#### Lecture 14: Newton-Euler equations of motion

- Rigid body kinetics (Newton-Euler equations of motion)
  - Newton's law
  - Angular momentum
  - Inertia dyadic

Book: Ch. 7.3

### What is rigid body dynamics?

#### Rigid body:

 Wikipedia: "...a rigid body is an idealization of a solid body of finite size in which deformation is neglected."

#### Dynamics = Kinematics + Kinetics

#### Kinematics

- eb.com: "...branch of physics (...) concerned with the geometrically possible motion of a body or system of bodies without consideration of the forces involved (i.e., causes and effects of the motions)."
- Book: Ch. 6

#### Kinetics

- eb.com: "...the effect of forces and torques on the motion of bodies having mass."
- Book: Ch. 7, 8.

Remark: Sometimes "dynamics" is used for "kinetics" only

# Simplest scalar case





#### Differentiations of vectors (6.8.5, 6.8.6)

Coordinate representation:

$$\mathbf{u}^a = \mathbf{R}^a_b \mathbf{u}^b$$

Differentiation:



$$\mathbf{\dot{u}}^{a}=\mathbf{R}_{b}^{a}\left[\mathbf{\dot{u}}^{b}+\left(oldsymbol{\omega}_{ab}^{b}
ight)^{ imes}\mathbf{u}^{b}
ight]$$

On vector form:

$$\frac{^{a}d}{dt}\vec{u} = \frac{^{b}d}{dt}\vec{u} + \vec{\omega}_{ab} \times \vec{u}$$

Note! Generally,

 $\vec{u}$ 

 $\vec{a}_2$ 

 $\vec{a}_3$ 

$$\dot{\mathbf{u}}^a 
eq \mathbf{R}^a_b \dot{\mathbf{u}}^b$$

# Rigid body kinematics

 Velocities and accelerations (Ch. 6.12)

$$\vec{v}_o := \frac{{}^{i} \mathbf{d}}{\mathbf{d}t} \vec{r}_o, \quad \vec{v}_p := \frac{{}^{i} \mathbf{d}}{\mathbf{d}t} \vec{r}_p$$

$$\vec{a}_o := \frac{{}^{i} \mathbf{d}^2}{\mathbf{d}t^2} \vec{r}_o, \quad \vec{a}_p := \frac{{}^{i} \mathbf{d}^2}{\mathbf{d}t^2} \vec{r}_p$$

$$\vec{\alpha}_{ib} := \frac{{}^{i} \mathbf{d}}{\mathbf{d}t} \vec{\omega}_{ib} = \frac{{}^{b} \mathbf{d}}{\mathbf{d}t} \vec{\omega}_{ib}$$



$$\vec{v}_p = \vec{v}_o + \frac{{}^{i} \mathbf{d}}{\mathbf{d}t} \vec{r}$$

$$= \vec{v}_o + \frac{{}^{b} \mathbf{d}}{\mathbf{d}t} \vec{r} + \vec{\omega}_{ib} \times \vec{r}$$

$$= \vec{v}_o + \vec{\omega}_{ib} \times \vec{r}, \quad \vec{r} \text{ fixed.}$$

$$\vec{a}_p = \vec{a}_o + \frac{{}^b \mathrm{d}^2}{\mathrm{d}t^2} \vec{r} + 2\vec{\omega}_{ib} \times \frac{{}^b \mathrm{d}}{\mathrm{d}t} \vec{r} + \vec{\alpha}_{ib} \times \vec{r} + \vec{\omega}_{ib} \times (\vec{\omega}_{ib} \times \vec{r})$$

$$\vec{a}_p = \vec{a}_o + \vec{\alpha}_{ib} \times \vec{r} + \vec{\omega}_{ib} \times (\vec{\omega}_{ib} \times \vec{r}), \quad \vec{r} \text{ fixed.}$$

