APPLICATION UNDER UNITED STATES PATENT LAWS

2			
Atty. Dkt. No	PM 258100 (M#)		
	(1/1#)		•
Invention:	NEUE FUR DAS TAL-GEN C	ODIERENDE NUKLEO	OTIDSEQUENZEN
Inventor (s):	L. K. DUNICAN (Deceased) Ashling MCCORMACK Cliona STAPELTON Kevin BURKE Bettina MÖCKEL		
			Pillsbury Madison & Sutro LLP Intellectual Property Group 1100 New York Avenue, NW Ninth Floor Washington, DC 20005-3918 Attorneys Telephone: (202) 861-3000
			This is a:
			Provisional Application
		\boxtimes	Regular Utility Application
	•		Continuing Application
			PCT National Phase Application
			Design Application
			Reissue Application
			Plant Application
			Substitute Specification Sub. Spec Filed in App. No. /

SPECIFICATION

20

Neue für das tal-Gen codierende Nukleotidsequenzen background für Landler Sild für Landler

Gegenstand der Erfindung sind für das tal-Gen kodierende Nukleotidsequenzen und Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin, L-

5 Threonin, L-Isoleucin und L-Tryptophan unter Verwendung von coryneformen Bakterien, in denen das tal-Gen verstärkt

2. Backgrand Information Stand der Technik

Aminosäuren, insbesondere L-Lysin, finden in der 10 Humanmedizin und in der pharmazeutischen Industrie, insbesondere aber in der Tierernährung, Anwendung.

Es ist bekannt, daß Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen wie z. B. Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien wie z. B. die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch z. B. Ionenaustauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.

Zur Verbesserung der Leistungseigenschaften dieser

Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite wie z. B. das Lysin-Analogon S-(2-Aminoethyl)-Cystein oder auxotroph für regulatorisch bedeutsame Metabolite sind und L-Aminosäuren wie z. B. L-Lysin produzieren.

Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung Aminosäure

20

produzierender Stämme von Corynebacterium eingesetzt, indem man einzelne Aminosäure-Biosynthesegene amplifiziert und die Auswirkung auf die Aminosäure-Produktion untersucht. Übersichtsartikel hierzu findet man unter anderem bei

- Kinoshita ("Glutamic Acid Bacteria", in: Biology of Industrial Microorganisms, Demain and Solomon (Eds.), Benjamin Cummings, London, UK, 1985, 115-142), Hilliger (BioTec 2, 40-44 (1991)), Eggeling (Amino Acids 6:261-272 (1994)), Jetten und Sinskey (Critical Reviews in
- 10 Biotechnology 15, 73-103 (1995)) und Sahm et al. (Annuals of the New York Academy of Science 782, 25-39 (1996)).

Die Bedeutung des Pentosephosphat-Zyklus' für die Biosynthese und Produktion von Aminosäuren, insbesondere L-Lysin, durch coryneforme Bakterien ist Gegenstand zahlreicher Bemühungen der Fachwelt.

So berichten Oishi und Aida (Agricultural and Biological Chemistry 29, 83-89 (1965)) über den "hexosemonophosphate shunt" von Brevibacterium ammoniagenes. Sugimoto und Shio (Agricultural and Brieffer Chemistry 51, 101-108 (1987)) berichten über die Regulation der Glucose-6-Phosphat Dehydrogenase in Brevibacterium flavum.

15

25

Surmary of the Invention

Die Erfinder haben sich zur Aufgabe gestellt, neue Maßnahmen zur verbesserten fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin, L-Threonin, L-Isoleucin und L-Tryptophan bereitzustellen.

Beschreibung der Erfindung

Aminosäuren, insbesondere L-Lysin, finden in der Humanmedizin, in der pharmazeutischen Industrie und insbesondere in der Tierernährung Anwendung. Es besteht daher ein allgemeines Interesse daran, neue verbesserte Verfahren zur Herstellung von Aminosäuren, insbesondere L-Lysin, bereitzustellen.

Wenn im folgenden L-Lysin oder Lysin erwähnt werden, sind damit nicht nur die Base, sondern auch die Salze wie z.B. Lysin-Monohydrochlorid oder Lysin-Sulfat gemeint.

Gegenstand der Erfindung ist ein isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe

- a) Polynukleotid, das mindestens zu 70 % identisch ist mit 20 einem Polynukleotid, das für ein Polypeptid codiert, das die Aminosäuresequenzen von SEQ ID NO. 2 oder SEQ ID NO. 4 enthält,
 - b) Polynukleotid, das für ein Polypeptid codiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit den Aminosäuresequenzen von SEQ ID NO. 2 oder SEQ ID NO. 4,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15
 30 aufeinanderfolgende Nukleotide der Polynukleotidsequenz
 von a), b) oder c).

Gegenstand der Erfindung ist ebenfalls das Polynukleotid gemäß Anspruch 1, wobei es sich bevorzugt um eine replizierbare DNA handelt, enthaltend:

- (i) eine Nukleotidsequenz, ausgewählt aus der Gruppe 5 SEQ ID NO. 1 und SEQ ID NO. 3 oder
 - (ii) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Codes entspricht, oder
- (iii) mindestens eine Sequenz, die mit der zur Sequenz
 10 (i) oder (ii) komplementären Sequenz
 hybridisiert, und gegebenenfalls
 - (iv) funktionsneutrale Sinnmutationen in (i).

Weitere Gegenstände sind

- ein Polynukleotid gemäß Anspruch 4, enthaltend eine der

 Nukleotidsequenzen wie in SEQ ID NO. 1 und SEQ ID NO. 3

 dargestellt,
 - ein Polynukleotid gemäß Anspruch 5, das für ein Polypeptid codiert, das die Aminosäuresequenz, wie in SEQ ID NO. 2 und SEQ ID NO. 4 dargestellt, enthält
- 20 ein Vektor, enthaltend das Polynukleotid gemäß Anspruch 1, und als Wirtszelle dienende coryneforme Bakterien, die den

Vektor enthalten.

Gegenstand der Erfindung sind ebenso Polynukleotide, die im wesentlichen aus einer Polynukleotidsequenz bestehen, die erhältlich sind durch Screening mittels Hybridisierung einer entsprechenden Genbank, die das vollständige Gen mit der Polynukleotidsequenz entsprechend SEQ ID NO. 1 oder SEQ ID NO. 3 enthält, mit einer Sonde, die die Sequenz des genannten Polynukleotids gemäß SEQ ID NO. 1 oder

SEQ ID NO. 3 oder ein Fragment davon enthält und Isolierung der genannten DNA-Sequenz.

Polynukleotidsequenzen gemäß der Erfindung sind als Hybridisierungs-Sonden für RNA, cDNA und DNA geeignet, um cDNA in voller Länge zu isolieren, die für die Transaldolase codieren und solche cDNA oder Gene zu isolieren, die eine hohe Ähnlichkeit der Sequenz mit der des Transaldolase-Gens aufweisen.

Polynukleotidsequenzen gemäß der Erfindung sind weiterhin 10 geeignet als Primer zur Herstellung von DNA von Genen, die für die Transaldolase codieren, durch die Polymerase-Kettenreaktion (PCR).

Solche als Sonden oder Primer dienende Oligonukleotide enthalten mindestens 30, bevorzugt mindestens 20, ganz besonders bevorzugt mindestens 15 aufeinanderfolgende Nukleotide. Geeignet sind ebenfalls Oligonukleotide mit einer Länge von mindestens 40 oder 50 Nukleotiden.

"Isoliert" bedeutet aus seinem natürlichen Umfeld herausgetrennt.

20 "Polynukleotid" bezieht sich im allgemeinen auf Polyribonukleotide und Polydeoxyribonukleotide, wobei es sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.

Unter "Polypeptiden" versteht man Peptide oder Proteine, 25 die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.

Die Polypeptide gemäß Erfindung schließen ein Polypeptid gemäß SEQ ID NO. 2 oder SEQ ID NO. 4 ein, insbesondere solche mit der biologischen Aktivität der Transaldolase und auch solche, die zu wenigstens 70 % identisch sind mit dem Polypeptid gemäß SEQ ID NO. 2 oder SEQ ID NO. 4 bevorzugt zu wenigstens 80% und besonders die zu wenigstens 90 % bis

95 % Identität mit dem Polypeptid gemäß SEQ ID NO. 2 oder SEQ ID NO. 4 und die genannte Aktivität aufweisen.

Die Erfindung betrifft weiterhin ein Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin, L-Threonin, L-Isoleucin und L-Tryptophan unter Verwendung von coryneformen Bakterien, die insbesondere bereits eine Aminosäure produzieren, und in denen die für das tal-Gen codierenden Nukleotidsequenzen, verstärkt, insbesondere überexprimiert werden.

Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene erhöht, einen starken Promotor verwendet oder ein Gen verwendet, das für ein entsprechendes Enzym mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert.

Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können L-Aminosäuren, insbesondere L-Lysin, aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um Vertreter coryneformer Bakterien insbesondere der Gattung Corynebacterium handeln. Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.

Geeignete Stämme der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum, sind die zum Beispiel bekannten Wildtypstämme

> Corynebacterium glutamicum ATCC13032 Corynebacterium acetoglutamicum ATCC15806 Corynebacterium acetoacidophilum ATCC13870

10

15

20

Corynebacterium thermoaminogenes FERM BP-1539 Corynebacterium melassecola ATCC17965 Brevibacterium flavum ATCC14067 Brevibacterium lactofermentum ATCC13869 und Brevibacterium divaricatum ATCC14020

und daraus hergestellte L-Lysin produzierende Mutanten bzw. Stämme, wie beispielsweise

Corynebacterium glutamicum FERM-P 1709
Brevibacterium flavum FERM-P 1708
Brevibacterium lactofermentum FERM-P 1712
Corynebacterium glutamicum FERM-P 6463
Corynebacterium glutamicum FERM-P 6464 und
Corynebacterium glutamicum DSM5715
Corynebacterium glutamicum DM58-1
Corynebacterium glutamicum DSM12866.

und daraus hergestellte L-Threonin produzierende Mutanten bzw. Stämme, wie beispielsweise

Corynebacterium glutamicum ATCC21649
Brevibacterium flavum BB69
Brevibacterium flavum DSM5399
Brevibacterium lactofermentum FERM-BP 269
Brevibacterium lactofermentum TBB-10

und daraus hergestellte L-Isoleucin produzierende Mutanten bzw. Stämme, wie beispielsweise

Corynebacterium glutamicum ATCC 14309
Corynebacterium glutamicum ATCC 14310
Corynebacterium glutamicum ATCC 14311
Corynebacterium glutamicum ATCC 15168
Corynebacterium ammoniagenes ATCC 6871

und daraus hergestellte L-Tryptophan produzierende Mutanten bzw. Stämme, wie beispielsweise

Corynebacterium glutamicum ATCC21850 und Corynebacterium glutamicum KY9218 (pKW9901)

Den Erfindern gelang es, das neue, für die Transaldolase (EC 2.2.1.2) kodierende tal-Gen von C. glutamicum zu isolieren.

Zur Isolierung des tal-Gens oder auch anderer Gene von C. glutamicum wird zunächst eine Genbank dieses Mikroorganismus in E. coli angelegt. Das Anlegen von Genbanken ist in allgemein bekannten Lehrbüchern und Handbüchern niedergeschrieben. Als Beispiel seien das 10 Lehrbuch von Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, Deutschland, 1990) oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory 15 Press, 1989) genannt. Eine sehr bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell 50, 495-508 (1987)) in λ -Vektoren angelegt wurde. Bathe et al. (Molecular and General Genetics, 252:255-265, 1996) beschreiben eine Genbank von C. glutamicum ATCC13032, die 20 mit Hilfe des Cosmidvektors SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164) im E. coli K-12 Stamm NM554 (Raleigh et al., 1988, Nucleic Acids Research 16:1563-1575) angelegt wurde. Börmann et al. (Molecular Microbiology 6(3), 317-326 (1992)) wiederum beschreiben eine Genbank von C. glutamicum 25 ATCC13032 unter Verwendung des Cosmids pHC79 (Hohn und

ATCC13032 unter Verwendung des Cosmids pHC79 (Hohn und Collins, Gene 11, 291-298 (1980)). O'Donohue (The Cloning and Molecular Analysis of Four Common Aromatic Amino Acid Biosynthetic Genes from Corynebacterium glutamicum. Ph.D.

Thesis, National University of Ireland, Galway, 1997)
beschreibt die Klonierung von C. glutamicum Genen unter
Verwendung des von Short et al. (Nucleic Acids Research,
16: 7583) beschriebenen λ Zap Expressionssystems. Zur
Herstellung einer Genbank von C. glutamicum in E. coli

35 können auch Plasmide wie pBR322 (Bolivar, Life Sciences,

25, 807-818 (1979)) oder pUC9 (Vieira et al., 1982, Gene,
19:259-268) verwendet werden. Als Wirte eignen sich
besonders solche E. coli-Stämme, die restriktions- und
rekombinationsdefekt sind. Ein Beispiel hierfür ist der
5 Stamm DH5αmcr, der von Grant et al. (Proceedings of the
National Academy of Sciences USA, 87 (1990) 4645-4649)
beschrieben wurde. Die mit Hilfe von Cosmiden klonierten
langen DNA-Fragmente können anschließend wiederum in
gängige, für die Sequenzierung geeignete Vektoren
10 subkloniert und anschließend sequenziert werden, so wie es
z. B. bei Sanger et al. (Proceedings of the National
Academy of Sciences of the United States of America,
74:5463-5467, 1977) beschrieben ist.

Die erhaltenen DNA-Sequenzen können dann mit bekannten 15 Algorithmen bzw. Sequenzanalyse-Programmen wie z. B. dem von Staden (Nucleic Acids Research 14, 217-232(1986)), dem GCG-Programm von Butler (Methods of Biochemical Analysis 39, 74-97 (1998)) dem FASTA-Algorithmus von Pearson und Lipman (Proceedings of the National Academy of Sciences USA 20 85,2444-2448 (1988)) oder dem BLAST-Algorithmus von Altschul et al. (Nature Genetics 6, 119-129 (1994)) untersucht und mit den in öffentlich zugänglichen Datenbanken vorhandenen Sequenzeinträgen verglichen werden. Öffentlich zugängliche Datenbanken für Nukleotidsequenzen 25 sind beispielsweise die der European Molecular Biologies Laboratories (EMBL, Heidelberg, Deutschland) oder die des National Center for Biotechnology Information (NCBI, Bethesda, MD, USA).

Gegenstand der Erfindung ist die neue DNA-Sequenz aus

C.glutamicum, die den für das tal-Gen kodierenden DNAAbschnitt enthält, dargestellt als SEQ ID NO 1 und

SEQ ID NO 3. Weiterhin wurde aus der vorliegenden DNASequenz mit den oben beschriebenen Methoden die
Aminosäuresequenz des entsprechenden Proteins abgeleitet.

In SEQ ID NO 2 und SEQ ID NO 4 ist die sich ergebende Aminosäuresequenz des Tal-Genproduktes dargestellt.

Eine auf die oben beschriebene Art und Weise hergestellte Genbank kann weiterhin durch Hybridisierung mit

5 Nukleotidsonden bekannter Sequenz wie beispielsweise des zwf-Gens (JP-A-09224661) untersucht werden. Die klonierte DNA der Klone, die eine positive Reaktion bei der Hybridiserung zeigen, wird wiederum sequenziert und man erhält zum einen die bekannte Nukleotidsequenz der eingesetzten Sonde und zum anderen die benachbart liegenden neuen DNA-Sequenzen.

Kodierende DNA-Sequenzen, die sich aus SEQ ID NO 3 durch die Degeneriertheit des genetischen Codes ergeben, sind ebenfalls Bestandteil der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID NO 3 oder Teilen von oder 15 SEQ ID NO 3 hybridisieren, Bestandteil der Erfindung. In der Fachwelt sind weiterhin konservative Aminosäureaustausche wie z. B. Austausch von Glycin gegen Alanin oder von Asparaginsäure gegen Glutaminsäure in 20 Proteinen als "Sinnmutationen" (sense mutations) bekannt, die zu keiner grundsätzlichen Veränderung der Aktivität des Proteins führen, d. h. funktionsneutral sind. Weiterhin ist bekannt, daß Änderungen am N- und/oder C-Terminus eines Proteins dessen Funktion nicht wesentlich beeinträchtigen oder sogar stabilisieren können. Angaben hierzu findet der 25 Fachmann unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169:751-757 (1987)), bei O'Regan et al. (Gene 77:237-251 (1989)), bei Sahin-Toth et al. (Protein Sciences 3:240-247 (1994)), bei Hochuli et al. (Bio/Technology 6:1321-1325 (1988)) und in bekannten Lehrbüchern der 30 Genetik und Molekularbiologie. Aminosäuresequenzen, die sich in entsprechender Weise aus SEQ ID NO 2 oder SEQ ID NO 4 ergeben, sind ebenfalls Bestandteil der Erfindung.

In gleicher Weise sind DNA-Sequenzen, die mit oder SEQ ID NO 3 oder Teilen von oder SEQ ID NO 3 hybridisieren,

Bestandteil der Erfindung. Schließlich sind DNA-Sequenzen Bestandteil der Erfindung, die durch die Polymerase-Kettenreaktion (PCR) unter Verwendung von Primern hergestellt werden, die sich aus oder SEQ ID NO 3 ergeben. Derartige Oligonukleotide haben typischerweise eine Länge

Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im

Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) und bei Liebl et al. (International Journal of Systematic Bacteriology (1991) 41: 255-260). Anleitungen zur Amplifikation von DNA-Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR)

Handbuch "The DIG System Users Guide for Filter

von mindestens 15 Nukleotiden.

