

Service Manual C2100

Model : C210

P/N: MMBD0048201 Date: April, 2005 / Issue 1.0

Table Of Contents

1. INTRODUCTION 5	4.7 MIC Trouble	71
1.1 Purpose5	4.8 SIM Card Interface Trouble	73
1.2 Regulatory Information5	4.9 Earphone Trouble	75
1.3 Abbreviations 7	4.10 KEY backlight Trouble	77
	4.11 Receiver Trouble	79
2. PERFORMANCE 9	4.12 Microphone Trouble	81
2.1 H/W Features 9	4.13 RTC Trouble	83
2.2 Technical Specification	4.14 Indication LED Trouble	85
3. TECHNICAL BRIEF 15	4.15 Folder on/off Trouble	87
3.1 Transceiver (SI4205, U505) 15	5. DOWNLOAD AND	
3.2 Power Amplifier Module	CALIBRATION	89
(SKY77325, U501)21	5.1 Download	89
3.3 26 MHz Clock (VCTCXO, X500) 22	5.2 Calibration	95
3.4 Power Supplies for RF Circuits (RF LDO, U503)22	6. BLOCK DIAGRAM	98
3.5 Digital Main Processor (AD6527, U101)	7. CIRCUIT DIAGRAM	99
3.6 Analog Main & Power Management Processor (AD6537B, U102)	8. PCB LAYOUT	105
3.7 Display and Interface 39	9. ENGINEERING MODE	107
3.8 Keypad Switches and Scanning 41	9.1 BB Test [MENU 1]	108
3.9 Microphone 42	9.2 RF Test [MENU 2]	
3.10 Main Speaker42		
3.11 Headset Interface	9.4 Trace option [MENU 4]	111
3.12 Key Back-light Illumination 44	9.5 Call timer [MENU 5]	111
3.13 LCD Back-light Illumination 45	9.6 Fact. Reset [MENU 6]	111
3.14 VIBRATOR 46	9.7 S/W version	111
4. TROUBLESHOOTING 47	10. STAND ALONE TEST	112
4.1 RX Trouble	10.1 Introduction	112
4.2 TX Trouble 55	10.2 Setting Method	
4.3 Power On Trouble	10.3 Means of Test	
4.4 Charging Trouble65		
4.5 Vibrator Trouble 67	11. AUTO CALIBRATION	115
4.6 LCD Trouble 69	11.1 Overview	115

11.2 Requirements 115	
11.3 Menu and Settings115	
11.4 AGC 116	
11.5 APC116	
11.6 ADC 117	
11.7 Setting 117	
11.8 How to do calibration 117	
 2. EXPLODED VIEW &	
 2. EXPLODED VIEW & REPLACEMENT PART LIST 119	
 2. EXPLODED VIEW &	
 2. EXPLODED VIEW & REPLACEMENT PART LIST 119	
 2. EXPLODED VIEW & REPLACEMENT PART LIST 119 12.1 EXPLODED VIEW 119	
 2. EXPLODED VIEW & REPLACEMENT PART LIST 119 12.1 EXPLODED VIEW 119 12.2 Replacement Parts	
 2. EXPLODED VIEW & REPLACEMENT PART LIST	

1. INTRODUCTION

1.1 Purpose

This manual provides the information necessary to repair, calibration, description and download the features of this model.

1.2 Regulatory Information

A. Security

Toll fraud, the unauthorized use of telecommunications system by an unauthorized part (for example, persons other than your company's employees, agents, subcontractors, or person working on your company's behalf) can result in substantial additional charges for your telecommunications services. System users are responsible for the security of own system. There are may be risks of toll fraud associated with your telecommunications system. System users are responsible for programming and configuring the equipment to prevent unauthorized use. The manufacturer does not warrant that this product is immune from the above case but will prevent unauthorized use of common-carrier telecommunication service of facilities accessed through or connected to it.

The manufacturer will not be responsible for any charges that result from such unauthorized use.

B. Incidence of Harm

If a telephone company determines that the equipment provided to customer is faulty and possibly causing harm or interruption in service to the telephone network, it should disconnect telephone service until repair can be done. A telephone company may temporarily disconnect service as long as repair is not done.

C. Changes in Service

A local telephone company may make changes in its communications facilities or procedure. If these changes could reasonably be expected to affect the use of the this phone or compatibility with the network, the telephone company is required to give advanced written notice to the user, allowing the user to take appropriate steps to maintain telephone service.

D. Maintenance Limitations

Maintenance limitations on this model must be performed only by the manufacturer or its authorized agent. The user may not make any changes and/or repairs expect as specifically noted in this manual. Therefore, note that unauthorized alternations or repair may affect the regulatory status of the system and may void any remaining warranty.

1. INTRODUCTION

E. Notice of Radiated Emissions

This model complies with rules regarding radiation and radio frequency emission as defined by local regulatory agencies. In accordance with these agencies, you may be required to provide information such as the following to the end user.

F. Pictures

The pictures in this manual are for illustrative purposes only; your actual hardware may look slightly different.

G. Interference and Attenuation

Phone may interfere with sensitive laboratory equipment, medical equipment, etc.Interference from unsuppressed engines or electric motors may cause problems.

H. Electrostatic Sensitive Devices

ATTENTION

Boards, which contain Electrostatic Sensitive Device (ESD), are indicated by the sign. Following information is ESD handling:

- Service personnel should ground themselves by using a wrist strap when exchange system boards.
- When repairs are made to a system board, they should spread the floor with anti-static mat which is also grounded.
- Use a suitable, grounded soldering iron.
- Keep sensitive parts in these protective packages until these are used.
- When returning system boards or parts like EEPROM to the factory, use the protective package as described.

1.3 Abbreviations

For the purposes of this manual, following abbreviations apply:

APC	Automatic Power Control
BB	Baseband
BER	Bit Error Ratio
CC-CV	Constant Current - Constant Voltage
DAC	Digital to Analog Converter
DCS	Digital Communication System
dBm	dB relative to 1 milliwatt
DSP	Digital Signal Processing
EEPROM	Electrical Erasable Programmable Read-Only Memory
ESD	Electrostatic Discharge
FPCB	Flexible Printed Circuit Board
GMSK	Gaussian Minimum Shift Keying
GPIB	General Purpose Interface Bus
GSM	Global System for Mobile Communications
IPUI	International Portable User Identity
IF	Intermediate Frequency
LCD	Liquid Crystal Display
LDO	Low Drop Output
LED	Light Emitting Diode
OPLL	Offset Phase Locked Loop
PAM	Power Amplifier Module
PCB	Printed Circuit Board
PGA	Programmable Gain Amplifier
PLL	Phase Locked Loop
PSTN	Public Switched Telephone Network
RF	Radio Frequency
RLR	Receiving Loudness Rating
RMS	Root Mean Square
RTC	Real Time Clock
SAW	Surface Acoustic Wave
SIM	Subscriber Identity Module
SLR	Sending Loudness Rating
SRAM	Static Random Access Memory

1. INTRODUCTION

STMR	Side Tone Masking Rating
TA	Travel Adapter
TDD	Time Division Duplex
TDMA	Time Division Multiple Access
UART	Universal Asynchronous Receiver/Transmitter
VCO	Voltage Controlled Oscillator
VCTCXO	Voltage Control Temperature Compensated Crystal Oscillator
WAP	Wireless Application Protocol

2. PERFORMANCE

2.1 H/W Features

Item	Feature	Comment
Standard Battery	Li-ion, 1000mAh Battery Size: 34.15 (W) x 53.55(H) x 5.7(T) [mm] Battery Weight: 25g	
Stand by Current	Under the minimum current consumption environment (such as paging period 9), the level of standby current is below 4mA.	
Talk time	Up to 3 hours (GSM TX Level 5)	
Stand by time	Up to 200 hours (Paging Period: 9, RSSI: -85 dBm)	
Charging time	Approx. Under 3.75 hours	
RX Sensitivity	GSM, EGSM: -107dBm, DCS: -107dBm	
TX output power	GSM, EGSM: 33dBm(Level 5), DCS: 30dBm(Level 0)	
GPRS compatibility	Class 10	
SIM card type	3V only	
Display	Main LCD : CSTN 128 x 160 pixel 65K Color Sub LCD : STN 96 x 64 pixel MONO	
Status Indicator	Hard icons. Key Pad 0 ~ 9, #, *, Up/Down Navigation Key Menu Key, Clear Key Send Key, END/PWR Key Soft Key(Left/Right)	
ANT	Internal	
EAR Phone Jack	Yes (mono)	
PC Synchronization	Yes	
Speech coding	EFR/FR/HR	
Data and Fax	Yes	
Vibrator	Yes	
Loud Speaker	Yes	
Voice Recoding	Yes	
Microphone	Yes	
Speaker/Receiver	One way dual speaker	
Travel Adapter	Yes	
MIDI	40 Poly (Mono SPK)	
Options	Data Kit , CD	

2.2 Technical Specification

Item	Description	Specification					
1	Frequency Band	GSM • TX: 890 + n x 0.2 MHz • RX: 935 + n x 0.2 MHz (n=1~124) EGSM • TX: 890 + (n-1024) x 0.2 MHz • RX: 935 + (n-1024) x 0.2 MHz (n=975~1024) DCS • TX: 1710 + (n-512) x 0.2 MHz • RX: 1805 + (n-512) x 0.2 MHz (n=512~885)					
2	Phase Error		5 degrees 20 degrees	s			
3	Frequency Error	< 0.1 p	pm				
		GSM, Level	EGSM Power	Toler.	Level	Power	Toler.
		5	33 dBm	±2dB	13	17 dBm	±3dB
		6	31 dBm	±3dB	14	15 dBm	±3dB
		7	29 dBm	±3dB	15	13 dBm	±3dB
		8	27 dBm	±3dB	16	11 dBm	±5dB
		9	25 dBm	±3dB	17	9 dBm	±5dB
		10	23 dBm	±3dB	18	7 dBm	±5dB
		11	21 dBm	±3dB	19	5 dBm	±5dB
4	Power Level	12	19 dBm	±3dB			
		DCS					
		Level	Power	Toler.	Level	Power	Toler.
		0	30 dBm	±2dB	8	14 dBm	±3dB
		1	28 dBm	±3dB	9	12 dBm	±4dB
		2	26 dBm	±3dB	10	10 dBm	±4dB
		3	24 dBm	±3dB	11	8 dBm	±4dB
		4	22 dBm	±3dB	12	6 dBm	±4dB
		5	20 dBm	±3dB	13	4 dBm	±4dB
		6	18 dBm	±3dB	14	2 dBm	±5dB
		7	16 dBm	±3dB	15	0 dBm	±5dB

Item	Description	Specification		
		GSM, EGSM		
		Offset from Carrier (kHz).	Max. dBc	
		100	+0.5	
		200	-30	
		250	-33	
		400	-60	
		600 ~ 1,200	-60	
		1,200 ~ 1,800	-60	
		1,800 ~ 3,000	-63	
		3,000 ~ 6,000	-65	
_	Output RF Spectrum	6,000	-71	
5	(due to modulation)	DCS		
		Offset from Carrier (kHz).	Max. dBc	
		100	+0.5	
		200	-30	
		250	-33	
		400	-60	
		600 ~ 1,200	-60	
		1,200 ~ 1,800	-60	
		1,800 ~ 3,000	-65	
		3,000 ~ 6,000	-65	
		6,000	-73	
		GSM, EGSM		
		Offset from Carrier (kHz)	Max. (dBm)	
6	Output RF Spectrum	400	-19	
	(due to switching transient)	600	-21	
		1,200	-21	
		1,800	-24	

2. PERFORMANCE

Item	Description	Specification			
		DCS			
		Offset from Carrier (kHz)	N	lax. (dBm)	
6	Output RF Spectrum	400		-22	
"	(due to switching transient)	600		-24	
		1,200		-24	
		1,800		-27	
7	Spurious Emissions	Conduction, Emission Statu	s		
8	Bit Error Ratio	GSM, EGSM BER (Class II) < 2.439% @-10 DCS	02dBm		
		BER (Class II) < 2.439% @-10	00dBm		
9	Rx Level Report Accuracy	$\pm 3~\mathrm{dB}$			
10	SLR	8 ±3 dB			
		Frequency (Hz)	Max.(dB)	Min.(dB)	
		100	-12	_	
		200	0	_	
		300	0	-12	
11	Sending Response	1,000	0	-6	
		2,000	4	-6	
		3,000	4	-6	
		3,400	4	-9	
		4,000	0	_	
12	RLR	2 ±3 dB			
		Frequency (Hz)	Max.(dB)	Min.(dB)	
		100	-12	_	
		200	0	_	
		300	2	-7	
		500	*	-5	
13	Receiving Response	1,000	0	-5	
		3,000	2	-5	
		3,400	2	-10	
		4,000	2		
		* Mean that Adopt a straight lir 1,000 Hz to be Max. level in		n 300 Hz and	

