Step 3: Taking the Derivative with Respect to $oldsymbol{eta}$

Now we differentiate the above expression with respect to the coefficient vector $oldsymbol{eta}$. We will apply matrix calculus rules.

Derivative of $\mathbf{y}^T\mathbf{y}$:

This term is independent of $oldsymbol{eta}$, so its derivative with respect to $oldsymbol{eta}$ is zero.

$$rac{\partial}{\partial oldsymbol{eta}}(\mathbf{y}^T\mathbf{y}) = 0$$

Derivative of $-2\mathbf{y}^T\mathbf{X}\boldsymbol{\beta}$:

This term is linear in β . The derivative of a linear term ${\bf a}^T{\bf b}$ with respect to ${\bf b}$ is just ${\bf a}$. In this case, ${\bf a}=-2{\bf X}^T{\bf y}$, so the derivative is:

$$rac{\partial}{\partial oldsymbol{eta}}(-2\mathbf{y}^T\mathbf{X}oldsymbol{eta}) = -2\mathbf{X}^T\mathbf{y}$$

Derivative of $\boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X} \boldsymbol{\beta}$:

This term is quadratic in $\boldsymbol{\beta}$. The derivative of a quadratic form $\boldsymbol{\beta}^T \mathbf{A} \boldsymbol{\beta}$ with respect to $\boldsymbol{\beta}$ is $2\mathbf{A}\boldsymbol{\beta}$ if \mathbf{A} is symmetric. In this case, $\mathbf{A} = \mathbf{X}^T \mathbf{X}$, which is symmetric. So the derivative is:

$$rac{\partial}{\partial oldsymbol{eta}}(oldsymbol{eta}^T\mathbf{X}^T\mathbf{X}oldsymbol{eta}) = 2\mathbf{X}^T\mathbf{X}oldsymbol{eta}$$