- 1. (10 pts.) Is it possible to have a continuous and differentiable function f that satisfies the following:
 - f(0) = -1
 - f(2) = 4
 - $f'(x) \leq 2$ for all values of x.

If so, sketch a graph of such a function f. If not, justify why not.

Such a function would be continuous on [0,2] and differentiable on (0,2), so by the Mean Value Theorem. There would be a number c in (0,2) for which $f(c) = \frac{f(2) - f(6)}{2} = \frac{4 - (-1)}{2} = \frac{5}{2} = 2.5$

However, this is impossible, because, as stated, $f(x) \leq 2$ for all x, but for x=c f(x) > 2.

Answer It is not possible to have such a function

- 2. (10 pts.) Information about a function f and its derivative is given in the table below.
 - (a) Find the linear approximation L(x) of f(x) at x = 4. Write your answer in the form L(x) = mx + b.

L(x) = f(a) + f(a)(x - a)	
L(x) = f(4) + f(4)(x-4)	
= 1 + 2(x-4)	
$= 1 + 2 \times - 8$	

x	0	2	4	6	8	10
f(x)	-3	-2	1	6	6	3
f'(x)	5	3	2	1	0	- 2

(b) Use this to find an approximate value of f(4.5).

 $f(4.5) \approx L(4.5) = 2.4.5 - 7 = 9 - 7 = 2$ $f(4.5) \approx L(4.5) \approx 2$