2.720 D-Lab 1

March 18th, 2024 Pen Palz

Purpose/Goals

- Update Staff on our spindle design
- Receive useful feedback to incorporate in remaining subassemblies of lathe
- Customer: Hobbyists and small businesses such as Allegory

Interview with Allegory:

- In-house CNC turning capability will be a huge cost-saver
- Precision is not a big issue as long as parts flush against each other

Gantt Chart

Spindle Functional Requirements

Name	Definition	Value & Range	Measurement	Requirement Met?
Stiffness	Deflection allowed at end of spindle under 100N	Max 0.001"	0.00065"	Ø
Runout	Runout of spindle shaft at chuck end	Max 0.003"	0.0014"	Ø
Friction Torque	Energy dissipated due to static friction	Max 75W	48.5±4.1 W	
Impulse Load	Spindle absorbs and dissipates energy from high-intensity forces w/o breaking	Max 2250 lbf	2250 lbf (modelling)	Ø
Size	Length and diameter of spindle assembly	Length: 7" ± 3" Diameter: 3" ± 1"	Diameter: 2.98" Length: 4.8"	Ø
Weight	Weight of spindle assembly	Max: 15 lbs	2.75 lbs	
Lifetime	# of hours of operation before replacement	Minimum 6000 hrs	540 million cycles	Ø
Load Capacity	Max axial, radial and torsion forces that spindle can withstand w/o compromising performance	Max Axial: 110,400 lbf Radial: 4597 lbf Torsional: 827 lbf	Axial: 1200 lbf (C ₉₀) Radial: 7200 lbf (static)/2250 lbf (C ₁₀)	Ø
Sealing	Keep grease and dust/chips in/out w/o wear up to speed	Max 3800 RPM	3100 RPM	Ø

Spindle Design

Housing and end cap made of 6061 aluminum
Shaft made of 12L14 carbon steel
Tapered roller bearings press fit into housing
Bearings preloaded with washer + nut assembly

Spindle Design

Cutting Power and Force Calculations

- 8 minutes, 8 passes for a pen
- $0.5" \rightarrow 0.415"$, 0.015" depth of cut
- $MRR = 0.04 \text{ in}^3/\text{min}$
- Spindle speeds from Fswizard, 970 RPM
- ~70 Watts power to cut

Design choice: slower, less powerful lathe that still cuts a range of materials and makes pens in a timely fashion

Bearing Life

- Chose to go with Timken LM11949
 - Largest diameter for higher stiffness without going over budget
- Customer desires a reliability of 99% for an expected 6 year lifespan
- 3900N bearing dynamic radial load rating both bearings
- 10kN expected maximum impact radial load

Spindle Deflection + Tailstock

- Bearing spacing selected according to maximum anticipated impact load (10kN) and minimizing deflection. Bearing static load rating = 30kN
- Loads are largest with tool at 4.72in from the tailstock (6in workpiece)

Spindle Deflection + Tailstock

- Elastic curves with 1.5in bearing spacing
- Several thou from desired accuracy without tailstock.
 Adding a tailstock significantly improves accuracy to be safely within spec

Spindle Shaft Fatigue

Assumptions:

- Shaft and workpiece is modeled as one beam with bearings as simple supports
- Worst case roughing pass loading (3" from chuck) on 6 in. workpiece with tailstock
- $\sigma_{\text{max}} = \sigma_{\text{alt}}, \, \sigma_{\text{VM}} \cong \sigma_{\text{bending}}$
- Marin factors for machined, 99% reliability

12L14 Steel Test Specimen Endurance Limit

$$S_e = k_a k_b k_c k_d k_e k_f (0.5 S_{UTS})$$
 $S_e = 0.36(310 MPa) = 112 MPa = 16.24 ksi$

Max Stress

$$\sigma_{VM,max} = K_t \frac{M\frac{D}{2}}{I} = 1.8 \frac{(788 \ lbf - in)(0.5 \ in)}{0.049 \ in^4} = 14.47 \ ksi$$

14.47 ksi < 16.24 ksi

-788

lbf – in

1752

Max cyclic stress is under the material endurance limit with a safety factor of 1.12.

Spindle Manufacturing

Spindle Measurement

Static torque test: $(n=10, mean \pm 2\sigma)$ 1.32 ± 0.11 lbf-in

~48.5±4.1 W of loss in worst case

Requirement: 75W

Deflection at end of spindle due to 100N load:

(n=8)

Average: 0.00065"

Repeatability (2σ): 0.00015"

Req. Accuracy: 0.001"

Req. Repeatability: 0.0004"

Runout measured:

(n=7)

Average: 0.0014"

Repeatability(2σ): 0.00015"

Req. Accuracy: 0.003"

Req. Repeatability: 0.0005"

Alternative Spindle Proposal

Goal: Industrial washers (OD 1.5" ID 1", 0.125" thick) 304 stainless steel, each washer takes 2 *minutes* to machine

