The Sainsbury Laboratory Summer School 2017	7

Contents

Welcome to The Sainsbury Laboratory Summer School 2017	5
Course schedule	7
Monday 31st July	7
Tuesday 1st August	7
Wednesday 2nd August	8
Thursday 3rd August	8
Friday 4th August	9
Saturday 5th August	9
Sunday 6th August	9
Monday 7th August	10
Tuesday 8th August	10
Wednesday 9th August	11
Thursday 10th August	11
Friday 11th August	11
Resistance Proteins	13
Keynote Lecture	14
Practical Session - Model pathosystems and effector triggered immunity readouts	14
Genomic Resources and Bioinformatics for Plant Microbe Interactions.	19
Keynote Lecture	20
Practical Session - From Sequence Data to Candidate Protein	20
Effectors and Immunity	23
Keynote Lecture	23
Practical Session - Practical Session Title	24
Surface Immunity	25
Keynote Lecture	25
Practical Session - Practical Session Title	26
Cellular Defence	27
Keynote Lecture	27
Practical Session - Practical Session Title	28

Wheat Genomics	29
Keynote Lecture	29
Practical Session - Practical Session Title	30
Proteomics	31
Keynote Lecture	31
Practical Session - Practical Session Title	32
Translations and Tipping the Balance	33
Keynote Lecture	33
Practical Session - Practical Session Title	34
General Information	35
Arriving into Norwich	35
Checking into Accomodation	37
Meals	37
Getting Around	37
Site Registration	38
Emergency Contacts	38
Transport	38
Norwich and Norwich Research Park	39
Wifi Connections	39
Social Media	39
Map	39
Excursion	40

Welcome to The Sainsbury Laboratory Summer School 2017

The last 20 years have provided a sophisticated understanding of how plants recognise relatively conserved microbial patterns to activate defence. In recent years DNA sequencing has allowed genomes and transcriptomes of eukaryotic rusts and mildew pathogens to be studied. High-throughput imaging advances have made possible the study and visualisation of intracellular interactions during pathogenesis and defence.

We will present and teach on these many aspects of plant-microbe interactions from the fundamental genomic, cellular and molecular processes to translational activities about how we convert basic discovery to real world impact.

The TSL Summer School will focus on dynamic and interactive practical sessions will naturally promote strong interactions between speakers and participants.

Over the next two weeks we will cover a wide range of topics, including:

- Pathogenomics
- Effectors
- Surface Immunity
- Bioinformatics
- Resistance Proteins
- Cellular Defence
- Proteomics
- Wheat Genomics
- Translation to the field

We hope that you will find the whole exercise enlightening and educational and perhaps also a little fun.

Course schedule

Monday 31st July

Introductions

Time	Activity	Venue
1000	Welcome to TSL and housekeeping	
1015	Introductions by TSL Staff	
1030	Participant Introductions	
1100	PEDAGOGICAL LECTURE -	
	Introduction to Plant Microbe	
	Interactions	
1200	Lunch	NRP Venues
1300	Poster Session	John Innes Centre Conference Centre
1500	Tour of The Sainsbury Laboratory and	Meet at John Innes Reception
	Norwich Research Park	

NB All activities will take place in the Training Suite, unless otherwise stated

Tuesday 1st August

Resistance Proteins. Led by Jonathan Jones

Time	Activity	Venue
930	PEDAGOGICAL LECTURE - Jonathan	
	Jones	
1100	Tea Break and Discussion	
1130	Practical Session	
1230	Lunch	NRP Venues
1330	KEYNOTE LECTURE - JIJIE CHAI -	Jane Rogers Seminar Room at EI
	Structural Study of Plant Receptor	
	Kinases	
1430	Tea Break and Discussion	

Time	Activity	Venue
1500	Practical Session	

Wednesday 2nd August

Resistance Proteins. Led by Jonathan Jones

Time	Activity	Venue
930	Practical Session	

Genomic Resources and Bioinformatics for Plant Microbe Interactions. Led by Dan MacLean

Time	Activity	Venue
1130	PEDAGOGICAL LECTURE - Dan	
	MacLean	
1230	Lunch	NRP Venues
1330	KEYNOTE LECTURE - DIANE	Jane Rogers Seminar Room at EI
	SAUNDERS - TBC	
1430	Tea Break and Discussion	
1500	Practical Session	
1800	Social Session with TSL Students	

Thursday 3rd August

Effectors and Plant Immunity. Led by Sophien Kamoun

Time	Activity	Venue
930	PEDAGOGICAL LECTURE - Sophien	
	Kamoun	
1100	Tea Break and Discussion	
1130	Practical Session	
1230	Lunch	NRP Venues
1330	KEYNOTE LECTURE - JENS BOCH -	JIC G34/35
	TBC	
1430	Tea Break and Discussion	
1500	Practical Session	

Friday 4th August

Effectors and Plant Immunity. Led by Sophien Kamoun

Time	Activity	Venue
930	Practical Session	

Surface Immunity. Led by Cyril Zipfel

Time	Activity	Venue
1130	PEDAGOGICAL LECTURE - Cyril Zipfel	
1230	Lunch	NRP Venues
1330	KEYNOTE LECTURE - STEFANIE RANF -TBC	JIC G34/35
1430	Tea Break and Discussion	
1500	Practical Session	
1900	Conference Dinner	Sainsbury Centre for Visual Arts

Saturday 5th August

Surface Immunity. Led by Cyril Zipfel

Time	Activity	Venue
930	Practical Session	

Sunday 6th August

Excursion

Time	Activity	Venue
1100	Board Coach to Cromer	JIC Reception
1600	Board Coach to Blakeney	Cromer Coach Park - TBC
1645	Bean's Seal Trip Departs	Quayside Blakeney
1845 (approx)	Arrive back at UEA	

Monday 7th August

Cellular Defence. Led by Silke Robatzek

Time	Activity	Venue
930	PEDAGOGICAL LECTURE - Silke	
	Robatzek	
1100	Tea Break and Discussion	
1130	Practical Session	
1230	Lunch	NRP Venues
1330	KEYNOTE LECTURE - PAUL BIRCH -	JIC G34/35
	TBC	
1430	Tea Break and Discussion	
1500	Practical Session	

Tuesday 8th August

Cellular Defence. Led by Silke Robatzek

Time	Activity	Venue
930	PEDAGOGICAL LECTURE - Silke	
	Robatzek	
1100	Tea Break and Discussion	
1130	Practical Session	
1230	Lunch	NRP Venues
1330	KEYNOTE LECTURE - PAUL BIRCH -	JIC G34/35
	TBC	
1430	Tea Break and Discussion	
1500	Practical Session	

Wheat Genomics. Led by Ksenia Krasileva

Time	Activity	Venue
1330	PEDAGOGICAL LECTURE - Ksenia	
1430	Krasileva KEYNOTE LECTURE - DANIEL CROLL -	IIC G24/25
1430	TBC)10 034/33
1530	Tea Break and Discussion	
1600	Practical Session	

