The law of selection Modern Inference

Aldo Solari

The law of selection

You can make things as likely as you want if you choose after the event

David J. Hand

Abraham Lincoln and John F. Kennedy

- 1 both were assassinated
- **2** both were killed on a Friday
- 3 both in the presence of their wives
- 4 both were shot in the head from behind
- **6** Lincoln was killed in Ford's Theatre, while Kennedy was killed in a car made by the Ford Motor Company
- 6 both had four children
- **10** both had a son who died while they were president
- Lincoln had a personal secretary named John, and Kennedy had one named Lincoln
- Lincoln became president in 1861 and Kennedy in 1961
- John Wilkes Booth (Lincoln's assassin) was born in 1839 Lee Harvey Oswald (Kennedy's assassin) was born in 1939
- Both Lincoln and Kennedy were succeeded by presidents named Johnson who, wait for it, were born in 1808 and 1908

What is *your* explanation? □ I don't know ☐ It's serendipity ☐ It's synchronicity ☐ It's for another reason ☐ It's a coincidence. The 11 matches (both..both..both..) were selected from a large number of potential pairs, most of which did not match: the names of their mothers, the birth dates of their mothers, the heights of their wives, the dates on which they got married, whether they were bearded or not, the precise nature of their religious beliefs, and so on endlessly. Also, being assassinated, shot in the head and shot in the presence of wife are three highly correlated events

Outline

- 1 The Baltimore stockbroker scam
- 2 Democrats vs. Republicans: which is better for the U.S. Economy?
- 3 The "quiet scandal" in the statistical community
- 4 Eat pizza and avoid prostate cancer
- 6 AIDSVAX study
- **6** The dead salmon study

Outline

- 1 The Baltimore stockbroker scam
- ② Democrats vs. Republicans: which is better for the U.S. Economy?
- 3 The "quiet scandal" in the statistical community
- 4 Eat pizza and avoid prostate cancer
- 6 AIDSVAX study
- **6** The dead salmon study

The Baltimore stockbroker scam

1st mail

Tomorrow Bitcoin stock goes UP

Cheers,

Anonymous Baltimore stockbroker

2nd mail

I've told you. And tomorrow Bitcoin stock goes UP again.

3rd mail

Be careful. Tomorrow Bitcoin stock goes DOWN

. . .

11th mail

If you want to know if it will go $\ensuremath{\mathsf{UP}}/\ensuremath{\mathsf{DOWN}}$ tomorrow, pay me a FEE

How he/she guessed right 10 times in a row? ☐ I don't know ☐ A lucky strike ☐ It's synchronicity ☐ He/she is an hacker ☐ He/she knows the market ☐ It's for another reason The correct prediction was selected from a large number of predictions

The strategy

- The scammer begins with a large pool of people (2^x)
- The scammer divides the pool into two halves, and sends all the people a prediction about the future outcome of a binary event (stock price rising/falling)
- One half receives a prediction that the stock price will rise, and the other half receives the opposite prediction
- After the event occurs, the scammer repeats the process with the group that received a correct prediction
- After x iterations, the "surviving" person has received a sequence of x correct predictions, whereupon the scammer then offers another prediction, this time for a fee

Survivorship bias

Logical error of concentrating on the people or things that made it past some selection process and overlooking those that did not, typically because of their lack of visibility.

References

Hand, David J. (2014)

The improbability principle: Why coincidences, miracles, and rare events happen every day.

Scientific American/Farrar, Straus and Giroux

Outline

- 1 The Baltimore stockbroker scam
- 2 Democrats vs. Republicans: which is better for the U.S. Economy?
- 3 The "quiet scandal" in the statistical community
- 4 Eat pizza and avoid prostate cancer
- 6 AIDSVAX study
- **6** The dead salmon study

Democrats vs. Republicans: which is better for the U.S. Economy?

- You are a scientist with a question: Is the U.S. economy affected by whether Republicans or Democrats are in office?
- Try to show that a connection exists, using real data going back to 1948
- For your results to be publishable in an academic journal, you'll need to prove that they are "statistically significant" by achieving a low enough *p*-value.

Time series

Scatter plot

Statistical significance

```
Estimate Std. Error t value Pr(>|t|) (Intercept) 0.8299784 0.91074910 0.911314 3.629773e-01 gov_dem 0.2128750 0.03255596 6.538742 3.286125e-10
```

Conclusion:

You achieved a *p*-value of less than 0.01 and showed that Democrats have a positive effect on the economy. Get ready to be published!

