kaggle

What if technology could help improve conversations online?

Toxic Comment Classification Challenge (Выявление и классификация токсичных комментариев)

DecisionGuys: 10 out of 4551

Perspective API

Type here to see the potential effect of what you're Writing Experiment writing. What if you could see the potential impact of your writing? We created an experiment using Perspective to illustrate when comments might be perceived as "toxic" by others. Disagree with the result? Please let us know! It's still early days and we will get a lot of things wrong.

www.perspectiveapi.com

Постановка задачи

Имеем следующую задачу **NLP** – научиться детектировать различные классы токсичных комментариев.

Train: ~160к комментариев Test: ~153к комментариев

Постановка задачи

Классы токсичности:

- угроза (класс **toxic**)
- едкая угроза (класс severe_toxic)
- непристойность (класс obscene)
- ещё какой-то тип угрозы (класс threat)
- оскорбление (класс insult)
- ненависть к личности (класс identity_hate)

Метрика качества: mean column-wise ROC AUC

Предобработка данных

Базовая предобработка данных:

- преобразование вида:
- "WHATAF■CK MAN" → "WHATAF■CK MAN"
- приведение текста к нижнему регистру
- удаление ссылок, ір
- удаление цифр
- удаление пунктуаций (кроме апострофов)

Предобработка данных

Доп предобработка данных:

- замена смайликов на соответствующие слова
- расшифровка сокращений
- исправление опечаток в ненормативной лексике
- приведение различного сорта мата к одному и тому же ввиду (например, "fc*k": "f∎ck", "fu**": "f∎ck")
- удаление изображений

$$\binom{\text{разброс}}{\text{композиции}} = \frac{1}{N} \binom{\text{разброс одного}}{\text{базового алгоритма}} + \binom{\text{корелляция между}}{\text{базовыми алгоритмами}}$$

Bag of Words

«Порядок слов имеет значение?»

«Значение слов имеет порядок?»

«Порядок имеет значение слов?»

X_M...

Общий подход

Векторное представление слов/комментариев ML модель

Распределение вероятностей по классам

Стратифицированная кросс-валидация по 10 фолдам

CV: 0.9785

LB: 0.9714

Распределение вероятностей по классам

кросс-валидация по 10 фолдам

LB: 0.9854 (public)

LB: 0.9851 (private)

One of the best single model

Рецепт успеха

BLENDING

STACKING

NETWORKING

NETWORKING

"У меня bi-gru на fastext и glove на 10 фолдах с кастомным препроцессингом, и чуть допиленный svm Джереми pseudo labeling ещё юзаю, остальное публичное"

LB: 0.9861
(private)

LB: 0.9867 (private)

Vanilla Bi-Gru combined with AttentionWithContext

Атанас Атанасов

Standard 2-layer Bi-Gru Model + AttentionWithContext.

Implementation Framework: Keras

Preprocessing: Yes

Sentence Length: 500

Number of Folds: 10

Word Embeddings: FastText Common Crawl (600B

tokens)

Tunning Hyperparameters: Hyperopt

CV Score: 0.9886

Private LB: 0.9848

HANN

Classical implementation of Hierarchical Attention Neural Networks using Bi-LSTMs

Implementation Framework: Keras

Preprocessing: Yes

Max Text Length: 200

Max Sentences: 10

Max Features: 150000

Number of Folds: 10

Word Embeddings: FastText Common

Crawl (600B tokens)

Tunning Hyperparameters: Hyperopt

CV Score: 0.9869 Private LB: 0.9833

Recurrent CNN for Text Classification

Bi-directional (GRU) recurrent structure that reduces noise and captures semantic information to the greatest extent possible.

Implementation Framework: Keras

Preprocessing: Yes

Sentence Length: 500

Number of Folds: 10

Word Embeddings: FastText Common

Crawl (600B tokens)

Tunning Hyperparameters: Hyperopt

CV Score: 0.9874 Private LB: 0.9832

Vanilla Bi-GRU with attention block

2-layer Bi-Gru Model + attention block.

Implementation Framework: Keras

Preprocessing: Yes

Sentence Length: 500

Number of Folds: 10

Word Embeddings: FastText Common

Crawl (600B tokens)

Tunning Hyperparameters: Hyperopt

CV Score: 0.9890

Private LB: 0.9846

LSTM combined CNN (max, average) poolings

LSTM concatenated with 3 layers of CNN[Convolutional1D, GlabalMaxPooling1D, GlobalAveragePooling1D]

Implementation Framework: Keras

Preprocessing: Yes Sentence Length: 250 Number of Folds: 10

Word Embeddings: FastText Common

Crawl (600B tokens)

Tunning Hyperparameters: Hyperopt

CV Score: 0.9866 Private LB: 0.9842

DPCNN

Word-level deep convolutional neural network (CNN) architecture for text categorization that can efficiently represent longrange associations in text.

