AD)	

CONTRACT NUMBER DAMD17-92-C-2066

TITLE: Evaluation of Biomonitoring Systems for Assessment of Contaminated Waters and Sediments at U.S. Army Installations

SUBTITLE: Biomonitoring Evaluation of Contaminated Groundwater at Aberdeen Proving Ground - Edgewood Area West Branch of Canal Creek - Phase 1: Groundwater Evaluation

PRINCIPAL INVESTIGATOR: Dennis T. Burton, Ph.D.
Randall S. Herriott, B.S.
Steven D. Turley, M.S.

CONTRACTING ORGANIZATION: University of Maryland at College Park
Wye Research and Education Center
Queenstown, Maryland 21658

REPORT DATE: November 1995

TYPE OF REPORT: Annual

19970618 091

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	Annual (July 31, 1994	- June 30, 1995)
	November 1995		IG NUMBERS
4. TITLE AND SUBTITLE Evaluation Assessment of Contamina	on of Blomonitoring Si	y S C C A ST	
Tarkallakiana - Evaluati	ion of Contaminated 🕣	roundwater at	.7-92-C-2066
Aberdeen Proving Ground Creek - Phase 1: Ground	d-Edgewood Area West	Branch of Canal	
Creek - Phase 1: Ground 6. AUTHOR(S)	dwater Evaluation.		1
	. Daniell C Hammiett	n c	
Dennis T. Burton, Ph.D. Steven D. Turley, M.S.	; Randall 5. Helliott	, 1.5.,	į.
7. PERFORMING ORGANIZATION NAM			RMING ORGANIZATION T NUMBER
The University of Maryl	and at College Park		
Wye Research and Educat	ion Center	WREC	-95-05
Queenstown, Maryland 2	21658		
		1	
9. SPONSORING/MONITORING AGEN	ICY NAME(S) AND ADDRESS(ES)	10. SPON	SORING/MONITORING CY REPORT NUMBER
U.S. Army Medical Resea	rch and Materiel Comm		C) NEI GILL IIGIIIGE
Ft. Detrick, Frederick,]	
re. Beerrea, reading,			l
11. SUPPLEMENTARY NOTES			
11. SUPPLEMENTARY NOTES			1
1			
12a. DISTRIBUTION / AVAILABILITY S	TATEMENT	12b. DIS	TRIBUTION CODE
Approved for public rel	lease: distribution un	nlimited.	1
Approved for paster as		ł	
		· I	
		,	
13. ABSTRACT (Maximum 200 words) Contaminated groundy	water, which contained	multiple heavy
metals and chlorinated	aliphatic hydrocarbo	ns from the Canal Cree	k admiter (Meir
CC 27D) of the II S Am	my Abardeen Provinc G	round-Edgewood Area, A	berdeen, Maryland,
lunc evaluated for toxic	rity to aquatic organ:	ISMS. TOXICILY WAS U	stetten at various 1
groundwater concentration groundwater that car	ions by 6 of 8 blomon	verse effect (NOFC) as	nH 4 was 10% ground
of groundwater that car	following assays: 4-	d green alga (Selenas	trum capricornutum)
water by volume in the growth test; 7-d clado	ceran (<u>Ceriodaphnia</u> d	ubia) survival and re	production test; and
106-h frog (Yenonus lae	vis) embrvo teratogen	esis assay - nenopus	(PEIRA). A NODO OL
18% groundwater volume	occurred in 7-d fath	ead minnow (Pimephale	s prometas) survivar
and growth tests. Buff fathead minnow tests a	ered groundwater (ph	The 107 groundwater h	v volume NOECs for
fathead minnow tests a the green alga and cla	na in frian assays. doceran at nH 4 did n	ot change when the or	ganisms were exposed
to buffered groundwate	r at pH 7. The Ames	assay for mutagenicit	y was negative in all
laces Sporadic incid	ences of lesions were	e found in Japanese me	daka (Uryzias latipes)
at concentrations up t	o 25% groundwater by	volume after 9 months	of exposure. Fish
growth was affected by water diluted with Wes	9 months of exposure	; fish were smaller w	hen grown in ground-
water diluted with Wes	et Branch of Canal Cre wring bioassays acut	e toxicity, chronic	15. NUMBER OF PAGES
toxicity, Ames, FETAX,			1,188
pollutants, heavy meta	ale and chloringted o	alinhatic hydrocarbons	16. PRICE CODE
T			
	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
OF REPORT Unclassified	Unclassified	Unclassified	Unlimited

FOREWORD

Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the U.S. Army.

- () Where copyrighted material is quoted, permission has been obtained to use such material.
- () Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.
- (/) Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations.
- () In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).
- () In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

Principal Investigator's Signature

11-30-95 Date Certification of Technical Data Conformity (May 1987)

The contractor, The University of Maryland System, hereby certifies that, to the best of its knowledge and belief, the technical data delivered herewith under Contract No. DAMD17-92-C-2066 is complete, accurate, and complies with all requirements of the contractor.

Date: November 30, 1995

Name and Title of Certifying Official:

Dennis T. Burton, Ph.D Senior Research Scientist

EXECUTIVE SUMMARY

The toxicological evaluation of groundwater contamination at the U.S. Army Aberdeen Proving Ground-Edgewood Area (APG-EA), West Branch of Canal Creek Area, Aberdeen, MD, was designed to be conducted in two sequential phases. Phase 1 was a determination of the potential toxicity of the groundwater in situ. If the Phase 1 evaluation showed that the groundwater was not toxic, further hazard assessment studies of the West Branch of Canal Creek ecosystem would not be necessary. Phase 2, an evaluation of the potential toxicity of the groundwater as it moves through the marsh and bottom sediments into West Branch of Canal Creek, was to be implemented if the groundwater proved to be toxic. As discussed in this report, the groundwater was found to be toxic in Phase 1. The data in Phase 1 will be integrated with the Phase 2 data to make a preliminary hazard assessment of the groundwater discharge in West Branch of Canal Creek. The Phase 2 studies and analyses will be given in a separate report.

The primary objective of Phase 1 was to evaluate the potential toxicity of the groundwater in situ to aquatic organisms because it was known that the groundwater entered the West Branch of Canal Creek ecosystem. Although microorganisms are the primary organisms present in most subsurface environments, an array of surrogate biomonitoring systems integrated into a tiered hazard framework was used in the An array of biomonitoring assays covering several evaluation. levels of biological complexity was used to maximize predictability of potential adverse pollutant effects to aquatic organisms during a 9-month evaluation. A secondary objective of Phase 1 was to evaluate, where test systems were appropriate for use in low salinity waters, the potential toxicity of West Branch of Canal Creek water. The West Branch of Canal Creek studies were conducted concurrently with the groundwater studies to obtain background data on the potential toxicity of the creek water. Only aqueous phase assays were used in the water column studies of West Branch of Canal Creek water; no sediment systems were studied.

The contaminated groundwater in the West Branch of Canal Creek study area contains multiple heavy metals and chlorinated aliphatic hydrocarbons. Groundwater was withdrawn from well CC-27B, which is one of the two most highly contaminated wells located in the Canal Creek aquifer at the West Branch of Canal Creek site.

Several U.S Environmental Protection Agency (EPA) priority pollutant heavy metals were found in the groundwater. Copper, mercury, and silver concentrations in the groundwater exceeded, in one or more tests, EPA's numerical water quality criteria for the specific metal. Aluminum was also present at high

concentrations in the groundwater; however, EPA has not finalized their draft numerical water quality criteria for the metal. Thus, it is not clear whether or not the concentrations in the groundwater may exceed EPA's numerical water quality criteria for aluminum.

Thirteen chlorinated aliphatic compounds were found in the groundwater, several of which are EPA priority pollutants. None of the priority pollutant organics found in the groundwater currently have numerical water quality criteria values; however, lowest observed effect levels (LOEL) for several of the compounds are available. All of the LOELs are one or more orders of magnitude higher than the concentrations found in the groundwater.

Eleven of the 13 volatile organics found in the groundwater had octanol water partition coefficients (log k_{ow} or log P) less than 3. Thus, bioaccumulation was not considered to be a potential toxicological problem for most of the volatile organics present in the groundwater. 1,2-Dichlorobenzene and 1,2,4-trichloro-benzene, which have K_{ows} of 3.4 and 4.2, respectively, were found in only one groundwater sample at the beginning of the study. Thus, it is difficult to determine how important bioaccumulation may be for the two compounds.

An array of eight biomonitoring systems integrated into a tiered hazard framework was used in the 9-month study. The biomonitoring systems included a number of endpoints. The pH of the groundwater from well CC-27B was ≈4; thus, many of the assays were conducted at both pH 4 and pH 7. The toxicity at pH 7 was studied so that the data could be used, if necessary, in the Phase 2 hazard assessment of the groundwater as it enters the West Branch of Canal Creek which has pH values close to the neutral range.

Toxicity was detected at various groundwater concentrations by 6 of the 8 biomonitoring systems. The Ames assay for mutagenicity was negative in all cases for groundwater, West Branch of Canal Creek water, and filtered APG-EA tap water. Differences in Japanese medaka (Oryzias latipes) growth were found in a chronic 9-month histopathology assay when the fish were exposed to 1, 5 and 25% groundwater by volume diluted with either APG-EA dechlorinated tap water or West Branch of Canal Creek surface water. In general, the fish were smaller when grown in groundwater diluted with West Branch of Canal Creek water compared to those reared in groundwater diluted with APG-EA dechlorinated tap water. Most females were larger than males when reared in groundwater diluted with either West Branch of Canal Creek water or APG-EA dechlorinated tap water.

Experimental Pathology Laboratories, Inc. (EPL), Herndon, VA, analyzed the Japanese medaka in the chronic nine-month study

for incidences of hepatocellular neoplasia, neoplasms other than hepatocellular neoplasms, and non-neoplastic lesions and concluded the following. "...at nine months among male and female medaka there was no effect of groundwater on the incidence of hepatocellular neoplasia [at concentrations up to 25% groundwater by volume (highest concentrations studied) when APG-EA dechlorinated tap water was used as diluent water]." "At nine months among the males there was a slight effect of 25% groundwater concentration on the incidence of hepatocellular neoplasia...[and]...among the females there was no effect of groundwater exposure on hepatocellular neoplasia [when West Branch of Canal Creek water was used as diluent water for six months and dechlorinated tap water for three additional months]."

EPL found the following at the end of the nine-month study when Japanese medaka were initiated for 48 h at 13 days of age with 10 mg/L diethylnitrosamine (DEN). "At nine months there appeared to be a promotional effect of the groundwater at 25% concentration on hepatocellular neoplasia in male medaka (12 of 29 fish affected), although eight of 40 control medaka also had hepatocellular neoplasia at nine months [in fish exposed to 25% groundwater by volume diluted with APG-EA dechlorinated tap water]." "At nine months there appeared to be a trend of increasing percentage of hepatocellular neoplasms from controls in 25% groundwater, but the differences between groups in number of neoplasms was not great."

In DEN-initiated fish exposed to West Branch of Canal Creek water for six months followed by three months of exposure to groundwater in APG-EA dechlorinated tap water, EPL concluded "At nine months among male medaka there appeared to be a promotional effect of the groundwater on hepatocellular neoplasia based on the apparently low incidence of hepatocellular neoplasms in controls...This low incidence may be spurious..." "At six months among female medaka there appeared to be a promotional effect of the Canal Creek water on hepatocellular neoplasia. At six and nine months among female medaka there was no effect of the groundwater on hepatocellular neoplasia. The number of medaka with hepatocellular neoplasia increased at nine months over six months in all groups and at nine months the incidence was greatest among control Groups..."

The groundwater was acutely toxic at pH 4 to a green alga (Selenastrum capricornutum), cladoceran (Ceriodaphnia dubia), fathead minnow (Pimephales promelas), and Japanese medaka. From an acute toxicity standpoint, the groundwater appeared to be less toxic to the green alga at pH 7. The groundwater was not acutely toxic at pH 7 to the cladoceran, fathead minnow, or Japanese medaka.

The lowest concentration of groundwater that caused no observable adverse effect (NOEC; no-observed-effect

concentration) at pH 4, in the test systems in which the NOEC value could be determined, was 10% groundwater by volume. A NOEC of 10% groundwater by volume occurred in 3 out of 5 tests for the green alga (S. capricornutum); 4 out of 5 tests in both a 7-d cladoceran (C. dubia) and a 96-h frog (Xenopus laevis) embryo teratogenesis assay - Xenopus (FETAX). A NOEC of 18% groundwater by volume occurred in 2 of 5 tests in a 7-d fathead minnow (P. promelas) test. The groundwater was not toxic at pH 7 in the 7-d fathead minnow test and in 2 of 5 FETAX assays. The NOEC (18% groundwater by volume) was higher at pH 7 in 3 of the 5 FETAX assays. The 10% groundwater by volume NOEC for the green alga and cladoceran at pH 4, however, was essentially the same when the organisms were exposed to buffered groundwater at pH 7.

ACKNOWLEDGEMENTS

We thank Mr. Tommy R. Shedd (COR), Dr. Henry S. Gardner, and Dr. Robert A. Finch of the U.S. Army Center for Environmental Health Research (CEHR), Fort Detrick, Frederick, Maryland, for their continual support and help throughout the study. Mr. Alan B. Rosencrance of CEHR is acknowledged for conducting the munitions analyses. We thank Dr. Elgin S. Perry, statistical consultant, for conducting the analyses of the Japanese medaka growth data. Mr. Derek W. Cooper is acknowledged for his technical assistance during the project. We would also like to thank Mr. John G. Wrobel of the Environmental Preservation, Conservation and Restoration Division of the Directorate of Safety, Health and Environment, Aberdeen Proving Ground, MD for his help during the study. We acknowledge CEHR for supporting the study through U.S. Army Contract No. DAMD17-92-C-2066. This report is Scientific Article No. A7831, Contribution No. 9159 from the Maryland Agricultural Experiment Station.

TABLE OF CONTENTS

	FORE	NORD		•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	1
	CERT	IFICA	MOIT	1 01	TE	СН	NI	CA]	L 1	DA'	ΓA	со	NF	DRM	(II	Ϋ́	•				•	•	•		2
	EXEC	UTIVE	SUM	IMA I	RY	•	•	•		•			•	•	•	•	•	•	•	•	•	•	•	•	3
	ACKNO	OWLED	GEME	ENTS	S .	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	7
	TABL	E OF	CONT	ENT	rs	•			•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	8
	LIST	OF I	'ABLE	ES .		•	•	•	•	•	• •		•	•	•	•	•	•	•	•	•	•	•	3	LO
	LIST	OF A	'bben	IDI	CES	•	•	•	•	•	•		•	•	•		•	•	•	•	•	•	•	1	L1
1.	INTRO	ODUCI	'ION			•	•	•	•	•	• •		•	•	•	•	•	•	•	•	•	•	•	1	L6
2.	OBJE	CTIVE	S OF	៖ នា	rudy		•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	1	18
3.	WEST	BRAN	CH C	OF C	CANA	L	CR	EE	K	SI	ΓE	DE	SCI	RII	PT]	[0]	1	•	•	•	•	•	•	2	20
	3.1	Geog	raph	nic	Set	ti	na	aı	nd	L	and	ı u	se											2	20
		Hydr																							21
	3.3	Grou	เทศพล	tei	r Fl	OW	,	_					_	•	•										22
		Hist																							23
		Grou																							24
		Sedi																							26
	3.0	Surf	.ment	Wat	rer	CO	nt	am:	in:	at	i Oi	· ·	•	•	•	•	•	•	•	•	•	•	•		26
	3.,	Dull	·ucc	ma.				W.M.		~ •		•	•	•	•	•	•	•	•	•	•	•	•	•	
4.	MATE	RIALS	ANI	M C	ЕТНС	DS	}	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	2	28
	4.1	Gene	ral																					2	28
	4.2	Acut	e To	rxid	rity	, Т	¹es	ts	•				-		•	•								-	31
	4.5	4.2.																							31
		4.2.																•	•	•	•	•	•		_
		7.2.			now,																				3 3
	13	Shor																							
	4.5		1 6																						3 4
			2 (3 4
			3 E														•	•	•	•	•	•	•		3 5
	A A	Geno															•	•	•	•	•	•	•		36
	4.4																				•	•	•		37
	4.5	Deve																					•		
	4.6	Chro																							38
	4.7	cnem	nical	L Al	лату	se	S	•	• _	•	• •		•	•	•	•	•	•	•	•	•	•	•		41
			1 (•		41
			2_ F																				•		41
	4.8	Test	End	ipo:	ınts	a	ınd	D	at.	a.	Ana	а⊥у	se	S	•	•	•	•	•	•	•	•	•	4	42

TABLE OF CONTENTS (CONTINUED)

5.	RESU	LTS AND DISCUSSION	•	 •	•	•	•	45
	5.1	Acute Toxicity Tests	•				•	45
		5.1.1 Microtox®	•	 •	•	•	•	45
		5.1.2 Green Alga, Cladoceran, Fathead Minnow, and Japanese Medaka .		 •				52
	5.2	Short-term Chronic Toxicity Tests			•		•	5 6
	J. 2	5.2.1 Green Alga	•			•	•	5 6
		5.2.2 Cladoceran		 •	•	•	•	57
		5.2.3 Fathead Minnow						57
	5.3	Genotoxicity Tests	•	 •	•	•	•	58
	5.4	Developmental Toxicity Test	•	 •	•	•	•	59
	5.5	Chronic Growth and Histopathology Test		 •	•	•	•	60
		5.5.1 Mortality	•	 •	•	•	•	60
		5.5.2 Morphometric Analyses	•	 •	•	•	•	61
		5.5.3 Histopathology Analyses	•	 •	•	•	•	64
	5.6	Chemical Analyses	•		•	•	•	69
		5.6.1 Comprehensive Chemical Analyses			•	•	•	69
		5.6.2 Routine Water Quality Analyses	•	 •	•	•	•	71
6.	CONC	LUSIONS		 •	•	•	•	72
7	DFFF	PENCES		 				75

LIST OF TABLES

1.	SUMMARY OF THE BIOMONITORING TESTS CONDUCTED	29
2.	SUMMARY OF THE TOXICITY ENDPOINTS/RESPONSES FOR BIOMONITORING TESTS CONDUCTED ON CANAL CREEK GROUNDWATER (WELL CC-27B) FROM AUGUST 12, 1994	
	TO MAY 10, 1995	46
3.	SUMMARY OF THE FIVE BIMONTHLY CHEMICAL ANALYSES (RANGE OF CONCENTRATIONS) CONDUCTED ON RAW CANAL CREEK GROUNDWATER (WELL CC-27B) FROM AUGUST	
	1994 TO MAY 1995	53
4.	LOG OCTANOL WATER PARTITION COEFFICIENTS OF THE	
	CONTAMINANTS DETECTED IN WELL CC-27B	71

LIST OF APPENDICES

1.	MICROTOX® ASSAYS CONDUCTED ON RAW (pH ≈4.0) CANAL CREEK GROUNDWATER (WELL CC-27B), CHRONIC HISTO-PATHOLOGY EXPOSURE TANKS, AND APG-EA DILUENT WATER A1-	-1
2.	MICROTOX® ASSAYS CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) AND pH OF SAMPLES USED IN ASSAYS	-1
3.	GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 1)	-1
4.	GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 1)	-1
5.	GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 2)	-1
6.	GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 2)	-1
7.	GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 3)	-1
8.	GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 3)	-1
9.	GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 4)	-1
10.	GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 4)	-1
11.	GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 5)	-1
12.	GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 5)	-1

13.	CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 1)	•	A13-1
14.	CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION TEST CONDUCTED ON CANAL CREEK BUFFERED (pH \approx 7) GROUNDWATER (WELL CC-27B) (TEST NO. 1)	•	A14-1
15.	CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION TEST CONDUCTED ON CANAL CREEK RAW (pH \approx 4) GROUNDWATER (WELL CC-27B) (TEST NO. 2)	•	A15-1
16.	CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION TEST CONDUCTED ON CANAL CREEK BUFFERED (pH \approx 7) GROUNDWATER (WELL CC-27B) (TEST NO. 2)	•	A16-1
17.	CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION TEST CONDUCTED ON CANAL CREEK RAW (pH \approx 4) GROUNDWATER (WELL CC-27B) (TEST NO. 3)	•	A17-1
18.	CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION TEST CONDUCTED ON CANAL CREEK BUFFERED (pH \approx 7) GROUNDWATER (WELL CC-27B) (TEST NO. 3)	•	A18-1
19.	CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION TEST CONDUCTED ON CANAL CREEK RAW (pH \approx 4) GROUNDWATER (WELL CC-27B) (TEST NO. 4)	•	A19-1
20.	CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION TEST CONDUCTED ON CANAL CREEK BUFFERED (pH \approx 7) GROUNDWATER (WELL CC-27B) (TEST NO. 4)	•	A20-1
21.	CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION TEST CONDUCTED ON CANAL CREEK RAW (pH \approx 4) GROUNDWATER (WELL CC-27B) (TEST NO. 5)	•	A21-1
22.	CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION TEST CONDUCTED ON CANAL CREEK BUFFERED (pH \approx 7) GROUNDWATER (WELL CC-27B) (TEST NO. 5)	•	A22-1
23.	FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B)	•	A23-1
24.	FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 1)	•	A24-1

25.	FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH \approx 4) GROUNDWATER (WELL CC-27B) (TEST NO. 2)		•	A25-1
26.	FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 2)	•	•	A26-1
27.	FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 3)	•	•	A27-1
28.	FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 3)	•	•	A28-1
29.	FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 4)			
30.	FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 4)	•	•	A30-1
31.	FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH \approx 4) GROUNDWATER (WELL CC-27B) (TEST NO. 5)	•	•	A31-1
32.	FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 5)	•	•	A32-1
33.	JAPANESE MEDAKA 96-H ACUTE TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 1)	•	•	A33-1
34.	JAPANESE MEDAKA 96-H ACUTE TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 1)	•	•	A34-1
35.	JAPANESE MEDAKA 96-H ACUTE TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 2)	•	•	A35-1
36.	CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B)			አ ን6_1
	(TEST NO. 2)	•	•	W20-1

37.	JAPANESE MEDAKA 96-H ACUTE TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 3)
38.	JAPANESE MEDAKA 96-H ACUTE TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 3)
39.	JAPANESE MEDAKA 96-H ACUTE TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 4)
40.	JAPANESE MEDAKA 96-H ACUTE TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 4)
41.	JAPANESE MEDAKA 96-H ACUTE TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 5)
42.	JAPANESE MEDAKA 96-H ACUTE TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 5)
43.	LIST OF DATA REPORTS FOR THE AMES ASSAYS CONDUCTED ON CANAL CREEK GROUNDWATER (CC-27B), WEST BRANCH OF CANAL CREEK WATER, AND APG-EA TAP WATER
44.	FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX) CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 1)
45.	FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX) CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 1)
46.	FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX) CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 2)
47.	FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX) CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 2)
48.	FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX) CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 3)

49.	FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX) CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 3)
50.	FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX) CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 4)
51.	FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX) CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 4)
52.	FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX) CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 5)
53.	FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX) CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 5)
54.	DISPOSITION OF FISH DURING THE JAPANESE MEDAKA CHRONIC HISTOPATHOLOGY STUDY
55.	GROWTH MEASUREMENTS OF THE SIX-MONTH INTERIM AND NINE-MONTH FINAL JAPANESE MEDAKA IN THE CHRONIC HISTOPATHOLOGY STUDY
56.	SUMMARY OF THE STATISTICAL ANALYSES OF GROWTH FOR THE SIX-MONTH INTERIM AND NINE-MONTH FINAL JAPANESE MEDAKA IN THE CHRONIC HISTOPATHOLOGY STUDY
57.	
58.	COMPREHENSIVE CHEMICAL ANALYSES CONDUCTED ON RAW (pH ≈4) CANAL CREEK GROUNDWATER (WELL CC-27B), WEST BRANCH OF CANAL CREEK WATER, APG-EA TAP WATER, AND CHRONIC HISTOPATHOLOGY EXPOSURE TANKS A58-1
59.	·

SECTION 1

INTRODUCTION

The prediction of potential adverse toxicological effects of contaminated groundwater to aquatic ecosystems is difficult because subsurface contamination is a highly complex environmental problem. The problem is compounded when multiple contaminants of different toxicological classes are present. To assess ecological hazards of contaminated groundwater, it is necessary to understand the fate, transport, and persistence of the contaminants present in the subsurface. A number of processes, such as hydrodynamic solute transport, abiotic, biotic, and multiphase flow, can affect the fate and mobility of contaminants in groundwater (Barbee, 1994; Knox et al., 1993).

The current study is an evaluation of the toxicity of contaminated groundwater at the West Branch of Canal Creek site located in the Canal Creek area of the U.S. Army Aberdeen Proving Ground-Edgewood Area (APG-EA), Aberdeen, MD. The groundwater in the West Branch of Canal Creek site is contaminated with multiple heavy metals and chlorinated aliphatic hydrocarbons (Lorah and Clark, 1992). In 1990, the Canal Creek area was placed on the National Priorities List established under the Federal Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA/Superfund). The U.S. Army and the U.S. Environmental Protection Agency Region III signed an Interagency Agreement in 1990 for remedial investigation/feasibility study (RI/RF) of the area in accordance with CERCLA and applicable state law. West Branch of Canal Creek and its surrounding marshes are the major locations in the Canal Creek area at which contaminated groundwater is currently discharging to the aquatic environment (Oliveros and Vroblesky, 1989).

The toxicological evaluation of the West Branch of Canal Creek site groundwater contamination was designed to be conducted in two sequential phases. The primary objective of Phase 1 was a determination of the potential toxicity of the groundwater in The Phase 1 study was conducted in situ for two reasons. First, if the evaluation showed that the groundwater was not toxic, further hazard assessment studies of the groundwater discharge into the West Branch of Canal Creek ecosystem may not have been necessary. Secondly, if the evaluation showed that the groundwater was not toxic, treatment of the groundwater may not be necessary as a remedial action alternative to comply with CERCLA. If the in situ study had not been conducted and the Phase 2 studies (briefly discussed below) showed that the West Branch of Canal Creek sediments were toxic, it would have been difficult to differentiate between toxicity derived from 1) groundwater only, 2) toxicity from other sources, such as, former APG-EA discharges, land runoff, air deposition, etc. (Lorah and

Clark, 1992) and 3) possible toxicity interactions of contaminants from the groundwater and other sources.

A secondary objective of Phase 1 was to evaluate, where test systems were appropriate for use in low salinity waters, the potential toxicity of West Branch of Canal Creek water. The West Branch of Canal Creek studies were conducted concurrently with the <u>in situ</u> studies to obtain background data on the potential toxicity of the creek water. Only aqueous phase assays were used in the water column studies of West Branch of Canal Creek water; no sediment systems were studied.

Phase 2, an evaluation of the potential toxicity of the sediments impacted by the contaminated groundwater "plume" as it moves through the marsh and bottom sediments into West Branch of Canal Creek, was to be implemented if the groundwater proved to be toxic. As discussed in this report, several Phase 1 biomonitoring systems detected toxicity in the groundwater; thus, preliminary sediment studies for Phase 2 have been initiated. The results of the Phase 1 study will be integrated with the Phase 2 results and other pertinent data to derive a preliminary hazard assessment of the groundwater discharge into West Branch of Canal Creek. The Phase 2 studies and analyses will be given in a separate report.

As stated above, the objective of Phase 1 was to evaluate the potential toxicity of the groundwater in situ to aquatic organisms because it was known that the groundwater enters the West Branch of Canal Creek ecosystem. Although microorganisms are the primary organisms present in most subsurface environments, an array of surrogate biomonitoring systems integrated into a tiered hazard framework was used in the evaluation. The tiered hazard assessment approach was similar to that used in a hazard assessment evaluation of the contaminated surficial aquifer at APG-EA's Beach Point Peninsula (Burton et al., 1994). The array of biomonitoring assays, which covered several levels of biological complexity, was selected to maximize the predictability of potential adverse pollutant effects to aquatic organisms (Dutka and Kwan, 1988; National Research Council, 1981; Schaeffer and Janardam, 1987).

SECTION 2

OBJECTIVES OF STUDY

The primary objectives of the study were to:

- 1) Evaluate the acute toxicity of the groundwater using the 96-h EC50 algal (Selenastrum capricornutum) growth test, 48-h LC50 cladoceran (Ceriodaphnia dubia) assay, 96-h LC50 fathead minnow (Pimephales promelas) assay, and 96-h LC50 Japanese medaka (Oryzias latipes) assay. In addition, possible temporal changes in the acute toxicity of the groundwater were quantified using the 5- and 15-min Microtox® procedure (Photobacterium phosphoreum bioluminescent activity).
- 2) Evaluate the chronic toxicity of the groundwater using the 96-h EC50 algal (S. capricornutum) growth test, 7-d cladoceran (C. dubia) survival and reproduction test, and 7-d fathead minnow (P. promelas) survival and growth test.
- 3) Determine the genotoxicity potential of unconcentrated and concentrated samples of the groundwater using the Ames assay.
- 4) Determine the developmental toxicity potential of the groundwater using the frog (<u>Xenopus laevis</u>) embryo teratogenesis assay <u>Xenopus</u> (FETAX).
- 5) Determine the chronic histopathological potential of the groundwater using a 9-month Japanese medaka (<u>O. latipes</u>) growth and chronic histopathology test.
- 6) Quantify the major chemicals present in the groundwater and monitor the general water quality of the groundwater.
- 7) Determine toxicity at pH 7, where appropriate, so that the data could be used, if necessary, in the Phase 2 hazard assessment of the groundwater as it enters the West Branch of Canal Creek.

The secondary objectives of the study were to evaluate the potential toxicity of West Branch of Canal Creek water using the above biomonitoring systems which were appropriate for use in low salinity water. The following evaluations were conducted:

1) Evaluate the acute toxicity of West Branch of Canal Creek water using the 96-h LC50 Japanese medaka assay. Evaluate the possible acute toxicity and temporal changes in the acute toxicity of West Branch of Canal Creek water using the 5- and 15-min Microtox® procedure.

- 2) Determine the genotoxicity potential of unconcentrated and concentrated samples of West Branch of Canal Creek water using the Ames assay.
- Determine the chronic histopathological potential of the West Branch of Canal Creek water using the 9-month Japanese medaka growth and chronic histopathology test.
- 4) Quantify the major chemicals present in the West Branch of Canal Creek water and monitor the general water quality of the West Branch of Canal Creek water.

SECTION 3

WEST BRANCH OF CANAL CREEK SITE DESCRIPTION

The West Branch of Canal Creek is located in the Canal Creek area of the U.S. Army Aberdeen Proving Ground-Edgewood Area (APG-EA), Aberdeen, MD. As discussed in Section 3.3, West Branch of Canal Creek and its surrounding marshes are the major locations in the Canal Creek area at which contaminated groundwater is currently discharging. The studies described in Phase 1 of this report were conducted with contaminated groundwater obtained from the U.S. Geological Survey's (USGS) contaminant fate and mobility study site located in the West Branch of Canal Creek study area. Preliminary Phase 2 sediment studies (results to be given in a separate report) are being conducted with contaminated sediment also obtained from the USGS's contaminant fate and mobility study The USGS's West Branch of Canal Creek contaminant fate and mobility study site is bounded approximately on the northeast by Hanlon Street, southwest by West Branch of Canal Creek marshes, southeast by 35th Street, to approximately 200 m southwest of Hanlon Street. Site description data for the Canal Creek area will be discussed where appropriate for the West Branch of Canal Creek study site.

3.1 Geographic Setting and Land Use

The Canal Creek area is bordered by the Bush River and Gunpowder River which both drain to the Chesapeake Bay. Lauderick Creek and Kings Creek discharge to the Bush River on the eastern boundary of the area. The East and West Branches of Canal Creek, which provide surface drainage for a major part of the Canal Creek area, flow into the Gunpowder River on the western boundary (Lorah and Vroblesky, 1989).

Canal Creek, which provides surface drainage for a major part of the Canal Creek area, drains a land surface of more than 1,215 ha (~3,000 acres) (Lorah and Clark, 1992). The creek is tidally influenced; tidal ranges vary from about 0.15 to 0.46 m (≈0.5 to 1.5 ft) depending on the location. Wading birds, ducks, shorebirds, frogs, and muskrat can be seen in the wetland areas of Canal Creek. The creek supports a variety of freshwater and estuarine aquatic life. Marshes, which are classified as estuarine, emergent, irregularly flooded wetlands, surround West Branch of Canal Creek. The land immediately surrounding the West Branch consists of tall marsh vegetation, including grasses, sedges, cattails, Phragmites, arrowhead, and pickerelweed (Lorah and Clark, 1992). A detailed description of the plant communities associated with West Branch of Canal Creek is given in ICF Kaiser (1995).

3.2 Hydrogeology

The geology of the Canal Creek area has been described by USGS (Oliveros and Vroblesky, 1989). Briefly, the Aberdeen Proving Ground-Edgewood Area is underlain by Coastal Plain sediments consisting of unconsolidated clay, silt, and sand layers with occasional gravel lenses. The Coastal Plain sediments dip southeastward, increasing to a thickness of ≈400 ft in the eastern part of the Canal Creek area. Three aquifers and two confining units are present in most of the Canal Creek area as follows: 1) the surficial aquifer; 2) the upper confining unit; 3) the Canal Creek aquifer; 4) the lower confining unit; and 5) the lower confined aquifer.

The Canal Creek aquifer is the major aquifer underlying most of the Canal Creek area with a thickness ranging from 9.1 to 21.3 m (30 to 70 ft). As discussed by Lorah and Clark (1992), the aquifer is unprotected by a surficial clay layer where the upper confining unit is absent. The upper confining unit is absent in two areas that extend approximately parallel to the present courses of the East and West Branches of Canal Creek (Lorah and Clark, 1992). Near the West Branch of Canal Creek, the upper confining unit and Canal Creek aquifer begin to outcrop, leaving the Canal Creek aquifer exposed to the surface. That is, a direct hydraulic connection exists between the surficial aquifer and the Canal Creek aquifer near the West Branch of Canal Creek because of the absence of the upper confining unit. This part of the Canal Creek aquifer has been designated "unconfined" by Oliveros and Vroblesky (1989).

A Pleistocene paleochannel eroded the sediments of the upper confining unit near the East Branch of Canal Creek. As a result, the sediments of the Canal Creek and surficial aquifers are directly connected. The Canal Creek aquifer becomes truly confined east and south of the paleochannel where the aquifer dips approximately 15.2 m per 1,609 m (50 ft/mile) under the thickening upper confining unit. The upper confining unit is over 100 ft thick in the extreme southeastern part of the Canal Creek area.

The surficial aquifer (0 to 9.1 m; 0 to 30 ft), which overlies the Canal Creek aquifer, becomes discontinuous and pinches out east and northeast of the paleochannel (Lorah and Clark, 1992). Isolated portions of the surficial aquifer are present south of Kings Creek and at Beach Point. The lithology of the surficial aquifer is highly variable. The lower confining unit and lower confined aquifer underlie the Canal Creek aquifer. The lower confining unit has a thickness of 10.7 to 19.8 m (35 to 65 ft). The lower confined aquifer appears to be continuous over the entire Canal Creek area.

3.3 Groundwater Flow

The Canal Creek aquifer contains two separate flow systems: one unconfined and part of the local flow system, and one confined and part of the regional flow system (Oliveros and Vroblesky, 1989). The local flow system occurs where the upper confining unit is absent near the West Branch of Canal Creek and the paleochannel near the East Branch of Canal Creek. Groundwater in the local flow system of the Canal Creek aquifer discharges vertically upward to the surficial aquifer or directly to the surface-water bodies, whereas groundwater in the regional flow system moves southeast and dips down into the deeper confined flow system (Lorah and Clark, 1992). Equipotential mapping of the Canal Creek aguifer shows that the groundwater divide between the eastward and westward flowing portions of the Canal Creek aquifer runs ≈ 1,400 m (4,700 ft) in a north south direction from the Route 24 entrance of the Edgewood Arsenal (approximately parallel to Hoadley Road) to approximately the same latitude as the confluence of the East and West Branches of Canal Creek (JEG, 1995).

Although the hydraulic heads in the Canal Creek aquifer show characteristics of local flow conditions near both branches of Canal Creek, the aquifer is most strongly influenced by the presence of the West Branch of Canal Creek because the aquifer is largely unconfined near this creek branch (Lorah and Clark, 1992). As discussed by Lorah and Clark (1992), the upper part of the Canal Creek aguifer at sites located near the West Branch of Canal Creek has been hydrologically defined as the "surficial aquifer" because it behaves as a water table aquifer. Near the West Branch of Canal Creek, hydraulic head distributions in this water table aquifer are very similar to the heads measured in wells screened in the lower part of the Canal Creek aquifer. Large bends in the hydraulic head contours around the West Branch of Canal Creek indicate that groundwater in both the lower and upper parts of the Canal Creek aquifer flows toward and discharges to the West Branch of Canal Creek. Some groundwater flow also occurs toward the East Branch of Canal Creek near the junction of both branches of Canal Creek. Groundwater flow in the Canal Creek aquifer near the West Branch of Canal Creek is also affected by drainage into a network of leaky sewers and storm drains (Oliveros and Vroblesky, 1989).

The Canal Creek aquifer receives recharge from three sources: 1) downward flow from the surficial aquifer; 2) upward recharge from the lower confined aquifer; and 3) precipitation infiltrating to the aquifer from updip, west and north of the Canal Creek area (Oliveros and Vroblesky, 1989). Recharge from the surficial aquifer occurs in several areas that contain a number of former activities which may have contributed to contamination; thus, the Canal Creek aquifer is more susceptible to contamination in these recharge areas (Lorah and Clark, 1992).

The surficial aquifer receives recharge from direct infiltration of precipitation or surface water and from upward leakage from the Canal Creek aquifer (Lorah and Clark, 1992). Direct infiltration can occur over most of the aquifer surface. As discussed by Lorah and Clark (1992), the surficial aquifer discharges to surface water, to leaky sewers and storm drains, and to the Canal Creek aquifer. Much of the downward discharge from the surficial aquifer to the Canal Creek aquifer probably returns as recharge to the surficial aquifer at topographic lows; however, some may enter the regional flow system of the Canal Creek aquifer and move to the southeast to discharge off-site.

Present water level fluctuations in the Canal Creek area are caused by rainfall and tidal effects (Lorah and Clark, 1992). At any given site, the maximum seasonal fluctuation in water levels observed in the Canal Creek aquifer is 0.6 to 0.9 m (2 to 3 ft). Seasonal changes in hydraulic heads in the Canal Creek aquifer are most pronounced in the unconfined parts of the aquifer. Hydrograph recordings from a well screened in the unconfined Canal Creek aquifer near the West Branch of Canal Creek show a rise in water levels generally during the spring when rainfall and recharge are greatest; a decline in water levels generally occurs in the late summer to early fall when rainfall is the least.

In the surficial aquifer, seasonal differences in head are greatest in relatively shallow, hydrologically isolated parts of the aquifer located east of the East Branch of Canal Creek (Lorah and Clark, 1992). Seasonal differences in head as high as 1.7 m (5.5 ft) have been recorded in the surficial aquifer. Seasonal fluctuations in the lower confined aquifer generally are less pronounced than those in the Canal Creek aquifer or surficial aquifer. Groundwater flow directions in the three aquifers do not vary significantly over the Canal Creek area because of seasonal fluctuations. Pumping stresses do not currently affect groundwater flow within the Canal Creek area (Lorah and Clark, 1992).

3.4 Historical Use

The Canal Creek area has been used for a number of activities which may have contributed to the contamination of the soils, groundwater, and marshes of the creeks (Nemath, 1989). Nemath (1989) has discussed in detail the major activities which were known to have occurred since 1917 in the Canal Creek area. The activities included manufacturing, filling of munitions, and waste disposal. Lorah and Vroblesky (1989) summarized Nemath's report of past activities and briefly discussed those plants and activities that are believed to have had the greatest potential for environmental impact. The following is a brief summary taken primarily from Lorah and Vroblesky (1989).

Five major production-scale activities occurred at Canal Creek. They included the manufacturing of chlorine, mustard (primarily sulfur mustard), chloroacetophenone, impregnite material [N,N'-dichloro-bis-(2,4,6-trichlorophenyl)urea], and the impregnating of protective clothing. The plants were most active during World Wars I and II. Pilot, or experimental, manufacturing was performed to gather data on manufacturing processes in support of the larger production-size activities. Munitions filling operations have been conducted from 1918 to the present. Other activities that also may have affected the environment include the operation of machine and maintenance shops, motorpool garages, and the airfield.

The primary method of waste disposal from WWI until recently was by discharge to sewer systems. As discussed by Lorah and Vroblesky (1989), the sewer lines from the majority of the manufacturing and munitions filling plants discharged to the East or West Branches of Canal Creek. Exceptions include a pilot plant east of the airport, which discharged to Kings Creek, and the mobile clothing-impregnating units that operated at Beach Point, which discharged to the Bush River and Kings Creek. Solid wastes, such as, sludges and tars, were discharged through the sewers if the wastes could be thinned with water or held at elevated temperatures to keep them fluid.

Wastes generally received little or no treatment prior to discharge before and during WWII (Lorah and Vroblesky, 1989). Wastes that could not be discharged through the sewer systems were often dumped into the marshy areas along Canal Creek. A number of disposal pits, a sand pit, salvage yard, and a fire-training pit were used throughout Canal Creek for various operations. Waste treatment increased after WWII with the increased awareness of environmental concerns and regulations.

Organic solvents, such as carbon tetrachloride, 1,1,2,2-tetrachloroethane, and trichloroethylene, were some of the most common wastes produced in large quantities from the manufacturing, munitions filling, and other miscellaneous activities in the Canal Creek area (Lorah and Vroblesky, 1989). All the major manufacturing plants, except for the chlorine plants, used solvents as raw materials, decontaminating agents, and cleaning agents. A number of heavy metals were used in various processes but in much smaller quantities than the organic solvents (Nemath, 1989).

3.5 Groundwater Contamination

Few studies of groundwater contamination were conducted prior to 1985 in the Canal Creek area (Nemath, 1989, Lorah and Vroblesky, 1989). The USGS initiated a 5-year study in 1985 to determine the extent of groundwater contamination in the Canal Creek area (Lorah and Clark, 1992). The observation well network

that was established in the Canal Creek area included 87 wells installed during the first phase of the study and 65 wells installed during the second phase to further define the extent and sources of contamination. The observation wells were installed at a total of 77 sites that generally consist of clusters of two to six wells screened at different depths; only one well was placed at some sites. The sites were chosen on the basis of historical information regarding chemical manufacturing and waste disposal areas. The wells were screened in the three major aquifers with the majority of the wells screened in the Canal Creek aquifer.

A number of well sites were established near West Branch of Canal Creek (Lorah and Clark, 1992). Approximately 24 sites were established in the first-phase of drilling followed by an additional 12 sites in the second phase. A detailed description of the suspected sources near West Branch of Canal Creek and the well sites are given in Lorah and Clark (1992); thus, the information will not be repeated in this report.

Chemical monitoring (inorganic and organic constituents) by USGS confirmed that hazardous chemicals from prior activities were widespread in the surficial and Canal Creek aquifers (Lorah and Clark, 1992). No contamination was detected in the lower confined aquifer, which is protected by a clay unit that underlies the Canal Creek aquifer. Fifteen inorganic constituents were present in the surficial aquifer in concentrations that exceed current or proposed drinking water regulations established by the U.S. Environmental Protection Agency (EPA). They included dissolved solids, chloride, iron, fluoride, manganese, aluminum, antimony, arsenic, beryllium, cadmium, chromium, lead, mercury, nickel, and thallium. In addition, copper and zinc were present in groundwater in elevated concentrations compared to background concentrations in the study area (Lorah and Clark, 1992).

Chlorinated volatile organic compounds were the dominant groundwater contaminants and included 1,1,2,2-tetrachloroethane, trichlorethylene, chloroform, 1,2-trans-dichloroethylene, and carbon tetrachloride (Lorah and Clark, 1992). Additional volatile organic compounds included benzene, chlorinated benzenes, pentachloroethane, and several unknown compounds. Semi-volatile organic contaminants were not as widely distributed in the groundwater as the volatile compounds. Nitrobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, and two mustard degradation products (dithiane and 1,4-oxathine) were present at three or fewer sites. Other semi-volatile contaminants that were reported (tentatively identified) in some samples include hexachloroethane, 1,2-dibromoethene, tribromethane, naphthalene, various compound related to petroleum fuels, and unknown compounds (Lorah and Clark, 1992).

3.6 Sediment Contamination

The contaminants present in the sediments of Canal Creek have been investigated by ICF Kaiser (1995). A total of 14 sediment samples were taken from Canal Creek and analyzed for inorganic and organic contaminants and toxicity to an aquatic Five samples were taken from West Branch of Canal organism. Creek; five from East Branch of Canal Creek; and four below the confluence of the West and East Branches of Canal Creek. Most of EPA's priority pollutant heavy metals (selenium and thallium were not measured) were found in the sediments of all 14 stations with the exceptions of cadmium which was present at 9 of 14 stations, nickel at 11 of 14 stations, and silver at 7 of 14 stations. Cadmium, mercury, and zinc were judged by ICF Kaiser (1995) to be inorganic chemicals of potential concern which may impact benthic organisms. Cadmium was found at concentrations to be judged a chemical of concern in West Branch of Canal Creek sediment taken from the current study site.

A number of organic contaminants were also found in the sediments at one or more of the 14 stations sampled during the ICF Kaiser (1995) study. The following organic chemicals of concern were found at the highest concentrations of the 14 stations in the sediments taken from the West Branch of Canal Creek study site: pesticides/aroclors (Aroclor-1260, α -BHC, dieldrin, and endosulfan I); polycyclicaromatic hydrocarbons (phenanthrene); explosives [N,N-bis(2,4,6-trichlorophenyl)urea and nitroglycerin]; and other volatiles/semi-volatiles (1,2,4-trichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 2,4,6-trichlorophenol, 4-chloroaniline, and pentachlorophenol).

Twenty-eight day chronic toxicity tests were conducted with the amphipod, Hyalella azeteca, to determine the potential toxicity of the Canal Creek sediments to benthic organisms (ICF Kaiser, 1995). Significant mortality occurred to amphipods at two of the 14 stations in Canal Creek; significant reductions in growth occurred at a third station. Significant mortality occurred in West Branch of Canal Creek sediment taken from the current study site and at one station at the confluence of West and East Branches of Canal Creek. Growth was significantly reduced at one station in East Branch of Canal Creek. ICF Kaiser (1995) concluded that the biological effects occurred at chemical "hot spots", that is, the observed reductions in survival and growth occurred in sediments where high chemical concentrations were detected.

3.7 Surface Water Contamination

The contamination of Canal Creek surface waters was also studied during the 5-year USGS study initiated in 1985 (Lorah and Clark, 1992). Surface water samples were collected from the West and East Branches of Canal Creek, at the mouth of the Gunpowder

River, and from the area that borders Beach Point in Kings Creek and the Bush River. Most of the surface water sampling sites were located where contaminated groundwater was most likely to discharge and near past sewerline discharge points in the Canal Creek area. Sampling sites were most heavily concentrated along the West Branch of Canal Creek and around Beach Point because preliminary data indicated that many sources of shallow contaminated groundwater and wastewater existed in these areas.

Five inorganic constituents were found in surface water samples that were collected from West Branch of Canal Creek in concentrations that exceed EPA's acute or chronic aquatic life criteria for freshwater organisms. The five inorganic contaminants included cadmium, iron, lead, mercury, and zinc. According to Lorah and Clark (1992), a major source of the inorganic contaminants may be the remobilization of metals that accumulated in bottom sediments from the discharge of untreated industrial wastewaters.

The same volatile organic compounds that were the major groundwater contaminants were detected in surface water samples. The discharge of shallow contaminated groundwater is probably the major source of the surface water contaminants (Lorah and Clark, 1992). According to Lorah and Clark (1992), dissolution of dense non-aqueous phase liquids (DNAPL) that are still present in the bottom sediments may be a likely source of the volatile organic contaminants found in the surface waters. Phthalate esters, which are common laboratory contaminants, were the only organic compounds detected in the surface water samples in concentrations that exceeded either acute or chronic ambient water quality criteria for freshwater aquatic life.

SECTION 4

MATERIALS AND METHODS

4.1 General

Groundwater was withdrawn from well CC-27B (Harford County Permit No. HA-81-3062) which is one of two of the most highly contaminated wells at the West Branch of Canal Creek site (Lorah and Clark, 1992). The well is 12.2 m deep (40 feet) and has a screened interval of 10.7-12.2 m (35-40 ft). The well pump intake was located at 11.3 m (37 feet). Groundwater was pumped continuously from the well at a rate of ≈7.5 L/min (2 gal/min).

Several components of the biomonitoring study were conducted on-site (see below) in an aquatic biomonitoring trailer with bioassay capabilities similar to a CEHR trailer described by Herriott and Burton (1992). Two sources of dilution water were used in the studies. The first was APG-EA potable drinking which was charcoal filtered, aerated before use, and adjusted to ≈25 °C as described in Herriott and Burton (1992). The second source was surface water pumped from the West Branch of Canal Creek. stainless steel pump, which was placed in a PVC pipe housing (25.4 cm O.D.; 10 inches) in the creek to protect the pump from floating debris, supplied ≈7.5 L/min (≈ 2 gal/min) to the biomonitoring trailer. The creek water was filtered at $\approx 80~\mu$ before use. Groundwater, West Branch of Canal Creek water, and APG-EA tap water were supplied to the trailer via polyethylene pipe. Excess groundwater, creek water, and tap water from the trailer were collected, treated via charcoal, and discharged to the APG-EA Wastewater Treatment Plant collection system.

An array of 8 biomonitoring systems were evaluated during the 9-month study which ran from August 15, 1994 to May 10, 1995. The biomonitoring systems included a number of endpoints. A brief summary of the biomonitoring tests conducted and the dates of the studies is given in Table 1. The pH of the groundwater from well CC-27B was ≈4; thus, many of the assays were conducted at both pH 4 and pH 7. The toxicity at pH 7 was studied so that the data could ultimately be used in a hazard assessment of the groundwater as it enters the West Branch of Canal Creek which generally has a pH in the low neutral range.

Although microorganisms are the primary organisms present in most subsurface environments, an array of surrogate biomonitoring systems integrated into a tiered hazard framework was used in the groundwater evaluation. The array of biomonitoring assays covered several levels of biological complexity to maximize the predictability of potential adverse pollutant effects to aquatic organisms. Although the groundwater ultimately discharges into the West Branch of Canal Creek, freshwater surrogate

TABLE 1. SUMMARY OF THE BIOMONITORING TESTS CONDUCTED^a

Test and/or Species	Type of Test	Test No.	Test Periods
Microtox® (bacterium)	5- and 15-min EC50	N/A	08/15/94 - 05/10/95
Green alga	96-h EC50;	1	09/13/94 - 09/17/94
	96-h Growth	2	11/11/94 - 11/15/94
		3	01/24/95 - 01/28/95
		4	03/24/95 - 03/28/95
		5	05/03/95 - 05/07/95
Cladoceran	48-h LC50;	1	09/13/94 - 09/20/94
	7-d Survival	2	11/08/94 - 11/15/94
	and reproduction	3	01/24/95 - 01/31/95
	-	4	03/24/95 - 03/31/95
		5	05/03/95 - 05/10/95
Fathead	96-h LC50;	1	09/13/94 - 09/20/94
minnow	7-d Survival	2	11/08/94 - 11/15/94
	and growth	3	01/24/95 - 01/31/95
	_	4	03/24/95 - 03/31/95
		5	05/03/95 - 05/10/95
Japanese	96-h LC50	1	10/11/94 - 10/15/94
medaka		2	12/12/94 - 12/16/94
		3	02/06/95 - 01/10/95
		4	04/07/95 - 04/11/95
		5	05/08/95 - 05/12/95
Genotoxicity	Ames assay	1	09/12/94
(bacterium)		2	11/07/94
		3	01/23/95
		4	03/23/95
		5	06/07/95
Developmental	4-d FETAX	1	09/16/94 - 09/20/94
toxicity		2	11/11/94 - 11/15/94
(African clawed		3	01/25/95 - 01/29/95
frog)		4	03/24/95 - 03/28/95
		5	05/03/95 - 05/07/95
Chronic	6-m exposure	N/A	08/12/94 - 02/08/95
histopathology and growth (Japanese medaka	9-m exposure	N/A	08/12/95 - 05/10/95

TABLE 1. (CONTINUED)

Test and/or Species	Type of Test	Test No.	Test Periods
Comprehensive	N/A	1	09/12/94
chemical		2	11/07/94
analyses		3	01/23/95
-		4	03/23/95
		5	05/02/95
Munitions	N/A	1	09/16/94
analyses	·	2	11/09/94
•		3	01/23/95
		4	04/21/95
.		5	04/28/95
Routine water quality analyses	N/A	N/A	Daily/weekly

See Section 4 for a description of the test method, various media sampled, types of samples taken, etc., for each test system.

biomonitoring systems were used in the evaluation because the groundwater was freshwater. An argument can be made that low saline organisms should also have been included because the West Branch of Canal Creek is a freshwater/low salinity system influenced primarily by tidal flux and rainfall. However, as stated in the Introduction, the primary goal of the groundwater study was to evaluate the toxicity of the groundwater in situ. Thus, low salinity organisms were not included in the biomonitoring array.

In addition to the groundwater studies, several studies were conducted to determine the potential toxicity of West Branch of Canal Creek water. Only those test systems that were appropriate for use in low salinity waters were used in the evaluation. Aqueous phase assays were used in the water column studies of West Branch of Canal Creek water; no sediment systems were studied.

The experimental procedures and frequency of each assay are described in detail below. The following is a brief description of the tier of biomonitoring systems employed in the evaluation. Acute toxicity of the groundwater was evaluated three times each week using the 5- and 15-min Microtox® assay which uses microbial (Photobacterium phosphoreum) bioluminescent activity. In addition to providing rapid toxicity data, the test was also

conducted to monitor the toxicity of the groundwater over time. Acute toxicity data were also obtained for the Japanese medaka (Oryzias latipes) and the algal, invertebrate, and fish used in the short-term toxicity tests described in Section 4.2 below. The algal, invertebrate, and fish assays were conducted five times on a bimonthly basis during the course of the study at a pH of 4 and 7.

The following 4- to 7-d short-term toxicity tests, which were used to estimate chronic toxicity, were performed on a bimonthly basis: 96-h algal (Selenastrum capricornutum) growth test; 7-d cladoceran (Ceriodaphnia dubia) survival and reproduction test; and 7-d fathead minnow (Pimephales promelas) survival and growth test. Five bimonthly tests were conducted with each species at pH 4 and pH 7. In addition to the short-term methods used to estimate chronic toxicity, growth data at 6 and 9 months from the chronic Japanese medaka histopathology test described below were also used as chronic toxicity endpoints.

Gene mutation potential was determined using the Ames Salmonella/mammalian-microsome reverse assay. Developmental toxicity was determined by the 96-h frog embryo teratogenesis assay-Xenopus (FETAX) using the African clawed frog, Xenopus laevis. Genotoxicity and developmental toxicity assays were conducted at bimonthly intervals during the same periods as the above acute and short-term chronic tests were conducted. Chronic histopathological changes were evaluated using the Japanese medaka as the experimental model. Both unexposed and fry exposed to diethylnitrosamine (DEN) were exposed continuously under flow-through test conditions for 6- and 9-month exposure periods. Identical exposures were performed using both APG-EA tap water and West Branch of Canal Creek water as diluent water sources.

Comprehensive chemical analyses of the raw groundwater, filtered APG-EA tap water, West Branch of Canal Creek water, and test dilutions in the chronic histopathology assay were performed five times at bimonthly intervals. The chemical analyses were conducted during the same periods that the above bimonthly assays were conducted. Routine water quality analyses were also conducted at various frequencies on a weekly basis.

4.2 Acute Toxicity Tests

4.2.1 Microtox®

The Microtox® test (Microbics Corp., Carlsbad, CA) is a rapid acute toxicity test that may be completed in less than one hour. The test is based on the reduction in bioluminescence of the marine bacterium P. phosphoreum when exposed to a sample of unknown toxicity. The degree of light reduction, an indication of metabolic inhibition in the test preparation, indicates the degree of toxicity of the sample. The Microtox® test procedures

followed were those outlined in Herriott and Burton (1992) which were derived from Microtox*'s operating manual (Microtox*, 1988). A Microtox* Model 500 Analyzer with PC version 6.3 software was used for both a 5-min and 15-min test on all samples.

Several sources of water were assayed on-site over the 9-month test period. With the exception of two samples, all samples were composite grab samples taken from the 9-month histopathology exposure tanks as described in Section 4.6. Grab samples were taken directly from the groundwater supply line and the West Branch of Canal Creek (special 2-month volatile organics study described below) water supply line as they entered the biomonitoring facility. The West Branch of Canal Creek samples taken from the 9-month histopathological exposure aquaria were composite grab samples (see below). All assays were conducted three times per week with the exception of the APG-EA tap water and West Branch of Canal Creek supply water volatile organics study which were assayed weekly as described below.

The following Microtox® assays were conducted three times a week from August 15, 1994 until the biomonitoring study was completed on May 10, 1995. Both 5- and 15-min assays were conducted on 100% groundwater, 25% groundwater by volume diluted with APG-EA tap water, and 100% West Branch of Canal Creek water. The 25% groundwater by volume samples were composite grab samples taken from the chronic histopathology study tanks as described below in Section 4.6. A 25% groundwater by volume composite grab sample taken from the chronic histopathology study tanks diluted with West Branch of Canal Creek water was scheduled to be taken throughout the 9-month exposure period. However, as explained in Section 4.6, the assays were discontinued after six months (February 5, 1995), because the diluent water was switched from West Branch of Canal Creek water to APG-EA tap water.

Five- and 15-min assays were conducted three times per week for ≈1.5 months (August 15, 1994 to October 5, 1994) on 5 and 1% groundwater by volume samples taken from the 9-month histopathology tanks diluted with both APG-EA tap water and West Branch of Canal Creek water (Section 4.6). The assays were terminated after ≈1.5 months because no toxicity was observed. Weekly assays were conducted for two months (September 2, 1995 to November 5, 1994) on grab samples of 100% West Branch of Canal Creek water taken directly from the fed line as it entered the biomonitoring trailer. These assays were conducted to determine whether or not trace volatile organics in West Branch of Canal Creek water were present at concentrations high enough to cause toxicity before possible volatilization occurred in the 100% control West Branch of Canal Creek histopathology aquaria (Section 4.6). The assays were discontinued after two months of study because no toxicity was detected in the raw West Branch of Canal Creek water.

Standard 5- and 15-min Microtox® assays were conducted once per week on grab samples of 100% APG-EA tap water during the 9-month test period. A previous study of charcoal filtered APG-EA tap water showed that no toxicity existed in the tap water (Burton et al., 1994). Thus, only weekly samples rather than three samples per week were assayed to confirm the earlier finding. Five- and 15-min assays of raw groundwater buffered with 10 N NaOH to a pH of ≈7 were run for 9-months to determine the effect of pH on the toxicity observed for raw 100% groundwater at a pH of ≈4.

4.2.2 Green Alga, Cladoceran, Fathead Minnow, and Japanese Medaka

Acute toxicity values were calculated where possible at pH 4 and 7 for the green alga, cladoceran, and fathead minnow from the data obtained during the short-term chronic tests described in Section 4.3. With regard to the green alga, EPA's Office of Research and Development considers the 96-h algal test for growth to be a short-term chronic test for determining the toxicity of effluents (Horning and Weber, 1985; Weber et al., 1989) as do other investigators for evaluating single chemicals (for ex., see Hughes et al., 1988 and Suter, 1993). EPA's Toxic Substance Control Act office considers the 96-h test to be an acute test (U.S. EPA, 1985 and 1986a). Because we used the short-term chronic method (Section 4.3.1), we analyzed the data as chronic data; however, we also analyzed and reported the results as 96-h acute data so that acute: chronic ratios could be calculated, if needed, for later use in a hazard assessment. Forty-eight-h LC50s and 96-h LC50s were determined where possible for the cladoceran and fathead minnow, respectively.

Five bimonthly 96-h static renewal acute toxicity tests were conducted on-site at 25 °C with the Japanese medaka at a pH of 4 and 7 using the procedure of Weber (1991). All dilutions were renewed daily with groundwater obtained just prior to the renewal. In addition to the 96-h LC50 bioassays using APG-EA tap water as the dilution water, 2 replicates of 10 fish/replicate were exposed to 100% West Branch of Canal Creek water (static renewal every 24 h). The West Branch of Canal Creek exposure was conducted to provide additional supporting data for the long-term exposure of Japanese medaka to West Branch of Canal Creek diluent water discussed in Section 4.6. Routine water quality was taken at the beginning and end of each 24-h renewal. The methods used for the chemical analyses are discussed in Section 4.7.2.

4.3 Short-term Chronic Toxicity Tests

The specific test methods for the short-term chronic tests are given below. Deviations from the test methods are discussed where appropriate. A geometric series of five groundwater concentrations (plus controls) was used in all tests. The

groundwater samples used in the tests were obtained daily and used within 6 h at each 24-h renewal (see below). groundwater samples were transported in glass containers on ice and held at 4°C until used for the tests. Each groundwater sample was split into two aliquots. One aliquot was maintained at pH 4 and the second buffered to pH 7 (10 N NaOH). All five bimonthly short-term chronic bioassays were conducted at pH 4 and The same pH-adjusted aliquots were also used for the FETAX assays discussed in Section 4.5. In addition to the standard bioassays with groundwater, a 100% APG-EA tap water sample was run concurrently with each short-term chronic test to provide supporting toxicological data for the APG-EA tap water used in the chronic histopathology exposures (Section 4.6). bioassays were conducted at the University of Maryland Wye Research and Education Center (UMD/WREC) Aquatic Toxicology Laboratory.

4.3.1 Green Alga

The short-term chronic toxicity of the groundwater to the green alga (\underline{S} . capricornutum) at pH 4 and 7 (10 N NaOH) was determined five times by the EPA procedures given in Weber et al. (1989). A starter culture of \underline{S} . capricornutum was obtained from the culture collection at the University of North Texas, Denton, TX. Stock algal cultures were reared in 2.5 L Pyrex culture flasks containing 1 L of sterilized double strength "AAP" algal assay medium, with sufficient P added to achieve a 20:1 N:P ratio as described in Miller et al. (1978). Cultures were maintained in a constant temperature incubator under constant cool-white fluorescent lights (≈ 300 foot candles) at a temperature of 25 \pm 0.2°C on a shaker table oscillating at 100 rpm (\pm 10 %). Log growth cells were used to start all tests.

Algal test solutions were prepared by dilution of the groundwater with filtered sterilized assay media. Test solutions (100 mL total volume) were dispensed into 250 mL Delong flasks and inoculated with S. capricornutum cells in log growth to achieve a density of $\approx 1 \times 10^4$ cells/mL. Triplicates were prepared for each treatment. The flasks were placed on a shaker table in an incubator set at the culturing conditions described above. Growth measurements (cell density) were made from all replicates in each treatment at 0, 24, 48, 72, and 96 h. Algal cell density was determined from a 1 mL sample with a Model ZBI Coulter Counter (Coulter Electronics, Inc., Hialeah, FL). The instrument was calibrated with each use via hemocytometer counts. Test solutions were not renewed during the 96-h studies.

4.3.2 Cladoceran

The chronic toxicity of the groundwater at pH 4 and 7 to \underline{C} . \underline{dubia} was determined five times by the EPA static renewal method (solutions renewed daily) given in Weber et al. (1989). The

cladoceran was cultured at 25 \pm 1°C in 600 mL glass beakers filled with 400 mL of 20% Perrier:80% reverse osmosis water amended with selenium (2 μ g Se/L as Na₂SeO₃) as recommended by Winner (1989). The diet consisted of a mixture of Cerophyl® (Cerophyl Laboratories, Inc., Kansas City, MO) and the green alga, S. capricornutum, added to the cladoceran culture to achieve final concentrations of 120 μ g Cerophyl®/mL and 6.7 x 10⁵ S. capricornutum cells/mL. Starter cultures of C. dubia were obtained from the Center for Lake Superior Environmental Studies, University of Wisconsin - Superior.

All neonates used in the 7-d survival and reproduction tests were produced by cladocerans in culture that had released at least three broods. The initial age of the neonates in each test was <4 h old. The tests were conducted in 50 mL glass beakers containing 30 mL of test solution. All tests were conducted in an environmental chamber at 25 ± 1°C under a 16-h light:8-h dark photoperiod (fluorescent lights; 60-85 foot candles at the surface of the culture vessels). All test organisms were fed daily as described above at each 24-h renewal. Routine water quality was taken at the beginning and end of each 24-h renewal. The methods used for the chemical analyses are discussed in Section 4.7.2.

4.3.3 Fathead Minnow

The toxicity of the groundwater at pH 4 and 7 to fathead minnows (P. promelas) was determined five times by the EPA static renewal method (solutions renewed daily) given in Weber et al. (1989). All larvae used in the 7-d survival and growth tests were <24 h old at the start of the test. The tests were conducted in 600 mL glass beakers containing 400 mL of test solution. The dilution water was a 20% Perrier:80% reverse osmosis water. All test organisms were fed brine shrimp (Artemia sp.) nauplii <24 h old daily at each 24-h renewal. All tests were conducted at 25 ± 1°C under a 16-h light:8-h dark photoperiod (fluorescent lights; 60-85 foot candles). Routine water chemistry was performed at the beginning and end of each renewal. Dry weight was determined by drying at 100°C for a minimum of 12 h.

Fathead minnow larvae were obtained from the UMD/WREC culture maintained at 25 \pm 1°C in UMD/WREC non-chlorinated well water (mean dissolved oxygen = 8.2; conductivity = 161 $\mu \text{s/cm}$; alkalinity = 53 mg/L as CaCO3; hardness = 52 mg/L as CaCO3; pH ranged from 7.1 to 8.0). The UMD/WREC culture procedures were similar to those recommended by Peltier and Weber (1985). The UMD/WREC culture was initiated with mature fathead minnows obtained from the U.S. EPA Environmental Monitoring and Support Laboratory - Cincinnati, Ohio.

Spawning fish were cultured in fiberglass tanks (2.4 x 0.8 x 0.5 m) containing 0.2 m UMD/WREC well water held at 25 ± 1°C. The spawning adults were fed a diet of frozen brine shrimp (Artemia sp.; Argent Chem. Lab., Redmond, WA) and TetraMin® Staple Food (Ramfab Aquarium Products Co., Oak Ridge, TN) twice daily. Excess food was removed daily. Four sets of spawning fathead minnows were maintained in the culture tanks at a ratio of 1 male:4 females. Replacement spawners were rotated at approximately 3-month intervals. Fathead minnow embryos were collected on spawning substrates (10 cm I.D. x 20 cm long PVC pipe sections cut longitudinally in equal portions) and transferred to 19 L aquaria at 25 ± 1°C in UMD/WREC well water for hatching. All stages of the fish were reared under a 16-h light:8-h dark photoperiod (fluorescent lights; 60-85 foot candles).

4.4 Genotoxicity Test

The Ames assay was used to evaluate the mutagenic potential of unconcentrated and concentrated groundwater, APG-EA tap water, and West Branch of Canal Creek water. This assay system has been shown to detect a diverse group of chemical mutagens (McCann et al., 1975 and McCann and Ames, 1976). The ability to predict chemical mutagenic activity may also serve as a carcinogen prescreen test (Ames et al., 1973). The ability to induce mutation is indicative of a chemical's genotoxic potential. Salmonella typhimurium/mammalian-microsome reverse mutation assays were conducted five times on the raw groundwater, APG-EA tap water, and West Branch of Canal Creek water samples described The assays were conducted on both unconcentrated and concentrated (100X via extraction in methylene chloride followed by rotoevaporation) samples as described below. The Ames mutagenicity assays were conducted by Microbial Associates, Inc., Rockville, MD.

Grab samples of raw groundwater were taken directly from the fed line to the biomonitoring laboratory. The first three of five West Branch of Canal Creek samples were taken via composite grab samples from the chronic histopathology exposure tanks; samples four and five were taken directly from West Branch of Canal Creek (Section 4.5). Grab samples of APG-EA tap water were taken via composite grab samples from the chronic histopathology exposure tanks. One liter samples of each material were siphoned into glass containers with no head space, packed in ice, and transported in insulated containers to Microbial Associates, Inc.

The following five sample sets were analyzed at approximately bimonthly intervals over the 9-month study. Both unconcentrated and concentrated (100X) analyses were conducted on groundwater, APG-EA tap water, and West Branch of Canal Creek water during the first sample period. During the second, third, and fourth sample periods, both unconcentrated and concentrated

analyses were conducted on groundwater and West Branch of Canal Creek water; APG-EA tap water was not analyzed. Concentrated samples only of groundwater, APG-EA tap water, and West Branch of Canal Creek water were analyzed during the fifth sample period.

The unconcentrated and concentrated (100X) samples were analyzed by Microbial Associates, Inc. Protocol No. SPGT501005 (Microbiological Associates, Inc., 1994). Briefly, the mutagenicity assays evaluated the groundwater, APG-EA tap water and West Branch of Canal Creek samples for their ability to induce reverse mutations at the histidine locus in the genome of specific S. typhimurium tester strains both in the presence and absence of an exogenous metabolic activation system of mammalian microsomal enzymes derived from Aroclor 1254-induced rat liver. The tester strains used in the assays were TA98 and TA100. A minimum of five dose levels of each test article or extract along with appropriate vehicle and positive controls were plated with tester strains TA98 and TA100 in the presence and absence of rat liver S9 activation. All dose levels of test article, vehicle controls, and positive controls were plated in duplicate.

4.5 Developmental Toxicity Test

Five bimonthly developmental toxicity tests were conducted at pH 4 and 7 using the frog embryo teratogenesis assay - Xenopus (FETAX). The assay is a 96-h quantitative developmental assay used to screen for developmental toxicants in aquatic media. assays were conducted using the static renewal (solutions renewed every 24 h) test method Designation E 1439-91 of the American Society for Testing and Materials (ASTM, 1992). Embryolethality and malformations were determined; growth retardation was not evaluated. The identification and interpretation of malformations in the embryos at 96 h were made via the atlas of Bantle et al. (1991). Aliquots of the same groundwater used for the acute and short-term chronic toxicity biomonitoring tests were used for the FETAX assays. In addition to the standard assay with groundwater, a 100% APG-EA tap water sample was run concurrently with each assay to provide supporting toxicological data for the APG-EA tap water being used in the chronic histopathology exposures (Section 4.6).

Embryos between normal stage 8 blastulae and normal stage 11 gastrulae were obtained from X. laevis breeding colonies at the UMD/WREC as described below. The embryos were de-jellied in a 2% L-cysteine solution (2 g of L-cysteine per 98 mL of FETAX solution). Once de-jellied, the embryos were rinsed and resuspended in FETAX solution (ASTM, 1992). The embryos were tested in glass petri dishes containing 10 mL of solution. Two replicates of 25 embryos/replicate were used for each test treatment. The tests were conducted at 24 ± 0.2°C under a 16-h light: 8-h dark photoperiod (fluorescent lights; ≈75 foot candles at the surface of the test medium) in a constant temperature

environmental chamber.

The UMD/WREC X. <u>laevis</u> adult colony was maintained in flowthrough (≈4 replacement volumes per day) circular polyethylene aquaria (0.91 m I.D. x 0.36 m high) with a water depth of 10 cm. Each aquarium contained a maximum of 10 adults. UMD/WREC nonchlorinated deep well water (water quality given in Section 4.3.3) held at 23.5 \pm 0.5 °C served as the culture medium. All frogs were fed every 5-6 d with commercial beef liver supplemented with liquid vitamins (PolyViSol; Mead-Johnson Nutritionals, Evansville, IN). The colony was held under a photoperiod of 16 h light:8 h dark. Mating pairs were bred in the dark in 23.5 \pm 0.5 °C UMD/WREC non-chlorinated water at \approx 70 d intervals by injecting 400 and 800 I.U. of human chorionic gonadotropin (HCG) in the dorsal lymph sac of the males and females, respectively. Amplexus occurred 4-6 h after injecting HCG; egg deposition occurred 9-12 h following HCG injection. original breeding stock was obtained from Xenopus I (Ann Arbor, MI).

4.6 Chronic Growth and Histopathology Test

Chronic histopathologic changes were evaluated using the Japanese medaka (O. latipes) as the experimental model. The Japanese medaka is a sensitive laboratory model for screening environmental pollutants which may induce histopathological changes and neoplasms (for ex., see Hawkins et al., 1995; Metcalfe, 1989; Powers, 1989). Both unexposed and fry exposed to diethylnitrosamine (DEN) were exposed continually under flow-through test conditions for a 9-month period. A subset of organisms was taken after 6 months of exposure for morphometric measurements and histopathological evaluation. The CEHR test designation was Protocol No. 401-002R (USACEHR, 1994a).

Fish were exposed in two separate assay systems to three dilutions of groundwater plus control diluent water using APG-EA tap water and West Branch of Canal Creek water as the diluent The two test systems were designated as the APG-EA test system and West Branch of Canal Creek test system. The fish were exposed to the following dilutions in both the APG-EA and West Branch of Canal Creek test systems: 25% groundwater by volume, 5% groundwater by volume, 1% groundwater by volume, and diluent water (APG-EA or West Branch of Canal Creek water). A 100% groundwater treatment could not be used because the pH of the groundwater was ≈4 which would have caused excessive mortality over the 9-month exposure period. Consideration was given to buffering the 100% groundwater to pH 7 and conducting the 100% treatment at pH 7. However, a preliminary evaluation of low pH groundwater buffered to pH 7 showed that excessive precipitation of metals occurred (Burton et al., 1994). Thus, 100% groundwater was not buffered to pH 7 and used as an experimental treatment. Additional control fish were also held at CEHR (see below).

The flow-through test solutions in both the APG-EA and West Branch of Canal Creek test systems were delivered by solenoid-activated proportional dilutor systems which were constructed primarily of glass and stainless steel; some silicon tubing was also used. The test concentrations in each test system were delivered to sixteen 19 L (5 gal) glass aquaria (4 aquaria at 25% groundwater by volume; 4 at 5% groundwater by volume; 4 at 1% groundwater by volume; and 4 control aquaria); each aquarium contained a volume of ≈ 16 L (4.25 gal). The study protocol required that all aquaria be held at 25 \pm 2°C in constant temperature water baths. The APG-EA and West Branch of Canal Creek dilutors were calibrated to complete one full cycle every 3 \pm 0.8 min. During a cycle, each tank received 300 \pm 15 mL of solution.

Both unexposed fry and fry exposed to DEN, were reared offsite at CEHR until 16 d old. The DEN-initiated fish were exposed to 10 mg/L DEN for 48 h when the organisms were 13 d old. Prior to the start of the exposure to groundwater, the 16-d old fish were randomized into 8 groups of 60 fish/group for both the unexposed and DEN-initiated groups for both the APG-EA and West Branch of Canal Creek test systems. The fish were suspended in 1-L mesh-bottom glass beakers in the appropriate flow-through test aquaria in the biomonitoring laboratory. The fish were held in the beakers for one week after which they were released into the aquaria. Two replicates of both DEN-initiated and fish not initiated were held at CEHR for 9 months as additional controls.

Japanese medaka, 16-22 d old, were fed microworms two feedings per day and live brine shrimp (Artemia sp.) (<24 h old) two feedings per day (≈30 brine shrimp/fish). Pre-adult fish, 23-30 d old, were fed Tetramin® flake food two feedings per day and live brine shrimp <24 h old (one feeding per day; ≈40 brine shrimp per fish). Adult fish, >30 d old, were fed Tetramin® flake food (three feedings per day on Tuesday and Thursday and two feedings per day on the remaining days) and live brine shrimp (one feeding per day on Monday, Wednesday, and Friday). The ration was adjusted as the size of the fish increased. Tanks were cleaned on an as needed basis (usually 1-2 times a week) by scrubbing algae from the sides of the tanks, allowing the debris to settle, and then siphoning. Tetramin® was fed ad libitum for 15-30 min during each feeding.

The number of test organisms alive in each tank were monitored and recorded daily. Moribund fish were euthanized and fixed in Bouin's solution for subsequent histological observation. The dilutor cycle times were calculated and recorded daily. The volume of groundwater and diluent water delivered to the aquaria was checked weekly. When necessary, cycle time and/or volume distributions were adjusted. The dilutors were occasionally shutdown (for no more than one hour) and cleaned on an as needed basis. Daily water quality (DO, pH,

and temperature) was determined in all aquaria. Additional water quality tests (alkalinity, hardness, conductivity, total residual chlorine, free available chlorine, and total ammonia-nitrogen) were performed once a week in all aquaria (Section 4.7.2). A 16-h light:8-h dark photoperiod (fluorescent lights at 70-100 foot candles) was maintained throughout the study. Unionized ammonia-nitrogen was determined by the method of Thurston et al. (1979). Comprehensive chemical analyses were performed five times at bimonthly intervals as discussed in Section 4.7.1 on 100% groundwater, 100% APG-EA tap water, 100% West Branch of Canal Creek water and on water taken from each test system at 25, and 1% groundwater by volume during the test periods shown in Table 1.

A major deviation from the study protocol was made after 6 months of exposure in the West Branch of Canal Creek test system. The water supply lines (both the primary and backup lines) from West Branch of Canal Creek to the biomonitoring trailer froze repeatedly during severe cold weather in late December through early February. The lost of water occurred because northeast winds blew the water out of the creek which subsequently shut down the water supply pump and caused the water to freeze in the water supply lines. During the periods when no West Branch of Canal Creek water was available, APG-EA tap water was used as an alternative diluent water for the West Branch of Canal Creek test system. Because of the frequent lost of West Branch of Canal Creek water (several days at a time), a decision was made at the end of the 6-month exposure period (February 5, 1995), to discontinue the use of West Branch of Canal Creek water. tap water was used as the diluent water in the West Branch of Canal Creek test system for the last 3 months of the 9-month exposure. Groundwater was still provided to all exposure aquaria during the last 3 months of the exposure.

On day 181, approximately 20 Japanese medaka from each tank in both the APG-EA and West Branch of Canal Creek test systems were removed and taken back to CEHR for fixation (Bouin's solution) and subsequent histological observation. Wet weight and standard length measurements were taken on all fish. The morphometric data were taken to assess the effects of a chronic 6-month exposure to the contaminated groundwater as well as the general health of the fish. On day 272, when the exposure was completed, the remaining Japanese medaka were also taken back to CEHR for morphometric measurements and subsequent histological analysis. The histological analyses of the 6- and 9-month exposures were conducted by Experimental Pathology Laboratories, Inc. (EPL), Herndon, VA. Morphometric and histological analyses were also conducted on the 6- and 9-month additional control fish held at CEHR.

4.7 Chemical Analyses

4.7.1 Comprehensive Chemical Analyses

Comprehensive chemical analyses were performed five times at bimonthly intervals on 100% groundwater, 100% APG-EA tap water (charcoal filtered), and 100% West Branch of Canal Creek water (mechanically filtered to $\approx 80~\mu$). In addition, 25, 5, and 1% groundwater by volume samples from both the APG-EA and West Branch of Canal Creek test systems were analyzed during the test periods shown in Table 1. As discussed in the previous section, the surface water supply to the West Branch of Canal Creek aquaria was discontinued on February 5, 1995 and replaced with APG-EA dechlorinated tap water. The water samples taken from the West Branch of Canal Creek aquaria on March 23, 1995 and May 2, 1995 were labeled as West Branch of Canal Creek samples to prevent them from being confused with water samples taken from the APG-EA aquaria.

The comprehensive chemical analyses included general water quality, metals, priority pollutant volatile organics, priority pollutant base neutrals, priority pollutant acid extractables, organophosphorus pesticides, chlorinated pesticides, chlorinated herbicides, and munitions. The elements and/or compounds analyzed in each group are presented in the data tables discussed The 100% groundwater samples and 100% West in Section 5.6.1. Branch of Canal Creek sample nos. 1, 2, and 3 (Table 1) were grab samples taken directly from the fed lines to the biomonitoring trailer. West Branch of Canal Creek (100%) sample nos. 4 and 5 were grab samples taken directly from the creek. The 25, 5, and 1% groundwater by volume samples from both the APG-EA and West Branch of Canal Creek test systems were composite samples taken from the four replicate treatment tanks in the chronic histopathology study (Section 4.6). Grab samples of 100% APG-EA tap water were taken from a large polypropylene tank with a 99% particle replacement time of ≈12 h.

The water samples were placed in appropriate containers provided by the vendor for the various analyses. The containers were placed on ice and picked up by the vendor on the morning the samples were taken for the analyses. The comprehensive chemical analyses of all materials with the exception of the munitions were performed by Johnston Spectra Laboratories, Mechanicsburg, PA. The methods used for the analyses of all materials are given in the data tables discussed in Section 5.6.1. The five munitions samples were analyzed by CEHR via in-house procedures (USACEHR, 1993).

4.7.2 Routine Water Quality Analyses

Routine water quality was measured in all histopathology treatment tanks. Dissolved oxygen, pH, and temperature were

measured daily. Alkalinity, hardness, conductivity, total residual chlorine, free available chlorine, and total ammonianitrogen were measured once a week (all tests were performed on the same days). Unionized ammonianitrogen was determined by the method of Thurston et al. (1979). The methods used for the analyses followed the procedures given in <u>Standard Methods</u> (APHA et al., 1992).

In addition to the temperature measurements made in the aquaria during the chronic histopathology test, temperature was monitored continuously in one control tank of both the APG-EA and West Branch of Canal Creek test systems via a strip chart recorder (Cole-Palmer Thermistor Recorder Model No. 08354-15, Cole-Palmer Instrument Co., Chicago, IL).

4.8 Test Endpoints and Data Analyses

The test endpoint for the Microtox® 5- and 15-min EC50s was a reduction in bioluminescence. The EC50s and their 95% fiducial limits were determined by probit analysis using the software program supplied by Microtox® (Microtox®, 1988). The test endpoint for the acute effects of groundwater to the green alga was growth, measured as density (cells/mL). The 96-h EC50s for growth were estimated by using the "inhibition proportion" technique recommended by Horning and Weber (1985). The technique uses quantal analyses (e.g., probit or moving average angle methods) to estimate EC50s and their 95% fiducial or confidence Since the assumptions of the quantal analysis are not limits. met in the classical sense because of the very nature of the growth data, the count data at each treatment were averaged and subsequently converted to "inhibition proportions" using the formula below before a moving average angle analysis was performed (Stephan, 1978).

I = C - T / C * 100

where: C = the mean growth of the controls
T = the mean growth at a given treatment

The 96-h EC50s and their 95% confidence limits for embryo malformations in the FETAX assays were determined by the moving average angle method using an EPA statistical program (Stephan, 1978). The test endpoint for all 96-h Japanese medaka tests, 48-h and 7-d LC50 tests with cladocerans, and 96-h and 7-d LC50 tests with fathead minnows was mortality. The LC50s and their 95% confidence limits were determined by the moving average angle method when toxicity >50% occurred (Stephan, 1978).

The test endpoint for the chronic toxicity of groundwater at pH 4 and 7 to the green alga was growth measured as density (cells/mL). The no-observed-effect concentrations (NOEC) and lowest-observed-effect concentrations (LOEC) were determined by

Dunnett's test. Dunnett's test consists of an analysis of variance (ANOVA) to determine the error term, which is then used in a multiple comparison test for comparing each of the treatment means with the control mean. The assumptions upon which the use of Dunnett's test are contingent are that the observations within treatments are independent and normally distributed, with homogeneity of variance. The chi-square test for normality and Bartlett's test for homogeneity of variances were performed before the Dunnett's test was used. The above statistical tests were performed using Toxstat (Gulley et al., 1989) at a minimum probability level of 0.05.

The endpoints for the 7-d survival and reproduction tests with Ceriodaphnia were survival and young production. endpoints for the fathead minnow 7-d survival and growth tests were survival and growth. The endpoints for the 96-h FETAX assay were survival and number of malformations. The statistics used for the LC50 data and FETAX EC50 (malformations) data are given NOECs and LOECs were determined as follows. The adult above. raw cladoceran survival data were analyzed by Fisher's Exact Arc-sine square root transformations were made on the FETAX percent embryo survival and percent embryo malformation data as well as the fathead minnow percent survival raw data before further data analyses were performed. With the exception of the cladoceran survival data, all data were then subjected to a chi-square test of normality and Bartlett's test for homogeneity of variance.

When the data sets met the assumptions of normality and homogeneity of variance, a parametric statistic was used. Dunnett's test was used when the number of replicates was constant among treatments. A t-test with Bonferroni adjustment of error rate was performed when the number of replicates was not constant among treatments. When a data set failed to meet the assumptions of normality or homogeneity of variance, a nonparametric statistic was used. Steel's Many-One Rank test was performed when equal number of replicates were used. The statistical tests were performed using Toxstat (Gulley et al., 1989). A minimum probability level of 0.05 was used for all tests.

The morphometric endpoints for the Japanese medaka chronic growth and histopathology study after 6 and 9 months of exposure were wet weight and standard length. The analyses of the 6- and 9-month wet weight and standard length data were conducted as a split plot ANOVA using a general linear model type III test (SAS, 1989). The whole plots were tanks which were in turn split into subplots by fish sex. The whole plot treatments that were applied to separate tanks and thus were tested against the among tank error were 1) diluent water (APG-EA tap water and West Branch of Canal Creek water); 2) DEN (DEN-initiated and no DEN-initiated); and 3) concentration (0, 1, 5, and 25% groundwater by

volume). The sex (male vs. female) split plot factor that occurred within each tank was tested against the within tank error term. The three whole plot factors and all their interactions were tested at the whole plot level. The split plot factor and all its interactions with whole plot factors were tested against the within plot error. Wet weight and standard length at 6 and 9 months for the control fish held at CEHR vs. the APG-EA control fish were analyzed by linear contrast within the split plot analysis.

The raw data were checked at the whole plot level for normality and homogeneity of variance by the Shapiro Wilks test and Levene's test, respectively. The split plot data were also checked for normality by the Shapiro Wilks test. A test for homogeneous variance was not possible for the split plot residuals because only two residuals were present for each treatment. A minimum probability level of 0.05 was used for all tests. The histopathology data enumerated by Experimental Pathology Laboratory, Inc. at 6 and 9 months were not treated statistically.

SECTION 5

RESULTS AND DISCUSSION

The Results and Discussion Section is organized as follows. The results and discussion for all of the biomonitoring systems are presented in separate sections for each test system. The endpoints/responses for each biomonitoring toxicity test are summarized in Table 2. The table is organized as Tests Nos. 1, 2, 3, 4, and 5 which reflect the bimonthly test design. The Microtox® and Japanese medaka chronic histopathology and morphometric results are presented under the Test No. 1 column for space convenience purposes only; the tests were not bimonthly tests as the heading implies. The raw data, water quality data, and statistical analyses for the biomonitoring test systems as well as the chemical analyses results are given in separate Appendices as referred to in the appropriate sections for each test system.

5.1 Acute Toxicity Tests

5.1.1 Microtox®

A summary of the Microtox® 5- and 15-min EC50 (reduction of bioluminescence) results is given in Table 2. The 5- and 15-min test data for the grab samples of raw groundwater are given in Appendix 1, Table A1-1. The data for the Microtox® assays conducted on composite samples taken from the 25, 5, and 1% groundwater by volume histopathology tanks diluted with APG-EA tap water are given in Appendix 1, Tables A1-2, A1-3, and A1-4, The composite and grab sample data for raw West respectively. Branch of Canal Creek water are summarized in Table A1-5 of Appendix 1. The data for the Microtox® assays conducted on composite samples taken from the 25, 5, and 1% groundwater by volume West Branch of Canal Creek histopathology tanks are given in Appendix 1, Tables A1-6, A1-7, and A1-8, respectively. weekly Microtox® results for the raw APG-EA tap water are presented in Table A1-9 of Appendix 1. The results of the special two month volatile organics study conducted on West Branch of Canal Creek water taken directly from the supply line to the biomonitoring facility are summarized in Appendix 1, Table The data for the Microtox® assays conducted on the groundwater buffered to a pH of ≈7 and the pH of the samples used in the assays are given in Appendix 2, Tables A2-1 and A2-2.

The Microtox® 5- and 15-min EC50s for 100% groundwater at pH 4 ranged from 18.7-70.9 and 31.9-88.4% groundwater by volume, respectively (Table 2). Less toxicity was observed in the 15-min EC50s relative to the 5-min EC50s (Appendix 1, Table A1-1). Only one sample of 100% groundwater buffered to a pH of 7 exhibited toxicity (Appendix 2, Table A2-1). The 5- and 15-min EC50s for

SUMMARY OF THE TOXICITY ENDPOINTS/RESPONSES FOR BIOMONITORING TESTS CONDUCTED ON CANAL CREEK GROUNDWATER (WELL CC-27B) FROM AUGUST 12, 1994 TO MAY 10, 1995. TABLE 2.

Bioassav	Endpoint			Valueª		
	•	Test No. 1	Test No. 2	Test No. 3	Test No. 4	Test No. 5
Microtox*:						
100% (pH 4)	5-min EC50 ^b	19-71°	N/A	N/A	N/A	N/A
100% (pH 4)	5-mir	32-88 ^d	N/A	N/A	N/A	N/A
%	-min EC5(Not toxic	N/A	N/A	N/A	N/A
100% (pH 7)	15-min EC50 ^b	Not toxic	N/A	N/A	N/A	N/A
A	-min	Not toxic	N/A	N/A	N/A	N/A
A	15-min EC50b	Not toxic	N/A	N/A	N/A	N/A
5% APG H,O		Not toxic	N/A	N/A	N/A	N/A
AP(Not toxic	N/A	N/A	N/A	N/A
APC	-min	Not toxic	N/A	N/A	`	N/A
APC	5-mir	Not toxic	N/A	N/A	N/A	N/A
8 WI	-min	Not toxic	N/A	N/A	`	N/A
8 WI		Not toxic	N/A	N/A	N/A	N/A
WB	-min-	Not toxic	N/A	N/A	N/A	N/A
WB	5-mir	Not toxic	N/A	N/A	N/A	N/A
WB	5-min EC50 ^b	Not toxic	N/A	N/A	N/A	N/A
WE	-	Not toxic	N/A	N/A	N/A	N/A
% APG	5-min EC50b	Not toxic	N/A	N/A	N/A	N/A
	5-mir	Not toxic	N/A	N/A	N/A	N/A
% WB 1	5-min EC50b	Not toxic	N/A	N/A	N/A	N/A
100 % WB H_2° O	15-min EC50 ^b	Not toxic	N/A	N/A	N/A	N/A
•						

TABLE 2. (CONTINUED)

Bioassay	Endpoint			Value ^a		
•	•	Test No. 1	Test No. 2	Test No. 3	Test No. 4	Test No. 5
Green alga:						
pH 4	96-h EC50e	57	52	56	51	48
pH 4	NOEC	(54.5-59.5) 10 18	(48.6-55.6) 10 18	(4/.2-6/.4) 18 32	(4/./-55.3) 10 18	(44.6-51.0) 18 32
p	96-h EC50e		67 (12	78 (50 1=111 1)	67 (59 4-78 8)	96
7 Hd pH 7	NOEC ^e LOEC ^e	•	10	(50:1 11:1) 18 32	18	18 32
Cladoceran:						
pH 4	48-h LC50	C	65	65 (87.2=75.5)	65	65 (62, 5-67, 1)
pH 4	7-d LC50	.2-75 65 7-75	(57.2-73.5) (65 (67.2-75.5)	63	59	62
pH 4	NOEC	10	(5).2.75.5)	18		10
ph 4 ph 7	10EC 48-h LC50	18 Not toxic	18 Not toxic	32 Not toxic	Not toxic	Not toxic
/ Hd	7-d LC50	56 (47.1–67.4)	66 (52.9–97.6)	(27.8-49.0)	38 (29.9-48.0)	(69.5-79.2)
pH 7 pH 7	NOEC ^f LOEC ^f	10	10	10 18	10 18	18 32

TABLE 2. (CONTINUED)

Bioassav	Endpoint			Valueª		
7		Test No. 1	Test No. 2	Test No. 3	Test No. 4	Test No. 5
Fathead minnow:						
pH 4	96-h LC50	46	09	39	54	20
4		(41.6-51.3)	(56.7-64.7)	(35.9-41.7)	(50.3-57.7)	(45.4-55.6)
pH 4	7-d LC50	42	45	32	44	47
1		(37.9-46.7)	(40.3-50.3)	(28.8-36.0)	(39.9-49.1)	(42.8-52.2)
pH 4	NOEC9	18	32	18	32	32
pH 4	LOEC9	32	56	32	26	26
pH 7	96-h LC50	Not toxic	Not toxic			
pH 7	7-d LC50	Not toxic	Not toxic	Not toxic	Not toxic	
PH 7	NOEC	Not toxic	Not toxic	Not toxic		
PH 7	LOEC	Not toxic	Not toxic	Not toxic	Not toxic	Not toxic
Japanese medaka:						
pH 4	96-h LC50	78	63	89	63	94
1 1 1		(66.7-102.3)	(55.4-71.7)	(60.9-78.1)	(55.0-73.7)	(84.6-107.2)
7 Hq	96-h LC50	Not toxic	Not toxic		Not toxic	
West Branch	96-h LC50	Not toxic	Not toxic	Not toxic	Not toxic	Not toxic

TABLE 2. (CONTINUED)

Bioassay	Endpoint			Valueª		
•	1	Test No. 1	Test No. 2	Test No. 3	Test No. 4	Test No. 5
Ames:						
Groundwater Groundwater	Mutagenicity Mutagenicity	Negative Negative	Negative Negative	Negative Negative	Negative Negative	h Negative
(100X) West Branch West Branch	Mutagenicity Mutagenicity	Negative Negative	Negative Negative	Negative Negative	Negative Negative	h Negative
$\begin{array}{c} (100X) \\ APG-EA H_2O \\ APG-EA H_2O \\ (100X) \end{array}$	Mutagenicity Mutagenicity	Negative Negative	£ £	E E	e e	h Negative
FETAX:						
рн 4 рн 4	4-d LC50 4-d EC50 ⁱ	No LC50 No EC50	No LC50 90 69 5-183 6)	No LC50 No EC50	No LC50 78 73 1-6698 2)	Not toxic No EC50
pH 4	NOEC ^j LOEC ^j	18	10 10 18	10	1000:1	10
ph 7	4-d LC50				No LC50	Not toxic
/ Hd 7 Hd	4-a ECSU. NOEC	Not toxic		NO EC50 18	18 18	18 18
рн 7	LOEC	Not toxic	Not toxic	32	32	32

(CONTINUED) 7 TABLE

Bioassav	Endpoint			Valueª			
	J	Test No. 1	Test No. 2	Test No. 3	Test No. 4	Test No. 5	ш
Chronic							1
growth and histopathology:							
6 months	Growth	Differences	*	K / N	K N	N N	
6 months	Lesions	occurred	N/A	N/A N/A	N/N N/A	N/A	
9 months	Growth	Differences		•		;	
		$occurred^k$		N/A	N/A	N/A	
9 months	Lesions	_	N/A	N/A	N/A	N/A	

All endpoints are given as percent groundwater by volume.

Range of all EC50s for reduction in bioluminescent activity conducted from August 12,

1994 to May 10, 1995. The 95% fiducial limits of the 5-min EC50s of 19 and 71 at pH 4 are 0.9-396.6 and 16.5-305.6, respectively.

The 95% fiducial limits of the 15-min EC50s of 32 and 88 at pH 4 are 8.3-122.6 and 29.8-262.0, respectively.

Test endpoint- reduction in growth (cell density). Test endpoint- reduction in neonate production.

Ø endpoint for Test Nos. 2, 3, 4, and 5 at pH 4 was an increase in mortality rather than Test endpoint- reduction in growth (dry weight) for Test No. 1 at pH 4; the test reduction in growth.

Assay not conducted.

96-h EC50 for malformations.

Test endpoint- increased number of malformations for Test Nos. 1, 2, 3, 4, and 5 at pH 4 and Test Nos. 3 and 5 at pH 7; the test endpoint for Test No. 4 at pH 7 was an increase in mortality rather than an increase in malformations.

(CONTINUED) TABLE 2.

Valueª	1 Test No. 2 Test No. 3 Test No. 4 Test No. 5	
	Test No.	
Endpoint	•	
Bioassay	•	

See Section A number of differences in both wet weight and standard length occurred. 5.5.2 for further detail. See Section 5.5.3 for results.

the sample were 55.6 and 48.6% groundwater by volume, respectively. The raw groundwater was much less toxic at pH 7 than at pH 4.

No toxicity was detected in any raw West Branch of Canal Creek water samples (Table 2). No toxicity was detected in any samples taken from the 25, 5, and 1% groundwater by volume histopathology tanks diluted with APG-EA tap water. Likewise, no toxicity was found in any samples taken from the 25, 5, and 1% groundwater by volume West Branch of Canal Creek histopathology tanks.

The toxicity of the raw groundwater as shown by the Microtox® assay is not surprising when one considers the complex mixture of the contaminants in the groundwater (Section 5.6.1; Table 3). For example, the 5-min EC50s for both copper and zinc are less than the groundwater concentrations shown in Table 3 (Qureshi et al., 1982; Elnabarawy et al., 1988); the 15-min EC50s for cobalt, copper and zinc are less than the concentrations shown in Table 3 (Elnabarawy et al., 1988). Similarly, several volatile chlorinated organics have been shown to be toxic via the 5- and/or 15-min Microtox® analysis (Kaiser and Ribo, 1988). Chloroform, 1,2-dichlorobenzene, 1,2-dichloroethane, tetrachloroethane, 1,2,4-trichlorobenzene, and 1,1,1trichloroethane all have 5- and/or 15-min EC50s below the concentrations found in the groundwater (Curtis et al., 1982; McFeters et al., 1985; Qureshi et al, 1982; Ribo and Kaiser, 1983).

With the exception of one sample, no acute toxicity was observed via Microtox® when the groundwater was buffered to pH 7. The reason for the elimination of acute toxicity at pH 7 is not clear. One may speculate that the reduction and/or elimination of toxicity at pH 7 may be related to the heavy metals as they shift from a divalent cation at pH 4 to less toxic species at pH 7 (Lee, 1973); however, there is no evidence that this mechanism is appropriate for the Microtox® reaction.

5.1.2 Green Alga, Cladoceran, Fathead Minnow, and Japanese Medaka

The 96-h EC50s (reduction in growth) for the green alga exposed to raw groundwater at pH 4 and buffered groundwater at pH 7 are given in Table 2. The raw data at pH 4 and 7 for Test Nos. 1-5 are given in Appendices 3-12. The 96-h EC50s for reduction in growth at pH 4 ranged from 48-57% groundwater by volume (Table 2). The 96-h EC50s in the groundwater buffered to pH 7 ranged from 67-96% groundwater by volume.

Aluminum and silver have been show to be toxic to \underline{S} . $\underline{capricornutum}$ at concentrations found in the groundwater. The 4-d EC50s (biomass) for aluminum (Al species not specified) range from 460-570 $\mu g/L$ (U.S. EPA, 1988) which are well below the range

TABLE 3. SUMMARY OF THE FIVE BIMONTHLY CHEMICAL ANALYSES (RANGE OF CONCENTRATIONS) CONDUCTED ON RAW CANAL CREEK GROUNDWATER (WELL CC-27B) FROM AUGUST 1994 TO MAY 1995 - GENERAL WATER QUALITY

Parameter	Concentration	Unit
Alkalinity	<1-4.0	mg/L as $CaCO_3$
Ammonia Nitrogen	0.011-0.055	mg/L as N
Bromide	<0.2	mg/L as Br
Chloride	74-147	mg/L as Cl
Cyanide	<0.002-<0.006	mg/L as Cn
Fluoride	0.241-0.349	mg/L as F
Hardness	58.0-66.4	mg/L as $CaCO_3$
Н	3.62-4.30	Std. Unit
Nitrate	1.59-2.87	mg/L as N
Nitrite	<0.001-<0.002	mg/L as N
Phosphate	0.151-1.32	mg/L as P
Specific Conductance @ 25 °C	336-441	μ mhos/cm
Sulfate	92.0-119	mg/L as SO_4
Sulfite	<0.002-<0.02	mg/L as H_2S
Total Organic Carbon	<2.0-2.6	mg/L
Total Suspended Solids	<1.0-3.5	mg/L

TABLE 3. (CONTINUED) - METALS^a

Parameter	Concentration	Unit
Aluminum	1660-2390	μg/L as Al
Antimony	<14.1-<50	μ g/L as Sb
Arsenic	<3.2-<5	μ g/L as As
Beryllium	<0.5-1.8	μ g/L as Be
Boron	55.4-409	μ g/L as B
Cadmium	<1.5-<5	μ g/L as Cd
Calcium	15700-17600	μ g/L as Ca
Chromium	<6-<10	μ g/L as Cr
Cobalt	41.7-46.1	μ g/L as Co
Copper	10.2-24.4	μ g/L as Cu
Iron	5.5-34.5	μ g/L as Fe
Lead	<14.5-<50	μ g/L as Pb
Magnesium	5360-6390	μ g/L as Mg
Manganese	639-848	μ g/L as Mn
Mercury	<0.1-0.1	μ g/L as Hg
Molybdenum	<28.9-52.8	μ g/L as Mo
Nickel	22.2-26.7	μ g/L as Ni
Potassium	2000-2750	μ g/L as K
Selenium	<11.1-<50	μ g/L as Se
Silver	<0.4-46.8	μ g/L as Ag
Sodium	56900-62600	μ g/L as Na
Thallium	<50 - <75	μ g/L as Ti
Tin	<9.7-<10	μ g/L as Sn
Zinc	57.5-88.4	μ g/L as Zn

TABLE 3. (CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS

Parameter	Concentration	Unit
Bromochloromethane	4.6-113.4	μg/L
Bromodichloromethane	0.78-97.9	μg/L
Carbon Tetrachloride	32.8-57.7	μ g/L
Chloroform	54.0-103	μ g/L
1,2-Dichlorobenzene	0.53 ^b	μ g/L
1,2-Dichloroethane	2.1-3.6	μ g/L
cis-1,2-Dichloroethene	1.3-3.3	μg/L
1,1,2,2-Tetrachloroethane	53.8-75.9	μ g/L
Tetrachloroethene	3.49-6.7	μ g/L
1,2,4-Trichlorobenzene	0.6 ^b	μg/L
1,1,1-Trichloroethane	4.6 ^b	μg/L
1,1,2-Trichloroethane	0.7-1.08	μg/L
Trichloroethene	64.4-102.0	μg/L

The metal concentrations are total metal; not dissolved metal.

of 1660-2390 μ g/L found in the groundwater (Table 3). The 4-d EC50 (effect parameter not given) for silver has been reported to be 2.6 μ g/L (unpublished data as cited in U.S. EPA, 1987). Few data are available on the possible joint toxicity of heavy metals to green algae (Faust et al., 1994). The groundwater at pH 7 appeared to be slightly less toxic than the groundwater at pH 4 (Table 2); however, the data were not treated statistically. It is difficult to speculate about possible differences in acute toxicity at pH 4 and 7 because the chemistry of aluminum and silver as a function of pH is not well understood (U.S. EPA 1987 and 1988). No single priority pollutant organic for which there are toxicity data can account for the toxicity observed in the alga (U.S. EPA, 1986b).

The 48-h acute LC50 toxicity data for the cladoceran at pH 4 and 7 are summarized in Table 2. The raw data, including test water quality, for Test Nos. 1-5 at pH 4 and 7 are given in Appendices 13-22. Groundwater at pH 4 was acutely toxic to the cladoceran (Table 2). The 48-h LC50 was 65% groundwater by volume for all five tests. Buffered groundwater was not acutely

b Compound found in only one of five samples.

toxic to the cladoceran in any of the five tests after a 48-h exposure.

The 96-h LC50 data for the fathead minnow at pH 4 and 7 are summarized in Table 2. The raw data, including water quality, for Test Nos. 1-5 at pH 4 and 7 are given in Appendices 23-32. Groundwater at pH 4 was acutely toxic to the fathead minnow (Table 2). The 96-h LC50s ranged from 39-60% groundwater by volume for the five tests. Buffered groundwater at pH 7 was not toxic in any test after a 96-h exposure.

The 96-h LC50 data for the Japanese medaka at pH 4 and 7 are also summarized in Table 2. The raw data, including water quality, for Test Nos. 1-5 at pH 4 and 7 are given in Appendices 33-42. Groundwater at pH 4 was acutely toxic to the Japanese medaka (Table 2). The 96-h LC50s ranged from 63-94% groundwater by volume for the five tests. Buffered groundwater at pH 7 was not toxic in any test after a 96-h exposure. No toxicity occurred to Japanese medaka exposed to West Branch of Canal Creek water for 96 h.

The acute toxicity of the groundwater to the cladoceran, fathead minnow, and Japanese medaka at pH 4 may be attributable to the heavy metals in the groundwater (Table 3). Several EPA priority pollutant heavy metals (aluminum, copper, nickel, silver, and zinc) were found in the groundwater. The concentration of copper and silver (when adjusted for water hardness) in the groundwater exceeded in some cases the EPA acute numerical water quality criterion of 18 and 4.1 μ g/L, respectively, for freshwater organisms (U.S. EPA, 1984a; U.S. EPA, 1987). Furthermore, metals such as copper and zinc exist primarily as divalent cations at a pH of 4 which is the most toxic form of the metal (Lee, 1973; Sprague, 1985). It is well established that the toxicity of metals in chemical mixtures is additive for many aquatic animals (Marking, 1985). It is likely that the toxicity observed in the study may have been additive or greater than additive (de March, 1988). The elimination of acute toxicity at pH 7 for the cladoceran, fathead minnow, and Japanese medaka is most likely related to the reduction in toxicity of heavy metals as they shift from a divalent cation at pH 4 to less toxic species at pH 7 (Lee, 1973). The possibility that low pH per se may also play a role in the toxicity observed at pH 4 should also be considered since no toxicity occurred at pH 7. EPA acute (or chronic) numerical water quality criteria are not available for any of the organics present in the groundwater (U.S. EPA, 1986b).

5.2 Short-term Chronic Toxicity Tests

5.2.1 Green Alga

The NOECs and LOECs (reduction in cell density) for the green alga exposed to groundwater at pH 4 and 7 are summarized in

Table 2. The test data and statistical analyses for Test Nos. 1-5 are given in Appendices 3-12. At pH 4, the NOECs for the five tests ranged from 10-18% groundwater by volume. The LOECs ranged from 18-32% groundwater by volume. At pH 7, the NOECs and LOECs, respectively, ranged from 10-18 and 18-32% groundwater by volume. With the exception of Test No. 4, the NOECs and LOECs were exactly the same at pH 4 and 7 for the same test period. The NOECs and LOECs were less at pH 7 than at pH 4 in Test No. 4 only. Thus, with the exception of one test, no difference in algal toxicity was found for groundwater at pH 4 and pH 7. As stated above in Section 5.1.2, it is difficult to speculate about the toxicity of aluminum and silver as a function of pH because the chemistry of aluminum and silver as a function of pH is not well understood (U.S. EPA 1987 and 1988).

5.2.2 Cladoceran

The 7-d LC50s, NOECs, and LOECs for the cladoceran exposed to groundwater at pH 4 and 7 are summarized in Table 2. The test data and statistical analyses for Test Nos. 1-5 are given in Appendices 13-23. The groundwater at pH 4 and 7 was toxic in all tests. The short-term chronic 7-d LC50s at pH 4 ranged from 59-65% groundwater by volume. The 7-d LC50s at pH 7 ranged from 38-74% groundwater by volume. The groundwater appeared to be more toxic at pH 7 than pH 4 in Test Nos. 3 and 4; no statistical analysis was conducted to determine significant differences. The 7-d LC50s at pH 7 in Tests Nos. 3 and 4 were 38% groundwater by volume in contrast to 59 and 63% groundwater by volume at pH 4.

The NOECs (reduction in neonate production) at pH 4 ranged from 10-18% groundwater by volume while the LOECs ranged from 18-32% groundwater by volume in the five tests. Similarly, the NOECs (reduction in neonate production) at pH 7 ranged from 10-18% groundwater by volume while the LOECs ranged from 18-32% groundwater by volume in the five tests. The NOECs and LOECs were essentially the same at pH 4 and pH 7.

5.2.3 Fathead Minnow

The 7-d LC50s, NOECs, and LOECs for the fathead minnow exposed to groundwater at pH 4 and 7 are summarized in Table 2. The test data and statistical analyses for Test Nos. 1-5 are given in Appendices 23-32. The groundwater at pH 4 was toxic in all tests. The short-term chronic 7-d LC50s at pH 4 ranged from 32-47% groundwater by volume. The NOECs at pH 4 ranged from 18-32% groundwater by volume while the LOECs ranged from 32-56% groundwater by volume in the five tests. The NOEC and LOEC endpoints at pH 4 were a reduction in growth for Test No. 1 and an increase in mortality in Test Nos. 2-5. The groundwater was not toxic when buffered to pH 7.

The chronic toxicity observed for the cladoceran and fathead minnow may be related to several heavy metals (Table 3). As

discussed below in Section 5.6.1, copper, mercury, and silver concentrations in the groundwater exceeded in one or more tests the EPA freshwater chronic numerical water quality criteria of 12 μ g/L for copper (U.S. EPA, 1984a), 0.012 μ g/L for mercury, and the proposed criterion of 0.92 μ g/L for silver (U.S. EPA, 1987). The criteria for copper and silver are hardness dependent criteria; 100 mg/L as CaCO₃ used.

None of the priority pollutant organics found in the groundwater currently have numerical water quality criteria values because insufficient data exist to develop criteria (Potts, 1994). The lowest observed effect levels (LOEL) are given in the EPA water quality criteria for several of the organics (chloroform, 1,2-dichlorobenzene, 1,1,2,2-tetrachloroethane, and 1,1,2-trichloroethane); however, all of the LOELs are one or more orders of magnitude higher than the concentrations found in the groundwater. Thus, it is not clear what role, if any, additive toxicity from the metals and organics present in the groundwater may play in the chronic toxicity observed in the cladoceran and fathead minnow.

In contrast to the general reduction in acute toxicity when the cladoceran was tested in buffered groundwater, the chronic toxicity NOEC and LOEC values for the cladoceran were essentially the same at pH 4 and 7 (Table 2). Thus, the suggestion above that toxicity attributable to heavy metals is reduced at the higher pH does not appear to be valid for the cladoceran in the chronic tests. The reason for this observation is not clear. Similar toxicity responses at pH 4 and 7 indicate that the effect of low pH per se is not important.

Buffered groundwater was not toxic to fathead minnow (Table 2). The elimination of chronic toxicity at pH 7 for the fathead minnow is most likely related to the reduction in toxicity of heavy metals as they shift from a divalent cation at pH 4 to less toxic species at pH 7 (Lee, 1973). However, one should not categorically rule out the possibility that the low pH per se may also account for some of the toxicity observed at pH 4 since no toxic occurred at pH 7.

5.3 Genotoxicity Tests

The results of the Ames mutagenicity assays are summarized in Table 2. Both unconcentrated and concentrated (100X) Ames assays were conducted on raw groundwater and West Branch of Canal Creek water in Test Nos. 1-4; assays on the concentrated fractions only were conducted in Test No. 5. Ames assays were conducted on both unconcentrated and concentrated (100X) APG-EA tap water samples in Test No. 1; only the concentrated sample was assayed in Test No. 5. The reference for each study data report is given in Appendix 43 so that a copy can be obtained if further information is desired; the actual data reports were not included in the Appendix because of the excessive length of the reports.

All unconcentrated and concentrated (100X) assays of groundwater, West Branch of Canal Creek water, and APG-EA tap water were found to be non-mutagenic (negative) with tester strains TA98 and TA100 in both the presence and absence of an exogenous metabolic activation system of mammalian microsomal enzymes derived from Aroclor-induced rat liver (S9 mix). Of the groundwater contaminants listed in Table 3, carbon tetrachloride, 1,2-dichloroethane, and trichloroethene have been reported to be chemical mutagens (Forum for Scientific Excellence, Inc., 1990). The lack of mutagenic activity in the groundwater concentrated 100X suggests that the concentrations of the mutagens are too low to induce significant mutations in the Ames assay (Hoffmann, 1991; Shugart, 1995).

5.4 Developmental Toxicity Test

The 4-d LC50, 4-d EC50 (malformations), NOEC, and LOEC results for the FETAX assays conducted in groundwater at pH 4 and 7 are summarized in Table 2. The test data, statistical analyses, and types and numbers of malformed embryos that occurred after 96 h of exposure for Test Nos. 1-5 are given in Appendices 44-53. Little embryolethality occurred in the groundwater at pH 4 or 7 (Table 2). Some toxicity occurred in Test Nos. 1-4 at pH 4; however, no LC50s could be calculated because <50% mortality occurred. The raw groundwater was not toxic to the embryos at pH 4 in Test No. 5. The buffered groundwater was not toxic in three of the five tests. Some mortality occurred in Test Nos. 2 and 4; however, LC50s could not be calculated.

Significant ($\alpha = 0.05$) embryo malformations occurred in all of the raw groundwater assays; malformations also occurred in three of the five assays at pH 7. Ninety-six-hour EC50s (malformations) of 90 and 78% groundwater by volume were obtained in Test Nos. 2 and 4 at pH 4; 96-h EC50s could not be calculated for any of the other tests at pH 4 or 7. The NOECs and LOECs (malformations) for the five groundwater assays at pH 4 was 18 and 32% groundwater by volume in Test No. 1 and 10 and 18% groundwater by volume, respectively, in Test Nos. 2-5. The NOECs and LOECs for Test Nos. 3, 4, and 5 at pH 7 were all 18 and 32% groundwater by volume, respectively. The test endpoint for Test No. 4 at pH 7 was an increase in mortality rather than malformations. The buffered groundwater was not toxic in Test Nos. 1 and 2. The buffered groundwater was less toxic than the raw groundwater in all assays where toxicity occurred.

A total of 308 malformations were observed in the embryos exposed to raw groundwater (see last table in each of Appendices 44-53). The types of malformed embryos (as described by Bantle et al., 1991) after 96 h of exposure in raw groundwater were primarily multiple edema (\approx 32% of total malformations), coiled guts (\approx 26%), notochord (\approx 18%) and facial (\approx 12%). Severe (\approx 6%), cardiac edema (\approx 3%), abdominal edema (\approx 2%), eye (<1%), brain

(<1%), and cardiac (<1%) were also observed in <14% of the total malformations. Fewer malformations were observed in the buffered groundwater tests (221 malformations); however, the same types of malformations that occurred in the raw groundwater were observed in the buffered groundwater assays. The most frequent malformations observed in buffered groundwater included coiled guts (\approx 46%), multiple edema (\approx 29%), and notochord (\approx 10%). Severe (\approx 7%), facial (\approx 5%), cardiac edema (\approx 2%), and abdominal edema (\approx 2%) were observed in <16% of the total malformations. The incidence of malformations were generally greater at the higher test concentrations in both the raw and buffered groundwater.

The developmental toxicity found in the FETAX assays is most likely related to the heavy metals present in the groundwater. Several heavy metals, including copper, cadmium, and zinc, have been shown to cause developmental problems in lower vertebrate aquatic organisms (Weis and Weis, 1989). Dawson et al. (1985) found that mixtures of heavy metals (copper, cadmium, lead, and zinc) from acidic mine sources caused teratogenic effects and mortality when evaluated by FETAX. When the pH was adjusted from lows which ranged from 3.2 to 5.9 to pH 7, toxicity and teratogenicity decreased. The same response occurred in the present study. The possible role of the organics in the groundwater is not clear since FETAX data do not exist for the individual materials (Bantle, 1994 and 1995).

5.5 Chronic Growth and Histopathology Test

The Japanese medaka growth results at 6 and 9 months and the histological results for the 6- and 9-month exposures in both the APG-EA and West Branch of Canal Creek test systems are briefly summarized in Table 2. A tabulation of the disposition of the fish (i.e., number that were sacrificed at 6 and 9 months, number that died, etc.) in all aquaria during the 9-month study is given The wet weight and standard length measurements in Appendix 54. of all fish in each replicate tank in each treatment at 6 months for the West Branch of Canal Creek and APG-EA study groups are given in Appendix 55, Tables A55-1 and A55-2, respectively. morphometric data for the additional control fish held at CEHR for 6 months are given in Table A55-3. The 9-month growth data for the West Branch of Canal Creek and APG-EA fish are given in Appendix 55, Tables A55-4 and A55-5. The wet weight and standard length measurements of the CEHR control fish at 9 months are given in Table A55-6. The statistical analyses of the 6-month interim and 9-month final Japanese medaka chronic histopathological growth data are given in Appendix 56. summary of the 6- and 9-month histopathology results is given in Appendix 57.

5.5.1 Mortality

The total number of fish that died at the end of 9 months in all treatments including the controls ranged from a low of 1.7%

to a high of 21.7%. These percentages do not include the fish shown in Appendix 54, Table A54-1 that could not be accounted for at the end of the 9-month study. The percent dead for all fish, including the controls, held in the APG-EA system ranged from 1.7 to 15.0%. The average mortality, including the controls, for all treatments in the APG-EA system was 9.1%. The percent mortality of all the fish held in the West Branch of Canal Creek system ranged from a low of 3.3% to a high of 21.7%. The average mortality, including the controls, for the West Branch of Canal Creek system was 13.5%. The mortality of the four CEHR control tanks ranged from 0 to 3.3%; the average was 2.5%.

If one assumes that all of the missing fish shown in Appendix 54, Table A54-1 died and the missing fish and known dead fish are summed, the percent mortalities would be as follows. The percent dead, including the controls, held in the APG-EA system would range from 5.0 to 20.0%. The average mortality, including the controls, for all treatments in the APG-EA system would be 12.3% The percent mortality of all the fish held in the West Branch of Canal Creek system would range from a low of 6.7% to a high of 31.7%. The average mortality, including the controls, for the West Branch of Canal Creek system would be 19.3%. The mortality of the four CEHR control tanks would range from 0 to 6.7%; the average would be 4.2%.

To the authors knowledge, there are no test mortality acceptability criteria for a 9-month test. If one uses the mortality acceptability criteria for early life stage (ELS) toxicity tests which run for 1-2 months after hatch or fry swimup, the mortality observed in this study falls within ELS acceptability criteria (Goodman, 1986). For example, the ELS test acceptability criteria for all eight freshwater species listed in the draft ASTM standard guide (Japanese medaka are not included in the guide) run from 60-75% (Goodman, 1986). That is, for a test to be acceptable, 60-75% of the control organisms must be alive at the end of the study depending on the species being The percent survival of the Japanese medaka in all treatments, including the control and experimental fish, in both the APG-EA and West Branch of Canal Creek systems was greater than the draft ASTM ELS acceptability criteria for control fish. If one looks at the percent survival of all the missing fish plus known dead fish, the worse case of 68.3% survival (31.7% mortality) would still fall within the control ELS test acceptability criteria range of 60-75%.

5.5.2 Morphometric Analyses

No difference in wet weight at 6 months was found in the whole plot analysis of APG-EA diluent water vs. West Branch of Canal Creek water; DEN-initiated vs. fish not uninitiated; and APG-EA vs. West Branch of Canal Creek 0, 1, 5, and 25% groundwater by volume (Appendix 56). A significant interaction ($\alpha = 0.0186$) for wet weight was found at 6 months in the split

plot analysis of diluent water (APG-EA water vs. West branch of Canal Creek water) x sex (male vs. female). The males in APG-EA water were significantly ($\alpha=0.0358$) larger than the males in West Branch of Canal Creek water. The females in West Branch of Canal Creek water were significantly ($\alpha=0.0432$) larger than the males in the creek water.

A significant difference ($\alpha=0.0001$) in standard length at 6 months was found between fish in APG-EA water vs. West Branch of Canal Creek water in the whole plot analysis (Appendix 56). The APG-EA fish were longer than the West Branch of Canal Creek fish. The whole plot analysis also showed that a significant ($\alpha=0.0053$) interaction occurred in the concentration x DEN treatments at 6 months for standard length. The control DEN-initiated fish were longer than the fish in all of the following treatments: control fish not initiated ($\alpha=0.0009$); DEN-initiated fish in 1% groundwater by volume ($\alpha=0.0061$); fish not initiated in 1% groundwater by volume ($\alpha=0.0101$); DEN-initiated fish in 5% groundwater by volume ($\alpha=0.0296$); DEN-initiated fish in 25% groundwater by volume ($\alpha=0.0017$); and fish not initiated in 25% groundwater by volume ($\alpha=0.0009$).

In the split plot analysis of standard length at 6 months, there was marginal evidence ($\alpha=0.0499$) that a 3-way interaction of concentration x DEN x sex may be important. The interactions, which are given in Appendix 56, were caused primarily by two groups of females. With the exception of the DEN-initiated control males ($\alpha=0.1284$), the DEN-initiated control females were longer than the males and females in all DEN (DEN-initiated and fish not initiated) and concentration (0, 1, 5, and 25% groundwater by volume) groups. In contrast, the control females not initiated were shorter than the males and females in all groups with the exception of the DEN-initiated males in 1% groundwater by volume ($\alpha=0.3847$), males not initiated in 1% groundwater by volume ($\alpha=0.0724$) DEN-initiated females in 25% groundwater by volume ($\alpha=0.4302$), and the DEN-initiated males in 25% groundwater by volume ($\alpha=0.4302$), and the DEN-initiated males in 25% groundwater by volume ($\alpha=0.0621$).

The linear contrasts within the split plot analysis for the controls at the APG-EA test site vs. the controls held at CEHR showed that the fish held at APG-EA were significantly larger at 6 months in both weight wet (α = 0.0001) and standard length (α = 0.0001).

The following wet weight results were found at 9 months. The whole plot treatments showed that diluent water (APG-EA water vs. West Branch of Canal Creek water) and concentration (0, 1, 5, and 25% groundwater by volume) effects occurred. The fish held in APG-EA water were significantly ($\alpha=0.0030$) heavier than the fish held in West Branch of Canal Creek water (Appendix 56). The concentration effect showed that the fish in 25% groundwater by volume were heavier than control fish ($\alpha=0.0210$) and fish held in 5% groundwater by volume ($\alpha=0.0123$) at the whole plot level.

The split plot analysis for wet weight at 9 months showed that four different interactions occurred with sex (Appendix 56). 1) The females were significantly ($\alpha = 0.0001$) larger than the 2) A diluent x sex interaction showed that the females in the APG-EA water were significantly larger than the males in APG-EA water ($\alpha = 0.0096$) and males in West Branch of Canal Creek The females in West Branch of Canal Creek water ($\alpha = 0.0001$). water were significantly larger ($\alpha = 0.0001$) than the males in the creek water. The males in APG-EA water were larger than the males in creek water ($\alpha = 0.0001$). 3) A DEN x sex interaction showed that DEN-initiated females were significantly heavier than DEN-initiated males ($\alpha = 0.0001$), females not initiated (0.0305), and males not initiated ($\alpha = 0.0001$). The females not initiated were larger than the DEN-initiated males ($\alpha = 0.0002$) and males not initiated ($\alpha = 0.0017$). 4) A 4-way interaction occurred with diluent water x concentration x DEN x sex. A number of statistically significant terms occurred which made the analysis difficult to interpret. The reader is referred to Appendix 56 for more information.

The whole plot analysis of standard length at 9 months showed that the APG-EA fish were significantly ($\alpha = 0.0028$) longer than the West Branch of Canal Creek fish (Appendix 56). Six sex interactions for standard length occurred at the split plot level at 9 months. 1) Females were significantly ($\alpha =$ 0.0001) longer than males. 2) In a diluent water x sex interaction, APG-EA females were significantly longer than APG-EA males (α = 0.0170) and West Branch of Canal Creek males (α = 0.0001). APG-EA males were significantly longer than West Branch of Canal Creek males ($\alpha = 0.0001$). West Branch of Canal Creek females were significantly larger than West Branch of Canal Creek males ($\alpha = 0.0001$). 3) A concentration x sex interaction occurred with 16 statistically significant terms which made the analysis difficult to interpret. The reader is referred to Appendix 56 for more detail. 4) A DEN x sex interaction occurred. DEN-initiated females were longer than DEN-initiated males ($\alpha = 0.0001$) and males not uninitiated ($\alpha = 0.0001$). Females not initiated were longer than DEN-initiated males (α = 0.0001) and males not initiated ($\alpha = 0.0005$). 5) A diluent water x DEN x sex interaction occurred which contained 10 significant terms (Appendix 56). In general terms, the West Branch of Canal Creek DEN-initiated and males not initiated were smaller than fish in the other treatments. 6) A concentration x DEN x sex interaction occurred with a number of significant terms which was difficult to interpret (Appendix 56).

The control fish at the APG-EA test site were significantly larger at 9 months in both weight wet (α = 0.0001) and standard length (α = 0.0001) than the controls held at CEHR (Appendix 56).

5.5.3 Histopathology Analyses

The histopathological findings for the 6- and 9-month exposures are described in detail in the pathology report by EPL (1996). Summaries of the findings at 6 months, 9 months, and a summary comparison at 6 and 9 months are given in Appendix 57. The major conclusions of the histopathology study are given below. The conclusions are taken from the EPL summary comparison at 6 and 9 months.

A comparison of Japanese medaka initiated with DEN and exposed to 0, 1, 5, and 25% groundwater by volume in West Branch of Canal Creek water for six months and APG-EA dechlorinated tap water for the final three months of the study as reported by EPL (Appendix 57) is as follows:

In general the number of hepatocellular neoplasms observed at nine months was greater than the number observed at six months in both male and female medaka. An exception was that there were fewer hepatocellular neoplasms among Groups 3/4 (control) males at nine months than at six months.

Overall hepatocellular neoplasms were more numerous among males than among females. At six months the number of medaka with a hepatocellular neoplasm(s) was the same in males and females in Groups 7/8 [DEN-initiated fish held in 1% groundwater by volume] and 11/12 [DEN-initiated fish held in 5% groundwater by volume].

At six months among male medaka there appeared to be a promotional effect of the Canal Creek water on hepatocellular neoplasms. months among male medaka there appeared to be a promotional effect of the groundwater on neoplasia based the hepatocellular apparently low incidence of hepatocellular neoplasms in controls (one in 17). This low incidence may be spurious in light of the incidence of hepatocellular neoplasms in DENinitiated control males from the six month sacrifice (7 of 20 fish) and the incidence in DEN-initiated control males in dechlorinated tap water from the nine month sacrifice (8 of If it is speculated that the "one 40 fish). in 17" control incidence probably should have higher eight) then (six to conclusions might be that there is a slight groundwater effect on hepatocellular neoplasia at the 25% concentration and that there is a

continuing promotional effect of the Canal Creek water on all groups of males initiated with DEN.

At six months among female medaka there appeared to be a promotional effect of the Canal Creek water on hepatocellular neoplasia. At six months and nine months among female medaka there was no effect of the groundwater The number of on hepatocellular neoplasia. medaka with hepatocellular neoplasia increased at nine months over six months in all groups and at nine months the incidence was greatest among control Groups 3/4 (8 of 32 affected). This distribution of neoplasms indicates that the promotional effect of the Canal Creek water which was evident at six months was still evident at nine months even though the fish were not exposed to Canal Creek water for the last three months of the study.

A comparison of Japanese medaka initiated with DEN and exposed to 0, 1, 5, and 25% groundwater by volume in APG-EA dechlorinated tap water for six and nine months as reported by EPL (Appendix 57) is as follows:

In general the number of hepatocellular neoplasms observed at nine months was greater than the number observed at six months. An exception was that only one of 17 female medaka at six months had a hepatocellular neoplasm in Groups 19/20 [DEN-initiated fish held in 100% APG-EA tap water] and only one in 30 female medaka at nine months had a hepatocellular neoplasm in Groups 19/20.

Overall, neoplasms were more numerous among males than females. An exception was that at six months one female in Groups 19/20 (controls) had a hepatocellular neoplasm and no males in Groups 19/20 had hepatocellular neoplasia.

At six months among male medaka there was no effect of groundwater on hepatocellular neoplasia. At nine months there appeared to be a promotional effect of the groundwater at 25% concentration on hepatocellular neoplasia in male medaka (12 of 29 fish affected), although eight of 40 control medaka also had hepatocellular neoplasia at nine months.

At six months among the female medaka there was no effect of groundwater on hepatocellular neoplasia. At nine months there appeared to be a trend of increasing percentage of hepatocellular neoplasms from controls to medaka in 25% groundwater, but the differences between groups in number of neoplasms was not great.

A comparison of Japanese medaka not initiated with DEN and exposed to 0, 1, 5, and 25% groundwater by volume in West Branch of Canal Creek water for six months and APG-EA dechlorinated tap water for the final three months of the study as reported by EPL (Appendix 57) is as follows:

At six months among male and female medaka there was no effect of either Canal Creek water or groundwater on the incidence of At nine months hepatocellular neoplasia. among the males there was a slight effect of 25% groundwater concentration on the incidence of hepatocellular neoplasia (three of medaka had hepatocellular neoplasia versus one medaka with hepatocellular neoplasia in each of the other three exposure concentrations). At nine months among the females there was no effect of groundwater exposure hepatocellular neoplasia.

A comparison of Japanese medaka not initiated with DEN and exposed to 0, 1, 5, and 25% groundwater by volume in APG-EA dechlorinated tap water for six and nine months as reported by EPL (Appendix 57) is as follows:

At six months and at nine months among male and female medaka there was no effect of groundwater on the incidence of hepatocellular neoplasia.

A comparison of Japanese medaka not initiated with DEN and housed in CEHR laboratory well water for six and nine months as reported by EPL (Appendix 57) is as follows:

At six months there were no hepatocellular neoplasms diagnosed among medaka of either sex. At nine months one hepatocellular adenoma occurred in a female that had been initiated with DEN.

Neoplasms other than hepatocellular neoplasms that occurred during the study as reported by EPL (Appendix 57) are as follows:

Neoplasms other than hepatocellular neoplasms occurred sporadically among male and female medaka with no regard to DEN initiation or the type of diluent water in which medaka were housed. Lymphosarcoma was the most common among these sporadic neoplasms.

Non-neoplastic lesions that occurred during the study as reported by EPL (Appendix 57) are as follows:

A number of non-neoplastic lesions occurred in a variety of tissues in both male and female water, Creek in Canal housed dechlorinated tap water or laboratory well There was an interesting association water. of the occurrence of hyaline material in the glomeruli of the kidney in medaka that also had hepatocellular neoplasia, although these did not consistently two lesions together in the same fish. Tubular dilatation and tubular casts were common changes in the kidney that occurred more frequently among male medaka than among female medaka. Tubular degeneration and tubular mineralization, when they occurred, usually were in medaka that tubular casts and/or tubular also had dilatation.

Metazoan parasites, usually associated with granulomas, were present in a variety of tissues only in medaka that were exposed to Canal Creek water. This finding is not unexpected in fish exposed to a natural surface water which would harbor such organisms.

Increased basophilia of thyroid tissue was consistently more common among male medaka than among female medaka regardless of diluent water type or exposure to groundwater. Among medaka housed in Canal Creek water for six months and then dechlorinated tap water for three months, 19% of the females had increased basophilia of thyroid tissue although it was usually of minimal severity. This percentage in females, however, was higher than the percentage incidence in females housed in dechlorinated tap water or laboratory well water for six or nine months or in Canal Creek water for six months.

A common gross observation made at necropsy among female medaka was a large, or inflamed,

or swollen anal passage or opening. At gross trimming these observations were related to a bulge of tissue in the area of the anus identified as the urinogenital papillae, an anatomic sex characteristic of female medaka. Histologically, the urinogenital papillae of a number of fish were notably larger than in others and diagnoses of hypertrophy and/or hyperplasia of the covering epithelium were Enlarged urinogenital papillae were noted grossly more often in medaka exposed to Canal Creek water for six months and then to dechlorinated tap water for the last three months of the study than in medaka exposed to dechlorinated tap water for nine months. There was no relationship of incidence of enlargement of urinogenital papillae groundwater of DEN exposure. It is known that the size of the papillae may vary with the of season medaka, breeding experimentally, that the size may be altered by exposure to female or male hormones. explanation for the greater incidence enlarged papillae in medaka exposed to Canal water than in medaka exposed dechlorinated tap water is not readily apparent.

Lesions occurred in other tissues not discussed in this summary. [Additional information is given in Appendix 57 and in the EPL pathology report (EPL, 1996).]

Few, if any, data are available on the potential carcinogenicity of heavy metals to the Japanese medaka (Hawkins, 1994). Beryllium and nickel have been classified by the International Agency for Research in Cancer (IARC) as probable carcinogens in mammalian models (Forum for Scientific Excellence, Inc., 1990). As in the case of metals, short-chain halogenated hydrocarbons have received little study in fish relative to other organic groups, e.g., nitroso compounds, polynuclear aromatic hydrocarbons, and aromatic amines (Hawkins et al., 1995). 1,1,2,2-Tetrachloroethane was not found to be carcinogenic to Japanese medaka exposed to concentrations up to 14 mg/L in a study by Hawkins (1991). IARC and the National Toxicology Program (NTP) have listed carbon tetrachloride and chloroform in their mammalian carcinogen lists; NTP has also listed 1,2-dichloroethane (Forum for Scientific Excellence, Inc., 1990).

One may speculate that the low incidence of carcinogenic activity in fish not initiated with DEN may be the result of the concentrations of potential carcinogens in the groundwater being too low to induce neoplasms and/or the fish model does not

respond to chlorinated aliphatic hydrocarbons and heavy metals which are probable mammalian carcinogens.

5.6 Chemical Analyses

5.6.1 Comprehensive Chemical Analyses

A summary of the raw groundwater general water quality, metals, and volatile organics measured in the samples of the five bimonthly comprehensive chemical analyses is given in Table 3. The range of the lowest and highest concentrations of the five analyses is presented. The comprehensive results of each bimonthly chemical analysis are given in Appendix 58. Appendix is organized as follows. Appendix 58, Table A58-1A lists the 100% groundwater, 100% West Branch of Canal Creek water, and 100% APG-EA tap water results obtained during Test No. Table A58-1B contains the results for the chronic histopathology groundwater exposure aquaria diluted with APG-EA tap water (1, 5, and 25% groundwater by volume aquaria) obtained during Test No. 1. Table A58-1C gives the results for the chronic histopathology groundwater exposure aquaria diluted with West Branch of Canal Creek water (1, 5, and 25% groundwater by volume aquaria) obtained during Test No. 1. Appendix 58, Tables A58-2A to 2C, Tables A58-3A to 3C, Tables A58-4A to 4C, and Tables A58-5A to 5C list the data for Test Nos. 2, 3, 4 and 5, respectively. The tables in Appendix 58 include the test method and detection limit for each chemical. In contrast to Table 3, which contains only the range of materials actually measured in the samples, all materials measured and quantified as well as materials not detected during analysis are included in Appendix The original data sheets and quality control data are archived at the U.S. Army Center for Environmental Health Research (USACEHR, 1994b).

With one exception, no compounds in the following groups were detected in the groundwater, West Branch of Canal Creek water, or APG-EA tap water at EPA's quantitation limits listed in the tables of Appendix 58: 1) priority pollutant base neutrals; 2) organophosphorus pesticides; or 3) chlorinated pesticides and herbicides. Bis-(2-ethylhexyl) phthalate was reported as an analyte in Test No. 5 only for the 5% groundwater by volume aquaria diluted with West Branch of Canal Creek water. The value appears to be spurious because the compound was not listed for the 1% groundwater by volume aquaria or the 100% West Branch of Canal Creek water which was used as the diluent water.

The following munitions were not detected in any sample at a quantitation limit of 50 μ g/L: 1) octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX); 2) hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX); 3) 1,3,5-trinitrobenzene (TNB); 4) N,2,4,6-tetranitro-N-methylaniline (tetryl); 5) trinitrotoluene (TNT); 6) 2,4-dinitrotoluene (2,4-DNT)); or 7) 2,6-dinitro-toluene (2,6-DNT).

The general water chemistry parameters of the groundwater summarized in Table 3 show that the groundwater has a hardness that ranges from 58 to 66 mg/L as CaCO₃. The pH of 3.6-4.3 is low relative to that which occurs in most surfaces waters. Some surface waters high in tannic acid or those waters impacted by acid rain may also have pH values in the same range (Baker et al., 1990). Ammonia nitrogen was <0.1 mg/L in all samples; thus, nonionized ammonia would not be expected to play a role in toxicity (Thurston et al., 1979).

Several EPA priority pollutant heavy metals were found in the groundwater (Table 3). Copper, mercury, and silver concentrations in the groundwater exceeded in one or more tests the EPA freshwater chronic numerical water quality criteria of 12 μ g/L for copper (U.S. EPA, 1984a), 0.012 μ g/L for mercury (U.S. EPA, 1984b), and the proposed criterion of 0.92 μ g/L for silver (U.S. EPA, 1987). The copper and silver criteria are hardness dependent criteria; 100 mg/L as CaCO₃ was used. Aluminum was also present at high concentrations in the groundwater; however, EPA has not finalized their draft numerical water quality criteria for the metal (Potts, 1994). Thus, it is not clear whether or not the concentrations in the groundwater may exceed EPA's numerical water quality criteria for aluminum.

Thirteen chlorinated aliphatic compounds were found in the groundwater (Table 3). Several of the organics were EPA priority pollutants. None of the priority pollutant organics found in the groundwater currently have numerical water quality criteria values because insufficient data exist to develop criteria (Potts, 1994). EPA does give the LOEC for several of the compounds where criteria are not available (carbon tetrachloride, chloroform, 1,2-dichloroethane, 1,1,2-tetrachloroethane, 1,1,1-trichloroethane, and 1,1,2-trichloroethane). However, all of the LOECs are one or more orders of magnitude higher than the concentrations found in the groundwater.

Eleven of the 13 volatile organics found in the groundwater had octanol water partition coefficients (log k_{ow} or log P) less than 3 (Table 4). Bioaccumulation of a material up to 100-fold above background (bioconcentration factor or BCF = 100) can occur when the log K_{ow} = 3 (U.S. EPA, 1991b). Thus, bioaccumulation was not a potential toxicological problem for 11 of the 13 volatile organics present in the groundwater. 1,2-Dichlorobenzene and 1,2,4-trichlorobenzene have K_{ows} of 3.4 and 4.2, respectively (Table 4). Both compounds were found in only one groundwater sample (Appendix 58; Table A58-1A). Because the two compounds were reported to be present in only one sample at the beginning of the study, it is difficult to determine how important bioaccumulation may be for the compounds.

TABLE 4. LOG OCTANOL WATER PARTITION COEFFICIENTS OF THE ORGANIC CONTAMINANTS DETECTED IN WELL CC-27B

Contaminant	Log k _{ow}
Bromochloromethane	1.4 ^a 2.1 ^b
Bromodichloromethane	2.1° 2.8°
Carbon Tetrachloride	1.9 ^b
Chloroform 1,2-Dichlorobenzene	3.4 ^b
1,2-Dichloroethane	1.4ª
cis-1,2-Dichloroethene	1.8°
1,1,2,2-Tetrachloroethane	2.4 ^b
Tetrachloroethene	2.9 ^b
1,2,4-Trichlorobenzene	4.2 ^b
1,1,1-Trichloroethane	2.5 ^b
1,1,2-Trichloroethane Frichloroethene	2.2 ^b 2.4 ^b

a Value taken from Howard (1993).

5.6.2 Routine Water Quality Analyses

The raw data and various descriptive statistics for the routine water quality parameters measured in each exposure tank during the chronic histopathology study are given in Appendix 59. Although some of the water quality parameters varied slightly as a function of the treatments, water quality within a given treatment was quite consistent over the 9-month study. average temperature of all 16 West Branch of Canal Creek test aquaria over the 9-month exposure period was 23.6 vs. 24.2°C for the 16 APG-EA aquaria. The average temperature of both the West Branch of Canal Creek and APG-EA test systems fell within the range of 25 ±2 °C required in the study protocol (USACEHR, 1994a). The average dissolved oxygen concentration of all 16 West Branch of Canal Creek test aquaria over the 9-month exposure period was 7.4 vs. 8.2 mg/L for the 16 APG-EA aquaria. pH ranged from a low of 5.8 at 25% groundwater by volume to a high of 7.9 in the 100% West Branch of Canal Creek test aquaria. In the APG-EA aquaria, pH ranged from a low of 5.8 at 25% groundwater by volume to a high of 7.9 in the 1% groundwater by volume aquaria.

b Value taken from U.S. EPA (1991a).

c Value taken from Howard (1990).

SECTION 6

CONCLUSIONS

The primary objective of this study was to evaluate the potential toxicity of the groundwater in situ to aquatic organisms. Although microorganisms are the primary organisms present in most subsurface environments, an array of surrogate biomonitoring systems integrated into a tiered hazard framework was used in the evaluation. An array of biomonitoring assays covering several levels of biological complexity was used to maximize predictability of potential adverse pollutant effects to aquatic organisms during the 9-month evaluation. A secondary objective of the study was to evaluate, where test systems were appropriate for use in low salinity waters, the potential toxicity of West Branch of Canal Creek water. The West Branch of Canal Creek studies were conducted concurrently with the groundwater studies to obtain background data on the potential toxicity of the creek water. Only aqueous phase assays were used in the water column studies of West Branch of Canal Creek water; no sediment systems were studied.

Several U.S Environmental Protection Agency (EPA) priority pollutant heavy metals were found in the groundwater. Copper, mercury, and silver concentrations in the groundwater exceeded, in one or more tests, EPA's numerical water quality criteria for the specific metal. Aluminum was also present at high concentrations in the groundwater; however, EPA has not finalized their draft numerical water quality criteria for the metal. Thus, it is not clear whether or not the concentrations in the groundwater may exceed EPA's numerical water quality criteria for aluminum.

Thirteen chlorinated aliphatic compounds were found in the groundwater, several of which are EPA priority pollutants. None of the priority pollutant organics found in the groundwater currently have numerical water quality criteria values; however, lowest observed effect levels (LOEL) for several of the compounds are available. All of the LOELs are one or more orders of magnitude higher than the concentrations found in the groundwater.

Eleven of the 13 volatile organics found in the groundwater had octanol water partition coefficients (log k_{ow} or log P) less than 3. Thus, bioaccumulation was not a potential toxicological problem for most of the volatile organics present in the groundwater. 1,2-Dichlorobenzene and 1,2,4-trichlorobenzene, which have K_{ows} greater than 3, were found in only one groundwater sample during the study. Because the two compounds were present in only one sample at the beginning of the study, it is difficult to determine how important bioaccumulation may be for the compounds.

An array of eight biomonitoring systems integrated into a tiered hazard framework was used in the 9-month study. The biomonitoring systems included a number of endpoints. The pH of the groundwater from well CC-27B was ≈4; thus, many of the assays were conducted at both pH 4 and pH 7. The toxicity at pH 7 was studied so that the data could be used, if necessary, in the Phase 2 hazard assessment of the groundwater as it enters the West Branch of Canal Creek which has pH values close to the neutral range.

Toxicity was detected at various groundwater concentrations by 6 of the 8 biomonitoring systems. The Ames assay for mutagenicity was negative in all cases for groundwater, West Branch of Canal Creek water, and filtered APG-EA tap water. Three chemical mutagens (carbon tetrachloride, 1,2-dichloroethane, and trichloroethene) were found in the groundwater. The lack of mutagenic activity in the groundwater concentrated 100X suggests that the concentrations of the mutagens are too low to induce significant mutations in the Ames assay.

Differences in Japanese medaka (Oryzias latipes) growth were found in a chronic 9-month histopathology assay when the fish were exposed to 1, 5 and 25% groundwater by volume diluted with either APG-EA dechlorinated tap water or West Branch of Canal Creek surface water. In general, the fish were smaller when grown in groundwater diluted with West Branch of Canal Creek water compared to those reared in groundwater diluted with APG-EA dechlorinated tap water. Most females were larger than males when reared in groundwater diluted with either West Branch of Canal Creek water or APG-EA dechlorinated tap water.

Experimental Pathology Laboratories, Inc. (EPL), Herndon, VA, analyzed the Japanese medaka in the chronic nine-month study for incidences of hepatocellular neoplasia, neoplasms other than hepatocellular neoplasms, and non-neoplastic lesions and concluded the following. "...at nine months among male and female medaka there was no effect of groundwater on the incidence of hepatocellular neoplasia [at concentrations up to 25% groundwater by volume (highest concentrations studied) when APG-EA dechlorinated tap water was used as diluent water]." "At nine months among the males there was a slight effect of 25% groundwater concentration on the incidence of hepatocellular neoplasia...[and]...among the females there was no effect of groundwater exposure on hepatocellular neoplasia [when West Branch of Canal Creek water was used as diluent water for six months and dechlorinated tap water for three additional months]."

EPL found the following at the end of the nine-month study when Japanese medaka were initiated for 48 h at 13 days of age with 10 mg/L diethylnitrosamine (DEN). "At nine months there appeared to be a promotional effect of the groundwater at 25% concentration on hepatocellular neoplasia in male medaka (12 of

29 fish affected), although eight of 40 control medaka also had hepatocellular neoplasia at nine months [in fish exposed to 25% groundwater by volume diluted with APG-EA dechlorinated tap water]." "At nine months there appeared to be a trend of increasing percentage of hepatocellular neoplasms from controls in 25% groundwater, but the differences between groups in number of neoplasms was not great."

In DEN-initiated fish exposed to West Branch of Canal Creek water for six months followed by three months of exposure to groundwater in APG-EA dechlorinated tap water, EPL concluded "At nine months among male medaka there appeared to be a promotional effect of the groundwater on hepatocellular neoplasia based on the apparently low incidence of hepatocellular neoplasms in controls...This low incidence may be spurious..." "At six months among female medaka there appeared to be a promotional effect of the Canal Creek water on hepatocellular neoplasia. At six and nine months among female medaka there was no effect of the groundwater on hepatocellular neoplasia. The number of medaka with hepatocellular neoplasia increased at nine months over six months in all groups and at nine months the incidence was greatest among control Groups..."

The groundwater was acutely toxic at pH 4 to a green alga (<u>Selenastrum capricornutum</u>), cladoceran (<u>Ceriodaphnia dubia</u>), fathead minnow (<u>Pimephales promelas</u>), and Japanese medaka. From an acute toxicity standpoint, the groundwater appeared to be less toxic to the green alga at pH 7. The groundwater was not acutely toxic at pH 7 to the cladoceran, fathead minnow, or Japanese medaka.

The lowest concentration of groundwater that caused no observable adverse effect (NOEC) at pH 4, in the test systems in which the NOEC value could be determined, was 10% groundwater by A NOEC of 10% groundwater by volume occurred in 3 out of 5 tests for the green alga (S. capricornutum); 4 out of 5 tests in both a 7-d cladoceran (C. dubia) and a 96-h frog (Xenopus <u>laevis</u>) embryo teratogenesis assay - <u>Xenopus</u> (FETAX). 18% groundwater by volume occurred in 2 of 5 tests in a 7-d fathead minnow (P. promelas) test. The groundwater was not toxic at pH 7 in the 7-d fathead minnow test and in 2 of 5 FETAX assays. The NOEC (18% groundwater by volume) was higher at pH 7 in 3 of the 5 FETAX assays. The 10% groundwater by volume NOEC for the green alga and cladoceran at pH 4, however, was essentially the same when the organisms were exposed to buffered groundwater at pH 7.

In conclusion, 6 of the 8 biomonitoring systems showed that the groundwater in the Canal Creek aquifer was toxic. Thus, the Phase 2 analyses followed by the preliminary hazard assessment of the groundwater discharge into West Branch of Canal Creek should be conducted as proposed.

SECTION 7

REFERENCES

- Ames, B.N., W.E. Durston, E. Yamasaki, and F.D. Lee. 1973.
 Carcinogens are mutagens: A single test system combining
 liver homogenate for activation and bacteria for detection.
 Proc. Natl. Acad. Sci. (USA) 70:2281-2286.
- APHA et al. (American Public Health Association, American Water Works Association, and Water Pollution Control Federation). 1992. Standard methods for the examination of water and wastewater, 18th ed. Amer. Public Hlth. Assoc., Washington, DC.
- ASTM (American Society for Testing and Materials). 1992.
 Standard guide for conducting the frog embryo teratogenesis assay-Xenopus (FETAX). ASTM Designation E 1439-91. Pages 1199-1209 in: 1992 Annual book of ASTM standards, Vol. 11.04. Amer. Soc. Testing Materials, Philadelphia.
- Baker, J.P., D.P. Bernard, S.W. Christensen, M.J. Safe, J. Freda, K.J. Heltcher, D.R. Marmorek, L. Rowe, P.F. Scanlon, G.W. Suter II, W.J. Warren-Hicks, and P.M. Welbourn. 1990. Biological effects of changes in surface water acid-base chemistry. NAPAP Report 13. in: Acidic deposition: State of science and technology, Vol. II Aquatic processes and effects. National Acid Precipitation Assessment Program, U.S. Environmental Protection Agency, Washington, DC.
- Bantle, J.A. 1994. Personal communication. Oklahoma State Univ., Stillwater, OK.
- Bantle, J.S. 1995. FETAX A developmental toxicity assay using frog embryos. Pages 207-230 in: Rand, G.M., ed. Fundamentals of aquatic toxicology, 2nd ed. Taylor & Francis, Washington, DC.
- Bantle, J.A., J.N. Dumont, R.A. Finch, and G. Linder. 1991.
 Atlas of abnormalities a guide for the performance of FETAX.
 Oklahoma State Univ., Stillwater, OK.
- Barbee, G.C. 1994. Fate of chlorinated aliphatic hydrocarbons in the vadose zone and ground water. Ground Water Monit. Remediation 14:129-140.
- Bunton, T.E. 1990. Hepatopathology of diethylnitrosamine in the medaka (Oryzias latipes) following short-term exposure.

 Toxicol. Pathol. 18:313-323.

- Burton, D.T., R.S. Herriott, and S.D. Turley. 1994.
 Biomonitoring and hazard assessment evaluation of
 contaminated groundwater at Aberdeen Proving Ground-Edgewood
 Area Beach Point Peninsula. AD A289063. University of
 Maryland, Queenstown, MD.
- Curtis C., A. Lima, S.J. Lozano, and G.D. Veith. 1982.

 Evaluation of a bacterial bioluminescence bioassay as a method for predicting acute toxicity of organic chemicals to fish. Pages 170-178 in: Pearson, J.G., R.B. Foster, and W.E. Bishop, eds. Aquatic toxicology and hazard assessment, Vol. 5. ASTM STP 776. Amer. Soc. Testing Materials, Philadelphia.
- Dawson, D.A., C.A. McCormick, and J.A. Bantle. 1985. Detection of teratogenic substances in acidic mine water samples using the frog embryo teratogenesis assay-Xenopus (FETAX). J. Appl. Toxicol. 5:234-244.
- de March, B.G.E. 1988. Acute toxicity of binary mixtures of five cations (Cu²⁺, Cd²⁺, Zn²⁺, Mg²⁺, and K⁺) to the freshwater amphipod <u>Gammarus lacustris</u> (Sars): Alternative description models. Can. J. Fish. Aquat. Sci. 45:625-633.
- Dutka, B.J. and K.K. Kwan. 1988. Battery of screening tests approach applied to sediment extracts. Toxicol. Assessment 3:303-314.
- Elnabarawy, M.T., R.R. Robideau, and S.A. Beach. 1988.
 Comparison of three rapid toxicity test procedures:
 Microtox®, Polytox®, activated sludge respiration
 inhibition. Toxicity Assess. Internat. J. 3:361-370.
- EPL (Experimental Pathology Laboratories, Inc.). 1996. U.S. Army Biomedical Research and Development Laboratory test 410-002R West Branch Canal Creek carcinogenicity study with medaka, Vol. 1-3. EPL Project No. 406-035. Exp. Pathology Lab., Inc., Herndon, VA.
- Faust, M., R. Altenburger, W. Boedeker, and L.H. Grimme. 1994.
 Algal toxicity of binary combinations of pesticides. Bull.
 Environ. Contam. Toxicol. 53:134-141.
- Forum for Scientific Excellence, Inc. 1990. List of lists of worldwide hazardous chemicals and pollutants. J.B. Lippincott Co., New York.
- Goodman, L.R. 1986. Proposed new standard guide for conducting early life-stage toxicity tests with fishes. Draft No. 10. Amer. Soc. Testing Materials, Philadelphia.
- Gulley, D.H., A.M. Boelter, and H.L. Bergman. 1989. Toxstat, release 3.0. Univ. Wyoming, Laramie, WY.

- Hawkins, W.E. 1991. Development of carcinogenesis bioassay models: Response of small fish species to various classes of carcinogens. Contract No. DAMD17-88-C-8050. Gulf Coast Res. Lab., Ocean Springs, MS.
- Hawkins, W.E. 1994. Personal communication. Gulf Coast Res. Lab., Ocean Springs, MS.
- Hawkins, W.E., W.W. Walker, and R.M. Overstreet. 1995.

 Carcinogenicity tests using aquarium fish. Pages 421-446

 in: Rand, G.M., ed. Fundamentals of aquatic toxicology, 2nd
 ed. Taylor & Francis, Washington, DC.
- Herriott, R.S. and D.T. Burton. 1992. U.S. Army Biomedical Research and Development Laboratory aquatic biomonitoring trailer version 1.0: Operations manual. AD A260733. University of Maryland, Queenstown, MD.
- Hinton, D.E., J.A. Hampton, and P.A. McCuskey. 1985. Japanese medaka liver tumor model: Review of literature and new findings. Pages 439-450 in: Jolley, R.L, R.J. Bull, W.P. Davis, S. Kata, M.H. Roberts, Jr., and V.A. Jacobs, eds. Water chlorination chemistry, environmental impact and health effects, Vol. 5. Lewis Publ., Inc., Ann Arbor, MI.
- Hinton, D.E., J.A. Couch, S.J. Teh, and L.A. Courtney. 1988. Cytological changes during progression of neoplasia in selected fish species. Aquatic Toxicol. 11:77-112.
- Hoffman, G.R. 1991. Genetic toxicology. Pages 201-225 in:
 Amdur, M.O., J. Doull, and C.D. Klaassen, eds. Casarett and
 Doull's toxicology the basic science of poisons, 4th ed.
 Pergamon Press, New York.
- Horning, W.B. and C.I Weber (eds.). 1985. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. EPA/600/4-85/014. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH.
- Howard, P.H. (ed.). 1990. Handbook of environmental fate and exposure data for organic chemicals, Vol. II Solvents. Lewis Publ., Inc., Chelsea, MI.
- Howard, P.H. (ed.). 1993. Handbook of environmental fate and exposure data for organic chemicals, Vol. IV Solvents 2. Lewis Publ., Inc., Chelsea, MI.

- Hughes, J.S., M.M. Alexander, and K. Balu. 1988. An evaluation of appropriate expressions of toxicity in aquatic plant bioassays as demonstrated by the effects of atrazine on algae and duckweed. Pages 531-547 in: Adams, W.J., G.A. Chapman, and W.G. Landis, eds. Aquatic toxicology and environmental fate, Vol. 10. ASTM STP 971. Amer. Soc. Testing Materials, Philadelphia.
- ICF Kaiser. 1995. Terrestrial and ecological risk assessment at U.S. Army Aberdeen Proving Ground, Maryland. Interim technical report for the Canal Creek bioassessment investigation. Contract No. DAAA15-91-d-0014, Task Order No. 10. ICF Kaiser Engineers, Inc., Abingdon, MD.
- Ishikawa, T. and S. Takayama. 1979. Importance of hepatic neoplasms in lower vertebrate animals as a tool in cancer research. J. Toxicol. Environ. Hlth. 5:537-550.
- JEG (Jacobs Engineering Group, Inc.). 1995. Canal Creek study area Aberdeen Proving Ground Edgewood Area, Maryland. Remedial investigation progress report. Document Control No. EMO-35E35610-B7-06357. Jacobs Engineering Group, Inc., Washington, DC.
- Kaiser, K.L.E. and J.M. Ribo. 1988. <u>Photobacterium phosphoreum</u> toxicity bioassay. II. Toxicity data compilation. Toxicity Assessment: An Internat. J. 3:195-237.
- Knox, R.C., D.A. Sabatini, and L.W. Canter. 1993. Subsurface transport and fate processes. Lewis Publ., Ann Arbor, MI.
- Lauren, D.J., S.J. Teh, and D.E. Hinton. 1990. Cytotoxicity phase of diethylnitrosamine-induced hepatic neoplasia in medaka. Cancer Res. 50:5504-5514.
- Lee, G.F. 1973. Chemical aspects of bioassay techniques for establishing water quality criteria. Water Res. 7:1525-1546.
- Lorah, M.M. and J.S. Clark. 1992. Contamination of ground water, surface water, and soil and evaluation of selected pumpage scenarios in the Canal Creek Area of Aberdeen Proving Ground, Maryland. Draft Open File Report 92-. U.S. Geological Survey, Towson, MD.
- Lorah, M.M. and D.A. Vroblesky. 1989. Inorganic and organic ground-water chemistry in the Canal Creek Area of Aberdeen Proving Ground, Maryland. USGS Water-Resources Investigations Report 89-4002. U.S. Geological Survey, Towson, MD.

- Marking, L.L. 1985. Toxicity of chemical mixtures. Pages 164-176 in: Rand, G.M. and S.R. Petrocelli, eds. Fundamentals of aquatic toxicology methods and applications. Hemisphere Publ. Corp., New York.
- McCann, J., E. Choi, E. Yamasaki, and B.N. Ames. 1975.

 Detection of carcinogens as mutagens in the

 <u>Salmonella</u>/microsome test: Assay of 300 chemicals. Proc.

 Natl. Acad. Sci. (USA) 72:5135-5139.
- McCann, J. and B.N. Ames. 1976. Detection of carcinogens and mutagens in the <u>Salmonella/microsome</u> test: Assay of 300 chemicals: Discussion. Proc. Natl. Acad. Sci. (USA) 73:950-954.
- McFeters, G.A., P.J. Bond, S.B. Olson, and Y.T. Tchan. 1985. A comparison of microbial bioassays for the detection of aquatic toxicants. Water Res. 17:1757-1762.
- Metcalfe, C.D. 1989. Tests for predicting carcinogenicity in fish. Rev. Aquatic Sci. 1:111-129.
- Microbiological Associates, Inc. 1994. <u>Salmonella</u> plate incorporation assay using neat and extracted water samples. Protocol No. SPGT501005. Microbiological Associates, Inc., Rockville, MD.
- Microtox*. 1988. Microtox* Model 500 Toxicity Test System Manual. Microbics Corp., Carlsbad, CA.
- Miller, W.E., J.C. Greene, and T. Shiroyama. 1978. The <u>Selenastrum capricornutum</u> Printz algal assay bottle test. Experimental design, application and data interpretation protocol. EPA-600/9-78-018. U.S. Environmental Protection Agency, Environmental Research Laboratory, Corvallis, OR.
- Powers, D.A. 1989. Fish as model systems. Science 246:352-358.
- National Research Council. 1981. Testing for effects of chemicals on ecosystems. National Academy Press, Washington, DC.
- Nemath, G. 1989. RCRA facility assessment report Edgewood Area Aberdeen Proving Ground, Maryland. Rep. No. 39-26-0490-90. U.S. Army Environ. Hygiene Agency, Aberdeen Proving Ground, MD.
- Oliveros, J.P. and D.A. Vroblesky. 1989. Hydrogeology of the Canal Creek Area, Aberdeen Proving Ground, Maryland. USGS Water-Resources Investigations Report 89-4021. U.S. Geological Survey, Towson, MD.

- Peltier, W.H. and C.I. Weber. 1985. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms, 3rd ed. EPA/600/4-85/013. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH.
- Potts, K.W. 1994. Personal communication. U.S. Environmental Protection Agency, Office of Water, Health and Ecological Criteria, Water Quality Criteria, Washington, DC.
- Qureshi, A.A., K.W. Flood, S.R. Thompson, S.M. Janhurst, C.S. Inniss, and D.A. Rokosh. 1982. Comparison of a luminescent bacterial test with other bioassays for determining toxicity of pure compounds and complex effluents. Pages 179-195 in: Pearson, J.G., R.B. Foster, and W.E. Bishop, eds. Aquatic toxicology and hazard assessment, Vol. 5. ASTM STP 766. Amer. Soc. Testing Materials, Philadelphia.
- Ribo, J.M. and K.L.E. Kaiser. 1983. Effects of selected chemicals to photoluminescent bacteria and their correlations with acute and sublethal effects on other organisms. Chemosphere 12:1421-1442.
- Ribo, J.M. and K.L.E. Kaiser. 1988. <u>Photobacterium phosphoreum</u> toxicity bioassay. II. Toxicity data compilation. Toxicity Assess. Internat. J. 3:195-237.
- SAS 1989. SAS/STAT™ users guide, version 6, 4th ed., vol. 2. SAS Inst., Inc., Cary, NC.
- Schaeffer, D.J. and K.G. Janardan. 1987. Designing batteries of short-term tests with largest inter-tier correlation. Ecotoxicol. Environ. Safety 13:316-323.
- Shugart, L.R. 1995. Environmental genotoxicology. Pages 405-419 <u>in</u>: Rand, G.M., ed. Fundamentals of aquatic toxicology, 2nd ed. Taylor & Francis, Washington, DC.
- Sprague, J.B. 1985. Factors that modify toxicity. Pages 123-163 in: Rand, G.M. and S.R. Petrocelli, eds. Fundamentals of aquatic toxicology methods and applications. Hemisphere Publ. Corp., New York.
- Stephan, C.E. 1978. EPA statistics program, version 1.4. U.S. Environmental Protection Agency, Environmental Research Laboratory, Duluth, MN.
- Suter, G.W., II. 1993. Organism-level effects. Pages 175-246 in: Suter, G.W., II, ed. Ecological risk assessment. Lewis Publ., Ann Arbor, MI.

- Thurston, R.V., R.C. Russo, and K. Emerson. 1979. Aqueous ammonia equilibrium Tabulation of percent ionized ammonia. EPA-600/3-79-091. U.S. Environmental Protection Agency, Environmental Research Laboratory, Duluth, MN.
- USACEHR (U.S. Army Center for Environmental Health Research).

 1993. SOP for the determination of HMX, RDX, TNB, Tetryl,
 TNT, 2,6-DNT, and 2,4-DNT in water by high performance
 liquid chromatography (HPLC). No SOP Number. U.S. Army
 Center for Environmental Health Research, Ft. Detrick,
 Frederick, MD.
- USACEHR (U.S. Army Center for Environmental Health Research).

 1994a. USACEHR test study protocol 401-002R. Notebook 1186P
 Protocols. U.S. Army Center for Environmental Health
 Research, Ft. Detrick, Frederick, MD.
- USACEHR (U.S. Army Center for Environmental Health Research).
 1994b. USACEHR test study protocol 401-002R. Notebook 1186X
 Johnston Spectra Laboratories analytical chemistry
 reports. U.S. Army Center for Environmental Health
 Research, Ft. Detrick, Frederick, MD.
- U.S. EPA. 1984a. Ambient water quality criteria for copper 1984. EPA 440/5-84-031. U.S. Environmental Protection Agency, Washington, DC.
- U.S. EPA. 1984b. Ambient water quality criteria for mercury 1984. EPA 440/5-84-026. U.S. Environmental Protection Agency, Washington, DC.
- U.S. EPA. 1985. Toxic substances control act test guidelines; final rules. Federal Register 50:39252-39516.
- U.S. EPA. 1986a. Revision of toxic substances control act test guidelines. Federal Register 51:1522-1543.
- U.S. EPA. 1986b. Quality criteria for water 1986. EPA/5-86-001. U.S. Environmental Protection Agency, Washington, DC.
- U.S. EPA. 1987. Ambient water quality criteria for silver 1987. Draft 9/24/87. U.S. Environmental Protection Agency, Washington, DC.
- U.S. EPA. 1988. Ambient water quality criteria for aluminum 1988. EPA/440/5-86-008. U.S. Environmental Protection Agency, Washington, DC.
- U.S. EPA. 1991a. Evaluation of dredged material proposed for ocean disposal. EPA-503/8-91/001. U.S. Environmental Protection Agency, Washington, DC.

- U.S. EPA. 1991b. Assessment and control of bioconcentratable contaminants in surface waters. 1991 Draft Report. U.S Environmental Protection Agency, Washington, DC.
- Weber, C.I. (ed.). 1991. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 4th ed. EPA/600/4-90/027. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH.
- Weber, C.I., W.H. Peltier, T.J. Norberg-King, W.B. Horning, II, F.A. Kessler, J.R. Menkedick, T.W. Neiheisel, P.A. Lewis, D.J. Klemm, Q.H. Pickering, E.L. Robinson, J.M. Lazorchak, L.J. Wymer, and R.W. Freyberg. 1989. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, 2nd ed. EPA/600/4-89/001. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH.
- Weis, J.S. and P. Weis. 1989. Effects of environmental pollutants on early fish development. Rev. Aquat. Sci. 1:45-73.
- Winner, R.W. 1989. Multigeneration life-span tests of the nutritional adequacy of several diets and culture waters for <u>Ceriodaphnia dubia</u>. Environ. Toxicol. Chem. 8:513-520.

APPENDIX 1

MICROTOX® ASSAYS CONDUCTED ON RAW (pH ≈4.0) CANAL CREEK GROUNDWATER (WELL CC-27B), CHRONIC HISTOPATHOLOGY EXPOSURE TANKS, AND APG-EA DILUENT WATER (AUGUST 12, 1994 - MAY 10, 1995)

MICROTOX® TEST RESULTS ON GRAB SAMPLES OF CANAL CREEK 100% GROUNDWATER FROM WELL CC-27B® TABLE A1-1.

5-min 95% Fiducial Slope 15-min 95% EC50 Limits EC50 Co. 27.59-103.23 0.77 65.01 15.28-164.40 0.66 65.03 31.14-138.18 0.50 65.00 37.75-63.73 0.68 65.00 37.75-63.73 0.68 65.00 37.75-65.03 0.56 65.00 37.75-65.03 0.56 65.00 Co. 22.70.96 0.56 65.00 Co. 22.70 0.78 65.00 Co. 22.70 0.78 0.78 65.00 Co. 22.70 0.78 0.78 0.78 0.73 0.73 0.74-40.51 0.78 0.55 65.00 Co. 22.70 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0	Date	of	Micı	Microtox® 5-Min Readings	ngs	Mic	Microtox® 15-Min Readings	ings
15 53.4 27.59-103.23 0.77 - 19 49.8 24.77-100.19 0.66 - 24 9.6 - - - 24 65.6 37.75-63.73 0.68 - 24 65.6 37.75-63.73 0.68 - 26 50.0 37.75-63.73 0.68 - 29 41.3 23.17-73.66 0.56 - 29 41.3 23.17-73.66 0.62 - 20 42.5 30.56-59.08 0.94 - 05 41.1 32.13-52.50 0.78 - 07 43.6 11.29-109.87 0.94 - 07 43.6 11.29-109.87 0.78 - 12 28.7 20.34-40.51 0.78 36.6 07.67-175.02 14 b 19.50-26.09 0.93 31.9 08.33-122.58 20 40.5 19.50-26.09 0.93 31.9 08.33-122.56 21 40.5 16.85-24.59 0.93 31.9 08.33-122.58 <th>Samp</th> <th>a)</th> <th>-min C50</th> <th>Lin</th> <th>Slope</th> <th>I•r=1</th> <th> 1</th> <th>Slope</th>	Samp	a)	-min C50	Lin	Slope	I•r=1	1	Slope
17 50.1 15.28-164.40 0.66 - 19 49.8 24.77-100.19 0.89 - 22 49.0 37.75-63.73 0.68 - 24 65.6 31.14-138.18 0.50 - 26 50.0 35.22-70.96 0.66 - 29 41.3 23.17-73.66 0.62 - 29 41.3 23.17-73.66 0.67 - 20 42.5 30.65-59.08 0.94 - 05 41.1 32.13-52.50 0.94 - 07 43.6 17.29-109.87 0.64 - 07 43.6 17.29-109.87 0.64 - 07 43.6 17.29-109.87 0.64 - 07 43.6 17.29-109.87 0.64 - 12 22.6 19.24-40.51 0.83 - 12 22.6 19.24-40.51 0.78 36.6 10 40.5 38.74-	2		٦,	7 50-103 2	1 6	•		
17 50.1 19.26.4.40 0.68 - 24 49.0 37.75-63.73 0.68 - 24 65.6 31.14-138.18 0.68 - 24 65.6 31.14-138.18 0.69 - 29 41.3 23.17-73.66 0.65 - 29 41.3 23.17-73.66 0.67 - 29 41.3 23.17-73.66 0.67 - 20 42.5 30.56-59.08 0.67 - 05 41.1 32.13-52.50 0.78 - 07 43.6 17.29-109.87 0.64 - 09 28.7 20.34-40.51 0.83 - 14 4.0 17.29-109.87 0.64 - 15 20.24 0.78 36.6 0.767-175.02 14 4.0 38.74-42.29 0.57 49.4 07.67-175.02 15 20.4 - 0.64 - 0.738-330.21 21 20.4 - 16.85-24.59 0.54 - 0.64 <t< td=""><td>S C</td><td></td><td>•</td><td>7.00T 00.1</td><td></td><td></td><td></td><td></td></t<>	S C		•	7.00T 00.1				
19 49.8 24.77-100.19 0.89 - 24 65.6 31.14-138.18 0.68 - 26 50.0 35.22-70.96 0.56 - 26 50.0 35.22-70.96 0.62 - 31 42.5 30.56-59.08 0.94 - 05 41.1 32.13-52.50 0.78 - 05 41.1 32.13-52.50 0.78 - 05 41.1 32.13-52.50 0.78 - 05 41.1 32.13-52.50 0.78 - 05 41.1 32.13-52.50 0.78 - 07 43.6 17.29-109.87 0.64 - 09 28.7 20.34-40.51 0.83 - 12 22.6 19.50-26.09 0.78 36.6 07.67-175.02 14 40.5 38.7 20.46-109.55 0.57 49.4 07.38-330.21 20 47.3 22.46-109.55 0.55 72.8 26.33-201.36 21 47.3 22.09-58.34 0.56 <			·	5.28-164.4	0.00	t		
22 49.0 37.75-63.73 0.68 - 24 65.6 31.14-138.18 0.50 - 26 50.0 35.22-70.96 0.62 - 29 41.3 23.17-73.66 0.62 - 31 59.4 41.04-86.07 0.67 - 02 42.5 30.56-59.08 0.94 - 02 42.5 30.56-69.08 0.94 - 07 43.6 17.29-109.87 0.64 - 09 28.7 20.34-40.51 0.83 - 12 22.6 19.50-26.09 0.78 - 12 22.6 19.50-26.09 0.78 - 14 40.5 38.74-42.29 0.57 49.4 07.38-330.21 15 20.4 19.50-26.09 0.93 31.9 08.33-122.58 21 70.9 16.45-37 0.54 - - 22 16.85-24.59 0.93 31.9 08.33-122.58 23 20.46-109.55 0.53 72.8 26.41.77.15 <td></td> <td></td> <td>o</td> <td>4.77-100.1</td> <td>0.89</td> <td>ı</td> <td></td> <td></td>			o	4.77-100.1	0.89	ı		
24 65.6 31.14-138.18 0.50 - 26 50.0 35.22-70.96 0.56 - 29 41.3 23.23-70.96 0.62 - 31 59.4 41.04-86.07 0.67 - 02 42.5 30.56-59.08 0.94 - 05 41.1 32.13-52.50 0.78 - 07 43.6 17.29-109.87 0.64 - 09 28.7 20.34-40.51 0.83 - 12 25.6 19.50-26.09 0.78 36.6 07.67-175.02 14 40.5 38.74-42.29 0.57 49.4 07.38-330.21 15 40.5 38.74-42.29 0.57 49.4 07.38-330.21 19 20.4 16.85-45.9 0.93 31.9 08.33-122.58 21 40.5 38.7 24-42.29 0.55 72.8 26.33-201.36 22 40.5 32.1 22.10-46.76 0.55 72.8 26.4177.15 28 36.1 22.95-88.34 0.56 72.8			6	7.75-63.7	0.68	ı		
26 50.0 35.22-70.96 0.56 - 29 41.3 23.17-73.66 0.62 - 29 41.3 23.17-73.66 0.67 - 02 42.5 30.56-59.08 0.94 - 05 41.1 32.13-52.50 0.78 - 07 43.6 17.29-109.87 0.64 - 09 28.7 20.34-40.51 0.83 - 12 22.6 19.50-26.09 0.78 - 14 b 17.29-109.87 0.64 - 15 20.44-0.51 0.78 - 0.76-175.02 14 b 0.73 36.6 0.73-122.58 19 20.4 16.85-24.59 0.93 31.9 0.833-122.58 21 40.5 38.2 20.46-109.55 0.54 - 22 47.3 20.46-109.55 0.55 72.8 26.4177.15 28 36.1 22.10-46.76 0.52 72.8 26.4177.15 28 36.1 20.5 0.55 0.52 </td <td></td> <td></td> <td><u>ي</u></td> <td>1.14-138.</td> <td>0.50</td> <td>1</td> <td></td> <td></td>			<u>ي</u>	1.14-138.	0.50	1		
29 41.3 23.17-73.66 0.62 - 31 59.4 41.04-86.07 0.67 - 02 42.5 30.65-59.08 0.94 - 05 41.1 32.13-52.50 0.78 - 07 43.6 17.29-109.87 0.64 - 09 28.7 20.34-40.51 0.83 - 12 22.6 19.50-26.09 0.78 36.6 07.67-175.02 14 40 16.85-24.59 0.93 31.9 08.33-122.58 21 20.4 16.85-24.59 0.93 31.9 08.33-122.58 21 70.9 16.47-305.56 0.57 49.4 07.38-330.21 23 47.3 20.46-109.55 0.55 - - 24 47.3 20.46-109.55 0.55 - - 24 47.3 20.46-109.55 0.65 71.2 28.64-177.15 28 36.1 22.39-58.30 0.63 71.2 28.64-177.15 28 36.0 26.02-90.20 0.63 71.5			0	5.22-70.9	0.56	ı		
31 59.4 41.04-86.07 0.67 - 02 42.5 30.56-59.08 0.94 - 05 41.1 32.13-52.50 0.78 - 09 28.7 20.34-40.51 0.83 - 12 22.6 19.50-26.09 0.78 - 14 b. 19.50-26.09 0.78 - 15 40.5 19.50-26.09 0.78 36.6 07.67-175.02 14 b. 16.85-24.59 0.93 31.9 08.33-122.58 21 70.9 16.47-305.56 0.54 - - 23 47.3 20.46-109.55 0.54 - - 24 17.3 20.46-109.55 0.55 72.8 26.33-201.36 25 32.1 22.10-46.76 0.55 72.8 26.33-201.36 27 38.2 25.09-58.30 0.63 71.5 28.64-177.15 28 36.1 22.10-46.76 0.63 71.5 28.64-177.15 29 48.5 26.02-90.20 0.63 71.5 <			ä	3.17-73	0.62	ı		
02 42.5 30.56-59.08 0.94 - 05 41.1 32.13-52.50 0.78 - 07 43.6 17.29-109.87 0.64 - 09 28.7 20.34-40.51 0.83 - 12 22.6 19.50-26.09 0.78 36.6 07.67-175.02 14 b 38.74-42.29 0.57 49.4 07.67-175.02 15 40.5 38.74-42.29 0.57 49.4 07.67-175.02 19 20.4 16.85-24.59 0.93 31.9 08.33-122.58 21 70.9 16.47-305.56 0.54 - - 22 16.47-305.56 0.54 - - 23 47.3 20.46-109.55 0.55 - 24 38.1 22.109.58 0.65 71.2 28.64-177.15 28 36.1 22.39-58.34 0.55 65.1 04.07-1042.11 03 27.3 21.83-34.10 0.66 71.5 02.15-2370.13 05 48.5 26.02-90.20 0.62 - <td></td> <td></td> <td>6</td> <td>1.04-86</td> <td>0.67</td> <td>ı</td> <td></td> <td></td>			6	1.04-86	0.67	ı		
05 41.1 32.13-52.50 0.78 - 07 43.6 17.29-109.87 0.64 - 09 28.7 20.34-40.51 0.83 - 12 22.6 19.50-26.09 0.78 36.6 07.67-175.02 14 2. 16.85-24.59 0.93 31.9 08.33-122.58 21 40.5 38.74-42.29 0.57 49.4 07.38-330.21 21 40.5 16.47-305.56 0.57 49.4 07.38-330.21 23 47.3 20.46-109.55 0.54 - - 24 32.1 22.10-46.76 0.52 72.8 26.33-201.36 27 38.2 25.09-58.30 0.63 71.2 28.64-177.15 28 36.1 22.39-58.34 0.55 65.1 04.07-1042.11 28 36.1 22.39-58.34 0.66 71.5 02.15-2370.13 29 48.5 26.02-90.20 0.62 - - 10 37.7 21.64-65.67 0.72 47.1 00.43-5144.86 12 </td <td>Sep</td> <td></td> <td>2</td> <td>0.56-59</td> <td>0.94</td> <td>ı</td> <td></td> <td></td>	Sep		2	0.56-59	0.94	ı		
07 43.6 17.29-109.87 0.64 - 09 28.7 20.34-40.51 0.83 - 12 22.6 19.50-26.09 0.78 36.6 07.67-175.02 14 b 38.74-42.29 0.57 49.4 07.38-330.21 15 40.5 38.74-42.29 0.93 31.9 08.33-122.58 21 70.9 16.47-305.56 0.54 - - 23 47.3 20.46-109.55 0.55 72.8 26.33-201.36 25 32.1 22.10-46.76 0.55 72.8 26.33-201.36 27 38.2 25.09-58.30 0.63 71.2 28.64-177.15 28 36.1 22.39-58.34 0.55 65.1 04.07-1042.11 03 27.3 21.83-34.10 0.66 71.5 28.64-177.15 07 47.6 31.93-70.88 0.73 - - 10 37.7 21.64-65.67 0.72 47.1 00.43-5144.86 12 56.0 42.80-73.22 0.60 - -	•		1.	2.13-52	0.78	1		
09 28.7 20.34-40.51 0.83 - 12 22.6 19.50-26.09 0.78 36.6 07.67-175.02 14 b 0.78 36.6 07.67-175.02 15 40.5 38.74-42.29 0.57 49.4 07.38-330.21 19 20.4 16.85-24.59 0.93 31.9 08.33-122.58 21 70.9 16.47-305.56 0.54 - - 08.33-122.58 23 47.3 20.46-109.55 0.55 72.8 26.33-201.36 26.33-201.36 26 32.1 22.10-46.76 0.55 72.8 26.4177.15 28 36.1 22.39-58.34 0.55 65.1 04.07-1042.11 28 36.1 22.39-58.34 0.66 71.5 28.64-177.15 29 24.1 0.66 71.5 28.64-177.15 07 47.6 31.93-70.88 0.73 - 10 37.7 21.64-65.67 0.72 47.1 00.43-5144.86 12 56.0 42.80-73.22 0.60 - - <			ش	7.29-10	9.			
12 22.6 19.50-26.09 0.78 36.6 07.67-175.02 14 b 5 38.74-42.29 0.57 49.4 07.38-330.21 15 40.5 38.74-42.29 0.57 49.4 07.38-330.21 19 20.4 16.85-24.59 0.93 31.9 08.33-122.58 21 70.9 16.47-305.56 0.54 - - 23 47.3 20.46-109.55 0.55 - - 26 32.1 22.10-46.76 0.52 72.8 26.33-201.36 27 38.2 25.09-58.30 0.63 71.2 28.64-177.15 28 36.1 22.39-58.34 0.55 65.1 04.07-1042.11 03 27.3 21.83-34.10 0.66 71.5 28.64-177.15 07 47.6 31.93-70.88 0.73 - - 10 37.7 21.64-65.67 0.72 47.1 00.43-5144.86 12 56.0 42.80-73.22 0.60 - 14 51.7 29.24-91.58 0.51 -			φ.	0.34-40.5	æ	1		
14 b 15 40.5 38.74-42.29 0.57 49.4 07.38-330.21 19 20.4 16.85-24.59 0.93 31.9 08.33-122.58 21 70.9 16.47-305.56 0.54 - - 23 47.3 20.46-109.55 0.55 - 26.33-201.36 26 32.1 22.10-46.76 0.52 72.8 26.33-201.36 27 38.2 25.09-58.30 0.63 71.2 28.64-177.15 28 36.1 22.39-58.34 0.55 65.1 04.07-1042.11 03 27.3 21.83-34.10 0.66 71.5 02.15-2370.13 05 48.5 26.02-90.20 0.62 - 07 47.6 31.93-70.88 0.73 - 10 37.7 21.64-65.67 0.72 47.1 00.43-5144.86 14 51.7 29.24-91.58 0.56 - 17 38.6 15.60-95.65 0.56 - 18 23.4 19.36-28.24 0.61 46.1 10.61-200.19 <td></td> <td></td> <td>2</td> <td>9.50-26.0</td> <td>.7</td> <td>9</td> <td>.67-175.</td> <td>•</td>			2	9.50-26.0	.7	9	.67-175.	•
15 40.5 38.74-42.29 0.57 49.4 07.38-330.21 19 20.4 16.85-24.59 0.93 31.9 08.33-122.58 21 70.9 16.47-305.56 0.54 - 0.83-122.58 23 47.3 20.46-109.55 0.55 - 26.33-201.36 26 32.1 22.10-46.76 0.52 72.8 26.33-201.36 27 38.2 25.09-58.30 0.63 71.2 28.64-177.15 28 36.1 22.39-58.34 0.55 65.1 04.07-1042.11 03 27.3 21.83-34.10 0.66 71.5 02.15-2370.13 05 48.5 26.02-90.20 0.62 - 07 47.6 31.93-70.88 0.73 - 10 37.7 21.64-65.67 0.72 47.1 00.43-5144.86 12 56.0 42.80-73.22 0.60 - - 14 51.7 29.24-91.58 0.51 - - 17 38.6 15.60-95.65 0.56 - -			۵			م		
19 20.4 16.85-24.59 0.93 31.9 08.33-122.58 21 70.9 16.47-305.56 0.54 - - 23 47.3 20.46-109.55 0.55 - - 26 32.1 22.10-46.76 0.52 72.8 26.33-201.36 27 38.2 25.09-58.30 0.63 71.2 28.64-177.15 28 36.1 22.39-58.34 0.55 65.1 04.07-1042.11 03 27.3 21.83-34.10 0.66 71.5 02.15-2370.13 05 48.5 26.02-90.20 0.62 - 07 47.6 31.93-70.88 0.73 - 10 37.7 21.64-65.67 0.72 47.1 00.43-5144.86 12 56.0 42.80-73.22 0.60 - 14 51.7 29.24-91.58 0.56 - 17 38.6 15.60-95.65 0.56 - 18 23.4 19.36-28.24 0.61 -			0	8.74-42.	•	6	.38-330.2	. 7
21 70.9 16.47-305.56 0.54 - 23 47.3 20.46-109.55 0.55 - 26 32.1 22.10-46.76 0.52 72.8 26.33-201.36 27 38.2 25.09-58.30 0.63 71.2 28.64-177.15 28 36.1 22.39-58.34 0.55 65.1 04.07-1042.11 03 27.3 21.83-34.10 0.66 71.5 02.15-2370.13 05 48.5 26.02-90.20 0.66 71.5 02.15-2370.13 07 47.6 31.93-70.88 0.73 - 10 37.7 21.64-65.67 0.72 47.1 00.43-5144.86 12 56.0 42.80-73.22 0.60 - - 14 51.7 29.24-91.58 0.51 - 17 38.6 15.60-95.65 0.56 - 18 23.4 19.36-28.24 0.61 10.61-200.19			·	6.85-24.	0.93	1:	.33-122.5	σ.
23 47.3 20.46-109.55 0.55 - 26 32.1 22.10-46.76 0.52 72.8 26.33-201.36 27 38.2 25.09-58.30 0.63 71.2 28.64-177.15 28 36.1 22.39-58.34 0.55 65.1 04.07-1042.11 03 27.3 21.83-34.10 0.66 71.5 02.15-2370.13 05 48.5 26.02-90.20 0.62 - 07 47.6 31.93-70.88 0.73 - 10 37.7 21.64-65.67 0.72 47.1 00.43-5144.86 12 56.0 42.80-73.22 0.60 - - 14 51.7 29.24-91.58 0.51 - 17 38.6 15.60-95.65 0.56 - 18 23.4 19.36-28.24 0.61 - 10 10.60 - - 10 - - - 10 - - - 10 - - - 10 -			0	6.47-305.5	0.54	i		
26 32.1 22.10-46.76 0.52 72.8 26.33-201.36 27 38.2 25.09-58.30 0.63 71.2 28.64-177.15 28 36.1 22.39-58.34 0.55 65.1 04.07-1042.11 03 27.3 21.83-34.10 0.66 71.5 02.15-2370.13 05 48.5 26.02-90.20 0.62 - 07 47.6 31.93-70.88 0.73 - 10 37.7 21.64-65.67 0.72 47.1 00.43-5144.86 12 56.0 42.80-73.22 0.60 - - 14 51.7 29.24-91.58 0.51 - - 17 38.6 15.60-95.65 0.56 - - 18 23.4 19.36-28.24 0.61 + -			7.	0.46-109.5	0.55	ı		
27 38.2 25.09-58.30 0.63 71.2 28.64-177.15 28 36.1 22.39-58.34 0.55 65.1 04.07-1042.11 03 27.3 21.83-34.10 0.66 71.5 02.15-2370.13 05 48.5 26.02-90.20 0.62 - 07 47.6 31.93-70.88 0.73 - 10 37.7 21.64-65.67 0.72 47.1 00.43-5144.86 12 56.0 42.80-73.22 0.60 - 14 51.7 29.24-91.58 0.51 - 17 38.6 15.60-95.65 0.56 - 18 23.4 19.36-28.24 0.61 46.1 10.61-200.19			2	2.10-46.	0.52	2	6.33-201.3	6
28 36.1 22.39-58.34 0.55 65.1 04.07-1042.11 03 27.3 21.83-34.10 0.66 71.5 02.15-2370.13 05 48.5 26.02-90.20 0.62 - 07 47.6 31.93-70.88 0.73 - 10 37.7 21.64-65.67 0.72 47.1 00.43-5144.86 12 56.0 42.80-73.22 0.60 - - 14 51.7 29.24-91.58 0.51 - 17 38.6 15.60-95.65 0.56 - 18 23.4 19.36-28.24 0.61 46.1 10.61-200.19			ω.	5.09-58.	0.63	j.	8.64-177.1	0
03 27.3 21.83-34.10 0.66 71.5 02.15-2370.13 05 48.5 26.02-90.20 0.62 - - 07 47.6 31.93-70.88 0.73 - 10 37.7 21.64-65.67 0.72 47.1 00.43-5144.86 12 56.0 42.80-73.22 0.60 - 14 51.7 29.24-91.58 0.51 - 17 38.6 15.60-95.65 0.56 - 18 23.4 19.36-28.24 0.61 46.1 10.61-200.19			9	2.39-58.	0.55	<u>ي</u>	4.07-1042.1	ω.
5 48.5 26.02-90.20 0.62 - 7 47.6 31.93-70.88 0.73 - 0 37.7 21.64-65.67 0.72 47.1 00.43-5144.86 2 56.0 42.80-73.22 0.60 - 4 51.7 29.24-91.58 0.51 - 7 38.6 15.60-95.65 0.56 - 8 23.4 19.36-28.24 0.61 46.1 10.61-200.19	oct		7.	1.83-34.	99.0	i.	2.15-2370.1	.7
7 47.6 31.93-70.88 0.73 - 0 37.7 21.64-65.67 0.72 47.1 00.43-5144.86 2 56.0 42.80-73.22 0.60 - - 4 51.7 29.24-91.58 0.51 - 7 38.6 15.60-95.65 0.56 - 8 23.4 19.36-28.24 0.61 46.1 10.61-200.19			ω.	6.02-90.	0.62	ı		
0 37.7 21.64-65.67 0.72 47.1 00.43-5144.86 2 56.0 42.80-73.22 0.60 - 4 51.7 29.24-91.58 0.51 - 7 38.6 15.60-95.65 0.56 - 8 23.4 19.36-28.24 0.61 46.1 10.61-200.19			7.	1.93-70.	0.73	i		
2 56.0 42.80-73.22 0.60 - 4 51.7 29.24-91.58 0.51 - 7 38.6 15.60-95.65 0.56 - 8 23.4 19.36-28.24 0.61 46.1 10.61-200.19			7.	1.64-65.	0.72	7.	.43-5144.8	•
4 51.7 29.24-91.58 0.51 - 7 38.6 15.60-95.65 0.56 - 8 23.4 19.36-28.24 0.61 46.1 10.61-200.19			9	2.80-73.	09.0	ı		
7 38.6 15.60-95.65 0.56 - 8 23.4 19.36-28.24 0.61 46.1 10.61-200.19			ä	9.24-91.	0.51	1		
8 23.4 19.36-28.24 0.61 46.1 10.61-200.19			φ	5.60-95.	0.56	1		
			3.	9.36-28.	0.61	9	10.61-200.19	0.86

TABLE A1-1. (CONTINUED)

	l ₋ .																														
ıds	Slope			0.89				0.57		0.46		0.52					0.54	0.74		0.60	0.10	0.50	0.54	0.48	0.38	0.67	0.63	0.68		1.00	•
Microtox® 15-Min Readir	95% Fiducial S Limits			04.49-893.12				00.86-4423.97		00.42-8871.74		01.08-5843.29					.32-6462.	1.41-3318.8		.40-6638.	.62-758.6	00.39-9581.55	.27-510659	.17-9707.	.20-512123	.53-3352.	.42-3172.4	.89-1		73	6.95-189.0
Mic	15-min EC50	1	1	63.3	1	ı	ı	61.7	1	6.09	1	79.3	1	1	1	1	45.2	68.5	1	51.7	52.4	61.0	53.8	40.4	48.9	1.	7.	54.9	i	56.0	71.4
ngs	Slope	0.58	0.54	0.62	.5	.7	9.	0.69	0.71	0.55		99.0		0.65	9	9	7	S.	.7	7	.7	9	7.	9	9		φ,	0.79		9.	•
Microtox® 5-Min Readings	Fi	7.58-	8.04-11	6.18-45.0	9.63-166	2.08-72.	6.15-	50.	2.93-	0.66-86.7		27.51-47.26		4.4	7.89-44.3	3.36-196.	1.54-43.0	5.28-48.4	7.30-56.7	9.94-59.4	2.40-34.4	2.32-4	7.47-80.1	9.34-138.	4.27-52.3	4.81 - 3	8.81-50.9	2.1	4.51-118.	1.6	1.23-55.7
	5-min EC50	ω	ر ا	4.	7.	6	4.	34.9	ä	i,	1	36.1	1	0	<u>ي</u>	1.	2	ъ.	9	4.	7.	2	7.	ä	ري د	1.	Ö	26.2	i.	5	1.
Date of	Sample	Oct 21	24	26	28	31	Nov 01	02	07	80	60	14	15	16	21	22	23	28	29	30	Dec 05	07	08	12	13	14	19	20	21	26	27

TABLE A1-1. (CONTINUED)

Date	of			ngs		otox® 15-Min Readi	ngs
Sample]e	5-min EC50	I • 	Slope	15-min EC50	in 95% Fiducial S Limits	Slope
Dec		9	8.09-71.8	9	;	3.30-377.3	<u>ا</u> ه
Jan		0	5.72-58.5	.7	3.	5.63-707.4	9
		55.9	25.57-122.07	0.54	67.5	00.45-10172.60	0.56
		د	7.55-64.2	9.	7.	8.27-733.0	œ
		1			1		
	10	46.3	29.99-71.33	99.0	63.1	00.71-5594.45	0.63
		ı			ı		
		•	4.82-6	٠ ت	72.7	01.38-3827.20	0.65
		ъ.	6.33-106.	.5	1		
		32.8	22.07-48.79	0.70	88.4	29.81-262.02	1.00
		9	6.90-185.	r.	1		
		4.	6.71-53.9	5	1		
		8	4.11-74.5	æ	ı		
		ı			1		
		i.	9.52-4	7.	7.	6.39-62.	٦.
Feb		4	5.66-116.	3	36.0	0.03-43150	7.
		2	9.10-55.4	.7	<u>ي</u>	0.87-2392.3	9.
		19.5	27	0.83	48.4	13.67-171.49	69.0
		4.	1.14-29.2	• •	53.4	4.85-587.9	.7
		ı			ı		
		7.	0.23-134.	6	ı		
		32.1	53.	0.71			
		œ	1.28-91.4	9.	1		
		ij	0.72-32.5	9.	7.	.66-115	
		~	2.22-48.7	.7	0	0.33-7701	r.
		•	1.72-46.6	.7	3.	0.14-13567.	۳.
		5	1.74-40.7	φ.	55.2	0.08	0.33
Mar		2	5.42-41.9	φ.	7.	0.30-20309.	4.
		·	7.86-33.9	σ.	4.	0.85-6384	4.
		9	4.17-54.4	ω.	4.	0.09-21	۳.

TABLE A1-1. (CONTINUED)

Date	of		Microtox® 5-Min Readings	ngs	Micz	Microtox® 15-Min Readings	uds
Sample]e	5-min EC50	Fi	Slope	15-min EC50		Slope
Mar	80		1.08-1	0.71			
	13	28.6	.67-31.8	•	57.2	-662.5	ω
	14	5.	7.13-72.	6.	9	5	0.51
	15		6.10-69.	9	48.1	-2590	4
	20	2	8.74-62.	7	ı		
	21	•	4.8	.7	2	0.33-15880.	•
	22	2	4.27-42.	6.	55.3		99.0
	27	α	2.52-36.	0.	ო	3.74-764.3	•
	28	ı			1		
	59	٦.	8.72-52.6	0.	8	1.38-2022.3	9
Apr	03	7.	8.31-41.2	1.02	-	6.37-1043.0	9
1	04	4.	1.53-54.3	•	7	0.45 - 5825	4.
	05	34.2	26.28-44.39	1.04	88.2	3622.	0.49
	10	3.	5.21-44.0	•	ъ.	4.03-491.	œ
	11	6	0.75-51.	•	i.	0.2	4.
	12	1.	9.40-57.9	•	•	0.01-253720.	٦.
	17	0	7.65-34.5	•	0	1.27-2930.4	9.
	18	Ή.	9.26-51.8	•	•	6.34 - 51	ο.
	19	ъ.	0.72-53.9	•	ъ.	3.02-1350.	9
	24	2	6.84-65.5	•	•	00.59-2503.10	٠
	25	i.	3.46-72.0	•	<u>ي</u>	-933.9	
	56	φ.	0.88-396.	•	ı		
May	01	6	6.78-50.	•	4.	5-1278.	
	05	9	3.59-28.5	0.99	51.2	04.83-541.42	0.70
	03	ö	8.10-32.3	•	ω	2.18-1577.7	
	80	ö	2.27-13	•	1.	0.15 - 1	•
	60	1			•		
	10	38.9	13.30-114.01	0.98	42.9	00.46-4053.34	0.50

EC50s and 95% fiducial limits are expressed as percent groundwater by volume. Test not conducted due to mechanical problem in biomonitoring trailer water system.

MICROTOX® TEST RESULTS ON COMPOSITE GRAB SAMPLES OF CANAL CREEK 25% GROUNDWATER FROM WELL CC-27B DILUTED BY APG-EA DECHLORINATED TAP WATER® TABLE A1-2.

Date of Sample	of 1e	Mic: 5-min EC50	Microtox® 5-Min Readings n 95% Fiducial Slope Limits	Micr 15-min EC50	Microtox® 15-Min Readings 15-min 95% Fiducial Slope EC50 Limits
Aug	15	ı		1	
	17	ı		1	
	19	1		1	
	22	1		1	
	24	1		i	
	56	i		ı	
	59	ı		1	
	31	ı		1	
Sep	02	1		ı	
t	05	ı		I	
	07	ı		1	
	60	ı		ı	
	12	ı		1.	
	14	۵		۵	
	15	i		1	
	19	1		1	
	21	ı		ı	
	23	ı		ı	
	56	ı		1	
	27	ı		•	
	28	1		•	
oct	03	1		•	
	05	ı		•	
	90	ı		1	
	10	1		•	
	12	1		ı	
	14	ı		1	
	17	ı		•	
	18	ı		ı	

TABLE A1-2. (CONTINUED)

ngs	Slope																														
Microtox® 15-Min Readings	95% Fiducial Limits																														
Mici	15-min EC50	1	ı	1	1	1	i	1	i	1	1	i	1	1	1	1	ı	ı	1	ı	ı	ı	1	ı	ı	1	1	ı	1	1	1
ngs	Slope																														
Microtox [®] 5-Min Readings	95% Fiducial Limits																														
Micr	5-min EC50	ı	ı	ı	1	1	1	1	1	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	1	1	ı	i	i	•	1	ı	1	i	ı
Date of	Sample	Oct 21	24	26	28	31	Nov 01	02	07	80	60	14	15	16	21	22	23	28	29		Dec 05	07	80	12	13	14	19	20	21	26	27

TABLE A1-2. (CONTINUED)

Date of Sample	of le	Microtox® 5-min 95% EC50 L	cox® 5-Min Readings 95% Fiducial Slope Limits	Microtox® 15-Min Readings 15-min 95% Fiducial Slope EC50 Limits
Dec	28	ı		1
Jan	02	1		•
	03	ı		ı
	04	ı		1
	60	ı		•
	10	ı		•
	11	ı		•
	16	1		•
	17	ı		1
	18	ı		ı
	23	1		i
	24	i		1
	25	ı		1
	30	ı		ı
	31	ı		•
Feb	01	ı		ı
	90	ŧ		1
	80	1		•
	60	1		ı
	13	ı		1
	15	•		•
	16	ı		•
	20	1		•
	21	ı		•
	22	ı		•
	27	1		•
	28	1		ı
Mar	01			1
	90	ı		•
	07	1		•

TABLE A1-2. (CONTINUED)

Date	of	Micı	Microtox® 5-Min Readi	nqs.	Micr	Microtox® 15-Min Readings
Sample	٥	5-min EC50	95% Fiducial Limits	Slope	15-min EC50	
	08	•			1	
	13	ı			ı	
	14	ı			ı	
	15	ı			ı	
	20	ı			ı	
	21	ı			i	
	22	ı			ı	
	27	ı			1	
	28	t				
	29	i			ı	
Apr	03	ı			i	
I	04	ŀ			ŧ	
	05	ı			ı	
	10	ı			ŀ	
	11	1			ı	
	12	ı			ı	
	17	ı			1	
	18	ı			1	
	19	1			ŀ	
	24	ı			1	
	25	•			1	
	56	1			1	
May	01	1			ı	
	02	1			ı	
	03	ı			ı	
	80	t			ı	
	60	1			ı	
	10	1			ı	

EC50s and 95% fiducial limits are expressed as percent groundwater by volume. Test not conducted due to mechanical problem in biomonitoring trailer water system.

а <u>а</u>

GROUNDWATER FROM WELL CC-27B DILUTED BY APG-EA DECHLORINATED TAP WATER® MICROTOX® TEST RESULTS ON COMPOSITE GRAB SAMPLES OF CANAL CREEK 5% TABLE A1-3.

5-min EC50	9				
	ii 93% Fiduciai	Slope	15-min EC50	in 95% Fiducial Sl Limits	Slope
ı			ı		
I			1		
1			1		
ı			ı		
1			ı		
ł			1		
1			ı		
ı			ı		
ı			1		
1			ı		
ı			i		
1			1		
La			1.		
۵			Ω		
1			ı		
1			ı		
1			1		
I			•		
1			1		
27 -			ı		
ı			ı		
1			1		
			ပ		

Test not conducted due to mechanical problem in biomonitoring trailer water system. Assays were discontinued after the first 1.5 months of study because no toxicity was EC50s and 95% fiducial limits are expressed as percent groundwater by volume. ۵

detected at 5% groundwater by volume.

GROUNDWATER FROM WELL CC-27B DILUTED BY APG-EA DECHLORINATED TAP WATER® MICROTOX® TEST RESULTS ON COMPOSITE GRAB SAMPLES OF CANAL CREEK 18 TABLE A1-4.

-Min Readings ducial Slope its	
Microtox® 15-Min Readings 15-min 95% Fiducial S. EC50 Limits	טוווווווווווווווווו
Microtox® 5-Min Readings 5-min 95% Fiducial Slope EC50 Limits	
Date of Sample 5.	Aug 15 19 17 19 22 24 26 29 07 07 07 115 115 23 0ct 03

Test not conducted due to mechanical problem in biomonitoring trailer water system. Assays were discontinued after the first 1.5 months of study because no toxicity was EC50s and 95% fiducial limits are expressed as percent groundwater by volume. detected at 1% groundwater by volume.

a •

MICROTOX® TEST RESULTS ON COMPOSITE AND GRAB SAMPLES OF 100% WEST BRANCH OF CANAL CREEK WATER® TABLE A1-5.

Date of	of of	Mic	rotox® 5-Min Readings	crotox®
Samp	ole	5-min EC50	n 95% Fiducial Slope Limits	15-min 95% Fiducial Slope EC50 Limits
Aug	15	ı		1
•	17	1		•
	19	1		•
	22	ì		1
	24	i		ı
	56	ı		1
	59	ı		•
	31	ı		•
Sep	02	ı		•
	05	1		1
	07	ı		•
	60	1		•
	12	ı		1
	14	۵		Ω
	15	1		1
	19	1		1
	21	1		1
	23	ı		1
	56	1		1
	27	1		1
	28	•		•
oct	03	1		•
	05	ı		1
	90	f		ï
	10	ŧ		1
	12	1		1
	14	ı		1
	17	1		1
	18	1		•

TABLE A1-5. (CONTINUED)

Slope	
<u>Microtox® 15-Min Readings</u> .n 95% Fiducial S. Limits	
Micr 15-min EC50	
ngs Slope	
Microtox® 5-Min Readings In 95% Fiducial) Limits	
Micr 5-min EC50	
Date of Sample	Oct 21 24 26 28 31 Nov 01 14 15 16 22 22 22 23 23 23 23 23 23 23 22 23 22 22

TABLE A1-5. (CONTINUED)

Date of Sample	of le	Micro 5-min	Microtox® 5-Min Readings n 95% Fiducial Slope	,
'		EC50	imits	EC50 Limits
Dec	28	1		ı
Jan	02	ı		•
	03	i		
	04	ı		•
	60	v		v
	10	ı		1
	11	ı		•
	16	ı		•
	17	1		•
	18	ı		i
	23	ı		1
	24	ı		ŧ
	25	ı		•
	30	1		•
	31	ပ		v
Feb	01	I		•
	₉ 90	1		ı
	08	1		ı
	60	1		ı
	13	1		1
	15	1		•
	16	•		•
	20	1		•
	21	ı		•
	22	ı		•
	27	1		•
	28	ł		1
Mar	01	1		ı
	90	i		•
	07	ı		1

TABLE A1-5. (CONTINUED)

-Min Readings Microtox® ducial Slope 15-min 95%	nits EC50	1	ŀ	•					ľ	ı	•						1	•	1			•	ľ	ı			1	1	
<u>-Min Readings</u> Iducial	imits																												
Mi 5-min	EC50	ı	ı	ı	ı	ı	i	ı	ŀ	1	1	1	ı	1	1	ı	1	ı	ı	ı	1	1	1	ı	ı	1	ı	1	
Date of Sample		Mar 08		14	15	20	21	22	27	28	29	Apr 03		05	10	11	12	17	18	19	24	25	26	May 01	02	03	80	60	

TABLE A1-5. (CONTINUED)

lings	Slope
Microtox® 15-Min Readings	95% Fiducial Limits
Micr	15-min EC50
ngs	Slope
Microtox® 5-Min Readings	95% Fiducial Limits
Mic	5-min EC50
Date of	Sample

EC50s and 95% fiducial limits are expressed as percent West Branch of Canal Creek water by volume. æ

West Branch of Canal Creek water system not operational because delivery lines froze Test not conducted due to mechanical problem in biomonitoring trailer water system. ۵ ပ

(See Section 4.2.1 for explanation). Srab sample taken directly from West Branch of Canal Creek beginning February 5, 1995 (See Section 4.2.1 for explanation). Grab σ

MICROTOX® TEST RESULTS ON COMPOSITE GRAB SAMPLES OF CANAL CREEK 25% GROUNDWATER FROM WELL CC-27B DILUTED BY WEST BRANCH OF CANAL CREEK WATER® TABLE A1-6.

Microtox® 15-Min Readings 15-min 95% Fiducial Slope EC50 Limits	
Microtox® 5-Min Readings n 95% Fiducial Slope Limits	
Mic 5-min EC50	
Date of Sample	Aug 15 119 120 224 224 226 229 021 120 020 020 020 020 020 020 020 020

TABLE A1-6. (CONTINUED)

Sample	5-mi EC50	n 95% Fiducial S Limits	Slope	15-min EC50	in 95% Fiducial Slope Limits	Slope
Oct 2	.			ı		
2	4			ı		
7	- 9			1		
2	1			1		
e				ı		
Nov 0	1			ı		
	2			1		
0				ı		
0	1 8			ı		
0	. 6			1		
7	4 -			1		
1	1			1		
٦	- 9			1		
2	1			1		
7				ı		
7	3			•		
7	1			ı		
7	1			ı		
n	- 0			ı		
Dec 0	<u>ا</u>			ı		
0				ı		
0				i		
-				ပ		
Н	ى د			ပ		
7	o 4			ပ		
7	1 6			ı		
7	- 0			ı		
7				1		
73	26 c			ပ		
C	- 2			•		

TABLE A1-6. (CONTINUED)

1	
dings Slope	
Microtox® 15-Min Readings win 95% Fiducial S] Limits	
Mic 15-min EC50	
Slope	
Microtox® 5-Min Readings n 95% Fiducial Limits	
Mic 5-min EC50	111101111111011
of	28 02 03 04 11 11 17 18 25 25 30 01 01
Date of Sample	Jan Jan Feb

West Branch of Canal Creek water system not operational because delivery lines froze EC50s and 95% fiducial limits are expressed as percent groundwater by volume. Test not conducted due to mechanical problem in biomonitoring trailer water system. Δ æ

(See Section 4.2.1 for explanation).

