Técnicas bioinspiradas

#### SCALAB

Universidad Carlos III de Madrid

## Técnicas bioinspiradas

#### En este tema

#### Técnicas bioinspiradas

(Redes de neuronas
Introducción
Perceptrón Simple
Perceptrón Multicapa
Aplicaciones
(Algoritmos Evolutivos
Introducción
Algoritmo General
Implementaciones

#### En este tema

#### Técnicas bioinspiradas

#### Redes de neuronas

#### Introducción

Perceptrón Simple Perceptrón Multicapa Aplicaciones

### Algoritmos Evolutivos

Introducción Algoritmo General Implementaciones

### Redes de neuronas

- ► El sistema nervioso de muchos animales es capaz de realizar tareas de las que hemos identificado en Aprendizaje Automático
- La información está representada en una red de elementos simples (enfoque conexionista) con un elevado grado de paralelismo
- ► Más que la configuración física de las conexiones, el aprendizaje se produce gracias al efecto facilitador de los neurotransmisores en algunas sinapsis nerviosas

# Redes de neuronas Artificiales.

- Surgieron como modelo biológico de inteligencia, aunque hoy en día están considerados una forma más de programar
- Son útiles para aprender funciones de valores reales, aunque pueden aprender también funciones de valores discretos
- Basadas en unidades de cómputo que:
  - reciben un conjunto de señales de entrada (otras neuronas o del exterior)
  - se reciben a través de arcos (conexiones) que tienen un peso
  - procesan la información recibida
  - emiten una señal de salida
- Aprendizaje (supervisado o no): modificación de los pesos de la red

## Historia

- McCulloch y Pitts (1949) mostraron el concepto de conexión y la capacidad de un grupo de células de M-P conectadas para llevar a cabo la implementación de ciertas funciones lógicas
- Rosenblatt (1958) introdujo la primera arquitectura de red de neuronas artificial con capacidad de aprendizaje: perceptrón simple
- Minsky y Papert en 1969 y demuestran las serias limitaciones de dicha red, y la mayor parte de los investigadores en este área abandonaron su trabajo
- ► A principios de la década de los 80, las redes de neuronas artificiales renacen
- ► Rumelhart, McCelland and Williams (1986) propusieron el perceptrón multicapa y el algoritmo de aprendizaje por retropropagación

2010 - Deep Learning.

## Computación con Redes de Neuronas

#### Propiedades:



- Procesamiento colectivo, asíncrono y paralelo
- Capacidad de aprendizaje
- Capacidad de aproximación a partir de ejemplos
- Tolerancia a fallos
- Se utilizan en:
  - aproximación, predicción, clasificación
  - reconocimiento de patrones (imagen, voz, caracteres)
  - compresión y análisis de datos
  - robótica



## Estructura de una neurona



$$RED = U + w_1 * X_1 + w_2 * X_2 + \ldots + w_n * X_n = U + \sum_{i=1}^n w_i x_i$$

$$ightharpoonup S = f(RED)$$

# Tipos de funciones de activación: Dada una entrada develve una salida.







$$f(x) = e^{\frac{-x^2}{2}}$$





Función en (0,1)

$$f(x) = \frac{1}{1 + e^{-x}}$$

Función en (-1,1)

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

## Redes de neuronas artificiales





- Conjunto de neuronas artificiales conectadas entre sí. Cada conexión tiene un número real asociado, llamado peso.
- Las neuronas generalmente se distribuyen en capas de distintos niveles. Hay conexiones entre neuronas de capas distintas, así como conexiones entre neuronas de la misma capa.
- Aprendizaje de la red: es el proceso mediante el cual la red modifica sus respuestas ante las entradas para que sus pesos se vayan adaptando de manera paulatina al funcionamiento que se considera correcto

#### En este tema

#### Técnicas bioinspiradas

#### Redes de neuronas

Introducción

( Perceptrón Simple

Perceptrón Multicapa Aplicaciones

Algoritmos Evolutivos

Introducción Algoritmo General Implementaciones

## Perceptrón (Rosenblatt, 1959)

- Forma más simple de red de neuronas, formada por una sola neurona
- Estuvo inspirada en el modelo de célula de McCulloch-Pitts y en estudios en los '60 sobre la visión de las ranas 🜙 🛶
- Adaptación supervisada



- Se usa la función escalón como función de activación
- ► Tareas de clasificación lineal: dado un conjunto de ejemplos o patrones, determinar el hiperplano capaz de discriminar los patrones en dos clases

