概率论与数理统计

授课教师: 唐宏岩

前言

本讲义基于清华大学数学系唐宏岩老师于 2023-2024 学年秋季学期开设的《概率论与数理统计》课程,用于辅助同学们课后复习,助教尽量做到每周课后两天内更新。

提醒大家,由于时间与能力所限,本讲义可能不会出现大段的文字论述(但会包含重要的定义、定理与公式等)。但是,对许多基本概念的深入理解是非常有必要的,同学们可以在浏览时检查自己是否能够回忆起课上的内容,对掌握不够扎实的地方,鼓励大家查阅参考书或在微信群提问以解决问题。

由于此为课程组第一年尝试整理讲义,诸如格式编排、内容完整性方面可能存在许多不足,欢迎大家联系我提出宝贵的意见与建议。

曹子尧 2023 年 9 月

更新至 2023-09-26 i

目录

	前言	· · · · · · · · · · · · · · · · · · · ·	i
第	一当	3分 初等概率论	2
第	一章	事件的概率	3
	1.1	概率的发展史	3
	1.2	随机试验与事件	3
	1.3	事件的运算	4
	1.4	概率的几种解释	4
	1.5	概率的公理化定义	4
	1.6	条件概率	5
	1.7	事件的独立性	6
	1.8	Bayes 公式	7

第一部分

初等概率论

第一章 事件的概率

1.1 概率的发展史

赌博中的 de Méré's Problem: 连续掷一个均匀六面骰 4 次,获得至少一次"6"的概率为 $1-(\frac{5}{6})^4\approx 0.5177$; 而连续掷两个均匀六面骰 24 次,获得至少一次"对 6"的概率为 $1-(35/36)^{24}\approx 0.4914$ 。

Pascal 和 Fermat 的通信中使用初等数学的方法,首创了概率论相当多的数学理论,虽然当时没有总结成通用的定理。

Laplace 创立了采用分析方法的分析概率论。

Kolmogorov 利用测度论方法发展了现代概率理论。

1.2 随机试验与事件

定义 1.1. 概率论中的随机试验指的是符合下面两个特点的试验:

- 1. 不能预先确知结果
- 2. 可以预测所有可能的结果

定义 1.2. 样本空间是指一个试验的所有可能结果的集合,常用 Ω 表示。

定义 1.3. 事件是样本空间的一个良定义的子集。

一次随机试验中,一个事件可能发生或不发生。

下面是一些常见的事件:

- 1. 全事件 Ω (必然事件)
- 2. 空事件 ∅ (不可能事件)
- 3. 基本事件 $\{a\}$, 其中 $a \in \Omega$, 即仅包含单一试验结果的事件

1.3 事件的运算

由于事件是集合,因此事件之间可以进行集合之间的运算,如:

- 1. $A^c = \Omega \setminus A$
- 2. $A + B = A \cup B = (A^c \cap B^c)^c$
- 3. 差 $A B = A \setminus B$
- $4. \ \Re AB = A \cap B = (A^c \cup B^c)^c$

集合的 De Morgan's laws 也适用于事件: $(\bigcup_n A_n)^c = \bigcap_n A_n^c$ 。 事件的运算像集合的运算一样,可以用 Venn 图来表示。

1.4 概率的几种解释

对于概率这一数学概念,人们形成了几种从不同角度出发的解释:

- 1. 古典解释: 基于等可能性的解释
- 2. 频率解释:基于大量重复试验的解释(频率学派采用的解释)
- 3. 主观解释: 概率是一种对确信程度的度量(Bayes 学派采用的解释)

1.5 概率的公理化定义

我们用 2^{Ω} 表示 Ω 的幂集, 即 Ω 的所有子集组成的集合。

定义 1.4. 事件集类 $\mathscr{F} \subset 2^{\Omega}$ 必须满足所谓 σ -代数的性质:

- 1. $\Omega \in \mathscr{F}$
- 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$ (对补运算的封闭性)
- 3. $A_i \in \mathcal{F}, \forall i \in \mathbb{N}^+ \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ (对可列并的封闭性)

例 1.1. $\Omega = \{a, b, c, d\}$, 以下是一些合法的事件集类:

- 1. $\mathscr{F}_1 = 2^{\Omega}$
- 2. $\mathscr{F}_2 = \{\Omega, \emptyset\}$
- 3. $\mathscr{F}_3 = \{\Omega, \emptyset, \{a, b\}, \{c, d\}\}$

定义 1.5. (Kolmogorov) 概率函数 $P: \mathscr{F} \to \mathbb{R}$ 是满足以下三条公理的映射:

- 1. $P(A) \ge 0, \forall A \in \mathscr{F}$
- 2. $P(\Omega) = 1$
- 3. $A_i \in \mathcal{F}, \forall i \in \mathbb{N}^+, A_i A_j = \emptyset, \forall i \neq j \Rightarrow P(\sum_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ (加法公理/可列可加性)

