Семинар 17 (24.01.2023)

Краткое содержание

Из ДЗ разобрали номер 3.

Начали семинар с типовой задачей про прямую сумму: для подпространства $U\subseteq V$ найти дополнительное к нему (т.е. такое $W\subseteq V$, что $V=U\oplus W$). Для его нахождения достаточно выбрать базис (e_1,\ldots,e_k) в U, дополнить его до базиса $(e_1,\ldots,e_k,e_{k+1},\ldots,e_n)$ всего V, и тогда в качестве W можно взять $W=\langle e_{k+1},\ldots,e_n\rangle$. Следует обратить внимание, что это самое W можно выбрать многими способами.

Обсудили описание всех способов, которыми можно линейно независимую систему векторов дополнить до базиса всего пространства.

Новая тема — линейные отображения векторных пространств. Поговорили про изоморфизмы, отождествление любого векторного пространства V (над полем F) размерности n с пространством F^n посредством выбора базиса: если (e_1, \ldots, e_n) — выбранный базис, то соответствие выглядит как

$$x_1e_1 + \dots + x_ne_n \leftrightarrow \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Проговорили, что всякое линейное отображение $\varphi \colon V \to W$ однозначно определяется образами векторов фиксированного базиса в V. В соответствии с этим линейному отображению φ при фиксированных базисах $\mathfrak{e} = (e_1, \dots, e_n)$ в V и $\mathfrak{f} = (f_1, \dots, f_m)$ в W сопоставляется матрица $A = A(\varphi, \mathfrak{e}, \mathfrak{f})$ отображения φ в паре базисов $(\mathfrak{e}, \mathfrak{f})$. Она определяется соотношением

$$(\varphi(e_1),\ldots,\varphi(e_n))=(f_1,\ldots,f_m)\cdot A,$$

то есть в её j-м столбце стоят координаты вектора $\varphi(e_j)$ в базисе $\mathbb{f}.$

В качестве примера показали, что если $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2$ — поворот на угол α и $\mathfrak{e} = \mathfrak{f} = (e_1, e_2)$ — стандартный ортонормированный базис, то матрица $A(\varphi, \mathfrak{e}, \mathfrak{f})$ равна $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$.

Дальше упомянули, что если $v=x_1e_1+\cdots+x_ne_n$ и $\varphi(v)=y_1f_1+\cdots+y_mf_m$, то координаты вектора v и его образа $\varphi(v)$ связаны соотношением

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix},$$

где $A = A(\varphi, e, f)$. Таким образом, всякое линейное отображение в координатах предсталяет собой просто умножение на матрицу.

Следующий сюжет: пусть \mathfrak{E}' — другой базис в V и \mathfrak{I}' — другой базис в W, причём $\mathfrak{E}' = \mathfrak{E} \cdot C$ и $\mathfrak{I}' = \mathfrak{I} \cdot D$, где C и D — соответствующие матрицы перехода; пусть $A = A(\varphi, \mathfrak{E}, \mathfrak{I})$ и $A' = A(\varphi, \mathfrak{E}', \mathfrak{I}')$, тогда справедливо соотношение $A' = D^{-1}AC$. На эту тему разобрали следующую задачу:

Пусть $V=\mathbb{R}[x]_{\leqslant 2}$ — пространство многочленов с действительными коэффициентами от переменной x степени не выше 2. Линейное отображение $\varphi\colon V\to\mathbb{R}^2$ в базисе $(x-x^2,x^2,1+2x^2)$ пространства V и базисе ((1,2),(1,3)) пространства \mathbb{R}^2 имеет матрицу $\begin{pmatrix} 3 & -1 & -1 \\ -5 & 2 & 5 \end{pmatrix}$. Найти $\varphi(1+2x+3x^2)$.

Обсудили, что решать задачу можно двумя способами.

Первый – разложить многочлен $1 + 2x + 3x^2$ по базису из условия, решив СЛУ и тем самым найти координаты в этом базисе; умножить матрицу л.о. на этот вектор координат, тем самым получив вектор координат в базисе \mathbb{R}^2 из условия; после этого посчитать вектор.

Второй способ решения – обозначить базисы из условия как новые $\mathfrak{e}, \mathfrak{k}$, а за старые взять удобные стандартные базисы в обоих пространствах; найти матрицы перехода от старых к новым; найти старую матрицу через формулу выше $(A' = D^{-1}AC \implies A = DA'C^{-1})$; умножить полученную старую матрицу л.о. на вектор координат в старом базисе (так как он стандартный, то вектор будет (1,2,3)), тем самым получив вектор координат в стандартном базисе \mathbb{R}^2 , и так как он стандартный, по сути он и будет являться ответом.