### Torque, and linear/angular momentum



- Book:
  - Torque:  $\vec{N}, \vec{T}$
  - Angular momentum:  $\vec{h}$

#### EoM with reference of CoM

$$\vec{F}_{bc} = m\vec{a}_c$$

$$\vec{T}_{bc} = \vec{M}_{b/c} \cdot \vec{\alpha}_{ib} + \vec{\omega}_{ib} \times \left( \vec{M}_{b/c} \cdot \vec{\omega}_{ib} \right)$$

# Inertia dyadic I

$$\vec{M}_{b/c} = -\int_{b} \vec{r}^{\times} \cdot \vec{r}^{\times} dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*} \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*} \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*} \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*} \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*} \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*} \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*} \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*} \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*} \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*} \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*} \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*} \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*} \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*} \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*} \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*} \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*} \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*} \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{r} \cdot \vec{l} - \vec{r}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{l} \cdot \vec{l} - \vec{l}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{l} \cdot \vec{l} - \vec{l}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{l} \cdot \vec{l} - \vec{l}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{l} \cdot \vec{l} - \vec{l}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{l} \cdot \vec{l} - \vec{l}^{*}] dm$$

$$= \int_{b} [\vec{r} \cdot \vec{l} \cdot \vec{l} - \vec{l}^{*}] dm$$

$$= \int_{b} [\vec{l} \cdot \vec{l} \cdot \vec{l} - \vec{l}^{*}] dm$$

$$= \int_{b} [\vec{l} \cdot \vec{l} \cdot \vec{l} - \vec{l}^{*}] dm$$

$$= \int_{b} [\vec{l} \cdot \vec{l} \cdot \vec{l} - \vec{l}^{*}] dm$$

$$= \int_{b} [\vec{l} \cdot \vec{l} \cdot \vec{l} - \vec{l}^{*}] dm$$

$$= \int_{b} [\vec{l} \cdot \vec{l} \cdot \vec{l} - \vec{l}^{*}] dm$$

$$= \int_{b} [\vec{l} \cdot \vec{l} \cdot \vec{l} - \vec{l}^{*}] dm$$

$$= \int_{b} [\vec{l} \cdot \vec{l} \cdot \vec{l} - \vec{l}^{*}] dm$$

$$= \int_{b} [\vec{l} \cdot \vec{l} \cdot \vec{l} - \vec{l}^{*}] dm$$

$$= \int_{b} [\vec{l} \cdot \vec{l} - \vec{l} - \vec{l}^{*}] dm$$

$$= \int_{b} [\vec{l} \cdot \vec{l} - \vec{l} - \vec{l}^{*$$

#### Inertia matrix

Found for each rigid body by calculating

$$M_{b/c}^b = \int_b (\mathbf{r}^b)^\mathsf{T} \mathbf{r}^b I - \mathbf{r}^b (\mathbf{r}^b)^\mathsf{T} dm = \int_b \begin{pmatrix} y^2 + z^2 & -xy & -xz \\ -xy & x^2 + z^2 & -yz \\ -xz & -yz & x^2 + y^2 \end{pmatrix} dm$$

- Constant in body-fixed coordinate system!
- Not constant in inertial coordinate system

$$M_{b/c}^i = R_b^i M_{b/c}^b (R_b^i)^\mathsf{T}$$

- Books and wikipedia have tables for common geometries, otherwise computer programs calculates, or can be calculated/identified based on experiments
- Typically, axis in body-system chosen as body symmetri axis, giving zeros in inertia matrix. If symmetric about all axis, the inertia matrix becomes diagonal.

