$$D = \{x_i, y_{i=1}^n$$

- Clustering
- Dimensionality reduction.
- Outlier Analysis.

$$X_i \in \mathbb{R}^d$$

2 techniques

Hierarchical

Top down

Bottom up

ex. Diana

ex. Agnes

SUE Analysis

Divisibility . Agglomerative neining

K-Means:

iteration 1
if no domain knowledge
charte pripz randomly
from dataset
assign xi to ML based
on dislance. (*)

Me mean (xi & Ci)

No mean (xi & Ci)

Thus from iteration ?.

Mills from iteration ?.

Mills from iteration ?.

Mills from iteration ?.

Apply K-Means chutering alg. for foll. data and formulate 2 clusters. Use Euclidean distance as distance metrix. Use random Centroids.

$$\mu_{1} = (64.5 \, \mu_{1}, 27) = X_{3}$$
 $\mu_{2} = (55.69, 22) = X_{4}$
 $d(X_{1}, \mu_{1}) = \sqrt{89} \sqrt{45.89}$
 $d(X_{1}, \mu_{2}) = \sqrt{114.3}$
 $d(X_{2}, \mu_{1}) = \sqrt{145.2} \sqrt{153.2}$
 $d(X_{2}, \mu_{2}) = \sqrt{18.9}$
 $d(X_{5}, \mu_{1}) = \sqrt{103.2}$
 $d(X_{5}, \mu_{2}) = \sqrt{10.23}$

$$c_1 = \{ x_1, x_3 \}$$
 $c_2 = \{ x_2, x_4, x_5 \}$
 $\mu_1 = (67.89, 27.5)$
 $\mu_2 = (54.26, 24)$

Measuring the performance of Kmers.

Distortion = \(\int \left(d(xi, \mui) \right)^2 \)

inertia.

not j = i so na wij one not encoding for output classes in mustiness .. output dons 1 clas 2 clas 3. (3 dassus). 2 one hot ging dousification

K-means clustering:

Assumption:
i. closeness cumption

Form e1, ..., Ck

min distortion/intracluster distance.

Algorithm :

- 1. initialize the centroids 11, ... , 11x randomly
- 2. While ! convergence > no charge in centroids in successive iterations
 - a) for each $x_i \in D$ || cluster formation x_i is assisted $x_i = argmin \| \|x_i \mu_j\|^2 |1 \le j \le k$.
 - b) for each cluster G'. Il centroid updation.

$$Mj = \sum_{\substack{x \in Mj \\ n_j}} s_i \in M_j$$

| iteration:

Limitations :

q each cluster ~ NOus

i. works only for spherical clusters

ii. Convergence depends on selection of initial

KNN also colled as mixture of gaussians!

As each cluster (as assumed)

follows gaussian tribution.

spectral clustering

- i. Based on spectral properties of graph
- 11. Given dataset D is represented as a graph G.
- iii. Nodes: Datapoints.

Edges: connection between the nodes.

iv. G may be directed / undirected

- * adjacency matrix.
- * Similarity matrix.
- * K-nearest neighbour.

Algorithm:

Input: Dataset.

output: clusters.

- 1. Formulate graph A.
- a. Find degree matrix D. as a diagonal matrix in which diagonals are degree.
- 3. Find Laplacian L = D-A
 in which Diagonals -> degree
 off diagonals -> negative edge vaits.
- 4. Find eigen values of L.

zero eigen values = # connected components / clusters.

First non-zero eigen value = Fiedler value. Smallest gives

the graph cut.

k no. of edges to be renioved to get connected components.

5. Find the eigen vector v for the fiedler value.

fiedler vector.

6. For each value xm ob eigen vector v.

For the data set used in know clustering

$$A = \begin{bmatrix} 0 & \sqrt{359} & \sqrt{45.89} & \sqrt{577} & \sqrt{286} \\ \sqrt{359} & 0 & \sqrt{1148} & \sqrt{18.9} & \sqrt{4.2} \\ \sqrt{45.89} & \sqrt{148} & 0 & \sqrt{103} & \sqrt{103.2} \\ \sqrt{177} & \sqrt{18.9} & \sqrt{103} & 0 & \sqrt{10.2} \\ \sqrt{1286} & \sqrt{4.2} & \sqrt{103.2} & \sqrt{10.2} & 0 \end{bmatrix}$$

 $= \begin{bmatrix} 0 & 18.95 & 6.77 & 16.67 & 16.93 \\ 18.95 & 0 & 12.17 & 4.36 & 2.05 \\ 6.77 & 12.17 & 0 & 10.16 & 11.14 \\ 16.67 & 4.36 & 10.16 & 0 & 3.19 \\ 16.93 & 2.05 & 11.14 & 3.19 & 0 \end{bmatrix}$ Test neighbours

