Тестирование гипотез

Показать на графике р value

Показать область ошибки 1го рода, показать область ошибки 2го рода

Ниже приведены диаметры коронарных артерий после приема нифедипина и плацебо. Позволяют ли приводимые ниже данные утверждать, что нифедипин влияет на диаметр коронарных артерий?

- 1. Выполнить расчеты в Python
- 2. Сделайте расчет в ручную
- 3. Сравните критерий Стьюдента и p-value со значениями, полученными в Python

x =np.array([2.5, 2.2, 2.6, 2, 2.1, 1.8,2.4, 2.3, 2.7, 2.7, 1.9])
y= np.array([2.5, 1.7, 1.5, 2.5, 1.4, 1.9, 2.3, 2.0, 2.6, 2.3, 2.2])
$$t = \frac{1}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2}{n_1}}}$$

Используемая литература для подготовки задач к семинару: Гланц С. «Медико-биологическая статистика»

```
[2] import scipy.stats as stats
     import numpy as np
[7] stats.t.ppf(0.975, 20)
     2.0859634472658364
[8] stats.t.cdf(2.086, 20)
     0.9750018227712799
[14] stats.t.cdf(1.32834847578, 20)
     0.9004886710051916
[17] 1-0.9004886710051916
     0.09951132899480841
[18] 1-2*0.09951132899480841
     0.8009773420103832
    pv=1-0.8009773420103832
     0.19902265798961682
```

```
x =np.array([2.5, 2.2, 2.6, 2, 2.1, 1.8,2.4, 2.3, 2.7, 2.7, 1.9])
array([2.5, 2.2, 2.6, 2., 2.1, 1.8, 2.4, 2.3, 2.7, 2.7, 1.9])
y= np.array([2.5, 1.7, 1.5, 2.5, 1.4, 1.9, 2.3, 2.0, 2.6, 2.3, 2.2])
array([2.5, 1.7, 1.5, 2.5, 1.4, 1.9, 2.3, 2., 2.6, 2.3, 2.2])
import scipy.stats as stats
stats.ttest_ind(x,y)
Ttest indResult(statistic=1.3283484757831465, pvalue=0.19902265798859647)
d1=np.var(x, ddof=1)
d1
0.10090909090909095
d2 =np.var(y, ddof=1)
d2
0.17163636363636364
m1= np.mean(x)
m1
2.2909090909090906
m2= np.mean(y)
2.0818181818181816
D=0.5*(d1+d2)
0.1362727272727273
(m1-m2)/np.sqrt(2*D/len(x))
1.3283484757831465
```


Ниже приведены данные из исследования Фреба и Уайта, посвященному исследованию состоянию легких. . Мы возьмем данные для группы людей, которые работали в накуренном помещении и для людей, выкуривающих небольшое число сигарет в день.

Объемы выборок одинаковые – по 200 человек. Для людей, работающих в накуренном помещении средняя скорость средины выдоха составляет 2,72, std = 0.71, а выкуривающих небольшое число сигарет 2,63, std = 0.73. Можно ли считать одинаковой среднюю скорость середины выдоха одинаковой в обеих группах? $\overline{x_1} - \overline{x_2}$

(J. White, H. Froeb. Small-airways dysfunction in nonsmokers chronically exposed to tobacco smoke. N. Engl. J. Med., 302:720—723, 1980), Гланц С. «Медико-биологическая статистика»

Двусторонний критерий Стьюдента

		_					_		
				Уровен	ь значимс	сти α			
v	0,5	0,2	0,1	0,05	0,02	0,01	0,005	0,002	0,001
1	1,000	3,078	6,314	12,706	31,821	63,656	127,321	318,289	636,578
2	0,816	1,886	2,920	4,303	6,965	9,925	14,089	22,328	31,600
3	0,765	1,638	2,353	3,182	4,541	5,841	7,453	10,214	12,924
4	0,741	1,533	2,132	2,776	3,747	4,604	5,598	7,173	8,610
5	0,727	1,476	2,015	2,571	3,365	4,032	4,773	5,894	6,869
6	0,718	1,440	1,943	2,447	3,143	3,707	4,317	5,208	5,959
7	0,711	1,415	1,895	2,365	2,998	3,499	4,029	4,785	5,408
8	0,706	1,397	1,860	2,306	2,896	3,355	3,833	4,501	5,041
9	0,703	1,383	1,833	2,262	2,821	3,250	3,690	4,297	4,781
10	0,700	1,372	1,812	2,228	2,764	3,169	3,581	4,144	4,587
11	0,697	1,363	1,796	2,201	2,718	3,106	3,497	4,025	4,437
12	0,695	1,356	1,782	2,179	2,681	3,055	3,428	3,930	4,318
13	0,694	1,350	1,771	2,160	2,650	3,012	3,372	3,852	4,221
14	0,692	1,345	1,761	2,145	2,624	2,977	3,326	3,787	4,140
15	0,691	1,341	1,753	2,131	2,602	2,947	3,286	3,733	4,073
16	0,690	1,337	1,746	2,120	2,583	2,921	3,252	3,686	4,015
17	0,689	1,333	1,740	2,110	2,567	2,898	3,222	3,646	3,965
18	0,688	1,330	1,734	2,101	2,552	2,878	3,197	3,610	3,922
19	0,688	1,328	1,729	2,093	2,539	2,861	3,174	3,579	3,883
20	0,687	1,325	1,725	2,086	2,528	2,845	3,153	3,552	3,850
21	0,686	1,323	1,721	2,080	2,518	2,831	3,135	3,527	3,819
22	0,686	1,321	1,717	2,074	2,508	2,819	3,119	3,505	3,792
23	0,685	1,319	1,714	2,069	2,500	2,807	3,104	3,485	3,768
24	0,685	1,318	1,711	2,064	2,492	2,797	3,091	3,467	3,745
25	0,684	1,316	1,708	2,060	2,485	2,787	3,078	3,450	3,725
26	0,684	1,315	1,706	2,056	2,479	2,779	3,067	3,435	3,707
27	0,684	1,314	1,703	2,052	2,473	2,771	3,057	3,421	3,689
28	0,683	1,313	1,701	2,048	2,467	2,763	3,047	3,408	3,674
29	0,683	1,311	1,699	2,045	2,462	2,756	3,038	3,396	3,660
30	0,683	1,310	1,697	2,042	2,457	2,750	3,030	3,385	3,646
31	0,682	1,309	1,696	2,040	2,453	2,744	3,022	3,375	3,633
32	0,682	1,309	1,694	2,037	2,449	2,738	3,015	3,365	3,622
33	0,682	1,308	1,692	2,035	2,445	2,733	3,008	3,356	3,611
34	0,682	1,307	1,691	2,032	2,441	2,728	3,002	3,348	3,601
35	0,682	1,306	1,690	2,030	2,438	2,724	2,996	3,340	3,591
36	0,681	1,306	1,688	2,028	2,434	2,719	2,990	3,333	3,582
37	0,681	1,305	1,687	2,026	2,431	2,715	2,985	3,326	3,574
38	0,681	1,304	1,686	2,024	2,429	2,712	2,980	3,319	3,566
39	0,681	1,304	1,685	2,023	2,426	2,708	2,976	3,313	3,558
40	0,681	1,303	1,684	2,021	2,423	2,704	2,971	3,307	3,551

