# Exploring the Effect of Supplemental Instruction on Equity Gaps: Student

Faith Fatchen, Skip Moses, Rica Rebusit, Joseph Shifman

5/17/2022

# Original Source Data (via CSU Chico Instituional Research)

- Course Detail.csv
  - n = 43.803
  - Row contains record for course sections from Fall 2012 to Winter 2022
- Student Profile Metric.csv
  - n = 49.107
  - Row contains one record per student matriculation for students enrolled from Fall 2012 to Spring 2022
- Student Program.csv
  - n = 343,781
  - Row contains records for each semester of each student's attendance who were enrolled from Fall 2012 to Winter 2022

# Original Source Datasets (acquired via CSU Cico Instituional Research)

- ► SLC Appointment.csv
  - ightharpoonup n = 78,229
  - Row contains record for each day that a student went to an SI session, and how many they went to in that day (Fall 2015 Spring 2022)
- Student Grade.xlsx
  - ► n = 864.471
  - Row contains final grade data earned for each course for each student from Fall 2016 to Winter 2022

## **Data Preparation**

#### Student Level Analysis (n = 19,565)

- Only student records dated 2016 or later
- Only first-time freshmen
- Best attempt at isolating most recent student program record
- ▶ Approximately 35% of students in the programs dataset are not present in the profiles dataset. Therefore, these records have missing data for HS/Transfer GPA, one-year retention, and matriculation/graduation terms
- Records with missing data for the following attributes were dropped:
  - High School GPA
  - Attended Orientation Flag
  - STEM Major Flag
  - Full Time / Part Time Code
  - Academic Program

## **Data Preparation**

### Course Level Analysis (n = 5,637)

- ▶ Includes class size, average high school GPA, % first-gen in the class, % URM in the class, DWF rate, SI component flag, term year
  - These were calculated using the grades data provided by IR
  - Students with missing records for high school GPA were not included in the calculation
  - Students with missing records for URM and first-gen status were considered as not a member of these groups
- Course records from 2016-2019
- Course sections with less than 10 records of an SI visit during the semester were considered as sections without an SI-component
- Courses represented have a number less than 300 and are not a special number (x89, x99, etc.)
- ► To remove high calculated DWF outliers, class size >= 20

#### **Data Preparation**

### Coarsened Exact Matching Analysis (n = 19,565)

- ► Student profiles, programs, and grades with course level information for courses with SI
- Only student records dated 2016 to 2019 who DID NOT DROP
- ▶ Best attempt at isolating most recent student program record
- ▶ Approximately 35% of students in the programs dataset are not present in the profiles dataset. Therefore, these records have missing data for HS/Transfer GPA, one-year retention, and matriculation/graduation terms
- Records with missing data for the following attributes were dropped:
  - High School GPA
  - Attended Orientation Flag
  - ► STEM Major Flag
  - ► Full Time / Part Time Code
  - Academic Program

#### Course Level Details

- ▶ Variables: avg HS GPA, First Gen, URM, class size, DWF rate, class average, SI component, term year
- ► Courses from term years 2016-2019
- URM and First Generation percentages
- Lower Division courses
- ► Courses with class size 20+

## **URM** and **DWF** Rate



### First Generation and DWF Rate



# Course Level Modelling

Table 1: Results Multilinear Regression

|                         | Dependent variable:         |
|-------------------------|-----------------------------|
|                         | dwf.rate                    |
| SI.Component.Flag1      | 0.008 (0.005)               |
| URM                     | $-0.010^{**} (0.005)$       |
| First.Gen.Perc          | 0.009 (0.006)               |
| class.size              | $-0.0001^{**} \ (0.00002)$  |
| class.average           | -0.174*** (0.001)           |
| Constant                | 0.626*** (0.004)            |
| Adjusted R <sup>2</sup> | 0.741                       |
| F Statistic             | 3,231.362*** (df = 5; 5631) |
| Note:                   | *p<0.1; **p<0.05; ***p<0.01 |

# Course Level Modelling

Table 2: Results Multilinear Regression With Interaction

|                                   | Dependent variable:        |
|-----------------------------------|----------------------------|
|                                   | dwf.rate                   |
| SI.Component.Flag1                | 0.041*** (0.014)           |
| URM                               | -0.012**(0.005)            |
| First.Gen.Perc                    | 0.012** (0.006)            |
| class.size                        | -0.0001***(0.00002)        |
| class.average                     | $-0.174^{***} (0.001)$     |
| SI.Component.Flag1:URM            | 0.021 (0.044)              |
| SI.Component.Flag1:First.Gen.Perc | -0.096*** (0.037)          |
| Constant                          | 0.626*** (0.004)           |
| Adjusted R <sup>2</sup>           | 0.742                      |
| F Statistic                       | 2,314.955*** (df = 7; 5629 |

## Student Level Analysis

- Measuring student level equity gaps
  - Students who under represented minorities
  - Students who are first generation
- Measuring success
  - One-year retention

## Student Level Analysis



## Student Level Analysis



# Student Level Analysis: Modeling

- Logistic regression
- Explanatory variables:
  - Student characteristics: URM, First Generation, Gender, Stem Major, number of units taken in the semester, number of units passed in the semester, Cohort term year, SI attendance
  - Course characteristics: Academic level, Course fee existence, GE class

#### Student Results



### Student Results: Interactions



#### Causal Inference



- We want to measure the impact SI has on student performance.
- We need to control for these confounding variables!
- We can accomplish this by matching students with similar characteristics.

#### How do we match?

- ► We can't match exactly!
- ▶ We coarsen our covariates (think binning).
- ▶ We can now match exactly on our coarsened data.
- Lastly, throw out any unmatched observations

# Controlling for Confounding with Coarsened Exact Matching



# Controlling for Confounding with Coarsened Exact Matching



# Controlling for Confounding with Coarsened Exact Matching





•Attended SI

# Covariates for Matching

- ▶ Notion: Good students go to SI, so the benefit is inflated.
  - High School GPA: Helps address the notion SI is only seems benefical.
  - Student Orientation Flag:
  - Major Stem Flag
- Demographics
  - Random Course ID
  - Academic Level
  - First Generation Flag
- Equity Gaps
  - URM/NonURM Flag
  - Gender Code

# Visualizing the Equity Gap





# Visualizing the Equity Gap





#### Effect of SI in General

- ▶ After creating our matching, we fit a linear model to estimate the effect SI has on a students final grade.
- We find, after controlling for our confounding variables, SI improves students final grade by half of a letter grade.
- This doesn't address the question of whether or not SI reduces equity gaps.

#### Limitations

- ▶ We have no data on student living situations.
- ► The Oroville dam flooding and Camp fire are not being accounted for.
- ▶ We are treating equity gaps separtely.

#### Next Steps

- Meet with an expert in Casual Inference.
- Can we extended Causal Inference Techniques to account for equity gaps?
- ► Can we put dollar amount on the benefit of SI by extending the results of the Casual Inference analysis.