บทที่ 3 วิธีการดำเนินงาน

3.1 แผนการดำเนินงาน

มีการวางแผนและดำเนินงานตามแผนที่ได้วางไว้ เพื่อให้การจัดทำโครงการดำเนินการไปอย่างมี ประสิทธิภาพ โดยเริ่มจากการศึกษาข้อมูล จากนั้นรวบรวมความต้องการของระบบและกำหนดขอบเขต ของโครงการ เพื่อนำไปออกแบบโครงสร้างระบบ ออกแบบ User Interface (UI) พัฒนาเว็บไซต์ ทดสอบ และแก้ไขปัญหา และจัดทำเอกสารและปริญญานิพนธ์ ซึ่งจะแบ่งเป็นกิจกรรมย่อยตั้งแต่เริ่มจัดทำโครงการ จนสิ้นสุดโครงการ

ตารางที่ 3.1 แผนการดำเนินงานของโครงการ

กิจกรรม		ปี 2568	ปี 2569		
		ช.ค.	ม.ค.	ก.พ.	มี.ค.
1	ศึกษาข้อมูลที่เกี่ยวข้องกับโครงการ				
2	รวบรวมความต้องการของระบบ				
3	กำหนดขอบเขตโครงการ				
4	ออกแบบโครงสร้างระบบ				
5	ออกแบบ UI				
6	พัฒนาเว็บไซต์				
7	ทดสอบและแก้ไขปัญหา				
8	จัดทำเอกสารและเล่มปริญญานิพนธ์				

 แสดงแผนการดำเนินงาน
แสดงการดำเนินงานจริง

3.2 ภาพรวมของระบบและเครื่องมือที่ใช้

3.2.1 ภาพรวมของระบบ

เว็บแอปพลิเคชันสำหรับการฝึกโมเดลประมวลผลภาพ เป็นเว็บที่ทำการจัดเตรียมชุดข้อมูล และนำชุดข้อมูลเหล่านั้นมาฝึกฝน เพื่อสร้างโมเดลสำหรับนำไปใช้งานในด้านการตรวจจับวัตถุในรูปภาพ และการวิเคราะห์ภาพ โดยผู้ใช้งานต้องลงชื่อเข้าสู่ระบบด้วยอีเมล (email) และรหัสผ่าน (Password) ก่อนทุกครั้งเพื่อเข้าใช้งาน โดยมีรายละเอียดดังนี้

- 1) ผู้ใช้งาน
 - สามารถอัปโหลดข้อมูลรูปภาพ
 - สามารถตีกรอบวัตถุที่สนใจในภาพ
 - สามารถปรับแต่งรูปภาพ
 - สามารถเลือกประเภทการทำงาน
 - สามารถเลือกโมเดลที่ต้องการใช้ได้
- สามารถดูผลวิเคราะห์การฝึกฝน ทดสอบ และดาวน์โหลดโมเดล ซึ่งความสามารถทั้งหมดนี้สรุปเป็นแผนภาพ Use Case ได้ดังรูปที่ 3.1

รูปที่ 3.1 แผนภาพ Use Case

3.3 เครื่องมือที่ใช้

เครื่องมือที่ใช้ในโครงการประกอบด้วยเครื่องมือที่ใช้ในการพัฒนาเว็บแอปพลิเคชันของแต่ละส่วน การทำงาน โดยที่การทำงานหน้าบ้านและหลังบ้านเชื่อมต่อกันผ่าน API และการทำงานหลังบ้านและ เซิร์ฟเวอร์ติดต่อสื่อสารกันผ่าน Docker ซึ่งมีรายละเอียดดังนี้

- 3.3.1 ส่วนของการทำงานหน้าบ้าน (Front-End)
 - 1) การออกแบบ UX/UI
 - Figma

- 2) ภาษาที่ใช้ในการพัฒนา
 - JavaScript
 - React.js
 - Node.js
- 3.3.2 ส่วนของการทำงานหลังบ้าน (Back-End)
 - 1) ภาษาที่ใช้ในการพัฒนา
 - Python
 - NGINX
 - FastAPI
 - 2) โครงสร้างของโมเดล
 - Faster R-CNN
 - YOLOv11-large
 - YOLOv11-sm (Small and Medium)
 - 3) ฐานข้อมูล
 - PostgreSQL