			-	Уровень	значим	ости α			
v	0,5	0,2	0,1	0,05	0,02	0,01	0,005	0,002	0,001
42	0,680	1,302	1,682	2,018	2,418	2,698	2,963	3,296	3,538
44	0,680	1,301	1,680	2,015	2,414	2,692	2,956	3,286	3,526
46	0,680	1,300	1,679	2,013	2,410	2,687	2,949	3,277	3,515
48	0,680	1,299	1,677	2,011	2,407	2,682	2,943	3,269	3,505
50	0,679	1,299	1,676	2,009	2,403	2,678	2,937	3,261	3,496
52	0,679	1,298	1,675	2,007	2,400	2,674	2,932	3,255	3,488
54	0,679	1,297	1,674	2,005	2,397	2,670	2,927	3,248	3,480
56	0,679	1,297	1,673	2,003	2,395	2,667	2,923	3,242	3,473
58	0,679	1,296	1,672	2,002	2,392	2,663	2,918	3,237	3,466
60	0,679	1,296	1,671	2,000	2,390	2,660	2,915	3,232	3,460
62	0,678	1,295	1,670	1,999	2,388	2,657	2,911	3,227	3,454
64	0,678	1,295	1,669	1,998	2,386	2,655	2,908	3,223	3,449
66	0,678	1,295	1,668	1,997	2,384	2,652	2,904	3,218	3,444
68	0,678	1,294	1,668	1,995	2,382	2,650	2,902	3,214	3,439
70	0,678	1,294	1,667	1,994	2,381	2,648	2,899	3,211	3,435
72	0,678	1,293	1,666	1,993	2,379	2,646	2,896	3,207	3,431
74	0,678	1,293	1,666	1,993	2,378	2,644	2,894	3,204	3,427
76	0,678	1,293	1,665	1,992	2,376	2,642	2,891	3,201	3,423
78	0,678	1,292	1,665	1,991	2,375	2,640	2,889	3,198	3,420
80	0,678	1,292	1,664	1,990	2,374	2,639	2,887	3,195	3,416
90	0,677	1,291	1,662	1,987	2,368	2,632	2,878	3,183	3,402
100	0,677	1,290	1,660	1,984	2,364	2,626	2,871	3,174	3,390
120	0,677	1,289	1,658	1,980	2,358	2,617	2,860	3,160	3,373
140	0,676	1,288	1,656	1,977	2,353	2,611	2,852	3,149	3,361
160	0,676	1,287	1,654	1,975	2,350	2,607	2,847	3,142	3,352
180	0,676	1,286	1,653	1,973	2,347	2,603	2,842	3,136	3,345
200	0,676	1,286	1,653	1,972	2,345	2,601	2,838	3,131	3,340
000	0,675	1,282	1,645	1,960	2,327	2,576	2,808	3,091	3,291

J. H. Zar. Biostatistical analysis (2 ed.). Prentice-Hall, Englewood Cliffs, N. J., 1984.

Утверждается, что средний рост мужчин национальности X 179,5. Была взята выборка из 100 человек, по которой получилось среднее арифметическое 178,5. Проверить это утверждение с помощью одностороннего теста, если известно, что стандартное отклонение генеральной совокупности 3 см. А уровень статистической значимости принять за 1%

x	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
-0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641
-0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247
-0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
-0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,3483
-0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
-0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776
-0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
-0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,2148
-0.8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
-0.9	0.1841	0.1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
-1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
-1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,1170
-1,2	0,1151	0,1131	0.1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,098
-1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,082
-1.4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0721	0,0708	0,0694	0,068
-1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,055
-1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,045
-1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,036
-1,8	0,0359	0,0351	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,029
-1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,023
-2,0	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,018
-2,1	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0154	0,0150	0,0146	0,014
-2,2	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,011
-2.3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,008
-2,4	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,006
-2,5	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,004
-2,6	0,0047	0,0045	0,0044	0,0043	0,0041	0,0040	0,0039	0,0038	0,0037	0,003

Задачи на повторение

Вероятность рождения мальчиков 0.515. Найти наивероятнейшее число девочек из 600 новорожденных.

Если число np+p не является целым числом, то $k_0\,$ равно целой части этого значения

Если np+p – целое число, то наивероятнейшее число исходов k_0 принимает два значения $np-q\,$ и $np+p\,$