Random coefficients: An Introduction

Thierry Magnac Toulouse School of Economics

Panel Data Methods: Advanced EEE Fall 2021

Heterogenous treatment effects:

$$y_{it} = \alpha_i D_{it} + x_{it} \beta + \varepsilon_{it}$$

and we are interested in average treatment effects

$$E(\alpha_i)$$
 or $E(\alpha_i \mid x_i)$

or average treatment on the treated

$$E(\alpha_i \mid D_{it} = 1)$$
 or $E(\alpha_i \mid D_{it} = 1, x_i)$

Outline

- Exogenous random coefficients
- Correlated random coefficients
- Identification of the variance of random coefficients
- Irregular identification

References

- Hsiao and Pesaran, 2008, Random Coefficient Panel Data Models, working paper, and in The Econometrics of Panel Data, 2008, Springer.
- Chamberlain, 1992
- Arellano and Bonhomme, 2012
- Graham and Powell, 2012

We could start with

$$y_{it} = x_{it}\beta_{it} + \varepsilon_{it}$$
,

under strict exogeneity $(E(\varepsilon_{it} \mid x_i) = 0)$ but there are too many parameters, β_{it} . We could restrict it into:

$$y_{it} = x_{it}\beta_i + \varepsilon_{it}$$
,

and in this case we can estimate time-series by time-series. Yet, we might only be interested in $E(\beta_i)$. This leads to the Swamy-type random coefficient model in which (x_{it} might include a constant term)

$$\beta_{i} = \beta + \alpha_{i},$$

$$E(\alpha_{i} \mid x_{i}) = 0,$$

$$E(\alpha_{i}\alpha'_{j}) = \Delta \mathbf{1}\{i = j\}, E(\alpha_{i}\varepsilon_{it}) = 0.$$

Remark: Many variations on this: time variation in the β s given by a dynamic equation etc

Estimation

Rewrite:

$$y_{it} = x_{it}\beta + x_{it}\alpha_i + \varepsilon_{it} = x_{it}\beta + v_{it}$$

in which even if ε_{it} is homoskedatic, the composite error term is not even if $E(\alpha_i \varepsilon_{it}) = 0$. However:

$$E(x_{it}\varepsilon_{it}) = 0, E(x_{it}(x_{it}\alpha_i)) = E(x_{it}^2\alpha_i) = 0,$$

 $\Longrightarrow E(x_{it}v_{it}) = 0,$

and assumptions for OLS consistency of the estimate of β are satisfied. The only issue is heteroskedasticity (see below).

Remark: If there is some correlation between x_{it} and α_i , it means that higher orders of x_{it} need to be included in the model (see Mundlak or Chamberlain's approaches).

Improving efficiency might require strengthening the variance assumption, i.e. $V(\alpha_i \mid x_i) = \Delta$. Then:

$$V(v_i \mid x_i) = x_i \Delta x_i' + \sigma_{\varepsilon}^2 I_T$$

If Δ is known, a GLS estimate is more efficient than OLS or we can use Feasible GLS after estimating Δ .

Remark: Instead of using estimates of β and residuals to construct these covariances matrices, we can also estimate the model individual observation by individual observation and get OLS estimate of $\hat{\beta}_i$. As they are consistent for $\beta + \alpha_i$ we can recover an estimate of Δ by considering the empirical variance of $V(\hat{\beta}_i)$.

Def: The mean group estimator $\hat{\beta}_{MG} = \frac{1}{N} \sum_i \hat{\beta}_i$ and can be shown to be asymptotically equivalent to Swamy's estimator.

Critique

Exogeneity of random coefficients dubious and $E(\alpha_i \mid x_i) \neq 0$. We might not be interested in formulating a model for $E(\alpha_i \mid x_i)$ becasue what we are interested in is $E(\alpha_i)$ per se (i.e. average treatment effects).

Chamberlain, 1992

The model

Single restriction:

$$E(y_i \mid x_i, \gamma_i) = d(x_i, \theta_0) + R(x_i, \theta_0)\gamma_i.$$

Parameter of interest: $\phi_0 = E(\gamma_i)$.

Remark: If $h_0(x_i) = E(\gamma_i \mid x_i)$ then $\phi_0 = E(h_0(x_i))$ and $E(y_i \mid x_i) = d(x_i, \theta_0) + R(x_i, \theta_0) h_0(x_i)$. The parameters are θ_0 and a general function $h_0(x_i)$ to be estimated jointly. Under independence, we shall have $h_0(x_i) = \phi_0$.

