Cálculo de Programas Trabalho Prático LCC+LEI — Ano Lectivo de 2014/15

Departamento de Informática Universidade do Minho

Grupo 13

a54718 - Lázaro Tomé Alves Azevedo a64296 - André Miguel Vila Cova Ferreira a64345 - Pedro Miguel Pereira da Silva

Maio de 2015

Contents

1	Preâmbulo	2			
2	Documentação				
3	Como realizar o trabalho				
4	Parte A 4.1 Biblioteca LTree 4.2 Biblioteca BTree 4.3 Biblioteca para listas com sentinelas	3 4 4			
5	Parte B5.1 Criação de Triângulos de Sierpinski5.2 Trabalho a realizar5.3 Valorização	5 5 6 7			
6	O 3 1	7 7 9 10 11			
A	Programa principal 12				
В		12 12			
C	Soluções propostas	13			

1 Preâmbulo

A disciplina de Cálculo de Programas tem como objectivo principal ensinar a programação de computadores como uma disciplina científica. Para isso parte-se de um repertório de *combinadores* que formam uma álgebra da programação (conjunto de leis universais e seus corolários) e usa-se esses combinadores para construir programas *composicionalmente*, isto é, compondo programas já existentes.

Na sequência pedagógica dos planos de estudo dos dois cursos que têm esta disciplina, restringe-se a aplicação deste método ao desenvolvimento de programas funcionais na linguagem Haskell.

O presente trabalho tem por objectivo concretizar na prática os objectivos da disciplina, colocando os alunos perante problemas de programação que deverão ser abordados composicionalmente e implementados em Haskell. Há ainda um outro objectivo: o de ensinar a documentar programas e a produzir textos técnico-científicos de qualidade.

2 Documentação

Para cumprir de forma integrada e simples os objectivos enunciados acima vamos recorrer a uma técnica de programação dita literária [2], cujo princípio base é o seguinte:

Um programa e a sua documentação devem coincidir.

Por outras palavras, o código fonte e a sua documentação deverão constar do mesmo documento (ficheiro). O ficheiro cp1415t.pdf que está a ler é já um exemplo de programação literária: foi gerado a partir do texto fonte cp1415t.lhs¹ que encontrará no material pedagógico desta disciplina descompactando o ficheiro cp1415t.zip e executando

```
lhs2TeX cp1415t.lhs > cp1415t.tex
pdflatex cp1415t
```

em que <u>lhs2tex</u> é um pre-processador que faz "pretty printing" de código Haskell em LATEX e que deve desde já instalar a partir do endereço

```
https://hackage.haskell.org/package/lhs2tex.
```

Por outro lado, o mesmo ficheiro cp1415t . 1hs é executável e contém o "kit" básico, escrito em Haskell, para realizar o trabalho. Basta executar

```
ghci cp1415t.lhs
```

para ver que assim é:

O facto de o interpretador carregar as bibliotecas do material pedagógico da disciplina, entre outras, deve-se ao facto de, neste mesmo sítio do texto fonte, se ter inserido o seguinte código Haskell:

¹O suffixo 'lhs' quer dizer *literate Haskell*.

```
import Data.List

import System.Process

import Cp

import List

import Nat

import Exp

import BTree

import LTree

import Control.Parallel.Strategies

import Probability\ hiding\ (\cdot \to \cdot, \cdot)

import System.Environment\ (getArgs)

import Piramide
```

Abra o ficheiro cp1415t . 1hs no seu editor de texto preferido e verifique que assim é: todo o texto que se encontra dentro do ambiente

```
\begin{code}
...
\end{code}
```

vai ser seleccionado pelo GHCi para ser executado.

3 Como realizar o trabalho

Este trabalho teórico-prático deve ser realizado por grupos de três alunos. Os detalhes da avaliação (datas para submissão do relatório e sua defesa oral) são os que forem publicados na página da disciplina na internet.

Recomenda-se uma abordagem equilibrada e participativa dos membros do grupo de trabalho por forma a poderem responder às questões que serão colocadas na defesa oral do relatório.

Em que consiste, então, o *relatório* a que se refere o parágrafo anterior? É a edição do texto que está a ser lido, preenchendo o anexo C com as respostas. O relatório deverá conter ainda a identificação dos membros do grupo de trabalho, na folha de rosto.

Para gerar o PDF integral do relatório deve-se ainda correr os comando seguintes, que actualizam a bibliografia (com BibTeX) e o índice remissivo (com makeindex)

```
bibtex cp1415t.aux makeindex cp1415t.idx
```

e recompilar o texto como acima se indicou.

4 Parte A

Nesta primeira parte do trabalho pretende-se averiguar a capacidade de utilização por parte dos alunos das bibliotecas fornecidas no material pedagógico da disciplina. Algumas respostas são validadas por testes unitários. Sempre que o resultado de um teste unitário for *False*, a solução proposta falha a validação e deve ser revista.

4.1 Biblioteca LTree

1. A seguinte função

```
balanced (Leaf _) = True
balanced (Fork (t, t')) = balanced t \wedge balanced \ t' \wedge abs \ (depth \ t - depth \ t') \leq 1
```

testa se uma árvore binária está equilibrada ou não. Defina como catamorfismo em LTree a função auxiliar depth.

