LOFO Cheat Sheet

Akim Demaille

1 λ -calculus

Syntactic conventions:

• Omit outer parentheses

MN = (MN)

 $M ::= x | (\lambda x \cdot M) | (MM)$

- Application associates to the left
- MNL = (MN)L
- Multiple arguments as syntactic sugar $\lambda xy \cdot M = \lambda x \cdot \lambda y \cdot M$ (Currification)
- Abstraction associates to the right $\lambda x \cdot MN = \lambda x \cdot (MN)$

2 Simply Typed λ -calculus

$$\frac{M: \sigma \to \tau \quad N: \sigma}{MN: \tau} \qquad \frac{\begin{bmatrix} x: \sigma \end{bmatrix}}{\vdots} \\ \frac{M: \tau}{\lambda x \cdot M: \sigma \to \tau}$$

3 NJ — Intuitionistic Natural Deduction

$$\frac{[A]}{\vdots} \\
\frac{B}{A \Rightarrow B} \Rightarrow I$$

$$\frac{A \quad A \Rightarrow B}{B} \Rightarrow \mathcal{E}$$

$$\frac{A}{A} \perp \mathcal{E}$$

$$\frac{A \land B}{A \land B} \land I$$

$$\frac{A \land B} \land I$$

$$\frac{A \land B}{A \land B} \land I$$

$$\frac{A \land B}{A \land B} \land I$$

$$\frac{A \land$$

4 LK — Classical Sequent Calculus

$$\frac{\Gamma \vdash \Delta}{\Gamma \vdash \tau(\Delta)} \vdash X \quad \frac{\Gamma \vdash \Delta}{\sigma(\Gamma) \vdash \Delta} X \vdash \frac{\Gamma \vdash \Delta}{\Gamma \vdash A, \Delta} \vdash W \quad \frac{\Gamma \vdash \Delta}{\Gamma, A \vdash \Delta} W \vdash \frac{\Gamma \vdash A, A, \Delta}{\Gamma \vdash A, \Delta} \vdash C \quad \frac{\Gamma, A, A \vdash \Delta}{\Gamma, A \vdash \Delta} C \vdash \frac{\Gamma, A, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \vdash \Delta} \vdash C \quad$$

5 LJ — Intuitionistic Sequent Calculus

$$\frac{1}{A + A} \operatorname{Id} \qquad \frac{\Gamma + A \quad \Gamma', A + B}{\Gamma, \Gamma' + B} \operatorname{Cut}$$

$$\frac{\Gamma + B}{\sigma(\Gamma) + B} \times \vdash \qquad \frac{\Gamma + B}{\Gamma, A + B} \times \vdash \qquad \frac{\Gamma, A, A + B}{\Gamma, A + B} \times \vdash$$

$$\frac{\Gamma + A \quad \Gamma + B}{\Gamma + A \wedge B} \vdash \land \qquad \frac{\Gamma, A + C}{\Gamma, A \wedge B + C} \stackrel{I \land \vdash}{} \qquad \frac{\Gamma, B + C}{\Gamma, A \wedge B + C} \stackrel{r \land \vdash}{} \qquad$$

$$\frac{\Gamma + A}{\Gamma + A \vee B} \vdash \stackrel{I \lor}{} \qquad \frac{\Gamma + B}{\Gamma + A \vee B} \vdash r \lor \qquad \frac{\Gamma, A + C \quad \Gamma, B + C}{\Gamma, A \vee B + C} \lor \vdash$$

$$\frac{\Gamma + A \quad \Gamma', B + C}{\Gamma, \Gamma', A \Rightarrow B + C} \Rightarrow \vdash \qquad \frac{\Gamma, A + B}{\Gamma + A \Rightarrow B} \vdash \Rightarrow$$

1