

Chapter 4 – Dimension Reduction

Instructor: Zach Zhizhong ZHOU, Shanghai Jiao Tong University 主讲教师: 周志中,上海交通大学

Data Mining for Business Intelligence

Shmueli, Patel & Bruce

Exploring the data 探索数据

Statistical summary of data: common metrics 数据统计汇总: 常用指标

- ■Average 均值
- ■Median 中位数
- ■Minimum 最小值
- ■Maximum 最大值
- ■Standard deviation 标准方差
- ■Counts & percentages 计数和百分比

Summary Statistics - Boston Housing 统计汇总 波士顿房屋

	Average	Median	Min	Max	Std	Count	Countblank
CRIM	3.61	0.26	0.01	88.98	8.60	506	0
ZN	11.36	0.00	0.00	100.00	23.32	506	0
INDUS	11.14	9.69	0.46	27.74	6.86	506	0
CHAS	0.07	0.00	0.00	1.00	0.25	506	0
NOX	0.55	0.54	0.39	0.87	0.12	506	0
RM	6.28	6.21	3.56	8.78	0.70	506	0
AGE	68.57	77.50	2.90	100.00	28.15	506	0
DIS	3.80	3.21	1.13	12.13	2.11	506	0
RAD	9.55	5.00	1.00	24.00	8.71	506	0
TAX	408.24	330.00	187.00	711.00	168.54	506	0
PTRATIO	18.46	19.05	12.60	22.00	2.16	506	0
В	356.67	391.44	0.32	396.90	91.29	506	0
LSTAT	12.65	11.36	1.73	37.97	7.14	506	0
MEDV	22.53	21.20	5.00	50.00	9.20	506	0

Correlations Between Pairs of Variables: Correlation Matrix from Excel 相关系数矩阵

	PTRATIO	В	LSTAT	MEDV
PTRATIO	1			
В	-0.17738	1		
LSTAT	0.374044	-0.36609	1	
MEDV	-0.50779	0.333461	-0.73766	1

Summarize Using Pivot Tables 数据透视表

Counts & percentages are useful for summarizing categorical data 计数和百分比用来总结类别型数据尤为有用

Boston Housing example:

471 neighborhoods border the Charles River (1)

35 neighborhoods do not (0)

Count of MEDV	
CHAS	Total
0	471
1	35
Grand Total	506

Pivot Tables 数据透视表

Averages are useful for summarizing grouped numerical data 均值用来汇总数值型数据尤为有用

Boston Housing example: Compare average home values in neighborhoods that border Charles River (1) and those that do not (0)

Average of MEDV	
CHAS	Total
0	22.09
1	28.44
Grand Total	22.53

Pivot Tables 数据透视表

Group by multiple criteria: 根据不同规则进行分组

- □By # rooms and location 根据房间数和位置分组
- □E.g., neighborhoods on the Charles with 6-7 rooms have average house value of 25.92 (\$000)

Average of MEDV	CHAS		
RM	0	1	Grand Total
3-4	25.30		25.30
4-5	16.02		16.02
3-4 4-5 5-6	17.13	22 22	17.49
6-7	21.77	25.92	22.02
7-8	35.96	44.07	36.92
8-9	45.70	35.95	44.20
Grand Total	22.09	28.44	22.53

Correlation Analysis 相关性分析

Below: Correlation matrix for portion of Boston Housing data 部分波士顿房屋数据的相关系数矩阵 Shows correlation between variable pairs 展示变量对之间的相关系数

	CRIM	ZN	INDUS	CHAS	NOX	RM
CRIM	1					
ZN	-0.20047	1				
INDUS	0.406583	-0.53383	1			
CHAS	-0.05589	-0.0427	0.062938	1		
NOX	0.420972	-0.5166	0.763651	0.091203	1	
RM	-0.21925	0.311991	-0.39168	0.091251	-0.30219	1

Reducing Categories 減少类型数目

□A single categorical variable with *m* categories is typically transformed into *m-1* dummy variables 一个类别型变量如果有m个值,通常转换成m-1个虚拟变量。

