We present a new geomagnetic model over the span from 2014.0 to 2024.5 called MSCM: a model defined by using vector and scalar data from the Swarm, CSES, and MSS-1 missions.

MSCM incorporates contributions from the core, lithospheric, and magnetospheric fields. The core field is represented by a series of snapshot models with spherical harmonic coefficients up to degree and order 15, covering the period from 2014.0 to 2024.5. The lithospheric field is modeled as a static snapshot, with spherical harmonic coefficients extending up to degree 40. The magnetospheric field is described by spherical harmonic coefficients up to degree and order 2, with only the first-order coefficient varying over time, updated every 30 days from November 25, 2013, to September 27, 2024.

Table 1 Format of Core field model

degree	order	t(1)	t(2)	t(3)		t(n_times)
degree	order	u(1)	1(2)	1(3)	•••	t(ii_tiiiles)
1	0	$g_1^0(1)$	$g_1^0(2)$			g_1^0 (n_times)
1	1	$g_1^1(1)$	$g_1^1(2)$			g_1^1 (n_times)
1	-1	$h_1^1(1)$	$h_1^1(2)$			h_1^1 (n_times)
n	m	$g_n^m(1)$	$g_n^m(2)$			g_n^m (n_times)
n	-m	$h_n^m(1)$	$h_n^m(2)$			h_n^m (n_times)
	•••	•••	•••			
15	15	$g_{15}^{15}(1)$	$g_{15}^{15}(2)$			g_{15}^{15} (n_times)
15	-15	$h_{15}^{15}(1)$	$h_{15}^{15}(2)$			h_{15}^{15} (n_times)

Table2 Format of lithospheric field model

degree	order	
16	0	g_{16}^{0}
16	1	g_{16}^1
16	-1	h_{16}^1

n	m	g_n^m
n	-m	h_n^m
40	40	g_{40}^{40}
40	-40	h_{40}^{40}

Table3 Format of magnetospheric field model

Table3 Format of magnetospheric field model				
degree	order	t		
1	0	t(1)	$\Delta q_1^0(1)$	
1	0	t(2)	$\Delta q_1^0(2)$	
1	0	t(n_times)	Δq_1^0 (n_times)	
1	1	t(1)	$\Delta q_1^1(1)$	
1	1	t(2)	$\Delta q_1^1(2)$	
1	1	t(n_times)	Δq_1^1 (n_times)	
1	-1	t(1)	$\Delta s_1^1(1)$	
1	-1	t(2)	$\Delta s_1^1(2)$	
1	-1	t(n_times)	Δs_1^1 (n_times)	
1	0		$\hat{q}_{_{1}}^{_{0}}$	
1	1		\hat{q}_1^1	
1	-1		\hat{S}_1^1	

2	0	q_2^0
2	1	q_2^1
2	-1	s_2^1
2	2	q_2^2
2	-2	s_2^2
1	0	$q_{\scriptscriptstyle m l}^{\scriptscriptstyle 0,GSM}$
2	0	$q_2^{\scriptscriptstyle 0,GSM}$