A Burning Rate Emulator (BRE) for Study in Microgravity

A. Markan, P.B. Sunderland, J.G. Quintiere*¹, J. DeRis², D.P. Stocker³

¹Dept. of Fire Protection Engineering, University of Maryland, College Park, MD 20742, USA

²retired, FM Global, Norwood, MA 02062, USA

³NASA Glenn Research Center, Cleveland, OH 44135, USA

Acknowledgements to

F. Takahashi⁴, P.V. Ferkul⁵

⁴Case Western Reserve University, Cleveland, OH 44106, USA

⁵Universities Space Research Assoc, NASA Glenn Research Center, Cleveland, OH 44135, USA

NASA GRC Award NNX10AD98G

Objective & proof of concept

Seek to emulate the steady burning conditions of condensed fuels by using a gas burner.

ASGSR 2015 Alexandria, VA

Method

- 1 heat of gasification by flow rate and heat flux measurements
- 2 heat of combustion by a mixture of gaseous fuel and diluent
- 3 surface re-radiation by temperature measurement
- 4 smoke point by fuel diluent mixture.

Tests: NASA 5.18 s

- About 53 tests Varying:
 - Diameter: 25, 50 mm
 - \Rightarrow Fuel: CH₄, C₂H₄ w & wo N₂
 - 9 Flow rate 3.5 to 12.7 g/m²s
 - Pressure 0.5 to 1 atm
 - Oxygen 21 to 30%
- Fix heat of combustion
- **%** & smoke point
- Obtain L and Ts

	-			-		
Symbol	Gas	Burning rate	X ₀₂	P	Δh_c	SP
		(g/m²-s)		(atm)	(kJ/g)	(mm)
0	100% CH ₄	9.05	30%	1	49.6	∞
0	100% CH ₄	6.67	30%	1	49.6	00
0	100% CH ₄	6.67	21%	1	49.6	∞
0	100% CH ₄	6.67	30%	1	49.6	∞
0	100% CH ₄	12.71	30%	1	49.6	∞
0	100% CH ₄	4.72	30%	1	49.6	00
0	100% CH ₄	12.71	30%	1	49.6	00
0	100% CH ₄	9.05	30%	1	49.6	00
•	100% C ₂ H ₄	6.02	21%	1	41.5	120
•	100% C ₂ H ₄	6.02	21%	1	41.5	120
•	100% C ₂ H ₄	4.63	21%	1	41.5	120
•	100% C ₂ H ₄	3.48	21%	1	41.5	120
	100% C ₂ H ₄	3.48	30%	1	41.5	NA
	100% C ₂ H ₄	3.48	30%	0.7	41.5	NA
A	100% C ₂ H ₄	3.48	26%	0.81	41.5	NA
Δ	100% C ₂ H ₄	3.48	26%	1	41.5	NA
	100% C ₂ H ₄	3.48	30%	0.5	41.5	NA
	100% C ₂ H ₄	3.48	30%	0.5	41.5	NA
•	50% C ₂ H ₄	6.95	21%	1	20.8	240
	50% C ₂ H ₄	6.95	26%	1	20.8	NA
⋄	50% C ₂ H ₄	6.95	26%	1	20.8	NA
•	50% C ₂ H ₄	6.95	26%	0.81	20.8	NA
•	50% C ₂ H ₄	9.26	21%	1	20.8	240
•	50% C ₂ H ₄	9.26	26%	0.81	20.8	NA

Typical Results 25 mm

Test 92 - C_2H_4 - 50 mm - 30% O_2 - 0.7 atm – compared to C_2H_4 - 25 mm - 30% O_2 - 0.7 atm

9 25 mm heat flux $\sim 3 \text{ kW/m}^2$; 50 mm $\sim 7 \text{ kW/m}^2$

Think radiation from gases is increasing with diameter

Analysis

$$\dot{m}''L = \dot{q}''_{net}$$

Obtain "steady burning"?

Diffusive theory

$$\dot{q}''Dc_p / kL = \left(\frac{8}{\pi}\right) \ln\left(1 + \frac{Y_{ox,\infty}\Delta h_{c,ox}}{L}\right)$$

"Height"

$$\frac{y_f}{D} = \left(\frac{\pi}{8}\right) \frac{B \ln\left[(1+B) / (Y_{ox,\infty} / (Y_{F,o} \Delta h_c / \Delta h_{ox}) + 1)\right]}{\left[\ln(1+B) \right]^2}$$

2-D theory H. Baum

Conservation of Mass

$$\nabla \cdot (\tilde{\rho}\vec{u}) = 0$$

Conservation of Energy and Species

$$\nabla \cdot (\tilde{\rho}\vec{u}Z) - \nabla \cdot (\tilde{\rho}\tilde{\mathcal{D}}\nabla Z) = 0$$

Potential flow and diffusivity

$$\vec{u} = \nabla \tilde{\phi} \qquad (\tilde{\rho})^n \, \tilde{\mathcal{D}} = (\tilde{\rho}_{\infty})^n \, \tilde{\mathcal{D}}_{\infty}$$

$$m'' = \frac{2k}{c_p R} \ln(1+B) / \left(\frac{\pi}{2} - \arctan(\xi_o)\right)$$
 Same as 1-D for flat ellip But analytic solution for ellipsoidal flame!

Same as 1-D for flat ellipse ellipsoidal flame!

Dimensionless Heat Flux

Dimensionless Flame Height

Mass Flux vs L

Radiation for 50 mm

Conclusions

- BRE gives efficient results in microgravity
- "Drop" tests show possible trend toward steady state
- A steady model correlates results over changes in fuel, pressure, oxygen, and flow rate
- Burning and heat flux depend on L, heat of gasification and D, diameter
- Flame size depends linear on and on and fuel mass fraction in the BRE flow
- Both also depend on oxygen concentration, but not apparently on pressure (Pressure effects flame height, but not in theory)

Ignition/Extinction in 1g

Future

- Sexual Explore Baum 2-D solution (& extinction)
- Compute gas radiation
- Add radiation (analytic and numerical)
- See Explore 1-g BRE
- Calibrate NASA BRE burners
- Attempting new PhD student by NASA student grant