第9回. 行列式1-置換-(三宅先生の本, 3.1の内容)

岩井雅崇 2022/06/16

1 置換

定義 1.

- $\{1,\ldots,n\}$ から $\{1,\ldots,n\}$ への 1 対 1 写像を<u>置換</u>と言い σ で表す. つまり置換 σ とは k_1,\ldots,k_n を 1 から n の並び替えとして,1 を k_1 に,2 を k_2 に, \cdots ,n を k_n にと変化 させる規則のことである.
- 上の置換 σ を

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ k_1 & k_2 & \cdots & k_n \end{pmatrix}$$

とかき, $\sigma(1) = k_1, \sigma(2) = k_2, ..., \sigma(n) = k_n$ とする.

例 2. 置換 σ を $\sigma=\begin{pmatrix}1&2&3&4\\3&1&4&2\end{pmatrix}$ とする.これは「1 を 3 に,2 を 1 に,3 を 4 に,4 を 2 にと変化させる規則」である. $\sigma(1)=3,\sigma(2)=1,\sigma(3)=4,\sigma(4)=2$ である.

例 3. 置換 σ を $\sigma=\begin{pmatrix}1&2&3\\2&1&3\end{pmatrix}$ とする.これは「1 を 2 に、2 を 1 に、3 を 3 にと変化させる規則」である. $\sigma(1)=2,\sigma(2)=1,\sigma(3)=3$ である.

この置換は3 に関しては何も変化させていないので $\sigma = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ ともかく.

定義 4. 置換 σ, τ について、その積 $\sigma\tau$ を $\sigma(\tau(i))$ で定める.

例 5. 置換
$$\sigma, \tau$$
 を $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix} \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$ とすると、

$$σ(τ(1)) = σ(2) = 3$$
 $σ(τ(2)) = σ(3) = 1$
 $σ(τ(3)) = σ(4) = 2$
 $σ(τ(4)) = σ(1) = 4$
 $σ(τ(4)) = σ(1) = 4$
 $σ(τ(4)) = σ(1) = 4$

定義 6.

•
$$\epsilon = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots & n \end{pmatrix}$$
を単位置換という.

$$ullet$$
 $\sigma = egin{pmatrix} 1 & 2 & \cdots & n \\ k_1 & k_2 & \cdots & k_n \end{pmatrix}$ について, $\begin{pmatrix} k_1 & k_2 & \cdots & k_n \\ 1 & 2 & \cdots & n \end{pmatrix}$ を $\underline{\sigma}$ の逆置換と言い σ^{-1} で表す.

例 7.
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 3 & 2 \end{pmatrix}$$
 とするとき $\sigma^{-1} = \begin{pmatrix} 4 & 5 & 1 & 3 & 2 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$ である.

定義 8.
$$\sigma=\begin{pmatrix}k_1&k_2&\cdots&k_l\\k_2&k_3&\cdots&k_1\end{pmatrix}$$
 となる置換 σ を巡回置換と言い $\sigma=\begin{pmatrix}k_1&k_2&\cdots&k_l\end{pmatrix}$ と表す.

特に $\sigma = \begin{pmatrix} k_1 & k_2 \\ k_2 & k_1 \end{pmatrix}$ となる巡回置換を<u>互換</u>と言い $\sigma = \begin{pmatrix} k_1 & k_2 \end{pmatrix}$ と表す.

定理 9. 任意の置換 σ は互換の積 $\tau_1 \cdots \tau_l$ で表わすことができ, l の偶奇は σ によってのみ定まる.

定義 10. 置換 σ が互換の積 $\tau_1 \cdots \tau_l$ で表せられているとする.

- $sgn(\sigma) = (-1)^l$ とし、これを $\underline{\sigma}$ の符号と呼ぶ。
- $sgn(\sigma) = 1$ なる置換 σ を偶置換といい, $sgn(\sigma) = -1$ なる置換 σ を奇置換という.

例 **11.** $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 1 & 6 & 2 & 7 & 5 & 3 \end{pmatrix}$ を互換の積で表し、その符号を求めよ、 (解). $1 \overset{\sigma}{\rightarrow} 4 \overset{\sigma}{\rightarrow} 2 \overset{\sigma}{\rightarrow} 1$ と変化し、 $3 \overset{\sigma}{\rightarrow} 6 \overset{\sigma}{\rightarrow} 5 \overset{\sigma}{\rightarrow} 7 \overset{\sigma}{\rightarrow} 3$ と変化するので、

さらに $\begin{pmatrix} 1 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 4 & 2 \end{pmatrix}, \begin{pmatrix} 3 & 6 & 5 & 7 \end{pmatrix} = \begin{pmatrix} 3 & 6 \end{pmatrix} \begin{pmatrix} 6 & 5 \end{pmatrix} \begin{pmatrix} 6 & 5 \end{pmatrix} \begin{pmatrix} 5 & 7 \end{pmatrix}$ であるので、

$$\sigma = \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 4 & 2 \end{pmatrix} \begin{pmatrix} 3 & 6 \end{pmatrix} \begin{pmatrix} 6 & 5 \end{pmatrix} \begin{pmatrix} 5 & 7 \end{pmatrix}$$

となり, $sgn(\sigma) = (-1)^5 = -1$ である.

命題 12. 置換 σ, τ について, $\mathrm{sgn}(\epsilon) = 1$, $\mathrm{sgn}(\sigma^{-1}) = \mathrm{sgn}(\sigma)$, $\mathrm{sgn}(\sigma\tau) = \mathrm{sgn}(\sigma)\mathrm{sgn}(\tau)$ が成り立つ (ただし ϵ は単位置換とする).

定義 13. S_n を n 文字置換の集合とし, A_n を n 文字置換の集合とする.

 1 専門用語で S_n は対称群と言い, A_n は交代群と言います.

命題 14.

- ullet S_n の個数は n! 個である.
- 偶置換と奇置換の個数は同じである.
- ullet A_n の個数は $rac{n!}{2}$ 個である.
- $\sigma, \tau \in A_n$ ならば $\sigma \tau \in A_n$