Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών ΣΕΤ ΑΣΚΗΣΕΩΝ #3 ΚΑΙ ΛΥΣΕΙΣ (V1.1) Συντακτική Ανάλυση (top-down)

Γκόγκος Χρήστος

15/11/2019

Χρησιμοποιώντας μόνο τα τερματικά σύμβολα a, b και c γράψτε 2 συμβολοσειρές που ανήκουν και 2 συμβολοσειρές που δεν ανήκουν (για διαφορετικούς λόγους) στη γλώσσα που ορίζεται από την ακόλουθη γραμματική χωρίς συμφραζόμενα. Κάθε συμβολοσειρά να περιλαμβάνει και τα 3 τερματικά σύμβολα.

$$S \to aXa$$

$$X \to \epsilon | \mathrm{b} Y$$

$$Y \to \epsilon | \mathbf{c} X \mathbf{c}$$

Λύση

Δύο συμβολοσειρές που ανήκουν στην γραμματική είναι οι ακόλουθες:

- 1. abcca
- 2. abcbca

Δύο συμβολοσειρές που δεν ανήκουν στην γραμματική είναι οι ακόλουθες:

- 1. abcbca διότι δεν τελειώνει σε a.
- 2. abcba διότι α) τα c πρέπει να είναι σε ζεύγη και β) το τελευταίο c πρέπει να βρίσκεται μετά από το τελευταίο b.

Ερώτημα 2

Θεωρείστε την ακόλουθη γραμματική χωρίς συμφραζόμενα.

 $list \rightarrow list + digit$

 $list \rightarrow list - digit$

 $list \rightarrow digit$

 $digit \rightarrow 0|1|2|3|4|5|6|7|8|9$

Κατασκευάστε το συντακτικό δένδρο για τη συμβολοσειρά 1-2+3-4.

Λύση

Θεωρείστε την ακόλουθη γραμματική χωρίς συμφραζόμενα που (υποθετικά) καθορίζει τις έγκυρες παραμέτρους που μπορεί να δεχθεί μια συνάρτηση κατά την κλήση της.

 $call \rightarrow id(optparams)$

optparams \rightarrow params $|\epsilon$

params \rightarrow params, param param

Κατασκευάστε το συντακτικό δένδρο για τις ακόλουθες συμβολοσειρές που αναπαριστούν κλήσεις συναρτήσεων.

- 1. fun1()
- 2. fun2(a)
- 3. fun3(a,b)

Λύση

Υποερώτημα 1.

Υποερώτημα 2.

Υποερώτημα 3.

Θεωρείστε τη γραμματική χωρίς συμφραζόμενα.

$$S o SS$$
+ $|SS^*|$ a

- 1. Κατασκευάστε το συντακτικό δένδρο για τη συμβολοσειρά aa+a*.
- 2. Ποια γλώσσα παράγει αυτή η γραμματική;

Λύση

Υποερώτημα 1

Υποερώτημα 2

Η γλώσσα που παράγει η γραμματική είναι όλες οι συμβολοσειρές που είναι μεταθεματικές (postfix) εκφράσεις αποτελούμενες από το τερματικό σύμβολο a και τους τελεστές + και *. Παραδείγματα συμβολοσειρών που αναγνωρίζει είναι τα a, aa+, aa*, aa*a+, aa+a*, aaaa*+* και άλλες.

Θεωρείστε τις δύο ακόλουθες γραμματικές χωρίς συμφραζόμενα.

- 1. $A \rightarrow Aa|b$
- 2. $A \rightarrow bR$

 $R o \mathrm{a} R |\epsilon$

Κατασκευάστε συντακτικό δένδρο για κάθε γραμματική που να αναγνωρίζει τη συμβολοσειρά baaaa.

Λύση

Ερώτημα 6

Θεωρείστε την ακόλουθη γραμματική χωρίς συμφραζόμενα η οποία αντιμετωπίζει το θέμα της προτεραιότητας για τους τελεστές +,-,*,/.

 $expr \rightarrow expr + term$

 $expr \rightarrow expr - term$

 $expr \rightarrow term$

 $term \rightarrow term * factor$

 $term \rightarrow term/factor$

 $term \rightarrow factor$

 $factor \rightarrow digit | (expr)$

 $digit \rightarrow 0|1|2|3|4|5|6|7|8|9$

Κατασκευάστε το συντακτικό δένδρο για τη συμβολοσειρά 1+2*(3+4)/5-6.

