Fall 2022, MATH 3215-J, Exam 3 (30 pts)

_				
1	NΤ	_	 _	

GT ID:

- Regular exam time is 75 min.
- Open-book/notes. Calculators are allowed. No communication in any form.
- Please clearly indicate what each formula/number is referring to. All the solutions are supposed to be short and can fit in the given space.
- Consider skipping a part if you get stuck somewhere.
- If there is a mistake in a problem statement making it unsolvable, skip it and you will be awarded full points for that problem.

- 1. Team A will play against other teams, once per team with independent win/loss outcome. Suppose that Team A beats each of 400 "weak" teams with probability 0.8 and beats each of 150 "strong" teams with probability 0.4. Use the CDF Φ of $\mathcal{N}(0,1)$ to approximate the probabilities of the following events (no need to worry about correction for continuity or strict vs. non-strict inequalities):
 - (a) (2 pts) Team A beats fewer than 330 out of the 400 "weak" teams.
 - (b) (2 pts) Team A beats more than 370 out of the 550 teams in total.
 - (c) (2 pts) Team A beats more "weak" teams than "strong" teams.
 - (a) Let X be the number of wins against "weak" teams. Then $X \sim \text{Bin}(400, 0.8)$, so $\mathbb{E}[X] = 320$ and Var(X) = 64. It follows that

$$\mathbb{P}\{X < 330\} = \mathbb{P}\left\{\frac{X - 320}{8} < \frac{330 - 320}{8}\right\} \approx \Phi(5/4).$$

(b) Let Y be the number of wins against "strong" teams. Then $Y \sim \text{Bin}(150, 0.4)$, so $\mathbb{E}[Y] = 60$ and Var(Y) = 36. Hence, X + Y is approximately $\mathcal{N}(380, 100)$. It follows that

$$\mathbb{P}\{X+Y>370\} = \mathbb{P}\left\{\frac{X+Y-380}{10} > \frac{370-380}{10}\right\} \approx 1 - \Phi(-1) = \Phi(1).$$

(c) We have that X - Y is approximately $\mathcal{N}(260, 100)$, so

$$\mathbb{P}\{X > Y\} = \mathbb{P}\left\{\frac{X - Y - 260}{10} > \frac{-260}{10}\right\} \approx \Phi(26) \approx 1.$$

- **2.** Suppose that we are given i.i.d. X_1, \ldots, X_n from the Pareto distribution with PDF $f(x) = \lambda \theta^{\lambda} x^{-(\lambda+1)}$ for $x \geq \theta$ and f(x) = 0 otherwise, where $\lambda > 0$ is known and θ is the parameter.
 - (a) (2 pts) What is the likelihood at θ ?
 - (b) (1 pt) What is the MLE of θ ?

The likelihood is $\lambda^n \theta^{n\lambda} (x_1 \cdots x_n)^{-(\lambda+1)}$ for $\theta \leq x_i$ for all $i = 1, \dots, n$ and is zero otherwise. To maximize this function over θ , we should take $\theta = \min_{1 \leq i \leq n} x_i$. Therefore, the MLE of θ is

$$\hat{\theta} = \min_{1 \le i \le n} X_i.$$

3. Suppose that we are given i.i.d. $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \theta)$ where the mean μ is known and the variance θ is to be estimated.

(Remark: We usually denote θ by σ^2 . Here we use θ so that there is no confusion whether σ or σ^2 is the parameter to be estimated.)

- (a) (1 pt) What is the joint PDF of X_1, \ldots, X_n ?
- (b) (1 pt) What is the log-likelihood at θ ?
- (c) (2 pts) What is the maximum likelihood estimator (MLE) of θ ?
- (a) The joint PDF of (X_1, \ldots, X_n) is

$$f(x_1,...,x_n \mid \theta) = \frac{1}{(2\pi\theta)^{n/2}} \exp\left(\frac{-\sum_{i=1}^n (x_i - \mu)^2}{2\theta}\right).$$

(b) The log-likelihood is

$$\frac{-\sum_{i=1}^{n} (x_i - \mu)^2}{2\theta} - \frac{n}{2} \log(\theta) - \frac{n}{2} \log(2\pi).$$

(c) Differentiating the log-likelihood with respect to θ and setting the result to zero, we obtain

$$\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\theta^2} - \frac{n}{2\theta} = 0.$$

Therefore, the MLE of θ is $\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$.

- **4.** Suppose that we are given i.i.d. $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \theta)$ where the mean μ is known and the variance θ is to be estimated. Consider the estimator $\hat{\theta} := \frac{1}{n} \sum_{i=1}^{n} (X_i \mu)^2$.
 - (a) (1 pt) What is the bias of $\hat{\theta}$?
 - (b) (1 pt) What is the distribution of $(X_i \mu)/\sqrt{\theta}$?
 - (c) (1 pt) What is the distribution of $n\hat{\theta}/\theta$? (Hint: Write it as a sum and use part (b).)
 - (d) (1 pt) Using the fact that $\mathbb{E}[Z^4] = 3$ for $Z \sim \mathcal{N}(0,1)$, compute $\text{Var}(Z^2)$.
 - (e) (1 pt) What is the variance of $n\hat{\theta}/\theta$?
 - (f) (1 pt) What is the variance of $\hat{\theta}$?

