+ Text

import numpy as np
import pandas as pd

 $\label{eq:df_def} $$ df=pd.read_csv('\underline{/content/Estimates}$ of number of homicides.csv') $$ df.head()$

	IndicatorCode	Indicator	ValueType	ParentLocationCode	ParentLocation	Location type	SpatialDimValueCo
0	VIOLENCE_HOMICIDENUM	Estimates of number of homicides	numeric	SEAR	South-East Asia	Country	II
1	VIOLENCE_HOMICIDENUM	Estimates of number of homicides	numeric	SEAR	South-East Asia	Country	II
2	VIOLENCE_HOMICIDENUM	Estimates of number of homicides	numeric	SEAR	South-East Asia	Country	II
3	VIOLENCE_HOMICIDENUM	Estimates of number of homicides	numeric	SEAR	South-East Asia	Country	II
4	VIOLENCE_HOMICIDENUM	Estimates of number of homicides	numeric	SEAR	South-East Asia	Country	II

+ Code

 $\label{lem:df-drop} $$ df-df.drop(['Indicator','ValueType','ParentLocationCode','ParentLocation','Location type','SpatialDimVadf.head() $$$

	Period	Dim1	FactValueNumeric	FactValueNumericLow	FactValueNumericHigh
0	2019	Female	12509	9259	16578
1	2019	Male	39258	30009	50814
2	2019	Both sexes	51767	39268	67393
3	2018	Female	12477	9443	16283
4	2018	Male	39502	30980	50753

df.shape

(60, 5)

df.describe()

	Period	FactValueNumeric	FactValueNumericLow	FactValueNumericHigh
count	60.000000	60.000000	60.000000	60.000000
mean	2009.500000	35126.000000	28875.300000	42657.466667
std	5.814943	16404.222213	13664.808403	19816.754409
min	2000.000000	12269.000000	9259.000000	15538.000000
25%	2004.750000	14105.750000	11461.500000	17068.500000
50%	2009.500000	39171.000000	32146.500000	46963.500000
75%	2014.250000	52088.250000	42984.000000	62589.250000
max	2019.000000	53957.000000	45198.000000	67393.000000

df=df.dropna()

df.shape

(60, 5)

new={'Male':0,'Female':1,'Both sexes':2}
df['Dim1']=df['Dim1'].map(new)

df.head()

	Period	Dim1	FactValueNumeric	FactValueNumericLow	FactValueNumericHigh
0	2019	1	12509	9259	16578
1	2019	0	39258	30009	50814
2	2019	2	51767	39268	67393
3	2018	1	12477	9443	16283
4	2018	0	39502	30980	50753

 $x = df[['Period', 'FactValueNumeric', 'FactValueNumericLow', 'FactValueNumericHigh']] \ \#Separating \ dependent \ and \ independent \ y = df['Dim1'] \ print(x,y)$

	Period	FactValueNumeric	FactValueNumericLow	FactValueNumericHigh
0	2019	12509	9259	16578
1	2019	39258	30009	50814
2	2019	51767	39268	67393
3	2018	12477	9443	16283
4	2018	39502	30980	50753
5	2018	51979	40423	67036
6	2017	12433	9557	15981
7	2017	39624	31593	49684
8	2017	52057	41150	65665
9	2016	12269	9630	15538
10	2016	39262	32025	48265
11	2016	51532	41656	63803
12	2015	12532	9997	15621
13	2015	39782	32976	48048
14	2015	52314	42973	63669
15	2014	12875	10400	15829
16	2014	40435	33891	48718
17	2014	53309	44291	64547
18	2013	13027	10672	15795
19	2013	40444	34051	48779
20	2013	53470	44724	64574
21	2012	13295	10938	15950
22	2012	40610	34179	48909

```
53904
     23
           2012
                                                   45117
                                                                          64859
     24
           2011
                             13583
                                                   11101
                                                                           16358
     25
           2011
                             40374
                                                   34097
                                                                          48148
     26
           2011
                             53957
                                                   45198
                                                                          64506
     27
           2010
                             13745
                                                   11278
                                                                           16503
     28
           2010
                             39719
                                                   33549
                                                                          47331
     29
           2010
                             53464
                                                   44827
                                                                          63834
     30
           2009
                             13924
                                                   11499
                                                                           16691
     31
           2009
                             39084
                                                   33150
                                                                          46443
           2009
                             53008
     32
                                                   44648
                                                                          63134
     33
           2008
                             14105
                                                   11640
                                                                          16904
     34
           2008
                             38660
                                                   32809
                                                                          45803
     35
           2008
                             52765
                                                   44449
                                                                          62707
                                                                          16955
           2007
     36
                             14111
                                                   11546
     37
           2007
                             38296
                                                   32465
                                                                          45220
     38
           2007
                             52407
                                                   44011
                                                                          62176
           2006
                             14052
                                                   11473
                                                                          16974
     39
     40
           2006
                             38130
                                                   32221
                                                                          45078
     41
           2006
                             52182
                                                   43694
                                                                           62052
     42
           2005
                             14008
                                                   11407
                                                                          16956
     43
           2005
                             38175
                                                   31987
                                                                          45272
     44
           2005
                             52183
                                                   43394
                                                                          62228
     45
           2004
                             14106
                                                   11538
                                                                          17100
           2004
     46
                             38311
                                                                          45451
                                                   31857
     47
           2004
                             52417
                                                   43395
                                                                          62550
           2003
                             14020
                                                   11360
                                                                          17123
     49
           2003
                             37973
                                                                          45097
                                                   31657
                             51993
     50
           2003
                                                   43017
                                                                          62220
     51
           2002
                             14247
                                                   11427
                                                                          17580
     52
           2002
                                                   32004
                                                                          45593
                             38353
     53
           2002
                             52600
                                                   43431
                                                                          63173
     54
           2001
                             14370
                                                   11340
                                                                          18105
     55
           2001
                             38622
                                                   31876
                                                                          46403
import matplotlib.pyplot as plt
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score,confusion_matrix
#Split the dataset into training and testing sets
x\_train, x\_test, y\_train, y\_test=train\_test\_split(x, y, test\_size=0.3, random\_state=42)
#Initiate and fit the LDA model
lda=LinearDiscriminantAnalysis()
lda.fit(x_train,y_train)
      LinearDiscriminantAnalysis
     LinearDiscriminantAnalysis()
#Make predictions on the test set
y_pred=lda.predict(x_test)
y_pred
     array([1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 2, 2, 1])
y_test
     0
           1
           2
     36
           1
     45
           1
     13
           0
     54
           1
     33
           1
     48
           1
```

```
57
    46
          0
    50
31
         2
          0
    3
          1
    52
17
          0
          2
    8
          2
    6
    Name: Dim1, dtype: int64
accuracy=accuracy_score(y_test,y_pred)
accuracy
    1.0
confusion=confusion_matrix(y_test,y_pred)
confusion_matrix(y_test,y_pred)
    import seaborn as sns
plt.figure(figsize=(6,4))
```

- 10

- 8

sns.heatmap(confusion,annot=True,fmt='d',cmap='Reds')

plt.xlabel('Predicted')

Conclusion:

Conclusion:

47