Sistemas Interactivos

Mestrado integrado em Engenharia Informática

Ficha Prática #01

José Creissac Campos jose.campos@di.uminho.pt

(v. 1.4)

Conteúdo

1	Objectivos		
2	KLM – Keystroke-level Model	1	
	2.1 Operadores tradicionais KLM	1	
	2.2 Regras para colocação do operador M	2	
	2.3 Ferramentas	2	
3	Exercícios	2	
	3.1 KLM	2	
	3.2 Erros	4	
	3.3 Perfis do Utilizador	Δ	

1 Objectivos

- 1. Aprender e praticar KLM.
- 2. Treinar a definição de perfis de utilizador.

2 KLM – Keystroke-level Model

O KLM é um método baseado no conhecimento empírico do sistema psicomotor humano que permite analisar desempenho na realização de tarefas previamente conhecidas. O método é útil para comparar desempenho previsto de métodos de operação alternativos. Cada tarefa é dividida em operações físicas ao nível do dispositivo (premir uma tecla, mover o rato, premir o botão do rato, etc.) e a cada tipo de operador está associado um tempo de execução. Utilizam-se heurísticas para introduzir operações de "preparação mental" (pausas). Somam-se os tempos dos operadores para obter uma previsão do tempo de execução da tarefa.

Na resolução desta ficha considere os operadores apresentados na Secção 2.1 e as regras para colocação do operador de preparação mental (**M**) apresentadas na Secção 2.2.

2.1 Operadores tradicionais KLM

Code	Operation		Time
	Key press and release (keyboard)	Best Typist (135 wpm)	0.08 seconds
		Good Typist (90 wpm)	0.12 seconds
		Poor Typist (40 wpm)	0.28 seconds
v		Average Skilled Typist (55 wpm)	0.20 seconds
K		Average Non-secretary Typist (40 wpm)	0.28 seconds
		Typing Random Letters	0.50 seconds
		Typing Complex Codes	0.75 seconds
		Worst Typist (unfamiliar with keyboard)	1.20 seconds
Р	Point the mouse to an object on screen		1.10 seconds
В	Button press or release (mouse)		0.10 seconds
н	Hand from keyboard to mouse or vice versa		0.40 seconds
М	Mental preparation		1.20 seconds
T(n)	Type string of characters		n x K seconds
W(t)	User waiting for the system to resp		

Page 1 of 4

2.2 Regras para colocação do operador M

A partir da codificação com os operadores físicos/respostas do sistema, aplicar a regra 0 abaixo e depois iterar as regras 1 a 4 até a codificação convergir.

- **Regra 0** Inserir um **M** à frente de todos os **K**s que não sejam parte de argumentos (por exemplo, *input* de números ou texto) e de todos os **P**s que seleccionam comandos (por oposição a argumentos).
- **Regra 1** Se o operador que se segue a um M é totalmente previsível, remover o M (por exemplo, $PMK \rightarrow PK$ mover o rato e clicar).
- **Regra 2** Se uma sequência de **MK**s constitui uma unidade cognitiva (por exemplo, o nome de um comando), remover todos os **M**s excepto o primeiro.
- **Regra 3** Se um **K** é um terminador redundante (por exemplo, o terminador de um comando imediatamente após o terminador de um operando), remover o **M** à frente do **K**.
- **Regra 4** Se um **K** termina uma string (por exemplo, o nome de um comando), apagar o **M** à frente do **K**; mas se o **K** termina uma string variável (por exemplo, um argumento) então manter o **M**.

2.3 Ferramentas

Para resolver os exercícios de KLM pode recorrer a uma das seguintes alternativas:

- Calculadora com funcionalidades essenciais, disponível em: http://www.di.uminho.pt/~jfc/KLMcalc/
- A ferramenta Cogulator, disponível em: http://cogulator.io/
- A ferramenta CogTool, disponível em: https://github.com/cogtool/ (irá necessitar de Java SE 6)

3 Exercícios

3.1 KLM

- Relativamente ao exemplo apresentado na aula teórica (apagar um ficheiro), calcule o tempo para a solução de ter um atalho de teclado (Ctrl^BackSpace) considerando um Average non-secretary typist.
 - Com base no resultado, avalie o impacto de utilizar atalhos numa interface.

- 2. Considere a Figura 1 retirada dos slides da primeira aula. Considere ainda uma interface alternativa em que os números são preenchidos em campos de *input* textuais (e posteriormente validados pelo sistema).
 - (a) Realize uma análise comparativa das duas interfaces, utilizando KLM e assumindo um utilizador "average non-secretary typist". Pode simplificar a análise considerando apenas o preenchimento de NIF e nome.
 - (b) Consegue identificar algum problema adicional na introdução do NIB?

Figura 1: Exemplo de formulário

- 3. Considere o exemplo da inserção de publicações ilustrado nos vídeos fornecidos. Faça uma análise KLM das duas alternativas ilustradas (inserção publicação a publicação vs. inserção de até cinco publicações de cada vez). Para tal, considere:
 - a inserção de duas publicações numa lista que já ultrapassa o tamanho do éran;
 - uma scroll constant \$ de 2,6s (relembre que o botão adicionar está no fim da página);

- os seguintes tamanhos para as strings com que os campos do formulário de cada publicação vão ser preenchidos¹ (uma vez que serão iguais nas duas análises, podem até ser removidas da análise):
 - referência T(10)
 - ano **T(4)**
 - URL T(30)
 - item bibliográfico T(90)
- que o primeiro campo (referência) fica automaticamente seleccionado e que se pode avançar entre os campos de input com Tab;
- que o sistema demora em média 20s a responder W(20).

Avalie ainda qual seria o impacto de não ter programado a navegação por Tabs e/ou a selecção automática do primeiro campo de texto.

3.2 Erros

- 1. Em grupo de dois a quatro elementos:
 - (a) cada elemento deverá indicar dois ou três erros de utilização que lhe tenham acontecido ou de que tenha conhecimento;
 - (b) para cada erro, procure agora em grupo identificar se se tratou de um *Slip*, um *Lapse*, ou um *Mistake*;
 - (c) para cada tipo de erro que tenham encontrado, indiquem o exemplos que vos parece mais ilustrativo.

3.3 Perfis do Utilizador

- 1. Considere que pretende desenvolver um sistema informático para um restaurante:
 - (a) Desenvolva perfis para os tipos de utilizador que prevê para o sistema.
 - (b) Para o perfil que lhe parecer principal, desenvolva uma Persona.
- 2. Repita agora o exercício considerando um sistema a desenvolver à sua escolha.

¹Nos vídeos está a ser utilizado *copy&paste*, pode considerar essa alternativa se preferir