Wednesday 9th August

Proteomics. Led by Frank Menke

Time	Activity	Venue
930	PEDAGOGICAL LECTURE - Frank	
	Menke	
1100	Tea Break and Discussion	
1130	Practical Session	
1230	Lunch	NRP Venues
1330	KEYNOTE LECTURE - DELPHINE	Jane Rogers Seminar Room at EI
	PFLEIGER - TBC	
1430	Tea Break and Discussion	
1500	Practical Session	

Thursday 10th August

Translations and Tipping the Balance. Led by Matt Moscou and Peter Van Esse

Time	Activity	Venue
930	PEDAGOGICAL LECTURE - Matt	
	Moscou	
1100	Tea Break and Discussion	
1130	Practical Session	
1230	Lunch	NRP Venues
1330	KEYNOTE LECTURE - BEAT KELLER	JIC G34/35
	-TBC	
1430	Tea Break and Discussion	
1500	Practical Session	

Friday 11th August

Translations and Tipping the Balance. Led by Peter Van Esse and Matt Moscou

Time	Activity	Venue
930	Practical Session	
1030	Tea Break and Discussion	
1100	PEDAGOGICAL LECTURE - Peter	
	Van Esse	
1200	Concluding Remarks	

Resistance Proteins

Led by Jonathan Jones

Plant Resistance Genes, Proteins and Mechanisms

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In iaculis sagittis metus quis malesuada. Vestibulum laoreet vel tortor at tempor. Mauris blandit volutpat risus, et placerat odio varius eget. Cras vitae diam sollicitudin justo vehicula ultrices. Curabitur consequat ornare odio ac hendrerit. Mauris bibendum diam nec gravida molestie. Nullam interdum, nulla eget sollicitudin elementum, ante lorem auctor odio, sit amet varius diam magna et lectus. Sed vehicula velit velit, convallis mollis erat laoreet nec. Cras semper blandit felis vel iaculis. Sed in mollis nulla. Nulla sed egestas odio, nec finibus lectus. In vel porttitor lacus, nec tincidunt neque. Suspendisse at magna non neque congue fermentum at ut augue. Vivamus suscipit finibus tortor, ut accumsan dui pretium nec. Integer luctus eros non convallis ornare.

Figure 1: This image should really be one that nicely summarises your topic. Not Roger.

Keynote Lecture

Jijie Chai - Structural Study of Plant Receptor Kinases

Max Planck Institute for Breeding Research, University of Cologne

Plant receptor kinases (RKs) are a large family of single transmembrane proteins that play important roles in diverse biological processes including development, growth and immunity. RKs are characterized with diversified extracellular domains (ECDs) and conserved intracellular kinase domains. Recognition of their cognate ligands by ECDs of RKs initiates activation of RKs. The molecular mechanisms underlying this process remained poorly defined. We recently solved the crystal structures of the ECDs derived from several RKs in complex with their respective ligands. These structures define the molecular mechanisms by which these RKs recognize their specific ligands. More importantly, a general mechanism underlying ligand-induced activation of RKs can be formulated. In the current talk, I will briefly review what we have done on structural study of RKs and present two examples of how RK activation and ligand recognition mechanisms were used for the matching of receptor-ligand pairs.

About Jijie Chai

Jijie Chai was born on April 16, 1966 in Liaoning province, China. He received his bachelor's degree in chemical engineering from Dalian Light Industry College, master's degree in applied chemistry from the Research Institute of Petroleum Processing (Beijing) and Ph.D. in analytical chemistry from the Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College.

From 1999 to 2004, he worked as postdoctoral fellow at Princeton University, where he started his research in structural biology.

In July 2004, he joined the National Institute of Biological Sciences as an independent investigator, where he established his own research programs, structural study of plant receptor kinases and NOD-like receptors. After working there for six and half years, he moved to Tsinghua University and continued his research as a full professor.

Early last year, he was awarded with the Alexander von Humboldt Professorship, and he moved to Cologne late March of 2017. Jijie has published a number of papers on RLKs and NLRs, advancing our understanding the mechanisms of RLK activation and NLR inhibition and activation.

Jijie is happily married and the father of a daughter. He is currently living in Cologne.

Practical Session - Model pathosystems and effector triggered immunity readouts

Led by Zane Duxbury

Aims and Objectives

- 1. Become familiar with using model organisms to probe the plant immune system
- 2. Understand and recognise the lifecycle and symptoms of some common diseases
- 3. Understand transient expression systems for determining relationship between **R** and **avirulence** genes

The plant immune system contains both cell surface and intracellular receptors. Cell surface receptors often confer broad spectrum recognition to conserved pathogen-associated molecular patterns (PAMPs), and upon recognition the plant mounts an immune response termed PAMP-triggered immunity (PTI). Pathogens co-evolve with their hosts and can overcome PTI through the evolution of proteins they secrete into plants, termed effectors, which suppress components of the PTI machinery. Plant intracellular receptors can detect effectors by binding them directly or by indirectly recognising their activity; this recognition triggers a strong immune response (effector-trigger immunity; ETI) that shares molecular components with PTI but is often stronger and is characterized by a cell-death response termed the hypersensitive response (HR). A recognised effector leads to loss of virulence in resistant plants with the cognate intracellular receptor, and is hence termed an avirulence factor (Avr) in this case. The intracellular receptors are encoded by Resistance (R) genes that have been strongly selected for by plant breeders for the strain-specific resistance conferred to pathogens that have broken other resistance mechanisms. This co-evolution of pathogen virulence versus plant immunity is encompassed by the zig-zag model of plant immunity (Figure 2)

The aim of this practical session will be to familiarise you with the use of model organisms to probe the plant immune system. The practical will include a general introduction to the oomycete pathogens of Arabidopsis: *Albugo spp* and *Hyaloperonospora arabidopsidis* (white rust and downy mildew respectively), the bacterial species *Pseudomonas syringae* and *P. fluorescens*, and the pathosystem of potato and the oomycete *Phytophthora infestans* (late blight) (Figure 3).

We will familiarise you with the life cycle, pathogenesis and symptoms of these pathogens. We will use various techniques to assess the growth of pathogens on their hosts and to assess immune responses mounted against these pathogens. For example, we will use light microscopy of trypan-blue stained Arabidopsis infected with downy mildew to qualitatively assess the success of infection and resistance of different genotypes of the pathogen and plant. We will introduce transient expression systems such as bombardment and Agrobacterium tumefaciens-mediated Nicotiana tabacum transformation (agroinfiltration) to determine the relationship between R- and avirulence-genes responsible for compatible (resulting in disease) or incompatible (resulting in healthy plants) interactions.

Figure 2: The zig-zag model of plant immunity (Jones and Dangl, 2006). The ultimate amplitude of defence is the combined sum of resistance output (ETI+PTI) and the difference of the effect of pathogen effectors (-ETS; effector triggered susceptibility). This diagram captures the observation that many PTI and ETI outputs are similar, but HR is associated specifically with successful ETI, and that virulent pathogens with specific effectors are able to suppress immunity to compromise immunity. Image is from Pumplin and Voinnet (2013).

