String Matching

Algoritmos y Estructuras de Datos I

Búsqueda de un patrón en un texto

- **Problema:** Dado un string t (texto) y un string p (patrón), queremos saber si p se encuentra dentro de t.
- Notación: La función subseq(t, d, h) es el al substring de d entre i y h-1 (inclusive). Lo abreviamos como subseq(t, d, h)
- ▶ proc contiene(in $t, p : seq\langle Char \rangle$, out result : Bool){

 Pre {True}

 Post {result = true $\leftrightarrow (\exists i : \mathbb{Z})(0 \le i \le |t| |p|$ $\land_L subseq(t, i, i + |p|) = p)$ }

¿Cómo resolvemos este problema?

Strings

- ▶ Llamamos un string a una secuencia de **Char**.
- ► Los strings no difieren de las secuencias sobre otros tipos, dado que habitualmente no se utilizan operaciones particulares de los **Char**s.
- Los strings aparecen con mucha frecuencia en diversas aplicaciones.
 - 1. Palabras, oraciones y textos.
 - 2. Nombres de usuario y claves de acceso.
 - 3. Secuencias de ADN.
 - 4. Código fuente!
 - 5. ...
- ► El estudio de algoritmos sobre strings es un tema muy importante.

Función Auxiliar matches

- ► Implementemos una función auxiliar con la siguiente especificación:
- ▶ proc matches(in $s : seq\langle Char \rangle$, in $i : \mathbb{Z}$, in $r : seq\langle Char \rangle$, out result : Bool){ Pre $\{0 \le i < |s| - |p| \land |r| \le |s|\}$ Post $\{result = true \leftrightarrow subseq(s, i, i + |r|) = r\}$ }

Función Auxiliar matches

```
bool matches(string &s, int i, string &r) {
   bool result = true;
   for (int k = 0; k < r.size(); k++) {
      if (s[i+k]!=r[k]) {
        result = false;
      }
    }
   return result;
}</pre>
```

¿Se puede hacer que sea más eficiente?

Función Auxiliar matches

```
bool matches(string &s, int i, string &r) {

for (k = 0; k < r.size() \&\& s[i+k] == r[k]; k++) {

// skip

return k == r.size();
}
```

Este programa se interrumpe tan pronto como detecta una desigualdad.

Función Auxiliar matches

```
bool matches(string &s, int i, string &r) {
    int k = 0;
    while (k < r.size() && s[i+k]==r[k]) {
        k++;
    }
    return k == r.size();
}</pre>
```

Este programa se interrumpe tan pronto como detecta una desigualdad.

Búsqueda de un patrón en un texto

▶ **Algoritmo sencillo:** Recorrer todas las posiciones i de t, y para cada una verificar si subseq(t, i, i + |p|) = p.

▶ matches es una función auxiliar definida anteriormente.

Búsqueda de un patrón en un texto

- ► ¿Es eficiente este algoritmo?
- ▶ El ciclo principal realiza |t| |p| iteraciones. Sin embargo, la comparación de los substrings de t puede ser costosa si p es grande
 - 1. La comparación matches (t,i,p) requiere realizar |p| comparaciones entre chars.
 - 2. Por cada iteración del ciclo "for", se realizan |p| de estas comparaciones.
 - 3. En por caso, realizamos (|t| |p|) * |p| iteraciones.
- ▶ Aunque el algoritmo es eficiente si |p| se aproxima a |t|.

Algoritmo de Knuth, Morris y Pratt

▶ Planteamos el siguiente esquema para el algoritmo.

```
bool contiene_kmp(string &t, string &p) {
   int l = 0, r = 0;
   while( r < t.size() ) {
      // Aumentar l o r
      // Verificar si encontramos p
   }
   return result;
   }
}</pre>
```

▶ ¿Cómo aumentamos / o r preservando el invariante?

Algoritmo de Knuth, Morris y Pratt

- ► En 1977, Donald Knuth, James Morris y Vaughan Pratt propusieron un algoritmo más eficiente.
- ▶ Idea: Tratar de no re analizar todo el patrón cada vez que avanzamos en el texto.
- ► Mantenemos dos índices / y r a la secuencia, con el siguiente invariante:

```
1. 0 < l < r < |t|
```

- 2. subseq(t, l, r) = subseq(p, 0, r l)
- 3. No hay apariciones de p en subseq(t, 0, r).

