Phil Pützstück, 377247 Benedikt Gerlach, 376944 Sebastian Hackenberg, 377550

Hausaufgabe 10

Aufgabe 5

Sei ein PDA $\mathcal{A} := (Q, \Sigma, \Gamma, \Delta, q_0, Z_0)$, der mit leerem Stapel akzeptiert gegeben. Wir zeigen, dass der PDA $\mathcal{A}' := (Q', \Sigma, \Gamma, \Delta', q'_0, Z'_0, F)$, die gleiche Sprache akzeptiert, wobei

$$Q' := Q \cup \{q_0', f\} \qquad F := \{f\} \qquad \Delta' := \Delta \cup \{(q, \varepsilon, Z_0', f, \varepsilon) \mid q \in Q'\} \cup \{(q_0', \varepsilon, Z_0', q_0, Z_0 Z_0')\}$$

Wir zeigen zuerst $L(A) \subseteq L(A')$.

Sei $w \in L(\mathcal{A})$, d.h. es gibt einen Lauf $(\kappa_0, \dots, \kappa_n)$ mit

$$\forall i \in [0, n] : \kappa_i = (q_i, \gamma_i, v_i), \ q_i \in Q, \gamma_i \in \Gamma^*, w \sqsubseteq v_i$$

Dann ist weiter $\kappa_n = (q_n, \varepsilon, \varepsilon)$, also auch $\gamma_n = v_n = \varepsilon$.

Wir definieren nun das Tupel $\kappa' := ((q'_0, Z'_0, w), \kappa'_0, \cdots, \kappa'_n, (f, \varepsilon, \varepsilon))$ mit

$$\forall i \in [0, n] : \kappa_i' := (q_i, \gamma_i Z_0', v_i)$$

Dann ist κ' ein Lauf über w auf \mathcal{A}' : Wir beginnen im neuen Startzustand q'_0 mit neuem Stapelstartsymbol Z'_0 . Durch $(q'_0, \varepsilon, Z'_0, q_0, Z_0 Z'_0)$ kommen wir dann zu κ'_0 , was für \mathcal{A} gleich zu κ_0 wirkt, da nun Z_0 oben auf dem Stapel liegt. Von da an kann der gegebenen PDA \mathcal{A} wie zuvor laufen bis er schließlich zur Konfiguration κ'_n kommt. Hier hatte er im originellen Lauf nun mit einem leerem Stapel akzeptiert (κ_n) , doch hier ist jetzt $\kappa'_n = (q_n, Z'_0, \varepsilon)$. Da $(q_n, \varepsilon, Z'_0, f, \varepsilon) \in \Delta'$ können wir dann noch zum Endzustand f übergehen und akzeptieren in der Konfiguration $(f, \varepsilon, \varepsilon)$. Damit ist $w \in L(\mathcal{A}')$.

Wir zeigen nun $L(\mathcal{A}') \subseteq L(\mathcal{A})$.

Sei also $w \in L(\mathcal{A}')$. Wir gehen komplett analog vor:

Sei $\kappa' := ((q'_0, Z'_0, w), \kappa'_0, \cdots, \kappa'_n, (f, \varepsilon, \varepsilon))$ der Lauf von \mathcal{A}' über w. Dabei gelte

$$\forall i \in [0, n] : \kappa_i' = (q_i, \gamma_i Z_0', v_i), \ q_i \in Q, \gamma_i \in \Gamma^*, w \sqsubseteq v_i$$

Wir haben nun nach Konstruktion von Δ' , dass $\kappa'_0 = (q_0, Z_0 Z'_0, w)$ und $\kappa'_n = (q_n, Z'_0, \varepsilon)$, also $\gamma_0 = Z_0$ und $\gamma_n = \varepsilon$. Damit das Tupel $\kappa := ((q_i, \gamma_i, v_i))_{i \in [0, n]}$ ein Lauf von \mathcal{A} über w, also $w \in L(\mathcal{A})$.

Insgesamt gilt also L(A) = L(A').

Aufgabe 6

a)

Der gesuchte PDA akzeptiert mit leerem Stapel:

b)

Linksableitung in \mathcal{G} :

$$S \rightarrow ZR \rightarrow EXR \rightarrow 1XR \rightarrow 10R \rightarrow 10KX \rightarrow 10, X \rightarrow 10, XX$$

$$\rightarrow 10, 1X \rightarrow 10, 1XX \rightarrow 10, 10X \rightarrow 10, 101$$

Lauf auf $\mathcal{A}_{\mathcal{G}}$:

$$(q_0, S, 10, 101) \to (q_0, ZR, 10, 101) \to (q_0, EXR, 10, 101) \to (q_0, XR, 0, 101)$$

$$\to (q_0, R, 101) \to (q_0, KX, 101) \to (q_0, X, 101) \to (q_0, XX, 101) \to (q_0, XX, 101)$$

$$\to (q_0, XX, 01) \to (q_0, X, 1) \to (q_0, \varepsilon, \varepsilon)$$

Aufgabe 7

Die (vereinfachte) gesuchte Grammatik hat folgende Produktionsregeln (mit Startregel S):

$$\begin{split} S \to [qZq] \mid [qZr] \\ [qZq] \to \varepsilon & [qXq] \to a \quad [rXq] \to a \\ [qZr] \to b[rXq][qZq][qZr] & [qZq] \to b[rXq][qZq][qZq] \\ [rXr] \to b[rXr][rXr] & [rXq] \to b[rXq][qXq] \mid b[rXr][rXq] \end{split}$$

Aufgabe 8

Startstapelsymbol Z_0 . B^- bedeutet es fehlt momentan ein $b,\,B$ bedeutet wir haben momentan eins zu viel.

a)

b)

Aufgabe 9

a)

Sei also \mathcal{A} ein DPDA und $v, w \in L(\mathcal{A})$ mit $v \neq w$. Wir nehmen an, dass $v \sqsubseteq w$. Da $v \in L(\mathcal{A})$ und \mathcal{A} ein DPDA existiert ein Lauf $(\kappa_0, \cdots, \kappa_n)$ über v auf \mathcal{A} , sodass $\kappa_n = (q, \varepsilon, \varepsilon)$. Da nun $w \in L(\mathcal{A}), \ v \sqsubseteq w$ und \mathcal{A} deterministisch ist haben wir auch einen Lauf $(\kappa_0, \cdots, \kappa_n, \cdots, \kappa_m)$ über w, d.h. während des Laufes von w haben wir einen leeren Stapel. Dann muss es aber eine Transition mit leerem Stapel geben, welche es nach Definition der DPDA's nicht gibt. Damit haben wir einen Widerspruch. Folglich gilt $v \not\sqsubseteq w$, unter anderem auch da der Automat sich sonst in κ_n zwischen akzeptieren und weitermachen entscheiden müsste, was eben genau eine nicht-deterministische Eigenschaft ist.

b)

Nach a) haben wir damit, dass DPDA's mit finalen Zuständen mächtiger sind als diese, welche mit leerem Stapel akzeptieren. Beispielsweise können wir mit den letzteren nur Sprachen L mit $\forall w, v \in L : w \not\sqsubset v$ erkennen, welche nicht die reguläre Sprache $L(a^*)$ beinhaltet. Andererseits wissen wir, dass jede reguläre Sprache DPDA-erkennbar ist, damit folgt die Behauptung.