

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

Отчёт

по лабораторной работе №6

Название: _	Іоиск по словарю	-	
Дисциплина:	Анализ алгоритмов		
Студент	ИУ7-52Б (Группа)	(Подпись, дата)	Н. В. Ляпина (И.О. Фамилия)
Преподователь		(Подпись, дата)	Л.Л. Волкова (И.О. Фамилия)

Содержание

Вв	едение		3
1	Анали	гический раздел	4
	1.1	Нечеткие переменные	4
	1.2	Анкетирование	4
	1.3	Формализация объекта	5
	1.4	Словарь как структура данных	5
	1.5	Алгоритм полного перебора	6
2	Конст	укторский раздел	8
	2.1	Структура анкеты	8
	2.2	Типовые запросы	8
	2.3	Описание используемых типов данных	8
	2.4	Структура ПО	8
	2.5	Схема алгоритма	9
3	Технол	югический раздел	11
	3.1	Результаты анкетирования	11
	3.2	Функция принадлежности	12
	3.3	Требования к ПО	14
	3.4	Средства реализации	14
	3.5	Листинг программы	14
	3.6	Тестирование ПО	16
За	ключені	ие	19
Сп	исок ис	точников	20

Введение

Словарь, как тип данных, применяется везде, где есть связь «ключ – значение» или «объект – данные»: поиск налогов по ИНН и другое. Поиск - основная задача при использовании словаря. Но также важно, правильно задать вопрос, чтобы поисковая система в словаре могла выдать однозначный результат.

Цель лабораторной работы: получить навык поиска по словарю при ограничении на значение признака, заданном при помощи лингвистической переменной.

Задачи лабораторной работы:

- 1) формализовать объект и его признак;
- 2) составить анкету для её заполнения респондентом;
- 3) провести анкетирование респондентов;
- 4) построить функцию принадлежности термам числовых значений признака, описываемого лингвистической переменной, на основе статистической обработки мнений респондентов, выступающих в роли экспертов;
- 5) описать 3-5 типовых вопросов на русском языке, имеющих целью запрос на поиск в словаре;
- 6) описать алгоритм поиска в словаре объектов, удовлетворяющих ограничению, заданному в вопросе на ограниченном естественном языке;
- 7) описать структуру данных словаря, хранящего наименования объектов согласно варианту и числовое значение признака объекта;
 - 8) реализовать алгоритм поиска в словаре;
- 9) привести примеры запросов пользователя и сформированный реализацией алгоритм поиска выборки объектов из словаря, используя составленные респондентами вопросы;
 - 10) дать заключение о применимости предложенного алгоритма и о его ограничениях.

1 Аналитический раздел

1.1 Нечеткие переменные

Лингвистической переменной являются слова или предложения ествственного языка, которые описываются нечеткими значениями.

В случаях, когда требуется формализовать разделение диапозона значений данной величины на некоторые категории следует выделить набор категорий и определить границы диапозонов значений в пределах каждой категории. Для этого требуется агрегировать набор значений и интерпретировать набор мнений экспертов касательно соотношения категории и конкретных значений описываемой величины [1].

При построении функции принадлежности значений категориям используются два множеста:

- 1) множество термов τ , которое описывает лингвистических терм $\tau_i'=(t_1,t_2,...,t_m),$ $i\in[1,m]$ на универсальном множестве $X=(x_1,x_2,...,x_n)$
 - 2) собственно само универсальное множество $X = (x_1, x_2, ..., x_n)$

Термом являются слова или предложения ествственного языка, которые описываются нечеткими значениями.

Универсальное множество – рассматриваемое множество значений.

$$\tau_i' = \left(\frac{\mu_{\tau_i}(x_1)}{x_1}, \frac{\mu_{\tau_i}(x_2)}{x_2}, ..., \frac{\mu_{\tau_i}(x_n)}{x_n}\right)$$
(1.1)

Требуется определить для любых $i \in [1,m], j \in [1,n]$ степени функций принадлежности элементов множества X к элементам из множества τ_i' , т.е. $\mu_{\tau_i}(x_j)$.

Для решения данной задачи будет использовать метод на основе статитической обработки мнений экспертов (респондентов).

