6. Zufallsvariablen

6.1. Grundlagen

6.1.1. Zufallsvariable

In der Stochastik ist eine **Zufallsvariable** oder Zufallsgröße eine Größe, deren Wert vom Zufall abhängig ist. Formal ist eine Zufallsvariable eine Zuordnungsvorschrift, die jedem möglichen Ergebnis eines Zufallsexperiments eine Größe zuordnet.

Definition 6.1 (Zufallsvariable)

Sei Ω die Ergebnismenge eines Zufallsexperiments.

Eine reelle **Zufallsvariable** (engl. random variable) X auf Ω ist eine Abbildung

$$X: \Omega \to \mathbb{R}, \quad \omega \mapsto X(\omega).$$

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum über Ω .

Für beliebige $A \subseteq \mathbb{R}$ und $x \in \mathbb{R}$ definieren wir die Schreibweisen

$$\begin{split} &P(X \in A) = P(\{\omega \in \Omega : X(\omega) \in A\}), \\ &P(X = x) = P(\{\omega \in \Omega : X(\omega) = x\}), \\ &P(X \le x) = P(\{\omega \in \Omega : X(\omega) \le x\}) \quad \text{etc.} \end{split}$$

Folgerung 6.2 (Zusammengesetzte Abbildung)

Seien Ω eine Ergebnismenge eines Zufallsexperiments und X eine Zufallsvariable auf Ω . Dann ist für eine beliebige Abbildung $g: \mathbb{R} \to \mathbb{R}$ die zusammengesetzte Abbildung

$$g \circ X : \Omega \to \mathbb{R}, \quad \omega \mapsto g(X(\omega))$$

ebenfalls eine Zufallsvariable.

6.1.2. Diskrete und stetige Zufallsvariablen

Definition 6.3 (Diskrete und stetige Zufallsvariablen)

Seien Ω die Ergebnismenge eines Zufallsexperiments und X eine Zufallsvariable auf Ω .

• Die Zufallsvariable X heißt diskret (engl. discrete), falls ihr Wertebereich

Bild(X) =
$$X(\Omega)$$
 = { $x \in \mathbb{R} : \exists \omega \in \Omega \ X(\omega) = x$ }
= { $X(\omega) : \omega \in \Omega$ }

endlich oder abzählbar unendlich ist.

- Die Zufallsvariable X heißt stetig (engl. continuous), falls Bild(X) überabzählbar unendlich ist.
- Die Elemente von Bild(X) werden Realisierungen (oder Realisationen) der Zufallsvariablen genannt.

6.1.3. Verteilungsfunktion

Die **Verteilungsfunktion** einer Zufallsvariable X liefert zu jedem x 2 R die Wahrscheinlichkeit dafür, dass X einen Wert kleiner oder gleich x annimmt.

Definition 6.4 (Verteilungsfunktion)

Seien Ω eine Ergebnismenge eines Zufallsexperiments und X eine (diskrete oder stetige) Zufallsvariable auf Ω .

Die Verteilungsfunktion (engl. cumulative distribution function, CDF) von X ist definiert als die Abbildung

$$F: \mathbb{R} \to [0,1], \quad F(x) = P(X \le x).$$

$$P(X \in A)$$
 for all (enlassingen) $A \in P(X = x_i)$ for all Realisinangen x_i

$$P(X \le x)$$
 for all $x \in R$

Folgerung 6.5 (Eigenschaften der Verteilungsfunktion)

Für die Verteilungsfunktion F(x) einer Zufallsvariablen gilt

- (i) F(x) ist monoton wachsend.
- (ii) $\lim_{x \to 0} F(x) = 1$.

1 F T T F

p-Quantil und Median

Definition 6.6 (p-Quantil und Median)

Sei X eine (diskrete oder stetige) Zufallsvariable mit der Verteilungsfunktion F(x).

• Für $p \in [0,1]$ heißt jeder Wert \tilde{x}_p mit

$$F(\tilde{x}_p) = p$$

$$= P(\chi \leq \tilde{\chi}_p)$$

ein p-Quantil von X.

