

PROBABILISTIC DATA-GENERATION MODELS

Why

We study inductors by defining a probabilistic model of the data generation.

Definition

Let \mathcal{X} be a set of inputs and \mathcal{Y} be a set of outputs. Let $f: \mathcal{X} \to \mathcal{Y}$. Let $x_i: \Omega \to \mathcal{X}$ be independent and identically distributed random variables defined on some probability space $(\Omega, \mathcal{A}, \mathbf{P})$ and define $y_i: \Omega \to \mathcal{Y}$ by $y_i \equiv f(x_i)$ for $i = 1, \ldots, n$.

We call $((\Omega, \mathcal{A}, \mathcal{P}), \{x_i : \Omega \to \mathcal{X}\}_{i=1}^n, f : \mathcal{X} \to \mathcal{Y})$ a probabilistic data-generation model It is natural to call the law μ of x_i (which is the same for each i) the data-generating distribution or underlying distribution and to call f the correct labeling function.

Many authors refer to a probabilistic data-generation model as a statistical learning (theory) framework. It is also common to define $S: \Omega \to (\mathcal{X} \times \mathcal{Y})^n$ by $S = ((x_1, y_1), \dots, (x_n, y_n))$ and refer to this as the training dataset of the probabilistic model. Note well that it is a random variable.

Juding predictors under the model

The upshot of this framework is that we can theoretically analyze the performance of a candidate predictor, without recourse to some test dataset.

Let $h: \mathcal{X} \to \mathcal{Y}$ be a hypothesis predictor. The *error* of this

predictor under the probabilistic data-generation model is

$$\mu(\{x \in \mathcal{X} \mid h(x) \neq f(x)\})$$

In other words, the error is the probability (w.r.t. the underling distribution) that the classifier h mislabels a point.

Many authors associate an event $A \in \mathcal{A}$ with a function $\pi : \mathcal{X} \to \{0,1\}$ so that $A = \{x \in \mathcal{X} \mid \pi(x) = 1\}$ and it is common to write $\mu[\pi(x)]$ for $\mu(A)$. In this case the error of h is $\mu[h(x) \neq f(x)]$.

The error is measured with respect to the underling distribution μ and correct labeling function f. Other names for the error of a classifier include the *generalization error*, the *risk* or the *true error* or *loss* of h.

