Data Analysis and Machine Learning: Linear Regression and more Advanced Regression Analysis

Morten Hjorth-Jensen^{1,2}

¹Department of Physics, University of Oslo

Nov 26, 2017

Regression analysis, overarching aims

Regression modeling deals with the description of the sampling distribution of a given random variable y varies as function of another variable or a set of such variables $\hat{x} = [x_0, x_1, \dots, x_p]^T$. The first variable is called the **dependent**, the **outcome** or the **response** variable while the set of variables \hat{x} is called the independent variable, or the predictor variable or the explanatory variable.

A regression model aims at finding a likelihood function $p(y|\hat{x})$, that is the conditional distribution for y with a given \hat{x} . The estimation of $p(y|\hat{x})$ is made using a data set with

- n cases $i = 0, 1, 2, \dots, n-1$
- Response (dependent or outcome) variable y_i with $i = 0, 1, 2, \dots, n-1$
- p Explanatory (independent or predictor) variables $\hat{x}_i = [x_{i0}, x_{i1}, \dots, x_{ip}]$ with $i = 0, 1, 2, \dots, n-1$

The goal of the regression analysis is to extract/exploit relationship between y_i and \hat{x}_i in or to infer causal dependencies, approximations to the likelihood functions, functional relationships and to make predictions .

General linear models

Before we proceed let us study a case from linear algebra where we aim at fitting a set of data $\hat{y} = [y_0, y_1, \dots, y_{n-1}]$. We could think of these data as a result of an experiment or a complicated numerical experiment. These data are functions of a series of variables $\hat{x} = [x_0, x_1, \dots, x_{n-1}]$, that is $y_i = y(x_i)$ with

²Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

i = 0, 1, 2, ..., n - 1. The variables x_i could represent physical quantities like time, temperature, position etc. We assume that y(x) is a smooth function.

Since obtaining these data points may not be trivial, we want to use these data to fit a function which can allow us to make predictions for values of y which are not in the present set. The perhaps simplest approach is to assume we can parametrize our function in terms of a polynomial of degree n-1 with n points, that is

$$y = y(x) \rightarrow y(x_i) = \tilde{y}_i + \epsilon_i = \sum_{j=0}^{n-1} \beta_i x_i^j + \epsilon_i,$$

where ϵ_i is the error in our approximation.

Rewriting the fitting procedure as a linear algebra problem

For every set of values y_i, x_i we have thus the corresponding set of equations

$$y_{0} = \beta_{0} + \beta_{1}x_{0}^{1} + \beta_{2}x_{0}^{2} + \dots + \beta_{n-1}x_{0}^{n-1} + \epsilon_{0}$$

$$y_{1} = \beta_{0} + \beta_{1}x_{1}^{1} + \beta_{2}x_{1}^{2} + \dots + \beta_{n-1}x_{1}^{n-1} + \epsilon_{1}$$

$$y_{2} = \beta_{0} + \beta_{1}x_{2}^{1} + \beta_{2}x_{2}^{2} + \dots + \beta_{n-1}x_{2}^{n-1} + \epsilon_{2}$$

$$\dots$$

$$y_{n-1} = \beta_{0} + \beta_{1}x_{n-1}^{1} + \beta_{2}x_{n-1}^{2} + \dots + \beta_{1}x_{n-1}^{n-1} + \epsilon_{n-1}.$$

Rewriting the fitting procedure as a linear algebra problem, follows

Defining the vectors

$$\hat{y} = [y_0, y_1, y_2, \dots, y_{n-1}]^T,$$

$$\hat{\beta} = [\beta_0, \beta_1, \beta_2, \dots, \beta_{n-1}]^T,$$

$$\hat{\epsilon} = [\epsilon_0, \epsilon_1, \epsilon_2, \dots, \epsilon_{n-1}]^T,$$

and the matrix

$$\hat{X} = \begin{bmatrix} 1 & x_0^1 & x_0^2 & \dots & x_0^{n-1} \\ 1 & x_1^1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2^1 & x_2^2 & \dots & x_2^{n-1} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_{n-1}^1 & x_{n-1}^2 & \dots & \dots & x_{n-1}^{n-1} \end{bmatrix}$$

we can rewrite our equations as

$$\hat{y} = \hat{X}\hat{\beta} + \hat{\epsilon}.$$

Generalizing the fitting procedure as a linear algebra problem

We are obviously not limited to the above polynomial. We could replace the various powers of x with elements of Fourier series, that is, instead of x_i^j we could have $\cos(jx_i)$ or $\sin(jx_i)$, or time series or other orthogonal functions. For every set of values y_i, x_i we can then generalize the equations to

