Optimisation Statique et Dynamique Master ISC année 2013/14, session 2

P. Riedinger

Dans l'évaluation de votre travail, on attachera autant d'importance aux explications qu'aux résultats proprement dits.

Les exercices sont indépendants.

Exercice 1 Soit A une matrice $m \times n$ avec m < n. On cherche à déterminer parmi les solutions de l'equation Ax = b celle de norme minimum. Autrement dit on cherche à résoudre le problème :

$$\min_{x} \frac{1}{2} \|x\|^2 \quad (= \frac{1}{2} x^T x)$$

sous la contrainte Ax = b.

- 1. Ecrire les conditions nécessaires d'optimalité.
- 2. En supposant que la matrice AA^T est inversible, montrer que la solution s'écrit : $x = A^+b$ avec $A^+ = A^T(AA^T)^{-1}$.

Exercice 2 [Programmation dynamique] On dispose d'une quantité Q à répartir sur N places $(p_1, p_2, ..., p_N)$. Le tableau G donne les gains g(i, j) obtenus lorsqu'on place la quantité q_i dans la place p_j . Les places ont une capacité limitée c_i .

$$G = \left(\begin{array}{c|ccc} q_i & p_1 & p_2 & p_3 \\ 1 & 55 & 30 & 10 \\ 2 & 60 & 45 & 50 \\ 3 & 70 & 60 & 80 \\ 4 & 80 & & & \end{array}\right)$$

- 1. Montrer que ce problème peut se résoudre en appliquant le principe de la programmation dynamique : on précisera
 - les commandes
 - l'état
 - l'ensemble de "temps"
 - le critère à optimiser
- 2. Ecrire l'équation d'optimalité qui permettra de résoudre le problème
- 3. Donner l'algorithme pour résoudre le problème de manière générale $(N, Q, G \text{ et } c_i \text{ quelconques })$
- 4. Résoudre le problème pour le cas particulier Q = 5 et le tableau G ci dessus.

Exercice 3 [Pontriaguine] On charge une capacité C grâce à une source de tension réglable u.

On rappelle que les equations de base : q(t) charge de la capacité à l'instant t; i(t) intensité dans le circuit

$$u = ri + \frac{q}{c} \tag{1}$$

$$i = \dot{q} \tag{2}$$

- 1. Si à un instant t le condensateur c est à la charge q_{ref} , quelle est la commande u_{ref} qui permet de maintenir la charge à la valeur de référence constante q_{ref} ? On note u_{ref} cette commande.
- 2. On pose le changement de variable $x = q q_{ref}$ et $v = u u_{ref}$. Montrer que x vérifie une équation de la forme $\dot{x} = Ax + Bv$ où l'on précisera A et B.
- 3. On part qu'une charge initiale nulle $q(0) = q_0$. On veut charger le condensateur à la valeur q_{ref} en tenant compte de l'énergie dépensée par effet Joule dans la résistance, le critère à minimiser est alors :

$$J = \int_{0}^{T} \mu(q - q_{ref})^{2} + ri^{2}(t)dt$$

avec $\mu > 0$.

Exprimer le critère en fonction de x et v et montrer que l'on a alors à résoudre un problème LQ de forme générale, c'est à dire de la forme

$$\dot{x} = Ax + Bv$$

$$J = \frac{1}{2} \int_0^T v^T Rv + x^T Qx + 2x^T Nv dt$$

4. En utilisant le théorème de Pontriaguine, et en supposant que le vecteur adjoint noté p s'écrit :

$$p(t) = S(t)x(t)$$

montrer que la commande optimale est de la forme "retour d'état" :

$$\hat{v} = -K(t)x(t)$$

5. En dérivant p(t) = S(t)x(t), montrer que S(t) vérifie une équation différentielle de Riccati

$$-\dot{S} = SA + A^{T}S - (SB + N)R^{-1}(B^{T}S + N^{T}) + Q$$

et préciser la condition finale S(T).

6. Par passage à la limite lorsque $T \to +\infty$, on admettra que $\dot{S} = 0$. Résoudre alors le problème posé sur horizon infini et en déduire l'expression de la commande $u = u_{ref} + v$ en fonction de q et q_{ref} . Que produit la commande optimale si $\mu = 0$?