Selection

Y : How do you want to measure economic performance?
\square Employment \square Inflation \boxtimes GDP \square Stock prices
X: Which politicians do you want to include?
\square Presidents \boxtimes Governors \square Senators \square Representatives
References Christie Aschwanden (2015) Science Isn't Broken. It's just a hell of a lot harder than we give it credit for. FiveThirtyEight https://fivethirtyeight.com/features/science-isnt-broken/

Try to support the Republicans

Y: How do you want to measure economic performance?
$lacktriangle$ Employment \Box Inflation \Box GDP \Box Stock prices
K: Which politicians do you want to include?
☐ Presidents ☑ Governors ☐ Senators ☐ Representatives

Time series

Scatter plot

Opposite conclusion

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.62868955 0.39902797 -19.11818 2.043845e-51
gov_gop 0.07870434 0.01717247 4.58317 7.128718e-06
```

Now you achieved a p-value of less than 0.01 and showed that Republicans have a positive effect on the economy.

P-hacking & HARKing

- Which political party is best for the economy seems like a pretty straightforward question
- But as you saw, it's much easier to get a *result* than it is to get an *answer*
- The data can be selected (p-hacked) to make either hypothesis appear correct (Hypothesizing After the Results are Known)
- The variables in the data sets you used to test your hypothesis had 1800 possible combinations (1078 with p < 0.05)
- Answering even a simple scientific question requires lots of choices that can shape the results. This doesn't mean that science is unreliable. It just means that it's more challenging than we sometimes give it credit for

Outline

- 1 The Baltimore stockbroker scam
- 2 Democrats vs. Republicans: which is better for the U.S. Economy?
- 3 The "quiet scandal" in the statistical community
- 4 Eat pizza and avoid prostate cancer
- 6 AIDSVAX study
- **6** The dead salmon study

The "quiet scandal" in the statistical community

In a regression problem with many explanatory variables, it is common practice to

- 1 select the variables to be used in the model
- 2 evaluating the selected model (as if it had been given a priori)

all with the same data

Leo Breiman (1993) referred to this practice as to the "quiet scandal" in the statistical community

Hitters data

We wish to predict a baseball player's Salary by using 19 variables associated with performance in the previous year:

```
"AtBat"
          "Hits"
                    "HmRun"
                              "Runs"
"RBI"
          "Walks"
                    "Years"
                              "CAtBat"
"CHits"
          "CHmRun"
                    "CRuns" "CRBI"
"CWalks" "League"
                    "Division" "PutOuts"
          "Errors"
"Assists"
                    "NewLeague"
```

The variable selection algorithm (best AIC) selects 5 variables:

```
"HmRun" "Runs" "Walks" "CRuns" "CWalks"
```

out of $2^{19} = 524288$ possible selections

Post-selection inference

