AI POWERED NUTRITION ANALYSER FOR FITNESS ENTHUSIASTS

PROJECT REPORT

Submitted by

Team ID: PNT2022TMID12209

HARITHAN S (920419UCSE047)

SURIYA PRAKASH N P (920419UCSE076)

VINOTH J (920419UCSE046)

JAVEED AHMED RESHI (920419UCSE048)

In partial fulfilment for the award of the degree

Of

BACHELOR OF ENGINEERING

In

COMPUTER SCIENCE AND ENGINEERING

KAMARAJ COLLEGE OF ENGINEERING AND TECHNOLOGY, VIRUDHUNAGAR.

CONTENT

S.NO	TOPIC	PG.NO
1	INTRODUCTION	
	1.1 Project Overview	4
	1.2 Purpose	
2	LITERATURE SURVEY	4
	2.1 Existing Problem	
	2.2 References	
	2.3 Problem Statement Definition	
3	IDEATION & PROPOSED SOLUTION	6
	3.1 Empathy Map Canvas	
	3.2 Ideation & Brainstorming	
	3.3 Proposed Solution	
	3.4 Problem Solution fit	
4	REQUIREMENT ANALYSIS	11
	4.1 Functional requirement	
	4.2 Non-Functional requirements	
5	PROJECT DESIGN	12
	5.1 Data Flow Diagrams	
	5.2 Solution & Technical Architecture	
	5.3 User Stories	
6	PROJECT PLANNING & SCHEDULING	14
	6.1 Sprint Planning & Estimation	
	6.2 Sprint Delivery Schedule	
7	CODING & SOLUTIONING	16
	7.1 Feature 1	

	7.2 Feature 2	
8	TESTING	31
	8.1 Test Cases	
	8.2 User Acceptance Testing	
9	RESULTS	33
	9.1 Performance Metrics	
10	ADVANTAGES & DISADVANTAGES	35
11	CONCLUSION	36
12	FUTURE SCOPE	36
13	APPENDIX	37
	13.1 Source Code	
	13.2 GitHub & Project Demo Link	

1.INTRODUCTION:

1.1PROJECT OVERVIEW

Food is essential for human life and has been the concern of many healthcare conventions. Nowadays new dietary assessment and nutrition analysis tools enable more opportunities to help people understand their daily eating habits, exploring nutrition patterns and maintain a healthy diet. Nutritional analysis is the process of determining the nutritional content of food. It is a vital part of analytical chemistry that provides information about the chemical composition, processing, quality control and contamination of food.

1.2PURPOSE

The main aim of the project is to building a model which is used for classifying the fruit depends on the different characteristics like colour, shape, texture etc. Here the user can capture the images of different fruits and then the image will be sent the trained model. The model analyses the image and detect the nutrition based on the fruits like (Sugar, Fibre, Protein, Calories, etc.).

2.LITERATURE SURVEY:

2.1 EXISTING PROBLEM

Chang Liu, Yu Cao, Senior Member, IEEE stated, "Literature has indicated that accurate dietary assessment is very important for assessing the effectiveness of weight loss interventions. However, most of the existing dietary assessment methods rely on memory. With the help of pervasive mobile devices and rich cloud services, it is now possible to develop new computer-aided food recognition system for accurate dietary assessment. However, enabling this future Internet of Thingsbased dietary assessment imposes several fundamental challenges on algorithm development and system design. In this paper, we set to address these issues from the following two aspects: (1) to develop novel deep learning-based visual food recognition algorithms to achieve the best-in-class recognition accuracy; (2) to design a food recognition system employing edge computing based service computing paradigm to overcome some inherent problems of traditional mobile cloud computing paradigm, such as unacceptable system latency and low battery life of mobile devices."

2.2 REFERENCES

A New Deep Learning-based Food Recognition System for Dietary Assessment on An Edge Computing Service Infrastructure – Chang Liu, Yu Cao, Senior Member, IEEE, Yan Luo, Member, IEEE, Guanling Chen, Member, IEEE, Vinod Vokkarane, Senior Member, IEEE, Yunsheng Ma, Songqing Chen, Member, IEEE, Peng Hou.

Android Based Monitoring System With Diet And Calorie Tracker - V. Ramkumar, 2 S.Priyanga Devi, 3 K. Laxmi Priya, 4 M. Kavya Dharshani 1Assistant Professor Electronics and communication Engineering K.Ramakrishnan college of Technology Trichy, Tamil Nadu.

