(Electrical and Electronics Engineering)

	mie.	3 hours Max. M	arks: 70
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B	
		PART -A	
۱.	a)	What is meant by linear wave shaping?	[2M]
	b)	Write the difference between comparator and clipping circuit.	[2M]
	c)	What is meant by quasi stable state?	[3M]
	d)	What is meant by quasi stable state?	[2M]
	e)	What is meant by sweep time and restoration time?	[3M]
	f)	What is Pedestal? Explain.	[2M]
		<u>PART -B</u>	
2.	a)	A square wave whose peak to peak amplitude is 2 V extends $\pm 1 \text{ V}$ with respect to ground. The duration of the positive section is 0.1 s and that of the negative section is 0.2 s . if this waveform is impressed upon an RC integrating circuit whose time constant is 0.2 s , what are the steady-state maximum and minimum values of the output waveform?	[7M]
	b)	Explain the response of High-pass RC circuit for square wave input.	[7M]
3.	a)	Draw the circuit diagram of emitter coupled clipper and explain its operation.	[7M]
	b)	Design a diode clamper circuit to clamp the positive peaks of the input signal at zero level. The frequency of the input voltage is 750 Hz.	[7M]
1.	a)	Explain about diode forward recovery time and reverse recovery time.	[7M]
	b)	Silicon transistors with h_{FE} (min) = 20 are available. If $V_{CC} = V_{BB} = 10$ V, design the bistable multivibrator.	[7M]
5.	a)	Design a collector coupled one shot with a gate width of 3 ms, using n-p-n transistors.	[7M]
	b)	Draw the circuit diagram of collector coupled astable multivibrator and derive the expression for frequency of oscillations.	[7M]
ó.	a)	Draw the exponential sweep circuit and derive the expression for transmission error.	[7M]
	b)	Explain the basic principles behind Bootstrap time base generator.	[7M]
	٥)	Draw the circuit diagram of two input Diode OR gate and explain it.	[7M]
' .	a)		

(Electrical and Electronics Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

Max. Marks: 70

[7M]

2. Answer **ALL** the question in **Part-A** 3. Answer any **FOUR** Questions from **Part-B** PART -A 1. What is an attenuator? a) [2M] What is meant by positive clamping and negative clamping? b) [2M] Write the applications of Schmitt trigger. [3M] c) d) Define a stable multivibrator. [2M]Define transmission error. e) [2M] Why sampling gates are called linear gates? f) [3M] PART -B 2. A pulse is applied to low-pass RC circuit. Prove that area under the pulse is same as [7M] a) area under the output waveform across the capacitor. Explain the response of High-pass RC circuit for step input. b) [7M] 3. Explain clipping at two independent levels using diodes. a) [7M] State and explain clamping circuit theorem. b) [7M] 4. Discuss about breakdown voltages of a transistor. [7M] a)

5. a) Derive the expression for gate width of a monostable multivibrator neglecting the [7M] reverse saturation current I_{CBO} .

Design a bistable multivibrator to meet the following specifications:

b) Find the ratio V_{CC} / V , if a voltage to frequency convertor generates oscillations of [7M] frequency twice of that when $V = V_{CC}$.

 $V_{CC} = V_{BB} = 12 \text{ V}, I_{C}(\text{sat}) = 6 \text{ mA}, h_{FE} \text{ (min)} = 25 \text{ and maximum triggering}$

6. a) What is meant by time base signal? What are the general features of time base [7M] signal? Explain.

b) Explain about transistor miller time base generator. [7M]

7. a) Give the comparison of various logic families. [7M]

b) Discuss about reduction of pedestal in sampling gates. [7M]

Time: 3 hours

b)

frequency = 25 kHz.

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any **FOUR** Questions from **Part-B** PART -A 1. When does high pass circuit act as a differentiator? a) [2M] What is the difference between clipping and clamping? b) [2M] Define delay time and storage time. c) [2M] Find the period of output and the frequency of oscillation of an astable d) multivibrator with $R_1 = R_2 = 25 \text{ k}\Omega$ and $C_1 = C_2 = 0.2 \mu\text{F}$. [3M] e) Define displacement error. [2M] f) Write the difference between sampling gate and logic gate. [3M] PART -B 2. a) Explain the response of Low-pass RC circuit for exponential input. [7M] b) Draw the circuit diagram of compensated attenuator and explain it. [7M] 3. Draw the circuit of transistor clipper and explain its operation. a) [7M] Design a diode clamper to restore a dc level of +5 V to an input signal of peakb) [7M] to-peak value 15 V. Assume the drop across the diode is 0.7 V and the signal frequency is 1 kHz. 4. Explain about design of transistor switch. [7M] a) b) Explain the operation of Schmitt trigger. [7M] 5. Draw the circuit diagram of collector coupled mono stable multivibrator and a) [7M] explain its operation. b) Design an astable multivibrator to generate a square wave of 1 kHz. [7M] Explain the basic principles behind miller time base generator. 6. a) [7M] b) Discuss about the transistor bootstrap time base generator. [7M] 7. a) Draw the diode logic AND circuit and explain it. [7M] b) Explain the operation of four diode sampling gate. [7M]

(Electrical and Electronics Engineering)

Time: 3 hours Max					
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B			
<u>PART -A</u>					
1.	a)	Define the term 'rise time'.	[2M]		
	b)	List out the some applications of voltage comparator.	[3M]		
	c)	What is meant by triggering of binary circuit?	[2M]		
	d)	Why monostable multivibrator also called gating circuit?	[2M]		
	e) f)	What is meant by voltage time base generator? Write the some applications of sampling gates.	[2M] [3M]		
		PART -B			
2.	a)	Explain the response of High-pass RC circuit for sinusoidal input.	[7M]		
	b)	Explain the response of series RLC circuit for step input.	[7M]		
3.	a)	Draw the basic circuit of diode clipper and explain its operation with the help of transfer characteristics.	[7M]		
	b)	Explain the operation of negative clamping circuit.	[7M]		
4.	a)	For a common emitter circuit, $V_{CC} = 15 \text{ V}$, $R_C = 1.5 \text{ k}\Omega$ and $I_B = 0.3 \text{ mA}$. (i) Determine the $h_{FE}(\text{min})$ for the saturation to occur.	[7M]		
	b)	(ii) If the R_C is changed to $500~\Omega$, will the transistor be saturated? Design a Schmitt trigger circuit to have V_{CC} = 12 V, UTP = 6 V, LTP = 3 V, using silicon transistors with h_{FE} (min) = 60.	[7M]		
5.	a)	Calculate the component values of a monostable multivibrator developing an output pulse of 500 μs duration. Assume $h_{FE}(min) = 25$, $I_{CE}(sat) = 5$ mA, $V_{CC} = 10$ V, and $V_{BB} = -4$ V.			
	b)	Explain how an astable multivibrator can be used as a voltage to frequency convertor.	[7M]		
6.	a) b)	With necessary waveforms, explain the operation of UJT Relaxation oscillator. What are the different methods to generate time base waveforms? Explain.	[7M] [7M]		
7.	a) b)	Draw the circuit diagram of TTL NAND gate and explain it. Explain the basic principle behind sampling gate.	[7M] [7M]		

|"|""||"||"