Figure 3: Macroscopic characteristics of plant-pathogen interactions. a, b) Sporulating Hyaloperonospora arabidopsidis (seen on the edges of the leaf in b) growing on *Arabidopsis thaliana* leaves. Albugo is also growing on the abaxial surface of the leaf in b. c) Trypan blue staining of a *H. arabidopsidis-infected* leaf of Arabidopsis. d) Foliar symptoms of *Phytophthora infestans* infection of potato. e) Hypersensitive cell death in tobacco leaf resulting from *Agrobacterium tumefaciens*-mediated transformation with cognate R gene and Avr gene.

Genomic Resources and Bioinformatics for Plant Microbe Interactions.

Led by Dan MacLean

The increase in the generation and analysis of sequence data in the last ten years has had a profound effect on plant and microbe interaction research. The genomes of the wide range of host and pathogen's of interest are now open to study in a way that is within reach of most scientists - not just large genome sequencing institutes - and many laboratories are now undertaking genomics as a routine approach.

The deluge of data created by new sequencing approaches has been collected into a wide range of general and domain specific databases, each of which contain different information accessed in different ways. Knowing which are the most useful databases in a given context is therefore a tricky question and in this session we will take a tour of the most widely-used including Ensembl¹, PhytoPath², SolGenomics³, TAIR⁴ and AraPort⁵.

Sequence data are used in a wide range of applications and the source molecule will be selected in an application specific way. Genomic DNA is used for assembly of draft genomes, RNA is used for gene expression analysis, genome annotation and exome construction. Both DNA and RNA get used to identify genetic polymorphisms. Mixed populations of nucleic acids from environmental (e.g soil or pathogen/host interaction sites) are used to study species compositions. A wide range of bioinformatics tools have been developed and are in common use for these approaches, so in this topic we will study briefly the tools and their core algorithms and competencies with the aim of helping you to decide on the right tools for any particular analysis that you may wish to do outside of the course. A useful guide is available in MacLean et al. (2009). In particular we will look at algorithms and tools for *de novo* assembly of sequence including SOAPdenovo (Luo et al., 2012) and Celera Assembler⁶. We will study tools for RNASeq expression and annotation analyses including Tophat (Trapnell et al., 2009) and Bowtie (Langmead and Salzberg, 2012) and DESeq (Anders and Huber, 2010) and edgeR (Robinson et al., 2010).

¹http://ensembl.org

²http://phytopathdb.org

³http://solgenomics.net

⁴http://arabidopsis.org

⁵http://araport.org

⁶http://wgs-assembler.sourceforge.net/wiki/index.php?title=Main_Page

Figure 4: Graphical summary of a *de novo* assembly algorithm. Sequence reads are broken down into constituent *k*-mers and a network of overlapping *k*-mers is produced. The paths in the graph are traversed and the *k*-mers collected into a growing string representing a long sequence in the original data and therefore genome.

Keynote Lecture

Diane Saunders - Field Pathogenomics

John Innes Centre, Norwich, UK

About Diane Saunders

bio bio bio

Practical Session - From Sequence Data to Candidate Protein

Led by Dan MacLean

Aims and Objectives

- 1. Understand Strengths and Weaknesses of High Throughput Sequence Data
- 2. Know how to call SNPs from HTS data on
- 3. Categorise SNPs according to an expected genetic background

Genomics has come a long way. We can now sequence genomes quickly and to a reasonable degree of accuracy. We can create in a high-throughput manner an inventory of sub-regions in a genome that we

Figure 5: FastQC Quality Control of sequence reads

think are genes. We know the functions (or some of the functions) of lots of genes and we can infer functions of newly discovered genes by comparison of sequence or structure, basically by seeing whether our new thing looks like something else.

These methods are actually only PREDICTIONS of function. Looking a bit like something else is only a clue to what something does. It frequently fails us.

In this practical we will look at the powerful technique of mutational genomics. This is possibly the coolest thing ever as it involves mutating a living organism so that it is different from other things and then sequencing the genome to pinpoint the exact changes that cause the difference. We don't have the scope or chemicals to do the mutation bit, so we'll pick up with the genomics and use Galaxy and Galaxy tools to carry out the analysis that takes us from sequence data to actual candidate mutations in the genome sequence.

With mutational genomics we deal initially with the effect of the gene on the whole organism. By performing mutagenesis on our favourite organism then carrying out a genetic screen (Page and Grossniklaus, 2002) that selects individuals that have changed in the phenotype we are interested in, we have our first foothold on function. We can study those individuals and apply the principles of genetics, use modern high-throughput sequencing and bioinformatics tools to identify the gene causing that phenotype change (or at least ones involved in the process we have messed up).

We will use tools in the Galaxy (Goecks et al., 2010) framework including FastQC for quality control of sequence data (Figure 5) (Andrews, 2017), BWA for read mapping and alignment (Li and Durbin, 2009) and CandiSNP (Etherington et al., 2014) to identify candidate mutations (Figure 6).

Figure 6: CandiSNP visualisation of SNPs

Effectors and Immunity

Led by Sophien Kamoun

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In iaculis sagittis metus quis malesuada. Vestibulum laoreet vel tortor at tempor. Mauris blandit volutpat risus, et placerat odio varius eget. Cras vitae diam sollicitudin justo vehicula ultrices. Curabitur consequat ornare odio ac hendrerit. Mauris bibendum diam nec gravida molestie. Nullam interdum, nulla eget sollicitudin elementum, ante lorem auctor odio, sit amet varius diam magna et lectus. Sed vehicula velit velit, convallis mollis erat laoreet nec. Cras semper blandit felis vel iaculis. Sed in mollis nulla. Nulla sed egestas odio, nec finibus lectus. In vel porttitor lacus, nec tincidunt neque. Suspendisse at magna non neque congue fermentum at ut augue. Vivamus suscipit finibus tortor, ut accumsan dui pretium nec. Integer luctus eros non convallis ornare.

Pellentesque dapibus arcu rutrum neque tempor, ac consequat nisi consectetur. Nunc eu tortor sed lorem vehicula finibus. Sed sed lacus at erat fringilla auctor. Aenean malesuada mi est, sit amet molestie ante malesuada in. Aenean elit risus, imperdiet quis pretium ac, imperdiet a turpis. Praesent cursus, orci a viverra tincidunt, augue tortor volutpat erat, a elementum nisi ante vel nisl. Vestibulum purus nisl, imperdiet egestas ultricies nec, tempor vitae ligula. Integer dapibus magna vitae orci pharetra rhoncus. Vestibulum in mauris feugiat, pulvinar massa ac, convallis lacus. In hac habitasse platea dictumst.

Aenean sed leo sit amet dolor congue semper. Curabitur non malesuada erat. Phasellus scelerisque rutrum tristique. Duis posuere quam tellus, eu posuere lorem convallis facilisis. Duis euismod tincidunt neque, eu pellentesque nisi mollis sed. Suspendisse eu nunc rutrum massa iaculis rhoncus rutrum nec velit. Nulla et erat quis urna malesuada auctor. Vestibulum sit amet diam maximus, luctus nulla mollis, vestibulum nisi.

