Statistical Computing with R: Masters in Data Sciences 503, S24 First Batch, SMS, TU, 2021

Shital Bhandary

Associate Professor

Statistics/Bio-statistics, Demography and Public Health Informatics
Patan Academy of Health Sciences, Lalitpur, Nepal
Faculty, Data Analysis and Decision Modeling, MBA, Pokhara University, Nepal

Faculty, FAIMER Fellowship in Health Professions Education, India/USA.

Supervised Learning with classification models

- Decision Tree
 - Model Accuracy
 - Model Prediction
 - Model Validation

- Ensemble learning
 - Bagging
 - Random Forest: Improved Decision Tree Bagging
 - Boosting
 - Random Forest Boosting

Decision Tree: More at "An Introduction to Statistical Learning with Applications in R" book!

- Decision tree is a type of supervised learning algorithm that can be used in both regression and classification problems.
- It works for both categorical and continuous input and output variables.
- Today we will focus on the classification tree

Note:- A is parent node of B and C.

Reference: https://www.datacamp.com/community/tutorials/decision-trees-R

Classification tree:

Classification Error Rate

• Gini Index

Cross-Entropy

Confusion matrix accuracy and diagnostic measures

Reference: https://www.datacamp.com/community/tutorials/decision-trees-R

Let's fit a decision tree classifier in the Cardiotocographic (CTG) data:

#Make sure the data is in the working library of R

- library(readr)
- Cardiotocographic <read_csv("Cardiotocographic.csv")

#Save the long name as data

- data <- Cardiotocographic
- str(data)

#The structure correctly shows LB, AC and FM as numerical but incorrectly show NSP as numeric too!

- spec_tbl_df [2,126 x 22] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
- \$ LB : num [1:2126] 120 132 133 134 132 134 134 122 122 122 ...
- \$ AC : num [1:2126] 0 0.00638 0.00332 0.00256 0.00651 ...

•••

• \$ NSP : num [1:2126] 2 1 1 1 1 3 3 3 3 3 ...

Change the NSP as factor variable as this is the dependent variable:

#Three categories of NSP

- NSP = 1 = Normal CTG (No hypoxia or acidosis)
- NSP = 2 = Suspicious CTG (Low probability of hypoxia/acidosis)
- NSP = 3 = Pathological CTG (High probability of hypoxia/acidosis)

#Changing as factor variable data\$NSPF <- factor(data\$NSP) str(data\$NSPF)</pre>

Factor w/ 3 levels "1","2","3": 2
111133333...

 NSP categories were formed using "Updated 2015 FIGO Intrapartum Fetal Monitoring Guidelines" (Wikipedia)

Let's divide the data into train and test sets:

#Data partition

- set.seed(1234)
- ind <- sample(2, nrow(data), replace=T, prob = c(0.8, 0.2))
- train <- data[ind==1,]
- test <- data[ind==2,]

Let's fit a decision tree classifier in the train data:

#Party package

- install.packages("party")
- library(party)

#Fit the decision tree model with only the first three variable to learn it today

 tree <- ctree(NSPF ~ LB+AC+FM, data=train)

#Check the model

tree

Conditional inference tree with 10 terminal nodes

- Response: NSPF
- Inputs: LB, AC, FM
- Number of observations: 1718
- 1) AC <= 0.000834028; criterion = 1, statistic = 263.403
- 2) LB <= 136; criterion = 1, statistic = 131.511
- 3) FM <= 0.111898; criterion = 1, statistic = 35.729

Let's plot the decision tree: plot(tree)

For predicting 3 variables we have a "tree" with 19 nodes! So, it is a "overfitting"!

#Pruning the tree with 99% confidence interval and split at 500 samples

- tree1 <- ctree(NSPF ~ LB+AC+FM, data=train, controls = ctree_control(mincriterion=0.99, minsplit=500))
- tree1

#Now we have only 9 nodes in the model!

Lets plot it and see how it helps us!