更新至 2023-09-26 4

我们称 (Ω, \mathcal{F}, P) 是一个概率空间。

命题 1.1. 关于概率空间, 有如下性质:

- 1. $P(A) \leq 1, \ \forall A \in \mathscr{F}$
- 2. $P(\emptyset) = 0$
- 3. $P(A) + P(A^c) = 1$
- 4. $A_i \in \mathcal{F}, \forall i \in \{1, 2, \dots, n\}, \ A_i A_j = \emptyset, \forall i \neq j \Rightarrow P(\sum_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$ (有限可加性)
- 5. $A \subset B \Rightarrow P(A) \leq P(B)$ (我们称事件 A 蕴含事件 B)
- 6. $P(A_1 + \dots + A_n) = \sum_{i=1}^n P(A_i) \sum_{i_1 < i_2} P(A_{i_1} A_{i_2}) + \dots + (-1)^{r+1} \sum_{i_1 < i_2 < \dots < i_r} P(A_{i_1} A_{i_2} \cdots A_{i_r}) + \dots + (-1)^{n+1} P(A_1 \cdots A_n)$ (容斥公式) 特别地,P(A+B) = P(A) + P(B) - P(AB)。

例 1.2. (配对问题)

有 n 个人,每人有一顶帽子。现将所有帽子放到一起,再随机分配给每人一顶,考虑无人拿到自己的帽子的概率。

为此,设事件 A_i 为 "第 i 个人拿到自己的帽子",则 $P(A_i) = 1/n$ 。

利用容斥公式,至少一人拿到自己帽子的概率为 $P(A_1+\cdots+A_n)=\sum_{i=1}^n P(A_i)-\sum_{i_1< i_2} P(A_{i_1}A_{i_2})+\cdots+(-1)^{r+1}\sum_{i_1< i_2< \cdots< i_r} P(A_{i_1}A_{i_2}\cdots A_{i_r})+\cdots+(-1)^{n+1}P(A_1\cdots A_n),$

其中 $\sum_{i_1 < i_2 < \dots < i_r} P(A_{i_1} A_{i_2} \cdots A_{i_r}) = \frac{(n-r)!}{n!} \binom{n}{r} = \frac{1}{r!}$,即 $P(A_1 + \dots + A_n) = 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \dots + (-1)^{r+1} \frac{1}{r!} + \dots + (-1)^{n+1} \frac{1}{n!}$ 。

所求概率 $P_n = 1 - P(A_1 + \dots + A_n) = 1 - (1 - \frac{1}{2!} + \dots + (-1)^{n+1} \frac{1}{n!}) \to e^{-1}(n \to \infty)$ 。

思考: 恰有 k 个人拿到自己的帽子的概率?

1.6 条件概率

定义 1.6. 若 P(B) > 0,定义条件概率 $P(A|B) = \frac{P(AB)}{P(B)}$ 。

通常, 我们计算条件概率的方法有两种:

- 1. 在缩小(受限)的样本空间(要求事件 B 发生)上,考虑事件 A 发生的概率
- 2. 根据定义计算
- 一种常用的形式是 P(AB) = P(A|B)P(B) = P(B|A)P(A),这可以视作是求解两个事件的积的概率的方法(乘法法则)。

例 1.3. 掷一个均匀六面骰, $\Omega=\{1,2,3,4,5,6\}, A=\{2,3,4,5\}, B=\{1,3,5\}$,则 $P(A)=4/6, P(B)=3/6, P(AB)=2/6, P(A|B)=\frac{P(AB)}{P(B)}=2/3$ 。

更新至 2023-09-26

例 1.4. 袋子中有 8 个红球和 4 个白球,无放回地取出两个球,利用组合数可知,两个都是红球的概率为 $\frac{\binom{8}{2}}{\binom{12}{12}}$ 。

用条件概率可以简化计算: $P(R_1R_2) = P(R_1)P(R_2|R_1) = \frac{8}{12} \times \frac{7}{11}$.

更一般地,我们有 $P(A_1A_2\cdots A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\cdots P(A_n|A_1A_2\cdots A_{n-1})$,常用于序贯发生的一系列事件的积的概率求解。

例 1.5. 回忆上一节的"配对问题"。我们有 $P(A_{i_1}A_{i_2}\cdots A_{i_r})=P(A_{i_1})P(A_{i_2}|A_{i_1})\cdots P(A_{i_r}|A_{i_1}\cdots A_{i_{r-1}})=\frac{1}{n}\times\frac{1}{n-1}\times\cdots\times\frac{1}{n-(r-1)}=\frac{(n-r)!}{n!}$ 。

命题 1.2. 对于给定的事件 $B,\ P(\cdot|B): \mathscr{F} \to \mathbb{R}$ 是概率函数,即 $(\Omega,\mathscr{F},P(\cdot|B))$ 仍是概率空间。

对于上述命题的证明,只需验证 $P(\cdot|B)$ 满足概率的三条公理即可。

这提示我们,条件概率也是一种概率,如果我们将 P(A) 称为观察到事件 B 之前 A 的 "先验概率",则 P(A|B) 就是相应的"后验概率"。

一个常见的迷思是: 观测到事件 A 已经发生后, 是否可以说事件 A 发生的概率 P(A) = 1? 学过条件概率之后, 我们知道答案是否定的, 实际上是后验概率 P(A|A) = 1.