Algoritmo de Knuth, Morris y Pratt

- ▶ Si r l = |p|, entonces encontramos p en t.
- ▶ Si r l < |p|, consideramos los siguientes casos:
 - 1. Si t[r] = p[r l], entonces encontramos una nueva coincidencia, y entonces incrementamos r para reflejar esta nueva situación.
 - 2. Si $t[r] \neq p[r-l]$ y l=r, entonces no tenemos un prefijo de p en el texto, y pasamos al siguiente elemento de la secuencia avanzando l y r.
 - 3. Si $t[r] \neq p[r-l]$ y l < r, entonces debemos avanzar l. ¿Cuánto avanzamos l en este caso? ¡Tanto como podamos! (más sobre este punto a continuación)

Algoritmo (parcial) de Knuth, Morris y Pratt

```
bool contiene_kmp(string &t, string &p) {
    int I = 0, r = 0;
    while( r < t.size() && r-I < p.size()) {
        if( t[r] == p[r-I] ) {
            r++;
        } else if( I == r ) {
            r++;
            I++;
        } else {
            I = // avanzar I
        }
        return r-I == p.size();
}</pre>
```

Bifijos: Prefijo y Sufijo simultáneamente

- ▶ **Definición:** Una cadena de caracteres b es un bifijo de s si $b \neq s$, b es un prefijo de s y b es un sufijo de s.
- ► Ejemplos:

S	bifijos
а	$\langle \rangle$
ab	$\langle \rangle$
aba	$\langle angle$,a
abab	$\langle angle$,ab
ababc	⟨⟩
aaaa	$\langle angle$,a, aa, aaa, aaa
abc	$\langle \rangle$
ababaca	⟨⟩,a

▶ **Observación:** Sea una cadena *s*, su máximo bifijo es único.

Algoritmo de Knuth, Morris y Pratt

- ▶ ¿Cuánto podemos avanzar 1 en el caso que $t[r] \neq p[r-l]$ y l < r?
- ► El invariante implica que subseq(t, l, r) = subseq(p, 0, r l), pero esta condición dice que $subseq(t, l, r + 1) \neq subseq(p, 0, r l + 1)$.
- ► Ejemplo:

► ¿Hasta donde puedo avanzar /?

KMP: Función π

- ▶ **Definición:** Sea $\pi(i)$ la longitud del máximo bifijo de subseq(p, 0, i)
- ▶ Por ejemplo, sea *p*=abbabbaa:

i	subseq(p, 0, i)	Máx. bifijo	$\pi(i)$
1	a	()	0
2	ab	$\langle \rangle$	0
3	abb	⟨⟩	0
4	abba	а	1
5	abbab	ab	2
6	abbabb	abb	3
7	abbabba	abba	4
8	abbabbaa	a	1

KMP: Función π

- ▶ **Definición:** Sea $\pi(i)$ la longitud del máximo bifijo de subseq(p, 0, i)
- ▶ Otro ejemplo, sea *p*=ababaca:

i	subseq(p, 0, i)	Máx. bifijo	$\pi(i)$
1	a	⟨⟩	0
2	ab	⟨⟩	0
3	aba	а	1
4	abab	ab	2
5	ababa	aba	3
6	ababac	⟨⟩	0
7	ababaca	a	1

Algoritmo de Knuth, Morris y Pratt

▶ **Ejemplo:** Supongamos que ...

- ► En este caso, podemos avanzar I hasta la posición ababa $(\pi(r-I)=\pi(5)=3)$, dado que no tendremos coincidencias en las posiciones anteriores.
- ▶ Por lo tanto, en este caso fijamos $l' = r \pi(r l)$.

Algoritmo de Knuth, Morris y Pratt

► **Ejemplo:** Supongamos que ...

- ► En este caso, podemos avanzar l hasta la posición ababa $(\pi(r-l)=\pi(5)=3)$, dado que no tendremos coincidencias en las posiciones anteriores.
- ▶ Por lo tanto, en este caso fijamos $l' = r \pi(r l)$.