• Ein 0.5-Quantil $\tilde{x}_{0.5}$ heißt auch *Median* \tilde{x} von X.

6.1.4. Verteilung diskreter Zufallsvariablen

Definition 6.7 (Verteilung diskreter Zufallsvariablen)

Seien Ω eine Ergebnismenge eines Zufallsexperiments und X eine diskrete Zufallsvariable auf Ω mit dem (endlichen oder abzählbar unendlichen) Wertebereich

Bild(
$$X$$
) = { $x_1, x_2, ...$ } mit $x_1 < x_2 < ...$

Die *Verteilung* (engl. *distribution*) von X ist dann definiert als die Folge $(p_1, p_2, ...)$ der Wahrscheinlichkeiten

$$p_i = P(X = x_i), \quad i = 1, 2, \dots$$

Folgerung 6.8 (Verteilung und Verteilungsfunktion diskreter Zufallsvariablen)

Für eine diskrete Zufallsvariable X mit dem Wertebereich

Bild(
$$X$$
) = { $x_1, x_2, ...$ } mit $x_1 < x_2 < ...$

und der Verteilung (p_i) gilt:

(i)
$$F(x) = \sum_{\substack{i \\ x_i \le x}} p_i$$

(ii)
$$\forall x \in [x_i, x_{i+1}) : F(x) = F(x_i)$$

(iii)
$$\sum_{i=1}^{\infty} p_i = 1$$

PI= PCX=xi)

Beispiel 6.9 (Würfeln)

Sei X die Zufallsvariable für die Summe der Augenzahlen beim Werfen zweier fairer Würfel. Sei $\{x_1,...,x_{11}\}$ = $\{2,...,12\}$ der Wertebereich der Zufallsvariablen.

$$P(X=2) = \frac{|\{(1,1)\}|}{|\Omega|} = \frac{1}{36}, \quad P(X=3) = \frac{|\{(1,2),(2,1)\}|}{|\Omega|} = \frac{2}{36}$$

i	1	2	3	4	5	6	7	8	9	10	11
x_i	2	3	4	5	6	7	8	9	10	11	12
p_i	1 36	2 36	3/36	<u>4</u> 36	<u>5</u> 36	6 36	<u>5</u> 36	4 36	3/36	2 36	<u>1</u> 36
$F(x_i)$	1 36	36	6 36	10 36	15 36	21 36	26 36	30 36	33 36	35 36	36 36

Die Verteilungsfunktion F(x) eine diskrete Zufallsvariable ist somit

vergleichbar mit der kumulierten relativen Häufigkeit Fi der beschreibenden Statistik.

Beispiel 6.10 (Muenzen)

Eine faire Münze mit den Seiten "Wappen" und "Zahl" werde n-mal geworfen. Wie hoch ist die Wahrscheinlichkeit, genau k-mal Zahl zu erhalten? $\Omega = \{0, 1\}^n$

$$P((\underbrace{1,\ldots,1}_{k\text{-mal}},\underbrace{0,\ldots,0}_{(n-k)\text{-mal}})) = p^k (1-p)^{n-k} = \frac{1}{2^k} \cdot \frac{1}{2^{n-k}} = \frac{1}{2^n}. \ P(X=k) = \binom{n}{k} \frac{1}{2^n}.$$

Da es $\binom{n}{k}$ Kombinationen gibt, k Einsen auf n Plätze zu verteilen, gilt für die Wahrscheinlichkeit, in irgendeiner Reihenfolge genau k-mal "Zahl" zu werfen.

Biominalverteilung:

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

Gaußsche Glockenkurve

6.1.5. Unabhängige Zufallsvariablen

Definition 6.12 (Unabhängige Zufallsvariablen)

Zwei (diskrete oder stetige) Zufallsvariablen X und Y heißen unabhängig, wenn

$$\forall A, B \subseteq \mathbb{R} : P(X \in A \land Y \in B) = P(X \in A) \cdot P(Y \in B).$$

Satz 6.13 (Überprüfung der Unabhängigkeit)

Zwei (diskrete oder stetige) Zufallsvariablen X und Y sind unabhängig genau dann, wenn gilt

$$\forall x, y \in \mathbb{R}: P(X \le x \land Y \le y) = P(X \le x) \cdot P(Y \le y).$$

Zwei diskrete Zufallsvariablen X und Y sind unabhängig genau dann, wenn für alle Realisierungen x_i von X und y_i von Y gilt

$$P(X = x_i \wedge Y = y_i) = P(X = x_i) \cdot P(Y = y_i).$$

Die Definition der stochastischen Unabhängigkeit von Zufallsvariablen kann auch auf mehr als zwei Zufallsvariable erweitert werden.

