

# **FCC RF TEST REPORT**

Issued to

**Tabler Systems Inc** 

For

TABLER TOUCH TV

Model Name : TTV-65MH

Trade Name : Tabler TV
Brand Name : Tabler TV

Standard : 47 CFR Part 15, Subpart C

ANSI C63.10-2013

FCC ID : 2AJIJ-TTV-65MH

Test Date : Oct.26,2016 - Oct.31,2016

Issue Date : Nov.16, 2016

Quality

Certifica Ryon

Shanghai Skylabs Co., Ltd.

Tested by Wh Hong fer

Approved by Gu (en w)

Review by Xias dong Wei

The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strictly treated as such by the Shanghai Skylabs Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it or a certified copy there of prepared by the Shanghai Skylabs Co., Ltd to his customer. Supplier or others persons directly concerned. Shanghai Skylabs Co., Ltd will not, without the consent of the client enters into any discussion of correspondence with any third party concerning the contents of the report. In the event of the improper use of the report, Shanghai Skylabs Co., Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.



# **DIRECTORY**

| 1.      | General Information                        | 4          |
|---------|--------------------------------------------|------------|
| 1.1     | Applicant                                  | 4          |
| 1.2     | Manufacturer                               | 4          |
| 1.3     | Description of EUT                         | 4          |
| 2.      | Facilities and Accreditations              | 5          |
| 2.1     | Test Facility                              | 5          |
| 2.2     | Environmental Conditions                   | 5          |
| 2.3     | Measurement Uncertainty                    | 5          |
| 2.4     | List of Equipment Used                     | <i>6</i>   |
| 3.      | Test Standards and Results                 | 7          |
| 4.      | 47 CFR Part 15C                            | 8          |
| 4.1     | Antenna Requirement                        | 8          |
| 5.      | Test Result                                | 9          |
| 5.1     | Peak Output Power                          | 9          |
| 5.2     | 6dB &20dB Bandwidth                        | 11         |
| 5.3     | Conducted Spurious Emissions and Band Edge | 38         |
| 5.4     | Power Spectral Density (PSD)               | 61         |
| 5.5     | Restricted Frequency Bands                 | 75         |
| 5.6     | Conducted Emission                         | 83         |
| 5.7     | Radiated Emission                          | 87         |
| Annex A | Photos of the EUT                          | <b>9</b> 1 |
| Annex B | Photos of Setup                            | 93         |



# **Change History**

| Issue | Date         | Reason for change |
|-------|--------------|-------------------|
| 1.0   | Nov.16, 2016 | First edition     |
|       |              |                   |
|       |              |                   |
|       |              |                   |
|       |              |                   |
|       |              |                   |



## General Information

# 1.1 Applicant

**Tabler Systems Inc** 

Room A6646, No. 180, South changjiang Road, baoshan District, Shanghai, China

#### 1.2 Manufacturer

**Tabler Systems Inc** 

Room A6646, No. 180, South changjiang Road, baoshan District, Shanghai, China

# **1.3** Description of EUT

EUT Name ...... TABLER TOUCH TV

Model Name .....: TTV-65MH

Brand Name.....: Tabler TV

Trade Name ...... Tabler TV

Hardware Version ...... V2.1.0

Software Version...... TTV65MH-V2.1.0

Modulation Type ...... DSSS (802.11b), OFDM (802.11g/n)

Frequency Range ...... 2.412GHz - 2.462GHz(at interval of 5 MHz)

Channel Number.....: 11

Antenna Type.....: PIFA

Antenna Gain .....: 1 dBi

#### NOTE 1:

The EUT contains WIFI Module operating at 2.4GHz ISM band, it supports IEEE802.11b, IEEE802.11g, IEEE802.11n and they are all tested in this report. And the WIFI module has a pair of antennas, it can transmitter and receiver with anyone respectively. The frequencies allocated is F(MHz) = 2412 + 5\*(n-1)(1 <= n <= 11). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately F(2412MHz), F(2437MHz) and F(2462MHz).

For IEEE802.11n(40MHz), the lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 3 (2422MHz), 6 (2437MHz) and 9 (2452MHz).

#### NOTE 2:

For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacture.



# Facilities and Accreditations

# **2.1** Test Facility

Shanghai Skylabs Co., Ltd. is a third party testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L6644. A 9\*6\*6(m) full/semi-anechoic chamber was used for the radiated emissions test.

# **2.2** Environmental Conditions

Ambient temperature: 15~35°C Relative humidity: 30~60%

Atmosphere pressure: 86~106kPa

# 2.3 Measurement Uncertainty

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

Uncertainty of Conducted Emission: ±1.76dB Uncertainty of Radiated Emission: ±3.16dB



# **2.4** List of Equipment Used

| Description                    | Manufacturer  | Model          | Serial No.   | Cal.Date   | Cal. Due |
|--------------------------------|---------------|----------------|--------------|------------|----------|
| Service Simulator              | Agilent       | N4010A         | MY47230669   | 2016.9.22  | 1year    |
| Spectrum Analyzer              | R&S           | FSU26          | 200880       | 2016.6.17  | 1year    |
| Power Splitter                 | Weinschel     | 1506A          | NW521        | (n.a.)     | (n.a.)   |
| Power Splitter                 | Mini-Circuits | ZFRSC-183-S+   | 76500F1016   | (n.a.)     | (n.a.)   |
| Attenuator 1                   | Resnet        | 10dB           | (n.a.)       | (n.a.)     | (n.a.)   |
| Attenuator 2                   | Resnet        | 3dB            | (n.a.)       | (n.a.)     | (n.a.)   |
| Power supplier                 | NF            | ES2000S        | 9087735      | 2016.10.17 | 1year    |
| Full/Semi-Anechoie<br>Chamber  | CHENGYU       | 9.2×6.25×6.15m | SAR          | 2016.4.11  | 3year    |
| EMI Test Receiver              | R&S           | ESCI7          | 100787       | 2016.1.28  | 1year    |
| Antenna                        | R&S           | HL562          | 100385       | 2016.6.17  | 1year    |
| Antenna                        | R&S           | HF906          | 100565       | 2016.6.17  | 1year    |
| LISN                           | TESEQ         | NNB 51         | 33285        | 2016.1.28  | 1year    |
| Personal Computer              | HP            | (n.a.)         | (n.a.)       | (n.a.)     | (n.a.)   |
| Test Antenna-Horn              | Schwarzbeck   | BBHA9170       | BBHA91970171 | 2016.7.25  | 1year    |
| Test Antenna-Log               | Schwarzbeck   | VULB 9163      | 9163-561     | 2016.7.25  | 1year    |
| Test Antenna-Loop              | Rohde&Schwarz | FMZB 1519      | 1519-025     | 2016.7.25  | 1year    |
| Test Antenna-Horn              | Schwarzbeck   | BBHA 9120D     | BBHA-9120LFA | 2016.7.25  | 1year    |
| Temporary Antenna<br>Connector | Farpu         | SMA-K          | (n.a.)       | (n.a.)     | (n.a.)   |
| RF Cable                       | (n.a.)        | 0-25GHz        | (n.a.)       | (n.a.)     | (n.a.)   |

# NOTE:

Equipment listed above had been calibrated and are in the period of validation.