Item	Description	Specification		
14	STMR	13 ±5 dB		
15	Stability Margin	> 6 dB		
		dB to ARL (dB)	Level Ratio (dB)	
		-35	17.5	
		-30	22.5	
16	Distortion	-20	30.7	
16	Distortion	-10	33.3	
		0	33.7	
		7	31.7	
		10	25.5	
17	Side Tone Distortion	Three stage distortion < 10%		
18	System frequency (13 MHz) tolerance	≤ 2.5 ppm		
19	32.768KHz tolerance	≤ 30 ppm		
		At least 65 dBspl under below	conditions:	
20	Ringer Volume	 Ringer set as ringer. Test distance set as 50 cm 		
21	Charge Current	Fast Charge : < 430 mA Slow Charge: < 160 mA		
		Antenna Bar Number	Power	
		5	-85 dBm ~	
		4	-90 dBm ~ -86 dBm	
22	Antenna Display	3	-95 dBm ~ -91 dBm	
		2	-100 dBm ~ -96 dBm	
		1	-105 dBm ~ -101 dBm	
		0	~ -105 dBm	
		Battery Bar Number	Voltage	
		0	3.51V~3.61V	
23	Battery Indicator	1	3.62V~3.69V	
		2	3.70V~3.77V	
		3	3.78V~3.91V	
		4	3.92V~	
24	Low Voltage Warning	3.62 ±0.03V (Call)		
24	Low Voltage Warning	$3.50\pm0.03V$ (Standby)		

2. PERFORMANCE

Item	Description	Specification	
25	5 Forced shut down Voltage 3.35 ± 0.03 V		
26	Battery Type	1 Li-ion Battery Standard Voltage = 3.7 V Battery full charge voltage = 4.2 V Capacity: 1000mAh	
Swit 27 Travel Charger Inpu		Switching-mode charger Input: 100 ~ 240 V, 50/60Hz Out put: 5.2V, 800mA	

3. TECHNICAL BRIEF

RF PARTS

3.1 Transceiver (SI4205, U505)

The RF parts consist of a transmitter part, a receiver part, a frequency synthesizer part, a voltage supply part, and a VCTCXO part.

The Aero I transceiver is the integrated RF front end for multi-band GSM/GPRS digital cellular handsets and wireless data modems. The integrated solution eliminates the IF SAW filter, external low noise amplifier (LNAs) for three bands, transmit and RF voltage controlled oscillator (VCO modules, and other discrete components found in conventional designs.

Si4205 GSM DAC ADC CHANNEL FILTER ı PG DCS **ANTENNA SWITSH** ADC DAC Q PCS XOUT 0/90 100kHz BASEBAND GSM ı DET DCS PCS Q VC-TCXO 13 or 26 MHz XIN AFC RF IF PLL PLL

Figure. 3-1 RECEIVER FUNCTIONAL BLOCK DIAGRAM

(1) Receiver Part

The Aero I transceiver uses a low-IF receiver architecture which allows for the on chip integration of the channel selection filters, eliminating the external RF image reject filters and the IF SAW filter required in conventional super-heterodyne architectures.

A. RF front end

RF front end consists of Antenna Switch(FL500), two SAW Filters(FL401, FL402) and dual band LNAs integrated in transceiver (U505).

The Received RF signals(GSM 925MHz ~ 960MHz, DCS 1805MHz ~ 1880MHz) are fed into the antenna or Mobile switch.

The Antenna Switch(FL500) is used to control the Rx and Tx paths. And, the input signals VC1 and VC2 of a FL500 are directly connected to baseband controller to switch either Tx or Rx path on. The logic and current is given below Table 3-1.

Table 3-1 THE LOGIC AND CURRENT

	VC1	VC2	Current
DCS Tx	0 V	2.5 ~ 3.0 V	10.0 mA max
GSM Tx	2.5 ~ 3.0 V	0 V	10.0 mA max
GSM / DCS Rx	0 V	0 V	< 0.1 mA

Three differential-input LNAs are integrated in SI4205. The GSM input supports the GSM 850 (824-849 MHz) or E-GSM 900 (925-960MHz) bands. The DCS input supports the DCS 1800 (1805-1880 MHz) band. The PCS input supports the PCS 1900 (1930-1990 MHz) band.

The LNA inputs are matched to the 150Ω balanced output SAW filters through external LC matching networks. The LNA gain is controlled with the LNAG[1:0] and LNAC[1:0] bits in register 05h (Figure 3-2).

Figure. 3-2 SI4205 RECEIVER PART

B. Intermediate frequency (IF) and Demodulation

A quadrature image-reject mixer downconverts the RF signal to a 100KHz intermediate frequency (IF) with the RFLO from the frequency synthesizer. The RFLO frequency is between 1737.8 to 1989.9 MHz, and is internally divided by 2 for GSM 850 and E-GSM 900 modes. The mixer output is amplified with an analog programmable gain amplifier (PGA), which is controlled with the AGAIN[2:0] bits in register 05h (Figure3-2). The quadrature IF signal is digitized with high resolution A/D converters (ADCs).

The ADC output is downconverted to baseband with a digital 100KHz quadrature LO signal. Digital decimation and IIR filters perform channel selection to remove blocking and reference interference signals. The selectivity setting (CSEL=0) or a low selectivity setting (CSEL=1). The low selectivity filter has a flatter group channelization filter is in the baseband chip. After channel selection, the digital output is scaled with a digital PGA, which is controlled with the DGAIN [5:0] bits in register 05h. The amplified digital output signal go through with DACs that drive a differential analog signal onto the RXIP,RXIN,RXQP and RXQN pins to interface to standard analog ADC input baseband ICs. No special processing is required in the baseband for offset compensation or extended dynamic range. Compared to a direct-conversion architecture, the low-IF architecture has a much greater degree of immunity to dc offsets that can arise from RF local oscillator(RFLO) self-mixing, 2nd order distortion of blockers, and device 1/f noise.

(2) Transmitter Part

The transmit (Tx) section consists of an I/Q baseband upconverter, and offset phase-locked loop (OPLL) and two output buffers that can drive external power amplifiers (PA), one for the GSM 850 (824-849 MHz) and E-GSM 900 (880-915 MHz) bands and one for the DCS 1800 (1710-1785 MHz) and PCS 1900 (1850-1910MHz) bands.

Figure. 3-3 SI4205 TRANSMITTER PART

A. IF Modulator

The baseband converter(BBC) within the GSM chipset generates I and Q baseband signals for the Transmit vector modulator. The modulator provides more than 40dBc of carrier and unwanted sideband rejection and produces a GMSK modulated signal. The baseband software is able to cancel out differential DC offsets in the I/Q baseband signals caused by imperfections in the D/A converters. The Tx-Modulator implements a quadrature modulator. A quadrature mixer upconverts the differential in-phase (TXIP, TXIN) and quadrature (TXQP, TXQN) signals with the IFLO to generate a SSB IF signal that is filtered and used as the reference input to the OPLL.

The IFLO frequency is generated between 766 and 896 MHz and internally divided by 2 to generate the quadrature LO signals for the quadrature modulator, resulting in an IF between 383 and 448 MHz. For the E-GSM 900 band, two different IFLO frequencies are required for spur management. Therefore, the IF PLL must be programmed per channel in the E-GSM 900 band.

B. OPLL

The OPLL consists of a feedback mixer, a phase detector, a loop filter, and a fully integrated TXVCO. The TXVCO is centered between the DCS 1800 and PCS 1900 bands, and its output is divided by 2 for the GSM 850 and E-GSM 900 bands. The RFLO frequency is generated between 1272 and 1483 MHz. To allow a single VCO to be used for the RFLO, high-side injection is used for the GSM 850 and E-GSM 900 bands, and low-side injection is used for the DCS 1800 and PCS 1900 bands. The I and Q signals are automatically swapped when switching bands. Additionally, the SWAP bit in register 03h can be used to manually exchange the I and Q signals.

Low-pass filters before the OPLL phase detector reduce the harmonic content of the quadrature modulator and feedback mixer outputs. The cutoff frequency of the filters is programmable with the FIF[3:0] bits in register 04h (Figure 3-3), and should be set to the recommended settings detailed in the register description.

(3) Frequency Synthesizer

Si4205 130 DÉT DIV2 **RFUP** XOUT $N_{RF1}[15:0]$ Self Tune $N_{RF2}[15:0]$ XEN **RFPLL** Power **PDIB** PDN. Control PDRB IF PLL SDI Self $N_{iF}[15:0]$ Tune SDO ■4 Serial I/O SCLK ■-SDOSEL[4:0] SEN =

Figure. 3-4 SI4205 FREQUENCY SYNTHESIZER PART

The Aero I transceiver integrates two complete PLLs including VCOs, varactors, resonators, loop filters, reference and VCO dividers, and phase detectors. The RF PLL uses two multiplexed VCOs. The RF1 VCO is used for receive mode, and the RF2 VCO is used for transmit mode. The IF PLL is used only during transmit mode. All VCO tuning inductors are also integrated. The IF and RF output frequencies are set by programming the N-Divider registers, NRF1, NRF2 and NIF. Programming the NDivider register for either RF1 or RF2 automatically selects the proper VCO. The output frequency of each PLL is as follows:

$$f_{out} = N \times f_{\emptyset}$$

The DIV2 bit in register 31h controls a programmable divider at the XIN pin to allow either a 13 or 26 MHz reference frequency. For receive mode, the RF1 PLL phase detector update rate (f_{\circ}) should be programmed f_{\circ} = 100 kHz for DCS 1800 or PCS 1900 bands, and f_{\circ} = 200 kHz for GSM 850 and E-GSM 900 bands. For transmit mode, the RF2 and IF PLL phase detector update rates are always f_{\circ} =200 kHz.

3.2 Power Amplifier Module (SKY77325, U501)

The SKY77325 Power Amplifier Module (PAM) is designed in a low profile (1.2 mm), compact form factor for guad-band cellular handsets comprising GSM850/900, DCS1800, and PCS1900 operation. The PAM also supports Class 12 General Packet Radio Service (GPRS) multi-slot operation. The module consists of separate GSM850/900 PA and DCS1800/PCS1900 PA blocks, impedancematching circuitry for 50 Ω input and output impedances, and a Power Amplifier Control (PAC) block with an internal current-sense resistor. The custom BiCMOS integrated circuit provides the internal PAC function and interface circuitry. Fabricated onto a single Gallium Arsenide (GaAs) die, one Heterojunction Bipolar Transistor (HBT) PA block supports the GSM850/900 bands and the other supports the DCS1800 and PCS1900 bands. Both PA blocks share common power supply pins to distribute current. The GaAs die, the Silicon (Si) die, and the passive components are mounted on a multi-layer laminate substrate. The assembly is encapsulated with plastic overmold. RF input and output ports of the SKY77325 are internally matched to a 50 Ω load to reduce the number of external components for a quad-band design. Extremely low leakage current (2.5 µA, typical) of the dual PA module maximizes handset standby time. The SKY77325 also contains bandselect switching circuitry to select GSM (logic 0) or DCS/PCS (logic 1) as determined from the Band Select (BS) signal. In Figure 3-5 below, the BS pin selects the PA output (DCS/PCS OUT or GSM850/900 OUT) and the Analog Power Control (VAPC) controls the level of output power. VBATT and VSENSE pins connect to an internal current-sense resistor and interface to an integrated power amplifier control (iPAC™) function, which is insensitive to variations in temperature, power supply, process, and input power. The ENABLE input allows initial turnon of PAM circuitry to minimize battery drain

Figure. 3-5 Functional Block Diagram

3.3 26 MHz Clock (VCTCXO, X500)

The 26 MHz clock(X500) consists of a TCXO(Temperature Compensated Crystal Oscillator) which oscillates at a frequency of 26 MHz. It is used within the Si4205, digital base band chipset (U101, AD6527)

2V75_VVCXO

A STORT TO THE PROPERTY OF THE PRO

Figure 3-6 VCTCXO CIRCUIT DIAGRAM

3.4 Power Supplies for RF Circuits (RF LDO, U503)

Two regulators are used for RF circuits. One is MIC5255 (U503), and the other is one port of AD6537B (U102).

