Large scale linear regression and gradient descendant optimization

Linear regression

$$f_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x)$$

Definition: residual-

The **residual** is $(\mathbf{w} \cdot \phi(x)) - y$, the amount by which prediction $f_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x)$ overshoots the target y.

Linear regression

$$f_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x)$$

Example:

$$\mathbf{w} = [2, -1], \phi(x) = [2, 0], y = -1$$

$$\mathsf{Loss}_{\mathsf{squared}}(x,y,\mathbf{w}) = 25$$

Regression loss functions

$$\mathsf{Loss}_{\mathsf{squared}}(x,y,\mathbf{w}) = (\mathbf{w} \cdot \phi(x) - y)^2$$

$$\mathsf{Loss}_{\mathsf{absdev}}(x, y, \mathbf{w}) = |\mathbf{w} \cdot \phi(x) - y|$$

Loss minimization framework

So far: one example, $Loss(x, y, \mathbf{w})$ is easy to minimize.

Key: need to set \mathbf{w} to make global tradeoffs — not every example can be happy.

Which regression loss to use?

Example:
$$\mathcal{D}_{\mathsf{train}} = \{(1,0), (1,2), (1,1000)\}, \ \phi(x) = x$$

For least squares (L_2) regression:

$$Loss_{squared}(x, y, \mathbf{w}) = (\mathbf{w} \cdot \phi(x) - y)^2$$

- ullet w that minimizes training loss is mean y
- Mean: tries to accommodate every example, popular

For least absolute deviation (L_1) regression:

$$Loss_{absdev}(x, y, \mathbf{w}) = |\mathbf{w} \cdot \phi(x) - y|$$

- ullet w that minimizes training loss is median y
- Median: more robust to outliers

How to optimize?

Definition: gradient-

The gradient $\nabla_{\mathbf{w}}$ TrainLoss(\mathbf{w}) is the direction that increases the loss the most.

Algorithm: gradient descent-

Initialize
$$\mathbf{w} = [0, \dots, 0]$$

For $t = 1, \dots, T$:
$$\mathbf{w} \leftarrow \mathbf{w} - \underbrace{\eta}_{\text{step size}} \underbrace{\nabla_{\mathbf{w}} \text{TrainLoss}(\mathbf{w})}_{\text{gradient}}$$

Least squares regression

Objective function:

$$\mathsf{TrainLoss}(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\mathsf{train}}|} \sum_{(x,y) \in \mathcal{D}_{\mathsf{train}}} (\mathbf{w} \cdot \phi(x) - y)^2$$

Gradient (use chain rule):

$$\nabla_{\mathbf{w}} \mathsf{TrainLoss}(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\mathsf{train}}|} \left(\sum_{(x,y) \in \mathcal{D}_{\mathsf{train}}} \underbrace{\sum_{(x,y) \in \mathcal{D}_{\mathsf{train}}}^{\mathit{Map}}} 2(\underbrace{\mathbf{w} \cdot \phi(x) - y}_{\mathsf{prediction-target}}) \phi(x) \right)$$

reduce (action)

Gradient descent is slow

$$\frac{\mathsf{TrainLoss}(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\mathsf{train}}|} \sum_{(x,y) \in \mathcal{D}_{\mathsf{train}}} \mathsf{Loss}(x,y,\mathbf{w})}$$

Gradient descent:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} \mathsf{TrainLoss}(\mathbf{w})$$

Problem: each iteration requires going over all training examples — expensive when have lots of data!

First solution

Lab session part 1:

Implement LR with DG in Spark, and test it on diamonds data.

Stochastic gradient descent

$$\mathsf{TrainLoss}(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\mathsf{train}}|} \sum_{(x,y) \in \mathcal{D}_{\mathsf{train}}} \mathsf{Loss}(x,y,\mathbf{w})$$

Gradient descent (GD):

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} \mathsf{TrainLoss}(\mathbf{w})$$

Stochastic gradient descent (SGD):

For each $(x,y) \in \mathcal{D}_{\mathsf{train}}$:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} \mathsf{Loss}(x, y, \mathbf{w})$$

- Key idea: stochastic updates

It's not about quality, it's about quantity.

Lab session part 2:

Implement SGD in Spark? How the sequential aspect can be dealt with in Spark?

Minibatch GD

Main assumptions

- Batch GD has de disadvantage of being slow
- Also many points in the training set are very similar so we risk to have high redundancy in the gradient computation at each step
- SGD provides a first solution, but it is characterised by high fluctuations
- Mini-Batch GD provides a first solution
 - Largely used in DeepLearning training
 - It can leverage efficient algorithms for matrix multiplication, performed for each batch

https://upload.wikimedia.org/wikipedia/commons/f/f3/Stogra.png

Mini-Batch GD

Gradient parameters are updated for every mini-batch of n training exemples

$$\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta; x^{(i:i+n)}; y^{(i:i+n)})$$

```
for i in range(nb_epochs):
    np.random.shuffle(data)
    for batch in get_batches(data, batch_size=50):
        params_grad = evaluate_gradient(loss_function, batch, params)
        params = params - learning_rate * params_grad
```

