Towards Understanding Why LookAhead Generalizes Better Than SGD and Beyond

Pan Zhou

Joint work with Hanshu Yan, Xiaotong Yuan, Jiashi Feng, and Shuicheng Yan

SEA AI Lab

zhoupan@sea.com

Dec 06, 2021

Background: LookAhead

Algorithm 1: SGD

Input: Objective $F_{\mathcal{S}}(\boldsymbol{\theta})$, dataset \mathcal{S} , inner-loop optimizer \mathcal{A} , inner-loop step number k and learning rate $\{\{\eta_{\tau}^{(t)}\}\}$, outer-loop learning rate $\alpha \in (0,1)$.

Output: $\theta_{\mathcal{A},\mathcal{S}} = \theta_T$

Algorithm 2: Lookahead

Input :Objective $F_{\mathcal{S}}(\boldsymbol{\theta})$, dataset \mathcal{S} , inner-loop optimizer \mathcal{A} , inner-loop step number k and learning rate $\{\{\eta_{\tau}^{(t)}\}\}$, outer-loop learning rate $\alpha \in (0, 1)$.

end Output: $\theta_{A,S} = \theta_T$

outer-loop optimization

[1] Lookahead Optimizer: k steps forward, 1 step back, NeurIPS'19

outer-loop optimization

Background: LookAhead

Algorithm 1: SGD

Input: Objective $F_{\mathcal{S}}(\theta)$, dataset \mathcal{S} , inner-loop optimizer \mathcal{A} , inner-loop step number k and learning rate $\{\{\eta_{\tau}^{(t)}\},$ outer-loop learning rate $\alpha \in (0, 1)$.

Output: $\theta_{\mathcal{A},\mathcal{S}} = \theta_T$

Algorithm 2: Lookahead

Input: Objective $F_{\mathcal{S}}(\theta)$, dataset \mathcal{S} , inner-loop optimizer \mathcal{A} , inner-loop step number k and learning rate $\{\{\eta_{\tau}^{(t)}\},$ outer-loop learning rate $\alpha \in (0, 1)$.

end

Output: $\theta_{\mathcal{A},\mathcal{S}} = \theta_T$

Key steps in SGD & LookAhead (LA):

inner-loop optimization: K steps forward in SGD & LA

outer-loop optimization: 1 step back in LA, while no step back in SGD

Background: LookAhead

Algorithm 1: SGD

Input :Objective $F_{\mathcal{S}}(\boldsymbol{\theta})$, dataset \mathcal{S} , inner-loop optimizer \mathcal{A} , inner-loop step number k and learning rate $\{\{\eta_{\tau}^{(t)}\}\}$, outer-loop learning rate $\alpha \in (0,1)$.

Output: $\theta_{\mathcal{A},\mathcal{S}} = \theta_T$

outer-loop optimization

Algorithm 2: Lookahead

Input :Objective $F_{\mathcal{S}}(\boldsymbol{\theta})$, dataset \mathcal{S} , inner-loop optimizer \mathcal{A} , inner-loop step number k and learning rate $\{\{\eta_{\tau}^{(t)}\}\}$, outer-loop learning rate $\alpha \in (0,1)$.

```
 \begin{aligned} & \textbf{for } t = 1, 2, ..., T \ \textbf{do} \\ & \boldsymbol{v}_0^{(t)} = \boldsymbol{\theta}_{t-1}; \\ & \textbf{for } \tau = 1, 2, ..., k \ \textbf{do} \\ & \mid \boldsymbol{v}_{\tau}^{(t)} = \mathcal{A}(F_{\mathcal{S}}(\boldsymbol{\theta}), \boldsymbol{v}_{\tau-1}^{(t)}, \eta_{\tau-1}^{(t)}, \mathcal{S}) = \boldsymbol{v}_{\tau-1}^{(t)} - \eta_{\tau-1}^{(t)} \boldsymbol{g}_{\tau-1}^{(t)} \\ & \textbf{end} \\ & \boldsymbol{\theta}_t = (1 - \alpha) \boldsymbol{\theta}_{t-1} + \alpha \boldsymbol{v}_k^{(t)}. \end{aligned}
```

end

outer-loop optimization

Output: $\theta_{\mathcal{A},\mathcal{S}} = \theta_T$

Key steps in SGD & LookAhead (LA):

inner-loop optimization: K steps forward in SGD & LA

outer-loop optimization: 1 step back in LA, while no step back in SGD

Observation: LookAhead Generalizes Better Than SGD

Important observations: LookAhead (LA) [1] enjoys better test performance than SGD