Keynote Lecture

Keynote Speaker Name - Keynote Speaker Title

Keynote Speaker Affiliation

About Keynote Speaker

bio bio bio

Figure 7: This image should really be one that nicely summarises your topic. Not Roger.

Practical Session - Practical Session Title

Led by Practical Session Lead

Aims and Objectives

- 1. Teach
- 2. Learn
- 3. Profit

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In iaculis sagittis metus quis malesuada. Vestibulum laoreet vel tortor at tempor. Mauris blandit volutpat risus, et placerat odio varius eget. Cras vitae diam sollicitudin justo vehicula ultrices. Curabitur consequat ornare odio ac hendrerit. Mauris bibendum diam nec gravida molestie. Nullam interdum, nulla eget sollicitudin elementum, ante lorem auctor odio, sit amet varius diam magna et lectus. Sed vehicula velit velit, convallis mollis erat laoreet nec. Cras semper blandit felis vel iaculis. Sed in mollis nulla. Nulla sed egestas odio, nec finibus lectus. In vel porttitor lacus, nec tincidunt neque. Suspendisse at magna non neque congue fermentum at ut augue. Vivamus suscipit finibus tortor, ut accumsan dui pretium nec. Integer luctus eros non convallis ornare.

Pellentesque dapibus arcu rutrum neque tempor, ac consequat nisi consectetur. Nunc eu tortor sed lorem vehicula finibus. Sed sed lacus at erat fringilla auctor. Aenean malesuada mi est, sit amet molestie ante malesuada in. Aenean elit risus, imperdiet quis pretium ac, imperdiet a turpis. Praesent cursus, orci a viverra tincidunt, augue tortor volutpat erat, a elementum nisi ante vel nisl. Vestibulum purus nisl, imperdiet egestas ultricies nec, tempor vitae ligula. Integer dapibus magna vitae orci pharetra rhoncus. Vestibulum in mauris feugiat, pulvinar massa ac, convallis lacus. In hac habitasse platea dictumst.

Surface Immunity

Led by Cyril Zipfel

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In iaculis sagittis metus quis malesuada. Vestibulum laoreet vel tortor at tempor. Mauris blandit volutpat risus, et placerat odio varius eget. Cras vitae diam sollicitudin justo vehicula ultrices. Curabitur consequat ornare odio ac hendrerit. Mauris bibendum diam nec gravida molestie. Nullam interdum, nulla eget sollicitudin elementum, ante lorem auctor odio, sit amet varius diam magna et lectus. Sed vehicula velit velit, convallis mollis erat laoreet nec. Cras semper blandit felis vel iaculis. Sed in mollis nulla. Nulla sed egestas odio, nec finibus lectus. In vel porttitor lacus, nec tincidunt neque. Suspendisse at magna non neque congue fermentum at ut augue. Vivamus suscipit finibus tortor, ut accumsan dui pretium nec. Integer luctus eros non convallis ornare.

Pellentesque dapibus arcu rutrum neque tempor, ac consequat nisi consectetur. Nunc eu tortor sed lorem vehicula finibus. Sed sed lacus at erat fringilla auctor. Aenean malesuada mi est, sit amet molestie ante malesuada in. Aenean elit risus, imperdiet quis pretium ac, imperdiet a turpis. Praesent cursus, orci a viverra tincidunt, augue tortor volutpat erat, a elementum nisi ante vel nisl. Vestibulum purus nisl, imperdiet egestas ultricies nec, tempor vitae ligula. Integer dapibus magna vitae orci pharetra rhoncus. Vestibulum in mauris feugiat, pulvinar massa ac, convallis lacus. In hac habitasse platea dictumst.

Aenean sed leo sit amet dolor congue semper. Curabitur non malesuada erat. Phasellus scelerisque rutrum tristique. Duis posuere quam tellus, eu posuere lorem convallis facilisis. Duis euismod tincidunt neque, eu pellentesque nisi mollis sed. Suspendisse eu nunc rutrum massa iaculis rhoncus rutrum nec velit. Nulla et erat quis urna malesuada auctor. Vestibulum sit amet diam maximus, luctus nulla mollis, vestibulum nisi.

Keynote Lecture

Keynote Speaker Name - Keynote Speaker Title

Keynote Speaker Affiliation

About Keynote Speaker

bio bio bio

Figure 8: This image should really be one that nicely summarises your topic. Not Roger.

Practical Session - Practical Session Title

Led by Practical Session Lead

Aims and Objectives

- 1. Teach
- 2. Learn
- 3. Profit

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In iaculis sagittis metus quis malesuada. Vestibulum laoreet vel tortor at tempor. Mauris blandit volutpat risus, et placerat odio varius eget. Cras vitae diam sollicitudin justo vehicula ultrices. Curabitur consequat ornare odio ac hendrerit. Mauris bibendum diam nec gravida molestie. Nullam interdum, nulla eget sollicitudin elementum, ante lorem auctor odio, sit amet varius diam magna et lectus. Sed vehicula velit velit, convallis mollis erat laoreet nec. Cras semper blandit felis vel iaculis. Sed in mollis nulla. Nulla sed egestas odio, nec finibus lectus. In vel porttitor lacus, nec tincidunt neque. Suspendisse at magna non neque congue fermentum at ut augue. Vivamus suscipit finibus tortor, ut accumsan dui pretium nec. Integer luctus eros non convallis ornare.

Pellentesque dapibus arcu rutrum neque tempor, ac consequat nisi consectetur. Nunc eu tortor sed lorem vehicula finibus. Sed sed lacus at erat fringilla auctor. Aenean malesuada mi est, sit amet molestie ante malesuada in. Aenean elit risus, imperdiet quis pretium ac, imperdiet a turpis. Praesent cursus, orci a viverra tincidunt, augue tortor volutpat erat, a elementum nisi ante vel nisl. Vestibulum purus nisl, imperdiet egestas ultricies nec, tempor vitae ligula. Integer dapibus magna vitae orci pharetra rhoncus. Vestibulum in mauris feugiat, pulvinar massa ac, convallis lacus. In hac habitasse platea dictumst.

Cellular Defence

Led by Silke Robatzek

Visualisation of Cellular Dynamics using Advanced Bioimaging

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In iaculis sagittis metus quis malesuada. Vestibulum laoreet vel tortor at tempor. Mauris blandit volutpat risus, et placerat odio varius eget. Cras vitae diam sollicitudin justo vehicula ultrices. Curabitur consequat ornare odio ac hendrerit. Mauris bibendum diam nec gravida molestie. Nullam interdum, nulla eget sollicitudin elementum, ante lorem auctor odio, sit amet varius diam magna et lectus. Sed vehicula velit velit, convallis mollis erat laoreet nec. Cras semper blandit felis vel iaculis. Sed in mollis nulla. Nulla sed egestas odio, nec finibus lectus. In vel porttitor lacus, nec tincidunt neque. Suspendisse at magna non neque congue fermentum at ut augue. Vivamus suscipit finibus tortor, ut accumsan dui pretium nec. Integer luctus eros non convallis ornare.

