ALK勉強会

新しいALK手法について

9-29-2020

底魚資源部

底魚第4G

真鍋 明弘

本日の発表内容

- 年齢別漁獲尾数の計算方法の問題
- •新しいALK手法について
 - Inverse ALK
 - Forward Inverse ALK
- ・おまけ

年齡別漁獲尾数

- 年齡別漁獲尾数(Catch-At-Age: CAA)
- VPAに与える重要な数値
- この数値をどれだけ正確にするか

年齢別漁獲尾数の計算方法

体長組成データ

• 各県・各月毎に収集

体長組成を漁獲量で 重みづけ 体長別重量比を 算出

年齡別漁獲尾数

• 各年齢の尾数を合計

年齡分解

• 体長年齢関係(固定)

体長別個体数を算出

- Forward ALK
- 体長体重関係(固定)

年齢別漁獲尾数の計算方法

体長組成データ

• 各県・各月毎に収集

体長組成を漁獲量で 重みづけ 体長別重量比を 算出

年齡別漁獲尾数

• 各年齢の尾数を合計

年齡分解

• 体長年齢関係(固定)

体長別個体数を算出

- Forward ALK
- 体長体重関係(固定)

年齢別漁獲尾数の計算方法

- 欠損值問題
 - 体長組成データ
 - 年齡查定
- 年齢分解の問題

- Cohort slicing:何cmまでは1歳、何cmまでは2歳・・・
- 資源をよく知る人間に依存している (職人芸)
 - 欠損値の補完
 - 再現性の問題(誰がやっても同じ結果になるのか?)

個人的な懸念

- 資源評価対象種の増加
 - Data-poorな魚種
 - すぐに新魚種の職人になれるのか?
- Peer Reviewerからの指摘
- 引継ぎにかかる労力
- ・少しでも負担を減らすには?
- → CAAの計算法を明示的にする

そこで...

今日は参考になりそうな 新しいALK手法を紹介

(使えそうな手法を開発したら皆さんに紹介します)

新しいALK手法

- 1980年代より様々なALK手法が提唱
- そんなに新しくない?
- あまり使われる機会が少ない

- ・ここではあまり馴染みのない2手法を紹介
 - Inverse ALK
 - Forward-Inverse ALK

Inverse ALKとは?

- 年齢に対する体長の構成から計算
- 通常のForward ALKと「逆 (inverse)」の行列

P(i j)	10	11	12	13	•••	体長」
0	0	0.5	0		•••	r(0,J)
1	0	0.5	0.8	0.2	•••	r(1,J)
2	0	0	0.2	0.6	•••	r(2,J)
3	0	0	0	0.2	•••	r(3,J)
		•••	•••	•••	•••	
年齢Ⅰ	r(I, 10)	r(I, 11)	r(I, 12)	r(I, 13)	•••	r(I,J)
合計	1.0	1.0	1.0	1.0	•••	1.0

Inverse ALKとは?

- 年齢に対する体長の構成から計算
- 通常のForward ALKと「逆 (inverse)」の行列

P(i j)	10	11	12	13	•••	体長」
0	0	0.5	0		•••	r(0,J)
1	0	0.5	٥.٧	U.4.	•••	r(1,J)
2	0	0	0.2	0.6	•••	r(2,J)
3	0	0			•••	r(3,J)
					•••	
年齢I	r(I, 10)	r(I, 11)	r(I, 12)	r(I) 13)	•••	r(I,J)
合計	1.0	1.∪	1.0	1.0	•••	1.0

Inverse ALKとは?

- 年齢に対する体長の構成から計算
- 通常のForward ALKと「逆 (inverse)」の行列

P(i j)	10	11	12	13	•••	体長」
0	0	0.5	0			r(0,J)
1	0	0.5	0.8	0.2		r(1,J)
2	0	0	0.2	0.6		r(2,J)
3	0	0	0	0.2		r(3,J)
•••	•••	•••	•••	•••	•••	•••
年齢I	r(I, 10)	r(I, 11)	r(I, 12)	r(I, 13)		r(I,J)
合計	1.0	1.0	1.0	1.0	•••	1.0

Inverse ALKの仕組み

- 年齢に対する体長組成を確立行列 $\hat{P}(j|i)$ で表現
- 体長組成をベクトルE *で表現
- 逆関数を取り、年齢構成Aを推定。

Inverse ALKの仕組み

- 年齢に対する体長組成を確立行列 $\hat{P}(j|i)$ で表現
- 体長組成をベクトルE *で表現
- 逆関数を取り、年齢構成Aを推定。

Inverse ALKの特徴

- ・解析する体長組成と、ALKは**別年でも可**
 - 条件付ではあるが・・・
- ・複数年の年齢査定情報を利用してALK構築も可
- ・異なる個体群のALKを利用可能
- ・場合によっては成長の似通った同属種でも?

