Теорминимум по теормеху

Драчов Ярослав Факультет общей и прикладной физики, МФТИ

25мая $2020\ г.$

Содержание

Первое задание		3
1	Определение положения равновесия	3
2	Устойчивое положение равновесия	3
3	Теорема Лагранжа-Дирихле	3
4	Первая теорема Ляпунова о неустойчивости	1
5	Вторая теорема Ляпунова о неустойчивости	1
6	Нормальные координаты	1
7	Асимптотически устойчивое положение равновесия	1
8	Теорема Ляпунова о лианеризованных системах	5
9	Критерии Рауса-Гурвица и Льенара-Шипара устойчивости	
	многочлена	ó
10	Теорема Ляпунова об	
	устойчивости/асимптотической устойчивости	
	(функция Ляпунова)	3
11	Теорема Барбашина-Красовского	3
12	Теорема Четаева о неустойчивости	3
13	Понятие о бифуркации положений равновесия	7
14	Бифуркация Андронова-Хопфа	7
15	Метод Биркгофа(?) приведения к нормальной форме. По-	
	нятие резонанса	7
16	Вынужденные колебания под действием периодической си-	
	лы. Частотная характеристика, амплитудно-фазовая ха-	
	рактеристика. Необходимые и достаточные условия воз-	
	никновения резонанса в таких системах	3

Вто	орое задание	10
1	Понятие краевой задачи для лагранжевых систем, теорема	
	Гамильтона- Остроградского, формула изменения лагран-	
	жиана при замене координат и времени, теорема Нётер	10
2	Переменные Гамильтона. Обобщенные импульсы	11
3	Функция Гамильтона через функцию Лагранжа	11
4	Функция Гамильтона через обобщенный потенциал и кин. энер (случай обобщенно консервативной системы) (см. 286-287	ГИЮ
	стр. Маркеева)	12
5 6	Канонические уравнения Гамильтона	12
7	ко для гамильтоновых систем!)	12
•	антикоммутативность etc). Критерий первого интеграла га- мильтоновой системы	12
8	Трубка прямых путей. Интегральные инварианты Пуанка-	
9	ре и Пуанкаре-Картана Теорема Лиувилля о сохранении фазового объема. Общая	13
	формула для изменения фазового объема произвольной ди-	
	намической системы (не только гамильтоновой!)	14
10	Классификация интегральных инвариантов, теорема Ли	
	Хуачжуна	14
11	Канонические преобразования. Производящие функции	15
12	Замена гамильтониана при каноническом преобразовании,	
	(q,p) описание	15
13	Свободные преобразования, (q, q^*) описание. Формулы преобразования импульсов гамильтониана	16
14	«Наивная» теория возмущений, использование (q, p^*) описания для задания преобразований, близких к тождествен-	
	ным. Метод Биркгофа, понятие резонанса	16
15	Уравнение Гамильтона-Якоби. Полный интеграл уравнения Гамильтона-Якоби	16
16	Понятие адиабатических инвариантов динамических систем	17
17	Переменные действие угол. Условие возможности перехода	
18	к ним, формулы перехода (случай одной степени свободы) Понятие интегрируемых гамильтоновых систем. Теорема	17
	Лиувилля-Арнольда	17
19	Резонансные и нерезонансные торы	17
20	Невырожденность и изоэнергетическая невырожденность	4 -
0.1	гамильтониана	17
21	KAM-теорема	17

22	Важные следствия КАМ-теоремы для систем с двумя	
	степенями свободы, обладающих свойством изоэнергети-	
	ческой и обычной невырожденности	18
23	Понятие детерминированного хаоса в динамических си-	
	<u>стемах</u>	18
24	Сечения Пуанкаре	18
25	Φ рактальная размерность	18

Первое задание

1 Опредение положения равновесия

Определение. Некоторое положение системы тогда и только тогда является её *положением равновесия*, когда в этом положении все обобщённые силы равны нулю:

$$Q_i = -\frac{\partial \Pi}{\partial q_i} = 0, \quad (i = 1, 2, \dots, n),$$

где Π — потенциальная энергия системы, которая в случае консервативной системы явно от времени не зависит.

