Estudio y comparación de métodos de tokenización

Daniel Ayala Zamorano, Laura Natalia Borbolla Palacios, Ricardo Quezada Figueroa

Escuela Superior de Cómputo, Instituto Politécnico Nacional daz23ayala@gmail.com, laura@ejemplo.com, qf7.ricardo@gmail.com

Resumen La tokenización consiste en el reemplazo de información sensible por valores sustitutos, llamados tokens, en donde el camino de regreso, del token a la información sensible, no es factible. En los últimos años este proceso se ha vuelto muy popular entre los comercios en línea, pues les permite descargar parte de las responsabilidades de seguridad adquiridas al manejar números de tarjetas de crédito en un tercero, proveedor de servicios de tokenización. Lamentablemente, existe una gran cantidad de desinformación alrededor de cómo generar los tokens, principalmente producida por las estrategias publicitarias de las empresas tokenizadoras, en donde cada una intenta convencer al comprador de que su sistema es el mejor, sin explicar realmente qué es lo que hacen para generar tokens. Uno de los mensajes más comunes entre la publicidad es que la criptografía y la tokenización son cosas distintas, y la segunda es mucho más segura. En este trabajo se explica a detalle en qué consiste la tokenización v cuál es su relación con la criptografía; se revisan y comparan los desempeños de los métodos más comunes para tokenizar; para terminar se concluye con una discusión alrededor de las ventajas y desventajas de cada uno.

1. Introducción

2. Preliminares

2.1. Notación

Denotaremos a todas las cadenas de bits de longitud n como $\{0,1\}^n$. Un algoritmo tokenizador es una función $E: \mathcal{X} \to \mathcal{Y}$ en donde los conjuntos X y Y son el espacio de números de tarjetas y el de tokens, respectivamente.

2.2. Algoritmo de Luhn

2.3. Estructura de un número de tarjeta de crédito

2.4. Cifrado por bloques

Un cifrado por bloques es un cifrado simétrico que se define por la función $E: \mathcal{M} \times \mathcal{K} \to \mathcal{C}$ en donde \mathcal{M} es el espacio de textos en claro, \mathcal{K} es el espacio de llaves y \mathcal{C} es el espacio de mensajes cifrados. Tanto los mensajes en claro como los cifrados tienen una misma longitud n, que representa el tamaño del bloque [6].

Los cifrados por bloque son un elemento de construcción fundamental para otras primitivas criptográficas. Muchos de los algoritmos tokenizadores que se presentan en este trabajo los ocupan de alguna forma. Las definiciones de los algoritmos son flexibles en el sentido de que permiten instanciar cada implementación con el cifrado por bloques que se quiera; en el caso de las implementaciones hechas para este trabajo se ocupó AES (Advanced Encryption Standard) en la mayoría de los casos.

2.5. Cifrado que preserva el formato

Un cifrado que preserva el formato (en inglés Format-preserving Encryption, FPE) puede ser visto como un cifrado simétrico en donde el mensaje en claro y el mensaje cifrado mantienen un formato en común. Formalmente, de acuerdo a lo definido en [1], se trata de una función $E: \mathcal{K} \times \mathcal{N} \times \mathcal{T} \times \mathcal{X} \to \mathcal{X}$, en donde los conjuntos $\mathcal{K}, \mathcal{N}, \mathcal{T}, \mathcal{X}$ corresponden al espacio de llaves, espacio de formatos, espacio de tweaks y el dominio, respectivamente. El proceso de cifrado de un elemento del dominio con respecto a una llave K, un formato N y un tweak T se escribe como $E_K^{N,T}(X)$. El proceso inverso es también una función $D: \mathcal{K} \times \mathcal{N} \times \mathcal{T} \times \mathcal{X} \to \mathcal{X}$, en donde $D_K^{N,T} \big(E_K^{N,T}(X) \big) = X$. Para lo que a este trabajo respecta, el formato usado es el de las

Para lo que a este trabajo respecta, el formato usado es el de las tarjetas de crédito: una cadena de entre 12 y 19 dígitos decimales. Esto es $N = \{0, 1, ..., 9\}^n$ en donde $12 \le n \le 19$.