1.2 Анкетирование

В данном методе усредняют знания коллектива специалистов относительно распределения экспертов по универсальному множеству. Анкета будет иметь следующий вид:

где k – количество экспертов, $a_{nm}^k \in [0,1]$ – результат бинарной экспертной оценки k-м экспертов у элемента x_n свойств нечеткого множества $\tau_i', j \in [1,n], i \in [1,m], k \in [1,p]$.

По результатам анкетирования рассчитываются степени функции принадлежностью нечетному множеству:

$$\tau_i': \mu_{\tau_i'}(x_n) = \frac{1}{k} \sum_{i=1}^k a_{nm}^k$$
 (1.2)

Таблица 1.1 — Анкета для k экспертов

		x_1	x_2	 x_n
	t_1	a_{11}^{1}	a_{21}^{1}	 a_{n1}^1
,	t_2	a_{12}^{1}	a_{22}^{1}	 a_{2n}^1
$\mid \tau_1' \mid$				
	t_m	a_{1m}^1	a_{2m}^1	 a_{nm}^1
	t_1	a_{11}^2	a_{21}^2	 a_{n1}^2
,	t_2	a_{12}^2	a_{22}^2	 a_{2n}^2
$\mid au_2' \mid$				
	t_m	a_{1m}^{2}	a_{2m}^2	 a_{nm}^2
	t_1	a_{11}^k	a_{21}^k	 a_{n1}^k
,	t_2	a_{12}^k	a_{22}^k	 a_{n2}^k
$\mid \tau_k' \mid$				 •••
	t_m	a_{1m}^k	a_{2m}^k	 a_{nm}^k

1.3 Формализация объекта

В качестве лингвистической переменной в данной работе будет рассмотрен размер отчета по Анализу алгоритмов. Она принимает нечеткие значения:

- 1) «очень маленький»;
- «маленький»;
- 3) «небольшой»;
- 4) «средний»;
- 5) «большой»;
- 6) «очень большой».

Эти нечеткие значения образуют множество термов.

Данное множество термов будет рассмотрено на универсальном множестве X = [0.50].

1.4 Словарь как структура данных

Словарь (или «ассоциативный массив») 2 - абстрактный тип данных (интерфейс к хранилищу данных), позволяющий хранить пары вида «(ключ, значение)» и поддерживающий операции добавления пары, а также поиска и удаления пары по ключу:

- INSERT(k, v);
- FIND(k);
- REMOVE(k).

В паре (k, v): v называется значением, ассоциированным c ключом k. Где k — это ключ, а v — значение. Семантика и названия вышеупомянутых операций в разных реализациях ассоциативного массива могут отличаться.

Операция ПОИСК(k) возвращает значение, ассоциированное с заданным ключом, или некоторый специальный объект НЕ_НАЙДЕНО, означающий, что значения, ассоциированного с заданным ключом, нет. Две другие операции ничего не возвращают (за исключением, возможно, информации о том, успешно ли была выполнена данная операция).

Ассоциативный массив с точки зрения интерфейса удобно рассматривать как обычный массив, в котором в качестве индексов можно использовать не только целые числа, но и значения других типов — например, строки.

В данной лабораторной работе в качестве ключа будет использоваться строка: название отчета, а в качестве значения – целое число: количество страниц в данном отчете.

1.5 Алгоритм полного перебора

Алгоритмом полного перебора 3 называют метод решения задачи, при котором по очереди рассматриваются все возможные варианты. В случае реализации алгоритма в рамках данной работы будут последовательно перебираться ключи словаря до тех пор, пока не будет найден нужный.

Трудоёмкость алгоритма зависит от того, присутствует ли искомый ключ в словаре, и, если присутствует – насколько он далеко от начала массива ключей.

Пусть на старте алгоритм затрагивает k_0 операций, а при сравнении k_1 операций.

