Credit Card Fraud Detection and Prevention

Predictive Analytics and Visualization for Proactive
Banking Fraud Detection

Hackathon #1: PSTB Gen Al Bootcamp 2025-Team "Mirage"

0-Dataset Identification and Merging

```
Début 🔽
1. Identifier la clé de jointure
(ex ; `user`, `amount`, `merchant`, `is_fraud`,
ètç.)
2. Vérifier la qualité de la clé
- Doublons ?
 Types compatibles ?
Çlés correspondantes ?
3. Fusionner les datasets
 pd.merge(df1, df2, how='left', on='clé')`
4. Nettoyer le résultat
 Gérer les NaN
Supprimer doublons
Vérifier dimensions
5. Analyse exploratoire des nouvelles colonnes
  Statistiques
  Visualisätions
  Corrélations
Fin - Dataset enrichi prêt pour la modélisation
```

Dataset fusionné

df_merged contient

10 lignes et 58 colonnes,
aucune valeur
manquante, et toutes les
colonnes attendues sont
présentes.

1-Dataset Final

Background:

Simulated dataset covering two years of banking transactions (2019-2020)

Volume: More than 1.2 million transactions, involving 1,000 customers and 800 merchants

Challenge:

Effectively identify rare frauds while minimizing false positives

2- Exploratory Analysis (EDA)

3- Pretreatment & Balancing

No missing values in the dataset

Standardization of transaction amounts to harmonize data

SMOTE applied to balance the training game (cheating/noncheating)

4- Feature Engineering

Creating key variables:

- Customer
 ← merchant distance (GPS coordinates)
- Temporal spikes (<60s)
- Hours/days, age, occupation, city population
- Binning (age, population) and categorization of amounts (round, atypical)

5- Modeling & Evaluation

- Models tested:
 - LogisticRegression:Baseline
 - Random Forest:good recall butslower
 - XGBoost(GPU): Bestoverall results
- Actual (test) results for XGBoost :
 - AUC = 0.98,
 Recall = 80%,
 Precision = 41%

6- Visualization & Dashboard

Visualizations: Matplotlib, Seaborn ,Folium for mapping

PowerBI: interactive dashboard with filters (category, geo, model score)

Business view to facilitate monitoring

7- Prevention

Proposed strategies:

- Dynamic thresholds on time, distance, merchants
- Alert in case of spikes or sudden changes in behavior

Additional data suggested:

 Fingerprinting, merchant blacklist, network analysis

Data type

Fingerprinting Device

User behavior

Blacklist

Graph analysis

Geolocation

User history

Examples

Device ID, OS type, resolution, browser, session ID

Session time, clicks, typing speed, mouse movements

Risky merchants, banned IPs, fraudulent emails

Shared cards/IDs, common IPs, similar addresses

Customer distance ↔ transaction, country/time inconsistencies

Purchase frequency, usual times, usual amounts

Main utility

Identify devices shared between accounts

Detect unusual or suspicious behavior

Block or alert upon detection of a known element

Identify organized groups or related frauds

Alert in case of impossible movements

Detect behavioral disruptions

8-Top 5 protections through knowledge

- 1. Know how to recognize a fraudulent site
- Check the URL, the presence of HTTPS, and avoid poorly translated or overly aggressive sites.
- 2. Know phishing techniques
- Never click on a suspicious email link (banks, fake fines, etc.).

- 3. Understand how twofactor authentication (2FA) works
- Know how to activate it and why it blocks most fraud.

- 4. Be aware of weak signs of fraud
- Repeated very low amounts, unusual location, activity outside of hours.

- 5. Know your rights and reflexes in the event of fraud
- Know that you can dispute a transaction and that the bank has obligations.

9-Behavioral Guide

X Guide du Mauvais Payeur (à éviter)

Comportement à éviter	Pourquoi c'est suspect	Risque détecté par l'algorithme
Transactions répétées en quelques secondes	Simule des tentatives automatisées	Spike comportemental, fraude "burst"
→ Paiements entre 2h et 5h du matin	Inhabituel pour la majorité des clients	Horaire à forte suspicion
Paiement soudain dans un autre pays ou région	Rupture brutale du schéma géographique	Anomalie de localisation
Montants très ronds ou trop faibles	Techniques typiques de tests de carte	Détection de "test" ou de fragmentation
	Le modèle détecte un shift comportemental	Suspect : piratage ou usage non autorisé
Raiements fréquents pour d'autres personnes	Usage tiers non déclaré	Soupçon de carte prêtée ou volée
usage d'un marchand inconnu ou douteux	Nouveau marchand mal noté ou hors de vos habitudes	Score de risque marchand élevé
Ville / ZIP code très rare pour vous	Peut être une usurpation ou une tentative	ZIP inhabituel, suspicion géolocalisée
• Profil jeune avec gros achat électronique	Décalage entre profil attendu et type d'achat	Détection de fraude générationnelle
☑ Usage d'un job/genre/âge surreprésenté dans la fraude	Le modèle peut associer une probabilité plus forte	Corrélation indirecte via biais appris

THANKS!

Questions

Useful links (GitHub, Notebook, Template)