Homework: Basic Tree Data Structures

This document defines the homework assignments for the "Data Structures" course @ Software University.

Problem 0. Introduction

You are given a **tree of N nodes** represented as a set of N-1 pairs of nodes (parent node, child node). Below are the operations that you are going implement.

Input	Comments	Tree	Definitions
9 7 19 7 21 7 14 19 1 19 12 19 31 14 23 14 6 27 43	Comments $N = 9$ Nodes: $7 \rightarrow 19$, $7 \rightarrow 21$, $7 \rightarrow 14$, $19 \rightarrow 1$, $19 \rightarrow 12$, $19 \rightarrow 31$, $14 \rightarrow 23$, $14 \rightarrow 6$ $P = 27$ $S = 43$	Tree 7 19 21 14 1 12 31 23 6	Definitions Root node: 7 Leaf nodes: 1, 6, 12, 21, 23, 31 Middle nodes: 14, 19 Leftmost deepest node: 1 Longest path: 7 -> 19 -> 1 (length = 3) Paths of sum 27: 7 -> 19 -> 1 7 -> 14 -> 6 Subtrees of sum 43: 14 + 23 + 6

Problem 1. Root Node

Write a program to read the tree and find its **root** node:

Input	Output	Tree
9	Root node: 7	7
7 19		
7 21		
7 14		
19 1		(19) (21) (14)
19 12		
19 31		
14 23		
14 6		$\begin{array}{ c c c c c c }\hline 1 & (12) & (31) & (23) & (6) \\\hline \end{array}$

Hints

Use the recursive **Tree<T>** definition. Keep the **value**, **parent** and **children** for each tree node:

```
public class Tree<T>
{
    public T Value { get; set; }
    public Tree<T> Parent { get; set; }
    public List<Tree<T>> Children { get; private set; }

    public Tree(T value, params Tree<T>[] children)...
}
```

Modify the **Tree<T> constructor** to **assign a parent** for each child node:


```
public Tree(T value, params Tree<T>[] children)
{
    this.Value = value;
    this.Children = new List<Tree<T>>();
    foreach (var child in children)
    {
        this.Children.Add(child);
        child.Parent = this;
    }
}
```

Use a **dictionary** to map nodes by their value. This will allow you to find the tree nodes during the tree construction (when you read the input data, you get the node values):

```
public class Program
{
    static Dictionary<int, Tree<int>> nodeByValue = new Dictionary<int, Tree<int>>();
    static void Main()
    {
        // Problem solution
    }
}
```

Write a method to find the tree node by its value or create a new node if it does not exist:

```
static Tree<int> GetTreeNodeByValue(int value)
{
    if (!nodeByValue.ContainsKey(value))
    {
        nodeByValue[value] = new Tree<int>(value);
    }
    return nodeByValue[value];
}
```

Create a method for adding an edge to the tree

```
public void AddEdge(int parent, int child)
{
    Tree<int> parentNode = GetTreeNodeByValue(parent);
    Tree<int> childNode = GetTreeNodeByValue(child);

    parentNode.Children.Add(childNode);
    childNode.Parent = parentNode;
}
```

Now you are ready to **create the tree**. You are given the **tree edges** (parent + child). Use the dictionary to lookup the parent and child nodes by their values:


```
static void ReadTree()
{
   int nodeCount = int.Parse(Console.ReadLine());
   for (int i = 1; i < nodeCount; i++)
   {
      string[] edge = Console.ReadLine().Split(' ');
      AddEdge(int.Parse(edge[0]), int.Parse(edge[1]));
   }
}</pre>
```

Finally, you can find the root (the node that has no parent)

```
static Tree<int> GetRootNode()
{
    return nodeByValue.Values
        .FirstOrDefault(x => x.Parent == null);
}
```

Problem 2. Print Tree

Write a program to read the tree from the console and print it in the following format (each level indented +2 spaces):

Input	Output	Tree
9	7	7
7 19	19	
7 21	1	
7 14	12	
19 1	31	(19) (21) (14)
19 12	21	
19 31	14	
14 23	23	
14 6	6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Hints

Find the root and recursively print the tree

Problem 3. Leaf Nodes

Write a program to read the tree and find all **leaf** nodes (in increasing order):

Input	Output	Tree
9	Leaf nodes: 1 6 12 21 23 31	7
7 19		
7 21		
7 14		
19 1		(19) (21) (14)
19 12		
19 31		
14 23		
14 6		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Hints

Problem 4. Middle Nodes

Write a program to read the tree and find all **middle** nodes (in increasing order):

Input	Output	Tree
9	Middle nodes: 14 19	7
7 19		
7 21		
7 14		
19 1		(19) (21) (14)
19 12		
19 31		
14 23		
14 6		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Hints

```
static void PrintMiddleNodes()
{
    var nodes = nodeByValue.Values
        .Where(x => x.Parent != null && x.Children.Count != 0)
        .Select(x => x.Value)
        .OrderBy(x => x)
        .ToList();

Console.WriteLine("Middle nodes: " + string.Join(" ", nodes));
}
```

Problem 5. * Deepest Node

Write a program to read the tree and find its deepest node (leftmost):

Input	Output	Tree
9	Deepest node: 1	7
7 19		\rightarrow
7 21		
7 14		
19 1		(19) (21) (14)
19 12		$\mathcal{H} \cup \mathcal{H}$
19 31		/ \
14 23		
14 6		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Problem 6. Longest Path

Find the longest path in the tree (the leftmost if several paths have the same longest length)

Input	Output	Tree
9	Longest path: 7 19 1	7
7 19		
7 21		
7 14		$\langle \rangle \rangle$
19 1		(19) (21) (14)
19 12		$\mathcal{M} \cup \mathcal{M}$
19 31		
14 23		(1) (12) (31) (23) (6)
14 6		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Problem 7. All Paths With a Given Sum

Find all paths in the tree with given sum of their nodes (from the leftmost to the rightmost)

Input	Output	Tree
9	Paths of sum 27:	7
7 19 7 21	7 19 1 7 14 6	
7 14	7 14 0	_/
19 1		(19) (21) (14)
19 12		$\mathcal{H} \cup \mathcal{H}$
19 31		
14 23		(1) (12) (31) (23) (6)
14 6		
27		

Problem 8. * All Subtrees With a Given Sum

Find all **subtrees with given sum** of their nodes (from the leftmost to the rightmost). Print subtrees in **pre-order** sequence

Input	Output	Tree
9 7 19 7 21 7 14 19 1 19 12 19 31 14 23 14 6 43	Subtrees of sum 43: 14 23 6	1 12 31 23 6

