List of Symbols

Version: December 11, 2022

1 Font notation

$a, b, c, \ldots, A, B, C, \ldots$	Scalars
a, b, c, \dots	Vectors
A, B, C, \dots	Matrices
$\mathcal{A},\mathcal{B},\mathcal{C},\dots$	Tensors
$A, B, C, \ldots, A, B, C, \ldots$	Sets

2 Common symbols

$\mathbf{\nabla} f, \mathbf{g}$	Gradient vector
$\nabla_x f, \mathbf{g}_x$	Gradient vector with respect x
\mathbf{g} (or $\hat{\mathbf{g}}$ if the gradient vector is \mathbf{g})	Stochastic approximation of the gra-
2,	dient vector
$J(\cdot)$	Cost-function or objective function
$\Lambda(\cdot)$	Likelihood function
$\Lambda_l(\cdot)$	Log-likelihood function
$\mathcal{O}(\cdot), O(\cdot)$	big-O notation
Q(x)	Q-function
μ_x, \mathbf{m}_x	Mean vector
$\hat{\mathbf{\mu}}_{x},\hat{\mathbf{m}}_{x}$	Sample mean vector
$r_{x}(\tau), R_{x}(\tau)$	Autocorrelation function of the sig-
	$\operatorname{nal} x(t) \text{ or } x[n]$
$\hat{r}_{\scriptscriptstyle X}(au),\hat{R}_{\scriptscriptstyle X}(au)$	Estimated autocorrelation function
	of the signal $x(t)$ or $x[n]$
R_x	(Auto)correlation matrix of \mathbf{x}
$\hat{\mathbf{R}}_{\mathbf{x}}$	Sample (auto)correlation matrix
$r_{x,d}(\tau), R_{x,d}(\tau)$	Cross-correlation between $x[n]$ and
	d[n] or $x(t)$ and $d(t)$
$\hat{r}_{x,d}(au),\hat{R}_{x,d}(au)$	Estimated cross-correlation between
	x[n] and $d[n]$ or $x(t)$ and $d(t)$

$\mathbf{R}_{\mathbf{x}\mathbf{y}}$	Cross-correlation matrix of \mathbf{x} and \mathbf{y}
$\hat{\mathbf{R}}_{\mathbf{x}\mathbf{y}}$	Sample cross-correlation matrix of
n ,	R_{xy} Cross-correlation vector
$\mathbf{P}_{\mathbf{x}d}$ $\rho_{x,y}$	Pearson correlation coefficient be-
<i>PX</i> , <i>y</i>	tween x and y
$\hat{ ho}_{x,y}$	Estimated Pearson correlation coefficient between x and y
$c_X(\tau), C_X(\tau)$	Autocovariance function of the signal $x(t)$ or $x[n]$
$\hat{c}_x(au), \hat{C}_x(au)$	Estimated autocovariance function of the signal $x(t)$ or $x[n]$
C_x, K_x, Σ_x	(Auto)covariance matrix of \mathbf{x}
$\hat{\mathbf{C}}_{\mathbf{x}}, \hat{\mathbf{K}}_{\mathbf{x}}, \hat{\mathbf{\Sigma}}_{\mathbf{x}}$	Sample (auto)covariance matrix
$c_{xy}(\tau), C_{xy}(\tau)$	Cross-covariance function of the sig-
	$\operatorname{nal} x(t) \text{ or } x[n]$
$\hat{c}_{xy}(au), \hat{C}_{xy}(au)$	Estimated cross-covariance function
$\mathrm{C}_{\mathrm{xy}}, \mathrm{K}_{\mathrm{xy}}, \Sigma_{\mathrm{xy}}$	of the signal $x(t)$ or $x[n]$ Cross-covariance matrix of \mathbf{x}
$\hat{\mathbf{C}}_{\mathbf{xy}},\hat{\mathbf{K}}_{\mathbf{xy}},\mathbf{\Sigma}_{\mathbf{xy}}$ $\hat{\mathbf{C}}_{\mathbf{xy}},\hat{\mathbf{K}}_{\mathbf{xy}},\hat{\mathbf{\Sigma}}_{\mathbf{xy}}$	Sample cross-covariance matrix
$\delta(t)$	Delta function
$\delta[n]$	Kronecker function
h(t), h[n]	Impulse response (continuous and discrete time)
\mathbf{C}	Cofactor matrix
\mathbf{W}, \mathbf{D}	Diagonal matrix
$\mathbf{w}, \mathbf{\theta}$	Parameters, coefficients, or weights vector
$\mathbf{w}_{o}, \mathbf{w}^{\star}, \mathbf{\theta}_{o}, \mathbf{\theta}^{\star}$	Optimum value of the parameters,
	coefficients, or weights vector
\mathbf{W}	Matrix of the weights
P	Projection matrix; Permutation ma-
	trix
Λ L	Eigenvalue matrix
U	Lower matrix Upper matrix; Left singular vectors
\mathbf{U}_r	Left singular nondegenerated vectors
Σ	Singular value matrix
Σ_r	Singular value matrix with nonzero
	singular values in the main diagonal
Σ^+	Singular value matrix of the pseudoinverse
Σ_r^+	Singular value matrix of the pseudoinverse with nonzero singular values in the main diagonal

