

Структуры над словами: образцы и уравнения

Летняя практика, Переславль-Залесский 3–6 июля, 2022 г.

Проектирование структур с образцами

• Вопрос достижимости образца:

```
f (A : x) = Expr1
f [] = Expr2
f [A] = Expr3
```

• Вопрос накрытия образцами:

```
f ((x : y) : z) = Expr1
f [] = Expr2
```

• Вопрос перестановочности образцов:

```
f (x : (A : y)) = Expr1
f (A : (y : z)) = Expr2
```

...а с отказом от свободы и единственности вхождений переменных эти вопросы становятся намного сложнее.

Проектирование структур с образцами

• Вопрос достижимости образца:

```
f {x t t y = Expr1 }
f {x 'A' t z1 'A' y = Expr2 }
f {x 'A' y 'A' z = Expr3 }
```

• Вопрос накрытия образцами:

```
f {x1 (z) x2 t x3 = Expr1}
f {x (z) = Expr2}
f {t x = Expr3}
```

• Вопрос перестановочности образцов:

```
f {x, x 'A' : 'A' x = Expr1}
f (x, x 'AB' : 'BA' x = Expr2}
```

Необходимо определить выразительную силу образцов — языки, которые они описывают, и свойства этих языков.

Базовые определения

 $\stackrel{\smile}{V_{\mathfrak{T}}}$ — множество переменных типа \mathfrak{T} , $V=\stackrel{\smile}{\bigcup}^{\mathfrak{T}}V_{\mathfrak{T}}.$

Рассматриваем е-переменные (типа строка/выражение) и t-переменные (типа терм). Т.е. $V = V_{\rm e} \cup V_{\rm t}$.

Кратность терма T в образце P обозначаем $|P|_T$.

 Σ — по умолчанию неограниченный алфавит констант. $\mathcal{B}[S]$

— множество скобочных структур над строками из S.

Плоский образец P — строка в алфавите $V_{\rm e} \cup \mathcal{B}[\Sigma \cup V_{\rm t}]$. Образец P линеен, если $\forall x \in V_{\rm e} \, (|\mathsf{P}|_x = 1)$. Подстановка в образец — гомоморфизм, сохраняющий константы (т.е. для всех $\mathbf{A} \in \Sigma \ \mathbf{A} \sigma = \mathbf{A}$).

Образец допускает плоское разбиение, если он плоский, либо имеет вид (P_1) (P_2) . . . (P_n) P_{n+1} , где все P_i допускают плоское разбиение. Максимальные плоские подобразцы такого образца называем фрагментами плоского разбиения $(\Phi\Pi P)$.

3 / 15

Плоские разбиения и деревья

Рассмотрим следующий образец:

$$\Big(ig(z_1 \; (\textbf{A} \; \textbf{B}) \; z_2 ig) \; z_3 \; z_2 \Big) \Big((z_4 \; z_1 \; z_5) \; z_6 \; \textbf{B} \; z_6 \Big) \; z_1 \; \big(() \; \textbf{A} \big) \; z_3 \; z_6$$
 Структура его ФПР приведена ниже.

Поскольку скобочные структуры могут возникнуть только сразу справа от открывающей скобки, то ФПР образуют древесные структуры, аналогичные АТД.

Пример образца, не разбиваемого на ФПР:

$$\left(\mathbf{x}_1 \ (\mathbf{A} \ \mathbf{x}_2) \ \mathbf{x}_1 \ \mathbf{x}_2\right) \ \mathbf{x}_1$$

Языки, распознаваемые образцами

Определение

Языком $\mathcal{L}(\mathsf{P})$, распознаваемым образцом P , назовем множество элементов $\Phi \in \mathcal{B}[\Sigma]^*$, для которых существует подстановка $\sigma \colon \mathsf{P}\sigma = \Phi$. Образец P_1 сводится к образцу P_2 , если $\mathcal{L}(\mathsf{P}_1) \subseteq \mathcal{L}(\mathsf{P}_2)$.

Подстановка $x\sigma = \varepsilon$ допустима! В терминологии pattern languages — рассматриваются E-pattern languages (EPL, сокращение от Erasing Pattern Languages, языки стирающих образцов).

