HLIN612 : Calculabilité et Complexité Examen 18 Mai 2022

Seul les documents de cours et travaux dirigés sont autorisés. La note prendra en compte la clarté des explications.

1 Calculabilité

Exercice 1

Soit f une fonction calculable, on appelle d(f) le domaine de définition de f c'est-à-dire

$$d(f) = \{x | f(x) \text{ est défini } \}.$$

Pour chacune des affirmations suivantes, dites si elle est vraie ou fausse et à chaque fois justifier vos réponses.

- 1. $\exists f$ tel que d(f) est décidable.
- 2. $\forall f, d(f)$ est décidable.
- 3. $\exists f$ tel que d(f) est récursivement énumérable et non décidable.
- 4. $\exists f$ tel que d(f) n'est pas récursivement énumérable.
- 5. $\exists f$ tel que le complémentaire de d(f) n'est pas récursivement énumérable.
- 6. $\exists f$ tel que le complémentaire de d(f) est récursivement énumérable et non décidable.
- 7. $\exists f$ tel que le complémentaire de d(f) est décidable.

Exercice 2

Soit f une bijection des suites finies d'entiers dans \mathbb{N} définie $f(x_1, x_2, x_3, \dots, x_k)$ où la liste est (x_1, x_2, \dots, x_k) et $x_i \in \mathbb{N}$. En déduire une fonction g bijective des suites croissantes (au sens large i.e. $x_i \leq x_{i+1}, \forall i$) finies d'entiers dans \mathbb{N} .

2 Complexité

Exercice 3

Considérons le problème CLIQUE, ce problème est connu NP-complet.

CLIQUE (Clique)

Données : G = (V, E) un graphe non-orienté et $k \in \mathbb{N}$.

Question : Existe-t-il une clique de taille k?

1. Montrer que le problème DEUX CLIQUES DISJOINTES est NP-complet.

DEUX CLIQUES DISJOINTES

Données : G = (V, E) un graphe non-orienté et $k \in \mathbb{N}$. Question : Existe-t-il deux cliques disjointes de taille k?

2. Montrer que le problème CLIQUE $\,$ reste NP-complet même quand tous les sommets admettent un même degré.

Aide: Soit Δ le degré maximum du graphe. Construire Δ copies du graphe G, et ajouter des sommets pour obtenir un graphe Δ -régulier. Vous montrerez l'équivalence suivante : il existe une clique de taille k dans G si et seulement si il existe une clique de k dans le graphe construit.

Exercice 4

Soit $\phi = (a \lor b) \land (b \lor \neg c) \land (\neg b \lor \neg d) \land (b \lor d) \land (d \lor a)$

- 1. Est-ce que ϕ est satisfiable?
- 2. Proposer un algorithme glouton qui permet de satisfaire au moins la moitié des clauses pour une formule 2-SAT.

Exercice 5

DOUBLE-SAT

Données : Soit ϕ une formule logique sous forme conjonctive. Question : Existe-t'il deux affectations possibles pour ϕ ?

1. Montrer que Double-SAT est NP-complet.