VIETNAM NATIONLA UNIVERSITY, HO CHI MINH CITY UNIVERSITY OF INFORMATION TECHNOLOGY FACULTY OF COMPUTER ENGINEERING

---oOo----

DIGITAL CIRCUIT DESIGN- CE222.O23.MTCL

REPORT LAB 01

GETTING ACQUAINTED WITH CUSTOM DESIGNER AND INVERTER GATE DESIGN

STUDENT NAME: Trương Duy Đức STUDENT ID: 21521970 Lecturer: Tạ Trí Đức

CHAPTEI	R 1. DESIGN SCHEMATIC AND SIMULATE INVERTER (FRONT-END)	3
1. DE	SIGN SCHEMATIC	3
1.1.	Calculate the W/L ratio of PMOS and NMOS	4
1.2.	Utilize a tool to assist in finding the W/L ratio	5
2. SIM	IULATE	6
2.1.	Testbench	6
2.2.	Waveform of SAE	6
3. SPI	CE	7
CHAPTEI	R 2. LAYOUT INVERTER (BACK-END)	8
1. LA	YOUT	8
1.1.	Design Rules Check - DRC	9
1.2.	Layout Versus Schematic (LVS)	9
1.3.	Layout Parasitic Extraction – LPE)	9
2. POS	ST LAYOUT1	0
2.1.	SPICE	0
2.2.	HSPICE	1
2.3.	SIMULATION	13

Pictures

Figure 1. Inverter Schematic	3
Figure 2. Switching Threshold & β Ratio	4
Figure 3.Result of SAE	
Figure 4. Final Schematic	
Figure 5. Test schematic	
Figure 6. Result of SAE	
Figure 7. SPICE	
Figure 8. Layout	
Figure 9. DRC result	
Figure 10. LVS result	9
Figure 11. LPE result	
Figure 12. Config of SPICE	
Figure 13. Schematic of config	10
Figure 14. Content of symbol	11
Figure 15. Config of HSPICE	11
Figure 16. Schematic of config	12
Figure 17. Content of symbol	12
Figure 18 Waveform of POST LAYOUT	13

CHAPTER 1. DESIGN SCHEMATIC AND SIMULATE INVERTER (FRONT-END)

1. DESIGN SCHEMATIC

Figure 1. Inverter Schematic

1.1. Calculate the W/L ratio of PMOS and NMOS

By default, we will fix the NMOS with specific dimensions: L=0.18um and W=0.36um. We will calculate the W parameters of the PMOS (where L of PMOS and NMOS are equal) for an appropriate Switching Threshold (Trip-point). Referring to the two figures below:

Figure 2. Switching Threshold & β Ratio

Specifically, we will calculate $\beta r=1$ based on the mobility of the holes and electrons.

Theory: Typically, μn (electron mobility) is around 2.5-3 times greater than μp (hole mobility). Therefore, the ratio of Wp to Wn (for $\beta r=1$) is usually given by $\frac{Wp}{Wn} = \frac{\mu n}{\mu p}$, meaning the width of the PMOS is typically 2.5-3 times wider than the width of the NMOS.

According to the 90nm reference library:

$$\frac{wp}{wn} = \frac{\mu n}{\mu p} = \frac{4.031486^{-2}}{8.391744^{-3}} \approx 4.8$$

⇒ Meaning the width of the PMOS is 4.8 times wider than the width of the NMOS.

1.2. Utilize a tool to assist in finding the W/L ratio

Figure 3.Result of SAE

We will focus on two parameters: False time and rise time, as well as the Duty cycle. We observe that at x=5, where Wp=0.18x5=0.9 um (Wp is 2.5 times Wn), the rise time and false time are nearly equal, making the inverter easier to control, with a duty cycle approximately 47.4%, slightly smaller than at x=10 but not significantly so.

⇒ We will choose Wp to be 2.5 times Wn.

Figure 4. Final Schematic

2. SIMULATE

2.1.Testbench

Figure 5. Test schematic

2.2. Waveform of SAE

Figure 6. Result of SAE

Green line: Vin Yellow line: Vout

3. SPICE

Figure 7. SPICE

Green line: Vin Yellow line : Vout

CHAPTER 2. LAYOUT INVERTER (BACK-END)

1. LAYOUT

Figure 8. Layout

1.1. Design Rules Check - DRC

JobID: hercules_drc_2
Completed with no errors.

Figure 9. DRC result

1.2. Layout Versus Schematic - LVS

JobID: hercules_lvs_5
Completed with no errors.

Figure 10. LVS result

1.3. Layout Parasitic Extraction – LPE

JobID: starrc_lpe_4
Completed with no errors.

Figure 11. LPE result

2. POST LAYOUT

2.1. SPICE

Figure 12. Config of SPICE

Figure 13. Schematic of config

```
*|DSPF 1.3
*|DESIGN inv_lab1
*|DATE "Wed May 3 01:41:41 2017"
*|VENDOR "Synopsys"
*|PROGRAM "StarRC"
*|VERSION "D-2010.06"
*|DIVIDER |
*|DELIMITER:
*|OPERATING TEMPERATURE 25
*|GLOBAL_TEMPERATURE 25
*|FORMAT SPF
*
*** COMMENTS

*** TCAD_GRD_FILE Inome/eda/pdk/synopsys/PDK/starrc/reference_90nm_9lm_typ.nxtgrd
*** TCAD_TIME_STAMP Mon Apr 6 20:59:52 2009
*** TCADGRD_VERSION 64

.SUBCKT inv_lab1 out in
*|GROUND_NET 0
*LAYER_MAP
```

Figure 14. Content of symbol

2.2. HSPICE

Figure 15. Config of HSPICE

Figure 16. Schematic of config

Figure 17. Content of symbol

2.3. SIMULATION

Both have the same waveform and only differ when clicking on the symbol.

Figure 18. Waveform of POST LAYOUT