

A Million Tweets Are Worth a Few Points:

Tuning Transformers for Customer Service Tasks

A. Hadifar, S. Labat, V. Hoste, C. Develder, T. Demeester amir.hadifar@ugent.be

https://ugentt2k.github.io

Introduction

Customer service: all interactions of a company with its current and potential clients

How NLP can Help?

- i. Insights to optimize customer interactions, e.g., customer satisfaction or sentiment analysis
- ii. Facilitating real time decisions, e.g., categorizing or prioritizing customer tickets

Idea

Challenges: Small and medium size companies struggle with applying recent NLP techniques due to the limited size, noise and imbalance in their data

Contributions:

- . Multilingual conversational Twitter corpus
- i. Multilingual progressive tuning
- ii. Demonstration of benefit of domain-specific representation from (i) + (ii) over generic LM models in various tasks

Transfer strategies

Transfer learning: Leveraging knowledge from a pre-trained model

- i. Freezing (extracting features): Use representations learned by a pre-trained model to extract meaningful features
- ii. Finetuning: reuse a pretrained model on another task by adjusting its parameters.

Progressive tuning^[1]: Further training of a generic pretrained model on a smaller and less diverse domain

Twitter Collection

Language	convs	tweets
English	135.1k	406.3k
French	60.9k	212.9k
Dutch	45.6k	141.0k
German	33.0k	104.5k
All	274.6k	864.7k

Number of collected conversations and tweets for each language

2D visualization of randomly sampled tweets for six companies, in different sectors and languages

Results

Language transferability: We evaluate progressive tuning on 6 tasks, spanning 4 languages

- i. Generally, finetuning performs better than freezing (e.g., XLM $\rightarrow \varnothing$ vs. XLM $\rightarrow \varphi$)
- ii. Finetuned, domain specific model outperforms other models (e.g., BERTweet $\to \varphi$ vs. RoBERTa $\to \varphi$)
- iii. Classical models are strong competitors for the frozen transformers (e.g., SVM vs. BERTweet→∅)
- iv. Further pretraining, followed by finetuning is beneficial (e.g., XLM $\rightarrow \varphi$ vs. XLM $\rightarrow \pi \rightarrow \varphi$)

	Complaint-2 (English)		Complaint-R (French)		Churn (English)		Subjectivity (Dutch)		Relevance (German)		Polarity (German)	
Model	ACC	F1	ACC	F1	ACC	F1	ACC	F1	$\overline{\mathbf{F1}_{syn}}$.	$\mathbf{F1}_{dia.}$	$\mathbf{F1}_{syn.}$	$\mathbf{F1}_{dia.}$
Majority-class	72.4	42.0	56.0	35.8	78.4	43.9	55.0	35.5	81.6	83.9	65.6	67.2
LR (tf-idf)	83.5	77.0	57.5	57.4	85.1	71.7	71.6	70.9	88.4	87.7	71.1	70.4
SVM (tf-idf)	84.4	80.2	59.0	58.8	87.3	80.1	71.7	71.0	90.4	88.8	74.8	72.8
Reference	$82.0^{[1]}$	$62.7^{[1]}$	-	-	-	$78.3^{[2]}$	-	-	$85.2^{[3]}$	$86.8^{[3]}$	$66.7^{[3]}$	$69.4^{[3]}$
$BERTweet \to \varnothing$	80.5	71.6	-	-	79.3	55.2	-	-	-	-	_	-
$BERTweet \to \varphi$	90.0	86.1	-	-	93.0	90.0	-	-	-	-	-	-
$RoBERTa \rightarrow \varnothing$	77.9	74.5	-	-	78.3	59.7	-	-	-	-	-	-
RoBERTa $ ightarrow arphi$	87.5	85.1	-	-	88.4	84.8	-	-	-	-	-	-
$XLM \rightarrow \varnothing$	76.2	61.6	44.0	30.5	61.6	55.7	63.8	62.4	83.1	84.7	64.5	66.8
$\text{XLM} \rightarrow \varphi$	85.4	83.4	54.0	46.2	84.1	75.3	73.4	72.9	91.6	91.7	76.1	73.5
$XLM \to \pi \to \varnothing$	81.8	76.8	56.5	54.1	79.7	66.0	71.6	71.1	84.4	85.3	65.1	68.0
$XLM \to \pi {\to} \varphi$	86.9	82.7	62.0	61.9	87.8	83.7	74.6	74.2	92.7	92.5	78.7	76.1

XLM $\to \pi \to \varphi$ means that the XLM model is further pretrained on the our twitter corpus, followed by finetuning on the end task

Task transferability: We evaluate progressive tuning on single task, spanning 2 related tasks

- i. Further tuning on related tasks requires precise calibration (XLM $\rightarrow \pi \rightarrow \varphi$ vs. SVM)
- ii. Progressive tuning slightly improves the performance (XLM $\rightarrow \pi \rightarrow \varphi$ vs. XLM $\rightarrow \varphi$)

Test Dataset	Complaint-9		
Train Dataset	C-9	C-2 & C-9	S & C-9
Majority-class	39.1	_	-
SVM (tf-idf)	78.6	-	-
Preotiuc-Pietro et al.	79.0	-	-
$XLM \rightarrow \varphi$	78.6	79.3	80.1
$XLM \rightarrow \pi \rightarrow \varphi$	82.4	80.0	82.8

Conclusions

- i. Further training on a moderately sized multilingual indomain corpus is an effective way to improve generic multilingual language models
- ii. The performance gain versus operational cost of frozen transformers should be taken into account

References

- [1] Gururangan, Suchin, et al. 2020. Don't Stop Pretraining: Adapt Language Models to Domains and Tasks. In Proceedings of ACL.
- [2] Code and dataset available at:

https://github.com/hadifar/customerservicetasks