# 3. Test Standards and Results

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

FCC Part 15 Subpart C §15.247 ANSI C63.10-2013 June 2015KDB558074

#### NOTE:

(1)All test items were verified and recorded according to the standards and without any deviation during the test.

(2)This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart C(WIFI,2.4GHz ISM band radiators),recorded in a separate test report.

#### Test items and the results are as bellow:

| No. | FCC Rules        | Description                  | Result |
|-----|------------------|------------------------------|--------|
| 1   | 15.203           | Antenna Requirement          | Pass   |
| 2   | 15.247(b)        | Peak Output Power            | Pass   |
| 3   | 15.247(a)        | 6dB &20dB Bandwidth          | Pass   |
| 4   | 15.247(d)        | Conducted Spurious Emission  | Pass   |
| 5   | 15.247(d)        | Band Edge                    | Pass   |
| 6   | 15.207           | Conducted Emission           | Pass   |
| 7   | 15.247(d) 15.209 | Radiated Emission            | Pass   |
| 8   | 15.247(e)        | Power Spectral Density (PSD) | Pass   |



# 4. 47 CFR Part 15C

# **4.1** Antenna Requirement

# 4.1.1 Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

# 4.1.2 Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.



## 5. Test Result

# **5.1** Peak Output Power

# **5.1.1** Requirement

According to FCC section 15.247(b)(3), For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: The maximum peak conducted output power of the intentional radiator shall not exceed 1 Watt.

# **5.1.2** Test Description

The measured output power was calculated by the reading of the spectrum analyze(SA) and calibration.

#### A. Test Setup:



The EUT (Equipment under the test) is coupled to the SA; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in power meter.

- a) Set span =30MHz
- b) Set RBW = 100 KHz.
- c) Set VBW = 300 KHz.
- d) Number of points = 2 span / RBW.
- e) Sweep time = auto.
- f) Detector =Average
- g) Free run.
- h) 100 traces.
- i) Compute power by integrating the spectrum across the OBW of the



# **5.1.3** Test Result

The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the WIFI Module.(Duty cycle > 98%)

### **Test result**

| Test Mode    | СН | Frequency<br>(MHz) | ANT 1(dBm) | ANT 2(dBm) | Limit<br>(dBm) | Result |
|--------------|----|--------------------|------------|------------|----------------|--------|
|              | 1  | 2412               | 19.13      | 19.11      |                | Pass   |
| IEEE 802.11b | 6  | 2437               | 18.95      | 18.92      |                | Pass   |
|              | 11 | 2462               | 19.03      | 19.17      | 20             | Pass   |
| IEEE 802.11g | 1  | 2412               | 18.91      | 19.06      | 30             | Pass   |
|              | 6  | 2437               | 19.10      | 19.21      |                | Pass   |
|              | 11 | 2462               | 19.07      | 19.03      |                | Pass   |

|               |    | Fraguancy          |       |       | Conducted     | Limit   |        |
|---------------|----|--------------------|-------|-------|---------------|---------|--------|
| Test Mode     | СН | Frequency<br>(MHz) | ANT 1 | ANT 2 | Power(dBm)    | (dBm)   | Result |
|               |    | (171112)           | (dBm) | (dBm) | rower (dbill) | (dBIII) |        |
| IEEE 802.11n  | 1  | 2412               | 18.44 | 18.34 | 21.40         |         | Pass   |
| (20MHz)       | 6  | 2437               | 18.32 | 18.23 | 21.29         |         | Pass   |
| (ZUIVITZ)     | 11 | 2462               | 18.37 | 18.31 | 21.35         | 30      | Pass   |
| IEEE 003 44 m | 3  | 2422               | 18.14 | 18.29 | 21.23         | 30      | Pass   |
| IEEE 802.11n  | 6  | 2437               | 18.47 | 18.26 | 21.38         |         | Pass   |
| (40MHz)       | 9  | 2452               | 18.39 | 18.33 | 21.37         |         | Pass   |

**Conclusion: Pass** 



#### 5.2 6dB &20dB Bandwidth

# **5.2.1** Requirement

According to FCC section 15.247(a) (2), Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

# **5.2.2** Test Description



- a) Set RBW = 100kHz
- b) Set the video bandwidth (VBW) =300kHz
- c) Set span =25MHz
- d) Sweep time=auto couple
- e) Detector=Peak
- f) Trace mode= max hold
- g) Allow the trace to stabilize
- h) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

#### **5.2.3** Test Result

The lowest, middle and highest channels are selected to perform testing to record the 6 dB bandwidth of the Module.