En marzo de 2016 el NIST (*National Institute of Standards and Technology*) publicó un estándar referente a los cifrados que preservan el formato[5]. En él se definen dos posibles métodos: FF1 (lo que en este trabajo es FFX) y FF3 (lo que en este trabajo es BPS).

3. Algoritmos tokenizadores

Como el enfoque de este artículo es ver a la tokenización como un servicio, la interfaz para los procesos de tokenización y detokenización, des-

de el punto de vista de los usuarios del servicio, es sumamente simple: el proceso de tokenización es una función $E:\mathcal{X}\to\mathcal{Y}$ y el de detokenización es simplemente la función inversa $D:\mathcal{Y}\to\mathcal{X}$, en donde \mathcal{X} y \mathcal{Y} son los espacios de números de tarjetas y tokens, respectivamente. Ambos conjuntos son cadenas de dígitos de entre 12 y 19 caracteres. Los números de tarjeta cuentan con un dígito verificador que hace que algoritmoDeLuhn(X) = 0; los tokens cuentan con un dígito verificador que hace que algoritmoDeLuhn(Y) = 1. El último punto es con el propósito de que sea posible distinguir entre un número de tarjeta y un token.

El PCI SSC (Payment Card Industry Security Standard Council) establece en sus guías de tokenización la siguiente clasificación para los algoritmos tokenizadores[3]:

- Métodos reversibles:
 - Criptográficos.
 - No criptográficos.
- Métodos irreversibles:
 - Autenticable.
 - No autenticable.

La denominación no criptográficos resulta totalmente confusa, pues en realidad todos los métodos conocidos que caen en las categorías de arriba ocupan primitivas criptográficas. Por lo anterior, en este trabajo se propone una clasificación distinta:

- Métodos criptográficos:
 - Reversibles.
 - Irreversibles.
- Métodos no criptográficos:

3.1. FFX (Format-preserving Feistel-based Encryption)

Cifrado que preserva el formato presentado en [2] por Mihir Bellare, Philip Rogaway y Terence Spies. En su forma más general, el algoritmo se compone de 9 parámetros que permiten cifrar cadenas de cualquier longitud en cualquier alfabeto; los autores también proponen dos formas más específicas (dos colecciones de parámetros) para alfabetos binarios y alfabetos decimales: A2 y A10, respectivamente. De aquí en adelante se hablará solamente de la colección A10.

FFX ocupa una red Feistel alternante junto con una adaptación de AES-CBC-MAC (usada como función de ronda) para lograr preservar el

formato. La operación general del algoritmo se describe completamente por la operación de una red alternante:

$$L_{i} = \begin{cases} F_{k}(R_{i-1}) \oplus L_{i-1}, & \text{si } i \text{ es par} \\ L_{i-1}, & \text{si } i \text{ es impar} \end{cases}$$

$$R_{i} = \begin{cases} R_{i-1}, & \text{si } i \text{ es par} \\ F_{k}(L_{i-1}) \oplus R_{i-1}, & \text{si } i \text{ es impar} \end{cases}$$

$$(1)$$

En la figura 1 se describe a la función de ronda. La idea general consiste en interpretar la salida de AES CBC MAC de forma que tenga el formato deseado. El valor de m corresponde al split en la ronda actual; esto es la longitud de la cadena de entrada.

```
Algoritmo FFX-AES-CBC-MAC(x, k, t)
1. a \leftarrow x \mid\mid t
2. b \leftarrow \text{aes\_cbc\_mac}(a, k)
3. y' \leftarrow \text{a}[1 \dots 64]
4. y'' \leftarrow \text{a}[65 \dots 128]
5. \text{si } \text{m} \leq 9 \text{ entonces}:
6. \text{c} \leftarrow y'' \mod 10^m
7. \text{sino}:
8. \text{c} \leftarrow (y' \mod 10^{m-9}) \times 10^9 + (y'' \mod 10^m)
9. \text{regresar } \text{c}
```

Figura 1. Función de ronda de FFX A10.

Con la clasificación del PCI, este método cae en los reversibles criptográficos. Con la clasificación propuesta en este trabajo, se trata de un criptográfico reversible.

