Visible-Surface Determination

Prof. Lizhuang Ma Shanghai Jiao Tong University

Contents

- Back-Face Culling
- The Depth-Sort Algorithm
- Binary Space-Partitioning Trees
- The z-Buffer Algorithm
- Scan-Line Algorithm
- Visible-Surface Ray Tracing
- Warnock's Algorithm

Back-Face Culling = Front Facing

- Use cross-product to get the normal of the face (not the actual normal)
- Use inner-product to check the facing

Contents

- Back-Face Culling
- The Depth-Sort Algorithm
- Binary Space-Partitioning Trees
- The z-Buffer Algorithm
- Scan-Line Algorithm
- Visible-Surface Ray Tracing
- Warnock's Algorithm

List-Priority Algorithms

- The Painter's Algorithm
- The Depth-Sort Algorithm
- Binary Space-Partitioning Trees

The Painter's Algorithm

- For the planes with constant z
- Not for real 3D, just for 2½D
- Sort all polygons according to the smallest (farthest) z coordinate of each
- Scan convert each polygon in ascending order of smallest z coordinate (i.e., back to front)

The Painter's Algorithm

The Painter's Algorithm

The Depth-Sort Algorithm

- Sort all polygons according to the smallest (farthest) z coordinate of each
- Resolve any ambiguities that sorting may cause when the polygons' z extents overlap, splitting polygons if necessary
- Scan convert each polygon in ascending order of smallest z coordinate (i.e., back to front)

Overlap Cases

Overlap Detection

- If $z_{min}(P) < z_{min}(Q) < z_{max}(P)$
- Do the polygons' x not overlap?
- Do the polygons' y not overlap?
- Is P entirely on the opposite side of Q's plane from the viewpoint?
- Is Q entirely on the same side of P's plane as the viewpoint?
- Do the projections of the polygons onto the (x,y) plane not overlap?

Binary Space-Partitioning Trees

Extremely efficient for static objects

Contents

- Back-Face Culling
- The Depth-Sort Algorithm
- Binary Space-Partitioning Trees
- The z-Buffer Algorithm
- Scan-Line Algorithm
- Visible-Surface Ray Tracing
- Warnock's Algorithm

The z-Buffer Algorithm

```
void zBuffer() {
    int pz;
   for(each polygon) {
      for(each pixel in polygon's projection) {
        pz=polygon's z-value at(x,y);
        if(pz \ge ReadZ(x,y)) {
           writeZ(x,y,pz);
           writePixel(x,y,color);
```

The z-Buffer Algorithm

5	5	5	5	5	5	5	0
5	5	5	5	5	5	0	0
5	5	5	5	5	0	0	0
5	5	5	5	0	0	0	0
5	5	5	0	0	0	0	0
5	5	0	0	0	0	0	0
5	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

5	5	5	5	5	5	5	0
5	5	5	5	5	5	0	0
5	5	5	5	5	0	0	0
5	5	5	5	0	0	0	0
5	5	5	0	0	0	0	0
5	5	0	0	0	0	0	0
5	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

5	5	5	5	5	5	5	0
5	5	5	5	5	5	0	0
5	5	5	5	5	0	0	0
5	5	5	5	0	0	0	0
6	5	5	3	0	0	0	0
7	6	5	4	3	0	0	0
8	7	6	5	4	3	0	0
0	0	0	0	0	0	0	0

The z-Buffer Algorithm

Contents

- Back-Face Culling
- The Depth-Sort Algorithm
- Binary Space-Partitioning Trees
- The z-Buffer Algorithm
- Scan-Line Algorithm
- Visible-Surface Ray Tracing
- Warnock's Algorithm

Scan-Line Algorithm

Scan-Line Algorithm

ET entry:

X	y _{max}	dx	ID	

PT entry:

	ID	Plane eq.	Shading info	In-out
--	----	-----------	--------------	--------

AET contents

Scan line	Entries
α	AB AC
β	AB AC FD FE
<i>y</i> , <i>y</i> +1	AB DE CB FE
y + 2	AB CB DE FE

ET = edge table

PT = polygon table

AET = active-edge table

General Scan-Line Algorithm

```
Add surfaces to surface table (ST);
Initialize active-surface table (AST);
for(each scan line) {
    update AST;
 for(each pixel on scan line) {
    determine surfaces in AST that project to pixel;
    find closest such surface;
    determine closest surface's shade at pixel;
```

Contents

- Back-Face Culling
- The Depth-Sort Algorithm
- Binary Space-Partitioning Trees
- The z-Buffer Algorithm
- Scan-Line Algorithm
- Visible-Surface Ray Tracing
- Warnock's Algorithm

Ray Tracing = Ray Casting

```
Select center of projection and window on viewplane;
for(each scan line in image) {
     for(each pixel in scan line) {
     determine ray from center of projection through pixel;
   for(each object in scene) {
      if(object is intersected and is closest considered
         thus far)
      record intersection and object name;
   set pixel's color to that at closest object intersection;
```

Ray Tracing

Spatial Partitioning

Spatial Partitioning

Spatial Partitioning

Contents

- Back-Face Culling
- The Depth-Sort Algorithm
- Binary Space-Partitioning Trees
- The z-Buffer Algorithm
- Scan-Line Algorithm
- Visible-Surface Ray Tracing
- Warnock's Algorithm

An area-subdivision algorithm

An area-subdivision algorithm

- 1. All the polygons are disjoint from the area
- 2. There is only one intersecting or only one contained polygon
- 3. There is a single surrounding polygon, but no intersecting or contained polygons
- 4. More than one polygon is intersecting, contained in, or surrounding the area, but one is a surrounding polygon that is in front of all the other polygons

Performance of Four Algorithms for Visible-Surface Determination

Algorithm	Number of Polygons			
	100	2,500	60,000	
Depth sort	1	10	507	
Z-buffer	54	54	54	
Scan line	5	21	100	
Warnock area subdivision	11	64	307	