ΛΥΣΗ

α) Η συνάρτηση ημχ είναι περιοδική με περίοδο 2π , οπότε για κάθε $x \in \mathbb{R}$ έχουμε:

 $f(x+1) = \eta \mu \big(2\pi(x+1) \big) = \eta \mu (2\pi x + 2\pi) = \eta \mu (2\pi x) = f(x), \ \text{άρα η συνάρτηση } f \ \text{είναι}$ περιοδική με περίοδο T=1.

Ή εναλλακτικά: Η συνάρτηση είναι της μορφής $f(x)=\rho\eta\mu\omega x$, με $\rho=1$ και $\omega=2\pi$, οπότε είναι περιοδική με περίοδο $T=\frac{2\pi}{\omega}=\frac{2\pi}{2\pi}=1$.

$$β$$
) $f(0) = ημ(2π · 0) = ημ(0) = 0.$

$$f\left(\frac{1}{4}\right) = \eta\mu\left(2\pi\cdot\frac{1}{4}\right) = \eta\mu\left(\frac{\pi}{2}\right) = 1\;.$$

γ) Η καμπύλη (i) δεν είναι η ζητούμενη, καθώς αντιστοιχεί σε περιοδική συνάρτηση με περίοδο T=2, ενώ η ζητούμενη έχει περίοδο T=1 (από το α) ερώτημα).

Η καμπύλη (ii) δεν είναι η ζητούμενη, καθώς αντιστοιχεί σε συνάρτηση με f(0) = 1, ενώ για την ζητούμενη είναι f(0) = 0 (από το β) ερώτημα).

Η καμπύλη (iii) δεν είναι η ζητούμενη, καθώς αντιστοιχεί σε συνάρτηση με $f\left(\frac{1}{4}\right)=-1$, ενώ για την ζητούμενη είναι $f\left(\frac{1}{4}\right)=1$ (από το β) ερώτημα).

Άρα, η καμπύλη που αντιστοιχεί στη γραφική παράσταση της συνάρτησης f είναι η καμπύλη (iv).

