Vektorji v \mathbb{R}^3 , 2. del

Polona Oblak

1. Novo definirani pojmi

- Skalarni produkt
 - Definicija skalarnega produkta, video.
 - Lastnosti skalarnega produkta, video.
 - Dolžina vektorja, enotski vektor, primer, video.
 - Igrajte se sami z demonstracijo Wolfram demonstrations.
 - Kot med vektorjema, pravokotnost vektorjev, video.
 - **-** Primer: Dane so točke A(1,2,3), B(2,2,1), C(3,1,c) v \mathbb{R}^3 .
 - (1) Določite koordinato c točke C tako, da bo $\triangle ABC$ pravokotni trikotnik s pravim kotom pri oglišču A.
 - (2) Določite kot β pri oglišču B. (Rešitev).
 - 4 Naloga 1: Naj vektorja \vec{a} in \vec{b} dolžin $||\vec{a}||=2$ in $||\vec{b}||=3$ oklepata kot $\frac{\pi}{4}$. Izračunajte skalarni produkt vektorjev $\vec{a}+\vec{b}$ ter $\vec{a}-\vec{b}$.
 - Pravokotna projekcija, video.
 - 4 Naloga 2: V trikotniku z oglišči A(1,2,3), B(2,2,1) in C(3,1,4) določite koordinate nožišča višine na strancino BC.
- Vektorski produkt
 - Definicija vektorskega produkta, primer in dve lastnosti, video.
 - Geometrijske lastnosti vektorskega produkta.
 - * $\vec{a} \times \vec{b}$ je pravokoten na \vec{a} in na \vec{b} , video.
 - * Dolžina vektorskega produkta $\vec{a} \times \vec{b}$ je enaka ploščini paralelograma, napetega na \vec{a} in \vec{b} , video.
 - * Smer vektorja $\vec{a} \times \vec{b}$ je določena s pravilom desnosučnega vijaka, oziroma pravilom desne roke: postavite iztegnjeno dlan v smeri prvega vektorja (\vec{a}) , tako, da lahko pokrčite vse prste razen palce proti drugemu vektorju (\vec{b}) . Če vam to uspe, potem palec kaže v smeri vektorskega produkta $\vec{a} \times \vec{b}$, video.
 - Igrajte se sami z demonstracijo Wolfram demonstrations.
 - 4 Naloga 3: Uporabite definicijo vektorskega produkta, da za poljubne vektorje $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$ ter $\alpha \in \mathbb{R}$ pokažete distributivnost

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

ter homogenost

$$\vec{a} \times (\alpha \vec{b}) = \alpha \vec{a} \times \vec{b} = (\alpha \vec{a}) \times \vec{b}$$

vektorskega produkta. (Dokaz je malce tehničen in ga je mogoče narediti tako, da zapišemo vsako od strani po komponentah.)

- Enačba ravnine
 - Izpeljava enačbe, video.
 - Primer: Napišite enačbo ravnine, ki poteka skozi točke A(-1,2,-1), B(2,-1,2), C(0,0,-1). (Rešitev.)
 - Igrajte se sami z demonstracijo Wolfram demonstrations.
 - 4 Naloga 4: Naj bo Σ ravnina z normalo \vec{n} in naj točka T_0 leži na ravnini Σ . Naj točka A **ne** leži na ravnini Σ .
 - (1) Narišite skico.
 - (2) Dopolnite poved: Razdalja točke A do ravnine Σ je enaka dolžini projekcije vektorja _____ na vektor _____.
 - (3) Kako bi s pomočjo točk A, T_0 ter normale \vec{n} izračunali kot med vektorjem $T_0\vec{A}$ in ravnino Σ ?
 - (4) Izračunajte razdaljo točke A do ravnine Σ .
 - (5) Kaj vam pove predznak skalarnega produkta $\vec{T_0A} \cdot \vec{n}$ o legi točke A?
- Mešani produkt
 - Definicija mešanega produkta video.
 - 4 Naloga 5: S pomočjo lastnosti skalarnega in vektorskega produkta pokažite, da velja

$$(\vec{a}, \vec{b}, \vec{c}) = (\vec{b}, \vec{c}, \vec{a}) = (\vec{c}, \vec{a}, \vec{b}) = -(\vec{a}, \vec{c}, \vec{b}) = -(\vec{b}, \vec{a}, \vec{c}) = -(\vec{c}, \vec{b}, \vec{a}).$$

(Pri tem se izognite računanju produktov po komponentah.)

- Absolutna vrednost mešanega produkta $(\vec{a}, \vec{b}, \vec{c})$ je enaka prostornini paralelepipeda, napetega na vektorje \vec{a} , \vec{b} in \vec{c} , video.
- 4 Naloga 6: Enotska vektorja \vec{a} in \vec{b} oklepata kot $\frac{\pi}{4}$. Izračunajte prostornino paralelepipeda, napetega na vektorje \vec{a} , $\vec{a} \vec{b}$ ter $\vec{a} \times \vec{b}$.
- Zapiski predavanj, 2. teden.