Starting Stock: OD 2" ID 1" stainless steel tube stock industrial washers

Resulting MRR: 0.2 in^3/min

Optimal Bearing Spacing: 2.36"

Bearing Loads: 10 N (x) and 60 N (y)

Preload: 100N still works to achieve 5.8×10⁶ N/m of stiffness

Considerations:

- Use same tapered roller bearings to withstand axial and thrust forces
- Bearing spacing increases spacing because deflection is less (thicker and less cantilevered workpiece)

Error Budget

X error (± inch), Z error (± inch), Repeatability error (± inch)

BACKUP SLIDES

Pen Process Plan / Customer Needs

#	Task & Questions	Machine
1	Cut the wood blank into 2 equal pieces	Band saw / Miter saw
2	Drill the blanks with a 7mm drill bit at a speed of 900 to 1200 RPM.	Mill
3	Sand 2 barrels, apply glue, insert into through hole of the blank	Handwork
4	Insert mandrel into PenPalz chuck. Inset start bushing, pen blank, middle bushing, pen blank, end bushing in sequence to the mandrel. Apply tail stock.	Handwork
5	Turn the wood blank according to design with a tool. End of blank need to be flushed with bushing.	Pen Palz Lathe
6	Wood finish 1: Sand the wood while spinning the spindle	Pen Palz Lathe
7	Wood finish 2: apply CA glue while spinning the spindle	Pen Palz Lathe
8	Press the pen tip, twist mechanism, and pen cap & clip into pen blank.	Press
9	Assemble pen: slide in decorative middle bushing, insert pen cartrige, top wood blank.	Handwork

Example Process Plan with Wood Pens

Metal

MITMECHE

Spindle Shaft GD&T Drawing

Seals/Grease

- Reduces friction between seals, bearings, and spindle shaft.
- Chemically inert and compatible with seal materials and metals used.

McMaster-Carr 5154T154

Spring-Loaded Rotary Shaft Seal with Wiper Lip, for 1" Shaft Diameter and 2" Bore Diameter

3800 RPM rating

Accuracy and Repeatability Breakdown

Bearing Preload

Used the Timken manual and datasheet to plot bearing axial/radial stiffness vs. preload force.

Spindle K_{axial} FR: ~6.3×10⁴ N/m Spindle K_{radial} FR: ~5×10⁶ N/m

Find Preload force that gets desired stiffness: ~100N Lifetime: 1.20×10^{16} revolutions $\rightarrow 10^7$ years

	Shaft	Bearings	Housing	Spindle
K _{axial} (N/m)	~108	~10 ⁷	~109	~3.78×10 ⁷
K _{radial} (N/m)	~108	~108	~10 ¹⁰	~1.65×10 ⁸

Axial Spring Rate (N/m) vs. Preload (N)

Bearing Preload

Belleville disc spring needs to be compressed 0.142" to generate the necessary preload force.

Using the lead of $\frac{3}{4}$ "-16 threads, the preload nut must be rotated ~ 0.45 of a rotation

Experimented when measuring, a higher preload → high friction.

Bearing Preload

Using first-order transient analysis, assume system is ~1.45 kg of steel, taking in ~80 W of power in 8 min (from FRs).

$$Q_{in}$$
 = 1.45 kg · c_{st} · ΔT / (8 min) $\rightarrow \Delta T$ = 56.5°C

χ_{chips} := 0.8 χ_{tool} := 0.125 t_{cut} := 8 min
$u_{st} \coloneqq 5 \frac{W \cdot s}{mm^3}$ $u \coloneqq u_{st}$
$MRR \coloneqq \frac{\pi \cdot \left(\left(\frac{0.5}{2} \ in \right)^2 - \left(\frac{0.415}{2} \ in \right)^2 \right) \cdot 6 \ in}{t_{cut}} = \left(1.251 \cdot 10^{-8} \right) \frac{m^3}{s}$
$Q_{cut} \coloneqq \left(1 - \chi_{tool} - \chi_{chips}\right) \cdot u \cdot MRR = 4.692 \ W$

$$\begin{split} m_{sys} \coloneqq 1.3 & \textbf{kg} + 0.154 & \textbf{kg} = 1.454 & \textbf{kg} \\ Q_f \coloneqq 75 & \textbf{W} & m_{cp_st} \coloneqq 466 & \frac{\textbf{J}}{\textbf{kg} \cdot \textbf{K}} \\ & \Delta T_{sys} \coloneqq \frac{\left(Q_f + Q_{cut}\right) \cdot t_{cut}}{m_{sus} \cdot m_{cn_st}} = 56.456 & \textbf{K} \end{split}$$

Preload nut (connected to shaft) and bearing outer race (connected housing) move similar amounts), ~33 microns error

https://www.emerald.com/insight/content/doi/10.1108/00022660510585956/full/pdf

Pulley-side bearing inner race is slip-fit onto the shaft, allowing shaft to expand thermally.

