Searching PAJ 期 0 天 1 / 1

PATENT ABSTRACTS OF JAPAN

(11)Publication number: 11-145519 (43)Date of publication of application: 28.05.1999

(51)Int.Cl. H01L 33/00

H01S 3/18

(21)Application number: 10-248826 (71)Applicant: TOSHIBA CORP

(22)Date of filing: 02.09.1998 (72)Inventor: KAWAMOTO SATOSHI

(30)Priority

Priority number: 09237448 Priority date: 02.09.1997 Priority country: JP

(54) SEMICONDUCTOR LIGHT-EMITTING ELEMENT, SEMICONDUCTOR LIGHT-EMITTING DEVICE, AND IMAGE-DISPLAY DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting element and device that has an extremely stable emission wavelength and is able to convert the wavelength with a high conversion efficiency in various kinds of wavelengths from visible light to infrared regions.

SOLUTION: A wavelength conversion part FL with a wavelength conversion function and a light-reflecting part RF1 with wavelength selectivity properly combine a light-absorbing part AB with wavelength selectivity and appropriately arranges it in a specific relationship, thus breaking the leakage of primary light toward the outside and at the same time, converting the wavelength with extremely high efficiency and taking out secondary light.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-145519

(43)公開日 平成11年(1999)5月28日

(51) Int.Cl. ⁶		識別記号	FΙ		
H01L	33/00		H01L	33/00	С
					D
H018	3/18		H018	3/18	

審査請求 未請求 請求項の数48 〇L (全 25 頁)

		田旦明八	不明不 明不 其 0数40 OL (主 20 頁)
(21)出願番号	特願平 10-248826	(71)出願人	000003078
(22)出願日	平成10年(1998) 9月2日		株式会社東芝神奈川県川崎市幸区堀川町72番地
(31)優先権主張番号	特願平9 -237448	(72)発明者	河 本 聡 神奈川県川崎市幸区堀川町72番地 株式会
(32)優先日	平9(1997)9月2日		社東芝川崎事業所内
(33)優先權主張国	日本 (JP)	(74)代理人	弁理士 佐藤 一雄 (外3名)

(54) 【発明の名称】 半導体発光素子、半導体発光装置および画像表示装置

(57)【要約】

【課題】 発光波長が極めて安定で、しかも、可視光から赤外線領域までの種々の波長において高い変換効率で波長変換することができる半導体発光素子および半導体発光装置を提供することを目的とする。

【解決手段】 波長変換機能を有する波長変換部と、波長選択性を有する光反射部は、波長選択性を有する光吸収部とを適宜組み合わせ、適宜所定の関係に配置することにより、1次光の外部への漏洩を遮断するとともに極めて高い効率で波長変換して外部に2次光を取り出すことができる半導体発光素子、半導体発光装置および画像表示装置を提供するものである。

【特許請求の範囲】

【請求項1】第1の波長を有する1次光を放出する発光 層と、

1

前記発光層の光取り出し側に設けられ、前記発光層から 放出される前記1次光を吸収して前記第1の波長とは異 なる第2の波長を有する2次光を放出するものとして構 成されている波長変換部と、

前記波長変換部の光取り出し側に設けられ、前記波長変 換部から放出される前記2次光に対する吸収率が低く、 前記発光層から放出される前記1次光に対する吸収率が 10 高いものとして構成されている光吸収部と、

を備えたことを特徴とする半導体発光素子。

【請求項2】第1の波長を有する1次光を放出する発光 層と、

前記発光層の光取り出し側に設けられ、前記発光層から 放出される前記1次光を吸収して前記第1の波長とは異 なる第2の波長を有する2次光を放出するものとして構 成されている波長変換部と、

前記波長変換部の光取り出し側に設けられ、前記波長変 換部から放出される前記2次光に対する反射率が低く、 前記発光層から放出される前記1次光に対する反射率が 高いものとして構成されている第1の光反射部と、

を備えたことを特徴とする半導体発光素子。

【請求項3】第1の波長を有する1次光を放出する発光

前記発光層の光取り出し側に設けられ、前記発光層から 放出される前記1次光を吸収して前記第1の波長とは異 なる第2の波長を有する2次光を放出するものとして構 成されている波長変換部と、

前記波長変換部の光取り出し側に設けられ、前記波長変 30 換部から放出される前記2次光に対する吸収率が低く、 前記発光層から放出される前記1次光に対する吸収率が 高いものとして構成されている光吸収部と、

前記波長変換部の光取り出し側に設けられ、前記波長変 換部から放出される前記2次光に対する反射率が低く、 前記発光層から放出される前記1次光に対する反射率が 高いものとして構成されている第1の光反射部と、

を備えたことを特徴とする半導体発光素子。

【請求項4】前記第1の光反射部は、前記発光層と前記 光吸収部との間に設けられていることを特徴とする請求 項3記載の半導体発光素子。

【請求項5】前記第1の光反射部は、ブラッグ反射鏡に より構成されていることを特徴とする請求項2~4のい ずれか1つに記載の半導体発光素子。

【請求項6】第1の波長を有する1次光を放出する発光 層と、

前記発光層の光取り出し側に設けられ、前記発光層から 放出される前記1次光を吸収して前記第1の波長とは異 なる第2の波長を有する2次光を放出するものとして構 成されている波長変換部と、

前記発光層からみて前記光取り出し側と反対の側に設け られ、前記1次光を反射するものとして構成されている 第2の光反射部と、

を備えたことを特徴とする半導体発光素子。

【請求項7】前記第2の光反射部は、反射率が波長選択 性を有するブラッグ反射鏡により構成されていることを 特徴とする請求項6記載の半導体発光素子。

【請求項8】前記第2の光反射部は、前記2次光も反射 するものとして構成されていることを特徴とする請求項 6 記載の半導体発光素子。

【請求項9】第1の波長を有する1次光を放出する発光 層と、

前記発光層の光取り出し側に設けられ、前記発光層から 放出される前記1次光を吸収して前記第1の波長とは異 なる第2の波長を有する2次光を放出するものとして構 成されている波長変換部と、

前記発光層の周囲を取り囲むように設けられ、前記発光 層から放出される前記1次光を反射するものとして構成 されている第3の光反射部と、

20 を備えたことを特徴とする半導体発光素子。

【請求項10】前記第3の反射鏡は、反射率が波長選択 性を有するブラッグ反射鏡により構成されていることを 特徴とする請求項9記載の半導体発光素子。

【請求項11】前記第3の光反射部は、前記2次光も反 射するものとして構成されていることを特徴とする請求 項9記載の半導体発光素子。

【請求項12】第1の波長を有する1次光を放出する発 光層と、

前記発光層の光取り出し側に設けられ、前記発光層から 放出される前記1次光を吸収して前記第1の波長とは異 なる第2の波長を有する2次光を放出するものとして構 成されている波長変換部と、

前記発光層と前記波長変換部との間に設けられ、前記1 次光に対する反射率が低く、前記2次光に対する反射率 が高いものとして構成されている第4の光反射部と、

を備えたことを特徴とする半導体発光素子。

【請求項13】前記第4の光反射部は、反射率が波長選 択性を有するブラッグ反射鏡により構成されていること を特徴とする請求項12記載の半導体発光素子。

【請求項14】前記波長変換部の光取り出し側に設けら れ、前記波長変換部から放出される前記2次光に対する 吸収率が低く、前記発光層から放出される前記 1 次光に 対する吸収率が高いものとして構成されている光吸収部 をさらに備えたことを特徴とする請求項6~13のいず れか1つに記載の半導体発光素子。

【請求項15】前記波長変換部の光取り出し側に設けら れ、前記波長変換部から放出される前記2次光に対する 反射率が低く、前記発光層から放出される前記1次光に 対する反射率が高いものとして構成されている第1の光 50 反射部をさらに備えたことを特徴とする請求項6~14

4

のいずれか1つに記載の半導体発光素子。

【請求項16】前記第1の波長は、380nm以下であり、

前記波長変換部は、蛍光物質を含み、

前記第2の波長は、前記第1の波長よりも長いことを特 徴とする請求項1~15のいずれか1つに記載の半導体 発光素子。

【請求項17】前記発光層は、窒化ガリウム系半導体、2nSe、ZnS、ZnSSe、SiC、およびBNからなる群から選択されたいずれかの材料系を主成分とす 10ることを特徴とする請求項 $1\sim16$ のいずれか1つに記載の半導体発光素子。

【請求項18】前記2次光は、可視光であることを特徴とする請求項1~17のいずれか1つに記載の半導体発光素子。

【請求項19】前記2次光は、赤色と緑色と青色の波長 領域にそれぞれ強度ピークを有する白色光であることを 特徴とする請求項1~17のいずれか1つに記載の半導 体発光素子。

【請求項20】実装部材と、

前記実装部材の上に実装され、第1の波長を有する1次 光を放出する半導体発光素子と、

前記半導体発光素子の光取り出し側に設けられ、前記半 導体発光素子から放出される前記1次光を吸収して前記 第1の波長とは異なる第2の波長を有する2次光を放出 するものとして構成されている波長変換部と、

前記波長変換部の光取り出し側に設けられ、前記波長変換部から放出される前記2次光に対する吸収率が低く、前記半導体発光素子から放出される前記1次光に対する吸収率が高いものとして構成されている光吸収部と、を備えたことを特徴とする半導体発光装置。

【請求項21】実装部材と、

前記実装部材の上に実装され、第1の波長を有する1次 光を放出する半導体発光素子と、

前記半導体発光素子の光取り出し側に設けられ、前記半導体発光素子から放出される前記1次光を吸収して前記第1の波長とは異なる第2の波長を有する2次光を放出するものとして構成されている波長変換部と、

前記波長変換部の光取り出し側に設けられ、前記波長変換部から放出される前記2次光に対する反射率が低く、前記半導体発光素子から放出される前記1次光に対する反射率が高いものとして構成されている第1の光反射部と、

を備えたことを特徴とする半導体発光装置。

【請求項22】実装部材と、

前記実装部材の上に実装され、第1の波長を有する1次 光を放出する半導体発光素子と、

前記半導体発光素子の光取り出し側に設けられ、前記半 導体発光素子から放出される前記1次光を吸収して前記 第1の波長とは異なる第2の波長を有する2次光を放出 50

するものとして構成されている波長変換部と、

前記波長変換部の光取り出し側に設けられ、前記波長変 換部から放出される前記2次光に対する吸収率が低く、 前記半導体発光素子から放出される前記1次光に対する 吸収率が高いものとして構成されている光吸収部と、 前記波長変換部の光取り出し側に設けられ、前記波長変 換部から放出される前記2次光に対する反射率が低く、 前記半導体発光素子から放出される前記1次光に対する 反射率が高いものとして構成されている第1の光反射部 と

を備えたことを特徴とする半導体発光装置。

【請求項23】前記第1の光反射部は、前記半導体発光素子と前記光吸収部との間に設けられていることを特徴とする請求項22記載の半導体発光装置。

【請求項24】前記第1の光反射部は、ブラッグ反射鏡により構成されていることを特徴とする請求項21~23のいずれか1つに記載の半導体発光装置。

【請求項25】実装部材と、

前記実装部材の上に実装され、第1の波長を有する1次 20 光を放出する半導体発光素子と、

前記半導体発光素子の光取り出し側に設けられ、前記半 導体発光素子から放出される前記1次光を吸収して前記 第1の波長とは異なる第2の波長を有する2次光を放出 するものとして構成されている波長変換部と、

前記半導体発光素子からみて前記光取り出し側と反対の側に設けられ、前記1次光を反射するものとして構成されている第2の光反射部と、

を備えたことを特徴とする半導体発光装置。

【請求項26】前記第2の光反射部は、反射率が波長選30 択性を有するブラッグ反射鏡により構成されていることを特徴とする請求項25記載の半導体発光装置。

【請求項27】前記第2の光反射部は、前記2次光も反射するものとして構成されていることを特徴とする請求項25記載の半導体発光装置。

【請求項28】実装部材と、

前記実装部材の上に実装され、第1の波長を有する1次 光を放出する半導体発光素子と、

前記半導体発光素子の光取り出し側に設けられ、前記半 導体発光素子から放出される前記1次光を吸収して前記 40 第1の波長とは異なる第2の波長を有する2次光を放出 するものとして構成されている波長変換部と、

前記半導体発光素子の周囲を取り囲むように設けられ、 前記半導体発光素子から放出される前記1次光を反射す るものとして構成されている第3の光反射部と、

を備えたことを特徴とする半導体発光装置。

【請求項29】前記第3の反射鏡は、反射率が波長選択性を有するブラッグ反射鏡により構成されていることを特徴とする請求項28記載の半導体発光装置。

【請求項30】前記第3の光反射部は、前記2次光も反射するものとして構成されていることを特徴とする請求

(3)