### Finding moments of inertia

| $I_z = \frac{1}{12}ml^2$ $I_{\bar{z}} = \frac{1}{3}ml^2$              |
|-----------------------------------------------------------------------|
| 1 2                                                                   |
| $I_{\vec{z}} = \frac{1}{3} m l^2$                                     |
| $I = \frac{1}{m} (a^2 + b^2)$                                         |
| 12 12 11 (4 + 5 )                                                     |
| $I_{z} = \frac{1}{12}m (a^{2} + b^{2})$ $I_{x} = \frac{1}{12}m b^{2}$ |
| $I_y = \frac{1}{12} m a^2$                                            |
|                                                                       |
| $I_z = \frac{1}{12} m \ (a^2 + b^2)$                                  |
|                                                                       |
| $I_z = \frac{1}{2} m r^2$                                             |
| $I_x = I_y = \frac{1}{4} m r^2$                                       |
|                                                                       |

From F. Irgens, Dynamikk

| Sirkulær sylinder    |                                                                                                                                                |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| y L C F              | $I_z = \frac{1}{2} m r^2$ $I_x = I_y = \frac{1}{12} m (3r^2 + l^2)$                                                                            |
| Tynt sylinderskall   | $I_z = m r^2$                                                                                                                                  |
|                      | $I_x = I_y = \frac{1}{2} m r^2 + \frac{1}{12} m l^2$                                                                                           |
| Rett sirkulær kjegle | $I_z = \frac{1}{10} m r^2$ $I_y = \frac{3}{20} m r^2 + \frac{3}{80} m h^2$ $I_{\bar{y}} = \frac{3}{20} m r^2 + \frac{3}{5} m h^2$ $z_c = 3h/4$ |
| Kule x x y           | $I_C = \frac{2}{5}mr^2$                                                                                                                        |
| Kuleskall            | $I_C = \frac{2}{3}mr^2$                                                                                                                        |

- http://en.wikipedia.org/wiki/List\_of\_moment\_of\_inertia\_tensors
- For other/general rigid bodies (vessels/planes/etc.), computer programs can find moments of inertia

#### Inertia matrix, examples





$$I_{disk} = \frac{1}{4}mr^2 \begin{bmatrix} 1 + \frac{1}{3}\frac{h^2}{r^2} & 0 & 0\\ 0 & 1 + \frac{1}{3}\frac{h^2}{r^2} & 0\\ 0 & 0 & 2 \end{bmatrix} \quad I = \begin{bmatrix} 23 & 0 & 2.97\\ 0 & 15.13 & 0\\ 2.97 & 0 & 16.99 \end{bmatrix} kslug - ft^2$$



F/A-18

$$I = \begin{bmatrix} 23 & 0 & 2.97 \\ 0 & 15.13 & 0 \\ 2.97 & 0 & 16.99 \end{bmatrix} kslug - ft^2$$

1 slug = 14.6 kg1 ft = 0.304 m

### Example: Slender beam



#### Parallel axis theorem

$$\vec{M}_{b/o} = \vec{M}_{b/c} - m(\underline{r}_g^b)^{\times} (\underline{r}_g^b)^{\times}$$
$$= \vec{M}_{b/c} + m \left[ (\underline{r}_g^b)^T \underline{r}_g^b \mathbf{I} - \underline{r}_g^b (\underline{r}_g^b)^T \right]$$

**Example:** 



$$\int_{0}^{\infty} = \begin{pmatrix} \ell/2 \\ 0 \\ 0 \end{pmatrix}$$

$$M_{10} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & me^{2}M^{2} & 0 & 0 \\ 0 & 0 & me^{2}M^{2} \end{bmatrix} + m \begin{pmatrix} e^{2} I - \begin{bmatrix} 0/4 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 6 & me^{2}/3 & 0 \\ 0 & 0 & me^{2}/3 \end{bmatrix}$$

# Summary: EoM rigid body kinetics I

## Summary: EoM rigid body kinetics II

Often: 
$$Vc$$
 instead of  $ac$ 

$$ac = \frac{id}{dt} \cdot Vc = \frac{id}{dt} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}ib \times Vc$$

$$ac = \frac{id}{vc} \cdot Vc + \frac{i}{0}$$

#### **Newton-Euler EoM**

Referenced to center of mass (CoM):

$$\vec{F}_{bc} = m\vec{a}_c$$

$$\vec{T}_{bc} = \vec{M}_{b/c} \cdot \vec{\alpha}_{ib} + \vec{\omega}_{ib} \times \left( \vec{M}_{b/c} \cdot \vec{\omega}_{ib} \right)$$