15 findet der Fachmann unter anderem im Handbuch von Gait:
Oligonukleotide synthesis: a practical approach (IRL Press,
Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum
Akademischer Verlag, Heidelberg, Deutschland, 1994).

Die Erfinder fanden heraus, daß coryneforme Bakterien nach 20 Überexpression des tal-Gens in verbesserter Weise Aminosäuren produzieren.

Zur Erzielung einer Überexpression kann die Kopienzahl der entsprechenden Gene erhöht werden, oder es kann die Promotor- und Regulationsregion oder die

- 25 Ribosomenbindungsstelle, die sich stromaufwärts des Strukturgens befindet, mutiert werden. In gleicher Weise wirken Expressionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich, die Expression im
- Verlaufe der fermentativen L-Aminosäure-Produktion zu steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer der m-RNA wird ebenfalls die Expression verbessert. Weiterhin wird durch Verhinderung des Abbaus des Enzymproteins ebenfalls die Enzymaktivität verstärkt. Die
- 35 Gene oder Genkonstrukte können entweder in Plasmiden mit

. 5

unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden.

Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al. (Bio/Technology 5, 137-146 (1987)), bei Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988)), bei Eikmanns

- et al. (Gene 102, 93-98 (1991)), in der Europäischen Patentschrift EPS 0 472 869, im US Patent 4,601,893, bei Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991), bei Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)), bei LaBarre et al. (Journal of
- Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung WO 96/15246, bei Malumbres et al. (Gene 134, 15 24 (1993)), in der japanischen Offenlegungsschrift JP-A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), bei Makrides
- 20 (Microbiological Reviews 60:512-538 (1996)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.

Beispielhaft wurde das erfindungsgemäße tal-Gen mit Hilfe von Plasmiden überexprimiert.

Als Plasmide eignen sich solche, die in coryneformen

Bakterien repliziert werden. Zahlreiche bekannte

Plasmidvektoren wie z. B. pZ1 (Menkel et al., Applied and

Environmental Microbiology (1989) 64: 549-554), pEKEx1

(Eikmanns et al., Gene 102:93-98 (1991)) oder pHS2-1

(Sonnen et al., Gene 107:69-74 (1991)) beruhen auf den

- kryptischen Plasmiden pHM1519, pBL1 oder pGA1. Andere Plasmidvektoren wie z.B. solche, die auf pCG4 (US-A 4,489,160), oder pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)), oder pAG1 (US-A 5,158,891) beruhen, können in gleicher Weise verwendet
- 35 werden.

Weiterhin eignen sich auch solche Plasmidvektoren mit Hilfe derer man das Verfahren der Genamplifikation durch Integration in das Chromosom anwenden kann, so wie es beispielsweise von Reinscheid et al. (Applied and

- Environmental Microbiology 60, 126-132 (1994)) zur Duplikation bzw. Amplifikation des hom-thrB-Operons beschrieben wurde. Bei dieser Methode wird das vollständige Gen in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli), nicht aber in C. glutamicum
- replizieren kann. Als Vektoren kommen beispielsweise pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), pK18mob oder pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994). Journal of Biological Chemistry
- 15 269:32678-84; US-A 5,487,993), pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)), pEM1 (Schrumpf et al, 1991, Journal of Bacteriology 173:4510-4516) oder pBGS8 (Spratt et al.,1986, Gene 41: 337-342) in Frage. Der
- Plasmidvektor, der das zu amplifizierende Gen enthält, wird anschließend durch Konjugation oder Transformation in den gewünschten Stamm von C. glutamicum überführt. Die Methode der Konjugation ist beispielsweise bei Schäfer et al. (Applied and Environmental Microbiology 60, 756-759 (1994))
- beschrieben. Methoden zur Transformation sind beispielsweise bei Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican und Shivnan (Bio/Technology 7, 1067-1070 (1989)) und Tauch et al. (FEMS Microbiological Letters 123, 343-347 (1994)) beschrieben.
- Nach homologer Rekombination mittels eines "cross over"-Ereignisses enthält der resultierende Stamm mindestens zwei Kopien des betreffenden Gens.

Ein Beispiel für einen Plasmidvektor mit dessen Hilfe das Verfahren Amplifikation durch Integration durchgeführt 35 werden kann ist pSUZ1, der in Figur 1 dargestellt ist. Plasmid pSUZ1 besteht aus dem von Spratt et al. (Gene 41: 337-342(1986))beschriebenem E. coli Vektor pBGS8 in den das tal-Gen eingebaut wurde.

Zusätzlich kann es für die Produktion von Aminosäuren, vorteilhaft sein, neben dem tal-Gen eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, der Glykolyse, der Anaplerotik, des Pentosephosphatweges oder des Aminosäure-Exports zu verstärken oder zu überexprimieren.

So kann beispielsweise für die Herstellung L-Aminosäuren, insbesondere von L-Lysin, gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe

- das für die Dihydrodipicolinat-Synthase kodierende dapA-Gen (EP-B 0 197 335),
- das für eine feed back resistente Aspartatkinase kodierende lysC-Gen (Kalinowski et al. (1990), Molecular and General Genetics 224: 317-324),
 - das für die Glycerinaldehyd-3-Phosphat Dehydrogenase kodierende gap-Gen (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
- das für die Pyruvat Carboxylase codierende pyc-Gen (DE-A-20 198 31 609),
 - das für die Malat: Chinon Oxidoreduktase kodierende mqo-Gen (Molenaar et al., European Journal of Biochemistry 254, 395-403 (1998)),
- das für die Transketolase kodierende tkt-Gen (Accession
 number AB023377 der Datenbank der European Molecular
 Biologies Laboratories (EMBL, Heidelberg, Deutschland)),
 - das für die 6-Phosphogluconat-Dehydrogenase kodierende gnd-Gen (JP-A-9-224662),
- das für die Glucose-6-Phosphat Dehydrogenase kodierende
 zwf-Gen (JP-A-9-224661),

- das für den Lysin-Export kodierende lysE-Gen (DE-A-195 48 222),
- das zwal-Gen (DE 199 59 328.0; DSM 13115),
- das für die Enolase kodierende eno-Gen (DE: 19947791.4),
- das devB-Gen,
 - das opcA-Gen (DSM 13264)

verstärkt, bevorzugt überexprimiert werden.

So kann beispielsweise für die Herstellung von L-Threonin gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe

- gleichzeitig das für die Homoserin-Dehydrogenase kodierende hom-Gen (Peoples et al., Molecular Microbiology 2, 63-72 (1988)) oder das für eine "feed back resistente" Homoserin-Dehydrogenase kodierende hom^{dr}-Allel (Archer et al., Gene 107, 53-59 (1991)),
- das für die Glycerinaldehyd-3-Phosphat Dehydrogenase kodierende gap-Gen (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
- das für die Pyruvat Carboxylase codierende pyc-Gen (DE-A-20 198 31 609),
 - das für die Malat:Chinon Oxidoreduktase kodierende mqo-Gen (Molenaar et al., European Journal of Biochemistry 254, 395-403 (1998)),
- das für die Transketolase kodierende tkt-Gen (Accession number AB023377 der Datenbank der European Molecular Biologies Laboratories (EMBL, Heidelberg, Deutschland)),

- das für die 6-Phosphogluconat-Dehydrogenase kodierende gnd-Gen (JP-A-9-224662),
- das für die Glucose-6-Phosphat-Dehydrogenase kodierende zwf-Gen (JP-A-9-224661),
- 5 das für den Threonin-Export kodierende thrE-Gen (DE 199 41 478.5; DSM 12840),
 - o das zwal-Gen (DE 199 59 328.0; DSM 13115),
 - o das für die Enolase kodierende eno-Gen (DE: 19947791.4),
 - das devB-Gen,
- 10 das opcA-Gen (DSM 13264)

verstärkt, bevorzugt überexprimiert werden..

Weiterhin kann es für die Produktion von Aminosäuren, vorteilhaft sein, zusätzlich zur Verstärkung des tal-Gens gleichzeitig

- o das für die Phosphoenolpyruvat-Carboxykinase codierende pck-Gen (DE 199 50 409.1 DSM 13047) und/oder
 - das für die Glucose-6-Phosphat Isomerase kodierende pgi-Gen (US 09/396,478, DSM 12969), oder
- das für die Pyruvat-Oxidase kodierende poxB-Gen
 (DE 199 51 975.7; DSM 13114), oder
 - das zwa2-Gen (DE: 199 59 327.2; DSM 13113)

abzuschwächen.