$$y_{0} = \beta_{0}x_{00} + \beta_{1}x_{01} + \beta_{2}x_{02} + \dots + \beta_{n-1}x_{0n-1} + \epsilon_{0}$$

$$y_{1} = \beta_{0}x_{10} + \beta_{1}x_{11} + \beta_{2}x_{12} + \dots + \beta_{n-1}x_{1n-1} + \epsilon_{1}$$

$$y_{2} = \beta_{0}x_{20} + \beta_{1}x_{21} + \beta_{2}x_{22} + \dots + \beta_{n-1}x_{2n-1} + \epsilon_{2}$$

$$\dots$$

$$y_{i} = \beta_{0}x_{i0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{n-1}x_{in-1} + \epsilon_{i}$$

$$\dots$$

$$y_{n-1} = \beta_{0}x_{n-1,0} + \beta_{1}x_{n-1,2} + \beta_{2}x_{n-1,2} + \dots + \beta_{1}x_{n-1,n-1} + \epsilon_{n-1}.$$

Generalizing the fitting procedure as a linear algebra problem

We redefine in turn the matrix \hat{X} as

$$\hat{X} = \begin{bmatrix} x_{00} & x_{01} & x_{02} & \dots & x_{0,n-1} \\ x_{10} & x_{11} & x_{12} & \dots & x_{1,n-1} \\ x_{20} & x_{21} & x_{22} & \dots & x_{2,n-1} \\ \dots & \dots & \dots & \dots & \dots \\ x_{n-1,0} & x_{n-1,1} & x_{n-1,2} & \dots & x_{n-1,n-1} \end{bmatrix}$$

and without loss of generality we rewrite again our equations as

$$\hat{y} = \hat{X}\hat{\beta} + \hat{\epsilon}.$$

The left-hand side of this equation forms know. Our error vector $\hat{\epsilon}$ and the parameter vector $\hat{\beta}$ are our unknow quantities. How can we obtain the optimal set of β_i values?

Optimizing our parameters

We have defined the matrix \hat{X}

$$y_{0} = \beta_{0}x_{00} + \beta_{1}x_{01} + \beta_{2}x_{02} + \dots + \beta_{n-1}x_{0n-1} + \epsilon_{0}$$

$$y_{1} = \beta_{0}x_{10} + \beta_{1}x_{11} + \beta_{2}x_{12} + \dots + \beta_{n-1}x_{1n-1} + \epsilon_{1}$$

$$y_{2} = \beta_{0}x_{20} + \beta_{1}x_{21} + \beta_{2}x_{22} + \dots + \beta_{n-1}x_{2n-1} + \epsilon_{1}$$

$$\dots$$

$$y_{i} = \beta_{0}x_{i0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{n-1}x_{in-1} + \epsilon_{1}$$

$$\dots$$

$$y_{n-1} = \beta_{0}x_{n-1,0} + \beta_{1}x_{n-1,2} + \beta_{2}x_{n-1,2} + \dots + \beta_{1}x_{n-1,n-1} + \epsilon_{n-1}.$$

Optimizing our parameters, more details

We well use this matrix to define the approximation \hat{y} via the unknown quantity $\hat{\beta}$ as

$$\hat{\tilde{y}} = \hat{X}\hat{\beta},$$

and in order to find the optimal parameters β_i instead of solving the above linear algebra problem, we define a function which gives a measure of the spread between the values y_i (which represent hopefully the exact values) and the parametrized values \tilde{y}_i , namely

$$Q(\hat{\beta}) = \sum_{i=0}^{n-1} (y_i - \tilde{y}_i)^2 = (\hat{y} - \hat{y})^T (\hat{y} - \hat{y}),$$

or using the matrix \hat{X} as

$$Q(\hat{\beta}) = \left(\hat{y} - \hat{X}\hat{\beta}\right)^T \left(\hat{y} - \hat{X}\hat{\beta}\right).$$

Interpretations and optimizing our parameters

The function

$$Q(\hat{\beta}) = \left(\hat{y} - \hat{X}\hat{\beta}\right)^T \left(\hat{y} - \hat{X}\hat{\beta}\right),\,$$

can be linked to the variance of the quantity y_i if we interpret the latter as the mean value of for example a numerical experiment. When linking below with the maximum likelihood approach below, we will indeed interpret y_i as a mean value

$$y_i = \langle y_i \rangle = \beta_0 x_{i,0} + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \dots + \beta_{n-1} x_{i,n-1} + \epsilon_i,$$

where $\langle y_i \rangle$ is the mean value. Keep in mind also that till now we have treated y_i as the exact value. Normally, the response (dependent or outcome) variable y_i the outcome of a numerical experiment or another type of experiment and is

thus only an approximation to the true value. It is then always accompanied by an error estimate, often limited to a statistical error estimate given by the standard deviation discussed earlier. In the discussion here we will treat y_i as our exact value for the response variable.