(4)

項28記載の半導体発光装置。

【請求項31】実装部材と、

前記実装部材の上に実装され、第1の波長を有する1次 光を放出する半導体発光素子と、

前記半導体発光素子の光取り出し側に設けられ、前記半 導体発光素子から放出される前記 1 次光を吸収して前記 第1の波長とは異なる第2の波長を有する2次光を放出 するものとして構成されている波長変換部と、

前記半導体発光素子と前記波長変換部との間に設けら れ、前記1次光に対する反射率が低く、前記2次光に対 10 する反射率が高いものとして構成されている第4の光反 射部と、

を備えたことを特徴とする半導体発光装置。

【請求項32】前記第4の光反射部は、反射率が波長選 択性を有するブラッグ反射鏡により構成されていること を特徴とする請求項31記載の半導体発光装置。

【請求項33】前記波長変換部の光取り出し側に設けら れ、前記波長変換部から放出される前記2次光に対する 吸収率が低く、前記半導体発光素子から放出される前記 1次光に対する吸収率が高いものとして構成されている 20 を備えたことを特徴とする画像表示装置。 光吸収部をさらに備えたことを特徴とする請求項25~ 32のいずれか1つに記載の半導体発光装置。

【請求項34】前記波長変換部の光取り出し側に設けら れ、前記波長変換部から放出される前記2次光に対する 反射率が低く、前記半導体発光素子から放出される前記 1次光に対する反射率が高いものとして構成されている 第1の光反射部をさらに備えたことを特徴とする請求項 25~33のいずれか1つに記載の半導体発光装置。

【請求項35】前記第1の波長は、380mm以下であ

前記波長変換部は、蛍光物質を含み、

前記第2の波長は、前記第1の波長よりも長いことを特 徴とする請求項20~34のいずれか1つに記載の半導 体発光装置。

【請求項36】前記半導体発光素子は、窒化ガリウム系 半導体、ZnSe、ZnS、ZnSSe、SiC、およ びBNからなる群から選択されたいずれかの材料系を発 光層に含むことを特徴とする請求項20~35のいずれ か1つに記載の半導体発光装置。

【請求項37】前記2次光は、可視光であることを特徴 40 前記波長変換部は、蛍光物質を含み、 とする請求項20~36のいずれか1つに記載の半導体 発光装置。

【請求項38】前記2次光は、赤色と緑色と青色の波長 領域にそれぞれ強度ピークを有する白色光であることを 特徴とする請求項20~37のいずれか1つに記載の半 導体発光装置。

【請求項39】第1の波長を有する1次光を放出する半 導体発光素子と、

前記半導体発光素子から放出される前記 1 次光の強度を 調節する調光部と、

前記調光部により強度が調節された前記1次光を吸収し て前記第1の波長とは異なる第2の波長を有する2次光 を放出するものとして構成されている波長変換部と、 前記波長変換部の光取り出し側に設けられ、前記波長変 換部から放出される前記2次光に対する反射率が低く、 前記波長変換部を透過する前記1次光に対する反射率が 高いものとして構成されている第1の光反射部と、 を備えたことを特徴とする画像表示装置。

【請求項40】第1の波長を有する1次光を放出する半 導体発光素子と、

前記半導体発光素子から放出された前記1次光を吸収し て前記第1の波長とは異なる第2の波長を有する2次光 を放出するものとして構成されている波長変換部と、 前記波長変換部の光取り出し側に設けられ、前記波長変 換部から放出される前記2次光に対する反射率が低く、 前記波長変換部を透過する前記1次光に対する反射率が 高いものとして構成されている第1の光反射部と、 前記光反射部から放出される前記2次光の強度を調節す る調光部と、

【請求項41】前記第1の光反射部は、ブラッグ反射鏡 により構成されていることを特徴とする請求項39また は40に記載の画像表示装置。

【請求項42】前記第1の光反射部の光取り出し側に設 けられ、前記第1の光反射部を透過した前記2次光に対 する吸収率が低く、前記第1の光反射部を透過した前記 1次光に対する吸収率が高いものとして構成されている 光吸収部をさらに備えたことを特徴とする請求項39~ 41のいずれか1つに記載の画像表示装置。

【請求項43】前記半導体発光素子と前記波長変換部と の間に設けられ、前記1次光に対する反射率が低く、前 記2次光に対する反射率が高いものとして構成されてい る第4の光反射部をさらに備えたことを特徴とする請求 項39~42のいずれか1つに記載の画像表示装置。

【請求項44】前記第4の光反射部は、反射率が波長選 択性を有するブラッグ反射鏡により構成されていること を特徴とする請求項43記載の画像表示装置。

【請求項45】前記第1の波長は、380mm以下であ

前記第2の波長は、前記第1の波長よりも長いことを特 徴とする請求項39~44のいずれか1つに記載の画像 表示装置。

【請求項46】前記半導体発光素子は、窒化ガリウム系 半導体、ZnSe、ZnS、ZnSSe、SiC、およ びBNからなる群から選択されたいずれかの材料系を発 光層に含むことを特徴とする請求項39~45のいずれ か1つに記載の画像表示装置。

【請求項47】前記2次光は、可視光であることを特徴 50 とする請求項39~46のいずれか1つに記載の画像表

7

示装置。

【請求項48】前記2次光は、赤色と緑色と青色のいずれかの波長領域に強度ピークを有する光であることを特徴とする請求項39~47のいずれか1つに記載の画像表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体発光素子、 半導体発光装置および画像表示装置に関する。より詳し くは、本発明は、発光層から放出される1次光の外部へ 10 の漏洩を防止し、極めて高い効率で2次光に波長変換し て外部に取り出すことができる半導体発光素子、半導体 発光装置および画像表示装置に関する。

[0002]

【従来の技術】半導体発光素子およびそれを搭載した各種の半導体発光装置は、コンパクト且つ低消費電力であり、信頼性に優れるなどの多くの利点を有し、近年では、高い発光輝度が要求される室内外の表示板、鉄道/交通信号、車載用灯具などについても広く応用されつつある。

【0003】これらの半導体発光素子のうちで、窒化ガリウム系半導体を用いた発光素子が最近、注目されている。窒化ガリウム系半導体は、直接遷移型のIII-V族化合物導体であり、比較的短い波長領域において高効率で発光させることができるという特徴を有する。

【0004】なお、本明細書において「窒化ガリウム系半導体」とは、 $In_x Al_y Ga_{1-xy} N(0 \le x, y \le 1, x+y \le 1)$ なる化学式において組成比x及びyを零から1の範囲で変化させたすべての組成の半導体を含むものとする。例えば、InGaN(x>0, y=0)も「窒化ガリウム系半導体」に含まれるものとする。

【0005】さらに、III族元素としてホウ素(B)、 V族元素として砒素(As)、りん(P)の少なくとも いずれかを含有した半導体も「窒化ガリウム系半導体」 に含むものとする。

【0006】窒化ガリウム系半導体は、組成 x 及び y を制御することによってバンドギャップが 1.89~6.2 e V まで変化するために、LEDや半導体レーザの材料として有望視されている。特に、青色や紫外線の短波 40長領域で高輝度に発光させることができれば、各種光ディスクの記録容量を倍増させ、表示装置のフルカラー化を可能にすることができる。そこで、Inx Aly G a 1-x-y N系半導体を用いた短波長発光素子は、その初期特性や信頼性の向上に向けて急速に開発が進められている。

【0007】このような窒化ガリウム系半導体を用いた 従来の発光素子の構造を開示した参考文献としては、例 えば、Jpn. J. Appl. Phys.、28(19 89) p. L2112、Jpn. J. Appl. Phy 50 s. 、32(1993) p. L8或いは特開平5-29 1621号公報を挙げることができる。

[0008]

【発明が解決しようとする課題】しかし、従来の発光発 光素子では、発光層から放出される発光を直接外部に取 り出す構造であるために、以下に列挙するような問題が あった。

【0009】まず第1に、発光素子の構造のばらつきにより、発光波長が素子ごとにばらつくという問題があった。すなわち、半導体発光素子は、同一の条件で製造しても、不純物の混入量や各層厚などがばらつくことによって、その発光波長がばらつく傾向を有する。

【0010】第2に、駆動電流によって、発光波長が変化するという問題があった。すなわち、半導体発光素子に供給する電流量に応じて、その発光波長が変動することがあり、発光輝度と発光波長とを独立して制御することが困難であるという問題があった。

【0011】第3に、温度によって、発光波長が変化するという問題があった。すなわち、半導体発光素子の特20 に発光層部分の温度が変化すると、発光層の実効的なバンドギャップも変化するために、発光波長が変動するという問題があった。

【0012】以上説明したように、従来の半導体発光素子においては、構造、温度、電流などのばらつきをすべて制御して、発光波長の変動を所定の範囲、例えば数nmの範囲内に抑えることは困難であった。

【0013】一方、従来の半導体発光装置においては、発光波長に応じて、内蔵する半導体発光素子の材料や構造を適宜選択し、変更しなければならないという問題も30 あった。例えば、赤色において発光させるためには、A1GaAs系材料を用い、黄色においてはGaAsP系または1nGaAlP系材料、緑色系においてはGaP系またはInGaAlP系材料、青色においてはInGaN系材料の如く、最適な材料をその波長に併せて選択しなければならないという問題があった。

【0014】以上説明したような種々の問題を解消する方法として、半導体発光素子から放出される1次光を蛍光体などにより波長変換して、より波長の長い2次光として外部に取り出す構成も考えられる。

【0015】図30は、このような波長変換部を備えた 半導体発光装置を例示する断面模式図である。同図に示 した例は、いわゆる「リード・フレーム型」の発光ダイ オード(LED)ランプである。すなわち、半導体発光 素子900は、リード・フレーム910上にマウントさ れ、ワイア930、930により所定の端子に接続され ている。また、半導体発光素子の周囲は蛍光体950に より覆われている。さらに、半導体発光素子910は、 モールド樹脂940により封止されている。

【0016】同図に示した半導体発光装置においては、 半導体発光素子900から放出される1次光が蛍光体9

50により波長変換されて、より長波長の2次光として 外部に取り出すことができるようにされている。このよ うな構成によれば、蛍光体層FLの材料を変更すること により、2次光の波長を調節することが可能となる。

【0017】しかし、図30に示したような構成におい て、半導体発光素子900から放出される1次光を、蛍 光体950によりすべて吸収・変換させることは困難で あった。すなわち、1次光のうちの一部分は、蛍光体9 50に吸収されることなく、外部に放出される。その結 果として、変換効率が低下するという問題があった。

【0018】また、外部に取り出される光は、波長変換 された2次光と未変換の1次光とが混合された混色光と なる。しかし、例えばディスプレイなどのように複数の 発光素子を並べて使用するような場合には、個々の発光 装置の混色の比率がばらつくために、全体的な色斑とし て見栄えを劣化させる要因となる。

【0019】さらに、発光装置から放出される1次光の 波長が380 n m以下の紫外線である場合には、漏洩す る1次光成分は、人体や周囲の部品などに対して悪影響 を与え、実用上問題を生ずるおそれもある。例えば、モ 20 部と、前記波長変換部の光取り出し側に設けられ、前記 一ルド樹脂が発光素子からの紫外線により劣化し、黄変 したり透過率が低下するという不具合を生ずる場合もあ る。

【0020】特に、従来の青色や紫色発光の半導体発光 素子のなかで、不純物を介して遷移するタイプの発光層 を有するものは、その発光波長帯が比較的広く、時とし て紫外線成分まで含む場合もある。このような不要な紫 外線成分は、無駄な光として発光装置から放出されるば かりでなく、その漏れ光が上述した種々の問題を生ずる こととなる。また、太陽光や蛍光灯などの光源から放出 30 される紫外線が外乱光として発光装置に侵入し、蛍光体 が不要な発光を生ずるという問題もあった。

【0021】本発明は、かかる種々の問題点に鑑みてな されたものである。すなわち、本発明は、発光波長が極 めて安定で、しかも、可視光から赤外線領域までの種々 の波長において高い変換効率で波長変換することができ る半導体発光素子および半導体発光装置を提供すること を目的とする。

[0022]

【課題を解決するための手段】上記目的を達成するため に、本発明の半導体発光素子は、第1の波長を有する1 次光を放出する発光層と、前記発光層の光取り出し側に 設けられ、前記発光層から放出される前記1次光を吸収 して前記第1の波長とは異なる第2の波長を有する2次 光を放出するものとして構成されている波長変換部と、 前記波長変換部の光取り出し側に設けられ、前記波長変 換部から放出される前記2次光に対する吸収率が低く、 前記発光層から放出される前記1次光に対する吸収率が 高いものとして構成されている光吸収部と、を備えたこ とを特徴とする。

