Fouille de données

NGUYỄN Thị Minh Huyền ©2016

huyenntm@hus.edu.vn

- 1. Généralités
- 2. Rappel de probabilités et statistique
 - Probabilités
 - Statistique
- 3. Exploration des données : cas d'une et de deux dimensions
- Exploration des données multidimensionnelles -Apprentissage non supervisé
- Exploration des données multidimensionnelles -Apprentissage supervisé
- 6. Analyse de données textuelles

Introduction 2016

1. Généralités

- 2. Rappel de probabilités et statistique
 - Probabilités
 - Statistique
- 3. Exploration des données : cas d'une et de deux dimensions
- 4. Exploration des données multidimensionnelles Apprentissage non supervisé
- 5. Exploration des données multidimensionnelles -Apprentissage supervisé
- 6. Analyse de données textuelles

Introduction 2016

- Généralités
- 2. Rappel de probabilités et statistique
 - Probabilités
 - Statistique
- Exploration des données : cas d'une et de deux dimensions
- 4. Exploration des données multidimensionnelles Apprentissage non supervisé
- 5. Exploration des données multidimensionnelles -Apprentissage supervisé
- 6. Analyse de données textuelles

Introduction 2016 3 / 19

Expérience stochastique/aléatoire - Evénement

- Ensemble de tous les résultats possibles/univers de l'expérience : ensemble fondamental Ω
- **E**vénement $A \subset \Omega$.
 - A est réalisé si le résultat $\omega \in A$.
 - |A| = 1: événement élémentaire
 - Opérations : $A \cup B$ (ou), $A \cap B$ (et), \overline{A} (événement contraire)
- Incompatibilité : $A \cap B = \emptyset$ (A et B mutuellement exclusifs)

Introduction 2016 4 / 19

Expérience stochastique/aléatoire - Evénement

- Ensemble de tous les résultats possibles/univers de l'expérience : ensemble fondamental Ω
- **E**vénement $A \subset \Omega$.
 - **A** est réalisé si le résultat $\omega \in A$.
 - |A| = 1: événement élémentaire
 - Opérations : $A \cup B$ (ou), $A \cap B$ (et), \overline{A} (événement contraire)
- Incompatibilité : $A \cap B = \emptyset$ (A et B mutuellement exclusifs)

Introduction 2016 4 / 19

Expérience stochastique/aléatoire - Evénement

- Ensemble de tous les résultats possibles/univers de l'expérience : ensemble fondamental Ω
- **E**vénement $A \subset \Omega$.
 - **A** est réalisé si le résultat $\omega \in A$.
 - |A| = 1: événement élémentaire
 - Opérations : $A \cup B$ (ou), $A \cap B$ (et), \overline{A} (événement contraire)
- Incompatibilité : $A \cap B = \emptyset$ (A et B mutuellement exclusifs)

Introduction 2016 4 / 19

Probabilité

Espace probabilisé (Ω, P)

- P loi de probabilité, en accord avec les axiomes :
 - $0 \le P(A) \le 1$ pour tout $A \subset \Omega$
 - $P(\Omega) = 1$
 - $P(A_1 \cup A_2 \cup \cdots \cup A_n) = P(A_1) + P(A_2) + \cdots + P(A_n)$ pour toute suite finie d'événements incompatibles deux à deux
 - Si Ω infini, la formule ci-dessus peut être appliquée avec n infini.
- Loi uniforme (discrète ou continue) : tous les événements élémentaires sont équiprobables.
- Définition statistique de la probabilité : répéter l'expérience un grand nombre de fois $P(A) = n_A/n$

Introduction 2016

Probabilité

Espace probabilisé (Ω, P)

- P loi de probabilité, en accord avec les axiomes :
 - $0 \le P(A) \le 1$ pour tout $A \subset \Omega$
 - $P(\Omega) = 1$
 - $P(A_1 \cup A_2 \cup \cdots \cup A_n) = P(A_1) + P(A_2) + \cdots + P(A_n)$ pour toute suite finie d'événements incompatibles deux à deux
 - Si Ω infini, la formule ci-dessus peut être appliquée avec n infini.
- Loi uniforme (discrète ou continue) : tous les événements élémentaires sont équiprobables.
- Définition statistique de la probabilité : répéter l'expérience un grand nombre de fois $P(A) = n_A/n$

Introduction 2016 5 / 19

Probabilité

Espace probabilisé (Ω, P)