In order to find the parameters β_i we will then minimize the spread of $Q(\hat{\beta})$ by requiring

$$\frac{\partial Q(\hat{\beta})}{\partial \beta_j} = \frac{\partial}{\partial \beta_j} \left[\sum_{i=0}^{n-1} \left(y_i - \beta_0 x_{i,0} - \beta_1 x_{i,1} - \beta_2 x_{i,2} - \dots - \beta_{n-1} x_{i,n-1} \right)^2 \right] = 0,$$

which results in

$$\frac{\partial Q(\hat{\beta})}{\partial \beta_j} = -2 \left[\sum_{i=0}^{n-1} x_{ij} \left(y_i - \beta_0 x_{i,0} - \beta_1 x_{i,1} - \beta_2 x_{i,2} - \dots - \beta_{n-1} x_{i,n-1} \right) \right] = 0,$$

or in a matrix-vector form as

$$\frac{\partial Q(\hat{\beta})}{\partial \hat{\beta}} = 0 = \hat{X}^T \left(\hat{y} - \hat{X} \hat{\beta} \right).$$

Interpretations and optimizing our parameters

We can rewrite

$$\frac{\partial Q(\hat{\beta})}{\partial \hat{\beta}} = 0 = \hat{X}^T \left(\hat{y} - \hat{X} \hat{\beta} \right),$$

as

$$\hat{X}^T \hat{y} = \hat{X}^T \hat{X} \hat{\beta},$$

and if the matrix $\hat{X}^T\hat{X}$ is invertible we have the solution

$$\hat{\beta} = \left(\hat{X}^T \hat{X}\right)^{-1} \hat{X}^T \hat{y}.$$

Interpretations and optimizing our parameters

The residuals $\hat{\epsilon}$ are in turn given by

$$\hat{\epsilon} = \hat{y} - \hat{\tilde{y}} = \hat{y} - \hat{X}\hat{\beta},$$

and with

$$\hat{X}^T \left(\hat{y} - \hat{X} \hat{\beta} \right) = 0,$$

we have

$$\hat{X}^T \hat{\epsilon} = \hat{X}^T \left(\hat{y} - \hat{X} \hat{\beta} \right) = 0,$$

meaning that the solution for $\hat{\beta}$ is the one which minimizes the residuals. Later we will link this with the maximum likelihood approach.

The χ^2 function

Normally, the response (dependent or outcome) variable y_i the outcome of a numerical experiment or another type of experiment and is thus only an approximation to the true value. It is then always accompanied by an error estimate, often limited to a statistical error estimate given by the standard deviation discussed earlier. In the discussion here we will treat y_i as our exact value for the response variable.

Introducing the standard deviation σ_i for each measurement y_i , we define now the χ^2 function as

$$\chi^{2}(\hat{\beta}) = \sum_{i=0}^{n-1} \frac{(y_{i} - \tilde{y}_{i})^{2}}{\sigma_{i}^{2}} = (\hat{y} - \hat{y})^{T} \frac{1}{\hat{\Sigma}^{2}} (\hat{y} - \hat{y}),$$

where the matrix $\hat{\Sigma}$ is a diagonal matrix with σ_i as matrix elements.

The χ^2 function

In order to find the parameters β_i we will then minimize the spread of $\chi^2(\hat{\beta})$ by requiring

$$\frac{\partial \chi^2(\hat{\beta})}{\partial \beta_j} = \frac{\partial}{\partial \beta_j} \left[\sum_{i=0}^{n-1} \left(\frac{y_i - \beta_0 x_{i,0} - \beta_1 x_{i,1} - \beta_2 x_{i,2} - \dots - \beta_{n-1} x_{i,n-1}}{\sigma_i} \right)^2 \right] = 0,$$

which results in

$$\frac{\partial \chi^2(\hat{\beta})}{\partial \beta_j} = -2 \left[\sum_{i=0}^{n-1} \frac{x_{ij}}{\sigma_i} \left(\frac{y_i - \beta_0 x_{i,0} - \beta_1 x_{i,1} - \beta_2 x_{i,2} - \dots - \beta_{n-1} x_{i,n-1}}{\sigma_i} \right) \right] = 0,$$

or in a matrix-vector form as

$$\frac{\partial \chi^2(\hat{\beta})}{\partial \hat{\beta}} = 0 = \hat{A}^T \left(\hat{b} - \hat{A}\hat{\beta} \right).$$

where we have defined the matrix $\hat{A} = \hat{X}/\hat{\Sigma}$ with matrix elements $a_{ij} = x_{ij}/\sigma_i$ and the vector \hat{b} with elements $b_i = y_i/\sigma_i$.