$egin{array}{c} {f V} \\ {f V}_r \end{array}$	Right singular vectors Right singular nondegenerated vectors
J	Jordan matrix; Jacobian matrix
\mathbf{S}	Symmetric matrix
Q	Orthogonal matrix
\mathbf{I}_N	$N \times N$ -dimensional identity matrix
$0_{M imes N}$	$M \times N$ -dimensional null matrix
0_N	N-dimensional null vector
0	Null matrix, vector, or tensor (di-
	mensionality understood by context)
$1_{M imes N}$	$M \times N$ -dimensional ones matrix
1_N	N-dimensional ones vector
1	Ones matrix, vector, or tensor (di-
	mensionality understood by context)
j	$\sqrt{-1}$

${\bf 3}\quad {\bf Linear~Algebra~operations}$

. 1	
\mathbf{A}^{-1}	Inverse matrix
$\mathbf{A}^+,\mathbf{A}^\dagger$	Moore-Penrose pseudoinverse
$\mathbf{A}^{ op}$	Transpose
\mathbf{A}^*	Complex conjugate
\mathbf{A}^H	Hermitian
$\ \mathbf{A}\ _{\mathrm{F}}$	Frobenius norm
$\ \mathbf{A}\ $	Matrix norm
$\ \mathbf{a}\ $	l_1 norm, 1-norm, or Manhatan norm
$\ \mathbf{a}\ , \ \mathbf{a}\ _2$	l_2 norm, 2-norm, or Euclidean norm
$\ \mathbf{a}\ _p$	l_p norm, p -norm, or Minkowski norm
$\ \mathbf{a}\ _{\infty}^{'}$	l_{∞} norm, ∞ -norm, or Chebyshev
	norm
$ \mathbf{A} , \det{(\mathbf{A})}$	Determinant
$\operatorname{diag}\left(\mathbf{a}\right),\operatorname{diag}\left(\mathbf{A}\right)$	Diagonalization: a square, diagonal
	matrix with entries given by the vec-
	tor a or the elements in the diagonal
	of ${f A}$
$\text{vec}(\mathbf{A})$	Vectorization: stacks the columns of
. ,	the matrix A into a long column vec-
	tor
$\operatorname{vec}_{\operatorname{d}}\left(\mathbf{A}\right)$	Extracts the diagonal elements of a
	square matrix and returns them in a
	column vector

