

### Târgoviște 3-7 mai 2019

### Proba teoretică

### SUBIECTE



Pagina 1 din 4

#### Problema I – Lumină polarizată

(10 puncte)

La trecerea printr-un polarizor, P, lumina naturală este transformată în lumină liniar polarizată, planul de polarizare fiind paralel cu axa de polarizare.

- a) Lumina liniar polarizată, cu intensitatea  $I_0$ , cade pe un analizor, A, care are axa de polarizare rotită cu un unghi  $\alpha$  față de cea a polarizorului (figura 1). Considerând cele două elemente ideale (neglijăm reflexiile și absorbția) determină intensitatea fasciculului după trecerea prin analizor. (1p)
- b) Polarizorul și analizorul sunt dispuși în cruce (axele de polarizare sunt perpendiculare) și prin analizor nu trece lumina. Dacă între cele două elemente se introduce un al treilea polarizor, P', se constată că o parte din fasciculul de lumină trece prin analizor (figura 2). Exprimă intensitatea I a acestui fascicul, în funcție de intensitatea  $I_0$  a fasciculului inițial și de unghiul  $\alpha$  dintre direcțiile axelor de polarizare ale polarizorilor P și P'. Calculează valoarea unghiului  $\alpha$  pentru care intensitatea fasciculului emergent este maxima și valoarea acesteia. (1,5p)



c) Se înlătură polarizorul P' și în locul său se așează un cristal birefringent (figura 5). Acesta împarte raza de lumină incidentă în două raze. Una dintre acestea se propagă cu aceeași viteză în orice direcție, raza ordinară, iar

cealaltă se propagă cu viteze diferite după direcții diferite, raza extraordinară. În figura 3 sunt reprezentate fronturile de undă pentru unda ordinară, sferic, și pentru unda extraordinară, elipsoidal, când lumina este generată de o sursă punctiformă aflată în cristal. Direcția după care cele două unde au aceeași viteză reprezintă axa optică a cristalului. Indicele de refracție pentru raza ordinară este  $n_o$ , iar pentru raza extraordinară indicele de refracție este variabil în funcție de direcție, valoarea acestuia fiind cuprinsă între valorile extreme  $n_e$  și  $n_o$ .

Considerăm un cristal care are fețele paralele cu axa optică. Lumina liniar polarizată cade la incidență normală pe suprafața cristalului. Cele două raze se vor propaga pe aceeași direcție, dar cu viteze diferite (figura 4) și sunt liniar polarizate având planele de polarizare perpendiculare. La ieșirea din cristal între cele două unde luminoase liniar-polarizate apare un defazaj datorită indicilor de refracție diferiți. Exprimă acest defazaj  $\delta$  în funcție de indicii de refracție  $n_o$  pentru raza ordinară, respectiv  $n_e$  pentru raza extraordinară, lungimea de undă în vid  $\lambda$  și grosimea d a cristalului. (1p)



Figura 3



Figura 4

d) La ieșirea din cristal cele două unde luminoase se compun. Considerând că amplitudinile celor două unde sunt egale,  $E_{\max}$ , găsiți relația care există între intensitatea câmpului electric al undei extraordinare,  $E_e$ , intensitatea câmpului electric al undei ordinare,  $E_o$  și defazajul  $\delta$ . Analizați cazurile în care defazajul  $\delta$  are valorile  $2k\pi$ ,

$$(2k+1)\pi$$
 și  $k\pi + \frac{\pi}{2}$ , unde  $k$  este un număr întreg. (2p)

e) Efectul electro-optic constă în schimbarea valorii indicelui de refracție al unui mediu în urma aplicării unui câmp electric. Dacă indicele de refracție depinde liniar de intensitatea câmpului electric aplicat acest fenomen se numește efect Pockels.

- 1. Fiecare dintre problemele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unei probleme, elevul are dreptul să rezolve cerințele în orice ordine.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- 4. Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- 5. Fiecare problemă se punctează de la 10 la 0. Punctajul final reprezintă suma acestora.



### Târgoviște 3-7 mai 2019

### Proba teoretică

### SUBIECTE



Pagina 2 din 4

În acest caz putem scrie relația  $n(E) = n_0 + aE$  unde aE este mult mai mic dacât  $n_0$ . De obicei se consideră  $a = -\frac{1}{2}r\,n_0^3$  unde r este o constantă numită coeficientul Pockels. În practică se utilizează impermeabilitatea electrică  $\eta = \frac{1}{n^2}$ .