Λύση

Παρατηρούμε ότι η πρώτη πράξη που θα πραγματοποιηθεί στην έκφραση είναι η (3+4), στη συνέχεια η 2*(3+4), μετά η 2*(3+4)/5, μετά η 1+2*(3+4)/5 και τέλος η 1+2*(3+4)/5-6.

Ερώτημα 7

Δείξτε ότι οι ακόλουθες γραμματικές χωρίς συμφραζόμενα είναι ασαφείς.

1.
$$E \rightarrow E + E|E * E|(E)|id$$

2.
$$S \rightarrow SS|a|b$$

Λύση

Για να δειχθεί ότι μια γραμματική είναι ασαφής (διφορούμενη) αρκεί να εντοπιστεί μια συμβολοσειρά για την οποία

προκύπτουν από τη γραμματική δύο διαφορετικά συντακτικά δένδρα.

Υποερώτημα 1

Θα χρησιμοποιηθεί η συμβολοσειρά id + id * id.

Υποερώτημα 2

Θα χρησιμοποιηθεί η συμβολοσειρά aab.

Ερώτημα 8

Γράψτε μη αριστερά αναδρομικές παραγωγές που να είναι ισοδύναμες με τις παραγωγές που ακολουθούν.

1.
$$A \rightarrow Aa|b$$

2.
$$E \rightarrow E + T|E - T|T$$

3.
$$E \to E + T|T$$

 $T \to T * F|F$
 $F \to (E)|id$

Λύση

Υποερώτημα 1

$$A \rightarrow bA'$$

$$A' \to aA' | \epsilon$$

Υποερώτημα 2

$$E \to TE'$$

$$E' \to +TE'|-TE'|\epsilon$$

Υποερώτημα 3

$$E \to TE'$$

$$E' \to +TE' | \epsilon$$

$$T \to FT'$$

$$T' o *FT' | \epsilon$$

$$F \rightarrow (E)|\mathrm{id}$$

Ερώτημα 9

Πραγματοποιήστε αριστερή παραγοντοποίηση (left factorization) στις ακόλουθες γραμματικές.

- 1. $A \rightarrow uv|uw$
- 2. $S \rightarrow iEtS|iEtSeS|a$

$$E \to b$$

3. $E \rightarrow T + E|T$

$$T \to \operatorname{int} | \operatorname{int} * T | (E)$$

Λύση

Υποερώτημα 1

Ο κανόνας παραγωγής $A \to uv|uw$ αποτελείται από δύο επιμέρους κανόνες παραγωγής, τον $A \to uv$ και τον $A \to uw$ που έχουν το ίδιο πρόθεμα u. Η αριστερή παραγοντοποίηση γίνεται ως εξής:

$$A \to uA'$$

$$A' \to v | w$$

Υποερώτημα 2

$$S \rightarrow iEtSS'|a$$

$$S' \to \epsilon | S$$

$$E \to b$$

Υποερώτημα 3

$$E \to TE'$$

$$E' \to +E|\epsilon$$

$$T \to \operatorname{int} * T'|(E)$$

$$T' \to \epsilon |*T$$

Για την ακόλουθη γραμματική και τη συμβολοσειρά id + id εφαρμόστε την αναδρομική καθοδική ανάλυση με οπισθοχωρήσεις. Καταγράψτε τους κανόνες παραγωγής που εφαρμόζονται και σημειώστε τις οπισθοχωρήσεις που γίνονται μέχρι να αναγνωριστεί η συμβολοσειρά.

$$E \to E'|E' + E$$
$$E' \to -E'|id|(E)$$

Σύντομη περιγραφή λύσης

```
E \to E'
E' \rightarrow -E'
                     οπισθοχώρηση (1)
E' \to id'
                  οπισθοχώρηση (2)
E' \to (E)
                    οπισθοχώρηση (3)
E' \rightarrow E' + E
E' \rightarrow -E' + E
                            οπισθοχώρηση (4)
E' \rightarrow id + E
E' \rightarrow id + E'
E' \rightarrow \mathrm{id} + -E
                           οπισθοχώρηση (5)
E' \rightarrow \mathrm{id} + \mathrm{id}
                        ok
```

Αναλυτική περιγραφή λύσης

Οι κανόνες παραγωγής μπορούν να γραφούν ισοδύναμα ως εξής:

$$\begin{split} E &\rightarrow E' \\ E &\rightarrow E' + E \\ E' &\rightarrow -E' \\ E' &\rightarrow id \\ E' &\rightarrow (E) \end{split}$$

Εκκίνηση από το αρχικό σύμβολο Ε με στόχο να παραχθεί η συμβολοσειρά id + id:

Δοκιμή του κανόνα παραγωγής: $E \to E'$, παραγωγή: $E \Rightarrow^* E'$, σημεία οπισθοχώρησης: $E \to E' + E$.

