

## First Semester 2019-2020 Course Handout (Part II)

Date: 24/07/2019

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : CS G541

Course Title : Pervasive Computing
Instructor In-charge : Suvadip Batabyal

#### 1. Course Description

The course is about the emerging discipline of Pervasive Computing, which is also known as ubiquitous computing. The key element here is the omnipresence of information devices. These devices can be embedded into cars, airplanes, ships, bikes, posters, signboards, walls and even clothes. This course focuses on the understanding elements involved in designing and building Internet of Things / Cyber Physical Systems / Ambient Intelligence based Environments. It, thus covers independent information devices including but not limited to wearable computers, mobile phones, smart phones, smart-cards, wireless sensor-compute nodes etc. and the services made available by them in typical Ubiquitous/ Pervasive / Everywhere Computing environment. It includes select aspects of human-computer interaction using several types of elements including sensing, text, speech, handwriting and vision.

#### 2. Scope and Objectives

- Provide a sound conceptual foundation in the area of Pervasive Computing aspects.
- Understand the effects of Human-Computer Interaction and its Applications.
- Understand the concepts of Smart Devices, Smart Environment and Smart Interaction.
- Create awareness about the concepts, architecture and applications of Context-Aware Systems and Intelligent Systems.
- Understand the core concepts of networking and communication in Pervasive Computing systems.
- Conceptualize, analyze and design select classes of pervasive computing systems.

After completing this course, the students will be able to

- Design and implement case-studies of applications related to one or more aspect of Pervasive Computing.
- Understand the relationship between the Smart Devices, Environment and Interaction towards creating a ubiquitous system.
- Identify the core architectural as well as operational aspects of Context-Aware Systems, Intelligent Systems and Autonomous Systems.
- Develop in-depth research insight into the future aspects of Pervasive Computing.







#### 3. Prescribed Text Book

T1. Stefen Poslad: <u>Ubiquitous Computing: Smart Devices, Environments and Interactions</u>, Wiley, London, 2009, Indian reprint, 2014.

#### 4. Reference Books

R1. Mohammad S. Obaidat, Mieso Denko, Isaac Woungang (Editors): Pervasive Computing and Networking, Wiley, 2012.

In addition, course will refer to 4-6 selected papers to provide context of recent trends in Pervasive and Ubiquitous Computing.

#### 5. Course Plan

| Lec.<br># | Topics to be covered                                                                                                                                                                | Learning Outcome                                                                                                                                                                     | Chap.<br>in Text<br>book |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 1-3.      | Introduction of Pervasive Computing aspects including properties and applications                                                                                                   | Introduction to Pervasive Computing.  Understanding UbiCom from the perspective of core internal properties of UbiCom. Viewing UbiCom from the                                       | T 1.1-1.2                |
|           | Core properties of Ubiquitous Systems, Ubiquitous System Environment Interaction                                                                                                    | external interaction of the system across core system environments (virtual, physical and human). Understanding the holistic Smart DEI Framework.                                    | Т 1.3                    |
|           | Smart DEI Model, Basics of Smart Devices,<br>Smart Environment and Smart Interaction                                                                                                | Holistic Siliart DEI Framework.                                                                                                                                                      | T1.4-1.5                 |
| 4-5.      | Select Case Studies in Past, Contemporary<br>and In-research Pervasive Computing<br>Systems and related products / applications                                                     | How has Pervasive Computing evolved?  Case Studies highlighting the evolution of Pervasive Computing. Understanding                                                                  | T 2.1-2.2                |
|           | UbiCom Applications, Design Challenges<br>and Evaluation Framework for UbiCom<br>systems                                                                                            | the Current Status and Emerging Trends<br>in Pervasive/Ubiquitous/Everywhere/<br>Invisible Computing                                                                                 | T 2.3-2.4                |
| 6-9.      | Pervasive Computing Device Technologies<br>and Service Architectures: Device types,<br>Device Characteristics, Abstraction and<br>Virtualization, Distributed Service<br>Viewpoints | Smart Devices and Services.  1Main characteristics of smart devices as a means to provide an embodiment for smart services and viewpoints. Effect of Abstraction and virtualization. | T 3.1                    |
|           | Service Architectural Models, Middleware,<br>Service Oriented Computing, Grid                                                                                                       | Architectural models for UbiCom systems. Understanding the service                                                                                                                   | T 3.2                    |