OPTIMIZER	CIFAR-10	CIFAR-100
SGD	$95.23 \pm .19$	$78.24\pm.18$
POLYAK	$95.26 \pm .04$	$77.99 \pm .42$
ADAM	$94.84 \pm .16$	$76.88 \pm .39$
LOOKAHEAD	$95.27 \pm .06$	$78.34 \pm .05$

OPTIMIZER	TRAIN	VAL.	TEST
SGD	43.62	66.0	63.90
LA(SGD)	35.02	65.10	63.04
ADAM	33.54	61.64	59.33
LA(ADAM)	31.92	60.28	57.72
POLYAK	1	61.18	58.79

ResNet 18 [1] LSTM [1]

Observation: LookAhead Generalizes Better Than SGD

Important observations: LookAhead (LA) [1] enjoys better test performance than SGD

OPTIMIZER	CIFAR-10	CIFAR-100
SGD	$95.23 \pm .19$	$78.24\pm.18$
POLYAK	$95.26 \pm .04$	$77.99 \pm .42$
ADAM	$94.84 \pm .16$	$76.88 \pm .39$
LOOKAHEAD	$95.27 \pm .06$	$78.34 \pm .05$

OPTIMIZER	TRAIN	VAL.	TEST
SGD	43.62	66.0	63.90
LA(SGD)	35.02	65.10	63.04
ADAM	33.54	61.64	59.33
LA(ADAM)	31.92	60.28	57.72
POLYAK	<u>"</u>	61.18	58.79

ResNet 18 [1] LSTM [1]

Problems:

- 1. Why LA enjoys better test performance than SGD?
- 2. How to further improve LA?

Tools for Test Performance Analysis

optimal solution to empirical risk:

$$\boldsymbol{\theta}_{\mathcal{S}}^* \in \operatorname{argmin}_{\boldsymbol{\theta}} F_{\mathcal{S}}(\boldsymbol{\theta}) \triangleq \frac{1}{n} \sum_{i=1}^{n} \ell(f(\boldsymbol{x}_i; \boldsymbol{\theta}), \boldsymbol{y}_i),$$
 (1)

approximate solution to empirical risk:

$$\boldsymbol{\theta}_{\mathcal{A},\mathcal{S}} \approx \operatorname{argmin}_{\boldsymbol{\theta}} F_{\mathcal{S}}(\boldsymbol{\theta}) \triangleq \frac{1}{n} \sum_{i=1}^{n} \ell(f(\boldsymbol{x}_i; \boldsymbol{\theta}), \boldsymbol{y}_i),$$
 (2)

Tools for Test Performance Analysis

optimal solution to empirical risk:

$$\boldsymbol{\theta}_{\mathcal{S}}^* \in \operatorname{argmin}_{\boldsymbol{\theta}} F_{\mathcal{S}}(\boldsymbol{\theta}) \triangleq \frac{1}{n} \sum_{i=1}^{n} \ell(f(\boldsymbol{x}_i; \boldsymbol{\theta}), \boldsymbol{y}_i),$$
 (1)

• approximate solution to empirical risk:

$$\boldsymbol{\theta}_{\mathcal{A},\mathcal{S}} \approx \operatorname{argmin}_{\boldsymbol{\theta}} F_{\mathcal{S}}(\boldsymbol{\theta}) \triangleq \frac{1}{n} \sum_{i=1}^{n} \ell(f(\boldsymbol{x}_i; \boldsymbol{\theta}), \boldsymbol{y}_i),$$
 (2)