Conditional inference tree with 5 terminal nodes (total 9 nodes)

- Response: NSPF
- Inputs: LB, AC, FM
- Number of observations: 1718
- 1) AC <= 0.000834028; criterion = 1, statistic = 263.403
- 2) LB <= 136; criterion = 1, statistic = 131.511
- 3)* weights = 416

•••

- 7) LB > 110
- 9)* weights = 782

Controlled Decision Tree: plot(tree1)

Let's predict now:

Predict the categorical probabilities for each case in train data

predict(tree, type="prob")

#Predict the category for each case in test data

predict(tree, test)

#Predicted probability: case 1

- [[1]]
- 0.71111111 (prob. for NSP=1)
- 0.09135802 (prob. for NSP=2)
- 0.19753086 (prob. for NSP = 3)

#Predicted category for cases:

Let's get the confusion matrix, accuracy and the misclassification error (mce) for train data

#Confusion matrix

(tab <- table(predict(tree), train\$NSPF))

#Accuracy

accuracy <sum(diag(tab))/sum(tab)

#Misclassification error

• mce <- 1 - accuracy

11.	_	•		•
π	ntii	SIMM	matr	IV
$\pi \cup \cup$	III U	31011	mati	I

1 **1222** 70 101

2 126 **156** 32

3 0 0 **11**

#Accuracy

[1] 0.8084983

#Misclassification error

[1] 0.1915017

NSP classification was done by 3 expert clinicians!

We need to optimize the model so that we can do prediction with confidence with the model rather than clinicians!

Let's get the confusion matrix, accuracy and the misclassification error (mce) for train data

#Prediction for test data

pred.test <- predict(tree,
newdata=test)</pre>

#Confusion matrix

- (tab1 <- table(pred.test, test\$NSPF))
- #Accuracy
- accuracy1 <sum(diag(tab1))/sum(tab1)
- #Misclassification error
- mce1 <- 1 accuracy1

#Confusion matrix

pred.test	1	2	3
1	274	20	27
2	33	48	4
3	0	1	1

#Accuracy

[1] 0.7916667

(Good, not excellent!)

#Misclassification error

[1] 0.2083333

We must optimize the model so that we can do prediction with confidence with the model rather than clinicians!

Limitations of Decision Tree model:

https://www.datacamp.com/community/tutorials/decision-trees-R

- The decision trees discussed above suffer from high variance, meaning if you split the training data into 2 parts at random, and fit a decision tree to both halves, the results that you get could be quite different.
- In contrast, a procedure with low variance will yield similar results if applied repeatedly to distinct dataset.
- We must use ensemble learning!
 - Bagging, Random Forests and Boosting

- Bagging, or bootstrap aggregation, is a technique used to reduce the variance of your predictions by combining the result of multiple classifiers modeled on different sub-samples of the same dataset.
- Here is the equation for bagging:

$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_{b}(x)$$

Where, we generate B number of bootstrapped (resampled) training datasets and choose one with "vote".

Bagging:

- **Step 1**: Here you replace the original data with new data. The new data usually have a fraction of the original data's columns and rows, which then can be used as hyper-parameters in the bagging model.
- **Step 2**: You build classifiers on each dataset. Generally, you can use the same classifier for making models and predictions.
- Step 3: Lastly, you use an average value to combine the predictions of all the classifiers, depending on the problem. Generally, these combined values are more robust than a single model.

Bagging in R with "ipred" package for CTG data (NSP = dependent variable):

#Bagging with ipred package
#install.packages("ipred") if required

- library(ipred)
- MBTree <- bagging(NSP~., data = train, coob=T)
- print(MBTree)

#Prediction

- MBPredict1 <- predict(MBTree, test)
- MBPredict1

#Confusion matrix and accuracy

confusionMatrix(MBPredict1, test\$NSP)

- Bagging classification trees with 25 bootstrap replications
- Call: bagging.data.frame(formula = NSP ~ ., data = train, coob = T)
- Out-of-bag estimate of misclassification error:
 0.0622 = 6.22%

Confusion Matrix and Statistics

	R	eference	
Prediction	1	2	3
1	478	16	6
2	13	63	1
3	4	3	47

Accuracy: 0.9319, 95% CI: (0.9093, 0.9502)

MCE = 1 - 0.9319 = 0.0681 = 6.81%

Random Forest: Improved Bagging model

- Random Forest provides an improvement over bagged trees by a small tweak that decorrelates the trees.
- As in bagging, we build a number of decision trees on bootstrapped training samples.
- But when building these decision trees, each time a split in a tree is considered, a random sample of m predictors (mtry) is chosen as split candidates from the full set of p predictors.

