- 1. Parity
 - a. Errors with a Hamming distance of 1
 - b. Even parity
 - c. Odd parity
 - d. Example for even parity
 - i. C denotes the position of the check bit
 - ii. C1001 ->
 - iii. C1101 ->
 - e. Even parity creates valid code words

Circles have a radius of one Hamming distance.

f. Two bit errors

Circles have a radius of two Hamming distance.

- 2. Further bit checking
 - a. Will look at Hamming(7,4) error correction
 - b. Example: 4-bit word

111	110	101	100	011	010	001	Bit position (binary)	
7	6	5	4	3	2	1	Bit position (decimal)	
							Bit type (D = data, C = check / parity)	

- i. CO
- ii. C1
- iii. C2
- 3. Hamming(7,4) examples
 - a. Original data: 0110
 - i. Let's calculate the code word associated with it
 - 1. Fill in table, then calculate check bits

111	110	101	100	011	010	001
7	6	5	4	3	2	1

- b. Let's flip one of the bits now
 - i. Is 0010011 valid?
 - 1. Fill in the table, then verify check bits

111	110	101	100	011	010	001
7	6	5	4	3	2	1

ii. Was codeword valid?

- c. Error correction portion
 - i. We know there was an error, how do we fix it?

- 4. How Hamming(7,4) works
 - a. Each data bit must be covered (checked) by at least 2 parity bits
 - b. Why we start numbering from 1
 - c. Which parity bits check which data bits
 - i. CO
 - ii. C1
 - iii. C2
 - iv. If we had a C3
 - v. In general
 - d. Why we can XOR to determine the bit position

- e. Expanding it further
 - i. Expanding to cover a larger data size
 - ii. Covering more errors
 - 1. Given Terrors:

