Отчет о выполнении лабораторной работы 2.2.6

Определение энергии активации

Тихонов Ярослав Б01-306

Март 2024

1 Аннотация

Цель: 1) измерение скорости падения шариков при разной температуре жидкости; 2) вычисление вязкости жидкости по закону Стокса и расчет энергии активации

Оборудование: стеклянный цилиндр с исследуемой жидкостью (глицерин); термостат; секундомер; горизонтальный компаратор; микроскоп; мелкие шарики (диаметром около 1 мм).

2 Теория

$$\eta A e^{W/kT}$$
(1)

Из этой формулы следует, что вязкость жидкости при повышении температуры должна резко уменьшаться. Если отложить на графике логарифм вязкости ln в зависимости от 1/T, то согласно (1) должна получиться прямая линия, по угловому коэффициенту которой можно определить энергию активации молекулы W исследуемой жидкости. Экспериментальные исследования показывают, что в небольших температурных интервалах эт а формула непло хо описывает изменение вязкости с температурой. При увеличении температурного интервала согласие получаетс я плохим, что представляетс я вполне естественным, поскольку формула (1) выведена при очень грубых предположениях. Для исследования температурной зависимости вязкости жидкости в данной работе используется метод Стокса, основанный на измерении скорости свободного падения шарика в жидкости. Суть его заключается в следующем. На всякое тело, двигающеес я в вязкой жидкости, действует сила сопротивления. В общем случае величина этой силы зависит от многих факторов: от вязкости жидкости, от формы тела, от характера обтекания и т. д. Стоксом было получено строгое решение задачи о ламинарном обтекании шарика безграничной жидкостью. В этом случае сила сопротивления F определяется формулой Стокса

$$F = 6\pi \eta r v \tag{2}$$

Найдем уравнение движения шарика в жидкости:

$$Vg(\rho - \rho_l) - 6\pi\eta rv = V\rho \frac{dv}{dt}$$
(3)

Решая данное уравнение найдем:

$$v(t) = v_{ycr} - [v_{ycr} - v(0)] e^{t/\tau}$$
 (4)

где v(0) - начальная скорость движения шарика, τ - скорость релаксации,

$$v_{\text{yct}} = \frac{Vg(\rho - \rho_l)}{6\pi\eta r} = 2/9gr^2 \frac{(\rho - \rho_l)}{\eta}; \tau = \frac{V\rho}{6\pi\eta r} = 2/9\frac{r^2\rho}{\eta}$$
 (5)

Таким образом можно определить вязкость жидкости:

$$\eta = 2/9gr^2 \frac{(\rho - \rho_l)}{v_{\text{VCT}}} \tag{6}$$

2.1 Замечание

Описанная выше методика определения вязкости правильна лишь в том случае, если выполнены предположения, сделанные при выводе формулы Стокса. Зависимость/ независимость η от r служит индикатором правильности предложенной теории. В случае обнаружения систематической зависимости между этими величинами следует использовать более точную формулу:

$$\eta = 2/9gr^2 \frac{(\rho - \rho_l)}{v_{\text{ycr}} \left[1 + 2.4(r/R) \right]} \tag{7}$$

где R - радиус сосуда

У нас $r \ll R$, поэтому можно использовать (6)

2.2Экспериментальная установка

Рис. 1. Установка для определения коэффициента вязкости жидкости

Ход работы 3

Для каждого шарика мы измерили его диаметр.

Длина пути, которую шарик проходит с установившейся скоростью:

$$s = 9.9 \text{ cm}.$$

$$s = 9.9$$
 cm. $v_{\text{yct}} = \frac{(s/t_1) + (s/t_2)}{2}$

№ измерения	d_{glass} , mm	d_{steel} , mm
1	2.10	0.7
2	2.15	0.9
3	2.15	0.8
4	2.15	0.75
5	2.10	0.9
6	2.05	0.6
7	2.15	0.75
8	2.10	0.7
9	2.20	0.7
10	2.00	0.75

Таблица 1: Диаметры шариков

4 Обработка измерений

По полученным данным вычислим η :

ſ	Т, К	297.58	298.55	308.98	308.98	313.98	313.98	324	324	333.78	333.78
	η , $\Pi a \cdot c$	0.738	0.775	0.367	0.358	0.304	0.268	0.165	0.144	0.097	0.073

Таблица 2: η , стекло

	Г, К	297.58	298.55	308.98	308.98	313.98	313.98	324	324	333.78	333.78
η ,	Па · с	0.657	0.727	0.265	0.329	0.312	0.177	0.159	0.129	0.076	0.107

Таблица 3: η , сталь

Число Рейнольдса получим по формуле:

 $Re = vr\rho_{xx}/\eta$

T, K	298.58	298.55	308.98	308.98	313.98	313.98	324	324	333.78	333.78
Re	0.007	0.007	0.031	0.033	0.043	0.051	0.156	0.19	0.484	0.64

Таблица 4: Re, стекло

	Т, К	298.58	298.55	308.98	308.98	313.98	313.98	324	324	333.78	333.78
ĺ	Re	0.002	0.003	0.016	0.009	0.017	0.015	0.037	0.046	0.131	0.082

Таблица 5: Re, сталь

Обтекание можно считать ламинарным при $\mathrm{Re} < 0.5$

Получается, обтекание было ламинарным всегда, кроме измерения для последней темературы для стеклянного шарика.

То есть формула Стокса для этого случая не применима.

Время релаксации оценим по формуле:

$$\tau = \frac{2}{9} \frac{r^2 \rho}{\eta}$$

T, K	297.58	298.55	308.98	308.98	313.98	313.98	324	324	333.78	333.78
τ ,	0.79	0.771	1.627	1.668	1.919	2.125	3.620	4.051	6.300	7.610

Таблица 6: τ , стекло

Оценим путь релаксации:

$$S=v\tau$$

T, K	297.58	298.55	308.98	308.98	313.98	313.98	324	324	333.78	333.78
τ , c	0.923	1.073	2.616	1.976	2.500	2.938	4.088	4.703	7.982	6.075

Таблица 7: τ , сталь

	Т, К	297.58	298.55	308.98	308.98	313.98	313.98	324	324	333.78	333.78
Ì	S, M	0.003	0.003	0.014	0.015	0.019	0.023	0.069	0.085	0.216	0.286

Таблица 8: s, стекло

T, K	297.58	298.55	308.98	308.98	313.98	313.98	324	324	333.78	333.78
S, M	0.002	0.004	0.023	0.012	0.023	0.021	0.052	0.064	0.183	0.114

Таблица 9: s, сталь

Рис. 1: для стекла

Рис. 2: для стали

Видим, что значения W совпадают в пределах погрешности. Найдем их общее значение усреднением.

Итого получаем энергию активации $W = (8.08 \ \pm 0.51) \ 10^{-20} \text{Дж} \ (\varepsilon \ \approx 6.29\%)$

5 Вывод

В ходе работы мы измерили скорости падения шариков при разных температурах глицерина; вычислили вязкости глицерина по закону Стокса при разных температурах и рассчитали энергию активации