

Chapter 4: Interest Rate Derivatives

4.1 Interest Rate Futures and Convexity Adjustment

Interest Rate Models

Damir Filipović

4.1 Interest Rate Futures and Convexity Adjustment

- Recap interest rate futures
- Derive futures rate formula
- Calculate convexity adjustment for Gaussian HJM models
- Example: Vasiček model

Recap: Interest Rate Futures

Similar to a FRA, an interest rate futures contract allows to manage the exposure to the simple spot rate $L(T_0, T_1)$ prevailing over a future period $[T_0, T_1]$ with length $\delta = T_1 - T_0$.

In contrast to FRAs, interest rate futures are daily marked to market (resettled).

Recap: Marking to Market

Marking to market works as follows:

• At $t \leq T_0$: the futures price is quoted as

$$P_{\textit{futures}}(t, T_0, T_1) = 100 \times (1 - R_{\textit{futures}}(t, T_0, T_1))$$

where $R_{futures}(t, T_0, T_1)$ is the futures rate prevailing at t

• At $t + \Delta t$: cash flow to holder of futures contract

$$\Delta P_{futures}(t + \Delta t) := P_{futures}(t + \Delta t, T_0, T_1) - P_{futures}(t, T_0, T_1)$$

Futures Rates

The futures rate is chosen such that

- At $t = T_0$ (delivery): $R_{futures}(T_0, T_0, T_1) = L(T_0, T_1)$
- At $t < T_0$: the present value of cash flow $\Delta P_{futures}(t + \Delta t)$ from holding the futures contract is zero, for small Δt :

$$0 = \mathbb{E}_t^{\mathbb{Q}} \left[\mathrm{e}^{-\int_t^{t+\Delta t} r(s) ds} \Delta P_{ extit{futures}}(t+\Delta t)
ight] pprox \mathrm{e}^{-r(t)\Delta t} \, \mathbb{E}_t^{\mathbb{Q}} \left[\Delta P_{ extit{futures}}(t+\Delta t)
ight]$$

Consequence: futures price process $P_{futures}(t, T_0, T_1)$ is a \mathbb{Q} -martingale.

Futures Rates Formula

Consequence: futures rate process $R_{futures}(t, T_0, T_1)$ is a \mathbb{Q} -martingale,

$$R_{futures}(t, T_0, T_1) = \mathbb{E}_t^{\mathbb{Q}}[L(T_0, T_1)].$$

Recap: forward rate process $F(t, T_0, T_1)$ is a \mathbb{Q}^{T_1} -martingale,

$$F(t,T_0,T_1)=\mathbb{E}_t^{\mathbb{Q}^{T_1}}\left[L(T_0,T_1)\right].$$

The difference

$$\gamma(t, T_0, T_1) = R_{futures}(t, T_0, T_1) - F(t, T_0, T_1)$$

is called convexity adjustment. It is a model dependent value.

Convexity Adjustment in Gaussian HJM Models

Consider a Gaussian HJM model with deterministic forward rate volatility $\sigma(t, T)$.

Denote *T*-bond volatility $v(t, T) = -\int_t^T \sigma(t, u) du$.

Some stochastic calculus shows

$$\frac{\frac{P(t,T_0)}{P(t,T_1)}}{\frac{P(0,T_1)}{P(0,T_1)}} \mathcal{E}\left(\int_0^t (v(s,T_0)-v(s,T_1))dW^*(s)\right) \underbrace{e^{\int_0^t v(s,T_1)(v(s,T_1)-v(s,T_0))^\top ds}}_{\text{deterministic}}$$

Hence

$$\mathbb{E}_t^{\mathbb{Q}}\left[\frac{1}{P(T_0,T_1)}\right] = \frac{P(t,T_0)}{P(t,T_1)} \mathrm{e}^{\int_t^{T_0} v(s,T_1)(v(s,T_1)-v(s,T_0))^\top ds}.$$

Convexity Adjustment in Gaussian HJM Models

The convexity adjustment is

$$\gamma(t, T_0, T_1) = \mathbb{E}_t^{\mathbb{Q}} \left[\frac{1}{\delta} \left(\frac{1}{P(T_0, T_1)} - 1 \right) \right] - \frac{1}{\delta} \left(\frac{P(t, T_0)}{P(t, T_1)} - 1 \right).$$

Hence

$$\gamma(t, T_0, T_1) = \frac{1}{\delta} \frac{P(t, T_0)}{P(t, T_1)} \left(e^{\int_t^{T_0} \left(\int_s^{T_1} \sigma(s, u) du \right) \left(\int_{T_0}^{T_1} \sigma(s, v)^\top dv \right) ds} - 1 \right).$$

The convexity adjustment $\gamma(t, T_0, T_1) \geq 0$ if $\sigma(s, u)\sigma(s, v)^{\top} \geq 0$ for all s, u, v.

Convexity Adjustment in the Vasiček Model

Vasiček short rate model is Gaussian HJM model with $\sigma(t, T) = e^{-\kappa(T-t)}\sigma$.

Parameters: $\kappa = 0.86$, $\theta = 0.08$, $\sigma = 0.01$, r(0) = 0.06, $T_0 - t = \frac{1}{2}$ and $\delta = \frac{1}{4}$:

