OLIMPIADA FÍSICA DE MADRID- 2009 Tómese g= 9,81 m/s²

			on una velocidad v=(3t+5) m/s. El , expresado en metros es: d) 78,0
			ará al refugio a las 13:00h, y si esquía a e esquiar a una velocidad de: d) 14 km/h
	otero que se eleva ve altura inicial desde la c b) 460, m		s se deja caer un paquete. Si llega al d) 960,0 m
distancia recorrida p partícula en t= 2,0 s,	oor el arco varía con e expresada en m/s², e	el tiempo según la exp es:	radio R= 5,0 m, de tal forma que la presión $s=2+t^2$. La aceleración de la
a) 2,0	b) 3,0	c) 3,2	d) 3,8
	altura situada a 30,0 r		o con la horizontal. Si cae sobre una ento de lanzamiento, la velocidad con
a) 20,4	b) 23,5	c) 25,7	d) 28,4
rozamiento, y atado: Sobre cada cuerpo: m ₁ actúa una fuerzo	s por un hilo inextensik se aplican fuerzas opu	ole que puede soport vestas tendiendo a se ctúa F2= 2bt, donde l	n sobre una superficie horizontal sin far como máximo una tensión T= 50 N. pararlos en la dirección del hilo; sobre b = 0,5 N/s y t es el tiempo. El hilo se d) 90
horizontal sin rozamie	ento. Si se aplica una	fuerza superior a 30 N	el conjunto está sobre una superficie sobre el cuerpo A, el B comenzaría a entre los dos cuerpos tiene un valor
a) 0,31	b) 0,44	c) 0,76	d) 1,0
y 25 kg de masa, qu extremo de la tabla,	ue flota en un estanqu ésta se desplaza:	ue tranquilo. Cuando	ibla homogénea de 4,0 m de longitud la persona se desplaza hasta el otro
a) 2 m	b) 3 m	c) 4 m	d) 8 m
9 Desde lo alto de cuerpo con una velo de rozamiento en el p	ocidad inicial de 5,7 n	de 15° y cuya longito n/s. Si el cuerpo al lleg	ud es 13 m, se lanza hacia abajo un gar al suelo se detiene, el coeficiente
a) 0,25	b) 0,30	c) 0,35	d) 0,40
uniforme de la misma	onsiderada una esfero a densidad media que d superficial fuese exac	la de la Tierra actual,	a añadiese sobre el suelo una capa el grosor que debería tener esa capa apresado en km, sería:
a) 62	b) 124	c) 186	d) 248

montan todas ell	cizo de hierro de 1,00 m las formando un cubo h n³ y la del agua 1,00x1 n, es:	ueco, que no se hur	nde en el agua. Si	la densidad del hierro
a) 4,2	b) 8,4	c) 19	d) 33	
m bajo la superfi	elta una burbuja de aire icie del lago, donde la f icie del lago, con una te (x105 Pa)	temperatura es de 7	,0 °C. El volumen	de la burbuja cuando
a) 5,1	b) 32,5	c) 82,9	d) 83,6	
del vaso esté a 60	apor de agua a 100 °C e 0 °C, la cantidad de vap J/kg K; L= 2,26x106 J/kg)			
a) 4,5	b) 15,0	c) 17,2	d) 68,8	
60 Ω . Si la diferen	or de corriente continua (cia de potencial en la p esada en ohmios, es:			
a) 4,3	b) 4,5	c) 4,8	d) 5,0	
desde el infinito, c (Datos: e= 1,6x10-	a la que pueden acerc ada uno con velocidad in 19 C; m _e = 9,1x10 ⁻³¹ kg; k=	nicial de 10º cm s ⁻¹ , ex 9x10º Nm²C ⁻²)	kpresada en _m, es	encuentro uno de otro ::
a) 1,25	b) 2,5	c) 3,0	d) 5,0	
conductor a otr	netálica de 5 cm de rac a esfera descargada d ato: k=9x10° Nm²C-²)			
a) 140	b) 350	c) 700	d) 1050	
		curva hasta formar un	na espira circular d	te del cable, tal como se e radio 2,0 cm. El módulo
	a) 127 μ _o b) 1	l36 μ _o c)	174 μο	d) 400 µ _o
t t	8 Un solenoide con mú al que el campo magné i la fuerza electromotriz ir	tico a través del sole	noide incrementa	a razón de 0,0240 T/s.
a) 600	b) 990	c) 1981	d) 2978	
50 cm, con una re perpendicular e perpendicularida perpendicular al	onsiste en dos varillas co esistencia de 25 _ conec a ambas y que se ad a las dos varillas. To plano del circuito, y en ocidad de la varilla, expr	ctada entre ellas por mueve con velo do el circuito está sentido entrante, Si e	un extremo, y en cidad constant en un campo m	el otro hay otra varilla e manteniendo su agnético de 500 mT
a) 15	b) 25	c) 35	d) 45	

PROBLEMA DE SIMULACIÓN EXPERIMENTAL

Se quiere determinar experimentalmente la masa de ciertas partículas cargadas con una carga q=1,602x10-19C. Para realizar la medida, se aceleran estas partículas con una diferencia de potencial V, y adquieren una velocidad v con la que penetran en un campo magnético uniforme B perpendicular a la velocidad, describiendo en estas condiciones, como es sabido, una trayectoria circular. El proceso de medida de la masa de las partículas consiste en aplicar diferentes tensiones aceleradoras y medir el radio de la trayectoria resultante; el campo magnético tiene un valor de B= 100 mT.

Una vez realizada la experiencia se obtiene la siguiente tabla de valores:

V(kV)	10	20	50	100	200	300
R(cm)	15,0	18,2	31,3	44,8	65,6	78,2

Se pide:

- a) Obtener la ecuación que relaciona R=f(V), justificando el resultado.
- b) Realizar una representación gráfica mediante la asignación de las variables adecuadas a unos ejes cartesianos que posibilite realizar un análisis de regresión lineal.
- c) A partir del tratamiento de la tarea realizada en b), calcular el valor de la masa de las partículas.
- d) Realizar una estimación de la incertidumbre de la masa de las partículas. Justificar el procedimiento seguido.

XX OLIMPIADA DE FISICA

Organizado por el Grupo Especializado de Enseñanza de la Física de la Real Sociedad Española de Física.

Fase Local, Madrid, 05 de MARZO 2009

NOMBRE:	
DNI:	
CENTRO:	****
EMAIL:	
PRUEBA DE OPCIÓN MÚLTIPLE. El alumno/a deberá seleccionar la respuesta correcta sombreando con bolígrafo la casilla correspondiente en esta hoja. Cada pregunta contestada correctamente puntúa 1 punto. Cada pregunta contestada incorrectamente puntúa -0,5 puntos. Las preguntas no contestadas NO puntúan.	
NOTA: A esta hoja se adjuntará la solución del problema experimental.	

	a)	b)	c)	d)
1			14	
1 2 3 4 5		绝		
3	2	,		
4		St. mar	2 27 X	W.
5	,			Way
			1	
7	编			
8		1/4		
9	2.0.0			14
10		1/40		
11	1/2			
12	1/1/2			
13				
14	Ma			
15		My		
16			lu	
17				
18	· x5m.			1/4
19				

FIRMA: