1

Mixing

At time t=0 a tank contains Q_0 lb of salt dissolved in 100 gal of water; see Figure 2.3.1. Assume that water containing $\frac{1}{4}$ lb of salt/gal is entering the tank at a rate of r gal/min, and that the well-stirred mixture is draining from the tank at the same rate. Set up the initial value problem that describes this flow process. Find the amount of salt Q(t) in the tank at any time, and also find the limiting amount Q_L that is present after a very long time. If r=3 and $Q_0=2Q_L$, find the time T after which the salt level is within 2% of Q_L . Also find the flow rate that is required if the value of T is not to exceed 45 min.

FIGURE 2.3.1 The water tank in Example 1.

We assume that salt is neither created nor destroyed in the tank. Therefore variations in the amount of salt are due solely to the flows in and out of the tank. More precisely, the rate of change of salt in the tank, dQ/dt, is equal to the rate at which salt is flowing in minus the rate at which it is flowing out. In symbols,

$$\frac{dQ}{dt} = \text{rate in} - \text{rate out.} \tag{1}$$

The rate at which salt enters the tank is the concentration $\frac{1}{4}$ lb/gal times the flow rate r gal/min, or (r/4) lb/min. To find the rate at which salt leaves the tank we need to multiply the concentration of salt in the tank by the rate of outflow, r gal/min. Since the rates of flow in and out are equal, the volume of water in the tank remains constant at 100 gal, and since the mixture is "well-stirred," the concentration throughout the tank is the same, namely, [Q(t)/100] lb/gal. Therefore the rate at which salt leaves the tank is [rQ(t)/100] lb/min. Thus the differential equation governing this process is

$$\frac{dQ}{dt} = \frac{r}{4} - \frac{rQ}{100}. (2)$$

The initial condition is

$$Q(0) = Q_0. (3)$$

Upon thinking about the problem physically, we might anticipate that eventually the mixture originally in the tank will be essentially replaced by the mixture flowing in, whose concentration is $\frac{1}{4}$ lb/gal. Consequently, we might expect that ultimately the amount of salt in the tank would be very close to 25 lb. We can reach the same conclusion from a geometrical point of view by drawing a direction field for Eq. (2) for any positive value of r.

To solve the problem analytically note that Eq. (2) is both linear and separable. Rewriting it in the usual form for a linear equation, we have

$$\frac{dQ}{dt} + \frac{rQ}{100} = \frac{r}{4}. (4)$$

Thus the integrating factor is $e^{rt/100}$ and the general solution is

$$Q(t) = 25 + ce^{-rt/100}, (5)$$

where c is an arbitrary constant. To satisfy the initial condition (3) we must choose $c = Q_0 - 25$. Therefore the solution of the initial value problem (2), (3) is

$$Q(t) = 25 + (Q_0 - 25)e^{-rt/100}$$
(6)

or

$$Q(t) = 25(1 - e^{-rt/100}) + Q_0 e^{-rt/100}. (7)$$

Now suppose that r=3 and $Q_0=2Q_L=50$; then Eq. (6) becomes

$$Q(t) = 25 + 25e^{-0.03t}. (8)$$

Since 2% of 25 is 0.5, we wish to find the time T at which Q(t) has the value 25.5. Substituting t = T and Q = 25.5 in Eq. (8) and solving for T, we obtain

$$T = (\ln 50)/0.03 \approx 130.4 \text{ (min)}.$$
 (9)

To determine r so that T=45, return to Eq. (6), set t=45, $Q_0=50$, Q(t)=25.5, and solve for r. The result is

$$r = (100/45) \ln 50 \approx 8.69 \text{ gal/min.}$$
 (10)

SOAL

- Tuliskan kembali pengembangan model (persamaan diferensial) dan penyelesaiannya pada contoh di atas.
- 2. Ulangi menyelesaikan model yang diperoleh dengan menggunakan metode euler dengan h=0.01. Bandingkan hasilnya dengan hasil dari penyelesaian analitis.

Lanjutkan menyelesaikan soal berikut.

Kembangkan model dan selesaikan dengan menggunakan metode euler.

- 3. A tank originally contains 100 gal of fresh water. Then water containing \(\frac{1}{2}\) lb of salt per gallon is poured into the tank at a rate of 2 gal/min, and the mixture is allowed to leave at the same rate. After 10 min the process is stopped, and fresh water is poured into the tank at a rate of 2 gal/min, with the mixture again leaving at the same rate. Find the amount of salt in the tank at the end of an additional 10 min.
- 4. A tank with a capacity of 500 gal originally contains 200 gal of water with 100 lb of salt in solution. Water containing 1 lb of salt per gallon is entering at a rate of 3 gal/min, and the mixture is allowed to flow out of the tank at a rate of 2 gal/min. Find the amount of salt in the tank at any time prior to the instant when the solution begins to overflow. Find the concentration (in pounds per gallon) of salt in the tank when it is on the point of overflowing. Compare this concentration with the theoretical limiting concentration if the tank had infinite capacity.

Jawaban di kirimkan ke email: nurrokhman@ugm.ac.id paling lambat 17 Mei 2022 pukul 23.59.