Пусть алгоритм нашёл элемент на первом сравнении (лучший случай), тогда будет затрачено $k_0 + k_1$ операций, на втором - $k_0 + 2 \cdot k_1$, на последнем (худший случай) - $k_0 + N \cdot k_1$. Если ключа нет в массиве ключей, то мы сможем понять это, только перебрав все ключи, таким образом трудоёмкость такого случая равно трудоёмкости случая с ключом на последней позиции. Средняя трудоёмкость может быть рассчитана как математическое ожидание по формуле (1.3), где Ω – множество всех возможных случаев.

$$\sum_{i \in \Omega} p_i \cdot f_i = (k_0 + k_1) \cdot \frac{1}{N+1} + (k_0 + 2 \cdot k_1) \cdot \frac{1}{N+1} + (k_0 + Nk_1) \cdot \frac{1}{N+1} + (k_0 + N \cdot k_1) \cdot \frac{1}{N+1} = (k_0 + N \cdot k_1) \cdot \frac{1}{N+1} + k_1 + \frac{1+2+\dots+N+N}{N+1} = (1.3)$$

$$= k_0 + k_1 \cdot \left(\frac{N}{N+1} + \frac{N}{2}\right) = k_0 + k_1 \cdot \left(1 + \frac{N}{2} - \frac{1}{N+1}\right)$$

Вывод

Программное обеспечение, решающее поставленную задачу, может работать следующим образом. На вход алгоритму подается словарь, содержащий данные об отчетах и их раз-

мерах, а также запрос к этому словарю. Программа возвращает массив элементов, которые удовлетворяют данному запросу.

2 Констукторский раздел

В данном разделе будет составлена анкета для ее заполнения респондентами, описаны типовые запросы; будет рассмотрена схема алгоритма и требования к функциональности ПО.

2.1 Структура анкеты

В таблице 2.1 представлена анкета для заполнения респондентами. Респондент должен ответить утверждением или нет для каждого из значений данной анкеты.

 0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

 очень маленький

Таблица 2.1 — Анкета для заполнения респондентами

2.2 Типовые запросы

Таким образом типовые запросы к словарю выглядят так:

- «Вывести все небольшие отчеты»;
- «Найти большие и очень большие отчеты»;
- «Маленькие отчеты»;
- «Показать средние и небольшие отчеты».

Из типовых запросов видно, что запросы регистронезависимы и могут использовать более одного терма.

2.3 Описание используемых типов данных

При реализации алгоритмов будут использованы следующие типы данных:

- словарь встроенный тип dict [4] в Python[5] будет использован в качестве словаря;
- массив с результатами запроса встроенный тип list [6] в Python.

2.4 Структура ПО

В данном ПО буде реализован метод структурного программирования. Взаимодействие с пользователем будет через консоль, будет дана возможность ввода запроса для поиска значений в словаре. Для работы будут разработаны следующие процедуры:

- главная процедура является точкой входа в программу, входных данных нет, выходных данных нет;
- процедура обработки введенного запроса анализирует строку с запросом и вычленяет из нее разделители и термы для поиска;
- процедура поиска исходя из полученных массивов разделителей и термов возвращает массив результатов;
- процедура печати получает массив результатов и построчно выводит элементы массива на экран.

2.5 Схема алгоритма

На рисунке 2.1 представлена схема алгоритма поиска в словаре полным перебором.

Рисунок $2.1-\Phi$ ункция принадлежности для лингвистической переменной «размер отчета по Анализу алгоритмов»

Вывод

Были разработаны схемы алгоритмов, необходимых для решения задачи. Получено достаточно теоретической информации для написания программного обеспечения.

3 Технологический раздел

В данном разделе представлены результаты анкетирования, построена функция принадлежности, представлены средства, использованные в процессе разработки для реализации задачи, а также листинг кода программы. Кроме того показаны результаты тестирования.

3.1 Результаты анкетирования

В таблице 3.1 представлены результаты анкетирования 5-ти респондентов. Заполнение анкет выполнялось по бинарному признаку: «1» ставилась там, где утверждение считалось респондентами верным, и «0» там, где нет соответственно.

