1 Convergence normale

1.1 Définition

Définition 1

Soit $\sum f_n$ une série de fonctions sur I.

On dit que
$$\sum f_n$$
 converge normalement sur I si
$$\begin{cases} \bullet \text{ pour } n \text{ assez grand } \sup_{x \in I} |f_n(x)| \text{ existe} \\ \text{et} \\ \bullet \text{ la série numérique } \sum_{x \in I} |f_n(x)| \text{ est convergente.} \end{cases}$$

Exemple

Soit la série de fonctions $\sum f_n$ définie pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}^*$ par

$$f_n(x) = \frac{\cos(nx)}{n^{\alpha}}$$

Étudier la convergence normale de $\sum f_n$ revient à étudier la convergence de la série numérique $\sum \sup_{x \in \mathbb{R}} |f_n(x)|$.

$$\mathrm{Or} \, \sup_{x \in \mathbb{R}} \bigl| f_n(x) \bigr| = \frac{1}{n^\alpha} \, \, \mathrm{et} \, \sum \frac{1}{n^\alpha} \, \, \mathrm{converge \, ssi} \, \, \alpha > 1.$$

Ainsi $\sum f_n$ converge normalement sur \mathbb{R} ssi $\alpha > 1$.

2 Lien entre la convergence normale et la convergence uniforme

Proposition 1

Soit $\sum f_n$ une série de fonctions de I dans \mathbb{R} convergeant normalement sur I.

Alors $\sum f_n$ converge uniformément sur I.