Assays were discontinued February 5, 1995 because the diluent water was switched from West Branch of Canal Creek water to APG-EA tap water (See Section 4.2.1 for explanation).

MICROTOX® TEST RESULTS ON COMPOSITE GRAB SAMPLES OF CANAL CREEK 5% GROUNDWATER FROM WELL CC-27B DILUTED BY WEST BRANCH OF CANAL CREEK WATER® TABLE A1-7.

Slope																										
Microtox® 15-Min Readings in 95% Fiducial Sl																										
Mic 15-min	ECSO	i	I	t	1	1	1	ı	ı	1	i	ı	1	ı	1.	۵	ı	1	1	i	ı	i	ı	i	U	
ngs Slope																										
Microtox® 5-Min Readings n 95% Fiducial S	Limits																									
Mics 5-min	EC50	i	ì		ı	1	1	ı	ı	ı	ı	ı	1	1	1.	Δ	ı	ı	ı	ı	1	ı	ì	1	U	
Date of Sample			CT fine	17	19	22	24	56	29	31	Sep 02		07	60	12	14	15	19	21	23	26	27	28	Oct 03		

EC50s and 95% fiducial limits are expressed as percent groundwater by volume. Test not conducted due to mechanical problem in biomonitoring trailer water system. Assays were discontinued after the first 1.5 months of study because no toxicity was ۵

detected at 5% groundwater by volume.

GROUNDWATER FROM WELL CC-27B DILUTED BY WEST BRANCH OF CANAL CREEK WATER^a MICROTOX® TEST RESULTS ON COMPOSITE GRAB SAMPLES OF CANAL CREEK 18 TABLE A1-8.

Microtox® 15-Min Readings 15-min 95% Fiducial Slope EC50 Limits	
Microtox® 5-Min Readings 5-min 95% Fiducial Slope EC50 Limits	
Date of Sample	Aug 15 17 19 22 24 24 26 29 00 00 01 11 11 11 12 00 00 00 00 00 00 00 00 00 00 00 00 00

EC50s and 95% fiducial limits are expressed as percent groundwater by volume. Test not conducted due to mechanical problem in biomonitoring trailer water system. Assays were discontinued after the first 1.5 months of study because no toxicity was detected at 1% groundwater by volume. Δ

æ

MICROTOX® TEST RESULTS ON COMPOSITE GRAB SAMPLES OF 100% APG-EA TAP WATER® TABLE A1-9.

Date	of	Mic	Microtox [®] 5-Min Readin	sbı	Micr	Microtox® 15-Min Readings	ings
Sample	le	5-min EC50	95% Fiducial S Limits	Slope	15-min EC50		Slope
Aug	17	ı			ı		
	24	ı			i		
	31	1			ı		
Sep	07	ı			ı		
1	15	ı			ı		
	21	ı			1		
	27	1			1		
Oct	05	i			1		
	12	1			ı		
	18	ı			1		
	24	1			•		
	31	ı			i		
Nov	07	1			1		
	14	ı					
	21	ı			ı		
	28	i			ı		
Dec	02	i			1		
	12	ı			•		
	19	1			ı		
	56	ı			ı		
Jan	03	ı			ı		
	60	1			ı		
	16	1			ı		
	23	ı			•		
	30	ı			ı		
Feb	90	ı			ı		
	13	ı			1		
	20	1			1		
	27	ı			ı		
Mar	90	ı			1		

TABLE A1-9. (CONTINUED)

	ec.									
lings	Slope									
Microtox® 15-Min Readings	95% Fiducial Limits									
Mici	15-min EC50	ı	1	1	ı	1	1	1	ı	ı
ngs	Slope									
rotox® 5-Min Readings	in 95% Fiducial O Limits									
Mic	5-min EC50	ı	ı	ı	ı	1	1	ı	1	ı
Date of	Sample	Mar 13	20	27	Apr 03		17	24	May 01	08

EC50s and 95% fiducial limits are expressed as percent groundwater by volume.

MICROTOX® TEST RESULTS ON GRAB SAMPLES OF WEST BRANCH OF CANAL CREEK WATER® TABLE A1-10.

Microtox® 5-Min Readings 5-min 95% Fiducial Slope EC50 Limits

EC50s and 95% fiducial limits are expressed as percent West Branch of Canal Creek water by volume.

Assays were discontinued after 2 months of study because no toxicity was detected in the West Branch of Canal Creek water entering the biomonitoring facility before being split in the serial dilutor for distribution to the Japanese medaka West Branch of Canal Creek test aquaria.

MICROTOX® ASSAYS CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) AND pH OF SAMPLES USED IN ASSAYS (AUGUST 12, 1995 - MAY 10, 1995)

MICROTOX® TEST RESULTS ON GRAB SAMPLES OF CANAL CREEK BUFFERRED 100% GROUNDWATER FROM WELL CC-27B® TABLE A2-1.

Date of	of	Rep		×	sbı	Micr	Microtox® 15-Min Readings	ngs
Samp]e		5-min EC50	95% Fiducial Limits	Slope	15-min EC50	95% Fiducial Limits	Slope
Aug	15	Т	1			1		
	22	Т	1			ı		
	59	٦	ı			ı		
Sep	05	-	•			i		
	12	7	37.8 ^b			i		
	19	ı	ı			ı		
	56	٦	ı			1		
Oct	03	1	i			1		
	10	П	ı			ı		
	17	7	ı			1		
•	56	Н	1			ı		
Nov	02	Т	ı			ł		
	07	7	ı			1		
	15	7	ı			ı		
	21	٦	1			ı		
	28	٦	•			1		
Dec	05	7	ı			ı		
	12	٦	ı			ı		
	19	٦	ı			1		
	27	٦	ı			1		
Jan	04	1	ı			1		
	10	1	ı			ı		
	17	7	1			ı		
	23	7	1			ı		
	30	7	ı			ı		
Feb	08	7	ı			ı		
	13	٦	ı			i		
	20	٦	ı			1		
	27	Н	ı			ı		
							ı	

TABLE A2-1. (CONTINUED)

Slope	3.7
dings S.	1.37
Microtox® 15-Min Readings n 95% Fiducial S1 Limits	38.22-61.68
Mic 15-min EC50	11186
ings Slope	1.60
Microtox® 5-Min Readings 1 95% Fiducial Limits	39.08-78.71
Mic 5-min EC50	
Rep	аннаннан
Date of Sample	06 13 27 27 10 17 01 08
Date o Sample	Mar Apr May

EC50s and 95% fiducial limits are expressed as percent groundwater by volume. 95% fiducial limits exceeded the limits of the Microtox® probit program; thus, the value is most likely spurious.

TABLE A2-2. pH OF THE RAW AND BUFFERED 100% CANAL CREEK GROUNDWATER (WELL CC-27B) USED IN THE MICROTOX® ASSAY

Date	of	Rep	Raw	Buffered Gr	oundwater
Samp			Groundwater	Initial	Final
Aug	15	1	4.11	6.95	6.85
	22	1	4.01	7.01	7.17
	29	ī	4.01	7.01	7.19
Sep	05	ī	3.98	6.91	7.07
	12	ī	3.98	6.85	6.98
	19	ī	3.98	7.11	7.21
	26	ī	3.97	6.85	7.02
Oct	03	ī	4.02	7.01	7.26
	10	ī	3.98	7.02	7.28
	17	1	4.08	6.89	7.35
	24	1	4.11	6.88	7.20
Nov	02	1	4.09	7.01	7.29
	07	1	4.06	6.96	7.35
	15	1	4.05	6.89	7.32
	21	1	4.06	7.11	7.68
	28	1	4.06	7.15	8.05
Dec	05	1	4.07	6.93	7.21
	12	1	4.11	6.88	7.53
	19	1	4.10	7.01	7.35
	27	1	4.15	6.84	7.30
Jan	04	1	4.14	6.90	7.44
	10	1	4.13	6.80	7.53
	17	1	4.14	7.01	7.90
	23	1	4.14	6.84	8.03
	30	1	4.12	7.23	7.00
Feb	08	1	4.15	7.23	8.21
	13	1	4.44	7.20	7.56
	20	1	4.14	6.90	7.35
	27	1	4.13	6.85	7.23
Mar	06	1	4.15	7.11	7.57
	13	1	4.18	6.85	6.92
	20	1	4.12	7.06	7.49
	27	1	4.14	6.96	7.52
Apr	03	1	4.16	6.95	7.60
	10	1	4.32	7.03	7.56
	17	1	4.13	7.01	7.42
	24	1	4.17	7.08	7.49
May	01	1	4.14	7.06	7.45
_	08	1	4.17	7.02	8.34

GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH \approx 4) GROUNDWATER (WELL CC-27B) (TEST NO. 1)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static

Date: September 13-17, 1994

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Test Medium: Double strength "AAP" medium

(Miller et al., 1978) with P added to achieve a 20:1 N:P

atomic ratio

Test Organism:

Scientific Name: <u>Selenastrum capricornutum</u>

Age at Start of Test: Log growth

Source: UMD/WREC culture

Experimental Chambers:

Material: 250 mL glass culture flasks

with cheesecloth/cotton

stoppers

Test Solution Volume: 100 mL

Initial Cell Density: 1 x 10⁴ cells/mL

No. Replicates per Treatment: 3

Lighting: Fluorescent; cool white;

continuous; ≈300 foot candles

Shaking Rate: 100 cpm continuously

Endpoint: Reduction in growth relative

to control

Results:

100% raw Canal Creek groundwater killed all algal cells during the first 24 h of exposure (Table A3-1). Significant (≈ 0.05) reductions in growth (cell density) occurred at all concentrations down to 18% raw groundwater by volume (see Tables A3-1 and A3-2). Growth was not affected by exposure to 10% raw groundwater by volume. The NOEC and LOEC for reduction in growth are as follows:

NOEC = 10% raw groundwater by volume. LOEC = 18% raw groundwater by volume.

The 96-h EC50 (reduction in growth), which was determined by the moving average angle method, is as follows:

96-h EC50 = 56.9% raw groundwater by volume (95% confidence limits = 54.51-59.48).

Algal growth was not affected by exposure to APG-EA diluent water relative to the UMD/WREC controls (t-test: critical value = 4.60; t statistic = -0.71; α = 0.01).

TABLE A3-1. GREEN ALGA CANAL CREEK RAW GROUNDWATER TOXICITY DATA (TEST NO. 1) - MEAN CELL DENSITY (CELLS/ML) AFTER 96 HOURS OF EXPOSURE

Conc (% by	Rep		Mea	n Cell Dens	sity	
Vol)		ОН	24H	48H	72H	96H
Growth	1	8800	79040	340600	690400	1248600
Medium	2	8800	76000	328400	672240	1220220
	3	8800	78000	330400	677400	1236400
APG-EA	1	9020	78600	338600	666240	1260400
Diluent	2	9020	75220	328600	652480	1186880
Water	3	9020	74880	335400	656800	1208400
10	1	8500	80000	330000	660240	1195240
	2	8500	74600	315260	650400	1223260
	3	8500	77200	316840	652400	1190240
18	1	8000	76000	320840	651840	1188240
	1 2 3	8000	74400	326640	660000	1199200
	3	8000	72480	314860	648400	1159640
32	1	9600	70000	318800	634000	1159980
	2 3	9600	74640	324240	639600	1166200
	3	9600	72440	316640	626400	1150400
56	1	8800	64660	298400	540200	918640
	2	8800	70000	299880	555240	958600
	3	8800	66120	294600	538200	910200
100	1	9080	DEAD			
	2	9080	DEAD			
	3	9080	DEAD			

Table A3-2. GREEN ALGA CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 1) - MEAN CELL
DENSITY (CELLS/ML) 8

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 3.14
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 2.16
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 133.95
Alpha value: 0.05
Critical value: 3.48

Conclusion: Reject the null hypothesis that all

groups are equal

Dunnett's Test:

Calculated test statistic: See Table A3-3

Alpha value: 0.05 Critical Value: 2.47

Conclusion: Reject the null hypothesis that all

groups are equal

The 100% raw Canal Creek groundwater treatment was not included in the statistical analyses because all cells died during the test.

Table A3-3. GREEN ALGAE CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 1) - RESULTS OF
DUNNETT'S TEST ON MEAN CELL DENSITY (CELLS/ML)

Conc (% by Vol)	No. of Reps	Mean Cell Density	T Statistic	Significance
Growth Medium	3	1235073		
10	3	1202913	2.156	
18	3	1182360	3.534	*
32	3	1158860	5.110	*
56	3	929146	20.512	*

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.47).

GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 1)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static

Date: September 13-17, 1994

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Test Medium: Double strength "AAP" medium

(Miller et al., 1978) with P added to achieve a 20:1 N:P

atomic ratio

Test Organism:

Scientific Name: Selenastrum capricornutum

Age at Start of Test: Log growth

Source: UMD/WREC culture

Experimental Chambers:

Material: 250 mL glass culture flasks

with cheesecloth/cotton

stoppers

Test Solution Volume: 100 mL

Initial Cell Density: 1 x 10⁴ cells/mL

No. Replicates per Treatment: 3

Lighting: Fluorescent; cool white;

continuous; ≈300 foot candles

Shaking Rate: 100 cpm continuously

pH Buffer: 10 N NaOH

Endpoint:

Reduction in growth relative

to control

Temperature:

 25 ± 0.2 °C

Results:

Significant ($\alpha=0.05$) reductions in growth (cell density) occurred in concentrations down to 18% buffered groundwater (See tables A4-1, A4-2, and A4-3). Growth was not affected by exposure to 10% buffered groundwater by volume. The NOEC and LOEC for reduction in growth are as follows:

NOEC = 10% buffered groundwater by volume. LOEC = 18% buffered groundwater by volume.

The 96-h EC50 (reduction in growth), which was determined by the moving average angle method, is as follows:

96-h EC50 = 79.5 buffered groundwater by volume (95% confidence limits = 62.54-111.83).

Table A4-1. GREEN ALGA CANAL CREEK BUFFERED GROUNDWATER
TOXICITY DATA (TEST NO. 1) - MEAN CELL DENSITY
(CELLS/ML) AFTER 96 HOURS OF EXPOSURE

Conc (% by	Rep		Mea	n Cell Dens	sity	
Vol)		ОН	24H	48H	72H	96Н
Growth	1	8800	79040	340600	690400	1248600
Medium	2	8800	76000	328400	672240	1220220
	3	8800	78000	330400	677400	1236400
10	1	9000	77400	336240	686400	1246400
	2	9000	78000	324400	670200	1209200
	3	9000	74200	328400	682400	1238000
18	1	9400	77780	326400	666400	1186240
	2	9400	70400	320120	660880	1193480
	3	9400	74200	323800	661400	1199400
32	1	8600	70200	324840	654800	1157200
	2	8600	72480	320240	644600	1168420
	3	8600	74200	328000	656240	1180200
56	1	9000	65800	304320	603240	1024690
	2	9000	67240	298360	606800	1000100
	3	9000	66400	300100	596400	1020400
100	1	8600	46240	194600	388240	527680
	2	8600	48400	200400	394100	550240
	3	8600	43240	202600	398000	530340

GREEN ALGA CANAL CREEK BUFFERED GROUNDWATER Table A4-2. TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 1) -MEAN CELL DENSITY (CELLS/ML)

Data Transformation:

None

Chi-square Test for Normality:

3.76 Calculated test statistic: 0.01 Alpha value: 13.28 Critical value:

Fail to reject the null Conclusion: hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variance:

Calculated test statistic: 1.83 0.01 Alpha value: 15.09 Critical value:

Fail to reject the null Conclusion: hypothesis that the

variances are homogenous

ANOVA:

1215.65 Calculated test statistic: 0.05 Alpha value: 3.11 Critical value:

Reject the null Conclusion: hypothesis that all

groups are equal

Dunnett's Test:

See Table A4-3 Calculated test statistic:

Alpha value: 0.05 Critical value: 2.50

Reject the null Conclusion: hypothesis that all groups are equal

TABLE A4-3. GREEN ALGA CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 1) RESULTS OF DUNNETT'S TEST ON MEAN CELL DENSITY
(CELLS/ML)

Conc (% by Vol)	No. of Reps	Mean Cell Density	T Statistic	Significance
Growth Medium	3	1235073		
10	3	1231200	0.353	
18	3	1193040	3.831	*
32	3	1168606	6.058	*
56	3	1015063	20.051	*
100	3	536086	63.703	*

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.50).

GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 2)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static

Date: November 11-15, 1994

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Test Medium: Double strength "AAP" medium

(Miller et al., 1978) with P added to achieve a 20:1 N:P

atomic ratio

Test Organism:

Scientific Name: <u>Selenastrum capricornutum</u>

Age at Start of Test: Log growth

Source: UMD/WREC culture

Experimental Chambers:

Material: 250 mL glass culture flasks

with cheesecloth/cotton

stoppers

Test Solution Volume: 100 mL

Initial Cell Density: ≈1 x 10⁴ cells/mL

No. Replicates per Treatment: 3

Lighting: Fluorescent; cool white;

continuous; ≈300 foot candles

Shaking Rate: 100 cpm continuously

Endpoint: Reduction in growth relative

to control

Results:

100% raw Canal Creek groundwater killed all algal cells during the first 24 h of exposure (Table A5-1). Significant ($\alpha=0.05$) reductions in growth (cell density) occurred at all concentrations down to 18% raw groundwater by volume (see Tables A5-1, A5-2, and A5-3). Growth was not affected by exposure to 10% raw groundwater by volume. The NOEC and LOEC for reduction in growth are as follows:

NOEC = 10% raw groundwater by volume. LOEC = 18% raw groundwater by volume.

The 96-h EC50 (reduction in growth), which was determined by the moving average angle method, is as follows:

96-h EC50 = 51.9% raw groundwater by volume (95% confidence limits = 48.56-55.64).

No difference in algal growth was detected between the UMD/WREC controls and the APG-EA diluent controls (t-test: critical value = 4.60; t statistic = -4.20; α = 0.01).

TABLE A5-1. GREEN ALGA CANAL CREEK RAW GROUNDWATER TOXICITY DATA (TEST NO. 2) - MEAN CELL DENSITY (CELLS/ML) AFTER 96 HOURS OF EXPOSURE

Conc (% by	Rep		Mea	n Cell Dens	sity ————————————————————————————————————	
Vol)		ОН	24H	48H	72H	96H
Growth	1	9000	73200	353000	682400	1466200
Medium	2 3	9000	68400	345600	670100	1450000
	3	9000	70100	350200	675200	1452040
APG-EA	1	8800	71400	346800	669000	1436200
Diluent	2	8800	68600	342400	663200	1420800
Water	2 3	8800	66800	338600	666666	1422500
10	1	9600	68400	343200	662100	1422400
	2	9600	71100	346100	650400	1406240
	3	9600	66200	340200	655200	1409600
18	1	9050	69000	325600	628400	1335333
	2	9050	64200	317800	613100	1317200
	3	9050	66800	322100	618200	1320200
32	1	9400	66400	303600	587640	1233200
	2 3	9400	60900	297000	582100	1214200
	3	9400	65400	300400	585500	1218200
56	1	9600	59140	245100	410400	883600
	2	9600	55600	237000	398600	812200
	3	9600	56260	241900	403100	798620
100	1	9200	DEAD			
	2	9200	DEAD			
	3	9200	DEAD			

GREEN ALGA CANAL CREEK RAW GROUNDWATER TOXICITY Table A5-2. TEST STATISTICAL ANALYSIS (TEST NO. 2) - MEAN CELL DENSITY (CELLS/ML) a

Data Transformation:

None

Chi-square Test for Normality:

3.14 Calculated test statistic: 0.01 Alpha value: Critical value: 13.28

Fail to reject the null Conclusion: hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 9.15 0.01 Alpha value: Critical value: 13.28

Fail to reject the null Conclusion: hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 386.554 Alpha value: 0.05 Critical value: 3.48

Conclusion: Reject the null hypothesis that all

groups are equal

Dunnett's Test:

Calculated test statistic: See Table A5-3

0.05 Alpha value: Critical Value: 2.47

Conclusion: Reject the null hypothesis that all groups are equal

The 100% raw Canal Creek groundwater treatment was not included in the statistical analyses because all cells died during the test.

Table A5-3. GREEN ALGAE CANAL CREEK RAW GROUNDWATER TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 2) - RESULTS OF DUNNETT'S TEST ON MEAN CELL DENSITY (CELLS/ML)

Conc (% by Vol)	No. of Reps	Mean Cell Density	T Statistic	Significance
Growth Medium	3	1456080		
10	3	1412747	2.408	
18	3	1324244	7.325	*
32	3	1221867	13.014	*
56	3	831473	34.705	*

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.47).

GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 2)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Static Type of Test:

Date: November 11-15, 1994

S. D. Turley Investigator:

Laboratory: UMD/WREC

Groundwater:

APG-EA Canal Creek Well CC-27B Source:

Chemical Characteristics: See Appendix 58

Test Medium: Double strength "AAP" medium

(Miller et al., 1978) with P added to achieve a 20:1 N:P

atomic ratio

Test Organism:

Scientific Name: Selenastrum capricornutum

Age at Start of Test: Log growth

Source: UMD/WREC culture

Experimental Chambers:

Material: 250 mL glass culture flasks

with cheesecloth/cotton

stoppers

Test Solution Volume: 100 mL

≈1 x 10⁴ cells/mL Initial Cell Density:

No. Replicates per Treatment:

Fluorescent; cool white; Lighting:

continuous; ≈300 foot candles

Shaking Rate: 100 cpm continuously

10 N NaOH pH Buffer:

Endpoint: Reduction in growth relative

to control

Temperature: 25 ± 0.2 °C

Results:

Significant ($\alpha=0.05$) reductions in growth (cell density) occurred at all concentrations down to 18% buffered groundwater by volume (See Tables A6-1, A6-2, and A6-3). Growth was not affected by exposure to 10% buffered groundwater by volume. The NOEC and LOEC for reduction in growth are as follows:

NOEC = 10% buffered groundwater by volume. LOEC = 18% buffered groundwater by volume.

The 96-h EC50 (reduction in growth), which was determined by the moving average angle method, is as follows:

96-h EC50 = 67.0 buffered groundwater by volume (95% confidence limits = 59.93-77.05).

Table A6-1. GREEN ALGA CANAL CREEK BUFFERED GROUNDWATER
TOXICITY DATA (TEST NO. 2) - MEAN CELL DENSITY
(CELLS/ML) AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	Rep	-	Mea	n Cell Dens	sity 	
VO1)		ОН	24H	48H	72H	96H
Growth	1	9000	73200	353000	682400	1466200
Medium	2	9000	68400	345600	670100	1450000
	3	9000	70100	350200	675200	1452040
10	1	8800	69200	357000	695100	1495000
	1 2 3	8800	71400	352800	683600	1479200
	3	8800	74300	355100	685200	1481000
18	1	9200	65100	327800	629200	1346000
	1 2	9200	70000	336100	640100	1364200
	3	9200	67333	333333	634200	1350600
32	1	9600	66100	308000	592200	1265100
	1 2 3	9600	61200	300100	580200	1245400
	3	9600	63400	304600	587600	1251100
56	1	9000	57200	248600	458000	865300
	2 3	9000	52600	245000	424400	821000
	3	9000	51200	239650	430300	826400
100	1	8600	41000	153200	290400	480500
	1 2 3	8600	36200	141200	204200	402100
	3	8600	38400	144400	250100	436500

Table A6-2. GREEN ALGA CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 2) MEAN CELL DENSITY (CELLS/ML)

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 3.76
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variance:

Calculated test statistic: 7.74
Alpha value: 0.01
Critical value: 15.09

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 1250.85
Alpha value: 0.05
Critical value: 3.11

Conclusion: Reject the null hypothesis that all

groups are equal

Dunnett's Test:

Calculated test statistic: See Table A6-3

Alpha value: 0.05 Critical value: 2.50

Conclusion: Reject the null hypothesis that all

groups are equal

TABLE A6-3. GREEN ALGA CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 2) RESULTS OF DUNNETT'S TEST ON MEAN CELL DENSITY
(CELLS/ML)

Conc (% by Vol)	No. of Reps	Mean Cell Density	T Statistic	Significance
Growth Medium	3	1456080		
10	3	1485067	-1.749	
18	3	1353600	6.182	*
32	3	1253867	12.198	*
56	3	837566	37.309	*
100	3	439700	61.309	*

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.50).

GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH \approx 4) GROUNDWATER (WELL CC-27B) (TEST NO. 3)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static

Date: January 24-28, 1995

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Test Medium: Double strength "AAP" medium

(Miller et al., 1978) with P added to achieve a 20:1 N:P

atomic ratio

Test Organism:

Scientific Name: <u>Selenastrum capricornutum</u>

Age at Start of Test: Log growth

Source: UMD/WREC culture

Experimental Chambers:

Material: 250 mL glass culture flasks

with cheesecloth/cotton

Test Solution Volume: stoppers 100 mL

Initial Cell Density: ≈1 x 10⁴ cells/mL

No. Replicates per Treatment: 3

Lighting: Fluorescent; cool white;

continuous; ≈300 foot candles

Shaking Rate: 100 cpm continuously

Endpoint: Reduction in growth relative

to control

Results:

100% raw Canal Creek groundwater killed all algal cells during the first 24 h of exposure (Table A7-1). Significant ($\alpha=0.05$) reductions in growth (cell density) occurred at all concentrations down to 32% raw groundwater by volume (See Tables A7-1, A7-2, and A7-3). Growth was not affected by exposure to 18% raw groundwater by volume. The NOEC and LOEC for reduction in growth are as follows:

NOEC = 18% raw groundwater by volume. LOEC = 32% raw groundwater by volume.

The 96-h EC50 (reduction in growth), which was determined by the moving average angle method, is as follows:

96-h EC50 = 56.3% raw groundwater by volume (95% confidence limits = 47.17-67.44).

No difference in algal growth was detected between the UMD/WREC controls and the APG-EA diluent controls (t-test: critical value = 4.60; t statistic = -0.76; α = 0.01).

TABLE A7-1. GREEN ALGA CANAL CREEK RAW GROUNDWATER TOXICITY DATA (TEST NO. 3) - MEAN CELL DENSITY (CELLS/ML) AFTER 96 HOURS OF EXPOSURE

Conc (% by	Rep		Mea	n Cell Dens	sity —————	
Vol)		ОН	24H	48H	72H	96H
Growth	1	8800	70200	328900	644800	1211100
Medium	2	8800	67800	321600	631000	1199800
	3	8800	69400	325100	635200	1206200
APG-EA	1	8600	67000	322200	617800	1168300
Diluent	2	8600	68900	330100	640100	1227400
Water	3	8600	69200	326100	630200	1179200
10	1	9000	71800	333333	650100	1217700
	2	9000	69200	322400	630200	1193640
	3	9000	65400	318000	619800	1175560
18	1	9600	66000	320100	622500	1182800
	1 2	9600	63240	304600	581300	1097180
	3	9600	63800	311800	604200	1133400
32	1	9200	60800	293500	574000	1071800
	2	9200	58100	270400	530400	986260
	3	9200	61200	282400	551400	1018800
56	1	9000	56800	277500	520000	962150
	2	9000	53880	271000	505200	928400
	3	9000	49000	245100	445200	806600
100	1	8800	DEAD			
	2 3	8800	DEAD			
	3	8800	DEAD			

Table A7-2. GREEN ALGA CANAL CREEK RAW GROUNDWATER TOXICITY

TEST STATISTICAL ANALYSIS (TEST NO. 3) - MEAN CELL

DENSITY (CELLS/ML)^a

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 3.14
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 8.33
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null

hypothesis that the variances are homogenous

ANOVA:

Calculated test statistic: 23.21
Alpha value: 0.05
Critical value: 3.48

Conclusion: Reject the null hypothesis that all

groups are equal

Dunnett's Test:

Calculated test statistic: See Table A7-3

Alpha value: 0.05 Critical Value: 2.47

Conclusion: Reject the null hypothesis that all

groups are equal

The 100% raw Canal Creek groundwater treatment was not included in the statistical analyses because all cells died during the test.

Table A7-3. GREEN ALGAE CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 3) - RESULTS OF
DUNNETT'S TEST ON MEAN CELL DENSITY (CELLS/ML)

Conc (% by Vol)	No. of Reps	Mean Cell Density	T Statistic	Significance
Growth Medium	3	1205700		
10	3	1195633	0.264	
18	3	1137793	1.782	
32	3	1025647	4.725	*
56	3	899050	8.048	*

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.47).

GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 3)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static

Date: January 24-28, 1995

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Test Medium: Double strength "AAP" medium

(Miller et al., 1978) with P added to achieve a 20:1 N:P

atomic ratio

Test Organism:

Scientific Name: <u>Selenastrum capricornutum</u>

Age at Start of Test: Log growth

Source: UMD/WREC culture

Experimental Chambers:

Material: 250 mL glass culture flasks

with cheesecloth/cotton

stoppers

Test Solution Volume: 100 mL

Initial Cell Density: ≈1 x 10⁴ cells/mL

No. Replicates per Treatment: 3

Lighting: Fluorescent; cool white;

continuous; ≈300 foot candles

Shaking Rate: 100 cpm continuously

pH Buffer: 10 N NaOH

Endpoint:

Reduction in growth relative

to control

Temperature:

 25 ± 0.2 °C

Results:

Significant (α = 0.05) reductions in growth (cell density) occurred at all concentrations down to 32% buffered groundwater by volume (See Tables A8-1, A8-2, and A8-3). Growth was not affected by exposure to 10% or 18% buffered groundwater by volume. The NOEC and LOEC for reduction in growth are as follows:

NOEC = 18% buffered groundwater by volume. LOEC = 32% buffered groundwater by volume.

The 96-h EC50 (reduction in growth), which was determined by the moving average angle method, is as follows:

96-h EC50 = 78.4 buffered groundwater by volume (95% confidence limits = 50.13-111.11).

Table A8-1. GREEN ALGA CANAL CREEK BUFFERED GROUNDWATER TOXICITY DATA (TEST NO. 3) - MEAN CELL DENSITY (CELLS/ML) AFTER 96 HOURS OF EXPOSURE

Conc (% by	Rep	Mean Cell Density					
Vol)		ОН	24H	48H	72H	96H	
Growth	1	8800	70200	328900	644800	1211100	
Medium	1 2 3	8800 8800	67800 69400	321600 325100	631000 635200	1199800 1206200	
10	1	9600	69100	327100	645200	1232200	
	2	9600	65200	319200	624800	1186400	
	3	9600	60000	315400	606000	1147800	
18	1	9400	59000	302200	588300	1094700	
	2	9400	62000	315300	609900	1165900	
	3	9400	60100	310000	596400	1120100	
32	1	9200	61200	299100	581800	1083900	
	2	9200	56100	281400	527600	974200	
	3	9200	57400	290600	548800	1004350	
56	1	9000	52100	208000	387900	672780	
	2	9000	54000	247400	470800	881370	
	3	9000	50800	215500	419700	731860	
100	1	8800	44200	191700	349800	579940	
	2	8800	40000	150400	231000	359300	
	3	8800	41600	158600	286200	493100	

Table A8-2. GREEN ALGA CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 3) MEAN CELL DENSITY (CELLS/ML)

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 3.76
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variance:

Calculated test statistic: 10.33
Alpha value: 0.01
Critical value: 15.09

Conclusion: Fail to reject the null hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 49.55
Alpha value: 0.05
Critical value: 3.11

Conclusion: Reject the null hypothesis that all groups are equal

Dunnett's Test:

Calculated test statistic: See Table A8-3

Alpha value: 0.05 Critical value: 2.50

Conclusion:

Reject the null hypothesis that all groups are equal

TABLE A8-3. GREEN ALGA CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 3) RESULTS OF DUNNETT'S TEST ON MEAN CELL DENSITY
(CELLS/ML)

Conc (% by Vol)	No. of Reps	Mean Cell Density	T Statistic	Significance
Growth Medium	3	1205700		
10	3	1188800	0.292	
18	3	1126900	1.359	
32	3	1020817	3.189	*
56	3	762003	7.654	*
100	3	477447	12.563	*

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.50).

GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 4)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static

Date: March 24-28, 1995

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Test Medium: Double strength "AAP" medium (Miller et al., 1978) with P

added to achieve a 20:1 N:P

atomic ratio

Test Organism:

Scientific Name: <u>Selenastrum capricornutum</u>

Age at Start of Test: Log growth

Source: UMD/WREC culture

Experimental Chambers:

Material: 250 mL glass culture flasks

with cheesecloth/cotton

Test Solution Volume: stoppers 100 mL

Initial Cell Density: ≈1 x 10⁴ cells/mL

No. Replicates per Treatment: 3

Lighting: Fluorescent; cool white;

continuous; ≈300 foot candles

Shaking Rate: 100 cpm continuously

Endpoint: Reduction in growth relative

to control

Results:

100% raw Canal Creek groundwater killed all algal cells during the first 24 h of exposure (Table A9-1). Significant ($\alpha=0.05$) reductions in growth (cell density) occurred at all concentrations down to 18% raw groundwater by volume (See Tables A9-1, A9-2, and A9-3). Growth was not affected by exposure to 10% raw groundwater by volume. The NOEC and LOEC for reduction in growth are as follows:

NOEC = 10% raw groundwater by volume. LOEC = 18% raw groundwater by volume.

The 96-h EC50 (reduction in growth), which was determined by the moving average angle method, is as follows:

96-h EC50 = 51.2% raw groundwater by volume (95% confidence limits = 47.66-55.26).

No difference in algal growth was detected between the UMD/WREC controls and the APG-EA diluent controls (t-test: critical value = 4.60; t statistic = -0.63; $\alpha = 0.01$).

TABLE A9-1. GREEN ALGA CANAL CREEK RAW GROUNDWATER TOXICITY DATA (TEST NO. 4) - MEAN CELL DENSITY (CELLS/ML) AFTER 96 HOURS OF EXPOSURE

Conc (% by	Rep		Mea	n Cell Dens	sity —————	
Vol)		ОН	24H	48H	72H	96H
Growth	1	11000	84600	350200	700200	1444000
Medium	2	11000	79200	340100	685900	1380800
	3	11000	87000	353000	696400	1422200
APG-EA	1	12000	82800	348400	694800	1385900
Diluent	2	12000	80000	337600	680400	1422500
Water	3	12000	88200	355400	699800	1397800
10	1	10800	81800	341600	686200	1373200
	2	10800	86400	358100	702800	1458100
	3	10800	85200	352800	695500	1428200
18	1	12000	82300	336200	653200	1332200
	1 2	12000	77600	328100	640800	1275500
	3	12000	81000	333333	648700	1309500
32	1	10600	80100	327200	637400	1259800
	2	10600	77800	323400	630300	1225800
	3	10600	75200	320800	626200	1204600
56	1	10000	73400	278200	540200	842300
	1 2 3	10000	77100	295200	555000	924400
	3	10000	75500	281800	547400	880500
100	1	12000	DEAD			
	2	12000	DEAD			
	3	12000	DEAD			

Table A9-2. GREEN ALGA CANAL CREEK RAW GROUNDWATER TOXICITY

TEST STATISTICAL ANALYSIS (TEST NO. 4) - MEAN CELL

DENSITY (CELLS/ML)^a

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 3.14
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 0.56
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 118.61
Alpha value: 0.05
Critical value: 3.48

Conclusion:

Reject the null hypothesis that all groups are equal

Dunnett's Test:

Calculated test statistic: See Table A9-3

Alpha value: 0.05 Critical Value: 2.47

Conclusion: Reject the null hypothesis that all groups are equal

The 100% raw Canal Creek groundwater treatment was not included in the statistical analyses because all cells died during the test.

Table A9-3. GREEN ALGAE CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 4) - RESULTS OF
DUNNETT'S TEST ON MEAN CELL DENSITY (CELLS/ML)

Conc (% by Vol)	No. of Reps	Mean Cell Density	T Statistic	Significance
Growth Medium	3	1415666		
10	3	1419833	-0.145	
18	3	1305733	3.835	*
32	3	1230066	6.475	*
56	3	882400	18.603	*

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.47).

GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 4)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static

Date: March 24-28, 1995

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Test Medium:

Double strength "AAP" medium

(Miller et al. 1978) with P

(Miller et al., 1978) with P added to achieve a 20:1 N:P

atomic ratio

Test Organism:

Scientific Name: <u>Selenastrum capricornutum</u>

Age at Start of Test: Log growth

Source: UMD/WREC culture

Experimental Chambers:

Material: 250 mL glass culture flasks

with cheesecloth/cotton

stoppers

Test Solution Volume: 100 mL

Initial Cell Density: ≈1 x 10⁴ cells/mL

No. Replicates per Treatment: 3

Lighting: Fluorescent; cool white;

continuous; ≈300 foot candles

Shaking Rate: 100 cpm continuously

pH Buffer: 10 N NaOH

Endpoint:

Reduction in growth relative

to control

Temperature:

25 ± 0.2 °C

Results:

Significant ($\alpha=0.05$) reductions in growth (cell density) occurred at all concentrations down to 32% buffered groundwater by volume (See Tables A10-1, A10-2, and A10-3). Growth was not affected by exposure to 10% or 18% buffered groundwater by volume. The NOEC and LOEC for reduction in growth are as follows:

NOEC = 18% buffered groundwater by volume. LOEC = 32% buffered groundwater by volume.

The 96-h EC50 (reduction in growth), which was determined by the moving average angle method, is as follows:

96-h EC50 = 67.2 buffered groundwater by volume (95% confidence limits = 59.41-78.79).

Table A10-1. GREEN ALGA CANAL CREEK BUFFERED GROUNDWATER
TOXICITY DATA (TEST NO. 4) - MEAN CELL DENSITY
(CELLS/ML) AFTER 96 HOURS OF EXPOSURE

Conc (% by	Rep		Mea	n Cell Dens	sity	
Vol)		ОН	24H	48H	72H	96H
Growth	1	11000	84600	350200	700200	1444000
Medium	2	11000	79800	340100	685900	1380800
	3	11000	87000	353000	696400	1422200
10	1	10800	82200	342400	697200	1431200
	1 2	10800	88100	358100	704500	1442500
	3	10800	84100	347400	693100	1426900
18	1	12000	85200	340400	681200	1383800
	2 3	12000	82200	346100	688200	1378800
	3	12000	79100	336400	676400	1350500
32	1	11000	79200	322400	622200	1210400
	1 2 3	11000	77800	316100	616800	1162300
	3	11000	73100	312000	609800	1097100
56	1	10500	73800	250100	464900	833800
	2 3	10500	75800	280100	478200	874900
	3	10500	71600	260800	459400	797000
100	1	11500	60100	165400	266100	390700
	1 2 3	11500	70800	180200	285800	513900
	3	11500	62600	171400	277600	454400

Table A10-2. GREEN ALGA CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 4) MEAN CELL DENSITY (CELLS/ML)

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 3.76
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null

hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variance:

Calculated test statistic: 6.62
Alpha value: 0.01
Critical value: 15.09

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 280.14
Alpha value: 0.05
Critical value: 3.11

Conclusion: Reject the null hypothesis that all

groups are equal

Dunnett's Test:

Calculated test statistic: See Table A10-3

Alpha value: 0.05 Critical value: 2.50

Conclusion: Reject the null hypothesis that all

groups are equal

TABLE A10-3. GREEN ALGA CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 4) RESULTS OF DUNNETT'S TEST ON MEAN CELL DENSITY
(CELLS/ML)

Conc (% by Vol)	No. of Reps	Mean Cell Density	T Statistic	Significance
Growth Medium	3	1415666		
10	3	1433533	-0.537	
18	3	1371033	1.341	
32	3	1156600	7.785	*
56	3	835233	17.442	*
100	3	453000	28.929	*

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.50).

GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 5)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static

Date: May 3-7, 1995

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Test Medium: Double strength "AAP" medium

(Miller et al., 1978) with P added to achieve a 20:1 N:P

atomic ratio

Test Organism:

Scientific Name: <u>Selenastrum capricornutum</u>

Age at Start of Test: Log growth

Source: UMD/WREC culture

Experimental Chambers:

Material: 250 mL glass culture flasks

with cheesecloth/cotton

stoppers

Test Solution Volume: 100 mL

Initial Cell Density: ≈1 x 10⁴ cells/mL

No. Replicates per Treatment: 3

Lighting: Fluorescent; cool white;

continuous; ≈300 foot candles

Shaking Rate: 100 cpm continuously

Endpoint: Reduction in growth relative

to control

Results:

100% raw Canal Creek groundwater killed all algal cells during the first 24 h of exposure (Table All-1). Significant ($\alpha = 0.05$) reductions in growth (cell density) occurred at all concentrations down to 32% raw groundwater by volume (See Tables All-1, All-2, and All-3). Growth was not affected by exposure to 18% raw groundwater by volume. The NOEC and LOEC for reduction in growth are as follows:

NOEC = 18% raw groundwater by volume. LOEC = 32% raw groundwater by volume.

The 96-h EC50 (reduction in growth), which was determined by the moving average angle method, is as follows:

96-h EC50 = 47.6% raw groundwater by volume (95% confidence limits = 44.55-50.97).

No difference in algal growth was detected between the UMD/WREC controls and the APG-EA diluent controls (t-test: critical value = 4.60; t statistic = -2.37; α = 0.01).

TABLE A11-1. GREEN ALGA CANAL CREEK RAW GROUNDWATER TOXICITY DATA (TEST NO. 5) - MEAN CELL DENSITY (CELLS/ML) AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	Rep		Mea	n Cell Dens	sity —————	
		ОН	24H	48H	72H	96H
Growth	1	9800	64000	310200	580400	1215800
Medium	2 3	9800	60200	301200	577200	1210000
	3	9800	67800	316000	596400	1246400
APG-EA	1	9600	63800	304400	573600	1163200
Diluent	2	9600	59600	306600	577800	1190100
Water	2 3	9600	66200	308400	587200	1203100
10	1	10000	65200	314400	571400	1197300
	2	10000	67800	320200	568200	1183400
	3	10000	62400	308900	586200	1228100
18	1	8800	65000	304600	563200	1173900
	2	8800	62400	309800	577100	1188600
	3	8800	58700	298200	559100	1165300
32	1	9000	56400	277800	521400	1073100
	2	9000	60200	287000	517200	999900
	2 3	9000	62600	293800	533100	1090400
56	1	9600	50800	222100	340600	559300
	2	9600	48400	207600	336800	488300
	3	9600	53600	230100	351600	628400
100	1	9400	DEAD			
	2	9400	DEAD			
	3	9400	DEAD			

Table A11-2. GREEN ALGA CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 5) - MEAN CELL
DENSITY (CELLS/ML)^a

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 3.14
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 6.11
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 141.07
Alpha value: 0.05
Critical value: 3.48

Conclusion: Reject the null hypothesis that all

groups are equal

Dunnett's Test:

Calculated test statistic: See Table A11-3

Alpha value: 0.05 Critical Value: 2.47

Conclusion: Reject the null hypothesis that all groups are equal

The 100% raw Canal Creek groundwater treatment was not included in the statistical analyses because all cells died during the test.

Table A11-3. GREEN ALGAE CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 5) - RESULTS OF
DUNNETT'S TEST ON MEAN CELL DENSITY (CELLS/ML)

Conc (% by Vol)	No. of Reps	Mean Cell Density	T Statistic	Significance
Growth Medium	3	1224067		
10	3	1202933	0.637	
18	3	1175933	1.450	
32	3	1054467	5.111	*
56	3	558667	20.051	*

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.47).

GREEN ALGAL 96-H GROWTH TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 5)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static

Date: May 3-7, 1995

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Test Medium: Double strength "AAP" medium

(Miller et al., 1978) with P added to achieve a 20:1 N:P

atomic ratio

Test Organism:

Scientific Name: <u>Selenastrum capricornutum</u>

Age at Start of Test: Log growth

Source: UMD/WREC culture

Experimental Chambers:

Material: 250 mL glass culture flasks

with cheesecloth/cotton

stoppers

Test Solution Volume: 100 mL

Initial Cell Density: ≈1 x 10⁴ cells/mL

No. Replicates per Treatment: 3

Lighting: Fluorescent; cool white;

continuous; ≈300 foot candles

Shaking Rate: 100 cpm continuously

pH Buffer: 10 N NaOH

Endpoint:

Reduction in growth relative

to control

Temperature:

25 ± 0.2 °C

Results:

Significant ($\alpha = 0.05$) reductions in growth (cell density) occurred at all concentrations down to 32% buffered groundwater by volume (See Tables A12-1, A12-2, and A12-3). Growth was not affected by exposure to 10% or 18% buffered groundwater by volume. The NOEC and LOEC for reduction in growth are as follows:

NOEC = 18% buffered groundwater by volume. LOEC = 32% buffered groundwater by volume.

The 96-h EC50 (reduction in growth), which was determined by the moving average angle method, is as follows:

96-h EC50 = 95.9 buffered groundwater by volume (95% confidence limits = 81.51-124.57).

Table A12-1. GREEN ALGA CANAL CREEK BUFFERED GROUNDWATER
TOXICITY DATA (TEST NO. 5) - MEAN CELL DENSITY
(CELLS/ML) AFTER 96 HOURS OF EXPOSURE

Conc (% by	Rep		Mea	n Cell Dens	sity	
Vol)		ОН	24H	48H	72H	96H
Growth	1	9800	64000	310200	580400	1215800
Medium	2	9800	60200	301200	577200	1210000
	3	9800	67800	316000	596400	1246400
10	1	10100	62800	304400	573600	1163200
	1 2 3	10100	59600	306600	577800	1190100
	3	10100	64200	312400	585600	1203100
18	1	9400	64800	309600	583400	1190800
	1 2 3	9400	59000	303200	576400	1157500
	3	9400	61800	304400	581200	1172600
32	1	9800	59700	286800	574400	1088100
	2 3	9800	60400	297600	577400	1124100
	3	9800	61600	300900	580000	1142300
56	1	10000	59600	280400	517400	963300
	1 2	10000	55400	277100	506800	902000
	3	10000	60000	285100	526500	1013200
100	1	9800	52400	235400	365800	670700
	2 3	9800	51000	219800	348600	607100
	3	9800	49700	210400	330400	479800

Table A12-2. GREEN ALGA CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 5) MEAN CELL DENSITY (CELLS/ML)

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 3.76
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variance:

Calculated test statistic: 8.82
Alpha value: 0.01
Critical value: 15.09

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 72.99
Alpha value: 0.05
Critical value: 3.11

Conclusion: Reject the null hypothesis that all

groups are equal

Dunnett's Test:

Calculated test statistic: See Table A12-3

Alpha value: 0.05 Critical value: 2.50

Conclusion:

Reject the null hypothesis that all groups are equal

TABLE A12-3. GREEN ALGA CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 5) RESULTS OF DUNNETT'S TEST ON MEAN CELL DENSITY
(CELLS/ML)

Conc (% by Vol)	No. of Reps	Mean Cell Density	T Statistic	Significance
Growth Medium	3	1224067		
10	3	1185467	0.965	
18	3	1173633	1.261	
32	3	1118167	2.649	*
56	3	959500	6.617	*
100	3	585867	15.963	*

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.50).

CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 1)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static renewal (every 24 h)

Date: September 13-20, 1994

Investigator: S.D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: 20% Perrier:80% RO water

Chemical Characteristics: See Table A13-1

Test Organism:

Scientific Name: <u>Ceriodaphnia</u> <u>dubia</u>

Age at Start of Test: <4 h

Source: UMD/WREC culture

Experimental Chambers:

Material: 50 mL glass beaker

Test Solution Volume: 25 mL

No. Organisms/Replicate: 1

No. Organisms/Treatment: 10

Loading: 1 organism/beaker

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to each renewal

Endpoints: Mortality of adults; number of

Water Quality:

Table A13-1

Results:

Mortality:

48-h Exposure:

The data for the 48-h LC50 were obtained from the 7-d study. All organisms exposed to 100% raw groundwater died during the 48-h exposure (Table A13-2). The organisms in all other treatments lived. The 48-h LC50, which was determined by the moving average angle method, is as follows:

48-h LC50 = 64.7% raw groundwater by volume (95% confidence limits = 57.17-75.48).

7-d Exposure:

All organisms exposed to 100% raw groundwater died during the 7-d exposure (Table A13-3); organisms in all other treatments lived. The 7-d LC50, which was determined by the moving average angle method, is as follows:

7-d LC50 = 64.7% raw groundwater by volume (95% confidence limits = 57.17-75.48).

Cladoceran survival was not affected by exposure to APG-EA diluent water.

Neonate Production:

Raw groundwater significantly ($\alpha=0.05$) reduced neonate production relative to the controls down to 18% raw groundwater by volume (see Tables A13-3, A13-4, and A13-5). The NOEC and LOEC for the cladocerans, based on reduced neonate production, are as follows:

NOEC = 10% raw groundwater by volume. LOEC = 18% raw groundwater by volume.

Neonate production was not affected by exposure to APG-EA diluent water relative to the UMD\WREC controls (t-test: critical value = 2.88; t statistic = -1.17; α = 0.01)..

TABLE A13-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE CLADOCERAN 7-DAY TEST (TEST NO. 1) - DISSOLVED OXYGEN (MG/L)

	Test Concentrations			(Perce	ent Grou	by Volume)	
	0 APG	0 WREC	10		32	56	100
Day 0							
0 H	8.4	8.3	8.2	8.1	8.2	7.9	7.9
Day 1							
0 H 24 H	8.1 8.0	8.2 8.0		8.3 8.0			8.3
Day 2							
0 H 24 H	7.8 8.1	8.3 8.4	8.2 8.3	8.3 8.5	8.1 8.3		8.0
Day 3							
0 H 24 H	7.9 8.0	8.4 8.3	8.1 8.1	8.2 8.4			8.1
Day 4							
0 H 24 H	8.1 8.1	8.5 8.3	8.2 8.2	8.3 8.1	8.4 8.1	8.3 8.2	8.1
<u>Day 5</u>							
0 H 24 H	8.2 8.2	8.4 8.4	8.1 8.1	8.1 8.2		8.2 8.1	8.2
Day 6							
0 H 24 H	8.1 8.3	8.3 8.4	8.2 8.2	8.2 8.2	8.2 8.0	8.1 8.0	8.1
Day 7							
24 H	8.2	8.3	8.1	8.0	8.1	8.0	

TABLE A13-1. (CONTINUED) - pH (STANDARD UNITS)

	Test	Concent	rations	(Percen	t Grour	ndwater	by Volume)
	0 APG	0 WREC	10	18	32	56	100
Day 0							
о н	6.91	7.14	7.04	6.96	6.74	6.10	3.96
Day 1							
0 H 24 H	7.00 6.96	7.22 7.86	7.16 7.89	7.02 8.06	6.88 8.00	6.30 7.91	3.98
Day 2							
0 H 24 H	6.95 7.10	7.05 7.37	7.03 7.50	6.98 7.72	6.93 7.64	6.41 7.57	3.95
Day 3							
0 H 24 H	7.01 7.02	7.14 7.49	7.10 7.46	6.88 7.77	6.81 7.68	6.27 7.49	3.99
Day 4							
0 H 24 H	7.39 7.14	7.79 7.69	7.73 7.98	7.60 8.06	7.38 8.07	6.69 7.91	3.96
Day 5							
0 H 24 H	7.29 7.21	7.65 7.59	7.58 7.79	7.39 7.89	7.09 7.90	6.38 7.56	3.95
Day 6							
0 H 24 H	7.19 7.25	7.40 7.60	7.33 7.69	7.30 7.77	7.01 7.81	6.79 7.38	3.99
Day 7							
24 H	7.25	7.51	7.60	7.81	7.85	7.46	

TABLE A13-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	Test	Concentrations	(Percent Groundwater by Volume)
	0 APG	0 WREC	100
Day 0			
о н	290	160	410
Day 1			
о н	260	170	400
Day 2			
о н	200	175	410
Day 3			
о н	210	170	400
Day 4			
0 H	200	160	410
Day 5			
ОН	200	160	420
Day 6			
ОН	200	160	400
Day 7			
24 H	210	160	

TABLE A13-1. (CONTINUED) - ALKALINITY (MG/L AS CaCO₃)

	Test	Concentrations	(Percent Groundwater by Volume)
	0 APG	0 WREC	100
	AFG	WREC	
Day 0			
ОН	50	45	a
Day 1			
0 Н	55	50	
Day 2			
0 H	50	50	
Day 3			
0 Н .	50	40	
Day 4			
ОН	55	50	
Day 5			
0 H	50	40	
Day 6			
0 Н	55	40	
Day 7			
24 H	50	50	

a Could not obtain measurement.

TABLE A13-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

			(Percent Groundwater by Volume)
	0 APG	0 WREC	100
Day 0			
о н	68	68	a
Day 1			
0 Н	72	72	
Day 2			
0 Н	68	64	
Day 3			
о н	72	68	
Day 4			
ОН	72	72	
Day 5			
0 Н	64	68	
Day 6			
0 H	68	64	
Day 7			
24 H	70	64	

^a Could not obtain measurement.

TABLE A13-2. CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY
TEST DATA (TEST NO. 1) - SURVIVAL AFTER 48 HOURS OF
EXPOSURE

Concentration (% Groundwater by Volume)	Number Tested	No. Alive at 48 Hours	Percent Alive
UMD/WREC Control	10	10	100
APG-EA Diluent	10	10	100
10	10	10	100
18	10	10	100
32	10	10	100
56	10	10	100
100	10	0	0

TABLE A13-3. CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY DATA (TEST NO. 1) - SURVIVAL OF ADULTS, NUMBER OF YOUNG PRODUCED PER BROOD, TOTAL NUMBER OF YOUNG, AND MEAN NUMBER OF YOUNG PER BROOD AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	Rep	Brood No. 1	Brood No. 2	Brood No. 3	Total Young
UMD/WREC	1	5	12	14	31
Control	2	5	12	16	33
	3	4	13	16	33
	4	4	10	17	31
	5	5	8	15	28
	6	7	13	21	41
	7	7	10	16	33
	8	3	9	16	28
	9	9	9	14	32
	10	5	10	16	31
APG-EA	1	4	10	17	31
Diluent	2	5	10	19	34
Water	3	4	7	16	27
	4	4	10	17	31
	5	4	8	18	30
	6	3	9	19	31
	7	6	9	20	35
	8	8	6	17	31
	9	3	9	15	27
	10	4	9	14	27
10	1	4	8	18	30
	2	5	11	16	32
	3	5	13	9	27
	4	5	10	14	29
	5	4	10	14	28
	6	4	7	20	31
	7	5	10	16	31
	8	4	9	15	28
	9	3	8	18	29
	10	4	8	20	32

TABLE A13-3. (CONTINUED)

Conc (% by Vol)	Rep	Brood No. 1	Brood No. 2	Brood No. 3	Total Young
18	1 2 3 4 5 6 7 8 9	2 3 6 0 3 7 3 3 6	9 7 5 5 8 3 7 9 12	11 19 14 14 11 14 11 14 12	22 29 25 19 22 24 21 26 30 33
32	1 2 3 4 5 6 7 8 9	5 5 4 5 3 5 4 6 3 6	8 10 9 9 6 9 8 9 8 7	10 13 9 10 0 10 9 8	23 28 22 24 9 14 22 24 19
56	1 2 3 4 5 6 7 8 9	4 0 3 0 0 5 3 6 7 6	6 9 4 5 0 2 5 1	8 8 6 3 1 0 4 0 3 7	18 14 18 7 6 5 9 11 15
100	1 2 3 4 5 6 7 8 9	DEAD DEAD DEAD DEAD DEAD DEAD DEAD DEAD			

TABLE A13-4. CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 1) - NEONATE
PRODUCTION AFTER 7 DAYS OF EXPOSURE^a

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 1.45
Alpha value: 0.01
Critical value: 13.28

Conclusion Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 11.15
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 35.37
Alpha value: 0.05
Critical value: 2.61

Conclusion: Reject the null hypothesis that all

groups are equal

Dunnett's Test:

Calculated test statistics: See Table A13-5

Alpha value: 0.05 Critical value: 2.23

Conclusion:

Reject the null hypothesis that all groups are equal

The 100% raw Canal Creek groundwater treatment was not included in the statistical analyses because all organisms died during the test.

TABLE A13-5. CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 1) - RESULTS OF
DUNNETT'S TEST ON MEAN NEONATE PRODUCTION AFTER
7 DAYS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean No. Neonates Produced	T Statistic	Significance
UMD/WREC Control	10	32.1		
10	10	29.7	1.23	
18	10	25.1	3.60	*
32	10	19.8	6.32	*
56	10	11.7	10.79	*

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.23).

CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7)

GROUNDWATER (WELL CC-27B)

(TEST NO. 1)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static renewal (every 24 h)

Date: September 13-20, 1994

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: 20% Perrier:80% RO water

Chemical Characteristics: See Table A14-1

Test Organism:

Scientific Name: <u>Ceriodaphnia dubia</u>

Age at Start of Test: <4 h

Source: UMD/WREC culture

Experimental Chambers:

Material: 50 mL glass beaker

Test Solution Volume: 25 mL

No. Organisms/Replicate: 1

No. Organisms/Treatment: 10

Loading: 1 organism/beaker

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to each renewal

pH Buffer: 10 N NaOH

Endpoints:

Mortality of adults; number of neonates produced in 3 broods

Water Quality:

Table A14-1

Results:

Mortality:

48-h Exposure:

The data for the 48-h LC50 were obtained from the 7-d study. The buffered groundwater did not affect larval survival. The data are summarized in Table A14-2.

7-d Exposure:

Significant ($\alpha=0.05$) mortality occurred to the cladocerans exposed to 100% buffered groundwater by volume; statistically significant mortality did not occur at 32 and 56% buffered groundwater by volume (see Tables A14-3, A14-4, and A14-5). The 7-d LC50 for adult mortality, which was determined by the moving average angle method, is as follows:

7-d LC50 = 56.3% buffered groundwater by volume (95% confidence limits = 47.11-67.40).

Neonate Production:

A significant ($\alpha=0.01$) reduction in neonate production relative to the controls occurred at concentrations down to 18% buffered groundwater by volume. Neonate production was not affected by exposure to 10% buffered groundwater by volume (see Tables A14-3 and A14-6). The NOEC and LOEC for exposure of the organism to buffered Canal Creek groundwater, are as follows:

NOEC: 10% buffered groundwater by volume LOEC: 18% buffered groundwater by volume

Table A14-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE CLADOCERAN 7-DAY TEST (TEST NO. 1) - DISSOLVED OXYGEN (MG/L)

	<u>Test</u>	Concentrat	ions (Perc	ons (Percent Groundwa		ater by Volume)	
	0	10	18	32	56	100	
Day 0							
о н	8.3	8.1	8.1	7.9	8.0	7.7	
Day 1							
0 H 24 H	8.2 8.0	8.0 8.0	7.8 7.9	7.9 8.1	8.0 8.0	8.0 7.9	
Day 2							
0 H 24 H	8.3 8.4	8.2 8.4	8.1 8.5	8.3 8.6	8.0 8.3	8.0 8.2	
Day 3							
0 H 24 H	8.3 8.4	8.3 8.4	8.2 8.4	8.3 8.5	8.2 8.2	8.1 7.6	
Day 4							
0 H 24 H	8.5 8.3	8.2 8.3	8.3 8.3	8.5 8.5	8.3 8.3	7.7 7.7	
Day 5							
0 H 24 H	8.4 8.4	8.1 8.3	8.2 8.2	8.2 8.3	8.0 8.2	8.1 7.9	
Day 6							
0 H 24 H	8.4 8.4	8.2 8.3	8.3 8.1	8.2 8.2	8.2 8.1	8.1 8.3	
Day 7							
24 H	8.3	8.2	8.1	8.2	8.0	8.2	

TABLE A14-1. (CONTINUED) - pH (STANDARD UNITS)

	<u> </u>	10	18	ent Ground 32	<u>water by V</u> 56	100
				72	JU	
Day 0						
0 Н	7.14	7.18	7.15	7.14	7.06	7.02
Day 1						
0 H 24 H	7.22 7.86	7.12 7.96	7.19 8.22	7.25 8.16	7.30 8.34	6.25 8.30
Day 2						
0 H 24 H	7.05 7.37	7.11 7.90	7.21 8.13	7.24 8.16	7.28 8.16	7.29 8.05
Day 3						
0 H 24 H	7.14 7.49	7.15 7.88	7.26 8.14	7.29 8.02	7.31 7.48	7.38 7.41
Day 4						
0 H 24 H	7.29 7.69	7.57 7.99	7.74 8.08	7.78 8.20	7.71 8.23	7.59 8.35
Day 5						
0 H 24 H	7.65 7.59	7.31 7.78	7.29 8.07	7.19 7.96	7.18 8.02	7.09 8.14
Day 6						
0 H 24 H	7.40 7.60	7.27 7.25	7.25 7.30	7.23 7.46	7.19 7.65	7.18 8.00
Day 7						
24 H	7.51	7.60	7.59	7.76	7.70	8.09

TABLE A14-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	<u>Test</u>	Concentrations 100	(Percent Groundwater by Volume)
Day 0			
о н	160	510	
Day 1			
ОН	170	500	
Day 2			
о н	175	490	
Day 3			
о н	170	510	
Day 4			
0 Н	160	500	
Day 5			
ОН	160	510	
Day 6			
о н	160	500	
Day 7			
24 H	160	500	

TABLE A14-1. (CONTINUED) - ALKALINITY (MG/L AS CaCO₃)

	<u>Test</u> 0	Concentrations 100	(Percent Groundwater by Volume)
Day 0			
0 Н	45	60	
Day 1			
0 H	50	54	
Day 2			
о н	50	60	
Day 3			
ОН	40	64	
Day 4			
0 H	50	60	
Day 5			
0 H	40	60	
Day 6			•
0 H	40	54	
Day 7			
24 H	50	65	

TABLE A14-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	<u>Test</u>	Concentrations 100	(Percent	Groundwater	by Volume)
Day 0					
о н	68	a			
Day 1					
ОН	72				
Day 2					
ОН	64				
Day 3					
ОН	68				
Day 4					
о н	72				
Day 5					
о н	68				
Day 6					
ОН	64				
Day 7					
24 H	64				

^a Could not obtain measurement.

TABLE A14-2 CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER TOXICITY TEST DATA (TEST NO. 1) - SURVIVAL AFTER 48 HOURS OF EXPOSURE

Concentration (% Groundwater by Volume)	Number Tested	No. Alive at 48 Hours	Percent Alive
UMD/WREC Control	10	10	100
10	10	10	100
18	10	10	100
32	10	10	100
56	10	10	100
100	10	9	90

TABLE A14-3. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER TOXICITY DATA (TEST NO.1) - SURVIVAL OF ADULTS, NUMBER OF YOUNG PRODUCED PER BROOD, TOTAL NUMBER OF YOUNG, AND MEAN NUMBER OF YOUNG PRODUCED PER BROOD AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	Rep	Brood No. 1	Brood No. 2	Brood No. 3	Total Young
UMD/WREC	1	5	12	14	31
Control	2	5	12	16	33
	3	4	13	16	33
	4	4	10	17	31
	5	5	8	15	28
	6	7	13	21	41
	7	7	10	16	33
	8	3	9	16	28
	9	9 5	9	14	32
	10	5	10	16	31
10	1	6	10	14	30
	2	5	10	17	32
	3	a			
	4	4	8	17	29
	5	6	10	15	31
	6	4	10	16	30
	7	6	7	14	27
	8	7	6	18	31
	9	5	9	13	27
	10	8	10	13	31
18	1	4	12	14	30
	2	4	9	11	24
	3	3	10	11	24
	4	4	5	19	28
	5	6	9	7	22
	6	4	9	15	28
	7	4	5	11	20
	8	6	9	12	27
	9	5	6	16	27
	10	4	6	14	24

TABLE A14-3. (CONTINUED)

Conc (% by Vol)	Rep	Brood No. 1	Brood No. 2	Brood No. 3	Total Young
32	1	3	3	0	6
	2	0	0	0	0
	3	0	0	0	0
	4	6	4	DEAD	10
	5	4	8	DEAD	12
	6	5	10	8	23
	7	5	0	0	5
	8	3	0	0	3
	9	7	8	0	15
	10	0	9	0	9
56	1	4	3	DEAD	7
	2	5	1	0	6
	3	4	0	0	4
	4	6	0	0	
	5	0	2	0	6 2 8
	6	6	2	0	
	7	6	5	0	11
	8	4	0	DEAD	4
	9	0	0	0	0
	10	0	4	0	4
100	1	4	DEAD		4
	2	6	DEAD		6
	3	6	DEAD		6
	4	6	DEAD		6
	5	5	DEAD		5
	6	6	DEAD		6
	7	DEAD			
	8	4	DEAD		4
	9	6	DEAD		6
	10	5	DEAD		5

Male adult, which was included in survival analysis, was not included in the neonate production analysis.

TABLE A14-4. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 1) ADULT SURVIVAL AFTER 7 DAYS OF EXPOSURE

Data Transformation:

None

Fisher's Exact Test:

Calculated test statistic:

Alpha value: Critical value: Conclusion: See Table A14-5

0.05 6

Reject the null hypothesis that all groups are equal.

TABLE A14-5. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 1) RESULTS OF FISHER'S EXACT TEST ON ADULT SURVIVAL
AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	Number Alive	Number Dead	b Value	Significance
UMD/WREC Control	10	0		
10	10	0	10	
18	10	0	10	
32	8	2	8	
56	8	2	8	
100	0	10	0	*

^{*} Significantly different at alpha = 0.05 (Fisher's critical value = 6).

TABLE A14-6. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 1) NEONATE PRODUCTION AFTER 7 DAYS OF EXPOSURE

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 2.86
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 19.83
Alpha value: 0.01
Critical value: 13.28

Conclusion: Reject the null

hypothesis that the variances are homogenous

Wilcoxon Rank Sum Test with Bonferroni Adjustment:

Calculated rank sum: See Table A14-7

Alpha value: 0.05

Critical value:

Conclusion:

See Table A14-7

Reject the null
hypothesis that the

variances are homogenous

The 100% buffered Canal Creed groundwater treatment was not included in the statistical analyses because all concentrations above the NOEC for survival are excluded from the hypothesis test for reproductive effects.

Table A14-7. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO.1) RESULTS OF WILCOXON RANK SUM TEST ON NEONATE
PRODUCTION AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean Neonates Produced	Rank Sum	Critical Value	Significance
UMD/WREC Control	10	32.1			
10	9	29.8	67.0	62.0	
18	10	25.4	59.0	75.0	*
32	10	8.3	55.0	75.0	*
56	10	5.2	55.0	75.0	*

^{*} Significantly different at alpha = 0.05.

APPENDIX 15

CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 2)

Test Method:

EPA/600/4-89/001

(Weber et al., 1989)

Type of Test:

Static renewal (every 24 h)

Date:

November 8-15, 1994

Investigator:

S.D. Turley

Laboratory:

UMD/WREC

Groundwater:

Source:

Chemical Characteristics:

APG-EA Canal Creek Well CC-27B

See Appendix 58

Dilution Water:

Source:

Chemical Characteristics:

20% Perrier:80% RO water

See Table A15-1

Test Organism:

Scientific Name:

Age at Start of Test:

Source:

Ceriodaphnia dubia

<4 h

UMD/WREC culture

Experimental Chambers:

Material:

50 mL glass beaker

25 mL

No. Organisms/Replicate:

Test Solution Volume:

1

No. Organisms/Treatment:

10

Loading:

1 organism/beaker

Lighting:

Fluorescent; 60-85 foot

candles

Aeration:

Prior to each renewal

Endpoints:

Mortality of adults; number of

Water Quality:

Table A15-1

Results:

Mortality:

48-h Exposure:

The data for the 48-h LC50 were obtained from the 7-d study. All organisms exposed to 100% raw groundwater died during the 48-h exposure (Table A15-2). The organisms in all other treatments lived. The 48-h LC50, which was determined by the moving average angle method, is as follows:

48-h LC50 = 64.7% raw groundwater by volume (95% confidence limits = 57.17-75.48).

7-d Exposure:

All organisms exposed to 100% raw groundwater died during the 7-d exposure (Table A15-3); organisms in all other treatments lived. The 7-d LC50, which was determined by the moving average angle method, is as follows:

7-d LC50 = 64.7% raw groundwater by volume (95% confidence limits = 57.17-75.48).

Survival was not affected by exposure to APG-EA diluent water.

Neonate Production:

Raw groundwater significantly ($\alpha=0.05$) reduced neonate production relative to the controls down to 18% raw groundwater by volume (see Tables A15-3, A15-4, and A15-5). The NOEC and LOEC for the cladocerans, based on reduced neonate production, are as follows:

NOEC = 10% raw groundwater by volume. LOEC = 18% raw groundwater by volume.

Neonate production was not affected by exposure to APG-EA diluent water (t-test: critical value = 2.88; t statistic = -1.20; $\alpha = 0.01$).

TABLE A15-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE CLADOCERAN 7-DAY TEST (TEST NO. 2) - DISSOLVED OXYGEN (MG/L)

	Tes	t Concer					by Volume)
	0 APG	0 WREC	10	18	32	56	100
Day 0							
0 H	8.1	8.6	8.2	8.1	8.0	8.1	7.5
Day 1							
0 H 24 H	8.2 8.4	8.6 8.7	8.2 8.4	8.3 8.6	8.4 8.5	8.0 8.2	7.0 7.3
Day 2							
0 H 24 H	8.1	8.5 9.1	8.1 8.8	8.2 9.0	8.2 8.7	8.0 8.5	7.1
Day 3							
0 H 24 H	8.0 8.5	8.5 8.8	8.1 8.7	8.3 8.8	8.1 8.5	8.1 8.3	7.1
Day 4							
0 H 24 H	8.1 8.4	8.5 8.6	8.0 8.5	8.1 8.6	8.1 8.4	8.0 8.2	7.0
Day 5							
0 H 24 H	8.0 8.3	8.4 8.5	8.1 8.4	8.1 8.4	8.0 8.3	8.1 8.2	7.1
Day 6							
0 H 24 H	8.0 8.2	8.3 8.4	8.1 8.3	8.0 8.3	8.0 8.2	8.0 8.1	7.0
Day 7							
24 H	8.2	8.2	8.0	8.2	8.1	8.1	

TABLE A15-1. (CONTINUED) - pH (STANDARD UNITS)

	Tes	t Concen	trations	(Percer	nt Grou	ndwater	by Volume)
	0 APG	0 WREC	10	18	32	56	100
Day 0							
о н	7.15	7.73	7.17	6.94	6.69	6.30	3.80
Day 1							
0 H 24 H	7.11 8.00	7.57 7.50	7.28 7.91	6.91 7.96	6.61 7.64		
Day 2							
0 H 24 H	7.18 7.88	8.04 8.33	7.76 8.47	7.62 8.68	7.18 8.10	6.84 7.89	3.75
Day 3	•.						
0 H 24 H	7.19 7.80	7.77 8.15	7.70 8.30	7.54 8.28	7.11 7.90	6.51 7.51	3.69
Day 4							
0 H 24 H	7.20 7.90	7.70 7.95	7.15 7.95	6.99 7.99	6.79 7.80	6.34 7.33	3.46
Day 5							
0 H 24 H	7.15 7.75	7.75 7.58	7.20 7.64	7.00 7.63	6.55 7.48	6.23 7.37	3.53
Day 6							
0 H 24 H	7.19 7.83	7.70 7.83	7.22 7.76	6.95 7.65	6.60 7.46		3.36
Day 7							
24 H	7.97	7.65	7.60	7.48	7.58	7.75	

TABLE A15-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	Test	Concentrations	(Percent Groundwater by Volume)
	0 APG	0 WREC	100
Day 0			
о н	200	290	450
Day 1			
о н	190	280	440
Day 2			
о н	190	280	450
Day 3			
о н	190	280	450
Day 4			
ОН	200	290	450
Day 5			
о н	200	280	450
Day 6			
о н	200	280	450
Day 7			
24 H	200	275	

TABLE A15-1. (CONTINUED) - ALKALINITY (MG/L AS CaCO₃)

	Test	Concentrations	(Percent Groundwater by Volume)
	0 APG	0 WREC	100
Day 0			
ОН	25	60	a
Day 1			
ОН	30	55	
Day 2			
ОН	30	50	
Day 3			
0 Н	30	50	
Day 4			
ОН	30	60	
Day 5			
ОН	25	55	
Day 6			
ОН	30	50	
Day 7			
24 H	30	55	

^a Could not obtain measurement.

TABLE A15-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	Test 0 APG	Concentrations (0 WREC	Percent Groundwater by Volume) 100
Day 0			
о н	52	100	120
Day 1			
0 H	50	96	124
Day 2			
0 H	52	96	128
Day 3			
0 H	50	100	124
Day 4			
0 H	50	96	120
Day 5			
0 H	50	100	120
Day 6			
0 H	52	96	128
Day 7			
24 H	52	96	

TABLE A15-2. CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY
TEST DATA (TEST NO. 2) - SURVIVAL AFTER 48 HOURS OF
EXPOSURE

Concentration (% Groundwater by Volume)	Number Tested	No. Alive at 48 Hours	Percent Alive
UMD/WREC Control	10	10	100
APG-EA Diluent	10	10	100
10	10	10	100
18	10	10	100
32	10	10	100
56	10	10	100
100	10	0	0

TABLE A15-3. CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY
DATA (TEST NO. 2) - SURVIVAL OF ADULTS, NUMBER OF
YOUNG PRODUCED PER BROOD, TOTAL NUMBER OF YOUNG,
AND MEAN NUMBER OF YOUNG PER BROOD AFTER 7 DAYS OF
EXPOSURE

Conc (% by Vol)	Rep	Brood No. 1	Brood No. 2	Brood No. 3	Total Young
UMD/WREC	1	3	11	14	28
Control	2	3	10	12	25
	3	3	9	17	29
	4	5	12	12	29
	5	3	10	14	27
	6	6	9	11	26
	7	6	10	16	32
	8	6	10	16	32
	9	6	8	17	31
	10	5	9	15	29
APG-EA	1	4	10	13	27
Diluent	2	4	11	14	29
Water	3	5	12	12	29
	4	4	8	14	26
	5	5	10	13	28
	6	4	9	13	26
	7	5	14	12	31
	8	5	10	13	28
	9	4	8	14	26
	10	3	11	13	27
10	1	5	8	12	25
	2	5	9	12	26
	3	6	8	13	27
	4	5	9	13	27
	5	4	9	14	27
	6	4	9	12	25
	7	4	13	13	30
	8	6	.10	15	31
	9	5	9	14	28
	10	4	12	14	30

TABLE A15-3. (CONTINUED)

Conc (% by Vol)	Rep	Brood No. 1	Brood No. 2	Brood No. 3	Total Young
18	1 2 3 4 5 6 7 8 9	2 2 5 4 6 4 4 5 5	4 6 5 9 5 4 7 10 13 4	8 9 10 14 9 8 11 10 9	14 17 20 27 20 16 22 25 27 21
32	1 2 3 4 5 6 7 8 9	4 6 4 4 4 4 1 5	8 6 7 1 1 7 7 7 5 6	11 9 7 11 10 11 12 7 7	23 21 18 16 15 22 23 15 17
56	1 2 3 4 5 6 7 8 9	4 3 2 4 4 4 5 3	0 0 0 0 0 0 0	0 0 0 0 0 0 2 0 0	4 3 2 4 4 7 3 4
100	1 2 3 4 5 6 7 8 9	DEAD DEAD DEAD DEAD DEAD DEAD DEAD DEAD			

TABLE A15-4. CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 2) - NEONATE
PRODUCTION AFTER 7 DAYS OF EXPOSURE⁸

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 1.43
Alpha value: 0.01
Critical value: 13.28

Critical value: 13.28
Conclusion Fail t

Fail to reject the null hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 13.82
Alpha value: 0.01
Critical value: 13.28

Conclusion: Reject the null hypothesis that the

variances are homogenous

Steel's Many-One Rank Test:

Calculated test statistics: See Table A15-5

Alpha value: 0.05 Critical value: 76.0

Conclusion: Reject the null

hypothesis that all groups are equal

The 100% raw Canal Creek groundwater treatment was not included in the statistical analyses because all organisms died during the test.

TABLE A15-5. CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 2) - RESULTS OF
STEEL'S MANY-ONE RANK TEST ON MEAN NEONATE
PRODUCTION AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean No. Neonates Produced	Rank Sum	Critical Value	Significance
UMD/WREC Control	10	28.8		44.0	
10	10	27.6	90.0	76.0	
18	10	20.9	60.5	76.0	*
32	10	18.6	55.0	76.0	*
56	10	3.9	55.0	76.0	*

^{*} Significantly different at alpha = 0.05.

APPENDIX 16

CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7)

GROUNDWATER (WELL CC-27B)

(TEST NO. 2)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static renewal (every 24 h)

Date: November 8-15, 1994

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: 20% Perrier:80% RO water

Chemical Characteristics: See Table A6-1

Test Organism:

Scientific Name: <u>Ceriodaphnia</u> <u>dubia</u>

Age at Start of Test: <4 h

Source: UMD/WREC culture

Experimental Chambers:

Material: 50 mL glass beaker

Test Solution Volume: 25 mL

No. Organisms/Replicate: 1

No. Organisms/Treatment: 10

Loading: 1 organism/beaker

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to each renewal

pH Buffer: 10 N NaOH

Endpoints:

Mortality of adults; number of neonates produced in 3 broods

Water Quality:

Table A16-1

Results:

Mortality:

48-h Exposure:

The data for the 48-h LC50 were obtained from the 7-d study. Buffered groundwater did not affect larval survival after 48 h of exposure. The data are summarized in Table A16-2.

7-d Exposure:

Significant ($\alpha=0.05$) mortality occurred to the cladocerans exposed to 56% and 100% buffered groundwater by volume (see Tables A16-3, A16-4, and A16-5). The 7-d LC50 for adult mortality, which was determined by the moving average angle method, is as follows:

7-d LC50 = 66.3% buffered groundwater by volume (95% confidence limits = 52.88-97.61).

Neonate Production:

A significant ($\alpha=0.01$) reduction in neonate production relative to the controls occurred at concentrations down to 18% buffered groundwater by volume. Neonate production was not affected by exposure to 10% buffered groundwater by volume (see Tables A16-3 and A16-6). The NOEC and LOEC for exposure of the organism to buffered Canal Creek groundwater, are as follows:

NOEC: 10% buffered groundwater by volume LOEC: 18% buffered groundwater by volume

Table A16-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE CLADOCERAN 7-DAY TEST (TEST NO. 2) - DISSOLVED OXYGEN (MG/L)

	0	10	tions (Perd 18	32	56	100
 Day 0						
0 H	8.6	7.8	7.8	7.8	7.9	7.7
Day 1						
0 H 24 H	8.7 8.6	8.2 8.6	8.2 8.5	8.1 8.4	8.1 8.4	7.6 8.4
Day 2						
0 H 24 H	8.5 9.1	8.2 8.6	8.2 8.6	8.2 8.7	8.3	7.8 8.1
Day 3						
0 H 24 H	8.5 8.8	8.1 8.5	8.1 8.5	8.3 8.6	8.2 8.6	7.7 8.0
Day 4						
0 H 24 H	8.5 8.6	8.2 8.4	8.1 8.3	8.3 8.5	8.1 8.5	7.9 8.1
Day 5						
0 H 24 H	8.4 8.3	8.1 8.3	8.0 8.2	8.3 8.4	8.2 8.4	8.0 8.2
Day 6						
0 H 24 H	8.3 8.4	8.0 8.1	8.1 8.1	8.0 8.3	8.0 8.3	8.0 8.1
Day 7						
24 H	8.2	8.2	8.2	8.2	8.0	8.1

TABLE A16-1. (CONTINUED) - pH (STANDARD UNITS)

	0	10	18	32	water by V 56	100
Day 0						
0 H	7.73	7.54	7.52	7.46	7.41	7.38
Day 1						
0 H 24 H	7.57 7.50	7.63 8.36	7.67 8.39	7.72 8.40	7.76 8.24	7.79 8.24
Day 2						
0 H 24 H	8.04 8.33	7.90 8.44	7.80 8.64	7.70 8.78	7.63 8.92	7.38 8.78
Day 3						
0 H 24 H	7.77 8.15	7.67 8.35	7.71 8.29	7.71 8.38	7.52 8.47	7.46 8.35
Day 4						
0 H 24 H	7.70 7.95	7.60 8.30	7.56 8.35	7.50 8.40	7.40 8.45	7.41 8.30
Day 5						
0 H 24 H	7.75 7.58	7.52 7.73	7.37 7.66	7.26 7.84	7.21 8.00	7.14 7.99
Day 6						
0 H 24 H	7.70 7.83	7.23 7.80	7.22 7.83	7.20 7.93	7.12 8.03	7.08 7.96
Day 7						
24 H	7.65	7.93	7.69	8.05	8.13	7.91

TABLE A16-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	<u>Test</u>	Concentrations 100	(Percent	Groundwater by Volume)
Day 0				
0 H	290	790		
Day 1				
0 H	280	800		
Day 2				
0 H	280	810		
Day 3				
о н	280	800		
Day 4				
0 Н	290	800		
Day 5				
0 H	280	800		
Day 6				
о н	280	800		
Day 7				
24 H	290	800		

TABLE A16-1. (CONTINUED) - ALKALINITY (MG/L AS CaCO₃)

	<u>Test</u>	Concentrations 100	(Percent	Groundwater	by Volume)
Day 0					
о н	60	85			
Day 1					
о н	55	80			
Day 2					
ОН	50	85			
Day 3					
0 Н	50	80			
Day 4					
0 H	60	80			
Day 5					
ОН	55	80			
Day 6					
0 Н	50	85			
Day 7					
24 H	50	85			

TABLE A16-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	<u>Test</u>	Concentration 100	s (Percent Groundwater by Volume)
Day 0			
о н	100	60	
Day 1			
о н	96	56	
Day 2			
ОН	96	60	
Day 3			
о н	100	60	
Day 4			
ОН	96	60	
Day 5			
ОН	100	56	
Day 6			
о н	100	60	
Day 7			
24 H	100	60	

TABLE A16-2. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST DATA (TEST NO. 2) - SURVIVAL AFTER 48
HOURS OF EXPOSURE

Concentration (% Groundwater by Volume)	Number Tested	No. Alive at 48 Hours	Percent Alive
UMD/WREC Control	10	10	100
10	10	10	100
18	10	10	100
32	10	10	100
56	10	10	100
100	10	10	100

TABLE A16-3. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY DATA (TEST NO.2) - SURVIVAL OF ADULTS,
NUMBER OF YOUNG PRODUCED PER BROOD, TOTAL NUMBER OF
YOUNG, AND MEAN NUMBER OF YOUNG PRODUCED PER BROOD
AFTER 7 DAYS OF EXPOSURE

Vol)		Brood No. 1	Brood No. 2	Brood No. 3	Total Young
UMD/WREC	1	3	11	14	28
Control	2	3	10	12	25
	3	3	9	17	29
	4	5	12	12	29
	5	3	10	14	27
	6	6	9	11	26
	7	6	10	16	32
	8	6	10	16	32
	9	6	8	17	31
	10	5	9	15	29
10	1	4	8	14	26
	2	5	6	13	24
	3	8	6	14	28
	4	5	5	17	27
	5	6	6	13	25
	6	6	6	19	31
	7	2	9	14	25
	8	4	6	17	27
	9	6	5	16	27
	10	4	14	18	36
18	1	0	0	4	4
	2	3	0	0	3
	3	4	0	3	7
	4	0	2	4	6
	5	0	0	3	3
	6	0	0	2	2
	7	0	2	6	8
	8	0	0	4	4
	9 10	6 3	0 0	5 7	11 10

TABLE A16-3. (CONTINUED)

Conc (% by Vol)	Rep	Brood No. 1	Brood No. 2	Brood No. 3	Total Young
32	1	0	0	2	2
	2	5	0	0	5
	3	6	0	0	6
	4	3	0	4	7
	5	3	0	2	5
	6	0	0	0	0
	7	4	0	0	4
	8	5	0	0	5 3
	9	3	0	0	3
	10	2	0	6	8
56	1	5	0	2	7
	2	6	DEAD		6
	3	5	0	0	5
**	4	0	0	0	0
	5	4	DEAD		4
	6	5	0	DEAD	5
	7	3	0	DEAD	3
	8	5	0	0	5 3 5 5
	9	5	0	0	5
	10	3	0	0	3
100	1	3	DEAD		3
	2	4	DEAD		4
	3	0	0	0	0
	4	3	0	DEAD	3
	5	0	DEAD		0
	6	3	DEAD		3
	7	3	DEAD		3
	8	4	0	0	4
	9	0	DEAD		0
	10	3	DEAD		3

TABLE A16-4. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 2) ADULT SURVIVAL AFTER 7 DAYS OF EXPOSURE

Data Transformation:

None

Fisher's Exact Test:

Calculated test statistic:

Alpha value: Critical value: Conclusion: See Table A16-5 0.05

6

Reject the null hypothesis that all groups are equal.

TABLE A16-5. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 2) RESULTS OF FISHER'S EXACT TEST ON ADULT SURVIVAL
AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	Number Alive	Number Dead	b Value	Significance
UMD/WREC Control	10	0		
10	10	0	10	
18	10	0	10	
32	10	0	10	
56	6	4	6	*
100	2	8	2	*

^{*} Significantly different at alpha = 0.05 (Fisher's critical value = 6).

TABLE A16-6. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 2) NEONATE PRODUCTION AFTER 7 DAYS OF EXPOSURE

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 0.95
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 2.04
Alpha value: 0.01
Critical value: 11.34

Conclusion: Fail to reject the null hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 211.66
Alpha value: 0.05
Critical value: 2.92

Conclusion:

Reject the null hypothesis that all groups are equal

Dunnett's Test:

Calculated test statistic: See Table A16-7

Alpha value: 0.05 Critical value: 2.15

Conclusion: Reject the null hypothesis that all groups are equal

The 56% and 100% buffered Canal Creek groundwater treatments were not included in the statistical analyses because all concentrations above the NOEC for survival are excluded from the hypothesis test for reproductive effects.

Table A16-7. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO.2) RESULTS OF DUNNETT'S TEST ON NEONATE PRODUCTION
AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean Neonates Produced	T Statistic	Significance
UMD/WREC Control	10	28.8		
10	10	27.6	0.926	
18	10	5.8	17.754	*
32	10	4.5	18.757	*

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.15).

APPENDIX 17

CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 3)

Test Method:

EPA/600/4-89/001 (Weber et al., 1989)

Type of Test:

Static renewal (every 24 h)

Date:

January 24-31, 1995

Investigator:

S.D. Turley

Laboratory:

UMD/WREC

Groundwater:

Source:

APG-EA Canal Creek Well CC-27B

See Appendix 58

Dilution Water:

Source:

Chemical Characteristics:

Chemical Characteristics:

20% Perrier:80% RO water

See Table A17-1

Test Organism:

Scientific Name:

Age at Start of Test:

Source:

Ceriodaphnia dubia

<4 h

UMD/WREC culture

Experimental Chambers:

Material:

50 mL glass beaker

25 mL

No. Organisms/Replicate:

Test Solution Volume:

1

No. Organisms/Treatment:

10

Loading:

1 organism/beaker

Lighting:

Fluorescent; 60-85 foot

candles

Aeration:

Prior to each renewal

Endpoints:

Mortality of adults; number of

Table A17-1

Results:

Mortality:

48-h Exposure:

The data for the 48-h LC50 were obtained from the 7-d study. All organisms exposed to 100% raw groundwater died during the 48-h exposure (Table A17-2). The organisms in all other treatments lived. The 48-h LC50, which was determined by the moving average angle method, is as follows:

48-h LC50 = 64.7% raw groundwater by volume (95% confidence limits = 57.17-75.48).

7-d Exposure:

All organisms exposed to 100% raw groundwater died during the 7-d exposure; one organism died in the 56% raw groundwater treatment (Table A17-2). The 7-d LC50, which was determined by the moving average angle method, is as follows:

7-d LC50 = 62.8% raw groundwater by volume (95% confidence limits = 54.99-73.69).

Survival was not affected by exposure to APG-EA diluent water.

Neonate Production:

Raw groundwater significantly (α = 0.05) reduced neonate production relative to the controls down to 32% raw groundwater by volume (see Tables A17-3, A17-4, and A17-5). The NOEC and LOEC for the cladocerans, based on reduced neonate production, are as follows:

NOEC = 18% raw groundwater by volume. LOEC = 32% raw groundwater by volume.

Neonate production was not affected by exposure to West Branch creek water or APG-EA diluent water relative to the UMD/WREC controls (t-test: critical value = 2.88; t statistic = -0.11; α = 0.01).

TABLE A17-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE CLADOCERAN 7-DAY TEST (TEST NO. 3) - DISSOLVED OXYGEN (MG/L)

	0	0	10	18	32	56	by Volu	
	APG	WREC						
Day 0								
0 H	8.1	8.1	8.2	7.8	7.8	7.6	6.7	
Day 1								
0 H 24 H	8.2 8.9	8.4 8.9	8.3 8.8	8.2 8.9	8.2 8.8	7.6 8.8	7.0 8.1	
Day 2								
0 H 24 H	8.3 8.6	8.8 8.8	8.7 8.9	8.7 8.9	8.5 8.8	7.8 8.3	7.1	
Day 3								
0 H 24 H	8.5 8.5	8.6 8.7	8.5 8.8	8.5 8.7	8.3 8.7	8.1 8.2	7.1	
Day 4								
0 H 24 H	8.6 8.4	8.6 8.7	8.4 8.6	8.3 8.6	8.2 8.6	8.2 8.1	7.2	
Day 5								
0 H 24 H	8.5 8.3	8.5 8.6	8.4 8.5	8.3 8.4	8.2 8.5	8.1 8.2	7.1	
Day 6								
0 H 24 H	8.5 8.4	8.5 8.7	8.3 8.3	8.3 8.2	8.5 8.3	8.1 8.2	7.0	
Day 7								
24 H	8.3	8.6	7.9	8.0	8.1	8.1		

TABLE A17-1. (CONTINUED) - pH (STANDARD UNITS)

					(Percent Groundwater by Vol		
	0 APG	0 WREC	10	18	32	56	100
Day 0							
0 H	7.66	7.21	6.69	6.32	6.01	5.41	3.67
Day 1							
0 H 24 H	7.62 7.99	7.54 8.12	7.11 8.00	6.67 7.90	6.27 7.79	5.67 7.56	3.74 4.79
Day 2							
0 H 24 H	7.59 7.59	7.21 7.51	6.89 7.81	6.66 7.89	6.26 7.85	5.23 7.62	3.79
Day 3							
0 H 24 H	7.51 7.55	7.37 7.43	7.12 7.41	6.80 7.52	6.35 7.44	5.47 7.38	3.71
Day 4							
0 H 24 H	7.50 7.59	7.20 7.93	6.86 7.87	6.81 7.69	6.64 7.65	5.99 7.70	3.79
Day 5							
0 H 24 H	7.48 7.65	7.63 8.04	7.54 8.11	7.23 8.15	6.88 7.91	6.23 7.80	3.84
Day 6							
0 H 24 H	7.50 7.71	7.49 8.00	7.23 8.04	7.02 8.09	6.61 8.12	5.97 8.05	3.79
Day 7							
24 H	7.62	7.86	7.95	8.13	8.18	8.15	

TABLE A17-1. (CONTINUED) - CONDUCTIVITY (µMHOS/CM)

	Test	Concentrations	(Percent Groundwater by Volume)
	0 APG	0 WREC	100
Day 0			
0 H	250	110	410
Day 1			
ОН	250	110	400
Day 2			
о н	250	100	400
Day 3			
ОН	250	110	410
Day 4			
о н	240	110	400
<u>Day 5</u>			
о н	250	110	410
Day 6			
о н	240	100	420
Day 7			
24 H	240	110	

TABLE A17-1. (CONTINUED) - ALKALINITY (MG/L AS CaCO₃)

	Test	Concentrations	(Percent Grou	ndwater by	Volume)
	0 APG	0 WREC	1	00	
Day 0					
ОН	60	30		A	
Day 1					
о н	65	35			
Day 2					
0 Н	60	30			
Day 3					
ОН	60	35			
Day 4					
ОН	60	30			
Day 5					
0 Н	60	35			
Day 6					
ОН	65	30			
Day 7					
24 H	60	35			

a Could not obtain measurement.

TABLE A17-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	Test	Concentrations	(Percent Groundwater by Volume)
	0 APG	0 WREC	100
Day 0			
0 Н	52	44	110
Day 1			
ОН	56	40	100
Day 2			
о н	56	44	100
Day 3			
о н	56	44	110
Day 4			
о н	56	40	100
Day 5			
ОН	56	44	110
Day 6			
0 H	52	40	110
Day 7			
24 H	52	44	

TABLE A17-2. CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY
TEST DATA (TEST NO. 3) - SURVIVAL AFTER 48 HOURS OF
EXPOSURE

Concentration (% Groundwater by Volume)	Number Tested	No. Alive at 48 Hours	Percent Alive
UMD/WREC Control	10	10	100
APG-EA Diluent	10	10	100
10	10	10	100
18	10	10	100
32	10	10	100
56	10	10	100
100	10	o	0

TABLE A17-3. CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY
DATA (TEST NO. 3) - SURVIVAL OF ADULTS, NUMBER OF
YOUNG PRODUCED PER BROOD, TOTAL NUMBER OF YOUNG,
AND MEAN NUMBER OF YOUNG PER BROOD AFTER 7 DAYS OF
EXPOSURE

Conc (% by Vol)	Rep	Brood No. 1	Brood No. 2	Brood No. 3	Total Young
UMD/WREC	1	4	9	12	25
Control	2	4	11	12	27
•••••	3	6	8	12	26
	4	5	8	13	26
	5	5	11	17	33
	6	4	11	12	27
	7	5	10	15	30
	8	5	12	13	30
	9	3	10	14	27
	10	4	8	16	28
APG-EA	1	4	9	15	28
Diluent	2	5	9	13	27
Water	3	5	9	17	31
	4	5	10	12	27
	5	5	11	11	27
	6	4	9	14	27
	7	4	10	13	27
	8	4	9	16	29
	9	5	11	12	28
	10	4	9	14	27
10	1	4	9	12	25
	2	5	8	14	27
	3	5	9	13	27
	4	6	8	14	28
	5	5	6	14	25
	5 6	5	10	13	28
	7	5	9	14	28
	8	4	9	13	26
	9	3	9	14	26
	10	5	9	15	29

TABLE A17-3. (CONTINUED)

Conc (% by Vol)	Rep	Brood No. 1	Brood No. 2	Brood No. 3	Total Young
18	1 2 3 4 5 6 7 8 9	3 4 4 5 4 5 4 3 4 3	7 9 8 7 2 8 8 5 6	12 13 14 14 15 13 17 14 13	22 26 26 26 21 26 29 22 23 28
32	1 2 3 4 5 6 7 8 9	4 4 3 3 5 5 4 4 3 3	4 7 8 9 7 5 8 7 8	7 18 12 0 5 7 8 0 12 5	15 29 23 12 17 17 20 11 23 16
56	1 2 3 4 5 6 7 8 9	2 3 3 3 2 4 4 2 0	3 0 0 1 0 5 0 0 DEAD 0	0 0 0 0 0 0	5 3 4 2 9 4 2 0 2
100	1 2 3 4 5 6 7 8 9	DEAD DEAD DEAD DEAD DEAD DEAD DEAD DEAD			

TABLE A17-4. CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 3) - NEONATE
PRODUCTION AFTER 7 DAYS OF EXPOSURE^a

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 1.43
Alpha value: 0.01
Critical value: 13.28

Conclusion Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 17.86
Alpha value: 0.01
Critical value: 13.28

Conclusion: Reject the null

hypothesis that the variances are homogenous

Wilcoxon Rank-Sum Test:

Calculated test statistics: See Table A17-5

Alpha value:

Critical value:

See Table A5-5

Conclusion: Reject the null hypothesis that all

groups are equal

The 100% raw Canal Creek groundwater treatment was not included in the statistical analyses because all organisms died during the test.

TABLE A17-5. CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 3) - RESULTS OF
WILCOXON RANK SUM TEST ON MEAN NEONATE
PRODUCTION AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean No. Neonates Produced	Rank Sum	Critical Value	Significance
UMD/WREC Control	10	27.9			
10	10	26.9	95.5	75.0	
18	10	24.9	76.5	75.0	
32	10	18.3	62.0	75.0	*
56	9	3.4	45.0	62.0	*

^{*} Significantly different at alpha = 0.05.

APPENDIX 18

CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7)

GROUNDWATER (WELL CC-27B)

(TEST NO. 3)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static renewal (every 24 h)

Date: January 24-31, 1995

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: 20% Perrier:80% RO water

Chemical Characteristics: See Table A18-1

Test Organism:

Scientific Name: <u>Ceriodaphnia</u> <u>dubia</u>

Age at Start of Test: <4 h

Source: UMD/WREC culture

Experimental Chambers:

Material: 50 mL glass beaker

Test Solution Volume: 25 mL

No. Organisms/Replicate: 1

No. Organisms/Treatment: 10

Loading: 1 organism/beaker

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to each renewal

pH Buffer: 10 N NaOH

Endpoints:

Mortality of adults; number of neonates produced in 3 broods

Water Quality:

Table A18-1

Results:

Mortality:

48-h Exposure:

The data for the 48-h LC50 were obtained from the 7-d study. Buffered groundwater did not affect adult survival after 48 h of exposure. The data are summarized in Table A18-2.

7-d Exposure:

Significant ($\alpha=0.05$) mortality occurred to the cladocerans at all concentrations down to 32% buffered groundwater by volume (see Tables A18-3, A18-4, and A18-5). The 7-d LC50 for adult mortality, which was determined by the moving average angle method, is as follows:

7-d LC50 = 37.8% buffered groundwater by volume (95% confidence limits = (27.83-49.02).

Neonate Production:

A significant (α = 0.01) reduction in neonate production relative to the controls occurred at concentrations down to 18% buffered groundwater by volume. Neonate production was not affected by exposure to 10% buffered groundwater by volume (see Tables A18-3, A18-6, and A18-7). The NOEC and LOEC for exposure of the organism to buffered Canal Creek groundwater are as follows:

NOEC: 10% buffered groundwater by volume LOEC: 18% buffered groundwater by volume

Table A18-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE CLADOCERAN 7-DAY TEST (TEST NO. 3) - DISSOLVED OXYGEN (MG/L)

	<u>Test</u>	Concentration 10	18	32	dwater by N	100
		10		J &		
Day 0						
0 H	8.1	7.7	8.0	8.1	8.0	7.0
<u>Day 1</u>						
0 H 24 H	8.4 8.9	8.5 8.5	8.4 8.8	8.2 8.9	7.9 9.0	7.5 9.0
Day 2						
0 H 24 H	8.8 8.8	8.5 8.5	8.4 8.3	8.2 8.5	7.9 8.7	8.0 8.9
Day 3	`					
0 H 24 H	8.5 8.7	8.1 8.4	8.3 8.2	8.1 8.3	7.9 8.5	7.7 8.8
Day 4						
0 H 24 H	8.6 8.7	8.4 7.3	8.2 8.1	8.2 8.2	8.0 8.5	7.8 8.7
Day 5						
0 H 24 H	8.5 8.6	8.4 7.5	8.3 7.6	8.3 7.7	8.1 8.1	7.9 8.5
Day 6						
0 H 24 H	8.5 8.7	8.4 8.5	8.6 8.3	8.5 8.1	8.3 8.5	8.1 8.6
Day 7						
24 H	8.6	7.8	8.0	8.1	8.3	8.4

TABLE A18-1. (CONTINUED) - pH (STANDARD UNITS)

	0	10	18	32	56	100
Day 0		AT 1 P				
0 H	7.21	7.47	7.51	7.50	7.50	7.57
Day 1						
0 H 24 H	7.54 7.99	7.48 7.84	7.40 8.05	7.35 8.08	7.25 8.16	7.16 8.46
Day 2						
0 H 24 H	7.21 7.59	7.55 7.91	7.57 7.99	7.64 8.00	7.65 8.26	7.67 8.53
Day 3						
0 H 24 H	7.37 7.43	7.48 7.82	7.49 7.89	7.48 7.93	7.44 8.16	7.51 8.49
Day 4						
0 H 24 H	7.20 7.59	7.70 8.13	7.71 8.40	7.76 8.69	7.75 8.84	7.81 8.85
Day 5						
0 H 24 H	7.63 8.04	7.60 8.04	7.58 8.16	7.53 8.28	7.56 8.38	7.62 8.43
Day 6						
0 H 24 H	7.49 8.00	7.52 8.03	7.48 8.17	7.45 8.34	7.41 8.50	7.39 8.46
Day 7						
24 H	7.86	8.00	8.17	8.33	8.52	8.59

TABLE A18-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	<u>Test</u>	Concentrations 100	(Percent	Groundwater	by Volume)
Day 0					
0 Н	110	500			
Day 1					
0 Н	110	500			
Day 2					
0 H	100	490			
Day 3					
0 H	110	500			
Day 4					
0 H	110	490			
Day 5					
0 H	110	500			
Day 6					
0 H	100	500			
Day 7					
24 H	100	500			

TABLE A18-1. (CONTINUED) - ALKALINITY (MG/L AS CaCO₃)

	<u>Test</u> 0	Concentrations 100	(Percent	Groundwater	by Volume)
Day 0					
0 H	30	70			
Day 1					
0 Н	55	70			
Day 2					
0 H	30	70			
Day 3					
0 H	35	70			
Day 4					
0 H	30	70			
Day 5					
0 H	35	70			
Day 6					
0 H	30	70			
Day 7					
24 H	35	70			

TABLE A18-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	Test	Concentrations	(Percent	Groundwater by Volume)
	0	100		
Day 0				
0 H	44	70		
Day 1				
0 Н	40	72		
Day 2				
0 H	44	70		
Day 3				
0 H	44	72		
Day 4				
0 H	40	70		
Day 5				
0 H	44	72		
Day 6				
ОН	40	72		
Day 7				
24 H	40	72		

TABLE A18-2. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST DATA (TEST NO. 3) - SURVIVAL AFTER 48
HOURS OF EXPOSURE

Concentration (% Groundwater by Volume)	Number Tested	No. Alive at 48 Hours	Percent Alive
UMD/WREC Control	10	10	100
10	10	10	100
18	10	10	100
32	10	10	100
56	10	10	100
100	10	10	100

TABLE A18-3. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER TOXICITY DATA (TEST NO.3) - SURVIVAL OF ADULTS, NUMBER OF YOUNG PRODUCED PER BROOD, TOTAL NUMBER OF YOUNG, AND MEAN NUMBER OF YOUNG PRODUCED PER BROOD AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	Rep	Brood No. 1	Brood No. 2	Brood No. 3	Total Young
UMD/WREC	1	4	9	12	25
Control	2	4	11	12	27
	3	6	8	12	26
	4	5	8	13	26
	5	5	11	17	33
	6	4	11	12	27
	7	5	10	15	30
	8	5	12	13	30
	9	3	10	14	27
	10	4	8	16	28
10	1	6	7	10	23
	2	5	5	14	24
	3	5	4	15	24
	4	5	5	15	25
	5	4	7	15	26
	6	4	2	18	24
	7	6	10	15	31
	8	4	7	20	31
	9	4	9	13	26
	10	4	8	13	25
18	1	2	0	4	6
10	2	6	Ö	7	13
	3	1	ő	Ó	1
	4	Ō	ő	Ö	ō
	5	3	ŏ	3	6
	6	3	Ŏ	Ö	3
	7	4	Ŏ	Ö	3 4
	8	Ö	Ö	5	5
	9	4	Ō	Ō	4
	10	2	0	0	2

TABLE A18-3. (CONTINUED)

Conc (% by Vol)	Rep	Brood No. 1	Brood No. 2	Brood No. 3	Total Young
32	1	0	2	DEAD	2
	2	2	0	0	2
	3	2	DEAD		2
	4	0	0	DEAD	0
	5	0	0	DEAD	0
	6	3	0	0	3 2
	7	2	0	DEAD	2
	8	4	0	DEAD	4
	9	2	0	DEAD	2
	10	0	0	0	0
56	1	0	0	DEAD	0
	2	0	0	DEAD	0
	3	0	0	0	0
44	4	0	DEAD		0
	5	0	0	DEAD	0
	6	0	0	0	0
	7	3	0	3	6
	8	3	0	DEAD	3
	9	5	0	DEAD	5
	10	0	0	0	0
100	1	0	0	DEAD	0
	2	0	0	DEAD	0
	3	0	0	DEAD	0
	4	0	0	DEAD	0
	5	0	DEAD		0
	6	2	DEAD		2
	7	1	0	DEAD	1
	8	2	DEAD		2
	9	0	0	DEAD	0
	10	0	0	0	0

TABLE A18-4. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER

TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 3)
ADULT SURVIVAL AFTER 7 DAYS OF EXPOSURE

Data Transformation:

None

Fisher's Exact Test:

Calculated test statistic:

Alpha value: Critical value: Conclusion: See Table A18-5 0.05

6

Reject the null hypothesis that all groups are equal.

TABLE A18-5. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 3) RESULTS OF FISHER'S EXACT TEST ON ADULT SURVIVAL
AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	Number Alive	Number Dead	b Value	Significance
UMD/WREC Control	10	0		
10	10	0	10	
18	10	0	10	
32	3	7	3	*
56	4	6	4	*
100	1	9	1	*

^{*} Significantly different at alpha = 0.05 (Fisher's critical value = 6).

TABLE A18-6. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 3) NEONATE PRODUCTION AFTER 7 DAYS OF EXPOSURE⁸

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 9.38
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 1.43
Alpha value: 0.01
Critical value: 9.21

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 187.68
Alpha value: 0.05
Critical value: 3.35

Conclusion: Reject the null hypothesis that all groups are equal

Dunnett's Test:

Calculated test statistic: See Table A18-7

Alpha value: 0.05 Critical value: 2.01

Conclusion:

Reject the null hypothesis that all groups are equal

The 32%, 56% and 100% buffered Canal Creek groundwater treatments were not included in the statistical analyses because all concentrations above the NOEC for survival are excluded from the hypothesis test for reproductive effects.

Table A18-7. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO.3) RESULTS OF DUNNETT'S TEST ON NEONATE PRODUCTION
AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean Neonates Produced	T Statistic	Significance
UMD/WREC Control	10	27.9		
10	10	25.9	1.487	
18	10	4.4	17.473	*

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.01).

APPENDIX 19

CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4)
GROUNDWATER (WELL CC-27B)
(TEST NO. 4)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static renewal (every 24 h)

Date: March 24-31, 1995

Investigator: S.D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: 20% Perrier:80% RO water

Chemical Characteristics: See Table A19-1

Test Organism:

Scientific Name: <u>Ceriodaphnia dubia</u>

Age at Start of Test: <4 h

Source: UMD/WREC culture

Experimental Chambers:

Material: 50 mL glass beaker

Test Solution Volume: 25 mL

No. Organisms/Replicate: 1

No. Organisms/Treatment: 10

Loading: 1 organism/beaker

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to each renewal

Endpoints:

Mortality of adults; number of neonates produced in 3 broods

Water Quality:

Table A19-1

Results:

Mortality:

48-h Exposure:

The data for the 48-h LC50 were obtained from the 7-d study. All organisms exposed to 100% raw groundwater died during the 48-h exposure (Table A19-2). The organisms in all other treatments lived. The 48-h LC50, which was determined by the moving average angle method, is as follows:

48-h LC50 = 64.7% raw groundwater by volume (95% confidence limits = 57.17-75.48).

7-d Exposure:

All organisms exposed to 100% raw groundwater died during the 7-d exposure; two organisms died in the 56% raw groundwater treatment and one organism died in the 32% raw groundwater treatment (Table A19-2). The 7-d LC50, which was determined by the moving average angle method, is as follows:

7-d LC50 = 58.6% raw groundwater by volume (95% confidence limits = 50.00-69.65).

Survival was not affected by exposure to APG-EA diluent water.

Neonate Production:

Raw groundwater significantly ($\alpha=0.05$) reduced neonate production relative to the controls down to 18% raw groundwater by volume (see Tables A19-3, A19-4, and A19-5). The NOEC and LOEC for the cladocerans, based on reduced neonate production, are as follows:

NOEC = 10% raw groundwater by volume. LOEC = 18% raw groundwater by volume.

Neonate production was not affected by exposure to APG-EA diluent water relative to the UMD/WREC controls (t-test: critical value = 2.88; t statistic = 0.47; α = 0.01).

TABLE A19-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE CLADOCERAN 7-DAY TEST (TEST NO. 4) - DISSOLVED OXYGEN (MG/L)

	Te				(Percent Groundwater b		
	0 APG	0 WREC	10	18	32	56	100
Day 0							
о н	8.3	8.4	8.2	8.3	8.4	8.4	7.2
<u>Day 1</u>							
0 H 24 H	8.5 8.9	8.6 8.8	8.3 8.6	8.1 8.5		8.0 8.6	6.9 7.5
Day 2							
0 H 24 H	8.5 8.9	8.6 9.1	8.4 9.1	8.3 9.0		8.2 9.0	7.0
Day 3							
0 H 24 H	8.4 8.9	8.7 8.9	8.2 8.9	8.3 9.0	8.1		6.9
Day 4							
0 H 24 H	8.3 8.6	8.4 8.8	8.1 8.8	8.2 8.9	8.0 8.7	8.0 8.5	6.8
Day 5							
0 H 24 H	8.2 8.7	8.3 8.9	8.0 8.7	8.1 8.7			6.7
Day 6							
0 H 24 H	8.3 8.8	8.3 8.8	8.1 8.8	8.0 8.7	8.0 8.7	8.0 8.5	6.6
Day 7							
24 H	8.9	8.7	8.7	8.7	8.6	8.6	

TABLE A19-1. (CONTINUED) - pH (STANDARD UNITS)

	Test	Concen					by Volume)
	0 APG	0 WREC	10	18	32	56	100
Day 0							
ОН	7.15	7.29	6.99	6.69	6.48	5.89	3.74
Day 1							
0 H 24 H	7.20 8.00	7.40 8.00	7.01 7.91	6.70 7.88	6.55 7.79	5.96 7.66	3.75 4.55
Day 2							
0 H 24 H	6.95 7.70	7.10 7.67	6.68 7.75	6.58 7.78	6.34 7.69	6.05 7.63	3.80
Day 3							
0 H 24 H	6.97 7.39	7.69 7.10	7.19 7.38	6.95 7.42	6.68 7.49	6.11 7.53	3.84
Day 4							
0 H 24 H	6.99 7.58	7.38 7.67	7.12 7.81	6.89 7.82	6.76 7.77	6.49 7.66	3.91
Day 5							
0 H 24 H	7.10 7.42	7.27 7.70	7.02 7.75	6.91 7.80	6.52 7.88	6.11 7.71	3.88
Day 6							
0 H 24 H	7.05 7.71	7.35 8.00	7.06 8.04	6.88 8.09	6.49 8.12	5.99 8.05	3.79
Day 7							
24 H	7.80	7.91	7.86	7.75	7.51	7.37	

TABLE A19-1. (CONTINUED) - CONDUCTIVITY (µMHOS/CM)

	Test	Concentrations	(Percent Groundwater by Volume)
	0 APG	0 WREC	100
Day 0			
о н	240	100	410
Day 1			
ОН	250	110	420
Day 2			
ОН	240	110	410
Day 3			
ОН	250	110	400
Day 4			
ОН	260	110	410
Day 5			
ОН	250	100	420
Day 6			
0 H	240	110	410
Day 7			
24 H	250	110	

TABLE A19-1. (CONTINUED) - ALKALINITY (MG/L AS $CaCO_3$)

	Test	Concentrations	(Percent	Groundwater by	y Volume)
	0 APG	0 WREC		100	
					
Day 0					
0 H	60	35		8	
Day 1					
0 H	60	30			
Day 2					
0 Н	60	35			
Day 3					
ОН	. 65	30			
Day 4					
ОН	60	30			
Day 5					
0 H	60	35			
Day 6					
0 Н	60	35			
Day 7					
24 H	60	30			

Could not obtain measurement.

TABLE A19-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

			(Percent Groundwater by Volume) 100
	0 APG	0 WREC	100
Day 0			
0 Н	68	80	100
Day 1			
0 H	60	70	110
Day 2			
0 H	60	70	114
Day 3			
ОН	64	70	110
Day 4			
0 H	68	70	104
<u>Day 5</u>			
0 H	68	84	104
Day 6			
0 H	68	80	110
Day 7			
24 H	64	80	

TABLE A19-2. CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY
TEST DATA (TEST NO. 4) - SURVIVAL AFTER 48 HOURS OF
EXPOSURE

Concentration (% Groundwater by Volume)	Number Tested	No. Alive at 48 Hours	Percent Alive
UMD/WREC Control	10	10	100
APG-EA Diluent	10	10	100
10	10	10	100
18	10	10	100
32	10	10	100
56	10	10	100
100	10	0	0

TABLE A19-3. CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY
DATA (TEST NO. 4) - SURVIVAL OF ADULTS, NUMBER OF
YOUNG PRODUCED PER BROOD, TOTAL NUMBER OF YOUNG,
AND MEAN NUMBER OF YOUNG PER BROOD AFTER 7 DAYS OF
EXPOSURE

Conc (% by Vol)	Rep	Brood No. 1	Brood No. 2	Brood No. 3	Total Young
UMD/WREC	1	6	14	16	36
Control	2	6	12	13	31
	3	5	13	16	34
	4	6	11	20	37
	5	5	13	20	38
	6	4	13	13	30
	7	7	12	12	31
	8	6	11	13	30
	9	6	13	17	36
	10	5	13	16	34
APG-EA	1	6	11	17	34
Diluent	2	6	14	16	36
Water	3	7	13	15	35
	4	7	12	14	33
	5	6	12	13	31
	6	5	11	17	33 35
	7	7	10 12	18 17	35 35
	8	6	12	19	36
	9 10	6 6	12	16	34
	10	0	12	10	34
10	1	6	12	13	31
	2	7	11	13	31
	3	7	8	16	31
	4	10	6	15	31
	5	6	9	15	30
	6	7	9	13	29
	7	4	7	18	29
	8	6	13	18	37
	9	5	11	17	33
	10	3	10	20	33

TABLE A19-3. (CONTINUED)

Conc (% by Vol)	Rep	Brood No. 1	Brood No. 2	Brood No. 3	Total Young
18	1 2 3 4 5 6 7 8 9	6 6 6 6 5 6 5 6	6 8 7 9 4 0 4 12 6	6 0 0 4 6 7 8 7 14 0	18 12 14 17 21 16 14 16 32
32	1 2 3 4 5 6 7 8 9	5 6 4 4 5 5 6 5 5	7 9 0 5 11 7 7 6 9	2 11 7 0 10 5 2 DEAD 5	14 26 11 9 25 17 14 12 19
56	1 2 3 4 5 6 7 8 9	0 0 2 2 0 DEAD 2 0 0	0 0 3 0 0 2 2 2 0 3	DEAD 1 1 0 0 0 3 0 1	0 1 6 2 0 0 4 5 0
100	1 2 3 4 5 6 7 8 9	DEAD DEAD DEAD DEAD DEAD DEAD DEAD DEAD			

TABLE A19-4. CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 4) - NEONATE
PRODUCTION AFTER 7 DAYS OF EXPOSURE^a

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 5.42
Alpha value: 0.01
Critical value: 13.28

Conclusion Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 11.90
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 73.51
Alpha value: 0.05
Critical value: 2.61

Conclusion: Reject the null hypothesis that all groups are equal

Bonferroni t-Test:

Calculated test statistic: See Table A19-5

Alpha value: 0.05 Critical value: 2.33

Conclusion: Reject the null hypothesis that all groups are equal

The 100% raw Canal Creek groundwater treatment was not included in the statistical analyses because all organisms died during the test.

TABLE A19-5. CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 4) - RESULTS OF
BONFERRONI'S T-TEST ON MEAN NEONATE PRODUCTION
AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean No. Neonates Produced	T Statistic	Significance
UMD/WREC Control	10	33.7		
10	10	31.5	1.112	
18	10	16.8	8.619	*
32	10	16.1	8.976	*
56	8	2.6	14.641	*

^{*} Significantly different at alpha = 0.05 (Critical Bonferroni value = 2.33).

APPENDIX 20

CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7)

GROUNDWATER (WELL CC-27B)

(TEST NO. 4)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static renewal (every 24 h)

Date: March 24-31, 1995

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: 20% Perrier:80% RO water

Chemical Characteristics: See Table A20-1

Test Organism:

Scientific Name: <u>Ceriodaphnia</u> <u>dubia</u>

Age at Start of Test: <4 h

Source: UMD/WREC culture

Experimental Chambers:

Material: 50 mL glass beaker

Test Solution Volume: 25 mL

No. Organisms/Replicate: 1

No. Organisms/Treatment: 10

Loading: 1 organism/beaker

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to each renewal

pH Buffer: 10 N NaOH

Endpoints:

Mortality of adults; number of neonates produced in 3 broods

Water Quality:

Table A20-1

Ч

Results:

Mortality:

48-h Exposure:

The data for the 48-h LC50 were obtained from the 7-d study. Buffered groundwater did not affect adult survival after 48 h of exposure. The data are summarized in Table A20-2.

7-d Exposure:

Significant (α = 0.05) mortality occurred to the cladocerans at all concentrations down to 32% buffered groundwater by volume (see Tables A20-3, A20-4, and A20-5). The 7-d LC50 for adult mortality, which was determined by the moving average angle method, is as follows:

7-d LC50 = 38.4% buffered groundwater by volume (95% confidence limits = (29.87-47.97).

Neonate Production:

A significant ($\alpha=0.01$) reduction in neonate production relative to the controls occurred at concentrations down to 18% buffered groundwater by volume. Neonate production was not affected by exposure to 10% buffered groundwater by volume (see Tables A20-3, A20-6, and A20-7). The NOEC and LOEC for exposure of the organism to buffered Canal Creek groundwater are as follows:

NOEC: 10% buffered groundwater by volume LOEC: 18% buffered groundwater by volume

Table A20-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE CLADOCERAN 7-DAY TEST (TEST NO. 4) - DISSOLVED OXYGEN (MG/L)

	0	Concentrat	18	32	56	100
Day 0						
0 H	8.4	8.2	8.0	8.3	8.2	7.7
<u>Day 1</u>						
0 H 24 H	8.6 8.8	8.2 8.7	8.3 8.6	8.2 8.7	8.2 8.6	7.6 8.5
Day 2						
0 H 24 H	8.6 9.1	8.4 8.9	8.3 8.8	8.3 8.9	8.3 8.8	7.8 8.9
Day 3						
0 H 24 H	8.7 8.9	8.3 8.8	8.2	8.3 8.8	8.2 8.7	7.7 8.8
Day 4						
0 H 24 H	8.4 8.8	8.2 8.7	8.1 8.7	8.1 8.7	8.1 8.6	7.6 8.7
Day 5						
0 H 24 H	8.3 8.9	8.1 8.8	8.0 8.7	8.0 8.8	8.0 8.7	7.7 8.6
Day 6						
0 H 24 H	8.3 8.8	8.2 8.7	8.0 8.6	7.9 8.7	7.8 8.6	7.6 8.6
Day 7						
24 H	8.9	8.6	8.7	8.4	8.6	8.5

TABLE A20-1. (CONTINUED) - pH (STANDARD UNITS)

					water by V	
	0	10	18	32	56	100
Day 0						
0 H	7.29	7.63	7.69	7.72	7.81	7.84
Day 1						
0 H 24 H	7.40 8.00	7.35 7.90	7.33 7.95	7.31 7.96	7.30 7.99	7.29 8.11
Day 2						
0 H 24 H	7.10 7.67	7.22 7.78	7.28 7.87	7.32 7.95	7.36 8.09	7.39 8.15
Day 3						
0 H 24 H	7.69 7.10	7.34 7.80	7.43 7.94	7.42 8.07	7.55 8.28	7.20 8.38
Day 4						
0 H 24 H	7.38 7.67	7.40 7.99	7.42 8.20	7.47 8.28	7.52 8.46	7.55 8.69
Day 5						
0 H 24 H	7.27 7.70	7.31 7.81	7.39 7.88	7.41 8.00	7.42 8.10	7.49 8.49
Day 6						
0 H 24 H	7.35 7.88	7.37 7.88	7.37 7.92	7.38 7.94	7.40 8.02	7.49 8.11
Day 7						
24 H	7.91	7.91	7.96	8.00	8.20	8.49

TABLE A20-1. (CONTINUED) - CONDUCTIVITY (µMHOS/CM)

	Test Co	ncentrations (P 100	ercent	Groundwater	by Volume)
Day 0					
0 H	100	320			
Day 1					
0 H	110	330			
Day 2					
0 Н	110	340			
Day 3					
0 H	110	330			
Day 4					
ОН	110	320			
Day 5					
0 H	100	310			
Day 6					
0 Н	110	330			
Day 7					
24 H	110	330			

TABLE A20-1. (CONTINUED) - ALKALINITY (MG/L AS CaCO₃)

	Test	Concentrations	(Percent	Groundwater by Volume)
	0	100		
Day 0				
0 H	35	25		
Day 1				
ОН	30	20		
Day 2				
ОН	35	25		
Day 3				
ОН	30	20		
Day 4				
0 H	30	25		
Day 5				
0 H	35	20		
Day 6				
0 H	35	25		
Day 7				
24 H	35	25		

TABLE A20-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	Test	Concentrations	(Percent	Groundwater by Volu	ıme)
	0	100			
Day 0					
о н	80	70			
Day 1					
0 H	70	78			
Day 2					
0 H	70	70			
Day 3					
0 Н	70	70			
Day 4					
0 Н	70	70			
Day 5					
ОН	84	74			
Day 6					
о н	80	70			
Day 7					
24 H	70	70			

TABLE A20-2. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER TOXICITY TEST DATA (TEST NO. 4) - SURVIVAL AFTER 48 HOURS OF EXPOSURE

Concentration (% Groundwater by Volume)	Number Tested	No. Alive at 48 Hours	Percent Alive
UMD/WREC Control	10	10	100
10	10	10	100
18	10	10	100
32	10	10	100
56	10	10	100
100	10	10	100

TABLE A20-3. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY DATA (TEST NO.4) - SURVIVAL OF ADULTS,
NUMBER OF YOUNG PRODUCED PER BROOD, TOTAL NUMBER OF
YOUNG, AND MEAN NUMBER OF YOUNG PRODUCED PER BROOD
AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	Rep	Brood No. 1	Brood No. 2	Brood No. 3	Total Young
UMD/WREC	1	6	14	16	36
Control	2	6	12	13	31
	3	5	13	16	34
	4	6	11	20	37
	5	5	13	20	38
	6	4	13	13	30
	7	7	12	12	31
	8	6	11	13	30
	9	6	13	17	36
	10	5	13	16	34
10	1	5	13	15	33
	2	8	14	13	35
	3	6	14	12	32
	4	5	12	16	33
	5	6	12	13	31
	6	5	10	19	34
	7	6	11	16	33
	8	5 5	10	16	31
	9	5	9	15	29
	10	6	9	18	33
18	1	6	10	13	29
	2	6	10	11	27
	3	6	12	15	33
	4	5	5	10	20
	5	5 5	8	12	25
	6	7	8	8	23
	7	0	7	7	14
	8	7	11	11	29
	9	2	9	8	19
	10	7	7	18	32

TABLE A20-3. (CONTINUED)

Conc (% by Vol)	Rep	Brood No. 1	Brood No. 2	Brood No. 3	Total Young
			•		
32	1	5	0	0 DEAD	5 •
	2	4	1	DEAD	5
	3	2	3	1	6
	4	3	2	0	5 5
	5	5	0	0	5
	6	0	5	DEAD	5
	7	4	10	DEAD	14
	8	4	0	DEAD	4
	9	5 3	2 0	0	7 3
	10	3	U	0	3
56	1	3	1	DEAD	4
	2	5	0	DEAD	5
	3	3	0	DEAD	3
	4	6	DEAD		6
	5	3	0	DEAD	3
	6	6	11	0	17
	7	5	7	0	12
	8	6	0	DEAD	6
	9	1	10	DEAD	11
	10	3	0	DEAD	3
100	1	1	0	DEAD	1
	2	0	0	DEAD	0
	3	5	0	DEAD	5
	4	0	0	DEAD	0
	5	5	0	DEAD	5
	6	0	0	DEAD	0
	7	2	0	DEAD	2 5
	8	5	DEAD		5
	9	0	0	DEAD	0
	10	0	DEAD		0

TABLE A20-4. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 4) ADULT SURVIVAL AFTER 7 DAYS OF EXPOSURE

Data Transformation:

None

Fisher's Exact Test:

Calculated test statistic:

Alpha value: Critical value: Conclusion: See Table A20-5

0.05

Reject the null hypothesis that all

groups are equal

TABLE A20-5. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 4) RESULTS OF FISHER'S EXACT TEST ON ADULT SURVIVAL
AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	Number Alive	Number Dead	b Value	Significance
UMD/WREC Control	10	0		
10	10	0	10	
18	10	0	10	
32	6	4	6	*
56	2	8	2	*
100	0	10	0	*

^{*} Significantly different at alpha = 0.05 (Fisher's critical value = 6).

TABLE A20-6. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 4) NEONATE PRODUCTION AFTER 7 DAYS OF EXPOSURE^a

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 9.38
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 11.39
Alpha value: 0.01
Critical value: 9.21

Conclusion: Reject the null hypothesis that the

variances are homogenous

Steel's Many-One Rank Test:

Calculated test statistic: See Table A20-7

Alpha value: 0.05 Critical value: 79.0

Conclusion: Reject the null hypothesis that all groups are equal

The 32%, 56% and 100% buffered Canal Creek groundwater treatments were not included in the statistical analyses because all concentrations above the NOEC for survival are excluded from the hypothesis test for reproductive effects.

Table A20-7. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO.4) RESULTS OF STEEL'S MANY-ONE RANK TEST ON NEONATE
PRODUCTION AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean Neonates Produced	Rank Sum	Critical Value	Significance
UMD/WREC	10	33.7			
10	10	32.6	94.0	79.0	
18	10	25.1	63.0	79.0	*

^{*} Significantly different at alpha = 0.05.

APPENDIX 21

CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION
TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4)
GROUNDWATER (WELL CC-27B)
(TEST NO. 5)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static renewal (every 24 h)

Date: May 3-10, 1995

Investigator: S.D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: 20% Perrier:80% RO water

Chemical Characteristics: See Table A21-1

Test Organism:

Scientific Name: <u>Ceriodaphnia dubia</u>

Age at Start of Test: <4 h

Source: UMD/WREC culture

Experimental Chambers:

Material: 50 mL glass beaker

Test Solution Volume: 25 mL

No. Organisms/Replicate: 1

No. Organisms/Treatment: 10

Loading: 1 organism/beaker

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to each renewal

Endpoints:

Mortality of adults; number of neonates produced in 3 broods

Water Quality:

Table A21-1

Results:

Mortality:

48-h Exposure:

The data for the 48-h LC50 were obtained from the 7-d study. All organisms exposed to 100% raw groundwater died during the 48-h exposure (Table A21-2). The organisms in all other treatments lived. The 48-h LC50, which was determined by the moving average angle method, is as follows:

48-h LC50 = 64.7% raw groundwater by volume (95% confidence limits = 62.53-67.14).

7-d Exposure:

All organisms exposed to 100% raw groundwater died during the 7-d exposure; one organism died in the 56% raw groundwater treatment (Table A21-2). The 7-d LC50, which was determined by the moving average angle method, is as follows:

7-d LC50 = 61.9% raw groundwater by volume (95% confidence limits = 59.66-64.39).

Survival was not affected by exposure to APG-EA diluent water.

Neonate Production:

Raw groundwater significantly ($\alpha=0.05$) reduced neonate production relative to the controls down to 18% raw groundwater by volume (see Tables A21-3, A21-4, and A21-5). The NOEC and LOEC for the cladocerans, based on reduced neonate production, are as follows:

NOEC = 10% raw groundwater by volume. LOEC = 18% raw groundwater by volume.

Neonate production was not affected by exposure to APG-EA diluent water relative to the UMD/WREC controls (t-test: critical value = 2.88; t statistic = 0.48; α = 0.01).

TABLE A21-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE CLADOCERAN 7-DAY TEST (TEST NO. 5) - DISSOLVED OXYGEN (MG/L)

	Tes	Test Concentrations		(Perce	nt Grou	by Volume)	
	0 APG	0 WREC	10	18	32	56	100
Day 0							
ОН	8.8	8.5	8.4	8.2	8.3	8.3	7.9
Day 1							
0 H 24 H	8.2 8.6	8.3 8.5	8.4 8.6	8.0 8.6	8.1 8.5	8.2 8.2	7.7 7.7
Day 2							
	8.1 8.2	8.2 8.5	8.2 8.6	8.4	8.5 8.4		7.7
Day 3							
0 H 24 H	8.6 8.3	8.6 8.4	8.6 8.5	8.6 8.4	8.6 8.5	8.6 8.2	8.0
Day 4							
0 H 24 H	8.5 8.2	8.5 8.5	8.2 8.5	8.2 8.5	8.5 8.5	8.2 8.1	7.9
Day 5							
0 H 24 H	8.3 8.3	8.6 8.3	8.3 8.0	8.1 8.2	8.1 8.2	8.1 8.1	7.7
Day 6							
0 H 24 H	8.7 8.3	8.5 8.0	8.4 8.1	8.4 8.0	8.6 8.1	8.5 8.0	7.8
Day 7							
24 H	8.3	8.0	8.1	8.1	8.1	8.0	

TABLE A21-1. (CONTINUED) - pH (STANDARD UNITS)

	Test Concentrations			(Percent Groundwater by			by Volume)
	0 APG	0 WREC	10	18	32	56	100
Day 0							
о н	7.28	7.38	7.16	7.05	6.81	6.40	3.76
Day 1							
0 H 24 H	7.43 7.79	7.53 8.04	7.07 8.08	6.82 8.12	6.66 7.99		3.78 6.50
Day 2							
0 H 24 H	7.40 8.29	7.33 7.94	7.31 8.06	7.02 8.09	6.85 8.05	6.41 8.01	3.79
Day 3							
0 H 24 H	7.24 8.18	7.59 7.80	7.33 7.99	7.14 8.02	6.90 8.03		3.82
Day 4							
0 H 24 H	7.20 8.11	7.45 7.77	7.25 7.80	7.10 7.99	6.87 8.07	6.43 8.00	3.85
Day 5							
0 H 24 H	7.04 8.00	7.42 7.35	6.98 7.44	6.92 7.56	6.70 7.58	6.23 7.56	3.81
Day 6							
0 H 24 H	7.13 7.71	7.22 7.37	7.06 7.42	6.85 7.41	6.63 7.39	6.22 7.34	3.79
Day 7							
24 H	7.80	7.40	7.14	7.45	7.49	7.42	

TABLE A21-1. (CONTINUED) - CONDUCTIVITY (µMHOS/CM)

			(Percent Groundwater by Volume)
	0 APG	0 WREC	100
Day 0			
ОН	210	170	430
Day 1			
0 H	200	180	700
Day 2			
0 Н	200	170	500
Day 3			
о н	210	170	550
Day 4			
O H	200	180	500
Day 5			
0 H	220	170	480
Day 6			
0 Н	210	170	
Day 7			
24 H	210	170	500

TABLE A21-1. (CONTINUED) - ALKALINITY (MG/L AS CaCO₃)

	Test	Concentrations	(Percent Groundwater by Volume)
	0 APG	0 WREC	100
Day 0			
0 H	35	50	a
Day 1			
0 Н	35	50	
Day 2			
0 H	35	55	
Day 3			
0 H	30	55	
Day 4			
0 H	35	50	
Day 5			
0 H	35	50	
Day 6			
0 H	35	50	
Day 7			
24 H	35	50	

a Could not obtain measurement.

TABLE A21-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

			(Percent Groundwater by Volume)
	0 APG	0 WREC	100
Day 0			
о н	60	72	120
Day 1	•		
ОН	60	70	120
Day 2			
ОН	60	70	120
Day 3			
ОН	60	72	110
Day 4			
ОН	60	70	120
Day 5			
ОН	60	80	130
Day 6			
о н	60	80	130
Day 7			
24 H	60	80	

TABLE A21-2. CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY
TEST DATA (TEST NO. 5) - SURVIVAL AFTER 48 HOURS OF
EXPOSURE

Concentration (% Groundwater by Volume)	Number Tested	No. Alive at 48 Hours	Percent Alive
UMD/WREC Control	10	10	100
APG-EA Diluent	10	10	100
10	10	10	100
18	10	10	100
32	10	10	100
56	10	10	100
100	10	0	0

TABLE A21-3. CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY
DATA (TEST NO. 5) - SURVIVAL OF ADULTS, NUMBER OF
YOUNG PRODUCED PER BROOD, TOTAL NUMBER OF YOUNG,
AND MEAN NUMBER OF YOUNG PER BROOD AFTER 7 DAYS OF
EXPOSURE

Conc (% by Vol)	Rep	Brood No. 1	Brood No. 2	Brood No. 3	Total Young
UMD/WREC	1	4	7	14	25
Control	2	4	12	13	29
	3	5	11	16	32
	4	4	8	12	24
	5	4	8	16	28
	6	5	8	20	33
	7	4	8	20	32
	8	5	8	14	27
	9	5	8	14	27
	10	5	10	19	34
APG-EA	1	5	11	12	28
Diluent	2 3	4	9	12	25
Water	3	5	9	14	28
	4	5	11	16	32
	5	4	8	14	26
	6	4	10	16	30
	7	5	10	15	30
	8	4	10	20	34
	9	5	11	15	31
	10	5	10	17	32
10	1	4	10	12	26
	2	4	5	19	28
	3	4	9	14	27
	4	5 5	8	14	27
	5	5	8	14	27
	6	5	7	14	26
	7	5	10	16	31
	8	6	11	12	29
	9	4	8	20	32
	10	5	13	11	29

TABLE A21-3. (CONTINUED)

Conc (% by Vol)	Rep	Brood No. 1	Brood No. 2	Brood No. 3	Total Young
18	1 2 3 4 5 6 7 8 9	4 4 4 3 4 5 5 5 5	10 9 5 8 8 9 5 8	8 10 10 10 16 11 13 11 8 5	22 23 19 22 27 24 23 24 21 16
32	1 2 3 4 5 6 7 8 9	5 4 0 4 4 5 4 5 4	8 9 4 7 8 9 11 12 8	11 10 7 9 9 7 11 8 8 5	24 23 11 20 21 21 26 25 20
56	1 2 3 4 5 6 7 8 9	0 4 4 2 3 3 2 3 4 4	3 2 6 5 2 1 0 5 0	6 4 0 4 7 0 DEAD 9 0	9 10 10 11 12 4 2 17 4 6
100	1 2 3 4 5 6 7 8 9	DEAD DEAD DEAD DEAD DEAD DEAD DEAD DEAD			

CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY TABLE A21-4. TEST STATISTICAL ANALYSIS (TEST NO. 5) - NEONATE PRODUCTION AFTER 7 DAYS OF EXPOSURE®

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 1.57 0.01 Alpha value: 13.28 Critical value:

Fail to reject the null Conclusion hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

6.22 Calculated test statistic: 0.01 Alpha value: 13.28 Critical value:

Fail to reject the null Conclusion: hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistics: 50.875 0.05 Alpha value: 2.61 Critical value:

Reject the null Conclusion: hypothesis that all

groups are equal

Dunnett's Test

See Table A21-5 Calculated test statistic:

0.05 Alpha value: 2.23 Critical value:

Reject the null Conclusion: hypothesis that all groups are equal

The 100% raw Canal Creek groundwater treatment was not included in the statistical analyses because all organisms died during the test.

TABLE A21-5. CLADOCERAN CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 5) - RESULTS OF
DUNNETT'S TEST ON MEAN NEONATE PRODUCTION AFTER 7
DAYS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean No. Neonates Produced	T Statistic	Significance
UMD/WREC Control	10	28.9		
10	10	28.2	0.430	
18	10	22.1	4.180	*
32	10	20.8	4.979	*
56	10	8.5	12.540	*

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.23).

APPENDIX 22

CLADOCERAN ACUTE AND 7-DAY SURVIVAL AND REPRODUCTION TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7)

GROUNDWATER (WELL CC-27B)

(TEST NO. 5)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static renewal (every 24 h)

Date: May 3-10, 1995

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: 20% Perrier:80% RO water

Chemical Characteristics: See Table A22-1

Test Organism:

Scientific Name: <u>Ceriodaphnia</u> <u>dubia</u>

Age at Start of Test: <4 h

Source: UMD/WREC culture

Experimental Chambers:

Material: 50 mL glass beaker

Test Solution Volume: 25 mL

No. Organisms/Replicate: 1

No. Organisms/Treatment: 10

Loading: 1 organism/beaker

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to each renewal

pH Buffer: 10 N NaOH

Endpoints:

Mortality of adults; number of neonates produced in 3 broods

Water Quality:

Table A22-1

Results:

Mortality:

48-h Exposure:

The data for the 48-h LC50 were obtained from the 7-d study. Buffered groundwater did not affect adult survival after 48 h of exposure. The data are summarized in Table A22-2.

7-d Exposure:

Significant ($\alpha=0.05$) mortality occurred to the cladocerans exposed to 100% buffered groundwater by volume (see Tables A22-3, A22-4, and A22-5). The 7-d LC50 for adult mortality, which was determined by the moving average angle method, is as follows:

7-d LC50 = 73.9% buffered groundwater by volume (95% confidence limits = (69.53-79.23).

Neonate Production:

A significant (α = 0.01) reduction in neonate production relative to the controls occurred at concentrations down to 32% buffered groundwater by volume. Neonate production was not affected by exposure to 10% or 18% buffered groundwater by volume (see Tables A22-3, A22-6, and A22-7). The NOEC and LOEC for exposure of the organism to buffered Canal Creek groundwater are as follows:

NOEC: 18% buffered groundwater by volume LOEC: 32% buffered groundwater by volume

Table A22-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE CLADOCERAN 7-DAY TEST (TEST NO. 5) - DISSOLVED OXYGEN (MG/L)

	0 Test	10	18	32	dwater by '	100
Day 0						
0 H	8.5	8.5	8.5	8.3	8.3	8.4
Day 1						
0 H 24 H	8.6 8.5	8.1 8.2	8.2 8.2	8.2 8.2	8.2 8.3	8.0 8.3
Day 2						
0 H 24 H	8.2 8.5	8.1 8.0	8.0 8.4	8.0 8.4	8.1 8.5	8.2 8.6
Day 3						
0 H 24 H	8.6 8.4	8.6 8.1	8.5 8.3	8.3 8.3	8.2 8.4	8.2 8.5
Day 4						
0 H 24 H	8.5 8.5	8.5 8.0	8.4 8.2	8.4 8.2	8.3 8.3	8.1 8.4
Day 5						
0 H 24 H	8.6 8.3	8.0 8.3	8.1 8.3	8.0 8.0	8.0 8.1	8.1 8.2
Day 6						
0 H 24 H	8.5 8.0	8.7 8.0	8.5 8.1	8.6 8.1	8.6 8.0	8.6 8.0
Day 7						
24 H	8.0	8.0	8.1	8.0	8.0	8.0

TABLE A22-1. (CONTINUED) - pH (STANDARD UNITS)

	Test	Concentrat	ions (Perc	ns (Percent Groundwate		er by Volume)	
	0	10	18	32	56	100	
Day 0							
о н	7.38	7.30	7.34	7.40	7.40	7.21	
Day 1							
0 H 24 H	7.53 8.04	7.38 7.93	7.45 8.03	7.46 8.19	7.47 8.31	7.26 8.36	
Day 2							
0 H 24 H	7.33 7.94	7.38 8.29	7.35 8.36	7.31 8.37	7.30 8.40	7.30 8.41	
Day 3							
0 H 24 H	7.59 7.80	7.50 8.15	7.56 8.22	7.59 8.29	7.58 8.33	7.46 8.37	
Day 4							
0 H 24 H	7.45 7.77	7.49 8.13	7.41 8.25	7.37 8.30	7.27 8.39	7.21 8.49	
Day 5							
0 H 24 H	7.42 7.35	7.34 7.61	7.43 7.68	7.45 7.80	7.47 7.90	7.20 7.99	
Day 6							
0 H 24 H	7.22 7.37	7.23 7.54	7.29 7.59	7.36 7.66	7.40 7.71	7.38 7.77	
Day 7							
24 H	7.40	7.51	7.65	7.70	7.80	7.83	

TABLE A22-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	<u>Test</u>	Concentrations 100	(Percent Groundwater by Volume)
Day 0			
0 Н	170	800	
Day 1			
ОН	180	780	
Day 2			
ОН	170	790	
Day 3			
0 Н	170	800	
Day 4			
0 Н	180	800	
Day 5			
0 Н	170	780	
Day 6			
ОН	170	780	
Day 7			
24 H	170	780	

TABLE A22-1. (CONTINUED) - ALKALINITY (MG/L AS CaCO₃)

	<u>Test</u>	Concentrations 100	(Percent Groundwater by Volume)
Day 0			
о н	50	90	
Day 1			
о н	50	100	
Day 2			
ОН	55	100	
Day 3			
0 Н	55	90	
Day 4			
ОН	50	90	
Day 5			
о н	50	90	
Day 6			
ОН	50	90	
Day 7			
24 H	55	100	

TABLE A22-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	<u>Test</u>	Concentrations 100	(Percent Groundwater by Volume)
Day 0			
0 H	72	70	
Day 1			
0 H	70	70	
Day 2			
0 H	70	70	
Day 3			
ОН	72	70	
Day 4			
ОН	70	70	
Day 5			
0 H	70	70	
Day 6			
0 H	80	80	
Day 7			
24 H	80	70	

TABLE A22-2. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST DATA (TEST NO. 5) - SURVIVAL AFTER 48
HOURS OF EXPOSURE

Concentration (% Groundwater by Volume)	Number Tested	No. Alive at 48 Hours	Percent Alive	
UMD/WREC Control	10	10	100	
10	10	10	100	
18	10	10	100	
32	10	10	100	
56	10	10	100	
100	10	10	100	

TABLE A22-3. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY DATA (TEST NO.5) - SURVIVAL OF ADULTS,
NUMBER OF YOUNG PRODUCED PER BROOD, TOTAL NUMBER OF
YOUNG, AND MEAN NUMBER OF YOUNG PRODUCED PER BROOD
AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	Rep	Brood No. 1	Brood No. 2	Brood No. 3	Total Young
UMD/WREC	1	4	7	14	25
Control	2	4	12	13	29
	3	5	11	16	32
	4	4	8	12	24
	5	4	8	16	28
	6	5	8	20	33
	7	4	8	20	32
	8	5	8	14	27
	9	5	8	12	25
	10	5	10	19	34
10	1	4	9	13	26
	2	6	9	16	31
	3	4	8	13	25
	4	4	8	13	25
	5	4	8	19	31
	6	6	12	13	31
	7	4	7	14	25
	8	4	7	18	29
	9	4	7	17	28
	10	5	8	12	25
18	1	3	9	13	25
	2	5	9	17	31
	3	3	8	15	26
	4	4	6	17	27
	5	4	8	12	24
	6	2	6	7	15
	7	5	11	13	29
	8	2	13	11	26
	9	4	7	13	24
	10	5	11	11	27

TABLE A22-3. (CONTINUED)

Conc (% by Vol)	Rep	Brood No. 1	Brood No. 2	Brood No. 3	Total Young
32	1	4	8	4	16
	2	2	5	9	16
	3	4	6	17	27
	4	5	10	9	24
	5	5	8	0	13
	6	5	9	11	25
	7	4	9	10	23
	8	4	8	12	24
	9	3	6	7	16
	10	2	7	6	15
56	1	0	0	0	0
	2	2	2	4	8
	3	3	4	0	7
	4	0	4	0	4
	5	0	0	0	0
	6	4	0	0	4
	7	2	0	0	2 7
	8	5	2	0	7
	9	3	0	DEAD	3
	10	5	7	0	12
100	1	4	0	0	4
	2	3	0	DEAD	3
	3	4	0	DEAD	4
	4	4	0	DEAD	4
	5	3	0	0	3
	6	4	DEAD		4
	7	3	0	DEAD	3
	8	2	DEAD		2
	9	1	0	DEAD	1
	10	1	0	DEAD	1

TABLE A22-4. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 5) ADULT SURVIVAL AFTER 7 DAYS OF EXPOSURE

Data Transformation:

None

Fisher's Exact Test:

Calculated test statistic:

Alpha value: Critical value: Conclusion: See Table A22-5

0.05

6

Reject the null hypothesis that all groups are equal.

TABLE A22-5. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 5) RESULTS OF FISHER'S EXACT TEST ON ADULT SURVIVAL
AFTER 7 DAYS OF EXPOSURE

Number Alive	Number Dead	b Value	Significance
10	0		
10	0	10	
10	0	10	
10	0	10	
9	1	9	
2	8	2	*
	10 10 10 10 10	10 0 10 0 10 0 10 0 10 0 9 1	Alive Dead Value 10 0 10 0 10 10 0 10 10 0 10 9 1 9

^{*} Significantly different at alpha = 0.05 (Fisher's critical value = 6).

TABLE A22-6. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 5) NEONATE PRODUCTION AFTER 7 DAYS OF EXPOSURE*

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 10.11
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 3.53
Alpha value: 0.01
Critical value: 9.21

Conclusion: Fail to reject the null hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 61.49
Alpha value: 0.05
Critical value: 2.61

Conclusion: Reject the null hypothesis that all groups are equal

Dunnett's Test:

Calculated test statistic: See Table A22-7

Alpha value: 0.05 Critical value: 2.23

Conclusion: Reject the null hypothesis that all groups are equal

The 100% buffered Canal Creek groundwater treatment was not included in the statistical analyses because all concentrations above the NOEC for survival are excluded from the hypothesis test for reproductive effects.

Table A22-7. CLADOCERAN CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO.5) RESULTS OF DUNNETT'S TEST ON NEONATE PRODUCTION
AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean Neonates Produced	T Statistic	Significance
UMD/WREC Control	10	28.9		
10	10	27.6	0.728	
18	10	25.4	1.960	
32	10	19.9	5.043	*
56	10	4.7	13.559	*

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.23).

APPENDIX 23

FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH \approx 4) GROUNDWATER (WELL CC-27B) (TEST NO. 1)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static renewal (every 24 h)

Date: September 13-20, 1994

Investigator: S.D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: 20% Perrier:80% RO water

Chemical Characteristics: See Table A23-1

Test Organism:

Scientific Name: <u>Pimephales promelas</u>

Dry Weight:

0.58 mg (mean weight of controls at end of test)

Age at Start of Test: <24 h

Source: UMD/WREC culture

Experimental Chambers:

Material: 600 mL glass beaker

Test Solution Volume: 400 mL

No. Organisms/Replicate: 10

No. Organisms/Treatment: 40

Loading: <0.5 g/L

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to each renewal

Endpoints: Mortality; growth

Water Quality: Table A23-1

Results:

Mortality:

96-h Exposure:

The data for the 96-h LC50 were obtained from the 7-d study. All organisms exposed to 100% raw groundwater died during the 96-h exposure (Table A23-2). 85% of the organisms died at 56% groundwater by volume. The 96-h LC50, which was determined by the moving average angle method, is as follows:

96-h LC50 = 46.1% raw groundwater by volume (95% confidence limits = 41.59-51.33).

7-d Exposure:

All organisms exposed to 100% raw groundwater died during the 7-d exposure (Table A23-3). 95% of the organisms died at 56% groundwater by volume; two deaths occurred at both 10% and 32% groundwater by volume. A single organism died at 18% groundwater by volume. The 7-d LC50, which was determined by the moving average angle method, is as follows:

7-d LC50 = 42.1% raw groundwater by volume (95% confidence limits = 37.94-46.74).

Fathead minnow survival was not affected by exposure to APG-EA diluent water relative to the UMD/WREC controls.

Growth:

A significant (α = 0.05) reduction in growth occurred in fathead minnow larvae exposed for 7 d to 32% raw groundwater by volume (see Tables A23-3 A23-4, and A23-5). The NOEC and LOEC for the larval fish, based on reduced growth, are as follows:

NOEC = 18% raw groundwater by volume. LOEC = 32% raw groundwater by volume.

Larval growth was not affected by exposure to APG-EA diluent water relative to UMD/WREC controls (t-test: critical value = 3.71; t statistic = 1.37; $\alpha = 0.01$).

TABLE A23-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY TEST WATER QUALITY DATA FOR THE FATHEAD MINNOW 7-DAY TEST (TEST NO. 1) - DISSOLVED OXYGEN (MG/L)

	Tes	Test Concentra		s (Percent Groundwa			vater by Volume)	
	0 APG	0 WREC	10	18	32	56	100	
Day 0								
ОН	8.4	8.3	8.2	8.1	8.2	7.9	7.9	
Day 1								
0 H 24 H	8.1 8.0	8.2 8.1	8.2 8.0	8.3 8.0	8.2 8.1	8.2 8.0	8.3 8.2	
Day 2								
0 H 24 H	7.8 7.5	8.3 7.7	8.2 7.5	8.3 7.5	8.1 7.7	8.4 7.7	8.0	
Day 3								
0 H 24 H	7.9 7.6	8.4 8.0	8.1 7.7	8.2 7.6	8.2 7.8	8.3 7.6	8.1	
Day 4								
0 H 24 H	8.1 7.8	8.4 8.1	8.2 7.9	8.3 7.7	8.4 7.6	8.3 7.4	8.1	
<u>Day 5</u>								
0 H 24 H	8.2 7.6	8.4 8.1	8.1 7.7	8.1 7.8	8.3 7.7	8.2 7.6	8.2	
Day 6								
0 H 24 H	8.1 7.5	8.3 8.0	8.2 7.9	8.2 7.9	8.2 7.6	8.1 7.5	8.1	
<u>Day 7</u>								
24 H	7.7	8.1	8.0	7.9	7.7	7.7		

TABLE A23-1. (CONTINUED) - pH (STANDARD UNITS)

	Test	Concent	rations	(Percent	t Groun	dwater	by Volume)
	0 APG	0 WREC	10	18	32	56	100
Day 0							
0 H	6.91	7.14	7.04	6.96	6.74	6.10	3.96
Day 1							
0 H 24 H	7.00 6.82	7.22 6.91	7.16 7.03	7.02 7.12	6.88 7.16	6.30 7.12	3.98 5.31
Day 2							
0 H 24 H	6.95 6.76	7.05 6.74	7.03 6.87	6.98 6.91	6.93 7.00	6.41 6.99	3.95
Day 3							
0 H 24 H	7.01 6.90	7.14 6.81	7.10 6.91	6.88 6.95	6.81 7.04	6.27 6.79	3.99
Day 4							
0 H 24 H	7.39 7.41	7.79 7.14	7.73 7.11	7.60 7.23	7.38 7.70	6.69 7.83	3.96
Day 5							
0 H 24 H	7.29 7.29	7.65 7.11	7.58 7.21	7.39 7.33	7.09 7.20	6.38 7.06	3.95
Day 6							
0 H 24 H	7.19 7.31	7.40 7.29	7.33 7.24	7.30 7.26	7.01 7.12	6.29 7.02	3.99
Day 7							
24 H	7.21	7.15	7.15	7.31	7.16	7.06	

TABLE A23-1. (CONTINUED) - CONDUCTIVITY (µMHOS/CM)

	Test	Concentrations	(Percent Groundwater by Volume)
	0 APG	0 WREC	100
Day 0			
0 Н	290	160	410
Day 1			
0 Н	260	170	400
Day 2			
о н	200	175	410
Day 3			
0 H	210	170	400
Day 4			
0 H	200	160	410
Day 5			
0 Н	200	160	420
Day 6			
ОН	200	160	
Day 7			
24 H	210	165	420

TABLE A23-1. (CONTINUED) - ALKALINITY (MG/L AS CaCO₃)

	Test	Concentrations	(Percent Groundwater by Volu	ıme)
	0 APG	0 WREC	100	
Day 0				
0 H	50	45	a	
Day 1				
0 H	55	50		
Day 2				
0 H	50	50		
Day 3				
0 H	50	40		
Day 4				
0 H	55	50		
Day 5				
ОН	50	40		
Day 6				
0 H	55	40		
<u>Day 7</u>				
24 H	50	40		

^a Could not obtain measurement.

TABLE A23-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	Test	Concentrations	(Percent	Groundwater	by Volume)
	0 APG	0 WREC		100	
Day 0					
0 H	68	68		8	
Day 1					
0 H	72	72			
Day 2					
о н	68	64			
Day 3					
0 Н	72	68			
Day 4					
ОН	72	72			
Day 5					
ОН	64	68			
Day 6					
ОН	68	64			
Day 7					
24 H	70	64			

a Could not obtain measurement.

TABLE A23-2. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY TEST DATA (TEST NO. 1) - SURVIVAL AFTER 96 HOURS OF EXPOSURE

Concentration (% Groundwater by Volume)	Rep	Number Tested	No. Alive at 96 Hours	Percent Alive
UMD/WREC	A	10	10	100
Control	В	10	10	100
	С	10	10	100
	D	10	10	100
APG-EA	A	10	9	90
Diluent	В	10	10	100
Water	С	10	10	100
	D	10	10	100
10	A	10	10	100
	В	10	10	100
h.	С	10	10	100
	D	10	10	100
18	A	10	9	90
	В	10	10	100
	С	10	10	100
	D	10	10	100
32	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	9	90
56	A	10	3	30
	В	10	1	10
	C	10	0	00
	D	10	2	20
100	A	10	0	0
	В	10	0	0
	С	10	0	0
	D	10	0	0

TABLE A23-3. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY TEST DATA (TEST NO. 1) - LARVAL SURVIVAL AND DRY WEIGHT AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	Rep	Number Larvae Alive	Percent Survival	Dry Weight (mg)	Mean Dry Weight (mg)
UMD/WREC	1	10	100	0.60	- AMAZON - P
Control	2	10	100	0.60	
	3	10	100	0.57	
	4	10	100	0.56	0.58
APG-EA	1	9	90	0.62	
Diluent	2	10	100	0.60	
Water	3	10	100	0.57	
	4	10	100	0.64	0.61
10	1	9	90	0.62	
	2	10	100	0.65	
••	3	9	90	0.55	
	4	10	100	0.61	0.61
18	1	9	90	0.62	
	2	10	100	0.55	
	3	10	100	0.66	
	4	10	100	0.60	0.61
32	1	10	100	0.50	
	2	10	100	0.48	
	3	9	90	0.46	
	4	9	90	0.49	0.48
56	1	0	. 0	0.00	
	2	1	10	0.12	
	3	0	0	0.00	
	4	1	10	0.33	0.11
100	1	0	0		
	2	0	0		
	3	0	0		
	4	0	0		

TABLE A23-4. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 1) - LARVAL
SURVIVAL AFTER 7 DAYS OF EXPOSURE®

Data Transformation:

Arc sine square root

Chi-Square Test for Normality:

Calculated test statistic: 5.37
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 0.13
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the

variances are homogenous.

ANOVA:

Calculated test statistic: 124.1
Alpha value: 0.01
Critical value: 3.06

Conclusion: Reject the null hypothesis that all groups are equal.

Dunnett's Test:

Calculated test statistic: See Table A23-5

Alpha value: 0.05 Critical value: 2.36

Conclusion: Reject the null hypothesis that all groups are equal.

The 100% raw Canal Creek groundwater treatment was not included in the statistical analyses because all organisms died during the test.

TABLE A23-5. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 1) - RESULTS OF
DUNNETT'S TEST ON LARVAL SURVIVAL AFTER 7 DAYS
OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean Survival (%)ª	T Statistic	Significance
UMD/WREC Control	4	100		
10	4	95.0	0.65	
18	4	97.5	0.00	
32	4	95.0	0.65	
56	4	5.0	17.91	*

Values given are actual percent survival means rather than arc sine square root transformed means which were used in the statistical analysis.

* Significantly different at alpha = 0.05 (Dunnett's critical value = 2.36).

TABLE A23-6. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 1) - DRY WEIGHT
OF LARVAE AFTER 7 DAYS OF EXPOSURE

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 2.80
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 3.47
Alpha value: 0.01
Critical value: 11.34

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 12.41
Alpha value: 0.05
Critical value: 3.49

Conclusion: Reject the null hypothesis that all groups are equal

Dunnett's Test:

Calculated test statistic: See Table A23-7

Alpha value: 0.05 Critical value: 2.29

Conclusion: Reject the null hypothesis that all

groups are equal

TABLE A23-7. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 1) - RESULTS OF
DUNNETT'S TEST ON DRY WEIGHT OF LARVAE AFTER 7 DAYS
OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean Dry Weight (mg)	T Statistic	Significance
UMD/WREC Control	4	0.58		
10	4	0.61	-1.05	
18	4	0.61	-1.05	
32	4	0.48	4.19	*

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.29).

APPENDIX 24

FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANALCREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B)

(TEST NO. 1)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static renewal (every 24 h)

Date: September 13-20, 1994

Investigator: S.D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: 20% Perrier:80% RO water

Chemical Characteristics: See Table A24-1

Test Organism:

Scientific Name: <u>Pimephales promelas</u>

Dry Weight:

0.58 mg (mean weight of

controls at end of test)

Age at Start of Test: <24 h

Source: UMD/WREC culture

Experimental Chambers:

Material: 600 mL glass beaker

Test Solution Volume: 400 mL

No. Organisms/Replicate: 10

No. Organisms/Treatment: 40

Loading: <0.5 g/L

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to renewals

pH Buffer:

10 N NaOH

Endpoints:

Mortality; growth

Water Quality:

Table A24-1

Results:

Mortality:

96-h Exposure:

The data for the 96-h LC50 were obtained from the 7-d study. The buffered groundwater did not affect larval survival. The data are summarized in Table A24-2.

7-d Exposure:

The survival of fathead minnow larvae was not affected after 7 days of exposure to Canal Creek buffered groundwater (Table A24-3).

Growth:

Fathead minnow larval growth was not affected by exposure to buffered Canal Creek groundwater (see Tables A24-3, A24-4, and A24-5).

TABLE A24-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY TEST WATER QUALITY DATA FOR THE FATHEAD MINNOW 7-DAY TEST (TEST NO. 1) - DISSOLVED OXYGEN (MG/L)

	Test Concentrations (Percent Groundwater by Volum							
	0	10	18	32	56	100		
Day 0								
0 H	8.3	8.1	8.1	7.9	8.0	7.7		
Day 1	-							
0 H 24 H	8.1 8.2	8.0 7.8	7.8 7.6	7.9 7.7	8.0 7.7	8.0 7.8		
Day 2								
0 H 24 H	8.3 7.7	8.2 7.6	8.1 7.5	8.3 7.6	8.3 7.7	8.2 7.6		
Day 3								
0 H 24 H	8.4 8.0	8.3 7.8	8.2 7.7	8.3 7.7	8.2 7.6	8.1 7.5		
Day 4								
0 H 24 H	8.4 8.1	8.2 7.9	8.3 7.9	8.1 7.6	8.0 7.5	8.1 7.7		
Day 5								
0 H 24 H	8.4 8.1	8.1 7.9	8.2 8.0	8.2 7.9	8.0 7.6	8.1 7.6		
Day 6								
0 H 24 H	8.3 8.0	8.2 8.0	8.3 8.1	8.2 7.6	8.2 7.7	8.1 7.7		
Day 7								
24 H	8.1	7.9	8.0	7.7	7.8	7.6		

TABLE A24-1. (CONTINUED) - pH (STANDARD UNITS)

	0	10	ions (Perc	32	56	100
Day 0						
0 H	7.24	7.18	7.15	7.14	7.06	7.02
<u>Day 1</u>						
0 H	7.22	7.12	7.19	7.25	7.30	7.25
24 H	6.91	6.83	7.02	7.12	7.16	7.21
Day 2						
о н	7.05	7.11	7.21	7.24	7.28	7.29
24 H	6.74	7.00	7.01	7.07	7.16	7.23
Day 3						
0 H	7.14	7.15	7.26	7.29	7.31	7.38
24 H	6.90	7.05	7.07	7.12	7.24	7.30
Day 4						
0 H	7.79	7.57	7.74	7.78	7.71	7.59
24 H	7.14	7.68	7.81	7.88	7.92	7.96
Day 5						
0 H	7.65	7.31	7.29	7.19	7.18	7.09
24 H	7.29	7.54	7.62	7.69	7.73	7.80
Day 6						
ОН	7.40	7.27	7.25	7.23	7.19	7.18
24 H	7.29	7.44	7.50	7.56	7.58	7.66
Day 7						
24 H	7.15	7.50	7.47	7.52	7.69	7.71

TABLE A24-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	<u>Test</u>	Concentrations 100	(Percent	Groundwater	by Volume)
Day 0					
0 Н	160	510			
Day 1					
- 0 H	170	500			
Day 2					
0 H	175	500			
Day 3					
0 H	170	510			
Day 4					
0 Н	160	500			
Day 5					
0 H	160	510			
<u>Day 6</u>					
0 H	165	520			
Day 7					
24 H	155	515			

TABLE A24-1. (CONTINUED) - ALKALINITY (MG/L AS CaCO₃)

	Test C	oncentrations (Percent Groundwater by Volume)
	0	100
Day 0		
0 Н	45	40
Day 1		
0 H	50	40
Day 2		
0 H	50	40
Day 3		
ОН	50	40
Day 4		
0 H	55	45
Day 5		
0 H	50	60
Day 6		
0 H	55	55
Day 7		
24 H	45	50

TABLE A24-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	Test	Concentrations	(Percent	Groundwater by Volume)
	0	100		
Day 0				
0 H	68	120		
Day 1				
0 H	72	100		
Day 2				
0 Н	64	110		
Day 3				
0 Н	68	110		
Day 4				
0 H	72	120		
Day 5				
ОН	64	110		
Day 6				
0 H	68	110		
Day 7				
24 H	65	120		

TABLE A24-2. FATHEAD MINNOW CANAL CREEK BUFFERED GROUNDWATER TOXICITY TEST DATA (TEST NO. 1) - SURVIVAL AFTER 96 HOURS OF EXPOSURE

Concentration (% Groundwater by Volume)	Rep	Number Tested	No. Alive at 96 Hours	Percent Alive
UMD/WREC	A	10	10	100
Control	В	10	10	100
	C	10	10	100
	D	10	10	100
10	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
18	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
32	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
56	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
100	A	10	10	100
	В	10	10	100
	С	10	9	90
	D	10	10	100

TABLE A24-3. FATHEAD MINNOW CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST DATA (TEST NO. 1) - LARVAL SURVIVAL
AND DRY WEIGHT AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	Rep	Number Larvae Alive	Percent Survival	Dry Weight (mg)	Mean Dry Weight (mg)
UMD/WREC	1	10	100	0.60	
Control	2	10	100	0.60	
	3	10	100	0.57	
	4	10	100	0.56	0.58
10	1	9	90	0.63	
	2	10	100	0.51	
	3	10	100	0.59	
	4	10	100	0.62	0.59
18	1	9	90	0.62	
	2	10	100	0.64	
	3	10	100	0.59	
	4	10	100	0.60	0.62
32	1	10	100	0.46	
	2	9	90	0.58	
	3	9	90	0.53	
	4	10	100	0.48	0.51
56	1	9	90	0.55	
	2	10	100	0.62	
	3	10	100	0.54	
	4	10	100	0.47	0.55
100	1	7	70	0.48	
	2	10	100	0.56	
	3	9	90	0.58	
	4	10	100	0.49	0.53

TABLE A24-4. FATHEAD MINNOW CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 1) DRY WEIGHT OF LARVAE AFTER 7 DAYS OF EXPOSURE

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 9.89
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 4.86
Alpha value: 0.01
Critical value: 15.09

Conclusion: Fail to reject the null hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 0.59
Alpha value: 0.05
Critical Value: 2.77

Conclusion: Fail to reject the null

hypothesis that all groups are equal

APPENDIX 25

FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 2)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Static renewal (every 24 h) Type of Test:

Date: November 8-15, 1994

Investigator: S.D. Turley

Laboratory: UMD/WREC

Groundwater:

APG-EA Canal Creek Well CC-27B Source:

Chemical Characteristics: See Appendix 58

Dilution Water:

20% Perrier:80% RO water Source:

Chemical Characteristics: See Table A25-1

Test Organism:

Scientific Name: <u>Pimephales</u> promelas

Dry Weight: 0.72 mg (mean weight of controls at end of test)

Age at Start of Test: <24 h

Source: UMD/WREC culture

Experimental Chambers:

Material: 600 mL glass beaker

Test Solution Volume: 400 mL

No. Organisms/Replicate: 10

No. Organisms/Treatment: 40

Loading: <0.5 g/L

Lighting: Fluorescent; 60-85 foot

candles

Aeration:

Prior to each renewal

Endpoints:

Mortality; growth

Water Quality:

Table A25-1

Results:

Mortality:

96-h Exposure:

The data for the 96-h LC50 were obtained from the 7-d study. All organisms exposed to 100% raw groundwater died during the 96-h exposure; 20% or less of the organisms died at the lower test concentrations (Table A25-2). The 96-h LC50, which was determined by the moving average angle method, is as follows:

96-h LC50 = 60.4% raw groundwater by volume (95% confidence limits = 56.71-64.67).

7-d Exposure:

Significant (α = 0.05) mortality occurred in fathead minnow larvae exposed to 100% and 56% groundwater by volume for 7 d (see Tables A25-3, A25-4, and A25-5). The 7-d LC50, which was determined by the moving average angle method, is as follows:

7-d LC50 = 44.9% raw groundwater by volume (95% confidence limits = 40.32-50.28).

The NOEC and LOEC for the larval fish, based on mortality are as follows:

NOEC = 32% raw groundwater by volume. LOEC = 56% raw groundwater by volume.

All organisms exposed to APG-EA diluent water survived.

Growth:

The growth of fathead minnow larvae was not affected by a 7-d exposure to concentrations which ranged from 10% to 32% groundwater by volume (see Tables A25-3 and A25-6).

Fathead minnow larval growth was not affected by 7 d of exposure to APG-EA diluent water relative to the UMD/WREC control fish (t-test: critical value = 3.71; t statistic = 0.17; $\alpha = 0.01$).

TABLE A25-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY TEST WATER QUALITY DATA FOR THE FATHEAD MINNOW 7-DAY TEST (TEST NO. 2) - DISSOLVED OXYGEN (MG/L)

	Tes	Test Concentrations			(Percent Groundwater by		
	0 APG	0 WREC	10	18	32	56	100
Day 0							
0 H	8.6	8.6	8.2	8.1	8.0	8.1	7.5
Day 1							
0 H 24 H	8.2 7.6	8.6 8.3	8.2 8.0	8.3	8.4 7.9	8.0 7.8	7.8 7.7
Day 2							
0 H 24 H	8.1 7.5	8.5 7.3	8.1 7.0	8.2 7.3	8.2 7.5	8.0 7.5	7.1
Day 3							
0 H 24 H	8.0 7.4	8.5 7.4	8.0 7.3	8.1 7.5	8.1 7.4	8.0 7.3	7.0
Day 4							
0 H 24 H	8.1 7.5	8.5 7.5	8.0 7.2	8.1 7.7	8.1 7.6	8.0 7.2	7.0
Day 5							
0 H 24 H	8.0 7.4	8.4 7.4	8.1 7.1	8.0 7.6	8.0 7.7	8.0 7.1	7.0
Day 6							
0 H 24 H	8.0 7.3	8.3 7.5	8.1 7.0	8.0 7.4	8.0 7.6	8.0 7.0	7.0
<u>Day 7</u>							
24 H	7.2	7.6	7.1	7.2	7.6	7.2	

TABLE A25-1. (CONTINUED) - pH (STANDARD UNITS)

	Tes	Test Concentrations			(Percent Groundwater by Vol		
	0 APG	0 WREC	10	18	32	56	100
Day 0							
0 H	7.15	7.73	7.17	6.94	6.69	6.30	3.80
Day 1							
0 H 24 H	7.11 7.07	7.57 7.61	7.25 7.21	6.91 7.13	6.61 6.97	6.21 6.98	3.69 4.20
Day 2							
0 H 24 H	7.18 7.40	8.04 7.71	7.76 7.59	7.62 7.47	7.18 7.32	6.84 7.98	3.75
Day 3							
0 H 24 H	7.19 7.45	7.77 7.77	7.70 7.51	7.54 7.66	7.11 7.27	6.51 7.00	3.69
Day 4							
0 H 24 H	7.20 7.35	7.70 7.90	7.15 7.49	6.99 7.41	6.79 7.35	6.34 7.11	3.46
Day 5							
0 H 24 H	7.15 7.40	7.75 7.75	7.20 7.51	7.00 7.47	6.55 7.44	6.23 7.09	3.53
Day 6							
0 H 24 H	7.19 7.16	7.70 7.41	7.22 7.19	6.95 7.15	6.60 7.13	6.17 7.11	3.36
Day 7							
24 H	6.99	7.10	7.06	7.00	6.92	6.86	

TABLE A25-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

		Concentrations	(Percent Groundwater by Volume)
	0 APG	0 WREC	100
Day 0			
0 Н	200	290	450
Day 1			
ОН	190	280	440
Day 2			
ОН	190	280	450
Day 3			
0 H	190	280	450
Day 4			
0 Н	200	290	450
Day 5			
0 Н	200	280	450
Day 6			
ОН	200	280	440
Day 7			
24 H	a	a	a

^a Measurement not taken.

TABLE A25-1. (CONTINUED) - ALKALINITY (MG/L AS CaCO₃)

	Test	Concentrations	(Percent	Groundwater	by V	olume)
	0 APG	0 WREC		100	_	
	AFG					
Day 0						
о н	25	60		a		
Day 1						
о н	30	55				
Day 2						
ОН	30	50				
Day 3						
ОН	30	50				
Day 4						
ОН	30	60				
Day 5						
ОН	25	55				
Day 6						
ОН	30	50				
Day 7						
24 H	ь	b				

^a Could not obtain measurement.

b Measurement not taken.

TABLE A25-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	Test 0 APG	Concentrations 0 WREC	(Percent Groundwater by Volume) 100
Day 0			
о н	52	100	120
Day 1			
О Н	50	96	124
Day 2			
ОН	52	96	128
Day 3			
ОН	50	100	124
Day 4			
ОН	50	96	120
Day 5			
ОН	50	100	120
Day 6			
0 Н	52	100	128
Day 7			
24 H	a	8	

^a Measurement not taken.

TABLE A25-2. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY TEST DATA (TEST NO. 2) - SURVIVAL AFTER 96 HOURS OF EXPOSURE

Concentration (% Groundwater by Volume)	Rep	Number Tested	No. Alive at 96 Hours	Percent Alive
UMD/WREC	A	10	10	100
Control	В	10	10	100
	С	10	10	100
	D	10	10	100
APG-EA	A	10	10	100
Diluent Water	В	10	10	100
	С	10	10	100
	D	10	10	100
10	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
18	A	10	8	80
	В	10	10	100
	С	10	10	100
	D	10	10	100
32	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
56	A	10	7	70
	В	10	9	90
	С	10	9	90
	D	10	7	70
100	A	10	0	0
	В	10	0	0
	С	10	0	0
	D	10	0	0

TABLE A25-3. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY
TEST DATA (TEST NO. 2) - LARVAL SURVIVAL AND DRY
WEIGHT AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	Rep	Number Larvae Alive	Percent Survival	Dry Weight (mg)	Mean Dry Weight (mg)
UMD/WREC	1	10	100	0.71	
Control	2	10	100	0.72	
	3	10	100	0.72	
	4	10	100	0.74	0.72
APG-EA	1	10	100	0.72	
Diluent	2	10	100	0.65	
Water	3	10	100	0.79	
	4	10	100	0.75	0.73
10	1	10	100	0.79	
	2	9	90	0.72	
	3	10	100	0.68	
	4	10	100	0.79	0.75
18	1	8	80	0.71	
	2	10	100	0.79	
	3	10	100	0.76	
	4	10	100	0.70	0.74
32	1	10	100	0.67	
	2	10	100	0.75	
	3	9	90	0.73	
	4	10	100	0.68	0.71
56	1	0	0	0.00	
	2	2	20	0.38	
	3	2	20	0.47	
	4	1	10	0.33	0.30
100	1	0	0		
	2	0	0		
	3	0	0		
	4	0	0		

TABLE A25-4. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 2) - LARVAL
SURVIVAL AFTER 7 DAYS OF EXPOSURE^a

Data Transformation:

Arc sine square root

Chi-Square Test for Normality:

Calculated test statistic: 9.79
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Test could not be performed because at least one treatment group has zero variance.

Steel's Many-One Rank Test:

Calculated test statistic: See Table A25-5

Alpha value: 0.05 Critical value: 10.00

Conclusion:

Reject the null hypothesis that all groups are equal.

The 100% raw Canal Creek groundwater treatment was not included in the statistical analyses because all organisms died during the test.

TABLE A25-5. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 2) - RESULTS OF
STEEL'S MANY-ONE RANK TEST ON LARVAL SURVIVAL AFTER
7 DAYS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Percent Mean Survival ^a	Rank Sum	Critical Value	Significance
UMD/WREC Control	4	100			Think and the Market of the Ma
10	4	97.5	16.0	10.0	
18	4	95.0	16.0	10.0	
32	4	97.5	16.0	10.0	
56	4	12.5	10.0	10.0	*

Values given are actual percent survival means rather than arc sine square root transformed means which were used in the statistical analysis.

* Significantly different at alpha = 0.05.

TABLE A25-6. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 2) - DRY WEIGHT
OF LARVAE AFTER 7 DAYS OF EXPOSURE

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 5.21
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 4.37
Alpha value: 0.01
Critical value: 11.34

Conclusion: Fail to reject the null hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 0.73
Alpha value: 0.05
Critical value: 3.49

Conclusion: Fail to reject the null

FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 2)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Static renewal (every 24 h) Type of Test:

Date: November 8-15, 1994

S.D. Turley Investigator:

Laboratory: UMD/WREC

Groundwater:

APG-EA Canal Creek Well CC-27B Source:

Chemical Characteristics: See Appendix 58

Dilution Water:

20% Perrier:80% RO water Source:

Chemical Characteristics: See Table A26-1

Test Organism:

Scientific Name: <u>Pimephales</u> <u>promelas</u>

Dry Weight: 0.72 mg (mean weight of controls at end of test)

Age at Start of Test: <24 h

Source: UMD/WREC culture

Experimental Chambers:

600 mL glass beaker Material:

Test Solution Volume: 400 mL

No. Organisms/Replicate: 10

No. Organisms/Treatment: 40

Loading: <0.5 g/L

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to renewals pH Buffer:

10 N NaOH

Endpoints:

Mortality; growth

Water Quality:

Table A26-1

Results:

Mortality:

96-h Exposure:

The data for the 96-h LC50 were obtained from the 7-d study. The buffered groundwater did not affect larval survival (Table A26-2).

7-d Exposure:

The survival of fathead minnow larvae was not affected after 7 days of exposure to Canal Creek buffered groundwater (Table A26-3).

Growth:

Fathead minnow larval growth was not affected by exposure to buffered Canal Creek groundwater (see Tables A26-3, A26-4, and A26-5).

TABLE A26-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY TEST WATER QUALITY DATA FOR THE FATHEAD MINNOW 7-DAY TEST (TEST NO. 2) - DISSOLVED OXYGEN (MG/L)

	Test Concentrations (Percent Groundwater by Volume						
	0	10	18	32	56	100	
Day 0							
о н	8.6	7.8	7.8	7.8	7.9	7.7	
Day 1							
0 H 24 H	8.6 8.3	8.2 7.7	8.2 8.0	8.1 7.8	8.1 7.8	7.6 7.9	
Day 2							
0 H 24 H	8.5 7.3	8.2 7.7	8.2 7.7	8.2 7.6	8.3 7.5	7.8 7.3	
Day 3							
0 H 24 H	8.5 7.4	8.1 7.6	8.1 7.6	8.3 7.7	8.2 7.6	7.7 7.1	
Day 4							
0 H 24 H	8.5 7.5	8.2 7.7	8.5 7.7	8.3 7.6	8.1 7.7	7.9 7.0	
Day 5							
0 H 24 H	8.4 7.4	8.1 7.8	8.0 7.5	8.3 7.5	8.2 7.5	8.0 7.3	
Day 6							
0 H 24 H	8.3 7.5	8.0 7.6	8.1 7.4	8.0 7.6	8.0 7.4	8.0 7.2	
Day 7							
24 H	7.6	7.5	7.5	7.5	7.3	7.1	

TABLE A26-1. (CONTINUED) - pH (STANDARD UNITS)

	Test	Concentrations (Perc		ent Ground	water by V	
	0	10	18	32	56	100
Day 0						
о н	7.73	7.54	7.52	7.46	7.41	7.38
Day 1						
0 H 24 H	7.57 7.61	7.53 7.46	7.67 7.43	7.72 7.47	7.76 7.55	7.79 7.65
Day 2						
0 H 24 H	8.04 8.16	7.90 7.69	7.80 7.79	7.70 7.83	7.63 7.90	7.38 7.98
Day 3						
0 H 24 H	7.77 8.00	7.67 7.57	7.71 7.69	7.71 7.70	7.52 7.72	7.46 7.76
Day 4						
0 H 24 H	7.70 7.90	7.60 7.60	7.56 7.65	7.50 7.70	7.40 7.72	7.41 7.76
Day 5						
0 H 24 H	7.75 7.75	7.52 7.62	7.37 7.70	7.26 7.67	7.21 7.77	7.14 7.81
Day 6						
0 H 24 H	7.70 7.41	7.23 7.25	7.22 7.26	7.20 7.27	7.12 7.32	7.08 7.38
Day 7						
24 H	7.10	6.95	7.00	7.14	7.13	7.19

TABLE A26-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	<u>Test</u>	Concentrations 100	(Percent Groundwater by Volume)
Day 0			
ОН	290	790	
Day 1			
ОН	280	800	
Day 2			
0 Н	280	810	
Day 3			
ОН	280	800	
Day 4			
0 H	290	800	
Day 5			
ОН	280	800	
Day 6			
0 H	280	800	
Day 7			
24 H	280	810	

TABLE A26-1. (CONTINUED) - ALKALINITY (MG/L AS CaCO₃)

	Test 0	Concentrations 100	(Percent Groundwater by Volume)
Day 0			
0 H	60	85	
Day 1			
о н	55	80	
Day 2			
0 Н	50	85	
Day 3			
ОН	50	80	
Day 4			
0 Н	60	80	
Day 5			
0 H	55	80	
Day 6			
0 H	50	85	
Day 7			
24 H	45	80	

TABLE A26-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	<u>Test</u> 0	Concentrations 100	(Percent Groundwater by Volume)
Day 0			
ОН	100	60	
Day 1			
ОН	96	56	
Day 2			
ОН	96	60	
Day 3			
ОН	100	60	
Day 4			
ОН	96	60	
Day 5			
ОН	100	56	·
Day 6			
ОН	100	60	
Day 7			
24 H	96	56	

TABLE A26-2. FATHEAD MINNOW CANAL CREEK BUFFERED GROUNDWATER TOXICITY TEST DATA (TEST NO. 2) - SURVIVAL AFTER 96 HOURS OF EXPOSURE

Concentration (% Groundwater by Volume)	Rep	Number Tested	No. Alive at 96 Hours	Percent Alive
UMD/WREC	A	10	10	100
Control	В	10	10	100
	C	10	10	100
	D	10	10	100
10	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
18	A	10	10	100
10	В	10	10	100
	C	10	10	100
	D	10	10	100
32	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
56	A	10	10	100
	В	10	10	100
	B C	10	9	90
	D	10	10	100
100	A	10	10	100
	В	10	10	100
	Ċ	10	10	100
	D	10	10	100

TABLE A26-3. FATHEAD MINNOW CANAL CREEK BUFFERED GROUNDWATER TOXICITY TEST DATA (TEST NO. 2) - LARVAL SURVIVAL AND DRY WEIGHT AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	Rep	Number Larvae Alive	Percent Survival	Dry Weight (mg)	Mean Dry Weight (mg)
UMD/WREC	1	10	100	0.71	
Control	2	10	100	0.72	
	3	10	100	0.72	
	4	10	100	0.74	0.72
10	1	10	100	0.70	
	2	10	100	0.71	
	3	10	100	0.79	
	4	10	100	0.68	0.72
18	1	10	100	0.70	
	2 3	9	90	0.66	
	3	10	100	0.71	
	4	10	100	0.68	0.69
32	1	10	100	0.64	
	2	9	90	0.64	
	3	9	90	0.73	
	4	10	100	0.67	0.67
56	1	9	90	0.65	
	2	10	100	0.62	
	3	9	90	0.79	
	4	9	90	0.61	0.67
100	1	10	100	0.74	
	2	9	90	0.65	
	3	8	80	0.65	
	4	10	100	0.68	0.68

TABLE A26-4. FATHEAD MINNOW CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 2) DRY WEIGHT OF LARVAE AFTER 7 DAYS OF EXPOSURE

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 5.36
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 9.23
Alpha value: 0.01
Critical value: 15.09

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 1.05
Alpha value: 0.05
Critical Value: 2.77

Conclusion: Fail to reject the null

FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 3)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static renewal (every 24 h)

Date: January 24-31, 1995

Investigator: S.D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: 20% Perrier:80% RO water

Chemical Characteristics: See Table A27-1

Test Organism:

Scientific Name: <u>Pimephales promelas</u>

Dry Weight:

0.82 mg (mean weight of controls at end of test)

are at Chart of Month.

Age at Start of Test: <24 h

Source: UMD/WREC culture

Experimental Chambers:

Material: 600 mL glass beaker

Test Solution Volume: 400 mL

No. Organisms/Replicate: 10

No. Organisms/Treatment: 40

Loading: <0.5 g/L

Lighting: Fluorescent; 60-85 foot

candles

Aeration:

Prior to each renewal

Endpoints:

Mortality; growth

Water Quality:

Table A27-1

Results:

Mortality:

96-h Exposure:

The data for the 96-h LC50 were obtained from the 7-d study. All organisms exposed to 56% and 100% raw groundwater died during the 96-h exposure; 37.5% of the organisms exposed to 32% raw groundwater died during the 96-h exposure (Table A27-2). The 96-h LC50, which was determined by the moving average angle method, is as follows:

96-h LC50 = 38.9% raw groundwater by volume (95% confidence limits = 35.91-41.73).

7-d Exposure:

Significant ($\alpha=0.05$) mortality occurred in fathead minnow larvae exposed to 100%, 56% and 32% groundwater by volume for 7 d (see Tables A27-3, A27-4, and A27-5). The 7-d LC50, which was determined by the moving average angle method, is as follows:

7-d LC50 = 31.9% raw groundwater by volume (95% confidence limits = 28.84-36.00).

The NOEC and LOEC for the larval fish, based on mortality are as follows:

NOEC = 18% raw groundwater by volume. LOEC = 32% raw groundwater by volume.

Fathead minnow larval survival was not affected by exposure to APG-EA diluent water relative to UMD/WREC controls after 7 d of exposure.

Growth:

The growth of fathead minnow larvae was not affected by a 7-d exposure to concentrations below 32% groundwater by volume (see Tables A27-3 and A27-6).

Larval growth was not affected by 7 d of exposure to APG-EA diluent water relative to the UMD/WREC control fish.

TABLE A27-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY TEST WATER QUALITY DATA FOR THE FATHEAD MINNOW 7-DAY TEST (TEST NO. 3) - DISSOLVED OXYGEN (MG/L)

		st Concer					
	0 APG	0 WREC	10	18	32	56	100
Day 0					,		
0 H	8.8	8.1	8.2	7.8	7.8	7.6	6.7
<u>Day 1</u>							
0 H 24 H	8.7 7.9	8.4 7.9	8.3 7.9	8.2 8.0	8.2 8.0	7.6 8.1	7.0 8.2
Day 2							
0 H 24 H	8.3 7.0	8.8 7.2	8.7 7.2	8.7 7.3	8.5 7.4	7.8 7.6	7.1
Day 3							
0 H 24 H	8.5 6.7	8.6 7.9	8.5 7.0	8.5 7.2	8.3 7.7	8.1 7.8	7.0
Day 4							
0 H 24 H	8.6 6.9	8.5 7.7	8.4 7.1	8.3 7.3	8.2 7.6	8.2	7.2
<u>Day 5</u>							
0 H 24 H	8.5 7.0	8.4 7.6	8.4 7.0	8.3 7.2	8.2 7.4	8.2	7.2
Day 6							
0 H 24 H	8.5 6.5	8.5 6.5	8.3 6.1	8.3 6.0	8.5 6.1	8.1	7.0
Day 7							
24 H	7.5	7.7	7.6	7.5	7.5		

TABLE A27-1. (CONTINUED) - pH (STANDARD UNITS)

	Test	Concent	rations	(Percent			by Volume)
	0 APG	0 WREC	10	18	32	56	100
Day 0	1.10						
о н	7.66	7.21	6.69	6.32	6.01	5.41	3.67
Day 1							
0 H 24 H	7.62 7.25	7.54 7.14	7.11 7.15	6.69 7.15	6.27 7.08	5.67 6.91	
Day 2							
0 H 24 H	7.59 7.52	7.21 6.93	6.89 6.97		6.26 6.86	5.23 6.49	3.79
Day 3							
0 H 24 H	7.51 7.53	7.37 6.96	7.12 6.97		6.35 6.91	5.47 6.28	3.71
Day 4							
0 H 24 H	7.50 7.51	7.20 7.07	6.86 7.10	6.81 7.11	6.64 7.12	5.99	3.79
Day 5							
0 H 24 H	7.48 7.59	7.63 7.43	7.54 7.46	7.23 7.43	6.88 7.25	6.23	3.84
Day 6							
0 H 24 H	7.49 7.11	7.49 7.21	7.23 7.13	7.02 7.08	6.61 7.07	5.97	3.79
Day 7							
24 H	7.38	7.24	7.33	7.35	7.36		

TABLE A27-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	Test 0 APG	Concentrations 0 WREC	(Percent Groundwater by Volume) 100
Day 0			
0 Н	250	110	410
Day 1			
0 Н	250	110	400
Day 2			
ОН	250	100	400
Day 3			
0 Н	250	110	410
Day 4			
ОН	240	110	400
Day 5			
ОН	250	110	410
Day 6			
ОН	240	100	420
Day 7			
24 H	a	а	а

a Measurement not taken.

TABLE A27-1. (CONTINUED) - ALKALINITY (MG/L AS CaCO₃)

	Test	Concentrations	(Percent	Groundwater	by	Volume)
	0 APG	0 WREC		100		
Day 0						
о н	60	30		a		
Day 1						
ОН	65	35				
Day 2						
0 Н	60	30				
Day 3						
о н	60	35				•
Day 4						
о н	60	30				
Day 5						
0 H	60	35				
Day 6						
о н	65	30				
Day 7						
24 H	b	b				

Could not obtain measurement.
 Measurement not taken.

TABLE A27-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	Test 0 APG	Concentrations (Pe 0 WREC	rcent Groundwater by Volume) 100
Day 0			
0 H	52	44	110
Day 1			
0 Н	56	40	100
Day 2			
0 H	56	44	100
Day 3			
0 H	56	44	110
Day 4			
0 H	56	40	100
Day 5			
0 H	56	44	110
Day 6			
0 H	52	40	110
Day 7			
24 H	a	а	а

^a Measurement not taken.

TABLE A27-2. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY TEST DATA (TEST NO. 3) - SURVIVAL AFTER 96 HOURS OF EXPOSURE

Concentration (% Groundwater by Volume)	Rep	Number Tested	No. Alive at 96 Hours	Percent Alive
UMD/WREC	A	10	10	100
Control	В	10	10	100
	С	10	10	100
	D	10	10	100
APG-EA	A	10	9	90
Diluent Water	В	10	10	100
	С	10	10	100
	D	10	10	100
10	A	10	10	100
10	В	10	10	100
	C	10	10	100
	D	10	10	100
18	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
32	A	10	3	30
	В	10	8	80
	С	10	6	60
	D	10	8	80
56	A	10	0	О
	В	10	0	0
	С	10	0	0
	D	10	0	0
100	A	10	0	0
	В	10	0	0
	C	10	0	0
	D	10	0	0

TABLE A27-3. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY TEST DATA (TEST NO. 3) - LARVAL SURVIVAL AND DRY WEIGHT AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	Rep	Number Larvae Alive	Percent Survival	Dry Weight (mg)	Mean Dry Weight (mg)
UMD/WREC	1	10	100	0.80	
Control	2	10	100	0.84	
	3	10	100	0.81	
	4	10	100	0.83	0.82
APG-EA	1	9	90	0.86	
Diluent	2	10	100	0.76	
Water	3	10	100	0.82	
	4	10	100	0.84	0.82
10	1	10	100	0.72	
	2	10	100	0.88	
•.	3	10	100	0.77	
	4	10	100	0.81	0.80
18	1	10	100	0.80	
	2	10	100	0.74	
	3	10	100	0.68	
	4	10	100	0.72	0.74
32	1	3	30	0.60	
	2	6	60	0.55	
	3	5	50	0.40	
	4	6	60	0.55	0.53
56	1	o	0		
	2	0	0		
	3	0	0		
	4	0	0		
100	1	0	0	·	
	2	0	0		
	3	0	0		
	4	0	0		

TABLE A27-4. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 3) - LARVAL SURVIVAL AFTER 7 DAYS OF EXPOSURE^a

Data Transformation:

Arc sine square root

Chi-Square Test for Normality:

Calculated test statistic: 12.94
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null

hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Test could not be performed because at least one treatment group has zero variance.

Steel's Many-One Rank Test:

Calculated test statistic: See Table A27-5

Alpha value: 0.05 Critical value: 10.00

Conclusion:

Reject the null hypothesis that all groups are equal.

The 56% and 100% raw Canal Creek groundwater treatments were not included in the statistical analyses because all organisms died during the test.

TABLE A27-5. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 3) - RESULTS OF
STEEL'S MANY-ONE RANK TEST ON LARVAL SURVIVAL AFTER
7 DAYS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Percent Mean Survival ^a	Rank Sum	Critical Value	Significance
UMD/WREC Control	4	100			
10	4	100	18.0	10.0	
18	4	100	18.0	10.0	
32	4 .	50.0	10.0	10.0	*

Values given are actual percent survival means rather than arc sine square root transformed means which were used in the statistical analysis.

^{*} Significantly different at alpha = 0.05.

TABLE A27-6. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 3) - DRY WEIGHT OF LARVAE AFTER 7 DAYS OF EXPOSURE

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 2.51
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 3.35
Alpha value: 0.01
Critical value: 9.21

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 3.34
Alpha value: 0.05
Critical value: 4.26

Conclusion: Fail to reject the null

The 32%, 56% and 100% raw Canal Creek groundwater treatments were not included in the statistical analyses because all concentrations above the NOEC for survival are excluded from the hypothesis test for growth effects.

FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 3)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static renewal (every 24 h)

Date: January 24-31, 1995

Investigator: S.D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: 20% Perrier:80% RO water

Chemical Characteristics: See Table A28-1

Test Organism:

Scientific Name: <u>Pimephales</u> <u>promelas</u>

Dry Weight:

0.82 mg (mean weight of controls at end of test)

Age at Start of Test: <24 h

Source: UMD/WREC culture

Experimental Chambers:

Material: 600 mL glass beaker

Test Solution Volume: 400 mL

No. Organisms/Replicate: 10

No. Organisms/Treatment: 40

Loading: <0.5 g/L

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to renewals

pH Buffer:

10 N NaOH

Endpoints:

Mortality; growth

Water Quality:

Table A28-1

Results:

Mortality:

96-h Exposure:

The data for the 96-h LC50 were obtained from the 7-d study. The buffered groundwater did not affect larval survival. The data are summarized in Table A28-2.

7-d Exposure:

The survival of fathead minnow larvae was not affected after 7 days of exposure to Canal Creek buffered groundwater (Table A28-3).

Growth:

Fathead minnow larval growth was not affected by 7 d of exposure to buffered Canal Creek groundwater (See Tables A28-3 and A28-4).

TABLE A28-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY TEST WATER QUALITY DATA FOR THE FATHEAD MINNOW 7-DAY TEST (TEST NO. 3) - DISSOLVED OXYGEN (MG/L)

				cent Ground	<u>dwater by 1</u> 56	
	0	10	18	32		100
Day 0						
0 H	8.1	7.7	8.0	8.1	8.0	7.0
<u>Day 1</u>						
0 H 24 H	8.4 7.9	8.5 8.0	8.4 7.9	8.2 7.9	7.9 7.9	7.5 7.9
Day 2						
0 H 24 H	8.8 7.2	8.5 7.2	8.4 7.2	8.2 7.2	8.2 7.1	7.5 7.0
Day 3						
0 H 24 H	8.6 7.9	8.5 7.1	8.3 7.2	8.1 7.2	7.9 7.1	7.7 7.2
Day 4						
0 H 24 H	8.5 7.7	8.4 7.0	8.2 7.3	8.2 7.1	8.0 7.0	7.8 7.1
Day 5						
0 H 24 H	8.4 7.6	8.4 7.1	8.3 7.4	8.3 7.0	8.1 7.1	7.9 7.2
Day 6						
0 H 24 H	8.5 6.5	8.4 6.0	8.6 6.1	8.5 6.1	8.3 6.2	8.1 6.5
Day 7						
24 H	7.7	7.3	7.4	7.5	7.4	7.3

TABLE A28-1. (CONTINUED) - pH (STANDARD UNITS)

				ent Ground	water by V	olume)
	0	10	18	32	56 	100
Day 0						
0 H	7.21	7.47	7.51	7.50	7.50	7.57
Day 1						
0 H 24 H	7.54 7.14	7.48 7.21	7.40 7.29	7.35 7.32	7.25 7.47	7.16 7.72
Day 2						
0 H 24 H	7.21 6.93	7.55 7.36	7.57 7.33	7.64 7.34	7.65 7.38	7.67 7.52
Day 3						
0 H 24 H	7.37 6.96	7.48 7.37	7.49 7.36	7.48 7.35	7.44 7.48	7.51 7.60
Day 4						
0 H 24 H	7.20 7.07	7.70 7.61	7.71 7.52	7.76 7.50	7.75 7.59	7.81 7.67
Day 5						
0 H 24 H	7.63 7.43	7.60 7.62	7.58 7.62	7.53 7.67	7.56 7.73	7.62 7.80
Day 6						
0 H 24 H	7.49 7.21	7.52 7.04	7.48 7.17	7.45 7.23	7.41 7.34	7.39 7.48
Day 7						
24 H	7.24	7.42	7.51	7.54	7.65	7.75

TABLE A28-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	<u>Test</u>	Concentrations 100	(Percent	Groundwater	by Volume)
Day 0					
0 Н	110	500			
Day 1					
ОН	110	500			
Day 2					
0 H	100	490			
Day 3					
0 H	110	500			
Day 4					
0 H	110	490			
Day 5					
O H	110	500			
Day 6					
0 H	100	500			
Day 7					
24 H	a	a			

^a Measurement not taken.

TABLE A28-1. (CONTINUED) - ALKALINITY (MG/L AS CaCO₃)

	Test Concer	trations (Percent Groundwater by Volume) 100
Day 0		
ОН	30	70
Day 1		
о н	35	70
Day 2		
о н	30	70
Day 3		
ОН	35	70
Day 4		
ОН	30	70
Day 5		
ОН	35	70
Day 6		
0 H	30	70
Day 7	a	a
24 H		

^a Measurement not taken.

TABLE A28-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	<u>Test</u> 0	Concentrations 100	(Percent	Groundwater	by Volume)
Day 0					
ОН	44	70			
Day 1					
0 Н	40	72			
Day 2					
ОН	44	70			
Day 3					
0 H	44	72			
Day 4					
0 H	40	70			
Day 5					
о н	44	72			
Day 6					
ОН	40	72			
Day 7	a	a			
24 H					

^a Measurement not taken.

TABLE A28-2. FATHEAD MINNOW CANAL CREEK BUFFERED GROUNDWATER TOXICITY TEST DATA (TEST NO. 3) - SURVIVAL AFTER 96 HOURS OF EXPOSURE

Concentration (% Groundwater by Volume)	Rep	Number Tested	No. Alive at 96 Hours	Percent Alive
UMD/WREC	A	10	10	100
Control	В	10	10	100
333232	C	10	10	100
	D	10	10	100
10	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
18	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
32	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
56	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
100	A	10	10	100
	В	10	10	100
	· C	10	10	100
	D	10	10	100

TABLE A28-3. FATHEAD MINNOW CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST DATA (TEST NO. 3) - LARVAL SURVIVAL
AND DRY WEIGHT AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	Rep	Number Larvae Alive	Percent Survival	Dry Weight (mg)	Mean Dry Weight (mg)
UMD/WREC	1	10	100	0.80	
Control	2	10	100	0.84	
	3	10	100	0.81	
	4	10	100	0.83	0.82
10	1	10	100	0.90	
	2	10	100	0.75	
	3	10	100	0.86	
	4	10	100	0.86	0.84
18	1	10	100	0.84	
	2	10	100	0.83	
	3	10	100	0.85	
	4	10	100	0.79	0.83
32	1	9	90	0.86	
	2	10	100	0.88	
	3	10	100	0.78	
	4	10	100	0.76	0.82
56	1	9	90	0.83	
	2 3	10	100	0.85	
	3	10	100	0.83	
	4	10	100	0.75	0.82
100	1	10	100	0.85	
	2	10	100	0.83	
	3	10	100	0.79	
	4	10	100	0.82	0.82

TABLE A28-4. FATHEAD MINNOW CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 3) DRY WEIGHT OF LARVAE AFTER 7 DAYS OF EXPOSURE

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 5.02
Alpha value: 0.01
Critical value: 13.28

Critical value: 13.28
Conclusion: Fail

Fail to reject the null hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 6.41
Alpha value: 0.01
Critical value: 15.09

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 0.16
Alpha value: 0.05
Critical Value: 2.77

Conclusion: Fail to reject the null

FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH \approx 4) GROUNDWATER (WELL CC-27B) (TEST NO. 4)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static renewal (every 24 h)

Date: March 24-31, 1995

Investigator: S.D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: 20% Perrier:80% RO water

Chemical Characteristics: See Table A29-1

Test Organism:

Scientific Name: <u>Pimephales promelas</u>

Dry Weight:

0.68 mg (mean weight of controls at end of test)

Age at Start of Test: <24 h

Source: UMD/WREC culture

Experimental Chambers:

Material: 600 mL glass beaker

Test Solution Volume: 400 mL

No. Organisms/Replicate: 10

No. Organisms/Treatment: 40

Loading: <0.5 g/L

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to each renewal

Endpoints:

Mortality; growth

Water Quality:

Table A29-1

Results:

Mortality:

96-h Exposure:

The data for the 96-h LC50 were obtained from the 7-d study. All organisms exposed to 100% raw groundwater died during the 96-h exposure; 60% of the organisms exposed to 56% raw groundwater died during the 96-h exposure (Table A29-2). The 96-h LC50, which was determined by the moving average angle method, is as follows:

96-h LC50 = 53.7% raw groundwater by volume (95% confidence limits = 50.30-57.69).

7-d Exposure:

Significant (α = 0.05) mortality occurred in fathead minnow larvae exposed to 100% and 56% groundwater by volume for 7 d (see Tables A29-3, A29-4, and A29-5). The 7-d LC50, which was determined by the moving average angle method, is as follows:

7-d LC50 = 44.2% raw groundwater by volume (95% confidence limits = 39.85-49.11).

The NOEC and LOEC for the larval fish, based on mortality are as follows:

NOEC = 32% raw groundwater by volume. LOEC = 56% raw groundwater by volume.

Larval survival was not affected by exposure to APG-EA diluent water relative to UMD/WREC controls after 7 d of exposure (t-test: critical value = 3.71; t statistic = -0.65; $\alpha = 0.01$).

Growth:

The growth of fathead minnow larvae was not affected by a 7-d exposure to concentrations \leq 32% groundwater by volume (see Tables A29-3 and A29-6).

Laval growth was not affected by 7 d of exposure to APG diluent water relative to the UMD/WREC control fish (t-test: critical value = 3.71; t statistic = -1.11; α = 0.01).

TABLE A29-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY TEST WATER QUALITY DATA FOR THE FATHEAD MINNOW 7-DAY TEST (TEST NO. 4) - DISSOLVED OXYGEN (MG/L)

	Test	Concent	trations	(Perce	nt Grou	ndwater	by Volume)
	0 APG	0 WREC	10	18	32	56	100
Day 0							
ОН	8.3	8.4	8.2	8.3	8.4	8.4	7.2
Day 1							
0 H 24 H	8.5 7.9	8.6 8.0	8.3 7.9	8.1 8.0	8.0 7.8	8.0 7.7	6.9 7.7
Day 2							
0 H 24 H	8.5 7.4	8.6 7.5	8.4 7.6	8.3 7.5	8.2 7.6	8.2 7.6	7.0
Day 3							
0 H 24 H	8.4 7.2	8.7 7.0	8.2 7.1	8.3 7.2	8.1 7.3	8.1 7.7	6.9
Day 4							
0 H 24 H	8.3 7.0	8.4 7.0	8.1 7.1	8.2 7.3	8.0 7.4	8.0 7.7	6.8
Day 5							
0 H 24 H	8.2 7.0	8.3 7.0	8.0 6.9	8.1 7.1	8.1 7.3	8.1 7.2	6.7
Day 6							
0 H 24 H	8.3 6.9	8.3 7.2	8.1 7.0	8.0 6.7	8.0 6.9	8.0 7.2	6.6
Day 7							
24 H	7.0	7.1	6.9	6.9	7.0	7.0	

TABLE A29-1. (CONTINUED) - pH (STANDARD UNITS)

	Test	Concen	trations	(Percer	nt Groun	ndwater	by Volume)
	0 APG	0 WREC	10	18	32	56	100
Day 0							
о н	7.15	7.29	6.99	6.69	6.48	5.89	3.74
Day 1							
0 H 24 H	7.20 7.02	7.40 7.19	7.01 7.42	6.70 7.41	6.55 7.30	5.96 6.99	3.75 4.50
Day 2		•					
0 H 24 H	6.95 7.07	7.09 6.96	6.68 7.06	6.58 7.08	6.34 7.06	6.05 7.01	3.80
Day 3							
0 H 24 H	6.97 7.09	7.69 7.48	7.19 7.25	6.95 7.22	6.68 7.16	6.11 7.16	3.84
Day 4							
0 H 24 H	6.99 6.87	7.38 7.34	7.12 7.19	6.89 7.05	6.76 6.95	6.49 6.95	3.91
Day 5							
0 H 24 H	7.10 6.89	7.27 7.16	7.02 6.87	6.91 6.88	6.52 6.81	6.11 6.79	3.88
Day 6							
0 H 24 H	7.05 7.31	7.35 7.19	7.06 7.30	6.88 7.31	6.49 7.20	5.99 7.10	3.79
Day 7							
24 H	6.95	7.27	7.35	7.21	6.97	6.87	

TABLE A29-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	Test 0 APG	Concentrations 0 WREC	(Percent Groundwater by Volume) 100
Day 0			
ОН	240	100	410
Day 1			
ОН	250	110	420
Day 2			
ОН	240	110	410
Day 3			
ОН	250	110	400
Day 4			
ОН	260	110	410
Day 5			
ОН	250	100	420
Day 6			
ОН	240	110	410
Day 7			
24 H	a	a	a

^a Measurement not taken.

TABLE A29-1. (CONTINUED) - ALKALINITY (MG/L AS CaCO₃)

	Test	Concentrations	(Percent Groundwater by Volume)
	0 APG	0 WREC	100
Day 0		14.000	
о н	60	35	a
Day 1			
0 H	60	30	
Day 2			
0 H	60	35	
Day 3			
0 Н	65	30	
Day 4			
ОН	60	30	
Day 5			
ОН	60	35	
Day 6			
о н	60	35	
Day 7			
24 H	b	b	

a Could not obtain measurement.

b Measurement not taken.

TABLE A29-1. (CONTINUED) - HARDNESS (MG/L AS $CaCO_3$)

	<u>Test</u> 0 APG	Concentrations (Percent 0 WREC	Groundwater by Volume) 100
Day 0			
ОН	68	80	100
Day 1			
0 Н	60	70	110
Day 2			
ОН	60	70	114
Day 3			
ОН	64	70	110
Day 4			
ОН	68	70	104
Day 5			
ОН	68	84	100
Day 6			
ОН	68	80	110
Day 7			
24 H	a	a	а

^a Measurement not taken.

TABLE A29-2. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY TEST DATA (TEST NO. 4) - SURVIVAL AFTER 96 HOURS OF EXPOSURE

Concentration (% Groundwater by Volume)	Rep	Number Tested	No. Alive at 96 Hours	Percent Alive
UMD/WREC	A	10	10	100
Control	В	10	10	100
	С	10	10	100
	D	10	9	90
APG-EA	A	10	9	90
Diluent Water	В	10	10	100
	С	10	10	100
	D	10	10	100
10	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
18	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	9	90
32	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
56	A	10	0	0
	В	10	5	50
	С	10	6	60
	D	10	5	50
100	A	10	0	0
	В	10	0	0
	C	10	0	0
	D	10	0	0

TABLE A29-3. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY TEST DATA (TEST NO. 4) - LARVAL SURVIVAL AND DRY WEIGHT AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	Rep	Number Larvae Alive	Percent Survival	Dry Weight (mg)	Mean Dry Weight (mg)
UMD/WREC	1	10	100	0.64	
Control	2	10	100	0.67	
	3	10	100	0.72	
	.4	9	90	0.69	0.68
APG-EA	1	9	90	0.68	
Diluent	2	10	100	0.64	
Water	3	9	90	0.62	
	4	10	100	0.68	0.66
10	1	10	100	0.72	
	2	9	90	0.68	
6.	3	10	100	0.69	
	4	10	100	0.66	0.69
18	1	10	100	0.73	
	2	10	100	0.60	
	3	10	100	0.62	
	4	9	90	0.66	0.65
32	1	10	100	0.62	
	2	9	90	0.68	
	3	10	100	0.63	
	4	9	90	0.60	0.63
56	1	0		0.00	
	2	2	20	0.47	
	3	1	10	0.11	
	4	2	20	0.35	0.23
100	1	0			
	2	0			
	3	0			
	4	0			

TABLE A29-4. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 4) - LARVAL
SURVIVAL AFTER 7 DAYS OF EXPOSURE⁸

Data Transformation:

Arc sine square root

Chi-Square Test for Normality:

Calculated test statistic: 3.83
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null

hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 1.56
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 81.87
Alpha value: 0.05
Critical value: 3.06

Conclusion: Reject the null

hypothesis that all groups are equal.

Dunnett's Test:

Calculated test statistic: See Table A29-5

Alpha value: 0.05 Critical value: 2.36

Conclusion: Reject the null

hypothesis that all groups are equal

The 100% raw Canal Creek groundwater treatment was not included in the statistical analyses because all organisms died during the test.

TABLE A29-5. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 4) - RESULTS OF
DUNNETT'S TEST ON LARVAL SURVIVAL AFTER 7 DAYS
OF EXPOSURE

Conc (% by Vol)	No. of Reps	Percent Mean Survival ^a	T Statistic	Significance
UMD/WREC Control	4	97.5		
10	4	97.5	0.000	
18	4	97.5	0.000	
32	4	95.0	0.577	
56	4	12.5	14.439	*

Values given are actual percent survival means rather than arc sine square root transformed means which were used in the statistical analysis.

* Significantly different at alpha = 0.05 (Dunnett's critical value = 2.36).

TABLE A29-6. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 4) - DRY WEIGHT
OF LARVAE AFTER 7 DAYS OF EXPOSURE

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 3.32
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 2.39
Alpha value: 0.01
Critical value: 11.34

Conclusion: Fail to reject the null hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 1.77
Alpha value: 0.05
Critical value: 3.49

Conclusion: Fail to reject the null

hypothesis that all groups are equal

The 56% and 100% raw Canal Creek groundwater treatments were not included in the statistical analyses because all concentrations above the NOEC for survival are excluded from the hypothesis test for growth effects.

APPENDIX 30

FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 4)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static renewal (every 24 h)

March 24-31, 1995 Date:

S.D. Turley Investigator:

UMD/WREC Laboratory:

Groundwater:

APG-EA Canal Creek Well CC-27B Source:

Chemical Characteristics: See Appendix 58

Dilution Water:

20% Perrier:80% RO water Source:

Chemical Characteristics: See Table A30-1

Test Organism:

Scientific Name: Pimephales promelas

0.68 mg (mean weight of Dry Weight: controls at end of test)

Age at Start of Test: <24 h

Source: UMD/WREC culture

Experimental Chambers:

Material: 600 mL glass beaker

Test Solution Volume: 400 mL

No. Organisms/Replicate: 10

No. Organisms/Treatment: 40

Loading: <0.5 g/L

Lighting: Fluorescent; 60-85 foot

candles

Prior to renewals Aeration:

pH Buffer:

10 N NaOH

Endpoints:

Mortality; growth

Water Quality:

Table A30-1

Results:

Mortality:

96-h Exposure:

The data for the 96-h LC50 were obtained from the 7-d study. The buffered groundwater did not affect larval survival. The data are summarized in Table A30-2.

7-d Exposure:

The survival of fathead minnow larvae was not affected after 7 days of exposure to Canal Creek buffered groundwater (Table A30-3).

Growth:

Fathead minnow larval growth was not affected by 7 d of exposure to buffered Canal Creek groundwater (See Tables A20-3 and A30-4).

TABLE A30-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY TEST WATER QUALITY DATA FOR THE FATHEAD MINNOW 7-DAY TEST (TEST NO. 4) - DISSOLVED OXYGEN (MG/L)

	Test Concentrations (Percent Groundwater by					
	0	10	18	32	56	100
Day 0						
о н	8.4	8.2	8.0	8.3	8.2	7.7
Day 1						
0 H 24 H	8.5 8.0	8.2 7.8	8.3 7.7	8.2 7.6	8.2 7.5	7.6 7.5
Day 2						
0 H 24 H	8.6 7.5	8.4 7.6	8.3 7.7	8.3 7.4	8.3 7.4	7.8 7.5
Day 3						
0 H 24 H	8.7 7.0	8.3 7.2	8.2 7.8	8.3 7.7	8.2 7.7	7.7 7.7
Day 4						
0 H 24 H	8.4 7.0	8.2 6.7	8.1 7.7	8.1 7.1	8.1 7.2	7.6 7.4
Day 5						
0 H 24 H	8.3 7.0	8.1 7.1	8.0 7.1	8.0 7.2	8.0 7.3	7.7 7.0
Day 6						
0 H 24 H	8.3 7.2	8.2 7.1	8.0 7.1	7.9 7.2	7.8 6.9	7.6 7.0
Day 7						
24 H	7.1	7.0	7.0	7.0	6.7	6.7

TABLE A30-1. (CONTINUED) - pH (STANDARD UNITS)

	*****	Test Concentrations (Pe		ent Ground	<u>lwater by V</u>	er by Volume)	
	0	10	18	32	56	100	
Day 0							
ОН	7.29	7.63	7.69	7.72	7.81	7.84	
Day 1							
0 H 24 H	7.40 7.19	7.35 7.81	7.33 7.77	7.31 7.85	7.30 7.97	7.29 7.99	
Day 2							
0 H 24 H	7.09 6.96	7.22 7.08	7.28 7.20	7.32 7.28	7.36 7.30	7.39 7.46	
Day 3							
0 H 24 H	7.69 7.48	7.34 7.06	7.43 7.21	7.42 7.42	7.55 7.56	7.20 7.65	
Day 4							
0 H 24 H	7.38 7.34	7.40 6.78	7.42 6.94	7.47 7.04	7.52 7.31	7.55 7.43	
Day 5							
0 H 24 H	7.27 7.16	7.31 6.85	7.39 6.92	7.41 7.01	7.42 7.14	7.49 7.31	
Day 6							
0 H 24 H	7.35 7.19	7.37 7.30	7.37 7.41	7.38 7.51	7.40 7.50	7.49 7.51	
Day 7							
24 H	7.27	7.29	7.32	7.37	7.55	7.63	

TABLE A30-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	Test 0	Concentrations 100	(Percent	Groundwater by	Volume)
Day 0		A DAM			
0 H	100	320			
Day 1					
0 H	110	330			
Day 2					
ОН	110	340			
Day 3					
ОН	110	330			
Day 4					
ОН	110	320			
Day 5					
ОН	100	310			
<u>Day 6</u>					
0 H	110	330			
Day 7	a	a			

a Measurement not taken.

TABLE A30-1. (CONTINUED) - ALKALINITY (MG/L AS CaCO₃)

	<u>Test</u>	Concentrations 100	(Percent	Groundwater	by Volume)
Day 0					,
0 Н	35	25			
Day 1					
0 Н	30	20			
Day 2					
0 Н	35	25			
Day 3					
0 H	30	20			
Day 4					
о н	30	25			
Day 5					
ОН	35	20			
Day 6					
ОН	35	25			
Day 7					
24 H	a	a			

^a Measurement not taken.

TABLE A30-1. (CONTINUED) - HARDNESS (MG/L AS $CaCO_3$)

	<u>Test</u>	Concentrations 100	(Percent	Groundwater	by Volume)
Day 0					
ОН	80	70			
Day 1					
ОН	70	78			
Day 2					
ОН	70	70			
Day 3					
ОН	70	70			
Day 4					
0 H	70	70			
Day 5					
0 H	84	74			
Day 6					
0 Н	80	70			
Day 7					
24 H	a	a			

^a Measurement not taken.

TABLE A30-2. FATHEAD MINNOW CANAL CREEK BUFFERED GROUNDWATER TOXICITY TEST DATA (TEST NO. 4) - SURVIVAL AFTER 96 HOURS OF EXPOSURE

Concentration (% Groundwater by Volume)	Rep	Number Tested	No. Alive at 96 Hours	Percent Alive
UMD/WREC	A	10	10	100
Control	В	10	10	100
	С	10	10	100
	D	10	9	90
10	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
18	A	10	10	100
	В	10	10	100
	C	10	10	100
	D	10	10	100
32	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
56	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
100	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100

TABLE A30-3. FATHEAD MINNOW CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST DATA (TEST NO. 4) - LARVAL SURVIVAL
AND DRY WEIGHT AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	Rep	Number Larvae Alive	Percent Survival	Dry Weight (mg)	Mean Dry Weight (mg)
UMD/WREC	1	10	100	0.64	,
Control	2	10	100	0.67	
	3	10	100	0.72	
	4	9	90	0.69	0.68
10	1	10	100	0.64	
	2	10	100	0.72	
	3	9	90	0.68	
	4	9	90	0.70	0.69
18	1	10	100	0.73	
	2	10	100	0.65	
	3 4	10	100	0.71	
	4	9	90	0.64	0.68
32	1	10	100	0.57	
	2	10	100	0.69	
	3	10	100	0.60	
	4	9	90	0.70	0.64
56	1	10	100	0.65	
	2	10	100	0.63	
	3	9	90	0.59	
	4	10	100	0.64	0.63
100	1	8	80	0.67	
	2	10	100	0.65	
	3	10	100	0.58	
	4	10	100	0.63	0.63

TABLE A30-4. FATHEAD MINNOW CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 4) DRY WEIGHT OF LARVAE AFTER 7 DAYS OF EXPOSURE

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 6.31
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 2.88
Alpha value: 0.01
Critical value: 15.09

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 1.82
Alpha value: 0.05
Critical Value: 2.77

Conclusion: Fail to reject the null

hypothesis that all

groups are equal

APPENDIX 31

FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANAL CREEK RAW (pH \approx 4) GROUNDWATER (WELL CC-27B) (TEST NO. 5)

Test Method:

EPA/600/4-89/001 (Weber et al., 1989)

Type of Test:

Static renewal (every 24 h)

Date:

May 3-10, 1995

Investigator:

S.D. Turley

Laboratory:

UMD/WREC

Groundwater:

Source:

APG-EA Canal Creek Well CC-27B

Chemical Characteristics:

See Appendix 58

Dilution Water:

Source:

20% Perrier:80% RO water

Chemical Characteristics:

See Table A31-1

Test Organism:

Scientific Name:

Dry Weight:

<u>Pimephales</u> <u>promelas</u>

0.67 mg (mean weight of controls at end of test)

<24 h

Age at Start of Test:

Source:

UMD/WREC culture

Experimental Chambers:

Material:

600 mL glass beaker

400 mL

No. Organisms/Replicate:

Test Solution Volume:

10

No. Organisms/Treatment:

40

Loading:

<0.5 g/L

Lighting:

Fluorescent; 60-85 foot

candles

Aeration: Prior to each renewal

Endpoints: Mortality; growth

Water Quality: Table A31-1

Results:

Mortality:

96-h Exposure:

The data for the 96-h LC50 were obtained from the 7-d study. All organisms exposed to 100% raw groundwater died during the 96-h exposure; 70% of the larvae exposed to 56% raw groundwater by volume died (Table A31-2). The 96-h LC50, which was determined by the moving average angle method, is:

96-h LC50 = 50.0% raw groundwater by volume (95% confidence limits = 45.36-55.60).

7-d Exposure:

Significant (α = 0.05) mortality occurred in fathead minnow larvae exposed to 100% and 56% groundwater by volume for 7 d (see Tables A31-3, A31-4, and A31-5). The 7-d LC50, which was determined by the moving average angle method, is:

7-d LC50 = 47.1% raw groundwater by volume (95% confidence limits = 42.75-52.18).

The NOEC and LOEC for the larval fish, based on mortality are as follows:

NOEC = 32% raw groundwater by volume. LOEC = 56% raw groundwater by volume.

Larval survival was not affected by 7-d of exposure to APG-EA diluent water relative to UMD/WREC controls (t-test: critical value = 3.71; t statistic = 0.65; α = 0.01).

Growth:

An increase in dry weight was found in the fish exposed for 7 d to 10% groundwater by volume (see Tables A31-3, A31-6, and A31-7). No difference in growth was found in fish exposed to 18% and 32% groundwater by volume.

Larval growth was not affected by 7 d of exposure to APG-EA diluent water relative to UMD/WREC control fish (t-test: critical value = 3.71; t statistic = -0.57; α = 0.01).

TABLE A31-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY
TEST WATER QUALITY DATA FOR THE FATHEAD MINNOW 7DAY TEST (TEST NO. 5) - DISSOLVED OXYGEN (MG/L)

	Tes	Test Concentrations			nt Grou	by Volume)	
	0 APG	0 WREC	10	18	32	56	100
Day 0							
о н	8.8	8.5	8.0	8.2	8.3	8.3	7.9
Day 1							
0 H 24 H	8.2 7.5	8.6 7.6	8.4 7.5	8.0 7.3	8.1 7.5	8.2 7.6	7.7 5.8
Day 2							
0 H 24 H	8.1 7.6	8.2 7.8	8.2 7.9	8.4 8.0	8.5 8.0	8.5 8.0	8.1
Day 3							
0 H 24 H	8.6 7.7	8.6 7.7	8.6 7.8	8.6 7.9	8.6 7.9	8.6 7.9	8.0
Day 4							
0 H 24 H	8.5 7.3	8.5 7.7	8.2 7.7	8.3 8.0	8.2 7.7	8.2 7.6	7.2
Day 5							
0 H 24 H	8.3 7.5	8.6 7.6	8.3 7.6	8.1 7.5	8.1 7.5	8.1 7.6	7.7
Day 6							
0 H 24 H	8.7 6.4	8.5 7.1	8.4 6.7	8.4 7.0	8.6 7.2	8.5 7.6	7.8
Day 7							
24 H	6.9	7.2	6.9	7.1	7.2	7.4	

TABLE A31-1. (CONTINUED) - pH (STANDARD UNITS)

	Test	Concent	rations	(Percer	nt Groun	ndwater	by Volume)
	0 APG	0 WREC	10	18	32	56	100
Day 0							
о н	7.28	7.38	7.16	7.05	6.81	6.40	3.76
Day 1							
0 H 24 H	7.28 7.41	7.53 7.28	7.07 7.44	6.82 7.47	6.66 7.45	6.30 7.29	3.78 5.80
Day 2							
0 H 24 H	7.40 7.50	7.33 7.67	7.31 7.58	7.02 7.47	6.85 7.35	6.41 7.24	3.79
Day 3							
0 H 24 H	7.24 8.18	7.59 7.81	7.33 7.84	7.14 7.85	6.90 7.80	6.47 7.84	3.82
Day 4							
0 H 24 H	7.20 7.25	7.45 7.71	7.25 7.77	7.10 7.76	6.87 7.67	6.43 7 59	3.85
Day 5							
0 H 24 H	7.04 7.77	7.42 7.60	6.98 7.61	6.92 7.57	6.70 7.55	6.23 7 37	3.81
Day 6							
0 H 24 H	7.13 7.21	7.22 7.85	7.06 7.50	6.85 7.36	6.63 7.29	6.22 7.19	3.79
Day 7							
24 H	7.40	7.71	7.52	7.33	7.21	7.07	

TABLE A31-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	<u>Test</u>	Concentrations 0	(Percent Groundwater by Volume) 100
	APG	WREC	100
Day 0			
0 Н	210	170	430
Day 1			
ОН	200	180	700
Day 2			
ОН	200	170	500
Day 3			
0 Н	210	170	550
Day 4			
ОН	200	180	500
Day 5			
0 H	220	170	480
Day 6			
0 H	210	170	450
Day 7			
24 H	210	170	

TABLE A31-1. (CONTINUED) - ALKALINITY (MG/L AS CaCO₃)

	Test 0 APG	Concentrations 0 WREC	(Percent Groundwater by Volume) 100
Day 0			
0 H	35	50	ā
Day 1			
ОН	35	50	
Day 2			
ОН	35	55	
Day 3			
0 Н	30	55	
Day 4			
ОН	35	50	
Day 5			
о н	35	50	
Day 6			
ОН	35	50	
Day 7			
24 H	35	50	

^a Could not obtain measurement.

TABLE A31-1. (CONTINUED) - HARDNESS (MG/L AS $CaCO_3$)

	Test 0 APG	Concentrations 0 WREC	(Percent Groundwater by Volume) 100
Day 0			
ОН	60	72	120
Day 1			
0 H	60	70	120
Day 2			
ОН	60	70	120
Day 3			
ОН	60	72	130
Day 4			
ОН	60	70	130
Day 5			
ОН	60	80	130
Day 6			
ОН	60	80	120
Day 7			
24 H	60	70	

TABLE A31-2. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY TEST DATA (TEST NO. 5) - SURVIVAL AFTER 96 HOURS OF EXPOSURE

Rep A B C D	Number Tested 10 10	No. Alive at 96 Hours 10	Percent Alive
B C	10	10	100
B C	10		100
С		10	100
D	10	10	100
	10	10	100
A	10	10	100
В	10	10	100
С	10	10	100
D	10	10	100
A	10	10	100
	10	10	100
	10	10	100
D	10	10	100
A	10	10	100
В	10		100
			100
D	10	10	100
A	10	10	100
В	10		100
С			100
D	10	9	90
A	10	3	30
В	10		60
			0
D	10	3	30
A	10	0	0
В	10		0
	10		0
D	10	0	0
	A B C D A B C D	B 10 C 10 D 10 A 10 C 10 D 10 A 10 D 10	B 10 10 10 10 D 10 D 10 D 10 D 10 D D D D

TABLE A31-3. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY
TEST DATA (TEST NO. 5) - LARVAL SURVIVAL AND DRY
WEIGHT AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	Rep	Number Larvae Alive	Percent Survival	Dry Weight (mg)	Mean Dry Weight (mg)
UMD/WREC	1	10	100	0.66	
Control	2	10	100	0.68	
	3	9	90	0.67	
	4	9	90	0.68	0.67
APG-EA	1	10	100	0.61	
Diluent	2	10	100	0.62	
Water	3	10	100	0.72	
	4	9	90	0.68	0.66
10	1	10	100	0.68	
	2	10	100	0.74	
	3	9	90	0.74	
	4	10	100	0.69	0.71
18	1	10	100	0.64	
	2	10	100	0.66	
	3	10	100	0.68	
	4	10	100	0.69	0.67
32	1	10	100	0.64	
	2	10	100	0.61	
	3	9	90	0.65	
	4	9	90	0.63	0.63
56	1	3	30	0.26	
	2	5	50	0.30	
	3	0	0	0.00	
	4	1	10	0.25	0.20
100	1	0	0		
	2	0	0		
	3	0	0		
	4	0	0		

TABLE A31-4. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 5) - LARVAL
SURVIVAL AFTER 7 DAYS OF EXPOSURE⁸

Data Transformation:

Arc sine square root

Chi-Square Test for Normality:

Calculated test statistic: 3.66
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Test could not be performed because at least one treatment group has zero variance.

Steel's Many-One Rank Test:

Calculated test statistic: See Table A31-5

Alpha value: 0.05 Critical value: 10.00

Conclusion:

Reject the null hypothesis that all groups are equal.

The 100% raw Canal Creek groundwater treatment was not included in the statistical analyses because all organisms died during the test.

TABLE A31- 5. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER

TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 5)
RESULTS OF STEEL'S MANY-ONE RANK TEST ON LARVAL

SURVIVAL AFTER 7 DAYS OF EXPOSURE

Conc %(by Vol)	No. of Reps	Percent Mean Survival ^a	Rank Sum	Critical Value	Significance
UMD/WREC Control	4	95.0			
10	4	97.5	20.0	10.0	
18	4	100	22.0	10.0	
32	4	95.0	18.0	10.0	
56	4	22.5	10.0	10.0	*

Values given are actual percent survival means rather than are sine square root transformed means which were used in the statistical analysis.

^{*} Significantly different at alpha = 0.05.

TABLE A31-6. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 5) - DRY WEIGHT
OF LARVAE AFTER 7 DAYS OF EXPOSURE^a

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 3.84
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 3.12
Alpha value: 0.01
Critical value: 11.34

Conclusion: Fail to reject the null hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 8.54
Alpha value: 0.05
Critical value: 3.49

Conclusion:

Reject the null hypothesis that all groups are equal

Dunnett's Test:

Calculated test statistic: See Table A31-7

Alpha value: 0.05 Critical value: 2.29

Conclusion: Reject the null hypothesis that all groups are equal

The 56% and 100% raw Canal Creek groundwater treatments were not included in the statistical analyses because all concentrations above the NOEC for survival are excluded from the hypothesis test for growth effects.

TABLE A31-7. FATHEAD MINNOW CANAL CREEK RAW GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 5) - RESULTS OF
DUNNETT'S TEST ON LARVAL SURVIVAL AFTER 7 DAYS
OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean Dry Weight ^a	T Statistic	Significance
UMD/WREC Control	4	0.67		
10	4	0.71	-2.778	b
18	4	0.67	0.010	
32	4	0.63	2.269	

Values given are actual dry weight means rather than arc sine square root transformed means which were used in the statistical analysis.

Increase in dry weight (Dunnett's critical value = 2.29 at alpha = 0.05).

APPENDIX 32

FATHEAD MINNOW ACUTE AND 7-DAY SURVIVAL AND GROWTH TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 5)

Test Method: EPA/600/4-89/001

(Weber et al., 1989)

Type of Test: Static renewal (every 24 h)

Date: May 3-10, 1995

Investigator: S.D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: 20% Perrier:80% RO water

Chemical Characteristics: See Table A32-1

Test Organism:

Scientific Name: <u>Pimephales promelas</u>
Dry Weight: 0.67 mg (mean weight of

controls at end of test)

Age at Start of Test: <24 h

Source: UMD/WREC culture

Experimental Chambers:

Material: 600 mL glass beaker

Test Solution Volume: 400 mL

No. Organisms/Replicate: 10

No. Organisms/Treatment: 40

Loading: <0.5 g/L

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to renewals

pH Buffer:

10 N NaOH

Endpoints:

Mortality; growth

Water Quality:

Table A32-1

Results:

Mortality:

96-h Exposure:

The data for the 96-h LC50 were obtained from the 7-d study. The buffered groundwater did not affect larval survival. The data are summarized in Table A32-2.

7-d Exposure:

The survival of fathead minnow larvae was not affected after 7 days of exposure to Canal Creek buffered groundwater (Table A32-3).

Growth:

Fathead minnow larval growth was not affected by 7 d of exposure to buffered Canal Creek groundwater (See Tables A32-3 and A32-4).

TABLE A32-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY TEST WATER QUALITY DATA FOR THE FATHEAD MINNOW 7-DAY TEST (TEST NO. 5) - DISSOLVED OXYGEN (MG/L)

	0 Test	10	18	32	<u>dwater by '</u> 56	100
Day 0						
0 H	8.5	8.5	8.5	8.3	8.3	8.4
<u>Day 1</u>						
0 H 24 H	8.6 7.6	8.1 7.3	8.2 7.7	8.2 7.4	8.2 7.3	8.0 7.6
Day 2						
0 H 24 H	8.2 7.8	8.1 7.8	8.0 7.9	8.0 7.7	8.1 7.7	8.0 8.0
Day 3						
0 H 24 H	8.6 7.7	8.6 7.7	8.5 7.7	8.3 7.6	8.2 7.5	8.2 7.7
Day 4						
0 H 24 H	8.5 7.7	8.5 7.2	8.4 7.5	8.4 7.8	8.3 7.7	8.1 7.6
Day 5						
0 H 24 H	8.6 7.7	8.0 7.4	8.1 7.6	8.0 7.6	8.0 7.6	8.1 7.5
Day 6						
0 H 24 H	8.5 7.1	8.7 6.7	8.5 7.2	8.6 7.5	8.6 7.0	8.6 7.2
Day 7						
24 H	7.2	6.9	7.1	7.3	7.0	7.2

TABLE A32-1. (CONTINUED) - pH (STANDARD UNITS)

	0	10	18	32	56	100
Day 0						
ОН	7.38	7.30	7.34	7.40	7.40	7.21
<u>Day 1</u>						
0 H 24 H	7.53 7.28	7.38 7.38	7.45 7.46	7.46 7.50	7.47 7.56	7.26 7.62
Day 2						
0 H 24 H	7.33 7.67	7.38 7.39	7.35 7.48	7.31 7.53	7.30 7.60	7.30 7.67
Day 3						
0 H 24 H	7.59 7.81	7.50 8.00	7.56 8.01	7.59 8.07	7.58 8.09	7.46 8.10
Day 4						
0 H 24 H	7.45 7.71	7.49 7.27	7.41 7.25	7.37 7.39	7.27 7.41	7.21 7.43
Day 5						
0 H 24 H	7.42 7.60	7.34 7.40	7.43 7.40	7.45 7.61	7.47 7.80	7.20 7.37
Day 6						
0 H 24 H	7.22 7.85	7.23 7.09	7.29 7.34	7.36 7.39	7.40 7.41	7.38 7.53
Day 7						
24 H	7.71	7.21	7.45	7.50	7.53	7.55

TABLE A32-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	Test Con	centrations (Percent Groundwater by Volume) 100
Day 0		
ОН	170	800
Day 1		
0 H	180	780
Day 2		
0 Н	170	790
Day 3		
ОН	170	800
Day 4		
ОН	180	800
Day 5		
0 Н	170	780
Day 6		
0 H	170	780
Day 7		
24 H	170	800

TABLE A32-1. (CONTINUED) - ALKALINITY (MG/L AS CaCO₃)

	<u>Test</u>	Concentrations	(Percent	Groundwater	by Volume)

Day 0					
0 H	50	90			
Day 1					
о н	55	100			
Day 2					
0 H	55	100			
Day 3					
о н	55	90			
Day 4					
о н	50	90			
Day 5					
0 Н	50	90			
Day 6					
0 Н	50	90			
Day 7					
24 H	50	90			

TABLE A32-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

			(D		!!alma\
	0 Test	Concentrations 100	(Percent	Groundwater I	by volume)
Day 0					
0 H	72	70			
Day 1					•
0 Н	70	70			
Day 2					
ОН	70	70			
Day 3					
0 Н	72	70			
Day 4					
ОН	70	70			
Day 5					
0 Н	80	80			
Day 6					
о н	80	70			
Day 7					
24 H	80	80			

TABLE A32-2. FATHEAD MINNOW CANAL CREEK BUFFERED GROUNDWATER
TOXICITY TEST DATA (TEST NO. 5) - SURVIVAL AFTER 96
HOURS OF EXPOSURE

Concentration (% Groundwater by Volume)	Rep	Number Tested	No. Alive at 96 Hours	Percent Alive
UMD/WREC	A	10	10	100
Control	В	10	10	100
	B C	10	10	100
	D	10	10	100
10	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
18	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
32	A	10	10	100
	В	10	10	100
	C	10	10	100
	D	10	10	100
56	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100
100	A	10	10	100
	В	10	10	100
	С	10	10	100
	D	10	10	100

TABLE A32-3. FATHEAD MINNOW CANAL CREEK BUFFERED GROUNDWATER TOXICITY TEST DATA (TEST NO. 5) - LARVAL SURVIVAL AND DRY WEIGHT AFTER 7 DAYS OF EXPOSURE

Conc (% by Vol)	Rep	Number Larvae Alive	Percent Survival	Dry Weight (mg)	Mean Dry Weight (mg)
UMD/WREC	1	10	100	0.66	
Control	2 3	10	100	0.68	
	3	9	90	0.67	0.67
	4	9	90	0.68	0.67
10	1	10	100	0.70	
10	2	10	100	0.61	
	3	9	90	0.68	
	4	10	100	0.62	0.65
18	1	10	100	0.58	
	2	10	100	0.72	
	3	10	100	0.56	
	4	10	100	0.62	0.62
32	1	10	100	0.60	
	2	10	100	0.68	
	3	10	100	0.55	
	4	10	100	0.64	0.62
56	1	10	100	0.64	
	2	10	100	0.57	
	3	10	100	0.55	
	4	10	100	0.63	0.60
100	1	9	90	0.67	
-	2	10	100	0.55	
	3 4	10	100	0.55	
	4	10	100	0.65	0.60

TABLE A32-4. FATHEAD MINNOW CANAL CREEK BUFFERED GROUNDWATER TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 5) DRY WEIGHT OF LARVAE AFTER 7 DAYS OF EXPOSURE

Data Transformation:

None

Chi-square Test for Normality:

Calculated test statistic: 9.89
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 6.78
Alpha value: 0.01
Critical value: 15.09

Conclusion: Fail to reject the null hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 1.23
Alpha value: 0.05
Critical Value: 2.77

Conclusion: Fail to reject the null

hypothesis that all groups are equal

JAPANESE MEDAKA 96-H ACUTE TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 1)

Test Method: EPA/600/4-90/027

(Weber, 1991)

Type of Test: Static renewal (every 24 h)

Date: October 11-15, 1994

Investigators: R. S. Herriott and S. D.

Turley

Laboratory: APG biomonitoring facility

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: APG dechlorinated tap

water

Chemical Characteristics: See Table A33-1

Test Organism:

Scientific Name: <u>Oryzias latipes</u>

Age at Start of Test: 6 days old

Source: Ft. Detrick BRDL culture

Experimental Chambers:

Material: Glass beakers

Size: 600 mL Volume: 400 mL

No. Organisms/Replicate: 10

No. Organisms/Treatment: 20

Loading: <0.5 g/L

Lighting: Fluorescent; 60-85 foot

candles

Endpoint:

Mortality

Water Quality:

Table A33-1

Results:

100% Canal Creek raw groundwater killed 70% of the Japanese medaka fry in 96 h (Table A33-2). 56% Canal Creek groundwater killed 15% of the Japanese medaka fry in 96 h. No organisms died in any of the other treatments. The 96-h LC50, which was determined by the moving average angle method, is as follows:

96-h LC50 = 78.4% raw groundwater by volume (95% confidence limits = 66.67-102.31).

Japanese medaka survival was not affected by exposure to West Branch of Canal Creek water.

TABLE A33-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE JAPANESE MEDAKA 96-H
TEST (TEST NO. 1) - DISSOLVED OXYGEN (MG/L)

	Test Concentrations (Percent Groundwater by Volume)							
	0	10	18	32	56	100		
Day 0								
0 H	8.5	8.3	8.1	8.1	7.9	6.6		
Day 1								
0 H 24 H	9.2 8.8	8.7 8.9	8.4 8.9	7.8 8.9	8.7 8.8	6.5 8.5		
Day 2								
0 H 24 H	9.8 8.7	9.0 8.7	8.6 8.7	8.2 8.6	7.2 8.6	4.6 8.4		
Day 3								
0 H 24 H	8.7 8.1	8.1 7.9	8.1 8.0	7.5 8.1	6.8 8.0	4.5 8.0		
Day 4								
24 H	8.3	7.6	7.4	7.2	6.6	4.3		

TABLE A33-1. (CONTINUED) - pH (STANDARD UNITS)

	Test Concentrations (Percent Groundwater by Volume)							
	0	10	18	32	56	100		
Day 0								
ОН	7.60	7.22	7.06	6.94	6.27	4.29		
Day 1								
0 H 24 H	7.49 7.60	7.02 7.55	6.68 7.48	6.16 7.36	5.64 6.92	4.20 4.75		
Day 2								
0 H 24 H	7.56 7.51	6.97 7.50	6.54 7.40	6.12 7.17	5.60 6.74	4.18 4.38		
Day 3								
0 H 24 H	7.55 7.62	7.00 7.53	6.55 7.46	6.14 7.30	5.61 6.90	4.24 4.41		
Day 4								
24 H	7.68	7.55	7.43	7.17	6.60	4.28		

TABLE A33-1. (CONTINUED) - ALKALINITY (MG/L as CaCO₃)

	<u>Test</u>	Concentrations	(Percent	Groundwater	by Volume)
	0	100			
Day 0					
0 Н	8	a			
Day 1					
0 Н	41	7			
Day 2					
ОН	41	7			
Day 3					
0 Н	41	7			
Day 4					
24 H	8	a .			

^a Measurement not taken.

TABLE A33-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	Test	Concentrations	(Percent	Groundwater	by Volume)
	0	100			
Day 0					
0 Н	a	a			
Day 1					
0 H	86	86			
Day 2					
0 H	103	86			
Day 3					
0 H	86	86			
Day 4					
24 H	a	a			

^a Measurement not taken.

TABLE A33-1. (CONTINUED) - CONDUCTIVITY ($\mu MHOS/CM$)

	Test	Concentrations	(Percent	Groundwater	by	Volume)
	0	100				
Day 0						
0 H	a	a				
Day 1						
0 Н	195	518				
Day 2						
0 Н	197	515				
Day 3						
0 Н	200	510				
Day 4						
24 H	a	8				

^a Measurement not taken.

TABLE A33-2. JAPANESE MEDAKA CANAL CREEK RAW GROUNDWATER 96-H TOXICITY TEST (TEST NO. 1) - PERCENT FRY SURVIVAL AFTER 96 HOURS OF EXPOSURE

Concentration (% by Volume)	Rep	Number Tested	No. Alive at End of Test	Percent Alive
APG-EA Diluent Water	1 2	10 10	10 10	100 100
West Branch Canal Creek Water	1 2	10 10	10 10	100 100
10	1	10	10	100
	2	10	10	100
18	1	10	10	100
	2	10	10	100
32	1	10	10	100
	2	10	10	100
56	1	10	8	80
	2	10	9	90
100	1 2	10 10	4 2	40 20

JAPANESE MEDAKA 96-H ACUTE TEST CONDUCTED ON CANAL CREEK BUFFERED (pH \approx 7) GROUNDWATER (WELL CC-27B) (TEST NO. 1)

Test Method: EPA/600/4-90/027

(Weber, 1991)

Type of Test: Static renewal (every 24 h)

Date: October 11-15, 1994

Investigators: R. S. Herriott and S. D.

Turley

Laboratory: APG biomonitoring facility

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: APG dechlorinated tap

water

Chemical Characteristics: See Table A34-1

Test Organism:

Scientific Name: <u>Oryzias latipes</u>

Age at Start of Test: 6 days old

Source: Ft. Detrick BRDL culture

Experimental Chambers:

Material: Glass beakers

Size: 600 mL Volume: 400 mL

No. Organisms/Replicate: 10

No. Organisms/Treatment: 20

Loading: <0.5 g/L

Lighting: Fluorescent; 60-85 foot

candles

pH Buffer:

10 N NaOH

Endpoint:

Mortality

Water Quality:

Table A34-1

Results:

The survival of Japanese medaka fry was not affected after 4 days of exposure to Canal Creek buffered groundwater (Table A34-2).

TABLE A34-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE JAPANESE MEDAKA 96-H TEST (TEST NO. 1) - DISSOLVED OXYGEN (MG/L)

	Test	Concentra	tions (Perc	cent Groundwater by Volum	ne)
	0	32	56	100	
Day 0					
о н	8.5	8.1	8.1	7.2	
Day 1					
0 H 24 H	9.2 8.8	8.2 8.9	7.9 8.9	7.0 8.8	
Day 2					
0 H 24 H	9.7 8.7	8.5 8.6	7.8 8.7	5.6 8.6	
Day 3					
0 H 24 H	8.7 8.1	7.7 8.2	7.2 8.1	5.3 7.9	
Day 4					
24 H	8.3	8.4	8.3	8.2	

TABLE A34-1. (CONTINUED) - pH (STANDARD UNITS)

Test Concentrations (Percent Groundwater by Volume						
	0	32	56	100		
Day 0						
о н	7.60	7.00	7.52	7.64		
Day 1						
0 H 24 H	7.49 7.60	7.40 7.85	7.39 7.95	7.33 8.05		
Day 2						
0 H 24 H	7.56 7.51	7.15 7.67	7.12 7.80	7.01 7.93		
Day 3						
0 H 24 H	7.55 7.62	7.01 7.58	7.04 7.71	6.96 7.85		
Day 4						
24 H	7.68	7.61	7.72	7.78		

TABLE A34-1. (CONTINUED) - ALKALINITY (MG/L as $CaCO_3$)

	Test	Concentrations	(Percent	Groundwater	by Volume)
	0	100			
Day 0					
о н	a	a			
Day 1					
0 Н	41	82			
Day 2					
0 Н	41	95			
Day 3					
0 H	41	95			
Day 4					
24 H	a	8			

^a Measurement not taken.

TABLE A34-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	Test	Concentrations	(Percent	Groundwater by Volume)
	0	100		
Day 0				
о н	a	a		
Day 1				
0 H	86	86		
Day 2				
о н	103	86		
Day 3				
0 Н	86	86		
Day 4				,
24 H	a	a		

a Measurement not taken.

TABLE A34-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	Test	Concentrations	(Percent	Groundwater	by Volume)
	0	100			
Day 0					
0 H	a	a			
Day 1					
0 H	195	a			
Day 2					
0 H	197	a			
Day 3					
0 Н	200	а			
Day 4					
24 H	a	a .			

^a Measurement not taken.

TABLE A34-2. JAPANESE MEDAKA CANAL CREEK BUFFERED GROUNDWATER 96-H TOXICITY TEST (TEST NO. 1) - PERCENT FRY SURVIVAL AFTER 96 HOURS OF EXPOSURE

Concentration (% by Volume)	Rep	Number Tested	No. Alive at End of Test	Percent Alive
APG-EA Diluent Water	1 2	10 10	10 10	100 100
32	1 2	10 10	10 10	100 100
56	1 2	10 10	10 10	100 100
100	1 2	10 10	10 10	100 100

JAPANESE MEDAKA 96-H ACUTE TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 2)

Test Method: EPA/600/4-90/027

(Weber, 1991)

Type of Test: Static renewal (every 24 h)

Date: December 12-16, 1994

Investigators: R. S. Herriott and S. D.

Turley

Laboratory: APG biomonitoring facility

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: APG dechlorinated tap

water

Chemical Characteristics: See Table A35-1

Test Organism:

Scientific Name: Oryzias latipes

Age at Start of Test: 6 days old

Source: Ft. Detrick BRDL culture

Experimental Chambers:

Material: Glass beakers

Size: 600 mL Volume: 400 mL

No. Organisms/Replicate: 10

No. Organisms/Treatment: 20

Loading: <0.5 g/L

Lighting: Fluorescent; 60-85 foot

candles

Endpoint:

Mortality

Water Quality:

Table A35-1

Results:

All organisms exposed to 100% Canal Creek raw groundwater died during the 96-h exposure; 20% or less of the organisms died at the lower test concentrations (Table A35-2). The 96-h LC50, which was determined by the moving average angle method, is as follows:

96-h LC50 = 63.1% raw groundwater by volume (95% confidence limits = 55.41-71.73).

All organisms exposed to APG-EA diluent water survived. Although 20% of the organisms exposed to West Branch of Canal Creek water died, exposure to West Branch creek water did not affect organism survival relative to the APG-EA diluent controls (t-test: critical value = 9.93; t statistic = -2.00; $\alpha = 0.01$).

TABLE A35-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE JAPANESE MEDAKA 96-H TEST (TEST NO. 2) - DISSOLVED OXYGEN (MG/L)

	Test_C	oncentration	ons (Percer	nt Groundwa	ter by Vol	ume)
	0	10	18	32	56	100
Day 0						
ОН	9.1	8.6	8.4	8.1	7.4	5.8
Day 1						
0 H 24 H	9.2 9.1	9.0 9.0	8.6 8.8	8.1 8.9	7.3 8.8	6.0 8.6
Day 2						
0 H 24 H	9.4 9.1	8.8 8.9	8.1 8.9	7.9 8.8	7.3 8.7	5.6 8.6
Day 3						
0 H 24 H	9.4 8.6	9.2 8.6	8.9 9.0	8.6 9.1	8.1 9.5	6.7 9.4
Day 4						
24 H	8.5	8.6	8.5	8.7	9.0	

TABLE A35-1. (CONTINUED) - pH (STANDARD UNITS)

	Test Co	ncentratio	ns (Percer	nt Groundwa	ter by Vol	ume)
	0	10	18	32	56	100
Day 0						
0 H	7.88	7.34	7.12	6.83	6.22	4.28
Day 1						
0 H 24 H	7.85 7.91	7.41 7.78	7.22 7.57	6.92 7.31	6.31 6.78	4.34 4.76
Day 2						
0 H 24 H	7.86 7.96	7.49 7.83	7.28 7.69	6.89 7.68	6.29 6.79	4.36 4.42
Day 3						
0 H 24 H	7.88 7.76	7.47 7.70	7.26 7.71	6.91 7.59	6.38 7.02	4.44 4.62
Day 4						
24 H	7.88	7.87	7.84	7.76	7.54	

TABLE A35-1. (CONTINUED) - ALKALINITY (MG/L as CaCO₃)

	Test	Concentrations	(Percent	Groundwater by Vol	ume)
	0	100			
Day 0					
0 Н	88	7			
Day 1					
ОН	88	7			
Day 2					
0 H	88	7			
Day 3					
0 H	88	7			
Day 4					
24 H	a	a			

^a Measurement not taken.

TABLE A35-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	Test	Concentrations	s (Percent Groundwater by Volume)
	0	100	
Day 0			
о н	68	86	
Day 1			
о н	68	86	
Day 2			
о н	68	86	
Day 3			
о н	68	86	
Day 4			
24 H	8	a	

a Measurement not taken.

TABLE A35-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	Test	Concentrations	(Percent	Groundwater 1	oy Volume)
	0	100			
Day 0					
0 H	a	a			
Day 1					
о н	267	488			
Day 2					
ОН	260	464			
Day 3					
0 Н	266	489			
Day 4					
24 H	a	a			

^a Measurement not taken.

TABLE A35-2. JAPANESE MEDAKA CANAL CREEK RAW GROUNDWATER 96-H TOXICITY TEST (TEST NO. 2) - PERCENT FRY SURVIVAL AFTER 96 HOURS OF EXPOSURE

Concentration (% by Volume)	Rep	Number Tested	No. Alive at End of Test	Percent Alive
APG-EA Diluent Water	1 2	10 10	10 10	100 100
West Branch Canal Creek Water	1 2	10 10	8 8	80 80
10	1	10	10	100
	2	10	10	100
18	1	10	9	90
	2	10	10	100
32	1	10	9	90
	2	10	10	100
56	1	10	8	80
	2	10	8	80
100	1 2	10 10	0 0	0

JAPANESE MEDAKA 96-H ACUTE TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 2)

Test Method: EPA/600/4-90/027

(Weber, 1991)

Type of Test: Static renewal (every 24 h)

Date: December 12-16, 1994

Investigators: R. S. Herriott and S. D.

Turley

Laboratory: APG biomonitoring facility

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: APG dechlorinated tap

water

Chemical Characteristics: See Table A36-1

Test Organism:

Scientific Name: Oryzias latipes

Age at Start of Test: 6 days old

Source: Ft. Detrick BRDL culture

Experimental Chambers:

Material: Glass beakers

Size: 600 mL Volume: 400 mL

No. Organisms/Replicate: 10

No. Organisms/Treatment: 20

Loading: <0.5 g/L

Lighting: Fluorescent; 60-85 foot

candles

pH Buffer:

10 N NaOH

Endpoint:

Mortality

Water Quality:

Table A36-1

Results:

The survival of Japanese medaka fry was not affected after 4 days of exposure to Canal Creek buffered groundwater (Table A36-2).

TABLE A36-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE JAPANESE MEDAKA 96-H TEST (TEST NO. 2) - DISSOLVED OXYGEN (MG/L)

	Test Concentrations (Percent Groundwater by Volume)					
	0	32	56	100		
Day 0						
0 Н	9.1	8.2	7.2	5.4		
Day 1						
0 H 24 H	9.2 9.1	8.2 8.8	7.5 8.8	6.1 8.5		
Day 2						
0 H 24 H	9.4 9.1	8.0 8.7	7.1 8.6	5.4 8.4		
Day 3						
0 H 24 H	9.4 8.6	8.5 8.0	8.5 8.4	7.4 8.6		
Day 4						
24 H	8.5	8.7	8.7	8.6		

TABLE A36-1. (CONTINUED) - pH (STANDARD UNITS)

	Test Concentrations (Percent Groundwater by Volume)				
	0	32	56	100	
Day 0					
о н	7.88	7.51	7.25	7.08	
Day 1					
0 H 24 H	7.85 7.91	7.38 7.83	7.43 7.85	7.25 7.75	
Day 2					
0 H 24 H	7.86 7.96	6.89 7.90	7.24 7.82	7.21 7.81	
Day 3					
0 H 24 H	7.88 7.76	7.68 7.70	7.66 7.77	7.54 7.83	
Day 4					
24 H	7.88	8.04	8.06	8.05	

TABLE A36-1. (CONTINUED) - ALKALINITY (MG/L as CaCO₃)

	Test	Concentrations	(Percent	Groundwater	by Volume)
	0	100			
Day 0					
о н	88	109			
Day 1					
ОН	88	116			
Day 2					
ОН	88	109			
Day 3					
о н	88	102			
Day 4					
24 H	a	а			

a Measurement not taken.

TABLE A36-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	Test	Concentrations	(Percent	Groundwater by Volume)
	0	100		
Day 0				
ОН	68	86		
Day 1				
0 Н	68	86		
Day 2				
0 H	68	86		
Day 3				
ОН	68	86		
Day 4				
24 H	a	a .		

Measurement not taken.

TABLE A36-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	Test	Concentrations	(Percent	Groundwater	by Volume)
	0	100			
Day 0					
о н	a	a			
Day 1					
0 Н	267	645			
Day 2					
0 Н	260	609			
Day 3					
0 H	266	622			
Day 4					
24 H	a	a			

^a Measurement not taken.

TABLE A36-2. JAPANESE MEDAKA CANAL CREEK BUFFERED GROUNDWATER 96-H TOXICITY TEST (TEST NO. 2) - PERCENT FRY SURVIVAL AFTER 96 HOURS OF EXPOSURE

Concentration (% by Volume)	Rep	Number Tested	No. Alive at End of Test	Percent Alive
APG-EA Diluent Water	1 2	10 10	10 10	100 100
32	1 2	10 10	9 10	90 100
56	1 2	10 10	10 10	100 100
100	1 2	10 10	10 10	100

JAPANESE MEDAKA 96-H ACUTE TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 3)

Test Method: EPA/600/4-90/027

(Weber, 1991)

Type of Test: Static renewal (every 24 h)

Date: February 6-10, 1995

Investigators: R. S. Herriott, S. D. Turley

and D. W. Cooper

Laboratory: APG biomonitoring facility

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: APG dechlorinated tap

water

Chemical Characteristics: See Table A37-1

Test Organism:

Scientific Name: Oryzias latipes

Age at Start of Test: 6 days old

Source: Ft. Detrick BRDL culture

Experimental Chambers:

Material: Glass beakers

Size: 600 mL Volume: 400 mL

No. Organisms/Replicate: 10

No. Organisms/Treatment: 20

Loading: <0.5 g/L

Lighting: Fluorescent; 60-85 foot

candles

Endpoint:

Mortality

Water Quality:

Table A37-1

Results:

90% of the organisms exposed to 100% Canal Creek raw groundwater died during the 96-h exposure; 10% or less of the organisms died at the lower concentrations (Table A37-2). The 96-h LC50, which was determined by the moving average angle method, is as follows:

96-h LC50 = 67.9% raw groundwater by volume (95% confidence limits = 60.89-78.06).

Japanese medaka survival was not affected by exposure to West Branch of Canal Creek water relative to APG-EA diluent water after 4 d of exposure.

TABLE A37-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE JAPANESE MEDAKA 96-H TEST (TEST NO. 3) - DISSOLVED OXYGEN (MG/L)

	Test Co	ncentration	ns (Percen	t Groundwa	ter by Volu	ıme)
	0	10	18	32	56	100
Day 0						
0 Н	9.4	8.7	8.4	7.9	7.4	5.1
Day 1						
	8.9 8.2	8.8 8.0	8.6 8.1	8.2 8.1	7.7 8.1	6.5 7.9
Day 2						
	9.8 8.1	9.2 8.2	9.1 8.1	8.5 8.1	7.7 8.0	6.0 8.2
Day 3						
	9.7 8.4	9.3 8.5	9.1 8.4	7.9 8.5	8.1 8.5	6.3 8.7
Day 4						
24 H	8.1	8.1	8.2	8.2	8.1	8.1

TABLE A37-1. (CONTINUED) - pH (STANDARD UNITS)

	Test C	oncentrat	ions (Perc	ent Ground	water by V	olume)
	0	10	18	32	56	100
Day 0						
0 H	7.69	7.24	7.03	6.72	6.16	4.37
Day 1						
0 H 24 H	7.82 7.86	7.65 7.68	7.51 7.73	7.22 7.63	6.86 7.43	4.45 5.03
Day 2						
0 H 24 H	7.48 7.91	7.25 7.99	6.99 7.93	6.56 7.82	5.78 7.68	4.41 4.56
Day 3						
0 H 24 H	7.81 7.74	7.35 7.72	7.11 7.70	6.74 7.62	6.15 7.46	4.47 4.65
Day 4						
24 H	7.75	7.69	7.62	7.50	7.35	4.47

TABLE A37-1. (CONTINUED) - ALKALINITY (MG/L as CaCO₃)

Test C	oncentrations	(Percent	Groundwater b	y Volume)
0	100			
82	7			
82	7			
54	7			
54	7			
a	a			
	0 82 82 54	0 100 82 7 82 7 54 7	0 100 82 7 82 7 54 7	82 7 82 7 54 7

^a Measurement not taken.

TABLE A37-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	Test	Concentrations	(Percent	Groundwater	by Volume)
	0	100			
Day 0					
0 H	86	86			
Day 1					
0 Н	86	86			
Day 2					
0 H	68	86			
Day 3					
ОН	86	86			
Day 4					
24 H	a	a			

^a Measurement not taken.

TABLE A37-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	Test	Concentrations	(Percent	Groundwater	by Volume)
	0	100			
Day 0					
0 Н	255	482			
Day 1					
0 Н	273	467			
Day 2					
о н	243	485			
Day 3					
0 H	247	470			
Day 4					
24 H	a	a			

^a Measurement not taken.

TABLE A37-2. JAPANESE MEDAKA CANAL CREEK RAW GROUNDWATER 96-H TOXICITY TEST (TEST NO. 3) - PERCENT FRY SURVIVAL AFTER 96 HOURS OF EXPOSURE

Concentration (% by Volume)	Rep	Number Tested	No. Alive at End of Test	Percent Alive
APG-EA Diluent Water	1 2	10 10	10 10	100 100
West Branch Canal Creek Water	1 2	10 10	10 9	100 90
10	1	10	10	100
	2	10	10	100
18	1	10	10	100
	2	10	10	100
32	1	10	9	90
	2	10	9	90
56	1	10	10	100
	2	10	10	100
100	1 2	10 10	0 2	0 20

JAPANESE MEDAKA 96-H ACUTE TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 3)

Test Method: EPA/600/4-90/027

(Weber, 1991)

Type of Test: Static renewal (every 24 h)

Date: February 6-10, 1995

Investigators: R. S. Herriott, S. D. Turley,

and D. W. Cooper

Laboratory: APG biomonitoring facility

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: APG dechlorinated tap

water

Chemical Characteristics: See Table A38-1

Test Organism:

Scientific Name: <u>Oryzias latipes</u>

Age at Start of Test: 6 days old

Source: Ft. Detrick BRDL culture

Experimental Chambers:

Material: Glass beakers

Size: 600 mL Volume: 400 mL

No. Organisms/Replicate: 10

No. Organisms/Treatment: 20

Loading: <0.5 g/L

Lighting: Fluorescent; 60-85 foot

candles

pH Buffer:

10 N NaOH

Endpoint:

Mortality

Water Quality:

Table A38-1

Results:

The survival of Japanese medaka fry was not affected after 4 days of exposure to Canal Creek buffered groundwater (Table A38-2).

TABLE A38-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE JAPANESE MEDAKA 96-H TEST (TEST NO. 3) - DISSOLVED OXYGEN (MG/L)

	Test	Concentrat	cions (Per	cent Groundwater by Volum	me)
	0	32	56	100	
Day 0					
ОН	9.4	8.1	7.6	6.1	
Day 1					
0 H 24 H	8.9 8.2	8.1 8.2	8.0 8.1	6.6 8.2	
Day 2					
0 H 24 H	9.8 8.0	8.4 8.3	7.4 8.2	5.1 8.1	
Day 3					
0 H 24 H	9.7 8.4	9.3 8.0	8.8 7.9	8.1 8.1	
Day 4					
24 H	8.1	8.0	8.1	7.9	

TABLE A38-1. (CONTINUED) - pH (STANDARD UNITS)

	Test Co	ncentratio	ns (Percen	t Groundwater by Volume)
	0	32	56	100
Day 0				
0 H	7.69	7.39	7.30	7.13
Day 1				
0 H 24 H	7.82 7.86	7.80 7.31	7.59 7.92	7.03 8.08
Day 2				
0 H 24 H	7.48 7.91	7.18 7.93	7.27 7.48	7.23 7.94
Day 3				
0 H 24 H	7.81 7.74	7.40 7.75	7.40 7.83	7.31 8.00
Day 4				
24 H	7.75	7.68	7.75	7.88

TABLE A38-1. (CONTINUED) - ALKALINITY (MG/L as $CaCO_3$)

	Test	Concentrations	(Percent	Groundwater b	y Volume)
	0	100			
Day 0					
0 H	82	88			
Day 1					
ОН	88	82			
Day 2					
0 Н	54	101			
Day 3					
О Н	54	82			
Day 4					
24 H	a	a			

^a Measurement not taken.

TABLE A38-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	<u>Test</u>	Concentration	ns (Percent	Groundwater by	Volume)
	0	100			
Day 0					
о н	86	86			
Day 1					
0 H	86	86			
Day 2					
0 Н	68	86			
Day 3					
0 Н	86	86			
Day 4					
24 H	a	a			

^a Measurement not taken.

TABLE A38-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	Test	Concentrations	(Percent	Groundwater	by Volume)
	0	100			
Day 0					
0 Н	255	611			
Day 1					
0 H	273	565			
Day 2					
0 Н	243	658			
Day 3					
0 H	247	580			
Day 4					
24 H	a	a			

^a Measurement not taken.

TABLE A38-2. JAPANESE MEDAKA CANAL CREEK BUFFERED GROUNDWATER 96-H TOXICITY TEST (TEST NO. 3) - PERCENT FRY SURVIVAL AFTER 96 HOURS OF EXPOSURE

Concentration (% by Volume)	Rep	Number Tested	No. Alive at End of Test	Percent Alive
APG-EA Diluent Water	1 2	10 10	10 10	100 100
32	1	10	10	100
	2	10	10	100
56	1	10	10	100
	2	10	9	90
100	1	10	9	90
	2	10	10	100

JAPANESE MEDAKA 96-H ACUTE TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 4)

Test Method: EPA/600/4-90/027 (Weber, 1991)

Type of Test: Static renewal (every 24 h)

Date: April 7-11, 1995

Investigators: S. D. Turley and D. W. Cooper

Laboratory: APG biomonitoring facility

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: APG dechlorinated tap

water

Chemical Characteristics: See Table A39-1

Test Organism:

Scientific Name: Oryzias latipes

Age at Start of Test: 6 days old

Source: Ft. Detrick BRDL culture

Experimental Chambers:

Material: Glass beakers

Size: 600 mL Volume: 400 mL

No. Organisms/Replicate: 10

No. Organisms/Treatment: 20

Loading: <0.5 g/L

Lighting: Fluorescent; 60-85 foot

candles

Endpoint:

Mortality

Water Quality:

Table A39-1

Results:

All of the organisms exposed to 100% Canal Creek raw groundwater died during the 96-h exposure; 10% of the organisms died at the 56% Canal Creek raw groundwater by volume treatment (Table A39-2). The 96-h LC50, which was determined by the moving average angle method, is as follows:

96-h LC50 = 62.8% raw groundwater by volume (95% confidence limits = 54.99-73.69).

Japanese medaka survival was not affected by exposure to West Branch of Canal Creek water relative to APG-EA diluent water after 4 d of exposure.

TABLE A39-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE JAPANESE MEDAKA 96-H
TEST (TEST NO. 4) - DISSOLVED OXYGEN (MG/L)

•	Test	Concentra	tions (Perc	cent Ground	dwater by V	Jolume)
	0	10	18	32	56	100
Day 0						
о н	8.9	8.2	8.6	8.2	8.0	6.1
Day 1						
0 H 24 H	9.1 7.7	8.6 7.8	8.2 7.8	7.4 7.7	7.0 7.7	6.2 7.7
Day 2						
0 H 24 H	9.1 8.1	8.2 8.0	8.2 8.1	7.9 7.9	7.5 8.0	6.5 7.3
Day 3						
0 H 24 H	8.3 7.8	8.2 7.7	7.8 7.8	7.6 7.8	7.3 7.8	6.9 7.8
Day 4						
24 H	7.8	7.8	7.6	7.9	7.9	7.7

TABLE A39-1. (CONTINUED) - pH (STANDARD UNITS)

	Test C	oncentratio	ons (Percer	nt Groundwa	ter by Vol	ume)
	0	10	18	32	56	100
Day 0						
0 H	7.48	7.21	6.89	6.58	6.13	4.36
Day 1						
0 H 24 H	7.65 7.68	7.27 7.64	7.00 7.44	6.73 7.24	5.92 6.87	4.36 5.32
Day 2						
0 H 24 H	7.63 7.80	7.23 7.60	6.99 7.41	6.58 7.16	6.04 6.74	4.31 4.76
Day 3						
0 H 24 H	7.59 7.68	7.20 7.62	6.94 7.42	6.48 7.15	6.09 6.78	4.25 4.62
Day 4						
24 H	7.52	7.47	7.39	7.33	7.13	4.50

TABLE A39-1. (CONTINUED) - ALKALINITY (MG/L as CaCO₃)

	Test	Concentrations	(Percent	Groundwater	by Volume)
	0	100			
Day 0					
0 Н	41	a			
Day 1					
о н	41				
Day 2					
0 Н	41				
Day 3					
0 Н	34				
Day 4					
24 H	41				

Could not obtain measurement using titration method because pH was <4.5.</p>

TABLE A39-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	Test Co	ncentrations	(Percent	Groundwater	by Volume)
	0	100			8140-55
Day 0					
0 H	86	86			
Day 1					
0 H	86	86			
Day 2					
0 H	86	103			
Day 3					
0 H	86	86			
Day 4					
24 H	86	103			

TABLE A39-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	Test	Concentrations	(Percent	Groundwater	by	Volume)
	0	100				
Day 0						
0 Н	237	473				
Day 1						
0 H	197	450				
Day 2						
ОН	215	471				
Day 3						
0 H	207	303				
Day 4						
24 H	251	435				

TABLE A39-2. JAPANESE MEDAKA CANAL CREEK RAW GROUNDWATER 96-H TOXICITY TEST (TEST NO. 4)- PERCENT FRY SURVIVAL AFTER 96 HOURS OF EXPOSURE

Concentration (% by Volume)	Rep	Number Tested	No. Alive at End of Test	Percent Alive
APG-EA Diluent Water	1 2	10 10	10 10	100 100
West Branch Canal Creek Water	1 2	10 10	10 10	100 100
10	1	10	10	100
	2	10	10	100
18	1	10	10	100
	2	10	10	100
32	1	10	10	100
	2	10	10	100
56	1	10	10	100
	2	10	9	90
100	1	10	0	0
	2	10	0	0

JAPANESE MEDAKA 96-H ACUTE TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 4)

Test Method: EPA/600/4-90/027

(Weber, 1991)

Type of Test: Static renewal (every 24 h)

Date: April 7-11, 1995

Investigators: S. D. Turley and D. W. Cooper

Laboratory: APG biomonitoring facility

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: APG dechlorinated tap

water

Chemical Characteristics: See Table A40-1

Test Organism:

Scientific Name: <u>Oryzias latipes</u>

Age at Start of Test: 6 days old

Source: Ft. Detrick BRDL culture

Experimental Chambers:

Material: Glass beakers

Size: 600 mL Volume: 400 mL

No. Organisms/Replicate: 10

No. Organisms/Treatment: 20

Loading: <0.5 g/L

Lighting: Fluorescent; 60-85 foot

candles

pH Buffer:

10 N NaOH

Endpoint:

Mortality

Water Quality:

Table A40-1

Results:

The survival of Japanese medaka fry was not affected after 4 days of exposure to Canal Creek buffered groundwater (Table A40-2).

TABLE A40-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE JAPANESE MEDAKA 96-H TEST (TEST NO. 4) - DISSOLVED OXYGEN (MG/L)

	Test_Co	ncentratio	ns (Percen	t Groundwater by Volume)
	0	32	56	100
Day 0				
о н	8.9	8.7	8.3	6.9
Day 1				
0 H 24 H	9.1 7.7	8.0 7.7	7.6 7.7	6.8 7.6
Day 2				
0 H 24 H	9.1 8.1	8.3 8.1	7.9 8.1	6.6 7.9
Day 3				
0 H 24 H	8.3 7.8	8.1 7.8	7.5 7.8	6.4 7.8
Day 4				
24 H	7.8	7.8	7.8	7.8

TABLE A40-1. (CONTINUED) - pH (STANDARD UNITS)

	Test C	oncentratio	ons (Percer	nt Groundwater by Volume)
	0	32	56	100
Day 0				
о н	7.48	6.75	7.26	7.01
Day 1				
0 H 24 H	7.65 7.68	7.39 7.56	7.44 7.74	6.95 7.80
Day 2				
0 H 24 H	7.63 7.80	7.39 7.48	7.40 7.60	6.96 7.70
Day 3				
0 H 24 H	7.59 7.68	7.35 7.46	7.36 7.68	7.03 7.75
Day 4				
24 H	7.52	7.63	7.66	7.74

TABLE A40-1. (CONTINUED) - ALKALINITY (MG/L as $CaCO_3$)

	Test	Concentrations	(Percent	Groundwater b	y Volume)
	0	100			
Day 0					
ОН	41	68			
Day 1					
ОН	41	54			
Day 2					
ОН	41	61			
Day 3					
0 H	34	68			
Day 4					
24 H	41	75			
·····					

TABLE A40-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	Test	Concentrations	(Percent	Groundwater by Volume)
	0	100		
Day 0				
ОН	86	103		
Day 1				
ОН	86	86		
Day 2				
ОН	86	103		
Day 3				
0 Н	86	86		
Day 4				
24 H	86	86		

TABLE A40-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	Test C	oncentrations	(Percent	Groundwater	by	Volume)
	0	100				
Day 0						
0 H	237	577				
Day 1						
0 H	197	517				
Day 2						
0 Н	215	520				
Day 3						
0 H	207	554				
Day 4						
24 H	251	563				

TABLE A40-2. JAPANESE MEDAKA CANAL CREEK BUFFERED GROUNDWATER 96-H TOXICITY TEST (TEST NO. 4) - PERCENT FRY SURVIVAL AFTER 96 HOURS OF EXPOSURE

Concentration (% by Volume)	Rep	Number Tested	No. Alive at End of Test	Percent Alive
APG-EA Diluent	1 2	10 10	10 10	100 100
Water				
32	1	10	10	100
	2	10	10	100
56	1	10	10	100
30	2	10	10	100
100	1	10	10	100
100	2	10	10	100

JAPANESE MEDAKA 96-H ACUTE TEST CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 5)

Test Method: EPA/600/4-90/027

(Weber, 1991)

Type of Test: Static renewal (every 24 h)

Date: May 8-12, 1995

Investigators: D. W. Cooper and S. D. Turley

Laboratory: APG biomonitoring facility

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Dilution Water:

Source: APG dechlorinated tap

water

Chemical Characteristics: See Table A41-1

Test Organism:

Scientific Name: Oryzias latipes

Age at Start of Test: 6 days old

Source: Ft. Detrick BRDL culture

Experimental Chambers:

Material: Glass beakers

Size: 600 mL Volume: 400 mL

No. Organisms/Replicate: 10

No. Organisms/Treatment: 20

Loading: <0.5 g/L

Lighting: Fluorescent; 60-85 foot

candles

Aeration: None

Endpoint:

Mortality

Water Quality:

Table A41-1

Results:

55% of the organisms exposed to 100% Canal Creek raw groundwater died during the 96-h exposure; 5% or less of the organisms died at the lower concentrations (Table A41-2). The 96-h LC50, which was determined by the moving average angle method, is as follows:

96-h LC50 = 93.9% raw groundwater by volume (95% confidence limits = 84.95-107.21).

Japanese medaka survival was not affected (t-test, α = 0.01) by exposure to West Branch Canal of Creek water relative to APG-EA diluent water after 4 d of exposure.

TABLE A41-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE JAPANESE MEDAKA 96-H
TEST (TEST NO. 5) - DISSOLVED OXYGEN (MG/L)

	Test Concentrations (Percent Groundwater by Volume)							
	0	10	18	32	56	100		
Day 0								
ОН	8.7	7.8	7.8	7.7	7.6	7.8		
Day 1								
0 H 24 H	8.8 8.5	8.2 8.5	8.1 8.5	8.0 8.4	7.8 8.6	7.2 8.5		
Day 2								
0 H 24 H	8.2 7.8	7.8 7.7	7.7 7.7	7.6 7.7	7.4 7.7	6.9 7.8		
Day 3								
0 H 24 H	8.4 8.1	8.0 8.1	8.0 8.2	7.7 8.1	7.3 8.1	6.9 7.8		
Day 4								
24 H	8.1	8.2	8.2	8.2	8.0	8.2		

TABLE A41-1. (CONTINUED) - pH (STANDARD UNITS)

	Test Concentrations (Percent Groundwater by Volume)								
	0	10	18	32	56	100			
Day 0									
ОН	7.57	7.42	7.19	6.80	6.05	4.17			
Day 1									
0 H 24 H	7.55 7.57	7.22 7.58	7.02 7.37	6.67 7.07	5.94 6.72	4.28 4.88			
Day 2									
0 H 24 H	7.56 7.59	7.19 7.54	6.93 7.31	6.49 7.08	5.98 6.74	4.26 4.49			
Day 3									
0 H 24 H	7.57 7.61	7.20 7.56	6.94 7.41	6.74 7.15	6.02 6.80	4.26 4.46			
Day 4									
24 H	7.27	7.29	7.26	7.19	6.93	4.34			

TABLE A41-1. (CONTINUED) - ALKALINITY (MG/L as CaCO₃)

	Test	Concentrations	(Percent	Groundwater	by Volume)
	0	100			
Day 0					
0 Н	48	a			
Day 1					
0 H	48				
Day 2					
0 H	48				
Day 3					
0 Н	48				
Day 4					
24 H	48				

Could not obtain measurement using titration method because pH was <4.5.</p>

TABLE A41-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	Test	Concentrations	(Percent	Groundwater by	/ Volume)
	0	100			
Day 0					
0 H	68	103			
Day 1					
0 H	68	103			
Day 2					
0 H	86	120			
Day 3					
O H	86	103			
Day 4					
24 H	86	103			

TABLE A41-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	Test	Concentrations	(Percent	Groundwater	by Volume)
	0	100			
Day 0					
0 Н	231	429			
Day 1					
0 Н	205	496			
Day 2					
0 H	247	613			
Day 3					
0 H	213	473			
Day 4					
24 H	252	461			
-					

TABLE A41-2. JAPANESE MEDAKA CANAL CREEK RAW GROUNDWATER 96-H TOXICITY TEST (TEST NO. 5) - PERCENT FRY SURVIVAL AFTER 96 HOURS OF EXPOSURE

Concentration (% by Volume)	Rep	Number Tested	No. Alive at End of Test	Percent Alive
APG-EA Diluent Water	1 2	10 10	10 10	100
West Branch Canal Creek Water	1 2	10 10	9 10	90 100
10	1 2	10 10	10 10	100 100
18	1 2	10 10	10 10	100 100
32	1 2	10 10	10 10	100 100
56	1 2	10 10	10 9	100 90
100	1 2	10 10	5 4	50 40

JAPANESE MEDAKA 96-H ACUTE TEST CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 5)

Test Method:

EPA/600/4-90/027

(Weber, 1991)

Type of Test:

Static renewal (every 24 h)

Date:

May 8-12, 1995

Investigators:

D. W. Cooper and S. D. Turley

Laboratory:

APG biomonitoring facility

Groundwater:

Source:

APG-EA Canal Creek Well CC-27B

Chemical Characteristics:

See Appendix 58

Dilution Water:

Source:

APG dechlorinated tap

water

Chemical Characteristics:

See Table A42-1

Test Organism:

Scientific Name:

Age at Start of Test:

Source:

Oryzias latipes

6 days old

Ft. Detrick BRDL culture

Experimental Chambers:

Material:

Size: Volume:

Glass beakers

600 mL

400 mL

No. Organisms/Replicate:

10

No. Organisms/Treatment:

20

Loading:

<0.5 g/L

Lighting:

Fluorescent; 60-85 foot

candles

Aeration:

None

pH Buffer:

10 N NaOH

Endpoint:

Mortality

Water Quality:

Table A42-1

Results:

The survival of Japanese medaka fry was not affected after 4 days of exposure to Canal Creek buffered groundwater (Table A42-2).

TABLE A42-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY WATER QUALITY DATA FOR THE JAPANESE MEDAKA 96-H TEST (TEST NO. 5) - DISSOLVED OXYGEN (MG/L)

	Test Concentrations (Percent Groundwater by Volume)							
	0	32	56	100				
Day 0								
ОН	8.7	8.0	7.8	7.7				
Day 1								
0 H 24 H	8.8 8.5	8.4 8.6	8.3 8.6	8.2 8.5				
Day 2								
0 H 24 H	8.2 7.8	7.7 7.7	7.5 7.7	7.5 7.7				
Day 3								
0 H 24 H	8.4 8.1	7.6 7.6	7.3 7.7	7.2 7.7				
Day 4								
24 H	8.1	8.2	8.2	8.1				

TABLE A42-1. (CONTINUED) - pH (STANDARD UNITS)

	Test Concentrations (Percent Groundwater by Volume)							
	0	32	56	100				
Day 0								
о н	7.57	7.14	7.22	7.02				
Day 1								
0 H 24 H	7.55 7.57	7.51 7.71	7.49 7.78	6.99 7.83				
Day 2								
0 H 24 H	7.56 7.59	7.39 7.71	7.43 7.71	6.97 7.77				
Day 3								
0 H 24 H	7.57 7.61	7.41 7.61	7.40 7.68	6.95 7.74				
Day 4								
24 H	7.27	7.68	7.69	7.67				

TABLE A42-1. (CONTINUED) - ALKALINITY (MG/L as CaCO₃)

	Test	Concentrations	(Percent	Groundwater b	y Volume)
	0	100			
Day 0					
0 Н	48	75			
Day 1					
0 H	48	75			
Day 2					
0 Н	48	68			
Day 3					
ОН	48	75			
Day 4					
24 H	48	75			

TABLE A42-1. (CONTINUED) - HARDNESS (MG/L AS CaCO₃)

	Test	Concentrations	(Percent	Groundwater	by Volume)
	0	100			
Day 0					
О Н	68	103			
Day 1					
0 Н	68	103			
Day 2					
0 H	86	120			
Day 3					
0 Н	86	103			
Day 4					
24 H	86	103			

TABLE A42-1. (CONTINUED) - CONDUCTIVITY (μ MHOS/CM)

	Test	Concentrations	(Percent	Groundwater	by '	Volume)
	0	100				
Day 0						
ОН	231	531				
Day 1						
0 Н	205	525				
Day 2						
0 H	247	565				
Day 3						
О Н	213	547				
Day 4						
24 H	252	562				
		.,				

TABLE A42-2. JAPANESE MEDAKA CANAL CREEK BUFFERED GROUNDWATER 96-H TOXICITY TEST (TEST NO. 5) - PERCENT FRY SURVIVAL AFTER 96 HOURS OF EXPOSURE

Concentration (% by Volume	Rep	Number Tested	No. Alive at End of Test	Percent Alive
APG-EA Diluent Water	1 2	10 10	10 10	100
32	1	10	10	100
	2	10	10	100
56	1	10	10	100
	2	10	10	100
100	1	10	9	90
	2	10	10	100

LIST OF DATA REPORTS FOR THE AMES ASSAYS CONDUCTED ON CANAL CREEK GROUNDWATER (CC-27B), WEST BRANCH OF CANAL CREEK WATER, AND APG-EA TAP WATER

TABLE A43-1. LIST OF DATA REPORTS FOR THE AMES ASSAYS CONDUCTED ON CANAL CREEK GROUNDWATER (CC-27B), WEST BRANCH OF CANAL CREEK WATER, AND APG-EA TAP WATER

Sample taken September 12, 1994:

San, R.H.C. and D.L. Pugh. 1994. <u>Salmonella</u> plate incorporation mutagenicity assay using neat and extracted water samples. Laboratory Study Nos. G94BH12.501005, G94BH13.501005, and G94BH13.501005. Microbiological Assoc., Inc., Rockville, MD.

Sample taken November 7, 1994:

San, R.H.C. and D.L. Pugh. 1995. <u>Salmonella</u> plate incorporation mutagenicity assay using neat and extracted water samples. Laboratory Study Nos. G94BP00.501005 and G94BP05.501005. Microbiological Assoc., Inc., Rockville, MD.

Sample taken January 23, 1995:

Wagner, V.O. and D.L. Pugh. 1995. <u>Salmonella</u> plate incorporation mutagenicity assay using neat and extracted water samples. Laboratory Study Nos. G95AC58.501005 and G95AC59.501005. Microbiological Assoc., Inc., Rockville, MD.

Sample taken March 23, 1995:

Wagner, V.O. and D.L. Pugh. 1995. <u>Salmonella</u> plate incorporation mutagenicity assay using neat and extracted water samples. Laboratory Study Nos. G95AM13.501005 and G95AM14.501005. Microbiological Assoc., Inc., Rockville, MD.

Sample taken June 7, 1995:

Wagner, V.O. 1995. <u>Salmonella</u> plate incorporation mutagenicity assay using extracted water samples. Laboratory Study Nos. G95AR09.501005, G95AR10.501005, and G95AR11.501005. Microbiological Assoc., Inc., Rockville, MD.

FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX) CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 1)

(IESI NO. I

Test Method: ASTM Designation E 1439-91

ASTM (1991)

Type of Test: Static renewal (every 24 h)

Date: September 16-20, 1994

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Test Medium:

Source: FETAX solution

pH characteristics: See Table A44-1

Test Organism:

Scientific Name: <u>Xenopus laevis</u>

Age at Start of Test: Stage 8 blastula to stage 11

gastrulae

Source: UMD/WREC culture

Experimental Chambers:

Material: Glass petri dishes

Test Solution Volume: 10 mL

No. Organisms/Replicate: 20

No. Organisms/Treatment: Control: 40

Groundwater: 40

Loading: n/a

Lighting: Fluorescent; 60-85 foot

candles.

Aeration: Prior to renewals

Endpoints: Mortality; malformation

Test Temperature: 24 ± 0.2°C

Results:

Mortality:

Less than 50% mortality occurred to the embryos exposed for 4 days to 100% Canal Creek raw groundwater; thus, an LC50 could not be calculated (Table A44-2). A significant increase in embryo mortality occurred at 100% raw groundwater by volume (see Tables A44-2, A44-3 and A44-4).

Embryos survival was not affected by 4 d of exposure to APG-EA tap water relative to the UMD/WREC controls.

Malformations:

Significant (α = 0.05) embryo malformations occurred (see Tables A44-2, A44-5, and A44-6). Less than 50% malformation occurred at all test concentrations, thus, an EC50 could not be calculated (Table A44-2). The NOEC and LOEC for the embryos, based on increased numbers of malformations, are as follows:

NOEC = 18% raw groundwater by volume. LOEC = 32% raw groundwater by volume.

No difference in normal embryo development occurred between the embryos exposed to APG-EA tap water relative to the UMD/WREC controls.

The types of malformed embryos are given in Table A44-7.

TABLE A44-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY pH (STANDARD UNITS) DATA FOR FETAX (TEST NO. 1)

	Test Concentrations (Percent Groundwater by Volume)							
	0	10	18	32	56	100		
Day 0								
0 Н	7.74	7.46	7.23	6.90	6.22	3.96		
Day 1								
0 Н	7.64	7.31	7.11	6.59	6.10	3.99		
Day 2								
0 Н	7.60	7.24	7.07	6.54	6.00	3.95		
Day 3								
ОН	7.65	7.28	7.09	6.39	5.99	3.98		
Day 4								
24 H	7.74	7.43	7.25	6.73	6.24	4.14		

TABLE A44-2. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST DATA (TEST NO. 1) - PERCENT EMBRYO SURVIVAL AND MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	Rep	Number Embryos Alive	Percent Survival	Number Embryos Malformed	Percent Malformed 5.0 10.0	
UMD/WREC Control	1 2	20 20	100 100	1 2		
APG-EA Diluent Water	1 2	20 18	100 90	1	5.0 5.6	
10	1	18	90	3	16.7	
	2	20	100	2	10.0	
18	1	19	95	3	15.8	
	2	19	95	3	15.8	
32	1	19	95	5	26.3	
	2	20	100	5	25.0	
56	1	19	95	6	31.6	
	2	19	95	5	26.3	
100	1	12	60	6	50.0	
	2	18	90	8	44.4	

TABLE A44-3. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 1) - PERCENT EMBRYO SURVIVAL AFTER 96 HOURS OF EXPOSURE

Data Transformation:

None

Fisher's Exact Test:

Calculated test statistic:

Alpha value: Critical value: Conclusion: See Table A44-4

0.05 35

Reject the null

hypothesis that all groups are equal.

TABLE A44-4. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 1) - RESULTS OF FISHER'S TEST ON EMBRYO MORTALITY AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	Number Alive	Number Dead	b Value	Significance
UMD/WREC	40	0	40	
10	38	2	38	
18	38	2	38	
32	39	1	39	
56	38	2	38	
100	30	10	30	*

^{*} Significantly different at alpha = 0.05 (Fisher's critical value = 35).

TABLE A44-5. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST
STATISTICAL ANALYSIS (TEST NO. 1) - PERCENT EMBRYO
MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Data Transformation:

Arc sine square root

Chi-square Test for Normality:

Calculated test statistic: 10.66
Alpha value: 0.01
Critical Value: 13.28

Conclusion: Fail to reject the null hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 2.71
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 12.38
Alpha value: 0.05
Critical value: 5.19

Conclusion: Reject the null hypothesis that all

groups are equal

Dunnett's Test:

Calculated test statistic: See Table A44-5

Alpha value: 0.05 Critical value: 2.85

Conclusion: Reject the null hypothesis that all groups are equal

TABLE A44-6. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 1) - RESULTS OF DUNNETT'S TEST ON EMBRYO MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean Normal Embryos (%) ^a	T Statistic	Significance
UMD/WREC Control	2	92.5		
10	2	86.8	2.02	
18	2	84.2	2.78	
32	2	74.4	5.31	*
56	2	71.1	6.07	*

Values given are actual percent mean normal embryos rather than arc sine square root transformed means which were used in the statistical analysis.

* Significantly different at alpha = 0.05 (Dunnett's critical value = 2.85).

TABLE A44-7. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST DATA (TEST NO. 1) - TYPE AND NUMBER OF MALFORMED EMBRYOS AFTER 96 HOURS OF EXPOSURE

Malformation		ncentratio	ons (% G:	roundwate	er by Vo	lume)
	0	10	18	32	56	100
	<u>Rep</u> 1 2					
Severe						
Gut, coiling	2	2	1 3	2 1	2	3 1
Edema:						
Multiple	1	1 1		2 2		3
Cardiac					1	
Abdominal						1
Facial						
Cephalic						
Blisters						
Tail						
Notochord		1			1	2
Fin						
Face			2	1 2	3 4	1 3
Eye						
Brain						
Hemorrhage						
Cardiac						
Other						

FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX) CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 1)

Test Method: ASTM Designation E 1439-91

ASTM (1991)

Type of Test: Static renewal (every 24 h)

Date: September 16-20, 1994

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Test Medium:

Source: FETAX solution

pH characteristics: See Table A45-1

Test Organism:

Scientific Name: <u>Xenopus laevis</u>

Age at Start of Test: Stage 8 blastula to stage 11

gastrulae

Source: UMD/WREC culture

Experimental Chambers:

Material: Glass petri dishes

Test Solution Volume: 10 mL

No. Organisms/Replicate: 20

No. Organisms/Treatment: Groundwater: 40

Control: 40

Loading: n/a

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to renewals

pH Buffer: 10 N NaOH

Endpoints: Mortality; malformations

Test Temperature: 24 ± 0.2°C

Results:

Mortality:

Buffered Canal Creek groundwater did not affect embryo survival. The data are summarized in Tables A45-2 and A45-3.

Malformations:

The incidence of frog embryo malformations was not affected after 96 h of exposure to buffered Canal Creek groundwater (Tables A45-2 and A45-4).

The types of malformed embryos are given in Table A45-5.

TABLE A45-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY pH (STANDARD UNITS) DATA FOR FETAX (TEST NO. 1)

	Test Co	ncentratio	ations (Percent Groundwater by Vo		
	0	18	32	56	100
Day 0					
0 H	7.64	7.25	7.20	7.17	7.05
Day 1					
ОН	7.59	7.22	7.11	7.07	7.01
Day 2					
0 H	7.59	7.26	7.22	7.10	7.00
Day 3					
ОН	7.70	7.32	7.23	7.15	6.99
Day 4					
24 H	7.67	7.23	7.15	7.06	6.97

TABLE A45-2. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST DATA (TEST NO. 1) - PERCENT EMBRYO SURVIVAL
AND MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	Rep	Number Embryos Alive	Percent Survival	Number Embryos Malformed	Percent Malformed	
UMD/WREC	1	20	100	1	5.0	
Control	2	20	100	2	10.0	
10	1	19	95	1	5.3	
	2	17	85	3	17.6	
18	1	16	80	2	12.5	
	2	18	90	1	5.6	
32	1	19	95	4	21.1	
	2	18	90	1	5.6	
56	1	17	85	2	11.8	
	2	17	85	2	11.8	
100	1	19	95	3	15.8	
	2	18	90	3	16.7	

TABLE A45-3. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 1) - PERCENT EMBRYO SURVIVAL AFTER 96 HOURS OF EXPOSURE

Data Transformation:

Arc sine square root

Chi-square Test for Normality:

12.79 Calculated test statistic: Alpha value: 0.01 13.28 Critical value:

Fail to reject the null Conclusion: hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 4.34 0.01 Alpha value: Critical value: 15.09

Fail to reject the null Conclusion:

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 3.94 0.05 Alpha value: Critical value: 4.39

Conclusion: Fail to reject the null

hypothesis that all

groups are equal

TABLE A45-4. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 1) - PERCENT
EMBRYO MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Data Transformation:

Arc sine square root

Chi-square Test for Normality:

Calculated test statistic: 12.79
Alpha value: 0.01
Critical Value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 3.78
Alpha value: 0.01
Critical value: 15.09

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 0.37
Alpha value: 0.05
Critical value: 4.39

Conclusion: Fail to reject the null

hypothesis that all groups are equal

TABLE A45-5. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST DATA (TEST NO. 1) - TYPE AND NUMBER OF
MALFORMED EMBRYOS AFTER 96 HOURS OF EXPOSURE

- · · · · · · · · · · · · · · · · · · ·						
Malformation		Concentra			lwater by	Volume)
	0	10	18	32	56	100
	Rep 1 2					
					-	74.4
Severe						
Gut, coiling	2	1 1	1	1	1 1	3 2
Edema:						
Multiple	1	2	1	3	1 1	1
Cardiac						
Abdominal						
Facial						
Cephalic						
Blisters						
Tail						
Notochord			1	1		
Fin						
Face						
Eye						
Brain						
Hemorrhage						
Cardiac						
Other						

FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX) CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 2)

Test Method: ASTM Designation E 1439-91

ASTM (1991)

Type of Test: Static renewal (every 24 h)

Date: November 11-15, 1994

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Test Medium:

Source: FETAX solution

pH characteristics: See Table A46-1

Test Organism:

Scientific Name: <u>Xenopus</u> <u>laevis</u>

Age at Start of Test: Stage 8 blastula to stage 11

gastrulae

Source: UMD/WREC culture

Experimental Chambers:

Material: Glass petri dishes

Test Solution Volume: 10 mL

No. Organisms/Replicate: 25

No. Organisms/Treatment: Control: 50

Groundwater: 50

Loading: n/a

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to renewals

Endpoints: Mortality; malformation

Test Temperature: 24 ± 0.2°C

Results:

Mortality:

Less than 50% mortality occurred to the embryos exposed for 4 days to 100% Canal Creek raw groundwater; thus, an LC50 could not be calculated (Table A46-2). A significant increase in embryo mortality occurred at 100% raw groundwater by volume (see Tables A46-2, A46-3 and A46-4).

No difference in mortality occurred between embryos held in APG-EA diluent water and UMD/WREC water.

Malformations:

Significant (α = 0.05) embryo malformations occurred (see Tables A46-2, A46-5, and A46-6). The NOEC and LOEC for the embryos, based on increased numbers of malformations, are as follows:

NOEC = 10% raw groundwater by volume. LOEC = 18% raw groundwater by volume.

The 96-h EC50 for malformations of the embryos, determined by the moving average angle method, is as follows:

96-h EC50 = 90.3 (95% confidence limits = 69.52-183.56)

Normal embryo development was not affected by exposure to APG-EA tap water relative to the UMD/WREC controls.

The types of malformed embryos are given in Table A46-7.

TABLE A46-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY pH (STANDARD UNITS) DATA FOR FETAX (TEST NO. 2)

	Test	Concentrat	ions (Perc	ent Ground	water by V	olume)
	0	10	18	32	56	100
Day 0						
0 H	7.77	7.35	7.20	6.87	6.09	3.85
Day 1						
о н	7.70	7.29	7.08	6.68	6.14	3.79
Day 2						
0 Н	7.65	7.28	7.12	6.62	6.00	3.69
		,,,,,		3132		
Day 3						
0 H	7.67	7.31	7.14	6.45	6.03	3.88
Day 4						
24 H	7.79	7.53	7.33	6.77	6.19	3.99

TABLE A46-2. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST DATA (TEST NO. 2) - PERCENT EMBRYO SURVIVAL AND MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	Rep	Number Embryos Alive	Percent Survival	Number Embryos Malformed	Percent Malformed
UMD/WREC	1	24	96	2 2	8.3
Control	2	23	92	2	8.7
APG-EA	1	24	96	2 2	8.3
Diluent Water	2	23	92	2	8.7
10	1	23	92	4	17.4
	1 2	22	88	4 2	9.1
18	1 2	24	96	4	16.7
	2	23	92	4	17.4
32	1	21	84	4	19.0
	1 2	22	88	5	22.7
56	1	22	88	6	27.3
	1 2	24	96	6	25.0
100	1	21	84	10	47.6
	1 2	20	80	12	60.0

TABLE A46-3. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST
STATISTICAL ANALYSIS (TEST NO. 2) - PERCENT EMBRYO
SURVIVAL AFTER 96 HOURS OF EXPOSURE

Data Transformation:

Arc-sine square-root transformation

Chi-Square Test for Normality:

Calculated test statistic: 12.79
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null

hypothesis that the data are normally distributed.

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 1.22
Alpha value: 0.01
Critical value: 15.09

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 3.08
Alpha value: 0.05
Critical value: 4.39

Conclusion: Reject the null

hypothesis that all groups are equal

Dunnett's Test:

Calculated test statistic: See Table A46-4

Alpha value: 0.05 Critical value: 2.83

Conclusion: Reject the null hypothesis that all

groups are equal (see

Table A12-4)

TABLE A46-4. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 2) - RESULTS OF DUNNETT'S TEST ON EMBRYO MORTALITY AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean Percent Survival	T Statistic	Significance
UMD/WREC Control	2	94		
10	2	90	1.20	
18	2	94	0.00	
32	2	86	2.18	
56	2	92	0.53	
100	2	82	3.05	*

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.83).

TABLE A46-5. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST
STATISTICAL ANALYSIS (TEST NO. 2) - PERCENT EMBRYO
MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Data Transformation:

Arc sine square root

Chi-square Test for Normality:

Calculated test statistic: 10.66
Alpha value: 0.01
Critical Value: 13.28

Conclusion: Fail to reject the null hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 6.36
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 9.57
Alpha value: 0.05
Critical value: 5.19

Conclusion: Reject the null

hypothesis that all groups are equal

Dunnett's Test:

Calculated test statistic: See Table A46-6

Alpha value: 0.05 Critical value: 2.85

Conclusion: Reject the null hypothesis that all groups are equal

TABLE A46-6. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 2) - RESULTS OF DUNNETT'S TEST ON EMBRYO MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean Normal Embryos (%) ^a	T Statistic	Significance
UMD/WREC Control	2	91.5		
10	2	86.7	1.71	
18	2	83.0	3.05	*
32	2	79.1	4.20	*
56	2	73.9	5.65	*

Values given are actual percent mean normal embryos rather than arc sine square root transformed means which were used in the statistical analysis.

* Significantly different at alpha = 0.05 (Dunnett's critical value = 2.85).

TABLE A46-7. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST DATA (TEST NO. 2) - TYPE AND NUMBER OF MALFORMED EMBRYOS AFTER 96 HOURS OF EXPOSURE

Malformation		ncentration		roundwate	er by Vol	
	0	10	18	32 Dom	56	100
	<u>Rep</u> 1 2					
Severe			- / <u></u>	A ALLEMAN A		
Gut, coiling	1	2 2	1	3 1	4	2
Edema:						
Multiple	1		1 2	1	5	3 5
Cardiac						
Abdominal						
Facial						
Cephalic						
Blisters						
Tail						
Notochord	1 1	1	2 1	1 2	1	2 4
Fin						1
Face		1		1	1	4 1
Eye						
Brain						
Hemorrhage						
Cardiac			1		1	
Other						

FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX)

CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7)

GROUNDWATER (WELL CC-27B)

(TEST NO. 2)

Test Method:

ASTM Designation E 1439-91

ASTM (1991)

Type of Test:

Static renewal (every 24 h)

Date:

November 11-15, 1994

Investigator:

S. D. Turley

Laboratory:

UMD/WREC

Groundwater:

Source:

Chemical Characteristics:

APG-EA Canal Creek Well CC-27B

See Appendix 58

Test Medium:

Source:

pH characteristics:

FETAX solution See Table A47-1

Test Organism:

Scientific Name:

Age at Start of Test:

Xenopus laevis

Stage 8 blastula to stage 11

gastrulae

Source: UMD/WREC culture

Experimental Chambers:

Material:

Glass petri dishes

10 mL

No. Organisms/Replicate:

Test Solution Volume:

25

No. Organisms/Treatment:

Groundwater: 50

Control: 50

Loading:

n/a

Lighting:

Fluorescent; 60-85 foot

candles

Aeration:

Prior to renewals

pH Buffer:

10 N NaOH

Endpoints:

Mortality; malformations

Test Temperature:

24 ± 0.2°C

Results:

Mortality:

Less than 50% mortality occurred to the embryos exposed for 4 days to 100% Canal Creek buffered groundwater; thus, an LC50 could not be calculated (Table A47-2). Significant embryo mortality occurred at 100% buffered Canal Creek groundwater by volume (see Tables A47-2, A47-3 and A47-4).

Malformations:

The incidence of frog embryo malformations was not affected after 96 h of exposure to buffered Canal Creek groundwater (see Tables A47-2 and A47-5).

The types of malformed embryos are given in Table A47-6.

TABLE A47-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY PH (STANDARD UNITS) DATA FOR FETAX (TEST NO. 2)

	Test C	oncentrat	ions (Perc	ent Ground	water by Volume)
	0	18	32	56	100
Day 0					
о н	7.74	7.45	7.32	7.22	7.11
Day 1					
0 H	7.65	7.40	7.25	7.16	7.08
Day 2					
ОН	7.68	7.44	7.33	7.20	7.14
Day 3					
0 Н	7.74	7.46	7.37	7.24	7.12
Day 4					
24 H	7.77	7.37	7.26	7.16	7.01

TABLE A47-2. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST DATA (TEST NO. 2) - PERCENT EMBRYO SURVIVAL
AND MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	Rep	Number Embryos Alive	Percent Survival	Number Embryos Malformed	Percent Malformed
UMD/WREC	1 2	24	96	2	8.3
Control		23	92	2	8.7
10	1	22	88	2	9.1
	2	24	96	2	8.3
18	1	24	96	4	16.7
	2	23	92	2	8.7
32	1	21	84	2	9.5
	2	20	80	4	20.0
56	1	22	88	3	13.6
	2	23	92	2	8.7
100	1	16	64	3	18.8
	2	20	80	4	20.0

TABLE A47-3. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 2) - PERCENT
EMBRYO SURVIVAL AFTER 96 HOURS OF EXPOSURE

Data Transformation:

Arc sine square root

Chi-square Test for Normality:

Calculated test statistic: 12.79
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 5.49
Alpha value: 0.01
Critical value: 15.09

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 5.49
Alpha value: 0.05
Critical value: 4.39

Conclusion: Reject the null hypothesis that all

groups are equal

Dunnett's Test:

Calculated Test Statistic: See Table A47-4

Alpha Value: 0.05 Critical Value: 2.83

Conclusion: Reject the null hypothesis that all groups are equal

TABLE A47-4. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 2) - RESULTS OF
DUNNETT'S TEST ON EMBRYO SURVIVAL AFTER 96 HOURS
OF EXPOSURE

Conc %(by Vol)	No. of Reps	Mean Percent Survival ^a	T Statistic	Significance
UMD/WREC Control	2	94.0		
10	2	92.0	0.23	
18	2	94.0	0.00	
32	2	82.0	1.32	
56	2	90.0	0.52	
100	2	70.0	4.29	*

Values given are actual percent mean surviving embryos rather than arc sine square root transformed means which were used in the statistical analysis.

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.83).

TABLE A47-5. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 2) - PERCENT
EMBRYO MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Data Transformation:

Arc sine square root

Chi-square Test for Normality:

Calculated test statistic: 10.66
Alpha value: 0.01
Critical Value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 5.57
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 0.72
Alpha value: 0.05
Critical value: 4.39

Conclusion: Fail to reject the null

hypothesis that all groups are equal

TABLE A47-6. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST DATA (TEST NO. 2) - TYPE AND NUMBER OF
MALFORMED EMBRYOS AFTER 96 HOURS OF EXPOSURE

Malformation			ations (
	0 Rep	10 Rep	18 Rep	32 Rep	56 Rep	100 Rep
	1 2	1 2	1 2	1 2	1 2	1 2
Severe						
Gut, coiling	1	2	1 1	2 3	2	2 3
Edema:						
Multiple	1		2 1	1	1	
Cardiac						
Abdominal						1
Facial						
Cephalic						
Blisters						
Tail						
Notochord	1 1	2	1		1 1	
Fin						
Face						1
Eye						
Brain						
Hemorrhage						
Cardiac						
Other						

FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX) CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 3)

Test Method: ASTM Designation E 1439-91

ASTM (1991)

Type of Test: Static renewal (every 24 h)

Date: January 25-29, 1995

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Test Medium:

Source: FETAX solution

pH characteristics: See Table A48-1

Test Organism:

Scientific Name: <u>Xenopus laevis</u>

Age at Start of Test: Stage 8 blastula to stage 11

gastrulae

Source: UMD/WREC culture

Experimental Chambers:

Material: Glass petri dishes

Test Solution Volume: 10 mL

No. Organisms/Replicate: 25

No. Organisms/Treatment: Control: 50

Groundwater: 50

Loading: n/a

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to renewals

Endpoints: Mortality; malformation

Test Temperature: 24 ± 0.2°C

Results:

Mortality:

Less than 50% mortality occurred to the embryos exposed for 4 days to 100% Canal Creek raw groundwater; thus, an LC50 could not be calculated (Table A48-2). Significant embryo mortality occurred at 100% raw groundwater by volume (See Tables A48-2, A48-3 and A48-4).

Embryo survival was not affected by exposure to APG-EA diluent water relative to the UMD/WREC control embryos after 4 d of exposure.

Malformations:

Significant ($\alpha=0.05$) embryo malformations occurred (see Tables A48-2, A48-5, and A48-6). The NOEC and LOEC for the embryos, based on increased numbers of malformations, are as follows:

NOEC = 10% raw groundwater by volume. LOEC = 18% raw groundwater by volume.

Less than 50% of the embryos were malformed after exposure for 4 days to 100% Canal Creek raw groundwater; thus an EC50 could not be calculated (Table A48-6)

Normal embryo development was not significantly affected by exposure to APG-EA tap water relative to the UMD/WREC controls.

The types of malformed embryos are given in Table A48-7.

TABLE A48-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY pH (STANDARD UNITS) DATA FOR FETAX (TEST NO. 3)

	Test	Concentrat	ions (Perc	ent Ground	water by V	olume)
	0	10	18	32	56	100
Day 0						
0 H	7.55	7.11	6.67	6.27	5.67	3.74
Day 1						
0 H	7.32	6.89	6.66	6.26	5.23	3.79
Day 2						
о н	7.39	7.12	6.80	6.35	5.47	3.71
Day 3						
ОН	7.35	6.86	6.81	6.65	5.99	3.79
Day 4						
24 H	7.43	7.46	7.43	7.20	6.49	4.05

TABLE A48-2. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST DATA (TEST NO. 3) - PERCENT EMBRYO SURVIVAL AND MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	Rep	Number Embryos Alive	Percent Survival	Number Embryos Malformed	Percent Malformed
UMD/WREC	1	25	100	2	8.0
Control	1 2	24	96	1	4.2
APG-EA Diluent Water	1 2	25 24	100 96	2 1	8.0 4.2
10	1	24	96	2	8.3
	2	25	100	2	8.0
18	1	24	96	4	16.7
	2	25	100	5	20.0
32	1	25	100	7	28.0
	2	24	96	7	29.2
56	1	23	92	7	30.4
	2	19	76	5	26.3
100	1	21	84	8	38.1
	2	17	68	7	41.2

TABLE A48-3. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 3) - PERCENT EMBRYO SURVIVAL AFTER 96 HOURS OF EXPOSURE

Data Transformation:

Arc-sine square-root

Chi-Square Test for Normality:

Calculated test statistic: 12.79
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed.

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 1.10
Alpha value: 0.01
Critical value: 15.09

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 4.79
Alpha value: 0.05
Critical value: 4.39

Conclusion: Reject the null hypothesis that all

groups are equal

Dunnett's Test:

Calculated test statistic: See Table A48-4

Alpha value: 0.05 Critical value: 2.83

Conclusion: Reject the null hypothesis that all

groups are equal

TABLE A48-4. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 3) - RESULTS OF DUNNETT'S TEST ON EMBRYO MORTALITY AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean Percent Survival	T Statistic	Significance
UMD/WREC Control	2	98		
10	2	98	0.00	
18	2	98	0.00	
32	2	98	0.00	
56	2	84	2.41	
100	2	76	3.45	*

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.83).

TABLE A48-5. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 3) - PERCENT EMBRYO MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Data Transformation:

Arc sine square root

Chi-square Test for Normality:

Calculated test statistic: 10.66
Alpha value: 0.01
Critical Value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 4.13
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 41.85
Alpha value: 0.05
Critical value: 5.19

Conclusion: Reject the null

hypothesis that all groups are equal

Dunnett's Test:

Calculated test statistic: See Table A48-6

Alpha value: 0.05 Critical value: 2.85

Conclusion: Reject the null hypothesis that all

groups are equal

TABLE A48-6. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 3) - RESULTS OF DUNNETT'S TEST ON EMBRYO MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean Normal Embryos (%) ^a	T Statistic	Significance
UMD/WREC Control	2	93.9		
10	2	91.8	1.32	
18	2	81.6	6.03	*
32	2	71.4	9.78	*
56	2	71.4	9.69	*

Values given are actual percent mean normal embryos rather than arc sine square root transformed means which were used in the statistical analysis.

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.85).

TABLE A48-7. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST
DATA (TEST NO. 3) - TYPE AND NUMBER OF MALFORMED
EMBRYOS AFTER 96 HOURS OF EXPOSURE

Malformation	Test Co	ncentratio	ns (% G	roundwate	r by Vol	ume)
	0	10	18	32	56	100
	<u>Rep</u> 1 2					
Severe		Marketon,		2 1	1	3
Gut, coiling		1	1 1	3 2	2 1	2 2
Edema:						
Multiple	1 1	1 1	1	2	2 3	1 1
Cardiac			1			
Abdominal				1		
Facial						
Cephalic						
Blisters						
Tail						
Notochord	1	1	2 3		1	2 2
Fin						
Face				2	1	2
Eye				1	1	
Brain						
Hemorrhage						
Cardiac						
Other						

FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX) CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 3)

Test Method:

ASTM Designation E 1439-91

ASTM (1991)

Type of Test:

Static renewal (every 24 h)

Date:

January 25-29, 1995

Investigator:

S. D. Turley

Laboratory:

UMD/WREC

Groundwater:

Source:

Chemical Characteristics:

APG-EA Canal Creek Well CC-27B

See Appendix 58

Test Medium:

Source:

pH characteristics:

FETAX solution

See Table A49-1

Test Organism:

Scientific Name:

Age at Start of Test:

Xenopus laevis

Stage 8 blastula to stage 11

gastrulae

Source:

UMD/WREC culture

Experimental Chambers:

Material:

Glass petri dishes

10 mL

No. Organisms/Replicate:

Test Solution Volume:

25

No. Organisms/Treatment:

Groundwater: 50

Control: 50

Loading:

n/a

Lighting:

Fluorescent; 60-85 foot

candles

Aeration:

Prior to renewals

pH Buffer: 10 N NaOH

Endpoints: Mortality; malformations

Test Temperature: 24 ± 0.2°C

Results:

Mortality:

Less than 50% mortality occurred to the embryos exposed for 4 days to 100% Canal Creek buffered groundwater; thus, an LC50 could not be calculated (Table A49-2). Embryo survival was not affected by exposure for 4 days to Canal Creek buffered groundwater (See Tables A49-2 and A49-3).

Malformations:

A significant ($\alpha=0.05$) increase in the incidence of frog embryo malformations occurred after 96 h of exposure at all concentrations down to 32% buffered Canal Creek groundwater (See Tables A49-2, A49-3 and A49-5). Less than 50% malformation occurred at all test concentrations, thus, an EC50 could not be calculated (Table A49-2). The NOEC and LOEC for the embryos, based on increased number of malformations, are as follows:

NOEC = 18% buffered groundwater by volume LOEC = 32% buffered groundwater by volume

The types of malformed embryos are given in Table A49-6.

TABLE A49-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY pH (STANDARD UNITS) DATA FOR FETAX (TEST NO. 3)

			_			
	<u>Test</u>			ent Ground	<u>water by V</u>	
	0	10	18	32	56	100
				***************************************	**************************************	······
Day 0						
о н	7.55	7.48	7.40	7.35	7.25	7.16
Day 1						
0 H	7.32	7.55	7.57	7.64	7.65	7.67
Day 2						
0 H	7.39	7.48	7.49	7.48	7.44	7.51
Day 3						
0 Н	7.35	7.70	7.71	7.76	7.75	7.81
Day 4						
24 H	7.43	7.62	7.62	7.67	7.73	7.77

TABLE A49-2. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST DATA (TEST NO. 3) - PERCENT EMBRYO SURVIVAL
AND MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	Rep	Number Embryos Alive	Percent Survival	Number Embryos Malformed	Percent Malformed
UMD/WREC	1 2	25	100	2 1	8.0 4.2
Control	2	24	96	7	4.2
10	1	24	96	2	8.3
	1 2	23	92	2	8.7
18	1	23	92	2	8.7
	2	24	96	2	8.3
32	1	24	96	4	16.7
	1 2	25	100	5	20.0
56	1	22	88	7	31.8
	1 2	23	92	5	21.7
100	1	24	96	6	25.0
	1 2	23	92	7	30.4

TABLE A49-3. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 3) - PERCENT
EMBRYO SURVIVAL AFTER 96 HOURS OF EXPOSURE

Data Transformation:

Arc sine square root

Chi-square Test for Normality:

Calculated test statistic: 12.79
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 0.16
Alpha value: 0.01
Critical value: 15.09

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 2.17
Alpha value: 0.05
Critical value: 4.39

Conclusion: Fail to reject the null

hypothesis that all groups are equal

TABLE A49-4. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 3) - PERCENT
EMBRYO MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Data Transformation:

Arc sine square root

Chi-square Test for Normality:

Calculated test statistic: 12.79
Alpha value: 0.01
Critical Value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 5.90
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 17.31
Alpha value: 0.05
Critical value: 4.39

Conclusion: Reject the null hypothesis that all

groups are equal

Dunnett's Test:

Calculated test statistic: See Table A49-5

Alpha value: 0.05 Critical value: 2.83

Conclusion: Reject the null hypothesis that all

groups are equal

TABLE A49-5 FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 3) - RESULTS
OF DUNNETT'S TEST ON EMBRYO MALFORMATIONS AFTER
96 HOURS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean Normal Embryos (%) ^a	T Statistic	Significance
UMD/WREC Control	2	93.9		
10	2	91.5	1.08	
18	2	91.5	1.08	
32	2	81.6	4.28	*
56	2	73.3	6.45	*
100	2	72.3	6.71	*

Values given are actual percent mean normal embryos rather than arc sine square root transformed means which were used in the statistical analysis.

* Significantly different at alpha = 0.05 (Dunnett's critical value = 2.83).

TABLE A49-6. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST DATA (TEST NO. 3) - TYPE AND NUMBER OF
MALFORMED EMBRYOS AFTER 96 HOURS OF EXPOSURE

Malformation	<u>Test</u>		ations (Ground	water by	Volume)
	0	10 Rep	18 Rep	32 Rep	56 Rep	100 Rep
	Rep 1 2	1 2	1 2	1 2	1 2	1 2
Severe				1 2	1	1
Gut, coiling		1	1	2 2	4 2	3 5
Edema:						
Multiple	1 1	1 1	2 1	1 1	2 2	2 2
Cardiac						
Abdominal						
Facial						
Cephalic						
Blisters						
Tail						
Notochord	1	1			1	
Fin						
Face						
Eye						
Brain						
Hemorrhage						
Cardiac						
Other						

FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX)
CONDUCTED ON CANAL CREEK RAW (pH ≈4)
GROUNDWATER (WELL CC-27B)
(TEST NO. 4)

Test Method: ASTM Designation E 1439-91

ASTM (1991)

Type of Test: Static renewal (every 24 h)

Date: March 24-28, 1995

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Test Medium:

Source: FETAX solution
pH characteristics: See Table A50-1

pH characteristics: See Table A50-

Test Organism:

Scientific Name: <u>Xenopus laevis</u>

Age at Start of Test: Stage 8 blastula to stage 11

gastrulae

Source: UMD/WREC culture

Experimental Chambers:

Material: Glass petri dishes

Test Solution Volume: 10 mL

No. Organisms/Replicate: 25

No. Organisms/Treatment: Control: 50

Groundwater: 50

Loading: n/a

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to renewals

Endpoints:

Mortality; malformation

Test Temperature:

24 ± 0.2°C

Results:

Mortality:

Less than 50% mortality occurred to the embryos exposed for 4 days to 100% Canal Creek raw groundwater; thus, an LC50 could not be calculated (Table A50-2). Significant embryo mortality occurred at the 56% and 100% raw groundwater by volume treatments. (See Tables A50-2, A50-3 and A50-4).

Embryo survival was not affected by exposure to APG-EA tap water relative to the UMD/WREC control embryos after 4 d of exposure.

Malformations:

Significant (α = 0.05) embryo malformations occurred (see Tables A50-2, A50-5, and A50-6). The NOEC and LOEC for the embryos, based on increased numbers of malformations, are as follows:

NOEC = 10% raw groundwater by volume. LOEC = 18% raw groundwater by volume.

The 96-h EC50 for malformations of the embryos, determined by the moving average angle method, is as follows:

96-h EC50 = 77.9 (95% confidence limits = 53.05-6698.20)

Normal embryo development was not affected by exposure to APG-EA tap water relative to the UMD/WREC control embryos.

The types of malformed embryos are given in Table A50-7.

TABLE A50-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY pH (STANDARD UNITS) DATA FOR FETAX (TEST NO. 4)

	Test Concentrations (Percent Groundwater by Vol						
	0	10	18	32	56	100	
Day 0							
ОН	7.60	7.25	7.00	6.68	6.04	3.74	
Day 1							
ОН	7.65	7.29	7.06	6.73	6.07	3.75	
Day 2							
о н	7.61	7.23	7.02	6.69	6.01	3.80	
Day 3							
0 Н	7.60	7.20	7.00	6.71	5.99	3.84	
Day 4							
24 H	7.69	7.27	7.11	6.80	6.12	4.07	

TABLE A50-2. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST DATA (TEST NO. 4) - PERCENT EMBRYO SURVIVAL AND MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	Rep	Number Embryos Alive	Percent Survival	Number Embryos Malformed	Percent Malformed
UMD/WREC	1 2	25	100	2 1	8.0
Control	2	24	96	1	4.2
APG-EA	1	25	100	2	8.0
Diluent	2	24	96	2 2	8.3
10	1	23	92	4	17.4
	2	24	96	2	8.3
18	1	23	92	6	26.1
	1 2	24	96	6	25.0
32	1	21	84	7	33.3
	1 2	23	92	8	34.8
56	1	19	76	9	47.4
	2	20	80	6	30.0
100	1	20	80	11	55.0
	2	16	64	9	56.3

TABLE A50-3. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST
STATISTICAL ANALYSIS (TEST NO. 4) - PERCENT EMBRYO
SURVIVAL AFTER 96 HOURS OF EXPOSURE

Data Transformation:

Arc-sine square-root

Chi-Square Test for Normality:

Calculated test statistic: 12.79
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed.

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 1.29
Alpha value: 0.01
Critical value: 15.09

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 7.78
Alpha value: 0.05
Critical value: 4.39

Conclusion: Reject the null

hypothesis that all groups are equal

Dunnett's Test:

Calculated test statistic: See Table A50-4

Alpha value: 0.05 Critical value: 2.83

Conclusion: Reject the null hypothesis that all

TABLE A50-4. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 4) - RESULTS OF DUNNETT'S TEST ON EMBRYO MORTALITY AFTER 96 HOURS OF EXPOSURE

Conc No. (% by of Vol) Reps		Mean Percent Survival	T Statistic	Significance
UMD/WREC Control	2	98		
10	2	94	1.18	
18	2	94	1.18	
32	2	88	2.51	
56	2	78	4.26	*
100	2	72	5.09	*

Significantly different at alpha = 0.05 (Dunnett's critical value = 2.83).

TABLE A50-5. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST
STATISTICAL ANALYSIS (TEST NO. 4) - PERCENT EMBRYO
MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Data Transformation:

Arc sine square root

Chi-square Test for Normality:

Calculated test statistic: 8.53
Alpha value: 0.01
Critical Value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 4.15
Alpha value: 0.01
Critical value: 11.34

Conclusion: Fail to reject the null

hypothesis that the variances are homogenous

ANOVA:

Calculated test statistic: 17.52
Alpha value: 0.05
Critical value: 6.59

Conclusion: Reject the null hypothesis that all

groups are equal

Bonferroni t-Test:

Calculated test statistic: See Table A50-6

Alpha value: 0.05 Critical value: 3.19

Conclusion: Reject the null hypothesis that all groups are equal

The 56% and 100% raw Canal Creek groundwater treatments were not included in the statistical analyses because all concentrations above the NOEC for survival are excluded from the hypothesis test for malformation effects.

TABLE A50-6. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 4) - RESULTS OF BONFERRONI T-TEST ON EMBRYO MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean Normal Embryos (%) ^a	T Statistic	Significance
UMD/WREC Control	2	93.9		
10	2	87.2	2.02	
18	2	74.5	4.98	*
32	2	65.9	6.61	*

Values given are actual percent mean normal embryos rather than arc sine square root transformed means which were used in the statistical analysis.

* Significantly different at alpha = 0.05 (Bonferroni's critical value = 3.19).

TABLE A50-7. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST DATA (TEST NO. 4) - TYPE AND NUMBER OF MALFORMED EMBRYOS AFTER 96 HOURS OF EXPOSURE

Malformation		Concentration				
	0	10	18	32 Bon	56 Bon	100
	<u>Rep</u> 1 2					
Severe			1	2 1	1	2 2
Gut, coiling		1	3 1	2 2	3 1	3 2
Edema:						
Multiple	1	3 1	3	3 3	2 3	4 5
Cardiac	1	1	2		1	
Abdominal			2		2	
Facial						
Cephalic						
Blisters						
Tail						
Notochord	1				1	1
Fin						
Face				1	1	1
Eye						
Brain				1		
Hemorrhage						
Cardiac						
Other						

FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX) CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 4)

Test Method: ASTM Designation E 1439-91

ASTM (1991)

Type of Test: Static renewal (every 24 h)

Date: March 24-28, 1995

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Test Medium:

Source: FETAX solution

pH characteristics: See Table A51-1

Test Organism:

Scientific Name: Xenopus laevis

Age at Start of Test: Stage 8 blastula to stage 11

gastrulae

Source: UMD/WREC culture

Experimental Chambers:

Material: Glass petri dishes

Test Solution Volume: 10 mL

No. Organisms/Replicate: 25

No. Organisms/Treatment: Groundwater: 50

Control: 50

Loading: n/a

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to renewals

pH Buffer: 10 N NaOH

Endpoints: Mortality; malformations

Test Temperature: 24 ± 0.2°C

Results:

Mortality:

Less than 50% mortality occurred to the embryos exposed for 4 days to 100% Canal Creek buffered groundwater; thus, an LC50 could not be calculated (Table A51-2). Embryo survival was significantly affected by exposure to 32%, 56% and 100% Canal Creek buffered groundwater by volume treatments (See Tables A51-2 and A51-3). The NOEC and LOEC for the embryos, based on increased mortality, are as follows:

NOEC: 18% buffered groundwater by volume LOEC: 32% buffered groundwater by volume

Malformations:

There was no significant ($\alpha=0.05$) increase in the incidence of frog embryo malformations after 96 h of exposure to 10% and 18% buffered Canal Creek groundwater (See Tables A51-2, A51-3 and A51-5). However, at the 32%, 56% and 100% Canal Creek buffered groundwater treatments; which were not included in the statistical analysis for malformations, 35% or more of the embryos were malformed.

The types of malformed embryos are given in Table A51-6.

TABLE A51-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY pH (STANDARD UNITS) DATA FOR FETAX (TEST NO. 4)

	Test	Concentrat	ions (Perc	ent Ground	water by V	olume)_
	0	10	18	32	56	100
Day 0						
O H	7.60	7.63	7.64	7.69	7.77	7.84
Day 1						
0 Н	7.65	7.60	7.52	7.43	7.37	7.29
Day 2						
о н	7.61	7.57	7.54	7.47	7.40	7.39
Day 3						
о н	7.60	7.63	7.63	7.65	7.66	7.70
Day 4						
24 H	7.62	7.70	7.71	7.69	7.70	7.90

TABLE A51-2. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST DATA (TEST NO. 4) - PERCENT EMBRYO SURVIVAL
AND MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	Rep	Number Embryos Alive	Percent Survival	Number Embryos Malformed	Percent Malformed
UMD/WREC	1	25	100	2	8.0
Control	2	24	96	1	4.2
10	1	23	92	4	17.4
	1 2	25	100	2	8.0
18	1	23	92	4	17.4
	1 2	22	88	6	27.3
32	1	21	84	9	42.9
	1 2	18	72	5	27.8
56	1	19	76	7	36.8
	1 2	20	80	8	40.0
100	1	20	80	9	45.0
+	1 2	19	76	8	42.1

TABLE A51-3. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 4) - PERCENT
EMBRYO SURVIVAL AFTER 96 HOURS OF EXPOSURE

Data Transformation:

Arc sine square root

Chi-square Test for Normality:

Calculated test statistic: 12.79
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 2.21
Alpha value: 0.01
Critical value: 15.09

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 7.69
Alpha value: 0.05
Critical value: 4.39

Conclusion: Reject the null

hypothesis that all groups are equal

Dunnett's Test:

Calculated test statistic: See Table A51-4

Alpha value: 0.05 Critical value: 2.83

Conclusion: Reject the null hypothesis that all

TABLE A51-4 FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 4) - RESULTS OF
DUNNETT'S TEST ON PERCENT EMBRYO MORTALITY AFTER 96
HOURS OF EXPOSURE

Conc. (% by Vol)	No. of Reps	Mean Embryo Survival ^a	T Statistic	Significance
UMD/WREC Control	2	98.0		
10	2	96.0	0.538	
18	2	90.0	2.136	
32	2	78.0	4.207	*
56	2	78.0	4.248	*
100	2	78.0	4.248	*

Values given are actual percent embryo mortality rather than arc sine square root transformed means which were used in the statistical analysis.

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.83).

TABLE A51-5. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 4) - PERCENT
EMBRYO MALFORMATIONS AFTER 96 HOURS OF EXPOSURE^a

Data Transformation:

Arc sine square root

Chi-square Test for Normality:

Calculated test statistic: 6.39
Alpha value: 0.01
Critical Value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 0.22
Alpha value: 0.01
Critical value: 9.21

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 4.31
Alpha value: 0.05
Critical value: 9.55

Conclusion: Fail to reject the null

hypothesis that all groups are equal

The 32%, 56% and 100% raw Canal Creek groundwater treatments were not included in the statistical analyses because all concentrations above the NOEC for survival are excluded from the hypothesis test for malformation effects.

TABLE A51-6. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST DATA (TEST NO. 4) - TYPE AND NUMBER OF
MALFORMED EMBRYOS AFTER 96 HOURS OF EXPOSURE

Malformation	<u>Test</u>	Concentra	tions (9			Volume)
	0	10	18	32	56	100
	Rep 1 2	Rep 1 2	Rep 1 2	Rep 1 2	Rep 1 2	Rep 1 2
			,			
Severe				2		3 2
Gut, coiling		2 2	2 2	1 2	3 4	2 2
Edema:						
Multiple	1	2	2 4	6 2	3 2	3 1
Cardiac	1					1
Abdominal						
Facial						
Cephalic						
Blisters						
Tail						
Notochord	1					1
Fin						
Face				1	1 2	1 1
Eye						
Brain						
Hemorrhage						
Cardiac						
Other						

FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX) CONDUCTED ON CANAL CREEK RAW (pH ≈4) GROUNDWATER (WELL CC-27B) (TEST NO. 5)

Test Method: ASTM Designation E 1439-91

ASTM (1991)

Type of Test: Static renewal (every 24 h)

Date: May 3-7, 1995

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Test Medium:

Source: FETAX solution

pH characteristics: See Table A52-1

Test Organism:

Scientific Name: <u>Xenopus laevis</u>

Age at Start of Test: Stage 8 blastula to stage 11

gastrulae

Source: UMD/WREC culture

Experimental Chambers:

Material: Glass petri dishes

Test Solution Volume: 10 mL

No. Organisms/Replicate: 25

No. Organisms/Treatment: Control: 50

Groundwater: 50

Loading: n/a

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to renewals

Endpoints: Mortality; malformation

Test Temperature: 24 ± 0.2°C

Results:

Mortality:

Less than 50% mortality occurred to the embryos exposed for 4 days to 100% Canal Creek raw groundwater; thus, an LC50 could not be calculated (Table A52-2). Embryo survival was not affected by exposure to Canal Creek raw groundwater for 96 hours (See Tables A52-2, and A52-3).

Embryo survival was not affected by exposure to APG-EA tap water relative to the UMD/WREC control embryos after 4 d of exposure.

Malformations:

Significant ($\alpha=0.05$) embryo malformations occurred at all concentrations down to 18% raw groundwater by volume (See Tables A52-2, A52-4, and A52-5). The NOEC and LOEC for the embryos, based on increased numbers of malformations, are as follows:

NOEC = 10% raw groundwater by volume. LOEC = 18% raw groundwater by volume.

Less than 50% of the embryos were malformed after exposure for 4 days to 100% Canal Creek raw groundwater; thus an EC50 could not be calculated (Table A52-5)

Normal embryo development was not affected by exposure to APG-EA tap water relative to the UMD/WREC control embryos.

The types of malformed embryos are given in Table A52-6.

TABLE A52-1. SUMMARY OF THE CANAL CREEK RAW GROUNDWATER BIOASSAY pH (STANDARD UNITS) DATA FOR FETAX (TEST NO. 5)

	Test	Concentrat	ions (Perc	ent Ground	water by V	olume)
	0	10	18	32	56	100
Day 0						
0 H	7.60	7.19	6.72	6.30	6.04	3.78
Day 1						
о н	7.57	7.12	6.65	6.24	5.95	3.80
Day 2						
о н	7.59	7.22	6.72	6.31	6.04	3.82
Day 3						
0 Н	7.54	7.11	6.63	6.24	5.95	3.81
Day 4						
24 H	7.57	7.16	6.75	6.37	6.10	3.88

TABLE A52-2. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST DATA (TEST NO. 5) - PERCENT EMBRYO SURVIVAL AND MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	Rep	Number Embryos Alive	Percent Survival	Number Embryos Malformed	Percent Malformed
UMD/WREC	1 2	24	96	1	4.2
Control		25	100	2	8.0
APG-EA	1	24	96	2	8.3
Diluent	2	25	100	2	8.0
10	1	25	100	3	12.0
	2	23	92	1	4.3
18	1	25	100	5	20.0
	2	24	96	9	37.5
32	1	23	92	7	30.4
	2	24	96	7	29.2
56	1	24	96	7	29.2
	2	23	92	7	30.4
100	1	21	84	10	47.6
	2	23	92	11	47.8

TABLE A52-3. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST
STATISTICAL ANALYSIS (TEST NO. 5) - PERCENT EMBRYO
SURVIVAL AFTER 96 HOURS OF EXPOSURE

Data Transformation:

Arc-sine square-root

Chi-Square Test for Normality:

Calculated test statistic: 12.79
Alpha value: 0.01
Critical value: 13.28

Conclusion: Fail to reject the null hypothesis that the data are normally distributed.

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 0.73
Alpha value: 0.01
Critical value: 15.09

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 1.57
Alpha value: 0.05
Critical value: 4.39

Conclusion: Fail to reject the null

hypothesis that all groups are equal

TABLE A52-4. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST
STATISTICAL ANALYSIS (TEST NO. 5) - PERCENT EMBRYO
MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Data Transformation:

Arc sine square root

Chi-square Test for Normality:

Calculated test statistic: 12.79
Alpha value: 0.01
Critical Value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 10.48
Alpha value: 0.01
Critical value: 15.09

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 14.28 Alpha value: 0.05 Critical value: 4.39

Conclusion: Reject the null

hypothesis that all groups are equal

Dunnett's Test:

Calculated test statistic: See Table A52-5

Alpha value: 0.05 Critical value: 2.83

Conclusion: Reject the null hypothesis that all

TABLE A52-5. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 5) - RESULTS OF DUNNETT'S TEST ON EMBRYO MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean Normal Embryos (%) ^a	T Statistic	Significance
UMD/WREC Control	2	93.9		
10	2	91.7	0.468	
18	2	71.4	4.243	*
32	2	70.2	4.453	*
56	2	70.2	4.453	*
100	2	52.3	6.953	*

Values given are actual percent mean normal embryos rather than arc sine square root transformed means which were used in the statistical analysis.

^{*} Significantly different at alpha = 0.05 (Dunnett's critical value = 2.83).

TABLE A52-6. FETAX CANAL CREEK RAW GROUNDWATER TOXICITY TEST DATA (TEST NO. 5) - TYPE AND NUMBER OF MALFORMED EMBRYOS AFTER 96 HOURS OF EXPOSURE

Malformation		<u>Concentratio</u>				
	0	10	18	32	56	100
	<u>Rep</u> 1 2	<u>Rep</u> 1 2	<u>Rep</u> 1 2	<u>Rep</u> 1 2	<u>Rep</u> 1 2	<u>Rep</u> 1 2
Severe					1	
Gut, coiling			1 1	3 1	3 1	1 2
Edema:						
Multiple	1	2	2 4	1 4	3 3	5 5
Cardiac		1				
Abdominal						
Facial						
Cephalic						
Blisters						
Tail						
Notochord	1 1		2 4	2 2	1 1	3 3
Fin						
Face		1		1	1	1 1
Eye						
Brain						
Hemorrhage						
Cardiac						
Other						

FROG EMBRYO TERATOGENESIS ASSAY - Xenopus (FETAX) CONDUCTED ON CANAL CREEK BUFFERED (pH ≈7) GROUNDWATER (WELL CC-27B) (TEST NO. 5)

Test Method: ASTM Designation E 1439-91

ASTM (1991)

Type of Test: Static renewal (every 24 h)

Date: May 3-7, 1995

Investigator: S. D. Turley

Laboratory: UMD/WREC

Groundwater:

Source: APG-EA Canal Creek Well CC-27B

Chemical Characteristics: See Appendix 58

Test Medium:

Source: FETAX solution

pH characteristics: See Table A53-1

Test Organism:

Scientific Name: <u>Xenopus</u> <u>laevis</u>

Age at Start of Test: Stage 8 blastula to stage 11

gastrulae

Source: UMD/WREC culture

Experimental Chambers:

Material: Glass petri dishes

Test Solution Volume: 10 mL

No. Organisms/Replicate: 25

No. Organisms/Treatment: Groundwater: 50

Control: 50

Loading: n/a

Lighting: Fluorescent; 60-85 foot

candles

Aeration: Prior to renewals

pH Buffer: 10 N NaOH

Endpoints: Mortality; malformations

Test Temperature: 24 ± 0.2°C

Results:

Mortality:

Less than 50% mortality occurred to the embryos exposed for 4 days to 100% Canal Creek buffered groundwater; thus, an LC50 could not be calculated (Table A53-2). Embryo survival was not affected by exposure for 4 days to Canal Creek buffered groundwater (See Tables A53-2 and A53-3).

Malformations:

A significant (α = 0.05) increase in the incidence of frog embryo malformations occurred after 96 h of exposure at all concentrations down to 32% buffered Canal Creek groundwater (See Tables A53-2, A53-4 and A53-5). The NOEC and LOEC for the embryos, based on increased number of malformations, are as follows:

NOEC = 18% buffered groundwater by volume LOEC = 32% buffered groundwater by volume

The types of malformed embryos are given in Table A53-6.

TABLE A53-1. SUMMARY OF THE CANAL CREEK BUFFERED GROUNDWATER BIOASSAY pH (STANDARD UNITS) DATA FOR FETAX (TEST NO. 5)

	Test C	oncentrat:	ions (Perc	ent Ground	water by V	olume)
	0	10	18	32	56	100
Day 0			, , , , , , , , , , , , , , , , , , ,			
ОН	7.60	7.55	7.57	7.39	7.35	7.20
Day 1						
о н	7.57	7.46	7.41	7.37	7.28	7.17
Day 2						
0 Н	7.59	7.50	7.43	7.36	7.30	7.21
Day 3						
0 Н	7.54	7.46	7.37	7.32	7.26	7.25
Day 4						
24 H	7.57	7.51	7.47	7.40	7.31	7.29

TABLE A53-2. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST DATA (TEST NO. 5) - PERCENT EMBRYO SURVIVAL
AND MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Conc (% by Vol)	Rep	Number Embryos Alive	Percent Survival	Number Embryos Malformed	Percent Malformed
UMD/WREC	1	24	96	1	4.2
Control	2	25	100	2	8.0
10	1 2	24	96	3 1	12.5
	2	23	92	1	4.3
18	1 2	22	88	3 7	13.6
	2	23	92	7	30.4
32	1 2	22	88	5 7	22.7
	2	23	92	7	30.4
56	1	22	88	5	22.7
	1 2	24	96	6	25.0
100	1	20	80	6	30.0
	1 2	23	92	8	34.8

TABLE A53-3. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY TEST STATISTICAL ANALYSIS (TEST NO. 5) - PERCENT EMBRYO SURVIVAL AFTER 96 HOURS OF EXPOSURE

Data Transformation:

Arc sine square root

Chi-square Test for Normality:

Calculated test statistic: 12.79 0.01 Alpha value: 13.28 Critical value:

Fail to reject the null Conclusion: hypothesis that the data are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 1.23 0.01 Alpha value: 15.09 Critical value:

Fail to reject the null Conclusion:

hypothesis that the

variances are homogenous

ANOVA:

1.80 Calculated test statistic: 0.05 Alpha value: 4.39 Critical value:

Fail to reject the null Conclusion:

hypothesis that all groups are equal

TABLE A53-4. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 5) - PERCENT
EMBRYO MALFORMATIONS AFTER 96 HOURS OF EXPOSURE

Data Transformation:

Arc sine square root

Chi-square Test for Normality:

Calculated test statistic: 12.79
Alpha value: 0.01
Critical Value: 13.28

Conclusion: Fail to reject the null hypothesis that the data

are normally distributed

Bartlett's Test for Homogeneity of Variances:

Calculated test statistic: 3.12
Alpha value: 0.01
Critical value: 15.09

Conclusion: Fail to reject the null

hypothesis that the

variances are homogenous

ANOVA:

Calculated test statistic: 6.07
Alpha value: 0.05
Critical value: 4.39

Conclusion: Reject the null

hypothesis that all groups are equal

Dunnett's Test:

Calculated test statistic: See Table A53-5

Alpha value: 0.05 Critical value: 2.83

Conclusion: Reject the null hypothesis that all

TABLE A53-5 FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST STATISTICAL ANALYSIS (TEST NO. 5) - RESULTS
OF DUNNETT'S TEST ON EMBRYO MALFORMATIONS AFTER
96 HOURS OF EXPOSURE

Conc (% by Vol)	No. of Reps	Mean Normal Embryos (%) ^a	T Statistic	Significance
UMD/WREC Control	2	93.9		
10	2	91.5	0.463	
18	2	77.8	2.812	
32	2	73.3	3.526	*
56	2	76.1	3.164	*
100	2	67.4	4.306	*

Values given are actual percent mean normal embryos rather than arc sine square root transformed means which were used in the statistical analysis.

* Significantly different at alpha = 0.05 (Dunnett's critical value = 2.83).

TABLE A53-6. FETAX CANAL CREEK BUFFERED GROUNDWATER TOXICITY
TEST DATA (TEST NO. 5) - TYPE AND NUMBER OF
MALFORMED EMBRYOS AFTER 96 HOURS OF EXPOSURE

Malformation	Test		ations (% Ground	lwater by	Volume)
	0	10	18	32 Pop	56 Bon	100 Bon
	Rep 1 2					
Severe			1	1		1
Gut, coiling		1	1 3	1 3	4 5	5 6
Edema:						
Multiple	1	1		1 3		
Cardiac				1 1		
Abdominal			3			
Facial						
Cephalic						
Blisters						
Tail						
Notochord	1 1	1	1	1	1 1	
Fin						
Face		1	1			1 1
Eye						
Brain						
Hemorrhage						
Cardiac						
Other						

DISPOSITION OF FISH DURING THE JAPANESE MEDAKA CHRONIC HISTOPATHOLOGY STUDY

DISPOSITION OF FISH DURING THE JAPANESE MEDAKA CHRONIC HISTOPATHOLOGY STUDY TABLE A54-1.

Tank		6 Months	នុង			5	fonths			
No. a	DOAb	Not Sexed	Used in Growth Analyses	DOA	Not Sexed	Used in Growth Analyses	n UMBC ^c 1 8S	Not Found ^d	Dead	Total
			C			0,	u	1.5	u	0.9
-			0.7			01	ດ	77	n	0
7			20	7		24	വ		თ	65
e			21			27	വ		7	09
4			20			22	വ	4	σ	09
יםי			20	Н		24	വ	· ન	0	09
9			20	7	Н	23	ហ	7	7	09
7	7		19	7	Н	18	Ŋ	Ŋ	ðŧ	09
- ω			20	п		18	വ	8	œ	09
6	7		19			24	ນ	4	7	09
10			21			30	S	2	7	09
11			20			16	വ	9	13	9
12	7		18			27	2	င	വ	09
13			20			27	S	7	9	09
14			20			21	വ	4	10	9
15			20	н		23	വ		11	09
16			20	ч		18	വ	က	139	09
17			20			32			ω	09
18			20	ч		41			9	89
19		η, L	19	œ		25		က	4	09
20		Н	19	ч		36		7	Н	09
21			20	Т		27		4	æ	09
22			20			31		7	7	09
23			20	4		29		4	ო	09
24			20			34		1	വ	09
25			20	7		26		н	61	09
26			20			35		7	ო	09
27	2		18	1		34			വ	09
28			20			32		ო	വ	09
29			20	Н		28		7	6	09
30	Н		18	7		29		7	ω	09

TABLE A54-1. (CONTINUED)

	Total	09	9	9	9	09
	Deade	7	က	7		00
	Not Dead ^e Found ^d	ε		н	~	7
onths	UMBC					
М 6	Used in UMBC ^c Growth Analyses	30	37	37	39	38 38
	DOA ^b Not Sexed					
	DOAb					
SI	Used in Growth Analyses	20	20	20	20	19 19 (20) ^k
6 Months	Not Sexed					г
	DOA					
Tank	NO.	31	32	33	34	35 36

The treatment for each tank is given in Appendix 57, page A57-3 under the heading Group

ID (i.e., tank 1 is Group ID 1, etc.). Fish that died while being transported from APG-EA to USABRDL for morphometric

exploratory analyses not related to this study; thus, the analyses are not included in Fish given to the University of Maryland Baltimore Campus at the end of 9 months for measurements. this report.

9 months. Fish that could not be accounted for at the end of

Total number of dead fish at the end of 9 months.

Eight dead and one moribund.

Fish inadvertently misplaced before histopathology was conducted. Seven dead and one moribund.

Five dead and one moribund.

One fish died while being transported from APG-EA to USABRDL; the second dead fish was too autolyzed for histopathology.

Nineteen fish were used in the growth analyses; the twentieth fish had incomplete measurement data and thus was not used in the morphometric analyses.

GROWTH MEASUREMENTS OF THE SIX-MONTH INTERIM AND NINE-MONTH FINAL JAPANESE MEDAKA IN THE CHRONIC HISTOPATHOLOGY STUDY

TABLE A55-1. SIX-MONTH INTERIM GROWTH DATA OF JAPANESE MEDAKA DURING THE CHRONIC HISTOPATHOLOGY EXPOSURE STUDY (SACRIFICED FEBRUARY 8, 1995; TEST DAY 181) - WEST BRANCH OF CANAL CREEK

	Tank 1 Males			Tank 1 Females			Tank 2 Males	2 8		Tank 2 Females	S
Fish No.	Wet Weight (mg)	Standard Length (mm)									
4	377	30	-		25	-	298	26	_	299	26
7	405	27	2	397	27	7	424	26		358	27
က	434	27	ന		52	က	286	25	က	368	27
4	333	24	4		29	4	307	25	4	318	26
လ	344	25	5		25	3	327	25	5	374	27
9	369	25	9		27	9	298	25	9	370	27
_	341	26	7		56	7	323	24	7	320	27
ω	427	56	80		23	80	373	25	80	386	25
თ	321	25				တ	380	27	6	399	25
9	404	28				10	351	27			
7	246	22				1	328	29			
12	384	30									
ean	365			388			336	26		355	
ص <u>َ</u>	52.6			54.8			42.2	4.		34.3	
Min	246	22		309	23		286	24		299	25
ax	434			477			424	29		399	
	12			œ			-	7		σ	

TABLE A55-1. (CONTINUED) - WEST BRANCH OF CANAL CREEK

î,	Standard Length (mm)	25	27	30	30	29	31	26	28	24	56		28	2.4	24	31	10
Tank 4 (DEN) Females	Wet S Weight I (mg)	315	330	448	463	461	418	407	390	337	439		401	55.9	315	463	10
Ë	Fish No.	-	2	ო	4	လ	9	7	ω	တ	9		2 3				
(N:	Standard Length (mm)	28	25	27	30	27	24	28	5 6	24	28		27	1.9	24	30	10
Tank 4 (DEN) Males	Wet S Weight (mg)	356	487	329	481	406	293	370	299	251	320		362	77.5	251	487	10
Ε :	Fish No.	-	2	က	4	2	9	7	ω	တ	9						
EN)	Standard Length (mm)	28	25	29	25	29	56	28	25	27	30	27	27	1.8	25	30	7
Tank 3 (DEN) Females	Wet Weight (mg)	399	334	539	397	408	340	359	355	333	546	403	401	75.4	333	546	7
<u> </u>	Fish No.		. 6	ო	4	5	9	7	ω	O	10	7					
(N)	Standard Length (mm)	25	25	25	27	56	29	28	56	25	29		27	1.6	25	59	10
Tank 3 (DEN) Males	Wet Weight (mg)	344	320	298	359	303	430	309	327	320	386		340	41.7	298	430	10
Ë	Fish No.	_	. 4	က	4	S.	9	7	ω	თ	10		Mean	S.D.	Min	Max	z

TABLE A55-1. (CONTINUED) - 1% GROUNDWATER BY VOLUME DILUTED WITH WEST BRANCH CANAL OF CREEK WATER

Tank 6 Females	Wet Standard Weight Length (mg) (mm)			3 417 26		409	328	440	404	251	322		454	338		64.6 2.2		
	Fish No.										•	•		•				
	Standard Length (mm)			21												3.2		
Tank 6 Males	Wet Weight (mg)	533	301	259	350	381	323	221							338	101.3	221	
	Fish No.	-	2	က	4	5	9	7										
	Standard Length (mm)	25	56	27	27	59	25	28	28						27	1.5	25	
Tank 5 Females	Wet Weight (mg)	361	355	475	318	509	454	509	396						422	74.3	318	
	Fish No.	+	7	က	4	2	9	7	∞									
	Standard Length (mm)	29	28	27	25	28	25	28	22	28	25	26	25		27	1.6	25	
Tank 5 Males	Wet Weight (mg)	373	428	362	450	462	373	454	301	357	309	312	241		369	70.1	241	
	Fish No.	-	7	က	4	5	9	7	∞	6	9	-	12		Mean	S.D.	M M	

TABLE A55-1. (CONTINUED) - 1% GROUNDWATER BY VOLUME DILUTED WITH WEST BRANCH CANAL OF CREEK WATER

	dard gth n)	25	56	25	25	27	27	24	28	28	24	23	24	56	1.7	23	28	12
EN)	Standard Length (mm)		١٥	•	~ !	~	~		~	_	~	ıo	0	.0	0	Ю	'n	2
Tank 8 (DEN) Females	Wet Weight (mg)	417	495	366	337	436	496	275	36.	49,	357	386	29(395	76.	27.	496	÷
Ľ	Fish No.	-	7	က	4	5	9	7	80	တ	10	11	12					
EN)	Standard Length (mm)	31	27	25	29	24	25	25	22					26	2.9	22	31	ω
Tank 8 (DEN) Males	Wet Weight (mg)	453	438	352	473	267	302	390	302					372	78.1	267	473	ω
ř	Fish No.	_	2	က	4	5	9	7	∞									
	Standard Length (mm)	28	28	56	28	26	27	27	27	28				27	0.8	56	28	O
k 7 (DEN) Females	Wet Weight (mg)	464	432	398	461	409	405	477	380	448				430	34.0	380	477	တ
Tank F	Fish No.	-	7	က	4	5	9	7	ω	6								
(X	Standard Length (mm)	24	24	26	25	27	26	25	25	26	21			25	1.7	21	27	10
Tank 7 (DEN) Males	Wet Weight (mg)	240	266	364	331	372	377	287	360	443	318			336	60.2	240	443	10
 -	Fish No.	-	7	က	4	2	ဖ	7	ω	6	9			Mean	SD	Min	Max	z

TABLE A55-1. (CONTINUED) - 5% GROUNDWATER BY VOLUME DILUTED WITH WEST BRANCH OF CANAL CREEK WATER

	Tank 9 Males			Tank 9 Females			Tank 10 Males	O		Tank 10 Females	o se
Fish No.	Wet Weight (mg)	Standard Length (mm)									
-	372		τ-		26	+	358	24	-	383	
7	346	26	2	467	25	2	382	25	2	305	23
က	322		ന		29	ဗ	276	25	က	389	
4	377		4		25	4	361	26	4	439	
5	353		ιΩ		25	5	309	25	S	324	
9	493					9	305	25	9	475	
7	462					7	422	29	7	431	
ω	465					۵	581	28	ω	361	
o	351								6	458	
9	423								10	403	
7	585								11	328	
12	306								12	375	
13	560								13	332	
4	296										
Mean	408			354			433			374	
S.D.	92.3			75.5			95.8			54.5	
Min	296			349			276			305	
Max	585	30		502	29		581	29		475	30
z	14			5			80			13	

TABLE A55-1. (CONTINUED) - 5% GROUNDWATER BY VOLUME DILUTED WITH WEST BRANCH OF CANAL CREEK WATER

$\widehat{\mathbf{z}}$	Standard Length (mm)	26	25	25	56	25	25	27	23	28	23	56		25	1.5	23	28	=
Tank 12 (DEN) Females	Wet Si Weight I	366	299	418	428	376	422	371	360	393	343	317	,	372	41.9	299	428	=======================================
-	Fish No.	~	7	ო	4	9	9	7	ω	တ	10	7						
EN)	Standard Length (mm)	24	26	27	26	23	23	24						25	1.6	23	27	7
Tank 12 (DEN) Males	Wet S Weight (mg)	375	403	405	367	260	308	337						351	52.9	260	405	7
Te	Fish No.	-	7	က	4	သ	9	7										
EN)	Standard Length (mm)	28	26	56	25	27	25	25	24					26	1 .3	24	28	ω
Tank 11 (DEN) Females	Wet Weight (mg)	389	414	278	365	324	387	318	289					346	50.2	278	414	Φ
Ta	Fish No.	_	2	ო	4	2	9	7	ω									
JEN)	Standard Length (mm)	27	56	56	27	5 6	25	28	27	56	25	25	26	26	6.0	25	28	12
Tank 11 (DEN) Males	Wet Weight (mg)	239	376	381	431	432	311	236	420	348	351	377	387	357	66.1	236	432	12
	Fish No.	-	7	ო	4	က	ၑ	7	∞	ത	5	=	12	Mean	S	M.	Max	Z

TABLE A55-1. (CONTINUED) - 25% GROUNDWATER BY VOLUME DILUTED WITH WEST BRANCH OF CANAL CREEK

Tank 14 Females	Wet Weight (mg)		401											425	74.0	340	517	8
	Fish No.		2	က	4	S.	9	7	Φ									
	Standard Length (mm)	26	27	56	25	59	27	24	56	20	25	56	30	26	2.5	20	30	12
Tank 14 Males	Wet Weight (mg)	369	656	478	407	518	430	315	489	285	298	359	394	417	106.5	285	656	12
	Fish No.	_	2	က	4	5	ဖ	7	ω	6	10	7	12					
	Standard Length (mm)	26	24	26	28	29	25	27	24	29				26	1.9	24	29	თ
Tank 13 Females	Wet Weight (mg)	403	445	393	369	412	422	432	295	487				406	53.5	295	487	6
	Fish No.	_	7	က	4	5	9	7	ω	တ								
	Standard Length (mm)	26	24	27	24	28	25	27	27	28	24	24		26	1.7	24	28	7
Tank 13 Males	Wet Weight (mg)	502	326	489	316	489	358	420	200	453	288	347		408	82.7	288	502	1
	Fish No.	_	7	က	4	ည	9	7	ω	တ	9	7		Mean	S.D.	Min	Max	z

TABLE A55-1. (CONTINUED) - 25% GROUNDWATER BY VOLUME DILUTED WITH WEST BRANCH OF CANAL CREEK WATER

	Males		Females			Males	 	-	Females	
Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)
591	27	-	412		-	453	28	· •	406	25
380		2	485	25	2	425	25	2	365	24
417		က	409		က	430	25	က	402	27
347		4	315		4	544	27	4	411	26
317		5	508		5	528	30	5	365	25
406		9	411		9	416	26	9	322	24
311	22				7	576	30	7	387	24
358					80	421	27	00	359	25
568					σ	308	24	6	375	25
500					10	382	24			
323					-	351	25			
335										
412										
358							į			
405			423			439			377	
90.4			68.1			82.0			28.2	
311			315			308			322	
591	30		508	7		576	30		411	27
14			Œ	Œ		11			σ	

SIX-MONTH INTERIM GROWTH DATA OF JAPANESE MEDAKA DURING THE CHRONIC HISTOPATHOLOGY EXPOSURE STUDY (SACRIFICED FEBRUARY 8, 1995; TEST DAY 181) - APG-EA TAP WATER **TABLE A55-2.**

	Tank 17 Males			Tank 17 Females			Tank 18 Males	ග		Tank 18 Females	မ နှ
Fish No.	Wet Weight (mg)	Standard Length (mm)									
-	429		-	534	27	-	422	26	-	243	
7	412	27	2	372	25	7	469	30	2	2	15
က	367		က	432	30	က	543	31	က	334	
4	426		4	671	32	4	335	27	4	218	
5	434		5	320	25	S	342	24	5	339	
9	337		9	319	25	9	345	25	9	332	
7	359		7	368	56	7	440	29	7	284	
			80	374	26	∞	406	30	80	340	
			6	331	26	o	424	29			
			10	360	25	10	243	24			
			11	311	56	11	239	25			
			12	305	25	12	232	25			
			13	251	21						
Mean	395			381	26		370			278	
S.D.	39.5			111.2	2.6		98.4			101.9	
Min	337	. 25		251	21		232	24		20	15
Max	434			671	32		543			399	
2	7			13	13		12			00	

TABLE A55-2. (CONTINUED) - APG-EA TAP WATER

(Ž	Standard Length (mm)	32	78 78	30	30	30	23	25				28	3.0	23	32	ω
Tank 20 (DEN) Females	Wet 8 Weight (mg)	464	431	512	208	381	357	325				426	68.2	325	512	ω
F	Fish No.	← (v 6	4	သ	9	7	80								
(Z	Standard Length (mm)	26	27 27	29	25	30	28	58	56	29	29	28	1.7	25	30	11
Tank 20 (DEN) Males	Wet Weight (mg)	392	2/4 438	436	321	477	420	420	382	364	441	397	59.0	274	477	17
Ta	Fish No.	₩ (N 60	4	5	9	7	∞	თ	10	-					
EN)	Standard Length (mm)	58	સ્	31	31	29	31	5 6	36			30	2.7	56	36	6
Tank 19 (DEN) Females	Wet Weight (mg)	335	5/0 423	526	563	461	406	267	402			439	102.3	267	570	O
F	Fish No.	₩.	N W	4	5	9	7	ω	o	,						
JEN)	Standard Length (mm)	31	30	5 2	31	30	26	31	35	28		30	2.8	56	35	10
Tank 19 (DEN) Males	Wet Weight (mg)	482	336	308	566	523	251	542	573	309		432	121.7	251	573	10
H	Fish No.	- (N 60	4	2	9	7	ω	တ	10		Mean	S.D.	Z Z	Max	z

TABLE A55-2. (CONTINUED) - 1% GROUNDWATER BY VOLUME DILUTED WITH APG-EA TAP WATER

	Standard Length (mm)	26 26 27 28 25 25 25 25	26 1.7 24 29 10
Tank 22 Females	Wet S Weight I (mg)	282 405 386 330 361 351 337 315	335 41.2 282 405
	Fish No.	- 0 c 4 c o c o c	
	Standard Length (mm)	30 25 30 26 27 27	28 2.1 30 10
Tank 22 Males	Wet S Weight (mg)	437 468 295 434 520 318 367 371 282 423	392 78.1 282 520 10
	Fish No.	- 2 c 4 c o c c o c	
	Standard Length (mm)	30 27 28 31 27 27 26 30	28 1.7 26 31
Tank 21 Females	Wet Weight (mg)	518 416 324 440 539 415 377 451 461 361	416 66.8 323 539 12
. ш.	Fish No.	- 0 c 4 c o c 8 o c t c t	
	Standard Length (mm)	29 27 27 27 25 26	27 1.2 25 29 8
Tank 21 Males	Wet Weight (mg)	379 372 356 360 393 409 277 319	358 42.3 277 409 8
	Fish No.	− 0 c 4 c o r o	Mean S.D. Min Nax N

TABLE A55-2. (CONTINUED) - 1% GROUNDWATER BY VOLUME DILUTED WITH APG-EA TAP WATER

	Br (26 28 28 28 33 31	27 2.0 25 31 7
S S	Standard Length (mm)		
Tank 24 (DEN) Females	Wet Weight (mg)	498 459 334 334 246 447	377 91.6 246 498
T.	Fish No.	T C E 4 G D L	
EN)	Standard Length (mm)	25 27 27 27 27 27 27 29	27 1.9 24 30 13
Tank 24 (DEN) Males	Wet 8 Weight (mg)	351 304 357 454 378 358 314 393 333 333 333 333 337	372 63.1 304 521 13
-	Fish No.	+ 2 8 4 5 9 C 8 6 C F C E E	
S S	Standard Length (mm)	30 25 27 26 28 28	28 25 31 8
Tank 23 (DEN) Females	Wet Weight (mg)	505 459 379 471 391 638 343 352	442 98.6 343 638
F	Fish No.	- C ε 4 τ ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε	
EN)	Standard Length (mm)	23 27 27 28 28 28 28 28	27 2.2 23 30 12
Tank 23 (DEN) Males	Wet Weight (mg)	327 345 389 429 525 207 508 372 408 408 368	382 86.5 207 525
-	Fish No.	- 7 c 4 c 0 / 8 c 0 1 c 1	Mean S.D. Min Max N

TABLE A55-2. (CONTINUED) - 5% GROUNDWATER BY VOLUME DILUTED WITH APG-EA TAP WATER

Σ	l ank 25 Males			Tank 25 Females			Tank 26 Males	s 8		Tank 26 Females	o S S
Wei (m	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)
_	371	27	-	461		_	396		+-	370	
~ !	472	32	7	461		7	470		2	290	
ဗ	433	28	က	388	27	ဇ	370	28	ო	329	28
-+	562	31	4	378		4	640		4	403	
	146	18	5	376		5	426		5	315	
~	311	27	9	299		9	430		9	371	
_	393	28	7	388		7	379		7	412	
			ω	450		80	385		80	393	
			o	434		6	449		0	353	
			10	472		10	436				
			1	267		1	344				
			12	395							
			13	254							
	384	27		386			430			360	
Ī	31.7	4.5		73.3			79.3			41.5	
	146	18		254			344			290	
Max	562	32		472	32		640	33		412	32
	7	7		4.00			7			σ	

TABLE A55-2. (CONTINUED) - 5% GROUNDWATER BY VOLUME DILUTED WITH APG-EA TAP WATER

(N:	Standard Length (mm)	26	31	29	27	29	29	26	28	27	27	28	1.6	26	31	10
Tank 28 (DEN) Females	Wet S Weight (mg)	274	517	417	347	418	418	358	466	374	344	393	0.69	274	517	9
Ľ	Fish No.	-	7	ဗ	4	5	9	7	ω	တ	10					
EN)	Standard Length (mm)	34	32	28	31	31	27	32	59	27	24	30	3.0	24	34	9
Tank 28 (DEN) Males	Wet (Weight (mg)	649	691	409	544	530	352	594	410	410	313	490	129.4	313	691	10
T B	Fish No.	-	2	ო	4	ည	9	7	ω	တ	10	-				
(N)	Standard Length (mm)	26	29	53	27	30	27	27	30	5 6		28	1.6	56	30	o
fank 27 (DEN) Females	Wet Weight (mg)	349	385	411	395	517	329	268	397	230		365	84.2	230	517	တ
Ë.	Fish No.	+	7	က	4	2	9	7	ω	6						
EN)	Standard Length (mm)	28	32	29	28	28	26	27	27	27		28	1.7	26	32	o
Tank 27 (DEN) Males	Wet Weight (mg)	406	474	410	319	321	302	322	363	276		355	63.7	276	474	တ
Ë '	Fish No.	-	7	က	4	S	ဖ	7	∞	თ		Mean	S.D.	Min	Max	z

TABLE A55-2. (CONTINUED) - 25% GROUNDWATER BY VOLUME DILUTED WITH APG-EA TAP WATER

Males			Tank 29 Females			Tank 30 Males	ο.		Tank 30 Females	O %
Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)
462			450	29	_	318	25	-	441	
393	30	2	200	30	7	519	31	2	321	27
376		က	258	25	က	304	24	က	522	
426		4	320	56	4	392	26	4	292	
328		5	241	29	5	447	28	S	349	
390		9	492	28	9	479	29			
		7	434	31	7	341	27			
		ω	266	5 6	80	508	31			
		6	376	31	6	364	30			
		10	533	31	10	487	28			
		11	344	25	11	401	30			
		12	222	25	12	450	59			
		13	341	26	13	251	24			
		14	486	29						
396			376			405	28		385	
45.4			106.6			85.2	2.5		94.8	
328			222			251	24		292	
462	30		533	31		519	31		522	31
Œ			14			13	13		r.	

TABLE A55-2. (CONTINUED) - 25% GROUNDWATER BY VOLUME DILUTED WITH APG-EA TAP WATER

2	Standard Length (mm)	26	23	2 Z	24	56	56	58	27	56	26	1.7	23	29	9
Tank 32 (DEN) Females	Wet St. Weight L (mg) (331	338	305	364	382	279	507	361	353	357	9.09	279	202	0
_ Ta	Fish No.	₩ (2 6	ა 4	က	9	7	80	თ	10					
2	Standard Length (mm)	28	28 27	72 72	5 2	26	31	25	27	29	27	2.0	25	31	10
Tank 32 (DEN) Males	Wet St Weight L (mg)	383	327	488 349	396	325	481	369	338	410	387	58.9	325	488	9
Tar	Fish No. V	₹ (0 0	ω 4	ک	9	7	ω	თ	10					
EN)	Standard Length (mm)	29	32	25 29	3 e	27	25	27	28	28	28	2.2	25	32	6
Tank 31 (DEN) Females	Wet Weight (mg)	417	544	355 463	440	352	307	420	291	287	388	83.7	287	544	10
<u> </u>	Fish No.	₩.	2 0	w 4	S	9	7	ω	6	10					
EN)	Standard Length (mm)	31	29	3.1 29.	70 70	26	26	25	30	30	28	3.5	20	31	10
Tank 31 (DEN) Males	Wet 8 Weight (mg)	607	457	502 428	300	291	272	357	452	406	407	105.2	272	607	10
i '	Fish No.	-	0 0	w 4	. r	9	7	œ	တ	10	Mean	S.D.	Min	Max	z

TABLE A55-3. SIX-MONTH INTERIM GROWTH DATA OF JAPANESE MEDAKA DURING THE CHRONIC HISTOPATHOLOGY EXPOSURE STUDY (SACRIFICED FEBRUARY 10, 1995; TEST DAY 183) - CEHR CONTROL FISH

,	l ank 33 Females	33 les			Tank 34 Males	84 S		Tank 34 Females	4 S
Fish No.	Weight (mg)		Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)
		98	25	-	385		1	220	24
	2 16	167	22	2	276	56	2	228	26
		9/	26	က	193		က	345	31
		82	24	4	373		4	190	23
		47	22	5	250		5	228	24
_		99	21	9	228		9	282	23
-		25	21	7	201		7	254	26
~		75	56	∞	184		∞	160	20
		6	24	ത	213		6	241	26
7		20	22	10	248		10	308	25
	=	88	23		255			246	25
	72	2.3	1.9		71.2			54.7	2.9
	•	99	21		184			160	20
	Ñ	290	5 6		385	59		345	31
		9	5		5			5	10

TABLE A55-3. SIX-MONTH INTERIM GROWTH DATA OF JAPANESE MEDAKA DURING THE CHRONIC HISTOPATHOLOGY EXPOSURE STUDY (SACRIFICED FEBRUARY 10, 1995; TEST DAY 183) - CEHR CONTROL FISH

(N:	Standard Length (mm)	26 22 23 20 20 20	23 2.6 20 26 7
Tank 36 (DEN) Females	Wet St Weight L (mg)	256 196 232 208 209 176	199 44.6 116 256 7
Ĭ.	Fish No.	T 2 8 4 5 9 F	
EN)	Standard Length (mm)	22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	23 2.7 20 28 12
Tank 36 (DEN) Males	Wet S Weight I (mg)	270 159 233 160 356 136 147 310 305 156	209 81.0 136 356 12
<u>1</u>	Fish No.	+ 2 c 4 c o c b c c c c c c c c c c c c c c c c	
EN)	Standard Length (mm)	22 22 22 23 4 4 5 7 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 7 7 7 7 8 7	21 2.4 17 10
Tank 35 (DEN) Females	Wet Weight (mg)	178 162 219 174 170 119 205 106	179 43.1 106 241 10
Ţ.	Fish No.	+ 0 1 4 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	
EN)	Standard Length (mm)	24 16 24 25 17 23	21 3.2 16 25 9
Tank 35 (DEN) Males	Wet Weight (mg)	230 128 108 225 146 135 307 89 223	177 72.2 89 307 9
ļ Ļ	Fish No.	- 7 E 4 G O C 8 G	Mean S.D. Min Max N

TABLE A55-4. NINE-MONTH FINAL GROWTH DATA OF JAPANESE MEDAKA DURING THE CHRONIC HISTOPATHOLGY EXPOSURE STUDY (SACRIFICED MAY 10, 1995; TEST DAY 272) - WEST BRANCH OF CANAL CREEK

	Males			Tank 1 Females			Tank 2 Males	Q		Tank 2 Females	2 es
Fish No.	Wet Weight (mg)	Standard Length (mm)									
_	573	30	7-	386	29	_	313		-	590	
7	458	27	2	523	30		388	27	7	693	33
က		27	က	658	31	က	479		က	315	
4		25	4	620	30	4	554		4	490	
2		27	5	739	31	5	259		5		
9		26	9	731	30	9	299		9		
7		27	7	559	27	7	479		7		
∞		29	80	492	27	∞	466		80		
တ		27				O	481		6		
9		27				10	360		10		
									11		
									12		
									13		
									4		
Mean	444			589			408			458	
SD	70.9			122.0			97.7			136.9	
Z	344			386			259			298	
Max	573	30		739	31		554	29		693	33
z	10			α			7			7	

A55-4. (CONTINUED) - WEST BRANCH OF CANAL CREEK

2 "	Standard Length (mm)	30 33 33 33 33 33 33 33 33 33 33 33 34 35 34 35 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37	29 2.2 25 33 16
Tank 4 (DEN) Females	Wet S Weight (mg)	523 392 480 480 446 687 687 687 687 687 687 749 749 749 749 749 749 749 749	507 136.7 365 841
-	Fish No.	- 0 c 4 c 0 c 2 c 5 c 5 c 5 c 5 c 5 c 5 c 5 c 5 c 5	
EN)	Standard Length (mm)	26 29 27 27 27	27 1.4 25 29 6
Tank 4 (DEN) Males	Wet Weight (mg)	479 417 302 535 456 375	427 82.0 302 535 6
ř	Fish No.	- α α 4 α α	
S (NE	Standard Length (mm)	26 27 23 24 25 26 26 27 27 28 28 28 29 27 29 20 20 20 20 20 20 20 20 20 20 20 20 20	27 2.2 23 32 16
Tank 3 (DEN) Females	Wet Weight (mg)	372 484 484 411 472 392 392 392 444 444 478 478 480 480	450 96.6 272 744 16
F	Fish No.	- 0 c 4 c o c c c c c c c c c c c c c c c c	
(N)	Standard Length (mm)	24 27 27 27 28 29 29 29 29	26 0.8 25 11
Tank 3 (DEN) Males	Wet Weight (mg)	427 383 465 323 373 373 361 420 279 362	379 57.2 279 465
-	Fish No.	- C & 4 & 6 C & 8 & 6 C & 6 C	Mean S.D. Min Nax N

TABLE A55-4. (CONTINUED) - 1% GROUNDWATER BY VOLUME DILUTED WITH WEST BRANCH CANAL OF CREEK WATER

	_	Tank 5 Females			Tank 6 Males	(O #		Tank 6 Females	SS
	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)
	-	661	30	_	451	30	-	492	
	7	584	30	2	651	29	2	565	
	က	503	28	က	392	25	ဇ	779	32
	4	477	29	4	431	27	4	482	
	ß	579	တ္တ	5	445	56	S.	736	
	9	553	29	9	406	27	9	389	
	7	267	29	7	301	26	7	376	
	∞	465	27	80	563	28	80	229	
	တ	427	28	O	459	22	o	388	
	9	340	27	10	494	30	5	400	
	=	461	29	7	376	24	7	316	
	12	452	28				12	502	
	13	200	28						
İ	:	505	29		452	27		499	
		83.0	1.0		94.1	2.0		143.2	
		340	27		301	24		316	24
		661	30		651	30		779	
		13	13		17	7		12	

TABLE A55-4. (CONTINUED) - 1% GROUNDWATER BY VOLUME DILUTED WITH WEST BRANCH CANAL OF CREEK WATER

	Standard Length (mm)	30 0 30 30 30 30 30 30	30 0.5 29 30 4
Tank 8 (DEN) Females	Wet S Weight (mg)	581 820 553	634 124.9 553 820 4
F	Fish No.	± 0 € 4	
(N:	Standard Length (mm)	25 2 2 2 2 2 2 3 2 2 3 2 3 2 3 3 2 3	27 1.9 24 30 14
Tank 8 (DEN) Males	Wet Weight (mg)	427 463 439 450 374 417 485 365 344 431	414 46.4 328 485 14
Ž	Fish No.	- 0 c 4 c o r s o 0 t t t t t	
EN)	Standard Length (mm)	29 24 28 30 30 30 30 30	28 1.6 25 30 9
Tank 7 (DEN) Females	Wet Weight (mg)	516 585 468 445 498 511 511 614	507 75.1 367 614
H	Fish No.	- C & 4 G O C & O	
(N)	Standard Length (mm)	27 24 23 25 26 25 25	25 1.9 23 29 9
Tank 7 (DEN) Males	Wet Weight (mg)	601 345 457 297 454 316 229 364	373 113.2 229 601
⊢	Fish No.	← C cc 4 cc c	Mean S.D. Min Max N

TABLE A55-4. (CONTINUED) - 5% GROUNDWATER BY VOLUME DILUTED WITH WEST BRANCH OF CANAL CREEK WATER

Fish Wet Standard Fish Wet (mg) (mg) (mm) (mg) (mm) (mg) (mm) (mg) (mg			Na G	Males		Females	_
429 27 1 446 27 2 337 27 3 529 30 4 491 28 5 513 29 7 513 28 8 400 26 9 358 27 10 416 27 11 362 27 12 429 27 12	Standard ht Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)
446 27 2 337 27 3 529 30 4 491 28 5 553 29 7 513 28 8 400 26 9 358 27 10 416 27 11 362 27 12 429 27 12	:	4	612	34		445	
529 30 4 491 28 5 319 25 6 553 29 7 513 28 8 400 26 9 358 27 10 416 27 11 362 27 12 429 27 12	05 27 13 29	0 W	520 478	32 29	ი თ	442 434	30
491 28 5 319 25 6 553 29 7 513 28 8 400 26 9 358 27 10 416 27 11 362 27 12 429 27 72 429 27 784 13		4	371	27	4	399	
319 25 6 553 29 7 513 28 8 400 26 9 358 27 10 416 27 11 362 27 12 429 27 12		S	480	29	5	573	
553 29 7 513 28 8 400 26 9 358 27 10 416 27 11 362 27 12 429 27 12		9	513	29	9	44	
513 28 8 400 26 9 358 27 10 416 27 11 362 27 12 429 27 784 13		7	446	28	7	337	
400 26 9 358 27 10 416 27 11 362 27 12 429 27 784 13		ω	451	29	ω	773	
358 27 10 416 27 11 362 27 12 429 27 784 13		6	323	25	6	200	
416 27 11 362 27 12 429 27 784 13		10	394	56	10	327	
362 27 12 429 27 784 13					7	217	
429 27 78 4 13					5 5	513	
429 27 78 4 13					<u>2</u> ;	405	
429 27 78 4 13					4	483	
429 27 78 4 13					15	648	
429 27 78 4 13					16	573	
429 27 78 4 13					17	206	
429 27 78 4 13					18	507	
429 27 78 4 13					19	588	
429 27 78 4 13					20	350	
784 13			459	29		488	25
			82.7	2.1		108.9	
319 25			323	25		327	
553 30	30		612	32		773	32
40 40			•	1 7			

TABLE A55-4. (CONTINUED) - 5% GROUNDWATER BY VOLUME DILUTED WITH WEST BRANCH OF CANAL CREEK WATER

•			
s (N)	Standard Length (mm)	30 30 30 30 30 30 30 30 30 30 30 30 30 3	28 1.9 25 31 16
Tank 12 (DEN) Females	Wet Weight (mg)	529 338 332 332 444 444 447 447 460 366 398	433 79.9 302 594 16
Таг	Fish No.	- 0 c 4 c 0 c 8 c 5 t 5 t 5 t 5	
(1	Standard Length (mm)	25 25 25 25 25 25 25 25 25 25 25 25 25 2	26 1.0 25 28 11
Tank 12 (DEN) Males	Wet St Weight L (mg)	398 317 453 321 385 380 425 357 401 418 365	384 42.0 317 453
	Fish No.	+ c c 4 c o c o c c c c c c c c c c c c c	
s s	Standard Length (mm)	30 31 30 30 30 30 30 30 30 30 30 30 30 30 30	30 1.4 27 31
Tank 11 (DEN) Females	Wet Weight (mg)	428 558 508 616 476 484 666 569	531 72.9 428 666 10
_ B B	Fish No.	T 2 8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
EN)	Standard Length (mm)	27 25 26 27 28	27 1.0 25 28 6
Tank 11 (DEN) Males	Wet (Weight (mg)	401 462 407 441 429	425 23.5 401 462 6
Та	Fish No.	- α α 4 α α	Mean S.D. Min Max N

TABLE A55-4. (CONTINUED) - 25% GROUNDWATER BY VOLUME DILUTED WITH WEST BRANCH OF CANAL CREEK WATER

Fish Wet Standard Mon. Weight Length Length Length Length Length Length Length Mon. Weight Length Mon. Weight Length Mon. Weight Length Mon. Meight Length Mon. Weight Length Mon. Weight Length Mon. Weight Length Mon. Meight Length Mon. Meight Length Mon. Meight Length Mon. Meight Mon. Meight Meight Mon. Meight Meight		Tank 13 Males	ღ "		Tank 13 Females	દ જ	*,	Tank 14 Males	4		Tank 14 Females	4 35
532 28 1 363 27 1 580 30 1 574 463 26 2 486 30 2 400 27 2 487 462 26 3 6 486 30 2 487 30 3 426 514 28 4 513 29 4 358 27 4 426 349 26 5 622 30 5 567 30 5 609 552 30 6 481 29 6 463 27 4 426 553 29 8 667 30 7 412 27 7 469 518 28 9 30 1 474 25 10 346 444 28 11 600 30 1 474 25 10 346 550 28 3		Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.		Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)
483 30 2 486 30 2 400 27 2 487 462 26 3 601 30 3 561 30 3 426 514 28 4 513 29 4 358 27 4 429 349 26 5 622 30 5 567 30 5 609 331 25 7 690 30 7 412 27 6 469 539 29 8 667 29 8 311 24 8 527 497 30 10 474 25 10 346 414 28 11 600 30 439 26 9 490 460 27 48 30 457 25 10 346 673 33 460 30 457 27 450	-	532		-	363	27	~	580	30	1	574	29
462 26 3 601 30 3 561 30 3 426 514 28 4 513 29 4 358 27 4 429 349 26 5 622 30 5 567 30 5 609 331 25 7 690 30 7 412 27 7 469 539 29 8 667 29 8 311 24 8 527 518 28 10 413 26 10 474 25 10 346 414 28 11 600 30 10 474 25 10 346 627 30 12 508 30 11 549 450 667 27 30 12 508 30 11 549 450 673 33 26 14 457	7	483		7	486	30	7	4 00	27	2	487	28
514 28 4 513 29 4 358 27 4 429 349 26 5 622 30 5 567 30 5 609 552 30 6 481 29 6 463 27 6 469 539 29 8 311 24 8 527 518 28 9 380 27 9 439 26 9 490 414 28 11 600 30 10 474 25 10 346 627 30 12 508 30 11 549 11 549 650 27 450 30 450 450 346 460 445 25 10 346 673 33 33 22 4457 27 500 560 609 609 500 20 20 445	က	462		က	601	30	က	561	30	က	426	29
349 26 5 622 30 5 567 30 5 609 552 30 6 481 29 6 463 27 6 469 331 25 7 690 30 7 412 27 7 593 539 29 8 677 29 8 311 24 8 527 518 28 11 600 30 10 474 25 10 346 400 27 30 12 508 30 11 549 550 28 11 600 30 457 27 500 673 33 45 457 27 500 673 36 369 460 30 609 673 33 26 311 24 346 673 33 690 30 609 609 <t< td=""><td>4</td><td>514</td><td></td><td>4</td><td>513</td><td>29</td><td>4</td><td>358</td><td>27</td><td>4</td><td>429</td><td>27</td></t<>	4	514		4	513	29	4	358	27	4	429	27
552 30 6 481 29 6 463 27 6 469 331 25 7 690 30 7 412 27 7 593 539 29 8 667 29 8 311 24 8 527 593 518 28 10 413 26 10 474 25 10 346 414 28 11 600 30 10 474 25 10 346 550 28 11 600 30 460 30 11 549 460 27 27 27 27 500 673 33 527 29 457 27 500 91.2 2.0 109.5 1.4 91.3 2.1 80.4 673 33 690 30 609 30 609 15 15 12	S	349		5	622	30	5	267	30	9	609	30
331 25 7 690 30 7 412 27 7 593 539 29 8 667 29 8 311 24 8 527 518 28 10 413 26 10 474 25 10 346 444 28 11 600 30 11 549 11 549 627 30 12 508 30 11 549 11 549 460 27 460 27 11 549 11 549 673 33 12 527 29 457 27 500 91.2 2.0 109.5 1.4 91.3 2.1 80.4 673 33 690 30 580 30 609 57 15 10 10 10 10 11	9	552		9	481	59	9	463	27	9	469	28
539 29 8 667 29 8 311 24 8 527 518 28 9 380 27 9 439 26 9 490 497 30 10 413 26 10 474 25 10 346 414 28 11 600 30 12 508 30 11 549 550 28 12 508 30 460 27 11 549 6673 33 5 457 27 500 500 500 28 527 29 457 27 500 91.2 2.0 109.5 1.4 91.3 2.1 80.4 673 33 26 30 580 30 609 673 33 690 30 580 30 609 15 15 10 10 10 11	7	331		7	069	30	7	412	27	7	593	30
518 28 9 380 27 9 439 26 9 490 497 30 10 413 26 10 474 25 10 346 414 28 11 600 30 11 549 627 30 12 508 30 11 549 460 27 508 30 457 27 500 673 33 527 29 457 27 500 91.2 2.0 109.5 1.4 91.3 2.1 80.4 91.2 2.0 109.5 1.4 91.3 2.1 80.4 673 33 690 30 580 30 609 15 15 15 10 10 10 11	œ	539		80	299	29	80	311	24	80	527	27
497 30 10 413 26 10 474 25 10 346 414 28 11 600 30 11 549 627 30 12 508 30 11 549 460 27 50 27 50 50 673 33 527 29 457 27 500 91.2 2.0 109.5 14 91.3 2.1 80.4 331 2.5 369 30 699 30 609 609 609 15 15 12 10 10 10 11 11	6	518		0	380	27	o	439	56	O	490	27
414 28 11 600 30 627 30 12 508 30 550 28 30 12 508 460 27 50 57 500 673 33 527 29 457 27 500 91.2 2.0 109.5 1.4 91.3 2.1 80.4 331 25 363 26 311 24 346 673 33 690 30 580 30 609 15 15 12 10 10 11	9	497		10	413	26	10	474	25	10	346	26
627 30 12 508 30 550 28 30 460 27 673 33 673 33 457 27 500 91.2 2.0 109.5 1.4 91.3 2.1 80.4 331 25 363 26 311 24 346 673 33 690 30 580 30 609 15 15 12 10 10 11	7	414		7	900	30				7	549	28
550 28 460 27 673 33 50 28 50 28 50 28 50 20 91.2 2.0 10 10 10 10 11 10	12	627		12	508	30						
460 27 673 33 500 28 527 29 457 27 500 91.2 2.0 109.5 1.4 91.3 2.1 80.4 331 25 363 26 311 24 346 673 33 690 30 580 30 609 15 15 12 10 10 11	13	550										
673 33 500 28 527 29 457 27 500 91.2 2.0 109.5 1.4 91.3 2.1 80.4 331 25 363 26 311 24 346 673 33 690 30 580 30 609 15 15 12 10 10 11	14	460										
500 28 527 29 457 27 500 91.2 2.0 109.5 1.4 91.3 2.1 80.4 331 25 363 26 311 24 346 673 33 690 30 580 30 609 15 12 12 10 10 11	15	673										
91.2 2.0 109.5 1.4 91.3 2.1 80.4 331 25 33 26 311 24 346 673 33 690 30 580 30 609 11 12 12 10 10	Mean	500			527			457			200	
331 25 331 25 363 26 673 33 690 30 580 30 609 15 12 10 10	<i>u</i>	912			100 5			01.3			A OR	
331 25 363 26 311 24 346 673 33 690 30 580 30 609 15 15 12 12 10 10	i 5 :	2.10			5.5			5.5			5	
673 33 690 30 580 30 609 15 15 12 12 10 10 11	Z Z	331			363			311			346	
15 15 12 12 10 10 11	Max	673			069			280			609	
	z	15			12			5			7	

TABLE A55-4. (CONTINUED) - 25% GROUNDWATER BY VOLUME DILUTED WITH WEST BRANCH OF CANAL CREEK WATER

-	Tank 15 (DEN) Males	DEN)	Γ-	Tank 15 (DEN) Females	DEN)	· -	Tank 16 (DEN) Males	DEN)	F	Tank 16 (DEN) Females	JEN)
Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)
~	909		_	428		_	468	28	-	609	30
7	428	27	2	685	26	2	370	56	7	260	32
က	388		က	547		က	593	31	က	670	31
4	480		4	564		4	470	27	4	779	32
5	464		5	488		5	437	27	2	433	28
9	532		9	665		9	765	32	9	524	30
7	493		7	528		7	472	29	7	543	28
∞	466		80	635		80	316	25	80	463	28
တ	614		6	498					တ	750	31
5	517		10	531					10	748	31
7	331		7	467							
42	649										
Mean	497			549			486			809	30
S.D.	93.8	1.9		82.5	1.5		138.8	2.4		123.9	1.6
Min	331			428			316			433	28
Max	649			685			765			779	32
z	12			+			80			9	10

TABLE A55-5. NINE-MONTH FINAL GROWTH DATA OF JAPANESE MEDAKA DURING THE CHRONIC HISTOPATHOLOGY EXPOSURE STUDY (SACRIFICED MAY 10, 1995; TEST DAY 272) - APG-EA TAP WATER

		Males		Females			Males			Females	, ₆
Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)
-	356		-	602	31	-	532	28	_	822	35
7	510	28	7	554	31	8	602	58	. 6	411	7 3
က	556		က	506	28	က	646	32	က	438	5 9
4	517		4	338	27	4	369	28	4	645	31
လ	408		5	540	28	5	489	29	S	510	28
ဖ	369		ဖ	368	27	9	249	24	9	589	32
7	348		7	431	29	7	418	27	7	551	30
ထ	249		ω	418	53	80	437	27	80	510	29
တ	288		တ	704	33	6	349	5 0	6	468	27
9	405		10	551	30	9	551	29	9	400	26
11	452					=	434	24	=	979	32
12	449					12	604	29	12	495	30
<u>ლ</u>	467					13	240	22	13	518	30
4	484								4	265	24
15	402								15	695	30
16	511								16	450	28
17	437								17	629	29
48	515								18	537	28
19	517								19	542	28
20	367								20	453	27
21	510								7	340	27
22	400								22	540	31
									23	351	24
									24	276	27
									25	400	30
									26	496	30
									27	294	24
									28	498	28

TABLE A55-5. (CONTINUED) - APG-EA TAP WATER

	Standard Length (mm)	29 24 35 28
Tank 18 Females	Wet S Weight (mg)	493 130.3 265 822 28
	Fish No.	
8	Standard Length (mm)	27 22 32 33 13
Tank 18 Males	Wet Weight (mg)	455 131.0 240 646 13
/	Fish No.	
	Standard Length (mm)	29 1.9 27 33 10
Tank 17 Females	Wet Weight (mg)	501 112.7 338 704 10
	Fish No.	
. .	Standard Length (mm)	28 23 32 22
Tank 17 Males	Wet Weight (mg)	433 81.1 249 556 22
	Fish No.	Mean S.D. Min Max N

TABLE A55-5. (CONTINUED) - APG-EA TAP WATER

Net Standard Fish Wet Wet Fish Wet Wet	ř	Tank 19 (DEN) Males	JEN)	F	Tank 19 (DEN) Females	S S	Ë	Tank 20 (DEN) Males	ĒN)	Ë .	Tank 20 (DEN) Females	S EN)
511 29 1 519 27 1 659 31 1 531 642 30 2 580 29 2 585 29 2 634 389 28 4 571 30 4 563 29 4 570 496 29 5 477 30 6 47 25 6 4 570 459 29 5 470 25 6 4 570 57 500 500 500 50	Fish No.	Wet Weight (mg)		Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)
861 33 795 32 3 617 31 3 540 399 28 4 521 30 4 563 29 4 570 456 29 24 25 6 50 4 570 459 25 7 508 6 414 27 6 80 459 25 7 508 6 414 27 6 80 445 29 7 508 6 414 27 7 7 493 29 7 508 25 11 604 60 <td>- 7</td> <td>511 642</td> <td></td> <td>- 0</td> <td>519 580</td> <td>27 29</td> <td>7 7</td> <td>659 585</td> <td></td> <td>7 7</td> <td>531 634</td> <td>28 30</td>	- 7	511 642		- 0	519 580	27 29	7 7	659 585		7 7	531 634	28 30
496 29 5 477 30 5 420 25 5 509 777 31 6 538 28 6 414 27 6 800 445 25 28 7 508 30 7 787 445 28 7 508 25 9 548 406 27 8 457 27 8 700 485 28 7 508 25 10 694 485 28 7 47 27 8 700 485 28 7 47 27 10 694 486 29 426 26 10 694 694 695 11 605 694 694 695 694 694 694 695 694 695 11 605 694 696 694 696 694 696 694 696 <td< td=""><td>დ 4</td><td>861 399</td><td></td><td>w 4</td><td>795 521</td><td>32 30</td><td>დ 4</td><td>617 563</td><td></td><td>ю 4</td><td>540</td><td>30</td></td<>	დ 4	861 399		w 4	795 521	32 30	დ 4	617 563		ю 4	540	30
459 25 7 500 29 7 508 20 7 787 579 29 7 500 29 7 500 29 7 787 445 28 28 457 27 8 700 485 28 28 26 10 694 485 28 28 25 11 605 485 28 26 26 10 694 485 28 25 11 605 616 30 12 542 30 12 544 616 29 14 497 27 14 600 814 31 16 396 26 16 481 445 29 16 396 26 16 481 445 29 561 29 17 559 673 30 561 29 562 <td>က</td> <td>496</td> <td></td> <td>ന ഗ</td> <td>477</td> <td>30 8</td> <td>າ ເກ</td> <td>420</td> <td></td> <td>. സ എ</td> <td>203</td> <td>33 33</td>	က	496		ന ഗ	477	30 8	າ ເກ	420		. സ എ	203	33 33
579 29 445 27 8 457 27 8 700 445 28 10 426 25 9 548 485 28 11 438 25 11 605 493 29 11 438 25 11 605 649 29 12 556 30 12 544 649 29 14 497 27 14 605 814 31 15 661 30 15 425 506 29 16 396 26 16 481 445 29 17 452 29 17 559 673 30 17 452 29 17 559 673 30 16 396 26 16 481 673 30 17 452 29 17 559 673 30 16 396 26 16 481 673 477 27 3	^	459		7	200	58 78	~	508		^	787	32
406 27 10 426 26 10 694 485 28 11 438 25 11 605 483 29 11 438 25 11 605 616 30 12 544 12 544 649 29 14 497 27 14 600 814 31 15 661 30 15 425 506 29 16 396 26 16 481 445 29 17 452 29 17 559 673 30 16 481 445 29 17 452 29 17 559 673 30 16 481 18 573 19 340 570 29 562 29 17 559 340 340 340 340 340 340 340 340 340 340 340 340 340 340 340 340 340 340 <td>ထတ</td> <td>579 445</td> <td></td> <td></td> <td></td> <td></td> <td>ထတ</td> <td>457 338</td> <td></td> <td>ထတ</td> <td>700 548</td> <td>29 29</td>	ထတ	579 445					ထတ	457 338		ထတ	700 548	29 29
493 29 12 556 30 12 544 616 30 13 542 30 12 544 649 29 14 497 27 14 600 814 31 15 661 30 15 542 506 29 16 396 26 16 481 445 29 26 17 559 673 30 17 452 29 17 559 673 30 17 452 29 17 559 673 30 17 452 29 17 559 673 45 29 17 559 18 573 140.8 1.7 107.8 1.6 95.3 2.2 112.7 399 25 477 27 338 25 340 861 33 661 31 19 340 18 18 7 7 17 17 19	2 9	406 485					2 +	4 26		19	694	31
616 30 13 633 649 29 14 497 27 14 600 814 31 15 661 30 15 425 506 29 17 659 17 559 673 30 17 452 29 17 559 673 30 17 452 29 17 559 673 30 17 452 29 17 559 673 30 17 452 29 17 559 140.8 1.7 107.8 1.6 95.3 2.2 112.7 399 25 477 27 338 25 340 861 33 661 31 17 19 18 18 7 7 17 17 19	12	493					15	556		12	544	28 28
814 31 15 661 30 15 425 506 29 16 396 26 16 481 445 29 17 559 673 30 17 559 140 17 107.8 1.6 29 573 140.8 1.7 107.8 1.6 95.3 2.2 112.7 399 25 477 27 338 25 340 861 33 795 32 661 31 800 18 18 7 7 7 17 17 19	<u>ნ 4</u>	616 649					<u>က</u>	542 497		13 13 13	633 600 600	တ္က တို
506 29 16 396 26 16 481 445 29 17 559 673 30 18 573 673 30 18 573 140.8 1.7 107.8 1.6 95.3 2.2 140.8 1.7 107.8 1.6 95.3 2.2 399 25 477 27 338 25 861 33 661 31 800 18 18 7 7 17 17 19	45						15	661		15	425	26
673 30 18 573 570 29 502 28 583 140.8 1.7 107.8 1.6 95.3 2.2 112.7 399 25 477 27 338 25 340 861 33 795 32 661 31 800 18 18 7 7 7 17 17 19	16 17						16 17	396 452		16 17	481 559	29 2 4
570 29 561 29 502 28 583 140.8 1.7 107.8 1.6 95.3 2.2 112.7 399 25 477 27 338 25 340 861 33 795 32 661 31 800 18 18 7 7 17 17 19	18	673								18	573 340	28
140.8 1.7 107.8 1.6 95.3 2.2 112.7 399 25 477 27 338 25 340 861 33 795 32 661 31 800 18 18 7 7 17 19	Mean	570			561			502			583	
399 25 477 27 338 25 340 861 33 795 32 661 31 800 18 18 7 7 17 17 19	S.D.	140.8			107.8			95.3			112.7	
18 18 7 7 17 19	Max	399 861			411 795			338 661			340 800	
	z	18			7			17			19	

TABLE A55-5. (CONTINUED) - 1% GROUNDWATER BY VOLUME DILUTED WITH APG-EA TAPWATER

	Standard Length (mm)	24 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	28 24 24 33 23
Tank 22 Females	Wet Weight (mg)	523 426 407 574 273 352 815 326 418 363 774 747 747 760 500 502 500 502 468 334 378	501 158.6 273 815 23
	Fish No.	- 2 8 9 C + C 5 C 7 E 7 E 8 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C	
8	Standard Length (mm)	31 23 27 27 27	28 1.7 26 31 8
Tank 22 Males	Wet Weight (mg)	553 605 409 419 434 327	486 101.0 327 605 8
	Fish No.	+ C & 4 & & C & &	
	Standard Length (mm)	30 30 30 30 30 30 30 30 30 30 30 30 30 3	30 27 38 14
Tank 21 Females	Wet Weight (mg)	1034 471 520 527 478 643 537 679 679 670 600 600	604 175.2 405 1034
	Fish No.	+ 0 6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
-	Standard Length (mm)	27 27 28 38 38 38 38 38 38 38 38 38 38 38 38 38	2.3 2.3 3.3 1.3
Tank 21 Males	Wet Weight (mg)	553 678 678 650 650 662 602 603 644 644 644	509 101.5 359 678 13
	Fish No.	- 0 c 4 c o c o c t c t c	Mean S.D. Min Max N

TABLE A55-5. (CONTINUED) - 1% GROUNDWATER BY VOLUME DILUTED WITH APG-EA TAPWATER

No. Weight Length No. Weight Length No. Weight Length No. Weight No	Wet Standard Fish Weight Length No. (mg) (mm) 1 573 29 1 2 405 28 22 3 418 27 33 4 491 30 27 5 507 27 5 6 555 29 6 7 459 29 7 11 422 27 11 422 27 11 422 27 12 594 30 13 343 24 13 14 680 31 15 586 30 In 489 28 10 7 1.8								•
1 573 29 1 310 26 1 668 31 1 589 2 405 28 2 621 30 2 523 29 4 589 4 491 30 4 433 29 3 600 30 3 534 5 555 29 5 4 482 29 4 564 4 564 4 564 4 564 4 564 4 564 5	1 573 29 4 405 28 4 491 30 5 507 27 6 555 29 7 459 29 8 393 27 9 346 26 1 422 29 1 422 29 3 343 24 5 586 30 1 489 28 100.7 1.8	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)
405 28 2 621 30 2 523 29 2 311 418 27 3 433 29 3 600 30 3 534 418 27 24 432 29 4 482 29 4 564 507 27 5 528 29 5 30 3 534 555 29 6 514 29 6 555 30 6 617 459 29 7 411 28 7 569 29 7 468 346 29 3 10 670 29 10 516 601 422 27 11 451 25 11 456 29 11 527 584 30 12 628 31 14 560 29 14 462 586 30 13 480	2 405 28 3 418 27 4 491 30 5 507 27 6 555 29 7 459 29 8 393 27 9 346 26 1 422 27 2 594 30 3 343 24 5 586 30 100.7 1.8		26	_	658	31	-	589	
3 418 27 3 433 29 3 600 30 3 534 4 491 30 4 482 29 4 482 29 4 564 6 555 29 6 514 29 6 555 30 4 564 7 459 29 6 555 30 6 617 8 393 27 411 28 6 555 30 6 617 8 393 27 411 28 7 569 29 7 468 9 368 28 10 670 29 10 516 29 11 527 1 422 27 11 451 25 11 455 30 11 527 2 594 30 12 628 31 12 504 27 12 462 3 433 24 14 383 27 14 560 29 14 46 5 586 30 14 383 27 14 560 29 14 45	3 418 27 4 491 30 5 507 27 6 555 29 7 459 29 8 393 27 9 346 28 1 422 27 2 594 30 3 43 24 5 586 30 100.7 1.8		30	2	523	29	2	311	
4 491 30 4 473 29 4 462 29 4 564 5 507 27 5 528 29 6 555 30 6 6 6 522 6 555 29 7 414 28 633 31 8 401 27 468 8 336 26 9 378 26 9 357 28 9 513 9 346 26 9 378 26 9 357 28 9 513 1 422 27 11 425 30 11 527 1 422 27 11 425 30 11 527 3 343 24 13 480 30 13 517 29 14 332 4 680 31 14 560 29 14 50 14 50 5 586 30 14 383 27 14 560 29 14 332 6 586 30 13 445 445 445 7 100.7 18	4 491 30 5 507 27 6 555 29 8 393 27 9 346 26 0 558 28 1 422 27 2 594 30 3 343 24 5 586 30 100.7 1.8		29	က	900	30	က	534	
5 507 27 5 528 29 5 315 25 5 522 6 555 29 6 514 29 6 555 30 6 617 8 543 29 7 468 7 468 7 468 8 346 26 9 378 26 9 357 28 9 513 1 422 27 11 451 25 10 516 29 11 527 2 594 30 12 628 31 12 504 27 14 527 3 343 24 13 481 11 455 30 11 527 4 680 31 14 383 27 14 560 29 14 504 5 586 30 13 41 32 15 14 560 14 504 14 15 14 660 14 14 14	5 507 27 6 555 29 8 393 27 9 346 26 0 558 28 1 422 27 2 594 30 3 343 24 5 586 30 100.7 1.8		29	4	482	29	4	564	
6 555 29 6 514 29 6 555 30 6 617 7 459 29 7 411 28 7 569 29 7 468 393 27 8 633 31 8 534 8 544 8 9 544 8 9 544 8 9 544 8 9 544 8 9 544 8 9 544 8 9 544 9 544 9 544 9 544 9 513	6 555 29 7 459 29 8 393 27 9 346 26 0 558 28 1 422 27 2 594 30 3 43 24 5 586 30 100.7 1.8		29	5	315	25	5	522	
7 459 29 7 411 28 7 569 29 7 468 8 393 27 8 633 31 8 401 27 8 544 9 346 26 9 378 26 9 357 28 9 513 0 558 28 10 670 29 10 516 29 10 844 1 422 27 11 451 25 11 455 30 11 527 3 343 24 13 480 30 13 517 29 14 332 5 586 30 14 383 27 14 560 29 14 332 5 586 30 494 29 501 29 501 20 391 1 489 28 494 29 501 29 501 29 506 110.7 1.8 110.5 1.9 93.7 1.5 116.3 343 24 310 25 315 25 31 844 14 14 14 14 14 14 14 14 14 14 14 14 14 1	7 459 29 8 393 27 9 346 26 0 558 28 1 422 27 2 594 30 3 343 24 5 586 30 100.7 1.8		29	9	555	30	9	617	
8 393 27 8 633 31 8 401 27 8 544 9 376 26 9 377 28 9 553 11 422 27 11 451 25 11 455 30 11 527 2 594 30 12 628 31 12 504 27 12 462 3 343 24 13 480 30 13 517 29 14 332 5 586 30 14 383 27 14 560 29 14 332 10 608 11 489 28 494 29 501 29 501 10 7 18 110.5 19 937 1.5 116.3 14 680 31 660	8 393 27 9 346 26 1 422 27 2 594 30 3 343 24 4 680 31 5 586 30 100.7 1.8		28	7	269	59	7	468	
9 346 26 9 378 26 9 357 28 9 513 0 558 28 10 670 29 10 516 29 10 844 1 422 27 11 451 25 11 455 30 11 527 2 594 30 12 628 31 12 504 27 12 462 4 680 31 14 383 27 14 560 29 14 332 5 586 30 494 29 501 29 608 10 7 18 110 5 1.9 93.7 1.5 116.3 343 24 3494 29 501 29 501 341 545 566 31 116.3 342 28 494 29 501 29 506 343 24 310 25 311 844 344 44 44 44 44 44 44 44 44 44 345 25 311 844	9 346 26 1 422 27 2 594 30 3 343 24 4 680 31 5 586 30 n 489 28 100.7 1.8		31	80	401	27	∞	544	
0 558 28 10 670 29 10 516 29 10 844 1 422 27 11 451 25 11 455 30 11 527 2 594 30 12 628 31 12 504 27 12 462 3 343 24 13 480 30 13 517 29 14 332 5 586 30 14 383 27 14 560 29 14 332 1 5 586 30 15 45 1 608 1 1007 118 110.5 11.9 93.7 1.5 116.3 2 11 455 30 11 50 116.3 2 11 670 31 658 31 14 382 3 11 8 110.5 1.9 93.7 1.5 116.3 3 11 670 31 658 31 14 14 14 14 14 14 14 14 14 14 14 14 14	558 28 1 422 27 2 594 30 3 343 24 4 680 31 5 586 30 n 489 28 100.7 1.8		56	0	357	28	6	513	
1 422 27 11 451 25 11 455 30 11 527 2 594 30 12 628 31 12 504 27 12 462 3 343 24 13 480 30 13 517 29 13 451 4 680 31 14 383 27 14 560 29 14 332 5 586 30 14 532 14 332 6 608 17 14 383 17 532 10 70 14 560 29 14 332 10 391 17 532 17 532 10 489 28 494 29 501 29 506 100.7 1.8 110.5 1.9 93.7 1.5 116.3 343 24 31 658 31 64 45 15 14 14 14 14 14	1 422 27 2 594 30 3 343 24 4 680 31 5 586 30 n 489 28 100.7 1.8		59	5	516	29	10	844	
2 594 30 12 628 31 12 504 27 12 462 3 343 24 13 480 30 13 517 29 14 332 4 680 31 14 383 27 14 560 29 14 332 5 586 30 13 57 14 560 17 445 6 608 17 18 472 10 390 10 391 10 391 10 391 10 391 10 391 10 391 10 391 10 391 10 310 25 311 44 14 14 14 14 14 14 14 14 14	2 594 30 3 343 24 5 586 30 n 489 28 100.7 1.8		25	7	455	30	1	527	
3 343 24 13 480 30 13 517 29 13 451 4 680 31 14 383 27 14 560 29 14 332 5 586 30 16 608 17 532 18 472 19 390 100.7 1.8 110.5 1.9 501 29 506 14 332 16 608 17 532 18 472 19 390 20 391 20 391	3 343 24 4 680 31 5 586 30 n 489 28 100.7 1.8		31	12	504	27	12	462	
4 680 31 14 383 27 14 560 29 14 332 5 586 30 16 608 16 608 17 532 18 472 19 390 100.7 1.8 494 29 501 29 506 100.7 1.8 110.5 1.9 93.7 1.5 116.3 343 24 310 25 315 25 311 680 31 670 31 658 31 94 15 15 14 14 14 14 14 14	5 586 31 5 586 30 n 489 28 100.7 1.8 343 24		9	13	517	29	13	451	
5 586 30 15 445 16 608 17 532 18 472 19 390 28 494 29 501 29 506 116.3 311 650 31 658 31 844 14 14 14 14 14 14	5 586 n 489 100.7 343		27	4	260	29	14	332	
16 608 17 532 18 472 19 390 20 391 100.7 1.8 140.5 1.9 501 29 506 343 24 310 25 315 25 311 680 31 670 31 658 31 844 14 14 14 14 14	n 489 100.7 343						15	445	
17 532 18 472 19 390 20 391 100.7 1.8 110.5 1.9 501 29 506 343 24 310 25 315 25 311 680 31 670 31 658 31 844 15 15 14 14 14	n 489 100.7 343						16	909	
18 472 19 390 20 391 20 391 100.7 1.8 494 29 501 29 506 100.7 1.8 110.5 1.9 93.7 1.5 116.3 343 24 310 25 315 25 311 680 31 670 31 658 31 844	n 489 100.7 343						17	532	
19 390 20 391 20 391 100.7 1.8 494 29 501 29 506 100.7 1.8 110.5 1.9 93.7 1.5 116.3 343 24 310 25 315 25 311 680 31 670 31 658 31 844 14 14 14 14 14	n 489 100.7 343						18	472	
100.7 1.8 110.5 1.9 93.7 1.5 116.3 311 6580 31 670 31 658 31 844 14 14 14 14 14	n 489 100.7 343						19	390	
n 489 28 494 29 501 29 506 100.7 1.8 110.5 1.9 93.7 1.5 116.3 343 24 310 25 315 25 311 680 31 670 31 658 31 844 15 15 14 14 14	n 489 100.7 343						20	391	
100.7 1.8 110.5 1.9 93.7 1.5 116.3 343 24 310 25 315 25 311 680 31 670 31 658 31 844 15 15 14 14 14 20	100.7	494	29		501			506	
343 24 310 25 315 25 311 680 31 670 31 658 31 844 15 15 14 14 14 14 20	343	110.5	σ.		93.7			1163	
680 31 670 31 658 31 844 14 14 14 14 10 20	2	310	25		3.15			3.7	
15 15 14 14 14 14 10	680	670	हि		658			844	
	15	14	14		14			2	

TABLE A55-5. (CONTINUED) - 5% GROUNDWATER BY VOLUME DILUTED WITH APG-EA TAP WATER

	Tank 25 Males	ري پر		Tank 25 Females	IQ 10		Tank 26 Males	Ø		Tank 26 Females	(O (A
Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)
- 0 0 4 4 4 6 0 C 8 6 0 C C C	621 642 642 643 659 659 613 613 613 352	31 30 31 31 31 27 27 29	- 0 c 4 c o c 8 o 6 t 5 t 5 t	750 714 714 714 714 851 531 369 369 575 601 451	32 33 33 34 35 35 36 37 36 37 36 37 36 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38	- 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	491 437 437 813 422 444 444 657 657 444 444	23 24 25 25 25 25 26 27 28 27 28 27 28 27 28 27 28 27 28 27 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29	- 0 6 4 6 6 C 8 6 C 7 E 7 E 7 E 7 E 7 E 7 E 7 E 7 E 7 E 7	631 440 440 440 401 591 399 399 425 425 425 396 396 425 425	29 24 27 27 27 29 20 27 27 29 20 20 27 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20
Mean S.D. Min Nax	555 135.7 352 847 12	29 2.2 24 31 12		523 119.1 342 750 14	29 25 32 44		501 103.5 400 813 17	29 2.0 25 33 17		495 122.7 368 845 18	28 1.8 26 34 18

TABLE A55-5. (CONTINUED) - 5% GROUNDWATER BY VOLUME DILUTED WITH APG-EA TAP WATER

	Males			Females			Males) I	5	Females	S
Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)
-	712	32	-	718		_	469		-	442	
7	432	28	2	314		2	299		2	491	
ო .	471	28	თ [,]	598		დ .	473		თ .	656	
4 u	398 503	27 25	4 u	514	29 28	4 r	460 654	28 34	4 v	429 319	29 26
စ	303	5 2 2 8	တ ထ	532		တ တ	557		φ	752	
/	480	29	7	361		7	552		7	806	
ω	357	5 6	∞	404		∞	999		∞	613	
6	481	31	6	429		6	397		6	534	
9	761	31	10	250		10	599		9	544	
7	341	56	17	443		7	622		7	433	
12	425	27	12	704		12	370		12	568	
13	429	27	13	653		13	501				
4	410	29	4	462		4	447				
5	457	28	15	518		15	383				
			16	496		16	504				
			17	478	29	17	340				
			18	557	29	18	473				
			19	279	23	19	376				
						20	445				
Mean	464			486			494			549	
_	124.0			130.9			98.2			141.1	
Min	303			250			340			319	
×	761	32		718	32		999	32		806	35
	!			•			ç			ç	

TABLE A55-5. (CONTINUED) - 25% GROUNDWATER BY VOLUME DILUTED WITH APG-EA TAP WATER

	و _د	29 20 20 20 20 20 20 20 20	29 24 33 13
C %	Standard Length (mm)		, ,
Tank 30 Females	Wet Weight (mg)	514 434 388 795 795 764 523 523 418 537 416	536 153.6 351 795 13
-	Fish No.	- 0 0 4 4 4 0 0 C 8 0 C T C E	
	Standard Length (mm)	28 27 28 30 30 30 30 30 30 30 30 30 30 30 30 30	28 2.2 24 32 16
Tank 30 Males	Wet 8 Weight (mg)	517 486 411 650 541 651 437 389 900 900 544 370 370	508 147.8 276 900 16
·	Fish No.	- 0 6 4 6 9 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Standard Length (mm)	38 33 34 35 34 35 35 35 35 35 35 35 35 35 35 35 35 35	28 1.8 3.1 4.1
Tank 29 Females	Wet Weight (mg)	607 687 409 451 463 422 647 736 736 736 495 864 896 498	504 122.2 357 736 14
	Fish No.	- 0 6 4 5 9 C 8 6 C C C F 7 F 4	
6	Standard Length (mm)	29 33 33 34 34 25 37 27 28 27	29 26 33 14
Tank 29 Males	Wet Weight (mg)	489 649 674 370 654 433 630 630 635 639 835 389	542 113.9 370 679
	Fish No.	- 0 6 4 6 9 6 8 6 6 7 7 7 7 7	Mean S.D. Min Max N

TABLE A55-5. (CONTINUED) - 25% GROUNDWATER BY VOLUME DILUTED WITH APG-EA TAP WATER

Fen	Tank 31 (DEN) Females	Ë	Tank 32 (DEN) Males	EN)	Ta	Tank 32 (DEN) Females	(N)
Weight Length (mg) (mm)	dard gth m)	Fish No.	Wet Weight (mg)	Standard Length (mm)	Fish No.	Wet Weight (mg)	Standard Length (mm)
536	29	+	628	31		808	32
719	31	2	495	28	2	763	
047	35	က	542	29	က	923	
721	30	4	486	26	4	299	
536	29	5	630	31	ς.	313	
461	27	9	534	30	9	537	
525	27	7	562	30	7	572	
596	78	80	200	30	ω	598	
795	28	6	288	24	O	572	
445	27	5	506	31	5	315	
069	31	7	561	30	7	491	
533	32	12	200	29	12	468	
516	28	13	426	27	13	607	
495	27				4	629	တ္တ
					15	426	
					16	495	
					17	546	
					18	370	
					19	831	
					20	512	
					21	341	
					22	450	
					23	604	
					24	505	

TABLE A55-5. (CONTINUED) - 25% GROUNDWATER BY VOLUME DILUTED WITH APG-EA TAP WATER

(1	Standard Length (mm)	2.8 2.3 3.4 2.4
Tank 32 (DEN) Females	Wet S Weight (mg)	556 159.9 313 923 24
Tar	Fish No.	
EN)	Standard Length (mm)	29 24 31 13
Tank 32 (DEN) Males	Wet Weight (mg)	512 87.8 288 630 13
Ĥ,	Fish No.	
EN)	Standard Length (mm)	29 2.4 27 35 14
Fank 31 (DEN) Females	Wet Weight (mg)	615 164.4 445 1047
T _e	Fish No.	
EN)	Standard Length (mm)	29 2.4 25 34
Tank 31 (DEN) Males	Wet Weight (mg)	530 126.0 391 813
Ë	Fish No.	Mean S.D. Min Max N

TABLE A55-6. NINE-MONTH GROWTH DATA OF JAPANESE MEDAKA DURING THE CHRONIC HISTOPATHOLOGY EXPOSURE STUDY (SACRIFICED MAY 12, 1995; TEST DAY 272) - CEHR CONTROL FISH

	Standard Length (mm)	33 1 2 3 3 4 5 5 5 5 6 7	
Tank 34 Females	Wet Si Weight I	303 303 303 303 303 303 303 303 303 303	
	Fish No.	- 0 c 4 c 0 c 8 c 0 t 1 t t t t t t t t t t t t t t t t t	
	Standard Length (mm)	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Tank 34 Males	Wet 8 Weight (mg)	492 302 302 419 303 303 425 420 480 275 393 266	
	Fish No.	- u u 4 u o v a o o t t t t t	
	Standard Length (mm)	22 23 24 25 25 25 26 26 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	
Tank 33 Females	Wet Weight (mg)	437 158 394 394 436 458 444 458 301 367 367 367 367 444 444 444 567 367 367 367 367 367 367 367 367 367 3	
	Fish No.	- 0 c 4 c o r s o 0 t t t t t t t t t t	
3	Standard Length (mm)	3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
Tank 33 Males	Wet Weight (mg)	560 430 590 590 304 304 304 304 304 304 304 304 304 30	
	Fish No.	- 0 0 4 0 0 C 8 0 C T C C T C C C E C	

TABLE A55-6. (CONTINUED) - CEHR CONTROL FISH

	Standard Length (mm)	26 2.2 23 31 25
Tank 34 Females	Wet 8 Weight (mg)	385 83.3 289 578 25
	Fish No.	
4	Standard Length (mm)	25 1.9 23 41 44
Tank 34 Males	Wet Weight (mg)	386 113.7 217 658 14
S.	Fish No.	
89 W	Standard Length (mm)	26 22 30 18
Tank 33 Females	Wet Weight (mg)	368 101.6 158 567 18
	Fish No.	
g .	Standard Length (mm)	26 23 31 19
Tank 33 Males	Wet Weight (mg)	403 107.0 229 590 19
	Fish No.	Mean S.D. Min Max N

TABLE A55-6. (CONTINUED) - CEHR CONTROL FISH

9	Standard Length (mm)	26	27	30	56	53	22	25	25	56	28	56	21	30	24	29	26	24	24	22	24			
Tank 36 (DEN) Females	Wet S Weight (mg)	315	388	495	330	440	224	364	396	337	404	348	285	485	314	512	339	343	402	242	334			
Tar	Fish No.	τ	7	ო	4	S.	9	7	ω	တ	10	7	12	13	4	15	16	17	18	19	20			
2	Standard Length (mm)	27	26	28	26	27	30	24	26	21	27	22	22	24	23	24	22	22	23					
Tank 36 (DEN) Males	Wet 8 Weight (mg)	439	383	402	389	357	200	319	358	238	388	241	287	288	276	412	244	231	255					
Tar	Fish No.	~	2	က	4	2	ဖ	_	ω	တ	9	=	12	13	4	15	16	17	8					
EN)	Standard Length (mm)	27	25	23	24	5 6	24	25	24	25	23	22	23	24	23									
fank 35 (DEN) Females	Wet Weight (mg)	417	345	212	290	233	215	287	326	241	274	281	353	268	268									
Tar	Fish No.	~	7	ო	4	သ	9	7	ω	6	10	=	12	13	4									
EN)	Standard Length (mm)	24	30	22	31	32	56	27	25	22	30	29	29	28	25	27	26	29	29	26	28	23	23	
Tank 35 (DEN) Males	Wet Weight (mg)	327	574	356	211	727	423	438	412	180	541	461	466	419	403	435	294	576	451	454	365	327	300	
Ta	Fish No.	-	7	က	4	S	9	_	ω	တ	9	7	12	13	4	15	16	17	18	19	20	21	22	

