Universitatea Babeş-Bolyai Facultatea de Matematică și Informatică

Exam on Dynamical Systems. June 28, 2008

- 1. Let $\alpha \in \mathbb{R}$. We consider the differential equation $x'' + \alpha x' + 9x = 0$.
- (a) Find the general solution when $\alpha = 4$ and $\alpha = 0$, respectively.
- (b) Find α such that all the solutions are periodic. What is the period in this case? Does it depend on α ?
- 2. We consider the Initial Value Problem $x' + \alpha(t)x = f(t)$, where $\alpha, f \in C(\mathbb{R})$.
 - (a) Find the solution when $\alpha(t) = 2t$ and $f(t) = 3e^{-t^2}$.
- (b) Find the solution (eventually only an integral representation of it) when $\alpha(t) = 2t$ and f(t) = 1.
- (c) Write an integral representation of the solution of this IVP for arbitrary α and f.
 - 3. Find a first integral for the differential equation

$$(5x - 2xy)dx + (3y^2 - x^2)dy = 0.$$

4. Represent the phase portrait of the following differential equation:

$$\dot{x} = \frac{1}{2}x(1-x).$$

5. We consider the map $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{2}x(1-x)$. Find its fixed points and study their stability. For what type of values of $\eta \in \mathbb{R}$ we can deduce from the above study that the sequence $(x_n)_{n\geq 0}$ given by the recurrence $x_{n+1} = \frac{1}{2}x_n(1-x_n)$, $n \geq 0$, $x_0 = \eta$ is convergent?