Definition 6.14 (Unabhängigkeit von mehreren Zufallsvariablen)

Die (diskreten oder stetigen) Zufallsvariablen X_1, \ldots, X_n heißen **unabhängig**, wenn

$$\forall A_1,\ldots,A_n\subseteq\mathbb{R}:\ P(X_1\in A_1\wedge\ldots\wedge X_n\in A_n)=P(X_1\in A_1)\cdot\ldots\cdot P(X_n\in A_n).$$

6.2. Erwartungswert, Varianz und Kovarianz

6.2.1. Erwartungswert diskreter Zufallsvariablen

Der Erwartungswert einer Zufallsvariablen beschreibt die Zahl, die die Zufallsvariable im Mittel annimmt.

= \(\sum_{j} a_{j} \)

Definition 6.15 (Erwartungswert diskreter Zufallsvariablen)

Sei X eine diskrete Zufallsvariable mit Realisierungen x_1, x_2, \ldots und der Verteilung (p_i) .

Dann ist der Erwartungswert (engl. expected value, expectation) E(X) definiert als

$$E(X) = \sum_{i} x_i p_i.$$

Der Erwartungswert wird häufig mit μ bezeichnet.

Beispiel 6.16 (Erwartungswert fairer Würfel)

Die Verteilung der Augenzahl X eines fairen

$$p_1 = \ldots = p_6 = \frac{1}{6}$$
.

Für den Erwartungswert erhalten wir

$$E(X) = \sum_{i=1}^{6} i p_i = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \dots + 6 \cdot \frac{1}{6} = \frac{21}{6} = 3.5$$

$$E(X) = \sum_{i=1}^{6} i p_i = \frac{1}{6} \sum_{i=1}^{6} i = \frac{1}{6} \cdot \frac{6 \cdot (6+1)}{2} = \frac{21}{6} = 3.5.$$

Man sieht an diesem Beispiel, dass der Erwartungswert keine Realisierung von X annehmen muss.

Der Erwartungswert ist vergleichbar mit dem arithmetischen Mittel der beschreibenden Statistik, darf jedoch wieder nicht mit diesem verwechselt werden.

Satz 6.17 (Rechenregeln zum Erwartungswert)

Für die Erwartungswerte (diskreter oder stetiger) Zufallsvariablen X und Y gelten die folgenden Rechenregeln.

(i)
$$E(X+Y) = E(X) + E(Y)$$
.

(ii)
$$E(\alpha X + \beta) = \alpha E(X) + \beta$$
 für beliebige $\alpha, \beta \in \mathbb{R}$.

- (iii) Sind X, Y unabhängig, so gilt $E(X \cdot Y) = E(X) \cdot E(Y)$.
- (iv) Ist X eine diskrete Zufallvariable mit der Verteilung (p_i) , so gilt für eine beliebige stetige Funktion $g: \mathbb{R} \to \mathbb{R}$

$$E(g(X)) = \sum_{i} g(x_i) p_i.$$

Beispiel: Erwartungswert bei verbogener Münze

Eine verbogene Münze, die mit der Wahrscheinlichkeit p = 3/4 Zahl zeigt, werde dreimal geworfen.