Excess risk error to measure test performance:

excess risk error

$$\varepsilon_{\rm exc} = \mathbb{E}_{\mathcal{A},\mathcal{S}}[F(\boldsymbol{\theta}_{\mathcal{A},\mathcal{S}})] - \mathbb{E}_{\mathcal{A},\mathcal{S}}[F_{\mathcal{S}}(\boldsymbol{\theta}_{\mathcal{S}}^*)] = \mathbb{E}_{\mathcal{A},\mathcal{S}}[F(\boldsymbol{\theta}_{\mathcal{A},\mathcal{S}}) - F_{\mathcal{S}}(\boldsymbol{\theta}_{\mathcal{A},\mathcal{S}})] + \mathbb{E}_{\mathcal{A},\mathcal{S}}[F_{\mathcal{S}}(\boldsymbol{\theta}_{\mathcal{A},\mathcal{S}}) - F_{\mathcal{S}}(\boldsymbol{\theta}_{\mathcal{S}}^*)]$$
 (3) test error best training error generalization error optimization error

where $F(\boldsymbol{\theta}) \triangleq \mathbb{E}_{(\boldsymbol{x},\boldsymbol{y}) \sim \mathcal{D}}[\ell(f(\boldsymbol{x};\boldsymbol{\theta}),\boldsymbol{y})]$ is population risk.

Excess risk error to measure test performance:

$$\varepsilon_{\rm exc} = \mathbb{E}_{\mathcal{A},\mathcal{S}}[F(\boldsymbol{\theta}_{\mathcal{A},\mathcal{S}})] - \mathbb{E}_{\mathcal{A},\mathcal{S}}[F_{\mathcal{S}}(\boldsymbol{\theta}_{\mathcal{S}}^*)] = \mathbb{E}_{\mathcal{A},\mathcal{S}}[F(\boldsymbol{\theta}_{\mathcal{A},\mathcal{S}}) - F_{\mathcal{S}}(\boldsymbol{\theta}_{\mathcal{A},\mathcal{S}})] + \mathbb{E}_{\mathcal{A},\mathcal{S}}[F_{\mathcal{S}}(\boldsymbol{\theta}_{\mathcal{A},\mathcal{S}}) - F_{\mathcal{S}}(\boldsymbol{\theta}_{\mathcal{S}}^*)]$$
test error best training error generalization error optimization error

Theorem 1 (informal) Under proper assumptions, by setting conventional learning rate $\eta=1/\sqrt{kT}$, on convex problem we have

optimization error
$$\leq O(\frac{1}{\alpha\sqrt{kT}})$$
 generalization error $\leq O(\frac{\alpha\sqrt{kT}}{n})$ (5

where kT is total training iteration number, n is training sample number.

Excess risk error to measure test performance:

$$\varepsilon_{\rm exc} = \mathbb{E}_{\mathcal{A},\mathcal{S}}[F(\boldsymbol{\theta}_{\mathcal{A},\mathcal{S}})] - \mathbb{E}_{\mathcal{A},\mathcal{S}}[F_{\mathcal{S}}(\boldsymbol{\theta}_{\mathcal{S}}^*)] = \mathbb{E}_{\mathcal{A},\mathcal{S}}[F(\boldsymbol{\theta}_{\mathcal{A},\mathcal{S}}) - F_{\mathcal{S}}(\boldsymbol{\theta}_{\mathcal{A},\mathcal{S}})] + \mathbb{E}_{\mathcal{A},\mathcal{S}}[F_{\mathcal{S}}(\boldsymbol{\theta}_{\mathcal{A},\mathcal{S}}) - F_{\mathcal{S}}(\boldsymbol{\theta}_{\mathcal{S}}^*)]$$
test error best training error generalization error optimization error

Theorem 1 (informal) Under proper assumptions, by setting conventional learning rate $\eta=1/\sqrt{kT}$, on convex problem we have

optimization error
$$\leq O(\frac{1}{\alpha\sqrt{kT}})$$
 generalization error $\leq O(\frac{\alpha\sqrt{kT}}{n})$ (5

where kT is total training iteration number, n is training sample number.