2 Устойчивое положение равновесия

Определение. Положение равновесия $q_1=q_2=\ldots=0$ называется устойчивым, если для любого $\varepsilon>0$ существует такое $\delta=\delta(\varepsilon)$, что для всех $t>t_0$ выполняются неравенства

$$|q_i(t)| < \varepsilon, \quad |\dot{q}_i(t)| < \varepsilon \quad (i = 1, 2, \dots, n)$$

при условии, что в начальный момент $t=t_0$

$$|q_i(t_0)| < \delta, \quad |\dot{q}_i(t_0)| < \delta|.$$

3 Теорема Лагранжа-Дирихле

Теорема (Лагранжа-Дирихле). Если в положении равновесия консервативной системы потенциальная энергия имеет строгий локальный минимум, то это положение равновесия устойчиво.

4 Первая теорема Ляпунова о неустойчивости

Теорема (Ляпунова, 1-я). Если потенцмальная энергия консервативной системы в положении равновесия не имеет минимума и это узнаётся уже по членам второго порядка в разложении функции Π в ряд в окрестности положения равновесия без необходимости рассматривания членов высших порядков, то положение равновесия неустойчиво.

5 Вторая теорема Ляпунова о неустойчивости

Теорема (Ляпунова, 2-я). Если в положении равновесия потенциальная энергия имеет максимум и это узнаётся по членам наименее высокого порядка, которые действительно присутствуют в разложении этой функции в ряд в окрестности положения равновесия, то это положение равновесия неустойчиво.

6 Нормальные координаты

Определение. Обобщённые координаты θ_j , в которых кинетическая и потенциа. В энергия системы имеют вид

$$T = \frac{1}{2} \sum_{j=1}^{n} \dot{\theta}_{j}^{2}, \qquad \Pi = \frac{1}{2} \sum_{j=1}^{n} \lambda_{j} \theta_{j}^{2},$$

называются нормальными.

В нормальных координатах лианеризованные уравнения движения в окрестности положения равновесия имеют вид n не связанных друг с другом уравнений второго порядка

$$\ddot{\theta}_j + \lambda_j \theta_j = 0, \quad (j = 1, 2, \dots, n).$$

7 Асимптотически устойчивое положение равновесия

Определение. Прижение равновесия q_j^0 называется асимптотически устойчивым, если но устойчиво и, если, кроме того, существует такая δ -окрестность точки $q_j=q_j^0,\,\dot{q}_j=0\;(j=1,\ldots,n),$ что для всех $|q_j^0-q_j|<\delta,$ $|\dot{q}_i(0)|<\delta$ выполняются условия

$$\lim_{t \to \infty} q_j(t) = q_j^0, \quad \lim_{t \to \infty} \dot{q}_j(t) = 0, \quad (j = 1, \dots, n).$$

8 Теорема Ляпунова о лианеризованных системах

Теоргуа (Ляпунова о лианеризованных системах). *Если все корни ха*рактического уравнения

$$\det \|\mathbf{A}\lambda^2 + \mathbf{B}^*\lambda + (\mathbf{C} + \mathbf{C}^*)\| = 0$$

системы дифференциальных уравнений линейного приближения

$$\mathbf{A}\ddot{\mathbf{q}} + \mathbf{B}^*\dot{\mathbf{q}} + (\mathbf{C} + \mathbf{C}^*)\mathbf{q} = 0$$

имеют отрицательные действительные части, то положение равновесия q=0 исходной системы, описываемой уравнениями

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} = Q_j, \qquad Q_j = -\frac{\partial V}{\partial q_i} + Q_j^{(j)} \qquad (j = 1, \dots, n),$$

асимтотически устойчиво. Если хотя бы один корень характеристического уравнения имеет вситвительную част, то положение равновесия, стределяемое системой, неустойчиво.

