Groups and Covers of Graphs MS in Mathematics (Plan B) Thesis Defense

Andrew W. Herring

Department of Mathematics University of Wyoming

December 8, 2016

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Cover

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

Category of Directed Graphs

Covers

Category of Even Graphs

$$\pi_1(G, v_0)$$

Two Categories

The Fiber Functor

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Covers

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

Cover

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

The Fiber Functor

Objects

A directed graph G is a triple

$$(V(G), E(G), E(G) \xrightarrow{(t,h)} V(G)^2)$$
 with

- \triangleright V(G) a set consisting of the **vertices** of G;
- ► $E(G) \subseteq V(G)^2 := V(G) \times V(G)$ consisting of the **edges** of G
- ▶ A pair of maps $(t, h) : E(G) \to V(G)^2$ which are called the head and tail maps respectively. t(e) is called the **tail** of e and h(e) is called the **head** of e.

Objects (Examples)

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Covers

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

Morphisms

Given two directed graphs

•
$$G_1 = (V(G_1), E(G_1), E(G_1) \xrightarrow{(t_{G_1}, h_{G_1})} V(G_1)^2),$$

•
$$G_2 = (V(G_2), E(G_2), E(G_2) \xrightarrow{(t_{G_2}, h_{G_2})} V(G_2)^2),$$

a morphism $G_1 \xrightarrow{f} G_2$ is a pair of maps $V(G_1) \xrightarrow{f_V} V(G_2)$ and $E(G_1) \xrightarrow{f_E} E(G_2)$ such that the following diagram commutes:

$$E(G_1) \xrightarrow{f_E} E(G_2)$$
 $(t_{G_1}, h_{G_1}) \downarrow \qquad \qquad \downarrow (t_{G_2}, h_{G_2})$
 $V(G_1)^2 \xrightarrow{f_2} V(G_2)^2$

 $\operatorname{Hom}(G_1, G_2) = \{ \text{morphisms } f : G_1 \rightarrow G_2 \}$

Groups and Covers of Graphs

> Andrew W. Herring

Talk Outline

Category of Directed Graphs

Covers

Category of Even Graphs

 $r_1(G, v_0)$

wo Categories

(2) Quotient morphisms $\psi^{\pm} \in \operatorname{Hom}(\operatorname{Path}_{n}^{\pm}, \operatorname{Cycle}_{n}^{\pm})$ which identifies the vertices 0 and n in $\operatorname{Path}_{n}^{\pm}$.

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Covers

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

Connectedness

A directed graph G is **connected** if for any $v, w \in V(G)$ we can travel along edges (possibly in the wrong direction) to get from v to w.

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Covers

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

A cover of a graph G is a graph H which is "locally isomorphic" to G.

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Covers

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

Edge Neighborhood

 $G = (V(G), E(G), E(G) \xrightarrow{(t_G, h_G)} V(G)^2), v \in V(G).$ The **(edge) neighborhood** N_v of v consists of one-third of each edge in $t_G^{-1}(v) \cup h_G^{-1}(v)$.

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Covers

Category of Ever Graphs

 $\pi_1(G, v_0)$

Two Categories

Let G be a directed graph. A **cover** of G is a pair (H, ϕ) such that:

- (1) $H = (V(H), E(H), E(H)) \xrightarrow{(t_H, h_H)} V(H)^2$ is a directed graph,
- (2) $\phi \in \text{Hom}(H, G)$ is a surjective morphism,
- (3) for each $\hat{w} \in V(H)$, $\phi_E : N_{\hat{w}} \to N_{\phi_V(\hat{w})}$ is a bijection.

 (H,ϕ) is a **finite cover** if and only if H is a finite directed graph.

Groups and Covers of Graphs

> Andrew W. Herring

Talk Outline

Directed Graphs

Covers

Covers

Category of Even Graphs

Λ1(O, V0)

Two Categories

The Fiber Functor

Examples

- (1) $G \xrightarrow{\mathrm{Id}_{G}} G$
- (2) Cycle $\frac{\pm}{dn} \xrightarrow{\pi}$ Cycle $\frac{\pm}{n}$, where π reduces things modulo n
- (3) $\coprod_{i=1}^d G \to G$

Degree

Let G be finite, connected and (H,ϕ) a finite cover. The degree of H over G is defined to be $|\phi^{-1}(v)|$ where $v \in V(G)$.