□Each dummy variable takes the values 0 or 1 每个虚拟变量根据是否属于该类别取值0或者1

0 = "no" for the category 如不在该类别取值为0

1 = "yes" 反之取值为1

Reducing Categories 減少类型数目

- □Problem: Can end up with too many variables 问题: 是否会导致很多个变量
- □Solution: Reduce by combining categories that are close to each other 解决:将多个类似的类型捆绑在一起组成一个新的类型。
- □Use pivot tables to assess outcome variable sensitivity to the dummies 使用数据透视表评估新的类型对虚拟变量的敏感程度
- □Exception: Naïve Bayes can handle categorical variables without transforming them into dummies 例外: 朴素贝叶斯方法可以处理类别型数据,无需将它们转为虚拟变量。

Combining Categories 合并类型

Many zoning categories are the same or similar with respect to CATMEDV

Principal Components Analysis 主成分分析法

Goal: Reduce a set of numerical variables. 目标是减少一系列数值型变量的个数

The idea: Remove the overlap of information between these variable. ["Information" is measured by the sum of the variances of the variables.] 思想: 移除去变量间重合的信息。(信息用变量的总方差度量)

Final product: A smaller number of numerical variables that contain most of the information 最终产品: 更少数目的变量,但保留了原变量所包含的绝大多数信息。

Principal Components Analysis 主成分分析法

How does PCA do this? 主成分分析法如何实现?

□Create new variables that are linear combinations of the original variables (i.e., they are weighted averages of the original variables). 建立新的变量,是原来变量的线性组合(例如,是原有变量的加权平均值)。

□These linear combinations are uncorrelated (no information overlap), and only a few of them contain most of the original information. 这些线性组合生成的新变量没有相关性(没有信息重合部分),所以少数的几个变量可以包含原有变量的大多数信息。

□The new variables are called *principal components*. 新的变量被称为主成分。

Example - Breakfast Cereals 早餐麦片

name	mfr	type	calories	protein	rating
100%_Bran	Ν	С	70	4	68
100%_Natural_Bran	Q	С	120	3	34
All-Bran	K	С	70	4	59
All-Bran_with_Extra_Fiber	K	С	50	4	94
Almond_Delight	R	С	110	2	34
Apple_Cinnamon_Cheerios	G	С	110	2	30
Apple_Jacks	K	С	110	2	33
Basic_4	G	С	130	3	37
Bran_Chex	R	С	90	2	49
Bran_Flakes	Р	С	90	3	53
Cap'n'Crunch	Q	С	120	1	18
Cheerios	G	С	110	6	51
Cinnamon_Toast_Crunch	G	С	120	1	20

Description of Variables 变量描述

Name: name of cereal

mfr: manufacturer

type: cold or hot

calories: calories per serving

protein: grams

fat: grams

sodium: mg.

fiber: grams

carbo: grams complex

carbohydrates

sugars: grams

potass: mg.

vitamins: % FDA rec

shelf: display shelf

weight: oz. 1 serving

cups: in one serving

rating: consumer reports

Consider calories & ratings 考虑卡路里和评级

□Total variance (= "information") is sum of individual variances: 379.63 + 197.32 总 方差

	calories	ratings
calories	379.63	-189.68
ratings	-189.68	197.32

□Calories accounts for 379.63/197.32 = 66% 卡路里占总方差66%。

First & Second Principal Components 第一和第二个主成分

- Z_1 and Z_2 are two linear combinations. Z1和Z2是2个线性组合。
- □ Z₁ has the highest variation (spread of values) Z1有最大的 方差
- □ Z₂ has the lowest variation Z2有最小的方差

PCA output for these 2 variables 对2个变量进行PCA的输出结果

Top: weights to project original data onto $Z_1 \& Z_2$ 上面

的表:显示原来变量投影到Z1和Z2上使用的权重。

e.g. (-0.847, 0.532) are weights for Z_1

Bottom: reallocated variance for new variables 下面的

表: 显示新变量分配到的总方差百分比

 Z_1 : 86% of total variance

 $Z_2: 14\%$

	Components				
Variable	1	2			
calories	-0.84705347	0.53150767			
rating	0.53150767	0.84705347			