2.3 PROBLEM STATEMENT DEFINITION

The main aim of the project is to building a model which is used for classifying the fruit depends on the different characteristics like colour, shape, texture etc. Here the user can capture the images of different fruits and then the image will be sent the trained model. The model analyses the image and detect the nutrition based on the fruits like (Sugar, Fibre, Protein, Calories, etc.).

3.IDEATION & PROPOSED SOLUTION:

3.1 EMPATHY MAP CANVAS

3.2 IDEATION & BRAINSTORMING

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

Prioritiza

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

① 20 minutes

After you collaborate

You can export the mural as an image or pdf to share with members of your company who might find it helpful.

Quick add-ons

A Share the mura

Share a view link to the mural with stakeholders to keep them in the loop about the outcomes of the session.

B Export the mural

Export a copy of the mural as a PNG or PDF to attach to emails, include in slides, or save in your drive.

Keep moving forward

Strategy blueprint

Define the components of a new idea or strategy.

Open the template \rightarrow

Customer experience journey map

Understand customer needs, motivations, and obstacles for an experience.

Open the template \rightarrow

Strengths, weaknesses, opportunities & threats

Identify strengths, weaknesses, opportunities, and threats (SWOT) to develop a plan.

Open the template →

🗐 Share template feedback

3.3 PROPOSED SOLUTION

S.NO	PARAMETER	DESCRIPTION
1	Problem Statement (Problem to	How to intake suitable nutrition with
	be solved)	correct guidance and weight level
		should be manage through tracking our
		day to day fitness.
2	Idea / Solution Description	To track fitness level and Analyze the
		nutrition level of foods like fruits,
		vegetables . It helps to identify the
		proportion of vitamins.
3	Novelty/Uniqueness	Giving a individual Food/health
		Schedule According to their body
		conditions
4	Social impact/Customer	Low expenditure ,easy to follow
	Satisfaction	without affecting their personal time.
5	Business model	1
	(Revenue Model)	guidance users want to pay
6	Scalability of the solution	Notifying motivational quote's to lead
		a healthy routine

3.4 PROBLEM SOLUTION FIT

4.REQUIREMENT ANALYSIS:

4.1 FUNCTIONAL REQUIREMENTS

Fr.no	Functional requirement	Sub requirement (story/subtask)
Fr-1	User registration	Registration through form Registration through Gmail
Fr-2	User confirmation	Confirmation via OTP Confirmation via Email
Fr-3	Capturing image	Capture the image of the leaf And check the parameter of the captured image.
Fr-4	Image processing	Upload the image for the prediction of the disease in the leaf.
Fr-5	Leaf identification	Identify the leaf and predict the disease in leaf.
Fr-6	Image description	Suggesting the best fertilizer for the disease.

4.2 NON-FUNCTIONAL REQUIREMENTS

NFr.no	Non-functional requirement	Description
Nfr-1	Usability	Datasets of all the leaf is used to detecting the disease
Nfr-2	Security	that present in the leaf. The information belongs to the user and leaf are secured highly.
Nfr-3	Reliability	The leaf quality is important for the predicting the disease in leaf.
Nfr-4	Performance	The performance is based on the quality of the leaf used for disease prediction
Nfr-5	Availability	It is available for all user to predict the disease in the plant
Nfr-6	Scalability	Increasing the prediction of the disease in the leaf

5.PROJECT DESIGN:

5.1 PROJECT DATAFLOW DIAGRAMS

5.2 SOLUTION & TECHNICAL ARCHITECTURE

5.3 USER STORIES

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through Gmail		Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application by entering email & password		High	Sprint-1
	Dashboard					
Customer (Web user)						
Customer Care Executive						
Administrator						

6.PROJECT PLANNING & SCHEDULING:

6.1 SPRINT PLANNING & ESTIMATION

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points (Total)	Priority	Team Members
Sprint1	Model Creation and Training (Fruits)	FRSFDP- 44	Create a model which can classify diseased fruit plants from given images. I also need totest the model and deploy it on IBM Cloud	8	High	Harithan
	Model Creation and Training (Vegetables)	FRSFDP- 45	Create a model which can classify diseased vegetable plants from given images	2	Medium	Suriya Prakash
Sprint2	Model Creation and Training (Vegetables)	FRSFDP- 46	Create a model which can classify diseased vegetable plants from given images and trainon IBM Cloud	6	High	Vinoth
	Registration	FRSFDP- 47	As a user, I can register by entering my email, password, and confirming my passwordor via OAuth API	3	High	Javeed
	Upload page	FRSFDP- 48	As a user, I will be redirected to a page where I can upload my pictures of crops	4	High	Harithan
	Suggestion results	FRSFDP- 49	As a user, I can view the results and then obtain the suggestions provided by the ML model	4	High	Suriya Prakash
	Base Flask App	FRSFDP- 50	A base Flask web appmust be created as aninterface for the ML model.	2	High	Vinoth
Sprint3	Login	FRSFDP- 51	As a user/admin/shopkeeper ,I can log into the application by entering email & password	2	High	Javeed
	User Dashboard	FRSFDP- 52	As a user, I can view the previous results and history	3	Medium	Harithan
	Integration	FRSFDP- 53	Integrate Flask, CNN model with Cloudant DB	5	Medium	Suriya Prakash

	Containerization	FRSFDP- 54	Containerize Flask app using Docker	2	Low	Vinoth
Sprint4	Dashboard (Admin)	FRSFDP- 55	As an admin, I can viewother user details and uploads for other purposes	2	Medium	Javeed
	Dashboard (Shopkeeper)	FRSFDP- 56	As a shopkeeper, I canenter fertilizer products and then update thedetails	2	Low	Harithan
	Containerization	FRSFDP57	Create and deploy Helmcharts using Docker Image made before	2	Low	Suriya Prakash
	Logout	FRSFDP58	After finishing the process then logout	2	Low	Vinoth

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint EndDate (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	10	6 Days	24 Oct 2022	29 Oct 2022	10	30 Oct 2022
Sprint-2	15	6 Days	31 Oct 2022	05 Nov 2022	15	06 Nov 2022
Sprint-3	15	6 Days	07 Nov 2022	12 Nov 2022	15	13 Nov 2022
Sprint-4	12	6 Days	14 Nov 2022	19 Nov 2022	10	20 Nov 2022

7. CODING & SOLUTIONING:

7.1 FEATURE 1

home.html

```
<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <meta http-equiv="X-UA-Compatible" content="ie=edge">
  <title>Home</title>
  k href="https://cdn.bootcss.com/bootstrap/4.0.0/css/bootstrap.min.css"
rel="stylesheet">
  <script
src="https://cdn.bootcss.com/popper.js/1.12.9/umd/popper.min.js"></script>
  <script src="https://cdn.bootcss.com/jquery/3.3.1/jquery.min.js"></script>
  <script
src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script>
  <link href="{{ url_for('static', filename='css/main.css') }}" rel="stylesheet">
<style>
body
  background-image: url("https://www.livingproofnyc.com/wp-
content/themes/livingproof/assets/img/hero-background.jpg");
  background-size: cover;
}
.bar
margin: 0px;
padding:20px;
```

```
background-color:white;
opacity:0.6;
color:black;
font-family: 'Roboto', sans-serif;
font-style: italic;
border-radius:20px;
font-size:25px;
h3
margin: 0px;
padding:20px;
background-color:#9ACD32;
width: 800px;
opacity:0.6;
color:#000000;
font-family: 'Roboto', sans-serif;
font-style: italic;
border-radius:20px;
font-size:25px;
a
color:grey;
float:right;
text-decoration:none;
font-style:normal;
padding-right:20px;
```

```
a:hover{
background-color:black;
color:white;
border-radius:15px;0
font-size:30px;
padding-left:10px;
}
.div1{
 background-color: lightgrey;
 width: 500px;
 border: 10px solid peach;
 padding: 20px;
 margin: 20px;
 height: 500px;
}
.header {
               position: relative;
               top:0;
               margin:0px;
               z-index: 1;
               left: 0px;
               right: 0px;
               position: fixed;
               background-color: #8B008B;
               color: white;
```

```
box-shadow: 0px 8px 4px grey;
               overflow: hidden;
               padding-left:20px;
               font-family: 'Josefin Sans'
               font-size: 2vw;
               width: 100%;
               height:8%;
               text-align: center;
        .topnav {
 overflow: hidden;
 background-color: #FCAD98;
.topnav-right a {
 float: left;
 color: black;
 text-align: center;
 padding: 14px 16px;
 text-decoration: none;
 font-size: 22px;
.topnav-right a:hover {
 background-color: #FF69B4;
 color: black;
.topnav-right a.active {
```

```
background-color: #DA70D6;
 color: black;
.topnav-right {
 float: right;
 padding-right:100px;
</style>
</head>
<body>
<!--Brian Tracy-->
<div class="header">
<div style="width:50%;float:left;font-size:2vw;text-align:left;color:black;</pre>
padding-top:1%;padding-left:5%;">Nutrtion Image Analysis</div>
 <div class="topnav-right"style="padding-top:0.5%;">
  <a class="active" href="{{ url_for('home')}}">Home</a>
  <a href="{{ url_for('image1')}}">Classify</a>
 </div>
</div>
</div>
<br/>br>
<br/>br>
<br/>br>
<br>
<br>
```


