

Welcome to:

Parisa Hosseinzadeh Spring 2022

Introduction

Name
Pronouns
Lab/year
What are you hoping to learn from this class
How do you evaluate your coding/biochemistry skills

If you want to recommend a book/movie, it would be ...?

Class core values

- 1. Be **respect**ful to yourself and others
- 2. Be **confident** and believe in yourself
- 3. Always do your **best**
- 4. Be **cooperative**
- 5. Be **creative**
- 6. Have **fun**
- 7. Be **patient** with yourself while you learn
- 8. Don't be shy to **ask "stupid" questions**

What to bring?

Yourself

Your attention and curiosity

Your laptops

What to bring?

Yourself Your attention and curiosity Your laptops

What do I need to know?

Basic biochemistry Basic learning Some python

Pre-class assessments (So you think you know X)

Quiz to check your knowledge on the topic

Short videos/readings that will bring you up to speed

Assessments are always due before the class

Pre-class assessments (So you think you know X)

Quiz to check your knowledge on the topic Short videos/readings that will bring you up to speed

Post-class assignments

Short quizzes
Assay questions
Readings (for journal club)
Running a guided code

•

Pre-class assessments (So you think you know X)

Quiz to check your knowledge on the topic Short videos/readings that will bring you up to speed

Post-class assignments

Short quizzes
Assay questions
Readings (for journal club)

Running a guided code

Running a guided c

...

Assignments are always due the next Wednesdays, 3 PM

Pre and post class assignments In class activities

> Asking questions, submitting in-class work, presence Either through canvas or google colab (gmail account) 1 session allowed absence

Pre and post class assignments In class activities Journal presentation

slido.com #994666

Week 2	Karly
Week 3	Judah
Week 4	Lejla
Week 5	Noora
Week 6	Liza
Week 7	Alonso
Week 8	Cora
Week 9	Andrew

Pre and post class assignments
In class activities
Journal presentation
Final project
Literature review
Or
Coding project

Potential coding projects

- 1. Predicting stability of designed proteins tested on the surface of yeast
- 2. Predicting whether a peptide is antimicrobial or not
- 3. Generating antimicrobial peptides
- 4. Generating new sequences for proteins of a known family

Potential review projects

- 1. Applications of deep learning in predicting protein stability
- 2. Applications of deep learning in protein design
- 3. Applications of machine learning in protein function prediction
- 4. Graph learning models of proteins

Let me know by next Monday

Pre and post class assignments
In class activities
Journal presentation
Final project
"Poster" session day
Presenting your findings

Panels/Guests

Experts on certain areas of learning Dr. Mehanian for CNN

Panels/Guests

Experts on certain areas of learning
Dr. Mehanian for CNN

Guest lectures on specialized topics
Ethics of ML
Application of ML

Feedback

Assignments and activities

Detailed feedback provided by instructor Answering questions during hands-on sessions Help navigate the paper Office hours: 30 min after class each class

Feedback

Assignments and activities

Detailed feedback provided by instructor Answering questions during hands-on sessions Help navigate the paper Office hours: 30 min after class each class

Feedback from you

Mid-term and final feedback Personal feedback (email, anonymous feedback) 2 + 1 feedback every two weeks

About canvas

Spring 2022

Home

Announcements

Assignments

Grades

Files

Syllabus

Chat

Zoom Meetings

UO Course Surveys

Machine learning for protein prediction and design

General information

Class times Mondays/Wednesdays 3:00 - 4:50

Office hours Mondays/Wednesdays half and hour after class

Instructor Parisa Hosseinzadeh (she/her) -- email: parisah 'at' uoregon.edu

Location KC 156, or if needed zoom (https://uoregon.zoom.us/j/99426388835 ₺)

Questions?

Learning Objectives

- 1. Describe the basic concept of machine learning
- Explain the difference between supervised and unsupervised learning
- 3. Identify the difference between predictive and generative tasks
- Calculate different performance metrics for a binary classification task
- 5. Clearly explain the concept of AUC-ROC

A gentle introduction to machine learning

Artificial Intelligence

A gentle introduction to machine learning

Artificial Intelligence

Machine Learning

A gentle introduction to machine learning

Artificial Intelligence

Machine Learning

Deep learning

Putting it into [historic] perspective

The basic components of a learning system

The basic components of a learning system

Inputs

The basic components of a learning system

The basic components of a learning system

Measuring performance

Confusion matrix

Precision tells us how well our algorithm discriminates between positives and negatives

$$\begin{array}{c} & \text{TP} \\ \text{Precision} = & \hline \\ & \text{TP + FP} \end{array}$$

	Positive	Negative
Positive	TP (6)	FP (2)
Negative	FN (3)	TN (4)

Precision tells us how well our algorithm discriminates between positives and negatives

$$\begin{array}{c} & \text{TP} \\ \text{Precision} = & \hline \\ & \text{TP + FP} \end{array}$$

	Positive	Negative
Positive	TP (0)	FP (0)
Negative	FN (9)	TN (6)

Recall tells us how good our algorithm is at finding the positives

Recall =
$$\frac{TP}{TP + FN}$$

	Positive	Negative
Positive	TP (6)	FP (2)
Negative	FN (3)	TN (4)

Recall tells us how good our algorithm is at finding the positives

Recall =
$$\frac{TP}{TP + FN}$$

	Positive	Negative
Positive	TP (9)	FP (6)
Negative	FN (0)	TN (0)

It is more accurate to consider both precision and recall in our calculations

F1 score =
$$\frac{2 \text{ x precision x recall}}{\text{precision + recall}}$$

$$\frac{\text{TP + TN}}{\text{TP + TN + FP + FN}}$$

	Positive	Negative
Positive	TP (6)	FP (2)
Negative	FN (3)	TN (4)

$$TPR = \frac{TP}{TP + FN}$$

Next lecture:

Garbage in, garbage out – the importance of

input data