Variance	498.0244751	78.932724
Variance%	★ 86.31913 757	→ 13.68086338
Cum%	86.31913757	100
P-value	0	1

Principal Component Scores 主成分取值

XLMiner: Principal Components Analysis - Scores

Row Id.	1	2
100%_Bran	44.92	2.20
100%_Natural_Bran	-15.73	-0.38
All-Bran	40.15	-5.41
All-Bran_with_Extra_Fiber	75.31	13.00
Almond_Delight	-7.04	-5.36
Apple_Cinnamon_Cheerios	-9.63	-9.49
Apple_Jacks	-7.69	-6.38
Basic_4	-22.57	7.52
Bran_Chex	17.73	-3.51

Weights are used to compute the above scores

 \square e.g., col. 1 scores are computed z_1 scores using weights (-0.847, 0.532)

Properties of the resulting variables 新变量的性质

New distribution of information 信息新的分布:

- ■New variances = 498 (for Z_1) and 79 (for Z_2) 新变量的方差
- □<u>Sum</u> of variances = sum of variances for original variables *calories* and *ratings* 总方差不变。
- \square New variable Z_1 has most of the total variance, might be used as proxy for both *calories* and *ratings* 新变量Z1的方差占总方差比最高,接下来是Z2。

 $\square Z_1$ and Z_2 have correlation of zero (no information overlap) 两个变量的相关系数为0,无信息重合。

Generalization 推广

 $X_1, X_2, X_3, \dots X_p$, original p variables 初始变量有p个

 $Z_1, Z_2, Z_3, \cdots Z_p$, weighted averages of original variables 新的变量是初始变量的加权平均值。

All pairs of Z variables have 0 correlation 新变量两两之间相关系数为0。

Order Z's by variance (z_1 largest, Z_p smallest) 新的变量按方差大小从大到小进行排序。

Usually the first few Z variables contain most of the information, and so the rest can be dropped. 通常前面几个新变量包含了原有变量的绝大多数信息,所以剩下的新变量可以被剔除不予考虑。

PCA on full data set 对整个数据集进行PCA

Variable	1	2	3	4	5	6	
calories	0.07624155	-0.01066097	0.61074823	-0.61706442	0.45754826	0.12601775	
protein	-0.00146212	0.00873588	0.00050506	0.0019389	0.05533375	0.10379469	
fat	-0.00013779	0.00271266	0.01596125	-0.02595884	-0.01839438	-0.12500292	
sodium	0.98165619	0.12513085	-0.14073193	-0.00293341	0.01588042	0.02245871	
fiber	-0.00479783	0.03077993	-0.01684542	0.02145976	0.00872434	0.271184	
carbo	0.01486445	-0.01731863	0.01272501	0.02175146	0.35580006	-0.56089228	
sugars	0.00398314	-0.00013545	0.09870714	-0.11555841	-0.29906386	0.62323487	
potass	-0.119053	0.98861349	0.03619435	-0.042696	-0.04644227	-0.05091622	
vitamins	0.10149482	0.01598651	0.7074821	0.69835609	-0.02556211	0.01341988	
shelf	-0.00093911	0.00443601	0.01267395	0.00574066	-0.00823057	-0.05412053	
weight	0.0005016	0.00098829	0.00369807	-0.0026621	0.00318591	0.00817035	
cups	0.00047302	-0.00160279	0.00060208	0.00095916	0.00280366	-0.01087413	
rating	-0.07615706	0.07254035	-0.30776858	0.33866307	0.75365263	0.41805118	
Variance	7204.161133	4833.050293	498.4260864	357.2174377	72.47863007	4.33980322	
Variance%	55.52834702	37.25226212	3.84177661	2.75336623	0.55865192	0.0334504	
Cum%	55.52834702	92.78060913	96.62238312	99.37575531	99.93440247	99.96785736	

