

Reaksi dan Stoikiometri Larutan

A. PERSAMAAN REAKSI ION

- Persamaan reaksi ion adalah persamaan reaksi yang menjelaskan bagaimana reaksi antar-ion terjadi pada larutan elektrolit.
- Nersamaan reaksi ion terdiri dari:
 - Persamaan reaksi ion lengkap, menjelaskan ionisasi larutan elektrolit.
 - Persamaan reaksi ion bersih, reaksi ion lengkap yang tidak mengandung ion penonton atau ion yang tidak berubah.

Contoh:

Reaksi molekul

$$Cl_2O_{(g)} + Ca(OH)_2_{(aq)} \rightarrow Ca(ClO)_2_{(aq)} + H_2O_{(l)}$$

Reaksi ion lengkap

$$Cl_2O_{(g)} + Ca^{2+}_{(aq)} + 2OH^-_{(aq)}$$

 $\rightarrow Ca^{2+}_{(aq)} + 2ClO^-_{(aq)} + 2H_2O_{(l)}$

Reaksi ion bersih

$$Cl_2O_{(q)} + 2OH^{-}_{(aq)} \rightarrow 2ClO^{-}_{(aq)} + 2H_2O_{(l)}$$

B. REAKSI LARUTAN

- Reaksi larutan terjadi karena adanya molekulmolekul larutan yang terion.
- Neaksi-reaksi larutan asam-basa:
 - 1) Reaksi asam-basa (netralisasi)

Bentuk umum:

$$H^+An^- + Kat^+OH^- \rightarrow Kat^+An^- + H^+OH^-$$

Asam dan basa saling meniadakan sifat dan membentuk garam dan air yang bersifat netral.

Contoh:

Reaksi asam sulfat dengan kalium hidroksida membentuk kalium sulfat dan air.

Reaksi molekul

$$H_2SO_{4(aq)} + 2KOH_{(aq)} \rightarrow K_2SO_{4(aq)} + 2H_2O_{(l)}$$

Reaksi ion lengkap

$$2H^{+}_{(aq)} + SO_{4}^{2-}_{(aq)} + 2K^{+}_{(aq)} + 2OH^{-}_{(aq)}$$

 $\rightarrow 2K^{+}_{(aq)} + SO_{4}^{2-}_{(aq)} + 2H_{2}O_{(l)}$

Reaksi ion bersih

$$2H^{+}_{(aq)} + 2OH^{-}_{(aq)} \rightarrow 2H_{2}O_{(l)}$$

2) Reaksi oksida basa-asam

Bentuk umum:

$$Kat^{+}O^{2-} + H^{+}An^{-} \rightarrow Kat^{+}An^{-} + H^{+}O^{2-}$$

Contoh oksida basa (logam) dan kation yang dibentuknya:

O. Basa	+	Air	\rightarrow	Basa	Kation
K ₂ O	+	H ₂ O	\rightarrow	КОН	K ⁺
Li ₂ O	+	H ₂ O	\rightarrow	LiOH	Li+
Na ₂ O	+	H ₂ O	\rightarrow	NaOH	Na⁺
MgO	+	H ₂ O	\rightarrow	Mg(OH) ₂	Mg ²⁺
CaO	+	H ₂ O	\rightarrow	Ca(OH) ₂	Ca ²⁺
BaO	+	H₂O	\rightarrow	Ba(OH) ₂	Ba ²⁺

Contoh:

Reaksi alumunium oksida padat dengan asam perklorat menjadi alumunium perklorat dan air.

Reaksi molekul

$$Al_2O_{3(s)} + 6HClO_{4(aq)} \rightarrow 2Al(ClO_4)_{3(aq)} + 3H_2O_{(l)}$$

Reaksi ion lengkap

$$Al_2O_{3(s)} + 6H^+_{(aq)} + \frac{6ClO_4^-_{(aq)}}{}$$

 $\Rightarrow 2Al^{3+}_{(aq)} + \frac{6ClO_4^-_{(aq)}}{} + 3H_2O_{(l)}$

Reaksi ion bersih

$$Al_2O_{3(s)} + 6H^+_{(aq)} \rightarrow 2Al^{3+}_{(aq)} + 3H_2O_{(l)}$$

3) Reaksi oksida asam-basa

Bentuk umum:

Oksida Asam + Basa → Garam + Air

$$(An^{-})O^{2-} + Kat^{+}OH^{-} \rightarrow Kat^{+}An^{-} + H^{+}OH^{-}$$

Contoh oksida asam (non-logam) dan anion yang dibentuknya:

O. Asam	+	Air	\rightarrow	Asam	Anion
Asam monovalen (nitrogen dan halogen)					
N ₂ O ₃	+	H ₂ O	\rightarrow	HNO ₂	NO ₂ -
N ₂ O ₅	+	H ₂ O	\rightarrow	HNO ₃	NO ₃ -
Cl ₂ O	+	H ₂ O	\rightarrow	HClO	ClO-
Cl ₂ O ₇	+	H ₂ O	\rightarrow	HClO ₄	ClO ₄ -
Br ₂ O ₃	+	H ₂ O	\rightarrow	HBrO ₂	BrO ₂ ⁻
I ₂ O ₅	+	H ₂ O	\rightarrow	HIO ₃	IO ₃ -
Asam divalen					
CO ₂	+	H ₂ O	\rightarrow	H ₂ CO ₃	CO ₃ ²⁻
SO ₂	+	H ₂ O	\rightarrow	H ₂ SO ₃	SO ₃ ²⁻
SO ₃	+	H ₂ O	\rightarrow	H ₂ SO ₄	SO ₄ ²⁻
Asam trivalen					
P ₂ O ₃	+	H ₂ O	\rightarrow	H ₃ PO ₃	PO ₃ ³⁻
P ₂ O ₅	+	H ₂ O	\rightarrow	H ₃ PO ₄	PO ₄ 3-
As ₂ O ₃	+	H ₂ O	\rightarrow	H ₃ AsO ₃	AsO ₃ ³⁻
As ₂ O ₅	+	H ₂ O	\rightarrow	H ₃ AsO ₄	AsO ₄ ³⁻

Sb ₂ O ₃	+	H ₂ O	\rightarrow	H ₃ SbO ₃	SbO ₃ ³⁻
Sb ₂ O ₅	+	H ₂ O	\rightarrow	H₃SbO₄	SbO ₄ ³⁻

Contoh:

Reaksi gas dinitrogen pentaoksida dengan kalsium hidroksida membentuk kalsium nitrat dan air.

Reaksi molekul

 $N_2O_{5(g)} + Ca(OH)_{2 (aq)} \rightarrow Ca(NO_3)_{2 (aq)} + H_2O_{(l)}$

Reaksi ion lengkap

$$N_2O_{5(g)} + Ca^{2+}_{(aq)} + 2OH^-_{(aq)}$$

 $\rightarrow Ca^{2+}_{(aq)} + 2NO_3^-_{(aq)} + H_2O_{(l)}$

Reaksi ion bersih

$$N_2O_{5(q)} + 2OH^{-}_{(aq)} \rightarrow 2NO_3^{-}_{(aq)} + H_2O_{(l)}$$

4) Reaksi oksida asam-oksida basa

Bentuk umum:

$$Kat^+O^{2-} + (An^-)O^{2-} \rightarrow Kat^+An^-$$

Contoh:

Reaksi difosfor trioksida padat dengan stronsium oksida padat menghasilkan stronsium fosfit.

Reaksi molekul

$$P_2O_{3(s)} + 3SrO_{(s)} \rightarrow Sr_3(PO_3)_{2(s)}$$

Reaksi ion lengkap

$$P_2O_{3(s)} + 3SrO_{(s)} \rightarrow Sr_3(PO_3)_{2(s)}$$
 (tetap)

Reaksi ion bersih

$$P_2O_{3(s)} + 3SrO_{(s)} \rightarrow Sr_3(PO_3)_{2(s)}$$
 (tetap)

5) Reaksi amonia dengan asam

Bentuk umum:

Amonia + Asam → Garam Amonium

$$NH_3 + H^+An^- \rightarrow NH_4^+An^-$$

Contoh:

Reaksi amonia dengan asam sulfat menghasilkan amonium sulfat.