2. Seja dada:

```
t = Fork \ (Fork \ (Leaf \ 10, Fork \ (Leaf \ 2, Fork \ (Leaf \ 5, Leaf \ 3))), Leaf \ 23)
```

Testes unitários 1 *Verifique que árvore t está desequilibrada:*

```
test01 = balanced \ t \equiv False
```

3. Recorrendo a funções da biblioteca LTree, escreva numa única linha de Haskell a função

```
balance :: LTree \ a \rightarrow LTree \ a
```

que equilibra uma qualquer árvore binária.

Testes unitários 2 *Verifique que balance t é uma árvore equilibrada:*

```
test02 = balanced (balance t) \equiv True
```

4.2 Biblioteca BTree

Pretende-se construir um anamorfismo que produza uma árvore binária de procura *equilibrada* que contenha o intervalo definido por dois inteiros (n, m):

```
abpe(n, m) = anaBTree\ qsplit(n, m)
```

Comece por definir o gene qsplit e depois construa a árvore

```
t1 = abpe(20, 30)
```

que será precisa na secção 6.4.

Testes unitários 3 *Faça os testes seguintes:*

```
test03a = qsplit \ (4,30) \equiv i_2 \ (17, ((4,16), (18,30)))

test03b = qsplit \ (4,3) \equiv i_1 \ ()

test03c = qsplit \ (0,0) \equiv i_1 \ ()

test03d = qsplit \ (1,1) \equiv i_2 \ (1, ((1,0), (2,1)))

test03e = balBTree \ t1 \equiv True

test03f = inordt \ t1 \equiv [20...30]
```

4.3 Biblioteca para listas com sentinelas

Considere o tipo de dados que representa listas finitas com uma sentinela no fim:

```
data SList\ a\ b = Sent\ b\mid Cons\ (a, SList\ a\ b) deriving (Show, Eq)
```

1. Derive os isomorfismos *inSList* e *outSList*, adicione-os a este ficheiro e passe aos testes que se seguem.

Testes unitários 4 Faça os testes seguintes:

```
test04a = \mathbf{let} \ x = Cons \ (1, Sent "end") \ \mathbf{in} \ inSList \ (outSList \ x) \equiv x
test04b = \mathbf{let} \ x = i_2 \ ("ola", Sent "2") \ \mathbf{in} \ outSList \ (inSList \ x) \equiv x
```

2. Derive os combinadores *cataSList*, *anaSList* e *hyloSList*, e mostre que a função *merge* da biblioteca LTree se pode escrever da forma seguinte,

```
merge' :: Ord \ a \Rightarrow ([a], [a]) \rightarrow [a]

merge' = hyloSList \ [id, cons] \ mgen
```

para um dado gene mgen que deverá definir.

<u>Testes unitários</u> 5 Faça os seguintes testes:

```
\begin{array}{l} test05a = mgen \; ([0,2,5],[0,6]) \equiv i_2 \; (0,([2,5],[0,6])) \\ test05b = mgen \; ([0,2,5],[]) \equiv i_1 \; [0,2,5] \\ test05c = merge' \; ([],[0,6]) \equiv [0,6] \end{array}
```


Figure 1: Um triângulo de Sierpinski

5 Parte B

O triângulo de Sierpinski é uma figura fractal que tem o aspecto da figura 1 e que se obtém da seguinte forma: considere-se um triângulo rectângulo e isósceles A cujos catetos têm comprimento s. A estrutura fractal é criada desenhando-se três triângulos no interior de A, todos eles rectângulos e isósceles e com catetos de comprimento s/2. Este passo é depois repetido para cada um dos triângulos desenhados, e assim sucessivamente. O resultado dos cinco primeiros passos é dado na Fig. 1.

Um triângulo de Sierpinski é gerado repetindo-se infinitamente o processo acima descrito. No entanto, para efeitos de visualização num monitor, cuja resolução é forçosamente finita, faz sentido escolher uma representação adequada do triângulo, parando o processo recursivo a um determinado nível. A figura a desenhar é constituída por um conjunto finito de triângulos todos da mesma dimensão (por exemplo, na figura 1 há 243 triângulos).

5.1 Criação de Triângulos de Sierpinski

Seja cada triângulo geometricamente descrito pelas coordenadas do seu vértice inferior esquerdo e o comprimento dos seus catetos:

```
\label{eq:type_side} \begin{split} \mathbf{type} \ \mathit{Tri} &= (\mathit{Point}, \mathit{Side}) \\ \text{onde} \\ \\ \mathbf{type} \ \mathit{Side} &= \mathit{Int} \\ \\ \mathbf{type} \ \mathit{Point} &= (\mathit{Int}, \mathit{Int}) \end{split}
```

A estrutura recursiva de (uma representação finita de) um triângulo de Sierpinski é captada por uma árvore ternária, em que cada nó é um triângulo com os respectivos três sub-triângulos:

```
\mathbf{data} \; \mathsf{TLTree} = \mathit{Tri} \; \mathit{Tri} \; | \; \mathit{Nodo} \; \mathsf{TLTree} \; \mathsf{TLTree} \; \mathsf{TLTree}
```

