

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3114</u>	_K работе допущен <u> 23.02.21</u>
Студент Нуруллаев Даниил	_Работа выполнена 25.02.21
Преподаватель Афанасьева Т.В.	_Отчет принят

Время проведения измерений: 24.02.2021 19:15 (Виртуально)

Рабочий протокол и отчет по лабораторной работе № 3.12V Опыт Милликена

1. Цель работы.

Исследование движения заряженных капель в электрическом и гравитационном полях. Определение величины элементарного заряда.

2. Задачи, решаемые при выполнении работы.

Измерение скоростей движения капель масла при различных напряжениях и направлениях электрического поля. Определение радиуса и заряда капель.

3. Объект исследования.

Электрическая сила, действующая на каплю со стороны электрического поля конденсатора

4. Метод экспериментального исследования.

Измерение времени прохождения выбранной заряженной капли масла одинакового расстояния в электрическом поле при разном направлении действия силы. Повторение не менее 20 раз этих измерений для разных капель при разном напряжении.

5. Рабочие формулы и исходные данные.

 $\Delta y = 5,33*10^{-5}$ м * 20 = 106,6*10⁻⁵ м – расстояние, проходимое капелькой масла g = 9,81 м/с² - ускорение свободного падения.

 $\rho o = 875,3 \text{ кг/м}^3$ - плотность масла

 ρ = 1,29 кг/м³ - плотность воздуха

 $\eta = 1.81 * 10^{-5} \text{ H} \cdot \text{c/m}^2$ - вязкость воздуха

d = 6мм = $6 * 10^{-3}$ м - расстояние между обкладками конденсатора

N = 20 - количество измерений

 $e_{\text{табл}}$ = 1,602 * 10⁻¹⁹ Кл – величина элементарного заряда

Формула нахождения коэффициента, который нужен для нахождения радиуса капельки масла:

$$Cr = \frac{3}{2} \sqrt{\frac{\eta}{(\rho \circ - \rho)g}} \tag{1}$$

Формула нахождения коэффициента, который нужен для нахождения заряда капельки масла:

$$Cq = \frac{9}{2} \pi d \sqrt{\frac{\eta^3}{(\rho o - \rho)g}}$$
 (2)

Формула нахождения радиуса капельки масла:

$$r = \operatorname{Cr}\sqrt{\operatorname{v1} - \operatorname{v2}} \tag{3}$$

Формула нахождения заряда капельки масла:

$$q = Cq \frac{(v1+v2)\sqrt{v1-v2}}{U} \tag{4}$$

Формула нахождения элементарного заряда:

$$ei = \frac{qi}{ni} \tag{5}$$

Формула нахождения среднего арифметического N чисел:

$$< e > = \frac{1}{N} \sum_{i=0}^{N} ei$$
 (6)

Формула нахождения среднеквадратичного отклонения:

$$\sigma e = \sqrt{\frac{1}{N(N-1)} \sum_{i=0}^{N} (ei - \langle e \rangle)^2}$$
 (7)

Формула нахождения относительного отклонения теоретического значения элементарного заряда от табличного:

$$\sigma e_{\text{теор}} = \frac{e_{\text{табл}} - e_{\text{теор}}}{e_{\text{табл}}} * 100\%$$
 (8)

6. Измерительные приборы.

Nº ı	п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора	
1		Цифровой счетчик	Виртуальный секундомер	0 – 60 c	0,1 мс	
2		Генератор постоянного электрического тока	Виртуальный генератор	100 B - 300 B	1 B	

7. Схема установки (перечень схем, которые составляют Приложение 1)

- 1) Генератор постоянного электрического тока
- 2) Микроскоп
- 3) Распылитель капелек масла
- 4) Две металлические заряженные пластинки, между которыми движутся капельки масла
- 5) Регулятор напряжения
- 6) Пара секундомеров

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Согласно инструкции, проведу 20 измерений и заполню таблицу 1.