TABLE A55-6. (CONTINUED) - CEHR CONTROL FISH

G	Standard Length (mm)	26 2.6 21 30 20
Tank 36 (DEN) Females	Wet S Weight (mg)	365 77.4 224 512 20
<u> </u>	Fish No.	
EN)	Standard Length (mm)	25 2.5 21 30 18
Tank 36 (DEN) Males	Wet Weight (mg)	334 80.2 231 500 18
<u>m</u> .	Fish No.	
EN)	Standard Length (mm)	25 27 4 4
Tank 35 (DEN) Females	Wet Weight (mg)	286 57.5 212 417 14
1	Fish No.	
EN)	Standard Length (mm)	27 22 32 22
Tank 35 (DEN) Males	Wet Weight (mg)	432 119.0 180 727 22
Та	Fish No.	Mean S.D. Min Max N

APPENDIX 56

SUMMARY OF THE STATISTICAL ANALYSES OF GROWTH FOR THE SIX-MONTH INTERIM AND NINE-MONTH FINAL JAPANESE MEDAKA IN THE CHRONIC HISTOPATHOLOGY STUDY

Analysis of Medaka growth data 1 Analysis to compare Ft. Detrick controls to others 10:47 Tuesday, February 25, 1997

----- MONTH=6 -----

General Linear Models Procedure Class Level Information

Class	Levels	Values				
DILUENT	3	apg creek mo33				
CONC	4	0 1 5 25				
TANK	36	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36				
CAN_AGT	2	DEN NONE				
SEX	2	г м				

Number of observations in by group = 710

Analysis of Medaka growth data 2 Analysis to compare Ft. Detrick controls to others 10:47 Tuesday, February 25, 1997

----- MONTH=6 -----

General Linear Models Procedure

Dependent Variable: W	¢т				
Dependent variable. W		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	53	2916190.9574	55022.4709	9.44	0.0001
Error	656	3825024.6257	5830.8302		
Corrected Total	709	6741215.5831			
R-S	quare	c.v.	Root MSE		WGT Mean
0.4	32591	20.81098	76.359873		366.92113
Source	DF	Type I SS	Mean Square	F Value	Pr > F
DILUENT*CONC*CAN_AGT	17	2533103.6713	149006.0983	25.55	0.0001
TANK(DILU*CONC*CAN_)	18	210648.4801	11702.6933	2.01	0.0080
SEX	1	1137.5979	1137.5979	0.20	0.6589
DILUE*CONC*CAN_A*SEX	17	171301.2082	10076.5417	1.73	0.0339
Source	DF	Type III SS	Mean Square	F Value	Pr > F
DILUENT*CONC*CAN_AGT	17	2512515.5862	147795.0345	25.35	0.0001
TANK(DILU*CONC*CAN_)	18	228302.0310	12683.4462	2.18	0.0033
SEX	1	856.6044	856.6044	0.15	0.7016
DILUE*CONC*CAN_A*SEX	17	171301.2082	10076.5417	1.73	0.0339
		T fo	or HO: Pr > T	std E	error of
Parameter	I	Estimate Param	neter=0	,	imate
APG vs Ft. Detrick	703	3.117037	16.59 0.000)1 42.	.3881163

3 Analysis of Medaka growth data Analysis to compare Ft. Detrick controls to others 10:47 Tuesday, February 25, 1997

______ MONTH=6 ------

General Linear Models Procedure Dependent Variable: LEN Sum of Squares Mean Square F Value Pr > F \mathtt{DF} Source 38.1367454 8.01 0.0001 2021.2475080 53 Model 656 3124.8384075 4.7634732 Error 709 5146.0859155 Corrected Total Root MSE LEN Mean R-Square c.v. 26.412676 8.263223 2.1825382 0.392774 Type I SS Mean Square F Value Pr > F Source DF 1703.2682029 DILUENT*CONC*CAN AGT 17 100.1922472 21.03 0.0001 200.0043040 11.1113502 2.33 0.0014 18 TANK(DILU*CONC*CAN) 0.1015540 117.8734470 0.02 0.8840 1.46 0.1049 0.1015540 1 SEX 6.9337322 DILUE*CONC*CAN_A*SEX 17 Type III SS Mean Square F Value Pr > F DF Source 1717.0452641 101.0026626 21.20 0.0001 DILUENT*CONC*CAN AGT 17 0.0008 11.6550010 2.45 209.7900184 18 TANK(DILU*CONC*CAN_) 0.01 0.9109 0.0596685 SEX 1 0.0596685 1.46 0.1049 6.9337322 17 117.8734470 DILUE*CONC*CAN A*SEX T for HO: Pr > T Std Error of Estimate Estimate Parameter=0 Parameter

APG vs Ft. Detrick 16.6278607

13.72 0.0001 1.21154844

General Linear Models Procedure Least Squares Means

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

DILUENT	CONC	CAN_AGT	WGT LSMEAN	LSMEAN Number
apg	0	DEN	423.054997	1
apg	0	NONE	360.660428	2
apg	1	DEN	394.123396	3
apg	1	NONE	378.049490	4
apg	5	DEN	400.708333	5
apg	5	NONE	393.566316	6
apg	25	DEN	384.625000	7
apg	25	NONE	390.341038	8
creek	0	DEN	376.079070	9
creek	0	NONE	360.888846	10
creek	1	DEN	380.990894	11
creek	1	NONE	375.011364	12
creek	5	DEN	358.192931	13
creek	5	NONE	398.655688	14
creek	25	DEN	406.822268	15
creek	25	NONE	413.884231	16
mo33	0	DEN	191.433152	17
mo33	0	NONE	217.350000	18

Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

i/	i 1	2	3	4	5	6	7	8	9
1	, -	0.0254	0.2804	0.0963	0.4001	0.2653	0.1504	0.2232	0.0813
2	0.0254	•	0.2079	0.5000	0.1344	0.2092	0.3542	0.2606	0.5460
3	0.2804	0.2079		0.5390	0.8025	0.9829	0.7149	0.8857	0.4875
4	0.0963	0.5000	0.5390	•	0.3876	0.5475	0.7975	0.6369	0.9383
5	0.4001	0.1344	0.8025	0.3876	•	0.7834	0.5366	0.6934	0.3448
6	0.2653	0.2092	0.9829	0.5475	0.7834	•	0.7274	0.9011	0.4949
7	0.1504	0.3542	0.7149	0.7975	0.5366	0.7274	•	0.8254	0.7368
8	0.2232	0.2606	0.8857	0.6369	0.6934	0.9011	0.8254	•	0.5812
9	0.0813	0.5460	0.4875	0.9383	0.3448	0.4949	0.7368	0.5812	•
10	0.0265	0.9929	0.2130	0.5077	0.1383	0.2145	0.3611	0.2664	0.5539
11	0.1202	0.4339	0.6169	0.9093	0.4534	0.6272	0.8877	0.7206	0.8479
12	0.0769	0.5763	0.4653	0.9056	0.3278	0.4722	0.7073	0.5560	0.9665
13	0.0222	0.9241	0.1830	0.4479	0.1177	0.1839	0.3142	0.2301	0.4901
14	0.3550	0.1507	0.8621	0.4272	0.9371	0.8432	0.5860	0.7495	0.3813
15	0.5403	0.0884	0.6314	0.2771	0.8164	0.6119	0.3975	0.5334	0.2429
16	0.7256	0.0501	0.4527	0.1752	0.6140	0.4341	0.2631	0.3713	0.1506
17	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
18	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001

10:47 Tuesday, February 25, 1997

----- MONTH=6 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUENT*CONC*CAN_AGT Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: WGT

i/	j 10	11	12	13	14	15	16	17	18
1	0.0265	0.1202	0.0769	0.0222	0.3550	0.5403	0.7256	0.0001	0.0001
2	0.9929	0.4339	0.5763	0.9241	0.1507	0.0884	0.0501	0.0001	0.0001
3	0.2130	0.6169	0.4653	0.1830	0.8621	0.6314	0.4527	0.0001	0.0001
4	0.5077	0.9093	0.9056	0.4479	0.4272	0.2771	0.1752	0.0001	0.0001
5	0.1383	0.4534	0.3278	0.1177	0.9371	0.8164	0.6140	0.0001	0.0001
6	0.2145	0.6272	0.4722	0.1839	0.8432	0.6119	0.4341	0.0001	0.0001
7	0.3611	0.8877	0.7073	0.3142	0.5860	0.3975	0.2631	0.0001	0.0001
8	0.2664	0.7206	0.5560	0.2301	0.7495	0.5334	0.3713	0.0001	0.0001
9	0.5539	0.8479	0.9665	0.4901	0.3813	0.2429	0.1506	0.0001	0.0001
10	•	0.4413	0.5842	0.9175	0.1550	0.0913	0.0520	0.0001	0.0001
11	0.4413	•	0.8165	0.3873	0.4973	0.3301	0.2139	0.0001	0.0001
12	0.5842	0.8165	•	0.5187	0.3627	0.2304	0.1425	0.0001	0.0001
13	0.9175	0.3873	0.5187	•	0.1320	0.0773	0.0437	0.0001	0.0001
14	0.1550	0.4973	0.3627	0.1320	•	0.7545	0.5570	0.0001	0.0001
15	0.0913	0.3301	0.2304	0.0773	0.7545	•	0.7870	0.0001	0.0001
16	0.0520	0.2139	0.1425	0.0437	0.5570	0.7870	•	0.0001	0.0001
17	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	•	0.3245
18	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.3245	•

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

DILUENT	CONC	CAN_AGT	LEN LSMEAN	LSMEAN Number
apg	0	DEN	28.9917209	1
apg	0	NONE	26.3362299	2
apg	1	DEN	27.2307487	3
apg	1	NONE	27.3255102	4
apg	5	DEN	28.322222	5
apg	5	NONE	27.9368421	6
apg	25	DEN	27.0750000	7
apg	25	NONE	27.9246088	8
creek	0	DEN	26.9941860	9
creek	0	NONE	26.0807692	10
creek	1	DEN	25.8167770	11
creek	1	NONE	26.1136364	12
creek	5	DEN	25.5550796	13
creek	5	NONE	26.3784098	14
creek	25	DEN	25.4334699	15

General Linear Models Procedure Least Squares Means

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

		DILUEN	T CONC	CAN A	GT	LEN	LSMEA	N	
			_	_		LSMEAN	Numbe	r	
		creek	25	NONE	26	.1703846	16		
		mo33	0	DEN	22	.1125227	17		
		mo33	0	NONE	23	.7750000	18		
			Pr > T	HO: LS	MEAN(i)=	LSMEAN (j)		
i/	j 1	2	3	4	5	6	7	8	9
1		0.0030	0.0384	0.0460	0.4055	0.1917	0.0237	0.1914	0.0185
2	0,0030	•	0.2644	0.2128	0.0195	0.0511	0.3463	0.0551	0.3977
3	0.0384	0.2644	•	0.9044	0.1821	0.3761	0.8432	0.3893	0.7627
4	0.0460	0.2128	0.9044	•	0.2152	0.4360	0.7472	0.4501	0.6684
5	0.4055	0.0195	0.1821	0.2152	•	0.6254	0.1244	0.6184	0.1015
6	0.1917	0.0511	0.3761	0.4360	0.6254	•	0.2749	0.9876	0.2313
7	0.0237	0.3463	0.8432	0.7472	0.1244	0.2749	•	0.2868	0.9164
8	0.1914	0.0551	0.3893	0.4501	0.6184	0.9876	0.2868	•	0.2423
9	0.0185	0.3977	0.7627	0.6684	0.1015	0.2313	0.9164	0.2423	•
10	0.0015	0.7433	0.1578	0.1232	0.0100	0.0268	0.2117	0.0292	0.2470
11	0.0007	0.5085	0.0873	0.0662	0.0048	0.0132	0.1194	0.0146	0.1412
12	0.0016	0.7742	0.1674	0.1310	0.0106	0.0285	0.2243	0.0311	0.2614
13	0.0004	0.3265	0.0472	0.0349	0.0024	0.0066	0.0652	0.0073	0.0778
14	0.0035	0.9568	0.2886	0.2339	0.0223	0.0578	0.3757	0.0622	0.4299
15	0.0003	0.2604	0.0351	0.0257	0.0017	0.0048	0.0487	0.0053	0.0583
16	0.0020	0.8315	0.1910	0.1508	0.0128	0.0340	0.2540	0.0369	0.2947
17	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
18	0.0001	0.0035	0.0003	0.0002	0.0001	0.0001	0.0004	0.0001	0.0005
			Pr > T	HO: LS	MEAN(i)=	LSMEAN (j)		
							1.0	17	10
i/		11	12	13	14	15	16	17	18 0.0001
1	0.0015	0.0007	0.0016	0.0004	0.0035	0.0003	0.0020	0.0001	0.0035
2	0.7433	0.5085	0.7742	0.3265	0.9568	0.2604	0.8315	0.0001	
3	0.1578	0.0873	0.1674	0.0472	0.2886	0.0351	0.1910	0.0001	0.0003
4	0.1232	0.0662	0.1310	0.0349	0.2339	0.0257	0.1508	0.0001	
5	0.0100	0.0048	0.0106	0.0024	0.0223	0.0017	0.0128	0.0001	0.0001
6	0.0268	0.0132	0.0285	0.0066	0.0578	0.0048	0.0340	0.0001	0.0001
7	0.2117	0.1194	0.2243	0.0652	0.3757	0.0487	0.2540	0.0001	0.0004
8	0.0292	0.0146	0.0311	0.0073	0.0622	0.0053	0.0369	0.0001	0.0001
9	0.2470	0.1412	0.2614	0.0778	0.4299	0.0583	0.2947	0.0001	0.0005
10	•	0.7369	0.9663	0.5080	0.7041	0.4178	0.9089	0.0001	0.0076
11	0.7369	•	0.7044	0.7411	0.4768	0.6301	0.6532	0.0002	0.0162

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUENT*CONC*CAN_AGT Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: LEN

i/	j 10	11	12	13	14	15	16	17	18
12	0.9663	0.7044	•	0.4800	0.7341	0.3928	0.9419	0.0001	0.0067
13	0.5080	0.7411	0.4800	•	0.3036	0.8789	0.4395	0.0004	0.0336
14	0.7041	0.4768	0.7341	0.3036	•	0.2413	0.7905	0.0001	0.0032
15	0.4178	0.6301	0.3928	0.8789	0.2413	•	0.3577	0.0005	0.0466
16	0.9089	0.6532	0.9419	0.4395	0.7905	0.3577	•	0.0001	0.0059
17	0.0001	0.0002	0.0001	0.0004	0.0001	0.0005	0.0001	•	0.0460
18	0.0076	0.0162	0.0067	0.0336	0.0032	0.0466	0.0059	0.0460	•

Analysis of Medaka growth data Analysis to compare Ft. Detrick controls to others

10:47 Tuesday, February 25, 1997

8

----- MONTH=9 -----

General Linear Models Procedure Class Level Information

Class	Levels	Values					
DILUENT	3	apg creek mo33					
CONC	4	0 1 5 25					
TANK	36	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36					
CAN_AGT	2	DEN NONE					
SEX	2	F M					

Number of observations in by group = 1016

Analysis of Medaka growth data Analysis to compare Ft. Detrick controls to others

10:47 Tuesday, February 25, 1997

----- MONTH=9 -----

General Linear Models Procedure

Dependent Variable:	WGT					
		Sum o	_	Mean		
Source	DF	Square	3	Square	F Value	Pr > F
Model	53	4174683.858	3 7876	7.6200	6.20	0.0001
Error	962	12219827.889	3 1270	2.5238		
Corrected Total	1015	16394511.748	o			
R-	Square	c.v	. Ro	oot MSE		WGT Mean
0.	254639	23.4795	4 112	2.70547		480.01575
Source	DF	Type I S	S Mean	Square	F Value	Pr > F
DILUENT*CONC*CAN AGT	17	3028331.539	7 17813	37.1494	14.02	0.0001
TANK(DILU*CONC*CAN_)	18	353407.178		33.7321	1.55	
SEX	1	278721.678		21.6788	21.94	0.0001
DILUE*CONC*CAN_A*SEX	17	514223.461	9 3024	18.4389	2.38	0.0013
Source	DF	Type III S	S Mean	Square	F Value	Pr > F
DILUENT*CONC*CAN AGT	17	2994797.491	5 17616	54.5583	13.87	0.0001
TANK(DILU*CONC*CAN_)	18	416588.667		13.8149	1.82	
SEX	1	414434.226		34.2260	32.63	
DILUE*CONC*CAN_A*SEX	17	514223.461	9 3024	18.4389	2.38	
		т	for HO:	Pr > T	std 1	Error of
Parameter			ameter=0	1 - 1		timate
APG vs Ft. Detrick	44	5.533426	9.14	0.000	1 48	.7201562

Analysis of Medaka growth data Analysis to compare Ft. Detrick controls to others

10:47 Tuesday, February 25, 1997

10

_____ MONTH=9 -----

General Linear Models Procedure

Dependent Variable: I	EN	Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	53	1509.5552479	28.4821745	6.54	0.0001
Error	962	4190.8847128	4.3564290		
Corrected Total	1015	5700.4399606			
R-5	quare	c.v.	Root MSE		LEN Mean
0.2	64814	7.467695	2.0872060		27.949803
Source	DF	Type I SS	Mean Square	F Value	Pr > F
DILUENT*CONC*CAN_AGT TANK(DILU*CONC*CAN_) SEX DILUE*CONC*CAN_A*SEX	17 18 1 17	1078.5897698 153.3459930 90.6335790 186.9859061		1.96	0.0099
Source	DF	Type III SS	Mean Square	F Value	Pr > F
DILUENT*CONC*CAN_AGT TANK(DILU*CONC*CAN_) SEX DILUE*CONC*CAN_A*SEX	17 18 1 17	1062.9390551 177.8810799 136.6887891 186.9859061	9.8822822 136.6887891	14.35 2.27 31.38 2.52	0.0019
Parameter	I		or HO: Pr > T	,	Error of
APG vs Ft. Detrick	9.2	20093136	10.20 0.000	0.	90225435

General Linear Models Procedure Least Squares Means

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

DILUENT	CONC	CAN_AGT	WGT LSMEAN	LSMEAN Number
apg	0	DEN	560.671358	1
apg	0	NONE	467.607945	2
apg	1	DEN	497.272936	3
apg	1	NONE	520.224317	4
apg	5	DEN	496.758854	5
apg	5	NONE	518.491544	6
apg	25	DEN	551.439483	7
apg	25	NONE	521.748697	8
creek	0	DEN	441.114790	9
creek	0	NONE	471.348649	10
creek	1	DEN	474.917072	11
creek	1	NONE	482.686697	12
creek	5	DEN	444.281560	13
creek	5	NONE	462.014035	14
creek	25	DEN	536.514469	15
creek	25	NONE	496.180148	16
mo33	0	DEN	360.537707	17
mo33	0	NONE	387.066951	18

Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

i/	i 1	2	3	4	5	6	7	8	9
1		0.0029	0.0356	0.1797	0.0324	0.1523	0.7418	0.1895	0.0010
2	0.0029	•	0.2748	0.0713	0.2764	0.0724	0.0047	0.0602	0.3765
3	0.0356	0.2748	•	0.4287	0.9850	0.4516	0.0596	0.3920	0.0780
4	0.1797	0.0713	0.4287	•	0.4131	0.9524	0.2802	0.9586	0.0202
5	0.0324	0.2764	0.9850	0.4131	•	0.4352	0.0545	0.3766	0.0777
6	0.1523	0.0724	0.4516	0.9524	0.4352	•	0.2424	0.9094	0.0201
7	0.7418	0.0047	0.0596	0.2802	0.0545	0.2424	•	0.2961	0.0016
8	0.1895	0.0602	0.3920	0.9586	0.3766	0.9094	0.2961	•	0.0169
9	0.0010	0.3765	0.0780	0.0202	0.0777	0.0201	0.0016	0.0169	•
10	0.0102	0.9013	0.4076	0.1386	0.4120	0.1439	0.0165	0.1230	0.3729
11	0.0191	0.8219	0.5036	0.1951	0.5097	0.2035	0.0301	0.1766	0.3485
12	0.0182	0.6042	0.6262	0.2334	0.6346	0.2440	0.0298	0.2098	0.2108
13	0.0018	0.4529	0.1068	0.0297	0.1067	0.0300	0.0028	0.0254	0.9261
14	0.0034	0.8424	0.2336	0.0652	0.2349	0.0664	0.0054	0.0558	0.5125
15	0.4506	0.0335	0.2180	0.6137	0.2079	0.5685	0.6300	0.6430	0.0102
16	0.0452	0.3294	0.9707	0.4388	0.9843	0.4615	0.0733	0.4046	0.1021
17	0.0001	0.0005	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0127
18	0.0001	0.0049	0.0005	0.0001	0.0005	0.0001	0.0001	0.0001	0.0789

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUENT*CONC*CAN_AGT Pr > |T| HO: LSMEAN(i) = LSMEAN(j)

Dependent Variable: WGT

i/	j 10	11	12	13	14	15	16	17	18
1	0.0102	0.0191	0.0182	0.0018	0.0034	0.4506	0.0452	0.0001	0.0001
2	0.9013	0.8219	0.6042	0.4529	0.8424	0.0335	0.3294	0.0005	0.0049
3	0.4076	0.5036	0.6262	0.1068	0.2336	0.2180	0.9707	0.0001	0.0005
4	0.1386	0.1951	0.2334	0.0297	0.0652	0.6137	0.4388	0.0001	0.0001
5	0.4120	0.5097	0.6346	0.1067	0.2349	0.2079	0.9843	0.0001	0.0005
6	0.1439	0.2035	0.2440	0.0300	0.0664	0.5685	0.4615	0.0001	0.0001
7	0.0165	0.0301	0.0298	0.0028	0.0054	0.6300	0.0733	0.0001	0.0001
8	0.1230	0.1766	0.2098	0.0254	0.0558	0.6430	0.4046	0.0001	0.0001
9	0.3729	0.3485	0.2108	0.9261	0.5125	0.0102	0.1021	0.0127	0.0789
10	•	0.9212	0.7314	0.4382	0.7723	0.0691	0.4541	0.0015	0.0106
11	0.9212		0.8248	0.4074	0.7078	0.1017	0.5457	0.0021	0.0128
12	0.7314	0.8248	•	0.2614	0.5090	0.1169	0.6723	0.0004	0.0034
13	0.4382	0.4074	0.2614	•	0.5908	0.0150	0.1339	0.0128	0.0744
14	0.7723	0.7078	0.5090	0.5908	•	0.0315	0.2790	0.0017	0.0139
15	0.0691	0.1017	0.1169	0.0150	0.0315	•	0.2321	0.0001	0.0001
16	0.4541	0.5457	0.6723	0.1339	0.2790	0.2321	•	0.0002	0.0012
17	0.0015	0.0021	0.0004	0.0128	0.0017	0.0001	0.0002	•	0.3027
18	0.0106	0.0128	0.0034	0.0744	0.0139	0.0001	0.0012	0.3027	•

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

DILUENT	CONC	CAN_AGT	LEN LSMEAN	LSMEAN Number
apg	0	DEN	28.9046071	1
apg	0	NONE	28.2325818	2
apg	1	DEN	28.5573394	3
apg	1	NONE	28.6442036	4
apg	5	DEN	28.8781250	5
apg	5	NONE	28.6251084	6
apg	25	DEN	28.8875793	7
apg	25	NONE	28.5688217	8
creek	0	DEN	27.3545792	9
creek	0	NONE	27.7500000	10
creek	1	DEN	27.4268045	11
creek	1	NONE	28.0674462	12
creek	5	DEN	27.3762399	13
creek	5	NONE	28.0188596	14
creek	25	DEN	28.8678843	15

______ MONTH=9 -----

General Linear Models Procedure Least Squares Means

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

			•		_			_	
		DILUEN	T CONC	CAN_A	GT	LEN	LSMEA		
						LSMEAN	Number	c	
		creek	25	NONE	28	.1820741	16		
		mo33	0	DEN		.5152449	17		
		mo33	Ö	NONE		.0051735	18		
		111000	Ū	110112					
			Pr > T	HO: LS	MEAN(i)=	LSMEAN (j)		
i/	j 1	2	3	4	5	6	7	8	9
1	•	0.2441	0.5546	0.6687	0.9634	0.6375	0.9765	0.5762	0.0249
2	0,2441	•	0.5581	0.4775	0.2446	0.4853	0.2385	0.5543	0.1631
3	0.5546	0.5581	•	0.8838	0.5712	0.9067	0.5604	0.9843	0.0686
4	0.6687	0.4775	0.8838	•	0.6908	0.9746	0.6794	0.9012	0.0596
5	0.9634	0.2446	0.5712	0.6908	•	0.6583	0.9865	0.5938	0.0233
6	0.6375	0.4853	0.9067	0.9746	0.6583	•	0.6468	0.9242	0.0578
7	0.9765	0.2385	0.5604	0.6794	0.9865	0.6468	•	0.5830	0.0226
8	0.5762	0.5543	0.9843	0.9012	0.5938	0.9242	0.5830	•	0.0712
9	0.0249	0.1631	0.0686	0.0596	0.0233	0.0578	0.0226	0.0712	•
10	0.0897	0.4426	0.2175	0.1869	0.0879	0.1867	0.0858	0.2195	0.5702
11	0.0456	0.2386	0.1122	0.0972	0.0442	0.0961	0.0431	0.1143	0.9218
12	0.1941	0.7829	0.4310	0.3713	0.1944	0.3759	0.1899	0.4297	0.2958
13	0.0318	0.1897	0.0837	0.0725	0.0303	0.0709	0.0295	0.0860	0.9755
14	0.1597	0.7135	0.3743	0.3208	0.1586	0.3236	0.1547	0.3744	0.3177
15	0.9554	0.3179	0.6309	0.7368	0.9872	0.7094	0.9754	0.6495	0.0409
16	0.2584	0.9326	0.5439	0.4710	0.2611	0.4789	0.2553	0.5400	0.2264
17	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0068
18	0.0001	0.0004	0.0002	0.0002	0.0001	0.0001	0.0001	0.0002	0.0371
			Pr > T	l но: т.s	MEAN(i)=	LSMEAN(j)		
			-	1			,		
i/	j 10	11	12	13	14	15	16	17	18
1	0.0897	0.0456	0.1941	0.0318	0.1597	0.9554	0.2584	0.0001	0.0001
2	0.4426	0.2386	0.7829	0.1897	0.7135	0.3179	0.9326	0.0001	0.0004
3	0.2175	0.1122	0.4310	0.0837	0.3743	0.6309	0.5439	0.0001	0.0002
4	0.1869	0.0972	0.3713	0.0725	0.3208	0.7368	0.4710	0.0001	0.0002
5		0.0442	0.1944	0.0303	0.1586	0.9872	0.2611	0.0001	0.0001
6	0.1867	0.0961	0.3759	0.0709	0.3236	0.7094	0.4789	0.0001	0.0001
7	0.0858	0.0431	0.1899	0.0295	0.1547	0.9754	0.2553	0.0001	0.0001
8	0.2195	0.1143	0.4297	0.0860	0.3744	0.6495	0.5400	0.0001	0.0002
9	0.5702	0.9218	0.2958	0.9755	0.3177	0.0409	0.2264	0.0068	0.0371
10	•	0.6653	0.6423	0.6027	0.6870	0.1260	0.5275	0.0018	0.0104
11	0.6653	•	0.3819	0.9467	0.4089	0.0666	0.3037	0.0095	0.0442

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUENT*CONC*CAN_AGT Pr > |T| H0: LSMEAN(i)=LSMEAN(j)

Dependent Variable: LEN

		11							
12	0.6423	0.3819	•	0.3260	0.9398	0.2514	0.8617	0.0004	0.0025
		0.9467							
14	0.6870	0.4089	0.9398	0.3497	•	0.2146	0.7993	0.0004	0.0023
15	0.1260	0.0666	0.2514	0.0496	0.2146	•	0.3224	0.0001	0.0002
16	0.5275	0.3037	0.8617	0.2535	0.7993	0.3224	•	0.0002	0.0016
17	0.0018	0.0095	0.0004	0.0082	0.0004	0.0001	0.0002	•	0.3556
18	0.0104	0.0442	0.0025	0.0414	0.0023	0.0002	0.0016	0.3556	•

10:47 Tuesday, February 25, 1997

15

----- MONTH=6 -----

General Linear Models Procedure Class Level Information

Class	Levels	Values
DILUENT	2	apg creek
CONC	4	0 1 5 25
TANK	32	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
CAN_AGT	2	DEN NONE
SEX	2	F M

Number of observations in by group = 64

10:47 Tuesday, February 25, 1997

----- MONTH=6 -----

General Linear Models Procedure

Dependent Variable: W	GT				
Dependent variable.	01	Sum of	Mean		
Source	DF		Square	F Value	Pr > F
Model	47	60254.748338	1282.015922	1.52	0.1797
Error	16	13457.685256	841.105328		
Corrected Total	63	73712.433594			
R-S	quare	c.v.	Root MSE		WGT Mean
0.8	17430	7.496208	29.001816	:	386.88648
Source	DF	Type I SS	Mean Square	F Value	Pr > F
DILUENT	1	325.505378	325.505378	0.39	0.5426
CONC	3	4077.319723			
CAN AGT	1	1085.837076			
DILUENT*CONC	3	5148.750161	1716.250054		
DILUENT*CAN AGT	1	3355.828097	3355.828097		
CONC*CAN AGT	3	7542.213089	2514.071030		
DILUENT*CONC*CAN AGT		2495.521557	831.840519		
TANK(DILU*CONC*CAN_)		18762.559752	1172.659985		
SEX	1	197.856093	197.856093		
DILUENT*SEX	1	5771.341152	5771.341152		
CONC*SEX	3	6503.259488	2167.753163		
CAN_AGT*SEX	1	556.866337	556.866337		
DILUENT*CONC*SEX	3	965.380526	321.793509		
DILUENT*CAN_AGT*SEX	1	432.639841	432.639841	0.51	0.4836
CONC*CAN_AGT*SEX	3	2843.613273			
DILUE*CONC*CAN_A*SEX	3	190.256794	63.418931	0.08	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
DILUENT	1	325.505378	325.505378	0.39	0.5426
CONC	3	4077.319723	1359.106574	1.62	0.2251
CAN_AGT	1	1085.837076	1085.837076	1.29	0.2726
DILUENT*CONC	3	5148.750161	1716.250054	2.04	0.1487
DILUENT*CAN_AGT	1	3355.828097	3355.828097	3.99	0.0631
CONC*CAN_AGT	3	7542.213089	2514.071030	2.99	0.0621
DILUENT*CONC*CAN_AGT	3	2495.521557	831.840519	0.99	0.4229
TANK(DILU*CONC*CAN_)	16	18762.559752	1172.659985	1.39	0.2569
SEX	1	197.856093	197.856093	0.24	0.6342
DILUENT*SEX	1	5771.341152	5771.341152	6.86	0.0186

10:47 Tuesday, February 25, 1997

17

----- MONTH=6 -----

General Linear Models Procedure

Dependent Variable: WGT

Source	DF	Type III SS	Mean Square	F Value	Pr > F
CONC*SEX	3	6503.259488	2167.753163	2.58	0.0899
CAN AGT*SEX	1	556.866337	556.866337	0.66	0.4278
DILUENT*CONC*SEX	3	965.380526	321.793509	0.38	0.7669
DILUENT*CAN AGT*SEX	1	432.639841	432.639841	0.51	0.4836
CONC*CAN AGT*SEX	3	2843.613273	947.871091	1.13	0.3678
DILUE*CONC*CAN_A*SEX	3	190.256794	63.418931	0.08	0.9724

Tests of Hypotheses using the Type III MS for TANK(DILU*CONC*CAN_) as an error term

Source	DF	Type III SS	Mean Square	F Value	Pr > F
DILUENT	1	325.5053784	325.5053784	0.28	0.6055
CONC	3	4077.3197235	1359.1065745	1.16	0.3560
CAN AGT	1	1085.8370756	1085.8370756	0.93	0.3502
DILUENT*CONC	3	5148.7501605	1716.2500535	1.46	0.2619
DILUENT*CAN AGT	1	3355.8280971	3355.8280971	2.86	0.1101
CONC*CAN AGT	3	7542.2130892	2514.0710297	2.14	0.1347
DILUENT*CONC*CAN AGT	3	2495.5215574	831.8405191	0.71	0.5604

10:47 Tuesday, February 25, 1997

18

----- MONTH=6 -----

General Linear Models Procedure Dependent Variable: LEN Sum of Mean Squares DF Square F Value Pr > F Source 47 1.91296977 3.69 0.0031 89.90957918 Model 8.29216120 0.51826007 16 Error Corrected Total 63 98.20174038 Root MSE LEN Mean c.v. R-Square 26.838153 2.682386 0.7199028 0.915560 Type I SS Mean Square F Value Pr > F DF Source 38.62475819 74.53 0.0001 1 38.62475819 DILUENT CAN_AGT 1 0.64332376 DILUENT*CONC 3 3.06267029 DILUENT*CAN_AGT 1 2.22611994 CONC*CAN_AGT 3 15.28379410 DILUENT*CONC*CAN_AGT 3 2.60930979 TANK(DILU*CONC*CAN_) 16 13.13362256 SEX 1 0.00489240 2.46907032 0.82302344 1.59 0.2314 0.64332376 1.24 0.2817 1.97 1.02089010 0.1592 4.30 0.0547 2.22611994 5.09459803 9.83 0.0006 0.86976993 1.68 0.2116 0.82085141 1.58 0.1836 0.00489240 0.01 0.9238 0.86324047 1.67 0.2152 0.86324047 1 DILUENT*SEX 1.46 0.2628 CONC*SEX CAN_AGT*SEX 1 0.70848278 DILUENT*CONC*SEX 3 0.85735716 DILUENT*CAN_AGT*SEX 1 0.47631247 CONC*CAN_AGT*SEX 3 5.03840722 DILUE*CONC*CAN_A*SEX 3 1.63788456 0.75677773 3 1.37 0.70848278 0.2594 0.28578572 0.55 0.6545 0.47631247 0.92 0.3520 1.67946907 0.0499 3.24 0.54596152 1.05 0.3962 Mean Square F Value Pr > F Type III SS DF Source 0.0001 38.62475819 74.53 38.62475819 1 DILUENT 0.82302344 1.59 0.2314 2.46907032 3 CONC 0.64332376 1.24 0.2817 CAN AGT 1 0.64332376 3 1.02089010 1.97 0.1592 3.06267029 DILUENT*CONC 2.22611994 4.30 0.0547 DILUENT*CAN_AGT 2.22611994 9.83 0.0006 15.28379410 5.09459803 3 CONC*CAN AGT DILUENT*CONC*CAN_AGT 3 2.60930979 TANK(DILU*CONC*CAN_) 16 13.13362256 SEY 1 0.00489240 0.86976993 1.68 0.2116 1.58 0.1836 0.82085141 0.01 0.9238 0.00489240 0.00489240 1

0.86324047

1

DILUENT*SEX

0.86324047 1.67 0.2152

10:47 Tuesday, February 25, 1997

19

----- MONTH=6 -----

General Linear Models Procedure

Dependent Variable: LEN

Source	DF	Type III ss	Mean Square	F Value	Pr > F
CONC*SEX	3	2.27033320	0.75677773	1.46	0.2628
CAN AGT*SEX	1	0.70848278	0.70848278	1.37	0.2594
DILUENT*CONC*SEX	3	0.85735716	0.28578572	0.55	0.6545
DILUENT*CAN AGT*SEX	1	0.47631247	0.47631247	0.92	0.3520
CONC*CAN AGT*SEX	3	5.03840722	1.67946907	3.24	0.0499
DILUE*CONC*CAN A*SEX	3	1.63788456	0.54596152	1.05	0.3962

Tests of Hypotheses using the Type III MS for TANK(DILU*CONC*CAN_) as an error term

Source	DF	Type III SS	Mean Square	F Value	Pr > F
DILUENT	1	38.62475819	38.62475819	47.05	0.0001
CONC	3	2.46907032	0.82302344	1.00	0.4171
CAN AGT	1	0.64332376	0.64332376	0.78	0.3891
DILUENT*CONC	3	3.06267029	1.02089010	1.24	0.3268
DILUENT*CAN AGT	1	2.22611994	2.22611994	2.71	0.1191
CONC*CAN AGT	3	15.28379410	5.09459803	6.21	0.0053
DILUENT*CONC*CAN AGT	3	2.60930979	0.86976993	1.06	0.3937

10:47 Tuesday, February 25, 1997

----- MONTH=6 -----

General Linear Models Procedure Least Squares Means

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN) as an Error term

DILUENT	WGT	Pr > T HO:			
	LSMEAN	LSMEAN1=LSMEAN			
apg	389.141696	0.6055			
creek	384.631254				

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

DILUENT	LEN LSMEAN	Pr > T HO: LSMEAN1=LSMEAN2
apg creek	27.6150131 26.0612926	0.0001

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

CONC	WGT	Pr > T HO: LSMEAN(i)=LSMEAN(j)					
	LSMEAN	i/	j 1	2	3	4	
0	378.991386	1	•	0.8101	0.5305	0.1042	
1	381.948605	2	0.8101	•	0.6967	0.1586	
5	386.754097	3	0.5305	0.6967	•	0.2954	
25	399.851812	4	0.1042	0.1586	0.2954	•	

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

CONC	LEN	Pr > T HO: LSMEAN(i) = LSMEAN(j)					
	LSMEAN	i/	j 1	2	3	4	
0	27.0769713	1	•	0.1701	0.7766	0.2268	
1	26.6167506	2	0.1701	•	0.2678	0.8596	
5	26.9845448	3	0.7766	0.2678	•	0.3473	
25	26.6743448	4	0.2268	0.8596	0.3473	•	

General Linear Models Procedure Least Squares Means

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

DILUENT	CONC	WGT LSMEAN	LSMEAN Number
apg	0	389.542241	1
apg	1	384.240396	2
apg	5	395.289870	3
apg	25	387.494277	4
creek	0	368.440530	5
creek	1	379.656815	6
creek	5	378.218323	7
creek	25	412.209348	8

Pr > |T| HO: LSMEAN(i) = LSMEAN(j)

i/	j 1	2	3	4	5	6	7	8
•	•	0.7608	0.7415	0.9063	0.2356	0.5717	0.5178	0.2042
2	0.7608		0.5279	0.8517	0.3698	0.7924	0.7296	0.1219
3	0.7415	0.5279	•	0.6550	0.1364	0.3748	0.3336	0.3378
4	0.9063	0.8517	0.6550	•	0.2822	0.6533	0.5955	0.1682
5	0.2356	0.3698	0.1364	0.2822	•	0.5217	0.5759	0.0211
6	0.5717	0.7924	0.3748	0.6533	0.5217	•	0.9341	0.0754
7	0.5178	0.7296	0.3336	0.5955	0.5759	0.9341	•	0.0645
8	0.2042	0.1219	0.3378	0.1682	0.0211	0.0754	0.0645	•

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN) as an Error term

DILUENT	CONC	LEN LSMEAN	LSMEAN Number
apg	0	27.6216509	1
apg	1	27.2344208	2
apg	5	28.0904734	3
apg	25	27.5135073	4
creek	0	26.5322917	5
creek	1	25.9990804	6
creek	5	25.8786162	7
creek	25	25.8351822	8

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUENT*CONC Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: LEN

i/	i 1	2	3	4	5	6	7	8
1		0.4053	0.3161	0.8143	0.0286	0.0025	0.0014	0.0012
_	0.4053	•	0.0771	0.5465	0.1407	0.0149	0.0086	0.0070
3	0.3161	0.0771		0.2210	0.0034	0.0003	0.0002	0.0001
_	0.8143	0.5465	0.2210	•	0.0458	0.0041	0.0024	0.0019
-		0.1407	0.0034	0.0458	•	0.2564	0.1683	0.1434
_	0.0025	0.0149	0.0003	0.0041	0.2564	•	0.7937	0.7222
-	0.0014	0.0086	0.0002	0.0024	0.1683	0.7937	•	0.9248
8	0.0012	0.0070	0.0001	0.0019	0.1434	0.7222	0.9248	•

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

CAN_AGT	WGT	LSMEAN
	LSMEAN	Number
		•
DEN	399.643403	1
NONE	358.339369	2
DEN	388.295952	3
NONE	375.601259	4
DEN	378.569399	5
NONE	394.938794	6
DEN	397.513167	7
NONE	402.190457	8
	DEN NONE DEN NONE DEN NONE DEN	LSMEAN DEN 399.643403 NONE 358.339369 DEN 388.295952 NONE 375.601259 DEN 378.569399 NONE 394.938794 DEN 397.513167

Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

i/	j 1	2	3	4	5	6	7	8
1	•	0.0282	0.5169	0.1794	0.2362	0.7870	0.9025	0.8836
2	0.0282	•	0.0993	0.3284	0.2547	0.0483	0.0361	0.0209
3	0.5169	0.0993	•	0.4692	0.5779	0.7032	0.5978	0.4290
4	0.1794	0.3284	0.4692	•	0.8645	0.2754	0.2189	0.1400
5	0.2362	0.2547	0.5779	0.8645	•	0.3533	0.2849	0.1867
6	0.7870	0.0483	0.7032	0.2754	0.3533	•	0.8824	0.6775
7	0.9025	0.0361	0.5978	0.2189	0.2849	0.8824	•	0.7882

10:47 Tuesday, February 25, 1997

----- MONTH=6 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect CONC*CAN_AGT Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: WGT

i/j 1 2 3 4 5 6 7 8 8 0.8836 0.0209 0.4290 0.1400 0.1867 0.6775 0.7882 .

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

CONC	CAN AGT	LEN	LSMEAN
	_	LSMEAN	Number
0	DEN	27.9922033	1
0	NONE	26.1617393	2
1	DEN	26.5632402	3
1	NONE	26.6702610	4
5	DEN	26.9104347	5
5	NONE	27.0586549	6
25	DEN	26.2877706	7
25	NONE	27.0609189	8

Pr > |T| HO: LSMEAN(i) = LSMEAN(j)

i/	j 1	2	3	4	5	6	7	8
1	•	0.0009	0.0061	0.0101	0.0296	0.0560	0.0017	0.0565
2	0.0009	•	0.3886	0.2782	0.1179	0.0652	0.7844	0.0646
3	0.0061	0.3886	•	0.8162	0.4546	0.2903	0.5517	0.2882
4	0.0101	0.2782	0.8162	•	0.6033	0.4039	0.4109	0.4012
5	0.0296	0.1179	0.4546	0.6033	•	0.7478	0.1882	0.7441
6	0.0560	0.0652	0.2903	0.4039	0.7478	•	0.1082	0.9961
7	0.0017	0.7844	0.5517	0.4109	0.1882	0.1082	•	0.1072
8	0.0565	0.0646	0.2882	0.4012	0.7441	0.9961	0.1072	•

10:47 Tuesday, February 25, 1997

----- MONTH=6 -----

General Linear Models Procedure Least Squares Means

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

CAN_AGT	SEX	WGT	LSMEAN Number
		LSMEAN	Number
DEN	F	398.313740	1
DEN	M	402.690040	2
NONE	F	364.493849	3
NONE	M	391.069155	4
DEN	F	393.113258	5
DEN	M	369.904884	6
NONE	F	398.658120	7
NONE	M	376.848755	8
	DEN DEN NONE DEN DEN NONE	DEN F DEN M NONE F NONE M DEN F DEN M NONE F	LSMEAN DEN F 398.313740 DEN M 402.690040 NONE F 364.493849 NONE M 391.069155 DEN F 393.113258 DEN M 369.904884 NONE F 398.658120

Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

i/	i 1	2	3	4	5	6	7	8
1	•	0.8015	0.0658	0.6778	0.7652	0.1165	0.9842	0.2280
2	0.8015	•	0.0404	0.5070	0.5837	0.0736	0.8168	0.1507
3	0.0658	0.0404	•	0.1402	0.1141	0.7561	0.0633	0.4810
4	0.6778	0.5070	0.1402	•	0.9065	0.2343	0.6635	0.4185
5	0.7652	0.5837	0.1141	0.9065	•		0.7503	0.3563
6	0.1165	0.0736	0.7561	0.2343	0.1941	•	0.1125	0.6904
7	0.9842	0.8168	0.0633	0.6635	0.7503	0.1125	•	0.2209
8	0.2280	0.1507	0.4810	0.4185	0.3563	0.6904	0.2209	•

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

DILUENT	CAN_AGT	SEX	LEN LSMEAN	LSMEAN Number
apg	DEN	F	27.9858631	1
apq	DEN	M	27.8176865	2
apg	NONE	F	27.0293727	3
apq	NONE	M	27.6271302	4
creek	DEN	F	26.1188763	5
creek	DEN	M	25.8312229	6
creek	NONE	F	26.2534722	7
creek	NONE	М	26.0415990	8

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUENT*CAN_AGT*SEX Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: LEN

i/	j 1	2	3	4	5	6	7	8
1	•	0.7153	0.0508	0.4400	0.0008	0.0002	0.0015	0.0006
2	0.7153	•	0.1010	0.6796	0.0017	0.0005	0.0033	0.0012
3	0.0508	0.1010	•	0.2056	0.0616	0.0177	0.1061	0.0445
4	0.4400	0.6796	0.2056		0.0042	0.0011	0.0079	0.0030
5	0.0008	0.0017	0.0616	0.0042	•	0.5344	0.7702	0.8667
6	0.0002	0.0005	0.0177	0.0011	0.5344	•	0.3651	0.6486
7	0.0015	0.0033	0.1061	0.0079	0.7702	0.3651	•	0.6463
8	0.0006	0.0012	0.0445	0.0030	0.8667	0.6486	0.6463	•

Standard Errors and Probabilities calculated using the Type III MS for ${\tt TANK(DILU*CONC*CAN_)} \ \ {\tt as\ an\ Error\ term}$

CONC	CAN_AGT	SEX	WGT	LSMEAN
	_		LSMEAN	Number
0	DEN	F	416.707260	1
0	DEN	M	382.579545	2
0	NONE	F	350.133013	3
0	NONE	M	366.545725	4
1	DEN	F	411.054563	5
1	DEN	M	365.537340	6
1	NONE	F	387.099840	7
1	NONE	M	364.102679	8
5	DEN	F	368.861616	9
5	DEN	M	388.277183	10
5	NONE	F	390.946581	11
5	NONE	M	398.931006	12
25	DEN	F	386.230556	13
25	DEN	M	408.795779	14
25	NONE	F	398.124504	15
25	NONE	M	406.256410	16

General Linear Models Procedure Least Squares Means

Least Squares Means for effect CONC*CAN_AGT*SEX Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: WGT

i/	j 1	2	3	4	5	6	7	8	9
1				0.0548		0.0506	0.2391	0.0452	0.0657
2		•	0.1990			0.4917	0.8543	0.4565	0.5789
3	0.0143	0.1990			0.0229	0.5337	0.1464	0.5720	0.4505
4	0.0548	0.5173		•	0.0847	0.9673	0.4085	0.9209	0.9250
5	0.8184	0.2568	0.0229		•	0.0785	0.3373	0.0703	0.1006
6	0.0506	0.4917	0.5337		0.0785	•	0.3864	0.9535	0.8925
7	0.2391	0.8543	0.1464	0.4085	0.3373	0.3864	•	0.3564	0.4623
8	0.0452	0.4565	0.5720	0.9209	0.0703	0.9535	0.3564	•	0.8467
9	0.0657	0.5789	0.4505	0.9250	0.1006	0.8925	0.4623	0.8467	•
10	0.2575	0.8170	0.1348	0.3828	0.3609	0.3616	0.9618	0.3330	0.4344
11	0.3032	0.7342	0.1113	0.3286	0.4185	0.3096	0.8758	0.2840	0.3753
12	0.4735	0.5091	0.0610	0.1998	0.6234	0.1868	0.6318	0.1696	0.2322
13	0.2262	0.8820	0.1555	0.4282		0.4054	0.9718	0.3744	0.4835
14	0.7481	0.2950	0.0276	0.1002		0.0930	0.3835	0.0835	0.1186
15	0.4540	0.5300	0.0649			0.1971	0.6550	0.1791	0.2444
16	0.6718	0.3427	0.0340	0.1205	0.8454	0.1121	0.4404	0.1009	0.1421
			1 -	.1					
			Pr > T	HO: LS	MEAN(i)=	LSMEAN (j)		
i/	j 10	11	12	13	14	15	16		
1	-	0.3032	0.4735	0.2262	0.7481	0.4540	0.6718		
2		0.7342	0.5091	0.8820	0.2950	0.5300	0.3427		
3	0.1348	0.1113	0.0610	0.1555	0.0276	0.0649	0.0340		
4	0.3828	0.3286	0.1998	0.4282	0.1002	0.2106	0.1205		
5	0.3609	0.4185	0.6234	0.3205	0.9268	0.6007	0.8454		
6	0.3616	0.3096	0.1868	0.4054	0.0930	0.1971	0.1121		
7	0.9618	0.8758	0.6318	0.9718	0.3835	0.6550	0.4404		
8	0.3330	0.2840	0.1696		0.0835	0.1791	0.1009		
9	0.4344	0.3753	0.2322	0.4835	0.1186	0.2444	0.1421		
10	•	0.9136	0.6658	0.9337	0.4093	0.6896	0.4685		
11	0.9136	•	0.7459	0.8480	0.4717	0.7707	0.5361		
12	0.6658	0.7459		0.6071	0.6891	0.9738	0.7661		
13	0.9337	0.8480	0.6071		0.3652	0.6300	0.4204		
14	0.4093	0.4717	0.6891	0.3652		0.6653	0.9178 0.7414		
15	0.6896	0.7707	0.9738	0.6300	0.6653	0 7414			
16	0.4685	0.5361	0.7661	0.4204	0.9178	0.7414	•		

10:47 Tuesday, February 25, 1997

----- MONTH=6 -----

General Linear Models Procedure Least Squares Means

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

CONC	can_agt	SEX	LEN LSMEAN	LSMEAN Number
0	DEN	F	28.4003157	1
0	DEN	M	27.5840909	2
0	NONE	F	25.5713141	3
0	NONE	M	26.7521645	4
1	DEN	F	27.1001984	5
1	DEN	M	26.0262821	6
1	NONE	F	26.7902244	7
1	NONE	M	26.5502976	8
5	DEN	F	26.7256313	9
5	DEN	M	27.0952381	10
5	NONE	F	26.9358974	11
5	NONE	M	27.1814123	12
25	DEN	F	25.9833333	13
25	DEN	M	26.5922078	14
25	NONE	F	27.2682540	15
25	NONE	M	26.8535839	16

Pr > |T| HO: LSMEAN(i) = LSMEAN(j)

i/	i 1	2	3	4	5	6	7	8	9
1	•	0.2208	0.0004	0.0204	0.0594	0.0019	0.0231	0.0107	0.0188
2	0.2208	•	0.0063	0.2125	0.4610	0.0272	0.2332	0.1261	0.1990
3	0.0004	0.0063	•	0.0839	0.0297	0.4878	0.0752	0.1460	0.0904
4	0.0204	0.2125	0.0839	•	0.5944	0.2739	0.9534	0.7568	0.9675
5	0.0594	0.4610	0.0297	0.5944	•	0.1131	0.6351	0.4034	0.5669
6	0.0019	0.0272	0.4878	0.2739	0.1131	•	0.2505	0.4254	0.2912
7	0.0231	0.2332	0.0752	0.9534	0.6351	0.2505	•	0.7129	0.9209
8	0.0107	0.1261	0.1460	0.7568	0.4034	0.4254	0.7129	•	0.7878
9	0.0188	0.1990	0.0904	0.9675	0.5669	0.2912	0.9209	0.7878	•
10	0.0585	0.4565	0.0302	0.5997	0.9939	0.1147	0.6404	0.4075	0.5720
11	0.0362	0.3267	0.0490	0.7780	0.8009	0.1748	0.8230	0.5557	0.7470
12	0.0752	0.5385	0.0231	0.5124	0.9007	0.0902	0.5500	0.3392	0.4871
13	0.0017	0.0237	0.5292	0.2476	0.1005	0.9474	0.2259	0.3893	0.2636
14	0.0123	0.1411	0.1306	0.8060	0.4394	0.3901	0.7612	0.9487	0.8377
15	0.0963	0.6287	0.0175	0.4323	0.7964	0.0704	0.4664	0.2790	0.4095
16	0.0281	0.2710	0.0626	0.8762	0.7053	0.2149	0.9224	0.6423	0.8442

______ MONTH=6 -----

General Linear Models Procedure Least Squares Means

Dependent Variable: LEN

i/	i 10	11	12	13	14	15	16
1	0.0585	0.0362	0.0752	0.0017	0.0123	0.0963	0.0281
2	0.4565	0.3267	0.5385	0.0237	0.1411	0.6287	0.2710
3	0.0302	0.0490	0.0231	0.5292	0.1306	0.0175	0.0626
4	0.5997	0.7780	0.5124	0.2476	0.8060	0.4323	0.8762
5	0.9939	0.8009	0.9007	0.1005	0.4394	0.7964	0.7053
6	0.1147	0.1748	0.0902	0.9474	0.3901	0.0704	0.2149
7	0.6404	0.8230	0.5500	0.2259	0.7612	0.4664	0.9224
8	0.4075	0.5557	0.3392	0.3893	0.9487	0.2790	0.6423
9	0.5720	0.7470	0.4871	0.2636	0.8377	0.4095	0.8442
10	•	0.8067	0.8947	0.1018	0.4438	0.7906	0.7110
11	0.8067	•	0.7066	0.1565	0.5990	0.6110	0.8994
12	0.8947	0.7066	•	0.0799	0.3714	0.8939	0.6158
13	0.1018	0.1565	0.0799	•	0.3560	0.0621	0.1932
14	0.4438	0.5990	0.3714	0.3560	•	0.3070	0.6887
15	0.7906	0.6110	0.8939	0.0621	0.3070	•	0.5266
16	0.7110	0.8994	0.6158	0.1932	0.6887	0.5266	•

10:47 Tuesday, February 25, 1997

----- MONTH=6 -----

General Linear Models Procedure Least Squares Means

SEX	WGT	Pr > T HO:
	LSMEAN	LSMEAN1=LSMEAN2
F	388.644742	0.6342
M	385.128208	
SEX	LEN	Pr > T HO:
	LSMEAN	LSMEAN1=LSMEAN2
F	26.8468961	0.9238
M	26.8294097	

DILUENT	SEX	WGT LSMEAN	Pr > i/j	T HO	: LSMEA	N(i)=LSM 3	EAN(j) 4
apg apg creek creek	F M F M	381.403795 396.879597 395.885689 373.376820	3 0.	1507 1770	0.1507 0.9240 0.0358	0.1770 0.9240 0.0432	0.4452 0.0358 0.0432
DILUENT	SEX	LEN LSMEAN	Pr >	T HO	: LSMEA	N(i)=LSM 3	EAN(j) 4
apg apg creek creek	F M F M	27.5076179 27.7224083 26.1861742 25.9364110	3 0.	4112 0001	0.4112 0.0001 0.0001	0.0001 0.0001 0.3411	0.0001 0.0001 0.3411

General Linear Models Procedure Least Squares Means

CONC	SEX	WGT LSMEAN	LSMEAN Number
0	F	383.420136	1
0	M	374.562635	2
1	F	399.077202	3
1	M	364.820009	4
5	F	379.904099	5
5	M	393.604095	6
25	F	392.177530	7
25	M	407.526095	8

Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

i/	i 1	2	3	4	5	6	7	8
1	•	0.5499	0.2963	0.2179	0.8115	0.4926	0.5544	0.1159
2	0.5499	•	0.1103	0.5113	0.7174	0.2077	0.2421	0.0371
	0.2963	0.1103	•	0.0312	0.2047	0.7108	0.6406	0.5683
4	0.2179	0.5113	0.0312		0.3137	0.0646	0.0775	0.0095
5	0.8115	0.7174	0.2047	0.3137		0.3588	0.4098	0.0749
6	0.4926	0.2077	0.7108	0.0646	0.3588	•	0.9229	0.3513
-		0.2421	0.6406	0.0775	0.4098	0.9229		0.3056
•	0.1159		0.5683	0.0095	0.0749	0.3513	0.3056	•

CONC	SEX	LEN	LSMEAN
		LSMEAN	Number
0	F	26.9858149	1
0	M	27.1681277	2
1	F	26.9452114	3
1	M	26.2882898	4
5	F	26.8307644	5
5	M	27.1383252	6
25	F	26.6257937	7
25	М	26.7228959	8

Pr > |T | HO: LSMEAN(i)=LSMEAN(j)

i/	j 1	2	3	4	5	6	7	8
1	•	0.6194	0.9116	0.0705	0.6724	0.6774	0.3321	0.4757
2	0.6194	•	0.5444	0.0265	0.3626	0.9350	0.1514	0.2340
		0.5444						
		0.0265						
		0.3626						
6	0.6774	0.9350	0.5990	0.0312	0.4055	•	0.1737	0.2654

10:47 Tuesday, February 25, 1997

----- MONTH=6 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect CONC*SEX
Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: LEN

i/j 1 2 3 4 5 6 7 8 7 0.3321 0.1514 0.3880 0.3624 0.5770 0.1737 . 0.7908 8 0.4757 0.2340 0.5455 0.2448 0.7683 0.2654 0.7908 .

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

CAN_AGT	SEX	WGT LSMEAN	Pr > T HO i/j 1	: LSMEA	N(i)=LSM 3	EAN(j) 4
DEN DEN NONE NONE	F M F M	395.713499 386.297462 381.575984 383.958955	2 0.3721 3 0.1869	0.3721 0.6514 0.8225	0.1869 0.6514 0.8192	0.2685 0.8225 0.8192
CAN_AGT	SEX	LEN LSMEAN	Pr > T HO i/j 1	: LSMEA	N(i)=LSM 3	EAN(j) 4
DEN DEN NONE NONE	F M F M	27.0523697 26.8244547 26.6414225 26.8343646	2 0.3838 3 0.1259	0.3838 0.4824 0.9694	0.1259 0.4824 0.4594	0.4044 0.9694 0.4594

General Linear Models Procedure Least Squares Means

CON	C CAN_AGT	SEX	WGT LSMEAN	LSMEAN Number
0	DEN	F	416.707260	1
0	DEN	M	382.579545	2
0	NONE	F	350.133013	3
0	NONE	M	366.545725	4
1	DEN	F	411.054563	5
1	D EN	M	365.537340	6
1	NONE	F	387.099840	7
1	NONE	M	364.102679	8
5	DEN	F	368.861616	9
5	DEN	M	388.277183	10
5	NONE	F	390.946581	11
5	NONE	М	398.931006	12
25	DEN	F	386.230556	13
25	DEN	M	408.795779	14
25	NONE	F	398.124504	15
25	NONE	M	406.256410	16

Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

i/	i 1	2	3	4	5	6	7	8	9
1	_	0.1155	0.0051	0.0264	0.7864	0.0239	0.1681	0.0208	0.0330
2	0.1155		0.1332	0.4457	0.1840	0.4182	0.8283	0.3810	0.5131
3	0.0051	0.1332	•	0.4352	0.0090	0.4635	0.0903	0.5055	0.3747
4	0.0264	0.4457	0.4352	•	0.0454	0.9614	0.3311	0.9067	0.9115
5	0.7864	0.1840	0.0090	0.0454	•	0.0412	0.2599	0.0360	0.0563
6	0.0239	0.4182	0.4635	0.9614	0.0412	•	0.3087	0.9451	0.8733
7	0.1681	0.8283	0.0903	0.3311	0.2599	0.3087	•	0.2787	0.3870
8	0.0208	0.3810	0.5055	0.9067	0.0360	0.9451	0.2787	•	0.8194
9	0.0330	0.5131	0.3747	0.9115	0.0563	0.8733	0.3870	0.8194	•
10	0.1847	0.7847	0.0814	0.3050	0.2831	0.2839	0.9549	0.2557	0.3578
11	0.2271	0.6887	0.0639	0.2515	0.3414	0.2332	0.8536	0.2090	0.2975
12	0.3989	0.4369	0.0301	0.1339	0.5627	0.1230	0.5720	0.1088	0.1620
13	0.1567	0.8609	0.0975	0.3514	0.2437	0.3280	0.9667	0.2966	0.4095
14	0.7047	0.2193	0.0113	0.0560	0.9137	0.0510	0.3058	0.0446	0.0693
15	0.3783	0.4595	0.0326	0.1431	0.5373	0.1316	0.5983	0.1166	0.1728
16	0.6173	0.2652	0.0146	0.0707	0.8180	0.0645	0.3641	0.0565	0.0870

10:47 Tuesday, February 25, 1997

----- MONTH=6 -----

General Linear Models Procedure Least Squares Means

Dependent Variable: WGT

i/	j 10	11	12	13	14	15	16
1	0.1847	0.2271	0.3989	0.1567	0.7047	0.3783	0.6173
2	0.7847	0.6887	0.4369	0.8609	0.2193	0.4595	0.2652
3	0.0814	0.0639	0.0301	0.0975	0.0113	0.0326	0.0146
4	0.3050	0.2515	0.1339	0.3514	0.0560	0.1431	0.0707
5	0.2831	0.3414	0.5627	0.2437	0.9137	0.5373	0.8180
6	0.2839	0.2332	0.1230	0.3280	0.0510	0.1316	0.0645
7	0.9549	0.8536	0.5720	0.9667	0.3058	0.5983	0.3641
8	0.2557	0.2090	0.1088	0.2966	0.0446	0.1166	0.0565
9	0.3578	0.2975	0.1620	0.4095	0.0693	0.1728	0.0870
10	•	0.8981	0.6105	0.9217	0.3319	0.6376	0.3936
11	0.8981	•	0.7022	0.8210	0.3970	0.7309	0.4662
12	0.6105	0.7022	•	0.5444	0.6370	0.9691	0.7256
13	0.9217	0.8210	0.5444	•	0.2875	0.5700	0.3433
14	0.3319	0.3970	0.6370	0.2875	•	0.6099	0.9030
15	0.6376	0.7309	0.9691	0.5700	0.6099	•	0.6969
16	0.3936	0.4662	0.7256	0.3433	0.9030	0.6969	•

CONC	CAN_AGT	SEX	LEN LSMEAN	LSMEAN Number
0	DEN	F	28.4003157	1
0	DEN	M	27.5840909	2
0	NONE	F	25.5713141	3
0	NONE	M	26.7521645	4
1	DEN	F	27.1001984	5
1	DEN	M	26.0262821	6
1	NONE	F	26.7902244	7
1	NONE	M	26.5502976	8
5	DEN	F	26.7256313	9
5	DEN	M	27.0952381	10
5	NONE	F	26.9358974	11
5	NONE	M	27.1814123	12
25	DEN	F	25.9833333	13
25	DEN	М	26.5922078	14
25	NONE	F	27.2682540	15
25	NONE	M	26.8535839	16

10:47 Tuesday, February 25, 1997

----- MONTH=6 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect CONC*CAN_AGT*SEX Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: LEN

i/	j 1	2	3	4	5	6	7	8	9
1	•		0.0001	0.0052	0.0212	0.0003	0.0060	0.0022	0.0046
2	0.1284	•	0.0011	0.1217	0.3560	0.0075	0.1384	0.0592	0.1111
3	0.0001	0.0011	•	0.0339	0.0084	0.3847	0.0292	0.0724	0.0376
4	0.0052	0.1217	0.0339	•	0.5039	0.1731	0.9413	0.6969	0.9591
5	0.0212	0.3560	0.0084	0.5039	•	0.0510	0.5511	0.2960	0.4725
6	0.0003	0.0075	0.3847	0.1731	0.0510	•	0.1529	0.3186	0.1884
7	0.0060	0.1384	0.0292	0.9413	0.5511	0.1529	•	0.6438	0.9006
8	0.0022	0.0592	0.0724	0.6969	0.2960	0.3186	0.6438	•	0.7350
9	0.0046	0.1111	0.0376	0.9591	0.4725	0.1884	0.9006	0.7350	•
10	0.0208	0.3512	0.0086	0.5100	0.9923	0.0519	0.5574	0.3003	0.4783
11	0.0110	0.2211	0.0164	0.7229	0.7511	0.0929	0.7784	0.4598	0.6850
12	0.0292	0.4405	0.0060	0.4115	0.8752	0.0374	0.4534	0.2329	0.3839
13	0.0002	0.0063	0.4302	0.1505	0.0433	0.9338	0.1325	0.2818	0.1641
14	0.0027	0.0691	0.0621	0.7574	0.3332	0.2827			0.7966
15	0.0409	0.5437	0.0042	0.3257	0.7456	0.0267			0.3023
16	0.0078	0.1705	0.0228	0.8446	0.6346	0.1237	0.9025	0.5596	0.8047
			Pr > T	HO: LS	MEAN(i)=	LSMEAN (j)		
			10	13	1.4	. 15	16		
	j 10	11		0.0002		0.0409			
	0.0208		0.4405	0.0063	0.0627				
2	0.3512	0.2211		0.4302	0.0621				
3	0.0086	0.0164	0.0060		0.7574				
4	0.5100	0.7229	0.4115 0.8752	0.1505 0.0433	0.3332	0.7456			
5	0.9923	0.7511	0.0374	0.9338	0.2827	0.0267			
6	0.0519	0.0929	0.4534	0.1325	0.7024	0.3617			
7	0.5574	0.7784	0.2329	0.1323	0.9354	0.1776			
8	0.3003	0.4598 0.6850	0.3839	0.1641	0.7966	0.3023	0.8047		
9	0.4783	0.7583	0.8677	0.0442	0.3378	0.7384	0.6414		
10			0.6361	0.0797	0.5092	0.5231	0.8736		
11	0.7583	0.6361		0.0317	0.2641	0.8667	0.5287		
12	0.8677	0.0301	0.0317	•	0.2491	0.0225	0.1067		
13	0.0442	0.5092	0.2641	0.2491		0.2028			
14	0.3378	0.5092	0.8667	0.0225	0.2028		0.4273		
15	0.7384	0.8736	0.5287	0.1067	0.6146	0.4273	•		
16	0.6414	0.8/36	0.520/	0.1007	0.0140	0.42/3	•		

----- MONTH=6 -----

General Linear Models Procedure Least Squares Means

DILUENT	CONC	CAN_AGT	SEX	WGT LSMEAN	LSMEAN Number
				LOMEAN	Muliber
apg	0	DEN	F	432.423611	1
apg	Ō	DEN	M	414.259091	2
apg	Ō	NONE	F	329.057692	3
apg	Ō	NONE	M	382.428571	4
apg	1	DEN	F	409.553571	5
apg	1	DEN	М	377.112179	6
apg	1	NONE	F	375.483333	7
apg	1	NONE	M	374.812500	8
apg	5	DEN	F	378.927778	9
apg	5	DEN	M	422.488889	10
apg	5	NONE	F	372.970085	11
apg	5	NONE	M	406.772727	12
apg	25	DEN	F	372.350000	13
apg	25	DEN	M	396.900000	14
apg	25	NONE	F	380.464286	15
apg	25	NONE	M	400.262821	16
creek	0	DEN	F	400.990909	17
creek	0	DEN	M	350.900000	18
creek	0	NONE	F	371.208333	19
creek	0	NONE	M	350.662879	20
creek	1	DEN	F	412.555556	21
creek	1	DEN	M	353.962500	22
creek	1	NONE	F	398.716346	23
creek	1	NONE	M	353.392857	24
creek	5	DEN	F	358.795455	25
creek	5	DEN	М	354.065476	26
creek	5	NONE	F	408.923077	27
creek	5	NONE	M	391.089286	28
creek	25	DEN	F	400.111111	29
creek	25	DEN	M	420.691558	30
creek	25	NONE	F	415.784722	31
creek	25	NONE	M	412.250000	32

Pr > |T | HO: LSMEAN(i)=LSMEAN(j)

i/	j 1	2	3	4	5	6	7	8	9
1	•	0.5399	0.0026	0.1040	0.4419	0.0746	0.0672	0.0644	0.0837
2	0.5399	•	0.0097	0.2887	0.8731	0.2185	0.1999	0.1926	0.2408
3	0.0026	0.0097	•	0.0844	0.0135	0.1170	0.1290	0.1342	0.1048
4	0.1040	0.2887	0.0844	•	0.3635	0.8569	0.8138	0.7962	0.9054
5	0.4419	0.8731	0.0135	0.3635	•	0.2798	0.2573	0.2484	0.3067
6	0.0746	0.2185	0.1170	0.8569	0.2798	•	0.9559	0.9378	0.9509
7	0.0672	0.1999	0.1290	0.8138	0.2573	0.9559		0.9818	0.9069

______ MONTH=6 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUE*CONC*CAN_A*SEX
Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: WGT

i/	j 1	2	3	4	5	6	7	8	9
8	0.0644	0.1926	0.1342	0.7962	0.2484	0.9378	0.9818	•	0.8889
9	0.0837	0.2408	0.1048	0.9054	0.3067	0.9509	0.9069	0.8889	•
10	0.7364	0.7802	0.0053	0.1862	0.6616	0.1372	0.1246	0.1197	0.1526
11	0.0571	0.1738	0.1495	0.7485	0.2252	0.8882	0.9320	0.9501	0.8398
12	0.3895	0.7996	0.0164	0.4136	0.9248	0.3217	0.2966	0.2868	0.3513
13	0.0549	0.1677	0.1550	0.7327	0.2178	0.8716	0.9153	0.9334	0.8234
14	0.2383	0.5579	0.0326	0.6246	0.6684	0.5048	0.4709	0.4574	0.5442
15	0.0921	0.2610	0.0953	0.9468	0.3308	0.9094	0.8658	0.8479	0.9584
16	0.2839	0.6359	0.0259	0.5472	0.7528	0.4364	0.4055	0.3932	0.4726
17	0.2945	0.6535	0.0246	0.5312	0.7716	0.4224	0.3921	0.3801	0.4579
18	0.0126	0.0441	0.4623	0.2931	0.0602	0.3795	0.4091	0.4218	0.3482
19	0.0509	0.1571	0.1655	0.7039	0.2047	0.8413	0.8847	0.9026	0.7935
20	0.0123	0.0434	0.4671	0.2896	0.0593	0.3753	0.4047	0.4173	0.3443
21	0.5031	0.9539	0.0109	0.3143	0.9188	0.2394	0.2194	0.2115	0.2633
22	0.0156	0.0541	0.4032	0.3409	0.0733	0.4364	0.4688	0.4826	0.4021
23	0.2622	0.5994	0.0288	0.5822	0.7136	0.4671	0.4348	0.4219	0.5048
24	0.0150	0.0521	0.4138	0.3316	0.0707	0.4255	0.4573	0.4709	0.3916
25	0.0219	0.0739	0.3204	0.4271	0.0992	0.5366	0.5730	0.5884	0.4975
26	0.0157	0.0544	0.4013	0.3426	0.0738	0.4384	0.4709	0.4847	0.4040
27	0.4296	0.8563	0.0141	0.3745	0.9829	0.2889	0.2658	0.2567	0.3164
28	0.1733	0.4360	0.0482	0.7691	0.5334	0.6364	0.5979	0.5824	0.6805
29	0.2817	0.6323	0.0262	0.5506	0.7490	0.4394	0.4083	0.3959	0.4757
30	0.6912	0.8273	0.0061	0.2056	0.7060	0.1524	0.1386	0.1332	0.1691
31	0.5741	0.9587	0.0087	0.2670	0.8326	0.2011	0.1837	0.1769	0.2219
32	0.4967	0.9456	0.0111	0.3191	0.9271	0.2433	0.2230	0.2151	0.2675
						T CMEAN / +	,		
			Pr > T	Ho: TR	MEAN(1)=	LSMEAN(j	,		
i/	j 10	11	12	13	14	15	16	17	18
1	0.7364	0.0571	0.3895	0.0549	0.2383	0.0921	0.2839	0.2945	0.0126
2	0.7802	0.1738	0.7996	0.1677	0.5579	0.2610	0.6359	0.6535	0.0441
3	0.0053	0.1495	0.0164	0.1550	0.0326	0.0953	0.0259	0.0246	0.4623
4	0.1862	0.7485	0.4136	0.7327	0.6246	0.9468	0.5472	0.5312	0.2931
5	0.6616	0.2252	0.9248	0.2178	0.6684	0.3308	0.7528	0.7716	0.0602
6	0.1372	0.8882	0.3217	0.8716	0.5048	0.9094	0.4364	0.4224	0.3795
7	0.1246	0.9320	0.2966	0.9153	0.4709	0.8658	0.4055	0.3921	0.4091
8	0.1197	0.9501	0.2868	0.9334	0.4574	0.8479	0.3932	0.3801	0.4218
9	0.1526	0.8398	0.3513	0.8234	0.5442	0.9584	0.4726	0.4579	0.3482
10	•	0.1071	0.5954	0.1031	0.3907	0.1666	0.4546	0.4693	0.0252
11	0.1071	•	0.2609	0.9832	0.4214	0.7994	0.3607	0.3483	0.4577

----- MONTH=6 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUE*CONC*CAN_A*SEX
Pr > |T| H0: LSMEAN(i)=LSMEAN(j)

Dependent Variable: WGT

i/	j 10	11	12	13	14	15	16	17	18
12	0.5954	0.2609	•	0.2526	0.7380	0.3778	0.8252	0.8445	0.0720
13	0.1031	0.9832	0.2526	•	0.4098	0.7832	0.3501	0.3381	0.4703
14	0.3907	0.4214	0.7380	0.4098	•	0.5788	0.9091	0.8896	0.1323
15	0.1666	0.7994	0.3778	0.7832	0.5788	•	0.5046	0.4893	0.3232
16	0.4546	0.3607	0.8252	0.3501	0.9091	0.5046	•	0.9803	0.1081
17	0.4693	0.3483	0.8445	0.3381	0.8896	0.4893	0.9803	•	0.1034
18	0.0252	0.4577	0.0720	0.4703	0.1323	0.3232	0.1081	0.1034	•
19	0.0961	0.9523	0.2378	0.9691	0.3888	0.7537	0.3313	0.3197	0.4938
20	0.0248	0.4530	0.0709	0.4654	0.1304	0.3194	0.1065	0.1019	0.9936
21	0.7364	0.1912	0.8445	0.1847	0.5968	0.2849	0.6773	0.6953	0.0494
22	0.0311	0.5215	0.0874	0.5350	0.1582	0.3744	0.1299	0.1244	0.9172
23	0.4244	0.3878	0.7847	0.3768	0.9508	0.5380	0.9581	0.9385	0.1187
24	0.0299	0.5093	0.0843	0.5226	0.1530	0.3645	0.1256	0.1203	0.9326
25	0.0432	0.6317	0.1176	0.6465	0.2074	0.4658	0.1720	0.1650	0.7889
26	0.0314	0.5238	0.0879	0.5373	0.1591	0.3762	0.1307	0.1252	0.9144
27	0.6463	0.2330	0.9418	0.2254	0.6840	0.3411	0.7691	0.7880	0.0627
28	0.2950	0.5409	0.5961	0.5273	0.8437	0.7189	0.7559	0.7372	0.1848
29	0.4516	0.3633	0.8212	0.3527	0.9132	0.5078	0.9959	0.9762	0.1091
30	0.9514	0.1194	0.6378	0.1150	0.4241	0.1844	0.4913	0.5067	0.0286
31	0.8201	0.1593	0.7600	0.1537	0.5242	0.2409	0.5999	0.6169	0.0399
32	0.7287	0.1944	0.8526	0.1878	0.6039	0.2893	0.6849	0.7030	0.0504
			n > m	l 110. T.C	MEAN(i)=	T CMEAN / i	,		
			PF > T	l un: re	MEAN(I)-	LOMEAN ()	,		
i/	j 19	20	21	22	23	24	25	26	27
1	0.0509	0.0123	0.5031	0.0156	0.2622	0.0150	0.0219	0.0157	0.4296
2	0.1571	0.0434	0.9539	0.0541	0.5994	0.0521	0.0739	0.0544	0.8563
3	0.1655	0.4671	0.0109	0.4032	0.0288	0.4138	0.3204	0.4013	0.0141
4	0.7039	0.2896	0.3143	0.3409	0.5822	0.3316	0.4271	0.3426	0.3745
5	0.2047	0.0593	0.9188	0.0733	0.7136	0.0707	0.0992	0.0738	0.9829
6	0.8413	0.3753	0.2394	0.4364	0.4671	0.4255	0.5366	0.4384	0.2889
7	0.8847	0.4047	0.2194	0.4688	0.4348	0.4573	0.5730	0.4709	0.2658
8	0.9026	0.4173	0.2115	0.4826	0.4219	0.4709	0.5884	0.4847	0.2567
9	0.7935	0.3443	0.2633	0.4021	0.5048	0.3916	0.4975	0.4040	0.3164
10	0.0961	0.0248	0.7364	0.0311	0.4244	0.0299	0.0432	0.0314	0.6463
11	0.9523	0.4530	0.1912	0.5215	0.3878	0.5093	0.6317	0.5238	0.2330
12	0.2378	0.0709	0.8445	0.0874	0.7847	0.0843	0.1176	0.0879	0.9418
13	0.9691	0.4654	0.1847	0.5350	0.3768	0.5226	0.6465	0.5373	0.2254
14	0.3888	0.1304	0.5968	0.1582	0.9508	0.1530	0.2074	0.1591	0.6840
15	0.7537	0.3194	0.2849	0.3744	0.5380	0.3645	0.4658	0.3762	0.3411

----- MONTH=6 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUE*CONC*CAN_A*SEX
Pr > |T| H0: LSMEAN(i)=LSMEAN(j)

Dependent Variable: WGT

i/	i 19	20	21	22	23	24	25	26	27
16	0.3313	0.1065	0.6773	0.1299	0.9581	0.1256	0.1720	0.1307	0.7691
17	0.3197	0.1019	0.6953	0.1244	0.9385	0.1203	0.1650	0.1252	0.7880
18	0.4938	0.9936	0.0494	0.9172	0.1187	0.9326	0.7889	0.9144	0.0627
19		0.4889	0.1732	0.5604	0.3570	0.5477	0.6744	0.5627	0.2119
20	0.4889	•	0.0487	0.9108	0.1170	0.9262	0.7828	0.9081	0.0617
21	0.1732	0.0487	•	0.0604	0.6397	0.0582	0.0823	0.0608	0.9019
22	0.5604	0.9108	0.0604	•	0.1423	0.9846	0.8697	0.9972	0.0763
23	0.3570	0.1170	0.6397	0.1423	•	0.1377	0.1876	0.1432	0.7295
24	0.5477	0.9262	0.0582	0.9846	0.1377	•	0.8546	0.9818	0.0736
25	0.6744	0.7828	0.0823	0.8697	0.1876	0.8546	•	0.8725	0.1032
26	0.5627	0.9081	0.0608	0.9972	0.1432	0.9818	0.8725	•	0.0768
27	0.2119	0.0617	0.9019	0.0763	0.7295	0.0736	0.1032	0.0768	•
28	0.5028	0.1824	0.4699	0.2187	0.7959	0.2121	0.2819	0.2200	0.5473
29	0.3338	0.1075	0.6736	0.1311	0.9622	0.1268	0.1735	0.1319	0.7652
30	0.1073	0.0281	0.7827	0.0352	0.4596	0.0339	0.0486	0.0354	0.6903
31	0.1438	0.0392	0.9127	0.0489	0.5644	0.0471	0.0670	0.0492	0.8160
32	0.1762	0.0497	0.9917	0.0616	0.6470	0.0594	0.0839	0.0620	0.9101

Pr > |T| HO: LSMEAN(i) = LSMEAN(j)

i/	j 28	29	30	31	32
1	0.1733	0.2817	0.6912	0.5741	0.4967
2	0.4360	0.6323	0.8273	0.9587	0.9456
3	0.0482	0.0262	0.0061	0.0087	0.0111
4	0.7691	0.5506	0.2056	0.2670	0.3191
5	0.5334	0.7490	0.7060	0.8326	0.9271
6	0.6364	0.4394	0.1524	0.2011	0.2433
7	0.5979	0.4083	0.1386	0.1837	0.2230
8	0.5824	0.3959	0.1332	0.1769	0.2151
9	0.6805	0.4757	0.1691	0.2219	0.2675
10	0.2950	0.4516	0.9514	0.8201	0.7287
11	0.5409	0.3633	0.1194	0.1593	0.1944
12	0.5961	0.8212	0.6378	0.7600	0.8526
13	0.5273	0.3527	0.1150	0.1537	0.1878
14	0.8437	0.9132	0.4241	0.5242	0.6039
15	0.7189	0.5078	0.1844	0.2409	0.2893
16	0.7559	0.9959	0.4913	0.5999	0.6849
17	0.7372	0.9762	0.5067	0.6169	0.7030
18	0.1848	0.1091	0.0286	0.0399	0.0504
19	0.5028	0.3338	0.1073	0.1438	0.1762

10:47 Tuesday, February 25, 1997

----- MONTH=6 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUE*CONC*CAN_A*SEX
Pr > |T| H0: LSMEAN(i)=LSMEAN(j)

Dependent Variable: WGT

i/	j 28	29	30	31	32
20	0.1824	0.1075	0.0281	0.0392	0.0497
21	0.4699	0.6736	0.7827	0.9127	0.9917
22	0.2187	0.1311	0.0352	0.0489	0.0616
23	0.7959	0.9622	0.4596	0.5644	0.6470
24	0.2121	0.1268	0.0339	0.0471	0.0594
25	0.2819	0.1735	0.0486	0.0670	0.0839
26	0.2200	0.1319	0.0354	0.0492	0.0620
27	0.5473	0.7652	0.6903	0.8160	0.9101
28	•	0.7598	0.3226	0.4070	0.4762
29	0.7598	•	0.4881	0.5963	0.6811
30	0.3226	0.4881	•	0.8678	0.7747
31	0.4070	0.5963	0.8678	•	0.9045
32	0.4762	0.6811	0.7747	0.9045	•

DILUENT	CONC	CAN_AGT	SEX	LEN LSMEAN	LSMEAN Number
apg	0	DEN	F	29.4097222	1
apg	0	DEN	M	28.5681818	2
apg	0	NONE	F	25.0384615	3
apg	0	NONE	M	27.4702381	4
apg	1	DEN	F	27.8392857	5
apg	1	DEN	M	26.6025641	6
apg	1	NONE	F	27.2583333	7
apg	1	NONE	M	27.2375000	8
apg	5	DEN	F	27.8944444	9
apg	5	DEN	M	28.7500000	10
apg	5	NONE	F	27.7564103	11
apg	5	NONE	M	27.9610390	12
apg	25	DEN	F	26.8000000	13
apg	25	DEN	M	27.3500000	14
apg	25	NONE	F	28.0642857	15
apg	25	NONE	M	27.8397436	16
creek	0	DEN	F	27.3909091	17
creek	0	DEN	M	26.6000000	18
creek	0	NONE	F	26.1041667	19
creek	0	NONE	M	26.0340909	20
creek	1	DEN	F	26.3611111	21
creek	1	DEN	M	25.4500000	22

10:47 Tuesday, February 25, 1997

______ MONTH=6 -----

General Linear Models Procedure Least Squares Means

DILUENT	CONC	CAN_AGT	SEX	LEN LSMEAN	LSMEAN Number
creek	1	NONE	F	26.3221154	23
creek	1	NONE	М	25.8630952	24
creek	5	DEN	F	25.5568182	25
creek	5	DEN	M	25.4404762	26
creek	5	NONE	F	26.1153846	27
creek	5	NONE	M	26.4017857	28
creek	25	DEN	F	25.1666667	29
creek	25	DEN	M	25.8344156	30
creek	25	NONE	F	26.4722222	31
creek	25	NONE	M	25.8674242	32

Pr > |T| HO: LSMEAN(i) = LSMEAN(j)

i/	i 1	2	3	4	5	6	7	8	9
1		0.2595	0.0001	0.0160	0.0444	0.0013	0.0087	0.0082	0.0515
2	0.2595	•	0.0002	0.1467	0.3264	0.0148	0.0876	0.0831	0.3633
3	0.0001	0.0002	•	0.0038	0.0013	0.0452	0.0071	0.0076	0.0011
4	0.0160	0.1467	0.0038		0.6152	0.2456	0.7723	0.7507	0.5639
5	0.0444	0.3264	0.0013	0.6152	•	0.1051	0.4315	0.4155	0.9399
6	0.0013	0.0148	0.0452	0.2456	0.1051	•	0.3759	0.3908	0.0916
7	0.0087	0.0876	0.0071	0.7723	0.4315	0.3759	•	0.9773	0.3900
8	0.0082	0.0831	0.0076	0.7507	0.4155	0.3908	0.9773	•	0.3750
9	0.0515	0.3633	0.0011	0.5639	0.9399	0.0916	0.3900	0.3750	•
10	0.3731	0.8038	0.0001	0.0945	0.2240	0.0088	0.0548	0.0518	0.2520
11	0.0355	0.2761	0.0017	0.6962	0.9098	0.1285	0.4989	0.4814	0.8504
12	0.0613	0.4115	0.0009	0.5051	0.8678	0.0774	0.3435	0.3298	0.9274
13	0.0023	0.0259	0.0263	0.3657	0.1681	0.7874	0.5333	0.5519	0.1480
14	0.0113	0.1100	0.0055	0.8694	0.5064	0.3146	0.9003	0.8778	0.4605
15	0.0801	0.4940	0.0007	0.4214	0.7587	0.0593	0.2794	0.2677	0.8165
16	0.0445	0.3267	0.0013	0.6148	0.9995	0.1050	0.4312	0.4152	0.9404
17	0.0127	0.1215	0.0048	0.9136	0.5422	0.2897	0.8562	0.8339	0.4943
18	0.0013	0.0147	0.0455	0.2443	0.1044	0.9972	0.3740	0.3890	0.0911
19	0.0003	0.0035	0.1582	0.0759	0.0283	0.4987	0.1284	0.1350	0.0243
20	0.0002	0.0028	0.1857	0.0634	0.0233	0.4413	0.1084	0.1140	0.0200
21	0.0006	0.0074	0.0848	0.1429	0.0568	0.7417	0.2306	0.2411	0.0490
22	0.0001	0.0005	0.5755	0.0127	0.0043	0.1289	0.0231	0.0245	0.0037
23	0.0006	0.0066	0.0936	0.1303	0.0512	0.7020	0.2119	0.2217	0.0442
24	0.0002	0.0017	0.2689	0.0402	0.0144	0.3196	0.0705	0.0743	0.0123
25	0.0001	0.0007	0.4819	0.0172	0.0059	0.1657	0.0311	0.0329	0.0051
26	0.0001	0.0005	0.5843	0.0123	0.0042	0.1260	0.0225	0.0239	0.0036
27	0.0003	0.0036	0.1541	0.0782	0.0292	0.5082	0.1319	0.1386	0.0251
28	0.0007	0.0083	0.0765	0.1572	0.0632	0.7839	0.2515	0.2627	0.0546
29	0.0001	0.0002	0.8609	0.0056	0.0019	0.0634	0.0103	0.0110	0.0016

----- MONTH=6 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUE*CONC*CAN_A*SEX Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: LEN

	, ,	•	2	4	5	6	7	8	9
i,		2	3 0.2852	4 0.0372	0.0132	0.3018	0.0654	0.0691	0.0113
30	0.0001	0.0016	0.2632	0.0372	0.0152	0.8586	0.2910	0.3036	0.0657
31	0.0009	0.0102	0.2664	0.1847	0.0146	0.3224	0.0713	0.0752	0.0124
32	0.0002	0.0017	0.2004	0.0407	0.0140	0.3224	0.0713	0.0752	0.0124
			Pr > T	HO: LS	MEAN(i)=	LSMEAN (j)		
i,	/j 10	11	12	13	14	15	16	17	18
1	0.3731	0.0355	0.0613	0.0023	0.0113	0.0801	0.0445	0.0127	0.0013
2	0.8038	0.2761	0.4115	0.0259	0.1100	0.4940	0.3267	0.1215	0.0147
3	0.0001	0.0017	0.0009	0.0263	0.0055	0.0007	0.0013	0.0048	0.0455
4	0.0945	0.6962	0.5051	0.3657	0.8694	0.4214	0.6148	0.9136	0.2443
5	0.2240	0.9098	0.8678	0.1681	0.5064	0.7587	0.9995	0.5422	0.1044
6	0.0088	0.1285	0.0774	0.7874	0.3146	0.0593	0.1050	0.2897	0.9972
7	0.0548	0.4989	0.3435	0.5333	0.9003	0.2794	0.4312	0.8562	0.3740
8	0.0518	0.4814	0.3298	0.5519	0.8778	0.2677	0.4152	0.8339	0.3890
9	0.2520	0.8504	0.9274	0.1480	0.4605	0.8165	0.9404	0.4943	0.0911
10	•	0.1865	0.2893	0.0155	0.0696	0.3550	0.2242	0.0773	0.0087
11	0.1865	•	0.7799	0.2026	0.5802	0.6746	0.9093	0.6186	0.1278
12	0.2893	0.7799	•	0.1263	0.4085	0.8878	0.8683	0.4400	0.0769
13	0.0155	0.2026	0.1263	•	0.4560	0.0982	0.1680	0.4238	0.7847
14	0.0696	0.5802	0.4085	0.4560	•	0.3359	0.5060	0.9554	0.3130
15	0.3550	0.6746	0.8878	0.0982	0.3359	•	0.7591	0.3635	0.0589
16	0.2242	0.9093	0.8683	0.1680	0.5060	0.7591	•	0.5418	0.1043
17	0.0773	0.6186	0.4400	0.4238	0.9554	0.3635	0.5418	•	0.2882
18	0.0087	0.1278	0.0769	0.7847	0.3130	0.0589	0.1043	0.2882	•
19	0.0020	0.0356	0.0202	0.3481	0.1028	0.0151	0.0283	0.0928	0.5008
20	0.0017	0.0294	0.0165	0.3032	0.0863	0.0123	0.0233	0.0778	0.4433
21	0.0043	0.0705	0.0410	0.5507	0.1885	0.0309	0.0567	0.1718	0.7443
22	0.0003	0.0055	0.0030	0.0791	0.0179	0.0022	0.0043	0.0159	0.1297
23	0.0039	0.0637	0.0369	0.5163	0.1726	0.0278	0.0511	0.1571	0.7046
24	0.0010	0.0182	0.0101	0.2115	0.0555	0.0075	0.0144	0.0498	0.3212
25	0.0004	0.0076	0.0042	0.1034	0.0241	0.0031	0.0059	0.0215	0.1666
26	0.0003	0.0054	0.0030	0.0772	0.0174	0.0022	0.0042	0.0155	0.1268
27	0.0021	0.0367	0.0208	0.3558	0.1056	0.0155	0.0292	0.0955	0.5104
28	0.0049	0.0782	0.0458	0.5878	0.2063	0.0346	0.0631	0.1884	0.7866
29	0.0001	0.0024	0.0013	0.0375	0.0079	0.0010	0.0019	0.0070	0.0638
30	0.0009	0.0168	0.0093	0.1986	0.0514	0.0069	0.0132	0.0461	0.3034
31	0.0060	0.0934	0.0552	0.6550	0.2404	0.0419	0.0757	0.2201	0.8613
32	0.0010	0.0184	0.0103	0.2136	0.0561	0.0076	0.0145	0.0504	0.3240

----- MONTH=6 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUE*CONC*CAN_A*SEX Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: LEN

i/	j 19	20	21	22	23	24	25	26	27
1	0.0003	0.0002	0.0006	0.0001	0.0006	0.0002	0.0001	0.0001	0.0003
2	0.0035	0.0028	0.0074	0.0005	0.0066	0.0017	0.0007	0.0005	0.0036
3	0.1582	0.1857	0.0848	0.5755	0.0936	0.2689	0.4819	0.5843	0.1541
4	0.0759	0.0634	0.1429	0.0127	0.1303	0.0402	0.0172	0.0123	0.0782
5	0.0283	0.0233	0.0568	0.0043	0.0512	0.0144	0.0059	0.0042	0.0292
6	0.4987	0.4413	0.7417	0.1289	0.7020	0.3196	0.1657	0.1260	0.5082
7	0.1284	0.1084	0.2306	0.0231	0.2119	0.0705	0.0311	0.0225	0.1319
8	0.1350	0.1140	0.2411	0.0245	0.2217	0.0743	0.0329	0.0239	0.1386
9	0.0243	0.0200	0.0490	0.0037	0.0442	0.0123	0.0051	0.0036	0.0251
10	0.0020	0.0017	0.0043	0.0003	0.0039	0.0010	0.0004	0.0003	0.0021
11	0.0356	0.0294	0.0705	0.0055	0.0637	0.0182	0.0076	0.0054	0.0367
12	0.0202	0.0165	0.0410	0.0030	0.0369	0.0101	0.0042	0.0030	0.0208
13	0.3481	0.3032	0.5507	0.0791	0.5163	0.2115	0.1034	0.0772	0.3558
14	0.1028	0.0863	0.1885	0.0179	0.1726	0.0555	0.0241	0.0174	0.1056
15	0.0151	0.0123	0.0309	0.0022	0.0278	0.0075	0.0031	0.0022	0.0155
16	0.0283	0.0233	0.0567	0.0043	0.0511	0.0144	0.0059	0.0042	0.0292
17	0.0928	0.0778	0.1718	0.0159	0.1571	0.0498	0.0215	0.0155	0.0955
18	0.5008	0.4433	0.7443	0.1297	0.7046	0.3212	0.1666	0.1268	0.5104
19	•	0.9237	0.7258	0.3770	0.7660	0.7421	0.4581	0.3703	0.9878
20	0.9237	•	0.6557	0.4291	0.6944	0.8153	0.5168	0.4217	0.9115
21	0.7258	0.6557	•	0.2238	0.9575	0.4990	0.2804	0.2192	0.7373
22	0.3770	0.4291	0.2238	•	0.2433	0.5741	0.8839	0.9896	0.3691
23	0.7660	0.6944	0.9575	0.2433	•	0.5327	0.3035	0.2384	0.7777
24	0.7421	0.8153	0.4990	0.5741	0.5327	•	0.6762	0.5654	0.7306
25	0.4581	0.5168	0.2804	0.8839	0.3035	0.6762	•	0.8736	0.4491
26	0.3703	0.4217	0.2192	0.9896	0.2384	0.5654	0.8736	•	0.3624
27	0.9878	0.9115	0.7373	0.3691	0.7777	0.7306	0.4491	0.3624	
28	0.6848	0.6165	0.9556	0.2047	0.9133	0.4651	0.2577	0.2005	0.6960
29	0.2113	0.2458	0.1166	0.6991	0.1280	0.3477	0.5953	0.7087	0.2061
30	0.7128	0.7851	0.4750	0.6007	0.5078	0.9687	0.7049	0.5918	0.7015
31	0.6162	0.5513	0.8793	0.1748	0.8375	0.4100	0.2217	0.1711	0.6269
32	0.7465	0.8199	0.5027	0.5701	0.5366	0.9953	0.6719	0.5614	0.7350

10:47 Tuesday, February 25, 1997

----- MONTH=6 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUE*CONC*CAN_A*SEX
Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: LEN

i,	/i 28	29	30	31	32
1	0.0007	0.0001	0.0001	0.0009	0.0002
2	0.0083	0.0002	0.0016	0.0102	0.0017
3	0.0765	0.8609	0.2852	0.0638	0.2664
4	0.1572	0.0056	0.0372	0.1847	0.0407
5	0.0632	0.0019	0.0132	0.0758	0.0146
6	0.7839	0.0634	0.3018	0.8586	0.3224
7	0.2515	0.0103	0.0654	0.2910	0.0713
8	0.2627	0.0110	0.0691	0.3036	0.0752
9	0.0546	0.0016	0.0113	0.0657	0.0124
10	0.0049	0.0001	0.0009	0.0060	0.0010
11	0.0782	0.0024	0.0168	0.0934	0.0184
12	0.0458	0.0013	0.0093	0.0552	0.0103
13	0.5878	0.0375	0.1986	0.6550	0.2136
14	0.2063	0.0079	0.0514	0.2404	0.0561
15	0.0346	0.0010	0.0069	0.0419	0.0076
16	0.0631	0.0019	0.0132	0.0757	0.0145
17	0.1884	0.0070	0.0461	0.2201	0.0504
18	0.7866	0.0638	0.3034	0.8613	0.3240
19	0.6848	0.2113	0.7128	0.6162	0.7465
20	0.6165	0.2458	0.7851	0.5513	0.8199
21	0.9556	0.1166	0.4750	0.8793	0.5027
22	0.2047	0.6991	0.6007	0.1748	0.5701
23	0.9133	0.1280	0.5078	0.8375	0.5366
24	0.4651	0.3477	0.9687	0.4100	0.9953
25	0.2577	0.5953	0.7049	0.2217	0.6719
26	0.2005	0.7087	0.5918	0.1711	0.5614
27	0.6960	0.2061	0.7015	0.6269	0.7350
28	•	0.1055	0.4421	0.9233	0.4687
29	0.1055	•	0.3674	0.0886	0.3448
30	0.4421	0.3674	•	0.3888	0.9640
31	0.9233	0.0886	0.3888	•	0.4132
32	0.4687	0.3448	0.9640	0.4132	•

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

10:47 Tuesday, February 25, 1997

----- MONTH=9 -----

General Linear Models Procedure Class Level Information

Class	Levels	Values
DILUENT	2	apg creek
CONC	4	0 1 5 25
TANK	32	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
CAN_AGT	2	DEN NONE
SEX	2	F M

Number of observations in by group = 64

10:47 Tuesday, February 25, 1997

----- MONTH=9 -----

General Linear Models Procedure

Dependent Variable: W	GT	_			
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	47	185948.30216	3956.34685	5.24	0.0004
Error	16	12089.51793	755.59487		
Corrected Total	63	198037.82009			
R-S	quare	c.v.	Root MSE		WGT Mean
0.9	38953	5.527995	27.488086		497.25240
Source	DF	Type I SS	Mean Square	F Value	Pr > F
DILUENT	1	26078.399404	26078.399404	34.51	0.0001
CONC	3	20728.427646	6909.475882	9.14	
CAN AGT	1	648.973165	648.973165	0.86	0.3678
DILUENT*CONC	3	3570.783789	1190.261263	1.58	0.2343
DILUENT*CAN AGT	1	1644.402617	1644.402617	2.18	0.1596
CONC*CAN AGT	3	9109.446646	3036.482215	4.02	0.0262
DILUENT*CONC*CAN AGT	3	12901.329578	4300.443193	5.69	0.0076
TANK(DILU*CONC*CAN_)	16	34125.922825	2132.870177	2.82	0.0227
SEX	1	45410.814517	45410.814517	60.10	0.0001
DILUENT*SEX	1	9765.106466	9765.106466	12.92	0.0024
CONC*SEX	3	3388.193900	1129.397967	1.49	0.2539
CAN AGT*SEX	1	4462.313012	4462.313012	5.91	
DILUENT*CONC*SEX	3	1199.383396	399.794465	0.53	
DILUENT*CAN_AGT*SEX	1	1345.639931	1345.639931	1.78	
CONC*CAN_AGT*SEX	3	3904.849124	1301.616375	1.72	
DILUE*CONC*CAN_A*SEX	3	7664.316142	2554.772047	3.38	0.0443
Source	DF	Type III SS	Mean Square	F Value	Pr > F
DILUENT	1	26078.399404	26078.399404	34.51	
CONC	3	20728.427646	6909.475882	9.14	0.0009
CAN_AGT	1	648.973165	648.973165	0.86	
DILUENT*CONC	3	3570.783789	1190.261263	1.58	
DILUENT*CAN_AGT	1	1644.402617	1644.402617	2.18	0.1596
CONC*CAN_AGT	3	9109.446646	3036.482215	4.02	0.0262
DILUENT*CONC*CAN_AGT	3	12901.329578	4300.443193	5.69	
TANK(DILU*CONC*CAN_)	16	34125.922825	2132.870177	2.82	
SEX	1	45410.814517	45410.814517	60.10	
DILUENT*SEX	1	9765.106466	9765.106466	12.92	0.0024

10:47 Tuesday, February 25, 1997

46

----- MONTH=9 -----

General Linear Models Procedure

Dependent Variable: WGT

Source	DF	Type III SS	Mean Square	F Value	Pr > F
CONC*SEX	3	3388.193900	1129.397967	1.49	0.2539
CAN AGT*SEX	1	4462.313012	4462.313012	5.91	0.0272
DILUENT*CONC*SEX	3	1199.383396	399.794465	0.53	0.6687
DILUENT*CAN AGT*SEX	1	1345.639931	1345.639931	1.78	0.2007
CONC*CAN AGT*SEX	3	3904.849124	1301.616375	1.72	0.2026
DILUE*CONC*CAN_A*SEX	3	7664.316142	2554.772047	3.38	0.0443

Tests of Hypotheses using the Type III MS for TANK(DILU*CONC*CAN_) as an error term

Source	DF	Type III SS	Mean Square	F Value	Pr > F
DILUENT	1	26078.399404	26078.399404	12.23	0.0030
CONC	3	20728.427646	6909.475882	3.24	0.0500
CAN AGT	1	648.973165	648.973165	0.30	0.5888
DILUENT*CONC	3	3570.783789	1190.261263	0.56	0.6503
DILUENT*CAN AGT	1	1644.402617	1644.402617	0.77	0.3929
CONC*CAN AGT	3	9109.446646	3036.482215	1.42	0.2726
DILUENT*CONC*CAN_AGT	3	12901.329578	4300.443193	2.02	0.1522

10:47 Tuesday, February 25, 1997

47

----- MONTH=9 -----

General Linear Models Procedure

Dependent Variable: LI	€N	Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	47	60.03759951	1.27739573	7.41	0.0001
Error	16	2.75897705	0.17243607		
Corrected Total	63	62.79657656			
R-Sc	quare	c.v.	Root MSE		LEN Mean
0.99	56065	1.468535	0.4152542		28.276771
Source	DF	Type I SS	Mean Square	F Value	Pr > F
DILUENT	1	10.23743666	10.23743666	59.37	0.0001
CONC	3	3.00604044	1.00201348	5.81	0.0070
CAN AGT	1	0.00078954	0.00078954	0.00	0.9469
DILUENT*CONC	3	1.77620962	0.59206987	3.43	0.0424
DILUENT*CAN_AGT	1	1.21652419	1.21652419	7.05	0.0173
CONC*CAN AGT	3	1.79566223	0.59855408	3.47	
DILUENT*CONC*CAN_AGT	3	1.29258449	0.43086150	2.50	0.0967
TANK(DILU*CONC*CAN_)	16	13.11333477	0.81958342	4.75	0.0017
SEX	1	13.93935523	13.93935523	80.84	0.0001
DILUENT*SEX	1	4.70310639	4.70310639	27.27	
CONC*SEX	3	1.94569808	0.64856603	3.76	
CAN_AGT*SEX	1	1.41186989	1.41186989	8.19	
DILUENT*CONC*SEX	3	0.69711887	0.23237296	1.35	
DILUENT*CAN_AGT*SEX	1	1.42230705	1.42230705	8.25	
CONC*CAN_AGT*SEX	3	2.64254694	0.88084898	5.11	
DILUE*CONC*CAN_A*SEX	3	0.83701514	0.27900505	1.62	0.2246
Source	DF	Type III SS	Mean Square	F Value	Pr > F
DILUENT	1	10.23743666	10.23743666	59.37	
CONC	3	3.00604044	1.00201348	5.81	0.0070
CAN AGT	1	0.00078954	0.00078954	0.00	
DILUENT*CONC	3	1.77620962	0.59206987	3.43	
DILUENT*CAN_AGT	1	1.21652419	1.21652419	7.05	
CONC*CAN_AGT	3	1.79566223	0.59855408	3.47	
DILUENT*CONC*CAN_AGT	3	1.29258449	0.43086150	2.50	
TANK(DILU*CONC*CAN_)	16	13.11333477	0.81958342	4.75	
SEX	1	13.93935523	13.93935523	80.84	
DILUENT*SEX	1	4.70310639	4.70310639	27.27	0.0001

10:47 Tuesday, February 25, 1997

48

----- MONTH=9 -----

General Linear Models Procedure

Dependent Variable: LEN

Source	DF	Type III SS	Mean Square	F Value	Pr > F
CONC*SEX	3	1.94569808	0.64856603	3.76	0.0323
CAN AGT*SEX	1	1.41186989	1.41186989	8.19	0.0113
DILUENT*CONC*SEX	3	0.69711887	0.23237296	1.35	0.2943
DILUENT*CAN AGT*SEX	1	1.42230705	1.42230705	8.25	0.0111
CONC*CAN AGT*SEX	3	2.64254694	0.88084898	5.11	0.0114
DILUE*CONC*CAN_A*SEX	3	0.83701514	0.27900505	1.62	0.2246

Tests of Hypotheses using the Type III MS for TANK(DILU*CONC*CAN_) as an error term

DF	Type III SS	Mean Square	F Value	Pr > F
1	10.23743666	10.23743666	12.49	0.0028
3	3.00604044	1.00201348	1.22	0.3338
1	0.00078954	0.00078954	0.00	0.9756
3	1.77620962	0.59206987	0.72	0.5532
1	1.21652419	1.21652419	1.48	0.2408
3	1.79566223	0.59855408	0.73	0.5488
3	1.29258449	0.43086150	0.53	0.6709
	1 3 1 3 1 3	1 10.23743666 3 3.00604044 1 0.00078954 3 1.77620962 1 1.21652419 3 1.79566223	1 10.23743666 10.23743666 3 3.00604044 1.00201348 1 0.00078954 0.00078954 3 1.77620962 0.59206987 1 1.21652419 1.21652419 3 1.79566223 0.59855408	1 10.23743666 10.23743666 12.49 3 3.00604044 1.00201348 1.22 1 0.00078954 0.00078954 0.00 3 1.77620962 0.59206987 0.72 1 1.21652419 1.21652419 1.48 3 1.79566223 0.59855408 0.73

Tests for main effects and interaction -

10:47 Tuesday, February 25, 1997

_____ MONTH=9 -------

General Linear Models Procedure Least Squares Means

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

DILUENT	WGT LSMEAN	Pr > T HO: LSMEAN1=LSMEAN2
apg creek	517.438411 477.066392	0.0030

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

DILUENT	LEN LSMEAN	Pr > T HO: LSMEAN1=LSMEAN2
apg creek	28.6767205 27.8768206	0.0028

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN) as an Error term

CONC	WGT	Pr > T HO: LSMEAN(i) = LSMEAN(j)				
	LSMEAN	i/	j 1	2	3	4
0	484.915940	1		0 4796	0 7974	0 0210
0	484.915940					
1	496.734580	2	0.4796	•	0.3393	0.0851
5	480.652885	3	0.7974	0.3393	•	0.0123
25	526,706202	4	0.0210	0.0851	0.0123	•

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

CONC	LEN	Pr > T HO: LSMEAN(i)=LSMEAN(j)				
	LSMEAN	i/	j 1	2	3	4
0	28.0458820	1	•	0.6399	0.5720	0.0857
1	28.1985055	2	0.6399	•	0.9215	0.1943
5	28.2305308	3	0.5720	0.9215	•	0.2276
25	28.6321639	4	0.0857	0.1943	0.2276	•

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

10:47 Tuesday, February 25, 1997

----- MONTH=9 -----

General Linear Models Procedure Least Squares Means

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

DILUENT	CONC	WGT LSMEAN	LSMEAN Number
apg	0	512.212332	1
apg	1	511.109314	2
apq	5	508.496016	3
apg	25	537.935983	4
creek	0	457.619548	5
creek	1	482.359845	6
creek	5	452.809754	7
creek	25	515.476420	8

Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

i/	i 1	2	3	4	5	6	7	8
		0.9625	0.8742	0.2817	0.0311	0.2144	0.0205	0.8894
2	0.9625	•	0.9113	0.2624	0.0341	0.2311	0.0225	0.8524
3	0.8742	0.9113	•	0.2205	0.0426	0.2744	0.0283	0.7663
						0.0285		
						0.2999		
6	0.2144	0.2311	0.2744	0.0285	0.2999	•	0.2189	0.1708
7	0.0205	0.0225	0.0283	0.0020	0.8376	0.2189	•	0.0153
8	0.8894	0.8524	0.7663	0.3452	0.0234	0.1708	0.0153	•

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

DILUENT	CONC	LEN LSMEAN	LSMEAN Number
apg	0	28.5461064	1
apg	1	28.6400736	2
apg	5	28.7706733	3
apg	25	28.7500286	4
creek	0	27.5456575	5
creek	1	27.7569375	6
creek	5	27.6903883	7
creek	25	28.5142992	8

10:47 Tuesday, February 25, 1997

----- MONTH=9 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUENT*CONC Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: LEN

i/	i 1	2	3	4	5	6	7	8
1		0.8382	0.6266	0.6584	0.0420	0.1004	0.0770	0.9449
2	0.8382		0.7767					
3	0.6266	0.7767	•	0.9642	0.0156	0.0397	0.0297	0.5790
4	0.6584	0.8112	0.9642	•	0.0171	0.0434	0.0325	0.6097
5	0.0420	0.0279	0.0156	0.0171	•	0.6470	0.7533	0.0481
6	0.1004	0.0688	0.0397	0.0434	0.6470	•	• • • • • •	0.1137
7	0.0770	0.0521	0.0297	0.0325	0.7533	0.8850	•	
8	0.9449	0.7847	0.5790	0.6097	0.0481	0.1137	0.0875	•

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN) as an Error term

CONC	CAN_AGT	WGT LSMEAN	LSMEAN Number
0	DEN	497.312618	1
0	NONE	472.519262	2
1	DEN	489.615377	3
1	NONE	503.853782	4
5	DEN	470.640346	5
5	NONE	490.665424	6
25	DEN	544.178741	7
25	NONE	509.233663	8

Pr > |T| HO: LSMEAN(i) = LSMEAN(j)

i/	j 1	2	3	4	5	6	7	8
1	•	0.2989	0.7432	0.7806	0.2650	0.7771	0.0594	0.6127
2	0.2989	•	0.4698	0.1936	0.9362	0.4434	0.0068	0.1314
				0.5462				
4	0.7806	0.1936	0.5462	•	0.1696	0.5758	0.0999	0.8187
5	0.2650	0.9362	0.4233	0.1696	•	0.3986	0.0058	0.1141
6	0.7771	0.4434	0.9643	0.5758	0.3986	•	0.0341	0.4331
7	0.0594	0.0068	0.0311	0.0999	0.0058	0.0341	•	0.1497

10:47 Tuesday, February 25, 1997

----- MONTH=9 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect CONC*CAN_AGT Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: WGT

i/j 1 2 3 4 5 6 7 8 8 0.6127 0.1314 0.4081 0.8187 0.1141 0.4331 0.1497 .

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

CONC	CAN_AGT	LEN LSMEAN	LSMEAN Number
0	DEN	28.0759454	1
0	NONE	28.0158186	2
1	DEN	28.0016865	3
1	NONE	28.3953246	4
5	DEN	28.1322742	5
5	NONE	28.3287873	6
25	DEN	28.8831268	7
25	NONE	28.3812011	8

Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

i/	i 1	2	3	4	5	6	7	8
1		0.8960	0.8717	0.4906	0.9025	0.5842	0.0935	0.5097
2	0.8960	•	0.9755	0.4142	0.8002	0.4992	0.0734	0.4314
3	0.8717	0.9755	•	0.3974	0.7767	0.4803	0.0693	0.4141
4	0.4906	0.4142	0.3974	•	0.5693	0.8850	0.2972	0.9755
5	0.9025	0.8002	0.7767	0.5693	•	0.6700	0.1166	0.5900
6	0.5842	0.4992	0.4803	0.8850	0.6700	•	0.2384	0.9093
7	0.0935	0.0734	0.0693	0.2972	0.1166	0.2384	•	0.2839
8	0.5097	0.4314	0.4141	0.9755	0.5900	0.9093	0.2839	•

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

53

General Linear Models Procedure Least Squares Means

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

DILUENT	CAN_AGT	SEX	WGT	LSMEAN
			LSMEAN	Number
apg	DEN	F	543.741330	1
apg	DEN	М	507.642039	2
apg	NONE	F	519.705388	3
apg	NONE	M	498.664888	4
creek	DEN	F	527.106881	5
creek	DEN	M	423.256832	6
creek	NONE	F	505.005074	7
creek	NONE	M	452.896780	8

Pr > |T| HO: LSMEAN(i) = LSMEAN(j)

i/	j 1	2	3	4	5	6	7	8
1	•	0.1375	0.3134	0.0687	0.4817	0.0001	0.1129	0.0012
2	0.1375	•	0.6085	0.7026	0.4117	0.0021	0.9105	0.0306
3	0.3134	0.6085	•	0.3757	0.7527	0.0007	0.5334	0.0106
4	0.0687	0.7026	0.3757	•	0.2359	0.0049	0.7872	0.0649
5	0.4817	0.4117	0.7527	0.2359	•	0.0004	0.3527	0.0054
6	0.0001	0.0021	0.0007	0.0049	0.0004	•	0.0027	0.2176
7	0.1129	0.9105	0.5334	0.7872	0.3527	0.0027	•	0.0384
8	0.0012	0.0306	0.0106	0.0649	0.0054	0.2176	0.0384	•

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

DILUENT	CAN_AGT	SEX	LEN LSMEAN	LSMEAN Number
apg	DEN	F	29.0061404	1
apg	DEN	М	28.6160163	2
apg	NONE	F	28.7385206	3
apg	NONE	M	28.3462047	4
creek	DEN	F	28.7708176	5
creek	DEN	M	26.7000586	6
creek	NONE	F	28.4583760	7
creek	NONE	M	27.5780303	8

10:47 Tuesday, February 25, 1997

______ MONTH=9 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUENT*CAN_AGT*SEX Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: LEN

i/	i 1	2	3	4	5	6	7	8
1		0.4015	0.5626	0.1642	0.6103	0.0001	0.2438	0.0061
_	0.4015		0.7901	0.5595	0.7368	0.0006	0.7322	0.0357
_	0.5626	0.7901	•	0.3989	0.9440	0.0004	0.5447	0.0208
_	0.1642	0.5595	0.3989	•	0.3622	0.0022	0.8074	0.1091
-	0.6103	0.7368	0.9440	0.3622	•	0.0003	0.4999	0.0180
_	0.0001	0.0006	0.0004	0.0022	0.0003	•	0.0013	0.0703
7	0.2438	0.7322	0.5447	0.8074	0.4999	0.0013	•	0.0696
8	0.0061	0.0357	0.0208	0.1091	0.0180	0.0703	0.0696	•

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

CONC	CAN_AGT	SEX	WGT LSMEAN	LSMEAN Number
0 0 0 0 1 1	DEN DEN NONE NONE DEN DEN NONE	F M F M F	525.148261 469.476976 510.219643 434.818881 535.028373 444.202381 527.201664	1 2 3 4 5 6 7
1 5 5 5 5 25 25 25 25	NONE DEN DEN NONE DEN DEN DEN NONE	M F M F M F M	480.505900 499.534101 441.746591 495.176190 486.154657 581.985687 506.371795 516.823427 501.643899	8 9 10 11 12 13 14 15

10:47 Tuesday, February 25, 1997

----- MONTH=9 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect CONC*CAN_AGT*SEX Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: WGT

i/	i 1	2	3	4	5	6	7	8	9
1		0.1076	0.6537	0.0138	0.7661	0.0247	0.9506	0.1905	0.4443
2	0.1076	•	0.2301	0.3043	0.0619	0.4502	0.0962	0.7400	0.3710
3	0.6537	0.2301		0.0346	0.4585	0.0603	0.6102	0.3764	0.7477
4	0.0138	0.3043	0.0346	•	0.0073	0.7775	0.0121	0.1809	0.0650
5	0.7661	0.0619	0.4585	0.0073		0.0133	0.8136	0.1144	0.2932
6	0.0247	0.4502	0.0603	0.7775	0.0133	•	0.0218	0.2827	0.1096
7	0.9506	0.0962	0.6102	0.0121	0.8136	0.0218	•	0.1720	0.4094
8	0.1905	0.7400	0.3764	0.1809	0.1144	0.2827	0.1720	•	0.5682
9	0.4443	0.3710	0.7477	0.0650	0.2932	0.1096	0.4094	0.5682	•
10	0.0212	0.4083	0.0523	0.8347	0.0114	0.9410	0.0187	0.2526	0.0959
11	0.3724	0.4428	0.6512	0.0831	0.2400	0.1381	0.3413	0.6593	0.8955
12	0.2499	0.6165	0.4718	0.1355	0.1540	0.2172	0.2268	0.8648	0.6875
13	0.1010	0.0033	0.0430	0.0004	0.1697	0.0007	0.1128	0.0068	0.0225
14	0.5733	0.2752	0.9077	0.0436	0.3932	0.0751	0.5326	0.4399	0.8368
15	0.8020	0.1664	0.8423	0.0231	0.5849	0.0409	0.7547	0.2825	0.6038
16	0.4821	0.3393	0.7962	0.0575	0.3218	0.0977	0.4453	0.5266	0.9493

Pr > |T| HO: LSMEAN(i) = LSMEAN(j)

j 10	11	12	13	14	15	16
0.0212	0.3724	0.2499	0.1010	0.5733	0.8020	0.4821
0.4083	0.4428	0.6165	0.0033	0.2752	0.1664	0.3393
0.0523	0.6512	0.4718	0.0430	0.9077	0.8423	0.7962
0.8347	0.0831	0.1355	0.0004	0.0436	0.0231	0.0575
0.0114	0.2400	0.1540	0.1697	0.3932	0.5849	0.3218
0.9410	0.1381	0.2172	0.0007	0.0751	0.0409	0.0977
0.0187	0.3413	0.2268	0.1128	0.5326	0.7547	0.4453
0.2526	0.6593	0.8648	0.0068	0.4399	0.2825	0.5266
0.0959	0.8955	0.6875	0.0225	0.8368	0.6038	0.9493
•	0.1213	0.1927	0.0006	0.0653	0.0353	0.0853
0.1213	•	0.7859	0.0172	0.7362	0.5168	0.8455
0.1927	0.7859	•	0.0097	0.5446	0.3616	0.6417
0.0006	0.0172	0.0097	•	0.0342	0.0633	0.0256
0.0653	0.7362	0.5446	0.0342	•	0.7531	0.8867
0.0353	0.5168	0.3616	0.0633	0.7531	•	0.6483
0.0853	0.8455	0.6417	0.0256	0.8867	0.6483	•
	0.0212 0.4083 0.0523 0.8347 0.0114 0.9410 0.0187 0.2526 0.0959 0.1213 0.1927 0.0006 0.0653 0.0353	0.0212 0.3724 0.4083 0.4428 0.0523 0.6512 0.8347 0.0831 0.0114 0.2400 0.9410 0.1381 0.0187 0.3413 0.2526 0.6593 0.0959 0.8955 0.1213 0.1213 . 0.1927 0.7859 0.0006 0.0172 0.0653 0.7362 0.0353 0.5168	0.0212 0.3724 0.2499 0.4083 0.4428 0.6165 0.0523 0.6512 0.4718 0.8347 0.0831 0.1355 0.0114 0.2400 0.1540 0.9410 0.1381 0.2172 0.0187 0.3413 0.2268 0.2526 0.6593 0.8648 0.0959 0.8955 0.6875 0.1213 0.1927 0.1213 0.7859 0.1927 0.7859 0.0006 0.0172 0.0097 0.0653 0.7362 0.5446 0.0353 0.5168 0.3616	0.0212 0.3724 0.2499 0.1010 0.4083 0.4428 0.6165 0.0033 0.0523 0.6512 0.4718 0.0430 0.8347 0.0831 0.1355 0.0004 0.0114 0.2400 0.1540 0.1697 0.9410 0.1381 0.2172 0.0007 0.0187 0.3413 0.2268 0.1128 0.2526 0.6593 0.8648 0.0068 0.0959 0.8955 0.6875 0.0225 0.1213 0.1927 0.0006 0.1213 0.7859 0.0072 0.0006 0.0172 0.0097 0.0653 0.7362 0.5446 0.0342 0.0353 0.5168 0.3616 0.0633	0.0212 0.3724 0.2499 0.1010 0.5733 0.4083 0.4428 0.6165 0.0033 0.2752 0.0523 0.6512 0.4718 0.0430 0.9077 0.8347 0.0831 0.1355 0.0004 0.0436 0.0114 0.2400 0.1540 0.1697 0.3932 0.9410 0.1381 0.2172 0.0007 0.0751 0.0187 0.3413 0.2268 0.1128 0.5326 0.2526 0.6593 0.8648 0.0068 0.4399 0.0959 0.8955 0.6875 0.0225 0.8368 0.1213 0.1927 0.0006 0.0653 0.1213 0.7859 0.0172 0.7362 0.00653 0.7362 0.5446 0.0342 0.0342 0.0353 0.5168 0.3616 0.0633 0.7531	0.0212 0.3724 0.2499 0.1010 0.5733 0.8020 0.4083 0.4428 0.6165 0.0033 0.2752 0.1664 0.0523 0.6512 0.4718 0.0430 0.9077 0.8423 0.8347 0.0831 0.1355 0.0004 0.0436 0.0231 0.0114 0.2400 0.1540 0.1697 0.3932 0.5849 0.9410 0.1381 0.2172 0.0007 0.0751 0.0409 0.0187 0.3413 0.2268 0.1128 0.5326 0.7547 0.2526 0.6593 0.8648 0.0068 0.4399 0.2825 0.0959 0.8955 0.6875 0.0225 0.8368 0.6038 0.1213 0.1927 0.0006 0.0653 0.0353 0.1213 0.7859 0.0172 0.7362 0.5168 0.00653 0.7362 0.5446 0.0342 0.0633 0.0353 0.5168 0.3616 0.0633 0.7531 . <

----- MONTH=9 -----

General Linear Models Procedure Least Squares Means

Standard Errors and Probabilities calculated using the Type III MS for TANK(DILU*CONC*CAN_) as an Error term

CONC	CAN_AGT	SEX	LEN LSMEAN	LSMEAN Number
0	DEN	F	28.4957707	1
0	DEN	M	27.6561200	2
0	NONE	F	28.7580357	3
0	NONE	M	27.2736014	4
1	DEN	F	28.8430556	5
1	DEN	M	27.1603175	6
1	NONE	F	28.8905180	7
1	NONE	M	27.9001311	8
5	DEN	F	28.9452303	9
5	DEN	M	27.3193182	10
5	NONE	F	28.3230159	11
5	NONE	М	28.3345588	12
25	DEN	F	29.2698593	13
25	DEN	M	28.4963942	14
25	NONE	F	28.4222236	15
25	NONE	M	28.3401786	16

Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

i/	i 1	2	3	4	5	6	7	8	9
1	_	0.2081	0.6875	0.0743	0.5949	0.0533	0.5461	0.3660	0.4927
2	0.2081	•	0.1045	0.5585	0.0822	0.4499	0.0718	0.7081	0.0612
3	0.6875	0.1045	•	0.0340	0.8960	0.0239	0.8387	0.1989	0.7737
4	0.0743	0.5585	0.0340	•	0.0261	0.8618	0.0225	0.3423	0.0189
5	0.5949	0.0822	0.8960	0.0261	•	0.0182	0.9418	0.1602	0.8752
6	0.0533	0.4499	0.0239	0.8618	0.0182	•	0.0157	0.2648	0.0132
7	0.5461	0.0718	0.8387	0.0225	0.9418	0.0157		0.1414	0.9329
8	0.3660	0.7081	0.1989	0.3423	0.1602	0.2648	0.1414	•	0.1221
9	0.4927	0.0612	0.7737	0.0189	0.8752	0.0132	0.9329	0.1221	•
10	0.0847	0.6060	0.0391	0.9440	0.0301	0.8070	0.0259	0.3777	0.0218
11	0.7907	0.3130	0.5065	0.1207	0.4285	0.0881	0.3885	0.5183	0.3455
12	0.8044	0.3050	0.5177	0.1169	0.4386	0.0853	0.3980	0.5071	0.3543
13	0.2441	0.0227	0.4357	0.0066	0.5144	0.0046	0.5617	0.0481	0.6190
14	0.9992	0.2078	0.6882	0.0742	0.5956	0.0532	0.5468	0.3655	0.4933
15	0.9100	0.2488	0.6071	0.0917	0.5203	0.0662	0.4750	0.4267	0.4259
16	0.8111	0.3011	0.5232	0.1151	0.4436	0.0839	0.4026	0.5017	0.3586

10:47 Tuesday, February 25, 1997

----- MONTH=9 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect CONC*CAN_AGT*SEX Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: LEN

i/	j 10	11	12	13	14	15	16
1	0.0847	0.7907	0.8044	0.2441	0.9992	0.9100	0.8111
2	0.6060	0.3130	0.3050	0.0227	0.2078	0.2488	0.3011
3	0.0391	0.5065	0.5177	0.4357	0.6882	0.6071	0.5232
4	0.9440	0.1207	0.1169	0.0066	0.0742	0.0917	0.1151
5	0.0301	0.4285	0.4386	0.5144	0.5956	0.5203	0.4436
6	0.8070	0.0881	0.0853	0.0046	0.0532	0.0662	0.0839
7	0.0259	0.3885	0.3980	0.5617	0.5468	0.4750	0.4026
8	0.3777	0.5183	0.5071	0.0481	0.3655	0.4267	0.5017
9	0,0218	0.3455	0.3543	0.6190	0.4933	0.4259	0.3586
10	•	0.1365	0.1323	0.0077	0.0846	0.1042	0.1303
11	0.1365	•	0.9858	0.1585	0.7900	0.8788	0.9789
12	0.1323	0.9858	•	0.1634	0.8036	0.8928	0.9931
13	0.0077	0.1585	0.1634	•	0.2445	0.2041	0.1658
14	0.0846	0.7900	0.8036	0.2445	•	0.9092	0.8103
15	0.1042	0.8788	0.8928	0.2041	0.9092	•	0.8996
16	0.1303	0.9789	0.9931	0.1658	0.8103	0.8996	•

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

10:47 Tuesday, February 25, 1997

_____ MONTH=9 -----

General Linear Models Procedure Least Squares Means

SEX	WGT LSMEAN	Pr > C	•
F M	523.889668 470.615135	0.00	001
SEX	LEN LSMEAN	Pr > 1	•
F M	28.7434636 27.8100775	0.00	001

DILUENT	SEX	WGT LSMEAN	Pr > i/j	T H	O: LSMEA	N(i)=LSM 3	EAN(j) 4
apg apg creek creek	F M F M	531.723359 503.153464 516.055978 438.076806	3 0	.0096 .1265 .0001	0.0096 0.2029 0.0001	0.1265 0.2029	0.0001 0.0001 0.0001
DILUENT	SEX	LEN LSMEAN	Pr > i/j	T H	O: LSMEA	N(i)=LSM	ŒAN(j) 4
apg apg creek creek	F M F M	28.8723305 28.4811105 28.6145968 27.1390445	3 0	.0170 .0983	0.0170 0.3767 0.0001	0.0983 0.3767 0.0001	0.0001 0.0001 0.0001

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

----- MONTH=9 -----

General Linear Models Procedure Least Squares Means

CONC	SEX	WGT	LSMEAN
		LSMEAN	Number
0	F	517.683952	1
0	M	452.147928	2
1	F	531.115019	3
1	M	462.354141	4
5	F	497.355146	5
5	M	463.950624	6
25	F	549.404557	7
25	M	504.007847	8

Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

i/	j 1	2	3	4	5	6	7	8
				0.0010				
2	0.0002	•	0.0001	0.4685	0.0046	0.4032	0.0001	0.0017
3	0.3430	0.0001	•	0.0001	0.0258	0.0002	0.2019	0.0661
4	0.0010	0.4685	0.0001	•	0.0215	0.9090	0.0001	0.0080
5	0.1585	0.0046	0.0258	0.0215	•	0.0272	0.0016	0.6349
6	0.0012	0.4032	0.0002	0.9090	0.0272	•	0.0001	0.0101
7	0.0347	0.0001	0.2019	0.0001	0.0016	0.0001	•	0.0045
8	0.3345	0.0017	0.0661	0.0080	0.6349	0.0101	0.0045	

CONC	SEX	LEN LSMEAN	LSMEAN Number
		LSMEAN	Mumer
0	F	28.6269032	1
0	M	27.4648607	2
1	F	28.8667868	3
1	M	27.5302243	4
5	F	28.6341231	5
5	M	27.8269385	6
25	F	28.8460415	7
25	M	28.4182864	8

Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

i/	j 1	2	3	4	5	6	7	8
1	•	0.0001	0.2649	0.0001	0.9727	0.0014	0.3069	0.3300
2	0.0001	•	0.0001	0.7570	0.0001	0.1004	0.0001	0.0003
3	0.2649	0.0001		0.0001	0.2790	0.0001	0.9217	0.0463
4	0.0001	0.7570	0.0001	•	0.0001	0.1722	0.0001	0.0006
5	0.9727	0.0001	0.2790	0.0001	•	0.0013	0.3226	0.3140
6	0.0014	0.1004	0.0001	0.1722	0.0013	•	0.0002	0.0116

10:47 Tuesday, February 25, 1997

----- MONTH=9 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect CONC*SEX
Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: LEN

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

CAN AGT	SEX	WGT	Pr > T F	10: LSMEA	N(i)=LSM	ŒAN(j)
<u></u>		LSMEAN	i/j 1	2	3	4
DEN DEN NONE NONE	F M F M	535.424106 465.449436 512.355231 475.780834	1 . 2 0.0001 3 0.0305 4 0.0001	0.0001 0.0002 0.3035	0.0305 0.0002 0.0017	0.0001 0.3035 0.0017
CAN_AGT	SEX	LEN LSMEAN	Pr > T E	HO: LSMEA 2	N(i)=LSM 3	ŒAN(j) 4
DEN DEN NONE NONE	F M F M	28.8884790 27.6580375 28.5984483 27.9621175	1 . 2 0.0001 3 0.0657 4 0.0001	0.0001 0.0001 0.0549	0.0657 0.0001 0.0005	0.0001 0.0549 0.0005

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

----- MONTH=9 -----

General Linear Models Procedure Least Squares Means

CONC	CAN_AGT	SEX	WGT LSMEAN	LSMEAN Number
0	DEN	F	525.148261	1
0	DEN	M	469.476976	2
0	NONE	F	510.219643	3
0	NONE	M	434.818881	4
1	DEN	F	535.028373	5
1	DEN	M	444.202381	6
1	NONE	F	527.201664	7
1	NONE	M	480.505900	8
5	DEN	F	499.534101	9
5	DEN	M	441.746591	10
5	NONE	F	495.176190	11
5	NONE	M	486.154657	12
25	DEN	F	581.985687	13
25	DEN	M	506.371795	14
25	NONE	F	516.823427	15
25	NONE	M	501.643899	16

Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

i/	i 1	2	3	4	5	6	7	8	9
1		0.0112	0.4536	0.0003	0.6182	0.0007	0.9172	0.0355	0.2061
2	0.0112		0.0523	0.0936	0.0039	0.2119	0.0090	0.5783	0.1416
3	0.4536	0.0523	•	0.0013	0.2200	0.0037	0.3952	0.1459	0.5901
4	0.0003	0.0936	0.0013	•	0.0001	0.6358	0.0002	0.0319	0.0042
5	0.6182	0.0039	0.2200	0.0001	•	0.0003	0.6925	0.0127	0.0866
6	0.0007	0.2119	0.0037	0.6358	0.0003	•	0.0006	0.0802	0.0117
7	0.9172	0.0090	0.3952	0.0002	0.6925	0.0006	•	0.0288	0.1738
8	0.0355	0.5783	0.1459	0.0319	0.0127	0.0802	0.0288	•	0.3422
9	0.2061	0.1416	0.5901	0.0042	0.0866	0.0117	0.1738	0.3422	•
10	0.0006	0.1729	0.0028	0.7262	0.0002	0.9010	0.0005	0.0635	0.0090
11	0.1426	0.2047	0.4502	0.0068	0.0571	0.0185	0.1189	0.4614	0.8254
12	0.0621	0.4035	0.2335	0.0178	0.0230	0.0464	0.0508	0.7751	0.5011
13	0.0099	0.0001	0.0020	0.0001	0.0280	0.0001	0.0124	0.0001	0.0006
14	0.3484	0.0759	0.8456	0.0020	0.1598	0.0056	0.2998	0.2019	0.7296
15	0.6741	0.0269	0.7385	0.0007	0.3629	0.0018	0.6007	0.0801	0.3869
16	0.2441	0.1174	0.6650	0.0034	0.1052	0.0093	0.2071	0.2929	0.9149

----- MONTH=9 -----

General Linear Models Procedure Least Squares Means

Dependent Variable: WGT

i/	j 10	11	12	13	14	15	16
1	0.0006	0.1426	0.0621	0.0099	0.3484	0.6741	0.2441
2	0.1729	0.2047	0.4035	0.0001	0.0759	0.0269	0.1174
3	0.0028	0.4502	0.2335	0.0020	0.8456	0.7385	0.6650
4	0.7262	0.0068	0.0178	0.0001	0.0020	0.0007	0.0034
5	0.0002	0.0571	0.0230	0.0280	0.1598	0.3629	0.1052
6	0.9010	0.0185	0.0464	0.0001	0.0056	0.0018	0.0093
7	0.0005	0.1189	0.0508	0.0124	0.2998	0.6007	0.2071
8	0.0635	0.4614	0.7751	0.0001	0.2019	0.0801	0.2929
9	0.0090	0.8254	0.5011	0.0006	0.7296	0.3869	0.9149
10	•	0.0143	0.0363	0.0001	0.0043	0.0014	0.0071
11	0.0143	•	0.6488	0.0004	0.5726	0.2819	0.7436
12	0.0363	0.6488	•	0.0002	0.3137	0.1342	0.4372
13	0.0001	0.0004	0.0002	•	0.0013	0.0040	0.0008
14	0.0043	0.5726	0.3137	0.0013	•	0.5982	0.8109
15	0.0014	0.2819	0.1342	0.0040	0.5982	•	0.4462
16	0.0071	0.7436	0.4372	0.0008	0.8109	0.4462	•

CONC	CAN_AGT	SEX	LEN LSMEAN	LSMEAN Number
0	DEN	F	28.4957707	1
0	DEN	M	27.6561200	2
0	NONE	F	28.7580357	3
0	NONE	M	27.2736014	4
1	DEN	F	28.8430556	5
1	DEN	M	27.1603175	6
1	NONE	F	28.8905180	7
1	NONE	M	27.9001311	8
5	DEN	F	28.9452303	9
5	DEN	M	27.3193182	10
5	NONE	F	28.3230159	11
5	NONE	M	28.3345588	12
25	DEN	F	29.2698593	13
25	DEN	M	28.4963942	14
25	NONE	F	28.4222236	15
25	NONE	M	28.3401786	16

10:47 Tuesday, February 25, 1997

----- MONTH=9 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect CONC*CAN_AGT*SEX Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: LEN

```
5
                         4
                                                 7
                   3
                                          6
           2
i/j
      1
          0.0114 0.3850 0.0007 0.2542 0.0003 0.1976 0.0595 0.1454
2 0.0114 . 0.0017 0.2111 0.0009 0.1107 0.0007 0.4182 0.0005
                        0.0001 0.7759 0.0001 0.6579 0.0100 0.5328
3 0.3850 0.0017 .
                               0.0001 0.7047 0.0001 0.0487 0.0001
 4 0.0007 0.2111 0.0001 .
5 0.2542 0.0009 0.7759 0.0001 . 0.0001 0.8736 0.0054 0.7324
6 0.0003 0.1107 0.0001 0.7047 0.0001 . 0.0001 0.0228 0.0001
7 0.1976 0.0007 0.6579 0.0001 0.8736 0.0001 . 0.0039 0.8545
8 0.0595 0.4182 0.0100 0.0487 0.0054 0.0228 0.0039 .
                                                            0.0026
9 0.1454 0.0005 0.5328 0.0001 0.7324 0.0001 0.8545 0.0026
10 0.0010 0.2682 0.0002 0.8782 0.0001 0.5956 0.0001 0.0654 0.0001
11 0.5645 0.0373 0.1579 0.0025 0.0956 0.0011 0.0712 0.1691 0.0501
12 0.5906 0.0345 0.1685 0.0023 0.1025 0.0010 0.0765 0.1584 0.0540
13 0.0180 0.0001 0.1005 0.0001 0.1654 0.0001 0.2147 0.0003 0.2853
14 0.9983 0.0113 0.3861 0.0007 0.2550 0.0003 0.1983 0.0592 0.1459
15 0.8054 0.0190 0.2696 0.0012 0.1710 0.0006 0.1303 0.0944 0.0939
16 0.6035 0.0332 0.1739 0.0022 0.1061 0.0010 0.0793 0.1534 0.0560
                 Pr > |T| HO: LSMEAN(i) = LSMEAN(j)
                                             16
             11
                   12
                          13
                                  14
                                         15
 i/j
     10
 1 0.0010 0.5645 0.5906 0.0180 0.9983 0.8054 0.6035
 2 0.2682 0.0373 0.0345 0.0001 0.0113 0.0190 0.0332
3 0.0002 0.1579 0.1685 0.1005 0.3861 0.2696 0.1739
 4 0.8782 0.0025 0.0023 0.0001 0.0007 0.0012 0.0022
 5 0.0001 0.0956 0.1025 0.1654 0.2550 0.1710 0.1061
6 0.5956 0.0011 0.0010 0.0001 0.0003 0.0006 0.0010 7 0.0001 0.0712 0.0765 0.2147 0.1983 0.1303 0.0793
 8 0.0654 0.1691 0.1584 0.0003 0.0592 0.0944 0.1534
9 0.0001 0.0501 0.0540 0.2853 0.1459 0.0939 0.0560
          0.0035 0.0032 0.0001 0.0010 0.0017 0.0031
10
11 0.0035 . 0.9691 0.0053 0.5631 0.7399 0.9541
12 0.0032 0.9691 . 0.0058 0.5891 0.7691 0.9850
13 0.0001 0.0053 0.0058 . 0.0180 0.0107 0.0060
14 0.0010 0.5631 0.5891 0.0180 .
                                       0.8038 0.6020
15 0.0017 0.7399 0.7691 0.0107 0.8038
                                      •
                                              0.7835
16 0.0031 0.9541 0.9850 0.0060 0.6020 0.7835 .
```

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

______ MONTH=9 ------

General Linear Models Procedure Least Squares Means

					T CACE BAL
DILUENT	CONC	CAN_AGT	SEX	WGT	LSMEAN
				LSMEAN	Number
222	0	DEN	F	572.109023	1
apg	0	DEN	M	535.741830	2
apg	0	NONE	F	497.010714	3
apg	0	NONE	M	443.987762	4
apg	1	DEN	F	499.792857	5
apg	1	DEN	M	494.761905	6
apg	_	NONE	F	552.416149	7
apg	1		r M	497.466346	8
apg	1	NONE			9
apg	5	DEN	F	517.405702	10
apg	5	DEN	M	479.175000	
apg	5	NONE	F	509.202381	11
apg	5	NONE	М	528.200980	12
apg	25	DEN	F	585.657738	13
apg	25	DEN	M	520.889423	14
apg	25	NONE	F	520.192308	15
apg	25	NONE	M	525.004464	16
creek	0	DEN	F	478.187500	17
creek	0	DEN	M	403.212121	18
creek	0	NONE	F	523.428571	19
creek	0	NONE	M	425.650000	20
creek	1	DEN	F	570.263889	21
creek	1	DEN	M	393.642857	22
creek	1	NONE	F	501.987179	23
creek	1	NONE	M	463.545455	24
creek	5	DEN	F	481.662500	25
creek	5	DEN	М	404.318182	26
creek	5	NONE	F	481.150000	27
creek	5	NONE	M	444.108333	28
creek	25	DEN	F	578.313636	29
creek	25	DEN	М	491.854167	30
creek	25	NONE	F	513.454545	31
creek	25	NONE	М	478.283333	32

Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

i/	i 1	2	3	4	5	6	7	8	9
		0.2044							
		•							
3	0.0148	0.1780	•	0.0717	0.9206	0.9358	0.0610	0.9870	0.4689
4	0.0003	0.0042	0.0717	•	0.0593	0.0833	0.0012	0.0695	0.0167
5	0.0182	0.2094	0.9206	0.0593	•	0.8571	0.0736	0.9336	0.5308
6	0.0125	0.1555	0.9358	0.0833	0.8571	•	0.0522	0.9228	0.4222
7	0.4841	0.5526	0.0610	0.0012	0.0736	0.0522	•	0.0629	0.2210

10:47 Tuesday, February 25, 1997

----- MONTH=9 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUE*CONC*CAN_A*SEX
Pr > |T| H0: LSMEAN(i)=LSMEAN(j)

Dependent Variable: WGT

```
5
                                           6
                                                 7
                           4
                    3
              2
      1
i/j
8 0.0153 0.1828 0.9870 0.0695 0.9336 0.9228 0.0629
                                                              0.4787
9 0.0640 0.5142 0.4689 0.0167 0.5308 0.4222 0.2210 0.4787
10 0.0038 0.0563 0.5256 0.2188 0.4641 0.5786 0.0170 0.5153 0.1833
11 0.0361 0.3487 0.6633 0.0305 0.7366 0.6066 0.1355 0.6751 0.7692
12 0.1297 0.7873 0.2732 0.0074 0.3168 0.2414 0.3914 0.2800 0.6997
13 0.6288 0.0882 0.0053 0.0001 0.0065 0.0045 0.2441 0.0055 0.0245
14 0.0809 0.5964 0.3979 0.0129 0.4540 0.3560 0.2683 0.4067 0.9007
15 0.0772 0.5795 0.4115 0.0136 0.4688 0.3686 0.2582 0.4205 0.9205
16 0.1059 0.7012 0.3236 0.0095 0.3727 0.2875 0.3335 0.3313 0.7858
17 0.0035 0.0526 0.5033 0.2314 0.4434 0.5550 0.0158 0.4932 0.1729
18 0.0001 0.0002 0.0036 0.1574 0.0029 0.0042 0.0001 0.0034 0.0007
19 0.0956 0.6602 0.3508 0.0107 0.4026 0.3125 0.3073 0.3590 0.8293
20 0.0001 0.0010 0.0195 0.5142 0.0159 0.0230 0.0003 0.0189 0.0042
21 0.9473 0.2272 0.0169 0.0003 0.0208 0.0143 0.5254 0.0175 0.0725
22 0.0001 0.0001 0.0017 0.0857 0.0014 0.0020 0.0001 0.0017 0.0004
23 0.0214 0.2372 0.8586 0.0510 0.9374 0.7960 0.0852 0.8714 0.5826
24 0.0011 0.0183 0.2411 0.4870 0.2058 0.2728 0.0052 0.2350 0.0677
25 0.0046 0.0667 0.5843 0.1894 0.5189 0.6401 0.0204 0.5733 0.2119
26 0.0001 0.0002 0.0039 0.1683 0.0031 0.0046 0.0001 0.0037 0.0008
27 0.0044 0.0644 0.5720 0.1952 0.5073 0.6272 0.0196 0.5611 0.2057
28 0.0003 0.0042 0.0723 0.9966 0.0598 0.0840 0.0012 0.0701 0.0169
29 0.8243 0.1410 0.0093 0.0002 0.0114 0.0078 0.3601 0.0096 0.0416
30 0.0100 0.1299 0.8536 0.1008 0.7764 0.9171 0.0426 0.8408 0.3664
31 0.0487 0.4294 0.5581 0.0224 0.6259 0.5062 0.1755 0.5689 0.8875
32 0.0036 0.0529 0.5054 0.2301 0.4453 0.5572 0.0159 0.4953 0.1739
                  Pr > |T| HO: LSMEAN(i) = LSMEAN(j)
                                                       17
                                            15
                                               16
                     12
                            13
                                    14
              11
 i/j
      10
 1 0.0038 0.0361 0.1297 0.6288 0.0809 0.0772 0.1059 0.0035 0.0001
2 0.0563 0.3487 0.7873 0.0882 0.5964 0.5795 0.7012 0.0526 0.0002
3 0.5256 0.6633 0.2732 0.0053 0.3979 0.4115 0.3236 0.5033 0.0036
 4 0.2188 0.0305 0.0074 0.0001 0.0129 0.0136 0.0095 0.2314 0.1574
 5 0.4641 0.7366 0.3168 0.0065 0.4540 0.4688 0.3727 0.4434 0.0029
 6 0.5786 0.6066 0.2414 0.0045 0.3560 0.3686 0.2875 0.5550 0.0042
7 0.0170 0.1355 0.3914 0.2441 0.2683 0.2582 0.3335 0.0158 0.0001
 8 0.5153 0.6751 0.2800 0.0055 0.4067 0.4205 0.3313 0.4932 0.0034
9 0.1833 0.7692 0.6997 0.0245 0.9007 0.9205 0.7858 0.1729 0.0007
           0.2908 0.0935 0.0013 0.1486 0.1551 0.1149 0.9718 0.0138
10
11 0.2908 . 0.4994 0.0133 0.6764 0.6946 0.5734 0.2758 0.0014
```

----- MONTH=9 -----

General Linear Models Procedure Least Squares Means

Dependent Variable: WGT

i/	j 10	11	12	13	14	15	16	17	18
12	0.0935	0.4994		0.0529	0.7936	0.7745	0.9089	0.0876	0.0003
13	0.0013	0.0133	0.0529	•	0.0315	0.0300	0.0423	0.0012	0.0001
14	0.1486	0.6764	0.7936	0.0315	•	0.9801	0.8829	0.1399	0.0006
15	0.1551	0.6946	0.7745	0.0300	0.9801	•	0.8632	0.1460	0.0006
16	0.1149	0.5734	0.9089	0.0423	0.8829	0.8632		0.1079	0.0004
17	0.9718	0.2758	0.0876	0.0012	0.1399	0.1460	0.1079	•	0.0149
18	0.0138	0.0014	0.0003	0.0001	0.0006	0.0006	0.0004	0.0149	•
19	0.1270	0.6119	0.8643	0.0378	0.9275	0.9077	0.9550	0.1193	0.0005
20	0.0693	0.0078	0.0018	0.0001	0.0032	0.0034	0.0023	0.0741	0.4263
21	0.0044	0.0411	0.1455	0.5832	0.0914	0.0873	0.1192	0.0041	0.0001
22	0.0067	0.0007	0.0002	0.0001	0.0003	0.0003	0.0002	0.0072	0.7323
23	0.4188	0.7963	0.3545	0.0077	0.5015	0.5172	0.4147	0.3994	0.0024
24	0.5775	0.1162	0.0318	0.0004	0.0533	0.0560	0.0400	0.6016	0.0433
25	0.9290	0.3313	0.1098	0.0016	0.1728	0.1801	0.1344	0.9010	0.0115
26	0.0150	0.0015	0.0004	0.0001	0.0006	0.0007	0.0005	0.0162	0.9684
27	0.9436	0.3227	0.1063	0.0016	0.1676	0.1747	0.1302	0.9155	0.0119
28	0.2203	0.0308	0.0075	0.0001	0.0130	0.0137	0.0095	0.2329	0.1563
29	0.0024	0.0230	0.0870	0.7927	0.0530	0.0505	0.0703	0.0022	0.0001
30	0.6508	0.5369	0.2047	0.0036	0.3065	0.3179	0.2454	0.6258	0.0053
31	0.2303	0.8790	0.5990	0.0183	0.7903	0.8095	0.6799	0.2178	0.0010
32	0.9745	0.2773	0.0882	0.0013	0.1407	0.1469	0.1085	0.9973	0.0148
			lm	1 770. 7.0	MT 3 M (;) -	T CMEAN / 4	,		
			Pr > T	HU: LS	MEAN(I)-	LSMEAN (j	,		
i/	j 19	20	21	22	23	24	25	26	27
1	0.0956	0.0001	0.9473	0.0001	0.0214	0.0011	0.0046	0.0001	0.0044
2	0.6602	0.0010	0.2272	0.0001	0.2372	0.0183	0.0667	0.0002	0.0644
3	0.3508	0.0195	0.0169	0.0017	0.8586	0.2411	0.5843	0.0039	0.5720
4	0.0107	0.5142	0.0003	0.0857	0.0510	0.4870	0.1894	0.1683	0.1952
5	0.4026	0.0159	0.0208	0.0014	0.9374	0.2058	0.5189	0.0031	0.5073
6	0.3125	0.0230	0.0143	0.0020	0.7960	0.2728	0.6401	0.0046	0.6272
7	0.3073	0.0003	0.5254	0.0001	0.0852	0.0052	0.0204	0.0001	0.0196
8	0.3590	0.0189	0.0175	0.0017	0.8714	0.2350	0.5733	0.0037	0.5611
9	0.8293	0.0042	0.0725	0.0004	0.5826	0.0677	0.2119	0.0008	0.2057
10	0.1270	0.0693	0.0044	0.0067	0.4188	0.5775	0.9290	0.0150	0.9436
11	0.6119	0.0078	0.0411	0.0007	0.7963	0.1162	0.3313	0.0015	0.3227
12	0.8643	0.0018	0.1455	0.0002	0.3545	0.0318	0.1098	0.0004	0.1063
13	0.0378	0.0001	0.5832	0.0001	0.0077	0.0004	0.0016	0.0001	0.0016
14	0.9275	0.0032	0.0914	0.0003	0.5015	0.0533	0.1728	0.0006	0.1676
15	0.9077	0.0034	0.0873	0.0003	0.5172	0.0560	0.1801	0.0007	0.1747

----- MONTH=9 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUE*CONC*CAN_A*SEX
Pr > |T| H0: LSMEAN(i)=LSMEAN(j)

Dependent Variable: WGT

i/	j 19	20	21	22	23	24	25	26	27
16	0.9550	0.0023	0.1192	0.0002	0.4147	0.0400	0.1344	0.0005	0.1302
17	0.1193	0.0741	0.0041	0.0072	0.3994	0.6016	0.9010	0.0162	0.9155
18	0.0005	0.4263	0.0001	0.7323	0.0024	0.0433	0.0115	0.9684	0.0119
19	•	0.0026	0.1078	0.0002	0.4468	0.0447	0.1482	0.0005	0.1436
20	0.0026		0.0001	0.2613	0.0135	0.1870	0.0585	0.4490	0.0606
21	0.1078	0.0001	•	0.0001	0.0245	0.0013	0.0053	0.0001	0.0051
22	0.0002	0.2613	0.0001	•	0.0012	0.0217	0.0056	0.7029	0.0058
23	0.4468	0.0135	0.0245	0.0012	•	0.1811	0.4704	0.0026	0.4594
24	0.0447	0.1870	0.0013	0.0217	0.1811	•	0.5192	0.0468	0.5310
25	0.1482	0.0585	0.0053	0.0056	0.4704	0.5192	•	0.0125	0.9854
26	0.0005	0.4490	0.0001	0.7029	0.0026	0.0468	0.0125	•	0.0130
27	0.1436	0.0606	0.0051	0.0058	0.4594	0.5310	0.9854	0.0130	•
28	0.0108	0.5115	0.0003	0.0850	0.0514	0.4897	0.1908	0.1671	0.1966
29	0.0632	0.0001	0.7734	0.0001	0.0135	0.0007	0.0029	0.0001	0.0028
30	0.2676	0.0284	0.0115	0.0025	0.7172	0.3184	0.7157	0.0058	0.7021
31	0.7215	0.0056	0.0553	0.0005	0.6821	0.0882	0.2644	0.0011	0.2571
32	0.1200	0.0736	0.0041	0.0072	0.4012	0.5992	0.9037	0.0161	0.9182

Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

```
29
                       30
                                31
i/j 28
1 0.0003 0.8243 0.0100 0.0487 0.0036
2 0.0042 0.1410 0.1299 0.4294 0.0529
3 0.0723 0.0093 0.8536 0.5581 0.5054
4 0.9966 0.0002 0.1008 0.0224 0.2301
5 0.0598 0.0114 0.7764 0.6259 0.4453
6 0.0840 0.0078 0.9171 0.5062 0.5572
7 0.0012 0.3601 0.0426 0.1755 0.0159
8 0.0701 0.0096 0.8408 0.5689 0.4953
9 0.0169 0.0416 0.3664 0.8875 0.1739
10 0.2203 0.0024 0.6508 0.2303 0.9745
11 0.0308 0.0230 0.5369 0.8790 0.2773
12 0.0075 0.0870 0.2047 0.5990 0.0882
13 0.0001 0.7927 0.0036 0.0183 0.0013
14 0.0130 0.0530 0.3065 0.7903 0.1407
15 0.0137 0.0505 0.3179 0.8095 0.1469
16 0.0095 0.0703 0.2454 0.6799 0.1085
17 0.2329 0.0022 0.6258 0.2178 0.9973
18 0.1563 0.0001 0.0053 0.0010 0.0148
19 0.0108 0.0632 0.2676 0.7215 0.1200
```

10:47 Tuesday, February 25, 1997

----- MONTH=9 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUE*CONC*CAN_A*SEX Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: WGT

i/	j 28	29	30	31	32
20	0.5115	0.0001	0.0284	0.0056	0.0736
21	0.0003	0.7734	0.0115	0.0553	0.0041
22	0.0850	0.0001	0.0025	0.0005	0.0072
23	0.0514	0.0135	0.7172	0.6821	0.4012
24	0.4897	0.0007	0.3184	0.0882	0.5992
25	0.1908	0.0029	0.7157	0.2644	0.9037
26	0.1671	0.0001	0.0058	0.0011	0.0161
27	0.1966	0.0028	0.7021	0.2571	0.9182
28	•	0.0002	0.1016	0.0226	0.2317
29	0.0002	•	0.0063	0.0313	0.0022
30	0.1016	0.0063	•	0.4435	0.6282
31	0.0226	0.0313	0.4435	•	0.2190
32	0.2317	0.0022	0.6282	0.2190	•

DILUENT	CONC	CAN_AGT	SEX	LEN LSMEAN	LSMEAN Number
					•
apg	0	DEN	F	29.1165414	1
apg	0	DEN	M	28.5849673	2
apg	0	NONE	F	28.9357143	3
apg	0	NONE	M	27.5472028	4
apg	1	DEN	F	28.7000000	5
apg	1	DEN	M	28.4238095	6
apg	1	NONE	F	29.1816770	7
apg	1	NONE	M	28.2548077	8
apg	5	DEN	F	29.3092105	9
apg	5	DEN	M	28.5250000	10
apg	5	NONE	F	28.4960317	11
apg	5	NONE	M	28.7524510	12
apg	25	DEN	F	28.8988095	13
apg	25	DEN	M	28.9302885	14
apg	25	NONE	F	28.3406593	15
apg	25	NONE	M	28.8303571	16
creek	0	DEN	F	27.8750000	17
creek	0	DEN	M	26.7272727	18
creek	0	NONE	F	28.5803571	19
creek	0	NONE	M	27.0000000	20
creek	1	DEN	F	28.9861111	21
creek	1	DEN	M	25.8968254	22

10:47 Tuesday, February 25, 1997

----- MONTH=9 -----

General Linear Models Procedure Least Squares Means

DILUENT	CONC	CAN_AGT	SEX	LEN LSMEAN	LSMEAN Number
creek	1	NONE	F	28.5993590	23
creek	1	NONE	M	27.5454545	24
creek	5	DEN	F	28.5812500	25
creek	5	DEN	M	26.1136364	26
creek	5	NONE	F	28.1500000	27
creek	5	NONE	M	27.9166667	28
creek	25	DEN	F	29.6409091	29
creek	25	DEN	M	28.0625000	30
creek	25	NONE	F	28.5037879	31
creek	25	NONE	M	27.8500000	32

Pr > |T| HO: LSMEAN(i) = LSMEAN(j)

```
7
                           4
                                         6
i/j
           2
                   3
          0.2188 0.6690 0.0016 0.3307 0.1147 0.8773 0.0545 0.6489
1
2 0.2188 . 0.4108 0.0237 0.7853 0.7031 0.1700 0.4382 0.1003
3 0.6690 0.4108 . 0.0041 0.5782 0.2355 0.5619 0.1206 0.3818
4 0.0016 0.0237 0.0041 . 0.0135 0.0509 0.0012 0.1077 0.0006
                              . 0.5155 0.2631 0.2996 0.1617
5 0.3307 0.7853 0.5782 0.0135
                                            0.0867 0.6894 0.0488
6 0.1147 0.7031 0.2355 0.0509 0.5155
                                     •
7 0.8773 0.1700 0.5619 0.0012 0.2631 0.0867 . 0.0403 0.7627
8 0.0545 0.4382 0.1206 0.1077 0.2996 0.6894 0.0403 .
                                                          0.0219
9 0.6489 0.1003 0.3818 0.0006 0.1617 0.0488 0.7627 0.0219
10 0.1735 0.8870 0.3374 0.0316 0.6790 0.8106 0.1334 0.5245 0.0772
11 0.1546 0.8331 0.3054 0.0363 0.6300 0.8641 0.1182 0.5694 0.0679
12 0.3936 0.6920 0.6649 0.0104 0.9011 0.4403 0.3167 0.2482 0.1987
13 0.6072 0.4608 0.9303 0.0050 0.6386 0.2695 0.5055 0.1405 0.3377
14 0.6598 0.4179 0.9897 0.0042 0.5869 0.2403 0.5534 0.1233 0.3750
15 0.0801 0.5645 0.1711 0.0741 0.3996 0.8438 0.0599 0.8388 0.0331
16 0.5006 0.5628 0.8029 0.0070 0.7576 0.3421 0.4100 0.1848 0.2658
17 0.0087 0.1066 0.0212 0.4414 0.0644 0.2049 0.0062 0.3740 0.0033
18 0.0001 0.0004 0.0001 0.0658 0.0002 0.0009 0.0001 0.0020 0.0001
19 0.2150 0.9913 0.4048 0.0243 0.7770 0.7111 0.1669 0.4445 0.0984
20 0.0001 0.0015 0.0003 0.2061 0.0008 0.0034 0.0001 0.0081 0.0001
21 0.7575 0.3484 0.9049 0.0032 0.5007 0.1945 0.6440 0.0973 0.4479
22 0.0001 0.0001 0.0001 0.0011 0.0001 0.0001 0.0001 0.0001 0.0001
23 0.2309 0.9728 0.4298 0.0221 0.8116 0.6781 0.1799 0.4189 0.1067
24 0.0016 0.0235 0.0041 0.9967 0.0134 0.0505 0.0012 0.1069 0.0006
25 0.2157 0.9930 0.4059 0.0241 0.7786 0.7096 0.1675 0.4433 0.0987
26 0.0001 0.0001 0.0001 0.0033 0.0001 0.0001 0.0001 0.0001
27 0.0334 0.3104 0.0767 0.1659 0.2039 0.5190 0.0244 0.8040 0.0131
28 0.0107 0.1271 0.0260 0.3868 0.0775 0.2397 0.0077 0.4274 0.0040
29 0.2248 0.0217 0.1088 0.0001 0.0377 0.0098 0.2851 0.0042 0.4361
```

10:47 Tuesday, February 25, 1997

----- MONTH=9 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUE*CONC*CAN_A*SEX
Pr > |T| H0: LSMEAN(i)=LSMEAN(j)

Dependent Variable: LEN

: /	'j 1	2	3	4	5	6	7	8	9
i/ 30	0.0219	0.2264	0.0517	0.2325	0.1443	0.3971	0.0159	0.6495	0.0084
	0.1595	0.8475	0.3137	0.0350	0.6429	0.8497	0.1221	0.5572	0.0703
31	0.0076	0.0958	0.0188	0.4764	0.0575	0.1860	0.0055	0.3441	0.0029
32	0.0076	0.0336	0.0100	0.4704	0.0373	0.1000	0.0000	0.0	
Pr > T HO: LSMEAN(i)=LSMEAN(j)									
i/	j 10	11	12	13	14	15	16	17	18
1	0.1735	0.1546	0.3936	0.6072	0.6598	0.0801	0.5006	0.0087	0.0001
2	0.8870	0.8331	0.6920	0.4608	0.4179	0.5645	0.5628	0.1066	0.0004
3	0.3374	0.3054	0.6649	0.9303	0.9897	0.1711	0.8029	0.0212	0.0001
4	0.0316	0.0363	0.0104	0.0050	0.0042	0.0741	0.0070	0.4414	0.0658
5	0.6790	0.6300	0.9011	0.6386	0.5869	0.3996	0.7576	0.0644	0.0002
6	0.8106	0.8641	0.4403	0.2695	0.2403	0.8438	0.3421	0.2049	0.0009
7	0.1334	0.1182	0.3167	0.5055	0.5534	0.0599	0.4100	0.0062	0.0001
8	0.5245	0.5694	0.2482	0.1405	0.1233	0.8388	0.1848	0.3740	0.0020
9	0.0772	0.0679	0.1987	0.3377	0.3750	0.0331	0.2658	0.0033	0.0001
10	•	0.9452	0.5914	0.3814	0.3436	0.6630	0.4728	0.1371	0.0005
11	0.9452	•	0.5456	0.3465	0.3112	0.7132	0.4326	0.1542	0.0006
12	0.5914	0.5456	•	0.7291	0.6742	0.3361	0.8535	0.0507	0.0002
13	0.3814	0.3465	0.7291	•	0.9405	0.1977	0.8711	0.0254	0.0001
14	0.3436	0.3112	0.6742	0.9405	•	0.1748	0.8129	0.0218	0.0001
15	0.6630	0.7132	0.3361	0.1977	0.1748	•	0.2555	0.2787	0.0013
16	0.4728	0.4326	0.8535	0.8711	0.8129	0.2555	•	0.0352	0.0001
17	0.1371	0.1542	0.0507	0.0254	0.0218	0.2787	0.0352	•	0.0138
18	0.0005	0.0006	0.0002	0.0001	0.0001	0.0013	0.0001	0.0138	•
19	0.8956	0.8416	0.6841	0.4543	0.4118	0.5718	0.5556	0.1087	0.0004
20	0.0021	0.0024	0.0007	0.0003	0.0003	0.0053	0.0004	0.0512	0.5207
21	0.2832	0.2552	0.5814	0.8361	0.8947	0.1397	0.7125	0.0166	0.0001
22	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0002	0.0628
23	0.8601	0.8067	0.7172	0.4812	0.4372	0.5421	0.5857	0.1003	0.0004
24	0.0314	0.0360	0.0103	0.0049	0.0042	0.0735	0.0070	0.4390	0.0664
25	0.8939	0.8400	0.6856	0.4556	0.4130	0.5704	0.5570	0.1083	0.0004
26	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0006	0.1589
27	0.3799	0.4169	0.1662	0.0902	0.0786	0.6523	0.1208	0.5172	0.0035
28	0.1623	0.1820	0.0613	0.0310	0.0266	0.3224	0.0428	0.9213	0.0112
29	0.0162	0.0140	0.0482	0.0929	0.1063	0.0064	0.0687	0.0006	0.0001
30	0.2818	0.3120	0.1161	0.0611	0.0530	0.5125	0.0830	0.6577	0.0054
31	0.9599	0.9853	0.5577	0.3556	0.3197	0.6996	0.4431	0.1495	0.0006
32	0.1236	0.1393	0.0451	0.0225	0.0193	0.2546	0.0313	0.9527	0.0157

71

----- MONTH=9 -----

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUE*CONC*CAN_A*SEX Pr > |T| HO: LSMEAN(i) = LSMEAN(j)

Dependent Variable: LEN

i/	j 19	20	21	22	23	24	25	26	27
1	0.2150	0.0001	0.7575	0.0001	0.2309	0.0016	0.2157	0.0001	0.0334
2	0.9913	0.0015	0.3484	0.0001	0.9728	0.0235	0.9930	0.0001	0.3104
3	0.4048	0.0003	0.9049	0.0001	0.4298	0.0041	0.4059	0.0001	0.0767
4	0.0243	0.2061	0.0032	0.0011	0.0221	0.9967	0.0241	0.0033	0.1659
5	0.7770	0.0008	0.5007	0.0001	0.8116	0.0134	0.7786	0.0001	0.2039
6	0.7111	0.0034	0.1945	0.0001	0.6781	0.0505	0.7096	0.0001	0.5190
7	0.1669	0.0001	0.6440	0.0001	0.1799	0.0012	0.1675	0.0001	0.0244
8	0.4445	0.0081	0.0973	0.0001	0.4189	0.1069	0.4433	0.0001	0.8040
9	0.0984	0.0001	0.4479	0.0001	0.1067	0.0006	0.0987	0.0001	0.0131
10	0.8956	0.0021	0.2832	0.0001	0.8601	0.0314	0.8939	0.0001	0.3799
11	0.8416	0.0024	0.2552	0.0001	0.8067	0.0360	0.8400	0.0001	0.4169
12	0.6841	0.0007	0.5814	0.0001	0.7172	0.0103	0.6856	0.0001	0.1662
13	0.4543	0.0003	0.8361	0.0001	0.4812	0.0049	0.4556	0.0001	0.0902
14	0.4118	0.0003	0.8947	0.0001	0.4372	0.0042	0.4130	0.0001	0.0786
15	0.5718	0.0053	0.1397	0.0001	0.5421	0.0735	0.5704	0.0001	0.6523
16	0.5556	0.0004	0.7125	0.0001	0.5857	0.0070	0.5570	0.0001	0.1208
17	0.1087	0.0512	0.0166	0.0002	0.1003	0.4390	0.1083	0.0006	0.5172
18	0.0004	0.5207	0.0001	0.0628	0.0004	0.0664	0.0004	0.1589	0.0035
19	•	0.0016	0.3431	0.0001	0.9641	0.0240	0.9983	0.0001	0.3154
20	0.0016	•	0.0002	0.0172	0.0014	0.2075	0.0015	0.0486	0.0137
21	0.3431	0.0002	•	0.0001	0.3655	0.0032	0.3441	0.0001	0.0612
22	0.0001	0.0172	0.0001	•	0.0001	0.0011	0.0001	0.6087	0.0001
23	0.9641	0.0014	0.3655	0.0001	•	0.0219	0.9658	0.0001	0.2952
24	0.0240	0.2075	0.0032	0.0011	0.0219	•	0.0239	0.0033	0.1648
25	0.9983	0.0015	0.3441	0.0001	0.9658	0.0239	•	0.0001	0.3145
26	0.0001	0.0486	0.0001	0.6087	0.0001	0.0033	0.0001	•	0.0002
27	0.3154	0.0137	0.0612	0.0001	0.2952	0.1648	0.3145	0.0002	•
28	0.1295	0.0422	0.0203	0.0002	0.1197	0.3846	0.1291	0.0005	0.5820
29	0.0212	0.0001	0.1344	0.0001	0.0233	0.0001	0.0213	0.0001	0.0024
30	0.2303	0.0210	0.0409	0.0001	0.2144	0.2310	0.2295	0.0002	0.8358
31	0.8560	0.0023	0.2625	0.0001	0.8209	0.0347	0.8544	0.0001	0.4068
32	0.0977	0.0575	0.0147	0.0002	0.0900	0.4739	0.0973	0.0007	0.4804

General Linear Models Procedure Least Squares Means

Least Squares Means for effect DILUE*CONC*CAN_A*SEX Pr > |T| HO: LSMEAN(i)=LSMEAN(j)

Dependent Variable: LEN

i/	i 28	29	30	31	32
1	0.0107	0.2248	0.0219	0.1595	0.0076
2	0.1271	0.0217	0.2264	0.8475	0.0958
3	0.0260	0.1088	0.0517	0.3137	0.0188
4	0.3868	0.0001	0.2325	0.0350	0.4764
5	0.0775	0.0377	0.1443	0.6429	0.0575
6	0.2397	0.0098	0.3971	0.8497	0.1860
7	0.0077	0.2851	0.0159	0.1221	0.0055
8	0.4274	0.0042	0.6495	0.5572	0.3441
9	0.0040	0.4361	0.0084	0.0703	0.0029
10	0.1623	0.0162	0.2818	0.9599	0.1236
11	0.1820	0.0140	0.3120	0.9853	0.1393
12	0.0613	0.0482	0.1161	0.5577	0.0451
13	0.0310	0.0929	0.0611	0.3556	0.0225
14	0.0266	0.1063	0.0530	0.3197	0.0193
15	0.3224	0.0064	0.5125	0.6996	0.2546
16	0.0428	0.0687	0.0830	0.4431	0.0313
17	0.9213	0.0006	0.6577	0.1495	0.9527
18	0.0112	0.0001	0.0054	0.0006	0.0157
19	0.1295	0.0212	0.2303	0.8560	0.0977
20	0.0422	0.0001	0.0210	0.0023	0.0575
21	0.0203	0.1344	0.0409	0.2625	0.0147
22	0.0002	0.0001	0.0001	0.0001	0.0002
23	0.1197	0.0233	0.2144	0.8209	0.0900
24	0.3846	0.0001	0.2310	0.0347	0.4739
25	0.1291	0.0213	0.2295	0.8544	0.0973
26	0.0005	0.0001	0.0002	0.0001	0.0007
27	0.5820	0.0024	0.8358	0.4068	0.4804
28	•	0.0007	0.7300	0.1766	0.8745
29	0.0007	•	0.0016	0.0146	0.0005
30	0.7300	0.0016	•	0.3037	0.6158
31	0.1766	0.0146	0.3037	•	0.1350
32	0.8745	0.0005	0.6158	0.1350	•

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

check normality of split plot error
10:47 Tuesday, February 25, 1997

----- MONTH=6 -----

Univariate Procedure

Variable=RWGT

Moments

N	64	Sum Wgts	64
Mean	0	Sum	0
Std Dev	14.61554	Variance	213.6141
Skewness	0	Kurtosis	-0.45739
USS	13457.69	CSS	13457.69
CV	•	Std Mean	1.826943
T:Mean=0	0	Pr > T	1.0000
Num ^= 0	64	Num > 0	32
M(Sign)	0	Pr>= M	1.0000
Sgn Rank	-1	Pr>= S	0.9947
W:Normal	0.953087	Pr <w< td=""><td>0.0371</td></w<>	0.0371

Quantiles(Def=5)

100% Max	28.43542	99%	28.43542
75% Q3	7.034389	95%	26.66944
50% Med	-227E-15	90%	19.56456
25% Q1	-7.03439	10%	-19.5646
0% Min	-28.4354	5%	-26.6694
		1%	-28.4354
Range	56.87083		
Q3-Q1	14.06878		
Mode	-18.0936		

Lowest	Obs	Highest	Obs
-28.4354(42)	20.9926(32)
-28.4354(43)	26.66944(53)
-26.6694(55)	26.66944(56)
-26.6694(54)	28.43542(41)
-20.9926(31)	28.43542(44)

10:47 Tuesday, February 25, 1997

----- MONTH=6 ------

Univariate Procedure

Variable=RWGT

Stem	Leaf	#	Boxplot
2	7788	4	O _.
2	0011	4	
1	8888	4	
1	44	2	
0	556688	6	++
0	001122334444	12	*+*
-0	444433221100	12	
-0	886655	6	++
-1	44	2	
-1	8888	4	
-2	1100	4	ĺ
-2	8877	4	0
	++	-+	

Multiply Stem.Leaf by 10**+1

Univariate Procedure

Variable=RLEN

Moments

N	64	Sum Wgts	64
Mean	0	Sum	0
Std Dev	0.362797	Variance	0.131622
Skewness	0	Kurtosis	-0.28726
USS	8.292161	CSS	8.292161
CV	•	Std Mean	0.04535
T:Mean=0	0	Pr> T	1.0000
Num ^= 0	64	Num > 0	32
M(Sign)	0	Pr>= M	1.0000
Sgn Rank	-7	Pr>= S	0.9631
W:Normal	0.965382	Pr <w< td=""><td>0.1700</td></w<>	0.1700

Quantiles(Def=5)

100% Max	0.760417	99%	0.760417
75% Q3	0.293795	95%	0.705556
50% Med	-533E-17	90%	0.393398
25% Q1	-0.29379	10%	-0.3934
0% Min	-0.76042	5%	-0.70556
		1%	-0.76042
Range	1.520833		
Q3-Q1	0.587589		
Mode	-0.17331		

Lowest	Obs	Highest	Obs
-0.76042(42)	0.425(64)
-0.76042(43)	0.705556(13)
-0.70556(15)	0.705556(16)
-0.70556(14)	0.760417(41)
-0.425(62)	0.760417(44)

Univariate Procedure

Variable=RLEN

Stem	Leaf	#	Boxplot
7	1166	4	
6			ļ
5			1
4	22	2	
3	2233778899	10	
2	2277	4	++
1	77	2	
0	1155556688	10	*+*
-0	8866555511	10	
-1	77	2	
-2	7722	4	++
-3	9988773322	10	
-4	22	2	
- 5			
-6			:
-7	6611	4	
	+		

Multiply Stem.Leaf by 10**-1

Analysis of Medaka growth data check normality of split plot error

10:47 Tuesday, February 25, 1997

----- MONTH=9 -----

Univariate Procedure

Variable=RWGT

Moments

N	64	Sum Wgts	64
Mean	0	Sum	0
Std Dev	13.85269	Variance	191.8971
Skewness	0	Kurtosis	-0.9582
USS	12089.52	CSS	12089.52
CV	•	Std Mean	1.731587
T:Mean=0	0	Pr> T	1.0000
Num ^= 0	64	Num > 0	32
M(Sign)	0	Pr>= M	1.0000
Sgn Rank	-0.5	Pr>= S	0.9974
W:Normal	0.94207	Pr <w< td=""><td>0.0082</td></w<>	0.0082

Quantiles(Def=5)

100% Max	23.61071	99%	23.61071
75% Q3	9.324948	95%	22.3582
50% Med	-114E-15	90%	19.65697
25% Q1	-9.32495	10%	-19.657
0% Min	-23.6107	5%	-22.3582
		1%	-23.6107
Range	47.22143		
Q3-Q1	18.6499		
Mode	-10.4819		

Lowest	Obs	Highest	Obs
-23.6107(3)	21.42163(14)
-23.6107(2)	22.3582(38)
-22.3582(37)	22.3582(39)
-22.3582(40)	23.61071(4)
-21.4216(13)	23.61071(1)

Univariate Procedure

Variable=RWGT

Stem	Leaf	#	Boxplot
22	4466	4	
20	44	2	
18	77	2	
16	6655	4	
14	22	2	
12			
10	55	2	j
8	22	2	++
6	5588	4	
4	1122	4	
2	1199	4	
0	00	2	*+*
-0	00	2	
-2	9911	4	
-4	2211	4	
-6	8855	4	
-8	22	2	++
-10	55	2	
-12			
-14	22	2	
-16	5566	4	
-18	77	2	
-20	44	2	
-22	6644	4	
	+		

Univariate Procedure

Variable=RWGT

Analysis of Medaka growth data check normality of split plot error

10:47 Tuesday, February 25, 1997

______ MONTH=9 -----

Univariate Procedure

Variable=RLEN

Moments

64	Sum Wgts	64
0	Sum	0
0.209268	Variance	0.043793
0	Kurtosis	-1.198
2.758977	CSS	2.758977
•	Std Mean	0.026159
0	Pr>T	1.0000
64	Num > 0	32
0	Pr>= M	1.0000
1.5	Pr>= S	0.9921
0.917623	Pr <w< td=""><td>0.0002</td></w<>	0.0002
	0 0.209268 0 2.758977 0 64 0	0 Sum 0.209268 Variance 0 Kurtosis 2.758977 CSS . Std Mean 0 Pr> T 64 Num > 0 0 Pr>= M 1.5 Pr>= S

Quantiles(Def=5)

100% Ma	x 0.32658	99%	0.32658
75% Q3	0.18839	95%	0.316193
50% Me	d 0	90%	0.297321
25% Q1	-0.18839	10%	-0.29732
0% Mi	n -0.32658	5%	-0.31619
		1%	-0.32658
Range	0.653159		
Q3-Q1	0.376781		
Mode	-0.30854		

Lowest	Obs	Highest	Obs
-0.32658(60)	0.308543(44)
-0.32658(57)	0.316193(24)
-0.31619(23)	0.316193(21)
-0.31619(22)	0.32658(58)
-0.30854(43)	0.32658(59)

81

Univariate Procedure

Variable=RLEN

Stem	Leaf	#	Boxplot
3	00112233	8	
2	6677	4	
2	0011	4	
1	5588	4	++
1			
0	557799	6	
0	223344	6	*+*
-0	443322	6	
-0	997755	6	
-1			
-1	8855	4	++
-2	1100	4	
-2	7766	4	
-3	33221100	8	
	+		
_		_	

Multiply Stem.Leaf by 10**-1

Analysis of Medaka growth data check normality of split plot error 10:47 Tuesday, Feb

10:47 Tuesday, February 25, 1997

Univariate Procedure Schematic Plots

Variable=RWGT

Univariate Procedure Schematic Plots

Variable=RLEN

Analysis of Medaka growth data check normality of split plot error

10:47 Tuesday, February 25, 1997

OBS	MONTH	DILUENT	CONC	TANK	MNWGT	MNLEN	RMNWGT	RMNLEN
1	6	creek	0	1	374.350	26.1000	15.0000	0.02500
2	6	creek	0	2	344.350	26.0500	-15.0000	-0.02500
3	6	creek	0	3	371.857	26.8571	-4.8214	-0.14643
4	6	creek	0	4	381.500	27.1500	4.8214	0.14643
5	6	creek	1	5	389.950	26.7000	13.8000	0.57500
6	6	creek	1	6	362.350	25.5500	-13.8000	-0.57500
7	6	creek	1	7	380.632	26.0000	-2.5092	0.15000
8	6	creek	1	8	385.650	25.7000	2.5092	-0.15000
9	6	creek	5	9	414.526	26.6842	16.8584	0.29449
10	6	creek	5	10	380.810	26.0952	-16.8584	-0.29449
	6	creek	5	11	352.650	26.0000	-5.5639	0.44444
11		creek	5	12	363.778	25.1111	5.5639	-0.44444
12	6	creek	25	13	407.300	26.1000	-6.3250	-0.02500
13	6		25	14	419.950	26.1500	6.3250	0.02500
14	6	creek	25 25	15	408.350	25.2500	-1.4750	-0.27500
15	6	creek	25 25	16	411.300	25.8000	1.4750	0.27500
16	6	creek	0	17	385.600	26.7000	26.3000	0.42500
17	6	apg	0	18	333.000	25.8500	-26.3000	-0.42500
18	. 6 6	apg	0	19	435.263	29.9474	13.1579	1.00000
19 20	6	apg	Ö	20	408.947	27.9474	-13.1579	-1.00000
21	6	apg apg	1	21	392.650	27.8000	14.6250	0.47500
22	6	apg	1	22	363.400	26.8500	-14.6250	-0.47500
23	6	apg	1	23	406.050	27.3000	16.0750	0.22500
24	6	apg	1	24	373.900	26.8500	-16.0750	-0.22500
	6		5	25	385.550	27.6500	-6.2500	-0.27500
25	6	apg	5	26	398.050	28.2000	6.2500	0.27500
26 27	6	apg apg	5	27	359.667	27.9444	-41.0417	-0.37778
28	6	apg	5	28	441.750	28.7000	41.0417	0.37778
28 29	6		25	29	381.900	27.9000	-8.6611	-0.02222
	6	apg	25	30	399.222	27.9444	8.6611	0.02222
30	6	apg	25	31	397.400	27.8500	12.7750	0.77500
31	6	apg	25	32	371.850	26.3000	-12.7750	-0.77500
32	9	apg creek	0	1	507.944	28.1667	35.3264	0.39583
33 34	9	creek	Ö	2	437.292	27.3750	-35.3264	-0.39583
	_	creek	Ö	3	421.037	26.8148	-31.9360	-0.70623
35 36	9	creek	Ö	4	484.909	28.2273	31.9360	0.70623
37	9	creek	1	5	491.583	28.3750	7.6830	0.27446
38	9	creek	1	6	476.217	27.8261	- 7.6830	-0.27446
39	9	creek	1	7	439.889	26.7222	-11.5833	-0.27778
40	9	creek	1	8	463.056	27.2778	11.5833	0.27778
41	9	creek	5	9	451.833	27.5417	-13.2333	-0.49583
42	9	creek	5	10	478.300	28.5333	13.2333	0.49583
43	9	creek	5	11	491.063	28.4375	39.1979	0.81134
44	9	creek	5	12	412.667	26.8148	-39.1979	-0.81134
45	9	creek	25	13	512.037	28.6296	16.3995	0.45767
46	9	creek	25	14	479.238	27.7143	-16.3995	-0.45767
47	9	creek	25	15	521.913	28.5652	-15.9879	-0.32850
48	9	creek	25	16	553.889	29.2222	15.9879	0.32850
49	9	apg	0	17	454.031	28.3125	-13.4600	0.08308
	-							

Analysis of Medaka growth data check normality of split plot error

10:47 Tuesday, February 25, 1997

85

OBS	MONTH	DILUENT	CONC	TANK	MNWGT	MNLEN	RMNWGT	RMNLEN
50	0		0	18	480.951	28.1463	13.4600	-0.08308
50	9	apg	_		• • • • • • •		11.4700	0.31611
51	9	apg	0	19	567.440	29.1600		
52	9	apg	0	20	544.500	28.5278	-11.4700	-0.31611
53	9	apg	1	21	558.185	29.1852	30.4797	0.41517
54	9	apg	1	22	497.226	28.3548	-30.4797	-0.41517
55	9	apg	1	23	491.138	28.3103	-6.3134	-0.25659
56	9	apg	1	24	503.765	28.8235	6.3134	0.25659
57	9	apg	5	25	537.885	28.8077	19.8423	0.18956
58	9	apg	5	26	498.200	28.4286	-19.8423	-0.18956
59	9	apg	5	27	476.235	28.2059	-19.2886	-0.64706
60	9	apg	5	28	514.813	29.5000	19.2886	0.64706
61	9	apg	25	29	523.036	28.7143	1.1730	0.13300
62	9	apg	25	30	520.690	28.4483	-1.1730	-0.13300
63	9	apg	25	31	569.633	29.0667	14.5329	0.18198
64	9	apg	25	32	540.568	28.7027	-14.5329	-0.18198

Analysis of Medaka growth data check normality of whole plot error

10:47 Tuesday, February 25, 1997

______ MONTH=6 -----

Univariate Procedure

Variable=RMNWGT

Moments

N	32	Sum Wgts	32
Mean	0	Sum	0
Std Dev	16.26621	Variance	264.5896
Skewness	0	Kurtosis	0.783338
USS	8202.278	CSS	8202.278
CV	•	Std Mean	2.875487
T:Mean=0	0	Pr> T	1.0000
Num ^= 0	32	Num > 0	16
M(Sign)	0	Pr>= M	1.0000
Sgn Rank	0	Pr>= S	1.0000
W:Normal	0.982429	Pr <w< td=""><td>0.8896</td></w<>	0.8896

Quantiles(Def=5)

100% Max	41.04167	99%	41.04167
75% Q3	12.96645	95%	26.3
50% Med	-256E-15	90%	16.075
25% Q1	-12.9664	10%	-16.075
0% Min	-41.0417	5%	-26.3
		1%	-41.0417
Range	82.08333		
Q3-Q1	25.93289		
Mode	-41.0417		

Lowest	Obs	Highest	Obs
-41.0417(27)	15(1)
-26.3(18)	16.075(23)
-16.8584(10)	16.8584(9)
-16.075(24)	26.3(17)
-15(2)	41.04167(28)

10:47 Tuesday, February 25, 1997

----- MONTH=6 -----

Univariate Procedure

Variable=RMNWGT

Stem	Leaf	#	Boxplot
4	1	1	
3			
2	6	1	
1	3345567	7	++
0	1356669	7	*+*
-0	9666531	7	
-1	7655433	7	++
-2	6	1	
-3			
-4	1	1	
	+		

Multiply Stem.Leaf by 10**+1

Univariate Procedure

Variable=RMNLEN

Moments

N	32	Sum Wgts	32
Mean	0	Sum	0
Std Dev	0.440822	Variance	0.194324
Skewness	0	Kurtosis	0.077776
USS	6.024058	CSS	6.024058
CV	•	Std Mean	0.077927
T:Mean=0	0	Pr> T	1.0000
Num ^= 0	32	Num > 0	16
M(Sign)	0	Pr>= M	1.0000
Sgn Rank	1	Pr>= S	0.9854
W:Normal	0.994028	Pr <w< td=""><td>0.9994</td></w<>	0.9994

Quantiles(Def=5)

100% Max	1	99%	1
75% Q3	0.284743	95%	0.775
50% Med	-142E-16	90%	0.475
25% Q1	-0.28474	10%	-0.475
0% Min	-1	5%	-0.775
		1%	-1
Range	2		
Q3-Q1	0.569486		
Mode	-1		

Lowest	Obs	Highest	Obs
-1(20)	0.444444(11)
-0.775(32)	0.475(21)
-0.575(6)	0.575(5)
-0.475(22)	0.775(31)
-0.44444(12)	1(19)

Univariate Procedure

Variable=RMNLEN

Stem	Leaf	#	Boxplot
10	0	1	
8			
6	8	1	
4	2488	4	
2	28898	5	++
0	22255	5	*+*
-0	55222	5	
-2	89882	5	++
-4	8842	4	
-6	8	1	
-8			
-10	0	1	
	+		

Multiply Stem.Leaf by 10**-1

Analysis of Medaka growth data check normality of whole plot error

10:47 Tuesday, February 25, 1997

______ MONTH=9 -----

Univariate Procedure

Variable=RMNWGT

Moments

N	32	Sum Wgts	32
Mean	0	Sum	0
Std Dev	21.18607	Variance	448.8497
Skewness	0	Kurtosis	-0.82574
USS	13914.34	CSS	13914.34
CV	•	Std Mean	3.745204
T:Mean=0	0	Pr > T	1.0000
Num ^= 0	32	Num > 0	16
M(Sign)	0	Pr>= M	1.0000
Sgn Rank	0	Pr>= S	1.0000
W:Normal	0.96409	Pr <w< td=""><td>0.4113</td></w<>	0.4113

Quantiles(Def=5)

100% Max 75% Q3 50% Med 25% Q1 0% Min	39.19792 15.2604 -909E-15 -15.2604 -39.1979	99% 95% 90% 10% 5% 1%	39.19792 35.32639 30.47969 -30.4797 -35.3264 -39.1979
Range Q3-Q1 Mode	78.39583 30.52081 -39.1979		

Lowest	Obs	Highest	Obs
-39.1979(12)	19.84231(25)
-35.3264(2)	30.47969(21)
-31.936(3)	31.93603(4)
-30.4797(22)	35.32639(1)
-19.8423(•	39.19792(11)

Univariate Procedure

Variable=RMNWGT

Stem	Leaf	#	Boxplot
3	0259	4	
2	0	1	
1	12335669	8	++
0	168	3	*+*
-0	861	3	
-1	96653321	8	++
-2	0	1	
-3	9520	4	ĺ
	+		
	1 . 1 . Oh		

Multiply Stem.Leaf by 10**+1

Analysis of Medaka growth data check normality of whole plot error

10:47 Tuesday, February 25, 1997

----- MONTH=9 -----

Univariate Procedure

Variable=RMNLEN

Moments

N	32	Sum Wgts	32
Mean	0	Sum	0
Std Dev	0.431045	Variance	0.1858
Skewness	0	Kurtosis	-0.91765
USS	5.759796	CSS	5.759796
CV	•	Std Mean	0.076199
T:Mean=0	0	Pr> T	1.0000
Num ^= 0	32	Num > 0	16
M(Sign)	0	Pr>= M	1.0000
Sgn Rank	0.5	Pr>= S	0.9927
W:Normal	0.967	Pr <w< td=""><td>0.4811</td></w<>	0.4811

Quantiles(Def=5)

100% Max	0.811343	99%	0.811343
75% Q3	0.322307	95%	0.706229
50% Med	5.33E-15	90%	0.495833
25% Q1	-0.32231	10%	-0.49583
0% Min	-0.81134	5%	-0.70623
		1%	-0.81134
Range	1.622685		
Q3-Q1	0.644614		
Mode	-0.81134		

Lowest	Obs	Highest	Obs
-0.81134(12)	0.457672(13)
-0.70623(3)	0.495833(10)
-0.64706(27)	0.647059(28)
-0.49583(9)	0.706229(4)
-0.45767(14)	0.811343(11)

Univariate Procedure

Variable=RMNLEN

Stem	Leaf	#	Boxplot
8	1	1	
6	51	2	
4	0260	4	
2	67823	5	++
0	8389	4	*+*
-0	9838	4	
-2	32876	5	++
-4	0620	4	
-6	15	2	
-8	1	1	
	+		

Multiply Stem.Leaf by 10**-1

10:47 Tuesday, February 25, 1997

Univariate Procedure Schematic Plots

Variable=RMNWGT

Univariate Procedure Schematic Plots

Variable=RMNLEN

______ MONTH=6 -----

General Linear Models Procedure Class Level Information

Class	Levels	Values		
DILUENT	2	apg creek		
CONC	4	0 1 5 25		
CAN_AGT	2	DEN NONE		

Number of observations in by group = 16

General Linear Models Procedure

Dependent Variabl	e: ARMNWGT				
		Sum of	Mean	_	_
Source	DF	Squares	Square	F Value	Pr > F
Model	12	1137.2707435	94.7725620	0.86	0.6364
Error	3	331.1879166	110.3959722		
Corrected Total	15	1468.4586601			
	R-Square	c.v.	Root MSE	ARM	NWGT Mean
	0.774466	81.91012	10.506949		12.827412
Source	DF	Type I SS	Mean Square	F Value	Pr > F
DILUENT	1	328.81247565	328.81247565	2.98	0.1828
CONC	3	226.99222669	75.66407556	0.69	0.6181
CAN AGT	1	6.76054304	6.76054304	0.06	0.8205
DILUENT*CONC	3	20.46634982	6.82211661	0.06	0.9766
CONC*CAN AGT	3	291.57782348	97.19260783	0.88	0.5405
DILUENT*CAN_AGT	1	262.66132484	262.66132484	2.38	0.2206
Source	DF	Type III SS	Mean Square	F Value	Pr > F
DILUENT	1	328.81247565	328.81247565	2.98	0.1828
CONC	3	226.99222669	75.66407556	0.69	0.6181
CAN AGT	1	6.76054304	6.76054304	0.06	0.8205
DILUENT*CONC	3	20.46634982	6.82211661	0.06	0.9766
CONC*CAN AGT	3	291.57782348	97.19260783	0.88	0.5405
DILUENT*CAN_AGT	1	262.66132484	262.66132484	2.38	0.2206

General Linear Models Procedure

Dependent Variabl	Le: ARMNLEN	_			
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	1.06489851	0.08874154	5.39	0.0958
Model		1.0040,001	0.000.1201		
Error	3	0.04937701	0.01645900		
Corrected Total	15	1.11427552			
	R-Square	c.v.	Root MSE	ARMI	NLEN Mean
	0.955687	37.25134	0.1282927	(3443975
Source	DF	Type I SS	Mean Square	F Value	Pr > F
DILUENT	1	0.16802637	0.16802637	10.21	0.0495
CONC	3	0.03223586	0.01074529	0.65	0.6327
CAN AGT	1	0.10191136	0.10191136	6.19	0.0886
DILUENT*CONC	3	0.28865328	0.09621776	5.85	0.0905
CONC*CAN AGT	3	0.40060777	0.13353592	8.11	0.0596
DILUENT*CAN_AGT	1	0.07346387	0.07346387	4.46	0.1250
Source	DF	Type III SS	Mean Square	F Value	Pr > F
DILUENT	1	0.16802637	0.16802637	10.21	0.0495
CONC	3	0.03223586	0.01074529	0.65	0.6327
CAN_AGT	1	0.10191136	0.10191136	6.19	0.0886
DILUENT*CONC	3	0.28865328	0.09621776	5.85	0.0905
CONC*CAN AGT	3	0.40060777	0.13353592	8.11	0.0596
DILUENT*CAN_AGT	1	0.07346387	0.07346387	4.46	0.1250

General Linear Models Procedure
Class Level Information

Class	Levels	Values		
DILUENT	2	apg creek		
CONC	4	0 1 5 25		
CAN AGT	2	DEN NONE		

Number of observations in by group = 16

General Linear Models Procedure

Dependent Variabl	Le: ARMNWGT	Sum of	Mean		
Source	DF	Sum of Squares	Square	F Value	Pr > F
Model	12	1452.9532595	121.0794383	1.12	0.5262
Error	3	323.5550595	107.8516865		
Corrected Total	15	1776.5083190			
	R-Square	c.v.	Root MSE	ARM	NWGT Mean
	0.817870	57.71396	10.385167		17.994203
Source	DF	Type I SS	Mean Square	F Value	Pr > F
DILUENT	1	187.60424203	187.60424203	1.74	0.2788
CONC	3	404.01059118	134.67019706	1.25	0.4297
CAN AGT	1	10.10110999	10.10110999	0.09	0.7796
DILUENT*CONC	3	450.99408637	150.33136212	1.39	0.3957
CONC*CAN AGT	3	303.15583893	101.05194631	0.94	0.5207
DILUENT*CAN_AGT	1	97.08739097	97.08739097	0.90	0.4127
Source	DF	Type III SS	Mean Square	F Value	Pr > F
DILUENT	1	187.60424203	187.60424203	1.74	0.2788
CONC	3	404.01059118	134.67019706	1.25	0.4297
CAN AGT	1	10.10110999	10.10110999	0.09	0.7796
DILUENT*CONC	3	450.99408637	150.33136212	1.39	0.3957
CONC*CAN AGT	3	303.15583893	101.05194631	0.94	0.5207
DILUENT*CAN_AGT	1	97.08739097	97.08739097	0.90	0.4127

General Linear Models Procedure

Dependent Variabl	le: ARMNLEN				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Source	Dr	bquares	bquare	. ,	
Model	12	0.63157095	0.05263091	7.66	0.0599
Error	3	0.02061491	0.00687164		
Corrected Total	15	0.65218586			
	R-Square	c.v.	Root MSE	ARM	NLEN Mean
	0.968391	22.21573	0.0828953		0.3731381
Source	DF	Type I SS	Mean Square	F Value	Pr > F
DILUENT	1	0.14536773	0.14536773	21.15	0.0193
CONC	3	0.16237509	0.05412503	7.88	0.0620
CAN AGT	1	0.07303276	0.07303276	10.63	0.0471
DILUENT*CONC	3	0.09257173	0.03085724		
CONC*CAN AGT	3	0.15781490	0.05260497	7.66	0.0643
DILUENT*CAN_AGT	1	0.00040874	0.00040874	0.06	0.8230
Source	DF	Type III SS	Mean Square	F Value	Pr > F
DILUENT	1	0.14536773	0.14536773	21.15	0.0193
CONC	3	0.16237509	0.05412503	7.88	0.0620
CAN AGT	1	0.07303276	0.07303276	10.63	0.0471
DILUENT*CONC	3	0.09257173	0.03085724	4.49	0.1245
CONC*CAN_AGT	3	0.15781490	0.05260497	7.66	
DILUENT*CAN_AGT	1	0.00040874	0.00040874	0.06	0.8230

APPENDIX 57

SUMMARY OF THE SIX-MONTH INTERIM AND NINE-MONTH FINAL JAPANESE MEDAKA CHRONIC HISTOPATHOLOGY RESULTS

U.S. ARMY BIOMEDICAL RESEARCH AND DEVELOPMENT LABORATORY TEST 401-002R EPL PROJECT NUMBER 406-035

WEST BRANCH CANAL CREEK CARCINOGENICITY STUDY WITH MEDAKA SIX MONTH INTERIM SACRIFICE PATHOLOGY SUMMARY

A histopathologic examination of tissues from fish of the species Oryzias latipes (Medaka) was performed to determine the need for remediation at West Branch Canal Creek, Aberdeen Proving Ground.

Groundwater was pumped from a well on-site into two flow-through diluter systems in a biomonitoring trailer. One system had water from the West Branch of Canal Creek as the dilution water. The dilution water in the second system was dechlorinated tap water. Throughout the study laboratory control medaka were maintained at Fort Detrick in well water. At 13 days of age medaka were either initiated or not initiated with 10 mg/L diethylnitrosamine (DEN) for 48 hours. Exposure to the groundwater began at 16 days of age. At six months into the study approximately 20 medaka from each exposure group were euthanized for evaluation. The study design was as follows.

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

Group ID	Diluent Water	DEN (mg/L)	Groundwater (%)	No. of Fish at Study Start (Each Group)	No. of Fish Submitted at 6 months (Each Group)
1, 2 3, 4	Canal Creek Canal Creek	0 10	0	80, 80 80, 80	20, 20 21, 20
5, 6	Canal Creek	ő	1	80, 80	20, 20
7, 8	Canal Creek	10	1	80, 80	20, 20
9, 10	Canal Creek	0	5	80, 80	20, 21
11, 12	Canal Creek	10	5	80, 80	20, 20
13, 14	Canal Creek	0	. 25	80, 80	20, 20
15, 16	Canal Creek	10	25	80, 80	20, 20
17, 18	Dechlorinated Tap	0	0	80, 80	20, 20
19, 20	Dechlorinated Tap	10	0	80, 80	19, 20
21, 22	Dechlorinated Tap	0	1	80, 80	20, 20
23, 24	Dechlorinated Tap	10	1	80, 80	20, 20
25, 26	Dechlorinated Tap	0	5	80, 80	20, 20
27, 28	Dechlorinated Tap	10	5	80, 80	19, 20
29, 30	Dechlorinated Tap	0	25	80, 80	20, 19
31, 32	Dechlorinated Tap	10	25	80, 80	20, 20
33, 34	Lab Well	0	0	80, 80	20, 20
35, 36	Lab Well	10	0	80, 80	19, 20

Hematoxylin and eosin stained slides of each fish were prepared by Experimental Pathology Laboratories, Inc. The fish were sampled by cutting five step-sections through the whole fish in a longitudinal plane except when the location of a lesion necessitated an alternate method of sectioning. In fish with eye lesions the head was usually sectioned transversely while the body was sectioned longitudinally. The following tissues were evaluated: bone (vertebra), brain, chromaffin tissue, corpuscle of Stannius, esophagus, eye, gallbladder, gill, heart, hematopoietic tissue, interrenal tissue, intestine, kidney, liver, nares, ovary, pancreas, peripheral nerve, pineal organ, pituitary gland, pseudobranch, skeletal muscle, skin, spinal cord, spleen, stato-acoustic organ, swim bladder, testis, thymus, thyroid tissue, urinary bladder and gross lesions.

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

MEDAKA (GROUPS 1-16) HOUSED IN CANAL CREEK WATER AS DILUENT WATER RESULTS

In medaka that were initiated with DEN, hepatocellular adenomas and hepatocellular carcinomas occurred among controls and groups exposed to various concentrations of groundwater in both males and females. In general the incidence was higher among the male medaka. Because the neoplasms occurred in all the exposure groups and the controls, it appears that the Canal Creek diluent water may have had a promotional effect in the liver, but why the incidence was higher in males among controls and medaka exposed to 25% groundwater as compared to medaka exposed to 1% and 5% groundwater is not known. Basophilic areas/foci and eosinophilic foci in the liver occurred in both males and females in control and groundwater exposure groups that were initiated with DEN. Following in Tables 1 and 2 are tabulations with the replicate groups combined of the incidences of liver neoplasms and foci in males (Table 1) and females (Table 2) initiated with DEN.

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

TABLE 1

Incidences of Liver Neoplasms and Foci in Male Medaka Initiated with DEN					
Group Numbers	3/4	7/8	11/12	15/16	
Groundwater Concentration	0	1%	5%	25%	
Total Number Medaka	(20)	(19)	(21)	(25)	
Hepatocellular Adenoma	4 ¹	3 ²	2 ³	8	
Hepatocellular Carcinoma	3	0	1	2	
Basophilic Area/Foci	0	2	1	3	
Eosinophilic Foci	6	1	7	7	

TABLE 2

Incidences of Liver Neoplasms and Foci in Female Medaka Initiated with DEN						
Group Numbers	3/4	7/8	11/12	15/16		
Groundwater Concentration	0	1%	5%	25%		
Total Number Medaka	(21)	(21)	(19)	(15)		
Hepatocellular Adenoma	3	3	1	2		
Hepatocellular Carcinoma	0	0	1	0		
Basophilic Area/Foci	4	5	71	3		
Eosinophilic Foci	1	11	1	3		

¹One fish had both a basophilic area and basophilic foci.

¹One fish had multiple adenomas. ²One fish died early. ³One fish also had a hepatocellular carcinoma.

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

Among the female medaka initiated with DEN there appears to be no promotional effect of the groundwater as the incidences of liver neoplasms and foci are similar among the various exposure groups. Among the male medaka initiated with DEN the incidence of neoplasia is highest in medaka exposed to 25% groundwater. However, there is also a high incidence among control males and a relatively low incidence in male medaka exposed to 1% and 5% groundwater which indicates that there is no promotional effect of the groundwater.

Following in Tables 3 and 4 are incidences of liver neoplasms and foci in male (Table 3) and female (Table 4) medaka that were not exposed to DEN.

TABLE 3

Incidences of Liver Neoplasms and Foci in Male Medaka Not Initiated with DEN						
Group Numbers 1/2 5/6 9/10 13/14						
Groundwater Concentration	0	1%	5%	25%		
Total Number Medaka	(23)	(19)	(22)	(23)		
Hepatocellular Adenoma	0	2	0	0		
Hepatocellular Carcinoma	0	0	0	0		
Basophilic Foci	0	0	1	1		
Eosinophilic Foci	0	0	1	0		

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

Special stains were applied to selected slides for fish Nos. 3-14, 4-16, 12-22, 15-19 and 15-24. The results of these stains are discussed in the appropriate place in this report.

Tissues that were not present for examination in one or more medaka included bone (vertebra), chromaffin tissue, corpuscle of stannius, gallbladder, gonad, interrenal tissue, nares, pineal organ, pituitary, pseudobranch, spinal cord, spleen, swim bladder, thymus, and urinary bladder. Occasional absence of these tissues is a condition inherent in the sectioning method and did not affect the overall evaluation of the histopathology data. Only one medaka (Group 20 medaka Number 6) could not be identified as to sex because of no gonad in the section.

Microscopic findings for each tissue examined from each medaka are listed in the Histopathology Incidence Tables by sex. Inflammatory, degenerative and hyperplastic changes were graded from 1 to 5 depending upon severity. Nongradable changes, e.g., neoplasms, were designated as present (P). Tissues of insufficient quantity for evaluation are indicated with an "I." All lesions are summarized by sex and disposition on the Summary Incidence Tables. All lesions are summarized by sex and with sexes combined on the Incidence/Examined Summary with % Incidence tables. All neoplasms are presented on the Neoplasm Summary Incidence Tables by sex. A correlation of gross observations with the corresponding microscopic findings is presented in the Correlation of Gross and Microscopic Findings tables.

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

TABLE 4

Incidences of Liver Neoplasms and Foci in Female Medaka Not Initiated with DEN							
Group Numbers 1/2 5/6 9/10 13/14							
Groundwater Concentration	0	1%	5%	25%			
Total Number Medaka (17) (21) (19)							
Hepatocellular Adenoma	0	0	1	0			
Hepatocellular Carcinoma	1	0	0	0			
Basophilic Foci	0	1	1	1			
Eosinophilic Foci	0	0	1	0			

The incidence of liver neoplasms and foci among groups of medaka that were not treated with DEN was less than in medaka initiated with DEN and the occurrence was sporadic among the groups. There appears to be no effect of either Canal Creek water or groundwater on the incidence of liver neoplasms or foci in either male or female medaka that were not initiated with DEN.

Hepatocellular vacuolation occurred to some degree in almost 100% of the medaka. Among male medaka the severity of the vacuolation varied from minimal (in one fish) to severe. Among female medaka the severity of the vacuolation varied from minimal to moderately severe. A vacuolated hepatocyte focus is a discrete area of hepatocytes that are vacuolated to a greater degree than the surrounding hepatocytes. This liver change occurred in 33 of 172 total male medaka and in 22 of 150 total female medaka. The change occurred more frequently among male and female medaka that had been exposed to DEN than among those medaka not

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

exposed to DEN. Cystic degeneration in the liver occurred among males and females in all groups and there appeared to be no marked differences in incidence or severity between male and female medaka and no differences between groups with respect to concentration of groundwater.

One Group 13 medaka No. 13 had an unusual area of cellular alteration in the liver which occupied approximately one third of the liver and was located ventrally. The area did not appear to distort the normal contour of the liver, nor did it appear to compress or invade the adjacent hepatic parenchyma. The cells of the area varied from being severely vacuolated to being larger than normal with a gray-blue granular cytoplasm. The lesion was diagnosed as "Area of Cellular Alteration" although a differential diagnosis of hepatocellular adenoma was considered.

A number of other liver changes were diagnosed, but the incidence, distribution and severity were such that they did not appear to be related to exposure. These changes are tabulated on the Summary Incidence Tables.

Hyaline material in the glomeruli of the kidney was an unusual change that occurred in the kidney of a number of medaka in all the exposure groups including the controls. There was no difference in incidence between males and females. There was a greater number of affected medaka among those that were initiated with DEN as compared to those that were not exposed to DEN (50 of 161 as compared to 27 of 161 respectively). The hyaline material occurred in and around glomerular capillary tufts and in a few medaka a similar material was located in

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

the cytoplasm of renal tubular epithelium. The hyaline deposit was usually minimal to mild but in several medaka the change was moderate to moderately severe. Interestingly the change was moderate to moderately severe in five medaka that also had a hepatocellular carcinoma in the liver. Hyaline droplet accumulation in rodent kidney proximal tubules has been associated with the occurrence of histiocytic sarcoma in rodents. In medaka, however, the hyaline material is primarily in the glomeruli, and the association of the hyaline deposition with neoplasia is not a consistent finding. Although 22 of the medaka with liver neoplasia also had hyaline material in glomeruli to some degree, there were also medaka with glomerular hyaline material (usually minimal to mild in severity) that had no liver neoplasia and medaka with liver neoplasia that had no hyaline material in glomeruli.