Таблица 3.1 — Результаты анкетирования

		0	5	10	15	20	25	30	35	40	45	50
	очень маленький	1	1	0	0	0	0	0	0	0	0	0
	маленький	0	0	1	1	0	0	0	0	0	0	0
TZ.	небольшой	0	0	0	0	1	1	0	0	0	0	0
Карина	средний	0	0	0	0	0	0	1	1	0	0	0
	большой	0	0	0	0	0	0	0	0	1	1	0
	очень большой	0	0	0	0	0	0	0	0	0	0	1
	очень маленький	1	1	0	0	0	0	0	0	0	0	0
	маленький	0	0	1	0	0	0	0	0	0	0	0
Donorre	небольшой	0	0	0	1	0	0	0	0	0	0	0
Вероника	средний	0	0	0	0	1	1	1	0	0	0	0
	большой	0	0	0	0	0	0	0	1	1	1	0
	очень большой	0	0	0	0	0	0	0	0	0	0	1
	очень маленький	1	1	0	0	0	0	0	0	0	0	0
	маленький	0	0	1	1	0	0	0	0	0	0	0
Илья	небольшой	0	0	0	0	1	0	0	0	0	0	0
ИЛБЯ	средний	0	0	0	0	0	1	1	0	0	0	0
	большой	0	0	0	0	0	0	0	1	1	1	0
	очень большой	0	0	0	0	0	0	0	0	0	0	1
	очень маленький	1	1	0	0	0	0	0	0	0	0	0
	маленький	0	1	1	0	0	0	0	0	0	0	0
Потто	небольшой	0	0	1	1	0	0	0	0	0	0	0
Леша	средний	0	0	0	1	1	1	1	0	0	0	0
	большой	0	0	0	0	0	0	1	1	0	0	0
	очень большой	0	0	0	0	0	0	0	0	1	1	1
	очень маленький	1	1	1	0	0	0	0	0	0	0	0
	маленький	0	0	0	1	0	0	0	0	0	0	0
Koma	небольшой	0	0	0	0	1	0	0	0	0	0	0
Катя	средний	0	0	0	0	0	1	0	0	0	0	0
	большой	0	0	0	0	0	0	1	1	0	0	0
	очень большой	0	0	0	0	0	0	0	0	1	1	1

3.2 Функция принадлежности

Благодаря полученным результатам была построена таблица 3.2, где приведена сумма голосов респондентов для каждого терма τ_i' , а также $\mu_i(x_n)$ согласно формуле 1.2.

Таблица 3.2 — Суммированные результаты анкетирования

	0	5	10	15	20	25	30	35	40	45	50	
OHOM NO HOM WH	5	5	1	0	0	0	0	0	0	0	0	Sum
очень маленький		1	0.2	0	0	0	0	0	0	0	0	mu
,		1	4	3	0	0	0	0	0	0	0	Sum
маленький	0	0.2	0.8	0.6	0	0	0	0	0	0	0	mu
	0	0	1	2	3	1	0	0	0	0	0	Sum
небольшой	0	0	0.2	0.4	0.6	0.2	0	0	0	0	0	mu
an a m	0	0	0	1	2	4	4	1	0	0	0	Sum
средний	0	0	0	0.2	0.4	0.8	0.8	0.2	0	0	0	mu
большой	0	0	0	0	0	0	2	4	3	3	0	Sum
ООЛЬШОИ	0	0	0	0	0	0	0.4	0.8	0.6	0.6	0	mu
очень большой	0	0	0	0	0	0	0	0	2	2	5	Sum
очень оольшои	0	0	0	0	0	0	0	0	0.4	0,4	1	mu

Используя информацию из полученной таблицы, был построен график функции принадлежности, представленый на рисунке 3.1.

Рисунок $3.1-\Phi$ ункция принадлежности для лингвистической переменной «размер отчета по Анализу алгоритмов»

Исходя из рисунка 3.1 термы относятся к интервалам как:

- 1) «очень маленький» от 0 до 10;
- 2) «маленький» от 10 до 15;
- 3) «небольшой» от 15 до 20;
- 4) «средний» от 20 до 35;
- 5) «большой» от 35 до 45;
- 6) «очень большой» от 45 до 50.

3.3 Требования к ПО

Программное обеспечение должно удовлетворять следующим требованиям:

- программа принимает на вход запрос к словарю;
- программа выдает массив удовлетволяющих запросу отчетов.

3.4 Средства реализации

В качестве языка программирования для реализации данной лабораторной работы был выбран ЯП Python [5].

Данный язык достаточно удобен и гибок в использовании.

В качестве среды разработки выбор сделан в сторону Visual Studio Code. Данная среда подходит как для Windows, так и для Linux.

3.5 Листинг программы

В приведенном ниже листинге представлена реализация алгоритма полного перебора (листинг 3.1).