```
Estimate Std. Error t value Pr(>|t|)
                    85.0090 7.434 1.5e-11 ***
(Intercept) 631.9910
HmRun -13.1438
                     5.2434 -2.507 0.01348 *
                     2.7076 3.227
Runs
            8.7373
                                   0.00160 **
Walks
        -11.2012 3.0252 -3.703
                                   0.00032 ***
CRuns
          -0.9092
                     0.3507 -2.592 0.01068 *
CWalks
            1.2993
                     0.4613 2.816
                                   0.00565 **
```

Multiple R-squared: 0.1361 F-test p-value: 0.002537

However, the response values were randomly *permuted*. This means that the true model contains only the intercept term

On new data

Multiple R-squared: 0.02983

F-test p-value: 0.5651

Number of (wrongly) selected variables

Based on 2000 resamples

The problem of post-selection inference

- Classical inference assumes the model is chosen independently of the data (the model is fixed a priori)
- Using the data to select the model introduces additional uncertainty (the model is itself a random variable)
- Need to correct the over-optimism in inference due to data-driven selection

"In a large number of 95% confidence intervals, 95% of them contain the population parameter [...] but it would be wrong to imagine that the same rule also applies to a large number of 95% **interesting** confidence intervals"

Branko Sorić (1989) Statistical "Discoveries" and Effect-Size Estimation Journal of the American Statistical Association

Confidence intervals

Suppose we have 100 parameters and we construct 95% confidence intervals (Cls)

As expected, 95/100 = 95% CIs cover the respective parameters

Selected confidence intervals

Suppose we select the interesting CIs (e.g. CIs not including zero)

Only 1/5 = 20% Cls covers the selected parameters

Outline

- 1 The Baltimore stockbroker scam
- 2 Democrats vs. Republicans: which is better for the U.S. Economy?
- 3 The "quiet scandal" in the statistical community
- 4 Eat pizza and avoid prostate cancer
- **6** AIDSVAX study
- **6** The dead salmon study

Eat pizza and avoid prostate cancer

Headlines in newspapers in 1995 announced that eating

tomato sauce, tomatoes, and pizza

would decrease the risk of prostate cancer

Giovannucci et al.

 The source of the news was a publication by a group led by Edward Giovannucci from Harvard

Giovannucci, Ascherio, Rimm, Stampfer, Colditz, Willett (1995) Intake of carotenoids and retinol in relation to risk of prostate cancer Journal of the National Cancer Institute

Cited by 1878 on March 2020

 They claim that the *lycopene*, a carotenoid hydrocarbon found in tomatoes, was related to lower risk of prostate cancer

Experimental results

- 47894 subjects (free of diagnosed cancer)
- Semiquantitative food-frequency questionnaire on years 1986, 1988, 1990, and 1992
- Between 1986 and 1992, 812 new cases of prostate cancer
- 4 significant associations with cancer out of 46
- 3 significant associations (tomato sauce, tomatoes, pizza) contain lycopene
- tomato sauce p = 0.001 tomatoes p = 0.03 pizza p = 0.05

How likely is this result?

- 4 *p*-values < 0.05 out of 46
- Suppose that none of the 46 types of food is associated with prostate cancer. Then we can expect an average of 2.3 p-values < 0.05

$$E\left(\sum_{i=1}^{46} \mathbb{1}\{p_i \le 0.05\}\right) = 46 \cdot 0.05 = 2.3$$

where $\mathbb{1}\{\cdot\}$ is the indicator function

• If we assume that the *p*-values are i.i.d. Uniform(0,1), $V = \sum_{i=1}^{46} \mathbb{1}\{p_i \le 0.05\} \sim \text{Binomial}(46, 0.05)$ and

$$P(V \ge 4) = 0.196$$

having at least 4 p-values < 0.05 is not an unlikely event

• It seems that Giovannucci et al. did not have a theory about lycopene when they started the study

Confirmatory vs exploratory

Confirmatory inference

- Define hypotheses/models/questions
- 2 Collect data
- Perform inference

Exploratory inference

- Collect data
- Select hypotheses/models/questions
- Perform inference

Modern practice is highly exploratory (big dataset) Elementary statistical textbooks often ignore selection issues As a consequence, inference may be wrong and misleading

Outline

- 1 The Baltimore stockbroker scam
- 2 Democrats vs. Republicans: which is better for the U.S. Economy?
- The "quiet scandal" in the statistical community
- 4 Eat pizza and avoid prostate cancer
- 6 AIDSVAX study
- **6** The dead salmon study

AIDSVAX study

- In late February 2003, the world heard preliminary results of the first large scale human trial of a vaccine designed to prevent HIV infection
- A clinical trial was conducted among 5009 people. Of those,
 1/3 got a placebo, and 2/3 got the AIDSVAX B/B vaccine:
- Scientists then followed the two groups over three years to see whether the vaccinated group had fewer HIV infections than the placebo group

$$H_0: \pi_{\mathrm{placebo}} = \pi_{\mathrm{treatment}}$$

```
Placebo (Infections/Total): 98/1679 (5.8%)
Vaccine (Infections/Total): 191/3330 (5.7%)
```

Subgroup analysis

- The original study was not designed to determine whether the vaccine was efficacious in any subgroup
- VaxGen, the vaccine's maker, described the result as disappointing but presented an analysis of subgroup data, and claimed "a statistically significant reduction of HIV infection in certain racial groups"

	${\sf White/Hispanic}$	Black	Asian/Pacific Islanders	Other
Placebo Vaccine	81/1508 179/3003	17/171 12/327	9/111 4/203	2/20 2/53
<i>p</i> -value	0.456	0.015	0.663	0.345

Critical thinking

- Dr. Anthony Fauci cautioned against jumping to conclusions without further analysis:
- "Professional statisticians warn us that one must be very careful in doing subset analyses when the primary endpoint of a given study shows no effect"
- "Therefore, one really cannot say at all that the vaccine is effective in Blacks without a very careful scrutiny of the data and the statistical analysis of the data"
- "In this context, most statisticians say that with the penalties that one must apply in this type of subset analysis, the results in the Black subset would not be statistically significant"

