```
In [1]:
          import tensorflow as tf
          import pandas as pd
          import numpy as np
          from sklearn.metrics import mean squared error
In [3]:
          import matplotlib.pyplot as plt
          def loss plot(history):
              plt.plot(history.history['loss'])
              plt.plot(history.history['val_loss'])
              plt.title('Model loss')
              plt.ylabel('loss')
              plt.xlabel('Epoch')
              plt.legend(['Train', 'Val'], loc='upper right')
               #plt.legend(['Train'], loc='upper right')
In [25]:
          data = pd.read_csv('data/q2_dataset.csv')
In [9]:
          data.head()
Out [9]:
                Date Close/Last
                                  Volume
                                          Open
                                                  High
                                                          Low
          0 07/08/20
                        $381.37 29272970 376.72 381.50
                                                       376.36
          1 07/07/20
                        $372.69
                                28106110 375.41 378.62 372.23
          2 07/06/20
                        $373.85 29663910 370.00 375.78
                                                       369.87
                        $364.11
          3 07/02/20
                                28510370
                                         367.85 370.47
                                                       363.64
          4 07/01/20
                        $364.11 27684310 365.12 367.36 363.91
In [8]:
          data.tail()
Out[8]:
                    Date Close/Last
                                      Volume
                                              Open
                                                      High
                                                              Low
          1254 07/15/2015
                            $126.82 33559770 125.72
                                                     127.15 125.58
                            $125.61 31695870 126.04 126.37 125.04
          1255 07/14/2015
          1256 07/13/2015
                            $125.66 41365600 125.03 125.76 124.32
          1257
                  07/10/15
                            $123.28 61292800 121.94 123.85
                                                            121.21
          1258
                 07/09/15
                            $120.07 78291510 123.85 124.06 119.22
In [ ]:
          type(data)
         pandas.core.frame.DataFrame
Out[ ]:
In [26]:
          list(data.columns)
          ['Date', 'Close/Last', 'Volume', 'Open', 'High', 'Low']
Out[26]:
```

```
In [27]:
           data.columns = data.columns.str.strip()
           list(data.columns)
           ['Date', 'Close/Last', 'Volume', 'Open', 'High', 'Low']
Out[27]:
In [28]:
           data['target']= data['Open']
           data['Date'] =pd.to_datetime(data.Date)
           data=data.sort values(by='Date')
           data.reset_index(inplace=True, drop=True)
           data.head()
Out[28]:
                    Date Close/Last
                                       Volume
                                                 Open
                                                         High
                                                                 Low
                                                                      target
                                     78291510 123.85
              2015-07-09
                                                       124.06
                                                               119.22
                                                                      123.85
                             $120.07
           1
              2015-07-10
                             $123.28 61292800 121.94 123.85
                                                               121.21
                                                                       121.94
              2015-07-13
                             $125.66 41365600 125.03
                                                       125.76
                                                               124.32
                                                                      125.03
              2015-07-14
                             $125.61
                                     31695870 126.04
                                                       126.37
                                                               125.04
                                                                      126.04
                             $126.82 33559770 125.72
              2015-07-15
                                                        127.15
                                                              125.58
                                                                      125.72
In [19]:
           data.head(20)
Out[19]:
                     Date Close/Last
                                         Volume
                                                  Open
                                                           High
                                                                   Low
                                                                        target
               2015-07-09
                                                         124.06
            0
                              $120.07
                                       78291510 123.85
                                                                 119.22
                                                                        123.85
               2015-07-10
                              $123.28
                                       61292800
                                                  121.94
                                                         123.85
                                                                 121.21
                                                                        121.94
               2015-07-13
                              $125.66
                                       41365600 125.03
                                                         125.76
                                                                124.32 125.03
            2
                                       31695870 126.04
                                                         126.37 125.04 126.04
            3
               2015-07-14
                              $125.61
               2015-07-15
                              $126.82
                                       33559770
                                                 125.72
                                                          127.15
                                                                125.58
                                                                        125.72
                                                  127.74
                                                         128.57
                                                                         127.74
            5
               2015-07-16
                              $128.51
                                       35987630
                                                                 127.35
            6
               2015-07-17
                              $129.62
                                       45970470 129.08 129.62
                                                                128.31 129.08
            7
               2015-07-20
                              $132.07
                                       55204920
                                                 130.97
                                                         132.97
                                                                 130.70
                                                                        130.97
                                       73006780 132.85 132.92 130.32 132.85
               2015-07-21
                              $130.75
               2015-07-22
                              $125.22
                                     115288400 121.99 125.50
                                                                 121.99
                                                                        121.99
               2015-07-23
                              $125.16
                                       50832950 126.20
                                                         127.09
                                                                125.06
                                                                        126.20
                                       42090320 125.32
           11
               2015-07-24
                              $124.50
                                                         125.74
                                                                123.90
                                                                        125.32
           12
               2015-07-27
                              $122.77
                                       44371580 123.09
                                                         123.61
                                                                 122.12 123.09
               2015-07-28
                              $123.38
                                       33570380
                                                 123.38
                                                         123.91
                                                                 122.55
                                                                        123.38
           13
               2015-07-29
                              $122.99
                                                 123.15 123.50
                                                                 122.27
           14
                                       36912040
                                                                        123.15
               2015-07-30
                              $122.37
                                       33400950 122.32
                                                         122.57
                                                                 121.71 122.32
           15
           16
               2015-07-31
                              $121.30
                                       42832890 122.60 122.64
                                                                 120.91 122.60
                                      69639900 121.50 122.57
               2015-08-03
                              $118.44
                                                                 117.52 121.50
```