Weiterhin kann es für die Produktion von Aminosäuren, vorteilhaft sein, neben der Überexpression des tal-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Micro-organisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).

Die erfindungsgemäß hergestellten Mikroorganismen können kontinuierlich oder diskontinuierlich im batch - Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von L-Aminosäuren, kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden sind im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.

Das zu verwendende Kulturmedium muß in geeigneter Weise den 15 Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D.C., USA, 1981) enthalten. Als Kohlenstoffquelle können Zucker und 20 Kohlehydrate wie z. B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z. B. Sojaöl, Sonnenblumenöl, Erdnußöl und Kokosfett, Fettsäuren wie z. B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z. B. Glycerin und Ethanol und 25 organische Säuren wie z. B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden. Als Stickstoffquelle können organische Stickstoffhaltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser,

Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden. Als Phosphorquelle können Phosphorsäure,

35 Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder

30

die entsprechenden Natrium-haltigen Salze verwendet werden. Das Kulturmedium muß weiterhin Salze von Metallen enthalten wie z. B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind. Schließlich können essentielle Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.

Zur pH-Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie 15 z. B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe wie z. B. Antibiotika hinzugefügt werden. Um aerobe Bedingungen 20 aufrechtzuerhalten, werden Sauerstoff oder Sauerstoffhaltige Gasmischungen wie z. B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum an L-25 Aminosäure gebildet hat. Dieses Ziel wird normalerweise

Die Analyse von L-Aminosäuren kann durch Anionenaustauschchromatographie mit anschließender Ninhydrin Derivatisierung erfolgen, so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben.

innerhalb von 10 Stunden bis 160 Stunden erreicht.

Folgender Mikroorganismus wurde bei der Deutschen Sammlung für Mikrorganismen und Zellkulturen (DSMZ, Braunschweig, Deutschland) gemäß Budapester Vertrag hinterlegt:

• Escherichia coli JM109/pSUZ1 als DSM 13263.

In SEQ ID NO 1 ist ebenfalls das neue devB-Gen enthalten. Das erfindungsgemäße Verfahren dient zur fermentativen Herstellung von Aminosäuren.

Folgende Figuren sind beigefügt:

Figur 1: Karte des Plasmids pSUZ1

Die verwendeten Abkürzungen und Bezeichnungen haben folgende Bedeutung.

5 lacZ: segments of lacZ α gene fragment

kan r: kanamycin resistance
tal: transaldolase gene

ori: origin of replication of plasmid pBGS8

BclI: cut site of restriction enzyme BclI

10 EcoRI: cut site of restriction enzyme EcoRI

HindIII: cut site of restriction enzyme HindIII

PstI: cut site of restriction enzyme PstI
SacI: cut site of restriction enzyme SacI

Examples

The following examples will further illustrate this invention. The molecular biology techniques, e.g. plasmid DNA isolation, restriction enzyme treatment, ligations, standard transformations of Escherichia coli etc. used are, (unless stated otherwise), described by Sambrook et al., (Molecular Cloning. A Laboratory Manual (1989) Cold Spring Harbour Laboratories, USA).

10 Beispiel 1

Herstellung einer genomischen Cosmid-Genbank aus Corynebacterium glutamicum ATCC 13032

Chromosomale DNA aus Corynebacterium glutamicum ATCC 13032 wurde wie bei Tauch et al., (1995, Plasmid 33:168-179)

- 15 beschrieben, isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Code no. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Molecular Biochemicals, Mannheim,
- Deutschland, Produktbeschreibung SAP, Code no. 1758250)
 dephosphoryliert. Die DNA des Cosmid-Vektors SuperCosl
 (Wahl et al. (1987) Proceedings of the National Academy of
 Sciences USA 84:2160-2164), bezogen von der Firma
 Stratagene (La Jolla, USA, Produktbeschreibung SuperCosl
- Cosmid Vektor Kit, Code no. 251301) wurde mit dem
 Restriktionsenzym XbaI (Amersham Pharmacia, Freiburg,
 Deutschland, Produktbeschreibung XbaI, Code no. 27-0948-02)
 gespalten und ebenfalls mit shrimp alkalischer Phosphatase
 dephosphoryliert. Anschließend wurde die Cosmid-DNA mit dem
- Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Code no. 27-0868-04) gespalten. Die auf diese Weise behandelte Cosmid-DNA wurde mit der behandelten ATCC13032-DNA gemischt und der

Ansatz mit T4-DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung T4-DNA-Ligase, Code no. 7/ 0870-04) behandelt. Das Ligationsgemisch wurde anschließend mit Hilfe des Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Produktbeschreibung Gigapack II XI: Packing Extract, Code no. 200217) in Phagen verpackt. Zur Infektion des E. coli Stammes NM554 (Raleigh et al. 1988, Nucleic Acid Research 16:1563-1575) wurden die Zellen in 10 mM MgSO₄ aufgenommen und mit einem Aliquot der Phagensuspension vermischt. Infektion und Titerung der Cosmidbank wurden wie bei Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei die Zellen auf LB-Agar (Lennox, 1955, Virology, 1:190) mit 100 μ g/ml Ampicillin ausplattiert wurden. Nach Inkubation über Nacht bei 37°C 15

Beispiel 2

Isolierung und Sequenzierung des tal-Gens

wurden rekombinante Einzelklone selektioniert.

20 Die Cosmid-DNA einer Einzelkolonie wurde mit dem Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) nach Herstellerangaben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Product No. 27-25 0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Molecular Biochemicals, Mannheim, Deutschland, Produktbeschreibung SAP, Product No. 1758250) dephosphoryliert. Nach gelelektrophoretischer Auftrennung erfolgte die Isolierung 30 der Cosmidfragmente im Größenbereich von 1500 bis 2000 bp mit dem QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany). Die DNA des Sequenziervektors pZero-1 bezogen von der Firma Invitrogen (Groningen, Niederlande, Produktbeschreibung Zero Background Cloning

Kit, Product No. K2500-01) wurde mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Product No. 27-0868-04) gespalten. Die Ligation der Cosmidfragmente in den 5 Sequenziervektor pZero-1 wurde wie von Sambrook et al. (1989, Molecular Cloning: A laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei das DNA-Gemisch mit T4-Ligase (Pharmacia Biotech, Freiburg, Deutschland) über Nacht inkubiert wurde. Dieses Ligationsgemisch wurde anschließend in den E. coli Stamm DH5 α MCR (Grant, 1990, 10 Proceedings of the National Academy of Sciences U.S.A., 87:4645-4649) elektroporiert (Tauch et al. 1994, FEMS Microbiol Letters, 123:343-7) und auf LB-Agar (Lennox, 1955, Virology, 1:190) mit 50 μg/ml Zeocin ausplattiert. Die Plasmidpräparation der rekombinanten Klone erfolgte mit 15 dem Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Deutschland). Die Sequenzierung erfolgte nach der Dideoxy-Kettenabbruch-Methode von Sanger et al. (1977, Proceedings of the National Academy of Sciences U.S.A., 74:5463-5467) 20 mit Modifikationen nach Zimmermann et al. (1990, Nucleic Acids Research, 18:1067). Es wurde der "RR dRhodamin Terminator Cycle Sequencing Kit" von PE Applied Biosystems (Product No. 403044, Weiterstadt, Deutschland) verwendet. Die gelelektrophoretische Auftrennung und 25 Analyse der Sequenzierreaktion erfolgte in einem "Rotiphorese NF Acrylamid/Bisacrylamid" Gel (29:1) (Product No. A124.1, Roth, Karlsruhe, Germany) mit dem "ABI Prism 377" Sequenziergerät von PE Applied Biosystems

Die erhaltenen Roh-Sequenzdaten wurden anschließend unter Anwendung des Staden-Programpakets (1986, Nucleic Acids Research, 14:217-231) Version 97-0 prozessiert. Die Einzelsequenzen der pZerol-Derivate wurden zu einem zusammenhängenden Contig assembliert. Die computergestützte Kodierbereichsanalyse wurden mit dem Programm XNIP (Staden, 1986, Nucleic Acids Research, 14:217-231) angefertigt.

(Weiterstadt, Deutschland).

Weitere Analysen wurden mit den "BLAST search programs" (Altschul et al., 1997, Nucleic Acids Research, 25:3389-3402), gegen die non-redundant Datenbank des "National Center for Biotechnology Information" (NCBI, Bethesda, MD, USA) durchgeführt.

Die erhaltene Nukleotidsequenz ist in SEQ ID NO 1 und SEQ ID NO 3 dargestellt.