Nas folhas dessa árvore encontram-se os triângulos mais pequenos, todos da mesma dimensão, que deverão ser desenhados. Apenas estes conterão informação de carácter geométrico, tendo os nós da árvore um papel exclusivamente estrutural. Portanto, a informação geométrica guardada em cada folha consiste nas coordenadas do vértice inferior esquerdo e no lado dos catetos do respectivo triângulo. A função

```
sierpinski :: Tri \rightarrow Int \rightarrow [Tri]
sierpinski t = apresentaSierp \cdot (geraSierp t)
```

recebe a informação do triângulo exterior e o número de níveis pretendido, que funciona como critério de paragem do processo de construção do fractal. O seu resultado é a lista de triângulos a desenhar. Esta função é um hilomorfismo do tipo TLTree, i.e. a composição de duas funções: uma que gera TLTrees,

e outra que as consome:

```
apresentaSierp :: TLTree \rightarrow [Tri]

apresentaSierp (Tri \ t) = [t]

apresentaSierp (Nodo \ a \ b \ c) = (apresentaSierp \ a) + (apresentaSierp \ b) + (apresentaSierp \ c)
```

5.2 Trabalho a realizar

Preparação:

- 1. Desenvolva a biblioteca "pointfree" TLTree.hs de forma análoga a outras bibliotecas que conhece (eg. BTree, LTree, etc) e que estão disponíveis no material pedagógico.
- 2. Defina como catamorfismos de TLTree as funções

```
\begin{array}{l} tipsTLTree :: \mathsf{TLTree}\ b \to [\,b\,] \\ countTLTree :: \mathsf{TLTree}\ b \to Int \\ depthTLTree :: \mathsf{TLTree}\ b \to Int \\ invTLTree :: \mathsf{TLTree}\ b \to \mathsf{TLTree}\ b \end{array}
```

respectivamente semelhantes a tips, countLTree, depth e inv ("mirror") de LTree.

- 3. Exprima as funções *geraSierp* e *apresentaSierp* recorrendo a anamorfismos e catamorfismos, respectivamente, do tipo TLTree.
- 4. Defina a árvore

```
ts = geraSierp tri 5  where tri = ((0,0), 256)
```

e faça os testes seguintes:

<u>Testes unitários</u> 6 *Verifique a profundidade da árvore gerada e o respectivo número de triângulos:*

```
test06a = depthTLTree \ ts \equiv 6

test06b = countTLTree \ ts \equiv 243

test06c = countTLTree \ ts \equiv length \ (tipsTLTree \ ts)

test06d = countTLTree \ ts \equiv countTLTree \ (invTLTree \ ts)
```

Visualização: Para visualizarmos triângulos de Sierpinski vamos usar X3DOM, uma biblioteca "opensource" para construção e visualização de gráficos 3D no Web.² No pacote disponibilizado para a realização deste trabalho encontra a biblioteca X3d, que inclui a função drawTriangle para geração de triângulos em 3D, usando X3DOM. Nesta abordagem, um ficheiro x3dom é construído em dois passos:

• Desenham-se os triângulos, utilizando:

```
drawTriangle :: ((Int, Int), Int) \rightarrow String
```

²Ver http://examples.x3dom.org para mais informação. Em http://examples.x3dom.org/IG/buddha-anim/x3dom_imageGeometry.html, por exemplo, pode ser visualizado um objecto gráfico com mais de um milhão de triângulos. Mais documentação em: http://doc.x3dom.org/tutorials/index.html.

Figure 2: Um triângulo de Sierpinski em x3dom

• Finaliza-se o ficheiro com as tags de início e final:

```
finalize :: String \rightarrow String
```

1. Usando estas funções e as que definiu anteriormente, faça a geração do HTML que representa graficamente o triângulo de Sierpinski definido por

```
dados = (((0,0),32),4)
```

isto é, centrado na origem, com lado 32 e 4 níveis de recursividade. No anexo C sugere-se o recurso à função,

```
render\ html = \mathbf{do}\ \{\textit{writeFile}\ \texttt{"\_.html"}\ \textit{html}; \textit{system}\ \texttt{"firefox}\ \texttt{\_.html"}\}
```

(adapte-a, se necessário) para visualizar o triângulo gerado num "browser". Espera-se que o resultado final seja como o que se mostra na Figura 2.

5.3 Valorização

Se tiver tempo, investigue como é que a sua resolução desta parte do trabalho evolui para o desenho, não de *triângulos* de Sierpinski, mas sim de *pirâmides* de Sierpinski — ver a imagem da figura 3. Pode recorrer, se desejar, às funções disponibilizadas no anexo B.1.

6 Parte C

6.1 Mónades

Os mónades são functores com propriedades adicionais que nos permitem obter efeitos especiais em programação. Por exemplo, a biblioteca <u>Probability</u> oferece um mónade para abordar problemas de probabilidades. Nesta biblioteca, o conceito de distribuição estatística é captado pelo tipo

```
newtype Dist\ a = D\ \{unD :: [(a, ProbRep)]\}
```

em que *ProbRep* é um real de 0 a 1, equivalente a uma escala de 0 a 100%.