Găsește o relație aproximativă a dependenței impermeabilității electrice de intensitatea câmpului electric. (1p)

f) Un tip de celulă Pockels este reprezentată în figura 6. Cunoscând indicele de refracție al mediului în absența câmpului electric  $n_0$ , dimensiunile celulei L și d, lungimea de undă a radiației utilizate,  $\lambda$ , și coeficientul Pockels, r, calculează tensiunea electrică aplicata  $U_{\pi}$  care determină o diferență de fază  $\Delta \phi = \phi - \phi_0 = \pi$  unde  $\phi_0$  este faza radiației emergente în cazul în care nu este aplicată o diferență de potential, iar  $\phi$  după aplicarea diferenței de potential respective. (1,5p)



Figura 6

g) Admitem că în cazul unui mediu anizotrop cei doi indici de refracție se modifică conform relațiilor  $n_e = n_{e0} - \frac{1}{2} r_e n_{e0}^3 E$  și  $n_o = n_{o0} - \frac{1}{2} r_o n_{o0}^3 E$ . Cristalul a fost tăiat în așa fel încât, în lipsa câmpului electric, radiația emergentă este liniar polarizată după prima bisectoare. Care este valoarea minima a tensiunii care trebuie să fie

aplicate pentru ca radiația emergentă să devină liniar polarizată după a doua bisectoare? (**1p**)  $\bf h$ ) În spatele celulei este așezat un polarizor care permite trecerea integral a radiatiei polarizate paralel cu prima bisectoare (deci nu permite trecerea radiației polarizate paralel cu a doua bisectoare). Ce procent din energia incidentă pe polarizor va trece prin acesta dacă admitem că starea în care nu este aplicată tensiune pe celulă un timp T reprezintă simbolul binar "0" iar aplicarea pe celulă o durată T a unei tensiuni  $U_{\pi}$  semnifică simbolul "1"

pentru a transmite succesiunea de cifre 2 0 1 9? (se cunosc codificările :2 $\rightarrow$ 0010, 0 $\rightarrow$ 0000, 1 $\rightarrow$ 0001, 9 $\rightarrow$ 0101) (**1p**)

#### Problema II - Principiul fundamental al dinamicii relativiste

(10 puncte)

În mecanica relativistă, unde timpul absolut nu mai există, unde vitezele se compun după alte reguli decât cele din mecanica newtoniană, unde accelerația nu mai este aceeași în raport cu orice SRI și unde masa depinde de viteză, cu siguranță că și relația dintre vectorul forță,  $\vec{F}$ , și vectorul accelerație,  $\vec{a}$ , într-un același SRI, în dinamica relativistă, este alta decât în dinamica newtoniană. În mecanica relativistă, unde impulsul relativist al unui punct material, în mișcare cu viteza  $\vec{v}$  față de sistemul inerțial OXYZ, considerat fix, are aceeași formă cu impulsul clasic,  $\vec{p} = m\vec{v}$ , se admite că și forma principiului fundamental al dinamicii relativiste este aceeași cu

forma principiului fundamental al dinamicii clasice, adică:  $\vec{F} = \frac{dp}{dt}$ .

a)  $S\Bar{a}$  se stabilească, pe baza relației anterioare, ecuația vectorială a mișcării relativiste a unei particule, reprezentând relația dintre vectorii forță și accelerație,  $\vec{F}$  și  $\vec{a}$ , corespunzător momentului când viteza punctului material, în raport cu sistemul fix este  $\vec{v}$ , așa cum indică desenul din figura 1, evidențiind apoi și grafic deosebirea față de relația dintre aceeași doi vectori în mecanica newtoniană.

Se cunosc:  $m_0$  – masa de repaus a punctului material; c – viteza luminii în vid. (3p)

<sup>1.</sup> Fiecare dintre problemele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.

<sup>2.</sup> În cadrul unei probleme, elevul are dreptul să rezolve cerințele în orice ordine.

<sup>3.</sup> Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi

<sup>4.</sup> Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.

<sup>5.</sup> Fiecare problemă se punctează de la 10 la 0. Punctajul final reprezintă suma acestora.



### Târgoviște 3-7 mai 2019

### Proba teoretică

## SUBIECTE



Pagina 3 din 4

**b)** *Să se demonstreze* că accelerația punctului material, dobândită datorită acțiunii forței  $\vec{F}$ , în dinamica relativistă, este dată de expresia :  $\vec{a} = \frac{1}{m}\vec{F} - \frac{\vec{F} \cdot \vec{v}}{mc^2}\vec{v}$ . (4p)

Cazuri particulare : 1)  $\vec{F} \perp \vec{v}$ ; 2)  $\vec{F} / / \vec{v}$ .



c) Un punct material cu masa de repaus  $m_0$ , în mişcare față de SRL (OXYZ), are viteza instantanee  $\vec{v}$  atunci când el se află pe traiectorie într-un punct din planul XOY, căruia îi corespunde o rază de curbură R, așa cum indică desenul din figura 2.