Example 3

5

15

25

10 Cloning of the tal gene

PCR was used to amplify DNA fragments containing the entire tal gene of C. glutamicum 13032 and flanking upstream and downstream regions. PCR reactions were carried out using oligonucleotide primers designed from the sequence as determined in examples 1 and 2. Genomic DNA was isolated from Corynebacterium glutamicum ATCC13032 according to Heery and Dunican (Applied and Environmental Microbiology 59: 791-799 (1993)) and used as template. The tal primers used were:

20 fwd. primer: 5' GGT ACA AAG GGT CTT AAG 3'C rev. primer: 5' GAT TTC ATG TCG CCG TTA 3'

PCR Parameters were as follows:

35 cycles 95°C for 3 minutes 94°C for 1 minute 47°C for 1 minute 72°C for 45 seconds 2.0 mM MqCl2

approximately 150-200 ng DNA template.

30 The PCR product obtained was cloned into the commercially available pGEM-T vector purchased from Promega Corp. (pGEM-

T Easy Vector System 1, cat. no. A1360, Promega UK, Southampton, UK) using strain E. coli JM109 (Yanisch-Perron et al., Gene, 33: 103-119 (1985)) as a host. The entire tal gene was subsequently isolated from the pGEM T-vector on an Eco RI fragment and cloned into the lacZα EcoRI site of the E. coli vector pBGS8 (Spratt et al., Gene 41(2-3): 337-342 (1986)). The restriction enzymes used were obtained from Boehringer Mannheim UK Ltd. (Bell Lane, Lewes East Sussex BN7 1LG, UK) and used according to manufacturers instructions. E. coli JMI09 was then transformed with this 10 ligation mixture and electrotransformants were selected on Luria agar supplemented with isopropylthiogalactopyranoside (IPTG), 5-bromo-4-chloro-3-indolylgalactopyranoside (XGAL) and kanamycin at concentrations of 1mM, 0.02% and 50 mg/l respectively. Plates were incubated 15 for twelve hours at 37°C. Plasmid DNA was isolated from one transformant, characterised by restriction enzyme analysis using Eco RI. This new construct was designated pSUZ 1.

```
SEQUENZPROTOROLL
     <110> National University of Ireland, Galway
           Degussa-Hüls AG
 5
     <120> Neue für das tal Gen codierende Nukleotidsequenzen
     <130> 990228BT
10
     <140>
     <141>
     <160> 4
15
     <170> PatentIn Ver.\2.1
     <210> 1
     <211> 6995
     <212> DNA
20
     <213> Corynebacterium \glutamicum
     <220>
     <221> CDS
     <222> (2471)..(3550)
25
     <223> tal-Gen
     <400> 1
     cacatttgaa ccacagttgg ttataaaatg ggttcaacat cactatggtt agaggtgttg 60
30
     acgggtcaga ttaagcaaag actadtttcg gggtagatca cctttgccaa atttgaacca 120
     attaacctaa gtcgtagatc tgatcatcgg atctaacgaa aacgaaccaa aactttggtc 180
     ccggtttaac ccaggaagga ttgaccact tgacgctgtc acctgaactt caggcgctca 240
35
     ctgtacgcaa ttacccctct gattggtdcg atgtggacac caaggctgta gacactgttc 300
     gtgtcctcgc tgcagacgct gtagaaaadt gtggctccgg ccacccaggc accgcaatga 360
40
     geotygetee cettgeatac acettgtacd agegggttat gaacgtagat ceacaggaca 420
     ccaactgggc aggccgtgac cgcttcgttc \tttcttgtgg ccactcctct ttgacccagt 480
     acatecaget ttaettgggt ggatteggee 4tgagatgga tgaeetgaag getetgegea 540
45
     cctgggattc cttgacccca ggacaccctg adtaccgcca caccaagggc gttgagatca 600
     ccactggccc tettggccag ggtettgcat etdcagttgg tatggccatg getgetegte 660
50
     gtgagcgtgg cctattcgac ccaaccgctg ctgagggcga atccccattc gaccaccaca 720
     tetacgteat tgettetgat ggtgacetge aggaaggtgt cacetetgag geatecteca 780-
     tegetggeac ceageagetg ggeaacetea tegtgtetg ggatgacaac egeateteea 840
55
     tegaagacaa caetgagate gettteaaeg aggaeg¶tgt tgetegttae aaggettaeg 900
     gctggcagac cattgaggtt gaggctggcg aggacgttgc agcaatcgaa gctgcagtgg 960
```

	ctgaggctaa	gaaggacacc	aagcgaccta	ccttcatccg	cgttcgcacc	atcatcggct	1020
	tcccagctcc	aactatgatg	aacaccggtg	ctgtgcacgg	tgctgctctt	ggcgcagctg	1080
5	aggttgcagc	aaccaagact	gagcttggat	tcgatcctga	ggctcacttc	gcgatcgacg	1140
	atgaggttat	cgctcacacc	cgctccctcg	cagagcgcgc	tgcacagaag	aaggctgcat	1200
10	ggcaggtcaa	gttcgatgag	tgggcagctg	ccaaccctga	gaacaaggct	ctgttcgatc	1260
10	gcctgaactc	ccgtgagctt	ccagcgggct	acgctgacga	gctcccaaca	tgggatgcag	1320
	atgagaaggg	cgtcgcaact	cgtaaggctt	ccgaggctgc	acttcaggca	ctgggcaaga	1380
15	cccttcctga	gctgtggggc	ggttccgctg	acctcgcagg	ttccaacaac	accgtgatca	1440
	agggctcccc	ttccttcggc	cctgagtcca	tctccaccga	gacctggtct	gctgagcctt	1500
20	acggccgtaa	cctgcacttc	ggtatccgtg	agcacgctat	gggatccatc	ctcaacggca	1560
20	tttccctcca	cggtggcacc	cgcccatacg	gcggaacctt	cctcatcttc	tccgactaca	1620
	tgcgtcctgc	agttcgtctt	gcagctctca	tggagaccga	cgcttactac	gtctggaccc	1680
25	acgactccat	cggtctgggc	gaagatggcc	caacccacca	gcctgttgaa	accttggctg	1740
	cactgcgcgc	catcccaggt	ctgtccgtcc	tgcgtcctgc	agatgcgaac	gagaccgccc	1800
30	aggcttgggc	tgcagcactt	gagtacaagg	aaggccctaa	gggtcttgca	ctgacccgcc	1860
50	agaacgttcc	tgttctggaa	ggcaccaagg	agaaggctgc	tgaaggcgtt	cgccgcggtg	1920
	gctacgtcct	ggttgagggt	tccaaggaaa	ccccagatgt	gatcctcatg	ggctccggct	1980
35	ccgaggttca	gcttgcagtt	aacgctgcga	aggctctgga	agctgagggc	gttgcagctc	2040
	gcgttgtttc	cgttccttgc	atggattggt	tccaggagca	ggacgcagag	tacatcgagt	2100
40	ccgttctgcc	tgcagctgtg	accgctcgtg	tgtctgttga	agctggcatc	gcaatgcctt	2160
10	ggtaccgctt	cttgggcacc	cagggccgtg	ctgtctccct	tgagcacttc	ggtgcttctg	2220
	cggattacca	gaccctgttt	gagaagttcg	gcatcaccac	cgatgcagtc	gtggcagcgg	2280
45	ccaaggactc	cattaacggt	taattgccct	gctgttttta	gcttcaaccc	ggggcaatat	2340
	gattctccgg	aattttattg	ccccgggttg	ttgttgttaa	tcggtacaaa	gggtcttaag	2400
50	cacatccctt	acttgcctgc	tctccttgag	cacagttcaa	gaacaattct	tttaaggaaa	2460
	atttagtttc	atg tct cac Met Ser His	c att gat ga s Ile Asp As 5				2509
55		c gac gac ct ı Asp Asp Le					2557

													acc Thr				2605
5	_			_	_	_	_		_		-		tac Tyr	_	-	_	2653
10													cag Gln				2701
15	_	_	_		-	_	-	_		_	_	_	ctg Leu 90				2749
20													tcc Ser			gtt Val.	2797
20													gct. Ala				2845
25													atc Ile				2893
30													ttg Leu				2941
35		_	_		_		_				-	-	cgc Arg 170				2989
40													gct Ala				3037
,,													ttc Phe				3085
45													gga Gly				3133
50													gct Ala				3181
55 _.													ctg Leu 250				3229
	gcc Ala	aac Asn 255	act Thr	cag Gln	cgc Arg	cca Pro	ctg Leu 260	tgg Trp	gca Ala	tcc Ser	acc Thr	ggc Gly 265	gtg Val	aag Lys	aac Asn	cct Pro	3277

