Lab 2 - INF 1411

Av Rune Hovde

Jobbet sammen med thorca og gregorjt på oppgave 1, samt diskuterte med dem under gjennomføringen av oppgave 3.

Om oppgaven

I denne oppgaven skal vi lære hvordan du vriker et oscilloskop, og om responsen til RC-kretser i tidsdomenet. Oppgaven er delt i tre deler. Oppgave 1 er en primer, hvor dy skar koble opp oscilloskopet for første gang og se på signaler fra finksjonseneratoren. I oppgave 2 studerer vi oppladningen av en kondensator i en RC forsinkelseskrets, når spenningen vi påtrykker er en step-funksjon (i form av en firkant-bølge). I oppgave 3 skal vi studere AC-oppførselen til en RC forsinkelseskrets, når vi påtrykker den en spenning som varierer som en sinus med tiden.

Oppgave 1

- 1. Periodetiden T
 - 333µs
- 2. Frekvensen basert på målingen av T

$$-f = \frac{1}{333*10^{-6}} = 3kHz$$

- 3. Peak-to-peak spenningen.
 - 3,020v
- 4. Stigetid(t_{rise}).
 - -Vi satte cursor'ene ved 10% og 90%, og vi fikk at dt=99,06µs
- 5. Tiden det tar fra spenningen krysser 0 Volt til sinusen er ved 60°.

$$- dt = (60^{\circ}*333)/360^{\circ} = 55,5\mu s$$

Det fant vi ved å omgjøre formelen: 60 = (dt/333) * 360

- 6. Spenningen når sinusbølgen er ved /4 radianer.
 - -Når sinusbølgen er ved /4 er den ved 45 °.

$$V_{\text{ved }45^{\circ}} = 1.5 \text{ V * sin}(45^{\circ}) = 1.06 \text{ V}$$

7. Vinkelen på sinusbølgen når spenningen er ved 0,5 Volt og på veg oppover.

$$-\sin^{-1}(\frac{1}{3}) = \frac{19,47^{\circ}}{}$$

Dette fant vi ved å omgjøre formelen $V=V_p*\sin(\theta) -> \sin^{-1}(0,5/1,5) -> \sin^{-1}(\frac{1}{3})$

Oppgave 2

Vi får oppgitt en formel som går

$$V_{o}(t) = V_{s}(1-e^{-t/T})$$

Og skal regne dette når $V_0(t = 0) = 0V$ og $V_s = 5V$ $V_0(t = T) = 5* (1-e^{-1}) = 3,16V$ Det blir e^{-1} fordi hvis t = T blir t/T alltid 1.

R (målt) = 9911
$$\Omega \approx 9.9 k\Omega$$

$$C = 0.1 \mu F$$

T(beregnet) = $9911\Omega * 10*10^{-6}F = 0,09911s$

$$T (målt) = 0,1036s$$

$$C \text{ (målt)} => T=R*C => C = T/R = 10,45\mu F$$

- 1. hva er stigetiden til T_0 (T_{rise})?
 - -Stigetiden er definert som tiden det tar for bølgen å gå fra 10% til 90%. stigetiden til en sinusbølge er alltid 2,2 T. Derfor blir stigetiden:

$$2,2 * T = 2,2 * 0,1036s = 0,2279s$$

Jeg brukte den målte Tau-verdien her.

- 2. Hver falltiden til $V_0(t_{fall})$ ved nedadgående flanke? Er $t_{rise} = t_{fall}$? Kommenter -falltiden vil være like lang som sigetiden, fordi en sinusbølge er helt lik både opp og ned. Den er definert som tiden det tar for bølgen å gå fra 90% til 10%. En sinus-drevet RC-krets vil da alltid ha $t_{rise} = t_{fall}$.
- 3. Når en RC-krets hhv. opplades eller utlades, hva er utspenningen i % av V_s etter t=T?

-63%

Etter 1T er den 63% oppladet.

Etter 5T er det sagt at den er fullt oppladet (egt. 99%)

4. Hvis C = 1 μ F og spenningen over C er 5 Volt, hvor mye ladning er det lagret over C?

$$- C = q/v$$

 $1*10^{-6} = q/5$

$$q = 5*10^{-6}$$

5. Gitt ladningen fra spm. 4 : I hvor lang tid kan du trekke en konstant strøm på 10µA før spenningen over C er 0 Volt?

R = U/I

R=5/(10*10⁻⁶)

$$T(tau) = R*C = (5/10^{-5})*10^{-6} = 5\mu s$$

5T gir 99% lagring, da blir spenningen tilnærmet null. Altså <u>25µs</u>

Oppgave 3

3.1

Formel:

$$X_c = \frac{1}{2\pi f C}$$

f [kHz]	X _c [kΩ]	Z [kΩ]
0,1	15,9155	15,9835
0,316	5,0365	5,2475
1	1,5915	2,1685
3,16	0,5036	1,5567
10	0,1592	1,4816

- Hva skjer med impedansen Z når X_c er mye mindre (<<), mye større (>>) eller nesten lik (=) motstanden R? kommenter.

Jo høyere X_c blir, jo nærmere blir impedansen(Z).

Jo lavere X_c blir, jo mer avvik får vi mellom $X_c \ \mathrm{og} \ Z$

 $Hvis \; Z \approx X_{\text{c}}$ er det lite avvik fra $X_{\text{c}} \; \text{ og Z}.$

Brukte formelen: $\theta = t/T*360^{\circ}$

f [kHz]	Beregnet T[µs]	Målt t[µs]	Beregnet fra t, T e[°]
0,1	10000	2640	95,4°
0,316	3160	816	92,8°
1	1000	256	92,2°
3,16	316	78	88,9°
10	100	24	86,4°

Spenningen over resistoren er 90° foran spenningen i kondensatoren.