Figure 3: Uma pirâmide de Sierpinski

Cada par (a,p) numa distribuição $d::Dist\ a$ indica que a probabilidade de a é p, devendo ser garantida a propriedade de que todas as probabilidades de d somam 100%. Por exemplo, a seguinte distribuição de classificações por escalões de A a E,

$$A = 2\%$$
 $B = 12\%$
 $C = 29\%$
 $D = 35\%$
 $E = 22\%$

será representada pela distribuição

```
d1 :: Dist\ Char
d1 = D\left[('A', 0.02), ('B', 0.12), ('C', 0.29), ('D', 0.35), ('E', 0.22)\right]
```

que o GHCi mostrará assim:

```
'D' 35.0%
'C' 29.0%
'E' 22.0%
'B' 12.0%
'A' 2.0%
```

É possível definir geradores de distribuições, por exemplo distribuições uniformes,

```
d2 = uniform (words "Uma frase de cinco palavras")
```

isto é

```
"Uma" 20.0%
"cinco" 20.0%
"de" 20.0%
"frase" 20.0%
"palavras" 20.0%
```

distribuição normais, eg.

$$d\mathcal{J} = normal~[10 \mathinner{.\,.} 20]$$

etc.3

³Para mais detalhes ver o código fonte de Probability, que é uma adaptação da biblioteca PHP ("Probabilistic Functional Programming"). A quem quiser souber mais recomenda-se a leitura do artigo [1].

Dist forma um **mónade** cuja unidade é $return\ a=D\ [(a,1)]$ e cuja multiplicação é dada por (simplificando a notação)

$$(f \bullet g) \ a = [(y, q * p) \mid (x, p) \leftarrow g \ a, (y, q) \leftarrow f \ x]$$

em que $g:A\to Dist\ B$ e $f:B\to Dist\ C$ são funções **monádicas** que representam *computações probabilísticas*.

Este mónade é adequado à resolução de problemas de *probabilidades e estatística* usando programação funcional, de forma elegante e como caso particular de programação monádica. Vejamos um exemplo:

Problema: qual é a soma de faces mais provável quando lançamos dois dados num tabuleiro?

Assumindo que os dados não estão viciados, cada um oferece uma distribuição uniforme das suas faces (1 a 6). Basta correr a expressão monádica

```
\mathbf{do} \left\{ x \leftarrow uniform \ [1 ... 6]; y \leftarrow uniform \ [1 ... 6]; return \ (x+y) \right\}
```

e obter-se-á:

```
*Main> do { x \leftarrow uniform [1..6] ; y \leftarrow uniform [1..6] ; return(x+y) }
7 16.7%
6 13.9%
8
   13.9%
5
   11.1%
9
   11.1%
4
    8.3%
10
    8.3%
3
    5.6%
11
    5.6%
     2.8%
2
12
     2.8%
```

A soma mais provável é 7, com 16.7%.

6.2 Trabalho a realizar

É possível pensarmos em catamorfismos, anamorfismos etc probabilísticos, quer dizer, programas recursivos que dão distribuições como resultados. Por exemplo, neste enunciado é dado o combinador

$$pcataList :: (Either () (a, b) \rightarrow Dist b) \rightarrow [a] \rightarrow Dist b$$

que é muito parecido com

$$cataList :: (Either () (a, b) \rightarrow b) \rightarrow [a] \rightarrow b$$

da biblioteca List. A única diferença é que o gene de pcataList é uma função probabilística.

Exemplo de utilização: recorde-se que $cataList\ [zero, add]$ soma todos os elementos da lista argumento, por exemplo:

```
cataList [zero, add] [20, 10, 5] = 35.
```

Considere agora a função padd (adição probabilística) que, com probabilidade 90% soma dois números e com probabilidade 10% os subtrai:

$$padd(a, b) = D[(a + b, 0.9), (a - b, 0.1)]$$

Se se correr

d4 = pcataList [pzero, padd] [20, 10, 5] where $pzero = return \cdot zero$

obter-se-á:

- 35 81.0%
- 25 9.0%
- 5 9.0%
- 15 1.0%

Com base nestes exemplos, resolva o seguinte

Problema: Uma unidade militar pretende enviar uma mensagem urgente a outra, mas tem o aparelho de telegrafia meio avariado. Por experiência, o telegrafista sabe que a probabilidade de uma palavra se perder (não ser transmitida) é 5%; no final de cada mensagem, o aparelho envia o código "stop", mas (por estar meio avariado), falha 10% das vezes.

Qual a probabilidade de a palavra "atacar" da mensagem words "Vamos atacar hoje" se perder, isto é, o resultado da transmissão ser ["Vamos", "hoje", "stop"]? e a de seguirem todas as palavras, mas faltar o "stop" no fim? E a da transmissão ser perfeita?

Responda a todas estas perguntas encontrando g tal que

```
transmitir = pcataList \ gene
```

descreve o comportamento do aparelho.