Reversed Path Lifting

Let (G, v_0) be a connected pointed graph and suppose that $f \in \operatorname{Hom}(\operatorname{Path}_n^-, G)$ satisfies $f_V(n) = v_0$. Then for every $\hat{v}_0 \in \phi_V^{-1}(v_0)$ there is a unique $\hat{f} \in \operatorname{Hom}(\operatorname{Path}_n^-, H)$ such that $\hat{f}_V(n) = \hat{v}_0$ and $\phi \circ \hat{f} = f$.

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Covers

Category of Even Graphs

π₁(G, ν₀)

Two Categories

A meaningless picture.

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Covers

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

Let $G = (V, E, E \xrightarrow{(t,h)} V^2)$ be a directed graph. A **transposition** on G is a permutation $\tau_G \in \operatorname{Sym}(E)$ which satisfies

- (1) $\tau_G^2 = Id_E$
- (2) $t(\tau_G(e)) = h(e)$ and $h(\tau_G(e)) = t(e)$

In other words a transposition on G associates to each edge an edge running in the opposite direction.

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Cover

Category of Even Graphs

 $\pi_1(G, V_0)$

Two Categories

Even Graphs

A directed graph $G = (V, E, E \xrightarrow{(t,h)} V^2)$ is **even** if and only if there exists a transposition τ_G on G which is **fixed point** free. In other words $\tau(e) \neq e$ for every $e \in E(G)$.

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Covers

Category of Even Graphs

...(-,-0)

Two Categories

An **even morphism** from (G, τ_G) to (H, τ_H) is a directed graph morphism $\phi \in \text{Hom}(G, H)$ such that the following diagram commutes:

$$E(G) \xrightarrow{\phi_E} E(H)$$

$$\downarrow^{\tau_G} \qquad \qquad \downarrow^{\tau_H}$$

$$E(G) \xrightarrow{\phi_E} E(H)$$

The set of even morphisms from (G, τ_G) to (H, τ_H) will be denoted $\operatorname{Hom}_{\tau}((G, \tau_G), (H, \tau_H))$.

Groups and Covers of Graphs

> Andrew W. Herring

Talk Outline

Directed Graphs

Category of Even Graphs

Cove

Category of Even Graphs

1(, 0)

Two Categories

The Fiber Functor

(Even) Covers

Let (G, τ_G) be an even graph. A **(even) cover of** G is a pair $((H, \tau_H), \phi)$ which satisfies the following conditions:

- (1) $H = (V(H), E(H), E(H) \xrightarrow{(t_H, h_H)} V(H)^2)$ is a directed graph;
- (2) (H, τ_H) is an even graph;
- (3) $\phi \in \operatorname{Hom}_{\tau}((H, \tau_H), (G, \tau_G))$ is surjective;
- (4) for every $\hat{w} \in V(H)$, $\phi_E : N_{\hat{w}} \to N_{\phi_V(\hat{w})}$ is a bijection.

Let (G, τ_G) be an even graph. Then $\langle \tau_G \rangle \leq \operatorname{Sym}(E(G))$ acts on E(G). Since τ_G is fixed point free, every orbit $\{e, \tau_G(e)\}\$ has exactly two elements. Pick one arbitrarily and call it e^+ , call the other e^- . Thus $E(G) = E^+(G) \coprod E^-(G)$.

$$E(G) = \{e_1^+, e_2^+, e_3^+, e_4^+\} \prod \{e_1^-, e_2^-, e_3^-, e_4^-\}$$

Groups and Covers of Graphs

> Andrew W. Herring

Talk Outline

Directed Graphs

 $\pi_1(G, v_0)$

$$Cycles(G, v_0) :=$$

 $\cup_{n\geq 0}\{ \text{even morphisms Cycle}_n \xrightarrow{f} G \text{ with } f(0)=v_0 \}$.