 $S\check{a}$  se determine elementele vectorului  $\vec{F}$ , componentele, modulul și orientarea, reprezentând forța instantanee care acționează asupra punctului material.

- 1. Fiecare dintre problemele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unei probleme, elevul are dreptul să rezolve cerințele în orice ordine.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi
- 4. Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- **5.** Fiecare problemă se punctează de la 10 la 0. Punctajul final reprezintă suma acestora.



## Târgoviste 3-7 mai 2019

### Proba teoretică





Pagina 4 din 4

Se știe că, atunci când un punct material se deplasează în planul XOY, așa cum indică desenul din figura 2,

vectorul accelerație este: 
$$\vec{a} = \frac{dv}{dt}\vec{\tau} + \frac{v^2}{R}\vec{n}$$
,

unde:  $\vec{\tau}$  - versorul tangentei la traiectorie;  $\vec{n}$  - versorul normalei pe tangenta la traiectorie;  $C_0$  - centrul de curbură al traiectoriei corespunzător poziției M. (3p)

#### Problema III - Propulsie cu lumină

(10 puncte)

Propulsarea unui vehicul în spațiul extraterestru, pe distanțe mari care să fie parcurse într-un timp cât mai mic presupune alte metode decât cele utilizate în prezent. În cele ce urmează îti propunem să analizezi o modalitate de propulsie bazată pe energia furnizată de un LASER de mare putere așa cum este, de exemplu, instalația laser de la Măgurele (ELI-NP), care are o poziție fixă și poate transmite energie unui vehicul spatial prin reflexia luminii pe o oglindă solidară cu vehiculul.

#### Reflexia

a) Fie  $\theta_i$  unghiul de incidență sub care ajunge un fascicul de lumină pe suprafața unei oglinzi plane și care se mișcă cu viteza v perpendiculară pe planul acesteia. Determină unghiul  $\theta_r$  sub care se reflectă fasciculul de lumină. (3p)

### Propulsia

Consideră că laserul folosit pentru propulsia vehiculului spațial emite cu putere constantă în timp. Fie  $P = 9 \cdot 10^{14}$  W puterea fasciculului luminos care ajunge în mod constant la vehicul și la incidență normală fată de suprafața oglinzii. Vehiculul are masa de repaus  $m = 10^3 \,\mathrm{Kg}$  și trebuie să parcurgă distanța de la Pământ la marginea Sistemului Solar care poate fi considerată ca fiind  $d = 10^{13}$  m. În acest context îti propunem să determini timpul în care vehiculul parcurge această distanță.

**b)** Fie  $d\ell$  lungimea fasciculului laser care se reflectă pe oglinda vehicului într-un timp dt foarte mic  $(dt \rightarrow 0)$ . Fie  $d\varepsilon$  energia fascicului laser care ajunge la oglindă în timpul dt,  $d\varepsilon'$  energia fascicului reflectat în același timp, iar E și p energia respectiv impulsul vehiculului la începutul intervalului dt. Determină, în funcție de

puterea P a fasciculului laser și  $\beta$  ( $\beta = \frac{v}{c}$ ), energia  $d\varepsilon$  a fotonilor din fasciculul laser care ajunge la oglindă în timpul *dt* . (**2p**)

c) Considerând că inițial vehiculul se află în repaus arată că  $\beta = \frac{\left[\frac{2P}{mc^2}\left(t - \frac{x}{c}\right) + 1\right]^2 - 1}{\left[\frac{2P}{c}\left(t - \frac{x}{c}\right) + 1\right]^2 + 1}$  unde  $\beta = \frac{v}{c}$ , v este viteza

vehiculului după ce parcurge distanța x, c este viteza luminii, iar P respectiv m sunt mărimile precizate anterior. (3p)

**d)** Calculează timpul t în care vehiculul parcurge distanța  $d = 10^{13} \,\mathrm{m}$ .

Dacă consideri util folosește schimbarea de variabilă  $t' = t - \frac{d}{c}$ .(2p)

Subiect propus de:

Viorel Solschi - Colegiul Național "Mihai Eminescu" Satu Mare Mihail Sandu - Liceul Tehnologic de Turism Călimănești Victor Stoica – Inspectoratul Școlar al Municipiului București

- Fiecare dintre problemele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează. 1.
- În cadrul unei probleme, elevul are dreptul să rezolve cerințele în orice ordine. 2.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- Fiecare problemă se punctează de la 10 la 0. Punctajul final reprezintă suma acestora.