We will consider estimating only θ_0 and ϕ_0 .

Consider $u = y - E(y \mid x)$ and $v = h_0(x) - \phi_0$. Then:

$$E(u \mid x) = 0, E(v) = 0.$$

Moment restrictions

Consider a general matrix function $B(x, \theta)$ of instruments whose properties are to be defined below and define:

$$\Psi(x, y; \theta, \phi) = B(x, \theta) (y - d(x, \theta) - R(x, \theta) \phi)$$

= $B(x, \theta) (u + R(x, \theta) v).$

 $E\Psi(x,y;\theta_0,\phi_0)=0$ if $B(x,\theta_0)R(x,\theta_0)$ is non stochastic and does not depend on x. For any such function:

$$\begin{cases} E(B(x,\theta_0)u) = 0, \\ E(B(x,\theta_0)R(x,\theta_0)v) = 0. \end{cases}$$

Remark: Dimensions of θ and ϕ should be defined more rigorously.

Let $\Phi^{-1}(x)$ a $T \times T$ matrix function so that $P_{\Phi}R = I$ for P_{Φ} defined as

$$P_{\Phi} = (R'\Phi^{-1}R)^{-1}R'\Phi^{-1}$$

and $M_{\Phi}R=0$ for M_{Φ} defined as

$$M_{\Phi} = \Phi^{-1} - \Phi^{-1}RP_{\Phi}.$$

We can then choose:

$$B = \begin{pmatrix} A'(x,\theta)M_{\Phi} \\ P_{\Phi} \end{pmatrix}.$$

A NLS argument suggest to choose:

$$A(x,\theta) = \frac{\partial d(x,\theta)}{\partial \theta'} + \sum_{j=1}^{q} a_j(x) \frac{\partial R(x,\theta)}{\partial \theta'},$$

in which the "best" $a_i(x_i)$ are $h_0(x_i)$.

Method of moments

The empirical counterpart of $E\Psi(x,y;\theta_0,\phi_0)=0$, maintaining the hypothesis of good specification, is:

$$\sum_{i=1}^n \Psi(x_i, y_i; \hat{\theta}, \hat{\phi}) = 0,$$

that is:

$$\sum_{i=1}^{n} A'(x_i, \hat{\theta}) M_{\Phi}(x_i, \hat{\theta}) (y_i - d(x_i, \hat{\theta})) = 0,$$

$$P_{\Phi}(x_i, \hat{\theta}) (y_i - d(x_i, \hat{\theta}) - R(x_i, \hat{\theta}) \hat{\gamma}_i) = 0.$$

so that
$$\hat{\gamma}_i(\hat{\theta}) = P_{\phi}(x_i, \hat{\theta})(y_i - d(x_i, \hat{\theta}))$$
 and $\hat{\phi} = \frac{1}{N} \sum_{i=1}^n \hat{\gamma}_i(\hat{\theta})$.

As $\hat{\theta}$ is the solution of a moment condition that does not depend on the nuisance parameters γ_i or the nuisance function $h_0(x_i)$, $\hat{\theta}$ is consistent and asymptotically normal. Then as $\hat{\gamma}_i(\hat{\theta})$ is a LS estimator, it is unbiased and its empirical mean $\hat{\phi}$ is consistent at rate \sqrt{n} .

Remark: If $R(x_i, \theta)$ does not depend on θ , the concentrated least-squares problem

$$\min_{\theta,\gamma_1...\gamma_N} \sum_{i=1}^n (y_i - d - R\gamma_i)' \Phi^{-1}(y_i - d - R\gamma_i)$$

yields:

$$\min_{\theta,\gamma_1...\gamma_N} \sum_{i=1}^n (y_i - d)' M_{\Phi}(y_i - d)$$

in which M_{Φ} does not depend on θ and thus there is no incidental parameter issue.

Efficiency bounds

The estimator such that:

$$a_j(x) = h_{0,j}(x),$$

$$\Phi(x) = V(y_i - d_i - R\gamma_i),$$

is semi-parametrically efficient.

