

B4 - Mathematics

B-MAT-400

203hotline

Avoiding Overload

203hotline

binary name: 203hotline

repository name: 203hotline_\$ACADEMIC_YEAR

repository rights: ramassage-tek

language: everything working on "the dump"

compilation: when necessary, via Makefile, including re, clean and fclean rules

• Your repository must contain the totality of your source files, but no useless files (binary, temp files, obj files,...).

- All the bonus files (including a potential specific Makefile) should be in a directory named bonus.
- Error messages have to be written on the error output, and the program should then exit with the 84 error code (O if there is no error).

Uncle Luigi runs a 25-phone hotline in Pondicherry. He reckons 3500 people could possibly call during each 8-hour day, and would like to know the probability of an overload (that is, the probability of no line being available), depending on the average duration of calls.

The random variable representing the number of people calling at a given time follows the binomial distribution, with calls being independent from each other. You're also thinking about estimating the binomial ditribution with a Poisson distribution, so it can be used on a larger scale.

Your first task is to compute the binomial coefficient $\binom{n}{k}$ given k and n (emphasizing the computation speed and stack optimization).

Your second task is to compare the binomial and Poisson distributions, given the average duration of calls, by printing:

- the probabilities of getting n simultaneous calls (for n increasing from 0 to 50),
- the probability of an overload,
- the computation time.

USAGE

EXAMPLES

Your program output has to be strictly identical to the one below.

∇		Terminal		- + X
\sim /B-MAT-400>	./203hotline 180			
Binomial distribution:				
0 -> 0.000	1 -> 0.000	2 -> 0.000	3 -> 0.000	4 -> 0.000
5 -> 0.000	6 -> 0.000	7 -> 0.000	8 -> 0.000	9 -> 0.001
10 -> 0.002	11 -> 0.004	12 -> 0.008	13 -> 0.013	14 -> 0.021
15 -> 0.030	16 -> 0.041	17 -> 0.053	18 -> 0.065	19 -> 0.075
20 -> 0.082	21 -> 0.085	22 -> 0.085	23 -> 0.081	24 -> 0.074
25 -> 0.064	26 -> 0.054	27 -> 0.044	28 -> 0.034	29 -> 0.026
30 -> 0.019	31 -> 0.013	32 -> 0.009	33 -> 0.006	34 -> 0.004
35 -> 0.002	36 -> 0.001	37 -> 0.001	38 -> 0.000	39 -> 0.000
40 -> 0.000	41 -> 0.000	42 -> 0.000	43 -> 0.000	44 -> 0.000
45 -> 0.000	46 -> 0.000	47 -> 0.000	48 -> 0.000	49 -> 0.000
50 -> 0.000				
Overload: 21.4%				
Computation ti	ime: 1.71 ms			
Poisson distribution:				
0 -> 0.000	1 -> 0.000	2 -> 0.000	3 -> 0.000	4 -> 0.000
5 -> 0.000	6 -> 0.000	7 -> 0.000	8 -> 0.000	9 -> 0.001
10 -> 0.002	11 -> 0.004	12 -> 0.008	13 -> 0.013	14 -> 0.021
15 -> 0.030	16 -> 0.042	17 -> 0.053	18 -> 0.065	19 -> 0.075
20 -> 0.082	21 -> 0.085	22 -> 0.085	23 -> 0.081	24 -> 0.073
25 -> 0.064	26 -> 0.054	27 -> 0.044	28 -> 0.034	29 -> 0.026
30 -> 0.019	31 -> 0.013	32 -> 0.009	33 -> 0.006	34 -> 0.004
35 -> 0.002	36 -> 0.001	37 -> 0.001	38 -> 0.001	39 -> 0.000
40 -> 0.000	41 -> 0.000	42 -> 0.000	43 -> 0.000	44 -> 0.000
45 -> 0.000	46 -> 0.000	47 -> 0.000	48 -> 0.000	49 -> 0.000
50 -> 0.000				
Overload: 21.5%				
Computation time: 0.34 ms				