高等数学期中试题(A 卷)

班级	学号	姓名
///t	, , ,	/ =

(本试卷共5页, 八个大题)

题号	_	<u> </u>	111	四	五.	六	七	八	总分
得分									

- 一. 填空题 (每小题 4 分. 共 28 分)
- 1. 设 $\vec{n} = \vec{a} + 3\vec{b}$, $\vec{n} = k\vec{a} + \vec{b}$, 其中 $|\vec{a}| = 3$, $|\vec{b}| = 2$, $\vec{a} = \vec{b}$ 的夹角 $(\vec{a}, \vec{b}) = \frac{5\pi}{6}$, 则当 k =_____时,以 \vec{m} , \vec{n} 为邻边的平行四边形的面积为 18.
- 2. 设方程 x-2z=f(y-3z) 确定 z 是 x,y 的函数, 其中 f 可微.则
- 4. 交换累次积分 $I = \int_0^1 dy \int_{-\sqrt{1-y}}^{\sqrt{1-y}} f(x,y) dx + \int_{-1}^0 dy \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x,y) dx$ 的积 分次序, *I* = ____
- 5. 曲线 $L: \begin{cases} 2x^2 + 3y^2 + z^2 = 9 \\ z^2 = 3x^2 + y^2 \end{cases}$ 在点 $M_0(1,-1,2)$ 处的切向量 $\vec{\tau} = \underline{\hspace{1cm}}$

切线的标准方程为:

- 6. 设直线 $L: \frac{x-a}{2} = \frac{y+1}{1} = \frac{z-2}{n}$ 在平面 $\pi: 3x-2y+z-8=0$ 上,则 $a = \underline{\hspace{1cm}}$
- 7. 曲面 $e^z 3z + xy = 3$ 在点(1,2,0)处的法向量(该法向量与z轴正向夹角为锐角)

的方向导数
$$\frac{\partial u}{\partial \vec{n}} = \underline{\hspace{1cm}}$$
.

- 二、(10 分)设 $z = xf(x y^2, xy)$,其中f具有二阶连续偏导数,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x \partial y}$.
- 三、 $(10 \, f)$ 求以曲面 z = x y 为顶,以平面有界闭区域 D 为底的柱体的体积,其中 D 为由直线 x = 0, y = 0 与 x + y = 2 所围成的平面区域.
- 四、(10 分)求函数 $f(x,y) = (1+e^y)\cos x ye^y + 1$ $(0 < x < 3\pi)$ 的极值,并判别是极大值还是极小值.
- 五、(10 分) 计算 $I = \iiint_V (x+y+z) dx dy dz$, 其中 V 是由平面 z=1 及曲面 $x^2+y^2=2z$ 所围成的有界闭区域.
- 六、(12 分) 设直线 L过点(1,-1,2) 且平行于平面 π : 2x-3y+z+6=0,又与直线 $\frac{x-1}{2} = \frac{y}{-1} = \frac{2-z}{1}$ 相交,求直线 L 的方程.
- 七、 $(10\,

 ota)$ 试利用球坐标计算三重积分 $I=\iint_{\Omega}(x^2+y^2)dxdydz$, 其中 Ω 是由曲 $m\ z=\sqrt{x^2+y^2}\$ 和曲面 $\ z=1+\sqrt{1-x^2-y^2}\$ 围成几何体.
- 八、(10 分)设长方体的三个面在坐标面上,其一个顶点 (x_0, y_0, z_0) 位于第一卦 限且在平面 $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ 上,求该顶点坐标值,使得此长方体的体积最大.