

This Hypercard stack was prepared by: Dennis L. Bricker, Dept. of Industrial Engineering,

University of Iowa,

lowa City, Iowa 52242

e-mail: dbricker@icaen.uiowa.edu

$$-X_1 + 2X_2 \le 2$$
 3

 $X_1 - X_2 \le 4$ 2

Match the 5 constraints with the 5 edges of the feasible region

Which variables are basic at each of the extreme points: A, B, C, D, & E?

Max
$$3X_1 + 2X_2$$

s.t.
 $X_1 + 2X_2 + X_3 = 6$
 $X_1 - X_2 + X_4 = 4$
 $-X_1 + 2X_2 + X_5 = 2$
 $X_j \ge 0, j=1,2,...5$

How many basic solutions does this LP have? How many are feasible? ... infeasible?

Max
$$3X_1 + 2X_2$$

s.t.
 $X_1 + 2X_2 + X_3 = 6$
 $X_1 - X_2 + X_4 = 4$
 $-X_1 + 2X_2 + X_5 = 2$
 $X_j \ge 0, j=1,2,...5$

C is optimal... What can be inferred about the dual optimum, by Complementary Slackness Theorem?

$$\begin{aligned} & \text{Min } 6Y_1 + 4Y_2 + 2Y_3 \\ & \text{s.t.} \quad Y_1 + Y_2 - Y_3 \ge 3 \\ & \quad 2Y_1 - Y_2 + 2Y_3 \ge 2 \\ & \quad Y_1 \ge 0, \ Y_2 \ge 0, \ Y_3 \ge 0 \end{aligned}$$

Dual

Maximize $3X_1 + 2X_2$ subject to $X_1 + 2X_2 \le 6$

Write the dual
$$X_1 - X_2 \ge 4$$
 $-X_1 + 2X_2 \le 2$

Minimize
$$6Y_1 + 4Y_2 + 2Y_3$$

s.t. $Y_1 + Y_2 - Y_3 = 3$
 $2Y_1 - Y_2 + 2Y_3 = 2$
 $Y_1 = 0, Y_2 = 0, Y_3 = 0$

Maximize
$$3X_1 + 2X_2$$

subject to $X_1 + 2X_2 = 6$

Write the dual LP problem

$$X_1 - X_2 \ge 4$$

 $-X_1 + 2X_2 \le 2$

Minimize
$$6Y_1 + 4Y_2 + 2Y_3$$
 $X_1 \le 0$
s.t. $Y_1 + Y_2 - Y_3 = 3$ $X_2 \ge 0$
 $2Y_1 - Y_2 + 2Y_3 = 2$
 $Y_1 = 0, Y_2 = 0, Y_3 = 0$