Introduction to ML

ACM India Summer School on Responsible & Safe Al

3rd June, 2024

There is a function f in nature and we want to model / approximate it:

$$f:D\to R$$

We only have input - output samples available

Example:

- D: Number Tuples
- ► R: Real numbers

$$[(1,2), 3], [(2,3), 5], [(3,4), 7], [(4,5), 9]$$

Game: Guess the function *f*

Parameters and architecture

To make an approximation, we *parameterize* the function. We call this function f_{θ}

$$f_{\theta}:D\to R$$

Continuing with our previous example, let us define f_{θ} as:

$$f_{\theta}(x) = \theta_2 x_1 + \theta_1 x_0 + \theta_0$$

We have effectively defined an *architecture* for our function with parameters. Now, our problem becomes finding the right values for $\theta_0, \theta_1, \theta_2$ that "fits" the data.

<u>There are non – parametric Machine Learning Algorithms as well! E.g:knn, Decision Trees.</u>

ML Pipeline

Data

Representation

Algorithms

Evaluation

Data Preprocessing – Textual data

- Removing punctuations like . , ! \$() * % @
- Removing URLs
- Removing Stop words the, it, a, was
- Lower casing
- Tokenization break a sentence into small words
- Stemming vs Lemmatization

Data Preprocessing – Textual data

Stemming	Lemmatization
Stemming is a process that stems or removes last few characters from a word, often leading to incorrect meanings and spelling.	Lemmatization considers the context and converts the word to its meaningful base form, which is called Lemma.
For instance, stemming the word 'Caring' would return 'Car'.	For instance, lemmatizing the word 'Caring' would return 'Care'.
Stemming is used in case of large dataset where performance is an issue.	Lemmatization is computationally expensive since it involves look-up tables and what not.

Data Representation

Bag of Words Example

Document 1

The quick brown fox jumped over the lazy dog's back.

Document 2

Now is the time for all good men to come to the aid of their party.

Term	Documen	Documen
aid	0	1
all	0	1
back	1	0
brown	1	0
come	0	1
dog	1	0
fox	1	0
good	0	1
jump	1	0
lazy	1	0
men	0	1
now	0	1
over	1	0
party	0	1
quick	1	0
their	0	1
time	0	1

Stopword List

for	
is	
of	
the	
to	

TF-IDF Example

Word	TF		IDF	TF*IDF	
vvoid	Α	В	IDI	Α	В
The	1/7	1/7	log(2/2) = 0	0	0
Car	1/7	0	log(2/1) = 0.3	0.043	0
Truck	0	1/7	log(2/1) = 0.3	0	0.043
Is	1/7	1/7	log(2/2) = 0	0	0
Driven	1/7	1/7	log(2/2) = 0	0	0
On	1/7	1/7	log(2/2) = 0	0	0
The	1/7	1/7	log(2/2) = 0	0	0
Road	1/7	0	log(2/1) = 0.3	0.043	0
Highway	0	1/7	log(2/1) = 0.3	0	0.043

Data Representation

Bag of Words Example

Document 1

The quick brown fox jumped over the lazy dog's back.

Document 2

Now is the time for all good men to come to the aid of their party.

Term	Document 1	Document 2
aid	0	1
all	0	1
back	1	0
brown	1	0
come	0	1
dog	1	0
fox	1	0
good	0	1
jump	1	0
lazy	1	0
men	0	1
now	0	1
over	1	0
party	0	1
quick	1	0
their	0	1
time	0	1

Stopword List

	for	
Г	is	
Г	of	
Г	the	
Г	to	

Can be extended to n-grams.

Instead of counting words – counts grouping of words

Unigram - "The", "Car", "Truck".... Bigram - "<s> The, "The Car", "Car Truck".... Trigram - "<s> The Car", "The Car Truck" ...

