Two-level full factorial designs

What are two level factorial designs?

- These are designs where the factors can only take on two levels
- The designs we will see are all complete, balanced, and unreplicated (i.e. r=1). If there are replicates, we can analyze them with the tools we already know.
- We won't cover them in class, but there are ways to analyze incomplete factorial designs. In the literature, they're referred to as fractional factorial designs... Really useful in practice if we're on a budget

Nomenclature

- These designs are widely used in industrial statistics, and they come with their own nomenclature
- We usually refer to these designs as " 2^k designs", where k is the number of factors. The name comes from the fact that if we have, say, 3 factors with 2 levels each, there are 2^3 combinations of 3 factors.
- \blacktriangleright Since these designs are unreplicated, the sample size of a 2^k the experiment is 2^k
- ▶ The levels of the factors are usually encoded as -1 and 1; this is not important (they are just labels)

What's special about these designs?

- ► These designs have a few peculiarities; we won't cover them in detail here, but you will see them if you take the course on industrial statistics next year
- ▶ Recall that, since the design is unreplicated, we can't do F-tests if we include all the interaction terms
- lacktriangle However, in 2^k designs, there's a clever strategy that allows us to identify "important" effects

Daniel plot

- ▶ If all the effects were insignificant, they would all be independent draws from a normal distribution centered at zero with the same variance
- ▶ This property is a consequence of working with a complete, balanced, two-level design; it isn't true in general
- Given this property, we can do a qq-plot of effects with a normal; if most effects are lined up with the exception of a few effects that stand out, the ones that stand out are the important effects
- ▶ The name of this qq-plot of effects is Daniel plot

Example: Spring

Response: number of compressions until a spring breaks

Factors:

Length: 10 or 15cm

▶ Girth: 5 or 7mm

► Steel: Type A or B

 2^3 design: 8 runs and 3 factors

Example: Read in data

Example: ANOVA table

	Df	Sum Sq	Mean Sq
Longitud	1	648.0	648.0
Gruix	1	4.5	4.5
Tipus	1	128.0	128.0
Longitud:Gruix	1	2.0	2.0
Longitud:Tipus	1	0.5	0.5
Gruix:Tipus	1	72.0	72.0
Longitud:Gruix:Tipus	1	0.5	0.5

Example: Daniel plot

DanielPlot(design)

Normal Plot for molla.Comp, alpha=0.05

Example: Refitting model

Refit model with "important" terms flagged by DanielPlot

```
mod2 = aov(molla.Comp ~ Longitud + Gruix*Tipus,
           data = design)
summary (mod2)
```

```
Df Sum Sq Mean Sq F value
                                 Pr(>F)
Longitud
          1
             648.0
                    648.0
                           648.0 0.000133 ***
Gruix
          1 4.5 4.5
                            4.5 0.124027
        1 128.0 128.0
Tipus
                           128.0 0.001481 **
Gruix:Tipus 1 72.0 72.0 72.0 0.003437 **
          3 3.0 1.0
Residuals
```

```
Signif. codes:
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
```

Example: emmip
 library(emmeans)
 emmip(mod2, Longitud ~ Gruix | Tipus)