MIC5255 (U503) supplies power to transceiver (SI4205, U505). One port of AD6537B supplies power to VCTCXO (X500). Main power (VBAT) from battery is used for PAM (SKY77325, U501) because PAM requires high power.

Supplier	Voltage	Powers	enabled signal
U503(VRF)	2.85 V	U505, U501	CLKON
U102(VVCXO)	2.75 V	X501	
Battery(VBAT)	3.4 ~ 4.2 V	U501, U503	

Table 3-2 RF POWER SUPPLIERS

RF PARTS

Figure 3-7 RF LDO CIRCUIT DIAGRAM

BASEBAND PARTS

3.5 Digital Main Processor (AD6527, U101)

Figure 3-8. SYSTEM INTERCONECTION OF AD6527 EXTERNAL INTERFACE

3. TECHNICAL BRIEF

- · AD6527 is an ADI designed processor.
- · AD6527 consists of
- 1. Control Processor Subsystem
- 32-bit ARM7TDMI Control Processor
- 58.5 MHz operation at 1.7V
- · On-board 16KB instruction/Data Cache
- 1 Mbits of on-chip System SRAM

2. DSP Subsystem

- 16-bit Fixed Point DSP Processor
- •91 MIPS at 1.7V
- 16K word Data and 16K word Program SRAM
- 4K word Program Instruction Cache
- Architecture supports Full Rate, Enhanced Full Rate, Half Rate, and AMR Speech Encoding/Decoding Algorithms

3. Peripheral Subsystem

- · Shared on-chip peripheral and off-chip interface:
- · Support for Burst and Page Mode Flash
- Support for Pseudo SRAM
- · Ciphering module for GPRS supporting GAE1 and GAE2 encryption algorithms
- · Parallel and Serial Display Interface
- 8 x 8 Keypad Interface
- Four independent programmable backlight plus One Service Light
- 1.8V and 3.0V, 64 kbps SIM interface
- · Universal System Connector Interface
- · Slow, Medium and Fast IrDA transceiver interface
- Enhanced Generic Serial Port
- Dedicated SPI interface
- Thumbwheel Interface
- JTAG Interface for Test and In-Circuit Emulation

4. Other

- · Supports 13 MHz and 26 MHz Input Clocks
- 1.8V Typical Core Operating Voltages
- 204-Ball LFBGA(mini-BGA) Package

5. Applications

- GSM900/DCS1800/PCS1900/PCS850 Wireless Terminals
- · GSM Phase 2+ Compliant
- GPRS Class 12 Compliant
- Multimedia Services(MMS)
- Extended Messaging System(EMS)

3.5.1 Interconnection with external devices

A. RTC block interface

Countered by external X-TAL The X-TAL oscillates 32.768KHz

B. LCD module interface

The LCD module is controlled by DBB chipset, AD6527.

When LCD operate, the AD6527 controls the LCD module through _LCD_CS (L_MAIN_LCD_CS), _SUB_CS (L_SUB_LCD_CS), LCD_RESET, ADD01(LCD_RS), _WR(LCD_WR), _RD(LCD_RD), L_DATA[15-00], 2V85_VCAM, IF_MODE, LCD_ID[1:3].

Table 3-3. LCD CONTRON SIGNALS DISCRIPTION

Signals	Description
_LCD_CS	MAIN LCD driver chip enable. MAIN LCD driver IC has own CS pin
_SUB_CS	SUB LCD driver chip enable. SUB LCD driver IC has own CS pin
LCD_RESET	This pin resets LCD module. This signal comes from DBB directly.
(GPIO 15)	
_WR	Enable writing to LCD Driver.
_RD	Enable reading to LCD Driver.
ADD01	This pin determines whether the data to LCD module are display data or
	control data. LCD_RS can select 16 bit parallel bus.
2V85_VCAM	2.85V voltage is supplied to LCD driver IC.
IFMODE	Select 16bits or 8bits interface mode for MAIN LCD.
(GPO_8)	For the future
LCD_ID1	Select LCD modoule maker(2.4V : SII, 0V : HyeLCD)
(AUXADC1 in ABB)	
LCD_ID2(GPIO_16)	For the future.
LCD_ID3(GPIO_17)	

3. TECHNICAL BRIEF

The backlight of LCD module is controlled by DBB via AAT2807, U402. The control signals related to Backlight LED are given bellow.

Table 3-4. DESCRIPTION OF LCD BACKLIGHT LED CONTROL

Signals	Description
C_FLASH	Control flash ON and OFF
(GPIO_24)	
LCD_DIM_CTL	Control LCD backlight level in 16 steps
(GPO 23)	
FLASH_LED	Voltage source for FLASH LED
MLED	Current source for backlight LED
MLED[1:3]	This pins are returned-paths for backlight LED current source (MLED)

C. RF interface

The AD6527 control RF parts through PA_BAND, ANT_SW1, ANT_SW2, CLKON , PA_EN, S_EN, S_DATA, S_CLK, RF_PWR_DWN.

Table 3-5. RF CONTRON SIGNALS DISCRIPTION

Signals	Description
PA_BAND (GPO 17)	PAM Band Select
ANT_SW1 (GPO 9)	Antenna switch Band Select
ANT_SW2 (GPO 11)	Antenna switch Band Select
CLKON	RF LDO Enable/Disable
PA_EN (GPO 16)	PAM Enable/Disable
S_EN (GPO 19)	PLL Enable/Disable
S_DATA (GPO 20)	Serial Data to PLL
S_CLK (GPO 21)	Clock to PLL
RF_PWR_DWN (GPO 4)	Tranceiver on/off control

D. SIM interface

The AD6527 provides SIM Interface Module. The AD6527 checks status periodically during established call mode whether SIM card is inserted or not, but it doesn't check during deep Sleep mode. In order to communicate with SIM card, 3 signals SIM_DATA, SIM_CLK, SIM_RST(GPIO_23) are required. The descriptions about the signals are given by bellow Table 3-6 in detail.

Signals	Description
SIM_DATA	This pin receives and sends data to SIM card. This model can support 3.0
	volt interface SIM card.
SIM_CLK	Clock 3.25MHz frequency.
SIM_RST	Reset SIM block
(GPIO_23)	

Table 3-6. SIM CONTROL SIGNALS DISCRIPTION

Figure 3-9. SIM Interface of AD6527

E. Key interface

Include 5 columns, 5 rows and additional GPIO 35 for KEY_ROW5. The AD6527 detects whether key is pressed or not by using interrupt method.

F. AD6537B Interrupt

AD6537B provides an active-high interrupt output signal. Interrupt signals are generated by the Auxiliary ADC, audio, and charger modules.

3.5.2 AD6527 Architecture

Figure 3-10. AD6527 Architecture

The internal architecture of AD6527 is shown above Figure 3-10. AD6527 regroups three main subsystems connected together through a dynamic and flexible communication bus network. It also includes onboard system RAM (SRAM) and interfaces with external Flash Memory, Baseband converter functions, and terminal functions like MMI, SIM and Universal System Connector (USC). The Digital Signal Processing (DSP) subsystem primarily hosts all the speech processing, channel equalization and channel codec functions. The code used to implement such functions can be stored in external Flash Memory and dynamically downloaded on demand into the DSP's program RAM and Instruction Cache.

The micro-controller subsystem supports all the GSM terminal software, including the layer 1, 2 and 3 of the GSM protocol stack, the MMI, and applications software such as data services, test and maintenance. It is tightly associated with on-chip system SRAM and also includes boot ROM memory with a small dedicated routine to facilitate the initialization of the external Flash Memory via code download using the on-chip serial interface to the external Flash Memory interface.

The peripheral subsystem is composed of system peripherals such as interrupt controller, real time clock, watch dog timer, power management and a timing and control module. It also includes peripheral interfaces to the terminal functions: keyboard, battery supervision, radio and display. Both the DSP and the MCU can access the peripheral subsystem via the peripheral bus (PBUS). For program and data storage, both the MCU subsystem and the DSP subsystem can access the on chip system SRAM and external memory such Flash Memory. The access to the SRAM module is made through the RAM Bus (RBUS) under the control of the bus arbitration logic. Similarly, access to the Flash Memory is through the parallel External Bus (EBUS).

3.6 Analog Main & Power Management Processor (AD6537B, U102)

AD6537B AD7527 LEDs Light Controllers Othello™ CSPORT ADC Crystal & DAC Varactor Ram DAC DAC GMSK DAC BSPORT Filter ADC Filter ADC Tone Switch Filter ASPORT Headhones or Headset Filter ADC Battery 8 Voltage Regulators Charger VCORE: 1.8 V, 80 mA VMEM: 1.8 or 2.8 V, 150 mA VMIC: 2.5 V, 1 mA VEXT: 2.8 V, 170 mA VVCXO: 2.75 V, 10 mA VSIM: 1.8 or 2.85 V, 20 mA VRTC: 1.8 V, 20 μA

Figure 3-11. AD6537B FUNCTIONAL BLOCK DIAGRAM

3. TECHNICAL BRIEF

- AD6537B is an ADI designed Analog Baseband processor. AD6537B covers the processing GMSK modulation interface, Aux ADC, Voice signal processing and Power Management.
- · AD6537B consists of
- 1. BB Transmit section
- GMSK Modulation
- · I-channel & Q-channel Transmit DACs and Filters
- Power Ramping DAC
- 2. BB Receiver section
- · I-channel & Q-channel Receive ADCs and Filters
- 3. Auxiliary section
- · Voltage Reference
- Automatic Frequency Control DAC
- Auxiliary ADC
- Light Controllers
- 4. Audio Section
- 8 kHz & 16 kHz Voiceband Codec
- 48 kHz Monophonic DAC
- Audio Amplifiers
- 5. Power Management section
- · Voltage Regulators
- Battery Charger
- Battery Protection
- 6. Digital Processor interface section
- · Control, Baseband, and Audio Serial Ports
- Interrupt Logic

3.6.1 Baseband Transmit Section

- 1. The AD6537B Baseband Transmit Section is designed to support GMSK for both single-slot and multi-slot application.
- 2. The transmit channel consists of a digital GMSK modulator, a matched pair of 10-bit DACs and a matched pair of reconstruction filter.

Figure 3-12. AD6537B BASEBAND TRANSMIT SECTION

3.6.2 Baseband Receiver Section

1. This section consists of two identical ADC channels that process baseband in-phase(I) and quadrature(Q) input signals.

Figure 3-13. AD6537B BASEBAND RECEIVER SECTION

3.6.3 Auxiliary Section

- 1. This section includes an Automatic Frequency Control(AFC) DAC, voltage reference buffers, an Auxiliary ADC, and light controllers.
 - AFC DAC: 13 bits
- 2. This section also contains AUX ADC and Voltage Reference
 - · IDAC: 10 bits
 - The Auxiliary ADC provides :
 - Two differential inputs for temperature sensing.
 - A differential input for the battery charger current sensor

AD6537B AFCDAC CSFS DAC Control CSDI Serial REFTXCM Port CSDO REFBB REFOUT Voltage REFCHG Reference REF TEMP1 TEMP2 AUXADC1 AUXADC2 AIN1P Aux AIN2P ADC BATTYPE **ISENSE** VBATSENSE LIGHT1 Light LIGHT2 Controllers LIGHT3

Figure 3-14. AD6537B AUXILIARY SECTION

3.6.4 Audio Section

- 1. Receive audio signal from microphone. This model uses differential configuration.
- 2. Send audio signal to speaker. This model uses differential configuration.
- 3. This section provides an audio codec with a digital-to-analog converter and an analog-to-digital converter, a ring tone volume controller, a microphone interface, and multiple analog input and output channels.
- 4. It interconnects with external devices like main microphone, main speaker, and headset. The descriptions of audio port used in this model are given bellow in detail.