Reaksi molekul

$$2NH_{3 (g)} + H_2SO_{4 (aq)} \rightarrow (NH_4)_2SO_{4 (aq)}$$

Reaksi ion lengkap

$$2NH_{3(q)} + 2H^{+}_{(aq)} + SO_{4}^{2-}_{(aq)}$$

$$\rightarrow 2NH_4^+_{(aq)} + SO_4^{2-}_{(aq)}$$

Reaksi ion bersih

$$2NH_{3 (g)} + 2H^{+}_{(aq)} \rightarrow 2NH_{4}^{+}_{(aq)}$$

Reaksi-reaksi larutan asam-basa yang menghasilkan gas-gas: 6) Reaksi garam amonium dengan basa menghasilkan NH₃

Bentuk umum:

Garam Amonium + Basa → Garam Lain + Air + NH₃

$$NH_4^+An^-+Kat^+OH^-\rightarrow Kat^+An^-+H_2O+NH_3$$

Contoh:

Reaksi amonium klorida dengan litium hidroksida menghasilkan larutan litium klorida, air dan amonia.

Reaksi molekul

$$NH_4Cl_{(aq)} + LiOH_{(aq)} \rightarrow LiCl_{(aq)} + H_2O_{(l)} + NH_{3(g)}$$

Reaksi ion lengkap

$$NH_4^+_{(aq)} + Cl^-_{(aq)} + Li^+_{(aq)} + OH^-_{(aq)}$$

 $\rightarrow Li^+_{(aq)} + Cl^-_{(aq)} + H_2O_{(l)} + NH_{3(q)}$

Reaksi ion bersih

$$NH_4^+_{(aq)} + OH^-_{(aq)} \rightarrow H_2O_{(l)} + NH_{3(q)}$$

7) Reaksi garam karbonat dengan asam menghasilkan CO₂

Bentuk umum:

Garam Karbonat + Asam → Garam Lain + Air + CO₂

Kat⁺CO₃²⁻+H⁺An⁻→Kat⁺An⁻+H₂O+CO₂

$$H_2CO_3 \to H_2O+CO_2$$
(tidak stabil)

Contoh:

Reaksi batu pualam (kapur) dengan asam iodida menghasilkan kalsium iodida, air dan karbondioksida.

Reaksi molekul

$$CaCO_{3 (s)} + 2HI_{(aq)} \rightarrow CaI_{2 (aq)} + H_2O_{(l)} + CO_{2(g)}$$

Reaksi ion lengkap

$$\begin{aligned} \text{CaCO}_{3 \, (s)} \, + \, 2\text{H}^+_{(aq)} \, + \, \underline{2}\text{H}^-_{(aq)} \\ & \rightarrow \, \text{Ca}^{2^+_{(aq)}} \, + \, \underline{2}\text{H}^-_{(aq)} \, + \, \text{H}_2\text{O}_{(l)} \, + \, \text{CO}_{2(g)} \end{aligned}$$

Reaksi ion bersih

$$CaCO_{3 (s)} + 2H^{+}_{(aq)} \rightarrow Ca^{2+}_{(aq)} + H_{2}O_{(l)} + CO_{2(q)}$$

8) Reaksi garam sulfit dengan asam menghasilkan SO₂

Bentuk umum:

$$Kat^+SO_3^{2-}+H^+An^-\rightarrow Kat^+An^-+H_2O+SO_2$$
 $H_2SO_3\rightarrow H_2O+SO_2$
(tidak stabil)

Contoh:

Reaksi natrium sulfit dengan asam periodat menghasilkan natrium periodat, air dan belerang dioksida.

Reaksi molekul

$$Na_2SO_{3(aq)} + 2HIO_{4(aq)}$$

$$\rightarrow$$
 2NalO_{4(aq)} + H₂O_(l) + SO_{2(g)}

Reaksi ion lengkap

$$\begin{array}{l} 2Na^{+}{}_{(aq)} + SO_{4}{}^{2}{}_{(aq)} + 2H^{+}{}_{(aq)} + 2IO_{4}{}^{-}{}_{(aq)} \\ \\ \rightarrow 2Na^{+}{}_{(aq)} + 2IO_{4}{}^{-}{}_{(aq)} + H_{2}O_{(l)} + SO_{2(g)} \end{array}$$

Reaksi ion bersih

$$SO_4^{2-}(aq) + 2H^+(aq) \rightarrow H_2O_{(l)} + SO_{2(q)}$$

9) Reaksi garam sulfida dengan asam menghasilkan H₂S

Bentuk umum:

$$Kat^{+}S^{2-} + H^{+}An^{-} \rightarrow Kat^{+}An^{-} + H^{+}S^{2-}$$

Contoh:

Reaksi besi (III) sulfida dengan asam nitrat membentuk besi (III) nitrat dan gas hidrogen sulfida.