	Date	Close/Last	Volume	Open	High	Low	target
18	2015-08-04	\$114.64	123601900	117.42	117.70	113.25	117.42
19	2015-08-05	\$115.40	99202400	112.95	117.44	112.10	112.95

```
In []:
    from matplotlib import pyplot as plt
    plt.figure()
    plt.plot(data["Open"])
    plt.plot(data["High"])
    plt.plot(data["Low"])
    #plt.plot(data["Close"])
    plt.title('Stock price history')
    plt.ylabel('Price (USD)')
    plt.xlabel('Days')
    plt.legend(['Open','High','Low'], loc='upper left')
    plt.show()
```



```
In []:
    plt.figure()
    plt.plot(data["Volume"])
    plt.title('Stock volume history')
    plt.ylabel('Volume')
    plt.xlabel('Days')
    plt.show()
```



```
In [29]:
          #create features using columns from previous 3 days
          data['Volume_t-3'] = data.shift(3)['Volume']
          data['Volume t-2'] = data.shift(2)['Volume']
          data['Volume_t-1'] = data.shift(1)['Volume']
          data['Open_t-3'] = data.shift(3)['Open']
          data['Open_t-2'] = data.shift(2)['Open']
          data['Open_t-1'] = data.shift(1)['Open']
          data['High_t-3'] = data.shift(3)['High']
          data['High_t-2'] = data.shift(2)['High']
          data['High_t-1'] = data.shift(1)['High']
          data['Low t-3'] = data.shift(3)['Low']
          data['Low_t-2'] = data.shift(2)['Low']
          data['Low t-1'] = data.shift(1)['Low']
          data['target'] = data['Open']
          data.head()
```

```
Volume_t-
Out[29]:
                                                                                       Volume_t-
               Date Close/Last
                                  Volume
                                            Open
                                                    High
                                                            Low target
                                                                                                  Volume_
              2015-
           0
                07-
                        $120.07
                                 78291510
                                           123.85
                                                  124.06
                                                          119.22
                                                                 123.85
                                                                                NaN
                                                                                            NaN
                                                                                                        Ν
                 09
              2015-
                        $123.28
                                61292800
                                           121.94
                                                 123.85
                                                           121.21
                                                                  121.94
                                                                                NaN
                                                                                            NaN
                                                                                                  7829151
              07-10
              2015-
                        $125.66
                               41365600 125.03
                                                 125.76
                                                         124.32 125.03
                                                                                      78291510.0
                                                                                                 6129280
                                                                                NaN
              07-13
              2015-
                        $125.61
                                31695870 126.04
                                                  126.37 125.04
                                                                 126.04
                                                                          78291510.0
                                                                                     61292800.0
                                                                                                 4136560
              07-14
              2015-
                        $126.82 33559770 125.72
                                                  127.15 125.58 125.72 61292800.0 41365600.0 3169587
              07-15
```

```
In [30]:
    data = data.drop(['Close/Last','Volume','Open','High','Low'], axis = 1)
    data.head()
```

Out [30]: Date target Volume_t- Volume_t- Volume_t-1 Open_t- Open_t- Open_t- High_t- High 3 2 1 3

						RNN_Report					
		Date	target	Volume_t- 3	Volume_t- 2	Volume_t-1	Open_t- 3	Open_t- 2	Open_t- 1	High_t- 3	Higl
	0	2015- 07- 09	123.85	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	1	2015- 07-10	121.94	NaN	NaN	78291510.0	NaN	NaN	123.85	NaN	
	2	2015- 07-13	125.03	NaN	78291510.0	61292800.0	NaN	123.85	121.94	NaN	124
	3	2015- 07-14	126.04	78291510.0	61292800.0	41365600.0	123.85	121.94	125.03	124.06	12:
	4	2015- 07-15	125.72	61292800.0	41365600.0	31695870.0	121.94	125.03	126.04	123.85	12
data.isna().sum()											
	Da			0							
		rget		0							
	Vo	$lume_t$	3 :	3							

0ut

In

2 Volume_t-2 Volume_t-1 1 Open_t-3 3

Open_t-2

Open_t-1 1 $High_t-3$ 3

High_t-2 2 High t−1 1 3

Low_t-3 2 Low_t-2 Low_t-1 1

dtype: int64

In [32]:

#drop columns with null values data = data.dropna()

2

data.reset_index(inplace=True, drop=True)

data.head()

Out[32]:		Date	target	Volume_t- 3	Volume_t- 2	Volume_t-1	Open_t- 3	Open_t- 2	Open_t- 1	High_t- 3	Hig
,	0	2015- 07-14	126.04	78291510.0	61292800.0	41365600.0	123.85	121.94	125.03	124.06	12
	1	2015- 07-15	125.72	61292800.0	41365600.0	31695870.0	121.94	125.03	126.04	123.85	12
	2	2015- 07-16	127.74	41365600.0	31695870.0	33559770.0	125.03	126.04	125.72	125.76	12
	3	2015- 07-17	129.08	31695870.0	33559770.0	35987630.0	126.04	125.72	127.74	126.37	12
	4	2015- 07- 20	130.97	33559770.0	35987630.0	45970470.0	125.72	127.74	129.08	127.15	12

```
In [33]:
          list(data.columns)
          ['Date',
Out[33]:
           'target',
           'Volume_t-3',
           'Volume_t-2',
           'Volume_t-1',
           'Open_t-3',
           'Open_t-2',
           'Open t-1',
           'High_t-3',
           'High_t-2',
           'High_t-1',
           'Low_t-3',
           'Low_t-2',
           'Low_t-1']
In [34]:
           data = data[[
            'Date',
            'Volume_t-3',
            'Volume t-2',
            'Volume_t-1',
            'Open_t-3',
            'Open_t-2',
            'Open_t-1',
            'High_t-3',
            'High_t-2',
            'High t-1',
            'Low_t-3',
            'Low_t-2',
            'Low t-1',
            'target']]
           data.head()
```