#### **ANT 1 Test Result:**

IEEE 802.11b Test mode

| Channel | Frequency<br>(MHz) | 6dB<br>Bandwidth<br>(MHz) | Refer to plot | 20dB<br>Bandwidth<br>(MHz) | Refer to plot | Limit<br>(KHz) | Result |
|---------|--------------------|---------------------------|---------------|----------------------------|---------------|----------------|--------|
| 1       | 2412               | 9.535                     | Plot A1       | 16.306                     | Plot A2       | ≥500           | Pass   |
| 6       | 2437               | 8.862                     | Plot B1       | 16.074                     | Plot B2       | ≥500           | Pass   |
| 11      | 2462               | 9.655                     | Plot C1       | 16.306                     | Plot C2       | ≥500           | Pass   |

## IEEE 802.11g Test mode

| Channel | Frequency<br>(MHz) | 6dB<br>Bandwidth<br>(MHz) | Refer to plot | 20dB<br>Bandwidth<br>(MHz) | Refer to plot | Limit<br>(KHz) | Result |
|---------|--------------------|---------------------------|---------------|----------------------------|---------------|----------------|--------|
|---------|--------------------|---------------------------|---------------|----------------------------|---------------|----------------|--------|



| 1  | 2412 | 16.426 | Plot D1 | 18.149 | Plot D2 | ≥500 | Pass |
|----|------|--------|---------|--------|---------|------|------|
| 6  | 2437 | 16.426 | Plot E1 | 18.109 | Plot E2 | ≥500 | Pass |
| 11 | 2462 | 16.513 | Plot F1 | 17.956 | Plot F2 | ≥500 | Pass |

# IEEE 802.11n (20MHz) Test mode

| Channel | Frequency<br>(MHz) | 6dB<br>Bandwidth<br>(MHz) | Refer to plot | 20dB<br>Bandwidth<br>(MHz) | Refer to plot | Limit<br>(KHz) | Result |
|---------|--------------------|---------------------------|---------------|----------------------------|---------------|----------------|--------|
| 1       | 2412               | 16.506                    | Plot G1       | 17.909                     | Plot G2       | ≥500           | Pass   |
| 6       | 2437               | 16.546                    | Plot H1       | 17.948                     | Plot H2       | ≥500           | Pass   |
| 11      | 2462               | 16.546                    | Plot I1       | 17.829                     | Plot I2       | ≥500           | Pass   |

# IEEE 802.11n (40MHz) Test mode

| Channel | Frequency<br>(MHz) | 6dB<br>Bandwidth<br>(MHz) | Refer to plot | 20dB<br>Bandwidth<br>(MHz) | Refer to plot | Limit<br>(KHz) | Result |
|---------|--------------------|---------------------------|---------------|----------------------------|---------------|----------------|--------|
| 3       | 2422               | 36.522                    | Plot J1       | 38.125                     | Plot J2       | ≥500           | Pass   |
| 6       | 2437               | 36.523                    | Plot K1       | 37.885                     | Plot K2       | ≥500           | Pass   |
| 9       | 2452               | 36.506                    | Plot L1       | 37.708                     | Plot L2       | ≥500           | Pass   |

# **Test Plots:**



Date: 26.OCT.2016 18:44:46

Plot A1





Date: 26.OCT.2016 18:47:55

Plot A2



Date: 26.OCT.2016 18:59:40

Plot B1





Date: 26.OCT.2016 19:01:03

Plot B2



Date: 26.OCT.2016 19:05:51

Plot C1





Date: 26.OCT.2016 19:06:58

Plot C2



Date: 26.OCT.2016 19:14:32

Plot D1





Date: 26.OCT.2016 19:13:50

Plot D2



Date: 26.OCT.2016 19:19:44

Plot E1





Date: 26.OCT.2016 19:18:49

Plot E2



Date: 27.OCT.2016 16:42:41

Plot F1





Date: 27.0CT.2016 16:43:20

Plot F2



Date: 26.OCT.2016 19:40:38

Plot G1





Date: 26.OCT.2016 19:39:45

Plot G2



Date: 26.OCT.2016 20:32:46

Plot H1





Date: 26.OCT.2016 20:32:09

Plot H2



Date: 26.OCT.2016 20:54:52

Plot I1





Date: 26.OCT.2016 20:55:49

Plot I2



Date: 27.OCT.2016 18:27:48

Plot J1





Date: 27.0CT.2016 18:28:24

Plot J2



Date: 27.OCT.2016 18:34:59

Plot K1





Date: 27.OCT.2016 18:34:04

Plot K2



Date: 27.0CT.2016 18:36:45

Plot L1





Date: 27.0CT.2016 18:37:33

Plot L2

#### **ANT 2 Test Result:**

## IEEE 802.11b Test mode:

| Channel | Frequency<br>(MHz) | 6dB<br>Bandwidth<br>(MHz) | Refer to plot | 20dB<br>Bandwidth<br>(MHz) | Refer to plot | Limit<br>(KHz) | Result |
|---------|--------------------|---------------------------|---------------|----------------------------|---------------|----------------|--------|
| 1       | 2412               | 9.855                     | Plot A1       | 16.306                     | Plot A2       | ≥500           | Pass   |
| 6       | 2437               | 10.464                    | Plot B1       | 16.354                     | Plot B2       | ≥500           | Pass   |
| 11      | 2462               | 10.056                    | Plot C1       | 16.266                     | Plot C2       | ≥500           | Pass   |

# IEEE 802.11g Test mode:

| Channel | Frequency<br>(MHz) | 6dB<br>Bandwidth<br>(MHz) | Refer to plot | 20dB<br>Bandwidth<br>(MHz) | Refer to plot | Limit<br>(KHz) | Result |
|---------|--------------------|---------------------------|---------------|----------------------------|---------------|----------------|--------|
| 1       | 2412               | 16.426                    | Plot D1       | 18.189                     | PlotD2        | ≥500           | Pass   |
| 6       | 2437               | 16.266                    | Plot E1       | 18.108                     | Plot E2       | ≥500           | Pass   |
| 11      | 2462               | 16.266                    | Plot F1       | 18.108                     | Plot F2       | ≥500           | Pass   |



# IEEE 802.11n (20MHz) Test mode:

| Channel | Frequency<br>(MHz) | 6dB<br>Bandwidth<br>(MHz) | Refer to plot | 20dB<br>Bandwidth<br>(MHz) | Refer to plot | Limit<br>(KHz) | Result |
|---------|--------------------|---------------------------|---------------|----------------------------|---------------|----------------|--------|
| 1       | 2412               | 16.586                    | Plot G1       | 17.868                     | Plot G2       | ≥500           | Pass   |
| 6       | 2437               | 16.506                    | Plot H1       | 18.029                     | Plot H2       | ≥500           | Pass   |
| 11      | 2462               | 16.506                    | Plot I1       | 17.788                     | Plot I2       | ≥500           | Pass   |

# IEEE 802.11n (40MHz) Test mode:

| Channel | Frequency<br>(MHz) | 6dB<br>Bandwidth<br>(MHz) | Refer to plot | 20dB<br>Bandwidth<br>(MHz) | Refer to plot | Limit<br>(KHz) | Result |
|---------|--------------------|---------------------------|---------------|----------------------------|---------------|----------------|--------|
| 3       | 2422               | 36.538                    | Plot J1       | 37.901                     | Plot J2       | ≥500           | Pass   |
| 6       | 2437               | 36.522                    | Plot K1       | 37.644                     | Plot K2       | ≥500           | Pass   |
| 9       | 2452               | 36.506                    | Plot L1       | 37.628                     | Plot L2       | ≥500           | Pass   |

