Math Review

Derivatives and Their Application in this Class

Slope of a curve – derivative of a curve Answers the question: When X goes up by 1 unit, what is the change in Y?

Profit in Sports (A Numerical Example)

A Numerical Example

Suppose you know that the demand function for Brett's Best baseball gloves is:

P(Q) = 180 - 5Q

The cost function of Brett's Best baseball gloves is:

 $TC(Q) = 25Q^2$

Find the Total Revenue, Total Cost functions.
Then find profit-maximizing Quantity, Price, and the maximum Profit

Profit-maximizing MC(Q) 180 **Quantity:** MR = MC180 - 10Q = 50Q $Q^* = 3 \text{ mIn}$ **Profit-maximizing** Price (plug Q* into the **Demand function):** P(Q) P* = 180-5Q* = \$ 165 Q* **Quantity of gloves** MR(Q) (mln) **Maximum Profit** Demand for Brett's Best baseball gloves: Π^* =TR-TC P(Q) = 180 - 5Q $=180Q - 5Q^2 - 25Q^2$ = \$ 270 mln A Numerical Example

Price	Atten.	Revenue
\$1	9	\$9
\$2	8	\$16
\$3	7	\$21
\$4	6	\$24
\$5	5	\$25
\$6	4	\$24
\$7	3	\$21

Mathematical Example of Revenue (Not in Lecture Notes)

$$P(Q) = 10 - Q$$
 $TR(Q) = P*Q = (10 - Q)*Q$
 $= 10Q-Q^2$

How to find Marginal Revenue?

- Take a derivative of Total Revenue with respect to Q
- $MR(Q) = \frac{\partial TR}{\partial Q} = 10 2Q$

Mathematical Example of Revenue (Not in Lecture Notes)

Demand Function: Q = 10 - P

Inverse Demand Function: P(Q) = 10 - Q

How to find own-price Elasticity

of Demand?

1) Take a derivative of Demand Function with respect to Price

$$\frac{\partial Q}{\partial P} = -1$$

2) Elasticity at a point P, Q is:

$$E = \frac{\partial Q}{\partial P} \cdot \frac{P}{Q}$$

Examples:

Elasticity at a point P=3, Q=7 is: $E=-1\cdot\frac{3}{7}=-\frac{3}{7}$

Elasticity at a point P=5, Q=5 is: $E = -1 \cdot \frac{5}{5} = -1$

Mathematical Example of Revenue (Not in Lecture Notes)

3 Notes:

- 1. Total Revenue, R(Q*) is maximized
- 2. $MR(Q^*) = 0$
- 3. E = 1 (unit elastic)

Calculating Future Value and Present Value

\$1.00 received today is worth more in the future.

Consider a lender who lends \$1.00 and will earn an interest rate of 10% on her loans.

At the end of year 1, they will have (\$1.00)*(1.10) = \$1.10

At the end of year 2, they will have (\$1.00)*(1.10)*(1.10) = \$1.21

- - - -

Generalizing this: the Future Value of \$1.00 in n years:

$$FV = $1.00 * (1 + i)^n$$

where i is the interest rate, n is the number of years

Calculating Future Value

\$1.00 received in the future is worth less today.

Consider a lender that will receive \$1.00 in the future at 10% interest rate. What is the sum that the lender needs to invest today?

\$1.00 to be received 1 year from now is worth $\frac{\$1.00}{1.10} = \0.91 \$1.00 to be received 2 years from now is worth $\frac{\$1.00}{(1.10)(1.10)} = \0.83

Generalizing this: the Present Value of \$1.00 received in n years:

$$PV = $1.00 / (1 + i)^n$$

where i is the interest rate, n is the number of years

Calculating Present Value

$$PV = \frac{FV}{(1+i)^n}$$

$$FV = PV(1+i)^n$$

Relationship between Future Value and Present Value

Calculating Future Value	