C vs. VHDL: Benchmarking CAESAR Candidates Using High-Level Synthesis and Register-Transfer Level Methodologies

Ekawat Homsirikamol,
William Diehl, Ahmed Ferozpuri,
Farnoud Farahmand,
and Kris Gaj
George Mason University
USA

http:/cryptography.gmu.edu/athena

Primary High-Level Synthesis (HLS) Support for This Project

Ekawat Homsirikamol a.k.a "Ice"

Working on the PhD Thesis
entitled
"A New Approach to the Development
of Cryptographic Standards Based
on the Use of
High-Level Synthesis Tools"

Register-Transfer Level (RTL) Designs provided by

Ahmed Ferozpuri

Will Diehl

Farnoud Farahmand

"Ice"
Homsirikamol

PAEQ
PRIMATES-APE
PRIMATES-GIBBON
PRIMATES-HANUMAN

Minalpher POET SCREAM

AES-COPA CLOC

AES-GCM, ASCON, Deoxys, ICEPOLE, Joltik, Keyak, OCB

Cryptographic Standard Contests

Evaluation Criteria

Security

Software Efficiency

μProcessors

μControllers

Hardware Efficiency

FPGAs

ASICs

Flexibility

Simplicity

Licensing

Traditional Development & Benchmarking Flow

Extended Traditional Development & Benchmarking Flow

Remaining Difficulties of Hardware Benchmarking

- Large number of candidates
- Long time necessary to develop and verify RTL (Register-Transfer Level) Hardware Description Language (HDL) codes
- Multiple variants of algorithms
 (e.g., multiple key, nonce, and tag sizes)
- High-speed vs. lightweight algorithms
- Multiple hardware architectures
- Dependence on skills of designers

High-Level Synthesis (HLS)

Cinderella Story: Vivado HLS

AutoESL Design Technologies, Inc. (25 employees) Flagship product:

AutoPilot, translating C/C++/System C to VHDL or Verilog

- Acquired by the biggest FPGA company, Xilinx Inc., in 2011
- AutoPilot integrated into the primary Xilinx toolset, Vivado, as
 Vivado HLS, released in 2012

"High-Level Synthesis for the Masses"

Our Hypotheses

 Ranking of candidate algorithms in cryptographic contests in terms of their performance in modern FPGAs & All-Programmable SoCs will remain the same independently whether the HDL implementations are developed manually or generated automatically using High-Level Synthesis tools

The development time will be reduced by at least an order of magnitude

Potential Additional Benefits

Early feedback for designers of cryptographic algorithms

- Typical design process based only on security analysis and software benchmarking
- Lack of immediate feedback on hardware performance
- Common unpleasant surprises, e.g.,
 - Mars in the AES Contest
 - BMW, ECHO, and SIMD in the SHA-3 Contest

Proposed HLS-Based Development and Benchmarking Flow

Examples of Source Code Modifications

Unrolling of loops:

```
for (i = 0; i < 4; i ++)
#pragma HLS UNROLL
    for (j = 0; j < 4; j ++)
#pragma HLS UNROLL
    b[i][j] = s[i][j];</pre>
```

Flattening function's hierarchy:

Function Reuse:

Our Test Case

- 13 Round 1 CAESAR candidates + current standard AES-GCM (2 more in progress)
- Basic iterative architecture
- GMU AEAD Hardware API
- Key scheduling and padding done in hardware
- Implementations developed in parallel using RTL and HLS methodology
- Starting point: Informal specifications and reference software implementations in C provided by the algorithm authors
- Post P&R results generated for
 - Xilinx Virtex 6 using Xilinx ISE + ATHENa, and
 - Virtex 7 and Zynq 7000 using Xilinx Vivado with 25 default option optimization strategies
- No use of BRAMs or DSP Units in AEAD Core

Parameters of Authenticated Ciphers

Algorithm	Key size	Nonce size	Tag size	Basic Primitive
		Block Cipher Based		
AES-COPA	128	128	128	AES
AES-GCM	128	96	128	AES
CLOC	128	96	128	AES
Deoxys≠	128	64	128	Deoxys-BC (AES)
Joltik	128	32	64	Joltik-BC
OCB	128	96	128	AES
POET	128	128	128	AES
SCREAM	128	96	128	TLS

Parameters of Authenticated Ciphers

Algorithm	Key size	Nonce size	Tag size	Basic Primitive
		Permutation Based		
ASCON	128	128	128	SPN
ICEPOLE	128	128	128	Keccak-like
Keyak	128	128	128	Keccak-f
PAEQ	128	96	128	AESQ
PRIMATES- GIBBON	120	120	120	PRIMATE
PRIMATES- HANUMAN	120	120	120	PRIMATE