| शान       | Computing                                                                                                                 | provision life cycle. Operating system                                                                                                                                                                       |                |
|-----------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|           | Service Provisioning Lifecycle, Dynamic<br>Service Discovery, Service Invocation and<br>Composition                       | support for service execution.                                                                                                                                                                               | T 3.3          |
|           | Overview, Types of OS, CPU Scheduling,<br>Kernels, Case Studies                                                           |                                                                                                                                                                                                              | T3.4           |
| 10        | Research/product Presentation                                                                                             | Introduction to recent advances in pervasive computing                                                                                                                                                       | Class<br>Notes |
| 11-<br>12 | Concept of Mobility, Mobile Service<br>Design, Select Case Studies.                                                       | Smart Mobiles, Cards and Device<br>Networks.                                                                                                                                                                 | T 4.1-4.2      |
|           | Power Management for Mobile Devices,<br>Smart Card Devices, Device Networks,<br>Overview of OSGi approach                 | Understanding the different notions of mobility. Issues in Smart Mobile Design. Power Management in resource constrained ICT devices. Overview of different smart card type devices and the device networks. | T 4.4-4.5      |
| 13-<br>17 | Overview of Human Computer Interaction,<br>Types of HCI: Explicit HCI, Implicit HCI<br>(iHCI), User Interfaces            | Human Computer Interaction.  Understanding the diversity of ICT device interfaces and interaction. Studies                                                                                                   | T 5.1-5.2      |
|           | Interfaces for Mobile Hand-held devices and Game Consoles, Hidden User Interfaces using Smart Devices                     | of several designs include types of natural interaction such as gesture input, voice input, etc. Effect of types of interaction and interfaces in a wider                                                    | T 5.3          |
|           | Hidden UIs via Wearable and Implanted Devices, Brain Computer Interface, Sense of presence and Telepresence, Case Studies | range of computer devices that support<br>much more natural human computer<br>interaction. Understanding the<br>fundamentals of HCD and iHCI design.                                                         | T 5.4          |
|           | Human Centred Design (HCD), Mental models and Conceptual models, Knowledge acquisition and Representation                 | Design challenges and case studies in Affective Computing                                                                                                                                                    | T 5.5-5.6      |
|           | iHCI design heuristics and patterns,<br>Framework, Interaction paradigms,<br>Trajectories, Affective Computing            |                                                                                                                                                                                                              | T 5.7          |







| 18         | Research Presentation Discuss and analyze recent advances in                                                                                                                                             |                                                                                                                                              |                    |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|
|            |                                                                                                                                                                                                          | pervasive computing                                                                                                                          | Notes              |  |  |
| 19-<br>24. | Tagging fundamentals and applications, Physical Annotations, Tags, Automatic Identification Systems, Performance Comparison.                                                                             | Tagging, Sensing and Controlling  Passive, Active and Semi-Active Tagging fundamentals and applications. Understanding the RFID approach and | T 6.1-6.2          |  |  |
|            | Fundamentals of RFID, components, overview of operations, selection criteria, deployment, applications                                                                                                   | role of the RFID tags. Introduction to sensors, sensor-compute nodes, sensor networks and wireless sensor networks (WSNs).                   | T 6.2.4            |  |  |
|            | Overview of Sensors, types, Architecture,<br>Sensor characteristics, challenges                                                                                                                          | Fundamentals of robots, applications of relevance and human-robot interactions.  Overview of real-time embedded                              | T 6.3              |  |  |
|            | Basics of Wireless Sensor Networks,<br>Architecture, Quality of Service, Energy<br>Issues, Design and Development                                                                                        | systems.                                                                                                                                     | T 6.3              |  |  |
|            | Applications of Wireless Sensor Networks (WSN), Study of Protocols, Comparison with Mobile Ad-Hoc Networks (MANET)                                                                                       |                                                                                                                                              | T 6.3,<br>T6.3.4.1 |  |  |
|            | Embedded systems and Real-time Systems,<br>Robots, Human Robot Interaction, Case<br>Studies                                                                                                              |                                                                                                                                              | T 6.5,<br>6.7      |  |  |
| 25-<br>26. | Overview of Context-Aware Systems,<br>Types of such systems, Modeling concepts,<br>Multi-dimensional Framework                                                                                           | Context-Aware Systems.  Understanding the Fundamentals of Context-Aware Computing, Context                                                   | T 7.1-7.2          |  |  |
|            | Architecture of Context-Aware Systems Types of Awareness, Context Broker as a Case Study                                                                                                                 | aryananasa and ita implications. Ctudios of                                                                                                  | T 7.3-7.6          |  |  |
| 27-<br>29. | Elements of intelligent / smart pervasive computing systems, Environments and Architectures of relevance, brief discussion on major types / classes of Intelligent Systems (ISes) and their relevance to | Intelligent Systems.  Understanding individual intelligent systems of different types. Studies of intelligent systems consisting of multiple | T 8.1-8.3          |  |  |







