The goal of data mining in this project, is to predict the age group (under 40 or above 40) of covid-19 cases based on the city mobility info., weather, and measures during the onset dates.

After applying the 3 different algorithms, we get this:

Algorithm	Accuracy	Precision	Recall	Time
Decision Tree	67.00%	73.66%	85.47%	0.21 sec
Gradient Boosting	71.77%	73.19%	96.86%	43.03 sec
Random Forest	72.73%	72.98%	99.46%	1.75 sec

From the result above, we can conclude that:

- 1. All 3 algorithms provide acceptable accuracy, so the model is good classified, well balanced and not skewed or no class imbalance.
- 2. All 3 algorithms provide good precision, so our prediction of age group based on other measures is valid.
- 3. All 3 algorithms provide good recall, so we capture as many true positives as possible.
- 4. The Gradient Boosting cost much longer than the other two models, which is costly to use.

As a result, I am sure that:

- 1. People who are aged above 40 have significant different patterns of lives during covid-19 pandemic from those who are aged under 40.
- 2. They have different opinion and reactions toward covid-19. The measures of city mobility info., weather, and measures during the onset dates (e.g., protect, restrict, control, stay-at-home) contribute to the differences.