< h1 ><center> <h3>Food is essential for human life and has been the concern of many healthcare conventions. Nowadays new dietary assessment and nutrition analysis tools enable more opportunities to help people understand their daily eating habits, exploring nutrition patterns and maintain a healthy diet. Nutritional analysis is the process of determining the nutritional content of food. It is a vital part of analytical chemistry that provides information about the chemical composition, processing, quality control and contamination of food. It ensures compliance with trade and food laws.</h3> </center> </h1> </body> </html>

image.html

```
{% extends "imageprediction.html" %} {% block content %}
<div style="float:left">
<br>
<br>
<h5><font color="black" size="3" font-family="sans-serif"><b>Upload image to
classify</b></font></h5><br>>
<div>
  <form id="upload-file" method="post" enctype="multipart/form-data">
    <label for="imageUpload" class="upload-label">
       Choose...
    </label>
    <input type="file" name="file" id="imageUpload" accept=".png, .jpg, .jpeg">
  </form>
 <center> <div class="image-section" style="display:none;">
    <div class="img-preview">
       <div id="imagePreview">
       </div></center>
    </div>
    <center><div>
       <button type="button" class="btn btn-primary btn-lg " id="btn-
predict">Classify</button>
    </center></div>
  </div>
```

```
<div class="loader" style="display:none;margin-left: 450px;"></div>
  <h3 id="result">
    <span><h4>Food Classified is :
<h4><b><u>{{showcase}}{{showcase1}}</span>
  </h3>
</div>
</div>
{% endblock %}
imageprediction.html
<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <meta http-equiv="X-UA-Compatible" content="ie=edge">
  <title>Predict</title>
  <link href="https://cdn.bootcss.com/bootstrap/4.0.0/css/bootstrap.min.css"</pre>
rel="stylesheet">
  <script
src="https://cdn.bootcss.com/popper.js/1.12.9/umd/popper.min.js"></script>
  <script src="https://cdn.bootcss.com/jquery/3.3.1/jquery.min.js"></script>
```

```
<script
src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script>
  <link href="{{ url_for('static', filename='css/main.css') }}" rel="stylesheet">
<style>
body
  background-image:
url("https://i.pinimg.com/originals/be/21/1a/be211ad5043a8d05757a3538bdd8f45
0.jpg");
  background-size: cover;
}
.bar
margin: 0px;
padding:20px;
background-color:white;
opacity:0.6;
color:black;
font-family: 'Roboto', sans-serif;
font-style: italic;
border-radius:20px;
font-size:25px;
color:grey;
float:right;
text-decoration:none;
font-style:normal;
```

```
padding-right:20px;
a:hover{
background-color:black;
color:white;
border-radius:15px;0
font-size:30px;
padding-left:10px;
.div1{
 background-color: lightgrey;
 width: 500px;
 border: 10px solid peach;
 padding: 20px;
 margin: 20px;
 height: 500px;
.header {
               position: relative;
               top:0;
               margin:0px;
               z-index: 1;
               left: 0px;
               right: 0px;
               position: fixed;
                                         25
```

```
background-color: #8B008B;
               color: white;
               box-shadow: 0px 8px 4px grey;
               overflow: hidden;
               padding-left:20px;
               font-family: 'Josefin Sans';
               font-size: 2vw;
               width: 100%;
              height:8%;
               text-align: center;
        .topnav {
 overflow: hidden;
 background-color: #FCAD98;
.topnav-right a {
 float: left;
 color: black;
 text-align: center;
 padding: 14px 16px;
 text-decoration: none;
 font-size: 18px;
.topnav-right a:hover {
 background-color: #FF69B4;
 color: black;
```

```
.topnav-right a.active {
 background-color: #DA70D6;
 color: black;
.topnav-right {
 float: right;
 padding-right:100px;
</style>
</head>
<body>
<div class="header">
<div style="width:50%;float:left;font-size:2vw;text-align:left;color:black;</pre>
padding-top:1%;padding-left:5%;">Nutrtion Image Analysis</div>
 <div class="topnav-right"style="padding-top:0.5%;">
  <a href="{{ url_for('home')}}">Home</a>
  <a class="active" href="{{ url_for('image1')}}">Classify</a>
 </div>
</div>
<br>>
</div>
<div class="container">
    <center>
```

```
<div id="content" style="margin-top:2em">{% block content %}{% endblock
% }</div></center>
  </div>
</body>
<footer>
  <script src="{{ url_for('static', filename='js/main.js') }}"</pre>
type="text/javascript"></script>
</footer>
</html>
7.2 FEATURE 2
app.py
from flask import Flask,render_template,request
# Flask-It is our framework which we are going to use to run/serve our application.
#request-for accessing file which was uploaded by the user on our application.
import os
import numpy as np #used for numerical analysis
from tensorflow.keras.models import load_model#to load our trained model
from tensorflow.keras.preprocessing import image
import requests
app = Flask(__name__,template_folder="templates") # initializing a flask app
# Loading the model
model=load_model('nutrition.h5')
```

