

Universidade de Brasília - UnB Gama

Relatório de Física 1 Experimental

Experimento III - MRUV

Gustavo Marocolo Alves de Freitas - 211061823 João Víctor Costa Andrade - 211061977 Luiz Henrique da Silva Amaral - 211062160 Raquel Temóteo Eucaria Pereira da Costa - 202045268

Brasília-DF, 14 de Agosto de 2022

1 Objetivos

O experimento feito tem como objetivo estudar o movimento feito por um carrinho que se move sobre um trilho de ar. Tal carrinho se move variando uniformemente sua velocidade, e com os dados obtidos pode-se comparar a teoria das equações horárias do Movimento Retilíneo Uniformemente Variado (MRUV) com os resultados do experimento, criando gráficos que representam a variação da velocidade do carrinho pelo tempo e o seu deslocamento entre intervalos de tempo e ajudam a fazer essa comparação entre teoria e realidade.

2 Introdução Teórica

O experimento feito estuda o deslocamento de um carrinho em um trilho de ar que descreve um Movimento Retilíneo Uniformemente Variado (MRUV). Ele se move em uma única reta (uma única dimensão), que seria o sentido do trilho, por isso ele é retilíneo, e apresenta uma aceleração que varia de forma constante, por isso ele é uniformemente variado. Para entender melhor o conceito de MRUV é necessário explicar o que é aceleração.

A aceleração média de um corpo é a razão entre a variação da velocidade e o intervalo de tempo em que ocorre essa variação na velocidade. Esse conceito é descrito pela fórmula a seguir:

$$a_{m\acute{e}d} = \frac{V_2 - V_1}{t_2 - t_1}$$

Esta mesma fórmula pode ser escrita da seguinte maneira:

$$a_{m\acute{e}d} = \frac{\Delta V}{\Delta t}$$

Em que ΔV é a variação da velocidade em um dado intervalo de tempo, e Δt é o intervalo de tempo, a diferença entre o tempo final e o tempo inicial em que se deseja estudar o movimento de um corpo.

Quando um corpo sofre variação na sua velocidade, quer dizer que ele sofre uma aceleração, o quer dizer que a aceleração é a taxa de variação da velocidade em relação ao tempo. A aceleração é uma grandeza vetorial e tem unidade de medida no Sistema Internacional de metros por segundo ao quadrado $\left(\frac{m}{s^2}\right)$, mas nesse experimento será usado como unidade de medida o centímetro por segundo ao quadrado $\left(\frac{cm}{s^2}\right)$.

Existem 3 equações principais que descrevem o movimento de uma partícula que faz um movimento uniformemente variado, são elas:

$$\bullet \ V = V_0 + at$$

Em que V é a velocidade final do objeto de estudo, V_0 é a velocidade inicial dele, e at é a aceleração vezes o tempo. Pode-se observar que essa é uma equação de uma reta, então o gráfico de velocide por tempo tem que ser uma reta.

Podemos tirar algumas informações de um gráfico como esse, entre

Figura 1: Gráfico da velocidade pelo tempo

elas o deslocamento que o objeto teve, ao se calcular a área abaixo da reta entre instantes de tempo diferentes, e a aceleração, que é numericamente igual à tangente do ângulo formado pela reta e pelo eixo x. Outra coisa a se observar é a velocidade final e inicial nos dois gráficos. No gráfico da esquerda a velocidade final é maior que a inicial, mas já no da direita é o contrário, a velocidade inicial é maior, assim a aceleração têm sinal negativo, e isso significa que a aceleração têm sentido contrário à velocidade. Em nosso experimento a aceleração e velocidade têm sentidos iguais, assim a aceleração tem sinal positivo e faz com que a velocidade aumente em módulo.

•
$$X = X_0 + V_0 t + \frac{at^2}{2}$$

Em que X é a posição final do objeto, X_0 é a posição inicial, V_0 é velocidade inicial, a é a aceleração e t é o tempo. Essa é uma equação quadrática, então o gráfico dela tem um formato de parábola, no caso dos gráficos feitos para o relatório eles apresentam só um segmento da parábola, sendo uma curva no sistema de coordenadas.

A concavidade do gráfico nos diz se a aceleração tem sinal positivo ou

Figura 2: Gráfico do deslocamento pelo tempo

negativo, sendo que a concavidade para cima (gráfico à esquerda) diz que a aceleração tem sinal positivo, e a concavidade para baixo´(gráfico à direita) diz que a aceleração tem sinal negativo.

$$V^2 = V_0^2 + 2a\Delta X$$

Em que V é a velocidade final, V_0 é a velocidade inicial, a é a aceleração e ΔX é a variação da posição. Essa equação, ao contrário das outras duas, não necessita do tempo.

