1 Supremum

1.1 Sup and arithmetic operations

Definition 1.1 (Operations on sets). Given two sets A and B of real numbers, and $r \in \mathbb{R}$, define following elementwise operations:

- Minkowski addition: $A + B := \{a + b : a \in A, b \in B\}$
- Scalar addition: $A + c := \{a + c : a \in A\}$ for some $c \in \mathbb{R}$
- Scalar multiplication: $cA = \{ca : a \in A\}$ for some $c \in \mathbb{R}$

Theorem 1.1. For operations defined above, we have:

- $\sup(A+B) = \sup A + \sup B$
- $\sup(A+c) = \sup A + c$
- $\sup(cA) = r \sup A \text{ for } c \geqslant 0$

A + c can be seen as a special case $A + \{c\}$.

1.2 Sup and inequalities

Theorem 1.2. If $A \subseteq B$, then $\sup A \leqslant \sup B$.

Definition 1.2 (Set comparison). Given two sets A and B. If for every $a \in A$ and every $b \in B$, we have $a \leq b$. Then we denote that $A \leq B$. If A is bounded above by a number c, that is, for every $a \in A$ we have $a \leq c$, then we denote that $A \leq c$.

 $A \leq c$ can be seen as a special case that $A \leq \{c\}$.

Theorem 1.3 (Comparison property). We can take supremum on both sides.

- 1. If $A \leq B$, then $\sup A \leq \sup B$
- 2. If $A \leq c$, then $\sup A \leq c$

1.3 Sup and functions

Supremum is often applied to a function's range. In this circumstance, we have the following alternative notation of supremum, in which sup can be seen as an operator:

$$\sup_{x \in S} f(x) \coloneqq \sup\{f(x) \colon x \in S\} \,.$$

We ignore the domain and write $\sup f$, when it is clear from the context.

Relations bewteen functions are defined pointwise. For $f,g\colon S\to\mathbb{R}$, the relation $f\leqslant g$ means $f(x)\leqslant g(x)$ for all $x\in S$. Arithmetic operations also perform in pointwise manner. For example (f+g)(x)=f(x)+g(x).

Theorem 1.4. If $f \leq g$, then we can take supremum of both sides, that is

$$\sup_{x \in S} f(x) \leqslant \sup_{x \in S} g(x) .$$

Proof. For every $x \in S$, $f(x) \leq g(x) \leq \sup g$, this means that $\sup g$ is an upper bound of $\{f(x): x \in S\}$, therefore $\sup f \leq \sup g$.

As a special case, if $f \leq c$, then $\sup f \leq c$.

Theorem 1.5. $\sup(f+g) \leqslant \sup f + \sup g$.

Proof. Note that
$$\{f(x) + g(x) \colon x \in S\} \subseteq \{f(x) \colon x \in S\} + \{g(x) \colon x \in S\}.$$