【0023】または、本発明の半導体発光素子は、第1

の波長を有する1次光を放出する発光層と、前記発光層 の光取り出し側に設けられ、前記発光層から放出される 前記1次光を吸収して前記第1の波長とは異なる第2の 波長を有する2次光を放出するものとして構成されてい る波長変換部と、前記波長変換部の光取り出し側に設け られ、前記波長変換部から放出される前記2次光に対す る反射率が低く、前記発光層から放出される前記1次光 に対する反射率が高いものとして構成されている第1の 10 光反射部と、を備えたことを特徴とする。

【0024】または、本発明の半導体発光素子は、第1 の波長を有する1次光を放出する発光層と、前記発光層 の光取り出し側に設けられ、前記発光層から放出される 前記1次光を吸収して前記第1の波長とは異なる第2の 波長を有する2次光を放出するものとして構成されてい る波長変換部と、前記波長変換部の光取り出し側に設け られ、前記波長変換部から放出される前記2次光に対す る吸収率が低く、前記発光層から放出される前記1次光 に対する吸収率が高いものとして構成されている光吸収 波長変換部から放出される前記2次光に対する反射率が 低く、前記発光層から放出される前記1次光に対する反 射率が高いものとして構成されている第1の光反射部 と、を備えたことを特徴とする。半導体発光素子。

【0025】さらに、本発明の望ましい実施の形態とし ては、前記第1の光反射部は、前記発光層と前記光吸収 部との間に設けられていることを特徴とする。

【0026】また、前記第1の光反射部は、ブラッグ反 射鏡により構成されていることを特徴とする。

【0027】または、本発明の半導体発光素子は、第1 の波長を有する1次光を放出する発光層と、前記発光層 の光取り出し側に設けられ、前記発光層から放出される 前記1次光を吸収して前記第1の波長とは異なる第2の 波長を有する2次光を放出するものとして構成されてい る波長変換部と、前記発光層からみて前記光取り出し側 と反対の側に設けられ、前記1次光を反射するものとし て構成されている第2の光反射部と、を備えたことを特 徴とする。

【0028】ここで、前記第2の光反射部は、反射率が 40 波長選択性を有するブラッグ反射鏡により構成されて、 または、前記2次光も反射するものとして構成されてい ても良い。

【0029】または、本発明の半導体発光素子は、第1 の波長を有する1次光を放出する発光層と、前記発光層 の光取り出し側に設けられ、前記発光層から放出される 前記1次光を吸収して前記第1の波長とは異なる第2の 波長を有する2次光を放出するものとして構成されてい る波長変換部と、前記発光層の周囲を取り囲むように設 けられ、前記発光層から放出される前記1次光を反射す 50 るものとして構成されている第3の光反射部と、を備え

たことを特徴とする。

【0030】ここで、前記第3の反射鏡は、反射率が波 長選択性を有するブラッグ反射鏡により構成されて、ま たは、前記2次光も反射するものとして構成されていて も良い。

【0031】または、本発明の半導体発光素子は、第1 の波長を有する1次光を放出する発光層と、前記発光層 の光取り出し側に設けられ、前記発光層から放出される 前記1次光を吸収して前記第1の波長とは異なる第2の 波長を有する2次光を放出するものとして構成されてい る波長変換部と、前記発光層と前記波長変換部との間に 設けられ、前記1次光に対する反射率が低く、前記2次 光に対する反射率が高いものとして構成されている第4 の光反射部と、を備えたことを特徴とする。

【0032】ここで、前記第4の光反射部は、反射率が 波長選択性を有するブラッグ反射鏡により構成されてい ることを特徴とする。

【0033】さらに、前述した第2乃至第4の光反射部 とともに、前記波長変換部の光取り出し側に設けられ、 率が低く、前記発光層から放出される前記1次光に対す る吸収率が高いものとして構成されている光吸収部をさ らに備えたことを特徴とする。

【0034】また、前述した第2乃至第4の光反射部と ともに、前記波長変換部の光取り出し側に設けられ、前 記波長変換部から放出される前記2次光に対する反射率 が低く、前記発光層から放出される前記1次光に対する 反射率が高いものとして構成されている第1の光反射部 をさらに備えたことを特徴とする。

【0035】また、前記第2乃至第3の光反射部は、反 30 射率が実質的に波長選択性を有しない全反射鏡により構 成されていても良い。

【0036】また、前記第1の波長は、380nm以下 であり、前記波長変換部は、蛍光物質を含み、前記第2 の波長は、前記第1の波長よりも長いことを特徴とす

【0037】また、前記発光層は、窒化ガリウム系半導 体、ZnSe、ZnS、ZnSSe、SiC、およびB Nからなる群から選択されたいずれかの材料系を主成分 とすることを特徴とする。

【0038】また、前記2次光は、可視光であることを 特徴とする。

【0039】また、前記2次光は、赤色と緑色と青色の 波長領域にそれぞれ強度ピークを有する白色光であるこ とを特徴とする。

【0040】一方、本発明による半導体発光装置も、半 導体発光素子に対して、波長変換部、第1乃至第4の光 反射部、光吸収部などの構成要素を適宜選択し、前述し た半導体発光素子における発光層の場合と同様の位置関 係に配置することにより、波長変換効率や光の取り出し 効率が極めて高いものとして構成することができる。

【0041】また、本発明による画像表示装置は、第1 の波長を有する1次光を放出する半導体発光素子と、前 記半導体発光素子から放出される前記1次光の強度を調 節する調光部と、前記調光部により強度が調節された前 記1次光を吸収して前記第1の波長とは異なる第2の波 長を有する2次光を放出するものとして構成されている 波長変換部と、前記波長変換部の光取り出し側に設けら れ、前記波長変換部から放出される前記2次光に対する 反射率が低く、前記波長変換部を透過する前記1次光に 対する反射率が高いものとして構成されている第1の光 反射部と、を備えたことを特徴とするものして構成され る。

[0042]

【発明の実施の形態】本発明は、波長変換機能を有する 波長変換部と、波長選択性を有する光反射部と、波長選 択性を有する光吸収部と、を適宜組み合わせて適宜所定 の位置関係に配置することにより、1次光の外部への漏 洩を遮断するとともに極めて高い効率で波長変換して外 前記波長変換部から放出される前記2次光に対する吸収 20 部に2次光を取り出すことができる半導体発光素子、半 導体発光装置および画像表示装置を提供するものであ

> 【0043】以下、図面を参照しつつ、本発明の実施の 形態について説明する。図1は、本発明による第1の実 施形態に係る半導体発光素子の概略構成を例示する断面 図である。同図に示した半導体発光素子10Aは、半導 体発光素子であり、その光の取り出し経路に、波長変換 部FLおよび光吸収部ABが設けられている点に特徴を 有する。ここで用いる半導体発光層は、波長変換部FL に所定の波長帯の光を供給できるものであれば良い。例 えば、青色から紫外線領域の発光を得るためには、窒化 ガリウム系半導体や、SiC(炭化シリコン)系、ある いはZnSe(セレン化亜鉛)系などの種々の材料を用 いることができる。以下に、窒化ガリウム系半導体を用 いた場合を例に挙げて説明する。

【0044】すなわち、発光素子10Aは、サファイア 基板12上に積層された半導体の多層構造を有する。サ ファイア基板12上には、バッファ層14、n型コンタ クト層16、n型クラッド層18、発光層20、p型ク 40 ラッド層22およびp型コンタクト層24がこの順序で 形成されている。これらの各層は、例えば、有機金属化 学気相成長法(metal-organic chemical vapor deposit ion: MOCVD) により成長することができる。

【0045】バッファ層14の材料は、例えばn型のG aNとすることができる。n型コンタクト層16は、n 側電極34とのオーミック接触を確保するように高いキ ャリア濃度を有するn型の半導体層であり、その材料 は、例えば、GaNとすることができる。n型クラッド 層18およびp型クラッド層22は、それぞれ発光層2 0にキャリアを閉じこめる役割を有する。その材料は、

例えば、発光層20よりもバッドギャップの大きいA1 GaNとすることができる。発光層20は、発光素子に 電流として注入された電荷が再結合することにより発光 を生ずる半導体層である。その材料としては、例えば、 アンドープのInGaNを用いることができる。p型コ ンタクト層24は、p側電極とのオーミック接触を確保 するように高いキャリア濃度を有するp型の半導体層で あり、その材料は、例えば、GaNとすることができ る。

【0046】p型コンタクト層24の上には、透光性を 有するp側電極層26が堆積されている。また、n型コ ンタクト層18の上には、n側電極層34が堆積されて いる。それぞれの電極の上には、Auからなるボンディ ング・パッド32が堆積されている。ボンディング・パ ッド32には、駆動電流を素子に供給するための図示し ないワイアがボンディングされる。さらに、素子の表面 部分は、酸化シリコンなどによる保護膜30が形成され ている。

【0047】ここで、本発明においては、p側電極26 の上に、波長変換部FLおよび光吸収部ABが、この順 序で積層されている。これらのうちで、まず、波長変換 部 F Lについて説明する。

【0048】波長変換部FLは、発光層20から放出さ れた1次光を吸収して、より長波長の2次光を放出する 役割を有する。その構成としては、例えば、所定の媒体 に蛍光体を含有させた層とすることができる。この蛍光 体は、発光層20から放出される1次光を吸収して励起 され、所定の波長を有する2次光を放出する。例えば、 発光層20から放出される1次光が、波長約330nm の紫外線であり、蛍光体により波長変換された2次光 は、可視光あるいは赤外線領域の所定の波長を有するよ うにすることができる。2次光の波長は、蛍光体の材料 を適宜選択することにより、調節することができる。紫 外線領域の1次光を吸収して、効率良く2次光を放出す る蛍光体としては、例えば、赤色の発光を生ずるものと しては、Y2 O2 S: EuやLa2O2S: (Eu、S m)、青色の発光を生ずるものとしては、(Sr、C a、Ba、Eu)』(PO4)。・C12、緑色の発光 を生ずるものとしては、3(Ba、Mg、Eu、Mn) $O \cdot 8A1$ O などを挙げることができる。これらの 蛍光物質を適当な割合で混合すれば、可視光領域の殆ど すべての色調を表現することができる。

【0049】また、これらの蛍光物質は、300~38 0 n m付近の波長帯において吸収ピークを有する。従っ て、これらの蛍光物質により効率的に波長変換を行うた めには、発光層20が380nm以下の波長帯の紫外線 を放出するようにすることが望ましい。また、蛍光物質 の変換効率を最大とするためには、330nm付近の波 長の紫外線を放出することがさらに望ましい。

吸収部は、波長選択性を有する吸収体であり、1次光を 高い効率で吸収するとともに2次光は透過させる役割を 有する。すなわち、1次光の波長の光に対する吸収率が 高く、2次光の波長の光に対する吸収率は低いような吸 収特性を有する。この具体的な構成としては、例えば、 透光性の媒体に所定の吸収体を分散させたものを挙げる ことができる。1次光として、紫外線領域の光が用いら れる場合には、吸収体ABの材料としては、例えば、ベ ンゾトリアゾール、シアノアクリレートなどを用いるこ とができる。また、同様の特性を示す材料としてパラア ミノ安息酸、ペンゾフェノン、ケイ皮酸などを用いるこ ともできる。また、色素系の材料としては、2次光が赤 色の光の場合には、カドミウム・レッドや弁柄を用いる ことができ、2次光が青色の光の場合には、コバルト・

【0051】このような光吸収部ABを設けることによ り、波長変換部FLを透過した1次光を吸収して外部へ の漏洩を防止することができるとともに、外部に取り出 す光のスペクトルを調節して、純色性を改善することも 可能となる。また、外部から入射する紫外線も吸収する ことができるので、このような外乱光により波長変換部 F Lが励起されて不要な発光が生ずるという問題も解消 することができる。

ブルーや群青などを用いることができる。

【0052】次に、本発明による第2の実施形態に係る 半導体発光素子について説明する。図2は、本発明によ る第2の実施形態に係る半導体発光素子の概略構成を例 示する断面図である。同図に示した半導体発光素子10 Bも、窒化ガリウム系半導体などを用いた発光素子であ り、その光の取り出し経路に、波長変換部FL、および 30 光反射部RE1が設けられている点に特徴を有する。こ こで、前述した図1の発光素子と同一の部分について は、同一の符合を付して詳細な説明を省略する。

