

Gliederung

Einführung, Motivation

Vortrainingsmethoden

DetlE-Modell

Experimente und Ergebnisse

Ausblick und weitere Forschung

Einleitung, Motivation

- Bereich der Open Information Extraction (OIE)
 - > Teilbereich des NLP
 - > Extrahieren von strukturierten Fakten
- Nutzen der OIE
 - > automatischer Informationsgewinn
 - Wissensdatenbanken
- Encoder-Austausch am DetIE-Modell
 - > BERT-Encoder ersetzt

Praxis

- Erzielen großer Leistungsverbesserungen
- Anwendbarkeit für zukünftige OIE-Modelle:
 - → keine Minderung der Extraktionsgeschwindigkeit
 - → für alle OIE-Modelle anwendbar

Theorie

- Zusammenfassung relevanter BERT-Varianten
- Ermittlung allgemeiner Verbesserungskriterien:
 - → Schwierigkeit der Aufgabe
 - → Menge an Trainingsdaten

Einführung in die Sprachverarbeitung

Siehe Plakat

Verarbeitungsschritte von NLP und OIE

Erklärung von NLP und OIE

Vortrainingsmethoden

- BERT-Varianten
 - sind alle Transformer-Encoder
 - unterschiedliches Vortraining
- betrachtete BERT-Varianten
 - BERT
 - RoBERTa
 - ELECTRA
 - DeBERTa
 - DeBERTaV3

Transformer-Encoder

Vortrainingsmethoden – BERT und RoBERTa

- BERT-Varianten
 - sind alle Transformer-EncodeNext-Sentence-Prediction
 - unterschiedliches VortrainingMasked-Language-Modeling
- betrachtete BERT-VarianteRoBERTa-Modelle
 - BERT
 - RoBERTa
 - ELECTRA
 - DeBERTa
 - DeBERTaV3

- Next-Sentence-Prediction
- Dynamic Masking

BERT-Modelle

mehr Trainingsdaten

Transformer-Encoder

Vortrainingsmethoden – ELECTRA

- ELECTRA-Modelle
 - GAN-Struktur
 - Replaced Token Detection

DetlE-Modell

- DetIE-Modelle
 - aktuell leistungsfähigste Modell
 - Vorhersage in einem Durchlauf
 - hohe Extraktionsgeschwindigkeit
- Output $\underset{arg \, max}{arg \, max}$ filtern $P_{out} \in \mathbb{R}^{T \times N \times C} \xrightarrow{\downarrow} C_{out} \in \mathbb{R}^{T \times N} \xrightarrow{\downarrow} C_{out} \in \mathbb{R}^{T \times n}$
- Optimierung
 - optimale Zuordnung von Extraktionen und Lösungen

Gliederung

Einführung, Motivation

Vortrainingsmethoden

DetlE-Modell

Experimente und Ergebnisse

Ausblick und weitere Forschung

Untergliederung

- Experimentelles Setup
- Datensätze
- Bewertungsschemas
- Ergebnisse
- Auswertung

Experimentelles Setup

- Server mit 2 GPUs
 - TITAN V (12 GB RAM)
 - TITAN RTX (24 GB RAM)
- Original-Code benutzt
 - Trainingsdatensätze, Bewertungsschemas
 - PyTorch, Transformers, Hydra
 - Ca. 2000 Zeilen Code

ctive weights = self. get input and selective

Datensätze

Übersicht

Verwendung	Datensatz	Sätze	Tupel	
Training	IMoJIE	91.725	190.611	
	LSOIE	34.780	100.862	
Test	CaRB	641	2.715	
	OIE2016	3.200	10.359	

- LSOIE-Datensatz
 - Aus QA-SRL-Datensatz
 - Konvertierungs-Algorithmus

- IMoJIE-Datensatz
 - Aus Wikipedia-Artikeln
 - Nutzung von OIE-Modellen

Bewertungsschemas

Berechnung der Metriken

•
$$Prec = \frac{\sum_{t} |G_{t} \cap P_{t}|}{\sum_{t} |P_{t}|}$$
 $Rec = \frac{\sum_{t} |G_{t} \cap P_{t}|}{\sum_{t} |G_{t}|}$ $F1 = \frac{2*Prec*Rec}{Prec+Rec}$