- Sometimes convenient to have them referenced to other point o:
  - Forces and moments in o:

$$\vec{F}_{bo} = \vec{F}_{bc}$$

$$\vec{T}_{bo} = \vec{T}_{bc} + \vec{r}_g \times \vec{F}_{bc}$$

Use

$$\vec{a}_c = \vec{a}_o + \vec{\alpha}_{ib} \times \vec{r}_g + \vec{\omega}_{ib} \times (\vec{\omega}_{ib} \times \vec{r}_g)$$

Define

$$\vec{M}_{b/o} := -\int_b (\vec{r}')^{\times} (\vec{r}')^{\times} dm$$

$$\vec{F}_{bo} = m \left( \vec{a}_o + \vec{\alpha}_{ib} \times \vec{r}_g + \vec{\omega}_{ib} \times (\vec{\omega}_{ib} \times \vec{r}_g) \right)$$

$$\vec{T}_{bo} = \vec{r}_g \times \vec{a}_o + \vec{M}_{b/o} \cdot \vec{\alpha}_{ib} + \vec{\omega}_{ib} \times \left( \vec{M}_{b/o} \cdot \vec{\omega}_{ib} \right)$$

Useful when CoM changes – no need to recalculate inertia matrix – still need to know CoM

#### Traits of Newton-Euler EoM

(and a preview: Lagrange EoM)

#### Newton-Euler EoM:

- Involves working with vectors
  - Lagrange: Algebraic manipulations
- Forces and moments are central
  - Lagrange: Energy and work are central
- All forces in the system must be considered
  - Lagrange: Forces of constraint are implicitly eliminated with the use of generalized coordinates (and generalized forces)

 $\vec{F}_{bc} = m\vec{a}_c$ 

 $\vec{T}_{bc} = \vec{M}_{b/c} \cdot \vec{\alpha}_{ib} + \vec{\omega}_{ib} \times \left( \vec{M}_{b/c} \cdot \vec{\omega}_{ib} \right)$ 

- Somewhat complicated to use by hand, but can be implemented in computer systems
  - Lagrange: Easier to do by hand, not suitable for complex systems
- d'Alembert's principle: Elimination of forces of constraint (Ch. 7.7)
  - Can simplify application of Newton-Euler EoM
    - Kane's EoM (Ch. 7.8, 7.9)
  - Starting point for Lagrange EoM (Ch. 8.2)

|               | Kinematics                                                                           | Kinetics                                                                               |
|---------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|               | Derivatives of position and orientation as function of velocity and angular velocity | Derivatives of velocity and angular velocity as function of applied forces and torques |
|               |                                                                                      |                                                                                        |
|               |                                                                                      |                                                                                        |
|               |                                                                                      |                                                                                        |
| wayay ntnu no |                                                                                      | TTV 1120 Madeling and Simulation                                                       |
| www.ntnu.no   |                                                                                      | TTK4130 Modeling and Simulation                                                        |

### Satellite attitude dynamics





$$\vec{F}_{bc} = m\vec{a}_c$$

$$\vec{T}_{bc} = \vec{M}_{b/c} \cdot \vec{\alpha}_{ib} + \vec{\omega}_{ib} \times \left( \vec{M}_{b/c} \cdot \vec{\omega}_{ib} \right)$$

### Example: Satellite I

Assume the body-fixed frame is chosen such that

$$M_{b/c}^{b} = \begin{pmatrix} m_{12} & 0 & 0 \\ 0 & m_{22} & 0 \\ 0 & 0 & m_{33} \end{pmatrix} \qquad \begin{array}{c} \omega_{i,s} = (\omega_{\lambda_{1}}, \omega_{i_{1}}, \omega_{3})^{\mathsf{T}} \\ \omega_{i,s} = (\omega_{\lambda_{1}}, \omega_{i_{1}}, \omega_{3})^{\mathsf{T}} \\ \omega_{i,s} = (\omega_{\lambda_{1}}, \omega_{i_{1}}, \omega_{3})^{\mathsf{T}} \end{array}$$

$$\begin{pmatrix} m_{12} & 0 & 0 \\ 0 & m_{22} & 0 \\ 0 & 0 & m_{33} \end{pmatrix} \begin{pmatrix} \dot{\omega}_1 \\ \dot{\omega}_2 \\ \dot{\omega}_3 \end{pmatrix} + \begin{pmatrix} 0 & \omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix} \begin{pmatrix} m_{12} & 0 & 0 \\ 0 & m_{22} & 0 \\ 0 & 0 & m_{33} \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} = \begin{pmatrix} T_1 \\ T_2 \\ T_3 \end{pmatrix}$$

### Example: Satellite II

$$M_{MN} \dot{\omega}_{N} + (m_{33} - m_{22}) \dot{\omega}_{2} \dot{\omega}_{3} = J_{N}$$
 $M_{ZZ} \dot{\omega}_{2} + (m_{M} - m_{33}) \dot{\omega}_{3} \dot{\omega}_{4} = J_{Z}$ 
 $M_{33} \dot{\omega}_{3} + (m_{ZZ} - m_{M}) \dot{\omega}_{4} \dot{\omega}_{2} = J_{3}$ 

Kinematics:
$$\dot{\gamma} = E_{a}^{-1} (\Upsilon) \dot{\omega}_{ib}$$
 $\dot{\gamma}_{z} - 1/2 \dot{\varepsilon}_{1} \dot{\omega}_{ib}$ 
 $\dot{\varepsilon} = 1/2 (\eta I - \dot{\varepsilon}_{x}) \dot{\omega}_{ib}$ 

### Airplane EoM (from book about airplane dynamics) $v_c^{\omega} = \begin{pmatrix} \alpha \\ \nu \end{pmatrix}$

$$V_{c}^{\omega} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$

$$X - mgS_{\theta} = m(\dot{u} + qw - rv)$$

$$Y + mgC_{\theta}S_{\Phi} = m(\dot{v} + ru - pw)$$

$$Z + mgC_{\theta}C_{\Phi} = m(\dot{w} + pv - qu)$$

$$L = I_{x}\dot{p} - I_{xz}\dot{r} + qr(I_{z} - I_{y}) - I_{xz}pq$$

$$M = I_{y}\dot{q} + rp(I_{x} - I_{z}) + I_{xz}(p^{2} - r^{2})$$

$$N = -I_{xz}\dot{p} + I_{z}\dot{r} + pq(I_{y} - I_{x}) + I_{xz}qr$$

$$p = \dot{\Phi} - \dot{\psi}S_{\theta}$$

$$q = \dot{\theta}C_{\Phi} + \dot{\psi}C_{\theta}S_{\Phi}$$

$$r = \dot{\psi}C_{\theta}C_{\Phi} - \dot{\theta}S_{\Phi}$$

$$\dot{\theta} = qC_{\Phi} - rS_{\Phi}$$

Force equations

$$m\left(\mathbf{\dot{v}}_{c}^{b} + \left(\boldsymbol{\omega}_{ib}^{b}\right)^{\times} \mathbf{v}_{c}^{b}\right) = \mathbf{F}_{bc}^{b}$$

Moment equations

 $\mathbf{M}_{b/c}^b \dot{oldsymbol{\omega}}_{ib}^b + \left(oldsymbol{\omega}_{ib}^b
ight)^ imes \mathbf{M}_{b/c}^b oldsymbol{\omega}_{ib}^b = \mathbf{T}_{bc}^b$ 

