Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа №1 Построение и визуализация фрактальных множеств

Выполнил:

Брагин Роман Андреевич

Рахимов Ильнар Ильдарович

Малышев Никита Александрович

Проверил:

Милюшин Александр Сергеевич

[∨]Свойство №1

Формулировка

Множество Мандельброта переходит само в себя при сопряжении. Иными словами, оно симметрично относительно вещественной оси.

Доказательство

Заметим, что ограниченность или неограниченность орбиты не изменится, если каждый её элемент подвергнуть комплексному сопряжению. Осталось доказать, что орбиты нуля для w и \overline{w} симметричны друг другу при отражении относительно вещественной оси. Для w

$$O(\omega) = \langle 0, \omega, \omega + \omega^2, \omega + \omega^2 + 2\omega^3 + \omega^4, \ldots
angle$$

а для $\overline{\omega}$ -

$$O(\overline{\omega}) = \langle 0, \overline{\omega}, \overline{\omega} + \overline{\omega}^2, \overline{\omega} + \overline{\omega}^2 + 2\overline{\omega}^3 + \overline{\omega}^4, \ldots \rangle$$

Поскольку все элементы орбиты $O(\omega)$ являются многочленами от ω с вещественными коэффициентами, остаётся доказать, что комплексное сопряжение можно выносить за знак таких многочленов: $g(\overline{\omega})=\overline{g(\omega)}$. Последний факт вытекает из двух легко проверяемых свойств комплексного сопряжения: $\overline{p\pm q}=\overline{p}\pm\overline{q}$ и $\overline{p\cdot q}=\overline{p}\cdot\overline{q}$ для любых комплексных чисел р и q. Итак, $O(\overline{\omega})=\overline{O(\omega)}$, что и требовалось доказать.

Свойство 2: Не принадлежность при |c| > 2

Доказательство

Нужно показать, что если |c|>2, то последовательность $\{z_n\}$ не ограничена и стремится к бесконечности при $n\to\infty$.

1. Начальное значение последовательности

$$z_0 = 0$$

2. Первый член последовательности

$$z_1 = z_0^2 + c = c$$
.

Следовательно,

$$|z_1| = |c| > 2.$$

- **3. Общее свойство** Покажем, что если $|z_n| > 2$, то $|z_{n+1}| > |z_n|^2 |c|$.
- **4. Оценка следующего члена последовательности** Используем неравенство:

$$|z_{n+1}| = |z_n^2 + c| \ge ||z_n|^2 - |c||.$$

Поскольку $|z_n|>2$ и |c|>2, то $|z_n|^2-|c|>4-|c|.$ Но так как |c|>2, то 4-|c|<2.

5. Доказательство расходимости Более точный подход: при $|z_n|>|c|\geq 2$:

$$|z_{n+1}| \ge |z_n|^2 - |c| \ge |z_n|^2 - |z_n| = |z_n|(|z_n| - 1).$$

Поскольку $|z_n| > 2$, то $|z_n| - 1 > 1$, и поэтому:

$$|z_{n+1}|>|z_n|\cdot 1=|z_n|.$$

- **6. Индукция** Таким образом, последовательность $|z_n|$ строго возрастает при $|z_n|>2$. Поскольку $|z_1|>2$, то все последующие члены будут больше предыдущих и стремятся к бесконечности.
- **7.** Вывод Поскольку последовательность не ограничена, то $c \notin M$.

Код всех заданий + презентация

Код на гитхабе

Картинка для задание 2

Построение множества Мандерюбольта

```
import numpy as np
import matplotlib.pyplot as plt
def mandelbrot(c, max_iter):
    z = 0
    for n in range(max_iter):
        if abs(z) > 2:
            return n
        z = z*z + c
    return max_iter
def plot_mandelbrot(width, height, x_min, x_max, y_min, y_max,
max_iter):
    image = np.zeros((height, width))
    for x in range(width):
        for y in range(height):
            real = x_min + (x / width) * (x_max - x_min)
            imag = y_min + (y / height) * (y_max - y_min)
            c = complex(real, imag)
            color = mandelbrot(c, max_iter)
            image[y, x] = color
    plt.figure(figsize=(10, 10))
    plt.imshow(image, extent=(x_min, x_max, y_min, y_max), cmap='hot')
    plt.colorbar()
    plt.show()
plot_mandelbrot(1200, 1200, -2.0, 1.0, -1.5, 1.5, 1000)
```