1.7 事件的独立性

定义 1.7. 若 P(AB) = P(A)P(B),则称事件 A, B 相互独立。

如果 P(B) > 0,我们注意到 A, B 独立等价于 P(A|B) = P(A)。

命题 1.3. 若 A, B 独立,则 A^{c}, B 独立。

定义 1.8. 若 P(ABC) = P(A)P(B)P(C),且 A, B, C 两两独立,则称事件 A, B, C 独立。

注意, 仅有 A, B, C 两两独立, 不能推出三者独立。

定义 1.9. 若对于事件列 $\{A_i\}_{i=1}^{\infty}$,任意取有限个事件 $A_{i_1}, A_{i_2}, \cdots, A_{i_r}$,都有 $P(A_{i_1}A_{i_2}\cdots A_{i_r}) = P(A_{i_1})P(A_{i_2})\cdots P(A_{i_r})$,则称 $\{A_i\}_{i=1}^{\infty}$ 相互独立。

例 1.6. 每周开奖的彩票,各次中奖率均为 10^{-5} 且独立,问连续十年(520 周)不中奖的概率? 令事件 A_i 为第 i 周不中奖,则 $P(A_i) = 1 - 10^{-5}$,故 $P(A_1 \cdots A_{520}) = (1 - 10^{-5})^{520} \approx 0.9948$ 。

定义 1.10. 若事件 A, B, E 满足 P(AB|E) = P(A|E)P(B|E),则我们称 A, B 关于 E 条件独立。

注意,条件独立性和独立性之间没有蕴含关系。

更新至 2023-09-26

1.8 Bayes 公式

定理 1.1. (全概率公式)

设 $\{B_i\}$ 是 Ω 的一个分割,即

- 1. $\sum_{i} B_{i} = \Omega$
- 2. $B_i B_i = \emptyset, \forall i \neq j$
- 3. $P(B_i) > 0, \forall i$

 $\mathbb{M} P(A) = P(\sum_{i} (AB_i)) = \sum_{i} P(AB_i) = \sum_{i} P(A|B_i) P(B_i).$

注: $\{B_i\}$ 可以是有限集合,或可数无穷集合。

例 1.7. 对于调查问卷中的敏感问题(如"你是否有过某病史"),被调查者可能会有所顾虑而做出虚假的回答。为保护被调查者的隐私,同时取得其信任,考虑引入一个"保护性问题",即不具有敏感性的问题(如"你是否会游泳"),并让被调查者以抛硬币的方式,随机抽取一个问题回答。这样,抽到敏感问题的、确有过该病史的被调查者在回答"是"时也无须有担心病史暴露之虞。

设人群中,敏感问题答案为"是"的比例为 p (未知),保护性问题答案为"是"的比例为 q (假设已知),则若收集到 n 个被调查者的结果,其中 k 个为"是",我们便有 $\frac{1}{2}p+\frac{1}{2}q\approx\frac{k}{n}$,可以据此得到 p 的估计。

定理 1.2. (Bayes 公式 / Bayes 准则)

设 $\{B_i\}$ 是 Ω 的一个分割,则 $P(B_i|A) = \frac{P(B_i)P(A|B_i)}{\sum_i P(B_i)P(A|B_i)}$ 。

例 1.8. (假阳性悖论)

对于一种流行病,A 表示一个人检查呈阳性,B 表示此人确实患病。设 $P(B)=10^{-4}$,P(A|B)=0.99, $P(A|B^c)=10^{-3}$,则一个检查呈阳性的人真的患病的概率仅为 $P(B|A)=\frac{P(A|B)P(B)}{P(A|B)P(B)+P(A|B^c)P(B^c)}\approx9\%$ 。

如果再次检测仍呈阳性,且两次检测效率不变,结果彼此独立,则此人真的患病的概率为 $P(B|A_1A_2) = \frac{P(A_1A_2|B)P(B)}{P(A_1A_2|B)P(B)+P(A_1A_2|B^c)P(B^c)} = \frac{P(A_1|B)P(A_2|B)P(B)}{P(A_1|B)P(A_2|B)P(B)+P(A_1|B^c)P(A_2|B)P(B^c)} \approx 99\%.$

更新至 2023-09-26 7