Reaksi molekul

$$Fe_2S_{3(s)} + 6HNO_{3(aq)} \rightarrow 2Fe(NO_3)_{3(aq)} + 3H_2S_{(g)}$$

Reaksi ion lengkap

Fe₂S_{3(s)} + 6H⁺_(aq) + 6NO₃⁻_(aq)

$$\rightarrow$$
 2Fe³⁺_(aq) + 6NO₃⁻_(aq) + H₂S_(q)

Reaksi ion bersih

$$Fe_2S_{3(s)} + 6H^+_{(aq)} \rightarrow 2Fe^{3+}_{(aq)} + H_2S_{(q)}$$

10) Reaksi logam dengan akuaregia menghasilkan NO

Bentuk umum:

Reaksi ini tergolong reaksi redoks karena terjadi perubahan biloks.

Logam apapun akan membentuk kation dengan biloks tertingginya.

Akuaregia adalah larutan yang merupakan campuran antara HCl pekat dan HNO_3 pekat dengan perbandingan 3:1.

Contoh:

Reaksi besi dengan akuaregia membentuk larutan besi (III) klorida, air dan gas nitrogen oksida.

Reaksi molekul

$$\begin{aligned} \text{Fe}_{(s)} + 3\text{HCl}_{(aq)} + \text{HNO}_{3(aq)} \\ &\rightarrow \text{FeCl}_{3(aq)} + 2\text{H}_2\text{O}_{(l)} + \text{NO}_{(q)} \end{aligned}$$

Reaksi ion lengkap

$$\begin{split} Fe_{(s)} + 3H^{+}_{(aq)} + \frac{3Cl^{-}_{(aq)}}{4} + H^{+}_{(aq)} + NO_{3}^{-}_{(aq)} \\ & \rightarrow Fe^{3+}_{(aq)} + \frac{3Cl^{-}_{(aq)}}{4} + 2H_{2}O_{(l)} + NO_{(g)} \end{split}$$

Reaksi ion bersih

$$\begin{split} Fe_{(s)} \, + \, 4H^+{}_{(aq)} + \, NO_3{}^-{}_{(aq)} \\ & \to Fe^{3+}{}_{(aq)} \, + \, 2H_2O_{(l)} \, + \, NO_{(g)} \end{split}$$

11) Reaksi logam dengan asam oksidator menghasilkan NO atau NO₂ atau SO₂

Bentuk umum:

Reaksi ini tergolong reaksi redoks karena terjadi perubahan biloks.

Logam selain Pt dan Au akan membentuk kation dengan biloks tertingginya.

Asam oksidator berupa HNO_3 encer, HNO_3 pekat atau H_2SO_4 pekat yang akan membentuk gas:

Asam oksidator	Gas
HNO₃ encer	NO
HNO₃ pekat	NO ₂
H₂SO₄ pekat	SO ₂

Contoh:

Reaksi tembaga dengan asam nitrat encer menghasilkan tembaga (II) nitrat, air dan gas nitrogen monoksida.

Reaksi molekul

$$3Cu_{(s)} + 8HNO_{3(aq)}$$

$$\rightarrow$$
 3Cu(NO₃)_{2(aq)} + 4H₂O_(l) + 2NO_(q)

Reaksi ion lengkap

$$3Cu_{(s)} + 8H^{+}_{(aq)} + 8NO_{3}^{-}_{(aq)}$$

$$\rightarrow 3Cu^{2+}_{(aq)} + 6NO_{3-}^{-}_{(aq)} + 4H_2O_{(l)} + 2NO_{(q)}$$

Reaksi ion bersih

$$3Cu_{(s)} + 8H^{+}_{(aq)} + 2NO_{3}^{-}_{(aq)}$$

 $\rightarrow 3Cu^{2+}_{(aq)} + 4H_{2}O_{(l)} + 2NO_{(q)}$

12) Reaksi bukan logam mulia dengan asam non-oksidator menghasilkan H₂

Bentuk umum:

Reaksi ini tergolong reaksi redoks karena terjadi perubahan biloks.

Logam selain logam mulia (selain Cu, Hg, Ag, Pt, Au) akan membentuk kation dengan biloks terendahnya.

Asam non-oksidator adalah asam selain HNO_3 encer, HNO_3 pekat dan H_2SO_4 pekat, biasanya berupa asam kuat encer (misalnya HCl encer atau H_2SO_4 encer).