Δοκιμή του κανόνα παραγωγής: $E' \to -E'$, παραγωγή: $E \Rightarrow^* -E'$, σημεία οπισθοχώρησης: $E' \to id$, $E' \to (E)$, $E \to E' + E$, οπισθοχώρηση διότι $-\neq id$.

Δοκιμή του κανόνα παραγωγής: $E' \to \mathrm{id}$, παραγωγή: $E \Rightarrow^* \mathrm{id}$, σημεία οπισθοχώρησης: $E' \to (E)$, $E \to E' + E$, οπισθοχώρηση διότι η παραγωγή δεν μπορεί να αναπτυχθεί περαιτέρω.

Δοκιμή του κανόνα παραγωγής: $E' \to (E)$, παραγωγή: $E \Rightarrow^* (E)$, σημεία οπισθοχώρησης: $E \to E' + E$, οπισθοχώρηση διότι $(\neq id.$

Δοκιμή του κανόνα παραγωγής: $E \to E' + E$, παραγωγή: $E \Rightarrow^* E' + E$, σημεία οπισθοχώρησης: \emptyset .

Δοκιμή του κανόνα παραγωγής: $E' \to -E'$, παραγωγή: $E \Rightarrow^* -E' + E$, σημεία οπισθοχώρησης: $E' \to id$, $E' \to (E)$, οπισθοχώρηση διότι $-\neq id$.

Δοκιμή του κανόνα παραγωγής: $E' \to id$, παραγωγή: $E \Rightarrow^* id + E$, σημεία οπισθοχώρησης: $E' \to (E)$, ταίριασμα id + με id +.

Δοκιμή του κανόνα παραγωγής: $E \to E'$, παραγωγή: $E \Rightarrow^* id + E'$, σημεία οπισθοχώρησης: $E \to E' + E$, $E' \to (E)$.

Δοκιμή του κανόνα παραγωγής: $E' \to -E'$, παραγωγή: $E \Rightarrow^* id + -E'$, σημεία οπισθοχώρησης: $E' \to id$, $E' \to (E)$, $E \to E' + E$, $E' \to (E)$ οπισθοχώρηση διότι $-\neq$ id.

Δοκιμή του κανόνα παραγωγής: $E' \to id$, παραγωγή: $E \Rightarrow^* id + id$, σημεία οπισθοχώρησης: $E' \to (E)$, $E \to E' + E$, $E' \to (E)$, ταίριασμα id + id με id + id (επιτυχής αναγνώριση).

Χρησιμοποιώντας τον ακόλουθο πίνακα συντακτικής ανάλυσης καταγράψτε τις κινήσεις που γίνονται από έναν μη αναδρομικό προγνωστικό συντακτικό αναλυτή (non-recursive predictive parser) για τη συντακτική ανάλυση της πρότασης int * int.

	int	*	+	()	\$
E	$E \to TX$			$E \to TX$		
X			$X \to +E$	$X \to \epsilon$		$X \to \epsilon$
T	$T o \mathrm{int} Y$			$T \to (E)$		
Y		$Y \to *T$	$Y \to \epsilon$		$Y \to \epsilon$	$Y \to \epsilon$

Λύση

	MATCHED	STACK	INPUT
1		E\$	int*int\$
2		TX\$	int*int\$
3		intYX\$	int*int\$
4	int	YX\$	*int\$
5	int	*TX\$	*int\$
6	int*	TX\$	int\$
7	int*	intYX\$	int\$
8	int*int	YX\$	\$
9	int*int	X\$	\$
10	int*int	\$	\$
11	int*int\$		

