Elijah's Sequential CTF

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

Elijah is a huge fan of CTFs. This time, he has decided to play a CTF where challenges are given to him sequentially, and he has to solve a subsequence¹ of them in the given order. There are only 3 categories of challenges in this CTF: Reverse engineering (category = 0), Binary Exploitation (category = 1) and Cryptography (category = 2). We will henceforth be referring to categories by their number. He is given the sequence of challenge categories before the CTF starts.

Elijah's satisfaction, s, is defined as follows:

- s starts at 0
- If he solves a cat 0 problem followed by a cat 1 problem, s increases by 2
- \bullet If he solves a cat 1 problem followed by a cat 2 problem, s increases by 5
- If he solves a cat 0 problem followed by a cat 2 problem, s increases by 3
- If he solves a cat 1 problem followed by a cat 0 problem, s increases by 4
- If he solves a cat 2 problem followed by a cat 0 problem, s increases by 1
- If he solves a cat 2 problem followed by a cat 1 problem, s increases by 6

Knowing the sequence of challenge categories, Elijah chooses some challenges to solve (and some not to solve) to maximise s. Help him by making a program to determine his maximum possible s.

Input

The first line of input contains one integer n ($2 \le n \le 10^6$) – the number of CTF problems. (Yes, Elijah can solve that many problems!)

The second line of input contains a sequence of n space-separated integers a_1, a_2, \ldots, a_n $(0 \le a_i \le 2)$ – the categories of CTF problems in sequential order.

Output

Output the largest integer s that Elijah can obtain.

Examples

standard input	standard output
4	9
0 2 0 1	
3	4
1 0 0	

Note

For the first test case, Elijah chooses to do the first 2 challenges and the last challenge. In other words he does a category 0 problem, then a category 2 problem, then a category 1 problem. This gives him 3+6=9 satisfaction. It can be proven that this is the largest satisfaction he can get.

For the second test case, Elijah chooses to solve all challenges. Since he does a category 1 challenge followed by a category 0 challenge, he gets 4 satisfaction. It can be proven that this is the largest satisfaction he can get.

¹ A subsequence is a sequence that can be derived from the given sequence by deleting zero or more elements without changing the order of the remaining elements. To submit your code, do python3 submitter.py <yourcodefile> <ip address=""> <port></port></ip></yourcodefile>		
o submit your code, do pythono submitteripy (your codeme) (ip address)	· Porto	