Використання методів deep learning для прогнозування динаміки фондових індексів

Тараба Віктор Науковий керівник: д.е.н., доц. Ставицький А. В.

Київський національний університет імені Тараса Шевченка Економічний факультет Кафедра економічної кібернетики

30 травня 2021 р.

План презентації

- 1 Опис дослідження та вхідних даних
- 2 Навчання моделей
- 3 Результати торгових стратегій, які базуються на прогнозах нейронних мереж
- 4 Q&A

Опис дослідження

- ▶ Метою дослідження є аналіз динаміки фондових індексів та аналіз прибутковості торгових стратегій, що базуються на прогнозах моделей штучних нейронних мереж.
- ▶ Об'єктом дослідження є фондові індекси 4 країн (США S&P 500, КНР SSE Composite Index, Південна Корея Korea Composite Stock Price Index, Японія Nikkei225).
- Предметом дослідження є методи прогнозування фондових індексів та їх практичне застосування.

Вхідні дані

- ▶ Дані (Open, High, Low, Close, Volume) з 2000 по 2021 рр. зі щоденною періодичністю; завантажено за допомогою біблотеки yfinance (з Yahoo! Finance)
- На основі цих даних було розраховано такі показники:
 - Percent change 1
 - Percent change 5
 - Percent change 30
 - Percent change Open
 - Percent change High
 - Percent change Low
 - Percent change Volume
 - DI
 - ERI
 - SMA 1
 - EMA 1

- LWMA 1
- MAE 1
- MAE 2
- MAE 3
- MAE 4
- MAE 5
- MAE 6
- CCI 1
- SO 1
- CMO 1

Оптимізаційний алгоритм

$$egin{aligned} v_{t+1} &= eta_1 v_t + (1-eta_1)
abla J(W_t) \end{aligned}$$
 $egin{aligned} cache_{t+1} &= eta_2 cache_t + (1-eta_2) (
abla J(W_t))^2 \end{aligned}$ $egin{aligned} W_{t+1} &= W_t - rac{\eta}{\sqrt{cache_{t+1} + arepsilon}} v_{t+1} \end{aligned}$

• Оптимізаційний алгоритм Adam є стандартним вибором для більшості нейронних мереж. Значення параметрів — за замовчуванням (η =0.001, β_1 =0.9, β_1 =0.999, ε =1e-07).

Навчання моделі

- ▶ Для роботи з нейронними мережами використано бібліотеки Python tensorflow (keras) та sklearn.
- Гіперпараметри, які використовувалися при підборі моделей:
 - nodes_first к-ть нейронів в першому шарі; nodes_first ∈ [4, 8, 16, 32];
 - nodes_second к-ть нейронів в другому шарі; nodes_second ∈ [4, 8, 16, 32];
 - batch к-ть елементів з набору даних, на яких «навчається» модель кожної епохи; batch ∈ [64, 128, 256, 512, 1024]
 - dropout_include набуває значення 1, якщо при побудові моделі використовується dropout для регуляризації; 0 інакше;
 - rate параметр для dropout, відповідає за ймовірність виключення нейронів з мережі; rate ∈ [0.2, 0.3, 0.4, 0.5].
- ► Точка, в якій варто зупинити навчання моделі, аби уникнути перенавчання, визначалася автоматично за допомогою функції tf.keras.callbacks.EarlyStopping. Для вибору оптимальних моделей використовувалася метрика binary accuracy.

Результати торгових стратегій, які базуються на прогнозах НМ

Прибутковість стратегії 1 (індекс KOSPI)

S&P 500			
Показник	Модель 1	Модель 2	Модель 3
Загальний прибуток (%)	70.59	80.02	64.82
Buy-and-hold (%)	95.99	95.99	95.99
Максимальне значення капіталу	175.26	180.02	167.14
Мінімальне значення капіталу	93.01	89.90	90.91
Закрито позицій	202	130	142
Максимальний прибуток за одну операцію (%)	12.48	10.37	12.48
Мінімальний прибуток за одну операцію (%)	-15.96	-22.25	-17.84

KOSPI			
Показник	Модель 1	Модель 2	Модель 3
Загальний прибуток (%)	20.40	4.89	6.15
Buy-and-hold (%)	52.64	52.64	52.64
Максимальне значення капіталу	123.71	104.89	106.15
Мінімальне значення капіталу	72.66	66.90	54.77
Закрито позицій	320	369	352
Максимальний прибуток за одну операцію (%)	19.89	14.08	19.89
Мінімальний прибуток за одну операцію (%)	-12.13	-12.13	-24.16

Nikkei225			
Показник	Модель 1	Модель 2	Модель 3
Загальний прибуток (%)	29.09	73.42	40.31
Buy-and-hold (%)	85.05	85.05	85.05
Максимальне значення капіталу	160.73	175.50	140.54
Мінімальне значення капіталу	94.32	95.56	87.45
Закрито позицій	477	203	251
Максимальний прибуток за одну операцію (%)	6.98	14.11	14.39
Мінімальний прибуток за одну операцію (%)	-19.96	-13.53	-13.53

SSE			
Показник	Модель 1	Модель 2	Модель 3
Загальний прибуток (%)	31.41	-11.22	18.88
Buy-and-hold (%)	11.48	11.48	11.48
Максимальне значення капіталу	131.41	116.06	118.88
Мінімальне значення капіталу	94.19	84.86	93.14
Закрито позицій	177	161	185
Максимальний прибуток за одну операцію (%)	14.35	21.53	14.35
Мінімальний прибуток за одну операцію (%)	-5.71	-5.71	-4.42

SSE			
Показник	Модель 1	Модель 3	
Загальний прибуток (%)	20.72	8.78	
Buy-and-hold (%)	11.48	11.48	
Максимальне значення капіталу	120.72	108.78	
Мінімальне значення капіталу	90.14	88.88	
Максимальний прибуток за одну операцію (%)	14.30	14.30	
Мінімальний прибуток за одну операцію (%)	-5.76	-4.47	

^{*}Як оцінку значення транзакційних витрат взято середнє значення брокерської комісії для материкового Китаю відповідно до даних, наведених в звіті KPMG - 0.048%.

Висновки

- ▶ Навіть без врахування транзакційних витрат тільки 2 з 12 торгових стратегій дозволили «переграти» buy-and-hold. Врахування транзакційних витрат призвело до того, що результати лише однієї стратегії все ще залишалися кращими за buy-and-hold.
- Отже, використання найпростішої версії нейронних мереж не дозволило б нам переграти ринок на тестових вибірках для 3 з 4 розглянутих в роботі фондових індексів.
- У подальшому доцільно було б розглянути інші методи машинного навчання, оновити оптимальні параметри для методів технічного аналізу., збільшити кількість індексів та додати до вхідних даних сигнали за більшою кількістю методів ТА

Дякую за увагу!

Дані та код (для обробки даних, навчання моделей, розрахунків та побудови графіків) доступні за посиланням:

https://github.com/Victor-T2001/Term-Project-2021

Використання методів deep learning для прогнозування динаміки фондових індексів

- 1 Опис дослідження та вхідних даних
- 2 Навчання моделей
- 3 Результати торгових стратегій, які базуються на прогнозах нейронних мереж
- 4 Q&A