Faculté de Technologie

Département d'électrotechnique

Electronique de puissance (LET,52)

Chapitre 4

Les Convertisseurs Alternatifs/Continu

Les Montages Redresseurs triphasés non commandés

4-1-Introduction

4-2 Groupement de diodes - Règles de mise en conduction

L'idée ici est de déterminer quelle est la diode conductrice dans le cas de groupements de diodes. Les cas étudiés concernent des groupements de 2 diodes mais le principe peut se généraliser à un groupement de n diodes. De façon à déterminer la diode conductrice, nous raisonnerons par l'absurde.

a-Diodes à cathodes communes

La Figure 1 représente 2 diodes à cathodes communes.

Hypothèses:

- Le courant i est supposé positif
- $-V_1 > V_2$
- Diodes idéales

Détermination de la diode conductrice :

1. Si D_1 est passante, la tension aux bornes de D_2 (en convention récepteur) vaut :

$$V_{D2} = V_1 - V_2 < 0$$

La diode D_2 est donc bloquée.

Figure 1 – Diodes à cathodes communes.

2. Si D_2 est passante, la tension aux bornes de D_1 (en convention récepteur) vaut :

$$V_{D1} = V_1 - V_2 > 0$$

Ce qui est impossible compte-tenu de la caractéristique idéale de la diode.

Dans le cas d'un groupement de diodes à cathodes communes, la diode conductrice est celle qui voit son potentiel d'anode le plus élevé.

b-Diodes à anodes communes

La Figure 2 représente 2 diodes à anodes communes.

Figure 2 – Diodes à anodes communes.

Hypothèses:

- Le courant i est supposé positif

$$-V_1 > V_2$$

- Diodes idéales

Détermination de la diode conductrice :

1. Si D2 est passante, la tension aux bornes de D1 (en convention récepteur) vaut :

$$V_{D1} = V_2 - V_1 < 0$$

La diode D_1 est donc bloquée.

2. Si D_1 est passante, la tension aux bornes de D_2 (en convention récepteur) vaut :

$$V_{D2} = V_1 - V_2 > 0$$

Ce qui est impossible compte-tenu de la caractéristique idéale de la diode.

Dans le cas d'un groupement de diodes à anodes communes, la diode conductrice est celle qui voit son potentiel de cathode le moins élevé.

3-1-5.1 Etude du montage redresseur parallèle simple P3:

3-1-1-charge résistive

a- Montage

$$v_{1} = V_{M} \cdot \sin\theta$$

$$v_{2} = V_{M} \cdot \sin(\theta - 120)$$

$$v_{3} = V_{M} \cdot \sin(\theta - 240)$$

$$\operatorname{avec} \theta = \omega \cdot t; \ \omega = 2 \cdot \pi \cdot f;$$

$$f = \frac{1}{T} = 50 Hz \rightarrow T = 20 ms, T = 2 \cdot \pi$$

$$V_{M} = V_{eff} \cdot \sqrt{2}$$

b- Principe de fonctionnement

Les différentes phases de fonctionnement du montage sont alors décrites par le tableau suivant:

Intervalles	Diodes passantes	Tension redressé	Tensions aux bornes des diodes bloquées
$\frac{\pi}{6} < \theta < \frac{5\pi}{6}$	D_1	$u_C = v_1$	$v_{D1}=0$
$\frac{5\pi}{6} < \theta < \frac{3\pi}{2}$	D_2	$u_C = v_2$	$v_{1-}v_{D1}-u_c \Rightarrow v_{D1} = v_1-u_c = v_1-v_2 = u_{12}$
$\frac{3\pi}{2} < \theta < \frac{13\pi}{6}$	D_3	$u_C = v_3$	$v_{1-}v_{D1}-u_c \Rightarrow v_{D1} = v_1-u_c = v_1-v_3 = u_{13}$