Special stains were applied to slides on which the lesion of hyaline material in the glomeruli was present. The stains were Mallory's Heidenhain for protein, periodic acid-Schiff (PAS) for such tissue products as glycoproteins and fibrin, Ziehl-Neelson acid fast stain for lipofuscin and congo red and crystal violet stains for amyloid. The Ziehl-Neelson stained glomeruli were negative for lipofuscin. The hyaline deposits stained positively with Mallory's Heidenhain and PAS. The crystal violet stain was variably positive for amyloid. The hyaline material was stained by the congo red stain, but

¹G.C. Hard and R.T. Snowden, Hyaline droplet accumulation in rodent kidney proximal tubules: an association with histiocytic sarcoma, <u>Toxicologic Pathology</u>, 1991, Vol. 19:2, pp. 88-97.

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

the stained areas did not exhibit green birefringence under polarized light to verify the presence of amyloid. The results indicate that the hyaline material is protein in nature, but precise identification was not made by this battery of stains. The pathogenesis of this hyaline deposit is not known.

Other changes which occurred commonly in the kidney among medaka of almost all groups included dilatation of Bowman's space, tubular dilatation and tubular casts. Neither the incidence nor severity of these changes occurred in a dose related fashion. Other kidney changes occurred sporadically among the groups and are tabulated in the Summary Incidence Tables. These changes usually occurred in only a few fish and there was no apparent relationship to exposure.

Increased basophilia of the follicular cells of the thyroid tissues occurred in 23 of 172 male medaka and in only five of 150 female medaka. Vacuolation of thyroid follicular cells was diagnosed in 22 of 172 male medaka and in only one of 150 female medaka. The reason for this increased basophilia and vacuolation of follicular cells especially in male medaka is not known.

Granulomas or focal granulomatous inflammation occurred sporadically in a variety of tissues in medaka in almost all groups. Metazoan parasites were present in a number of the granulomas that occurred in the intestine, mesentery, oviduct and pericardial cavity and in a number of the focal granulomatous inflammatory lesions of the skeletal muscle. This finding of parasites in the tissues of medaka exposed to natural surface water (Canal Creek) was not unexpected.

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

Lymphosarcoma, presumably of thymic origin, occurred in one Group 7 female medaka (7-24), one Group 8 male medaka (8-22) and one Group 13 male medaka (13-12). A hemangioma occurred in the ovary of control female medaka 1-17.

A variety of non-neoplastic lesions in a number of different tissues occurred sporadically among medaka and are tabulated in the Summary Incidence Tables. These lesions either occurred in only a few fish or, if they occurred in both control and exposed groups, neither the incidence nor the severity suggested a relationship to exposure to groundwater.

CONCLUSIONS

It appears that the water of Canal Creek that was used as a diluent water in the study had a promotional effect on the liver for neoplasia and foci of cellular alteration in male and female medaka that were initiated with DEN. There appears to be no promotional effect of the groundwater on the liver for neoplasia or foci of cellular alteration in male or female medaka that were initiated with DEN. There appears to be no effect of either Canal Creek or groundwater on the incidence of liver neoplasia or foci of cellular alteration in either male or female medaka that were not initiated with DEN.

Hyaline material in the glomeruli of the kidney is an interesting change that occurred in a number of medaka in all groups including the controls, although the incidence overall was greater among

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

the medaka that were initiated with DEN as compared to those that were not initiated with DEN. The pathogenesis of this kidney change is not known. Special stains indicate that the hyaline material is protein in nature.

Metazoan parasites were associated with granulomas or focal granulomatous inflammation in the intestine, mesentery, oviduct, pericardial cavity and skeletal muscle. This finding was not unexpected in medaka exposed to a natural surface water.

MEDAKA (GROUPS 17-32) HOUSED IN DECHLORINATED TAP WATER AS DILUENT WATER RESULTS

In medaka that were initiated with DEN, hepatocellular adenomas occurred among both males and females and hepatocellular carcinomas occurred only in male medaka. The incidence of hepatocellular adenomas was higher in the males than in the females.

Basophilic areas/foci and/or eosinophilic foci in the liver occurred in both males and females in control and all but one (Group 24) of the groundwater exposure groups that were initiated with DEN. Following in Tables 5 and 6 are tabulations with the replicate groups combined of the incidences of liver neoplasms and foci in males (Table 5) and females (Table 6) initiated with DEN.

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

TABLE 5

Incidences of Liver Neoplasms and Foci in Male Medaka Initiated with DEN							
Group Numbers 19/20 23/24 27/28 31/32							
Groundwater Concentration	0	1%	5%	25%			
Total Number Medaka (21) (24) (20) (19							
Hepatocellular Adenoma	0	1	11	3			
Hepatocellular Carcinoma	0	1	1	0			
Basophilic Area/Foci	4	0	1	1			
Eosinophilic Foci	2	4	3	5			

¹This fish had multiple adenomas

TABLE 6

Incidences of Liver Neoplasms and Foci in Female Medaka Initiated with DEN							
Group Numbers 19/20 23/24 27/28 31/32							
Groundwater Concentration 0 1% 5% 25							
Total Number Medaka (17) (16) (19) (2)							
Hepatocellular Adenoma	1	0	0	1			
Hepatocellular Carcinoma	0	0	0	0			
Basophilic Area/Foci	8	0	2	2			
Eosinophilic Foci	0	1	1	3			

Among the female medaka initiated with DEN there appears to be no promotional effect of the groundwater as there is no dose relationship between treatment and the incidences of neoplasms or foci.

Among the male medaka initiated with DEN liver neoplasms occurred only

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

in medaka exposed to groundwater but the incidence is low at each of the groundwater concentrations. There is no dose relationship in incidence of liver neoplasms or foci.

Following in Tables 7 and 8 are incidences of liver neoplasms and foci in male (Table 7) and female (Table 8) medaka that were not exposed to DEN.

TABLE 7

Incidences of Liver Neoplasms and Foci in Male Medaka Not Initiated with DEN							
Group Numbers 17/18 21/22 25/26 29/30							
Groundwater Concentration	0	1%	5%	25%			
Total Number Medaka (19) (18) (19) (19							
Hepatocellular Adenoma	1	1	1	1			
Hepatocellular Carcinoma	0	0	0	0			
Basophilic Foci 0 0 1							
Eosinophilic Foci	0	0	0	1			

TABLE 8

Incidences of Liver Neoplasms and Foci in Female Medaka Not Initiated with DEN							
Group Numbers 17/18 21/22 25/26 29/30							
Groundwater Concentration	0	1%	5%	25%			
Total Number Medaka (21) (22) (21) (20)							
Hepatocellular Adenoma	0	0	0	1			
Hepatocellular Carcinoma	0	0	0	0			
Basophilic Foci	0	0	0	0			
Eosinophilic Foci	0	0	0	0			

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

The incidence of liver neoplasms and foci among groups of medaka that were not treated with DEN was less than in medaka initiated with DEN. Only one female exposed to 25% groundwater had a hepatocellular adenoma. One male medaka among the controls and at each of the groundwater concentrations had a hepatocellular adenoma. There appears to be no effect of groundwater on the incidence of liver neoplasms or foci in either male or female medaka that were not initiated with DEN.

Hepatocellular vacuolation occurred to some degree in about 89% of the medaka. Among both males and females the severity of the vacuolation varied from minimal to moderately severe with less than ten medaka having moderately severe vacuolation. Vacuolated hepatocyte foci occurred in 49 of 159 total male medaka and 32 of 157 total female medaka. The change occurred more frequently among male and female medaka that had been exposed to DEN than among those medaka not exposed to DEN. Cystic degeneration in the liver occurred among males and females in all groups and there appeared to be no marked differences in incidence or severity between male and female medaka and no differences between groups with respect to concentration of groundwater. The incidence of hepatic cysts in the liver is greater among female medaka (39 of 157) than among male medaka (16 of 159). The incidence, however, is not related in either sex to groundwater concentration or DEN initiation.

A number of other liver changes were diagnosed, but the incidence, distribution and severity were such that they did not appear

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

to be related to exposure. These changes are tabulated on the Summary Incidence Tables.

Hyaline material in the glomeruli of the kidney occurred only in four of 157 female medaka and three of 159 male medaka and was usually minimal in severity. In one male medaka (No. 32-22) initiated with DEN and exposed to 25% groundwater there was a hepatocellular adenoma as well as hyaline material in glomeruli.

Other changes which occurred commonly in the kidney throughout most groups were dilatation of Bowman's space, tubular dilatation and tubular casts. These changes occurred more frequently among the males than the females, but neither the incidence nor the severity of these changes occurred in a dose related or exposure related manner. Other kidney changes occurred sporadically among the groups and are tabulated in the Summary Incidence Tables. These changes usually occurred in only a few fish and there was no apparent relationship to exposure to groundwater.

Increased basophilia of the follicular cells of the thyroid tissue occurred in 51 of 159 male medaka and only three of 157 female medaka. The incidence did not appear to be related to exposure to groundwater. Vacuolation of thyroid follicular cells was diagnosed in 38 of 159 male medaka and in no female medaka. The reason for increased basophilia and vacuolation of follicular cells in male medaka is not known.

In the gills there was fusion of gill lamellae and hyperplasia of gill epithelium among males and females in all groups. The severity

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

was minimal to mild and there was no apparent relationship to the exposure concentration of groundwater. The incidence of these lesions was highest in medaka from groups 23 and 24 initiated with DEN and exposed to 1% groundwater, but the reason for the higher incidence in these groups over other groups is not known.

Granulomas occurred sporadically in a variety of tissues in both control fish and fish exposed to groundwater. No metazoan parasites were associated with granulomas.

A seminoma was diagnosed in the ovary of one Group 28 medaka (28-3).

A variety of non-neoplastic lesions in a number of different tissues occurred sporadically among medaka and are tabulated in the Summary Incidence Tables. These lesions either occurred in only a few fish or, if they occurred in both control and exposed groups, neither the incidence nor the severity suggested a relationship to exposure to groundwater.

CONCLUSIONS

Hepatocellular adenomas and carcinomas occurred in male medaka initiated with DEN and exposed to 1%, 5% and 25% groundwater, but not in controls. The number of affected fish was low and there was no relationship to concentration of groundwater. Only two female medaka initiated with DEN, one control and one exposed to 25% groundwater, had hepatocellular adenomas. Foci of cellular alteration occurred in both control and exposed groups among males and females initiated with DEN,

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

but there was no relationship of incidence to concentration of groundwater.

The incidence of liver neoplasia and foci of cellular alteration was less in medaka that were not initiated with DEN than in medaka that were initiated with DEN. There appeared to be no effect of groundwater on the incidence in either males or females.

Hyaline material in the glomeruli of the kidney occurred in only a few medaka (seven) in dechlorinated tap water as a diluent water and in only one of these fish (male medaka 32-22) was there also a liver neoplasm diagnosed.

MEDAKA (GROUPS 33-36) HOUSED IN LABORATORY WELL WATER AT FORT DETRICK, MD

RESULTS

There were no neoplasms diagnosed among the medaka that were housed in well water as laboratory controls. One Group 36 male medaka (36-3) had an eosinophilic focus in the liver.

Hepatocellular vacuolation of minimal to moderate severity occurred in 54% of medaka in all four laboratory control groups and DEN initiation did not appear to have an effect on incidence or severity. Cystic degeneration of the liver of minimal severity was present in small numbers of fish from all four groups. A vacuolated hepatocyte focus of minimal severity was diagnosed in one Group 34 medaka. Five medaka from Groups 35 and 36 that were initiated with DEN had vacuolated hepatocyte foci that were minimal to mild in severity.

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

Hyaline material in the glomeruli of the kidney did not occur among the laboratory controls. Dilatation of Bowman's space, tubular dilatation and tubular casts occurred sporadically among medaka of Groups 34, 35 and 36.

In the gills, hyperplasia of gill epithelium and fusion of gill lamellae, usually of minimal severity, were present in a number of male and female medaka from each of the four groups.

There were no metazoan parasites associated with granulomas that occurred in a few fish in the liver, mesentery, hematopoietic tissue and retroperitoneal adipose tissue.

Increased basophilia of the follicular cells of the thyroid tissue was diagnosed in one of 10 male medaka from Group 33 and in two of 13 male medaka from Group 36.

A variety of non-neoplastic lesions in a number of different tissues occurred sporadically among medaka and are tabulated in the Summary Incidence Tables.

CONCLUSIONS

No liver neoplasms occurred in medaka that were held in laboratory well water for six months. One medaka in Group 36 that was initiated with DEN had an eosinophilic focus in the liver. Other findings in these laboratory control medaka would not be unexpected in medaka held in well water for six months.

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

SUMMARY COMPARISON OF FINDINGS IN MEDAKA HELD IN CANAL CREEK WATER, DECHLORINATED TAP WATER AND LABORATORY WELL WATER

The incidence of neoplasia and foci of cellular alteration was highest among the medaka that were initiated with DEN and housed in Canal Creek water as diluent water and there appeared to be a promotional effect of the Canal Creek water, but not the groundwater, in both male and female medaka. (See Tables 1 and 2.)

Among male medaka that were housed in dechlorinated tap water as diluent water, liver neoplasia occurred at a low incidence in groups that were initiated with DEN and exposed to various concentrations of groundwater. (See Table 5.) Foci of cellular alteration occurred in control and groundwater exposed fish, but the incidence was not dose related. Among female medaka initiated with DEN only the incidence of foci of cellular alteration was increased over that which occurred in females not initiated with DEN. (See Tables 6 and 8.) Among male medaka not initiated with DEN a hepatocellular adenoma occurred in one medaka in the control group and in each of the three groundwater concentrations. (See Table 7.) Assessment of the significance of liver neoplasia in medaka exposed to groundwater in dechlorinated tap water as a diluent water will be more meaningful after medaka that have been exposed under these same conditions for nine months are evaluated.

No liver neoplasms occurred among medaka that were housed in laboratory well water.

Vacuolation of hepatocytes in the liver had an incidence of almost 100% in medaka housed in Canal Creek water, 89% in medaka housed

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

in dechlorinated tap water and in 54% of medaka housed in laboratory well water. Overall the average severity of the vacuolation was greatest in the medaka housed in Canal Creek water. Incidence and severity of hepatocellular vacuolation in the liver of medaka exposed to Canal Creek water may have been, at least in part, the result of the additional food supply that was present in the natural surface water.

Hyaline material in the glomeruli of the kidney occurred in the highest incidence in medaka that were housed in Canal Creek water. This material was identified as protein in nature by a battery of special stains. The pathogenesis of this glomerular deposit is not known, but hyaline material, moderate to moderately severe, was present in the kidney of five medaka that also had a hepatocellular carcinoma in the liver. Hyaline material, usually of minimal to mild severity, occurred in medaka that had no liver neoplasia and there were medaka with liver neoplasia that had no hyaline material in the glomeruli. By comparison only a few medaka housed in dechlorinated tap water had hyaline material in the glomeruli of the kidney and this change was not diagnosed in any medaka housed in laboratory well water. There appears to be an association of this protein deposit with Canal Creek water as a diluent water and possibly with the initiation of the medaka with DEN.

Granulomas in the intestine, mesentery, oviduct and pericardial cavity and focal granulomatous inflammation in the skeletal muscle were associated with metazoan parasites only in medaka housed in Canal Creek water. These parasites were present apparently in the natural surface water.

U.S. Army Biomedical Research and Development Laboratory Test 401-002R

Lymphosarcoma occurred in three medaka housed in Canal Creek water and did not occur among medaka in dechlorinated tap water or laboratory well water. The number of cases of lymphosarcoma is too small to be significant, but additional information from the evaluation of medaka on test for nine months may be helpful in the interpretation of these cases of lymphosarcoma.

Marilyn J. Wolfe, D.V.M., Ph.D.

November 13, 1995

MJW/adu

QUALITY ASSURANCE FINAL CERTIFICATION

Study Title: West Branch Canal Creek Carcinogenicity Study with Medaka

Six Month Interim Sacrifice

Client Study: Test 401-002R

EPL Project Coordinator: Dr. Marilyn J. Wolfe

EPL Project Number: 406-035

EPL Pathologist: Dr. Marilyn J. Wolfe

The following aspects of this study were inspected by the Quality Assurance Unit of Experimental Pathology Laboratories, Inc. Dates inspections were performed and findings reported to the Project Coordinator and Management are indicated below.

	Da	Dates			
<u> Area Inspected</u>	Inspection	Reporting			
EPL Project Sheet	3/28/95; 6/6/95; 8/25/95; 9/13/95	3/28/95; 6/6/95; 8/25/95; 9/13/95			
Project Setup	4/13/95	4/13/95			
Histology Setup	4/21/95; 5/1,10,17/95	4/21/95; 5/1,10,17/95			
Data Review	5/2,10,11,15,24,25,30/95; 6/2,5,6,8,9,15,19,21,22/95; 6/27,30/95; 7/6,7,11/95	5/2,10,11,15,24,25,30/95; 6/2,5,6,9,15,19,21,22/95; 6/27,30/95; 7/6,7,11/95			
Rough Draft Report	8/25,28-31/95; 9/2,13/95; 9/14,19/95	9/14,20/95			
Final Report	11/13/95	11/13/95			
Date of last quarterl	y facility inspection	10/95			
Tatricia L. EPL Quality Assu	Runge rance Unit	/////3/95 Date			

rival marr

U.S. ARMY
BIOMEDICAL RESEARCH AND DEVELOPMENT LABORATORY
TEST 401-002R
EPL PROJECT NUMBER 406-035

WEST BRANCH CANAL CREEK CARCINOGENICITY STUDY WITH MEDAKA

NINE MONTH FINAL SACRIFICE OF MEDAKA EXPOSED TO WEST BRANCH CANAL CREEK WATER AS THE DILUENT WATER

PATHOLOGY SUMMARY

A histopathologic examination of tissues from fish of the species Oryzias latipes (medaka) was performed to determine the need for remediation at West Branch Canal Creek, Aberdeen Proving Ground. Groundwater was pumped from a well on-site into two flow-through diluter systems in a biomonitoring trailer. One system had water from the West Branch of Canal Creek as the dilution water. The dilution water in the second system was dechlorinated tap water. Throughout the study control medaka were maintained at Fort Detrick in laboratory well water. At 13 days of age medaka were either initiated or not initiated with 10 mg/L diethylnitrosamine (DEN) for 48 hours. Exposure to the groundwater began at 16 days of age.

At six months into the study approximately 20 medaka from each exposure group were euthanized for evaluation and the results were presented in a separate report. The remainder of the medaka maintained in dechlorinated tap water as the diluent water, and the remainder of the medaka maintained in laboratory well water were euthanized for evaluation at nine months and the results were presented in a separate report. The medaka maintained in Canal Creek water as diluent water

U.S. Army Biomedical Research and Development Laboratory Study No. 401-002R

were transferred to dechlorinated tap water at six months because there was insufficient water from the creek to maintain the fish. These fish remained in dechlorinated tap water as the diluent water for the remaining three months of the study. At nine months into the study these medaka were euthanized for evaluation and are the subject of this report. The study design was as follows.

Group ID	Diluent Water	DEN (mg/L)	Groundwater (%)	No. of Fish at Study Start (Each Group)	No. of Fish Submitted at 9 months (Each Group)
1, 2	Canal Creek	0	0	80, 80	18, 31
3, 4	Canal Creek	10	0	80, 80	27, 22
5, 6	Canal Creek	0	1	80, 80	25, 26
7, 8	Canal Creek	10	1	80, 80	20, 19
9, 10	Canal Creek	0	5	80, 80	24, 30
11, 12	Canal Creek	10	5	80, 80	16, 27
13, 14	Canal Creek	0	25	80, 80	27, 21
15, 16	Canal Creek	10	25	80, 80	24, 19

Hematoxylin and eosin stained slides of each fish were prepared by Experimental Pathology Laboratories, Inc. The fish were sampled by cutting five step sections through the whole fish in a longitudinal plane except when the location of a lesion necessitated an alternate method of sectioning. A duplicate set of slides was made for each medaka. This set remained unstained unless staining was required for diagnostic purposes. The following tissues were evaluated: bone (vertebra), brain, chromaffin tissue, corpuscle of Stannius, esophagus, eye, gallbladder, gill, heart, hematopoietic tissue, interrenal tissue, intestine, kidney, liver, nares, ovary, pancreas, peripheral nerve, pineal organ, pituitary, pseudobranch, skeletal muscle, skin, spinal

U.S. Army Biomedical Research and Development Laboratory Study No. 401-002R

cord, spleen, stato-acoustic organ, swim bladder, testis, thymus, thyroid tissue, urinary bladder and gross lesions.

Tissues that were not present for examination in one or more medaka included bone (vertebra), chromaffin tissue, corpuscle of Stannius, eye, gallbladder, gonad, interrenal tissue, nares, pineal organ, pituitary, spinal cord, spleen, thymus and urinary bladder. Occasional absence of these tissues is a condition inherent in the sectioning method and did not appear to affect the overall evaluation of the histopathology data. Two fish (Group 6 medaka No. 6-37 and Group 7 medaka No. 7-47) could not be identified as to sex because of no gonad in the sections.

Microscopic findings for each tissue examined from each medaka are listed in the Histopathology Incidence Tables by sex. Inflammatory, degenerative and hyperplastic changes were graded from 1 to 5 depending upon severity. Nongradable changes, e.g., neoplasms, were designated as present (P). Tissues of insufficient quantity for evaluation are indicated with an "I." Autolyzed tissues are indicated with an "A." Medaka that died early appear on the Histopathology Incidence Tables with a "U" designation by the individual animal number. All lesions are summarized by sex and disposition on the Summary Incidence Tables. All lesions are summary with % Incidence Tables. All neoplasms are presented on the Neoplasm Summary Incidence Tables by sex. A correlation of gross observations with the corresponding microscopic findings is presented in the Correlation of Gross and Microscopic Findings Tables.

U.S. Army Biomedical Research and Development Laboratory Study No. 401-002R

RESULTS

In medaka that were initiated with DEN, hepatocellular adenomas and hepatocellular carcinomas occurred among both males and females. The incidence of these neoplasms was highest among males in Groups 15 and 16 which were exposed to 25% groundwater and was higher among male medaka (14 of 22) than among female medaka (5 of 21) in these groups. In control groups 3 and 4, the incidence of liver hepatocellular neoplasia was higher among the females (8 of 32) than among the males (1 of 17). A cholangiocarcinoma occurred in one Group 4 male medaka. This neoplasm was unusual in that the neoplastic bile duct epithelium did not form a discrete mass but was dispersed among clusters of what appeared to be hyperplastic hepatocytes. Following in Tables 1 and 2 are tabulations with the replicate groups combined of the incidences of liver neoplasms and areas/foci in males (Table 1) and females (Table 2) initiated with DEN. One Group 7 medaka No. 7-47 had a hepatocellular carcinoma but had no gonad in the sections and is not represented in the tables.

U.S. Army Biomedical Research and Development Laboratory Study No. 401-002R

TABLE 1

Incidences of Liver Neoplasms and Areas/Foci in Male Medaka Initiated with DEN				
Group Numbers	3/4	7/8	11/12	15/16
Groundwater Concentration	0%	1%	5%	25%
Total Number Medaka	(17)	(25)	(17)	(22)
Cholangiocarcinoma Hepatocellular Adenoma Hepatocellular Adenoma, Multiple Hepatocellular Carcinoma	1 1 0 0	0 4 ¹ 1 5 ¹	0 4 0 2	0 7 ¹ 4 ¹ 3
Basophilic Areas/Foci Eosinophilic Foci Foci of Cellular Alteration	5 2 0	4 4 0	3 4 2	6 7 1

¹One of these fish died early.

TABLE 2

Incidences of Liver Neoplasms and Areas/Foci in Female Medaka Initiated with DEN				
Group Numbers	3/4	7/8	11/12	15/16
Groundwater Concentration	0%	1%	5%	25%
Total Number Medaka	(32)	(13)	(26)	(21)
Cholangiocarcinoma Hepatocellular Adenoma Hepatocellular Adenoma, Multiple Hepatocellular Carcinoma	0 4 0 4	0 4 0 0	0 3 0 2	0 4 0 1
Basophilic Areas/Foci Eosinophilic Foci Foci of Cellular Alteration	12 1 3	5 2 0	9 0 0	7 1 0

Among the male medaka initiated with DEN, hepatocellular neoplasms occurred in 10 of 25 fish (40%) exposed to 1% groundwater, six of 17 fish (35%) exposed to 5% groundwater and 14 of 22 fish (64%) exposed to 25% groundwater. Among control males one of 17 fish had a

U.S. Army Biomedical Research and Development Laboratory Study No. 401-002R

hepatocellular neoplasm. This apparently low incidence of hepatocellular neoplasms in controls is difficult to explain in light of the incidence in DEN-initiated control males from the six month interim sacrifice (7 of 20 fish) and the incidence in DEN-initiated control males in dechlorinated tap water from the nine month final sacrifice (8 of 40 fish). Based on this control incidence data, the one hepatocellular neoplasm in 17 fish may be spurious data, and there may be a slight promotional effect of groundwater on hepatocellular neoplasia only at the 25% concentration. In a number of male medaka some variety of focus (usually only one type) occurred in the same fish that had a hepatocellular neoplasm.

Among the female medaka initiated with DEN, the incidence in the groups exposed to 1% groundwater (four of 13 or 31%) and in controls (eight of 32 or 25%) was greater than the incidence in groups exposed to 5% groundwater (five of 26 or 19%) or 25% groundwater (five of 21 or 24%). This distribution of neoplasms indicates that the promotional effect of Canal Creek water which was evident at six months (see the pathology summary for the six month interim sacrifice of medaka from the West Branch Canal Creek Carcinogenicity Study with Medaka) may still be evident at nine months even though the fish were not exposed to Canal Creek water for the last three months of the study. One or two female medaka among controls and in groups exposed to 1, 5 or 25% groundwater have both a hepatocellular neoplasm and some variety of focus in the same fish.

U.S. Army Biomedical Research and Development Laboratory Study No. 401-002R

Following in Tables 3 and 4 are incidences of liver neoplasms and foci in male (Table 3) and female (Table 4) medaka that were not exposed to DEN. Two male medaka one each in Groups 13 and 14 have both a hepatocellular neoplasm and some variety of focus.

TABLE 3

Incidences of Liver Neoplasms and Areas/Foci in Male Medaka Not initiated with DEN				
Group Numbers	1/2	5/6	9/10	13/14
Groundwater Concentration	0%	1%	5%	25%
Total Number Medaka	(22)	(23)	(22)	(25)
Cholangiocarcinoma Hepatocellular Adenoma Hepatocellular Adenoma, Multiple Hepatocellular Carcinoma	0 1 0	0 1 0	0 0 0 1	0 2 1 0
Basophilic Areas/Foci Eosinophilic Foci Foci of Cellular Alteration	3 0 0	1 0 0 ·	0 0 0	3 1 0

TABLE 4

Incidences of Liver Neoplasms and Areas/Foci in Female Medaka Not initiated with DEN				
Group Numbers	1/2	5/6	9/10	13/14
Groundwater Concentration	0%	1%	5%	25%
Total Number Medaka	(27)	(27)	(32)	(23)
Cholangiocarcinoma Hepatocellular Adenoma Hepatocellular Adenoma, Multiple Hepatocellular Carcinoma	0 0 0 0	0 1 0 1	0 1 0 0	0 0 0 1
Basophilic Areas/Foci Eosinophilic Foci Foci of Cellular Alteration	2 1 0	2 0 0	1 O 1	0 0 0

U.S. Army Biomedical Research and Development Laboratory Study No. 401-002R

The incidence of liver neoplasms and foci among male and female medaka that were not initiated with DEN was less than in medaka initiated with DEN. The incidence of liver neoplasia was greatest in male medaka exposed to 25% groundwater although hepatocellular adenomas occurred in only three of 25 males in this exposure group. There appeared to be only a slight effect of 25% groundwater on the incidence of liver neoplasia in the males. Among female medaka there was no apparent effect of exposure. Although there were no liver neoplasms among controls, there were only one or two neoplasms in each of the three exposure groups.

Hepatocellular vacuolation in the liver occurred to some degree in about 91% of the medaka and varied from minimal to severe among all the medaka. A greater number of males than females (102 compared to 76) had moderate to severe vacuolation. Vacuolated hepatocyte foci, discrete areas of hepatocytes that are vacuolated to a greater degree than the surrounding hepatocytes, occurred more frequently among female medaka (88 of 201) than among male medaka (47 of 173). Cystic degeneration in the liver occurred among males and females in all groups and varied in severity from minimal to moderately severe. A slightly greater number of females than males exhibited this change, and there were no relationships of incidence to groundwater concentration or DEN initiation. The incidence of hepatic cysts in the liver was greater among female medaka than among male medaka. The incidence, however, was not related in either sex to groundwater concentration or DEN initiation.

U.S. Army Biomedical Research and Development Laboratory Study No. 401-002R

A number of other liver changes were diagnosed, but the incidence, distribution and severity were such that they did not appear to be related to exposure. These changes are tabulated on the Summary Incidence Tables.

Hyaline material in the glomeruli of the kidney occurred in seven female medaka, ten male medaka and in two medaka that could not be sexed. Eight of the males with hyaline material in the glomeruli also had a hepatocellular neoplasm (seven had a carcinoma and one had multiple adenomas). All eight males were in exposure groups that had been initiated with DEN. Two female medaka with hyaline material in glomeruli had hepatocellular neoplasia (one had a carcinoma and one had an adenoma) and both were in exposure groups that had been initiated with DEN. One of the medaka that was not sexed had a hepatocellular carcinoma and had been initiated with DEN. The association of hyaline material in glomeruli with liver neoplasms is not a consistent finding. For a further discussion of this relationship see the pathology summary for the six month interim sacrifice of medaka from the West Branch Canal Creek Carcinogenicity Study with Medaka.

Other changes that occurred commonly in the kidney throughout all groups were tubular dilatation and tubular casts. These changes were much more frequent among males than among the females but neither the incidence nor the severity of these changes occurred in a dose related or exposure related manner. Tubular degeneration, tubular mineralization, dilatation of Bowman's space and granulomatous inflammation of tubules, when they occurred, often were in medaka that

U.S. Army Biomedical Research and Development Laboratory Study No. 401-002R

also had tubular dilatation and/or tubular casts. Other kidney changes occurred sporadically among the groups and are tabulated in the Summary Incidence Tables. These changes usually occurred in small numbers of medaka and there was no apparent relationship to exposure.

Increased basophilia of the follicular cells of the thyroid tissue occurred in almost all of the male medaka (minimal to moderate severity) and in about 19% of the female medaka (usually minimal severity). The incidences among the groups did not appear to be related to exposure to groundwater or DEN. Other thyroid tissue changes such as hyperplasia, vacuolation of follicular cells and hypertrophy of follicular cells were also more frequent among males than females. One Group 15 male and one Group 1 female had a follicular cell adenoma of the thyroid.

In the gills there were fusion of gill lamellae and hyperplasia of gill epithelium among males and females in all groups, but the incidence was slightly higher among male medaka. The severity was minimal to moderate, but there was no relationship of incidence or severity to exposure to groundwater or DEN. Other gill lesions occurred sporadically or the distribution was such that there was no relationship to exposure.

Metazoan parasites were present sporadically in the gill, intestine, kidney, liver, mesentery, ovary, pancreas, pericardial cavity, skeletal muscle, testis and on the skin. The parasites were minimal in number and were often, but not always, associated with a granuloma. This finding of parasites in the tissues of medaka that had

U.S. Army Biomedical Research and Development Laboratory Study No. 401-002R

been exposed to natural surface water (Canal Creek) was not unexpected. Other granulomas, not associated with parasites, occurred sporadically in a variety of tissues and were not related to sex or exposure.

A variety of neoplasms in different tissues occurred sporadically throughout the groups among males and females. The incidence of these neoplasms in each group was small (one or two) and could not be attributed to exposure to groundwater. These neoplasms are tabulated in Table 5. Lymphosarcoma is a neoplasm that often affects more than one tissue in a single fish. This neoplasm is tabulated only in its probable tissue of origin in Table 5. Other affected tissues in a particular fish are recorded on the Histopathology Incidence Tables.

U.S. Army Biomedical Research and Development Laboratory Study No. 401-002R

TABLE 5

Incidences of Various Neoplasms Other Than Liver Neoplasms										
Group Numbers	1/2	3/4	5/6	7/8	9/10	11/12	13/14	15/16		
Groundwater Concentration	0%	0%	1%	1%	5%	5%	25%	25%		
DEN (mg/L)	0	10	0	10	0	10	0	10		
Adipose Tissue, Retroperitoneal Myxosarcoma	_	-	-	_	-	-	_	1 ¹		
Branchial Chamber Lymphosarcoma	-	1	-	-	·	1 ^{1.2}	ı	•		
Ovary Seminoma	-	-	1	-	-	4	-	1 ³		
Swim Bladder Carcinoma in Situ	ı	-	ı	1 ³	,	ı	-			
Thymus Lymphosarcoma	2 ^{1.3}	1 ¹	-	-	1	1 ¹	-	-		
Thyroid Tissue Follicular Cell Adenoma	1 ³	-	-	-	-	<u>.</u>	-	1 ¹		

¹Male Medaka

The carcinoma in situ diagnosed in the swim bladder of medaka No. 7-55 was problematic to interpret, and a differential diagnosis considered was focal dysplasia/hyperplasia. The lesion was located in the middle to caudal aspect of the swim bladder and the epithelium involved in the lesion was not the secretory epithelium of the cranial aspect of the swim bladder. The myxosarcoma that occurred in the

²This lymphosarcoma may have originated in the thymus, but that origin was not obvious in the tissue evaluated.

³Female Medaka

U.S. Army Biomedical Research and Development Laboratory Study No. 401-002R

retroperitoneal adipose tissue of medaka No. 15-37 (a fish that died early) had invaded the adjacent skeletal muscle.

A common gross observation made at necropsy among these medaka was a large, or inflamed or swollen anal passage or opening. At gross trimming these observations were related to a bulge of tissue in the area of the anus identified as the urinogenital papillae, an anatomic sex characteristic of female medaka. In the histologic section the urinogenital papillae of a number of fish was notably larger than in others and diagnoses of hypertrophy and/or hyperplasia of the covering epithelium were made. There was a wide variation in the amount of tissue from the urinogenital papillae present in the histologic sections. Enlarged urinogenital papillae observed grossly may not have been captured ideally in the step sections; therefore a number of gross observations do not have a microscopic correlation. It is known that the size of the papillae may vary with the breeding season of medaka, and, experimentally, the size may be altered by exposure to female or male hormones. The reason for the noticeable enlargement of the urinogenital papillae in these medaka is not known. There is no relationship of incidence of enlargement observed grossly and exposure to groundwater or DEN.

A variety of non-neoplastic lesions in a number of different tissues occurred sporadically among medaka and are tabulated in the

¹Toki-O Yamamoto and Hajime Suzuki, The manifestation of the urinogenital papillae of the medaka (*Oryzias latipes*) by sex-hormones, Embryologia, 2:11, 1955.

U.S. Army Biomedical Research and Development Laboratory Study No. 401-002R

Summary Incidence Tables. These lesions either occurred in only a few fish or, if they occurred in both control and exposed groups, neither the incidence nor the severity suggested a relationship to exposure to groundwater and/or DEN.

CONCLUSIONS

Among the male medaka initiated with DEN there appeared to be a promotional effect of the groundwater on the development of hepatocellular neoplasms although there is no strict dose relationship in incidence. Among female medaka initiated with DEN the percent incidence was greater in controls and medaka exposed to 1% groundwater than in medaka exposed to 5% and 25% groundwater. Among medaka that were not initiated with DEN there appeared to be only a slight effect of 25% groundwater on the incidence of liver neoplasia in males. There was no apparent effect of groundwater exposure on females that were not initiated with DEN.

MARILYN J. WOLFE, D.V.M., Ph.D. Veterinary Pathologist

MJW/wk

ENVIRONMENTAL HEALTH RESEARCH DETACHMENT
(formerly U.S. Army Biomedical
Research and Development Laboratory)
of U.S. ARMY RESEARCH INSTITUTE
OF ENVIRONMENTAL MEDICINE
TEST 401-002R
EPL PROJECT NUMBER 406-035

WEST BRANCH CANAL CREEK CARCINOGENICITY STUDY WITH MEDAKA

NINE MONTH FINAL SACRIFICE OF MEDAKA EXPOSED TO DECHLORINATED TAP WATER AS THE DILUENT WATER AND THE LABORATORY WELL WATER CONTROL MEDAKA

PATHOLOGY SUMMARY

A histopathologic examination of tissues from fish of the species Oryzias latipes (medaka) was performed to determine the need for remediation at West Branch Canal Creek, Aberdeen Proving Ground.

Groundwater was pumped from a well on-site into two flow-through diluter systems in a biomonitoring trailer. One system had water from the West Branch of Canal Creek as the dilution water. The dilution water in the second system was dechlorinated tap water. Throughout the study control medaka were maintained at Fort Detrick in laboratory well water. At 13 days of age medaka were either initiated or not initiated with 10 mg/L diethylnitrosamine (DEN) for 48 hours. Exposure to the groundwater began at 16 days of age. At six months into the study approximately 20 medaka from each exposure group were euthanized for evaluation and the results were presented in a separate report. Medaka maintained in dechlorinated tap water as the diluent water and medaka maintained in

Environmental Health Research Detachment of USARIEM Test 401-002R

laboratory well water continued on test for an additional three months. At nine months into the study these medaka were euthanized for evaluation and are the subject of this report. The study design was as follows.

Group	Diluent	DEN	Groundwater	No. of Fish at Study	No. of Fish Submitted at
ID	Water	(mg/L)	(%)	Start (Each Group)	9 months (Each Group)
17, 18 19, 20 21, 22 23, 24 25, 26 27, 28 29, 30 31, 32 33, 34 35, 36	Dechlorinated Tap Lab Well Lab Well	0 10 0 10 0 10 0	0 0 1 1 5 5 25 25 0 0	80, 80 80, 80 80, 80 80, 80 80, 80 80, 80 80, 80 80, 80	33, 42 33, 37 28, 31 33, 34 34, 35 35, 32 29, 31 30, 37 37, 39 36, 38

Hematoxylin and eosin stained slides of each fish were prepared by Experimental Pathology Laboratories, Inc. The fish were sampled by cutting five step sections through the whole fish in a longitudinal plane except when the location of a lesion necessitated an alternate method of sectioning. A duplicate set of slides was made for each medaka. This set remained unstained unless staining was required for diagnostic purposes. The following tissues were evaluated: bone (vertebra), brain, chromaffin tissue, corpuscle of Stannius, esophagus, eye, gallbladder, gill, heart, hematopoietic tissue, interrenal tissue, intestine, kidney, liver, nares, ovary, pancreas, peripheral nerve, pineal organ, pituitary gland, pseudobranch, skeletal muscle, skin,

Environmental Health Research Detachment of USARIEM Test 401-002R

spinal cord, spleen, stato-acoustic organ, swim bladder, testis, thymus, thyroid tissue, urinary bladder and gross lesions.

Tissues that were not present for examination in one or more medaka included bone (vertebra), chromaffin tissue, corpuscle of Stannius, gallbladder, interrenal tissue, nares, pineal organ, pituitary, spinal cord, spleen, thymus and urinary bladder. Occasional absence of these tissues is a condition inherent in the sectioning method and did not appear to affect the overall evaluation of the histopathology data.

The unstained slides for Group 20 medaka No. 57 were stained with hematoxylin and eosin for evaluation of what appeared to be liver tissue herniated into the pericardial cavity.

Microscopic findings for each tissue examined from each medaka are listed in the Histopathology Incidence Tables by sex. Inflammatory, degenerative and hyperplastic changes were graded from 1 to 5 depending upon severity. Nongradable changes, e.g., neoplasms, were designated as present (P). Tissues of insufficient quantity for evaluation are indicated with an "I." Autolyzed tissues are indicated with an "A." Medaka that died early appear on the Histopathology Incidence Tables with a "U" designation by the individual animal number. All lesions are summarized by sex and disposition on the Summary Incidence Tables. All lesions are summarized by sex and with sexes combined on the Incidence/Examined Summary with % Incidence Tables. All neoplasms are presented on the Neoplasm Summary Incidence Tables by sex. A correlation of gross observations with the corresponding microscopic

Environmental Health Research Detachment of USARIEM Test 401-002R

findings is presented in the Correlation of Gross and Microscopic Findings Tables.

MEDAKA (GROUPS 17-32) HOUSED IN DECHLORINATED TAP WATER AS DILUENT WATER RESULTS

In medaka that were initiated with DEN, hepatocellular adenomas and hepatocellular carcinomas occurred among both males and females but the incidence of these neoplasms was higher in the males than in the females. A cholangioma occurred in one Group 20 male, a DEN-initiated control, and a cholangiocarcinoma occurred in one Group 32 male, a DEN-initiated fish exposed to 25% groundwater. One female, a DEN-initiated control medaka from Group 20, had a cholangiocarcinoma in a lobe of liver that had herniated into the pericardial cavity. Basophilic areas/foci, and/or eosinophilic areas/foci, and/or foci of cellular alteration in the liver occurred in both males and females in control groups as well as groups exposed to groundwater. In a number of medaka, basophilic or eosinophilic foci and/or foci of cellular alteration occurred in the same fish that also had a hepatocellular neoplasm. A few medaka had two different kinds of foci in the same fish. Following in Tables 1 and 2 are tabulations with the replicate groups combined of the incidences of liver neoplasms and areas/foci in males (Table 1) and females (Table 2) initiated with DEN.

Environmental Health Research Detachment of USARIEM Test 401-002R

TABLE 1

Incidences of Liver Neoplasms	and Area	as/Foci in	Male Med	aka
Initiated	i with DE	1		
Group Numbers	19/20	23/24	27/28	31/32
Groundwater Concentration	0	1%	5%	25%
Total Number Medaka	(40)	(30)	(36)	(29)
Cholangioma Cholangiocarcinoma Hepatocellular Adenoma Hepatocellular Adenoma, Multiple Hepatocellular Carcinoma	1 ¹ 0 5 0 3 ³	0 0 2 1 2	0 0 3 ² 2 1	0 1 ¹ 9 ² 2 2
Basophilic Areas/Foci Eosinophilic Areas/Foci Foci of Cellular Alteration	12 7 ⁴ 1 ³	4 ³ 9 3	3 4 1	3 8 1

^{&#}x27;This fish also had a hepatocellular adenoma.

TABLE 2

Incidences of Liver Neoplasms Initiated	and Areas I with DE	s/Foci in N	Female Me	daka
Group Numbers	19/20	23/24	27/28	31/32
Groundwater Concentration	0	1%	5%	25%
Total Number Medaka	(30)	(37)	(31)	(38)
Cholangioma Cholangiocarcinoma Hepatocellular Adenoma Hepatocellular Adenoma, Multiple Hepatocellular Carcinoma	0 1 1 0 0	0 0 3 ¹ 0	0 0 3 0	0 0 4 1 1
Basophilic Areas/Foci Eosinophilic Areas/Foci Foci of Cellular Alteration	7 0 2 ²	10 ¹ 3 1	9 1 0	13 4 1

One of these fish died early. Two of these fish died early.

²One of these fish also had a hepatocellular carcinoma.

³One of these fish died early.

⁴Two of these fish died early.

Environmental Health Research Detachment of USARIEM Test 401-002R

Among the male medaka initiated with DEN, hepatocellular neoplasms occurred in 5 of 30 fish (17%) exposed to 1% groundwater, five of 36 fish (14%) exposed to 5% groundwater and 12 of 29 fish (41%) exposed to 25% groundwater. Among control medaka eight of 40 fish (20%) had a hepatocellular neoplasm. There appears to be a promotional effect of the groundwater on the development of hepatocellular neoplasms in male medaka at the 25% concentration level. There is no dose relationship in incidence of liver neoplasms or areas/foci.

Among the female medaka initiated with DEN, there is an increase in the percentage of medaka with hepatocellular neoplasms from the controls to the medaka exposed to 25% groundwater (controls-3%; 1% groundwater-8%; 5% groundwater-10%; 25% groundwater-16%). There appears to be a trend of increasing number of hepatocellular neoplasms, but the differences between groups in number of neoplasms are not great. There is no dose relationship in incidence of areas/foci.

Following in Tables 3 and 4 are incidences of liver neoplasms and areas/foci in male (Table 3) and female (Table 4) medaka that were not exposed to DEN. One medaka in Group 26 had both a hepatocellular adenoma and an eosinophilic focus.

Environmental Health Research Detachment of USARIEM Test 401-002R

TABLE 3

Incidences of Liver Neopl Not In	asms and itiated wi	Areas/Foci th DEN	in Male Me	daka
Group Numbers	17/18	21/22	25/26	29/30
Groundwater Concentration	0	1%	5%	25%
Total Number Medaka	(36)	(22)	(31)	(32)
Hepatocellular Adenoma Hepatocellular Carcinoma	1 1	0 1	3 1 ²	2 ¹ 0
Basophilic Areas/Foci Eosinophilic Areas/Foci	1 2	1 0	0 2	0 1

¹⁰ne of these fish had multiple adenomas.

TABLE 4

Incidences of Liver Neopla Not In	asms and A itiated wi	reas/Foci ith DEN	in Female M	ledaka
Group Numbers	17/18	21/22	25/26	29/30
Groundwater Concentration	0	1%	5%	25%
Total Number Medaka	(39)	(37)	(38)	(28)
Hepatocellular Adenoma Hepatocellular Carcinoma	0	0	1 ¹	0 1
Basophilic Areas/Foci	1	0	2	0

¹This fish died early.

The incidence of liver neoplasms and areas/foci among male and female medaka that were not treated with DEN was less than in medaka initiated with DEN. There was no dose relationship in neoplasms or areas/foci among the males or the females, but there were more total neoplasms and areas/foci among the males than among the females. There

²This fish died early.

Environmental Health Research Detachment of USARIEM Test 401-002R

appears to be no effect of groundwater on the incidence of liver neoplasms or foci in either male or female medaka that were not initiated with DEN.

Hepatocellular vacuolation in the liver occurred to some degree in about 92% of the medaka. Among females the severity of the vacuolation varied from minimal to moderately severe and among males the severity varied from minimal to severe. A vacuolated hepatocyte focus is characterized by a discrete area of hepatocytes that are vacuolated to a greater degree than the surrounding hepatocytes. Vacuolated hepatocyte foci occurred in 101 of 278 female medaka and in 59 of 256 male medaka. The change occurred more frequently among male and female medaka that had been exposed to DEN than among those medaka not exposed to DEN. Cystic degeneration in the liver occurred among males and females in all groups, but more female medaka than male medaka had the change. Severity of cystic degeneration varied from minimal to moderate in females and from minimal to moderately severe in males. There were no marked differences among the groups in incidence of cystic degeneration with respect to groundwater concentration or DEN exposure. The incidence of hepatic cysts in the liver was greater among female medaka than among male medaka. The incidence, however, was not related in either sex to groundwater concentration or DEN initiation.

A number of other liver changes were diagnosed, but the incidence, distribution and severity were such that they did not appear to be related to exposure. These changes are tabulated on the Summary Incidence Tables.

Environmental Health Research Detachment of USARIEM Test 401-002R

Hyaline material in the glomeruli of the kidney occurred in four female medaka and six male medaka. Five of the males with hyaline material in the glomeruli also had a hepatocellular neoplasm or hepatocellular neoplasms. All males so affected were in exposure groups that had been initiated with DEN. The female medaka with hyaline material in glomeruli did not have liver neoplasia and were in exposure groups that had not been initiated with DEN. The association of hyaline material in glomeruli with liver neoplasms is not a consistent finding. For a further discussion of this relationship see the pathology summary for the six month interim sacrifice of medaka from the West Branch Canal Creek Carcinogenicity Study with Medaka.

Other changes that occurred commonly in the kidney throughout all groups were tubular dilatation and tubular casts. These changes occurred more frequently among the males than among the females but neither the incidence nor the severity of these changes occurred in a dose related or exposure related manner. Tubular degeneration and tubular mineralization, when they occurred, usually were in medaka that also had tubular casts and/or tubular dilatation. Other kidney changes occurred sporadically among the groups and are tabulated in the Summary Incidence Tables. These changes usually occurred in small numbers of medaka, and there was no apparent relationship to exposure.

Increased basophilia of the follicular cells of the thyroid tissue occurred in most of the male medaka and in a few of the female medaka. The incidences among the groups did not appear to be related to exposure to groundwater. Other thyroid tissue changes such as

Environmental Health Research Detachment of USARIEM Test 401-002R

hyperplasia, vacuolation of follicular cells and hypertrophy of follicular cells were also more frequent among males than females. Hyperplasia of thyroid tissue occurred in only two control males not initiated with DEN and was generally less frequent in groups not initiated with DEN. One Group 17 male medaka had a follicular cell adenoma of the thyroid. Although the reason is not known, these thyroid changes appear to be sex related and occur more frequently as the age of the medaka increases.

In the gills there were fusion of gill lamellae and hyperplasia of gill epithelium among males and females in all groups, but the incidence was slightly higher in female medaka. The severity varied from minimal to moderate, and there was a slight increase in severity, in general, in medaka exposed to groundwater over control medaka. There was a mild dose response evident for these two gill lesions in males and females when only groups exposed to DEN initiation were considered. Other gill lesions occurred sporadically or the distribution was such that there was no relationship to exposure.

Granulomas occurred among both male and female medaka in a variety of tissues, but there was no relationship between granuloma incidence and exposure to groundwater for specific tissues in which granulomas occurred. The incidence of granulomas was highest in the hematopoietic tissue. More males than females had granulomas in this tissue. More than half of the males with granulomas in hematopoietic tissue also had granulomatous inflammation of the skin of the jaw, an area which may have served as a point of entry for organisms, such as

Environmental Health Research Detachment of USARIEM Test 401-002R

acid-fast bacteria, that may have caused the granulomas. Special stains were not done to verify the presence of organisms in the granulomas.

A variety of neoplasms in different tissues occurred sporadically throughout the groups among males and females. The incidence of these neoplasms in each group was small (one or two) and could not be attributed to exposure to groundwater. These neoplasms are tabulated in Table 5 below.

TABLE 5

Incidences o	f Various I	Veoplasm	s Other TI	nan Liver	Neoplasr	ns		
Group Numbers	17/18	19/20	21/22	23/24	25/26	27/28	29/30	31/32
Groundwater Concentration	0	0	1%	1%	5%	5%	25%	25%
DEN (mg/L)	0	10	0	10	0	10	0	10
Nares Neurogenic Neoplasm	-	11	-	-	-	•	-	-
Ovary Seminoma	-	-	1	-	-	•	-	2
Skeletal Muscle Sarcoma, NOS	-	1 ²	-	<u>-</u>	•	-	-	-
Skin Papilloma	11	11	-		-	-	-	-
Swim Bladder Epithelioma	11	-	-	-		1'	11	-
Testis Seminoma	-	-	1	-	-	-	1	
Thymus Lymphosarcoma and Lymphosarcoma (early)	1 ²	-			21	21	22	22
Thyroid Tissue Follicular Cell Adenoma	11		-			-		

¹Male Medaka

The seminoma in the testis of Group 30 male medaka No. 49 and in the ovary of Group 32 female medaka No. 28 had metastasized to the

²Female Medaka

Environmental Health Research Detachment of USARIEM Test 401-002R

heart, hematopoietic tissue and spleen (and to the choroid rete of the eye in medaka No. 32-28). The seminoma cells that were present in tissues other than gonad were germ cells that had matured to the spermatid/sperm stage. Medaka No. 32-28 had a thymic lymphosarcoma in addition to the seminoma.

Male medaka No. 18-34 had both a papilloma of the skin of the lower jaw and a swim bladder epithelioma. Male medaka No. 20-28 had both a neurogenic neoplasm of the nares and a papilloma on the skin of the lower jaw.

A variety of non-neoplastic lesions in a number of different tissues occurred sporadically among medaka and are tabulated in the Summary Incidence Tables. These lesions either occurred in only a few fish or, if they occurred in both control and exposed groups, neither the incidence nor the severity suggested a relationship to exposure to groundwater.

CONCLUSIONS

Among the male medaka initiated with DEN there was no dose relationship in incidence of liver neoplasms or areas/foci, but there appeared to be a promotional effect of groundwater on the development of hepatocellular neoplasms at the 25% concentration level based on the increased incidence of hepatocellular neoplasms at this level over controls. Among the female medaka initiated with DEN there was a trend based on an increase in the percentage of medaka with hepatocellular neoplasms from the controls to the 25% groundwater concentration, but

Environmental Health Research Detachment of USARIEM Test 401-002R

the difference in numbers of neoplasms between groups was small. There was no dose relationship in incidence of areas/foci.

There was no effect of groundwater on the incidence of liver neoplasms or foci in either male or female medaka that were not initiated with DEN.

MEDAKA (GROUPS 33-36) HOUSED IN LABORATORY WELL WATER AT FORT DETRICK, MARYLAND

RESULTS

Only one liver neoplasm occurred among the medaka housed in laboratory well water. A female medaka from Group 36 that had been initiated with DEN had a hepatocellular adenoma. Table 6 below tabulates the liver neoplasms and areas/foci from the laboratory control medaka.

TABLE 6

Incidences of Liver Neoplasms and Medak	Areas/Fo	ci in Ma	le and Fe	emale
Group Numbers	33.	/34	35	/36
Sex	Male	Female	Male	Female
DEN (mg/L)		0		10
Total Number Medaka	(33)	(43)	(40)	(34)
Hepatocellular Adenoma	0	0	0	1
Basophilic Focus/Foci Eosinophilic Area(s) Focus of Cellular Alteration	1 0 0	0 1 0	0 0 1	1 0 0

Hepatocellular vacuolation of minimal to moderate severity occurred in 42% of medaka in all four laboratory control groups. Among

Environmental Health Research Detachment of USARIEM Test 401-002R

severe, and the same medaka also had a mild granulomatous inflammation in the submucosa of the oral cavity.

Increased basophilia of the follicular cells of the thyroid tissue was diagnosed in most of the male medaka (minimal to moderate severity) from all groups and in a few of the female medaka (minimal severity) from all groups. Hyperplasia of minimal to mild severity occurred only in male medaka in 28 of 73 males. Hypertrophy of follicular cells and vacuolation of follicular cells also occurred only in males and in relatively small numbers of medaka.

There were a few neoplasms in tissues other than liver among the laboratory control medaka. One Group 36 male medaka had a seminoma in the testis. Two Group 33 females had seminomas in the ovary. One Group 34 female had a thymic lymphosarcoma.

CONCLUSIONS

Only one liver neoplasm occurred among the laboratory controls held in well water. A Group 36 female had a hepatocellular adenoma. Other neoplasms included a seminoma in the testis of one male, seminomas in the ovaries of two females and a thymic lymphosarcoma in one female.

Non-neoplastic lesions occurred in a variety of tissues and were usually sporadic among the groups affecting relatively small numbers of medaka. Hepatocellular vacuolation in the liver, which affected 42% of the medaka in laboratory well water, occurred in fewer medaka that had DEN initiation than in medaka with no DEN exposure. Cystic degeneration in the liver occurred more frequently among female than male medaka, and a

Environmental Health Research Detachment of USARIEM Test 401-002R

both males and females there were fewer fish affected in the groups that had DEN initiation versus the groups that were not exposed to DEN. Cystic degeneration of the liver of minimal severity occurred in a small number of males from all groups, and there were no differences in incidence with respect to DEN initiation. Among female medaka cystic degeneration was minimal to mild in severity and the incidence was slightly greater than in males. Vacuolated hepatocyte foci of minimal to mild severity occurred in small numbers of both male and female medaka from all groups. Hepatic cysts occurred in a small number of medaka but were more frequent among females than among males. A few other liver changes occurred sporadically among the groups and are tabulated in the Summary Incidence Tables.

Hyaline material in the glomeruli of the kidney occurred in one Group 33 female medaka that had no liver neoplasia. Tubular dilatation (usually minimal to mild) and tubular casts (minimal to mild) in the kidney occurred in small numbers of medaka from all groups. One Group 36 female had moderately severe tubular dilatation. Tubular degeneration and tubular mineralization when they occurred, with one exception, were in medaka that also had tubular casts and/or tubular dilatation.

In the gills there were fusion of gill lamellae and hyperplasia of gill epithelium among males and females of all groups. The severity varied from minimal to moderate, but was minimal in most of the medaka. There were no differences in incidence based on DEN exposure.

Granulomas occurred in small numbers among both male and female medaka in a variety of tissues. Only one medaka, a Group 33 male, had granulomas in the hematopoietic tissue. The granulomas were moderately

Environmental Health Research Detachment of USARIEM Test 401-002R

slightly greater number of females were affected in groups not initiated with DEN than in groups exposed to DEN.

Fusion of gill lamellae and hyperplasia of gill epithelium occurred among males and females of all groups and affected 67% of the males and approximately 60% of the females, but the changes were minimal in approximately 80% of the affected medaka.

SUMMARY COMPARISON OF FINDINGS IN MEDAKA HELD IN DECHLORINATED TAP WATER OR LABORATORY WELL WATER

Among male and female medaka that were initiated with DEN and housed in dechlorinated tap water as diluent water, liver neoplasia occurred in controls and in groups exposed to 1%, 5% and 25% groundwater. The incidence was higher among males than females with the highest incidence in males exposed to 25% groundwater. (See Tables 1 and 2.) Basophilic foci, eosinophilic foci and foci of cellular alteration in the liver occurred among both male and female medaka exposed to DEN. The incidence in each exposure group did not reflect a dose response among either the males or the females.

There were no liver neoplasms in male medaka exposed to DEN and housed in laboratory well water for nine months. By comparison the control males exposed to DEN and held in dechlorinated tap water in the trailer had an incidence of eight medaka with hepatocellular neoplasms with one fish having both a hepatocellular adenoma and a cholangioma. One focus of cellular alteration occurred among the laboratory control male medaka initiated with DEN in contrast to an incidence of 20 foci (all types

Environmental Health Research Detachment of USARIEM Test 401-002R

combined) among the comparable male controls housed in dechlorinated tap water. One male medaka had both a basophilic and an eosinophilic focus so that there was a total of 19 medaka with foci.

One female medaka exposed to DEN and housed in laboratory well water for nine months had a hepatocellular adenoma and one had a basophilic focus. By comparison in the control female medaka exposed to DEN and held in dechlorinated tap water in the trailer, one medaka had a hepatocellular adenoma, one had a cholangiocarcinoma and eight medaka had various foci (one medaka had both basophilic foci and basophilic areas).

There were no liver neoplasms in either male or female medaka with no DEN exposure and housed in laboratory well water. One male medaka had a basophilic focus in the liver and one female medaka had an eosinophilic focus in the liver. By comparison, two control males not exposed to DEN and held in dechlorinated tap water had liver neoplasms (one had a hepatocellular adenoma and one had a hepatocellular carcinoma). Three control males had either basophilic or eosinophilic foci. One control female not exposed to DEN and held in dechlorinated tap water had a hepatocellular carcinoma and one had a basophilic focus.

Overall the incidence and severity of hepatocellular vacuolation and cystic degeneration in the liver was less among the male and female laboratory well water controls than among the male and female dechlorinated tap water controls.

Among male medaka controls the incidence and severity of tubular dilatation and tubular casts in the kidney were less in those held in laboratory well water versus those held in dechlorinated tap water.

Environmental Health Research Detachment of USARIEM Test 401-002R

Hyperplasia of gill epithelium and fusion of gill lamellae occurred at a higher incidence among control male medaka held in laboratory well water than among control male medaka held in dechlorinated tap water. The incidence of these gill lesions was comparable among female control medaka regardless of the water in which they were held.

Lymphosarcoma occurred in one control female medaka held in laboratory well water and in one control female medaka held in dechlorinated tap water. Among the groundwater exposure groups lymphosarcoma occurred in two Group 26 male medaka (0 mg/L DEN, 5% groundwater), in two Group 28 male medaka (10 mg/L DEN, 5% groundwater), one Group 29 and one Group 30 female medaka (0 mg/L DEN, 25% groundwater) and two Group 32 female medaka (10 mg/L DEN, 25% groundwater). The incidence of lymphosarcoma is unrelated to exposure to groundwater or DEN initiation.

MARILYN J. WOLFE, D.V.M., Ph.D. Veterinary Pathologist

MJW/wk

FRAL DRAFT

SUMMARY COMPARISON OF FINDINGS AT SIX AND NINE MONTHS IN MEDAKA HELD IN CANAL CREEK WATER, DECHLORINATED TAP WATER AND LABORATORY WELL WATER

HEPATOCELLULAR NEOPLASMS

Groups Initiated with DEN and Exposed to 0, 1, 5 or 25%
Groundwater in Canal Creek Water as Diluent Water
for Six Months and in Dechlorinated Tap Water
for the Final Three Months of the Study

In general the number of hepatocellular neoplasms observed at nine months was greater than the number observed at six months in both male and female medaka. An exception was that there were fewer hepatocellular neoplasms among Groups 3/4 (control) males at nine months than at six months.

Overall hepatocellular neoplasms were more numerous among males than among females. At six months the number of medaka with a hepatocellular neoplasm(s) was the same in males and females in Groups 7/8 and 11/12.

Hepatocellular neoplasms (both adenomas and carcinomas combined) are summarized below in Table 1 for the medaka described in the title of this section.

TABLE 1

Incidences of Initiated	Fish with with DEN	Hepatoc and Hou	ellular Ne ised in Ca	oplasms nal Creek	in Male ar Water as	nd Female Diluent W	Medaka ⁄ater	
	6 Mon.	9 Mon.	6 Mon.	9 Mon.	6 Mon.	9 Mon.	6 Mon.	9 Mon.
Group Nos.	3/4	3/4	7/8	7/8	11/12	11/12	15/16	15/16
Groundwater Conc.	0	0	1%	1%	5%	5%	25%	25%
Total Male Medaka	(20)	(17)	(19)	(25)	(21)	(17)	(25)	(22)
Hepatocellular Neoplasms	7	1	3 ¹	10²	2	6	10	14 ²
Percentage of Neoplasms	35%	6%	16%	40%	10%	35%	40%	64%
Total Female Medaka	(21)	(32)	(21)	(13)	(19)	(26)	(15)	(21)
Hepatocellular Neoplasms	3	8	3	4	2	5	2	5
Percentage of Neoplasms	14%	25%	14%	31%	11%	19%	13%	24%

¹One fish died early.

At six months among male medaka there appeared to be a promotional effect of the Canal Creek water on hepatocellular neoplasms. At nine months among male medaka there appeared to be a promotional effect of the groundwater on hepatocellular neoplasia based on the apparently low incidence of hepatocellular neoplasms in controls (one in 17). This low incidence may be spurious in light of the incidence of hepatocellular neoplasms in DEN-initiated control males from the six month sacrifice (7 of 20 fish) and the incidence in DEN-initiated control males in dechlorinated tap water from the nine month sacrifice

²Two of these fish died early.

(8 of 40 fish). If it is speculated that the "one in 17" control incidence probably should have been higher (six to eight) then the conclusions might be that there is a slight groundwater effect on hepatocellular neoplasia at the 25% concentration and that there is a continuing promotional effect of the Canal Creek water on all groups of males initiated with DEN.

At six months among female medaka there appeared to be a promotional effect of the Canal Creek water on hepatocellular neoplasia. At six months and nine months among female medaka there was no effect of the groundwater on hepatocellular neoplasia. The number of medaka with hepatocellular neoplasia increased at nine months over six months in all groups and at nine months the incidence was greatest among control Groups 3/4 (8 of 32 affected). This distribution of neoplasms indicates that the promotional effect of the Canal Creek water which was evident at six months was still evident at nine months even though the fish were not exposed to Canal Creek water for the last three months of the study.

Groups Initiated with DEN and Exposed to 0, 1, 5 or 25% Groundwater in Dechlorinated Tap Water for Six Months and Nine Months

In general the number of hepatocellular neoplasms observed at nine months was greater than the number observed at six months. An exception was that only one of 17 female medaka at six months had a hepatocellular neoplasm in Groups 19/20 and only one in 30 female medaka at nine months had a hepatocellular neoplasm in Groups 19/20.

Overall, neoplasms were more numerous among males than females. An exception was that at six months one female in Groups 19/20 (controls) had a hepatocellular neoplasm and no males in Groups 19/20 had hepatocellular neoplasia.

Hepatocellular neoplasms (both adenomas and carcinomas combined) are summarized below in Table 2 for the medaka described in the title of this section.

TABLE 2

Incidences Initiate	of Fish wit d with DE							
	6 Mon.	9 Mon.	6 Mon.	9 Mon.	6 Mon.	9 Mon.	6 Mon.	9 Mon.
Group Nos.	19/20	19/20	23/24	23/24	27/28	27/28	31/32	31/32
Groundwater Conc.	0	0	1%	1%	5%	5%	25%	25%
Total Male Medaka	(21)	(40)	(24)	(30)	(20)	(36)	(19)	(29)
Hepatocellular Neoplasms	0	8¹	2	5	2	5	3	12
Percentage of Neoplasms	0%	20%	8%	17%	10%	14%	16%	41%
Total Female Medaka	(17)	(30)	(16)	(37)	(19)	(31)	(21)	(38)
Hepatocellular Neoplasms	1	1	0	3 ¹	0	3	1	6
Percentage of Neoplasms	6%	3%	0%	8%	0%	10%	5%	16%

¹One of these fish died early.

At six months among male medaka there was no effect of groundwater on hepatocellular neoplasia. At nine months there appeared to be a promotional effect of the groundwater at 25% concentration on hepatocellular neoplasia in male medaka (12 of 29 fish affected), although eight of 40 control medaka also had hepatocellular neoplasia at nine months.

At six months among the female medaka there was no effect of groundwater on hepatocellular neoplasia. At nine months there appeared to be a trend of increasing percentage of hepatocellular neoplasms from controls to medaka in 25% groundwater, but the differences between groups in number of neoplasms was not great.

Groups Not Initiated with DEN and Exposed to 0, 1, 5 or 25% Groundwater in Canal Creek Water as Diluent Water for Six Months and in Dechlorinated Tap Water for the Final Three Months of the Study

At six months among male and female medaka there was no effect of either Canal Creek water or groundwater on the incidence of hepatocellular neoplasia. At nine months among the males there was a slight effect of 25% groundwater concentration on the incidence of hepatocellular neoplasia (three of 25 medaka had hepatocellular neoplasia versus one medaka with hepatocellular neoplasia in each of the other three exposure concentrations). At nine months among the females there was no effect of groundwater exposure on hepatocellular neoplasia.

Groups Not Initiated with DEN and Exposed to 0, 1, 5 or 25% Groundwater in Dechlorinated Tap Water as Diluent Water for Six Months and Nine Months

At six months and at nine months among male and female medaka there was no effect of groundwater on the incidence of hepatocellular neoplasia.

Groups Initiated and Not Initiated with DEN and Housed in Laboratory Well Water for Six Months and Nine Months

At six months there were no hepatocellular neoplasms diagnosed among medaka of either sex. At nine months one hepatocellular adenoma occurred in a female medaka that had been initiated with DEN.

NEOPLASMS OTHER THAN HEPATOCELLULAR NEOPLASMS

Neoplasms other than hepatocellular neoplasms occurred sporadically among male and female medaka with no regard to DEN initiation or the type of diluent water in which the medaka were housed. Lymphosarcoma was the most common among these sporadic neoplasms.

NON-NEOPLASTIC LESIONS

A number of non-neoplastic lesions occurred in a variety of tissues in both male and female medaka housed in Canal Creek water, dechlorinated tap water or laboratory well water. There was an interesting association of the occurrence of hyaline material in the

glomeruli of the kidney in medaka that also had hepatocellular neoplasia, although these two lesions did not consistently occur together in the same fish. Tubular dilatation and tubular casts were common changes in the kidney that occurred more frequently among male medaka than among female medaka. Tubular degeneration and tubular mineralization, when they occurred, usually were in medaka that also had tubular casts and/or tubular dilatation.

Metazoan parasites, usually associated with granulomas, were present in a variety of tissues only in medaka that were exposed to Canal Creek water. This finding is not unexpected in fish exposed to a natural surface water which would harbor such organisms.

Increased basophilia of thyroid tissue was consistently more common among male medaka than among female medaka regardless of diluent water type or exposure to groundwater. Among medaka housed in Canal Creek water for six months and then in dechlorinated tap water for three months, 19% of the females had increased basophilia of thyroid tissue although it was usually of minimal severity. This percentage in females, however, was higher than the percentage incidence in females housed in dechlorinated tap water or laboratory well water for six months or nine months or in Canal Creek water for six months.

A common gross observation made at necropsy among female medaka was a large, or inflamed, or swollen anal passage or opening. At gross trimming these observations were related to a bulge of tissue in the area of the anus identified as the urinogenital papillae, an anatomic sex characteristic of female medaka. Histologically the

urinogenital papillae of a number of fish were notably larger than in others and diagnoses of hypertrophy and/or hyperplasia of the covering epithelium were made. Enlarged urinogenital papillae were noted grossly more often in medaka exposed to Canal Creek water for six months and then to dechlorinated tap water for the last three months of the study than in medaka exposed to dechlorinated tap water for nine months. There was no relationship of incidence of enlargement of urinogenital papillae to groundwater or DEN exposure. It is known that the size of the papillae may vary with the breeding season of medaka, and, experimentally, that the size may be altered by exposure to female or male hormones. An explanation for the greater incidence of enlarged papillae in medaka exposed to Canal Creek water than in medaka exposed to dechlorinated tap water is not readily apparent.

Lesions occurred in other tissues not discussed in this summary. See the individual reports for more details on all the findings in the "West Branch Canal Creek Carcinogenicity Study with Medaka."

MARILYN J. WOLFE, D.V.M., Ph.D. Veterinary Pathologist

MJW/wk

•			
	•		
			t
			1
			t
			i i
			ļ
]
			1
			1
			1

APPENDIX 58

COMPREHENSIVE CHEMICAL ANALYSES CONDUCTED ON RAW (pH ≈4) CANAL CREEK GROUNDWATER (WELL CC-27B), WEST BRANCH OF CANAL CREEK WATER, APG-EA TAP WATER, AND CHRONIC HISTOPATHOLOGY EXPOSURE TANKS

COMPREHENSIVE CHEMICAL ANALYSIS OF THE WEST BRANCH OF CANAL CREEK STUDY GROUNDWATER (WELL NO. CC-27B), WEST BRANCH OF CANAL CREEK SURFACE WATER, AND APG-EA TAP WATER (TEST NO. 1) - GENERAL WATER QUALITY® TABLE A58-1A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Alkalinity (CaCO ₃)	310.1	1.0	<1.0	61.2	30
Ammonia Nitrogen (N)	350.3	0.01	0.035	0.052	0.032
Bromide	320.1	0.2	<0.2	0.4	<0.2
Chloride (C1)	508	1.0	78.6	109	23.8
Cyanide (Cn)	335.2	0.002	<0.002	<0.002	<0.002
Fluoride (F)	340.2	0.01	0.349	0.200	0.449
Hardness (CaCO ₃)	AA	ı	63.5	95.6	67.0
pH (electrometric)	150.1	ı	4.08	6.70	69.9
Nitrate (N)	ISE	0.01	1.97	0.591	3.01
Nitrite (N)	354.1	0.001	<0.001	<0.001	<0.001
Phosphate (P)	365.3	0.01	0.151	0.153	0.302
Specific Conductance @ 25 °C	120.1	1.0	427	477	188
Sulfate (SO_4)	375.3	1.0	103	17.5	2.3
Sulfide (H_2S)	376.1	0.02	<0.02	<0.02	<0.02
Total Organic Carbon	415.1	2.0	2.6	8.3	<2.0
Total Suspended Solids	160.2	1.0	<1.0	11.6	<1.0

All results expressed as mg/L except for specific conductance and pH which are expressed as \mmhos/cm and standard units, respectively.

TABLE A58-1A. (CONTINUED) - METALS^a

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
		-			
Aluminum (Al)	200.7	25.6	2380	250	37.3
Antimony (Sb)	200.7	14.1	<14.1	<14.1	<14
Arsenic (As)	200.7	45	<45	<45	<45
Beryllium (Be)	200.7	0.5	1.8	<0.5	<0.5
Boron	200.7	10	352	233	90.3
Cadmium (Cd)	200.7	1.5	<1.5	<1.5	<1.5
Calcium (Ca)	200.7	30.6	17000	19600	18900
Chromium (Cr)	200.7	9	9>	<5	9>
Cobalt	200.7	1.3	45.9	2.6	1.9
Copper (Cu)	200.7	က	16.6	6.8	6.6
Iron	200.7	2.5	5.5	1250	12.0
Lead (Pb)	200.7	14.5	<14.5	<14.5	<14.5
Magnesium (Mg)	200.7	29.5	5990	13300	5630
Manganese (Mn)	200.7	0.97	734	175	<0.97
Mercury (Hg)	245.1	0.1	0.1	<0.1	<0.1
Molybdenum (Mo)	200.7	28.9	<28.9	<28.9	<28.9
Nickel (Ni)	200.7	2.9	24.0	4.2	6.5
Potassium (K)	200.7	40	2000	3840	2210
Selenium (Se)	200.7	11.1	<11.1	<11.1	<11.1
Silver (Ag)	200.7	6.7	<6.7	<6.7	<6.7
Sodium (Na)	200.7	30	60500	61600	9630
Thallium	200.7	75	<75	<75	<75
Tin (Sn)	200.7	7.6	<9.7	<9.7	<9.7
Zinc (Zn)	200.7	1.5	88.4	44.8	251

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS® TABLE A58-1A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Benzene	8021	0.5	ND	ND	ND
Bromobenzene	8021	0.5	ND	ND	ND
Bromochloromethane	8021	0.5	ND	ND	ND
Bromodichloromethane	8021	0.5	0.78	ND	3.3
Bromoform	8021	0.5	ND	ND	ND
Bromomethane	8021	0.5	ND	ND	ND
n-Butylbenzene	8021	0.5	ND	ND	QN
s-Butylbenzene	8021	0.5	ND	ND	ND
t-Butylbenzene	8021	0.5	ND	ND	ND
Carbon Tetrachloride	8021	0.5	57.7	16.8	ND
Chlorobenzene	8021	0.5	ND	ND	QN
Chlorodibromomethane	8021	0.5	ND	ND	ND
Chloroethane	8021	0.5	ND	ND	ND
Chloroform	8021	0.5	103	15.3	19.2
Chloromethane	8021	0.5	ND	QN	ND
2-Chlorotoluene	8021	0.5	ND	ND	ND
4-Chlorotoluene	8021	0.5	ND	ND	ND
1,2-Dibromo-3-chloropropane	8021	0.5	ND	ND	ND
1,2-Dibromoethane	8021	0.5	ND	ND	ND
Dibromomethane	8021	0.5	ΩN	ND	ND
1,2-Dichlorobenzene	8021	0.5	0.53	ND	ND
1,3-Dichlorobenzene	8021	0.5	ND	QN	ND
1,4-Dichlorobenzene	8021	0.5	ND	ND	ND
Dichlorodifluoromethane	8021	1.0	ND	ND	ND
1,1-Dichloroethane	8021	0.5	ND	ND	ND
1,2-Dichloroethane	8021	0.5	3.5	ND	ND
1,1-Dichloroethene	8021	0.5	ND	ND	NO

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS CON'TA TABLE A58-1A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
cis-1,2-Dichloroethene	8021	0.5	1.3	0.59	ND
1,1-Dichloropropene	8021	0.5	ND	ND	ND
cis-1,3-Dichloropropene	8021	0.5	ND	ND	ND
trans-1,3-Dichloropropene	8021	0.5	ND	ND	ND
Ethylbenzene	8021	0.5	ND	ND	ND
Hexachlorobutadiene	8021	0.5	ND	ND	ND
Isopropylbenzene	8021	0.5	ND	ND	ND
p-Isopropyltoluene	8021	0.5	ND	ND	ND
Methylene chloride	8021	0.5	ND	ND	ND
Naphthalene	8021	0.5	ND	ND	ND
n-Propylbenzene	8021	0.5	ND	ND	ND
Styrene	8021	0.5	ND	ND	ND
1,1,1,2-Tetrachloroethane	8021	0.5	ND	ND	ND
1,1,2,2-Tetrachloroethane	8021	0.5	57.8	7.98	ND
Tetrachloroethene	8021	0.5	3.49	3.02	ND
Toluene	8021	0.5	ND	ND	ND
1,2,3-Trichlorobenzene	8021	0.5	ND	ND	ND
1,2,4-Trichlorobenzene	8021	0.5	9.0	ND	ND
1,1,1-Trichloroethane	8021	0.5	ND	ND	ND
1,1,2-Trichloroethane	8021	0.5	1.08	0.51	ND
Trichloroethene	8021	0.5	64.4	1.74	ND
Trichlorofluoromethane	8021	0.5	ND	ND	ND
1,2,3-Trichloropropane	8021	0.5	qQN	ND	ND
1,2,4-Trimethylbenzene	8021	0.5	ND	ND	ND
1,3,5-Trimethylbenzene	8021	0.5	ND	ND	ND
Vinyl Chloride	8021	0.5	NO	ND	ND
o,m,p-Xylenes	8021	0.5	ND	ND	QN
			1		

All results expressed as $\mu g/L$. A spurious result of 0.52 $\mu g/L$ was originally reported; the error was corrected by the analytical laboratory. e o

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS⁸ TABLE A58-1A.

Analyte	EPA Method	Detection Ļimits	100% G.W.	100% W.B.C.C.	100% APG-EA
Bis-(2-chloroethoxy) Methane	8270	2.0	ND	ND	ND
Bis-(2-chloroethyl) Ether	8270	2.0	ND	ND	ND
Bis-(2-chloroisopropyl) Ether	8270	2.0	ND	ND	ND
Bis-(2-ethylhexyl) Phthalate	8270	2.0	ND	ND	ND
4-Bromophenyl Phenyl Ether	8270	2.0	ND	QN	ND
Butyl Benzyl Phthalate	8270	2.0	ND	ND	ND
2-Chloronapthalene	8270	2.0	ND	ND	ND
4-Chlorophenyl Phenyl Ether	8270	2.0	ND	ND	ND
Chrysene	8270	2.0	ND	ND	ND
Dibenzo (a,h) Anthracene	8270	3.0	ND	ND	ND
Acenaphthylene	8270	2.0	ND	QN	ND
1,2-Dichlorobenzene	8270	2.0	ND	ND	ND
1,3-Dichlorobenzene	8270	2.0	ND	ND	ND
1,4-Dichlorobenzene	8270	2.0	ND	ON	ND
3,3'-Dichlorobenzidine	8270	5.0	ND	ND	ND
Diethyl Phthalate	8270	2.0	NO	ON	ND
Dimethyl Phthalate	8270	5.0	QN	ND	ND
Di-n-Butyl Phthalate	8270	2.0	ND	ND	ND
2,4-Dinitrotoluene	8270	4.0	ND	ON	ND
2,6-Dinitrotoluene	8270	4.0	ND	ND	ND
Di-n-Octyl Phthalate	8270	2.0	ND	ND	ND
Fluoranthene	8270	2.0	ND	ND	ND
Fluorene	8270	2.0	ND	ND	ND
Hexachlorobenzene	8270	2.0	ND	ND	ND
Hexachlorobutadiene	8270	3.0	ND	ND	ND
Hexachlorocyclopentadiene	8270	5.0	ND	ND	ND
Hexachloroethane	8270	2.0	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS CON'Tª TABLE A58-1A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Indeno[1,2,3-cd]pyrene	8270	3.0	ND	ND	ND
Isophorone	8270	2.0	ND	ND	ND
Naphthalene	8270	2.0	ND	ND	ND
Anthracene	8270	2.0	ND	ND	ND
Nitrobenzene	8270	4.0	ND	ND	ND
N-Nitroso-di-n-propylamine	8270	4.0	ND	ND	ND
N-Nitrosodiphenylamine	8270	4.0	ND	ND	ND
Phenanthrene	8270	2.0	ND	ND	ND
Pyrene	8270	2.0	ND	ND	ND
1,2,4-Trichlorobenzene	8270	2.0	ND	ND	ND
Benzo(a)anthracene	8270	3.0	ND	ND	ND
Benzo(a)pyrene	8270	3.0	ND	ND	ND
Benzo(b) fluoranthene	8270	3.0	ND	ND	ND
Benzo(g,h,i)perylene	8270	3.0	ND	ND	ND
Benzo(k)fluoranthene	8270	3.0	ND	ND	ND
Benzidine	8270	4.0	ND	ND	ND
1,2-Diphenylhydrazine	8270	4.0	ND	ND	ND
N-Nitrosodimethylamine	8270	4.0	NO	ND	ND
Acenaphthene	8270	2.0	ND	ND	ND
3,4-Benzo-fluoranthene	8270	3.0	ND	ND	ND
4-Chloroaniline	8270	2.0	ND	ND	ND
2-Methylnaphthalene	8270	2.0	NO	ND	ND
2-Nitroaniline	8270	5.0	NO	QN	ND
4-Nitroaniline	8270	5.0	NO	ND	ND
Dibenzofuran	8270	2.0	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT ACID EXTRACTABLES® TABLE A58-1A.

Analyte EPA Metho	EPA fethod	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Phenol 8270	270	2.0	NO	ND	ND
2,4,6-Trichlorophenol	270	2.0	ND	ND	ND
2-Chlorophenol 8270	270	2.0	ND	ND	ND
2,4-Dichlorophenol	270	2.0	ND	ND	ND
2,4-Dimethylphenol	270	2.0	ND	ND	ND
4,6-Dinitro-o-cresol	270	5.0	ND	ND	ND
2,4-Dinitrophenol	270	5.0	ND	ND	ND
2-Nitrophenol 8270	270	5.0	ND	ND	ND
4-Nitrophenol 8270	270	5.0	ND	ND	ND
p-Chloro-m-cresol 8270	270	2.0	ND	ND	ND
Pentachlorophenol 8270	270	5.0	ND	ND	ND
p-Cresol 8270	270	2.0	ND	ND	ND
o-Cresol 8270	270	2.0	ND	ND	ND
2,4,5-Trichlorophenol 8270	270	2.0	ND	QN	ND

All results expressed as $\mu g/L$.

(CONTINUED) - ORGANOPHOSPHORUS PESTICIDES⁸ TABLE A58-1A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Azinphos-methyl	8140	0.10	ND	ND	ND
Bolstar (Sulprofos)	8140	0.07	ND	ND	ND
Coumaphos	8140	0.20	ND	ND	ND
Demeton, -0, -S	8140	0.12	ND	ND	ND
Diazinon	8140	0.20	ND	ND	ND
Dichlorvos	8140	0.80	ND	ND	ND
Dimethoate	8140	0.26	ND	ND	ND
Disulfoton	8140	0.07	ND	ND	ND
EPN	8140	0.04	ND	ND	ND
Ethoprop	8140	•	ND	ND	ND
Fensulfothion	8140	0.08	ND	ND	ND
Fenthion	8140	0.08	ND	ND	ND
Malathion	8140	0.11	ND	QN	ND
Merphos	8140	0.20	ND	ND	ND
Mevinphos	8140	0.50	ND	ND	ND
Naled	8140	0.50	ND	ND	ND
Parathion	8140	0.12	ND	ND	ND
Phorate	8140	0.04	NO	ND	ND
Ronnel	8140	0.07	ND	ND	ND
Sulfotep	8140	0.07	ND	ND	ND
TEPP	8140	08.0	ND	ND	ND
Tetrachlorovinphos	8140	08.0	NO	ND	ND
Tokuthion	8140	0.07	ND	ND	ND
Trichloronate	8140	0.80	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - CHLORINATED PESTICIDES AND HERBICIDES^a TABLE A58-1A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C	100% APG-EA
Pesticides:					
Aldrin	8080	0.034	ND	ND	ND
Alpha-BHC	8080	0.035	ND	ND	ND
Beta-BHC	8080	0.023	ND	ND	ND
Delta-BHC	8080	0.024	ND	ND	ND
Gamma-BHC (Lindane)	8080	0.025	ON	ND	ND
Chlordane	8080	0.037	NO	ND	ND
4,4'-DDD	8080	0.050	ND	ND	ND
4,4'-DDE	8080	0.058	QN	ND	ND
4,4'-DDT	8080	0.081	ND	ND	ND
Dieldrin	8080	0.044	ND	ND	ND
Alpha-Endosulfan .	8080	0.030	ND	ND	ND
Beta-Endosulfan	8080	0.040	ND	ND	ND
Endosulfan sulfate	8080	0.0072	ND	ND	ND
Endrin	8080	0.0072	ND	ND	ND
Endrin Aldehyde	8080	0.0032	ND	ND	ND
Heptachlor	8080	0.0040	ND	ND	ND
Heptachlor Epoxide	8080	0.0042	ND	ON	ND
Methoxychlor	8080	0.0500	ND	QN	ND
Chlorpyrifos	8080	0.0044	QN	ND	ND
Toxaphene	8080	0.0114	ND	ND	ND
Malathion	8080	0.1100	ND	ND	ND
Parathion	8080	0.1200	NO	ND	ND
<u>Herbicides:</u>					
2,4-D	8150	1.500	NO	ND	ND
2,4,5-TP	8150	0.075	ND	ND	ND

All results expressed as $\mu g/L$.

COMPREHENSIVE CHEMICAL ANALYSIS OF THE WEST BRANCH OF CANAL CREEK STUDY CHRONIC HISTOPATHOLOGY GROUNDWATER EXPOSURE AQUARIA DILUTED WITH APG-EA TAP WATER (TEST NO. 1) - GENERAL WATER QUALITY® TABLE A58-1B.

	Limits	G.W.	G.W.	G.W.
310.1	1.0	20.0	27.6	29.6
350.3	0.01	0.054	0.053	0.051
320.1	0.2	<0.2	<0.2	<0.2
508	1.0	37.3	26.3	24.3
335.2	0.002	<0.002	<0.002	<0.002
340.2	0.01	0.426	0.469	0.480
AA	ŀ	67.8	67.5	68.4
150.1	: 1	6.60	06.9	68.9
ISE	0.01	2.67	2.91	2.97
354.1	0.001	<0.001	<0.001	<0.001
365.3	0.01	0.311	0.302	0.364
120.1	1.0	254	199	192
375.3	1.0	29.1	15.8	14.1
376.1	0.02	<0.02	<0.02	<0.02
415.1	2.0	4.6	2.7	4.4
160.2	1.0	<1.0	<1.0	<1.0
310.1 350.3 320.1 508 335.2 340.2 AA 150.1 150.1 375.3 376.1 415.1	1	1.0 0.01 0.02 1.0 0.002 0.01 1.0 1.0 1.0	2	20.0 0.054 <0.2 37.3 <0.002 0.426 67.8 6.60 2.67 <0.001 0.311 254 1.0

All results expressed as mg/L except for specific conductance and pH which are expressed as μ mhos/cm and standard units, respectively.

TABLE A58-1B. (CONTINUED) - METALS^a

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	1% G.W.
Aluminum (A1)	200.7	25.6	677	139	64.8
Antimony (Sb)	200.7	14.1	<14.5	<14.1	<14.1
Arsenic (As)	200.7	45	<45	<45	<45
Beryllium (Be)	200.7	0.5	<0.5	<0.5	<5
Boron	200.7	10	188	221	155
Cadmium (Cd)	200.7	1.5	<1.5	<1.5	<1.5
Calcium (Ca)	200.7	30.6	19000	19000	19400
Chromium (Cr)	200.7	9	9>	9>	9>
Cobalt	200.7	1.3	10.9	2.9	<1.3
Copper (Cu)	200.7	က	9	~	10.3
Iron	200.7	2.5	14.5	14.5	7.9
Lead (Pb)	200.7	14.5	<14.5	<14.5	<14.5
Magnesium (Mg)	200.7	29.5	5790	5710	5680
Manganese (Mn)	200.7	0.97	187	36.5	8.7
Mercury (Hg)	245.1	0.1	0.13	<0.1	<0.1
Molybdenum (Mo)	200.7	28.9	<28.9	<28.9	q
Nickel (Ni)	200.7	2.9	10.5	<2.9	q
Potassium (K)	200.7	40	2190	2190	q
Selenium (Se)	200.7	11.1	<11.1	<11.1	q
Silver (Ag)	200.7	6.7	<6.7	<6.7	q
Sodium (Na)	200.7	30	22300	12200	Q
Thallium	200.7	75	<75	<75	<75
Tin (Sn)	200.7	9.7	<9.7	<9.7	<9.7
Zinc (Zn)	200.7	1.5	196	207	227

All results expressed as $\mu g/L$. Result not reported because of an error in the anaytical laboratory report. **α** Δ

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS^a TABLE A58-1B.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Benzene	8021	0.5	ND	ND	ND
Bromobenzene	8021	0.5	ND	ND	ND
Bromochloromethane	8021	0.5	ND	ND	ND
Bromodichloromethane	8021	0.5	1.88	2.38	2.41
Bromoform	8021	0.5	ND	ND	ND
Bromomethane	8021	0.5	ND	ND	ND
n-Butylbenzene	8021	0.5	ND	ND	ND
s-Butylbenzene	8021	0.5	ND	ND	ND
t-Butylbenzene	8021	0.5	ND	ND	ND
Carbon Tetrachloride	8021	0.5	6.43	1.41	ND
Chlorobenzene	8021	0.5	ND	ND	ND
Chlorodibromomethane	8021	0.5	ND	ND	ND
Chloroethane	8021	0.5	ND	ND	ND
Chloroform	8021	0.5	22.0	14.7	12.4
Chloromethane	8021	0.5	ND	ND	ND
2-Chlorotoluene	8021	0.5	ND	ND	ND
4-Chlorotoluene	8021	0.5	ND	ND	ND
1,2-Dibromo-3-chloropropane	8021	0.5	ND	ND	ND
1,2-Dibromoethane	8021	0.5	ND	ND	ND
Dibromomethane	8021	0.5	ND	ND	ND
1,2-Dichlorobenzene	8021	0.5	ND	ND	ND
1,3-Dichlorobenzene	8021	0.5	ND	ND	ND
1,4-Dichlorobenzene	8021	0.5	ND	ND	ND
Dichlorodifluoromethane	8021	1.0	ND	ND	ND
1,1-Dichloroethane	8021	0.5	ND	ND	ND
1,2-Dichloroethane	8021	0.5	ND	ND	ND
1,1-Dichloroethene	8021	0.5	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS CON'Tª TABLE A58-1B.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	1% G.W.
cis-1,2-Dichloroethene	8021	0.5	ND	QN	ND
1,1-Dichloropropene	8021	0.5	ND	ND	ND
cis-1,3-Dichloropropene	8021	0.5	ND	ND	ND
trans-1,3-Dichloropropene	8021	0.5	ND	ND	ND
Ethylbenzene	8021	0.5	ND	ND	QN
Hexachlorobutadiene	8021	0.5	ND	ND	ND
Isopropylbenzene	8021	0.5	ND	ND	QN
p-Isopropyltoluene	8021	0.5	ND	ND	ND
Methylene chloride	8021	0.5	ND	ND	ND
Naphthalene	8021	0.5	ND	ND	ND
n-Propylbenzene	8021	0.5	ND	ND	ND
Styrene	8021	0.5	ND	ND	ND
1,1,1,2-Tetrachloroethane	8021	0.5	ND	ND	ND
1,1,2,2-Tetrachloroethane	8021	0.5	10.5	2.32	ND
Tetrachloroethene	8021	0.5	NO	ND	ND
Toluene	8021	0.5	ND	ND	ND
1,2,3-Trichlorobenzene	8021	0.5	ND	ND	ND
1,2,4-Trichlorobenzene	8021	0.5	ND	ND	ND
1,1,1-Trichloroethane	8021	0.5	ND	ND	ND
1,1,2-Trichloroethane	8021	0.5	0.51	ND	ND
Trichloroethene	8021	0.5	7.33	1.75	ND
Trichlorofluoromethane	8021	0.5	ND	NO	ND
1,2,3-Trichloropropane	8021	0.5	ND	ND	ND
1,2,4-Trimethylbenzene	8021	0.5	ND	ND	ND
1,3,5-Trimethylbenzene	8021	0.5	ND	ND	ND
Vinyl Chloride	8021	0.5	ND	ND	ND
o,m,p-Xylenes	8021	0.5	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS^a TABLE A58-1B.

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.
Bis-(2-chloroethoxy) Methane	8270	2.0	ND	ND	ND
Bis-(2-chloroethyl) Ether	8270	2.0	ND	ND	ND
Bis-(2-chloroisopropyl) Ether	8270	2.0	ND	ND	ND
Bis-(2-ethylhexyl) Phthalate	8270	2.0	ND	ND	ND
4-Bromophenyl Phenyl Ether	8270	•	ND	NO	ND
Butyl Benzyl Phthalate	8270	•	ND	ON	ND
2-Chloronapthalene	8270	2.0	ND	ND	ND
4-Chlorophenyl Phenyl Ether	8270	2.0	ND	ND	ND
Chrysene	8270	2.0	ND	ND	ND
Dibenzo (a,h) Anthracene	8270	3.0	ND	ND	ND
Acenaphthylene	8270	2.0	QN	QN	ND
1,2-Dichlorobenzene	8270	2.0	QN	QN	ND
1,3-Dichlorobenzene	8270	2.0	ND	QN	ND
1,4-Dichlorobenzene	8270	2.0	ND	ND	ND
3,3'-Dichlorobenzidine	8270	5.0	ND	ND	ND
Diethyl Phthalate	8270	2.0	ND	ND	ND
Dimethyl Phthalate	8270	5.0	ND	ND	ND
Di-n-Butyl Phthalate	8270	2.0	ND	ND	ND
2,4-Dinitrotoluene	8270	4.0	QN	ND	ND
2,6-Dinitrotoluene	8270	4.0	ND	ND	ND
Di-n-Octyl Phthalate	8270	2.0	ND	ND	ND
Fluoranthene	8270	2.0	ND	ND	ND
Fluorene	8270	2.0	ND	ND	ND
Hexachlorobenzene	8270	2.0	ND	ND	ND
Hexachlorobutadiene	8270	3.0	ND	ND	ND
Hexachlorocyclopentadiene	8270	5.0	ND	ND	ND
Hexachloroethane	8270	2.0	QN	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS CON'Ta TABLE A58-1B.

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.
Indeno[1,2,3-cd]pyrene	8270	3.0	UD	ND	ND
Isophorone	8270	2.0	ND	ND	ΩN
Naphthalene	8270	2.0	ND	ND	ND
Anthracene	8270	2.0	ND	ND	ND
Nitrobenzene	8270	4.0	ND	ND	ND
N-Nitroso-di-n-propylamine	8270	4.0	ND	ND	ND
N-Nitrosodiphenylamine	8270	4.0	ND	ND	ND
Phenanthrene	8270	2.0	ND	ND	ND
Pyrene	8270	2.0	ND	ND	ND
1,2,4-Trichlorobenzene	8270	•	ND	ND	ND
Benzo(a)anthracene	8270	3.0	ND	ND	ND
Benzo(a)pyrene	8270	3.0	ND	ND	ND
Benzo(b)fluoranthene	8270	3.0	ND	ND	ND
Benzo(g,h,i)perylene	8270	3.0	ND	ND	ND
Benzo(k)fluoranthene	8270	3.0	ND	ND	ND
Benzidine	8270	4.0	ND	ND	ND
1,2-Diphenylhydrazine	8270	4.0	ND	ND	ND
N-Nitrosodimethylamine	8270	4.0	ND	ND	ND
Acenaphthene	8270	2.0	ND	ND	ND
3,4-Benzo-fluoranthene	8270	3.0	ND	ND	ND
4-Chloroaniline	8270	2.0	ND	ND	ND
2-Methylnaphthalene	8270	2.0	ND	ND	ND
2-Nitroaniline	8270	5.0	ND	ND	ND
4-Nitroaniline	8270	5.0	ND	ND	ND
Dibenzofuran	8270	2.0	ND	ND	ND

All results expressed as $\mu g/L$.

TABLE A58-1B. (CONTINUED) - PRIORITY POLLUTANT ACID EXTRACTABLESª

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Phenol	8270	2.0	ND	ND	QN
2,4,6-Trichlorophenol	8270	2.0	ND	ND	ND
2-Chlorophenol	8270	2.0	ND	ND	ND
2,4-Dichlorophenol	8270	2.0	ND	ND	ND
2,4-Dimethylphenol	8270	2.0	ND	ND	ND
4,6-Dinitro-o-cresol	8270	5.0	ND	ND	ND
2,4-Dinitrophenol	8270	5.0	ND	ND	ND
2-Nitrophenol	8270	5.0	ND	ND	ND
4-Nitrophenol	8270	5.0	ND	ON	ND
p-Chloro-m-cresol	8270	2.0	ND	ND	ND
Pentachlorophenol	8270	5.0	ND	ND	ND
p-Cresol	8270	2.0	ND	QN	ND
o-Cresol	8270	2.0	ND	ND	ND
2,4,5-Trichlorophenol	8270	2.0	ND	ND	ND

^a All results expressed as $\mu g/L$.

(CONTINUED) - ORGANOPHOSPHORUS PESTICIDES⁸ TABLE A58-1B.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	1% G.W.
Azinphos-methyl	8140	0.10	ND	ND	ND
Bolstar (Sulprofos)	8140	0.07	ND	ND	ND
	8140	0.20	ND	ND	ND
Demeton, -0, -S	8140	0.12	ND	ND	ND
Diazinon	8140	0.20	ND	ND	ND
Dichlorvos	8140	08.0	ND	ND	ND
Dimethoate	8140	0.26	ND	ND	ND
Disulfoton	8140	0.07	ND	ND	ND
EPN	8140	0.04	ND	ND	ND
Ethoprop	8140		ND	ND	ND
Fensulfothion	8140	0.08	ND	ND	ND
Fenthion	8140	0.08	ND	ND	ND
Malathion	8140	0.11	ND	ND	ND
Merphos	8140	0.20	ND	ND	ND
Mevinphos	8140	0.50	ND	ND	ND
Naled	8140	0.50	ND	ND	ND
Parathion	8140	0.12	ND	ND	ND
Phorate	8140	0.04	ND	ND	QN
Ronnel	8140	0.07	ND	ND	ND
Sulfotep	8140	0.07	ND	ND	ND
TEPP	8140	0.80	ND	ND	ND
Tetrachlorovinphos	8140	0.80	ND	ND	ND
Tokuthion	8140	0.07	ND	ND	ND
Trichloronate	8140	0.80	ND	ND	ND

All results expressed as $\mu g/L$.

TABLE A58-1B. (CONTINUED) - CHLORINATED PESTICIDES AND HERBICIDES

5%

25%

Detection

EPA

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.₩.	18 G.W.
Pesticides:					
Aldrin	8080	0.034	ND	ND	ND
Alpha-BHC	8080	0.035	ND	ND	ND
Beta-BHC	8080	0.023	ND	ND	ND
Delta-BHC	8080	0.024	ND	ND	ND
Gamma-BHC (Lindane)	8080	0.025	ND	ND	ND
Chlordane	8080	0.037	ND	ND	ND
4,4'-DDD	8080	0.050	ND	ND	ND
4,4'~DDE	8080	0.058	QN	ND	ND
4,4'-DDT	8080	•	ND	ND	ND
Dieldrin	8080	•	ND	ND	ND
Alpha-Endosulfan	8080	•	ND	ND	ND
Beta-Endosulfan	8080	•	ND	ND	ND
Endosulfan sulfate	8080	•	ND	ND	ND
Endrin	8080	•	ND	ND	ND
Endrin Aldehyde	8080	0.0032	ND	ND	ND
Heptachlor	8080	•	ND	ND	QN
Heptachlor Epoxide	8080	0.0042	ND	ND	ND
Methoxychlor	8080	•	ND	ND	ND
Chlorpyrifos	8080	•	ND	ND	ND
Toxaphene	8080	•	ND	ND	ND
Malathion	8080	0.1100	ND	ND	ND
Parathion	8080	•	ND	ND	ND
Herbicides:					
2,4-D	8150	1.500	ND	ND	ND
2,4,5-TP	8150	0.075	ND	ND	ND

All results expressed as $\mu g/L$.

COMPREHENSIVE CHEMICAL ANALYSIS OF THE WEST BRANCH OF CANAL CREEK STUDY CHRONIC HISTOPATHOLOGY GROUNDWATER EXPOSURE AQUARIA DILUTED WITH WEST - GENERAL WATER QUALITY® BRANCH OF CANAL CREEK WATER (TEST NO. 1) TABLE A58-1C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Alkalinity (CaCO ₃)	310.1	1.0	47.6	58.2	60.4
Ammonia Nitrogen (N) Bromide	350.3 320.1	0.01	0.087	0.102	0.091
Chloride (C1)	508	1.0	117	126	132
Cyanide (Cn)	335.2	0.002	<0.002	<0.002	<0.002
Fluoride (F)	340.2	0.01	0.215	0.227	0.211
Hardness (CaCO ₃)	AA	i	88.4	96.2	97.5
pH (electrometric)	150.1	ı	6.62	6.94	q
Nitrate (N)	ISE	0.01	1.04	0.670	0.636
Nitrite (N)	354.1	0.001	0.001	0.002	0.002
Phosphate (P)	365.3	0.01	0.153	0.224	0.134
Specific Conductance 0 25 °C	120.1	1.0	516	530	561
Sulfate (SO ₄)	375.3	1.0	38.8	22.5	18.8
Sulfide (H_2S)	376.1	0.02	<0.02	<0.02	<0.02
Total Organic Carbon	415.1	2.0	6.8	7.0	7.5
Total Suspended Solids	160.2	1.0	4.9	5.1	6.1

All results expressed as mg/L except for specific conductance and pH which are Result not reported because of an error in the analytical laboratory report. expressed as μ mhos/cm and standard units, respectively.

Δ

TABLE A58-1C. (CONTINUED) - METALS^a

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	1% G.W
Aluminum (Al)	200.7	25.6	533	319	174
Antimony (Sb)	200.7	14.1	<14.1	<14.1	<14.1
Arsenic (As)	200.7	45	<45	<45	<45
Beryllium (Be)	200.7	0.5	<0.5	<0.5	<0.5
Boron	200.7	10	255	482	172
Cadmium (Cd)	200.7	1.5	<1.5	<1.5	<1.5
Calcium (Ca)	200.7	30.6	18100	18600	18700
Chromium (Cr)	200.7	9	9>	9>	9>
Cobalt	200.7	1.3	10.6	<1.3	2.8
Copper (Cu)	200.7	က	7.5	8.2	7.7
Iron	200.7	2.5	872	1100	950
Lead (Pb)	200.7	14.5	<14.5	<14.5	<14.5
Magnesium (Mg)	200.7	29.5	12300	14200	14500
Manganese (Mn)	200.7	0.97	303	130	6.96
Mercury (Hg)	245.1	0.1	0.19	<0.1	0.24
Molybdenum (Mo)	200.7	28.9	<28.9	<28.9	<28.9
Nickel (Ni)	200.7	2.9	13.4	15.5	5.0
Potassium (K)	200.7	40	3610	4240	4440
Selenium (Se)	200.7	11.1	<11.1	<11.1	<11.1
Silver (Ag)	200.7	6.7	<6.7	<6.7	<6.7
Sodium (Na)	200.7	30	66500	73000	73100
Thallium	200.7	75.9	<75	<75	<75
Tin (Sn)	200.7	6.7	<9.7	<9.7	<9.7
Zinc (Zn)	200.7	1.5	42.6	45.8	32.4

^a All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS® TABLE A58-1C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	1% G.W
Benzene	8021	0.5	ND	ND	ND
Bromobenzene	8021	0.5	ND	ND	ND
Bromochloromethane	8021	0.5	ND	ND	ND
Bromodichloromethane	8021	0.5	ND	ND	ND
Bromoform	8021	0.5	ND	ND	ND
Bromomethane	8021	0.5	ND	ND	ND
n-Butylbenzene	8021	0.5	ND	QN	ND
s-Butylbenzene	8021	0.5	ND	ND	ND
t-Butylbenzene	8021	0.5	ND	ND	ND
Carbon Tetrachloride	8021	0.5	12.3	8.1	7.51
Chlorobenzene	8021	0.5	ND	ND	QN
Chlorodibromomethane	8021	0.5	ND	ND	ND
Chloroethane	8021	0.5	ND	ND	ND
Chloroform	8021	0.5	22.1	10.1	9.33
Chloromethane	8021	0.5	ND	ND	ND
2-Chlorotoluene	8021	0.5	ND	ND	QN
4-Chlorotoluene	8021	0.5	ND	ND	ND
1,2-Dibromo-3-chloropropane	8021	0.5	ND	ND	ND
1,2-Dibromoethane	8021	0.5	ND	ND	ND
Dibromomethane	8021	0.5	ND	ND	ND
1,2-Dichlorobenzene	8021	0.5	NO	ND	ND
1,3-Dichlorobenzene	8021	0.5	ND	ND	ND
1,4-Dichlorobenzene	8021	0.5	ND	ND	ND
Dichlorodifluoromethane	8021	1.0	NO	ND	ND
1,1-Dichloroethane	8021	0.5	ND	ND	ND
1,2-Dichloroethane	8021	0.5	0.71	ND	ND
1,1-Dichloroethene	8021	0.5	ND	ND	ND

 $^{ t a}$ All results expressed as $\mu { t g}/{ t L}$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS CON'T® TABLE A58-1C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
cis-1,2-Dichloroethene	8021	0.5	ND	ND	ND
1,1-Dichloropropene	8021	0.5	ND	ND	ND
cis-1,3-Dichloropropene	8021	0.5	ND	ND	ND
trans-1,3-Dichloropropene	8021	0.5	ND	ND	ND
Ethylbenzene	8021	0.5	ND	ND	ND
Hexachlorobutadiene	8021	0.5	ND	ND	ND
Isopropylbenzene	8021	0.5	ND	ND	ND
p-Isopropyltoluene	8021	0.5	ND	ND	ND
Methylene chloride	8021	0.5	ON	ND	ND
Naphthalene	8021	0.5	ND	ND	ND
n-Propylbenzene	8021	0.5	ND	ND	ND
Styrene	8021	0.5	ND	ND	ND
1,1,1,2-Tetrachloroethane	8021	0.5	ND	ND	ND
1,1,2,2-Tetrachloroethane	8021	0.5	15.5	6.26	5.02
Tetrachloroethene	8021	0.5	1.59	1.52	1.62
Toluene	8021	0.5	ND	ND	ND
1,2,3-Trichlorobenzene	8021	0.5	ND	ND	ND
1,2,4-Trichlorobenzene	8021	0.5	ND	ND	ND
1,1,1-Trichloroethane	8021	0.5	Q.	ND	ND
1,1,2-Trichloroethane	8021	0.5	۵	0.71	0.67
Trichloroethene	8021	0.5	8.6	2.42	1.15
Trichlorofluoromethane	8021	0.5	ND	ND	ND
1,2,3-Trichloropropane	8021	0.5	ND	ND	ND
1,2,4-Trimethylbenzene	8021	0.5	ND	ON	ND
1,3,5-Trimethylbenzene	8021	0.5	ND	NO	ND
Vinyl Chloride	8021	0.5	ND	ND	ND
o,m,p-Xylenes	8021	0.5	QN	ND	ND

^a All results expressed as $\mu g/L$.

^b Result not given in analytical laboratory report.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS⁸ TABLE A58-1C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Bis-(2-chloroethoxy) Methane	8270	2.0	QN	ND	ND
Bis-(2-chloroethyl) Ether	8270	2.0	ND	ND	ND
Bis-(2-chloroisopropyl) Ether	8270	2.0	ND	ND	ND
Bis-(2-ethylhexyl) Phthalate	8270	2.0	ND	ND	ND
4-Bromophenyl Phenyl Ether	8270	2.0	QN	ND	ND
Butyl Benzyl Phthalate	8270	•	ND	ND	ND
2-Chloronapthalene	8270	2.0	ND	NO	ND
4-Chlorophenyl Phenyl Ether	8270	2.0	ND	ND	ND
Chrysene	8270	2.0	ND	ND	ND
Dibenzo (a,h) Anthracene	8270	•	ND	ON	ND
Acenaphthylene	8270	2.0	ND	ON	ND
1,2-Dichlorobenzene	8270	2.0	ND	ON	ND
1,3-Dichlorobenzene	8270	•	ND	ND	ND
1,4-Dichlorobenzene	8270	2.0	ND	ND	ND
3,3'-Dichlorobenzidine	8270	5.0	ND	QN	ND
Diethyl Phthalate	8270	2.0	NO	QN	ND
Dimethyl Phthalate	8270	5.0	ND	ND	ND
Di-n-Butyl Phthalate	8270	2.0	ND	ND	ND
2,4-Dinitrotoluene	8270	4.0	ND	ND	ND
2,6-Dinitrotoluene	8270	4.0	NO	ND	ND
Di-n-Octyl Phthalate	8270	2.0	ND	QN	ND
Fluoranthene	8270	2.0	ND	ND	ND
Fluorene	8270	2.0	ND	ND	ND
Hexachlorobenzene	8270	2.0	ND	ND	ND
Hexachlorobutadiene	8270	3.0	NO	ND	ND
Hexachlorocyclopentadiene	8270	5.0	ND	ON	ND
Hexachloroethane	8270	2.0	NO	QN	ΩN

All results expressed as $\mu g/L$.

TABLE A58-1C. (CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS CON'Tª

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Indeno[1,2,3-cd]pyrene	8270	3.0	ND	ND	ND
Isophorone	8270	2.0	ND	ND	ND
Naphthalene	8270	2.0	ND	ND	ND
Anthracene	8270	2.0	ND	ND	ND
Nitrobenzene	8270	4.0	ND	ND	ND
N-Nitroso-di-n-propylamine	8270	4.0	ND	ND	ND
N-Nitrosodiphenylamine	8270	4.0	ND	ND	ND
Phenanthrene	8270	2.0	ND	ND	ND
Pyrene	8270	2.0	ND	ND	ND
1,2,4-Trichlorobenzene	8270	2.0	ND	ND	ND
Benzo(a)anthracene	8270	3.0	ND	ND	ND
Benzo(a)pyrene	8270	3.0	ND	ND	ND
Benzo(b)fluoranthene	8270	3.0	ND	ND	ND
Benzo(g,h,i)perylene	8270	3.0	ND	ND	ND
Benzo(k)fluoranthene	8270	3.0	ND	ND	ND
Benzidine	8270	4.0	ND	ND	ND
1,2-Diphenylhydrazine	8270	4.0	ND	ND	ND
N-Nitrosodimethylamine	8270	4.0	ND	ND	ND
Acenaphthene	8270	2.0	ND	ND	ND
3,4-Benzo-fluoranthene	8270	3.0	ND	ND	ND
4-Chloroaniline	8270	2.0	ND	ND	ND
2-Methylnaphthalene	8270	2.0	ND	ND	ND
2-Nitroaniline	8270	5.0	ND	ND	ND
4-Nitroaniline	8270	5.0	ND	ND	ND
Dibenzofuran	8270	2.0	ND	NO	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT ACID EXTRACTABLES TABLE A58-1C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Phenol	8270	2.0	ND	ND	ND
2,4,6-Trichlorophenol	8270	2.0	ND	ND	ND
2-Chlorophenol	8270	2.0	ND	ND	ND
2,4-Dichlorophenol	8270	2.0	ND	ND	ND
2,4-Dimethylphenol	8270	2.0	ND	ND	ND
4,6-Dinitro-o-cresol	8270	5.0	ND	ND	ND
2,4-Dinitrophenol	8270	5.0	ND	QN	ND
2-Nitrophenol	8270	5.0	ND	ND	ND
4-Nitrophenol	8270	5.0	ND	ND	ND
p-Chloro-m-cresol	8270	2.0	ND	ND	ND
Pentachlorophenol	8270	5.0	ND	ND	ND
p-Cresol	8270	2.0	ND	ND	ND
o-Cresol	8270	2.0	ND	ND	ND
2,4,5-Trichlorophenol	8270	2.0	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - ORGANOPHOSPHORUS PESTICIDES^a TABLE A58-1C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Azinphos-methyl	8140	0.10	ND	ND	ND
Bolstar (Sulprofos)	8140	0.07	ND	ND	ND
Coumaphos	8140	0.20	ND	ND	ND
Demeton, -0, -S	8140	0.12	ND	ND	ND
Diazinon	8140	0.20	ND	ND	ND
Dichlorvos	8140	0.80	ND	ND	ND
Dimethoate	8140	0.26	ND	ND	ND
Disulfoton	8140	0.07	ND	ND	QN
EPN	8140	0.04	ND	ND	ND
Ethoprop	8140	0.20	ND	QN	ND
Fensulfothion	8140	0.08	ND	ON	ND
Fenthion	8140	0.08	ND	ND	ND
Malathion	8140	0.11	ND	ND	ND
Merphos	8140	0.20	ND	ND	ND
Mevinphos	8140	0.50	ND	ND	ND
Naled	8140	0.50	ND	ND	ND
Parathion	8140	0.12	ND	ND	ND
Phorate	8140	0.04	ND	ND	ND
Ronnel	8140	0.07	ND	ND	ND
Sulfotep	8140	0.07	ND	ND	ND
TEPP	8140	0.80	ND	ND	ND
Tetrachlorovinphos	8140	0.80	ND	ND	ND
Tokuthion	8140	0.07	ND	ND	ND
Trichloronate	8140	0.80	ND	QN	ND

All results expressed as $\mu g/L$.

(CONTINUED) - CHLORINATED PESTICIDES AND HERBICIDES TABLE A58-1C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Pesticides:					
Aldrin	8080	0.034	ND	ND	ND
Alpha-BHC	8080	0.035	ND	ND	ND
Beta-BHC	8080	0.023	ND	ND	ND
Delta-BHC	8080	0.024	ND	ND	ND
Gamma-BHC (Lindane)	8080	0.025	ND	ND	ND
Chlordane	8080	0.037	ND	ND	ND
4,4'-DDD	8080	0.050	ND	ND	ND
4,4'-DDE	8080	0.058	ND	ND	ND
4,4'-DDT	8080	0.081	ND	QN	ND
Dieldrin	8080	0.044	ND	ND	ND
Alpha-Endosulfan	8080	0.030	ND	ND	ND
Beta-Endosulfan	8080	0.040	ND	QN	ND
Endosulfan sulfate	8080	0.0072	ND	ND	ND
Endrin	8080	0.0072	ND	ND	QN
Endrin Aldehyde	8080	0.0032	ND	ND	ND
Heptachlor	8080	0.0040	ND	ND	ND
Heptachlor Epoxide	8080	0.0042	ND	ND	ND
Methoxychlor	8080	0.0500	ND	ND	ND
Chlorpyrifos	8080	0.0044	ND	ND	ND
Toxaphene	8080	0.0114	ND	ON	ND
Malathion	8080	0.1100	ND	ND	ND
Parathion	8080	0.1200	ND	ND	ND
Herbicides:					
2,4-D	8150	•	ND	ND	ND
2,4,5-TP	8150	0.075	QN	ND	ND

All results expressed as $\mu g/L$.

COMPREHENSIVE CHEMICAL ANALYSIS OF THE WEST BRANCH OF CANAL CREEK STUDY GROUNDWATER (WELL NO. CC-27B), WEST BRANCH OF CANAL CREEK SURFACE WATER, AND APG-EA TAP WATER (TEST NO. 2) - GENERAL WATER QUALITY® TABLE A58-2A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Alkalinity (CaCO ₂)	310.1	1.0	<1	57.2	31.0
Ammonia Nitrogen (N)	350.3	0.01	0.055	0.272	0.050
Bromide	320.1	0.2	<0.2	<0.02?	<0.2
Chloride (C1)	508	1.0	77.2	487	22.5
Cyanide (Cn)	335.2	0.002	<0.005	<0.00>	<0.00>
Fluoride (F)	340.2	0.01	0.307	0.178	0.854
Hardness (CaCO ₃)	AA	I	59.5	123	65.2
pH (electrometric)	150.1		4.28	6.53	6.98
Nitrate (N)	ISE	0.01	1.91	1.32	2.43
Nitrite (N)	354.1	0.001	<0.001	0.012	<0.001
Phosphate (P)	365.3	0.01	0.428	0.784	0.674
Specific Conductance 0 25 °C	120.1	1.0	336	674	172
Sulfate (SO _k)	375.3	1.0	94.0	41.6	20.6
Sulfide (H,S)	376.1	0.02	<0.02	<0.02	<0.02
Total Organic Carbon	415.1	2.0	<2.0	6.5	<2.0
Total Suspended Solids	160.2	1.0	<1.0	42.3	<1.0

All results expressed as mg/L except for specific conductance and pH which are expressed as μ mhos/cm and standard units, respectively.

TABLE A58-2A. (CONTINUED) - METALS^a

Analyte	EPA	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-FA
		Ī			
Aluminum (Al)	200.7	25.6	2090	846	214
Antimony (Sb)	200.7	14.1	<14.1	<14.1	<14.1
Arsenic (As)	200.7	45	<45	<45	<45
Beryllium (Be)	200.7	0.5	<0.5	<0.5	<0.5
Boron	200.7	10	409	351	490
Cadmium (Cd)	200.7	1.5	<1.5	<1.5	<1.5
Calcium (Ca)	200.7	30.6	16000	21700	18500
Chromium (Cr)	200.7	9	9>	8.7	9>
Cobalt	200.7	1.3	44.6	5.2	<1.3
Copper (Cu)	200.7	က	24.4	12.5	45.7
Iron	200.7	2.5	34.5	2820	41.8
Lead (Pb)	200.7	14.5	<14.5	16.3	<14.5
Magnesium (Mg)	200.7	29.5	5580	19700	5410
Manganese (Mn)	200.7	0.97	848	942	2.9
Mercury (Hg)	245.1	0.1	<0.1	<0.1	<0.1
Molybdenum (Mo)	200.7	28.9	<28.9	<205	<28.9
Nickel (Ni)	200.7	2.9	24.7	11.3	12.6
Potassium (K)	200.7	40	2010	5720	3440
Selenium (Se)	200.7	11.1	<11.1	<11.1	<11.1
Silver (Ag)	200.7	6.7	<13.6	<13.6	<13.6
Sodium (Na)	200.7	30	61300	126000	10400
Thallium	200.7	75	<75	<75	<75
Tin (Sn)	200.7	7.6	<9.7	<9.7	<9.7
Zinc (Zn)	200.7	1.5	78.4	98.1	272

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS TABLE A58-2A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Benzene	8021	0.5	ND	ND	ND
Bromobenzene	8021	0.5	ND	ND	ND
Bromochloromethane	8021	0.5	ND	ND	ND
Bromodichloromethane	8021	0.5	97.9	2.1	5.3
Bromoform	8021	0.5	NO	ND	ND
Bromomethane	8021	0.5	ND	ON	ND
n-Butylbenzene	8021	0.5	ND	ND	ND
s-Butylbenzene	8021	0.5	ND	ND	ND
t-Butylbenzene	8021	0.5	ND	ON	ND
Carbon Tetrachloride	8021	0.5	55.9	15.1	ND
Chlorobenzene	8021	0.5	ND	ND	ND
Chlorodibromomethane	8021	0.5	ND	ND	1.7
Chloroethane	8021	0.5	ΩN	QN	ND
Chloroform	8021	0.5	54.0	8.5	29.5
Chloromethane	8021	0.5	ND	ND	ND
2-Chlorotoluene	8021	0.5	ND	ND	ND
4-Chlorotoluene	8021	0.5	ND	ND	ND
1,2-Dibromo-3-chloropropane	8021	0.5	ND	QN	ND
1,2-Dibromoethane	8021	0.5	ND	ON	ND
Dibromomethane	8021	0.5	ND	ND	ND
1,2-Dichlorobenzene	8021	0.5	ND	ND	ND
1,3-Dichlorobenzene	8021	0.5	ND	ND	ND
1,4-Dichlorobenzene	8021	0.5	ND	ND	ND
Dichlorodifluoromethane	8021	1.0	ND	ND	ND
1,1-Dichloroethane	8021	0.5	ND	ND	ND
1,2-Dichloroethane	8021	0.5	2.5	ND	ND
1,1-Dichloroethene	8021	0.5	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS CON'Tª TABLE A58-2A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
cis-1,2-Dichloroethene	8021	0.5	1.3	0.9	ND
1,1-Dichloropropene	8021	0.5	ND	ND	ND
cis-1,3-Dichloropropene	8021	0.5	ND	ND	ND
trans-1,3-Dichloropropene	8021	0.5	ND	QN	ND
Ethylbenzene	8021	0.5	ND	ND	ND
Hexachlorobutadiene	8021	0.5	ND	ND	ND
Isopropylbenzene	8021	0.5	ND	ND	ND
p-Isopropyltoluene	8021	0.5	ON	QN	ND
Methylene chloride	8021	0.5	ND	ND	ND
Naphthalene	8021	0.5	ND	QN	ND
n-Propylbenzene	8021	0.5	ND	QN	ND
Styrene	8021	0.5	ND	ND	ND
1,1,1,2-Tetrachloroethane	8021	0.5	ND	ND	ND
1,1,2,2-Tetrachloroethane	8021	0.5	57.1	7.4	ND
Tetrachloroethene	8021	0.5	6.0	3.0	ND
Toluene	8021	0.5	ND	ND	ND
1,2,3-Trichlorobenzene	8021	0.5	ON	ND	ND
1,2,4-Trichlorobenzene	8021	0.5	ND	ND	ND
1,1,1-Trichloroethane	8021	0.5	ON	ND	ND
1,1,2-Trichloroethane	8021	0.5	ON	ND	ND
Trichloroethene	8021	0.5	91.7	3.4	ND
Trichlorofluoromethane	8021	0.5	ND	ND	ND
1,2,3-Trichloropropane	8021	0.5	ND	QN	ND
1,2,4-Trimethylbenzene	8021	0.5	ND	ND	ND
1,3,5-Trimethylbenzene	8021	0.5	ND	ON	ND
Vinyl Chloride	8021	0.5	ND	ND	ON
o,m,p-Xylenes	8021	0.5	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS® TABLE A58-2A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Bis-(2-chloroethoxy) Methane	8270	2.0	NO	ND	ND
Bis-(2-chloroethyl) Ether	8270	2.0	ND	ND	ND
Bis-(2-chloroisopropyl) Ether	8270	2.0	ND	ND	ND
Bis-(2-ethylhexyl) Phthalate	8270	2.0	ND	ND	ND
4-Bromophenyl Phenyl Ether	8270	2.0	ND	ND	ND
Butyl Benzyl Phthalate	8270	2.0	ND	ND	ND
2-Chloronapthalene	8270	2.0	ND	QN	ND
4-Chlorophenyl Phenyl Ether	8270	2.0	ND	ND	ND
Chrysene	8270	2.0	ND	ND	ND
Dibenzo (a,h) Anthracene	8270	3.0	ON	ND	ND
Acenaphthylene	8270	2.0	ND	QN	ND
1,2-Dichlorobenzene	8270	2.0	ND	ND	ND
1,3-Dichlorobenzene	8270	2.0	ND	ND	ND
1,4-Dichlorobenzene	8270	2.0	ND	QN	ND
3,3'-Dichlorobenzidine	8270	5.0	ND	ND	ND
Diethyl Phthalate	8270	2.0	ND	ND	ND
Dimethyl Phthalate	8270	5.0	ND	ND	ND
Di-n-Butyl Phthalate	8270	2.0	ND	ND	ND
2,4-Dinitrotoluene	8270	4.0	ND	ND	ND
2,6-Dinitrotoluene	8270	4.0	ND	ND	ND
Di-n-Octyl Phthalate	8270	2.0	ND	ND	ND
Fluoranthene	8270	2.0	ND	ND	ND
Fluorene	8270	2.0	ND	ND	ND
Hexachlorobenzene	8270	2.0	ND	ND	ND
Hexachlorobutadiene	8270	3.0	ND	ND	ND
Hexachlorocyclopentadiene	8270	5.0	ND	ND	ND
Hexachloroethane	8270	2.0	ND	ND	ND

All results expressed as $\mu g/L$.

TABLE A58-2A. (CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS CON'Tª

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Indeno[1,2,3-cd]pyrene	8270	3.0	ND	ND	ND
Isophorone	8270	2.0	ND	ND	ND
Naphthalene	8270	2.0	ND	ND	ND
Anthracene	8270	2.0	ND	ND	ND
Nitrobenzene	8270	4.0	ND	ND	ND
N-Nitroso-di-n-propylamine	8270	4.0	ND	ND	ND
N-Nitrosodiphenylamine	8270	4.0	ND	ND	ND
Phenanthrene	8270	2.0	ND	ND	ND
Pyrene	8270	2.0	ND	ND	ND
1,2,4-Trichlorobenzene	8270	2.0	ND	QN	ON
Benzo(a)anthracene	8270	3.0	ND	ND	ND
Benzo(a)pyrene	8270	3.0	ND	ND	ND
Benzo(b)fluoranthene	8270	3.0	ND	ND	ND
Benzo(g,h,i)perylene	8270	3.0	ND	ND	ND
Benzo(k)fluoranthene	8270	3.0	ND	ND	ND
Benzidine	8270	4.0	ND	NO	ND
1,2-Diphenylhydrazine	8270	4.0	ND	ND	ND
N-Nitrosodimethylamine	8270	4.0	ND	ND	ND
Acenaphthene	8270	2.0	QN	ND	ND
3,4-Benzo-fluoranthene	8270	3.0	ON	ND	ND
4-Chloroaniline	8270	2.0	ND	ND	ND
2-Methylnaphthalene	8270	2.0	ND	ND	ND
2-Nitroaniline	8270	5.0	ND	ND	ND
4-Nitroaniline	8270	5.0	ND	ND	ND
Dibenzofuran	8270	2.0	ND	ND	QN

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT ACID EXTRACTABLES TABLE A58-2A.

	Method	Limits	G.W.	W.B.C.C.	APG-EA
Phenol 8270	270	2.0	ND	ND	ND
2,4,6-Trichlorophenol	270	2.0	ND	ND	NN
2-Chlorophenol	270	2.0	ND	ND	ND
2,4-Dichlorophenol	270	2.0	ND	ND	ND
2,4-Dimethylphenol	270	2.0	ND	ND	ND
4,6-Dinitro-o-cresol	270	5.0	ND	ND	ND
2,4-Dinitrophenol	270	5.0	ND	ND	ND
2-Nitrophenol 8270	270	5.0	ND	ND	ND
4-Nitrophenol 8270	270	5.0	ND	ND	ND
p-Chloro-m-cresol 8270	270	2.0	ND	ND	ND
Pentachlorophenol 8270	270	5.0	ND	ND	ND
p-Cresol	270	2.0	ND	ND	ND
o-Cresol 8270	270	2.0	ND	ND	ND
2,4,5-Trichlorophenol	270	2.0	ND	ND	ND

^a All results expressed as $\mu g/L$.

(CONTINUED) - ORGANOPHOSPHORUS PESTICIDES® TABLE A58-2A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Azinphos-methyl	8140	0.10	ND	ND	ND
Bolstar (Sulprofos)	8140	0.07	ND	ND	ND
Coumaphos	8140	0.20	ND	ND	ND
Demeton, -0, -S	8140	0.12	ND	ND	ND
Diazinon	8140	0.20	ND	ND	ND
Dichlorvos	8140	08.0	ND	ND	ND
Dimethoate	8140	0.26	ND	ND	ND
Disulfoton	8140	0.07	ND	ND	ND
EPN	8140	0.04	ND	ND	ND
Ethoprop	8140	0.20	ND	ND	ND
Fensulfothion	8140	0.08	ND	QN	ND
Fenthion	8140	0.08	ND	ND	ND
Malathion	8140	0.11	ND	ND	ND
Merphos	8140	0.20	ND	ND	ND
Mevinphos	8140	0.50	ND	QN	ND
Naled	8140	0.50	ND	ND	ND
Parathion	8140	0.12	ND	ND	ND
Phorate	8140	0.04	ND	ND	ND
Ronnel	8140	0.07	ND	ND	ND
Sulfotep	8140	0.07	ND	ND	ND
ТЕРР	8140	0.80	ND	QN	ND
Tetrachlorovinphos	8140	0.80	ND	ND	ND
Tokuthion	8140	0.07	ND	ND	ND
Trichloronate	8140	0.80	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - CHLORINATED PESTICIDES AND HERBICIDES^a TABLE A58-2A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C	100% APG-EA
Pesticides:					
Aldrin	8080	0.034	ND	ND	ND
Alpha-BHC	8080	0.035	ND	ND	ND
Beta-BHC	8080	0.023	ND	ND	ND
Delta-BHC	8080	0.024	ND	ND	ND
Gamma-BHC (Lindane)	8080	0.025	ND	ND	ND
Chlordane	8080	0.037	ND	ND	ND
4,4'-DDD	8080	0.050	ND	ND	ND
4,4'-DDE	8080	0.058	ND	ND	ND
4,4"-DDT	8080	0.081	ND	ND	ND
Dieldrin	8080	0.044	ND	ND	ND
Alpha-Endosulfan	8080	0.030	ND	ND	ND
Beta-Endosulfan	8080	0.040	ND	ND	ND
Endosulfan sulfate	8080	0.0072	ND	ND	ND
Endrin	8080	0.0072	ND	ND	ND
Endrin Aldehyde	8080	0.0032	ND	ND	ND
Heptachlor	8080	0.0040	ND	ND	ND
Heptachlor Epoxide	8080	0.0042	ND	ND	ND
Methoxychlor	8080	0.0500	ND	ND	ND
Chlorpyrifos	8080	0.0044	ND	ND	QN
Toxaphene	8080	0.0114	ND	ND	ND
Malathion	8080	0.1100	ND	ND	ND
Parathion	8080	0.1200	ND	ND	ND
Dursban	8080	0.0044	ND	ND	ND
<u>Herbicides:</u>					
2,4-D	8051?	1.5	ND	ND	ND
2,4,5-TP	8051?	0.05	ND	ND	ND
A CONTRACTOR OF THE PROPERTY O					

All results expressed as $\mu g/L$.

COMPREHENSIVE CHEMICAL ANALYSIS OF THE WEST BRANCH OF CANAL CREEK STUDY CHRONIC HISTOPATHOLOGY GROUNDWATER EXPOSURE AQUARIA DILUTED WITH APG-EA TAP WATER (TEST NO. 2) - GENERAL WATER QUALITY® TABLE A58-2B.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Alkalinity (CaCO ₃)	310.1	1.0	21.4	29.5	30.8
Ammonia Nitrogen (N)	350.3	0.01	0.084	0.084	0.097
Bromide	320.1	0.2	<0.2	<0.2	<0.2
Chloride (C1)	508	1.0	36.0	25.4	23.4
Cyanide (Cn)	335.2	0.002	<0.00	<0.00>	<0.00>
Fluoride (F)	340.2	0.01	0.686	0.828	0.853
Hardness (CaCO ₃)	AA	1	63.4	64.2	65.4
pH (electrometric)	150.1	ı	6.60	6.75	6.92
Nitrate (N)	ISE	0.01	2.24	2.34	2.41
Nitrite (N)	354.1	0.001	<0.001	<0.001	<0.001
Phosphate (P)	365.3	0.01	0.483	0.319	0.364
Specific Conductance @ 25 °C	120.1	1.0	208	176	177
Sulfate (SO ₄)	375.3	1.0	40.0	28.2	22.2
Sulfide (H_2S)	376.1	0.02	<0.02	<0.02	<0.02
Total Organic Carbon	415.1	2.0	<2.0	<2.0	<2.0
Total Suspended Solids	160.2	1.0	1.5	<1.0	<1.0

All results expressed as mg/L except for specific conductance and pH which are expressed as μ mhos/cm and standard units, respectively.

TABLE A58-2B. (CONTINUED) - METALS^a

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	1% G.W.
Aluminum (Al)	200.7	25.6	677	250	259
Antimony (Sb)	200.7	14.1	<14.1	<14.1	<14.1
Arsenic (As)	200.7	45	<45	<45	<45
Beryllium (Be)	200.7	0.5	<0.5	<0.5	<0.5
Boron	200.7	10	474	455	468
Cadmium (Cd)	200.7	1.5	<1.5	<1.5	<1.5
Calcium (Ca)	200.7	30.6	17800	18200	18600
Chromium (Cr)	200.7	9	9>	9>	9>
Cobalt	200.7	1.3	11.4	1.9	<1.3
Copper (Cu)	200.7	က	36.1	35.0	35.6
Iron	200.7	2.5	25.5	33.8	33.5
Lead (Pb)	200.7	14.5	<14.5	<14.5	<14.5
Magnesium (Mg)	200.7	29.5	5410	5350	5390
Manganese (Mn)	200.7	0.97	205	41.4	12.3
Mercury (Hg)	245.1	0.1	<0.1	<0.1	<0.1
Molybdenum (Mo)	200.7	28.9	<28.9	<28.9	<28?
Nickel (Ni)	200.7	2.9	9.5	9.9	1.8?
Potassium (K)	200.7	40	2960	3290	3250
Selenium (Se)	200.7	11.1	<11.1	<11.1	<11.1
Silver (Ag)	200.7	6.7	<13.6	<13.6	<13.6
Sodium (Na)	200.7	30	<2700?	12400	10700
Thallium	200.7	75	<75	<75	<75
Tin (Sn)	200.7	6.1	<9.7	<9.7	<9.7
Zinc (Zn)	200.7	1.5	230	251	257

All results expressed as $\mu g/L$.

TABLE A58-2B. (CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS®

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.
Benzene	8021	0.5	ND	ND	ND
Bromobenzene	8021	0.5	ND	ND	ND
Bromochloromethane	8021	0.5	ND	ND	ND
Bromodichloromethane	8021	0.5	12.9	2.1	3.6
Bromoform	8021	0.5	ND	QN	ND
Bromomethane	8021	0.5	ND	ND	ND
n-Butylbenzene	8021	0.5	ND	ND	ND
s-Butylbenzene	8021	0.5	ND	ND	ND
t-Butylbenzene	8021	0.5	ND	ND	ND
Carbon Tetrachloride	8021	0.5	8.9	2.4	ND
Chlorobenzene	8021	0.5	ND	QN	ND
Chlorodibromomethane	8021	0.5	1.2	1.2	1.1
Chloroethane	8021	0.5	ND	ND	ND
Chloroform	8021	0.5	24.2	18.8	18.6
Chloromethane	8021	0.5	ND	ND	ND
2-Chlorotoluene	8021	0.5	ND	ND	ND
4-Chlorotoluene	8021	0.5	ND	ND	ND
1,2-Dibromo-3-chloropropane	8021	0.5	ND	ND	ND
1,2-Dibromoethane	8021	0.5	ND	ND	ND
Dibromomethane	8021	0.5	ND	ND	ND
1,2-Dichlorobenzene	8021	0.5	ND	ND	ND
1,3-Dichlorobenzene	8021	0.5	ND	ND	ND
1,4-Dichlorobenzene	8021	0.5	ND	ND	ND
Dichlorodifluoromethane	8021	1.0	ND	ND	ND
1,1-Dichloroethane	8021	0.5	ND	ND	ND
1,2-Dichloroethane	8021	0.5	QN	ND	ND
1,1-Dichloroethene	8021	0.5	ND	QN	ND
THE RESERVE THE PROPERTY OF TH				1	

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS CON'Tª TABLE A58-2B.

Analyte	EPA Method	Detection Limits	25% G.W.	5& G.W	18 G.W.
cis-1,2-Dichloroethene	8021	0.5	ND	ND	ND
1,1-Dichloropropene	8021	0.5	ND	ND	ND
cis-1,3-Dichloropropene	8021	0.5	ND	ND	ND
trans-1,3-Dichloropropene	8021	0.5	ND	ND	ND
Ethylbenzene	8021	0.5	ND	ND	ND
Hexachlorobutadiene	8021	0.5	ND	ND	ND
Isopropylbenzene	8021	0.5	ND	ND	ND
p-Isopropyltoluene	8021	0.5	ND	ND	ND
Methylene chloride	8021	0.5	ND	ND	ND
Naphthalene	8021	0.5	ND	ND	ND
n-Propylbenzene	8021	0.5	ND	ND	ND
Styrene	8021	0.5	ND	ND	ND
1,1,1,2-Tetrachloroethane	8021	0.5	ND	ND	ND
1,1,2,2-Tetrachloroethane	8021	0.5	8.6	1.2	ND
Tetrachloroethene	8021	0.5	8.0	ND	ND
Toluene	8021	0.5	ND	ND	ND
1,2,3-Trichlorobenzene	8021	0.5	ND	ND	ND
1,2,4-Trichlorobenzene	8021	0.5	ND	ND	ND
1,1,1-Trichloroethane	8021	0.5	ND	ND	ND
1,1,2-Trichloroethane	8021	0.5	NO	ND	ND
Trichloroethene	8021	0.5	11.9	ND	ND
Trichlorofluoromethane	8021	0.5	ND	ND	ND
1,2,3-Trichloropropane	8021	0.5	ND	ND	ND
1,2,4-Trimethylbenzene	8021	0.5	ND	ND	ND
1,3,5-Trimethylbenzene	8021	0.5	ND	ND	ND
Vinyl Chloride	8021	0.5	ND	ND	ND
o,m,p-Xylenes	8021	0.5	QN	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS^a TABLE A58-2B.

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.
Bis-(2-chloroethoxy) Methane	8270	2.0	QN	ND	ND
Bis-(2-chloroethyl) Ether	8270	2.0	ND	QN	ND
Bis-(2-chloroisopropyl) Ether	8270	2.0	ND	ND	ND
Bis-(2-ethylhexyl) Phthalate	8270	2.0	ND	ND	ND
4-Bromophenyl Phenyl Ether	8270	2.0	ND	ND	UND
Butyl Benzyl Phthalate	8270	2.0	ND	ND	ND
2-Chloronapthalene	8270	2.0	ND	ND	ON
4-Chlorophenyl Phenyl Ether	8270	2.0	ND	ND	ND
Chrysene	8270	2.0	ND	ND	ND
Dibenzo (a,h) Anthracene	8270	3.0	ND	ND	ND
Acenaphthylene	8270	2.0	ND	ND	ND
1,2-Dichlorobenzene	8270	2.0	ND	ND	ND
1,3-Dichlorobenzene	8270	2.0	ND	ND	ND
1,4-Dichlorobenzene	8270	2.0	ND	ND	ND
3,3'-Dichlorobenzidine	8270	5.0	ND	ND	ND
Diethyl Phthalate	8270	2.0	ND	ND	ND
Dimethyl Phthalate	8270	5.0	ND	ND	ND
Di-n-Butyl Phthalate	8270	2.0	ND	ND	ND
2,4-Dinitrotoluene	8270	4.0	ND	ND	ND
2,6-Dinitrotoluene	8270	4.0	ND	ON	ND
Di-n-Octyl Phthalate	8270	2.0	ND	ND	ND
Fluoranthene	8270	2.0	ND	ON	ND
Fluorene	8270	2.0	ND	ND	ND
Hexachlorobenzene	8270	2.0	ON	ND	ND
Hexachlorobutadiene	8270	3.0	ND	ND	ND
Hexachlorocyclopentadiene	8270	5.0	ND	ND	ND
Hexachloroethane	8270	2.0	QN	ND	ND

^a All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS CON'Tª TABLE A58-2B.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Indeno[1,2,3-cd]pyrene	8270	3.0	ND	ND	ND
Isophorone	8270	2.0	ND	NO	ND
Naphthalene	8270	2.0	ND	ND	ND
Anthracene	8270	2.0	ND	QN	ND
Nitrobenzene	8270	4.0	ND	ND	ND
N-Nitroso-di-n-propylamine	8270	4.0	ND	ND	ND
N-Nitrosodiphenylamine	8270	4.0	ND	QN	ND
Phenanthrene	8270	2.0	ND	ND	ND
Pyrene	8270	2.0	ND	ND	ND
1,2,4-Trichlorobenzene	8270	2.0	ND	ND	ND
Benzo(a)anthracene	8270	3.0	ND	ND	ND
Benzo(a)pyrene	8270	3.0	ND	ND	ND
Benzo(b)fluoranthene	8270	3.0	ND	ND	ND
Benzo(g,h,i)perylene	8270	3.0	ND	ND	ND
Benzo(k) fluoranthene	8270	3.0	QN	ND	QN
Benzidine	8270	4.0	ND	ON	ND
1,2-Diphenylhydrazine	8270	4.0	ND	ND	ND
N-Nitrosodimethylamine	8270	4.0	ND	ND	ND
Acenaphthene	8270	2.0	ND	ND	ND
3,4-Benzo-fluoranthene	8270	3.0	ND	ND	ND
4-Chloroaniline	8270	2.0	ND	ND	ND
2-Methylnaphthalene	8270	2.0	ND	ND	ND
2-Nitroaniline	8270	5.0	ND	ND	ND
4-Nitroaniline	8270	5.0	ON	ND	ND
Dibenzofuran	8270	2.0	ND	QN	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT ACID EXTRACTABLES TABLE A58-2B.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Phenol	8270	2.0	ND	QN	ND
2,4,6-Trichlorophenol	8270	2.0	ND	ND	ND
2-Chlorophenol	8270	2.0	ND	ND	ND
2,4-Dichlorophenol	8270	2.0	ND	ND	ND
2,4-Dimethylphenol	8270	2.0	ND	ND	ND
4,6-Dinitro-o-cresol	8270	5.0	ND	ND	ND
2,4-Dinitrophenol	8270	5.0	ND	ND	ND
2-Nitrophenol	8270	5.0	ND	ND	ND
4-Nitrophenol	8270	5.0	ND	ND	ND
p-Chloro-m-cresol	8270	2.0	ND	ND	ND
Pentachlorophenol	8270	5.0	ND	ND	ND
p-Cresol	8270	2.0	ND	ND	ND
o-Cresol	8270	2.0	NO	ND	ND
2,4,5-Trichlorophenol	8270	2.0	ND	QN	ND

All results expressed as $\mu g/L$.

(CONTINUED) - ORGANOPHOSPHORUS PESTICIDES^a TABLE A58-2B.

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.
Azinphos-methyl	8140	0.10	ND	ND	ND
Bolstar (Sulprofos)	8140	0.07	ND	ND	ND
Coumaphos	8140	0.20	ND	ND	ND
Demeton, -0, -S	8140	0.12	ND	ND	ND
Diazinon	8140	0.20	ND	ND	ND
Dichlorvos	8140	08.0	ND	QN	ND
Dimethoate	8140	0.26	ND	ND	ND
Disulfoton	8140	0.07	ND	ND	ND
EPN	8140	0.04	ND	ND	ND
Ethoprop	8140	0.20	ND	ND	ND
Fensulfothion	8140	0.08	ND	ND	ND
Fenthion	8140	0.08	ND	ND	ND
Malathion	8140	0.11	ND	ND	ON
Merphos	8140	0.20	ND	ND	ND
Mevinphos	8140	0.50	ND	ND	ND
Naled	8140	0.50	ND	ND	ND
Parathion	8140	0.12	ND	ND	ND
Phorate	8140	0.04	ND	ND	ND
Ronnel	8140	0.07	ND	ON	ND
Sulfotep	8140	0.07	ND	ND	ND
TEPP	8140	0.80	ND	ND	ND
Tetrachlorovinphos	8140	0.80	ND	ND	ND
Tokuthion	8140	0.07	ND	ND	ND
Trichloronate	8140	0.80	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - CHLORINATED PESTICIDES AND HERBICIDES^a TABLE A58-2B.

Analyte	EPA Method	Detection Limits	258 G.W.	5%.	18 G.W.
Pesticides:					
Aldrin	8080	0.034	ND	ND	ND
Alpha-BHC	8080	0.035	ND	ND	ND
Beta-BHC	8080	0.023	ND	ND	ND
Delta-BHC	8080	0.024	ND	ND	ND
Gamma-BHC (Lindane)	8080	0.025	ND	ND	ND
Chlordane	8080	0.037	ΩN	ND	ND
4,4'-DDD	8080	0.050	ND	ND	ND
4,4'-DDE	8080	0.058	ND	ND	ND
4,4'-DDT	8080	0.081	ND	ND	ND
Dieldrin	8080	0.044	ND	ND	ND
Alpha-Endosulfan	8080	0.030	ND	ND	ND
Beta-Endosulfan	8080	0.040	ND	ND	QN
Endosulfan sulfate	8080	0.0072	ND	ND	ND
Endrin	8080	0.0072	ND	ND	ND
Endrin Aldehyde	8080	0.0032	ND	ND	ND
Heptachlor	8080	0.0040	ND	ND	ND
Heptachlor Epoxide	8080	0.0042	ND	ND	ND
Methoxychlor	8080	0.0500	ND	ND	ND
Chlorpyrifos	8080	0.0044	ND	ND	ND
Toxaphene	8080	0.0114	ND	NO	ND
Malathion	8080	0.1100	ND	ON	QN
Parathion	8080	0.1200	ND	ND	ND
Dursban	8080	0.0044	ND	ND	ND
Herbicides:					
2,4-D	51	1.5	ND	ND	ND
2,4,5-TP	8051?	•	ND	ND	ND

All results expressed as $\mu g/L$.

COMPREHENSIVE CHEMICAL ANALYSIS OF THE WEST BRANCH OF CANAL CREEK STUDY CHRONIC HISTOPATHOLOGY GROUNDWATER EXPOSURE AQUARIA DILUTED WITH WEST BRANCH OF CANAL CREEK WATER (TEST NO. 2) - GENERAL WATER QUALITY® TABLE A58-2C.

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.
Alkalinity (CaCO ₁)	310.1	1.0	38.4	50.8	51.8
Ammonia Nitrogen (N)	350.3	0.01	0.218	0.238	0.249
Bromide	320.1	0.2	<0.2	<0.2	<0.2
Chloride (C1)	508	1.0	273	323	358
Cyanide (Cn)	335.2	0.002	<0.00	<0.005	<0.005
Fluoride (F)	340.2	0.01	0.204	0.188	0.189
Hardness (CaCO ₃)	AA	I	126	141	150
pH (electrometric)	150.1		6.28	6.61	69.9
Nitrate (N)	ISE	0.01	1.73	1.67	1.65
Nitrite (N)	354.1	0.001	0.008	0.019	0.03
Phosphate (P)	365.3	0.01	0.565	0.601	0.930
Specific Conductance 0 25 °C	120.1	1.0	776	854	875
Sulfate (SO ₂)	375.3	1.0	63.2	53.4	57.0
Sulfide (H,S)	376.1	0.02	<0.02	<0.02	<0.02
Total Organic Carbon	415.1	2.0	3.7	3.8	9.6
Total Suspended Solids	160.2	1.0	18	20.7	20.1

All results expressed as mg/L except for specific conductance and pH which are expressed as μ mhos/cm and standard units, respectively.

TABLE A58-2C. (CONTINUED) - METALS^a

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W
Aluminum (Al)	200.7	25.6	851	564	545
Antimony (Sb)	200.7	14.1	<14.1	<14.1	<14.1
Arsenic (As)	200.7	45	<45	<45	<45
Beryllium (Be)	200.7	0.5	<0.5	<0.5	<0.5
Boron	200.7	10	439	472	498
Cadmium (Cd)	200.7	1.5	<1.5	<1.5	<1.5
Calcium (Ca)	200.7	30.6	21300	22600	23400
Chromium (Cr)	200.7	9	9>	6.9	6.2
Cobalt	200.7	1.3	13.6	5.8	5.2
Copper (Cu)	200.7	ო	14.9	16.9	15.4
Iron	200.7	2.5	1470	1880	1870
Lead (Pb)	200.7	14.5	<14.5	<14.5	<14.5
Magnesium (Mg)	200.7	29.5	20700	24100	26300
Manganese (Mn)	200.7	0.97	806	746	671
Mercury (Hg)	245.1	0.1	<0.1	<0.1	<0.1
Molybdenum (Mo)	200.7	28.9	<28.9	<28.9	<28.9
Nickel (Ni)	200.7	2.9	12.8	11.3	14.7
Potassium (K)	200.7	40	10600	7310	8180
Selenium (Se)	200.7	11.1	<11.1	<11.1	<11.1
Silver (Ag)	200.7	6.7	<13.6	<13.6	<13.6
Sodium (Na)	200.7	30	81200	169000	188000
Thallium	200.7	75	<75	<75	<75
Tin (Sn)	200.7	7.6	<9.7	<9.7	<9.7
Zinc (Zn)	200.7	1.5	77.0	76.7	88.4

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS TABLE A58-2C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W
Benzene	8021	0.5	ND	ND	ND
Bromobenzene	8021	0.5	ND	ND	NO
Bromochloromethane	8021	0.5	ND	ND	ND
Bromodichloromethane	8021	0.5	11.9	2.5	6.0
Bromoform	8021	0.5	ND	ND	ND
Bromomethane	8021	0.5	ND	ND	ON
n-Butylbenzene	8021	0.5	ND	ND	ND
s-Butylbenzene	8021	0.5	ND	ND	ND
t-Butylbenzene	8021	0.5	ND	ND	ND
Carbon Tetrachloride	8021	0.5	11.3	9.9	5.7
Chlorobenzene	8021	0.5	ND	QN	ND
Chlorodibromomethane	8021	0.5	ND	ND	ND
Chloroethane	8021	0.5	ND	ND	ND
Chloroform	8021	0.5	13.2	4.7	3.3
Chloromethane	8021	0.5	ND	ND	ND
2-Chlorotoluene	8021	0.5	ND	ND	ND
4-Chlorotoluene	8021	0.5	ND	ND	ND
1,2-Dibromo-3-chloropropane	8021	0.5	ND	ND	ND
1,2-Dibromoethane	8021	0.5	ND	ND	ND
Dibromomethane	8021	0.5	ND	ND	ND
1,2-Dichlorobenzene	8021	0.5	ND	ND	ND
1,3-Dichlorobenzene	8021	0.5	ND	ND	ND
1,4-Dichlorobenzene	8021	0.5	ND	ND	ND
Dichlorodifluoromethane	8021	1.0	ND	ND	ND
1,1-Dichloroethane	8021	0.5	ND	ND	ND
1,2-Dichloroethane	8021	0.5	ND	ND	ND
1,1-Dichloroethene	8021	0.5	ND	QN	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS CON'Tª TABLE A58-2C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
cis-1,2-Dichloroethene	8021	0.5	ON	ON	QN
1,1-Dichloropropene	8021	0.5	ND	ND	ND
cis-1,3-Dichloropropene	8021	0.5	ND	ND	ND
trans-1,3-Dichloropropene	8021	0.5	ND	ND	QN
Ethylbenzene	8021	0.5	ND	ND	QN
Hexachlorobutadiene	8021	0.5	ND	QN	ND
Isopropylbenzene	8021	0.5	ND	ND	ND
p-Isopropyltoluene	8021	0.5	ND	ND	ND
Methylene chloride	8021	0.5	ND	ND	ND
Naphthalene	8021	0.5	ND	ND	ND
n-Propylbenzene	8021	0.5	ND	ND	ND
Styrene	8021	0.5	ND	ND	ND
1,1,1,2-Tetrachloroethane	8021	0.5	ND	ND	ND
1,1,2,2-Tetrachloroethane	8021	0.5	9.6	3.4	2.6
Tetrachloroethene	8021	0.5	1.9	1.2	1.2
Toluene	8021	0.5	ND	ND	ND
1,2,3-Trichlorobenzene	8021	0.5	ND	ND	ND
1,2,4-Trichlorobenzene	8021	0.5	ND	ND	ND
1,1,1-Trichloroethane	8021	0.5	ND	ND	ND
1,1,2-Trichloroethane	8021	0.5	ND	ND	ND
Trichloroethene	8021	0.5	11.0	3.4	1.5
Trichlorofluoromethane	8021	0.5	ND	ND	ND
1,2,3-Trichloropropane	8021	0.5	ND	ND	ND
1,2,4-Trimethylbenzene	8021	0.5	ND	ND	ND
1,3,5-Trimethylbenzene	8021	0.5	ND	ON	ND
Vinyl Chloride	8021	0.5	ND	QN	ND
o,m,p-Xylenes	8021	0.5	ND	ND	ND

All results expressed as $\mu g/L$.

TABLE A58-2C. (CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS®

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.
Bis-(2-chloroethoxy) Methane	8270	2.0	ND	ND	ND
Bis-(2-chloroethyl) Ether	8270	2.0	ND	ND	ND
Bis-(2-chloroisopropyl) Ether	8270	2.0	ND	ND	ND
Bis-(2-ethylhexyl) Phthalate	8270	2.0	ND	ND	ND
4-Bromophenyl Phenyl Ether	8270	2.0	ND	ND	ND
Butyl Benzyl Phthalate	8270	2.0	ND	ND	ND
2-Chloronapthalene	8270	2.0	ND	ND	ND
4-Chlorophenyl Phenyl Ether	8270	2.0	ND	ND	ND
Chrysene	8270	2.0	ND	ND	ND
Dibenzo (a,h) Anthracene	8270	3.0	ND	ND	ND
Acenaphthylene	8270	2.0	ND	ND	ND
1,2-Dichlorobenzene	8270	2.0	ND	ND	ND
1,3-Dichlorobenzene	8270	2.0	ND	ND	ND
1,4-Dichlorobenzene	8270	2.0	ND	ND	ND
3,3'-Dichlorobenzidine	8270	5.0	ND	ON	ND
Diethyl Phthalate	8270	2.0	ND	ND	ND
Dimethyl Phthalate	8270	5.0	ND	ND	ND
Di-n-Butyl Phthalate	8270	2.0	ND	ND	ND
2,4-Dinitrotoluene	8270	4.0	ND	QN	ND
2,6-Dinitrotoluene	8270	4.0	ND	QN	ND
Di-n-Octyl Phthalate	8270	2.0	ND	ND	ND
Fluoranthene	8270	2.0	ND	ND	ND
Fluorene	8270	2.0	ND	ND	ND
Hexachlorobenzene	8270	2.0	ND	QN	ND
Hexachlorobutadiene	8270	3.0	ND	ND	ND
Hexachlorocyclopentadiene	8270	5.0	ND	ND	ND
Hexachloroethane	8270	2.0	ND	ND	QN

All results expressed as $\mu g/L$.

TABLE A58-2C. (CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS CON'Tª

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.
Indeno[1,2,3-cd]pyrene	8270	3.0	ON	ON	ND
Isophorone	8270	2.0	ND	ND	ND
Naphthalene	8270	2.0	ND	ND	ND
Anthracene	8270	2.0	ND	ND	ND
Nitrobenzene	8270	4.0	ND	ON	ND
N-Nitroso-di-n-propylamine	8270	4.0	ND	ND	ND
N-Nitrosodiphenylamine	8270	4.0	ND	ND	ND
Phenanthrene	8270	2.0	ND	QN	ND
Pyrene	8270	2.0	ND	ND	ND
1,2,4-Trichlorobenzene	8270	2.0	ND	ND	ND
Benzo(a)anthracene	8270	3.0	ND	QN	ND
Benzo(a)pyrene	8270	3.0	ND	ND	ND
Benzo(b)fluoranthene	8270	3.0	ND	ND	ND
Benzo(g,h,i)perylene	8270	3.0	NO	ON	ND
Benzo(k)fluoranthene	8270	3.0	NO	QN	ND
Benzidine	8270	4.0	ND	ΩN	ND
1,2-Diphenylhydrazine	8270	4.0	NO	ND	ND
N-Nitrosodimethylamine	8270	4.0	ND	ND	ND
Acenaphthene	8270	2.0	ND	ND	ND
3,4-Benzo-fluoranthene	8270	3.0	ND	ND	ND
4-Chloroaniline	8270	2.0	ND	ND	ND
2-Methylnaphthalene	8270	2.0	ND	ND	ND
2-Nitroaniline	8270	5.0	ND	ND	ND
4-Nitroaniline	8270	5.0	QN	ND	ND
Dibenzofuran	8270	2.0	NO	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT ACID EXTRACTABLES TABLE A58-2C.

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.
Phenol	8270	2.0	ND	UD	ND
2,4,6-Trichlorophenol	8270	2.0	ND	ND	ND
2-Chlorophenol	8270	2.0	ND	ND	ND
2,4-Dichlorophenol	8270	2.0	ND	ND	ND
2,4-Dimethylphenol	8270	2.0	ND	ND	ND
4,6-Dinitro-o-cresol	8270	5.0	ND	ND	ND
2,4-Dinitrophenol	8270	5.0	ND	ND	ND
2-Nitrophenol	8270	5.0	ON	ND	ND
4-Nitrophenol	8270	5.0	NO	ND	ND
p-Chloro-m-cresol	8270	2.0	ND	ND	ND
Pentachlorophenol	8270	5.0	ND	ND	ND
p-Cresol	8270	2.0	ND	ND	ND
o-Cresol	8270	2.0	ND	ND	QN
2,4,5-Trichlorophenol	8270	2.0	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - ORGANOPHOSPHORUS PESTICIDES^a TABLE A58-2C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Azinphos-methyl	8140	0.10	ND	ND	ND
Bolstar (Sulprofos)	8140	•	ND	ON	ND
Coumaphos	8140	0.20	ND	ND	ND
Demeton, -0, -S	8140	0.12	ND	QN	ND
Diazinon	8140	0.20	ND	ND	ND
Dichlorvos	8140	0.80	ND	QN	ND
Dimethoate	8140	0.26	ND	ND	ND
Disulfoton	8140	0.07	ND	ND	ND
EPN	8140	0.04	ND	ND	ND
Ethoprop	8140	0.20	ND	ND	ND
Fensulfothion	8140	0.08	ND	ND	ND
Fenthion	8140	0.08	ND	ND	ND
Malathion	8140	0.11	ND	ND	ND
Merphos	8140	0.20	NO	ND	ND
Mevinphos	8140	0.50	ND	ND	ND
Naled	8140	0.50	ND	ND	ND
Parathion	8140	0.12	NO	ND	ND
Phorate	8140	0.04	ND	ND	ND
Ronnel	8140	0.07	ND	ND	ND
Sulfotep	8140	0.07	ND	ND	ND
TEPP	8140	0.80	ND	ND	ND
Tetrachlorovinphos	8140	0.80	ND	ND	ND
Tokuthion	8140	0.07	ND	ND	ND
Trichloronate	8140	08.0	QN	ND	NO

All results expressed as $\mu g/L$.

(CONTINUED) - CHLORINATED PESTICIDES AND HERBICIDES TABLE A58-2C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	1% G.W.
Pesticides:					
Aldrin	8080	0.034	ND	ND	ND
Alpha-BHC	8080	0.035	ND	ND	ND
Beta-BHC	8080	0.023	ND	ND	ND
Delta-BHC	8080	0.024	ND	ND	ND
Gamma-BHC (Lindane)	8080	0.025	ND	ND	ND
Chlordane	8080	0.037	ND	ND	ND
4,4'-DDD	8080	0.050	ND	ND	ND
4,4'-DDE	8080	0.058	ND	ND	ND
4,4'-DDT	8080	0.081	ND	ND	ND
Dieldrin	8080	0.044	ND	ND	ND
Alpha-Endosulfan	8080	0.030	ND	ND	ND
Beta-Endosulfan	8080	0.040	ND	ND	ND
Endosulfan sulfate	8080	0.0072	ND	ND	ND
Endrin	8080	0.0072	ND	ND	QN
Endrin Aldehyde	8080	0.0032	ND	ND	ND
Heptachlor	8080	0.0040	ND	ND	ND
Heptachlor Epoxide	8080	0.0042	ND	QN	ΩN
Methoxychlor	8080	0.0500	ND	ND	QN
Chlorpyrifos	8080	0.0044	ND	ND	QN
Toxaphene	8080	0.0114	ND	ND	ND
Malathion	8080	0.1100	ND	ND	ON
Parathion	8080	0.1200	ND	QN	ND
Dursban	8080	0.0044	ND	ND	ND
Herbicides:					
2,4-D	8051?	1.5	ND	ND	ND
2,4,5-TP	8051?	0.05	ND	ND	ND

All results expressed as $\mu g/L$.

COMPREHENSIVE CHEMICAL ANALYSIS OF THE WEST BRANCH OF CANAL CREEK STUDY GROUNDWATER (WELL NO. CC-27B), WEST BRANCH OF CANAL CREEK SURFACE WATER, AND APG-EA TAP WATER (TEST NO. 3) - GENERAL WATER QUALITY® TABLE A58-3A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Alkalinity (CaCO ₃)	310.1	1.0	05	38.0	90.4
Ammonia Nitrogen (N)	350.3	0.01	0.011	0.095	0.01
Bromide	320.1	0.2	<0.2	<0.2	<0.2
Chloride (C1)	325.3	1.0	147	62.4	16.6
Cyanide (Cn)	335.2	0.002	<0.00>	<0.002	<0.002
Fluoride (F)	340.2	0.01	0.264	0.102	0.349
Hardness (CaCO ₃)	AA	I	58.0	72.6	53.5
pH (electrometric)	150.1	0.01	4.20	6.59	8.12
Nitrate (N)	ISE	0.01	1.76	1.37	5.64
Nitrite (N)	354.1	0.001	<0.001	0.011	<0.001
Phosphate (P)	365.3	0.1	0.932	0.252	0.260
Specific Conductance 0 25 °C	120.1	1.0	423	324	274
Sulfate (SO ₄)	375.3	1.0	99.5	46.8	29.6
Sulfide (H,S)	9030	0.002	<0.002	<0.002	<0.002
Total Organic Carbon	415.1	2.0	<2.0	6.5	<2.0
Total Suspended Solids	160.2	1.0	<1.0	22.1	<1.0

All results expressed as mg/L except for specific conductance and pH which are expressed as μ mhos/cm and standard units, respectively.

TABLE A58-3A. (CONTINUED) - METALS^a

Allaıyte	Method	Limits	G.W.	W.B.C.C.	APG-EA
Aluminum (Al)	200.7	10	1660	622	63.0
	204.2	14.5	<14.5		<14.5
	200.7	14.5		<14.5	
Arsenic (As)	200.7	45	<45	<45	<45
Beryllium (Be)	200.7	0.5	1.5	<0.5	<0.5
Boron	200.7	20	57.2	57.1	<50
Cadmium (Cd)	200.7	1.5	<1.5	<1.5	<1.5
Calcium (Ca)	200.7	32.6	15700	16400	14400
Chromium (Cr)	200.7	9	9>	9>	9>
Cobalt	200.7	1.3	41.7	3.8	<1.3
Copper (Cu)	200.7	2.5	10.2	4.7	23.6
Iron	200.7	2.5	19.7	1440	38.4
Lead (Pb)	200.7	14.5	<14.5	<14.5	<14.5
Magnesium (Mg)	200.7	29	5360	9030	2000
Manganese (Mn)	200.7	0.97	639	212	1.4
Mercury (Hg)	245.1	0.1	<0.1	<0.1	<0.1
Molybdenum (Mo)	200.7	30	52.8	116	89.9
Nickel (Ni)	200.7	2.9	22.2	10.0	3.9
Potassium (K)	200.7	20	2140	3280	2270
Selenium (Se)	200.7	11.1		<11.1	
	270.2	11.1	<11.1		<11.1
Silver (Ag)	200.7	6	46.8	6>	6>
Sodium (Na)	200.7	20	26900	35000	41800
Thallium	200.7	75	<75	<75	<75
Tin (Sn)	200.7	7.6	<9.7	<9.7	<9.7
Zinc (Zn)	200.7	1.5	57.5	6.69	45.7

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS® TABLE A58-3A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Benzene	8021	0.5	UN	ND	QN
Bromobenzene	8021	0.5	ND	ND	ND
Bromochloromethane	8021	0.5	ND	ND	ND
Bromodichloromethane	8021	0.5	68.4	ND	ND
Bromoform	8021	0.5	ND	ND	ND
Bromomethane	8021	0.5	ND	ND	ND
n-Butylbenzene	8021	0.5	ND	ND	ND
s-Butylbenzene	8021	0.5	ND	QN	ND
t-Butylbenzene	8021	0.5	ND	ND	ND
Carbon Tetrachloride	8021	0.5	32.8	4.1	ND
Chlorobenzene	8021	0.5	ND	ND	ND
Chlorodibromomethane	8021	0.5	ND	ND	ND
Chloroethane	8021	0.5	ND	ND	ND
Chloroform	8021	0.5	55.9	4.4	2.9
Chloromethane	8021	0.5	ND	ND	ND
2-Chlorotoluene	8021	0.5	ND	ND	ND
4-Chlorotoluene	8021	0.5	ND	QN	ND
1,2-Dibromo-3-chloropropane	8021	0.5	ND	ON	ND
1,2-Dibromoethane	8021	0.5	ND	ND	ND
Dibromomethane	8021	0.5	ND	ON	ND
1,2-Dichlorobenzene	8021	0.5	ND	ND	ND
1,3-Dichlorobenzene	8021	0.5	ND	ND	ND
1,4-Dichlorobenzene	8021	0.5	ND	ND	ND
Dichlorodifluoromethane	8021	1.0	ND	ND	ND
1,1-Dichloroethane	8021	0.5	ND	ND	ND
1,2-Dichloroethane	8021	0.5	2.1	ND	ND
1,1-Dichloroethene	8021	0.5	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS CON'Tª TABLE A58-3A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
cis-1,2-Dichloroethene	8021	0.5	2.4	ND	ND
1,1-Dichloropropene	8021	0.5	ND	ND	ND
cis-1,3-Dichloropropene	8021	0.5	ND	ND	ND
trans-1,3-Dichloropropene	8021	0.5	ND	ND	ND
Ethylbenzene	8021	0.5	ND	ND	ND
Hexachlorobutadiene	8021	0.5	ND	ND	ND
Isopropylbenzene	8021	0.5	ND	ND	ND
p-Isopropyltoluene	8021	0.5	ND	ND	ND
Methylene chloride	8021	0.5	ND	ND	ND
Naphthalene	8021	0.5	ND	ND	ND
n-Propylbenzene	8021	0.5	ND	ND	ND
Styrene	8021	0.5	ND	ND	ND
1,1,1,2-Tetrachloroethane	8021	0.5	ND	ND	ND
1,1,2,2-Tetrachloroethane	8021	0.5	53.8	ND	ND
Tetrachloroethene	8021	0.5	5.2	ON	ND
Toluene	8021	0.5	ND	ND	ND
1,2,3-Trichlorobenzene	8021	0.5	ND	ND	ND
1,2,4-Trichlorobenzene	8021	0.5	ND	QN	ON
1,1,1-Trichloroethane	8021	0.5	ND	ND	ND
1,1,2-Trichloroethane	8021	0.5	ND	ND	ND
Trichloroethene	8021	0.5	85.0	ND	ND
Trichlorofluoromethane	8021	0.5	ND	ON	ND
1,2,3-Trichloropropane	8021	0.5	ND	ND	ND
1,2,4-Trimethylbenzene	8021	0.5	ND	ND	QN
1,3,5-Trimethylbenzene	8021	0.5	ND	ON	ND
Vinyl Chloride	8021	0.5	ND	ND	ND
o,m,p-Xylenes	8021	0.5	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS® TABLE A58-3A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Bis-(2-chloroethoxy) Methane	8270	10.0	ND	ND	ND
Bis-(2-chloroethyl) Ether	8270	10.0	ND	ND	ND
Bis-(2-chloroisopropyl) Ether	8270	10.0	ND	ND	ND
Bis-(2-ethylhexyl) Phthalate	8270	10.0	ND	ND	ND
4-Bromophenyl Phenyl Ether	8270	10.0	ND	ND	ND
Butyl Benzyl Phthalate	8270	10.0	ND	ND	ND
2-Chloronapthalene	8270	10.0	ND	ND	ND
4-Chlorophenyl Phenyl Ether	8270	10.0	ND	ND	QN
Chrysene	8270	10.0	ND	ND	ND
Dibenzo (a,h) Anthracene	8270	10.0	ND	ND	ND
Acenaphthylene	8270	10.0	ND	ND	ND
1,2-Dichlorobenzene	8270	10.0	ND	ND	QN
1,3-Dichlorobenzene	8270	10.0	ND	ND	ND
1,4-Dichlorobenzene	8270	10.0	ND	ND	ND
3,3'-Dichlorobenzidine	8270	20.0	ND	ND	ND
Diethyl Phthalate	8270	10.0	ND	QN	ND
Dimethyl Phthalate	8270	10.0	ND	QN	ND
Di-n-Butyl Phthalate	8270	10.0	ND	QN	ND
2,4-Dinitrotoluene	8270	10.0	ND	ND	ND
2,6-Dinitrotoluene	8270	10.0	ON	QN	ND
Di-n-Octyl Phthalate	8270	10.0	ND	ON	ND
Fluoranthene	8270	10.0	ND	ND	ND
Fluorene	8270	10.0	ND	ND	ND
Hexachlorobenzene	8270	10.0	ND	ND	ND
Hexachlorobutadiene	8270	10.0	NO	ND	ND
Hexachlorocyclopentadiene	8270	10.0	NO	ND	ND
Hexachloroethane	8270	10.0	ND	QN	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS CON'IT® TABLE A58-3A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Indeno[1,2,3-cd]pvrene	8270	10.0	N	ND	ND
Isophorone	8270	10.0	ND	ND	ND
Naphthalene	8270	10.0	ND	ND	ND
Anthracene	8270	10.0	ND	ND	ND
Nitrobenzene	8270	10.0	ND	ND	ND
N-Nitroso-di-n-propylamine	8270	10.0	ND	ND	ND
N-Nitrosodiphenylamine	8270	10.0	ND	ND	ND
Phenanthrene	8270	10.0	ND	ND	ND
Pyrene	8270	10.0	NO	ON	ND
1,2,4-Trichlorobenzene	8270	10.0	ND	ND	ND
Benzo(a)anthracene	8270	10.0	ND	QN	ND
Benzo(a) pyrene	8270	10.0	ND	ND	ND
Benzo(b)fluoranthene	8270	10.0	ON	ND	ON
Benzo(q,h,i)perylene	8270	10.0	ND	ND	ND
Benzo(k)fluoranthene	8270	10.0	ND	ND	ND
Benzidine	8270	10.0	ND	ND	ND
1,2-Diphenylhydrazine	8270	20.0	ND	ND	ND
N-Nitrosodimethylamine	8270	20.0	ND	ND	ON
Acenaphthene	8270	10.0	ND	QN	ND
3,4-Benzo-fluoranthene	8270	10.0	ND	ND	ND
4-Chloroaniline	8270	20.0	ND	ND	ND
2-Methylnaphthalene	8270	10.0	ND	ND	ND
2-Nitroaniline	8270	50.0	ND	ND	ND
4-Nitroaniline	8270	20.0	ND	ND	ND
Dibenzofuran	8270	10.0	QN	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT ACID EXTRACTABLES® TABLE A58-3A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Phenol	8270	10.0	UD	ND	ND
2,4,6-Trichlorophenol	8270	10.0	ND	ND	ND
2-Chlorophenol	8270	10.0	ND	ND	ND
2,4-Dichlorophenol	8270	10.0	ND	ND	ND
2,4-Dimethylphenol	8270	10.0	NO	ND	ND
4,6-Dinitro-o-cresol	8270	50.0	ND	ND	ND
2,4-Dinitrophenol	8270	50.0	ND	ND	ND
2-Nitrophenol	8270	10.0	ND	QN	ND
4-Nitrophenol	8270	50.0	ND	ND	ND
p-chloro-m-cresol	8270	20.0	ND	ND	ND
Pentachlorophenol	8270	50.0	ND	ON	ND
p-Cresol	8270	10.0	ND	ON	ND
o-Cresol	8270	10.0	ND	ON	ND
2,4,5-Trichlorophenol	8270	10.0	ND	ND	QN

All results expressed as $\mu g/L$.

(CONTINUED) - ORGANOPHOSPHORUS PESTICIDES® TABLE A58-3A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Azinphos-methyl	8140	0.20	ND	ND	ND
Bolstar (Sulprofos)	8140	0.14	ON	ND	ND
Coumaphos	8140	0.40	ND	ND	ND
Demeton, -0, -S	8140	0.24	ND	ND	ND
Diazinon	8140	0.40	ND	ND	ND
Dichlorvos	8140	1.60	ND	ND	ND
Dimethoate	8140	0.52	ND	ND	ND
Disulfoton	8140	0.14	ND	ND	ND
EPN	8140	0.08	ND	ON	ND
Ethoprop	8140	0.40	ND	ND	ND
Fensulfothion	8140	0.16	ND	ND	ND
Fenthion	8140	0.16	ND	ND	ND
Malathion	8140	0.22	ND	ND	ND
Merphos	8140	0.40	ΩN	ND	ND
Mevinphos	8140	1.00	NO	ND	ND
Naled	8140	1.00	ND	ND	ND
Parathion	8140	0.24	NO	QN	ND
Phorate	8140	0.08	ND	ND	ND
Ronnel	8140	0.14	NO	ND	ND
Sulfotep	8140	0.14	NO	ND	ND
TEPP	8140	1.60	NO	ND	ND
Tetrachlorovinphos	8140	1.60	ND	ND	ND
Tokuthion	8140	0.14	ND	ND	ND
Trichloronate	8140	1.60	ND	ND	ND

All results expressed as μ g/L.

(CONTINUED) - CHLORINATED PESTICIDES AND HERBICIDES^a TABLE A58-3A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C	100% APG-EA
Pesticides:					
Aldrin	8080	0.034	ND	ND	ND
Alpha-BHC	8080	0.035	QN	ND	ND
Beta-BHC	8080	•	ND	ND	ND
Delta-BHC	8080	0.024	ND	ND	ND
Gamma-BHC (Lindane)	8080	0.025	ND	ND	ND
Chlordane	8080	0.037	ND	ND	ND
4,4'-DDD	8080	0.050	ND	ND	ND
4,4'-DDE	8080	•	ND	ND	ND
4,4'-DDT	8080	0.081	ND	ND	ND
Dieldrin	8080	•	ND	ND	ND
Alpha-Endosulfan	8080	0.030	ND	ND	QN
Beta-Endosulfan	8080	0.040	ND	ND	ND
Endosulfan sulfate	8080	0.0072	ND	ND	ND
Endrin	8080	0.0072	ND	ND	ND
Endrin Aldehyde	8080	0.0032	ND	ND	QN
Heptachlor	8080	0.0040	ND	ND	ND
Heptachlor Epoxide	8080	0.0042	ND	ND	ND
Methoxychlor	8080	0.0500	ND	ND	ND
Chlorpyrifos	8080	0.0044	ND	ND	ND
Toxaphene	8080	0.0114	ND	ND	ND
Malathion	8080	0.1100	ND	ND	ND
Parathion	8080	0.1200	ND	ND	ON
Dursban	8080	0.0044	ND	ND	ND
Herbicides:					
2,4-D	8150	1.5	ND	ND	ND
2,4,5-TP	8150	•	ND	ND	ND

All results expressed as $\mu g/L$.

COMPREHENSIVE CHEMICAL ANALYSIS OF THE WEST BRANCH OF CANAL CREEK STUDY CHRONIC HISTOPATHOLOGY GROUNDWATER EXPOSURE AQUARIA DILUTED WITH APG-EA TAP WATER (TEST NO. 3) - GENERAL WATER QUALITY® TABLE A58-3B.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Alkalinity (CaCO ₃)	310.1	1.0	69	06	94.4
Ammonia Nitrogen (N)	350.3	0.01	0.046	0.047	0.045
Bromide	320.1	0.2	<0.2	<0.2	<0.2
Chloride (C1)	325.3	1.0	28.8	18.0	16.8
Cyanide (Cn)	335.2	0.002	<0.002	<0.002	<0.002
Fluoride (F)	340.2	0.01	0.293	0.313	0.318
Hardness (CaCO ₃)	AA	l	54.4	52.4	52.9
pH (electrometric)	150.1	0.01	6.97	7.52	7.88
Nitrate (N)	ISE	0.01	4.90	5.76	5.85
Nitrite (N)	354.1	0.001	<0.001	<0.001	<0.001
Phosphate (P)	365.3	0.1	0.406	0.368	0.251
Specific Conductance @ 25 °C	120.1	1.0	309	299	291
Sulfate $(SO_{\underline{a}})$	375.3	1.0	46.2	30.2	25.6
Sulfide (H,S)	9030	0.002	<0.002	<0.002	<0.002
Total Organic Carbon	415.1	2.0	<2.0	<2.0	<2.0
Total Suspended Solids	160.2	1.0	2.4	2.8	<1.0

All results expressed as mg/L except for specific conductance and pH which are expressed as μ mhos/cm and standard units, respectively.

TABLE A58-3B. (CONTINUED) - METALS^a

(A1) (Sb) (Sb) (Sb) 204.2 10 10 160 As) As) 200.7 45 45 45 45 45 45 45 45 45 45 45 45 45	Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.
10 204.2 14.5 204.7 200.7 45 200.7 2	Aluminum (Al)	200.7	1005	410		
204.2 14.5 <14.5 <14.5 <445 <45 <45 <45 <45 <45 <45 <45 <45 <			10		160	95.3
(a) 200.7 45 <45 <45 <45 <45 <45 <45 <45 <45 <45	Antimony (Sb)	04.	•	<14.5	•	<14.5
200.7 0.5 0.6 <0.5 200.7 50 <50 <50 200.7 1.5 <1.5 200.7 32.6 14600 14000 141 200.7 32.6 14600 14000 141 200.7 2.5 23.4 20.2 200.7 2.5 26.3 18.5 200.7 2.5 26.3 18.5 200.7 2.9 5120 4980 50 200.7 29 5120 4980 50 200.7 29 5120 4980 50 200.7 29 5120 4980 50 200.7 29 5120 4980 50 200.7 29 5120 4980 50 200.7 29 5120 4980 50 200.7 29 5120 4980 50 200.7 30 116 80.2 200.7 30 116 80.2 200.7 50 48000 44600 456 200.7 50 480.7 <50.7 200.7 50 480.7 <50.7 200.7 1.5 48.2 48.3	Arsenic (As)	200.7	45	<45	<45	<45
200.7 50 <50	Beryllium (Be)	200.7	•	9.0	<0.5	<0.5
200.7 32.6 14600 14000 141 200.7 6 6 66 66 200.7 1.3 10.5 (1.3 200.7 2.5 23.4 20.2 200.7 2.5 26.3 18.5 200.7 2.5 26.3 18.5 200.7 29 5120 4980 50 200.7 29 5120 4980 50 200.7 29 5120 4980 50 200.7 29 5120 4980 50 200.7 29 5120 4980 50 200.7 29 5120 4980 50 200.7 29 5120 4980 50 200.7 30 116 80.2 200.7 50 2260 2230 23 200.7 50 48000 44600 456 200.7 75 <75 <75 <75 <77 <77 <77 <77 <77 <77	Boron	200.7	50	<50	<50	<50
200.7 32.6 14600 14000 141 200.7 6 1 6 1 6 1 1 1 1 1 1 1 6 </td <td>Cadmium (Cd)</td> <td>200.7</td> <td></td> <td><1.5</td> <td><1.5</td> <td><1.5</td>	Cadmium (Cd)	200.7		<1.5	<1.5	<1.5
200.7 6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <	Calcium (Ca)	200.7	•	14600	14000	14100
200.7 1.3 10.5 <1.3	Chromium (Cr)	200.7	9	9>	9>	9>
200.7 2.5 23.4 20.2 200.7 2.5 26.3 18.5 200.7 14.5 <14.5	Cobalt	200.7	•	•	•	<1.3
200.7 2.5 26.3 18.5 200.7 14.5 <14.5	Copper (Cu)	200.7	•	•	•	19.0
200.7 14.5 <14.5 <14.5 <14.5 <	Iron	200.7	•		18.5	18.2
200.7 29 5120 4980 50 200.7 0.97 157 30.9 245.1 0.1 <0.1 <0.1 200.7 30 116 80.2 200.7 2.9 10.2 5.9 200.7 50 2260 2230 23 270.2 11.1 <11.1 <11.1 <11.1 < 200.7 50 48000 44600 456 200.7 75 <75 <75 <75 <75 <75 <75 <75 <75 <75	Lead (Pb)	200.7	•	•	•	<14.5
200.7 0.97 157 30.9 245.1 0.1 <0.1 <0.1 200.7 30 116 80.2 200.7 2.9 10.2 5.9 200.7 50 2260 2230 23 270.2 11.1 <11.1 <11.1 <11.1 200.7 50 48000 44600 456 200.7 75 <75 <75 <75 <75 <75 <75 <75 <75 <75	Magnesium (Mg)	200.7	29	5120	4980	5030
245.1 0.1 <0.1 <0.1 200.7 30 116 80.2 200.7 2.9 10.2 5.9 200.7 50 2260 2230 23 270.2 11.1 <11.1 <11.1 <11.1 <11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 11.1 < 1	Manganese (Mn)	200.7	0.97	157	30.9	7.1
(b) 200.7 30 116 80.2 200.7 2.9 10.2 5.9 200.7 50 2260 2230 23 270.2 11.1 <11.1	Mercury (Hg)	245.1	0.1	•	<0.1	<0.1
200.7 2.9 10.2 5.9 200.7 50 2260 2230 23 270.2 11.1 <11.1	Molybdenum (Mo)	200.7	30	116	80.2	83.3
200.7 50 2260 2230 23 270.2 11.1 <11.1	Nickel (Ni)	200.7	2.9	10.2	5.9	4.8
270.2 11.1 <11.1	Potassium (K)	200.7	20	2260	2230	2340
200.7 9 9.6 <9	Selenium (Se)	270.2	11.1	<11.1	<11.1	<11.1
200.7 50 48000 44600 456 200.7 75 <75 <75 < 200.7 9.7 <9.7 <9.7 200.7 1.5 48.3	Silver (Ag)	200.7	თ	9.6	6>	6>
200.7 75 <75 <75 < 200.7 9.7 <9.7 <9.7 <9.7 1.5 48.2 48.3	Sodium (Na)	200.7	20	48000	44600	45600
200.7 9.7 <9.7 <9.7 <9.7 <9.7 1.5 48.3	Thallium	200.7	75	<75	<75	<75
200.7 1.5 48.3	Tin (Sn)	200.7	9.7	<9.7	<9.7	<9.7
	Zinc (Zn)	200.7	1.5	48.2	48.3	46.6

^a All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS® TABLE A58-3B.

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.
Benzene	8021	0.5	ND	ND	ND
Bromobenzene	8021	0.5	ND	ND	ND
Bromochloromethane	8021	0.5	ND	ND	ND
Bromodichloromethane	8021	0.5	12.7	1.0	ND
Bromoform	8021	0.5	ND	ND	ND
Bromomethane	8021	0.5	ND	ND	ND
n-Butylbenzene	8021	0.5	ND	ND	ND
s-Butylbenzene	8021	0.5	ND	ND	ND
t-Butylbenzene	8021	0.5	ND	ND	ND
Carbon Tetrachloride	8021	0.5	4.3	ND	QN
Chlorobenzene	8021	0.5	ND	ND	ND
Chlorodibromomethane	8021	0.5	ND	ND	ND
Chloroethane	8021	0.5	ND	ND	ND
Chloroform	8021	0.5	10.9	3.8	2.0
Chloromethane	8021	0.5	ND	ND	ND
2-Chlorotoluene	8021	0.5	ND	ND	ND
4-Chlorotoluene	8021	0.5	ND	ND	ND
1,2-Dibromo-3-chloropropane	8021	0.5	ND	ND	ND
1,2-Dibromoethane	8021	0.5	ND	ND	ND
Dibromomethane	8021	0.5	ND	ND	ND
1,2-Dichlorobenzene	8021	0.5	NO	ND	ND
1,3-Dichlorobenzene	8021	0.5	NO	ND	ND
1,4-Dichlorobenzene	8021	0.5	ND	ND	ND
Dichlorodifluoromethane	8021	1.0	ND	ND	ND
1,1-Dichloroethane	8021	0.5	ND	QN	ND
1,2-Dichloroethane	8021	0.5	ND	ON	ND
1,1-Dichloroethene	8021	0.5	QN	QN	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS CON'Tª TABLE A58-3B.

Analyte	EPA Method	Detection Limits	258 G.W.	5% G.W.	18 G.W.
cis-1,2-Dichloroethene	8021	0.5	ND	ND	ND
1,1-Dichloropropene	8021	0.5	ND	ND	QN
cis-1,3-Dichloropropene	8021	0.5	ND	ND	ND
trans-1,3-Dichloropropene	8021	0.5	ND	ND	ND
Ethylbenzene	8021	0.5	ND	ND	ND
Hexachlorobutadiene	8021	0.5	ND	ND	ND
Isopropylbenzene	8021	0.5	ND	ND	ND
p-Isopropyltoluene	8021	0.5	ND	ND	ND
Methylene chloride	8021	0.5	ND	ND	ND
Naphthalene	8021	0.5	ND	ON	ND
n-Propylbenzene	8021	0.5	ND	QN	ND
Styrene	8021	0.5	ND	ND	ND
1,1,1,2-Tetrachloroethane	8021	0.5	ND	ND	ND
1,1,2,2-Tetrachloroethane	8021	0.5	12.9	2.5	ND
Tetrachloroethene	8021	0.5	ND	ND	ND
Toluene	8021	0.5	ND	ND	ND
1,2,3-Trichlorobenzene	8021	0.5	ND	ND	ND
1,2,4-Trichlorobenzene	8021	0.5	ND	ND	ND
1,1,1-Trichloroethane	8021	0.5	ND	ND	ND
1,1,2-Trichloroethane	8021	0.5	ND	ND	ND
Trichloroethene	8021	0.5	12.7	2.4	ND
Trichlorofluoromethane	8021	0.5	ND	ND	ND
1,2,3-Trichloropropane	8021	0.5	ND	ND	ND
1,2,4-Trimethylbenzene	8021	0.5	ND	ON	ND
1,3,5-Trimethylbenzene	8021	0.5	ND	ON	ND
Vinyl Chloride	8021	0.5	ND	ND	ND
o,m,p-Xylenes	8021	0.5	ND	QN	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS^a TABLE A58-3B.

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.
Bis-(2-chloroethoxy) Methane	8270	10.0	ND	ND	ND
Bis-(2-chloroethyl) Ether	8270	10.0	ND	ND	ND
Bis-(2-chloroisopropyl) Ether	8270	10.0	ND	ND	ND
Bis-(2-ethylhexyl) Phthalate	8270	10.0	ND	ND	ND
4-Bromophenyl Phenyl Ether	8270	10.0	ND	ND	ND
Butyl Benzyl Phthalate	8270	10.0	ND	ND	ND
2-Chloronapthalene	8270	10.0	ND	ND	ND
4-Chlorophenyl Phenyl Ether	8270	10.0	ND	ND	ND
Chrysene	8270	10.0	ND	ND	ND
Dibenzo (a,h) Anthracene	8270	10.0	ND	ND	ND
Acenaphthylene	8270	10.0	ND	ND	ND
1,2-Dichlorobenzene	8270	10.0	ND	ND	ND
1,3-Dichlorobenzene	8270	10.0	ND	ND	ND
1,4-Dichlorobenzene	8270	10.0	ND	QN	ND
3,3'-Dichlorobenzidine	8270	20.0	ND	ND	ND
Diethyl Phthalate	8270	10.0	ND	ND	ND
Dimethyl Phthalate	8270	10.0	ND	ND	ND
Di-n-Butyl Phthalate	8270	10.0	QN	ND	ND
2,4-Dinitrotoluene	8270	10.0	ND	ND	ND
2,6-Dinitrotoluene	8270	10.0	ND	ND	ND
Di-n-Octyl Phthalate	8270	10.0	ND	ND	ND
Fluoranthene	8270	10.0	ND	ND	ND
Fluorene	8270	10.0	ND	ND	ND
Hexachlorobenzene	8270	10.0	ND	ND	ND
Hexachlorobutadiene	8270	10.0	ND	ND	ND
Hexachlorocyclopentadiene	8270	10.0	ND	ND	ND
Hexachloroethane	8270	10.0	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS CON'Tª TABLE A58-3B.

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.
Indeno[1,2,3-cd]pyrene	8270	10.0	ND	QN	ND
Isophorone	8270	10.0	ND	ND	ND
Naphthalene	8270	10.0	ND	ND	ND
Anthracene	8270	10.0	ND	ND	ND
Nitrobenzene	8270	10.0	ND	ND	ND
N-Nitroso-di-n-propylamine	8270	10.0	NO	ND	ND
N-Nitrosodiphenylamine	8270	10.0	ND	ND	ND
Phenanthrene	8270	10.0	ND	ND	ND
Pyrene	8270	10.0	ND	ND	QN
1,2,4-Trichlorobenzene	8270	10.0	QN	ND	ND
Benzo(a)anthracene	8270	10.0	ND	ND	ND
Benzo(a)pyrene	8270	10.0	ND	ND	ND
Benzo(b)fluoranthene	8270	10.0	ND	ND	ND
Benzo(g,h,i)perylene	8270	10.0	ND	ND	ON
Benzo(k)fluoranthene	8270	10.0	ND	ND	ND
Benzidine	8270	10.0	ND	ND	ND
1,2-Diphenylhydrazine	8270	20.0	ND	ND	ND
N-Nitrosodimethylamine	8270	20.0	ND	ND	ND
Acenaphthene	8270	10.0	ND	NO	QN
3,4-Benzo-fluoranthene	8270	10.0	ND	ND	ND
4-Chloroaniline	8270	20.0	ND	ND	ND
2-Methylnaphthalene	8270	10.0	ND	ND	ND
2-Nitroaniline	8270	50.0	ND	ND	ND
4-Nitroaniline	8270	20.0	ND	ND	ND
Dibenzofuran	8270	10.0	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT ACID EXTRACTABLES® TABLE A58-3B.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Phenol 82	8270	10.0	ND	ND	ND
2,4,6-Trichlorophenol	8270	10.0	ND	ND	ND
	8270	10.0	ND	ND	ND
2,4-Dichlorophenol	8270	10.0	ND	ND	NO
	8270	10.0	ND	ND	ON
ol	8270	50.0	ND	ND	ND
	8270	50.0	ND	ND	ND
	8270	10.0	ND	ND	ND
4-Nitrophenol	8270	50.0	ND	ND	ND
p-Chloro-m-cresol	8270	20.0	ND	ND	ON
Pentachlorophenol 82	8270	50.0	ND	ND	ND
p-Cresol 82	8270	10.0	ND	ND	ND
o-Cresol 82	8270	10.0	ND	ON	ND
2,4,5-Trichlorophenol	8270	10.0	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - ORGANOPHOSPHORUS PESTICIDES^a TABLE A58-3B.

Analyte	EPA Method	Detection Limits	25% G.W.	5\$ G.W.	18 G.W.
Azinphos-methyl	8140	0.20	ND	ND	ND
Bolstar (Sulprofos)	8140	0.14	ND	ND	ND
Coumaphos	8140	0.40	ND	ND	ND
Demeton, -0, -S	8140	0.24	ND	ND	ND
Diazinon	8140	0.40	ND	ND	ND
Dichlorvos	8140	1.60	ND	ND	ND
Dimethoate	8140	0.52	ND	ON	QN
Disulfoton	8140	0.14	ND	ND	ND
EPN	8140	0.08	ND	ND	ND
Ethoprop	8140	0.40	ND	ND	ND
Fensulfothion	8140	0.16	ND	ND	ND
Fenthion	8140	0.16	ND	ND	ND
Malathion	8140	0.22	ND	ND	ND
Merphos	8140	0.40	ND	ND	ND
Mevinphos	8140	1.00	ND	ND	ND
Naled	8140	1.00	ND	ND	ND
Parathion	8140	0.24	ND	ND	QN
Phorate	8140	0.08	ND	ND	ND
Ronnel	8140	0.14	ND	ND	ND
Sulfotep	8140	0.14	ND	ND	ND
TEPP	8140	1.60	ND	ND	ND
Tetrachlorovinphos	8140	1.60	ND	ND	ND
Tokuthion	8140	0.14	ND	ND	ND
Trichloronate	8140	1.60	QN	QN	ND

All results expressed as $\mu g/L$.

TABLE A56-3B. (CONTINUED) - CHLORINATED PESTICIDES AND HERBICIDES^a

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Pesticides:					
Aldrin	8080	0.034	ND	ND	ND
Alpha-BHC	8080	0.035	ND	ND	ND
Beta-BHC	8080	0.023	ND	ND	ND
Delta-BHC	8080	0.024	ND	ND	ND
Gamma-BHC (Lindane)	8080	0.025	ND	ND	ND
Chlordane	8080	0.037	ND	ND	ND
4,4'-DDD	8080	0.050	ND	ND	ND
4,4'-DDE	8080	0.058	ND	ND	ND
4,4'-DDT	8080	0.081	ND	ND	ND
Dieldrin	8080	0.044	ND	ND	ND
Alpha-Endosulfan	8080	0.030	ND	ND	ND
Beta-Endosulfan	8080	0.040	ND	ND	ND
Endosulfan sulfate	8080	0.0072	ND	ND	ND
Endrin	8080	0.0072	ND	ND	ND
Endrin Aldehyde	8080	0.0032	ND	ND	ND
Heptachlor	8080	0.0040	ND	ND	ND
Heptachlor Epoxide	8080	0.0042	ND	ND	ND
Methoxychlor	8080	0.0500	ON	ND	ND
Chlorpyrifos	8080	0.0044	ND	ND	ND
Toxaphene	8080	0.0114	ND	ND	ND
Malathion	8080	0.1100	ND	ND	ND
Parathion	8080	0.1200	ND	ND	ND
Dursban	8080	0.0044	ND	ND	ND
Herbicides:					
2,4-D	8150	1.5	ND	ND	ND
2,4,5-TP	8150	•	NO	ND	ND

All results expressed as $\mu g/L$.

COMPREHENSIVE CHEMICAL ANALYSIS OF THE WEST BRANCH OF CANAL CREEK STUDY CHRONIC HISTOPATHOLOGY GROUNDWATER EXPOSURE AQUARIA DILUTED WITH WEST BRANCH OF CANAL CREEK WATER (TEST NO. 3) - GENERAL WATER QUALITY^a TABLE A58-3C.

Analyte	EPA Method	Detection Limits	25% G.W.	5& G.W.	18 G.W.
Alkalinity (CaCO ₃)	310.1	1.0	27.6	35.6	35.8
Ammonia Nitrogen (N)	350.3	0.01	0.103	0.086	0.087
Bromide	320.1	0.2	<0.2	<0.2	<0.2
Chloride (C1)	325.3	1.0	64.8	64.0	63.2
Cyanide (Cn)	335.2	0.002	<0.002	<0.002	<0.002
Fluoride (F)	340.2	0.01	0.114	0.129	0.113
Hardness (CaCO ₃)	AA	I	67.2	70.5	70.5
pH (electrometric)	150.1	0.01	6.48	6.73	6.81
Nitrate (N)	ISE	0.01	1.43	1.39	1.43
Nitrite (N)	354.1	0.001	0.002	0.004	0.008
Phosphate (P)	365.3	0.1	0.304	0.824	0.592
Specific Conductance @ 25 °C	120.1	1.0	348	320	310
Sulfate (SO ₄)	375.3	1.0	32.8	44.4	44.0
Sulfide (H ₂ S)	9030	0.002	<0.002	<0.002	<0.002
Total Organic Carbon	415.1	2.0	<2.0	<2.0	<2.0
Total Suspended Solids	160.2	1.0	15.2	17.4	20.1

All results expressed as mg/L except for specific conductance and pH which are expressed as μ mhos/cm and standard units, respectively.

TABLE A58-3C. (CONTINUED) - METALSª

Analyte Method Limits Aluminum (A1) Antimony (Sb) Arsenic (As) Beryllium (Be) Boron Cadmium (Cd) Calcium (Ca) Chromium (Cr) Cobalt Cobper (Cu) Lead (Pb) Aluminum (A1) Antimony C200.7 A5 A5 A5 B00.7 A5 C200.7 A14.5	Detection Limits 10 14.5 45 45 45 0.5 50 1.5 1.5 1.5	25% G.W. 1030 <14.5 <45 0.7 <50 <1.5	5% G.W. 889 <14.5 <45 <0.5 <50 <1.5	1% G.W. 711 <14.5 <45 <0.5 <50 <1.5
Method Lim	Limits 10 14.5 45 45 45 0.5 0.5 1.5 32.6	G.W. 1030 <14.5 <45 0.7 <50 <1.5 <1.5	G.W. 889 <14.5 <45 <0.5 <50 <1.5	G.W. 711 <14.5 <45 <0.5 <50 <1.5
<pre>lnum (A1) aony (Sb) lic (As) lic (As) lic (As) llium (Be) lum (Cd) lum (Cd) lum (Ca) lum (Cr) lum</pre>	10 45.5 45.6 0.5 1.5 1.5	1030 <14.5 <45 0.7 <50 <1.5	889 <14.5 <45 <0.5 <50 <1.5	711 <14.5 <45 <0.5 <50 <1.5
nony (Sb) lic (As) 206.2 4 200.7 4 200.7 1 lum (Be) lum (Cd) lum (Ca) lum (Ca) 200.7 200.7 200.7 lt tt (Pb) (Pb)	14.5 45.5 45.0 50.5 1.5 1.5	<14.5 <45 0.7 <50 <1.5	<14.5 <45 <0.5 <50 <1.5	<14.5 <45 <0.5 <50 <1.5
lium (Be) 206.2 4 200.7 4 200.2 4 200.7 2 1	45 45 45 00.5 1.5 1.5 6	<45 0.7 <50 <1.5 15900	<45 <0.5 <50 <1.5	<45 <0.5 <50 <1.5
200.7 4 200.2 4 200.7 1 1 (um (Be)) 200.7 200.7 200.7 200.7 200.7 218.1 200.7 21.1 200.7 21.1 200.7 21.1 200.7 21.1 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	45 45 0.5 1.5 32.6	0.7 <50 <1.5 15900	<45 <0.5 <50 <1.5 16100	<45 <0.5 <50 <1.5
llium (Be) 200.7 lum (Cd) 200.7 lum (Ca) 200.7 lum (Ca) 200.7 aium (Cr) 200.7 tt tt (Pb) 200.7 200.7 200.7 200.7 200.7 200.7	45 0.5 1.5 32.6	0.7 <50 <1.5 15900	<0.5 <50 <1.5	<45 <0.5 <50 <1.5
llium (Be) 200.7 lum (Cd) 213.1 lum (Ca) 200.7 lum (Ca) 200.7 aium (Cr) 200.7 lt 200.7 er (Cu) 200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	0.5 1.5 32.6	0.7 <50 <1.5 15900	<0.5 <50 <1.5 16100	<0.5 <50 <1.5 16000
lum (Cd) 213.1 200.7 200.7 lum (Ca) 200.7 aium (Cr) 200.7 tt tt (Pb) 200.7 200.7 200.7 200.7 200.7 200.7 200.7	50 1.5 32.6 6	<50 <1.5 15900 <1	<50 <1.5 16100	<50 <1.5 16000
<pre>lum (Cd)</pre>	1.5 32.6 1	<1.5 15900 <1	<1.5 16100	<1.5 16000
lum (Ca) 200.7 32 nium (Cr) 200.7 32 nium (Cr) 218.1 1 200.7 6 1t 200.7 2 200.7 2 (Pb) 239.2 14	1219	15900 <1	<1.5	<1.5 16000
lum (Ca) 200.7 32 nium (Cr) 218.1 1 200.7 6 200.7 1 er (Cu) 200.7 2 er (Cu) 200.7 2 (Pb) 239.2 14 200.7 14	7 1 9	15900 <1	16100	16000
nium (Cr) 218.1 1 200.7 6 1t 200.7 1 200.7 2 (Pb) 239.2 14	٦ 9	\	,	
200.7 6 200.7 1 200.7 2 200.7 2 200.7 2 200.7 2 200.7 2 200.7 14	9		,	
lt 200.7 1 200.7 2 200.7 2 (Pb) 239.2 14 200.7 14			9>	9>
200.7 2 200.7 2 (Pb) 239.2 14 200.7 14	•	13.4	5.9	4.2
200.7 2 (Pb) 239.2 14 200.7 14	2.5	7.8	7.3	9.9
239.2 14.	2.5	1240	1520	1490
.7 14.	•	<14.5		
	14.5		<14.5	<14.5
Magnesium (Mg) 200.7 29	29	7830	8640	8700
Manganese (Mn) 200.7 0.9	0.97	350	238	220
Mercury (Hg) 245.1 0.1		<0.1	<0.1	<0.1
Molybdenum (Mo) 246.1 30	30	109		
	30		108	102
Nickel (Ni) 200.7 2.9	2.9	16	თ	10.8
Potassium (K) 200.7 50	20	3130	3250	3290
Selenium (Se) 270.2 11.1	11.1	<11.1	<11.1	<11.1
Silver (Ag) 200.7 9	თ	6>	6>	6>

All results expressed as $\mu g/L$.

TABLE A58-3C. (CONTINUED) - METALS CON'Tª

7 000 mit pos		G.W.	G.W.	G.W.
	50	41800	37300	35900
	75	<75		
200.7	75		<75	<75
	7.6	<9.7	<9.7	<9.7
Zinc (Zn) 200.7	1.5	80.5	68.3	72.6

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS® TABLE A58-3C.

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.
Benzene	8021	0.5	ND	ND	ND
Bromobenzene	8021	0.5	ND	ND	ND
Bromochloromethane	8021	0.5	ND	ND	ND
Bromodichloromethane	8021	0.5	15.4	3.8	1.1
Bromoform	8021	0.5	ND	ND	ND
Bromomethane	8021	0.5	ND	ND	QN
n-Butylbenzene	8021	0.5	ND	ND	ND
s-Butylbenzene	8021	0.5	ND	ND	ND
t-Butylbenzene	8021	0.5	ND	ND	ND
Carbon Tetrachloride	8021	0.5	8.8	4.8	3.9
Chlorobenzene	8021	0.5	ND	ND	ND
Chlorodibromomethane	8021	0.5	ND	ND	ND
Chloroethane	8021	0.5	ND	ND	ND
Chloroform	8021	0.5	14.8	6.1	4.5
Chloromethane	8021	0.5	ND	ND	ND
2-Chlorotoluene	8021	0.5	ND	ND	ND
4-Chlorotoluene	8021	0.5	ND	ND	ND
1,2-Dibromo-3-chloropropane	8021	0.5	ND	ND	ND
1,2-Dibromoethane	8021	0.5	ND	ND	ND
Dibromomethane	8021	0.5	ND	ND	ND
1,2-Dichlorobenzene	8021	0.5	ND	ND	ND
1,3-Dichlorobenzene	8021	0.5	ND	ND	ND
1,4-Dichlorobenzene	8021	0.5	ND	ND	ND
Dichlorodifluoromethane	8021	1.0	ND	ND	ND
1,1-Dichloroethane	8021	0.5	ND	ND	ND
1,2-Dichloroethane	8021	0.5	ND	QN	ND
1,1-Dichloroethene	8021	0.5	ND	N ON	ND

All results expressed as $\mu g/L$.

TABLE A58-3C. (CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS CON'Tª

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
cis-1,2-Dichloroethene	8021	0.5	QN	GN	CN
1,1-Dichloropropene	8021	0.5	ND	ND	QN
cis-1,3-Dichloropropene	8021	0.5	ND	ND	ND
trans-1,3-Dichloropropene	8021	0.5	ND	ND	ND
Ethylbenzene	8021	0.5	ND	ND	ND
Hexachlorobutadiene	8021	0.5	ND	ND	ND
Isopropylbenzene	8021	0.5	ND	ND	ND
p-Isopropyltoluene	8021	0.5	ND	ND	ND
Methylene chloride	8021	0.5	ND	ND	ND
Naphthalene	8021	0.5	QN	QN	ND
n-Propylbenzene	8021	0.5	ND	ND	ND
Styrene	8021	0.5	ND	ND	ND
1,1,1,2-Tetrachloroethane	8021	0.5	ND	ND	ND
1,1,2,2-Tetrachloroethane	8021	0.5	17.8	7.9	5.9
Tetrachloroethene	8021	0.5	1.3	6.0	0.8
Toluene	8021	0.5	ND	ND	ND
1,2,3-Trichlorobenzene	8021	0.5	ND	ND	ND
1,2,4-Trichlorobenzene	8021	0.5	ND	QN	ND
1,1,1-Trichloroethane	8021	0.5	ND	ND	ND
1,1,2-Trichloroethane	8021	0.5	ND	ND	ND
Trichloroethene	8021	0.5	15.9	3.6	1.1
Trichlorofluoromethane	8021	0.5	ND	QN	ND
1,2,3-Trichloropropane	8021	0.5	ND	QN	ND
1,2,4-Trimethylbenzene	8021	0.5	ND	ND	ND
1,3,5-Trimethylbenzene	8021	0.5	ND	ND	ND
Vinyl Chloride	8021	0.5	ND	ND	ND
o,m,p-Xylenes	8021	0.5	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS^a TABLE A58-3C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	1% G.W.
Bis-(2-chloroethoxy) Methane	8270	10.0	ND	ND	ND
Bis-(2-chloroethyl) Ether	8270	10.0	ND	ND	ND
Bis-(2-chloroisopropyl) Ether	8270	10.0	ND	ND	ND
Bis-(2-ethylhexyl) Phthalate	8270	10.0	ND	ND	ND
4-Bromophenyl Phenyl Ether	8270	10.0	ND	ND	ND
Butyl Benzyl Phthalate	8270	10.0	ND	ND	ND
2-Chloronapthalene	8270	10.0	ND	ND	ND
4-Chlorophenyl Phenyl Ether	8270	10.0	ND	ND	ND
Chrysene	8270	10.0	ND	ND	ND
Dibenzo (a,h) Anthracene	8270	10.0	ND	ND	ND
Acenaphthylene	8270	10.0	ND	ND	ND
1,2-Dichlorobenzene	8270	10.0	ND	ND	ND
1,3-Dichlorobenzene	8270	10.0	ND	ND	ND
1,4-Dichlorobenzene	8270	10.0	ND	ND	ND
3,3'-Dichlorobenzidine	8270	20.0	ND	QN	ND
Diethyl Phthalate	8270	10.0	ND	ND	ND
Dimethyl Phthalate	8270	10.0	ND	ND	ND
Di-n-Butyl Phthalate	8270	10.0	ND	ND	ND
2,4-Dinitrotoluene	8270	10.0	ND	ND	ND
2,6-Dinitrotoluene	8270	10.0	ND	QN	ND
Di-n-Octyl Phthalate	8270	•	ND	ON	ND
Fluoranthene	8270	10.0	ND	ON	ND
Fluorene	8270	10.0	ND	ND	ND
Hexachlorobenzene	8270	10.0	NO	ND	ND
Hexachlorobutadiene	8270	10.0	NO	ND	ND
Hexachlorocyclopentadiene	8270	10.0	ND	QN	QN
Hexachloroethane	8270	10.0	NO	QN	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS CON'Tª TABLE A58-3C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	1% G.W.
Indeno[1,2,3-cd]pyrene	8270	10.0	ND	QN	ND
Isophorone	8270	10.0	ND	ND	ND
Naphthalene	8270	10.0	ND	ND	ND
Anthracene	8270	10.0	ND	ND	ND
Nitrobenzene	8270	10.0	ND	ND	ND
N-Nitroso-di-n-propylamine	8270	10.0	ND	ND	ND
N-Nitrosodiphenylamine	8270	10.0	ND	ND	ND
Phenanthrene	8270	10.0	ND	ND	ND
Pyrene	8270	10.0	ND	ND	ND
1,2,4-Trichlorobenzene	8270	10.0	ND	ND	ND
Benzo(a)anthracene	8270	10.0	ND	ND	ND
Benzo(a)pyrene	8270	10.0	ND	ND	ND
Benzo(b)fluoranthene	8270	10.0	ND	ND	ND
Benzo(g,h,i)perylene	8270	10.0	ND	QN	ND
Benzo(k)fluoranthene	8270	10.0	ND	ND	ND
Benzidine	8270	10.0	ND	QN	ND
1,2-Diphenylhydrazine	8270	20.0	ND	ND	ND
N-Nitrosodimethylamine	8270	20.0	ND	ND	ND
Acenaphthene	8270	10.0	ND	ND	ND
3,4-Benzo-fluoranthene	8270	10.0	ND	ND	ND
4-Chloroaniline	8270	20.0	ND	QN	ON
2-Methylnaphthalene	8270	10.0	ND	ND	NO
2-Nitroaniline	8270	50.0	ND	QN	ND
4-Nitroaniline	8270	20.0	ND	QN	QN
Dibenzofuran	8270	10.0	ND	ND	QN

All results expressed as $\mu g/L$.

TABLE A58-3C. (CONTINUED) - PRIORITY POLLUTANT ACID EXTRACTABLES®

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Phenol	8270	10.0	ND	ND	ND
2,4,6-Trichlorophenol	8270	10.0	ND	ND	ND
2-Chlorophenol	8270	10.0	ND	ND	ND
2,4-Dichlorophenol	8270	10.0	ND	ND	ND
2,4-Dimethylphenol	8270	10.0	ND	ND	ND
4,6-Dinitro-o-cresol	8270	50.0	ND	ND	ND
2,4-Dinitrophenol	8270	50.0	ND	ND	ND
2-Nitrophenol	8270	10.0	ND	ND	ON
4-Nitrophenol	8270	50.0	ND	ND	ND
p-Chloro-m-cresol	8270	20.0	ND	ND	ND
Pentachlorophenol	8270	50.0	ND	ND	ND
p-Cresol	8270	10.0	ND	ND	ON
o-Cresol	8270	10.0	ND	ND	ND
2,4,5-Trichlorophenol	8270	10.0	ND	QN	ND

All results expressed as $\mu g/L$.

TABLE A58-3C. (CONTINUED) - ORGANOPHOSPHORUS PESTICIDES®

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Azinphos-methyl	8140	0.20	ND	ND	ND
Bolstar (Sulprofos)	8140	0.14	ND	ND	ND
Coumaphos	8140	0.40	ND	ND	ND
Demeton, -0, -S	8140	0.24	ND	ND	ND
Diazinon	8140	0.40	ND	ND	ND
Dichlorvos	8140	1.60	ND	ND	ND
Dimethoate	8140	0.52	ND	ND	ND
Disulfoton	8140	0.14	ND	ND	ND
EPN	8140	0.08	ND	ND	ND
Ethoprop	8140	0.40	ND	ND	ND
Fensulfothion	8140	0.16	ND	ND	ND
Fenthion	8140	0.16	ND	QN	ND
Malathion	8140	0.22	ND	ND	ND
Merphos	8140	0.40	ND	ND	ND
Mevinphos	8140	1.00	ND	QN	ND
Naled	8140	1.00	ND	ND	ND
Parathion	8140	0.24	ND	ND	ND
Phorate	8140	0.08	ND	ND	ND
Ronnel	8140	0.14	ND	ND	ND
Sulfotep	8140	0.14	ND	ND	ON
TEPP	8140	1.60	ND	ND	ND
Tetrachlorovinphos	8140	1.60	ND	ND	ND
Tokuthion	8140	0.14	ND	ND	ND
Trichloronate	8140	1.60	QN	ND	ND

All results expressed as $\mu g/L$.

TABLE A58-3C. (CONTINUED) - CHLORINATED PESTICIDES AND HERBICIDES

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Pesticides:					
Aldrin	8080	0.034	ND	N	ND
Alpha-BHC	8080	0.035	ND	ND	ND
Beta-BHC	8080	0.023	ND	ND	ND
Delta-BHC	8080	0.024	ND	ND	ND
Gamma-BHC (Lindane)	8080	0.025	ND	ND	ND
Chlordane	8080	0.037	ON	ND	ND
4,4'-DDD	8080	•	ND	ND	ND
4,4'-DDE	8080	0.058	ND	ND	ND
4,4'-DDT	8080	0.081	ND	ND	ND
Dieldrin	8080	0.044	ND	ND	ND
Alpha-Endosulfan	8080	0.030	ND	ND	ND
Beta-Endosulfan	8080	0.040	ND	ND	ND
Endosulfan sulfate	8080	0.0072	ND	ND	ND
Endrin	8080	0.0072	ND	ND	ND
Endrin Aldehyde	8080	0.0032	ND	ND	ND
Heptachlor	8080	0.0040	ND	ND	ND
Heptachlor Epoxide	8080	0.0042	ND	ND	ND
Methoxychlor	8080	0.0500	ND	ND	ND
Chlorpyrifos	8080	0.0044	ND	QN	ND
Toxaphene	8080	0.0114	ND	ND	ND
Malathion	8080	0.1100	ND	ND	ND
Parathion	8080	0.1200	ND	ND	ND
Dursban	8080	0.0044	ND	ND	ND
Herbicides:					
2,4-D	8150	1.5	ND	QN	ND
2,4,5-TP	8150	0.05	ND	ND	ND
The second secon					

All results expressed as $\mu g/L$.

GROUNDWATER (WELL NO. CC-27B), WEST BRANCH OF CANAL CREEK SURFACE WATER, AND APG-EA TAP WATER (TEST NO. 4) - GENERAL WATER QUALITY® COMPREHENSIVE CHEMICAL ANALYSIS OF THE WEST BRANCH OF CANAL CREEK STUDY TABLE A58-4A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Alkalinity (CaCO ₃)	310.1	1.0	0?	58.6	31.0
Ammonia Nitrogen (N)	350.3	0.01	0.014	0.203	0.071
Bromide	320.1	0.2	<0.2	<0.2	<0.2
Chloride (C1)	325.3	1.0	74	165	27.0
Cyanide (Cn)	335.2	0.002	<0.006	<0.00	<0.00
Fluoride (F)	340.2	0.01	0.241	0.127	0.778
Hardness (CaCO ₃)	AA	1	61.2	111	62.6
pH (electrometric)	150.1	0.01	3.62	6.12	7.15
Nitrate (N)	ISE	0.01	1.59	0.696	2.64
Nitrite (N)	354.1	0.001	<0.002	0.025	900.0
Phosphate (P)	365.3	0.1	1.32	0.148	0.312
Specific Conductance @ 25 °C	120.1	1.0	441	099	216
Sulfate (SO_4)	375.3	1.0	92.0	63.2	36.0
Sulfide (H ₂ S)	9030	0.002	<0.002	<0.002	<0.002
Total Organic Carbon	415.1	2.0	<2.0	5.5	<2.0
Total Suspended Solids	160.2	1.0	<1.0	16.5	1.1

All results expressed as mg/L except for specific conductance and pH which are expressed as μ mhos/cm and standard units, respectively.

TABLE A58-4A. (CONTINUED) - METALS⁸

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
(L K) [K	7 000	5	1200	7 2 6	4 00
ATUILLIUM (AL)	•	7	7/30	7	•
Antimony (Sb)	204.2	20	<50	<50	<50
Arsenic (As)	200.7	3.2	<3.2	<3.2	<3.2
Beryllium (Be)	200.7	П	1	۲>	7
Boron	200.7	50	55.4	132	91
Cadmium (Cd)	200.7	Ŋ	<5	<5	<5
Calcium (Ca)	200.7	32.6	16400	22700	17600
Chromium (Cr)	200.7	10	<10	<10	<10
Cobalt	200.7	10	43.8	<10	<10
Copper (Cu)	200.7	10	•	<10	<10
Iron	200.7	10	17.7	1940	48.6
Lead (Pb)	200.7	20	<50	<50	<50
Magnesium (Mg)	200.7	53	5760	15400	5320
	200.7	1	670	543	2.6
Mercury (Hg)	245.1	0.2	<0.2	<0.2	<0.2
Molybdenum (Mo)	200.7	30	<30	<30	<30
Nickel (Ni)	200.7	Ŋ	26.7	10.2	<5
Potassium (K)	200.7	50	2330	4570	2100
Selenium (Se)	270.2	11.1	<50		
		20		<50	<50
Silver (Ag)	200.7	0.4	<0.4	<0.4	<0.4
Sodium (Na)	200.7	20	58400	93200	19500
Thallium	200.7	20	<50	<50	<50
Tin (Sn)	200.7	7.6	<10		
		10		<10	<10
Zinc (Zn)	200.7	10	68.6	78.8	193

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS® TABLE A58-4A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C	100% APG-EA
Benzene	8021	0.5	ND	ND	ND
Bromobenzene	8021	0.5	ND	ND	ND
Bromochloromethane	8021	0.5	113.4	55.0	3.7
Bromodichloromethane	8021	0.5	QN	ND	ND
Bromoform	8021	0.5	ND	ND	ND
Bromomethane	8021	0.5	ND	ND	ND
n-Butylbenzene	8021	0.5	ND	ND	ND
s-Butylbenzene	8021	0.5	ND	ND	ND
t-Butylbenzene	8021	0.5	ND	ND	ND
Carbon Tetrachloride	8021	0.5	41.2	37.0	ND
Chlorobenzene	8021	0.5	ND	ND	ND
Chlorodibromomethane	8021	0.5	ND	ND	ND
Chloroethane	8021	0.5	ND	ND	ND
Chloroform	8021	0.5	62.4	16.0	1.9
Chloromethane	8021	0.5	ND	ND	ND
2-Chlorotoluene	8021	0.5	ND	ND	ND
4-Chlorotoluene	8021	0.5	ND	ND	ND
1,2-Dibromo-3-chloropropane	8021	0.5	ND	ND	ND
1,2-Dibromoethane	8021	0.5	ND	ND	ND
Dibromomethane	8021	0.5	ND	ND	ND
1,2-Dichlorobenzene	8021	0.5	ND	ND	ND
1,3-Dichlorobenzene	8021	0.5	ND	ND	ND
1,4-Dichlorobenzene	8021	0.5	ND	ND	ND
Dichlorodifluoromethane	8021	1.0	ND	ND	ND
1,1-Dichloroethane	8021	0.5	ND	ND	ND
1,2-Dichloroethane	8021	0.5	3.6	0.7	ND
1,1-Dichloroethene	8021	0.5	ND	ND	ND

All results expressed as $\mu g/L$.

- PRIORITY POLLUTANT VOLATILE ORGANICS CON'Tª (CONTINUED) TABLE A58-4A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
cis-1,2-Dichloroethene	8021	0.5	2.9	1.7	ND
1,1-Dichloropropene	8021	0.5	ND	ND	ND
cis-1,3-Dichloropropene	8021	0.5	ND	ND	ND
trans-1,3-Dichloropropene	8021	0.5	ND	ND	ND
Ethylbenzene	8021	0.5	ND	ND	ND
Hexachlorobutadiene	8021	0.5	ND	ND	ND
Isopropylbenzene	8021	0.5	ND	ND	ND
p-Isopropyltoluene	8021	0.5	ND	ND	ND
Methylene chloride	8021	0.5	ND	ND	ND
Naphthalene	8021	0.5	ND	ND	ND
n-Propylbenzene	8021	0.5	ND	ND	ND
Styrene	8021	0.5	ND	ND	ND
1,1,1,2-Tetrachloroethane	8021	0.5	ND	ND	ND
1,1,2,2-Tetrachloroethane	8021	0.5	72.5	9.5	ND
Tetrachloroethene	8021	0.5	5.7	6.5	ND
Toluene	8021	0.5	ND	ND	ND
1,2,3-Trichlorobenzene	8021	0.5	ND	ND	ND
1,2,4-Trichlorobenzene	8021	0.5	ND	ND	ND
1,1,1-Trichloroethane	8021	0.5	ND	ND	ND
1,1,2-Trichloroethane	8021	0.5	0.7	ND	QN
Trichloroethene	8021	0.5	98.8	4.1	ND
Trichlorofluoromethane	8021	0.5	ND	ND	ND
1,2,3-Trichloropropane	8021	0.5	ND	ND	ND
1,2,4-Trimethylbenzene	8021	0.5	ND	ND	ND
1,3,5-Trimethylbenzene	8021	0.5	ND	ND	ND
Vinyl Chloride	8021	0.5	ND	ND	QN
o,m,p-Xylenes	8021	0.5	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS^a TABLE A58-4A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Bis-(2-chloroethoxy) Methane	8270	10.0	ND	ND	ND
Bis-(2-chloroethyl) Ether	8270	10.0	ND	ND	ND
Bis-(2-chloroisopropyl) Ether	8270	10.0	ND	ND	ND
Bis-(2-ethylhexyl) Phthalate	8270	10.0	ND	ND	ND
4-Bromophenyl Phenyl Ether	8270	10.0	ND	ND	ND
Butyl Benzyl Phthalate	8270	10.0	ND	ND	ND
2-Chloronapthalene	8270	10.0	ND	ND	ND
4-Chlorophenyl Phenyl Ether	8270	10.0	ND	ND	ND
Chrysene	8270	10.0	ND	ND	ND
Dibenzo (a,h) Anthracene	8270	10.0	ND	ND	ND
Acenaphthylene	8270	10.0	ND	ND	ND
1,2-Dichlorobenzene	8270	10.0	ND	QN	ND
1,3-Dichlorobenzene	8270	10.0	ND	ND	ND
1,4-Dichlorobenzene	8270	10.0	ND	ND	ND
3,3'-Dichlorobenzidine	8270	20.0	ND	ND	ND
Diethyl Phthalate	8270	10.0	ND	ND	ND
Dimethyl Phthalate	8270	10.0	ND	ND	ND
Di-n-Butyl Phthalate	8270	10.0	ND	ON	ND
2,4-Dinitrotoluene	8270	10.0	ND	ND	ND
2,6-Dinitrotoluene	8270	10.0	NO	ND	ND
Di-n-Octyl Phthalate	8270	10.0	ND	ND	ND
Fluoranthene	8270	10.0	ND	ON	ND
Fluorene	8270	10.0	ND	ND	ND
Hexachlorobenzene	8270	10.0	NO	ON	ND
Hexachlorobutadiene	8270	10.0	ND	ND	ND
Hexachlorocyclopentadiene	8270	10.0	ND	ND	ND
Hexachloroethane	8270	10.0	ND	QN	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS CON'Tª TABLE A58-4A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Indeno[1,2,3-cd]pyrene	8270	10.0	ND	ND	ND
Isophorone	8270	10.0	ND	ND	ND
Naphthalene	8270	10.0	ND	QN	ND
Anthracene	8270	10.0	ND	ND	ND
Nitrobenzene	8270	10.0	ND	ND	ND
N-Nitroso-di-n-propylamine	8270	10.0	ND	ND	ND
N-Nitrosodiphenylamine	8270	10.0	ND	ND	ND
Phenanthrene	8270	10.0	ND	ND	ND
Pyrene	8270	10.0	ND	ND	ND
1,2,4-Trichlorobenzene	8270	10.0	ND	ND	ND
Benzo(a)anthracene	8270	10.0	ND	ON	QN
Benzo(a)pyrene	8270	10.0	ND	ND	ND
Benzo(b)fluoranthene	8270	10.0	ND	ND	ND
Benzo(g,h,i)perylene	8270	10.0	ND	ND	ND
Benzo(k)fluoranthene	8270	10.0	ND	QN	ND
Benzidine	8270	10.0	ND	ND	ND
1,2-Diphenylhydrazine	8270	20.0	ND	ND	ND
N-Nitrosodimethylamine	8270	20.0	ND	ON	ND
Acenaphthene	8270	10.0	ND	ON	ND
3,4-Benzo-fluoranthene	8270	10.0	ND	QN	ND
4-Chloroaniline	8270	20.0	QN	QN	ND
2-Methylnaphthalene	8270	10.0	ND	QN	ND
2-Nitroaniline	8270	50.0	ND	QN	ND
4-Nitroaniline	8270	20.0	ND	QN	ND
Dibenzofuran	8270	10.0	ND	ND	QN

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT ACID EXTRACTABLES® TABLE A58-4A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Phenol	8270	10.0	ND	ND	ND
2,4,6-Trichlorophenol	8270	10.0	ND	QN	ND
2-Chlorophenol	8270	10.0	ND	ND	ND
2,4-Dichlorophenol	8270	10.0	ND	ND	ND
2,4-Dimethylphenol	8270	10.0	ND	ND	ND
4,6-Dinitro-o-cresol	8270	50.0	ND	QN	ND
2,4-Dinitrophenol	8270	50.0	ND	ND	ND
2-Nitrophenol	8270	10.0	ON	QN	ND
4-Nitrophenol	8270	50.0	ND	ND	ND
p-Chloro-m-cresol	8270	20.0	ΩN	ND	ND
Pentachlorophenol	8270	50.0	NO	ND	ND
p-Cresol	8270	10.0	ND	ND	ND
o-Cresol	8270	10.0	ND	ND	ND
2,4,5-Trichlorophenol	8270	10.0	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - ORGANOPHOSPHORUS PESTICIDES^a TABLE A58-4A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Azinphos-methyl	8140	0.20	ND	ND	ND
Bolstar (Sulprofos)	8140	0.14	ND	ND	ND
Coumaphos	8140	0.40	ND	ND	ND
Demeton, -0, -S	8140	0.24	ND	ND	ND
Diazinon	8140	0.40	ND	ND	ND
Dichlorvos	8140	1.60	ND	ND	ND
Dimethoate	8140	0.52	ND	ND	ND
Disulfoton	8140	0.14	ND	ND	ND
EPN	8140	0.08	ND	QN	ND
Ethoprop	8140	0.40	ND	ND	ND
Fensul fothion	8140	0.16	ND	ND	ND
Fenthion	8140	0.16	ND	ND	ND
Malathion	8140	0.22	ND	QN	ND
Merphos	8140	0.40	ND	ND	ND
Mevinphos	8140	1.00	ND	ND	ND
Naled	8140	1.00	ND	ND	ND
Parathion	8140	0.24	ND	ND	QN
Phorate	8140	0.08	ND	QN	ND
Ronnel	8140	0.14	ND	ND	ND
Sulfotep	8140	0.14	ND	ND	ND
TEPP	8140	1.60	ND	ND	ND
Tetrachlorovinphos	8140	1.60	ND	ND	ND
Tokuthion	8140	0.14	ND	ND	ND
Trichloronate	8140	1.60	QN	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - CHLORINATED PESTICIDES AND HERBICIDES⁸ TABLE A58-4A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C	100% APG-EA
Pesticides:					
Aldrin	8080	0.034	NO	ND	ND
Alpha-BHC	8080		ND	ND	ND
Beta-BHC	8080	0.023	ND	ND	ND
Delta-BHC	8080	•	ND	ND	ND
Gamma-BHC (Lindane)	8080	0.025	ND	ND	ND
Chlordane	8080	0.037	ND	NO	ND
4,4'-DDD	8080	0.050	ND	ND	ND
4,4'-DDE	8080	0.058	ND	ON	ND
4,4'-DDT	8080	0.081	ND	ND	ND
Dieldrin	8080	0.044	ND	ND	ND
Alpha-Endosulfan	8080	0.030	ND	QN	ND
Beta-Endosulfan	8080	0.040	ND	QN	ND
Endosulfan sulfate	8080	0.0072	ND	QN	ND
Endrin	8080	0.0072	ND	QN	ND
Endrin Aldehyde	8080	0.0032	ND	QN	ND
Heptachlor	8080	0.0040	ND	ND	ND
Heptachlor Epoxide	8080	0.0042	ND	ND	ND
Methoxychlor	8080	0.0500	ND	ON	ND
Chlorpyrifos	8080	0.0044	ND	QN	ND
Toxaphene	8080	0.0114	ND	ND	QN
Malathion	8080	0.1100	ND	ND	ND
Parathion	8080	0.1200	ND	ND	ND
Dursban	8080	0.0044	ND	ND	ND
Herbicides:					
2,4-D	8150	1.5	ND	ND	ND
2,4,5-TP	8150	•	QN	QN	QN

All results expressed as $\mu g/L$.

COMPREHENSIVE CHEMICAL ANALYSIS OF THE WEST BRANCH OF CANAL CREEK STUDY CHRONIC HISTOPATHOLOGY GROUNDWATER EXPOSURE AQUARIA DILUTED WITH APG-EA TAP WATER (TEST NO. 4) - GENERAL WATER QUALITY® TABLE A58-4B.

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.
Alkalinity (CaCO ₁)	310.1	1.0	22.6	29.0	30.6
Ammonia Nitrogen (N)	350.3	0.01	0.069	0.047	0.050
Bromide	320.1	0.2	<0.2	<0.2	<0.2
Chloride (C1)	325.3	1.0	39.0	28.0	28.0
Cyanide (Cn)	335.2	0.002	<0.006	<0.006	<0.006
Fluoride (F)	340.2	0.01	0.621	0.723	0.785
Hardness (CaCO ₁)	AA	f	65.9	62.0	62.8
pH (electrometric)	150.1	0.01	5.62	6.98	7.12
Nitrate (N)	ISE	0.01	2.50	2.70	2.73
Nitrite (N)	354.1	0.001	<0.002	0.002	0.019
Phosphate (P)	365.3	0.1	0.436	0.279	0.304
Specific Conductance 0 25 °C	120.1	1.0	272	222	214
Sulfate (SO ₄)	375.3	1.0	51.2	36.8	38.0
Sulfide (H,S)	9030	0.002	<0.002	<0.002	<0.002
Total Organic Carbon	415.1	2.0	<2.0	<2.0	<2.0
Total Suspended Solids	160.2	1.0	1.2	2.7	10.6?

All results expressed as mg/L except for specific conductance and pH which are expressed as μ mhos/cm and standard units, respectively. ø

TABLE A58-4B. (CONTINUED) - METALS⁸

Analyte	EPA	Detection	25%	% Z	1%
	meriloa	TTIMT CS	• • •	.w.p	G.W.
Aluminum (A1)	200.7	10	489	148	84.2
Antimony (Sb)	204.2	20	<50	<50	<50
Arsenic (As)	200.7	3.2	<3.2	<3.2	<3.2
Beryllium (Be)	200.7	Н	<1	^1	\
Boron	200.7	50	148	67.9	<50
Cadmium (Cd)	200.7	S.	<5	< 5	<5
Calcium (Ca)	200.7	32.6	17600	17400	17700
Chromium (Cr)	200.7	10	<10	<10	<10
Cobalt	200.7	10	<10	<10	<10
Copper (Cu)	200.7	10	<10	<10	42.7
Iron	200.7	10	11.1	38.4	26.2
Lead (Pb)	200.7	20	<50	<50	
		14.5			<50
Magnesium (Mg)	200.7	29	5400	5290	5290
Manganese (Mn)	200.7	П	172	34.2	8.6
Mercury (Hg)	245.1	0.2	<0.2	<0.2	<0.2
Molybdenum (Mo)	200.7	30	<30	<30	<30
Nickel (Ni)	200.7	വ	8.9	9.7	78.03
Potassium (K)	200.7	20	2080	2020	2080
Selenium (Se)	270.2	20	<50	<50	
	200.7	20			<50
Silver (Ag)	200.7	0.4	<0.4	<0.4	<0.4
Sodium (Na)	200.7	20	29300	20700	20200
Thallium	200.7	20	<50	<50	<50
Tin (Sn)	200.7	7.6	<10		<1005
		10		<10	
Zinc (Zn)	200.7	10	156	178	181

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS® TABLE A58-4B.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Benzene	8021	0.5	ND	ND	ND
Bromobenzene	8021	0.5	ND	ND	ND
Bromochloromethane	8021	0.5	19.7	5.7	2.9
Bromodichloromethane	8021	0.5	ND	ND	ND
Bromoform	8021	0.5	ND	ND	ND
Bromomethane	8021	0.5	ND	ND	ND
n-Butylbenzene	8021	0.5	ND	ND	ND
s-Butylbenzene	8021	0.5	ND	ND	ND
t-Butylbenzene	8021	0.5	ND	ND	ND
Carbon Tetrachloride	8021	0.5	7.8	2.4	ND
Chlorobenzene	8021	0.5	ND	ND	ND
Chlorodibromomethane	8021	0.5	ND	ND	ND
Chloroethane	8021	0.5	ND	ND	ND
Chloroform	8021	0.5	10.7	3.0	1.5
Chloromethane	8021	0.5	ND	QN	ON
2-Chlorotoluene	8021	0.5	ND	ND	ND
4-Chlorotoluene	8021	0.5	ND	ND	ND
1,2-Dibromo-3-chloropropane	8021	0.5	ND	ND	ND
1,2-Dibromoethane	8021	0.5	ND	NO	ND
Dibromomethane	8021	0.5	ND	ND	ON
1,2-Dichlorobenzene	8021	0.5	ND	ND	QN
1,3-Dichlorobenzene	8021	0.5	ND	ND	ND
1,4-Dichlorobenzene	8021	0.5	ND	ND	ND
Dichlorodifluoromethane	8021	1.0	ND	ND	ND
1,1-Dichloroethane	8021	0.5	ND	ND	ND
1,2-Dichloroethane	8021	0.5	ND	ND	ND
1,1-Dichloroethene	8021	0.5	ND	ND	ND

All results expressed as $\mu g/L$.

TABLE A58-4B. (CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS CON'Tª

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	1% G.W.
cis-1,2-Dichloroethene	8021	0.5	ND	ND	ND
1,1-Dichloropropene	8021	0.5	ND	ND	ND
cis-1,3-Dichloropropene	8021	0.5	ND	ND	ND
trans-1,3-Dichloropropene	8021	0.5	ND	ND	ND
Ethylbenzene	8021	0.5	ND	ND	ND
Hexachlorobutadiene	8021	0.5	ND	ND	ND
Isopropylbenzene	8021	0.5	ND	ND	ND
p-Isopropyltoluene	8021	0.5	ND	ND	ND
Methylene chloride	8021	0.5	ND	ND	ND
Naphthalene	8021	0.5	ND	ND	ND
n-Propylbenzene	8021	0.5	ND	ND	ND
Styrene	8021	0.5	NO	ND	ND
1,1,1,2-Tetrachloroethane	8021	0.5	ND	ND	ND
1,1,2,2-Tetrachloroethane	8021	0.5	17.2	3.9	ND
Tetrachloroethene	8021	0.5	ND	ON	ND
Toluene	8021	0.5	NO	ON	ND
1,2,3-Trichlorobenzene	8021	0.5	ND	NO	ND
1,2,4-Trichlorobenzene	8021	0.5	ND	ND	ND
1,1,1-Trichloroethane	8021	0.5	ND	ON	ND
1,1,2-Trichloroethane	8021	0.5	ND	ND	ND
Trichloroethene	8021	0.5	14.7	2.6	ND
Trichlorofluoromethane	8021	0.5	NO	ND	ND
1,2,3-Trichloropropane	8021	0.5	ND	ND	ND
1,2,4-Trimethylbenzene	8021	0.5	ND	ND	ND
1,3,5-Trimethylbenzene	8021	0.5	ND	ND	QN
Vinyl Chloride	8021	0.5	ND	ND	ND
o,m,p-Xylenes	8021	0.5	QN	NO	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS® TABLE A58-4B.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.₩.	18 G.W.
Bis-(2-chloroethoxy) Methane	8270	10.0	QN	ND	ND
Bis-(2-chloroethyl) Ether	8270	10.0	ND	ND	ND
Bis-(2-chloroisopropyl) Ether	8270	10.0	ND	ND	ND
Bis-(2-ethylhexyl) Phthalate	8270	10.0	ND	ND	ND
4-Bromophenyl Phenyl Ether	8270	10.0	ND	ND	ND
Butyl Benzyl Phthalate	8270	10.0	ND	ND	ND
2-Chloronapthalene	8270	10.0	ND	ND	ND
4-Chlorophenyl Phenyl Ether	8270	10.0	ND	ND	ND
Chrysene	8270	10.0	ND	ND	ND
Dibenzo (a,h) Anthracene	8270	10.0	ND	ND	ND
Acenaphthylene	8270	10.0	ND	ND	ND
1,2-Dichlorobenzene	8270	10.0	ND	ND	ND
1,3-Dichlorobenzene	8270	10.0	ND	QN	ND
1,4-Dichlorobenzene	8270	10.0	ND	ND	ND
3,3'-Dichlorobenzidine	8270	20.0	ND	QN	ND
Diethyl Phthalate	8270	10.0	ND	ND	ON
Dimethyl Phthalate	8270	10.0	ND	ND	ND
Di-n-Butyl Phthalate	8270	10.0	ND	ND	QN
2,4-Dinitrotoluene	8270	10.0	ND	ND	ND
2,6-Dinitrotoluene	8270	10.0	ND	ND	ND
Di-n-Octyl Phthalate	8270	10.0	ND	ND	ND
Fluoranthene	8270	10.0	ND	ND	QN
Fluorene	8270	10.0	ON	ND	ND
Hexachlorobenzene	8270	10.0	ND	ND	ND
Hexachlorobutadiene	8270	10.0	ND	ND	ND
Hexachlorocyclopentadiene	8270	10.0	ND	ND	ND
Hexachloroethane	8270	10.0	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS CON'Tª TABLE A58-4B.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Indeno[1,2,3-cd]pyrene	8270	10.0	ND	ND	ND
Isophorone	8270	10.0	ND	ND	ND
Naphthalene	8270	10.0	ND	ND	ND
Anthracene	8270	10.0	ND	ND	ND
Nitrobenzene	8270	10.0	ND	ND	ND
N-Nitroso-di-n-propylamine	8270	10.0	ND	ND	ND
N-Nitrosodiphenylamine	8270	10.0	QN	ND	ND
Phenanthrene	8270	10.0	ND	ND	ND
Pyrene	8270	10.0	ND	ND	ND
1,2,4-Trichlorobenzene	8270	10.0	ND	ND	ND
Benzo(a)anthracene	8270	10.0	ND	ND	ND
Benzo(a)pyrene	8270	10.0	ND	ND	ND
Benzo(b)fluoranthene	8270	10.0	ND	ND	ND
Benzo(g,h,i)perylene	8270	10.0	ND	ND	ND
Benzo(k)fluoranthene	8270	10.0	ND	ND	ND
Benzidine	8270	10.0	ND	ND	ND
1,2-Diphenylhydrazine	8270	20.0	ND	ND	ND
N-Nitrosodimethylamine	8270	20.0	ND	ND	ND
Acenaphthene	8270	10.0	ND	ND	ND
3,4-Benzo-fluoranthene	8270	10.0	ND	ND	ND
4-Chloroaniline	8270	20.0	ND	ON	ND
2-Methylnaphthalene	8270	10.0	ND	ND	ND
2-Nitroaniline	8270	50.0	ND	ND	ND
4-Nitroaniline	8270	20.0	ND	ND	ND
Dibenzofuran	8270	10.0	ND	ND	ND
Z-Nitroaniline 4-Nitroaniline Dibenzofuran	8270 8270 8270	50.0 20.0 10.0	ND ND ND	ON ON ON	

 $^{\rm a}$ All results expressed as $\mu {\rm g/L}.$

(CONTINUED) - PRIORITY POLLUTANT ACID EXTRACTABLES® TABLE A58-4B.

	Method	Detection Limits	258 G.W.	G.W.	L& G.W.
Phenol 8270	0,	10.0	ND	ND	ND
2,4,6-Trichlorophenol 8270	0,	10.0	ND	ND	ND
2-Chlorophenol 8270	0,	10.0	ND	ND	ND
2,4-Dichlorophenol 8270	0,	10.0	ND	ND	ND
2,4-Dimethylphenol 8270	0,	10.0	ND	ND	ND
ol	0,	50.0	ND	ND	ND
2,4-Dinitrophenol 8270	0/	50.0	ND	ND	ND
	0,	10.0	ND	ND	ND
4-Nitrophenol 8270	0,	50.0	ND	ND	ND
p-Chloro-m-cresol 8270	0,	20.0	ND	ND	ND
Pentachlorophenol 8270	0/	50.0	ND	ND	ND
p-Cresol 8270	0,	10.0	ND	ND	ND
o-Cresol 8270	0,	10.0	ND	ND	ND
2,4,5-Trichlorophenol	0,	10.0	ND	QN	ND

All results expressed as $\mu g/L$.

(CONTINUED) - ORGANOPHOSPHORUS PESTICIDES® TABLE A58-4B.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Azinphos-methyl	8140	0.20	ND	ND	ND
Bolstar (Sulprofos)	8140	0.14	ND	ND	ND
Coumaphos	8140	0.40	ND	ND	ND
Demeton, -0, -S	8140	0.24	ND	ND	ND
Diazinon	8140	0.40	ND	NO	ND
Dichlorvos	8140	1.60	ND	ND	ND
Dimethoate	8140	0.52	ND	ND	ND
Disulfoton	8140	0.14	ND	ON	ND
EPN	8140	0.08	ND	ND	ND
Ethoprop	8140	0.40	ND	ND	ND
Fensulfothion	8140	0.16	ND	ND	ND
Fenthion	8140	0.16	ND	ND	ND
Malathion	8140	0.22	ND	ND	ND
Merphos	8140	0.40	ND	ND	ND
Mevinphos	8140	1.00	ND	ND	ND
Naled	8140	1.00	ND	ND	ND
Parathion	8140	0.24	ND	ND	ND
Phorate	8140	0.08	ND	ND	ND
Ronnel	8140	0.14	ND	ND	ND
Sulfotep	8140	0.14	ND	ND	ND
TEPP	8140	1.60	ND	ND	ND
Tetrachlorovinphos	8140	1.60	ND	ND	ND
Tokuthion	8140	0.14	ON	ND	ND
Trichloronate	8140	1.60	ΩN	QN	ND

All results expressed as $\mu g/L$.

(CONTINUED) - CHLORINATED PESTICIDES AND HERBICIDES TABLE A58-4B.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Pesticides:					
Aldrin	8080	0.034	ON	ND	ND
Alpha-BHC	8080	0.035	ND	ND	ND
Beta-BHC	8080	0.023	ND	ND	ND
Delta-BHC	8080	0.024	ND	ND	ND
Gamma-BHC (Lindane)	8080	0.025	ND	ND	ND
Chlordane	8080	0.037	ND	ND	ND
4,4'-DDD	8080	0.050	ND	ND	ND
4,4'-DDE	8080	0.058	ND	ND	ND
4,4'-DDT	8080	0.081	ND	ND	ND
Dieldrin	8080	0.044	ND	ND	ND
Alpha-Endosulfan	8080	0.030	ND	ND	ND
Beta-Endosulfan	8080	0.040	ND	ND	ND
Endosulfan sulfate	8080	0.0072	ND	ND	ND
Endrin	8080	0.0072	ND	ND	ND
Endrin Aldehyde	8080	0.0032	ND	ND	ND
Heptachlor	8080	0.0040	ND	ND	ND
Heptachlor Epoxide	8080	0.0042	ND	ND	ND
Methoxychlor	8080	0.0500	ND	ND	ND
Chlorpyrifos	8080	0.0044	ND	ND	ND
Toxaphene	8080	0.0114	ND	ND	ND
Malathion	8080	0.1100	ND	ND	ND
Parathion	8080	0.1200	ND	ND	ND
Dursban	8080	0.0044	ND	ND	ND
Herbicides:					
2,4-D	8150	1.5	ND	ND	ND
2,4,5-TP	8150	•	N Q	ΩN	ND

All results expressed as $\mu g/L$.

CHRONIC HISTOPATHOLOGY GROUNDWATER EXPOSURE AQUARIA FORMERLY DILUTED WITH COMPREHENSIVE CHEMICAL ANALYSIS OF THE WEST BRANCH OF CANAL CREEK STUDY WEST BRANCH OF CANAL CREEK WATER (TEST NO. 4) a - GENERAL WATER QUALITY^b TABLE A58-4C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Alkalinity (CaCO ₃)	310.1	1.0	22.4	29.0	30.4
Ammonia Nitrogen (N)	350.3	0.01	0.080	0.044	0.060
Bromide	320.1	0.2	<0.2	<0.2	<0.2
Chloride (C1)	325.3	1.0	39	28	28
Cyanide (Cn)	335.2	0.002	<0.006	<0.00	<0.006
Fluoride (F)	340.2	0.01	0.614	0.738	0.779
Hardness (CaCO ₃)	AA	1	60.5	60.7	61.7
pH (electrometric)	150.1	$\overline{0.01}$	6.40	6.94	6.55
Nitrate (N)	ISE	0.01	2.48	2.72	2.75
Nitrite (N)	354.1	0.001	<0.002	<0.002	<0.002
Phosphate (P)	365.3	0.1	0.206	0.247	0.279
Specific Conductance @ 25 °C	120.1	1.0	271	227	226
Sulfate (SO_4)	375.3	1.0	53.2	37.6	35.2
Sulfide (H_2S)	9030	0.002	<0.002	<0.002	<0.002
Total Organic Carbon	415.1	2.0	<2.0	<2.0	2.2
Total Suspended Solids	160.2	1.0	<1.0	<1.0	1.1

The aquaria in this series were diluted with West Branch of Canal Creek water from the APG-EA dechlorinated tap water was used See Section 4.6 for further from February 5, 1995 through the end of the study. beginning of the study to February 5, 1995. explanation.

All results expressed as mg/L except for specific conductance and pH which are expressed as μ mhos/cm and standard units, respectively.

م

TABLE A58-4C. (CONTINUED) - METALS^a

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Aluminum (Al)	200.7	10	482	92.4	125
Antimony (Sb)	204.2	20	<50	<50	<50
Arsenic (As)	200.7	3.2	<3.2	<3.2	<3.2
Beryllium (Be)	200.7	ı	\ 1	7	<1
Boron	200.7	20	68.5	<50	79
Cadmium (Cd)	200.7	S	<5	<5	<5
Calcium (Ca)	200.7	32.6	17000	17200	17600
Chromium (Cr)	200.7	10	<10	<10	<10
Cobalt	200.7	10	14.3	<10	<10
Copper (Cu)	200.7	10	<10	<10	<10
Iron	200.7	10	12.9	21.6	41.3
Lead (Pb)	200.7	20	<50	<50	<50
Magnesium (Mg)	200.7	29	5130	5070	5050
Manganese (Mn)	200.7	г	168	35.4	14.5
Mercury (Hg)	245.1	0.2	<0.2	<0.2	<0.2
Molybdenum (Mo)	200.7	30	<30	<30	<30
Nickel (Ni)	200.7	S	11.1	5.2	6.5
Potassium (K)	200.7	20	2110	1890	2010
Selenium (Se)	270.2	20	<50	<50	<50
Silver (Ag)	200.7	0.4	<0.4	<0.4	<0.4
Sodium (Na)	200.7	20	28700	20600	20100
Thallium	200.7	20	<50	<50	<50
Tin (Sn)	200.7	10	<10	<10	<10
Zinc (Zn)	200.7	10	149	164	191

^a All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS® TABLE A58-4C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Benzene	8021	0.5	ND	ND	ND
Bromobenzene	8021	0.5	ND	ND	ND
Bromochloromethane	8021	0.5	22.5	6.8	3.5
Bromodichloromethane	8021	0.5	ND	ND	ND
Bromoform	8021	0.5	ND	ND	ND
Bromomethane	8021	0.5	ND	ND	ND
n-Butylbenzene	8021	0.5	ND	ND	QN
s-Butylbenzene	8021	0.5	ND	ND	ND
t-Butylbenzene	8021	0.5	ND	NO	QN
Carbon Tetrachloride	8021	0.5	8.6	3.6	ND
Chlorobenzene	8021	0.5	ND	ON	ND
Chlorodibromomethane	8021	0.5	ND	ON	ND
Chloroethane	8021	0.5	ND	ON	ND
Chloroform	8021	0.5	12.5	3.8	2.0
Chloromethane	8021	0.5	NO	ND	ND
2-Chlorotoluene	8021	0.5	ND	ND	ND
4-Chlorotoluene	8021	0.5	ND	ON	ND
1,2-Dibromo-3-chloropropane	8021	0.5	ND	ND	ND
1,2-Dibromoethane	8021	0.5	ND	ON	ND
Dibromomethane	8021	0.5	ND	ND	ND
1,2-Dichlorobenzene	8021	0.5	ND	ND	ND
1,3-Dichlorobenzene	8021	0.5	ND	ND	ND
1,4-Dichlorobenzene	8021	0.5	ND	ON	ND
Dichlorodifluoromethane	8021	1.0	ND	ND	ND
1,1-Dichloroethane	8021	0.5	ND	ND	ND
1,2-Dichloroethane	8021	0.5	ND	ND	ND
1,1-Dichloroethene	8021	0.5	NO	QN	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS CON'Ta TABLE A58-4C.

Analyte	EPA Method	Detection Limits	25% G.W.	5\$ G.W.	18 G.W.
cis-1,2-Dichloroethene	8021	0.5	ND	ND	ND
1,1-Dichloropropene	8021	0.5	ND	ND	ND
cis-1,3-Dichloropropene	8021	0.5	ND	ND	ND
trans-1,3-Dichloropropene	8021	0.5	ND	ND	ND
Ethylbenzene	8021	0.5	ND	ND	ND
Hexachlorobutadiene	8021	0.5	ND	ND	ND
Isopropylbenzene	8021	0.5	ND	ND	ND
p-Isopropyltoluene	8021	0.5	ND	ND	ND
Methylene chloride	8021	0.5	ND	ND	ND
Naphthalene	8021	0.5	ND	ND	ND
n-Propylbenzene	8021	0.5	ND	ND	ND
Styrene	8021	0.5	ND	ND	ND
1,1,1,2-Tetrachloroethane	8021	0.5	ND	ND	ND
1,1,2,2-Tetrachloroethane	8021	0.5	18.2	4.4	0.8
Tetrachloroethene	8021	0.5	0.7	ON	ND
Toluene	8021	0.5	ND	ND	ND
1,2,3-Trichlorobenzene	8021	0.5	ND	ND	ND
1,2,4-Trichlorobenzene	8021	0.5	ND	ND	ND
1,1,1-Trichloroethane	8021	0.5	ND	ND	ND
1,1,2-Trichloroethane	8021	0.5	ND	ND	ND
Trichloroethene	8021	0.5	16.7	4.0	QN
Trichlorofluoromethane	8021	0.5	ND	ND	ND
1,2,3-Trichloropropane	8021	0.5	ND	ND	ND
1,2,4-Trimethylbenzene	8021	0.5	ND	ND	ND
1,3,5-Trimethylbenzene	8021	0.5	ND	ON	ND
Vinyl Chloride	8021	0.5	ND	ND	ND
o,m,p-Xylenes	8021	0.5	ND	QN	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS⁸ TABLE A58-4C.

Analyte	EPA Method	Detection Ļimits	25% G.W.	5% G.W.	18 G.W.
Bis-(2-chloroethoxy) Methane	8270	10.0	ND	ND	ND
Bis-(2-chloroethyl) Ether	8270	10.0	ND	ND	ND
Bis-(2-chloroisopropyl) Ether	8270	10.0	ND	ND	ND
Bis-(2-ethylhexyl) Phthalate	8270	10.0	ND	ND	ND
4-Bromophenyl Phenyl Ether	8270	10.0	ND	ND	ND
Butyl Benzyl Phthalate	8270	10.0	ND	ND	ND
2-Chloronapthalene	8270	10.0	ND	ND	ND
4-Chlorophenyl Phenyl Ether	8270	10.0	ND	ND	ND
Chrysene	8270	10.0	ND	ND	ND
Dibenzo (a,h) Anthracene	8270	10.0	ND	ND	ND
Acenaphthylene	8270	10.0	ND	ND	ND
1,2-Dichlorobenzene	8270	10.0	ND	ND	ND
1,3-Dichlorobenzene	8270	10.0	ND	ND	ND
1,4-Dichlorobenzene	8270	10.0	ND	ND	ND
3,3'-Dichlorobenzidine	8270	20.0	ND	ND	ND
Diethyl Phthalate	8270	10.0	ND	ND	ND
Dimethyl Phthalate	8270	10.0	ND	QN	NO
Di-n-Butyl Phthalate	8270	10.0	ND	ND	ND
2,4-Dinitrotoluene	8270	10.0	ND	ND	ND
2,6-Dinitrotoluene	8270	10.0	ND	QN	ND
Di-n-Octyl Phthalate	8270	10.0	ND	ND	ND
Fluoranthene	8270	10.0	ND	ND	ND
Fluorene	8270	10.0	ND	ND	ND
Hexachlorobenzene	8270	10.0	ND	ND	ND
Hexachlorobutadiene	8270	10.0	ND	QN	ND
Hexachlorocyclopentadiene	8270	10.0	ND	ND	QN
Hexachloroethane	8270	10.0	QN	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS CON'TB TABLE A58-4C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Indeno[1,2,3-cd]pyrene	8270	10.0	ND	ND	ND
Isophorone	8270	10.0	ND	ND	ND
Naphthalene	8270	10.0	ND	ND	ND
Anthracene	8270	10.0	ND	ND	QN
Nitrobenzene	8270	10.0	ND	ND	ND
N-Nitroso-di-n-propylamine	8270	10.0	ND	ND	ND
N-Nitrosodiphenylamine	8270	10.0	ND	ND	ND
Phenanthrene	8270	10.0	ON	ND	ND
Pyrene	8270	10.0	ND	ND	ND
1,2,4-Trichlorobenzene	8270	10.0	ND	ND	ND
Benzo(a)anthracene	8270	10.0	ND	ND	ND
Benzo(a)pyrene	8270	10.0	ON	ND	ND
Benzo(b)fluoranthene	8270	10.0	ND	ND	ND
Benzo(g,h,i)perylene	8270	10.0	ND	ND	ND
Benzo(k)fluoranthene	8270	10.0	ND	ND	ND
Benzidine	8270	10.0	ND	ND	ND
1,2-Diphenylhydrazine	8270	20.0	ON	ND	ND
N-Nitrosodimethylamine	8270	20.0	ND	ND	ND
Acenaphthene	8270	10.0	ND	NO	ND
3,4-Benzo-fluoranthene	8270	10.0	ND	ND	ND
4-Chloroaniline	8270	20.0	ND	ON	ND
2-Methylnaphthalene	8270	10.0	ND	ND	ND
2-Nitroaniline	8270	50.0	ND	ND	ND
4-Nitroaniline	8270	20.0	ND	ND	ND
Dibenzofuran	8270	10.0	QN	ND	QN

All results expressed as $\mu g/L$.

TABLE A58-4C. (CONTINUED) - PRIORITY POLLUTANT ACID EXTRACTABLES®

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Phenol	8270	10.0	ND	QN	ND
2,4,6-Trichlorophenol	8270	10.0	ND	ND	ON
2-Chlorophenol	8270	10.0	ND	ND	ND
2,4-Dichlorophenol	8270	10.0	ND	ND	ND
2,4-Dimethylphenol	8270	10.0	ND	ND	QN
4,6-Dinitro-o-cresol	8270	50.0	ND	ND	ND
2,4-Dinitrophenol	8270	50.0	ND	ND	ND
2-Nitrophenol	8270	10.0	ND	ND	ND
4-Nitrophenol	8270	50.0	ND	ND	ND
p-chloro-m-cresol	8270	20.0	ND	ND	ND
Pentachlorophenol	8270	50.0	ND	ND	ND
p-Cresol	8270	10.0	ND	ND	ND
o-Cresol	8270	10.0	ND	ND	ND
2,4,5-Trichlorophenol	8270	10.0	ND	ND	QN

^a All results expressed as $\mu g/L$.

TABLE A58-4C. (CONTINUED) - ORGANOPHOSPHORUS PESTICIDES^a

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Azinphos-methyl	8140	0.20	ND	ND	ND
Bolstar (Sulprofos)	8140	0.14	ND	ND	ND
Coumaphos	8140	0.40	ND	ND	ND
Demeton, -0, -S	8140	0.24	ON	ND	ND
Diazinon	8140	0.40	ON	ND	ND
Dichlorvos	8140	1.60	ND	ND	ND
Dimethoate	8140	0.52	ND	ND	ND
Disulfoton	8140	0.14	ND	ND	ND
EPN	8140	0.08	ND	ND	ND
Ethoprop	8140	0.40	ND	ND	ND
Fensulfothion	8140	0.16	ND	ND	ND
Fenthion	8140	0.16	ND	ND	ND
Malathion	8140	0.22	ND	ND	ND
Merphos	8140	0.40	ND	ND	ND
Mevinphos	8140	1.00	ND	ND	ND
Naled	8140	1.00	ND	ND	ND
Parathion	8140	0.24	ND	ND	ND
Phorate	8140	0.08	ND	NO	ND
Ronnel	8140	0.14	ND	ND	ND
Sulfotep	8140	0.14	ND	ND	ND
TEPP	8140	1.60	ND	ND	ND
Tetrachlorovinphos	8140	1.60	ND	ND	ND
Tokuthion	8140	0.14	ON	ND	ND
Trichloronate	8140	1.60	ND	QN	ND

All results expressed as $\mu g/L$.

(CONTINUED) - CHLORINATED PESTICIDES AND HERBICIDES⁸ TABLE A58-4C.

The state of the s					
) + 1 C C K	EPA	Detection	25%	5\$	18
Alianyte	Method	Limits	G.W.	G.W.	G.W.
Pesticides:					
Aldrin	8080	0.034	ND	ND	ND
Alpha-BHC	8080	0.035	ND	ND	ND
Beta-BHC	8080	0.023	ND	ND	ND
Delta-BHC	8080	0.024	ND	QN	ND
Gamma-BHC (Lindane)	8080	0.025	ND	ND	ND
Chlordane	8080	0.037	ND	ND	ND
4,4'-DDD	8080	0.050	ND	ND	ND
4,4'-DDE	8080	0.058	ND	ND	ND
4,4'-DDT	8080	0.081	ND	ND	ND
Dieldrin	8080	0.044	ND	ND	ND
Alpha-Endosulfan	8080	0.030	ND	ND	ND
Beta-Endosulfan	8080	0.040	ND	ND	ND
Endosulfan sulfate	8080	0.0072	ND	ND	ND
Endrin	8080	0.0072	ND	ND	ND
Endrin Aldehyde	8080	0.0032	ND	ND	ND
Heptachlor	8080	0.0040	NO	ND	QN
Heptachlor Epoxide	8080	0.0042	ND	ND	ND
Methoxychlor	8080	0.0500	ND	ND	ND
Chlorpyrifos	8080	0.0044	ND	ND	ND
Toxaphene	8080	0.0114	NO	ND	ND
Malathion	8080	0.1100	NO	ND	ND
Parathion	8080	0.1200	ND	ND	ND
Dursban	8080	0.0044	ND	ND	ND
<u>Herbicides:</u>					
2,4-D	8150	1.5	ND	ND	ND
2,4,5-TP	8150	•	ND	ND	ND

All results expressed as $\mu g/L$.

GROUNDWATER (WELL NO. CC-27B), WEST BRANCH OF CANAL CREEK SURFACE WATER, AND APG-EA TAP WATER (TEST NO. 5) - GENERAL WATER QUALITY® COMPREHENSIVE CHEMICAL ANALYSIS OF THE WEST BRANCH OF CANAL CREEK STUDY TABLE A58-5A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Alkalinity (CaCO ₁)	310.1	1.0	4.0	92	80
Ammonia Nitrogen (N)	350.3	0.01	0.049	0.078	0.067
Bromide	320.1	0.2	<0.2	<0.2	<0.2
Chloride (C1)	325.3	1.0	83.5	882	26.4
Cyanide (Cn)	335.2	900.0	<0.006	<0.00	<0.006
Fluoride (F)	340.2	0.01	0.260	0.107	0.797
Hardness (CaCO ₃)	AA	I	66.4	282	52.9
pH (electrometric)	150.1	0.01	4.30	7.72	7.00
Nitrate (N)	ISE	0.01	2.87	1.28	2.32
Nitrite (N)	354.1	0.001	<0.002	0.025	0.008
Phosphate (P)	365.3	0.1	1.11	0.122	1.08
Specific Conductance 0 25 °C	120.1	1.0	439	2005	218
Sulfate (SO _k)	375.3	1.0	119	139	25
Sulfide (H,S)	9030	0.002	<0.002	<0.002	<0.002
Total Organic Carbon	415.1	2.0	<2.0	3.8	<2.0
Total Suspended Solids	160.2	1.0	3.5	20.1	<1.0

All results expressed as mg/L except for specific conductance and pH which are expressed as \$\mm\nos/cm and standard units, respectively.

TABLE A58-5A. (CONTINUED) - METALSª

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Aluminum (Al)	200.7	10	1850	759	102
Antimony (Sb)	204.2	20	<50	<50	<50
Arsenic (As)	206.2	S	<5	< 5	<5
Beryllium (Be)	200.7	0.5	1.8	<0.5	<0.5
Boron	200.7	20	296	402	214
Cadmium (Cd)	200.7	S	<5	<5	<5
Calcium (Ca)	200.7	32.6	17600	31300	14300
Chromium (Cr)	200.7	10	<10	<10	<10
Cobalt	200.7	10	46.1	<10	<10
Copper (Cu)	200.7	10	12.3	<10	<10
Iron	200.7	10	<10	1140	<10
Lead (Pb)	200.7	20	<50	<50	<50
Magnesium (Mg)	200.7	29	6390	58300	4900
Manganese (Mn)	200.7	വ	693	119	<5
Mercury (Hg)	245.1	0.1	<0.1	<0.1	<0.1
Molybdenum (Mo)	200.7	30	<30	34.7	<30
Nickel (Ni)	200.7	വ	24.8	<5	<5
Potassium (K)	200.7	20	2750	21700	2090
Selenium (Se)	270.2	20	<50	<50	<50
Silver (Ag)	272.2	0.5	<0.5	<0.5	<0.5
Sodium (Na)	200.7	20	62600	452000	23600
Thallium	200.7	20	<50	<50	<50
Tin (Sn)	200.7	10	<10	<10	<10
Zinc (Zn)	200.7	10	76.2	119	253

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS^a TABLE A58-5A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C	100% APG-EA
Benzene	8021	0.5	ND	ND	ND
Bromobenzene	8021	0.5	ND	ND	ND
Bromochloromethane	8021	0.5	4.6	ND	ND
Bromodichloromethane	8021	0.5	ND	ND	ND
Bromoform	8021	0.5	ND	ND	ND
Bromomethane	8021	0.5	ND	ND	ND
n-Butylbenzene	8021	0.5	ND	ND	ND
s-Butylbenzene	8021	0.5	ND	ND	ND
t-Butylbenzene	8021	0.5	ND	ND	ND
Carbon Tetrachloride	8021	0.5	43.9	1.9	ND
Chlorobenzene	8021	0.5	ND	ND	ND
Chlorodibromomethane	8021	0.5	ND	ND	ND
Chloroethane	8021	0.5	NO	ND	ND
Chloroform	8021	0.5	63.4	ND	6.6
Chloromethane	8021	0.5	ND	QN	ND
2-Chlorotoluene	8021	0.5	ND	ND	QN
4-Chlorotoluene	8021	0.5	NO	ND	ND
1,2-Dibromo-3-chloropropane	8021	0.5	NO	ND	ND
1,2-Dibromoethane	8021	0.5	NO	ND	ND
Dibromomethane	8021	0.5	ND	ND	ON
1,2-Dichlorobenzene	8021	0.5	ND	ND	ND
1,3-Dichlorobenzene	8021	0.5	ND	ND	ND
1,4-Dichlorobenzene	8021	0.5	NO	ND	ND
Dichlorodifluoromethane	8021	1.0	NO	ND	ND
1,1-Dichloroethane	8021	0.5	ND	ND	ND
1,2-Dichloroethane	8021	0.5	ND	ND	QN
1,1-Dichloroethene	8021	0.5	ND	QN	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS CON'TB TABLE A58-5A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
cis-1,2-Dichloroethene	8021	0.5	3.3	ND	ND
1,1-Dichloropropene	8021	0.5	ND	ND	ND
cis-1,3-Dichloropropene	8021	0.5	ND	ND	ND
trans-1,3-Dichloropropene	8021	0.5	ND	ND	ND
Ethylbenzene	8021	0.5	ND	ND	ND
Hexachlorobutadiene	8021	0.5	ND	ND	ND
Isopropylbenzene	8021	0.5	ND	ND	ND
p-Isopropyltoluene	8021	0.5	ND	ND	ND
Methylene chloride	8021	0.5	ND	ON	ND
Naphthalene	8021	0.5	ND	ND	ND
n-Propylbenzene	8021	0.5	ND	ND	ND
Styrene	8021	0.5	ND	ND	ND
1,1,1,2-Tetrachloroethane	8021	0.5	ND	ND	ND
1,1,2,2-Tetrachloroethane	8021	0.5	75.9	ND	ND
Tetrachloroethene	8021	0.5	6.7	QN	ND
Toluene	8021	0.5	NO	ND	ND
1,2,3-Trichlorobenzene	8021	0.5	ND	ND	ND
1,2,4-Trichlorobenzene	8021	0.5	ND	QN	ND
1,1,1-Trichloroethane	8021	0.5	4.6	ND	ND
1,1,2-Trichloroethane	8021	0.5	0.7	ND	QN
Trichloroethene	8021	0.5	102.0	ON	QN
Trichlorofluoromethane	8021	0.5	ND	ND	ND
1,2,3-Trichloropropane	8021	0.5	ND	ND	ND
1,2,4-Trimethylbenzene	8021	0.5	ND	ON	ND
1,3,5-Trimethylbenzene	8021	0.5	ND	ND	ND
Vinyl Chloride	8021	0.5	QN	QN	ND
o,m,p-Xylenes	8021	0.5	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS⁸ TABLE A58-5A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Bis-(2-chloroethoxy) Methane	8270	10.0	ND	ND	ND
Bis-(2-chloroethyl) Ether	8270	10.0	ND	ND	ND
Bis-(2-chloroisopropyl) Ether	8270	10.0	ND	ND	ND
Bis-(2-ethylhexyl) Phthalate	8270	10.0	ND	ND	ND
4-Bromophenyl Phenyl Ether	8270	10.0	ND	ND	ND
Butyl Benzyl Phthalate	8270	10.0	QN	ND	ND
2-Chloronapthalene	8270	10.0	ND	ND	ND
4-Chlorophenyl Phenyl Ether	8270	10.0	ND	ND	ND
Chrysene	8270	10.0	ND	QN	ND
Dibenzo (a,h) Anthracene	8270	10.0	ND	ND	ND
Acenaphthylene	8270	10.0	ND	ND	ON
1,2-Dichlorobenzene	8270	10.0	ND	ND	ND
1,3-Dichlorobenzene	8270	10.0	ND	ON	ND
1,4-Dichlorobenzene	8270	10.0	ND	ND	ND
3,3'-Dichlorobenzidine	8270	20.0	ND	ND	ND
Diethyl Phthalate	8270	10.0	ND	ON	QN
Dimethyl Phthalate	8270	10.0	ND	QN	ND
Di-n-Butyl Phthalate	8270	10.0	ND	ND	ND
2,4-Dinitrotoluene	8270	10.0	ND	ND	ND
2,6-Dinitrotoluene	8270	10.0	ND	ND	ND
Di-n-Octyl Phthalate	8270	10.0	ND	ND	ND
Fluoranthene	8270	10.0	ND	ND	ND
Fluorene	8270	10.0	ND	ND	ND
Hexachlorobenzene	8270	10.0	ND	ND	ND
Hexachlorobutadiene	8270	10.0	ND	ND	ND
Hexachlorocyclopentadiene	8270	10.0	ND	ND	ΩN
Hexachloroethane	8270	10.0	QN	ND	ND

All results expressed as $\mu g/L$.

TABLE A58-5A. (CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS CON'Tª

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA	
Indeno[1,2,3-cd]pyrene	8270	10.0	ND	ND	ND	
Isophorone	8270	10.0	ND	ND	ND	
Naphthalene	8270	10.0	ND	ND	ND	
Anthracene	8270	10.0	ND	ND	ND	
Nitrobenzene	8270	10.0	ND	ND	ND	
N-Nitroso-di-n-propylamine	8270	10.0	ND	ND	ND	
N-Nitrosodiphenylamine	8270	10.0	ND	ND	ND	
Phenanthrene	8270	10.0	ND	ND	ND	
Pyrene	8270	10.0	ND	ON	ND	
1,2,4-Trichlorobenzene	8270	10.0	ND	ND	ND	
Benzo(a)anthracene	8270	10.0	ND	ND	ND	
Benzo(a)pyrene	8270	10.0	ND	ND	ND	
Benzo(b)fluoranthene	8270	10.0	ND	QN	ND	
Benzo(g,h,i)perylene	8270	10.0	ND	ND	ND	
Benzo(k)fluoranthene	8270	10.0	ND	ND	ND	
Benzidine	8270	10.0	ND	ND	ND	
1,2-Diphenylhydrazine	8270	20.0	ND	ND	ND	
N-Nitrosodimethylamine	8270	20.0	ON	ND	ND	
Acenaphthene	8270	10.0	ND	ND	ND	
3,4-Benzo-fluoranthene	8270	10.0	ND	QN	ND	
4-Chloroaniline	8270	20.0	ND	ND	ND	
2-Methylnaphthalene	8270	10.0	ND	QN	ND	
2-Nitroaniline	8270	50.0	ND	ON	ND	
4-Nitroaniline	8270	20.0	ND	QN	ND	
Dibenzofuran	8270	10.0	ND	ND	ND	

All results expressed as $\mu g/L$.

TABLE A58-5A. (CONTINUED) - PRIORITY POLLUTANT ACID EXTRACTABLESª

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C.	100% APG-EA
Phenol	8270	10.0	QN	ND	ND
2,4,6-Trichlorophenol	8270	10.0	ND	ND	ND
2-Chlorophenol	8270	10.0	ND	ND	ND
2,4-Dichlorophenol	8270	10.0	ND	ND	ND
2,4-Dimethylphenol	8270	10.0	ND	ND	ND
4,6-Dinitro-o-cresol	8270	50.0	ND	ND	ND
2,4-Dinitrophenol	8270	50.0	ND	ND	ND
2-Nitrophenol	8270	10.0	ND	ND	ND
4-Nitrophenol	8270	50.0	ND	ND	ND
p-Chloro-m-cresol	8270	20.0	ND	ND	ND
Pentachlorophenol	8270	50.0	ND	ND	ND
p-Cresol	8270	10.0	ND	ND	ND
o-Cresol	8270	10.0	ND	ON	ND
2,4,5-Trichlorophenol	8270	10.0	ND	ND	QN

a All results expressed as $\mu g/L$.

(CONTINUED) - ORGANOPHOSPHORUS PESTICIDES TABLE A58-5A.

	Method	Limits	G.W.	W.B.C.C.	APG-EA
	8140	0.20	ND	ND	ND
Bolstar (Sulprofos) 814	140	0.14	ND	ND	ND
Coumaphos 814	140	0.40	ND	ND	ND
8 -0, -S	140	0.24	ND	ND	ND
Diazinon 814	140	0.40	ND	ND	ND
81	140	1.60	ND	ND	ND
81	140	0.52	ND	ND	ND
Disulfoton 814	140	0.14	ΩN	ND	ND
EPN 814	140	0.08	ND	ND	QN
	8140	0.40	ND	ND	ND
Fensulfothion 814	140	0.16	ND	ND	ND
8	140	0.16	ND	ND	ND
Malathion 814	8140	0.22	ND	ND	ND
Merphos 814		0.40	ND	ND	ND
Mevinphos 814	140	1.00	ND	ND	ON
81	140	1.00	ND	ON	ND
Parathion 814	140	0.24	ND	ND	ND
Phorate 814	140	0.08	ND	ND	ND
Ronnel 814	140	0.14	ND	ND	ND
Sulfotep 814	140	0.14	ND	ND	ND
TEPP 81	140	1.60	ND	ND	ND
Tetrachlorovinphos 814	140	1.60	ND	ND	ND
Tokuthion 814	140	0.14	ND	ND	ND
Trichloronate 814	140	1.60	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - CHLORINATED PESTICIDES AND HERBICIDES TABLE A58-5A.

Analyte	EPA Method	Detection Limits	100% G.W.	100% W.B.C.C	100% APG-EA
<u>Pesticides:</u>	:				
Aldrin	8080	0.034	ND	ND	ND
Alpha-BHC	8080	0.035	ND	ND	ND
Beta-BHC	8080	0.023	ND	ND	ND
Delta-BHC	8080	0.024	ND	ND	ND
Gamma-BHC (Lindane)	8080	0.025	ND	ND	ND
Chlordane	8080	0.037	ND	ND	ND
4,4'-DDD	8080	0.050	ND	ND	ND
4,4'-DDE	8080	0.058	ND	QN	ND
4,4'-DDT	8080	0.081	ND	ND	ND
Dieldrin	8080	0.044	ND	ND	ND
Alpha-Endosulfan	8080	0.030	ND	ND	ND
Beta-Endosulfan	8080	0.040	ND	ND	ND
Endosulfan sulfate	8080	0.0072	ON	ND	ND
Endrin	8080	0.0072	ND	ND	ND
Endrin Aldehyde	8080	0.0032	ND	ND	ND
Heptachlor	8080	0.0040	ND	ND	ND
Heptachlor Epoxide	8080	0.0042	ND	ND	ND
Methoxychlor	8080	0.0500	ND	ND	ND
Chlorpyrifos	8080	0.0044	ND	ND	ND
Toxaphene	8080	0.0114	ND	ND	ND
Malathion	8080	0.1100	ND	ND	ND
Parathion	8080	0.1200	ND	ND	ND
Dursban	8080	0.0044	ND	ND	ND
Herbicides:					
2,4-D	8150	1.5	ND	ND	ND
2,4,5-TP	8150	•	ND	QN	QN

All results expressed as $\mu g/L$.

COMPREHENSIVE CHEMICAL ANALYSIS OF THE WEST BRANCH OF CANAL CREEK STUDY CHRONIC HISTOPATHOLOGY GROUNDWATER EXPOSURE AQUARIA DILUTED WITH APG-EA TAP WATER (TEST NO. 5) - GENERAL WATER QUALITY® TABLE A58-5B.

Alkalinity (CaCO ₃) Ammonia Nitrogen (N) Bromide Chloride (C1) Cyanide (Cn) Fluoride (F) Hardness (CaCO ₃) AA 1.0 325.3 0.006 9.006 9.001	•	60 0.092 <0.2 39.0	96 0.065 <0.2	80
350.3 320.1 325.3 335.2 340.2 AA 150.1	<i>,</i>	0.092	0.065	0.067
320.1 325.3 335.2 340.2 AA 150.1	·	39.0	<0.0°	
325.3 335.2 340.2 0 ₃) AA tric) 150.1		39.0	000	<0.2
335.2 340.2 03) AA tric) 150.1		700	27.0	27.2
340.2 AA ic) 150.1		<0.00	<0.006	<0.006
AA (c) 150.1		0.585	0.725	0.757
lc) 150.1		58.1	54.2	55.8
		6.68	7.25	7.44
ISE		2.14	2.23	2.23
354.1	-	<0.002	0.002	0.008
Phosphate (P) 365.3 0.1		1.05	0.408	0.424
Specific Conductance @ 25 °C 120.1 1.0		272	216	216
Sulfate (SO ₄) 375.3 1.0		61.8	35.2	31.2
Sulfide (H ₂ S) 0.002		<0.002	<0.002	<0.002
Total Organic Carbon 2.0	.1 2.0	<2.0	<2.0	<2.0
Total Suspended Solids 1.0	.2 1.0	<1.0	<1.0	1.5

All results expressed as mg/L except for specific conductance and pH which are expressed as μ mhos/cm and standard units, respectively.

TABLE A58-5B. (CONTINUED) - METALS⁸

	EPA	Detection	25%	5	18
Analyte	Method	Limits	G.W.	G.W.	G.W.
Aluminum (Al)	200.7	10	630	218	102
Antimony (Sb)	204.2	50	<50	<50	<50
Arsenic (As)	206.2	Ŋ	<5	<5	<5
Beryllium (Be)	200.7	0.5	٦	<0.5	<0.5
Boron	200.7	50	242	229	171
Cadmium (Cd)	200.7	വ	<5	<5	<5
Calcium (Ca)	200.7	32.6	15400	14500	15000
Chromium (Cr)	200.7	10	<10	<10	<10
Cobalt	200.7	10	11	<10	<10
Copper (Cu)	200.7	10	<10	<10	<10
Iron	200.7	10	<10	<10	<10
Lead (Pb)	200.7	20	<50	<50	<50
	200.7	29	5610	5120	5220
Manganese (Mn)	200.7	0.97	167		5.6
		വ		29.5	
Mercury (Hg)	245.1	0.1	<0.1	<0.1	<0.1
Molybdenum (Mo)	200.7	30	<30	<30	<30
Nickel (Ni)	200.7	വ	7.2	5.5	5.7
Potassium (K)	200.7	50	2460	2070	2240
Selenium (Se)	270.2	50	<50	<50	<50
Silver (Ag)	272.2	0.5	<0.5	<0.5	<0.5
Sodium (Na)	200.7	20	34300	25100	25100
Thallium	200.7	20	<50	<50	<50
Tin (Sn)	200.7	10	<10		<10
		0.97		<10	
Zinc (Zn)	200.7	Ŋ	190		248
		1.5		224	

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS® TABLE A58-5B.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	1% G.W.
Benzene	8021	0.5	ND	ND	ND
Bromobenzene	8021	0.5	ND	ND	ND
Bromochloromethane	8021	0.5	ND	ND	ND
Bromodichloromethane	8021	0.5	ND	ND	ND
Bromoform	8021	0.5	ND	ND	ND
Bromomethane	8021	0.5	ND	ND	ND
n-Butylbenzene	8021	0.5	ND	ND	ND
s-Butylbenzene	8021	0.5	ND	ND	ND
t-Butylbenzene	8021	0.5	ND	ND	QN
Carbon Tetrachloride	8021	0.5	8.3	2.6	ND
Chlorobenzene	8021	0.5	ON	ND	ND
Chlorodibromomethane	8021	0.5	ON	QN	ND
Chloroethane	8021	0.5	ND	ND	ND
Chloroform	8021	0.5	17.7	11.4	9.3
Chloromethane	8021	0.5	ND	ND	ND
2-Chlorotoluene	8021	0.5	ND	ND	ND
4-Chlorotoluene	8021	0.5	ND	ND	ND
1,2-Dibromo-3-chloropropane	8021	0.5	ND	ND	ND
1,2-Dibromoethane	8021	0.5	ND	ND	ND
Dibromomethane	8021	0.5	ND	ND	QN
1,2-Dichlorobenzene	8021	0.5	ND	ND	ND
1,3-Dichlorobenzene	8021	0.5	ND	QN	ND
1,4-Dichlorobenzene	8021	0.5	ND	ND	ND
Dichlorodifluoromethane	8021	1.0	ON	ND	ON
1,1-Dichloroethane	8021	0.5	ND	ND	QN
1,2-Dichloroethane	8021	0.5	ND	ND	ND
1,1-Dichloroethene	8021	0.5	ND	ND	ND

All results expressed as $\mu g/L$.

TABLE A58-5B. (CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS CON'Tª

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	1% G.W.
		~			
cis-1,2-Dichloroethene	8021	0.5	ND	ND	ND
1,1-Dichloropropene	8021	0.5	ND	ND	ND
cis-1,3-Dichloropropene	8021	0.5	ND	ND	ND
trans-1,3-Dichloropropene	8021	0.5	ND	ND	ND
Ethylbenzene	8021	0.5	ND	ND	ND
Hexachlorobutadiene	8021	0.5	ND	ND	ND
Isopropylbenzene	8021	0.5	ND	ND	ND
p-Isopropyltoluene	8021	0.5	ND	ND	ND
Methylene chloride	8021	0.5	ND	ND	ND
Naphthalene	8021	0.5	ΩN	ND	ND
n-Propylbenzene	8021	0.5	ND	ND	ND
Styrene	8021	0.5	ND	ND	ND
1,1,1,2-Tetrachloroethane	8021	0.5	NO	ND	ND
1,1,2,2-Tetrachloroethane	8021	0.5	18.4	4.3	0.8
Tetrachloroethene	8021	0.5	ND	QN	ND
Toluene	8021	0.5	ND	QN	ND
1,2,3-Trichlorobenzene	8021	0.5	ND	ND	QN
1,2,4-Trichlorobenzene	8021	0.5	ND	QN	ND
1,1,1-Trichloroethane	8021	0.5	ND	ND	ND
1,1,2-Trichloroethane	8021	0.5	ND	ND	QN
Trichloroethene	8021	0.5	17.3	3.2	QN
Trichlorofluoromethane	8021	0.5	ND	ND	ND
1,2,3-Trichloropropane	8021	0.5	ND	ND	ND
1,2,4-Trimethylbenzene	8021	0.5	ND	QN	ND
1,3,5-Trimethylbenzene	8021	0.5	ND	ND	ND
Vinyl Chloride	8021	0.5	ND	ND	ND
o,m,p-Xylenes	8021	0.5	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS⁸ TABLE A58-5B.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Bis-(2-chloroethoxy) Methane	8270	10.0	QN	ND	ND
Bis-(2-chloroethyl) Ether	8270	10.0	ND	ND	ND
Bis-(2-chloroisopropyl) Ether	8270	10.0	ND	ND	ND
Bis-(2-ethylhexyl) Phthalate	8270	10.0	ND	ND	ND
4-Bromophenyl Phenyl Ether	8270	10.0	QN	QN	ND
Butyl Benzyl Phthalate	8270	10.0	ND	ND	ND
2-Chloronapthalene	8270	10.0	ND	ON	ND
4-Chlorophenyl Phenyl Ether	8270	10.0	ND	ND	ND
Chrysene	8270	10.0	ND	ND	ND
Dibenzo (a,h) Anthracene	8270	10.0	ND	ND	ND
Acenaphthylene	8270	10.0	ND	ND	ND
1,2-Dichlorobenzene	8270	10.0	ND	ND	ND
1,3-Dichlorobenzene	8270	10.0	ND	ND	ND
1,4-Dichlorobenzene	8270	10.0	ND	QN	ND
3,3'-Dichlorobenzidine	8270	20.0	ND	ND	ND
Diethyl Phthalate	8270	10.0	ND	ND	ND
Dimethyl Phthalate		10.0	ND	ON	ND
Di-n-Butyl Phthalate	8270	10.0	ND	QN	ON
2,4-Dinitrotoluene	8270	10.0	ND	ND	ND
2,6-Dinitrotoluene	8270	10.0	ND	ND	ND
Di-n-Octyl Phthalate	8270	10.0	ND	ND	QN
Fluoranthene	8270	10.0	ND	ND	ND
Fluorene	8270	10.0	ND	ND	ND
Hexachlorobenzene	8270	10.0	NO	ND	ND
Hexachlorobutadiene	8270	10.0	ND	ND	ND
Hexachlorocyclopentadiene	8270	10.0	ND	ND	ND
Hexachloroethane	8270	10.0	NO	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS CON'Tª TABLE A58-5B.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	1% G.W.
Indeno[1,2,3-cd]pyrene	8270	10.0	ND	ND	ND
Isophorone	8270	10.0	ND	QN	ND
Naphthalene	8270	10.0	ND	ND	ND
Anthracene	8270	10.0	ND	QN	ND
Nitrobenzene	8270	10.0	ND	ND	ND
N-Nitroso-di-n-propylamine	8270	10.0	ND	ND	ND
N-Nitrosodiphenylamine	8270	10.0	QN	ND	ND
Phenanthrene	8270	10.0	ND	ND	ND
Pyrene	8270	10.0	ND	ND	ND
1,2,4-Trichlorobenzene	8270	10.0	ND	ON	ND
Benzo(a)anthracene	8270	10.0	ND	ND	ND
Benzo(a)pyrene	8270	10.0	ND	ND	ND
Benzo(b)fluoranthene	8270	10.0	ND	ND	ND
Benzo(g,h,i)perylene	8270	10.0	ND	ND	ND
Benzo(k)fluoranthene	8270	10.0	ND	ND	ND
Benzidine	8270	10.0	ND	ND	ND
1,2-Diphenylhydrazine	8270	20.0	ON	ND	ND
N-Nitrosodimethylamine	8270	20.0	ND	ND	ND
Acenaphthene	8270	10.0	ON	ND	ND
3,4-Benzo-fluoranthene	8270	10.0	ND	ND	ND
4-Chloroaniline	8270	20.0	ND	ND	ND
2-Methylnaphthalene	8270	10.0	ND	ON	ND
2-Nitroaniline	8270	50.0	ND	ND	ND
4-Nitroaniline	8270	20.0	ND	ND	ND
Dibenzofuran	8270	10.0	QN	QN	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT ACID EXTRACTABLES TABLE A58-5B.

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.
Phenol	8270	10.0	ND	ND	ND
2,4,6-Trichlorophenol	8270	10.0	ND	ND	ND
2-Chlorophenol	8270	10.0	ND	ND	ND
2,4-Dichlorophenol	8270	10.0	ND	ND	ND
2,4-Dimethylphenol	8270	10.0	ND	ND	ND
4,6-Dinitro-o-cresol	8270	50.0	ND	ND	ND
2,4-Dinitrophenol	8270	50.0	ND	ND	ND
2-Nitrophenol	8270	10.0	ND	ND	ND
4-Nitrophenol	8270	50.0	ND	QN	ND
p-Chloro-m-cresol	8270	20.0	ND	ND	ND
Pentachlorophenol	8270	50.0	ON	QN	ND
p-Cresol	8270	10.0	ND	ND	ND
o-Cresol	8270	10.0	ND	ND	ND
2,4,5-Trichlorophenol	8270	10.0	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - ORGANOPHOSPHORUS PESTICIDES^a TABLE A58-5B.

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.
Azinphos-methyl	8140	0.20	QN	ND	ND
Bolstar (Sulprofos)	8140	0.14	ND	ND	ND
Coumaphos	8140	0.40	ND	ND	ND
Demeton, -0, -S	8140	0.24	ND	ND	ND
Diazinon	8140	0.40	ND	ND	ND
Dichlorvos	8140	1.60	ND	ND	ND
Dimethoate	8140	0.52	ND	ND	ND
Disulfoton	8140	0.14	ND	ND	ND
EPN	8140	0.08	ND	ND	ND
Ethoprop	8140	0.40	ND	ND	ND
Fensulfothion	8140	0.16	ND	ND	ND
Fenthion	8140	0.16	ND	ND	ND
Malathion	8140	0.22	ND	ND	ND
Merphos	8140	0.40	ND	ND	ND
Mevinphos	8140	1.00	ND	ND	ND
Naled	8140	•	ND	ND	ND
Parathion	8140	0.24	ND	ND	ND
Phorate	8140	0.08	ND	ND	ND
Ronnel	8140	0.14	ND	ND	ND
Sulfotep	8140	0.14	ND	ND	QN
TEPP	8140	1.60	ND	ND	ND
Tetrachlorovinphos	8140	1.60	ND	ND	ND
Tokuthion	8140	0.14	ND	ND	ND
Trichloronate	8140	1.60	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - CHLORINATED PESTICIDES AND HERBICIDES⁸ TABLE A58-5B.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Pesticides:					
Aldrin	8080	0.034	ND	ND	ND
Alpha-BHC	8080	0.035	ND	ND	ND
Beta-BHC	8080	0.023	ND	ND	ND
Delta-BHC	8080	0.024	ND	ND	ND
Gamma-BHC (Lindane)	8080	0.025	ND	ND	ND
Chlordane	8080	0.037	ND	ND	ND
4,4'-DDD	8080	0.050	ND	ND	ND
4,4'-DDE	8080	0.058	ND	ND	ND
4,4'-DDT	8080	0.081	ND	ND	ND
Dieldrin	8080	0.044	ND	ND	ND
Alpha-Endosulfan	8080	0.030	ND	ND	ND
Beta-Endosulfan	8080	0.040	ND	ND	ND
Endosulfan sulfate	8080	0.0072	ND	ND	ND
Endrin	8080	0.0072	ND	ND	ND
Endrin Aldehyde	8080	0.0032	ND	ND	ND
Heptachlor	8080	0.0040	ND	ND	ND
Heptachlor Epoxide	8080	0.0042	ND	ND	ND
Methoxychlor	8080	0.0500	ND	ON	ND
Chlorpyrifos	8080	0.0044	ND	ON	ND
Toxaphene	8080	0.0114	ND	ND	ND
Malathion	8080	0.1100	ND	ND	ND
Parathion	8080	0.1200	ND	ND	QN
Dursban	8080	0.0044	ND	QN	ND
Herbicides:					
2,4-D	8150	1.5	ND	ND	ND
2,4,5-TP	8150	0.05	ND	ND	ND

All results expressed as $\mu g/L$.

CHRONIC HISTOPATHOLOGY GROUNDWATER EXPOSURE AQUARIA FROMERLY DILUTED WITH WEST BRANCH CANAL OF CREEK WATER (TEST NO. 5) a - GENERAL WATER QUALITY^b COMPREHENSIVE CHEMICAL ANALYSIS OF THE WEST BRANCH OF CANAL CREEK STUDY TABLE A58-5C.

(CaCO ₃) rogen (N) 1)) nacO ₃) metric)		76 118 0.101 <0.2 5 29.0 106 <0.006 184 0.748		84 0.097 <0.2 26.0 <0.006
N) 350.3 0.01 320.1 0.2 325.3 1.0 335.2 0.006 340.2 0.01 AA				0.097 0.2 6.0 0.006
325.3 325.3 335.2 340.2 0.006 340.2 0.01 AA 150.1				0.2 6.0 0.006
325.3 1.0 335.2 0.006 340.2 0.01 AA 150.1 0.01				6.0
335.2 0.006 340.2 0.01 AA 0.01 150.1 0.01				900.0
340.2 0.01 AA 150.1 0.01				
AA				0.732
150.1 0.01	۵,			5.4
tich.				7.45
				2.34
				0.007
				0.799
Specific Conductance @ 25 °C 120.1 1.0 274		233	214	4
375.3 1.0				12
9030		002 <0.002		<0.002
carbon 415.1 2.0	0 <2.0			2.0
Total Suspended Solids 1.5	0 1.5	5 <1.0	_	2.5

The aquaria in this series were diluted with West Branch of Canal Creek water from the beginning of the study to February 5, 1995. APG-EA dechlorinated tap water was used from February 5, 1995 through the end of the study. See Section 4.6 for further explanation.

All results expressed as mg/L except for specific conductance and pH which are expressed as μ mhos/cm and standard units, respectively. ڡ

TABLE A58-5C. (CONTINUED) - METALSª

Analyte	EPA Method	Detection Limits	25% G.W.	5. W.	# Z
		Г 			
Aluminum (A1)	200.7	10	574	247	140
Antimony (Sb)	204.2	20	<50	<50	<50
Arsenic (As)	206.2	2	<5	<5	<5
Beryllium (Be)	200.7	0.5	6.0	0.7	0.7
Boron	200.7	20	269	441	184
Cadmium (Cd)	200.7	2	<5	<5	< 5
Calcium (Ca)	200.7	32.6	15200	14600	14700
Chromium (Cr)	200.7	10	<10	<10	<10
Cobalt	200.7	10	10.3	<10	<10
Copper (Cu)	200.7	10	<10	<10	<10
Iron	200.7	10	<10	<10	<10
Lead (Pb)	200.7	20	<50	<50	<50
Magnesium (Mg)	200.7	29	5510	5320	5320
Manganese (Mn)	200.7	н	162		
		Ŋ		23.5	<5
Mercury (Hg)	245.1	0.1	<0.1	<0.1	<0.1
Molybdenum (Mo)	200.7	30	<30	<30	<30
Nickel (Ni)	200.7	ស	8.4	<5	<5
Potassium (K)	200.7	50	2450	2460	2400
Selenium (Se)	270.2	20	<50	<50	<50
Silver (Ag)	272.2	0.5	<0.5	<0.5	
	270.2				<0.5
Sodium (Na)	200.7	20	33100	26200	24800
Thallium	200.7	20	<50	<50	<50
Tin (Sn)	200.7	10	<10	<10	<10
Zinc (Zn)	200.7	10	177	207	210

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS® TABLE A58-5C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Benzene	8021	0.5	UD	ND	ND
Bromobenzene	8021	0.5	ND	ND	ND
Bromochloromethane	8021	0.5	ND	ND	ND
Bromodichloromethane	8021	0.5	ND	ND	ND
Bromoform	8021	0.5	ND	ND	ND
Bromomethane	8021	0.5	ND	ND	ND
n-Butylbenzene	8021	0.5	ND	ND	ND
s-Butylbenzene	8021	0.5	ND	ND	ND
t-Butylbenzene	8021	0.5	ND	ND	ND
Carbon Tetrachloride	8021	0.5	8.8	4.2	ND
Chlorobenzene	8021	0.5	ND	ND	ND
Chlorodibromomethane	8021	0.5	ND	ND	ND
Chloroethane	8021	0.5	ND	ND	ND
Chloroform	8021	0.5	19.8	13.3	10.1
Chloromethane	8021	0.5	ND	ND	ND
2-Chlorotoluene	8021	0.5	ND	ND	QN
4-Chlorotoluene	8021	0.5	ON	ND	ND
1,2-Dibromo-3-chloropropane	8021	0.5	ND	ND	ND
1,2-Dibromoethane	8021	0.5	ND	ND	ND
Dibromomethane	8021	0.5	ND	ND	ND
1,2-Dichlorobenzene	8021	0.5	ND	ND	ND
1,3-Dichlorobenzene	8021	0.5	ND	ND	ND
1,4-Dichlorobenzene	8021	0.5	ND	ND	ND
Dichlorodifluoromethane	8021	1.0	ND	ND	ND
1,1-Dichloroethane	8021	0.5	ND	ND	ND
1,2-Dichloroethane	8021	0.5	ND	QN	ND
1,1-Dichloroethene	8021	0.5	ND	ND	NO

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT VOLATILE ORGANICS CON'Tª TABLE A58-5C.

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.
cis-1,2-Dichloroethene	8021	0.5	ON	QN	QN
1,1-Dichloropropene	8021	0.5	ND	ND	ND
cis-1,3-Dichloropropene	8021	0.5	ND	ND	ND
trans-1,3-Dichloropropene	8021	0.5	ND	ND	ND
Ethylbenzene	8021	0.5	ND	ND	ND
Hexachlorobutadiene	8021	0.5	ND	ND	ND
Isopropylbenzene	8021	0.5	ND	ND	ND
p-Isopropyltoluene	8021	0.5	ND	ND	ND
Methylene chloride	8021	0.5	ND	ND	ND
Naphthalene	8021	0.5	ND	ND	ND
n-Propylbenzene	8021	0.5	ND	ND	ND
Styrene	8021	0.5	ND	ND	ND
1,1,1,2-Tetrachloroethane	8021	0.5	ND	ND	ND
1,1,2,2-Tetrachloroethane	8021	0.5	19.3	5.5	ND
Tetrachloroethene	8021	0.5	ND	ND	ND
Toluene	8021	0.5	ND	QN	ND
1,2,3-Trichlorobenzene	8021	0.5	ND	ND	ND
1,2,4-Trichlorobenzene	8021	0.5	ND	ND	ND
1,1,1-Trichloroethane	8021	0.5	0.7	ND	ND
1,1,2-Trichloroethane	8021	0.5	ND	ND	ND
Trichloroethene	8021	0.5	19.7	4.7	ND
Trichlorofluoromethane	8021	0.5	ND	ND	ND
1,2,3-Trichloropropane	8021	0.5	ND	ND	ND
1,2,4-Trimethylbenzene	8021	0.5	ND	ND	ND
1,3,5-Trimethylbenzene	8021	0.5	ND	ND	ND
Vinyl Chloride	8021	0.5	ND	ND	ND
o,m,p-Xylenes	8021	0.5	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS® TABLE A58-5C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Bis-(2-chloroethoxy) Methane	8270	10.0	ND	ND	ND
Bis-(2-chloroethyl) Ether	8270	10.0	ND	ND	ND
Bis-(2-chloroisopropyl) Ether	8270	10.0	ND	ND	ND
Bis-(2-ethylhexyl) Phthalate	8270	10.0	ND	20.4 ^b	ND
4-Bromophenyl Phenyl Ether	8270	10.0	ND	ND	ND
Butyl Benzyl Phthalate	8270	10.0	ND	ND	ND
2-Chloronapthalene	8270	10.0	ND	QN	ND
4-Chlorophenyl Phenyl Ether	8270	10.0	ND	ND	ND
Chrysene	8270	10.0	ND	ND	ND
Dibenzo (a,h) Anthracene	8270	10.0	ND	ND	ND
	8270	10.0	ND	ND	ND
	8270	10.0	ND	ND	ND
1,3-Dichlorobenzene	8270	10.0	ND	ND	ND
	8270	10.0	ND	ND	ND
3,3'-Dichlorobenzidine	8270	20.0	ND	ND	ND
Diethyl Phthalate	8270	10.0	ND	ND	ND
Dimethyl Phthalate	8270	10.0	ND	ND	ND
Di-n-Butyl Phthalate	8270	10.0	ND	ND	ND
2,4-Dinitrotoluene	8270	10.0	ND	ND	ND
2,6-Dinitrotoluene	8270	10.0	ND	ND	ND
Di-n-Octyl Phthalate	8270	10.0	ND	ND	ND
Fluoranthene	8270	10.0	ND	ND	ND
Fluorene	8270	10.0	ND	ND	ON
Hexachlorobenzene	8270	10.0	ND	ND	ND
Hexachlorobutadiene	8270	10.0	ND	ND	ND
Hexachlorocyclopentadiene	8270	10.0	ND	ND	QN

All results expressed as $\mu g/L$. Value appears to be spurious; compound not reported for any other data sets.

(CONTINUED) - PRIORITY POLLUTANT BASE NEUTRALS CON'Tª TABLE A58-5C.

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.
Hexachloroethane	8270	10.0	ON	ND	QN
Indeno[1,2,3-cd]pyrene	8270	10.0	ND	ND	ND
Isophorone	8270	10.0	ND	ND	QN
Naphthalene	8270	10.0	ND	ND	ND
Anthracene	8270	10.0	ND	ND	ND
Nitrobenzene	8270	10.0	ND	ND	ND
N-Nitroso-di-n-propylamine	8270	10.0	ND	ND	ND
N-Nitrosodiphenylamine	8270	10.0	ND	ND	ND
Phenanthrene	8270	10.0	ND	ND	ND
Pyrene	8270	10.0	ND	QN	ND
1,2,4-Trichlorobenzene	8270	10.0	ND	ND	ND
Benzo(a)anthracene	8270	10.0	ND	ND	ND
Benzo(a)pyrene	8270	10.0	ND	ND	ND
Benzo(b)fluoranthene	8270	10.0	ND	ND	ND
Benzo(g,h,i)perylene	8270	10.0	ND	ND	ND
Benzo(k)fluoranthene	8270	10.0	ND	ND	ND
Benzidine	8270	10.0	ND	ND	ND
1,2-Diphenylhydrazine	8270	20.0	ND	ND	ND
N-Nitrosodimethylamine	8270	20.0	ND	ND	ND
Acenaphthene	8270	10.0	ND	ND	ND
3,4-Benzo-fluoranthene	8270	10.0	ND	QN	ND
4-Chloroaniline	8270	20.0	ND	ND	ND
2-Methylnaphthalene	8270	10.0	ND	ND	ND
2-Nitroaniline	8270	50.0	ND	ND	ND
4-Nitroaniline	8270	20.0	ND	ND	ND
Dibenzofuran	8270	10.0	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - PRIORITY POLLUTANT ACID EXTRACTABLES® TABLE A58-5C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Phenol	8270	10.0	ND	ND	ND
2,4,6-Trichlorophenol	8270	10.0	ND	ND	ND
2-Chlorophenol	8270	10.0	ND	ND	ND
2,4-Dichlorophenol	8270	10.0	ND	ND	ND
2,4-Dimethylphenol	8270	10.0	ND	ND	ND
4,6-Dinitro-o-cresol	8270	50.0	ND	ND	ND
2,4-Dinitrophenol	8270	50.0	ND	ND	ND
2-Nitrophenol	8270	10.0	ND	ND	ND
4-Nitrophenol	8270	50.0	ND	ND	ND
p-Chloro-m-cresol	8270	20.0	ND	ND	ND
Pentachlorophenol	8270	50.0	ND	ND	ND
p-Cresol	8270	10.0	ND	ND	ND
o-Cresol	8270	10.0	ND	ND	QN
2,4,5-Trichlorophenol	8270	10.0	ND	ND	ND

All results expressed as $\mu g/L$.

(CONTINUED) - ORGANOPHOSPHORUS PESTICIDES⁸ TABLE A58-5C.

Analyte	EPA Method	Detection Limits	25% G.W.	58 G.W.	18 G.W.	
7. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	07.50		4.5			
Actinplies mecliy.	8 T 4 O	02.0	Q N	ON.	ND	
Bolstar (Sulprofos)	8140	0.14	ND	ND	ND	
Coumaphos	8140	0.40	ND	ND	ND	
Demeton, -0, -S	8140	0.24	ND	ND	ND	
Diazinon	8140	0.40	ND	ND	ND	
Dichlorvos	8140	1.60	ND	ND	ND	
Dimethoate	8140	0.52	ND	ND	ND	
Disulfoton	8140	0.14	ND	ND	ND	
EPN	8140	0.08	ND	ND	ND	
Ethoprop	8140	0.40	ND	ND	ND	
Fensulfothion	8140	0.16	ND	ND	ND	
Fenthion	8140	0.16	ND	ND	ND	
Malathion	8140	0.22	ND	ND	ND	
Merphos	8140	0.40	ND	ON	ND	
Mevinphos	8140	1.00	ND	ND	ND	
Naled	8140	1.00	ND	ND	ND	
Parathion	8140	0.24	ND	ND	ND	
Phorate	8140	0.08	ND	ND	ND	
Ronnel	8140	0.14	ND	ND	ND	
Sulfotep	8140	0.14	ND	QN	ND	
TEPP	8140	1.60	ND	QN	ND	
Tetrachlorovinphos	8140	1.60	ND	ND	ND	
Tokuthion	8140	0.14	ND	ND	ND	
Trichloronate	8140	1.60	ND	ND	ND	

All results expressed as $\mu g/L$.

(CONTINUED) - CHLORINATED PESTICIDES AND HERBICIDES^a TABLE A58-5C.

Analyte	EPA Method	Detection Limits	25% G.W.	5% G.W.	18 G.W.
Pesticides:					
Aldrin	8080	0.034	ND	ND	ND
Alpha-BHC	8080	0.035	ND	ND	ND
Beta-BHC	8080	•	ON	ND	ND
Delta-BHC	8080	0.024	ND	ND	ND
Gamma-BHC (Lindane)	8080	•	ND	ND	ND
Chlordane	8080	0.037	ND	ND	ND
4,4'-DDD	8080	0.050	ND	ND	ND
4,4'-DDE	8080	0.058	ND	ND	ND
4,4'-DDT	8080	0.081	ND	ND	ND
Dieldrin	8080	0.044	ND	ND	ND
Alpha-Endosulfan	8080	•	ND	ND	ND
Beta-Endosulfan	8080	0.040	ND	ON	ND
Endosulfan sulfate	8080	0.0072	ND	ND	ND
Endrin	8080	0.0072	ND	ND	ND
Endrin Aldehyde	8080	0.0032	ND	ND	ND
Heptachlor	8080	0.0040	ND	QN	ND
Heptachlor Epoxide	8080	0.0042	ND	ND	ND
Methoxychlor	8080	0.0500	ND	ND	QN
Chlorpyrifos	8080	0.0044	ND	ND	QN
Toxaphene	8080	0.0114	ND	ND	ND
Malathion	8080	0.1100	ON	ND	ND
Parathion	8080	0.1200	ND	ND	ND
Dursban	8080	0.0044	ND	ND	ND
Herbicides:					
2,4-D	8150	1.5	ND	ND	ND
2,4,5-TP	8150	0.05	ND	ND	ND

All results expressed as $\mu g/L$.

APPENDIX 59

ROUTINE WATER QUALITY OF THE CHRONIC HISTOPATHOLOGY EXPOSURE TANKS

TANK No. 1 TANK CONCENTRATION: 100% WEST BRANCH OF CANAL CREEK WATER NO DEN EXPOSURE

Trailer Exposure Test Day	Time (Military)	Temperature (Celcius)	Ŧ	Dissolved Oxygen (mg/L)	Alkalinity (mg/L as CaCO3)	Hardness (mg/L as CaCO3)	Conductivity (umohs/cm)	Total Residual Chlorine (mg/L)	Free Available Chlorine (mg/L)	Total Ammonia- Nitrogen (mg/L)	Total Unionized Ammonia- Nitrogen (mg/L)
1000		24.6	7.01	6.72							
006		25.3	6.93	5.88							
006		25.3	7.02	5.59							
006		24.2	6.87	5.65							
1000		24.1	7.02	6.10							
1000		25.1	7.12	5.39 • 80	710	9	ç	0	ò	0.253	0.000
006		24.9 A A	6.07	2. 4. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	4 5.	0.00		9	9	0.633	0.00
1000		25.1	6.85	5.90							
800		25.4	6.88	5.58							
006		24.3	6.80	5.34							
730		22.9	6.81	6.29							
1000		23.9	69.9	6.46							
1100		23.7	6.82	6.25	54.4	119.7	734	0.00	0.00	0.108	0.00037
006		24.1	6.77	5.73							
006		24.0	6.82	5.47							
800		24.5	6.93	5.57							
006		25.3	6.89	4.84							
006		27.8	6./6 1.00	5.29							
4100		24.3 24.3	. e	6.4	089	136 R	548	000	000	æ	æ
006		23.7	6.78	5.59) 					I	
815		24.5	6.99	6.10							
810		24.2	6.95	6.18							
1100		24.6	6.83	6.44							
006		24.5	6.83	6.45							
800		24.1	6.86	6.63							
1100		24.0	6.90	6.32	81.6	136.8	603	0.00	0.00	0.044	0.00018
006		23.9	6.91	6.79							
006		24.3	6.89	6.21							
800		23.1	06.9	6.13							
200		23.9	7.09	6.47							

0.00021	œ	æ	a 0.00018	Ø	0.00004
0.067	Ø	Ø	a 0.038	a	0.016
0.00	0.00	æ	0.00	0.00	0.00
00.00	0.00	a	0.00	0.00	0.00
867	711	924	785	×1999	× 1999
171.0	136.8	136.8	153.9	307.8	564.3
40.8	74.8	47.6	74.8	54.4	40.8
6.69 6.00 6.00 6.00 6.39 6.39 7.39	2. 7. 0. 0. 3. 8. 0. 0. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	5.38 5.38 6.58 6.52 6.53 6.63	6.88 7.44 7.31 5.65 3.90 7.61	6.34 6.34 7.46 7.35 6.99	6.28 6.28 6.98 6.76 6.89 6.18 7.04
7.00 7.02 7.13 6.72 6.81 6.83 6.97 6.92	6.91 6.80 6.72 8 6.80	6.85 6.85 6.86 7.01 6.87 6.87	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.69 6.69 6.80 6.76 6.70 6.70
24.2 26.2 25.6 25.5 24.5 23.5 24.5 24.5	24.2 24.2 26.2 26.2 25.3	22.23.24.25.25.25.25.25.25.25.25.25.25.25.25.25.	25.25 25.25	24.0 24.0 24.1 23.7 23.7 23.7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
700 1300 1200 1000 1000	900 1000 1300 900	200 100 100 100 100 100 100 100 100 100	1100 1100 1000 1600	1300 1300 1000 800	
88 33 34 4 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	. 4 4 4 4 4 - 5 6 4 5 6 7 6 7 6 9 7 6 9 7 6 9 9 9 9 9 9 9 9 9	8 4 4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	55 55 55 55 55 55 55 55 55 55 55 55 55	66 55 48 88 88 88 88 88 88 88 88 88 88 88 88	68 7 7 7 7 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8
09-13-94 09-14-94 09-15-94 09-17-94 09-19-94 09-20-94	09-22-94 09-23-94 09-24-94 09-25-94 09-26-94	09-28-94 09-29-94 09-30-94 10-02-94 10-03-94 10-04-94	10-06-94 10-08-94 10-09-94 10-10-94 10-11-94	10-13-94 10-13-94 10-15-94 10-16-94 10-18-94	10-19-94 10-20-94 10-22-94 10-23-94 10-24-94 10-25-94

0.00029	0.00043	0.00016	0.00015	0.00013	0.00027	0.00040
0.110	0.140	0.065	0.056	0.058	0.160	0.092
0.00	0.00	0.00	00.00	00:00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
850	226	806	1145	>1999	406	442
171.0	188.1	205.2	153.9	136.8	102.6	119.7
61.2	68.0	61.2	61.2	54.4	47.6	54.4
7.63 7.95 7.97 7.84 7.42 5.28	6.63 6.62 7.53 6.62 7.39 7.47	6.86 7.77 8.27 8.18 7.40	6.79 7.32 7.23 7.23 7.02 7.28	7.10 8.56 8.56 9.78 9.33 9.10	8.53 9.45 9.45 8.69 7.77 7.37	7.95 5.72 7.41
6.80 6.85 6.90 6.85 6.78	6.83 6.83 6.81 6.79 6.74	6.87 6.74 6.80 6.73	6.74 6.85 6.85 6.73 6.78 6.78	6.83 6.79 7.08 6.77 6.75 6.75	6.63 6.69 6.65 6.73 6.84	6.86 6.85 6.88
20.8 20.3 20.6 21.0 21.7 22.4 23.4 24.4	21.1 22.6 24.4 20.5 20.5	22.1 19.3 20.8 21.4	22.0 24.4 23.0 22.8 22.8	23.7 18.8 22.8 20.0 19.7 21.5	21.0 21.2 21.2 22.8 23.9 23.9	23.0 26.3 22.5
1100 900 900 11000 1100	1000 1000 1000 1000 1000	1100 900 845 830 1000	000000000000000000000000000000000000000	600 800 730 1020 900 900	900 1000 1100 900 900	800 1100 1000
77 78 79 80 81 83	88 87 88 89 89 89 89 89 89 89 89 89 89 89 89	92 93 95 95	98 98 100 107 105	103 105 106 108 108	112 113 115 116 116	118 119 120
10-27-94 10-28-94 10-29-94 10-30-94 11-01-94 11-02-94	11-03-94 11-04-94 11-05-94 11-07-94 11-08-94	11-10-94 11-11-94 11-12-94 11-13-94	11-15-94 11-16-94 11-17-94 11-19-94 11-20-94	11-22-94 11-23-94 11-25-94 11-25-94 11-27-94 11-28-94	11-30-94 12-01-94 12-02-94 12-03-94 12-05-94 12-06-94	12-07-94 12-08-94 12-09-94

	0.00031	0.00029	0.00020	0.00040	0.00007	a
	0.100	0.140	0.095	0.040	0.036	Ø
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	>1999	1968	1146	540	425	×1999
	495.9	273.6	239.4	102.6	136.8	564.3
	47.6	54.4	54.4	74.8	47.6	54.4
8.10 8.35 8.74 8.88	10.05 8.99 8.91 8.15 8.00 8.00	9 9 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8.81 7.06 3.01 8.92 8.51 9.56	8.59 9.38 9.38 9.70 9.59	8.54 8.28 7.41 6.49 6.77 8.03	7.76 7.03 7.06 7.68
6.86 6.78 7.72 7.77	6.89 6.80 6.66 6.71 6.71	6.77 7.05 6.86 7.08 7.73 7.81 6.85	6.73 6.87 7.00 6.84 6.85 6.93	7.21 7.50 7.56 7.70 6.77 6.97	6.70 6.70 6.71 6.85 6.82 6.82 7.01	7.07 6.93 6.81 6.93
22.6 31.1 24.6 24.5 24.4	203 215 217 22.0 22.0	28.2 28.2 28.2 28.3 26.3 26.3 26.3 26.3 26.3	27.5 27.5 28.3 20.5 21.9 18.7	26.3 23.3 23.8 23.8 23.8 20.4 20.9	20.5 20.9 22.1 25.2 23.2 23.2	23.0 23.7 23.0 21.9
1300 900 900 900	800 1100 845 930 1000	000 000 000 000 000 000 000 000 000 00	900 1 1000 1 1000 900 900	1100 1130 1000 1000 1000	1100 1000 900 800 1000 1000	1000 1000 1000
121 123 124 125 125	127 127 128 130 131	25 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 1 4 1 4 2 4 4 4 4 4 5 4 4 5 4 4 5 4 4 5 4 6 4 6 4	147 148 150 151 151	154 155 156 157 158 160	161 162 163 164
12-10-94 12-11-94 12-12-94 12-13-94 12-14-94	12-15-94 12-16-94 12-17-94 12-18-94 12-20-94	12-21-94 12-22-94 12-23-94 12-25-94 12-26-94 12-27-94	12-29-94 12-30-94 12-31-94 01-01-95 01-02-95 01-03-95	01-05-95 01-06-95 01-07-95 01-08-95 01-09-95 01-11-95	01-12-95 01-13-95 01-14-95 01-15-95 01-16-95 01-17-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00008	0.00020	0.00036	0.00077	06000.0	0.00093
0.032	0.900	0.032	0.120	0.089	0.110
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
337	644	250	238	238	343
102.6	153.9	102.6	102.6	85.5	85.5
47.6	54.4	47.6	40.8	34.0	34.0
8.91 9.35 8.26 9.19 8.37 9.35	8.65 9.68 8.51 4.17 10.47 4.18 8.53	9.12 9.12 9.06 9.81 9.82 9.36	9.91 9.98 9.48 10.19 9.75 9.36	9.24 9.37 9.30 9.46 9.25	9.19 9.20 9.27 9.32 9.33
6.92 6.80 6.80 6.75 6.78 6.83	7.70 6.92 6.76 6.84 6.83 7.49	7.50 7.41 7.37 7.22 7.07 7.25	7.30 7.18 7.21 7.09 7.08 7.21	7.30 7.29 7.25 7.31 7.24 7.27	7.23 7.24 7.25 7.13 7.27
20.6 25.0 25.0 20.6 18.6 19.1 18.9	20.4 18.3 19.4 25.2 21.5 20.0 20.0 20.0	222 223 213 210 200 200 200 200 200 200	20.8 21.8 22.2 22.3 22.3	22.0 22.9 22.9 23.0 23.0 23.5	23.5 22.7 22.5 22.5 22.5 22.5
600 1000 1000 1000 830 900	1000 1000 1200 930 930	906 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	900 900 1100 1400 1000	900 1000 1800 900 900	900 900 1000 900 900
165 166 167 168 170 171	173 175 176 178 178	181 182 184 185 186 187	188 190 191 192 193	195 196 198 200 201	202 204 204 204 204 204
01-23-95 01-24-95 01-25-95 01-27-95 01-28-95 01-29-95	01-31-95 02-01-95 02-02-95 02-03-95 02-04-95 02-06-95	02-07-95 02-08-95 02-10-95 02-11-95 02-13-95 02-13-95	02-15-95 02-16-95 02-17-95 02-18-95 02-19-95 02-20-95	02-22-95 02-23-95 02-24-95 02-26-95 02-26-95 02-27-95	03-01-95 03-02-95 03-03-95 03-04-95 03-05-95 03-06-95

0.00049		0.00018	a	0.00040	0.00037	0.00011 a
0.059		0.023	Ø	0.050	0.049	0.013 a
0.00		0.00	0.00	0.00	0:00	00.00
0.00		00.00	0.00	0.00	00:00	0.00
240		212	234	227	523	246
85.5		85.5	85.5 5.5	85.5	85.5	85.5 68.4
40.8		47.6	9.74	47.6	8.04	40.8
9.00 8.84 8.7	9.99 9.99 9.99 9.12 9.02	9.09 8.69 8.36 8.80 8.56 8.76	8.56 7.81 8.18 8.92 8.36 8.02 8.19	7.89 7.78 8.14 8.52 8.20 7.86	8.20 8.00 8.30 8.66 7.65 7.60	7.55 7.10 8.02 7.79 7.64 7.95 8.10
7.33	7.22 7.19 7.22 7.22 7.26	7.19 7.28 7.26 7.26 7.26 7.26	7.21 6.99 7.20 7.24 7.24	7.24 7.26 7.03 6.97 7.25 7.29	7.30 7.29 7.27 7.27 7.27 7.27	7.30 7.18 7.30 7.24 7.28 7.35 7.35
22.5 22.6 24.0	23.3 24.3 23.5 23.6 23.0	24.1 24.5 24.6 24.6 24.6 24.6	24.5 24.5 24.5 24.5 24.5 24.5	24.4 24.1 24.1 24.2 23.5	23.8 24.5 24.5 24.8 24.8 24.9	24.9 24.8 24.8 24.7 24.7 24.7
900 1000 900	1100 1800 900 900	900 1000 1600 900 900	900 900 900 900 900	900 900 1000 900 900	900 1700 900 900 900 900	1100 900 1100 900 900 900
209 210 211	212 213 214 215 216	217 218 220 221 223	225 226 228 229 230	231 232 234 234 235 236 237	238 240 241 243 244	245 246 247 248 250 251 252
03-08-95 03-09-95 03-10-95	03-11-95 03-12-95 03-13-95 03-14-95 03-15-95	03-16-95 03-17-95 03-18-95 03-19-95 03-20-95 03-21-95	03-23-95 03-24-95 03-25-95 03-27-95 03-28-95 03-29-95	03-30-95 03-31-95 04-01-95 04-02-95 04-03-95 04-04-95	04-06-95 04-07-95 04-08-95 04-09-95 04-11-95 04-12-95	04-13-95 04-14-95 04-15-95 04-16-95 04-17-95 04-18-95 04-19-95

a	3	on and an and an and an	0.00034 0.00004 0.00106 0.000259
æ	3	ros !	0.107 0.013 0.900 0.1583
00		000	0.00 0.00 38
00		0.00	0.00
220		2	212 >1999
ເກ ເກີ ໝ		85.5 5.5	163.8 68.4 564.3 123.10 38
40 80		8.0	51.9 34.0 81.6 11.72
7.55 7.75 7.85 7.65 7.43 7.35	7.43 7.36 7.82 8.21 8.77	8.01 8.11 7.75 7.76 7.76 7.57 7.55	7.58 2.75 10.53 1.469 272
7.37 7.30 7.30 7.39 7.34 7.34	7.28 7.32 7.32 7.37 7.36 7.36	7.36 7.35 7.23 7.01 7.20 7.22 7.21	6.62 7.81 271
252 251 251 250 243 240 740	24.9 24.9 24.8 24.8 54.8	24.5 24.7 24.7 24.7 24.7 25.2	23.3 17.9 31.1 1.96 272
900 1200 2000 900 900 900	1600 1600 1600 900 900	900 830 900 900 900 900	
253 254 255 256 257 258	261 262 263 264 264 265	266 267 268 269 270 271 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-21-95 04-29-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-07-95 05-08-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

 $^{\mathbf{a}}\!\!\mathrm{Data}$ not available; analytical instrument would not calibrate.

TANK No. 2 TANK CONCENTRATION: 100% WEST BRANCH OF CANAL CREEK WATER NO DEN EXPOSURE

Total Unionized Ammonia- Nitrogen (mg/L)		0.00101	0.00038	æ	0.00022
Total Ammonia- Nitrogen (mg/L)		0.273	0.112	œ	0.053
Free Available / Chlorine (mg/L)		0.00	0.00	0.00	0.00
Total Residual Chlorine (mg/L)		0.00	0.00	0.00	0.00
Conductivity (umohs/cm)		918	739	543	603
Hardness (mg/L as CaCO3)		85.5	119.7	136.8	136.8
Alkalinity (mg/L as CaCO3)		47.6	54.4	0.89	74.8
Dissolved Oxygen (mg/L)	6.68 5.69 5.549 5.55 7.00 7.00 7.00 7.00 7.00	5.27 5.22 5.92 5.61 5.61 6.31	6.27 5.77 5.54 6.35 6.35	6.05 5.56 5.97 6.06 6.38 6.38	6.30 6.75 6.13 6.04 6.35
돐	7.01 6.90 7.02 6.87 7.01 7.01	6.82 6.85 6.85 6.88 6.80 6.81	6.82 6.77 6.82 6.93 6.89 6.76 7.07	6.94 6.99 6.99 6.83 6.83 6.83	6.90 6.91 6.89 6.90 7.09
Temperature (Celcius)	24.6 25.2 25.2 24.2 24.1 25.1	24.8 24.5 25.2 24.5 24.0 24.0	23.7 24.2 24.0 24.6 25.3 24.3	24.6 24.5 24.5 24.6 24.6 24.6	24.1 24.4 24.4 24.1
Time T (Military)	900 900 900 1000	900 1000 800 800 730 1000	1100 900 900 800 900 900	1100 900 815 810 1100 900	1100 900 900 800 500
Trailer Exposure Test Day	← N w 4 w o	r # # 0 1 1 2 E	4 5 5 7 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	25 22 23 22 24 25 25 25 25 25 25 25 25 25 25 25 25 25	28 29 30 31
Date	08-12-94 08-13-94 08-14-94 08-15-94 08-16-94 08-17-94	08-18-94 08-20-94 08-21-94 08-22-94 08-23-94 08-23-94	08-25-94 08-26-94 08-27-94 08-28-94 08-30-94 08-31-94	09-01-94 09-02-94 09-03-94 09-05-94 09-05-94	09-08-94 09-09-94 09-10-94 09-11-94 09-12-94

0.00019	a	Ø	a 0.00017	ro	0.00007
0.061	Ø	Ø	a 0.037	a	0.029
0.00	0.00	æ	0.00	0.00	0.00
00.00	0.00	a	00.00	0.00	00.00
867	709	925	785	×1999	41999
171.0	119.7	136.8	153.9	307.8	513.0
47.6	74.8	47.6	8.	54.4	40.8
6 63 6 63 5 87 7 87 7 82 8 9 82 8 9 84 8 9 8	6.00 6.00 8.28 8.28 8.28	5.53 5.64 5.64 5.99 6.53 6.53 6.53	6.84 7.33 7.16 5.51 5.51 5.41 7.79	7.15 6.21 6.57 7.36 7.28 6.84	6.20 6.20 6.70 6.80 6.45 7.02
7.00 7.02 7.15 6.83 6.83 6.92 6.92	6.91 6.80 6.76 a 6.80	6.88 6.88 6.87 7.04 6.88 6.87 6.90	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.79 6.79 6.70 6.70 6.84 6.63	4,00 6,00 7,00 6,00 1,00 1,00 1,00 1,00 1,00 1,00 1
24.1 25.5 25.5 25.7 24.6 24.6 24.6	25.3 25.3 25.3 25.3 25.3	24.2 23.3 23.3 23.3 23.3 23.3 23.3 23.3	22.2 23.3 24.3 24.6 25.3 20.3 20.3	23.8 23.8 23.8 23.8 23.8 23.8	24.55 22.22 23.22 23.23 23.24 23.34 23.34 23.34 23.34 23.34 23.34 23.34 24.34 25.34
1300 1300 1200 820 1000 1000	900 900 900 900 900	900 1030 1030 100 100 100 100 100	0011100 1000 1000 900	1300 1300 1000 800 1000	006 006 006 006
38 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	44 44 45 44 45 45 45 45 45 45 45 45 45 4	* 4 4 6 6 6 7 6 8 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	54 54 55 60 61 62	64 65 66 67 68	0.0 7 7 7 7 7 7 7 7 9 7 7 9 7 9 7 9 9 9 9 9
09-13-94 09-14-94 09-15-94 09-17-94 09-19-94 09-20-94	09-21-94 09-23-94 09-24-94 09-26-94 09-26-94	09-28-94 09-29-94 09-30-94 10-01-94 10-03-94 10-04-94	10-06-94 10-07-94 10-09-94 10-10-94 10-11-94	10-13-94 10-14-94 10-15-94 10-17-94 10-17-94	10-20-94 10-21-94 10-22-94 10-23-94 10-24-94 10-25-94

0.00025	0.00050	0.00017	0.00015	0.00017	0.00021	0.00038
0.093	0.160	0.069	0.055	0.074	0.120	0.085
00.00	00.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
844	086	888	121	× 1999	408	448
171.0	188.1	188.1	153.9	119.7	102.6	102.6
61.2	68.0	61.2	61.2	54.4	47.6	54.4
7.53 7.77 7.78 7.75 6.68 5.34 7.15	6.57 7.60 6.60 7.37 8.21 8.21	8.27 7.32 7.32 7.32	6.74 7.32 7.13 6.79 7.02 7.35	8.58 8.38 10.42 9.29 9.03 8.63	8.75 9.29 8.52 7.84 7.05 7.34	5.70
6.80 6.85 6.85 6.77 6.77	6.83 6.83 6.79 6.74 7.85	6.81 6.74 6.73 6.73	6.73 6.73 6.72 6.78 6.78	6.79 6.79 6.77 6.69 6.75 6.75	6.69 6.69 6.68 6.73 6.84	6.85 6.88
21.0 20.6 20.7 23.0 25.5 21.9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	19.5 18.4 21.0 21.6	22.5 23.0 23.0 25.5 25.0 25.0 25.0 25.0 25.0 25.0 25	22.9 22.9 20.0 21.3 21.3	200 200 200 200 200 200 200 200 200 200	26.7 23.0
1100 1000 900 1000 1100 1000	1000 1000 700 1000 1000	900 830 1000	000 000	200 1020 1000 1000 1000 1000 1000 1000	0001 0000 0000 0000 0000 0000 0000 000	1100
77 78 79 80 81 82 83 84 84	86 87 88 89 90 90	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 7 101 100 8 8 8 9 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	201 100 100 100 100 100 100 100 100 100	2 2 2 4 4 5 5 7 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	119
10-27-94 10-28-94 10-30-94 10-31-94 11-01-94 11-03-94	11-04-94 11-05-94 11-05-94 11-08-94 11-09-94	11-11-94 11-12-94 11-13-94 11-14-94	11-16-94 11-17-94 11-19-94 11-20-94 11-21-94	11-23-94 11-24-94 11-25-94 11-27-94 11-28-94 11-29-94	12-01-94 12-02-94 12-03-94 12-05-94 12-06-94	12-08-94 12-09-94

0.00030		0.00027	0.00019	0.00031	0.00007	Ø
0.095		0.130	0.091	0.031	0.036	Ø
00.0	}	0.00	00.00	00:00	0.00	0.00
000		0.00	0.00	0.00	0.00	0.00
×1999		1977	1154	537	424	>1999
461.7	:	273.6	239.4	119.7	119.7	564.3
47.6)	54.4	54.4 4	74.8	47.6	61.2
7.84 2.53 8.19 8.56 9.89	8.90 8.77 8.01 7.84 8.18	9.66 6.20 5.02 6.59 8.24 8.01 9.67	8.61 6.75 2.94 8.77 7.58 9.58	9.16 9.16 9.14 9.70 9.61 9.74	6.51 6.51 7.93 6.75 6.75	7.87 7.69 7.20 7.82
6.86 6.78 7.72 7.77 7.78 6.89	6.80 6.66 6.71 6.71 6.80	6.77 7.05 6.86 7.08 7.70 6.85 6.85	6.73 6.87 7.00 6.84 6.85 6.93	7.21 7.61 7.61 7.70 6.77	6.70 6.70 6.75 6.85 6.82 6.82 7.01	7.07 6.93 6.81 6.93
23.1 31.3 24.7 24.6 20.6	21.7 22.3 22.3 22.3	28.0 28.0 28.4 25.5 20.6 20.6 10.0	19.8 27.7 28.5 20.8 20.5 19.0	24.3 24.3 24.3 23.9 23.8 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	23.3 23.3 23.3 23.6 23.6 23.4	23.2 23.9 23.2 22.2
1300 900 900 900 800	100 845 930 1000	000 000 000 000 000 000 000 000 000 00	900 1000 1000 1000 1000 1000	1000 1000 1000 1000 1000 1000 1000 100	900 900 900 1030 1000	1000 1000 1100
122 123 124 125 125	27 128 130 130 131	25 25 25 25 25 25 25 25 25 25 25 25 25 2	140 141 142 144 145	148 149 150 151 152	155 156 157 158 158 160	161 162 163
12-10-94 12-11-94 12-12-94 12-13-94 12-14-94	12-16-94 12-17-94 12-18-94 12-19-94	12-21-94 12-22-94 12-23-94 12-25-94 12-27-94	12-29-94 12-30-94 12-31-94 01-02-95 01-03-95	01-05-95 01-06-95 01-08-95 01-09-95 01-10-95	01-12-95 01-13-95 01-14-95 01-15-95 01-17-95 01-18-95	01-19-95 01-20-95 01-21-95 01-22-95

600000	0.00020	0.00030	0.00054	0.00070	0.00048
0.034	0.088	0.027	0.082	0.072	0.054
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	00.00
342	648	250	241	245	345
102.6	153.9	102.6	102.6	85.5	85.5
47.6	4. 4.	47.6	40.8	34.0	34.0
9.05 9.32 5.67 6.18 6.18 8.18 9.02 9.02	9.9 9.8 9.7 9.7 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
6.92 6.80 6.80 6.75 6.72 6.83 6.83	6.92 6.94 6.93 7.55 7.55	7.22	7.18 7.29 7.08 7.21 7.30	7.25 7.24 7.27 7.27 7.28	7.24 7.27 7.27 7.27 7.27
20.8 20.9 20.0 20.0 20.0 20.0 20.0 20.0 20.0	26.3 26.4 25.3 22.4 22.4	2022 2022 2022 2022 2032 2032 2032 2032	22.2 22.2 22.8 22.5 8 2.7 2.7 2.8 2.7 2.8 2.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3	23.3 23.3 23.3 23.3 23.3 24.6 25.3 25.3 25.3 25.3 25.3 25.3 25.3 25.3	22.23.3 22.23.3 22.29.33.8 23.99.8 23.99.8 23.99.8 23.99.8 23.99.8 23.99.8 23.99.8 23.99.8 23.99.8 23.99.8 23.99.8 23.99.8 23.99.8 23.99.8 23.99.8 23.99.8 23.99.8 23.99.8 23.99.8 24.99.8 25.
600 1100 1000 1000 1000 1000 1000	900 1200 930 930 900 900	900 900 1200 900 900	900 1100 1400 1000 1000 1000	0000 0000 0000 0000 0000 0000 0000 0000	1000 1000 1012 000 000 000
165 166 168 170 171 172 173	175 176 178 180	182 184 185 187 187	189 190 194 194 194	196 198 198 200 201 201	203 204 205 207 207
01-23-95 01-24-95 01-25-95 01-27-95 01-28-95 01-30-95 01-31-95	02-01-39 02-02-95 02-03-95 02-05-95 02-06-95 02-07-95	02-09-95 02-10-95 02-11-95 02-12-95 02-14-95 02-14-95	02-1-95 02-16-95 02-17-95 02-19-95 02-21-95	02-23-95 02-23-95 02-25-95 02-26-95 02-27-95 02-28-95	03-02-95 03-02-95 03-04-95 03-05-95 03-06-95 03-07-95

	0.00034							0.00015							Ø							0.00046							0.00047							0.00043							œ
	0.039							0.019							Ø							0.058							0.062							0.051							æ
	0.00							0.00							0.00							00.00							0.00							00.00							0.00
	0.00							0.00							0.00							0.00							0.00							00.00							0.00
	237							214							231							218							226							246							218
	85.5							85.5							85.5							85.5							85.5							85.5							68.4
	40.8							47.6							47.6							47.6							40.8							40.8							40.8
8.61	8.56	8.29	8.60	8.36	8.39	8.86	8.82	8.90	8.55	8.25	8.29	8.48	8.34	8.46	8.31	7.52	7.82	8.56	7.88	7.56	79.7	7.59	7.45	7.75	8.26	8.16	7.85	7.68	8.01	7.72	7.97	8.28	7.50	7.49	7.39	7.43	7.05	7.70	7.42	7.44	7.71	7.75	7.56
7.33	7.25	7.20	7.22	7.19	7.22	7.26	7.27	7.19	7.28	7.26	7.26	7.26	7.26	7.23	7.21	7.26	7.00	7.03	7.24	7.24	7.23	7.24	7.26	7.04	96.9	7.25	7.29	7.27	7.30	7.33	7.29	7.27	7.26	7.27	7.29	7.30	7.18	7.30	7.24	7.28	7.35	7.35	7.30
22.9	23.0	24.5	23.7	24.8	23.9	24.0	23.5	24.4	24.9	24.9	25.8	24.5	25.0	24.8	24.9	24.8	24.9	24.7	25.1	24.8	24.6	24.8	24.6	24.5	24.6	24.1	24.6	23.9	24.3	24.4	24.8	25.4	24.9	25.2	25.3	25.2	25.1	25.4	25.1	24.9	24.7	25.1	25.0
006	1000	006	1100	1800	006	006	900	006	900	1000	1600	006	006	006	1100	006	915	006	006	006	900	006	006	006	1000	006	006	006	006	900	1100	1300	006	006	006	1100	006	1400	1100	006	006	006	006
209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252
03-08-95	03-09-95	03-10-95	03-11-95	03-12-95	03-13-95	03-14-95	03-15-95	03-16-95	03-17-95	03-18-95	03-19-95	03-20-95	03-21-95	03-22-95	03-23-95	03-24-95	03-25-95	03-26-95	03-27-95	03-28-95	03-29-95	03-30-95	03-31-95	04-01-95	04-02-95	04-03-95	04-04-95	04-05-95	04-06-95	04-07-95	04-08-95	04-09-95	04-10-95	04-11-95	04-12-95	04-13-95	04-14-95	04-15-95	04-16-95	04-17-95	04-18-95	04-19-95	04-20-95

	œ	ď	0.00032 0.00007 0.00101 0.000201
	ro	.	0.076 0.019 0.273 0.0499 29
	0.00	0000	0.00 0.00 38
	00.00	00.00	0.00 0.00 38
	221	552	214 >1999 38
v	85.5	85.5	159.8 68.4 564.3 116.72 38
	40.8	8.04	52.1 34.0 74.8 11.28
7.28 7.34 7.60 7.39 7.23	7.26 7.16 6.90 7.49 7.95 7.48	7.64 7.46 7.48 7.01 7.27 7.35	7.45 2.53 10.42 1.419 272
7.37 7.30 7.30 7.39 7.34	7.33 7.28 7.32 7.32 7.36 7.36	7.36 7.35 7.21 7.20 7.20 7.22	6.62 7.81 271
25.4 25.3 24.5 24.5 24.5	25.0 25.2 25.1 25.0 25.0 24.8	24.8 24.8 24.8 24.8 24.8 25.9 25.5	23.5 18.3 31.3 1.92 272
900 1200 2000 900 900	900 1100 1600 900 900	000000000000000000000000000000000000000	
253 254 255 256 257 257	259 260 261 263 263 265	266 267 268 269 270 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95	04-27-95 04-28-95 04-30-95 05-01-95 05-02-95 05-03-95	05-04-95 05-05-95 05-06-95 05-07-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

 ${}^{\!\!\!a}$ Data not available; analytical instrument would not calibrate.

TANK No. 3 TANK CONCENTRATION: 100% WEST BRANCH OF CANAL CREEK WATER DEN EXPOSURE: 10 mg/L

Total Unionized Ammonia- Nitrogen (mg/L)	0.00153		0.00036	æ	0.00012
Total Ammonia- I Nitrogen / (mg/L)	0.425		0.105	a	0.028
Free Available Chlorine (mg/L)	0.00		00:00	0.00	0.00
Total Residual Chlorine (mg/L)	00.0		0.00	0.00	0.00
Conductivity (umohs/cm)	922		739	546	602
Hardness ((mg/L as (CaCO3)	85.5		102.6	136.8	136.8
Alkalinity (mg/L as CaCO3)	47.6		54.4	08:0	74.8
Dissolved Oxygen (mg/L)	6.75 5.85 5.66 5.79 6.20 5.27 4.78	6.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	6.50 5.97 5.66 5.73 5.10 5.52 6.47	6.31 6.10 6.07 6.59 6.59	6.59 7.08 6.37 6.25 6.25
Нd	7.01 6.90 7.02 6.87 7.03 7.12 6.81	6.81 6.85 6.88 6.80 6.81	6.82 6.77 6.82 6.93 6.89 6.76 7.07	6.91 6.78 7.02 7.01 6.83 6.83	6.90 6.91 6.89 6.90 7.09
Temperature (Celcius)	24.6 25.2 25.1 24.2 24.0 25.1 24.8	24.4 25.1 24.3 23.0 23.0	23.7 24.1 24.5 25.2 22.8 24.3	24.6 24.5 24.5 24.5 24.5 24.5 24.5 24.5	24.0 24.3 23.1 23.1
Time T (Military)	1000 900 900 1000 900 900	800 1000 800 900 730	900 900 800 900 800	900 815 1100 900	1100 900 900 800 500
Trailer Exposure Test Day	- C & 4 & O K	8 0 2 7 7 6	4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	288488	33 33 33 34 35
Date	08-12-94 08-13-94 08-14-94 08-15-94 08-16-94 08-17-94	08-19-94 08-20-94 08-21-94 08-22-94 08-23-94	08-25-94 08-26-94 08-28-94 08-29-94 08-30-94	09-01-94 09-02-94 09-03-94 09-05-94 09-06-94	09-08-94 09-09-94 09-11-94 09-12-94

0.00024	æ	a	a 0.00015	æ	0.00008
0.077	æ	Œ	a 0.033	œ	0.032
0.00	0.00	æ	0.00	0.00	0.00
0.00	00.00	Ø	0.00	00:00	0.00
862	706	206	785	×1999	× 1999
136.8	119.7	136.8	119.7	290.7	513.0
40.8	74.8	47.6	74.8	54.4	40.8
6.81 4.41 5.67 5.35 5.03 5.03	5.66 5.73 6.01 6.80 6.27 6.27	5.76 5.74 5.74 7.08 6.29 6.29 7.01	6.94 7.17 7.49 7.85 5.85 3.62	7.26 6.24 6.65 7.42 7.53 6.98	7.32 6.42 7.24 6.98 7.13 6.60 7.38
7.00 7.02 7.13 6.72 6.84 6.83	6.92 6.95 6.91 6.80 6.81 80	6.91 6.89 6.89 7.06 6.91 6.91 6.87	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.69 6.79 6.79 6.84 6.84	6.74 6.69 6.77 6.80 6.76 6.71 6.80
24.0 26.5 25.5 25.4 25.6 24.3	23.8 24.2 24.2 25.2 25.2 26.1	25.2 26.2 26.2 23.3 23.3 23.3 23.3 23.3	24.0 23.2 23.4 23.4 25.6 25.6 25.6 25.6	23.0 23.0 23.0	24.4 23.2 21.9 22.8 21.3 20.8 20.8
700 1400 1300 1200 820 830	1000 1000 1000 1300 900	1000 1030 1030 900 915 1100	000 011 000 100 100 100 100 100 100 100	900 1300 1300 1000 1000 1000	006 006 006 006 006 008
33 36 37 39	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	54 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	55 57 59 50 50 50 50 50 50 50 50 50 50 50 50 50	65 65 67 67 68	69 70 72 73 74 75
09-13-94 09-14-94 09-15-94 09-16-94 09-17-94 09-18-94	09-20-94 09-21-94 09-22-94 09-23-94 09-24-94 09-25-94	09-27-94 09-28-94 09-30-94 10-01-94 10-03-94 10-03-94	10-05-94 10-06-94 10-08-94 10-09-94 10-11-94	10-12-94 10-13-94 10-15-94 10-17-94 10-18-94	10-19-94 10-20-94 10-22-94 10-23-94 10-25-94 10-26-94

0.00024	0.00053	0.00015	0.00016	0.00015	0.00020	0.00039
0.091	0.180	0.063	0.058	0.070	0.120	0.089
0.00	0.00	0.00	00:0	0.00	00:00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
821	026	666	1228	×1999	400	435
153.9	171.0	205.2	153.9	119.7	102.6	119.7
61.2	0.89	61.2	61.2	54.4	47.6	54.4
7.85 8.17 8.05 8.11 7.58 5.79 7.49	6.92 7.95 7.00 7.92 8.93	8.12 8.37 8.37 7.63	6.96 6.96 6.53 6.57 7.19	6.30 8.83 8.72 9.71 9.44 9.88	8.71 9.02 9.37 8.58 8.13 7.54	8.33 5.80 7.64
6.80 6.85 6.90 6.85 6.77 6.77	6.83 6.83 6.81 6.74 6.74	6.81 6.75 6.73 6.73	6.79 6.79 6.73 6.73 6.78	6.83 6.79 7.09 6.77 6.69 6.75	6.63 6.69 6.69 6.69 6.88	6.85 6.85 6.88
20.7 20.3 20.6 24.9 24.9	202 222 222 222 222 222 222 222 222 222	26.3 18.2 20.8 21.4	22.2 2.12 2.23 2.36 2.36 2.36 2.36 2.36	23.6 18.8 22.7 21.9 19.3 19.1	20.7 19.8 21.2 24.5 24.5 23.2	22.8 26.4 22.5
1100 900 1100 1100 1000	000 1000 1000 1000 1000 1000 1000 1000	900 900 845 1000	000000000000000000000000000000000000000	600 1020 1000 9000 9000 9000	000 1000 1000 000 000 000 000 000 000	1100 1000
77 78 79 80 82 83	8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	95 9 9 9 1 1 2 8 8 9 9 1	98 98 99 101 102	100 100 100 100 100 100	112 113 115 115 115 115 115 115 115 115 115	118 119 120
10-27-94 10-28-94 10-29-94 10-31-94 11-01-94	11-03-94 11-05-94 11-06-94 11-08-94 11-08-94	11-10-94 11-11-94 11-13-94 11-13-94	11-15-94 11-16-94 11-18-94 11-20-94	11-22-94 11-23-94 11-25-94 11-26-94 11-28-94	11-30-94 12-01-94 12-02-94 12-03-94 12-05-94	12-07-94 12-08-94 12-09-94

	0.00023	0.00024	0.00018	0.00033	0.00004	Q
	0.076	0.120	0.089	0.033	0.018	
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	>1999	1972	1094	534	424	×1999
	478.8	273.6	239.4	102.6	119.7	530.1
	47.6	54.4	54.4	74.8	47.6	61.2
8.16 2.88 8.37 8.68	9.07 9.07 8.79 8.15 8.08	9.88 6.42 6.71 6.73 8.33 9.01	2 8 8 9 2 9 8 8 8 9 4 4 9 9 9 9 8 8 8 9 9 9 9 9 9	2.4.8 8.6.3 9.0.9 9.0.9 9.0.9 9.0.9 9.0.9	8.07 7.45 6.57 8.00 8.00	7.92 7.73 7.12 7.82
6.86 6.78 7.72 7.77	6.89 6.89 6.71 6.71	6.77 7.05 7.05 7.08 7.85 7.85 6.85	6.87 6.87 7.00 6.85 6.85 6.86	7.21 7.58 7.63 7.63 6.77 6.77	6.70 6.70 6.75 6.85 6.82 7.01	7.07 6.93 6.81 6.93
22.5 24.5 24.5 24.3	21.0 21.5 21.5 21.6 21.6	27.7 27.7 28.3 27.8 24.6 25.1 19.5	27.3 27.3 20.2 20.2 19.6 7.7	23.5 23.5 23.5 23.5 23.5	20.2 20.2 21.9 23.5 23.7 23.2	22.8 23.4 22.8 21.6
1300 900 900 900	1100 1000 1000	900 900 700 1000 1100	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000 1000 1000 1000 1000	900 900 1030 1000	1000 1000 1100
122 123 124 125 125 127	126 128 130 131	25	141 142 145 145 145	147 148 150 151 152 153	155 155 156 157 158 159 160	161 162 163
12-10-94 12-11-94 12-13-94 12-13-94	12-15-94 12-16-94 12-17-94 12-19-94 12-19-94	12-21-94 12-22-94 12-23-94 12-24-94 12-25-94 12-27-94	12-29-94 12-30-94 12-31-94 01-02-95 01-03-95	01-05-95 01-06-95 01-08-95 01-09-95 01-10-95	01-12-95 01-13-95 01-15-95 01-15-95 01-17-95 01-18-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00006	0.00018	0.00031	0.00041	0.00050	0.00042
0.022	0.085	0.026	0.060	0.052	0.046
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
342	638	250	244	248	347
102.6	153.9	102.6	85.5	85.5	85.5
47.6	54.4	47.6	8.04	34.0	34.0
9.02 9.36 9.05 9.05 8.47 8.84 8.34	8.68 3.11 10.05 3.63 7.97 8.03	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9.50 9.00 9.00 9.15 9.24 4.00 4.00	9.99 9.89 9.80 9.80 9.80 9.80 9.80 9.80	8.78 8.77 9.05 9.05 8.89
6.92 6.80 6.80 6.75 6.75 6.75 7.70	6.94 6.84 6.83 7.49 7.55	7.41	7.18 7.21 7.09 7.08 7.21	7.30 7.29 7.24 7.24 7.27 7.27	7.24 7.27 7.25 7.13 7.27
20.2 21.8 25.5 20.6 19.0 19.9 19.9 19.9	25.9 22.2 22.9 22.9 22.9	222 222 212 213 213 216 316 316 316 316 316 316 316 316 316 3	23.2 23.2 23.2 23.3 23.3 23.3 23.3 23.3	24.0 23.9 24.0 24.0 24.0 24.0 24.0 24.0	24.5 23.2 23.2 23.2 23.3 23.3 24.3
600 1000 1000 1000 1000 1000	900 1200 930 930 900 900	200 200 200 200 200 200 200 200 200 200	900 900 1100 1000 1000 1000	1000 1000 1000 1000 1000 1000 1000 100	900 1000 1015 900
165 166 168 170 171 173	771 771 771 80 180 180	182 183 185 186 187	198 190 193 193 194	200 200 200 200 200 200	202 204 205 207 208
01-23-95 01-24-95 01-25-95 01-27-95 01-28-95 01-30-95 01-31-95	02-01-95 02-02-95 02-03-95 02-05-95 02-06-95 02-07-95	02-00-95 02-10-95 02-11-95 02-13-95 02-13-95 02-13-95	02-15-95 02-16-95 02-17-95 02-18-95 02-20-95 02-21-95	02-22-95 02-23-95 02-25-95 02-26-95 02-27-95 02-28-95	03-01-95 03-02-95 03-03-95 03-04-95 03-05-95 03-06-95

0.00034	0.00015	æ	0.00034	0.00045	0.00043 a
0.031	0.019	ď	0.043	0.059	0.051 a
0.00	0.00	0.00	0:00	0.00	00.0
0.00	0.00	00.0	0.00	0.00	00.00
239	214	232	218	526	247
85.5	85.5	85.5	85.5	85.5	85.5 68.4
40.8	47.6	47.6	47.6	40.8	40.8
8.58 8.37 8.66 8.37 8.34 8.69 8.69	8.54 8.00 8.10 8.25 8.13 7.7	8.12 7.21 7.75 7.75 7.72 7.51	7.53 7.46 7.78 8.12 7.88 7.70	7.74 7.52 7.62 8.12 7.25 7.04	7.25 6.88 7.54 7.42 7.54 7.62
7.33 7.25 7.25 7.29 7.26 7.26 7.26	7.19 7.28 7.26 7.26 7.26	7.25 7.26 7.03 7.24 7.24 7.24	7.24 7.26 7.06 6.99 7.25 7.29	7.29	7.30 7.31 7.24 7.28 7.35 7.35
23.2 24.2 25.2 25.2 23.3 23.3 23.3 23.3 23.3 23	25.1 25.1 25.1 25.3 25.3 25.3	25.1 25.2 25.2 25.2 25.0 25.0	25.2 25.0 25.0 25.0 25.0 25.0 25.0	25.2 25.2 25.3 25.3 25.3 25.3 25.3	25.7 25.3 25.3 25.3 25.3 25.5 25.5 25.5 25.5
000 000 000 000 000 000 000 000	900 1000 900 900 900	900 900 900 900 900	9 9 9 6 9 9 9 9 9 9 9 9 9 9 9 9	900 1100 900 900 900	900 1400 1100 900 900 900
209 212 213 214 215 215 215	217 218 220 221 222 223	225 226 227 228 230	231 232 233 234 235 235 237	238 240 241 242 243 244	245 246 247 249 250 251 252
03-08-95 03-09-95 03-11-95 03-12-95 03-13-95 03-14-95	03-16-95 03-17-95 03-18-95 03-19-95 03-20-95 03-22-95	03-23-95 03-24-95 03-25-95 03-26-95 03-27-95 03-28-95	03-30-95 03-31-95 04-01-95 04-02-95 04-04-95 04-05-95	04-06-95 04-07-95 04-08-95 04-10-95 04-11-95	04-13-95 04-14-95 04-15-95 04-16-95 04-17-95 04-19-95 04-20-95

	α	ro e	0.00031 0.00004 0.00153 0.000266
	a	Ø	0.076 0.018 0.425 0.0753
	0.00	00.00	0.00
	0.00	00.00	0.00
	222	223	214 >1999 38
	855 55	85.5	155.7 68.4 530.1 115.03
	40.8	40.8	51.9 34.0 74.8 11.40
7.15 7.20 7.49 7.14 7.11	7.11 6.95 6.88 7.47 7.75 7.35	7.50 7.45 7.38 7.24 7.45 7.28	7.50 2.84 10.16 1.360 272
7.37 7.30 7.39 7.39 7.34	7.33 7.28 7.32 7.32 7.37 7.36 7.36	7.36 7.35 7.24 7.04 7.20 7.22	6.62 7.85 271
25.8 25.7 25.6 24.9 24.9	25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5	25.3 25.4 25.2 25.3 25.3 25.3 25.3	23.5 17.7 31.2 2.11 272
900 1200 2000 900 900	900 1100 1600 900 900	000000000000000000000000000000000000000	
253 254 255 256 256 257 258	259 260 261 263 264 265	266 267 268 269 270 271	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95	04-27-95 04-28-95 04-29-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-07-95 05-08-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

 ${}^{\mathbf{a}}$ Data not available; analytical instrument would not calibrate.

TANK No. 4 TANK CONCENTRATION: 100% WEST BRANCH OF CANAL CREEK WATER DEN EXPOSURE: 10 mg/L

red red (-		179	040	æ	0.00018
Total Unionized Ammonia- Nitrogen (mg/L)		0.00179	0.00040	_	
Total Ammonia- Nitrogen (mg/L)		0.535	0.118	æ	0.042
Free Available Chlorine (mg/L)		0.00	0:00	0:00	0.00
Total Residual Chlorine (mg/L)		0.00	00:0	0.00	0.00
Conductivity (umohs/cm)		918	732	555	598
Hardness (mg/L as CaCO3)		85.5 5.	102.6	136.8	119.7
Alkalinity (mg/L as CaCO3)		47.6	54. 4.	68.0	0.89
Dissolved Oxygen (mg/L)	6.72 5.77 5.55 5.52 5.91 5.10	4.89 5.22 5.25 5.65 6.44 6.44 6.52	6.35 5.60 6.25 6.29 6.29	6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	6.59 7.02 6.38 6.34 6.50
Æ	7.01 6.90 7.02 6.87 7.03 7.03	6.85 6.85 6.85 6.85 6.80 6.80 6.80	6.82 6.77 6.82 6.93 6.89 6.76 7.07	6.91 6.78 7.01 7.01 6.83 6.83	6.90 6.90 6.80 6.90 7.09
Temperature (Celcius)	24.5 25.2 25.1 24.2 24.0 25.0	24.7 25.2 25.3 25.3 25.3 25.3 25.3 25.3 25.3	23.2 24.0 24.0 25.3 25.3 44.0	24.6 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5	24.1 24.0 24.5 23.4 24.2
Time (Military)	1000 900 900 900 1000 1000	900 1000 800 800 800 900 1000	000 000 000 000 000 000 000 000	900 815 810 1100 900	1100 900 900 800 500
Trailer Exposure Test Day	− 0 € 4 £ 6	۲ 8 0 0 1 2 5	4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	2884888	28 30 33 32
Date	08-12-94 08-13-94 08-14-94 08-15-94 08-16-94 08-17-94	08-18-94 08-19-94 08-20-94 08-21-94 08-22-94 08-23-94	08-25-94 08-26-94 08-27-94 08-28-94 08-29-94 08-30-94	09-01-94 09-02-94 09-03-94 09-04-94 09-05-94 09-06-94	09-08-94 09-09-94 09-10-94 09-11-94

0.00028	W	ro	a 0.00015	Ø	0.00007
0.090	a	a	a 0.033	a	0.029
0.00	0.00	æ	0.00	0.00	0.00
0.00	0.00	æ	0.00	00.0	0.00
857	711	925	780	× 1999	41999
136.8	119.7	136.8	119.7	290.7	513.0
47.6	74.8	47.6	74.8	54.4	40.8
6.78 6.78 6.42 6.42 6.42 6.51 6.52 7.72	6.68 6.68 6.14 6.17 7.73	5.67 2.69 7.05 6.61 6.51 6.63	7.21 7.67 7.58 5.91 5.83 3.95 7.82	6.28 6.28 6.69 7.47 7.53 7.01	6.83 6.83 6.83 6.35 7.34
7.00 7.02 7.16 6.72 6.88 6.88 6.97 6.92	6.80 6.80 6.80 6.80	6.92 6.92 7.07 6.90 6.87 6.87	0.000000000000000000000000000000000000	6.79 6.79 6.70 6.84 6.63	6.80 6.77 6.80 6.76 6.70 6.80
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25.2 26.3 25.2 25.2 25.3	22222222222222222222222222222222222222	23.7 24.3 26.6 25.2 25.2	24.2 24.2 23.7 23.7 23.7	2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23
1300 1200 1200 1000 1000	1000 1300 900 900 900	000 000 000 000 000 000 000 000 000 00	80 110 100 100 100 100 100 100 100 100 1	1300 1300 1000 1000 1000	000000000000000000000000000000000000000
33 37 39 39 40 40	44 4 4 4 4 4 4 4 4 4 4 5 4 5 4 4 6 4 6 4	: 8 4 6 0 7 2 2 2 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	57 58 57 59 59 59 59 59 59 59 59 59 59 59 59 59	64 64 67 67 68	55 4 4 3 3 2 2 4 5 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
09-13-94 09-14-94 09-15-94 09-16-94 09-17-94 09-19-94 09-20-94	09-22-94 09-23-94 09-24-94 09-25-94 09-26-94	09-28-94 09-29-94 10-01-94 10-02-94 10-03-94 10-04-94	10-06-94 10-07-94 10-08-94 10-10-94 10-17-94	10-13-94 10-14-94 10-15-94 10-17-94 10-18-94	10-20-94 10-21-94 10-22-94 10-23-94 10-24-94 10-25-94

0.00024	0.00061	0.00015	0.00014	0.00016	0.00020	0.00045
0.090	0.190	0.062	0.052	0.071	0.120	0.099
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	00.00
864	866	914	1082	1845	412	466
153.9	171.0	188.1	136.8	119.7	102.6	119.7
61.2	68.0	61.1	61.2	54.4	47.6	54.4
7.79 8.06 7.98 8.01 7.44 7.24 7.24	6.70 7.69 6.59 7.60 7.98 7.34	8.03 8.28 8.20 7.56	7.00 7.64 7.43 7.00 7.25 7.56	44.8 9.65 4.00 4.00 4.00 9.00 9.00 9.00 9.00 9.00	6.82 8.30 7.57 7.12 7.87	5.39
6.80 6.85 6.90 6.85 6.78 6.77	6.83 6.83 6.79 6.74 78 6.74	6.85 6.73 6.73	6.79 6.73 6.78 6.78 6.78	0.00 0.70 0.71 0.00 0.00 0.00 0.00 0.00	6.62 6.66 6.68 6.73 6.84	6.85 6.88 6.88
21.0 20.6 21.2 22.3 22.3 22.3 21.5	23.0 23.0 20.8 20.8 20.8 21.7	201 18.1 20.6 21.3 21.3	22.2 22.3 22.3 22.3 22.3 22.3 22.3	22.28 22.28 22.28 22.23 24.25 25 25 25 25 25 25 25 25 25 25 25 25 2	2012 2013 2013 2013 2013 2013 2013 2013	26.7 23.1
1,000 000 000 000 000 000 000 000	1000 1000 1000 1000 1000	830 1000 1000	000000000000000000000000000000000000000	900 730 1020 1000 900 900	900 1000 1100 900 900 900 900	1000
77 78 79 80 81 82 83	88 88 89 89 90 90	0 0 0 0 0 2 0 0 0 0 0	86 8 8 8 6 7 10 1 10 1 10 1 1 1 1 1 1 1 1 1 1 1 1	100 100 100 100 100 100 100 100 100 100	- 1	119
10-27-94 10-28-94 10-30-94 10-31-94 11-01-94 11-02-94	11-04-94 11-05-94 11-08-94 11-09-94 11-09-94	11-11-94 11-12-94 11-14-94	11-16-94 11-18-94 11-19-94 11-20-94 11-21-94	11-25-94 11-25-94 11-25-94 11-26-94 11-27-94 11-29-94	12-02-94 12-03-94 12-03-94 12-05-94 12-06-94	12-09-94 12-09-94

0.00025	0.00023	0.00017	0.00034	0.00004	Ø
0.078	0.110	0.081	0.034	0.020	æ
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
×1999	1980	1167	541	419	×1999
461.7	273.6	239.4	102.6	119.7	547.2
47.6	54.4	54.4	74.8	47.6	61.2
8.05 8.09 8.09 8.94 8.94 7.94 7.94	8 9 9 8 8 8 8 8 9 9 8 8 9 9 9 9 9 9 9 9	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	9.52 9.52 9.26 9.75	8.95 8.53 7.57 6.74 8.30	8.19 7.91 7.21 7.87
6.86 6.78 7.77 7.77 7.78 6.89 6.80 6.71 6.73	6.80 6.77 7.05 7.08 7.81 7.81	6.85 6.87 6.887 6.885 6.885	6.93 7.21 7.60 7.67 7.70 6.77	6.97 6.70 6.75 6.85 6.82	7.07 7.07 6.93 6.81 6.93
22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	21.7 18.4 28.4 28.0 25.3 25.3	20.1 27.4 28.3 20.2 20.2	26.3 23.2 23.7 23.7 23.6 19.4	20.5 20.6 22.0 25.1 23.7 23.0	23.0 23.6 22.0 22.0
1300 900 900 900 800 1100 845 930	1100 1000 1000 700 1100 1100	900 1000 1000 1000 1000 1000	1000 1000 1000 1000 1000	000 000 000 000 000 000 000 000 000 00	1000
22	131 132 134 137 137 137 137	139 141 142 144 144 153	146 147 148 150 151	55 155 156 157 158 158 158	162 163 163 164
12-10-94 12-11-94 12-13-94 12-13-94 12-15-94 12-17-94 12-19-94	12-20-94 12-21-94 12-22-94 12-23-94 12-25-94 12-26-94	12-28-94 12-29-94 12-30-94 12-31-94 01-02-95 01-03-95	01-04-95 01-05-95 01-06-95 01-07-95 01-09-95 01-10-95	01-11-95 01-12-95 01-13-95 01-14-95 01-15-95 01-17-95	01-18-95 01-19-95 01-20-95 01-21-95 01-22-95

0.00005	0.00017	0.00023	0.00030	0.00050	0.00031
0.019	0.077	0.020	0.045	0.044	0.034
0.00	0.00	0.00	0.00	0.00	00.00
0.00	0.00	0.00	0.00	0.00	00.00
340	644	247	241	247	345
102.6	153.9	102.6	85.5	85.5	85.5
47.6	54.4	47.6	40.8	34.0	34.0
9.08 9.50 8.37 9.34 8.81 9.31 9.31	8.76 3.93 10.49 4.36 8.77 9.16	9.38 9.38 10.05 9.86 9.86	9.90 9.90 10.05 9.47 9.49	9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.	9.99 9.02 9.02 9.04 7.8 7.8
6.92 6.80 6.80 6.75 6.72 6.73 7.70	6.76 6.84 6.94 7.49 7.55	7.27 7.27 7.25 7.25 7.24 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25	7.21 7.21 7.09 7.21 7.30	7.29 7.25 7.24 7.27 7.28	727 725 725 7.14 7.27
20.3 21.5 25.7 20.4 18.9 19.6 20.7 19.6	25.9 25.9 25.2 22.5 4.2 22.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23.22.23.23.23.23.23.23.23.23.23.23.23.2	2.4.2 2.3.9 2.3.0 2.4.2 2.3.0 2.4.2 2.3.0 2.4.2	23.5 23.5 23.5 23.5 23.6 23.6
600 1000 1000 830 1000 1000	930 930 930 930 930 930	906 906 906 906 906 906	200 000 100 000 000 000 000 000 000 000	200 000 000 000 000 000 000 000 000 000	900 1000 1015 900
165 166 168 170 171 173 4 7	175 176 177 178 180	182 183 185 186 187	189 192 193 194 194	196 198 198 200 201	203 204 205 207 208
01-23-95 01-24-95 01-25-95 01-27-95 01-28-95 01-30-95 01-31-95	02-02-95 02-03-95 02-04-95 02-05-95 02-06-95 02-07-95	02-09-95 02-10-95 02-12-95 02-13-95 02-14-95	02-1-95 02-16-95 02-18-95 02-19-95 02-21-95 02-21-95	02-23-95 02-23-95 02-25-95 02-26-95 02-27-95 02-28-95 03-01-95	03-02-95 03-03-95 03-04-95 03-05-95 03-06-95 03-07-95

0.00025	0.00014	ro	0.00036	0.00044	0.00041 a
0.027	0.018	æ	0.045	0.058	0.048 a
0:00	00.0	0.00	0.00	0.00	00.00
0.00	0.00	0.00	0.00	0.00	00.00
239	215	231	218	226	246
85.5	85.5 .5	85.5	85.5	85.5	85.5 68.4
40.8	47.6	47.6	47.6	40.8	40.8
8.75 8.56 8.19 8.48 8.08 8.11 8.54	8.56 8.62 8.36 8.10 8.37 8.33	9.40 8.12 7.53 7.78 8.63 8.19 7.60	7.59 7.64 7.82 8.25 8.16 7.66	7.70 7.74 7.85 8.23 7.43 7.45	7.30 7.13 7.13 7.67 7.58 7.74 7.75
7.33 7.22 7.20 7.22 7.19 7.22	7.27 7.19 7.26 7.26 7.26 7.26	7.27 7.26 7.26 6.99 7.24 7.24	7.24	7.27	7.30 7.30 7.24 7.28 7.35 7.35
23.4 23.7 25.1 25.5 24.6 24.8	24.1 25.3 25.3 26.0 24.8 25.3 25.3 25.3	25.2 25.2 25.3 25.3 25.3 25.3	255.3 255.3 255.3 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4	25.2 25.2 25.3 25.3 25.3 25.3	25 25 25 25 25 25 25 25 25 25 25 25 25 2
900 1000 1100 900 900	900 900 900 900 900 900 900	901 900 900 900 900 900	006 006 006 006 006 006 006	9 9 9 1 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1100 900 1100 900 900 900
209 210 211 213 214 215	216 217 218 220 221 222	75 55 55 55 55 55 55 55 55 55 55 55 55 5	232 233 234 235 236 236	238 240 241 243 243 243 243	245 247 247 250 251 251
03-08-95 03-09-95 03-11-95 03-12-95 03-13-95 03-14-95	03-15-95 03-16-95 03-17-95 03-18-95 03-20-95 03-21-95	03-23-95 03-23-95 03-26-95 03-26-95 03-27-95 03-28-95	03-23-30 03-31-95 04-01-95 04-02-95 04-04-95	04-03-93 04-06-95 04-07-95 04-09-95 04-11-95	04-12-95 04-14-95 04-15-95 04-17-95 04-18-95 04-20-95

	a	ro :	0.00031 0.00004 0.00179 0.000311
	a	æ	0.079 0.018 0.535 0.0943
	0.00	00.00	0.00
	0.00	00.00	0.00
	223	223	215 >1999 38
	85.5	85.5	154.4 68.4 547.2 115.28 38
	40.8	40.8	51.9 34.0 74.8 10.96 38
7.49 7.50 7.80 7.54 7.29	7.35 7.25 7.00 7.76 7.98 8.43	7.71 7.62 7.49 7.07 7.68 7.58	7.57 2.69 10.54 1.425 272
7.37 7.30 7.39 7.39 7.34	7.33 7.32 7.32 7.32 7.37 7.36 7.36	7.36 7.35 7.19 7.20 7.22 7.22	6.62 7.81 270
25.8 25.6 24.8 24.9 24.6	25.3 25.2 25.3 25.5 25.5 25.3	25.2 25.2 25.2 25.2 25.2 25.1	23.6 18.1 31.2 2.04 272
900 1200 2000 900 900	1100 1100 1600 900 900 900	000000000000000000000000000000000000000	
253 254 255 256 257 258	259 261 262 263 264 265	266 267 268 269 270 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95	04-27-95 04-28-95 04-29-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-08-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

^aData not available; analytical instrument would not calibrate. b A value of 8.84 was entered in the daily log; however, the value appeard to be a data entry error because all other values for that date were in the 6.8 range. Thus, the value of 8.84 was omitted.

TANK No. 5 TANK CONCENTRATION: 1% GROUNDWATER (WELL CC-27B) DILUTED WITH WEST BRANCH OF CANAL CREEK WATER NO DEN EXPOSURE

Date	Trailer Exposure Test Day	Time (Military)	Temperature (Celcius)	Н	Dissolved Oxygen (mg/L)	Alkalinity (mg/L as CaCO3)	Hardness (mg/L as CaCO3)	Conductivity (umohs/cm)	Total Residual Chlorine (mg/L)	Free Available Chlorine (mg/L)	Total Ammonia- Nitrogen (mg/L)	Total Unionized Ammonia- Nitrogen (mg/L)
08-12-94 08-13-94 08-14-94 08-15-94	- 0 c 4 c	1000 900 900 900 1000	24.6 25.3 25.3 24.1 24.1	7.00 6.89 7.02 6.82 6.94	7.03 5.72 5.57 5.57 5.99							
08-17-94 08-18-94 08-20-94 08-21-94 08-22-94 08-23-94	0 / 8 9 0 1 7 2	1000 900 900 1000 800 800 900 730		7.06 6.87 6.84 6.84 6.85 6.83	4.80 4.70 5.59 6.19 5.94 5.67	47.6	85.5	917	0.00	0.00	0.693	0.00287
08-24-94 08-25-94 08-26-94 08-27-94 08-28-94 08-29-94	£ 4 5 1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1000 1100 900 900 800 900 900 900	24.0 24.0 24.5 25.3 25.3 25.3	6.68 6.82 6.77 6.92 6.92 6.78	6.69 6.56 6.06 6.06 7.83 7.63 8.63 8.63 8.63 8.63 8.63 8.63 8.63	54.4 4	119.7	742	0.00	0.00	0.128	0.00044
08-31-94 09-01-94 09-02-94 09-03-94 09-05-94 09-05-94	222222	800 1100 900 815 810 1100 900		6.88 6.78 7.01 7.06 6.83 6.83	6.07 6.07 6.07 6.05 6.55	08.0	136.8	549	0.00	00:00	æ	æ
09-07-94 09-08-94 09-09-94 09-11-94 09-12-94	27 28 30 33 31 32	1100 900 900 800 500	2.3.0 2.3.0 2.3.0 2.3.0 2.3.0 2.3.0 2.3.0	6.90 6.91 6.91 6.90 7.09	6.62 6.62 7.09 7.09 6.30 6.30	74.8	119.7	599	0.00	0.00	0.030	0.00013

0.00018	a	æ	a 0.00011	a	9.00000
0.067	æ	æ	a 0.025	æ	0.029
0.00	0.00	ซ	0.00	0.00	0.00
0.00	0.00	ro	0.00	0.00	00.00
846	706	806	780	×1999	×1999
136.8	119.7	119.7	119.7	290.7	495.9
40.8	0.89	47.6	74.8	54.4	34.0
6.71 4.29 5.11 5.26 5.53 5.08	5.61 5.62 5.94 6.62 6.16 5.78	5.87 2.83 7.00 6.67 6.99 6.91	7.36 7.36 7.70 6.05 6.05 8.7	6.50 6.50 6.50 7.59 7.13	6.25 6.25 6.78 6.93 6.53 7.16
6.98 6.98 7.10 6.65 6.81 6.83	6.89 6.90 6.88 6.77 6.77 8	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6.92 6.93 6.95 6.95 7.95 7.95 7.95 7.95 7.95 7.95 7.95 7	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.62 6.72 6.73 6.73 6.69 6.70
24.0 26.8 25.6 25.6 25.6 24.4	24.0 24.4 24.4 25.2 25.2 26.3 26.3	24.2 22.2 23.2 22.4 22.4 23.4 23.4 23.4	23.25 24.2 26.2 25.3 27 25.4 3 27 25.4 3 27	22.2 22.2 22.0 22.0 22.0 23.0 24.0	2 2 2 3 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4
700 1400 1300 1200 820 830	1000 1000 1000 1300 900 900	900 1030 900 900 1100 1100	1100 1100 1000 1600	1300 1300 1000 1000 1000	
33 34 36 36 39 39	0 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6	7 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	55 55 60 60 60 60 60	66 66 67 67 68 68	80 72 72 72 73 74 75
09-13-94 09-14-94 09-15-94 09-16-94 09-17-94 09-18-94	09-20-94 09-21-94 09-23-94 09-23-94 09-25-94	09-28-94 09-28-94 09-30-94 10-01-94 10-03-94 10-04-94	10-06-94 10-08-94 10-09-94 10-11-94	10-13-94 10-14-94 10-15-94 10-17-94 10-18-94	10-19-94 10-20-94 10-21-94 10-23-94 10-24-94 10-25-94

0.00022	0.00057	0.00017	0.00011	0.00020	0.00020	0.00036
0.088	0.190	0.070	0.041	0.089	0.110	0.094
0.00	0.00	0.00	0.00	00.0	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
847	970	885	4111	× 1999	412	446
153.9	171.0	171.0	136.8	102.6	102.6	102.6
61.2	68.0	54.4	54.4	4.4	47.6	54.4
7.62 7.96 7.91 7.87 7.28 5.53 6.83	6.67 7.71 6.83 7.63 7.51	6.87 7.88 8.24 7.54	6.89 7.41 6.82 7.12 7.46	6.18 9.63 9.937 9.05 9.05	16.8 16.8 16.7 16.7 16.7 16.7	6.06 7.61
6.75 6.84 6.90 6.85 6.85 6.76 6.76	6.79 6.79 7.83 7.83 7.85 7.85 7.85	6.79 6.75 6.85 6.73	6.73 6.73 6.73 6.73 6.78	6.80 6.75 6.69 6.69 6.89	6.63 6.72 6.72 6.73 6.83 6.83	6.80 6.85 6.85
21.5 21.2 21.2 22.5 22.3 22.3 22.3 22.3	2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.2	25.5 19.7 18.6 27.7 20.0	22.2 23.2 23.3 23.3 23.3 23.3 23.3 23.3	22.23 22.23 22.23 22.23 24.03 24.03 24.03	22.2 22.2 23.4 23.4 23.4 23.4 23.4 23.4	26.1 22.5
001 900 1000 1100 1000	200 000 000 000 000 000 000 000 000 000	1100 900 845 1000	000000000000000000000000000000000000000	600 1020 1000 900 900	000 1000 1100 900 900	11 00 100 00
77 78 79 80 83 83	8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	98 98 100 101 102 102	103 104 105 108 109 109	113 113 114 115 117 117 117 117 117 117 117 117 117	119 120
10-27-94 10-28-94 10-29-94 10-31-94 11-02-94	11-05-94 11-05-94 11-06-94 11-08-94 11-08-94	11-10-94 11-11-94 11-12-94 11-13-94	11-15-94 11-16-94 11-18-94 11-20-94	11-22-94 11-23-94 11-25-94 11-28-94 12-94	11-30-94 12-01-94 12-03-94 12-05-94 12-05-94	12-07-94 12-08-94 12-09-94

	0.00025	0.00024	0.00015	0.00039	0.00004	u2
	0.082	0.110	0.074	0.040	0.018	æ
·	0.00	0.00	0.00	0.00	00.00	0.00
	0.00	00.00	0.00	0.00	0.00	0.00
	>1999	1964	1125	531	427	>1999
	495.9	273.6	205.2	102.6	119.7	547.2
	47.6	54.4	4.4	74.8	40.8	61.2
8.14 2.74 8.20 8.52 8.52	8.83 8.14 8.10 8.10	6.52 6.40 6.61 6.61 7.98 7.98 7.98	8.75 8.75 8.67 8.48 7.51	2 4 8 8 8 9 9 9 5 4 8 8 8 9 9 9 9 5 4 2 5 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9	8 8 2 2 2 2 3 4 5 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7.82 7.41 6.82 7.63
6.84 6.68 7.66 7.69	6.86 6.77 6.73 6.74 6.74	6.82 6.82 6.82 7.72 7.72 6.82 6.82	2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	7.19 7.57 7.64 7.63 7.63 6.70	6.68 6.73 6.73 6.33 6.85 7.00	7.10 6.87 6.75 6.90
22.3 31.2 24.6 24.4	20.6 22.0 22.1 22.5 22.5 23.5	7.7 18.7 28.3 28.3 25.0 25.5 20.8 20.8	27.8 27.8 27.3 27.3 20.8 20.8	2.62 2.42 2.02 2.02 2.03 2.03 2.03 2.03 2.03 2.0	22.7 22.7 23.5 23.5 23.5 23.5	23.4 23.9 24.0 22.9
900 900 900 900	800 1100 1000 1000	900 900 900 900 900 900 900 900 900 900	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1100 1130 1000 1000 1000 1000	1000 800 1030 1000 1000	1000 1000 1000
122 123 124 125 127	126 128 130 130 130	132 134 135 136 138 138	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	54 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	551 156 157 158 159	161 162 163
12-10-94 12-11-94 12-12-94 12-13-94	12-15-94 12-16-94 12-17-94 12-19-94	12-20-34 12-21-94 12-23-94 12-24-94 12-25-94 12-27-94	12-29-94 12-30-94 12-31-94 01-02-95 01-03-95	01-05-95 01-05-95 01-06-95 01-08-95 01-09-95	01-11-95 01-12-95 01-14-95 01-15-95 01-16-95 01-17-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00005	0.00015	0.00016	0.00023	0.00040	0.00017
0.018	0.061	0.015	0.034	0.046	0.020
0.00	0.00	0.00	0.00	0.00	00.00
0.00	0.00	0.00	00:00	0.00	0.00
343	652	248	244	250	347
102.6	153.9	85.5	85.5	85.5	85.5
47.6	54.4	47.6	40.8	34.0	34.0
8.98 9.17 5.63 8.18 9.02 8.67 8.21	9.47 9.40 10.33 10	0.09 89 89 99 99 99 99 99 99 99 99 99 99 99	9.99 9.99 9.95 9.35 9.35 9.35	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6.00 6.00 6.00 6.00 7.00 7.00 7.00 7.00
6.86 6.79 6.78 6.72 6.72 6.75 6.83	6.95 6.85 6.95 6.95 6.93 6.93 6.93	7.22 7.39 7.22 7.21 7.21 7.21	7.27 7.20 7.09 7.08 7.15	7.23 7.22 7.22 7.16 7.25 7.25	7.21 7.20 7.16 7.13 7.18 7.16
21.3 22.5 24.9 20.2 20.2 20.2 20.2	20.5 20.2 25.2 22.9 22.9 22.9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21.5 22.7 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	23.7 24.0 24.1 24.2 24.2 24.2 24.3 24.3 24.3 24.3 24.3	22.3 22.3 22.3 22.3 22.3 22.3
000 1000 1000 1000 1000 1000	900 1000 1200 900 900 900 900	900 900 1200 900 900	900 900 1100 1000 1000	000 1000 1000 1800 800 800 800	900 900 1000 1015 900
165 166 167 168 170 171 172	471 175 178 180 180	182 183 184 185 186	188 190 192 193 193	195 196 198 200 201	202 203 204 205 207 208
01-23-95 01-24-95 01-25-95 01-26-95 01-27-95 01-29-95 01-30-95	02-01-95 02-02-95 02-04-95 02-06-95 02-06-95	02-08-95 02-09-95 02-10-95 02-11-95 02-13-95	02-15-95 02-16-95 02-17-95 02-18-95 02-19-95 02-20-95	02-22-95 02-23-95 02-24-95 02-25-95 02-26-95 02-27-95	03-01-95 03-02-95 03-03-95 03-05-95 03-06-95 03-07-95

0.00019	0.00011	œ	0.00039	0.00035	0.00038 a
0.024 0.	0.015 0.	œ	0.043 0.	0.047 0.	0.046 0. a
0.00	00:00	00.00	0.00	00.00	0.00
0.00	00:00	00.00	00.00	0.00	00.00
239	212	232	217	226	246
85.5	85.5 5	85.5	85.5	85.5	85.5 68.4
8.08	47.6	47.6	47.6	40.8	40.8
8.78 8.55 8.55 8.87 8.61 8.70 8.86	8.82 8.53 8.28 8.34 8.34 8.32 8.61	8.24 8.00 8.74 8.22 7.87 8.00	7.74 7.66 8.07 8.57 8.29 8.05 8.03	8.17 8.03 8.08 8.49 7.48 7.55	7.32 7.03 7.91 7.86 7.75 8.01
7.24 7.22 7.12 7.19 7.18 7.20	7.15 7.21 7.18 7.18 7.23 7.19	7.19 7.22 7.09 7.07 7.24 7.24	7.30 7.22 7.12 7.06 7.23 7.30	7.29 7.27 7.24 7.23 7.30	7.29 7.15 7.28 7.21 7.39 7.33
22.1 22.5 23.7 23.3 23.3 23.4 22.8	24.5 24.7 25.5 25.6 24.8 24.8	24.8 24.8 24.8 24.9 24.8 24.8	24.7 24.5 24.5 24.5 24.8 23.5	24.6 25.0 25.5 25.5 25.2 25.2	25.3 25.0 24.5 24.3 24.3 24.7
900 11000 1100 900 900	900 1000 1600 900 900	900 900 900 900 900	900 900 900 900 900	900 1700 1300 900 900	900 900 1100 900 900 900
209 210 211 213 215 215	217 220 222 223 233	224 225 227 229 230	234 233 234 234 236 237	238 240 241 242 244	245 246 247 248 250 251
03-08-95 03-09-95 03-10-95 03-11-95 03-12-95 03-13-95 03-14-95	03-16-95 03-17-95 03-18-95 03-20-95 03-21-95	03-23-95 03-24-95 03-25-95 03-26-95 03-27-95 03-28-95	03-30-95 03-31-95 04-01-95 04-02-95 04-03-95 04-05-95	04-06-95 04-07-95 04-08-95 04-09-95 04-10-95 04-12-95	04-13-95 04-14-95 04-15-95 04-16-95 04-18-95 04-19-95

	on and a second	α	0.00032 0.00004 0.00287 0.000499
	a	æ	0.081 0.015 0.693 0.1223
:	0.00	00:0	0.00
:	00.00	00.00	0.00
į	221	522	212 >1999 38
;	8 5.5 2.	85.5	152.1 68.4 547.2 116.30
	40.8	40.8	51.0 34.0 74.8 11.22
7.47 7.56 7.68 7.50 7.42	7.31 7.37 7.02 7.68 7.96 8.45	7.79 7.68 7.47 7.38 7.75 7.48	7.55 2.74 10.43 1.394 272
7.36 7.28 7.28 7.38 7.30	7.32 7.27 7.30 7.34 7.34 7.35	7.35 7.33 7.05 7.20 7.20 7.20	6.33 7.77 271
25.1 25.4 25.4 24.5 24.5 24.5	25.0 25.2 25.1 25.1 25.0 24.9	24.8 25.1 25.0 25.0 25.0 25.0	23.6 18.6 31.2 1.82 272
900 2000 900 900 900	900 1100 1600 900 900	006 006 006 006 006	
253 254 255 256 257 258	259 260 261 263 263 265	266 267 268 269 270 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95	04-27-95 04-28-95 04-29-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-07-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

 $\mathbf{a}_{\mathbf{b}}$ Data not available; analytical instrument would not calibrate.

TANK No. 6 TANK CONCENTRATION: 1% GROUNDWATER (WELL CC-27B) DILUTED WITH WEST BRANCH OF CANAL CREEK WATER NO DEN EXPOSURE

Date	Trailer Exposure Test Day	Time (Military)	Temperature (Celcius)	F	Dissolved Oxygen (mg/L)	Alkalinity (mg/L as CaCO3)	Hardness (mg/L as CaCO3)	Conductivity (umohs/cm)	Total Residual Chlorine (mg/L)	Free Available Chlorine (mg/L)	Total Ammonia- Nitrogen (mg/L)	Total Unionized Ammonia- Nitrogen (mg/L)
08-12-94 08-13-94 08-14-94 08-15-94 08-16-94	+ C C C 4 C	1000 900 900 900 1000	24.6 25.3 25.2 24.1 24.1	7.00 6.92 7.02 6.82 6.94	7.00 5.88 5.74 5.84 6.09							
08-17-94 08-18-94 08-20-94 08-21-94 08-22-94	0 / 8 9 0 1 1 (900 900 1000 800 900 900 900 900		6.87 6.87 6.80 6.84 6.86 6.86	5.07 4.79 5.56 6.14 5.87	47.6	85.5	913	0.00	0.00	0.518	0.00216
08-23-94 08-24-94 08-25-94 08-27-94 08-28-94 08-29-94	2 2 2 4 4 5 6 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7.30 1000 1100 900 900 900 900 900	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6.83 6.82 6.77 6.82 6.92 6.93 6.93 6.93 6.93	48.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	54.4	119.7	741	00.0	0.00	0.148	0.00051
09-01-94 09-01-94 09-02-94 09-04-94 09-05-94 09-05-94	222 222 242 253 253 253 253 253 253 253 253 253 25	815 815 815 810 810 900		6.88 6.78 7.02 7.05 6.83	6.52 6.52 6.53 6.53 6.53	68.0	136.8	545	00.00	0.00	a	a
09-07-94 09-08-94 09-09-94 09-10-94 09-11-94	33 33 35 55 57 33 33 33 33 33 33 33 33 33 33 33 33 33	900 900 900 800 800		6.86 6.90 6.91 6.89 7.09	6.80 6.60 7.05 6.33 6.24 6.24	68.0	136.8	298	0.00	0.00	0.048	0.00020

0.00019	a	Ø	0.00014	a	0.00007
0.072	(C)	ro	a 0.033	a	0.033
0.00	0.00	Ø	0.00	0.00	0.00
0.00	0.00	æ	0.00	0.00	0.00
850	707	925	780	×1999	41999
119.7	136.8	119.7	136.8	307.8	495.9
40.8	68.0	47.6	74.8	54.4	34.0
66 6 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 5 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5.82 2.82 7.06 6.53 6.63 7.6 7.6	7.25 7.67 7.53 5.83 3.61 7.8	7.3 6.44 6.80 7.51 7.58 7.08	6.22 6.22 6.75 6.75 6.29 6.29 7.16
6.98 6.65 6.65 6.80 6.83 6.93 6.95	6.88 6.77 6.77 8 6.78	6.73 6.89 6.86 7.01 7.01 6.88 6.88	6.95 6.95 6.92 6.92 6.92 6.92	6.69 6.69 6.69 6.69 6.62	6.62 6.72 6.73 6.74 6.69 6.70
24.1 26.3 25.6 25.6 24.4 23.9 23.9	24.2 24.2 24.2 25.2 26.3	22.2 2.2 2.2 2.2 2.3 2.3 3.5 3.5 3.5 3.5 3.5 5 3.5 5 5 5 5 5 5	23.5 23.5 24.5 25.8 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4	23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	23.6 22.2 23.0 22.1 22.1 22.1 22.1
700 1300 1200 1200 820 1000 1000	1000 1300 1300 1300	1000 1030 1030 1030 1000 1100 1100 1000 1	1000 1100 1000 1000 1000	000 000 000 000 000 000 000 000 000 00	
33 34 4 3 3 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	- 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	55 56 60 61 61 61	65 65 67 68 68	88272284 8877284 898
09-13-94 09-14-94 09-16-94 09-17-94 09-18-94 09-20-94	09-22-94 09-23-94 09-24-94 09-25-94 09-26-94	09-28-94 09-28-94 09-30-94 10-01-94 10-03-94 10-04-94	10-06-94 10-07-94 10-08-94 10-10-94 10-10-94	10-12-94 10-13-94 10-15-94 10-17-94 10-18-94	10-16-94 10-20-94 10-23-94 10-23-94 10-25-94

0.00022	0.00059	0.00019	0.00013	0.00018	0.00020	0.00032
0.088	0.200	0.084	0.047	0.082	0.110	0.083
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
837	962	894	1134	v 1999	414	449
153.9	171.0	171.0	136.8	119.7	102.6	102.6
61.2	0.89	54.4	54.4	54.4	47.6	54.4
7.71 7.93 7.94 7.85 7.21 5.57	6.83 6.80 7.54 7.54 8.38	7.92 8.19 8.05 7.42	6.73 6.73 6.73 6.77 7.38 7.38	2. 8. 8. 9. 0. 9. 8. 8. 9. 0. 0. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	8.78 8.65 8.65 7.16 7.48	5.94 7.46
6.84 6.85 6.85 6.85 6.75 6.75	6.79 6.79 6.79 6.76 6.76 7.85 7.85	6.74 6.74 6.73 6.73	2000 2000 2000 2000 2000 2000 2000 200	6.69 6.69 6.69 6.69 6.68	6.62 6.72 6.73 6.71 6.81	6.80 6.85
20.7 20.3 20.3 22.2 25.2 25.2 7.17	2.12 2.12 2.12 2.12 2.13 2.13 2.14 2.15 2.15 2.15 2.15 2.15 2.15 2.15 2.15	21.0 19.0 21.4 24.4	24.5 24.5 22.6 22.8 22.8 25.5 25.5 25.5 25.5 25.5 25.5	200 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	21.0 21.0 22.4 22.9 5.9	25.9 22.2
1000 900 900 1000 1000	900000000000000000000000000000000000000	8 8 8 0 000 8 30 000 6	000 000 000 000 000 000 000 000 000 00	800 1020 1000 900 900	1000 1000 1100 900 900	1100
77 78 79 80 81 82 83	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- 29 9 9 9 - 25 8 4 55 4	8 8 8 9 5 101 102 5 2 5 5	104 105 107 108 110 110	11111111111111111111111111111111111111	119
10-27-94 10-28-94 10-29-94 10-30-94 11-02-94	11-05-94 11-05-94 11-06-94 11-08-94 11-09-94	11-12-94 11-13-94 11-14-94	11-16-94 11-17-94 11-18-94 11-19-94 11-21-94	11-23-94 11-24-94 11-25-94 11-27-94 11-29-94 11-39-94	12-01-94 12-02-94 12-03-94 12-05-94 12-06-94	12-08-94 12-09-94

0.00026	0.00022	0.00015	0.00028	0.00004	Ø
0.086	0.100	0.074	0.029	0.018	æ
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
>1999	1964	1164	543	433	>1999
444.6	256.5	205.2	102.6	119.9	530.1
47.6	54.4	54.4	74.8	47.6	61.2
8.06 8.21 8.21 8.62 9.82 8.78 7.90	7.86 8.27 9.70 6.31 5.21 6.60 7.96	8 8 9 9 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6.00 4 6.00 6.00 6.00 6.00 6.00 6.00 6.0	8.78 8.12 7.96 7.42 6.60 6.82 7.95	6.75 8.04 7.72 7.05 7.92
6.84 6.68 7.66 7.67 6.77 6.74 6.73	6.71 6.80 6.77 7.05 7.08 7.78 7.72	6.82 6.80 6.70 6.98 6.98 6.80 8.00 8.00 8.00	6.90 7.19 7.58 7.66 7.63 7.63 6.70	6.85 6.68 6.73 6.71 6.85 6.83	7.00 7.10 6.87 6.90
22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	22.3 18.9 27.9 28.0 28.0 25.3	20.7 20.6 27.6 20.9 20.9 20.9 20.9	24.5 24.5 24.5 24.2 20.1	20.5 21.0 21.4 22.4 25.4 23.6	23.7 23.9 23.9 23.7 22.6
1300 900 900 100 845 930	0001 0000 0000 0000 0000 0000 0000 000	000 000 000 000 000 000 000 000 000 00	1000 1130 1000 1000 1000	1000 1100 900 800 1030	1000 1000 1000 1000
22 22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	130 132 134 135 135 136	138 139 141 142 143 143 143 143 143 143 143 143 143 143	148 149 150 151	153 154 156 157 158	160 162 163 164
12-10-94 12-11-94 12-12-94 12-13-94 12-15-94 12-16-94 12-17-94	12-19-94 12-20-94 12-22-94 12-23-94 12-24-94 12-25-94	12-27-94 12-28-94 12-29-94 12-30-94 12-31-94 01-02-95 01-03-95	01-04-95 01-05-95 01-06-95 01-08-95 01-09-95 01-10-95	01-11-95 01-12-95 01-13-95 01-14-95 01-15-95 01-16-95	01-18-95 01-19-95 01-20-95 01-21-95 01-22-95

0.00005	0.00014	0.00019	0.00021	0.00040	0.00017
0.019	0.057	0.017	0.031	0.050	0.020
0.00	0.00	0.00	0.00	00:00	00.00
0.00	0.00	0.00	0.00	00.00	0.00
344	299	248	244	251	347
102.6	153.9	85.5	85.5	85.5	85.5
47.6	54.4	47.6	40.8	34.0	34.0
9. 9. 18 9. 9. 3.3 9. 2.7 9. 3.3 9. 3.3 5.7	8.39 8.50 8.39 8.50 8.50	9.32 9.32 9.42 9.59 9.59	9.77 9.88 9.58 9.30	9.05 9.05 9.05 9.05 8.05 8.05 8.05	8.83 8.78 8.97 9.01 8.83
6.86 6.79 6.80 6.78 6.72 6.74 6.78 6.83	6.78 6.84 6.95 6.83 7.49 7.40	7.34	7.18 7.20 7.09 7.06 7.15	7.22 7.22 7.25 7.25 7.25 7.25 7.25 7.25	7.21 7.20 7.16 7.09 7.18
20.8 22.1 20.8 20.2 23.0 20.8 19.9	26.0 26.0 25.2 21.9 22.6 22.6	222 222 222 244 244 244 244 244 244 244	23.0 23.0 23.8 23.7 23.7 23.7	24.5 24.3 24.4 24.4 24.4 24.4 24.4 24.4 24.4	24.4 22.5 22.5 22.5 22.7
600 1 1000 1000 1000 830 1000 1000	930 1200 930 930 900	250 250 200 200 200 200 200 200 200 200	200 000 1400 000 000 000 000 000	900 1000 1800 900 900 900 900	900 1000 1015 900
165 166 167 170 172 173 173	175 176 177 178 180	185 185 186 187 187 187 187	189 192 194 194 194	200 198 198 200 201 201	203 204 205 207 207
01-23-95 01-24-95 01-25-95 01-26-95 01-28-95 01-29-95 01-30-95 02-01-95	02-02-95 02-03-95 02-04-95 02-05-95 02-07-95 07-08-95	02-09-95 02-10-95 02-11-95 02-13-95 02-14-95	02-16-95 02-17-95 02-18-95 02-19-95 02-20-95	02-22-95 02-23-95 02-25-95 02-26-95 02-27-95 03-01-95	03-02-95 03-03-95 03-04-95 03-05-95 03-06-95 03-07-95

0.00019	0.00011	æ	0.00046	0.00037	0.00036 a
0.023	0.015	æ	0.051	0.049	0.044 a
0.00	0.00	0.00	0.00	0.00	0.00
0.00	00.00	0.00	0.00	0.00	00.00
241	213	233	218	526	246
85.5	85.5	85.5	85.5	85.5	85.5 68.4
40.8	47.6	47.6	47.6	40.8	40.8 40.8
8.73 8.61 8.40 8.67 8.52 8.77	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8.22 7.56 8.04 8.65 8.19 8.19	8.05 8.05 8.25 7.86 7.86 7.86	8.80 7.80 7.50 7.50 8.80 7.50	7.27 7.10 7.68 7.63 7.66 7.83 7.95
7.24 7.22 7.12 7.19 7.18 7.20	7.27 7.27 7.27 7.18 7.16 7.23	7.19 7.22 7.10 7.09 7.18	7.30 7.22 7.13 7.13 7.30 7.30	7.29 7.20 7.27 7.24 7.30 7.30	7.29 7.28 7.24 7.34 7.33
22.5 23.0 24.5 24.9 24.9 24.9	2,42,42,42,42,42,42,42,42,42,42,42,42,42	25.0 25.0 25.0 25.0 25.0 25.0 25.0	2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2	25.6 25.7 25.7 24.8 25.0 25.0
900 1000 1100 1800 900 900 900	8 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	900 900 900 900 900	900 900 900 900 900	900 1100 1300 900 900	1100 900 1100 1100 900 900 900
209 211 212 213 214 215 215	222 222 223 233 234 237 237 237 237 237 237 237 237 237 237	22 22 25 25 25 25 25 25 25 25 25 25 25 2	232 233 234 235 236	233 240 241 243 243	245 246 248 248 250 251 252
03-08-95 03-09-95 03-10-95 03-12-95 03-13-95 03-14-95	03-16-95 03-16-95 03-18-95 03-19-95 03-20-95	03-23-95 03-24-95 03-25-95 03-26-95 03-27-95 03-28-95	03-30-95 03-31-95 04-01-95 04-03-95 04-04-95	04-06-95 04-06-95 04-08-95 04-10-95 04-11-95	04-13-95 04-14-95 04-16-95 04-17-95 04-18-95 04-19-95

æ	d .	ro l	0.00030 0.00004 0.00216 0.000375
ro	3	æ	0.077 0.015 0.518 0.0930 29
00.0		0.00	0.00 0.00 38
000		0.00	0.00 0.00 38
221		523	213 >1999
က တိ		အ လ လ	151.7 68.4 530.1 110.76
40.8 8.0		4 0.8 8.	51.0 34.0 74.8 10.78 38
7.46 7.43 7.56 7.13 7.21	7.20 7.20 7.50 7.86 8.18	7.62 7.62 7.27 7.33 7.34 7.34	7.52 2.75 10.380 1.385 272
7.36 7.28 7.28 7.38 7.30 7.34	7.27 7.30 7.34 7.34 7.35	7.35 7.33 7.06 7.06 7.20 7.21 7.21	6.62 7.78 271
25.3 25.6 24.7 24.8 25.3 25.3	25.3 25.3 25.3 25.3 25.3	25.0 25.2 25.2 25.2 25.2 25.2 25.8	23.6 18.5 31.1 1.91 272
2000 2000 900 900 900	1100 1600 1600 900 900	000 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
253 254 255 257 257 259	262 263 263 264 265 265	266 267 268 269 270 271 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-28-95 04-29-95 04-30-95 05-01-95 05-02-95 05-03-95	05-04-95 05-05-95 05-06-95 05-08-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

 ${}^{2}\!\mathrm{Data}$ not available; analytical instrument would not calibrate.

TANK No. 7 TANK CONCENTRATION: 1% GROUNDWATER (WELL CC-27B) DILUTED WITH WEST BRANCH OFCANAL CREEK WATER DEN EXPOSURE: 10 mg/L

Date	Trailer Exposure Test Day	Time (Military)	Temperature (Celcius)	Hď	Dissolved Oxygen (mg/L)	Alkalinity (mg/L as CaCO3)	Hardness (mg/L as CaCO3)	Conductivity (umohs/cm)	Total Residual Chlorine (mg/L)	Free Available Chlorine (mg/L)	Total Ammonia- Nitrogen (mg/L)	Total Unionized Ammonia- Nitrogen (mg/L)
08-12-94 08-13-94 08-14-94 08-15-94	+0 m 4 m	1000 900 900 900	24.7 25.3 25.3 24.1	7.00 6.89 7.01 6.83	6.46 5.53 5.34 5.34				·			
08-17-94 08-18-94 08-19-94 08-20-94 08-22-94	0010001	900 900 900 900 900 900 900		6.77 6.77 6.78 6.84 6.87 6.87	3.76 3.76 4.97 5.73 5.02	47.6	68.4	896	0.00	0.00	0.526	0.00173
08-23-94 08-24-94 08-25-94 08-26-94 08-27-94 08-28-94	2 t t t t t t t t t t t t t t t t t t t	730 1000 1100 900 900 800 900		6.81 6.88 6.77 6.77 6.90 6.88	6.07 6.04 6.04 5.60 5.39 6.75	54.4	102.6	742	0.00	0.00	0.150	0.00049
08-30-94 08-31-94 09-01-94 09-02-94 09-03-94 09-04-94	20 21 22 23 24 24	900 800 1100 900 815		6.76 7.06 6.88 6.78 7.01 7.04	5.11 6.15 5.80 5.31 5.75 5.82	68.0	136.8	547	0.00	0.00	a	Ø
09-05-94 09-06-94 09-07-94 09-08-94 09-10-94 09-11-94	25 26 27 28 29 30 31 32	1100 900 800 1100 900 900 800 800 500	24.4 24.0 23.9 23.9 24.2 24.2 25.9 25.9 25.9	6.83 6.83 6.90 6.90 7.09	6.20 6.22 6.23 6.23 6.71 6.09 6.09 6.34	98.0	136.8	598	0.00	0.00	0.033	0.00014

0.00016	æ	a	a 0.00014	æ	0.00007
0.056	æ	œ	a 0.036	a	0.033
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	00.00
842	705	919	778	×1999	×1999
119.7	119.7	119.7	136.8	307.8	530.1
40.8	68.0	47.6	74.8	54.4	40.8
6.55 6.55 6.55 7.11 6.10 7.52 7.52 7.53 7.53	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6.29 6.29 6.29 6.29 6.46	6.89 7.20 7.20 5.34 6.34 6.34	6.07 6.07 6.30 7.19 6.61 6.61	6.06 6.93 6.67 6.75 6.19 7.31
6.98 6.98 7.10 6.70 6.80 6.82 6.95	6.88 6.77 6.76 8.78 8.78	6.84 6.83 6.83 6.83 6.83 6.83 6.83	6.88 6.88 6.82 6.80 7.00 7.00	6.83 6.83 6.83 6.83 7.7 7.7	6.62 6.73 6.78 6.71 6.70 6.70
23.9 26.3 25.5 25.6 24.3 23.7 23.7	24.2 24.2 25.2 26.3 26.3	242 242 242 252 252 252 252 253 253 253 253 253 25	24.2 24.3 24.2 25.3 25.3 25.3 25.3	23.3 22.3 22.3 22.3 22.3	22.5 22.5 22.5 22.5 22.5 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6
700 1300 1200 1000 1000	900 1300 900 900	000 1030 100 1100 100 100 100	100 100 100 160 160 160	1300 1300 900 1000 800	000 000 000 000 000 000 000 000 000 00
38 8 8 8 9 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	55 55 56 61 61	64 64 67 67 68	8 0 1 2 2 2 4 2 5 5 4 5 5 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
09-13-94 09-14-94 09-15-94 09-17-94 09-18-94 09-20-94	09-22-94 09-23-94 09-23-94 09-25-94 09-26-94	09-28-94 09-29-94 10-01-94 10-02-94 10-03-94 10-04-94	10-06-94 10-07-94 10-08-94 10-10-94 10-17-94	10-13-94 10-13-94 10-15-94 10-16-94 10-18-94	10-20-94 10-22-94 10-23-94 10-24-94 10-25-94 10-26-94

0.00020	0.00057	0.00015	0.00012	0.00018	0.00019	0.00034
0.081	0.190	0.065	0.044	0.083	0.110	060.0
0.00	0.00	0.00	0.00	00.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	00.00	00.00
845	962	930	1 1	×1999	411	447
171.0	171.0	171.0	136.8	119.7	102.6	102.6
54.4	0.89	54.4 4	54.4	54.4	47.6	54.4
7.81 8.08 8.04 7.97 7.32 5.82 7.22 6.04	6.76 6.91 7.61 7.81 7.81 7.81	7.10 7.94 8.28 8.12 7.45	6.61 7.17 6.61 7.13 7.13 7.13 7.13	0.5.8 8.6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	6.40 8.73 8.61 7.17 7.39	6.03 7.43
6.78 6.85 6.85 6.85 6.76 6.76	6.85 6.79 6.79 6.79 6.76 6.85	6.73 6.73 6.73 6.73	6.73 6.73 6.73 6.73 6.78	0.000 2.000 2.000 2.000 3.000	6.69 6.72 6.69 6.72 6.72 6.72 6.72 6.73 6.73	6.80 6.85
20.2 20.2 20.3 20.3 20.3 20.0 20.0 20.0	22.2 22.2 22.2 22.3 22.3 3.3 4.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5	25.0 19.0 20.7 21.4	22.2 23.0 22.1 22.1 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	23.5 22.6 22.5 22.5 20.5 20.6 20.6	20.7 20.7 27.7 22.7 22.7 23.7 20.7	25.8 21.9
000 000 000 000 000 000 000 000 000 00	2000 000 000 000 000 000 000 000 000 00	900 900 845 1000	000000000000000000000000000000000000000	900 1020 1000 900 900	3 8 9 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000
77 78 80 88 83 83 83 83 83 83 83 83 83 83 83 83	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 9 9 9 9	8 8 8 9 7 10 10 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9	201 100 100 100 100 100 100 100 100 100	- 2	119 120
10-27-94 10-28-94 10-29-94 10-31-94 11-01-94	11-05-94 11-05-94 11-06-94 11-08-94 11-09-94	11-10-94 11-11-94 11-13-94 11-14-94	11-10-94 11-16-94 11-19-94 11-20-94 11-20-94	11-25-94 11-23-94 11-25-94 11-26-94 11-28-94	11-30-94 12-01-94 12-03-94 12-03-94 12-05-94 12-06-94	12-01-94 12-08-94 12-09-94

	0.00023	0.00020	0.00013	0.00028	0.00003	a
	0.078	0.100	0.071	0.030	0.018	Ø
	0.00	0.00	00.00	0.00	00.00	00.00
	0.00	0.00	0.00	0.00	0.00	0.00
	×1999	1938	1152	141	424	>1999
	427.5	256.5	205.2	102.6	102.6	513.0
	47.6	54.4	54.4	74.8	47.6	61.2
7.95 3.01 8.29 8.79	9.85 8.79 8.63 7.78 7.73	9.10 9.61 6.77 7.04 8.40 8.25 8.82 6.3	8.60 7.04 3.28 8.85 7.77 7.77	9.57 9.16 9.11 9.27 9.27	8.28 8.28 7.24 6.48 7.97 6.77	8.04 7.75 6.84 7.72
6.84 6.68 7.66 7.70	6.86 6.77 6.73 6.73	6.82 7.05 7.08 7.72 7.72 8.82 8.83	2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	7.19 7.60 7.69 7.66 6.70 6.85	6.68 6.69 6.71 6.85 6.83 7.00	7.10 6.87 6.75 6.89
22.0 31.0 24.3 24.3	22222 22222 22222 23222 2322 2322 2322	27.5 27.5 27.5 27.5 26.0 26.0 26.0	26.9 20.9 20.9 20.9 21.6 21.6	22.9 22.9 22.9 23.7 23.5 19.0	20.3 20.3 22.1 23.3 22.4 22.9	22.5 22.9 23.1 22.0
1300 900 900 900	800 1100 845 930 1000	000 000 000 000 000 000 000 000 000 00	000 1000 1000 1000 1000 1000	1100 1000 1000 1000 1000	900 900 1030 1000 1000	1000 1000 1100
121 123 123 751	126 127 128 130	135 135 138 138 138 138 138	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	747 148 150 151 152	155 155 157 158 159	161 162 163
12-10-94 12-11-94 12-12-94 12-13-94	12-15-94 12-16-94 12-17-94 12-19-94 12-19-94	12-20-34 12-21-94 12-23-94 12-23-94 12-25-94 12-27-94	12-29-94 12-30-94 12-31-94 01-02-95 01-03-95	01-05-95 01-06-95 01-08-95 01-09-95 01-10-95	01-12-95 01-13-95 01-14-95 01-15-95 01-17-95 01-18-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00005	0.00012	0.00016	0.00020	0.00040	0.00018
0.020	0.054	0.015	0.030	0.051	0.022
00.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
340	641	247	243	249	343
102.6	153.9	85.5	85.5	85.5	85.5
47.6	54.4 4.	47.6	40.8	34.0	34.0
9.31 9.31 9.29 9.29 8.53 9.26	8.58 8.58 8.58 8.58 8.58	9.55 9.55 9.81 10.03 9.97	9.78 9.87 9.41 9.47 9.47	9.99 9.33 9.34 9.18	9.20 9.07 9.04 9.14 9.20
6.86 6.79 6.78 6.68 6.78 6.78 7.62	6.95 6.84 6.83 7.49 7.49	7.22 7.22 7.22 7.24 7.27 7.27 7.27	7.27 7.20 7.09 7.06 7.15	7.23	7.15 7.20 7.16 7.12 7.18 7.18
20.1 24.3 20.1 18.2 19.1 19.7 18.7	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	22222222 2223222 22232222	21.3 22.9 23.5 23.5 23.5 23.5	23.6 24.1 23.9 24.0 24.0 24.0	24.3 24.0 22.8 23.0 23.9 23.1
000 1000 1000 1000 1000 1000 1000 1000	1200 1200 930 9030	200 200 200 200 200 200 200 200 200 200	900 900 1100 1000 1000	1000 1000 1000 1800 900 900	900 1000 1015 900 900
165 166 168 170 171 172 173	471 771 771 779 81	182 183 185 186 186 186 186	192 193 193 193	195 196 198 200 201	202 204 205 207 207
01-23-95 01-24-95 01-25-95 01-26-95 01-28-95 01-30-95 01-31-95	02-07-45 02-02-95 02-03-95 02-05-95 02-06-95 02-07-95	02-08-95 02-09-95 02-11-95 02-12-95 02-13-95 02-14-95	02-15-95 02-16-95 02-17-95 02-18-95 02-20-95 02-21-95	02-22-95 02-23-95 02-24-95 02-25-95 02-26-95 02-28-95	03-07-95 03-03-95 03-04-95 03-05-95 03-06-95 03-07-95

0.00019	0.00011	æ	0.05100	0.00038	0.00032 a
0.023	0.015	a	0.056	0.051	0.039 a
00.00	0.00	0.00	0.00	0.00	00.00
0.00	0.00	00.00	0.00	0.00	0.00
241	217	236	222	231	222
85.5	85. 5.	85.5	85.5	85.5	85.5 68.4
40.8	47.6	47.6	47.6	8.04	40.8
8.94 8.90 8.60 8.75 8.75 8.77 8.87 8.84	8.53 8.53 8.28 8.42 8.43 8.72	8.22 7.48 8.01 8.67 8.33 7.95	7.52 7.60 7.98 8.55 8.15 7.88 7.88	8.00 7.86 7.34 7.39 7.39	7.15 7.08 7.69 7.67 7.66 7.72 7.83
7.24 7.22 7.12 7.19 7.18 7.20	7.27 7.27 7.27 7.18 7.23 7.23	7.10 7.22 7.10 7.18 7.24	7.22 7.23 7.23 7.23 7.30 7.30	7.29 7.27 7.24 7.30 7.30	7.29 7.15 7.28 7.21 7.29 7.33
22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	25.5 25.5 25.5 25.3 25.3 25.3 25.3	25.0 24.9 24.9 25.1 25.1 25.0 25.0 25.0	2450 2450 2450 247 252 252	25.2 25.2 25.2 25.6 25.6 25.6 25.6 25.6	25.6 25.3 24.9 24.7 25.1 25.0
900 1 1 900 1 2 900 900 900 900 900	900 900 900 900 900 900	900 900 915 900 900	900 900 900 900 900	900 1100 900 900 900	1100 900 1400 1100 900 900
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	218 218 220 222 223	224 225 226 227 229 230	232 232 233 234 235 236	238 239 242 243 244	245 246 248 248 250 251 252
03-08-95 03-09-95 03-11-95 03-12-95 03-13-95 03-14-95	03-16-95 03-17-95 03-18-95 03-19-95 03-20-95 03-22-95	03-23-95 03-24-95 03-25-95 03-26-95 03-27-95 03-29-95	03-30-95 03-31-95 04-02-95 04-03-95 04-04-95	04-06-95 04-07-95 04-08-95 04-11-95 04-12-95	04-13-95 04-14-95 04-15-95 04-16-95 04-17-95 04-18-95 04-20-95

Ø	i	o o	0.00202 0.00003 0.05100 0.009262 29
ю		a	0.075 0.015 0.526 0.0942 29
0.00		00.0	0.00 0.00 38
0.00		0000	0.00
225		22	217 >1999 38
85.5 5.5		89. 22.	150.3 68.4 530.1 111.80 38
40. 8.		8.04	51.0 34.0 74.8 10.44 38
7.32 7.43 7.37 7.30 6.91 7.29 7.05	7.01 6.89 7.74 8.17 7.25	7.54 7.31 7.31 7.35 7.35 7.38	7.48 2.79 10.65 1.494 272
7.36 7.28 7.28 7.38 7.30 7.30 7.32	7.27 7.30 7.34 7.34 7.34	7.35 7.33 7.04 7.20 7.21 7.21 7.20	6.61 7.80 271
25.7 25.7 25.6 24.7 25.2 25.2	25.3 25.3 25.3 25.3 25.3	25.0 25.2 25.2 25.2 25.2 25.1 25.1	23.4 17.5 31.0 2.07 272
900 1200 2000 900 900 900	1100 1600 1600 900 900	000 000 000 000 000 000	
253 254 255 256 257 258 259	260 261 262 263 264 265	266 267 268 269 270 271 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-28-95 04-29-95 04-30-95 05-01-95 05-02-95 05-03-95	05-04-95 05-05-95 05-06-95 05-07-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM N

a Data not available; analytical instrument would not calibrate.