รูปที่ 3.2 เครื่องมือที่ใช้

3.4 การออกแบบ

3.4.1 การออกแบบฐานข้อมูล

ข้อมูลของระบบถูกจัดเก็บในฐานข้อมูลที่จัดการโดยโปรแกรม PostgreSQL ซึ่งเป็นระบบ จัดการฐานข้อมูล หรือ Database Management System (DBMS) แบบข้อมูลเชิงสัมพันธ์ (Relational DBMS) ประกอบด้วยตารางเก็บข้อมูล 12 ตารางที่มีความสัมพันธ์กันดังรูปที่ 3.3

รูปที่ 3.3 ความสัมพันธ์ของข้อมูลในระบบ

1) ตาราง User

ใช้เก็บข้อมูลผู้ใช้งานของระบบ ประกอบด้วยแอทริบิวต์ user_id ใช้เก็บรหัสผู้ใช้งาน ระบบเป็นคีย์หลัก (Primary Key, PK) และแอทริบิวต์ email ที่เป็นค่าห้ามซ้ำ (UNIQUE) ใช้เก็บอีเมลของ ผู้ใช้งาน ดังตารางที่ 3.2

ตารางที่ 3.2 ตาราง User

Field	Description	Туре	Domain	Details
user_id	รหัสผู้ใช้งาน	UUID		PK
email	อีเมลของผู้ใช้งาน	VARCHAR(255)		UNIQUE, NOT
				NULL
first_name	ชื่อจริงของผู้ใช้งาน	VARCHAR(255)		NOT NULL
last_name	นามสกุลของผู้ใช้งาน	VARCHAR(255)		NOT NULL
password	รหัสผ่านที่ถูกเข้ารหัส	VARCHAR(255)		NULL
	(เฉพาะกับการเข้าสู่ระบบ			
	ผ่านอีเมล)			
auth_provider	ผู้ให้บริการการยืนยัน	ENUM	email,	NOT NULL
	ตัวตน		google	
created_at	เวลาที่บัญชีผู้ใช้ถูกสร้าง	BIGINT		NOT NULL
	ขึ้น			

2) ตาราง Project

ใช้เก็บข้อมูลโปรเจกต์ที่ผู้ใช้งานสร้างขึ้นในระบบ ประกอบด้วยแอทริบิวต์ project_id ใช้ เก็บรหัสของโปรเจกต์เป็นคีย์หลัก (PK) มีแอทริบิวต์ user_id เป็นคีย์อ้างอิง (Foreign Key, FK) มาจาก ตาราง User เพื่อระบุว่าโปรเจกต์นี้เป็นของผู้ใช้งานคนใด และ model_type_id เป็นคีย์อ้างอิงจากตาราง Model_Type เพื่อระบุประเภทของโมเดล AI ที่ใช้ในโปรเจกต์ ดังตารางที่ 3.3

ตารางที่ 3.3 ตาราง Project

Field	Description	Туре	Domain	Details
project_id	รหัสโปรเจคต์	UUID		PK
user_id	รหัสผู้ใช้ที่เป็นเจ้าของ	UUID		FK, NOT
	โปรเจคต์			NULL
model_type_id	รหัสประเภทโมเดลที่ใช้	UUID		FK, NOT
	ในโปรเจคต์			NULL
project_name	ชื่อของโปรเจคต์	VARCHAR(255)		NOT NULL
project_description	คำอธิบายโปรเจคต์	VARCHAR(255)		NOT NULL
created_at	เวลาที่โปรเจคต์ถูก	BIGINT		NOT NULL
	สร้างขึ้น			

3) ตาราง Dataset

ใช้เก็บข้อมูลชุดข้อมูลที่ใช้สำหรับการฝึกโมเดล AI ประกอบด้วยแอทริบิวต์ dataset_id ใช้เก็บรหัสของชุดข้อมูลเป็นคีย์หลัก (PK) มีแอทริบิวต์ project_id เป็นคีย์อ้างอิง (FK) มาจากตาราง Project เพื่อระบุว่าชุดข้อมูลนี้เป็นของโปรเจกต์ใด ดังตารางที่ 3.4

ตารางที่ 3.4 ตาราง Dataset

Field	Description	Туре	Domain	Details
dataset_id	รหัสชุดข้อมูล	UUID		PK
project_id	รหัสโปรเจคต์ที่เป็น	UUID		FK, NOT
	เจ้าของชุดข้อมูล			NULL
dataset_name	ชื่อของชุดข้อมูล	VARCHAR(255)		NOT NULL
metadata	ข้อมูลเมตาในรูปแบบ	JSONB		NULL
	JSON (partition,			
	augmentation,			
	preprocessing, ฯลฯ)			
created_at	เวลาที่ชุดข้อมูลถูก	BIGINT		NOT NULL
	สร้างขึ้น			