$ ext{vec}_{ ext{l}}\left(\mathbf{A} ight)$ $ ext{vec}_{ ext{l}}\left(\mathbf{A} ight)$ $ ext{vec}_{ ext{b}}\left(\mathbf{A} ight)$	Extracts the elements strictly below the main diagonal of a square matrix in a column-wise manner and returns them into a column vector Extracts the elements strictly above the main diagonal of a square matrix in a column-wise manner and returns them into a column vector Block vectorization operator: stacks square block matrices of the input
$\mathrm{unvec}(\mathbf{A})$	into a long block column matrix Reshapes a column vector into a matrix
$cof(\mathbf{A})$	Cofactor matrix of A
$\operatorname{eig}\left(\mathbf{A}\right)$	Set of the eigenvalues of A
$\llbracket \mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots Vert$	CANDECOMP/PARAFAC (CP) de-
[-4, 2, 0, 111]	composition of the tensor \mathcal{X} from the outer product of column vectors of \mathbf{A} , \mathbf{B} , \mathbf{C} ,
$[\![oldsymbol{\lambda}; \mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots]\!]$	Normalized CANDE-COMP/PARAFAC (CP) decomposition of the tensor \mathcal{X} from the outer product of column vectors of $\mathbf{A}, \mathbf{B}, \mathbf{C}, \dots$
N(A) nullange $Q(A)$ kernel $Q(A)$	Nullspace (or kernel)
$N(\mathbf{A})$, $nullspace(\mathbf{A})$, $kernel(\mathbf{A})$ $C(\mathbf{A})$, $columnspace(\mathbf{A})$, $range(\mathbf{A})$	Columnspace (or range), i.e., the
$C(\mathbf{A})$, columnispace(\mathbf{A}), range(\mathbf{A})	space span $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$, where \mathbf{a}_i is the ith column vector of the matrix \mathbf{A}
$\mathrm{span}\left(\mathbf{a}_{1},\mathbf{a}_{2},\ldots,\mathbf{a}_{n}\right)$	Vector space spanned by the argument vectors
$\mathrm{span}\left(\mathbf{A}\right)$	Vector space spanned by the col- umn vectors of \mathbf{A} , which gives the columnspace of \mathbf{A}
$\operatorname{rank}\left(\mathbf{A}\right)$	Rank, that is, $\dim(\text{span}(\mathbf{A})) = \dim(\mathbf{C}(\mathbf{A}))$
$\operatorname{nullity}\left(\mathbf{A}\right)$	Nullity of \mathbf{A} , i.e., dim (N (\mathbf{A}))
$\operatorname{tr}(\mathbf{A})$	trace $(\mathbf{X}, \mathbf{X}, X$
$\mathbf{a} \perp \mathbf{b}$	a is orthogonal to b
a ⊥ b a ⊥ b	a is not orthogonal to b
$\langle \mathbf{a}, \mathbf{b} \rangle$	Inner product, i.e., $\mathbf{a}^{T}\mathbf{b}$
$\mathbf{a} \circ \mathbf{b}$	Outer product, i.e., $\mathbf{a} \cdot \mathbf{b}^{T}$
⊗	Kronecker product
⊗ ⊙	Hadamard (or Schur) (elementwise)
	product (or schur) (elementwise)

\oslash	Hadamard (or Schur) (elementwise) division
$\mathbf{A}^{\odot n}$	nth-order Hadamard power of the
	matrix A
$\mathbf{A}^{\odot rac{1}{n}}$	nth-order Hadamard root of the ma-
	trix A
♦	Khatri-Rao product
\otimes	Kronecker Product
\times_n	<i>n</i> -mode product
$\mathbf{X}_{(n)}$	<i>n</i> -mode matricization of the tensor ${\cal X}$
$\mathcal{X} \leq 0$	Nonnegative tensor
$\mathbf{a} \leq_K \mathbf{b}$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the conic subset K in
	the space \mathbb{R}^n
$\mathbf{a} \prec_K \mathbf{b}$	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the interior of
_	the conic subset K in the space \mathbb{R}^n
$\mathbf{a} \leq \mathbf{b}$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the nonnegative or-
	thant conic subset, \mathbb{R}^n_+ , in the space \mathbb{R}^n
a < b	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the positive or-
	thant conic subset, \mathbb{R}^n_{++} , in the space
	\mathbb{R}^n
$\mathbf{A} \leq_K \mathbf{B}$	Generalized inequality meaning that
	$\mathbf{B} - \mathbf{A}$ belongs to the conic subset K
	in the space \mathbb{S}^n
$\mathbf{A} <_K \mathbf{B}$	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the interior of
4 . 7	the conic subset K in the space \mathbb{S}^n
$\mathbf{A} \leq \mathbf{B}$	Generalized inequality meaning that
	$\mathbf{B} - \mathbf{A}$ belongs to the positive semidef-
A . D	inite conic subset, \mathbb{S}_{+}^{n} , in the space \mathbb{S}^{n}
A < B	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the positive or-
	thant conic subset, \mathbb{S}_{++}^n , in the space
	\mathbb{S}^n

3.1 Indexing

x_{i_1,i_2,\ldots,i_N}	Element	in	the	position
	(i_1,i_2,\ldots,i_N)) of the	e tensor	\mathcal{X}
$\mathcal{X}^{(n)}$	nth tensor in	a nont	emporal	sequence