2. KJE SI ŠE LAHKO PREBEREM/OGLEDAM SNOV?

- (1) Bojan Orel: Linearna algebra, Založba FRI, 2015, Poglavje 1.
- (2) Polona Oblak: Matematika, Poglavje 5.
- (3) Gilbert Strang: Introduction to Linear Algebra, 2009, Chapter 1.
- (4) James Stewart, Calculus, early transcendentals, 2016, Chapter 12.
- (5) David Poole: Linear Algebra, a modern introduction, 2006, Chapter 1.
- (6) 3Blue1Brown, Essence of linear algebra, Cross product

3. ALI RAZUMEM SNOV?

- 4(1) Drži ali ne drži?
 - (a) Skalarni produkt poljubnih vektorjev \vec{a} in \vec{b} v \mathbb{R}^3 , ki oklepata kot $\varphi \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$, je negativno število.
 - (b) Če je $\vec{a} \cdot \vec{b} = ||\vec{a}|| \, ||\vec{b}||$, potem sta vektorja \vec{a} in \vec{b} kolinearna.
 - (c) $(\vec{u} \cdot \vec{v})\vec{w} = \vec{u}(\vec{v} \cdot \vec{w})$ za poljubne vektorje $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$.
 - (d) Če sta premica p in ravnina Σ v \mathbb{R}^3 pravokotni, potem je vsak vektor na premici p vzporeden z normalo na ravnino Σ .
 - (e) Če sta $u, v \in \mathbb{R}^3$ neničelna vektorja, ki oklepata kot $\frac{\pi}{3}$, potem sta vektorja proj_uv in proj_vu nekolinearna.
 - (f) Ploščina paralelograma, ki ga napenjata vektorja $\vec{a} + \vec{b}$ ter $\vec{a} \vec{b}$ je dvakratnik ploščine, ki ga napenjata vektorja \vec{a} ter \vec{b} .
- 4(2) Če sta $\vec{a}, \vec{b} \in \mathbb{R}^3$ neničelna vektorja, kateri od naslednjih vektorjev so vedno pravokotni na vektor \vec{a} ?
 - (a) $(\vec{a} \times \vec{b}) \times \vec{a}$ (e) $\vec{a} \operatorname{proj}_{\vec{b}}(\vec{a})$ (b) $(\vec{a} \times \vec{b}) \times \vec{b}$ (f) $\vec{b} - \operatorname{proj}_{\vec{b}}(\vec{a})$ (c) $\operatorname{proj}_{\vec{a}}(\vec{b})$ (g) $\vec{a} - \operatorname{proj}_{\vec{a}}(\vec{b})$ (d) $\operatorname{proj}_{\vec{b}}(\vec{a})$ (h) $\vec{b} - \operatorname{proj}_{\vec{c}}(\vec{b})$
- 4(3) Naloga 4: Naj bosta A(a,b,c) in B(c,a,b) poljubni neničelni točki na ravnini x+y+z=0. Izračunajte kot med krajevnima vektorjema točk A in B.
- \star (4) Uporabite lastnosti skalarnega produkta, da za poljubna vektorja $\vec{x}, \vec{y} \in \mathbb{R}^n$ pokažete trikotniško neenakost

$$||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}||.$$

- \star (5) Naj bodo $\vec{a}, \vec{b}, \vec{c}$ poljubni vektorji v \mathbb{R}^3 .
 - (a) Geometrijsko utemeljite, zakaj vektorski produkt ni asociativna operacija.
 - (b) Geometrijsko razmislite, zakaj je vektor $(\vec{a} \times \vec{b}) \times \vec{c}$ linearna kombinacija vektorjev \vec{a} in \vec{b} .
 - (c) Računsko pokažite, da velja formula o dvojnem vektorskem produktu

$$(\vec{a}\times\vec{b})\times\vec{c}=(\vec{a}\cdot\vec{c})\vec{b}-(\vec{b}\cdot\vec{c})\vec{a}.$$

- (d) Iz formule o dvojnem vektorskem produktu lahko izpeljete tudi enakost $||\vec{a}\times\vec{b}||^2=||\vec{a}||^2\,||\vec{b}||^2-\left(\vec{a}\cdot\vec{b}\right)^2.$
- 4(6) Aleksandra Franc: Rešene naloge iz linearne algebre, 2019, Poglavje 1.

(Naloge, označene s 4 preverjajo razumevanje osnovnih pojmov in so primeri nalog s teoretičnih izpitov. Nalogi, označeni s \star , dopolnjujeta obravnavano snov in širita vaše znanje.)