The Classification of Stellar Spectra

Chapter 8

Star Clusters in the Large Magellanic Cloud

http://www.seds.org/hst/ NGC1850.html

The Classification of Stellar Spectra

- Classification scheme developed before the physics
- Parameters that could be used to classify stars
 - Apparant brightness (bad idea)
 - Luminosity (Intrinsic brightness) The "Computers" of the Harvard College Observatory
 - Temperature (Color)
 - Spectra (absorption lines)
 - Mass (only for binaries)
- The Henry Draper Catalogue
 - Contained >100,000 spectral classifications from A.J. Cannon and others from Harvard
 - Used OBAFGKM

http://cannon.sfsu.edu/%7Egmarcy/cswa/history/pick.html

The Classification of Stellar Spectra

- Originally organized by strength of H Balmer lines (A,B,...).
- Atomic physics allowed connection to temperature to be made.
- Spectral Types:

Early type → late type

L and T are more modern additions – Brown Dwarfs. R N S also used after M.

- Subdivisions in tenths: $0 \rightarrow 9$ (early → late, hot → cool) within a Spectral Type). E.g., A0 is hotter than A5.
- − The Sun is a G2 − an early G-type star
 - G yellow star (continuum peak in green/yellow)
 - H lines weak
 - Ca II (singly ionized) lines continue becoming stronger
 - Fe I, other *neutrals* metal lines become stronger

O to G example

G to M example

The Formation of Spectral Lines

- Question: What causes the differences in the observed spectra??
 - [Absorption by intervening material. Earth's atmos., ISM.]
 - Composition
 - Temperature
 - Surface gravity / pressure
- Answer:
 - Temperature is the main factor

The Formation of Spectral Lines

- Big Question of Ch.8: Why are the H balmer lines strongest for A stars, which seem to have T_surf = 10,000K?
- To find answer:
 - Need Ch.5's info about the Bohr atom ... energy levels.
 - Need Kirchoff's laws → our gas is the upper "atmosphere" of the star.
 - Need statistical mechanics study of large numbers of particles that can
 OCCUDY different states

The Formation of Spectral Lines

- Distribution of electrons in different atomic orbitals depends on temperature
- Electrons can jump up in energy by absorption of a photon OR collision with a particle! So KE of surrounding particles important.
- What is the probability of finding an electron in a particular orbital?
 - Answer with Statistical Mechanics...
 - Maxwell-Boltzmann (velocity) Distribution
 - Assumes thermal equilibrium
 - Number of gas particles per unit volume have a speed between v and v+dv

$$n_{v}dv = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}}e^{-\frac{1}{2}mv^{2}/kT}$$
 $4\pi v^{2}dv$

Maxwell-Boltzmann Distribution

$$n_{v} dv = n \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{1}{2}mv^{2}/kT} 4\pi v^{2} dv$$

Most probable speed

$$v_{mp} = \sqrt{\frac{2kT}{m}} = 1.4\sqrt{kT/m}$$

• Root-mean-square

$$v_{rms} = \sqrt{\frac{3 \, k \hat{T}}{m}} = 1.73 \, \sqrt{k \hat{T}_{\frac{1}{2}} m} \, \frac{5}{4}$$

• Average $v_{avg} = \sqrt{\frac{8kT}{\pi m}} = 1.6\sqrt{kT} \sum_{2}^{6} v_{avg}^{3}$

Collisional energy causes

 a distribution of electrons
 among the atomic orbitals
 (Kinetic Energy → Potential Energy

Boltzmann Factor

• The higher the energy of a state, the less likely it will be occupied

$$P_a \propto e^{\frac{-E_a}{kT}}$$

For the Maxwell-Boltzmann distribution, the energy is Kinetic Energy

$$P_{v} \propto e^{-\frac{1}{2}mv^2/kT}$$

- The "kT" term is associated with the thermal energy of the "gas" as a whole
- Ratio of Probabilities for two different states (and energies)

ties for two different states (a)
$$\frac{P_b}{P_a} = \frac{e^{\frac{-E_b}{kT}}}{\frac{-E_a}{kT}} = e^{\frac{-(E_b - E_a)}{kT}}$$