D'où $u_{\mathcal{C}}$ et $i_{\mathcal{C}}$ ont la même forme

c- Valeur moyenne de la tension $u_{\mathcal{C}}$ et du courant $i_{\mathcal{C}}$

$$\langle u_C \rangle = \frac{3}{2 \cdot \pi} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} v_C \cdot d\theta = \frac{3}{2 \cdot \pi} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} V_M \cdot \sin\theta \cdot d\theta = \frac{3 \cdot V_M}{2 \cdot \pi} [-\cos\theta]_{\frac{\pi}{6}}^{\frac{5\pi}{6}} = \frac{3 \cdot \sqrt{3} \cdot V_M}{2 \cdot \pi}$$

- La valeur moyenne de la tension de sortie est positive et dépend des paramètres de la tension.
- ullet La tension maximale à supporter par le thyristor en inverse est: $V_{Tmax} = -\sqrt{3} \cdot V_{M}$

$$\langle i_C \rangle = \frac{\langle v_C \rangle}{R} = \frac{3 \cdot \sqrt{3} \cdot V_M}{2 \cdot \pi \cdot R}$$

 $\langle i_1 \rangle = \langle i_D \rangle = \frac{\langle i_C \rangle}{3}$

3.1.2- Débit sur une charge fortement inductive

a- Montage

$$v_1 = V_M \cdot \sin\theta$$

$$v_2 = V_M \cdot \sin(\theta - 120)$$

$$v_3 = V_M \cdot \sin(\theta - 240)$$

$$\operatorname{avec} \theta = \omega \cdot t; \ \omega = 2 \cdot \pi \cdot f;$$

$$f = \frac{1}{T} = 50 Hz \rightarrow T = 20 ms, T = 2 \cdot \pi$$

$$V_M = V_{eff} \cdot \sqrt{2}$$

b- Principe de fonctionnement

Les différentes phases de fonctionnement du montage sont alors décrites par le tableau suivant:

Intervalles	Diodes passantes	Tension redressé	Tensions aux bornes des diodes bloquées
$\frac{\pi}{6} < \theta < \frac{5\pi}{6}$	D_1	$u_C = v_1$	$v_{D1}=0$
$\frac{5\pi}{6} < \theta < \frac{3\pi}{2}$	D_2	$u_C = v_2$	$v_1 - v_{D1} - u_c \Rightarrow v_{D1} = v_1 - u_c = v_1 - v_2$ $= u_{12}$

3π 13π	D	21 - 22	$v_1 - v_{D1} - u_c \Rightarrow v_{D1} = v_1 - u_c = v_1 - v_3$
${2}$ $< \theta < {6}$	D_3	$u_C = v_3$	$= u_{13}$

c- Valeur moyenne de la tension $u_{\mathcal{C}}$ **et du courant** $i_{\mathcal{C}}$

$$\langle u_C \rangle = \frac{3}{2 \cdot \pi} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} v_C \cdot d\theta = \frac{3}{2 \cdot \pi} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} V_M \cdot \sin\theta \cdot d\theta = \frac{3 \cdot V_M}{2 \cdot \pi} [-\cos\theta]_{\frac{\pi}{6}}^{\frac{5\pi}{6}} = \frac{3 \cdot \sqrt{3} \cdot V_M}{2 \cdot \pi}$$

- La valeur moyenne de la tension de sortie est positive et dépend des paramètres de la tension.
- La tension maximale à supporter par le thyristor en inverse est: $V_{Tmax} = -\sqrt{3} \cdot V_{M}$

$$\langle i_C \rangle = I_C$$

 $\langle i_1 \rangle = \langle i_D \rangle = \frac{I_C}{3}$

3.1.2- Débit sur une charge R-E

a- Montage

$$\begin{aligned} v_1 &= V_M \cdot sin\theta \\ v_2 &= V_M \cdot sin(\theta - 120) \\ v_3 &= V_M \cdot sin(\theta - 240) \\ \text{avec } \theta &= \omega \cdot t; \ \omega = 2 \cdot \pi \cdot f; \\ f &= \frac{1}{T} = 50 \text{Hz} \rightarrow T = 20 \text{ms}, T = 2 \cdot \pi \\ V_M &= V_{eff} \cdot \sqrt{2} \end{aligned}$$

b- Principe de fonctionnement

Les différentes phases de fonctionnement du montage sont alors décrites par le tableau suivant:

Intervalles	Diodes passantes	Tension redressé
$(v_1 ou \ v_2 ou \ v_3) > E$	$D_1ou D_2ou D_3$	$u_C = (v_1 ou \ v_2 ou \ v_3)$
$(v_1 ou \ v_2 ou \ v_3) < E$	0	$u_C = E$

c- Valeur moyenne de la tension $u_{\mathcal{C}}$ **et du courant** $i_{\mathcal{C}}$

$$\langle u_C \rangle = \frac{3}{2 \cdot \pi} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} v_C \cdot d\theta = \frac{3}{2 \cdot \pi} \int_{\frac{\pi}{6}}^{\theta_1} E \cdot d\theta + \frac{3}{2 \cdot \pi} \int_{\theta_1}^{\theta_2} V_M \cdot \sin\theta \cdot d\theta + \frac{3}{2 \cdot \pi} \int_{\theta_2}^{\frac{5\pi}{6}} E \cdot d\theta$$

- La valeur moyenne de la tension de sortie est positive et dépend des paramètres de la tension.
- La tension maximale à supporter par le thyristor en inverse est: $V_{Tmax} = -\sqrt{3} \cdot V_{M}$

$$\langle i_C \rangle = \frac{\langle u_C \rangle - E}{R}$$

$$\langle i_1 \rangle = \langle i_D \rangle = \frac{\langle i_C \rangle}{3}$$

3-1-5.1 Etude du montage redresseur parallèle simple P3 (Groupement cathodique):

a- Montage

$$v_{1} = V_{M} \cdot sin\theta$$

$$v_{2} = V_{M} \cdot sin(\theta - 120)$$

$$v_{3} = V_{M} \cdot sin(\theta - 240)$$

$$avec \theta = \omega \cdot t; \ \omega = 2 \cdot \pi \cdot f;$$

$$f = \frac{1}{T} = 50Hz \rightarrow T = 20ms, T = 2 \cdot \pi$$

$$V_{M} = V_{eff} \cdot \sqrt{2}$$

b- Principe de fonctionnement

Les différentes phases de fonctionnement du montage sont alors décrites par le tableau suivant:

Intervalles	Diodes passantes	Tension redressé	Tensions aux bornes de la diode D_1
$\frac{\pi}{2} < \theta < \frac{7\pi}{6}$	D_3	$u_C = v_3$	$v_1 + v_{D1} - u_c \Rightarrow v_{D1} = u_c - v_1 = v_3 - v_1$
2 6	- 3		$=u_{31}=-u_{13}$
$\frac{7\pi}{6} < \theta < \frac{8\pi}{3}$	D_1	$u_C = v_1$	$v_{D1} = 0$
0 3			
$\frac{8\pi}{3} < \theta < \frac{10\pi}{3}$	D_2	$u_C = v_2$	$v_1 + v_{D1} - u_c \Rightarrow v_{D1} = u_c - v_1 = v_2 - v_1$
3 3	22	mt - v2	$=u_{21}=-u_{12}$

3-2- Redressement double alternances commandé par thyristor

3-2-1-redresseur en pont sur une charge résistive

a- Montage

b- Principe de fonctionnement

Les trois diodes $D_{1,}, D_{2,}, D_{3,}$ forment un commutateur plus positif, qui laisse passer à tout instant la plus positive des tensions, et les diodes $D_{4,}, D_{5,}, D_{6,}$ forment un commutateur plus négatif, qui laisse passer la plus négative des tensions. La tension redressée est à tout instant la différence entre ces deux tensions, soit :

Les différentes phases de fonctionnement du montage sont alors décrites par le tableau suivant:

Intervalles	Diodes passantes	Tension redressé	Tensions aux bornes de la diode $D_{1,}$
$\frac{\pi}{6} < \theta < \frac{\pi}{2}$	$D_{1,}D_{5}$	$u_C = v_1 - v_2 = u_{12}$	$v_{D1} = 0$
$\frac{\pi}{2} < \theta < \frac{5 \cdot \pi}{6}$	$D_{1,}D_{6}$	$u_C = v_1 - v_3 = u_{13}$	$v_{D1}=0$
$\frac{5 \cdot \pi}{6} < \theta < \frac{7 \cdot \pi}{6}$	$D_{2,}D_{6}$	$u_C = v_2 - v_3 = u_{23}$	$v_{D1} = v_1 - v_2 = u_{12}$
$\frac{7 \cdot \pi}{6} < \theta < \frac{3 \cdot \pi}{2}$	$D_{2,}D_{4}$	$u_C = v_2 - v_1 = u_{21}$	$v_{D1} = v_1 - v_2 = u_{12}$
$\frac{3 \cdot \pi}{2} < \theta < \frac{11 \cdot \pi}{6}$	$D_{3,}D_{4}$	$u_C = v_1 - v_2 = u_{31}$	$v_{D1} = v_1 - v_3 = u_{13}$
$\frac{11 \cdot \pi}{6} < \theta < \frac{13 \cdot \pi}{6}$	$D_{3,}D_{5}$	$u_C = v_1 - v_3 = u_{32}$	$v_{D1} = v_1 - v_3 = u_{13}$

c- Valeur moyenne de la tension $v_{\mathcal{C}}$ et du courant $i_{\mathcal{C}}$

$$\langle u_C \rangle = \frac{6}{2\pi} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} u_C \cdot d\theta = \frac{6}{2\pi} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} V_M \cdot \left(\sin\theta - \sin\left(\theta - \frac{2\pi}{3}\right) \right) \cdot d\theta = \frac{3V_M}{\pi} \left\{ \left[-\cos\theta \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} + \left[\cos\left(\theta - \frac{2\pi}{3}\right) \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} \right\}$$

$$= \frac{3\sqrt{3}V_M}{\pi}$$

$$\langle i_C \rangle = \frac{\langle v_C \rangle}{R} = \frac{3\sqrt{3}V_M}{\pi R}$$

$$\langle i_{D1} \rangle = \frac{\langle i_C \rangle}{3} =$$

$$\langle i_1 \rangle$$

3-2-2-redresseur en pont sur une charge résistive R-L

la charge est frottement inductive $L>>R\Rightarrow i_{\mathcal{C}}=I_{\mathcal{C}}$

b- Principe de fonctionnement

c- Valeur moyenne de la tension $v_{\mathcal{C}}$ et du courant $i_{\mathcal{C}}$

$$\langle u_C \rangle = \frac{6}{2\pi} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} u_C \cdot d\theta = \frac{6}{2\pi} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} V_M \cdot \left(\sin\theta - \sin\left(\theta - \frac{2\pi}{3}\right) \right) \cdot d\theta = \frac{3V_M}{\pi} \left\{ \left[-\cos\theta \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} + \left[\cos\left(\theta - \frac{2\pi}{3}\right)_{\frac{\pi}{6}}^{\frac{\pi}{2}} \right] \right\}$$

$$= \frac{3\sqrt{3}V_M}{\pi}$$

$$\langle i_{D1} \rangle = \frac{I_C}{3}$$
$$\langle i_1 \rangle = 0$$

3-2-3-redresseur en pont sur une charge R-E

a- Montage

b- Principe de fonctionnement

On amorce le thyristor à $\omega \cdot t_1 = \alpha$

c- Valeur moyenne de la tension $v_{\mathcal{C}}$ et du courant $i_{\mathcal{C}}$

$$\begin{split} \langle u_C \rangle &= \frac{6}{2\pi} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} u_C \cdot d\theta = \frac{2 \cdot 6}{2\pi} \int_{\frac{\pi}{6}}^{\theta_1} E \cdot d\theta + \frac{6}{2\pi} \int_{\theta_1}^{\theta_1} V_M \cdot \left(\sin\theta - \sin\left(\theta - \frac{2\pi}{3}\right) \right) \cdot d\theta \\ \\ v_C &= R \cdot i_C + E \Rightarrow \langle v_C \rangle = R \cdot \langle i_C \rangle + E \\ \\ \langle i_C \rangle &= \frac{\langle v_C \rangle - E}{R} \\ \\ \langle i_{D1} \rangle &= \frac{I_C}{3} \\ \\ \langle i_2 \rangle &= 0 \end{split}$$

