INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Sparsh Mittal

State equation

The behavior of a clocked sequential circuit can be described algebraically by means of state equations.

A state equation (also called a transition equation) specifies the next state as a function of the present state and inputs.

Consider this circuit.

Show equations for A(t+1), B(t+1) and y

$$A(t + 1) = A(t)x(t) + B(t)x(t)$$

$$B(t + 1) = A'(t)x(t)$$

$$y(t) = [A(t) + B(t)]x'(t)$$

State Table

The time sequence of inputs, outputs, and flip-flop states can be enumerated in a state table

The state table for the circuit shown on previous slide is shown next.

The table consists of four sections labeled *present state*, *input*, *next state*, and *output*.

The present-state section shows states of flip-flops A and B at any given time t.

The input section gives a value of *x* for each possible present state.

The next-state section shows the states of the flip-flops one clock cycle later, at time t + 1.

The output section gives the value of *y* at time *t* for each present state and input condition.

State table

$$A(t+1) = A(t)x(t) + B(t)x(t)$$

$$B(t+1) = A'(t)x(t)$$

$$y(t) = [A(t) + B(t)]x'(t)$$

Table 5.2 *State Table for the Circuit of Fig. 5.15*

Present State		Input		ext ate	Output	
A	В	X	A	В	y	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

Table 5.2 *State Table for the Circuit of Fig. 5.15*

Present State A B		Input		ext ate	Output	
		<i>x</i>	A	В		
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

Table 5.3Second Form of the State Table

Present State		Next State				Output		
		x = 0		<i>x</i> = 1		x = 0	<i>x</i> = 1	
Α	В	A	В	A	В	y	y	
0	0	0	0	0	1	0	0	
0	1	0	0	1	1	1	0	
1	0	0	0	1	0	1	0	
1	1	0	0	1	0	1	0	

State diagram

The information available in a state table can be represented graphically in the form of a state diagram.

In this type of diagram, a state is represented by a circle, and the (clock-triggered) transitions between states are indicated by directed lines connecting the circles.

State diagram

Table 5.3Second Form of the State Table

Present State		Next State				Output		
		x = 0		x = 1		x = 0	<i>x</i> = 1	
Α	В	A	В	A	В	y	y	
0	0	0	0	0	1	0	0	
0	1	0	0	1	1	1	0	
1	0	0	0	1	0	1	0	
1	1	0	0	1	0	1	0	

Flip-flop input equations

We adopt the convention of using the flip-flop input symbol to denote the input equation variable and a subscript to designate the name of the flip-flop output.

The following input equation specifies an OR gate with inputs x and y connected to the D input of a flip-flop whose output is labeled with the symbol Q:

$$D_Q = x + y$$

Flip-flop input equations

Equations of gates shown in previous diagram

$$D_A = Ax + Bx$$

$$D_B = A'x$$

$$y = (A + B)x'$$

Analyzing clocked sequential circuit with D flip-flop

• Consider this circuit: $D_A = A \oplus x \oplus y$

• The next-state values are obtained from the state equation

$$A(t+1) = A \oplus x \oplus y$$

- The expression specifies an odd function and is equal to 1 when
 - only one variable is 1
 - or when all three variables are 1.

Present state	Inpu	ıts	Next state			
A	x :	y	A			
0	0	0	0			
0	0	1	1			
0	1	0	1			
0	1	1	0			
1	0	0	1			
1	0	1	0			
1	1	0	0			
1	1	1	1			
(b) State table						

(b) State table

The circuit has one flip-flop and two states.

Discussion

The circuit has one flip-flop and two states. The state diagram consists of two circles, one for each state.

The present state and the output can be either 0 or 1, as indicated by the number inside the circles.

A slash on the directed lines is not needed, because there is no output from a combinational circuit.

The two inputs can have four possible combinations for each state. Two input combinations during each state transition are separated by a comma to simplify the notation.