Testes unitários 7 *Faça o seguinte teste unitário da sua versão para gene:*

```
test07 = gene \ (i_2 \ ("a", ["b"])) \equiv D \ [(["a", "b"], 0.95), (["b"], 0.05)]
```

Responda então às perguntas do problema acima correndo a expressão:

```
transmitir (words "Vamos atacar hoje")
```

6.3 Programação funcional paralela

Uma outra aplicação do conceito de mónade é a programação funcional paralela. A biblioteca Control.Parallel.Strategies, já carregada no início deste texto, implementa esse tipo de programação, que hoje está na ordem do dia. O mónade respectivo chama-se *Eval* e disponibiliza duas funções,

```
rpar :: a \rightarrow Eval \ a

rseq :: a \rightarrow Eval \ a
```

conforme se deseja que uma dada computação seja efectuada em paralelo ou sequencialmente.⁴ Por exemplo,

```
\begin{array}{l} parmap :: (a \rightarrow b) \rightarrow [a] \rightarrow Eval \ [b] \\ parmap \ f \ [] = return \ [] \\ parmap \ f \ (a : lt) = \mathbf{do} \\ a' \leftarrow rpar \ (f \ a) \\ lt' \leftarrow parmap \ f \ lt \\ return \ (a' : lt') \end{array}
```

é um map monádico que usa rpar para aplicar f a todos os elementos de uma lista em paralelo. Se corrermos o map habitual em

```
map\ fib\ [20..30] = [10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269]
```

(cálculo dos números de Fibonacci do vigésimo ao trigésimo), o tempo que o cálculo vai demorar numa máquina com $2 \, \text{cores}^5 \, \text{será}$ da ordem de $1.1 \, \text{s}$. Já no caso de usar parmap em vez de map, fará o mesmo cálculo em cerca de 60% desse tempo.

Para verificar esta diferença siga as instruções seguintes:⁶

1. Compile o presente enunciado correndo:

```
ghc -02 cp1415t -rtsopts -threaded
```

2. De seguida execute numa "shell" o seguinte comando,

⁴Esta explicação é bastante simplista, mas serve de momento. Para uma abordagem completa e elucidativa ver a referência [3].

⁵Intel Core 2 Duo a 2.53 GHz.

⁶Ver detalhes em [3].

```
./cp1415t exemplo seq +RTS -s -N2
```

onde o 2 em N2 indica 2 cores (se a máquina em questão tiver mais cores, este número deverá ser actualizado). Como pode ver inspecionando o código da função main na secção A, o que vai ser executado é

```
putStrLn \cdot show \cdot (map\ fib) \ \ [20..30]
```

Das estatísticas que lhe aparecem no écran retenha esta:

```
Total time 1.41s ( 1.11s elapsed)
```

Em particular, o campo elapsed apresenta o tempo decorrido desde o início da execução do programa até ao respectivo fim.

3. De seguida execute

```
./cp1415t exemplo par +RTS -s -N2 \,
```

que irá chamar, desta vez

```
putStrLn \cdot show \cdot runEval \cdot (parmap\ fib) \ \ [20...30]
```

A estatística correspondente à de cima será, desta vez, da ordem seguinte:

```
Total time 1.13s ( 0.69s elapsed)
```

Em suma, a versão paralela é cerca de 1.61x mais rápida $(\frac{1.11}{0.69})$ que a sequencial.

6.4 Trabalho a realizar

Com base na definição de parmap acima, defina a função

```
parBTreeMap :: (a \rightarrow b) \rightarrow (BTree\ a) \rightarrow Eval\ (BTree\ b)
```

que implemente o "map paralelo" sobre BTree's.

De seguida, corra testes semelhantes aos apresentados acima para apurar o ganho em *performance* da aplicação da função *fib* a todos os números da árvore *t1* da secção 4.2, em duas versões:

- 1. fmap fib (sem paralelismo, usando a função definida em BTree), ou
- 2. usando parBTreeMap fib.

Em máquinas mais rápidas e/ou com mais "cores" deve usar números maiores para obter uma melhor distinção entre as duas versões.

References

- [1] M. Erwig and S. Kollmansberger. Functional pearls: Probabilistic functional programming in Haskell. *J. Funct. Program.*, 16:21–34, January 2006.
- [2] D.E. Knuth. *Literate Programming*. CSLI Lecture Notes Number 27. Stanford University Center for the Study of Language and Information, Stanford, CA, USA, 1992.
- [3] S. Marlow. Parallel and Concurrent Programming in Haskell. O'Reilly, 2013.

Anexos

A Programa principal

```
\begin{array}{l} \textit{main} :: IO \; () \\ \textit{main} = \textit{getArgs} \ggg (\neg \cdot \textit{null}) \rightarrow \textit{exemp\_or\_exer}, \textit{errInvArgs} \\ \textbf{where} \\ \textit{exemp\_or\_exer} = (((\equiv) \texttt{"exemplo"}) \cdot \textit{head}) \rightarrow \textit{exemp}, \textit{exer} \\ \textit{exemp} = (((\equiv) 2) \cdot \textit{length}) \rightarrow \textit{execExemp}, \textit{errInvArgs} \\ \textit{execExemp} = \textit{isPar} \rightarrow \textit{execExempPar}, \textit{execExempSeq} \\ \textit{exer} = (((\equiv) 3) \cdot \textit{length}) \rightarrow \textit{execExer}, \textit{errInvArgs} \\ \textit{execExer} = \textit{isPar} \rightarrow \textit{execExerPar}, \textit{execExerSeq} \\ \textit{execExempSeq} = (\textit{putStrLn} \cdot \textit{show} \cdot \textit{(fmap fib)} \$ \textit{abpe} (20, 40)) \\ \textit{execExempPar} = (\textit{putStrLn} \cdot \textit{show} \cdot \textit{runEval} \cdot (\textit{parBTreeMap fib}) \$ \textit{abpe} (20, 40)) \end{array}
```

B Bibliotecas e código auxiliar

```
\begin{array}{l} errInvArgs :: a \rightarrow IO \; () \\ errInvArgs = : \$ \; putStrLn \; msgInvArgs \\ \textbf{where} \\ msgInvArgs = "Invalid arguments" \\ execExerPar :: [String] \rightarrow IO \; () \\ execExerPar = \bot \\ execExerSeq :: [String] \rightarrow IO \; () \\ execExerSeq = \bot \\ isPar :: [String] \rightarrow Bool \\ isPar = (((\equiv) "par") \cdot head \cdot tail) \rightarrow \underline{True}, \underline{False} \\ pcataList \; g = mfoldr \; (curry \; (g \cdot i_2)) \; ((g \cdot i_1) \; ()) \; \textbf{where} \\ mfoldr \; f \; d \; [] = d \\ mfoldr \; f \; d \; (a : x) = \textbf{do} \; \{ y \leftarrow mfoldr \; f \; d \; x; f \; a \; y \} \end{array}
```

B.1 "Easy X3DOM access"

Defina-se a seguinte composição de funções

```
x3dom = html \cdot preamble \cdot body \cdot x3d \cdot scene \cdot items
```

para gerar um texto HTML que represente um objecto gráfico em X3DOM. Esta função usa as seguintes funções auxiliares:

```
html = tag "html" []
preamble = headx 'with' [title "CP/X3DOM generation", links, script]
body = tag "body" []
x3d = tag "x3d" [("width", "\"800px\""), ("height", "\"600px\"")]
scene = tag "scene" []
items = concat
links = ctag "link" [
    ("rel", quote "stylesheet"), ("type", quote "text/css"),
    ("href", quote "http://www.x3dom.org/x3dom/release/x3dom.css")]
script = ctag "script" [
    ("type", quote "text/javascript"),
```

De seguida dão-se mais algumas funções auxiliares facilitadoras:

```
transform \; (x,y,z) = tag \; "transform" \; [("translation", quote \; (show3D \; (x,y,x)))] \\ groupx \; (x,y,z) = (tag \; "group" \; [("bboxSize", quote \; (show3D \; (x,y,z)))]) \cdot items \\ shapex = tag \; "shape" \; [] \\ title = tag \; "title" \; [] \\ appearance = tag \; "appearance" \; [] \\ show3D \; (x,y,z) = show \; x ++ " \; " + show \; y ++ " \; " + show \; z \\ t \; `with \; l = ((t \; sitems \; l) ++) \\ quote \; s = " \setminus " + s + " \setminus " \\ prime \; s = " \cdot " + s + " \cdot " \\ box \; p \; col = (transform \; p \cdot shapex \cdot items) \; [color \; col, \; ctag \; "box" \; [("size", prime \; "2,2,2")]] \\ cone \; p \; col \; b \; h = (transform \; p \cdot shapex \cdot items) \\ [color \; col, \\ ctag \; "cone" \; [("bottomRadius", prime \; (show \; b)), ("height", prime \; (show \; h))]] \\ color \; c = appearance \; (ctag \; "material" \; [("diffuseColor", prime \; c)])
```

C Soluções propostas

Os alunos devem colocar neste anexo as suas soluções aos exercícios propostos, de acordo com o "layout" que se fornece. Podem ser adicionadas outras funções auxiliares que sejam necessárias.

Secção 4.1

```
\begin{aligned} depth :: LTree \ a \rightarrow Integer \\ depth = cataLTree \ [one, succ \cdot \widehat{max}] \\ balance :: LTree \ a \rightarrow LTree \ a \\ balance = anaLTree \ (lsplit) \cdot tips \end{aligned}
```

Secção 4.2

Secção 4.3

```
inSList :: Either\ a\ (a1, SList\ a1\ a) \rightarrow SList\ a1\ a
inSList = [Sent, Cons]
```

```
 \begin{aligned} & outSList :: SList \ b \ a \rightarrow Either \ a \ (b, SList \ b \ a) \\ & outSList \ (Sent \ a) = i_1 \ (a) \\ & outSList \ (Cons \ (b, sl)) = i_2 \ (b, sl) \end{aligned}   \begin{aligned} & recSList \ g = id + (id \times g) \\ & anaSList :: (c \rightarrow Either \ a \ (b, c)) \rightarrow c \rightarrow SList \ b \ a \\ & anaSList \ g = inSList \cdot (recSList \ (anaSList \ g)) \cdot g \end{aligned}   \begin{aligned} & cataSList :: (Either \ b \ (a, d) \rightarrow d) \rightarrow SList \ a \ b \rightarrow d \\ & cataSList :: (Either \ b \ (a, d) \rightarrow d) \rightarrow SList \ a \ b \rightarrow d \\ & cataSList \ g = g \cdot (recSList \ (cataSList \ g)) \cdot outSList \end{aligned}   \begin{aligned} & hyloSList :: (Either \ b \ (d, c) \rightarrow c) \rightarrow (a \rightarrow Either \ b \ (d, a)) \rightarrow a \rightarrow c \\ & hyloSList \ h \ g = cataSList \ h \cdot anaSList \ g \end{aligned}   \begin{aligned} & mgen :: Ord \ a \Rightarrow ([a], [a]) \rightarrow Either \ [a] \ (a, ([a], [a])) \\ & mgen \ (l, []) = i_1 \ (l) \\ & mgen \ ([], l) = i_1 \ (l) \\ & mgen \ (a : ts, b : bs) \mid (a \leqslant b) = i_2 \ (a, (ts, (b : bs))) \\ & \mid otherwise = i_2 \ (b, (a : ts, bs)) \end{aligned}
```

