Rutherford Scattering Detection through Gold Foil

Henry Shackleton

April 26, 2017

Plum Pudding Model

Plum Pudding Model

 Small electrons in a "soup" of positive charge

Plum Pudding Model

- Small electrons in a "soup" of positive charge
- Produces small-angle scattering that dies off exponentially

Plum Pudding Model

- Small electrons in a "soup" of positive charge
- Produces small-angle scattering that dies off exponentially

Henry Shackleton

Plum Pudding Model

- Small electrons in a "soup" of positive charge
- Produces small-angle scattering that dies off exponentially

Rutherford Model

 Electrons surround a concentrated positive charge

Plum Pudding Model

- Small electrons in a "soup" of positive charge
- Produces small-angle scattering that dies off exponentially

Rutherford Model

- Electrons surround a concentrated positive charge
- Allows for large scattering angles

Rutherford Scattering Derives from Coulumb Interactions

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left(\frac{ZZ'e^2}{4E}\right)^2 \frac{1}{\sin^4(\theta/2)}$$

- ullet Differential cross section describes probability of scattering at angle heta.
- Translation to observable trends requires consideration of flux, area density, etc., but does not affect θ -dependence.
- Equation only describes *single* scattering events.

Henry Shackleton Rutherford Scattering April 26, 2017 2 / 13

Convolution of Angular Resolution Corrects for Beam/Detector Width

• With the howitzer at an angle ϕ , what is the probability of detecting a particle scattered between θ and $\theta + d\theta$?

Convolution of Angular Resolution Corrects for Beam/Detector Width

- With the howitzer at an angle ϕ , what is the probability of detecting a particle scattered between θ and $\theta + d\theta$?
- Ideally, $P(\theta) = \delta(\theta \phi)$.

Henry Shackleton Rutherford Scattering April 26, 2017 7 / 13

Convolution of Angular Resolution Corrects for Beam/Detector Width

- With the howitzer at an angle ϕ , what is the probability of detecting a particle scattered between θ and $\theta + d\theta$?
- Ideally, $P(\theta) = \delta(\theta \phi)$.
- Realistically, we expect roughly a triangle-shaped distribution.

Henry Shackleton Rutherford Scattering April 26, 2017 7 / 13

Beam Profile Indicates Both Angular Spread and Systematic Angular Offset

Convolving Beam Profile with Predicted Counting Rates Accounts for

Rutherford

$$C_r(\phi) = C_{r,0} \int_0^{\pi} g(\phi,\theta) \sin^{-4}(\theta/2) d\theta$$

Thomson

$$C_t(\phi) = C_{t,0} \int_0^{\pi} g(\phi, \theta) e^{-\frac{\theta^2}{\theta_0^2}} d\theta$$

9 / 13

Henry Shackleton Rutherford Scattering April 26, 2017

MCA Readout Centered Around Energy Range

Noise

Noise

 Took measurements with the howitzer pointed away from the source to measure noise

Noise

- Took measurements with the howitzer pointed away from the source to measure noise
- Minimal noise detected, all at energies much less than our range of interest

Noise

- Took measurements with the howitzer pointed away from the source to measure noise
- Minimal noise detected, all at energies much less than our range of interest

Energy Distribution

Noise

- Took measurements with the howitzer pointed away from the source to measure noise
- Minimal noise detected, all at energies much less than our range of interest

Energy Distribution

 Landau distribution of energy loss allows us to consider all points as valid data

Noise

- Took measurements with the howitzer pointed away from the source to measure noise
- Minimal noise detected, all at energies much less than our range of interest

Energy Distribution

- Landau distribution of energy loss allows us to consider all points as valid data
- Count rate sill affected by counting uncertainty

Noise

- Took measurements with the howitzer pointed away from the source to measure noise
- Minimal noise detected, all at energies much less than our range of interest

Energy Distribution

- Landau distribution of energy loss allows us to consider all points as valid data
- Count rate sill affected by counting uncertainty

Angular Uncertainty

Noise

- Took measurements with the howitzer pointed away from the source to measure noise
- Minimal noise detected, all at energies much less than our range of interest

Energy Distribution

- Landau distribution of energy loss allows us to consider all points as valid data
- Count rate sill affected by counting uncertainty

Angular Uncertainty

ullet Protractor read by eye contributes ± 1 degree uncertainty to angular measurements

April 26, 2017

Rutherford Scattering Effectively Predicts High-Angle Scattering

Uncertainty in Convolution Contributes Small Uncertainty in χ^2/ndf

Model	χ^2/ndf
Rutherford	1.89 ± 0.11
Thomson	1858 ± 24