Pellentesque dapibus arcu rutrum neque tempor, ac consequat nisi consectetur. Nunc eu tortor sed lorem vehicula finibus. Sed sed lacus at erat fringilla auctor. Aenean malesuada mi est, sit amet molestie ante malesuada in. Aenean elit risus, imperdiet quis pretium ac, imperdiet a turpis. Praesent cursus, orci a viverra tincidunt, augue tortor volutpat erat, a elementum nisi ante vel nisl. Vestibulum purus nisl, imperdiet egestas ultricies nec, tempor vitae ligula. Integer dapibus magna vitae orci pharetra rhoncus. Vestibulum in mauris feugiat, pulvinar massa ac, convallis lacus. In hac habitasse platea dictumst.

Aenean sed leo sit amet dolor congue semper. Curabitur non malesuada erat. Phasellus scelerisque rutrum tristique. Duis posuere quam tellus, eu posuere lorem convallis facilisis. Duis euismod tincidunt neque, eu pellentesque nisi mollis sed. Suspendisse eu nunc rutrum massa iaculis rhoncus rutrum nec velit. Nulla et erat quis urna malesuada auctor. Vestibulum sit amet diam maximus, luctus nulla mollis, vestibulum nisi.

Keynote Lecture

Keynote Speaker Name - Keynote Speaker Title

Keynote Speaker Affiliation

About Keynote Speaker

bio bio bio

Figure 9: This image should really be one that nicely summarises your topic. Not Roger.

Practical Session - Practical Session Title

Led by Practical Session Lead

Aims and Objectives

- 1. Teach
- 2. Learn
- 3. Profit

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In iaculis sagittis metus quis malesuada. Vestibulum laoreet vel tortor at tempor. Mauris blandit volutpat risus, et placerat odio varius eget. Cras vitae diam sollicitudin justo vehicula ultrices. Curabitur consequat ornare odio ac hendrerit. Mauris bibendum diam nec gravida molestie. Nullam interdum, nulla eget sollicitudin elementum, ante lorem auctor odio, sit amet varius diam magna et lectus. Sed vehicula velit velit, convallis mollis erat laoreet nec. Cras semper blandit felis vel iaculis. Sed in mollis nulla. Nulla sed egestas odio, nec finibus lectus. In vel porttitor lacus, nec tincidunt neque. Suspendisse at magna non neque congue fermentum at ut augue. Vivamus suscipit finibus tortor, ut accumsan dui pretium nec. Integer luctus eros non convallis ornare.

Pellentesque dapibus arcu rutrum neque tempor, ac consequat nisi consectetur. Nunc eu tortor sed lorem vehicula finibus. Sed sed lacus at erat fringilla auctor. Aenean malesuada mi est, sit amet molestie ante malesuada in. Aenean elit risus, imperdiet quis pretium ac, imperdiet a turpis. Praesent cursus, orci a viverra tincidunt, augue tortor volutpat erat, a elementum nisi ante vel nisl. Vestibulum purus nisl, imperdiet egestas ultricies nec, tempor vitae ligula. Integer dapibus magna vitae orci pharetra rhoncus. Vestibulum in mauris feugiat, pulvinar massa ac, convallis lacus. In hac habitasse platea dictumst.

Wheat Genomics

Led by Ksenia Krasileva

Adopting new wheat genomic tools to dissect plant innate immunity

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In iaculis sagittis metus quis malesuada. Vestibulum laoreet vel tortor at tempor. Mauris blandit volutpat risus, et placerat odio varius eget. Cras vitae diam sollicitudin justo vehicula ultrices. Curabitur consequat ornare odio ac hendrerit. Mauris bibendum diam nec gravida molestie. Nullam interdum, nulla eget sollicitudin elementum, ante lorem auctor odio, sit amet varius diam magna et lectus. Sed vehicula velit velit, convallis mollis erat laoreet nec. Cras semper blandit felis vel iaculis. Sed in mollis nulla. Nulla sed egestas odio, nec finibus lectus. In vel porttitor lacus, nec tincidunt neque. Suspendisse at magna non neque congue fermentum at ut augue. Vivamus suscipit finibus tortor, ut accumsan dui pretium nec. Integer luctus eros non convallis ornare.

Pellentesque dapibus arcu rutrum neque tempor, ac consequat nisi consectetur. Nunc eu tortor sed lorem vehicula finibus. Sed sed lacus at erat fringilla auctor. Aenean malesuada mi est, sit amet molestie ante malesuada in. Aenean elit risus, imperdiet quis pretium ac, imperdiet a turpis. Praesent cursus, orci a viverra tincidunt, augue tortor volutpat erat, a elementum nisi ante vel nisl. Vestibulum purus nisl, imperdiet egestas ultricies nec, tempor vitae ligula. Integer dapibus magna vitae orci pharetra rhoncus. Vestibulum in mauris feugiat, pulvinar massa ac, convallis lacus. In hac habitasse platea dictumst.

Aenean sed leo sit amet dolor congue semper. Curabitur non malesuada erat. Phasellus scelerisque rutrum tristique. Duis posuere quam tellus, eu posuere lorem convallis facilisis. Duis euismod tincidunt neque, eu pellentesque nisi mollis sed. Suspendisse eu nunc rutrum massa iaculis rhoncus rutrum nec velit. Nulla et erat quis urna malesuada auctor. Vestibulum sit amet diam maximus, luctus nulla mollis, vestibulum nisi.

Keynote Lecture

Keynote Speaker Name - Keynote Speaker Title

Keynote Speaker Affiliation

About Keynote Speaker

bio bio bio

Figure 10: This image should really be one that nicely summarises your topic. Not Roger.

Practical Session - Practical Session Title

Led by Practical Session Lead

Aims and Objectives

- 1. Teach
- 2. Learn
- 3. Profit

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In iaculis sagittis metus quis malesuada. Vestibulum laoreet vel tortor at tempor. Mauris blandit volutpat risus, et placerat odio varius eget. Cras vitae diam sollicitudin justo vehicula ultrices. Curabitur consequat ornare odio ac hendrerit. Mauris bibendum diam nec gravida molestie. Nullam interdum, nulla eget sollicitudin elementum, ante lorem auctor odio, sit amet varius diam magna et lectus. Sed vehicula velit velit, convallis mollis erat laoreet nec. Cras semper blandit felis vel iaculis. Sed in mollis nulla. Nulla sed egestas odio, nec finibus lectus. In vel porttitor lacus, nec tincidunt neque. Suspendisse at magna non neque congue fermentum at ut augue. Vivamus suscipit finibus tortor, ut accumsan dui pretium nec. Integer luctus eros non convallis ornare.

