Reti Logiche A

Complementi sulla codifica degli stati nelle FSM

Docente: prof. William FORNACIARI

fornacia@elet.polimi.it www.elet.polimi.it/people/fornacia

Codifica degli stati

- Consiste nel determinare la rappresentazione binaria degli stati
- La codifica degli stati influisce su:
 - Area
 - Prestazioni
- Il numero di possibili codifiche per S stati è:

$$\frac{\left(2^{\lceil log_2|S|\rceil}-1\right)!}{\left(2^{\lceil log_2|S|\rceil}-|S|\right)!\cdot \lceil log_2|S|\rceil!}$$

Ad esempio, con |S| = 8 si hanno 840 possibili codifiche

Codifica degli stati

- Spesso si usano metodi euristici
 - Usando flip-flop di tipo D, la tabella degli stati coincide con la tabella delle transizioni
- Uno dei metodi utilizzabili manualmente, su piccole macchine, si basa sulle seguenti considerazioni (ordinate per importanza):
 - 1. Se due stati s_i e s_j hanno gli stessi stati futuri è opportuno che abbiano codifiche adiacenti; in modo da avere coppie di 1 o di 0 adiacenti sulle colonne delle funzioni stato prossimo
 - 2. Se due stati s_i e s_j sono stati prossimi dello stesso stato e corrispondono a ingressi adiacenti, è opportuno che abbiano codifiche adiacenti; in modo da avere coppie di 1 o di 0 adiacenti sulle righe delle funzioni di stato prossimo
 - 3. Se due stati s_i e s_j hanno la stessa uscita è opportuno dare loro assegnamenti adiacenti; in questo modo si semplifica la funzione di uscita

Codifica degli stati

- É difficile soddisfare queste tre regole contemporaneamente
 - Si cercano soluzioni che sono efficienti da un punto di vista probabilistico
 - A volte si usano codifiche non minime, come ad es.
 - One-hot, per facilitare il testing
 - Hamming per diminuire il consumo di potenza
- Procedimento semplificato
 - Si raggruppano gli stati che dovrebbero essere adiacenti
 - Si costruisce una mappa di Karnaugh con le variabili di stato necessarie per rappresentare i vari stati
 - Si inseriscono nella tabella i nomi degli stati, cercando di rispettare il maggior numero di vincoli (in particolare i primi due)

Codifica degli stati: esempio

- Data la seguente tabella degli stati (es. Moore)
 - Regola 1: adiacenze (a,h) e (b,g)
 - Regola 2: adiacenze (b,c) e (a,e)
 - Regola 3: conferma (a,h) e (b,g)
- Riassumendo le adiacenze sono

a: e,h

b: c,g

Codifica finale

A: 000 B: 010

C: 011 D: 101

E: 001 F: 111

G:110 H: 100

In	0	1	Out	
S'				
Α	В	O	10	
В	Α	E	01	
С	D	D	00	
D	G	G	00	
E	F	F	00	
F	Ι	Ι	00	
G	Α	Α	01	
Н	В	В	10	

y2y3 y1	00	01	11	1 0
0	Α	Ε	С	В
1	Н	D	F	G

Metodo completo: esempio

Alcune adiacenze potrebbro avere cardinalità >1

Esempio

Tabella delle adiacenze

Adiacenze	Cardinalità
a,b	1
a,c	1
a,d	1
a,e	0
b,c	1
b,d	0
b,e	0
c,d	0
c,e	1
d,e	1

Esempio

Grafo iniziale

Esempio

