

Proyecto Final de Minería de Datos

ANÁLISIS EXPLORATORIO DE DATOS

Archivos Usados

- •orders.csv → (buy_ts, revenue, uid, buy_date)
- •costs.csv → (source_id, dt, costs)
- •visits.csv → (start_ts, end_ts, uid, source_id, etc.)

ANÁLISIS EXPLORATORIO DE DATOS

Sesiones negativas -> Borradas Winsorización suave (recorte por percentiles: 1% y 99%)

RESUMEN

- Datos analizados:
- •359,400 visitas
- •50,415 órdenes
- •2,542 registros de costos
- •Columnas: uid, device, source_id, start_ts, end_ts, revenue, costs
- Usuarios y visitas:
- •Dispositivos más usados: desktop (73%) y touch (27%)
- ·Duración media de sesión: 10.7 minutos
- Valores atípicos detectados (duraciones negativas y muy largas)
- Órdenes:
- •Ingresos con alta variabilidad, hasta \$2,633
- •Mediana de ingresos: **\$2.50**, muchos valores bajos
- ·Costos de campañas:
- •Costo medio diario por fuente: \$129.48
- Valores extremos detectados (hasta \$1,788)
- •Fuente más común: source_id 4
- ·Rango temporal:
- •Todos los datasets cubren de **junio 2017 a junio 2018**

Descripción			
Toto	al sesiones por usuario		
Pror	omedio por sesión del usuario		
Durc	ación máxima de una sesión		
Primera sesión del usuario			
Última sesión del usuario			
	Descripción		
	Costo de adquisición por usuario, calculado como el costo de su fuente en los 30 días antes de su primera sesión		
nnel	Canal de marketing asociado al usuario (numérico o categórico codificado)		
	Toto Pror Duro Prim Últir		

Variable Descripción

Lifetime Value acumulado por el usuario en LTV_180 los 180 días posteriores a su primera

compra

INGENIERÍA DE CARACTERÍSTICAS AVANZADA

ACTIVIDADES

Transformaciones Aplicadas

Creación de Nuevas Variables

Selección de Variables

Importancia de Variables y Explicación del Modelo

TRANSFORMACIONES APLICADAS

Algunas variables presentaban mucha asimetría y valores atípicos. Se aplicaron transformaciones logarítmicas para estabilizar la data.

NUEVAS VARIABLES

Variables generadas: sesiones por usuario, canales de adquisición codificados, tiempos de conversión y frecuencia de retorno, todas fundamentales para estimar el LTV.

SELECCIONADO DE VARIABLES

Mediante el análisis de correlaciones y lógica de negocio, se imputó con transformación logarítmicà.

RESUMEN

Mediante el análisis de correlaciones y lógica de negocio, se imputó con transformación logarítmica.

Tipo de acción	Detalle	
Transformaciones	ansformaciones log() a LTV para reducir asimetría.	
Imputación inteligente	ción inteligente Medianas para Valores Faltantes	
Variables derivadas	Variables derivadas Número de sesiones, frecuencia de retorno, duración promedio, CAC.	
Codificación categórica	odificación categórica Canales de marketing codificados y agrupados por performance.	
Segmentación temporal	egmentación temporal Cohortes y fechas relativas para captar evolución del comportamiento.	
Filtrado y selección	Se eliminaron variables redundantes y se conservaron las más predictivas.	

$M\phi$ DELADO PREDICTIVO

- Entrenamiento y Resultados
 - Lifetime Value en 180 días.
 - Costo de Adquisición en 30 días según el canal.
 - Modelos Base
 - LightGBM (balance velocidad-precisión.
 - Regresiones (Rigde, Lasso, SGD), como Baseline.
 - Seleccionado de variables: numéricas y fechas convertidas a tipo timestamp

VALORACIONES

Evaluación – LTV_180

Métrica	Entrenamiento	Validación	Test	
MAE	0.0358	0.0060	0.0117	
RMSE	3.92	0.1991	0.6691	
MAPE	≈0%	≈0%	≈0%	

Evaluación – CAC_source_30

Métrica	Entrenamiento	Validación	Test
MAE	38.17	97.86	81.88
RMSE	77.66	117.38	115.58
MAPE	38%	91%	92%

VALIDACIÓN/SELECCIÓN

- Modelos Entrenados: Lineal, Ridge, Lasso, SGD y LightGBM.
- Evaluación con RMSE.
- Modelos elegidos: Ridge para LTV y LightGBM para CAV.
- TimeSeriesSplit no fue aplicado.
- GridSearchCV no se usó.

El trabajo individual y el tiempo limitado priorizaron una comparación directa basada en desempeño.

Se cumplió el objetivo de seleccionar los mejores modelos, aunque sin validación formal.

EXPLICABILIDAD DIAGNÓSTICO

- Uso de SHAP para interpretación del modelo de LTV.
- Análisis de residuos para tanto LTV como CAC.

- Permutation Importance y PDP no se aplicaron
- Sin diagnóstico de fallos por segmento (canales y clientes)

SIMULACIÓN ESTRATEGIA DE MARKETING

- Se implementó simulate_romi_from_real_values() para:
 - Calcular ROMI actual.
 - Simular +10% y redistribución proporcional.
 - Generar gráfico comparativo y recomendar.

La función clave fue implementada y se logrò una simulación válida, aunque la simulación completa quedó pendiente por un error técnico.

• simulate_marketing_budget() no se ejecutó (faltó parámetro).

Categoría	egoría Contenido	
Logros Clave	 Se cumplió el objetivo central: estimar LTV y CAC con modelos predictivos. Ridge (LTV) y LightGBM (CAC) ofrecieron buen desempeño. Se logró interpretabilidad básica con gráficos SHAP. Simulaciones ROMI reales generaron recomendaciones útiles. 	
Limitaciones	 No se aplicó validación cruzada formal ni ajuste de hiperparámetros. No se finalizó la simulación basada en predicciones del modelo. Faltó análisis de errores por segmento. 	
Recomendaciones 15	 Implementar TimeSeriesSplit y GridSearchCV en futuros ciclos. Finalizar simulate_marketing_budget() con datos modelo. Analizar desempeño por canal, tipo de cliente u otros segmentos Escalar metodología a otros productos o campañas. 	