9 Критерии Рауса-Гурвица и Льенара-Шипара устойчивости многочлена

Определение. Назовём *матрицей Гурвица* квадратную матрицу *т*-го порядка

$$\begin{pmatrix} a_1 & a_3 & a_5 & \dots & 0 \\ a_0 & a_2 & a_4 & \dots & 0 \\ 0 & a_1 & a_3 & \dots & 0 \\ 0 & a_0 & a_2 & \dots & 0 \\ & & & \ddots & \vdots \\ & & & & a_m \end{pmatrix}.$$

Составим главные миноры матрицы Гурвица (определители Гурвица)

$$\Delta_1 = a_1, \ \Delta_2 = \begin{pmatrix} a_1 & a_3 \\ a_0 & a_2 \end{pmatrix}, \ \Delta_3 = \begin{pmatrix} a_1 & a_3 & a_5 \\ a_0 & a_2 & a_4 \\ 0 & a_1 & a_3 \end{pmatrix}, \dots, \Delta_m = a_m \Delta_{m-1}.$$

Теорема (Критерий Рауса-Гурвица в форме Льенара-Шипара). Для то-го чтобы все корни уравнения

$$a_0\lambda^m + a_1\lambda^{m-1} + \ldots + a_{m-1}\lambda + a_m = 0$$

с вещественнными коэффициентами и положительным старшим коэффициентом a_0 имели отрицательные вещественные части, необходимо и достаточно, чтобы выполнялись неравенства

$$\Delta_1 > 0, \quad \Delta_2 > 0, \quad \dots, \quad \Delta_m > 0.$$

10 Теорема Ляпунова об устойчивости/асимптотической устойчивости (функция Ляпунова)

Теорема (Ляпунова, об устойчивости движения). Если дифференциальные уравнения возмущённого движения таковы, что существует знакоопределённая функция V, производная которой \dot{V} в силу этих уравнений является или знакором тоянной функцией противоположного знака с V, или тождествению равной нулю, то невозмущённое движение устойчиво.

Теорема (Ляпунова, об асимптотической устойчивости). Если дифференциальные уравнения возмущённого движения таковы, что существует знакоопределённая функция $V(x_1, x_2, ..., x_m)$, производная которой \dot{V} в силу этих уравнений есть знакоопределённая функция противоположного знака с V, то невозмущённое движение асимптотически устойчиво.

11 Теорема Барбашина-Красовского

Теорема (Барбашина-Красовского). Если для дифференциальных уравнений возмущённого движения можно найти положит но определённую функцию V(y), производная которой, вычисленная в силу этих уравнений $\dot{V}(y) < 0$ вне K и $\dot{V}(y) = 0$ на K, где K — многообразие точек, содержащее единственное решение $y(t) \equiv 0$, то невозмущённое движение асимптотически устойчиво, если функция V(y) отрицательно определена, то невозмущённое движение асимптотически неустойчиво.

12 Теорема Четаева о неустойчивости

Теорема (Четаева, о неустойчивости). Если дифференциальные уравнения возмущённого движения таковы, что существует функция $V(x_1, x_2, \ldots, x_m)$ такая, что в сколь угодно малой окрестности

$$|x_i| < h \quad (i = 1, 2, \dots, m)$$

существует область V>0 и во всех точках области V>0 производная \dot{V} в силу этих уравнений принимает положительные значения, то невозмущённое движение неустойчиво.

13 Понятие о бифуркации положений равновесия

Дифференциальные уравнения динамических систем часто зависят не только от фазовых переменных, но и от некоторых параметров. Иногда изменение параметров приводит к качественным перестройкам структуры фазовых траекторий системы — изменениям количества положений равновесия, характера их устойчивости, кардинальным трансформациям траекторий и т. п. В окрестности определённых значений параметров перестройки происходят при сколь угодно малом изменении параметров и называются бифиркациями.

14 Бифуркация Андронова-Хопфа

ыфуркацией Андронова-Хопфа называется бифуркация рождения па

15 Метод Биркгофа приведения к нормальной форме. Понятие резонанса

Определение. Нормальной формой системы

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}), \quad \mathbf{x} = [x_1, \dots, x_n]^T, \quad \mathbf{f} = [f_1, \dots, f_n]^T$$

называется форма содержащая лишь линейные и резонансные слагаемые.

