Here is the files and the procedure I used for water budget analyses.

- 1. Files
 - a. Working folder
 - i. U:\Water Supply Planning\Evaluation and Modeling\GWM\NFSEG\V1.1\5_model\case_005b\CASE_005B_WaterBudget
 - b. Unzip zip file case_005b_model_files.zip is from Trey to subfolder water_budget
 - c. I built a subfolder bin to hold the command-line version of modflow-nwt and tools I built for the analysis
 - i. mfnwt jd.exe, special version of modflow-nwt compiled by John
 - ii. cbb_cfd.nfseg.exe, program to read cbb file and generate files for cell-level analysis, which are used by Tim Desmarais's tools
 - iii. nfseg.springflow.exe, program to evaluate springflow
 - iv. cbb_table.nfseg.exe, program to generate water budget tables
- 2. Generate the CBC file consisting of all water budget components
 - a. Copy subfolder water_budget to subfolder water_budget_wjin
 - i. Copy gwv_springs_conductances.dat from U:\Water Supply Planning\Evaluation and Modeling\GWM\NFSEG\V1.1\5 model\PestFiles\Case005b
 - 1. This file will be used to evaluate springflow
 - b. In subfolder water_budget_wjin
 - Modify MODFLOW input files so that corresponding components will be written to the CBC file
 - 1. Modify nfseg_all_to_cbc.drn
 - a. Line 3, replace "-50" with "50"
 - 2. Modify nfseg_all_to_cbc.riv
 - a. Line 3, replace "-50" with "50"
 - 3. nfseg_all_to_cbc.ghb
 - a. Line 3, replace "-50" with "50"
 - ii. Rerun the model
 - 1. ..\bin\ mfnwt jd.exe < mfnwt all to cbc.in
- 3. Run water budget analysis tools
 - a. In subfolder water_budget_wjin
 - b. Generate cell-level water budget files that Tim Desmarais's tools can read
 - i. ..\bin\cbb_cfd.nfseg.exe < ..\bin\cbb_cfd.nfseg.in
 - ii. Two new files were generated
 - 1. nfseg all to cbc.cbc.2001.csv
 - 2. nfseg all to cbc.cbc.2009.csv
 - c. Water budget tables
 - i. Evaluate springflow
 - 1. You need to have nfseg.springs.csv put in subfolder water_budget_wjin. If you are working in a different subfolder other than water_budget_wjin, you need to copy that file always from there and paste it in the subfolder wherever you are working (in this case it is already there in water_budget_wjin.
 - ..\bin\nfseg.springflow.exe
 - a. note the following files need to be updated to be consistent with the final calibrated model

- i. gwv_springs_conductances.dat, the spring conductance file
- ii. nfseg.springs.csv, a file I made based on the spring lookup data file; if there is adding/removal of springs, this file has to be modify accordingly, and modifications are also needed to be done to nfseg.springflow.f to compile a new nfseg.springflow.exe
- b. generate three new files
 - i. nfseg.springflow.dat
 - ii. nfseg.springflow.table.2001.dat
 - iii. nfseg.springflow.table.2009.dat
- ii. Evaluate files for water budget tables
 - 1. Run the following
 - a. ..\bin\cbb_table.nfseg.exe < ..\bin\cbb_table.nfseg.in
 - 2. Two new files generated
 - a. nfseg_all_to_cbc.table.2001.dat
 - b. nfseg_all_to_cbc.table.2009.dat
- iii. Combined files to generate the final water budget tables.
 - Copy the two files "NFSEG_2001_WaterBudgetAnalysis.xlsx" and "NFSEG_2009_WaterBudgetAnalysis.xlsx" from water_budget_wjin and paste them in the working directory. (in this case, the working directory is water_budget_wjin).
 - 2. 2001
 - a. Open Excel file NFSEG_2001_WaterBudgetAnalysis.xlsx
 - b. Import nfseg_all_to_cbc.table.2001.dat to worksheet "cbb_table.2001.dat"
 - c. Import nfseg.springflow.table.2001.dat to worksheet "springflow.table.2001.dat"
 - d. The final tables are in worksheet "WATER BUDGET TABLE 2001"
 - 3. 2009
 - a. Open Excel file NFSEG_2001_WaterBudgetAnalysis.xlsx
 - b. Import nfseg_all_to_cbc.table.2009.dat to worksheet "cbb_table.2009.dat"
 - c. Import nfseg.springflow.table.2009.dat to worksheet "springflow.table.2009.dat"
 - d. The final tables are in worksheet "WATER BUDGET TABLE 2009"