【0053】ここで、本実施形態においては、光吸収層 ABの代わりに光反射部RE1が設けられている点で前 述した第1実施形態と異なる。光反射部RE1は波長選 択性を有する反射層であり、波長変換部FLから入射す る光のうちで、1次光を反射し、2次光を透過させる役 割を有する。すなわち、光反射部 R E 1 は、1 次光の波 長の光を反射し、2次光の波長の光を透過するカット・ 40 オフ・フィルタ、あるいはバンドパス・フィルタとして 作用する。その具体的な材料としては、例えば、1次光 が紫外線領域の光の場合には、酸化チタンや酸化亜鉛な どを用いることができる。これらの反射性の材料を、所 定の溶媒中に適宜分散させ、波長変換部FLの上にコー ティングして光反射部RE1を形成することができる。 【0054】また、光反射部RE1として、ブラッグ反

射鏡を用いることもできる。すなわち、屈折率が異なる 2種類の薄膜を交互に積層することにより、特定の波長 領域の光に対する反射率が高い反射鏡を形成することが 【0050】次に、光吸収部ABについて説明する。光 50 できる。例えば、1次光の波長を A、薄膜層の光屈折率 $をn とした場合に、膜厚をそれぞれ<math>\lambda / (4n)$ とした 2種類の薄膜を交互に積層することにより、1次光に対 する反射率が極めて高い反射鏡を形成することができ る。このような2種類の薄膜は、光屈折率の差が大きい ことが望ましい。その組み合わせとしては、例えば、酸 化シリコン(SiO₂)と酸化チタン(TiO₂)、窒 化アルミニウム(AIN)と窒化インジウム(In N)、あるいはこれらのうちのいずれかの材料からなる 薄膜と、アルミニウム・ガリウム砒素、アルミニウム・ ガリウム燐、五酸化タンタル、多結晶シリコン、非晶質 シリコンなどのいずれか材料の薄膜とを適宜組み合わせ ても良い。

15

【0055】このような光反射部RE1を配置すること により、波長変換部FLを透過して漏洩した1次光を高 い効率で反射して、波長変換部FLに再び戻すことがで きる。このようにして戻された1次光は、波長変換部F Lにおいて波長変換され、2次光として、光反射部RE 1を透過する。つまり、波長変換部FLの光出射側に光 反射部RE1を配置することにより、1次光の漏洩を防 止するとともに、波長変換部FLを透過した1次光を戻 20 して高い効率で波長変換することができるようになる。 また、外部から侵入する紫外線も反射することができ る。すなわち、外乱光により波長変換部FLが励起され て不要な発光が生ずるという問題を解消することができ る。

【0056】次に、本発明の第3の実施の形態について 説明する。図3は、本発明による第3の実施形態に係る 半導体発光素子の概略構成を例示する断面図である。同 図に示した半導体発光素子100は、半導体発光素子で 射部RE1、および光吸収部ABが設けられている点に 特徴を有する。ここで、前述した図1あるいは図2の発 光素子と同一の部分については、同一の符合を付して詳 細な説明を省略する。

【0057】本実施形態によれば、光反射部RE1と光 吸収部ABとを組み合わせて配置することにより、さら に改善された半導体発光素子を提供することができる。 すなわち、光反射部FLは、波長変換部FLを透過して 漏洩した 1 次光を高い効率で反射して、波長変換部 F L に再び戻すことができる。このようにして戻された1次 光は、波長変換部FLにおいて波長変換され、2次光と して、光反射部RE1を透過する。つまり、波長変換部 FLの光出射側に光反射部RE1を配置することによ り、1次光の漏洩を防止するとともに、波長変換部 F L を透過した1次光を戻して高い効率で波長変換すること ができるようになる。また、外部から侵入する紫外線も 反射することができる。すなわち、外乱光により波長変 換部FLが励起されて不要な発光が生ずるという問題を 解消することができる。

【0058】さらに、光反射部RE1の上に光吸収部A

Bを設けることにより、光反射部RE1を透過した1次 光を吸収して外部への漏洩を防止することができるとと もに、外部に取り出す光のスペクトルを調節して、純色 性を改善することも可能となる。また、外部から入射す る紫外線も吸収することができるので、このような外乱 光により波長変換部 F L が励起されて不要な発光が生ず るという問題も解消することができる。

【0059】次に、本発明による第4の実施形態に係る 半導体発光素子について説明する。図4は、本発明によ る第4の実施形態に係る半導体発光素子の概略構成を例 示する断面図である。同図に示した半導体発光素子10 Dも、半導体発光素子であり、光の取り出し経路に、波 長変換部FL、光反射部RE1、および光吸収部ABが 設けられている。ここで、前述した図1あるいは図2の 発光素子と同一の部分については、同一の符合を付して 説明を省略する。

【0060】本実施形態においては、さらに、発光層2 0からみて光取り出し側と反対側、つまり基板側に、第 2の光反射部RE2が設けられている。この光反射部R E2は、発光層20から放出された1次光を反射して、 波長変換部FLに入射させる役割を有する。このような 反射部RE2を設けることにより、発光層20から基板 12側に放出される1次光を有効に利用することができ るようになる。すなわち、このような反射部RE2を設 けない場合には、発光層20から基板12側に放出され る1次光は、途中の各層において吸収され、あるいは基 板12の裏面において乱反射されることが多く、波長変 換部FLにおいて効率良く波長変換することができなか った。しかし、本発明によれば、光反射部RE2を設け あり、その光の取り出し経路に、波長変換部FL、光反 30 ることにより、1次光を反射させて波長変換部FLに入 射させることができる。その結果として、1次光を高い 効率で波長変換して外部に取り出すことができるように

> 【0061】光反射部RE2の具体的な構成としては、 例えば、前述したようなブラッグ反射鏡とすることがで きる。すなわち、1次光に対して高い反射率を有するよ うに構成したブラッグ反射鏡とすることにより、発光層 20から基板12側に放出された1次光を高い反射率で 波長変換部FLに戻すことができるようになる。その具 40 体的な構成としては、例えば、窒化アルミニウム(A 1 N)と窒化インジウム(InN)、窒化インジウムとア ルミニウム・ガリウム砒素、窒化インジウムとアルミニ ウム・ガリウム燐などの薄膜を交互に積層したものを挙 げることができる。または、図2に関して前述したよう に、酸化チタンや酸化亜鉛などの反射性の材料を、所定 の溶媒中に適宜分散させ、波長変換部FLの上にコーテ ィングして光反射部RE1を形成することもできる。

> 【0062】また、光反射鏡RE2は、このような波長 選択性を有しない全反射鏡であっても良い。すなわち、 - 50 - 1 次光だけでなく、 2 次光に対しても高い反射率を有す

るような反射鏡とすれば、波長変換部FLから基板12 方向に放出される2次光を効率良く反射して外部に取り 出すことができるようになる。このような全反射鏡は、 ブラッグ反射鏡ではなく、金属膜などの反射率の高い材 料を単層として用いることができる。

17

【0063】一方、光反射鏡RE2を配置する位置は、 図4に示した例には限定されない。すなわち、各結晶層 12~20の間に配置したり、基板12の裏面に位置し ても良い。さらに、各結晶層14~18のいずれかを光 反射層RE2として構成しても良い。

【0064】次に、本発明による第5の実施形態に係る 半導体発光素子について説明する。図5は、本発明によ る第5の実施形態に係る半導体発光素子の概略構成を例 示する断面図である。同図に示した半導体発光素子10 Eにおいても、光の取り出し経路に、波長変換部 FL、 光反射部RE1、および光吸収部ABが設けられてい る。ここでも、図1あるいは図2に関して前述した発光 素子と同一の部分については、同一の符合を付して説明 を省略する。

【0065】本実施形態においては、さらに、発光素子 の周囲が光反射部RE3により取り囲まれている。この 光反射部RE3は、波長選択性を有するものであって も、波長選択性を有しない全反射鏡であっても良い。

【0066】光反射部RE3が、波長選択性を有する場 合には、発光層20から放出された1次光を反射して、 外部への漏洩を防止することができる。さらに、このよ うにして反射を繰り返された1次光は、最終的に波長変 換部 F L に入射して2次光に変換されるので、波長変換 効率を改善することができる。このような波長選択性 は、前述したようなブラッグ反射鏡などにより実現する 30 ことができる。

【0067】一方、光反射部RE3が、波長選択性を有 しない場合には、1次光のみならず、2次光などの波長 を有する光成分の外部への漏洩も防止することができ る。このような全反射鏡は、例えば、金属膜により形成 することができる。そして、このような全反射鏡を形成 することにより、発光素子10Eの光放出部を、光反射 部RE3が形成されていない開口部のみに限定すること ができる。すなわち、発光素子10 Eの周囲をこのよう な光反射部RE3で取り囲んで、所定の開口部のみから 2次光が放出されるようにすれば、光の放射パターンを その開口の形状にあわせて容易に制御することができる ようになる。例えば、光反射部RE3の開口を極めて小 さく形成することにより、点光源状の発光素子を容易に 形成することができる。このような点光源は、レンズな どの光学系により効果的に集光することができ、実用上 有利である場合が多い。

【0068】次に、本発明による第6の実施形態に係る 半導体発光素子について説明する。図6は、本発明によ 示する断面図である。同図に示した半導体発光素子10 Fにおいては、波長変換部FLの光入射側に第2の光反 射部RE4が設けられている。すなわち、光の取り出し 経路に、光反射部RE4、波長変換部FL、光反射部R E1、および光吸収部ABがこの順序で設けられてい る。ここでも、図1あるいは図2に関して前述した発光 素子と同一の部分については、同一の符合を付して説明 を省略する。

【0069】本実施形態における光反射部RE4は、発 10 光層20から放出される1次光を透過し、波長変換部に おいて変換され放出される2次光は反射するような波長 選択性を有する。すなわち、1次光に波長の光に対する 反射率は低く、2次光の波長の光に対する反射率が高く なるように構成されている。このような波長選択性は、 例えば、前述したブラッグ反射鏡を利用することにより 実現することができる。

【0070】また、波長変換部FLは、1次光を吸収し てそれよりも波長が長い2次光を放出する役割を有す る。その詳細については、第1実施形態に関して前述し 20 たものと同様である。

【0071】また、光反射部RE1は、波長変換部から 放出される2次光に対する反射率が低く、1次光に対す る反射率が高くなるように構成されている。このような 波長選択性も、前述したブラッグ反射鏡を利用すること により実現することができる。

【0072】光吸収部ABは、1次光に対して高い光吸 収率を有し、2次光に対しては低い吸収率を有するよう に構成される。この詳細な構成についても、第1実施形 態に関して前述したものと同様とすることができる。

【0073】本実施形態によれば、発光層20から放出 された1次光は光反射部RE4を透過して波長変換部F Lに入射し、2次光に波長変換される。また、波長変換 部FLにおいて波長変換されずに透過した1次光は、光 反射部RE1により反射されて再び波長変換部FLに戻 される。さらに、光反射部RE1も透過した1次光は、 光吸収部ABにおいて吸収され、外部への漏洩が防止さ れる。

【0074】一方、波長変換部FLから放出された2次 光のうちで光反射部REIの方向に出射した光成分は、 40 光反射部RE1および光吸収部ABを透過して外部に取 り出すことができる。また、波長変換部FLから放出さ れた2次光のうちで発光層20の方向に出射した光成分 は、光反射部RE4により反射され、波長変換部FL、 光反射部RE1および光吸収部ABを透過して外部に取 り出すことができるようになる。

【0075】すなわち、光反射部RE4を設けない場合 には、波長変換部FLから発光層20の方向に放出され た2次光は、各層12~26により吸収され、あるい は、層間の界面や基板12の裏面において乱反射され る第6の実施形態に係る半導体発光素子の概略構成を例 50 て、外部に有効に取り出すことができない。これに対し

て、本実施形態によれば、光反射部 R E 4 を設けること により、波長変換部FLから発光層20の方向に放出さ れる2次光を光反射部RE4により反射して、外部に効 率良く取り出すことができるようになる。

19

【0076】また、本実施形態と、前述した第4実施形 熊または第5実施形熊とを組み合わせることにより、さ らに高効率の半導体発光素子を実現することもできる。 すなわち、本実施形態の構成に、第4実施形態で説明し た光反射部RE2を追加することにより、発光層20か ら放出される1次光をさらに効率良く波長変換部FLに 10 導いて、波長変換することができるようになる。また、 本実施形態の構成に、第5実施形態で説明した光反射部 RE3を追加することにより、発光素子の発光パターン を制御して、容易に点光源を構成することができるよう になる。

【0077】以上、図1~図6においては、サファイア 基板上に成長した窒化ガリウム系半導体発光素子を例に 挙げて説明した。しかし、本発明は、これに限定される ものではない。この他にも、例えば、SiC基板やその 他の基板上に成長した窒化ガリウム系半導体発光素子に おいても本発明を同様に適用して、同様の効果を得るこ とができる。また、発光層をはじめとする各層の材料は 窒化ガリウム系半導体に限定されず、波長変換部 F L に おいて効率よく波長変換されるような1次光を放出する 材料であれば良い。蛍光体を利用して可視光を得るよう な場合においては、青色から紫外線領域の波長の光を放 出する発光層を用いることが望ましい。このような発光 層の材料としては、窒化ガリウム系半導体の他に、例え ば、ZnSe、ZnS、SiC、BNなどの材料を挙げ ることができる。

【0078】次に、本発明による半導体発光装置につい て説明する。図7は、本発明の実施形態に係る半導体発 光装置を表す概略断面図である。同図に表した半導体発 光装置100Aは、いわゆる「リード・フレーム・タイ プ」の「LEDランプ」と称されるものである。すなわ ち、半導体発光素子900は、リード・フレーム110 のカップの底部にマウントされている。そして、発光素 子のp側電極およびn側電極は、それぞれ、リード・フ レーム110および120に対して、ワイア130、1 の先端部は、樹脂140によりモールドされ保護されて いる。

【0079】本実施形態においては、半導体発光素子9 00の表面に波長変換部 FLが配置されている。さら に、樹脂140は、波長選択性を有する光吸収部ABと して作用するように構成されている。

【0080】波長変換部FLは、半導体発光素子900 から放出される1次光を吸収して、より長波長の2次光 を放出する役割を有する。その構成は、図1に関して前 述したものと同様とすることができる。すなわち、その 50 けられたアウターモールド部140bとからなる。そし

具体例としては、透光性を有する媒体中に所定の蛍光体 を分散させたものを挙げることができる。これらの溶媒 や無機系コーティング剤を発光素子900の表面に塗布 することにより波長変換部FLを形成することができ

【0081】光吸収部ABは、波長変換部から放出され る2次光を透過し、発光素子から放出される1次光は吸 収するような波長選択性を有する。すなわち、樹脂14 0に所定の光吸収体を分散させることにより、光吸収部 ABを構成することができる。その構成の詳細について も、図1に関して前述した光吸収部ABと同様とするこ とができる。すなわち、1次光が紫外線の場合には、光 吸収体を構成する物質して、例えば、ベンゾトリアゾー ル、シアノアクリレート、パラアミノ酸、ベンゾフェノ ン、ケイ皮酸などを用いることができる。

【0082】また、半導体発光素子900としては、波 長変換部 F L における波長変換効率を高くするためには 発光波長の短いものであることが望ましい。このような 発光素子としては、例えば、窒化ガリウム系半導体や、 20 ZnSe、ZnS、SiC、BNなどの材料を発光層に 用いた半導体発光素子を挙げることができる。

【0083】本発明によれば、波長変換部FLを配置す ることにより、半導体発光素子900からの1次光を所 望の波長の可視光または赤外線に変換することができ

【0084】さらに、光吸収部ABを設けることによ り、波長変換部FLを透過した1次光を吸収して外部へ の漏洩を防止することができるとともに、外部に取り出 す光のスペクトルを調節して、純色性を改善することも 30 可能となる。また、外部から侵入する外乱光により、波 長変換部FLが不必要な発光を生ずるという問題も解消 することができる。

【0085】なお、図7においては、リードフレームタ イプのLEDランプを一例として示したが、本発明はこ れに限定されるものではなく、その他にも例えば、SM D (surface mounted device:表面実装型デバイス) タ イプのLEDランプについても同様に適用して同様の効 果を得ることができる。

【0086】次に、本発明による第2の半導体発光装置 30により接続されている。さらに、リード・フレーム 40 について説明する。図8は、本発明による第2の半導体 発光装置を表す概略断面図である。同図に表した半導体 発光装置100Bも、リードフレームタイプのLEDラ ンプである。本具体例については、図7に関して前述し たものと同一の部分には同一の符号を付して詳細な説明 は省略する。

> 【0087】本具体例においては、半導体発光素子90 0の表面に波長変換部 F L が配置されている。さらに、 封止樹脂は、リードフレームのカップ部に設けられたイ ンナーモールド部140aと、その外側を覆うように設

て、インナーモールド部140aが波長選択性を有する 光吸収部ABとして作用するように構成されている。

21

【0088】インナーモールド部140aの材料として は、例えばエポキシ樹脂を用いることができる。そし て、これに分散させる光吸収体としては、図7に関して 前述したものと同様にベンゾトリアゾールなどの各種の 材料を用いることができる。

【0089】また、アウターモールド部140bは、光 透過性を有する樹脂により形成されている。

【0090】本具体例の発光装置の具体的な製造方法と 10 して高い効率で波長変換することができるようになる。 しては、例えば、所定の溶媒やコーティング剤に波長選 択性を有する光吸収体を分散させ、発光素子や蛍光体の 周囲を封止してインナーモールド部140aを形成し、 しかる後に、光透過性モールド樹脂によりその周囲を封 止して、アウターモールド部140bを形成することが できる。

【0091】また、蛍光体と波長選択性光吸収体とを混 合した所定の溶媒やコーティング剤を発光素子の周囲に 滴下または塗布し、両者の沈降速度の差異を利用して蛍 収体を積層させるようにしても良い。一般的に、蛍光体 は、比重が比較的大きいために先に沈み、光吸収体は分 子量の大きい有機物質であり、またその粘性のために後 まで溶媒の中にとどまる。光吸収体の融点を混入させる コーティング剤などの熱硬化温度近傍に設定することに より、熱硬化過程でコーティング剤の中に均一に分散さ せることができる。

【0092】このような光吸収部ABを設けることによ り、波長変換部 F L を透過した 1 次光を吸収して外部へ の漏洩を防止することができるとともに、外部に取り出 30 す光のスペクトルを調節して、純色性を改善することも 可能となる。また、外部から入射する紫外線も吸収する ことができるので、このような外乱光により波長変換部 F L が励起されて不要な発光が生ずるという問題も解消 することができる。

【0093】次に、本発明による第3の半導体発光装置 について説明する。図9は、本発明による第3の半導体 発光装置を表す概略断面図である。同図に表した半導体 発光装置100Cも、リードフレームタイプのLEDラ ンプである。本具体例についても、図7に関して前述し たものと同一の部分には同一の符号を付して詳細な説明 は省略する。

【0094】本具体例においては、樹脂140は、波長 選択性を有する光反射部RE1として作用するように構 成されている。すなわち、樹脂140は、波長選択性を 有する光反射体を含有したエポキシ樹脂などからなる。 樹脂140に含有される波長選択性光反射体は、波長変 換部FLを透過して発光素子から放出される紫外線など の1次光を反射、散乱し、蛍光体からの2次光は透過す る性質を有する。このような材料としては、前述したよ 50 より、図9に関して前述したような種々の効果を同様に

うに酸化チタン、酸化亜鉛などを用いることができる。 【0095】このような光反射部RE1を配置すること により、波長変換部FLを透過して漏洩した1次光を高 い効率で反射して、波長変換部FLに再び戻すことがで きる。このようにして戻された1次光は、波長変換部F Lにおいて波長変換され、2次光として、光反射部RE 1を透過する。つまり、波長変換部FLの光出射側に光 反射部RE1を配置することにより、1次光の漏洩を防 止するとともに、波長変換部FLを透過した1次光を戻 また、外部から侵入する紫外線も反射することができ る。すなわち、外乱光により波長変換部FLが励起され て不要な発光が生ずるという問題を解消することができ

【0096】次に、本発明による第4の半導体発光装置 について説明する。図10は、本発明による第4の半導 体発光装置を表す概略断面図である。同図に表した半導 体発光装置100Dも、リードフレームタイプのLED ランプである。本具体例については、図7に関して前述 光体を発光素子の表面に積層させ、さらにその上に光吸 20 したものと同一の部分には同一の符号を付して詳細な説 明は省略する。

> 【0097】本具体例においては、半導体発光素子90 0の表面に波長変換部 F L が配置されている。さらに、 封止樹脂は、リードフレームのカップ部に設けられたイ ンナーモールド部140aと、その外側を覆うように設 けられたアウターモールド部140bとからなる。そし て、インナーモールド部140aが波長選択性を有する 光反射部RE1として作用するように構成されている。

【0098】インナーモールド部140aの材料として は、例えばエポキシ樹脂を用いることができる。そし て、これに分散させる光反射体としては、図9に関して 前述したものと同様に酸化チタンなどの各種の材料を用 いることができる。

【0099】また、アウターモールド部140bは、光 透過性を有する樹脂により形成されている。

【0100】本具体例の発光装置の具体的な製造方法と しては、図8に関して前述したものと同様とすることが できる。すなわち、所定の溶媒やコーティング剤に波長 選択性を有する光反射体とを分散させ、発光素子や蛍光 40 体の周囲を封止してインナーモールド部140aを形成 し、しかる後に、光透過性モールド樹脂によりその周囲 を封止して、アウターモールド部140bを形成するこ とができる。

【0101】また、蛍光体と波長選択性光反射体とを混 合した所定の溶媒やコーティング剤を発光素子の周囲に 滴下または塗布し、両者の沈降速度の差異を利用して蛍 光体を発光素子の表面に積層させ、さらにその上に光反 射体を積層させるようにしても良い。

【0102】このような光反射部RE1を設けることに

得ることができる。

【0103】次に、本発明による第5の半導体発光装置 について説明する。図11は、本発明による第5の半導 体発光装置を表す概略断面図である。同図に表した半導 体発光装置100 Eも、リードフレームタイプの LED ランプである。本具体例については、図7に関して前述 したものと同一の部分には同一の符号を付して詳細な説 明は省略する。

【0104】本具体例においては、半導体発光素子90 0の表面に波長変換部FLが配置されている。その材料 や形成方法は、図7に関して前述したものと同様とする ことができる。さらに、その上に波長選択性の光吸収部 ABが設けられ、樹脂140により封止されている。

【0105】本具体例における光吸収部ABも、発光素 子から放出される紫外線などの1次光を吸収し、蛍光体 から放出される可視光などの2次光を透過する性質を有 する。このような機能材として、本具体例においては、 ダイクロイックフィルタやUV(紫外線)カットフィル タを用いる。ここで、発光素子900と光吸収部ABと の間の空間は、樹脂などにより埋められていても良く、 または所定の雰囲気ガスにより充填されていても良い。

【0106】このような光吸収部ABを設けることによ っても、図7に関して前述したような種々の効果を同様 に得ることができる。

【0107】次に、本発明による第6の半導体発光装置 について説明する。図12は、本発明による第6の半導 体発光装置を表す概略断面図である。同図に表した半導 体発光装置100Fも、リードフレームタイプのLED ランプである。本具体例については、図7に関して前述 明は省略する。

【0108】本具体例においては、半導体発光素子90 0の表面に波長変換部 F L が配置されている。その材料 や形成方法は、図7に関して前述したものと同様とする ことができる。さらに、その上に波長選択性の光反射部 RE1が設けられ、樹脂140により封止されている。

【0109】本具体例における光反射部RE1も、発光 素子から放出される紫外線などの1次光を反射し、蛍光 体から放出される可視光などの2次光を透過する性質を 有する。このような機能材として、本具体例において は、ダイクロイックミラーを用いる。ここで、発光素子 900と光反射部RE1との間の空間は、樹脂などによ り埋められていても良く、または所定の雰囲気ガスによ り充填されていても良い。

【0110】また、光反射部RE1としては、前述した ブラッグ反射鏡を用いても良い。

【0111】このような光反射部RE1を設けることに よっても、図9に関して前述したような種々の効果を同 様に得ることができる。

【0112】次に、本発明による第7の半導体発光装置

について説明する。図13は、本発明による第7の半導 体発光装置を表す概略断面図である。同図に表した半導 体発光装置100Gも、リードフレームタイプのLED ランプである。本具体例については、図7あるいは図8 に関して前述したものと同一の部分には同一の符号を付 して詳細な説明は省略する。

24

【0113】本具体例においては、半導体発光素子90 Oaは、例えば、青色あるいは紫色の波長帯で発光する 半導体発光素子である。一般に、このような波長帯の半 導体発光素子においては、特に不純物を介して遷移する タイプの発光層を有するものが多く、発光スペクトルが 紫外線の波長帯にまで伸びている場合が多い。つまり、 青色や紫色の光の他に、有る程度の量の紫外線成分が放 出される場合が多い。このような発光素子としては、例 えば、GaN系のLEDの他に、ZnSe系やSiC系 あるいはBN系の発光素子を挙げることができる。