Algoritmo (parcial) de Knuth, Morris y Pratt

```
bool contiene_kmp(string &t, string &p) {
    int l = 0, r = 0;
    while( r < t.size() && r-l < p.size()) {
        if( t[r] == p[r-l] ){
            r++;
        } else if( l == r ) {
            r++;
            l++;
        } else {
            l = r - calcular_pi(r-l);
        }
        return r-l == p.size();
}</pre>
```

Algoritmo de Knuth, Morris y Pratt

- ▶ ¿Se cumplen los tres puntos del teorema del invariante?
 - 1. El invariante vale con l=r=0.
 - 2. Cada caso del if... preserva el invariante.
 - 3. Al finalizar el ciclo, el invariante permite retornar el valor correcto.
- Les Como es una función variante para este ciclo?
 - ▶ Notar que en cada iteración se aumenta / o r (o ambas) en al menos una unidad.
 - ▶ Entonces, una función variante puede ser:

$$fv = (|t| - I) + (|t| - r) = 2 * |t| - I - r$$

► Es fácil ver que se cumplen los dos puntos del teorema de terminación del ciclo, y por lo tanto el ciclo termina.

Algoritmo de Knuth, Morris y Pratt

```
vector < int > precalcular_pi(string &p) {
    int i = 0, j = 1;
    vector < int > pi(p.size()); // inicializado en 0
    pi[0] = 0; // valor de \ pi para 1
    while( j < p.size()) {
        // Si no coincide busco bifijo mas chico
        while(i > 0 && p[i] != p[j])
        i = pi[i-1];

        // Si coincide, aumento tamano bifijo
        if( p[i] == p[j] )
        i ++;

        pi[j] = i;
        j++;
        }
        return pi;
    }
}
```

Algoritmo de Knuth, Morris y Pratt

- ▶ Para completar el algoritmo debemos calcular $\pi(i)$.
- Podemos implementar una función auxiliar, pero una mejor idea es precalcular estos valores y guardarlos en un vector (¿por qué?).
- ▶ Para este precálculo, recorremos *p* con dos índices *i* y *j*, con el siguiente invariante:

```
1. 0 \le i < j \le |p|
```

- 2. $pi[k] = \pi(k+1)$ para $k = 0, \dots, j-1$ (vector empieza en 0)
- 3. i es la longitud del máximo bifijo para subseq(p, 0, j).
- 4. $0 \le \pi(j) \le i + 1$

Algoritmo de Knuth, Morris y Pratt

- ► ¡Es importante observar que sin el invariante, es muy difícil entender este algoritmo!
- ► Cómo es una función variante adecuada para el ciclo?
 - 1. Para el loop interno? $f_V = i$
 - 2. y para el externo? $f_V = |p| j$.
- ► Y la complejidad?
 - 1. siempre se incrementa j
 - 2. i disminuye a lo sumo |p| veces considerando todas las iteraciones!
- ▶ O sea, en el peor caso se realizan O(|p|) operaciones.

Algoritmo (completo) de Knuth, Morris y Pratt

```
bool contiene_kmp(string &t, string &p) {
     int l = 0, r = 0;
     vector<int> pi = precalcular_pi(p);
     while( r < t.size() \&\& r-l < p.size())  {
        if( t[r] == p[r-l] ){
          r++;
        \} else if( l == r ) {
          r++;
          I++;
9
        } else {
10
         I = r - pi[r-l-1];
11
12
13
     return r-l == p.size();
14
15
```

Algoritmo de Knuth, Morris y Pratt

- ¿Es realmente mejor la eficiencia de KMP en comparación con la solución trivial?
 - ▶ El algoritmo naïve realiza, en peor caso, |t| * |p| iteraciones.
 - ▶ El algoritmo kmp realiza, en peor caso, |t| + |p| iteraciones
- ▶ Por lo tanto, comparando sus peores casos, el algoritmo KMP es más eficiente (menos iteraciones) que el algoritmo naïve.
- Existen más algoritmos de búsqueda de strings (o string matching):
 - ► Rabin-Karp (1987)
 - ▶ Boyer-Moore (1977)
 - ► Aho-Corasick (1975)

Algoritmo de Knuth, Morris y Pratt

¿Es realmente mejor la eficiencia de KMP en comparación con la solución trivial?

Veamos como funciona cada algoritmo en la computadora

http://whocouldthat.be/visualizing-string-matching/

Bibliografía

- ▶ David Gries The Science of Programming
 - ► Chapter 16 Developing Invariants (Linear Search, Binary Search)
- ► Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein- Introduction to Algorithms, 3rd edition
 - ► Chapter 32.1 The naive string-matching algorithm
 - ► Chapter 32.4 The Knuth-Morris-Pratt algorithm