<Up Link>

-AIN1P, AIN1N: Main microphone positive/negative terminal

-AIN2P, AIN2N: Headset microphone positive/negative terminal

-AIN3P, AIN3N: External Analog Input terminal

<Down Link>

-AOUT1P, AOUT1N: Main Speaker positive/negative terminal

-AOUT3P: Headset speaker terminal

Figure 3-15. AD6537B AUDIO SECTION

3.6.5 Power Management

AD6537B CSFS Baseband Analog VABB Control CSDI LDO Regulator Serial Port CSDO Microphone VMIC 2.5 V, 1 mA LDO Regulator Digital Core 1.8 V, 80 mA <u>VVCXO</u> 2.75 V, 10 mA LDO Regulator VCXO VCORE LDO Regulator 1.8 or 2.8 V, 150 mA Memory Interface LDO Regulator **VMEM** External Interface **VEXT** 2.8 V, 170 mA VCHG LDO Regulator Battery GATEDRIVE SIM Interface VSIM Charger 1.8 or 2.85 V, 20 mA LDO Regulator BATTYPE RTC VRTC 1.8 V, 20 μA LDO Regulator ISENSE **KEYON** VCXOEN KEYOUT Regulator Control **DBBON** Power-On RESET Reset Generator

Figure 3-16. AD6537B POWER MANAGEMENT SECTION

1. Power up sequence logic

- 1. The AD6537B controls power on sequence
- 2. Power on sequence
 - If a battery is inserted, the battery powers the 8 LDOs.
 - Then if PWRONKEY is detected, the LDOs output turn on.
 - REFOUT is also enabled
 - Reset signal is generated and send to the AD6527

Figure 3-17. AD6537B POWER MODE LOGIC

2. LDO Block

- 1. There are 8 LDOs in the AD6537B.
 - VCORE: supplies Digital baseband Processor core and AD6537B digital core (1.8V, 80mA)
 - VMEM : supplies external memory and the interface to the external memory on the digital baseband processor (1,8V or 2.8V, 150mA)
 - VEXT: supplies Radio digital interface and high voltage interface (2.8V, 170mA)
 - VSIM : supplies the SIM interface circuitry on the digital processor and SIM card (1.8V or 2.85V, 20mA)
 - VRTC : supplies the Real-Time Clock module (1.8 V, 20 μ A)
 - VABB : supplies the analog portions of the AD6537B
 - VMIC: supplies the microphone interface circuitry (2.5 V, 1 mA)
 - VVCXO : supplies the voltage controlled crystal oscillator (2.75 V, 10 mA)

3. Battery Charging Block

- 1. It can be used to charge Lithium Ion and/or Nickel Metal Hydride batteries.

 Charger initialization, trickle charging, and Li-Ion charging control are implemented in hardware.
- 2. Charging Process
 - Check charger is inserted or not
 - If AD6537B detects that Charger is inserted, the CC-CV charging starts.
 - Exception : When battery voltage is lower than 3.2V, the precharge(low current charge mode) starts firstly.
 - And the battery voltage reach to 3.2V the CC-CV charging starts.
- 3. Pins used for charging
 - VCHG: charger supply.
 - GATEDRIVE : charge DAC output
 - ISENSE : charge current sense input
 - VBATSENSE : battery voltage sense input.
 - BATTYPE : battery type identification input
 - REFCHG : voltage reference output
- 4. TA (Travel Adaptor)
 - Input voltage: AC 85V ~ 260V, 50~60Hz
 - Output voltage: DC 5.2V (0.2 V)
 - Output current: Max 800mA (50mA)

5. Battery

- Li-ion battery (Max 4.2V, Nom 3.7V)
- Standard battery: Capacity 1000mAh

Figure 3-18. AD6537B BATTERY CHARGING BLOCK

Figure 3-19. C2100 HEADSET AUDIO CIRCUIT (AD6537B)

Figure 3-20. C2100 MAIN AUDIO CIRCUIT (AD6537B)

Figure 3-21. CIRCUIT FOR BATTERY CHARGING AT AD6537B

In order to reduce time for trickle charging, additional circuit(Pre-charge circuit) was included. This circuit has supplied Max 160mA current into the battery additionally. So call it, it reduce trickle charging time

3.7 Display and Interface

· Main LCD

Properties	Spec.	Unit
Active Screen Size	28.022(H) X 35.03(V)	mm
Color Depth	65,000	colors
Resolution	128 X RGB X 160	dots
Pixel Size	0.063(H) X 0.209(V)	mm

· Sub LCD

Properties	Spec.	Unit
Active Screen Size	18.902(H) X 13.43(V)	mm
Color Depth	Mono	
Resolution	96 X 64	dots
Pixel Size	0.187(H) X 0.2(V)	mm

Controlled by _LCD_CS(L_MAIN_LCD_CS), LCD_RESET, ADD01(LCD_RS), _WR(LCD_WR), _RD(LCD_RD), IFMODE, DATA[00:15](L_DATA[00:15]) ports

- _LCD_CS : MAIN LCD driver chip enable. MAIN LCD driver IC has own CS pin
- LCD_RESET : This pin resets LCD module. This signal comes from DBB directly.
- ADD01: This pin determines whether the data to LCD module are display data or control data.
- IFMODE : This can select 16bits or 8bits parallel bus. But for the future. Default is low (low is 16bits interface)
- _WR : Write control Signal
- •_RD : Read control Signal. But this pin used only for debugging.
- DATA[00:15] : Parallel data lines.
- LCD_ID[1:2] : LCD type selection signals
 - LCD_ID1 : LCD maker(2.4V is SII, 0V is HyeLCD)
 - LCD_ID[2:3] : for the future using
- For using 65K color, data buses should be 16 bits.

DATA08 DATA09 DATA10 DATA11 _FD DATA08 DATA10 DATA11 DATA12 DATA13 DATA14 | NOTE | MLED1 MLED2 MLED3 FMODE VGA CAMERA 128x160 MAIN LCD 96x64 SUB LCD CONNECTOR BACK_BATT >> SPK_RCV_P SPK_RCV_N | 100 A X Z Z Z 100 H635 T 1000

Figure 3-23. LCD INTERFACE CIRCUIT

3.8 Keypad Switches and Scanning

The key switches are metal domes, which make contact between two concentric pads on the keypad layer of the PCB when pressed. There are 27 switches (Normal Key 24EA, Torch side key, Volume up down side key), connected in a matrix of 5 rows by 5 columns and additional GPIO 35 for KEY_ROW5, as shown in Figure 3-24, except for the power switch (KB1), which is connected independently. Functions, the row and column lines of the keypad are connected to ports of AD6527. The columns are outputs, while the rows are inputs and have pull-up resistors built in. When a key is pressed, the corresponding row and column are connected together, causing the row input to go low and generate an interrupt. The columns/rows are then scanned by AD6527 to identify the pressed key.

Figure 3-27. Keypad Switches and Scanning

3.9 Microphone

The microphone is placed to the front cover and contacted to main PCB. The audio signal is passed to AIN1P and AIN1N pins of AD6537B. The voltage supply VMIC is output from AD6537B, and is a biased voltage for the AIN1P. The AIN1P and AIN1N signals are then A/D converted by the voiceband ADC part of AD6537B. The digitized speech (PCM 8KHz ,16KHz) is then passed to the DSP section of AD6527 for processing (coding, interleaving etc).

Figure 3-28. Connection between Microphone and AD6537B

3.10 Main Speaker

In the case of C2100 , there are 3 different speakers. One is main speaker for the received voice, the other is loud speaker for playback of ring tone , key tone and other MIDI sounds and another is headset speaker.

The main speaker is driven directly from AD6537B AOUT1P and AOUT1N pins and the gain is controlled by the PGA in an AD6537B. The receiver is placed in the folder cover and connected to AOUT1x terminal via FPCB.

3.11 Headset Interface

This phone chooses a 5 pin type headset which has 6 electrodes such as GND, AUXIP, AUXIN (this pin is floating), AUXOP, JACK DETECT, HOOK DETECT. This type supports mono sound.

Switching from Receiver to Headset Jack

If jack is inserted, JACK_DETECT goes from low to high.

Audio path is switched from receiver to earphone by JACK_DETECT interrupt.

Switching from Headset Jack to Receiver

If jack is removed, JACK_DETECT goes from high to low.

Audio path is switched from earphone to receiver by JACK_DETECT interrupt.

Hook detection

If hook-button is pressed, HOOK_DETECT is changed from high to low.

This is detected by AUXADC2.

And then hook is detected.

Figure 3-29. HEADSET JACK INTERFACE

3.12 Key Back-light Illumination

In key back-light illumination, there are 12 Blue LEDs in Main Board, which are driven by KEY_BACKLIGHT signal from AD6527.

Figure 3-30. KEY BACK-LIGHT ILLUMINTION

3.13 LCD Back-light Illumination

LCD backlight LEDs is controlled by DBB via AAT2807, U402.

Figure 3-31. MAIN LCD BACKLIGHT ILLUMINATION

WHITE/FLASH LED LDO

3.14 VIBRATOR

The vibrator is placed in the folder cover and contacted to LCD MODULE. The vibrator is driven from VIBRATOR (GPIO_3) of AD6527.

Figure 3-32. MOTOR

4. TROUBLE SHOOTING

4.1 RX Trouble

Test Points

Figure 4-1(a)

(1) Checking Regulator Circuit

Test Points

Figure 4-2

Circuit Diagram

(2) Checking VCTCXO Circuit

Test Points

Checking Flow

Figure 4-3

Circuit Diagram

Waveform

(3) Checking Ant SW & Mobile SW

Test Points

Circuit Diagram

Figure 4-4

Waveform

ANT SW Control GSM& DCS RX Mode Graph 4-2

	ANT_SW1	ANT_SW2
GSM_TX	HIGH	LOW
DCS_TX	LOW	HIGH
RX	LOW	LOW

Table 4-1

Table 4-2

(4) Checking SAW Filter Circuit

Test Points

Circuit Diagram

Figure 4-5

4. TROUBLE SHOOTING

(5) Checking RX IQ

Test Points

U505

Figure 4-6

Circuit Diagram

Waveform

Graph 4-3

4.2 TX Trouble

Test Points

Figure 4-7

(1) Checking Regulator Circuit

Test Points

Figure 4-8

Circuit Diagram

(2) Checking VCTCXO Circuit

Circuit Diagram

Waveform

(3) Checking Ant SW & Mobile SW

Test Points

Circuit Diagram

Figure 4-10

Graph 4-5(b)

Table 4-3

(4) Checking PAM Control Signal

Test Points

Figure 4-11 TX_RAMP (R509)

Circuit Diagram

Waveform

Graph 4-6

Checking Flow

Check TX_RAMP and PA_EN Check if there is Any Major Difference or not Refer to Graph 4 - 7

4. TROUBLE SHOOTING

(5) Checking TX IQ

Test Points

U505

Waveform

Figure 4-12

Graph 4-7

Circuit Diagram

4.3 Power On Trouble

Test Points

Circuit Diagram

4.4 Charging Trouble

Test Points

Figure 4-14

Circuit Diagram

4.5 Vibrator Trouble

Test Points

Figure 4-15

Circuit Diagram

SETTING: Enter the engineering mode, and set vibrator on at vibration of BB test menu

4.6 LCD Trouble

Test Points

LCD Module

LCD Module Connection to Board Connector (60pin, male)

Figure 4-16

4.7 MIC Trouble

Test Points

Figure 4-18

4.8 SIM Card Interface Trouble

Test Points

Figure 4-19

Circuit Diagram

Checking Flow

4.9 Earphone Trouble

Test Points

Figure 4-20

Circuit Diagram

Checking Flow

4.10 KEY backlight Trouble

Test Points

Figure 4-21

Circuit Diagram

Checking Flow

4.11 Receiver Trouble

Test Points

Figure 4-22

Circuit Diagram

Checking Flow

SETTING: After initialize Agilent 8960, Test EGSM, DCS mode

Set the property of audio as PRBS or continuous wave. Set the receiving volume of mobile as Max.

4.12 Microphone Trouble

Test Points

Figure 4-23

Circuit Diagram

Checking Flow

SETTING: After initialize Agilent 8960, Test EGSM, DCS mode

4.13 RTC Trouble

Test Points

Figure 4-24

Circuit Diagram

Checking Flow

4.14 Indication LED Trouble

Test Points

Figure 4-25

Circuit Diagram

Checking Flow

Indication LED only operates in trickle charging mode.