4) ตาราง Image

ใช้เก็บข้อมูลของรูปภาพที่อัปโหลดเข้ามาในระบบ ประกอบด้วยแอทริบิวต์ image_id ใช้ เก็บรหัสของรูปภาพเป็นคีย์หลัก (PK) มีแอทริบิวต์ user_id เป็นคีย์อ้างอิง (FK) มาจากตาราง User เพื่อ ระบุว่าผู้ใช้งานคนใดเป็นผู้อัปโหลดรูปภาพ ดังตารางที่ 3.5

ตารางที่ 3.5 ตาราง Image

Field	Description	Туре	Domain	Details
image_id	รหัสรูปภาพ	UUID		PK
user_id	รหัสผู้ใช้ที่อัปโหลด	UUID		FK, NOT
	รูปภาพ			NULL
file_path	ที่อยู่จัดเก็บไฟล์รูปภาพ	VARCHAR(255)		NOT NULL
labels	ข้อมูลคำอธิบายใน	JSONB		NULL
	รูปแบบ JSON			
	(bounding boxes,			
	labeling)			
updated_at	เวลาที่ข้อมูลของ	BIGINT		NOT NULL
	รูปภาพถูกอัปเดตล่าสุด			
created_at	เวลาที่รูปภาพถูก	BIGINT		NOT NULL
	อัปโหลด			

5) ตาราง Project_Image

ใช้เชื่อมความสัมพันธ์ระหว่างโปรเจกต์และรูปภาพ โดยมี project_id และ image_id เป็นคีย์หลักร่วม (Composite PK) และเป็นคีย์อ้างอิง (FK) จากตาราง Project และ Image ดังตารางที่ 3.6

ตารางที่ 3.6 ตาราง Project_Image

Field	Description	Туре	Domain	Details
project_id	รหัสชุดข้อมูลที่	UUID		PK, FK
	เกี่ยวข้องกับรูปภาพ			
image_id	รหัสรูปภาพที่ใช้ในโปร	UUID		PK, FK
	เจคต์			

6) ตาราง Dataset Image

ใช้เชื่อมความสัมพันธ์ระหว่างชุดข้อมูลและรูปภาพ โดยมี dataset_id และ image_id เป็นคีย์หลักร่วม (Composite PK) และเป็นคีย์อ้างอิง (FK) จากตาราง Dataset และ Image ดังตารางที่ 3.7

ตารางที่ 3.7 ตาราง Dataset_Image

Field	Description	Туре	Domain	Details
dataset_id	รหัสชุดข้อมูลที่ เกี่ยวข้องกับรูปภาพ	UUID		PK, FK
image_id	รหัสรูปภาพที่ใช้ในชุด ข้อมูล	UUID		PK, FK

7) ตาราง Training Job

ใช้เก็บข้อมูลของกระบวนการฝึกโมเดล AI ประกอบด้วยแอทริบิวต์ training_job_id ใช้ เก็บรหัสของงานฝึกเป็นคีย์หลัก (PK) มีแอทริบิวต์ user_id เป็นคีย์อ้างอิง (FK) มาจากตาราง User เพื่อ ระบุว่าผู้ใช้งานคนใดเป็นผู้เริ่มการฝึก มีแอทริบิวต์ dataset_id เป็นคีย์อ้างอิง (FK) มาจากตาราง dataset ใช้เก็บรหัสโมเดลที่ถูกเทรน ดังตารางที่ 3.8

ตารางที่ 3.8 ตาราง Training_Job

Field	Description	Туре	Domain	Details
training_job_id	รหัสงานที่ต้องเทรน	UUID		PK
user_id	รหัสผู้ใช้ที่เริ่มงานเทรน	UUID		FK, NOT
				NULL
dataset_id	รหัสชุดข้อมูลที่ใช้ใน	UUID		FK, NOT
	การฝึกสอน			NULL
model_id	รหัสโมเดลที่ถูกเทรน	UUID		FK, NOT
				NULL
status	สถานะปัจจุบัน	ENUM		NOT NULL
last_updated_at	เวลาล่าสุดที่มีการอัป	BIGINT		NOT NULL
	เดตสถานะ			
error_message	ข้อความแสดง	VARCHAR(255)		NULL
	ข้อผิดพลาดที่เกิดขึ้น			
	ระหว่างเทรน			
created_at	เวลาที่งานเทรนถูก	BIGINT		NOT NULL
	สร้างขึ้น			