【0114】本具体例においては、インナーモールド部 140aが光吸収部ABとして構成されている。つま り、光吸収部ABは、発光素子から放出される紫外線成 20 分を吸収し、青色や紫色の波長成分は透過する性質を有 する。このようにすれば、有害な紫外線の漏洩を防ぎつ つ、必要とされる青色や紫色の光を外部に取り出すこと ができる。なお、光吸収部ABの詳細については、図7 に関して前述したとおりである。また、図示した例の他 にも、例えば、アウターモールド部140bにも光吸収 剤を添加して光吸収部ABとして作用するようにしても 良い。

【0115】次に、本発明による第8の半導体発光装置 について説明する。図14は、本発明による第8の半導 したものと同一の部分には同一の符号を付して詳細な説 30 体発光装置を表す概略断面図である。同図に表した半導 体発光装置100Hも、リードフレームタイプのLED ランプである。本具体例については、図7あるいは図1 3に関して前述したものと同一の部分には同一の符号を 付して詳細な説明は省略する。

> 【0116】本具体例においても、半導体発光素子90 Oaは、例えば、青色あるいは紫色の波長帯で発光する 半導体発光素子であり、その詳細は、図13に関して前 述したとおりである。さらに、本具体例においては、半 導体発光素子900aの上に波長選択性の光吸収部AB 40 が設けられ、樹脂140により封止されている。

【0117】本具体例における光吸収部ABも、発光素 子から放出される紫外線などの1次光を吸収し、蛍光体 から放出される可視光などの2次光を透過する性質を有 する。このような機能材として、本具体例においては、 ダイクロイックフィルタやUV(紫外線)カットフィル タを用いる。ここで、発光素子900aと光吸収部AB との間の空間は、樹脂などにより埋められていても良 く、または所定の雰囲気ガスにより充填されていても良

【0118】このような光吸収部ABを設けることによ

っても、図13に関して前述したような種々の効果を同様に得ることができる。

25

【0119】次に、本発明による第9の半導体発光装置について説明する。図15は、本発明による第9の半導体発光装置を表す概略断面図である。同図に表した半導体発光装置100Iも、リードフレームタイプのLEDランプである。本具体例については、図7あるいは図8に関して前述したものと同一の部分には同一の符号を付して詳細な説明は省略する。

【0120】本具体例においても、半導体発光素子900 aは、例えば、青色あるいは紫色の波長帯で発光する半導体発光素子であり、その詳細は、図13に関して前述したとおりである。さらに、本具体例においては、インナーモールド部140 aが波長選択性を有する光反射部RE1として構成されている。つまり、光反射部RE1は、発光素子から放出される紫外線成分を反射し、青色や紫色の波長成分は透過する性質を有する。このようにすれば、有害な紫外線の漏洩を防ぎつつ、必要とされる青色や紫色の光を外部に取り出すことができる。なお、光反射部RE1の詳細については、図9に関して前述したとおりである。また、図示した例の他にも、例えば、アウターモールド部140bにも光反射剤を添加して光反射部RE1として作用するようにしても良い。

【0121】次に、本発明による第10の半導体発光装置について説明する。図16は、本発明による第10の半導体発光装置を表す概略断面図である。同図に表した半導体発光装置100Jも、リードフレームタイプのLEDランプである。本具体例については、図7あるいは図13に関して前述したものと同一の部分には同一の符号を付して詳細な説明は省略する。

【0122】本具体例においても、半導体発光素子900aは、例えば、青色あるいは紫色の波長帯で発光する半導体発光素子であり、その詳細は、図13に関して前述したとおりである。さらに、本具体例においては、半導体発光素子900aの上に波長選択性の光反射部RE1が設けられ、樹脂140により封止されている。

【0123】本具体例における光反射部RE1も、発光素子から放出される紫外線などの1次光を反射し、蛍光体から放出される可視光などの2次光を透過する性質を有する。このような機能材として、本具体例においては、ダイクロイックミラーやUV(紫外線)カットミラーを用いる。ここで、発光素子900aと光反射部RE1との間の空間は、樹脂などにより埋められていても良く、または所定の雰囲気ガスにより充填されていても良い。

【0124】このような光反射部 RE 1を設けることによっても、図15に関して前述したような種々の効果を同様に得ることができる。

【0.12.5】また、 $図7 \sim 図1.6$ には、リードフレーム す光のスペクタイプのLEDランプを例示したが、本発明は、これら 50 可能となる。

の具体例に限定されるものではない。これらの他にも、 後に詳述するように、表面実装型(SMD)のLEDラ ンプやその他各種の半導体発光装置について、本発明 は、同様に適用して同様の効果を得ることができる。

【0126】次に、本発明による第11の半導体発光装置について説明する。図17は、本発明の第11実施形態に係る半導体発光装置を表す概略断面図である。同図に表した半導体発光装置100Kも、リードフレームタイプのLEDランプである。本具体例については、図7に関して前述したものと同一の部分には同一の符号を付して詳細な説明は省略する。

【0127】本実施形態においては、半導体発光素子900の光取り出し方向に波長変換部FLと光反射部RE1とが配置されている。さらに、樹脂140は、波長選択性を有する光吸収部ABとして作用するように構成されている。

【0128】波長変換部FLは、半導体発光素子900 から放出される1次光を吸収して、より長波長の2次光 を放出する役割を有する。その構成は、図1に関して前 20 述したものと同様とすることができる。その具体例とし ては、透光性を有する媒体中に所定の蛍光体を分散させ たものを挙げることができる。

【0129】光反射部RE1は、半導体発光素子900から放出される1次光を反射し、波長変換部FLにより変換される2次光は透過する波長選択性を有する。その構成も前述した各実施形態における光反射部RE1のいずれかと同様とすることができる。

【0130】光吸収部ABは、2次光を透過し、1次光は吸収するような波長選択性を有する。すなわち、樹脂140に所定の光吸収体を分散させることにより、光吸収部ABを構成することができる。その構成の詳細についても、図1に前述した各実施形態における光吸収部ABのいずれかと同様とすることができる。

【0131】本発明によれば、波長変換部FLを配置することにより、半導体発光素子900からの1次光を所望の可視光または赤外線に変換することができる。さらに、光反射部RE1を配置することにより、波長変換部FLを透過して1次光を高い効率で反射して、波長変換部FLに再び戻すことができる。このようにして戻された1次光は、波長変換部FLにおいて波長変換され、2次光として、光反射部RE1を透過する。つまり、波長変換部FLの光出射側に光反射部RE1を配置することにより、1次光の漏洩を防止するとともに、波長変換部FLを透過した1次光を戻して高い効率で波長変換することができるようになる。

【0132】さらに、光吸収部ABを設けることにより、光反射部REIを透過した1次光を吸収して外部への漏洩を防止することができるとともに、外部に取り出す光のスペクトルを調節して、純色性を改善することも可能となる。

【0133】以下、本実施形態に係る各種の半導体発光 装置について図面に具体例を表しつつ説明する。図18 は、本実施形態に係る第2の半導体発光装置を表す断面 模式図である。同図に表した半導体発光装置150A は、いわゆる「表面実装(SMD)ランプ」と称される ものである。すなわち、SMDランプ150Aにおいて は、実装部材160の実装表面に半導体発光素子900 がマウントされている。そして、発光素子は、樹脂19 0によりモールドされ保護されている。

【0134】図18に示したような基板タイプのSMD ランプ150Aにおいても、波長変換部FL、光反射部 RE1、光吸収部ABを設けることにより図17に関し て前述した半導体発光装置と同様の効果を得ることがで きる。なお、ここで光吸収部ABは、図示したように樹 脂190として構成することができるが、この他にも樹 脂190の表面に別体の薄膜あるいはフィルム状にして 積層させても良い。

【0135】図19は、本実施形態に係る第3の半導体 発光装置を表す断面模式図である。同図に表した半導体 半導体発光装置である。すなわち、面発光型装置200 Aにおいては、リード・フレーム210、210に、半 導体発光素子900がそれぞれマウントされている。そ して、それぞれの半導体発光素子は、反射板220のカ ップ部の内部において、樹脂240によりモールドされ ている。

【0136】それぞれの半導体発光素子から出射した光 は、反射板220により反射されて、面状の光となり、 外部に取り出すことができる。

【0137】図19に示したような面発光型の半導体発 光装置200Aにおいても、波長変換部FL、光反射部 RE1、光吸収部ABを設けることにより図17に関し て前述した半導体発光装置と同様の効果を得ることがで きる。

【0138】図20は、本実施形態に係る第4の半導体 発光装置を表す断面模式図である。同図に表した半導体 発光装置250Aは、いわゆる「ドーム型」と称される 半導体発光装置である。すなわち、ドーム型装置250 Aにおいては、リード・フレーム260に、半導体発光 素子900が複数個、例えば5~10個程度マウントさ れている。それぞれの半導体発光素子は、図示しないワ イアよりリード・フレーム260の所定の端子に接続さ れている。そして、それぞれの半導体発光素子は、封止 樹脂290によりモールドされている。

【0139】このようなドーム型半導体発光装置250 Aは、多数の半導体発光素子を搭載しているので、輝度 が高く、また均一な光を取り出すことができるという利 点を有する。

【0140】図20に示したようなドーム型の半導体発 光装置250Aにおいても、波長変換部FL、光反射部 50 るという利点を有する。

RE1、光吸収部ABを設けることにより図17に関し て前述した半導体発光装置と同様の効果を得ることがで きる。

【0141】図21は、本実施形態に係る第5の半導体 発光装置を表す模式図である。同図に表した半導体発光 装置300Aは、いわゆる「7セグメント型」と称され る半導体発光装置であり、この中でも特に「基板タイ プ」と称されるものの要部断面を表したものである。7 セグメント型発光装置とは数字を表示する発光装置であ 10 る。すなわち、基板310の上に半導体発光素子900 がマウントされた型式のものである。半導体発光素子9 0.0から放出された光は、反射板320により反射され

【0142】図21に示したような7セグメント型半導 体発光装置300Aにおいても、波長変換部FL、光反 射部RE1、光吸収部ABを設けることにより図17に 関して前述した半導体発光装置と同様の効果を得ること ができる。

【0143】図22は、本実施形態に係る第6の半導体 発光装置200Aは、いわゆる「面発光型」と称される 20 発光装置を表す模式図である。同図に表した半導体発光 装置350Aも、いわゆる「7セグメント型」と称され る半導体発光装置であり、この中でも特に「リード・フ レーム・タイプ」と称されるものの要部断面を表したも のである。すなわち、半導体発光素子900は、リード ・フレーム360にマウントされ、ワイアにより所定の 配線が施されている。また、半導体発光素子は、樹脂3 90によって封止されている。半導体発光素子から放出 された光は、反射板370により反射され、外部に取り 出すことができる。

> 【0144】図22に示したような7セグメント型半導 体発光装置350Aにおいても、波長変換部FL、光反 射部RE1、光吸収部ABを設けることにより図17に 関して前述した半導体発光装置と同様の効果を得ること ができる。

【0145】図23は、本実施形態に係る第7の半導体 発光装置を表す模式図である。すなわち、同図に要部断 面図として表した半導体発光装置400Aは、いわゆる 「LEDアレイ型」、「メータ指針型」、「レベル・メ 一夕型」、「マトリクス型」などと称される半導体発光 40 装置である。このような半導体発光装置400Aにいお いては、所定の基板あるいはリード・フレーム410の 上に、半導体発光素子900が複数個、所定の間隔をお いてマウントされている。それぞれの半導体発光素子 は、図示しないワイアにより、所定の端子に接続されて いる。そして、それぞれの半導体発光素子は、封止樹脂 440によりモールドされている。

【0146】このような半導体発光装置400Aは、小 型で軽量であり、多数の半導体発光素子を搭載している ので、輝度が高く、また均一な光を取り出すことができ

【0147】図23に示したような半導体発光装置400Aにおいても、波長変換部FL、光反射部RE1、光吸収部ABを設けることにより図17に関して前述した半導体発光装置と同様の効果を得ることができる。なお、ここで波長変換部FLは、封止樹脂440内に混入されているものとして図示したが、これ以外にも、例えば、半導体発光素子900の表面あるいは周囲に蛍光体層を堆積させたような構成であっても良い。

【0148】また、異なる波長の2次光を放出する波長変換部FLを並べることにより、指針上に発光色の分布を設けることも容易となる。このような場合においても、本発明によれば、用いる蛍光体の種類を変えるだけで済み、半導体素子の材料や構造は同一とすることができるので、駆動電流や、供給電圧は、共通にすることができるという利点も生ずる。

