In this note we explore different attempts at expressing the $B_2 \wedge B_2$ component of $R_8^{(2)}$ with cluster polylogarithms.

First let us define "good" \mathcal{X} -coordinates: an \mathcal{X} -coordinate R is good if R and 1+R can be expressed as ratios of \mathcal{A} -coordinates of the form

$$\langle i \ i+1 \ jk \rangle, \quad \langle i(i-1 \ i+1)(j \ j+1)(k \ k+1) \rangle, \langle i \ i+1 \ \bar{j} \cap \bar{k} \rangle, \quad \langle i(i-2 \ i-1)(i+1 \ i+2)(j \ j+1) \rangle.$$
 (1)

An algebra is good if it contains only good \mathcal{X} -coordinates.

Fitting with A_3 's

There are 1600 good A_3 's in Gr(4,8), with only 513 actual degrees of freedom in $B_2 \wedge B_2$. An ansatz of these functions can be fit to $R_8^{(2)}$. A zero-thought choice of free parameters leaves us with an expression involving 223 A_3 's.

Fitting with A_4 's

There are 496 good A_4 's.

Fitting with D_4 's

There are 24 good D_4 's.

Fitting with A_5 's

There are 56 good A_5 's. No choice of f_{A_5} can fit $R_8^{(2)}$.

Fitting with D_5 's

There are no good D_5 's. Furthermore, no D_5 contains enough good A_3 's to allow us to tune the free parameters in f_{D_5} in order to have only good A_3 's appear in f_{D_5} . In other words, any representation of $R_8^{(2)}$ in terms of f_{D_5} will necessarily involve "bad" ratios inside the f_{D_5} 's which must cancel in the full sum. This is upsetting!

Fitting with E_6 's

There are no good E_6 's. There are 216 E_6 's which have seed clusters involving only good \mathcal{X} coordinates. None of these 216 E_6 's have sufficient $\{v, z\}$ -squares to constitute a completely
good $\sim f_{E_6} \sim R_7^{(2)}$. The most $\{v, z\}$ -squares inside one of these E_6 's is 33, and there are 64 E_6 's which have at least 30 (out of 42) good $\{v, z\}$ squares.