- The split is allowed to use only one of those m predictors
- This is the main difference between random forests and bagging; because as in bagging, the choice of predictor m = p i.e. all the predictors are used.

Random Forest Requisites:

- First assume that the number of cases in the training set is K.
- Then, take a random sample of these K cases, and then use this sample as the training set for growing the tree.
- If there are **p** Input variables, specify a number **m** < **p** such that at each node, we can select **m** random variables out of the **p**.
- The best split (votes) on these
 m is used to split the node.

- Each tree is subsequently grown to the **largest extent** possible and **no pruning** is needed.
- Finally, aggregate the predictions of the target trees to predict new data.
- Random Forest package in R used 500 trees as "default"!

Advantages of Random Forests model:

- Random Forests is very effective at estimating missing data and maintaining accuracy when a large proportions of the data is missing.
- It can also balance errors in datasets where the classes are imbalanced.

- Most importantly, it can handle massive datasets with large dimensionality.
- However, one disadvantage of using Random Forests is that you might easily "overfit" noisy datasets, especially in the case of doing regression.

Let's do pre-processing before fitting the Random Forests model in the CTG data:

#Remove the NSPF variable from data i.e. 23rd column of data

• data <- data[,-23]

#Change the NSP variable as factor

data\$NSP <- as.factor(data\$NSP)

#Check the frequencies of NSP variable

table(data\$NSP)

#Data partition

• set.seed(123)

ind <- sample(2, nrow(data), replace=T, prob = c(0.7, 0.3))

train <- data[ind==1,]

test <- data[ind==2,]

Let's fit the Random Forest model now:

#Random Forests package
#install.packages("randomForest")

library(randomForest)

#Setting seed for replication set.seed(222)

#Fitting random forest model

rfm <- randomForest(NSP~., data=train)

#Printing random forest model

• print(rfm)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 4

OOB (Out-of-Bag) estimate of error rate: 5.62%

Confusion matrix:

•	1	2	3	class.error
• 1	1142	17	1	0.01551724
• 2	47	164	2	0.23004695
• 3	6	11	105	0.13934426

Accuracy = (1142+164+105)/1495= 94.38%

Prediction using "caret" package:

#Let us use caret to predict

- library(caret)
- p1 <- predict(rfm, train)
- head(p1)

#Let us see the original values head(train\$NSP)

> head(p1)

Cases: 123456

Prediction: 213333

• NSP Levels: 1 2 3

>head(train\$NSP)

• Cases: 123456

• [1] 2 1 3 3 3 3

• NSP Levels: 1 2 3

For the first six cases, prediction using train data is "perfect" or 100% correct prediction!

Let's check the accuracy and misclassification error with Confusion Matrix for "train" data:

- #Confusion matrix
- confusionMatrix(p1, train\$NSP)

Confusion Matrix and Statistics

	Reference		
Prediction	1	2	3
1	1160	2	0
2	0	211	0
3	0	0	122

Accuracy : 0.9987

95% CI: (0.9952, 0.9998)

Class:1 Class:2 Class:3
Sensitivity 1.0000 0.9906 1.00000

Specificity 0.9940 **1.0000 1.00000**

- MCE = 1 0.9987 = 0.0013
- Fitted model in the train data is nearly 100% correct!
- Accuracy of fitted model in the test data = ??% correct??

Let's check the accuracy and misclassification error with Confusion Matrix for "test" data:

```
#Prediction for test data
```

- p2 <- predict(rfm, test)
- #Confusion matrix
- confusionMatrix(p2, test\$NSP)

Confusion Matrix and Statistics

Deference

	Reference		
Prediction	1	2	3
1	482	17	4
2	11	61	4
3	2	4	46

- Accuracy : **0.9334**
- 95% CI : (0.9111, 0.9516)
- Class: 1 Class: 2 Class: 3
- Sensitivity **0.9737** 0.74390 0.85185
- Specificity 0.8456 0.972680.98960

• MCE = 1 - 0.9334 = 0.0666 = 6.66% OOB error!

Let us evaluate the error and see if we can improve the model with it: plot(rfm)

 Here error reduced substantially till 200 trees

 Error did not change between 200-300 trees

 This means the default 500 trees are not required to get the lowest error

Can we improve the random forest model? Yes. We can tune the random forest model!

- # We can use "tuneRF" function of the randomForest package but we need to define train as data frame
- train <- as.data.frame(train)
- # We can use the "tuneRF" now
- t <- tuneRF(train[,-22], train[,22],
- stepFactor = 0.5,
- plot = TRUE,
- ntreeTry = 300,
- trace = TRUE,
- improve = 0.05)

Lets fit the improved random forest model and check the OOB error:

Improved "rfm" model:

- rfm1 <- randomForest(NSP~., data=train,
- ntree = 300,
- mtry = 8,
- importance = TRUE,
- proximity = TRUE)
- print(rfm1)

We can try the "boosting" methods now to check if it can improve the random forest model or not!

#Call:

randomForest(formula = NSP ~ ., data = train, ntree = 300, mtry = 8, importance = TRUE, proximity = TRUE)

Type of random forest: classification

Number of trees: 300

No. of variables tried at each split: 8

OOB estimate of error rate: 5.48% (improved a bit but not by much!)

Boosting:

https://www.datacamp.com/community/tutorials/decision-trees-R

• **Boosting** is another approach to improve the predictions resulting from a decision tree.

- Like bagging and random forests, it is a general approach that can be applied to many statistical learning methods for regression or classification.
- Recall that bagging involves creating multiple copies of the original training dataset using the bootstrap, fitting a separate decision tree to each copy, and then combining all of the trees in order to create a single predictive model.
- Notably, each tree is built on a bootstrapped dataset, independent of the other trees.

How Boosting works?

https://www.datacamp.com/community/tutorials/decision-trees-R

 Boosting works in a similar way, except that the trees are grown sequentially: each tree is grown using information from previously grown trees.

 Boosting does not involve bootstrap sampling; instead, each tree is fitted on a modified version of the original dataset.

Boosting with Generalized Boosting Regression Model (GBM): https://rpubs.com/drwatkins/286356

#Generalized Boosting Regression Model

library(caret)
mod.gbm <train(NSP~.,data=train,method="gbm",verb
ose=F)
print(mod.gbm)</pre>

Confusion Matrix and Statistics

	Refere	ence	
Prediction	1	2	3
1	479	13	5
2	13	67	1
3	3	2	48

#Prediction and confusion matrix

pred.mod.gbm <predict(mod.gbm,test,data=test)
confusionMatrix(pred.mod.gbm, test\$NSP)</pre>

Accuracy : 0.9414

95% CI: (0.9201, 0.9584)

Error: 1 - 0.9414 = 0.0586 = 5.86%

#Variable importance

summary(mod.gbm)

Boosting with GDM did not improve the model!

Boosting of random forest model using "xgboostTree" model with caret package in R:

#Boosting with extreme gradient boosting Tree model in caret

```
mod.xgb <-
train(NSP~.,data=train,method="xgb
Tree",verbose=FALSE)
print(mod.xgb)
summary(mod.xgb)</pre>
```

#Prediction and confusion matrix

pred.mod.xgb <predict(mod.xgb,test,data=test)
confusionMatrix(pred.mod.xgb,
test\$NSP)</pre>

Confusion Matrix and Statistics

	Reference		
Prediction	1	2	3
1	482	10	3
2	11	69	1
3	2	3	50

Accuracy: 0.9525, OOB Error = 1 – 0.9525 = 0.0475 – 4.75% (<5%, finally!)

#Boosting using extreme gradient boosting links:

https://www.analyticsvidhya.com/blog/2016/01/xgboost

-algorithm-easy-steps/

https://www.youtube.com/watch?v=woVTNwRrFHE

Variable Importance with varImp(mod.xgb) & summary(mod.xgb) for the var. imp. plot in R!

xgbTree variable importance

only 10 most important variables shown (out of 21)

	Variable	Overall
•	ASTV	100.0000
•	Mean	87.5827
•	ALTV	83.3495
•	MSTV	63.7973
•	AC	59.8600
•	DP	31.5733
•	Mode	26.6693
•	UC	24.6013
•	Median	16.7968
•	LB	14.4535

Question/queries?

Next class

- Unsupervised learning
 - Dimensionality Reduction

- Factor analysis
 - Principal Component Analysis
 - Principal Axis Factoring
 - Confirmative Factor Analysis

Thank you!

@shitalbhandary