

Copyright © 2013 John Smith

PUBLISHED BY PUBLISHER

**BOOK-WEBSITE.COM** 

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the "License"). You may not use this file except in compliance with the License. You may obtain a copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

First printing, March 2013



| -1                      | Part One                                                   |               |
|-------------------------|------------------------------------------------------------|---------------|
| 1<br>1.1<br>1.2         | Linear Regression  Overview  Projection in Euclidean Space | . 7<br>7<br>7 |
| <b>2</b> 2.1            | ANOVA (1-way) Overview                                     | . 9           |
| <b>3</b> 3.1            | Mutiway ANOVA Overview                                     | 11<br>11      |
| <b>4</b><br><b>4</b> .1 | Nonorthogonal Design Overview                              | 13<br>13      |
| <b>5</b> 5.1            | Random Effects Model  Overview                             | 15<br>15      |
| Ш                       | Part Two                                                   |               |
| <b>6</b>                | Basic Concepts  Overview                                   | 19            |

| <b>7</b><br>7.1 | Estimation                               | 21<br>21     |
|-----------------|------------------------------------------|--------------|
| <b>8</b><br>8.1 | Inference                                | 23<br>23     |
| <b>9</b><br>9.1 | Residuals                                | 25<br>25     |
| 10<br>10.1      | Cetegorical Prediction                   | 27<br>27     |
| 11<br>11.1      | Some Important GLM Overview              | 29<br>29     |
| 12<br>12.1      | Multivariate GLM Overview                | 31<br>31     |
| Ш               | Part Three                               |              |
| 13<br>13.1      | Principle Componant Analysis  Overview   | 35<br>35     |
| 14<br>14.1      | Canonical Correlation Analysis           | <b>37 37</b> |
| 15<br>15.1      | Independent Componant Analysis  Overview | 39<br>39     |
|                 | Index                                    | 41           |

# Part One

| 1   | Linear Regression             | 7 |
|-----|-------------------------------|---|
| 1.1 | Overview                      |   |
| 1.2 | Projection in Euclidean Space |   |
| 2   | ANOVA (1-way)                 | 9 |
| 2.1 | Overview                      |   |
| 3   | Mutiway ANOVA 1               | 1 |
| 3.1 | Overview                      |   |
| 4   | Nonorthogonal Design 1        | 3 |
| 4.1 | Overview                      |   |
| 5   | Random Effects Model 1        | 5 |
| 5.1 | Overview                      |   |



- projection
- orthongonal decomposition
- Gaussian Linear Regression
- prediction (generally of  $\hat{y}$ )
- different types of errors
- influence
- lack of fit
- $\bullet$   $R^2$
- Multicollinearity

#### 1.2 Projection in Euclidean Space

Let Euclidian Space be denoted by  $\mathbb{R}^{P}$ .

$$\mathbb{R}X \dots X\mathbb{R} = \{(x_1, \dots, x_p) : x_1 \in \mathbb{R} \dots, x_p \in \mathbb{R}^P\}$$
$$a \in \mathbb{R}^P, b \in \mathbb{R}^P$$

$$a \in \mathbb{R}^P, b \in \mathbb{R}^P$$
$$a^T b = \sum_{i=1}^P a_i b_i$$

 $a^T b = \langle a, b \rangle$  inner product

 $\{\mathbb{R}^P,<,>\}$  inner product, Hilbert space

Let  $\Sigma \in \mathbb{R}^{PxP}$  set of all pxp matrices

Assume  $\Sigma$  positive definite matrix

$$x^T \Sigma x < 0 \forall x \in \mathbb{R}^P, x \neq 0$$

Then  $a^T \Sigma b$  also satisfies the conditions for inner product.

$$a^T \Sigma b = \langle a, b \rangle_{\Sigma}$$

$$a^Tb = a^TIb = \langle a, b \rangle_I$$

 $\{\mathbb{R}^P,<,>_\Sigma\}$  is a more general inner product space

A matrix,  $A \in \mathbb{R}^{PxP}$  can be viewed as linear transformation

 $T_A: \mathbb{R}^P \to \mathbb{R}^P, x \mapsto A$ 

Asside: He will denote  $T_A$  as A.

If  $A: \mathbb{R}^P \to \mathbb{R}^P$ ,

$$ker(A) = \{x \in \mathbb{R}^P, Ax = 0\} \ ran(A) = \{Ax : x \in \mathbb{R}^P\}$$
  
A linear transformation is idempotent if

$$A = A^2 Ax = A(A(x)) \ \forall x \in \mathbb{R}^P$$

If A were a number it could only be 1 or 0.



- General linear models
- Scheffe's simulteaneous confidence
- Singular decomposition
- Non Gaussian error



- Orthogonal design
- Additive 2 way ANOVA
- simultaneous intervals
- nonadditive
- decomposition of sum of squares
- Latin square
- nested design



$$\bullet \ \ \bar{X}_{\dot{i}} - \bar{X}_{\dot{i}}$$



# Part Two

| <b>6</b> 6.1      | Basic Concepts Overview         | 19 |
|-------------------|---------------------------------|----|
| <b>7</b><br>7.1   | <b>Estimation</b> Overview      | 21 |
| <b>8</b><br>8.1   | Inference Overview              | 23 |
| <b>9</b><br>9.1   | Residuals Overview              | 25 |
| <b>10</b> 10.1    | Cetegorical Prediction Overview | 27 |
| <b>11</b><br>11.1 | Some Important GLM Overview     | 29 |
| <b>12</b><br>12.1 | Multivariate GLM Overview       | 31 |







• deviance <-> sum of squares









# **Part Three**

| <b>13</b><br>13.1 | Principle Componant Analysis Overview    | 35 |
|-------------------|------------------------------------------|----|
| <b>14</b><br>14.1 | Canonical Correlation Analysis Overview  | 37 |
| <b>15</b><br>15.1 | Independent Componant Analysis  Overview | 39 |
|                   | Index                                    | 41 |









Overview, 7, 9, 11, 13, 15, 19, 21, 23, 25, 27, 29, 31, 35, 37, 39

Projection, 7