最佳捕鱼策略的数学模型

黄成涛 张耀新 沈廷虎 (武汉水利电力大学,武汉 430072)

指导教师: 汪长平

编者按 本文的数学模型提法清楚. 相对于捕捞强度逃消的不同予测值, 对鱼群变化进行动态模拟, 以求得到稳产, 这不失为一种有启发性的处理方法. 但由于未能对捕捞量 — 捕捞强度函数进行更为精确的解析或激值研究, 结果未能达到最高产.

一、问题的分析

原问题实质上是明确或隐含地给出各年龄组鱼群转化的规律,并给出它们的自然死亡率及鱼产卵的时间分布,并固定每年投入的捕捞能力(如鱼船数,下网次数)及3、4龄鱼捕捞能力的比值,要求选择一定的捕捞能力系数,使得各年龄组鱼量在各年开始捕捞前条数不变,或5年内鱼群的生产能力不会有太大破坏,并在此条件下,得到以重量计的最大捕获量.

下面给出文中所用的主要变量说明:

 s_{it} — 表示 (t+1) 年 i 龄鱼的数量 $(i=1,2,3,4;\ t=0,1,2,3,4);$

k -表示对 4 龄鱼的捕捞强度系数 (3 龄鱼为 0.42k);

G -- 表示所捕捞鱼的重量;

 w_{ij} — 表示 (j+1) 年对 i 龄鱼的捕捞重量 $(i=3,4,\ j=0,1,2,3,4)$;

n-3、4 龄鱼产卵的总数.

二、模型设计与求解

1. 可持续捕捞渔业优化模型的建立

为了求解鱼量稳定情况下的最大捕获量,我们把捕鱼能力系数 k 作为一个关键的控制变量,通过建立各相关量与 k 的关系,以求能最终根据稳定情况下的最大捕获量条件求得一最佳的 k 值,并由此得出最优的可持续捕获的渔业捕获模型.

1) 一般情况下,各龄鱼的数量须经过一段时间,才能达到一个稳定的状态.即到平 衡年时,年末和年初的各龄鱼的数量基本不变.

设 α 为各年龄鱼的自然死亡率 (表示单位时间内死亡的鱼的数量与鱼的总量之比). 在 $t \to t + \Delta t$ 的 Δt 时段内,根据死亡率的定义,则有

$$\alpha = \lim_{t \to 0} \frac{s(t) - s(t + \Delta t)}{\Delta t \cdot s(t)} = -\frac{ds(t)}{dt} \cdot \frac{1}{s(t)}$$

变形得

$$\frac{ds(t)}{dt} = -\alpha s(t) \ .$$

积分得

$$s(t) = s(0) \cdot e^{-\alpha t} \tag{4.1}$$

(4.1) 式表示无捕捞时, 鱼群数量 s 随时间变化的规律, 考虑有捕捞情况下, 则有

$$\frac{ds(t)}{dt} = -(\alpha + k)s(t)$$

积分得

$$s(t) = s(0) \cdot e^{-(\alpha+k)t} \tag{4.2}$$

设年初各龄鱼群数量分别为 s_{10} , s_{20} , s_{30} , s_{40} , 八月末,经过辅捞及自然死亡后的各龄鱼群数量为 s_1^1 , s_2^1 , s_3^1 , s_4^1 , 十二月末,各龄鱼群数量为 s_1 , s_2 , s_3 , s_4 卵的总数量为 n, 则由 (4.1) 、 (4.2) 式, t 按年计算,有

1-8 月,为捕捞季节。经过捕捞及自然死亡,八月末,各龄鱼群数量为

$$\begin{aligned} s_1^1 &= s_{10} \cdot e^{-0.8 \times 2/3}, & s_2^1 &= s_{20} \cdot e^{-0.8 \times 2/3}, \\ s_3^1 &= s_{30} \cdot e^{-(0.8 + 0.42k) \times 2/3}, & s_4^1 &= s_{40} \cdot e^{-(0.8 + k) \times 2/3}. \end{aligned}$$

9-12 月为产卵季节,此期间不捕捞,则十二月末,各龄鱼群数量为

$$\begin{split} s_1 &= s_1^1 \cdot e^{-0.8 \times 1/3} = s_{10} \cdot e^{-0.8}, \\ s_3 &= s_3^1 \cdot e^{-0.8 \times 1/3} = s_{30} \cdot e^{-0.8} \cdot e^{-0.42 \times 2/3}, \\ s_4 &= s_4^1 \cdot e^{-0.8 \times 1/3} = s_{40} \cdot e^{-0.8} \cdot e^{-k \times 2/3}. \end{split}$$

再设 \bar{s}_3 , \bar{s}_4 分别为 3 、 4 龄鱼在产卵期的平均数量, n 为 3 、 4 龄鱼产卵数量的总和, t 按月计算

$$\bar{s}_3 = \frac{1}{4} s_0^4 \cdot s_3^1 \cdot e^{-0.8 - t/12} dt = \frac{15}{4} s_3^1 \cdot (1 - e^{-0.8/3}),$$

$$\bar{s}_4 = \frac{1}{4} s_0^4 \cdot s_4^1 \cdot e^{-0.8 \cdot t/12} dt = \frac{15}{4} s_4^1 \cdot (1 - e^{-0.8/3}),$$

产卵期产卵总量 $n = \frac{1}{2} \cdot \ddot{s}_3 a + \ddot{s}_4 \cdot a$ (其中 a 为平均每条 4 龄鱼产卵个数) 设 $s_{11}, s_{21}, s_{31}, s_{41}$ 表示第 2 年各龄鱼的数初值,则有

1°1 龄鱼由卵孵化并成活下来的那部分卵子转化而成,即

$$s_{11} = n \times \frac{1.22 \times 10^{11}}{1.22 \times 10^{11} + n} = \frac{3 \times a \times \left(1 - e^{-\frac{0.8}{3}}\right) \left(e^{-0.42k - \frac{2}{3}} \cdot s_{30} + 2 \cdot e^{-\frac{1}{3}k} \cdot s_{40}\right) \cdot e^{-0.8} \cdot 1.22 \times 10^{11}}{1.6 \times \left(1.22 \times 10^{11} + \frac{3}{1.6}a \times \left(1 - e^{-\frac{0.8}{3}}\right) \left(3^{-0.42k \times \frac{2}{3}} s_{30} + 2 \cdot e^{-\frac{2}{3}k} \cdot s_{40}\right) e^{-0.8}}$$

$$(4.4)$$

2°2 龄鱼由上一年龄鱼转化而成

$$s_{21} = s_1 = s_{10} \cdot e^{-0.8} \tag{4.5}$$

3°3龄鱼即上一年末2龄鱼

$$s_{31} = s_2 = s_{20} \cdot e^{-0.8} \tag{4.6}$$

4°4龄鱼即上一年末3龄鱼

$$s_{41} = s_3 = s_{30} \cdot e^{-0.8} \cdot e^{-0.42k \times 2/3} \tag{4.7}$$

令

$$F_{3} = \frac{3 \times a \times \left(1 - e^{-0.8/3}\right) \left(e^{-0.42k \times 2/3}\right) e^{-0.8} \cdot 1.22 \times 10^{11}}{1.6 \times \left[1.22 \times 10^{11} + 3/1.6a \left(1 - e^{-0.8/3}\right) \left(e^{-0.42k \times 2/3} s_{30} + 2 \cdot e^{-\frac{2}{3}k} \cdot s_{60}\right) e^{-0.8}\right]}$$

$$F_{4} = \frac{3 \times a \left(1 - e^{-0.8/3}\right) \cdot e^{-2/3k - 0.8} \times 2 \times 1.22 \times 10^{11}}{1.6 \times \left[1.22 \times 10^{11} + \frac{3}{1.6} \times a \times \left(1 - e^{-0.8/3}\right) \left(e^{-0.42k \times 2/3} s_{50} + 2 \cdot e^{-\frac{2}{3}k} \cdot s_{40}\right) e^{-0.8k}\right]}$$

设向量

$$s_0 = \begin{pmatrix} s_{10} \\ s_{20} \\ s_{30} \\ s_{40} \end{pmatrix}, \qquad s_1 = \begin{pmatrix} s_{11} \\ s_{21} \\ s_{31} \\ s_{41} \end{pmatrix},$$

则可表示为

$$\begin{pmatrix} 0 & 0 & F_3 & F_4 \\ e^{-0.8} & 0 & 0 & 0 \\ 0 & e^{-0.8} & 0 & 0 \\ 0 & 0 & e^{-0.8} - \mathbf{042k \times 2/3} & 0 \end{pmatrix} = \begin{pmatrix} s_{10} \\ s_{20} \\ s_{30} \\ s_{40} \end{pmatrix} = \begin{pmatrix} s_{11} \\ s_{21} \\ s_{31} \\ s_{41} \end{pmatrix}$$

若令向量

$$A = \begin{pmatrix} 0 & 0 & F_3 & F_4 \\ e^{-0.8} & 0 & 0 & 0 \\ 0 & e^{-0.8} & 0 & 0 \\ 0 & 0 & e^{-0.8 - 042k \times 2/3} & 0 \end{pmatrix}$$

则可表示为 $A \cdot s_0 = s_1$, A 称为 "射影矩阵", 对于一种可捕获的鱼来说,设其捕获量为 P(一年内), 初值 s(0) 则 P 可表示为

$$P = k \cdot \int_0^{\frac{2}{3}} s(0) \cdot e^{-(0.8+k)t} dt = \frac{k \cdot s(0)}{0.8+k} \cdot \left[1 - e^{-(0.8+k) \cdot \frac{2}{3}}\right]$$

上式中积分号内表示捕捞期 (8 个月、 $\frac{2}{3}$ 年) 内该种鱼经自然死亡和捕捞双重淘汰后的总量。由 k 的定义,单位时间捕捞量与总量的比值,则上式就表示该种鱼在一年内的捕捞量。

故 1-8 月, 捕捞三龄鱼的数量

$$P_1 = \frac{0.42 \times s_{30}}{0.8 + 0.42k} \cdot \left[1 - e^{-(0.8 + 0.42k) \times \frac{2}{3}} \right]$$

捕捞四龄鱼的数量

$$P_2 = \frac{ks_{40}}{0.8 + k} \left[1 - e^{-(0.8 + 0.42k) \times \frac{2}{8}} \right]$$

设每条三龄鱼的质量为 m_1 克,每条四龄鱼的质量为 m_2 克,则年捕获的鳀鱼的总量

$$G = P_1 \times m_1 + m_2 P_2 \tag{4.8}$$

为使获得最大捕捞量,且使鱼群数量稳定,若从矩阵 A 的特征值 $\lambda_1 = 1$ 来计算 k 值是行不通的,因为 $F_3 = F_3(s_{30}, s_{40})$, $F_4 = F_4(s_{30}, s_{40})$, 故矩阵 A 是逐年变化的.为此,我们采用 $A \cdot s_0^1 = s_1$ 的关系,采用计算机模拟的办法,来根据所计算数量,以及年捕捞量最大的原则来选取 k 值,现用题中第 2 问中数据作为初始数据来说明模拟方法.

其具体算法如下:

- (1)先定 k 值;
- [2]根据 (4.4)—(4.7) 式分别算出 $s_{11}, s_{21}, s_{31}, s_{41}$
- (3)再把 $s_{11}, s_{21}, s_{31}, s_{41}$ 作为第二年補获前的初覧。重复(2),根据 (4.4)—(4.7) 式分别算出下一年的 $s_{12}, s_{22}, s_{33}, s_{42}$;
- (4)重复(2),(3)当计算到年初与下年末的各龄鱼群的数量一致时,即鱼群稳定为止,根据(4.8)式,用稳定年的各龄鱼群的数量,算出年捕获量;
 - (5)另定 & 值, 重复(1) (4);
 - (6)根据年浦获量最大的原则来定 k 值;
 - 已知数据及计数结果
 - 1° $s_{10} = 1.22 \times 10^{11}$, $s_{20} = 29.7 \times 10^{9}$, $s_{30} = 10.1 \times 10^{9}$, $s_{40} = 3.29 \times 10^{9}$, a = 1.109 2° 结果列表如下:

k	总捕获量 $G(\times 10^{11}g)$	k	总捕获量 G(×10 ¹¹ g)
0.1	0.02165	0.5	0.09076
2.0	0.2374	5.0	0.3248
10.0	0.3674	12.2	0.3761
14	0.3795	14.95	0.38446
15.50	0.38496	15.6	0.38502
15.7	0.38507	15.8	0.38512
15.9	0.38515	16.0	0.38518
16.1	0.38519	16.2	0.38520
16.3	0.38519	16.4	0.38517
17	0.3848	18	0.3833

由表可知当 $k \le 16.2$ 时,捕获量 G 随 k 的增大而增大,当 k > 16.2 时,捕获量 G 随 k 的增大而减少,故取 k = 16.2. 其稳定年的捕获量 G 达到最大值.

$$G = 0.3852 \times 10^{12} q$$

G 的计算公式见 (4.8) 式.