Since (1) optimum of
$$\, lpha \,$$
 is $\, lpha = O ig(1 \wedge \sqrt{n/kT} ig) \,$ and (2) SGD = LA with $\, lpha = 1 \,$

Lookahead enjoys smaller excess risk error (test error) than SGD

Theorem 2 (informal). λ -strongly-convex problem with proper assumptions:

optimization error
$$\leq \begin{cases} O\left(\frac{1}{T^{2\alpha}} + \frac{1}{\lambda^2(kT)^{2\alpha}(1-2\alpha)}\right), \ 0 < \alpha < \frac{1}{2}, \\ O\left(\frac{1}{T} + \frac{\log(Tk)}{\lambda^2kT}\right), & \alpha = \frac{1}{2}, \\ O\left(\frac{1}{T^{2\alpha}} + \frac{1}{\lambda^2(2\alpha-1)kT}\right), & \frac{1}{2} < \alpha \leq 1. \end{cases}$$
 generalization error $\leq O\left(\frac{1}{n\lambda} \frac{(Tk+1)^{\alpha} - 1}{((T+1)k+2)^{\alpha}}\right)$ (6)

When problem is large-scale and iteration number T is not large,

$$\frac{\ln T}{T^{\alpha}} > O\left(\frac{1}{n\lambda} \frac{\ln(Tk)}{k^{\alpha}}\right) \quad \text{or} \quad \frac{1}{\lambda(\alpha - 1)^2 Tk} > O\left(\frac{1}{n} \frac{\ln(Tk)}{T^{\alpha} k^{\alpha}}\right) \tag{7}$$

the optimum α is not 1.

Theorem 2 (informal). λ -strongly-convex problem with proper assumptions:

optimization error
$$\leq \begin{cases} O\left(\frac{1}{T^{2\alpha}} + \frac{1}{\lambda^2(kT)^{2\alpha}(1-2\alpha)}\right), \ 0 < \alpha < \frac{1}{2}, \\ O\left(\frac{1}{T} + \frac{\log(Tk)}{\lambda^2kT}\right), & \alpha = \frac{1}{2}, \\ O\left(\frac{1}{T^{2\alpha}} + \frac{1}{\lambda^2(2\alpha-1)kT}\right), & \frac{1}{2} < \alpha \leq 1. \end{cases}$$
 generalization error $\leq O\left(\frac{1}{n\lambda} \frac{(Tk+1)^{\alpha} - 1}{((T+1)k+2)^{\alpha}}\right)$ (6)

When problem is large-scale and iteration number T is not large,

$$\frac{\ln T}{T^{\alpha}} > O\left(\frac{1}{n\lambda} \frac{\ln(Tk)}{k^{\alpha}}\right) \quad \text{or} \quad \frac{1}{\lambda(\alpha - 1)^2 Tk} > O\left(\frac{1}{n} \frac{\ln(Tk)}{T^{\alpha} k^{\alpha}}\right) \tag{7}$$

the optimum $\,\, \alpha \,$ is not 1.

This also explains why Lookahead enjoys smaller excess risk error (test error) than SGD

Theorem 3 (informal). On nonconvex problem with PL condition

$$2\mu(f(w) - f(w^*)) \le ||\nabla f(w)||^2 \ (\forall w, \ w^* \in \operatorname{argmin}_w f(w))$$

then we have

optimization error
$$\leq O\left(\frac{1}{(Tk+1)^{2\alpha}} + \frac{\alpha \left(\alpha + 2(1-\alpha)(k-1)\right)}{\mu^2 (Tk+1)^{2\alpha-1}}\right)$$

generalization error $\leq O\left(\frac{1}{n-1}\alpha^{\frac{1}{1+\gamma}} (Tk)^{\frac{\gamma}{\gamma+1}}\right) \quad \left(\gamma = (1-\frac{1}{n})\frac{\alpha L}{\mu}\right)$