Αναλυτική περιγραφή συμπλήρωσης πίνακα συντακτικής ανάλυσης

Αρχικά ωθούνται στη στοίβα (STACK) ο χαρακτήρας τερματισμού εισόδου \$ και το αρχικό σύμβολο της γλώσσας, Ε. Καθώς πρόκειται για στοίβα εξετάζεται πάντα η κορυφή της που στον πίνακα θεωρείται ότι είναι το πλέον αριστερό στοιχείο της συμβολοσειράς όπως καταγράφεται στη στήλη STACK. Σε κάθε βήμα η κορυφή της στοίβας προσδιορίζει τη σειρά και το πλέον αριστερό στοιχείο της στήλης INPUT προσδιορίζει τη στήλη στον προγνωστικό πίνακα. Στο παράδειγμα, ακολουθούνται τα εξής βήματα:

- 1. Στη σειρά 1 συμπληρώνεται στη στήλη STACK το Ε\$ και στη στήλη INPUT το int * int\$ που αποτελεί τη συμβολοσειρά εισόδου στην οποία έχει προστεθεί στο τέλος το σύμβολο τερματισμού εισόδου \$. Εξετάζεται το ζεύγος Ε και int. Στον προγνωστικό πίνακα Μ στη θέση Μ[Ε,int] βρίσκεται ο κανόνας παραγωγής $E \to TX$. Αν το κελί ήταν κενό θα είχε εντοπιστεί σφάλμα στη συμβολοσειρά εισόδου και η διαδικασία συντακτικής ανάλυσης θα τερμάτιζε ανεπιτυχώς. Εφόσον όμως υπάρχει κανόνας παραγωγής στο κελί, απωθείται από τη στοίβα το μη τερματικό Ε και ωθούνται σε αυτή τα σύμβολα του σώματος του κανόνα παραγωγής, δηλαδή το μη τερματικό X και το μη τερματικό T, έτσι ώστε το T να βρίσκεται στην κορυφή της στοίβας. Η σειρά 1 αντιγράφεται στη σειρά 2 με τη στήλη STACK να έχει πλέον περιεχόμενο TX\$.
- 2. Στη σειρά 2 εξετάζεται το ζεύγος Τ και int. Στον προγνωστικό πίνακα Μ στη θέση M[T,int] βρίσκεται ο κανόνας παραγωγής $T \to \text{int} Y$. Απωθείται από τη στοίβα το μη τερματικό Τ και ωθούνται σε αυτή τα σύμβολα του σώματος του κανόνα παραγωγής, δηλαδή το μη τερματικό Υ και το τερματικό int. Η σειρά 2 αντιγράφεται στη σειρά 3 με τη στήλη STACK να έχει πλέον περιεχόμενο intYX\$.
- 3. Στη σειρά 3 διαπιστώνεται ότι στην κορυφή της στοίβας βρίσκεται το τερματικό int και ομοίως στη συμβολοσειρά εισόδου στην αριστερότερη θέση της βρίσκεται το int. Καθώς υπάρχει συμφωνία, στη νέα σειρά 4 το τερματικό int αφαιρείται από τις στήλες STACK και INPUT και μεταφέρεται στη στήλη MATCHED.