5		ct gca act o la Ala Thr l						3325
_		cc atg cca (hr Met Pro (290						3373
10		ac ggt gac a is Gly Asp 5 305			Ser Ala		a Asp Ala	3421
15	Val Phe S	cc cag ctt o er Gln Leu (20						3469
20		tg gag acc (eu Glu Thr (-	-	t tgg agc3 r Trp Ser	3517
25		eu Glu Ser N				tagaatcagc	acgctgcatc 3	3570
23	agtaacggc	g acatgaaato	gaatta	igttc ga	tcttatgt	ggccgttaca	catctttcat 3	3630
	taaagaaag	g atcgtgacad	taccat	cgtg ag	cacaaaca	cgaccccctc	cagctggaca 3	3690
30	aacccactg	c gcgacccgca	ggataa	acga ct	ccccgca	tegetggeee	ttccggcatg 3	3750
	gtgatcttc	g gtgtcactgo	g cgactt	ggct cg	aaagaagc	tgctccccgc	catttatgat 3	3810
35	ctagcaaac	c gcggattgct	gecee	agga tt	ctcgttgg	taggttacgg	ccgccgcgaa 3	3870
	tggtccaaa	g aagactttga	aaaata	cgta cg	cgatgccg	caagtgctgg	tgctcgtacg 3	3930
	gaattccgt	g aaaatgttto	ggagcg	cctc gc	cgagggta	tggaatttgt	tcgcggcaac 3	3990
40	tttgatgat	g atgcagcttt	cgacaa	cctc gc	tgcaacac	tcaagcgcat	cgacaaaacc 4	1050
	cgcggcacc	g ccggcaacto	ggctta	ctac ct	gtccattc	caccagattc	cttcacageg 4	1110
45	gtctgccac	c agctggagco	, ttccgg	catg go	tgaatcca	ccgaagaagc	atggcgccgc 4	1170
	gtgatcatco	g agaagccttt	cggcca	caac ct	cgaatccg	cacacgagct	caaccagctg 4	1230
	gtcaacgca	g tcttcccaga	atcttc	tgtg tt	ccgcatcg	accactattt	gggcaaggaa 4	1290
50	acagttcaaa	a acatcctggd	: tctgcg	tttt gc	taaccagc	tgtttgagcc	actgtggaac 4	1350
	tccaactac	g ttgaccacgt	ccagat	cacc at	ggctgaag	atattggctt	gggtggacgt 4	1410
55	gctggttact	t acgacggcat	cggcgc	agcc cg	cgacgtca	tccagaacca	cctgatccag 4	1470
	ctcttggct	c tggttgccat	ggaaga	acca at	ttctttcg	tgccagcgca	gctgcaggca 4	1530
	gaaaagatca	a aggtgctctc	: tgcgac	aaag cc	gtgctacc	cattggataa	aacctccgct 4	1590

cgtggtcagt acgctgccgg ttggcagggc tctgagttag tcaagggact tcgcgaagaa 4650 gatggcttca accetgagte caccactgag acttttgcgg cttgtacett agagateacg 4710 5 tetegteget gggetggtgt geegttetae etgegeaeeg gtaagegtet tggtegeegt 4770 gttactgaga ttgccgtggt gtttaaagac gcaccacacc agcctttcga cggcgacatg 4830 actgtatece ttggeeaaaa egeeategtg attegegtge ageetgatga aggtgtgete 4890 10 atcogottog gttocaaggt tocaggttot gocatggaag tocgtgacgt caacatggac 4950 ttctcctact cagaatcctt cactgaagaa tcacctgaag catacgagcg cctcattttg 5010 15 gatgcgctgt tagatgaatc cagcctcttc cctaccaacg aggaagtgga actgagctgg 5070 aagattetgg atecaattet tgaageatgg gatgeegatg gagaaceaga ggattaeeea 5130 gegggtaegt ggggteeaaa gagegetgat gaaatgettt eeegeaaegg teacaeetgg 5190 20 cgcaggccat aatttagggg caaaaaatga tetttgaact teeggatace accaeccage 5250 aaatttccaa gaccctaact cgactgcgtg aatcgggcac ccaggtcacc accggccgag 5310 25 tgctcaccct catcgtggtc actgactccg aaagcgatgt cgctgcagtt accgagtcca 5370 ccaatgaage etegegegag cacceatete gegtgateat titiggtggtt ggegataaaa 5430 ctgcagaaaa caaagttgac gcagaagtcc gtatcggtgg cgacgctggt gcttccgaga 5490 30 tgatcatcat gcatctcaac ggacctgtcg ctgacaagct ccagtatgtc gtcacaccac 5550 tgttgcttcc tgacaccccc atcgttgctt ggtggccagg tgaatcacca aagaatcctt 5610 35 cccaggaccc aattggacgc atcgcacaac gacgcatcac tgatgctttg tacgaccgtg 5670 atgacgcact agaagatcgt gttgagaact atcacccagg tgataccgac atgacgtggg 5730 cgcgccttac ccagtggcgg ggacttgttg cctcctcatt ggatcaccca ccacacagcg 5790 40 aaatcacttc cgtgaggctg accggtgcaa gcggcagtac ctcggtggat ttggctgcag 5850 gctggttggc gcggaggctg aaagtgcctg tgatccgcga ggtgacagat gctcccaccg 5910 45 tgccaaccga tgagtttggt actccactgc tggctatcca gcgcctggag atcgttcgca 5970 ccaccggctc gatcatcatc accatctatg acgctcatac ccttcaggta gagatgccgg 6030 aatccggcaa tgccccatcg ctggtggcta ttggtcgtcg aagtgagtcc gactgcttgt 6090 50 ctgaggagct tcgccacatg gatccagatt tgggctacca gcacgcacta tccggcttgt 6150 ccagcgtcaa gctggaaacc gtctaaggag aaatacaaca ctatggttga tgtagtacgc 6210 55 gcacgcgata ctgaagattt ggttgcacag gctgcctcca aattcattga ggttgttgaa 6270 gcagcaactg ccaataatgg caccgcacag gtagtgctca ccggtggtgg cgccggcatc 6330 aagttgctgg aaaagctcag cgttgatgcg gctgaccttg cctgggatcg cattcatgtg 6390

	ttcttcggcg	atgagcgcaa	tgtccctgtc	agtgattctg	agtccaatga	gggccaggct	6450
5	cgtgaggcac	tgttgtccaa	ggtttctatc	cctgaagcca	acattcacgg	atatggtctc	6510
J	ggcgacgtag	atcttgcaga	ggcagcccgc	gcttacgaag	ctgtgttgga	tgaattcgca	6570
	ccaaacggct	ttgatcttca	cctgctcggc	atgggtggcg	aaggccatat	caactccctg	6630
10	ttccctcaca	ccgatgcagt	caaggaatcc	tccgcaaagg	tcatcgcggt	gtttgattcc	6690
	cctaagcctc	cttcagagcg	tgcaactcta	acccttcctg	cggttcactc	cgcaaagcgc	6750
15	gtgtggttgc	tggtttctgg	tgcggagaag	gctgaggcag	ctgcggcgat	cgtcaacggt	6810
	gagcctgctg	ttgagtggcc	tgctgctgga	gctaccggat	ctgaggaaac	ggtattgttc	6870
	ttggctgatg	atgctgcagg	aaatctctaa	gcagcgccag	ctctaacaag	aagctttaac.	693.0.
20	aagaagctct	aacgaaaagc	actaacaaac	taatccgggt	gcgaaccttc	atctgaatcg	6990.
	atgga						6995
25	<210> 2 <211> 360 <212> PRT <213> Cory	nebacterium	glutamicum			·	
30	<400> 2 Met Ser His	s Ile Asp A	sp Leu Ala	Gln Leu Gly	Thr Ser Thr	Trp Leu	
	1	5	•	10		15	
35	Asp Asp Le	u Ser Arg G 20	lu Arg Ile	Thr Ser Gly 25	Asn Leu Ser		
	Ile Glu Glu	-	al Val Gly 40	Val Thr Thr	Asn Pro Ala 45	lle Phe	
40	Ala Ala Ala 50	a Met Ser L	ys Gly Asp 55	Ser Tyr Asp	Ala Gln Ile 60	e Ala Glu	
45	Leu Lys Ala 65	-	la Ser Val . 70	Asp Gln Ala 75	Val Tyr Ala	Met Ser 80	