TF-IDF Example

Word	TF		IDF	TF*IDF	
VVOIG	Α	В	IDI	Α	В
The	1/7	1/7	log(2/2) = 0	0	0
Car	1/7	0	log(2/1) = 0.3	0.043	0
Truck	0	1/7	log(2/1) = 0.3	0	0.043
Is	1/7	1/7	log(2/2) = 0	0	0
Driven	1/7	1/7	log(2/2) = 0	0	0
On	1/7	1/7	log(2/2) = 0	0	0
The	1/7	1/7	log(2/2) = 0	0	0
Road	1/7	0	log(2/1) = 0.3	0.043	0
Highway	0	1/7	log(2/1) = 0.3	0	0.043

Representing words by their context

 Distributional semantics: A word's meaning is given by the words that frequently appear close-by

- "You shall know a word by the company it keeps" (J. R. Firth 1957: 11)
- One of the most successful ideas of modern statistical NLP!
- When a word w appears in a text, its context is the set of words that appear nearby (within a fixed-size window).
- We use the many contexts of w to build up a representation of w

...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...

Word vectors

We will build a dense vector for each word, chosen so that it is similar to vectors of words that appear in similar contexts, measuring similarity as the vector dot (scalar) product

Note: word vectors are also called (word) embeddings or (neural) word representations They are a distributed representation

Word2vec: Overview

Word2vec is a framework for learning word vectors (Mikolov et al. 2013)

Idea:

- We have a large corpus ("body") of text: a long list of words
- Every word in a fixed vocabulary is represented by a vector
- Go through each position t in the text, which has a center word c and context ("outside") words o
- Use the similarity of the word vectors for c and o to calculate the probability of o given c (or vice versa)
- Keep adjusting the word vectors to maximize this probability

Skip-gram model (Mikolov et al. 2013)

ML Algorithms

Supervised

Un-Supervised

Reinforcement

Self-Supervised

Supervised Learning

- Training on labeled dataset
- Learn mapping from inputs to outputs in training
- Predict output for new, unseen data

Given a dataset $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, where x_i are the input features and y_i are the corresponding labels, the model learns a function f such that $f(x_i) \approx y_i$.

For regression: $y = f(x) + \epsilon$, where ϵ is the error term.

For classification: $P(y \mid x) = \frac{e^{f(x)}}{1 + e^{f(x)}}$ (logistic regression for binary classification).

Supervised Learning - Example

Classification: Determining if an email is spam or not spam

Regression: Predicting house prices based on features like size, location,

Supervised Learning

Common Algorithms

Linear Regression: $y = w^T x + b$

Logistic Regression:

$$P(y = 1 \mid x) = \frac{1}{1 + e^{-(w^T x + b)}}$$

Decision Trees: Recursive partitioning of data space.

Support Vector Machines (SVM): $y = sign(w^T x + b)$

Neural Networks: $y = \sigma(W^T x + b)$ (where σ is an activation function)

Un-Supervised Learning

- Train on data that does not have labeled responses
- The goal is to find hidden patterns in the input data

Given a dataset $\{x_1, x_2, \ldots, x_n\}$, the objective is to find patterns or groupings in the data without explicit labels.

For clustering: Minimize the sum of squared distances between data points and their assigned cluster centroids,

$$\sum_{i=1}^{k} \sum_{x \in C_i} ||x - \mu_i||^2$$

where μ_i is the centroid of cluster C_i .

For dimensionality reduction (e.g., PCA): Maximize the variance retained in the projected data,

$$\max ||XW||^2$$
 subject to $W^TW = I$.

Unsupervised Learning - Example

Clustering: Grouping customers based on purchasing behavior.

Dimensionality Reduction: Reducing the number of features in a dataset while retaining its essential information (e.g., using PCA).