## **Objetivo**



Ejemplos: vector de valor de las entradas (atributos)  $\bar{x} = (x_1, x_2, \dots, x_n)$ 

## **Objetivo**



Hiperplano (2 dimensiones/atributos):  $w_1x_1 + w_2x_2 + U = 0$ 



# Perceptrón simple (PS)



Se dispone de un vector de valores de entrada,  $\bar{x}$ , y un valor de salida,  $f(\bar{x})$ , dado por las fórmulas

$$RED(\bar{x}) = U + \sum_{i=1}^{n} w_i x_i = \sum_{i=0}^{n} w_i x_i$$

$$f(\bar{x}) = \left\{ \begin{array}{ll} 1 & \text{si } RED(\bar{x}) > 0 \\ -1 & \text{en caso contrario} \end{array} \right.$$

- ► Si  $f(\bar{x}) = 1$ , pertenece a la clase +
- ► Si  $f(\bar{x}) = -1$ , pertenece a la clase-

## Regla de aprendizaje del PS

Algoritmo iterativo.

- Se inicializan aleatoriamente los pesos  $w_i$  y U
- $\blacktriangleright$  En cada iteración se modifican los  $w_i$  de forma que el hiperplano separe completamente cada ejemplo ? Levan actualizando
  - ▶ se elige un ejemplo  $\{\bar{x}, c(\bar{x})\} = \{(x_1, x_2, \dots, x_n), c(\bar{x})\}$  donde  $c(\bar{x})$  es la
  - se calcula la salida de la red  $y(\bar{x}) = f(U + \sum_{i=1}^{n} w_i x_i)^{\gamma}$  le fue. It is si  $y(\bar{x}) = c(\bar{x})$  so continuate
  - ightharpoonup si  $y(\bar{x}) = c(\bar{x})$  se contínua con la siguiente iteración
  - si no, se actualizan los pesos y el umbral Lo 11 ha equivocado y se actualita para recogniese error.



## Regla de aprendizaje del PS

- ▶ Si  $U = w_0$  y  $\bar{w} = (w_0, w_1, \dots, w_n)$
- En cada iteración, los pesos se actualizan de acuerdo a:

wands felle 
$$w_i = w_i + \begin{cases} x_i & \text{si } \bar{x} \text{ mal clasificado como} - \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clasificado como} + \\ -\bar{x}_i & \text{si } \bar{x} \text{ mal clas$$

Para d'unbral el ± essiempre de 1.

## Ejemplo del AND

| X, | X2 | AND |  |
|----|----|-----|--|
| -1 | -1 | -1  |  |
| 1  | -1 | -1  |  |
| -1 | 1  | -1  |  |
| 1  | 1  | 1   |  |





uc3m

## Ejemplo del AND



## ¿Qué puede aprender el Perceptrón Simple?

- Las cosas que puede clasificar son hiperplanos en espacios de cualquier dimensión
- No puede obtener clasificaciones basadas en curvas, ni clasificaciones multiplanares
- Ejemplo más conocido y simple de por qué no funciona es el XOR

| $x_1$ | $x_2$ | Clase |
|-------|-------|-------|
| +1    | +1    | -     |
| +1    | -1    | +     |
| -1    | -1    | -     |
| -1    | +1    | +     |



No se puede separar con un solo hiperplano









Pero en este caso, ¿cuál debe ser el algoritmo de aprendizaje?

#### En este tema

#### Técnicas bioinspiradas

#### Redes de neuronas

Introducción Perceptrón Simple

Perceptrón Multicapa

**Aplicaciones** 

Algoritmos Evolutivos

Introducción Algoritmo General

Implementaciones

## Perceptrón Multicapa

- ➤ Si se encadenan varios perceptrones, entonces se puede representar cualquier función de las entradas, incrementando el número de neuronas o de capas.
- El algoritmo de aprendizaje se denomina retropropagación.

#### La estructura general es:



Un ejemplo podría ser:





## Representación en redes de neuronas

- Supongamos que queremos representar un atributo en la entrada que tiene cinco posibles valores. Podemos elegir entre:
  - 1. Tener una entrada con cinco posibles valores
  - 2. Tener una entrada para cada valor
  - 3. Tener tres entradas en las que se codifican en binario los valores

## Representación en redes de neuronas

- Supongamos que queremos representar un atributo en la entrada que tiene cinco posibles valores. Podemos elegir entre:
  - 1. Tener una entrada con cinco posibles valores
  - 2. Tener una entrada para cada valor
  - 3. Tener tres entradas en las que se codifican en binario los valores
- Lo mismo ocurre en la salida
- ¿Cuál es la mejor representación?
  - Se tienen varios grados de libertad:
    - número y tipo de neuronas
    - conectividad
  - Se tiene que elegir el valor para los parámetros del algoritmo de entrenamiento

### En este tema

#### Técnicas bioinspiradas

#### Redes de neuronas

Introducción Perceptrón Simple Perceptrón Multicapa

#### **Aplicaciones**

Algoritmos Evolutivos
Introducción
Algoritmo General
Implementaciones



## Predicción

- Múltiples campos: bolsa, meteorología, energía (predicción del consumo), etc.
- ▶ De series temporales: predecir los valores futuros a partir de pasados
  - Suele definirse una ventana N: cuántos valores pasados se consideran
  - ► En general: N entradas y una salida
- Otras: predicción en función de otras variables

## Ejemplo: Predicción de demanda eléctrica

 Depende de factores meteorológicos, estacionales y diarios (laborable/festivo)



## Clasificación

- ► Entradas: atributos
- ► Salida: clase

## Ejemplo: Reconocimento de caracteres

- ► Entradas: Una matriz de puntos que pueden ser blancos o negros (35 entradas)
- ► Salidas: Una salida por caracter (12 salidas)



www.jcee.upc.es/JCEE2002/Aldabas.pdf

## **Demostración**

- ► Reconocimiento de caracteres
  https://www.youtube.com/watch?v=ocB8uDYXtt0
- ► Conducir un coche
  https://www.youtube.com/watch?v=0Str0Rdkxxo

### En este tema

#### Técnicas bioinspiradas

Redes de neuronas Introducción Perceptrón Simple Perceptrón Multicapa Aplicaciones

Algoritmos Evolutivos Introducción Algoritmo General Implementaciones



#### En este tema

#### Técnicas bioinspiradas

Redes de neuronas Introducción Perceptrón Simple Perceptrón Multicapa Aplicaciones

# Algoritmos Evolutivos Introducción

Algoritmo General Implementaciones

## Computación Evolutiva

- Búsqueda basada en evolución simulada:
  - se mantiene una colección de soluciones potenciales para un problema
  - se evoluciona a través de generaciones por recombinación de las más adecuadas, y eliminación de las menos adecuadas
  - se termina cuando se obtiene una solución suficientemente adecuada
- Son algoritmos intensivos en búsqueda local estocástica
- Se pueden ver como técnicas de optimización numérica o combinatoria
- Los factores clave son la representación, los operadores y la función de adecuación (fitness)

## Inspiración biológica



#### **Funcionamiento**

- ► Los algoritmos funcionan por **generaciones** (ciclos)
- ► En cada generación se tiene una población
- Una población está compuesta por un conjunto de p individuos
- ► Cada individuo representa una solución al problema
- Se dispone de un conjunto de operadores que transforman los individuos
- Se utiliza una función de adecuación (fitness) para evaluar los individuos

### **Funcionamiento**

Cada elemento es una solución y hay que bucar entre ellos la mejor se mercia.



Individuo, cromosoma

#### En este tema

#### Técnicas bioinspiradas

Redes de neuronas Introducción Perceptrón Simple Perceptrón Multicapa Aplicaciones

#### Algoritmos Evolutivos

Introducción

Algoritmo General

Implementaciones

## **Esquema Algoritmo Evolutivo**

Entender esto ! lu portat!



### Algoritmo Prototipo

```
Algoritmo Computación Evolutiva (F,p,r,m)
      F: Función de Adecuación/Evaluación, (fitness)
      p: número de individuos/solución en la población
      r: fracción de población que se reemplaza en cada paso
      m: tasa de mutación
  P \leftarrow generar p soluciones iniciales, calculando su F(h)
  Mientras que NOT final
      selectionar P_s \leftarrow (1-r) \cdot p solutiones con mayor F
      cruzar: seleccionar aleatoriamente r \cdot p pares de solución de P_s
                    favorecer aquellos con mayor F
              \forall h_1, h_2, recombinar h_1 y h_2
              añadir los resultados a P_s
      mutar: cambiar aleatoriamente un m\% de los individuos de P_s
      actualizar P \leftarrow P_s
      evaluar \forall h \in P, calcular F(h)
  Devolver el h con mayor F(h)
```