8) ตาราง Training_History

ใช้เก็บข้อมูลประวัติการฝึกของโมเดล AI แต่ละครั้ง ประกอบด้วยแอทริบิวต์ training_history_id ใช้เก็บรหัสของประวัติการฝึกเป็นคีย์หลัก (PK) มีแอทริบิวต์ training_job_id เป็น คีย์อ้างอิง (FK) มาจากตาราง Training_Job เพื่อเชื่อมโยงข้อมูลกับงานฝึก ดังตารางที่ 3.9

ตารางที่ 3.9 ตาราง Training_History

Field	Description	Туре	Domain	Details
training_history_id	รหัสประวัติการเทรน	UUID		PK
training_job_id	รหัสงานฝึกสอน	UUID		FK, NOT
				NULL
metrics	ข้อมูลเมทริกในรูปแบบ	JSONB		NOT NULL
	JSON (precision,			
	mAP, loss)			
progress	ข้อมูลการอัปเดตความ	JSONB		NOT NULL
	คืบหน้าต่อ epoch ใน			
	รูปแบบ JSON (loss			
	และ accuracy)			
started_at	เวลาที่เริ่มต้นการเทรน	BIGINT		NOT NULL
ended_at	เวลาที่สิ้นสุดการเทรน	BIGINT		NULL

9) ตาราง Download

ใช้เก็บข้อมูลการดาวน์โหลดโมเดลของผู้ใช้งาน ประกอบด้วยแอทริบิวต์ download_id ใช้เก็บรหัสของการดาวน์โหลดเป็นคีย์หลัก (PK) มีแอทริบิวต์ user_id เป็นคีย์อ้างอิง (FK) มาจากตาราง User เพื่อระบุว่าผู้ใช้งานคนใดเป็นผู้ดาวน์โหลดโมเดล ดังตารางที่ 3.10

ตารางที่ 3.10 ตาราง Download

Field	Description	Туре	Domain	Details
download_id	รหัสดาวน์โหลด	UUID		PK
user_id	รหัสผู้ใช้ที่ดาวน์โหลด	UUID		FK, NOT
				NULL
model_id	รหัสโมเดลที่ถูกดาวน์	UUID		FK, NOT
	โหลด			NULL
download_count	จำนวนครั้งที่โมเดลถูก	INT		NOT NULL
	ดาวน์โหลด			
last_download_at	เวลาการดาวน์โหลด	BIGINT		NOT NULL
	โมเดลล่าสุด			

10) ตาราง Model_Architecture

ใช้เก็บข้อมูลเกี่ยวกับสถาปัตยกรรมของโมเดล AI ประกอบด้วยแอทริบิวต์ model_architecture_id ใช้เก็บรหัสของสถาปัตยกรรมโมเดลเป็นคีย์หลัก (PK) และ model_architecture_name ใช้เก็บชื่อของสถาปัตยกรรมโมเดล ดังตารางที่ 3.11

ตารางที่ 3.11 ตาราง Model_Architecture

Field	Description	Туре	Domain	Details
model_architecture_id	รหัสสถาปัตยกรรม	UUID		PK
	โมเดล			
model_architecture_name	ชื่อของ	VARCHAR(255)		NOT NULL
	สถาปัตยกรรม			
	โมเดล			

11) ตาราง Model_Type

ใช้เก็บข้อมูลประเภทของโมเดล AI ประกอบด้วยแอทริบิวต์ model_type_id ใช้เก็บ รหัสของประเภทโมเดลเป็นคีย์หลัก (PK) และ model_type_name ใช้เก็บชื่อของประเภทโมเดล เช่น Object Detection, Image Classification ดังตารางที่ 3.12

ตารางที่ 3.12 ตาราง Model_Type

Field	Description	Туре	Domain	Details
model_type_id	รหัสประเภทโมเดล	UUID		PK
model_type_name	ชื่อของประเภทโมเดล	VARCHAR(255)		NOT NULL

12) ตาราง Model

ใช้เก็บข้อมูลของโมเดล AI ที่ถูกฝึกเสร็จแล้ว ประกอบด้วยแอทริบิวต์ model_id ใช้เก็บ รหัสของโมเดลเป็นคีย์หลัก (PK) มีแอทริบิวต์ model_type_id เป็นคีย์อ้างอิง (FK) มาจากตาราง Model_Type เพื่อระบุประเภทของโมเดล มีแอทริบิวต์ model_architecture_id เป็นคีย์อ้างอิง (FK) มา จากตาราง Model_Architecture เพื่อระบุสถาปัตยกรรมของโมเดล มีแอทริบิวต์ user_id เป็นคีย์อ้างอิง (FK) มาจากตาราง user ใช้เก็บผู้ใช้งานโมเดล ดังตารางที่ 3.13