4.15 Folder on/off Trouble

Test Points

Figure 4-26

Circuit Diagram

FLIP SWITCH

Checking Flow

5. DOWNLOAD AND CALIBRATION

5.1 Download

A. Download Setup

Figure 6-1 describes Download setup

Figure 5-1. Download Setup

B. Download Procedure

1. Access Flash loader program in PC and select Erase.(Don't check OWCD)

2. Press Start and Wait until Erase is completed.

3. Press Write to start Download and press Key to choose software (AlchemyData.mot)

4. Choose software

5. Wait until converting from MOT to BIF is completed (Don't check OWCD)

6. Press Start and Power on the phone using JIG remote Power on (Switch 1)

7. Wait until Sending Block is completed

8. Press Write to start Download and press Key to choose software (CodeData.mot)

9. Choose software, Press Start and Power on the phone using JIG remote Power on (Switch 1)

10. Wait until Sending Block is completed

5.2 Calibration

A. Equipment List

Table 5-1. Calibration Equipment List

Equipment for Calibration	Type / Model	Brand
Wireless Communication Test Set	HP-8960	Agilent
RS-232 Cable and Test JIG		LG
RF Cable		LG
Power Supply	HP-66311B	Agilent
GPIB interface card	HP-GPIB	Agilent
Calibration & Final test software		LG
Test SIM Card		
PC (for Software Installation)	Pentium II class above 300MHz	

B. Equipment Setup

Figure 5-2. Equipment Setup

Figure 5-3 The top view of Test JIG

C. Test Jig Operation

Table 5-2 Jig Power

Power Source	Description	
Power Supply	usually 4.0V	
Travel Adaptor	Use TA, name is TA-25GR2(24pin)	

Table 5-3 Jig DIP Switch

Switch Number	Name	Description
Switch 1	ADI-REMOTE	In ON state, phone is awaked. It is used ADI chipset.
Switch 2	TI-REMOTE	In ON state, phone is awaked. It is used TI chipset.
Switch 3	VBAT	Power is provided for phone from battery
Switch 4	PS	Power is provided for phone from Power supply

Table 5-4 LED Description

LED Number	Name	Description
LED 1	Power	Power is provided for Test Jig.
LED 2	TA	Indicate charging state of the phone battery
LED 3	UART	Indicate data transfer state through the UART port
LED 4	MON	Indicate data transfer state through the MON port

- 1. Connect as Fig 6-2(RS232 serial cable is connected between COM port of PC and MON port of TEST JIG, in general)
- 2. Set the Power Supply 4.0V
- 3. Set the 3rd, 4th of DIP SW ON state always
- 4. Press the Phone power key, if the Remote ON is used, 1st ON state

D. Procedure

- 1. Connect as Fig 6-2 (RS232 serial cable is connected between COM port of PC and MON port of TEST JIG, in general)
- 2. Power ON PC then enter into Windows 98 (Remark : Windows 2000 system could be feasible)
- 3. Run AUTOCAL.exe, the AUTOCAL application window will be appeared.

6. BLOCK DIAGRAM

The Block Diagram of the Baseband Part

8. PCB LAYOUT

8. PCB LAYOUT

9. ENGINEERING MODE

A. About Engineering Mode

Engineering mode is designed to allow a service man/engineer to view and test the basic functions provided by a handset.

B. Access Codes

The key sequence for switching the engineering mode on is 2945#*#. Pressing END will switch back to non-engineering mode operation.

C. Key Operation

Use Up and Down key to select a menu and press 'select' key to progress the test. Pressing 'back' key will switch back to the original test menu.

D. Engineering Mode Menu Tree

9.1 BB Test [MENU 1]

9.1.1 LCD

1) Contrast value: This menu is to Set Main LCD contrast value.

9.1.2 Flash

1) Flash on: This menu is to test Folder Flash light.

- Select this menu if you want to turn on folder flash light.

2) Flash off: This menu is to test Folder Flash light.

- Select this menu if you want to turn off folder flash light.

9.1.3 Backlight

This menu is to test the LCD Backlight and Keypad Backlight.

1) Backlight on: LCD Backlight and Keypad Backlight light on at the same time.

2) Backlight off: LCD Backlight and Keypad Backlight light off at the same time.

3) Backlight value: This controls brightness of Backlight. When entering into the menu, the present backlight-value in the phone is displayed. Use Left/Right key to adjust the level of brightness. The value of the brightness set at last will be saved in the NVRAM.

9.1.4 Buzzer

This menu is to test the melody sound.

1) Melody on: Melody sound is played through the speaker.

2) Melody off: Melody sound is off.

9.1.5 Vibrator

This menu is to test the vibration mode.

1) Vibrator on: Vibration mode is on.

2) Vibrator off: Vibration mode is off.

9.1.6 ADC (Analog to Digital Converter)

This displays the value of each ADC.

1) MVBAT ADC: Main Voltage Battery ADC

2) AUX ADC: Auxiliary ADC

3) TEMPER ADC: Temperature ADC

9.1.7 BATTERY

- 1) Bat Cal: This displays the value of Battery Calibration. The following menus are displayed in order: BAT_LEV_4V, BAT_LEV_3_LIMIT, BAT_LEV_2_LIMIT, BAT_LEV_1_LIMIT, BAT_IDLE_LI MIT, BAT_INCALL LIMIT, SHUT DOWN VOLTAGE, BAT RECHARGE LMT
- **2) TEMP Cal :** This displays the value of Temperature Calibration. The following menus are displayed in order: TEMP_HIGH_LIMIT, TEMP_HIGH_RECHARGE_LMT, TEMP_LOW_RECHARGE_LMT, TEMP_LOW_LIMIT

9.1.8 **Audio**

This is a menu for setting the control register of Voiceband Baseband Codec chip.

Although the actual value can be written over, it returns to default value after switching off and on the phone.

1) VbControl1 : VbControl1 bit Register Value Setting

2) VbControl2: VbControl2 bit Register Value Setting

3) VbControl3: VbControl3 bit Register Value Setting

4) VbControl4: VbControl4 bit Register Value Setting

5) VbControl5: VbControl5 bit Register Value Setting

6) VbControl6: VbControl6 bit Register Value Setting

9.1.9 DAI (Digital Audio Interface)

This menu is to set the Digital Audio Interface Mode for Speech Transcoder and Acoustic testing.

1) DAI AUDIO: DAI audio mode

2) DAI UPLINK : Speech encoder test3) DAI DOWNLINK : Speech decoder test

4) DAI OFF: DAI mode off

9.2 RF Test [MENU 2]

9.2.1 SAR test

This menu is to test the Specific Absorption Rate.

1) SAR test on: Phone continuously process TX only. Call-setup equipment is not required.

2) SAR test off: TX process off

9.3 MF mode [MENU 3]

This manufacturing mode is designed to do the baseband test automatically. Selecting this menu will process the test automatically, and phone displays the previous menu after completing the test.

9.3.1 All auto test

LCD, Backlight, Vibrator, Buzzer, Key Pad, Mic&Speaker,

9.3.2 Backlight

LCD Backlight is on for about 1.5 seconds at the same time, then off.

9.3.3 Buzzer

This menu is to test the volume of Melody. It rings in the following sequence. Volume 1, Volume 2, Volume 3, Volume 0 (mute), Volume 4, Volume 5.

9.3.4 Vibrator

Vibrator is on for about 1.5 seconds.

9.3.5 LCD

1) LCD

Main LCD screen resolution tests horizontally and vertically one by one and fills the screen.

2) SubLCD

Sub LCD screen resolution tests horizontally and vertically one by one and fills the screen.

9.3.6 Key pad

When a pop-up message shows 'Press Any Key', you may press any keys including side keys, but not [Soft2 Key]. If the key is working properly, name of the key is displayed on the screen. Test will be completed in 15 seconds automatically.

9.3.7 MicSpk Test

The sound from MIC is recorded for about 3 seconds, then it is replayed on the speaker automatically.

9.3.8 Flash

Torch function is activated and deactivated.

9.4 Trace option [MENU 4]

This is NOT a necessary menu to be used by neither engineers nor users.

9.5 Call timer [MENU 5]

This menu is to set the Digital Audio Interface Mode for Speech Transcoder and Acoustic testing.

- 1) All calls: This displays total conversation time. User cannot reset this value.
- 2) Reset settings: This resets total conversation time to this, [00:00:00].
- 3) DAI DOWNLINK: Speech decoder test
- 4) DAI OFF: DAI mode off

9.6 Fact. Reset [MENU 6]

This Factory Reset menu is to format data block in the flash memory and this procedure set up the default value in data block.

Attention

- 1) Fact. Reset (i.e. Factory Reset) should be only used during the Manufacturing process.
- ② Servicemen should NOT progress this menu, otherwise some of valuable data such as Setting value, RF Calibration data, etc. cannot be restored again.

9.7 S/W version

This displays software version stored in the phone.

10. STAND ALONE TEST

10.1 Introduction

This manual explains how to examine the status of RX and TX of the model.

A. Tx Test

TX test - this is to see if the transmitter of the phones is activating normally.

B. Rx Test

RX test - this is to see if the receiver of the phones is activating normally.

10.2 Setting Method

A. COM port

- a. Move your mouse on the "Connect" button, then click the right button of the mouse and select "Comsetting".
- b. In the "Dialog Menu", select the values as explained below.
 - Port : select a correct COM port
 - Baud rate: 38400
 - Leave the rest as default values

B. Tx

1. Selecting Channel

- Select one of GSM or DCS Band and input appropriate channel.

2. Selecting APC

- a. Select either Power level or Scaling Factor.
- b. Power level
 - Input appropriate value GSM (between 5~19) or DCS (between 0~15)
- c. Scaling Factor
 - A 'Ramp Factor' appears on the screen.
 - You may adjust the shape of the Ramp or directly input the values.

C. Rx

1. Selecting Channel

- Select one of GSM or DCS Band and input appropriate channel.

2. Gain Control Index (0~26) and RSSI level

- See if the value of RSSI is close to -16dBm when setting the value between 0 \sim 26 in Gain Control Index.
- Normal phone should indicate the value of RSSI close to -16dBm.

10.3 Means of Test

- a. Select a COM port
- b. Set the values in Tx or Rx
- c. Select band and channel
- d. After setting them all above, press connect button.
- e. Press the start button

Figure 10-1. HW test program

Figure 10-2. HW test setting

Figure 10-3. Ramping profile

11. AUTO CALIBRATION

11.1 Overview

Autocal (Auto Calibration) is the PC side Calibration tool that perform Tx ,Rx and Battery Calibration with Agilent 8960(GSM call setting instrument) and Tektronix PS2521G(Programmable Power supply). Autocal generate calibration data by communicating with phone and measuring equipment then write it into calibration data block of flash memory in GSM phone.

11.2 Requirements

- PC or Notebook installed with Microsoft Windows 98/ME/2000/XP
- Auto Calibration program(Autocal.exe)
- GSM Phone
- LGE PIF JIG, Serial Cable, Data Cable
- Agilent 8960(Call Setting Instrument)
- Tektronix PS2521G(Programmable Power Supply)

11.3 Menu and Settings

- File(F) Clear View: Clear Calibration Status window texts
- File(F) Save View : Save Calibration Status window texts
- File(F) Save Setting: Save Current Calibration settings to setting file(*.cal)
- File(F) Load Setting: Load saved Calibration setting
- File(F) Make BIN ALL : Make binary file after calibration finished
- File(F) Make BIN BAT.Cal only: Make binary file of battery cal data only after calibration finished
- File(F) Make & Write BIN : Make binary file after calibration finished then download it to the Flash Memory
- View(V) Tools : Enable or disable Tool bar
- View(V) Status: Enable or disable status bar
- Connection(C) Connect: Connect the phone with PC. This procedure checks whether the PC is connected "ag8960" or not. After that it performs sync. procedure with phone. If the sync. procedure is successful state column on status bar changed to SETUP, else you should disconnect phone and try again from the beginning and also check the whole connection. All measurement is performed at state SETUP.
- Connection(C) Port Setting: Show COM port setting dialog and Baudrate you can change, etc.
- GPIB(G) Connect : Connect the Ag8960 GPIB card with PC.

