$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

[A

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

 $[\forall \epsilon$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

 $[\forall \epsilon > 0$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$[\forall \epsilon>0, a+\epsilon$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$[\forall \epsilon > 0, a + \epsilon > 0$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$[\forall \epsilon>0, a+\epsilon>0] \Leftrightarrow a\geq 0$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

➤ Start

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Proof.

 (\Rightarrow)

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

➤ Start

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$(\Rightarrow)$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

→ Start

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$(\Rightarrow)$$

$$a < 0 \Rightarrow$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$(\Rightarrow)$$

$$a < 0 \Rightarrow [\exists \epsilon$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$(\Rightarrow)$$

$$a < 0 \Rightarrow [\exists \epsilon > 0$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$(\Rightarrow)$$

$$a < 0 \Rightarrow [\exists \epsilon > 0 \text{ s.t.}]$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$(\Rightarrow)$$

$$a < 0 \Rightarrow [\exists \epsilon > 0 \text{ s.t. } a + \epsilon]$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$(\Rightarrow)$$

$$a < 0 \Rightarrow [\exists \epsilon > 0 \text{ s.t. } a + \epsilon \leq 0]$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$(\Rightarrow)$$

$$a < 0 \Rightarrow [\exists \epsilon > 0 \text{ s.t. } a + \epsilon \le 0]$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$(\Rightarrow)$$

$$a < 0 \Rightarrow [\exists \epsilon > 0 \text{ s.t. } a + \epsilon \le 0]$$

$$a < 0$$
, Let

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$(\Rightarrow)$$

$$a < 0 \Rightarrow [\exists \epsilon > 0 \text{ s.t. } a + \epsilon \le 0]$$

$$a < 0$$
, Let ϵ

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$(\Rightarrow)$$

$$a < 0 \Rightarrow [\exists \epsilon > 0 \text{ s.t. } a + \epsilon \leq 0]$$

$$a < 0$$
, Let $\epsilon = -a$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$(\Rightarrow)$$

$$a < 0 \Rightarrow [\exists \epsilon > 0 \text{ s.t. } a + \epsilon \leq 0]$$

$$a < 0$$
, Let $\epsilon = -a$, $a + \epsilon$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$(\Rightarrow)$$

$$a < 0 \Rightarrow [\exists \epsilon > 0 \text{ s.t. } a + \epsilon \leq 0]$$

$$a < 0$$
, Let $\epsilon = -a$, $a + \epsilon = a + (-a)$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$(\Rightarrow)$$

$$a < 0 \Rightarrow [\exists \epsilon > 0 \text{ s.t. } a + \epsilon \leq 0]$$

$$a < 0$$
, Let $\epsilon = -a$, $a + \epsilon = a + (-a) = 0$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$(\Rightarrow)$$

$$a < 0 \Rightarrow [\exists \epsilon > 0 \text{ s.t. } a + \epsilon \leq 0]$$

$$a < 0$$
, Let $\epsilon = -a$, $a + \epsilon = a + (-a) = 0 \le 0$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$\begin{array}{l} (\Rightarrow) \\ a<0 \Rightarrow [\exists \epsilon>0 \text{ s.t. } a+\epsilon\leq 0] \\ a<0 \text{ , Let } \epsilon=-a \text{ , } a+\epsilon=a+(-a)=0\leq 0 \\ (\Leftarrow) \end{array}$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$\begin{array}{l} (\Rightarrow) \\ a<0 \Rightarrow [\exists \epsilon>0 \text{ s.t. } a+\epsilon \leq 0] \\ a<0 \text{ , Let } \epsilon=-a \text{ , } a+\epsilon=a+(-a)=0 \leq 0 \\ (\Leftarrow) \\ a \end{array}$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$\begin{array}{l} (\Rightarrow) \\ a<0 \Rightarrow [\exists \epsilon>0 \text{ s.t. } a+\epsilon \leq 0] \\ a<0 \text{ , Let } \epsilon=-a \text{ , } a+\epsilon=a+(-a)=0 \leq 0 \\ (\Leftarrow) \\ a\geq 0 \end{array}$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$\begin{array}{l} (\Rightarrow) \\ a<0 \Rightarrow [\exists \epsilon>0 \text{ s.t. } a+\epsilon \leq 0] \\ a<0 \text{ , Let } \epsilon=-a \text{ , } a+\epsilon=a+(-a)=0 \leq 0 \\ (\Leftarrow) \\ a\geq 0 \text{ , } \epsilon \end{array}$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$\begin{array}{l} (\Rightarrow) \\ a<0 \Rightarrow [\exists \epsilon>0 \text{ s.t. } a+\epsilon\leq 0] \\ a<0 \text{ , Let } \epsilon=-a \text{ , } a+\epsilon=a+(-a)=0\leq 0 \\ (\Leftarrow) \\ a\geq 0 \text{ , } \epsilon>0 \\ \end{array}$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

➤ Start

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$\begin{array}{l} (\Rightarrow) \\ a<0 \Rightarrow [\exists \epsilon>0 \text{ s.t. } a+\epsilon\leq 0] \\ a<0 \text{ , Let } \epsilon=-a \text{ , } a+\epsilon=a+(-a)=0\leq 0 \\ (\Leftarrow) \\ a>0 \text{ , } \epsilon>0 \text{ , } a+\epsilon \\ \end{array}$$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

➤ Start

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$(\Rightarrow)$$
 $a < 0 \Rightarrow [\exists \epsilon > 0 \text{ s.t. } a + \epsilon \leq 0]$
 $a < 0$, Let $\epsilon = -a$, $a + \epsilon = a + (-a) = 0 \leq 0$

$$(\Leftarrow)$$
 $a > 0$, $\epsilon > 0$, $a + \epsilon > 0$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

Theorem

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

$$(\Rightarrow)$$
 $a < 0 \Rightarrow [\exists \epsilon > 0 \text{ s.t. } a + \epsilon \leq 0]$
 $a < 0$, Let $\epsilon = -a$, $a + \epsilon = a + (-a) = 0 \leq 0$

$$(\Leftarrow)$$
 $a > 0$, $\epsilon > 0$, $a + \epsilon > 0$

$$[\forall \epsilon > 0, a + \epsilon > 0] \Leftrightarrow a \ge 0$$

▶ Home