### Condición de Terminación

#### Variantes:

- Se encuentra una solución con un valor de la función de adecuación por encima de un umbral
- Se realiza un número determinado de iteraciones (generaciones)
- Se alcanza un límite de tiempo de cómputo
- ► El valor de la función de adecuación no cambia significativamente de una generación a otra
- Por decisión manual
- Se pueden combinar varias

## Representación: Distintas aproximaciones

- ► Algoritmos Genéticos (GA, Holland): cadenas de bits
- ► Programas Evolutivos (EP, Michalewicz): estructuras de datos
- ► Estrategias Evolutivas (EE, Rechenberg y Schwefel): números reales
- Programación Evolutiva (EP, Fogel): Máquinas de Estados Finitos
- ► Programación Genética (GP, Koza): árboles
- Sistemas clasificadores (LCS, Holland): reglas

#### En este tema

#### Técnicas bioinspiradas

Redes de neuronas Introducción Perceptrón Simple Perceptrón Multicapa Aplicaciones

#### Algoritmos Evolutivos

Introducción Algoritmo General Implementaciones

### Función de Adecuación (Fitness)

- Genotipo: cromosoma (por ejemplo, cadena de bits en algoritmos genéticos)
- Fenotipo: lo que significa la cadena de bits
- La función de adecuación debe primero transformar el genotipo en el fenotipo
- Ejemplos:
  - ► TSP de N ciudades,  $log_2N$  bits/ciudad,  $N \times log_2N$  para una solución
  - Encontrar el máximo de una función f(x) donde x está entre 0 y 100,  $log_2101$  bits



## Operadores. Reproducción

- Selección: de k < p individuos que pasarán a la siguiente generación (mediante ruleta, torneo, sorteo, . . . )
  - ▶ Ruleta: se asigna a cada individuo un valor proporcional a  $\frac{f_i}{\sum_i f_i}$  y se itera k veces seleccionando un individuo con reemplazo mediante un número aleatorio
  - ► Torneo: se itera *k* veces, seleccionando dos individuos (con reemplazo) y eligiendo el mejor. Los peores individuos no tienen posibilidad de ser elegidos

### **Operadores**

Cruce (crossover): permite mezclar el material genético de los progenitores en la idea de obtener "mejores" individuos

$$\begin{array}{c} 1010100 \\ 0011110 \end{array} \right\} 1010110$$

### **Operadores**

Cruce (crossover): permite mezclar el material genético de los progenitores en la idea de obtener "mejores" individuos

$$\begin{array}{c} 1010100 \\ 0011110 \end{array} \right\} 1010110$$

Mutación (mutation): permite luchar contra la "pérdida de alelos". Introduce diversidad genética

$$1010100 \longrightarrow 1011100$$



### **Operadores**

Cruce (crossover): permite mezclar el material genético de los progenitores en la idea de obtener "mejores" individuos

$$\begin{array}{c} 1010100 \\ 0011110 \end{array} \right\} 1010110$$

Mutación (mutation): permite luchar contra la "pérdida de alelos". Introduce diversidad genética

$$1010100 \longrightarrow 1011100$$

Inversión (mutación estructural): permite reordenar alelos en un gen. No se usa tanto como anteriores



### Otros ejemplos: GP

- Cada algoritmo evolutivo define sus operadores en función de la representación
- En Programación Genética (GP) la representación son programas en forma de árbol

## Crossover Operation with Different Parents

#### Parents



#### Children



### Demostración

- ► TSP (Traveling Salesman Problem o problema del viajante) https://www.youtube.com/watch?v=94p5NUogClM
- Evolución de vehículos
  http://rednuht.org/genetic\_cars\_2/

## Resumen Computación Evolutiva

- ► Los algoritmos evolutivos intentan reproducir el proceso de selección natural en el que los mejores individuos (soluciones) tienen mayor oportunidad de sobrevivir y reproducirse para la siguiente generación (iteración).
- La eficiencia de los algoritmos depende de la buena elección de la representación de los individuos, la función de adecuación y los operadores
- Al igual que otros enfoques de búsqueda local pueden encontrar mínimos/máximos locales
- ► En general no garantizan encontrar la mejor solución, pero en muchas ocasiones basta encontrar una solución suficientemente buena
- ► Son capaces de obtener varias soluciones simultáneamente