

TRANSFERÊNCIA DE CALOR NUM PERMUTADOR DE TUBOS CONCÊNTRICOS

Introdução

O calor corresponde ao fluxo de energia transferida do corpo com maior para o de menor temperatura até se atingir o equilíbrio térmico. É um processo espontâneo que será diretamente proporcional à diferença de temperaturas. A transferência de calor pode ocorrer de três formas diferentes: condução, convecção e radiação.

De forma a ser possível a troca de calor por condução entre dois fluidos a temperaturas distintas, sem que estes se misturem, são usados equipamentos denominados permutadores de calor. Este processo pode ser contra-corrente ou co-corrente.

Co-corrent Contra-corrente Entrada Entrada Figura 1 – Esquema representativo do

funcionamento do permutador em co-corrente e contra-corrente

Objetivos

- Avaliar o funcionamento de um permutador de tubos concêntricos.
- Comparar o funcionamento do permutador em co-corrente e em contra-corrente.

6,5 mm 7,5 mm 27,5 mm 5 mm 4 mm

Figura 2 – Secção transversal do permutador

Métodos

Foi utilizado um permutador de tubos concêntricos com 2 metros de comprimento que apresentava termopares nas entradas e saídas e a meio. O fluído utilizado foi água.

Os caudais de água fria e quente correspondiam a 348 L/h e a água quente encontrava-se a 65°C.

As temperaturas fornecidas pelos termopares foram lidas em intervalos de 2 minutos até ser atingido o estado estacionário.

Figura 3 – Esquema do permutador e localização dos termopares

Co-corrente:

- 1. Entrada Fria
- 2. Saída Fria

Contra-corrente:

- 1. Saída Fria
- 2. Entrada Fria

Resultados

Através das temperaturas medidas ao longo do tempo obtiveram-se os seguintes perfis de temperatura e foram calculado o coeficiente global de transferência de calor para todos os casos:

Gráfico 2 – Perfil de temperaturas Contra-corrente

Teórico W $(\frac{W}{K.m^2})$	Co-corrente $\frac{W}{(K.m^2)}$	Contra- corrente W $(\frac{W}{K.m^2})$
3919,69	3927,95	4241,09

Tabela 1- Coeficientes globais de transferência de calor

Conclusões:

Como era esperado em contra-corrente o valor do coeficiente global de transferência de calor é superior e o seu perfil de temperatura demonstra que os dois fluidos sofrem uma diminuição da temperatura em relação à distância.

No caso da co-corrente o coeficiente referido é inferior em comparação ao outro caso prático e através do perfil de temperaturas é observável um aumento da temperatura da água fria e o contrário na água quente em relação à distância.

Relativamente ao valor calculado teoricamente do coeficiente global de transferência de calor verifica-se que este é inferior aos valores obtidos experimentalmente. Não sendo um valor esperado, é justificado por erros de medições ou falhas de equipamentos como a incorreta calibração dos rotâmetros ou oscilações no caudal.

Laboratórios Integrados em Engenharia Biomédica Abril, 2023

António Rodrigues A66177 Ema Martins A97678 Clara Guimarães A97510 Mariana Costa A96284