Листинг 3.1 — Реализация алгоритма полного перебора

```
def find_all(begin, end, not_s = -1, not_e = -1):
1
2
       res = []
3
       for l in data.keys():
            if not s = -1 and not e = -1:
4
                if data.get(1) >= begin and data.get(1) <= end:
5
                    res.append([1,data.get(1)])
6
7
            else:
                if data.get(1) >= begin and data.get(1) <= not s:
8
                    res.append([1,data.get(1)])
9
                elif data.get(1) >= not e and data.get(1) <= end:
10
11
                    res.append([1,data.get(1)])
12
       return res
```

В приведенном ниже листинге представлена реализация алгоритма поиска для каждого терма (листинг 3.2).

Листинг 3.2 — Реализация алгоритма поиска по термам

```
def find_data(request_raz, request term):
 1
 2
 3
        answer arrays = []
        for c in request term:
 4
            if 'не' in c:
 5
                if 'большой' in c:
 6
                     answer arrays.append (find all (0,50, 35, 45))
 7
                if 'очень большой' in c:
 8
 9
                     answer arrays.append(find all(0,45))
10
                if 'средний' in c:
                     answer arrays.append(find all(0,50,25,35))
11
                if 'небольшой' in c:
12
                     answer arrays.append(find all(0,50, 15,20))
13
                if 'маленький' in c:
14
                     answer arrays.append(find all(0,50, 10,15))
15
16
                if 'очень маленький' in c:
                     answer arrays.append(find all(0,50,0,10))
17
            else:
18
                if 'большой' in c:
19
                     answer arrays.append(find all(35, 45))
20
                if 'очень большой' in c:
21
                     answer arrays.append(find all(45,50))
22
23
                if 'средний' in c:
                     answer_arrays.append(find_all(25,35))
24
                if 'небольшой' in c:
25
                     answer arrays.append(find all(15,20))
26
                if 'маленький' in c:
27
                     answer arrays.append(find all(10,15))
28
                if 'очень маленький' in c:
29
30
                     answer arrays.append(find all(0,10))
31
        answer = []
        i = 0
32
        for raz in request_raz:
33
            if 'u' in raz and 'или' not in raz:
34
                if i = 0:
35
36
                     for a in answer arrays[i]:
                         if a in answer arrays [i+1]:
37
38
                             answer.append(a)
39
                    i += 2
```

Листинг 3.3 — Реализация алгоритма поиска по термам

```
else:
 1
 2
                     for a in answer:
 3
                         if a not in answer arrays[i]:
                              answer.remove(a)
 4
                     i+=1
 5
            if 'или' in raz:
 6
 7
                 if i = 0:
 8
                     for a in answer arrays[i]:
 9
                         answer.append(a)
10
                     for a in answer arrays [i+1]:
                         if a not in answer:
11
12
                              answer.append(a)
                     i += 2
13
14
                 else:
                     for a in answer arrays[i]:
15
16
                         if a not in answer:
17
                              answer.append(a)
                     i+=1
18
        if len(request raz) = 0:
19
            for a in answer arrays [0]:
20
21
                 answer.append(a)
22
        return answer
```

3.6 Тестирование ПО

Результаты тестирования ПО приведены на рисунках 3.2, 3.3, 3.4.

```
[macbook@61 lab_07 % python3 main.py
Введите запрос: найти большие и очень большие отчеты
Результаты поиска:
Отчет №14 с размером
Отчет Nº16 с размером
                       45
Отчет №35
          с размером
Отчет №47 с размером
Отчет №66 с размером
Отчет №127
           с размером
Отчет №149
            с размером
Отчет №153
            с размером
Отчет №238
            с размером
Отчет №335
            с размером
Отчет №345
            с размером
Отчет №408
            с размером
Отчет №413
            с размером
Отчет №472
            с размером
Отчет №483
            с размером
Отчет №570
            с размером
Отчет №582
            с размером
Отчет №699
            с размером
                        45
Отчет №737
                        45
            с размером
Отчет №761
            с размером
                        45
Отчет №777
            с размером
Отчет №795 с размер<u>о</u>м
```

