Weekly Homework 6

Math Gecs

February 26, 2024

Exercise 1

Find all real numbers $x, y, z \ge 1$ satisfying

$$\min(\sqrt{x+xyz}, \sqrt{y+xyz}, \sqrt{z+xyz}) = \sqrt{x-1} + \sqrt{y-1} + \sqrt{z-1}.$$

Source: 2013 USAJMO Problem 6

The key Lemma is:

$$\sqrt{a-1} + \sqrt{b-1} < \sqrt{ab}$$

for all $a, b \ge 1$. Equality holds when (a-1)(b-1) = 1. This is proven easily.

$$\sqrt{a-1} + \sqrt{b-1} = \sqrt{a-1}\sqrt{1} + \sqrt{1}\sqrt{b-1} \le \sqrt{(a-1+1)(b-1+1)} = \sqrt{ab}$$

by Cauchy.

Equality then holds when $a-1=\frac{1}{b-1} \Longrightarrow (a-1)(b-1)=1$. Now assume that $x=\min(x,y,z)$. Now note that, by the Lemma,

$$\sqrt{x-1} + \sqrt{y-1} + \sqrt{z-1} \le \sqrt{x-1} + \sqrt{yz} \le \sqrt{x(yz+1)} = \sqrt{xyz+x}$$

So equality must hold in order for the condition in the problem statement to be met. So (y-1)(z-1)=1 and (x-1)(yz)=1. If we let z=c, then we can easily compute that $y=\frac{c}{c-1}, x=\frac{c^2+c-1}{c^2}$. Now it remains to check that $x\leq y,z$.

But by easy computations, $x = \frac{c^2 + c - 1}{c^2} \le c = z \iff (c^2 - 1)(c - 1) \ge 0$, which is obvious.

Also $x = \frac{c^2 + c - 1}{c^2} \le \frac{c}{c - 1} = y \iff 2c \ge 1$, which is obvious, since $c \ge 1$. So all solutions are of the form $\left[\left(\frac{c^2 + c - 1}{c^2}, \frac{c}{c - 1}, c\right)\right]$, and all permutations for c > 1.

Remark: An alternative proof of the key Lemma is the following: By AM-GM,

$$(ab - a - b + 1) + 1 = (a - 1)(b - 1) + 1 \ge 2\sqrt{(a - 1)(b - 1)}$$

$$ab \ge (a-1) + (b-1) + 2\sqrt{(a-1)(b-1)}$$

Now taking the square root of both sides gives the desired. Equality holds when (a-1)(b-1)=1.

WLOG, assume that $x = \min(x, y, z)$. Let $a = \sqrt{x-1}$, $b = \sqrt{y-1}$ and $c = \sqrt{z-1}$. Then $x = a^2 + 1$, $y = b^2 + 1$ and $z = c^2 + 1$. The equation becomes

$$(a^{2} + 1) + (a^{2} + 1)(b^{2} + 1)(c^{2} + 1) = (a + b + c)^{2}.$$

Rearranging the terms, we have

$$(1+a^2)(bc-1)^2 + [a(b+c)-1]^2 = 0.$$

Therefore bc=1 and a(b+c)=1. Express a and b in terms of c, we have $a=\frac{c}{c^2+1}$ and $b=\frac{1}{c}$. Easy to check that a is the smallest among a, b and c. Then $x=\frac{c^4+3c^2+1}{(c^2+1)^2}$, $y=\frac{c^2+1}{c^2}$ and $z=c^2+1$. Let $c^2=t$, we have the solutions for (x,y,z) as follows: $(\frac{t^2+3t+1}{(t+1)^2},\frac{t+1}{t},t+1)$ and permutations for all t>0.

Exercise 2

Suppose P(x) is a polynomial with real coefficients, satisfying the condition $P(\cos \theta + \sin \theta) = P(\cos \theta - \sin \theta)$, for every real θ . Prove that P(x) can be expressed in the form

$$P(x) = a_0 + a_1(1 - x^2)^2 + a_2(1 - x^2)^4 + \dots + a_n(1 - x^2)^{2n}$$

for some real numbers a_0, a_1, \ldots, a_n and non-negative integer n.

Source: 2020 INMO Problem 2

Solution. Assume to the contrary. Suppose P satisfies $P(\cos \theta + \sin \theta) = P(\cos \theta - \sin \theta)$ for all real θ , and is of minimal degree and not of the prescribed form.

Claim: For some $c \in \mathbb{R}$, we have $(1 - x^2)^2 \mid P(x) - c$.

Proof. Note that $\theta = \frac{\pi}{2} \implies P(1) = P(-1)$. Set c = P(1). Then $(1 - x^2) \mid P(x) - c$ as the latter vanishes at both ± 1 . Now let $P(x) - c = (1 - x^2)Q(x)$ for some $Q \in \mathbb{R}[x]$.

Then $Q(\cos \theta + \sin \theta) = -Q(\cos \theta - \sin \theta)$ holds for all θ , by plugging $P(x) = (1 - x^2)Q(x)$ in the original equation, since we have the identities $1 - (\cos \theta + \sin \theta)^2 = -\sin 2\theta$ and $1 - (\cos \theta - \sin \theta)^2 = \sin 2\theta$.

(Subtlety for beginners: while the equation in Q only holds for θ away from roots of $\sin 2\theta = 0$, since these form a discrete subset of \mathbb{R} , the equation extends to these as Q is continuous.)

In particular, plugging $\theta = 0$, π we get Q(1) = -Q(1) and Q(-1) = -Q(-1) so $Q(\pm 1) = 0$, hence $(1 - x^2) | Q(x)$. Thus, $(1 - x^2)^2 | P(x) - c$ as desired.

Finally, we see that $P(x) = c + (1 - x^2)^2 h(x)$ and degh < degP so h has the prescribed form. But then P also has the prescribed form, and our result follows.