Figure 11-1. Auto Calibration Program

Screen \rightarrow Cable loss : Enter the RF cable loss GSM and DCS

Screen → GPIB(Primary address) : Enter the SS(Ag8960) and PS(Tektronix PS2521G) GPIB address

Screen → ADC Channel : Default ADC Calibration Channel

Screen → Auto Calibration Item: Default Calibration Settings about Tx, Rx, ADC and write BIN file

11.4 AGC

This procedure is for Rx calibration.

In this procedure, We can get RSSI correction value. Set band EGSM and press Start button the result window will show correction values per every power level and gain code and the same measure is performed per every frequency.

11.5 APC

This procedure is for Tx calibration.

In this procedure you can get proper scale factor value and measured power level.

11.6 ADC

This procedure is for battery calibration.

You can get main Battery Config Table and temperature Config Table

11.7 Setting

check com port and cable loss. Select automatic calibration item. If you uncheck one item calibration will stop from the unchecked item. This is useful when you want to process only one item.

11.8 How to do calibration

- A. Connect cable between phone and serial port of PC.
- B. Connect Ag8960 equipment and Power Supply and phone.
- C. Set correct port and baud rate.
- D. Press Start button. AutoCal process all calibration procedure
 - i. AGC EGSM
 - ii. AGC DCS
 - iii. APC EGSM
 - iv. APC DCS
 - v. ADC
- E. After finished all measurement. The state is return to SETUP.
- F. The Cal file will be generated and then the calibration data will be written into phone and then will be reset.

Note

12.1 EXPLODED VIEW

56	PAD(C-MICHIA)	I NPBZQQ51501
55	PAD(C-MICTIL)	I NPBZ0051502
54	COVER, BATTERY	NCJA4611701
53	BATTERY, INNER-PACK	I \$BPL0076308
52	CAP, NOBILE SWITCH	I NCCF 4 02 13 0 1
51	COVER, GUIDE	I NLEEGODDIOI
50	COVER, REAR	NCJN4027301
49	GASKET, SHIELD FOAM(REAR)	NGADQQ6550
48	CAP, EAR - JACK	NCCC0018601
47	INTERNA	SNGF QOD6301
46	GASKET, SHIELD FOAM PCB, FLASH KEY	NGAD0077701
45 44	POD CLDE KEY (VOLUME)	ADCA4029501
13	PCB, SIDE KEY (VOLUME) PCB ASSY, NAIN	ADCA0029401
12	DONE ASSY, WETAL	ADCAGG23701
11	KEYPAD	NKAZQO17802
40	FILTER.NIKE	I NF80906301
39	BUMPER(R)	I NBHYQO11201
38	INDICATOR, LED	NIAAQQ12801
37	BUNPER(L)	NBHY0010601
36	BUTTON, FLASH	NBJCQ014301
35	BUTTON, VOLUME	I NBJQQQ3BQI
34	COVER, FRONT	I NCJKGG3D601
33	STOPPER	I NSGYGODBOOI
32	TAPE.PROTECTION(NAIN WINDOW)	I NTABOOSISOI
31	NINDÓW, LCD IMA INI	I NWACQQ42702
30	CAP, SCREW(UP)	2 NCCHQQ33301
29	CAP, SCREW(R)	I NCCH9033501
28	CAP, SCREW(L)	I NCCH0033401
27	SCREW, MACHINE	1 GNZZQO15101
26	TAPE, WINDON(MAIN)	I NTADOO26901
25	HINGE, FOLDER	I NHFDAOD3701
24	COVER.FOLDER LOWER	NCJHQQ2D50
23	PAD, CONN(DOWN)	NPBZQQ86301
22	FILTER(SPEAKERI	NFBC901D501
21	FILTER (NOTOR)	I NFBZQODI3QI
20	PAD.NOTOR(UP)	NPBJ9Q14401
19		NPBG0025001 NMAAGOD1601
17	MAGNET, SWITCH Insulator	I NTARGODIGUI
16	I SPEAKER	I SUSYGOTATOL
15	MOTOR	SUNYOOD2602
14	LCD	
13	PCB ASSY, FLEX IBLE	\$4CY9030601
12	GASKET, SHIELD FOAM	NGADOO8400
ii	PAD. NOTOR	NP8J9Q18Q01
iò	PAD, LCD(SUB)	NPBQQQ17301
9	GASKET, SHIELD FOAM	2 NGADQOB3BO
8	PAD.FPCB	I NPR70073901
Ť	PAD.UPPER(UP)	2 NPBZQQ84101
6	COVER.FOLDER UPPER	I NCJJ0032001
5	TAPE, WINDON(SUBI	I NTAE0021501
4	TAPE.DECO(FOLDER)	I NTAAGQ7340I
3	DECO, FOLDER	I NDAE0028001
2	NI NDOW, LCD I SUB I	I AWA89015001
	TAPE, PROTECTION (PHONE)	I NTAB0059702
NO.	DESCRIPTION	Q'TY PART NO.
IIV.	DESCRIPTION	THE TAKE NO.

12.2 Replacement Parts < Mechanic component>

Note: This Chapter is used for reference, Part order is ordered by SBOM standard on GCSC

Level	Location No.	Description	Part Number	Specification	Color	Remark
1		GSM(FOLDER)	TGFF0061401	C2100 INDTG (INDIA)	Titan Gray	
2	AAAY00	ADDITION	AAAY0082002		Titan Gray	
3	MCJA00	COVER,BATTERY	MCJA0011701	GE200 EUASV	Silver	54
2	APEY00	PHONE	APEY0199601	C2100 INDTG (INDIA)	Titan Gray	
3	ACGG00	COVER ASSY,FOLDER	ACGG0056301	C2100 RUSSV	Titan Gray	
4	ACGH00	COVER ASSY, FOLDER(LOWER)	ACGH0031201	C2100 RUSSV	Gray	
5	MCJH00	COVER,FOLDER(LOWER)	MCJH0020501	GE200 EUASV	Gray	24
5	MFBC00	FILTER,SPEAKER	MFBC0010501	GE200 EUASV	Black	22
5	MFBZ00	FILTER	MFBZ0001301	GE200 FILTER,MOTOR	Black	21
5	MMAA00	MAGNET,SWITCH	MMAA0001601	7100 magnetic	Silver	18
5	MPBG00	PAD,LCD	MPBG0025001	GE200 MAIN LCD PAD	Black	19
5	MPBJ00	PAD,MOTOR	MPBJ0014401	11.7/4.5 dia. double side tape	Silver	20
5	MPBZ00	PAD	MPBZ0086301	C2100 PAD,CONN DOWN (LOWER)	Black	23
5	MTAD00	TAPE,WINDOW	MTAD0026901	GE200 MAIN WINDOW TAPE	White	26
4	ACGJ00	COVER ASSY, FOLDER(UPPER)	ACGJ0044701	C2100 RUSTG (SHINHAN)	Gray	
5	MCJJ00	COVER,FOLDER(UPPER)	MCJJ0032001	C2100 RUSSV	Gray	6
5	MDAE00	DECO,FOLDER(UPPER)	MDAE0028001	C2100 DECO,FOLDER	Silver	
5	MGAD00	GASKET,SHIELD FORM	MGAD0063801	GE200 GASKET,SHIELD FOAM(LCD)	Silver	9
5	MICA00	INSERT,FRONT	MICA0012901	GE200 EUASV	Gold	
5	MPBJ00	PAD,MOTOR	MPBJ0018001	GE200 PAD,MOTOR(UPPER)	Black	11
5	MPBQ00	PAD,LCD(SUB)	MPBQ0017301	GE200	Black	10
5	MPBZ00	PAD	MPBZ0073901	GE200 PAD,FPCB(UPPER)	Black	8
5	MPBZ01	PAD	MPBZ0084101	C2100 PAD,UPPER (UP)	Black	7
5	MTAA00	TAPE,DECO	MTAA0073401	C2100 RUSSV	White	4
5	MTAE00	TAPE,WINDOW(SUB)	MTAE0021501	C2100 RUSSV	Black	5
4	ACGK00	COVER ASSY,FRONT	ACGK0049401	C2100 RUSSV	Gray	
5	MBHY00	BUMPER	MBHY0010601	GE200_BUMPER_L	Gray	37
5	MBHY01	BUMPER	MBHY0011201	GE200_BUMPER_R	Gray	39
5	MBJC00	BUTTON,FUNCTION	MBJC0014301	C2100 RUSSV (FLASH BTN)	Silver	36
5	MBJN00	BUTTON, VOLUME	MBJN0003801	GE200 VOLUME BUTTON	Silver	35
5	MCJK00	COVER,FRONT	MCJK0030601	GE200 EUASV	Gray	34
5	MFBD00	FILTER,MIKE	MFBD0006301	GE200 FILTER,MIKE (FRONT)	Black	40

Level	Location No.	Description	Part Number	Specification	Color	Remark
5	MIAA00	INDICATOR,LED	MIAA0012801	GE200 INDICALTOR,LED	White	38
5	MSGY00	STOPPER	MSGY0008001	GE200 STOPPER	Gray	33
4	AWAB00	WINDOW ASSY,LCD	AWAB0015001	C2100 SUB WINDOW (INMOLD) for RUSSIA	Silver	2
5	BFAA00	FILM,INMOLD	BFAA0027401	C2100 Window Inmold Film	Silver	
5	MWAF00	WINDOW,LCD(SUB)	MWAF0025701	C2100 Sub_window		
4	GMZZ00	SCREW MACHINE	GMZZ0015101	1.4 mm,3.0 mm,MSWR3(FN) ,N ,+ ,- ,	Silver	27
4	MCCH00	CAP,SCREW	MCCH0033301	GE200_CAP,SCREW (UP)	Gray	30
4	MCCH01	CAP,SCREW	MCCH0033401	GE200 CAP,SCREW_L	Gray	28
4	MCCH02	CAP,SCREW	MCCH0033501	GE200 CAP,SCREW_R	Gray	29
4	MGAD00	GASKET,SHIELD FORM	MGAD0084001	C2100 SHIELD FOAM (FOR FPCB)	Gold	12
4	MHFD00	HINGE,FOLDER	MHFD0003701	PI5.8 5Kgf CAN TYPE/ KATO SPRING(HEAD R1.0)		25
4	MIDZ00	INSULATOR	MIDZ0051201		Green	
4	MLAC00	LABEL,BARCODE	MLAC0003401	EZ LOOKS(user for mechanical)		
4	MTAB00	TAPE,PROTECTION	MTAB0051901	GE200 TAPE,PROTECTION(MAIN WINDOW)		32
4	MTAB01	TAPE,PROTECTION	MTAB0059702	C2100 TAPE,PROTECTION (PHONE)		1
4	MTAB02	TAPE,PROTECTION	MTAB0068901	C2100 TAPE,FILM (for LCD MODULE)	Blue	17
4	MWAC00	WINDOW,LCD	MWAC0042702	C2100 RUSSV	Silver	31
3	ACGM00	COVER ASSY,REAR	ACGM0040401	GE200 EUASV	Gray	
4	MCCC00	CAP,EARPHONE JACK	MCCC0018601	GE200 EUASV	Gray	48
4	MCJN00	COVER,REAR	MCJN0027301	GE200 EUASV	Gray	50
4	MGAD00	GASKET,SHIELD FORM	MGAD0065501	GE200(REAR)	Gold	49
4	MLEE00	LOCKER,CARD READER	MLEE0000101			51
3	GMZZ00	SCREW MACHINE	GMZZ0015101	1.4 mm,3.0 mm,MSWR3(FN) ,N ,+ ,- ,	Silver	
3	MCCF00	CAP,MOBILE SWITCH	MCCF0021301	GE200	Gray	52
3	MKAZ00	KEYPAD	MKAZ0017804	C2100 FOR INDIA & M ASIA ENGLISH CHARACTER(BASE MODEL : C3310)	Gray	41
3	MLAK00	LABEL,MODEL	MLAK0006301	LG (30.5x21.5 4-1R)	Pearl White	
5	ADCA00	DOME ASSY,METAL	ADCA0023701	GE200 EUASV	Silver	42
5	ADCA01	DOME ASSY,METAL	ADCA0029401	GE200 DOME ASSY, VOLUME	Silver	44
5	ADCA02	DOME ASSY,METAL	ADCA0029501	GE200 DOME ASSY, FUNCTION(CAMERA)	Silver	45
5	MGAD00	GASKET,SHIELD FORM	MGAD0077701	GE200 SHIELD,FOAM(INTENNA)	Gold	46
5	MPBZ00	PAD	MPBZ0051501	4*3.5*0.5T	Black	56
5	MPBZ01	PAD	MPBZ0051502	C2100 PAD,C-MIC	Black	55
5	MLAB00	LABEL,A/S	MLAB0000601	HUMIDITY STICKER		
5	MLAC00	LABEL,BARCODE	MLAC0003301	EZ LOOKS(use for PCB ASSY MAIN(hardware))		