print("Loaded model from disk")

```
@app.route('/')# route to display the home page
def home():
  return render_template('home.html')#rendering the home page
@app.route('/image1',methods=['GET','POST'])# routes to the index html
def image1():
  return render_template("image.html")
@app.route('/predict',methods=['GET', 'POST'])# route to show the predictions in
a web UI
def launch():
  if request.method=='POST':
    f=request.files['file'] #requesting the file
    basepath=os.path.dirname('__file__')#storing the file directory
    filepath=os.path.join(basepath,"uploads",f.filename)#storing the file in
uploads folder
    f.save(filepath)#saving the file
    img=image.load_img(filepath,target_size=(64,64)) #load and reshaping the
image
    x=image.img_to_array(img)#converting image to an array
    x=np.expand_dims(x,axis=0)#changing the dimensions of the image
    pred=np.argmax(model.predict(x), axis=1)
    print("prediction",pred)#printing the prediction
    index=['APPLES','BANANA','ORANGE','PINEAPPLE','WATERMELON']
```

```
result=str(index[pred[0]])
     x=result
     print(x)
    result=nutrition(result)
    print(result)
    return render_template("0.html",showcase=(result),showcase1=(x))
def nutrition(index):
  url = "https://calorieninjas.p.rapidapi.com/v1/nutrition"
  querystring = {"query":index}
  headers = {
    'x-rapidapi-key':
"5d797ab107mshe668f26bd044e64p1ffd34jsnf47bfa9a8ee4",
     'x-rapidapi-host': "calorieninjas.p.rapidapi.com"
  response = requests.request("GET", url, headers=headers, params=querystring)
  print(response.text)
  return response.json()['items']
if __name__ == "__main__":
 # running the app
  app.run(debug=False)
```

8.TESTING:

8.1 TEST CASES

Test case	ID Feature Type	Component	Test Scenario	Expected Result	Actual Result	Status
CT_001	Code testing	Jupyter notebook	Code test initial run	Run the imported libraries and initialize the code properly	Verified	PASS
CT_002	Code testing	Registering the cloud	Create cloud and new asset creation	New asset created	Verified	PASS
CT_003	Data set loading	Load the data set in the cloud by specifying the directory	Dataset load	Loading the data set	Verified	PASS
MT_001	Model training	Image upload	Image upload and classify	Loading the image and classify	Verified	PASS
MT_002	Model training	Image classification	Checks and classifies the image loaded	Classification	Verified	PASS
MT_003	Model training	Image classification	Checks and classifies the image loaded	Classification	Verified	PASS
MT_004	Model training	Image classification	Checks and classifies the image loaded	Classification	Verified	PASS

8.2 USER ACCEPTANCE TESTING

APPLE BANANA ORANGE PINEAPPLE WATERMELON TEST_IMAGE1

TEST_IMAGE2 TEST_IMAGE3 TEST_IMAGE4 TEST_IMAGE5 TEST_IMAGE6

PERFORMANCE TESTING:

Epoch 1/10
110/110 [===================================
0.8861 - val_loss: 48.9065 - val_accuracy: 0.1488
Epoch 2/10
110/110 [===================================
0.9989 - val_loss: 62.1670 - val_accuracy: 0.1280
Epoch 3/10
110/110 [===================================
1.0000 - val_loss: 66.6759 - val_accuracy: 0.1488
Epoch 4/10
110/110 [===================================
1.0000 - val_loss: 70.6794 - val_accuracy: 0.1488
Epoch 5/10
110/110 [===================================
1.0000 - val_loss: 74.1865 - val_accuracy: 0.1488
Epoch 6/10
110/110 [===================================
1.0000 - val_loss: 75.5190 - val_accuracy: 0.1308
Epoch 7/10
110/110 [===================================
1.0000 - val_loss: 78.4789 - val_accuracy: 0.1488
Epoch 8/10
110/110 [===================================
1.0000 - val_loss: 80.7918 - val_accuracy: 0.1403
Epoch 9/10
110/110 [===================================
1.0000 - val_loss: 80.3610 - val_accuracy: 0.1431
Epoch 10/10

<keras.callbacks.History at 0x7fbcb5cb4b10>

9.RESULTS:

9.1 PERFORMANCE METRICS

10.ADVANTAGES & DISADVANTAGES:

Advantages:

- Food and food habits are ever-changing and evolving. People and professionals need to quickly adapt to new food products, diets, and changing preferences. The best way to instantly adapt to these changes is to have software that changes and adapts with you.
- Using automated nutrition analysis software will allow you to free up more time to innovate or grow your business. If you find a nutrition analysis software that has all the features you need, you can create much more time to focus on improving your business.
- Features such as a quick preview of nutrients while adding foods to diets, menus, and recipes give you the ability to save time when new recipes and food products are introduced.
- Having quick and easy software to help them plan their meals will save you tons of time.

Disadvantages:

- This methodology is still limited by its dependency on time-consuming and error-prone manual video annotations, with many studies resorting to the use of multiple human annotators.
- Often suffers from reliability issues.
- It is extremely expensive due to semantics analysis model and nutritional analysis model.
- In order to make recommendations, the system needs to collect nutritional needs from users. Most of the information is only provided through continuous interactions with users. However, in reality, recording nutritional intake from users cannot avoid faults because users usually forget or give wrong informationabout the foodsthey have consumed.
- Moreover deep learning requires expensive GUIs and hundreds of machines. This increases the cost to the users.

11.CONCLUSION:

Food is essential for human life and has been the concern of many health care conventions. In this project we have built a nutrition analysis model that classifies the nutritional content of the food through the image uploaded by the user. Such Nutritional analysis helps people understand their daily eating habits, exploring nutrition patterns and maintaining a healthy diet. It is a vital part of analytical chemistry that provides information about the chemical composition, processing, quality control and contamination of food.

The nutritional analysis model is implemented using Convolutional neural network and the web application is built and implemented using Flask framework. As for the future work, the model can be trained and tested on more datasets to provide accurate results and better performance.

12.FUTURE SCOPE:

The future scope of this project is very broad. Few of them are:

- The model could be trained using vast database in order to increase the accuracy of results.
- The Backend framework of the web application can be improved so that the uploaded images can be handled appropriately.
- In addition to the nutrition analysis, the application can also be designed to provide recipes that can be prepared using the nutrient-rich foods
- A database can also be implemented for the system so that users can save their data and relook into it later.
- The Web application can be further developed and launched as an Android App so that anyone anywhere with or without internet connection can access it and get benefited from its use cases.

13.APPENDIX:

13.1 SOURCE CODE

home.html

```
<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <meta http-equiv="X-UA-Compatible" content="ie=edge">
  <title>Home</title>
  k href="https://cdn.bootcss.com/bootstrap/4.0.0/css/bootstrap.min.css"
rel="stylesheet">
  <script
src="https://cdn.bootcss.com/popper.js/1.12.9/umd/popper.min.js"></script>
  <script src="https://cdn.bootcss.com/jquery/3.3.1/jquery.min.js"></script>
  <script
src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script>
  <link href="{{ url_for('static', filename='css/main.css') }}" rel="stylesheet">
<style>
body
  background-image: url("https://www.livingproofnyc.com/wp-
content/themes/livingproof/assets/img/hero-background.jpg");
  background-size: cover;
}
.bar
margin: 0px;
```

```
padding:20px;
background-color:white;
opacity:0.6;
color:black;
font-family: 'Roboto', sans-serif;
font-style: italic;
border-radius:20px;
font-size:25px;
h3
margin: 0px;
padding:20px;
background-color:#9ACD32;
width: 800px;
opacity:0.6;
color:#000000;
font-family: 'Roboto', sans-serif;
font-style: italic;
border-radius:20px;
font-size:25px;
a
color:grey;
float:right;
text-decoration:none;
font-style:normal;
padding-right:20px;
```

```
a:hover{
background-color:black;
color:white;
border-radius:15px;0
font-size:30px;
padding-left:10px;
.div1{
 background-color: lightgrey;
 width: 500px;
 border: 10px solid peach;
 padding: 20px;
 margin: 20px;
 height: 500px;
.header {
               position: relative;
               top:0;
               margin:0px;
               z-index: 1;
               left: 0px;
               right: 0px;
               position: fixed;
               background-color: #8B008B;
                                         39
```

```
color: white;
               box-shadow: 0px 8px 4px grey;
               overflow: hidden;
               padding-left:20px;
               font-family: 'Josefin Sans'
               font-size: 2vw;
               width: 100%;
               height:8%;
               text-align: center;
        .topnav {
 overflow: hidden;
 background-color: #FCAD98;
.topnav-right a {
 float: left;
 color: black;
 text-align: center;
 padding: 14px 16px;
 text-decoration: none;
 font-size: 22px;
.topnav-right a:hover {
 background-color: #FF69B4;
 color: black;
```

```
.topnav-right a.active {
 background-color: #DA70D6;
 color: black;
.topnav-right {
 float: right;
 padding-right:100px;
</style>
</head>
<body>
<!--Brian Tracy-->
<div class="header">
<div style="width:50%;float:left;font-size:2vw;text-align:left;color:black;</pre>
padding-top:1%;padding-left:5%;">Nutrtion Image Analysis</div>
 <div class="topnav-right"style="padding-top:0.5%;">
  <a class="active" href="{{ url_for('home')}}">Home</a>
  <a href="{{ url_for('image1')}}">Classify</a>
 </div>
</div>
</div>
<br/>br>
<br/>br>
<br>
<br>
```

 br>
 br>
 br>
 br>
<h1></h1>
<center></center>
<h3>Food is essential for human life and has been the concern of</h3>
many healthcare conventions. Nowadays new dietary assessment
and nutrition analysis tools enable more opportunities to help
people understand their daily eating habits, exploring nutrition
patterns and maintain a healthy diet. Nutritional analysis is the
process of determining the nutritional content of food. It is a
vital part of analytical chemistry that provides information about
the chemical composition, processing, quality control and contamination
of food. It ensures compliance with trade and food laws.

