LECTURE-2 MLINTRO CONTO. + LINEAR REGRERATION

Tom raiteure ML - Experience, Task, Penjournance Based on types - classification I in detail Regression Chestering Next-t

Recommendation Hest-to Recommendation Next Forecasting

Baxd en type of 'cearning' supervised J Detail
Unsupervised J Hent-to-Nent,
Reinforcement J OPTIONAL

Agenda:

- Lowplete Mr Introduction

- Douta for Mansification, Regression
- Regression VIR Clarsification
- Rupervired hearning
- Clastaing & Euronmendation
- hunear Regression-1

CLASSIFICATION

Recalling the fish ** Sorting example

Date for fish commy manuples of fishes 1 sample - d features

11 22 4 5 C - la

D = X (lapitel X)

Manses - 2 (Fushimator & Marion) - Binary Clarsification
J
T1 T2

clauses 72 T1, T2, T3 - Multiclaus Clausification.

REGRESSION

Xmxm

- If we had <u>d-dimension</u> features of blood samples of m patients
- Now instead of Y being Diabetic/ non-diabetic Y is blood glucose level this becomes a Regression problem

What is the Range (y)? $\{0,1\}$

R

Taget mell se a real value

Regression V/S Classification

The mair **DIFFERENCE** etween **Regression and Classification is**:

Reguession -Classification

y GR y G2-1-1-3

Regression V/S Classification

2. The thing COMMON between them is the common of the comm Hunt: :D Both au supervised/learning i,y') 1-9 m, x'erd, y'6 2-13 R3 Laselled Data.

Supervised Learning

Image Clarrift certion.

learning politims.

POINTS TO REMEMBER 🗸

- Types of task based on learning supervised, unsupervised, reinforcement learning
- Output in regression is continuous (numeric) while in classification is categorical
- Both regression and classification are supervised since labelled data is present

2 3 4 M X- (mid)

Clustering

. Unsupervised ML

 Imagine 100M Amazon customers with features like location, average \$ dollar value per purchase

- There are no labels yi here we are looking to find the hidden labels of these data-points
- Since there are no yi involved in the training data
 D, this is an example of Unsupervised Learning

This is called Clustering - means to group the similar data-points (customers)

Why would we want to cluster customers?

Unsupervised Learning

Notice that the customer data has been grouped into clusters - each data point can be represented in d-dimensional space

Q. How can we cluster similar points?

Unsupervised Learning Pipeline

Recommendation

There is another sub-area of ML systems called **Recommender Systems**

Take the example of Youtube - while watching a video, you get see similar videos in your right

Let's say I am a Youtube user

Linear Regression

TASK:

featreres.

GOAL:

$$f(x) = y$$
d-dim features (IR)
(IR) (real valued)

Given the features xi , we want to find f(x) which maps from $x \longrightarrow y$