Essas fórmulas não consideram forças dissipativas como a força do atrito, porém o experimento foi feito com um trilho de ar com um atrito tão pequeno que é desconsiderado.

Outra definição que temos para a aceleração é que ela é a derivada da equação da velocidade em relação ao tempo $(a=\frac{dV}{dt})$, ou a derivada segunda da equação da posição em relação ao tempo $(a=\frac{d^2V}{dt^2})$.

3 Parte Experimental

3.1 Material a ser utilizado

- 01 trilho 120 cm;
- 01 cronômetro digital multifunções com fonte DC 12 V;
- 02 sensores fotoelétricos com suporte fixador (S1 e S2);
- 01 eletroímã com bornes e haste;
- 01 Fixador de eletroímã com manípulo;
- 01 chave liga-desliga;
- 01 Y de final de curso com roldana raiada;
- 01 suporte para massas aferidas 19 g (aproximada);
- 01 massa aferida 10g com furo central de 2,5 mm de diâmetro;
- 02 massas aferidas 20g com furo central de 2,5 mm diâmetro;
- 01 unidade de fluxo de ar;
- 01 cabo de ligação conjugado;
- 01 unidade de fluxouxo de ar;
- 01 cabo de força tripolar 1,5 m;
- 01 mangueira aspirador 1,5 polegadas;
- 01 pino para carrinho para fixá-lo no eletroímã;
- 01 carrinho para trilho cor preta;
- 01 pino para carrinho para interrupção de sensor
- 03 porcas borboletas;
- 07 arruelas lisas;
- 04 manípulos de latão 13 mm;
- 01 pino para carrinho com gancho;

O material acima se reduz a um conjunto experimental denominado de kit de trilho de ar, visto em um diagrama reduzido, conforme a figura abaixo:

Figura 3: Esquema do trilho de ar.

4 Procedimentos

- 1. Averiguamos o eletroímã com a chave liga/desliga, os sensores 1 e 2 do cronômetro e o funcionamento do trilho.
- 2. Inicia-se com o cronômetro na funçao F2, onde se encontra zerado. Assim que acionada, a chave liga/desliga libera o carrinho no qual irá passar apenas por um sensor (S2) e a contagem do cronômetro registrará um intervalo de tempo. O suporte com o peso (de aproximadamente 50 g) colocado na ponta da linha deve estar livre para cair com a força da gravidade. Isso garantirá que o carrinho entre em movimento retilíneo uniformemente variado devido a aceleração gerada pelo peso.
- 3. A Posição inicial do sensor S2 é a $x_1 = 40,00$ cm da haste vertical do carrinho, presa ao eletroímã. Considerando a posição inicial $x_0 = 30,00$ cm a distancia entre a haste e o sensor fica de 10,00 cm. As medidas foram feitas por uma régua. Apos executar cinco (5) medidas de tempo para o MRUV registramos esses intervalos de tempo na Tabela 1.
- 4. Em seguida permanecemos o carrinho na mesma posição do item 2 e deslocamos o sensor S2 para a segunda posição de forma que a distância entre a haste e S2 fosse de $x_2 = 20,00$ cm, executamos novamente as cinco (5) medidas de tempo para esse MRU e registramos na tabela. Repitimos esse mesmo procedimento para distâncias de 30,00 cm, 40,00

cm, 50,00 cm e 60,00. Observe a figura a seguir para melhor visualização

Figura 4: Processo do experimento

5 Dados experimentais

Após todos os procedimentosm registramos os dados encontrados foram reunidos e colocados na seguite tabela:

Intervalos	$\Delta x_1 =$	$\Delta x_2 =$	$\Delta x_3 =$	$\Delta x_4 =$	$\Delta x_5 =$	$\Delta x_6 =$
de tempo (s)	10 cm	$20~\mathrm{cm}$	30 cm	$40 \mathrm{cm}$	50 cm	60 cm
Δt_1	0,351	0,492	0,609	0,694	0,767	0,843
Δt_2	0,354	0,500	0,604	0,686	0,765	0,840
Δt_3	0,354	0,492	0,601	0,692	0,762	0,839
Δt_4	0,352	0,497	0,605	0,686	0,761	0,834
Δt_5	0,349	0,497	0,610	0,692	0,760	0,838
$\Delta \bar{t}$	0,352	0,496	0,606	0,690	0,763	0,839
Erros absolutos	0,001	0,002	0,002	0,002	0,002	0,002

Tabela 1: Tempos e deslocamentos

A tabela conta também com a média dos tempos (Δt) e os erros aleatórios correspondentes. Tal tabela guiará os demais passos para encontrar a velocidade média.

