Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет»

Криптографические алгоритмы

Методические указания к выполнению лабораторных работ по курсу «Методы и средства защиты информации» для студентов специальности «Программное обеспечение вычислительной техники и автоматизированных систем» дневной формы обучения

Криптографические алгоритмы: методические указания к выполнению лабораторных работ по курсу «Методы и средства защиты информации» для студентов специальности «Программное обеспечение вычислительной техники и автоматизированных систем» дневной формы обучения / сост. В. В. Стригунов. — Хабаровск: Изд-во Тихоокеан. гос. ун-та, 2009. — 12 с.

Методические указания составлены на кафедре «Программное обеспечение вычислительной техники и автоматизированных систем». В пособии приведены задания к трем лабораторным работам, посвященным алгоритмам шифрования с секретным и публичным ключом, основным алгоритмам теории чисел, используемым в криптографии.

Печатается в соответствии с решениями кафедры «Программное обеспечении вычислительной техники и автоматизированных систем» и методического совета факультета математического моделирования и процессов управления.

© Тихоокеанский государственный университет, 2009

Введение

Целью курса лабораторных занятий по дисциплине «Методы и средства защиты информации» является приобретение практических навыков решения задач защиты информации, возникающих при ее обработке, хранении и передаче по открытым каналам связи. В данном методическом пособии приведены задания к трем лабораторным работам, посвященным криптографическим методам защиты информации. В пособии подробно описаны алгоритм симметричного шифрования ГОСТ, основные алгоритмы теории чисел, используемые в криптографии, алгоритм шифрования с открытым ключом RSA.

каждого задания лабораторного ходе выполнения практикума разрабатывается и отлаживается программный комплекс, написанный на одном из языков программирования. Программа должна иметь интуитивно понятный интерфейс, позволять изменять исходную полученную В результате шифрования информацию. Результат работы оценивается процессе В тестирования программы на наборе контрольных примеров. Отчет по лабораторной работе должен содержать:

- титульный лист;
- задание;
- краткую теоретическую часть и алгоритм;
- фрагмент текста программы с реализованным алгоритмом;
- пример выполнения программы;
- вывод по проделанной работе.

Основные понятия

Криптографические алгоритмы шифрования используются для обеспечения конфиденциальности хранимых или передаваемых данных. Алгоритмы с помощью определенных правил преобразуют исходные данные в зашифрованный вид так, чтобы восстановить эти данные мог только законный пользователь (шифрование). Для получения исходной информации необходимо над зашифрованным текстом выполнить обратный процесс преобразования — дешифрование. При шифровании и дешифровании данных применяется сменный элемент алгоритма, называемый в криптографии ключом.

Рассмотрим классическую задачу передачи сообщений. Пусть участник А желает переслать секретное сообщение участнику В по открытому информационному каналу. В качестве участников такого взаимодействия могут выступать обычные пользователи, прикладные программы, объекты сетевой инфраструктуры, например, маршрутизаторы и др.

Исходное сообщение участника A называется *открытым текстом* и обозначается буквой M (от англ. message). Зашифрованное с помощью некоторого алгоритма сообщение называется *шифротекстом* и обозначается буквой C (от cipher text).

В *симметричных алгоритмах* для шифрования и дешифрования сообщений используется один общий для участников секретный ключ K_{AB} . Схема такого шифрования приведена на рисунке 1.

Рис. 1. Схема симметричного шифрования

В зависимости от способа обработки исходного сообщения различают потоковые и блочные алгоритмы симметричного шифрования. *Потоковые алгоритмы* обрабатывают исходное сообщение побитно (иногда небольшими группами бит, например, по 8 бит). *Блочные алгоритмы* работают с блоками открытого текста. Размер блока равен степени двойки, например, блок размером 64 бита.

Наиболее известными и используемыми алгоритмами симметричного шифрования являются DES, ГОСТ, Blowfish, IDEA, AES, Rijndael.

