

基于矿井直流电阻率法的地质异常智能评价

汇报人: 孔 睿

导 师: 魏明尧 研究员

汇报日期: 2023年6月11日

01

研究背景与意义

Research Background & Purposes

02

研究现状

Research Status

03

研究内容

Research Contents

04

已完成的工作

Finished Work

05

研究计划安排

Research Plan

全国地质勘查投入增多

- ◆ 2022年,全国地质勘查投入1008.4亿元。其中全国油气地质勘探投入822亿元,同比增长2.9%;非油气地质勘探投入186.4亿元,同比增长7.2%。
- ◆ 工程地质勘勘查通过对地质构造进行探测,能够有效排除地质灾害风险、避免人员伤亡

2018年到2022年成功预报地质灾害和避免人员伤亡情况

研究背景与意义

RESEARCH BACKGROUNDS & PURPOSES

直流电阻率法相比于其他地质勘查方法的优点

直流电阻率法作为一种地球物理勘探方法,通过布置电极与地面相接触,基于地质体电性差异,观测电场变化来反映地质构造分布。相比于其他地质勘查方法具有以下优点:

- ◆ 相比于坑、槽探,能够减少对岩土体的扰动效应,克服深度限制。
- ◆ 相比于钻孔勘探,成本低,周期短,探测范围大
- ◆ 相比于同为地球物理勘探方法的瞬变电磁法, 巷道掘进 作业时进行探测, 受其他运行设备影响更小

研究现状

RESEARCH STATUS

研究空白

- ◆ 目前对于直流电法勘探研究,大多聚焦于如何利用电法数据更精确的反演出地质情况,来识别地质体异常位置,却鲜有人在此基础上对地质情况进行评估。
- ◆ 对于矿井地质灾害预测,如瓦斯涌出预测,往往将岩层地质参数作为一种静态指标,或是基于周期性获得的地质指标对涌出危险性进行静态评估。而实际开采过程中,地质参数受开采影响变化是一个动态过程,从而影响烷烃类气体涌出危险性。所以,直流电阻率法采集速度快、携带方便等优点,能够支撑其反映的地质参数作为一种动态评价指标。

研究内容

RESEARCH CONTENTS

1

地质异常评价算法可视化界面的开发

电法功能区	电极个数 0	•	岩层参数设置	参数修改
	电极距	m	岩层参数设定	总评价指标权量修改
	导入文件			
计算功能区				结果显示界面
	计算电法评价指标		计算破环深度	电法评价指标:
				预测破坏深度:
		总评价指标计算		总评价指标值:
图像显示区				
息显示界面				

2

实地直流电阻率法数据的采集工作

	测量地点	
	413胶带机巷反掘面200m	
Dr. NNA	413胶带机巷反掘面250m	
413巷道	413胶带机巷迎头	
	胶带巷630m	
	胶带巷660m	
	215巷道270m	
	215巷道280m	
	215巷道290m	
	215巷道1400m	
	215巷道1800m	
215巷道	215巷道3000m	
	215巷道3060m	
	215巷道3090m	
	215巷道3130m	
	215巷道3300m	
	215巷道3500m	
	北二辅运巷200m	
11 44. \\	北二辅运巷400m	
北二巷道	北二辅运巷460m	
	北二辅运巷490m	
	北二辅运巷520m	

- ◆ 2023.5-2023.8: 整理实验数据, 完善软件程序, 优化算法
- ◆ 2023.8-2023.10: COMSOL模型建立与求解,拟合实验;
- ◆ 2023.10-2023.1:整理资料,撰写论文;
- ◆ 2023.1-2023.5:修改论文,毕业答辩。

謝謝! 请各位老师批评指正