ตารางที่ 3.13 ตาราง Model

Field	Description	Туре	Domain	Details
model_id	รหัสโมเดล	UUID		PK
model_type_id	รหัสประเภทโมเดล	UUID		FK, NOT
				NULL
model_architecture_id	รหัสสถาปัตยกรรม	UUID		FK, NOT
	ของโมเดล			NULL
user_id	รหัสผู้ใช้ที่เป็น	UUID		FK, NOT
	เจ้าของโมเดล			NULL
model_name	ชื่อของโมเดล	VARCHAR(255)		NOT NULL
model_path	ที่อยู่จัดเก็บไฟล์	VARCHAR(255)		NOT NULL
	โมเดล			
created_at	เวลาที่โมเดลถูก	BIGINT		NOT NULL
	บันทึกลงในระบบ			

3.4.2 การออกแบบ UI ของเว็บแอปพลิเคชัน

1) หน้าเข้าสู่ระบบ

เข้าสู่ระบบโดยการป้อนอีเมลและรหัสผ่านจากการสมัครของผู้ใช้งาน จะมีปุ่มเข้าสู่ระบบ การใช้งาน หรือเข้าสู่ระบบโดยผ่าน Google (Gmail) ดังรูปที่ 3.4

รูปที่ 3.4 การออกแบบหน้าเข้าสู่ระบบผู้ใช้งาน

2) หน้าสมัครสมาชิก

ต้องทำการสมัครสมาชิกโดยกรอกชื่อจริง นามสกุล อีเมล รหัสผ่าน และยืนยันรหัสผ่าน โดยจะมีปุ่มกดเพื่อยืนยันการสมัครสมาชิก ดังรูปที่ 3.5

รูปที่ 3.5 การออกแบบหน้าสมัครสมาชิกเพื่อเข้าสู่ระบบ

3) หน้าสร้างโปรเจค

หน้าสร้างโปรเจคเป็นหน้าแรกของเว็บแอปพลิเคชันหลังจากที่ผู้ใช้เข้าสู่ระบบมา ผู้ใช้ สามารถสร้างโปรเจคได้โดยการกดปุ่ม New Project ที่มุมขวาบน หรือ Create Project ที่พื้นที่ตรงกลาง ของหน้าสร้างโปรเจค จากนั้นกรอกชื่อโปรเจคและคำอธิบายโปรเจค เลือกประเภทของโปรเจค (Object Detection และ Classification) และจะแสดงหน้าโปรเจคที่ถูกสร้างขึ้นมา ดังรูปที่ 3.6 – 3.9 ตามลำดับ

รูปที่ 3.6 การออกแบบหน้าสร้างโปรเจค

รูปที่ 3.7 การออกแบบหน้าใส่รายละเอียดโปรเจค

รูปที่ 3.8 การออกแบบหน้าเลือกประเภทของโปรเจค

รูปที่ 3.9 การออกแบบหน้าแสดงโปรเจค

4) หน้าอัปโหลดรูปภาพ

หน้าอัปโหลดรูปภาพจะแสดงหลังจากที่กดเข้ามาในโปรเจคที่ถูกสร้างขึ้น ผู้ใช้สามารถ อัปโหลดรูปภาพได้โดยการกดปุ่ม Click to Upload ที่พื้นที่ตรงกลางของหน้าอัปโหลดรูปภาพ และ สามารถอัปโหลดรูปภาพที่เคยถูกอัปโหลดไว้ในโปรเจคอื่นได้โดยการกดปุ่ม Upload from another project ที่มุมขวาบน เมื่อทำการอัปโหลดรูปภาพแล้ว จะมีปุ่ม Upload to this Project เพื่อยืนยันการ อัปโหลดรูปภาพลงโปรเจค และจะมีหน้า Pop-Up แสดงผลลัพธ์การอัปโหลด ดังรูปที่ 3.10 – 3.12 ตามลำดับ

