The caret package

AUTHOR
Adapted by EVL, FRC and ASP

PUBLISHED
April 24, 2023

```
options(width=100)
if(!require("knitr")) install.packages("knitr")
library("knitr")
#getOption("width")
knitr::opts_chunk$set(comment=NA,echo = TRUE, cache=TRUE)
```

Introduction to caret

```
if(!require("caret")) install.packages("caret")
if(!require("mlbench")) install.packages("mlbench")
library("caret")
```

- The caret package, short for classification and regression training, was built with several goals in mind:
 - Create a unified interface for modeling and prediction (interfaces to more than 200 models),
 - Develop a set of semi-automated, reasonable approaches for optimizing the values of the tuning parameters for many of these models and
 - Increase computational efficiency using parallel processing

Guiding example

- The caret package can be used to perform a study from beginning to end.
- For this, it implements a set of general functions that can roughly be associated with the distinct steps of an analytical pipeline.
- We follow an example based on the sonar data from the mlbench package to illustrate the multiple functionalities of the package.

The goal is to predict two classes:

- M for metal cylinder
- R for rock

Data loading

```
library("mlbench")
data(Sonar)
names(Sonar)
```

[1] "V1" "V12"	"V2"	"V3"	"V4"	"V5"	"V6"	"V7"	"V8"	"V9"	"V10"	"V11"
[13] "V13" "V24"	"V14"	"V15"	"V16"	"V17"	"V18"	"V19"	"V20"	"V21"	"V22"	"V23"
[25] "V25" "V36"	"V26"	"V27"	"V28"	"V29"	"V30"	"V31"	"V32"	"V33"	"V34"	"V35"
[37] "V37" "V48"	"V38"	"V39"	"V40"	"V41"	"V42"	"V43"	"V44"	"V45"	"V46"	"V47"
[49] "V49" "V60" [61] "Class"	"V50"	"V51"	"V52"	"V53"	"V54"	"V55"	"V56"	"V57"	"V58"	"V59"
[] 01000										

The sonar package has 208 data points collected on 60 predictors (energy within a particular frequency band).

Train/test splitting

We will most of the time want to split the data into two groups: a training set and a test set.

This may be done with the createDataPartition function:

```
set.seed(1234) # Control of data generation
inTrain <- createDataPartition(y=Sonar$Class, p=.75, list=FALSE)
str(inTrain)

int [1:157, 1] 2 3 4 6 7 8 9 11 14 15 ...
- attr(*, "dimnames")=List of 2
    ..$: NULL
    ..$: chr "Resample1"

training <- Sonar[inTrain,]
testing <- Sonar[-inTrain,]
nrow(training)</pre>
```

[1] 157

Others similar functions are: createFolds and createResample,

Preprocessing and training

Usually, before prediction, data may have to be cleaned and pre-processed.

Caret allows to integrate it with the training step using the train function.

This function has multiple parameter such as:

- method: Can choose from more than 200 models
- preprocess: all type of filtering and transformations

```
CART1Model <- train (Class ~ .,

data=training,
```

```
method="rpart1SE",
    preProc=c("center","scale"))
CART1Model
```

```
CART

157 samples
60 predictor
2 classes: 'M', 'R'

Pre-processing: centered (60), scaled (60)
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 157, 157, 157, 157, 157, ...
Resampling results:

Accuracy Kappa
0.6752493 0.350363
```

Refining specifications

Many specifications can be passed using the trainControl instruction.

CART

```
157 samples
60 predictor
2 classes: 'M', 'R'

Pre-processing: centered (60), scaled (60)
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 141, 142, 142, 141, 141, 142, ...
Resampling results:

Accuracy Kappa
0.7087173 0.4168066
```

We can change the method used by changing the trainControl parameter.

