In [1]:

```
import pandas as pd

ydf=pd.read_csv('/home/harshit/Downloads/YESBANK.csv')
ydf
```

Out[1]:

	Date	Open	High	Low	Close	Adj Close	Volume
0	2018-01-16	334.000000	338.500000	328.000000	333.899994	319.873657	470267.0
1	2018-01-17	336.000000	343.750000	331.250000	342.500000	328.112457	653618.0
2	2018-01-18	350.000000	356.500000	333.100006	340.250000	325.956970	2419109.0
3	2018-01-19	348.000000	352.000000	339.250000	348.299988	333.668793	1659646.0
4	2018-01-22	349.000000	358.000000	349.000000	355.250000	340.326874	663569.0
484	2020-01-09	47.150002	48.450001	46.299999	47.299999	47.299999	6835915.0
485	2020-01-10	47.599998	48.349998	43.900002	44.799999	44.799999	15918973.0
486	2020-01-13	43.400002	44.000000	41.200001	42.099998	42.099998	10763969.0
487	2020-01-14	41.750000	41.750000	36.549999	38.549999	38.549999	18250917.0
488	2020-01-15	38.549999	41.099998	36.650002	39.799999	39.799999	19876620.0

489 rows × 7 columns

In [2]:

#import LinearRegression Class
from sklearn.linear_model import LinearRegression

In [3]:

```
#Algorithm----->step by step solution to a problem
#training
#model---->system of prediction which will give you your final output/answer
#feature!!!
```

In [4]:

#step 1----> select your target Attribute

In [5]:

import seaborn as sns

In [6]:

```
sns.scatterplot(x='Open',y='Close',data=ydf)
```

Out[6]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f629cfdc520>

In [7]:

```
sns.scatterplot(x='Low',y='Close',data=ydf)
```

Out[7]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f629a8cda60>

In [8]:

```
# Univariate Linear Regression
```

In [9]:

```
sns.scatterplot(x='Volume',y='Close',data=ydf)
```

<matplotlib.axes. subplots.AxesSubplot at 0x7f629f48c2e0>

In [10]:

```
ydf.isna().sum() #check for missing values
```

Out[10]:

Date 0 0pen 1 High 1 1 Low 1 Close Adj Close 1 Volume dtype: int64

In [11]:

```
ydf.dropna(axis=0,how='any',inplace=True) #drop missing values
```

```
In [12]:
```

```
ydf.isna().sum()
Out[12]:
```

Date 0
Open 0
High 0
Low 0
Close 0
Adj Close 0
Volume 0
dtype: int64

In [13]:

```
#separate the column which is target
target=ydf.pop('Close')
ydf
```

Out[13]:

	Date	Open	High	Low	Adj Close	Volume
0	2018-01-16	334.000000	338.500000	328.000000	319.873657	470267.0
1	2018-01-17	336.000000	343.750000	331.250000	328.112457	653618.0
2	2018-01-18	350.000000	356.500000	333.100006	325.956970	2419109.0
3	2018-01-19	348.000000	352.000000	339.250000	333.668793	1659646.0
4	2018-01-22	349.000000	358.000000	349.000000	340.326874	663569.0
484	2020-01-09	47.150002	48.450001	46.299999	47.299999	6835915.0
485	2020-01-10	47.599998	48.349998	43.900002	44.799999	15918973.0
486	2020-01-13	43.400002	44.000000	41.200001	42.099998	10763969.0
487	2020-01-14	41.750000	41.750000	36.549999	38.549999	18250917.0
488	2020-01-15	38.549999	41.099998	36.650002	39.799999	19876620.0

488 rows × 6 columns

In [14]:

target

Out[14]:

```
333.899994
342.500000
0
1
       340.250000
2
3
       348.299988
4
       355.250000
        47.299999
484
        44.799999
485
486
        42.099998
        38.549999
487
488
        39.799999
Name: Close, Length: 488, dtype: float64
```

In [15]:

```
feature=ydf.pop('Low') #feature to be used on x-axis
ydf
```

Out[15]:

	Date	Open	High	Adj Close	Volume
0	2018-01-16	334.000000	338.500000	319.873657	470267.0
1	2018-01-17	336.000000	343.750000	328.112457	653618.0
2	2018-01-18	350.000000	356.500000	325.956970	2419109.0
3	2018-01-19	348.000000	352.000000	333.668793	1659646.0
4	2018-01-22	349.000000	358.000000	340.326874	663569.0
484	2020-01-09	47.150002	48.450001	47.299999	6835915.0
485	2020-01-10	47.599998	48.349998	44.799999	15918973.0
486	2020-01-13	43.400002	44.000000	42.099998	10763969.0
487	2020-01-14	41.750000	41.750000	38.549999	18250917.0
488	2020-01-15	38.549999	41.099998	39.799999	19876620.0

488 rows × 5 columns

In [16]:

```
feature
```

```
Out[16]:
```

```
0
       328.000000
1
       331.250000
       333.100006
2
3
       339.250000
4
       349.000000
        46.299999
484
485
        43.900002
486
        41.200001
487
        36.549999
488
        36.650002
Name: Low, Length: 488, dtype: float64
```

In [17]:

```
from sklearn.model_selection import train_test_split

#split data into training and testing set
xtrain,xtest,ytraining,ytest=train_test_split(feature ,target,test_size=0.2)
```

In [18]:

xtrain

Out[18]:

```
391
        53.150002
90
       332.799988
223
       172.000000
        81.750000
370
263
       173.300003
        40.700001
464
181
       217.199997
        58.900002
400
442
        64.349998
111
       327.350006
Name: Low, Length: 390, dtype: float64
```

```
In [19]:
ytraining
Out[19]:
391
        56.299999
       343.149994
90
223
       174.699997
        91.150002
370
       174.800003
263
        42.799999
464
181
       240.000000
400
        61.900002
442
        69.000000
111
       329.200012
Name: Close, Length: 390, dtype: float64
In [20]:
#predictor model
model=LinearRegression()
In [21]:
import numpy as np
#reshape the data in 1 column layout
xtrain=np.reshape(np.array(xtrain),(-1,1))
ytraining=np.reshape(np.array(ytraining),(-1,1))
In [22]:
#Training Model
model.fit(xtrain,ytraining) #training process!!!!!
Out[22]:
LinearRegression()
In [23]:
xtest
Out[23]:
166
       319.000000
286
       243.399994
249
       191.100006
441
        66.000000
477
        46.349998
       305.899994
58
162
       314.600006
360
        85.699997
       325.700012
86
366
        92.300003
Name: Low, Length: 98, dtype: float64
In [25]:
ytest
Out[25]:
166
       323.149994
       245.050003
286
249
       192.100006
        66.500000
441
477
        46.950001
58
       309.399994
162
       316.700012
360
        93.099998
86
       330.500000
366
       103.900002
Name: Close, Length: 98, dtype: float64
```

In [29]:

```
#reshapte testing x values as well
xtest=np.reshape(np.array(xtest),(-1,1))
values=model.predict(xtest)
```

In [30]:

from sklearn.metrics import mean_squared_error
mean_squared_error(ytest,values)

Out[30]:

10.191441691484796