【0149】図24は、本実施形態に係る第8の半導体発光装置を表す模式図である。同図に断面図として表した半導体発光装置450Aは、いわゆる「キャン型レーザ」と称される半導体発光装置である。このようなキャン型レーザ450Aにおいては、ステム470の先端部に、半導体発光素子900が配置されている。ここで、半導体発光素子900は、レーザ素子である。半導体発光素子の背面側には、モニタ用の受光素子475が配置され、半導体発光素子900の光出力をモニタできるようにされている。また、ステム470の頭部は、キャン490により封止され、レーザ光は取り出し窓492を介して、外部に取り出すことができるようにされている。

【0150】図24に示したようなキャン型レーザ半導体発光装置450Aにおいても、波長変換部FL、光反30射部RE1、光吸収部ABを設けることにより図17に関して前述した半導体発光装置と同様の効果を得ることができる。

【0151】以上、本発明の第11の実施形態として、波長変換部FL、光反射部RE1、光吸収部ABを備えた半導体発光装置とについて、それぞれ図17~図24に具体例を例示しつつ説明した。次に、本発明の第12の実施の形態について説明する。本実施形態においては、前述した第4の実施形態のように、第2の光反射部RE2を備えた半導体発光装置を提供する。

【0152】図25は、本発明の第12実施形態に係る 半導体発光装置を表す概略断面図である。すなわち、同 図に表した半導体発光装置100Lは、「リード・フレーム・タイプ」の「LEDランプ」である。同図に示し た半導体発光装置100Lも、半導体発光素子の光の取 り出し経路に、波長変換部FL、光反射部RE1、およ び光吸収部ABが設けられている。ここでも、図17に 関して前述した発光装置と同一の部分については、同一 の符合を付して説明を省略する。

【0153】本実施形態においては、半導体発光素子9 50 した半導体発光装置100Mにおいても、半導体発光素

00の下側に、さらに、第2の光反射部RE2が設けら れている。この光反射部RE2は、半導体発光素子90 ○から放出された1次光を反射して、波長変換部FLに 入射させる役割を有する。すなわち、このような光反射 部RE2を設けることにより、半導体発光素子900か らリード・フレーム110側に放出される1次光を有効 に利用することができるようになる。すなわち、このよ うな反射部RE2を設けない場合には、半導体発光素子 900からリード・フレーム110側に放出される1次 10 光は、素子のマウント面において乱反射されることが多 く、波長変換部FLに導いて効率良く波長変換すること ができなかった。しかし、本発明によれば、光反射部R E 2を設けることにより、1次光を反射させて波長変換 部FLに入射させることができる。その結果として、1 次光を高い効率で波長変換して外部に取り出すことがで きるようになる。

【0154】光反射部RE2の具体的な構成としては、例えば、前述したようなブラッグ反射鏡とすることができる。すなわち、1次光に対して高い反射率を有するように構成したブラッグ反射鏡とすることにより、半導体発光素子900からリード・フレーム110側に放出された1次光を高い反射率で波長変換部FLに戻すことができるようになる。その具体的な構成としては、例えば、窒化アルミニウム(A1N)と窒化インジウム(InN)、窒化インジウムとアルミニウム・ガリウム砒素、窒化インジウムとアルミニウム・ガリウム燐などの薄膜を交互に積層したものを挙げることができる。

【0155】また、光反射鏡RE2は、このような波長選択性を有しない全反射鏡であっても良い。すなわち、1次光だけでなく、2次光に対しても高い反射率を有するような反射鏡とすれば、波長変換部FLからリード・フレーム110の方向に放出される2次光を効率良く反射して外部に取り出すことができるようになる。このような全反射鏡は、ブラッグ反射鏡ではなく、金属膜などの反射率の高い材料を単層として用いることができる。

【0156】なお、本実施形態は、図25に示したLEDランプに限定されない。すなわち、図18~図24に関して前述した、各種の半導体発光装置や、その他の半導体発光素子を用いた半導体発光装置についても、本実施形態は同様に適用することができ、同様の効果を得ることができる。

【0157】次に、本発明の第13の実施の形態について説明する。本実施形態においては、前述した第5の実施形態のように、第3の光反射部RE3を半導体発光素子の周囲に備えた半導体発光装置を提供する。

【0158】図26は、本発明の第13実施形態に係る 半導体発光装置を表す概略断面図である。すなわち、同 図に例示した半導体発光装置100Mは、「リード・フ レーム・タイプ」の「LEDランプ」である。同図に示 した半導体発光装置100Mにおいても、半導体発光素 子900の光の取り出し経路に、波長変換部FL、光反射部RE1、および光吸収部ABが設けられている。ここでも、図17に関して前述した発光装置と同一の部分については、同一の符合を付して説明を省略する。

【0159】本実施形態においては、半導体発光素子900の周囲に、さらに、第3の光反射部RE3が設けられている。この光反射部RE3は、波長選択性を有するものであっても、波長選択性を有しない全反射鏡であっても良い。

【0160】光反射部RE3が、波長選択性を有する場合には、半導体発光素子900から放出された1次光を反射して、外部への漏洩を防止することができる。さらに、このようにして反射を繰り返された1次光は、最終的に波長変換部FLに入射して2次光に変換されるので、波長変換効率を改善することができる。このような波長選択性は、前述したようなブラッグ反射鏡により実現することができる。

【0161】一方、光反射部RE3が、波長選択性を有 しない場合には、1次光のみならず、2次光などの波長 を有する光成分の外部への漏洩も防止することができ る。このような全反射鏡は、例えば、金属膜により形成 することができる。そして、このような全反射鏡を形成 することにより、発光装置100Mの光放出部を、光反 射部RE3が形成されていない開口部のみに限定するこ とができる。すなわち、発光装置100Mの周囲をこの ような光反射部RE3で取り囲んで、所定の開口部のみ から2次光が放出されるようにすれば、光の放射パター ンをその開口の形状にあわせて容易に制御することがで きるようになる。例えば、光反射部RE3の開口を極め て小さく形成することにより、点光源状の半導体発光装 30 置を容易に形成することができる。このような点光源 は、レンズなどの光学系により効果的に集光することが でき、実用上有利である場合が多い。

【0162】なお、本実施形態も、図26に示したLEDランプに限定されない。すなわち、図18~図24に関して前述した、各種の半導体発光装置や、その他の半導体発光素子を用いた半導体発光装置についても、本実施形態は同様に適用することができ、同様の効果を得ることができる。

の順序で設けられている。ここでも、図17に関して前述した発光素子と同一の部分については、同一の符合を付して説明を省略する。

【0165】本実施形態における光反射部RE4は、半導体発光素子900から放出される1次光を透過し、波長変換部FLにおいて変換され放出される2次光は反射するような波長選択性を有する。すなわち、1次光に波長の光に対する反射率は低く、2次光の波長の光に対する反射率が高くなるように構成されている。このような波長選択性は、例えば、前述したブラッグ反射鏡を利用することにより実現することができる。

【0166】また、波長変換部FLは、1次光を吸収してそれよりも波長が長い2次光を放出する役割を有する。その詳細については、第1実施形態に関して前述したものと同様である。

【0167】また、光反射部RE1は、波長変換部から放出される2次光に対する反射率が低く、1次光に対する反射率が高くなるように構成されている。このような波長選択性も、前述したブラッグ反射鏡を利用することのにより実現することができる。

【0168】光吸収部ABは、1次光に対して高い光吸収率を有し、2次光に対しては低い吸収率を有するように構成される。この詳細な構成についても、前述した各実施形態と同様とすることができる。

【0169】本実施形態によれば、半導体発光素子900から放出された1次光は光反射部RE4を透過して波長変換部FLに入射し、2次光に波長変換される。また、波長変換部FLにおいて波長変換されずに透過した1次光は、光反射部RE1により反射されて再び波長変換部FLに戻される。さらに、光反射部RE1も透過した1次光は、光吸収部ABにおいて吸収され、外部への漏洩が防止される。

【0170】一方、波長変換部FLから放出された2次 光のうちで光反射部RE1の方向に出射した光成分は、 光反射部RE1および光吸収部ABを透過して外部に取 り出すことができる。また、波長変換部FLから放出さ れた2次光のうちで半導体発光素子900の方向に出射 した光成分は、光反射部RE4により反射され、波長変 換部FL、光反射部RE1および光吸収部ABを透過し て外部に取り出すことができるようになる。

【0171】すなわち、光反射部RE4を設けない場合には、波長変換部FLから半導体発光素子900の方向に放出された2次光は、半導体発光素子900のマウント面において乱反射されて、外部に有効に取り出すことができない。これに対して、本実施形態によれば、光反射部RE4を設けることにより、波長変換部FLから半導体発光素子900の方向に放出される2次光を光反射部RE4により反射して、外部に効率良く取り出すことができるようになる

【0172】また、本実施形態と、前述した第12実施形態または第13実施形態とを組み合わせることにより、さらに高効率の半導体発光装置を実現することもできる。すなわち、本実施形態の構成に、第12実施形態で説明した光反射部RE2を追加することにより、半導体発光素子900から放出される1次光をさらに効率良く波長変換部FLに導いて、波長変換することができるようになる。また、本実施形態の構成に、第13実施形態で説明した光反射部RE3を追加することにより、発光装置の発光パターンを制御して、容易に点光源を構成 10することができるようになる。

【0173】次に、本発明の第15の実施の形態について説明する。本実施形態においては、画像表示装置において、半導体発光素子と、前述したような波長変換部、光反射部、光吸収部を組み合わせた構成を実現する。

【0174】図28は、本発明による画像表示装置の具体例の構成を表す概略断面図である。すなわち、同図に示した画像表示装置500Aは、光源部520と、調光部530と、変換部550とを備える。

【0175】光源部520は、所定の発光スペクトルを有する半導体発光素子900を光源として備え、さらに導光板522により半導体発光素子900からの光を均一に拡散させて調光部に照射する。

【0176】調光部530は、例えば、液晶により光の 透過率を調節する構成を有する。すなわち、調光部53 1~36が挟持されている。液晶層536は、画素電極53 4と対向電極538との間に所定の電圧を印加することによって、その分子の配向状態が制御され、上下の偏光 板531及び539と共に作用して光の透過率を制御で 30 る。きるようにされている。透光性基板532の上に形成された各画素電極534には、それぞれスイッチング素子 535を介して所定の電圧が供給される。スイッチング素子 535を介して所定の電圧が供給される。スイッチング素子 535を介して所定の電圧が供給される。スイッチング素子 535を介して所定の電圧が供給される。スイッチング素子 535を介して所定の電圧が供給される。スイッチング素子 535を介して所定の電圧が供給される。スイッチング 次級 1 M) 接合型素子や、水素化アモルファス・シリコン或 いは多結晶化シリコンにより形成した薄膜トランジスタ (TFT) などを用いることができる。 コー

【0177】変換部550は、透明性基板542の下面に波長変換部FL1~3、光反射部RE1~3、光吸収部AB1~3が配置された構成を有する。波長変換部FLは、遮光性の材料により形成されたブラック・マトリクスによって、画素毎に仕切られるようにしても良い。また、波長変換部FLは、透明性基板542の上面に配置するようにしても良い。

【0178】このような画像表示装置 500 Aにおいては、光源部 520 から出射した光は、調光部 530 におなて、液晶層 536 に印加される電圧に応じて、画素毎に光量が調節され、それぞれ波長変換部 $FL1\sim3$ に入りする。波長変換部 $FL1\sim3$ においては、それぞれの増類に応じて、入射した 1 次光が所定の波長を 50 共に、駆動電圧を低減することができる。

有する2次光に変換される。例えば、FL1においては 赤色、FL2においては緑色、FL3においては青色に それぞれ変換されるようにすることができる。

34

【0179】それぞれの波長変換部 $FL1\sim3$ から放出された2次光は、光反射部 $RE1\sim3$ に入射する。それぞれの光反射部は、1次光が反射され、2次光のみが透過するような波長選択性を有する。

【0180】さらに、光反射部RE1~3を透過した2次光は、それぞれ光吸収部AB1~3に入射する。光吸収部AB1~3は、それぞれ所定の2次光を透過し、1次光は吸収するような波長選択性を有する。例えば、AB1は赤色の光を透過し、AB2は緑色の光を透過し、AB3は青色の光を透過するような、いわゆる「カラー・フィルタ」として構成することができる。