```
p-value 0.456 0.015 0.663 0.345 (Sidak) adjusted p-value 0.912 0.059 0.987 0.816
```

xkcd

WE ROUND NO	WE POUND NO	WE ROUND NO	WE POUND NO	WE FOUND NO
LINK BETWEEN	LINK BETWEEN	LINK BETWEEN	LINK GETWEEN	LINK GETWEEN
PURPLE JELLY	BROWN JELLY	PINK JELW	BLUE JELLY	TEAL JELLY
BEPAIS FOR ANIE	BEANS MUD PAIE	BETME NO ADME	BEPAS AND ADRE	BEANS AND FORE
(P > 0.05).	(P > 0.05).	(P > 0.05).	(P > 0.05).	(P > 0.05).
WE FOUND NO LINK GETWEN SALPON JELLY BEAMS AND ADME (P > 0.05).	WE ROUND NO	WE FOUND NO	WE ROUND NO	WE ROUND NO
	LINK GETHEEN	LINK GETHEEN	LINK GETHEEN	LINK GETWEEN
	RED JELLY	TURQUOISE TIELY	MAGGITH JELLY	YELLON JELLY
	BEARS AND ACKE	GEAKS AND AGNE	BEANS AND ACNE	BEANS AND ACHE
	(P > 0.05).	(P > 0.05).	(P > 0.05).	(P > 0.05).
WE ROUND NO LINK GETWEEN GREY TELLY BEAMS AND ACHE (P > 0.05).	WE FOUND NO	WE FOUND NO	WE FOUND A	WE FOUND NO
	LINK GETWEEN	LINK GETWEEN	LINK GETHEEN	LINK GETWEEN
	TAN JELLY	CYAN JELLY	GREEN JELLY	MOUNT BELLY
	BEANS AND RONE	BETAK AND AONE	BEANS AND KONE	GERNS AND FOUN
	(P > 0.05).	(P > 0.05).	(P<0.05).	(P > 0.05).
WE FOUND NO	WE ROUND NO	WE FOUND NO	WE POUND NO	WE POUND NO
LINK BETWEEN	LINK BETWEEN	LINK BETWEEN	LINK BETWEEN	LINK GETWEN
BEIGHT STELLY	LIAR JELLY	BHAKK JELLY	PEACH JELLY	ORNKE JELLY
BEAMS AND ACKE	BEANS AND ADVE	BEANS AND ADILE	BEANS AND AGNE	GRANS AND ADRE
(P > 0.05).	(P > 0.05).	(P > 0.05).	(P > 0.05).	(P > 0.05).

Outline

- 1 The Baltimore stockbroker scam
- ② Democrats vs. Republicans: which is better for the U.S. Economy?
- 3 The "quiet scandal" in the statistical community
- 4 Eat pizza and avoid prostate cancer
- 6 AIDSVAX study
- **6** The dead salmon study

The dead salmon study

- In 2009, a highly remarkable scientific experiment was performed by four American brain researchers
- They used functional magnetic resonance imaging (fMRI) to determine which brain areas respond to emotional stimuli
- The researchers were able to clearly identify a brain area that showed a response to the stimulus offered

Bennett, Baird, Miller, Wolford (2010)
Neural Correlates of Interspecies Perspective Taking in the Post-Mortem Atlantic Salmon: An Argument For Proper Multiple Comparisons Correction Journal of Serendipitous and Unexpected Results
(Cited by 401)

Large-scale testing

- However, the subject was a dead salmon
- To find brain regions, 8064 t-tests were performed at $\alpha=$ 0.001, and 16 were found significant
- Apparently, standard imaging techniques with standard analysis methods could produce clearly nonsensical results
- How likely is this result?

$$\mathbb{E}\Big(\sum_{i=1}^{8064} \mathbb{1}\{p_i \le 0.001\}\Big) = 8.064$$

95% confidence interval (assuming independence): [3,14]

What most surprised you? ☐ Abraham Lincoln and John F. Kennedy The Baltimore stockbroker scam Democrats vs. Republicans: which is better for the U.S. Economy? ☐ The "quiet scandal" in the statistical community ☐ Eat pizza and avoid prostate cancer □ AIDSVAX study The dead salmon study □ None