Для всякого линейного отображения $\varphi\colon V\to W$ определяются его ядро $\operatorname{Ker} \varphi=\{v\in V\mid \varphi(v)=0\}$ и образ $\operatorname{Im} \varphi=\varphi(V)$. Из лекций знаем, что $\operatorname{Ker} \varphi$ является подпространством в V, а $\operatorname{Im} \varphi$ — подпространством в W. Обсудили, как находить базис ядра и базис образа, если известна матрица линейного отображения (в какой-либо паре базисов). Так как в координатах φ записывается как $x\mapsto Ax$ (где A — матрица этого отображения в данной паре базисов), то элементы ядра — это все решения ОСЛУ Ax=0. Таким образом, базис ядра — это просто ФСР для этой ОСЛУ (в координатах!). Чтобы найти базис образа линейного отображения, можно действовать двумя путями.

- 1. Если (e_1, \ldots, e_k) базис ядра и векторы e_{k+1}, \ldots, e_n дополняют его до базиса всего пространства, то тогда векторы $\varphi(e_{k+1}), \ldots, \varphi(e_n)$ образуют базис в образе (этот факт будет доказан на следующей лекции, если вам интересно сейчас, можете пролистать эту пдфку вниз и почитать); важно отметить, что построенная по стандартному алгоритму ФСР очень легко дополняется до базиса всего пространства. А именно, пусть i_1, \ldots, i_r номера главных неизвестных ОСЛУ Ax = 0, тогда в качестве дополнения нужно взять векторы стандартного базиса в \mathbb{R}^n с теми же номерами i_1, \ldots, i_r . В итоге получается, что базис образа (в координатах!) состоит из столбцов матрицы A с номерами i_1, \ldots, i_r .
- 2. Если в задаче ядро находить не требуется, то можно найти базис образа по-другому: в столбцах матрицы A стоят образы векторов базиса пространства V, они всегда порождают образ; поэтому базис образа (в координатах!) есть просто базис линейной оболочки столбцов матрицы A. Для нахождения последнего мы знаем два алгоритма, один из которых даёт в точности тот же результат, что и в случае 1.

Пример решения задачи на эту тему:

Пусть $\dim V = 4$, $\dim W = 3$ и линейное отображение $\varphi \colon V \to W$ в базисе $\mathfrak{e} = (e_1, e_2, e_3, e_4)$ про-

странства
$$V$$
 и базисе $\mathbb{f} = (f_1, f_2, f_3)$ пространства W имеет матрицу $A = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 2 & 1 & 3 & -1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$. Найти

базис ядра и базис образа этого линейного отображения.

(Обратите внимание, что пространства V и W могут не иметь никакого отношения к F^4 и F^3 , а $\mathfrak e$ и $\mathfrak f$ — к стандартным базисам!!)

Решение. На всякий случай расшифруем, что по условию нам дано следующее:

$$\varphi(e_1) = f_1 + 2f_2 + f_3, \ \varphi(e_2) = 2f_1 + f_2 + f_3, \ \varphi(e_3) = 3f_2 + f_3, \ \varphi(e_4) = f_1 - f_2.$$

Далее, вектор $x_1e_1 + x_2e_2 + x_3e_3 + x_4e_4 \in V$ лежит в ядре отображения φ тогда и только тогда, когда набор координат (x_1, x_2, x_3, x_4) является решением ОСЛУ Ax = 0. Улучшенный ступен-

чатый вид матрицы
$$A$$
 равен $\begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, откуда получаем следующую ФСР для ОСЛУ:

(-2,1,1,0),(1,-1,0,1). Таким образом, базис ядра есть $(-2e_1+e_2+e_3,e_1-e_2+e_4)$.

Чтобы найти базис образа φ , мы дополняем базис ядра до базиса всего V векторами с координатами (1,0,0,0), (0,1,0,0) (в базисе \mathfrak{e}), то есть это просто e_1 и e_2 (соответствуют «главным неизвестным» матрицы A). В качестве базиса в образе φ можно взять образы этих векторов при отображении φ , то есть векторы с координатами (1,2,1), (2,1,1) (в базисе \mathfrak{f}), то есть это $f_1+2f_2+f_3$ и $2f_1+f_2+f_3$.

Домашнее задание к семинару 18. Дедлайн 31.01.2023

Номера с пометкой П даны по задачнику Проскурякова, с пометкой К – Кострикина.

