~ 2ème Sciences Expérimentales ~ Série d'exercices : Limites et continuités

(12 exercices résolus)

Exercice 1:

Montrer que la fonction
$$f$$
 définie par
$$\begin{cases} f(x) = \frac{\sqrt{x+1}-1}{\tan x} \\ f(0) = \frac{1}{2} \end{cases}$$
 est continue en 0

Exercice 2:

Montrer que la fonction
$$f$$
 définie par
$$\begin{cases} f(x) = \frac{x^2 + x - 12}{x - 3} & x \neq 3 \\ f(3) = 7 \end{cases}$$
 est continue en 3

Exercice 3:

Montrer que la fonction
$$f$$
 définie par
$$\begin{cases} f(x) = \frac{2x+1}{7-6x} & x \le 2 \\ f(x) = \frac{x^2+x-6}{x-2} & x > 2 \end{cases}$$
 est continue en 2

Exercice 4:

Soit f la fonction la fonction définie sur $\mathbb R$ par :

$$\begin{cases} f(x) = \frac{\sin(\pi x)}{x - 1} & x \neq 1 \\ f(1) = m \end{cases}$$
 (m est un paramètre réel)

Déterminer la valeur du nombre réel m pour laquelle f est continue en 1

Exercices 5:

Calculer les limites suivantes :

$$\lim_{x \to 0} \cos \left(\frac{\pi \tan(x)}{3x} \right) \; ; \; \lim_{x \to +\infty} \sin \left(\frac{\pi x^2 - 4x + 3}{4x^2 + 7} \right) \; ; \; \lim_{x \to 0} \sqrt{\frac{2x^2}{1 - \cos x}}$$

Exercice 6:

Soit f la fonction définie par $f(x) = x^3 + x - 1$

- 1) Montrer que l'équation f(x) = 0 admet une solution unique α sur \mathbb{R}
- 2) Montrer que $\alpha \in]0,1[$
- 3) Etudier le signe de f(x) sur \mathbb{R}

Exercice 7:

Montrer que l'équation (E): $1 + \sin x = x$ admet au moins une solution sur l'intervalle

$$I = \left\lceil \frac{\pi}{2}, \frac{2\pi}{3} \right\rceil$$

Exercice 8:

Soit f la fonction définie sur l'intervalle $I = \mathbb{R}^+$ par $f(x) = \frac{x-1}{x+1}$

- 1) Montrer que la fonction f admet une fonction réciproque f^{-1} définie sur un intervalle J qu'il faut déterminer.
- 2) Déterminer $f^{-1}(x)$ pour tout x de J

Exercice 9:

Soit f la fonction définie sur l'intervalle $I =]1, +\infty[$ par $f(x) = x^2 - 2x$

- 1) Montrer que la fonction f admet une fonction réciproque f^{-1} définie sur un intervalle J qu'il faut déterminer.
- 2) Déterminer $f^{-1}(x)$ pour tout x de J

Exercice 10:

Simplifier les nombres suivants :

$$A = \frac{\sqrt[5]{2} \times \sqrt{8}}{\sqrt{\sqrt[5]{128}}} \quad ; \quad B = \frac{1}{\sqrt[3]{3} + 1} \quad ; \quad C = \frac{\sqrt[3]{4} \sqrt{8} \left(\sqrt{\sqrt{2}}\right)^2}{\sqrt{\sqrt[3]{4}}} \quad ; \quad D = \frac{1}{\sqrt[3]{4} - \sqrt[3]{3}}$$

Exercice 11:

Calculer les limites suivantes :

$$1) \lim_{x \to +\infty} \sqrt{x^2 + 2} - x$$

$$2) \lim_{x \to 8} \frac{\sqrt[3]{x} - 2}{x - 8}$$

3)
$$\lim_{x \to 1} \frac{\sqrt[3]{2x+6} - \sqrt{x+3}}{x-1}$$
4)
$$\lim_{x \to +\infty} \sqrt{x^2+3} - 2x + 4$$
5)
$$\lim_{x \to +\infty} \frac{\sqrt{x+1}}{\sqrt[3]{x^2-2}}$$

4)
$$\lim_{x \to +\infty} \sqrt{x^2 + 3} - 2x + 4$$

5)
$$\lim_{x \to +\infty} \frac{\sqrt{x+1}}{\sqrt[3]{x^2-2}}$$

6)
$$\lim_{\substack{x \to 1 \\ x > 1}} \frac{\sqrt[4]{x^2 - 1}}{\sqrt{x - 1}}$$

Exercice 12:

Résoudre dans \mathbb{R} l'équation : $\sqrt{x} + \sqrt[3]{x} - 12 = 0$