(a)
$$\mathbb{E}[\hat{\theta}] - \theta = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[(X_i - \mu)^2] - \theta = \frac{1}{n} \sum_{i=1}^{n} \theta - \theta = 0$$

- (b) $\mathcal{N}(0,1)$ (need to indicate the parameters)
- (c) $n\hat{\theta}/\theta = \sum_{i=1}^{n} \left(\frac{X_i \mu}{\sqrt{\theta}}\right)^2 \sim \chi_n^2$
- (d) $Var(Z^2) = \mathbb{E}[Z^4] (\mathbb{E}[Z^2])^2 = 3 1 = 2$
- (e) $\operatorname{Var}(n\hat{\theta}/\theta) = \operatorname{Var}\left(\sum_{i=1}^{n} \left(\frac{X_i \mu}{\sqrt{\theta}}\right)^2\right) = \sum_{i=1}^{n} \operatorname{Var}\left(\left(\frac{X_i \mu}{\sqrt{\theta}}\right)^2\right) = \sum_{i=1}^{n} 2 = 2n$
- (f) $Var(\hat{\theta}) = (\theta^2/n^2) Var(\hat{\theta}) = 2\theta^2/n$

5. Consider two independent samples of sizes n_1 and n_2 from $\mathcal{N}(\mu_1, \sigma_1^2)$ and $\mathcal{N}(\mu_2, \sigma_2^2)$ respectively. Let S_1^2 and S_2^2 be the respective sample variances. Let \mathcal{F} denote the F-distribution with $n_1 - 1$ and $n_2 - 1$ degrees of freedom. Recall that

$$R := \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim \mathcal{F}.$$

Note that R takes values in $(0, \infty)$. Let G denote the CDF of \mathcal{F} . For $\alpha \in (0, 1)$, let $g_{\alpha} := G^{-1}(1-\alpha)$ be the quantile of order $1-\alpha$.

- (a) (1 pt) What is the upper bound c_1 such that $\mathbb{P}\{R < c_1\} = \alpha$? (Express c_1 as a quantile.)
- (b) (1 pt) What is the lower bound c_2 such that $\mathbb{P}\{R>c_2\}=\alpha$? (Express c_2 as a quantile.)
- (c) (2 pts) Derive a one-sided confidence interval that contains σ_2^2/σ_1^2 with probability $1-\alpha$, based on the upper bound c_1 .
- (d) (1 pt) State the other one-sided confidence interval that contains σ_2^2/σ_1^2 with probability $1-\alpha$, based on the lower bound c_2 .
- (e) (1 pt) State a two-sided confidence interval that contains σ_2^2/σ_1^2 with probability $1-\alpha$.
- (a) $c_1 = G^{-1}(\alpha) = g_{1-\alpha}$
- (b) $c_2 = G^{-1}(1 \alpha) = g_\alpha$
- (c) We have $\alpha = \mathbb{P}\{R < g_{1-\alpha}\} = \mathbb{P}\left\{\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} < g_{1-\alpha}\right\} = \mathbb{P}\{\sigma_2^2/\sigma_1^2 < g_{1-\alpha}S_2^2/S_1^2\}$. It follows that $\mathbb{P}\{\sigma_2^2/\sigma_1^2 > g_{1-\alpha}S_2^2/S_1^2\} = 1 \alpha$, so the confidence interval is $(g_{1-\alpha}S_2^2/S_1^2, \infty)$.
- (d) $(0, g_{\alpha}S_2^2/S_1^2)$
- (e) $(g_{1-\alpha/2}S_2^2/S_1^2, g_{\alpha/2}S_2^2/S_1^2)$

- **6.** In the setting of Bayesian estimation, suppose that we observe $X_1 \sim \mathcal{N}(\theta, 2)$ and have the prior distribution $\theta \sim \mathcal{N}(3, 2)$.
 - (a) (1 pt) What is the posterior distribution of θ ? (You can use the formulas introduced in class.)
 - (b) (2 pts) Suppose that we observe an additional $X_2 \sim \mathcal{N}(\theta, 2)$ independent of X_1 , and use the posterior from part (a) as the new prior. What is the new posterior distribution of θ ?
 - (c) (2 pts) Suppose that we observe independent $X_1, X_2 \sim \mathcal{N}(\theta, 2)$ at the beginning, and use the original prior $\theta \sim \mathcal{N}(3, 2)$. What is the posterior distribution of θ ? Is it the same as the posterior in part (b)?

The general formula for the posterior distribution is

$$\mathcal{N}\left(\frac{n\sigma^2}{n\sigma^2 + \tau^2}\bar{X} + \frac{\tau^2}{n\sigma^2 + \tau^2}\mu, \frac{\sigma^2\tau^2}{n\sigma^2 + \tau^2}\right).$$

(a) With $n=1, \bar{X}=X_1, \, \tau^2=2, \, \mu=3,$ and $\sigma^2=2,$ the posterior distribution is

$$\mathcal{N}\left(\frac{X_1+3}{2},1\right)$$
.

(b) With $n=1, \bar{X}=X_2, \tau^2=2, \mu=\frac{X_1+3}{2}$, and $\sigma^2=1$, the new posterior is

$$\mathcal{N}\left(\frac{X_2}{3} + \frac{X_1 + 3}{3}, \frac{2}{3}\right).$$

(c) With $n=2, \ \bar{X}=\frac{X_1+X_2}{2}, \ \tau^2=2, \ \mu=3, \ {\rm and} \ \sigma^2=2,$ the new posterior is

$$\mathcal{N}\bigg(\frac{X_1+X_2}{3}+1,\frac{2}{3}\bigg),$$

same as that in part (b).