รูปที่ 3.10 การออกแบบหน้าอัปโหลดรูปภาพ

รูปที่ 3.11 การออกแบบหน้าแสดงรูปภาพที่ถูกอัปโหลด

ร**ูปที่ 3.12** การออกแบบหน้า Pop-Up แสดงผลลัพธ์การอัปโหลด

5) หน้าแสดงรูปภาพในโปรเจค

หน้าแสดงรูปภาพในโปรเจคจะแสดงหลังจากการอัปโหลดรูปภาพลงโปรเจค ผู้ใช้สามารถ เพิ่มรูปภาพเพิ่มลงโปรเจคนี้ได้โดยการปุ่ม Add Image และสามารถเริ่มทำการตีกรอบรูปภาพได้โดยการ กดปุ่ม Annotate ที่มุมขวาบน ดังรูปที่ 3.13

รูปที่ 3.13 การออกแบบหน้าแสดงรูปภาพในโปรเจค

6) หน้าตัวเลือกการตีกรอบวัตถุในภาพ

หน้า Pop-Up ตัวเลือกการตีกรอบในภาพนี้จะแสดงหลังจากที่กดปุ่ม Annotate โดยผู้ใช้ สามารถเลือกได้ว่าจะทำการตีกรอบวัตถุเอง (Manual Annotate) หรือจะเลือกทำการตีกรอบแบบ อัตโนมัติ (Automatic Annotate) และจะมีปุ่มกดเพื่อยืนยันการเลือกของผู้ใช้ ดังรูปที่ 3.14

รูปที่ 3.14 การออกแบบหน้าตัวเลือกการตีกรอบวัตถุในภาพ

7) หน้าการตีกรอบวัตถุในรูปภาพแบบ Manual

หน้าการตีกรอบวัตถุในรูปภาพแบบ Manual จะมีเครื่องมือที่แถบด้านซ้ายคือเครื่องมือ จับเคลื่อนย้ายภาพ (Drag Tool) และเครื่องมือตีกรอบวัตถุในรูปภาพ (Bounding Box Tool) โดยสามารถ ย้อนกลับ (Undo) ทำซ้ำ (Redo) และรีเซ็ตการตีกรอบได้ และที่แถบด้านขวาเป็นการเพิ่มคลาสโดยกดปุ่ม บวก กรอกชื่อคลาส และเลือกสีของคลาสได้ที่จุดสีข้างหลัง สามารถติดแท็กบอกข้อมูลของภาพได้ และ ในขณะที่ตีกรอบวัตถุในภาพ ผู้ใช้สามารถหยุดทำได้โดยกดปุ่มย้อนกลับ และสามารถกลับมาทำการตี กรอบรูปภาพต่อได้ ดังรูปที่ 3.15

รูปที่ 3.15 การออกแบบหน้าการตีกรอบวัตถุในภาพแบบ Manual

8) การตีกรอบวัตถุในรูปภาพแบบ Auto

หน้าการตีกรอบวัตถุในรูปภาพแบบ Auto จะแสดงในรูปแบบของ Pop-Up โดยใช้โมเดล Grounding DINO เป็นตัวทำ Automatic Annotate ซึ่งจะแสดงรูปภาพบางส่วนในการทดสอบโมเดล สามารถเปลี่ยนเป็นรูปภาพอื่น ๆ ที่อยู่ภายในโปรเจคได้ สามารถเพิ่มคลาสโดยการกดปุ่มบวก กรอกชื่อ คลาส คำอธิบายคลาส เมื่อกดปุ่ม Save จะมีค่าความมั่นใจของโมเดลให้ผู้ใช้ได้ลองปรับจนเจอวัตถุใน รูปภาพ และผู้ใช้สามารถแก้ไขชื่อคลาสและคำอธิบายคลาสได้โดยกดปุ่ม Edit หากผู้ใช้พอใจในผลลัพธ์แล้ว สามารถเริ่มการตีกรอบวัตถุในรูปภาพได้โดยการกดปุ่ม Start Annotate ดังรูปที่ 3.16 – 3.18 ตามลำดับ

รูปที่ 3.16 การออกแบบหน้าการตีกรอบวัตถุในภาพแบบ Auto ในส่วนของการเพิ่มคลาส

ร**ูปที่ 3.17** การออกแบบหน้าการตีกรอบวัตถุในภาพแบบ Auto ในส่วนของการ Save คลาส

ร**ูปที่ 3.18** การออกแบบหน้าการตีกรอบวัตถุในรูปภาพแบบ Auto การปรับค่าความมั่นใจของโมเดล

9) หน้าการแสดงผลรูปภาพที่ผ่านการตีกรอบวัตถุ หน้าการแสดงผลรูปภาพที่ผ่านการตีกรอบวัตถุ ผู้ใช้สามารถแก้ไขการตีกรอบใหม่ได้โดย กดปุ่ม Edit และเพิ่มรูปภาพเข้า Dataset ได้โดยกดปุ่ม Add to Dataset ดังรูปที่ 3.19

