Symulacje fizyczne w środowisku wirtualnym

Laboratorium 4 - 8

Bryła sztywna (bączek)

Cel projektu:

Symulacja ruchu obrotowego sześcianu zaczepionego w narożu.

Wykonanie:

Krok 1 (3 pkt) Interfejs użytkownika

- 1. Wyświetlanie na życzenie
 - sześcianu
 - przekatnej sześcianu (z zaczepionego wierzchołka)
 - trajektorii swobodnego końca tej przekątnej (za pomocą połączonych n ostatnich punktów)
 - kierunku grawitacji w postaci wektora i półprzezroczystej płaszczyzny prostopadłej
- 2. Interakcja ze sceną
 - możliwe jest przesuwanie, obracanie i skalowanie całej sceny
- 3. Możliwość zmiany:
 - wymiarów i gęstości sześcianu (+ automatyczne przeliczanie tensora bezwładności)
 - wychylenia sześcianu (definiowanego za pomocą wychylenia przekątnej)
 - prędkości kątowej wokół przekątnej
 - długości wyświetlanej trajektorii n
 - właczanie / wyłaczenie grawitacji

Krok 2 (6 pkt) Symulacja ruchu

Ruch obrotowy sześcianu może być opisany za pomoca równań Eulera:

$$\mathbf{IW}_{t} = \mathbf{N} + (\mathbf{IW}) \bullet \mathbf{W}$$
$$\mathbf{Q}_{t} = \mathbf{Q} * \mathbf{W} / 2$$

gdzie I to tensor bezwładności układu względem naroża (dla pewnego układu współrzędnych związanego z bryłą), N(t) – moment sił działających na bryłę, W(t) – prędkość kątowa, Q(t) – kwaternion obrotu. Uwaga: współrzędne wektorów muszą być wyrażone w tym samym układzie związanym z bryłą. Alternatywnie można użyć równań dla układzie współrzędnych sceny (równań Poinsota).

Całkując numerycznie równania Eulera (metodą Rungego-Kutty IV rzędu użytą jednocześnie dla obu równań) otrzymujemy prędkość kątową \mathbf{W}_{i+1} i kwaternion \mathbf{Q}_{i+1} dla kroku i+1. Należy zadbać o normalizację kwaternionu \mathbf{Q}_{i+1} .