Ser Ser Asn Gly Tyr Asp Gly Arg Val Ser Ile Glu Val Asp Pro Arg

50 100 105 110 Alg

Ile Ser Ala Asp Arg Asp Ala Thr Leu Ala Gln Ala Lys Glu Leu Trp 115 120 125

Ile Asp Asp Val Arg Asn Ala Cys Asp Leu Phe Thr Gly Ile Phe Glu

55 Ala Lys Val Asp Arg Pro Asn Val Met Ile Lys Ile Pro Ala Thr Pro 130 135 140

Gly Ser Leu Pro Ala Ile Thr Asp Ala Leu Ala Glu Gly Ile Ser Val 145 150 155 160

	Asn	Val	Thr	Leu	Ile 165	Phe	Ser	Val.	Ala	Arg 170	Tyr	Arg	Glu	Val	Ile 175	Ala	
5	Ala	Phe	Ile	Glu 180	Gly	Ile	Lys	Gln	Ala 185	Ala	Ala	Asn	Gly	His 190	Asp	Val	
10	Ser	Lys	Ile 195	His	Ser	Val	Ala	Ser 200	Phe	Phe	Val	Ser	Arg 205	Val	Asp	Val	
	Glu	Ile 210	Asp	Lys	Arg	Leu	Glu 215	Ala	Ile	Gly	Ser	Asp 220	Glu	Ala	Leu	Ala	
15	Leu 225	Arg	Gly	Lys	Ala	Gly 230	Val	Ala	Asn	Ala	Gln 235	Arg	Ala	Tyr	Ala	Val 240	
	Tyr	Lys	Glu	Leu	Phe 245	Asp	Ala	Ala	Glu	Leu 250	Pro	Glu	Gly	Ala	Asn 255	Thr	
20	Gln	Arg	Pro	Leu 260	Trp	Ala	Ser	Thr	Gly 265	Val	Lys	Asn	Pro	Ala 270	Tyr.	Ala	
25	Ala	Thr	Leu 275	Tyr	Val	Ser	Glu	Leu 280	Ala	Gly	Pro	Asn	Thr 285	Val	Asn	Thr	
	Met	Pro 290	Glu	Gly	Thr	Ile	Asp 295	Ala	Val	Leu	Glu	Gln 300	Gly	Asn	Leu	His	
30	Gly 305	Asp	Thr	Leu	Ser	Asn 310	Ser	Ala	Ala	Glu	Ala 315	Asp	Ala	Val	Phe	Ser 320	
	Gln	Leu	Glu	Ala	Leu 325	Gly	Val	Asp	Leu	Ala 330	Asp	Val	Phe	Gln	Val 335	Leu	
35	Glu	Thr	Glu	Gly 340	Val	Asp	Lys	Phe	Val 345	Ala 	Ser	Trp	Ser	Glu 350	Leu	Leu	
40	Glu	Ser	Met 355	Glu	Ala	Arg	Leu	Lys 360								·,	
45	<213 <213	0> 3 1> 1(2> Di 3> Co	ΑV	ebact	ceriu	ım gl	lutar	micur	n								
50	<222	0> 1> CI 2> (1 3> ta	l)	(1080	D)								•				
55	atg							gca Ala									48

							att Ile								96
5							ggt Gly 40								144
10							gat Asp								192
15	_	_	_		_		gtt Val	_	_	-	-	-	_	_	240
20	_	-		_		-	tgt Cys	_	_						288
							cgc Arg								336
25							acc Thr 120								384
30							gtc Val								432
35							gac Asp								480
40							gtt Val							Āla	528
							cag Gln								576
45							tcc Ser 200								624
50							gca Ala								672
55							gcc Ala								720
							gcc Ala								768

5					tgg Trp										Tyr		816
J	_				gtt Val			_	_					_			864
10					acc Thr												912
15					tcc Ser												960
20					ctg Leu 325											Leu	,1008
25					gtg Val	_	_		-	-			-	-	_		1056
			_	_	gct Ala	_	_	-	tag								1083
20																	
30	~21 ()															
	<213 <213	0> 4 l> 3(2> PI 3> Co	RT	ebact	ceriu	ım gi	lutar	micur	n								
35	<213 <213 <213 <400	1> 30 2> PI 3> Co	RT oryne		eriu Asp 5	_				Leu 10	Gly	Thr	Ser	Thr	Trp 15	Leu	
	<21: <21: <21: <400 Met	1> 30 2> PI 3> Co 0> 4 Ser	RT oryne His	Ile		Asp	Leu	Ala	Gln	10					15		
35	<211 <211 <211 <400 Met 1	1> 30 2> PI 3> Co 0> 4 Ser Asp	RT Oryne His Leu	Ile Ser 20	Asp 5	Asp Glu	Leu Arg	Ala	Gln Thr 25	10 Ser	Gly	Asn	Leu	Ser 30	15 Gln	Val	
35	<21: <21: <21: <400 Met 1 Asp	1> 30 2> PI 3> Co 0> 4 Ser Asp	RT Oryno His Leu Glu 35	Ile Ser 20 Lys	Asp 5 Arg	Asp Glu Val	Leu Arg Val	Ala Ile Gly 40	Gln Thr 25 Val	10 Ser Thr	Gly	Asn Asn	Leu Pro 45	Ser 30 Ala	15 Gln Ile	Val Phe	
35	<21: <21: <21: <400 Met 1 Asp Ile	1> 30 2> PI 3> Co 0> 4 Ser Asp Glu Ala 50	His Leu Glu 35	Ile Ser 20 Lys Met	Asp 5 Arg Ser	Asp Glu Val Lys	Leu Arg Val Gly 55	Ala Ile Gly 40 Asp	Gln Thr 25 Val	10 Ser Thr Tyr	Gly Thr Asp	Asn Asn Ala 60	Leu Pro 45 Gln	Ser 30 Ala Ile	15 Gln Ile Ala	Val Phe Glu	
35 40 45	<21: <21: <400 Met 1 Asp Ile Ala Leu 65	l> 30 2> PI 3> Co 0> 4 Ser Asp Glu Ala 50 Lys	His Leu Glu 35 Ala	Ile Ser 20 Lys Met	Asp 5 Arg Ser	Asp Glu Val Lys Ala	Leu Arg Val Gly 55	Ala Ile Gly 40 Asp	Gln Thr 25 Val Ser	10 Ser Thr Tyr	Gly Thr Asp Ala 75	Asn Ala 60 Val	Leu Pro 45 Gln Tyr	Ser 30 Ala Ile Ala	15 Gln Ile Ala Met	Val Phe Glu Ser 80	
35 40 45	<21: <21: <400 Met 1 Asp Ile Ala Leu 65 Ile	l> 30 2> PI 3> Co 3> Co Ser Asp Glu Ala 50 Lys Asp	His Leu Glu 35 Ala Ala	Ile Ser 20 Lys Met Ala	Asp 5 Arg Ser Gly Arg	Asp Glu Val Lys Ala 70 Asn	Leu Arg Val Gly 55 Ser	Ala Ile Gly 40 Asp Val	Gln Thr 25 Val Ser Asp	10 Ser Thr Tyr Gln Leu	Gly Thr Asp Ala 75	Asn Ala 60 Val	Leu Pro 45 Gln Tyr	Ser 30 Ala Ile Ala	15 Gln Ile Ala Met	Val Phe Glu Ser 80 Glu	

					1											
	Ala	Lys 130	Val	Asp	Arg	Pro	Asn 135	Val	Met	Ile	Lys	11e 140	Pro	Ala	Thr	Pro
5	Gly 145	Ser	Leu	Pro	Ala	Ile 150	Thr	Asp	Ala	Leu	Ala 155	Glu	Gly	Ile	Ser	Val 160
1.0	Asn	Val	Thr	Leu	Ile 165	Phe	Ser	Val	Ala	Arg 170	Tyr	Arg	Glu	Val	Ile 175	Ala
10	Ala	Phe	Ile	Glu 180	Gly	Ile	Lys	Gln	Ala 185	Ala	Ala	Asn	Gly	His 190	Asp	Val
15	Ser	Lys	Ile 195	His	Ser	Val	Ala	Ser 200	Phe	Phe	Val	Ser	Arg 205	Val	Asp	Val.
	Glu	Ile 210	Asp	Lys	Arg	Leu	Glu 215	Ala	Ile	Gly	Ser	Asp 220	Glu	Ala	Leu	Ala
20	Leu 225	Arg	Gly	Lys	Ala	Gly 230	Val	Ala	Asn	Ala	Gln 235	Arg	Ala	Tyr		Val 240
25	Tyr	Lys	Glu	Leú	Phe 245	Asp	Ala	Ala	Glu	Leu 250	Pro	Glu	Gly	Ala	Asn 255	Thr
25	Gln	Arg	Pro	Leu 260	Trp	Ala	Ser	Thr	Gly 265	Val	Lys	Asn	Pro	Ala 270	Tyr	Ala
30	Ala	Thr	Leu 275	Tyr	Val	Ser	Glu	Leu 280	Ala	Gly	Pro	Asn	Thr 285	Val	Asn	Thr
	Met	Pro 290	Glu	Gly	Thr	Ile	Asp 295	Ala	Val	Leu	Glu	Gln 300	_	Asn	Leu	His
35	Gly 305	Asp	Thr	Leu	Ser	Asn 310	Ser	Ala	Ala	Glu	Ala 315	Asp	Ala	Val	Phe	Ser 320
4.0	Gln	Leu	Glu	Ala	Leu 325	_	Val	Asp	Leu	Ala 330	Asp	Val	Phe	Gln	Val 335	Leu
40	Glu	Thr	Glu	Gly 340	Val	Asp	Lys	Phe	Val 345	ala	Ser	Trp	Ser	Glu 350	Leu	Leu
45	Glu	Ser	Met 355	Glu	Ala	Arg	Leu	Lys 360								