Theorem 3 (informal). On nonconvex problem with PL condition

$$2\mu(f(w) - f(w^*)) \le ||\nabla f(w)||^2 \ (\forall w, \ w^* \in \operatorname{argmin}_w f(w))$$

then we have

optimization error
$$\leq O\left(\frac{1}{(Tk+1)^{2\alpha}} + \frac{\alpha \left(\alpha + 2(1-\alpha)(k-1)\right)}{\mu^2 (Tk+1)^{2\alpha-1}}\right)$$

generalization error $\leq O\left(\frac{1}{n-1}\alpha^{\frac{1}{1+\gamma}}(Tk)^{\frac{\gamma}{\gamma+1}}\right) \quad \left(\gamma = (1-\frac{1}{n})\frac{\alpha L}{\mu}\right)$

By properly choosing $\, lpha \,$,

Lookahead can also enjoys smaller excess risk error (test error) than SGD

An Improved LookAhead: Stagewise Locally-regularized Lookahead

Algorithm 3: Stagewise Locally-Regularized LookAhead (SLRLA)

```
Input :Loss F_{\mathcal{S}}(\boldsymbol{\theta}), constant \{\beta_q\}_{q=1}^Q

for q=1,2,...,Q do F_q(\boldsymbol{\theta})=F_{\mathcal{S}}(\boldsymbol{\theta})+\frac{\beta_q}{2}\|\boldsymbol{\theta}-\boldsymbol{\theta}_{q-1}\|^2; \boldsymbol{\theta}_q=\text{Look-ahead}(F_q(\boldsymbol{\theta}),\eta_q,T_q,\alpha_q,k_q,\boldsymbol{\theta}_{q-1},\mathcal{A},\mathcal{S}). end Output:\boldsymbol{\theta}_{\mathcal{A},\mathcal{S}}=\boldsymbol{\theta}_Q.
```

```
Algorithm 2: Lookahead

Input :Objective F_{\mathcal{S}}(\theta), dataset \mathcal{S}, inner-loop optimizer \mathcal{A}, inner-loop step number k and learning rate \{\{\eta_{\tau}^{(t)}\}\}, outer-loop learning rate \alpha \in (0,1).

for t = 1, 2, ..., T do
\begin{vmatrix} v_0^{(t)} = \theta_{t-1}; \\ \text{for } \tau = 1, 2, ..., k \text{ do} \\ v_{\tau}^{(t)} = \mathcal{A}(F_{\mathcal{S}}(\theta), v_{\tau-1}^{(t)}, \eta_{\tau-1}^{(t)}, \mathcal{S}) = v_{\tau-1}^{(t)} - \eta_{\tau-1}^{(t)} g_{\tau-1}^{(t)} \\ \text{end} \\ \theta_t = (1 - \alpha)\theta_{t-1} + \alpha v_k^{(t)}.
end
Output: \theta_{\mathcal{A}, \mathcal{S}} = \theta_T
```

Strategy: divide optimization into several stages and use lookahead to solve locally-regularized loss

$$F_q(\boldsymbol{\theta}) = F_{\mathcal{S}}(\boldsymbol{\theta}) + \frac{\beta_q}{2} \|\boldsymbol{\theta} - \boldsymbol{\theta}_{q-1}\|^2$$

