

n-Channel Power MOSFET

OptiMOS™ BSC0901NS

Data Sheet

2.1, 2011-09-23 Final

Industrial & Multimarket

1 Description

OptiMOSTM30V products are class leading power MOSFETs for highest power density and energy efficient solutions. Ultra low gate and output charges together with lowest on state resistance in small footprint packages make OptiMOSTM 30V the best choice for the demanding requirements of voltage regulator solutions in Servers, Datacom and Telecom applications. Super fast switching Control FETs together with low EMI Sync FETs provide solutions that are easy to design in. OptiMOSTM products are available in high performance packages to tackle your most challenging applications giving full flexibility in optimizing space, efficiency and cost. OptiMOSTM products are designed to meet and exceed the energy efficiency and power density requirements of the sharpened next generation voltage regulation standards in computing applications.

Features

- Optimized for high performance buck converters
- 100% avalanche tested
- Very low on-resistance R_{DS(on)} @ V_{GS}=4.5 V
- N-channel
- Qualified according to JEDEC¹⁾ for target applications
- Superior thermal resistance
- Pb-free plating; RoHS compliant
- Halogen-free according to IEC61249-2-21

Applications

- · On board power for server
- Power managment for high performance computing
- Synchronous rectification
- High power density point of load converters

Table 1 Key Performance Parameters

Parameter	Value	Unit	Related Links
V_{DS}	30	V	IFX OptiMOS webpage
R _{DS(on),max}	1.9	mΩ	IFX OptiMOS product brief
I_{D}	100	А	IFX OptiMOS spice models
Q _{OSS}	25	nC	IFX Design tools
Q_{g-typ}	44		

Туре	Package	Marking
BSC0901NS	PG-TDSON-8	0901NS

¹⁾ J-STD20 and JESD22

2 Maximum ratings

at T_i = 25 °C, unless otherwise specified.

Table 2 Maximum ratings

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Continuous drain current	I_{D}	-	-	100	Α	V _{GS} =10 V, T _C =25 °C	
		-	-	94		V _{GS} =10 V, T _C =100 °C	
		-	-	100		V _{GS} =4.5 V, T _C =25 °C	
		-	-	84		V _{GS} =4.5 V, T _C =100 °C	
		-	-	28		V _{GS} =10 V, T _A =25 °C, R _{thJA} =50 K/W ¹⁾)	
Pulsed drain current ²⁾	I _{D,pulse}	-	-	400		T _C =25 °C	
Avalanche current, single pulse ³⁾	I _{AS}	-	-	50			
Avalanche energy, single pulse	E _{AS}	-	-	80	mJ	$I_{\rm D}$ =50 A, $R_{\rm GS}$ =25 Ω	
Gate source voltage	V_{GS}	-20	-	20	V		
Power dissipation	P_{tot}	-	-	69	W	T _C =25 °C	
		-	-	2.5		$T_{\rm A}$ =25 °C, $R_{\rm thJA}$ =50 K/W ¹⁾	
Operating and storage temperature	$T_{\rm j}, T_{\rm stg}$	-55	-	150	°C		
IEC climatic category; DIN IEC 68-1		55/15	0/56				

¹⁾ Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm² (one layer, 70 µm thick) copper area for drain connection. PCB is vertical in still air.

3 Thermal characteristics

Table 3 Thermal characteristics

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Thermal resistance, junction - case	$R_{\rm thJC}$	-	-	1.8	K/W	
		-	-	20		top
Device on PCB	R_{thJA}	-	-	50		6 cm ² cooling area ¹⁾

Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm² (one layer, 70 μm thick) copper area for drain connection.
 PCB is vertical in still air

Final Data Sheet 2 2.1, 2011-09-23

²⁾ See figure 3 for more detailed information

³⁾ See figure 13 for more detailed information

Electrical characteristics

4 Electrical characteristics

Electrical characteristics, at $T_j=25$ °C, unless otherwise specified.

Table 4 Static characteristics

Parameter	Symbol Values				Unit	Note / Test Condition	
		Min.	Min. Typ.				
Drain-source breakdown voltage	$V_{(BR)DSS}$	30	-	-	V	$V_{\rm GS}$ =0 V, $I_{\rm D}$ =1.0 mA	
Gate threshold voltage	$V_{\rm GS(th)}$	1.2	-	2		$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 250 \ \mu {\rm A}$	
Zero gate voltage drain current	I _{DSS}	-	0.1	1	μΑ	$V_{\rm DS} = 30 \text{ V}, V_{\rm GS} = 0 \text{ V}, T_{\rm j} = 25 \text{ °C}$	
		-	10	100		$V_{\rm DS}$ =30 V, $V_{\rm GS}$ =0 V, $T_{\rm j}$ =125 °C	
Gate-source leakage current	I _{GSS}	-	10	100	nA	V _{GS} =20 V, V _{DS} =0 V	
Drain-source on-state resistance	$R_{\rm DS(on)}$	-	1.9	2.4	mΩ	$V_{\rm GS}$ =4.5 V, $I_{\rm D}$ =30 A,	
		-	1.6	1.9		$V_{\rm GS}$ =10 V, $I_{\rm D}$ =30 A,	
Gate resistance	R_{G}	-	0.8	-	Ω		
Transconductance	g_{fs}	70	140	-	S	$ V_{\rm DS} > 2 I_{\rm D} _{\rm RDS(on)max},$ $I_{\rm D} = 30 \text{ A}$	

