VERMES MIKLÓS Fizikaverseny

II. forduló 2020. február 28. IX. osztály

JAVÍTÓKULCS

I feladat

a)

$$G_{t1} = m_{1}g \sin \alpha_{1} = 8N$$

$$G_{t2} = m_{2}g \sin \alpha_{2} = 18N \implies G_{t2} > G_{t1} \implies \text{a rendszer jobbra mozdul el} \qquad \mathbf{1p}$$

$$G_{t2} - T - F_{f2} = m_{2}a; \qquad T - G_{t1} - F_{f1} = m_{1}a \qquad \mathbf{1p}$$

$$G_{t2} - G_{t1} - F_{f1} - F_{f2} = (m_{1} + m_{2})a \implies$$

$$a = g \cdot \frac{m_{2}(\sin \alpha_{2} - \mu \cos \alpha_{2}) - m_{1}(\sin \alpha_{1} + \mu \cos \alpha_{1})}{m_{1} + m} = 1,75 \, \text{m/s}^{2} \qquad \mathbf{1p}$$

$$T = m_{1}a + m_{1}g \sin \alpha_{1} + \mu \cdot m_{1}g \cos \alpha_{1} = m_{1}[a + g(\sin \alpha_{1} + \mu \cos \alpha_{1})] = 10,35N \qquad \mathbf{0.5p}$$

$$F_{t} = \sqrt{T^{2} + T^{2}} = T\sqrt{2} = 14,6 \, \text{N}$$

$$\mathbf{0.5p}$$

A rendszer elmozdulása
$$x = \frac{at^2}{2}$$
 0,25p $\Delta h = x \sin \alpha_1 + x \sin \alpha_2$ **0,75p**

$$t = \sqrt{\frac{2\Delta h}{a(\sin \alpha_1 + \sin \alpha_2)}}$$
 0.75p $t = 0.903 \text{ s}$

c)
Annak a feltétele, hogy a rendszer ne mozduljon jobbra: $a = 0 \implies m_2 \left(\sin \alpha_2 - \mu \cos \alpha_2 \right) - m_1 \left(\sin \alpha_1 + \mu \cos \alpha_1 \right) = 0 \implies m_2 = m_1 \frac{\sin \alpha_1 + \mu \cdot \cos \alpha_1}{\sin \alpha_2 - \mu \cos \alpha_2} = 1,653kg$ 1p

Annak a feltétele, hogy a rendszer ne mozduljon balra, az ábra alapján:

$$G_{t1} - G_{t2} - F_{f1} - F_{f2} = 0 \implies m_2 = m_1 \frac{\sin \alpha_1 - \mu \cdot \cos \alpha_1}{\sin \alpha_2 + \mu \cdot \cos \alpha_2} = 1,088kg$$
Tehát $m_2 = \in [1,088, \to 1,653]kg$ **0,5p**

II feladat

a)

$$\theta_1 = \frac{l_1}{r}$$
; $\theta_2 = \frac{l_2}{R}$ $\theta_1 = \omega_1 t = \frac{v_1}{r} t$; $\theta_2 = \omega_2 t = \frac{v_2}{R} t$ **1p**

$$\theta_1 + \theta_2 = (\omega_1 + \omega_2) \cdot t \qquad \qquad \mathbf{0.5p} \qquad \Rightarrow \qquad t = \frac{\theta_1 + \theta_2}{\omega_1 + \omega_2} = \frac{l_1 R + l_2 r}{v_1 R + v_2 r}$$

$$t = 4 s$$
 0,5p

b)

$$\theta_{1}' + \theta_{2}' = 2\pi$$
1p
 $\theta_{1}' = \omega_{1}t' = \frac{v_{1}}{r}t'$; $\theta_{2}' = \omega_{2}t' = \frac{v_{2}}{R}t'$
1p

$$\frac{v_1}{r}t' + \frac{v_2}{R}t' = 2\pi \qquad \Rightarrow \qquad t' = \frac{2\pi \cdot r \cdot R}{v_1 R + v_2 r} = 21,532s$$
 0,5p

$$\theta_{1}' = \frac{v_{1}}{r}t' = 2,69rad = 154,2^{0}$$
 $\theta_{2}' = 360^{0} - 154,2^{0} = 205,8^{0}$
0,5p