In the example below we fit a classification tree with different options:

```
CART
157 samples
 60 predictor
  2 classes: 'M', 'R'
Pre-processing: centered (60), scaled (60)
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 141, 141, 142, 141, 141, 142, ...
Resampling results:
  ROC
             Sens
                    Spec
  0.7757068 0.775 0.6869048
 CART2Fit3x10cv <- train (Class ~ .,
                        data=training,
                        method="rpart",
                        trControl=ctrl,
```

CART

CART2Fit3x10cv

```
157 samples
60 predictor
2 classes: 'M', 'R'

Pre-processing: centered (60), scaled (60)

Resampling: Cross-Validated (10 fold, repeated 3 times)

Summary of sample sizes: 142, 142, 142, 142, 142, 140, ...

Resampling results across tuning parameters:

cp ROC Sens Spec
0.06849315 0.7033441 0.6851852 0.6779762
0.10958904 0.6829282 0.7523148 0.5922619
0.47945205 0.5517196 0.8629630 0.2404762

ROC was used to select the optimal model using the largest value.
```

The final value used for the model was cp = 0.06849315.

metric="ROC",

preProc=c("center","scale"))

plot(CART2Fit3x10cv)

CART

```
157 samples
60 predictor
  2 classes: 'M', 'R'
Pre-processing: centered (60), scaled (60)
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 141, 142, 140, 141, 141, 142, ...
Resampling results across tuning parameters:
              ROC
                         Sens
                                    Spec
  ср
 0.00000000 0.7375744 0.7305556 0.6220238
 0.05327245 0.7382523 0.7453704
                                   0.6130952
 0.10654490
             0.6816468
                         0.7773148
                                   0.5696429
  0.15981735 0.6787368
                        0.8092593
                                   0.5482143
```

```
      0.21308980
      0.6787368
      0.8092593
      0.5482143

      0.26636225
      0.6787368
      0.8092593
      0.5482143

      0.31963470
      0.6787368
      0.8092593
      0.5482143

      0.37290715
      0.6787368
      0.8092593
      0.5482143

      0.42617960
      0.6787368
      0.8092593
      0.5482143

      0.47945205
      0.5748016
      0.8680556
      0.2815476
```

ROC was used to select the optimal model using the largest value. The final value used for the model was cp = 0.05327245.

```
plot(CART2Fit3x10cv)
```


Predict & confusionMatrix functions

To predict new samples can be used predict function.

- type = prob : to compute class probabilities
- type = raw : to predict the class

The confusionMatrix function will compute the confusion matrix and associated statistics for the model fit.

```
CART2Probs <- predict(CART2Fit3x10cv, newdata = testing, type = "prob")
CART2Classes <- predict(CART2Fit3x10cv, newdata = testing, type = "raw")</pre>
```

```
confusionMatrix(data=CART2Classes,testing$Class)
```

```
Confusion Matrix and Statistics
```

Reference Prediction M R M 21 5

R 6 19

Accuracy : 0.7843

95% CI: (0.6468, 0.8871)

No Information Rate : 0.5294
P-Value [Acc > NIR] : 0.0001502

Kappa : 0.5681

Mcnemar's Test P-Value: 1.0000000

Sensitivity: 0.7778
Specificity: 0.7917
Pos Pred Value: 0.8077
Neg Pred Value: 0.7600
Prevalence: 0.5294
Detection Rate: 0.4118

Detection Prevalence : 0.5098
Balanced Accuracy : 0.7847

'Positive' Class : M

Model comparison

The resamples function enable smodel comparison

```
Call:
```

summary.resamples(object = resamps)

Models: CART2, CART1 Number of resamples: 30

ROC

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's CART2 0.5000000 0.6294643 0.7455357 0.7382523 0.8058036 0.952381 0 CART1 0.5535714 0.7249504 0.7926587 0.7757068 0.8315972 0.937500 0

Sens

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

CART2 0.4444444 0.6250000 0.7500000 0.7453704 0.875 1 0 CART1 0.4444444 0.6666667 0.7777778 0.7750000 0.875 1 0

Spec

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's CART2 0.250 0.5714286 0.6250000 0.6130952 0.7142857 0.8750000 0 CART1 0.375 0.5714286 0.7142857 0.6869048 0.8571429 0.8571429 0

```
xyplot(resamps, what="BlandAltman")
```



```
diffs<-diff(resamps)
summary(diffs)</pre>
```

```
Call:
summary.diff.resamples(object = diffs)
```

p-value adjustment: bonferroni

Upper diagonal: estimates of the difference Lower diagonal: p-value for H0: difference = θ

ROC

CART2 CART1
CART2 -0.03745

CART1 0.1598

Example: Comparison of boosting methods

We use the caret package and the BreastCancer dataset.