<Main component>

Note: This Chapter is used for reference, Part order is ordered by SBOM standard on GCSC

Level	Location No.	Description	Part Number	Specification	Color	Remark
4	SACY00	PCB ASSY,FLEXIBLE	SACY0030601			13
5	SACB00	PCB ASSY, FLEXIBLE,INSERT	SACB0018701			
5	SACE00	PCB ASSY,FLEXIBLE,SMT	SACE0023803			
6	SACC00	PCB ASSY,FLEXIBLE,SMT BOTTOM	SACC0013401			
7	ENBY00	CONNECTOR, BOARD TO BOARD	ENBY0013007	60 PIN,0.4 mm,STRAIGHT ,AU ,STACKING HEIGHT 1.5 / HEADER FOR LCM FPCB		
6	SACD00	PCB ASSY,FLEXIBLE,SMT TOP	SACD0020101			
7	EDLM00	DIODE,LED,MODULE	EDLM0005501	R,G,B ,3 LED,3.5*2.8*1.8 ,R/TP ,Flash LED		
7	ENBY00	CONNECTOR, BOARD TO BOARD	ENBY0020301	40 PIN,0.4 mm,ETC , ,H=0.9, Socket		
6	SPCY00	PCB,FLEXIBLE	SPCY0051701	POLYI ,0.5 mm,MULTI-4 ,C2100 FPCB		
4	SBCL00	BATTERY,CELL,LITHIUM	SBCL0001303	2 V,1 mAh,COIN ,SOLDER TYPE BACKUP BATTERY		
4	SJMY00	VIBRATOR,MOTOR	SJMY0002602	3.0 V,80 mA,12*3.4 ,		15
4	SUSY00	SPEAKER	SUSY0014101	ASSY ,8 ohm,92 dB,16 mm,4.0T, 0.7W		16
4	SVLY00	LCD	SVLY0024701	MAIN ,128*160 (1.8 inch)+96*64 (MONO) ,35.8*47*4.8(t) ,65k ,CSTN ,TM ,HD66766UR / S-44001A ,Renesas,Matsushita,16Bit		14
3	SAFY00	PCB ASSY,MAIN	SAFY0116004			
4	SAFB00	PCB ASSY,MAIN,INSERT	SAFB0044201			
4	SAFF00	PCB ASSY,MAIN,SMT	SAFF0050804			
5	SAFC00	PCB ASSY,MAIN,SMT BOTTOM	SAFC0050001			
6	C100	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
6	C101	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C102	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C103	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C104	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C105	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C106	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
6	C107	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
6	C108	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C109	CAP,CERAMIC,CHIP	ECCH0000393	22 uF,6.3V ,M ,X5R ,HD ,2012 ,R/TP		
6	C110	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C111	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		

Level	Location No.	Description	Part Number	Specification	Color	Remark
6	C113	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C114	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C115	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C116	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C117	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C118	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C119	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
6	C120	CAP,CERAMIC,CHIP	ECCH0000165	68 nF,6.3V,K,X5R,HD,1005,R/TP		
6	C121	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C122	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C123	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
6	C124	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
6	C126	CAP,CERAMIC,CHIP	ECCH0006201	4.7 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C129	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C130	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C131	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C132	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C133	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C134	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C135	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C136	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C137	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C138	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C139	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C140	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C141	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C143	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C144	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C150	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
6	C151	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C200	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C202	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C203	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
6	C206	CAP,TANTAL,CHIP,MAKER	ECTZ0003602	22 uF,6.3V ,M ,STD ,2012 ,R/TP		
6	C207	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C208	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C209	CAP,TANTAL,CHIP,MAKER	ECTZ0003101	33 uF,10V ,M ,STD ,ETC ,R/TP		

Level	Location No.	Description	Part Number	Specification	Color	Remark
6	C210	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C211	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C212	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C214	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C215	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C216	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C218	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C219	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C220	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C221	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C222	CAP,CERAMIC,CHIP	ECCH0000138	390 pF,50V,K,X7R,HD,1005,R/TP		
6	C223	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C224	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
6	C225	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
6	C230	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C277	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C287	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C288	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C289	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C298	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
6	C299	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C304	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C305	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C306	CAP,CERAMIC,CHIP	ECCH0000104	3 pF,50V,C,NP0,TC,1005,R/TP		
6	C307	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
6	C308	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
6	C309	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C325	CAP,CERAMIC,CHIP	ECCH0004902	220 nF,10V ,Z ,Y5V ,TC ,1005 ,R/TP		
6	C326	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C327	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
6	C328	CAP,CERAMIC,CHIP	ECCH0006201	4.7 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C329	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C330	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C331	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C332	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C333	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C335	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
				· · · · · · · · · · · · · · · · · · ·		

Level	Location No.	Description	Part Number	Specification	Color	Remark
6	C336	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C404	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C406	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C409	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C410	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C413	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C417	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C421	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C422	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
6	C423	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C500	CAP,CERAMIC,CHIP	ECCH0000701	1.2 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
6	C501	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C502	CAP,CERAMIC,CHIP	ECCH0000186	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C503	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C504	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C505	CAP,CERAMIC,CHIP	ECCH0000113	18 pF,50V,J,NP0,TC,1005,R/TP		
6	C506	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C507	CAP,CERAMIC,CHIP	ECCH0000393	22 uF,6.3V ,M ,X5R ,HD ,2012 ,R/TP		
6	C508	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C509	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C510	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C512	CAP,CERAMIC,CHIP	ECCH0000101	.5 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
6	C513	CAP,CERAMIC,CHIP	ECCH0000102	1 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
6	C514	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C516	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
6	C518	CAP,CERAMIC,CHIP	ECCH0000102	1 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
6	C519	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C520	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C521	CAP,CERAMIC,CHIP	ECCH0000102	1 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
6	C522	CAP,CERAMIC,CHIP	ECCH0000102	1 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
6	C525	CAP,CERAMIC,CHIP	ECCH0000179	22 nF,16V ,K ,X5R ,HD ,1005 ,R/TP		
6	C526	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C527	CAP,CERAMIC,CHIP	ECCH0000179	22 nF,16V ,K ,X5R ,HD ,1005 ,R/TP		
6	C528	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP		
6	C529	CAP,CERAMIC,CHIP	ECCH0006201	4.7 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C530	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C531	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		

Level	Location No.	Description	Part Number	Specification	Color	Remark
6	C532	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP		
6	C535	CAP,CERAMIC,CHIP	ECCH0000179	22 nF,16V ,K ,X5R ,HD ,1005 ,R/TP		
6	C536	CAP,CERAMIC,CHIP	ECCH0006201	4.7 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C537	CAP,CERAMIC,CHIP	ECCH0000171	3.3 pF,16V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C539	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C540	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C541	CAP,CERAMIC,CHIP	ECCH0000186	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C581	CAP,CERAMIC,CHIP	ECCH0000111	12 pF,50V,J,NP0,TC,1005,R/TP		
6	C601	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C602	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C603	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C604	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	CN300	CONNECTOR,I/O	ENRY0000801	24 PIN,0.5 mm,ETC ,Au ,BAT ZERO		
6	CN301	CONNECTOR,ETC	ENZY0016201	3 PIN,3.0 mm,ETC , ,H=7.5		
6	CN601	CONNECTOR, BOARD TO BOARD	ENBY0013008	60 PIN,0.4 mm,STRAIGHT ,AU ,STACKING HEIGHT 1.5 / SOCKET FOR LCM FPCB		
6	D101	DIODE,SWITCHING	EDSY0005701	EMT3 ,80 V,4 A,R/TP ,		
6	D102	DIODE,SWITCHING	EDSY0012101	US-FLAT ,30 V,1 A,R/TP ,2.5*1.25*0.6(t)		
6	FB101	FILTER,BEAD,CHIP	SFBH0007102	10 ohm,1005 ,Ferrite Bead		
6	FB400	FILTER,BEAD,CHIP	SFBH0007102	10 ohm,1005 ,Ferrite Bead		
6	FB403	FILTER,BEAD,CHIP	SFBH0007102	10 ohm,1005 ,Ferrite Bead		
6	FL401	FILTER,SAW	SFSY0021301	942.5 MHz,2.0*1.4*0.68 ,SMD ,		
6	FL402	FILTER,SAW	SFSY0021302	1842.5 MHz,2.0*1.4*0.68 ,SMD ,		
6	FL500	FILTER,SEPERATOR	SFAY0003702	900 ,1800 ,1.3 dB,1.5 dB,30 dB,25 dB,4532 ,Antenna switch		
6	FL600	FILTER,EMI/POWER	SFEY0007102	SMD ,5.6 V,SMD ,4ch. R-Varistor Array(400Ohm,25pF)		
6	FL601	FILTER,EMI/POWER	SFEY0007102	SMD ,5.6 V,SMD ,4ch. R-Varistor Array(400Ohm,25pF)		
6	FL602	FILTER,EMI/POWER	SFEY0007102	SMD ,5.6 V,SMD ,4ch. R-Varistor Array(400Ohm,25pF)		
6	FL603	FILTER,EMI/POWER	SFEY0007102	SMD ,5.6 V,SMD ,4ch. R-Varistor Array(400Ohm,25pF)		
6	FL604	FILTER,EMI/POWER	SFEY0007103	SMD ,18 V, ,SMD ,4ch. R-Varistor Array(50Ohm,15pF)		
6	J200	CONN,JACK/PLUG, EARPHONE	ENJE0002301	3,5 PIN,G7000 EAR JACK 3 pole, 5 pin KSD		
6	J300	CONN,SOCKET	ENSY0001608	6 PIN,ETC ,5D ,2.54 mm,1.8T		
6	L500	INDUCTOR,CHIP	ELCH0004711	22 nH,J ,1005 ,R/TP ,		
6	L501	INDUCTOR,CHIP	ELCH0002715	27 nH,G ,1608 ,R/TP ,coil inductor		
6	L503	INDUCTOR,CHIP	ELCH0002717	6.8 nH,J ,1608 ,R/TP ,coil inductor		
6	L507	INDUCTOR,CHIP	ELCH0005006	33 nH,J ,1005 ,R/TP ,		
6	L508	INDUCTOR,CHIP	ELCH0005006	33 nH,J ,1005 ,R/TP ,		

Level	Location No.	Description	Part Number	Specification	Color	Remark
6	L510	INDUCTOR,CHIP	ELCH0004709	3.3 nH,S ,1005 ,R/TP ,		
6	Q100	TR,FET,P-CHANNEL	EQFP0004201	2.9*1.9*0.8(t) ,0.7 W,20 V,-6.0 A,R/TP ,NDC652P upgrade(substitution) item		
6	Q300	TR,BJT,ARRAY	EQBA0002701	EMT6 ,150 mW,R/TP ,NPN, PNP, 150 mA		
6	Q301	TR,BJT,NPN	EQBN0004801	SMT6 ,0.2 W,R/TP ,		
6	Q401	TR,BJT,ARRAY	EQBA0000406	SC-70 ,0.2 W,R/TP ,CDMA,Common use		
6	R103	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
6	R104	RES,CHIP	ERHY0000225	200 ohm,1/16W,J,1005,R/TP		
6	R106	RES,CHIP	ERHY0001102	0.2 ohm,1/4W ,F ,2012 ,R/TP		
6	R108	RES,CHIP	ERHY0000230	330 ohm,1/16W,J,1005,R/TP		
6	R109	RES,CHIP	ERHY0000512	10M ohm,1/16W,J,1608,R/TP		
6	R110	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R111	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP		
6	R112	RES,CHIP	ERHY0000152	82K ohm,1/16W,F,1005,R/TP		
6	R113	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP		
6	R116	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R117	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R130	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R200	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		
6	R201	RES,CHIP	ERHY0000296	1M ohm,1/16W,J,1005,R/TP		
6	R202	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		
6	R203	RES,CHIP	ERHY0000265	20K ohm,1/16W,J,1005,R/TP		
6	R204	RES,CHIP	ERHY0000244	1.5K ohm,1/16W,J,1005,R/TP		
6	R205	RES,CHIP	ERHY0000247	2.2K ohm,1/16W,J,1005,R/TP		
6	R206	RES,CHIP	ERHY0000265	20K ohm,1/16W,J,1005,R/TP		
6	R208	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R209	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R210	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP		
6	R211	RES,CHIP	ERHY0000262	12K ohm,1/16W,J,1005,R/TP		
6	R212	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R215	RES,CHIP	ERHY0000247	2.2K ohm,1/16W,J,1005,R/TP		
6	R216	RES,CHIP	ERHY0000296	1M ohm,1/16W,J,1005,R/TP		
6	R217	RES,CHIP,MAKER	ERHZ0000757	15 ohm,1/10W ,J ,1608 ,R/TP		
6	R219	RES,CHIP	ERHY0000401	0 ohm,1/16W,J,1608,R/TP		
6	R220	RES,CHIP	ERHY0000131	20K ohm,1/16W,F,1005,R/TP		
6	R221	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		
6	R222	RES,CHIP	ERHY0000265	20K ohm,1/16W,J,1005,R/TP		

Level	Location No.	Description	Part Number	Specification	Color	Remark
6	R223	RES,CHIP	ERHY0000258	7.5K ohm,1/16W,J,1005,R/TP		
6	R224	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R225	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
6	R228	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP		
6	R230	RES,CHIP	ERHY0000291	330K ohm,1/16W,J,1005,R/TP		
6	R231	RES,CHIP	ERHY0000152	82K ohm,1/16W,F,1005,R/TP		
6	R236	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R294	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R295	RES,CHIP	ERHY0000138	33K ohm,1/16W,F,1005,R/TP		
6	R298	RES,CHIP	ERHY0000250	3.3K ohm,1/16W,J,1005,R/TP		
6	R300	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
6	R306	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R307	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R308	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R310	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R311	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R312	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R313	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R315	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R316	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R317	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R321	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R322	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R323	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R326	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R328	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R329	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R346	RES,CHIP	ERHY0000265	20K ohm,1/16W,J,1005,R/TP		
6	R348	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R349	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R350	RES,CHIP	ERHY0000207	20 ohm,1/16W,J,1005,R/TP		
6	R351	RES,CHIP	ERHY0000273	47K ohm,1/16W,J,1005,R/TP		
6	R352	RES,CHIP	ERHY0000226	220 ohm,1/16W,J,1005,R/TP		
6	R353	RES,CHIP	ERHY0000244	1.5K ohm,1/16W,J,1005,R/TP		
6	R354	RES,CHIP	ERHY0000258	7.5K ohm,1/16W,J,1005,R/TP		
6	R355	RES,CHIP	ERHY0000229	300 ohm,1/16W,J,1005,R/TP		
6	R356	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		

Level	Location No.	Description	Part Number	Specification	Color	Remark
6	R357	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R360	RES,CHIP	ERHY0000203	10 ohm,1/16W,J,1005,R/TP		
6	R361	RES,CHIP	ERHY0000203	10 ohm,1/16W,J,1005,R/TP		
6	R362	RES,CHIP	ERHY0000203	10 ohm,1/16W,J,1005,R/TP		
6	R363	RES,CHIP	ERHY0000203	10 ohm,1/16W,J,1005,R/TP		
6	R364	RES,CHIP	ERHY0000262	12K ohm,1/16W,J,1005,R/TP		
6	R367	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R369	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R371	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R372	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
6	R375	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
6	R376	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
6	R377	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
6	R378	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
6	R379	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
6	R380	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
6	R381	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
6	R384	RES,CHIP	ERHY0000273	47K ohm,1/16W,J,1005,R/TP		
6	R385	RES,CHIP	ERHY0000273	47K ohm,1/16W,J,1005,R/TP		
6	R386	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
6	R390	RES,CHIP	ERHY0000262	12K ohm,1/16W,J,1005,R/TP		
6	R409	RES,CHIP	ERHY0000208	22 ohm,1/16W,J,1005,R/TP		
6	R410	RES,CHIP	ERHY0000244	1.5K ohm,1/16W,J,1005,R/TP		
6	R413	RES,CHIP	ERHY0000258	7.5K ohm,1/16W,J,1005,R/TP		
6	R501	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R502	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R503	RES,CHIP	ERHY0006603	36 ohm,1/16W ,J ,1005 ,R/TP		
6	R504	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R505	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R506	RES,CHIP	ERHY0000210	30 ohm,1/16W,J,1005,R/TP		
6	R507	RES,CHIP	ERHY0000224	180 ohm,1/16W,J,1005,R/TP		
6	R508	RES,CHIP	ERHY0000224	180 ohm,1/16W,J,1005,R/TP		
6	R509	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		
6	R510	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R515	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
6	R601	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R602	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		

Level	Location No.	Description	Part Number	Specification	Color	Remark
6	R612	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R613	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R614	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R615	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R616	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R617	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R618	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R619	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R620	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R621	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R622	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R623	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R624	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R625	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R626	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R627	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R628	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R629	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R630	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R631	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R632	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
6	R633	RES,CHIP	ERHY0000233	470 ohm,1/16W,J,1005,R/TP		
6	R634	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R635	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R636	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	SW500	CONN,RF SWITCH	ENWY0002201	ANGLE ,SMD ,0.8 dB,		
6	U101	IC	EUSY0181502	CSP BGA ,204 PIN,R/TP ,GSM/GPRS DIGITAL BASEBAND PROCESSOR / ART7TDMI DSP		
6	U102	IC	EUSY0169301	148-TERMINAL BGA ,148 PIN,R/TP ,GSM ANALOG BASEBAND / TYPHOON B		
6	U200	IC	EUSY0077701	SC70-5 ,5 PIN,R/TP ,1.8V Low Voltage Comparator with Rail-to-Rail Input		
6	U201	IC	EUSY0204801	SC82-AB (SC70-4) ,4 PIN,R/TP ,80mA CMOS LOW IQ LDO VOLTAGE REGULATOR / 2.5V		
6	U202	IC	EUSY0119002	4X3 UCSP / CODE : B12-4 ,10 PIN,R/TP ,DUAL SPDT ANALOG SWITCHES		
6	U203	IC	EUSY0111601	32-PIN QFN ,32 PIN,R/TP ,MA-3 / 40 TONES / FM + WAVEFORM TABLE		
6	U302	IC	EUSY0206101	80-ACTIVE BALL STACKED CSP ,88 PIN,R/TP ,128 MLC NOR (L30 : TYAX) / 64-PSRAM		

Level	Location No.	Description	Part Number	Specification	Color	Remark
6	U402	IC	EUSY0245401	DFN ,16 PIN,R/TP ,Main 3 LEDs(60mA) + Flash (300mA) Charge pump		
6	U501	PAM	SMPY0007201	35 dBm,53 %,0.8 A,-50 dBc,50 dB,6.0*8.0*1.2 ,SMD ,QUAD		
6	U503	IC	EUSY0118602	SOT23 ,5 PIN,R/TP ,2.85V/150mA Low Noise uCap LDO Regulator		
6	U504	IC	EUSY0145902	SOT23-5 ,5 PIN,R/TP ,300mA, 2.85V,LDO		
6	U505	IC	EUSY0161301	8x8 LGA ,28 PIN,R/TP ,		
6	VA204	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
6	VA305	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
6	VA306	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
6	VA309	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
6	X101	X-TAL	EXXY0015601	.032768 MHz,20 PPM,7 pF,65000 ohm,SMD ,6.9*1.4*1.3		
6	X500	vстсхо	EXSK0005002	26 MHz,1 PPM,10 pF,SMD ,3.2*2.5*1.1 ,		
5	SAFD00	PCB ASSY,MAIN,SMT TOP	SAFD0048601			
6	C310	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C311	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C313	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C315	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C316	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C317	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C318	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C319	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C320	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C321	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C322	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C323	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C411	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C412	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
6	C488	CAP,CERAMIC,CHIP	ECCH0000137	330 pF,50V ,K ,X7R ,HD ,1005 ,R/TP		
6	LD200	DIODE,LED,CHIP	EDLH0007901	RED ,1608 ,R/TP ,Indicator,0.4T Red LED		
6	LD300	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
6	LD303	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
6	LD304	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
6	LD305	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
6	LD306	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
6	LD307	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
6	LD308	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		

Level	Location No.	Description	Part Number	Specification	Color	Remark
6	LD309	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
6	LD310	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
6	LD311	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
6	LD312	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
6	LD313	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
6	MIC200	MICROPHONE	SUMY0009201	FPCB ,-44 dB,4.0*1.3 ,SMD TYPE		
6	Q200	TR,BJT,NPN	EQBN0007101	EMT3 ,0.15 W,R/TP ,LOW FREQUENCY		
6	R218	RES,CHIP	ERHY0000231	390 ohm,1/16W,J,1005,R/TP		
6	R226	RES,CHIP	ERHY0000207	20 ohm,1/16W,J,1005,R/TP		
6	R301	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R302	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R303	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R304	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R305	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R332	RES,CHIP	ERHY0000217	75 ohm,1/16W,J,1005,R/TP		
6	R335	RES,CHIP	ERHY0000217	75 ohm,1/16W,J,1005,R/TP		
6	R336	RES,CHIP	ERHY0000217	75 ohm,1/16W,J,1005,R/TP		
6	R337	RES,CHIP	ERHY0000217	75 ohm,1/16W,J,1005,R/TP		
6	R338	RES,CHIP	ERHY0000217	75 ohm,1/16W,J,1005,R/TP		
6	R339	RES,CHIP	ERHY0000217	75 ohm,1/16W,J,1005,R/TP		
6	R340	RES,CHIP	ERHY0000217	75 ohm,1/16W,J,1005,R/TP		
6	R341	RES,CHIP	ERHY0000217	75 ohm,1/16W,J,1005,R/TP		
6	R342	RES,CHIP	ERHY0000217	75 ohm,1/16W,J,1005,R/TP		
6	R343	RES,CHIP	ERHY0000217	75 ohm,1/16W,J,1005,R/TP		
6	R344	RES,CHIP	ERHY0000217	75 ohm,1/16W,J,1005,R/TP		
6	R345	RES,CHIP	ERHY0000217	75 ohm,1/16W,J,1005,R/TP		
6	R373	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
6	R382	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
6	R383	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
6	R418	RES,CHIP	ERHY0000274	51K ohm,1/16W,J,1005,R/TP		
6	U403	IC	EUSY0129501	SC-74A ,3 PIN,R/TP ,HALL-EFFECT SWITCH		
6	VA202	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
6	VA203	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
6	VA300	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
6	VA301	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
6	VA302	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
6	VA303	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		

Level	Location No.	Description	Part Number	Specification	Color	Remark
6	VA304	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
6	VA307	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
6	VA308	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
5	SPFY00	PCB,MAIN	SPFY0086101	FR-4 ,1.0 mm,BUILD-UP 8 ,GE200		
3	SNGF00	ANTENNA,GSM,FIXED	SNGF0006301	3.0 ,-2.0 dBd, ,EGSM+DCS, Intenna		47

12.3 Accessory

Note: This Chapter is used for reference, Part order is ordered by SBOM standard on GCSC

Level	Location No.	Description	Part Number	Specification	Color	Remark
3	MHBY00	HANDSTRAP	MHBY0001101	Neck Strap 380mm	Gray	
3	SBPL00	BATTERY PACK,LI-ION	SBPL0076308	3.7 V,1000 mAh,1 CELL,PRISMATIC ,GC200(K-PJT) BATTERY, 523450 INNERPACK	Silver	53
3	SGEY00	EAR PHONE/EAR MIKE SET	SGEY0003204	L1200 ,MONO TYPE		
3	SSAD00	ADAPTOR,AC-DC	SSAD0007833	FREE ,50 Hz,5.2 V,800 mA,CE,CB ,PLUG(4.8 Pi)		
3	WSYY00	SOFTWARE	WSYY0227601	C2100P40-91-V101-XXX-XX MAR 27 2005+0		