UMA PROPOSTA PARA GARANTIA DA QUALIDADE ALINHADA COM O CMMI

Danilo de Sousa Abreu

Orientador: Professor Marcos Antonio Ribeiro

Centro de Pós-graduação Universidade Nove de Julho - Uninove danilo.danilosousa@gmail.com

Introdução

Dentro de um cenário de grande competitividade, e cada vez mais acirrada, as organizações buscam diferenciais para os seus produtos ou serviços. Obter um processo de qualidade que promove uma cultura organizacional de garantia e controle da qualidade dos seus produtos torna-se essencial. Empresas com esse tipo de certificado podem usufruir de um processo seguro, eficaz e controlado, capaz de disseminar uma cultura organizacional para gestão racional do desenvolvimento de seus produtos de software, além explorarem como apelo comercial.

A qualidade de software é um processo sistemático que focaliza todas as etapas e artefatos produzidos com o objetivo de garantir conformidade de processos e produtos prevenindo e eliminando defeitos (BARTIÉ, 2002). De acordo com BARTIÉ é impossível obter um software de qualidade com processos de desenvolvimento frágeis e deficientes. Vemos então que qualidade de software está intrinsecamente ligada a qualidade dos processos de produção deste produto. Podemos estabelecer então duas dimensões fundamentais da qualidade do software: qualidade de processo e qualidade do produto.

Objetivo

Neste trabalho é apresentado uma visão geral sobre o processo de garantia da qualidade de software propondo um guia geral para estabelecer um conjunto de papéis e atividades com o objetivo de fornecer um guia para as empresas que buscam estabelecer qualidade nos processos de construção de software. É descrito com ênfase o modelo CMMI-DEV, considerado um dos melhores modelos de qualidade para empresas de produtos e serviços, sendo também utilizado como base para o método proposto.

Aderência do método proposto

CMMI-DEV - PPQA	Proposta
SP 1.1 Avaliar objetivamente processos realizados selecionado contra descrições aplicáveis processo, padrões e procedimentos.	4. Avaliar objetivamente os processos.
SP 1.2 Avaliar objetivamente produtos de trabalho selecionado contra as descrições aplicáveis processo, padrões e procedimentos.	3. Avaliar objetivamente os produtos de trabalho e serviços.
SP 2.1 Comunicar problemas de qualidade e garantir a resolução dos problemas de não conformidade com a equipe e gestores.	5. Elaborar relatório de não conformidades.
SP 2.2 Estabelecer e manter registros das atividades de garantia de qualidade.	2. Elaborar plano de qualidade.
	6. Elaborar relatório periódico de garantia da qualidade.
	8. Elaborar relatório de lições aprendidas do projeto.
	1. Disponibilizar materiais de treinamento para os integrantes do projeto.
	7. Aprovar produto final para entrega.
	9. Prestar suporte a todos os envolvidos no projeto.

Conclusão

Podemos concluir que hoje existem diversos modelos e normas referentes à qualidade de software como CMMI-DEV e a família ISO/IEC 25000, no entanto, há uma grande necessidade de exemplos que proponham uma abordagem prática para estabelecer este modelos.

Método proposto

É proposta uma estrutura de artefatos e atividades, para que se tenha um guia inicial, uma visão geral para estabelecer um processo de garantia da qualidade de Software, em conformidade com o modelo de referência CMMI-DEV.

O modelo propõe a criação de um órgão ou departamento com papéis e responsabilidade independente da área de produção ou desenvolvimento do produto de software a fim de executar um conjunto de atividades.

Artefatos Entrada Saída • Plano de projeto (PRPL) • Plano de qualidade (QAPL) • Documentação de processos (PDOC) • Relatório periódico da Garantia da Qualidade (RP-STQA) • Checklist (P-CHK) • Relatório de não conformidades (RP-NC) • Relatório sobre lições aprendidas (RP-LL)

Atividades: são estruturadas para atender as demandas da empresa, contudo, com o foco em atender as avaliações do SEI (*Software Engineering Institute*). Abaixo uma estrutura, como exemplo.

Referências

BARTIÉ, Alexandre. Garantia da qualidade de software: adquirindo maturidade organizacional / Alexandre Bartié - Rio de Janeiro: Elisevier 2002. **PRESSMAN**, Roger S. Engenharia de Software: José Carlos Barbosa dos Santos - Sao Paulo: Person Makron Books, 1995. **CMMI**, CMMI *Product Team*, "*CMMI for Development, Version 1.3*" Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, *Technical Report* CMU/SEI-2010-TR-033, 2010. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661. Acessado em 13 Março 2015.

MANUVANNAN Mr. S., Software process and product quality assurance in IT organizations. International Journal of Computer Engineering. Volume 1, Number 1, May - June (2010), pp. 147-157. Junho de 2010.