Metrics for Evaluation

Metrics for Evaluation

Ground Truth

Predictions

	Α	В
Α	98	0
В	2	0

Confusion Matrix

Confusion Matrix

system

output

labels

gold standard labels

system positive false positive system negative false negative true negative

Confusion Matrix

	g	old labels	3	
	urgent	normal	spam	
urgent	8	10	1	$\mathbf{precision}_{\mathbf{u}} = \frac{8}{8+10+1}$
<i>system</i> <i>output</i> normal	5	60	50	$\mathbf{precision}_{n} = \frac{60}{5+60+50}$
spam	3	30	200	precisions= $\frac{200}{3+30+200}$
	recallu =	recall _n =	recalls =	
	8	60	200	
	8+5+3	10+60+30	1+50+200	

Let's calculate other metrics

- Precision = 2/(2+1) = 67%
- Recall = 2/(2+3) = 40%
- Accuracy = (94+2)/100 = 96%

- Which measure should we account?
- RECALL

Another example

 A system which needs to launch a missile at a terrorist hideout located in a dense urban area.

Which metric should we consider?

Precision not 100% - civilian causalities

Accuracy vs Precision vs Recall

- Monitor Precision if a false positive carries higher cost.
- Monitor Recall if a false negative carries higher cost.

% of correct predictions

% of + class correctly predicted [aka Recall / TPR]

correct prediction of + class
[aka Precision]

F1- Score

 What to do when one classifier has better precision but worse Recall, while other classifier behaves exactly opposite?

F1 Score =
$$\frac{2}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}}$$
$$= \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

- F1 measure punishes extreme values more!
- Definition of Recall and Precision have same numerator, different denominators.
 A sensible way to combine them is harmonic mean.

Evaluation metrics

 For Regression algorithms, we can't use accuracy as metric to judge models' performance

 We use Root Mean Square Error | Mean Absolute Error, among others

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Where,

 \hat{y} - predicted value of y \bar{y} - mean value of y

Underfitting - Overfitting

- Underfitting: Happens when model is too simple to capture the underlying structure of the data
- Overfitting: This happens when a model is too complex and captures noise or random fluctuations in the training data

Bias-Variance

Bias (Underfitting)

- Poor predictive performance as the model cannot capture the complexity of the problem.
- High bias leads to underfitting, where the model oversimplifies underlying patterns - Error due to overly simplistic assumptions in the learning algorithm.
- Example: Linear regression model assuming a strictly linear relationship for predicting housing prices.

Variance (Overfitting)

- Poor generalization to unseen data due to essentially memorizing the training examples. Error due to excessive complexity in the learning algorithm.
- High variance captures both underlying patterns and noise in the training data.
- Example: Decision tree with a very deep structure trained on handwritten digits.

Bias- Variance Tarde off

Bias- Variance Tarde off

Bias- Variance Tarde off

- The bias-variance tradeoff is the delicate equilibrium between underfitting and overfitting.
- The goal is to find the optimal level of complexity that allows a model to generalize effectively to unseen data.

Train-Val-Test paradigm

K-fold Cross Validation

Loss Functions

Why Loss Functions

- Let's say I am on the top of mountain and need to climb down. How do I decide where to walk towards?
 - Look around to see all the possible paths
 - Reject the ones going up
 - Finally, take the path that I think has the most slope downhill
- This intuition that I just judged my decisions against? This is exactly what loss function provides

Loss Functions

- Loss functions are used to quantify how well or bad a model can reproduce the values of the training set.
- The appropriate loss function depends on the type of problems and the algorithm we use.
- Loss function = Cost function = Objective function = Error function
- Loss function does not want to measure the entire performance of the network against a validation/test dataset

Loss Functions

The loss function is used to **guide** the **training process** in order to find a set of parameters that reduce the value of the loss function.

Loss Function

Training Process

Stochastic gradient descent

- Find a set of parameters which make the loss as small as possible.
- Change parameters at a rate determined by the partial derivatives of the loss function:

$$\frac{\partial \mathcal{L}}{\partial w} \ \frac{\partial \mathcal{L}}{\partial b}$$

Properties

- Minimum when the output of the network is equal to the ground truth data
- Increase value when the output differs from the ground truth

Introduction to SK-learn

• Code