Your grade: 100%

Your latest: 100% • Your highest: 100%

current action-value estimates.

Bellman optimality equation for action values

To pass you need at least 80%. We keep your highest score.

1.	What is the target policy in Q-learning?	1 / 1 point
	\bigcirc ϵ -greedy with respect to the current action-value estimates	
	Greedy with respect to the current action-value estimates	
	Correct! Q-learning's target policy is greedy with respect to the	

2.	Which Bellman equation is the basis for the Q-learning update?	1 / 1 point
	Bellman equation for state values	
	Bellman equation for action values	
	Bellman optimality equation for state values	

Correct! The Q-learning update is based on the Bellman optimality equation for action values.

J .	Bellman equation for state values	171 point
	Bellman equation for action values	
	Correct! The Sarsa update is based on the Bellman equation for action values.	
	Bellman optimality equation for state values	
	Bellman optimality equation for action values	
4.	Which Bellman equation is the basis for the Expected Sarsa update?	1 / 1 point
	O Bellman equation for state values	
	Bellman equation for action values	
	Correct! The Expected Sarsa update is based on the Bellman equation for action values.	
	Bellman optimality equation for state values	
	Bellman optimality equation for action values	

5. Which algorithm's update requires more computation per step?

1 / 1 point

	Expected Sarsa	
	Correct! Expected Sarsa computes the expectation over next actions.	
	○ Sarsa	
6.	Which algorithm has a higher variance target?	1 / 1 point
	C Expected Sarsa	
	Sarsa	
	Correct! We saw that Sarsa was more sensitive to the choice of step-size because its target has higher variance.	
7.	Q-learning does not learn about the outcomes of exploratory actions. True	1 / 1 point
	Correct! The update in Q-learning only learns about the greedy action. As demonstrated in Cliff World, it ignores the outcomes of exploratory actions.	
	○ False	

6/9/25, 12:58 AM Practice Quiz | Coursera Sarsa, Q-learning, and Expected Sarsa have similar targets on a 1 / 1 point transition to a terminal state. True Correct! The target in this case only depends on the reward. False 9. Sarsa needs to wait until the end of an episode before performing its update. True False

> Correct! Unlike Monte Carlo methods, Sarsa performs its updates at every time-step using the reward and the next action-value estimate.