Ideas de Proyecto — Tarea 1

Optimización aplicada a IA (Unidad 1)

Cada sección incluye contexto, objetivo, variables, restricciones, tipo de problema y método sugerido.

1. Detección temprana de uso inadecuado de IA por estudiantes

Contexto

Analizar patrones de entrega (hora, similitud de texto, cambios de estilo) para identificar plagio asistido por IA

Objetivo

Reducir falsos negativos (casos no detectados) sin aumentar demasiado las horas de revisión manual.

Variables de decisión

- umbral similitud
- peso_tiempo
- peso estilo

Restricciones

- Horas de revisión ≤ 2 h por profesor a la semana.
- Tasa de falsos positivos ≤ 10 %.

Tipo de problema

Determinista · Lineal · Con restricciones · Variables continuas.

Método sugerido

Programación lineal (Simplex) — maximizar cobertura con límites de tiempo.

2. Vibe Coding: asignación óptima de tareas en un sprint

Contexto

Asignar bloques de concentración y tareas a desarrolladores para subir la "velocity" del equipo y bajar cambios de contexto.

Objetivo

Maximizar puntos de historia completados, penalizando cada cambio de tarea dentro del día.

Variables de decisión

• $x_{ij} = 1$ si la tarea j se asigna al dev i en su bloque; 0 en otro caso.

Restricciones

• Cada tarea asignada a un solo desarrollador.

• Horas asignadas a cada dev ≤ horas disponibles.

Tipo de problema

Determinista · Entero lineal (MILP) · Con restricciones · Variables binarias.

Método sugerido

Simplex + Branch-and-Bound (herramientas: PuLP u OR-Tools).

3. Frecuencia óptima de extracción de datos en sistemas POS

Contexto

Elegir cada cuánto extraer datos (ventas, inventario) para dashboards sin sobrecargar la base de datos.

Objetivo

Minimizar el costo computacional manteniendo la frescura de la información (latencia < 30 s).

Variables de decisión

- freq_ventas ∈ {15 min, 30 min, 1 h}
- freq_inventario ∈ {15 min, 30 min, 1 h}

Restricciones

- Latencia del dashboard < 30 seg.
- Capacidad de CPU ≤ 80 %.

Tipo de problema

Determinista · No lineal discreto · Con restricciones · Variables discretas.

Método sugerido

Gradiente descendente (relajando las variables a continuas) + redondeo final.

Pasos siguientes

- 1. Revisar datos disponibles y la viabilidad de medir las variables.
- 2. Elegir la idea que mejor se adapte a los conocimientos y al tiempo del grupo.
- 3. Completar la **formulación detallada** (función objetivo exacta, ecuaciones de restricción).
- 4. Implementar el método en Python y redactar el informe siguiendo la rúbrica (comprensión, justificación, código, análisis y presentación).