При помощи разложения в ряд Тейлора функции f в окрестности положения равновесия выделим в данной системе линейные слагаемые:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \boldsymbol{g}(\mathbf{x}), \quad \boldsymbol{g} = [g_1, \dots, g_n]^T,$$

$$g_i(\mathbf{x}) = \sum_{k_1, \dots, k_n} g_{k_1, \dots, k_n}^i x_1^{k_1} \dots x_n^{k_n}, \quad k_1 + \dots + k_n \geqslant 2.$$

Здесь **A** — матрица с постоянными коэффициентами размера $n \times n$, g_{k_1,\dots,k_n} — постоянные коэффициенты в полиномах \boldsymbol{g} .

Определение. *Нормализующим преобразованием* (вплоть до степени k) называется последовательность преобразований

$$\tilde{\mathbf{x}} = \mathbf{y} + \mathbf{p}(\mathbf{y}), \quad \mathbf{p}(\mathbf{y}) = [p_1, \dots, p_n]^T,$$

$$p_i(\mathbf{y}) = \sum_{k_1, \dots, k_n} p_{k_1, \dots, k_n}^i y_1^{k_1} \dots y_n^{k_n}, \quad k_1 + \dots + k_n = k$$

с полиномиальными коэффициентами

$$p_{k_1,\dots,k_n}^i = \frac{g_{k_1,\dots,k_n}^i}{k_1\lambda_1 + \dots + k_n\lambda_n - \lambda_i},$$

приводящее систему к её нормальной форме (вплоть до слагаемых степени k).

Определение. Нелинейные слагаемые системы, показатели k_1, \ldots, k_n которых таковы, что выполняется $\lambda_i = k_1 \lambda_1 + \ldots k_n \lambda_n$, называются *резонансными*.

В соответствии с описанным выше алгоритмом все нерезонансные слагаемые могут быть исключены из правой части системы при помощи последовательно применяемых полиномиальных замен. В то же время резонансные слагаемые не могут быть ни исключены, ни каким-либо образом ими преобразованы.

16 Вынужденные колебания под действием периодической силы. Частотная характеристика, амплитуднофазовая характеристика. Необходимые и достаточные условия возникновения резонанса в таких системах.

Определение. Колебания, которые возникают благодаря наличию вынуждающей силы, зависящей явно от времени, и к которым в пределе стремится суммарное движение, назывют *вынужденными колебаниями*.

Представим уравнения линейного приближения стационарной системы в виде

$$\sum_{k=1}^{n} (a_{jk}\ddot{q}_k + b_{jk}\dot{q}_k + c_{jk}q_k) = Q_j(t) \quad (j = 1, \dots, n),$$

где $Q_j(t)$ — зависящие явно от времени части обобщённых сил. Предполагается, что в процессе движения они остаются малыми по модулю и не выводят систему из малой окрестности положения равновесия.

В связи с тем, что данная система уравнений является линейной, а для линейных систем имеет место принцип суперпозиции, можно рассмотреть движение системы под действием какой-либо одной силы из $Q_j(t)$ $(j=1,\ldots,n)$, предположив, что все остальные равны нулю. Определив порознь движения, возникающие под действием каждой из таких обобщённых сил, их следует затем сложить.

Учитывая это обстоятельство, положим

$$Q_2(t) = Q_3(t) = \dots = Q_n(t) = 0,$$

т. е. будем считать, что отлична от нуля только обобщённая сила $Q_1(t)$, относящаяся к первой обобщённой координате, а все остальные обобщённые силы такого рода равны нулю.