- Язык, распознаваемый образцом-строкой $P \in \Sigma^*$, есть $\{P\}$.
- Язык, распознаваемый образцом $P = x_1 \ x_2 \ x_1$, есть всё множество $\mathcal{B}[\Sigma]^*$.

Языки, распознаваемые образцами

Определение

Языком $\mathcal{L}(\mathsf{P})$, распознаваемым образцом P , назовем множество элементов $\Phi \in \mathcal{B}[\Sigma]^*$, для которых существует подстановка $\sigma \colon \mathsf{P}\sigma = \Phi$. Образец P_1 сводится к образцу P_2 , если $\mathcal{L}(\mathsf{P}_1) \subseteq \mathcal{L}(\mathsf{P}_2)$.

- Язык, распознаваемый образцом-строкой $P \in \Sigma^*$, есть $\{P\}$.
- Язык, распознаваемый образцом $P = x_1 \ x_2 \ x_1$, есть всё множество $\mathfrak{B}[\Sigma]^*$.

С точки зрения семантики сопоставления, образец \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_1 также неудачный: \mathbf{x}_1 всегда успешно сопоставляется с ε . Бывает и иначе: хотя $\mathcal{L}(\mathbf{z}_1\ \mathbf{z}_2\ \mathbf{z}_2) = \mathcal{L}(\mathbf{x}_1\ \mathbf{x}_2\ \mathbf{x}_1) = \mathcal{B}[\Sigma]^*$ из-за существования тривиальной подстановки $\mathbf{z}_2 \coloneqq \varepsilon$, но ленивое сопоставление строки \mathbf{ABB} с $\mathbf{z}_1\ \mathbf{z}_2\ \mathbf{z}_2$ построит подстановку $\mathbf{z}_2 \coloneqq \mathbf{B}$, а вовсе не $\mathbf{z}_2 \coloneqq \varepsilon$.

Сводимость и эквивалентность

Если P_1 , P_2 оба из $(V_e \cup \mathcal{B}[\Sigma])^*$, то:

- P_1 сводится к $P_2 \Leftrightarrow$ существует подстановка σ такая, что $P_2 \sigma = P_1$;
- если P_2 линеен, тогда вычислительная сложность проверки сводимости образца P_1 к образцу P_2 линейна от суммы длин P_1 и P_2 .

Из-за того, что образцы стирающие (определяют EPL), двухсторонняя сводимость не эквивалентна наличию переименовки: вспомним те же \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_1 и \mathbf{z}_1 \mathbf{z}_2 \mathbf{z}_2 .

Сводимость и эквивалентность

Если P_1 , P_2 оба из $(V_e \cup \mathcal{B}[\Sigma])^*$, то:

- P_1 сводится к $P_2 \Leftrightarrow$ существует подстановка σ такая, что $P_2 \sigma = P_1$;
- если P_2 линеен, тогда вычислительная сложность проверки сводимости образца P_1 к образцу P_2 линейна от суммы длин P_1 и P_2 .

Если рассматривать только образцы без идущих подряд переменных из $V_{\rm e}$, тогда уже для образцов без переменных из $V_{\rm t}$ выполняется утверждение

$$\mathscr{L}(\mathsf{P}_1) = \mathscr{L}(\mathsf{P}_2) \Leftrightarrow \exists \sigma(\mathsf{P}_1\sigma = \mathsf{P}_2 \ \& \ \forall \mathtt{x} \in V_\mathsf{e}(\mathtt{x}\sigma \in V_\mathsf{e}))$$

Краткие и избыточные образцы

Определение

Образец P_1 называется кратким, если любой образец P_2 такой, что $\mathcal{L}(P_1)=\mathcal{L}(P_2)$, имеет длину, не меньшую, чем P_1 .

Иначе P_1 называется избыточным.

Пример

Образец $x_1 x_2$ **A** x_3 **B** $x_1 x_2$ избыточен.

Образец $x_1 \ x_2 \ x_2 \ x_1$ является кратким.

