FONCTIONS AFFINES

Résumé

Nous nous intéressons à nouveau au modèle d'évolution linéaire mais dans le cas continu, c'est-à-dire, les fonctions affines.

1 Définition

Définition | Fonctions affines

Les fonctions représentées par des droites sont appelées les **fonctions affines**. Ce sont les fonctions *f* définies sur **R** dont l'expression est de la forme

$$f(x) = ax + b$$

avec a et b deux nombres réels.

a est le **coefficient directeur** ou la **pente**.

b est l'**ordonnée à l'origine**.

Exemples

Exercice

Parmi les fonctions suivantes, indiquer celles qui sont affines et donner, dans ce cas, a et b.

1.
$$g: x \mapsto -x + 4$$

2.
$$h: x \mapsto 3x^2 - 2$$

3.
$$f: x \mapsto \frac{1-2x}{3}$$

Remarques \blacktriangleright Si a=0, alors pour tout réel x, f(x)=b. La fonction est **constante**.

▶ Si b = 0, alors pour tout réel x, f(x) = ax. La fonction est **linéaire**. Les fonctions linéaires sont les seules fonctions dont le tableau de valeurs est un tableau de proportionnalité.

2 Propriétés

Propriétés

- ▶ Une fonction définie sur **R** est affine si, et seulement si, sa courbe représentative dans un repère est une droite. Dans ce cas, *a* est appelé le coefficient directeur de la droite et *b* son ordonnée à l'origine.
- $\blacktriangleright b = f(0)$
- ▶ Pour tout x_A , $x_B \in \mathbf{R}$ tels que $x_A \neq x_B$:

$$a = \frac{f(x_B) - f(x_A)}{x_B - x_A}.$$

Exemple Soit f affine dont la courbe représentative passe par (0;132) et (3;465). On détermine facilement a et b:

détermine facilement a et b: b = f(0) = 132 et $a = \frac{465 - 132}{3 - 0} = \frac{f(3) - f(0)}{3 - 0} = \frac{333}{3} = 111.$

Propriétés | Variations d'une fonction affine

Soit f une fonction affine telle que $f: x \mapsto ax + b$.

- ► Si a > 0 alors f est croissante sur \mathbf{R} .
- ► Si a = 0 alors f est constante sur \mathbf{R} .
- ▶ Si a < 0 alors f est décroissante sur \mathbf{R} .

Exemples $f: x \mapsto 10x - 2$ est croissante sur **R** mais $g: x \mapsto -x + 1$ est décroissante sur **R**.

A Attention

Pour bien lire le coefficient directeur a, il ne faut pas regarder le premier nombre de l'expression mais celui en facteur de x.

Ainsi, pour f(x) = 3 - 5x, a = 5 et pour f(x) = -2 + x, a = 1.

Exemple On donne le **tableau de variations** de $f: x \mapsto -2x + 3$ sur [-5;5].

x	-5	5
f(x)	13	-7

Théorème | Signe d'une fonction affine

Le signe de $f: x \mapsto ax + b$ ($a \ne 0$) dépend du signe de a et change en $-\frac{b}{a}$, unique solution de ax + b = 0. Donnons les tableaux de signe associés :

ightharpoonup Si a > 0:

x	$-\infty$		$-\frac{b}{a}$		+∞
f(x)		-	0	+	

ightharpoonup Si a < 0:

x	$-\infty$		$-\frac{b}{a}$		+∞
f(x)		+	0	-	

Exemple Donnons le **tableau de signe** de $f: x \mapsto -2x + 3$ sur **R**. Nous savons déjà qu'elle est décroissante sur **R** car -2 < 0 et nous avons vu son tableau de variations sur [-5;5]. Nous avons besoin de savoir quand est-ce que f s'annule. Il faut donc résoudre l'équation f(x) = 0 dans **R**.

$$f(x) = 0 \iff -2x + 3 = 0 \iff x = \frac{3}{2}$$

f ne s'annule qu'une seule fois sur \mathbf{R} , en $\frac{3}{2}$, donc elle est de signe constant sur $\left]-\infty; \frac{3}{2}\right[$ (celui de f(-5)=13) et sur $\left]\frac{3}{2}; +\infty\right[$ (celui de f(5)=-7).

х	$-\infty$		$\frac{3}{2}$		$+\infty$
f(x)		+	0	-	