

arrows pointing down in icate decreases in expression. The directionality of these arrows is opposite to that of the expression changes o served following BRCA1 induction; they are meant to indicate the putative effects of Figure 1: Proposed mechanistic advantages of BRCA1 inactivation. Genes A to H display reproducibly altered expression patterns follo ving BRCA1 induction. Arrows pointing up indicate increases in expression, and BRCA inactivation.

a. True Graph G

b. Connectivity Data for G

c. Transitive Closure G*

d. A Graph compatible with Data

e. A Graph compatible with Data

f. G* reduced to condensed graph

solid arrows are required by the data. Dashed arrows cannot be excluded by the data.

Figure 2: Edges transmit changed expression levels with high reliability. Many graphs are compatible with the data, but all such graphs are subgraphs of the transitive closure graph G*.

a. True Graph G,B regulated by A not by expression.

b. Connectivity Data for G

	Expressed Genes					
Induced Gene		Α	В	C	D	E
	A	1	0	I	1	σ
	В	0	T	1	T	U
	C	0	0	I	U	0
	D	0	0	0	1	U
	E	0	0	1	T	Т

c. Transitive Closure G*

Figure 3: Interactions not at level of expression are concealed in the connectivity graph. Genes B* (regulated by A), E (not regulated by A), and A are indistinguishable at the expression level.