| 004        | Ubiquitous Computing Environments  Knowledge representation in Intelligent Systems, Soft computing models, IS System Operations and interactions, Case Studies  Applications: Generic, / social networking / media-exchange / recommender and referral systems and associated work flow aspects in pervasive computing | interaction intelligent entities. Applications of IS in different paradigms.                                                                         | T 8.4 -<br>8.7             |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 30-<br>31. | Basics of Autonomous Systems and Intelligent Life paradigm of computing, Types of Autonomous Systems, Properties and Limitations                                                                                                                                                                                       | Autonomous Systems.  Understanding the main types of autonomous system and the properties of a more general type of autonomous                       | T 10.1-<br>10.3            |
|            | Self-Management, Autonomic Computing,<br>Evolutionary Computing, Select Case<br>Studies                                                                                                                                                                                                                                | system model called the self-star model.<br>Studies of reflective type self-aware<br>systems. Autonomic or self-management<br>system models.         | 10.6                       |
| 32-<br>36. | Audio and Data Networks, Overview of WLAN, WiMAX, Bluetooth, Zigbee                                                                                                                                                                                                                                                    | Ubiquitous Communication.  Understanding each of the major kinds                                                                                     | T 11.1-<br>11.4            |
|            | Basics of Ubiquitous Networks, Combining voice and data networks, Quality of Service issues, Case study of VoIP applications, Research Issues                                                                                                                                                                          | of network prevailing in UbiCom<br>paradigm. Studies of Internetworking<br>technologies and QoS issues. Overview<br>of cellular networks with design | T 11.5-<br>11.5            |
|            | Cellular Networks in Pervasive Computing,<br>Architecture, Challenges, Case Studies,<br>Upcoming 5G networks, Mobile Ad-hoc<br>Networks                                                                                                                                                                                | challenges and case studies in UbiCom systems. Discussions on upcoming networking concepts based on 5G networks and Cognitive Radio Networks.        | Online<br>Lecture<br>Notes |
|            | Controlling Network aspects, Service oriented networks, Mesh Networks, Internetworking aspects and design challenges, Mesh networks, Personal Area Networks, Body Area Networks                                                                                                                                        |                                                                                                                                                      | T 11.6-<br>11.7            |
|            | Next-generation networks; Understanding the concepts of Cognitive Radio Networks,                                                                                                                                                                                                                                      |                                                                                                                                                      | Online<br>Lecture          |





# THE OF TECHNOLOGY & COURSE

## BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Hyderabad Campus

| थानं ।     | Try derabad carripas                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                 |                                    |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|            | properties, design issues, Case-Studies                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                 | Notes                              |
| 37-<br>38. | Managing smart devices in virtual environments, Requirements, Functions, Overview of Protocols. Fault Management  Smart Devices Management in Human-Centred and Physical Environments, Security and Privacy issues, Case Studies.                               | Management of Smart Devices.  Understanding the management of UbiCom systems in terms of the three core designs of smart devices, smart environments and smart interaction. Studies of fault management issues in UbiCom Systems. Overview of the security aspects and their solutions for UbiCom applications. | T 12.1-<br>12.2<br>T12.3-<br>T12.4 |
| 39-<br>40. | Overview of Key Challenges in UbiCom design, Challenges involved in Smart Devices, interaction patterns and Smart Physical Environment Device interactions  Issues in Smart Human Device Interaction, Human Intelligence vs Machine Intelligence, Social Issues | Ubiquitous System: Challenges and Outlook  Overview of the challenges of UbiCom systems in terms of the support for the five core properties of UbiCom systems i.e. distributed, iHCI, Context Awareness, Autonomy, Artificial Intelligence.                                                                    | T13.1-<br>13.5<br>T13.6-<br>13.8   |
| 41-<br>42  | Research presentations                                                                                                                                                                                                                                          | Recent trends in Ubiquitous Computing                                                                                                                                                                                                                                                                           | Class<br>Notes                     |
| 43         | Course wrap up                                                                                                                                                                                                                                                  | Revise the salient points of the course                                                                                                                                                                                                                                                                         | Class<br>Notes                     |

### **6. Evaluation Scheme:**

| EC   | Evaluation            | Duration         | Weightage      | Date &                | Nature of            |
|------|-----------------------|------------------|----------------|-----------------------|----------------------|
| No.  | Component             | (Min)            | (%)            | Time                  | Component            |
|      |                       |                  |                |                       |                      |
| 1    | Mid Semester Test     | 90               | 20             | 28/09/2019,           | Closed Book          |
|      |                       |                  |                | 1.30 3.00 PM          |                      |
| 2    | Research Presentation |                  | 15             |                       | Open Book/Take home  |
|      |                       |                  |                |                       |                      |
| 3    | Case Study            |                  | 15             |                       | Open Book/Take home  |
|      |                       |                  |                |                       | Save Paner           |
| 4    | Qui <mark>z</mark>    |                  | 10             |                       | Save Trees osed Book |
| inno | vate achieve lead     |                  |                | 120                   | Save the World.      |
| 5    | Comprehensive         | 180              | 40 (10+30)     | 03/12/2019 FN         | 10%Open book + 30%   |
|      | Please                | Consider Your Er | vironmental Re | <u>sponsibilities</u> | Closed Book          |
|      |                       | Do Not Print     | Unless Necessa | rv                    |                      |



- Quiz: 2 quiz each of 5 marks.
- Research presentation: 1 research presentation on individual basis. The topics and related papers to be selected by the students in consultation with the instructor. Presentation dates will be announced in CMS.
- Case study: Team of 2/3. Problem statement to be given by the instructor. Three meetings/presentations will be conducted during the entire semester. Weightage: 5% Problem understanding and preliminary investigation, 5%- Problem formulation and data collection, 5% Outcomes.

**Notices:** All notices shall be displayed electronically in CMS.

**Makeup Policy**: No makeup exam allowed without prior permission.

**Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor In-Charge CS G541