Out[34]:		Date	Volume_t- 3	Volume_t- 2	Volume_t-1	Open_t- 3	Open_t- 2	Open_t- 1	High_t- 3	High_t- 2	Hi
	0	2015- 07-14	78291510.0	61292800.0	41365600.0	123.85	121.94	125.03	124.06	123.85	1
	1	2015- 07-15	61292800.0	41365600.0	31695870.0	121.94	125.03	126.04	123.85	125.76	1
	2	2015- 07-16	41365600.0	31695870.0	33559770.0	125.03	126.04	125.72	125.76	126.37	,
	3	2015- 07-17	31695870.0	33559770.0	35987630.0	126.04	125.72	127.74	126.37	127.15	1
	4	2015- 07- 20	33559770.0	35987630.0	45970470.0	125.72	127.74	129.08	127.15	128.57	1

Dataset Creation

We sorted the dataset in ascending order, since our intention is to predict the opening price from the **previous** three days. Using the pandas shift function which shifts the index by desired number of periods, we were able to create new features by specifying the index that was

needed. For example, to get the Volume from three days prior, we shift by 3 - data.shift(3) ['Volume']. This process was repeated for all necessary columns and indices.

```
In [35]:
           len(data)
          1256
Out[35]:
In [36]:
           from sklearn.model selection import train test split
           #split the data into train and test set
           train, test = train_test_split(data, test_size=0.30, random_state=0)
           #save the data
           train.to_csv('train_data_RNN.csv',index=False)
           test.to_csv('test_data_RNN.csv',index=False)
 In [ ]:
           type(train)
          pandas.core.frame.DataFrame
 Out[]:
In [38]:
           train.head()
                                                                     Open_t-
Out[38]:
                                     Volume_t-
                                                            Open_t-
                                                                              Open_t-
                                                                                       High_t-
                                                                                               High_t-
                       Volume_t-3
                                                Volume_t-1
                 Date
                                                                           2
                                                                                             3
                                                                                                     2
                 2018-
           689
                   04-
                        34581850.0
                                    26750260.0
                                               34949690.0
                                                             164.88
                                                                       172.58
                                                                                170.97
                                                                                        172.01
                                                                                                 174.23
                   09
                 2020-
          1134
                        42621540.0
                                    35217270.0
                                                30521720.0
                                                             307.24
                                                                      310.60
                                                                                311.64
                                                                                        310.43
                                                                                                 312.67
                 01-14
                 2019-
           901
                        28204640.0
                                    31644240.0
                                                23793830.0
                                                              174.65
                                                                      172.40
                                                                               168.99
                                                                                        175.57
                                                                                                 173.94
                 02-11
                 2017-
           579
                        17633730.0
                                    21175670.0
                                                16916650.0
                                                             156.29
                                                                       156.91
                                                                                157.23
                                                                                        157.42
                                                                                                 157.55
                 10-27
                 2016-
           367
                        21337310.0 23724430.0
                                                26043820.0
                                                                       116.80
                                                                                116.35
                                                              116.74
                                                                                        117.50
                                                                                                 117.40
In [40]:
           data train = pd.read csv('train data RNN.csv')
           data test = pd.read csv('test data RNN.csv')
```

Preprocessing

Scaling the data

The range of the data is widely varied. The values of Volume are very high and could skew the model. Normalizing data helps the algorithm in converging i.e. to find local/ global minimum efficiently. We utilise the Minmax scaler to keep feature values between 0 and 1.

Scaled values of X are created using the following formula:

```
X_{std} = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
```

```
X_scaled = X_std * (max - min) + min
```

We also tried the Standard scaler, however there was no significant difference in training or test loss with this scaler.