- P loi de probabilité, en accord avec les axiomes :
 - \blacksquare 0 < P(A) < 1 pour tout $A \subset \Omega$
 - $P(\Omega) = 1$
 - $P(A_1 \cup A_2 \cup \cdots \cup A_n) = P(A_1) + P(A_2) + \cdots + P(A_n)$ pour toute suite finie d'événements incompatibles deux à deux
 - \blacksquare Si Ω infini, la formule ci-dessus peut être appliquée avec n infini.
- Loi uniforme (discrète ou continue) : tous les événements élémentaires sont équiprobables.
- Définition statistique de la probabilité : répéter l'expérience un grand nombre de fois - $P(A) = n_A/n$

Introduction 2016 5/19

- $P(A/B) = P(A \cap B)/P(B)$ - probabilité de l'événement A sachant que B est réalisé,
 - probabilité conditionnelle de *A* étant donné *B*
- $P(A_1 \cap A_2 \cap \cdots \cap A_n) =$ $P(A_1)P(A_2/A_1)P(A_3/A_1 \cap A_2) \cdots P(A_n/A_1 \cap \cdots \cap A_{n-1})$
- Formule de Bayes

$$P(B_k/A) = \frac{P(A \cap B_k)}{P(A)} = \frac{P(A/B_k)P(B_k)}{\sum_{i=1}^{n} P(A/B_i)P(B_i)}$$

 B_1, \dots, B_n forment une partition de Ω

■ Indépendance stochastique : P(A/B) = P(A) ou P(B/A) = P(B) ou $P(A \cap B) = P(A)P(B)$.

Introduction 2016

- P(A/B) = P(A∩B)/P(B)
 probabilité de l'événement A sachant que B est réalisé,
 probabilité conditionnelle de A étant donné B
- $P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1)P(A_2/A_1)P(A_3/A_1 \cap A_2)\cdots P(A_n/A_1 \cap \cdots \cap A_{n-1})$
- Formule de Bayes

$$P(B_k/A) = \frac{P(A \cap B_k)}{P(A)} = \frac{P(A/B_k)P(B_k)}{\sum_{i=1}^{n} P(A/B_i)P(B_i)}$$

 B_1, \dots, B_n forment une partition de Ω .

■ Indépendance stochastique : P(A/B) = P(A) ou P(B/A) = P(B) ou $P(A \cap B) = P(A)P(B)$.

Introduction 2016

- P(A/B) = P(A∩B)/P(B)
 probabilité de l'événement A sachant que B est réalisé,
 probabilité conditionnelle de A étant donné B
- $P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1)P(A_2/A_1)P(A_3/A_1 \cap A_2)\cdots P(A_n/A_1 \cap \cdots \cap A_{n-1})$
- Formule de Bayes

$$P(B_k/A) = \frac{P(A \cap B_k)}{P(A)} = \frac{P(A/B_k)P(B_k)}{\sum_{i=1}^{n} P(A/B_i)P(B_i)}$$

 B_1, \dots, B_n forment une partition de Ω .

■ Indépendance stochastique : P(A/B) = P(A) ou P(B/A) = P(B) ou $P(A \cap B) = P(A)P(B)$.

Introduction 2016

- P(A/B) = P(A∩B)/P(B)
 probabilité de l'événement A sachant que B est réalisé,
 probabilité conditionnelle de A étant donné B
- $P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1)P(A_2/A_1)P(A_3/A_1 \cap A_2)\cdots P(A_n/A_1 \cap \cdots \cap A_{n-1})$
- Formule de Bayes

$$P(B_k/A) = \frac{P(A \cap B_k)}{P(A)} = \frac{P(A/B_k)P(B_k)}{\sum_{i=1}^{n} P(A/B_i)P(B_i)}$$

 B_1, \dots, B_n forment une partition de Ω .

■ Indépendance stochastique : P(A/B) = P(A) ou P(B/A) = P(B) ou $P(A \cap B) = P(A)P(B)$.