В алгоритмах шифрования с открытым ключом используется два ключа: открытый (публичный) ключ K^+ для шифрования и личный (секретный) ключ K^- для дешифрования сообщений. Схема шифрования с открытым ключом приведена на рисунке 2.

Рис. 2. Схема шифрования с открытым ключом

Наиболее практичными алгоритмами шифрования с открытым ключом являются RSA, Rabin, шифр Эль-Гамаля.

Лабораторная работа № 1

«Алгоритмы симметричного шифрования»

<u>Задание.</u> Написать программу, реализующую алгоритм симметричного шифрования ГОСТ 28147-89. Режим выполнения алгоритма — простая замена.

Общие сведения. Алгоритм шифрования ГОСТ 28147-89 является симметричным, блочным алгоритмом. Преобразование осуществляется над блоком размером 64 бита, размер секретного ключа 256 бит, в алгоритме 32 раунда преобразований.

Необходимые определения и обозначения:

X — блок открытого текста размером 64 бита;

Y — блок зашифрованного текста размером 64 бита;

K – секретный ключ (256 бит);

 $oldsymbol{W}$ – раундовый ключ.

В алгоритме ГОСТ используются следующие операции:

S-блок или S-box — табличная подстановка, при которой группа бит отображается в другую группу бит;

 \boxplus – операция сложения по модулю 2³²;

⊕ или XOR – операция сложения по модулю 2 (или побитовое «исключающее или»);

← 11 – циклический сдвиг влево на 11 бит.

Эти операции циклически повторяются в алгоритме, образуя так называемые раунды. Входом каждого раунда является выход предыдущего раунда и раундовый подключ W_i , который получен из секретного ключа шифрования \pmb{K} следующим образом. Рассмотрим секретный ключ \pmb{K} (256 бит), состоящий из восьми слов по 32 бита: $\pmb{K} = K_0 K_1 K_2 K_3 K_4 K_5 K_6 K_7$. На их основе строим раундовый ключ \pmb{W} :

$$W = \underbrace{K_0 K_1 K_2 K_3 K_4 K_5 K_6 K_7}_{\text{Раунды 1-8}} \underbrace{K_0 K_1 K_2 K_3 K_4 K_5 K_6 K_7}_{\text{Раунды 9-16}} \underbrace{K_0 K_1 K_2 K_3 K_4 K_5 K_6 K_7}_{\text{Раунды 17-24}} \underbrace{K_7 K_6 K_5 K_4 K_3 K_2 K_1 K_0}_{\text{Раунды 25-32}}.$$

Рис. 3. Основная схема алгоритма ГОСТ

Для шифрования блок открытого текста сначала разбивается на две одинаковые части, правую R (младшее слово) и левую L (старшее слово).

Рис. 4. Схема одного раунда алгоритма ГОСТ

На i-том раунде используется подключ W_{i-1} . Правая часть R_i складывается по модулю 2^{32} с раундовым подключом W_{i-1} . Над получившимся результатом выполняется операция табличной подстановки.

Рис. 5. Подстановка S-блоками

Для этого результат разбивается на восемь 4-битовых кусочка, каждый из которых подается на вход своего S-блока: первые четыре бита в S_0 -блок, вторые — в S_1 -блок и так далее. Каждый S-блок содержит 16 четырехбитовых элемента, нумеруемых с 0 по 15. ГОСТ рекомендует заполнять каждую из восьми таблиц различными числами множества $\{0, 1, 2, ..., 15\}$, переставленными случайным образом.