☐First 6 components shown

☐First 2 capture 93% of the total variation

□Note: data differ slightly from text

Normalizing data 对数据进行标准化处理

□ In these results, sodium dominates first PC 结果显示, 变量"钠"在第一个主成分中权重很高。 □ Just because of the way it is measured (mg), its scale is greater than almost all other variables 仅是因为 它使用了mg的量纲,导致它的取值范围超过其他所有变量。 ☐ Hence its variance will be a dominant component of the total variance 所以它变成权重高的指标。 □ Normalize each variable to remove scale effect 需要对 数据进行标准化处理,移除量纲的影响。 Divide by std. deviation (may subtract mean first) □ Normalization (= standardization) is usually performed in PCA; otherwise measurement units affect results 通常需要在PCA中进行标准化处理,移除量纲对结果 的影响。

PCA using standardized variables

Variable	1	2	3	4	5	6
calories	0.32422706	0.36006299	0.13210163	0.30780381	0.08924425	-0.20683768
protein	-0.30220962	0.16462311	0.2609871	0.43252215	0.14542894	0.15786675
fat	0.05846959	0.34051308	-0.21144024	0.37964511	0.44644874	0.40349057
sodium	0.20198308	0.12548573	0.37701431	-0.16090299	-0.33231756	0.6789462
fiber	-0.43971062	0.21760374	0.07857864	-0.10126047	-0.24595702	0.06016004
carbo	0.17192839	-0.18648526	0.56368077	0.20293142	0.12910619	-0.25979191
sugars	0.25019819	0.3434512	-0.34577203	-0.10401795	-0.27725372	-0.20437138
potass	-0.3834067	0.32790738	0.08459517	0.00463834	-0.16622125	0.022951
vitamins	0.13955688	0.16689315	0.38407779	-0.52358848	0.21541923	0.03514972
shelf	-0.13469705	0.27544045	0.01791886	-0.4340663	0.59693497	-0.12134896
weight	0.07780685	0.43545634	0.27536476	0.10600897	-0.26767638	-0.38367996
cups	0.27874646	-0.24295618	0.14065795	0.08945525	0.06306333	0.06609894
rating	-0.45326898	-0.22710647	0.18307236	0.06392702	0.03328028	-0.16606605
Variance	3.59530377	3.16411042	1.86585701	1.09171081	0.96962351	0.72342771
Variance%	27.65618324	24.3393116	14.35274601	8.39777565	7.45864248	5.5648284
Cum%	27.65618324	51.99549484	66.34824371	74.74601746	82.20465851	87.76948547

☐First component accounts for smaller part of variance

■Need to use more components to capture same amount of information

- □Apply PCA to training data 对训练数据集使用PCA
- □Decide how many PC's to use 决定应该使用多少个主成分变量
- □Use variable weights in those PC's with validation/new data 在验证数据集或者新数据集中针对原有变量使用主成分中的权重值。
- □This creates a new reduced set of predictors in validation/new data 这样就减少了新数据集或者验证数据集中的预测因子个数。

Regression-Based Dimension Reduction

- ☐Multiple Linear Regression or Logistic Regression
- □Use subset selection
- □Algorithm chooses a subset of variables
- ☐ This procedure is integrated directly into the predictive task

Summary

- □ Data summarization is an important for data exploration 数据汇总是探索数据过程中的一个重要方法。
- □ Data summaries include numerical metrics (average, median, etc.) and graphical summaries 汇总数据包括数值矩阵(平均值,中位数等)和可视化汇总。
- □ Data reduction is useful for compressing the information in the data into a smaller subset 数据减缩对于把数据中的信息压缩到一个小一点的数据集是有用的。
- Categorical variables can be reduced by combining similar categories 可以通过合并类似的类别减少类别的个数。
- ■Principal components analysis transforms an original set of numerical data into a smaller set of weighted averages of the original data that contain most of the original information in less variables. 主成分分析法将原始数值型数据转换成数量更少的变量,这些变量包含原始数据的绝大多数信息,是原始数据的变量的线性组合。