Introduction 2016

- X(Ω) fonction à valeurs réelles, discrètes ou continues Variable aléatoire à plusieurs dimensions : vecteur aléatoire
- Variables aléatoires discrètes : ensemble de valeurs fini ou dénombrable
 - Distribution de X : $P(X = x_k) = p_k$, $k = 1, 2, \cdots$
- Variables aléatoires continues
 - f(x) fonction de densité de la variable aléatoire X: $f(x) \ge 0$, $\int_{-\infty}^{+\infty} f(x) dx = 1$
 - $P(u \le X \le v) = \int_{u}^{v} f(x) dx$ (surface sous la courbe de f(x))
- Fonction de répartition $F(x) = P(X \le x)$

Introduction 2016 7 / 19

- X(Ω) fonction à valeurs réelles, discrètes ou continues Variable aléatoire à plusieurs dimensions : vecteur aléatoire
- Variables aléatoires discrètes : ensemble de valeurs fini ou dénombrable
 - Distribution de X : $P(X = x_k) = p_k$, $k = 1, 2, \cdots$
- Variables aléatoires continues
 - f(x) fonction de densité de la variable aléatoire X: $f(x) \ge 0$, $\int_{-\infty}^{+\infty} f(x) dx = 1$
 - $P(u \le X \le v) = \int_{u}^{v} f(x) dx$ (surface sous la courbe de f(x))
- Fonction de répartition $F(x) = P(X \le x)$

Introduction 2016 7 / 19

- \blacksquare $X(\Omega)$ fonction à valeurs réelles, discrètes ou continues Variable aléatoire à plusieurs dimensions : vecteur aléatoire
- Variables aléatoires discrètes : ensemble de valeurs fini ou dénombrable
 - Distribution de X : $P(X = x_k) = p_k$, $k = 1, 2, \cdots$
- Variables aléatoires continues
 - \blacksquare f(x) fonction de densité de la variable aléatoire X: $f(x) \geq 0$, $\int_{-\infty}^{+\infty} f(x) dx = 1$
 - $P(u \le X \le v) = \int_{u}^{v} f(x) dx$ (surface sous la courbe de f(x))
- Fonction de répartition $F(x) = P(X \le x)$

Introduction 2016 7 / 19

- \blacksquare $X(\Omega)$ fonction à valeurs réelles, discrètes ou continues Variable aléatoire à plusieurs dimensions : vecteur aléatoire
- Variables aléatoires discrètes : ensemble de valeurs fini ou dénombrable
 - Distribution de X : $P(X = x_k) = p_k$, $k = 1, 2, \cdots$
- Variables aléatoires continues
 - \blacksquare f(x) fonction de densité de la variable aléatoire X: $f(x) > 0, \int_{-\infty}^{+\infty} f(x) dx = 1$
 - $P(u \le X \le v) = \int_{u}^{v} f(x) dx$ (surface sous la courbe de f(x))
- Fonction de répartition $F(x) = P(X \le x)$

Introduction 2016 7 / 19

Représentation graphique des distributions

Diagramme en bâtons (ou en tuyau d'orgue), histogramme, polygone, ou encore diagramme en secteurs (camembert).

(extrait du cours d'Informatique et Statistique de Jean Véronis)

Introduction 2016

Espérance mathématique (moyenne) et variance

- Variable aléatoire discrète :
 - Espérance math.

$$E(X) = \mu = \sum_{k} x_k p_k$$

Variance

$$Var(X) = \sigma^2 = \sum_{k} (x_k - \mu)^2 p_k = \sum_{k} x_k^2 p_k - \mu^2$$

σ écart-type

- Variable aléatoire continue :
 - Espérance math.

$$E(X) = \mu = \int_{-\infty}^{+\infty} x f(x) dx$$

Variance

$$Var(X) = \sigma^2 = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx = \int_{-\infty}^{+\infty} x^2 f(x) dx - \mu^2$$

Introduction 2016

Espérance mathématique (moyenne) et variance

- Variable aléatoire discrète :
 - Espérance math.

$$E(X) = \mu = \sum_{k} x_{k} p_{k}$$

Variance

$$Var(X) = \sigma^2 = \sum_{k} (x_k - \mu)^2 p_k = \sum_{k} x_k^2 p_k - \mu^2$$

 σ écart-type

- Variable aléatoire continue :
 - Espérance math.

$$E(X) = \mu = \int_{-\infty}^{+\infty} x f(x) dx$$

Variance

$$Var(X) = \sigma^2 = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx = \int_{-\infty}^{+\infty} x^2 f(x) dx - \mu^2$$