Pellentesque dapibus arcu rutrum neque tempor, ac consequat nisi consectetur. Nunc eu tortor sed lorem vehicula finibus. Sed sed lacus at erat fringilla auctor. Aenean malesuada mi est, sit amet molestie ante malesuada in. Aenean elit risus, imperdiet quis pretium ac, imperdiet a turpis. Praesent cursus, orci a viverra tincidunt, augue tortor volutpat erat, a elementum nisi ante vel nisl. Vestibulum purus nisl, imperdiet egestas ultricies nec, tempor vitae ligula. Integer dapibus magna vitae orci pharetra rhoncus. Vestibulum in mauris feugiat, pulvinar massa ac, convallis lacus. In hac habitasse platea dictumst.

Proteomics

Led by Frank Menke Application of Discovery and Targeted Proteomics in Plant Pathogen interactions

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In iaculis sagittis metus quis malesuada. Vestibulum laoreet vel tortor at tempor. Mauris blandit volutpat risus, et placerat odio varius eget. Cras vitae diam sollicitudin justo vehicula ultrices. Curabitur consequat ornare odio ac hendrerit. Mauris bibendum diam nec gravida molestie. Nullam interdum, nulla eget sollicitudin elementum, ante lorem auctor odio, sit amet varius diam magna et lectus. Sed vehicula velit velit, convallis mollis erat laoreet nec. Cras semper blandit felis vel iaculis. Sed in mollis nulla. Nulla sed egestas odio, nec finibus lectus. In vel porttitor lacus, nec tincidunt neque. Suspendisse at magna non neque congue fermentum at ut augue. Vivamus suscipit finibus tortor, ut accumsan dui pretium nec. Integer luctus eros non convallis ornare.

Pellentesque dapibus arcu rutrum neque tempor, ac consequat nisi consectetur. Nunc eu tortor sed lorem vehicula finibus. Sed sed lacus at erat fringilla auctor. Aenean malesuada mi est, sit amet molestie ante malesuada in. Aenean elit risus, imperdiet quis pretium ac, imperdiet a turpis. Praesent cursus, orci a viverra tincidunt, augue tortor volutpat erat, a elementum nisi ante vel nisl. Vestibulum purus nisl, imperdiet egestas ultricies nec, tempor vitae ligula. Integer dapibus magna vitae orci pharetra rhoncus. Vestibulum in mauris feugiat, pulvinar massa ac, convallis lacus. In hac habitasse platea dictumst.

Aenean sed leo sit amet dolor congue semper. Curabitur non malesuada erat. Phasellus scelerisque rutrum tristique. Duis posuere quam tellus, eu posuere lorem convallis facilisis. Duis euismod tincidunt neque, eu pellentesque nisi mollis sed. Suspendisse eu nunc rutrum massa iaculis rhoncus rutrum nec velit. Nulla et erat quis urna malesuada auctor. Vestibulum sit amet diam maximus, luctus nulla mollis, vestibulum nisi.

Keynote Lecture

Keynote Speaker Name - Keynote Speaker Title

Keynote Speaker Affiliation

About Keynote Speaker

bio bio bio

Figure 11: This image should really be one that nicely summarises your topic. Not Roger.

Practical Session - Practical Session Title

Led by Practical Session Lead

Aims and Objectives

- 1. Teach
- 2. Learn
- 3. Profit

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In iaculis sagittis metus quis malesuada. Vestibulum laoreet vel tortor at tempor. Mauris blandit volutpat risus, et placerat odio varius eget. Cras vitae diam sollicitudin justo vehicula ultrices. Curabitur consequat ornare odio ac hendrerit. Mauris bibendum diam nec gravida molestie. Nullam interdum, nulla eget sollicitudin elementum, ante lorem auctor odio, sit amet varius diam magna et lectus. Sed vehicula velit velit, convallis mollis erat laoreet nec. Cras semper blandit felis vel iaculis. Sed in mollis nulla. Nulla sed egestas odio, nec finibus lectus. In vel porttitor lacus, nec tincidunt neque. Suspendisse at magna non neque congue fermentum at ut augue. Vivamus suscipit finibus tortor, ut accumsan dui pretium nec. Integer luctus eros non convallis ornare.

Pellentesque dapibus arcu rutrum neque tempor, ac consequat nisi consectetur. Nunc eu tortor sed lorem vehicula finibus. Sed sed lacus at erat fringilla auctor. Aenean malesuada mi est, sit amet molestie ante malesuada in. Aenean elit risus, imperdiet quis pretium ac, imperdiet a turpis. Praesent cursus, orci a viverra tincidunt, augue tortor volutpat erat, a elementum nisi ante vel nisl. Vestibulum purus nisl, imperdiet egestas ultricies nec, tempor vitae ligula. Integer dapibus magna vitae orci pharetra rhoncus. Vestibulum in mauris feugiat, pulvinar massa ac, convallis lacus. In hac habitasse platea dictumst.

Translations and Tipping the Balance

Led by Matt Moscou and Peter Van Esse

Exploiting Knowledge of Plant Pathogen Interactions for Durable Disease Resistance

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In iaculis sagittis metus quis malesuada. Vestibulum laoreet vel tortor at tempor. Mauris blandit volutpat risus, et placerat odio varius eget. Cras vitae diam sollicitudin justo vehicula ultrices. Curabitur consequat ornare odio ac hendrerit. Mauris bibendum diam nec gravida molestie. Nullam interdum, nulla eget sollicitudin elementum, ante lorem auctor odio, sit amet varius diam magna et lectus. Sed vehicula velit velit, convallis mollis erat laoreet nec. Cras semper blandit felis vel iaculis. Sed in mollis nulla. Nulla sed egestas odio, nec finibus lectus. In vel porttitor lacus, nec tincidunt neque. Suspendisse at magna non neque congue fermentum at ut augue. Vivamus suscipit finibus tortor, ut accumsan dui pretium nec. Integer luctus eros non convallis ornare.

Pellentesque dapibus arcu rutrum neque tempor, ac consequat nisi consectetur. Nunc eu tortor sed lorem vehicula finibus. Sed sed lacus at erat fringilla auctor. Aenean malesuada mi est, sit amet molestie ante malesuada in. Aenean elit risus, imperdiet quis pretium ac, imperdiet a turpis. Praesent cursus, orci a viverra tincidunt, augue tortor volutpat erat, a elementum nisi ante vel nisl. Vestibulum purus nisl, imperdiet egestas ultricies nec, tempor vitae ligula. Integer dapibus magna vitae orci pharetra rhoncus. Vestibulum in mauris feugiat, pulvinar massa ac, convallis lacus. In hac habitasse platea dictumst.

Aenean sed leo sit amet dolor congue semper. Curabitur non malesuada erat. Phasellus scelerisque rutrum tristique. Duis posuere quam tellus, eu posuere lorem convallis facilisis. Duis euismod tincidunt neque, eu pellentesque nisi mollis sed. Suspendisse eu nunc rutrum massa iaculis rhoncus rutrum nec velit. Nulla et erat quis urna malesuada auctor. Vestibulum sit amet diam maximus, luctus nulla mollis, vestibulum nisi.

Keynote Lecture

Keynote Speaker Name - Keynote Speaker Title

Keynote Speaker Affiliation

About Keynote Speaker

bio bio bio

Figure 12: This image should really be one that nicely summarises your topic. Not Roger.