The χ^2 function

We can rewrite

$$\frac{\partial \chi^2(\hat{\beta})}{\partial \hat{\beta}} = 0 = \hat{A}^T \left(\hat{b} - \hat{A} \hat{\beta} \right),$$

as

$$\hat{A}^T\hat{b} = \hat{A}^T\hat{A}\hat{\beta},$$

and if the matrix $\hat{A}^T\hat{A}$ is invertible we have the solution

$$\hat{\beta} = \left(\hat{A}^T \hat{A}\right)^{-1} \hat{A}^T \hat{b}.$$

The χ^2 function

If we then introduce the matrix

$$\hat{H} = \hat{A}^T \hat{A},$$

we have then the following expression for the parameters β_j (the matrix elements of \hat{H} are h_{ij})

$$\beta_j = \sum_{k=0}^{p-1} h_{jk} \sum_{i=0}^{n-1} \frac{y_i}{\sigma_i} \frac{x_{ik}}{\sigma_i} = \sum_{k=0}^{p-1} h_{jk} \sum_{i=0}^{n-1} b_i a_{ik}$$

We state without proof the expression for the uncertainty in the parameters β_j as

$$\sigma^{2}(\beta_{j}) = \sum_{i=0}^{n-1} \sigma_{i}^{2} \left(\frac{\partial \beta_{j}}{\partial y_{i}} \right)^{2},$$

resulting in

$$\sigma^{2}(\beta_{j}) = \left(\sum_{k=0}^{p-1} h_{jk} \sum_{i=0}^{n-1} a_{ik}\right) \left(\sum_{l=0}^{p-1} h_{jl} \sum_{m=0}^{n-1} a_{ml}\right) = h_{jj}!$$

The χ^2 function

The first step here is to approximate the function y with a first-order polynomial, that is we write

$$y = y(x) \rightarrow y(x_i) \approx \beta_0 + \beta_1 x_i$$
.

By computing the derivatives of χ^2 with respect to β_0 and β_1 show that these are given by

$$\frac{\partial \chi^2(\hat{\beta})}{\partial \beta_0} = -2 \left[\sum_{i=0}^1 \left(\frac{y_i - \beta_0 - \beta_1 x_i}{\sigma_i^2} \right) \right] = 0,$$

and

$$\frac{\partial \chi^2(\hat{\beta})}{\partial \beta_0} = -2 \left[\sum_{i=0}^1 x_i \left(\frac{y_i - \beta_0 - \beta_1 x_i}{\sigma_i^2} \right) \right] = 0.$$

The χ^2 function

We define then

$$\gamma = \sum_{i=0}^{1} \frac{1}{\sigma_i^2},$$

$$\gamma_x = \sum_{i=0}^{1} \frac{x_i}{\sigma_i^2},$$

$$\gamma_y = \sum_{i=0}^1 \left(\frac{y_i}{\sigma_i^2} \right),$$

$$\gamma_{xx} = \sum_{i=0}^{1} \frac{x_i x_i}{\sigma_i^2},$$

$$\gamma_{xy} = \sum_{i=0}^{1} \frac{y_i x_i}{\sigma_i^2},$$

and show that

$$\beta_0 = \frac{\gamma_{xx}\gamma_y - \gamma_x\gamma_y}{\gamma\gamma_{xx} - \gamma_x^2},$$

$$\beta_1 = \frac{\gamma_{xy}\gamma - \gamma_x\gamma_y}{\gamma\gamma_{xx} - \gamma_x^2}.$$

The LSM suffers often from both being underdetermined and overdetermined in the unknown coefficients β_i . A better approach is to use the Singular Value Decomposition (SVD) method discussed below.

The singular value decompostion

How can we use the singular value decomposition to find the parameters β_j ? More details will come. We first note that a general $m \times n$ matrix \hat{A} can be written in terms of a diagonal matrix $\hat{\Sigma}$ of dimensionality $n \times n$ and two orthogonal matrices \hat{U} and \hat{V} , where the first has dimensionality $m \times n$ and the last dimensionality $n \times n$. We have then

$$\hat{A} = \hat{U}\hat{\Sigma}\hat{V}$$