An Improved LookAhead: Stagewise Locally-regularized Lookahead

Algorithm 3: Stagewise Locally-Regularized LookAhead (SLRLA)

```
Input :Loss F_{\mathcal{S}}(\boldsymbol{\theta}), constant \{\beta_q\}_{q=1}^Q
for q=1,2,...,Q do F_q(\boldsymbol{\theta})=F_{\mathcal{S}}(\boldsymbol{\theta})+\frac{\beta_q}{2}\|\boldsymbol{\theta}-\boldsymbol{\theta}_{q-1}\|^2; \boldsymbol{\theta}_q=\text{Look-ahead}(F_q(\boldsymbol{\theta}),\eta_q,T_q,\alpha_q,k_q,\boldsymbol{\theta}_{q-1},\mathcal{A},\mathcal{S}). end Output:\boldsymbol{\theta}_{\mathcal{A},\mathcal{S}}=\boldsymbol{\theta}_Q.
```

```
Algorithm 2: Lookahead

Input :Objective F_{\mathcal{S}}(\theta), dataset \mathcal{S}, inner-loop optimizer \mathcal{A}, inner-loop step number k and learning rate \{\{\eta_{\tau}^{(t)}\}\}, outer-loop learning rate \alpha \in (0,1).

for t = 1, 2, ..., T do
\begin{vmatrix} v_0^{(t)} = \theta_{t-1}; \\ \text{for } \tau = 1, 2, ..., k \text{ do} \\ v_{\tau}^{(t)} = \mathcal{A}(F_{\mathcal{S}}(\theta), v_{\tau-1}^{(t)}, \eta_{\tau-1}^{(t)}, \mathcal{S}) = v_{\tau-1}^{(t)} - \eta_{\tau-1}^{(t)} g_{\tau-1}^{(t)} \\ \text{end} \\ \theta_t = (1 - \alpha)\theta_{t-1} + \alpha v_k^{(t)}.
end
Output: \theta_{\mathcal{A}, \mathcal{S}} = \theta_T
```

Strategy: divide optimization into several stages and use lookahead to solve locally-regularized loss

$$F_q(\boldsymbol{\theta}) = F_{\mathcal{S}}(\boldsymbol{\theta}) + \frac{\beta_q}{2} \|\boldsymbol{\theta} - \boldsymbol{\theta}_{q-1}\|^2$$

Advantages:

- Local regularization improves loss convexity, e.g. ill-conditioned loss → well-conditioned one
- Local regularization helps avoid overfitting

Theorem 4 (informal). Under proper assumptions, to obtain optimization error optimization error $\leq \epsilon$

The stochastic gradient complexity (stochastic gradient evaluation number, a.k.a. IFO) is

stochastic gradient complexity	LookAhead (LA)	SLRLA	
stochastic gradient complexity	$\alpha \in (0, \frac{1}{2}) \qquad \qquad \alpha = \frac{1}{2}$	$\alpha \in (\frac{1}{2}, 1]$	$\alpha \in (0,1]$
λ -strongly-convex problems	$\mathcal{O}\left(\left(\frac{1}{\epsilon}\right)^{\frac{1}{2\alpha}} + \left(\frac{1}{(1-2\alpha)\lambda^2\epsilon}\right)^{\frac{1}{2\alpha}}\right) \mathcal{O}\left(\frac{\log\frac{1}{\epsilon}}{\lambda^2\epsilon}\right)$	$\mathcal{O}\left(\frac{1}{(2\alpha-1)\lambda^2\epsilon}\right)$	$\mathcal{O}\!\left(rac{1}{\lambdalpha\epsilon} ight)$
nonconvex problems with $\mu ext{-PL}$	$\mathcal{O}(\left(\frac{1}{\mu^2\epsilon}\right)^{1/\alpha})$		$\mathcal{O}\left(\frac{1}{\mu\alpha\epsilon}\right)$

Theorem 4 (informal). Under proper assumptions, to obtain optimization error optimization error $\leq \epsilon$

The stochastic gradient complexity (stochastic gradient evaluation number, a.k.a. IFO) is

stachastic gradient complexity	LookAhead (L.	A) SLRLA
stochastic gradient complexity	$\alpha \in (0, \frac{1}{2}) \qquad \qquad \alpha$	$= \frac{1}{2} \qquad \alpha \in (\frac{1}{2}, 1] \qquad \alpha \in (0, 1]$
λ -strongly-convex problems	$\mathcal{O}\left(\left(\frac{1}{\epsilon}\right)^{\frac{1}{2\alpha}} + \left(\frac{1}{(1-2\alpha)\lambda^2\epsilon}\right)^{\frac{1}{2\alpha}}\right) \mathcal{O}\left(\frac{1}{\epsilon}\right)$	$\frac{\log \frac{1}{\epsilon}}{\lambda^2 \epsilon}$) $\mathcal{O}\left(\frac{1}{(2\alpha - 1)\lambda^2 \epsilon}\right) \mid \mathcal{O}\left(\frac{1}{\lambda \alpha \epsilon}\right)$
nonconvex problems with $\mu ext{-PL}$	$\mathcal{O}((\frac{1}{\mu^2\epsilon})^{1/\alpha})$	$\mathcal{O}ig(rac{1}{\mulpha\epsilon}ig)$