### **Test Plots:**



Date: 26.OCT.2016 18:51:42

Plot A1





Date: 26.OCT.2016 18:50:10

Plot A2



Date: 26.OCT.2016 18:56:18

Plot B1





Date: 26.OCT.2016 18:57:26

Plot B2



Date: 26.OCT.2016 19:03:18

Plot C1





Date: 26.OCT.2016 19:04:11

Plot C2



Date: 26.OCT.2016 19:09:23

Plot D1





Date: 26.OCT.2016 19:11:34

Plot D2



Date: 26.OCT.2016 19:16:46

Plot E1





Date: 26.OCT.2016 19:17:38

Plot E2



Date: 26.OCT.2016 19:22:27

Plot F1





Date: 26.OCT.2016 19:24:07

Plot F2



Date: 26.OCT.2016 19:37:21

Plot G1





Date: 26.OCT.2016 19:38:14

Plot G2



Date: 26.OCT.2016 20:29:27

Plot H1





Date: 26.OCT.2016 20:30:40

Plot H2



Date: 26.OCT.2016 20:34:08

Plot I1





Date: 26.OCT.2016 20:35:00

Plot I2



Date: 27.OCT.2016 18:40:45

Plot J1





Date: 27.OCT.2016 18:40:15

Plot J2



Date: 27.OCT.2016 18:42:00

Plot K1





Date: 27.OCT.2016 18:42:35

#### Plot K2



Date: 27.OCT.2016 18:43:33

Plot L1





Date: 27.OCT.2016 18:44:09

Plot L2

**Conclusion: Pass** 



# 5.3 Conducted Spurious Emissions and Band Edge

# **5.3.1** Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

### **5.3.2** Test Description



#### **5.3.3** Test Result

The WIFI Module operates at hopping-off test mode. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW =300 kHz.
- d) Detector = Average.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.



### **ANT 1 Test Result:**

# IEEE 802.11b Test mode

|         | Frequency | Measured max out |               | Lim     | it(dBm)     |        |
|---------|-----------|------------------|---------------|---------|-------------|--------|
| Channel | (MHz)     | of band          | Refer to plot | Carrier | Calculated  | Result |
|         | , ,       | emission(dBm)    |               | level   | 30dBc limit |        |
| 1       | 2412      | -48.98           | Plot A        | 3.20    | -26.80      | Pass   |
| 6       | 2437      | -48.88           | Plot B        | -0.94   | -30.94      | Pass   |
| 11      | 2462      | -49.30           | Plot C        | -0.94   | -30.94      | Pass   |

# IEEE 802.11g Test mode

| F       | Frequency | Measured max out |               | Lim     | it(dBm)     |        |
|---------|-----------|------------------|---------------|---------|-------------|--------|
| Channel | (MHz)     | of band          | Refer to plot | Carrier | Calculated  | Result |
|         | ,         | emission(dBm)    |               | level   | 30dBc limit |        |
| 1       | 2412      | -48.99           | Plot D        | -6.39   | -36.39      | Pass   |
| 6       | 2437      | -48.64           | Plot E        | -8.08   | -38.08      | Pass   |
| 11      | 2462      | -48.92           | Plot F        | -8.00   | -38.00      | Pass   |

# IEEE 802.11n (20MHz) Test mode

|         | Frequency | Measured max out         |               | Lim              | it(dBm)                |        |
|---------|-----------|--------------------------|---------------|------------------|------------------------|--------|
| Channel | (MHz)     | of band<br>emission(dBm) | Refer to plot | Carrier<br>level | Calculated 30dBc limit | Result |
| 1       | 2412      | -48.80                   | Plot G        | -9.23            | -39.23                 | Pass   |
| 6       | 2437      | -49.25                   | Plot H        | -9.93            | -39.93                 | Pass   |
| 11      | 2462      | -49.25                   | Plot I        | -9.00            | -39.00                 | Pass   |

# IEEE 802.11n (40MHz) Test mode

|         | Frequency                               | Measured max out |               | Limit(dBm) |             |        |
|---------|-----------------------------------------|------------------|---------------|------------|-------------|--------|
| Channel | (MHz)                                   | of band          | Refer to plot | Carrier    | Calculated  | Result |
|         | (************************************** | emission(dBm)    |               | level      | 30dBc limit |        |
| 3       | 2422                                    | -49.24           | Plot J        | -12.67     | -42.67      | Pass   |
| 6       | 2437                                    | -49.21           | Plot K        | -13.89     | -43.89      | Pass   |
| 9       | 2452                                    | -49.23           | Plot L        | -13.55     | -43.55      | Pass   |



#### **Test Plots:**



Date: 19.DEC.2016 19:30:35

### Plot A



Date: 14.DEC.2016 17:25:00

(IEEE 802.11b -Band Edge at channel =1)





Date: 19.DEC.2016 19:32:17

Plot B



Date: 19.DEC.2016 19:35:53

Plot C





Date: 14.DEC.2016 17:35:21

(IEEE 802.11b -Band Edge at channel =11)



Date: 19.DEC.2016 19:40:27

Plot D





Date: 14.DEC.2016 17:27:17

(IEEE 802.11g- Band Edge at channel =1)



Date: 19.DEC.2016 19:42:35

Plot E





Date: 19.DEC.2016 19:44:23

Plot F



Date: 14.DEC.2016 17:34:16

(IEEE 802.11g- Band Edge at channel =11)





Date: 19.DEC.2016 19:45:59

Plot G



Date: 14.DEC.2016 17:29:49

(IEEE 802.11n20MHz- Band Edge at channel =1)





Date: 19.DEC.2016 19:48:21

Plot H



Date: 19.DEC.2016 19:50:22

Plot I





Date: 14.DEC.2016 17:33:21

(IEEE 802.11n20MHz- Band Edge at channel =11)