Implementation Framework: Keras

Preprocessing: Yes Sentence Length: 500 Number of Folds: 10

Word Embeddings: FastText Common

Crawl (600B tokens)

Tunning Hyperparameters: Hyperopt

CV Score: 0.9850 Private LB: 0.9838

```
add_3, Add input: [(Nome, 124, 64), (Nome, 124, 64)]
(Nome, 124, 64)

mas_pooling1d_3; MasPooling1D input: (Nome, 124, 64)
```

Squeeze and Excitation Networks (adapted for Text)

SE block adapted for text that recalibrates channel-wise feature responses by explicitly modelling interdependencies between channels.

Implementation Framework: Keras

Preprocessing: Yes Sentence Length: 250 Number of Folds: 10

Word Embeddings: FastText Common

Crawl (600B tokens)

Tunning Hyperparameters: Hyperopt

CV Score: 0.9902 Private LB: 0.9845

AC-BLSTM

Asymmetric Convolutional Bidirectional LSTM Networks for Text Classification

Implementation Framework: Keras

Preprocessing: Yes Sentence Length: 600 Number of Folds: 10

Word Embeddings: FastText Common

Crawl (600B tokens)

Tunning Hyperparameters: Hyperopt

CV Score: 0.9904 Private LB: 0.9845

Stacker 1:

All of these models stacked with LightGBM with the following features:
 len, uppercase_freq, number_of_words,number_of_unique_words, number_of_you_words,
 number_of_punct, number_of_mother, number_of_nig_er, total_length, num_symbols, num_smilies
 etc...

- \bullet CV = 5
- CV Score: 0.99211384493568
- PLB: 0.9867

Stacker 2:

- All of these models (pretrained with Glove) stacked with (MLP + XGBoost)
- Used additional features as auxiliary input for the models (punctuation, word_len, mean word len)
- CV Score: 0.9103829829292
- \bullet CV = 10
- PLB: 0.9863

Стратифицированная кросс-валидация по 10 фолдам

CV: 0.9819

LB: 0.9816 (private)

Стратифицированная кросс-валидация по 10 фолдам

CV: 0.9824

LB: 0.9820 (private)

Общий сетап

- Кросс-валидация на 10-KFold
- Модели с различными векторами и препроцессингом
- Аугментация данных
- Два подхода:
 - **а.** Обучил N моделей посмотрел ошибки на CV исправил препроцессинг
 - **b.** Обучил N моделей посмотрел на корреляции, усилил слабо скоррелированные

Корреляции Спирмена между моделями

Аугментации

• Переводы

- О Идея Павла Остякова
- https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challeng e/discussion/48038
- Перевод комментария на какой-то язык и обратно

• Конкатенация

- Склеиваем два комментария, возьмем в качестве лейблов их объединение
- Каждую эпоху применяем к новому подмножеству комментариев

Модели на ВРЕ

- SentencePiece токенайзер Google для нейросетей
 - Строит фиксированный словарь заданного размера без UNK
 - Hello_World. => [Hello] [_Wor] [ld] [.]
 - https://github.com/google/sentencepiece
 - о Два алгоритма BPE и Unigram
- Pretrained BPE embeddings
 - https://github.com/bheinzerling/bpemb
- Неплохо заработал словарь 50к

Stacking

Классическая схема

Ансамбли

• Усреднение N x 10 моделей

 Практически до самого конца ничего стабильно лучше не получалось сделать

• LightGBM

- Усреднение групп схожих моделей первого уровня
- Обучение на 10 фолдах CV, усреднение перед генерацией сабмишна
- Баггинг 20 запусков
- о Метафичи

API

- Было разрешено использовать АРІ существующей системы
 - https://www.perspectiveapi.com/
- Сходный (но отличный) набор лейблов
- Хорошо заходит в качестве метафичей на втором уровне
 - Особенно вытягивает класс ТОХІС

- $0.99275 \Rightarrow 0.99314 \text{ CV}$
- $0.9879 \Rightarrow 0.9882 LB$

Финальные сабмишны

- Бленд моделей без АРІ
 - o Public 0.9882
 - Private 0.9876
- Бленд моделей без API + LightGBM с API
 - Public 0.9880
 - o Private 0.9874

DecisionGuys — 10 out of 4551

Алексей Носков

alexeynoskov (Leader)

Игорь Галицкий

igeti

Павел Плесков

ppleskov

Константин Котик

kotikkonstantin

Атанас Атанасов

atanasova

Андрей Литвинов

lao777

Евгения Заворина