Secção 5.2

```
\begin{split} &inTLTree = [L,N] \\ &outTLTree \; (L\;a) = i_1 \; a \\ &outTLTree \; (N\;(t1,(t2,t3))) = i_2 \; (t1,(t2,t3)) \\ &baseTLTree \; g \; f = g + (f \times (f \times f)) \\ &recTLTree \; f = id + (f \times (f \times f)) \\ &cataTLTree \; a = a \cdot (recTLTree \; (cataTLTree \; a)) \cdot outTLTree \\ &anaTLTree \; f = inTLTree \cdot (recTLTree \; (anaTLTree \; f)) \cdot f \\ &hyloTLTree \; a \; c = cataTLTree \; a \cdot anaTLTree \; c \end{split}
```

A biblioteca TLTree foi obtida por analogia à biblioteca de LeafTree. As alterações feitas foram apenas por concordancia com o functor de TLtree.

```
tipsTLTree = cataTLTree [singl, conc]
where conc (l, (r, t)) = l + r + t
```

invertTLTree iverte as coordenadas dos pontos nas folhas.

```
invTLTree = cataTLTree \ (inTLTree \cdot (invertPoint + id))
invertPoint :: Tri \rightarrow Tri
invertPoint = ((negate \times negate) \times (negate))
```

invTLTree' iverte os ramos da árvore.

```
invTLTree' = cataTLTree (inTLTree \cdot (id + swapTLTree))
swapTLTree :: (TLTree \ a, (TLTree \ b, TLTree \ c)) \rightarrow (TLTree \ c, (TLTree \ b, TLTree \ a))
swapTLTree(a,(c,d)) = (d,(c,a))
depthTLTree = cataTLTree [\underline{1}, succ \cdot \widehat{max} \cdot (id \times \widehat{max})]
geraSierp :: Tri \rightarrow Int \rightarrow \mathsf{TLTree}\ Tri
geraSierp = curry (anaTLTree (geraSierpinPair))
geraSierpinPair :: (Tri, Int) \rightarrow Either Tri ((Tri, Int), ((Tri, Int), (Tri, Int)))
geraSierpinPair = ((\equiv 0) \cdot \pi_2) \rightarrow (i_1 \cdot \pi_1), (i_2 \cdot geraRec)
geraRec :: (Tri, Int) \rightarrow ((Tri, Int), ((Tri, Int), (Tri, Int)))
geraRec\ (t,a) = ((\textit{decSize}\ t,a-1), ((\textit{decAndxMove}\ t,a-1), (\textit{decAndyMove}\ t,a-1)))
decSize :: Tri \rightarrow Tri
decSize\ ((a,b),c) = ((a,b),dec)
   where dec = quot \ c \ 2
decAndxMove :: Tri \rightarrow Tri
decAndxMove((a, b), c) = ((a + dec, b), dec)
                                    where dec = quot \ c \ 2
decAndyMove :: Tri \rightarrow Tri
decAndyMove((a, b), c) = ((a, b + dec), dec)
                                                     where dec = quot \ c \ 2
apresentaSierp :: TLTree Tri \rightarrow [Tri]
apresentaSierp = cataTLTree [singl, conc]
                     where conc (l, (r, t)) = l + r + t
countTLTree :: TLTree b \rightarrow Int
countTLTree = cataTLTree \ [1, \widehat{(+)} \cdot (id \times \widehat{(+)})]
draw = render \ html \ \mathbf{where}
   html = rep \ dados
rep = finalize \cdot concat \cdot map \ (drawTriangle) \cdot apresentaSierp \cdot (geraSierp)
```

Secção 6.2

Defina e responda ao problema do enunciado aqui.

```
gene(i_1()) = D[(["stop"], 0.90), ([""], 0.10)]
    gene (i_2(a,t)) = D[([a] + t, 0.95), (t, 0.05)]
*Main> transmitir (words "vamos atacar hoje")
["vamos", "atacar", "hoje", "stop"]
                                     77.2%
    ["vamos", "atacar", "hoje", ""]
                                      8.6%
         ["atacar", "hoje", "stop"]
                                      4.1%
        ["vamos", "atacar", "stop"]
                                      4.1%
          ["vamos", "hoje", "stop"]
                                      4.1%
             ["atacar", "hoje", ""]
                                     0.5%
            ["vamos","atacar",""]
                                     0.5%
              ["vamos", "hoje", ""]
                                     0.5%
                ["atacar", "stop"]
                                     0.2%
                   ["hoje", "stop"]
                                     0.2%
                  ["vamos", "stop"]
                                      0.2%
```

```
["atacar",""] 0.0%

["vamos",""] 0.0%

["hoje",""] 0.0%

["stop"] 0.0%

[""] 0.0%
```

A probabilidade da palavra "atacar" da mensagem "Vamos atacar hoje" se perder é de 4.1%, enquanto que a probabilidade de faltar a palavra "stop" é de 8.6%.