$[\mathcal{X}]_{i_1,i_2,,i_N}$	Element $x_{i_1,i_2,,i_N}$
$\mathbf{X}_n, \mathbf{X}_{:n}$	nth column of the matrix X
\mathbf{x}_{n} :	nth row of the matrix X
$\mathbf{X}_{i_1,\ldots,i_{n-1},:,i_{n+1},\ldots,i_N}$	Mode- n fiber of the tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{X}_{:,i_2,i_3}$	Column fiber (mode-1 fiber) of the
	thrid-order tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{x}_{i_1,:,i_3}$	Row fiber (mode-2 fiber) of the thrid-
	order tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{x}_{i_1,i_2,:}$	Tube fiber (mode-3 fiber) of the
	thrid-order tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{X}_{i_1,:,:}$	Horizontal slice of the thrid-order
	tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{X}_{:,i_2,:}$	Lateral slices slice of the thrid-order
	tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{X}_{i_3}, \mathbf{X}_{:,:,i_3}$	Frontal slices slice of the thrid-order
	tensor \mathcal{X}

4 Sets

A + B	Set addition (Minkowski sum)
A - B	Minkowski difference
$A \setminus B, A - B$	Set difference or set subtraction,
	i.e., the set containing the elements
	of A that are not in B
$A \cup B$	Set of union
$A \cap B$	Set of intersection
$A \times B$	Cartesian product
A^n	$A \times A \times \cdots \times A$
	n times
A^{\perp}	Orthogonal complement of A , e.g.,
	$N(\mathbf{A}) = C(\mathbf{A}^{T})^{\perp}$
$A \oplus B$	Direct sum, e.g., $C(\mathbf{A}^{T}) \oplus C(\mathbf{A}^{T})^{\perp} =$
	\mathbb{R}^n
$A^c, ar{A}$	Complement set (given U)
#A, A	Cardinality
$a \in A$	a is element of A
$a \notin A$	a is not element of A
$\{1,2,\ldots,n\}$	Discrete set containing the integer el-
	ements $1, 2, \ldots, n$
U	Universe
2^A	Power set of A
\mathbb{R}	Set of real numbers
\mathbb{C}	Set of complex numbers
\mathbb{Z}	Set of integer number
	\mathbf{c}

$\mathbb{B} = \{0, 1\}$ \emptyset \mathbb{N} $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ $\mathbb{K}^{I_1 \times I_2 \times \cdots \times I_N}$	Boolean set Empty set Set of natural numbers ???? $I_1 \times I_2 \times \cdots \times I_N$ -dimensional real (or samples) spaces.
\mathbb{K}_{+} \mathbb{K}_{++}	complex) space Nonnegative real (or complex) space Positive real (or complex) space, i.e., $\mathbb{K}_{++} = \mathbb{K}_{+} \setminus \{0\}$
$\mathbb{S}^n, \mathcal{S}^n$	Conic set of the symmetric matrices in $\mathbb{R}^{n \times n}$
$\mathbb{S}^n_+, \mathcal{S}^n_+$	Conic set of the symmetric positive semidefinite matrices in $\mathbb{R}^{n\times n}$
$\mathbb{S}^n_{++}, \mathcal{S}^n_{++}$	Conic set of the symmetric positive definite matrices in $\mathbb{R}^{n\times n}$, i.e., $\mathbb{S}^n_{++} = \mathbb{S}^n_+ \setminus \{0\}$
\mathbb{H}^n	Set of all hermitian matrices in $\mathbb{C}^{n\times n}$
[a,b]	Closed interval of a real set from a to b
(a,b)	Opened interval of a real set from a to b
[a,b),(a,b]	Half-opened intervals of a real set from a to b

5 Signals and functions operations and indexing

$f:A\to B$	A function f whose domain is A and
	codomain is B
$f^{(n)}$	nth derivative of the function f
f^{-1}	Inverse function of f
$f \circ g$	Composition of the functions f and
	g
$\inf_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y})$	Infimum
$y \in A$ $\sup g(x, y)$	Supremum
$ \begin{array}{c} \operatorname{sup} g(\mathbf{x}, \mathbf{y}) \\ \mathbf{y} \in \mathcal{A} \end{array} $	Supremum
*	Convolution
⊛, (N)	Circular convolution
x(t)	Continuous-time t
$x[n],x[k],x[m],x[i],\ldots$	Discrete-time n, k, m, i, \ldots
$x(n), x(k), x(m), x(i), \dots$	Discrete-time n, k, m, i, \ldots (it should
	be used only if there are no
	continuous-time signals in the con-
	text to avoid ambiguity)