Splitting Features and Target

The target is the opening price of the day we wish to predict.

```
In [41]:
            #separate features and target
            X_train = data_train.drop(['Date', 'target'], axis = 1)
            y_train = data_train['target']
            X_test_date = data_test
            X_test = data_test.drop(['Date', 'target'], axis = 1)
            y test = data test['target']
 In [ ]:
            X train
 Out[]:
                              Volume_t-
                                                               Open_t-
                                                                        Open_t-
                                                                                  High_t-
                                                      Open_t-
                                                                                           High_t-
                                                                                                   High_t
                Volume_t-3
                                         Volume_t-1
                                                                     2
                                         34949690.0
                34581850.0
                             26750260.0
                                                       164.88
                                                                 172.58
                                                                          170.97
                                                                                   172.01
                                                                                            174.23
                                                                                                     172.4
                42621540.0
                             35217270.0
                                          30521720.0
                                                       307.24
                                                                 310.60
                                                                          311.64
                                                                                   310.43
                                                                                            312.67
                                                                                                     317.0
                28204640.0
                             31644240.0
                                         23793830.0
                                                        174.65
                                                                 172.40
                                                                          168.99
                                                                                   175.57
                                                                                            173.94
                                                                                                     170.6
             3
                 17633730.0
                             21175670.0
                                          16916650.0
                                                       156.29
                                                                 156.91
                                                                          157.23
                                                                                   157.42
                                                                                            157.55
                                                                                                     157.8
                 21337310.0
                            23724430.0
                                         26043820.0
                                                                          116.35
                                                                                            117.40
             4
                                                        116.74
                                                                 116.80
                                                                                   117.50
                                                                                                     116.5
                20182050.0 20670830.0
                                         15955820.0
                                                                 191.78
                                                                                   192.55
                                                                                            192.43
           874
                                                       189.69
                                                                          190.68
                                                                                                     191.9
                36487930.0
                             38016810.0
           875
                                         52954070.0
                                                        211.15
                                                                 216.88
                                                                          219.05
                                                                                   215.18
                                                                                            220.45
                                                                                                    222.3
           876
                28803760.0
                             33511990.0
                                         36486560.0
                                                       303.22
                                                                305.64
                                                                          308.10
                                                                                   305.17
                                                                                            310.35
                                                                                                     317.0
                35907770.0 25402270.0
                                                                 153.80
           877
                                          21983410.0
                                                        151.78
                                                                          153.89
                                                                                   153.92
                                                                                            154.72
                                                                                                     154.2
           878 39824200.0 41464880.0
                                                                                            170.02
                                                                                                     171.7
                                          38116290.0
                                                       173.68
                                                                 167.25
                                                                          167.81
                                                                                   175.15
          879 rows × 12 columns
In [42]:
            X test
                                                      Open_t-
                                                                                  High_t-
Out [42]:
                                                               Open_t-
                                                                        Open_t-
                                                                                           High_t-
                                                                                                   High_t
                                         Volume_t-1
                Volume_t-3 Volume_t-2
```

3

127.74

145.13

113.38

184.28

2

130.97

145.01

113.25

186.51

129.08

147.17

113.63

183.08

3

129.62

148.28

114.72

185.47

128.57

147.16

114.18

184.99

45970470.0

25674500.0

35678360.0

55204920.0

24725210.0

50061580.0

22526310.0 30684390.0

0 35987630.0

35421310.0

50278030.0

29773430.0

132.9

146.1

115.5

191.9

Volume_t-3 Volume_t-2 Volume_t-1

	4	2656042	0.0 26178	840.0 317	35810.0	109.5	1 110.2	3 109.9	95 110.7	3 110.98	8 110.4
	•••		•••	•••		•	•				
	372	6467822	0.0 53168	580.0 561	57370.0	112.1	3 111.9	4 111.0	07 112.6	8 112.80	0 111.9
	373	3393572	0.0 69281	360.0 540	17920.0	208.70	3 216.4	213.9	210.1	6 221.3	7 218.0
	374	2483380	0.0 25080	500.0 201	17070.0	145.8	7 145.5	0 147.9	97 146.1	8 148.49	9 149.3
	375	5381248	0.0 32503	750.0 452	47890.0	284.69	9 277.9	5 276.2	28 286.9	5 281.68	8 277.2
	376	6903274	0.0 24677	880.0 12	119710.0	282.2	3 280.5	3 284.6	9 282.6	5 284.2	5 284.8
	377 rd	ows × 12 c	columns								
In [43]:	y_t:	rain									
Out[43]:	0	169.8									
	1 2	316.7 171.0									
	3	159.2									
	4	115.5	9								
	874	192.4	5								
	875	209.5									
	876	317.8									
	877 878	153.2 167.8									
				: 879, dty	pe: fl	oat64					
Tn [44]:	Name	: target		: 879, dty	ype: fl	oat64					
In [44]:		: target		: 879, dty	ype: fl	oat64					
In [44]:	y_to	: target est 132.8	, Length:	: 879, dty	ype: fl	oat64					
	y_te	: target est 132.8 144.4	, Length:	: 879, dt <u>y</u>	ype: fl	oat64					
	y_te	: target est 132.8	, Length: 5 9 4	: 879, dty	ype: fl	oat64					
	y_te	: target est 132.8 144.4 116.4	5 9 4	: 879, dty	ype: fl	oat64					
	y_tc 0 1 2 3 4	132.8 144.4 116.4 191.8 108.9	5 9 4 1	: 879, dt <u>y</u>	ype: fl	oat64					
	y_te	: target est 132.8 144.4 116.4 191.8 108.9 	5 9 4 1 1	: 879, dt <u>y</u>	ype: fl	oat64					
	y_tc 0 1 2 3 4	132.8 144.4 116.4 191.8 108.9	5 9 4 1 1 2 3	: 879, dty	ype: fl	oat64					
	y_te	132.8 144.4 116.4 191.8 108.9 112.0 205.5 148.8 273.6	5 9 4 1 1 2 3 2	: 879, dty	ype: fl	oat64					
	y_tc 0 1 2 3 4 372 373 374 375 376	132.8 144.4 116.4 191.8 108.9 112.0 205.5 148.8 273.6 284.8	5 9 4 1 1 2 3 2 1 2								
	y_tc 0 1 2 3 4 372 373 374 375 376	132.8 144.4 116.4 191.8 108.9 112.0 205.5 148.8 273.6 284.8	5 9 4 1 1 2 3 2 1 2	: 879, dty							
	Name y_t 0 1 2 3 4 372 373 374 375 376 Name	132.8 144.4 116.4 191.8 108.9 112.0 205.5 148.8 273.6 284.8	5 9 4 1 1 2 3 2 1 2 , Length:								
Out[44]:	Name y_t 0 1 2 3 4 372 373 374 375 376 Name	: target 132.8 144.4 116.4 191.8 108.9 112.0 205.5 148.8 273.6 284.8 : target	5 9 4 1 1 2 3 2 1 2 , Length:		/pe: fl		Open_t- 3	Open_t- 2	Open_t- 1	High_t- 3	High_t- 2
Out[44]:	Name y_t 0 1 2 3 4 372 373 374 375 376 Name	: target 132.8 144.4 116.4 191.8 108.9 112.0 205.5 148.8 273.6 284.8 : target est_date Date V	5 9 4 1 1 2 3 2 1 2 , Length:	: 377, dty	ype: fl	oat64					