AEAD Interface

Parameters of Ciphers & GMU Implementations

Algorithm	Word Size, w	Block Size, b	#Rounds	Cycles/Block RTL	Cycles/Block HLS
		Block-o	cipher Based		
AES-COPA	32	128	10	11	12
AES-GCM	32	128	10	11	12
CLOC	32	128	10	11	12
Deoxys	32	128	14	29	32
Joltik	32	128	32	65	70
ОСВ	32	128	10	11	12
POET	32	128	10	11	12
SCREAM	32	128	10	11	12

Parameters of Ciphers & GMU Implementations

Algorithm	Word Size, w	Block Size, b	#Rounds	Cycles/Block RTL	Cycles/Block HLS
		Permut	ation Based		
ASCON	32	64	6	7	8
ICEPOLE	256	1024	6	6	8
Keyak	128	1344	12	12	14
PAEQ	32	368 (M)/ 240 (AD)	20	21	22
PRIMATES- GIBBON	40	40	6	7	8
PRIMATES- HANUMAN	40	40	12	13	14

Datapath vs. Control Unit

Determines

- Area
- Clock Frequency

Determines

Number of clock cycles

Encountered Problems

Control Unit suboptimal

- Difficulty in inferring an overlap between completing the last round and reading the next input block
- One additional clock cycle used for initialization of the state at the beginning of each round
- The formulas for throughput:

```
HLS: Throughput = Block_size / ((#Rounds+2) * T<sub>CLK</sub>)
```

RTL: Throughput = Block_size / (#Rounds+C * T_{CLK})
C=0, 1 depending on the algorithm

RTL vs. HLS Clock Frequency in Virtex 7

RTL vs. HLS Throughput in Virtex 7

RTL vs. HLS Ratios in Virtex 7

RTL vs. HLS #LUTs in Virtex 7

RTL vs. HLS Throughput/#LUTs in Virtex 7

RTL vs. HLS Ratios in Virtex 7

Throughput vs. LUTs in Virtex 7

RTL

HLS

RTL vs. HLS Throughput

RTL vs. HLS #LUTs

RTL vs. HLS Throughput/#LUTs

ATHENa Database of Results for Authenticated Ciphers

- Available at http://cryptography.gmu.edu/athena
- Developed by John Pham, a Master's-level student of Jens-Peter Kaps
- Results can be entered by designers themselves.
 If you would like to do that, please contact us regarding an account.
- The ATHENa Option Optimization Tool supports automatic generation of results suitable for uploading to the database

Ranking View (1)

Key Size:

128 From 80

Any

About

Login

All FPGA Results

FPGA Rankings

Authenticated Encryption FPGA Ranking

Algorithm Group Round 2 CAESAR Candidates and current standards Round 1 CAESAR Candidates and current standards Implementation Type: High Speed Implementations, Single Message Architectures High Speed Implementations, All Architectures Low Area Implementations Implementation Approach: Register Transfer Level High Level Synthesis ○HW/SW Codesign Any Hardware API: GMU_AEAD_Core_API_v1 ☐ GMU_AEAD_API_v1 GMU_CipherCore_API_v1 Full-Block width(custom) GMU_AEAD_Core_API_v0

To 256

Ranking View (2)

Throughput for:	 Authenticated Encryption Authenticated Decryption Authentication Only
Min Area: Max Area: Min Throughput: Max Throughput: Source:	0 1000000 0 1000000
	Source Available
Ranking:	 Throughput/Area Throughput Area Please note that codes with primitives, megafunctions, or embedded resources are not fully portable.
Update	

Compare Selected

Show 25 ¢ entries

Result ID	Algorithm Disable Unique	Key Size [bits]	Implementation Approach	♦	Hardware API		Arch Type
154	ICEPOLE	128	RTL	GMU_A	NEAD_Core_API_v1.1	E	Basic Iterative
73	Keyak	128	RTL	GMU_A	AEAD_Core_API_v1	E	Basic Iterative
62	AES-GCM	128	RTL	GMU_A	AEAD_Core_API_v1	E	Basic Iterative
65	CLOC	128	HLS	GMU_A	AEAD_Core_API_v1	E	Basic Iterative
80	PRIMATEs-GIBBON	120	RTL	GMU_A	AEAD_Core_API_v1	E	Basic Iterative
144	OCB	128	RTL	GMU_A	AEAD_Core_API_v1	E	Basic Iterative
124	PRIMATES-HANUMAN	120	HLS	GMU_A	AEAD_Core_API_v1	E	Basic Iterative
86	SCREAM	128	RTL	GMU_A	AEAD_Core_API_v1	E	Basic Iterative
142	Joltik	128	RTL	GMU_A	AEAD_Core_API_v1	E	Basic Iterative
75	POET	128	RTL	GMU_A	AEAD_Core_API_v1	E	Basic Iterative
60	AES-COPA	128	RTL	GMU_A	AEAD_Core_API_v1	E	Basic Iterative

