

Bachelor's Thesis Project Phase II - CAM 1

Nikhil Panse - 160103081 Vrishank Bhardwaj - 160103076

## **Table of contents**

- Introduction
- Predictive Health Monitoring
- Objectives
- Experimental Discussion
- Methodology
- Results
- Timeline
- References
- Appendix



## Introduction

- Industry 4.0 is the fourth industrial revolution
- This revolution focuses on using artificial intelligence to improve and streamline processes.
- Implementation of technology to
  - Monitor asset health
  - Optimize maintenance schedules
  - Real-time alerts to operational risks
  - Lower service costs
  - Maximized uptime
  - Improved production throughput



Figure 1 : Components of Industry 4.0 [1]

## Prognostics and Health Management (PHM) in Industry 4.0

 Prognostics is an engineering discipline focused on predicting the time at which a system or a component will no longer perform its intended function. The predicted time then becomes the remaining useful life (RUL).

### Predictive maintenance

- Method of preventing asset failure by analyzing production data
- To identify patterns and predict issues before they happen.
- Predictive analytics is applied to the machine data to
  - Predict conditions of upcoming failure.
  - Repair
  - Replacement of tool

#### Benefits -

- Reduced Maintenance Time
- Increased efficiency



Fig. 2 Framework of fault diagnosis and prognosis in machine centers a Sensor selection and data acquisition module, b data preprocessing module, c data mining module, d decision support module, e maintenance implementation module [2]

|                  | Predictive Maintenance                                                                                                                       | Preventive Maintenance                                                                                                                             |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Definition       | Predictive maintenance (PdM) is work that is scheduled as-needed based on real time conditions of assets.                                    | Preventive maintenance (PM) is work that is scheduled based on calendar time, asset runtime, or some other period of time.                         |
| Resources needed | <ul> <li>Condition monitoring software, tools<br/>and sensors are required</li> <li>Maintenance software for scheduling</li> </ul>           | <ul> <li>Maintenance software for scheduling</li> <li>Maintenance scheduler</li> </ul>                                                             |
| Pros             | <ul> <li>Reduces labor and material costs as<br/>maintenance is performed when needed</li> <li>Reduces maximum amount of downtime</li> </ul> | <ul> <li>Better than reactive maintenance</li> <li>Cheaper monitoring softwares</li> <li>Easier to implement</li> </ul>                            |
| Cons             | <ul> <li>Expensive technology needs purchased</li> <li>Time-intensive to implement correctly</li> </ul>                                      | <ul> <li>Labor intensive (not performed as needed) but needs</li> <li>Risk of over-maintaining (e.g. over-lubrication can damage asset)</li> </ul> |

## **Limitations in Predictive Maintenance**

- Sensors used in Industry typically have a very high sampling rate (over 10000 samples per second).
- A vast array of such sensors across multiple machines results in a stream of data which is difficult to store in an economical manner.
- Machine Learning models can thus only be trained on a batch of stored data.
- As the sensors and operating conditions themselves drift over time, models trained on a batch of data do not accurately model the processes.
- "Catastrophic forgetting" is the tendency of ML models to completely and abruptly forget previously learned information upon learning new information.

# **Objectives**

- Estimating RUL (Remaining Useful Life) using existing ML techniques
- Testing and Validating against benchmark results
- Developing and validating an improved methodology for Dynamic Predictive
   Maintenance

# Methodology

- **Data preprocessing-**
  - Remaining Useful Life (RUL) targeting
  - Normalization
  - Feature (sensor) selection
- Modelling using the following machine learning algorithms -
  - Support Vector Machines [A1]
  - Random Forests [A2]
  - Gradient Boosting Trees [A3]
  - K Nearest Neighbours [A4]
  - Multi Layer Perceptron [A5]
- Testing and Validating against benchmark results

# **Data Preprocessing**

### 1. Feature Selection -

Sensors specified in literature are retained, unspecified sensors are removed from the dataset

### 2. Normalisation -

Normalise the sensor readings to values between 0 and 1

### 3. RUL Targeting -

The target variable in the dataset is either 0 or 1 (working/failure). We modify the target using its index to make it possible to predict the number of cycles until failure.

# **RUL using Piecewise Linear Degradation**

- For this data-set ( Heimes, 2008 ) [8] has proposed a piece-wise linear degradation model which limits the maximum value of the RUL function
- The maximum value was chosen based on the observations of the data and its numerical value is different for each data-set.



Fig.3 RUL Targeting [6]

### **Dataset**

- Turbofan engine data set is a publicly available dataset provided by the Prognostics CoE at NASA Ames consisting of 4 sets, simulated under different combinations of operational conditions and fault modes.
- Data from 16 sensors is used to predict Remaining Useful Life for 100 engines
- The parameters for each flight are the flight conditions, health indicators, measurement temperatures and pressure measurements.
- Data sets consist of multiple multivariate time series. Each time series is from a different engine i.e., the data can be considered to be from a fleet of engines of the same type
- Data Set: FD001
  - Train trajectories: 100
  - Test trajectories: 100
  - Conditions: ONE (Sea Level)
- RMSE(Root Mean Square Error) error is used as metric, lower is better