S ₀ -блок																
No	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Элемент	4	10	9	2	13	8	0	14	6	11	1	12	7	15	5	3
							S_1 -6	лок								
No	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Элемент	14	11	4	12	6	13	15	10	2	3	8	1	0	7	5	9
S ₂ -блок																
No	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Элемент	5	8	1	13	10	3	4	2	14	15	12	7	6	0	9	11
S ₃ -блок																
No	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Элемент	7	13	10	1	0	8	9	15	14	4	6	12	11	2	5	3
							S ₄ -6	лок								
№	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Элемент	6	12	7	1	5	15	13	8	4	10	9	14	0	3	11	2
							S_5 -6	лок								
№	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Элемент	4	11	10	0	7	2	1	13	3	6	8	5	9	12	15	14
								лок								
№	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Элемент	13	11	4	1	3	15	5	9	0	10	14	7	6	8	2	12
	S ₇ -блок															
№	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Элемент	1	15	13	0	5	7	10	4	9	2	3	14	6	11	8	12

Рис. 6. Набор S-блоков Центрального банка РФ

По входным четырем битам определяется номер элемента в S-блоке, который поступает на выход. Выходы всех восьми S-блоков объединяются в 32-битовое слово, затем все слово циклически сдвигается влево на 11 бит. Наконец, результат объединяется с помощью XOR с левой половиной, и получается новая правая половина, а правая половина становится левой половиной. Эти операции выполняются 32 раза. После этого левая и правая части меняются местами.

Запишем базовый цикл алгоритма ГОСТ.

Вход: Блок L, R, раундовый ключ W.

 $\underline{\mathsf{Bыход:}}$ Преобразованный блок L , R .

FOR i = 0 TO 31 DO

$$k \leftarrow R \boxplus W_i;$$

$$k = (k_7 \dots k_0)_{16};$$
FOR $j = 0$ TO 7 DO $k_j \leftarrow S_j[k_j];$

$$L \leftarrow L \oplus (k \leftrightarrow 11);$$

$$L \leftrightarrow R;$$

$$L \leftrightarrow R;$$
RETURN L, R .

Для шифрования и дешифрования сообщения используется один алгоритм. Единственным различием является генерация раундового ключа. Чтобы дешифровать блок, строим раундовый ключ

$$\boldsymbol{W} = \underbrace{K_0 K_1 K_2 K_3 K_4 K_5 K_6 K_7}_{\text{Раунды 1-8}} \underbrace{K_7 K_6 K_5 K_4 K_3 K_2 K_1 K_0}_{\text{Раунды 9-16}} \underbrace{K_7 K_6 K_5 K_4 K_3 K_2 K_1 K_0}_{\text{Раунды 17-24}} \underbrace{K_7 K_6 K_5 K_4 K_3 K_2 K_1 K_0}_{\text{Раунды 25-32}} ,$$

подаем на вход Y и на выходе получаем X .

Если исходное сообщение имеет размер больше, чем 64 бита, то оно разбивается на отдельные блоки. Каждый блок шифруется независимо от остальных с использованием одного и того же ключа. Данный режим работы алгоритма называется простой заменой.

Лабораторная работа № 2 «Базовые алгоритмы теории чисел»

<u>Задание.</u> Написать и отладить набор подпрограмм, реализующих базовые алгоритмы, используемые в изученных криптосистемах с открытым ключом: возведение в степень по модулю ($a^x \mod p$), вычисление наибольшего общего делителя (HOД(a,b)), вычисление инверсии ($x^{-1} \mod p$).

<u>Общие сведения.</u> Для многих криптографических систем актуален так называемый обобщенный алгоритм Евклида.

Теорема. Пусть a и b – два целых положительных числа. Тогда существуют целые (не обязательно положительные) числа x и y, такие, что

$$ax + by = HO \mathcal{I}(a,b). \tag{1}$$

Обобщенный алгоритм Евклида служит для отыскания наибольшего общего делителя целых чисел a, b ($HO\!D\!(a,b)$) и x, y, удовлетворяющих (1).

Введем три строки $U=(u_1,u_2,u_3)$, $V=(v_1,v_2,v_3)$ и $T=(t_1,t_2,t_3)$. Запишем обобщенный алгоритм Евклида.

Вход: Положительные целые числа a, b, $a \ge b$.

