

- If the azimuthal quantum number of an atom is 2, the magnetic quantum numbers
 can have values
 - (a) 1, 0, -1

(b) 2, 1, 0, -1, -2

(c) 1,-1

- (d) 2, 1, 0
- 7. With respect to σ and π bonding in Pt-Hl in the structure given below, which of the following represent the correct bonding:

- (a) $M(\sigma) \rightarrow L(\sigma)$ and $M(\pi) \rightarrow L(\pi^*)$
 - (b) $L(\sigma)->M(\pi)$ and $L(\pi)->M(\pi)$
 - (c) $L(\pi)->M(\pi)$ and $L(\sigma)->M(\pi)$
- (d) $1.(\pi) -> M(\sigma)$ and $M(\pi) -> I(\pi^*)$
- Water plays significant role in the following reactions

The correct role of water in each reaction is

(i)
$$2H_2O + Ca \rightarrow Ca^{2+} + 2OH + H_2$$

(ii)
$$nH_2O + CI \rightarrow [CI(H_2O)_n]$$

(iii)
$$6H_2O + Mg^{2+} \rightarrow [Mg(H_2O)_6]^{2-}$$

(iv)
$$2H_2O + 2F_2 \rightarrow 4HF + O_2$$

- (a) i. oxidant, ii. acid, iii. base, iv, reducdant
- (b) i. oxidant, ii, base, iii. acid, iv. reducdant
- (c) i. acid, ii, oxidant, iii. reductant, iv. base
- (d) Both A and C

14.	În qu	salitative inorganic analysis of metal ions, the ion which precipitates as suride
	in th	e presence of H ₂ S in warm dilute HCl is:
	(a)	Cr3- (b) Al3-
	(c)	Co2+ (d) Bi3+
15.	The	C2 in their ground state is B2, Q2 and NO are paramagnetic NO, B2 and C2 are paragmagnetic O2, C2 and NO are paragmagnetic O3, C3 and C2 are paragmagnetic O4, C4 and C5 are paragmagnetic O5, C6 and C7 are paragmagnetic O6, C8 and C9 are paragmagnetic
		C2 in their ground state is
	(a)	B2, Q2 and NO are paramagnetic
	(b)	NO, B2 and C2 are paragmagnetic
	(c)	O2, C2 and NO are paragmagnetic 99 " 18"
	(d)	O ₂ , C ₂ and NO are paragmagnetic O ₂ , B ₂ and C ₂ are paragmagnetic ong the following, the correct statement is:
16.	Am	nong the following, the correct statement is:
	(a)	
1	(b)	The solubility in water follows the order,
		$Cs_2CO_3 > K_2CO_3 > Na_2CO_3 > Li_2CO_3$
9 3	(c)	The first ionization potential follows the order Li > K > Na >Cs.
, d	(d)	The melting point follows the order, MgCl ₂ >BeCl ₂ > CaCl ₂ > SrCl ₂
17.	Low	-spin iron (III) center is present in
	(a)	deoxy form of hemoglobin (b) oxy form of hemoglobin
	(c)	hemocyanin (d) carbonic anhydrase
M-26	(SET-	B) (6)

31.	Whi	ch of the following is	not a thermodynamic function?
	(a)	Enthalpy	(b) Work done
	(c)	Gibb's energy	(d) Internal energy
32.	A ca	arnot engine operatin	ig between temperatures T_1 and T_2 , has the efficiency of
	0.4.	When 12 is lowered b	by 40 K, its efficiency increases to 0.5 then T,, T.
	resp	ectively	N - 12 1 0.4 0.5 - 12 - 17
	(a)	300 K and 100 K	(b) 400 K and 200 K
	(c)	600 K and 400 K	(d) 400 K and 300 K
33.	The	bond energy of an O-I	H bond is 109 kcal/mol. When a mole of water is formed,
	then		0.5- 72 446
	(a)	109 kcal is released	(b) 218 keal is released
	(c)	109 kcal is absorbed	() = 10 1001 13 40301 000
34.	Entha	alpy is equal to	0.5725
	(a)	$T^{2} \left[\frac{\partial (G/T)}{\partial T} \right]_{P}$	(b) $-T^2 \left[\frac{\partial (G/T)}{\partial T} \right]_P$
	(c)	$T^{2} \left[\frac{\partial (G/T)}{\partial T} \right]_{V}$	(d) $-T^2 \left[\frac{\partial (G/T)}{\partial T} \right]_V$
1-26	(SET-E	T ² ON V	(10) N 8 (0)
2			

50. From the following E^0 values of half cells,

$$E^0 = -0.24 \text{V}$$

(ii)
$$B^- + \bar{e} \rightarrow B^{2-}$$

$$E^0 = +1.25 \text{ V}$$

$$E^0 = -1.25 \text{ V}$$

(iv)
$$D + 2\tilde{e} \rightarrow D^{2-}$$
:

$$E^0 = +0.68 \text{ V}$$

What combination of two half cells would result in a cell with the largest potential?

(a) (ii) and (iii)

(b) (ii) and (iv)

(c) (i) and (iii)

(d) (i) and (iv)

→ Product

	(2)	High pressure	(b)	High temperature and low pressure	
	(c)	Low temperature	(d)	Low temperature and high pressure	
36.	Equ	imolar concentrations of H2	and Iz a	re heated at equilibrium in a 2 liter flask.	
	At o	equilibrium, the forward and	i backwa	rd rate constants are found to be equal.	
	Whi	at percentage of initial concer	ntration o	H ₂ has reacted at equilibrium	
	(a)	33%	(b)	66%	
	(c)	50%	(d)	40%	
37.	Wh	at is the conjugate base of Of-	1		
	(a)	02		H ¹ O 0/2	
	(c)	0-	(d)	O ²⁻	
8.	The	K_{SP} of $Mg(OH)_2$ is 1×10^{-1}	0^{-12} and	, 0.01 M Mg2" will precipitate at the	
	limi	ting pH of:		P 0-6	
	(a)	3	(b)	9 4 - 6 NO 8 CE	
	(c)	5	(d)	*	
9.	Whic	th one of the following is the	correct	quadratic form of Ostwald's dilution law	
	equat	tion?			
	(1)	$\alpha^2 C + \alpha K - K = 0$	(b)	$a^2C - aK - K = 0$	
	(c)	$\alpha^2C-\alpha K+K=0$	(d)	$\alpha^2C + \alpha K + K = 0$	
				P.T.O.	
-26	(SET-	B)	(11)		

According to Le Chatelier's principle, maximum maximum yield of NH3 is

obtained at

44. In the steady state approximati	on, if I is the intermediate formed, then
(a) [I] = 0	(b) [1]≠0
(c) $d[I]/dt = 0$	(d) none of these
45. For an ideal gas \$\mu_{J.T.}\$ is	262
(a) zero	(b) positive
(c) negative	(d) infinity
46. The maximum efficiency of a	steam engine operating between 100° C and
25° C is	227
(a) 20%	(b) 22.2% 272 NN. N 26
(c) 24.8%	(d) 25.1% (d) 25.1%
47. The ΔH for a reaction is independent	ndent of
(a) Temperature	(b) path followed
(c) initial and final states	(d) volume
48. Which of the following KCl	solutions has the lowest value of equivalent
conductance?	24.0
(a) 1 M	(b) 0.1 M 24.00 4 13.2 + 13
(c) 0.01 M	(d) 0.001 M
49. At infinite dilution, the equiva	elent conductances of CH3COONa, HCl and
	mho cm2 respectively at 25° C. The equivalent
	26-26-3
conductance of NaCr at infinite diff	100 100
(a) 209	wl 391
(c) 126	(d) 908 x 426 39 P.T.O.
M-26 (SET-B) NOS 1 NOS	(13) Name (13) N
conductance of NaCl at infinite dilities (a) 209 (c) 126 M-26 (SET-B)	(13) Name (13) N

21.	Cons	sider the following four x	enon compo	unds: XeF2, XeF4, XeF6 and XeO3. The
	pair	of xenon compounds expe	ected to have	non-zero dipole momentis
	(a)	XeF4 and XeF6	"(b)	XeF ₂ and XeF ₄
	(c)	XeF ₂ and XeO ₃	(d)	XeF ₆ and XeO ₃
22.	Con	sider the following six so	olid binary o	xides: CaO, Al ₂ O ₃ , PbO, Cs ₂ O, SiO ₂
		Sb ₂ O ₃ . The pair(s) of ior	vic oxides is(a	are) /2C
	(a)	CaO and Al ₂ O ₅	(b)	CaO and PbO 4+ 1 (8-4-0) SiO ₂ and Sb ₂ O ₃ 4+ 1 (4) F. O. F
	(c)	PbO and Al ₂ O ₃	(d)	SiO2 and Sb2O3 44 2
23.	On	hydrolysis, aluminium car	bide produce	s FOF
	(a)	CH ₄	(b)	C2H6 POF
Also.	(c)	C ₂ H ₄	(d)	C2H2 Kefz F
MC24	The	predicted geometry of To	eF4 by VSEPI	
A.	(a)	Octahedral	(b)	Square planar
A.	(c)	Trigonal bypyramid	(d)	Tatrahedral 🖈 03
25.	The	metal ion in enzyme invo	olved in the hy	ydration of CO2 is: 3+1 (0-6)
	(a)	Mg (II)	(b)	vdration of CO_2 is: $3+\frac{1}{2}(9-6)$ $Zn(II) \qquad 3+\frac{1}{2}(12)$ $Cu(II) \qquad 3+1$
	(c)	Fe(II)	(d)	Cu(II) 3+1
26.	Assu	ming NaCl to be comp	letely ionized	t, the freezing point of 1 molal aqueon
	solut	ion $(K_f = 1.86 \text{ kg}^{\circ}\text{C mo})$	l ^{-t}) is	, Le co
144	(a)	−1.86 °C	(b)	-3.27 °C 3 3
	(c)	+1.86 °C	(d)	+3.27°C
M-26	(SET-	в)	(8)	71 +2+2.303+
The same				V/V

56.	Whic	h one of the following base is s	iot pre	sent in RNA?
	(2)	Adenine	(b)	Cytosine
	(c)	Thymine	(d)	Uracii
57.	Whic	th of the vitamins given below i	n wede	r soluble?
Mes	(a)	Vitamin C	(b)	Vitamin D
8	(c)	Vitamin E	(d)	Vitamin K
58.	1-Bro	omo-3 chlorocyclobutanewill re	tact wi	th Na in other producing?
15	(a)		(b)	□ Be
4	(c)		(d)	
59.	But-)-ene can be converted to butar	se by re	eaction with:
	(a)	Zn-HCI	(b)	Zn-Hg CM
	(c)	Pd/H ₂	(d)	Sn-HCI
60.	Whi	ch of the following compounds	on by	drolysis gives acetylene?
		CaC ₂		Mg ₂ C ₃
	(c)	Al ₄ C ₃	(d)	Cu ₂ Cl ₂
M	26 (SE	т-в)	(16)	

94.	The	NMR spectra of the functional is	omers	of the molecular formula C2H6O show	
		and signals respo			
	(a)	1,2	(b)	1,3	
	(c)	1, 4	(d)	1,5	
85.	Meth	hanol fuel cells are			
	(2)	Stable at all conditions	(b)	Unstable at all conditions	
	(c)	Stable at some conditions	(d)	Unstable at some conditions	
86.	Base	ed on tacticity, the polymers are d	livide	d into.	
	(a)	Two	(b)	Three	
	(c)	Four	(d)	Five	
87.	7. Combination of the organic and inorganic polymers are called				
	(a)	Element organic polymers	(b)	Inorganic polymers	
	(c)	Fibres	(d)	Thermoplastic	
88.	Initi	ators are known to be:			
	(a)	Stable compounds	(b)	Unstable compounds	
	(c)	Partially stable compounds	(d)	Highly stable compounds	
89.	The	catalyst used in the co-ordination	on pol	lymerisation is	
	(a)	Ziegler-natta catalyst	(b)	Vanadium pent-oxid	
	(c)	Nitric Oxide	(d)	Zeonar	
90.	Num	ber of NMR signals obtained in	CH	COCH ₃ will be	
	(a)	6	(b)	3	
	(c)	2	(d) 1	
M.7/	VSFT	D)			