Degeneracy Factor

- An energy (eigenvalue) is associated with each set of quantum numbers (eigenstate or eigenfunction)
- *Degenerate States* have different quantum numbers but the same energy
- Modify the Boltzmann factor

$$P_a \propto g_a e^{\frac{-E_a}{kT}}$$

- The probability of being in any of the g_a degenerate states with energy E_a
 - g_a is the <u>degeneracy</u> or <u>statistical weight</u> of state a

Ratio of probabilities between states with two different energies

$$\frac{P_b}{P_a} = \frac{g_b}{g_a} e^{\frac{-\left(E_b - E_a\right)}{kT}}$$

Degeneracy Factor

- Details of quantum mechanics determines the energies and quantum numbers...
- Visit the following site on the next page and browse...
- Quantum numbers for Hydrogen $\{n, l, m_l, m_s\}$
 - Table 8.2

	n	l	m_l	$m_{_S}$	
State	Principal quantum number n	Orbital quantum number	Magnetic quantum number	Spin quantum number	Maximum number of electrons
1s	1	0	0	$+\frac{1}{2}, -\frac{1}{2}$	2
2s	2	0	0	$+\frac{1}{2}, -\frac{1}{2}$	2] 。
2р	2	1	-1,0,+1	$+\frac{1}{2}, -\frac{1}{2}$	6 } 8
3s	3	0	0	$+\frac{1}{2}, -\frac{1}{2}$	2]
3р	3	1	-1,0,+1	$+\frac{1}{2}, -\frac{1}{2}$	6 \ 18
3d	3	2	-2,-1,0,1,2	$+\frac{1}{2}, -\frac{1}{2}$	$10 \qquad = 2n^2$

Boltzmann Equation

• Number of atoms in a particular state *a*

$$N_a = NP_a$$

N = total number of atoms

 N_a = number of atoms in state a

 P_a = probability of being in state a

$$\Rightarrow \frac{N_b}{N_a} = \frac{g_b}{g_a} e^{\frac{-(E_b - E_a)}{kT}}$$

Hydrogen Atom Examples

Hydrogen Atom

- Balmer series absorption spectra is an upward transition from n = 2
- Observation: this series has a peak absorption spectrum at ~9520 K.

Hydrogen Atom Populations

- We just saw that not many Hydrogen atoms are in the n=1 state at 9520 K!
 - Shouldn't the line strength keep growing as the temperature increases since there is a higher probability for an H atom to be in the n=2 state?!?!

Partition Function

- We also have to figure in all states that have a significant population $_{-E}$
- For one state we have: $P_1 \propto g_1 e^{\frac{-E_1}{kT}}$
- Ratio between two states: $\frac{P_2}{P_1} = \frac{g_2 e^{\frac{-E_2}{kT}}}{g_1 e^{\frac{-E_1}{kT}}} = \frac{g_2}{g_1} e^{\frac{-(E_2 E_1)}{kT}}$
- Ratio of state 2 to *all* other states with reference to the ground state:

$$\frac{P_{2}}{P_{all}} = \frac{g_{b}e^{\frac{-(E_{2}-E_{1})}{kT}}}{\frac{-(E_{1}-E_{1})}{kT} + g_{2}e^{\frac{-(E_{2}-E_{1})}{kT}} + g_{3}e^{\frac{-(E_{3}-E_{1})}{kT}} + \cdots} = \frac{g_{2}e^{\frac{-(E_{2}-E_{1})}{kT}}}{Z}$$

Partition Function

• This tell us how many states are accessible or available at a given temperature (thermal energy)

perature (thermal energy)
$$Z = g_{1}e^{\frac{-(E_{1}-E_{1})}{kT}} + g_{2}e^{\frac{-(E_{2}-E_{1})}{kT}} + g_{3}e^{\frac{-(E_{3}-E_{1})}{kT}} + \cdots$$

$$= g_{1} + \sum_{i} g_{i}e^{\frac{-(E_{i}-E_{1})}{kT}}$$

- The higher the temperature, the more states that are available
- At zero K, everything will be in the ground state
 - KT → 0 so exponent terms are $e^{-\infty} = 0$.
 - Z diverges with n, but upper energy levels involve overlapping e- with neighboring atoms.