Introduction 2016

Distribution binomiale

Distribution de Bernoulli : variable à deux valeurs (modalités), notées 0 (échec) et 1 (succès)

$$P(X = 1) = p, P(X = 0) = q = 1 - p.$$

- $\blacksquare \mu = p$
- $\sigma^2 = p(1-p)$
- Distribution binomiale : nombre de succès rencontrés en

$$\blacksquare B(k; n, p) = P(X = k) = C_n^k p^k (1 - p)^{n-k}$$

- $\mu = np$
- $\sigma^2 = np(1-p)$

Introduction 2016

Distribution binomiale

- Distribution de Bernoulli : variable à deux valeurs (modalités), notées 0 (échec) et 1 (succès)
 - P(X = 1) = p, P(X = 0) = q = 1 p.
 - $\blacksquare \mu = p$
 - $\sigma^2 = p(1-p)$
- Distribution binomiale : nombre de succès rencontrés en effectuant n répétitions d'expérience de Bernoulli B(n, p)
 - $B(k; n, p) = P(X = k) = C_n^k p^k (1 p)^{n-k}$
 - $\blacksquare \mu = np$
 - $\sigma^2 = np(1-p)$

Introduction 2016

Distribution de Poisson

- Loi de probabilité notée $P(\lambda)$: $P(X = k) = e^{-\lambda} \lambda^k / k$
- \blacksquare $\mu = \lambda$, $\sigma^2 = \lambda$
 - Souvent utilisée pour décrire le nombre de réalisations d'un événement dans un intervalle de temps donné t, sachant le nombre moyen de réalisations α par unité de temps $(\lambda = \alpha t)$;
 - Pour $\lambda \le 10$, on utilise une table pour consulter les probabilités :
 - Pour $\lambda > 10$, X obéit approximativement à une loi normale.

Introduction 2016 11 / 19

Distribution de Poisson

- Loi de probabilité notée $P(\lambda)$: $P(X = k) = e^{-\lambda} \lambda^k / k$
- $\mu = \lambda, \sigma^2 = \lambda$
 - Souvent utilisée pour décrire le nombre de réalisations d'un événement dans un intervalle de temps donné t, sachant le nombre moyen de réalisations α par unité de temps $(\lambda = \alpha t)$;
 - Pour λ < 10, on utilise une table pour consulter les
 - Pour $\lambda > 10$, X obéit approximativement à une loi normale.

Introduction 2016 11 / 19

Distribution de Poisson

- Loi de probabilité notée $P(\lambda)$: $P(X = k) = e^{-\lambda} \lambda^k / k$
- $\mu = \lambda, \sigma^2 = \lambda$
 - Souvent utilisée pour décrire le nombre de réalisations d'un événement dans un intervalle de temps donné t, sachant le nombre moyen de réalisations α par unité de temps $(\lambda = \alpha t)$;
 - Pour λ < 10, on utilise une table pour consulter les probabilités;
 - Pour $\lambda > 10$, X obéit approximativement à une loi normale.

Introduction 2016 11 / 19

Distribution exponentielle

Densité de probabilité :

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & \text{ailleurs} \end{cases}$$

- $\mu = 1/\lambda$
- $\sigma^2 = 1/\lambda^2$
 - Souvent utilisée pour décrire le temps entre deux

Introduction 2016 12 / 19

Distribution exponentielle

Densité de probabilité :

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & \text{ailleurs} \end{cases}$$

- $\mu = 1/\lambda$
- $\sigma^2 = 1/\lambda^2$
 - Souvent utilisée pour décrire le temps entre deux réalisations successives d'un événement suivant le processus Poisson:

Introduction 2016

Distribution normale

■ Loi normale (gaussienne) réduite/standard N(0, 1) (movenne = 0, variance = 1)

$$f(x) = \frac{1}{\sqrt{2\pi}} exp[-x^2/2] \qquad (-\infty < x < \infty)$$

- Loi normale (gaussienne) $N(\mu, \sigma^2)$ (moyenne = μ , variance
 - \Rightarrow variable aléatoire $Y = \sigma X + \mu$, où X est une variable

Introduction 2016

Distribution normale

■ Loi normale (gaussienne) réduite/standard *N*(0,1) (moyenne = 0, variance = 1)

$$f(x) = \frac{1}{\sqrt{2\pi}} exp[-x^2/2] \qquad (-\infty < x < \infty)$$

Loi normale (gaussienne) $N(\mu, \sigma^2)$ (moyenne = μ , variance = σ^2) \Rightarrow variable aléatoire $Y = \sigma X + \mu$, où X est une variable normale réduite

