COMPUTER SCIENCE & IT

By- Chandan Gupta Sir

S-R latch

S-R FF

J-KFF

Problem with S-R flip-flop:

- # S=R=1 is invalid state i/p which generates same value of Q & \overline{\overline{\text{q}}} and this is problem for circuit dengining
- # To nemove this invaled state condition we during T-K FF.

J-K Flip-Flop

Pw

- Designed to avoid invalid state of S-R Flip-Flop.
- Circuit:

Truth Table :

CLK	J	K	Q(n+1)	
0	Χ	Х	Q(n)	
1	0	D	Q(n) -	Hold state
1	٥		0	
1	1	0	1	9
1	i	1	Q(n) -	- toggle state

Characteristic Table:

J	K	Q(n)	Q(n+1)
0	0	0	0
O	D	1	
D		0	0
D)	1	0
١	0	0	1
	0]	1
		0	1
1			0

$$Q(n+1) [J, K, Q(n)]$$

= $\Xi(1,4,5,6)$

$$Q(n+1) = J\bar{Q}(n) + \bar{K}Q(n)$$

Excitation Table

Q(n)	Q(n+1)	J	K
O	0	0	X
0	1	1	X
)	٥	X	1
	1	X	0

$$0 \xrightarrow{(1,0)} 1$$

$$1 \xrightarrow{(0,1)} 0$$

$$1 \xrightarrow{(0,0)} 1$$

Level Triggered Flip-Flop

Different representation of level triggered FF's

IMP points about level triggered and edge triggered:

9n can of level triggered FF 0/P may charge more than once in a single clock time period while in can of edge triggered FF 0/P will charge only once in a single clock time period.

Race Around Condition

Lets understand what is Race-around condition and when it can

Final condition for Race Around Condition:

Race around condition happens when all the condition written below will be satisfied:

- (1) Level triggered J-K FF
- (II) J=K=1
 (III). Wa >>taf

Note: Race around condition never happens in edge triggered FF.

How to avoid race around condition using Master slave FF

Circuit of master-slave FF:

How to avoid race around condition using Master slave FF

Working:

```
# Only one FF is triggered at a time either Muster FF or Islam FF.
```

```
# 0/P of Marter-slaw FF is tooken from Slave FF 0/P
```

Moster is level trippived and slove is edge triggered

Question (c)

Which of the following is/are true?

- (a) Race around condition occurs when J = K = 1 and edge triggered is applied.
- (b) Race around condition occurs when J = 1, K = 0 and level triggered is applied. \times
- (c) Race around condition never occurs in edge triggered J-K FF.
- (d) Race around condition occurs in S-R FF with S = 0, R = 1 and level triggered is applied. X

Question

An S-R FF circuit is as given below:

Characteristic equation of above FF is/one

(a)
$$\bar{x}$$

(c)
$$\overline{x \cdot y}$$

$$(b)$$
 \bar{y}

$$(d)$$
 $\overline{x+y}$

$$Q(n+1) = S + \overline{R}Q(n)$$

$$= \overline{X} + \overline{Y}Q(n)$$

$$= \overline{X} + \overline{Y}Q(n)$$

$$= \overline{X} + \overline{Y}Q(n) + \overline{Y}$$

$$= \overline{X} + \overline{Y}Q(n) + \overline{Y}$$

$$= \overline{X} + \overline{Y}Q(n)$$

$$= \overline{X} + \overline{Y}Q(n)$$

$$= \overline{X} + \overline{Y}Q(n)$$

Topic: 2 Min Summary

J-KFF

Concept of triggering

Race around condition & Mentex-slave FF

Thank you

Soldiers!