- AUC: Fläche unter der Precision-Recall-Curve
- Bewertungsschemas
 - OIE2016
 - WiRe57
 - CaRB
 - CaRB(1-1)

Prozess der Messwertaufnahme

IMoJIE-Datensatz (92.000 Trainingssätze)

Ø-Verbesserungen • ohne IGL-CA: 1,0 F1- und 1,3 AUC-Punkte

• mit IGL-CA: keine Verbesserung

		CaRB-Bewertungsschemas							
Modell	Encoder	CaRB		CaR	B(1-1)	OIE16-C		WiRe57-C	
		F1	AUC	F1	AUC	F1	AUC	F1	
DetIE _{IMoJIE}	BERT	52,1	37,0	40,7	24,7	56,3	39,0	36,4	
DetIE _{IMoJIE+IGL-CA}	BERT	47,3	35,7	<u>43,2</u>	<u>29,8</u>	<u>67,4</u>	<u>54,2</u>	<u>37,7</u>	
DetIE _{IMoJIE}	RoBERTa	<u>52,6</u>	<u>37,2</u>	41,0	24,8	56,9	39,5	37,1	
DetIE _{IMoJIE+IGL-CA}	RoBERTa	48,1	35,9	43,8	30,0	67,7	54,0	39,0	
DetIE _{IMoJIE}	ELECTRA	52,7	37,9	41,5	25,5	58,3	41,1	37,0	
DetIE _{IMoJIE+IGL-CA}	ELECTRA	46,8	35,7	43,0	30,0	67,7	55,1	37,5	

LSOIE-Datensatz

(35.000 Trainingssätze)

Ø-Verbesserungen • ohne IGL-CA: keine Verbesserung

• mit IGL-CA: 1,1 F1- und 1,3 AUC-Punkte

		CaRB-Bewertungsschemas							
Modell	Encoder	CaRB		CaRE	3(1-1)	OIE16-C		WiRe57-C	
		F1	AUC	F1	AUC	F1	AUC	F1	
DetIE _{LSOIE}	BERT	35,1	24,6	32,2	20,7	65,9	<u>51,4</u>	28,4	
DetIE _{LSOIE+IGL-CA}	BERT	36,9	<u>26,9</u>	34,2	23,0	63,4	50,4	30,1	
DetIE _{LSOIE}	RoBERTa	35,4	24,0	32,8	20,8	63,0	47,9	29,6	
DetIE _{LSOIE+IGL-CA}	RoBERTa	38,1	26,6	35,4	<u>23,1</u>	63,7	50,0	31,5	
DetIE _{LSOIE}	ELECTRA	35,0	24,6	32,3	20,9	<u>65,7</u>	51,2	29,1	
DetIE _{LSOIE+IGL-CA}	ELECTRA	<u>37,1</u>	27,2	<u>34,7</u>	23,6	65,9	53,5	<u>31,1</u>	

Endresultate

(Vergleich mit bisherigen Modellen)

		CaRB-Bewertungsschemas							Geschwind.	
Modell Encoder		CaRB		CaRB(1-1)		OIE16-C		WiRe57-C	Geschwilla.	
		F1	AUC	F1	AUC	F1	AUC	F1	(Sätze je Sek.)	
IMoJIE*	BERT	<u>53,5</u>	33,3	41,4	22,2	56,8	39,6	36,0	2,6	
IGL-OIE*	BERT	52,4	33,7	41,1	22,9	55,0	36,0	34,9	142,0	
CIGL-OIE*	BERT	54,0	35,7	42,8	24,6	59,2	40,0	36,8	142,0	
OpenIE6*	BERT	52,7	33,7	46,4	26,8	65,6	48,4	40,0	31,7	
DetIE _{IMoJIE}	BERT	52,1	37,0	40,7	24,7	56,3	39,0	36,4	500,0	
DetIE _{IMoJIE+IGL-CA}	BERT	47,3	35,7	43,2	<u>29,8</u>	<u>67,4</u>	<u>54,2</u>	37,7	203,2	
DetIE _{IMoJIE}	RoBERTa	52,6	<u>37,2</u>	41,0	24,8	56,9	39,5	37,1	522,1	
DetIE _{IMoJIE+IGL-CA}	RoBERTa	48,1	35,9	<u>43,8</u>	30,0	67,7	54,0	<u>39,0</u>	206,4	
DetIE _{IMoJIE}	ELECTRA	52,7	37,9	41,5	25,5	58,3	41,1	37,0	511,9	
DetIE _{IMoJIE+IGL-CA}	ELECTRA	46,8	35,7	43,0	30,0	67,7	55,1	37,5	205,9	