Date: 19.DEC.2016 19:51:53

Plot J





Date: 14.DEC.2016 17:31:19

# (IEEE 802.11n40MHz- Band Edge at channel =1)



Date: 19.DEC.2016 19:53:24

Plot K





Date: 19.DEC.2016 19:54:13

Plot L



Date: 14.DEC.2016 17:32:32

(IEEE 802.11n40MHz- Band Edge at channel =11)



#### **ANT 2 Test Result:**

# IEEE 802.11b Test mode

|         | Frequency | Measured max out |               | Lim     | it(dBm)     |        |
|---------|-----------|------------------|---------------|---------|-------------|--------|
| Channel | (MHz)     | of band          | Refer to plot | Carrier | Calculated  | Result |
|         | , ,       | emission(dBm)    |               | level   | 30dBc limit |        |
| 1       | 2412      | -48.86           | Plot A1       | 3.49    | -26.51      | Pass   |
| 6       | 2437      | -49.07           | Plot B1       | -1.27   | -31.27      | Pass   |
| 11      | 2462      | -48.31           | Plot C1       | -7.33   | -37.33      | Pass   |

# IEEE 802.11g Test mode

|         | Frequency | Measured max out |               | Lim     | it(dBm)     |        |
|---------|-----------|------------------|---------------|---------|-------------|--------|
| Channel | (MHz)     | of band          | Refer to plot | Carrier | Calculated  | Result |
|         | (*****=/  | emission(dBm)    |               | level   | 30dBc limit |        |
| 1       | 2412      | -49.33           | Plot D1       | -6.84   | -36.84      | Pass   |
| 6       | 2437      | -48.94           | Plot E1       | -7.98   | -37.98      | Pass   |
| 11      | 2462      | -49.32           | Plot F1       | -7.20   | -37.20      | Pass   |

# IEEE 802.11n (20MHz) Test mode

|         | Frequency | Measured max out |               | Lim     | it(dBm)     |        |
|---------|-----------|------------------|---------------|---------|-------------|--------|
| Channel | (MHz)     | of band          | Refer to plot | Carrier | Calculated  | Result |
|         | (*****=/  | emission(dBm)    |               | level   | 30dBc limit |        |
| 1       | 2412      | -49.05           | Plot G1       | -9.21   | -39.21      | Pass   |
| 6       | 2437      | -49.27           | Plot H1       | -9.85   | -39.85      | Pass   |
| 11      | 2462      | -49.09           | Plot I1       | -9.37   | -39.37      | Pass   |

# IEEE 802.11n (40MHz) Test mode

|         | Frequency | Measured max out |               | Lim     | it(dBm)     |        |
|---------|-----------|------------------|---------------|---------|-------------|--------|
| Channel | (MHz)     | of band          | Refer to plot | Carrier | Calculated  | Result |
|         | , ,       | emission(dBm)    |               | level   | 30dBc limit |        |
| 3       | 2422      | -48.58           | Plot J1       | -13.52  | -43.52      | Pass   |
| 6       | 2437      | -49.45           | Plot K1       | -14.92  | -44.92      | Pass   |
| 9       | 2452      | -49.24           | Plot L1       | -13.43  | -43.43      | Pass   |



#### **Test Plots:**



Date: 19.DEC.2016 19:31:20

#### Plot A1



Date: 14.DEC.2016 17:25:20

(IEEE 802.11b- Band Edge at channel =1)





Date: 19.DEC.2016 19:32:48

Plot B1



Date: 19.DEC.2016 19:35:20

Plot C1





Date: 14.DEC.2016 17:35:36

(IEEE 802.11b- Band Edge at channel =11)



Date: 19.DEC.2016 19:41:00

Plot D1





Date: 14.DEC.2016 17:29:11

(IEEE 802.11g- Band Edge at channel =1)



Date: 19.DEC.2016 19:43:17

Plot E1





Date: 19.DEC.2016 19:44:58

Plot F1



Date: 14.DEC.2016 17:34:48

(IEEE 802.11g- Band Edge at channel =11)





Date: 19.DEC.2016 19:47:05

Plot G1



Date: 14.DEC.2016 17:30:08

(IEEE 802.11n20MHz-Band Edge at channel =1)





Date: 19.DEC.2016 19:49:29

Plot H1



Date: 19.DEC.2016 19:50:47

Plot I1





Date: 14.DEC.2016 17:33:33

(IEEE 802.11n20MHz- Band Edge at channel =11)



Date: 19.DEC.2016 19:52:41

Plot J1





Date: 14.DEC.2016 17:31:34

(IEEE 802.11n40MHz- Band Edge at channel =1)



Date: 19.DEC.2016 19:53:39

Plot K1





Date: 19.DEC.2016 19:54:37

Plot L1



Date: 14.DEC.2016 17:32:44

(IEEE 802.11n40MHz- Band Edge at channel =11)

**Conclusion: Pass** 



# **5.4** Power Spectral Density (PSD)

# **5.4.1** Requirement

According to FCC section 15.247(e), the same method of determining the conducted output power shall be used to determine the power spectral density. If a peak output power is measured, then a peak power spectral density measurement is required. If an average output power is measured, then an average power spectral density measurement should be used.

### **5.4.2** Test Description



- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span =25mHz.
- c) Set the RBW to: 3 kHz.
- d) Set the VBW to: 10 kHz.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

### **5.4.3** Test Result

|              |    |                    | Measured PS | SD (dBm/3kHz) |                  |        |
|--------------|----|--------------------|-------------|---------------|------------------|--------|
| Test Mode    | СН | Frequency<br>(MHz) | ANT 1       | ANT 2         | Limit (dBm/3kHz) | Result |
|              | 1  | 2412               | -9.51       | -9.42         | 8                | Pass   |
| IEEE 802.11b | 6  | 2437               | -10.42      | -11.01        | 8                | Pass   |



|              | 11 | 2462 | -9.92  | -11.18 | 8 | Pass |
|--------------|----|------|--------|--------|---|------|
|              | 1  | 2412 | -13.43 | -14.19 | 8 | Pass |
| IEEE 802.11g | 6  | 2437 | -14.94 | -13.57 | 8 | Pass |
|              | 11 | 2462 | -14.08 | -15.06 | 8 | Pass |

|              |    | Faccusing          | Meası  | ured PSD (d | IBm/3kHz) |                     |        |
|--------------|----|--------------------|--------|-------------|-----------|---------------------|--------|
| Test Mode    | СН | Frequency<br>(MHz) | ANT 1  | ANT 2       | ANT 1&2   | Limit<br>(dBm/3kHz) | Result |
|              | 1  | 2412               | -15.46 | -14.48      | -11.93    | 8                   | Pass   |
| IEEE 802.11n | 6  | 2437               | -15.13 | -15.27      | -12.19    | 8                   | Pass   |
| (20MHz)      | 11 | 2462               | -16.04 | -16.64      | -13.32    | 8                   | Pass   |
|              | 3  | 2422               | -18.61 | -17.88      | -15.23    | 8                   | Pass   |
| IEEE 802.11n | 6  | 2437               | -17.79 | -17.89      | -14.84    | 8                   | Pass   |
| (40MHz)      | 9  | 2452               | -18.55 | -18.07      | -15.29    | 8                   | Pass   |