3.2. BPS

Algoritmo de cifrado que preserva el formato capaz de cifrar cadenas formadas por cualquier conjunto de caracteres, descrito en [?] y cuyo nombre proviene de las iniciales de los apellidos de sus autores Eric Brier, Thomas Peyrin y Jacques Stern, aunque en el estándar [5], el NIST lo nombra como FF3.

BPS se conforma de 2 partes: un cifrado interno BC que se encarga de cifrar bloques de longitud fija, usando a su vez un cifrado por bloques F; y

un modo de operación especial, encargado de extender la funcionalidad de BC y permitir cifrar cadenas de un longitud de hasta $max_b \cdot 2^{16}$ caracteres, donde max_b es la longitud máxima que puede tener una cadena para cifrarse con BC.

Este cifrado interno utiliza una red Feistel alternante y se define como $BC_{F,s,b,w}(X,K,T)$, donde: F es un cifrado por bloques con f bits de salida, como puede ser TDES o AES; s es la cardinalidad del alfabeto de la cadena a cifrar, b es su longitud, w es el número de rondas de la red Feistel, X es la cadena, K es una llave acorde al cifrado F, y T es un tweak de 64 bits.

El funcionamiento del cifrado BC es descrito en la figura 2.

```
Algoritmo Cifrado BC_{F,s,b,w}(X,K,T)
1. T_R \leftarrow T \mod 2^{32} \text{ y } T_L \leftarrow (T-T_R)/2^{32}
 2. l \leftarrow \lceil b/2 \rceil
 3. r \leftarrow |b/2|
4. L_0 \leftarrow \sum_{j=0}^{l-1} X[j] \cdot s^j

5. R_0 \leftarrow \sum_{j=0}^{r-1} X[j+l] \cdot s^j
 6. para i = 0 hasta i = w - 1:
 7.
            \mathbf{si} \ i \ \mathrm{es} \ \mathrm{par}:
                 L_{i+1} \leftarrow L_i \boxplus F_K((T_R \oplus i) \cdot 2^{f-32} + R_i) \pmod{s^l}
                 R_{i+1} \leftarrow R_i
 10.
            \mathbf{si} \ i \ \mathrm{es \ impar}:
                  R_{i+1} \leftarrow R_i \boxplus F_K((T_L \oplus i) \cdot 2^{f-32} + L_i) \pmod{s^r}
 11.
 12.
                  L_{i+1} \leftarrow L_i
 13. para i = 0 hasta i = l - 1:
          Y_L[i] \leftarrow L_w \mod s
          L_w \leftarrow (L_w - Y_L[i])/s
 16. para i = l hasta i = r - 1:
           Y_R[i] \leftarrow R_w \mod s
            R_w \leftarrow (R_w - Y_R[i])/s
 19.Y \leftarrow Y_L \parallel Y_R
```

Figura 2. Cifrado interno BC.

Para cada bloque a cifrar, el cifrado BC debe instanciarse con una longitud de $max_b = 2 \cdot log_s(2^{f-32})$ caracteres, y cuando la longitud total del mensaje a cifrar no sea múltiplo de este valor, en el último bloque BC se tendrá que instanciar con una longitud igual a la de ese bloque.

El modo de operación de BPS es un variación de CBC, con la diferencia de que usa sumas modulares carácter por carácter en lugar de aplicar operaciones *xor*, además de que no emplea un vector de inicialización.

Otra característica de este modo de operación es que utiliza un contador u para aplicar un xor a los 16 bits más significativos de cada mitad del tweak T que utiliza BPS, por lo cual este se puede ver como una función $u(n) = n \cdot (2^{16} + 2^{48})$.

El funcionamiento del modo de operación se describe en la figura 3.

Figura 3. Modo de operación de BPS.

El PCI clasifica a este algoritmo dentro de los método de de generación de tokens reversibles criptográficos, pero desde el punto de vista de este trabajo se tiene que es un método criptográfico reversible.

3.3. TKR

En [4] se analiza formalmente el problema de la generación de tokens y se propone un algoritmo que no está basado en cifrados que preservan el formato. Hasta antes de la publicación de este documento, los únicos métodos para generar tokens cuya seguridad estaba formalmente demostrada eran los basados en cifrados que preservan el formato.