Выход: $HO_{I}(a,b)$, x, y, удовлетворяющие (1).

$$U \leftarrow (a, 1, 0), V \leftarrow (b, 0, 1).$$

WHILE $v_1 \neq 0$ DO

$$\begin{vmatrix} q \leftarrow u_1 \operatorname{div} v_1; \\ T \leftarrow (u_1 \operatorname{mod} v_1, u_2 - q v_2, u_3 - q v_3); \end{vmatrix}$$

$$U \leftarrow V, V \leftarrow T.$$

RETURN $U = (HO \coprod (a,b), x, y).$

В алгоритме операция div— это целочисленное деление, mod — остаток от деления.

Пример. Пусть a = 24, b = 15. Найдем HOД(a, b), x, y.

				Выход	U	V	
			4 шаг	U	V	T	q
		3 шаг	U	V	T		q = q
	2 шаг	U	V	T			q = q
1 шаг	U	V	T				q
Значения	24	15	9	6	3	0	
элементов	1	0	1	-1	2	- 5	
строк	0	1	- 1	2	- 3	8	

Вначале в строку U записываются числа (24,1,0), а в строку V — числа (15,0,1). Вычисляется строка T. После этого в строку U заносятся данные строки V, а в V — данные строки T. Таким образом, на втором шаге цикла WHILE

U=(15,0,1), V=(9,1,-1) и опять вычисляется строка T. Этот процесс продолжается до тех пор, пока первый элемент строки V не станет равным нулю. Тогда строка U (предпоследний столбец в схеме) содержит ответ. В нашем случае U=(3,2,-3). Выполним проверку $24\cdot 2+15\cdot (-3)=3$.

У алгоритма Евклида есть одно важное применение. В некоторых задачах криптографии для заданных чисел e и z требуется найти такое число d < z, что

$$ed \bmod z = 1. \tag{2}$$

Такое число d существует тогда и только тогда, когда числа e и z взаимно простые.

Определение. Число d , удовлетворяющее (2), называется инверсией e по модулю z (обозначается $d = e^{-1} \bmod z$).

Равенство (2) означает, что для некоторого целого k

$$ed - kz = 1. (3)$$

Учитывая, что e и z взаимно простые, перепишем (3) в виде

$$z(-k) + e d = HO \coprod (z, e), \tag{4}$$

что полностью соответствует (1). Поэтому, чтобы вычислить d, нужно просто использовать обобщенный алгоритм Евклида для решения уравнения (4). Значение переменной k нас не интересует, поэтому можно не вычислять вторые элементы строк U, V, T. Если число d получается отрицательным, то нужно прибавить к нему z, так как по определению число берется из множества $\{0,1,...,z-1\}$.

Следующей важной операцией в криптографии с открытыми ключами является операция возведения в степень по модулю. Рассмотрим алгоритм, возвращающий вычисленное значение $a^x \mod p$, где a, x, p целые числа.

<u>Вход:</u> Целые числа a, $x = (x_t x_{t-1}...x_0)_2$, p.

Выход: Число $y = a^x \mod p$.

$$y \leftarrow 1$$
, $s \leftarrow a$.

FOR
$$i = 0, 1, ..., t$$
 DO

| IF
$$x_i = 1$$
 THEN $y \leftarrow y \cdot s \mod p$;
| $s \leftarrow s \cdot s \mod p$.

RETURN y.

В данном алгоритме биты показателя степени просматриваются справаналево (от младшего бита к старшему), поэтому он называется возведение в степень справа-налево.

Лабораторная работа № 3

«Алгоритмы шифрования с открытым ключом»

Задание. Написать и отладить программу, реализующую алгоритм шифрования RSA для передачи секретных сообщений в адрес абонента В. Рекомендуемые значения параметров $p_{\scriptscriptstyle B} = 113$, $q_{\scriptscriptstyle B} = 281$, $e_{\scriptscriptstyle B} = 3$. В работе использовать подпрограммы Лабораторной работы № 2.

