উচ্চ মাধ্যমিক পরিসংখ্যান প্রথম পত্র

রচনায়

সজল কুমার সাহা মোহাম্মদ আবুল বাশার

ক্যামব্রিয়ান পাবলিকেশন

প্লট–২, গুলশান সার্কেল–২, ঢাকা কর্তৃক প্রকাশিত

পরিসংখ্যান

প্ৰথম পত্ৰ একাদশ-দ্বাদশ শ্ৰেণি

রচনায়

সজল কুমার সাহা

বিভাগীয় প্রধান পরিসংখ্যান বিভাগ ক্যামব্রিয়ান কলেজ, ঢাকা। শিক্ষাগত যোগ্যতা: বিএসসি (অনার্স), এমএস (পরিসংখ্যান), ঢাকা বিশ্ববিদ্যালয়। অভিজ্ঞতা: প্রাক্তন প্রভাষক, মোহাম্মদপুর প্রিপারেটিরী কলেজ, ঢাকা। NTRCA সনদপ্রাপ্ত। পরীক্ষক: মাধ্যমিক ও উচ্চমাধ্যমিক শিক্ষাবোর্ড, ঢাকা।

মোহাম্মদ আবুল বাশার

সিনিয়র প্রভাষক পরিসংখ্যান বিভাগ ক্যামব্রিয়ান কলেজ, ঢাকা। শিক্ষাগত যোগ্যতা: বিএসসি (সম্মান), এমএসসি (পরিসংখ্যান) অভিজ্ঞতা: প্রাক্তন প্রভাষক, গাজীপুর গার্লস কলেজ। NTRCA সনদপ্রাপ্ত।

ক্যামব্রিয়ান পাবলিকেশন

প- উ–২, গুলশান সার্কেল–২, ঢাকা কর্তৃক প্রকাশিত

মোবাইল: ৯৮৮১৩৫৫, ০১৭২০৫৫৭১৭০/৮০/৯০

সূচীপত্ৰ

অধ্যায়	বিবরণ	পৃষ্ঠা নং
١.	পরিসংখ্যান, চলক ও বিভিন্ন প্রতীকের ধারণা	১–২২
	STATISTICS, VARIABLE & CONCEPTS OF DIFFERENT SYMBOLS	
۷.	তথ্য সংগ্রহ, সংক্ষিপ্তকরণ ও উপস্থাপন	২৩–৫০
	DATA COLLECTION, SUMMARISATION & PRESENTATION	
o .	কেন্দ্রীয় প্রবণতার পরিমাপ	৫১–৯৬
	MEASURES OF CENTRAL TENDENCY	
8.	বিস্তার পরিমাপ	৯৭–১৩২
	MEASURES OF DISPERSION	
¢.	পরিঘাত, বঙ্কিমতা ও সূঁচালতা	১৩৩–১৬৬
	MOMENTS, SKEWNESS AND KURTOSIS	
৬.	সংশ্লেষ ও নির্ভরণ	১৬৭–১৯৪
	CORRELATION AND REGRESSION	
۹.	কালীন সারি	<i>\$%</i> €–₹००
	TIME SERIES	
ъ.	বাংলাদেশের প্রকাশিত পরিসংখ্যান	২০১–২০৪
	PUBLISHED STATISTICS IN BANGLADESH	
→	ব্যবহারিক ও গুরুত্বপূর্ণ প্রশ্লাবলী অংশ	২০৫–২৩১

মানবণ্টন

মোট নম্বর-১০০ [তত্ত্বীয়-৭৫, ব্যবহারিক-২৫]

তত্ত্বীয় অংশ-৭৫ রচনামূলক প্রশ্ন: ৩টি প্রশ্নোর উত্তর দিতে হবে সংক্ষিপ্ত প্রশ্ন:

0x2@ =8@

৬টি প্রশ্নের উত্তর দিতে হবে

<u>৫x৬ =৩০</u> সর্বমোট = ৭৫

ব্যবহারিক-২৫ ব্যবহারিক পরীক্ষা : মৌখিক পরীক্ষা :

20

সর্বমোট = ২৫

প্রশ্নপত্র প্রণয়নের নীতিমালা

সকল প্রশ্নের উত্তর দেওয়া বাধ্যতামূলক। তত্ত্বীয় প্রতি প্রশ্নের ১টি করে বিকল্প (অথবা) প্রশ্ন দেওয়া থাকবে।

তত্ত্বীয় রচনামূলক অংশে প্রতিটি প্রশ্নে একাধিক অংশ থাকতে পারে। পরিসংখ্যান প্রথম পত্রে ব্যবস্থত বিভিন্ন প্রতীকের পরিচিতি

প্রতীক	পরিচিতি	
\(\) (Sigma Capital) or (Summation)	যোগকরণ চিহ্ন	
π পাই (Capital)	গুণকরণ চিহ্ন	
$\overline{x}(x \operatorname{dia})$	নমুনার গাণিতিক গড়	
μ(মিউ)	তথ্য বিশ্বের গাণিতিক গড়	
AM (Arithmetic Mean)	গাণিতিক গড়	
GM (Geometric Mean)	জ্যামিতিক গড়	
HM (Harmonic Mean)	উল্টন গড়	
M_{e} (Median)	মধ্যমা	
$M_{o}(Mode)$	প্রচুরক	
$Q_1(1^{st} \text{ quartile})$	প্রথম চতুর্থক	
$Q_2(2^{\text{nd}} \text{ quartile})$	দ্বিতীয় চতুর্থক	
$Q_3(3^{\rm rd} \text{ quartile})$	তৃতীয় চতুৰ্থক	
$D_1(1^{\text{st}} \text{ decile})$	প্রথম দশমক	
D_i (ith decile)	i-তম দশমক	
f_i (Frequency of the ith class)	i-তম শ্রেণীর গণসংখ্যা	
P ₁ (1 st percentile)	প্রথম শতমক	
P_i (ith percentile)	i-তম শতমক	
R (Range)	পরিসর	
QD (Quartile Deviation)	চতুর্থক ব্যবধান	
MD (Mean Deviation)	গড় ব্যবধান	
σ^2 (Sigma Square)	ভেদাংক	
$\sigma(\text{Sigma})$	পরিমিত ব্যবধান (তথ্যবিশ্ব)	
S	পরিমিত ব্যবধান (নমুনা)	
CV (Co-efficient of variation)	বিভেদাংক	
μ'_r (Mu r prime)	r-তম অশোধিত পরিঘাত	
$\mu_r(Mu r)$	r-তম শোধিত পরিঘাত	
μ_2 (Mu two)	দ্বিতীয় শোধিত পরিঘাত	
β_1 (Beta one)	বঞ্জিমতাংক	
β_2 (Beta two)	সূঁচলতার সহগ	
SK (Coefficient of skewness)	কার্লপিয়ারসনের বক্কিমতাংক	
r (আর)	সংশেষাংক	
b (বি)	নির্ভরাংক	
cov (Covariane)	সহভেদাংক	
ρ (Rho)	ক্রমসংশেষাংক	

প্রথম অধ্যায়

পরিসংখ্যান, চলক ও বিভিন্ন প্রতীকের ধারণা statistics. Variable & concepts of different symbols

পরিসংখ্যান শব্দটির ইংরেজী প্রতিশব্দ Statistics। এর সাধারণ অর্থ হচ্ছে কোন ঘটনা বা বিষয়ের সাংখ্যিক বর্ণনা। অর্থাৎ, কোন সংখ্যা বিষয়ক তথ্য সংগ্রহ, উপস্থাপন, বিশ্লেষণ এবং ব্যাখ্যার মাধ্যমে ঐ বিষয় সম্পর্কিত সিদ্ধান্ত গ্রহণই হলো পরিসংখ্যান।

ভারতের বিখ্যাত পরিসংখ্যানবিদ পি.সি. মহলানবিশ (P.C. Mohalanobis) সর্বপ্রথম Statistics এর বঙ্গানুবাদ করেন পরিসংখ্যান। বাংলাদেশের পরিসংখ্যানবিদ কাজী মোতাহার হোসেন 'Statistics' শব্দটির পরিভাষা করেন 'তথ্য গণিত'। অনেকে একে 'সংখ্যাতত্ত্ব' বলেও অভিহিত করেন। অবশেষে 'পরিসংখ্যান' Statistics এর সঠিক পরিভাষা হিসেবে সর্বজন শ্বীকৃত হয়।

ঢাকা বিশ্ববিদ্যালয়ের অধ্যাপক ড. কাজী মোতাহার হোসেন হলেন বাংলাদেশের পরিসংখ্যান বিষয়ের অর্থাদৃত। তবে পরিসংখ্যানের বিকাশ, উন্নতি ও উৎকর্ষ সাধনে আর.এ. ফিশার (R.A. Fisher) এর এর মূল্যবান অবদানের জন্য অনেকে তাঁকে আধুনিক পরিসংখ্যানের জনক হিসেবে বিবেচনা করেন।