A kisebb sugarú pályán a mozgás periódusa
$$T_1 = \frac{2\pi}{\omega_1} = \frac{2\pi \cdot r}{v_1}$$
 0,5p

A nagyobb sugarú pályán
$$T_2 = \frac{2\pi}{\omega_2} = \frac{2\pi \cdot R}{v_2}$$
 0,5**p**

Az ugyanott történő találkozás feltétele: $N_1T_1 = N_2T_2$ **1p**

$$\Rightarrow N_1 \frac{r}{v_1} = N_2 \frac{R}{v_2} \Rightarrow \frac{N_1}{N_2} = \frac{v_1 R}{v_2 r} = \frac{75}{100} = \frac{3}{4}$$
 0.5p

$$\Rightarrow N_1 = 3 \text{ kör}; N_2 = 4 \text{ kör}$$

III feladat

a)

A találkozás egyik feltétele, hogy a ferdén eldobott labda vízszintes irányban az alatt az idő alatt távolodjon el a dobás helyétől *d* távolságra míg a függőlegesen eldobott labda a levegőben van; a másik, hogy a talajtól mért távolsága egyezzék meg a függőlegesen dobott labda magasságával **0,5p**

$$v_{0x} = v_0 \cos \alpha = 8 \frac{m}{s}$$
; $v_{0y} = v_0 \sin \alpha = 6 \frac{m}{s}$

$$d = v_{0x}t \qquad \Rightarrow \qquad t = \frac{d}{v_{ox}} = 0.6s$$

$$h = v_{0y}t - \frac{g}{2}t^2 = v(t - \tau) - \frac{g}{2}(t - \tau)^2$$
1p

$$\tau_1 = 0.4s$$
 ; $\tau_2 = -1.2s$

 $au_1=0.4s$: függőlegesen felfelé a labdát 0,4 s-mal később kell eldobni, $au_2=-1.2s$: a labdát felfelé 1,2 s-mal korábban kell eldobni 0,5p

A ferdén eldobott labda emelkedési ideje $0 = v_{0y} - g \cdot t_e \implies t_e = \frac{v_{0y}}{g} = 0.6s$ **0.5p**

Megegyezik a d távolság megtételéhez szükséges idővel. \Rightarrow A ferdén dobott labda sebességvektorának csak $v_{0x} = v_0 8 \frac{m}{s}$ vízszintes irányú komponense van. **0,5p**

A korábban felfelé dobott labda $t_1 = 1,2 +0,6 = 1,2$ s-ig mozog a találkozásig, sebessége $v' = v - g \cdot t_1 = -8 \, m/s$ és a talaj felé irányított **0,5p**

A később eldobott labda mozgásideje a találkozásig $t_2 = 0.6 - 0.4 = 0.2$ s, sebessége $v'' = v - g \cdot t_2 = 8 m/s$, felfelé irányított **0.5p**

 \overrightarrow{V}'' \overrightarrow{V}_{0x} 0,5p

0,5p

$$\vec{v}_r = \vec{v}_{0x} - \vec{v}'$$
 \Rightarrow $v_r = \sqrt{v_{0x}^2 + {v'}^2} = 8\sqrt{2}$ m/s

c)

A ferdén eldobott labda teljes mozgási ideje $t = 2 \cdot t_e = 1, 2 s$; \Rightarrow A vízszintes irányban megtett út hossza $b = v_{0x} \cdot t = 9,6m$ **0,5p**

- 1) Ha a függőlegesen hajított labdát $\tau = 1,2s$ mal hamarabb dobjuk, mint a ferdén elhajítottat, mivel ez utóbbi teljes mozgásának ideje t = 1,2s, akkor az előző indításának pillanatában a ferdén dobott labda már eléri a talajt. $\Rightarrow d_1 = b d = 9,6 4,8 = 4,8m$ **0,5p**
- 2) Ha függőlegesen $\tau_1 = 0.4s$ később dobjuk a labdát, mozgásának ideje addig, amíg a ferdén dobott labda talajt ér $t_2 = 1.2 0.4 = 0.8$ s

Ekkor $h_1 = v \cdot t - \frac{g}{2}t^2 = 4.8m$ magasságban található **0,5p** $\Rightarrow D = \sqrt{h_1^2 + (b-d)^2} = 4.8\sqrt{2}m$

0,5p

0,5p