6 Equação

6.1 Velocidade média

Inicialmente, usamos a equação para descobrir a velocidade média de cada distância entre a haste e S2. Onde v_k é a velocidade media, k são as medidas 1, 2, 3, 4, 5 e 6, Δx_k são as distancias percorridas de 10, 20, 30, 40, 50 e 60 centímetros e Δt_k são os intervalos de tempo.

$$\bar{v}_k = \frac{\Delta x_k}{\Delta \bar{t}_k}$$

Após as cinco medidas de cada distancia (10, 20, 30, 40, 50 e 60cm), foi feita uma média aritmética e calculado seus devidos erros experimentais usando a equação:

Onde $E.\Delta t_k$ é o erro absoluto de determinado momento: Soma do erro instrumental $(E.\Delta t_i)$ e erro aleatório $(E.\Delta t_a)$.

$$\bar{v}_k = \frac{\Delta x_k}{\Delta \bar{t}_k} \pm \frac{\Delta x_k \cdot E \cdot \Delta t_k + 0,05cm \cdot \Delta \bar{t}_k}{(\Delta \bar{t}_k)^2}$$

Como resultados, encontramos os seguintes valores:

Tempos médios (s)	Velocidades médias (cm/s)
0,352	$28,41 \pm 0,299$
0,496	$40,36 \pm 0,310$
0,606	$49,52 \pm 0,300$
0,690	$57,97 \pm 0,297$
0,763	$65,53 \pm 0,263$
0,839	$71,53 \pm 0,270$

Tabela 2: Velocidades nos instantes

Em seguida, usando as médias obtidas em cada instante, utilizamos o seguinte cálculo, a fim encontrar uma média geral:

$$V_m = \frac{V_1 + V_2 + V_3 + V_4 + V_5 + V_6}{6}$$

Assim, obtendo $V_m = 52,22 \pm 0,29$ cm/s

6.2 Velocidade Instantânea

No MRUV é necessário obter valores de velocidades instantâneas. Para obter as velocidades instantâneas observe que o carrinho sai do repouso, com

velocidade inicial $v_0 = 0$ cm/s em $x_0 = 30$ cm. Então temos que a velocidade instantânea v_1 na posição x_1 será dada por:

$$\bar{v_k} = 2\bar{v_1} = 2\frac{\Delta x_1}{\Delta \bar{t_1}}$$

O calculo é repetido para v_2 , v_3 , v_4 e v_5 pela equação $v_k = 2\bar{v_k}$. Assim obtivemos as seguintes velocidades instantâneas:

Tempos médios (s)	Velocidade média instantânea e erro absoluto (cm/s)
0,352	$56,82 \pm 0,599$
0,496	$80,71 \pm 0,620$
0,606	$99,04 \pm 0,599$
0,690	$115,94 \pm 0,594$
0,763	$131,06 \pm 0,527$
0,839	$143,06 \pm 0,539$

Tabela 3: Velocidade média instantânea

Por meio da seguinte fórmula:

$$\bar{v_m} = \frac{\sum \bar{v_i}}{n} \pm \frac{\sum E.\Delta v_i}{n}$$

sendo \bar{v}_i as velocidades médias instântaneas ($V_m i$ e $E.\Delta v_i$ os erros absolutos correspondentes, encontramos $V_m i = 104{,}44 \pm 0{,}58$ cm/s.

7 Equação horária

Para o MRUV a equação horária em uma dimensão é

$$x(t) = x_0 + v_0.\Delta t + \frac{a\Delta t^2}{2} \Longrightarrow \Delta x = \frac{a\Delta t^2}{2}$$

7.1 Aceleração

A acelerção é o valor que determina a varição da velocidade. Pode-se obte-la pela seguinte formula:

$$a_k = \frac{2\Delta x_k}{\Delta t_k^2} \pm E.\Delta a$$

Após o calculo de todas as acelerações, obtevemos uma média A_m com:

$$\bar{a_m} = \frac{\sum \bar{a_i}}{n} \pm \frac{\sum E.\Delta a_i}{n}$$

$A_m =$	166.	353	+	1.	710	cm	$/_{S}$
4 1 m	100,	000	_	٠,	1 10	CITO	

Tempo (s)	Aceleração e Erro absoluto (cm/s ²)
0,352	$161,415 \pm 2,594$
0,496	$162,854 \pm 2,095$
0,606	$163,491 \pm 1,706$
0,690	$168,032 \pm 1,512$
0,763	$171,771 \pm 1,209$
0,839	$170,555 \pm 1,144$

Tabela 4: Aceleração

8 SciDavis

Aqui veremos gráficos utilizando os dados da Tabela 6 feitos em um aplicativo chamado "SciDavis" no qual nos permite visualizar valores mais precisos. Sobre esse assunto, esta seção tem como o objetivo apresentar os diferentes valores da aceleração encontrados em diferentes gráficos. Cada subseção temse suas devidas tabelas e valores

8.1 Equação horária - Regressão quadrática

O gráfico da equação horária do movimento retilíneo uniformemente variado é representado por uma parábola, dada pela fórmula: $S=So+Vot+\frac{at}{2}$, uma função do segundo grau.

