第11次實習課

學生:林培瑋

2024 Advanced Mixed-Operation System (AMOS) Lab.

Tamkang University

Department of Electrical and Computer Engineering

No.151, Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, Taiwan (R.O.C.)

Hard fault

2024 Advanced Mixed-Operation System (AMOS) Lab.

Tamkang University
Department of Electrical and Computer Engineering
No.151, Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, Taiwan (R.O.C.)

p.335 Hard fault & p.330 TABLE 15.1

A hard fault can occur when the processor sees an error during exception processing, or when another fault such as a usage fault is disabled. In our example code, if we disable usage faults and then rerun the code, you will notice that the processor takes a hard fault when the UDIV instruction is attempted, rather than a usage fault. You can also see hard faults when there is an attempt to access the System Control Space in an unprivileged mode; for example, if you attempt to write a value to one of the NVIC registers in Thread mode, the processor will take an exception.

TABLE 15.1 Exception Types and Vector Table

Exception	Exception		Vector	
Туре	Number	Priority	Address	Caused by
_	_	_	0x00000000	Top of stack
Reset	1	- 3 (highest)	0x00000004	Reset
NMI	2	-2	0x00000008	Non-maskable interrupt
Hard fault	3	- 1	0x0000000C	All fault conditions if the
				corresponding fault is not enabled
Mem mgmt fault	4	Programmable	0x00000010	MPU violation or attempted access to illegal locations
Bus fault	5	Programmable	0x00000014	Bus error, which occurs during AHB transactions when fetching instructions or data
Usage fault	6	Programmable	0x00000018	Undefined instructions, invalid state on instruction execution, and errors on exception return
_	7–10	_		Reserved
SVcall	11	Programmable	0x0000002C	Supervisor Call
Debug monitor	12	Programmable	0x00000030	Debug monitor requests such as watchpoints or breakpoints
_	13	_		Reserved
PendSV	14	Programmable	0x00000038	Pendable Service Call
SysTick	15	Programmable	0x0000003C	System Tick Timer
Interrupts	16 and above	Programmable	0x00000040 and above	Interrupts

1. Usage fault is disabled (Keil Tool)

2. Attempt to access the System Control Space in an unprivileged mode (Keil Tool)

Priority

2024 Advanced Mixed-Operation System (AMOS) Lab.

Tamkang University
Department of Electrical and Computer Engineering
No.151, Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, Taiwan (R.O.C.)

p.330 TABLE 15.1 Priority

		pes and \	ector Table		则會等待一段時間才去做。 y level (higher)	
	Туре	Number	Priority	Address	Caused by	
	_ /	_		0x00000000	Top of stack	
Г	Reset	1	- 3 (highest)	0x00000004	Reset	
ixed priority	NMI	2	-2	0x00000008	Non-maskable interrupt 不可忽略	
L	Hard fault	3	<u>-1</u>	0x0000000C	All fault conditions if the corresponding fault is not enabled	
	Mem mgmt	4	Programmable	0x00000010	MPU violation or attempted access	
	fault				to illegal locations	
rogrammable priority	Bus fault	5	Programmable	0x00000014	Bus error, which occurs during AHB transactions when fetching	r
(changeable) (>=0)	Usage fault	6	Programmable	0x00000018	instructions or data get an interrupt numb Undefined instructions, invalid (exception num state on instruction execution, and errors on exception return	
oftware.	_	7–10	_		Reserved install program in main n	nemo
system	SVcall	11	Programmable	0x0000002C	Supervisor Call vector	
exceptions	Debug monitor	12	Programmable	0x00000030	Debug monitor requests such as watchpoints or breakpoints	
	_	13	_		Reserved	
	PendSV	14	Programmable	0x00000038	Pendable Service Call	
	SysTick	15	Programmable	0x0000003C	System Tick Timer	
1	Interrupts	16 and	Programmable	0x00000040	Interrupts	
han	dware interrupts	above	0 interrupts)	and above I	高優先權搶佔低優先權的位置	

Priority value of an interrupt is stored in a corresponding 8-bit Interrupt Priority Register (Priority Level Register)in NVIC.

00000000~11111111

256 interrupt priority values

16 priority values 4 bits of Interrupt Priotity Register 0000~1111

(4 implemented bits, 4 not implemented bits-always 0)

8 priority values 3 bits of Interrupt Priotity Register 000~111

(3 implemented bits, 5 not implemented bits-always 0)

MSB(Most Significant Bit) first implemented LSB(Least Significant Bit) first implemented

MSB first vs. LSB first

LSB $\rightarrow 00000000 \sim 00000111$ $MSB \rightarrow 00000000 \sim 11100000$

如果從16→8,

考慮Modularity(有彈性)、Reconfiguration(可再造的), 决定哪一個是最佳的。

p.330 TABLE 15.1 Priority

***** LSB:

- 16 priority values → 4 bits
- 0000**1011** (value 11, **lower** level)
- 0000**0111** (value 7, **higher** level)
- \rightarrow reconfigure to 8 priority values only \rightarrow 3 bits
- 00000<mark>011</mark> (value 2, **higher** level) → **priority inversion**
- 00000**111** (value 7, **lower** level)

*** MSB**:

- 16 priority values → 4 bits
- **1011**0000 (value 0xB0, **lower** level)
- **0111**0000 (value 0x70, **higher** level)
- →reconfigure to 8 priority values only → 3 bits
- 10100000 (value 0xA0, lower level) → No priority inversion
- **011**00000 (value 0x60, **higher** level)

 $\underline{\text{https://developer.arm.com/documentation/dui0552/a/cortex-m3-peripherals/nested-vectored-interrupt-controller/interrupt-priority-registers}$

Q&A

Thanks for your attention !!