Shock & Awe aids

"How to be a Data Scientist Impostor?" presentation at OMLDS 2019-10-5

Anton Antonov October 2019

Image restyling

Finding textual answers

Here is a generic example.

```
"Paris is the capital and most populous city of France, with a 2015 population of 2,229,621.",
"How many people live in Paris?"]
```

 $Out[\bullet] = 2,229,621$

Answers from Wikipedia articles

Here is a more complicated example with Wikipedia data.

Orlando

```
In[*]:= question = "Who is the current mayor of Orlando?";
In[*]:= articles = WikipediaData /@WikipediaSearch["Content" → question, "MaxItems" → 6];
In[*]:= GridTableForm[FindTextualAnswer[articles, question, 3, {"Probability", "HighlightedSentence"}]]
```

```
# 1 2
1 0.921165 The current mayor is Buddy Dyer, who was first elected in a special election in February 2003.

Out[*]= 2 0.823615 In his years as mayor of Orlando, Buddy Dyer

claims progress in realizing his vision for Orlando as a "world-class city."

3 0.816201 The first mayor, William Jackson Brack, took office in 1875.
```

In[*]:= GridTableForm[FindTextualAnswer[articles, "What is Orlando's population", 3, {"Probability", "HighlightedSentence"}]]

```
1 0.92858 Located in Central Florida, it is the center of the Orlando metropolitan area, which had a population of 2,509,831, according to U.S. Census Bureau figures released in July 2017.

2 0.750153 The area encompasses four counties (Orange, Osceola, Seminole and Lake), and is the 26th-largest metro area in the United States with a 2010 Census-estimated population of 2,134,411.In 2000, the population of Orlando's urban area was 1,157,431, making it the third-largest in Florida and the 35th-largest in the United States.

3 0.729993 As of 2009, the estimated urban area population of Orlando is 1,377,342.
```

WDW

```
In[*]:= question = "How big is World Disney World?";
In[*]:= articles = WikipediaData /@WikipediaSearch["Content" → question, "MaxItems" → 6];
In[*]:= GridTableForm[FindTextualAnswer[articles, question, 3, {"Probability", "HighlightedSentence"}]]
```

```
# 1 2

1 0.772294 The property, which covers nearly 25,000 acres (39 sq mi;

2 0.732221 To avoid a burst of land speculation, Walt Disney World Company used various dummy corporations to acquire 30,500 acres (48 sq mi;

3 0.584723 Walt Disney World requires an estimated 1 billion kilowatt-hours (3.6 billion megajoules) of electricity annually, costing the company nearly $100 million in annual energy consumption.
```

In[*]:= GridTableForm[

3110CK-allu-Awe-alus.

FindTextualAnswer[articles, "What is the average number of WDW guests?", 3, {"Probability", "HighlightedSentence"}]]

```
# 1 2

1 0.823858 Another one named Bonzai was responsible for the creation of the city's 250,000 trees, while a new rendering system called Hyperion offered new illumination possibilities, like light shining through a translucent object (e.g. Baymax's vinyl covering).

2 0.823023 The review aggregation website Rotten Tomatoes reports that 89% of critics gave the film a positive review based on 218 reviews, with an average score of 7.34/10.

3 0.793399 Today, Walt Disney World is the most visited vacation resort in the world, with average annual attendance of more than 52 million.
```

ClCon

```
In[@]:= RecordsSummary[dfTitanic]
      1 id
                                       3 passengerAge
      1
                                       Min
      10
               1
                       2 passengerClass
                                       1st Qu 10
                                                        4 passengerSex 5 passengerSurvival
                       3rd 709
     100
               1
                                                                                  809
                                       Median 20
                                                                843 , died
                                                      , male
                      1st 323
     1000
               1
                                       Mean
                                              23.55 female 466
                                                                      survived 500
      1001
                       2nd 277
                                       3rd Qu 40
      1002
                                       Max
                                               80
      (Other) 1303
In[*]:= ClConUnit[dfTitanic] ⇒
      ClConSplitData[0.7] \Rightarrow
       ClConEchoDataSummary \Rightarrow
       ClConMakeClassifier["RandomForest"] ⇒
       ClConClassifierMeasurements[] ⇒
       ClConEchoValue ⇒
       ClConROCPlot[{"FPR", "TPR"}, ImageSize → Medium] ⇒
       ClConAccuracyByVariableShuffling
⇒
       ClConEchoValue;
                                1 id
                                                             3 passengerAge
                                10
                                        1
                                                             Min
                                                                     - 1
                                               2 passengerClass
                                100
                                                             1st Qu 10
                                                                               4 passengerSex
                                                                                             5 passengerSurvival
                                1000
                                               3rd 501
                                                                              , male
  » summaries: { trainingData →
                                                                                       591 , died
                                                                                                       566
                                                            Median 20
                               1001
                                               1st 224
                                                             Mean 23.7325 female 325
                                                                                             survived 350
                                1002
                                        1
                                               2nd 191
                                                             3rd Qu 40
                                1003
                                        1
                                                             Max
                                (Other) 910
                   1 id
                                                 3 passengerAge
                            1
                                                 Min
                                  2 passengerClass
                   1007
                            1
                                                                   4 passengerSex
                                                                                 5 passengerSurvival
                                                 1st Qu 0
                  1013
                                  3rd 208
      \texttt{testData} \rightarrow
                                                                 , male 252 , died
                                                                                           243
                                               , Median 20
                   1014
                            1
                                  1st 99
                                                        23.1247 female 141 survived 150
                                                 Mean
                   1018
                           1
                                  2nd 86
                                                 3rd Qu 40
                   1020
                           1
```

- ClassifierInformation: ClassifierInformation is obsolete. It has been superseeded by Information since version 12.

Max

(Other) 387

 $\textbf{``value:} \ \langle \ | \ \mathsf{None} \rightarrow \mathtt{0.788804}, \ \mathsf{id} \rightarrow \mathtt{0.801527}, \ \mathsf{passengerClass} \rightarrow \mathtt{0.737913}, \ \mathsf{passengerAge} \rightarrow \mathtt{0.804071}, \ \mathsf{passengerSex} \rightarrow \mathtt{0.549618} \ | \ \rangle$

ML code generation: SMRMon

Load packages

```
ln[e]:= Get["/Volumes/Macintosh HD/Users/antonov/ConversationalAgents/Packages/WL/ExternalParsersHookup.m"]
   Get["/Volumes/Macintosh HD/Users/antonov/MathematicaForPrediction/MonadicProgramming/MonadicSparseMatrixRecommender.m"]
   Get["/Volumes/Macintosh HD/Users/antonov/MathematicaForPrediction/MonadicProgramming/MonadicAnomaliesFinder.m"]
```

Load data

```
ln[=]: dfTitanic = Import["https://github.com/antononcube/MathematicaVsR/raw/master/Data/MathematicaVsR-Data-Titanic.csv"];
    dfTitanic = Dataset[Rest[dfTitanic]][All, AssociationThread[First[dfTitanic] → #] &];
   dfMushroom =
      Import["https://raw.githubusercontent.com/antononcube/MathematicaVsR/master/Data/MathematicaVsR-Data-Mushroom.csv"];
    dfMushroom = Dataset[Rest[dfMushroom]][All, AssociationThread[First[dfMushroom] → #] &];
ln[*]:= dfTitanic = dfTitanic[All, Prepend[#, "id" → ToString[#id]] &];
   dfMushroom = dfMushroom[All, Prepend[#, "id" → ToString[#id]] &];
```

Examples

```
ln[\cdot]:= smrTitanic = SMRMonUnit[] \Rightarrow SMRMonCreate[dfTitanic, "id"] \Rightarrow SMRMonRecommend[{"1", "10"}, 12] \Rightarrow SMRMonEchoValue;
```

$$\langle \left| \ 62 \rightarrow 1, \ 15 \rightarrow 1, \ 82 \rightarrow \frac{1751}{2001}, \ 286 \rightarrow \frac{1751}{2001}, \ 136 \rightarrow \frac{1751}{2001}, \ 728 \rightarrow \frac{1167}{1334}, \ 595 \rightarrow \frac{1167}{1334}, \ 507 \rightarrow \frac{1167}{1334}, \ 1236 \rightarrow \frac{1167}{1334}, \ 84 \rightarrow \frac{1501}{2001}, \ 80 \rightarrow \frac{1501}{2001}, \ 79 \rightarrow \frac{1501}{2001} \right| \rangle$$

Recommendations by history

```
In[*]:= smrTitanic =
      ToSMRMonWLCommand["
    create from dfTitanic;
   compute 12 recommendations for the history 1, 10;
   echo pipeline value", True];
```

- » SMRMonCreate: Heuristically picking the ID column to be "id".

$$\langle \left| \text{ 62} \rightarrow \text{ 1, 15} \rightarrow \text{ 1, 82} \rightarrow \frac{1751}{2001}, \text{ 286} \rightarrow \frac{1751}{2001}, \text{ 136} \rightarrow \frac{1751}{2001}, \text{ 136} \rightarrow \frac{1167}{2001}, \text{ 728} \rightarrow \frac{1167}{1334}, \text{ 595} \rightarrow \frac{1167}{1334}, \text{ 597} \rightarrow \frac{1167}{1334}, \text{ 1236} \rightarrow \frac{1167}{1334}, \text{ 84} \rightarrow \frac{1501}{2001}, \text{ 80} \rightarrow \frac{1501}{2001}, \text{ 79} \rightarrow \frac{1501}{2001} \right| \rangle$$

In[*]:= ToSMRMonWLCommand["

```
create from dfTitanic;
    recommnd for the histry 1, 10;
    echo pipeline value", False]
out[*]= Possible misspelling of 'recommend' as 'recommnd'.
```

```
Possible misspelling of 'recommend' as 'recommnd'.
Possible misspelling of 'history' as 'histry'.
{\sf SMRMonUnit[]} \implies {\sf SMRMonCreate[dfTitanic]} \implies
{\tt SMRMonRecommend[\{"1", "10"\}]} \implies
SMRMonEchoValue[]
```

In[*]:= ToSMRMonWLCommand["

```
use the recommender smrTitanic;
classify to passengerSurvival the profile male, 3rd;
echo pipeline value", True];
```

» value:
$$\langle \left| \text{ died } \rightarrow \text{1, survived} \rightarrow \frac{5}{17} \right| \rangle$$

In[*]:= ToSMRMonWLCommand["

```
use recommender object smrTitanic;
compute 12 recommendations for the history 1, 14;
echo pipeline value;
join across with dfTitanic;
echo pipeline value
", True];
```

» SMRMonJoinAcross: Heuristically picking the joining column to be "id".

» value:	Score	Item	passengerClass	passengerAge	passengerSex	passengerSurvival
	1	62	1st	80	female	survived
	0.999584	15	1st	80	male	survived
	0.874324	10	1st	70	male	died
	0.874324	136	1st	70	male	died
	0.874324	286	1st	70	male	died
	0.874324	82	1st	70	male	died
	0.873908	1236	3rd	70	male	died
	0.873908	507	2nd	70	male	died
	0.873908	595	2nd	70	male	died
	0.873908	728	3rd	70	male	died
	0.750312	80	1st	60	female	survived
	0.750312	84	1st	60	female	survived

Recommendations by profile

```
In[*]:= ToSMRMonWLCommand["
    use recommender object smrTitanic;
    compute 12 recommendations for the profile male, survived;
    echo pipeline value;
    join across with dfTitanic;
    echo pipeline value
    ", True];
```

- $\text{ value: } < |~992 \rightarrow 1.\text{, } 986 \rightarrow 1.\text{, } 982 \rightarrow 1.\text{, } 979 \rightarrow 1.\text{, } 971 \rightarrow 1.\text{, } 954 \rightarrow 1.\text{, } 950 \rightarrow 1.\text{, } 950 \rightarrow 1.\text{, } 946 \rightarrow 1.\text{, } 942 \rightarrow 1.\text{, } 944 \rightarrow 1.\text{, } 936 \rightarrow 1.\text{$
- » SMRMonJoinAcross: Heuristically picking the joining column to be "id".

» value:	Score	Item	passengerClass	passengerAge	passengerSex	passengerSurvival
	1.0	936	3rd	30	male	survived
	1.0	94	1st	50	male	survived
	1.0	942	3rd	20	male	survived
	1.0	946	3rd	-1	male	survived
	1.0	95	1st	0	male	survived
	1.0	950	3rd	30	male	survived
	1.0	954	3rd	20	male	survived
	1.0	971	3rd	20	male	survived
	1.0	979	3rd	30	male	survived
	1.0	982	3rd	30	male	survived
	1.0	986	3rd	20	male	survived
	1.0	992	3rd	-1	male	survived

```
In[•]:= ToSMRMonWLCommand["
```

```
use recommender object smrTitanic;
compute 12 recommendations for the profile male, survived;
echo pipeline value;
join across with dfTitanic;
echo pipeline value
", False]

out[*]= smrTitanic ⇒
SMRMonRecommendByProfile[{"male", "survived"}, 12] ⇒
SMRMonEchoValue[] ⇒
SMRMonJoinAcross[dfTitanic] ⇒
SMRMonEchoValue[]
```

Finding anomalies

```
In[*]:= smrRes =
       ToSMRMonWLCommand["
    use recommender object smrTitanic;
    find anomalies using 20 nearest neighbors, the aggregation function Median and the property Distances;
    echo pipeline value
    ", True];
ln[@]:= smrRes \Rightarrow SMRMonEchoFunctionValue[ListPlot[Sort@N[Values[#]], PlotRange <math>\rightarrow All] \&];
    0.95
    0.90
    0.85
    0.80
    0.75
    0.70
                                             1000
                                                     1200
```

ML code generation: QRMon

Load packages

<code>In[*]:= Get["/Volumes/Macintosh HD/Users/antonov/ConversationalAgents/Packages/WL/ExternalParsersHookup.m"]</code> Get["/Volumes/Macintosh HD/Users/antonov/MathematicaForPrediction/MonadicProgramming/MonadicStructuralBreaksFinder.m"] Get["/Volumes/Macintosh HD/Users/antonov/MathematicaForPrediction/MonadicProgramming/MonadicAnomaliesFinder.m"]

Distribution data

Temperature data

Financial data

Experiments

```
In[ *] := ToQRMonWLCommand [
       "create from tsData; rescale both axes; echo data summary; compute quantile regression with 12 knots", False]
Out[\bullet]= \mathsf{QRMonUnit}[\mathsf{tsData}] \implies
     QRMonRescale["Axes"->\{True, True\}] \Longrightarrow
     {\tt QRMonEchoDataSummary[]} \implies
     QRMonQuantileRegression["Knots" -> 12]
In[*]:= AbsoluteTiming[
      ToQRMonWLCommand["
     create from tsData;
     delete missing;
     rescale regressor axis;
     rescale value axis;
     summarize data;
     do quantile regression with 12 knots;
     show plot;
     find outliers;
     ", False]
Out[∗]= {0.211836, QRMonUnit[tsData] ⇒
     {\tt QRMonDeleteMissing[]} \implies
     {\tt QRMonRescale["Axes"->\{True, False\}]} \ \Longrightarrow \ \\
     QRMonRescale["Axes"->{False, True}] \Rightarrow
     {\tt QRMonEchoDataSummary[]} \implies
     QRMonQuantileRegression["Knots" \rightarrow 12] \Rightarrow
     QRMonPlot[] \Rightarrow
     QRMonOutliersPlot[]
```

", True];

```
In[*]:= ToQRMonWLCommand["
     create from data;
     rescale both axes;
     echo summary;
     compute quantile regression with 12 knots;
     show plot
     "];
  » GetData: Cannot find data.
  » QRMonBind:Failure when applying: QRMonRescale[Axes -> {True, True}]
In[@]:= qrmon2 = ToQRMonWLCommand["
     create from tsData;
     delete missing;
     echo data summary;
     compute quantile regression with 20 knots and probabilities 0.01, 0.25, 0.5, 0.75, 0.98;
     show date list plot;
     compute and display outliers
     ", True];
                     1 column 1
                                                2 column 2
                     Min 3.62906 × 10<sup>9</sup> Min 4.72
                     1st Qu 3.66522×109 1st Qu 19.44
  » Data summary: \left\{ \text{Mean} \quad 3.70132 \times 10^9 \text{ , Mean} \quad 22.2235 \right\}
                      Median 3.70133 \times 10^9 Median 23.28
                     3rd Qu \,3.73745\times10^{9}\, 3rd Qu \,26.06\,
                              \textbf{3.77352} \times \textbf{10}^{\textbf{9}} \qquad \textbf{Max}
                                                         31.17
                                                                              __ 0.01
          20
                                                                             — 0.25
  » Plot: 15
                                                                              — 0.5
                                                                              — 0.75
                                                                            — 0.98
                3.64\times 10^9 \quad 3.66\times 10^9 \quad 3.68\times 10^9 \quad 3.70\times 10^9 \quad 3.72\times 10^9 \quad 3.74\times 10^9 \quad 3.76\times 10^9
                 30
                 25
  » Outliers plot: 15
                  10
                       3.64 \times 10^9 3.66 \times 10^9 3.68 \times 10^9 3.70 \times 10^9 3.72 \times 10^9 3.74 \times 10^9 3.76 \times 10^9
In[@]:= qrmon2 = ToQRMonWLCommand["
     create from finData;
     delete missing;
     echo data summary;
     compute quantile regression with 120 knots and probabilities 0.5;
     show date list plot;
     show absolute errors plot;
     find anomalies by the threshold 1;
     echo pipeline value
```

 $\begin{array}{l} \text{ walue: } \left\{ \left\{ 3.63761 \times 10^9 \text{, } 28.51 \right\}, \left\{ 3.63787 \times 10^9 \text{, } 27.63 \right\}, \left\{ 3.63796 \times 10^9 \text{, } 27.73 \right\}, \left\{ 3.64945 \times 10^9 \text{, } 23.27 \right\}, \left\{ 3.65135 \times 10^9 \text{, } 25.93 \right\}, \\ \left\{ 3.65316 \times 10^9 \text{, } 27.77 \right\}, \left\{ 3.65325 \times 10^9 \text{, } 28.03 \right\}, \left\{ 3.66414 \times 10^9 \text{, } 27.45 \right\}, \left\{ 3.67572 \times 10^9 \text{, } 29.82 \right\}, \left\{ 3.67597 \times 10^9 \text{, } 29.32 \right\}, \left\{ 3.67606 \times 10^9 \text{, } 29.94 \right\}, \\ \left\{ 3.71745 \times 10^9 \text{, } 23.83 \right\}, \left\{ 3.719 \times 10^9 \text{, } 20.21 \right\}, \left\{ 3.71909 \times 10^9 \text{, } 20.12 \right\}, \left\{ 3.71917 \times 10^9 \text{, } 19.99 \right\}, \left\{ 3.71926 \times 10^9 \text{, } 20.49 \right\}, \left\{ 3.74708 \times 10^9 \text{, } 11.29 \right\} \right\} \end{array}$

 3.75×10^{9}

Unit test running

 3.60×10^{9}

 3.65×10^{9}

 3.70×10^{9}

ClCon

Interview in the state of the