### **Test Plots**



Date: 27.OCT.2016 19:25:09

(IEEE 802.11b-CH1, ANT 1)





Date: 27.OCT.2016 19:26:31

# (IEEE 802.11b-CH6, ANT 1)



Date: 27.OCT.2016 19:27:47

(IEEE 802.11b-CH11, ANT 1)





Date: 27.OCT.2016 19:30:06

(IEEE 802.11g-CH1, ANT 1)



Date: 27.OCT.2016 19:31:20

(IEEE 802.11g-CH6, ANT 1)





Date: 27.OCT.2016 19:32:27

# (IEEE 802.11g-CH11, ANT 1)



Date: 27.OCT.2016 19:25:38

(IEEE 802.11b-CH1, ANT 2)





Date: 27.OCT.2016 19:27:03

(IEEE 802.11b-CH6, ANT 2)



Date: 27.OCT.2016 19:28:27

(IEEE 802.11b-CH11, ANT 2)





Date: 27.OCT.2016 19:30:29

(IEEE 802.11g-CH1, ANT 2)



Date: 27.OCT.2016 19:31:52

(IEEE 802.11g-CH6, ANT 2)





Date: 27.OCT.2016 19:33:09

# (IEEE 802.11g-CH11, ANT 2)



Date: 27.OCT.2016 19:33:54

(IEEE 802.11n-20MHz-CH1, ANT 1)





Date: 27.OCT.2016 19:35:14

# (IEEE 802.11n-20MHz-CH6, ANT 1)



Date: 27.OCT.2016 19:36:10

(IEEE 802.11n-20MHz-CH11, ANT 1)





Date: 27.OCT.2016 19:37:20

# (IEEE 802.11n-40MHz-CH3, ANT 1)



Date: 27.OCT.2016 19:38:19

(IEEE 802.11n-40MHz-CH6, ANT 1)





Date: 27.OCT.2016 19:39:14

# (IEEE 802.11n-40MHz-CH9, ANT 1)



Date: 27.OCT.2016 19:34:29

(IEEE 802.11n-20MHz-CH1, ANT 2)





Date: 27.OCT.2016 19:35:38

# (IEEE 802.11n-20MHz-CH6, ANT 2)



Date: 27.OCT.2016 19:36:29

(IEEE 802.11n-20MHz-CH11, ANT 2)





Date: 27.OCT.2016 19:37:47

## (IEEE 802.11n-40MHz-CH3, ANT 2)



Date: 27.OCT.2016 19:38:35

(IEEE 802.11n-40MHz-CH6, ANT 2)





Date: 27.OCT.2016 19:39:34

(IEEE 802.11n-40MHz-CH9, ANT 2)



## **5.5** Restricted Frequency Bands

#### **5.5.1** Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

## **5.5.2** Test Description



The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna: Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

- a) Set analyzer center frequency to 2360 mHz or 2470 mHz frequency.
- b) Set the span =100 MHz.
- c) Set the RBW to: 100 kHz.
- d) Set the VBW to: 300 kHz.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level.



# **5.5.3** Test Result

#### **ANT 1 Test Result**

| Test mode    | СН | Frequency<br>(MHz) | Detector<br>PK/AV | Max. Emission<br>(dBμV/m) | Limit<br>(dBµV/m) | Result |
|--------------|----|--------------------|-------------------|---------------------------|-------------------|--------|
|              | 1  | 2313.10            | PK                | 57.37                     | 74                | Pass   |
| IEEE 003 11h | 1  | 2327.23            | AV                | 49.46                     | 54                | Pass   |
| IEEE 802.11b | 11 | 2499.66            | PK                | 52.07                     | 74                | Pass   |
|              | 11 | 2494.99            | AV                | 46.56                     | 54                | Pass   |
|              | 1  | 2312.10            | PK                | 57.32                     | 74                | Pass   |
| IFFF 903 11~ | 1  | 2328.14            | AV                | 50.25                     | 54                | Pass   |
| IEEE 802.11g | 11 | 2496.52            | PK                | 51.87                     | 74                | Pass   |
|              | 11 | 2497.32            | AV                | 46.18                     | 54                | Pass   |

| Test mode     | СН | Frequency<br>(MHz) | Detector<br>PK/AV | Max. Emission<br>(dBμV/m) | Limit<br>(dBµV/m) | Result |
|---------------|----|--------------------|-------------------|---------------------------|-------------------|--------|
| IEEE 002 44 = | 1  | 2312.50            | PK                | 56.77                     | 74                | Pass   |
| IEEE 802.11n  | 1  | 2322.61            | AV                | 49.11                     | 54                | Pass   |
| (20MHz)       | 11 | 2498.28            | PK                | 52.09                     | 74                | Pass   |
|               | 11 | 2490.79            | AV                | 46.18                     | 54                | Pass   |
| 1555 000 11   | 3  | 2318.22            | PK                | 57.20                     | 74                | Pass   |
| IEEE 802.11n  | 3  | 2314.71            | AV                | 50.16                     | 54                | Pass   |
| (40MHz)       | 9  | 2499.47            | PK                | 52.50                     | 74                | Pass   |
|               | 9  | 2499.23            | AV                | 45.51                     | 54                | Pass   |

## **Test Plots:**



(IEEE 802.11b CH1PK&AV)





(IEEE 802.11b CH11 PK&AV)



(IEEE 802.11g CH 1 PK&AV)



(IEEE 802.11g CH 11 PK&AV)





(IEEE 802.11n-20MHz CH 1 PK&AV)



(IEEE 802.11n-20MHz CH 11 PK&AV)



(IEEE 802.11n-40MHz CH 3 PK&AV)





