Calcul de la matrice de Jordan d'une matrice 6.8.4

Une question naturelle est : Étant donnée une matrice A explicite, comment calculer une matrice de Jordan $\mathcal J$ à laquelle elle est semblable? Pour répondre à cette question il faut suivre les étapes suivantes :

- 1. Calculer le polynôme caractéristique.
- 2. Vérifier si le polynôme caractéristique est scindé.
- 3. Pour chaque valeur propre λ , on calcule alors la suite des sous-espaces $ker(A-\lambda I_n)^i$ où i est l'ordre de multiplicité de λ .

Voici deux exemples pratiques de réponse à cette question :

 ${\bf Exemple \ 1:} \ \ {\bf Trouver \ la \ forme \ r\'eduite \ de \ Jordan \ de \ la \ matrice:}$

$$A = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & 1 & 5 & 7 \\ 0 & 0 & 2 & 7 \\ 0 & 0 & 0 & 2 \end{pmatrix} \in \mathcal{M}_4(\mathbb{R}).$$

Solution. On a:

$$P_A(X) = det(A - XI_4)$$

= $(1 - X)^2(2 - X)^2$.

D'après le lemme de décomposition des noyaux on a :

$$E = \ker(f - Id_E)^2 \oplus \ker(f - 2Id_E)^2,$$

où $E=\mathbb{R}^4, f$ l'endomorphisme de \mathbb{R}^4 canoniquement associé à A et (e_1,\ldots,e_4) la base canonique de \mathbb{R}^4 . Pour $\ker(f-Id_E)$, on résout :

$$\begin{cases} 2y + 3z + 14t = 0 \\ 5z + 7t = 0 \\ z + 7t = 0 \\ t = 0, \end{cases}$$

ce qui équivaut à y=z=t=0. Donc $e_1 = (1, 0, 0, 0)$ engendre $\ker(f - Id_E)$. Après avoir fait les calculs, on trouve $(A - I)^2 = \begin{pmatrix} 0 & 0 & 13 & 49 \\ 0 & 0 & 5 & 42 \\ 0 & 0 & 1 & 14 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

D'où:

$$(x, y, z, t) \in \ker(f - Id_E)^2 \Leftrightarrow z = t = 0$$

donc (e_1, e_2) est une base de $\ker(f - \operatorname{Id}_E)^2$. Ainsi, $\{e_2\}$ engendre un supplémentaire de $\ker(f-Id_E)$ dans $\ker(f-Id_E)^2$ D'où, la base de $\ker(f-\mathrm{Id}_E)^2$ disposée comme suit :

$$e_2$$

$$\uparrow$$

$$(f - \operatorname{Id}_E)(e_2) = 2e_1.$$

Soit f_1 la restriction de f sur $\ker(f - \operatorname{Id}_E)^2$, on a :

$$Mat(f_1, (2e_1, e_2)) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

On trouve que $\ker(f-2Id_E)$ est de dimension 1 engendré par $u_1=(13,5,1,0)$. Pour $ker(f-2Id_E)^2$ on résout :

$$\begin{cases} x - 4y + 7z + 21t = 0\\ y - 5z + 28t = 0. \end{cases}$$

Ce qui est équivalent à :

$$\begin{cases} x = 13z - 133t \\ y = 5z - 28t. \end{cases}$$

D'où u_1 et $u_2 = (-133, -28, 0, 1)$ constituent une base de $\ker(f - 2Id_E)^2$. Ainsi $\{u_2\}$ engendre un supplémentaire de $\ker(f-2Id_E)$ dans $\ker(f-2Id_E)^2$. D'où la base de $\ker(f-2\operatorname{Id}_E)^2$ est disposée comme suit :

 $(J-2\operatorname{Id}_E)(u_2)=\iota u_1.$ par rapport à cette base la matrice de f_2 induite par f sur $\ker(f-2\operatorname{Id}_E)^2$ $Mat(f_2, (7u_1, u_2)) = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ est:

Finalement:

$$Mat(f,(2e_1,e_2,7u_1,u_2)) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

C'est la réduite de Jordan de A.

La matrice de passage de la base canonique de \mathbb{R}^4 à la base $B'=(2e_1,e_2,7u_1,u_2)$

$$P = \left(\begin{array}{cccc} 2 & 0 & 91 & -133 \\ 0 & 1 & 35 & -28 \\ 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

On a:

$$P^{-1}AP = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Exemple 2: Trouver la forme réduite de Jordan de la matrice :

$$\begin{pmatrix} -2 & -1 & 1 & 2 \\ 1 & -4 & 1 & 2 \\ 0 & 0 & -5 & 4 \\ 0 & 0 & -1 & -1 \end{pmatrix}.$$

Solution. Le polynôme caractéristique de A est :

$$P_A(X) = det(A - XI_4) = (3 + X)^4$$
.

On pose M = A + 3I. On a :

$$M = \begin{pmatrix} 1 & -1 & 1 & 2 \\ 1 & -1 & 1 & 2 \\ 0 & 0 & -2 & 4 \\ 0 & 0 & -1 & 2 \end{pmatrix}.$$

On cherche une base de Ker(M) et on trouve que :

$$\dim \ker(M) = 2.$$

Enfin:

$$v_1 = Mv_2 = \begin{pmatrix} 1 & -1 & 1 & 2 \\ 1 & -1 & 1 & 2 \\ 0 & 0 & -2 & 4 \\ 0 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -4 \\ -2 \end{pmatrix} = \begin{pmatrix} -4 \\ -4 \\ 0 \\ 0 \end{pmatrix}$$

Il nous manque un vecteur u qui soit dans $\ker(M) \setminus Vect(v_1)$. On peut choisir :

$$u = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} \in \ker(M) \setminus Vect(v_1).$$

est exactement J. Ainsi (u, v_1, v_2, v_3) est une base de Jordan dans laquelle la réduite de Jordan

La matrice de passage correspondante est alors :

$$P = \begin{pmatrix} -4 & -4 & 1 & 0 \\ 0 & -4 & 1 & 0 \\ 2 & 0 & -2 & 1 \\ 1 & 0 & -1 & 0 \end{pmatrix}.$$