Алгебраисты также говорят, что избыточные образцы определяются нетривиальными неподвижными точками морфизмов над образцами (т.е. существует нетривиальная подстановка, переводящая избыточный образец в себя).

Критерий избыточности образца (Reidenbach, 2004)

Образец P избыточен, если существует представление $P=Q_0$ R_1 $Q_1\dots$ R_n Q_n , $Q_i\in\{{\mathfrak B}[\Sigma]\cup V_e\}^*$, $R_i\in {V_e}^+{V_e}^+$, такое, что:

- ullet множества переменных образцов Q_{i} и R_{j} не пересекаются;
- в каждом слове R_i найдется имеющая единственное вхождение в R_i переменная \mathbf{x}_i (выделенная) такая, что

$$\forall j (\mid R_j \mid_{\textbf{x}_i} > 0 \Rightarrow \mid R_j \mid = \mid R_i \mid).$$

Этот критерий является необходимым и достаточным условием при рассмотрении плоских образцов в $\{\mathcal{B}[\Sigma] \cup V_{\mathsf{e}}\}^{*a}$.

^аУ Рейденбаха он доказан для образцов в $V_{\rm e}^*$. Для образцов над ${\mathcal B}[\Sigma]$ доказательство где-то в моих старых тетрадях — здесь существенно, что скобки порождают бесконечный «алфавит констант».

Критерий Рейденбаха под лупой

Пусть искомое разбиение образца P существует. Тогда по каждому блоку R_i построим подстановку σ_{fix} так: $\mathbf{x}_i \sigma_{fix} = R_i$, а образы прочих переменных из R_i равны ϵ (они могут встречаться и в сочетании с другой выделенной переменной \mathbf{x}_k в прочих R-блоках). Очевидно, $P\sigma_{fix} = P$.

Образец $P \in V_e^*$ допускает неоднозначную нестирающую подстановку \Leftrightarrow образец P избыточен по Pейденбаху.

Критерий Рейденбаха под лупой

Образец $P \in V_e^*$ допускает неоднозначную нестирающую подстановку \Leftrightarrow образец P избыточен по Pейденбаху.

- Для образцов, содержащих константные фрагменты, это не верно: x_1 **A** x_2 допускает много подстановок в **A**ⁿ, хотя является кратким. Однако это верно для фрагментов таких образцов, не содержащих констант.
- Стирающих подстановок может быть и несколько: например, x₁ x₂ x₂ x₁ допускает две подстановки в
 A B A B. Однако поиск возможных подстановок в такой формулировке может быть сделан экспоненциально быстрее, чем без знания о критерии Рейденбаха.

Добавление переменных типа терм

За увеличение выразительной силы образцов приходится платить усложнением теоретических конструкций.

ullet $\mathscr{L}(\mathsf{P}_1)\subseteq\mathscr{L}(\mathsf{P}_2)$ уже не определяется подстановкой.

 $P_1 = \mathbf{A} \ x_1, \ P_2 = x_2 \ \mathbf{t}.$ Язык P_1 вкладывается в язык P_2 , а подстановки нет.

• Нет (пока ещё) исследованного понятия избыточного и краткого образца. Более того, образцы для одного и того же языка не образуют нижнюю полурешётку.

Образы x t и t x оба краткие.

Плавающие t-переменные

Определение

Назовем переменную t_i в плоском линейном образце Р **якорной**, если

- t_i имеет кратность, не меньшую 2;
- или в P существует подслово α , не содержащее переменных из V_e , такое, что $\alpha=\alpha_1$ t_i α_2 , причем α_1 и α_2 оба содержат хотя бы один символ или t-переменную, имеющую кратность не меньше 2.

В противном случае назовем t_i плавающей.

Пример

Рассмотрим образец t_1 t_2 x_1 t_3 t_4 t_2 x_2 t_5 . Якорными переменными являются t_2 и t_1 .

Плавающие переменные и языки образцов

Плавающая переменная в образце — указатель на то, что в соответствующий фрагмент образца нельзя подставить пустое слово. Аналог «нестираемых» фрагментов.

Плавающий сегмент линейного образца P — максимальное подслово P, содержащее только плавающие t-переменные и переменные из V_e .