Ausblick

- eigene Experimente beendet
 - relevante Verbesserungen: 1,1 F1 1,3 AUC
 - Verbesserungskriterien
 - DeBERTa-Modelle nicht f
 ür die OIE anwendbar
- zukünftige Forschung
 - erneutes Vortraining für DeBERTa-Encoder
 - absolutes <u>und</u> relatives Embedding
 - Verbesserungen in NLP und OIE erwartet
 - Vortraining: 2,6 und 16 TB GPU RAM nötig

DeBERTa-Experimente

Vielen Dank!

- Fragen und Diskussion

Vortrainingsmethoden – DeBERTa, DeBERTaV3

DeBERTa-Modelle

$$\tilde{A} = A_{c \to c} + A_{c \to p} + A_{p \to c}$$

Content-Matrizen:

$$Q_c = HW, K_c = HW$$

Positions-Matrizen:

$$Q_p = PW$$
, $K_p = PW$

- \triangleright Embedding $P \in \mathbb{R}^{2k \times d}$
- vektorweise Berechnungen (langsamer)
- höhere Leistungen
- DeBERTaV3-Modelle
 - Replaced Token Detection

Transformer-Encoder

DeBERTa-Experimente

DetIE-Struktur

Experiment-Konfigurationen

- Ergebnisse
 - immer noch sehr niedrige Leistungen
- <u>fehlendes absolutes</u>
 <u>Position-Embedding</u>

Sprachverarbeitung in Transformer-Modellen

- Transformer-Modelle
 - Encoder-Decoder-Struktur
- Scaled Dot-Product Attention

Multi-Head Attention

Quellenverzeichnis I/I

Transformer: A. Vaswani, N. Shazeer, P. Niki, U. Jakob, J. Llion, G. N. Aidan, K. Lukasz und P. Illia, "Attention Is All

You Need", arXiv:1706.03762v5, 2017.

ELECTRA: K. Clark, M.-T. Luong, Q.V. Le und C. D. Manning, "ELECTRA: Pre-training Text Encoders as

Discriminators Rather Than Generators", arXiv:2003.10555, 2020.

DeBERTa: P. He, X. Liu, J. Gao und W. Chen, "DeBERTa: Decoding-enhanced BERT with Disentangled

Attention", arXiv:2006.03654v6, 2021.

DetlE: M. Vasilkovsky, A. Alekseev, V. Malykh, I. Shenbin, E. Tutubalina, D. Salikhov, M. Stepnov, A. Chertok

und S. Nikolenko, "DetlE: Multilingual Open Information Extraction Inspired by Object Detection",

arXiv:2206.12514, 2022.

Uni Leipzig Logo: 2880px-Universität Leipzig logo - Institut für Testforschung und

Testentwicklung e.V. (ITT) (itt-leipzig.de). [Online]. https://itt-leipzig.de/ueber-

uns/2880px-universitaet_leipzig_logo/ [16.02.2022].

IMoJIE: K. Kolluru, S. Aggarwal, V. Rathore, Mausam und S. Chakrabarti, "IMoJIE:

Iterative Memory-Based Joint Open InformationExtraction", arXiv:2005.08178v1, 2020.

- Encoder-Decoder-Modell
- Additive und Copy-Attention
- Iterativer Mechanismus

Das IMoJIE-Modell