Practical Session - Practical Session Title

Led by Matt Moscou

Aims and Objectives

- 1. Understand different methods for resistance loci
- 2. Introduce basic R packages for QTL analysis
- 3. Understand how to link genotype (genetic maps) with phenotype (continuous/discrete measurements) with packages.

Mendelian inheritance of resistance to plant pathogens was first established by Sir Roland Henry Biffen in 1907. By the end of the 20th century, the link of phenotype and genotype was established by map-based cloning of plant resistance genes to a range of plant pathogens. Although substantial advances have been made in cloning resistance genes from model species with small genomes, technical hurdles still exist for large complex genomes that may have little or no sequence information. This practical will consist of a general introduction of the different methodologies and approaches for identifying loci contributing to resistance in complex uncharacterized genomes and a tutorial on using R/qtl to link genotype (genetic maps) with phenotype (both quantitative and qualitative data).

General Information

Arriving into Norwich

Arriving by Air

Norwich International Airport

Norwich International Airport⁷ is served by KLM⁸ and the regional carriers Flybe⁹, BMI Regional¹⁰, and Eastern Airways¹¹, with direct connections to Amsterdam, Manchester, Edinburgh, and Aberdeen. Form the airport you can take a taxi or local bus¹² (with transfer) to get to the Norwich Research Park. Note that if you fly out of Norwich airport you will need to pay a £10 Airport Development Fee¹³ before you can go to your gate. Norwich airport is, however, a very convenient way to reach Norwich from outside the UK.

London Airports

You can also arrive at any of the London airports and take a train or coach to Norwich. Stansted Airport is the closest and has direct rail connections to Norwich.

Arriving by Train

Another option, especially if you are based in the UK, or are arriving at another airport, it to take Britain's national train network to Norwich Train Station¹⁴, located in downtown Norwich. From there you can take a local bus or a taxi to Norwich Research Park. National Rail¹⁵ and TheTrainLine¹⁶ are two comprehensive online resource for booking train travel within the UK.

⁷http://www.norwichairport.co.uk/

⁸http://www.klm.com/

⁹http://www.flybe.com/

¹⁰ http://www.bmiregional.com/

¹¹ http://www.easternairways.com/

¹² http://www.travelineeastanglia.org.uk/ea/XSLT_TTB_REQUEST?language=en&command=direct&net=ea&line=21603&sup=%20&project=y08&outputFormat=o&itdLPxx_displayHeader=false&lineVer=1&itdLPxx_spTr=1

¹³ http://www.norwichairport.co.uk/content.asp?pid=92

¹⁴http://www.nationalrail.co.uk/stations_destinations/NRW.aspx

¹⁵ http://www.nationalrail.co.uk/

¹⁶ http://www.thetrainline.com/stations/norwich

Arriving by Coach

You can also arrive in Norwich via coach. Norwich Bus Station¹⁷ is downtown and is also served by local buses and taxis once you arrive.

Arriving by Car and Parking

See the Sainsbury Laboratory¹⁸ and UEA¹⁹ getting here pages.

Parking at the Conference Centre is "ample and free for all events²⁰". If you require parking at the conference venue, please use the JIC Visitor's car park (follow the signs we will put up). When you are at registration, please tell us your license plate number, make, and colour so we can register it with JIC security.

Those staying at UEA will be able to park in the Main car park on campus. Parking will be available in the Main car park on campus. UEA car park charges are listed on the UEA car parking for visitors²¹ page

Getting from and into Central Norwich by Bus

First Group²² is the major local bus provider in Norwich. This map shows the complete network²³, and these buses specifically serve the Norwich Research Park or the UEA campus:

- 11/12²⁴: Can catch these routes by walking down Colney Lane, towards the Hospital, and at the first bus stop past the roundabout.
- 13/13A/13B/13C/X13²⁵: Can catch these routes by walking down Colney Lane, towards the Hospital, and at the first bus stop past the roundabout.
- 21/21A/22²⁶: Can catch these right outside Norwich Research Park, on Colney Lane.
- 25²⁷: Goes from the rail station through the UEA campus, all the way to the end of Chancellor's Drive.
- **26/26A**²⁸: Goes from the rail station to University and nearby hospital. Can catch the 26 right out Norwich Research Park, on Colney Lane.
- These bus stops have been added to the Summer School Google Map²⁹.

¹⁷http://www.norfolk.gov.uk/Travel_and_transport/TravelNorfolk/Buses/Bus_interchanges_and_stops/NCC155388

¹⁸ http://www.tsl.ac.uk/contact/

¹⁹ https://www.uea.ac.uk/about/visiting-staying/getting-here

²⁰http://www.venue-norwich.info/FAQs.html

²¹https://portal.uea.ac.uk/estates/travel-and-transport/by-car/parking-for-visitors

²²http://www.firstgroup.com/ukbus/suffolk_norfolk/journey_planning/maps/

²³http://www.firstgroup.com/ukbus/suffolk_norfolk/assets/pdfs/journey_planning/maps/norwich_map.pdf

 $^{^{24}} https://www.firstgroup.com/norfolk-suffolk/plan-journey/timetables/?operator = 22 \& service = 11/12 \& page = 1 \& redirect = norton = 11/12 \& page = 1 \& redirect = 11/12$

²⁵https://www.firstgroup.com/norfolk-suffolk/plan-journey/timetables/?operator=22&service=13/13A/13B/13C/X13&page=1&redirect=no

²⁶https://www.firstgroup.com/norfolk-suffolk/plan-journey/timetables/?operator=22&service=21&page=1&redirect=no

²⁷https://www.firstgroup.com/norfolk-suffolk/plan-journey/timetables/?operator=22&service=25&page=1&redirect=no

²⁸http://www.firstgroup.com/ukbus/suffolk_norfolk/journey_planning/timetables/index.php?operator=22&service=26&page=1&redirect=no

²⁹https://drive.google.com/open?id=1z7gP4EFxyaGBmp69A2woREZWNjo&usp=sharing

Checking into Accomodation

Accommodation will be at the UEA, Britten House. Check in will be at the UEA Security Lodge at any time from 2pm on the day of your arrival.

Meals

Breakfast and Lunch

Breakfast in the Zest Restaurant is served each day from 8 am to 9 am. Lunches can be purchased from The Centrum building on site, a range of salads, sandwiches, soups and hot meals are available. Coffee, tea and other beverages will be available during breaks.

Evening Meals

Evening meals are self catered. The official conference dinner is on Friday 4th August.

Dining Out

Norwich is a compact, walkable city with abundant restaurants and cafes. Head to either Rampant Horse Street area, The Lanes, or the Tombland area.

UEA Restaurant facilities on campus provide everything from a simple coffee and sandwich to a full meal at eateries Blend, Zest, Vista, Café Direct, Cafe 57 and the Sainsbury Centre for Visual Arts Gallery Café, though these have restricted opening times, usually until 8pm only and especially outside of terms.

