Presentación sobre π usando BEAMER

Carmen laura Martín González

23 de abril de 2014

Facultad de Matemáticas Universidad de La Laguna

1 Mi primera sección

C.Martín ()

1 Mi primera sección

2 Mi segunda sección

C.Martín ()

- 1 Mi primera sección
- 2 Mi segunda sección
- Mi tercera sección

- 1 Mi primera sección
- Mi segunda sección
- Mi tercera sección
- 4 Mi cuarta sección

Mi primera sección

Definición

El número π es uno de los pocos conceptos en las matemáticas, cuya mención evoca una respuesta de reconocimiento y el interés en aquellos que no se traten profesionalmente con el tema. Ha sido una parte de la cultura humana y la imaginación, estudiado durante más de veinticinco siglos.

El número π se define como la razón entre la longitud de una circunferencia y su diámetro. Este no es un número exacto sino que es de los llamados irracionales ^a. Se emplea frecuentemente en matemáticas, física e ingeniería.

23-04-2014

C.Martín () Presentación beamer

^aLos números irracionales tienen como definición que son números que poseen infinitas cifras decimales no periódicas, que por lo tanto no pueden ser expresados como fracciones.

Algunas curiosidades sobre el número π

• En distintas culturas, china, egipcia, europea, india, etc., se trato de obtener mejores aproximaciones de π por ser de aplicación en campos tan distintos como la astronomía o la construcción.

Algunas curiosidades sobre el número π

- En distintas culturas, china, egipcia, europea, india, etc., se trato de obtener mejores aproximaciones de π por ser de aplicación en campos tan distintos como la astronomía o la construcción.
- Muchos de los intentos de evaluar π en la antigüedad utilizaban el método de calcular el perímetro de polígonos inscritos y circunscritos a circunferencias.

Algunas curiosidades sobre el número π

- En distintas culturas, china, egipcia, europea, india, etc., se trato de obtener mejores aproximaciones de π por ser de aplicación en campos tan distintos como la astronomía o la construcción.
- Muchos de los intentos de evaluar π en la antigüedad utilizaban el método de calcular el perímetro de polígonos inscritos y circunscritos a circunferencias.
- En 1706, el inglés William Jones fue el primero en utilizar el símbolo griego π para denotar la relación entre la circunferencia y su diámetro. Euler en su obra l'introducción al cálculo infinitesimal", publicada en 1748, le dio el espaldarazo definitivo.

Algunas curiosidades sobre el número π

- En distintas culturas, china, egipcia, europea, india, etc., se trato de obtener mejores aproximaciones de π por ser de aplicación en campos tan distintos como la astronomía o la construcción.
- Muchos de los intentos de evaluar π en la antigüedad utilizaban el método de calcular el perímetro de polígonos inscritos y circunscritos a circunferencias.
- En 1706, el inglés William Jones fue el primero en utilizar el símbolo griego π para denotar la relación entre la circunferencia y su diámetro. Euler en su obra Ïntroducción al cálculo infinitesimal", publicada en 1748, le dio el espaldarazo definitivo.
- Ferdinand Lindemann(1852-1939) demostró que Pi es un número trascendental. Esto significa entre otras cosas que el problema de la cuadratura del círculo no tiene solución. Pese a ello todavía se sigue intentando.

Algunas curiosidades sobre el número π		
Matemático o lugar	Año	Valor
La Biblia		3
Papiro de Ahmes(Egipto)	1650 a.C	3.16
Tablilla de Susa(Babilonia)	1600 a.C	3.125
Bandhayana(India)	500 a.C	3.09
Arquímedes de Siracusa	287-212 a.C	Entre 223/71 y 220/70
Liu Hui(China)	260 a.C	3.1416
Al-Kashia(Persia)	1429 a.C	3.1415926535897932
Franciscus Vieta (Francia)	1540-1603 a.C	3.1415926536 height

Cuestiones abiertas sobre π

• Cada uno de los dígitos decimales 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9, ¿tiene una aparición infinita en los decimales de π ?

Cuestiones abiertas sobre π

- Cada uno de los dígitos decimales 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9, ¿tiene una aparición infinita en los decimales de π ?
- La denominada cuestión de Brouwer: en la expansión decimal de π , ¿ existe alguna posición donde exista una sucesión de mil ceros consecutivos?

Cuestiones abiertas sobre π

- Cada uno de los dígitos decimales 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9, ¿tiene una aparición infinita en los decimales de π ?
- La denominada cuestión de Brouwer: en la expansión decimal de π , ¿existe alguna posición donde exista una sucesión de mil ceros consecutivos?
- ¿Es π simplemente normal en base 10? Es decir, ¿tiene cada uno de los diez dígitos del sistema decimal la misma probabilidad de aparición en una expansión decimal?

Cuestiones abiertas sobre π

- Cada uno de los dígitos decimales 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9, ¿tiene una aparición infinita en los decimales de π ?
- La denominada cuestión de Brouwer: en la expansión decimal de π , ¿existe alguna posición donde exista una sucesión de mil ceros consecutivos?
- ¿Es π simplemente normal en base 10? Es decir, ¿tiene cada uno de los diez dígitos del sistema decimal la misma probabilidad de aparición en una expansión decimal?
- No se sabe si $\pi+e$, π/e , $\ln(\pi)$ son irracionales. Se sabe que no son raíces de polinomios de grado inferior a nueve y con coeficientes enteros del orden 109.48 49

Bibliografía

```
http://ciencianet.com/pi.html
```

```
http://es.wikipedia.org
```

http: //campusvirtual.ull.es/1314/pluginfile.php/197727/mod_resource/content/2/p