Open_t- Open_t- High_t- High_t- High_t

2

	Date	Volume_t-3	Volume_t-2	Volume_t-1	Open_t- 3	Open_t- 2	Open_t- 1	High_t- 3	High_t- 2
2	2015- 09-25	50278030.0	35678360.0	50061580.0	113.38	113.63	113.25	114.18	114.72
3	2019- 06-10	29773430.0	22526310.0	30684390.0	184.28	183.08	186.51	184.99	185.47
4	2016- 04- 08	26560420.0	26178840.0	31735810.0	109.51	110.23	109.95	110.73	110.98
•••									
372	2015- 12-17	64678220.0	53168580.0	56157370.0	112.18	111.94	111.07	112.68	112.80
373	2019- 08-02	33935720.0	69281360.0	54017920.0	208.76	216.42	213.90	210.16	221.37
374	2017- 07-17	24833800.0	25080500.0	20117070.0	145.87	145.50	147.97	146.18	148.49
375	2020- 04-22	53812480.0	32503750.0	45247890.0	284.69	277.95	276.28	286.95	281.68
376	2019- 12-26	69032740.0	24677880.0	12119710.0	282.23	280.53	284.69	282.65	284.25

377 rows × 14 columns

```
In [46]:
          #scale the data
          #scaling the dataset using minmaxscaler
          from sklearn.preprocessing import MinMaxScaler
          scaler=MinMaxScaler(feature range=(0,1))
          X train=scaler.fit transform(X train)
          X test=scaler.transform(X test)
In [50]:
          X train[:10]
         array([[0.15426342, 0.12644697, 0.15606877, 0.26949793, 0.29492857,
                 0.28369714, 0.28620284, 0.29059167, 0.28161701, 0.27437691,
                 0.29461484, 0.27707898],
                [0.20767603, 0.19602151, 0.12662877, 0.78186072, 0.78785714,
                 0.77656704, 0.77930961, 0.77786773, 0.7855027 , 0.78971724,
                 0.78024251, 0.783580771,
                [0.11189569, 0.16666145, 0.08189741, 0.30466079, 0.29428571,
                 0.27675975, 0.29888497, 0.28957094, 0.27527444, 0.30381869,
                 0.28840942, 0.27785848],
                [0.04166663, 0.08063982, 0.03617348, 0.23858197, 0.23896429,
                 0.23555587, 0.23422749, 0.23188202, 0.23056282, 0.24314969,
                 0.23466476, 0.23661553],
                [0.06627179, 0.10158332, 0.0968568 , 0.09623898, 0.09571429,
                 0.09232332, 0.09201667, 0.09056351, 0.0865656 , 0.09914735,
                 0.09739658, 0.09084789],
                [0.06032861, 0.23632515, 0.11907544, 0.29656289, 0.29867857,
                 0.29739673, 0.29019273, 0.29038049, 0.29806587, 0.29944614,
                 0.29597004, 0.30067675],
                [0.10418206, 0.2385764 , 0.12959566, 0.31034731, 0.30571429,
```

0.29935882, 0.30750597, 0.3035796, 0.30723122, 0.31161638,

```
0.28815977, 0.29947206],
                [0.1531356 , 0.10127863, 0.09360209, 0.10199748, 0.10714286,
                 0.10300971, 0.10177764, 0.10147478, 0.09904164, 0.10475878,
                 0.10784593, 0.10406406],
                [0.11052279, 0.34197841, 0.68454705, 0.05398596, 0.04967857,
                 0.02102239, 0.04980229, 0.04797438, 0.02453389, 0.05480251,
                 0.05149786, 0.02012543],
                [0.04760117, 0.07985845, 0.04767943, 0.1903905, 0.19325]
                 0.19175922, 0.18909195, 0.19105276, 0.18881338, 0.19468736,
                 0.19222539, 0.19267973]
In [51]:
          #numpy array conversion
          X train=np.array(X train)
          X_test=np.array(X_test)
In [52]:
          # reshape input to be [samples, time steps, features] which is required for LSTM
          X_train =X_train.reshape(X_train.shape[0],X_train.shape[1] , 1)
          X test = X test.reshape(X test.shape[0], X test.shape[1] , 1)
In [54]:
          X train.shape
Out[54]: (879, 12, 1)
In [55]:
          X test.shape
Out[55]: (377, 12, 1)
```

Design Steps

RNNs were not chosen because of the vanishing gradient problem. Long short-term memory (LSTM) is a deep learning system that avoids the vanishing gradient problem. LSTM is normally augmented by recurrent gates called "forget gates".LSTM prevents backpropagated errors from vanishing or exploding. Instead, errors can flow backwards through unlimited numbers of virtual layers unfolded in space.

Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks introduced in 2014. They are used in the full form and several simplified variants. They have fewer parameters than LSTM, as they lack an output gate.

LSTMs and GRUs take 3D input so data was reshaped. We considered various RNN architectures but the following gave the best performance for our problem.

Step 1: Model Architecture

```
MODEL 1
```

```
LSTM LAYER 1 - 50 units --> Dropout 0.2 --> LSTM LAYER 2 - 50 units --> Dropout 0.2 --> LSTM LAYER 3 - 50 units --> Dropout 0.2 --> Dense Layer - 1 unit
```

This model uses three LSTM layers. 20 % of the nodes at each layer are unused to avoid overfitting and improve model performance.

MODEL 2

GRU Layer 75 units --> GRU Layer 30 units --> GRU Layer 30 units --> Dropout 0.2 --> Dense Layer - 1 layer

This model uses three GRU layers. 20 % of the nodes at the final GRU layer are unused to avoid overfitting and improve model performance.

Step 2: Optimizers considered

Adagrad - Resulted in poor model performance. Model did not train.

Stochastic Gradient Descents - Resulted in poor model performance. Model did not train.

Adam: Model performed well with this. It is also recommended as the best optimizer for LSTMs as referenced in [1]

Step 3: Number of Epochs

Epochs	Model 1 Training Loss	Model 2 Training Loss
100	13621	18898
256	4851	8759
512	4203	4312
800	1033	2159
1500	189	292

Step 4: Runtime

Model 1 - 13 min 26s for 1500 epochs Model 2 - 12 min 26s for 1500 epochs

Model 2 has a shorter run time, perhaps because of the smaller width in its 2nd and 3rd layer.

Step 5: Loss Metric

Mean Squared Error.

```
from keras.models import Sequential
  from keras.layers import Dense, Dropout, Activation, Embedding
  from keras.layers import LSTM, SimpleRNN, GRU, Bidirectional
  from keras import callbacks
  from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, C
```

Model #1

```
tf.keras.layers.Dropout(0.2),
          tf.keras.layers.LSTM(50, return_sequences=True),
          tf.keras.layers.Dropout(0.2),
          tf.keras.layers.LSTM(50),
          tf.keras.layers.Dropout(0.2),
          # Shape => [batch, time, features]
          tf.keras.layers.Dense(units=1, activation='linear')
       ])
In [58]:
       model.compile(loss='mean_squared_error',optimizer='adam')
       monitor = EarlyStopping(monitor='val loss', min delta=1e-3, patience=5, verbose=
In [59]:
       model.summary()
      Model: "sequential"
      Layer (type)
                           Output Shape
                                             Param #
      1stm (LSTM)
                           (None, 12, 50)
                                              10400
                           (None, 12, 50)
      dropout (Dropout)
      1stm 1 (LSTM)
                           (None, 12, 50)
                                              20200
      dropout 1 (Dropout)
                           (None, 12, 50)
      1stm 2 (LSTM)
                           (None, 50)
                                             20200
      dropout_2 (Dropout)
                           (None, 50)
                                              0
      dense (Dense)
                           (None, 1)
                                             51
      ______
      Total params: 50,851
      Trainable params: 50,851
      Non-trainable params: 0
In [60]:
       %%time
       history = model.fit(X train,y train,validation split=0.05,epochs=1500,batch size
      Epoch 1/1500
      loss: 33627.8398
      Epoch 2/1500
      oss: 31396.8242
      Epoch 3/1500
      oss: 30665.1504
      Epoch 4/1500
      oss: 30262.4941
      Epoch 5/1500
      oss: 29956.0996
      Epoch 6/1500
```

tf.keras.layers.LSTM(50, return sequences=True, input shape=(12,1)),

```
s: 23.7803
     Epoch 1491/1500
     s: 31.8610
     Epoch 1492/1500
     s: 25.3716
     Epoch 1493/1500
     s: 26.7372
     Epoch 1494/1500
                   14/14 [========
     s: 22.6986
     Epoch 1495/1500
     s: 24.8382
     Epoch 1496/1500
     s: 27.4761
     Epoch 1497/1500
     s: 28.1025
     Epoch 1498/1500
     s: 30.3197
     Epoch 1499/1500
     s: 32.3442
     Epoch 1500/1500
     CPU times: user 16min 31s, sys: 33 s, total: 17min 4s
     Wall time: 13min 26s
In [62]:
      print(history.history["loss"][-1])
     189.47265625
In [63]:
      print('Training MSE for Model 1', model.evaluate(X train, y train, verbose=0))
     Training MSE for Model 1 24.01258659362793
In [83]:
     model.predict(X_train) - y_train.values
Out[83]: array([[
            2.95023071, -143.86976929,
                              1.78023071, \ldots, -144.99976929,
           19.62023071, 4.95023071],
         [ 147.15701782,
                    0.33701782, 145.98701782, ..., -0.79298218,
          163.82701782, 149.15701782],
           4.44254028, -142.37745972,
                             3.27254028, ..., -143.50745972,
           21.11254028,
                    6.44254028],
         . . . ,
         [ 143.92276489,
                   -2.89723511, 142.75276489, ..., -4.02723511,
          160.59276489, 145.92276489],
         [-14.04496277, -160.86496277, -15.21496277, ..., -161.99496277,
            2.62503723, -12.04496277],
           0.6628772 , -146.1571228 , -0.5071228 , ..., -147.2871228 ,
           17.3328772 ,
                    2.6628772 ]])
In [64]:
```

```
#save for the best model
model.save('models/Group3_RNN_model.h5')
In []: loss_plot(history)
```