Образец, в котором все е-переменные входят в плавающие сегменты — аналог нестирающего (non-erasing) образца. Хуже всего, если есть и стирающие, и нестирающие фрагменты.

Плавающие переменные и языки образцов

Плавающий сегмент линейного образца P — максимальное подслово P, содержащее только плавающие t-переменные и переменные из V_e .

Образец, в котором все е-переменные входят в плавающие сегменты — аналог нестирающего (non-erasing) образца. Хуже всего, если есть и стирающие, и нестирающие фрагменты.

Язык образца $P_1 = \mathbf{BBA} \times \mathbf{ABCDA}$ вкладывается в язык образца $P_2 = \mathbf{z_0} \, \mathbf{t} \, \mathbf{t} \, \mathbf{z_1} \, \mathbf{t_1} \, \mathbf{t_2} \, \mathbf{t_3} \, \mathbf{t} \, \mathbf{z_2}$. Чтобы это доказать, приходится перебирать два случая: пустоты и непустоты подставляемого в \mathbf{x} значения.

Multi-pattern Salomaa)

languages

(Kari,

Определение

Языком $\mathcal{L}(\mathsf{P})$, распознаваемым множеством образцов P_{i} (англ. — multi-pattern language, сокращенно MPL), назовем множество элементов $\Phi \in \mathfrak{B}[\mathsf{Sigma}]^*$, для которых существует $\mathsf{i} \in \mathbb{N}$ и подстановка $\sigma \colon \sigma(\mathsf{P}_{\mathsf{i}}) = \Phi$.

Множество MPL-объединений стирающих образцов совпадает с множеством MPL-объединений нестирающих образцов. Образец с плавающими t-переменными тоже определяет мультиобразец, и здесь уже смешивание стирающих и нестирающих фрагментов может быть разрешено.

Однако переход от стирающих образцов к нестирающим порождает экспоненциальное разрастание описания MPL.

Пример «плавающего» MPL

Пусть $P_1 = x_1$ A A C x_2 C A B x_3 B B C, $P_2 = z_1 t_n t_n z_2 t_{m1} z_3 t_{m2} z_4 t_{m3} z_5 t_n z_6$.

Множество нестирающих образцов, порождающих P_2 :

Множество нестирающих образцов, порождающих P_1 , и обобщающие их подобразцы из P_2 :

A A C C A B B B C A A C C A B x₃ B B C A A C x₂ C A B B B C A A C x₂ C A B x₃ B B C x₁ A A C C A B B B C x₁ A A C C A B B B C x₁ A A C x₂ C A B B B C x₁ A A C x₂ C A B B B C $\begin{array}{l} P_2^3\sigma_1, \ t_n\sigma_1 = C \\ P_2^3\sigma_2, \ t_n\sigma_2 = C \\ P_2^2\sigma_3, \ t_n\sigma_3 = A \\ P_2^2\sigma_4, \ t_n\sigma_4 = A \\ P_2^3\sigma_5, \ t_n\sigma_5 = C \\ P_2^3\sigma_6, \ t_n\sigma_6 = C \\ P_2^4\sigma_7, \ t_n\sigma_7 = A \\ P_2^4\sigma_8, \ t_n\sigma_8 = A \end{array}$

Размер алфавита

Все хорошие свойства образцов, позволяющие работать с ними обычными методами (поиск подстановки, разбиение Рейденбаха) — следствие того, что мы подразумеваем $|\Sigma| = O(|\Sigma_{\text{Prog}}|^2)$, где Σ — алфавит входных данных, Σ_{Prog} — множество символов, явно входящих в образцы. Допущение реалистичное, учитывая, что «буквами» выступают и константные деревья.

Языки образцов х **A B** у **A** z и х **A** у **B A** z в алфавите $\{A, B, C\}$ очевидно не сравнимы: первый распознаёт слово **ABCA**, второй распознаёт **ACBA**. А в алфавите $\{A, B\}$ эти образцы описывают один и тот же язык^а.

 $[^]a$ И поэтому, если алфавит входных данных явно присутствует в образцах, нужны другие способы проверки подстановок на однозначность.