(IEEE 802.11n-40MHz CH 9 PK&AV)

## **ANT 2 Test Result**

| Test mode    | СН | Frequency<br>(MHz) | Detector<br>PK/AV | Max. Emission<br>(dBμV/m) | Limit<br>(dBµV/m) | Result |
|--------------|----|--------------------|-------------------|---------------------------|-------------------|--------|
|              | 1  | 2320.00            | PK                | 52.78                     | 74                | Pass   |
| IEEE 002 44h | 1  | 2327.94            | AV                | 44.92                     | 54                | Pass   |
| IEEE 802.11b | 11 | 2498.01            | PK                | 49.21                     | 74                | Pass   |
|              | 11 | 2498.01            | AV                | 42.51                     | 54                | Pass   |
|              | 1  | 2313.10            | PK                | 57.37                     | 74                | Pass   |
| IEEE 802.11g | 1  | 2327.23            | AV                | 49.46                     | 54                | Pass   |
|              | 11 | 2484.05            | PK                | 54.55                     | 74                | Pass   |
|              | 11 | 2484.20            | AV                | 45.80                     | 54                | Pass   |

| Test mode     | СН | Frequency<br>(MHz) | Detector<br>PK/AV | Max. Emission<br>(dBμV/m) | Limit<br>(dBµV/m) | Result |
|---------------|----|--------------------|-------------------|---------------------------|-------------------|--------|
| JEEE 002 44 - | 1  | 2332.16            | PK                | 44.04                     | 74                | Pass   |
| IEEE 802.11n  | 1  | 2332.16            | AV                | 41.70                     | 54                | Pass   |
| (20MHz)       | 11 | 2483.51            | PK                | 53.87                     | 74                | Pass   |
|               | 11 | 2483.55            | AV                | 45.76                     | 54                | Pass   |
| 1555 000 11   | 3  | 2385.69            | PK                | 63.61                     | 74                | Pass   |
| IEEE 802.11n  | 3  | 2389.54            | AV                | 52.73                     | 54                | Pass   |
| (40MHz)       | 9  | 2483.61            | PK                | 50.77                     | 74                | Pass   |
|               | 9  | 2484.54            | AV                | 43.55                     | 54                | Pass   |



#### **Test Plots**



(IEEE 802.11b CH 1PK&AV)



(IEEE 802.11b CH11PK&AV)



(IEEE 802.11g CH 1PK&AV)





(IEEE 802.11g CH 11PK&AV)



(IEEE 802.11n-20MHz CH 1 PK&AV)



(IEEE 802.11n-20MHz CH 11 PK&AV)





(IEEE 802.11n-40MHz CH3 PK&AV)



(IEEE 802.11n-40MHz CH9 PK&AV)



## **5.6** Conducted Emission

#### **5.6.1** Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a  $50\mu$ H/50 $\Omega$  Line Impedance Stabilization Network (LISN).

| Fraguenes range (MHz) | Conducted Limit (dBµV) |          |  |  |
|-----------------------|------------------------|----------|--|--|
| Frequency range (MHz) | Quai-peak              | Average  |  |  |
| 0.15 - 0.50           | 66 to 56               | 56 to 46 |  |  |
| 0.50 - 5              | 56                     | 46       |  |  |
| 5 - 30                | 60                     | 50       |  |  |

#### NOTE:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

## **5.6.2** Test Description



The EUT was placed upon a non-metallic table 80cm above the horizontal metal reference ground plane. EUT was connected to LISN, and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. Power supplier is setting to 120V/60Hz. The set-up and test methods were according to ANSI C63.10:2013.

#### **5.6.3** Test result



# **ANT 1 Test Verdict Recorded for Spurious Points:**

| Line | Freq  | Result | Limit | Margin |
|------|-------|--------|-------|--------|
| Line | MHz   | dΒμV   | dΒμV  | dB     |
| QP   | 0.19  | 46.23  | 64.04 | 17.81  |
| QP   | 0.38  | 48.24  | 58.20 | 9.96   |
| QP   | 0.74  | 33.74  | 56.00 | 22.26  |
| QP   | 1.16  | 31.46  | 56.00 | 24.54  |
| QP   | 4.13  | 29.17  | 56.00 | 26.83  |
| QP   | 12.70 | 37.31  | 60.00 | 22.69  |

| Neutral | Freq  | Result | Limit | Margin |
|---------|-------|--------|-------|--------|
| Neutrai | MHz   | dΒμV   | dΒμV  | dB     |
| QP      | 0.19  | 46.66  | 64.21 | 17.55  |
| QP      | 0.38  | 48.21  | 58.23 | 10.02  |
| QP      | 0.74  | 34.08  | 56.00 | 21.92  |
| QP      | 1.16  | 26.83  | 56.00 | 29.17  |
| QP      | 4.22  | 28.76  | 56.00 | 27.24  |
| QP      | 12.79 | 37.95  | 60.00 | 22.05  |

## **Test Plots:**



ANT1-L Line





ANT1-N Line

# **ANT 2 Test Verdict Recorded for Spurious Points:**

| Line | Freq<br>MHz | Result<br>dBμV | Limit<br>dBµV | Margin<br>dB |
|------|-------------|----------------|---------------|--------------|
| QP   | 0.19        | 48.53          | 64.21         | 15.68        |
| QP   | 0.38        | 49.22          | 58.21         | 8.99         |
| QP   | 0.75        | 34.94          | 56.00         | 21.06        |
| QP   | 3.87        | 32.74          | 56.00         | 23.26        |
| QP   | 4.15        | 32.88          | 56.00         | 23.12        |
| QP   | 12.43       | 39.28          | 60.00         | 20.72        |

| Neutral | Freq  | Result | Limit | Margin |
|---------|-------|--------|-------|--------|
| Neutrai | MHz   | dΒμV   | dΒμV  | dB     |
| QP      | 0.19  | 48.35  | 64.21 | 15.85  |
| QP      | 0.38  | 47.59  | 58.21 | 10.62  |
| QP      | 0.67  | 34.90  | 56.00 | 21.10  |
| QP      | 1.31  | 30.31  | 56.00 | 25.69  |
| QP      | 4.16  | 31.26  | 56.00 | 24.74  |
| QP      | 12.84 | 38.32  | 60.00 | 21.68  |