Введём обозначения

$$d_{jk}(i\Omega) = a_{jk}(i\Omega)^2 + b_{jk}(i\Omega) + c_{jk},$$

$$\Delta = \det ||d_{jk}(i\Omega)|| = \begin{pmatrix} d_{11}(i\Omega) & \cdots & d_{1n}(i\Omega) \\ \vdots & & \vdots \\ d_{n1}(i\Omega) & \cdots & d_{nn}(i\Omega) \end{pmatrix},$$

$$W_{1k}(i\Omega) = \frac{\Delta_{1k}}{\Delta},$$

где Δ_{1k} — алгебраическое дополнение расположенного в первой строке и k-ом столбце элемента определителя Δ . Тогда при поиске частного решения неоднородной системы дифференциальных уравнений в виде $\tilde{q}_f = Be^{i\Omega t}$ и, выделяя в последствии мнимую часть, получим

$$q_k = A|W_{1k}(i\Omega)|\sin[\Omega t + \arg W_{1k}(i\Omega)] \quad (k = 1, \dots, n).$$

Определение. Введённая выше функция $W_{1k}(i\Omega)$ называется *частотной характеристикой системы*, или, как говорят иногда, её *амлитуднофазовой характеристикой*.

Определение. Если отдельно рассмотреть изменение модуля и аргумента вектора $W(i\Omega)$ в зависимости от Ω , то получатся характеристики, которые называются соответственно *амплитудной* и фазовой характеристиками системы.

Определение. Если амплитудная характеристика системы при некотором значении $\Omega = \Omega^*$ имеет отчётливо выраженный пик, то при одной и той же амплитуде внешней силы Q_1 амплитуда отклика резко возрастает, когда частота внешней силы приближается к значению $\Omega = \Omega^*$. Это явление называют реземеньсом.

Второе задание

1 Понятие краевой задачи для лагранжевых систем, теорема Гамильтона- Остроградского, формула изменения лагранжиана при замене координат и времени, теорема Нётер

Определение. Прямым путём системы называют путь этой системы из точки A в точку B в (n+1)-мерном расширенно сординатном пространстве q_1, \ldots, q_n, t , удовлетворяющий соответствующим уравнениям Лагранжа.

При построении прямого пути системы решается краевая задача с заданными точками A и B.

Теорема (Гамильтона-Остроградского). Прямой путь является экстремалью рассматриваемой вариационной дачи— на прямом пути действие по Гамильтону достигает стационарного значения.

Рассмотрим преобразования

$$q_j = \varphi_j(q^*, t^*), \quad t = \psi(q^*, t^*), \quad j = 1, \dots, n,$$

где q^* и t^* — «новые» координаты и время, q и t — «старые» координаты и время, а φ_j и ψ — достаточно гладкие функции. Предположим, что данные преобразования разрешимы относительно переменных q^* и t^* .

 Φ ормула изменения лагранживна при замене координат и времени тогда выглядит следующим образом

$$L^*(q^*, dq^*/dt^*, t^*) = L(\varphi, d\varphi/d\psi, \psi)(d\psi/dt^*),$$

где, в свою очередь,

$$\frac{d\varphi_j}{d\psi} = \frac{\displaystyle\sum_k \frac{\partial \varphi_j}{\partial q_k^*} \frac{dq_k^*}{dt^*} + \frac{\partial \varphi_j}{\partial t^*}}{\displaystyle\sum_k \frac{\partial \psi}{\partial q_k^*} \frac{dq_k^*}{dt^*} + \frac{\partial \psi}{\partial t^*}},$$

а $d\psi/dt^*$ совпадает со знаменателем данной дроби.

Теорема (Hëtep). Пусть задана система движущихся в потенциальном поле материальных точек, имеющая лагранжиан L(q,dg/dt,t), и пусть существует однопараметрическое семейство преобразований

$$q_j^* = \varphi_j(q, t, \alpha) \quad (j = 1, \dots, n), \qquad t^* = \psi(q, t, \alpha),$$

удовлетворяющее условиям

• тождественности при $\alpha = 0$, т. е.

$$\varphi_i(q, t, 0) = q_i \quad (j = 1, \dots, n), \qquad \psi(q, t, 0) = t;$$

• существования обратного преоб<mark>щ</mark>ования:

$$q_j = \tilde{\varphi}_j(q^*, t^*, \alpha) \quad (j = 1, \dots, n), \qquad t = \tilde{\psi}(q^*, t^*, \alpha).$$

Пусть, далее, лагранжиан L инвариантен по отношению κ таким преобразованиям, m. е. «новый» лагранжиан L^* (вычисленный по формуле выше) не зависит от α и как функция $q^*, dq^*/dt^*, t^*$ имеет совершенно такой же вид, как и «старый» лагранжиан L как функция q, dq/dt, t. Тогда существует функция $\Phi(q, p, t)$, которая не изменяется во время движения этой системы, m. е. является первым интегралом движения. Эта функция имеет вид

$$\Phi(q, p, t) = \sum_{j} p_{j} \left(\frac{\partial \varphi_{j}}{\partial \alpha} \right) \Big|_{\alpha=0} - H \left(\frac{\partial \psi}{\partial \alpha} \right) \Big|_{\alpha=0},$$

где H -гамильтониан рассматриваемой системы.

2 Переменные Гамильтона. Обобщенные импульсы

Состояние системы можно задавать при помощи параметров q_i, p_i, t , где p_i — обобщённые импульсы, определяемые равенствами

$$p_i = \frac{\partial L}{\partial \dot{q}_i} \quad (i = 1, \dots, n).$$

Определение. Переменны p_i , p_i , t называют p_i называ

3 Функция Гамильтона через функцию Лагранжа

Функцию Гамильтона через функцию Лагранжа можно получить при помощи преобразования Лежандра функции $L(q_i,\dot{q}_i,t)$ по переменным $\dot{q}_i,\,(i=1,2,\ldots,n)$

$$H(q_i, p_i, t) = \sum_{i=1}^{n} p_i \dot{q}_i - L(q_j, \dot{q}_j, t),$$

где величины \dot{q}_i выражения через q_j, p_j, t .

4 Функция Гамильтона через обобщенный потенциал и кин. энергию (случай обобщенно консервативной системы) (см. 286-287 стр. Маркеева)

Система называется *обобщённо консервативной*, если её функция Гамильтона не зависит явно от времени. В этом случае

$$H(q_i, p_i) = T_2 - T_0 + \Pi = h,$$

где

$$T_2 = \frac{1}{2} \sum_{j,k=1}^{m} a_{jk} \dot{q}_j \dot{q}_k, \qquad T_0 = a_0.$$

5 Канонические уравнения Гамильтона

Определение. *Каноническими уравнениями Гамильтона* называются уравнения

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}, \qquad \frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}, \quad (i = 1, 2, \dots,).$$

6 Понятие первого интеграла динамической системы (не только для гамильтоновых систем!)

Определение. Первыми интегралами дифференциальных уравнений движения называются функции от координат т так и их скоростей, которые не изменяются во время движения системы.

7 Понятие скобок Пуассона, их свойства (дистрибутивность, антикоммутативность etc). Критерий первого интеграла гамильтоновой системы

Определение. Пусть u и v — дважды непрерывно дифференцируемые функции от $q_1, \ldots, q_n, p_1, \ldots, p_n, t$. Выражение

$$(u,v) = \sum_{i=1}^{n} \left(\frac{\partial u}{\partial q_i} \frac{\partial v}{\partial p_i} - \frac{\partial u}{\partial p_i} \frac{\partial v}{\partial q_i} \right)$$

называют скобкой Пуассона функций и и v.

Свойства скобок Пуассона:

- 1. (u, v) = -(v, u),
- 2. (cu, v) = c(u, v) (c = const),
- 3. (u+v,w) = (u,w) + (v,w),

4.
$$\frac{\partial}{\partial t}(u,v) = \left(\frac{\partial u}{\partial t},v\right) = \left(u,\frac{\partial v}{\partial t}\right),$$

5.
$$((u, v), w) + ((v, w), u) + ((w, u), v) = 0$$
.

Необходимое и достаточное условие того, что f — первый интеграл, можно записать в виде равенства

$$\frac{\partial f}{\partial t} = f, H) = 0.$$

8 Трубка прямых путей. Интегральные инварианты Пуанкаре и Пуанкаре-Картана

Определение. Множество прямых путей «выпускаемых» из замкнутого несамопересекающегося контура C_0 в (2n+1)-мерном расширенном фазовом пространстве q, p, t динамической системой, движущейся в потенциальном поле и имеющей гамильтониан H образует $mpy\delta\kappa y$ npshhh x $nyme \dot{u}$.