Challenges

- Finding a proper learning rate (Ir)
 - small Ir is good for convergence
 - high Ir faster convergence, that can be hindered by much more fluctuations
- Additionally, the same learning rate is applied to all gradient parameters
 - in some cases this is not effective
 - some feature should contribute less/more to the learning process
 - for instance we would like that rarely occurring features would actually contribute to the learning, by means of larger local Ir / parameter update
- We want minimise highly non-convex functions

Quasi convex functions

- Local minima correspond to global minima
- But GD can get stuck on stationary points
 - fluctuations ensured by SGD and mini-batch helps in not getting stuck on these point
 - another approach is the heavy-ball method, that we are going to see

More efficient algorithms

Momentum heavy ball method

 It helps in speeding up SGD and to attenuate oscillations

(b) SGD with momentum

- This is ensured by adding a fraction of the update vector of the previous iteration to the current update vector
- Momentum term usually set close to 0.9

$$v_t = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta)$$
$$\theta = \theta - v_t$$

Comparison

(a) Momentum-Based Gradient Descent

(b) Nesterov Accelerated Gradient Descent

Nesterov accelerated gradient

- Making tha rolling ball smarter by some kind of look-ahead
- In case the gradient suddenly increases, this approach allows to slow down in order to increase likelihood not to be trapped in local minima
- Generally better than momentum

source:http://cs231n.github.io/neural-networks-3/

$$\begin{split} \theta &= \theta - v_t \\ v_t &= \gamma v_{t-1} + \eta \nabla J(\theta \ - \gamma v_{t-1}) \\ \theta &- \gamma v_{t-1} \text{ is the gradient of looked ahead} \end{split}$$

Nesterov Accelerated Gradient

Adagrad

- It adapts the learning rate to the parameters
- Performing larger updates for infrequent parameters, and smaller updates for frequent ones.
- Dealing with millions of parameters, as in Deep Learning
- Autotuning of parameters
- Works well with the high-dimensional nonconvex nature of neural networks optimization, where the learning rate could be too small in some dimension and too large in another dimension.

$$heta_{t+1} = heta_t - rac{\eta}{\sqrt{arepsilon I + diag(G_t)}} \cdot g_t,$$

$$g_t = \frac{1}{n} \sum_{i=1}^n \nabla_{\theta} \mathcal{L}(x^{(i)}, y^{(i)}, \theta_t),$$

$$G_t = \sum_{ au=1}^t g_ au g_ au^ op$$

More in detail

$$\begin{bmatrix} \theta_{t+1}^{(1)} \\ \theta_{t+1}^{(2)} \\ \vdots \\ \theta_{t+1}^{(m)} \end{bmatrix} = \begin{bmatrix} \theta_{t}^{(1)} \\ \theta_{t}^{(2)} \\ \vdots \\ \theta_{t}^{(m)} \end{bmatrix} - \eta \begin{pmatrix} \begin{bmatrix} \varepsilon & 0 & \cdots & 0 \\ 0 & \varepsilon & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \varepsilon \end{bmatrix} + \begin{bmatrix} G_{t}^{(1,1)} & 0 & \cdots & 0 \\ 0 & G_{t}^{(2,2)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & G_{t}^{(m,m)} \end{bmatrix} \end{pmatrix}^{-1/2} \cdot \begin{bmatrix} g_{t}^{(1)} \\ g_{t}^{(2)} \\ \vdots \\ g_{t}^{(m)}, \end{bmatrix}$$

$$(4)$$

$$G_t = \sum_{\tau=1}^t g_{\tau} g_{\tau}^{\top}$$

$$g_t = \frac{1}{n} \sum_{i=1}^n \nabla_{\theta} \mathcal{L}(x^{(i)}, y^{(i)}, \theta_t),$$

More in detail

$$\begin{bmatrix} \theta_{t+1}^{(1)} \\ \theta_{t+1}^{(2)} \\ \vdots \\ \theta_{t+1}^{(m)} \end{bmatrix} = \begin{bmatrix} \theta_{t}^{(1)} \\ \theta_{t}^{(2)} \\ \vdots \\ \theta_{t}^{(m)} \end{bmatrix} - \begin{bmatrix} \frac{\eta}{\sqrt{\varepsilon + G_{t}^{(1,1)}}} & 0 & \cdots & 0 \\ 0 & \frac{\eta}{\sqrt{\varepsilon + G_{t}^{(2,2)}}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{\eta}{\sqrt{\varepsilon + G_{t}^{(m,m)}}} \end{bmatrix} \cdot \begin{bmatrix} g_{t}^{(1)} \\ g_{t}^{(2)} \\ \vdots \\ g_{t}^{(m)} \end{bmatrix}$$
(5)

$$G_t = \sum_{\tau=1}^t g_{\tau} g_{\tau}^{\top}$$

$$g_t = \frac{1}{n} \sum_{i=1}^n \nabla_{\theta} \mathcal{L}(x^{(i)}, y^{(i)}, \theta_t),$$

It's now coding time in Spark of all the methods seen so far