Details of Result ID 97

ialis of Result 1D 97	
Algorithm	
IV or Nonce Size [bits]:	96
Transformation Category:	Cryptographic
Transformation:	Authenticated Cipher
Group:	Standards
Algorithm:	AES-GCM
Tag Size [bits]:	128
Associated Data Support:	-
Key Size [bits]:	128
Secret Message Number:	-
Secret Message Number Size [bits]:	-
Message Block Size [bits]:	128
Other Parameters:	-
Specification:	SP-800-38D.pdf
Formula for Message Size After Padding:	-
Design	
Design ID:	21
Impl Approach:	HLS
Hardware API:	GMU_AEAD_Core_API_v1
Primary Optimization Target:	Throughput/Area
Secondary Optimization Target:	-
Architecture Type:	Basic Iterative
Description Language:	VHDL
Use of Megafunctions or Primitives:	No
List of Megafunctions or Primitives:	-
Maximum Number of Streams Processed in Parallel:	1
Number of Clock Cycles per Message Block in a Long Message:	12
Datapath Width [bits]:	128
Padding:	Yes
Minimum Message Unit:	
Input Bus Width [bits]:	32

32

Output Bus Width [bits]:

Comparison of Result #s 95 and 97

iiparisoii oi kesuit #5	33 and 37	
Algorithm		
IV or Nonce Size [bits]:	96	96
Transformation Category:	Cryptographic	Cryptographic
Transformation:	Authenticated Cipher	Authenticated Cipher
Group:	Standards	Standards
Algorithm:	AES-GCM	AES-GCM
Tag Size [bits]:	128	128
Associated Data Support:		
Key Size [bits]:	128	128
Secret Message Number:		
Secret Message Number Size [bits]:		
Message Block Size [bits]:	128	128
Other Parameters:		
Specification:	SP-800-38D.pdf	SP-800-38D.pdf
Formula for Message Size After		, and the second
Padding:		
Design		
Design ID:	20	21
Impl Approach:	RTL	HLS
Hardware API:	GMU_AEAD_Core_API_v1	GMU_AEAD_Core_API_v1
Primary Optimization Target:	Throughput/Area	Throughput/Area
Secondary Optimization Target:		
Architecture Type:	Basic Iterative	Basic Iterative
Description Language:	VHDL	VHDL
Use of Megafunctions or Primitives:	No	No
List of Megafunctions or Primitives:		
Maximum Number of Streams	1	1
Processed in Parallel:	•	•
Number of Clock Cycles per	11	12
Message Block in a Long Message:		-
	100	120
Datapath Width [bits]:	128	128
Datapath Width [bits]: Padding:	Yes	Yes

Comparison of Result #s 95 and 97		
Platform		
Device Vendor:	Xilinx	Xilinx
Family:	Virtex 7	Virtex 7
Device:	xc7vx485tffg1761-2	xc7vx485tffg1761-2
Timing		
Encryption/Authentication	3261	3015
Throughput [Mbits/s]:		
Decryption/Authentication	3261	3015
Throughput [Mbits/s]:		
Authentication-Only Throughput [Mbits/s]:	3261	3015
Synthesis Clock Frequency [MHz]:		
Key Scheduling Time [ns]:		
Requested Synthesis Clock		
Frequency [MHz]:		
Requested Implementation		
Clock Frequency [MHz]:		
Implementation Clock	280.27	282.65
Frequency [MHz]:		
(Encryption/Authentication	0.909	0.879
Throughput)/LUT [(Mbits/s)/LUT]:		
(Encryption/Authentication	2.797	2.728
Throughput)/Slice		2.720
[(Mbits/s)/Slice]:		
(Decryption/Authentication	0.909	0.879
Throughput)/LUT		
[(Mbits/s)/LUT]:	2 707	2 720
(Decryption/Authentication Throughput)/Slice	2.797	2.728
[(Mbits/s)/Slice]:		
(Auth-Only Throughput)/LUT	0.909	0.879
[(Mbits/s)/LUT]:		
(Auth-Only Throughput)/Slice	2.797	2.728
[(Mbits/s)/Slice]:		
Resource Utilization		
CLB Slices:	1166	1105
LUTs:	3588	3430
Flip Flops:		•
DSPs:	0	0
BRAMs:	0	0

Conclusions

- High-level synthesis offers a potential to facilitate hardware benchmarking during the design of cryptographic algorithms and at the early stages of cryptographic contests
- Case study based on 13 Round 1 CAESAR candidates
 & AES-GCM demonstrated correct ranking for majority of candidates using all major performance metrics
- More research & development needed to overcome remaining difficulties
 - Suboptimal control unit of HLS implementations
 - Wide range of RTL to HLS performance metric ratios
 - A few potentially suboptimal HLS or RTL implementations
 - Efficient and reliable generation of HLS-ready C codes

Thank you!

Comments?

Questions?

Suggestions?

ATHENa: http:/cryptography.gmu.edu/athena

CERG: http://cryptography.gmu.edu