Process Rate Estimator

A modeling side-hustle for the ETH group sustainable agroecosystems

Damian Oswald

September 23, 2023

Table of contents

1	Introduction	1
2	Formal model description	1
R	eferences	2

Introduction 1

Denitrification is the natural process by which nitrate (NO₃⁻) in the soil are converted by bacteria into nitrous oxide (N_2O) or pure nitrigen (N_2) . The latter is called total denitrification — the full process described in Equation 1 takes place.

$$NO_3^{-} \xrightarrow[\text{reductase}]{\text{NITrate}} NO_2^{-} \xrightarrow[\text{reductase}]{\text{NITrite}} NO \xrightarrow[\text{reductase}]{\text{NITrite}} N_2O^{-} \xrightarrow[\text{reductase}]{\text{NITrous oxide}} N_2O$$

Denitrification occurs in conditions where oxygen is limited, such as waterlogged soils. It is part of the nitrogen cycle, where nitrogen is circulated between the atmosphere, organisms and the earth.

$\mathbf{2}$ Formal model description

The diffusion fluxes between soil increments are described by Frick's law (Equation 2).

$$F_{\rm calc} = \frac{dC}{dZ} D_{\rm s} \rho \tag{2}$$

1

Here, D_s is the gas diffusion coefficient, ρ is the gas density of N₂O, and $\frac{dC}{dZ}$ is the N₂O concentration gradient from lower to upper depth. The fluxes are calculated based on N₂O concentration gradients between 105-135 cm, 75-105 cm, 45-75 cm, 15-45 cm, and 0-15 cm depth layers, and ambient air above the soil surface.

The gas diffusion coefficient $D_{\rm s}$ was calculated according Equation 3 as established by Millington and Quirk in $1961.^{1}$

$$D_{\rm s} = \left(\frac{\theta_w^{\frac{10}{3}} + D_{\rm fw}}{H} + \theta_a^{\frac{10}{3}} \times D_{\rm fa}\right) \times \theta_T^{-2} \tag{3}$$

Here, H represents a dimensionless form of Henry's solubility constant (H') for N_2O in water at a given temperature. The constant H for N_2O is calculated as follows:

$$H = \frac{8.5470 \times 10^5 \times \exp{\frac{-2284}{T}}}{R \times T}$$
 (4)

Here, R is the gas constant, and T is the temperature (T = 298 K).

 $D_{\rm fw}$ was calculated according to Equation 5 as documented by Versteeg and Van Swaaij (1988).²

$$D_{\rm fw} = 5.07 \times 10^{-6} \times \exp \frac{-2371}{\rm T} \tag{5}$$

References

- 1. Millington, R. & Quirk, J. Permeability of porous solids. *Transactions of the Faraday Society* **57**, 1200–1207 (1961).
- 2. Versteeg, G. F. & Van Swaaij, W. P. Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions. *Journal of Chemical & Engineering Data* 33, 29–34 (1988).