এ অধ্যায় পাঠ শেষে শিক্ষার্থীরা-

- পরিসংখ্যানের উৎপত্তি ব্যাখ্যা করতে পারবে ।
- পরিসংখ্যান কী বলতে পারবে।
- কতিপয় পরিসংখ্যানবিদের নাম বলতে পারবে ।
- পরিসংখ্যানের বৈশিষ্ট্য ব্যাখ্যা করতে পারবে।
- পরিসংখ্যানের গুরুত ও ব্যবহার বিশ্লেষণ করতে পারবে।
- পরিসংখ্যানের কার্যাবলী বর্ণনা করতে পারবে ।
- চলক, ধ্রুবক, সমগ্রক ও নমুনার ধারণা ব্যাখ্যা করতে পারবে।
- চলকের প্রকারভেদ ব্যাখ্যা করতে পারবে ।
- গুণবাচক ও সংখ্যাবাচক চলক সম্পর্কে বলতে পারবে।
- বিচ্ছিন্ন ও অবিচ্ছিন্ন চলক সম্পর্কে বলতে পারবে?
- পরিমাপন কি তা বলতে পারবে।
- পরিমাপন ক্ষেলের প্রকারভেদ ব্যাখ্যা করতে পারবে।
- বিভিন্ন প্রতীকের ধারণা, ব্যবহার ও কতিপয় উপপাদ্যের প্রমাণ সম্পর্কে বলতে পারবে।

একটি ডিজিটাল কামরিয়ান প্রকাশনা

১.০১ পরিসংখ্যানের উৎপত্তি

Origin of Statistics

পরিসংখ্যানের উৎপত্তি পুঞানুপুঞ্চাভাবে জানা সম্ভব হয়নি। তবে ভারতীয় প্রখ্যাত পরিসংখ্যানবিদ প্রশান্ত চন্দ্র মহালানবিশ পরিসংখ্যান শব্দটি ইংরেজি শব্দ স্টাটিসটিকস (Statistics) এর বাংলা রূপান্তর করেন। বিভিন্ন পরিসংখ্যানবিদগণের মতে, ল্যাটিন শব্দ Status (স্ট্যাটাস) অথবা ইটালিয়ন শব্দ 'Statista' (স্ট্যাটিস্টা) অথবা জার্মান শব্দ Statistik থেকে Statistics শব্দের উৎপত্তি হয়েছে। প্রতিটি শব্দের অর্থই হল রাজনৈতিক অবস্থা। প্রাচীনকালে রাজা বাদশাগণ তাদের রাজকার্য পরিচালনার জন্য রাজব্বের পরিমাণ, প্রজার সংখ্যা, সৈন্য সংখ্যা, জন্ম-মৃত্যুর সংখ্যা, ভূমির পরিমাণ ইত্যাদির হিসাব বা পরিসংখ্যান রাখতেন। এজন্য সে সময় পরিসংখ্যানকে রাজাদের বিজ্ঞান (Science of Kings) বলা হত। বর্তমানে পরিসংখ্যান ওধু রাষ্ট্রীয় কার্যকলাপের মধ্যেই সীমাবদ্ধ নেই। ইহা জ্ঞান-বিজ্ঞানে এমন একটি শাখা, যেখানে কোন বিষয়ে সংখ্যাত্মক তথ্য সংগ্রহ, উপস্থাপন, গাণিতিক বিশ্লেষণ করে ব্যাখ্যা সহ সিদ্ধান্ত নেওয়া হয়।

সময়ের পরিবর্তন এবং জ্ঞান বিজ্ঞানের উন্নতির সাথে সাথে পরিসংখ্যানের প্রয়োগ পদ্ধতি ও পরিধি দিন দিন বৃদ্ধি পেতে থাকে। এই সময় দুই উজ্জ্বল নক্ষত্র কাল পিয়ারসন এবং আর. এ. ফিশার পরিসংখ্যান জগতে আবির্ভাব ঘটে। বিখ্যাত পরিসংখ্যানবিদ আর. এ. ফিশার এককভাবে পরিসংখ্যানের নতুন নতুন অনেক পদ্ধতি আবিন্ধার করেন। যেমন: ভেদাংক বিশ্বেষণা, গরিষ্ঠ সম্ভাবনা পদ্ধতি, সঠিক নমুনাজ বিন্যাস, পরিসংখ্যান অনুমতি, পরীক্ষণ-পরিকল্পনা বিশেষভাবে উল্লেখযোগ্য। পরিসংখ্যানের উন্নয়নে ব্যাপক অবদানের জন্য আর. এ. ফিশারকে পরিসংখ্যানের জনক বলা হয়। এছাড়া পরিসংখ্যান শাস্ত্রে যারা উল্লেখযোগ্য অবদান রেখেছেন তারা হলেন, স্যার গ্যালটন, ককরান, প্যাসকল, ল্যাপলাস, গাউস, ডিময়ভার, সি.আর, রাও প্রমুখ।