Найду коэффициенты Cr и Cq по формулам 1 и 2:

$$Cr = \frac{3}{2} \sqrt{\frac{\eta}{(\rho o - \rho)g}} = \frac{3}{2} \sqrt{\frac{1,81*10^{-5}}{(875,3-1,29)*9,81}} = 6,89*10^{-5} \text{ (M}^{0.5*}c^{0.5}\text{)}$$

$$Cq = \frac{9}{2} \pi d \sqrt{\frac{\eta^3}{(\rho o - \rho)g}} = \frac{9}{2} \pi d \sqrt{\frac{(1,81*10^{-5})^3}{(875,3-1,29)*9,81}} = 7,05*10^{-11} \text{ (K}\Gamma^*M^{0.5*}c^{-0.5}\text{)}$$

С помощью значений найденных констант вычислите радиусы и заряды всех капель по формулам 3, 4 и 5 и дозаполню таблицу 1:

Nº	U,B	t1,c	t2,c	v1	v2	r	q,10^-19KЛ	n	е,10^-19КЛ
1	129	9,82	15,48	0,000109	0,0000689	4,3	6,1	4	1,53
2	141	8,02	13,75	0,000133	0,0000775	5,1	7,8	5	1,57
3	196	4,77	5,57	0,000223	0,000191	3,9	8,5	5	1,69
4	290	6,05	8,07	0,000176	0,000132	4,6	5	3	1,66
5	190	2,9	3,03	0,000368	0,000352	2,7	10,6	7	1,51
6	218	5,06	16,6	0,000211	0,0000642	8,3	10,8	7	1,54
7	214	5,55	16,69	0,000192	0,0000639	7,8	9,5	6	1,59
8	204	4,39	4,92	0,000243	0,000217	3,5	8,1	5	1,62
9	173	3,64	3,79	0,000293	0,000281	2,3	8	5	1,59
10	190	4,21	4,72	0,000253	0,000226	3,6	9,3	6	1,55
11	232	5,03	8,13	0,000212	0,000131	6,2	9,4	6	1,56
12	200	4,14	5,13	0,000257	0,000208	4,9	11,6	7	1,65
13	206	8,37	9,34	0,000127	0,000114	2,5	3	2	1,5
14	198	3,81	3,96	0,00028	0,000269	2,2	6,4	4	1,59
15	175	5,54	7,19	0,000192	0,000148	4,6	9,1	6	1,52
16	274	15,36	38,37	0,0000694	0,0000278	4,4	1,6	1	1,61
17	204	5,23	10,98	0,000204	0,0000971	7,1	10,7	7	1,53
18	165	4,45	5,7	0,00024	0,000187	5	13,2	8	1,65
19	165	4,61	5,18	0,000231	0,000206	3,5	9,4	6	1,57
20	109	7,75	17,44	0,000138	0,0000611	6	11,2	7	1,6

Таблица 1. Результаты прямых измерений времени движения капель масла при разном напряжении, результаты обработки этих данных: скорости капель, радиусы капель, заряды капель и теоретические элементарные заряды для каждой капли.

Теперь можно вычислить среднее значение теоретического элементарного заряда по формуле 6:

$$< e > = \frac{1}{N} \sum_{i=0}^{N} ei = 1,58 * 10^{-19} (K\pi)$$

Вычислю погрешность измерений теоретического элементарного заряда по формуле 7:

$$\sigma e = \sqrt{\frac{1}{N(N-1)} \sum_{i=0}^{N} (ei - \langle e \rangle)^2} = 0.012 * 10^{-19}$$
 (Кл)

Доверительный интервал для найденного теоретического значения элементарного заряда:

$$e = (1,58\pm0,01)$$
 Кл

Для вывода рассчитаю относительное отклонение теоретического значения элементарного электрического заряда от табличного по формуле 8:

$$\sigma e_{\text{теор}} = \frac{e_{\text{Табл}} - e_{\text{Теор}}}{e_{\text{Табл}}} * 100\% = \frac{1,6 - 1,58}{1,6} * 100\% = 1,25\%$$

9. Графики (перечень графиков, которые составляют Приложение 2).

График 1. Зависимость заряда капли от её радиуса, а также пронумерованные горизонтальные линии количества заряда капель.

10. Выводы и анализ результатов работы.

К глубокому сожалению, табличное значение величины элементарного электрического заряда не совпало с теоретическим, более того, оно также не попало в найденный доверительный интервал. Но при этом найденное значение крайне близко к табличному и даже относительное отклонение теоретического значения от табличного равно 1,25%. Поэтому я считаю опыт успешным, я смог изучить движение электрически заряженных частиц, а также определить значение элементарного электрического заряда.