1.

(a) Use Fermat's little theorem to find the remainder when $(116)^{54}$ is divided by 11.

Hint: First find the least residue of 116 mod 11, and work with that instead of 116. Smaller numbers lead to easier calculations!

- (b) Prove that $a^{13} \equiv a \mod 91$ for all $a \in \mathbb{Z}$. Note that $273 = 3 \cdot 7 \cdot 13$.
- (a) By FLT, we have $a^{10} \equiv 1 \mod 11$ for any integer a not divisible by 11. Also note that $116 \equiv 6 \mod 11$.

So
$$(116)^{54} \equiv 6^{54} \equiv 6^{5 \cdot 10 + 4} \equiv (6^{10})^5 6^4 \equiv 1^5 \cdot 36^2 \equiv 3^2 \equiv 9 \mod 11$$
.

(b) $a^{13} \equiv a \mod 91$ if and only if $a^{13} - a \equiv 0 \mod 91$, if and only if $91 | (a^{13} - a)$, if and only if $7 | (a^{13} - a)$ and $13 | (a^{13} - a)$, if and only if $a^{13} - a \equiv 0 \mod 7$ and $a^{13} - a \equiv 0 \mod 13$, if and only if $a^{13} \equiv a \mod 7$ and $a^{13} \equiv a \mod 13$

In summary, $a^{13} \equiv a \mod 91$ if and only if $a^{13} \equiv a \mod 7$ and $a^{13} \equiv a \mod 13$.

Let p=7 or 13. We need to show that $a^{13}\equiv a \bmod p$. This is clearly true if $a\equiv 0 \bmod p$, so assume (a,p)=1.

By FLT,
$$a^{7-1} \equiv 1 \mod 7$$
, so $a^{13} \equiv a^{1+6\cdot 2} \equiv a \cdot (a^6)^2 \equiv a \cdot 1^2 \equiv a \mod 7$.

By FLT,
$$a^{13-1} \equiv 1 \mod 13$$
, so $a^{13} \equiv a^{1+12} \equiv a \cdot a^{12} \equiv a \cdot 1 \equiv a \mod 13$.

2. Let p be a prime. Use Fermat's little theorem to prove

(a)
$$1^{p-1} + 2^{p-1} + \ldots + (p-1)^{p-1} \equiv -1 \mod p$$
.

(b)
$$1^p + 2^p + \ldots + (p-1)^p \equiv 0 \mod p$$

Since (k, p) = 1 for $1 \le k \le p - 1$, we can use FLT to get

(a)
$$1^{p-1} + 2^{p-1} + \ldots + (p-1)^{p-1} \equiv 1 + 1 + \ldots + 1 \equiv p - 1 \equiv -1 \mod p$$
.

(b)
$$1^p + 2^p + \ldots + (p-1)^p \equiv 1 + 2 + 3 + \ldots + (p-1) \equiv \frac{(p-1)(p-1+1)}{2} \equiv p\left(\frac{p-1}{2}\right) \mod p$$
. Since p is odd, $\frac{p-1}{2}$ is an integer, so $p\left(\frac{p-1}{2}\right) \equiv 0 \mod p$.

3. Let a be an integer coprime to 7. Prove that either $a^3 + 1$ or $a^3 - 1$ is divisible by 7.

$$(a^3-1)(a^3+1)=a^{7-1}-1\equiv 0 \bmod 7$$
 by FLT. So $7|(a^3-1)(a^3+1)$. Thus by Euclid's Lemma, $7|(a^3-1)$ or $7|(a^3+1)$.

4. Use Wilson's Theorem to find the least residue of 6(25)! mod 29.

For a = 26, 27, 28, the multiplicative inverse of a modulo 29 exists because (a, 29) = 1.

We have
$$6(25)! \equiv 3 \cdot 2 \cdot (25)! \cdot 26 \cdot 27 \cdot 28 \cdot 26^{-1} \cdot 27^{-1} \cdot 28^{-1} \equiv 3 \cdot 2 \cdot (28)! \cdot (-3)^{-1} \cdot (-2)^{-1} \cdot (-1)^{-1} \mod 29$$
.

Now use $28! \equiv -1 \mod 29$ (Wilson's Theorem), $3 \cdot (-3)^{-1} \equiv -1 \mod 29$, $2 \cdot (-2)^{-1} \equiv -1 \mod 29$, $(-1)^{-1} \equiv -1 \mod 29$.

Conclusion: $6(25)! \equiv 1 \mod 29$.

Bonus point

5. Let p be a prime. Let a and b be two integers. Prove that if $a^p - b^p$ is divisible by p, then $a^p - b^p$ is divisible by p^2 . (So the stronger divisibility condition is automatically true.)

In the language of congruences, we are given that $a^p - b^p \equiv 0 \mod p$. Fermat's Little Theorem says that $a^p \equiv a \mod p$ and $b^p \equiv b \mod p$. Thus what we are given implies that $a \equiv b \mod p$. So a and b differ by a multiple of p, and we can write a = b + pk for some $k \in \mathbb{Z}$.

Next, write $a^p - b^p = (b + pk)^p - b^p$ and use the Binomial theorem.

$$(b+pk)^p - b^p = b^p + \binom{p}{1}b^{p-1}(pk)^1 + \binom{p}{2}b^{p-2}(pk)^2 + \ldots + \binom{p}{p-1}b^1(pk)^{p-1} + (pk)^p - b^p.$$

First note that the two occurrences of b^p on the right cancel out. In class, we saw that $\binom{p}{\ell} \equiv 0 \mod p$ for $1 \leq \ell \leq p-1$. We claim that each term $\binom{p}{\ell}b^{p-\ell}(pk)^{\ell}$ on the right is divisible by p^2 for $1 \leq \ell \leq p-1$. This is because at least one factor of p comes from $\binom{p}{\ell}$ and at least one factor of p comes from $(pk)^{\ell}$. Also, the last term $(pk)^p$ is divisible by p because $p \geq 2$.

Thus

$$(b+pk)^p - b^p \equiv b^p + 0 + 0 + \dots + 0 + 0 - b^p \bmod p^2 \implies (b+pk)^p \equiv b^p \bmod p^2 \implies a^p \equiv b^p \bmod p^2.$$