১.০২ পরিসংখ্যানের সংজ্ঞা

Definition of Statistics

অল্প কথায় পরিসংখ্যানের সঠিক সংজ্ঞা উপস্থাপন করা অসম্ভব প্রায়। বিশিষ্ট পরিসংখ্যানবিদগণ বিভিন্ন দৃষ্টিকোণ থেকে পরিসংখ্যানকে সংজ্ঞায়িত করেছেন। এই সংজ্ঞাণ্ডলো দুই অর্থে ব্যবহৃত হয়ে থাকে।

- i. একবচনে পরিসংখ্যান (Statistics in singular sense)
- ii. বহুবচনে পরিসংখ্যান (Statistics in plural sense)

একবচনে পরিসংখ্যানঃ

একবচন অর্থে পরিসংখ্যানের অর্থ হল ইহার সূত্র, নীতি বা কার্যপ্রণালী। অর্থাৎ কোন সংখ্যাভিত্তিক তথ্য সংগ্রহ, উপস্থাপন, বিশ্লেষণ এবং ব্যাখ্যা দানের বৈজ্ঞানিক পদ্ধতি হল পরিসংখ্যান।

বহুবচনে পরিসংখ্যান:

বহুবচন অর্থে পরিসংখ্যানের অর্থ হল কোন ঘটনা বা বিষয়ের সংখ্যাত্মক প্রকাশ যেমন: কতকগুলো পরিবারে ছেলে শিশুর সংখ্যা, ক্যামব্রিয়ান কলেজে একাদশ শ্রেণীর ছাত্র-ছাত্রীদের ওজনের রাশিমালা, নিত্য প্রয়োজনীয় দ্রব্যের বিভিন্ন সময়ে উৎপাদন বা মূল্য বা আমদানি-রপ্তানির হিসাব, প্রতি বছরে বাংলাদেশে জন্ম-মৃত্যুর সংখ্যা, বাংলাদেশে শ্রমিকদের মাথাপিছু আয় সংক্রান্ত উপাত্ত ইত্যাদি পরিসংখ্যান।

তাছাড়া বিভিন্ন পরিসংখ্যানবিদ পরিসংখ্যানকে বিভিন্নভাবে সংজ্ঞায়িত করেছেন। এদের মাঝে R.A. Fisher; W.I.King, Bowley, Croxton & cowden, H. Secrist এর সংজ্ঞা উল্লেখযোগ্য।

- R.A. Fisher এর মতে, "পরিসংখ্যান নিশ্চিতরপেই ফলিত গণিতের একটি শাখা যা পর্যবেক্ষণ দ্বারা
 প্রাপ্ত গাণিতিক উপারের উপর প্রয়োগ করা হয়।" (According to R.A.Fisher. æThe science
 of statistics is essentially a branch of applied mathematics and may be
 regarded as mathematics applied to observational data)
- W.I.King এর মতে, "পরিসংখ্যান হলো অনিশ্চয়তার বিষয় সম্পর্কে সিদ্ধান্ত নেওয়ার বিজ্ঞান।
 (W.I.King says, æStatistics is the science decision making in the field uncertainity")
- Bowley এর মতে-কোন অনুসন্ধানের ক্ষেত্রে পরস্পর সম্পর্কযুক্তভাবে উপস্থাপিত ঘটনার
 সংখ্যাত্মক বর্ণনাই হচ্ছে পরিসংখ্যান। (æStatistics are numerical statement of facts
 in any department of enquiry placed in relation to each other.")
- Croxton & cowden এর মতে, পরিসংখ্যান হচ্ছে সংখ্যাত্মক, তথ্য সংগ্রহ, উপস্থাপন,
 বিশ্লেষণ ও ব্যাখ্যা প্রদান করার বিজ্ঞান (æStatistics may be defined as the science of
 collection, Presentation, analysis and interpretation of numerical data")
- H. Secrist এর মতে, "পরিসংখ্যান বিজ্ঞান ঘারা আমরা কোন পূর্ব নির্ধারিত উদ্দেশ্যে প্রণালীবদ্ধভাবে সংগৃহীত এবং পারস্পরিক সম্পর্কে সংস্থাপিত, নির্ভূলতার যুক্তিসংগত মান অনুসারে সংখ্যায় প্রকাশিত, গণনাকৃত বা নিরূপিত এবং বছবিধ কারণ ঘারা লক্ষণীয় মাত্রায় প্রভাবিত তথ্যাবলির সমষ্টিকে বুঝাই।" (æBy statistics we mean aggregate of facts affeted to a marked extent by multiplicity of causes, numerically expressed, enumarated or estimated according to reasonable standard of accuracy, collected in a systematic manner of a predetermined purpose and placed in relation to each other") পরিশেষে বলা যায়, পরিসংখ্যান হলো- নিয়মতান্ত্রিক উপায়ে সংখ্যাত্মক তথ্য সংগ্রহ, সংঘবদ্ধকরণ, উপস্থাপন, বিশ্লেষণ ও ব্যখ্যা প্রদান করার বিজ্ঞান।