- 4. Στη σειρά 4 εξετάζεται το ζεύγος Υ και *. Στον προγνωστικό πίνακα Μ στη θέση $M[Y,^*]$ βρίσκεται ο κανόνας παραγωγής $Y \to *T$. Απωθείται από τη στοίβα το μη τερματικό Υ και ωθούνται σε αυτή τα σύμβολα του σώματος του κανόνα παραγωγής, δηλαδή τα T, *. Η σειρά 4 αντιγράφεται στη σειρά 5 με τη στήλη STACK να έχει πλέον περιεχόμενο *TX\$.
- 5. Στη σειρά 5 διαπιστώνεται ότι στην κορυφή της στοίβας βρίσκεται το τερματικό * και ομοίως ο πρώτος διαθέσιμος χαρακτήρας της συμβολοσειράς εισόδου είναι το *. Καθώς υπάρχει συμφωνία, στη νέα σειρά 6 το τερματικό * αφαιρείται από τις στήλες STACK και INPUT και μεταφέρεται στη στήλη MATCHED.
- 6. Στη σειρά 6 εξετάζεται το ζεύγος Τ και int. Στον προγνωστικό πίνακα Μ στη θέση M[T,int] βρίσκεται ο κανόνας παραγωγής $T \to \text{int} Y$. Απωθείται από τη στοίβα το μη τερματικό Τ και ωθούνται σε αυτή τα σύμβολα του σώματος του κανόνα παραγωγής, δηλαδή τα Y, int. Η σειρά 6 αντιγράφεται στη σειρά 7 με τη στήλη STACK να έχει πλέον περιεχόμενο intYX\$.
- 7. Στη σειρά 7 διαπιστώνεται ότι στην κορυφή της στοίβας βρίσκεται το τερματικό int και ομοίως στη συμβολοσειρά εισόδου στην αριστερότερη θέση της βρίσκεται το int. Καθώς υπάρχει συμφωνία, στη νέα σειρά 8 το τερματικό int αφαιρείται από τις στήλες STACK και INPUT και μεταφέρεται στη στήλη MATCHED.
- 8. Στη σειρά 8 εξετάζεται το ζεύγος Υ και \$. Στον προγνωστικό πίνακα Μ στη θέση Μ[Υ,\$] βρίσκεται ο κανόνας παραγωγής $Y \to \epsilon$. Απωθείται από τη στοίβα το μη τερματικό Υ. Η σειρά 8 αντιγράφεται στη σειρά 9 με τη στήλη STACK να έχει πλέον περιεχόμενο Χ\$.
- 9. Στη σειρά 9 εξετάζεται το ζεύγος X και \$. Στον προγνωστικό πίνακα M στη θέση M[X,\$] βρίσκεται ο κανόνας παραγωγής $X \to \epsilon$. Απωθείται από τη στοίβα το μη τερματικό X. Η σειρά 9 αντιγράφεται στη σειρά 10 με τη στήλη STACK να έχει πλέον περιεχόμενο \$.
- 10. Στη σειρά 10 διαπιστώνεται ότι στην κορυφή της στοίβας βρίσκεται το τερματικό \$ και ομοίως ο πρώτος διαθέσιμος χαρακτήρας της συμβολοσειράς εισόδου είναι το \$. Καθώς υπάρχει συμφωνία, στη νέα σειρά 11 το τερματικό \$ αφαιρείται από τις στήλες STACK και INPUT και μεταφέρεται στη στήλη MATCHED.
- 11. Στη σειρά 11 διαπιστώνεται ότι η στοίβα και η συμβολοσειρά εισόδου είναι κενές. Αυτό σημαίνει ότι η συντακτική ανάλυση πραγματοποιήθηκε με επιτυχία.

Να υπολογιστούν τα First Sets, τα Follow Sets και ο πίνακας προγνωστικής ανάλυσης για την ακόλουθη γραμματική. Πραγματοποιήστε συντακτική ανάλυση (καθοδηγούμενη από πίνακα) για τη συμβολοσειρά acde.

 $S \to ABCDE$

 $A \to a | \epsilon$

 $B \to b | \epsilon$

 $C \to c$

 $D \to d | \epsilon$

 $E \to e | \epsilon$

Λύση

Ο αλγόριθμος υπολογισμού των First Sets είναι ο ακόλουθος:

- 1. FIRST(a)={a} για όλα τα τερματικά a.
- 2. Αρχικοποίηση FIRST(A)={ } για όλα τα μη τερματικά Α.
- 3. Αν υπάρχει η παραγωγή $A \rightarrow \epsilon$, τότε προσθήκη ϵ στο FIRST(A).
- 4. Για κάθε παραγωγή $A \to Y_1 \cdots Y_n$, πραγματοποιείται:
 - (a) Προσθήκη στο FIRST(A) κάθε τερματικού a για το οποίο:
 - i. το a ανήκει στο $FIRST(Y_i)$ και
 - ii. το ϵ ανήκει σε όλα τα προηγούμενα FIRST (Y_i) .
 - (b) Προσθήκη του ϵ στο FIRST(A) αν το ϵ ανήκει σε όλα τα FIRST(Y_i).

Επανάληψη του βήματος 4 μέχρι να μη γίνεται άλλη προσθήκη.

