaf'].mf, label='High-AF')
    plt.title('Speed Membership Functions')
    plt.xlabel('Speed (km/h)')
    plt.ylabel('Membership Degree')
    plt.legend()
    plt.show()
def plot throttle mf():
    plt.figure(figsize=(10, 5))
    plt.plot(throttle.universe, throttle['tap'].mf, label='Tap')
    plt.plot(throttle.universe, throttle['light'].mf, label='Light')
    plt.plot(throttle.universe, throttle['medium'].mf, label='Medium')
    plt.plot(throttle.universe, throttle['heavy'].mf, label='Heavy')
    plt.plot(throttle.universe, throttle['fullsend'].mf, label='Fullsend')
    plt.title('Throttle Membership Functions')
    plt.xlabel('Throttle (%)')
    plt.ylabel('Membership Degree')
    plt.legend()
    plt.show()
def plot gear mf():
    plt.figure(figsize=(10, 5))
    plt.plot(gear.universe, gear['first'].mf, label='First')
    plt.plot(gear.universe, gear['second'].mf, label='Second')
    plt.plot(gear.universe, gear['third'].mf, label='Third')
    plt.plot(gear.universe, gear['fourth'].mf, label='Fourth')
    plt.plot(gear.universe, gear['fifth'].mf, label='Fifth')
    plt.plot(gear.universe, gear['sixth'].mf, label='Sixth')
    plt.title('Gear Membership Functions')
    plt.xlabel('Gear')
    plt.ylabel('Membership Degree')
    plt.legend()
    plt.show()
plot speed mf()
plot throttle mf()
plot gear mf()
```

```
plt.title("Fuzzy Logic Rule Table for Gear Shift", fontsize=16)
plt.show()

output_gears = []
```

```
for speed_input, throttle_input in test_cases:
      gear = get gear(speed input, throttle input) # Using the `get gear` function from your code
      output_gears.append(gear)
df test cases = pd.DataFrame(test cases, columns=['Speed (km/h)', 'Throttle (%)'])
df test cases['Expected Gear'] = output gears # Add the computed gear column
fig, ax = plt.subplots(figsize=(10, 4))
ax.axis('off') # Hide axis
table = ax.table(
     colLabels=df test cases.columns,
 table.auto set font size(False)
 data = [
      ['Second Gear', 'First Gear', 'First Gear', 'First Gear', 'First Gear'], # Low Speed
['Second Gear', 'Second Gear', 'Second Gear'], # Medium Speed
['Third Gear', 'Third Gear', 'Fourth Gear', 'Third Gear'], # Mid-High Speed
['Sixth Gear', 'Fourth Gear', 'Fifth Gear'], # High Speed
['Sixth Gear', 'Sixth Gear', 'Sixth Gear', 'Fifth Gear'], # High-AF Speed
 row_labels = ['Low', 'Medium', 'Mid-High', 'High', 'High-AF']
 col_labels = ['Tap', 'Light', 'Medium', 'Heavy', 'Fullsend']
df = pd.DataFrame(data, index=row_labels, columns=col_labels)
 fig, ax = plt.subplots(figsize=(10, 4))
ax.axis('off') # Turn off the axes
table = ax.table(
     cellText=df.values,
      rowLabels=df.index,
      colLabels=df.columns,
      loc='center',
 table.auto_set_font_size(False)
```

```
# Set title and show plot
plt.title("Test Case Table and Gear Shift Outputs", fontsize=16)
plt.show()
242
```