【0181】本発明によれば、光源に半導体発光素子を 用いるので、従来の陰極蛍光管などと比較して光電変換 効率が高く、消費電力を低減することができる。しか も、このような高効率である半導体発光素子からの光に より蛍光体を励起させるという新規な構成を採用した結 20 果、画像表示装置全体として消費電力の低減を図ること ができる。

【0182】特に、本発明においては、波長変換部と共に、波長選択性を有する光反射部REや光吸収部ABを設けることによって、変換効率をさらに向上することができる。また、画像表示装置500Aの波長変換部FL $1\sim3$ の光入射側に、図4または図15に関して前述したような第4の光反射部RE4を設けることにより、波長変換部FL $1\sim3$ から放出された2次光を反射して、より高い効率で外部に取り出すことができるようになる。

【0183】一例として、従来の陰極蛍光管を光源とした10.4インチ型TFT液晶表示装置の場合の消費電力は、約9ワットであった。しかし、本発明による、紫外線LEDと蛍光体とを採用した画像表示装置の場合の消費電力は約4ワットであり、従来の液晶表示装置の半分以下に低減される。その結果として、ノート型コンピュータや各種情報携帯端末機器などの携帯型電子機器の電池寿命を延ばすことができる。

【0184】また、本発明によれば、波長変換部FLを 40 画像表示面の表面近傍に隣接して配置することができる ので、視野角を大幅に改善することができる。

【0185】また、従来の陰極蛍光管などと比較して回路を簡略化し、駆動電圧を低減することができる。すなわち、陰極蛍光管では、安定化回路やインバータを介して高電圧を印加することが必要とされていた。しかし、本発明によれば、光源である半導体発光素子は、わずか2~3.5ボルト程度の直流電圧で十分な発光強度を得ることができる。従って、安定化回路やインバータ回路が不要となり、光源の駆動回路が大幅に簡略化されるとせに、駆動電圧を低減まることができる。

【0186】また、本発明によれば、光源の寿命を従来 よりも大幅に延ばすことができる。すなわち、従来の陰 極蛍光管では、電極部でのスパッタリング現象などに起 因して、所定の寿命期間の経過後は、輝度が急速に低下 し、発光が停止する。しかし、本発明によれば、光源の 半導体発光素子は、数万時間という極めて長時間の使用 に対しても輝度の低下は殆ど見られず、その寿命は、半 永久的ということもできる。従って、本発明による画像 表示装置は、従来の装置と比べて、寿命が大幅に延び る。

【0187】さらに、本発明によれば、画像表示装置の 動作立ち上がり時間が極めて短い。すなわち、電源を投 入してから光源の照明輝度が定常状態に至るまでの時間 は、従来の陰極蛍光管と比較して、きわめて短く、瞬時 動作が可能である。

【0188】また、本発明によれば、信頼性も向上す る。すなわち、従来の陰極蛍光管は、ガラス管に所定の ガスを封入した構造を有する。従って、過度の衝撃や振 動に対して破損することがあった。しかし、本発明によ るので、衝撃や振動に対する耐久性も顕著に向上する。 この結果として、特に、本発明による画像表示装置を搭 載した携帯用の各種電子機器の信頼性を格段に向上させ ることができる。

【0189】さらに、本発明によれば、有害な水銀を使 用することがない。すなわち、従来の陰極蛍光管では、 ガラス管の内部に所定量の水銀が封入されていることが 多かった。しかし、本発明によれば、このような有害な 水銀を用いる必要がない。

【0190】次に、本発明による画像表示装置の変型例 30 について説明する。図29は、本発明による画像表示装 置の変形性の構成を表す概略断面図である。すなわち、 同図に示した画像表示装置500Bも、光源部520 と、調光部530と、変換部550とを備える。しか し、画像表示装置500Bは、前述した画像表示装置5 00Aと比べると、光源部520と、調光部530との 間に変換部550が配置されている点で異なる。ここ で、前述した画像表示装置500Aと同様の部分には、 同一の符合を付して説明を省略する。

【0191】画像表示装置500Bにおいては、半導体 発光素子900から放出された1次光は、導光板522 を介して、まず波長変換部 F L 1 ~ 3 に入射する。入射 した1次光は、それぞれの波長変換部において、所定の 波長を有する2次光に変換され、光反射部RE1~3に 入射する。そして、1次光成分は反射され、2次光成分 は、透過して、それぞれ光吸収部AB1~3に入射す る。光吸収部AB1~3においても前述の場合と同様 に、1次光成分が吸収され、2次光は透過する。

【0192】図29に示した画像表示装置500Bにお いても、前述した画像表示装置500Aと同様の効果を 50 得ることができる。さらに、画像表示装置500Bにお いては、半導体発光素子900から放出された紫外線な どの1次光が、波長変換されて、より長波長の2次光と されてから調光部に入射する。従って、調光部のスイッ チング素子535や液晶層536などが、1次光である 紫外線に曝されて劣化するという問題も解消することが できる。

[0193]

【発明の効果】本発明は、以上説明したような形態で実 10 施され、以下に説明する効果を奏する。本発明によれ ば、半導体発光素子の発光層からの発光を直接取り出す ことがなく、蛍光物質により波長変換することとしてい るので、半導体発光素子の製造パラメータのばらつき、 駆動電流、温度などに依存して、発光波長が変動すると いう問題を解消することができる。すなわち、本発明に よれば、発光波長が極めて安定で、発光輝度と発光波長 とを独立して制御することができるようになる。

【0194】また、本発明によれば、用いる蛍光物質を 適宜組み合わせることによって、容易に複数の発光波長 れば、光源として固体素子である半導体発光素子を用い 20 を得ることができる。例えば、赤(R)、緑(G)、青 (B)の蛍光物質を適宜混合して、発光素子に含有させ れば、白色光の発光を容易に得ることができる。

> 【0195】さらに、本発明によれば、発光波長に応じ て、内蔵する半導体発光素子の材料や構造を適宜選択 し、変更する必要がなくなる。例えば、従来は、赤色に おいて発光させるためには、A1GaAs系材料を用 い、黄色においてはGaP系材料、緑色系においてはI nGaAlP系材料、青色においてはInGaN系材料 の如く、最適な材料をその波長に併せて選択しなければ ならないという問題があった。これに対して、本発明に よれば、発光波長に応じて蛍光物質の種類を適宜選択す れば良く、半導体発光素子を変更する必要がなくなる。

【0196】また、本発明によれば、異なる発光色を有 する半導体発光素子を並べる必要がある場合において も、発光色の変更は、用いる蛍光体の種類を変えるだけ で済み、半導体発光素子の材料や構造は同一とすること ができる。従って、発光装置の構成を極めて簡略化する ことが可能となり、製造コストを顕著に低減することが できるとともに、信頼性も高く、また、駆動電流や、供 40 給電圧、あるいは素子のサイズなどを共通にすることに より、応用範囲を顕著に拡大することができるという利 点も生ずる。

【0197】さらに、本発明によれば、光反射部RE1 を配置することにより、波長変換部 F L を透過して漏洩 した1次光を高い効率で反射して、波長変換部FLに再 び戻すことができる。このようにして戻された1次光 は、波長変換部FLにおいて波長変換され、2次光とし て、光反射部RE1を透過する。つまり、波長変換部F Lの光出射側に光反射部RE1を配置することにより、 1 次光の漏洩を防止するとともに、波長変換部 F L を透 過した1次光を戻して高い効率で波長変換することができるようになる。また、外乱光により波長変換部FLが励起されて不要な発光を生ずるという問題を解消することができる。

【0198】また、本発明によれば、光吸収部ABを設けることにより、光反射部RE1を透過した1次光を吸収して外部への漏洩を防止することができるとともに、外部に取り出す光のスペクトルを調節して、純色性を改善することも可能となる。また、外部から入射する紫外線も吸収することができるので、このような外乱光により波長変換部FLが励起されて不要な発光が生ずるという問題も解消することができる。

【0199】また、本発明によれば、反射部RE2を設けることにより、1次光を反射させて波長変換部FLに入射させることができる。その結果として、1次光を高い効率で波長変換して外部に取り出すことができるようになる。

【0200】さらに、本発明によれば、光反射部RE3を設けることにより、波長変換効率をさらに向上させることができるとともに、1次光のみならず、2次光など 20の波長を有する光成分の外部への漏洩も防止することができる。また、光放出部を、光反射部RE3が形成されていない開口部のみに限定することができる。例えば、光反射部RE3の開口を極めて小さく形成することにより、点光源状の発光素子を容易に形成することができる。このような点光源は、レンズなどの光学系により効果的に集光することができ、実用上有利である場合が多い。

【0201】また、本発明によれば、光反射部RE4を 設けることにより、波長変換部FLにおいて波長変換さ 30 れた2次光を反射して外部に効率良く取り出すことがで きるようになる。

【0202】一方、本発明によれば、消費電力が低く寿命が長く、信頼性が良好で、立ち上がり時間が短く、機械的信頼性も良好な画像表示装置を実現することもできる。

【0203】このように、本発明によれば、比較的簡略な構成により、発光波長が極めて安定で、効率が高く、しかも、可視光から赤外線領域までの種々の波長において高い輝度で発光させることができる半導体発光素子、半導体発光装置および画像表示装置を提供することができ、産業上のメリットは多大である。

【図面の簡単な説明】

【図1】本発明による第1の実施形態に係る半導体発光素子の概略構成を例示する断面図である。

【図2】本発明による第2の実施形態に係る半導体発光素子の概略構成を例示する断面図である。

【図3】本発明による第3の実施形態に係る半導体発光素子の概略構成を例示する断面図である。

【図4】本発明による第4の実施形態に係る半導体発光 50

素子の概略構成を例示する断面図である。

【図5】本発明による第5の実施形態に係る半導体発光素子の概略構成を例示する断面図である。

【図6】本発明による第6の実施形態に係る半導体発光素子の概略構成を例示する断面図である。

【図7】本発明の実施形態に係る半導体発光装置を表す 概略断面図である。

【図8】本発明による第2の半導体発光装置を表す断面 模式図である。

0 【図9】本発明による第3の半導体発光装置を表す断面 模式図である。

【図10】本発明による第4の半導体発光装置を表す断面模式図である。

【図11】本発明による第5の半導体発光装置を表す断面模式図である。

【図12】本発明による第6の半導体発光装置を表す断 面模式図である。

【図13】本発明による第7の半導体発光装置を表す概略断面図である。

10 【図14】本発明による第8の半導体発光装置を表す概略断面図である。

【図15】本発明による第9の半導体発光装置を表す概略断面図である。

【図16】本発明による第10の半導体発光装置を表す 概略断面図である。

【図17】本発明による第11の半導体発光装置を表す 概略断面図である。

【図18】本発明の第11実施形態に係る第2の半導体発光装置を表す断面模式図である。

0 【図19】本発明の第11実施形態に係る第3の半導体 発光装置を表す断面模式図である。

【図20】本発明の第11実施形態に係る第4の半導体 発光装置を表す断面模式図である。

【図21】本発明の第11実施形態に係る第5の半導体 発光装置を表す模式図である。

【図22】本発明の第11実施形態に係る第6の半導体 発光装置を表す模式図である。

【図23】本発明の第11実施形態に係る第7の半導体 発光装置を表す模式図である。

40 【図24】本発明の第11実施形態に係る第8の半導体 発光装置を表す模式図である。

【図25】本発明の第12実施形態に係る半導体発光装置を表す概略断面図である。

【図26】本発明の第13実施形態に係る半導体発光装置を表す概略断面図である

【図27】本発明の第14実施形態に係る半導体発光装置を表す概略断面図である。

【図28】本発明による画像表示装置の具体例の構成を表す概略断面図である。

【図29】本発明による画像表示装置の変形性の構成を

39

表す概略断面図である。

【図30】波長変換部を備えた従来の半導体発光装置を 例示する断面模式図である。

【符号の説明】

10、900、900 半導体発光素子

12 サファイア基板

14 バッファ層

16 n型コンタクト層

18 n型クラッド層

2 0 発光層

22 p型クラッド層

24 p型コンタクト層

26 p側電極層

30 保護膜

32 ボンディング・パッド

*34 n側電極

100, 150, 200, 250, 300, 350, 4

00、450 半導体発光装置

110、120、210、260 リードフレーム

130、330 ワイア

140、190、240、290、390、440 樹

脂

160 実装部材

220、320、370 反射板

10 470 ステム

500 画像表示装置

F L 波長変換部

RE1~RE4 光反射部

AB 光吸収部

*

【図2】

30 32 26 AB FL 32 22 20 30 16 14 12 34

[図1]

10C 32 AB RE1 FL 30 24 22 20 30 16 14 12

[図3]

【図4】

【図19】

【図21】

【図22】

【図23】

【図24】

【図25】

【図26】