<u>Требование к содержанию отчета.</u> В отчете для примера выполнения программы привести исходные данные: p_{B} , q_{B} , e_{B} , открытый текст m; расчетные данные: n_{B} , z_{B} , d_{B} , полученный шифротекст c и расшифрованный открытый текст m'.

Общие сведения. Алгоритм шифрования RSA является алгоритмом с открытым ключом. Для генерации двух ключей (личного K_B^- и открытого K_B^+) абоненту В необходимо выполнить следующие действия.

- 1. Выбрать два больших случайных простых числа $\,p_{_{B}}\,$ и $\,q_{_{B}}.$
- 2. Вычислить

$$n_{R} = p_{R} \times q_{R}$$
, $z_{R} = (p_{R} - 1) \times (q_{R} - 1)$.

- 3. Выбрать случайным образом простое число $e_{\scriptscriptstyle B}$, меньшее, чем $n_{\scriptscriptstyle B}$, у которого нет общих делителей (кроме 1) с числом $z_{\scriptscriptstyle B}$ (взаимно простые числа). Числа $e_{\scriptscriptstyle B}$ и $n_{\scriptscriptstyle B}$ составляют открытый ключ абонента В: $K_{\scriptscriptstyle B}^{\,+}=(e_{\scriptscriptstyle B},n_{\scriptscriptstyle B})$.
- 4. С помощью обобщенного алгоритма Евклида вычислить число d_B ($d_B = e_B^{-1} \bmod z_B \text{инверсия } e_B \text{ по модулю } z_B$), такое что остаток от деления $e_B \times d_B \text{ на } z_B \text{ был равен 1: } e_B \times d_B \bmod z_B = 1. \ \text{Числа } d_B \text{ и } n_B \text{ составляют личный ключ абонента B: } K_B^- = (d_B, n_B) \, .$

Абонент А $uu\phi pyem$ cooбщение $m < n_{\scriptscriptstyle B}$ по формуле

$$c = m^{e_B} \bmod n_B$$

и пересылает шифротекст $\,c\,$ участнику В по открытой линии.

Абонент В, получивший зашифрованное сообщение, *вычисляет открытый текст* по формуле

$$m' = c^{d_B} \mod n_B$$
.

Для шифрования большого сообщения оно разбивается на маленькие блоки $m_{\!\scriptscriptstyle i} < n_{\!\scriptscriptstyle B}$.

Библиографический список

- 1. Лапонина О.Р. Основы сетевой безопасности: криптографические алгоритмы и протоколы взаимодействия: Учебное пособие. М.: Интернет-Ун-т Информ. Технологий, 2005. 608 с.
- 2. Рябко Б.Я., Фионов А.Н. Криптографические методы защиты информации: Учебное пособие для вузов. М.: Горячая линия-Телеком, 2005. 229 с.
- 3. Шнайер Б. Прикладная криптография. Протоколы, алгоритмы и исходные тексты на языке С, 2-е изд. 2003 г.

КРИПТОГРАФИЧЕСКИЕ АЛГОРИТМЫ

Методические указания к выполнению лабораторных работ по курсу «Методы и средства защиты информации» для студентов специальности «Программное обеспечение вычислительной техники и автоматизированных систем» дневной формы обучения

Составитель Стригунов Валерий Витальевич

Главный редактор Л. А. Суевалова Редактор Т. Ф. Шейкина Компьютерная верстка В. В. Стригунов

Подписано в печать . Формат 60х84 1/16. Бумага писчая. Гарнитура «Калибри». Печать офсетная. Усл. печ. л. 0,70. Тираж 150 экз. Заказ .

Издательство Тихоокеанского государственного университета.
680035, Хабаровск, ул. Тихоокеанская, 136.
Отдел оперативной полиграфии издательства Тихоокеанского государственного университета. 680035, Хабаровск, ул. Тихоокеанская, 136.