Following is wrong about a phase diagram. 40. It gives information on transformation rates. (g) Relative amount of different phases can be found under given equilibrius conditions. (c) It indicates the temperature at which different phases start to melt. (d) Solid solubility limits are depicted by it. Which if the following statements are true about the Eutectic point on a two component (compounds A and B) phase diagram? Both compounds are solid. (a) The melting point of the mixture is lower than the melting points

of either of the individual compounds.

- One compound is in the liquid phase whilst the other is in the solid phase
- None of the above

The 1/2 of a reaction is doubled as the initial concentration of the reactant is 42. doubled. The order of the reaction is

(a) 0

(c) 2

Choose the correct statement 43.

- The rate constant of a reaction decreases with temperature (a)
- Order is always equal to molecularity of reaction (b)
- The unit of second-order rate constant is moldm-3s-1 (c)
- The I12 of a first-order reaction is independent of the initial concentration (d)

	. 0	al g of men	al combines w	ith of any	gen at	STP. T	he equival	ent weigh	t of
	2	netal is							
	. (4	.) 12		(b)	24				
	- (1 18		(d)	36				
79	T T	Which of the fo	ollowing is less a	scidic amon	g the giv	en halog	en compou	nds?	
	(1	t) CHCl ₃		(b)	CHI_3				
	(4	;) CHB ₆		(d)	CHF ₃				
80		labeium carbid	e reacts with her	ivy water to	form				
	- 6	a) C ₂ D ₂		(b)	CaD ₂				
	(0	CaD ₂ O		(d)	CD ₂				
81.	ln	the extraction	of Ag, Zn is re	moved from	the alloy	of Zn-A	g through		
	(2)	Cupellati	on	(b)	Fraction	al crysta	llization		
	(c)	Distillation	NΩ	(d)	Electrol	ytic refin	ing		
82.	The	e transition zo	one for Raman s	pectra is					
	(2)	Between v	ibrational and r	otational le	vels		N.	0.16	
	(6)	Between e	lectronic levels					0.1	6
	(c)	Between m	agnetic levels	of nuclei			,	n's a	
	(d)	Between m	agnetic levels	of unpaired	electron	is			
13.	The	bio diesel is	the long chain	of carbon	atoms o	contains		group at	one
	end.						OF W	fe Ha	
	(a)	Alcohol		(b)	Aldehy	de			
	(c)	Ketone		(d)	Ester		/	Dio	TO
E	1			(0)	2,014.	(ACI	2/2	Or
1	SET.	B)		(21)			200		/
1									

which of the following compound is not aromatic?

(I)

(II)

(III)

- Only I (a)
- OnlyIll (c)

- (b) Only II
- (d) None

Which of the following diene does not participate in Diels-Alder reaction?

(c)

(d)

Correct order of carbonyl IR-stretching frequency for the following compounds is: COCH,

CD,

- 1>11>111 (s)

- (b) III>II>I
- 11 > 1 > 111 (d)

How many ¹H and ¹³C-NMR = signals will be observed for anthracene molecules?

(a)

- (b) 3 and 4

3 and 3

(d) 4 and 4

P.T.O.

(0) 5 and 4

Which one of the compound is not isomer of others?

The most acidic compoundamong the following is: 98.

Which of the following is a natural fibre?

