# King County Real Estate Model

Best Home Features to Predict Real Estate Prices

By Tim McAleer and Crissy Bruce

# The problem

#### Stakeholder

King County Real Estate
Agency

#### Data

Provided by Flatiron

#### **Problem Statement**

Currently, an extreme amount of resources is spent on assessing the value of real estate. The Agency needs an efficient solution to pricing that benefits the client and the agency.

### Goal

Determine and understand the the features that <u>directly impact the</u>
<u>sales</u> price of a home in King
County

- Find most <u>important features</u> that best <u>forecast</u> home value
- Eliminate those that raise our r<sup>2</sup> while also contributing to <u>accurately</u> impacting sales price

### First, a few words on zip codes

A zip code coefficient <u>does not</u> describe the <u>value</u> of a home.

- Zip codes are assigned <u>arbitrarily</u>; a higher numbered zip code says nothing about the home itself.
- Splitting zip codes using git dummies produces 70 variables that say nothing about homes and raises our r^2 without contributing to our actual goal.
- So, we're ditching zip codes.

#### Scatterplots

- Checking for linear relationships
- Getting a better look at at categoricals.

Note: Originally thought to be continuous, grade wasn't a continuous feature after all.



# Log Transformations on Price







### NaN

- Looks to be <u>fairly</u> <u>distributed</u> across King County.
- Small percentage of homes are waterfront properties, while a large majority are not.
- Change all NaN values to 0, as this results in a relatively small percentage of error. It's outside the scope of this project.
- Future iterations could include utilizing latitude and longitude of properties to better ascertain its waterfront status.

### **Baseline Model**

| Dep. Var          | iable:     | price        |            | R-squared:          |           | 0.472       |            |  |
|-------------------|------------|--------------|------------|---------------------|-----------|-------------|------------|--|
| Model:            |            | 0            | LS Adj     | Adj. R-squared:     |           |             | 0.472      |  |
| Method: L         |            | Least Squa   | res        | F-statistic:        |           |             | 1760.      |  |
| Date: Mon,        |            | , 23 Nov 20  | 20 Prob    | Prob (F-statistic): |           |             | 0.00       |  |
| Time:             |            | 13:24        | 44 Log     | Log-Likelihood      |           | -5          | 897.1      |  |
| No. Observations: |            | 196          | 88         |                     | AIC:      | 1.18        | 2e+04      |  |
| Of Residuals:     |            | 19677        |            |                     | BIC:      | 1.19        | 0e+04      |  |
| Df Model:         |            | 10           |            |                     |           |             |            |  |
| Covariance        | Туре:      | nonrob       | ust        |                     |           |             |            |  |
|                   | coef       | std err      | t          | P> t                | [C        | 0.025       | 0.975      |  |
| Intercept         | 10.8452    | 0.027        | 407.352    | 0.000               | 10        | 793         | 10.897     |  |
| sqft_living       | 0.0002     | 1.15e-05     | 19.005     | 0.000               | 0         | 0.000       | 0.000      |  |
| sqft_lot          | -1.458e-06 | 2.36e-07     | -6.155     | 0.000               | -1.92     | le-06       | -9.92e-07  |  |
| sqft_above        | 1.24e-07   | 1.25e-05     | 0.010      | 0.992               | -2.45e-05 |             | 2.47e-05   |  |
| bedrooms          | -0.0233    | 0.003        | -7.028     | 0.000               | -0.03     |             | -0.017     |  |
| bathrooms         | -0.0433    | 0.005 -8.009 |            | 0.000 -0            |           | 0.054 -0.03 |            |  |
| floors            | 0.0720     | 0.006        | 11.793     | 0.000 0.0           |           | 0.060       | .060 0.084 |  |
| condition         | 0.0937     | 0.004        | 24.890     | 0.000               | 0         | 0.086       | 0.101      |  |
| grade             | 0.1876     | 0.004        | 52.960     | 0.000               | 0         | 0.181       | 0.195      |  |
| waterfront        | 0.5021     | 0.043        | 11.555     | 0.000               | 0         | .417        | 0.587      |  |
| basement          | 0.1347     | 0.009        | 15.058     | 0.000               | 0         | 0.117       | 0.152      |  |
| Omnib             | us: 6.474  | Durbin       | -Watson:   | 1.977               |           |             |            |  |
| Prob(Omnibu       | us): 0.039 | Jarque-E     | Bera (JB): | 6.170               |           |             |            |  |
| Sk                | ew: -0.019 | - 1          | Prob(JB):  | 0.0457              |           |             |            |  |

Cond. No. 2.69e+05

Kurtosis: 2.922

#### Results

R-squared is **0.472** RMS

RMSE is **110963.47** 

It is obvious that the model is <u>not</u> a good fit with such a <u>low R-squared</u> and such a <u>high RMSE</u>.

#### P-values

- Sqft\_above feature p-value is high, so more work to do on that one
- Low values of the others, however, indicate strong evidence that there is a relationship between those features and price (aka strong evidence against the likeliness of no relationship-null hypothesis)

### **Iterative Process Continues**



#### Heatmap

- Multicollinearity: <u>Sqft\_liv & Sqft\_abv</u>.
  - Dropped Sqft abv because Sqft\_liv had a stronger linear relationship to price than Sqft\_abv.
  - Remember that high p-value in our first model for Sqft abv...feature=Gone!
- Categorized grades to low, med, high
- Categorized floors to single level or multi-story
- Drop condition after p-value of dummies show it is an inaccurate category
- More Log Transforming Sqft\_liv and Sqft\_lot

# **Final Model**

| Dep. Variable:    |       |     |                  | price    | F               | R-squared   | : 0.404     |       |
|-------------------|-------|-----|------------------|----------|-----------------|-------------|-------------|-------|
| Model:            |       |     |                  | OLS      | Adj. F          | R-squared   | : 0.403     |       |
| Method:           |       |     | Least Squares    |          | 1               | F-statistic | E:          | 1479. |
| Date:             |       | : N | Mon, 23 Nov 2020 |          | Prob (F         | -statistic  | : 0.00      |       |
| Time:             |       | 10  | 13:25:58         |          | Log-L           | ikelihood   | : -7098.0   |       |
| No. Observations: |       |     | 19687            |          | AIC             |             | : 1.422e+04 |       |
| Df Residuals:     |       |     | 19677            |          |                 | BIC         | : 1.42      | 9e+04 |
| Df N              | Model | :   |                  | 9        |                 |             |             |       |
| Covariance        | Туре  | c   | n                | onrobust |                 |             |             |       |
|                   | c     | oef | std err          | t        | P> t            | [0.025      | 0.975]      |       |
| Intercept         | 8.50  | 194 | 0.072            | 117.465  | 0.000           | 8.367       | 8.651       |       |
| sqft_living       | 0.66  | 888 | 0.013            | 53.233   | 0.000           | 0.644       | 0.693       |       |
| sqft_lot          | -0.06 | 320 | 0.004            | -15.134  | 0.000           | -0.070      | -0.054      |       |
| bedrooms          | -0.04 | 494 | 0.004            | -13.361  | 0.000           | -0.057      | -0.042      |       |
| bathrooms         | -0.02 | 255 | 0.006            | -4.553   | 0.000           | -0.037      | -0.015      |       |
| waterfront        | 0.53  | 391 | 0.046            | 11.661   | 0.000           | 0.448       | 0.630       |       |
| basement          | 0.08  | 898 | 0.006            | 14.835   | 0.000           | 0.078       | 0.102       |       |
| mid               | 0.15  | 544 | 0.009            | 17.226   | 0.000           | 0.137       | 0.172       |       |
| high              | 0.48  | 315 | 0.018            | 27.418   | 0.000           | 0.000 0.447 |             |       |
| multistory        | 0.06  | 385 | 0.007            | 10.086   | 0.000           | 0.055       | 0.082       |       |
| Omnibus: 14       |       | 140 | 0.044 Durbin-W   |          | atson:          | 1.983       | 1           |       |
| Prob(Omnibus):    |       | 0   | 0.000 Jarque-Ber |          | ra (JB): 96.999 |             | 1           |       |
| Skew:             |       | -0  | -0.033 P         |          | ob(JB): 8.65e-  |             |             |       |

Kurtosis:

2.862

368.

Cond. No.



### Final Results

R-squared is **0.404** RMSE is **167133.77** 

The final model is still <u>not</u> a good fit with such a <u>low R-squared</u> and such a <u>high RMSE</u>.

- R-squared of .404 indicates that only <u>40%</u> of the data can <u>be explained by our model</u>. Our model continues to decrease in terms of the linear fit as as we make iterate through different models. It appears on the QQ plot that the residuals on the edges seem to be the culprit.
- All p-values are good so there is strong evidence that there is a relationship between those features and price (aka strong evidence against the likeliness of no relationship-null hypothesis)

# **Next Steps**

- Further investigate how to increase r^2 while lowering RMSE
  - Change order of iterations?
- Binning zip codes based on geography (ex. NW King County vs. SW King County, etc.)
- Look at other types of models
- API (link)

## Questions?

Project Repo: <a href="https://github.com/tcmcaleer/SeattleHousing">https://github.com/tcmcaleer/SeattleHousing</a>

Thanks to Yish and all Class Members for all the help!