TANK No. 8 TANK CONCENTRATION: 1% GROUNDWATER (WELL CC-27B) DILUTED WITH WEST BRANCH OF CANAL CREEK WATER DEN EXPOSURE: 10 mg/L

Date	Trailer Exposure Test Day	Time (Military)	Temperature (Celcius)	£	Dissolved Oxygen (mg/L)	Alkalinity (mg/L as CaCO3)	Hardness (mg/L as CaCO3)	Conductivity (umohs/cm)	Total Residual Chlorine (mg/L)	Free Available Chlorine (mg/L)	Total Ammonia- Nitrogen (mg/L)	Total Unionized Ammonia- Nitrogen (mg/L)
08-12-94 08-13-94 08-14-94 08-15-94	+ G & 4 to	900 900 900 900 900	24.6 25.2 25.2 24.1	7.00 6.89 7.01 6.83 6.96	6.49 5.57 5.36 5.35 5.85							
08-17-94 08-18-94 08-19-94 08-20-94 08-22-94 08-23-94	0	1000 900 800 1000 800 800 900 730		7.07 6.79 6.78 6.85 6.87 7.00 6.81	6. 14. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	47.6	68. 4.	905	0.00	0.00	0.555	0.00193
08-24-94 08-25-94 08-26-94 08-27-94 08-28-94 08-29-94	£ 4 £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £	1000 1100 900 900 800 900 900 900	23.9 24.1 24.5 25.3 25.3 25.3 25.3	6.68 6.80 6.90 6.90 6.88 6.88	6.00 6.00 7.00 7.00 7.00 7.00 7.00 8.00 8.00 8	54.4	119.7	742	0:00	0.00	0.108	0.00035
08-31-94 09-01-94 09-02-94 09-03-94 09-05-94 09-05-94	8228288	800 1100 900 901 815 810 1100		6.88 6.78 6.78 7.01 7.05 6.83	6.19 5.38 5.38 5.93 6.22 6.22	0.89	136.8	547	0.00	0.00	a	a
09-07-94 09-08-94 09-09-94 09-10-94 09-11-94	27 29 33 31 32	1100 1100 900 900 800 500		6.86 6.90 6.91 6.89 6.90 7.09	6.42 6.30 6.78 6.23 6.00 6.35	68.0	119.7	298	0.00	0.00	0.021	0.00009

0.00019	Ø	ro	o.00013	ro	0.00006
0.066	Ø	œ	a 0.033	ro .	0.028
00.00	0.00	00.00	æ	0:00	0.00
0.00	0.00	0.00	a	0.00	0.00
848	706	910	787	×1999	v 1999
136.8	119.7	119.7	119.7	290.7	547.2
40.8	68.0	47.6	74.8	54.4	40.8
6.52 4.27 5.20 5.09 6.09 5.26 5.26	5.50 6.37 6.04 5.85 3.99	4 4 4 8 8 8 8 9 9 4 4 4 4 8 8 8 9 9 9 9	6.70 7.36 7.23 5.60 5.30 7.79	7.22 6.23 7.42 7.20 6.78	6.53 6.65 6.65 6.65 6.31 7.36
6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	6.88 6.77 6.78 6.78 8.00	6.86 6.87 7.00 6.86 6.83 8.83 8.83	6.88 6.88 6.82 7.00 7.00	6.68 6.68 6.68 6.68 6.63 6.64	0.06 0.07 0.07 0.07 0.06 0.06 0.06
26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0	2.52 2.32 2.32 2.32 2.32 2.32 2.32	24.2 22.2 22.2 22.2 23.5 24.2 25.2 25.2 25.2 26.2 26.2 26.2 26.2 26	23.3 4 4 25.3 4 4 5 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5	23.8 23.8 23.5 23.5 23.5 23.5	25.25 27.28 27.28 27.28 20.99 8.99
700 1300 1200 1000 1000	900 1000 1300 900	900 1030 1030 900 915 915	100 110 100 160 160 160 160	1300 1300 1000 800	006 006 006 006 006
88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 5 4 4 5 4 4 5 4 4 5 4 4 4 6 4 6	7 8 8 6 0 15 55 55 55 7 8 8 6 6 7 5 55 55 55 55 55 55 55 55 55 55 55 55	55 55 60 61 61	66 65 67 68 68 68	20 17 17 17 17 18 19 19
09-13-94 09-15-94 09-16-94 09-17-94 09-19-94	09-21-94 09-22-94 09-23-94 09-25-94 09-25-94	09-27-94 09-28-94 09-29-94 10-01-94 10-03-94 10-04-94	10-06-94 10-07-94 10-08-94 10-10-94 10-17-94	10-13-94 10-13-94 10-15-94 10-17-94 10-18-94	10-19-94 10-20-94 10-22-94 10-23-94 10-25-94 10-25-94

0.00022	0.00055	0.00014	0.00013	0.00018	0.00019	0.00037
0.086	0.200	0.062	0.048	0.086	0.110	0.098
0.00	0.00	0.00	00.00	00.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	00.00	00.00
845	962	971	1139	× 1999	408	448
171.0	171.0	188.1	153.9	119.7	102.6	119.7
61.2	0890	54.4	54.4	54.4 4	47.6	54.4
7.91 8.05 8.01 7.30 7.16	6.68 6.68 7.72 7.56 7.56 7.65	8.17 8.17 8.14 7.19	6.56 7.17 7.03 6.53 6.99 7.23	8.57 8.60 9.51 10.70 9.22 9.07	8.68 9.32 8.55 7.81 7.01	7.17 7.17
6.80 6.85 6.85 6.80 6.77 6.77	6.85 6.79 6.76 6.76 6.85 6.85	6.79 6.79 6.73 6.73	6.73 6.73 6.73 6.73 6.78	6.69 6.72 6.75 6.75 6.69 6.69 6.68	6.62 6.72 6.68 6.68 6.81	6.80 6.85 6.85
20.3 20.3 20.3 24.9 24.8 24.8	22.2 22.2 22.2 24.0 24.0 24.0 24.0 24.0	2018 18.9 2018 21.2	2222 24.0222 24.0223 24.0223	23.5 18.8 22.5 19.7 20.5 20.5 20.6	20.3 20.3 22.0 22.1 22.1	25.8 21.7
1100 900 900 1100 1000 1000	1000 1000 1000 1000 1000 1000 1000 100	900 845 1000		2000 1020 1000 900 900 900	900 1000 900 900 900 900	1000
77 7 80 80 83 83 83 83 83 83 83 83 83 83 83 83 83	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- 68 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88 8 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 11 11 11 11 11 11 11 11 11 11 11 11 11	118 120
10-27-94 10-28-94 10-29-94 10-31-94 11-01-94	11-05-94 11-05-94 11-06-94 11-08-94 11-09-94	11-11-94 11-12-94 11-13-94 11-14-94	11-16-94 11-18-94 11-19-94 11-20-94 11-20-94	11-23-94 11-23-94 11-25-94 11-26-94 11-29-94	12-01-94 12-02-94 12-03-94 12-04-94 12-06-94	12-01-94 12-08-94 12-09-94

0.00022	0.00020	0.00013	0.00028	0.00003	a
0.075	0.097	0.069	0.030	0.017	œ
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
×1999	1955	1137	534	422	×1999
461.7	273.6	222.3	102.6	119.7	530.1
47.6	54.4	54.4	74.8	47.6	61.2
2.790 8.23 8.67 7.77 8.60 8.60 8.60	2.47 9.35 9.35 9.43 9.66	9.44 8.32 6.32 2.70 8.54 7.33	9.54 8.50 9.41 9.16 9.00 9.00	8.82 8.39 8.01 7.49 6.85 6.85	7.02 8.17 7.98 7.14 8.08
6.84 6.68 7.70 7.70 6.77 6.77 6.75	6.80 6.80 7.70 7.05 7.08 7.72 6.82	6.80 6.70 6.98 6.98 6.80 6.81	6.90 7.19 7.63 7.66 7.62 7.67	6.85 6.68 6.71 6.85 6.83	7.00 7.10 6.87 6.75 6.89
22222222222222222222222222222222222222	21.7 27.7 27.7 27.6 24.5 25.0	20.0 19.3 27.2 28.0 20.5 20.0	26.0 23.0 23.7 23.5 23.5 18.7	19.3 20.4 24.8 23.5 23.5	23.7 23.1 23.1 21.9
1300 900 900 1400 1400 1400 1400 1400 1400	000 000 000 000 000 000 000 1000 1000	1000 11000 1000 1000 1000 1000	900 1100 1130 1000 1000	1000 1100 900 800 1030	1000 1000 1100
22222222	05 12 13 13 13 13 13 13 13 13 13 13 13 13 13	139 141 142 143 145	746 148 149 150 151	153 155 156 158 158	162 163 164 164
12-10-94 12-12-94 12-13-94 12-14-94 12-15-94 12-16-94 12-18-94	12-19-94 12-20-94 12-22-94 12-23-94 12-24-94 12-25-94 12-26-94	12-28-94 12-29-94 12-30-94 12-31-94 01-01-95 01-02-95	01-04-95 01-05-95 01-06-95 01-07-95 01-08-95 01-09-95	01-11-95 01-12-95 01-13-95 01-14-95 01-15-95 01-16-95	01-18-95 01-19-95 01-20-95 01-21-95 01-22-95

0.00006	0.00022	0.00016	0.00019	0.00040	0.00018
0.022	0.096	0.015	0.028	0.046	0.020
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
342	648	247	243	249	344
102.6	153.9	85.5	85.5	85.5	85.5
47.6	54.4	47.6	40.8	34.0	34.0
9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9	8.75 10.33 10.33 8.75 7.0	9.96 9.96 10.08 9.70 78	9.99 9.99 9.73 9.49	9.20 9.20 9.20 9.06 9.08	8.98 8.98 8.97 9.06 9.17
6.86 6.79 6.78 6.78 6.73 7.62 93	6.38 6.88 6.83 7.49 7.49	7.34 7.22 7.06 7.21 7.21	7.18 7.20 7.09 7.06 7.15	7.19 7.22 7.22 7.16 7.25 7.25	7.21 7.20 7.16 7.10 7.18
20.2 21.5 21.4 22.3 19.5 19.5 19.5 19.5 18.1	25.0 25.0 22.4 22.4 22.4	7	23.5 23.5 23.5 23.5 23.5 23.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.4.4 22.9 23.0 23.0 23.2
600 1000 1000 1000 1000 1000 1000	930 1200 930 930 900	900 900 1200 900 900	1100 1100 1000 1000 1000	900 900 900 900 900 900 900 900 900 900	900 1000 1015 900
165 166 168 170 171 173	771 771 771 178 180	185 185 186 187 187	192 193 194 194 195 196 197 198 198 198 198 198 198 198 198 198 198	200 200 200 201 201	203 204 205 206 207
01-23-95 01-24-95 01-25-95 01-26-95 01-28-95 01-29-95 01-30-95 01-31-95	02-02-95 02-03-95 02-04-95 02-05-95 02-07-95 02-07-95	02-09-95 02-10-95 02-11-95 02-13-95 02-13-95 02-14-95	02-16-95 02-17-95 02-18-95 02-19-95 02-20-95 02-21-95	02-23-95 02-23-95 02-25-95 02-26-95 02-27-95 02-28-95	03-02-95 03-02-95 03-04-95 03-05-95 03-06-95 03-07-95

0.00016		0.00011	a		0.00051	0.00037	0.00028 a
0.019		0.015	æ		0.056	0.050	0.034 a
0.00		0.00	0.00		0.00	00:00	0.00
0.00		0.00	0.00		0.00	00.00	0.00
241		218	238		220	230	249
85.5		85.5	85.5		85.5	85.5	85.5 68.4
40.8		47.6	47.6		47.6	40.8	40.8 40.8
8.81 8.71 8.45 8.84	8.47 8.40 8.73 8.74	8.74 8.50 8.25 8.29	8.38 8.38 8.22 7.33	8.56 8.00 8.67 7.49	7.25 7.21 8.00 8.08 7.86	7.86 7.92 7.92 7.20 7.29	7.10 6.95 7.74 7.74 7.64 7.87 7.87
7.24 7.22 7.12 7.19	7.12 7.18 7.20 7.22	7.15 7.21 7.27 7.18	7.16 7.19 7.19 7.22 7.08	7.06 7.18 7.24 7.21	7.30 7.22 7.16 7.12 7.23 7.30	7.29 7.30 7.27 7.24 7.30 7.30	7.28 7.28 7.24 7.29 7.34 7.33
22.9 23.3 24.5 24.0	24.8 24.1 23.6	25.0 25.1 24.9 25.6	24.7 25.2 25.1 25.0 25.0	25.0 27.2 24.8	24.9 24.6 24.6 24.6 25.1 24.0	24.8 25.1 25.2 25.2 25.3 25.6 25.6	25.6 25.3 25.7 24.7 24.7 25.0 25.0
900 1000 1100	1800 900 900 900	900 900 900 900	900 900 1100 900 915	006 006	900 900 900 900 900	1100 1300 900 900	900 1100 1100 900 900 900 900
209 210 211	213 214 215	217 218 220	222 223 224 225 225	227 228 229 230	231 232 233 234 235 236	238 239 240 242 243	245 246 248 248 250 251 252
03-08-95 03-09-95 03-10-95 03-11-95	03-12-95 03-13-95 03-14-95 03-15-95	03-16-95 03-17-95 03-18-95 03-19-95	03-20-95 03-21-95 03-22-95 03-23-95 03-24-95	03-26-95 03-27-95 03-28-95 03-29-95	03-30-95 03-31-95 04-01-95 04-03-95 04-04-95	04-06-95 04-07-95 04-08-95 04-10-95 04-11-95	04-13-95 04-13-95 04-16-95 04-17-95 04-18-95 04-19-95

σ	ı	e o	0.00028 0.00003 0.00193 0.000337 29
О	1	a	0.076 0.015 0.555 0.0992 29
0:00		0.00	0.00 0.00 38
0.00		00.0	0.00 0.00 38
225		526	218 >1999 38
85.5		89 63 80	154.4 68.4 547.2 116.87
40.8		8. 8.	51.2 34.0 74.8 10.55
7.21 7.37 7.33 7.28 6.93 7.12 6.93	7.00 6.68 7.34 7.56 7.08	7.51 7.43 7.33 7.19 7.43 7.31 7.29	7.46 2.70 10.70 1.476 272
7.36 7.28 7.28 7.38 7.30 7.30 7.32	7.27 7.30 7.34 7.34 7.35	7.35 7.33 7.06 7.07 7.20 7.21 7.20	6.61 7.81 271
25.5 25.6 25.6 25.6 25.6 25.2 25.2	25.3 25.3 25.0 25.2 25.2 25.2	24.9 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25	23.4 17.9 31.1 2.08 272
900 1200 2000 900 900 900	900 1100 1600 900 900	000 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
253 254 255 256 257 258 259	260 261 263 264 265	266 267 268 270 271 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-28-95 04-29-95 04-30-95 05-01-95 05-02-95 05-03-95	05-04-95 05-05-95 05-06-95 05-08-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

a. Data not available; analytical instrument would not calibrate.

TANK No. 9 TANK CONCENTRATION: 5% GROUNDWATER (WELL CC-27B) DILUTED WITH WEST BRANCH OF CANAL CREEK WATER NO DEN EXPOSURE

Date	Trailer Exposure Test Day	Time (Military)	Temperature (Celcius)	Ŧ	Dissolved Oxygen (mg/L)	Alkalinity (mg/L as CaCO3)	Hardness (mg/L as CaCO3)	Conductivity (umohs/cm)	Total Residual Chlorine (mg/L)	Free Available Chlorine (mg/L)	Total Ammonia- Nitrogen (mg/L)	Total Unionized Ammonia- Nitrogen (mg/L)
08-12-94	_	1000	24.5	6 94	6.57							:
08-13-94	- 2	006	25.2	6.80	5.66							
08-14-94	က	900	25.2	6.89	5.40							
08-15-94	4	006	23.9	6.74	5.49							
08-16-94	5	1000	24.0	6.87	5.96							
08-17-94	9	1000	25.1	7.00	5.14		1	,	1	1		
08-18-94	7	006	24.9	6.76	4.03	40.8	85.5	006	0.00	0.00	0.501	0.00162
08-19-94	ω (800	24.3	6.69	5.09							
08-20-94	ກຸ	1000	25.1	6.76	5.83							
08-21-94	2 7	000	4.0.2	0.00	0.08 0.08							
08-22-94	<u> </u>	900	24.2	0.0	9.20							
08-23-94	7 5	7 700		0.72	6.24							
08-24-94	. t	1000		0.0 0.04	0.33 A 14	24.4	1107	730	0	0	0 100	0.00024
08-25-94	<u> </u>	-		9.0	5.69	r S	-	2	9		5	
08-27-94	16	006	24.0	6.76	5.40							
08-28-94	17	800		6.82	5.49							
08-29-94	18	006		6.81	4.91							
08-30-94	19	006		6.73	5.36							
08-31-94	20	800		96.9	6.18							
09-01-94	21	1100		6.82	5.89	61.2	119.7	537	0.00	0.00	æ	Ø
09-02-94	22	006		92.9	5.33							
09-03-94	23	815		6.74	5.77							
09-04-94	24	810		6.89	5.76							
09-02-94	25	1100		6.65	6.22							
09-06-94	26	006		6.65	6.18							
09-07-94	27	800		6.74	6.41							
09-08-94	58	1100		6.82	6.24	74.8	119.7	594	00.0	0.00	0.041	0.00014
09-09-94	29	006	23.8	6.80	97.9							
09-10-94	30	006	24.3	6.80	6.12							
09-11-94	31	800	23.0	6.82	5.96							
09-12-94	32	200	23.8	7.02	6.36							

0.00015	Ø	æ	a 0.00012	a	900000
0.058	æ	α	a 0.037	æ	0.029
0.00	0.00	ત્ત	0.00	0.00	0.00
0.00	0.00	ત્ત	0.00	0.00	00.00
837	669	890	778	>1999	× 1999
136.8	119.7	119.7	119.7	290.7	513.0
40.8	68.0	47.6	74.8	54.4	34.0
6.58 4.47 5.38 5.27 4.61 5.53	5.33 6.41 6.81 3.72 3.72	6.52 6.01 6.02 6.03 6.04 6.05 8.05 8.05	6.90 7.33 7.18 5.51 3.32 7.45	5.91 5.91 6.27 7.17 7.06 6.73	7. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.
6.89 6.91 7.00 6.65 6.60 6.89 6.89	6.82 6.88 6.68 6.66 6.67	6.59 6.69 6.69 6.74 6.75 6.75	6.85 6.85 6.76 6.75 6.88	6.52 6.52 6.52 6.53 6.49	6.54 6.54 6.64 6.64 6.70
24.1 27.0 26.3 25.7 25.6 24.4 24.1	25.9 24.2 25.3 26.4 25.3 26.4 26.4	24.5 26.5 23.0 23.5 22.5 22.5 22.5 23.8	23.55 24.4 24.6 25.3	242 242 232 233 233 233 233 233 233 233	22.3 22.3 22.3 22.3 22.3 22.3
700 1300 1200 820 830 1000	000 1000 1300 900	000 1030 100 100 100 100 100 100 100 100	28 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1300 1300 1000 800	000000000000000000000000000000000000000
33 35 37 39 40	14 4 4 4 4 4 4 4 4 4 4 4 4 6 4 6 4 6 4 6	4 4 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	55 55 60 61 61 61	66 66 67 68 68 68 68 68 68	8 0 7 7 7 7 8 8 9 7 7 7 7 7 8 9
09-13-94 09-14-94 09-15-94 09-16-94 09-18-94 09-19-94	09-21-94 09-22-94 09-23-94 09-25-94 09-26-94	09-28-94 09-28-94 09-30-94 10-02-94 10-03-94 10-04-94	10-06-94 10-07-94 10-08-94 10-10-94 10-11-94	10-13-94 10-14-94 10-15-94 10-16-94 10-18-94	10-19-94 10-20-94 10-22-94 10-23-94 10-25-94 10-26-94

0.00018	0.00055	0.00016	0.00012	0.00017	0.00019	0.00025
0.082	0.200	0.077	0.050	0.088	0.120	0.081
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	00.00	0.00	00:00	0.00
812	953	837	1067	1887	421	456
153.9	171.0	171.0	153.9	119.7	102.6	102.6
54.4	08.0	54.4	54.4	47.6	47.6	54.4
7.46 7.72 7.70 7.63 7.10 5.69 6.97	6.67 7.52 6.67 7.45 7.45	7.69 7.69 7.93 7.16	6.59 6.59 7.22 7.22 7.23	8.52 8.23 8.23 8.73 8.74 8.75 8.75	8.19 9.09 9.09 7.77 7.22 7.22	7.36 7.29 7.29
6.70 6.78 6.84 6.78 6.73 6.72	6.76 6.78 6.72 6.72 6.69	6.73 6.65 6.77 6.65	6.59 6.59 6.59 6.72 6.72 6.72	6.67 6.67 6.67 6.60 6.61	6.66 6.66 6.66 6.66 6.66 6.66 6.66 6.6	6.72 6.70 6.77
21.3 22.0 22.0 22.5 25.2 25.2 25.3	23.5 23.1 22.1 22.1 22.1 23.1 24.1	722.0 22.0 22.0	22.2 24.2 23.2 23.3 23.4 25.0 4.2 4.2 4.3 4.3 4.3 4.3 4.3 4.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5	23.2 22.2 22.2 22.2 23.4 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	22.2 21.9 22.2 24.7 24.7 25.5	23.2 26.3 22.7
000 000 000 000 1000 1000	000 000 000 000 000 000 000 000 000	900 900 845 1000	000000000000000000000000000000000000000	900 900 900 900 900 900	900 1000 1100 900 900	1100 1000
77 78 79 80 82 83	2 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	98 99 100 100 100 100 100 100 100 100 100	£01 501 701 801 601	112 113 115 116 116	118 120
10-27-94 10-28-94 10-30-94 10-31-94 11-02-94	11-03-94 11-04-94 11-06-94 11-08-94 11-08-94	11-10-94 11-11-94 11-13-94 11-14-94	11-15-94 11-15-94 11-19-94 11-20-94	11-22-94 11-23-94 11-25-94 11-28-94 12-39-94	11-30-94 12-01-94 12-03-94 12-03-94 12-05-94 12-05-94	12-07-94 12-08-94 12-09-94

	0.00020	0.00017	0.00012	0.00025	0.00003	a
	0.075	0.100	0.069	0.030	0.017	a
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	×1999	1900	1127	533	430	×1999
	444.6	256.5	205.2	102.6	119.7	564.3
	47.6	54.4	47.6	68.0	47.6	61.2
7.84 2.84 8.02 8.39 8.45	9.57 8.48 8.38 7.72 7.47 7.88	6.09 6.09 6.17 7.91 7.61 8.37	8.17 6.10 2.90 8.12 7.15 8.88	8.08 8.08 8.72 9.12 9.28	7.73 7.54 7.03 6.31 6.31 6.41	7.53 7.29 6.46 7.39
6.75 6.57 7.38 7.41 7.36	6.79 6.71 6.71 6.67 6.62	6.94 6.94 7.00 7.39 6.72 6.72	6.96 6.96 6.74 6.72 6.72	7.13 7.47 7.56 7.47 7.39 6.61	6.30 6.30 6.30 6.65 6.74 6.93	7.04 6.65 6.62 6.81
22.8 31.2 24.8 24.7	21.1 22.5 22.5 22.7 22.7	27.7 27.9 27.9 25.1 25.5 21.2	20.6 27.8 27.8 27.8 27.6 20.6 20.8	20.5 2.4.2 2.0.5 2.0.5 2.0.5 2.0.5 3	21.4 22.0 23.2 24.0 24.0 24.0	24.0 24.6 24.9 23.9
1300 900 900 900	800 1100 845 930 1000	800 800 900 1000 1000 1000 1000 1000 100	900 1000 1000 1000 1000 1000	1100 1000 1000 1000 1000	900 900 1000 1000 1000 1000	1000 1000 1100
121 123 124 125	126 127 128 129 130	132 133 138 138 138	0 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	147 148 150 151 152	154 155 156 158 160	161 162 163
12-10-94 12-11-94 12-12-94 12-13-94 12-14-94	12-15-94 12-16-94 12-17-94 12-19-94 12-20-94	12-21-94 12-22-94 12-23-94 12-25-94 12-26-94 12-27-94	12-29-94 12-30-94 12-31-94 01-01-95 01-02-95 01-04-95	01-05-95 01-06-95 01-08-95 01-09-95 01-10-95	01-12-95 01-13-95 01-14-95 01-15-95 01-17-95 01-18-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00005	0.00021	0.00009	0.00012	0.00030	0.00009
0.021	0.100	0.013	0.028	0.049	0.016
0.00	0.00	00.00	0.00	0.00	0.00
0.00	0.10	0.00	0.00	0.00	0.00
350	647	258	254	257	350
85.5	136.8	85.5	85.5	85.5	85.5
47.6	54.4	47.6	40.8	34.0	34.0
8.63 8.86 5.80 7.97 7.97 7.90 8.78 8.42	9.00 8.17 9.83 8.26 8.05	9.10 9.10 9.25 9.50 9.50	9.52 9.99 9.73 9.05 9.05	20.09 8.09 8.09 2.15 8.88 8.88	8.77 8.77 8.77 8.83 8.83 8.63
6.67 6.63 6.63 6.72 6.61 6.72 6.66 7.38	6.68 6.68 6.77 7.32 7.28	7.17 7.18 7.03 6.92 7.01	6.98 6.98 6.98 7.7.7 7.01	7.00 7.00 7.03 7.03 7.04 6.98	6.98 6.98 7.04 6.99 6.99
22.3 20.8 20.0 20.8 20.6 20.6 21.0	25.1 26.0 25.1 23.0 23.0	22.4 22.0 22.0 21.7 21.7	23.0 23.1 23.5 23.6 23.6 23.6	2422 2422 2442 2442 2454 356	24.5 24.5 23.6 23.7 23.5 23.8
600 1000 1000 1000 1000 1000	1200 1200 1200 930 900	200 6 6 7 200 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	900 900 1100 1000 1000	1000 1000 1000 1000 1000 1000 1000 100	900 900 900 1015 900
165 166 168 170 171 173	771 771 771 179 180	182 184 185 186 186	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	200 200 200 200 200 200	202 204 205 206 207
01-23-95 01-24-95 01-25-95 01-27-95 01-28-95 01-30-95 01-31-95	02-01-95 02-02-95 02-03-95 02-05-95 02-06-95 02-07-95	02-00-95 02-09-95 02-10-95 02-12-95 02-13-95	02-15-95 02-16-95 02-17-95 02-19-95 02-20-95 02-21-95	02-22-95 02-23-95 02-24-95 02-25-95 02-27-95 02-28-95	03-01-95 03-02-95 03-03-95 03-04-95 03-05-95 03-06-95

0.00009	0.00005	æ	0.00021	0.00019	0.00018 a
0.017	0.014		0.052	0.048	0.040 a
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
252	529	249	232	241	259
82.5	85.5	85.5	85.5	85.5	85.5 85.5
40.8	47.6	47.6	47.6	8.04	40.8
8.64 8.62 8.63 8.36 8.34 8.60	8.53 8.44 8.24 8.28 8.28 8.28	8.16 7.45 7.88 8.59 8.05 7.85 7.69	7.33 7.33 7.83 8.09 8.09 7.81	7.94 7.85 7.95 7.73 7.73	7.46 7.17 7.82 7.78 7.78 7.95 8.10
6.99 7.00 7.00 7.00 7.00 8.00 8.00 8.00 8.00	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.96 7.04 7.06 6.93 6.95	6.95 6.97 7.00 7.04 7.04	6.98 6.98 6.95 6.98 7.00 7.00	7.02 6.92 7.02 6.97 6.95 6.99 6.99
23.6 23.6 24.7 24.5 24.5 24.5 24.5 24.5 24.5	25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5	2552 2552 2553 2553 2553 2553 2553 2553	25.0 24.8 25.0 24.4 25.1	246 246 253 258 256 256	25.6 25.8 25.8 24.9 24.9 24.7 25.1
900 1100 1800 900 900	989 900 900 900 900 900 900	900 900 915 900 900 900	900 900 900 900 900 900	200 1100 1300 900 900	1100 900 1100 900 900 900 900 900
209 210 212 213 214 215 215	217 218 220 221 222 233	225 225 226 228 230	232 232 234 234 235 236	238 239 241 242 243	245 246 247 248 250 251 252
03-08-95 03-09-95 03-10-95 03-11-95 03-13-95 03-14-95	03-16-95 03-17-95 03-18-95 03-19-95 03-20-95 03-22-95	03-23-95 03-24-95 03-25-95 03-27-95 03-28-95 03-29-95	03-30-95 03-31-95 04-01-95 04-03-95 04-04-95	04-06-95 04-07-95 04-08-95 04-09-95 04-11-95	04-13-95 04-14-95 04-16-95 04-16-95 04-18-95 04-19-95 04-20-95

	ro	a	0.00022 0.00003 0.00162 0.000282
	rs	Œ	0.074 0.013 0.501 0.0900 29
	0.00	0.00	0.00 0.00 38
	0.00	00:00	0.00 0.10 38
	235	237	229 >1999 38
	85.5	85 5.5	151.2 85.5 564.3 114.95
	40.8	8.	50.1 34.0 74.8 10.51
7.53 7.59 7.64 7.48 7.23 6.97	7.18 7.28 6.92 7.46 7.92 7.43	7.67 7.56 7.27 7.19 7.48 7.36 7.36	7.32 2.81 10.20 1.373 272
7.00 6.98 6.99 7.02 6.98 7.02	6.99 6.99 7.00 7.02 7.02 7.02 6.98	6.99 7.01 6.96 6.94 6.98 7.01	6.30 7.63 271
25.4 25.7 25.6 24.8 24.8 24.5	25.2 25.3 25.3 25.3 25.3 25.3 25.3 25.3	25.0 25.2 25.2 25.2 25.2 25.4	23.8 18.8 31.2 1.71
2000 2000 900 900	900 1,000 1600 900 900	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
253 254 255 256 257 257	259 260 261 262 263 264	266 267 268 269 270 271	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95	04-27-95 04-28-95 04-29-95 04-30-95 05-01-95 05-03-95	05-04-95 05-05-95 05-06-95 05-07-95 05-08-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

 \mathbf{a}_{D} ata not available; analytical instrument would not calibrate.

TANK No. 10 TANK CONCENTRATION: 5% GROUNDWATER (WELL CC-27B) DILUTED WITH WEST BRANCH OF CANAL CREEK WATER NO DEN EXPOSURE

Total Unionized Ammonia- Nitrogen (mg/L)		0.00156	0.00023	a	0.00014
Total Ammonia- Nitrogen (mg/L)		0.504	0.095	ெ	0.040
Free Available / Chlorine (mg/L)		0.00	0.00	0.00	0.00
Total Residual Chlorine (mg/L)		0.00	0.00	0.00	0.00
Conductivity (umohs/cm)		888	730	537	592
Hardness C (mg/L as (i CaCO3)		85.5	119.7	136.8	119.7
Alkalinity (mg/L as CaCO3)		40.8	54.4	61.2	68.0
Dissolved Oxygen (mg/L)	6.59 5.64 5.39 5.96 5.96	5.09 5.09 5.56 5.12 6.10 8.10	6.69 6.64 6.64 6.64 6.64 6.64 6.64 6.64	5.92 5.44 5.71 6.19 6.19	6.23 6.78 6.15 5.97 6.35
Hd	6.80 6.80 6.89 6.74 6.87	6.76 6.09 6.09 6.68 6.68 6.67 7.72	6.66 6.66 6.82 6.82 6.83 6.73	6.82 6.76 6.77 6.91 6.65 6.65	6.82 6.80 6.80 6.82 7.02
Temperature (Celcius)	24.5 25.1 24.0 23.9	24.2 24.2 25.4 26.4 22.2 22.2 23.0	2 2 2 2 2 3 3 3 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4	246 244 245 245 245 245	23.0 23.0 23.0 23.0 23.0 23.0 23.0
Time T (Military)	000 900 900 900 900 900 900	800 900 900 1000 730	900 900 900 900 900 900	900 900 815 810 1100	900 900 800 500
Trailer Exposure Test Day	← 17 to 4 to 0	0 K 8 9 5 T 7 5	5 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	222222	33 33 33 33 33 33 33 33 33 33 33 33 33
Date	08-12-94 08-13-94 08-14-94 08-15-94 08-16-94	08-18-94 08-19-94 08-20-94 08-22-94 08-23-94	08-25-94 08-25-94 08-27-94 08-28-94 08-30-94 08-31-94	09-01-94 09-02-94 09-03-94 09-04-94 09-05-94	09-07-94 09-08-94 09-10-94 09-11-94 09-12-94

0.00017	a	æ	0.00012	Ø	0.00006
0.065	œ	æ	a 0.035	ro o	0.034
0.00	00.00	æ	0.00	0.00	0.00
00.00	0.00	æ	0.00	0.00	0.00
834	869	891	778	×1999	× 1999
119.7	119.7	119.7	119.7	290.7	495.9
40.8	68.0	47.6	74.8	47.6	34.0
6.61 6.61 6.07 6.07 6.45 6.66 7.45 7.45	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5.54 6.28 6.26 6.59 6.68 6.68	6.93 7.37 7.16 5.39 5.33 7.57	6.81 6.03 6.26 7.16 6.62	5.84 6.60 6.60 6.05 6.05 6.05
6.89 7.00 7.00 6.65 6.89 6.89	6.82 6.80 6.63 6.67 8.66 8.67	6.59 6.81 6.74 6.75 6.75 6.75	6.85 6.82 6.80 6.75 6.92 8.83	6.77 6.71 6.80 6.52 6.75 6.49	6.54 6.54 6.70 6.64 6.64 7.0
26.9 26.9 25.6 25.6 24.4 24.4 25.5 26.9	24.2 24.2 25.3 26.3 26.3 26.3	245 262 232 223 223 223 235 235 235 235 235 23	22.2 23.6 24.5 24.5 25.2 25.2	24.0 24.3 23.0 23.5 23.5 23.5 23.5	22.5 22.5 22.5 22.5 23.5 6.9
700 1300 1200 820 830	900 1300 900 1300	100 1030 1030 900 915 1100	0011100 1000 1000 1000	1300 1300 1300 1300 1300 1300 1300 1300	
35 36 37 38 39 39	2 4 4 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	\$ 4 4 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	55 55 60 60 61 61 62	64 65 65 67 68 68	66 0 1 2 2 2 2 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5
09-13-94 09-14-94 09-15-94 09-16-94 09-17-94 09-19-94	09-21-94 09-22-94 09-23-94 09-25-94 09-26-94	09-28-94 09-29-94 09-29-94 10-01-94 10-03-94 10-04-94	10-06-94 10-08-94 10-09-94 10-10-94 10-11-94	10-13-94 10-14-94 10-15-94 10-17-94 10-19-94	10-19-94 10-20-94 10-22-94 10-23-94 10-25-94 10-26-94

0.00020	0.00052	0.00017	0.00012	0.00019	0.00019	0.00027
0.087	0.190	0.080	0.052	660.0	0.120	0.087
0.00	00.00	0.00	0.00	00.00	0.00	0.00
0.00	0.00	0.00	0.00	00.00	0.00	00.00
815	951	843	1074	1898	4 £	452
	171.0	171.0	136.8	119.7	102.6	102.6
54.4	68.0	54.4	54.4	47.6	47.6	54.4
7.40 7.65 7.65 7.62 7.02 5.62 7.03	6.56 6.56 6.75 6.75 7.44 7.43	7.69 7.69 7.91 7.22	6.52 7.20 7.09 6.59 6.93 7.21	2.50 2.50 2.50 2.00 2.00 2.00 2.00 2.00	8.56 8.56 8.46 7.07 7.07	5.84 7.80
6.70 6.78 6.84 6.73 6.73 6.72	6.78 6.78 6.72 6.74 6.79 6.69	6.73 6.67 6.75 6.65	6.59 6.59 6.59 6.64 6.72 6.73	0.000000000000000000000000000000000000	6.65 6.65 6.61 6.60 7.20 6.60	6.70 6.70 6.77
21.2 21.2 22.8 22.8 25.5 25.5 26.5	22.2 22.2 22.2 22.2 22.2 22.3 22.5 23.3 25.5 25.5	19.7 18.8 22.0 22.0	22.22.22.22.22.23.24.25.23.24.25.23.24.25.25.24.25.25.24.25.25.25.25.25.25.25.25.25.25.25.25.25.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21.7 21.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	23.2 26.4 22.7
000 000 000 1100 000 1000 000 1000	7000 1000 1000 1000 1000 1000 1000 1000	845 1000 1000	000000000000000000000000000000000000000	730 730 730 730 730 730 730 800	900 1000 900 900 900 900 900	1000
77 78 79 80 81 82 83	88 84 86 85 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	99 99 99 9	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	109 109 109 109 109	112 113 113 115	119
10-27-94 10-28-94 10-30-94 10-31-94 11-01-94 11-02-94	11-05-94 11-05-94 11-06-94 11-08-94 11-09-94	11-11-94 11-12-94 11-13-94 11-14-94	11-16-94 11-18-94 11-19-94 11-20-94 11-20-94	11-23-94 11-23-94 11-25-94 11-26-94 11-28-94	12-01-94 12-02-94 12-03-94 12-04-94 12-05-94	12-08-94 12-09-94

0.00024	0.00015	0.00012	0.00022	0.00002	æ
0.090	0.091	0.071	0.027	0.016	a
0.00	0.00	00.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	00.00
v 1999	1902	1097	527	427	>1999
444.6	256.5	205.2	102.6	119.7	513.0
47.6	54.4	47.6	68.0	47.6	61.2
7.85 2.94 8.12 8.45 8.56 9.64 8.59 7.92 7.65	8.04 9.40 6.29 6.44 6.44 7.83	9.35 6.44 6.44 8.39 7.50 7.50	8.24 8.66 8.66 8.95 9.95 9.95	6.38 7.74 7.05 6.11 6.27 7.55	7.70 7.43 6.39 7.33
6.75 6.57 7.38 7.41 7.36 6.79 6.69 6.66	6.67 6.65 6.94 6.74 7.00 7.39 6.72	6.74 6.62 6.78 6.96 6.74 6.72	6.81 7.43 7.54 7.39 6.61	6.70 6.30 6.81 6.81 6.74	6.65 6.65 6.82 6.81
22.8 24.8 24.4 21.0 22.4 22.3 22.3	22.4 19.1 27.6 27.9 24.8 25.4 20.9	20.9 20.4 20.4 20.3 20.3 20.3 20.3	26.2 23.8 24.9 20.5 20.5 20.5 20.5	25.5 2.5 2.5 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	23.6 24.0 24.6 23.7
1300 900 900 900 1100 845 930	1000 1000 2000 1000 1000	000 1000 1000 1000 1000 1000 1000 1000	1000 1000 1000 1000 1000	000 000 000 000 000 000 000 000 000 00	00001
121 122 123 124 128 130 130	132 133 134 136 136 137 138	139 140 141 143 143 143 143	146 148 150 151 152	25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	162 163 164 164
12-10-94 12-11-94 12-12-94 12-13-94 12-15-94 12-16-94 12-17-94 12-19-94	12-20-94 12-21-94 12-22-94 12-23-94 12-25-94 12-26-94	12-28-94 12-29-94 12-30-94 12-31-94 01-02-95 01-03-95	01-04-95 01-06-95 01-06-95 01-08-95 01-09-95	01-17-95 01-12-95 01-13-95 01-15-95 01-17-95	01-10-95 01-19-95 01-20-95 01-22-95

0.00005	0.00015	0.00008	0.00011	0.00030	0.00009
0.022	0.075	0.012	0.026	0.056	0.016
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
348	644	256	253	255	349
102.6	136.8	85.5	85.5	85.5	85.5
47.6	54.4	47.6	40.8	34.0	34.0
8.62 8.48 8.16 8.78 7.82 8.36	8.30 9.297 9.966 9.373 8.37	8.48 9.02 9.22 9.45 9.47	9.25 9.43 9.14 9.67 9.16	4.04 8.05 9.05 9.02 8.80 9.00 9.00	8.85 8.85 8.85 8.93 8.75
6.67 6.63 6.72 6.61 6.69 6.69	6.68 6.68 6.78 6.78 6.77 7.32	7.23 7.17 7.08 7.03 6.92 7.01	6.98 6.98 6.98 6.93 7.01	7.00 6.98 7.03 7.04 6.98	6.98 7.01 7.02 7.02 6.99 6.99
21.8 22.8 20.2 19.5 23.5 23.5	2022 2018 2019 2019 2019 2019 2019 2019 2019 2019	22.2 22.5 22.5 2.6 2.6 3.6 5.7 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8	21.7 22.7 23.0 23.4 23.3	23.0 23.0 24.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25	24.7 23.0 23.0 23.0 23.0
600 1000 1000 1000 830 600	1000 900 930 1200 930 930	900 900 1200 900	900 1100 1000 1000	99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	900 900 1015 900
165 166 168 170 171	173 174 176 177 178 180	184 185 185 186 187 187 187	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	195 198 198 200 201	202 203 204 207 207
01-23-95 01-24-95 01-25-95 01-26-95 01-27-95 01-29-95	01-30-95 02-01-95 02-02-95 02-03-95 02-04-95 02-05-95 02-06-95	02-08-95 02-09-95 02-10-95 02-12-95 02-13-95 02-13-95	02-15-95 02-16-95 02-17-95 02-19-95 02-20-95	02-22-95 02-23-95 02-24-95 02-26-95 02-27-95 02-28-95	03-01-93 03-02-95 03-04-95 03-05-95 03-06-95

0.00008	0.00004	œ	0.00027	0.00019	0.00017 a
0.016	0.012	æ	990.0	0.048	0.039 a
0.00	0.00	0.00	0.00	00.00	0.00
0.00	0.00	0.00	0.00	00.00	0.00
250	227	250	232	241	259
.	85.5	85.5	85.5	85.5 5	85.5 85.5
40.8	47.6	47.6	47.6	40.8	40.8
8 8 8 60 8 8 42 8 42 8 43 8 60 8 60	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8.01 7.28 7.69 8.37 7.74 7.68	7.34 7.34 7.68 8.10 7.97 7.73	7.90 7.62 7.74 8.10 7.31 7.45	7.44 6.93 7.64 7.65 7.45 7.79 7.98
6.99 7.00 6.97 6.93 6.96 6.98 6.89	6.96 6.96 6.96 6.96 7.00 7.00 7.00 7.00 7.00	6.96 6.94 7.00 7.00 6.93 6.95	6.95 6.98 6.98 7.00 7.04	7.00 7.00 7.00 6.95 7.00 7.00	7.02 6.92 7.02 6.97 6.95 6.99 6.99
23.0 22.9 24.2 24.0 25.3 24.0	25.2 25.2 26.0 25.3 25.4 25.4 25.4 25.4	25.2 25.2 25.2 25.3 25.3 25.3	24.9 24.9 24.9 25.0 25.0	24.6 25.0 25.3 25.3 25.3 7.7 7.7 7.7 7.7	25.5 25.7 24.8 24.8 25.0 25.0
900 1 100 1800 900 900 900	000 000 000 000 000 000	900 900 900 900 900 900	8 6 6 6 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8	900 1300 900 900 900	1100 900 1100 900 900 900
209 211 212 213 214 215 215	552 553 553 553 553 553 553 553 553 553	225 225 226 228 230 30	232 234 234 236 236	239 240 241 243 244 244	245 246 248 248 250 251 251
03-08-95 03-09-95 03-10-95 03-11-95 03-12-95 03-13-95	03-16-95 03-16-95 03-18-95 03-19-95 03-20-95 03-21-95	03-23-95 03-23-95 03-25-95 03-26-95 03-27-95 03-28-95	03-30-95 03-31-95 04-01-95 04-03-95 04-03-95	04-05-95 04-06-95 04-08-95 04-09-95 04-11-95	04-13-95 04-14-95 04-15-95 04-16-95 04-18-95 04-19-95

ณ	i	a d	0.00021 0.00002 0.00156 0.000272 29
œ	•	a	0.075 0.012 0.504 0.0899 29
0.00		00.00	0.00
00.0		00.00	0.00
234	i	237	227 >1999 38
85.5		85 55 50	149.0 85.5 513.0 108.64 38
40.8		40.8	49.7 34.0 74.8 10.12 38
7.36 7.26 7.49 7.30 7.26 6.89 7.19	7.24 6.90 7.45 7.75 8.24 7.40	7.50 7.51 7.29 7.15 7.55 7.29 7.33	7.31 2.86 10.26 1.375 272
7.00 6.98 6.99 7.02 7.02 7.02 6.99	6.99 7.00 7.02 7.02 6.98	6.99 7.01 6.95 6.96 6.98 7.01 7.01	6.30 7.58 271
25.3 25.6 25.6 24.7 24.7 25.2	25.3 25.0 25.2 25.2 25.2	25.0 25.2 25.2 25.2 25.0 25.0 25.6	23.7 18.8 31.2 1.75 27.2
900 1200 2000 900 900 900	900 1100 1600 900 900	900 900 900 900 900 900	
253 254 255 256 257 258 259	260 261 262 263 264 265	266 267 268 269 270 271 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-28-95 04-29-95 04-30-95 05-01-95 05-02-95 05-03-95	05-04-95 05-05-95 05-06-95 05-08-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

 ${f a}$ Data not available; analytical instrument would not calibrate.

TANK No. 11 TANK CONCENTRATION: 5% GROUNDWATER (WELL CC-27B) DILUTED WITH WEST BRANCH OF CANAL CREEK WATER DEN EXPOSURE: 10 mg/L

Date	Trailer Exposure Test Day	Time (Military)	Temperature (Celcius)	Ħ	Dissolved Oxygen (mg/L)	Alkalinity (mg/L as CaCO3)	Hardness (mg/L as CaCO3)	Conductivity (umohs/cm)	Total Residual Chlorine (mg/L)	Free Available Chlorine (mg/L)	Total Ammonia- Nitrogen (mg/L)	Total Unionized Ammonia- Nitrogen (mg/L)
08-12-94 08-13-94 08-14-94 08-15-94	C 6 4 5 0	1000 900 900 1000	24.5 25.2 25.2 23.9 23.9	6.92 6.95 6.95 6.90	6.68 5.70 5.47 5.64 5.88							
08-17-94 08-18-94 08-20-94 08-21-94 08-22-94 08-23-94	9 / 8 9 9 7 7 2	1000 900 1000 800 800 900 730	25.0 24.8 25.1 25.4 22.7	7.00 6.74 6.72 6.76 6.70 6.68	6.53 6.29 6.29 6.75 6.38 6.33 6.33	40.8	85.5	006	0.00	0.00	0.612	0.00188
08-24-94 08-25-94 08-26-94 08-27-94 08-29-94 08-30-94	£ 4 £ £ £ £ 6 £	000 100 900 900 900 900 900	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	6.54 6.70 6.70 6.78 6.82 6.83 6.73	6.47 6.31 5.65 5.62 5.62 6.52 6.52	54.4	119.7	738	0.00	0.00	0.126	0.00033
09-01-94 09-01-94 09-03-94 09-04-94 09-05-94	3,2,2,2,2,2,3	900 900 815 810 900	3 4 6 6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.83 6.83 6.83 6.65 6.65 6.65	6.00 6.00 7.00 7.00 7.00 7.00 7.00 7.00	61.2	119.7	528	0.00	0.00	co.	ซ
09-07-94 09-08-94 09-09-94 09-10-94 09-11-94	28 29 33 33 34	1100 1100 900 900 800 500	23.9 23.7 24.1 22.7 23.7	6.86 6.83 6.83 6.85 7.05	6.53 6.96 6.30 6.11 6.11	74.8	102.6	594	0.00	0.00	0.025	0.00009

0.00022	æ	a	a 0.00011	a	0.00006
0.085	æ	a	a 0.032	Ø	0.030
00.00	0.00	α	0.00	0.00	0.00
0.00	0.00	ď	0.00	0.00	0.00
838	702	862	788	×1999	× 1999
119.7	119.7	119.7	119.7	290.7	495.9
40.8	68.0	47.6	68.0	54.4	34.0
6.66 6.03 6.03 5.22 5.30 6.30 6.30	6.01 6.01 6.00 7.74 7.74	5.51 2.96 6.91 6.27 6.54 6.55 7.56	6.82 7.24 7.19 5.51 3.37 4.8	6.91 6.07 6.31 7.18 6.62	6.58 6.68 6.77 6.24 6.24
6.92 7.05 6.05 6.05 6.05 6.05 6.05 6.05 6.05 6	6.84 6.71 6.70 6.70 8.70	6.661 6.86 6.75 6.76 6.79 6.79 6.79	6.82 6.82 6.77 6.75 8.95	6.73 6.73 6.52 6.75 6.49	6.55 6.66 6.70 6.63 6.64 6.64
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	22 22 22 22 22 22 22 22 22 22 22 22 22	25.5 26.1 26.1 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	23.7 23.7 24.4 27.0 25.3	245 246 236 237 237 237 237 237	22.2 22.4 23.6 22.4 22.8 22.8 22.8 22.8 23.8
500 1300 1200 820 830 1000	1300 1300 1300 900	1000 1030 1030 900 915 1100 1100 1100	11000	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000 000 000 000 000 000 000 000
33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4 4 4 4 4 4 - 2 6 4 6 6 6	4 4 4 6 8 6 9 6 9 6 9 6 9 6 9 9 9 9 9 9 9 9 9	55 55 55 55 55 55 55 55 55 55 55 55 55	. 6 9 9 8 8 8 8 9 9 8 8 8 9 8 9 8 8 8 9 8 9 8 8 9 8 9 8 9	2017 2017 2017 2017 2017 2017 2017 2017
09-13-94 09-14-94 09-15-94 09-17-94 09-18-94 09-19-94	09-27-94 09-22-94 09-23-94 09-25-94 09-26-94	09-28-94 09-29-94 09-29-94 10-01-94 10-03-94 10-04-94	10-06-94 10-07-94 10-09-94 10-11-94	10-13-94 10-13-94 10-15-94 10-17-94 10-18-94	10-20-94 10-20-94 10-22-94 10-23-94 10-24-94 10-25-94

0.00019	0.00055	0.00016	0.00012	0.00016	0.00017	0.00029
0.082	0.200	0.074	0.051	0.089	0.110	0.094
0.00	0.00	0.00	00.00	0.00	00.0	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
918	954	906	1084	1979	404	443
136.8	171.0	171.0	136.8	102.6	102.6	102.6
54.4	0.89	54.4	54.4	47.6	47.6	54.4
7.60 7.86 7.80 7.84 7.25 5.74	6.69 6.69 6.84 7.57 7.68	6.98 7.80 7.73 7.35	6.77 7.32 7.15 6.71 7.10 7.33	6.71 8.52 9.43 10.25 8.78 8.79	8.37 9.25 9.25 7.83 7.31	7.96 5.88 7.44
6.71 6.80 6.84 6.78 6.73 6.73	6.76 6.78 6.72 6.72 6.80 6.69	6.73 6.68 6.76 6.68	6.72 6.76 6.59 6.64 6.72	6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.56 6.68 6.66 6.60 6.72	6.72 6.70 6.77
22.12 21.2 22.19 25.28 25.20 2	22.2 22.3 22.9 24.4 25.9 24.4	22.0 21.3 22.0	22.2 24.8 23.3 22.1 22.1 23.3 23.3 23.3 23.3	23.2 20.2 20.2 20.2 20.0 20.0 20.0 20.0	21.0 21.3 22.6 23.0 23.0	22.6 26.0 22.1
000 000 000 000 000 000 000 000 000 00	000 000 000 000 000 000 000 000 000 00	900 845 1000	000000000000000000000000000000000000000	800 1020 1000 8000 8000	1000 1000 1000 900 900	1100 1000
77 78 79 80 82 83	4 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	98 98 100 101 102	£ 400 00 00 00 00 00 00 00 00 00 00 00 00	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	118 120
10-27-94 10-28-94 10-29-94 10-31-94 11-01-94	11-03-94 11-05-94 11-05-94 11-07-94 11-09-94	11-10-94 11-11-94 11-13-94 11-14-994	11-15-94 11-16-94 11-18-94 11-20-94 11-21-94	11-22-94 11-23-94 11-25-94 11-26-94 11-28-94	11-30-94 12-01-94 12-02-94 12-03-94 12-05-94 12-05-94	12-07-94 12-08-94 12-09-94

	0.00020	0.00015	0.00011	0.00020	0.00003	a
	0.079	0.092	0.067	0.025	0.017	Ø
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	×1999	1891	1062	518	419	>1999
	410.4	256.5	205.2	102.6	119.7	581.4
	47.6	54.4	47.6	08.0	47.6	54.4
8.09 3.22 8.19 8.52	9.68 9.68 8.61 7.65 7.53		8.35 8.35 8.47 8.16 7.78	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7.78 7.78 7.29 6.54 6.67 7.95 6.83	8.11 7.82 6.99 7.69
6.75 6.62 7.38 7.41	6.79 6.79 6.68 6.67 6.67	6.65 6.94 6.74 7.00 7.39 6.72	6.62 6.62 6.78 6.74 6.72 6.72	7.13 7.43 7.50 7.45 7.41 6.61	6.55 6.30 6.81 6.74 6.74	7.04 6.65 6.82 6.81
22.1 31.0 24.5 24.2	20.5 21.9 22.2 22.3 22.3	27.6 27.6 27.8 27.8 24.8 25.1	20.0 27.7 21.0 21.9 21.9	2.6.0 2.4.4 2.4.3 2.6.0 2.6.0 2.6.0 2.6.0 2.6.0 2.6.0	21.0 22.2 23.8 23.8 23.8 23.8	23.3 23.3 23.9 22.6
1300 900 900 900	800 1100 930 1000	000 000 000 000 000 000 000 000 000 00	000 1100 1000 1000 1000	2001 1000 1000 1000 1000 1000 1000 1000	000 000 000 000 000 000 000 000 000	1000 1000 1000
122 123 124 124	126 128 139	25 25 25 25 25 25 25 25 25 25 25 25 25 2	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5 4 4 4 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5	251 251 251 251 251 251 251 251 251 251	161 163 163
12-10-94 12-11-94 12-12-94 12-13-94	12-15-94 12-16-94 12-17-94 12-18-94	12-21-94 12-22-94 12-23-94 12-25-94 12-25-94 12-27-94	12-29-94 12-30-94 12-31-94 01-01-95 01-02-95	01-05-95 01-06-95 01-07-95 01-09-95 01-10-95	01-1-95 01-12-95 01-14-95 01-15-95 01-17-95 01-18-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00002	0.00014	0.00008	0.00011	0.00030	0.00008
0.022	0.073	0.012	0.026	0.054	0.015
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
373	649	250	248	254	348
102.6	136.8	85.5	85.5	85.5	85.5
47.6	54.4 4	47.6	40.8	34.0	34.0
8.82 9.34 6.05 8.33 9.05 8.07 9.02 9.47	8.38 4.13 10.22 4.75 8.63 8.64 9.08	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9.99 9.88 9.52 9.35 4.25 4.25	9.29 9.29 9.21 9.21 9.07	9.06 9.03 8.88 8.98 8.98
6.67 6.63 6.63 6.70 6.61 6.71 6.66 6.78 7.38 6.86	6.68 6.76 6.89 6.77 7.32 7.28	7.17 7.08 7.03 6.92 7.01 6.99	6.98 6.98 6.98 6.93 7.01	7.00 6.98 7.03 7.04 6.98 6.95	7.01 7.01 6.98 7.00 6.99 6.98
20.6 23.8 23.8 19.0 19.9 20.4 19.5	20.4 26.0 22.3 22.3 22.3	21.5 21.5 21.0 20.8 20.8	23.2 23.2 23.7 23.5 4.4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.2 24.0 23.3 23.3 23.5
600 11000 1000 1000 1000 1000 1000	1000 1200 930 930 900	900 900 900 900 900	900 1100 1000 1000	000 1000 1000 1000 1000 1000 1000 1000	900 1000 1015 900
165 166 167 168 170 171 173 173	175 176 177 178 180	182 184 185 186 186 187	198 192 193 193 194 195	201 198 200 201 201	203 204 205 207 207
01-23-95 01-24-95 01-25-95 01-26-95 01-28-95 01-29-95 01-30-95 01-31-95	02-02-95 02-03-95 02-04-95 02-05-95 02-06-95 02-07-95	02-09-95 02-10-95 02-11-95 02-13-95 02-14-95	02-16-95 02-16-95 02-18-95 02-19-95 02-20-95 02-21-95	02-23-95 02-23-95 02-25-95 02-26-95 02-27-95 02-28-95	03-02-95 03-03-95 03-04-95 03-05-95 03-06-95

0.00008	0.00004	ิ	0.00030	0.00019	0.00017 a
0.015	0.012	æ	0.074	0.049	0.038 a
0.00	00.0	0.00	0.00	0.00	00.00
0.00	00:00	0.00	0.00	0.00	0.00
250	5 520	241	225	235	254
85.5	85.5 5.	Ç. Ç.	85.5	85.5	85.5 85.5
40.8	67.6	9.74	47.6	40.8	40.8
8.76 8.48 8.76 8.76 8.26 8.77 8.84	8.83 8.34 8.33 8.33 8.50	8.40 7.73 8.22 8.37 8.15 8.10	7.58 7.44 7.93 8.43 8.07 8.01	8.14 8.04 7.99 7.53 7.53	7.33 7.23 7.92 7.96 7.89 8.03 8.12
6.99 6.99 7.00 6.99 6.99 6.99 6.99	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.94 7.00 6.93 6.93 6.95	6.95 6.97 7.00 7.04 6.97 6.99	7.01 6.98 7.00 6.95 6.98 7.00 7.00	7.02 6.92 7.02 6.97 6.95 6.99 6.99
23.6 24.8 24.8 24.4 24.5 24.5 24.5	25.3 25.3 25.3 25.5 25.5 25.5 25.5	25.2 25.2 25.3 25.3 25.3 24.8	25.2 25.0 25.0 25.0 25.3 25.3	24.8 25.2 25.5 26.0 25.6 25.6 25.8	25.8 25.5 25.0 24.9 25.2 25.2
900 1100 1100 900 900 900	000000000000000000000000000000000000000	900 900 900 900 900 900	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1100 1100 1300 900 900	1100 900 1100 900 900 900
200 211 212 213 215 215 216	222 223 223 223 223 223 233 233 233 233	226 227 228 230 230	231 232 234 234 235 237	238 240 242 243 244	245 246 247 248 249 251 251
03-08-95 03-09-95 03-10-95 03-12-95 03-13-95 03-14-95	03-16-95 03-17-95 03-18-95 03-20-95 03-21-95	03-23-95 03-24-95 03-25-95 03-27-95 03-28-95 03-29-95	03-30-95 03-31-95 04-01-95 04-02-95 04-03-95 04-04-95	04-06-95 04-07-95 04-08-95 04-10-95 04-11-95	04-13-95 04-14-95 04-15-95 04-17-95 04-18-95 04-19-95

æ	ı	æ	0.00023 0.00002 0.00188 0.000331
œ	ı	ď	0.079 0.012 0.612 0.1089 29
0.00		0.00	0.00
0.00		0.00	0.00
230	}	526	220 >1999 38
85.5		85 55 5	148.5 85.5 581.4 113.23
40.8		40.8	49.7 34.0 74.8 10.00 38
7.49 7.39 7.37 7.47 7.30 7.34	7.40 6.98 7.59 8.15 8.56 7.54	7.82 7.71 7.23 7.48 7.75 7.56	7.48 2.96 10.25 1.406 272
7.00 6.98 6.99 7.02 7.02 7.02 6.99	6.99 7.00 7.02 7.02 6.98 7.02	6.99 7.01 6.95 6.99 7.01 7.01	6.30 7.56 271
25.6 25.9 25.9 25.0 25.0 25.3	255 255 255 255 253 253 253	25.2 25.2 25.2 25.3 25.3 25.3 25.3	23.6 18.8 31.0 1.90 272
900 1200 2000 900 900 900	100 100 1600 900 900	900 900 900 900 900 900	
253 254 255 255 257 258 258	260 261 262 263 264 265	266 267 268 269 270 271 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-28-95 04-29-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-07-95 05-08-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

a. Data not available; analytical instrument would not calibrate.

TANK No. 12 TANK CONCENTRATION: 5% GROUNDWATER (WELL CC-27B) DILUTED WITH WEST BRANCH OF CANAL CREEK WATER DEN EXPOSURE: 10 mg/L

Total Total Ammonia- Unionized Nitrogen Ammonia- (mg/L) Nitrogen (mg/L)						0.621 0.00209							0.088 0.00023	0.088	0.088	0.088	0.088	0.088	0.088	0.088 ø	0.088 0.00023	0.088 0.00023	0.088 0.00023	0.088 0.00023	0.088 0.00023	0.088 0.00023	0.088 0.00023 a	0.088 0.00023 a	0.088 0.00023 a	0.088 0.00023 a
Free Available Chlorine (mg/L)					(0.00							0.00	00.00	0.00	0.00	0.00	0.00	00.00	00.00	00:00	00:00	00:00	00.00	00.00	00.00	0.00	0.00	0.00	00.00
Total Residual Chlorine (mg/L)					(0.00							0.00	0.00	0.00	0.00	0.00	00.00	00:00	00.00	00.00	00.00	00:00	00:00	00:00	00:00	00.00	00.00	00.00	00.00
Conductivity (umohs/cm)					(905							736	736	736	736	736	736	736	736	736	736	736	736	736	736	736 531 593	736 531 593	736 531 593	736 531 593
Hardness (mg/L as (CaCO3)						68.4							119.7	119.7	119.7	119.7	119.7	119.7	119.7	119.7	119.7	119.7	119.7	119.7	119.7	119.7	136.8	119.7	119.7	119.7
Alkalinity (mg/L as CaCO3)						40.8							54.4	54.4	54.4	54.4	4.4	4.44	4.46	54.4 61.2	54.4	54.4	54.4 61.2	54.4 61.2	54.4 61.2	54.4 61.2	54.4 61.2 68.0	68.0	68.0	54.4 68.0
Dissolved Oxygen (mg/L)	6.71	5.44	5.56	5.98	5.34	4.56		900	5.88	5.88 5.88 5.67	5.88 5.67 5.26 6.24	5.88 5.67 5.26 6.24 6.32	5.28 5.26 5.26 6.32 6.07	5.26 5.26 5.26 6.24 6.07 5.65	5.28 5.28 5.26 6.24 6.32 5.65 5.65	6.24 6.24 6.24 6.32 6.07 6.07 6.07	6.24 6.24 6.32 6.32 6.07 6.07 6.07 6.07 6.07	6.32 6.32 6.32 6.32 6.32 6.32 6.32 6.32	6.22 6.32 6.32 6.32 6.32 6.32 6.32 6.32	6.02 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03	6.02 6.02 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03	6.83 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.0	6.83 6.02 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03	6.83 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.0	6.83 6.83 6.83 6.83 6.83 6.83 6.83 6.83	26.00 26	26.00 26	6.32 6.32	28.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	28.75.75.85.75.75.75.75.75.75.75.75.75.75.75.75.75
Hď	6.92 6.85	6.95	6.80	6.90	7.00	6.78			6.76 6.76 6.70	6.76 6.70 6.68	6.76 6.70 6.68 6.74	6.76 6.70 6.68 6.74 6.54	6.76 6.76 6.70 6.74 6.70	6.76 6.76 6.70 6.74 6.74 6.70	6.76 6.76 6.70 6.74 6.70 6.70	6.70 6.76 6.70 6.74 6.70 6.70 6.70	6.70 6.76 6.70 6.70 6.70 6.70 6.82	6.75 6.76 6.70 6.70 6.70 6.70 6.82 6.85	6.76 6.76 6.70 6.70 6.74 6.70 6.82 6.83 6.93	6.76 6.76 6.70 6.70 6.70 6.70 6.82 6.83	6.76 6.76 6.70 6.70 6.74 6.70 6.82 6.83 6.83	6.76 6.76 6.70 6.70 6.70 6.82 6.83 6.83 6.83	6.76 6.70 6.70 6.70 6.70 6.82 6.83 6.83 6.83 6.83	6.73 6.70 6.70 6.70 6.70 6.82 6.83 6.83 6.83 6.83	6.69 6.69 6.69 6.69 6.69	6.68 6.73 6.70 6.70 6.70 6.83 6.83 6.69 6.69	6.69 6.73 6.74 6.70 6.82 6.83 6.83 6.69 6.69 6.69	6.69 6.73 6.74 6.70 6.83 6.83 6.83 6.83 6.83 6.83	6.83 6.83 6.83 6.83 6.83 6.83	6.83 6.83 6.83 6.83 6.83 6.83 6.83 6.83
Temperature (Celcius)	24.5 25.1	25.1	23.9	23.9	24.9	24.8 8.4.0		7.4.7 2.6.4	25.1 25.1 25.4	25.1 25.4 24.2	25.1 25.4 24.2 22.7	25.1 25.4 24.2 22.7 23.9	25.1 25.1 25.7 23.9 23.9	25.1 25.2 25.2 23.9 23.9 24.1	25.1 25.2 25.2 25.2 25.0 25.0 25.0 25.0 25.0	25.1 25.2 25.2 25.2 25.0 25.0 25.0 25.0 25.0	25.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	44. 44. 44. 44. 44. 44. 44. 44. 44. 44.	44.65.52 4.1.4.65.52 4.1.4.65.53 4.1.4.65 4.1.4.	4,652 2,222 2,222 2,222 4,124 2,222 4,124	4,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,	4,6,5,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2	4,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,	4,652 2,22 2,22 2,22 2,22 2,22 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2	2,55 2,22 2,23 2,23 2,23 2,23 2,23 2,23	2,55 2,22 2,23 2,23 2,23 2,23 2,23 2,23	25	222 22 22 22 22 22 22 22 22 22 22 22 22	44.64.44.44.44.44.44.44.44.44.44.44.44.4	2,552 2,252 2,522
Time T (Military)	1000	006	006	1000	1000	006		α CC 7	2 0 0 2 0 0 2 0 0	800 900 900	200 1000 800 900 730	200 1000 800 900 730 1000	200 1000 800 900 730 1000	900 1100 900 900 1100 900	900 900 1000 900 900 900 900	000 000 000 000 000 000 000 000 000 00	000 000 000 000 000 000 000 000 000 00	000 000 000 000 000 000 000 000 000 00	000 000 000 000 000 000 000 000 000 00	200 1000 200 200 200 200 200 200 200 200	0001 0000 0000 0000 0000 0000 0000 000	200 200 200 200 200 200 200 200 200 200	000 000 000 000 000 000 000 000 000 00	900 900 900 900 900 900 900 900 900 900	000 000 000 000 000 000 000 000 000 00	000 000 000 000 000 000 000 000 000 00	000 000 000 000 000 000 000 000 000 00	000 000 000 000 000 000 000 000 000 00	000 000 000 000 000 000 000 000 000 00	000 000 000 000 000 000 000 000 000 00
Trailer Exposure Test Day	- 0	1 m	4	2	φ ι	~ 0	×	αc	Σ Ο C	α o C L	2 1 1 0 0 a	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	x a 6 £ 6 £ 4	x a 6 £ 6 £ 4 £	x a 6 £ 6 £ 5 £ 5	x a 6	x a 6 t t t t t t t t t t t t t t t t t t	x a 6 t t t t t t t t t t t t t t t t t t	8 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 6 0 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	8 6 0 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	8 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	x a b t t t t t t t t t t t t t t t t t t	x a 6 t t t t t t t t t t t t t t t t t t	8 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	»	x a b t t t t t t t t t t t t t t t t t t	x a 5 t t t t t t t t t t t t t t t t t t	x o 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Date	08-12-94	08-14-94	08-15-94	08-16-94	08-17-94	08-18-94	מבי בי	08-19-94	08-19-94 08-20-94 08-21-94	08-19-94 08-20-94 08-21-94 08-22-94	08-19-94 08-20-94 08-21-94 08-22-94 08-23-94	08-19-94 08-20-94 08-22-94 08-23-94 08-23-94	08-19-94 08-20-94 08-21-94 08-23-94 08-23-94 08-24-94	08-19-94 08-20-94 08-21-94 08-23-94 08-25-94 08-25-94	08-19-94 08-20-94 08-21-94 08-23-94 08-25-94 08-25-94 08-26-94	08-19-94 08-20-94 08-21-94 08-23-94 08-25-94 08-25-94 08-27-94	08-19-94 08-20-94 08-21-94 08-23-94 08-25-94 08-25-94 08-27-94 08-28-94	08-19-94 08-20-94 08-21-94 08-23-94 08-25-94 08-25-94 08-27-94 08-29-94	08-19-94 08-20-94 08-21-94 08-23-94 08-25-94 08-27-94 08-28-94 08-29-94 08-31-94	08-19-94 08-20-94 08-21-94 08-22-94 08-25-94 08-25-94 08-28-94 08-29-94 08-31-94	08-19-94 08-20-94 08-21-94 08-23-94 08-25-94 08-25-94 08-29-94 08-30-94 09-01-94	08-19-94 08-20-94 08-21-94 08-22-94 08-25-94 08-25-94 08-29-94 08-30-94 09-01-94	08-19-94 08-20-94 08-21-94 08-22-94 08-25-94 08-25-94 08-29-94 08-31-94 09-01-94 09-03-94	08-19-94 08-20-94 08-22-94 08-23-94 08-25-94 08-25-94 08-27-94 08-29-94 08-31-94 09-01-94 09-03-94 09-03-94	08-19-94 08-20-94 08-21-94 08-22-94 08-25-94 08-25-94 08-27-94 08-29-94 08-31-94 09-01-94 09-03-94 09-05-94	08-19-94 08-20-94 08-21-94 08-22-94 08-23-94 08-25-94 08-25-94 08-29-94 08-30-94 09-02-94 09-03-94 09-05-94	08-19-94 08-20-94 08-21-94 08-22-94 08-25-94 08-25-94 08-27-94 08-29-94 08-31-94 09-02-94 09-03-94 09-05-94 09-05-94	08-19-94 08-20-94 08-21-94 08-22-94 08-23-94 08-25-94 08-25-94 08-29-94 08-30-94 09-02-94 09-03-94 09-05-94 09-05-94	08-19-94 08-20-94 08-21-94 08-22-94 08-25-94 08-25-94 08-26-94 08-31-94 09-02-94 09-05-94 09-07-94	08-20-94 08-20-94 08-20-94 08-23-94 08-25-94 08-25-94 08-20-94 08-31-94 09-07-94 09-07-94 09-07-94 09-07-94

0.00024	Ø	æ	a 0.00011	a	0.00007
0.090	a	æ	0.033	a	0.035
0.00	0.00	ro	0.00	0.00	0.00
00:00	0.00	æ	0.00	0.00	0.00
838	705	873	781	×1999	× 1999
119.7	119.7	119.7	119.7	290.7	95.9
40.8	68.0	47.6	68.0	47.6	34.0
6.53 6.53 6.53 6.53 6.52 6.54 6.37	5.50 6.45 6.04 3.80	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	6.91 7.23 7.23 5.53 5.37 7.0	6.94 6.07 6.32 7.19 6.67	0.000000000000000000000000000000000000
6.92 7.06 6.65 6.67 6.91 6.91	6.84 6.83 6.69 a	6.00 6.01 6.01 6.74 6.76 6.76 6.79 6.79	6.86 6.82 6.80 6.77 6.95	6.78 6.71 6.80 6.52 6.75 6.49	6.55 6.66 6.70 6.63 6.64 6.64
23.9 25.6 25.6 25.5 23.9	25.7 24.5 24.3 25.0 25.4 26.4	25.0 26.3 27.8 27.8 27.8 27.6 27.6 27.6	23.2 23.2 24.2 25.3 25.3 25.3 25.3	25.5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.4.2 2.2.2
700 1300 1200 820 830 1000	1000 1000 1300 900	900 1030 900 900 1100 1100	1000 1000 1000 1600	1300 1300 1000 1000 1000	
33 34 39 39 40	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	55 55 60 61 61 61	65 66 67 68 68	69 7 7 7 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
09-13-94 09-14-94 09-15-94 09-17-94 09-18-94 09-19-94	09-21-94 09-22-94 09-23-94 09-24-94 09-25-94	09-27-94 09-28-94 09-29-94 10-01-94 10-03-94 10-04-94	10-06-94 10-06-94 10-08-94 10-10-94 10-11-94	10-13-94 10-13-94 10-15-94 10-17-94 10-18-94	10-19-94 10-20-94 10-22-94 10-23-94 10-25-94 10-26-94

0.00019	0.00056	0.00015	0.00013	0.00013	0.00017	0.00026
0.083	0.210	0.075	0.055	0.071	0.110	0.088
0.00	0.00	0.00	00.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
829	920	926	101	×1999	406	447
136.8	171.0	171.0	136.8	119.7	102.6	102.6
54.4	68.0	54.4	54.4	47.6	47.6	54.4
7.50 7.81 7.78 7.20 7.07 7.07	6.61 7.63 7.49 8.44 8.58	7.79 8.19 7.81 7.35	6.75 7.30 7.11 6.65 7.20	8.36 8.36 9.40 10.21 8.79 8.48	8.54 9.17 7.77 6.98 7.21	7.19 7.19
6.71 6.80 6.78 6.73 6.72 6.72	6.78 6.78 6.72 6.80 6.69	6.73 6.73 6.69 6.68	6.72 6.76 6.59 6.64 6.72 6.72	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6.55 6.65 6.60 6.60 7.7	6.70 6.70 6.77
22 22 3 2 2 2 2 2 2 2 2 3 2 3 2 2 2 3 2 3 2 3	2222 2223 2233 2233 2233 2233	21.2 21.2 21.8 20.3	212 212 232 232 233 244 254 254 254 254 254 254 254 254 254	23.3 20.2 20.2 20.2 21.0 21.0 4.4	20.5 20.9 22.3 22.8 22.8 23.8	25.7 21.8
1100 900 900 1100 1100	1000 1000 1000 1000 1000 1000	900 830 1000		900 1020 1000 900 900	900 1000 900 900 900	1000
77 78 79 80 83 83 84 84	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	. 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	88 88 00 101 205 205	2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 11 11 11 11 11 11 11 11 11 11 11 11 11	119
10-27-94 10-28-94 10-30-94 10-31-94 11-01-94 11-02-94	11-04-94 11-05-94 11-06-94 11-08-94 11-08-94	11-12-94 11-12-94 11-13-94 11-14-94	11-16-94 11-16-94 11-18-94 11-19-94 11-20-94	11-25-94 11-25-94 11-26-94 11-26-94 11-28-94 11-29-94	12-02-94 12-02-94 12-03-94 12-04-94 12-05-94 12-06-94	12-07-94 12-08-94 12-09-94

0.00018	0.00016	0.00011	0.00023	0.00002	Ø
0.073	0.100	0.067	0.028	0.017	æ
00.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
>1999	1891	1063	520	415	>1999
427.5	273.6	205.2	102.6	102.6	564.3
47.6	54.4	47.6	68.0	47.6	54.4
2.63 2.63 8.44 8.44 9.57 7.77 7.74 8.56	7.95 6.26 6.38 7.95 7.95 7.93	8.31 2.91 8.42 8.42 7.36 9.50	6.82 8.82 8.89 9.33 9.45	6.59 6.59 6.59 7.94 6.59 7.94	8.04 7.02 7.02 7.83
6.75 6.62 7.38 7.36 6.79 6.69 6.67	6.65 6.94 6.74 7.00 7.55 6.72	6.62 6.62 6.78 6.74 6.74	2.00 2.43 7.43 7.45 6.61	6.55 6.30 6.81 6.81 7.4 7.0	7.04 6.65 6.62 6.81
22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	21.6 27.5 27.5 24.5 20.9 20.9	20.4 27.6 20.9 20.9 20.7 21.7	25.5 24.2 24.2 24.0 24.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	20.2 20.2 20.2 20.2 20.3 20.3 20.3 20.3	23.7 23.5 22.2
1300 900 900 1100 1400 1000	001 000 000 000 000 000 001 000 001 000 00	26 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2001 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	900 00 00 00 00 00 00 00 00 00 00 00 00	1000
122 122 123 124 126 129 129	132 133 135 136 136 137 138	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	140 148 150 151 152	154 155 156 158 158 158	162 163 163
12-10-94 12-17-94 12-12-94 12-15-94 12-15-94 12-18-94 12-18-94	12-20-94 12-21-94 12-22-94 12-25-94 12-25-94 12-27-94	12-29-94 12-30-94 12-31-94 01-02-95 01-03-95	01-04-59 01-05-95 01-07-95 01-08-95 01-09-95	01-17-95 01-12-95 01-13-95 01-15-95 01-16-95 01-17-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00004	0.00015	0.00007	0.00011	0.00030	0.00008
0.019	0.083	0.010	0.027	0.054	0.015
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
341	646	253	248	254	349
102.6	136.8	85.5	102.6	85.5	85.5
47.6	54.4 4.	47.6	40.8	34.0	3 4 .0
9.42 9.42 6.03 7.07 9.17 9.06 8.88 8.68	8.45 10.12 10.12 4.28 8.62 8.53	9.46 9.67 9.89 9.89	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9	8.78 8.78 8.79 8.82 8.97
6.67 6.63 6.63 6.70 6.61 6.69 6.69 7.38	6.68 6.68 6.89 6.77 7.32 7.28	7.17 7.18 7.03 6.92 7.01	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7.00 6.98 7.03 7.04 6.98	6.99 6.98 6.98 6.99 6.99
20.1 21.3 23.6 21.1 19.6 19.0 19.0	25.9 24.9 22.3 22.3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21.3 23.2 23.2 23.4 23.4 4.4 23.4 4.4	24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	24.2 23.3 23.3 23.3 23.3 23.3 3.6
000 000 000 000 000 000 000 000 000 00	200 200 200 200 200 200 200 200 200 200	200 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000 000 1400 000 000 000 000 000 000	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	900 900 1000 1015 900
165 166 167 169 171 172 173	175 176 178 178 180	182 184 185 185 186	190 190 193 193 193	195 196 198 200 201	202 204 205 206 207 208
01-23-95 01-24-95 01-25-95 01-26-95 01-27-95 01-29-95 01-30-95 01-31-95	02-02-95 02-03-95 02-04-95 02-05-95 02-06-95 02-07-95	02-05-05 02-09-95 02-11-95 02-12-95 02-13-95 02-14-95	02-15-95 02-16-95 02-17-95 02-19-95 02-20-95 02-21-95	02-22-95 02-23-95 02-24-95 02-25-95 02-26-95 02-27-95	03-01-95 03-02-95 03-03-95 03-04-95 03-05-95 03-06-95

0.00008	0.00004	æ	0.00029	0.00020	0.00017 a
0.015	0.011	œ	0.070	0.050	0.038 a
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	00.0	0.00
250	22.1	241	226	236	255
85.5 5	85.5	85.5	85.5	85.5	85.5 85.5
40.8	47.6	47.6	47.6	40.8	40.8
8.66 8.52 8.52 8.35 8.70 8.70	8.65 8.25 8.25 8.25 8.34 8.65	8.29 7.54 7.96 8.69 7.86	7.47 7.43 7.19 8.04 7.74	7.97 7.74 7.74 7.93 7.42 7.54 6.54	7.40 7.03 7.71 7.67 7.64 7.80 7.97
6.90 6.90 6.90 6.90 6.90 6.90 6.90 6.90	6.85 6.95 6.99 6.96 6.94 7.00	6.96 6.94 7.01 7.10 6.93 79	6.95 6.97 7.02 7.00 7.04	7.01 7.01 7.00 6.95 6.98 7.00 7.00	7.02 6.92 7.02 6.97 6.95 6.99 6.99
233 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	25.6 25.6 25.5 25.0 25.7 25.7	25.55 25.35 25.35 25.35 25.35 25.35 25.35	25.2 25.2 25.1 25.1 25.4 26.9	25.5 25.5 25.5 25.5 25.5 25.6 25.6 25.6	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
000 000	8 9 9 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	900 900 900 900 900	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	900 1300 900 900 900	1100 900 1100 900 900 900
209 212 213 214 215 45	223 223 223	224 225 227 228 229	232 232 234 235 236 236	238 239 241 242 243	245 246 247 248 250 251
03-08-95 03-09-95 03-11-95 03-12-95 03-13-95 03-14-95	03-16-95 03-17-95 03-18-95 03-19-95 03-20-95 03-22-95	03-23-95 03-24-95 03-25-95 03-26-95 03-27-95	03-30-95 03-31-95 04-01-95 04-02-95 04-04-95	04-06-95 04-06-95 04-08-95 04-10-95 04-11-95	04-13-95 04-14-95 04-16-95 04-17-95 04-18-95 04-19-95

N	1	a	0.00023 0.00002 0.00209 0.000367 29
ิเซ	ı	a	0.078 0.010 0.621 0.1105
00.0		0.00	0.00
00.0		0.00	0.00
230		529	221 >1999 38
85.55		85.5	149.9 68.4 564.3 112.91
40.8		40.8 8	49.4 34.0 68.0 9.58 38
7.45 7.40 7.47 7.37 7.27 7.21	7.20 6.79 7.51 7.98 8.51	7.62 7.63 7.46 7.30 7.18 7.18	7.41 2.63 10.21 1.393 272
7.00 6.98 6.99 7.02 6.98 7.02 6.99	6.99 7.00 7.02 6.98 7.02	6.99 7.01 6.94 6.98 7.01 7.01	6.30 7.55 271
25.7 25.9 25.9 25.1 24.9 25.5	25.6 25.3 25.3 25.6 25.5 25.5 25.5	25.5 25.5 25.5 25.5 26.4 26.4 26.0	23.6 18.4 31.0 1.98 272
900 2000 2000 900 900 900	900 1100 1600 900 900	000000000000000000000000000000000000000	
253 254 255 257 257 258 259	260 261 262 263 264 265	266 267 268 270 271 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-28-95 04-29-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-08-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

a Data not available; analytical instrument would not calibrate.

TANK No. 13 TANK CONCENTRATION: 25% GROUNDWATER (WELL CC-27B) DILUTED WITH WEST BRANCH OF CANAL CREEK WATER NO DEN EXPOSURE

e pH Disso Oxyg (mg/
24.3 6.49 5.92 24.2 6.59 6.04
6.68 6.52
6.37
6.23 6.12
6.26
6.35
5.84 6.41
6.38
6.46
6.48
6.57
6.42
6.43
6.30 6.53
6.01
6.12
6.23 6.69
6.44
6.47
1 6.63 6.56

0.00006	ć	a a		a 0.00005	œ	0.00004
0.060	•	a a	•	a 0.041	œ	0.058
0.00	S	00.00 60		00.00	0.00	0.00
0.00	ç	0.00 0.00		0.00	0.00	0.00
753	Ces	826		717	1770	×1999
119.7	- - - -	119.7		119.7	239.4	393.3
27.2	A A A	34.0 34.0		4. 4.	4 0.8	27.2
6.75 5.60 6.36 5.72 5.84	5.57 5.92 5.96 5.96	6.08 6.08 6.00 6.00 5.30 6.00	6.24 6.35 6.35 6.40 6.44	6.53 7.12 7.19 5.98 5.84 7.33	6.84 6.16 6.47 7.18 6.66 7.07	6.22 6.36 6.49 6.82 6.37 6.66
6.51 6.49 6.78 6.21 6.19	6.49 6.59 6.50 8.50	6.26 6.31 6.37 6.07	6.35 6.37 6.37 6.37 6.35 6.40	6.44 6.36 6.34 6.40 6.44	6.33 6.32 6.04 6.04 6.04 6.04	6.10 6.26 6.31 6.26 6.20 6.30
24.3 26.7 26.0 25.5 25.4	25.6 24.7 25.8 7	24.5 25.3 26.3 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5	23.2 23.6 23.4 24.2 25.2 24.2 25.2 25.2 25.2 25.2 25	23.2 24.1 26.7 25.3 22.4 22.4	24.2 24.8 24.8 24.2 24.2 24.5 3.0 3.0 4.5 3.0 4.5 3.0 4.5 3.0 4.5 3.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	24.1 22.9 22.8 21.7 21.7 21.7
700 1400 1300 1200 820	1000 1000 1000	1300 1300 1300 1000 1000	900 900 915 1100 1000	800 1100 1000 1000 900 900	1300 1300 1000 800 900	006
33 34 35 36 37	38 39 41 47	7	52 53 53 54 55	55 59 59 60 62 62	65 65 66 68 69	70 72 73 74 75 76
09-13-94 09-14-94 09-15-94 09-16-94 09-17-94	09-18-94 09-19-94 09-20-94 09-21-94 09-22-94	09-22-94 09-23-94 09-25-94 09-26-94 09-27-94 09-28-94	09-29-94 09-30-94 10-02-94 10-03-94 10-04-94	10-06-94 10-07-94 10-08-94 10-10-94 10-11-94	10-13-94 10-14-94 10-15-94 10-17-94 10-18-94	10-20-94 10-21-94 10-22-94 10-23-94 10-25-94 10-26-94

0.00007	0.00023	0.00006	0.00005	0.00004	0.00006	0.00012
0.074	0.190	0.085	0.059	0.056	0.100	0.080
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
728	842	710	921	1587	425	470
119.7	153.9	136.8	119.7	102.6	85.5	102.6
40.8	54.4	8.08	8. 8.	40.8	34.0	40.8
7.08 7.40 7.35 7.38 6.92 6.92 6.90	6.36 7.32 6.65 7.12 7.67 7.05	7.17 7.48 7.53 6.90	6.25 6.37 6.26 6.55 6.76	663 7.71 8.67 8.01 8.01 7.99	7.48 8.21 7.48 7.03 6.63	7.20 5.58 6.71
6.33 6.33 6.33 6.34 6.34 6.34 6.34	6.30 6.30 6.30 6.36 6.36 6.36	6.38 6.28 6.28 6.28	6.30 6.30 6.32 6.32 6.33 6.33 6.33	6.28 6.28 6.28 6.23 6.06 6.06	6.19 6.31 6.20 6.20 6.20	6.40 6.41 6.41
21.1 20.6 20.8 22.3 22.3 22.0 22.0	25.5 25.0 25.0 25.0 25.0 25.0 25.0 25.0	20.8 20.8 21.6	22.9 22.9 22.9 22.9 22.9 22.9 22.9	22222222222222222222222222222222222222	22.2 22.3 23.3 24.5 25.5 25.0 25.0	23.8 26.3 23.7
1100 900 1000 1100 1000	000 000 000 000 000 000 000 000 000 00	845 830 1000	000000000000000000000000000000000000000	6000 1020 1000 9000 9000	000 1000 1000 000 000 000 000	1100 1000
77 78 79 80 81 83	2	9 9 9 9 9 - 2 8 4 4 5 6	98 98 100 101 102	201 201 201 201 201 201 201 201 201 201		118 120
10-27-94 10-28-94 10-29-94 10-31-94 11-01-94	11-05-94 11-05-94 11-05-94 11-07-94 11-09-94	11-10-94 11-12-94 11-13-94 11-13-94	11-15-94 11-16-94 11-18-94 11-20-94 11-21-94	11-22-94 11-23-94 11-25-94 11-28-94 11-29-94	11-30-94 12-01-94 12-03-94 12-03-94 12-05-94	12-07-94 12-08-94 12-09-94

	0.00009	0.00008	0.00008	0.00010	0.00002	a
	0.086	0.100	0.083	0.025	0.031	a
	0.00	00:00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	>1999	1604	1004	200	424	>1999
	359.1	239.4	171.0	102.6	102.6	444.6
	34.0	40.8	40.8	54.4	34.0	54.4
7.19 3.24 7.51 7.70	7.62 7.62 7.58 7.13 7.02	5.86 5.86 5.86 5.91 7.28 7.70 8.31	7.50 5.74 2.97 7.37 7.29 6.48 8.08	8.18 8.18 8.48 8.48 7.85	7.48 7.48 6.87 6.23 6.43 6.32	7.02 6.87 5.91 6.63
6.35 6.82 6.92 8.92	6.30 6.26 6.30 6.27	6.30 6.65 6.68 6.68 6.92 6.32	6.29 6.43 6.38 6.35 6.37	6.90 6.93 6.93 6.88 6.20 8.83 6.20	6.16 6.06 6.30 6.50 6.40 6.71	6.63 6.15 6.21 6.48
23.7 31.2 24.8 24.7	24.2 24.3 24.3 24.3	26.5 28.3 28.6 25.9 22.7 22.7	28.7 28.7 28.7 23.7 23.7 23.7	242 242 242 242 242 242 242 242 242 242	2220 2220 253 2442 2442 2444	24.4 24.9 25.3 24.2
000 000 000 000	1100 1100 1000 1000	800 800 800 800 800 800 800 800 800 800	260011000 200010000000000000000000000000	1000 1000 1000 1000 1000	1000 800 1030 1000	1000 1000 1100
121 123 124 125	127 128 129 130	25 25 25 25 25 25 25 25 25 25 25 25 25 2	641 641 641 641 641 641 641 641 641 641	147 148 149 150 151 152	155 156 157 158 158 160	161 162 163
12-10-94 12-11-94 12-12-94 12-13-94	12-15-94 12-16-94 12-17-94 12-19-94	12-23-94 12-23-94 12-23-94 12-24-94 12-25-94 12-27-94	12-29-94 12-30-94 12-31-94 01-02-95 01-03-95	01-05-95 01-06-95 01-08-95 01-08-95 01-10-95	01-12-95 01-13-95 01-14-95 01-16-95 01-17-95 01-18-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00002	0.00011	0.00002	0.00002	0.00006	0.00002
0.022	0.100	0.012	0.028	0.052	0.014
0.00	0.00	0.00	0.00	00.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
373	615	297	296	294	371
102.6	136.8	85.5	85.5	85.5	85.5
34.0	40.8	40.8	34.0	27.2	27.2
7.78 7.82 5.23 7.39 7.58 7.04 7.75 7.68	7.50 2.78 8.87 3.76 7.59 7.48	8.36 8.36 8.52 8.55 8.55 8.55	8 8 8 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2	8.24 8.03 8.15 8.32 8.05 7.97	8.00 7.93 8.00 7.95 7.79
6.30 6.30 6.30 6.30 6.33 6.43 6.92	6.85 6.85 6.87 6.86 6.87	6.56 6.56 6.56 6.46 6.34 6.34 6.34 6.34	6.20 6.20 6.17 6.30 6.25	6.33 6.34 6.28 6.38 6.38 6.38	6.39 6.35 6.37 6.34 6.28
22.2 24.2 21.2 24.2 21.8 21.8 21.8	26.2 26.2 25.2 22.3 22.7	222 222 222 223 225 245 245 245 245 245 245 245 245 245	23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22.7 22.8 22.8 22.8 22.8
000 1000 1000 1000 1000 1000 1000	1200 1200 930 900 900	200 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000 000 000 000 000 000 000 000 000 00	1000 1000 1800 900 900	900 1000 1015 900 900
165 166 167 170 171 173	771 771 771 179 180	185 185 185 186 186 186 186 186	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	195 198 198 200 201 201	203 204 205 207 208
01-23-95 01-24-95 01-25-95 01-26-95 01-28-95 01-29-95 01-30-95 01-31-95	02-02-95 02-03-95 02-04-95 02-05-95 02-06-95 02-07-95	02-09-95 02-10-95 02-11-95 02-13-95 02-13-95	02-15-95 02-16-95 02-17-95 02-19-95 02-20-95 02-20-95	02-22-95 02-23-95 02-25-95 02-26-95 02-27-95 03-01-95	03-02-95 03-03-95 03-04-95 03-05-95 03-06-95 03-07-95

0 0000						0.00001							Ø							0.00006							0.00005							0.00005							æ
0.014						0.012							æ							0.061							0.054							0.043							Ø
0						0.00							0.00							0.00							00.0							00.0							0.00
000						00.0							0.00							0.00							0.00							0.00							0.00
292	}					268							291							277							285							300							275
85.5			=			85.5							85.5							85.5							85.5							85.5							68.4
34.0	<u>!</u>					34.0							40.8							40.8							34.0							34.0							34.0
7.75	7.29	7.46	7.45	7.91	7.86	7.85	7.65	7.52	7.64	7.54	7.42	7.61	7.41	6.47	7.01	7.57	7.06	6.67	6.61	6.59	6.57	6.98	7.31	7.08	6.84	6.91	6.98	6.70	6.98	7.35	6.33	7.04	6.78	6.92	69.9	7.40	7.45	7.24	7.54	7.70	7.42
6.37	6.32	0.30 0.30	6.30	6.30	6.28	6.29	6.30	6.32	6.34	6.31	6.28	6.27	6.31	6.31	6.37	6.38	6.29	6.29	6.30	6.33	6.35	6.41	6.39	6.34	6.39	6.31	6.38	6.39	6.37	6.36	6.32	6.39	6.39	6.41	6.37	6.42	6.34	6.41	6.39	6.44	6.37
22.7	24.8	24.8 24.8	24.0	24.0	23.2	24.6	24.7	24.8	25.6	24.5	24.8	24.6	24.7	24.6	24.7	24.5	24.7	24.6	24.5	24.6	24.5	24.5	24.2	24.0	24.6	23.1	24.3	24.6	24.8	25.2	24.8	25.1	25.6	25.5	25.1	25.6	24.7	24.6	24.4	24.9	24.9
900	900	1800	006	006	006	006	006	1000	1600	006	006	006	1100	006	915	006	006	006	006	006	006	006	1000	006	006	006	006	006	1100	1300	006	006	006	1100	006	1400	1100	006	006	006	006
209	211	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252
03-08-95 03-09-95	03-10-95	03-11-95	03-13-95	03-14-95	03-15-95	03-16-95	03-17-95	03-18-95	03-19-95	03-20-95	03-21-95	03-22-95	03-23-95	03-24-95	03-25-95	03-26-95	03-27-95	03-28-95	03-29-95	03-30-95	03-31-95	04-01-95	04-02-95	04-03-95	04-04-95	04-05-95	04-06-95	04-07-95	04-08-95	04-09-95	04-10-95	04-11-95	04-12-95	04-13-95	04-14-95	04-15-95	04-16-95	04-17-95	04-18-95	04-19-95	04-20-95

	a	ro	0.00008 0.00001 0.00067 0.000120
	æ	Ø	0.068 0.008 0.354 0.0658
	0.00	0.00	0.00 0.00 38
	0:00	0.00	0.00
	276	284	268 >1999 38
	85.5	85.55	134.1 68.4 444.6 86.44 38
	34.0	34.0	39.2 27.2 54.4 8.02 38
7.15 7.32 7.40 7.18 6.96	6.97 7.19 6.89 7.58 7.50 7.21	7.34 7.43 7.48 7.56 7.35 7.26	6.98 2.78 9.02 0.981 272
6.42 6.42 6.49 6.40 6.40	6.00 6.44 6.00 6.45 6.45 6.45 6.45	6.48 6.46 6.51 6.52 6.33	5.84 7.01 271
25.1 25.5 24.5 24.6 24.6	24.9 25.3 25.3 25.3 25.0 25.0	24.9 24.5 24.5 24.9 24.8 25.5	23.9 18.8 31.2 1.63 272
2000 2000 900 900	1100 1100 1600 900 900 900	000 000 000 000 000 000 000	
253 254 255 256 257 258	259 261 262 263 264 265	266 267 268 269 270 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-27-95 04-28-95 04-29-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-07-95 05-08-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

a. Data not available; analytical instrument would not calibrate.

TANK No. 14 TANK CONCENTRATION: 25% GROUNDWATER (WELL CC-27B) DILUTED WITH WEST BRANCH OF CANAL CREEK WATER NO DEN EXPOSURE

Total Unionized Ammonia- Nitrogen (mg/L)		0.00088	0.00005	œ	0.00008
Total Ammonia- Nitrogen (mg/L)		0.489	0.073	a	0.052
Free Available Chlorine (mg/L)		0.00	0.00	0.00	0.00
Total Residual Chlorine (mg/L)		0.00	0.00	0.00	0.00
Conductivity (umohs/cm)		808	682	209	920
Hardness C (mg/L as (i CaCO3)		85.5	119.7	136.8	102.6
Alkalinity (mg/L as CaCO3)		34.0	40.8	47.6	54.4
Dissolved Oxygen (mg/L)	6.82 5.87 5.70 5.78 6.00	5.48 6.01 5.87 5.87 6.36	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.28 5.85 6.09 6.56 6.56 6.56	6.89 6.35 6.24 6.25 6.25 6.25
Ha	6.46 6.46 6.51 6.49	6.50 6.23 6.23 6.24 6.35 6.35	6.48 6.48 6.48 6.40 6.40	6.43 6.43 6.25 6.01 6.10	6.44 6.44 6.46 6.46 6.63
Temperature (Celcius)	24.5 25.0 24.2 24.1 24.1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 3 2 2 2 3 2 3 2 3 2 3 3 3 3	242 234 243 243 242 243	24.2 24.2 24.2 23.2 23.2 23.2 23.2
Time T (Military)	000 000 000 000 000 000 000	008 000 000 000 000 000 000 000 000 000	900 900 900 900 900 900	900 900 815 810 1100	900 900 900 800 500
Trailer Exposure Test Day	← 71 to 4 to 0	0 6 8 9 9 7 7 9	5 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	288888	33 33 38 38 33 33 33 33 33 33 33 33 33 3
Date	08-12-94 08-13-94 08-14-94 08-15-94	08-17-94 08-18-94 08-20-94 08-21-94 08-22-94 08-23-94	08-25-94 08-25-94 08-27-94 08-28-94 08-39-94 08-30-94	09-01-94 09-02-94 09-03-94 09-04-94 09-05-94	09-07-94 09-08-94 09-10-94 09-11-94 09-12-94

0.00005	Ø	œ	0.00005	Ø	0.00002
0.053	Ø	Œ	a 0.043	æ	0.040
0.00	0.00	Ø	0.00	0:00	0.00
0.00	00.0	a	0.00	00.00	00.00
755	655	787	726	1699	>1999
102.6	119.7	102.6	119.7	239.4	427.5
27.2	54.4	34.0	54.4 4.	40.8	27.2
6.77 6.53 6.53 5.67 5.93 5.98 6.05	6.12 6.71 6.31 6.21 4.95 5.96	2 4 4 5 6 6 6 4 4 4 6 6 6 6 6 6 6 6 6 6 6	6.51 7.08 7.06 5.87 5.44 7.44	6.20 6.20 6.20 7.31 6.92 7.96	6.35 6.35 6.37 6.37 6.37 6.68
6.50 6.77 6.21 6.42 6.59 6.59	6.24 6.29 6.39 6.36	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.30 6.30 6.30 6.30 78 78 78	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.26 6.25 6.26 6.26 6.20 6.30
24.1 25.9 25.9 25.5 24.5 24.5 25.5 25.5 25.5 25.5 25.5	24.4 24.3 25.1 26.1 24.8	22.23.25.23.25.23.25.23.25.23.26.42.25.23.26.42.25.23.26.42.25.23.26.42.25.25.25.25.25.25.25.25.25.25.25.25.25	23.0 24.5 24.5 24.5 25.1 25.1	24.5 23.2 23.2 23.6 23.6 25.6 25.6 25.6 25.6 25.6 25.6 25.6 25	23.7 23.7 23.6 22.6 23.0 23.0
700 1300 1200 820 830 1000	900 1000 1300 900	100 1030 1030 1100 1100	200 1100 1100 1600 1600	230 230 200 200 200 200 200 200 200 200	000 000 000 000 000 000
33 36 39 39 41	4 4 4 4 4 4 4 4 4 4 4 4 4 6 4 5 4 4 6 4 7 4 4 6 4 7 4 4 6 4 7 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 6	: 8	57 58 58 60 61	64 64 65 68 68	71 72 73 74 75 76
09-13-94 09-14-94 09-15-94 09-17-94 09-18-94 09-20-94	09-22-94 09-23-94 09-24-94 09-25-94 09-26-94	09-28-94 09-29-94 09-30-94 10-02-94 10-03-94 10-04-94	10-06-94 10-07-94 10-08-94 10-10-94 10-17-94	10-13-94 10-13-94 10-15-94 10-17-94 10-18-94	10-20-94 10-21-94 10-22-94 10-23-94 10-25-94 10-25-94

0.00007	0.00023	0.00008	0.00007	0.00008	0.00007	0.00012
0.076	0.190	0.100	0.073	0.100	0.110	0.079
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
764	846	827	956	1680	413	450
136.8	153.9	153.9	119.7	102.6	85.5	102.6
40.8	54.4 4.4	40.8	40.8	40.8	34.0	40.8
7.04 7.30 7.29 7.30 6.89 5.60 6.82	6.34 7.35 7.08 7.08 7.02	7.03 7.36 6.82	6.25 6.25 6.25 6.25 6.25 6.25	8.00 8.00 9.12 8.13 8.13 7.69	6.73 7.73 7.74 6.71 6.87	5.91 7.07
6.33 6.33 6.34 6.29 6.29	6.40 6.30 7.40 6.30 6.40 6.40 6.40	6.30 6.34 6.28 6.28	6.00 6.00 6.00 6.32 7.00 6.33 7.00 6.30 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7	6.22 6.23 6.23 6.23 6.06 6.06	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.40 6.41
21.2 21.0 21.5 22.5 22.5 22.5 24.5 25.5	22.2 24.3 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	20.0 21.2 21.8 22.8	22.0 23.3 23.3 23.0 24.5 25.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	20.5 20.9 20.9 20.9 20.9 20.9 20.9	22.2 23.1 23.1 23.4 23.4 24.8	25.9 22.8
1000 900 900 1000 1000	000000000000000000000000000000000000000	845 1000 1000		900 1000 900 900 900 900	900 1000 1000 900 900 900 900	1000
77 78 79 80 81 83	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 9 9 9 9 - 2 8 4 5 4	88 8 8 7 101 100 100 100 100 100 100 100 100 1	60 40 40 40 40 40 40 40 40 40 40 40 40 40	11	119
10-27-94 10-28-94 10-29-94 10-30-94 11-01-94 11-02-94	11-05-94 11-05-94 11-05-94 11-07-94 11-09-94	11-11-94 11-12-94 11-13-94 11-14-94	11-16-94 11-17-94 11-18-94 11-19-94 11-21-94	11-23-94 11-23-94 11-25-94 11-26-94 11-27-94 11-29-94	12-03-94 12-03-94 12-03-94 12-04-94 12-05-94	12-07-94 12-08-94 12-09-94

0.00009	0.00008	0.00006	0.00019	0.00002	Ø
0.089	0.100	0.075	0.051	0.033	œ
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
× 1999	1611	888	495	416	>1999
359.1	239.4	171.0	102.6	119.7	444.6
34.0	40.8	40.8	54.4	34.0	54.4 4
7.29 7.29 7.83 7.91 7.71 7.71	7.17 7.14 7.62 8.60 6.07 6.32 7.35 7.35 7.35	8.47 7.65 6.02 3.38 7.82 7.62	8.61 7.74 8.27 8.52 8.52 8.61	7.30 7.37 6.72 6.04 7.41	6.44 7.53 7.28 6.10 6.88
6.35 6.82 6.82 6.89 6.34 6.26	6.28 6.27 6.65 6.65 6.99 6.92 6.32	6.30 6.29 6.73 6.38 6.35	6.90 6.90 6.90 6.90 6.90 6.90 6.90 6.90	6.50 6.00 6.00 6.00 6.00 6.00 6.00 6.00	6.63 6.63 6.15 6.21 6.48
22.8 24.2 24.5 22.4 23.6 23.6	24.1 23.9 27.7 28.2 25.9 25.9	22.3 22.3 22.1 22.3 22.8 22.8 22.8	26.9 24.0 24.1 20.1 20.1 20.1 20.1	210 2110 2117 2217 2315 2315 2315	23.3 23.3 24.8 23.6
1300 900 900 900 800 1100	930 1100 1000 800 1000 900 700 11000	1000 1000 1100 1100 1100	1000 1000 1030 1030 1000	1000 1100 1000 800 1000	1000 1000 1100 1100
121 122 123 124 125 128	129 130 132 133 135 136 137 138	139 144 144 144 144 15	146 147 150 151 152	153 155 156 158 158	160 161 163 164
12-10-94 12-12-94 12-13-94 12-14-94 12-15-94 12-16-94	12-18-94 12-19-94 12-20-94 12-22-94 12-23-94 12-25-94 12-26-94	12-28-94 12-29-94 12-31-94 11-31-95 01-02-95 01-03-95	01-04-95 01-05-95 01-06-95 01-08-95 01-09-95	01-11-95 01-12-95 01-14-95 01-15-95 01-16-95	01-18-95 01-19-95 01-20-95 01-21-95 01-22-95

0.00002	0.00008	0.00002	0.00002	0.00005	0.00002
0.023	0.080	0.013	0.028	0.051	0.014
0.00	0.00	0.00	0.00	00:00	00.00
0.00	0.00	0.00	0.00	0.00	0.00
363	614	292	289	291	368
85. 5.5	136.8	85.5	85.5	85.5	85.5
34.0	40.8	40.8	34.0	27.2	27.2
7.98 8.10 7.16 7.98 7.24 7.24 8.11	2.5.5 2.2.9 2.0.4.7 7.0.95 8.0.89	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8.88 8.90 8.75 8.52 7.50 8.60 8.60 8.60 8.60 8.60 8.60 8.60 8.6	8.42 8.42 8.30 8.30 8.30 8.30	8.24 8.11 8.09 8.06 8.06 7.91
6.31 6.30 6.30 6.30 6.33 6.43 6.43	0.47 0.54 0.54 0.64 0.87	6.56 6.36 6.46 6.34 73	6.20 6.28 6.17 6.30 6.30	6.24 6.23 6.24 6.28 6.38	6.39 6.35 6.40 6.24 6.24
22.1 23.1 24.2 22.0 20.4 20.8 23.3 20.6	20.8 20.8 24.9 22.2 22.2 22.2	202 202 203 208 208	222222222 2222222222222222222222222222	23.5 23.5 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6	23.5 22.5 22.7 22.6 22.6
600 1000 1000 1000 1000 833 1000 1000	200 8 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	200 8 200 8 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	900 1100 1000 1000 1000	1000 1000 1000 1000 900 900	900 1000 1015 900 900
165 166 167 168 170 171 173	771 771 771 180 181	2 6 1 1 8 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	201 200 201 201 201 201 201	203 204 206 207 208
01-23-95 01-24-95 01-25-95 01-26-95 01-28-95 01-29-95 01-30-95	02-01-35 02-03-95 02-04-95 02-05-95 02-07-95 07-08-95	02-09-95 02-10-95 02-11-95 02-13-95 02-14-95	02-16-95 02-17-95 02-18-95 02-19-95 02-21-95	02-22-95 02-24-95 02-25-95 02-26-95 02-27-95 03-01-95	03-02-95 03-03-95 03-04-95 03-06-95 03-06-95

0.00002	æ	æ	0.00006	0.00005	0.00005 a
0.015	æ	ત્ત	0.066	0.055	0.042 a
0.00	0.00	0.00	0.00	00.00	0.00
0.00	00.0	00.00	0.00	0.00	0.00
293	267	291	277	282	300
85.5	85.5	85.5	85.5	85.5	85.5 68.4
34.0	34.0	40.8	40.8	34.0	34.0
7.87 7.78 7.54 7.82 7.62 7.55	7.95 7.98 7.96 7.61 7.62 7.50	7.70 7.49 7.36 7.67 7.20 7.20	7.01 6.98 7.44 7.85 7.59	7.52 7.54 7.55 7.80 7.03 7.71	7.67 7.74 7.75 7.60 7.60 7.91
6.37 6.35 6.32 6.30 6.30 6.30	6.30 6.29 6.32 6.34 6.34	6.36 6.38 6.29 6.29 6.29 6.29	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.34 6.34 6.34 6.39 6.39 6.39 6.39
22.6 22.8 24.3 23.5 24.5 23.5	23.0 24.2 24.5 24.5 24.5 24.5 24.5 24.5 24.5	24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2	23.2 23.2 23.2 23.2 23.2 23.2 23.2	2.2.2 2.3.3 2.4.2 2.4.2 3.6.6 4.6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	245 245 245 245 245 245 245
900 1000 1100 1800 900	900 900 1000 900 900 900	900 900 900 900 900 900 900	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	200 1700 200 200 200 200 200 200 200 200 200	1100 900 1100 900 900 900
209 210 211 212 213 214	215 216 218 220 221 222 223	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	232 233 234 235 236	238 240 241 243 244 244	245 247 248 249 250 251
03-08-95 03-09-95 03-10-95 03-11-95 03-12-95 03-13-95	03-14-95 03-15-95 03-16-95 03-17-95 03-18-95 03-20-95 03-20-95	03-22-95 03-23-95 03-25-95 03-26-95 03-27-95 03-28-95	03-30-95 03-31-95 04-02-95 04-03-95 04-03-95 04-04-95	04-05-95 04-06-95 04-08-95 04-09-95 04-11-95	04-13-95 04-14-95 04-15-95 04-16-95 04-18-95 04-19-95

œ	3	æ	0.00010 0.00002 0.00088 0.000158
ro	;	ro .	0.079 0.013 0.489 0.0869 28
000		00:0	0.00 0.00 38
00.0		00.00	0.00 38 38
276		284	267 >1999 38
85.55		ස වා වා	135.9 68.4 444.6 89.45 38
34.0		8.04	39.4 27.2 54.4 7.98 38
7.55 7.48 7.66 7.47 7.30 7.32 7.14	7.26 7.04 7.78 8.02 8.41 7.53	7.76 7.72 7.33 7.32 7.86 7.68 7.63	7.12 2.75 9.29 1.035 272
6.42 6.40 6.40 6.40 6.40 6.40	6.42 6.42 6.45 6.45 6.45	6.48 6.48 6.53 6.52 6.33	5.84 6.99 271
24.7 25.2 25.9 24.2 24.0 24.8	24.9 24.9 24.8 24.7 24.7	24.5 24.5 24.8 24.3 24.3 24.9	23.5 18.6 31.2 1.65 272
900 2000 900 900 900 900	900 1100 1600 900 900	000 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
253 254 255 256 257 258 259	260 261 262 263 264 264	266 267 268 269 270 271	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-28-95 04-29-95 04-30-95 05-01-95 05-02-95 05-03-95	05-04-95 05-05-95 05-06-95 05-08-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

a Data not available; analytical instrument would not calibrate.

TANK No. 15 TANK CONCENTRATION: 25% GROUNDWATER (WELL CC-27B) DILUTED WITH WEST BRANCH OF CANAL CREEK WATER DEN EXPOSURE: 10 mg/L

Total Unionized Ammonia- Nitrogen (mg/L)		0.00066	0.00005	Œ	0.00001
Total Ammonia- (Nitrogen / (mg/L)		0.314	0.069	æ	0.008
Free Available / Chlorine (mg/L)		0.00	0.00	0.00	0.00
Total Residual Chlorine (mg/L)		0.00	0.00	0.00	0.00
Conductivity (umohs/cm)		798	963	533	571
Hardhess C (mg/L as (caCO3)		85.5	102.6	102.6	119.7
Alkalinity (mg/L as CaCO3)		34.0	40.8	47.6	54.4
Dissolved Oxygen (mg/L)	6.85 6.04 5.89 5.92 6.20 5.85	5.69 5.60 6.04 5.89 5.75 6.38	6.15 6.15 6.15 6.04 6.04 6.04	6.51 6.10 6.13 6.29 6.48 6.62	6.56 7.05 6.48 6.31 6.54
Hg.	6.47 6.46 6.51 6.49 6.56 6.73	6.57 6.35 6.11 6.11 6.35 6.35	6.23 6.23 6.44 6.48 6.40	6.42 6.42 6.30 6.54 6.07 6.15	6.46 6.46 6.47 6.63
Temperature (Celcius)	24.0 24.9 24.0 24.1 25.0	25.0 24.2 24.2 25.1 23.1 23.1 24.2	23.3 24.2 24.2 24.0 25.0 25.0 25.0 25.0	24.5 2.2.2 2.4.5 2.4.5 2.4.5 6.4.5 6.4.5	23.8 23.8 24.3 24.3 24.0
Time To (Military)	1000 900 900 1000 1000	900 1000 800 800 730 1000	900 900 900 900 900	900 815 810 900	100 900 900 800 500
Trailer Exposure Test Day	← N ® 4 ™ ©	r & @ 0	4557860	2282888	33 33 33 33 33 33 33 33 33 33 33 33 33
Date	08-12-94 08-13-94 08-14-94 08-15-94 08-16-94 08-17-94	08-18-94 08-19-94 08-20-94 08-21-94 08-22-94 08-23-94	08-25-94 08-26-94 08-27-94 08-29-94 08-30-94	09-01-94 09-02-94 09-03-94 09-05-94 09-06-94	09-07-94 09-08-94 09-10-94 09-11-94

0.00005	Ø	æ	a 0.00005	œ	0.00003
0.059	æ	æ	a 0.043	œ	0.056
0.00	0.00	a	0.00	0.00	0.00
0.00	00.00	a	0.00	0.00	00.00
755	650	8 4 4	714	1758	×1999
119.7	119.7	102.6	119.7	239.4	393.3
27.2	54.4	34.0	54.4	40.8	27.2
6.85 6.85 6.85 6.83 7.93 7.93 7.93 7.93	5.92 6.05 6.09 6.77 6.28 5.08	6.53 8.88 6.93 8.50 6.53 8.50 8.50 8.50	6.08 6.08 6.08 6.06 7.4	6.23 6.23 7.28 7.34 6.86	6.45 6.95 6.95 7.01 6.63
6.51 6.49 6.20 6.20 6.42 6.59	6.45 6.47 6.23 6.23 6.33	6.07 6.03 6.03 6.03 6.03 7.00 6.03 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7	6.39 6.39 6.39 6.80 7.40 7.40	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.25 6.25 6.31 6.27 6.30
24.2 25.3 25.3 25.3 25.3 4.4	24.2 24.2 24.2 24.2 26.3 26.3 26.3 26.3	24. 25. 23. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25	2 2 2 2 3 3 3 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	24.2 23.2 23.3 23.3 23.3 23.3 23.3 23.3	22.2 22.2 22.2 22.3 22.3 23.3 33.3 33.3
700 1400 1200 820 830	1000 1000 1300 1300 900	900 1030 1030 100 100 100 100 100 100 100	880 100 100 100 100 100 100 100 100 100	1300 1300 900 1000 800	000 000 000 000 000 000 000 000 000 00
33 34 34 34 36 36 37	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 4 6 52 52 53 54 54 54 55 55 55 55 55 55 55 55 55 55	55 55 60 61 61 62	66 65 67 67 68 67	\$ 2 7 7 5 7 5 8 \$ 2 7 7 5 7 5 8
09-13-94 09-14-94 09-15-94 09-16-94 09-17-94 09-18-94	09-20-94 09-21-94 09-22-94 09-25-94 09-25-94	09-27-94 09-28-94 09-29-94 10-01-94 10-03-94 10-04-94	10-06-94 10-07-94 10-09-94 10-11-94 10-17-94	10-13-94 10-14-94 10-15-94 10-16-94 10-17-94	10-19-94 10-20-94 10-21-94 10-23-94 10-24-94 10-25-94

0.00007	0.00023	0.00007	900000	0.00007	0.00007	0.00013
0.079	0.190	0.094	0.065	0.087	0.110	0.082
0.00	0.00	0.00	0.00	0.00	0.00	00:00
0.00	0.00	0.00	00:00	0.00	0.00	00.0
755	848	857	066	1781	417	459
119.7	153.9	153.9	119.7	119.7	85.5	102.6
40.8	54.4	40.8	40.8	40.8	34.0	40.8
7.20 7.43 7.47 7.47 7.10 5.92 7.00	6.33 6.49 6.79 7.22 7.29	7.29 7.37 7.45 6.98	6.80 6.80 6.80 6.73 6.93	6.73 7.85 7.92 8.70 8.18 8.19	7.09 7.90 7.64 7.21 6.68	6.01 6.01 7.12
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.50 0.32 0.32 0.36 0.38 0.38	6.30 6.30 6.38 6.34 8.60 6.30	0.00 0.00 0.00 0.32 0.32 0.32 0.33 0.33	6.23 6.23 6.23 6.23 7.66 6.23	6.28 6.29 6.29 6.29 6.20	6.40 6.41 6.41
21.2 21.5 22.23 22.13 22.13 22.13	25.0 0 5.2 6 25.0 0 5.0 6 25.0 0 5.0 6	22.3 19.8 27.1 20.0 20.0 20.0 20.0	2222 2222 2222 2222 2222 2222 2222 2222 2222	22222222222222222222222222222222222222	222 22 22 22 22 23 23 23 23 24 23 24 24 24 24 24 24 24 24 24 24 24 24 24	23.2 23.2
1000 900 1000 1000 1000	2000 1000 1000 1000 1000 1000 1000 1000	900 900 830 1000	0006	600 800 1020 1000 900 900	900 1000 1000 900 900 900	1100
77 78 79 80 82 83 83	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9 9 9 9 9 7 101 100 100 100 100 100 100 100 100 100	01 00 00 00 00 00 00 00 00 00 00 00 00 0		118 119 120
10-27-94 10-28-94 10-30-94 11-01-94 11-02-94	11-03-94 11-05-94 11-06-94 11-08-94 11-08-94	11-10-94 11-12-94 11-13-94 11-14-94	11-15-94 11-16-94 11-18-94 11-20-94	11-22-94 11-23-94 11-25-94 11-27-94 11-28-94	11-30-94 12-01-94 12-03-94 12-04-94 12-06-94	12-07-94 12-08-94 12-09-94

00000	60000	0.00008	0.00008	0.00022	0.00003	Ø
0000	60.0	0.100	0.097	0.057	0.044	Ø
c	9	00.00	0.00	00:00	0.00	0.00
S		0.00	0.00	00:00	00:00	0.00
7000	0 0 0	1592	974	505	430	>1999
0.245	0.74	239.4	188.1	102.6	119.7	444.6
24	,	8.08	8.08	54.4	34.0	54.4
7.42 3.47 7.72 7.95 8.00	7.23 7.33 7.7.7	8.68 6.24 6.54 7.56 7.35 8.63	7.81 6.39 3.48 7.89 7.70 8.56	5.05 7.85 8.16 8.19 8.75 7.97	7.48 7.46 6.83 6.18 7.36 6.52	7.49 7.24 6.28 6.92
6.35 6.82 6.92 6.89	6.26 6.26 6.26 6.27 6.40	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.29 6.73 6.38 6.35 6.37	6.79 6.70 6.92 6.20 6.30	6.16 6.06 6.30 6.51 6.35 6.40 6.73	6.67 6.15 6.21 6.48
23.1 24.5 24.5 24.3 24.2 24.2	23.0 23.1 23.5 23.5 23.5	20.1 27.8 28.1 25.2 22.0 22.0	23.0 20.3 20.3 20.3 20.3	26.1 24.5 24.1 24.0 20.5 21.0	21.7 22.2 23.1 25.6 24.0 24.3	23.8 24.1 24.8 23.8
1300 900 900 900 900	1100 845 930 1000	1000 800 1000 700 1100 1000	900 1000 1100 1100 900	1100 1000 1130 1030 1000 1000	900 900 800 1030 1000 1000	1000 1000 1000
122 123 124 125 125 125	128 129 130 131	132 134 135 136 137 139	44 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	148 149 150 151 152 153	154 155 156 157 158 160	161 162 163
12-10-94 12-11-94 12-12-94 12-13-94 12-14-94	12-15-94 12-16-94 12-18-94 12-19-94 12-20-94	12-21-94 12-22-94 12-23-94 12-25-94 12-26-94 12-27-94	12-29-94 12-30-94 12-31-94 01-02-95 01-03-95 01-04-95	01-05-95 01-06-95 01-07-95 01-08-95 01-10-95 01-11-95	01-12-95 01-13-95 01-14-95 01-15-95 01-17-95 01-18-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00004	0.00010	0.00002	0.00002	0.00006	0.00002
0.041	0.091	0.013	0.028	0.053	0.013
0.00	0.00	0.00	0.00	0.00	0.00
0.00	00.00	0.00	0.00	0.00	0.00
369	618	295	293	299	374
5.5 5.5	136.8	85.5	85.5	85.5	85.5
34.0	40.8	40.8	34.0	27.2	27.2
8.03 7.10 7.10 7.20 7.20 7.86 8.7 8.86	2.0.0 2.0.0 2.0.1 2.0.0 2.0.0 3.0 3	8.83 8.83 8.83 8.83 8.83 8.83	8 8 8 5 7 7 7 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	8.12 8.12 8.02 8.16 7.90 7.87	7.93 7.65 7.76 7.82 7.64 7.55
6.30 6.30 6.30 6.30 6.30 6.30 6.30 6.30	0.00.00.00.00.00.00.00.00.00.00.00.00.0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.22 6.22 6.23 6.25 6.25	6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	6.35 6.35 6.38 6.38 6.28
22.0 25.3 27.1 21.1 21.2 21.2 21.3	25.0 25.0 22.9 22.9 4.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	222 222 213 213 214 215 216 216 217	23.7 23.7 23.7 23.7 23.6 23.6	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	24.6 23.2 23.5 23.5 23.6
000 1000 1000 1000 1000 1000 1000	200 8 200 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	250 900 900 900 900 900 900	000 000 000 000 000 000 000 000 000 00	2001 1000 1800 900 900 900 900	900 1000 1015 900
165 166 167 168 169 170 171 173	175 176 178 180	185 185 185 185 185 185 185 185 185 185	8 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	200 200 200 201 201	203 203 205 207 207
01-23-95 01-24-95 01-25-95 01-26-95 01-27-95 01-29-95 01-30-95	02-01-95 02-02-95 02-03-95 02-04-95 02-06-95 02-07-95	02-02-35 02-09-95 02-11-95 02-12-95 02-13-95	02-15-95 02-16-95 02-17-95 02-19-95 02-20-95	02-23-95 02-23-95 02-24-95 02-26-95 02-27-95 02-28-95	03-07-95 03-02-95 03-04-95 03-05-95 03-06-95

0.00002	0.00001	æ	0.00007	0.00005	0.00005 a
0.015	0.011	a	0.067	0.054	0.041 a
0.00	00.00	0.00	0.00	0.00	00.00
0.00	00.00	00.0	0:00	0:00	0.00
297	271	294	275	289	305
85.5	85.5	85.5	85.5	85.5	85.5 68.4
34.0	34.0	40.8	40.8	34.0	34.0 34.0
7.67 7.63 7.39 7.62 7.46 7.38 7.85	7.52 7.73 7.51 7.59 7.55 7.53	7.49 6.66 7.08 7.16 6.97 6.97	6.80 6.80 7.02 7.34 7.26 7.00	7.12 6.96 7.11 7.24 7.23 7.06	7.16 6.77 7.57 7.36 7.33 7.67 7.75
6.35 6.35 6.30 6.30 6.30 6.30	6.29 6.30 6.34 6.34 6.28	6.34 6.35 6.37 6.29 6.29	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.39 6.39 6.39 6.39 6.39	6.41 6.34 6.34 6.34 6.39 6.39 6.37
23.4 23.6 25.0 24.3 24.7 24.7	25.2 25.2 25.2 25.2 25.2 25.0 25.0 25.0	24.9 25.0 24.9 24.7 24.7	24.7 24.3 24.3 24.3 24.2 24.7 23.7	24.8 24.8 25.0 25.2 25.5	25.2 25.0 25.3 24.6 24.6 24.7 24.7
900 1 100 1800 900 900 900	900 1000 900 900 900	900 900 900 900 900	900 900 900 900 900	100 100 100 100 100 100 100 100 100 100	900 1100 900 900 900 900
20 21 21 21 21 21 21 21 21 21 21 21 21 21	214 220 221 222 223	224 225 226 227 228 229 230	231 232 234 234 235 235 237	238 239 240 242 243 244	245 246 247 248 249 250 251 252
03-08-95 03-09-95 03-11-95 03-12-95 03-13-95 03-14-95	03-16-95 03-17-95 03-18-95 03-19-95 03-21-95 03-22-95	03-23-95 03-24-95 03-25-95 03-26-95 03-27-95 03-28-95	03-30-95 03-31-95 04-01-95 04-02-95 04-03-95 04-05-95	04-06-95 04-07-95 04-09-95 04-11-95 04-12-95	04-13-95 04-14-95 04-15-95 04-16-95 04-17-95 04-18-95 04-19-95

	ro O	a	0.00009 0.00001 0.00066 0.000120 29
		œ	0.072 0.008 0.314 0.0593 29
	0.00	0.00	0.00 0.00 38
	0.00	0.00	0.00 0.00 38
	279	586	271 >1999 38
	85.5	85.55	134.6 68.4 444.6 85.70 38
	34.0	34.0	39.2 27.2 54.4 8.02 38
7.31 7.28 7.47 7.28 7.11	7.30 7.17 6.80 7.59 7.73 8.27	7.49 7.24 7.27 7.27 7.49	7.12 3.07 9.23 0.929 272
6.42 6.42 6.40 6.40 6.40	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.48 6.47 6.50 6.52 6.52 6.33	5.83 6.96 271
25.2 25.2 25.1 24.5 24.5 24.5	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	24.0 24.0 25.0 25.0 25.0 25.0 25.0	23.8 19.0 31.3 1.63 272
900 1200 2000 900 900	989 900 1100 900 900 900	000 000 000 000 000 000 000	
253 254 255 256 257 257	260 260 261 262 263 263 264 265	266 267 268 269 270 271 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95	04-27-95 04-28-95 04-29-95 04-30-95 05-01-95 05-03-95	05-04-95 05-05-95 05-06-95 05-07-95 05-08-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

a. Data not available; analytical instrument would not calibrate.

TANK No. 15 TANK CONCENTRATION: 25% GROUNDWATER (WELL CC-27B) DILUTED WITH WEST BRANCH OF CANAL CREEK WATER DEN EXPOSURE: 10 mg/L

Total Unionized Ammonia- Nitrogen (mg/L)	99000		0.00005	a	0.00001
Total Ammonia- I Nitrogen / (mg/L)	9	5. 5.	0.069	æ	0.008
Free Available Chlorine (mg/L)	S		0.00	0.00	0.00
Total Residual Chlorine (mg/L)	S		0.00	0.00 0.00	00.00
Conductivity (umohs/cm)	708	00	963	533	571
Hardness ((mg/L as (CaCO3)	ນ ຜ	n. 20	102.6	102.6	119.7
Alkalinity (mg/L as CaCO3)	6	of f	6 .00	9.74	54.4
Dissolved Oxygen (mg/L)	6.00 6.00 7.00 7.00 7.00 7.00 7.00 7.00	6.00 6.00 6.04 6.08 6.38 6.38	0 4 4 6 6 6 6 7 6 7 6 7 7 8 7 8 8 8 7 8 7 8 7	6.51 6.10 6.29 6.29 6.84 6.62	6.56 7.05 6.48 6.31 6.54
Hd	6.47 6.46 6.51 6.49 6.59 6.73	6.22 6.22 6.23 6.23 6.35 6.35	6.13 6.23 6.24 6.48 6.40 6.40	6.41 6.42 6.54 6.54 6.15 6.15	6.46 6.44 6.46 6.47 6.63
Temperature (Celcius)	24.4 25.0 24.9 24.1 25.1 25.1	24.2 24.2 25.4 23.4 23.4 23.9	23.8 24.2 24.0 24.0 25.0 25.0 25.0	24.5 24.3 24.5 24.6 24.6 3.5 3.5 4.6	23.8 24.3 24.3 24.0
Time T (Military)	900 900 900 1000 1000	908 1000 800 900 730	900 900 900 900 900 900	1100 900 815 810 1100 900 800	1100 900 900 800 500
Trailer Exposure Test Day	- N W 4 W O V	~ 8 G D T C E	41 15 17 18 19 10 10	2 8 8 8 8 8 8 8 8 8 8 8	28 29 31 32
Date	08-12-94 08-13-94 08-14-94 08-15-94 08-17-94	08-19-94 08-20-94 08-21-94 08-22-94 08-23-94 08-23-94	08-25-94 08-26-94 08-27-94 08-28-94 08-30-94 08-31-94	09-01-94 09-02-94 09-03-94 09-04-94 09-05-94 09-06-94	09-08-94 09-09-94 09-11-94 09-12-94

0.00005	Ø	æ	0.00005	æ	0.00003
0.059	œ	a	a 0.043	a	0.056
0.00	0.00	ď	0.00	00.00	0.00
0.00	0.00	æ	0.00	0.00	00.00
755	650	818	714	1758	× 1999
119.7	119.7	102.6	119.7	239.4	393.3
27.2	54.4	34.0	54.4	40.8	27.2
6.69 6.69 6.69 6.69 6.92 6.92 6.93	6.09 6.09 6.28 5.08 5.08	6.53 6.63 6.53 6.53 6.53	6.82 7.35 7.31 6.08 6.16 7.74	7.20 6.23 6.23 7.28 7.34 6.86	6.45 6.45 6.95 7.01 6.63
6.51 6.20 6.20 6.42 6.59 6.59	6.23 6.23 6.28 6.33 8.30	26.0 2.0 2.0 2.0 2.0 3.0 3.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	6.46 6.39 6.39 6.40 7.40	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.25 6.25 6.31 6.27 6.30
24.2 25.2 25.2 24.4 24.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25.25.29.29.29.29.29.29.29.29.29.29.29.29.29.	23.3 24.3 24.5 25.0 25.0 25.0	24.0 24.3 23.4 23.4 23.8 23.8	22.7 22.7 22.5 22.5 21.3 21.3
250 250 250 250 250 250 250 250 250 250	900 1300 900 900 900	000 1030 100 100 100 100 100	8 1 1 1 00 000 000 000 000 000 000	365 906 900 900 900 900 900 900 900 900 900	000000000000000000000000000000000000000
88 88 88 89 4 4 88 88 88 88 88 88 88 88 88 88 88 88 88	44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	55 55 55 55 55 55 55 55 55 55 55 55 55	56 58 58 60 61	66 9 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
09-13-94 09-14-94 09-16-94 09-17-94 09-19-94 09-20-94	09-21-94 09-23-94 09-24-94 09-25-94 09-26-94	09-28-94 09-29-94 09-30-94 10-01-94 10-03-94 10-04-94	10-06-94 10-07-94 10-08-94 10-10-94 10-11-94	10-13-94 10-13-94 10-15-94 10-17-94 10-18-94	10-20-94 10-20-94 10-22-94 10-23-94 10-24-94 10-25-94

0.00007	0.00023	0.00007	0.00006	0.00007	0.00007	0.00013
0.079	0.190	0.094	0.065	0.087	0.110	0.082
0.00	00.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	00.00	0.00
755	848	857	066	1781	417	459
119.7	153.9	153.9	119.7	119.7	85.5	102.6
40.8	54.4	40.8	40.8	40.8	34.0	40.8
7.20 7.43 7.37 7.47 7.10 5.92 7.00	6.49 6.49 7.22 7.30 7.29	7.29 7.37 7.45 6.98	6.97 6.97 6.80 6.47 6.73 6.93	6.75 7.85 7.92 8.70 8.18 8.19 7.7 7.50	7.90 7.90 7.21 6.68 6.88	6.01 7.12
6.33 6.33 6.34 6.34 6.36 7.29	6.37 6.36 6.36 6.38 6.38	6.38 6.38 6.34 6.28	6.30 6.30 6.15 6.32 6.32 6.32	6.29 6.29 6.26 6.23 6.23 6.06	6.29 6.29 6.29 6.29 6.20 7.7	6.40 6.41
21.2 20.8 21.5 22.3 22.1 22.1	25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5	21.1 21.1 21.8 21.8	22.1 24.6 23.2 23.2 25.6 25.6	22.7 20.2 20.2 20.2 20.2 20.2 20.2 20.2	23.3 23.3 23.3 23.6 23.6 23.6	26.3 26.3 23.2
000 000 000 000 000 000 000 000 000 00	1000 1000 1000 1000 1000 1000 1000 100	830 1000 1000	000000000000000000000000000000000000000	730 730 1020 1000 900 900	900 1000 900 900 900	1000
77 78 79 80 81 83 83	88 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	- 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 6 8 6 7 7 5 6 6 6 7 7 7 5 6	109 100 100 100 100 100 100	112 113 116 117 118	119
10-27-94 10-28-94 10-29-94 10-31-94 11-01-94 11-02-94	11-05-94 11-05-94 11-06-94 11-08-94 11-09-94	11-11-94 11-12-94 11-13-94 11-14-94	11-16-94 11-18-94 11-19-94 11-20-94 11-21-94	11-23-94 11-23-94 11-25-94 11-26-94 11-28-94 11-29-94	12-02-94 12-02-94 12-03-94 12-05-94 12-06-94	12-08-94 12-09-94

	0.00009	0.00008	0.00008	0.00022	0.00003	a
	0.093	0.100	0.097	0.057	0.044	a
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	×1999	1592	974	505	430	>1999
	342.0	239.4	188.1	102.6	119.7	444.6
	34.0	40.8	40.8	54.4	34.0	54.4
7.42 3.47 7.72 7.95 8.00	8.83 7.91 7.23 7.23	6.24 6.24 6.24 6.54 7.35 7.95 8.33	7.81 7.89 7.70 7.70 8.89	8.50 8.16 8.19 8.50 7.50 7.50 7.50	7.74 7.48 6.83 6.18 7.36 6.52	7.49 7.24 6.28 6.92
6.35 6.82 6.92 89	6.26 6.26 6.26 6.26 6.27	6.55 6.65 6.96 6.96 6.97 7.32	6.29 6.29 6.38 6.35 6.35 8.37	6.79 6.70 6.92 6.88 6.20	6.16 6.06 6.30 6.35 6.40 6.73	6.67 6.15 6.21 6.48
23.1 24.5 24.3 24.3	23.0 23.0 23.0 23.5 23.5	201 27.8 27.9 27.9 25.2 25.5 21.8	21.2 22.1 22.1 23.0 23.0 23.0 23.0 23.0 23.0 23.0 24.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25	26.5 24.5 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	22.2 22.2 23.1 24.4 24.0 24.0	23.8 24.1 24.8 23.8
1300 900 900 900	800 1100 930 1000	2000 8000 10000 10000 10000 10000	000000000000000000000000000000000000000	1000 1000 1000 1000 1000 1000	1000 1000 1000 1000	1000
127 123 123 124 125 127 127 127 127 127 127 127 127 127 127	126 127 129 130	132 132 135 136 137 137	24 1 4 4 4 4 4 4 4 5 4 5 4 5 4 5 4 5 4 5	5 4 4 4 6 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	55 451 751 861 661	161 163 164
12-10-94 12-11-94 12-12-94 12-13-94	12-15-94 12-16-94 12-17-94 12-19-94	12-21-94 12-22-94 12-23-94 12-25-94 12-25-94 12-27-94	12-29-94 12-30-94 12-31-94 01-01-95 01-02-95	01-05-95 01-06-95 01-07-95 01-08-95 01-09-95	01-12-95 01-13-95 01-15-95 01-16-95 01-17-95 01-18-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00004	0.00010	0.00002	0.00002	0.00006	0.00002
0.041	0.091	0.013	0.028	0.053	0.013
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
369	618	295	293	299	374
85.5	136.8	85.5	85.5	85.5	85.5
34.0	40.8	40.8	34.0	27.2	27.2
8.03 8.25 8.25 7.10 7.83 7.36 7.20 7.86 8.38	7.68 3.07 9.11 4.60 7.82 7.81 8.06	8.48 8.20 8.67 8.83 8.72 8.58	8.35 8.35 8.55 8.24 8.24	8.12 7.82 8.02 8.16 7.90 7.97	7.93 7.65 7.76 7.82 7.64 7.55
6.30 6.30 6.30 6.30 6.92 6.92	6.66 6.65 6.66 6.86 6.86 6.86	6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	6.28 6.28 6.30 6.30 6.35	6.33 6.33 6.28 6.38 6.38	6.39 6.35 6.38 6.38 6.28
22.0 22.0 22.0 21.1 20.3 21.2 20.3	21.7 26.2 20.0 22.9 22.9	220 222 222 223 223 243 243 243 243 243 243	23.7 23.7 23.7 23.7 23.6 23.6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.6 23.4 23.5 23.5 23.5
600 1 100 1 100 1 100 830 830 1 1000 1 1000	900 1000 1200 930 900	900 900 1200 900 900	900 1100 1000 1000	1000 1000 1000 1000 1000 1000 1000 100	900 900 1000 1015 900
165 166 167 169 170 171 173	175 176 177 178 180 181	182 183 184 187 187 188	199 192 194 194 195	196 198 199 200 202	203 204 205 207 207
01-23-95 01-24-95 01-25-95 01-26-95 01-28-95 01-29-95 01-30-95 01-31-95	02-02-95 02-03-95 02-04-95 02-05-95 02-06-95 02-07-95	02-09-95 02-10-95 02-11-95 02-12-95 02-13-95 02-14-95	02-16-95 02-17-95 02-19-95 02-20-95 02-21-95	02-23-95 02-24-95 02-25-95 02-26-95 02-28-95 03-01-95	03-02-95 03-03-95 03-04-95 03-05-95 03-06-95 03-07-95

0.00002	0.00001	œ	0.00007	0.00005	0.00005 a
0.015	0.011	ิส	0.067	0.054	0.041 a
0.00	0.00	0.00	0.00	0.00	0.00
00.00	0:00	0.00	0:00	0.00	0.00
297	271	294	275	589	305
	85.5	85.5	85.5	85.5	85.5 68.4
34.0	34.0	40.8	40.8	34.0	34.0 34.0
7.67 7.63 7.62 7.46 7.38 7.85	7.82 7.73 7.51 7.49 7.55 7.53	7.49 6.66 7.08 7.16 6.97 6.97	6.80 6.80 7.02 7.34 7.26 7.00	6.96 7.11 7.11 6.74 6.74 7.23	7.16 6.77 7.57 7.36 7.33 7.67 7.75
6 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	6.29 6.32 6.32 6.34 6.24 6.28	6.34 6.36 6.36 6.29 6.29	6.35 6.35 6.34 6.34 7.39	6.38 6.39 6.32 6.39 6.39	6.41 6.37 6.34 6.34 6.39 6.39 6.37
23.6 24.3 25.3 25.3 24.7 23.9 23.9	25.0 25.2 25.2 25.9 25.9 25.1	24.9 25.0 24.9 25.0 24.7 6	24.7 24.3 24.2 24.2 24.7	25.2 25.2 25.3 25.3 25.3 25.3 25.3	25.2 25.0 25.3 24.6 24.6 24.7 24.7
000 000 000 000 000 000 000 000	1000 1000 1000 1000 1000 1000 1000 100	900 900 900 900 900	000 000 000 000 000 000 000 000 000 00	2000 17 000 000 000 000 000 000	1100 900 1100 900 900 900 900
212 212 22 22 22 22 22 22 22 22 22 22 22	214 220 221 222 223	224 225 227 227 229 230	232 232 234 236 236	242 243 243 243 243 243	245 246 247 248 249 251 251
03-08-95 03-09-95 03-11-95 03-12-95 03-13-95 03-14-95	03-16-95 03-17-95 03-18-95 03-19-95 03-20-95 03-22-95	03-23-95 03-24-95 03-25-95 03-27-95 03-28-95	03-30-95 03-31-95 04-07-95 04-03-95 04-04-95	04-06-95 04-07-95 04-08-95 04-10-95 04-12-95	04-13-95 04-14-95 04-15-95 04-16-95 04-17-95 04-18-95 04-20-95

a	σ	ro .	0.00009 0.00001 0.00066 0.000120
N	đ	a	0.072 0.008 0.314 0.0593 29
00		0.00	0.00 0.00 38
000		000	0.00
279	n N	286	271 >1999 38
က တ		88 52 52	134.6 68.4 444.6 85.70 38
6. 0.46	P. C.	94°0	39.2 27.2 54.4 8.02 38
7.31 7.28 7.47 7.11 7.13	7.77 7.17 7.59 7.73 8.27 7.26	7.49 7.43 7.30 7.27 7.27 7.27 7.27	7.12 3.07 9.23 0.929 272
6.42 6.40 6.40 6.40 6.46 6.46	6.65 6.42 6.45 6.45 6.45	6.48 6.46 6.50 6.52 6.33	5.83 6.96 271
25.2 25.2 25.2 24.5 24.5 25.2 25.2	25.0 25.1 24.7 24.9 24.9	24.8 25.0 24.9 25.0 25.0 25.3 25.3	23.8 19.0 31.3 1.63 272
2000 2000 900 900 900	900 1600 900 900 900	000 000 000 000 000 000 000	
253 254 255 256 257 258 258	260 261 262 263 264 265	266 267 268 269 270 271	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-28-95 04-29-95 04-30-95 05-01-95 05-02-95 05-03-95	05-04-95 05-05-95 05-06-95 05-08-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

Bata not available; analytical instrument would not calibrate.

TANK No. 16 TANK CONCENTRATION: 25% GROUNDWATER (WELL CC-27B) DILUTED WITH WEST BRANCH OF CANAL CREEK WATER DEN EXPOSURE: 10 mg/L

Free Total Total Available Ammonia- Unionized Chlorine Nitrogen Ammonia- (mg/L) (mg/L) (mg/L)
Total F Residual Ava Chlorine Ch (mg/L) (n
Conductivity (umohs/cm)
Hardness (mg/L as CaCO3)
Alkalinity (mg/L as CaCO3)
Dissolved Oxygen (mg/L)
Hd
Temperature (Celcius)
Time T. (Military)
Trailer Exposure Test Day
Date

0.00005	a	a	a 0.00005	æ	0.00002
0.053	a	æ	a 0.037	æ	0.035
0.00	0.00	æ	0:00	0.00	0.00
0.00	0.00	œ	0:00	0.00	0.00
758	652	780	730	1686	v 1999
102.6	119.7	102.6	119.7	239.4	410.4
27.2	54.4	34.0	54.4	40.8	27.2
6.97 6.58 6.58 5.72 6.08	0.00 0.00 0.4.00 0.00 0.00 0.00 0.00 0.		6.89 7.44 7.36 6.12 6.53 7.53	7.18 6.58 6.90 7.58 7.70 7.32	6.58 7.62 7.37 7.16 6.63 6.94
6.50 6.49 6.77 6.10 6.43 6.59	6.45 6.49 6.23 6.23 6.32	6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	6.33 6.33 6.33 6.33 6.33 6.33	6.22 6.31 6.31 6.27 6.20 6.30
25.2 25.2 25.2 25.3 24.3 24.3	24.2 2.2 2.2 2.2 2.2 2.2 2.3 2.3 2.3 2.3 2	22 22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	22.9 24.7 24.9 24.9 24.9 25.9 27.9	23.8 24.1 24.2 23.3 23.1 23.1	23.3 23.2 23.2 23.2 23.2 24.8 21.8
700 1400 1300 1200 820 830	1000 1000 1300 1300 1300	1000 1030 1030 900 915 1100	800 1100 1100 1000 1600	1300 1300 900 1000 800	800 800 800 800 800 800 800 900 900 900
3 3 3 4 4 3 3 3 3 4 3 4 3 4 3 4 3 4	0	5 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	56 58 59 60 62 62	64 65 67 68	70 71 72 73 74 75 75
09-13-94 09-14-94 09-15-94 09-16-94 09-17-94 09-19-94	09-20-94 09-21-94 09-22-94 09-23-94 09-25-94 09-26-94	09-28-94 09-29-94 09-30-94 10-02-94 10-03-94 10-04-94	10-06-94 10-07-94 10-08-94 10-10-94 10-11-94	10-13-94 10-14-94 10-15-94 10-17-94 10-18-94	10-20-94 10-21-94 10-22-94 10-23-94 10-25-94 10-25-94

0.00006	0.00022	0.00007	0.00006	0.00006	0.00007	0.00012
0.070	0.190	0.095	0.068	0.084	0.110	0.075
00.00	00:00	0.00	0.00	0.00	0.00	0.00
00.00	0.00	0.00	0.00	0.00	0.00	0.00
756	845	830	939	1640	4 6	459
119.7	153.9	153.9	136.8	102.6	102.6	102.6
40.8	54.4 4	40.8	40.8	8. 8.	34.0	40.8
7.27 7.56 7.46 7.57 7.15 5.80 6.88	6.46 6.36 6.65 6.91 7.10	7.15 7.31 7.38 7.03	6.97 6.92 6.92 6.40 6.74 6.84	6.59 7.80 7.96 8.69 7.15 8.16 8.12	7.59 7.80 7.80 7.59 7.13 6.53	7.32 5.67 6.89
6.33 6.33 6.34 6.34 6.34	6.30 6.30 6.30 6.36 6.44 6.66	6.28 6.35 6.35 6.28	6.32 6.32 6.32 6.32 6.32	6.20 6.29 6.24 6.31 6.05 6.06	6.19 6.15 6.25 6.29 6.20	6.27 6.40 6.41
21.2 20.7 22.2 25.2 25.0	2222 2222 2232 2232 233 233 233 233 233	22.0 19.5 21.1 21.4	22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6	23.7 19.7 22.9 20.6 20.7 22.1 7.12	21.7 22.1 23.1 24.9 23.1	23.3 26.1 23.0
11000 0001 0000 11000 0001 1000	1000 1000 1000 1000 1000 1000 1000 100	1100 900 845 1000	000000000000000000000000000000000000000	600 800 730 1020 900 900	900 1000 1100 900 900	800 1100 1000
77 78 79 80 82 83	88 88 89 89 89 89 89 89 89 89 89 89 89 8	93 93 95 95	98 99 89 100 100 100 100 100 100 100 100 100 10	00 00 00 00 00 00 00 00 00 00 00 00 00	111 113 115 116	118 119 120
10-27-94 10-28-94 10-29-94 10-30-94 10-31-94 11-01-94	11-03-94 11-05-94 11-06-94 11-08-94	11-10-94 11-11-94 11-12-94 11-13-94	11-15-94 11-16-94 11-17-94 11-19-94 11-20-94	11-22-94 11-23-94 11-25-94 11-25-94 11-27-94 11-28-94	11-30-94 12-01-94 12-02-94 12-03-94 12-05-94 12-06-94	12-07-94 12-08-94 12-09-94

	0.00010	0.00007	0.00006	0.00027	0.00003	a
	0.100	0.091	0.074	0.071	0.040	a
	0.00	0.00	00.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	>1999	1594	971	528	451	×1999
	342.0	239.4	188.1	102.6	119.7	410.4
	34.0	40.8	40.8	54.4	34.0	54.4
7.42 3.45 7.65 7.86	7.93 7.93 7.34 7.25	6.17 6.17 6.44 7.44 7.35 7.96 8.66	7.83 3.09 7.80 7.65 6.77	7.29 7.29 7.38 7.71 8.27 7.65	7.07 7.08 6.63 5.85 6.99 5.91	6.65 6.06 6.01 6.75
6.35 6.82 6.92 8.92	6.26 6.27 6.27 6.27 6.27	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.29 6.29 6.35 6.35 7.33 8.35 8.35	6.86 6.86 6.91 6.88 6.20 6.20	6.16 6.06 6.30 6.31 6.40 6.73	6.67 6.15 6.21 6.48
23.2 24.2 24.3 24.3 24.3	22.6 22.7 22.8 23.1	25.2 27.8 27.8 27.8 25.2 25.5 21.9	22.2 2.1.1 2.2.2 2.1.5 2.1.5 2.1.5 2.1.5 2.1.5	23.3 24.2 24.3 24.3 24.3 4	23.7 23.7 25.0 25.0 25.1 25.1	25.3 25.7 25.4 24.4
1300 900 900 900	800 1100 845 930 1000	000 000 000 000 000 000 000 000 000 00	0001 1000 1000 1000 1000 1000	1000 1000 1000 1000 1000	900 900 1030 1000	1000 1000 1100
121 122 123 124 125	126 127 128 130	132 133 137 138	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	147 148 150 151 153	155 156 157 158 159	161 162 163
12-10-94 12-11-94 12-12-94 12-13-94	12-15-94 12-16-94 12-17-94 12-19-94 12-20-94	12-21-94 12-22-94 12-23-94 12-25-94 12-25-94 12-27-94	12-29-94 12-30-94 12-31-94 01-01-95 01-03-95 01-04-95	01-05-95 01-06-95 01-08-95 01-08-95 01-10-95	01-12-95 01-13-95 01-14-95 01-15-95 01-17-95 01-18-95	01-19-95 01-20-95 01-22-95 01-22-95

0.00004	0.00011	0.00002	0.00002	0.00006	0.00002
0.040	0.093	0.012	0.027	0.052	0.013
0.00	0.00	0.00	0.00	0.00	00.00
0.00	0.00	0.00	0.00	00.0	0.00
373	617	295	293	295	374
85.5	136.8	85.5	85.5	85.5	85.5
34.0	40.8	40.8	34.0	27.2	27.2
7.81 8.00 5.44 7.12 7.74 7.39 7.01 7.83	2.23 2.45 3.05 3.86 7.66 7.68	8.55 8.74 8.74 8.74 8.55 8.55	8.90 8.80 8.97 8.85 8.47	8 22 22 8 8 8 8 22 8 8 8 8 23 8 8 8 23 8 8 8 23 8 8 8 8	8.22 7.99 7.96 8.03 7.73
6.30 6.30 6.30 6.30 6.30 6.30 6.30	0.00.00.00.00.00.00.00.00.00.00.00.00.0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.20 6.22 6.22 6.30 6.35	6 6 6 33 6 34 6 41 7 5 8 8	6.34 6.34 6.34 6.28
22.2 24.3 22.2 22.2 22.3 22.3 22.3 22.3	22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	22222222222222222222222222222222222222	23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	2 2 2 2 3 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3	24.2 23.3 23.3 23.5 3.6 4.6 23.6 3.6
000 1000 1000 1000 1000 1000 1000 1000	1200 1200 930 930 900	900 900 1200 900 900	900 900 1000 1000 1000 1000	900 1000 1800 900 900 900 900	900 900 1000 1015 900
165 166 167 168 170 171 173	4 5 5 7 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	183 184 185 187 187	198 193 193 194 194	200 200 200 200 200 200 200	203 204 205 207 208
01-23-95 01-24-95 01-25-95 01-26-95 01-27-95 01-29-95 01-30-95	02-01-93 02-02-95 02-03-95 02-05-95 02-06-95 02-07-95	02-00-35 02-10-95 02-11-95 02-13-95 02-14-95	02-15-95 02-16-95 02-17-95 02-19-95 02-20-95	02-22-95 02-23-95 02-24-95 02-26-95 02-27-95 02-28-95	03-02-95 03-02-95 03-04-95 03-05-95 03-06-95 03-07-95

0.00002	0.00001	œ	0.00007	0.00005	0.00005 a
0.015	0.011	ro	0.067	0.054	0.043 a
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
298	269	293	278	288	305
85.5	85.5	85.5	85.5	85.5	85.5 68.4
34.0	34.0	40.8	40.8	34.0	34.0 34.0
7.64 7.61 7.42 7.81 7.41 7.78	7.80 7.67 7.50 7.56 7.45 7.56	7.44 6.58 7.26 7.33 7.23	6.91 6.72 7.15 7.61 7.29 7.29	7.37 7.36 7.46 7.80 6.90 7.50	7.30 7.03 7.78 7.54 7.57 7.78 7.73
6.37 6.35 6.30 6.30 6.30 6.30 6.30	6.30 6.32 6.34 6.34 6.28	6.31 6.37 6.29 6.29 6.29	6.00 6.00 6.00 6.00 6.00 6.00 7.00 7.00	6.39 6.34 6.35 6.39 6.39	6.34 6.34 6.34 6.39 6.39 6.39
23.7 25.0 25.3 24.5 24.6 24.6 23.9	25.0 25.2 25.2 25.2 25.4 25.0	24.9 24.9 24.9 24.8 24.8 24.8 54.8	24.6 24.5 24.5 24.5 24.6 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	24.5 24.5 25.2 25.1 25.1	25.1 25.3 24.9 24.6 25.0 25.0
900 1 100 1800 900 900	900 1000 1600 900 900	900 900 900 900 900	900 900 900 900 900	900 1100 900 900 900	900 1100 900 900 900 900
209 212 213 214 215 215 215	218 218 220 221 223	224 225 226 227 228 230	232 233 234 235 235 236	238 240 242 243 244	245 246 247 248 249 250 251
03-08-95 03-09-95 03-10-95 03-11-95 03-12-95 03-14-95	03-16-95 03-17-95 03-18-95 03-19-95 03-21-95 03-22-95	03-23-95 03-24-95 03-25-95 03-26-95 03-27-95 03-28-95	03-30-95 03-31-95 04-01-95 04-03-95 04-04-95	04-06-95 04-07-95 04-09-95 04-10-95 04-11-95	04-13-95 04-14-95 04-15-95 04-16-95 04-17-95 04-19-95 04-20-95

	O	ro	0.00008 0.00001 0.00056 0.000105
	ro	rs	0.071 0.011 0.314 0.0588
	0.00	0.00	0.00
	0.00	0.00	0.00 0.00 38
	279	286	269 >1999 38
	85.5	85.5 5.5	134.6 68.4 410.4 83.88
	34.0	34.0	39.2 27.2 54.4 8.02 38
7.39 7.31 7.50 7.39 7.15	7.24 7.08 6.84 7.03 7.98 8.41 7.34	7.67 7.50 7.39 7.47 7.67 7.65	7.10 3.05 8.99 0.976 272
6.40 6.40 6.40 6.40	6.44 6.42 6.42 6.45 6.45	6.48 6.69 6.52 6.52 6.33	5.80 6.98 271
25.2 25.2 24.5 24.5 24.5	25.0 25.2 25.1 25.1 25.0 25.0 26.9	24.9 24.9 24.9 24.9 24.9 25.3 3	23.7 19.0 31.2 1.64 272
900 1200 2000 900 900	900 1100 1600 900 900 900	830 830 830 830 830 830 830	
253 254 255 256 257 257	259 260 261 262 263 264 265	266 267 268 269 270 271 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95	04-27-95 04-28-95 04-30-95 05-01-95 05-02-95 05-03-95	05-04-95 05-05-95 05-06-95 05-07-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

 $\mathbf{a}_{\mathrm{Data}}$ not available; analytical instrument would not calibrate.

TANK No. 17 TANK CONCENTRATION: 100% APG-EA DECHLORINATED TAP WATER NO DEN EXPOSURE

Date	Trailer Exposure Test Day	Time (Military)	Temperature (Celcius)	Ŧ	Dissolved Oxygen (mg/L)	Alkalinity (mg/L as CaCO3)	Hardness (mg/L as CaCO3)	Conductivity (umohs/cm)	Total Residual Chlorine (mg/L)	Free Available Chlorine (mg/L)	Total Ammonia- Nitrogen (mg/L)	Total Unionized Ammonia- Nitrogen (mg/L)
08-12-94	-	006	24.7	7.66	60 6							
08-13-94	. 7	06	25.0	7.31	7.65							
08-14-94	က	006	25.2	7.57	7.82							
08-15-94	4	006		7.37	8.13							
08-16-94	32	1000		7.44	7.70							
08-17-94	φ	1000		7.24	7.43							
08-18-94	7	900		7.33	7.48	40.8	85.5	203	0.00	0.00	0.337	0.00404
08-19-94	Φ,	800		7.31	8.29							
08-20-94	o ;	1000		7.34	8.24							
08-21-94	9	800		7.44	8.12							
08-22-94	7	006		7.50	8.15							
08-23-94	12	730		7.41	8.17							
08-24-94	13	1000		7.37	8.40							
08-25-94	14	1100		7.42	8.59	40.8	85.5	206	0.00	0.00	0.025	0.00036
08-26-94	15	006		7.38	8.32							
08-27-94	16	006		7.39	8.28							
08-28-94	17	800		7.38	8.25							
08-29-94	18	006		7.45	8.21							
08-30-94	19	006		7.45	8.24							
08-31-94	20	800		7.49	8.32							
09-01-94	21	1100		7.47	8.92	40.8	85.5	218	0.00	0.00	a	Ø
09-02-94	22	006		7.47	8.84							
09-03-94	23	815		7.38	8.27							
09-04-94	24	810		7.40	8.44							
09-02-94	25	1100		7.38	8.96							
09-06-94	26	006		7.37	8.96							
09-07-94	27	800		7.39	8.99							
09-08-94	28	1100		7.37	9.20	40.8	85.5	213	0.00	0.00	0.000	0.0000
09-09-94	29	006		7.31	9.77							
09-10-94	30	006	24.3	7.49	9.24							
09-11-94	34	800		7.37	8.81							
09-12-94	32	500	_	7.42	8.38							

0.00000	æ	æ	a 0.00018	a	0.00017
0.000	a	α	a 0.022	æ	0.024
0.00	0.00	a	0.00	0.00	0.00
0.00	0.00	a	0.00	0.00	0.00
210	215	181	202	206	207
85.5	85.5	68.4	85.5	85.5	85.5
40.8	40.8	34.0	40.8	8.08	8.08
9.10 8.79 8.52 8.61 8.60 8.60 8.86	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8.05 9.07 9.07 9.02 9.02 9.02	8.89 9.50 9.50 9.50 9.50 8.89 8.80 8.80 8.80	8.54 7.49 7.90 8.16 7.92 8.54	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
7.35 7.39 7.34 7.23 7.28 7.33	7.30 7.36 7.29 7.18	7.18 7.18 7.16 7.24 7.23	7.18 7.18 7.16 8.77 8.79	7.16 7.16 7.16 7.10 7.10	7.23 7.23 7.23 7.20 7.20
24.7 24.7 24.8 24.5 24.5 24.5 24.5 24.5	24.8 24.8 24.8 24.8 7.7	24.5 24.5 24.5 24.5 24.3 24.3 24.3 24.3 24.3 24.3 24.3	24.2 24.2 24.3 24.3 24.3 24.3	25.7 25.7 24.7 24.7 24.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
700 1400 1200 1200 1000 1000	900 1300 900 900	1000 1030 1030 900 1100 1100	1100 1100 1600 1600	1300 1300 900 1000 800	000000000000000000000000000000000000000
33 33 34 35 36 36 37 40 36 36 37	- 4 4 4 4 4 4 5 6 4 6 6 6 6 6 6 6 6 6 6 6	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	55 55 55 55 55 55 55 55 55 55 55 55 55	2	20 77 72 73 75 76
09-13-94 09-14-94 09-16-94 09-17-94 09-19-94 09-20-94	09-21-94 09-23-94 09-23-94 09-25-94 09-26-94	09-26-94 09-28-94 09-30-94 10-01-94 10-03-94 10-03-94	10-06-94 10-08-94 10-09-94 10-10-94 10-11-94	10-13-94 10-13-94 10-15-94 10-16-94 10-18-94	10-19-94 10-20-94 10-22-94 10-23-94 10-25-94 10-25-94

0.00024	0.00043	0.00046	0.00035	0.00060	0.00034	0.00093
0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.025	0.059	0.062	0.042	0.047	0.072	0.044
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
200	212	215	198	195	174	266
85.5	85.5	85.5	85.5	85.5	85.5	85.5
8.	40.8	40.8	40.8	54.4	34.0	88.4
8.72 8.82 8.10 8.90 9.31 9.04	9.22 9.22 9.02 9.03 9.03 9.03	8.17 8.00 8.43 8.72	8.32 8.33 8.34 8.34 10 8.37 10 10 10 10 10 10 10 10 10 10 10 10 10	9.37 9.01 9.76 9.76 9.15 9.05	8.90 8.47 8.07 8.27 7.89 7.99	7.82 7.72
7.23 7.28 7.24 7.20 7.17 7.13	7.11 7.16 7.15 7.15 7.15	41.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	7.18 7.20 7.15 7.20 7.23	7.23 7.44 7.11 7.17 7.15 7.05	7.02 7.02 7.04 7.05 7.12 7.51	7.57
24.9 24.6 25.0 25.0 25.0 25.0 25.0	25.1 25.3 25.3 25.0 25.0 25.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.6 25.0 24.8 24.8 24.8	22.22 22.23 22.23 22.23 22.23 22.23 22.23 22.23 23.23 24.23 25.23	24.7 25.0 25.0 25.0 25.0 25.0 25.0	25.3 25.2 25.2
000 000 000 000 1000 1000	000000000000000000000000000000000000000	845 830 1000		100 100 100 100 100 100 100 100 100 100	000 1 1 000 000 000 000 000 000 000 000	1000
77 78 79 80 81 82 83	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 9 9 9 9 - 05 4 9 9 9	98 98 101 102 102 102	201 100 100 100 100 100 100 100 100 100	- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	119 120
10-27-94 10-28-94 10-30-94 10-31-94 11-01-94	11-08-94 11-06-94 11-06-94 11-08-94 11-09-94	11-10-94 11-11-94 11-13-94 11-14-94	11-16-94 11-16-94 11-18-94 11-20-94 11-21-94	11-22-94 11-23-94 11-25-94 11-26-94 11-28-94 11-29-94	12-01-94 12-03-94 12-03-94 12-05-94 12-06-94	12-07-94 12-08-94 12-09-94

	0.00163	0.00127	0.00143	0.00101	0.00082	α
	0.081	0.091	0.065	0.047	0.037	œ
9	0.00	0.00	00.00	0.00	0.00	0.00
	0.00	00.00	0.00	0.00	00.0	0.00
ì	261	254	277	280	292	282
	68.4	85.5	85.5	68.4	102.6	102.6
,	81.6 6.	91.6	95.2	95.2	102.0	88.4
7.56 7.73 8.25 8.42 8.51	8.28 7.93 7.58 7.57 7.92	7.85 7.73 7.73 7.84 8.40 8.23 8.10	7.68 7.81 7.75 7.72 7.70 8.30 7.85	8.88 9.90 9.00 9.00 1.00 8.04 8.04	7.20 7.43 7.48 7.49 8.01 7.28	7.25 7.07 6.94 6.88
7.57 7.56 7.55 7.62 7.60	7.55 7.53 7.45 7.40 7.55	7.40 7.62 7.68 7.68 7.68 7.68	7.60 7.53 7.54 7.56 7.50 7.50	7.61 7.43 7.65 7.65 7.65 7.65	7.60 7.60 7.52 7.54 7.54 7.62	7.61 7.62 7.58 7.62
25.5 25.6 24.6 24.3 24.3	25.2 25.2 25.2 25.4 25.4	25.22.22.25.42.22.25.24.22.25.24.23.25.24.23.25.24.23.25.24.23.25.24.25.25.25.25.25.25.25.25.25.25.25.25.25.	24.6 24.6 24.7 25.0 25.0 24.6	23.43 23.43 23.67 23.68 23.68 24.39 25.30	24.7 25.2 25.7 25.5 25.5 25.6 26.0	24.9 25.1 25.6 25.4
1300 900 900 900	800 1100 845 930 1000	0001 0000 0000 1000 1000 1000	00011000	100 100 100 100 100 100 100 100	2000 800 1030 1000 1000	1000 1000 1100
121 122 123 124	126 128 130 130	135 136 136 137 138 138	44 144 145 145 145 145	148 149 150 151 152	155 156 157 158 159 160	161 162 163
12-10-94 12-11-94 12-12-94 12-13-94 12-14-94	12-15-94 12-16-94 12-17-94 12-18-94 12-20-94	12-21-94 12-23-94 12-25-94 12-26-94 12-26-94 12-28-94	12-29-94 12-30-94 12-31-94 01-02-95 01-03-95	01-05-95 01-05-95 01-07-95 01-08-95 01-09-95 01-10-95	01-17-95 01-12-95 01-14-95 01-15-95 01-16-95 01-18-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00043	0.00118	0.00015	0.00015	0.00030	0.0000
0.020	0.052	0.015	0.027	0.038	0.013
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
285	281	244	239	233	336
85.5	85.5	119.7	85.5	85.5	85.5
95.2	88.4	47.6	40.8	34.0	40.8
7.50 8.14 7.37 7.33 7.38 7.25 7.94 7.59 8.12	7.67 7.64 7.96 7.96 8.50 8.27 8.31	9.19 8.73 9.42 9.62 9.52	9.29 9.29 9.39 9.39	9.28 9.28 9.24 9.57 9.24 9.26	9.20 9.20 8.86 8.98 8.98 6.56
7.69 7.64 7.70 7.55 7.51 7.63 7.52 7.52 7.55	7.58 7.50 7.50 7.35 7.52 7.52	7.36 7.20 7.13 7.19 7.15	7.10 7.09 7.09 7.01 7.07	7.23 7.23 7.20 7.18 7.19	7.18 7.23 7.23 6.99 7.16
25.2 23.2 23.5 24.0 23.5 24.0 25.0 25.0 25.0	25.5 25.5 25.5 23.3 23.3	22.2 22.2 20.3 20.5 20.5 20.5	22 22 22 22 22 22 22 22 22 22 22 22 22	222 222 222 222 223 223 233	21.7 22.9 22.9 23.0 23.8
600 1100 1000 830 830 1000 1000	900 1200 930 930 900	1200 900 900 900 900	900 1100 1000 1000	1000 1000 1000 1000 1000 1000 1000 100	900 1000 1015 900
165 166 167 169 170 171 173	175 176 177 179 180	185 185 186 187 187	190 192 193 194 195	201 200 200 201 202	203 204 205 207 208
01-23-95 01-24-95 01-25-95 01-26-95 01-27-95 01-29-95 01-30-95 02-01-95	02-02-95 02-03-95 02-05-95 02-06-95 02-07-95	02-09-95 02-10-95 02-12-95 02-13-95 02-14-95	02-16-95 02-17-95 02-18-95 02-19-95 02-21-95	02-23-95 02-24-95 02-25-95 02-26-95 02-28-95 03-01-95	03-02-95 03-03-95 03-04-95 03-05-95 03-06-95 03-07-95

0.00013	0.00008	ત્હ	0.00041	0.00034	0.00031 a
0.015	0.011	σ	0.064	0.054	0.044 a
0.00	0.00	0.00	0.00	0.00	0.00
0.00	00.00	00.00	0.00	0.00	0.00
242	214	233	219	288	245
85.5	85.5	85.5	85.5	85.5	68.4
40.8	47.6	47.6	47.6	40.8	40.8
8.64 8.59 8.86 8.86 8.60 8.58	8.8.8.8.8.8.9.9.9.9.9.9.9.9.9.9.9.9.9.9	8.20 7.19 8.70 8.70 8.06 7.70	7.36 7.36 7.36 8.41 8.26 7.83	2.7 7.80 8.30 8.30 7.47 7.47	7.21 7.20 7.80 7.67 7.63 7.69 7.69
7.27 7.24 7.07 7.13 7.14 7.20	7.15 7.23 7.24 7.27 7.27 7.16	7.14 7.07 7.04 7.04 6.97 7.12 7.15	7.15 7.16 7.02 7.03 7.21	7.22 7.19 7.19 7.16 7.22 7.22	7.13
23.6 23.7 23.7 23.8 23.8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.5 24.3 25.3 25.0 25.0 25.0	25.3 25.3 25.3 25.3 25.3 25.3 25.3
900 1000 900 1100 1800 900 900	9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	900 900 900 900 900 900 900 900 900	000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 6 6 7 7 8 6 6 6 6 6 6 6 6 6 6 6 6 6	1100 1100 1100 900 900 900
209 210 212 213 214 215 215	222 223 223 223 223	32 52 52 53 53 53 53 53 53 53 53 53 53 53 53 53	232 232 234 234 236 236	2 2 2 2 2 3 8 2 2 3 3 8 2 2 3 3 8 2 3 3 8 3 3 3 3	245 246 247 248 250 251 252
03-08-95 03-09-95 03-10-95 03-11-95 03-13-95 03-13-95	03-19-93 03-16-95 03-17-95 03-19-95 03-20-95 03-21-95	03-22-95 03-23-95 03-24-95 03-25-95 03-26-95 03-28-95	03-30-95 03-31-95 04-02-95 04-03-95 04-04-95	04-03-95 04-06-95 04-08-95 04-09-95 04-11-95	04-12-95 04-13-95 04-14-95 04-16-95 04-17-95 04-19-95 04-20-95

ત્વ	3	a	0.00061 0.00000 0.00404 0.000779
w	•	æ	0.049 0.000 0.337 0.0590 29
0.00		00 00	0.00 0.00 38
0.00		000	0.00 0.00 38
222		224	234 174 336 35.7 38
85.55		85: 55:	85.5 68.4 119.7 8.77 38
40.8		4.04 8.	53.1 34.0 102.0 21.44 38
7.30 7.45 7.87 7.27 7.16 7.13 6.97	7.11 6.97 7.76 7.86 8.51 7.43	7.74 7.68 7.15 7.29 7.14 7.11	8.30 6.88 10.06 0.688 272
7.27 7.25 7.21 7.31 7.24 7.23	7.25 7.25 7.25 7.26 7.28	7.27 7.27 7.16 7.10 7.14 7.16	6.94 7.70 271
25.5 26.0 25.4 24.7 24.8 25.2	25.1 25.1 25.0 24.9 24.6	24.9 25.3 25.3 25.3 25.3 25.3	24.3 20.5 26.3 1.14 272
900 2000 2000 900 900	900 1100 1600 900 900	000 8 8 000 000 8 8 000 000 8 8 000	
253 254 255 256 257 258 259	260 261 263 263 264	266 267 268 269 270 271 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-28-95 04-29-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-07-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

a Data not available; analytical instrument would not calibrate.

TANK No. 18 TANK CONCENTRATION: 100% APG-EA DECHLORINATED TAP WATER NO DEN EXPOSURE

Date	Trailer Exposure Test Day	Time (Military)	Temperature (Celcius)	Ŧ	Dissolved Oxygen (mg/L)	Alkalinity (mg/L as CaCO3)	Hardness (mg/L as CaCO3)	Conductivity (umohs/cm)	Total Residual Chlorine (mg/L)	Free Available Chlorine (mg/L)	Total Ammonia- Nitrogen (mg/L)	Total Unionized Ammonia- Nitrogen (mg/L)
1	-	006		7.63	9.10							
	7	006		7.31	7.93							
	က	006		7.56	7.95							
_	4	006		7.37	8.22							
08-16-94	ഹ ഗ	1000	25.0	7.43	7.83							
08-18-94	o	006		7.32	7.50	40.8	85.5	203	00.00	0.00	0.112	0.00131
08-19-94	. Φ	808		7.31	8.29							
08-20-94	თ	1000		7.34	8.22			•				
08-21-94	10	800		7.44	8.16							
08-22-94	11	006		7.50	8.13							
_	12	730		7.40	8.17							
08-24-94	13	1000		7.36	8.39							
08-25-94	14	1100		7.41	8.60	40.8	85.5	206	0.00	0.00	0.079	0.00110
08-26-94	15	006		7.38	8.37							
_	16	006		7.39	8.27							
_	17	800		7.38	8.23							
	18	006		7.45	8.16							
08-30-94	19	006		7.45	8.24							
~	20	800	24.7	7.49	8.29	•	1		0	0		
09-01-94	23	1100		7.47	50 C	40.8	85.5 20.5	218	0.00	0.00	Ø	ro
09-02-94	7 8	900		1.47	0.00							
09-03-94	3 3	0.00			9.00							
09-04-94	2. c	810		7.20	6.23 0.03							
+ -	67	88		7.30	000							
09-00-94	9 !	006		1.57	6.0							
09-07-94	77	008		96.7	8.98 8.98		1		0	0	0	
09-08-94	28	1100	24.0	7.37	9.20	40.8	85.5	213	00.0	0.00	0.000	0.0000
09-09-94	29	006	24.1	7.31	9.80							
09-10-94	90	006	24.2	7.49	9.21							
09-11-94	31	800	23.8	7.37	8.78							
09-12-94	32	200	23.9	7.42	8.37							

0.00000	æ	Ø	a 0.00016	a	0.00019
0.000	Ø	æ	a 0.020	a	0.026
0.00	0.00	æ	0.00	0.00	0.00
0.00	0.00	œ	0.00	0.00	0.00
210	215	181	202	506	207
85.5	85.5	68.4	85.5	85.5	85.5
40.8	40.8	34.0	40.8	40.8	40.8
9.07 8.68 8.43 8.55 8.28 8.61 8.66 8.78	8.57 8.57 8.31 8.78	8.07 7.78 7.78 7.96 9.01 8.94 9.08	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8.40 7.37 7.37 8.40 8.49 7.86	8.10 8.33 8.59 8.50 8.33 8.33
7.35 7.33 7.23 7.23 7.23 7.23 7.33	7.36 7.36 7.28 7.18	7.00 7.27 7.23 7.23 7.23 7.23	7.20 7.18 7.13 7.16 7.16 7.19	7.14 7.06 7.16 7.20 7.16 7.00	7.13 7.18 7.23 7.22 7.22 7.20
24.0 24.7 24.7 24.9 24.9 24.9 24.9	24.8 24.8 24.8 24.6 74.6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.3 24.3 24.5 24.5 24.5 24.5 24.5 24.5 24.5	25.8 25.2 24.7 24.7 24.6	243 245 245 245 245 245
700 1300 1200 1200 1000 1000	1000 1300 900 900	100 1030 1030 1100 1100 1000 1000	1100 1100 1000 1600	1300 1300 1000 800 800	000 000 000 000 000 000 000 000 000
88 8 8 8 4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9	. 4 4 4 4 4 . 5 4 4 5 6 7	. 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	55 55 56 56 56 56 56 56 56 56 56 56 56 5	56 56 56 56 56 56 56 56 56 56 56 56 56 5	20 10 10 10 10 10 10 10 10 10 10 10 10 10
09-13-94 09-14-94 09-15-94 09-17-94 09-18-94 09-20-94	09-22-94 09-23-94 09-24-94 09-25-94 09-27-94	09-28-94 09-29-94 10-01-94 10-03-94 10-03-94 10-04-94	10-06-94 10-07-94 10-08-94 10-10-94 10-11-94	10-13-94 10-14-94 10-15-94 10-16-94 10-18-94	10-26-94 10-22-94 10-22-94 10-23-94 10-24-94 10-26-94

0.00020	0.00042	0.00051	0.00036	0.00061	0.00028	0.00074
0.021	0.057	0.068	0.043	0.048	0.060	0.035
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
200	212	215	198	195	174	266
85.5	85.5 5.5	85.5	85.5	85.5	85.5	68.4
40.8	40.8	40.8	8.08	4.	34.0	88.4
8.60 8.66 7.98 8.77 9.20 8.89	0.8.9 9.10 9.00 9.00 8.80 8.80 8.80 8.80	8.10 7.90 8.46 8.64	0. 8. 8. 8. 8. 8. 6. 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8.90 8.33 7.95 7.95 7.97	8.80 7.79 7.72
7.23 7.28 7.24 7.20 7.17	21.7 2.30 2.16 2.15 2.15 2.15	4 4 5 4 5 5	7.20 7.20 7.20 7.20 7.23	2.4.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	6.98 7.02 7.07 7.05 7.12 7.51	7.57 7.60 7.60
25.0 24.8 25.0 25.0 25.5 25.5	25.25 25.25	24.5 24.5 24.5 24.5 24.5 24.5 3	24.25.0 25.0 25.0 24.8 9 1 1 2 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	2225 2225 2225 2236 2236 2236 2336 2336	22.2 24.7 25.3 25.3 25.3 25.3	25.2 25.3 25.0
000 000 000 000 000 000 000 000 000 00	000 000 000 000 000 000 000 000 000 00	900 900 845 1000	006 6 6 6 6	800 800 1020 1000 900 900	900 1000 1100 900 900 900	800 1100 1000
77 78 79 80 81 82 83	28 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	98 98 100 101	00 00 00 00 00 00 00 00 00 00 00 00 00	11	118 119 120
10-27-94 10-28-94 10-29-94 10-30-94 11-01-94	11-03-94 11-05-94 11-06-94 11-08-94 11-08-94	11-10-94 11-11-94 11-13-94 11-14-94	11-15-94 11-16-94 11-18-94 11-20-94 11-20-94	11-22-94 11-23-94 11-24-94 11-25-94 11-27-94 11-28-94	11-30-94 12-01-94 12-03-94 12-04-94 12-05-94	12-07-94 12-08-94 12-09-94

	0.00145	0.00139	0.00121	0.00102	0.00076	a
	0.073	0.100	0.056	0.048	0.035	a
	0.00	00.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	260	254	275	278	290	279
	85.5	68.4	85.5	68.4	85.5	102.6
	81.6	91.6	95.2	95.2	102.0	88.4
7.53 7.76 8.25 8.55 8.59	8.25 7.93 7.62 7.49 7.49	7.94 7.80 7.80 7.90 8.42 8.10 8.00	7.67 7.75 7.70 7.71 7.73 8.32 8.32	9.88 9.88 9.22 9.67 7.48	7.30 7.61 7.51 7.50 7.59 8.09 7.28	7.49 7.17 7.08 7.00
7.57 7.56 7.55 7.55 7.60	7.55 7.53 7.47 7.44 7.55	7.40 7.62 7.63 7.68 7.67 7.68 7.68	7.60 7.53 7.44 7.56 7.62 7.50	7.61 7.50 7.45 7.65 7.61 7.65	7.61 7.60 7.54 7.52 7.54 7.54	7.61 7.62 7.58 7.62
25.4 25.4 24.4 24.1	25.0 24.8 25.1 25.1 25.3	24.6 24.5 24.0 24.5 24.5 24.5	245 245 245 245 245	23.7 23.7 23.7 23.4 24.1 24.3	24.4 24.4 25.1 25.4 24.9 24.8	24.9 25.1 25.5 25.2
1300 900 900 900	800 1100 845 930 1000	800 1000 900 700 1100 1100	1000 1100 1100 1100	1100 1000 1000 1000 1000	1000 900 1030 1000 1000	1000 1000 1100
121 123 124 125 125	126 127 128 130	138 138 138 138 138	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	147 148 149 150 152 153	155 155 157 158 159	161 162 163
12-10-94 12-11-94 12-12-94 12-13-94	12-15-94 12-16-94 12-17-94 12-18-94 12-19-94	12-21-94 12-23-94 12-23-94 12-25-94 12-26-94 12-27-94	12-29-94 12-30-94 12-31-94 01-01-95 01-03-95 01-04-95	01-05-95 01-06-95 01-07-95 01-09-95 01-10-95	01-12-95 01-13-95 01-14-95 01-15-95 01-16-95 01-17-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00030	0.00108	0.00013	0.00015	0.00030	0.00009
0.014	0.048	0.013	0.027	0.036	0.013
0.00	0.00	0.00	0.00	0.00	00.00
0.00	0.00	0.00	0.00	0.00	00.00
285	280	243	238	237	337
85.5 5.5	85.5	119.7	85.5	85.5	85.5
95.2	88.4 4.	47.6	40.8	34.0	40.8
7.71 8.04 7.34 7.38 7.38 7.57 8.17	7.10 7.63 7.79 7.85 8.69 8.50	9.20 9.20 9.31 9.64 9.53	9.59 9.50 9.60 9.95 9.95	9.49 9.44 9.46 9.37 9.37	9.18 9.18 9.07 9.07 8.72
7.69 7.64 7.70 7.55 7.55 7.43	7.58 7.58 7.50 7.52 7.52	7.33 7.20 7.13 7.19 7.15	7.10 7.09 7.09 7.01 7.07 7.20	7.23 7.23 7.20 7.34 7.18	7.18 7.23 7.00 7.16
22.22.22.22.22.22.22.22.22.22.22.22.22.	25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5	23.1 21.4 20.4 20.4 20.3	21.0 20.6 20.5 20.6 20.6 20.6	20.2 21.5 21.5 21.5 21.5 21.5 21.5 21.5	21.2 22.3 22.3 22.5 23.3 23.3
000111000	900 1200 930 930 930	900 900 900 900 900 900	900 900 1100 1000 1000	000 1000 1800 900 900 900	900 1000 1015 900
66 168 172 172 172 173 173 174 175 175 175 175 175 175 175 175 175 175	471 176 178 179	185 185 185 186 186	188 190 192 193 194	195 196 198 200 201	202 203 204 205 206 207 208
01-23-95 01-24-95 01-25-95 01-27-95 01-29-95 01-30-95 01-30-95	02-01-95 02-02-95 02-03-95 02-05-95 02-06-95	02-08-95 02-09-95 02-11-95 02-12-95 02-13-95 02-14-95	02-15-95 02-16-95 02-17-95 02-18-95 02-20-95 02-21-95	02-22-95 02-23-95 02-24-95 02-25-95 02-26-95 02-27-95	03-01-95 03-02-95 03-03-95 03-05-95 03-05-95 03-07-95

0.00013	0.00008	Ø	0.00044	0.00035	0.00027 a
0.015	0.011	œ	0.069	0.055	0.038
0:00	0.00	00:00	0.00	0.00	00.0
0.00	0.00	00:00	0.00	0.00	00.0
237	211	231	218	226	245
85.5	85.5	85.5 5	85.5	85.5	85.5 68.4
40.8	47.6	47.6	47.6	8.04	40.8
8.69 8.54 8.68 8.43 8.72 8.72	2 8 8 8 8 8 7 8 2 8 8 8 8 7 8 2 8 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7.97 7.30 7.73 8.59 7.29 7.10	7.16 7.74 7.74 8.34 8.19 7.65	7.77 7.56 7.82 8.10 7.13 7.37	7.13 6.73 7.51 7.36 7.26 7.53 7.53
7.27 7.24 7.07 7.13 7.14 7.20	7.15 7.23 7.24 7.17 7.16	7.14 7.07 7.00 7.00 7.12 7.15	7.15 7.16 7.00 7.01 7.21 7.25	7.19 7.19 7.16 7.16 7.22 7.18	7.22 7.13 7.25 7.29 7.29 7.29 7.26
23.2 24.3 24.7 23.6 23.6 23.6 23.6	242 242 242 242 243 247 247	24.8 24.9 24.9 24.5 24.5 3	24.5 24.4 24.5 24.5 24.5 24.5 24.5 24.5	24.7 24.7 25.3 25.0 25.0	25.3 25.0 25.0 25.0 25.0 25.3
900 1000 1000 1800 900 900 900	900 900 900 900 900 900 900 900	000 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000000000000000000000000000000000000000	1100 1300 900 900 900	1100 900 1100 900 900 900
209 212 213 214 215 215 215	214 218 220 221 223	224 225 227 227 229 230	231 232 234 234 235 236 237	238 240 241 242 243 244	245 246 247 248 250 251 252
03-08-95 03-09-95 03-10-95 03-12-95 03-13-95 03-14-95	03-16-95 03-17-95 03-18-95 03-19-95 03-20-95 03-21-95	03-23-95 03-24-95 03-25-95 03-26-95 03-27-95 03-28-95	03-30-95 03-31-95 04-01-95 04-02-95 04-04-95	04-06-95 04-07-95 04-09-95 04-10-95 04-11-95	04-13-95 04-14-95 04-15-95 04-16-95 04-18-95 04-19-95

σ		ro ro	0.00052 0.00000 0.00145 0.000444
o O		a	0.042 0.000 0.112 0.0277
0.00		0.00	0.00 0.00 38
0.00	3	0.00	0.00 0.00 38
220	}		232 174 337 34.4 38
85.5	,	85.5	84.6 68.4 119.7 8.73 38
40.8	;	40.8	53.1 34.0 102.0 21.44 38
7.21 7.69 7.14 7.10 7.16	7.19 6.86 7.70 7.72 8.30 7.40	7.63 7.45 7.26 7.15 7.09 7.09	8.27 6.73 10.04 0.703 272
7.27 7.25 7.21 7.31 7.24 7.23	7.26 7.25 7.24 7.22 7.26	7.27 7.27 7.18 7.03 7.10 7.14	6.96 7.70 271
25.5 26.0 25.4 24.6 24.6 25.3	25.0 25.0 24.8 24.8 24.8	25.5.2 25.5.2 26.5.3 26.5.3 26.0 26.0	24.2 20.3 26.3 1.21 272
900 2000 2000 900 900 900	1100 1600 900 900 900	000 000	
253 254 255 256 257 258 259	260 261 262 263 264 265	266 267 268 269 270 271	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-28-95 04-29-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-07-95 05-08-95 05-09-95	MEAN MINIMUM MAXIMUM Std Dev N

a Data not available; analytical instrument would not calibrate.

TANK No. 19 TANK CONCENTRATION: 100% APG-EA DECHLORINATED TAP WATER DEN EXPOSURE: 10 mg/L

Date	Trailer Exposure Test Day	Time (Miitary)	Temperature (Celcius)	Ħ	Dissolved Oxygen (mg/L)	Alkalinity (mg/L as CaCO3)	Hardness (mg/L as CaCO3)	Conductivity (umohs/cm)	Total Residual Chlorine (mg/L)	Free Available Chlorine (mg/L)	Total Ammonia- Nitrogen (mg/L)	Total Unionized Ammonia- Nitrogen (mg/L)
08-12-94 08-13-94 08-14-94 08-15-94 08-16-94	←004v	900 900 900 900		7.70 7.35 7.57 7.37 7.37	9.11 7.87 7.95 7.99 7.57							
08-17-94 08-18-94 08-20-94 08-21-94 08-22-94	6 7 7 10 10 11	1000 800 1000 800 800		7.23 7.31 7.34 7.44 7.50	7.48 7.50 8.30 8.25 8.17 8.17	40.8	85.5	202	0.00	0.00	0.135	0.00155
08-23-94 08-24-94 08-25-94 08-26-94 08-27-94 08-29-94	27 27 44 45 45 45 45 45 45 45 45 45 45 45 45	730 1000 1100 900 900 900 900 900		7.40 7.37 7.40 7.38 7.39 7.38 7.45	8.25 8.84 8.37 8.29 8.29 8.20 6.25 6.25	40.8	85.5	206	0.00	0.00	0.076	0.00105
09-30-94 08-31-94 09-01-94 09-03-94 09-04-94 09-05-94	2 2 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	800 1100 900 815 816 810 900	2,2 2,2 2,4,2 2,4,2 2,4,4,4,5 3,5 4,4,4,5 6,5	7.49 7.49 7.47 7.36 7.38 7.38 7.38	0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	40.8	102.6	218	0.00	0.00	æ	æ
09-07-94 09-08-94 09-09-94 09-10-94 09-11-94	27 28 29 30 33 32	800 1100 900 900 800 500		7.39 7.37 7.31 7.49 7.37	9.24 9.27 9.22 9.22 8.84 8.40	40.8	85.5	213	0.00	0.00	0.000	0.00000

0.00000	æ	æ	0.00020	_O	0.00020
0.000	a	a	a 0.025	œ	0.027
0.00	0.00	æ	0.00	0.00	0.00
0.00	0.00	œ	0:00	0.00	0.00
210	215	181	202	207	207
85.5	85.5	68.4	85.5	85.5	85.5
40.8	40.8	34.0	40.8	40.8	40.8
9.12 8.73 8.53 8.53 8.23 8.62 8.62 8.80	8.50 9.05 8.27 8.32 8.32	8.56 8.56 8.56 8.77 8.87 9.10 9.10	8.78 8.78 8.78 8.20	8.47 7.45 7.88 8.13 8.55 7.87	8.26 9.29 8.56 8.91 8.31 8.31
7.35 7.43 7.37 7.36 7.30 7.36 7.36	7.36 7.36 7.21 8 7.18	7.00	7.20 7.13 7.16 7.16 7.19	7.16 7.16 7.16 7.10 7.00	7.24 7.13 7.23 7.22 7.22 7.20
24.8 24.8 24.8 24.6 24.6	24.9 24.9 24.9 24.9 24.8 24.8	2448 2448 2448 2445 2445 2445 2445	245 245 245 245 245 245 245 25 25 25 25 25 25 25 25 25 25 25 25 25	25.9 25.9 24.8 24.8	24.2 24.2 24.2 24.2 24.5 24.5 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6
700 1300 1200 820 1000 1000	900 1300 900 900 900	1030 1030 1030 900 1100 1100	28 1 1 1 00 000 1 1 00 000 000 000 000	900 900 900 900 900 900 900	000000000000000000000000000000000000000
24 33 33 34 35 44 35 34 35 44	- 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 9 5 5 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	55 55 60 61 61 61	62 64 67 68	69 70 72 73 75 76
09-13-94 09-14-94 09-15-94 09-16-94 09-17-94 09-19-94 09-20-94	09-21-34 09-23-94 09-23-94 09-25-94 09-26-94	09-21-34 09-29-94 09-30-94 10-01-94 10-03-94 10-04-94	10-05-94 10-07-94 10-09-94 10-10-94 10-11-94	10-12-94 10-13-94 10-15-94 10-16-94 10-17-94	10-19-94 10-20-94 10-22-94 10-23-94 10-25-94 10-25-94

0.00019	0.00040	0.00046	0.00033	0.00064	0.00024	0.00085
0.020	0.055	0.061	0.040	0.050	0.051	0.041
0.00	0.00	0.00	00.00	00:00	0.00	0.00
0.00	0.00	0.00	00.00	0.00	0.00	0.00
200	212	215	198	195	174	266
8 5 5	85.5	85.5	85.5	85.5 5	85.5	68.4
40.8	40.8	40.8	40.8	54.4	34.0	88.4
8.74 8.79 8.05 8.87 9.29 9.08	9.26 9.26 9.27 9.28	8.30 7.98 8.50 8.79	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 8 8 8 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9	7.90 7.83
7.23 7.28 7.24 7.20 7.17 7.23	7.11 7.30 7.16 7.15 7.15	41.7.7.7.7.4.4.6.1.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	7.18 7.20 7.20 7.18 7.23	2.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	7.05 7.09 7.05 7.12 7.51	7.57 7.60
24.9 24.9 24.9 24.9 24.9 24.9	25.0 25.0 25.2 24.8 24.8 24.8	24.2 24.5 24.3 2.4 5	24.4 24.7 24.7 24.7 24.7 24.7 24.7	222 222 222 222 222 222 222 222 222 22	24.6 24.6 25.1 25.1 25.1	25.0 25.1 24.9
001 000 000 1100 0001	2000 0000 0000 0000 0000 0000 0000 000	8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		730 730 730 730 900 900 900	8 8 6 0 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1000
77 78 79 80 81 83	88 88 89 90 91	99 99 99 99 99 99	2 6 8 8 8 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	109 109 109 109 109	- 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	119
10-27-94 10-28-94 10-29-94 10-31-94 11-02-94	11-05-94 11-05-94 11-07-94 11-09-94	11-12-94 11-13-94 11-14-94	11-16-94 11-18-94 11-19-94 11-20-94 11-21-94	11-23-94 11-23-94 11-25-94 11-26-94 11-28-94 11-29-94	12-00-94 12-02-94 12-03-94 12-04-94 12-06-94	12-07-94 12-08-94 12-09-94

	0.00159	0.00132	0.00120	0.00101	0.00078	Ø
	0.076	0.089	0.053	0.047	0.034	Ø
,	0.00	0.00	0.00	0000	0.00	0.00
	0.00	0.00	0.00	0000	0.00	0.00
	259	254	274	278	289	277
	68.4 4.	68.4	85.5	68.4	85.5	102.6
	91.6	81.6	95.2	95.2	102.0	88.4
7.59 7.91 8.51 8.74 8.76	8.46 8.12 7.70 7.53 7.81	8.08 7.94 7.94 8.57 8.57 8.21 8.65	7.94 7.95 7.95 7.89 8.44	8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7.72 7.71 7.71 7.77 7.84 8.15	7.49 7.40 7.02 7.04
7.57 7.60 7.55 7.55 7.62	7.58 7.55 7.47 7.46 7.55	7.57 7.68 7.68 7.66 7.66 7.71	7.63 7.56 7.56 7.60 7.64 7.53	7.62 7.51 7.54 7.66 7.68 7.68	7.54 7.54 7.54 7.58 7.58	7.61 7.65 7.58 7.61
25.2 25.2 24.2 24.0 23.9	24.8 24.9 24.9 25.0 8	24.7 24.6 24.6 24.6 23.6 24.3 24.3 24.3	24.2 24.3 24.5 24.5 24.7 24.7 24.7	23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3	24.5 24.5 24.5 24.5 24.5 34.5	24.7 24.8 24.8 24.6
1300 900 900 900	800 1100 845 930 1000	1000 1000 1000 1000 1000 1000	2000 1000 1000 1000 1000 1000	1000 1000 1000 1000 1000	000 000 000 000 000 000 000 000 000 00	1000 1000 1000 1000
122 123 123 124 125	126 127 129 130	132 133 134 136 137 138	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5 4 4 4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	55 55 55 55 55 55 55 55 55 55 55 55 55	161 163 163 164
12-10-94 12-11-94 12-12-94 12-13-94 12-14-94	12-15-94 12-16-94 12-17-94 12-19-94	12-20-94 12-22-94 12-23-94 12-24-94 12-25-94 12-27-94	12-29-94 12-30-94 12-31-94 01-02-95 01-03-95	01-05-95 01-05-95 01-07-95 01-08-95 01-09-95	01-1-93 01-12-95 01-14-95 01-15-95 01-16-95 01-17-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00043	0.00077	0.00013	0.00015	0.00030	0.00008
0.020	0.036	0.014	0.030	0.038	0.012
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
285	277	242	236	235	337
85.5	85.5	119.7	85.5	85.5	85.5
95.2	88.4	47.6	34.0	34.0	34.0
7.63 8.15 7.49 7.29 7.93 7.64 8.01	7.76 7.70 7.99 8.10 8.79 8.41	9.02 9.51 9.73 9.81 9.53	9.63 9.63 9.93 9.57	9.45 9.45 9.37 9.66 9.13	9.28 9.09 9.02 9.06 9.06
7.69 7.64 7.55 7.55 7.55 7.59 7.50	7.58 7.50 7.50 7.52 7.52 7.53	7.36 7.20 7.13 7.19 7.15	7.10 7.09 7.09 7.01 7.07 7.20	7.23 7.23 7.20 7.34 7.18	7.18 7.23 7.23 7.01 7.16
24.5 23.0 23.8 23.8 22.4 24.9	22.6 22.6 22.6 22.6 25.6	20.9 21.7 20.8 20.7 19.8	205.2 20.7 20.7 20.5 20.5 20.5	2 2 2 2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	21.1 20.7 21.9 22.2 22.8
600 1100 1100 1000 830 830 1000 1000	900 1200 930 900	900 900 900 900 900	900 1100 1000 1000 1000	000 000 000 000 000 000 000 000 000 00	900 1000 1015 900
165 166 167 169 170 171 173	751 771 771 180 181	183 184 185 186 187	26 19 19 19 19 19 19 19 19 19 19 19 19 19	200 200 200 201 201	203 204 205 207 208
01-23-95 01-24-95 01-25-95 01-26-95 01-27-95 01-29-95 01-30-95 01-31-95	02-02-95 02-03-95 02-04-95 02-05-95 02-07-95 07-08-95	02-09-95 02-10-95 02-11-95 02-13-95 02-14-95	02-10-55 02-17-95 02-18-95 02-19-95 02-20-95	02-23-95 02-23-95 02-25-95 02-26-95 02-27-95 02-28-95	03-02-95 03-03-95 03-04-95 03-05-95 03-06-95

0.00013	0.00008	æ	0.00044	0.00036	0.00027	ŭ
0.015	0.011	Œ	0.069	0.056	0.039	ū
0.00	0.00	0:00	0.00	0.00	00.0	
00.00	0.00	0.00	0.00	0.00	0.00	O.00
237	212	232	217	225	244	212
85.5	85.5	85.5	85.5	85.5	85.5	4.80
40.8	47.6	47.6	47.6	40.8	8.04	40.8
8.57 8.20 8.07 8.59 8.37 8.61	8.43 8.20 8.20 8.25 8.18	6.76 6.76 7.71 7.71 7.33	7.04 6.92 7.70 8.16 7.89 7.38	7.42 7.33 7.65 7.96 6.79 6.97	7.27 7.27 7.27	60. <i>/</i>
7.27 7.24 7.07 7.13 7.14 7.20 7.23	7.15 7.17 7.23 7.17 7.16	7.14 7.07 7.06 7.12 7.15	7.15 7.16 7.01 7.21 7.25	7.22 7.19 7.16 7.16 7.22 7.22 7.23	7.25	7.20
22.7 23.4 24.9 24.9 24.0 24.2	24.5 24.5 25.5 25.5 25.5 25.5 25.5 25.5	24.8 25.0 25.3 24.7 24.7 24.7	24.2 24.2 24.2 24.2 24.4 24.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	7.42 2.42 2.43 2.43 2.43 2.43 2.43 2.43 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	72.5
900 1000 900 1100 1800 900	900 1000 900 900 900 900	900 900 900 900 900 900	900 900 900 900 900 900 900	2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1100 900 1100 900 900	900
203 211 212 213 214 215 215 215 215 215 215 215 215 215 215	572 578 579 579 579 579 579 579 579 579 579 579	224 225 236 237 238 239 239	232 233 234 235 236 236	233 240 242 243 243 243 243 243	245 246 247 248 250 250	252
03-08-95 03-09-95 03-10-95 03-11-95 03-12-95 03-13-95	03-10-95 03-16-95 03-17-95 03-19-95 03-20-95	03-22-95 03-23-95 03-24-95 03-26-95 03-27-95 03-28-95	03-30-95 03-31-95 04-01-95 04-02-95 04-04-95	04-05-95 04-06-95 04-07-95 04-08-95 04-10-95	04-12-95 04-13-95 04-14-95 04-16-95 04-17-95 04-18-95	04-20-95

œ	1	æ	0.00052 0.00000 0.00159 0.000457
ิเช	3	α	0.042 0.000 0.135 0.0285
000		000	0.00
00.0		000	0.00
219		22	231 174 337 34.1 38
85.5 5.5	}	85.55	84.6 68.4 119.7 9.57 38
40.8		8.	52.8 34.0 102.0 21.70 38
6.88 7.28 7.53 7.13 6.95 6.87 6.95	6.89 6.78 7.50 7.79 8.48 7.33	7.53 7.32 7.04 7.08 7.11 7.11	8.27 6.51 10.15 0.736 272
7.27 7.25 7.21 7.31 7.24 7.23	7.26 7.25 7.24 7.22 7.26	7.27 7.27 7.17 7.02 7.10 7.14 7.16	6.95 7.71 271
25.9 25.9 25.9 24.6 24.3 24.3	25.0 25.0 25.0 24.9 24.8	25.5 25.5 25.5 25.5 25.5 26.4 26.4	24.1 19.7 26.1 1.33 272
900 1200 2000 900 900 900	900 1100 1600 900 900	000 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
253 254 255 256 257 258 259	260 262 263 264 265	266 267 268 269 270 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-28-95 04-29-95 04-30-95 05-01-95 05-02-95 05-03-95	05-04-95 05-05-95 05-06-95 05-07-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

 ${f a}$ Data not available; analytical instrument would not calibrate.

TANK No. 20 TANK CONCENTRATION: 100% APG-EA DECHLORINATED TAP WATER DEN EXPOSURE: 10 mg/L

Total Unionized Ammonia- Nitrogen (mg/L)	0.00087	0.00079	a	0.00000
Total Ammonia- (Nitrogen / (mg/L)	0.075	0.057	æ	0.000
Free Available / Chlorine (mg/L)	0.00	0.00	0.00	0.00
Total Residual Chlorine (mg/L)	0.00	0.00	0.00	0.00
Conductivity (umohs/cm)	202	206	218	213
Hardness ((mg/L as (CaCO3)	85.5	85.5	85.5	8 5. 3.
Alkalinity (mg/L as CaCO3)	40.8	40.8	40.8	40.8
Dissolved Oxygen (mg/L)	9.09 7.99 7.99 8.29 7.87 7.56 7.56 8.28	8.21 8.23 8.23 8.37 8.32 8.32	8.23 8.23 8.22 8.22 8.23 8.04 9.04	7, 00, 00, 00, 00, 00, 00, 00, 00, 00, 0
Ħ.	7.67 7.35 7.57 7.37 7.43 7.23 7.23	7.34 7.44 7.50 7.40 7.37 7.37 7.38	7.39 7.38 7.45 7.45 7.47 7.47	7.44 7.34 7.37 7.37 7.31 7.31 7.37
Temperature (Celcius)	24.9 25.2 25.2 24.8 25.0 25.0 25.0	24.7 25.0 24.7 24.7 24.7 24.7 24.8	24.8 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Time 1 (Military)	900 900 900 1000 1000 900 800	1000 800 900 730 1100 900	900 900 1100 900 900 900 900 900	000 000 000 000 000 000 000 000 000 00
Trailer Exposure Test Day	- N M 4 4 9 P 8	00172545	16 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	25 27 23 33 33 33 34
Date	08-12-94 08-13-94 08-14-94 08-15-94 08-16-94 08-17-94 08-19-94	08-20-94 08-21-94 08-22-94 08-23-94 08-24-94 08-25-94	08-27-94 08-28-94 08-39-94 08-31-94 09-01-94 09-03-94	09-04-94 09-05-94 09-06-94 09-07-94 09-09-94 09-11-94

0.00000		a	æ	a 0.00025	æ	0.00020
0.00		Ø	æ	a 0.030	a	0.027
0.00		0.00	æ	0.00	0.00	0.00
0.00		0.00	a	0.00	0.00	0.00
210		215	181	202	207	207
85.5		85.5	68.4	85.5	85.5	85.5
40.8		40.8	34.0	8.04	40.8	40.8
9.05 8.69 8.37 8.47	8.42 8.34 8.60 8.75	8.66 8.46 8.39 8.57 8.57	8.76 8.06 7.83 7.86 7.86 9.10 8.88	9.98 9.06 9.30 8.39 8.09 77	8.37 7.31 7.77 8.02 8.44 7.81	9.09 9.05 9.05 9.05 9.05 9.05 9.05 9.05
7.35 7.44 7.37 7.34	7.29 7.28 7.28 7.35	7.33 7.30 7.29 7.29 8	7.17 7.00 7.28 7.24 7.23 7.23	7.20 7.18 7.16 7.16 8.77 8.79	7.15 7.06 7.20 7.20 7.00 7.00	7.13 7.23 7.23 7.22 7.20 7.20
24.3 24.8 24.8 24.9	24.8 24.9 24.7 24.7	24.9 25.0 24.6 25.0 25.0	24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2	244 244 244 244 244 244 344 344 344 344	26.45 26.48 26.49 26.40	24.7 24.7 24.7 24.5 24.5 24.6 24.6
700 1400 1300 1200	820 1000 1000	1000 1000 1300 1300	200 1030 1030 1100 1100 100 100	600 1100 1000 1000 1000	1300 1300 1300 1000 800	006 006 006 006
33 35 36	37 38 39 40	1444444 144444444444444444444444444444	74 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	55 55 55 55 55 55 55 55 55 55 55 55 55	. 6 9 9 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9	55 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8
09-13-94 09-14-94 09-15-94 09-16-94	09-17-94 09-18-94 09-19-94 09-20-94	09-21-94 09-22-94 09-23-94 09-25-94 09-25-94	09-27-94 09-28-94 09-39-94 10-01-94 10-03-94 10-03-94	10-06-94 10-07-94 10-09-94 10-11-94 10-11-94	10-13-94 10-14-94 10-15-94 10-17-94 10-18-94	10-20-94 10-22-94 10-23-94 10-23-94 10-25-94 10-26-94

0.00021	0.00048	0.00052	0.00037	0.00060	0.00026	0.00080
0.022	0.066	0.069	0.044	0.047	0.055	0.038
0.00	0.00	0.00	00.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
200	212	215	198	195	174	266
85.5	85.5	85.5	85.5	85.5	85.5	68.4
40.8	40.8	40.8	8.04	54.4	34.0	88.4
8.58 8.66 7.94 8.72 9.14 8.87	9.03 9.03 9.05 9.05 9.06	7.92 8.25 7.95 8.64	8.71 8.17 8.19 8.20 8.47 8.53	8.31 8.95 8.26 9.67 9.00 9.00	8.91 8.82 8.95 8.06 7.93 8.03	8.80 7.87 7.73
7.23 7.28 7.24 7.20 7.17	7.13 7.14 7.16 7.19 7.15	41.7 41.7 41.7 51.5	7.12 7.18 7.20 7.18 7.23	7.23 7.44 7.12 7.13 7.17 7.16	6.98 7.02 7.08 6.99 7.05 7.12 7.12	7.53 7.57 7.60
25.1 24.8 25.0 25.1 25.0 25.0	25.4 25.4 25.0 25.0 25.0 25.0	24.2 24.4 24.4 24.5 24.5	24.8 24.9 25.0 24.8 24.8	25.0 22.9 22.5 22.0 22.0 22.8	22.1 24.7 25.0 25.0 25.1 25.1	25.1 25.2 24.9
1000 900 1000 1000 1000	1000 1000 700 1000	1100 900 845 1000	006	600 800 730 1020 900 900	900 1000 1100 900 900	800 1100 1000
77 78 79 80 81 82 83	85 86 87 88 89 90	92 93 95 95	96 97 98 99 100 101	103 104 105 106 108 109	111 112 114 115 116	118 119 120
10-27-94 10-28-94 10-29-94 10-30-94 11-01-94	11-03-94 11-04-94 11-05-94 11-07-94 11-08-94	11-10-94 11-11-94 11-13-94 11-13-94	11-15-94 11-16-94 11-17-94 11-18-94 11-20-94 11-21-94	11-22-94 11-23-94 11-24-94 11-25-94 11-27-94 11-29-94	11-30-94 12-01-94 12-02-94 12-03-94 12-05-94 12-06-94	12-07-94 12-08-94 12-09-94

	0.00166	0.00148	0.00119	0.00064	0.00073	a
	0.079	0.100	0.052	0.030	0.032	æ
	0.00	0.00	00.00	00.00	0.00	0.00
	0.00	00.0	0.00	0.00	0.00	0.00
	260	254	275	278	290	277
	68.4	68.4	85.5	68.4	85.5	102.6
	81.6	6.	95.2	95.2	102.0	8 8. 4 .
7.57 7.76 8.37 8.53	8.37 8.04 7.65 7.65	0.00 7.91 7.85 7.89 8.88 8.34 8.88	7.80 7.78 7.76 7.76 8.37 7.81	8.99 9.99 9.87 1.09 9.81 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.0	7.64 7.87 7.80 7.79 7.95 8.33	7.51 7.40 7.23 7.24
7.57 7.60 7.55 7.62	7.58 7.55 7.51 7.55 7.55	7.54 7.54 7.57 7.71 7.71 7.71 7.71	7.63 7.56 7.44 7.60 7.64 7.53	7.62 7.49 7.49 7.68 7.61 7.68	7.64 7.60 7.57 7.56 7.54 7.58	7.61 7.65 7.58 7.61
25.2 25.3 24.3 24.1	24.9 24.6 25.0 25.0 25.1	2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2	2 2 4 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	23.0 23.0 23.5 23.4 23.9 23.9	24.1 24.1 24.5 24.5 24.5	24.6 24.8 24.9 24.7
1300 900 900 900	800 1100 845 930 1000	000 000 000 000 000 000 000 000 000 00	100 100 1100 1100 1100	1100 1000 1000 1000 1000	1000 800 1000 1000 1000	1000 1000 1100
121 123 124 124	126 127 128 130	135 135 136 137 138 138 139	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	148 148 150 151 152	155 156 158 159 160	161 162 163
12-10-94 12-11-94 12-12-94 12-13-94	12-15-94 12-16-94 12-17-94 12-19-94	12-20-34 12-22-94 12-23-94 12-25-94 12-26-94 12-27-94	12-29-94 12-30-94 12-31-94 01-01-95 01-03-95 01-03-95	01-05-95 01-06-95 01-08-95 01-10-95	01-12-95 01-13-95 01-14-95 01-15-95 01-17-95 01-18-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00024	0.00073	0.00014	0.00015	0.00030	0.00008
0.013	0.034	0.014	0.029	0.041	0.012
0.00	0.00	0.00	0.00	00.0	00.00
0.00	0.00	0.00	0.00	0.00	00.00
282	279	243	238	237	338
85.5	85.5	119.7	85.5	85.5	85.5
95.2	88.4	47.6	34.0	34.0	34.0
7.75 8.47 7.61 7.74 7.61 7.81 8.01	7.90 7.90 7.92 8.02 8.12 8.38	9.13 9.28 9.28 9.57 9.52	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9.39 9.39 9.37 7.50 9.31	9.09 9.09 9.03 9.08 8.78
7.69 7.64 7.70 7.58 7.55 7.55 7.59 7.43	7.58 7.58 7.50 7.35 7.52 7.52	7.36 7.20 7.13 7.16 7.19	7.10 7.10 7.09 7.09 7.01 7.20	7.24 7.23 7.20 7.34 7.18	7.11 7.23 7.23 7.03 7.16
24.5 22.5 23.1 23.9 23.9 23.9 22.6	25.5 25.0 25.0 25.0 25.0 25.0 25.0 25.0	22.0 22.0 20.8 20.1 20.1	20.7 20.3 20.1 20.1 20.6 20.6	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21.2 21.0 22.3 22.3 23.4 23.4
600 1100 1000 1000 1000 1000	1000 930 1200 930 900	1200 900 900 900 900	900 900 1100 1000 1000	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	900 1015 900 900 900
165 166 167 169 170 172 173	175 176 177 179 180	181 183 184 185 186	188 190 192 193	195 196 198 200 201	202 204 205 206 207 208
01-23-95 01-24-95 01-25-95 01-26-95 01-28-95 01-30-95 01-30-95	02-01-95 02-02-95 02-03-95 02-04-95 02-05-95 02-06-95	02-08-95 02-09-95 02-10-95 02-11-95 02-13-95 02-14-95	02-15-95 02-16-95 02-17-95 02-18-95 02-19-95 02-20-95	02-22-95 02-23-95 02-24-95 02-25-95 02-26-95 02-27-95	03-01-95 03-02-95 03-03-95 03-04-95 03-05-95 03-06-95

0.00013	0.00008	.	0.00041	0.00037	0.00027 a
0.015	0.012	æ	0.064	0.058	0.039 a
0.00	0.00	00.00	0.00	0.00	0.00
0.00	00.00	00.0	0.00	0.00	0.00
237	212	232	218	226	244
85.5	85.5	85.5	85.5	85.5	85.5 68.4
8.04	47.6	47.6	47.6	8.04	40.8
8.72 8.84 8.64 8.24 8.27 8.55	8.8.8.8.8.8.9.7.7.7.7.9.9.7.7.9.9.9.7.9.9.7.9.9.7.9	7.28 6.78 7.81 8.55 7.68 7.16	7.05 6.81 7.85 8.10 7.30 7.30	7.30 7.20 7.49 7.88 6.38 6.78 6.78	6.92 6.50 7.33 7.15 6.94 7.25 7.36
7.27 7.24 7.07 7.13 7.14 7.20	7.15 7.23 7.24 7.17 7.16	7.14 7.07 7.05 6.95 7.12 7.15	7.15 7.04 7.02 7.21 7.25 7.25	7.22 7.19 7.19 7.16 7.22 7.18	7.22 7.13 7.25 7.29 7.29 7.29
23.0 24.2 24.0 24.0 24.0 24.0 24.0 24.0 24	245 245 255 247 256 256 256 256 256 256 256 256 256 256	24.7 25.0 25.0 25.0 24.8 24.8	24.5 24.9 24.4 24.1 24.1 24.1 24.1 24.1	24.7 24.7 25.3 25.3 25.3 25.3 25.3	25.4 25.3 25.3 25.3 25.3 25.3 25.4 25.4 25.4
900 1000 1000 900 900 900	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000 000 000 000 000 000 000	900 900 900 900 900 900	200 1100 900 900 900 900	1100 900 1100 900 900 900
209 212 213 214 215 215 215	222 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	225 226 227 228 230	232 232 234 234 236 236	239 242 243 243 244	245 246 247 248 250 251 251
03-08-95 03-09-95 03-10-95 03-11-95 03-12-95 03-13-95	03-16-95 03-16-95 03-18-95 03-20-95 03-21-95	03-23-95 03-24-95 03-25-95 03-26-95 03-27-95 03-28-95	03-30-95 03-31-95 04-01-95 04-02-95 04-04-95	04-06-95 04-07-95 04-08-95 04-10-95 04-17-95	04-13-95 04-14-95 04-15-95 04-16-95 04-17-95 04-18-95 04-19-95

	ro	co .	0.00048 0.00000 0.00166 0.000413
	ro	Ø	0.040 0.000 0.100 0.0244 29
	0.00	0.00	0.00
	0.00	0.00	0.00
	23	224	232 174 339 34.2 38
u,	85.5	85.5	84.2 68.4 119.7 9.10 38
	40.8	8.04	52.8 34.0 102.0 21.70 38
6.78 6.96 7.34 6.90 6.72 6.70	6.62 6.52 6.45 7.31 7.37 7.91 6.93	7.05 7.02 7.02 6.98 6.65 6.80 6.64 6.50	8.21 6.38 9.95 0.762 272
7.27 7.25 7.21 7.31 7.24	7.27 7.26 7.25 7.25 7.26 7.26	7.27 7.27 7.18 7.00 7.10 7.14 7.16	6.95 7.71 271
25.8 26.2 25.7 24.9 24.9	25.3 2.55.3 2.55.3 2.55.3 2.55.3 2.55.3 2.55.3	25.9 26.0 26.0 26.0 26.0 26.0 26.0	24.3 20.0 26.7 1.30 272
900 1200 2000 900 900	900 1100 900 900 900	000 000 000 000 000 000 000 000	
253 254 255 256 257 257	259 261 261 262 263 264	266 267 268 268 270 271 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95	04-27-95 04-28-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-08-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

a. Data not available; analytical instrument would not calibrate.