Определение. Контурный интеграл

$$J = \oint_C \left(\sum p_j dq_j - H dt \right),$$

взятый по контуру C, охватывающему трубку прямых путей называют интегральным инвариантом Π уанкаре-Картана.

Данный интеграл, взятый по любому контуру C^* , охватывающему определённую трубку прямых путей, не зависит от выбора этого контура на трубке.

Определение. Контурный интеграл, рассматриваемый только на «одновременных» контурах $\tilde{C},$ имеет вид

$$J_1 = \oint_{\tilde{C}} \sum p_j dq_j = \text{const}$$

и называется универсальным интегральным инвариантом Пуанкаре.

Особенность интегрального инварианта, взятого в такой форме, состоит в том, что в подынтегральное выражение уже не входит гамильтониан, и следовательно, этот интегральный инвариант оказывается oduнаковым для всех динамических систем, движущихся в произвольных потенциальных полях.

9 Теорема Лиувилля о сохранении фазового объема. Общая формула для изменения фазового объема произвольной динамической системы (не только гамильтоновой!)

Теорема (Лиувилля). Фазовый объём V не зависит от t, m. e. является инвариантом движения.

Пусть задана система обыкновенных дифференциальных уравнений $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}), \ \mathbf{x} = (x_1, \dots, x_n)$, решения которой продолжаются на всю ось времени. Пусть также D(t) — область в пространстве $\{\mathbf{x}\}$ и v(t) — её объём, тогда справедлива следующая формула

$$\left. \frac{dv(t)}{dt} \right|_{t=t_0} = \int_{D(t_0)} \operatorname{div} \mathbf{f} \, dx \quad (dx = dx_1 \dots dx_n).$$

10 Классификация интегральных инвариантов, теорема Ли Хуачжуна

Универсальный относительный интегральный инвариант первого порядка в общем виде можно записать так

$$\tilde{J}_1 = \oint_{\tilde{C}} \sum_{\tilde{C}} \left[A_j(q, p, t) \delta q_j + B_j(q, p, t) \delta p_j \right].$$

Теорема. Любой универсальный относительный инвариант первого порядка \tilde{J}_1 может отличаться от инварианта Пуанкаре лишь постоянным множителем, т. е. для любого уществует константа с такая, что

$$\tilde{J}_1 = cJ_1.$$

11 Канонические преобразования. Производящие функции

Рассмотрим преобразование

$$q_i^* = \varphi(q, p, t), \quad p_i^* = \psi(q, p, t) \quad (j = 1, \dots, n),$$

которое переводит «старые» гамильтоновы переменные p и q в «новые» гамильтоновы переменные q^* и p^*

Определение. Преобразование выше называется *каноническим*, если оно переводит любую гамильтонову систему

$$\frac{dq_j}{dt} = \frac{\partial H}{\partial p_j}, \quad \frac{dp_j}{dt} = -\frac{\partial H}{\partial q_j} \quad (j = 1, \dots, n)$$

в новую гамильтонову систему

$$\frac{dq_j^*}{dt} = \frac{\partial H^*}{\partial p_j^*}, \quad \frac{dp_j^*}{dt} = -\frac{\partial H^*}{\partial q_j^*} \quad (j = 1, \dots, n).$$

Теорема. Для того чтобы рассматриваемое преобразование было каноническим, необходимо и достаточно, чтобы существовали такая функция F(q,p,t) и такое число c, чтобы тождественно выполнялось равенство

$$\sum \psi_j \delta \varphi_j - c \sum p_j \delta q_j = -\delta F(q, p, t).$$

В последней формуле δ — оператор дифференцирования функции от q,p,t при «замороженном» времени, т. е.

$$\delta \varphi_j = d\varphi_j - \frac{\partial \varphi_j}{\partial t} dt, \quad \delta F = dF - \frac{\partial F}{\partial t} dt..$$

Определение. Функцию F(q, p, t) из последней теоремы называют *про-изводящей*.