Die Zufallsvariable X beschreibe die Anzahl der Würfe mit dem Ergebnis "Zahl". Die Wahrscheinlichkeit für die Realisierung $x_i = i$ mit n = 3 (Anzahl Würfe) und p = 3/4 (Wahrscheinlichkeit für "Zahl").

$$p_i = P(X = i) = \binom{n}{i} p^i (1 - p)^{n - i}, \quad i \in \{0, 1, 2, 3\},$$

$$E(X) = \sum_{i=0}^{3} i p_{i}$$

$$= 0 \cdot 1 \cdot 1 \cdot \frac{1}{64} + 1 \cdot 3 \cdot \frac{3}{4} \cdot \frac{1}{16} + 2 \cdot 3 \cdot \frac{9}{16} \cdot \frac{1}{4} + 3 \cdot 1 \cdot \frac{27}{64} \cdot 1$$

$$= 0 \cdot \frac{1}{64} + 1 \cdot \frac{9}{64} + 2 \cdot \frac{27}{64} + 3 \cdot \frac{27}{64}$$

$$= \frac{144}{64} = \frac{9}{4} = 2.25.$$

6.2.2. Varianz und Standardabweichung

Die Varianz ist ein Maß für die Streuung der Wahrscheinlichkeitsdichte um ihren Schwerpunkt.

Definition 6.18 (Varianz)

Sei X eine (diskrete oder stetige) Zufallsvariable mit dem Erwartungswert μ .

Dann ist die Varianz (engl. variance) Var(X) definiert als

$$\operatorname{Var}(X) = \operatorname{E}((X - \mu)^2) \cdot \subseteq \left((\times \cdot \in (\nearrow))^2 \right)$$

Die Varianz wird häufig mit σ^2 bezeichnet.

$$\Gamma_{X}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

Folgerung 6.19 (Varianz und Verteilung)

Sei X eine diskrete Zufallsvariable mit dem Erwartungswert μ , Realisierungen x_1, x_2, \ldots und $\bigvee_{\alpha \in \{X \in \mu\}^2}$ der Verteilung (p_i) . Dann gilt

$$Var(X) = \sum_{i} (x_i - \mu)^2 p_i.$$

$$E(\vartheta(X)) = \sum_{i} \vartheta(x_{i}) \rho_{i}$$

$$Var(X) = E((X-\mu)^{2})$$

Die Standardabweichung ist ein Maß für die Streuung der Werte einer Zufallsvariablen um ihren Mittelwert.

Definition 6.20 (Standardabweichung)

Sei X eine (diskrete oder stetige) Zufallsvariable mit der Varianz σ^2 .

Dann ist die *Standardabweichung* (engl. *standard deviation*) σ definiert als

$$\sigma = \sqrt{\sigma^2}$$
.

Beispiel 6.21 (Fairer Würfel)

Die Zufallsvariable X beschreibe die Augenzahl beim Wurf eines fairen Würfels.

$$\sigma^{2} = \operatorname{Var}(X) = \sum_{i=1}^{6} (i - \operatorname{E}(X))^{2} p_{i} = \frac{1}{6} \sum_{i=1}^{6} (i - 3.5)^{2} = \frac{17.5}{6} \approx 2.92,$$

$$\sigma = \sqrt{\sigma^{2}} \approx 1.71.$$

Die Varianz und die Standardabweichung sind vergleichbar mit der empirischen Varianz und der empirischen Standardabweichung der beschreibenden Statistik, dürfen aber nicht mit diesen Kenngrößen verwechselt werden.

6.2.3. Kovarianz

Die Kovarianz von zwei Zufallsvariablen X und Y ist ein Maß für den (monotonen) Zusammenhang zwischen X und Y.

Sie ist eine Verallgemeinerung der Varianz.

(erkennen, ob es einen linearen/monoton Zusammenhang gibt!)

Definition 6.22 (Kovarianz)

Seien X, Y (diskrete oder stetige) Zufallsvariablen mit den Erwartungswerten μ_X , μ_Y .

Dann ist die Kovarianz (engl. covariance) Cov(X,Y) definiert als

$$Cov(X,Y) = E((X - \mu_X)(Y - \mu_Y)).$$

$$((Y - \mu_X)^{\circ} - ((Y - \mu_X)^{\circ}) - (\mu_X)^{\circ} - (\mu_X$$

Satz 6.23 (Rechenregeln zur Varianz und Kovarianz)

Für die Varianzen (diskreter oder stetiger) Zufallsvariablen X und Y gelten die folgenden Rechenregeln.