DCycles

 $f \in \operatorname{Cycles}(G, v_0)$ yields a pair of morphisms: $\operatorname{Cycle}_n^+ \xrightarrow{f^+} G$ and $\operatorname{Cycle}_n^- \xrightarrow{f^-} G$. The resulting set of "directed cycles" is denoted $\operatorname{DCycles}(G, v_0)$.

Groups and Covers of Graphs

> Andrew W. Herring

Talk Outline

Category of Directed Graphs

Covers

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

Composing Cycles

Given $f, g \in \mathsf{DCycles}(G, v_0)$, we define a composition law so that $f \cdot g$ means "first follow f, then follow g."

First blue, then red. DCycles(G, v_0) is closed under this composition!

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Covers

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

free : DCycles(G, v_0) $\rightarrow F(E^+(G))$

Let $F(E^+(G))$ be the free group on $E^+(G)$. The inverse symbol to e^+ is e^- . $f \in DCycles(G, v_0)$, then $free(f) \in F(E^+(G))$: write down the sequence of edges $f \in DCycles(G, v_0)$ visits in order, get a word in $F(E^+(G))$.

 $free(f^+ \cdot g^-) = e_4^+ e_3^- e_5^- e_1^+ e_2^- e_3^+ e_4^ free(g^- \cdot f^+) = e_1^+ e_2^- e_2^+ e_4^- e_4^+ e_2^- e_5^-$

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Cover

Category of Ever Graphs

 $\pi_1(G, v_0)$

Two Categories

Homotopy Equivalence

Introduce an equivalence relation \sim on DCycles(G, v_0): $f \sim g$ if and only if free(f) = free(g).

$$[f] = \{g \in \mathsf{DCycles}(G, v_0) : g \sim f\}$$

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Cover

Category of Ever Graphs

 $\pi_1(G, v_0)$

Two Categories

Cover

Category of Even Graphs

 $\pi_1(G,v_0)$

Two Categories

The Fiber Functor

The Fundamental Group: $\pi_1(G, \nu_0)$

- ▶ $\pi_1(G, v_0) := \{ [f] : f \in \mathsf{DCycles}(G, v_0) \}$
- $\qquad \qquad [f][g] = [f \cdot g]$
- $[f^{\pm}]^{-1} = [f^{\mp}]$
- ▶ [/] is the identity where / is the trivial cycle

We get a group, I promise

Given $((H_1, \tau_{H_1}), \phi_1), ((H_2, \tau_{H_2}), \phi_2) \in \mathbf{Cov}(G)$, a morphism between them is a map f which satisfies:

- (1) $f \in \operatorname{Hom}_{\tau}((H_1, \tau_{H_1}), (H_2, \tau_{H_2}));$
- (2) $\phi_2 = \phi_1 \circ f$

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Cove

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

Simplifying Notation: $[C] \cdot x := \Phi([C])(x)$, $F_1, F_2 \in \pi_1 \mathbf{Set}(G)$ with perm. reps. Φ_1 and Φ_2 . Then f is a morphism from F_1 to F_2 if and only if the following hold:

- (1) $f: F_1 \rightarrow F_2$ is a set map;
- (2) $f([C] \cdot x) = [C] \cdot f(x)$ for every $[C] \in \pi_1(G, v_0)$ and for every $x \in F_1$.

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Cover

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

We define a (covariant) functor $\mathcal{F}: \mathbf{Cov}(G) \to \pi_1 \mathbf{Set}(G)$ called **the fiber functor**.

"You tell me a finite even cover, I'll tell you a $\pi_1(G, v_0)$ -set."

Early punchline: $\mathcal{F}(((H, \tau_H), \phi)) = \phi^{-1}(v_0)$.

Must therefore demonstrate $\Phi: \pi_1(G, \nu_0) \to \operatorname{Sym}(\phi^{-1}(\nu_0))$ a group homomorphism.

Groups and Covers of Graphs

> Andrew W. Herring

Talk Outline

Category of Directed Graphs

Cover

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

(1) Cycles Lift to Paths

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Cover

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

Let $f^+ \in \mathsf{DCycles}(G, v_0)$. Define

$$L_{f^+}: \phi_V^{-1}(v_0) \to \phi_V^{-1}(v_0)$$

as follows:

- (1) $f^-: \mathsf{Path}_n^- \to \mathsf{Cycle}_n^- \to G$ satisfies $f^-(n) = v_0$
- (2) Fix $\hat{y} \in \phi^{-1}(v_0)$.
- (3) By Path Lifting, there is a unique morphism $\hat{f}_{\hat{y}}^- \in \operatorname{Hom}(\operatorname{Path}_n^-, H)$ with $\hat{f}_{\hat{y}}^-(n) = \hat{y}$ and $f^- = \phi \circ \hat{f}_{\hat{y}}^-$.
- (4) $L_{f^+}(\hat{y}) := \hat{f}_{\hat{y}}^-(0).$

Fancy pants way of saying the following: there is a unique lift of f^+ which **ends** at \hat{y} : send \hat{y} to where that unique lift began.

Herring

Groups and Covers

Talk Outline

Category of Directed Graphs

Cover

Category of Even Graphs

...(-,-0)

Two Categories

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Covers

Category of Even Graphs

10,00

Two Categories

The Fiber Functor

Let $g^- \in \mathsf{DCycles}(G, v_0)$. Define

$$L_{g^-}: \phi_V^{-1}(v_0) \to \phi_V^{-1}(v_0)$$

as follows:

- (1) $g^+: \mathsf{Path}_n^+ \to \mathsf{Cycle}_n^+ \to G$ satisfies $g^+(0) = v_0$
- (2) Fix $\hat{y} \in \phi^{-1}(v_0)$.
- (3) By Path Lifting, there is a unique morphism $\hat{g}_{\hat{y}}^+ \in \operatorname{Hom}(\operatorname{Path}_n^+, H)$ with $\hat{g}_{\hat{y}}^+(0) = \hat{y}$ and $g^+ = \phi \circ \hat{g}_{\hat{y}}^+$.
- (4) $L_{g^-}(\hat{y}) := \hat{g}^+_{\hat{y}}(n).$

 $L_{f^+}=(\hat{y}\hat{z}\hat{w}).$

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Covers

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

Cover:

Category of Even Graphs

1 (1 / 0 /

I wo Categories

The Fiber Functor

Here is a list of things which I promise are true but which I won't go into now:

- (1) $(L_{f^\pm})^{-1}=L_{f^\mp}$ for every $f^\pm\in \mathsf{DCycles}(G,v_0)$. Hence $L_{f^+}\in \mathrm{Sym}(\phi^{-1}(v_0))$
- (2) If $[f] = [g] \in \pi_1(G, \nu_0)$, then $L_f = L_g \in \text{Sym}(\phi^{-1}(\nu_0))$.
- (3) Let $\Phi: \pi_1(G, \nu_0) \to \operatorname{Sym}(\phi^{-1}(\nu_0))$ be given by

$$\Phi([f])=L_f$$

Then Φ is a group homomorphism.

Therefore $\phi^{-1}(v_0)$ is a $\pi_1(G, v_0)$ -set!

Cover

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

The Fiber Functor

${\mathcal F}$ on Morphisms

Let h be a morphism from $((H_1, \tau_{H_1}), \phi_1)$ to $((H_2, \tau_{H_2}), \phi_2)$ in **Cov**(G). Recall that this means

- (1) $h \in \operatorname{Hom}_{\tau}((G_1, \tau_{G_1}), (H_2, \tau_{H_2}));$
- (2) $\phi_1 = \phi_2 \circ h$

By definition:

- (1) $\mathcal{F}(((H_1, \tau_{H_1}), \phi_1)) = \phi_1^{-1}(v_0)$
- (2) $\mathcal{F}(((G_2, \tau_{G_2}), \phi_2)) = \phi_2^{-1}(v_0)$

So we need to define $\mathcal{F}(h)$ which is a $\pi_1\mathbf{Set}(G)$ morphism from $\phi_1^{-1}(v_0)$ to $\phi_2^{-1}(v_0)$.

$$\mathcal{F}(h)(\hat{w}) = h(\hat{w}) \in \phi_2^{-1}(v_0)$$

Prove that

$$\mathcal{F}(h)([C]\cdot\hat{w})=[C]\cdot(\mathcal{F}(h)(\hat{w}))$$

for every $[C] \in \pi_1(G, v_0)$.