- 5. Το FIRST οποιασδήποτε συμβολοσειράς $X = X_1 X_2 ... X_n$ αρχικοποιείται στο $\{\}$ και στη συνέχεια:
 - (a) προσθήκη στο FIRST(X) οποιουδήποτε συμβόλου που δεν είναι ϵ αν το ϵ ανήκει σε όλα τα προηγούμενα FIRST(X_i).
 - (b) προσθήκη ϵ στο FIRST(X) αν το ϵ ανήκει σε όλα τα FIRST(X_i). Αν το X είναι ϵ , τότε FIRST(X)= $\{\epsilon\}$.

Τα First Sets των τερματικών είναι τα ίδια τα τερματικά. Εφαρμόζοντας τον παραπάνω αλγόριθμο υπολογίζονται τα First Sets των μη τερματικών:

- FIRST(S)={a,b,c}
- FIRST(A)={ a, ϵ }
- FIRST(B)= $\{b, \epsilon\}$
- FIRST(*C*)={c}
- FIRST(D)={d, ϵ }
- FIRST(E)={e, ϵ }

Ο αλγόριθμος υπολογισμού των Follow Sets είναι ο ακόλουθος:

- 1. Αρχικοποίηση FOLLOW(S)=\$ και FOLLOW(A)={ } για όλα τα μη τερματικά Α.
- 2. Για κάθε παραγωγή A o aBb, προσθήκη όλων των FIRST(b) εκτός από το ϵ στο FOLLOW(B).
- 3. Για κάθε παραγωγή "που τελειώνει σε Β", όπως για παράδειγμα στις:
 - (a) $A \rightarrow aB$ kai yia
 - (b) $A \rightarrow aBb$ όπου το FIRST(b) περιέχει το ϵ .

Προσθήκη όλων των στοιχείων του FOLLOW(A) στο FOLLOW(B).

Εφαρμόζοντας τον παραπάνω αλγόριθμο προκύπτει ότι τα Follow Sets των μη τερματικών είναι τα ακόλουθα:

- FOLLOW(S)={\$}
- FOLLOW(A)={b,c}
- FOLLOW(*B*)={c}
- FOLLOW(*C*)={d,e,\$}
- FOLLOW(*D*)={e,\$}
- FOLLOW(*E*)={\$}

Ο αλγόριθμος συμπλήρωσης του προγνωστικού πίνακα είναι ο ακόλουθος: Για κάθε παραγωγή $A \to a$

- 1. Για κάθε τερματικό a στο FIRST(a), προσθήκη του $A \to a$ στο M[A,a].
- 2. Αν το ϵ ανήκει στο FIRST(a), τότε προσθήκη του $A \to a$ στο M[A,b] για κάθε τερματικό b στο FOLLOW(A).
- 3. Αν το ϵ ανήκει στο FIRST(a), τότε προσθήκη του $A \to a$ στο M[A,\$] an to \$ ανήκει στο FOLLOW(A).

Στο συγκεκριμένο πρόβλημα, ο προγνωστικός πίνακας ανάλυσης όπως προκύπτει από τα First Sets τα Follow Sets και τον αλγόριθμο συμπλήρωσής του είναι ο ακόλουθος:

	a	b	c	d	e	\$
S	$S \to ABCDE$	$S \to ABCDE$	$S \to ABCDE$			
A	A o a	$A \to \epsilon$	$A \to \epsilon$			
B		B o b	$B \to \epsilon$			
C			$C \to c$			
D				D o d	$D \to \epsilon$	$D \to \epsilon$
E					$E \rightarrow e$	$E \to \epsilon$

Αναλυτική περιγραφή συμπλήρωσης πίνακα προγνωστικής ανάλυσης

Εξετάζονται οι κανόνες παραγωγής στη σειρά:

1. $S \rightarrow ABCDE$

Το FIRST(ABCDE)={a,b,c}, άρα θα πρέπει να προστεθεί ο κανόνας παραγωγής $S \to ABCDE$ στα κελιά του πίνακα M[S,a], M[S,b] και M[S,c].

2. $A \rightarrow a$

Το FIRST(a)={a}, άρα θα πρέπει να προστεθεί ο κανόνας παραγωγής $A \to a$ στο κελί του πίνακα M[A,a].

 $A \rightarrow \epsilon$

Προσθήκη του $A \to \epsilon$ στο M[A,x] για κάθε τερματικό x που ανήκει στο FOLLOW{A}={b,c}. Δηλαδή, προσθήκη του $A \to \epsilon$ στο M[A,b] και στο M[A,c].