image.html

```
{% extends "imageprediction.html" %} {% block content %}
<div style="float:left">
<br>
<br>
<h5><font color="black" size="3" font-family="sans-serif"><b>Upload image to
classify</b></font></h5><br>>
<div>
  <form id="upload-file" method="post" enctype="multipart/form-data">
    <label for="imageUpload" class="upload-label">
       Choose...
    </label>
    <input type="file" name="file" id="imageUpload" accept=".png, .jpg, .jpeg">
  </form>
 <center> <div class="image-section" style="display:none;">
    <div class="img-preview">
       <div id="imagePreview">
       </div></center>
    </div>
    <center><div>
      <button type="button" class="btn btn-primary btn-lg " id="btn-
predict">Classify</button>
    </ri>
```

```
</div>
  <div class="loader" style="display:none;margin-left: 450px;"></div>
  <h3 id="result">
    <span><h4>Food Classified is :
<h4><b><u>{{showcase}}}{{showcase1}} </span>
  </h3>
</div>
</div>
{% endblock %}
imageprediction.html
<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <meta http-equiv="X-UA-Compatible" content="ie=edge">
  <title>Predict</title>
  <link href="https://cdn.bootcss.com/bootstrap/4.0.0/css/bootstrap.min.css"</pre>
rel="stylesheet">
  <script
src="https://cdn.bootcss.com/popper.js/1.12.9/umd/popper.min.js"></script>
```

```
<script src="https://cdn.bootcss.com/jquery/3.3.1/jquery.min.js"></script>
  <script
src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script>
  <link href="{{ url_for('static', filename='css/main.css') }}" rel="stylesheet">
<style>
body
  background-image:
url("https://i.pinimg.com/originals/be/21/1a/be211ad5043a8d05757a3538bdd8f45
0.jpg");
  background-size: cover;
}
.bar
margin: 0px;
padding:20px;
background-color:white;
opacity:0.6;
color:black;
font-family: 'Roboto', sans-serif;
font-style: italic;
border-radius:20px;
font-size:25px;
a
color:grey;
float:right;
text-decoration:none;
```

```
font-style:normal;
padding-right:20px;
a:hover{
background-color:black;
color:white;
border-radius:15px;0
font-size:30px;
padding-left:10px;
.div1{
 background-color: lightgrey;
 width: 500px;
 border: 10px solid peach;
 padding: 20px;
 margin: 20px;
 height: 500px;
.header {
               position: relative;
               top:0;
               margin:0px;
               z-index: 1;
               left: 0px;
               right: 0px;
```

```
position: fixed;
               background-color: #8B008B;
               color: white;
               box-shadow: 0px 8px 4px grey;
               overflow: hidden;
               padding-left:20px;
               font-family: 'Josefin Sans';
               font-size: 2vw;
               width: 100%;
               height:8%;
               text-align: center;
        .topnav {
 overflow: hidden;
 background-color: #FCAD98;
.topnav-right a {
 float: left;
 color: black;
 text-align: center;
 padding: 14px 16px;
 text-decoration: none;
 font-size: 18px;
.topnav-right a:hover {
 background-color: #FF69B4;
 color: black;
```

```
}
.topnav-right a.active {
 background-color: #DA70D6;
 color: black;
.topnav-right {
 float: right;
 padding-right:100px;
</style>
</head>
<body>
<div class="header">
<div style="width:50%;float:left;font-size:2vw;text-align:left;color:black;</pre>
padding-top:1%;padding-left:5%;">Nutrtion Image Analysis</div>
 <div class="topnav-right"style="padding-top:0.5%;">
  <a href="{{ url_for('home')}}}">Home</a>
  <a class="active" href="{{ url_for('image1')}}">Classify</a>
 </div>
</div>
<br>
</div>
<div class="container">
    <center>
```

```
<div id="content" style="margin-top:2em">{% block content %}{% endblock
% }</div></center>
  </div>
</body>
<footer>
  <script src="{{ url_for('static', filename='js/main.js') }}"</pre>
type="text/javascript"></script>
</footer>
</html>
from flask import Flask,render_template,request
# Flask-It is our framework which we are going to use to run/serve our application.
#request-for accessing file which was uploaded by the user on our application.
import os
import numpy as np #used for numerical analysis
from tensorflow.keras.models import load_model#to load our trained model
from tensorflow.keras.preprocessing import image
import requests
app = Flask(__name__,template_folder="templates") # initializing a flask app
# Loading the model
model=load_model('nutrition.h5')
print("Loaded model from disk")
@app.route('/')# route to display the home page
```

```
def home():
  return render_template('home.html')#rendering the home page
@app.route('/image1',methods=['GET','POST'])# routes to the index html
def image1():
  return render_template("image.html")
@app.route('/predict',methods=['GET', 'POST'])# route to show the predictions in
a web UI
def launch():
  if request.method=='POST':
    f=request.files['file'] #requesting the file
    basepath=os.path.dirname('_file_')#storing the file directory
    filepath=os.path.join(basepath,"uploads",f.filename)#storing the file in
uploads folder
    f.save(filepath)#saving the file
    img=image.load_img(filepath,target_size=(64,64)) #load and reshaping the
image
    x=image.img_to_array(img)#converting image to an array
    x=np.expand dims(x,axis=0)#changing the dimensions of the image
    pred=np.argmax(model.predict(x), axis=1)
    print("prediction",pred)#printing the prediction
    index=['APPLES','BANANA','ORANGE','PINEAPPLE','WATERMELON']
    result=str(index[pred[0]])
```

```
x=result
     print(x)
     result=nutrition(result)
     print(result)
     return render_template("0.html",showcase=(result),showcase1=(x))
def nutrition(index):
  url = "https://calorieninjas.p.rapidapi.com/v1/nutrition"
  querystring = {"query":index}
  headers = {
     'x-rapidapi-key':
"5d797ab107mshe668f26bd044e64p1ffd34jsnf47bfa9a8ee4",
     'x-rapidapi-host': "calorieninjas.p.rapidapi.com"
     }
  response = requests.request("GET", url, headers=headers, params=querystring)
  print(response.text)
  return response.json()['items']
if __name__ == "__main__":
 # running the app
  app.run(debug=False)
```

13.2 GITHUB & PROJECT DEMO LINK	
GITHUB LINK:	
IBM-EPBL/IBM-Project-25405-1659962325: AI-powered Nutrition Analyzer	
for Fitness Enthusiasts (github.com)	
PROJECT DEMO LINK:	
https://youtu.be/lwtMLLJ1tUw	
52	