| Symbol           | Description                         | Units   |
|------------------|-------------------------------------|---------|
| Parameters av    | ailable to participants as sensor d | ata     |
| T2               | Total temperature at fan inlet      | °R      |
| T24              | Total temperature at LPC outlet     | °R      |
| T30              | Total temperature at HPC outlet     | °R      |
| T50              | Total temperature at LPT outlet     | °R      |
| P2               | Pressure at fan inlet               | psia    |
| P15              | Total pressure in bypass-duct       | psia    |
| P30              | Total pressure at HPC outlet        | psia    |
| Nf               | Physical fan speed                  | rpm     |
| Nc               | Physical core speed                 | rpm     |
| epr              | Engine pressure ratio (P50/P2)      |         |
| Ps30             | Static pressure at HPC outlet       | psia    |
| phi              | Ratio of fuel flow to Ps30          | pps/psi |
| NRf              | Corrected fan speed                 | rpm     |
| NRc              | Corrected core speed                | rpm     |
| BPR              | Bypass Ratio                        |         |
| farB             | Burner fuel-air ratio               |         |
| htBleed          | Bleed Enthalpy                      |         |
| Nf_dmd           | Demanded fan speed                  | rpm     |
| PCNfR_dmd        | Demanded corrected fan speed        | rpm     |
| W31              | HPT coolant bleed                   | lbm/s   |
| W32              | LPT coolant bleed                   | lbm/s   |
| Parameters fo    | r calculating the Health Index      |         |
| <b>T48</b> (EGT) | Total temperature at HPT outlet     | °R      |
| SmFan            | Fan stall margin                    |         |
| SmLPC            | LPC stall margin                    |         |
| SmHPC            | HPC stall margin                    |         |

Fig.4 Sensor description [5]

# Results

| ML Techniques | Benchmark RMSE [3] | RMSE obtained |
|---------------|--------------------|---------------|
| SVM           | 20.58              | 20.07         |
| RF            | 20.23              | 20.47         |
| GBT           | 18.80              | 20.21         |
| KNN           | 19.73              | 19.95         |
| MLP           | 18.48              | 21.14         |

## **Conclusion**

• Testing and validation methodology successfully recreates the established benchmark reported by C. Zhang et al. [3]

# Work in Progress



#### **Preprocessing Benchmarking** Modelling **Documentation** Found benchmark Developing an • Testing and RUL targeting improved Validation • Feature selection papers • Reproduced their methodology for • Report writing Normalization for methodology Dynamic MLP Replicated results Predictive Maintenance

## References

- 1. Hackster.io
- 2. Li, Z., Wang, Y. & Wang, K. Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario. *Adv. Manuf.* 5, 377–387 (2017) https://doi.org/10.1007/s40436-017-0203-8
- 3. C. Zhang, P. Lim, A. K. Qin and K. C. Tan, "Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics," in *IEEE Transactions on Neural Networks and Learning Systems*, vol. 28, no. 10, pp. 2306-2318, Oct. 2017. doi: 10.1109/TNNLS.2016.2582798
- 4. Ellefsen, André Listou, Emil Bjørlykhaug, Vilmar Æsøy, Sergey Ushakov and Houxiang Zhang. "Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture." *Rel. Eng.* & Sys. Safety 183 (2019): 240-251.
- 5. A. Saxena, K. Goebel, D. Simon and N. Eklund, "Damage propagation modeling for aircraft engine run-to-failure simulation," 2008 International Conference on Prognostics and Health Management, Denver, CO, 2008, pp. 1-9.doi: 10.1109/PHM.2008.4711414 (Table 2)
- 6. Pin, Lim & Goh, Chi-Keong & Tan, K.C. & Dutta, P. (2014). Estimation of remaining useful life based on switching Kalman Filter neural network ensemble. PHM 2014 Proceedings of the Annual Conference of the Prognostics and Health Management Society 2014. 2-9.
- 7. W. Zhang, D. Yang and H. Wang, "Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey," in *IEEE Systems Journal*, vol. 13, no. 3, pp. 2213-2227, Sept. 2019.
- 8. Heimes, Felix. (2008). Recurrent neural networks for remaining useful life estimation. 1 6. 10.1109/PHM.2008.4711422.

# **Appendix - Support Vector Machine**

- Support-vector machines are supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis.
- Given a set of training examples, each marked as belonging to one or the other of two
  categories, an SVM training algorithm builds a model that assigns new examples to one
  category or the other, making it a non-probabilistic binary linear classifier.
- An SVM model is a representation of the examples as points in space, mapped so that the examples of the separate categories are divided by a clear gap that is as wide as possible.
- New examples are then mapped into that same space and predicted to belong to a category based on the side of the gap on which they fall.

# **Appendix - Random Forest**

- A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.
- The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if bootstraping.

# **Appendix - Gradient Boosting Trees**

- Gradient boosting is a machine learning technique for regression and classification problems, which produces a prediction model in the form of an ensemble of weak prediction models, typically decision trees.
- It builds the model in a stage-wise fashion like other boosting methods do, and it generalizes them by allowing optimization of an arbitrary differentiable loss function.

# Appendix - KNR

- Regression based on k-nearest neighbors.
- The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set.

# **Appendix - Multi Layer Perceptron**

- Multi-layer Perceptron (MLP) is a supervised learning algorithm that learns a function  $f(\cdot): R^m \to R^o$  by training on a dataset, where is the number of dimensions for input and is the number of dimensions for output.
- Given a set of features  $X=x_1,x_2,\ldots,x_m$  and a target Y, it can learn a non-linear function approximator for either classification or regression. It is different from logistic regression, in that between the input and the output layer, there can be one or more non-linear layers, called hidden layers. Figure 1 shows a one hidden layer MLP with scalar output.

# **Appendix - Cross Validation**

- Cross-validation is a resampling procedure used to evaluate machine learning models on a limited data sample.
- The procedure has a single parameter called k that refers to the number of groups that a given data sample is to be split into. As such, the procedure is often called k-fold cross-validation. When a specific value for k is chosen, it may be used in place of k in the reference to the model, such as k=10 becoming 10-fold cross-validation.
- Cross-validation is primarily used in applied machine learning to estimate the skill of a machine learning model on unseen data. That is, to use a limited sample in order to estimate how the model is expected to perform in general when used to make predictions on data not used during the training of the model.