15

Patentansprüche

- Isoliertes Polynukleotid aus coryneformen Bakterienk, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe
 - a) Polynukleotid, das mindestens zu 70 % identisch ist mit einem Polynukleotid, das für ein Polypeptid codiert, das die Aminosäuresequenzen von SEQ ID NO. 2 oder SEQ ID NO. 4 enthält,
- b) Polynukleotid, das für ein Polypeptid codiert; das eine Aminosäuresequenz enthält, die zu mindestens 70 % identisch ist mit den Aminosäuresequenzen von SEQ ID NO. 2 oder SEQ ID NO. 4
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
 - d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenzen von a), b) oder c).
- Polynukleotid gemäß Anspruch 1,
 wobei das Polynukleotid eine in coryneformen Bakterien replizierbare, bevorzugt rekombinante DNA ist, die zusätzlich zumindest eine der Nukleotidsequenzen enthält, die für die Gene tkt, zwf, opcA und devB codieren.
- 25 3. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine RNA ist.
 - 4. Polynukleotid gemäß Anspruch 2, enthaltend eine der Nukleinsäuresequenz, wie in SEQ ID NO. 3 dargestellt.
- 30 5. Polynukleotid gemäß Anspruch 2, das für ein Polypeptid codiert, das die

15

20

25

Aminosäuresequenz, wie in SEQ ID NO. 2 und SEQ ID NO. 4 dargestellt, enthält.

- 6. Replizierbare DNA gemäß Anspruch 2 enthaltend
 - (i) eine Nukleotidsequenz, wie in SEQ ID NO. 3 dargestellt, oder
 - (ii) mindestens eine Sequenz, die den Sequenzen(i) innerhalb des Bereichs der Degeneration des genetischen Codes entspricht, oder
- (iii) mindestens eine Sequenz, die mit den zur den

 Sequenzen (i) oder (ii) komplementären Sequenzen hybridisiert, und gegebenenfalls
 - (iv) funktionsneutrale Sinnmutationen in (i).
 - 7. Als Wirtszelle dienende coryneforme Bakterien, die einen Vektor enthalten, der ein Polynukleotid gemäß Anspruch 1 trägt.
 - 8. Verfahren zur Herstellung von L-Aminosäuren, dadurch gekennzeichnet, daß man folgende Schritte durchführt:
 - a) Fermentation der die gewünschte L-Aminosäure produzierenden Bakterien, in denen man zumindest das tal-Gen und gegebenenfalls eines oder mehrere der Gene tkt-Gen, zwf-Gen, devB-Gen oder opcA-Gen gleichzeitig verstärkt,
 - b) Anreicherung des gewünschten Produkts im Medium oder in den Zellen der Bakterien, und
 - c) Isolieren der gewünschten L-Aminosäure.
- Verfahren gemäß Anspruch 8,
 d a d u r c h g e k e n n z e i c h n e t,
 daß man Bakterien einsetzt, in denen man zusätzlich
 weitere Gene des Biosyntheseweges der gewünschten
 L-Aminosäure verstärkt.

25

- 10. Verfahren gemäß Anspruch 8,
 d a d u r c h g e k e n n z e i c h n e t,
 daß man Bakterien einsetzt, in denen die
 Stoffwechselwege zumindest teilweise ausgeschaltet
 sind, die die Bildung des der gewünschten L-Aminosäure
 verringern.
- Verfahren gemäß einem oder mehreren der Ansprüche 8 bis 12,
 d a d u r c h g e k e n n z e i c h n e t,
 daß man coryneforme Bakterien verwendet, die eine der Aminosäuren aus der Gruppe L-Lysin, L-Threonin, E-Isoleucin oder L-Tryptophan herstellen.
- 12. Verfahren zur fermentativen Herstellung von L-Aminsosäuren, insbesondere L-Lysin, gemäß Anspruch 8, dad urch gekennzeichnet, daß man in den coryneformen Mikroorganismen, die insbesondere bereits L-Aminosäuren produzieren, gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
- 20 12.1 das für die Dihydrodipicolinat-Synthase kodierende dapA-Gen,
 - 12.2 das für eine feed back resistente Aspartatkinase kodierende lysC-Gen,
 - 12.3 das für die Glycerinaldehyd-3-Phosphat Dehydrogenase kodierende gap-Gen,
 - 12.4 das für die Pyruvat-Carboxylase kodierende pyc-Gen,
 - 12.5 das für die Malat-Chinon-Oxidoreduktase kodierende mgo-Gen,
- 30 12.6 das für die Transketolase kodierende tkt-Gen,

- 12.7 das für die 6-Phosphogluconat-Dehydrogenase
 kodierende gnd-Gen,
- 12.8 das für die Glucose-6-Phosphat Dehydrogenase kodierende zwf-Gen,
- 5 12.9 das für den Lysin-Export kodierende lysE-Gen,
 - 12.10 das zwal-Gen,
 - 12.11 das für die Enolase kodierende eno-Gen,
 - 12.12 das opcA-Gen

verstärkt bzw. überexprimiert.

- 10 13. Verfahren zur fermentativen Herstellung von L-Threonin gemäß Anspruch 8, dad urch gekennzeichnet, daß man in coryneformen Mikroorganismen, die insbesondere bereits L-Threonin produzieren, gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
 - 13.1 gleichzeitig das für die Homoserin-Dehydrogenase kodierende hom-Gen oder das für eine "feed back resistente" Homoserin-Dehydrogenase kodierende hom^{dr}-Allel,
 - 13.2 das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende gap-Gen,
 - 13.3 das für die Pyruvat Carboxylase kodierende pyc-Gen,
- 25 13.4 das für die Malat:Chinon Oxidoreduktase kodierende mqo-Gen,
 - 13.5 das für die Transketolase kodierende tkt-Gen,

- 13.6 das für die 6-Phosphogluconat-Dehydrogenase kodierende gnd-Gen,
- 13.7 das für die Glucose-6-Phosphat Dehydrogenase kodierende zwf-Gen,
- 5 13.8 das für den Threonin-Export kodierende thrE-Gen,
 - 13.9 das zwal-Gen,
 - 13.10 das für die Enolase kodierende eno-Gen,
 - 13.11 das opcA-Gen

verstärkt, insbesondere überexprimiert.

- 10 14. Verfahren gemäß Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, daß man für die Herstellung von L-Aminosäuren, insbesondere von L-Lysin, L-Threonin, L-Isoleucin oder L-Tryptophan Bakterien fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe,
 - 14.1 das für die Phosphoenolpyruvat-Carboxykinase codierende pck-Gen
- 14.2 das für die Glucose-6-Phosphat6 Isomerase 20 codierende pgi-Gen
 - 14.3 das für die Pyruvat-Oxidase codierende poxB-Gen oder
 - 14.4 das zwa2-Gen

abschwächt.

25 15. Verwendung von Polynukleotidsequenzen gemäß Anspruch 1 als Hybridisierungssonden zur Isolation von cDNA, die für das tal-Genprodukt codiert.

16. Verwendung von Polynukleotidsequenzen gemäß Anspruch 1 als Hybridisierungssonden zur Isolierung von cDNA oder Genen, die eine hohe Ähnlichkeit mit der Sequenz des tal-Gens aufweisen.

Neue für das tal-Gen codierende Nukleotidsequenzen

Zusammenfassung

Die Erfindung betrifft ein isoliertes Polynukleotid aus coryneformen Bakterienk, enthaltend eine

- 5 Polynukleotidsequenz, ausgewählt aus der Gruppe
 - a) Polynukleotid, das mindestens zu 70 % identisch ist mit einem Polynukleotid, das für ein Polypeptid codiert, das die Aminosäuresequenzen von SEQ ID NO. 2 oder SEQ ID NO. 4 enthält,
- 10 b) Polynukleotid, das für ein Polypeptid codiert, das eine Aminosäuresequenz enthält, die zu mindestens 70 % identisch ist mit den Aminosäuresequenzen von SEQ ID NO. 2 oder SEQ ID NO. 4
- c) Polynukleotid, das komplementär ist zu denPolynukleotiden von a) oder b), und
 - d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenzen von a), b) oder c)

und ein Verfahren zur Herstellung von L-Aminosäuren,

20 das dadurch gekennzeichnet ist, daß man folgende Schritte
durchführt:

- a) Fermentation der die gewünschte L-Aminosäure produzierenden Bakterien, in denen man zumindest das tal-Gen verstärkt,
- 25 b) Anreicherung des gewünschten Produkts im Medium oder in den Zellen der Bakterien, und
 - c) . Isolieren der L-Aminosäure.