Inverse ALKの問題

- 成長パターンや生活史に変化がないことが前提
 - 一部浮魚などコホートの成長に変化がある場合はNG
 - 性的二形がある場合は雄雌分けて考える必要あり
- 計算手法が少々面倒

Inverse ALKの問題

• Inverse ALKの結果の信頼性の問題

```
-2.342335
                        0.03743969
                                             0.1842737
    38.755831
              -21.081015
                         0.33695719
                                   -1.080153
                                             1.6584637
   204.544663
             -111.260910
                         1.77838518
                                   -5.700805
                                             8.7530031
   880.618604
             -479.007498
                        7.65641621 -24.543467
                                            37.6839819
11 4080.516658
            -2989.878399
                       19.15867617 -628.623901 453.7383588
12 8220.542368
            -4471.517426
                       71.47236452 -229.112368
               -0.02932452
                         なぜか個体数がマイナスになっている...
  -0.0170994154
              -1.39291457
10 -0.0736174831
                         最小二乗法の収束点の問題?
```

- Inverse ALKは体長査定に誤差があると仮定
 - 実際の誤差は年齢査定では?
- 通常はForward ALKを使い、欠損の場合はInverse ALKを使えば良いのではないか。

Forward-Inverse ALKとは

- 比較的新しい手法(Hoenig et al. 2002)
- ベイズの定理によりForward ALKとInverse ALKの 確立行列Pを合わせてP(j|i)で表現
- 通常はForward ALKで計算

年	1	2	3
年齢データ	0	\triangle	×
ALK	Forward	Inverse	Inverse

Forward-Inverse ALKの特徴

- 年齢査定データの欠損年も計算可能
- ・隣の年からALKを借りてくる必要がない
- 成長パターンの変化がないことが前提
- ・計算が難しい

Forward-Inverse ALK適用例

- Ailloud et al. (2019) ICES JMS
- 大西洋クロマグロデータにあてはめ
 - 大西洋クロマグロは年齢査定が充実してない!?
- ・ 3 種類の手法を比較
 - Cohort slicing (CS): 単純な年齢分解
 - Hybrid ALK: 通常年はForward、年齢欠損年はCS
 - Forward-Inverse ALK

Forward-Inverse ALK適用例

- RMSEはRoot mean square error
 - 小さいほうがより良いパフォーマンスを示
- Forward-Inverse ALKが一番良いパフォーマンス
- CSはパフォーマンスが低い

結論

- 残念ながらForward ALKが一番正確
- 全ての魚種で毎年精巧なALKの作成は困難
- Inverse ALKやForward-Inverse ALKを用い、 Data poorでも明示的な計算を行うことが可能
- データの無い魚種の第一歩として使用?
 - 底魚あたりなら適応できるかな・・・

おまけ: Deterministic ALK

- Von Bertalanffyの成長曲線(VBGF)を用いて、各体長に対する年齢を点推定。
- 漸近体長 L_{∞} より大きな個体に対応不可能
- 大型魚の年齢誤差問題

Stochastic Age Frequency

- Bartoo and Parker (1983)
- 確立行列を用い体長組成を年齢へ分解
- 成長パターンが変化し ないことが条件
- L_∞以上の個体サイズに 対応困難

参考文献

- Ailloud, L. E. & J. M. Hoenig (2019). A general theory of agelength keys: combining the forward and inverse keys to estimate age composition from incomplete data. ICES J. Mar. Sci. 76(6). 1515-1523.
- Ailloud, L. E., M. V. Lauretta, J. F. Walter III & J. M. Hoenig. (2019).
 Estimating Age composition for multiple years when there are
 gaps in the ageing data: the case of western Atlantic bluefin tuna.
 ICES J. Mar. Sci. 76(6). 1690-1701.
- Bartoo, N.W. & K. R. Parker. (1983). Stochastic age-frequency estimation using the von Bertalanffy growth equation. Fish. Bull. 81(1). 91-96.
- Kimura, D. K. & S. Chikuni. (1987). Mixtures of empirical distributions: An iterative application of the age-length key. Biometrics. 43. 23-35.
- Hoenig, J. M., R. C. Hanumara & D. M. Heisey. (2002).
 Generalizing double and triple sampling for repeated surveys.
 Biometrical Journal. 44. 603-618.