# Параллель А. Дерево отрезков и всякие прибамбасы

### Список задач

- Задача А. Сугробы на ЛЭП
- Задача В. Вирусы и антивирусы
- <u>Задача С. Окна</u>

# Сугробы на ЛЭП

### Задача А. Сугробы на ЛЭП

Служба электроснабжения проводит мониторинг уровня снега, лежащего на ЛЭП Нью-Васюки - Москва. Вся ЛЭП разбивается на участки опорами. Снег имеет свойства падать на какой-либо интервал ЛЭП, если там уже лежал какой-либо снег, то высота снежного покрова на этом участке суммируется. Также снег имеет тенденцию таять на участке трассы в результате оттепели, при этом известно, что не бывает сугробов отрицательной высоты. Энергетикам крайне важно уметь узнавать суммарную высоту снежного покрова на некоторых последовательных участках, чтобы знать вероятность обрыва проводов.

#### Входные данные

В первой строке входного файла содержатся два числа: N – (1  $\leq$  N  $\leq$  10 000) и M – количество команд (1  $\leq$  M  $\leq$  50 000). Каждая команда имеет вид "1 L R S", что означает, что на участок с L-ой опоры по R-ую опору выпало S сантиметров снега (S может быть и отрицательным, тогда это означает, что такое количества снега растаяло), или "2 L R" – запрос суммарной высоты снега на участке с L-ой опоры по R-ую. Опоры нумеруются от 0 до N. Гарантируется, что для запросов вида "1 L R S" при S < 0 на каждом участке между опорами L и R уровень снега составляет не менее S.

#### Выходные данные

На каждую команду 2 (запрос) вы должны выводить число K – суммарную высоту снежного покрова, лежащего на проводах с L-ой опоры по R-ую. Каждое число должно выводиться на новой строке. Известно, что в процессе работы суммарное количество снега на любом интервале не превышает  $2^{31}$ .

#### Примеры

| <b> </b>        |  |
|-----------------|--|
| входные данные  |  |
| 10 5            |  |
| 1 0 9 10        |  |
| 1 1 5 -3        |  |
| 2 4 8           |  |
| 1 0 6 25        |  |
| 2 0 2           |  |
| выходные данные |  |
| 37              |  |
| 67              |  |
|                 |  |

## Вирусы и антивирусы

# Задача В. Вирусы и антивирусы

Антивирусная IT-компания имеет официальную иерархическую структуру управления. В ней есть босс – единственный сотрудник, над которым нет начальника. Каждый из остальных сотрудников подчинён ровно одному сотруднику – своему начальнику. Начальник может иметь нескольких подчинённых и отдавать или передавать приказы любому из них. Приказы могут передаваться от одного сотрудника другому только по цепочке, каждый раз от начальника к его подчинённому. Сотрудник А *главнее* сотрудника Б в этой иерархии, если А может отдать или передать приказ сотруднику Б непосредственно, или через цепочку подчинённых. Босс главнее любого сотрудника. Оказалось, что все сотрудники объединены ещё в одну организованную подобным образом тайную иерархическую структуру, производящую компьютерные вирусы. В тайной структуре может быть другой босс, а у сотрудников – другие начальники. Будем называть пару сотрудников А и Б *устойчивой*, если А главнее Б и в основной, и в тайной иерархических структурах. Требуется написать программу, определяющую количество устойчивых пар в компании.

#### Входные данные

В первой строке задано число N – количество сотрудников компании ( $1 \le N \le 100$  000). Во второй строке – N целых чисел  $a_i$ , где  $a_i$  = 0, если в официальной иерархии сотрудник с номером i является боссом, в противном случае  $a_i$  равно номеру непосредственного начальника сотрудника номер i. В третьей строке – N целых чисел  $b_i$ , где  $b_i$  = 0, если в тайной иерархии сотрудник с номером i является боссом, в противном случае  $b_i$  равно номеру непосредственного начальника сотрудника номер i. Нумерация сотрудников ведется с единицы в том порядке, в каком они упомянуты во входном файле.

#### Выходные данные

Выходной файл должен содержать единственное число – количество устойчивых пар.

#### Примечание

Данная задача содержит три подзадачи. Для оценки каждой подзадачи используется своя группа тестов. Баллы за подзадачу начисляются только в том случае, если все тесты из этой группы пройдены.

- 1. (оценивается в 25 баллов) Количество сотрудников N не превосходит 100.
- 2. (оценивается в 25 баллов) Количество сотрудников N не превосходит 2000.
- 3. (оценивается в 50 баллов) Количество сотрудников N не превосходит  $10^5$ .

#### Примеры

#### входные данные

| 3   |    |      |    |    |     |     |   |  |  |  |  |  |  |  |  |  |
|-----|----|------|----|----|-----|-----|---|--|--|--|--|--|--|--|--|--|
| 0 3 |    | 1    |    |    |     |     |   |  |  |  |  |  |  |  |  |  |
| 0 1 |    | 1    |    |    |     |     |   |  |  |  |  |  |  |  |  |  |
| вы  | ΧC | одні | ые | ед | цан | ные | Э |  |  |  |  |  |  |  |  |  |
| 2   |    |      |    |    |     |     |   |  |  |  |  |  |  |  |  |  |



### Окна

### Задача С. Окна

На экране расположены прямоугольные окна, каким-то образом перекрывающиеся (со сторонами, параллельными осям координат). Вам необходимо найти точку, которая покрыта наибольшим числом из них.

#### Входные данные

В первой строке входного файла записано число окон n ( $1 \le n \le 50\,000$ ). Следующие n строк содержат координаты окон  $x_{(1,\,i)}\,y_{(1,\,i)}\,x_{(2,\,i)}\,y_{(2,\,i)}$ , где  $(x_{(1,\,i)},y_{(1,\,i)})$  — координаты левого верхнего угла i-го окна, а  $(x_{(2,\,i)},y_{(2,\,i)})$  — правого нижнего (на экране компьютера y растет сверху вниз, а x — слева направо). Все координаты — целые числа, по модулю не превосходящие  $10^6$ .

#### Выходные данные

В первой строке выходного файла выведите максимальное число окон, покрывающих какую-либо из точек в данной конфигурации. Во второй строке выведите два целых числа, разделенных пробелом — координаты точки, покрытой максимальным числом окон. Окна считаются замкнутыми, т. е. покрывающими свои граничные точки.

#### Примеры

```
    входные данные

    2

    0 0 3 3

    1 1 4 4

    выходные данные

    2

    1 3
```

```
входные данные
1
0 0 1 1
выходные данные
1
0 1
```

```
      входные данные

      4

      0 0 1 1

      0 1 2

      1 0 2 1

      1 1 2 2

выходные данные
```

4 1 1

| входные данные  |  |  |
|-----------------|--|--|
| 5               |  |  |
| 0 0 1 1         |  |  |
| 0 1 1 2         |  |  |
| 0 0 2 2         |  |  |
| 1 0 2 1         |  |  |
| 1 1 2 2         |  |  |
| выходные данные |  |  |
| 5               |  |  |
| 1 1             |  |  |