Calibrating models of anomalous transport using bi-fidelity surrogates

Thomas A. Marks and Benjamin A. Jorns University of Michigan, Ann Arbor, Michigan, USA

ExB Plasmas Workshop 2022

Madrid, online event

Anomalous electron transport in Hall thrusters

- Hall thrusters are an important EP technology
- Modeling is important to understand their operation and design new thrusters

Alternative propellants

Longer lifetimes

Low power

High power

Current simulations not predictive. Why?

Anomalous electron transport in Hall thrusters

Electrons diffuse across magnetic field lines far more than classical collisions can account for

Classical collisions

"Anomalous" collisions

$$j_{e\perp} \propto \nu_e$$

$$j_{e\perp} \propto (\nu_e + \nu_{AN})$$

Many models proposed, but so far none have been widely employed Goal: Find a model which works across thrusters with minimal tuning required

Modeling anomalous transport

Given some model of the anomalous collision frequency:

$$v_{AN} = f(\mathbf{p} \mid \Theta)$$
 Fit coefficients (scalars)

Local plasma parameters

- Denote performance model as $P(f \mid \Theta)$ (aka high-fidelity Hall thruster simulation)
- Motivation: want a probability distribution of likely model coefficients for a given model
- Problem: Given model f and coefficients Θ , evaluating P requires us to run an expensive Hall thruster simulation.

Surrogate modeling

- Hall thruster codes expensive to run, but needed to accurately understand how proposed models affect performance
- Use surrogate (fit function) to model response of code at points not yet tried
- Intelligently select points to simulate to update surrogate
- Once surrogate converged, run parameter inference (MCMC or similar) on surrogate to obtain coefficient distribution

Bi-fidelity surrogates

- Running 2D Hall thruster simulation is expensive, 1D simulations cheap and predict major features
- Can speed up model calibration with a multi-fidelity surrogate
- Instead of inferring expensive model directly, use expensive model to correct cheap model
- Better fit for same number of expensive model evaluations

Models to investigate

• Algebraic (zero-equation) models

	Model	Expression for $ u_{AN}$	Coefficients	Proposed mechanism
[1]	Two-zone Bohm	$\begin{cases} \alpha_0 \ \omega_{ce} & z < L \\ \alpha_1 \ \omega_{ce} & z \ge L \end{cases}$	α_0, α_1	Bohm diffusion
[2]	Turbulence I	$\omega_{ce} \sqrt{\frac{ J_{e\perp} E_{\perp} }{Ken_e c_e^2 B}}$	K	Turbulent viscosity (energy cascade)
[3]	Turbulence II	$\frac{1}{K} \frac{ \nabla \cdot (\mathbf{u_i} n_e T_e) }{m_e c_s n_e v_{de}}$	K	Azimuthal instability saturated by ion-wave trapping and wave convection
[4]	Turbulence III	$\frac{1}{K}\omega_{ce}\left(\frac{1}{1+(C\nabla v_{de})^{\alpha}}\right)$	K,C,α	Turbulent transport suppressed by shear stress
[5]	Data-driven	$\omega_{ce} \left(c_0 + \frac{c_1 \mathbf{u}_i }{c_2 c_s + v_{de}} \right)$	c_0, c_1, c_2	None

[1] G. J. Hagelaar, J. Bareilles, L. Garrigues, and J. P. Boeuf, "Two-dimensional model of a stationary plasma thruster," Journal of Applied Physics, vol. 91, no. 9, pp. 5592–5598, May 2002. [Online]. Available: https://doi.org/10.1063/1.1465125
[2] M. A. Cappelli, C. V. Young, E. Cha, and E. Fernandez, "A zero-equation turbulence model fortwo-dimensional hybrid Hall thruster simulations," Physics of Plasmas, vol. 22, no. 11, Nov 2015
[3] T. Lafleur, S. D. Baalrud, and P. Chabert, "Theory for the anomalous electron transport in Hall effect thrusters. II. Kinetic model, "Physics of Plasmas, vol. 23, no. 5, p. 11101, May 2016. [Online]. Available: http://dx.doi.org/10.1063/1.4948496
[4] M. K. Scharfe, C. A. Thomas, D. P. Scharfe, N. Cospen, M. A. Cospelli, and E. Forrandez, "Short based model for electron

[4] M. K. Scharfe, C. A. Thomas, D. B. Scharfe, N. Gascon, M. A. Cappelli, and E. Fernandez, "Shear-based model for electron transport in hybrid Hall thruster simulations, "IEEE Transactions on Plasma Science, vol. 36, no. 5 part 1, pp. 2058–2068, 2008. [5] B. Jorns, "Predictive, data-driven model for the anomalous electron collision frequency in a Hall effect thruster, \"Plasma Sources Science and Technology, vol. 27, no. 10, Oct 2018.

One-equation and two-equation models

$$\begin{split} &\frac{\partial W_T}{\partial t} + \vec{u}_i \cdot \nabla W_T = 2W_T \left(\langle \omega_i \rangle - \langle \omega_{loss} \rangle - \nabla \cdot \vec{u}_i \right). \\ &\frac{\partial \langle \omega_i \rangle}{\partial t} + \vec{u}_i \cdot \nabla \langle \omega_i \rangle = 2\langle \omega_i \rangle \left(c_1 M_e \omega_{pi} - \langle \omega_i \rangle \right) - c_2 \frac{1}{M_e} \langle \omega_i \rangle^2 \frac{W_T}{n_e T_e}. \end{split}$$

[6]
$$\nu_{AN} = c_3 \sqrt{\frac{m_i}{m_e}} \frac{1}{M_e} \langle \omega_i \rangle \frac{W_T}{n_e T_e},$$

[6] B. A. Jorns, "Two Equation Closure Model for Plasma Turbulence in a Hall Effect Thruster," 36th International Electric Propulsion Conference, pp. 1–12, 2019.

Approach

- Construct bi-fidelity surrogate of performance variables for several thrusters and operating conditions
- Use experimental data and surrogate to perform parameter inference (find most likely θ across all cases)

Sample from coefficient distribution to obtain probabilistic performance predictions (uncertainty quantification)

Acknowledgments

This work was sponsored by an Air Force Office of Scientific Research Grant

Contact: marksta@umich.edu