Por fim, a probabilidade da mensagem seguir perfeita é de 77.2%.

Secção 6.4

Defina

```
parBTreeMap :: (a -> b) -> (BTree a) -> Eval (BTree b)
```

e apresente aqui os resultados das suas experiências com essa função.

Definição:

```
parBTreeMap f Empty = return Empty
parBTreeMap f (Node (a, (l, r))) = \mathbf{do}
a' \leftarrow rpar (f \ a)
l' \leftarrow parBTreeMap f \ l
r' \leftarrow parBTreeMap f \ r
return (Node (a', (l', r')))
```

Testes:

Com esta função foram feitos diferentes testes. Utilizou-se a arvore abpe(20,30) e abpe(20,40) e, para cada um deles, testou-se a utilização de 2, 4 e 8 cores sequencialmente e em paralelo.

abpe(20,30)	N2 Total Time (Elapsed)	N4 Total Time (Elapsed)	N8 Total Time (Elapsed)
Sequencialmente	1.03s (0.73s)	1.78s (0.79s)	4.66s (1.03s)
Paralelo	0.78s (0.42s)	1.22s (0.38s)	2.64s (0.47s)
abpe(20,40)	N2 Total Time (Elapsed)	N4 Total Time (Elapsed)	N8 Total Time (Elapsed)
Sequencialmente	125.31s (88.87s)	219.08s (96.87s)	570.18s (125.84s)
Paralelo	94.22s (51.42s)	141.96s (46.21s)	318.99s (58.96s)

Conclusões:

Pelos teste realizados ficou evidente que o numero de cores ideal para este problema são 4. Após testar com 8 era de esperar que o resultado fosse ainda melhor do que com 4 cores, mas o resultado experimental não foi o esperado, o tempo de execução aumentou, isto pode dever-se ao overhead resultante dos 8 cores.

Secção 5.3

A função " draw' " é a função que permite desenhar a piramide de Sierpinski

```
draw' = render \ html \ \mathbf{where}

html = rep2 \ dados

rep2 = finalize \cdot concat \cdot map \ (drawPiramide) \cdot apresentaPiramide \cdot anaPLTree \ (geraPiramideSierp) \cdot to3D
```

Para a construção da piramide houve a necessidade de criar uma estrutra que a suportasse. Partindo da definição de Tri criou-se TriP, uma versao 3d do Triangulo.

```
type PointT = (Int,Int,Int)
type SideT= Int
type TriP = (PointT,SideT)
```

Com a nova definição do triangulo chegou-se então à estrutura que suporta a Piramide.

```
data PLTree a = P TriP | C (PLTree a,((PLTree a,PLTree a),(PLTree a,PLTree a)))
```

Seguindo o modelo usado para o Triangulo desenvolveu-se uma biblioteca de suporte, de notar a função que serve de gene ao anamorfismo para a construção da piramide.

```
geraPiramideSierp :: (TriP,Int) ->
Either TriP ((TriP,Int),(((TriP,Int),(TriP,Int)),((TriP,Int),(TriP,Int))))
geraPiramideSierp (t,0) = i1 t
geraPiramideSierp (t,a) = i2
((inPup t, a-1), ( ((leftP t,a-1), (rightP t,a-1)), ((frontP t,a-1), (backP t,a-1)) ))
inPup :: TriP -> TriP
inPup ((a,b,c),d) = ((a,b+size,c),size)
                        where size = div d 2
leftP :: TriP -> TriP
leftP ((a,b,c),d) = ((a,b,c-size),size)
                        where size = div d 2
rightP :: TriP -> TriP
rightP ((a,b,c),d) = ((a,b,c+size),size)
                        where size = div d 2
frontP :: TriP -> TriP
frontP ((a,b,c),d) = ((a+size,b,c),size)
                        where size = div d 2
backP :: TriP -> TriP
backP ((a,b,c),d) = ((a-size,b,c),size)
                        where size = div d 2
```

Cada nivel da Piramide contem 5 piramides dentro dela, à semelhança do triangulo de Sierpinski que contem 3 triangulos.

Index

```
Cálculo de Programas, 3
     Material Pedagógico, 2, 3, 6
       BTree.hs, 4, 6, 11
       List.hs, 9
       LTree.hs, 3, 4, 6
Combinador "pointfree" either, 4, 9, 13–15
Fractal, 5
     Pirâmide de Sierpinski, 8
     Triângulo de Sierpinski, 5, 7
Função
     \pi_1, 15
     \pi_2, 15
     uncurry, 13, 15
Haskell, 2
     "Literate Haskell", 2
       lhs2TeX, 2
     Biblioteca
       PFP, 8
       Probability, 7, 8
     Control
       Parallel.Strategies, 10
     interpretador
       GĤCi, 3, 8
Programação literária, 2
U.Minho
     Departamento de Informática, 1
Utilitário
    LaTeX
       bibtex, 3
       makeindex, 3
     X3DOM, 6, 12
```