১.০৩ কতিপয় পরিসংখ্যানবিদের নাম

Name of some Statistician

কতিপয় পরিসংখ্যানবিদঃ

- জনাব আর. এ. ফিশার
- জ্নাব কার্ল পিয়ারসন
- Mr. W. I. King
- জনাব পি. সি. মহালানবিশ (প্রশান্ত চন্দ্র মহালানবিশ)
- জনাব কাজী মোতাহার হোসেন চৌধুরী
- জনাব এম. জি. মোস্তফা
- জনাব কাজী সালেহ আহমেদ

১.০৪ পরিসংখ্যানের বৈশিষ্ট্য

Characteristics of Statistics

বিভিন্ন পরিসংখ্যানবিদের দেয়া সংজ্ঞাগুলো আলোচনা করলে পরিসংখ্যানের কতগুলি উল্লেখযোগ্য বৈশিষ্ট্য পরিলক্ষিত হয়। নিচে বৈশিষ্ট্যগুলো উল্লেখ করা হল -

- পরিসংখ্যানে সংখ্যাসূচক প্রকাশ আবশ্যক: পরিসংখ্যান উপাত্তকে সংখ্যায় প্রকাশ করতে হবে। কোন গুণবাচক তথ্যকে পরিসংখ্যান বলা হবে না। যেমন- ছাত্রটি ভাল, ধানের ফলন বেড়েছে ইত্যাদি গুণবাচক তথ্যকে পরিসংখ্যান বলা যাবে না।
- (ii) পরিসংখ্যান হচ্ছে তথ্যের সমষ্টি: বহুবচন অর্থে পরিসংখ্যানকে তথ্যের সমষ্টি বুঝায়। একটি বিচ্ছিন্ন সংখ্যাকে পরিসংখ্যান বলা হবে না। আবার সাধারণ সংখ্যাকেও পরিসংখ্যান বলা হবে না। যেমনং যদি বলা হয় একজন ছাত্রের উচ্চতা ৫ ফুট তবে তা পরিসংখ্যান হবে না কিন্তু যদি বলা হয় যে ক্যামব্রিয়ান কলেজের প্রথম বর্ষের ছাত্রদের গড় উচ্চতা ৫ ফুট তবে উহা পরিসংখ্যান হবে। কারণ এই সংখ্যাটি ক্যামব্রিয়ান কলেজের প্রথম বর্ষের ছাত্রদের উচ্চতাকে (গড়ে) প্রকাশ করে।
- (iii) তথ্যের সম্পর্কযুক্ততাঃ পরিসংখ্যানীয় উপান্তকে অবশ্যই কোন না কোন বিষয় বা বিভাগের সহিত সম্পর্কযুক্ত হতে হবে। কোন বিষয় বা বিভাগের সহিত সম্পর্কযুক্ত নয় এমন কোন গাণিতিক উপান্তকে পরিসংখ্যান বলা যাবে না। যেমন- 68", 65",63", 67",70" ইত্যাদি পরিসংখ্যান নয়। যতক্ষণ পর্যন্ত না প্রদন্ত সংখ্যাগুলো কতগুলো লোকের উচ্চতা নির্দেশ করে।
- (iv) পরিসংখ্যান তথ্য বহুবিধ কারণ দ্বারা প্রভাবিত হয়: পরিসংখ্যানিক তথ্য একাধিক কারণ দ্বারা প্রভাবিত হবে। ধানের উৎপাদন জমির উর্বরতা, সার, পানি সরবরাহ, সূর্যকিরণ ইত্যাদি উপাদানগুলো দ্বারা প্রভাবিত হয়।