รูปที่ 3.19 การออกแบบหน้าการแสดงผลรูปภาพที่ผ่านการตีกรอบวัตถุ

10) หน้าการเพิ่มรูปเข้า Dataset

หน้าการเพิ่มรูปเข้า Dataset จะแสดงเป็น Pop-Up โดยเริ่มแรกให้ผู้ใช้เลือกรูปภาพที่ ต้องการเพิ่มหรือสามารถทำเครื่องหมายถูกที่ Select all เพื่อเลือกรูปภาพทั้งหมด ถัดไปเป็นการเพิ่ม รูปภาพลงเซ็ตที่เลือก หากผู้ใช้เลือกการแบ่งเซ็ตรูปภาพ ผู้ใช้จะสามารถเลือกเปอร์เซ็นต์ของแต่ละเซ็ต กด ปุ่มเพื่อยืนยัน ดังรูปที่ 3.20 – 3.22 ตามลำดับ

รูปที่ 3.20 การออกแบบหน้าเลือกรูปภาพ

รูปที่ 3.21 การออกแบบหน้าเพิ่มรูปภาพลงเซ็ตที่เลือก

รูปที่ 3.22 การออกแบบหน้าแบ่งเซ็ตของรูปภาพ

11) หน้าการแสดงผลข้อมูลรูปภาพใน Dataset

หน้าการแสดงผลข้อมูลรูปภาพใน Dataset จะแสดงรูปภาพในแต่ละเซ็ตที่ถูกแทนด้วยสี ซึ่งสีฟ้าคือ Training Set สีเขียวคือ Validation Set และสีส้มคือ Testing Set และผู้ใช้สามารถเพิ่ม เวอร์ชันของ Dataset ได้โดยการกดปุ่ม Create Version ดังรูปที่ 3.23

ร**ูปที่ 3.23** การออกแบบหน้าการแสดงผลข้อมูลรูปภาพใน Dataset

12) หน้าการเพิ่มเวอร์ชันของ Dataset

ในหน้าการเพิ่มเวอร์ชันของ Dataset จะทำงานไปเป็นขั้นตอน ดังรูปที่ 3.24 – 3.28

ตามลำดับ

- ขั้นตอนแรกให้ผู้ใช้ตรวจสอบข้อมูลรูปภาพใน Dataset
- ขั้นตอนที่สองตรวจสอบเซ็ตของข้อมูลรูปภาพและสามารถแบ่งเซ็ตของข้อมูลใหม่ได้
- ขั้นตอนที่สามเป็นการเตรียมชุดข้อมูล (Preprocessing)
- ขั้นตอนที่สี่เป็นการปรับแต่งข้อมูล (Augmentation)
- ขั้นตอนสุดท้ายเป็นการกรอกชื่อ Dataset และเพิ่มจำนวนข้อมูลใน Dataset

ร**ูปที่ 3.24** การออกแบบหน้าตรวจสอบข้อมูลรูปภาพใน Dataset

รูปที่ 3.25 การออกแบบหน้าตรวจสอบเซ็ตของข้อมูลรูปภาพ

ร**ูปที่ 3.26** การออกแบบหน้าการเตรียมชุดข้อมูล (Preprocessing)

รูปที่ 3.27 การออกแบบหน้าการปรับแต่งชุดข้อมูล (Augmentation)

ร**ูปที่ 3.28** การออกแบบหน้าการเพิ่มจำนวนข้อมูลใน Dataset

13) หน้าการแสดงผลการเพิ่มเวอร์ชันของ Dataset

หน้าการแสดงผลการเพิ่มเวอร์ชันของ Dataset จะแสดงผลรายละเอียดข้อมูลต่าง ๆ ที่ ได้ทำไปในแต่ละขั้นตอนของการเพิ่มเวอร์ชัน Dataset และผู้ใช้สามารถดาวน์โหลด Dataset ได้โดยการ กดปุ่ม Download Dataset ดังรูปที่ 3.29

ร**ูปที่ 3.29** การออกแบบหน้าการแสดงผลของการเพิ่มเวอร์ชันของ Dataset

14) หน้าการเลือก Dataset เพื่อฝึกฝนโมเดล

โดยผู้ใช้ต้องทำการเลือกโปรเจคก่อน จึงจะสามารถเลือก Dataset เวอร์ชันต่าง ๆ ที่อยู่ ภายในโปรเจคนั้นได้ ผู้ใช้สามารถดูรายละเอียดและตรวจสอบข้อมูลภายใน Dataset นั้นได้ จากนั้นกรอก ชื่อโมเดล และกดปุ่มเพื่อทำขั้นตอนถัดไป ดังรูปที่ 3.30

