The Sonar Data

Detecting a Rock or a Mine

Sonar (sound navigation ranging) is a technique that uses sound propagation (usually underwater, as in submarine navigation) to navigate, communicate with or detect objects on or under the surface of the water, such as other vessels.

The data set contains the response metrics for 60 separate sonar frequencies sent out against a known mine field (and known rocks). These frequencies are then labeled with the known object they were beaming the sound at (either a rock or a mine).

Our main goal is to create a machine learning model capable of detecting the difference between a rock or a mine based on the response of the 60 separate sonar frequencies.

Data Source: https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks))

https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks))

In [1]:

- 1 #Importing important modules
- 2 **import** numpy as np
- 3 import pandas as pd
- 4 import seaborn as sns
- 5 import matplotlib.pyplot as plt

In [2]:

```
#data import
df = pd.read_csv('../DATA/sonar.all-data.csv')
```

In [3]:

1 df.head()

Out[3]:

	Freq_1	Freq_2	Freq_3	Freq_4	Freq_5	Freq_6	Freq_7	Freq_8	Freq_9	Freq_10	 Frec
0	0.0200	0.0371	0.0428	0.0207	0.0954	0.0986	0.1539	0.1601	0.3109	0.2111	 0.0
1	0.0453	0.0523	0.0843	0.0689	0.1183	0.2583	0.2156	0.3481	0.3337	0.2872	 0.0
2	0.0262	0.0582	0.1099	0.1083	0.0974	0.2280	0.2431	0.3771	0.5598	0.6194	 0.0
3	0.0100	0.0171	0.0623	0.0205	0.0205	0.0368	0.1098	0.1276	0.0598	0.1264	 0.0
4	0.0762	0.0666	0.0481	0.0394	0.0590	0.0649	0.1209	0.2467	0.3564	0.4459	 0.0

5 rows × 61 columns

→

In [4]:

```
1 df.shape
```

Out[4]:

(208, 61)

In [5]:

```
#Data observation.Observing correlation between various features

dff = df.corr()

plt.figure(figsize=(8,6))

sns.heatmap(dff,cmap='coolwarm')
```

Out[5]:

<AxesSubplot:>

In [6]:

```
1 #Changing string data to numeric for evaluation
2 df['Target'] = df['Label'].map({'R':0,'M':1})
```

```
In [7]:
```

```
1 df
```

Out[7]:

	Freq_1	Freq_2	Freq_3	Freq_4	Freq_5	Freq_6	Freq_7	Freq_8	Freq_9	Freq_10	 F
0	0.0200	0.0371	0.0428	0.0207	0.0954	0.0986	0.1539	0.1601	0.3109	0.2111	
1	0.0453	0.0523	0.0843	0.0689	0.1183	0.2583	0.2156	0.3481	0.3337	0.2872	
2	0.0262	0.0582	0.1099	0.1083	0.0974	0.2280	0.2431	0.3771	0.5598	0.6194	
3	0.0100	0.0171	0.0623	0.0205	0.0205	0.0368	0.1098	0.1276	0.0598	0.1264	
4	0.0762	0.0666	0.0481	0.0394	0.0590	0.0649	0.1209	0.2467	0.3564	0.4459	
203	0.0187	0.0346	0.0168	0.0177	0.0393	0.1630	0.2028	0.1694	0.2328	0.2684	
204	0.0323	0.0101	0.0298	0.0564	0.0760	0.0958	0.0990	0.1018	0.1030	0.2154	
205	0.0522	0.0437	0.0180	0.0292	0.0351	0.1171	0.1257	0.1178	0.1258	0.2529	
206	0.0303	0.0353	0.0490	0.0608	0.0167	0.1354	0.1465	0.1123	0.1945	0.2354	
207	0.0260	0.0363	0.0136	0.0272	0.0214	0.0338	0.0655	0.1400	0.1843	0.2354	

208 rows × 62 columns

```
→
```

```
In [8]:
```

```
np.abs(df.corr()['Target']).sort_values().tail(6)
```

Out[8]:

```
Freq_45 0.339406
Freq_10 0.341142
Freq_49 0.351312
Freq_12 0.392245
Freq_11 0.432855
```