(i)
$$Var(X) = E(X^2) - (E(X))^2$$

(ii)
$$Cov(X,Y) = E(X \cdot Y) - E(X) \cdot E(Y)$$

(iii)
$$Var(X+Y) = Var(X) + Var(Y) + 2 Cov(X,Y)$$

cov
$$(X,Y) = 0$$
 und $Var(X+Y) = Var(X) + Var(Y)$.

(v)
$$Var(\alpha X + \beta) = \alpha^2 Var(X)$$
 für beliebige $\alpha, \beta \in \mathbb{R}$.

Achtung: Die Umkehrung der Regel (iv) gilt nicht, d. h. aus Cov(X, Y) = 0 folgt nicht, dass die Zufallsvariablen X,Y unabhängig sind.

Beispiel: Fairer Würfel

Für die Verteilung der Augenzahl X eines fairen Würfels aus den Beispielen 6.16 und 6.21 gilt:

$$E(X^{2}) = \sum_{i=1}^{6} i^{2} p_{i} = \frac{1}{6} \sum_{i=1}^{6} i^{2} = \frac{1}{6} \cdot \frac{6(6+1)(2 \cdot 6+1)}{6} = \frac{91}{6}.$$

$$E(X^{2}) = \sum_{i=1}^{6} i^{2} p_{i} = 1^{2} \cdot \frac{1}{6} + 2^{2} \cdot \frac{1}{6} + \dots + 6^{2} \cdot \frac{1}{6} = \frac{91}{6},$$

$$\sigma^2 = E(X^2) - (E(X))^2 = \frac{91}{6} - \left(\frac{7}{2}\right)^2 = \frac{35}{12} \approx 2.92.$$

$$Var(X) = E(X^2) - (E(X))^2$$
.

Beispiel: Standardabweichung bei verbogener Münze

Eine verbogene Münze, die mit der Wahrscheinlichkeit p = 3/4 Zahl zeigt, werde dreimal geworfen.

$$Var(X) = E(X^2) - (E(X))^2 = \frac{45}{8} - \left(\frac{9}{4}\right)^2 = \frac{90}{16} - \frac{81}{16} = \frac{9}{16}$$
$$\sigma = \sqrt{Var(X)} = \frac{3}{4} = 0.75.$$

$$E(X^{2}) = \sum_{i=0}^{3} i^{2} p_{i}$$

$$= 0 \cdot \frac{1}{64} + 1 \cdot \frac{9}{64} + 4 \cdot \frac{27}{64} + 9 \cdot \frac{27}{64} = \frac{360}{64} = \frac{45}{8}$$

6.2.4. Standardisierte Zufallsvariable

Eine standardisierte Zufallsvariable ist eine Zufallsvariable, deren Erwartungswert 0 und deren Varianz 1 beträgt.

Definition 6.24 (Standardisierte Zufallsvariable)

Sei X eine (diskrete oder stetige) Zufallsvariable mit dem Erwartungswert μ und der Standardabweichung σ .

Dann ist die zu X gehörende standardisierte Zufallsvariable Z definiert als

$$Z = \frac{X - \mu}{\sigma}$$
.

Folgerung 6.25 (Standardisierte Zufallsvariable)

Für eine standardisierte Zufallsvariable gilt

$$E(Z) = 0$$
 und $Var(Z) = 1$.

6.2.5. Ungleichung von Tschebysche

Die folgende Ungleichung ist hilfreich bei der Abschätzung von Abweichungen vom Erwartungswert.

Mithilfe der Tschebyscheff Ungleichung kann die maximale Wahrscheinlichkeit geschätzt werden, dass der Wert einer Zufallsvariable X sich außerhalb bestimmter Intervallgrenzen befindet. Die sich ergebende Wahrscheinlichkeit ist eine obere Abschätzung. Sie wird das errechnete Ergebnis also nicht übersteigen, kann aber darunter liegen.

Satz 6.26 (Ungleichung von Tschebyscheff)

Sei X eine (diskrete oder stetige) Zufallsvariable mit dem Erwartungswert μ und der Varianz σ^2 .