## **Test plots:**



ANT2-L Line



ANT2-N Line



## **5.7** Radiated Emission

## **5.7.1** Requirement

According to FCC section 15.247(c), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

| Frequency (MHz) | Field Strength<br>(μV/m) | Measurement Distance (m) | Limit(dBµV/m) | Detector |
|-----------------|--------------------------|--------------------------|---------------|----------|
| 0.009-0.490     | 2400/F(kHz)              | 300                      | /             | /        |
| 0.490-1.705     | 24000/F(kHz)             | 30                       | /             | /        |
| 1.705-30        | 30                       | 30                       | /             | /        |
| 30 - 88         | 100                      | 3                        | 40            | QP       |
| 88 - 216        | 150                      | 3                        | 43.5          | QP       |
| 216 - 960       | 200                      | 3                        | 46            | QP       |
| 960 - 1000      | 500                      | 3                        | 54            | QP       |
| Above 1000      | 500                      | 3                        | 54            | AV       |

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

## **5.7.2** Test setup



Radiated Emissions below 30MHz





Radiated Emissions at 30-1000MHz



Radiated Emissions above 1000MHz

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10-2013. Below 1GHz, the EUT was set-up on insulator 80cm above the Ground Plane. Above 1GHz, the EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the EUT is activated and controlled by the WIFI Service Supplier (SS) via a Common Antenna, and is set to operate under transmitting at maximum power.

For the Test Antenna: In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and



Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength, the azimuth range of turntable was 0°to 360°, the receive antenna has two polarizations horizontal and vertical. When doing measurements above 1GHz, the EUT was placed within the 3dB beamwidth range of the horn antenna, and the EUT was tested in 3 orthogonal positions as recommended in ANSI C63.10 for Radiated Emissions and the worst-case data was presented. Receiver Setting: (9-150kHz): RBW=200Hz, VBW=1kHz, Detector: PK, Max Hold. (0.15-30MHz): RBW=9kHz, VBW=30kHz, Detector: PK, Max Hold. (30MHz-1GHz): RBW=120kHz, VBW=300kHz, Detector: QK, Max Hold. (Above 1GHz): RBW=1MHz, VBW=3MHz, Detector: AV, Max Hold.

#### **5.7.3** Test Result

## A. Test Result for 9kHz -30MHz

| Frequency | Level  | Over Limit | Limit Line | Remark   |
|-----------|--------|------------|------------|----------|
| (MHz)     | (dBμV) | (dB)       | (dBμV)     | Remark   |
|           |        | 20         |            | See Note |

#### Note:

- a) The amplitude of spurious emissions that are attenuated by more than 20dB below the permissiblevalue has no need to be reported.
- b) Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- c)Limit line = specific limits ( $dB\mu V$ ) + distance extrapolation factor.

## B. Test Result for above 30MHz - 10<sup>th</sup>Harmonic

#### ANT1 Test Result:

| Frequency | Level  | Limit Line | Margin | Antenna      | Result |
|-----------|--------|------------|--------|--------------|--------|
| (MHz)     | (dBμV) | (dBµV)     | (dB)   | Polarization | Result |
| 42.15     | 29.30  | 40.00      | 10.70  | Horizontal   | PASS   |
| 180.02    | 39.26  | 43.50      | 4.24   | Horizontal   | PASS   |
| 278.07    | 36.93  | 46.00      | 9.07   | Horizontal   | PASS   |
| 417.64    | 40.65  | 46.00      | 5.35   | Horizontal   | PASS   |
| 2227.58   | 34.39  | 54.00      | 19.61  | Horizontal   | PASS   |
| 4830.53   | 49.56  | 54.00      | 4.44   | Horizontal   | PASS   |
| 5525.31   | 45.87  | 54.00      | 8.13   | Horizontal   | PASS   |
| 77.32     | 34.69  | 40.00      | 5.31   | Vertical     | PASS   |
| 136.94    | 35.37  | 43.50      | 8.13   | Vertical     | PASS   |
| 300.37    | 37.97  | 46.00      | 8.03   | Vertical     | PASS   |
| 417.64    | 42.64  | 46.00      | 3.36   | Vertical     | PASS   |
| 2088.43   | 37.17  | 54.00      | 16.83  | Vertical     | PASS   |
| 4832.07   | 47.14  | 54.00      | 6.86   | Vertical     | PASS   |
| 5244.33   | 50.27  | 54.00      | 3.73   | Vertical     | PASS   |

#### Note:

The worst case (IEEE 802.11bChannel 1:2412MHz) is recorded in the report.



## ANT2 Test Result:

| Frequency | Result | Limit  | Margin | Antenna      | Result |
|-----------|--------|--------|--------|--------------|--------|
| (MHz)     | (dBµV) | (dBµV) | (dB)   | Polarization |        |
| 47.33     | 23.51  | 40.00  | 16.49  | Horizontal   | PASS   |
| 147.40    | 39.66  | 43.50  | 3.84   | Horizontal   | PASS   |
| 305.68    | 37.31  | 46.00  | 8.69   | Horizontal   | PASS   |
| 419.11    | 41.44  | 46.00  | 4.56   | Horizontal   | PASS   |
| 2133.82   | 34.47  | 54.00  | 19.53  | Horizontal   | PASS   |
| 4874.65   | 50.45  | 54.00  | 3.55   | Horizontal   | PASS   |
| 4885.74   | 42.32  | 54.00  | 11.68  | Horizontal   | PASS   |
| 56.00     | 29.72  | 40.00  | 10.28  | Vertical     | PASS   |
| 126.33    | 36.77  | 43.50  | 6.73   | Vertical     | PASS   |
| 302.48    | 38.69  | 46.00  | 7.31   | Vertical     | PASS   |
| 416.18    | 42.69  | 46.00  | 3.31   | Vertical     | PASS   |
| 2766.88   | 34.76  | 54.00  | 19.24  | Vertical     | PASS   |
| 4874.00   | 52.73  | 54.00  | 1.27   | Vertical     | PASS   |
| 4882.74   | 45.01  | 54.00  | 8.99   | Vertical     | PASS   |

## Note:

The worst case (IEEE 802.11g Channel 6:2437MHz) is recorded in the report.



# Annex A Photos of the EUT













# Annex B Photos of Setup

# 1. RF



# 2. Conducted Emission





## 3. Radiated Emission

## Radiated Emissions at 30-1000MHz



## Radiated Emissions above 1000MHz



\*\* END OF REPORT \*\*