Introduction 2016

Distribution normale

■ Loi normale (gaussienne) réduite/standard N(0, 1) (movenne = 0, variance = 1)

$$f(x) = \frac{1}{\sqrt{2\pi}} exp[-x^2/2] \qquad (-\infty < x < \infty)$$

- Loi normale (gaussienne) $N(\mu, \sigma^2)$ (moyenne = μ , variance $= \sigma^2$
 - \Rightarrow variable aléatoire $Y = \sigma X + \mu$, où X est une variable normale réduite

13 / 19

Introduction 2016

Statistique descriptive et inférentielle

- Stat. descriptive : explorer les données, en tirer un certain nombre de mesures et d'indices, ou des représentations graphiques faire appraître des hypothèses
- Stat. inférentielle : tester des hypothèses, faire des prédictions à partir des données

Introduction 2016

Statistique descriptive et inférentielle

- Stat. descriptive : explorer les données, en tirer un certain nombre de mesures et d'indices, ou des représentations graphiques faire appraître des hypothèses
- Stat. inférentielle : tester des hypothèses, faire des prédictions à partir des données.

Introduction 2016 14 / 19

- Variable (attribut, caractère) : propriété d'un ensemble d'objets ou d'événements à étudier
- Domaine d'une variable : ensemble de modalités ou valeurs
- Echelles de mesure : var. nominales (catégorielle), ordinales ou numériques (discrètes/continues)
- Population : ensemble de tous les objets ou événements qu'on veut étudier
 ⇒ paramètres à estimer
- Echantillon : sous-ensemble permettant d'estimer une propriété de la population observations permettant de tester des hypothèses

Introduction 2016

- Variable (attribut, caractère) : propriété d'un ensemble d'objets ou d'événements à étudier
- Domaine d'une variable : ensemble de modalités ou valeurs
- Echelles de mesure : var. nominales (catégorielle), ordinales ou numériques (discrètes/continues)
- Population : ensemble de tous les objets ou événements qu'on veut étudier
 ⇒ paramètres à estimer
- Echantillon : sous-ensemble permettant d'estimer une propriété de la population observations permettant de tester des hypothèses

Introduction 2016

- Variable (attribut, caractère) : propriété d'un ensemble d'objets ou d'événements à étudier
- Domaine d'une variable : ensemble de modalités ou valeurs
- Echelles de mesure : var. nominales (catégorielle), ordinales ou numériques (discrètes/continues)
- Population : ensemble de tous les objets ou événements qu'on veut étudier
 - ⇒ paramètres à estimer
- Echantillon : sous-ensemble permettant d'estimer une propriété de la population observations permettant de tester des hypothèses

Introduction 2016

- Variable (attribut, caractère) : propriété d'un ensemble d'objets ou d'événements à étudier
- Domaine d'une variable : ensemble de modalités ou valeurs
- Echelles de mesure : var. nominales (catégorielle), ordinales ou numériques (discrètes/continues)
- Population : ensemble de tous les objets ou événements qu'on veut étudier
 - ⇒ paramètres à estimer
- Echantillon : sous-ensemble permettant d'estimer une propriété de la population observations permettant de tester des hypothèses

Introduction 2016

- Généralités
- Rappel de probabilités et statistique
 - Probabilités
 - Statistique
- 3. Exploration des données : cas d'une et de deux dimensions
- 4. Exploration des données multidimensionnelles Apprentissage non supervisé
- 5. Exploration des données multidimensionnelles -Apprentissage supervisé
- 6. Analyse de données textuelles

Introduction 2016

- 1. Généralités
- 2. Rappel de probabilités et statistique
 - Probabilités
 - Statistique
- 3. Exploration des données : cas d'une et de deux dimensions
- 4. Exploration des données multidimensionnelles Apprentissage non supervisé
- 5. Exploration des données multidimensionnelles -Apprentissage supervisé
- 6. Analyse de données textuelles

Introduction 2016 17 / 19

- 1. Généralités
- 2. Rappel de probabilités et statistique
 - Probabilités
 - Statistique
- 3. Exploration des données : cas d'une et de deux dimensions
- 4. Exploration des données multidimensionnelles Apprentissage non supervisé
- 5. Exploration des données multidimensionnelles -Apprentissage supervisé
- 6. Analyse de données textuelles

Introduction 2016 18 / 19

- 1. Généralités
- Rappel de probabilités et statistique
 - Probabilités
 - Statistique
- 3. Exploration des données : cas d'une et de deux dimensions
- 4. Exploration des données multidimensionnelles Apprentissage non supervisé
- 5. Exploration des données multidimensionnelles -Apprentissage supervisé
- 6. Analyse de données textuelles

Introduction 2016