NLP-MeTaxa: A Natural Language Processing approach for Metagenomic Taxonomic Binning based on deep learning

Supplementary material

1 Building Corpus

We built the corpus that contains all nucleotides concatenation possibilities for a given metagenomic dataset.

Figure S1: Building corpus

2 DataSets

The used datasets consist of three different simulated metagenomes. The first one contains a single sample dataset of low complexity community (20 circular elements and 40 genomes), the second dataset consists of differential abundance dataset with two samples of a medium complexity community (100 circular elements and 132 genomes) and

the third metagenome is made up of two insert sizes and a time series dataset with five samples from a high complexity community (478 circular elements and 596 genomes).

Figure S2: Number of genomes, plasmids, viruses and other circular elements in the datasets

3 Models parameter settings

3.1 NLP Model

To enhance the Word2vec training speed and quality, the following settings were used.

Parameter	Value	Description	
word-length-low	1	minimum word length	
word-length-high	8	maximum word length	
vec-dim	100	vector dimension size	
epoch	5	training epoch number	
context	10	set of adjacent words surrounding	
Context		the targeted word	

Table S1: embedding model tuning parameters

3.2 CNN model

Many trials of model configuration were tested to build the CNN model. The best configuration was taken in the degree of complexity and the degree of performance

Layer Type	Output	Number of Parameters	
$conv2d_1$	(None, 10, 10, 32)	832	
(Conv2D)			
$max_pooling2d_1$	0		
(MaxPooling2			
(None, 5, 5, 32))			
$conv2d_2$	(None, 5, 5, 64)	18496	
(Conv2D)			
$conv2d_3$	(None, 5, 5, 128)	73856	
(Conv2D)			
$max_pooling2d_2$	0		
(MaxPooling2			
(None, 2, 2, 128))			
$conv2d_{-4}$	(None, 1, 1, 256)	131328	
(Conv2D)			
$max_pooling2d_3$	(MaxPooling2 (None, 1, 1, 256)	0	
$flatten_{-}1$ ($Flatten$)	(None, 256)	0	
$dense_1 \; (Dense)$	(None, 608)	156256	
$dropout_1$	(None, 608)	0	
(Dropout)			
$dense_2 \; (Dense)$	(None, 608)	370272	
$dropout_2$	(None, 608)	0	
(Dropout)			
$dense_3 \; (Dense)$	(None, 608)	370272	
$dropout_3$	(None, 608)	0	
(Dropout)			
$dense_4 (Dense)$	(None, Numbers of Label)	17052	

Table S2: CNN parameters settings

4 Word length

Each metagenomic DNA fragment was split into a set of non-overlapping words of length L which varies from 1 to 8. Then, for each length, the vector representation was calculated. Finally, we measured NLP-MeTaxa accuracy.

Figure S3: checking word length experiment

5 Overall metrics

NLP-MeTaxa performance was compared to other tools results obtained in the first CAMI challenge.

Dataset	Tool	Precision %	Recall %
Low	NLP-MeTaxa	89	87
	taxator-tk	76	8
	MEGAN	67	0.1
	PhyloPythiaS+	74	22
	Kraken	86	2
Medium	NLP-MeTaxa	69	75
	taxator-tk	80	4
	MEGAN	71	0.5
	PhyloPythiaS+	68	29
	Kraken	84	6
High	NLP-MeTaxa	66	75
	taxator-tk	71	1
	MEGAN	41	0.7
	PhyloPythiaS+	67	30
	Kraken	73	10

Table S3: Overall precision and recall comparison across the three datasets

6 Data distribution in the three datasets

To investigate NLP-MeTaxa performance we needed to know data distribution across the three datasets.

Dataset	Rank	Number
Low	species	7417
	genus	8293
	order	93
	superkingdom	20
	no rank	3676
Medium	species	24764
	genus	21282
	family	621
	order	67
	superkingdom	29
	no rank	16684
High	species	12350
	genus	18692
	family	1587
	no rank	9409

Table S4: Labeled data distribution in training datasets