Für ein beliebiges c > 0 gilt

$$P(|X-\mu| \ge c) \le \frac{\sigma^2}{c^2}.$$

6.3. Wahrscheinlichkeitstheorie und Beschreibende Statistik

Wir betrachten nun genauer den Zusammenhang zwischen der Wahrscheinlichkeitstheorie und der Beschreibenden Statistik.

6.3.1. Gesetz der großen Zahlen

Satz 6.27 (Arithmetisches Mittel)

Seien $X_1, ..., X_n$ (diskrete oder stetige) unabhängige und identisch verteilte Zufallsvariablen mit dem Erwartungswert μ und der Varianz σ^2 .

Dann ist auch das arithmetische Mittel

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

eine Zufallsvariable mit

$$E(\overline{X}) = \mu$$
 und $Var(\overline{X}) = \frac{\sigma^2}{n}$.

Wir können diese Aussage verschärfen und erhalten das Gesetz der großen Zahlen.

Satz 6.28 (Schwaches Gesetz der großen Zahlen)

Seien X_1, \ldots, X_n (diskrete oder stetige) unabhängige und identisch verteilte Zufallsvariablen mit dem Erwartungswert μ und der Varianz σ^2 , und sei \overline{X} das arithmetische Mittel dieser Zufallsvariablen.

Dann konvergiert \overline{X} in Wahrscheinlichkeit (oder stochastisch) gegen μ , d. h.

$$\forall \varepsilon > 0: \lim_{n \to \infty} P(\left| \overline{X} - \mu \right| < \varepsilon) = 1.$$

Beispiel: Fairer Würfel

Darstellung des arithmetischen Mittels (engl. mean) X der Augensumme für n aufeinander folgende Würfe eines fairen Würfels, mit n∈ {1, 2, ..., 1000}.

Das arithmetische Mittel nähert sich für große n an den Erwartungswert E(X) = 3.5 an.

Das Gesetz der großen Zahlen sagt aus, dass für eine genügend große Anzahl von Durchführun- gen eines Zufallsexperiments das arithmetische Mittel der Ergebnisse mit Wahrscheinlichkeit 1 (also "fast immer") dem Erwartungswert des Einzelexperiments entspricht. Die Unterschie- de zwischen dem schwachen und dem verwandten starken Gesetz der großen Zahlen sind für unsere Zwecke ohne Bedeutung.

6.3.2. Hauptsatz der Statistik

Auch für die Verteilungsfunktion und ihr empirisches Gegenstück, die kumulierte relative Häu- figkeit, lässt sich eine Konvergenzaussage treffen. Diese ist sehr nützlich, wenn die unbekannte Verteilung eines zufälligen Vorgangs aus empirischen Daten ermittelt werden soll.

Satz 6.29 (Hauptsatz der Statistik bzw. Satz von Gliwenko-Cantelli)

Seien X_1, \ldots, X_n (diskrete oder stetige) unabhängige und identisch verteilte Zufallsvariablen mit der Verteilungsfunktion F(x) und der empirischen Verteilungsfunktion (also der kumulierten relativen Häufigkeit) $F_{\rm emp}(x)$.

Dann konvergiert $F_{\text{emp}}(x)$ in Wahrscheinlichkeit (oder stochastisch) gegen F(x), d. h.

$$\forall \varepsilon > 0 \ \forall x \in \mathbb{R} : \lim_{x \to \infty} P(|F_{\text{emp}}(x) - F(x)| < \varepsilon) = 1.$$

Beispiel Vergleich der Verteilungsfunktionen

Theoretische Verteilungsfunktion F(x) der (später behandelten) Exponentialverteilung (rot) und empirische Verteilungsfunktion $F_{emp}(x)$ (blau) für n = 5 (links) und n = 50 (rechts) Durchführungen eines Zufallsexperiments.

Je häufiger ein Zufallsexperiment durchgeführt wird, desto genauer stimmt die empirische Ver- teilungsfunktion mit der tatsächlichen Verteilungsfunktion überein.