Adaboost

In this example, we are using the rpart algorithm as the base learner for AdaBoost. We can then use the predict function to make predictions on new data:

```
library(caret)
library(mlbench)
data(BreastCancer)
# Split the data into training and testing sets
set.seed(123)
trainIndex <- createDataPartition(BreastCancer$Class, p = 0.7, list = FALSE)
training <- BreastCancer[trainIndex, ]</pre>
testing <- BreastCancer[-trainIndex, ]</pre>
# Next, set up
# - the training control and
# - tuning parameters for the AdaBoost algorithm:
ctrl <- trainControl(method = "repeatedcv",</pre>
                      number = 10, repeats = 3,
                      classProbs = TRUE,
                      summaryFunction = twoClassSummary)
params <- data.frame(method = "AdaBoost",</pre>
                      nIter = 100,
                      interaction.depth = 1,
                      shrinkage = 0.1)
# we are using 10-fold cross-validation with 3 repeats and the twoClassSummary function for e
# We are also setting the number of iterations for the AdaBoost algorithm to 100, the maximum
# Use the train function to train the AdaBoost algorithm on the training data and evaluate its
adaboost <- train(Class ~ ., data = training,</pre>
```

```
method = "rpart",
    trControl = ctrl,
    tuneGrid = params)

predictions <- predict(adaboost, newdata = testing)

# Evaluate the performance of the model
confusionMatrix(predictions, testData$diagnosis)</pre>
```

Gradient boosting

We use the gbm method in train() function from the caret package to build a Gradient Boosting model on the Breast Cancer dataset.

```
library(caret)
library(gbm)
data(BreastCancer)
# Convert the diagnosis column to a binary factor
BreastCancer$diagnosis <- ifelse(BreastCancer$diagnosis == "M", 1, 0)
# Split the dataset into training and testing sets
trainIndex <- createDataPartition(BreastCancer$diagnosis, p = 0.7, list = FALSE)
trainData <- BreastCancer[trainIndex, ]</pre>
testData <- BreastCancer[-trainIndex, ]</pre>
# Define the training control
ctrl <- trainControl(method = "cv", number = 10, classProbs = TRUE, summaryFunction = twoClass</pre>
# Define the Gradient Boosting model
model <- train(diagnosis ~ ., data = trainData, method = "gbm", trControl = ctrl,</pre>
               verbose = FALSE, metric = "ROC", n.trees = 1000, interaction.depth = 3, shrinka
# Make predictions on the testing set
predictions <- predict(model, testData)</pre>
# Evaluate the performance of the model
confusionMatrix(predictions, testData$diagnosis)
```

XGBoost

- In this example, we use the xgbTree method in train() function from the caret package to build an XGBoost model on the BreastCancer dataset.
- The hyperparameters are set to default values, except for parameters:
 - nrounds,

- o max_depth,
- o eta, lambda, and
- o alpha
- The final performance is evaluated using a confusion matrix.

```
library(caret)
library(xgboost)
data(BreastCancer)
# Convert the diagnosis column to a binary factor
BreastCancer$diagnosis <- ifelse(BreastCancer$diagnosis == "M", 1, 0)
# Split the dataset into training and testing sets
trainIndex <- createDataPartition(BreastCancer$diagnosis, p = 0.7, list = FALSE)
trainData <- BreastCancer[trainIndex, ]</pre>
testData <- BreastCancer[-trainIndex, ]</pre>
# Define the training control
ctrl <- trainControl(method = "cv", number = 10, classProbs = TRUE, summaryFunction = twoClass
# Define the XGBoost model
model <- train(diagnosis ~ .,</pre>
               data = trainData,
               method = "xgbTree", trControl = ctrl,
               verbose = FALSE, metric = "ROC",
               nrounds = 1000, max_depth = 3,
               eta = 0.01, lambda = 1, alpha = 0)
# Make predictions on the testing set
predictions <- predict(model, testData)</pre>
# Evaluate the performance of the model
confusionMatrix(predictions, testData$diagnosis)
```

References

- Caret tutorial at UseR! 2014
- Website/detailed help pages
- JSS Paper
- Applied Predictive Modeling Blog
- Caret cheatsheet in Rstudio cheatsheet page