CADT/IDT/CS M1-2024

Advanced Algorithms and Data Structures Asymptotic Notations Exercises

Prepared by LY Rottana

1. Given the following functions, sort them in increasing order of *Big-Oh* complexity.

$$f_1(n) = n^{0.999999} \log n$$

$$f_2(n) = 10000000n$$

$$f_3(n) = 1.000001^n$$

$$f_4(n) = n^2$$

2. For each of the following functions, prove whether f(n) = O(g(n)), $f(n) = \Omega(g(n))$, or $f(n) = \Theta(g(n))$. For example, by specifying some explicit constants n_0 and c > 0 such that the definition of Big-Oh, Big-Omega, or Big-Theta is satisfied.

a.
$$f(n) = n \log(n^3)$$
 $g(n) = n \log n$
b. $f(n) = 2^{2n}$ $g(n) = 3^n$
c. $f(n) = \sum_{i=1}^{n} \log i$ $g(n) = n \log n$

- 3. One of the two software packages, A or B, should be chosen to process very big databases, containing each up to 10^{12} records. Average processing time of the package A is $T_A(n) = 0.1 n \log_2 n$ microseconds, and the average processing time of the package B is $T_B(n) = 5 n$ microseconds. Which algorithm has better performance in a *Big-Oh* sense?
- 4. Let processing time of an algorithm of Big-Oh complexity O(f(n)) be directly proportional to f(n). Let three such algorithms A, B, and C have time complexity $O(n^2)$, $O(n^{1.5})$, and $O(n \log n)$, respectively. During a test, each algorithm spends 10 seconds to process 100 data items. Derive the time each algorithm should spend to process 10,000 items.
- 5. Assume that each of the expressions below gives the processing time T(n) spent by an algorithm for solving a problem of size n. Select the dominant term(s) having the steepest increase in n and specify the lowest Big-Oh complexity of each algorithm.

Expression	Dominant term(s)	<i>O</i> ()
$5 + 0.001n^3 + 0.025n$		
$500n + 100n^{1.5} + 50n \log_{10} n$		
$0.3n + 5n^{1.5} + 2.5 \cdot n^{1.75}$		
$n^2 \log_2 n + n(\log_2 n)^2$		
$n \log_3 n + n \log_2 n$		
$3 \log_8 n + \log_2 \log_2 \log_2 n$		
$100n + 0.01n^2$		

CADT/IDT/CS M1-2024

$0.01n + 100n^2$	
$2n + n^{0.5} + 0.5n^{1.25}$	
$0.01n \log_2 n + n(\log_2 n)^2$	
$100n \log_3 n + n^3 + 100n$	
$0.003 \log_4 n + \log_2 \log_2 n$	