

Minimum Spanning Trees

Algorithms: Design and Analysis, Part II

Correctness of Greedy Clustering

Correctness Claim

Theorem: Single-link clustering finds the max-spacing *k*-clustering.

Proof: Let C_1, \ldots, C_k = greedy clustering with spacing S.

Let $\hat{C}_1, \dots, \hat{C}_k$ = arbitrary other clustering.

Need to show: Spacing of $\hat{c}_1, \ldots, \hat{c}_k$ is $\leq S$.

Correctness Proof

Case 1: \hat{C}_i 's are the same as the C_i 's [maybe after renaming] \Rightarrow has the same spacing S.

Case 2: Otherwise, can find a point pair p, q such that

- (A) p, q in the same greedy cluster C_i
- (B) p, q in different clusters \hat{C}_i, \hat{C}_j

Property of greedy algorithm: If two points x, y "directly merged at some point", then $d(x, y) \leq S$. [Distance between merged point pairs only goes up.]

Easy case: If p, q directly merged at some point, $S \ge d(p, q) \ge$ spacing of $\hat{C}_1, \ldots, \hat{C}_k$.

Correctness Proof (con'd)

Tricky case: p, q "indirectly merged" through multiple direct merges.

Let p, a_1, \ldots, a_l, q be the path of direct greedy merges connecting p & q.

Key point: Since $p \in \hat{C}_i$ and $q \notin \hat{C}_i$, \exists consecutive pair a_j, a_{j+1} with $a_j \in \hat{C}_i, a_{j+1} \notin \hat{C}_i \Rightarrow S \ge d(a_j, a_{j+1}) \ge$ Spacing of $\hat{C}_1, \ldots, \hat{C}_k$ QED!

since a_i, a_{i+1} directly merged

since a_i, a_{i+1} separated