(a) Starch

(b) Rubber

(c) Cellulose

(d) Optical resolution

Total number of position isomers of trimethyl cyclohexane are:

(a)

(b) 6

(c)

(d) 8

	White	ch of the region of IR spectra	appears	between (1400-600) cm ⁻¹ ?
al-	(a)	Functional group region	(b)	
	(c)	Low-frequency region	(d)	None of the mentioned
92	Whi	ch one of the following is the	best hea	t and corrosion resistant material?
	(a)	Metals	(b)	Ceramics
	(c)	Polymers	(d)	Semi-conductors
93.	Base	ed on the important category,	concrete	and fibre glass are the example of
	(a)	Ceramics	(b)	Polymers
	(c)	Composites	(d)	Semi-conductors
94.	Port	land cement is made by calcin	ing atter	nperature equals to
	(a)	3000°C	(b)	1500°C
	(c)	1800°C	(d)	2000°C
)5.	One	letter code for 'Arginine' amin	o acid is	
	(a)	N	(b)	K o√
	(c)	R	(d)	A
6.	Whic	ch of the following compound	is know	n as oil of winter green?
		СНО		OMe
(4	a)	Он	(b)	СООН
		СНО		ОН
(c)	((d)	COOMe

P.T.O.

- Given that the crystal field stabilization energy for [Co(H₂O)₆] is 7360 cm⁻¹ the calculated value of Δ₀ in kJ mol⁻¹
 - (a) Between 109-111

(b) Between 120-121

(c) Between 50-60

- (d) Between 48-32
- 19. Which plot represents a spectrophotometric titration, where the titrant alone absorbs light in the visible region?

- 10. NaF, KF, MgO and Cao are crystalline solids. They have NaCl structure. Their lattice energies vary in the order
 - (a) NaF<KF < MgO < CaO
- (b) KF <NaF <CaO <MgO
- (c) MgO<CaO,NaF<KF
- (d) CaO<MgO<KF<NaF

P.T.O.

62 Which of the following compound will not give cyclic compound on heating?

63. Total number of aldol reactions involved in the following transformation is:

CH3CHO + HCHO conc. aq NaOH HO OH

(a) 1

(b) 2

(c) 3

(d) 4

P.T.O.

4-26 (SET-B)

(17)

73. Arrange the following in increasing order of pKa value?

NHPh

(a) 1>11>111

(b) III > II > I

(c) III>1>II

- (d) II > I > III
- 74. The carboxyl functional group (-COOH) is present in:
 - (a) Ascorbic acid

(b) Squaric acid

(c) Barbituric acid

- (d) None of these
- Arrange the following in decreasing order of percentage enol content.

(IV) CH₃ CO₂Et

(a) 1>IV>II>III

(b) III > II > I > IV

(c) IV>III>I>II

- (d) 1>11>111>1V
- 76. The electronic transitions responsible for the volour of K2Cr2O7 is
 - (a) π→π*

(b) σ → π

(c) σ→σ

- (d) d → d
- 77. Iron obtained from chalcopyrite is
 - (a) FeSiO₃

(b) FeO

(c) Fe₂O₃

(d) FeS

The total number of carboxylicacid groups in the product is:

(a)

64

- (c)
- (b) 2
- (d) 4

The main constituents of cell membranes are: 63.

- Simple triglycerides (z)
- (b) Waxes

Proteins (c)

(d) Phospholipids

Which compound has the highest melting point?

- p-Dibromobenzene (a)
- (b) o-Dibromobenzene
- (c) m-Dibromobenzene
- (d) Bromobenzene

Which of the following has maximum dipole moment?

(b)

(c)

(d)

The most stable carbocation is: 68.

(d) All have same stability

M-26 (SET-B)

(d) None of these

1. H

(a) (I)

(b) A

(c) OH

(d) HO—OH

54. Cellulose on hydrolysis yields

(a) β-D-Fructose

(b) β-D-Glucose

(c) a-D-Glucose

(d) α-D-Fructose

55. Which of the following amino acids is not optically active?

(a) Glycine

(b) Alanine

(c) Cysteine

(d) Phenylalanine

P.T.O.

M-26 (SET-B)

(15)