KEY: Uniqueness of lifts!

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Covers

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

Thanks:

- Dr. Chris Hall
- Dr. John Hitchcock
- Dr. Tyrrell McAllister
- Lori Dockter
- Department of Mathematics
- Viewers like YOU

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Covers

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

Questions

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Cove

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

Now we describe a functor $\mathcal{G}: \pi_1\mathbf{Set}(G) \to \mathbf{Cov}(G)$ called the reverse functor.

"You give me a $\pi_1(G, v_0)$ -set, I'll give you a finite even cover"

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Covers

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

Category of Directed Graphs

Cover

Category of Even Graphs

...(-,.0)

i wo Categories

The Fiber Functor

First fix a spanning tree T for G. Let $X(G) := E(G) \setminus E(T)$ called the set of excess edges. Since G has an orientation, so does $X(G) = X^+(G) \coprod X^-(G)$. A few preliminaries:

Unique Cycles Through Excess Edges

For every $x^{\pm} \in X(G)$, there is a unique homotopy class $[C_{x^{\pm}}]$ of cycles which pass through x^{\pm}

Free Generators of $\pi_1(G, v_0)$

Let $X(G) = \{x_1^+, \dots, x_g^+\} \coprod \{x_1^-, \dots, x_g^-\}$. Then $[C_{x_1^+}], \dots, [C_{x_g^+}]$ and $[C_{x_1^-}], \dots, [C_{x_g^-}]$ freely generate $\pi_1(G, v_0)$.

Category of Directed Graphs

Cover

Category of Even Graphs

Λ1(O, V0)

Two Categories

The Fiber Functor

Let F be a finite $\pi_1(G, \nu_0)$ -set with |F| = d. After relabeling, $F = \{1, \ldots, d\}$. Let Φ be the permutation representation for $\pi_1(G, \nu_0)$ acting on F.

Notation: Allow $[C_{x_j^{\pm}}](\ell)$ to denote $\Phi([C_{x_j^{\pm}}])(\ell)$.

Start by defining

$$\tilde{H} = \coprod_{i=1}^d T_i$$

where T_i is isomorphic to T for every $i=1,\ldots,d$: for every $i=1,\ldots,d$ there exists $\varphi_i\in \mathrm{Hom}(T_i,T)$ which is a bijection.

Further Notation: $\hat{v}_i := \varphi_i^{-1}(v)$ for $v \in V(G)$ for every i = 1, ..., d.

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

overs

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

Category of Directed Graphs

Covers

Category of Even Graphs

 $\pi_1(G, v_0)$

Two Categories

The Fiber Functor

We finish by forming the edges above x_j^\pm for every $x_j^\pm \in X(G)$: for every $\ell \in \{1,\ldots,d\}$ we'll form $(\hat{x}_j^\pm)_\ell$ with

$$t_H((\hat{x}_j^{\pm})_{\ell}) = (t_G(x_j^{\pm}))_{\ell}$$

 $h_H((\hat{x}_j^{\pm})_{\ell}) = (h_G(x_j^{\pm}))_{[C_{x_j^{\pm}}](\ell)}$

For the example which follows, suppose that $\Phi([C_{x^+}]) = (123)$.

Groups and Covers of Graphs

Andrew W. Herring

Falk Outline

Category of Directed Graphs

Covers

Category of Even Graphs

 $\pi_{\mathbf{I}}(\mathbf{G}, \mathbf{v}_0)$

Two Categories

Groups and Covers of Graphs

Andrew W. Herring

Talk Outline

Category of Directed Graphs

Overs

Category of Ever Graphs

 $\pi_1(G, v_0)$

Two Categories