TANK No. 21 TANK CONCENTRATION: 1% GROUNDWATER (WELL CC-27B) DILUTED WITH APG-EA DECHLORINATED TAP WATER NO DEN EXPOSURE

0.00000	Ø	a	0.00025	a	0.00020
0.000	a	α	a 0.025	a	0.022
00.00	0.00	æ	0.00	0.00	0.00
00.00	0.00	a	0.00	0.00	00.00
212	216	184	204	209	211
85.5	85.5	85.5	68.4	85.5	85.5 5.5
40.8	40.8	34.0	40.8	8.04	40.8
9.11 8.66 8.40 8.53 8.62 8.63 8.63	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8.90 9.14 9.14 9.14	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7.45 7.46 7.91 8.53 7.88	8.32 9.40 9.04 9.04 8.57 8.58
7 422 7 424 7 439 7 434 7 7 44 7 7 44	7.45 7.48 7.29 7.27 8	7.20 7.21 7.29 7.27 7.31 7.31	7.30 7.30 7.30 7.30 7.30	7.23 7.30 7.33 7.33 7.13	7.39 7.33 7.38 7.35 7.37 7.35
24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	24.5 24.5 24.5 24.5 24.7 8	2442 2442 2443 2444 2450 2450	24 24 24 24 24 24 24 24 24 24 24 24 24 2	245 252 248 248 247 866	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
700 1300 1200 820 830 1000	000 1300 000 1300 000	900 1030 1030 915 1100 1100	28	25. 200 200 200 200 200 200 200 200 200 20	000000000000000000000000000000000000000
33 34 37 37 38 38 39	- 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	35 72 88 85 95 95 95 95 95 95 95 95 95 95 95 95 95	65 65 66 67 68	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
09-13-94 09-14-94 09-15-94 09-17-94 09-19-94 09-20-94	09-21-94 09-22-94 09-23-94 09-25-94 09-26-94	09-28-94 09-28-94 09-30-94 10-02-94 10-03-94	10-06-94 10-07-94 10-09-94 10-10-94 10-11-94	10-13-94 10-13-94 10-15-94 10-17-94 10-18-94	10-19-94 10-20-94 10-22-94 10-23-94 10-25-94 10-25-94

0.00023	0.00055	0.00060	0.00044	0.00062	0.00021	0.00120
0.017	0.062	0.063	0.041	0.041	0.044	0.048
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
204	215	218	202	198	178	270
85.5	85.5	85.5	85.5	85.5	85.5	68.4
40.8	40.8	40.8	40.8	54.4	34.0	88.4
8.78 8.85 8.15 8.93 9.09 9.09	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8.27 8.07 8.60 8.77	8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9.527 9.37 9.33 9.19 9.16	8.07 8.07 8.07 8.11 8.13	8.01 7.90
7.38 7.39 7.35 7.29 7.26 7.35	7.25 7.25 7.25 7.25 7.26	755 757 757 757 757 757 757 757 757 757	7.29 7.30 7.30 7.30 7.30 7.33	7.33 7.15 7.22 7.24 7.24	7.03 7.04 7.10 7.01 7.08 7.56	7.65 7.67
24.9 24.6 24.9 25.0 25.0 25.0	255.0 255.0 24.7 24.9 24.9	2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.7	8 7 5 7 7 5 7 5 7 8 7 8 7 8 7 8 7 8 7 8	21.3 26.3 24.7 24.9 24.9	25.1 24.9
1100 900 1100 1100 1000	600 000 000 000 000 000 000 000 000 000	900 845 1000	000000000000000000000000000000000000000	900 1020 1000 900 900	900 11000 1100 900 900	1100 1000
77 78 79 80 81 83					125 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	118 120
10-27-94 10-28-94 10-29-94 10-31-94 11-02-94	11-04-94 11-05-94 11-06-94 11-08-94 11-09-94	11-11-94 11-12-94 11-13-94 11-14-94	11-19-94 11-16-94 11-18-94 11-19-94 11-21-94	11-23-94 11-24-94 11-25-94 11-27-94 11-28-94	17-30-94 12-01-94 12-03-94 12-04-94 12-05-94	12-07-94 12-08-94 12-09-94

	0.00170	0.00173	0.00146	0.00085	0.00081	a
	0.068	0.100	0.053	0.032	0.032	Ø
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	00.00	0.00	0.00	0.00	0.00
	263	257	279	281	295	280
	68.4	68.4	85.5	68.4	102.6	85.5
	81.6	81.6	88.4	95.2	95.2	88.4
7.78 7.95 8.51 8.71	8.53 8.53 7.78 7.53	8.04 7.79 7.84 7.97 8.49 8.33 8.33	7.86 7.86 7.82 7.77 7.78 8.47	9.02 8.72 9.19 9.21 9.66 7.92 7.92	7.23 6.94 7.60 7.68 7.76 8.13	7.30 7.30 7.14 7.20
7.66 7.66 7.63 7.66	7.66 7.60 7.56 7.52 7.61	7.50 7.70 7.74 7.72 7.75 7.76	7.71 7.66 7.54 7.70 7.70	7.71 7.74 7.49 7.68 7.74 8.8	7.08 7.71 7.08 7.65 7.65 7.67	7.73 7.71 7.66 7.73
25.2 25.2 24.3 24.1	25.4.8 25.0 25.0 25.0 25.0	24.7 24.7 23.9 23.9 24.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23.2 23.2 23.2 24.0 23.2 24.0 24.0 24.0 24.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25	24.2 24.3 25.0 24.7 24.7	24.9 25.2 25.2 25.0
1300 900 900 900	800 1100 845 930 1000	000 000 000 000 000 000 000 000 000 00	260011100000000000000000000000000000000	1000 1000 1000 1000 1000 1000 1000 100	1000 1000 1000 1000 1000 1000	1000 1000 1000
121 122 123 124 124	126 127 129 130	2	241 441 445 445 445 445 445	54 4 4 8 8 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	55 155 158 159 159	161 162 163
12-10-94 12-11-94 12-12-94 12-13-94	12-15-94 12-16-94 12-17-94 12-19-94	12-20-94 12-21-94 12-23-94 12-25-94 12-25-94 12-27-94	12-29-94 12-30-94 12-31-94 01-02-95 01-03-95	01-05-95 01-06-95 01-07-95 01-08-95 01-10-95	01-12-95 01-13-95 01-14-95 01-15-95 01-17-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00029	0.00086	0.00015	0.00016	0.00030	0.00009
0.013	0.032	0.015	0.027	0.041	0.012
00.00	0.00	0.00	0.00	00:00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
286	285	247	243	245	344
85.5	85.5	102.6	85. 5.	85.5	85.5
95.2	88.4	47.6	40.8	34.0	40.8
7.78 8.25 7.63 7.60 7.50 8.08 7.69 7.69	7.78 7.78 8.12 8.84 8.50	2 9 8 9 9 9 9 9 8 6 8 8 8 8 8 8 8 8 8 8 8	9.53 9.42 10.11 9.79 9.51	9.47 9.07 9.23 9.25 9.19	9.35 9.22 9.04 9.07 9.02 8.75
7.85 7.76 7.74 7.66 7.64 7.58 7.63 7.47 7.54	7.67 7.63 7.51 7.32 7.53 7.51	7.26 7.21 7.21 7.12 7.12	7.15 7.14 7.07 7.06 7.21	7.16 7.23 7.23 7.22 7.22 7.45	7.23 7.28 7.20 7.05 7.19
24.6 23.3 23.3 24.3 22.8 22.8 22.8	25.5 25.0 25.0 24.3 22.8 77	2222 2222 2022 200 200 200 200	20.2 20.2 20.2 20.2 20.5 20.5	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	20.8 22.1 22.2 22.2 23.0
600 11000 11000 1000 1000 1000 1000	930 1200 930 930 900	200 200 200 200 200 200 200	900 1400 1000 1000	900 1000 900 900 900 900	900 1000 1015 900
165 166 167 170 171 173	175 176 177 179 180	28 1 8 1 8 2 8 3 1 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	190 192 193 193 194	200 198 198 200 201 202	203 204 205 206 207 208
01-23-95 01-24-95 01-25-95 01-26-95 01-28-95 01-30-95 01-30-95 07-01-95	02-02-95 02-03-95 02-04-95 02-05-95 02-06-95 02-07-95	02-09-95 02-10-95 02-11-95 02-13-95 02-14-95 02-14-95	02-16-95 02-17-95 02-18-95 02-19-95 02-21-95	02-23-95 02-23-95 02-24-95 02-25-95 02-27-95 03-01-95	03-02-95 03-02-95 03-04-95 03-05-95 03-06-95 03-07-95

0.00012						0.00008							æ							0.00056							0.00042							0.00030							æ
0.014						0.011							æ							0.067							0.056							0.038							æ
0.00						0.00							0.00							0.00							0.00							0.00						,	0.00
0.00					•	0.00							0.00							0.00							0.00							0.00						,	0.00
240						213							233							220							228							246							220
85.5		,	٠.		!	85.5							85.5							85.5							85.5							85.5							85.5
40.8					į	47.6							47.6							47.6							40.8							40.8							40.8
8.72	8.41 8.80	8.56	8.65	8.73	8.51	8.78	8.47	8.34	8.39	8.33	8.03	8.17	8.16	7.28	7.91	8.58	8.00	7.64	7.56	7.38	7.18	7.90	8.23	8.19	7.80	7.61	7.89	7.68	8.00	8.34	7.45	7.55	7.41	7.47	7.08	7.82	7.71	7.54	7.77	7.69	7.67
7.29	7.14	7.15	7.20	7.22	7.22	7.15	7.21	7.30	7.23	7.20	7.22	7.17	7.17	7.20	7.07	7.10	7.19	7.21	7.20	7.26	7.19	7.11	7.14	7.23	7.31	7.26	7.29	7.25	7.26	7.28	7.22	7.25	7.23	7.27	7.16	7.27	7.22	7.28	7.27	7.27	7.27
22.8 23.2	24.5 23.8	24.7	23.8	24.0	24.0	24.3	24.5	23.9	25.4	24.6	24.8	24.7	24.7	24.3	24.7	24.4	24.7	24.4	24.2	24.3	24.5	24.0	24.1	23.6	24.3	23.7	23.9	24.3	24.5	24.9	24.4	24.6	24.8	24.9	24.6	25.1	24.8	24.6	24.6	25.0	24.8
900	900 1100	1800	006	006	006	006	006	1000	1600	006	006	006	1100	006	915	006	006	006	006	006	006	006	1000	006	006	006	006	006	1100	1300	006	006	006	1100	006	1400	1100	006	006	006	006
209 210	211 212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252
03-08-95 03-09-95	03-10-95 03-11-95	03-12-95	03-13-95	03-14-95	03-15-95	03-16-95	03-17-95	03-18-95	03-19-95	03-20-95	03-21-95	03-22-95	03-23-95	03-24-95	03-25-95	03-26-95	03-27-95	03-28-95	03-29-95	03-30-95	03-31-95	04-01-95	04-02-95	04-03-95	04-04-95	04-05-95	04-06-95	04-07-95	04-08-95	04-09-95	04-10-95	04-11-95	04-12-95	04-13-95	04-14-95	04-15-95	04-16-95	04-17-95	04-18-95	04-19-95	04-20-95

ю		a	0.00053 0.00000 0.00173 0.000471
α		D)	0.038 0.000 0.100 0.0231 29
0.00		0.00	0.00 0.00 38
0.00		000	0.00 0.00 38
223		224	235 178 344 34.9 38
85.5		85.5	84.2 68.4 102.6 7.21 38
40.8		40.8	52.8 34.0 95.2 20.72 38
7.45 7.57 7.90 7.44 7.28 7.32	7.22 7.06 7.90 7.91 8.53	7.70 7.78 7.46 7.26 7.29 7.29	8.35 6.94 10.11 0.670 272
7.32 7.29 7.28 7.38 7.26 7.32 7.32	7.28 7.28 7.26 7.34 7.34	7.30 7.31 7.03 7.20 7.22 7.19	7.01 7.85 271
25.0 25.5 24.5 24.5 24.5 24.5	24.8 24.8 24.6 24.5 3.3	24.5 24.8 24.6 24.7 25.3	24.1 20.0 26.3 1.23 272
900 1200 2000 900 900 900	900 1100 1600 900 900	000 000	
253 254 255 256 257 258 259	260 261 263 263 264	266 267 268 269 270 271 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-28-95 04-29-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-07-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

a Data not available; analytical instrument would not calibrate.

TANK No. 22 TANK CONCENTRATION: 1% GROUNDWATER (WELL CC-27B) DILUTED WITH APG-EA DECHLORINATED TAP WATER NO DEN EXPOSURE

Trailer Time Exposure (Military) Test Day	-	Temperature (Celcius)	Ŧ.	Dissolved Oxygen (mg/L)	Alkalinity (mg/L as CaCO3)	Hardness (mg/L as CaCO3)	Conductivity (umohs/cm)	Total Residual Chlorine (mg/L)	Free Available Chlorine (mg/L)	Total Ammonia- Nitrogen (mg/L)	Total Unionized Ammonia- Nitrogen (mg/L)
006		24.7	7.58	9.03							
006		25.1	7.29	7.57							
006		25.2	7.43	7.71							
006		24.9	7.36	7.97							
0001		25.0	7.37	7.57							
9 8		25.0	9.7	7.31	,	Ü	700	6	ć	9000	70700
006		L.62.	7.28	8. % 5. %	40.8 8	60.0		0.00	0.00	0.030	0.00
9 9		, c	7.20	0.22							
		24.9 0.7.0	7.30	<u>0</u> 0							
006		24.9	7.46	8.11							
730		24.6	7.35	8.16							
000		24.6	7.31	8.36							
1100		24.7	7.35	8.61	40.8	85.5	209	0.00	0.00	0.055	0.00068
006		24.7	7.36	8.28							
006		24.7	7.35	8.23							
800		24.8	7.36	8.16							
006		25.2	7.40	8.12							
006		24.6	7.42	8.20							
800		24.7	7.47	8.27	9	9 007	C	Ċ	c	(ď
2 6		2.4.C	44.7	0.00	0.04	102.0		9.0	9	3	3
900 815		24.0	7 41	2.0							
810		24.2	7.48	8,30			٠				
1100		24.4	7.42	8.93							
006		24.1	7.42	8.91							
800		24.2	7.46	8.92							,
100		24.0	7.50	9.16	40.8	85.5	214	0.00	0.00	0.000	0.00000
006		24.2	7.37	9.78							
006		24.3	7.54	9.17							
800		23.8	7.43	8.76							
200		23.9	7.50	8.35							

0.00000		a	Ø	a 0.00024	ro	0.00024
0.000		œ	æ	a 0.024	æ	0.027
0.00		0.00	a	0.00	0.00	00.00
0.00		0.00	Œ	0.00	0.00	0.00
212		216	184 184	203	508	211
85.5		85.5	88 4	88 4.	85.5	85.5
8.04		40.8	34.0	40.8 8.	4 0.8	40.8
9.07 8.65 8.36	8.57 8.56 8.73 8.65	8.38 8.46 8.46 8.64 8.74	8.08 7.74 8.73 8.01 8.98 9.08 9.10	8.49 9.18 9.30 8.48 8.13 8.82	8.48 7.39 7.85 8.12 7.84 7.84	8.13 9.38 8.62 8.97 8.50 8.50
7.42 7.47 7.39 7.43	7.37 7.39 7.41 7.46	7.45 7.48 7.33 8 7.27 7.26	7.10 7.23 7.34 7.31 7.31 7.31 7.28	7.30 7.27 7.26 7.30 7.30 7.31	7.23 7.17 7.30 7.33 7.13	7.23 7.34 7.35 7.35 7.37 7.35
24.0 24.7 24.7 24.8	24.7 24.8 24.5 24.7	24.7 24.8 24.7 24.7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.5 24.5 24.5 24.5 23.6 23.6	24.4 25.2 24.7 24.8 24.6 8	24.2 24.0 24.4 24.4 24.4 24.4
700 1400 1300 1200	820 1000 1000 1000	1000 1000 1300 900	1030 1030 900 915 1100 1100	801 1100 1000 1600 900	1300 1300 900 900 800 900	006 006 006 006 006
35 36 36 36	37 38 40 41	244444 24545 74545	84 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	58 58 60 61 62	63 65 66 68 69	70 72 73 74 75 75
09-13-94 09-14-94 09-15-94 09-16-94	09-17-94 09-18-94 09-19-94 09-20-94 09-21-94	09-22-94 09-23-94 09-24-94 09-25-94 09-26-94	09-28-94 09-29-94 10-01-94 10-03-94 10-04-94	10-06-94 10-07-94 10-08-94 10-10-94 10-11-94	10-13-94 10-14-94 10-15-94 10-17-94 10-18-94 10-19-94	10-20-94 10-21-94 10-22-94 10-23-94 10-25-94 10-26-94

0.00024	0.00049	0.00060	0.00044	0.00060	0.00023	0.00113
0.018	0.056	0.063	0.041	0.040	0.048	0.046
0.00	0.00	0.00	0.00	0.00	0.00	00:00
0.00	0.00	0.00	0.00	0.00	0.00	00.0
204	215	218	202	198	178	270
85.5	8 5.5 5.	85.5	85.5	85.5	85.5	85.5
40.8	40.8 8	40.8	8.	54.4	34.0	88.4
8.76 8.82 8.11 8.89 9.05 9.05	9.29 9.29 9.20 9.20 9.06	8.23 7.90 8.58 8.76	8.28 8.28 8.28 8.21 8.55 9.60	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9.07 9.05 9.05 9.08 9.08	8.92 8.01 7.86
7.38 7.35 7.35 7.26 7.26 7.35	7.19 7.19 7.25 7.25 7.26	723	7.29 7.29 7.26 7.28 7.33	7.35 7.17 7.22 7.24 7.24	7.03 7.04 7.16 7.08 7.18	7.60 7.65 7.67
24.6 24.6 24.6 25.3 24.9	24.7 25.2 24.7 24.7 24.7 24.8 3.8	24.4.4.6 24.3.4.4.6	24.9 24.9 24.7 24.7 24.7	8, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	212 24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.8 24.9 24.9
1000 1000 1000 1000 1000	000 000 000 000 000 000 000 000 000 00	900 845 1000	000000000000000000000000000000000000000	800 1020 1000 900 900	000 1000 1000 000 000 000	800 1100 1000
77 78 79 80 82 83	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	98 98 100 101 102	01 100 100 100 100 100 100	111 112 114 115 116	118 120
10-27-94 10-28-94 10-29-94 10-30-94 11-01-94	11-03-94 11-05-94 11-05-94 11-08-94 11-09-94	11-10-94 11-11-94 11-13-94 11-14-94	11-15-94 11-16-94 11-18-94 11-20-94 11-21-94	11-22-94 11-23-94 11-24-94 11-25-94 11-27-94 11-28-94	11-30-94 12-01-94 12-02-94 12-03-94 12-05-94 12-06-94	12-07-94 12-08-94 12-09-94

	0.00152	0.00171	0.00132	0.00067	0.00078	a
	0.061	0.100	0.048	0.026	0.031	cs
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	261	256	278	280	294	279
	68.4	68.4	85.5	68.4	102.6	85.5
	81.6	8.1.6	88.4	95.2	95.2	88.4
7.70 7.85 8.44 8.70 8.70	8.42 8.16 7.78 7.56 7.74	8.01 8.00 8.00 8.48 8.48 8.22 8.70	7.93 7.96 8.00 7.92 7.92 8.51 8.51	9.25 9.25 9.26 9.48 7.99	7.39 6.92 7.68 7.74 7.78 8.22	7.43 7.38 7.26 7.34
7.66 7.65 7.63 7.66	7.66 7.60 7.60 7.57 7.61	7.50 7.70 7.70 7.74 7.71 7.75 7.75	7.71 7.66 7.54 7.70 7.70	7.71 7.58 7.52 7.70 7.64 7.74	7.68 7.71 7.68 7.65 7.65 7.67	7.73 7.71 7.66 7.73
25.0 25.0 24.1 23.8	24.7 24.4 25.0 25.0 25.0	24.5 24.5 24.5 23.9 24.4 24.5	24.5 24.5 24.7 24.7 24.4	23.7 23.2 23.2 23.8 24.4	24.0 25.0 25.0 24.6 6	24.8 24.9 25.1 24.9
1300 900 900 900	800 1100 845 930 1000	800 800 1000 1000 1000 1000	1000 1100 1100 1100	1000 1000 1000 1000 1000	900 900 1030 1000 1000	1000 1000 1100
121 123 124 125	126 127 128 129 130	25 135 136 138 138 138	441 145 145 145 145 145	147 148 150 151 152	55 155 156 158 169	161 162 163
12-10-94 12-11-94 12-12-94 12-13-94	12-15-94 12-16-94 12-17-94 12-19-94 12-20-04	12-23-94 12-23-94 12-23-94 12-25-94 12-26-94 12-27-94	12-29-94 12-30-94 12-31-94 01-02-95 01-03-95	01-05-95 01-06-95 01-08-95 01-09-95 01-10-95	01-12-95 01-13-95 01-14-95 01-15-95 01-17-95 01-18-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00025	0.00075	0.00016	0.00016	0.00020	600000
0.011	0.028	0.016	0.027	0.037	0.012
0.00	0.00	0.00	0.00	0.00	00.00
0.00	0.00	0.00	0.00	0.00	00.00
285	284	246	244	246	345
88 5.5 7.	85.5	102.6	85.5	85.5	85.5
95.2	88.4	47.6	34.0	34.0	34.0
7.84 8.36 7.66 7.48 7.62 7.58 8.12 7.87	7.37 7.92 7.92 8.19 8.92 8.53	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9.62 9.68 10.08 9.79 9.65	9.29 9.29 9.29 9.29 9.29	9.15 9.15 9.15 9.15 17.2 17.3
7.85 7.76 7.76 7.66 7.64 7.63 7.47 7.54	7.57 7.63 7.51 7.52 7.53	7.26 7.26 7.21 7.12	7.15 7.15 7.17 7.07 7.06	7.23	7.23 7.28 7.20 7.06 7.19
24.6 23.2 24.3 24.3 24.3 24.3 24.3 25.3 26.3	25.2 25.2 25.2 25.2 25.2 25.2 25.2	21.3 22.3 20.3 20.3 20.3	20.5 20.5 20.5 20.5 20.5 20.5 20.5	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	21.2 21.3 22.5 22.6 23.3
600 1100 1000 1000 1000 1000	1200 1200 930 930	1200 900 900 900 900 900	900 900 1100 1000 1000	99000000000000000000000000000000000000	900 1015 900 900 900
165 166 167 169 171 172 173	77 176 178 179 180	182 183 185 186 186	188 190 192 193 193	195 198 200 201 201	202 203 204 206 207 208
01-23-95 01-24-95 01-25-95 01-26-95 01-27-95 01-29-95 01-31-95	02-01-95 02-02-95 02-03-95 02-04-95 02-05-95 02-07-95	02-08-93 02-09-95 02-10-95 02-12-95 02-13-95	02-15-95 02-16-95 02-17-95 02-18-95 02-20-95 02-21-95	02-22-95 02-23-95 02-24-95 02-25-95 02-27-95 02-28-95	03-01-95 03-02-95 03-04-95 03-05-95 03-06-95

0.00014	0.00008	æ	0.00056	0.00042	0.00028 a
0.015	0.011	æ	0.068	0.056	0.036 a
0.00	00:00	0000	0.00	0.00	00.00
0.00	00:00	0.00	0.00	0.00	00.00
242	215	234	220	230	248
85.5	85.5	8 5.5 9	85.5	85.5	85.5 85.5
40.8	6.74	9.74	47.6	40.8	40.8
8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.	8.8.8.8.8.8.2.2.2.2.2.3.2.3.2.3.2.3.2.3.	7.81 6.95 7.70 8.45 7.85 7.43	7.04 6.83 7.56 8.10 7.60 7.52	7.73 7.48 7.76 8.24 7.37 7.43	7.24 6.88 7.51 7.35 7.31 7.54 7.60
7.29 7.15 7.15 7.20 7.20 7.20	7.15 7.21 7.23 7.20 7.22 7.12	7.17 7.20 7.10 7.13 7.21 7.21	7.26 7.19 7.17 7.21 7.31 7.31	7.29 7.25 7.28 7.22 7.23	7.27 7.16 7.22 7.22 7.28 7.27 7.27
23.2 23.2 24.4 24.5 24.5 24.5 24.5 24.5	25.0 25.2 25.0 25.0 25.0 25.0	25.1 25.1 25.2 25.2 24.8	24.8 24.5 24.5 24.5 24.9 24.9	24.5 25.0 25.0 25.3 25.3 25.3	25.2 25.0 25.6 25.2 25.2 25.2 25.2 25.2
900 1000 1100 1800 900 900	900 1000 1600 900 900 900	900 900 900 900 900	990 900 900 900 900 900	100 100 1300 900 900	900 1100 900 900 900 900
202 212 212 212 213 215 215 215	217 218 222 223 223 223	224 226 227 228 230	231 232 234 234 235 236 237	238 240 242 243 244	245 246 247 248 250 251 251
03-08-95 03-09-95 03-10-95 03-12-95 03-13-95 03-14-95	03-16-95 03-17-95 03-18-95 03-20-95 03-21-95	03-23-95 03-24-95 03-25-95 03-27-95 03-28-95 03-29-95	03-30-95 03-31-95 04-01-95 04-02-95 04-04-95 04-05-95	04-06-95 · 04-07-95 04-08-95 04-09-95 04-11-95 04-12-95	04-13-95 04-14-95 04-15-95 04-16-95 04-18-95 04-19-95

	æ	Œ	0.00052 0.00000 0.00171 0.000446
	æ	æ	0.038 0.000 0.100 0.0247 29
6	0.00	0.00	0.00 0.00 38
	0.00	0.00	0.00 0.00 38
5	224	525	235 178 345 34.7 38
	85.5	85.5 5.	84.6 68.4 102.6 7.79 38
Ş	8.	8. 8.	52.4 34.0 95.2 20.98 38
7.24 7.24 7.20 7.20 7.07	7.07 7.05 6.70 7.56 7.81 8.20 7.42	7.66 7.46 7.25 7.16 7.33 7.10 7.10	8.30 6.70 10.08 0.696 272
	7.28 7.28 7.29 7.34 7.34		7.01 7.85 271
25.5 26.0 25.4 24.9 24.9	25.2 25.2 25.2 24.9 24.9 8.8	25.0 25.2 25.2 25.2 25.2 25.3 25.3	24.2 20.3 26.0 1.20 272
2000 2000 2000 900 900	1100 1400 1600 900 900	8 8 30 8 8 30 8 8 30 8 8 30 8 8 30	
253 254 255 256 257 257 258	259 261 262 263 264 264 265	266 267 269 270 271 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-26-95	04-27-95 04-28-95 04-29-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-07-95 05-08-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

a Data not available; analytical instrument would not calibrate.

TANK No. 23 TANK CONCENTRATION: 1% GROUNDWATER (WELL CC-27B) DILUTED WITH APG-EA DECHLORINATED TAP WATER DEN EXPOSURE: 10 mg/L

zed zed nia- en -)		1170	0.00103	a	0.0000
Total Unionized Ammonia- Nifrogen (mg/L)		0.00170	0.00		
Total Ammonia- Nitrogen (mg/L)		0.145	0.076	a	0.000
Free Available Chlorine (mg/L)		0.00	0.00	0.00	0.00
Total Residual Chlorine (mg/L)		0.00	0.00	0.00	0.00
Conductivity (umohs/cm)		204	208	219	214
Hardhess (mg/L as (CaCO3)		85.5	85.5	85.5	85.5
Alkalinity (mg/L as CaCO3)		40.8	40.8	40.8	40.8
Dissolved Oxygen (mg/L)	9.09 7.88 7.94 8.18 7.79	8.29 8.29 8.20 8.20 8.20 8.25 8.25	8.88 8.34 8.20 8.20 8.20 8.27 8.27	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9.20 9.20 9.20 9.21 8.78 8.38
Hd	7.64 7.35 7.50 7.40 7.40	7.32 7.32 7.30 7.40 7.49 7.38	7.39 7.38 7.39 7.44 7.45 7.45	7.46	7.50 7.37 7.55 7.55 7.45
Temperature (Celcius)	24.7 25.0 25.2 24.9 25.0	25.5 2.25.0 2.25.0 2.25.0 2.25.0 2.25.0 2.25.0 2.25.0 2.25.0	242 242 243 246 246 246 246 246	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.0 24.0 23.8 23.8
Time T (Military)	900 8 900 7 7 900 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	900 900 900 800 900 900 900 900 900	900 900 900 900 900 900 900	900 815 810 1100 900	900 900 800 500
Trailer Exposure Test Day	← ০ে ৩ ব চে এ	or & e 6 ± 6 t	5 4 5 1 5 1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2888888	28 33 33 33 35
Date	08-12-94 08-13-94 08-14-94 08-15-94 08-16-94	08-18-94 08-19-94 08-20-94 08-21-94 08-22-94 08-23-94	08-25-94 08-26-94 08-27-94 08-29-94 08-30-94	09-01-94 09-02-94 09-03-94 09-04-94 09-05-94 09-06-94	09-08-94 09-09-94 09-10-94 09-12-94

0.00000	æ	æ	0.00028	æ	0.00025
0.000	a	a	a 0.028	a	0.028
0.00	0.00	ro	0.00	0.00	0.00
0.00	0.00	ros	00.00	0.00	0.00
212	216	183	204	209	509
85.5	85.5	85.5	6 8.4	85.5	85.5
40.8	40.8	34.0	8.04	40.8	40.8
9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9		8.13 7.69 8.66 7.94 9.05 9.05 9.05	8.46 9.12 9.40 8.78 8.15	8.44 7.38 7.88 8.16 8.55 7.90	8.16 8.70 9.08 9.08 8.60 8.57
7.42 7.42 7.45 7.45 7.44 7.45 7.45	7.45 7.50 7.34 7.27 7.27	7.10 7.24 7.24 7.33 7.28 7.31 7.31	7.30 7.27 7.26 7.30 7.30	7.23 7.17 7.30 7.33 7.33 7.13	7.23 7.34 7.35 7.37 7.37 7.37
24.0 24.6 24.7 24.7 24.4 24.4 24.4	24.9 24.9 24.9 24.9 24.9	245 245 245 245 245 240 240 440	24.2 24.2 24.2 24.2 24.5 24.5	24.5 25.2 24.8 24.7 24.7	24.42 24.24.24 24.54.44 24.55
700 1300 1200 820 1000 1000	000 000 1300 000 000 000 000	900 1030 1030 915 915 1100	1100 1100 1000 1000 1000	1300 1300 1300 1000 1000 1000	000000000000000000000000000000000000000
33 34 35 36 37 37 38 40 40 40 40 40 40 40 40 40 40 40 40 40	- 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	55 58 59 60 61	65 65 67 68 68 68	69 72 73 74 75 75
09-13-94 09-14-94 09-15-94 09-16-94 09-17-94 09-19-94	09-21-94 09-23-94 09-23-94 09-25-94 09-25-94	09-27-94 09-28-94 09-30-94 10-01-94 10-03-94 10-04-94	10-06-94 10-07-94 10-08-94 10-10-94 10-11-94	10-12-94 10-13-94 10-14-94 10-16-94 10-17-94	10-19-94 10-20-94 10-21-94 10-23-94 10-24-94 10-25-94

0.00024	0.00048	0.00063	0.00046	0.00053	0.00023	0.00089
0.018	0.055	0.066	0.043	0.035	0.048	0.036
0.00	0.00	0.00	0.00	0.00	00.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
203	215	218	201	197	178	270
85.5	85.5	85.5	85.5	85.5	85.5	68.4
40.8	40.8	40.8	40.8	54.4	34.0	88.4
8.88 8.88 8.10 9.33 9.10	8.27 8.32 9.28 9.25 9.15	8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9	2 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9.09 9.09 9.05 9.05 9.05 9.08 9.08 9.08	8.04 7.88
7.38 7.39 7.35 7.29 7.26 7.35	7.19 7.25 7.25 7.26 7.26 7.26 7.26 7.26 7.26 7.26	7.25 7.28 7.29 7.22	7.29 7.30 7.30 7.38 7.33	7.52 7.14 7.22 6.93 7.06 7.06	7.04 7.12 7.06 7.08 7.18 7.56	7.65
24.9 24.9 24.9 25.3 25.3	25.0 25.2 25.2 24.8 24.9 24.9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.7 24.9 24.7 24.7	22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	212 212 246 249 249	24.9 24.9 24.8
1100 900 1100 1000 1000 1000	1000 1000 1000 1000 1000 1000 1000 100	830 1000 1000	000000000000000000000000000000000000000	800 1020 1000 900 900	200 1000 1100 900 900	1000
77 78 79 80 83 83 83	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3 6 8 8 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	111 115 116 117 118	119
10-27-94 10-28-94 10-29-94 10-31-94 11-02-94	11-04-94 11-05-94 11-06-94 11-08-94 11-09-94	11-12-94 11-13-94 11-14-94	11-16-94 11-18-94 11-19-94 11-20-94 11-21-94	11-23-94 11-23-94 11-25-94 11-26-94 11-28-94 11-29-94	12-02-94 12-02-94 12-03-94 12-03-94 12-05-94 12-06-94	12-08-94 12-09-94

0.00152	0.00190	0.00128	0.00075	0.00079	æ
0.061	0.110	0.043	0.027	0.030	а
0.00	0.00	0.00	0.00	0.00	0.00
00.00	00.00	0.00	00.00	0.00	0.00
262	256	278	281	293	777
68.4	68.4	85.5	68.4	102.6	85.5
81.6	8. 6.	88.4	95.2	95.2	4 .
7.72 7.92 8.51 8.78 8.84 8.55 8.34	7.61 7.89 8.25 8.18 7.96 7.96 8.08	8.24 8.24 7.95 8.00 8.04	7.98 8.59 8.10 9.07 9.27 9.19	9.63 8.09 7.52 7.42 6.95 7.66	7.70 8.27 7.30 7.51 7.15 7.16
7.66 7.63 7.63 7.68 7.67 7.66 7.60	7.59 7.61 7.60 7.70 7.74 7.74	7.81 7.71 7.74 7.66 7.57	7.73 7.64 7.71 7.73 7.63 7.75	7.67 7.78 7.70 7.70 7.71 7.69 7.68	7.65 7.70 7.75 7.73 7.75 7.66
25.1 25.1 24.1 23.9 24.7 24.5	25.0 25.0 24.9 24.8 24.9 23.7	24.5 24.5 24.5 24.5 24.5 24.5 24.5	24.8 24.5 23.0 23.0 23.0	23.2 24.2 24.2 24.2 24.4 25.5 25.0	24.8 24.5 24.5 24.6 25.0 24.7
000 900 900 11 008 84 84	930 1000 1000 1000 1000 700 700	1000 1000 1000 1000 1000	1000 1100 1000 1130	1000 1000 1000 800 800	1000 1000 1000 1000 1000
122 123 125 125 125 125 125 125 125 125 125 125	2 1 2 1 2 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3	138 140 142 143	44 146 147 148 150	151 152 154 156 156	158 160 161 163 163
12-10-94 12-11-94 12-12-94 12-14-94 12-15-94 12-16-94	12-18-94 12-19-94 12-20-94 12-23-94 12-23-94 12-24-94 12-24-94	12-20-34 12-27-94 12-29-94 12-30-94 12-31-94 01-01-95	01-02-95 01-03-95 01-05-95 01-06-95 01-06-95 01-07-95	01-09-95 01-10-95 01-12-95 01-13-95 01-14-95	01-16-95 01-17-95 01-18-95 01-20-95 01-21-95

0.00027	0.00070	0.00015	0.00015	0.00020	600000
0.012	0.026	0.015	0.026	0.029	0.013
0.00	00.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
284	282	243	241	242	340
85.5	85.5	102.6	85.5	85.5	85.5
95.2	95.2	47.6	34.0	34.0	34.0
7.71 8.46 7.52 7.49 7.62 7.31 8.12 7.81	7.94 7.94 7.86 8.09 8.84 8.35 8.35	9.26 9.26 9.51 9.80 9.64	9.99 9.60 9.89 9.70 9.59	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.24 9.23 9.03 9.03 7.0 7.0 7.0
7.85 7.76 7.78 7.66 7.64 7.62 7.62 7.47 7.54	7.68 7.64 7.51 7.53 7.53 7.53	7.26 7.21 7.11 7.12	7.15 7.14 7.17 7.07 7.26	7.23 7.23 7.23 7.22 7.22 7.23	7.23 7.28 7.20 7.09 7.19
24.6 23.1 23.1 24.0 25.5 25.5 25.5	252 242 242 222 222 242 242 242 242 242	21.0 21.0 20.8 20.5 19.8 19.6	20.5 20.0 20.0 20.8 20.5 20.5	2012 2012 2013 2015 2015 2015	21.0 21.0 22.2 22.2 22.2 22.8
000 1000 1000 1000 1000 1000	900 1200 930 930 900	900 900 900 900 900 900	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1000 1000 1800 900 900 900	900 900 1000 1015 900
165 166 167 168 170 171 173	175 176 178 180 181	182 183 185 186 187	193 193 193 193	200 200 200 201 201	203 204 206 207 207
01-23-95 01-24-95 01-25-95 01-27-95 01-28-95 01-29-95 01-30-95 01-31-95	02-02-95 02-03-95 02-04-95 02-05-95 02-06-95 02-07-95	02-09-95 02-10-95 02-11-95 02-13-95 02-14-95	02-13-95 02-16-95 02-17-95 02-18-95 02-20-95 02-21-95	02-23-95 02-23-95 02-25-95 02-26-95 02-27-95 02-28-95	03-07-95 03-03-95 03-04-95 03-05-95 03-06-95

0.00013	0.00008	œ	0.00059	0.00042	0.00028 a
0.015	0.011	Ø	0.071	0.056	0.036 a
0.00	00.00	0.00	0.00	0.00	0.00
0.00	00.0	0.00	00.00	0.00	00.00
239	215	235	22	230	248
85.5	85.5	85.5	85.5	85.5	85.5 85.5
40.8	6.776	47.6	47.6	40.8	40.8
8.61 8.29 8.30 8.30 8.30 8.30	8.38 8.29 8.20 8.20	8.02 7.86 7.10 7.82 7.87 7.52	6.98 6.98 7.67 7.91 7.91	7.51 7.75 8.08 7.75 7.27	7.22 6.72 7.38 7.38 7.38 7.38
7.29 7.14 7.17 7.15 7.20	7.22 7.15 7.21 7.30 7.23 7.20	7.17 7.20 7.12 7.12 7.19	7.26 7.19 7.13 7.23 7.31	7.28 7.28 7.28 7.28 7.28 7.28	7.23 7.24 7.25 7.28 7.27 7.27
23.2 24.2 24.1 24.1 24.1	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	25.2 25.2 25.2 25.2 2.2 2.2 2.2 2.2 2.2	24 24 24 25 35 35 35 35 35 35 35 35 35 35 35 35 35	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
1000 1000 1100 1800	000 000 000 000 000 000 000	900 900 900 900 900	900 900 900 900 900 900	2 8 8 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1100 900 1100 1100 900 900
209 210 212 213 214 215	216 218 219 220 221 222	223 224 226 227 228 229	232 233 234 235 236 236	237 238 240 243 243 243	244 245 246 248 250 251 252
03-08-95 03-09-95 03-10-95 03-12-95 03-13-95	03-15-95 03-16-95 03-17-95 03-19-95 03-20-95 03-21-95	03-22-95 03-23-95 03-24-95 03-25-95 03-26-95 03-27-95	03-28-65 03-30-95 03-31-95 04-02-95 04-03-95	04-05-95 04-06-95 04-08-95 04-09-95 04-11-95	04-12-95 04-13-95 04-14-95 04-15-95 04-17-95 04-19-95 04-20-95

n	ช	a	0.00055 0.00000 0.00190 0.000501 29
ď	ū	a	0.040 0.000 0.145 0.0312 29
C		0000	0.00 0.00 38
S		00.00	0.00 38
23.3	577	223	234 178 340 38.2 38
ແ ແ		89 951 971	84.2 68.4 102.6 7.21 38
40 80 80	o. F	40.8	52.6 34.0 95.2 21.32 38
7.18 7.21 7.68 7.01 7.04	6.95 6.71 7.56 7.78 8.17	7.53 7.32 7.09 6.96 6.98 7.13	8.32 6.71 10.15 0.722 272
7.32 7.29 7.28 7.38 7.36	7.28 7.28 7.29 7.34	7.30 7.31 7.00 7.06 7.20 7.22 7.19	6.93 7.85 271
25.1 25.7 25.7 24.8 24.7 8 4 4	25.0 25.0 24.7 24.7 24.7	24.7 25.0 25.0 25.0 25.0 25.0 25.5	24.1 19.6 26.0 1.33 272
900 2000 900 900 900	900 1100 1600 900 900	8 30 8 30 8 30 8 30 8 30 8 30 8 30 8 30	
253 254 255 256 257 257 258	260 261 262 263 264 265	266 267 268 269 270 271 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-28-95 04-29-95 04-30-95 05-01-95 05-03-95	05-04-95 05-05-95 05-06-95 05-08-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

a Data not available; analytical instrument would not calibrate.

TANK No. 24 TANK CONCENTRATION: 1% GROUNDWATER (WELL CC-27B) DILUTED WITH APG-EA DECHLORINATED TAP WATER DEN EXPOSURE: 10 mg/L

Date	Trailer Exposure Test Day	Time (Military)	Temperature (Celcius)	됩	Dissolved Oxygen (mg/L)	Alkalinity (mg/L as CaCO3)	Hardness (mg/L as CaCO3)	Conductivity (umohs/cm)	Total Residual Chlorine (mg/L)	Free Available Chlorine (mg/L)	Total Ammonia- Nitrogen (mg/L)	Total Unionized Ammonia- Nitrogen (mg/L)
08-12-94 08-13-94 08-14-94 08-15-94 08-16-94	← 01 to 4 to	900 900 900 900 1000	24.8 25.1 25.3 25.0 25.1	7.64 7.34 7.50 7.41 7.41	9.05 7.56 7.60 7.99 7.99							
08-17-94 08-18-94 08-19-94 08-20-94 08-22-94	0 / 8 9 0 7 7 6	1000 900 800 1000 800 800 800		7.30 7.32 7.30 7.31 7.40 7.40	7.20 8.30 8.22 8.16 8.16 8.16	40.8	85.5	204	0.00	0.00	0.175	0.00207
08-24-94 08-25-94 08-26-94 08-27-94 08-29-94 08-30-94	1 E 4 E E E E	900 900 900 800 900 900 900	246 246 248 248 252 252 266	7.39 7.39 7.39 7.38 7.44 7.44	8.23 8.33 8.23 8.23 8.23 8.23	40.8	85.5	208	0.00	0.00	0.079	0.00106
08-31-94 09-01-94 09-02-94 09-03-94 09-05-94 09-06-94	222228	800 1100 900 901 815 810 1100		7.47 7.46 7.49 7.44 7.56 7.42	8.87 8.87 8.89 8.21 8.93 8.93	40.8	102.6	219	0.00	00:00	æ	a
09-07-94 09-08-94 09-09-94 09-10-94 09-11-94	27 28 30 31 32	800 1100 900 900 800 500	242 242 242 238 238 20 240 240 240 240 240 240 240 240 240	7.46 7.50 7.37 7.55 7.45 7.45	8.97 9.20 9.78 9.22 8.79 8.39	40.8	85.5	214	0.00	0.00	0.000	0.00000

0.00000	Ø	æ	a 0.00026	æ	0.00024
0.000	Ø	a	a 0.026	a	0.026
0.00	0.00	a	0.00	0.00	0.00
0.00	0.00	ત્વ	0.00	0.00	0.00
212	216	183	203	509	209
85.5	85.5	68.4	85.5	85.5	8 5.5 5.
40.8	40.8	34.0	8.04	40.8	40.8
9.11 8.71 8.71 8.51 8.29 8.50 8.60	8.70 8.71 8.40 8.76 8.35	8.70 7.71 7.70 7.90 9.03 9.12 9.12		7.42 7.86 7.86 8.13 7.88 7.88	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
7.42 7.42 7.45 7.40 7.39 7.40	7.45 7.45 7.50 7.31 8	7.10 7.26 7.27 7.29 7.31 7.31	7.30 7.27 7.26 7.30 7.30 7.30	7.23 7.47 7.30 7.33 7.33	7.23 7.23 7.38 7.35 7.37 7.35
24.0 24.7 24.7 24.7 24.7 24.8	24.7 24.7 24.7 24.6 24.6	245 5 24 8 8 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	24.3 24.3 24.3 24.4 24.4 24.4 33.4 44.5 44.5 44.5 44.5 44.5 44.5 4	25.7 25.7 24.7 24.8 24.6	24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0
700 1400 1200 1200 820 1000	000 000 000 000 000 000 000 000 000 00	1000 1030 1030 900 1100 1100	1100 1100 1000 1600	1300 1300 1000 800 800	0006
33 33 33 33 33 33 33 33 33 33 33 33 33	5 + 4 4 4 4 4 4 4 4 6 4 6 6 4 6 6 4 6	55 53 55 55 55 56 57 57 58	55 55 60 61 60	65 66 67 68 68	69 72 72 72 74 74 75 76
09-13-94 09-14-94 09-15-94 09-17-94 09-17-94 09-19-94	09-20-94 09-21-94 09-23-94 09-24-94 09-25-94 09-26-94	09-28-94 09-29-94 10-01-94 10-03-94 10-03-94 10-04-94	10-06-94 10-07-94 10-08-94 10-10-94 10-11-94	10-13-94 10-14-94 10-15-94 10-16-94 10-17-94	10-19-94 10-20-94 10-21-94 10-23-94 10-24-94 10-25-94

0.00021	0.00045	0.00059	0.00045	0.00062	0.00021	0.00096
0.016	0.052	0.061	0.042	0.041	0.045	0.039
0.00	0.00	0.00	0.00	00.00	0.00	0.00
0.00	00:00	0.00	0.00	0.00	0.00	0.00
203	215	217	201	197	178	270
85.5	85.5	85.5	85.5	85.5	85.5	68.4
40.8	40.8	40.8	40.8	54.4	34.0	88.4
8.85 8.09 8.88 9.93 9.06	40.8 8.9 9.9 9.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	8.38 8.00 8.55 8.81	6.8.8.8.8.8.8.8.8.9.9.9.9.9.9.9.9.9.9.9.	6 0 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 8 8 8 8 6 6 9 9 9 7 0 0 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8.94 8.00 7.85
7.38 7.39 7.35 7.36 7.29 7.35	7.25 7.25 7.25 7.25 7.25 7.25	7.25	7.29 7.20 7.26 7.30 7.33	7.22 7.24 7.24 7.24 7.25 7.26	7.03 7.04 7.08 7.08 7.18 7.56	7.65 7.65 7.67
24.5 24.5 24.5 24.8 24.8 24.8 24.8 24.8 24.8	24.5 25.1 24.5 24.7 24.6 24.6	2 2 2 2 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 5 4 4 5 5 6 5 6	24.5 24.6 24.6 24.5 24.5 24.5	22.5 22.5 22.5 23.5 23.5 23.5 23.5 23.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.9 24.9 24.8
000 900 900 1100 000 1000	2000 000 000 000 000 000 000 000 000 00	845 830 1000 1000	000000000000000000000000000000000000000	900 1020 1000 900 900	900 1100 900 900 900	1100 1000
77 78 79 80 81 83	2 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	95 99 99 9	8 8 8 9 7 10 1 20 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	200 400 700 100 100 100 100 100	112 113 115 116 116	118 119 120
10-27-94 10-28-94 10-30-94 10-31-94 11-01-94	11-03-94 11-04-94 11-05-94 11-08-94 11-08-94	11-10-94 11-11-94 11-13-94 11-14-94	11-15-94 11-16-94 11-18-94 11-20-94	11-22-94 11-23-94 11-25-94 11-27-94 11-28-94	11-30-94 12-01-94 12-03-94 12-05-94	12-07-94 12-08-94 12-09-94

0.00156		0.00188	0.00122	0.00065	0.00080	Ø
0 063		0.110	0.042	0.024	0.030	æ
00 0		0.00	00.00	0.00	0.00	0.00
00		0.00	0.00	0.00	0.00	0.00
261	2	256	276	281	292	277
60 4	t o	68.4	85.5	68.4	102.6	85.5
8 6	2	81.6 6	88. 4	95.2	88.4	88.4
7.67 7.88 8.42 8.66 8.75	8.19 7.75 7.46 7.68 8.07	8.02 7.84 7.83 7.97 8.47 8.20 8.20	7.86 7.98 7.96 7.84 7.88 7.96	9.06 8.69 9.18 9.17 9.68 7.49	7.10 7.02 7.64 7.82 7.88 7.37	7.63 7.46 7.26 7.28
7.66 7.66 7.63 7.68 7.67	7.60 7.61 7.62 7.61 7.61	7.50 7.70 7.74 7.74 7.82 7.64 7.81	7.74 7.66 7.57 7.71 7.73 7.64	7.73 7.59 7.50 7.71 7.77 7.68	7.70 7.71 7.69 7.68 7.65 7.70	7.73 7.75 7.66 7.72
25.1 25.1 23.9 23.6 24.6	24.5 25.1 25.0 25.0 24.6	24.5 24.6 24.6 23.4 24.3 24.3	242 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23.7 23.3 23.3 23.0 24.0	24.1 24.1 24.1 24.3 24.3 24.3	24.5 24.6 24.8 24.7
1300 900 900 900	1100 845 930 1000 1100	1000 1000 1000 1000 1000	900 1000 1100 1100 900	1130 1130 1030 1000 1000	1100 900 800 1030 1000	1000 1000 1100
121 122 123 124 125	127 128 129 130	132 134 135 136 138 139	44 142 144 145 146	148 148 150 151 152	155 155 157 158 158 160	161 162 163
12-10-94 12-11-94 12-12-94 12-13-94 12-14-94	12-16-94 12-17-94 12-18-94 12-19-94	12-21-94 12-23-94 12-23-94 12-25-94 12-26-94 12-27-94	12-29-94 12-30-94 12-31-94 01-01-95 01-02-95 01-03-95	01-05-95 01-06-95 01-07-95 01-08-95 01-10-95	01-12-95 01-13-95 01-14-95 01-15-95 01-17-95 01-18-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00027	0.00072	0.00014	0.00015	0.00020	0.00010
0.012	0.027	0.015	0.026	0.031	0.014
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
284	282	243	240	242	341
85.5 5	85.5	102.6	85.5	85.5	85.5
95.2	95.2	47.6	34.0	34.0	34.0
7.86 8.52 7.76 7.68 7.81 7.63 8.22 7.86 8.36	7.45 7.92 7.93 8.20 8.24 8.55	9.40 9.40 9.47 9.71 9.65	9.70 9.69 10.14 9.60 9.60	9.38 9.24 9.27 9.28	9.19 9.10 9.02 9.02 9.06 9.06
7.85 7.76 7.78 7.66 7.64 7.61 7.47 7.54	7.58 7.68 7.51 7.53 7.53 7.53	7.26 7.26 7.21 7.12 7.12	7.14 7.15 7.14 7.07 7.06	7.22 7.24 7.23 7.23 7.22 7.22	7.13 7.28 7.20 7.06 7.19
22.2 23.0 23.0 23.0 23.3 23.3 23.3 23.3	24.6 24.6 23.9 22.1 22.3	20.7 20.7 20.6 20.6 19.6	20.2 20.5 19.8 20.2 20.2 4.0	2022 2022 2022 2022 2022 2022 2022 202	21.6 20.9 22.0 22.1 22.1 22.8
600 1100 1000 1000 1000 1000	000 1200 930 930 900 900	1200 900 900 900 900	900 900 1700 1000 1000	200 1000 1800 900 900 900 900	900 900 1000 900 900
165 166 168 170 171 172	471 771 771 179 180	181 183 184 185 186	188 190 191 193 193	195 196 198 200 200	202 203 205 206 207 208
01-23-95 01-24-95 01-25-95 01-26-95 01-29-95 01-30-95 01-31-95	02-01-95 02-02-95 02-03-95 02-04-95 02-05-95 02-05-95	02-08-95 02-09-95 02-11-95 02-12-95 02-13-95 02-13-95	02-15-95 02-16-95 02-17-95 02-18-95 02-19-95 02-20-95	02-22-95 02-23-95 02-24-95 02-25-95 02-26-95 02-27-95	03-01-95 03-02-95 03-04-95 03-05-95 03-06-95

0.00011	0.00008	æ	0.00061	0.00042	0.00026 a
0.013	0.011	a	0.073	0.056	0.033 a
0.00	00.00	00.00	0:00	0.00	00.00
00.00	0.00	0.00	00.0	00.0	0.00
238	215	236	22	231	249
85.5	85.5	85.5	. 85.5	85.5	85.5 85.5
40.8	47.6	47.6	47.6	40.8	40.8 40.8
8 59 8 32 8 32 8 33 8 52 8 55	8.52 8.24 8.05 8.19 8.16 7.81	7.82 6.98 7.79 8.40 7.75 7.46	7.15 6.98 7.54 8.20 7.96 7.51	7.52 7.44 7.60 8.01 7.15 7.10	7.00 6.65 7.36 7.31 7.31 7.29
7.29 7.14 7.17 7.15 7.20	7.15 7.21 7.30 7.23 7.20 7.17	7.17 7.20 7.09 7.06 7.19 7.21	7.26 7.19 7.12 7.17 7.23 7.31	7.25 7.25 7.25 7.25 7.25	7.27 7.16 7.05 7.22 7.23 7.27
22 22 22 22 22 22 22 22 22 22 22 22 22	24.7 25.1 25.0 25.2 25.2	25.1 25.0 24.8 25.2 24.9 24.8	24.7 24.6 24.4 24.8 24.8	24.6 24.8 25.3 25.2 25.2	25.1 25.3 25.3 25.2 25.2 25.2 25.2 25.2
000 1100 1800 900 900 900	1000 1000 1000 900 900 900	900 900 900 900 900 900	900 900 900 900 900	1300 1300 900 900 900	1100 900 1100 900 900 900
2222 212 212 213 215 16	217 218 220 221 223	224 225 227 228 230	231 232 233 234 235 236	238 239 240 242 243	245 246 247 248 250 251 252
03-08-95 03-09-95 03-10-95 03-11-95 03-13-95 03-14-95	03-16-95 03-17-95 03-18-95 03-19-95 03-20-95 03-21-95	03-23-95 03-24-95 03-25-95 03-26-95 03-27-95 03-28-95	03-30-95 03-31-95 04-01-95 04-03-95 04-04-95	04-06-95 04-06-95 04-08-95 04-09-95 04-11-95 04-12-95	04-13-95 04-14-95 04-15-95 04-16-95 04-18-95 04-19-95 04-20-95

ิต	5	ro	0.00056 0.00000 0.00207 0.000537
w	3	æ	0.041 0.000 0.175 0.0351 29
0.00		0.00	0.00 0.00 38
000		00.00	0.00
224	į .	224	234 178 341 34.1 38
85.5		2. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	84.6 68.4 102.6 7.79 38
40.8	2	40.8	52.4 34.0 95.2 20.98 38
7.11 7.18 7.50 7.08 6.92 6.92 6.90	6.91 6.75 7.56 7.80 8.07	7.53 7.29 7.22 7.22 7.22 7.26	8.30 6.65 10.14 0.730 272
7.32 7.29 7.28 7.38 7.26 7.32	7.28 7.28 7.26 7.34 7.34	7.30 7.31 7.03 7.09 7.20 7.22 7.19	7.03 7.85 271
25.3 25.3 25.0 24.9 24.9	25.1 25.1 25.2 25.0 24.7	24.8 25.2 25.2 25.2 25.2 7.7	24.1 19.4 26.1 1.36 272
2000 2000 900 900 900	1100 1600 900 900 900	000 000 000 000 000 000	
253 254 255 256 257 258 259	260 261 262 263 264 265	266 267 268 269 270 271	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-27-95	04-28-95 04-29-95 04-30-95 05-01-95 05-02-95 05-03-95	05-04-95 05-05-95 05-06-95 05-08-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

a Data not available; analytical instrument would not calibrate.

TANK No. 25 TANK CONCENTRATION: 5% GROUNDWATER (WELL CC-27B) DILUTED WITH APG-EA DECHLORINATED TAP WATER NO DEN EXPOSURE

Date	Trailer Exposure Test Day	Time (Military)	Temperature (Celcius)	Ŧ	Dissolved Oxygen (mg/L)	Alkalinity (mg/L as CaCO3)	Hardness (mg/L as CaCO3)	Conductivity (umohs/cm)	Total Residual Chlorine (mg/L)	Free Available Chlorine (mg/L)	Total Ammonia- Nitrogen (mg/L)	Total Unionized Ammonia- Nitrogen (mg/L)
08-12-94 08-13-94 08-14-94 08-15-94 08-16-94	+004°	900 900 900 1000	24.8 25.1 25.3 25.0 25.0	7.22 7.22 7.28 7.12 7.09	8.98 7.89 7.85 8.10 7.70							
08-17-94 08-18-94 08-19-94 08-20-94 08-21-94 08-22-94	0 L L C C C C C C C C C C C C C C C C C	1000 900 800 1000 800 900 730		7.10 7.02 6.94 6.97 7.05 7.10	7.52 7.51 8.21 8.09 8.09 8.09 8.09	8.04	85.5	212	0.00	0.00	0.146	0.00087
08-24-94 08-25-94 08-26-94 08-27-94 08-29-94 08-30-94	£ 4 £ £ £ £ £ £	1000 1100 900 900 900 900 900	44444444444444444444444444444444444444	6.96 7.02 7.05 7.06 7.03 7.03 7.05	8.29 8.32 8.32 10.47 4.19	34.0	85.5	217	0.00	0.00	0.097	0.00057
09-01-94 09-01-94 09-02-94 09-04-94 09-05-94	7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1100 900 900 815 810 1100 900		7.10 7.10 7.24 7.26 7.06 7.05	8.85 8.20 8.20 8.89 8.89 8.89	40.8	102.6	229	0.00	0.00	a	a
09-07-94 09-08-94 09-09-94 09-11-94 09-12-94	26 29 33 33 32	900 900 900 800 500		7.13 7.13 7.14 7.17 7.06 7.06	9.88 9.10 9.69 9.09 8.69	40.8	85.5	224	0.00	0.00	0.000	0.00000

0.00002	Ø	æ	a 0.00015	a	0.00012
0.004	æ	æ	a 0.027	æ	0.023
0.00	0.00	æ	0.00	0.00	0.00
0.00	0.00	æ	0.00	0.00	0.00
233	227	195	214	220	219
85.5	85.5	85.5	85.5	85. 5.	85.5
40.8	40.8	34.0	40.8	40.8	40.8
8 8 8 96 8 96 8 96 9 9 9 9 9 9 9 9 9 9 9	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 8 9	8.71 7.98 7.86 8.65 8.65 9.05	8 8 9 9 9 9 8 8 9 9 8 9 9 8 9 9 9 9 9 9	8.74 8.33 7.34 7.82 8.07 7.84	8.27 9.25 9.25 8.60 8.42 8.34
7.05 7.09 7.05 7.04 7.16	6.98 7.01 7.08 7.11 7.17	6.94 6.76 7.18 7.12 7.12	7.07 7.00 7.02 7.03 7.03 7.03	7.05 7.01 6.97 7.08 7.08 6.92	7.13 7.07 7.13 7.07 7.08 7.08 7.08
24.9 24.8 24.9 24.9 24.9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	244.9 244.9 245.2 245.2 245.3	4444444444 	24.0 24.6 25.2 24.7 24.8 24.8	24.8 24.4 24.5 24.5 24.5 24.5 24.5 24.5
700 1400 1300 1200 820 830	1000 1000 1000 1000 1300	1030 1030 1030 900 915	000 000 000 000 000 000 000 000 000 00	1300 1300 1300 1000 1000 1000	000000000000000000000000000000000000000
35 37 37 37 37 37	8 4 4 4 4 4 4 8 0 1 2 8 4 4 4	54 4 4 8 8 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 6 6 6 6 6 8 6 8 8	69 70 72 74 75 75
09-13-94 09-14-94 09-15-94 09-16-94 09-17-94	09-19-94 09-20-94 09-21-94 09-23-94 09-25-94	09-20-94 09-28-94 09-29-94 09-30-94 10-01-94	10-03-94 10-04-94 10-05-94 10-07-94 10-09-94 10-10-94	10-12-94 10-13-94 10-14-94 10-15-94 10-17-94 10-18-94	10-19-94 10-20-94 10-21-94 10-23-94 10-24-94 10-25-94

0.00016	0.00036	0.00033	0.00023	0.00036	0.00011	0.00039
0.022	0.064	0.056	0.034	0.045	0.044	0.033
00.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
213	224	227	211	206	188	278
85.5	85.5	85.5	85.5	85.5	85.5	68.4
40.8	40.8	40.8	40.8	47.6	27.2	88.4
8.70 8.75 8.07 9.22 8.98 8.96	9.22 9.22 9.21 9.00 9.00	8.22 7.98 8.51 8.71	8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9.53 9.73 9.73 9.12 9.10 7.10	8.88 8.33 8.07 9.07	7.89 7.82
7.10 7.12 7.12 7.07 7.05 7.08	7.00 7.20 7.10 7.03 7.04	7.03 7.13 7.16 7.03	7.08 7.09 7.09 7.09 7.07 7.07	7.10 7.24 7.09 6.98 6.93 6.93 6.78	6.77 7.06 7.02 6.88 6.92 7.35	7.32
24.6 25.0 25.0 25.0 25.0 25.0 25.0	2, 22, 22, 23, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25	24.5 24.5 24.5 24.5	24.5 24.9 24.8 24.8 24.8	2 2 2 2 2 2 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	21.1 25.0 25.3 25.1 25.0 25.0 25.0	25.1 25.1 24.9
000 000 000 000 1100 000 000 000	000 000 000 000 000 000 000 000 000 00	830 1000 1000	000000000000000000000000000000000000000	1000 1000 1000 1000 1000 1000 1000 100	1000 1000 1100 900 900 900	11 00 00 00 00 00 00 00 00 00 00 00 00 0
77 78 79 80 81 83 83	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 9 9 9 9 - 2 8 4 9 8 6	88 8 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 00 00 00 00 00 00 00 00 00 00 00	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	119
10-27-94 10-28-94 10-29-94 10-31-94 11-01-94 11-02-94	11-05-94 11-06-94 11-08-94 11-08-94 11-09-94	11-11-94 11-12-94 11-13-94 11-14-94	11-16-94 11-18-94 11-19-94 11-20-94 11-20-94	11-22-94 11-23-94 11-25-94 11-26-94 11-28-94 11-29-94	12-03-94 12-02-94 12-03-94 12-04-94 12-05-94 12-06-94	12-07-34 12-08-94 12-09-94

0.00094	0.00114	0.00067	0.00046	0.00039	æ
0.061	0.100	0.043	0.030	0.027	a
0.00	00.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
271	265	286	289	300	286
, 68. 4	68.4	85.5	68.4	102.6	85.5
8. 9.	8. 6.	4.88	88.4	102.0	88.4
7.59 7.85 8.44 8.70 8.74 8.53 7.70 7.70 7.55	7.98 7.88 7.83 7.65 7.87 8.35 8.17	8.49 7.72 7.76 7.72 7.65 7.70	7.78 8.77 8.60 9.26 9.06 9.49 7.97	7.19 7.16 6.76 7.59 7.70 8.09	7.44 7.44 7.18 7.18
7.39 7.40 7.42 7.44 7.44 7.40 7.56	7.38 7.34 7.32 7.47 7.63 7.32	7.44 7.45 7.41 7.44 7.40	7.47 7.46 7.48 7.45 7.41 7.49	7.48 7.47 7.47 7.46 7.43	7.74 7.74 7.45 7.42 7.53
25.2 25.3 24.3 24.0 25.0 25.3 25.3 25.3	25.1 24.9 25.0 25.1 23.9 24.1	24.7 24.8 24.6 25.1 25.0 24.6	24.7 23.3 23.3 23.4 23.7 24.7 24.1	24.4 24.5 24.5 25.2 25.0 24.6	24.6 25.0 25.0 25.0
1300 900 900 900 1100 1100 1000	1100 1000 1000 900 700 1100 1100	1000 1000 1100 1000 1000	1000 1000 1030 1030 1000	001 000 000 000 000 000 000 000 000 000	1000 1000 1000 1000
122 123 124 128 129 130 130 130 130 130 130 130 130 130 130	132 133 134 135 136 136 138	139 140 141 143 143 145	146 147 148 150 151	153 155 157 158 158	161 162 163 164
12-10-94 12-11-94 12-12-94 12-13-94 12-15-94 12-16-94 12-17-94 12-19-94	12-20-94 12-21-94 12-22-94 12-23-94 12-25-94 12-26-94 12-27-94	12-28-94 12-29-94 12-30-94 12-31-94 01-01-95 01-03-95	01-04-95 01-05-95 01-06-95 01-07-95 01-09-95 01-10-95	01-11-95 01-12-95 01-13-95 01-14-95 01-16-95 01-16-95	01-18-95 01-19-95 01-20-95 01-21-95 01-22-95

0.00015	0.00043	0.00010	0.00011	0.00020	0.00006
0.011	0.025	0.014	0.025	0.034	0.012
0.00	00.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
291	292	255	252	254	349
85.5	85.5	85.5	85.5	85.5	85.5
88.4	95.2	40.8	34.0	34.0	34.0
7.80 8.45 7.53 7.45 7.76 7.56 8.05 7.73	7.83 7.83 7.80 7.92 8.83 8.55	9.22 9.22 9.34 9.63 9.61	99.99.99.99.99.99.99.99.99.99.99.97.99.99	9.10 9.28 9.10 9.28 9.10	9.08 9.08 8.95 8.95 8.86 8.67
7.58 7.48 7.43 7.45 7.40 7.38 7.32 7.40	7.30 7.43 7.38 7.16 7.36 7.36	7.20 7.20 7.03 6.92 6.94 7.03	6.99 6.99 6.90 7.00 7.00	7.04 7.02 7.05 7.11 7.01 7.02	7.03 7.03 7.05 7.05 6.96
24.7 23.3 23.3 24.3 24.3 25.9	25.2 25.2 27.4 27.9 20.9	212 2223 213 203 203 203	20.5 20.5 20.5 20.5 20.6 20.6	27.2 27.5 27.5 27.5 27.5 27.5 27.5	21.6 22.3 22.5 23.3 23.3
000 001 000 000 000 000 000 000 000 000	200 200 200 200 200 200 200 200 200 200	900 900 1200 900 900	200 140 100 100 100 100 100 100 100 100 1	900 1000 1800 900 900 900 900	900 1000 1015 900 900
165 166 167 169 171 172 173	4	185 185 186 186 186	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	200 201 201 201 201 201 201 201 201 201	202 204 205 206 207 208
01-23-95 01-24-95 01-25-95 01-27-95 01-28-95 01-29-95 01-31-95	02-01-93 02-02-95 02-03-95 02-05-95 02-06-95 02-07-95	02-09-95 02-10-95 02-11-95 02-12-95 02-13-95	02-15-95 02-16-95 02-17-95 02-19-95 02-20-95	02-22-95 02-23-95 02-24-95 02-25-95 02-26-95 02-27-95 03-28-95	03-07-95 03-02-95 03-03-95 03-05-95 03-06-95 03-07-95

0.00003	0.00004	æ	0.00021	0.00023	0.00015 a
0.015	0.010	α	0.055	0.058	0.032 a
0.00	0.00	0.00	0.00	0.00	0.00
0.00	00.00	0.00	0.00	0.00	0.00
250	223	233	228	239	257
85.5	85.5	85.5	85.5	85.5	85.5 68.4 68.4
40.8	47.6	47.6	47.6	40.8	40.8
8.53 8.20 8.48 8.48 8.37	8 8 8 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7.94 7.94 7.93 7.93 7.50	7.55 7.36 7.71 8.02 7.85 7.35	7.27 7.94 7.94 7.27 7.27	7.27 6.77 7.58 7.78 7.77 7.77 7.56
7.02 7.03 6.94 6.99 6.99 6.99	6.90 6.94 6.98 6.98 7.03 6.98	6.95 7.03 7.06 6.96 6.96 6.96	6.93 6.95 7.04 7.01 7.01	7.01 7.01 7.01 7.01 7.00 7.00	7.05 6.95 7.05 6.95 7.03 7.00 7.00
23.1 25.0 24.0 24.0 24.0 24.0	2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,	2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	24.4 24.5 24.5 25.4 25.4 25.4 25.4	242 252 252 253 253 253 253	25.5 25.5 25.3 25.3 25.0 25.7 25.7
900 1000 1100 1800 900 900	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 9 9 4 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9	001 000 000 000 000 000 000 000 000
209 211 211 211 214 215 215	222 22 23 23 23 23 23 23 23 23 23 23 23	225 226 228 238 238 238 238 238 238	232 232 234 235 236	239 240 241 243 243	245 246 247 248 250 251 252
03-08-95 03-09-95 03-10-95 03-11-95 03-12-95 03-13-95	16-95 17-95 18-95 20-95 21-95	22-35 22-95 26-95 27-95 28-95 28-95 28-95 28-95	20-95 23-95 23-95 23-95 23-95 24-95		04-12-95 04-14-95 04-15-95 04-16-95 04-18-95 04-19-95

O	•	æ	0.00031 0.00000 0.00114 0.000284
œ	ı	a	0.040 0.000 0.146 0.0313 29
0.00		0.00	0.00 0.00 38
0.00		0.00	0.00 0.00 38
231		234	243 188 349 33.8 38
85.5		855 55	84.2 68.4 102.6 7.21 38
40.8		8.	51.7 27.2 102.0 21.42 38
7.33 7.30 7.59 7.21 7.16 7.06 7.06	7.15 6.83 7.55 7.89 8.37 7.50	7.75 7.64 7.30 7.11 7.39 7.13 7.21	8.25 6.76 9.97 0.665 272
7.02 7.00 7.00 7.00 7.00 7.04	7.02 7.02 7.03 7.00 6.99 7.03	6.98 7.00 7.01 7.01 6.99 6.99 6.99	6.76 7.74 271
25.3 25.8 25.4 25.0 25.0 25.1	25.3 25.3 25.3 25.2 25.1 24.8	24.9 25.3 25.1 25.1 25.1 25.1 25.7	24.3 20.2 26.5 1.24 272
900 2000 2000 900 900 900	1100 1600 900 900 900	006 006 006 006 006 006	
253 254 255 256 257 258 259	260 261 262 263 264 265	266 267 268 269 270 271 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-28-95 04-29-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-07-95 05-08-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev

 $\mathbf{a}_{\mathrm{Data}}$ not available; analytical instrument would not calibrate.

TANK No. 26 TANK CONCENTRATION: 5% GROUNDWATER (WELL CC-27B) DILUTED WITH APG-EA DECHLORINATED TAP WATER NO DEN EXPOSURE

Total a- Unionized Ammonia- Nitrogen (mg/L)	15 0.00066	98 0.00057 a a	000000
Total Ammonia- Nitrogen (mg/L)	0.115	0.098	0.000
Free Available Chlorine (mg/L)	0.00	0.00	00.00
Total Residual Chlorine (mg/L)	0.00	0.00	0.00
Conductivity (umohs/cm)	212	217	224
Hardness (mg/L as CaCO3)	85.5	85.5	85.5
Alkalinity (mg/L as CaCO3)	40.8	34.0	40.8
Dissolved Oxygen (mg/L)	8.98 7.70 7.90 7.96 7.96 7.19 7.12 8.23 8.20 8.10	8.28 8.28 8.28 8.28 8.21 8.20 8.26 8.26 8.26 8.26 8.26 8.26 8.26	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Hg.	7.22 7.22 7.28 7.12 7.09 7.00 6.94 6.97	7.10 7.01 6.96 7.02 7.05 7.06 7.03 7.05 7.07 7.07 7.10	7.10 7.20 7.24 7.06 7.06 7.10 7.13 7.17 7.17 7.06
Temperature (Celcius)	25.0 25.0 25.0 25.0 25.0 25.0 25.0	25.0 24.7 24.7 24.8 24.8 24.8 24.8 24.8 24.8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Time (Military)	900 900 1000 1000 800 800 800	900 1100 900 900 800 900 900 1100	900 815 900 1100 1100 900 900 900 800 800
Trailer Exposure Test Day	- 7 c 4 c o c o c	1	22 24 25 25 26 27 28 28 29 30 30 30 30 30 30 30 30 30 30 30 30 30
Date	08-12-94 08-13-94 08-14-94 08-15-94 08-17-94 08-18-94 08-19-94 08-20-94	08-22-94 08-23-94 08-24-94 08-25-94 08-27-94 08-29-94 08-30-94 08-31-94	09-02-94 09-03-94 09-04-94 09-05-94 09-07-94 09-08-94 09-10-94 09-11-94

0.00003	œ	a	a 0.00014	ro .	0.00011
0.005	σ	œ	a 0.025	ત્ત	0.021
00.00	0.00	ro	0.00	0.00	0.00
0.00	0.00	æ	0.00	00.00	0.00
222	226	195	214	220	219
85.5	85.5	68.4	85.5	85.5	85.5 5.
8.08	40.8	34.0	34.0	34.0	40.8
9.02 8.58 8.24 8.24 8.52 8.52 8.63	8.39 8.70 8.37 8.61 8.18	7.96 7.96 7.96 8.75 8.95 8.96 8.79	8.35 8.35 8.35 8.35 8.35 8.35 8.35	8.28 7.24 7.75 8.00 8.39 7.76	8.8.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9
7.05 7.09 7.05 7.04 7.12 7.12 6.98 7.01	7.08 7.11 7.13 8 6.90 6.90	6.76 7.17 7.15 7.09 7.06 7.01	7.02 7.01 7.00 7.03 7.04	7.01 7.04 7.08 7.08 6.92 6.92	7.00 7.07 7.07 7.07 7.08 7.08
24.7 24.7 24.8 24.8 24.8 24.5 7	24.8 24.8 24.7 24.7	2442 2442 2442 2465 2465 2466	2442 2442 2442 2443 2443 2443 2443 2443	25.7 25.7 24.7 24.7 24.7 24.7	24.5 24.0 24.0 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5
700 1300 1200 820 830 1000 1000	1000 1300 900 900	100 1030 1030 900 1100 1100	8	86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0006
88 89 84 89 89 89 89 89 89 89 89 89 89 89 89 89	4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	5 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	22 72 74 74 74 75
09-13-94 09-14-94 09-15-94 09-16-94 09-17-94 09-19-94 09-20-94	09-22-94 09-23-94 09-24-94 09-25-94 09-26-94	09-28-94 09-29-94 10-01-94 10-03-94 10-04-94	10-06-94 10-07-94 10-09-94 10-10-94 10-11-94	10-13-94 10-13-94 10-15-94 10-16-94 10-18-94	10-20-94 10-22-94 10-22-94 10-23-94 10-25-94 10-25-94

0.00014	0.00035	0.00028	0.00025	0.00031	0.00011	0.00048
0.020	0.061	0.049	0.038	0.039	0.044	0.041
0.00	0.00	0.00	0.00	0.00	0.00	00.0
0.00	0.00	00.00	0.00	0.00	0.00	0.00
212	224	227	211	206	188	278
85.5	85.5	85.5	85.5	85.5	85.5	68.4
40.8	40.8	40.8	40.8	47.6	27.2	88.4
8.65 8.76 8.06 8.81 9.21 8.95	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8.25 7.95 8.43 8.70	8.78 8.28 8.23 8.25 8.44 8.48	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8.97 8.94 8.40 8.00 8.30 7.99	8.86 7.86 7.76
7.12 7.12 7.12 7.12 7.05 7.05	7.00 7.20 7.03 7.03 7.04	7.03 7.15 7.15 7.03	7.03 7.09 7.04 7.04 7.07 7.10	7.10 7.24 7.04 7.04 6.98 6.93 6.93	6.77 6.77 7.00 6.99 6.92 7.35	7.37 7.32 7.42
24 24 24 24 24 24 24 24 24 24 24 24 24 2	25.0 25.0 25.0 25.0 25.0 25.0 25.0	24.4 24.4 24.4 25.5 3.5	24.7 24.8 24.8 24.8 24.7 24.7	8	21.0 26.4 25.2 25.0 25.0 24.9	24.9 25.0 24.8
1100 900 900 1100 1000	1000 1000 1000 1000 1000 1000	900 900 845 1000	000 000	600 800 730 1020 1000 900 900	900 1 1000 900 900 900	1100 1000
77 78 87 89 89 89 89 89 89 89 89 89 89 89 89 89	4 5 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 5 9 5 4 5	98 98 99 101 102	103 104 105 107 109	111 112 115 116 17	118 119 120
10-27-94 10-28-94 10-29-94 10-31-94 11-01-94	11-03-94 11-04-94 11-05-94 11-08-94 49-94 49-94	11-10-94 11-11-94 11-13-94 11-14-94	11-15-94 11-16-94 11-17-94 11-18-94 11-20-94 11-21-94	11-22-94 11-23-94 11-24-94 11-25-94 11-27-94 11-28-94	11-30-94 12-01-94 12-02-94 12-03-94 12-05-94 12-06-94	12-07-94 12-08-94 12-09-94

	960000	0.00114	0.00068	0.00043	0.00044	æ
	0.063	0.100	0.044	0.028	0.030	a
;	0.00	0.00	0.00	0.00	0.00	0.00
;	0.00	00.00	0.00	0.00	0.00	0.00
	270	265	285	588	300	286
	68.4	85.5	85.5	68.4	102.6	85.5
;	618 6.	91.6	88.4	88 4.	95.2	81.6
7.56 7.79 8.38 8.54 8.60	8.37 8.01 7.57 7.39 7.55	7.85 7.79 7.67 7.84 8.33 8.15 8.00	7.74 7.76 7.75 7.77 7.77 8.21	8 8 8 8 8 9 9 13 9 15 15 1 2 9 3 2 5 2 5 3 2 5 3 5 5 3 5 5 3 5 5 3 5 5 5 5	7.45 6.80 7.59 7.65 7.65 7.16	7.45 7.35 7.10 7.12
7.39 7.40 7.38 7.42 7.44	7.44 7.40 7.51 7.45 7.31	7.31 7.46 7.47 7.61 7.61 7.82 7.88	7.45 7.32 7.44 7.44 7.40	7.46 7.46 7.42 7.54 7.49 7.48	7.43 7.46 7.46 7.40 7.43 7.50	7.74 7.45 7.42 7.53
25.2 25.1 24.0 23.8	24.8 25.3 25.2 25.2 25.0	4444888448 970001	2446 2446 2466 2466 2466 2466 2466	23.7 23.7 23.7 23.6 24.0 24.0	24.4 24.4 24.8 25.2 25.1 24.6 24.7	24.8 25.0 25.2 25.0
1300 900 900 900	800 1100 845 930 1100	000 000 000 000 000 000 000 000 000 00	1000 1000 1100 1100 1000	1100 1000 1130 1000 1000	1100 1000 900 800 1030 1000	1000 1000 1100
122 123 124 125	126 127 128 130	132 133 136 136 138 138	4 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	148 149 150 151 151 153	155 156 157 158 160	161 162 163
12-10-94 12-11-94 12-12-94 12-13-94 12-13-94	12-15-94 12-16-94 12-17-94 12-18-94 12-19-94	12-21-94 12-22-94 12-23-94 12-25-94 12-26-94 12-27-94	12-29-94 12-30-94 12-31-94 01-02-95 01-03-95 01-04-95	01-05-95 01-06-95 01-08-95 01-09-95 01-10-95	01-12-95 01-13-95 01-14-95 01-15-95 01-17-95 01-18-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00013	0.00043	0.00010	0.00011	0.00020	0.00006
0.009	0.025	0.014	0.025	0.034	0.013
00.00	0.00	00.00	0.00	0.00	00.00
0.00	0.00	0.00	0.00	00:00	00.00
292	292	255	251	254	348
85.5	85.5	85.5	85.5	85.5	85.5
8 8. 4.	95.2	40.8	34.0	34.0	34.0
7.76 8.22 7.34 7.38 7.46 7.33 8.07 7.53 7.53	7.66 7.66 7.75 7.82 8.64 8.27	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9.99 9.99 9.99 1.74 9.94 1.09	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8.90 8.90 8.79 8.73 8.73 8.74
7.58 7.48 7.43 7.40 7.50 7.38 7.32	7.30 7.43 7.38 7.16 7.38 7.38	7.20 7.07 7.03 6.92 6.94	6.99 6.99 6.90 7.00 7.00 7.00 7.00	7.07 7.02 7.05 7.07 7.07 7.05	7.03 7.04 7.02 7.04 6.96
24.5 23.3 23.3 24.5 24.5 23.4 23.4 23.6	25.2 25.2 25.2 24.4 23.1 23.1 23.1	22.2 21.2 20.3 20.3 20.3	21.2 20.3 20.3 20.3 20.3	20.2 20.2 20.5 20.5 22.13 22.13	21.5 21.2 22.4 22.6 23.6
00011100 00000000000000000000000000000	200 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	200 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	900 100 100 100 100 100 100 100 100 100	35 00 00 00 00 00 00 00 00 00 00 00 00 00	900 1000 1015 900
165 166 167 168 170 171 172 173	471 175 178 180	183 184 185 186 187	193 193 193 193 193 193 193 193 193 193	195 198 200 201 201 201	203 204 205 207 207
01-23-95 01-24-95 01-25-95 01-27-95 01-28-95 01-30-95 01-31-95	02-01-95 02-02-95 02-03-95 02-04-95 02-05-95 02-07-95	02-03-35 02-09-95 02-11-95 02-12-95 02-13-95	02-15-95 02-16-95 02-17-95 02-18-95 02-20-95 02-21-95	02-22-95 02-23-95 02-24-95 02-26-95 02-27-95 02-28-95	03-02-95 03-02-95 03-03-95 03-05-95 03-06-95 03-07-95

0.00008	0.00004	a	0.00021	0.00023	0.00016 a
0.015	0.010	æ	0.055	0.059	0.033 a
0.00	0.00	0:00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	00.00
249	223	233	228	239	256
85.5	85.5	85.5	85.5	85.5	85.5 68.4
40.8	47.6	47.6	47.6	8.04	40.8
8.35 8.03 8.03 8.03 8.12 8.45 8.45	8.49 8.28 8.08 8.10 7.86 8.17	7.94 7.25 7.67 8.37 7.75 7.40	7.32 7.06 7.68 8.17 7.95 7.41	7.52 7.19 7.46 7.80 6.88 7.18	7.09 6.75 7.39 7.44 7.23 7.47 7.53
7.02 7.03 6.94 6.96 6.99 6.97 7.05	6.90 7.02 6.94 6.98 7.03 7.03	6.95 7.03 7.06 7.09 6.96 6.96	6.93 7.04 7.01 7.11 7.11	2.7. 2.00 6.99 6.99 7.00 7.00 7.00	7.05 6.95 7.05 7.03 7.00 7.00
23.0 24.8 24.0 24.2 24.2 24.2	24.7 24.8 24.5 25.5 25.0 24.0	24.9 25.5 25.5 25.5 24.5 44.5	24.3 24.7 24.4 24.0 24.8 3.8	24.4.2 24.2 24.2 25.3 24.0 25.3 25.3 25.3 25.3 25.3 25.3 25.3 25.3	25.2 24.8 25.3 24.9 25.3 25.3 26.9
900 1000 1100 900 900	900 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	900 900 915 900 900 900	900 900 900 900 900	900 1100 900 900 900	000 1100 100 900 900 900 900
209 210 211 212 213 215 215	217 218 220 221 222 223	224 225 227 227 230	231 232 233 234 235 236	239 240 242 243 244	245 246 247 248 250 251 252
03-08-95 03-09-95 03-10-95 03-17-95 03-12-95 03-14-95 03-15-95	03-16-95 03-17-95 03-18-95 03-19-95 03-20-95 03-22-95	03-23-95 03-24-95 03-25-95 03-26-95 03-27-95 03-28-95	03-30-95 03-31-95 04-01-95 04-02-95 04-03-95 04-05-95	04-06-95 04-07-95 04-09-95 04-10-95 04-11-95	04-13-95 04-14-95 04-15-95 04-16-95 04-17-95 04-19-95 04-20-95

	ro	œ	0.00030 0.00000 0.00114 0.000275
	ro	ros es	0.038 0.000 0.115 0.0280 29
	0.00	0.00	0.00 0.00 38
	0.00	O: O	0.00 0.00 38
	231	233	243 188 348 33.7 38
	85.5	85.5	84.2 68.4 102.6 7.21 38
	40.8	40.8	51.0 27.2 95.2 20.97 38
7.18 7.10 7.31 7.11 6.95 6.78	6.97 6.73 7.42 7.51 8.09	7.55 7.33 7.37 7.10 7.29 6.95	8.19 6.73 9.98 0.686 272
7.02 7.00 7.00 7.00 7.00 7.04	7.01 7.02 7.02 7.03 7.00 6.99 7.03	6.98 7.00 7.00 6.98 6.99 6.99 6.99	6.76 7.74 271
25.2 25.7 25.7 24.7 24.8	24.9 25.1 25.1 25.0 25.0 24.7	24.8 25.2 25.1 25.1 25.0 25.0	24.2 20.3 26.4 1.20 272
900 2000 900 900 900	900 1100 1600 900 900	0006	
253 254 255 256 257 258	259 261 261 262 263 265	266 267 268 269 270 271	
04-21-95 04-22-95 04-23-95 04-25-95 04-25-95	04-27-95 04-28-95 04-29-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-07-95 05-08-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

a Data not available; analytical instrument would not calibrate.

TANK No. 27 TANK CONCENTRATION: 5% GROUNDWATER (WELL CC-27B) DILUTED WITH APG-EA DECHLORINATED TAP WATER DEN EXPOSURE: 10 mg/L

Conductivity Total Free Total Total (umohs/cm) Residual Available Ammonia- Unionized Chlorine Chlorine Nitrogen Ammonia- (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)
40.8 85.5
(mg/L)
Test Day
Exposure Test Day

0.00000	æ	æ	o.00017	ro O	0.00013
0.000	æ	a	a 0.030	a	0.025
0.00	0.00	Ø	0.00	0.00	0.00
0.00	0.00	æ	0:00	0.00	0.00
221	226	194	213	219	220
. 85.5	85.5	68.4	85.5	85.5	85.5
40.8	40.8	34.0	8.04	40.8	40.8
9.04 8.38 8.46 8.13 8.29 8.64 5.45	8.38 8.29 8.58 8.18 7.7	8.63 7.81 7.93 7.93 8.24 8.99 8.98	2 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8.38 7.37 7.85 8.04 8.37 7.82 7.82	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
7.09 7.12 7.09 7.09 7.16 7.03	7.09 7.11 7.10 8.94	6.09 6.76 7.17 7.10 7.12 7.01	7.02 7.01 7.03 7.03 7.03	7.01 7.04 7.08 7.08 7.08	7.00 7.07 7.07 7.07 7.08 7.08
24.7 24.7 24.8 24.8 24.5 24.5	24.8 24.8 24.7 24.7 8	24.5 24.5 24.5 24.5 24.5 24.0 24.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1
700 1300 1200 1000 1000	900 1300 900 900	1000 1030 1030 900 915 1100 1100	880 1100 1000 1000 1000	000 000 000 000 000 000 000 000 000 00	006 006 006 006 006
38 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	- 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 4 4 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	55 55 60 60 60 60 60 60 60 60 60 60 60 60 60	66 65 66 67 68 68	80 1 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
09-13-94 09-14-94 09-15-94 09-17-94 09-19-94 09-20-94	09-22-94 09-23-94 09-23-94 09-25-94 09-26-94	09-28-94 09-28-94 09-30-94 10-02-94 10-03-94 10-04-94	10-06-94 10-07-94 10-09-94 10-10-94 10-11-94	10-12-94 10-13-94 10-15-94 10-16-94 10-17-94	10-19-94 10-20-94 10-22-94 10-23-94 10-24-94 10-25-94

0.00017	0.00027	0.00030	0.00021	0.00033	0.00011	0.00042
0.024	0.048	0.052	0.032	0.042	0.042	0.035
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	00.00	0.00	0.00	0.00	0.00	0.00
213	224	227	212	206	189	278
85.5	85.5	85.5	85.5	85.5	85.5	68.4
40.8	40.8	40.8	40.8	47.6	27.2	88.4
8.60 8.68 8.00 8.82 9.15 9.94 7.97	9.16 9.25 9.17 9.16 9.07	8.30 8.36 8.36 8.64 7.3	8 8 35 8 21 8 22 8 22 8 22 7 25 8 25 8 25	8.98 8.19 9.77 77.09 9.03 9.03	8.89 8.41 7.93 8.00 8.00 8.00	7.93
7.10 7.12 7.12 7.12 7.07 7.05 7.08	7.20 7.20 7.10 7.03 7.04	7.03 7.14 7.03 7.03	7.09 7.09 7.07 7.07 7.07	7.24 7.04 7.04 6.98 6.93 6.93 6.78	6.92 6.92 6.92 6.92 7.33	7.32
24.9 24.6 25.0 25.0 25.0 25.0 25.0	25.5 25.5 24.9 24.9 24.9 24.9	24.5 24.5 24.5 24.5 24.5 24.5	2,42 2,42 2,43 2,43 2,43 3,43 4,43 4,43	2222 2222 2222 2422 2422 2422 2422 242	25.1 25.4 25.4 25.4 25.1 25.1	25.2 24.9
000 000 000 000 000 000 000 000 000 00	2000 000 000 000 000 000 000 000 000 00	830 1000 1000	20000000000000000000000000000000000000	800 1020 900 900 900	1000 1000 1000 900 900	1100
77 78 79 80 82 83 83	88 88 89 90	0 9 9 9 9 - 0 4 4 4 4 4	9 9 9 9 9 5 101 102 103 103 103 103 103 103 103 103 103 103	104 105 108 109 110 110	113 114 116 117 118	119
10-27-94 10-28-94 10-29-94 10-30-94 11-01-94 11-02-94	11-04-94 11-05-94 11-08-94 11-09-94	11-12-94 11-13-94 11-14-94 11-15-94	11-16-94 11-17-94 11-19-94 11-21-94 11-21-94	11-23-94 11-25-94 11-26-94 11-27-94 11-28-94 11-29-94	12-01-94 12-02-94 12-03-94 12-05-94 12-06-94	12-08-94 12-09-94

	0.00083	0.00113	0.00064	0.00041	0.00043	a
	0.057	0.100	0.042	0.027	0.030	Ø
	0.00	00.0	0:00	0.00	0.00	0.00
	0.00	00.00	0.00	0.00	0.00	0.00
	270	264	284	287	298	285
	68.4	68.4	85.5	68.4	102.6	85.5
	9.18	8 6	88.4	88.4	95.2	88.4
7.57 7.80 8.34 8.54 8.54	8.46 8.14 7.65 7.46 7.66	8.06 7.90 7.90 8.10 8.28 8.28	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9.03 9.03 9.28 9.65 7.7 8.10	7.04 7.04 7.77 7.82 8.16 7.31	7.63 7.44 7.19 7.15
7.39 7.37 7.38 7.42	7.42 7.40 7.50 7.31 7.38	7.33 7.45 7.45 7.48 7.48 7.48	7.45 7.42 7.42 7.47 7.40	7.46 7.40 7.52 7.40 7.49	7.43 7.49 7.49 7.43 7.52	7.74 7.45 7.42 7.53
25.3 25.3 24.5 24.3 24.1	24.8 25.2 25.2 25.2 25.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23.23 23.23 23.23 23.23 23.23 24.23 25.23 26.23 26.23 26.23 27.23	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.7 24.9 25.2 25.0
1300 900 900 900	800 1100 845 930 1000	56 8 9 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	000 000 000 000 100 100 000 100 100 100	1000 1000 1000 1000 1000	900 900 900 1030 1000	1000 1000 1100
121 123 124 125	126 127 129 130	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	147 148 150 151 152 153	155 156 158 159 160	161 162 163
12-10-94 12-11-94 12-12-94 12-13-94 12-14-94	12-15-94 12-16-94 12-17-94 12-18-94 12-19-94	12-22-94 12-22-94 12-23-94 12-25-94 12-27-94 12-27-94 13-27-94 13-27-94	12-29-94 12-30-94 12-31-94 01-02-95 01-03-95 01-04-95	01-05-95 01-06-95 01-08-95 01-09-95 01-10-95	01-12-95 01-13-95 01-14-95 01-15-95 01-16-95 01-17-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00016	0.00044	0.00011	0.00011	0.00020	0.00005
0.011	0.025	0.016	0.027	0.034	0.011
0.00	0.00	0.00	0.00	00.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
290	291	255	252	255	351
85.5	85.5	85.5	85.5	85.5	85.5
88.4	88.4	47.6	34.0	34.0	34.0
7.80 8.37 7.62 7.76 7.76 8.16 8.23	7.86 7.86 7.99 8.85 8.85 8.49	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9.14 9.03 9.007 9.022 8.82 8.82	8.68 8.68 8.68 8.68 8.60 0.60
7.58 7.48 7.40 7.51 7.51 7.32 7.32	7.40 7.40 7.38 7.36 7.38	7.20 7.07 7.03 6.94 6.94 6.94	6.99 6.99 7.01 6.90 7.00 7.00	7.04 7.02 7.05 7.11 7.01 7.02	7.03 7.03 7.02 7.03 6.96
24.8 23.2 23.2 24.4 25.0 25.0 25.0 25.0	25.2 25.2 25.2 22.9 23.0	2022 2023 2033 2034 2034 2034 2034 2034	22.22.22.22.22.22.22.23.88.62.22.22.22.23.88.62.22.22.22.22.22.22.22.22.22.22.22.22.	22.1 21.7 22.5 22.3 5.3	21.8 22.6 22.8 22.9 23.5
600 1 1 00 1 100 1 100 830 830 1 1000 1 1000	900 1000 1200 930 900	900 900 900 900 900	900 1100 1000 1000 1000	0001 0000 0000 0000 0000 0000 0000 000	900 1000 1015 900
165 166 167 169 170 171 173	175 176 178 179 180	182 183 185 186 187 88	189 190 193 194 194	200 200 200 201 201	203 204 205 207 208
01-23-95 01-24-95 01-25-95 01-27-95 01-28-95 01-39-95 01-31-95 02-01-95	02-02-95 02-03-95 02-04-95 02-05-95 02-06-95 02-07-95	02-09-95 02-10-95 02-11-95 02-13-95 02-14-95	02-16-95 02-17-95 02-18-95 02-19-95 02-21-95	02-23-95 02-24-95 02-25-95 02-26-95 02-27-95 03-21-95	03-02-95 03-03-95 03-04-95 03-05-95 03-06-95 03-07-95

0.00008	0.00004	æ	0.00022	0.00024	0.00015 a
0.014	0.010	a	0.056	0.061	0.032 a
0.00	0.00	0.00	0.00	0.00	00.00
0.00	0.00	0.00	0.00	0.00	00.0
251	225	234	228	239	257
85.5	85.5	85.5	85.5	85.5	85.5 68.4
40.8	47.6	47.6	47.6	40.8	40.8
8 8 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 8 8 7 8 8 7 8 8 7 8 8 7 8 8 9 8 9 8 9 8	7.84 6.86 7.57 7.69 7.49	7.10 7.10 7.54 7.95 7.80 7.54	7.55 7.58 7.94 7.08 7.20	7.07 6.67 7.35 7.35 6.91 7.37 7.35
7.02 7.03 6.94 6.99 6.99 6.97 7.75	6.98 6.98 6.98 7.01 7.03	6.95 7.03 7.04 7.04 6.96 6.96 6.96	6.93 6.95 7.05 7.01 7.11	7.01 7.00 7.01 7.01 6.99 7.00 7.00	7.05 6.95 7.05 6.95 7.03 6.99 7.00
23.5 24.0 25.3 24.7 24.6 24.6 24.6	25.5 25.5 26.2 25.5 25.5 25.5 25.5 25.5	25.6 25.6 25.9 25.0 25.0 25.0	24.6 24.6 24.8 25.1	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	25.6 25.7 25.7 25.5 25.9 25.9 25.9
900 1000 1100 1800 900 900	900 900 900 900 900	900 900 900 900 900	900 900 900 900 900	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2000 1100 1000 1000 1000 1000 1000 1000
209 211 211 211 211 215 31	32228232323	225 4 52 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	232 233 234 235 236	233 240 241 243 243	245 246 248 248 250 251 252
03-08-95 03-09-95 03-10-95 03-11-95 03-12-95 03-13-95 03-14-95	03-15-35 03-17-95 03-18-95 03-19-95 03-20-95 03-21-95	03-23-95 03-24-95 03-25-95 03-26-95 03-27-95 03-28-95	03-30-95 03-31-95 04-01-95 04-02-95 04-03-95	04-06-95 04-07-95 04-09-95 04-10-95 04-11-95	04-13-95 04-13-95 04-15-95 04-16-95 04-17-95 04-19-95

	a	a	0.00034 0.00000 0.00181 0.000378 29
	ര	σ	0.044 0.000 0.285 0.0518 29
	00	0.00	0.00
	000	00.00	0.00
8	737	233	243 189 351 33.6 38
1. 1. 0	85.5	85.5	83.3 68.4 102.6 6.99 38
ç	8.04 8.	8.08	51.5 27.2 95.2 20.62 38
6.92 6.91 7.32 6.80 6.73	6.73 6.96 6.60 7.35 7.57 7.90	7.38 7.26 7.22 6.94 7.17 7.01	8.21 6.60 9.75 0.681 272
7.00 7.00 7.00 7.00	7.01 7.02 7.03 7.03 7.00 6.99	6.98 7.00 7.03 7.03 6.99 6.99 6.99	6.76 7.74 271
25.4 25.5 25.5 25.1 24.9 24.9	25.3 25.3 25.3 25.3 25.2 25.0	25.1 25.4 25.3 25.4 25.4 25.8	24.3 20.1 26.5 1.24 272
900 2000 900 900 900	900 1100 900 900 900	830 830 800 800 800 800	
253 254 255 256 257 258	259 260 261 262 263 264	266 267 268 269 270 271	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-27-95 04-28-95 04-29-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-07-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

a Data not available; analytical instrument would not calibrate.

TANK No. 28 TANK CONCENTRATION: 5% GROUNDWATER (WELL CC-27B) DILUTED WITH APG-EA DECHLORINATED TAP WATER DEN EXPOSURE: 10 mg/L

Total Unionized Ammonia- Nitrogen (mg/L)		0.00122	0.00054	a	0.00000
Total Ammonia- Nitrogen (mg/L)		0.193	0.083	a	0.000
Free Available Chlorine (mg/L)		0.00	00.00	0.00	0.00
Total Residual Chlorine (mg/L)		0.00	0.00	0.00	0.00
Conductivity (umohs/cm)		211	217	229	222
Hardness ((mg/L as (CaCO3)		85.5	85.5	102.6	85.5
Alkalinity (mg/L as CaCO3)		8.04	34.0	40.8	40.8
Dissolved Oxygen (mg/L)	8.98 7.90 7.87 7.77	6.8 6.8 8.0 8.0 8.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	8.26 8.26 8.26 8.27 8.12 8.27 8.27 8.27 8.27	8.82 8.73 8.13 8.89 8.89 8.89	9.00 9.12 9.12 9.12 8.72 8.29
Ħ	7.25 7.19 7.29 7.15 7.13	7.05 7.05 7.07 7.07 7.03	7.07 7.07 7.08 7.08 7.09 7.09	7.13 7.22 7.25 7.26 7.08 7.08	7.14 7.14 7.20 7.10 7.13
Temperature (Celcius)	24.7 25.0 25.2 24.9 25.0	25.0 24.8 24.9 24.9 24.9	24.7 24.7 24.7 24.8 25.1 24.5	2 2 2 2 2 2 2 3 3 4 4 5 6 8 8 4 4 5 6 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	24.2 24.2 24.2 23.8 23.8 3.9
Time T (Military)	900 900 900 900 900 900 900	900 1000 800 800 730	66 60 60 60 60 60 60 60 60 60 60 60 60 6	900 815 816 900 900	1100 900 900 800 500
Trailer Exposure Test Day	← 01 to 4 to €	0 6 8 9 9 7 7 7 6	24666	2282828	28 29 30 31 32
Date	08-12-94 08-13-94 08-14-94 08-15-94 08-16-94	08-17-94 08-18-94 08-20-94 08-21-94 08-22-94	08-24-94 08-25-94 08-26-94 08-27-94 08-28-94 08-30-94	09-02-1-94 09-01-94 09-02-94 09-03-94 09-05-94 09-05-94	09-07-94 09-08-94 09-09-94 09-11-94 09-12-94

0.00000	a	æ	a 0.00013	æ	0.00010
0.000	æ	σ	a 0.024	æ	0.019
0.00	0.00	Œ	0.00	0.00	0.00
0.00	0.00	æ	0.00	0.00	0.00
221	226	194	213	219	220
85.5	85.5	68.4	85.5	85.5 5.5	85.5
40.8	40.8	34.0	34.0	34.0	40.8
9.06 8.34 8.34 8.09 8.36 8.49	8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9	8.69 7.84 7.91 8.81 8.97 9.09	9.90 9.00 9.30 8.36 8.36 8.36	8.35 7.28 7.28 8.33 7.79	8.930 8.930 8.856 8.27 8.27
7.09 7.09 7.09 7.11 7.03	7.11 7.13 7.14 7.14 8.94	6.76 7.17 7.14 7.09 7.09 7.01	7.02 7.01 7.00 7.03 7.04	6.97 7.04 7.08 7.08 6.92 6.92	7.00 7.07 7.07 7.07 7.08 7.08
240 240 240 240 240 240 240 240 240 240	24.6 24.8 24.8 24.6 7.4 24.6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5	25.7 25.7 25.7 24.7 24.6 24.6	24.2 24.2 24.2 24.2 24.3 24.3 24.3
700 1400 1300 1200 820 830 1000	000 000 000 000 000 000 000 000	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	00110000000000000000000000000000000000	250 250 200 200 200 200 200 200 200 200	006 006 006 006
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	- 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	: 8	55 54 56 61 61	66 66 66 66 66 66 66 66 66 66 66 66 66	01.00 01.00
09-13-94 09-14-94 09-15-94 09-16-94 09-17-94 09-18-94 09-20-94	09-22-94 09-23-94 09-24-94 09-25-94 09-26-94	09-28-94 09-28-94 10-07-94 10-03-94 10-04-94	10-06-94 10-07-94 10-08-94 10-11-94 10-11-94	10-13-94 10-15-94 10-15-94 10-17-94 10-18-94	10-20-94 10-21-94 10-23-94 10-23-94 10-24-94 10-25-94

0.00017	0.00032	0.00027	0.00024	0.00034	0.00011	0.00047
0.024	0.057	0.046	0.036	0.043	0.043	0.040
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
214	224	227	212	206	189	278
85.5	85.5	85.5	85.5	85.5	85.5	68.4
40.8	40.8	40.8	40.8	47.6	27.2	88.4
8.62 8.66 7.98 9.17 9.95 7.93	2 8 9 8 9 8 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6	8.53 8.53 8.65 8.74	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00	8.89 8.89 7.85 7.80 7.90 7.90	7.80
7.10 7.12 7.12 7.12 7.05 7.08	7.00	7.03 7.12 7.14 7.03	7.09 7.09 7.09 7.07 7.07	7.24 7.02 7.02 6.98 6.93 6.93 6.78	6.97 6.97 6.97 6.87 6.92 7.33	7.32
22 22 22 22 22 22 22 22 22 22 22 22 22	250 250 250 250 250 250 250 250 250 250	24.2 24.4 24.4 24.4 24.4	2466 2466 2477 2477	2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3	26.92 26.92 25.0 25.0 25.0 25.0	25.1 24.9
000 600 600 600 600 600 600 600 600 600	1000 1000 1000 1000 1000 1000 1000	8 8 900 000 8 8 900 000 000		200 200 200 200 200 200 200 200 200 20	0001 0001 0000 0000 0000 0000 0000 000	1100
77 78 78 80 81 83 83	88 88 89 90 10	9 9 9 9 9 9	98 98 101 102 103	201 100 100 100 100 100 100 100 100 100		119
10-27-94 10-28-94 10-30-94 10-31-94 11-01-94 11-03-94	11-05-94 11-05-94 11-08-94 11-08-94 11-09-94	11-12-94 11-13-94 11-14-94 11-15-94	11-16-94 11-18-94 11-19-94 11-20-94 11-21-94	11-24-94 11-25-94 11-26-94 11-28-94 11-28-94	12-01-94 12-03-94 12-03-94 12-05-94 12-06-94 12-06-94	12-08-94 12-09-94

	0.00096	0.00111	0.00060	0.00038	0.00039	a a
	0.067	0.100	0.040	0.026	0.027	œ
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	270	264	283	286	296	284
	68.4	68.4	85.5	68.4	102.6	85.5
	81.6	9.	88.4	88.4	95.2	81.6
7.55 7.72 8.29 8.56 8.48	8.38 8.04 7.61 7.66	9.00 8.02 7.85 8.33 8.35 8.35	8.03 8.03 8.08 7.97 7.97	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7.49 7.12 7.79 7.98 8.22 7.50	7.67 7.61 7.20 7.27
7.39 7.37 7.38 7.42	7.42 7.40 7.49 7.43 7.31	7.31 7.32 7.57 7.57 7.50 7.50	7.45 7.45 7.42 7.47 7.40	7.46 7.45 7.40 7.53 7.41 7.49	7.43 7.46 7.40 7.42 7.42	7.74 7.45 7.42 7.53
25.2 25.2 24.4 24.0	24.6 25.3 24.8 25.0	24.5 2.2.3 2.2.3 2.2.3 2.3.5 3.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	22 22 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	23.3 23.0 23.0 23.0 23.0 23.0 23.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.4 24.6 24.9 24.7
1300 900 900 900	1100 1100 1000 1000	200 000 000 000 000 000 000 000 000 000	2000 1 100 1000 100 1000 1000 1000 1000	1100 1000 1000 1000 1000	100 100 100 100 100 100 100 100 100 100	1000 1000 1000
122 123 124 125	126 128 130	2 2 2 2 2 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5	0 1 1 4 2 4 4 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 6 4 6	148 149 150 151 152 153	154 155 157 158 159	161 162 163
12-10-94 12-11-94 12-12-94 12-13-94	12-15-94 12-16-94 12-17-94 12-19-94	12-21-94 12-22-94 12-23-94 12-25-94 12-26-94 12-27-94	12-29-94 12-30-94 12-31-94 01-01-95 01-03-95 01-03-95	01-05-95 01-06-95 01-07-95 01-09-95 01-09-95	01-12-95 01-13-95 01-15-95 01-16-95 01-17-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00015	0.00040	0.00010	0.00011	0.00020	900000
0.011	0.024	0.015	0.028	0.037	0.013
0.00	0.00	0.00	0.00	0.00	0.00
00.00	0.00	0.00	0.00	0.00	00.00
290	589	253	248	252	347
85.5 5.5	85.5	85.5	85.5	85.5	85.5
88. 4.	95.2	47.6	34.0	34.0	34.0
7.89 8.65 7.71 7.74 7.74 7.58 7.86 8.37	8.03 8.03 8.17 8.21 8.94 74.9	9.00.00.00.00.00.00.00.00.00.00.00.00.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	9 9 8 8 8 8 9 9 9 9 9 8 8 8 8 9 9 9 9 9
258 448 447 745 732 732 732	7.36 7.47 7.40 7.38 7.36 7.36	7.20 7.20 7.03 7.03 6.94 7.03	6.99 6.99 7.00 7.00 7.00 7.00 7.00 7.00	7.07 7.02 7.05 7.07 7.07 7.09	7.03 7.04 7.02 7.03 6.96
24.4 23.0 23.0 24.0 24.0 24.0 25.0 27.0 27.0	25.2 24.0 24.0 25.0 25.0 25.0 25.0 25.0	22.0 21.0 21.0 20.7 19.8 19.8	20.2 20.9 20.5 20.5 20.5 20.5	21.5 21.0 21.0 21.0 21.0 21.7	21.1 20.9 22.1 22.3 22.3
600 1000 1000 830 600 600 600 600 600 600 600 600 600 6	900 1200 900 900 900 900	900 900 900 900 900 900 900	000 000 1400 000 000 000 000 000 000 000	000 000 000 000 000 000 000 000 000 00	900 1000 1015 900 900
165 168 168 177 177 175	471 175 176 178 180	- 28 - 28 - 28 - 28 - 28 - 28 - 28 - 28	88 190 197 193 193 194	200 200 200 200 200 200 200 200 200 200	203 204 205 206 207 208
01-23-95 01-24-95 01-25-95 01-26-95 01-27-95 01-29-95 01-30-95	02-01-95 02-02-95 02-03-95 02-04-95 02-05-95 02-06-95	02-08-93 02-09-95 02-10-95 02-12-95 02-13-95	02-15-95 02-16-95 02-17-95 02-19-95 02-20-95	02-22-55 02-23-95 02-24-95 02-25-95 02-26-95 02-27-95	03-07-95 03-02-95 03-03-95 03-05-95 03-06-95 03-07-95

0.00008	0.00004	æ	0.00023	0.00024	0.00015 a
0.015	0.010	æ	0.058	0.060	0.031 a
0.00	0.00	0.00	0.00	0.00	00.00
00.00	0.00	0.00	0.00	00.0	00.00
250	223	235	228	237	229
. 85.5	85.5	85.5	85.5	85.5	85.5 68.4 4.8
40.8	47.6	47.6	47.6	8.	40.8 40.8
8.47 8.22 8.06 8.28 8.28 8.12 8.35 8.35	8.30 8.08 7.90 7.99 7.99 7.64	7.66 6.81 7.50 8.15 7.39 7.27	7.15 7.10 7.51 8.09 7.50 7.50	7.66 7.71 7.71 8.16 7.18 7.15	7.18 6.71 7.40 7.17 7.34 7.32 7.32
7.02 7.03 6.94 6.96 6.99 6.97 7.05	6.90 7.02 6.94 6.98 7.01 7.03	6.95 7.03 7.05 7.05 6.96 6.96	6.93 7.02 7.04 7.11 7.01	7.01 6.99 7.01 6.99 7.00 7.00	7.05 6.95 7.22 7.03 7.00 7.00
25.2 25.2 25.2 25.2 24.3 24.3 24.3 24.3 24.3 24.3 24.3	25.1 25.2 25.3 25.2 25.5 25.5 25.5	25.3 25.8 25.7 24.8 24.8	22 22 22 22 22 22 22 22 22 22 22 22 22	24.5 24.5 24.5 25.7 25.0 25.0	25.2 24.9 25.1 25.0 25.0 25.5 25.0
900 1000 1100 900 900 900	1000 1000 1600 900 900 900	900 900 900 900 900	900 900 900 900 900 900	900 1300 900 900 900	000 1400 1400 900 900 900 900
209 211 212 213 214 215 216	217 218 220 221 222 223	22 4 225 226 227 229 230	232 232 233 234 235 237	239 240 242 243 244	245 246 247 249 250 251
03-08-95 03-09-95 03-10-95 03-11-95 03-12-95 03-14-95	03-16-95 03-17-95 03-18-95 03-19-95 03-20-95 03-21-95	03-23-95 03-24-95 03-25-95 03-26-95 03-27-95 03-28-95	03-30-95 03-31-95 04-01-95 04-02-95 04-04-95 04-05-95	04-06-95 04-07-95 04-08-95 04-10-95 04-11-95	04-13-95 04-14-95 04-15-95 04-16-95 04-18-95 04-19-95

æ	ı	o l	0.00031 0.00000 0.00122 0.000308
ro	ı	æ	0.040 0.000 0.193 0.0369 29
0.00		00:00	0.00 0.00 38
0.00		0.00	0.00 0.00 38
232		733	242 189 347 32.9 38
85.5		89 Si	83.7 68.4 102.6 7.64 38
40.8		8.0	51.2 27.2 95.2 20.91 38
7.08 7.08 7.38 6.98 6.89 6.78 6.89	6.98 6.74 7.50 7.66 8.18 7.29	7.42 7.23 7.10 6.99 6.95 7.15	8.22 6.71 10.06 0.698 272
7.02 7.00 7.00 7.00 7.04 7.04	7.02 7.02 7.03 7.00 6.99 7.03	6.98 7.00 7.02 7.02 6.99 6.99 6.99	6.76 7.74 271
25.2 25.8 25.3 24.9 24.9 24.7	25.1 25.2 25.1 25.0 24.9 24.9	24.8 25.1 25.1 25.0 25.0 25.0	24.1 19.6 26.4 1.34 272
900 2000 900 900 900	900 1100 1600 900 900	000000000000000000000000000000000000000	
253 254 255 256 257 258 259	260 261 262 263 264 264	266 267 268 269 270 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-27-95	04-28-95 04-29-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-07-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

a. Data not available; analytical instrument would not calibrate.

TANK No. 29 TANK CONCENTRATION: 25% GROUNDWATER (WELL CC-27B) DILUTED WITH APG-EA DECHLORINATED TAP WATER NO DEN EXPOSURE

Total Unionized Ammonia- Nitrogen (mg/L)	0.00015	a a	0.00000
Total Ammonia- Nitrogen (mg/L)	0.142	0.084 a	0.000
Free Available Chlorine (mg/L)	00.00	00.00	00.00
Total Residual Chlorine (mg/L)	00.00	00.00	0.00
Conductivity (umohs/cm)	258	267	275
Hardness (mg/L as (CaCO3)	85.5	85.5	85.5
Alkalinity (mg/L as CaCO3)	27.2	27.2	27.2
Dissolved Oxygen (mg/L)	8.65 7.47 7.50 7.85 7.17 7.91 7.91 7.82 7.82	7.86 7.96 7.93 7.93 7.85 7.85 7.85 7.86	2.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1
Ą	6.27 6.19 6.21 6.21 6.27 6.27 5.82 5.96 6.05	6.09 6.09 6.09 6.09 6.09 6.09 71.0	1.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6
Temperature (Celcius)	24.5 24.9 24.5 24.7 24.7 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5	24.2 24.3 24.3 24.3 24.3 24.3 24.3	24.0 23.8 23.8 23.8 24.0 24.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25
Time T (Military)	900 900 1000 1000 900 900 900 900 900 90	730 1000 1100 900 900 800 900 900 100	900 815 810 1100 900 1100 900 900 800 500
Trailer Exposure Test Day	+ 7 c 4 c o r 8 c o f	50 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	22 22 24 23 25 24 23 25 25 25 25 25 25 25 25 25 25 25 25 25
Date	08-12-94 08-13-94 08-14-94 08-15-94 08-17-94 08-18-94 08-20-94 08-21-94	08-23-94 08-24-94 08-25-94 08-26-94 08-28-94 08-30-94 08-31-94 09-01-94	09-02-94 09-03-94 09-04-94 09-05-94 09-07-94 09-08-94 09-10-94 09-11-94

0.00000	æ	œ	0.00002	œ	0.00002
0.000	a2	œ	0.030	ro	0.018
0.00	0.00	œ	00.00	0.00	0.00
0.00	00.00	Œ	0.00	00:00	00.00
276	279	255	268	275	274
85.5	85.5	85.5 5	4 .89	85.5 5	85.5
27.2	27.2	27.2	27.2	27.2	27.2
8.52 8.22 8.01 7.92 8.08 8.18 8.18	8.06 8.49 7.88 7.81 7.81	7.80 7.68 7.52 8.63 8.57 8.57 8.54	8.02 8.86 8.26 7.68 8.24	7.94 7.12 7.54 7.79 8.46 7.55	8.72 8.79 8.17 8.51 8.09 7.96 8.08
6.19 6.18 6.08 6.33 6.21 6.21	6.23 6.23 6.03 6.03	5.94 6.26 6.28 6.23 6.17 6.17	6.18 6.17 6.20 6.20 6.24 6.25	6.30 6.30 6.25 6.29 6.13 8.13	6.24 6.24 6.24 6.27 6.27 6.31
23.8 24.5 24.5 24.5 24.3 24.1 24.1 24.1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22 22 22 24 24 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	24.1 24.3 24.3 24.3 24.3 23.8	24.5 25.4 24.7 24.1 24.1	24.0 22.2 23.8 23.9 24.1 24.1
700 1400 1200 820 830 1000 1000	1000 1000 1300 900 800	1000 1030 1030 1100 1000 1000	1100 1100 1100 1000 1600	1300 1300 1000 800	000 000 000 000 000 000 000 000 000 00
88888888888888888888888888888888888888	2 4 4 4 4 4 4 5 4 5 5 7 5 7 5 7 5 9 7 5 9 9 9 9 9 9 9 9 9	. & & 0. 7. 7. 2. 4. 7.	56 57 58 60 61 62	64 65 67 68 68	70 71 72 73 75 76
09-13-94 09-14-94 09-15-94 09-17-94 09-18-94 09-20-94 09-21-94	09-22-94 09-23-94 09-24-94 09-25-94 09-26-94	09-28-94 09-29-94 10-01-94 10-03-94 10-04-94	10-06-94 10-07-94 10-09-94 10-11-94 10-12-94	10-13-94 10-14-94 10-15-94 10-17-94 10-18-94	10-20-94 10-21-94 10-22-94 10-23-94 10-25-94

0.00002	0.00005	0.00005	0.00003	0.00008	0.00002	0.00014
0.018	0.050	0.052	0.033	0.043	0.039	0.031
0.00	0.00	0.00	00.00	0.00	0.00	00:00
0.00	0.00	0.00	0.00	0.00	0.00	00.0
569	277	278	263	255	244	321
85.5	85.5 5.5	85.5	85.5	85.5	85.5	68.4
34.0	34.0	34.0	27.2	40.8	27.2	68.0
8.29 7.66 8.39 8.78 8.68 8.68	8.87 8.80 8.80 8.80 8.71 8.62	7.86 7.55 8.04 8.34	8.92 7.92 7.92 8.09 8.09	8.03 9.13 9.13 8.53 8.53 8.53	6.53 8.29 7.62 7.91 7.79	6.55 7.63 7.43
6.33 6.33 6.32 6.28 6.24 6.30	6.29 6.31 6.31 6.31	6.25 6.53 6.27	6.28 6.33 6.32 6.33 6.33 6.33 6.33 6.33 6.33	6.33 6.24 6.24 6.20 6.20 6.20	6.09 6.29 6.31 6.28 6.85 6.85	6.97 6.91 10.00
24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.1 24.2 24.1 24.1 24.1	24 24 24 24 24 24 24 24 24 24 24 24 24 2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	25.1 25.1 25.1 25.1 25.1	25.2 25.2 25.1
1000 900 1000 1100 1000	2007 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	845 1000 1000	000000000000000000000000000000000000000	900 1020 1000 900 900	100 1000 1100 900 900	1100
77 78 79 80 81 83	88 87 88 87 88 87 88 88 88 88 88 88 88 8	- 99 9 9 9 - 25 8 4 5 6	88 8 9 0 1 100 200 200 200 200 200 200 200 200	00 00 00 00 00 00 00 00 00 00 00 00 00	- 255 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	118 120
10-27-94 10-28-94 10-29-94 10-31-94 11-02-94	11-05-94 11-05-94 11-06-94 11-08-94 11-09-94	11-12-94	11-19-94 11-16-94 11-17-94 11-19-94 11-20-94	11-22-94 11-23-94 11-25-94 11-26-94 11-28-94 11-29-94	17-30-94 12-01-94 12-03-94 12-04-94 12-05-94	12-07-94 12-08-94 12-09-94

	0.00035	0.00041	0.00022	0.00012	0.00014	Ø
	0.069	0.110	0.043	0.026	0.026	Ø
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	311	306	321	321	331	319
	68.4	68.4	85.5	68.4	102.6	85.5
	61.2	61.2	68.0	68.0	74.8	68.0
7.40 7.52 7.84 7.99 7.95	7.50 7.30 7.18 7.11	7.35 7.35 7.35 7.47 7.89 7.80 7.80	7.25 7.25 7.29 7.35 7.73	8.06 8.06 8.71 8.98 7.47	7.7 6.79 7.46 7.49 6.86 6.86	6.94 6.95 6.67 6.51
6.90 6.97 6.92 6.92 8.92	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.99 6.99 6.99 7.05 6.94 7.59	7.00 7.01 6.96 6.95 7.01 7.04 7.06	7.14 6.97 7.01 7.12
25.3 25.3 24.7 24.6	25:2 25:2 25:2 25:2 25:3 25:3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.7 24.7 24.7 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5	23.7 23.7 24.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25	2442 2442 2456 2456 3456 3566 3566 3666 3666 3666 3666 3	24.7 24.9 25.0 25.0
1300 900 900 900	1100 1100 1000 1000	000 000 000 000 000 001 000 001	900 1000 1100 1100 1100	1100 1130 1000 1000 1000	1000 1000 1000 1000 1000	1000 1000 1100
127 123 124 125 125	126 127 129 130	132 132 134 136 138 138 138 138 138 138	0 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	251 156 158 158 160 160	161 162 163
12-10-94 12-11-94 12-12-94 12-13-94	12-15-94 12-16-94 12-17-94 12-19-94	12-22-94 12-22-94 12-23-94 12-25-94 12-26-94 12-27-94	12-29-94 12-30-94 12-31-94 01-01-95 01-03-95	01-05-95 01-06-95 01-07-95 01-09-95 01-10-95	01-12-95 01-13-95 01-14-95 01-15-95 01-16-95 01-17-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00004	0.00013	0.00005	0.00002	0.00003	0.00001
0.010	0.025	0.015	0.025	0.034	0.012
0.00	0.00	0.00	00.00	00.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
322	329	294	290	295	372
85.5	85.5	85.5	85.5	85.5	85.5
74.8	74.8	40.8	27.2	27.2	34.0
7.07 7.33 6.87 6.66 6.66 6.64 7.06 7.12	6.43 6.96 7.48 7.45 7.56	5.88 8.89 1.88 1.88 1.99 1.99	8.82 9.81 9.05 8.77 8.77	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
7.09 6.90 6.90 6.92 6.92 6.89 6.89 6.89	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.55 6.38 6.37 6.37	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.38 6.38 6.38 7.28	6.39 6.38 6.46 6.29 6.37
24.7 23.2 23.2 24.2 24.2 23.4 23.4 23.4 23.4	22.2 22.2 23.4 23.4 23.4 23.4 23.4 23.4	2 2 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4	7 7 7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7	22.2 22.2 22.2 22.6 22.6 35 36	22.1 22.9 23.1 23.1 23.1
600 1000 1100 1000 830 1000 1000	900 1200 930 930 900	200 1200 900 900 900	900 1100 1000 1000 1000	0001 0000 0000 0000 0000 0000 0000 000	900 1000 1015 900 900
165 166 167 168 169 171 172	471 771 771 179 180	185 185 185 186 186	190 192 193 194 194	200 200 200 201 201	203 204 205 207 208
01-23-95 01-24-95 01-25-95 01-26-95 01-27-95 01-29-95 01-30-95	02-01-95 02-02-95 02-03-95 02-05-95 02-06-95 02-07-95	02-05-05-05-05-05-05-05-05-05-05-05-05-05-	02-15-55 02-17-95 02-18-95 02-19-95 02-20-95	02-23-95 02-23-95 02-25-95 02-26-95 02-27-95 03-01-95	03-02-95 03-03-95 03-04-95 03-05-95 03-06-95 03-07-95

0.00002	0.00001	a	0.00006	0.00006	0.00004 a
0.015	0.010	æ	0.055	0.058	0.032 a
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	00.0
291	266	291	279	290	303
85.5	85.5	85.5	85.4	85.5	85.5 68.4
34.0	40.8	40.8	34.0	27.2	34.0
8.18 7.99 7.48 7.73 7.73	7.96 8.25 7.88 7.87 7.87 7.82	7.86 7.50 7.04 7.70 6.77 7.13	6.79 6.79 7.17 7.46 7.10	6.90 7.06 7.17 7.62 6.71 7.18	7.23 6.77 7.35 7.13 7.06 7.65 7.50
6.35 6.35 6.32 6.30 6.30 6.30	6.33 6.33 6.38 6.38 6.35	6.28 6.35 6.45 6.27 6.27	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6.38 6.38 6.38 6.38 6.37 7.4	6.38 6.38 6.45 6.45 6.45 6.66 6.86 6.86 6.86
23.2 23.3 24.2 25.0 24.1	24.5 24.5 24.5 24.5 24.9 24.9	252 252 253 253 253 253 253 253	25.2 25.2 25.2 25.2 25.3 25.3 25.3 25.3	25.3 25.3 25.5 25.7 25.6 25.6	25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5
900 1000 1800 900	900 900 1000 1600 900	900 900 900 900 900 900	000 000 000 000 000 000 000 000 000 00	00 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000 000 000 000 000 000 000
209 210 212 213 214	218 218 220 220 221	22 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	232 232 234 235 236 236	238 240 241 242 243 243	245 246 246 247 250 251 252
03-08-95 03-09-95 03-10-95 03-11-95 03-13-95	03-15-95 03-16-95 03-17-95 03-18-95 03-19-95 03-20-95	03-22-95 03-23-95 03-24-95 03-25-95 03-27-95 03-27-95	03-24-95 03-30-95 03-31-95 04-02-95 04-03-95	04-05-95 04-06-95 04-07-95 04-09-95 04-10-95	04-12-95 04-13-95 04-14-95 04-15-95 04-17-95 04-18-95 04-19-95

	α	o l	0.00008 0.00000 0.00041 0.000097 29
	ro	ro O	0.038 0.000 0.142 0.0311
	0.00	0.00	0.00 0.00 38
	0.00	00.00	0.00 0.00 38
	279	284	289 244 372 26.1 38
v.	85.5	85.5	83.7 68.4 102.6 7.64 38
	34.0	34.0	40.3 27.2 74.8 16.61 38
7.27 7.29 7.40 7.14 7.05	7.19 7.22 6.84 7.57 8.52 7.56	7.81 7.76 7.47 7.41 7.73 7.42	7.82 6.43 9.25 0.597 272
6.44 6.44 6.42 6.50 6.42 6.50	0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4	6.45 6.48 6.47 6.45 6.45 6.35	5.82 7.15 271
25.5 26.1 25.5 24.7 24.9 24.6	25.0 25.1 25.1 24.8 24.8 7.4	24.8 25.2 25.1 25.1 25.0 24.9 25.6	24.2 20.8 26.4 1.08 272
900 1200 2000 900 900	900 1100 1600 900 900	000000000000000000000000000000000000000	
253 254 255 256 257 258	259 261 262 263 264 265	266 267 268 269 270 271	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-27-95 04-28-95 04-29-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-08-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

a. Data not available; analytical instrument would not calibrate.

TANK No. 30 TANK CONCENTRATION: 25% GROUNDWATER (WELL CC-27B) DILUTED WITH APG-EA DECHLORINATED TAP WATER NO DEN EXPOSURE

Date	Trailer Exposure Test Day	Time (Military)	Temperature (Celcius)	Ā	Dissolved Oxygen (mg/L)	Alkalinity (mg/L as CaCO3)	Hardness (mg/L as CaCO3)	Conductivity (umohs/cm)	Total Residual Chlorine (mg/L)	Free Available Chlorine (mg/L)	Total Ammonia- Nitrogen (mg/L)	Total Unionized Ammonia- Nitrogen (mg/L)
08-12-94 08-13-94 08-14-94 08-15-94 08-16-94	-U04v	900 900 900 1000	24.5 24.9 25.0 24.6 24.8	6.27 6.19 6.25 6.20 6.17	8.62 7.43 7.57 7.76 7.24							
08-17-94 08-18-94 08-20-94 08-21-94 08-22-94 08-23-94	0 6 8 8 9 1 7 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	1000 900 800 1000 800 900 730	24.9 24.8 24.7 24.8 24.7 24.7	6.30 6.28 5.95 6.05 6.00	6.70 6.54 7.91 7.88 7.80 7.78	27.2	85.5	258	00.0	0.00	0.180	0.00019
08-24-94 08-25-94 08-26-94 08-27-94 08-29-94	£ 4 1 1 1 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1000 1100 900 800 800 900 900	22 22 22 22 22 22 22 22 22 22 22 22 22	7.9.3 6.00 8.0.3 7	7.95 8.35 7.92 7.86 7.79 7.79	27.2	85.5	267	0.00	0.00	0.081	0.00005
08-31-94 09-01-94 09-02-94 09-03-94 09-05-94 09-06-94	8228888	800 1100 900 815 815 810 900	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6.20 6.16 6.24 6.34 6.35 6.35 6.15	7.86 8.29 7.78 7.84 8.37 8.37	27.2	102.6	772	0.00	00:00	æ	æ
09-07-94 09-08-94 09-09-94 09-10-94 09-11-94	27 28 30 33 33 35 37	800 1100 900 800 800 500	23.9 23.8 23.8 23.8 23.8 23.5	6.15 6.20 6.21 6.21 8.38	8.45 8.63 9.20 8.61 8.29 7.85	27.2	85.5	274	0.00	0.00	0.000	0.00000

0.00000	a	a	a 0.00002	α	0.00002
0.000	æ	æ	a 0.032	ิซ	0.026
00.00	0.00	æ	00.00	00.00	0.00
0.00	0.00	ส	0.00	0.00	00.00
276	278	255	266	271	275
85.5	85.5	68.4	68.4	85.5	85.5
27.2	27.2	27.2	27.2	27.2	27.2
8.55 8.21 8.00 8.01 7.75 7.93	8.18 8.11 8.05 8.46 7.74 8.09	8.34 7.77 7.77 7.65 8.63 8.63	8.50 8.71 8.28 8.28 8.28 7.78 8.03	8.14 7.25 7.84 7.84 7.55	7.56 8.52 8.00 7.95 7.85 8.00
6.14 6.16 6.06 6.26 6.25	6.16 6.16 6.24 6.23 8.03	6.05 6.26 6.26 6.23 6.10	4 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.25 6.25 6.35 6.08 6.08	6.25 6.24 6.24 6.27 6.26 6.31
23.5 24.2 24.2 24.3 24.3 24.3 24.3	245 245 245 245 245	24.4 24.2 23.9 23.9 24.1 24.1	23.7 4 23.3 4 4 23.6 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	23.2 24.2 24.5 23.6 23.6 23.6 23.6 23.6 23.6	24.0 22.2 23.2 24.0 24.0 23.9 23.9
700 1300 1200 820 830	1000 1000 1000 1300 1300	800 1000 1030 900 915	600 600 600 600 600 600 600 600 600 600	2300 1300 1000 1000 1000 1000	000000000000000000000000000000000000000
33 35 37 38 38 38	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44 48 49 49 49 49 49 49 49 49 49 49 49 49 49	58 52 65 65 65 65 65 65 65 65 65 65 65 65 65	65 66 67 68 68	25 25 25 25 25 25 25 25 25 25 25 25 25 2
09-13-94 09-15-94 09-16-94 09-17-94 09-18-94	09-20-94 09-21-94 09-22-94 09-23-94 09-25-94 09-26-94	09-27-94 09-28-94 09-29-94 10-01-94 10-03-94	10-05-94 10-05-94 10-08-94 10-09-94 10-11-94	10-13-94 10-13-94 10-15-94 10-16-94 10-18-94	10-20-94 10-20-94 10-22-94 10-23-94 10-25-94 10-25-94

0.00002	0.00005	0.00005	0.00004	0.00008	0.00002	0.00017
0.018	0.052	0.052	0.036	0.042	0.046	0.035
0.00	0.00	0.00	00.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
269	277	278	263	256	245	322
85.5	85.5	85.5	85.5	85.5	85.5	85.5
34.0	34.0	34.0	27.2	40.8	27.2	68.0
8.33 7.64 8.36 8.36 8.73 8.54	8.46 8.68 8.68 8.68 8.51	7.85 7.62 8.12 8.30	8.38 8.01 7.84 7.80 8.14 8.10	8 422 8 8 8 22 8 8 8 22 8 22 8 22 8 8	8.12 8.12 7.80 7.31 7.70 7.70	6.95 7.02
6.33 6.33 6.32 6.28 6.24 6.30	6.26 6.26 6.29 6.31	6.25 6.25 6.50 6.27	6.25 6.25 6.25 6.28 6.28 6.30	6.20 6.20 6.20 6.20 6.20 6.20 7.20 7.20 7.20	6.29 6.29 6.28 6.28 6.85	6.97 6.91 6.91
24.2 24.2 24.2 24.2 24.7 24.7 24.7 24.7	22 22 22 22 22 22 22 22 22 22 22 22 22	24.0 24.0 24.1 24.1 24.1	22 22 22 22 22 22 22 22 22 22 22 22 22	8 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5	25.4 25.3
1100 900 900 1000 1100	000 000 000 000 000 000 000 000 000	845 830 1000	000000000000000000000000000000000000000	200 1020 1000 900 900 900	000 1000 000 000 000 000 000 000	1100 1000
77 78 79 80 81 83	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 9 9 9 9 - 2 8 9 9 9 9	98 98 100 101 102	£ 45 9 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	- 255 4 5 9 C 5	118 120
10-27-94 10-28-94 10-30-94 11-01-94 11-02-94	11-05-94 11-05-94 11-06-94 11-07-94 11-08-94	11-10-94 11-11-94 11-13-94 11-13-94	11-15-94 11-16-94 11-18-94 11-20-94 11-21-94	11-22-94 11-23-94 11-25-94 11-28-94 11-29-94	12-01-94 12-01-94 12-03-94 12-05-94 12-05-94	12-07-94 12-08-94 12-09-94

	0.00034	0.00037	0.00023	0.00012	0.00015	a
	0.068	0.100	0.045	0.025	0.026	a
	0.00	0.00	00.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	308	305	320	320	335	318
	4.89	68.4	85.5 5.5	68.4	102.6	85.5
	61.2	61.2	08.0	0.89	74.8	68.0
6.81 6.97 7.50 7.72	7.96 7.01 7.21 6.98 7.19	7.55 7.50 7.50 7.77 7.78 7.68	7.52 7.54 7.54 7.40 8.07	8.48 8.48 8.67 8.65 7.39	6.63 6.15 6.75 6.96 6.94 7.49	6.95 6.94 6.81 6.86
6.90 6.87 6.92 6.92 6.80	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6.98 6.99 6.99 7.99 7.99 7.99	6.95 6.95 6.96 7.03 6.94 6.98	7.00 7.01 6.96 6.85 7.01 7.06	7.14 6.97 7.01 7.12
25.5 25.6 24.8 24.7	25.2 25.2 25.3 25.3 25.3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3	23.8 23.8 24.2 24.2 24.2	24.8 25.2 25.2 25.4 24.6 24.6	24.8 25.0 24.9
000 900 900 900	800 1100 1000 1000	000 000 000 000 110 000 100 000 000 000	900 1000 1100 1100	1100 1130 1000 1000 1000	900 1000 1000 1000 1000 1000	1000 1000 1000
121 122 123 124 125	126 127 128 130	132 135 136 136 137 138	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	144 148 152 152	155 156 157 158 160	161 162 163
12-10-94 12-11-94 12-12-94 12-13-94	12-15-94 12-16-94 12-17-94 12-19-94	12-20-34 12-22-94 12-23-94 12-24-94 12-25-94 12-27-94	12-29-94 12-30-94 12-31-94 01-02-95 01-03-95	01-05-95 01-06-95 01-08-95 01-09-95 01-10-95	01-12-95 01-13-95 01-14-95 01-15-95 01-17-95 01-18-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00004	0.00012	0.00005	0.00002	0.00003	0.00001
0.009	0.025	0.016	0.026	0.035	0.011
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	00.00	0.00	0.00
322	327	293	292	295	373
85.5 5.5	85.5	85.5	85.5	85.5	85.5
8.47	8.	40.8	27.2	27.2	34.0
7.40 7.20 7.21 7.36 7.76 7.77 7.48 7.80	7.57 7.69 7.58 7.64 8.19 8.01	8.36 8.36 9.05 9.05 14.0 78	9.98 9.34 9.08 9.08 9.08 9.08 9.08	8.53 8.64 8.53 8.53 8.53 8.53	8.57 8.39 8.32 8.43 8.43
7.09 6.90 6.90 7.00 7.00 6.89 6.89	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6.55 6.38 6.37 6.37 6.37	6.30 6.29 6.29 6.29 6.32 6.32	6.39 6.39 6.39 6.39 6.28 6.28	6.39 6.38 6.46 6.29 6.37
24.5 23.0 23.0 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	25.2 25.3 25.4 25.4 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1	222 222 212 202 202 203 203 203 203 203 203 203 20	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22.2 21.2 21.5 21.6 22.6 22.6 22.6	22.1 22.6 23.0 23.0 23.0
000 1000 1000 1000 1000 1000 1000	900 930 930 900 900 900 900	2006 8 90 2008 8	980 1100 1400 1000 1000	990 900 900 900 900 900 900 900 900	900 1000 1015 900
165 166 167 169 171 172 173	175 176 178 179 180	182 183 185 186 186	193 193 193 193 193 193 193	200 200 201 201 201 201	203 204 205 207 207
01-23-95 01-24-95 01-25-95 01-26-95 01-27-95 01-29-95 01-30-95 01-31-95	02-01-95 02-03-95 02-03-95 02-05-95 02-06-95 02-07-95	02-09-95 02-10-95 02-11-95 02-13-95 02-14-95	02-15-95 02-16-95 02-17-95 02-19-95 02-20-95 02-21-95	02-23-95 02-23-95 02-25-95 02-26-95 02-27-95 03-01-95	03-02-95 03-03-95 03-04-95 03-05-95 03-06-95

0.00002	0.00001	a	900000	0.00006	0.00004 a
0.014	0.011	æ	0.056	0.058	0.031 a
0.00	00.0	0.00	0.00	0000	00.00
0.00	00:00	00.0	0.00	0.00	00.00
294	267	291	279	788	305
85.5	85.5	c. C.	85.5	85.5	85.5 68.4
34.0	8	8.00	34.0	27.2	34.0 34.0
7.92 7.92 7.97 8.10 7.77 7.77 7.92	8.10 7.75 7.82 7.85 7.52 7.90	7.67 6.93 7.31 8.11 7.47 7.08 6.85	6.68 6.81 7.41 7.63 7.13	7.34 7.32 7.32 7.57 7.50 7.50	6.97 6.90 7.60 7.47 7.55 7.67 7.58 6.40
6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	6.33 6.33 6.33 6.33 6.23	6.28 6.47 6.32 6.32 6.32	6 6 6 9 3 4 4 6 6 9 8 4 4 6 6 9 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9	6.42 6.39 6.38 6.38 6.35 6.42	6.46 6.38 6.45 6.40 6.45 6.46 6.38
23.6 23.6 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5	24.8 25.0 25.0 25.0 25.0 26.0 26.0 26.0	24.0 25.0 25.0 25.0 24.7 7.7	24.2 24.2 24.4 24.4 24.8 24.8 24.8	24.3 25.1 25.1 25.1 25.1 25.1 25.1	25.5 25.2 25.2 25.2 25.2 25.2 25.5 25.5
900 1000 1100 1800 900 900	000 000 000 000 000 000 000 000 000 00	900 900 900 900 900 900	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	200 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1100 900 1100 900 900 900
209 211 212 213 215 215 216	214 222 223 223 223 223 223 223 223 223 22	226 227 228 229 230	231 232 234 234 236 237	238 240 242 243 244	245 246 247 248 249 250 251
03-08-95 03-09-95 03-10-95 03-11-95 03-12-95 03-13-95 03-14-95	03-16-95 03-17-95 03-18-95 03-20-95 03-22-95	03-23-95 03-24-95 03-25-95 03-27-95 03-28-95 03-29-95	03-30-95 03-31-95 04-01-95 04-02-95 04-03-95 04-04-95	04-06-95 04-07-95 04-08-95 04-09-95 04-11-95 04-11-95	04-13-95 04-14-95 04-15-95 04-16-95 04-17-95 04-19-95

	a	ros	0.00008 0.00000 0.00037 0.000094
	ro	œ	0.040 0.000 0.180 0.0350 29
	0.00	0.00	0.00 0.00 38
	0.00	00:0	0.00 0.00 38
	279	285	289 245 373 26.2 38
	85.5	85.5	83.7 68.4 102.6 7.64 38
	34.0	34.0	40.3 27.2 74.8 16.61
7.22 7.18 7.75 7.38 6.93 7.14	7.10 6.94 6.77 7.66 7.87 8.39 7.34	7.52 7.43 7.36 7.25 7.56 7.27	7.82 6.15 9.34 0.590 272
6.50 6.50 6.50 6.50 6.50	6.44 6.40 6.40 6.40 6.46 6.46	6.45 6.48 6.54 6.45 6.45 6.35	5.82 7.15 271
25.5 25.0 24.5 24.8 4.8	24,5 25,0 24,4 24,6 24,6 34,6 34,6 34,6 34,6 34,6 34,6 34,6 3	24.7 25.1 25.0 25.0 25.0 25.5 25.5	24.2 20.7 26.8 1.07 272
900 2000 900 900	900 1100 1600 900 900	0006	
253 254 255 256 257 258	259 261 262 263 264 265	266 267 268 269 270 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-27-95 04-28-95 04-29-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-08-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

a Data not available; analytical instrument would not calibrate.

TANK No. 31 TANK CONCENTRATION: 25% GROUNDWATER (WELL CC-27B) DILUTED WITH APG-EA DECHLORINATED TAP WATER DEN EXPOSURE: 10 mg/L

Date	Trailer Exposure Test Day	Time (Military)	Temperature (Celcius)	Ŧ.	Dissolved Oxygen (mg/L)	Alkalinity (mg/L as CaCO3)	Hardness (mg/L as CaCO3)	Conductivity (umohs/cm)	Total Residual Chlorine (mg/L)	Free Available Chlorine (mg/L)	Total Ammonia- Nitrogen (mg/L)	Total Unionized Ammonia- Nitrogen (mg/L)
08-12-94 08-13-94 08-14-94 08-15-94	-004 m	900 900 900 900 900	24.6 24.9 25.0 24.6 24.6	6.29 6.19 6.28 6.26	8.61 7.53 7.49 7.79							
08-17-94 08-18-94 08-19-94 08-20-94 08-21-94	6 7 8 8 9 10 11	200 200 800 800 800 800 800 800 800	24.7 24.7 24.8 24.8 24.8	6.30 6.30 5.88 5.99 6.10	7.23 7.07 7.93 7.88 7.84 7.81	27.2	85.5	256	0.00	0.00	0.110	0.00012
08-23-94 08-24-94 08-25-94 08-26-94 08-27-94	21 21 4 4 4 7 7 7 6 7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7	1000 1100 900 900 800	24.2 24.2 24.3 24.3 24.5 24.5 3	6.05 6.01 6.10 6.16 6.13	7.88 7.97 8.27 7.95 7.94 7.86	27.2	85.5	263	0.00	0.00	0.082	0.00006
08-30-94 08-30-94 08-31-94 09-02-94 09-03-94	5 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5	900 800 1100 900 815 815		6.26 6.26 6.22 6.17 6.36	7.91 7.91 8.47 8.36 7.76 7.76	27.2	85.5	276	0.00	0.00	a	æ
09-05-94 09-06-94 09-07-94 09-09-94 09-10-94 09-11-94	25 27 27 28 29 30 31 32 32	1100 900 800 1100 900 900 800 800 500		6.15 6.20 6.20 6.15 6.15 6.26 6.26 6.26	8.47 8.47 8.50 8.61 9.18 8.23 7.83	27.2	85.5	27.7	0.00	0.00	0.000	0.00000

0.00000	a	Ø	0.00002	ra	0.00002
0.000	æ	a	a 0.028	œ	0.019
0.00	0.00	Œ	00.00	0.00	0.00
0.00	0.00	æ	0.00	0.00	0.00
278	281	258	569	276	272
. 85.5	85.5	85.5	85.55	85.5	85.5
27.2	27.2	27.2	27.2	27.2	27.2
8.54 8.00 8.00 8.03 7.71 8.00 8.03	8.03 7.89 7.89 7.84 34	7.87 7.65 8.31 7.61 8.67 8.43 8.51	8.00 8.61 8.76 8.25 7.97 7.60 8.21	7.90 7.18 7.54 7.75 5.63 7.37	8.24 8.24 8.57 8.57 8.00 8.00
6.20 6.18 6.12 6.29 6.23 6.23	6.24 6.27 6.24 6.06 6.08	6.25 6.25 6.25 6.25 6.20 6.20	6.24 6.24 6.24 6.29 6.29	6.32 6.32 6.32 6.32 6.20 6.20	6.32 6.33 6.33 6.33 6.33
24.2 24.8 24.8 24.8 24.5 24.5 24.5 8	24.8 24.8 24.8 24.6 6.6 6.6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	242 2447 2468 2487 2488 3488 3488	25.2 25.2 25.2 26.2 24.8 24.8	24.4 24.1 24.5 24.5 24.5 24.5 24.5
700 1300 1200 820 830 1000 1000	1000 1000 1300 900	1000 1030 1030 1100 1100 1000	1100 1100 1100 1600 1600	1300 900 1000 800	006 006 006 006
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	. 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	: 8 4 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	56 57 58 60 61 62	64 65 65 65 65 65 65 65 65 65 65 65 65 65	70 71 72 73 74 75 76
09-13-94 09-14-94 09-15-94 09-17-94 09-18-94 09-19-94 09-20-94	09-22-94 09-23-94 09-24-94 09-25-94 09-26-94	09-28-94 09-29-94 09-30-94 10-02-94 10-03-94 10-04-94	10-06-94 10-07-94 10-09-94 10-11-94 10-17-94	10-13-94 10-13-94 10-15-94 10-17-94 10-18-94	10-20-94 10-21-94 10-22-94 10-23-94 10-24-94 10-25-94

0.00002	0.00005	0.00005	0.00004	600000	0.00002	0.00019
0.017	0.049	0.045	0.033	0.045	0.045	0.041
00.00	00:00	0.00	0.00	0.00	00.00	0.00
0.00	00.00	0.00	0.00	0.00	0.00	0.00
265	275	276	260	252	244	317
85.5	85.5	85.5	85.5	85.5	85.5	68.4
34.0	34.0	34.0	27.2	8. 8.	27.2	0.89
8.38 8.41 7.72 8.51 8.90 8.70	8.91 8.62 8.85 8.85 8.73	7.93 7.54 7.54 8.07 8.36	7.92 7.92 7.92 7.96 8.14 8.15	8.07 7.70 9.08 8.53 8.53 8.63	8.44 8.38 7.84 7.97 7.70 7.10	8.60 7.62 7.57
6.38 6.38 6.35 6.35 6.37	6.32 6.32 6.35 6.35 6.35	6.30 6.46 6.30 6.30	6.37 6.35 7.86 6.35 7.86 6.37 7.86 7.86 7.86 7.86 7.86 7.86 7.86	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.05 6.30 6.27 6.28 6.85	6.92 6.91 6.91
24.3 24.3 24.6 24.6 25.0 24.6	24.7 24.7 24.5 24.5 24.5 24.5	24.2 24.2 24.2 24.2 24.2 24.2	24.5 24.5 24.5 24.5 24.5 24.5	22222222 22222222222222222222222222222	22.2 21.9 26.7 25.3 25.3	25.2 25.3 25.1
1100 900 1100 1100 1000	000 000 000 000 000 000 000 000 000 00	900 845 1000	000000000000000000000000000000000000000	800 1020 1000 900 900	1000 1000 1000 900 900	4100 1000
77 78 79 80 83 83	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- 26 8 8 8 8 - 25 8 8 8 8	88 8 9 5 101 102 5 103 103 103 103 103 103 103 103 103 103	£ 450 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	112 113 115 115 115 115 115 115 115 115 115	118 119 120
10-27-94 10-28-94 10-29-94 10-31-94 11-02-94	11-05-94 11-05-94 11-06-94 11-08-94 11-09-94	11-12-94 11-12-94 11-13-94 11-14-94	11-10-94 11-16-94 11-18-94 11-20-94 11-20-94	11-22-94 11-25-94 11-25-94 11-28-94 11-28-94	11-30-94 12-03-94 12-05-94 12-05-94 12-05-94	12-08-94 12-08-94 12-09-94

	0.00032	0.00041	0.00021	0.00013	0.00014	æ
	0.063	0.110	0.042	0.026	0.027	œ
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	311	304	317	317	325	314
	68.4	68.4	85.5	68.4	102.6	85.5
	61.2	61.2	68.0	0.89	74.8	68.0
7.43 7.55 7.94 8.14	8.09 7.67 7.21 7.28	7.58 7.50 7.52 7.72 8.10 7.75 8.25	2.5.7 7.5.1 7.5.4 8.0.5 8.0.5 8.0.5	8.79 8.79 8.79 9.08 7.65 7.65	7.16 6.78 6.78 7.51 7.82 6.95	7.09 7.03 6.64 6.59
6.90 6.97 6.92 6.92	0.00.00.00.00.00.00.00.00.00.00.00.00.0	2	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	7.00 7.00 6.96 6.96 7.01 7.01 7.08	7.14 6.97 7.01 7.12
25.3 25.4 24.7 24.5	25.2 25.2 25.3 25.3 4.4 4.4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22.23 23.35 23.35 24.45 25.35 25.35 25.35	24 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.6 24.7 24.9 24.8
1300 900 900 900	1000 1000 1000 1000	600 600 600 600 600 600 600 600 600 600	30000000000000000000000000000000000000	1130 1000 1000 1000 1000 1000 1000 1000	900 900 900 1030 1000	1000 1000 1100
121 122 124 124 125	128 129 130 130	25 132 135 137 137 137 137 137 137 137 137 137 137	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	148 150 151 152 153	155 156 158 159 160	161 162 163 164
12-10-94 12-11-94 12-12-94 12-13-94	12-15-94 12-16-94 12-17-94 12-19-94	12-21-94 12-22-94 12-23-94 12-24-94 12-25-94 12-27-94	12-29-94 12-30-94 12-31-94 01-02-95 01-03-95	01-05-95 01-06-95 01-08-95 01-09-95 01-10-95	01-17-95 01-12-95 01-14-95 01-15-95 01-16-95 01-17-95	01-19-95 01-20-95 01-21-95 01-22-95

0.00004	0.00013	0.00005	0.00002	0.00003	0.00001
0.010	0.026	0.015	0.026	0.034	0.013
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	00.00	00.00	0.00
318	323	294	289	298	372
85.5	85.5	85.5	85.5	85.5	85.5
74.8	74.8	40.8	27.2	34.0	34.0
7.30 7.85 7.12 7.06 7.10 6.96 7.61 7.08	7.39 7.30 7.55 7.55 7.86 7.86	8.90 8.90 9.06 9.06 9.79	8.92 8.92 8.92 8.74 8.68	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8.28 8.28 8.27 8.22 8.03
7 00 00 00 00 00 00 00 00 00 00 00 00 00	6.83 6.83 6.83 7.83 7.83 7.83	6.55 6.22 6.37 6.37	6.29 6.29 6.29 6.29 6.32 6.32	6.30 6.30 6.38 6.38 6.38 6.38	6.39 6.38 6.40 6.29 6.37
24.4 23.0 23.0 23.5 23.5 23.5 25.6 25.6 25.6	255.2 24.0 23.0 23.0 25.0	2222222 2222222 2222222	202 202 202 202 203 203 203 203 203 203	22222222 4772222 6472222	22.5 22.6 22.8 23.3
600 1 1 100 1000 1000 1000 1000 1000 100	930 1200 930 930 900	200 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	800 000 000 000 000 000 000 000 000 000	900 1015 900 900 900
165 166 169 171 172 173	775 771 771 178 180	2 4 1 8 1 8 2 1 8 3 1 8	192 192 193 194 195 196 197 198 198 198 198 198 198 198 198 198 198	200 198 200 201 201	203 204 205 206 207 208
01-23-95 01-24-95 01-25-95 01-26-95 01-28-95 01-29-95 01-30-95 01-31-95	02-02-95 02-03-95 02-04-95 02-06-95 02-07-95	02-09-95 02-10-95 02-11-95 02-12-95 02-13-95 02-14-95	02-16-95 02-17-95 02-18-95 02-19-95 02-21-95	02-23-95 02-23-95 02-25-95 02-26-95 02-27-95 03-01-95	03-02-95 03-03-95 03-04-95 03-05-95 03-06-95

0.00002	0.00001	œ	0.00005	0.00006	0.00004 a
0.013	0.011	œ	0.054	0.056	0.032
00.0	0.00	0.00	0.00	0.00	0.00
00.00	0.00	0.00	0.00	0.00	00.00
295	270	298	281	290	305
85.5	85.5	8 5.5	85.5	85.5	85.5 68.4
34.0	40.8	40.8	34.0	27.2	34.0
7.91 7.77 7.74 7.74 7.60 7.45 7.97	8.01 7.70 7.61 7.73 7.59 7.51	7.38 6.45 7.07 7.64 7.20 6.96 7.03	6.88 6.70 7.14 7.54 7.09	7.18 7.04 7.19 7.43 6.69 7.42	7.16 6.73 7.38 7.32 7.49 7.57
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.33 6.33 6.33 6.33 6.29	6.28 6.35 6.48 6.47 6.32 6.27	6.30 6.30 6.34 6.37 6.34 8.84	6.39 6.39 6.35 6.35 6.35 7.20	6.45 6.45 6.45 6.45 6.45 6.38
23.2 25.5 25.5 25.6 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	25.5 25.5 25.0 25.6 25.6 25.6	25.6 25.6 25.8 26.0 25.1 25.1	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	2447 2447 250 250 250 250 250 250	25.2 25.2 25.2 25.3 25.3 25.3 25.3 25.3
0.0000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	900 900 900 900 900 900	900 900 900 900 900 900	9 9 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	900 1100 1100 900 900 900 900
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	212 220 222 233	225 225 227 228 229	232 233 234 235 236 236	238 240 243 243 243	245 246 247 248 249 250 251
03-08-95 03-09-95 03-11-95 03-12-95 03-13-95 03-14-95	03-16-95 03-17-95 03-18-95 03-19-95 03-21-95 03-22-95	03-23-95 03-24-95 03-25-95 03-27-95 03-28-95 03-29-95	03-30-95 03-31-95 04-01-95 04-02-95 04-03-95	04-05-95 04-06-95 04-08-95 04-10-95 04-11-95	04-13-95 04-14-95 04-16-95 04-17-95 04-18-95 04-19-95

æ	ı	α	0.00008 0.00000 0.00041 0.000095 29
œ	•	α	0.037 0.000 0.110 0.0272 29
00.00		00.00	0.00 38
0.00		0.00	0.00 38
278		586 286	288 244 372 25.3 38
85.5		85.5 5.	83.7 68.4 102.6 6.55 38
34.0		34.0	40.4 27.2 74.8 16.51 38
7.18 7.21 7.41 7.13 7.01 7.13	7.27 6.72 7.54 7.93 8.20	7.64 7.44 7.34 7.32 7.27 7.35	7.85 5.63 9.18 0.586 272
6.44 6.42 6.42 6.50 6.50 6.50 6.44	6.40 6.44 6.42 6.49 6.49 6.48	6.45 6.48 6.45 6.45 6.45 6.35	5.88 7.15 271
25.6 25.8 25.3 24.6 24.4 24.7	24.8 24.9 24.7 24.7 24.7	24.7 25.2 25.2 25.2 25.2 25.2 25.4 25.6	24.3 20.2 26.7 1.20 272
900 1200 2000 900 900 900	100 100 1600 900 900	000 000 000 000 000 000	
253 254 255 256 257 257 258	260 261 262 263 264 265	266 267 268 268 270 271 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-27-95	04-28-95 04-29-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-07-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

a Data not available; analytical instrument would not calibrate.

TANK No. 32 TANK CONCENTRATION: 25% GROUNDWATER (WELL CC-27B) DILUTED WITH APG-EA DECHLORINATED TAP WATER DEN EXPOSURE: 10 mg/L

Total Total John Total Silve Ammonia Unionized ne Nitrogen Ammonia (mg/L) (mg/L)
al Free lual Available ine Chlorine L) (mg/L)
Conductivity Total (umohs/cm) Residual Chlorine (mg/L)
Hardness Cond (mg/L as (umc CaCO3)
Alkalinity H (mg/L as (i CaCO3) C
Dissolved Oxygen (mg/L)
F.
Temperature (Celcius)
Time (Military)
Trailer Exposure Test Day
Date

0.00000	a	æ		0.00003	æ	0.00002
0.000	a	æ		0.030	œ	0.022
0.00	0.00	æ	,	0.00	0.00	0.00
0.00	0.00	æ		0.00	0.00	0.00
278	281	258	}	768 7	275	271
85.5	85.5	85.5	;	85.5 5.5	85.5	85.5
27.2	27.2	27.2	;	27.2	27.2	27.2
8.48 8.20 8.02 8.00 7.64	7.96 8.07 8.12 8.01	8.42 7.91 8.19 7.84 8.27 7.85	8.33 7.59 8.59 8.37 8.35	8.02 8.59 8.28 7.72 8.31	8.00 7.12 7.77 7.77 7.47 7.86	7.65 8.67 8.18 8.53 8.08 7.98 8.16
6.19 6.19 6.10 6.28	6.26 6.23 6.23	6.29 6.22 6.08 6.11 5.97	6.30 6.26 6.24 6.22 6.20	6.20 6.20 6.29 6.29 6.30	6.32 6.32 6.32 6.32 6.20	6.30 6.38 6.32 6.32 6.33 6.33
24.7 24.7 24.7 24.7 24.3	24.5 24.5 24.5 24.8 7.7 8	24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.1 23.9 23.9 24.8 24.2 25.2 25.2	24.2 24.6 24.0 24.0 24.0 24.0 24.5 38.8 30.7 24.5 38.5 39.7 39.7 39.7 39.7 39.7 39.7 39.7 39.7	24.9 25.9 24.3 26.2 24.7 24.8	24.5 24.7 24.7 24.5 24.5 24.6 24.6
700 1400 1300 1200 820	000 000 000 000 000 000 000 000 000 00	1000 1300 1000 1000 1030	900 900 1100 1000	0011 1100 1100 1600 900	1300 1300 900 900 800 900	000 800 000 000 000 000 000 000 000 000
33 35 36 37	88 8 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	55 54 55 55 55 55	56 58 59 61 62	63 66 67 69	70 72 73 74 75 75
09-13-94 09-14-94 09-15-94 09-16-94 09-17-94	09-18-94 09-19-94 09-21-94 09-22-94	09-23-94 09-24-94 09-25-94 09-27-94 09-28-94	09-30-94 10-01-94 10-02-94 10-03-94 10-05-94	10-00-94 10-07-94 10-09-94 10-10-94 10-11-94	10-13-94 10-14-94 10-15-94 10-17-94 10-18-94 10-19-94	10-20-94 10-21-94 10-23-94 10-24-94 10-25-94

0.00003	900000	0.00005	0.00005	0.00007	0.00002	0.00018
0.019	0.055	0.049	0.038	0.038	0.048	0.038
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	00.00	0.00	0.00	0.00
265	276	277	260	254	244	317
85.5	85.5	85.5	85.5	85.5	85.5	85.5
34.0	34.0	34.0	27.2	8.0	27.2	0.89
8.36 7.74 7.74 8.48 8.82 8.58 7.70	2.7.7. 2.86. 8.83. 8.84. 8.63. 8.63.	7.7.7.89 7.59 8.32 8.32	7.82 7.93 7.76 7.78 8.03 8.03	2.07 7.65 7.65 8.26 8.35 8.35	8.25 8.25 7.79 7.79 7.56	7.47 7.34
6.38 6.36 6.35 6.32 6.37	6.35 6.35 6.35 6.35 7.36 7.36	6.30 6.47 6.30 6.30	6.37 6.33 6.35 6.35 6.35 6.35	6.29 6.29 6.24 6.20 6.20	6.04 6.27 6.27 6.28 6.28	6.91 6.91
24.4 24.4 24.7 25.2 26.8 26.8 26.8	2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.7 24.8 24.6 24.7 24.7	2 2 2 2 2 2 3 4 8 8 9 7 8 9 8 9 7 8 9 8 9 8 9 8 9 8 9 8	25.3 25.3 25.3 25.3	25.3 25.1 25.1
001 000 900 900 1100 1000	000 000 000 000 000 000 000 000 000 00	830 1000 1000	000000000000000000000000000000000000000	900 730 1020 1000 900 900	900 1100 900 900 900 900	100 100 100
77 78 79 80 81 82 83	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 9 9 9 9 - 2 6 4 5 6	9 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	100 100 100 100 100 100 100 100 100 100	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	119 120
10-27-94 10-28-94 10-30-94 10-31-94 11-01-94 11-02-94	11-05-94 11-05-94 11-06-94 11-07-94 11-09-94	11-11-94 11-12-94 11-13-94 11-14-94	11-15-94 11-17-94 11-19-94 11-20-94	11-24-94 11-24-94 11-25-94 11-26-94 11-28-94 11-29-94	11-30-34 12-02-94 12-03-94 12-04-94 12-06-94	12-07-94 12-08-94 12-09-94

0.00032	0.00041	0.00023	0.00016	0.00014	Ø
0.062	0.110	0.046	0.032	0.026	æ
0.00	0.00	0.00	00:00	0.00	0.00
0.00	0.00	0.00	00:00	0.00	0.00
311	304	320	318	327	314
68.4	68.4	85.5	68.4	85.5	85.5
61.2	61.2	68.0	0.89	98.0	0.89
7.18 7.38 7.80 7.97 7.92 7.84	7.29 7.08 7.15 7.45 7.38 7.31 7.49	7.50 7.26 7.28 7.29 7.29	2.7. 2.8.7. 8.46. 8.68. 8.68.	7.66 7.11 6.96 6.50 7.35 7.34	7.96 6.96 7.25 7.20 6.92 6.90
6.90 6.92 6.92 6.92 6.95 6.93	6.96 6.89 6.84 6.82 6.98 6.90 7.00 7.00	2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	6.94 6.97 6.97 6.84 7.02 6.94	6.99 7.15 7.00 7.04 6.96 6.85	6.94 7.08 7.14 6.97 7.01
25.4 24.7 24.5 24.5 25.2 25.1	25.3 25.0 25.2 25.2 25.0 25.0 25.0 25.0	24.7 24.8 24.6 25.7 25.7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.2 24.2 24.5 25.5 25.3 25.3 25.3	24.7 24.6 24.6 24.8 25.0
1300 900 900 900 900 1100	845 930 1100 1000 1000 700 700	2000 000 000 000 000 000 000 000 000 00	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000 900 900 1000 1030	1000 1000 1000 1000
122 123 124 125 126 127	129 130 132 135 135 135 135 135 135 135 135 135 135	138 140 147 147 147 147 147	447 447 448 449 150	152 153 154 156 157 158	159 160 162 163 164
12-10-94 12-11-94 12-13-94 12-13-94 12-15-94 12-16-94	12-17-94 12-18-94 12-19-94 12-21-94 12-23-94 12-23-94 12-25-94	12-27-94 12-27-94 12-29-94 12-30-94 12-31-94 01-01-95	01-02-95 01-03-95 01-05-95 01-06-95 01-08-95 01-08-95	01-10-95 01-11-95 01-12-95 01-13-95 01-14-95 01-15-95	01-17-95 01-18-95 01-19-95 01-20-95 01-21-95

0.00004	0.00013	900000	0.00002	0.00003	0.00001
0.010	0.026	0.019	0.025	0.033	0.011
0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00
318	324	294	292	299	373
85.5 5.5	85.5	85.5	85.5	85.5	85.5
74.8	74.8	40.8	27.2	27.2	34.0
7.53 8.14 8.14 7.34 7.34 7.64 7.64 7.89	7.58 7.43 7.55 7.55 8.25 8.07	. ୧୯ ୧୯ ୧୯ ୧୯ ୧୯ ୧୯ ୧୯ ୧୯ ୧୯ ୧୯ ୧୯ ୧୯ ୧୯ ୧୯ ୧୯	2.6.8.9.9.8.8.8.9.9.4.2.2.2.8.8.2.8.2.8.2.8.2.8.2.8.2.8.2.8	6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8.29 8.29 8.20 8.20 8.20 8.03
7.09 6.90 6.90 6.92 6.92 6.93 6.94 8.93 8.93 8.93 8.93 8.93 8.93 8.93 8.93	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.55 6.38 6.37 6.37 6.37	2000 2000 2000 2000 2000 2000 2000 200	6.39 6.39 6.39 6.39 7.28	6.39 6.38 6.40 6.29 6.37
22.23 23.23 23.55 23.50 23.50 23.50 23.50 23.50 23.50 23.50 24.50 25.50	25.5 25.5 25.5 23.0 23.0 23.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25	22.3 21.3 21.7 20.5 20.5	21.1 20.9 20.9 21.6 21.6 21.6	22.5 21.5 21.9 22.5 22.5 22.5	22.0 22.0 22.8 23.1 23.1
600 1000 1000 1000 1000 1000	900 1200 930 900 900	900 900 900 900 900	900 1100 1000 1000	900 1000 1800 900 900 900	900 900 1000 1015 900
165 166 167 170 171 173	771 771 771 871 180 181	182 184 185 186 187	192 193 193 193 193 193 193	200 200 201 201 202 201	203 204 205 206 207 207
01-23-95 01-24-95 01-25-95 01-26-95 01-28-95 01-29-95 01-30-95 01-31-95	02-02-95 02-02-95 02-03-95 02-05-95 02-06-95 02-07-95	02-09-95 02-10-95 02-11-95 02-12-95 02-13-95 02-14-95	02-13-95 02-16-95 02-17-95 02-19-95 02-20-95	02-23-95 02-24-95 02-25-95 02-26-95 02-27-95 03-01-95	03-02-95 03-02-95 03-04-95 03-05-95 03-06-95

0.00002	0.00001	Œ	0.00005	0.00006	0.00004 a
0.015	0.010	ros	0.054	0.055	0.032 a
00.0	0:00	0.00	0.00	0.00	00.0
00.00	00:0	0.00	0.00	0.00	00.00
300	27.1	298	282	291	306
85.5	85.5	85.5	85.5	85.5	85.5 68.4
34.0	8.	40.8	34.0	27.2	94. 0. 0.46
7.94 7.76 7.59 7.75 7.49 7.53 7.69	7.90 7.57 7.54 7.54 7.26	7.24 6.50 6.98 7.57 7.06 6.81	6.58 6.99 7.50 6.96 6.96	7.03 6.85 6.92 7.30 6.60 7.16	6.78 6.52 7.25 7.20 7.14 7.43 7.49
6.39 6.32 6.32 6.32 6.34 6.34	6.38 6.38 6.38 6.35 6.33	6.28 6.35 6.44 6.32 6.32	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.46 6.45 6.45 6.45 6.45 6.46 6.38
23.5 25.4 4 25.0 25.0 25.0 25.0 25.0 25.2	25.7 25.8 25.2 25.2 25.7 25.7 25.8	25.8 26.1 26.2 26.2 25.2 25.2	25.55 2.45 2.55 2.55 2.55 2.55 2.55 2.55	25.2 25.2 25.3 25.3 25.3 25.3 25.3	25.7 25.8 25.8 25.8 25.6 25.5 25.7 25.7
900 1000 1100 900 900	900 1000 1600 900 900 900	900 900 900 900 900	900 900 900 900 900 900	900 1100 1300 900 900	1100 900 1100 900 900 900
209 210 212 213 214 215 216	217 218 220 221 222 223	224 225 227 227 229 230	231 232 233 234 235 236	239 240 242 243 244	245 246 247 248 250 251
03-08-95 03-09-95 03-10-95 03-12-95 03-13-95 03-14-95	03-16-95 03-17-95 03-18-95 03-19-95 03-21-95 03-22-95	03-23-95 03-24-95 03-25-95 03-26-95 03-27-95 03-28-95	03-30-95 03-31-95 04-01-95 04-03-95 04-04-95	04-06-95 04-07-95 04-08-95 04-09-95 04-11-95 04-12-95	04-13-95 04-14-95 04-15-95 04-16-95 04-17-95 04-18-95 04-20-95

o	1	æ	0.00008 0.00000 0.00041 0.000096
ro.	3	æ	0.040 0.000 0.139 0.0317 29
0.00	}	00.0	0.00 0.00 38
0.00		0.00	0.00 0.00 38
279	i i	588 288	289 244 373 25.6 38
	}	85.5 5.5	84.2 68.4 102.6 6.05 38
34.0		94.0 0:	40.1 27.2 74.8 16.27 38
7.04 7.04 7.26 7.15 6.79 6.97 6.86	6.93 6.93 7.25 7.66 8.08	7.40 7.12 7.09 6.94 7.10 6.96 7.11	7.79 5.83 9.20 0.607 272
6.50 6.50 6.50 6.50 6.50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.45 6.48 6.52 6.45 6.35	5.88 7.15 271
25.8 26.2 24.9 24.9 25.0	25.1 25.1 25.1 25.0 24.9	24.0 25.4 25.4 25.3 25.3 25.9	24.4 20.4 26.7 1.18
2000 2000 2000 900 900	900 1100 1600 900 900 900	000 8 8 00 00 00 00 00 00 00 00 00 00 00	
253 254 256 257 258 259	260 261 263 263 264 265	266 267 268 269 270 271 272	
04-21-95 04-22-95 04-23-95 04-24-95 04-25-95 04-26-95	04-28-95 04-29-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-07-95 05-09-95 05-10-95	MEAN MINIMUM MAXIMUM Std Dev N

a Data not available; analytical instrument would not calibrate.

TANK No. 33 CEHR LABORATORY CONTROL FISH ^a NO DEN EXPOSURE

Total Unionized Ammonia- Nitrogen (mg/L)	05 <0.001
Total Ammonia- Nitrogen (mg/L)	<0.02
Conductivity (umohs/cm)	
Hardness (mg/L as CaCO3)	
Alkalinity (mg/L as CaCO3)	
Dissolved Oxygen (mg/L)	8.01
Hd	7.98
Temperature (Celcius)	24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Date	07-27-94 07-28-94 07-29-31 07-30-94 07-31-94 08-02-94 08-03-94 08-05-94 08-07-94 08-07-94 08-10-94 08-11-94 08-11-94 08-11-94 08-11-94 08-11-94 08-11-94

		0.001
		<0.02
	502	503
8.07	80.08	7.98
8.16	7.84	7.96
7. 89	7	7
25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	24.9 24.9 24.8	24.9
08-17-94 08-18-94 08-19-94 08-22-94 08-24-94 08-25-94 08-25-94 08-27-94 08-28-94	08-31-94 09-01-94 09-02-94 09-04-94 09-05-94	09-08-94 09-08-94 09-10-94 09-12-94 09-13-94 09-15-94 09-16-94 09-18-94

		<0.001		
		<0.02		
507	505	487	484	488
s.				
7.80	7.98	8.03	7.79	7.82
8.22	8.17	7.92	7.80	7.75
25.0	24.9	24.8	24.9	24.8
444444 444	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	94 94
09-19-94 09-20-94 09-21-94 09-23-94 09-24-94 09-25-94 09-26-94 09-27-94	09-29-6 09-30-6 10-01-6 10-03-6 10-04-6	10-06-94 10-07-94 10-08-94 10-10-94 10-11-94 10-12-94	10-13-94 10-14-94 10-15-94 10-17-94 10-18-94 10-19-94	10-20-94 10-21-94

																														0.08	
				490							487							485													
		٠																				-									
				7.92							7.99							7.80							7.73					7.68	
				8.02							7.97							7.96							8.16					8.03	
				80							7							7							80					80	
				25.0							24.9							24.8							24.9					24.9	
																										_					
10-22-94	10-24-94	10-25-94	10-26-94	10-27-94	10-28-94	10-29-94	10-30-94	10-31-94	11-01-94	11-02-94	11-03-94	11-04-94	11-05-94	11-06-94	11-07-94	11-08-94	11-09-94	11-10-94	11-11-94	11-12-94	11-13-94	11-14-94	11-15-94	11-16-94	11-17-94	11-18-94	11-19-94	11-20-94	11-21-94	11-22-94	11-23-94

9000

	7.74	7.79	7.72	7.62
	7.94	7.98	7.84	7.99
	24.9	25.0	25.1	24.8
11-24-94 11-25-94 11-26-94 11-27-94 11-29-94 11-30-94	12-01-94 12-02-94 12-03-94 12-05-94 12-06-94	12-08-94 12-09-94 12-10-94 12-11-94 12-13-94 12-14-94	12-15-94 12-16-94 12-17-94 12-18-94 12-20-94 12-21-94	12-22-94 12-23-94 12-24-94 12-25-94

12-27-94 12-28-94 12-29-94	24 9	ς 0	7 5 5	000	0.00
12-29-94 12-30-94 12-31-94	24.9 9.	8.02	cc./	0.02	0.00
1-95					
01-02-95 01-03-95					
4-95					
5-95					
6-95	24.9	7.99	7.73		
7-95					
8-95					
9-95					
0-95					
1-95					
2-95	24.8	7.94	7.76	0.02	0.001
3-95					
4-95					
5-95					
6-95					
7-95					
8-95					
9-95	24.9	8.12	7.80		
0-95					
01-21-95					
2-95					
3-95					
4-95					
01-25-95					
01-26-95					
01-27-95	24.9	8.21	7.93		
8-95					

			0.02	0.02
4	89	2	0	22
7.84	7.68	8.12	7.50	7.62
8.22	7.99	7.92	8.08	8.05
				_
25.0	24.9	24.7	25.0	25.0
01-29-95 01-30-95 01-31-95 02-01-95 02-03-95 02-04-95 02-06-95 02-06-95 02-06-95	2-09-95 2-10-95 2-11-95 2-12-95 2-13-95 2-14-95 2-15-95	02-16-95 02-17-95 02-18-95 02-19-95 02-20-95 02-21-95	02-23-95 02-24-95 02-25-95 02-26-95 02-27-95 02-28-95 03-01-95	03-02-95
	000000		000000	0

				0.001
				0.02
580	287	566	501	519
•				
8.20	7.50	7.60	7.60	8.10
7.94	8.00	7.79	8.10	8.08
24.7	25.1	24.8	25.0	24.6
03-03-95 03-04-95 03-05-95 03-06-95 03-07-95 03-09-95 03-10-95	03-11-95 03-12-95 03-13-95 03-14-95 03-15-95 03-16-95 03-17-95	03-19-95 03-19-95 03-20-95 03-21-95 03-22-95 03-24-95 03-25-95	03-20-95 03-20-95 03-28-95 03-29-95 03-30-95 03-31-95	04-02-95 04-03-95 04-04-95

80	9	470	470	200
S		7.60	8°00 8	7.20
2	ξ.	Q	Q	<u>ග</u>
80	Š	8.00	8.00	7.79
0.50		24.9	24.7	24.9
04-05-95 04-06-95 04-07-95 04-08-95 04-10-95 04-11-95 04-13-95	04-14-95 04-15-95 04-16-95 04-17-95 04-18-95	04-20-95 04-21-95 04-22-95 04-23-95 04-24-95 04-25-95	04-27-95 04-28-95 04-29-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-07-95
00000000	000000	000000		0000

	<0.001 0.006 9
	0.08 9.08
470	504 470 587 32.6 21
7.40	7.42 7.20 8.20 0.206 41
7.83	7.75 8.22 41
24.9	24.8 24.1 25.1 0.19 73
05-08-95 05-09-95 05-10-95 05-11-95 05-12-95	MEAN MINIMUM MAXIMUM Std Dev N

respectively. Temperatures on July 29, 1994, August 2, 1994, August 18, 1994, and August 24, 1994 were taken from CEHR'S Water Quality Data Record log. All other data were taken from CEHR's Water Quality ^aTemperature data for the period July 27, 1994 to August 18, 1994 and August 19, 1994 to August 31, 1994 Data Record log (USACEHR, 1994/1995c). A blank space indicates that no measurement was taken. were taken from CEHR's Daily Record for Medaka Fry log and Daily Record for Adult Medaka log,

TANK No. 34 CEHR LABORATORY CONTROL FISH ^a NO DEN EXPOSURE

Total Unionized Ammonia- Nitrogen (mg/L)		0.001	
Total Ammonia- Nitrogen (mg/L)		0.02	
Conductivity (umohs/cm)			
Hardness (mg/L as CaCO3)			
Alkalinity (mg/L as CaCO3)			
Dissolved Oxygen (mg/L)	8.07	7.78	
Ħ.	7.97	7.77	
Temperature (Celcius)	24.6 24.8 24.9 24.9	24.9 24.9 25.9 25.9 24.9 24.3 7.4 24.3	24.7 24.6 24.6 24.5 24.8 24.8
Date	07-27-94 07-28-94 07-29-31 07-30-94	07-31-94 08-01-94 08-03-94 08-05-94 08-06-94 08-07-94 08-08-94	08-10-94 08-11-94 08-13-94 08-14-94 08-15-94 08-16-94

								<0.002																					0.002			
								<0.02																					0.04			
																502						493							503			
7.66								7.98								7.82						7.90							7.77			
7.94								8.18								8.13						96.7							7.89			
24.9	24.9	25.0	24.8	24.8	24.9	24.9	24.9	24.8	24.9	24.8	24.8	24.8	24.8	24.8		24.9						24.8							24.6			
08-17-94	08-18-94	08-19-94	08-20-94	08-21-94	08-22-94	08-23-94	08-24-94	08-25-94	08-26-94	08-27-94	08-28-94	08-29-94	08-30-94	08-31-94	09-01-94	09-02-94	09-03-94	09-04-94	09-02-94	09-06-94	09-07-94	09-08-94	09-09-94	09-10-94	09-11-94	09-12-94	09-13-94	09-14-94	09-15-94	09-16-94	09-17-94	09-18-94

		<0.001		
		<0.02		
507	505	487	484	488
•				
7.82	8.09	8.02	7.92	7.86
8.25	8.27	7.82	7.93	7.82
				24.8
24.9	24.9	24.7	75	24
09-19-94 09-20-94 09-21-94 09-23-94 09-24-94 09-25-94 09-27-94 09-27-94	09-29-94 09-30-94 10-01-94 10-02-94 10-03-94 10-04-94	10-06-94 10-07-94 10-08-94 10-10-94 10-11-94	10-13-94 10-14-94 10-15-94 10-16-94 10-18-94 10-19-94	10-20-94 10-21-94

490		487	485		0.08
8.01					8.00
24.9 8.16		24.8 7.98	24.8 8.13		24.9 8.05
10-22-94 10-23-94 10-24-94 10-25-94 10-26-94	10-28-94 10-29-94 10-30-94 11-01-94 11-02-94	11-03-94 11-04-94 11-05-94 11-07-94 11-08-94	11-10-94 11-11-94 11-12-94 11-14-94 11-15-94	11-17-94 11-18-94 11-20-94 11-21-94	11-22-94 11-23-94

					7.88							7.72							7.80							7.65				
					7.99							8.04							7.76							8.00				
					24.9							24.9							25.0							24.9				
11-24-94 11-25-94	11-26-94	11-28-94	11-29-94	11-30-94	12-01-94	12-02-94	12-03-94	12-04-94	12-05-94	12-06-94	12-07-94	12-08-94	12-09-94	12-10-94	12-11-94	12-12-94	12-13-94	12-14-94	12-15-94	12-16-94	12-17-94	12-18-94	12-19-94	12-20-94	12-21-94	12-22-94	12-23-94	12-24-94	12-25-94	12-26-94

12-27-94 12-28-94						
2-29-94	24.8	7.95	7.74	Ö	0.04	0.002
2-30-94						
2-31-94						
1-01-95						
1-02-95						
1-03-95						
1-04-95						
01-05-95						
1-06-95	24.8	8.03	79.7			
1-07-95						
1-08-95						
1-09-95						
1-10-95						
1-11-95						
1-12-95	24.8	7.98	7.52	O	0.02	0.001
1-13-95						
1-14-95						
1-15-95						
1-16-95						
1-17-95						
1-18-95						
1-19-95	24.8	8.06	7.65			
01-20-95						
1-21-95						
1-22-95						
01-23-95						
01-24-95						
01-25-95						
01-26-95						
01-27-95	24.8	8.04	7.90			
1-28-95						

			0.04	0.04
7.82	7.71	8.07	7.64	7.59
8.07	7.86	7.70	8.07	7.94
25.0	24.9	24.7	24.9	25.0
01-29-95 01-30-95 01-31-95 02-01-95 02-02-95 02-03-95	02-05-95 02-06-95 02-07-95 02-08-95 02-10-95 02-11-95	02-12-95 02-13-95 02-14-95 02-15-95 02-16-95 02-18-95	02-19-95 02-20-95 02-21-95 02-22-95 02-23-95 02-24-95	02-26-95 02-27-95 02-28-95 03-01-95 03-02-95

				0.001
				0.02
CR		289	576	501
ά	<u>2</u> oʻ	7.60	7.60	7.60
7 05	0 0 0	8.01	7.80	7.88
7 7 7	74.7	25.1	24.8	25.0
10 10 10 10 10 10 10	2 10 10 10 10 10 10	10 10 10 10 10 10	10 10 10 10 10 10 10 10	10 10 10 10 10 10
03-03-95 03-04-95 03-05-95 03-06-95 03-07-95	03-10-95 03-11-95 03-12-95 03-13-95 03-14-95 03-15-95	03-16-94 03-17-94 03-18-94 03-20-94 03-21-94	03-22-95 03-23-95 03-24-95 03-25-95 03-26-95 03-27-95 03-28-95	03-30-95 03-31-95 04-01-95 04-02-95 04-03-95

489	}	4 82	470	504
7.50		07.7	7.90	7.70
7.98		8 0.03	8.01	7.90
0	,	ത	ω	ග
25.0		24.9 6.	24.8	24.9
04-05-95 04-06-95 04-07-95 04-09-95 04-11-95 04-12-95 04-13-95	-14-95 -15-95 -16-95 -17-95 -19-95	04-20-95 04-21-95 04-22-95 04-23-95 04-24-95 04-26-95	04-27-95 04-28-95 04-29-95 04-30-95 05-01-95 05-02-95	05-04-95 05-05-95 05-06-95 05-07-95
444444444	2 4 4 4 4 4 4	2 2 2 2 2 2 3	2 2 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0000

	<0.001
	<0.02
465	505 465
7.60	7.79
7.92	7.70
24.9	24.8 24.1
05-08-95 05-09-95 05-10-95 05-11-95 05-12-95	MEAN

0.08

589 33.6 21

8.10 0.166

8.27

25.1 0.18

MAXIMUM Std Dev N

4

4

9

10

were taken from CEHR's Daily Record for Medaka Fry log and Daily Record for Adult Medaka log, respectively. Temperatures on July 29, 1994, August 2, 1994, August 18, 1994, and August 24, 1994 were taken from CEHR'S Water Quality Data Record log. All other data were taken from CEHR's Water Quality ^aTemperature data for the period July 27, 1994 to August 18, 1994 and August 19, 1994 to August 31, 1994 Data Record log (USACEHR, 1994/1995c). A blank space indicates that no measurement was taken.

TANK No. 35 CEHR LABORATORY CONTROL FISH^a DEN EXPOSURE: 10 mg/L

07-27-94 24.6 07-29-94 24.8 07-29-94 24.8 07-30-94 24.8 07-30-94 24.9 07-31-94 24.9 08-01-94 24.9 08-02-94 25.1 08-03-94 25.1 08-04-94 25.1 08-05-94 25.1 08-05-94 24.1 08-06-94 24.2 08-09-94 24.2 08-09-94 24.2 08-19-94 24.2 08-19-94 24.2 08-19-94 24.7 08-19-94 24.9	Date	Temperature (Celcius)	Ħ.	Dissolved Oxygen (mg/L)	Alkalinity (mg/L as CaCO3)	Hardness (mg/L as CaCO3)	Hardness Conductivity (mg/L as (umohs/cm) CaCO3)	Total Ammonia- Nitrogen (mg/L)	Total Unionized Ammonia- Nitrogen (mg/L)
24.8 7.90 8.02 24.9 24.9 24.9 7.77 7.72 25.1 25.0 24.1 24.3 24.6 24.7 24.4 24.6 24.7 2.0 24.7 2.0 24.7 2.0 24.7 2.0 24.7 2.0 24.7 2.0 24.7 2.0 24.7 2.0 24.7 2.0 24.7 2.0 24.8 2.0 24.9 2.0	7-27-94	24.6							
24.9 24.8 24.9 25.1 25.0 24.1 24.3 24.6 24.7 24.7 24.7 24.7 24.9 24.9 24.9	7-29-94	24.8	7.90	8.02					
24.8 24.9 25.1 25.1 25.0 24.1 24.3 24.6 24.7 24.7 24.7 24.7 24.7 24.7 24.9 24.9	7-30-94	24.9							
24.9 25.1 25.1 25.0 24.3 24.3 24.6 24.2 24.7 24.4 24.6 24.7 24.4 24.6 24.7 24.4 24.6 24.7 24.4 24.6 24.7 24.7 24.4 24.6 24.7 24.4 24.6 24.7 24.7 24.9	-31-94	24.8							
25.1 7.77 7.72 60.02 24.9 24.1 24.4 24.6 24.7 24.7 24.7 24.7 24.4 24.6 24.7 24.7 24.7 24.7 24.7 24.7 24.9 24.9 24.9 24.9	3-01-94	24.9							
24.9 25.0 24.1 24.3 24.7 24.7 24.7 24.7 24.9	3-02-94	25.1	7.77	7.72				<0.02	<0.001
	3-03-94	24.9							
	3-04-94	25.1							
	3-05-94	25.0							
	3-06-94	24.1							
	-07-94	24.3							
	-08-94	24.6							
	-09-94	24.2							
	10-94	24.7							
	-11-94	24.4							
	12-94	24.6							
	-13-94	24.7							
	-14-94	24.7							
	-15-94	24.9							
	-16-94	24.9							

0 40	7 98	7 63	100	150	761	80	000
.	00.7	50.	701	701	-	9	t 0000
-							
_							
ග							
တ္							
0.0							
2.0							
2.0							
9. 6.	8.14	7.99	102	140	464		
0.0							
6.							
6.4							
6.							
6.							
6.							
9. 0.	8.10		112	160			
1.7	7.86	8.00			502		
4.7							
ω.							
4.8							
4.7							
4.7							
6.9	8.22	7.98	110	160	495		
24.9							
4.9							
4 .0							
5.0							
6.4							
5.1							
4.7	8.13	7.84	110	160	503	<0.02	<0.002
4.8							
6.4							
7.							

		<0.001		
		<0.02		
207	505	487	484	488
. 160	156	152	156	160
110	110	110	108	110
7.76	7.94	8.04	7.94	7.85
8.26	8.17	8.01	8.00	7.76
24.8 25.0 25.0 25.1 25.2 25.3 25.3	24.8 24.8 24.8 24.6 24.6	24.8 24.8 25.0 25.1 25.1	24.0 24.0 24.0 24.8 24.8	24.9 24.9 24.9
09-19-94 09-20-94 09-22-94 09-23-94 09-24-94 09-25-94 09-27-94 09-27-94	09-29-94 09-30-94 10-01-94 10-03-94 10-04-94	10-06-94 10-07-94 10-08-94 10-10-94 10-11-94	10-13-94 10-14-94 10-16-94 10-18-94	10-19-94 10-20-94 10-21-94

				0.008	
				0.08	
490		487	485	495	
150	2	152	148	148	
,	2	0.	112	116	
70	- - - -	7.96	7.72	7.68	
α 	- - - -	7.94	7.96	8.24	
25.0 24.9 25.0 25.0	25.2 25.2 25.2 25.2 25.1	24.9 25.0 25.1 25.1 24.8	24.8 24.9 24.9 25.0 25.0	25.0 25.0 25.0 24.9 24.9	-
10-22-94 10-23-94 10-24-94 10-25-94 10-26-94	10-27-94 10-28-94 10-30-94 11-01-94 11-02-94	11-03-94 11-04-94 11-05-94 11-07-94 11-08-94	11-10-94 11-11-94 11-12-94 11-13-94 11-15-94	11-17-94 11-18-94 11-20-94 11-21-94 11-23-94	

	481	476	484	458
	152	152	148	152
	106	106	108	108
	7.95	7.76	7.66	7.69
	8.10	8.15	7.96	8.01
25.1 25.0 25.0 25.0 24.8 25.1	25.0 25.0 25.1 25.1 25.1	25.0 25.2 25.0 25.0 25.0 25.0	25.1 25.0 25.0 25.0 25.0	24.9 25.0 25.0 25.0
11-24-94 11-25-94 11-27-94 11-28-94 11-29-94	12-01-94 12-02-94 12-03-94 12-05-94 12-06-94 12-07-94	12-08-94 12-09-94 12-10-94 12-12-94 12-13-94 12-14-94	12-15-94 12-16-94 12-17-94 12-18-94 12-20-94	12-22-94 12-23-94 12-24-94 12-25-94

12-27-94	24.9							
12-28-94	24.9							
12-29-94	24.9	8.06	7.82	108	148	470	0.02	0.001
12-30-94	24.9							
12-31-94	24.9							
01-01-95	24.9							
01-02-95	25.1							
01-03-95	24.9							
01-04-95	24.9							
01-05-95	24.9							
01-06-95	24.9	8.11	7.79	108	148	480		
01-07-95	24.9							
1-08-95	24.9							
01-09-95	24.9							
1-10-95	24.9							
01-11-95	24.8							
1-12-95	24.8	7.96	7.77	110	148	492	0.02	0.001
1-13-95	25.0							
1-14-95	25.0							
1-15-95	25.2							
1-16-95	25.2							
1-17-95	24.9							
1-18-95	24.8							
1-19-95	24.9	8.06	7.94	104	156	509		
1-20-95	24.9							
1-21-95	24.9							
1-22-95	24.9							
1-23-95	24.9							
1-24-95	24.9							
1-25-95	25.0							
01-26-95	25.0							
01-27-95	24.9	8.16	8.02	100	144	472		
1-28-95	24.9							

																										0.001							0.001
																										0.02							0.02
					468							474							543							562							260
					144							152							148							160							156
					100							104							104							100							96
					7.89							7.88							8.20							7.81							7.84
					8.19							8.05							8.00							8.11							7.98
6	24.9	24.9	24.9	24.9	25.0	25.0	24.9	24.9	24.8	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.8	24.8	24.7	24.8	24.8	24.8	24.8	25.0	25.0	25.0	25.0	25.0	25.1	24.9	25.1	25.1	25.1
90	C6-67-1.0	01-30-95	01-31-95	02-01-95	02-02-95	02-03-95	02-04-95	02-05-95	02-06-95	02-07-95	02-08-95	02-09-95	02-10-95	02-11-95	02-12-95	02-13-95	02-14-95	02-15-95	02-16-95	02-17-95	02-18-95	02-19-95	02-20-95	02-21-95	02-22-95	02-23-95	02-24-95	02-25-95	02-26-95	02-27-95	02-28-95	03-01-95	03-02-95
																		_															

				0.001
				0.02
	280	289	999	501
	152	152	156	152
	100	104	102	100
	8.20	7.60	7.80	7.70
	7.92	1.00	7.96	8.08
25.1 25.3 25.3 24.9 25.0	25.0 25.0 25.0 25.0 25.0 25.0	25.1 25.0 25.0 25.0 25.0	2 2 2 2 2 4 4 2 3 4 4 4 2 3 5 5 6 3 6 6 6 6 7 6 6	25.0 25.2 25.2 25.2 25.3 24.6
03-03-95 03-04-95 03-05-95 03-06-95 03-07-95	03-09-95 03-10-95 03-11-95 03-12-95 03-13-95 03-14-95	03-16-95 03-17-95 03-18-95 03-19-95 03-20-95	03-22-95 03-22-95 03-24-95 03-25-95 03-26-95 03-27-95 03-28-95	03-30-95 03-31-95 04-01-95 04-02-95 04-03-95

	498	470	471	200
-	140	140	140	160
	8	96	95	96
	7.80	7.70	7.80	7.30
	8.09	8.7	8.02	7.75
25.1 25.0 24.8 25.1 25.0 25.0	25.0 25.0 25.0 24.8 25.0 25.0	24.9 24.7 24.5 24.5 25.0	24.9 24.9 24.9 25.0 25.0	24.9 25.0 24.9 24.9
04-05-95 04-06-95 04-07-95 04-08-95 04-10-95 04-11-95	04-13-95 04-14-95 04-15-95 04-17-95 04-18-95 04-19-95	04-20-95 04-21-95 04-22-95 04-23-95 04-24-95 04-25-95	04-27-95 04-28-95 04-30-95 05-01-95 05-02-95 05-03-95	05-04-95 05-05-95 05-06-95 05-07-95

	<0.001 0.008 10
	<0.02 0.0
470	497 451 589 33.6 39
160	152 140 160 6.0 39
100	105 92 116 5.4 39
7.40	7.84 7.30 8.20 0.183
7.80	7.75 8.30 42
24.9 24.9 24.9 25.0 24.9	24.9 24.1 25.3 0.17 290
05-08-95 05-09-95 05-10-95 05-11-95 05-12-95	MEAN MINIMUM MAXIMUM Std Dev N

^aMost of the temperature data for the period July 27, 1994 to August 18, 1994 and August 19, 1994 to August 31, 1994 were taken from CEHE's Daily Record for Medaka Fry log and Daily Record for Adult Medaka log, respectively. The temperature measurements taken weekly when the general water quality measurements, were made (CEHR's Water Quality Data Record log) are given in the table (USACEHR, 1994/1995c). A blank space indicates that no measurement was taken.

TANK No. 36 CEHR LABORATORY CONTROL FISH ^a DEN EXPOSURE: 10 mg/L

Date	Temperature (Celcius)	Hď	Dissolved Oxygen (mg/L)	Alkalinity (mg/L as CaCO3)	Hardness (mg/L as CaCO3)	Hardness Conductivity (mg/L as (umohs/cm) CaCO3)	/ Total) Ammonia- Nitrogen (mg/L)	Total Unionized Ammonia- Nitrogen (mg/L)
07-27-94	24.6 24.8							
07-29-31	24.8	7.88	77.7	102	148	519		
07-30-94	24.8				•			
07-31-94	24.8							
08-01-94	24.9							
08-02-94	25.1	7.77	7.62				<0.02	<0.001
08-03-94	24.9							
08-04-94	25.0							
08-05-94	24.9							
08-06-94	24.0							
08-07-94	24.3							
08-08-94	24.6							
08-09-94	24.3							
08-10-94	24.6							
08-11-94	24.6							
08-12-94	24.6							
08-13-94	24.5							
08-14-94	24.5							
08-15-94	24.7							
08-16-94	24.8							

																						0.003											
																						0.04											
																502						493							503				
7.69								8.02								8.06						7.89							7.82				
7.93								8.22								7.98						8.10							7.95				
24.9	24.9	25.0	24.8	24.8	24.9	24.9	24.9	24.8	24.9	24.8	24.8	24.8	24.8	24.8		24.7						24.8							24.6				
08-17-94	08-18-94	08-19-94	08-20-94	08-21-94	08-22-94	08-23-94	08-24-94	08-25-94	08-26-94	08-27-94	08-28-94	08-29-94	08-30-94	08-31-94	09-01-94	09-02-94	09-03-94	09-04-94	09-02-94	09-06-94	09-07-94	09-08-94	09-09-94	09-10-94	09-11-94	09-12-94	09-13-94	09-14-94	09-15-94	09-16-94	09-17-94	09-18-94	

		<0.001		
		<0.02		
507	505	487	484	488
**				
7.78	8.13	8.06	7.93	7.84
8.27	8.16	7.90	7.60	7.76
24.9	24.9	24.8	24.8	24.8
	.,		•	
09-19-94 09-20-94 09-21-94 09-23-94 09-24-94 09-25-94 09-26-94	09-29-94 09-30-94 10-01-94 10-03-94 10-03-94	10-06-94 10-08-94 10-09-94 10-11-94 10-12-94	10-13-94 10-15-94 10-15-94 10-17-94 10-18-94	10-20-94 10-21-94

490	487	489		0.08
7.93	7.90	7.72	7.76	7.86
8.15	7.96	8.09	8.16	8.00
24.9	24.9	24.8	24.9	24.9
10-22-94 10-23-94 10-25-94 10-26-94 10-27-94 10-29-94 10-30-94	11-01-94 11-02-94 11-03-94 11-05-94 11-06-94	11-08-94 11-09-94 11-11-94 11-12-94 11-13-94	11-15-94 11-16-94 11-17-94 11-19-94 11-20-94	11-21-94 11-22-94 11-23-94

					7.92							8.03							7.87							7.87				
					24.9							24.9							25.0							24.9				
11-24-94 11-25-94	11-26-94	11-28-94	11-29-94	11-30-94	12-01-94	12-02-94	12-03-94	12-04-94	12-05-94	12-06-94	12-07-94	12-08-94	12-09-94	12-10-94	12-11-94	12-12-94	12-13-94	12-14-94	12-15-94	12-16-94	12-17-94	12-18-94	12-19-94	12-20-94	12-21-94	12-22-94	12-23-94	12-24-94	12-25-94	12-26-94

	0.001														0.002																
	0.02														0.04																
		٠.																													
	7.69								7.75						7.68							7.72								7.84	
	7.94								8.07						7.92							8.10								8.05	
	24.8								24.8						24.8							24.8								24.8	
	W								(N						(A							(1								.,	
12-27-94 12-28-94	2-29-94	2-30-94	2-31-94	1-01-95	1-02-95	1-03-95	1-04-95	1-05-95	1-06-95	1-07-95	1-08-95	1-09-95	1-10-95	1-11-95	1-12-95	1-13-95	1-14-95	1-15-95	1-16-95	01-17-95	1-18-95	1-19-95	1-20-95	1-21-95	1-22-95	1-23-95	1-24-95	1-25-95	1-26-95	01-27-95	1-28-95
7 7	7	-	~	ó	Ó	Ó	ò	ò	Ò	Ò	Ó	Ó	Ó	Ò	Ò	Ó	Ó	Ò	Ò	Ò	Ò	Ò	Ò	Ò	Ó	Ó	Ò	Ò	Ò	Ò	Ò

0.02
7.71 8.14 8.17 7.72
8.09 7.74 8.10
25.0 25.0 25.0 25.0
01-29-95 01-30-95 01-31-95 02-01-95 02-01-95 02-02-95 02-03-95 02-04-95 02-04-95 02-08-95 02-11-95 02-11-95 02-11-95 02-11-95 02-11-95 02-11-95 02-11-95 02-11-95 02-11-95 02-12-95 02-12-95 02-12-95 02-13-95 02-13-95 02-13-95 02-13-95 02-13-95 02-13-95 02-13-95 02-13-95 02-13-95 02-13-95 02-13-95 02-13-95 02-13-95 02-13-95 02-13-95 02-21-95 02-21-95 02-21-95 02-21-95

				0.001
				0.02
	580	286	564	502
w .				
	8.10	7.50	7.70	7.20
	7.93	8.12	7.86	7.83
	24.8	25.3	24.7	25.1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	വ വ വ വ വ വ വ	מ מ מ מ מ	<b>ﻣ</b> ﻣ ﻣ ﻣ ﻣ ﻣ ﻣ	വവവവവ
03-03-95 03-04-95 03-05-95 03-06-95 03-07-95	03-09-95 03-10-95 03-11-95 03-12-95 03-14-95 03-14-95	03-16-95 03-17-95 03-18-95 03-19-95 03-20-95 03-21-95	03-22-95 03-23-95 03-24-95 03-25-95 03-26-95 03-27-95 03-28-95	03-30-95 03-31-95 04-01-95 04-03-95 04-04-95

						490							480							471							501			
	٠	-																												
						0							0							0							0.			
						7.50							7.50							8.10							7.20			
						7.92							7.78							8.17							7.72			
						_							0							മ							o			
						25.0							25.0							24.8							24.9			
04-05-95 04-06-95 04-07-95	04-08-95	04-09-95	4-10-95	4-11-95	04-12-95	04-13-95	4-14-95	4-15-95	4-16-95	4-17-95	04-18-95	4-19-95	4-20-95	4-21-95	04-22-95	4-23-95	4-24-95	4-25-95	4-26-95	4-27-95	4-28-95	04-29-95	04-30-95	5-01-95	05-02-95	05-03-95	05-04-95	05-05-95	05-06-95	5-07-95
000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O	J	S	J	ی	J	J	ی	J	J	J	J	J	J

462			_		
7.40					
7.80					
24.9					
05-08-95	05-09-95	05-10-95	05-11-95	05-12-95	

	<0.001	0.005		თ
	<0.02	0.08		6
505	462	589	31.9	22
	148	148		Ψ-
	102	102		~
7.76	7.20	8.14	0.226	4
	7.60	8.27		4
24.8	24.0	25.3	0.19	73
MEAN	MINIMOM	MAXIMUM	Std Dev	z

respectively. Temperatures on July 29, 1994, August 2, 1994, August 18, 1994, and August 24, 1994 were taken from CEHR'S Water Quality Data Record log. All other data were taken from CEHR's Water Quality Data Record log (USACEHR, 1994/1995c). A blank space indicates that no measurement was taken. ^aTemperature data for the period July 27, 1994 to August 18, 1994 and August 19, 1994 to August 31, 1994 were taken from CEHR's Daily Record for Medaka Fry log and Daily Record for Adult Medaka log,