Target 1.000000

Name: Target, dtype: float64

In [9]:

```
#Importing SKLearn for data splitting
from sklearn.model_selection import train_test_split
```

In [10]:

```
1 X = df.drop(['Target','Label'],axis = 1)
```

In [11]:

```
1 y = df['Label']
```

```
In [12]:
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=
In [13]:
    from sklearn.neighbors import KNeighborsClassifier
In [14]:
 1 model = KNeighborsClassifier()
In [15]:
   from sklearn.preprocessing import StandardScaler
In [16]:
 1 scaler = StandardScaler()
In [17]:
 1 operations = [('scaler', scaler), ('model', model)]
In [18]:
 1 #Creating a pipeline to determine best values which give good result with minimal error
   from sklearn.pipeline import Pipeline
In [19]:
 1 | pipe = Pipeline(operations)
In [20]:
 1 from sklearn.model selection import GridSearchCV
In [21]:
 1 | k_values = list(range(1,30))
In [22]:
 1 param_grid = {'model__n_neighbors':k_values}
In [23]:
   classi = GridSearchCV(pipe,param_grid,cv=5,scoring='accuracy')
```

```
In [24]:
 1 #Obtaining the best parameters from various given parameter choices
    classi.fit(X_train,y_train)
Out[24]:
GridSearchCV(cv=5,
             estimator=Pipeline(steps=[('scaler', StandardScaler()),
                                        ('model', KNeighborsClassifier())]),
             param_grid={'model__n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 1
0,
                                                 11, 12, 13, 14, 15, 16, 17,
18,
                                                 19, 20, 21, 22, 23, 24, 25,
26,
                                                 27, 28, 29]},
             scoring='accuracy')
In [25]:
 1 #All the best parameter value among the provided ones
   classi.best_estimator_.get_params()
Out[25]:
{'memory': None,
 'steps': [('scaler', StandardScaler()),
  ('model', KNeighborsClassifier(n_neighbors=1))],
 'verbose': False,
 'scaler': StandardScaler(),
 'model': KNeighborsClassifier(n_neighbors=1),
 'scaler__copy': True,
 'scaler with mean': True,
 'scaler__with_std': True,
 'model__algorithm': 'auto',
 'model__leaf_size': 30,
 'model__metric': 'minkowski',
 'model _metric_params': None,
 'model__n_jobs': None,
 'model n neighbors': 1,
 'model__p': 2,
 'model__weights': 'uniform'}
In [26]:
    classi.cv results ['mean test score']
Out[26]:
array([0.84537696, 0.78065434, 0.77524893, 0.75917496, 0.75931721,
       0.74822191, 0.75945946, 0.71664296, 0.7113798 , 0.68421053,
       0.70042674, 0.68435277, 0.68449502, 0.67908962, 0.69530583,
       0.68990043, 0.7113798, 0.70042674, 0.72204836, 0.67908962,
       0.70071124, 0.69530583, 0.69530583, 0.68463727, 0.68477952,
```

0.67923186, 0.67411095, 0.65775249, 0.6685633])

In [27]:

```
#Determining which K value to choose with minimal processing and maximum output
scores = classi.cv_results_['mean_test_score']
plt.plot(k_values,scores,'o-')
plt.xlabel("K")
plt.ylabel("Accuracy")
```

Out[27]:

Text(0, 0.5, 'Accuracy')

In [28]:

```
1 y_pred = classi.predict(X_test)
```

In [29]:

1 **from** sklearn.metrics **import** classification_report,confusion_matrix

In [30]:

```
1 confusion_matrix(y_test,y_pred)
```

Out[30]:

```
array([[12, 1], [ 1, 7]], dtype=int64)
```

In [31]:

```
#Recall and accuracy quite good
print(classification_report(y_test,y_pred))
```

	precision	recall	f1-score	support
М	0.92	0.92	0.92	13
R	0.88	0.88	0.88	8
accuracy			0.90	21
macro avg	0.90	0.90	0.90	21
weighted avg	0.90	0.90	0.90	21