Note that:

$$V(y_i \mid x_i) = V(w_i \mid x_i) + R(x_i, \theta_0) Var(\gamma_i \mid x_i) R'(x_i, \theta_0).$$

Arellano & Bonhomme, 2012

$$y_i = Z_i \delta + X_i \gamma_i + v_i$$
[T,1]
$$[T,K] [T,q]$$

under mean independence: $E(v_i \mid W_i, \gamma_i) = 0$ ($W_i = (Z_i, X_i)$). **Remark:** Strict exogeneity is necessary to identify moments of γ_i . **Rem 2:** q < T so that $Q_i = I - X_i (X_i' X_i)^- X_i$ has rank at least equal to T - q and the equation above can be rewritten:

$$Q_i y_i = Q_i Z_i \delta + Q_i v_i$$
.

The assumption that the rank of the matrix $\tilde{Z}=(Q_1Z_1,.,Q_NZ_N)$ is equal to K is a generic assumption so that δ is identified. **Rem 3:** We retain a population $\mathbb S$ of individuals i such that $\det(X_i'X_i)\neq 0$ i.e. X_i has full rank q. See Graham & Powell blow for the general case

Estimates and moments

Let:

$$H_i = (X_i' X_i)^{-1} X_i$$

The least square estimate is:

$$\hat{\gamma}_i = (X_i'X_i)^{-1}X_i'(y_i - Z_i\delta) = \gamma_i + H_i v_i$$

and the main equation is equivalent to:

$$\left\{egin{array}{l} Q_i(y_i-Z_i\delta)=Q_iv_i ext{ (orthogonal to } X_i) \ \hat{\gamma}_i-\gamma_i=H_iv_i ext{ (complement)} \end{array}
ight.$$

Identification of parameters and first moments

Using the exogeneity assumption:

$$E(Q_i(y_i - Z_i\delta) \mid W_i) = 0$$

and δ is identified if $E(Z_i'Q_iZ_i)$ has rank K. Furthermore,

$$E(\hat{\gamma}_i - \gamma_i \mid W_i) = 0,$$

so that $E(\gamma_i \mid W_i)$ is identified because $E(\hat{\gamma}_i \mid W_i)$ is identified if δ is identified.

Identification of second moments

Let $\Omega_i = V(v_i \mid W_i)$. We then have:

$$E((y_i - Z_i \delta)(y_i - Z_i \delta) \mid W_i) = X_i' E(\gamma_i \gamma_i' \mid W_i) X_i + \Omega_i.$$

Rem: $E(\gamma_i \gamma_i' \mid W_i)$ cannot be identified if no restriction on Ω_i . General assumption: $vec(\Omega_i) = \omega(W_i; \theta)$ in which θ is a finite dimensional parameter whose dimension is less than T(T+1)/2. Example: if Ω_i is diagonal, with variances $\sigma_i^2 \omega_t^2$ then $\omega(W_i; \theta)$ is a T^2 vector with 0 everywhere except at positions 1, T+2, ., T^2 that we can also write as, $\theta_i = (\sigma_i^2 \omega_1^2, ., \sigma_i^2 \omega_T^2)$:

$$\omega(W_i;\theta) = S\theta$$

in which S is a selection matrix of dimension $T^2 \times T$.

Identification condition

The covariance matrix, $\Omega_i = V(v_i \mid W_i)$, cannot be estimated directly since only residuals $\hat{v}_i = Q_i v_i$ of the regression of $y_i - z_i \delta$ on x_i can be constructed. We have:

$$V(\hat{v}_i \mid W_i) = Q_i V(v_i \mid W_i) Q_i'$$

and as a consequence:

$$vec(V(\hat{v}_i \mid W_i)) = vec(Q_iV(v_i \mid W_i)Q_i')$$

$$= (Q_i \otimes Q_i')vec(V(v_i \mid W_i))$$

$$= (Q_i \otimes Q_i)\omega(W_i; \theta) = M_i\omega(W_i; \theta)$$

Condition: $rank(M_i \frac{\partial \omega(W_i;\theta)}{\partial \theta'}) = \dim(\theta)$. Example: If $\omega(W_i;\theta) = S\theta$ then $rank(M_iS) = \dim(\theta)$. As $\hat{\gamma}_i - \gamma_i = H_i v_i$ and $E(v_i \mid W_i, \gamma_i) = 0$, we have by the variance decomposition identity :

$$V(\hat{\gamma}_i \mid W_i) = V(E(\hat{\gamma}_i \mid W_i, \gamma_i)) + E(V(\hat{\gamma}_i \mid W_i, \gamma_i))$$

= $V(\gamma_i \mid W_i) + H_i V(v_i \mid W_i) H_i'$

the sum of the true variance of the random coefficients and the noise component due to estimation (the incidental parameter issue!) which depends on the identification of Ω_i above. Consequence: Any correction of the biases in the variance of random coefficients needs an assumption on the variance of idiosyncratic errors.