2 mearest neighbours. wrong/sus.

$$A = \begin{bmatrix} 0 & 0 & 6.77 & 16.67 & 0 \\ 0 & 0 & 0 & 4.36 & 2.05 \\ 6.77 & 0 & 0 & 10.16 & 0 \\ 16.67 & 4.36 & 10.16 & 0 & 3.19 \\ 0 & 8.05 & 0 & 3.19 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 4 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$$

D-A

$$\lambda = \begin{bmatrix}
A & -18.95 & -6.77 & -16.67 & -16.93 \\
-18.95 & 4 & -12.17 & -4.36 & -2.05
\end{bmatrix}$$

$$-6.77 & -12.17 & 4 & -10.16 & -11.14, \\
-16.67 & -4.36 & -10.16 & 4 & -3.19
\end{bmatrix}$$

$$-16.93 & -2.05 & -11.14 & -3.19 & 4$$

Properties of symmetric vectors:

; all eigen values are real & positive.

il. all eigen vectors of eigenvalues are real & orthogonal.

iii. Covariance metrix is symmetric. and sum of diagonals Isus! sum of variance of d'feetures.

 $\lambda_{1} + \lambda_{2} + \cdots + \lambda_{d} = \sum_{j=1}^{d} 6_{j}^{2}$

Dimensionality Reduction:

- *. PCA (Principal Component Analysis) (unsupervised
- *. LDA (Linear Discriminant Analysis) (supervised)

dimensions

dimensions

dimensions

dimensions

should be

orthogoral

a choice would

be orthogoral

eigen rechn

(for orr &

symmetric

restricts

The westers chosen as new ones must be in direction of mor variance.

Input $x = \{x_1, x_2, ..., x_n\}$ [$x_1 \times_2 ... \times_n$] $x_i \in \mathbb{R}^d$ $x = \{x_1, x_2, ..., x_n\}$ [$x_1 \times_2 ... \times_n$] $x \in \mathbb{R}^d$ $x \in \mathbb{R}^d$

- 1. JL = E M., M2, ..., Mi3
- a. mean subtracted data x' = x-u brings data data
- 3. Calculate covardiance matrix & kerause will be zero $2ij = \sum_{k=1}^{\infty} \frac{(x_{ki} \mu_i)(x_{kj} \mu_j)}{n-1}$ $= \sum_{k=1}^{\infty} \frac{(x_{ki} \mu_i)(x_{kj})}{x_{ki}}$

5. Arrange the Eigen values in descending order.

6. Choose the klargest eigen values, and find. corresponding eigen vectors. W1, W2, ..., Wk.

$$W = [W_1 \ W_2 \dots W_k] \qquad |W_i| = dx_1.$$

$$|W_i| = dx_k.$$

7.
$$Z = \begin{pmatrix} W^T X \end{pmatrix}^T$$

$$kxn \qquad kxd \qquad dxn$$

	×ı	×2		
P	2	6		10 15
PL	1	7		2-1
Д	= 1.5	6.5	57 - 27 T -	

meen subtracted data:

$$X_1$$
 X_2
 P_1 0.5 -0.5
 P_2 -0.5 0.5

Covariance matrix. &

$$S = \begin{bmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{bmatrix}$$

compute eigen values:

$$\begin{vmatrix}
8 - \lambda I & | = 0 \\
0.5 - \lambda & | -0.5 \\
-0.5 & 0.5 - \lambda
\end{vmatrix} = 0$$

$$(0.5 - \lambda)^{2} - 0.25 = 0.$$

$$(0.5 - \lambda)^{2} = 0.25.$$

$$0.5 - \lambda = \pm \sqrt{0.25}.$$
 here.
$$= \pm 0.5$$

$$k = 1$$

$$\lambda = 0.7$$
 Choose this λ ,

calculate eigen vector for $\lambda = 1$.

$$\begin{bmatrix} -0.5 & -0.5 \\ -0.5 & -0.5 \end{bmatrix} \begin{bmatrix} 91, \\ \times_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$-0.5x_1 -0.5x_2 = 0$$
.

$$-0.5 \chi_1 - 0.5 \chi_2 = 0$$
.

$$-\varkappa_1 = \varkappa_2$$

$$x_1 = 1$$
 anit vedor. $\begin{bmatrix} 1/2 \\ -1/2 \end{bmatrix}$

$$W = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$$

$$Z = W^{T} \times . \qquad P_{1} \quad P_{2}$$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{bmatrix}$$