Московский авиационный институт (национальный исследовательский университет)

Факультет информационных технологий и прикладной математики

Кафедра вычислительной математики и программирования

Лабораторная работа №1 по курсу «Дискретный анализ»

 $\begin{array}{ccc} & C{\rm тудент:} & E.\,C.\,\,\Pi{\rm ищи}\kappa \\ \\ \Pi{\rm реподаватель:} & A.\,A.\,\,K{\rm ухтичев} \end{array}$

Группа: M8O-206Б

Дата: Оценка: Подпись:

Лабораторная работа №1

Задача: Требуется разработать программу, осуществляющую ввод пар «ключ-значение», их упорядочивание по возрастанию ключа указанным алгоритмом сортировки за линейное время и вывод отсортированной последовательности.

Вариант сортировки: Поразрядная сортировка.

Вариант ключа: Автомобильные номера в формате А 999 ВС (используются буквы латинского алфавита).

Вариант значения: Числа от 0 до $2^{64}-1$.

1 Описание

Требуется написать реализацию алгоритма поразрядной сортировки. Основная идея такой сортировки заключается в том, чтобы разделить ключ на разряды, для каждого разряда запустить сортировку подсчётом, начиная с самого правого разряда, количество разрядов у каждого элемента x должно быть одинаковое.

Как сказано в [1]: «Сортировка подсчётом — алгоритм сортировки, в котором используется диапазон чисел сортируемого массива для подсчёта совпадающих элементов. Применение сортировки подсчётом целесообразно лишь тогда, когда сортируемые числа имеют диапазон возможных значений, который достаточно мал по сравнению с сортируемым множеством, например, миллион натуральных чисел меньших 1000».

2 Исходный код

main enn	
main.cpp	
int main()	Функция, использующая все написан-
	ные функции из других файлов, для
	создание вектора, заполнения вектора,
	сортировки вектора и печати вектора.
structs.hpp	
struct TPair{}	Структура, хранящая пару «ключ-
	значение».
$my_vector.hpp$	
class TVector{}	Класс собственного динамического мас-
	сива.
radix_sort.hpp	
size_t TmpChange(TVector <t>& vec,</t>	Функция возвращающая различные
size_t count, size_t i)	значения, возвращаемое значение
	зависит от значения count
void CountingSort(TVector <t>& vec,</t>	Функция сортировки подсчётом.
size_t const& max, size_t& count)	
void RadixSort(TVector <t>& vec,</t>	Функция поразрядной сортировки.
size_t const& max_1, size_t const&	
max_2, size_t const& max_3)	

```
1 | typedef unsigned long long TUll;
   struct TPair
 2
 3
       TPair(){}
 4
 5
       TPair(std::string const& key_0, std::string const& key_1, std::string const& key_2,
            TUll const& val);
 6
       TPair(TPair const& obj);
 7
       std::string key_[3];
       TUll val_;
 8
   };
 9
10
   template<typename T>
11
   class TVector
12
13
       private:
14
       size_t size_;
15
       size_t cap_;
16
       T* data_;
17
       public:
       TVector();
18
       TVector(size_t cap);
19
20
       ~TVector();
```

```
TVector(TVector<T> const& obj);
T& operator[](size_t index) const;
T& operator[](size_t index);
void PushBack(T const& val);
void Print() const;
size_t Size() const;
};
```

3 Консоль

```
pe4eniks@pe4eniks-HP-Laptop-14-dk0xxx:~/solution/solution$ make
g++ -Wall -std=c++11 -02 -lm -Werror -Wno-sign-compare -pedantic -c -o main.o
main.cpp
g++ -Wall -std=c++11 -02 -lm -Werror -Wno-sign-compare -pedantic -o solution
main.cpp
pe4eniks@pe4eniks-HP-Laptop-14-dk0xxx:~/solution/solution$ cat test.txt
A 999 AA 6315351
Z 000 ZZ 5454
A 999 AA 12
Z 000 ZZ 123455666
pe4eniks@pe4eniks-HP-Laptop-14-dk0xxx:~/solution/solution$ ./solution <test.txt
A 999 AA 6315351
A 999 AA 6315351
A 999 AA 12
Z 000 ZZ 5454
Z 000 ZZ 5454
```

4 Тест производительности

Тест производительности представляет из себя следующее: в файле лежит 1 миллион строк с парами «ключ-значение», которые сортируются поразрядной сортировкой и $std::stable_sort.$

```
da_exercise_01.exe < test.txt
Count of lines is 1000000
Radix sort time: 7440ms
STL stable sort time: 16440ms</pre>
```

Как видно, время работы поразрядной сортировки значительно меньше, чем время работы stable_sort.

5 Выводы

Выполнив первую лабораторную работу по курсу «Дискретный анализ», я научился оценивать сложность алгоритмов, работать с шаблонами, сложными структурами данных, разделять проект на различные файлы, работать с несколькими файлами в проекте, изучил сортировку подсчётом и поразрядную сортировку.

Список литературы

[1] Copmuposка nodсчётом — Bukune duя. URL: https://ru.wikipedia.org/wiki/Сортировка_подсчётом