Remark: True also for other characteristics of the distribution of random effects (see Jochmans and Weidner below).

GMM estimation of common parameters

Let A_i the [T-q,T] orthogonal decomposition of $Q_i=I-X_i(X_i'X_i)^-X_i$. From Chamberlain (1992), we have that optimal GMM is using the following moments:

$$\left\{ \begin{array}{l} E(Z_i'A_i'(A_iV_iA_i')^{-1}A_i(y_i-Z_i\delta)) = 0, \\ E((X_i'V_i^{-1}X_i)^{-1}X_i'V_i^{-1}(y_i-Z_i\delta-X_i\gamma)) = 0, \end{array} \right.$$

in which $V_i = Var(Y_i \mid W_i)$.

Rem: First step, replace V_i by any conformable and invertible matrix Ψ_i (e.g. I_T) and compute the method of moments estimator (which is also the OLS estimator here) for δ .

Rem 2: For the semi-parametric efficient estimate of δ , estimating $(A_i V_i A_i')$ is in order. As it is equal to $(A_i E(v_i v_i') A_i')$ and $A_i V_i = A_i (y_i - Z_i \delta)$, we can estimate it as

$$\frac{1}{N}\sum A_i\hat{v}_i\hat{v}_i'A_i,$$

in which $A_i \hat{v}_i$ is derived from an initial estimate, $\hat{\delta}$, and replace

Average individual parameters

We proceed likewise and get the weighted mean-group estimate:

$$\hat{\gamma} = \frac{1}{N} \sum_{i} (X_{i}' \Psi_{i}^{-1} X_{i})^{-1} X_{i}' \Psi_{i}^{-1} (y_{i} - Z_{i} \hat{\delta}).$$

If $(X_i' \Psi_i^{-1} X_i)^{-1} X_i' \Psi_i^{-1} = (X_i' V_i^{-1} X_i)^{-1} X_i' V_i^{-1} (y_i - Z_i \delta)$ then $\hat{\gamma}$ is semi-parametrically efficient.

Remark: Individual estimates $\hat{\gamma}_i$ can be regressed on F_i and those regression estimates are consistent. As it depends on pre-estimated $\hat{\delta}$, however, their covariance matrix should be corrected.

Variance estimates

Assume as above:

$$vec(V(v_i \mid W_i)) = \omega(W_i; \theta) = S\theta$$

in which S is a selection matrix of dimension $T^2 \times m$ (e.g. time-heteroskedastic variances but no autocorrelation or generally MA variances). As

$$vec(V(\hat{v}_i \mid W_i)) = M_i S\theta,$$

$$\hat{\omega}(W_i;\theta) = \frac{1}{N} \sum_i S(M_i S)^- M_i \hat{v}_i \otimes \hat{v}_i.$$

Example: Under homoskedaticity:

$$\hat{\sigma}^2 = \frac{1}{N(T-q)} \sum_i (y_i - Z_i \hat{\delta})' Q_i (y_i - Z_i \hat{\delta})$$

Variance of individual coefficients

Use:

$$V(\hat{\gamma}_i \mid W_i) = V(\gamma_i \mid W_i) + H_i V(v_i \mid W_i) H_i',$$

to write (using $vec(ABC) = (C' \otimes A)vec(B)$:

$$vec(\hat{V}(\gamma_i \mid W_i)) = \frac{1}{N} \sum_{i} (\hat{\gamma}_i - \hat{\gamma}) \otimes (\hat{\gamma}_i - \hat{\gamma})$$
$$-\frac{1}{N} \sum_{i} H_i \otimes H_i S(M_i S)^{-} M_i \hat{v}_i \otimes \hat{v}_i.$$

Rem: It might not be positive definite (**Discussion**).

Rem 2: If homoskedastic then:

$$vec(\hat{V}(\gamma_i \mid W_i)) = \frac{1}{N} \sum_i (\hat{\gamma}_i - \hat{\gamma}) \otimes (\hat{\gamma}_i - \hat{\gamma}) - \frac{\hat{\sigma}^2}{N} \sum_i (X_i' X_i)^{-1}.$$