Рисунок 3.2 — Пример запроса пользователя

```
[macbook@61 lab_07 % python3 main.py
Введите запрос: Очень маленький отчет
Результаты поиска:
Отчет №1 с размером
Отчет №11 с размером 4
Отчет №21 с размером
Отчет №24 с размером
Отчет №25 с размером
Отчет №37 с размером
Отчет №41 с размером
Отчет №46 с размером
Отчет №50 с размером
Отчет №51 с размером
Отчет №52 с размером
Отчет №55 с размером
Отчет №57 с размером
Отчет №70 с размером
Отчет №76 с размером
Отчет №81 с размером
Отчет №88 с размером
Отчет №92 с размером
Отчет №96 с размером
Отчет N 102 с размером 9
Отчет №103 с размером 10
Отчет №109
           с размером
Отчет №120 с размером
Отчет №121
           с размером
Отчет №128
           с размером
Отчет №133
           с размером
                       8
Отчет №142
           с размером
Отчет №158 с размером
```

Рисунок 3.3 — Пример запроса пользователя

```
[macbook@61 lab_07 % python3 main.py
Введите запрос: очень маленьшие или очень большие отчеты
Результаты поиска:
Отчет №1 с размером
Отчет №11 с размером
Отчет №21 с размером
Отчет N=24 с размером
Отчет №25 с размером
Отчет №37
          с размером
Отчет №41 с размером
Отчет №46 с размером
Отчет №50 с размером
Отчет №51 с размером
Отчет №52 с размером
Отчет №55 с размером
Отчет №57
          с размером
Отчет №70
          с размером
Отчет №76 с размером
Отчет Nº81 с размером
Отчет №88 с размером
Отчет №92 с размером
Отчет №96 с размером
Отчет №102 с размером 9
Отчет N 103 с размером 10
Отчет №109 с размером
Отчет №120 с размером
Отчет №121 с размером
Отчет №128
           с размером
Отчет №133 с размером
```

Рисунок 3.4 — Пример запроса пользователя

Вывод

Было написано и протестировано программное обеспечение для решения поставленной задачи.

Заключение

В рамках данной лабораторной работы была достигнута её цель: получен навык поиска по словарю при ограничении на значение признака, заданном при помощи лингвистической переменной. Также выполнены следующие задачи:

- формализован объект и его признак;
- составлена анкета для её заполнения респондентами;
- проведено анкетирование респондентов;
- построена функция принадлежности термам числовых значений признака, описываемого лингвистической переменной, на основе статистической обработки мнений респондентов, выступающих в роли экспертов;
- описаны 4 типовых вопросов на русском языке, имеющих целью запрос на поиск в словаре;
- описан алгоритм поиска полным перебором в словаре объектов, удовлетворяющих ограничению, заданному в вопросе на ограниченном естественном языке;
- описана структуру данных словаря, хранящего наименования объектов согласно варианту и числовое значение признака объекта;
 - реализован алгоритм поиска полным перебором в словаре;
- приведены примеры запросов пользователя и сформированный реализацией алгоритм поиска выборки объектов из словаря, используя составленные респондентами вопросы.

Предложенный в лабораторной работе алгоритм ограничено применим только в рамках поставленной задачи. Имеется возможность корректировать термы под определенную задачу, но только для универсального множества в виде целых чисел. Ограничения данного алгоритма заключаюся в том, что он не приспособлен для запросов не включающих установленных термов.

Список источников

- 1) Оразбаев Б. Б., Курмангазиева Л. Т., Коданова Ш. К. "ТЕОРИЯ И МЕТОДЫ СИ-СТЕМНОГО АНАЛИЗА", 2017.
- 2) National Institute of Standards and Technology [Электронный ресурс]. Режим доступа: https://xlinux.nist.gov/dads/HTML/assocarray.html (дата обращения 17.12.2022).
 - 3) Н. Нильсон. Искусственный интеллект. Методы поиска решений. М.: Мир, 1973. с. 273.
- 4) dict Python [Электронный ресурс]. Режим доступа: https://docs.python.org/3/library/2to3.html?highlight=dict#to3fixer-dict (дата обращения: 17.12.2022).
- 5) Welcome to Python [Электронный ресурс]. Режим доступа: https://www.python.org (дата обращения: 17.12.2022).
- 6) list Python [Электронный ресурс]. Режим доступа: https://docs.python.org/3/library/pdb.html?highlight=list#pdbcommand-list (дата обращения: 17.12.2022).