Comment on Model #1 Training Output

- The training and validation losses start at a high value of approximately 35000
- There is a drastic decrease in the first 200 epochs
- The gap between training and validation loss remains steady until about 800 epochs
- The final training loss achieved is approximately 189

```
In [85]:
          y_test=np.array(y_test)
          y pred = model.predict(X test, verbose = 0)
In [87]:
          y pred[:20]
         array([[130.02972],
Out[87]:
                [147.80804],
                [114.17725],
                [188.1433
                [111.11356],
                [114.54795],
                [116.98694],
                [152.87953],
                [116.82906],
                [160.26447],
                [172.04114],
                [248.34659],
                [176.55379],
                [154.58133],
                [190.42662],
                [285.1028
                [233.29152],
                [333.38208],
```

```
[120.063614],
                 [195.56525 ]], dtype=float32)
In [88]:
          #calculate test loss/mse
          mean_squared_error(y_pred, y_test)
         21.196446387090102
Out[88]:
In [ ]:
          score = model.evaluate(X_test, y_test, verbose=False)
          print('Metric Names', model.metrics names)
          print('Test Score:', score)
In [90]:
          score = model.evaluate(X_train, y_train, verbose=False)
          print('Metric Names', model.metrics_names)
          print('Training Score:', score)
         Metric Names ['loss']
         Training Score: 24.01258659362793
In [99]:
          result_array=pd.DataFrame({'y_test':y_test, 'y_predicted':y_pred.ravel(),'Date':
In [101...
          #result_array = result_array.sort_values(by=['Date'])
          result_array=result_array.reset_index(drop=True, inplace=False)
          result_array
Out [101...
               y_test y_predicted
                                       Date
            0 132.85 130.029724 2015-07-21
            1 144.49
                     147.808044 2017-06-28
            2 116.44
                      114.177254 2015-09-25
               191.81
                      188.143295 2019-06-10
            4
               108.91
                       111.113564 2016-04-08
          372 112.02
                       110.918327 2015-12-17
          373 205.53
                      215.097290 2019-08-02
          374 148.82 149.203873 2017-07-17
          375 273.61
                      281.391571 2020-04-22
          376 284.82 287.908386 2019-12-26
         377 rows × 3 columns
In [103...
          result array['Date'] =pd.to datetime(result array.Date)
In [104...
          result array=result array.sort values(by='Date')
          result array
```

Out[104		y_test	y_predicted	Date
	45	125.72	124.952179	2015-07-15
	357	127.74	126.632896	2015-07-16
	0	132.85	130.029724	2015-07-21
	128	125.32	126.351768	2015-07-24
	241	123.38	124.806816	2015-07-28
	•••		•••	
	49	319.25	326.039917	2020-05-29
	34	344.72	347.023743	2020-06-12
	76	351.46	345.197784	2020-06-16
	236	365.00	348.616974	2020-06-24
	232	353.25	348.882324	2020-06-29

377 rows × 3 columns

Comments about y_true/y_pred dataframe

The model has a good output. The predicted values of y and close to the true values. From the 10 values shown above, the largest value of |y_pred - y_true| is 12, although most have a difference of less than 5.

```
In [105...
    result_array=result_array.reset_index(drop=True, inplace=False)

In [106...
    result_array.iloc[0:,0:2].plot.line(figsize=(13,8))
    plt.xticks(np.arange(0, 377, step=20), result_array["Date"].dt.date.iloc[lambda plt.xlabel('Date')
    plt.ylabel('Opening price')
    plt.title('Stock price over time')

Out[106...
    Text(0.5, 1.0, 'Stock price over time')
```

Stock price over time

Comments about Stock Price over time plot

The plots of y_test(y_true) and y_pred mostly overlap. The largest gaps in both plots occurs sometime in 2020. This could be due to the Coronavirus pandemic.

Model #2

```
In [108...
          model 1 = tf.keras.models.Sequential([
              # Shape [batch, time, features] => [batch, time, 1stm units]
              tf.keras.layers.GRU(75, return sequences=True, input shape=(12,1)),
              tf.keras.layers.Dropout(0.2),
              tf.keras.layers.GRU(30, return sequences=True),
              tf.keras.layers.Dropout(0.2),
              tf.keras.layers.GRU(30),
              tf.keras.layers.Dropout(0.2),
              # Shape => [batch, time, features]
              tf.keras.layers.Dense(units=1)
          ])
In [109...
          model_1.compile(optimizer='adam', loss='mean_squared_error')
          monitor = EarlyStopping(monitor='val loss', min delta=1e-3, patience=5, verbose=
In [110...
          model_1.summary()
         Model: "sequential 2"
```

```
s: 38.9415
        Epoch 1498/1500
        s: 36.0181
        Epoch 1499/1500
        14/14 [======
                             ========| - 1s 36ms/step - loss: 328.2225 - val los
        s: 44.9635
        Epoch 1500/1500
        14/14 [======
                              ======== ] - 1s 40ms/step - loss: 292.2680 - val los
        s: 42.8146
        CPU times: user 15min 23s, sys: 37.4 s, total: 16min
        Wall time: 12min 26s
In [112...
         print(history.history["loss"][-1])
        292.26800537109375
In [113...
        print('training MSE', model_1.evaluate(X_train, y_train, verbose=0))
        training MSE 89.08911895751953
In [114...
        print(history.history.keys())
        dict keys(['loss', 'val loss'])
In [115...
         loss plot(history)
                             Model loss
          35000
                                                Train
                                                Val
          30000
          25000
          20000
         15000
          10000
          5000
            0
                   200
                                              1400
               0
                        400
                             600
                                 800
                                     1000
                                          1200
                               Epoch
```

