# Aplicación

# Conceptos básicos de sistemas operativos

Fundamentos esenciales para comprender el funcionamiento de los sistemas informáticos modernos

# Sistema Operativo

# Introducción

- Fundamentos esenciales
- Base para comprender sistemas informáticos modernos
- Cruciales para profesionales de TI, administradores y desarrolladores
- 🌣 Más que un simple programa
- Ecosistema complejo que gestiona recursos
- Proporciona servicios y actúa como intermediario
- Entre hardware y aplicaciones



# **Componentes fundamentales**

Los conceptos básicos de un sistema operativo se agrupan en cinco elementos esenciales:



#### Los procesos

Programa en ejecución que requiere recursos específicos. Unidad básica de trabajo en un sistema operativo.



#### Los archivos

**Objetos que contienen datos** en un sistema informático. Mecanismo de abstracción para almacenamiento permanente.



#### Llamadas al sistema

Interfaz con el sistema operativo para solicitar servicios. Puente entre espacio de usuario y kernel.



#### El núcleo

Parte central y crítica del sistema operativo. Intermediario entre aplicaciones y hardware.



# El intérprete de comandos

**Interfaz entre usuarios** y sistema operativo. Traduce órdenes del usuario en acciones ejecutables.

# Los procesos

Un proceso es un programa en ejecución que requiere recursos específicos del sistema para funcionar.

# **Estados de un proceso**

**Ejecución**: usando CPU

Preparado: esperando CPU

**Espera**: esperando E/S

**Terminado**: finalizado

# **Conceptos relacionados**

- O Planificación y despacho
- Comunicación entre procesos
- Sincronización de recursos
- **Concurrencia** y paralelismo



# Importancia

- Unidad básica de trabajo
- Facilita multiprocesamiento

- Permite multitarea
- Optimiza uso de recursos

# Los archivos

Los archivos son objetos encargados de contener los datos en un sistema informático, permitiendo almacenar información de forma permanente.

**Atributos y propiedades** 

- **Nombre** y extensión
- Tamaño en bytes

Permisos de acceso

- **Fechas** de creación/modificación
- **♣** Tipos de archivos
  - Archivos de datos

Archivos ejecutables

Archivos de sistema

**Directorios** (carpetas)



Lectura de contenido

Escritura de datos

- **Eliminación** de archivos
- Sistema de archivos
  - Organización jerárquica
- Directorio raíz
- Subdirectorios anidados

Rutas absolutas y relativas

# Las llamadas al sistema

Las llamadas al sistema son **el conjunto de instrucciones que sirven como interfaz** con el sistema operativo para solicitar los servicios que ofrece.

# **→** Función principal

- Puente entre espacio de usuario y kernel
- Acceso controlado a recursos
- Proporciona seguridad y protección
- Abstracción del hardware

# **A** Categorías principales

- Gestión de procesos
- **Gestión de memoria**

- Gestión de archivos
- Protección y seguridad
- Gestión de dispositivos E/S



# \* Mecanismo de funcionamiento

- La aplicación solicita un servicio
- Se produce un cambio de modo (usuario → kernel)

El kernel ejecuta la operación

Devuelve el resultado a la aplicación

# ! Importancia

- Base para desarrollo de aplicaciones
- Optimización del rendimiento
- Interfaz estándar para programadores
- Control de **privilegios** de acceso

# El núcleo del sistema operativo

El núcleo (kernel) es la parte central y más crítica del sistema operativo, que actúa como intermediario entre las aplicaciones y el hardware.

# Tipos principales de núcleos

- Monolíticos: todo en un solo bloque
- A Híbridos: combinan ambos enfoques
- Microkernel: mínimo y modular
- Exokernel: mínima abstracción
- Funciones críticas
  - Gestión de procesos
  - Gestión de dispositivos
- Gestión de memoria
- Seguridad y protección



# Características principales

- Ejecución en modo privilegiado
- Cargado durante el arranque

- Residente en memoria
- Activo mientras el sistema opera
- Comparación de tipos
- Monolíticos: mayor rendimiento
- Híbridos: equilibrio

- Microkernel: mayor seguridad
- **Exokernel**: flexibilidad

# El intérprete de comandos

El intérprete de comandos (shell) es un programa especial que proporciona una interfaz entre los usuarios interactivos y el sistema operativo.

# Función principal

- **X** Traduce órdenes del usuario
- Permite automatización de tareas
- 1 Intermediario usuariosistema
- Ejecuta programas y comandos

# Tipos de intérpretes modernos

- Línea de comandos tradicionales
- **Entornos integrados** (Terminal)

- Shells avanzados (PowerShell, Zsh)
- **₹** Sistemas híbridos (WSL)



Ejemplos populares

- cmd.exe (Windows)
  - Bash (Linux/macOS)
- PowerShell (Windows)
- Zsh (macOS/Linux)
- Características avanzadas
- Scripting y automatización
- Personalización del entorno
- Historial de comandos
- Autocompletado de comandos

# Relación entre los conceptos básicos

Los cinco componentes fundamentales no funcionan de manera aislada, sino que están profundamente interconectados:









El **núcleo** gestiona la ejecución de **procesos** y la asignación de recursos a los mismos

Esta interconexión forma un sistema cohesivo donde cada componente depende de los demás para proporcionar una experiencia de usuario fluida y eficiente.

# Importancia en el funcionamiento del sistema

## Entender estos conceptos básicos es esencial porque:



#### Administración eficiente

Conocer cómo funcionan los **procesos**, **archivos** y el **núcleo** ayuda a optimizar el rendimiento y resolver problemas



#### Desarrollo de software

Los desarrolladores deben comprender las **llamadas al sistema** y la gestión de **procesos** para crear aplicaciones eficientes



### Mejora de la seguridad

Comprender cómo se gestionan los **permisos de archivos** y la **protección del núcleo** es fundamental para mantener un sistema seguro



### Automatización de tareas

El conocimiento del **intérprete de comandos** y los **procesos** permite crear scripts para automatizar operaciones repetitivas



## Base para aprendizaje avanzado

Estos conceptos son la base para entender tecnologías más avanzadas como virtualización, contenedores y computación en la nube

El dominio de estos conceptos básicos proporciona las herramientas necesarias para comprender, administrar y optimizar cualquier sistema operativo moderno.

# Evolución de los conceptos básicos

Aunque estos conceptos fundamentales se mantienen estables, han evolucionado significativamente con el tiempo:



#### **Procesos**

Multitarea simple → Multiprogramación avanzada → Gestión en entornos distribuidos



#### **Archivos**

Sistemas básicos → Journaling → Compresión y cifrado integrado



#### Llamadas al sistema

Interfaces limitadas 

API completas 

Soporte para virtualización y nube



#### Núcleo

Monolíticos simples → Arquitecturas híbridas → Microkernels optimizados



# Intérprete de comandos

Interfaces de texto básicas → Entornos ricos → Integración con IA y scripting avanzado



# Conclusión

- Base esencial para sistemas informáticos
- Proporciona conocimientos teóricos y herramientas prácticas para trabajar eficientemente
- Comprensión profunda de procesos, archivos, llamadas al sistema, núcleo e intérprete de comandos
- Permite aprovechar al máximo los recursos del sistema y resolver problemas complejos
- Conceptos **fundamentales pero en evolución constante** para adaptarse a nuevos desafíos tecnológicos



Dominar estos conceptos es esencial para cualquier profesional que desee comprender, administrar o desarrollar sobre sistemas informáticos modernos.