By observing factors $\, lpha \,$, $\, \lambda \,$ and $\, \mu \,$, SLRLA has smaller computational complexity than LA, meaning SLRLA has smaller optimization error than LA under a given computational budget

Theorem 4 (informal). Under proper assumptions, to obtain optimization error optimization error $\leq \epsilon$

the generalization error is

generalization error	LookAhead (LA) $\alpha \in (0,1]$	SLRLA $\alpha \in (0,1]$
λ -strongly-convex problems	$O(\frac{1}{n\lambda})$	$O\left(\frac{1}{n(\beta/\alpha+\lambda)}\right)$
nonconvex problems with $\mu ext{-PL}$	$\mathcal{O}\left(\frac{1}{n}(Tk)^{\frac{\gamma}{\gamma+1}}\right) \ (\gamma = (1-\frac{1}{n})^{\frac{\alpha L}{\mu}})$	$\mathcal{O}\left(\frac{1}{n}/\left(\frac{c}{\alpha}+\mu\right)\right) \ (c\geq 0)$

Theorem 4 (informal). Under proper assumptions, to obtain optimization error optimization error $\leq \epsilon$

the generalization error is

generalization error	LookAhead (LA) $\alpha \in (0,1]$	SLRLA $\alpha \in (0,1]$
λ -strongly-convex problems	$\mathcal{O}\left(\frac{1}{n\lambda}\right)$	$\mathcal{O}\left(\frac{1}{n(\beta/\alpha+\lambda)}\right)$
nonconvex problems with $\mu ext{-PL}$	$\mathcal{O}\left(\frac{1}{n}(Tk)^{\frac{\gamma}{\gamma+1}}\right) \ (\gamma = (1-\frac{1}{n})^{\frac{\alpha L}{\mu}})$	$\mathcal{O}\left(\frac{1}{n}/\left(\frac{c}{\alpha}+\mu\right)\right) \ (c\geq 0)$

By comparison,

SLRLA has smaller generalization error than LA

Experimental Results

Table 3: Classification accuracy (%). $^{\diamond}$, *, † , ‡ are respectively reported in [1], [15], [49], [50].

optimizer	ResNet18	CIFAR10 VGG16	WRN-16-10	ResNet18	CIFAR100 VGG16	WRN-16-10	ImageNet ResNet18
Adam [11] Adabound [51] RAdam [15] AdamW [52] AdaBelief [50]	94.84° 92.56 93.85 94.95 95.20‡	91.08 91.35 90.84 90.75 92.25	93.54 91.68 94.16 95.95 95.71	76.88 ^{\$\(\frac{7}{1.43}\) 74.30 77.30 77.02[‡]}	64.07 64.74 63.99 63.40 68.63	74.81 71.64 75.92 79.63 77.93	66.54* 68.13 [†] 67.62* 67.93 [†] 70.08 [‡]
Stagewise SGD [13] SLA [1] SLRLA	95.23±0.19° 95.27±0.06° 95.47 ±0.20	92.13±0.02 92.38±0.02 92.63 ±0.03	95.51±0.02 95.73±0.02 96.08 ±0.07	78.24±0.18° 78.34±0.05° 78.58 ±0.15	69.97±0.02 70.20±0.04 70.63 ±0.02	78.95 ± 0.03 79.54 ± 0.02 79.85 ±0.05	70.23^{\dagger} 70.30 ± 0.09 70.47 ±0.12

SLRLA has better test performance than SGD and (stagewise) LA

Conclusion

Problems:

(1) Why Lookahead enjoys better test performance than SGD?

LookAhead enjoys smaller excess risk error than SGD

(2) How to further improve LookAhead?

we propose a stagewise locally-regularized Lookahead with provable performance

Thanks!