Contoh:

Reaksi alumunium dengan asam sulfat encer membentuk larutan alumunium sulfat dan gas hidrogen.

Reaksi molekul

$$2Al_{(s)} + 3H_2SO_{4(aq)} \rightarrow Al_2(SO_4)_{3(aq)} + 3H_{2(g)}$$

Reaksi ion lengkap

$$2Al_{(s)} + 6H^{+}_{(aq)} + \frac{3SO_{4}^{2-}_{(aq)}}{2Al^{3+}_{(aq)} + \frac{3SO_{4}^{2-}_{(aq)}}{3Al^{3+}_{(aq)}} + \frac$$

Reaksi ion bersih

$$2Al_{(s)} + 6H^{+}_{(aq)} \rightarrow 2Al^{3+}_{(aq)} + 3H_{2(q)}$$

- Reaksi-reaksi larutan asam-basa yang menghasilkan endapan, dan merupakan reaksi dekomposisi rangkap:
 - 13) Reaksi garam dengan asam

Bentuk umum:

Garam 1 + Asam 1 → Garam 2 + Asam 2

Garam 2 harus mengendap.

Contoh:

Reaksi perak nitrat dengan asam bromida menghasilkan perak bromida padat dan asam nitrat.

Reaksi molekul

$$AgNO_{3 (aq)} + HBr_{(aq)} \rightarrow AgBr_{(s)} + HNO_{3 (aq)}$$

Reaksi ion lengkap

$$Ag^{+}_{(aq)} + NQ_{3}^{-}_{(aq)} + H^{+}_{(aq)} + Br^{-}_{(aq)}$$

 $\Rightarrow AgBr_{(s)} + H^{+}_{(aq)} + NQ_{3}^{-}_{(aq)}$

Reaksi ion bersih

$$Ag^{+}_{(aq)} + Br^{-}_{(aq)} \rightarrow AgBr_{(s)}$$

14) Reaksi garam dengan basa

Bentuk umum:

Garam 1 + Basa 1 → Garam 2 + Basa 2

Garam 2 dan/atau basa 2 harus mengendap.

Contoh:

Reaksi tembaga (II) sulfat dengan stronsium hidroksida menghasilkan tembaga (II) hidroksida dan stronsium sulfat padat.

Reaksi molekul

$$CuSO_{4 (aq)} + Sr(OH)_{2(aq)} \rightarrow Cu(OH)_{2(s)} + SrSO_{4 (s)}$$

Reaksi ion lengkap

$$Cu^{2+}_{(aq)} + SO_4^{2-}_{(aq)} + Sr^{2+}_{(aq)} + 2OH^{-}_{(aq)}$$

 $\rightarrow Cu(OH)_{2(s)} + SrSO_4_{(s)}$

Reaksi ion bersih

$$Cu^{2+}_{(aq)} + SO_4^{2-}_{(aq)} + Sr^{2+}_{(aq)} + 2OH^{-}_{(aq)}$$

 $\rightarrow Cu(OH)_{2(s)} + SrSO_{4(s)} (tetap)$

15) Reaksi garam dengan garam

Bentuk umum:

Garam 1 + Garam 2 → Garam 3 + Garam 4

Garam 3 dan/atau basa 4 harus mengendap.

Contoh:

Reaksi timbal (II) nitrat dengan kalium iodida menghasilkan timbal (II) iodida dan larutan kalium nitrat.

Reaksi molekul

$$Pb(NO_3)_{2 (aq)} + 2KI_{(aq)} \rightarrow PbI_{2(s)} + 2KNO_{3 (aq)}$$

Reaksi ion lengkap

$$Pb^{2+}_{(aq)} + \frac{2NO_3^-_{(aq)} + 2K^+_{(aq)} + 2I^-_{(aq)}}{\Rightarrow PbI_{2(s)} + 2K^+_{(aq)} + 2NO_3^-_{(aq)}}$$

Reaksi ion bersih

$$Pb^{2+}_{(aq)} + 2I^{-}_{(aq)} \rightarrow PbI_{2(s)}$$

16) Reaksi pendesakan logam

Bentuk umum:

Logam 1 + Ion Logam 2 → Ion Logam 1 + Logam 2

Logam 1 harus lebih kuat mendesak logam 2.

Logam 1 harus berada di sebelah kiri logam 2 pada deret Volta.

Contoh:

Reaksi logam magnesium dengan larutan fero klorida menghasilkan larutan magnesium klorida dan logam besi.

