Stat 500 – Homework 1 (Solutions)

After loading the data, fix the categorical variables **race**, **smsa**, **ne**, **mw**, **so**, **we**, and **pt** so that they are treated as factors (e.g. for **race**, use the following command – do similarly for others). Also treat the negative values of **exper** as missing data. Then do the summary:

- > uswages\$race<-as.factor(uswages\$race)</pre>
- > uswages\$exper[uswages\$exper<0]<-NA # changing negative values to NA
- > summary(uswages)

wage		educ	exp	per	race	smsa	ne
Min. : 5	0.39 Min.	: 0.00	Min.	: 0.00	0:1844	0: 488	0:1542
1st Qu.: 30	08.64 1st Q	u.:12.00	1st Qu	.: 8.00	1: 156	1:1512	1: 458
Median: 52	22.32 Media	n :12.00	Median	:16.00			
Mean : 60	08.12 Mean	:13.11	Mean	:18.74			
3rd Qu.: 78	33.48 3rd Q	u.:16.00	3rd Qu	.:27.00			
Max. :771	.6.05 Max.	:18.00	Max.	:59.00			
			NA's	:33.00			
mw so	we	pt					
0:1503 0:	1375 0:158	0:1815					
1: 497 1:	625 1: 42	0 1: 185					

In this dataset, the mean of **wage** is much larger than the median, suggesting the distribution is right skewed and may have large outliers, as confirmed by the histogram and boxplot. It suggests us make a histogram for wages less than 3000. From the other two histograms, we can conclude that the distributions of **educ** and **exper** are moderately left skewed and moderately right skewed respectively. Following are the pairwise scatterplots between the 3 numerical variables. We do not see any strong pattern, which is justified by the correlation matrix shown below:

> round(cor(uswages[,1:3]),2)

Finally we examine the distribution of **wage** across the levels of the different factors. From the side-by-side boxplots below, we see that on average, the wage of a **black** worker is slightly less than a **white** worker, the wage of a **part-time** worker is a bit less than a **full-time** worker, and the wage is slightly higher if the worker is from a **Standard Metropolitan Statistical Area.** Other boxplots tell that there is no real difference in wages among workers from different regions of the country (North East, Midwest, West, and South). The command is the following:

>boxplot(uswages[uswages\$ne==1,1],uswages[uswages\$mw==1,1],uswages[uswages\$so==1,1]

+,uswages[uswages\$we==1,1])