Partition Function and Atoms

- We also have to handle ionization!
- Nomenclature: H I neutral hydrogen

H II – singly ionized hydrogen

He I – neutral Helium

He II – singly ionized Helium

He III – doubly ionized Helium

Ionization Energy for H I to H II

$$\chi_I = 13.6 eV$$

− Rather than N_2/N_1 → ∞, the atom will ionize before this happens

Saha Equation

- Determines the ratio of numbers of ionized atoms
- Need distinct partition functions since energy levels of atoms are different for different ionization stages
 - Z_i is the initial stage of ionization
 - Z_{i+1} is the final stage of ionization
- Ratio of the number of atoms in each of these stages

$$\frac{N_{i+1}}{N_i} = \frac{2Z_{i+1}}{n_e Z_i} \left(\frac{2\pi \ m_e \ kT}{h^2} \right)^{\frac{3}{2}} e^{-\chi_i kT}$$

- n_e is the electron density (an ideal gas of electrons)
 - Electron pressure $P_e = n_e kT$
 - Electrons recombine with H II to give H I

Ionized Hydrogen Atoms

- Fraction of hydrogen atoms that are ionized
- If we have H II, we can't have the Balmer series!

H I n = 2 population

$$\frac{N_2}{N_{total}} = \left(\frac{N_2}{N_I + N_2}\right) \left(\frac{N_I}{N_I + N_{II}}\right)$$

Fraction of non-ionized hydrogen Atoms in the n = 2 state

Fraction of non-ionized hydrogen atoms

H I n = 2 population

- Includes the Boltzmann factor, partition function and ionization
- Population peak at 9520 K, in agreement with observation of the Balmer series

Example 8.3

- Degree of ionization in a stellar atmosphere of pure hydrogen for the temperature range of 5000-25000 K $\frac{N_{II}}{2}$
- Given electron pressure $P_e = 200 \frac{dyne}{cm^2} = 20 N/m^2$ Total
- Saha equation $\frac{N_{II}}{N_I} = \frac{2kTZ_{II}}{P_e Z_I} \left(\frac{2\pi m_e kT}{h^2} \right)^{\frac{3}{2}} e^{-\chi_i kT}$
- Must determine the partition functions
 - Hydrogen ion is a proton, so $Z_{II} = 1$
 - Neutral hydrogen over this temp range

$$\Delta E = E_2 - E_1 = 10.2 \text{ eV}$$

$$\Delta E >> kT$$
, then $e^{-\Delta E/kT} << 1$

$$\Rightarrow Z_{I} = g_{1} + \sum_{i} g_{i} e^{\frac{-(E_{i} - E_{1})}{kT}} g_{1} = 2$$

$$T := 5000K$$

$$k T = 0.43 \, eV$$

$$T := 25000K$$

$$k T = 2.15 eV$$

Example 8.3

Degree of Ionization

$$\frac{N_{II}}{N_{I}} = \frac{2kT(1)}{P_{e}(2)} \left(\frac{2\pi \ m_{e}kT}{h^{2}} \right)^{\frac{3}{2}} e^{-\chi_{i}kT}$$

Problem 8.7

• Evaluate the first three terms of the partition function for 10000K

Partition Function: Counting the first ten states... Energy:
$$E(n) := \frac{-13.6 eV}{n^2}$$
 Degeneracy: $g(n) := 2 \cdot n^2$ $f_B(n,T) := exp \left[\frac{-(E(n) - E(1))}{k \cdot T} \right]$ $Z(T) := \sum_{n=1}^{10} \left(g(n) \cdot f_B(n,T) \right)$ $T := 0,500...20000$ $Z(6000K) = 2.0000$ $Z(10000K) = 2.0002$ $Z(15000K) = 2.0292$

8000

 $1.2 \cdot 10^4$

T

 $2 \cdot 10^{4}$

0

0

4000

Problem 8.8

- The partition function diverges at $n \rightarrow \infty$
 - Why do we ignore large n?