- 1. Пусть U подпространство в \mathbb{R}^4 , натянутое на векторы (1,1,1,-1),(2,1,1,-2),(0,1,1,0).
 - (a) Укажите (предъявив базис) какое-нибудь дополнительное к U подпространство $W \subset \mathbb{R}^4$ (то есть такое, что $\mathbb{R}^4 = U \oplus W$).
 - (б) Укажите (предъявив базис) какое-нибудь другое дополнительное к U подпространство $W' \subset \mathbb{R}^4$ (обратите внимание, что предъявление разных базисов ещё не означает, что подпространства разные!).
- 2. В пространстве \mathbb{R}^4 даны вектор v=(1,1,1,1) и подпространство U, являющееся множеством решений системы

$$\begin{cases} x_1 + x_3 = 0, \\ x_1 + x_2 - 2x_4 = 0. \end{cases}$$

Найдите какое-нибудь подпространство $W\subseteq\mathbb{R}^4$, такое что $\mathbb{R}^4=U\oplus W$ и проекция вектора vна U вдоль W равна (1, -1, -1, 0).

- 3. K36.4
- 4. Рассмотрим отображение $\varphi \colon M_2(F) \to M_2(F), X \mapsto X^T$. Докажите, что это отображение линейно, и найдите его матрицу в базисах e и f, где e = f — это базис из матричных единиц.
- 5. Рассмотрим отображение $\varphi \colon \mathbb{R}[x]_{\leqslant 3} \to \mathbb{R}^2$, действующее по правилу $f \mapsto (f(-1), f'(1))$. Докажите, что это отображение линейно, и найдите его матрицу в базисах $\mathfrak e$ и $\mathfrak f$, где $\mathfrak e = (1, x, x^2, x^3)$, а \mathbb{F} — стандартный базис в \mathbb{R}^2 .
- 6. Пусть векторное пространство V представлено в виде $V = U \oplus W$ для двух подпространств $U,W \subseteq V$. Докажите, что отображение $\varphi \colon V \to U$, сопоставляющее каждому вектору v его проекцию на U вдоль W, является линейным. Найдите матрицу этого линейного отображения в паре базисов ($e \cup f, e$), где e - какой-то базис подпространства <math>U, а f - какой-то базисподпространства W.
- 7. K36.3
- 8. Пусть $V = \mathbb{R}[x]_{\leq 2}$ пространство многочленов с действительными коэффициентами от переменной x степени не выше 2. Линейное отображение $\varphi \colon V \to \mathbb{R}^2$ в базисе $(2x+x^2, x, 1-x)$ пространства V и базисе ((3,2),(1,1)) пространства \mathbb{R}^2 имеет матрицу

$$\begin{pmatrix} 1 & 1 & -3 \\ -3 & -1 & 6 \end{pmatrix}.$$

Найдите $\varphi(3+2x+x^2)$.

9. Линейное отображение $\varphi \colon \mathbb{R}^4 \to \mathbb{R}^3$ в паре стандартных базисов имеет матрицу $\begin{pmatrix} 1 & 1 & 0 & 2 \\ 3 & -3 & 2 & 0 \\ 2 & -1 & 1 & 1 \end{pmatrix}$.

Найдите базис ядра и базис образа этого линейного отображения.

10. Найдите базис ядра и базис образа линейного отображения $\varphi \colon \mathrm{M}_2(\mathbb{R}) \to \mathrm{M}_2(\mathbb{R}), \ \varphi(X) = AX$, где $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$.

 \Diamond

Предложение. Пусть (e_1,\ldots,e_k) — базис $\operatorname{Ker} \varphi$ и векторы (e_{k+1},\ldots,e_n) дополняют его до базиса всего пространства V. Тогда, $(\varphi(e_{k+1}), \ldots, \varphi(e_n))$ образуют базис в $\operatorname{Im} \varphi$.

Доказательство. Іт $\varphi = \langle \varphi(e_1), \dots, \varphi(e_k), \varphi(e_{k+1}), \dots, \varphi(e_n) \rangle = \langle \varphi(e_{k+1}), \dots, \varphi(e_n) \rangle$ (так как $\varphi(e_1) = \dots = \varphi(e_k) = 0$). Осталось показать, что $\varphi(e_{k+1}), \dots, \varphi(e_n)$ линейно независимы. Пусть $\alpha_{k+1}\varphi(e_{k+1}) + \dots + \alpha_n\varphi(e_n) = 0$, где $\alpha_i \in F$. Тогда по линейности $\varphi(\alpha_{k+1}e_{k+1} + \dots + \alpha_ne_n) = 0 \implies \alpha_{k+1}e_{k+1} + \dots + \alpha_ne_n \in \ker \varphi$. Значит вектор $\alpha_{k+1}e_{k+1} + \dots + \alpha_ne_n$ разлагается по базису ядра:

$$\alpha_{k+1}e_{k+1} + \dots + \alpha_n e_n = \beta_1 e_1 + \dots + \beta_k e_k$$

где $\beta_j \in F$.

Если перенести все в одну сторону, то получится линейная комбинация векторов из базиса V. Она равна нулю тогда и только тогда, когда все коэффициенты равны нулю, то есть, $\alpha_i = \beta_j = 0 \ \forall i,j$.