$\hat{x}(t)$ or $\hat{x}[n]$	Estimate of $x(t)$ or $x[n]$; the Hilbert
	transform of $x(t)$ or $x[n]$
$\tilde{x}[n]$	Periodic discrete-time signal
$x\left[\left((n-m)\right)_{N}\right], x\left((n-m)\right)_{N}$	Circular shift in m samples within a
	N-samples window
$x_I(t)$ or $x_I[n]$	Real or in-phase part of $x(t)$ or $x[n]$
$x_Q(t)$ or $x_Q[n]$	Imaginary or quadrature part of $x(t)$
	or $x[n]$
$\mathcal{F}\left\{ \cdot ight\}$	Fourier transform
$\mathcal{L}\left\{ \cdot ight\}$	Laplace transform
$\mathcal{Z}\left\{ \cdot ight\}$	z-transform
X(s)	Laplace transform of $x(t)$
X(f)	Fourier transform (FT) (in linear fre-
	quency, Hz) of $x(t)$
$X(j\omega)$	Fourier transform (FT) (in angular
	frequency, rad/sec) of $x(t)$
$X(e^{j\omega})$	Discrete-time Fourier transform
	(DTFT) of $x[n]$
X[k], X(k)	Discrete Fourier transform (DFT) or
	fast Fourier transform (FFT) of $x[n]$,
	or even the Fourier series (FS) of the
	periodic signal $x(t)$
$\tilde{X}[k], \tilde{X}(k)$	Discrete Fourier series (DFS) of $\tilde{x}[n]$
X(z)	z-transform of $x[n]$
$S_{x}(f)$	Power spectral density of $x(t)$ in lin-
	ear frequency
$S_x(j\omega)$	Power spectral density of $x(t)$ in an-
	gular frequency

6 Probability and stochastic processes

$E\left[\cdot\right]$	Statistical expectation
$E_u\left[\cdot\right]$	Statistical expectation with respect
	to u
var(x)	Variance of the random variable x
$\operatorname{erfc}(\cdot)$	Complementary error function
P(A)	Probability of the event or set A
$p(\cdot)$	Probability density function
$p(x \mid A)$	Conditional probability density func-
	tion
$a \sim P$	Random variable a with distribution
	P
$\mathcal{N}(\mu, \sigma^2)$	Gaussian distribution of a random
	variable with mean μ and variance σ^2

 $\mathcal{CN}(\mu,\sigma^2) \qquad \qquad \text{Complex Gaussian distribution of a random variable with mean } \mu \text{ and variance } \sigma^2 \\ \mathcal{N}(\mu,\Sigma) \qquad \qquad \text{Gaussian distribution of a vector random variable with mean } \mu \text{ and covariance matrix } \Sigma \\ \mathcal{CN}(\mu,\Sigma) \qquad \qquad \text{Complex Gaussian distribution of a vector random variable with mean } \mu \\ \qquad \qquad \text{and covariance matrix } \Sigma \\ \mathcal{U}(a,b) \qquad \qquad \text{Uniform distribution from } a \text{ to } b \\ \end{aligned}$

7 General notations

 $a \wedge b$ Logical AND of a and b $a \vee b$ Logical OR of a and bLogical negation of a $\neg a$ There exists Э ∄ There does not exist ∃! There exist an unique \forall For all **|**,: Such that Therefore *:* . Logical equivalence Equal by definition Not equal # Infinity ∞ Absolute value of a |a|Base-10 logarithm or decimal logalog rithm lnNatual logarithm $\operatorname{Re}\left\{ x\right\}$ Real part of x $\operatorname{Im}\left\{ x\right\}$ Imaginary part of x[.] Ceiling operation $\lfloor \cdot \rfloor$ Floor operation phase (complex argument) $x \mod y$ Remainder, i.e., $x - y \lfloor x/y \rfloor$ $\operatorname{frac}(x)$ Fractional part, i.e., $x \mod 1$

8 Abbreviations

wrt. With respect to st. Subject to iff. If and only if

 ${\rm EVD}$

Eigenvalue decomposition, or eigendecomposition Singular value decomposition CANDECOMP/PARAFAC SVD CP