$$\begin{split} l_{to_nut} &\coloneqq 2 \ \textit{in} & l_{to_b} \coloneqq 1 \ \textit{in} \\ \delta_{sh_tr} &\coloneqq \alpha_{st} \cdot l_{to_nut} \cdot \Delta T_{sys} = 0.033 \ \textit{mm} \\ \delta_{h_tr} &\coloneqq \alpha_{al} \cdot l_{to_b} \cdot \Delta T_{sys} = 0.033 \ \textit{mm} \end{split}$$

Expansion by tens of microns, would lead to < 5N of preload lost (with 13.8 kN/m preload washers)

Circuit for steady state analysis

$$\begin{split} \chi_{chips} &\coloneqq 0.8 \qquad \chi_{tool} \coloneqq 0.125 \\ u_{st} &\coloneqq 5 \frac{W \cdot s}{mm^3} \qquad u \coloneqq u_{st} \\ &\qquad \qquad \qquad \frac{\pi \cdot \left(\left(\frac{0.5}{2} \ in \right)^2 - \left(\frac{0.415}{2} \ in \right)^2 \right) \cdot 6 \ in}{8 \cdot 60 \ s} &= \left(1.251 \cdot 10^{-8} \right) \frac{m^3}{s} \\ Q_{cut} &\coloneqq \left(1 - \chi_{tool} - \chi_{chips} \right) \cdot u \cdot MRR = 4.692 \ W \end{split}$$

$$\begin{split} k_{st} &\coloneqq 51.9 \, \frac{W}{m \cdot K} \qquad k_{al} \coloneqq 167 \, \frac{W}{m \cdot K} \qquad h_{h} \coloneqq 2.27 \cdot \frac{W}{m^{2} \cdot K} \qquad h_{w} \coloneqq 2.35 \cdot \frac{W}{m^{2} \cdot K} \\ T_{w} &\coloneqq 1559.589 \, ^{o}C \qquad T_{air} \coloneqq 20 \, ^{o}C \\ R_{w} &\coloneqq \frac{l_{w}}{k_{st} \cdot \pi \cdot r_{w}^{2}} = 23.18 \, \frac{s^{3} \cdot K}{kg \cdot m^{2}} \qquad R_{conv_st} \coloneqq \frac{1}{h_{w} \cdot A_{w}} = 69.983 \, \frac{s^{3} \cdot K}{kg \cdot m^{2}} \\ R_{sh} &\coloneqq \frac{l_{sh}}{k_{st} \cdot \pi \cdot r_{sh}^{2}} = 8.242 \, \frac{s^{3} \cdot K}{kg \cdot m^{2}} \qquad R_{b} \coloneqq \frac{\ln \left(\frac{r_{bo}}{r_{bi}}\right)}{2 \cdot k_{st} \cdot \pi \cdot l_{b}} = 0.159 \, \frac{s^{3} \cdot K}{kg \cdot m^{2}} \\ R_{h} &\coloneqq \frac{\ln \left(\frac{r_{ho}}{r_{hi}}\right)}{2 \cdot k_{al} \cdot \pi \cdot l_{h}} = 0.009 \, \frac{s^{3} \cdot K}{kg \cdot m^{2}} \qquad R_{conv_al} \coloneqq \frac{1}{h_{h} \cdot A_{h}} = 24.15 \, \frac{s^{3} \cdot K}{kg \cdot m^{2}} \end{split}$$

$$\begin{split} Q_{dis} \coloneqq & \frac{T_w - T_{air}}{R_{eq}} = 49.66 \ W \\ & Q_{spindle} \coloneqq Q_{dis} - \frac{T_w - T_{air}}{R_{conv_st}} = 27.66 \ W \\ & T_{ho} \coloneqq T_{air} + Q_{spindle} \cdot R_{conv_al} = 687.993 \ ^\circ C \\ & T_{hi} \coloneqq T_{air} + Q_{spindle} \cdot \left(R_h + R_{conv_al}\right) = 688.233 \ ^\circ C \\ & T_{sh} \coloneqq T_{air} + Q_{spindle} \cdot \left(R_{sh} + 0.5 \cdot R_b + R_h + R_{conv_al}\right) = 918.412 \ ^\circ C \\ & \alpha_{sl} \coloneqq 11.5 \cdot 10^{-6} \ \frac{1}{K} \\ & \Delta T_{sh} \coloneqq T_{sh} - T_{air} \\ & \Delta T_h \coloneqq \left(\frac{T_{ho} + T_{hi}}{2}\right) - T_{air} \\ & \delta_{sh} \coloneqq \alpha_{sl} \cdot l_{sh} \cdot \Delta T_{sh} = 1.26 \ mm \\ & \delta_h \coloneqq \alpha_{al} \cdot l_h \cdot \Delta T_h = 1.171 \ mm \end{split}$$

https://www.emerald.com/insight/content/doi/10.1108/00022660510585956/full/pdf