El algoritmo propuesto usa un cifrado por bloques para generar tokens pseudoaleatorios y almacena en una base de datos la relación original de estos con los números de tarjetas. En la figura 4 se muestra el proceso de tokenización y detokenización.

```
Algoritmo TKR-tokenización(x, k)
1. q \leftarrow \text{buscarTarjeta}(x)
2. \text{si } q = 0 \text{ entonces}:
3. y \leftarrow \text{RN}(k)
4. \text{insertar}(x, y)
5. \text{sino}:
6. y \leftarrow q
7. \text{regresar } y

Algoritmo TKR-detokenización(y, k)
1. q \leftarrow \text{buscarToken}(t)
2. \text{si } q = 0 \text{ entonces}:
3. \text{regresar } error
4. \text{sino}:
5. \text{regresar } q
```

Figura 4. Tokenización y detokenización de TKR

Las funciones buscarTarjeta, buscarToken e insertar sirven para interactuar con la base de datos. Lo único que queda por esclarecer es el el contenido de la función generadora de tokens pseudoaleatorios, la función RN(). El algoritmo de esta función se muestra en la figura 5. Idealmente, esta función debe regresar un elemento uniformemente aleatorio del espacio de tokens. La variable contador mantiene un estado del algoritmo (mantiene su valor a lo largo de las distintas llamadas); el espacio de tokens contiene cadenas de longitud fija μ de un alfabeto AL cuya cardinalidad es l; el número de bits necesarios para enumerar a todo el alfabeto se guardan en $\lambda = \lceil \log_2 l \rceil$.

Existen varios candidatos viables para la función f: un cifrado de flujo, pues el flujo de llave de estos produce cadenas de aspecto aleatorio, o un cifrado por bloques con un modo de operación de contador. En la implementación de este trabajo se ocupa esta última opción.

Con la clasificación del PCI, este método cae, contradictoriamente, en los reversibles no criptográficos. Con la clasificación propuesta en este trabajo se encuentra dentro de los criptográficos irreversibles.

4. Resultados de comparaciones de desempeño

Todos los resultados presentados en esta sección se llevaron a cabo en una computadora con las siguientes características:

```
Algoritmo TKR-RN(k)

1. x \leftarrow f(k, \text{ contador})

2. x_1, x_2, \dots, x_m \leftarrow \text{cortar}(x, \lambda)

3. t \leftarrow , i \leftarrow 0

4. mientras |t| \neq \mu:

5. si entero(x_i) entonces:

6. t \leftarrow t + \text{entero}(X_i)

7. i \leftarrow i + 1

8. contador \leftarrow contador +1

9. regresar t
```

Figura 5. Generación de tokens pseudoaleatorios en TKR

Procesador: Intel i5-7200U (2.5 GHz) de 4 núcleos.

Sistema operativo: Arch Linux, kernel 4.17.

Base de datos: MariaDB 10.1.

Compilador: GCC 8.1.1

En la tabla 1 y la figura 6 se muestran los resultados en tiempo de las ejecuciones de los algoritmos presentados en secciones anteriores.

Tabla 1. Comparación de tiempos de tokenización.

Algoritmo	Tokenización (μs)	Detokenización (μs)
FFX	83	64
BPS	247	127
TKR	46260	373
AHR	3427	390
DRBG	54060	387

Referencias

- M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers. Format-preserving encryption. In M. J. Jr., V. Rijmen, and R. Safavi-Naini, editors, Selected Areas in Cryptography, 16th Annual International Workshop, SAC 2009, Calgary, Alberta, Canada, August 13-14, 2009, Revised Selected Papers, volume 5867 of Lecture Notes in Computer Science, pages 295-312. Springer, 2009.
- 2. M. Bellare, P. Rogaway, and T. Spies. The ffx mode of operation for format-preserving encryption. 2009.

Figura 6. Comparación de tiempos de tokenización.

- 3. P. C. I. S. S. Council. Tokenization product security guidelines irreversible and reversible tokens, 2015.
- 4. S. Diaz-Santiago, L. M. Rodríguez-Henríquez, and D. Chakraborty. A cryptographic study of tokenization systems. *Int. J. Inf. Sec.*, 15(4):413-432, 2016.
- 5. M. Dworkin. Nist special publication 800-38g recommendation for block cipher modes of operation: Methods for format-preserving encryption, 2016.
- A. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC Press, 1996.