

HOME CONTESTS GYM PROBLEMSET GROUPS RATING API CANADA CUP 🛣 SECTIONS

PROBLEMS SUBMIT STATUS STANDINGS CUSTOM TEST

B. Covered Path

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input output: standard output

The on-board computer on Polycarp's car measured that the car speed at the beginning of some section of the path equals V_1 meters per second, and in the end it is V_2 meters per second. We know that this section of the route took exactly t seconds to pass.

Assuming that at each of the seconds the speed is constant, and between seconds the speed can change at most by d meters per second in absolute value (i.e., the difference in the speed of any two adjacent seconds does not exceed d in absolute value), find the maximum possible length of the path section in meters.

Input

The first line contains two integers V_1 and V_2 ($1 \le V_1$, $V_2 \le 100$) — the speeds in meters per second at the beginning of the segment and at the end of the segment, respectively.

The second line contains two integers t ($2 \le t \le 100$) — the time when the car moves along the segment in seconds, d ($0 \le d \le 10$) — the maximum value of the speed change between adjacent seconds.

It is guaranteed that there is a way to complete the segment so that:

- the speed in the first second equals V_1 ,
- the speed in the last second equals V₂,
- the absolute value of difference of speeds between any two adjacent seconds doesn't exceed d.

Output

Print the maximum possible length of the path segment in meters.

Examples

input	
5 6 4 2	
output	
26	
input	
10 10 10 0	
output	
100	

Note

In the first sample the sequence of speeds of Polycarpus' car can look as follows: 5, 7, 8, 6. Thus, the total path is 5 + 7 + 8 + 6 = 26 meters.

In the second sample, as d = 0, the car covers the whole segment at constant speed v = 10. In t = 10 seconds it covers the distance of 100 meters.

Codeforces Round #298 (Div. 2)

Finished

→ Virtual participation

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ACM-ICPC mode for virtual contests. If you've seen these problems, a virtual contest is not for you - solve these problems in the archive. If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive. Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

Start virtual contest

→ Problem tags	
(dp)(greedy)(math)	No tag edit access

Desktop version, switch to $\underline{\text{mobile version}}$.