Body angular velocities in terms of Euler angles and Euler rates

Wis = (P)

Euler rates in terms of Euler angles and body angular velocities

$$oldsymbol{\dot{\phi}} = \mathbf{E}_d^{-1}(oldsymbol{\phi}) oldsymbol{\omega}_{ib}^b$$

$$F_{bc}^{b} = \begin{bmatrix} x \\ y \\ \xi \end{bmatrix} \qquad T_{bc} = \begin{bmatrix} \zeta \\ M \\ N \end{bmatrix}$$

$$egin{aligned} egin{aligned} egin{aligned} oldsymbol{\dot{r}}_c^i &= \mathbf{v}_c^i = \mathbf{R}_b^i \mathbf{v}_c^b \end{aligned}$$

$$\mathbf{\dot{r}}_c^i = \mathbf{v}_c^i = \mathbf{R}_b^i \mathbf{v}_c^b$$

Velocity of aircraft in the fixed frame in terms of Euler angles and body velocity components

$$\begin{bmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \\ \frac{dz}{dt} \end{bmatrix} = \begin{bmatrix} C_{\theta} C_{\psi} & S_{\Phi} S_{\theta} C_{\psi} - C_{\Phi} S_{\psi} & C_{\Phi} S_{\theta} C_{\psi} + S_{\Phi} S_{\psi} \\ C_{\theta} S_{\psi} & S_{\Phi} S_{\theta} S_{\psi} + C_{\Phi} C_{\psi} & C_{\Phi} S_{\theta} S_{\psi} - S_{\Phi} C_{\psi} \\ -S_{\theta} & S_{\Phi} C_{\theta} & C_{\Phi} C_{\theta} \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

 $\Phi = p + qS_{\Phi}T_{\theta} + rC_{\Phi}T_{\theta}$ 

 $\dot{\psi} = (aS_{\Phi} + rC_{\Phi})\sec\theta$ 

Kinematic energy I

One particle: 
$$dk = \frac{1}{2} dm \vec{v}_{p} \cdot \vec{v}_{p}$$

$$[kg \cdot \vec{j} \cdot \vec{j}]$$

$$= v_{m} ] \vec{x}_{i}$$

Whole rigid body:
$$K = \int dV = 1/2 \int \vec{V}_p \cdot \vec{V}_p \, dm \quad ; \quad \vec{V}_p = \vec{V}_c + \vec{W} \times \vec{r}$$

$$= 1/2 \int \vec{V}_c \cdot \vec{V}_c \, dm + \frac{1}{2} \int \vec{V}_c \cdot (\vec{W}_{10} \times \vec{r}) \, dm$$

$$+ \frac{1}{2} \int (\vec{W}_{10} \times \vec{r}) \cdot \vec{V}_c \, dm + \frac{1}{2} \int (\vec{W}_{10} \times \vec{r}) (\vec{W}_{10} \times \vec{r}) \, dm$$

$$- \int \vec{r} \, dm \times \vec{W}_{10} \cdot \vec{V}_c$$

$$dm$$

 $y_i$ 

### Kinematic energy II

$$K = \frac{1}{2}m(\underline{v_c^0})^T\underline{v_c^0} + \frac{1}{2}(\underline{\omega_c^0})^TM_{b/c}^{\underline{b}}\underline{\omega_c^0}$$

## Example: Inverted pendulum



#### Example: Inverted pendulum - kinematics



# Example: Inverted pendulum - kinetics I



## Example: Inverted pendulum – kinetics II



#### Homework

Find the equation of motion of a pendulum using Newton's law:



Find the moment of inertia of a rectangular plate



- Try to find the acceleration of the inverted pendulum (slide 26)
  using only the inertial frame (check your result by transforming
  the acceleration to the body frame)
- Read 5.1-5.3