12 Замена гамильтониана при каноническом преобразовании, (q, p) описание

Теорема. Пусть преобразование из предыдущего пункта является каноническим, причём с и F(q, p, t), при которых удовлетворяется тождество последней теоремы известны. Тогда «новый» гамильтониан H^* определяется по «старому» гамильтониану H, если в функции

$$H^* = cH + \frac{\partial F}{\partial t} + \sum \psi_j \frac{\partial \varphi_j}{\partial t}$$

выразить переменные q и p через q^* и p^* при помощи обратных преобразований (если таковые существуют).

13 Свободные преобразования, (q, q^*) описание. Формулы преобразования импульсов гамильтониана

Преобразование из пункта 11 называется $c 6060 \partial ны M$, если для первых n его уравнений

$$q_j^* = \varphi_j(q, p, t) \quad (j = 1, \dots, n)$$

якобиан отличен от нуля:

$$\det \left\| \frac{\partial \varphi}{\partial p} \right\| = \begin{vmatrix} \frac{\partial \varphi_1}{\partial p_1} & \dots & \frac{\partial \varphi_1}{\partial p_n} \\ \vdots & & \vdots \\ \frac{\partial \varphi_n}{\partial 1} & \dots & \frac{\partial \varphi_n}{\partial p_n} \end{vmatrix} \neq 0.$$

Тогда для функции $S(q,q^*,t)=F(q,p,t)$ можем записать следующие соотношения

$$\frac{\partial S}{\partial q_j} = c p_j, \qquad \frac{\partial S}{\partial q_i^*} = -p_j^* \quad (j = 1, \dots, n),$$

и, кроме того, равенство связывающее «старый» и «новый» гамильтонианы:

$$H^* = cH + \frac{\partial s}{\partial t}.$$

14 «Наивная» теория возмущений, использование (q, p^*) описания для задания преобразований, близких к тождественным. Метод Биркгофа, понятие резонанса

15 Уравнение Гамильтона-Якоби. Полный интеграл уравнения Гамильтона-Якоби

Определение. Уравнением Гамильтона-Якоби называют следующее выражение

$$\frac{\partial S}{\partial t} + H\left(q, \frac{\partial S}{\partial q}, t\right) = 0.$$

Определение. Любая функция $S(q,\alpha,t)$, обращающая уравнение Гамильтона-Якоби в тождество, зависящая от n констант α и удовлетворяющая условию

$$\det \left\| \frac{\partial^2 S}{\partial q_k \partial \alpha_j} \right\|_{k=1}^n \neq 0$$

называется полным интегралом уравнения Гамильтона-Якоби.

16 Понятие адиабатических инвариантов динамических систем

Пусть $H(p,q;\lambda)$ — фиксированная дважды непрерывно дифференцируемая функция λ . Положим $\lambda = \varepsilon t$ и будем рассматривать полученную систему с медленно меняющимся параметром $\lambda = \varepsilon t$:

$$\dot{p} = -\frac{\partial H}{\partial q}, \quad \dot{q} = \frac{\partial H}{\partial p}, \quad H = H(p, q; \varepsilon t).$$
 (*)

Определение. Величина $I(p,q;\lambda)$ называется адиабатическим инвариантом системы (*), если для всякого $\varkappa>0$ существует $\varepsilon_0>0$ такое, что если $0<\varepsilon<\varepsilon_0,\,0< t<1/\varepsilon$, то

$$|I(p(t), q(t); \varepsilon t) - I(p(0), q(0); 0)| < \varkappa.$$

17 Переменные действие угол. Условие возможности перехода к ним, формулы перехода (случай одной степени свободы)

hi

18 Понятие интегрируемых гамильтоновых систем. Теорема Лиувилля-Арнольда

hi

19 Резонансные и нерезонансные торы

hi

20 Невырожденность и изоэнергетическая невырожденность гамильтониана

hi

21 КАМ-теорема

hi

22 Важные следствия KAM-теоремы для систем с двумя степенями свободы, обладающих свойством изоэнергетической и обычной невырожденности

hi

23 Понятие детерминированного хаоса в динамических системах

hi

24 Сечения Пуанкаре

hi

25 Фрактальная размерность

hi