Partition Function: Counting the first 100 states...
$$\underline{Energy}: \quad E(n) := \frac{-13.6eV}{n^2} \qquad \underline{Degeneracy}: \quad g(n) := 2 \cdot n^2$$

$$f_B(n,T) := exp \left[\frac{-(E(n) - E(1))}{k \cdot T} \right] \qquad Z(T) := \sum_{n=1}^{100} \left(g(n) \cdot f_B(n,T) \right) \qquad T := 0,500...\ 20000$$

$$Z(6000K) = 2.0000$$
 $Z(10000K) = 2.0952$ $Z(15000K) = 20.2988$

Problem 8.8

Partition Function: Counting the first 1000 states... Energy: $E(n) := \frac{-13.6 \text{eV}}{1000 \text{ states}}$

 $g(n) := 2 \cdot n^2$ Degeneracy:

$$f_B(n, T) := exp \left[\frac{-(E(n) - E(1))}{k \cdot T} \right]$$
 $Z(T) := \sum_{n=-1}^{1000} (g(n) \cdot f_B(n, T))$

$$Z(T) := \sum_{n=1}^{1000} \left(g(n) \cdot f_{\underline{B}}(n, T) \right)$$

T := 0,500..20000

$$Z(6000K) = 2.0025$$

$$Z(10000K) = 95.4311$$

$$Z(10000K) = 95.4311$$
 $Z(15000K) = 1.7998 \times 10^4$

- Ionization
- Unphysical orbital size $r_n = a_o n^2$

$$r_n = a_o n^2$$

Example 8.4

- Surface of the Sun has 500,000 hydrogen atoms per calcium atom, but calcium absorption lines are much stronger than the Balmer series lines.
- The Boltzmann and Saha equations reveal that there are $400 \times$ more Ca atoms in the ground electronic state than in the n=2 hydrogen state.
- Calcium is not more abundant
- Differences are due to sensitive temperature dependence

A colorful H-R Diagram

How temperature relates to color index

Luminosity and Temperature rather than Magnitude and Color Index

The "theorists H-R Diagram". Nuclear processes vary along MS.

Star Radius

$$R = \frac{1}{T^2} \sqrt{\frac{L}{4 \, \pi \sigma}}$$

Luminosity Classes

Spectral classification
Copyright © 2005 Pearson Prentice Hall, Inc.

Stellar Luminosity Classes

TABLE 17.3	Stellar Luminosity Classes
Class	Description
Ia	Bright supergiants
Ib	Supergiants
II	Bright giants
III	Giants
IV	Subgiants
V	Main-sequence stars and dwarfs

Copyright © 2005 Pearson Prentice Hall, Inc.

Some define VI and wd (or D)

Luminosity classes can be discerned by line widths.

Courtesy ANU.

However,
Other processes
Can
Broaden lines...

Mass-Luminosity Relation from Binary Systems

Mass-Luminosity Relation

 Early theories had "early" O-type (bright, hot, massive) stars evolving to "old" M-type stars (dim, cool, less massive)

Mass-Luminosity Relation

- Luminosity (power output) comes from nuclear fusion at the core of the stars.
- L increases dramatically with M: $L \sim M^{3.5}$ (from M-L relation)
- From this, we can derive a lifetime for stars on the Main Seq.:
 - Lifetime = Fuel/(Rate of burning fuel)
 - Lifetime = M/L
 - Lifetime = $M/M^{3.5} = M^{-2.5}$
- Actually, $L\sim M^4$ for M>1, so
- Lifetime ~ M-3

Evolution of 1 M_{\odot} star.

Spectral classification

Evolutionary tracks.

Massive star fusion

HR Diagrams of star clusters.

Spectroscopic "Parallax"

- Method to determine a stars distance
 - Determine the spectral class and luminosity class.
 - Measure apparent magnitude.
 - Correct for crowding
 - Correct for extinction
 - Read the absolute magnitude from the H-R diagram
 - Compare to apparent magnitude to determine distance: $d=10^{(m-M-A+5)/5}$

Stellar and Spectroscopic Parallax

Stellar Parallax works out to 200pc (ground), 1000 pc (Hipparcos) Spectroscopic Parallax works for stars for which a good spectrum can be observed (about 8 kpc), but ...

- Not precise for individual stars, especially giants
- Entire clusters of stars works better! ("main-sequence fitting")

m-M=5log(d/10)

Spec Parallax assumes, for example, that all A0V stars have the same M. That makes A0V stars "standard candles".