Passamos os dados da Tabela 6 para o SciDavis e chegamos no gráfico da Figura 5, e a partir disso calculamos a aceleração.

Tempo (s)	Deslocamento (cm)
0,352	10
0,496	20
0,606	30
0,690	40
0,763	50
0,839	60

Tabela 5: Dados Equação horária

$$x = \frac{a\Delta t^2}{2} \Longrightarrow y = A.X^2$$

$$A = 84,57 \pm 0,67 cm/s \Longrightarrow \frac{a}{2} = 84,57 \pm 0,67$$

$$a = 169,14 \pm 1,34 cm/s^2$$

8.2 Linearização

A Linearização é um procedimento que tem como objetivo a transformação de uma curva em uma reta, uma vez que a análise de uma reta é mais simples e de mais fácil entendimento do que a análise de uma curva. Além disso, esse processo possibilita uma melhor explicação para as leis físicas que regem os dados da experimentação.

Passamos os dados da Tabela 7 para o SciDavis e chegamos no gráfico da Figura 6, e a partir disso calculamos a aceleração.

$Tempo^2(s^2)$	Deslocamento (cm)
0,124	10
0,246	20
0,367	30
0,476	40
0,582	50
0,704	60

Tabela 6: Dados Linearização

$$x = \frac{a\Delta t}{2} \Longrightarrow y = A.X^2 + B$$

$$B = 0$$

$$A = 84,39 \pm 0,60 cm/s \Longrightarrow \frac{a}{2} = 84,39 \pm 0,60$$

$$a = 168,78 \pm 1,20 cm/s^2$$

8.3 Gráfico da Velocidade

A função horária da velocidade de um movimento retilíneo uniformemente variado é dada por v=vo+a.t, uma função do primeiro grau, representado por uma reta.

Tempo(s)	Velocidade (cm/s)
0,352	56,82
0,496	80,71
0,606	99,04
0,690	115,94
0,763	131,06
0,839	143,06

Tabela 7: Dados Gráfico da Velocidade

Passamos os dados da Tabela 8 para o Sci Davis e chegamos no gráfico da Figura 7, e a partir disso calculamos a aceleração.

$$v(t) = v_0 + a.t$$

$$v_0 = 0$$

$$v(t) = a.t$$

$$a = 168,07 \pm 1,61 cm/s^2$$

9 Conclusão

A partir do experimento do movimento retílineo uniformemente variado, concluimos as diferentes formas do cálculo da aceleração, uma vez calculada pela equação horária: $S = So + Vot + \frac{at}{2}$, equação usada para calcular a variação de um móvel no decorrer do tempo, visto que a aceleração permanece constante e pela equação da velocidade: V=vo+a.t, equação utilizada para encontrar a velocidade em um instante qualquer. Outrossim, utilizando o SciDavis, representamos graficamente cada forma de ilustrar o movimento, segundo os dados analisados no experimento.

Levando em consideração os valores no SciDavis e as equações do MRUV, obtivemos três valores distintos da aceleração. Entretanto, pela regressão quadrática e equação horária obtivemos o valor de: $a=168,07\pm1,61cm/s^2$, que diferentemente da linearização, que utilizando as informações do gráfico e a equação horária, obtivemos o valor de: $a=168,78\pm1,20cm/s^2$ e pelo gráfico da velocidade e com o uso da equação da velocidade, obtivemos o valor de $a=168,07\pm1,61cm/s^2$.

Contudo, percebe-se uma pequena diferença em relação à aceleração média calculada a partir dos valores pontuais, $a=166,353cm/s^2$ e essa pequena alteridade, em relação as acelerações observadas pelo SciDavis e pelas equações, se dá justamente por causa da propagação de erro inerente ao experimento.

Referências

[1] Halliday, D; Resnick, Robert. Fundamentos de Física: Mecânica, 10^a Ed.

Figura 5: SciDavis - Gráfico da Equação Horária

Figura 6: SciDavis - Gráfico da Linearização

Figura 7: SciDavis - Gráfico da Velocidade