江西理工大学 2018/9/18

江西理工大学《电路理论》试卷

一、单项选择题: 在下列各题中,有四个备选答案,请将其中唯一正确的答案填入题干的括号 中。

(本大题共10小题,总计30分)

1、(本小题2分)

图示电路中 $u_s = (10\sqrt{2}\cos 2\pi t + 5\sqrt{2}\cos 4\pi t)$ V, $i_s = 2\sqrt{2}\cos 4\pi t$ A, 则 u_s 与 i_s 发出的平均功率 R_1 与 R_2 为

- A. $P_{u} = -10W$, $P_{u} = 10W$ B. $P_{u} = 10W$, $P_{u} = -10W$
- C. $P_{u}=0$, $P_{i}=0$
- D. 以上皆非

答()

2、(本小题2分)

判别图示电路当可变频率的电源作用时,是否达到并联谐振状态 可根据:

- A. 电源频率等于 \sqrt{LC}
- B. 电感支路电流达最大
- C. 总电流与端电压同相
- D. 电感两端电压达最大

答()

4、(本小题3分)

图示电路中, 电流 I = 0时, U_s 应为 C.-6 V D. 12 V B.6 V A. 0 V

答()

江西理工大学 2018/9/18

5、(本小题1分)

图示电路中若选择适当的参考点,可用一个节点电压方程解出 U_c ,该方程应为()

- A. $(G_4 + G_5)U_c G_4U_S = -I_S$
- B. $(G_4 + G_5 + G_1)U_c G_4U_S = -I_S$
- C. $(G_4 + G_5 + G_1)U_c (G_4 + G_1)U_S = -I_S$
- D. $(G_4 + G_5)U_c G_4U_S = I_S$

6、(本小题3分)

电路如图所示, t=0 时开关闭合, 则 $t \ge 0$ 时 u(t) 为

B.
$$(-50 + 50 e^{-50t})$$
 V

C.
$$50(1 - e^{-200t}) V$$

7、(本小题3分)

图示电路中节点 a 的电压为

- A. 20 V
- B. 120 V
- C. 220 V D. -60 V

8、(本小题3分)

图示电路的单位冲激响应 u(f) 为

A.
$$[\delta(t) - 9e^{-10t} \cdot \delta(t)]V$$

C.
$$(\frac{1}{10}) (1 + 9 e^{-10t}) \cdot \epsilon (t) V$$

$$D = (\frac{1}{10}) (1 - 9 e^{-10t}) \cdot 8 (t) V$$

9、(本小题3分)

电路如图所示,当 $u_s(f) = \mathcal{E}(f) \, \forall \, \text{时}, \, i_1 (f) = (1+5e^{-\epsilon}) \, \epsilon \, \text{价m}$

,则当
$$u_s(t) = 2\varepsilon (t) v$$
 , $i_L(t)$ 应为:

A.
$$(2+10e^{-\kappa t}) \circ (t) \text{ mA}$$

B.
$$(2 + 5e^{-4x}) \cdot (t) \text{ mA}$$

C.
$$(1+10e^{-\pi t}) \circ (t) \text{ mA}$$

D.
$$(2 + 4e^{-\kappa t}) \epsilon (t) mA$$

答()

10、(本小题5分)

图示电路中受控源提供的功率为

$$A.-8W$$

- B. 8 W
- C. 16 W
- D.-16W

答(

二、填充题:在下列各题中,请将题止所要求的解答填入题干中的各横线上方内。

(本大题共11小题,总计33分)

1、(本小题2分)

图示三个电压波形的阶跃函数表达式为:

2、(本小题2分)

某线性、非时变电路仅有一个激励电源 $u_s^{(t)}$ 作用,已知某支路电流 $i(t) = (10 + 3 e^{-5t}) A$, t > 0 ,若电源改变为 $2u_s^{(t-3)}$,则该支路电流应为

3、(本小题3分)

应用戴维南定理可求得图示电路中的电流 $I = ___ A$ 。

4、(本小题3分)

7、(本小题3分)

图示相量模型的戴维南等效电路中,等效电压源相量为___,等效(复)阻抗为___。

8、(本小题3分)

耦合电感电路如图所示, $i_1(t)=\sqrt{2}\sin(3t)$ A, 电路已进入稳态。已知:

$$M=\frac{1}{3}$$
 H, $L_1=\frac{1}{6}$ H, $L_2=1$ H, $R=4$ Ω , 则次级回路的电流 $I_2=$ _______。

9、(本小题3分)

图示电路的戴维南等效电路为:

其诺顿等效电路为:

10、(本小题4分)

图示电路中,R=____Ω时能获得最大功率,其最大功率为____W,此时电路效率 $^{\eta}$ =____。

11、(本小题4分)

图示电路中,已知 $i_{\mathcal{I}}(0_{-})=0$, $u_{\mathcal{C}}(0_{-})=5$ V,则

$$\frac{\mathrm{d}u_C}{\mathrm{d}f}\Big|_{0+} =$$

$$\frac{\mathrm{d}i_L}{\mathrm{d}t}\Big|_{0+} = \underline{\qquad}_{\circ}$$

三、非客观题

(本大题4分)

图示正弦交流电路,已知 $u=100\sqrt{2}\sin 10^4t$ V,电容调至 $C=0.2\,\mu$ F时,电流表读数最大, $I_{\max}=10$ A,求R、L。

四、非客观题

(本大题5分)

电路如图所示, 求各个电源的功率(以吸收功率为正, 供出功率为负)。

六、非客观题

(本大题6分)

图示正弦交流电路中,已知 $R=\omega L=16\Omega$, $\omega^{C}=14\Omega$,求复阻抗Z和复导纳Y。

七、非客观题

(本大题7分)

正弦交流电路如图所示,试用叠加定理求图中电流 İ。

八、非客观题

(本大题9分)

图示电路在换路前已达稳态。当t=0时开关接通,求t>0的i(t)。