 Table 5
 Dynamic characteristics

Parameter	Symbol		Value	s	Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Input capacitance	C _{iss}	-	2800	-	pF	$V_{GS} = 0 \text{ V}, V_{DS} = 15 \text{ V},$	
Output capacitance	Coss	-	960	-		f=1 MHz	
Reverse transfer capacitance	C _{rss}	-	140	-			
Turn-on delay time	$t_{\sf d(on)}$	-	5.4	-	ns	$V_{\rm DD}$ =15 V, $V_{\rm GS}$ =10 V,	
Rise time	t _r	-	6.8	-		$I_{\rm D}$ =30 A, $R_{\rm G}$ = 1.6 Ω	
Turn-off delay time	$t_{\sf d(off)}$	-	28	-			
Fall time	t _f	-	4.8	-			

OptiMOS™ Power-MOSFET BSC0901NS

Electrical characteristics

Table 6 Gate charge characteristics¹⁾

Parameter	Symbol		Value	ues Unit		Note /	
		Min.	Тур.	Max.		Test Condition	
Gate to source charge	Q_{gs}	-	7	-	nC	V _{DD} =15 V,	
Gate charge at threshold	Q _{g(th)}	-	4.6	-		$I_{\rm D}$ =30 A,	
Gate to drain charge	$Q_{\rm gd}$	-	6.5	-		$V_{\rm GS}$ =0 to 4.5 V	
Switching charge	Q _{sw}	-	8.9	-			
Gate charge total	Q_{g}	-	22	-			
Gate plateau voltage	$V_{ m plateau}$	-	2.4	-	V		
Gate charge total	Q_{g}	-	44	-	nC	$V_{\rm DD}$ =15 V, $I_{\rm D}$ =30 A, $V_{\rm GS}$ =0 to 10V	
Gate charge total, sync. FET	Q _{g(sync)}	-	18	-		$V_{\rm DS}$ =0.1 V, $V_{\rm GS}$ =0 to 4.5 V	
Output charge	Q _{oss}	-	25	-		$V_{\rm DD}$ =15 V, $V_{\rm GS}$ =0 V	

¹⁾ See figure 16 for gate charge parameter definition

Table 7 Reverse diode characteristics

Parameter	Symbol		Value	s	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Diode continuous forward current	Is	-	-	69	Α	<i>T</i> _C =25 °C	
Diode pulse current	I _{S,pulse}	-	-	276			
Diode forward voltage	V_{SD}	-	0.82	1	V	$V_{\rm GS}$ =0 V, $I_{\rm F}$ =30 A, $T_{\rm j}$ =25 °C	
Reverse recovery charge	Q _{rr}	-	20	-	nC	$V_{\rm R}$ =15 V, $I_{\rm F}$ = $I_{\rm s}$, d $i_{\rm F}$ /d t =400 A/ μ s	

Electrical characteristics diagrams

Table 8

5

Table 9

Table 10

Table 11

Table 12

Table 13

Table 14

Table 15

Package outline

6 Package outline

DIM	MILLIM	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	0.90	1.10	0.035	0.043	
b	0.34	0.54	0.013	0.021	
b1	0.02	0.22	0.001	0.008	
С	0.15	0.35	0.006	0.014	
D=D1	4.95	5.35	0.195	0.211	
D2	4.20	4.40	0.165	0.173	
E	5.95	6.35	0.234	0.250	
E1	5.70	6.10	0.224	0.240	
E2	3.40	3.80	0.134	0.150	
e	1.2	1.27		50	
N		8	8		
L	0.45	0.65	0.018	0.026	
	8.5°	11.5°	8.5°	11.5°	
aaa	0.2	0.25		110	
eee	0.0)5	0.002		
F1	6.75	6.95	0.266	0.274	
F2	4.60	4.80	0.181	0.189	
F3	4.36	4.56	0.172	0.180	
F4	0.55	0.75	0.022	0.030	
F5	0.52	0.72	0.020	0.028	
F6	1.10	1.30	0.043	0.051	
F7	0.40	0.60	0.016	0.024	
F8	0.60	0.80	0.024	0.031	
F9	0.53	0.73	0.021	0.029	
F10	4.90	5.10	0.193	0.201	
F11	0.53	0.73	0.021	0.029	

Figure 1 Outlines PG-TDSON-8, dimensions in mm/inches

Package outline

Figure 2 Outlines PG-TDSON-8 tape, dimension in mm/inches

Revision History

7 Revision History

Revision History: 2011-09-23, 2.1

Previous Revision:

Revision	Subjects (major changes since last revision)
0.4	Release of target data sheet
1.0	Release of preliminary data sheet
2.0	Release of final data sheet
2.1	VGS(th)

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document.

Please send your proposal (including a reference to this document) to: erratum@infineon.com

Edition 2011-09-23
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2011 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.