Comment on Model #2 Training Output

- The training and validation losses start at a high value of approximately 35000
- There is a drastic decrease in the first 200 epochs
- The training and validation losses continue to decrease
- The final training loss achieved is approximately 292

```
In [116...
           y_test=np.array(y_test)
```

```
y pred = model 1.predict(X test, verbose=0)
In [117...
          y_pred[:20]
Out[117... array([[125.660934],
                [144.5896],
                [110.064964],
                [184.48605],
                [107.21594],
                 [113.757805],
                [112.20062],
                [149.78496],
                [111.87024],
                [156.93988],
                [168.75972],
                [245.05467],
                 [173.32153],
                [151.28717],
                [186.90234],
                [283.3356],
                [228.92291],
                 [302.5869],
                 [116.39398],
                 [191.75362 ]], dtype=float32)
In [118...
          #calculate test loss/mse
          mean squared error(y pred, y test)
         52.513931808736615
Out[118...
In [119...
          score = model 1.evaluate(X test, y test, verbose=False)
          print('Metric Names', model_1.metrics_names)
          print('Test Score for Model 2:', score)
         Metric Names ['loss']
         Test Score for Model 2: 52.5139274597168
In [120...
          score = model 1.evaluate(X train, y train, verbose=False)
          print('Metric Names', model 1.metrics names)
          print('Training Score for Model 2:', score)
         Metric Names ['loss']
         Training Score for Model 2: 89.08911895751953
In [121...
          result_array=pd.DataFrame({'y_test':y_test, 'y_predicted':y_pred.ravel(),'Date':
 In [ ]:
          result_array=result_array.reset_index(drop=True, inplace=False)
          result_array
In [124...
          result_array['Date'] =pd.to_datetime(result_array.Date)
In [125...
          result_array=result_array.sort_values(by='Date')
```

result_array

Out[125		y_test	y_predicted	Date
	45	125.72	120.705017	2015-07-15
	357	127.74	122.633720	2015-07-16
	0	132.85	125.660934	2015-07-21
	128	125.32	123.803505	2015-07-24
	241	123.38	120.971870	2015-07-28
	•••			
	49	319.25	302.511902	2020-05-29
	34	344.72	302.652496	2020-06-12
	76	351.46	302.647675	2020-06-16
:	236	365.00	302.658325	2020-06-24
	232	353.25	302.659149	2020-06-29

377 rows × 3 columns

Comments about y_true/y_pred dataframe

The model has a fairly good output, though not as good as Model #1. The predicted values of y are close to the true values. From the 10 values shown above, there are much larger values of |y_pred - y_true| than model #1. Some datapoints have a difference of over 40.

```
In [126...
    result_array=result_array.reset_index(drop=True, inplace=False)

In [127...
    result_array.iloc[0:,0:2].plot.line(figsize=(13,8))
    plt.xticks(np.arange(0, 377, step=20), result_array["Date"].dt.date.iloc[lambda plt.xlabel('Date')
    plt.ylabel('Opening price')
    plt.title('Stock price over time')

Out[127...
    Text(0.5, 1.0, 'Stock price over time')
```

Stock price over time

Comments about Stock Price over time plot

The plots of y_test(y_true) and y_pred mostly overlap. There is significant variation in the plots in 2019 and 2020. The plot for Model #1 seems to be more accurate.

Final Network Architecture

Model #1 is chosen because it has a better performance.

MODEL 1

LSTM LAYER 1 - 50 units --> Dropout 0.2 --> LSTM LAYER 2 - 50 units --> Dropout 0.2 --> LSTM LAYER 3 - 50 units --> Dropout 0.2 --> Dense Layer - 1 unit

This model uses three LSTM layers. 20 % of the nodes at each layer are unused to avoid overfitting and improve model performance.

Optimizer - Adam

Loss Metric - Mean Squared Error

Activation Function in Dense layer - Linear

Batch Size - 64

Number of Epochs - 1500

The model utilises Early Stopping in order to converge faster and avoid overfitting.

Effect of Adding More Features

After increasing the features to 40 i.e (using data from the latest 10 days) we observed the following:

- The model trained for a longer time with the same number of epochs.
- The model performance was significantly improved. The training loss was approximately 15 using Model #1 as compared to 189 using Model #1 with 12 Features
- The final plot of predicted values against true values in the test set are almost identical.
- External Resources suggest that the prices and volumes are not the best features for stock prediction. Return value is suggested to be a better input.

References

1 "LSTM Optimizer Choice ?" https://deepdatascience.wordpress.com/2016/11/18/which-lstm-optimizer-to-use/

In []:			