Reaksi molekul

$$Mg_{(s)} + FeCl_{2(aq)} \rightarrow MgCl_{2(aq)} + Fe_{(s)}$$

Reaksi ion lengkap

$$Mg_{(s)} + Fe^{2+}_{(aq)} + 2Cl^{-}_{(aq)}$$

$$\rightarrow$$
 Mg²⁺_(aq) + 2Cl⁻_(aq) + Fe_(s)

Reaksi ion bersih

$$Mg_{(s)} + Fe^{2+}_{(aq)} \rightarrow Mg^{2+}_{(aq)} + Fe_{(s)}$$

Aturan kelarutan senyawa mudah larut:

lon	Kelarutan	Pengecualian pasangan ion
H ⁺ (asam)	larut	-
Na ⁺ , K ⁺ , NH ₄ ⁺	larut	-
NO ₃ -, ClO ₃ -, ClO ₄ -, CH ₃ COO-,	larut	-
F-	larut	ion gol IIA, Pb ²⁺
Cl-, Br-, I-	larut	Cu ²⁺ , Hg ₂ ²⁺ , Ag ⁺
SO ₄ ² -	larut	Sr ²⁺ , Ba ²⁺ , Pb ²⁺

Aturan kelarutan senyawa sukar larut:

lon	Kelarutan	Pengecualian pasangan ion
OH- (basa)	sukar larut	ion gol IA, Ca ²⁺ , Sr ²⁺ , Ba ²⁺
O ²⁻ , PO ₃ ³⁻ , PO ₄ ³⁻ , CO ₃ ²⁻ , CrO ₄ ²⁻ , C ₂ O ₄ ²⁻	sukar larut	ion gol IA, NH ₄ +
S ² -	sukar larut	ion gol IA-IIA, NH4 ⁺

STOIKIOMETRI LARUTAN

Konsep dasar dalam stoikiometri larutan:

- 1) Perbandingan koefisien adalah per-bandingan jumlah mol zat dalam reaksi.
- 2) Segala satuan ukuran zat harus di-konversikan ke dalam mol.
- Kemolaran 3) larutan adalah angka yang menunjukkan banyaknya mol dalam 1 liter larutan. Jumlah mol dalam larutan dapat dihitung dengan:

Beberapa contoh stoikiometri larutan:

Reaksi antar larutan

100 mL timbal (II) nitrat 0,2 M direaksikan dengan 100 mL natrium klorida 0,2 M, tentukan:

- Persamaan reaksi molekul yang setara
- b. Larutan yang bersisa dan jumlah sisanya
- Massa garam yang mengendap

(Ar Pb = 207, N = 14, Na = 23, Cl = 35,5) Jawab:

 $Pb(NO_3)_2(aq) + 2NaCl(aq)$

$$\rightarrow$$
 PbCl₂(s) + 2NaNO₃(aq)

b.
$$\frac{\text{n Pb(NO}_3)_2}{\text{koef Pb(NO}_3)_2}$$
 : $\frac{\text{n NaCl}}{\text{koef NaCl}} = \frac{0.1 \times 0.2}{1}$: $\frac{0.1 \times 0.2}{2}$ = 0.02 : 0.01

Maka pereaksi pembatasnya adalah NaCl, sedangkan larutan bersisanya adalah Pb(NO₃)₂.

 $m Pb(NO_3)_2 sisa = 0.01 x (207+2.14+6.16) = 3.31 qr$

 $m PbCl_2 = 0.01 x (207 + 35.5.2) = 2.78 qr$

Reaksi antara cuplikan logam dengan larutan

10 gr cuplikan logam Al berkadar 54% habis bereaksi dengan asam sulfat 2 M, tentukan:

- Persamaan reaksi molekul yang setara
- b. Jumlah mol Al murni
- C. Volume asam sulfat
- d. Massa garam yang terbentuk
- e. Volume gas yang dihasilkan pada RTP

$$(Ar Al = 27, S = 32, O = 16)$$

Jawab:

a.
$$2Al(s) + 3H_2SO_4(aq) \rightarrow Al_2(SO_4)_3(aq) + 3H_2(g)$$

b. n Al murni =
$$54\% \times \frac{10}{27} = 0.2 \text{ mol}$$

c.
$$n H_2SO_4 = \frac{3}{2} \times 0.2 = 0.3 \text{ mol}$$

 $V H_2SO_4 = \frac{0.3}{2} = 0.15 \text{ L} = \underline{150 \text{ mL}}$

d.
$$n Al_2(SO_4)_3 = \frac{1}{2} \times 0.2 = 0.1 \text{ mol}$$

 $m Al_2(SO_4)_3 = 0.1 \times (2.27 + 3.32 + 12.16) = 34.2 \text{ gr}$

e.
$$n H_2 = \frac{3}{2} \times 0.2 = 0.3 \text{ mol}$$

 $V H_2 = 0.3 \times 24 = 7.2 \text{ L}$

Reaksi antara cuplikan garam dengan larutan

Sampel pualam seberat x gr dilarutkan ke dalam HCl 1,5 M, dihasilkan 6 L gas yang diukur pada (p,t) dimana massa 1,5 L amonia adalah 0,85 gr. Tentukan:

- Persamaan reaksi molekul setara
- b. Jumlah mol gas yang dihasilkan
- Nilai x jika sampel pualam murni dan 80%
- d. Massa garam yang terbentuk

Jawab:

a.
$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(q)$$

$$\begin{array}{ll} \text{a.} & \text{CaCO}_3(s) + 2\text{HCl}(\text{aq}) \Rightarrow \text{CaCl}_2(\text{aq}) + \text{H}_2\text{O}(l) + \text{CO}_2(g) \\ \text{b.} & \frac{n \text{CO}_2}{V \text{CO}_2} = \frac{n \text{NH}_3}{V \text{NH}_3} & \frac{n \text{CO}_2}{6} = \frac{0.85/17}{1.5} & n \text{CO}_2 = \underline{0.2 \text{ mol}} \end{array}$$

c. x murni = 0,2 x (40+12+3.16) =
$$\underline{20 \text{ gr}}$$

x 80% = $\frac{0.2 \times 100}{80\%}$ = $\underline{25 \text{ gr}}$

d. $m CaCl_2 = 0.2 \times 111 = 22.2 \text{ gr}$

Reaksi antara campuran logam dengan larutan

Soal 1: Campuran Al dan Cu seberat 10 gr dilarutkan dengan larutan HI 0,75 M, dihasilkan 7,2 L gas pada keadaan RTP, tentukan:

- Persamaan reaksi molekul setara
- b. Jumlah mol gas yang dihasilkan
- Massa dan presentase tiap logam

$$(Ar Al = 27, Cu = 63, 5, I = 127)$$

Jawab:

a.
$$6Cu(s) + 6HI(aq) \longrightarrow$$

 $2Al(s) + 6HI(aq) \rightarrow 2All_3(aq) + 3H_2(g)$

b.
$$n H_2 = \frac{7.2}{24} = 0.3 \text{ mol}$$

c.
$$n Al = \frac{2}{3} \times 0.3 = 0.2 \text{ mol}$$

$$m Al = 0.2 \times 27 = 5.4 gr$$

% Al =
$$\frac{5.4}{10}$$
 x 100% = $\frac{54\%}{10}$

$$m Cu = 10 - 5.4 gr = 4.6 gr$$

Soal 2: 10,2 gram campuran Al dan Mg habis bereaksi dengan 250 mL larutan asam sulfat 2 M, tentukan:

- a. Persamaan reaksi molekul setara
- b. Total mol larutan asam sulfat
- c. Massa dan presentase alumunium
- d. Massa garam yang dihasilkan tiap logam
- e. Volume gas yang dihasilkan pada 127°C dan 2 atm

a. Reaksi 1

$$2Al(s) + 3H2SO4(aq) \rightarrow Al2(SO4)3(aq) + 3H2(g)$$

Reaksi 2

$$Mg(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2(g)$$

$$m campuran = 10,2 gr$$

$$m Al = a gr$$
 $m Mg = 10,2 - a gr$

$$n Al = \frac{a}{27} mol$$
 $n Mg = \frac{10,2 - a}{24} mol$

- b. $n H_2SO_4 = 0.25 \times 2 = 0.5 \text{ mol}$
- c. Nilai a dapat dihitung dari:

n H₂SO₄ R.1 =
$$\frac{3}{2}$$
 x $\frac{a}{27}$ = $\frac{a}{18}$ mol

n H₂SO₄ R.2 =
$$\frac{10,2-a}{24}$$
 mol

Maka

$$\frac{a}{18} + \frac{10.2 - a}{24} = 0.5$$

$$4a + 3(10.2 - a) = 36$$

$$4a + 30.6 - 3a = 36$$

$$a = 36 - 30.6 = 5.4$$

Jadi,

$$m Al = a = 5.4 gr$$

% Al =
$$\frac{5.4}{10.2}$$
 x 100% = 52.94 %

d.
$$n Al_2(SO_4)_3 = \frac{1}{2} x \frac{5.4}{27} = 0.1 mol$$

m
$$Al_2(SO_4)_3 = 0.1 \times (2.27 + 3.32 + 12.16)$$

= 0.1 x 342 = 34.2 gr

$$-0,1 \times 342 - 0$$
n MgSO₄ = $\frac{4,8}{24}$ = 0,2 mol

m MgSO₄ =
$$0.2 \times (24+32+4.16)$$

$$= 0.2 \times 120 = 24 gr$$

e.
$$n H_2 R.1 = \frac{3}{2} \times 0.2 = 0.3 \text{ mol}$$

$$n H_2 R.2 = 0.2 \text{ mol}$$
 $n H_2 \text{ total} = 0.5 \text{ mol}$

$$V H_2 = \frac{0.5 \times 0.082 \times 400}{2} = 8.2 L$$

Reaksi antara campuran garam dengan larutan

Campuran $NaHSO_3$ (Mr = 104) dan Na_2SO_3 (Mr = 126) sebanyak 33,4 gr larut sempurna dalam 200 mL asam iodida 2 M, tentukan:

- a. Persamaan reaksi lengkap setara tiap garam
- b. Total mol asam iodida
- c. Massa tiap garam dalam campuran
- d. Massa garam yang dihasilkan

Jawab:

a. Reaksi 1

$$NaHSO_3(aq) + HI(aq) \rightarrow NaI(aq) + H_2O(l) + SO_2(g)$$

Reaksi 2

$$Na_2SO_3(aq) + 2HI(aq) \rightarrow 2NaI(aq) + H_2O(l) + SO_2(q)$$

$$m campuran = 33,4 gr$$

$$m Na_2SO_3 = 33,4 - a gr$$

$$n \text{ NaHSO}_3 = \frac{a}{104} \text{ mol}$$
 $n \text{ Na}_2 \text{SO}_3 = \frac{33,4 - a}{126} \text{ mol}$

n HI R.1 =
$$\frac{a}{104}$$
 mol

n HI R.2 =
$$2 \times \frac{33,4-a}{126} = \frac{33,4-a}{63}$$
 mol

Maka

$$\frac{a}{104} + \frac{33,4 - a}{63} = 0,4$$

$$63a + 104(33,4 - a) = 2620,8$$

$$a = 20.8$$

Jadi,

$$m \text{ NaHSO}_3 = a = 20.8 \text{ gr}$$

% NaHSO₃ =
$$\frac{20.8}{33.4}$$
 x 100% = $\frac{62.27\%}{100}$

$$m Na_2SO_3 = 33,4 - a = 12,6 gr$$

% Na₂SO₃ =
$$\frac{12,6}{33.4}$$
 x 100% = $\frac{37,73\%}{100}$

d.
$$n Nal = n HI = 0.4 mol$$

$$m \text{ Nal} = 0.4 \times 150 = 60 \text{ gr}$$

Reaksi antara garam dengan larutan

Ke dalam 200 mL larutan amonium fosfat 0,1 M dimasukkan serbuk stronsium hidroksida sampai habis seluruhnya.

Tentukan:

- a. Persamaan reaksi lengkap setara
- b. Jumlah mol amonium fosfat
- c. Massa stronsium hidroksida
- d. Volume gas yang dihasilkan pada 2 atm dan 100 K Jawab:

a.
$$2(NH_4)_3PO_4(aq) + 3Sr(OH)_2(s)$$

$$\rightarrow$$
 Sr₃(PO₄)₂(s) + 6H₂O(l) + 6NH₃(q)

b.
$$n (NH_4)_3PO_4 = 0.2 \times 0.1 = 0.02 \text{ mol}$$

c.
$$n Sr(OH)_2 = 0.03 mol$$

$$m Sr(OH)_2 = 0.03 x (88 + 16.2 + 2) = 3.75 qr$$

d.
$$V NH_3 = \frac{0.06 \times 0.082 \times 100}{2} = 0.246 L = 246 mL$$