- 1. I hvilken grad vil du si at påstand 4 stemmer med det du har målt? -Denne påstanden stemmer ganske bra, i forholt til hva jeg regnet ut. Det er ikke veldig mange graders avvik fra 90°, selv om man får buttere vinkel, jo mindre frekvensen er, og spissere vinkel, jo høyere frekvensen er. Den ideelle frekvensen i dette tilfellet ville være ca 2,4kHz (rein tipping). Da ville e vært veldig nærme 90°.
- 2. Stemte det? Forklar hvorfor påstand 3 må stemme hvis påstand 1,2 og 4 stemmer.
 - -Det stemte ikke helt perfekt, men det er jo så klart noen faktorer som kunne gjøre at dette forsøket har feil i målinger.

Faseforsyvningen er altså ganske nøyaktig 90°, det vil si at punkt 4 stemmer. På bakgrunn av påstand 2, må spenningen og strømmen være i fase over resistoren. Dette ser vi da fra CH0. Spenningen over kondensatoren derimot er forskjøvet med 90°.

Formel: 90°-tan⁻¹(X_c/R)

f [kHz]	Beregnet T [ms]	^{Målt} t [ms]	Beregnet fra t, T θmålt [°]	Beregnet θberegnet [°]
0,1	10	0,144	5,18°	5,19°
0,316	3,16	0,142	16,18°	16,31°
1	1	0,118	42,48°	42,79
3,16	0,316	0,062	70,63°	71,13°
10	0,1	0,020	72°	83,83°

Formelen for θ står over tabellen. (Den finnes på side 470 i *Electronics Fundamentals Circuts, Devices and Applications, eights edition*)

Jo høyere frekvensen blir, jo høyere blir differansen.

Målene og beregningene sammenfaller egentlig i ganske stor grad, og den graden det var forskjellig skyldes nok mest sannsynlig at det var unøyaktige verdier.

Bruk teori eller målinger til å svare på hvilke(n) av disse påstandene som er riktige for en RC forsinkelseskrets:

- 1) Utgangspenningen er forsinket i forhold til inngangspenningen med nesten -90° grader når frekvensen blir svært liten.
- 2) Utgangspenningen er nesten 0° grader etter inngangspenningen når frekvensen blir svært stor.
- 3) Inngangspenningen leder i forhold til utgangspenningen med nesten 0° grader når frekvensen blir svært liten.
- 4) Inngangspenningen er forsinket i forhold til utgangspenningen med nesten 90° grader når frekvensen blir svært stor.
- 5) Utgangspenningen er forsinket i forhold til inngangspenningen med nesten 90° grader når frekvensen blir svært liten.
- 6) Utgangspenningen er nesten -90° grader foran inngangspenningen når frekvensen blir svært stor.

Svar: Påstand 3 og 6 er riktig.

Det jeg ikke tenkte på med det første var det at θ så klart blir målt mellom V_1 og V_0 , hvor output Voltage en en katet og input Voltage er hypotenus i den rettvinklede trekanten som man ser vha vektorene. (Man ser dette på side 470 i *Electronics Fundamentals Circuts, Devices and Applications, eights edition.* Man ser her at V_{out} ligger foran V_{in} , og når man ser på sinussignalene over tid, vil man se at V_1 "leder" V_0 . I tillegg ser man ut ifra målingene som du finner over at økt frekvens gir høyere θ .

Påstand 6 er riktig fordi det påstanden sier er at når frekvensen blir høy, vil inngangsspenningen være -90° foran inngangsspenningen, det vil si; +90° BAK inngangsspenningen. Og det ser vi er riktig i forhold til bl.a. beregningene.

Teoretisk sett, hva skal faseforskyvningen mellom inn- og utgang være ved $X_c = R$? - Man kan se faseforskyvningen vha. Vektorene X_c , R og Z. Det vil da bli en rettvinklet trekant, og faseforskyvningen vil bli 45°.

3.4

f [kHz]	Beregnet X _c [kΩ]	Beregnet Ζ [kΩ]	beregnet XC/Z	vO[Vp-p] ((X _c /Z)V _{in})	målt VO[Vp-p]
0,1	15,9155	15,9835	0,9957	4,9787	5
0,316	5,0365	5,2475	0,9598	4,7989	4,793
1	1,5915	2,1685	0,7339	3,6696	3,607
3,16	0,5036	1,5567	0,3235	1,6175	1,563
10	0,1592	1,4816	0,1075	0,5373	0,517

- Hvordan stemmer målinger og beregninger overens? Kommenter
 - Målingene og beregningene stemmer veldig godt overens.
 Den beregnede V₀ er litt høyere enn den målte V₀.
- Hva kan man si om kretsens respons til forskjellige frekvenser?
 Høyere frekvens fører til mindre spenning over kretsen. Dette siden V_{out} til en forsinkelseskrets er i teorien omvendtproporsjonal med X_c/Z, så er det logisk at V₀ minsker når frekvensen øker.

- Teoretisk sett, hva skal forholdet $(\frac{xc}{z})$ være, mellom ut- og inngang, når X_c =R? $\frac{Xc}{Z}$

$$(Z = Sqrt(R^2 + Xc^2))$$

$$\frac{Xc}{Sqrt(R^2 + Xc^2)}$$

$$\frac{Xc}{Sqrt(R^2+Xc^2)}$$

$$\frac{Xc}{Sqrt(Xc^2 + Xc^2)}$$

$$\frac{Xc}{Sqrt(2Xc^2)}$$

$$\frac{Xc}{2Xc}$$

$$\frac{1}{2}$$