ร**ูปที่ 3.30** การออกแบบหน้าการเลือก Dataset เพื่อฝึกฝนโมเดล

15) หน้าการเลือกโครงสร้างเพื่อฝึกฝนโมเดล โดยผู้ใช้สามารถเลือกโครงสร้างของโมเดลที่ต้องการและเหมาะสมกับงาน เพื่อนำไป ฝึกฝนโมเดลได้ จากนั้นกดปุ่มเพื่อทำขั้นตอนถัดไป ดังรูปที่ 3.31

รูปที่ 3.31 การออกแบบหน้าการเลือกโครงสร้างเพื่อฝึกฝนโมเดล

- 16) หน้าการสรุปรายละเอียดโมเดลก่อนนำไปฝึกฝน หน้าการสรุปรายละเอียดโมเดลก่อนนำไปฝึกฝน โดยมีรายละเอียดดังนี้
 - ชื่อโมเดล
 - Dataset ที่เลือก
 - ประเภทของโมเดล
 - โครงสร้างของโมเดล
 - เวลาที่ใช้ฝึกฝนโดยประมาณ

ผู้ใช้สามารถกดปุ่มกลับไปแก้ไขได้ และกดปุ่ม Start Training เพื่อเริ่มฝึกฝนโมเดล ดังรูป

รูปที่ 3.32 การออกแบบหน้าการสรุปรายละเอียดโมเดลก่อนนำไปฝึกฝน

17) หน้าแสดงผลการเทรนโมเดล หน้าแสดงผลการเทรนโมเดลจะแสดงรายละเอียดดังนี้

- ชื่อโมเดล
- สถานะการฝึกฝนของโมเดล
- ค่าความแม่นยำของโมเดล
- ประเภทของโมเดล พร้อมโครงสร้างของโมเดล
- ชื่อ Dataset

นอกจากนี้ผู้ใช้ยังสามารถทดสอบโมเดลได้โดยกดปุ่ม play และสามารถดูรายละเอียด การวิเคราะห์ความแม่นยำของโมเดลได้โดยการกด Report ดังรูปที่ 3.33

รูปที่ 3.33 การออกแบบหน้าแสดงผลการเทรนโมเดล

- 18) หน้ารายละเอียดการวิเคราะห์ความแม่นยำของโมเดล หน้ารายละเอียดการวิเคราะห์ความแม่นยำของโมเดล มีรายละเอียดดังนี้ ดังรูปที่ 3.34
 - ค่าความแม่นยำโมเดล
 - วิเคราะห์ประสิทธิภาพของโมเดล
 - Loss Graphs
 - mAP Graphs

รูปที่ 3.34 การออกแบบหน้ารายละเอียดการวิเคราะห์ความแม่นยำของโมเดล

19) หน้าการทดสอบโมเดล

หน้าการทดสอบโมเดล ผู้ใช้สามารถนำรูปจาก Testing Set มาทดสอบโมเดลได้ หรือจะ เลือกอัปโหลดรูปจากภายนอกมาทดสอบได้ และผู้ใช้สามารถปรับค่าความมั่นใจของโมเดลเพื่อสามารถดู ได้ว่าโมเดลมีค่าความมั่นใจในการเจอวัตถุที่เท่าไหร่ และจะได้ตำแหน่งของวัตถุที่ตรวจจับได้ภายในภาพ ดังรูปที่ 3.35

รูปที่ 3.35 การออกแบบหน้าการทดสอบโมเดล

20) หน้าการนำโมเดลไปใช้

ผู้ใช้สามารถเลือกโมเดลที่ต้องการเพื่อดาวน์โหลดออกไปใช้งานภายนอกในงานต่าง ๆ ได้ และผู้ใช้สามารถดาวน์โหลดโค้ดไพทอนตัวอย่างของการนำไปใช้งานได้ ดังรูปที่ 3.36 – 3.38 ตามลำดับ

รูปที่ 3.36 การออกแบบหน้าการนำโมเดลไปใช้

รูปที่ 3.37 การออกแบบหน้าการดาวน์โหลดโมเดล

รูปที่ 3.38 การออกแบบหน้าโค้ดไพทอนตัวอย่าง