4. $B \rightarrow b$

Το FIRST(b)={b}, άρα θα πρέπει να προστεθεί ο κανόνας παραγωγής $B \to b$ στο κελί του πίνακα M[B,b].

 $S R \rightarrow \epsilon$

Προσθήκη του $B \to \epsilon$ στο M[B,x] για κάθε τερματικό x που ανήκει στο FOLLOW{B}={c}. Δηλαδή, προσθήκη του $B \to \epsilon$ στο M[B,c].

6. $C \rightarrow c$

Το FIRST(c)={c}, άρα θα πρέπει να προστεθεί ο κανόνας παραγωγής $C \to c$ στο κελί του πίνακα M[C,c].

7. $D \rightarrow d$

Το FIRST(d)={d}, άρα θα πρέπει να προστεθεί ο κανόνας παραγωγής $D \to d$ στο κελί του πίνακα M[D,d].

8. $D \rightarrow \epsilon$

Προσθήκη του $D \to \epsilon$ στο M[D,x] για κάθε τερματικό x που ανήκει στο FOLLOW{D}={e,\$}. Δηλαδή, προσθήκη του $D \to \epsilon$ στο M[D,e] και στο M[D,\$].

9. $E \rightarrow e$

Το FIRST(e)={e}, άρα θα πρέπει να προστεθεί ο κανόνας παραγωγής $E \to e$ στο κελί του πίνακα M[E,e].

10. $E \rightarrow \epsilon$

Προσθήκη του $E \to \epsilon$ στο M[E,x] για κάθε τερματικό x που ανήκει στο FOLLOW{E}={\$}. Δηλαδή, προσθήκη του $E \to \epsilon$ στο M[E,\$].

Η συντακτική ανάλυση της συμβολοσειράς acde δίνεται στον ακόλουθο πίνακα:

MATCHED	STACK	INPUT
	S\$	acde\$
	ABDCE\$	acde\$
	aBCDE\$	acde\$
a	BCDE\$	cde\$
a	CDE\$	cde\$
a	cDE\$	cde\$
ac	DE\$	de\$
ac	dE\$	de\$
acd	E\$	e\$
acd	e\$	e\$
acde	\$	\$
acde\$		

Να υπολογιστούν τα First Sets, τα Follow Sets και ο πίνακας προγνωστικής ανάλυσης για την ακόλουθη γραμματική. Πραγματοποιήστε συντακτική ανάλυση (καθοδηγούμενη από πίνακα) για τη συμβολοσειρά (a*(a+b)).

$$S \to (D)$$

$$D \to EF$$

$$E \to \mathbf{a} |\mathbf{b}| S$$

$$F \to *D| + D|\epsilon$$

Λύση

Τα First Sets των τερματικών είναι τα ίδια τα τερματικά. Τα First Sets των μη τερματικών είναι τα ακόλουθα:

- FIRST(S)={(}
- FIRST(D)={a,b,(}
- FIRST(E)={a, b,(}
- FIRST $(F)=\{*,+,\epsilon\}$

Τα Follow sets των μη τερματικών είναι τα ακόλουθα:

- FOLLOW(S)={\$,*,+,)}
- FOLLOW(*D*)={)}
- FOLLOW(*E*)={*,+,)}
- FOLLOW(*F*)={)}

Ο προγνωστικός πίνακας ανάλυσης όπως προκύπτει από τα First Sets τα Follow Sets και τον αλγόριθμο συμπλήρωσής του είναι ο ακόλουθος:

	()	a	b	*	+	\$
S	$S \to (D)$						
D	$D \to EF$		$D \to EF$	$D \to EF$			
E	$E \rightarrow S$		$E o { m a}$	E o b			
\overline{F}		$F \to \epsilon$			$F \to *D$	$F \rightarrow +D$	

Η συντακτική ανάλυση της συμβολοσειράς (a*(a+b)) δίνεται στον ακόλουθο πίνακα:

MATCHED	STACK	INPUT
	S\$	(a*(a+b))\$
	(D)\$	(a*(a+b))\$
(D)\$	a*(a+b))\$
(EF)\$	a*(a+b))\$
(aF)\$	a*(a+b))\$
(a	F)\$	*(a+b))\$
(a	*D)\$	*(a+b))\$
(a*	D)\$	(a+b))\$
(a*	EF)\$	(a+b))\$
(a*	SF)\$	(a+b))\$
(a*	(D)F)\$	(a+b))\$
(a*(D)F)\$	a+b))\$
(a*(EF)F)\$	a+b))\$
(a*(aF)F)\$	a+b))\$
(a*(a	F)F)\$	+b))\$
(a*(a	+D)F)\$	+b))\$
(a*(a+	D)F)\$	b))\$
(a*(a+	EF)F)\$	b))\$
(a*(a+	bF)F)\$	b))\$
(a*(a+b	F)F)\$))\$
(a*(a+b)F)\$))\$
(a*(a+b)	F)\$)\$
(a*(a+b))\$)\$
(a*(a+b))	\$	\$
(a*(a+b))\$		

Να υπολογιστούν τα First Sets, τα Follow Sets και ο πίνακας προγνωστικής ανάλυσης για την ακόλουθη γραμματική. Πραγματοποιήστε συντακτική ανάλυση (καθοδηγούμενη από πίνακα) για τις συμβολοσειρές aab και acb.

 $S \to Bb|Cd$

 $B o \mathrm{a} B | \epsilon$

 $C \to cC | \epsilon$

Λύση

Τα First Sets των τερματικών είναι τα ίδια τα τερματικά. Τα First Sets των μη τερματικών είναι τα ακόλουθα:

- FIRST(S)={a,b,c,d}
- FIRST(B)= $\{a, \epsilon\}$
- FIRST(C)={c, ϵ }

Τα Follow Sets των μη τερματικών είναι τα ακόλουθα:

- FOLLOW(*S*)={\$}
- FOLLOW(B)={b}
- FOLLOW(*C*)={d}

Ο προγνωστικός πίνακας ανάλυσης όπως προκύπτει από τα First Sets τα Follow Sets και τον αλγόριθμο συμπλήρωσής του είναι ο ακόλουθος:

	a	b	с	d	\$
S	$S \to B$ b	$S \to B$ b	$S \to C \mathrm{d}$	$S \to C d$	
B	$B o \mathrm{a} B$	$B \to \epsilon$			
C			$C \to cC$	$C \to \epsilon$	

Η συντακτική ανάλυση της συμβολοσειράς aab δίνεται στον ακόλουθο πίνακα:

MATCHED	STACK	INPUT
	S\$	aab\$
	Bb\$	aab\$
	aBb\$	aab\$
a	Bb\$	ab\$
a	aBb\$	ab\$
aa	Bb\$	b\$
aa	b\$	b\$
aab	\$	\$
aab\$		

Η συντακτική ανάλυση της συμβολοσειράς acb δίνεται στον ακόλουθο πίνακα:

MATCHED	STACK	INPUT
	S\$	acb\$
	Bb\$	acb\$
	aBb\$	acb\$
a	Bb\$	cb\$
error		

Ερώτημα 15

Γράψτε σε C, υλοποίηση αναδρομικού συντακτικού αναλυτή για τη γραμματική που ακολουθεί:

 $E \to E + T|T$

 $T \to T*F|F$

 $F \rightarrow (E)|id$

Λύση

Αρχικά, πραγματοποιείται αφαίρεση της αριστερής αναδρομής:

 $E \to TE'$

 $E' \to +TE' | \epsilon$

 $T \to FT'$

 $T' \to *FT' | \epsilon$

 $F \to (E)|\mathrm{id}$

#include < stdio . h>
#include < string . h>

```
char *input;
int i, error;
void fE(); void fEp(); void fT(); void fTp(); void fF();
int main() {
        input = a+(a*a);
        i = 0; error = 0;
        fE();
        printf("length=%i, _error=%i\n", i, error);
        if (strlen(input) == i && error == 0)
            printf("%s_accepted\n", input);
        else
            printf("%s_rejected\n", input);
}
void fE() {
    fT();
    fEp();
}
void fEp() {
    if (input[i] == '+') {
        i ++;
        fT();
        fEp();
    }
}
void fT() {
    fF();
    fTp();
}
void fTp() {
    if (input[i] == '*') {
        i ++;
        fF();
        fTp();
    }
}
void fF() {
    if (input[i] == '(') {
        i ++;
        fE();
        if (input[i] == ')')
            i ++;
```

Ο κώδικας βρίσκεται στο https://github.com/chgogos/uoi_compilers/blob/master/recursive_descent_parser/backtrack4.c