Dining In

The lodging buildings each have a shared kitchen and you will be able to prepare small meals there. There is a small supermarket on site in the main plaza, a short walk from the lodging. There are also three supermarkets just off campus and within walking distance. These are marked on the included map.

Getting Around

Lodging is at The University of East Anglia, in Britten House. Parking is available in the main campus car park. There is a custom Google Map with all venues and Norwich Airport and train and bus stations: Summer School Map³⁰

³⁰https://drive.google.com/open?id=1z7gP4EFxyaGBmp69A2woREZWNjo&usp=sharing

Site Registration

On the first morning of The Summer School, please go to the John Innes Centre Reception for 10 am. We can then sign you into the register on-site and show you to the training rooms.

Emergency Contacts

Internal Emergency First Aid

Dial 333, ask operator for a First Aider or an ambulance. Or dial 9 999 for emergency services directly.

Hospital

The Norfolk and Norwich University Hospital is directly located on the Norwich Research Park: Colney Lane, Norwich, NR4 7UY. Tel: 01603 286286.

Transport

1&redirect=no

- Taxis Goldstar Taxis 01603 700700 or ABC Taxis 01603 666333
- Bus First Group is the major local bus provider in Norwich and these buses specifically serve the Norwich Research Park or the UEA campus:
- 11/12³¹: Can catch these routes by walking down Colney Lane, towards the Hospital, and at the first bus stop past the roundabout.
- 13/13A/13B/13C/X13³²: Can catch these routes by walking down Colney Lane, towards the Hospital, and at the first bus stop past the roundabout.
- 21/21A/22³³: Can catch these right outside Norwich Research Park, on Colney Lane.
- 25³⁴: Goes from the rail station through the UEA campus, all the way to the end of Chancellor's Drive.
- **26/26A**³⁵: Goes from the rail station to University and nearby hospital. Can catch the 26 right out Norwich Research Park, on Colney Lane.

These bus stops have been added to the Summer School Google Map³⁶.

³¹https://www.firstgroup.com/norfolk-suffolk/plan-journey/timetables/?operator=22&service=11/12&page=1&redirect=no ³²https://www.firstgroup.com/norfolk-suffolk/plan-journey/timetables/?operator=22&service=13/13A/13B/13C/X13&page=

³³https://www.firstgroup.com/norfolk-suffolk/plan-journey/timetables/?operator=22&service=21&page=1&redirect=no

³⁴https://www.firstgroup.com/norfolk-suffolk/plan-journey/timetables/?operator=22&service=25&page=1&redirect=no

³⁵http://www.firstgroup.com/ukbus/suffolk_norfolk/journey_planning/timetables/index.php?operator=22&service=26&page=1&redirect=no

³⁶https://drive.google.com/open?id=127gP4EFxyaGBmp69A2woREZWNj0&usp=sharing

Norwich and Norwich Research Park

At the heart of East Anglia Norwich is a vibrant inviting city. Steeped in historic charm; The Cathedral, The Castle, the most complete medieval street pattern in the UK, the largest collection of pre-reformation churches in Northern Europe and the oldest hotel in the UK are all situated in Norwich. In medieval times Norwich was the second largest city in England. Norwich has the largest open-air market in England plus its own mustard "Colmans mustard" and Norwich City Football Club, The Canaries. In 2012 Norwich became a UNESCO city of literature. Norwich has a fantastic surrounding countryside including the Broads and Norfolk coast.

The Norwich Research Park, with six independent partner institutions; UEA, The John Innes Centre, Earlham Institute, Quadram Institute, Norfolk and Norwich Hospital and The Sainsbury Laboratory. Norwich Research Park is ranked fourth in the UK for the number of internationally recognised scientists. UEA has the second highest graduate retention rate in the country with almost half of all graduates living and working locally.

Wifi Connections

Wifi is available throughout the site. If you have EDUROAM available, please use that. If you don't have EDUROAM, you can get guest wireless passes from The John Innes Centre Reception.

Social Media

Tweeting and other social media activity are encouraged. #tslsummerschool, @TheSainsburyLab

Map

A live Google Map with useful sites marked is available here³⁷

A static version is presented below.

³⁷https://drive.google.com/open?id=1z7gP4EFxyaGBmp69A2woREZWNjo&usp=sharing

Excursion

Sunday is a day of relaxation and we have booked a trip to the north Norfolk coastal town of Cromer. Perched on the very edge of the north Norfolk coast, Cromer is famous for its tasty crabs, wide open beaches, a traditional pier complete with a theatre providing seaside special variety shows and is awash with small local independent shops. The town offers a wide choice of restaurants and cafes with not a single coffee shop chain or national eating or drinking venue to be found. Instead you have cafes, bars and restaurants owned and operated by local residents all eager to serve both local residents and visiting guests. The bus will depart at 1100 am from John Innes Reception.

Later in the day, we have booked a boat in the nearby village of Morston to take us for a 1 hour trip out on Blakeney Point to see the population of seals that live there. The boat will leave at 16:45 and the bus will drop off at Morston from Cromer.

Bibliography

- Anders, S. and Huber, W. (2010). Differential expression analysis for sequence count data. *Genome biology*, 11(10):R106.
- Andrews, S. (2017). FastQC: A quality control tool for high throughput sequence data.
- Etherington, G. J., Monaghan, J., Zipfel, C., and MacLean, D. (2014). Mapping mutations in plant genomes with the user-friendly web application CandiSNP. *Plant methods*, 10(1):41.
- Goecks, J., Nekrutenko, A., Taylor, J., and Galaxy Team (2010). Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. *Genome biology*, 11(8):R86.
- Jones, J. D. G. and Dangl, J. L. (2006). The plant immune system. Nature, 444(7117):323–329.
- Langmead, B. and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. *Nature methods*, 9(4):357–359.
- Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics (Oxford, England)*, 25(14):1754–1760.
- Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., Tang, J., Wu, G., Zhang, H., Shi, Y., Liu, Y., Yu, C., Wang, B., Lu, Y., Han, C., Cheung, D. W., Yiu, S.-M., Peng, S., Xiaoqian, Z., Liu, G., Liao, X., Li, Y., Yang, H., Wang, J., Lam, T.-W., and Wang, J. (2012). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. *GigaScience*, 1(1):18.
- MacLean, D., Jones, J. D. G., and Studholme, D. J. (2009). Application of 'next-generation' sequencing technologies to microbial genetics. *Nature reviews. Microbiology*, 7(4):287–296.
- Page, D. R. and Grossniklaus, U. (2002). The art and design of genetic screens: Arabidopsis thaliana. *Nature reviews. Genetics*, 3(2):124–136.
- Pumplin, N. and Voinnet, O. (2013). RNA silencing suppression by plant pathogens: defence, counter-defence and counter-defence. *Nature reviews. Microbiology*, 11(11):745–760.
- Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics (Oxford, England)*, 26(1):139–140.
- Trapnell, C., Pachter, L., and Salzberg, S. L. (2009). TopHat: discovering splice junctions with RNA-Seq. *Bioinformatics (Oxford, England)*, 25(9):1105–1111.