CX 4640 Homework 2

Wenqi He

September 25, 2017

2.7

(a)

$$\det A = \det \begin{bmatrix} 1 & 1+\epsilon \\ 1-\epsilon & 1 \end{bmatrix}$$
$$= 1 - (1-\epsilon)(1+\epsilon)$$
$$= 1 - (1-\epsilon^2)$$
$$= \epsilon^2$$

(b)

The smallest non-negative number representable in a normalized single-precision system is 1×2^{-126} . Therefore the computed result for determinant would be zero if

$$\begin{aligned} \epsilon^2 &< 2^{-126} \\ |\epsilon| &< 2^{-63} \\ -2^{-63} &< \epsilon < 2^{63} \end{aligned}$$

In a double-precision system,

$$\epsilon^2 < 2^{-1022}$$
$$-2^{-511} < \epsilon < 2^{511}$$

$$A = \begin{bmatrix} 1 & 1+\epsilon \\ 1-\epsilon & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1-\epsilon & 1 \end{bmatrix} \begin{bmatrix} 1 & 1+\epsilon \\ 0 & \epsilon^2 \end{bmatrix}$$

$$\det U = 1 \cdot \epsilon^2 = \epsilon^2$$

The matrix is singular when the computed value of ϵ^2 equals zero, that is, ϵ^2 is smaller than the smallest representable number. So the answer is the same as (b).

2.21

$$x = B^{-1}(2A + I)(C^{-1} + A)b$$

 $Bx = (2A + I)(C^{-1} + A)b$
 $= 2AC^{-1}b + 2A^{2}b + C^{-1}b + Ab$

Let $\mathbf{y} = C^{-1}\mathbf{b}$, then

$$C\mathbf{y} = \mathbf{b}$$

$$B\mathbf{x} = 2A\mathbf{y} + 2A^2\mathbf{b} + \mathbf{y} + A\mathbf{b}$$

Using Gaussian Elimination, one can solve the first equation for y, and then solve the second one for x without computing the inverses of B and C.

The MATLAB code is included in SolveForX.m

2.26

(a)

One can compute the inverse of A using Sherman-Morrison formula:

$$A^{-1} = (I - uv^{T})^{-1}$$

$$= I^{-1} + I^{-1}u(1 - v^{T}I^{-1}u)^{-1}v^{T}I^{-1}$$

$$= I + u(1 - v^{T}u)^{-1}v^{T},$$

provided that $1 - v^T u$ is invertible, that is,

$$v^T u \neq 1$$

(b)

From (a), $\sigma = -(1 - v^T u)^{-1}$

(c)

Yes.

$$M_k = egin{bmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \ dots & \ddots & dots & dots & \ddots & dots \ 0 & \cdots & 1 & 0 & \cdots & 0 \ 0 & \cdots & -m_{k+1} & 1 & \cdots & 0 \ dots & \ddots & dots & dots & \ddots & dots \ 0 & \cdots & -m_n & 0 & \cdots & 1 \end{bmatrix} = I - egin{bmatrix} 0 \ dots \ m_{k+1} \ dots \ m_n \end{bmatrix} oldsymbol{e}_k^T,$$

$$u = \begin{bmatrix} 0 \\ \vdots \\ m_{k+1} \\ \vdots \\ m_n \end{bmatrix}, \quad v = \mathbf{e}_k, \quad \sigma = -\left(1 - \mathbf{e}_k^T \begin{bmatrix} 0 \\ \vdots \\ m_{k+1} \\ \vdots \\ m_n \end{bmatrix}\right)^{-1} = -(1-0)^{-1} = -1$$

2.4

 $||A_1^{-1}|| = 0.7097$, $\operatorname{cond}(A_1) = 12.7742$, $||A_2^{-1}|| = 1.6393e + 04$, $\operatorname{cond}(A_2) = 4.0163e + 06$ Using the first approach, the estimations are:

 $||A_1^{-1}|| = 0.6226$, $\operatorname{cond}(A_1) = 11.2071$, $||A_2^{-1}|| = 1.3082e + 04$, $\operatorname{cond}(A_2) = 3.2051e + 06$ Using the second approach (The values might vary):

 $||A_1^{-1}|| = 0.6013$, $\operatorname{cond}(A_1) = 11.1528$, $||A_2^{-1}|| = 4.4131e + 03$, $\operatorname{cond}(A_2) = 1.9666e + 06$ Apparently, the first approach is more accurate.

 ${f 5}$ (Run CreateTable to reproduce the result.)

n	relative error	condition number
2	2.8951e-16	19.281
3	3.4571e-15	524.06
4	9.1928e-14	15514
5	8.4248e-14	4.7661e + 05
6	1.0052e-10	1.4951e + 07
7	3.3589e-09	4.7537e + 08
8	1.1118e-08	$1.5258e{+}10$
9	3.2899e-06	4.9315e + 11
10	0.00010306	1.6025e + 13
11	0.0024921	5.2202e+14
12	0.068797	1.6212e + 16