- (v) পরিসংখ্যান তথ্যকে সুশৃঙ্গলভাবে সংগ্রহ করতে হয়: পরিসংখ্যানিক তথ্যাবলী সুশপ্তালভাবে সংগ্রহ করতে হবে। উদ্দেশ্যহীনভাবে সংগৃহীত তথ্য সঠিক সিদ্ধান্ত দিতে ব্যর্থ হতে পারে এবং এ ধরণের তথ্য কোন ঘটনার পরিপূর্ণ বর্ণনা দিতে ব্যর্থ হয়।
- (vi) তথ্যের সমজাতীয়তা: পরিসংখ্যানীয় উপাত্তকে অবশ্যই সমজাতীয় হতে হবে। সমজাতীয় হওয়ার জন্য তথ্যগুলো অবশ্যই একই বিষয়ের উপর হতে হবে। যেমন-কতকগুলো বস্তুর ওজন ও কতকগুলো ব্যক্তি ওজন নিয়ে গঠিত উপাত্ত পরিসংখ্যান নয়। কারণ, তথ্যগুলো একই বিষয়ের উপর না হওয়ায় তা সমজাতীয় নয়।
- (vii) তথ্যের তুলনাযোগ্যতা:পরিসংখ্যানীয় উপাত্তকে অবশ্যই তুলনাযোগ্য হতে হবে। তুলনাযোগ্য হওয়ার জন্য তথ্যগুলো একই এককে প্রকাশিত হতে হবে। যেমন- টাকায় পরিমিত কিছু লোকের আয় এবং ডলারে পরিমিত কিছু লোকের আয় নিয়ে গঠিত উপাত্ত পরিসংখ্যান নয় কারণ, তথ্যগুলো একই বিষয়ের উপর হলেও একই এককে প্রকাশিত না হওয়ায় তা তুলনাযোগ্য নয়।
- (viii) পরিসংখ্যান নিরূপনে যুক্তিসংগত পরিমাণে সঠিকতা বজায় রাখার প্রয়োজন রয়েছে: পরিসংখ্যান গবেষণায় প্রাপ্ত ফলাফলের ভিত্তিতে নতুন পরিকল্পনা গ্রহণ করা হয়। সুতরাং, ফলাফল নিরূপণে একটি যুক্তিসন্ধৃত পরিমাণে সঠিকতার মাত্রা বজায় রাখা দরকার।

১.০৫ পরিসংখ্যানের গুরুত্ব ও ব্যবহার

Importance and uses of statistics

যেকোন সংখ্যাত্মক গবেষণার কাজে পরিসংখ্যান ব্যবহার করা হয়। নিচে পরিসংখ্যানের গুরুত্ব ও ব্যবহার আলোচনা করা হলো-

- পরিসংখ্যান মানব কল্যাণে সাহায্য করে: পরিসংখ্যান মানব কল্যাণ বিষয়ক বিভিন্ন সামাজিক সমস্যার উপর গবেষণা কার্য পরিচালনা করতে সাহায্য করে। বিভিন্ন সামাজিক সমস্যা যেমন: বেকার সমস্যা, দরিদ্রতা, শিক্ষা সমস্যা, খাদ্য সমস্যা ইত্যাদি সঠিকভাবে নির্ণয় ও তার সমাধানের পথ নির্ধারণের জন্য পরিসংখ্যানিক অনুসন্ধান পরিচালনা করে।
- (ii) পরিসংখ্যান রাষ্ট্রের প্রশাসনিক কাজে সহায়তা করে: পরিসংখ্যান রাষ্ট্রের প্রশাসনিক নীতি নির্ধারণে গুরুত্বপূর্ণ ভূমিকা পালন করে থাকে দেশের বাজেট প্রণয়ন, করণীতি, শ্রমনীতি, আমদানী-রপ্তানী নীতি ইত্যাদি নীতি প্রণয়নে সহায়তা করে থাকে। প্রশাসনিক নীতি নির্ধারনের জন্য সামাজিক ও অর্থনৈতিক ক্ষেত্রে পরিসংখ্যানিক গবেষণা অপরিহার্য। জনসংখ্যা, কৃষি, শিক্ষা, বাণিজ্য, শিল্প ইত্যাদি ক্ষেত্রে তথ্য সংগ্রহ ব্যাখ্যা বিশ্লেষণ ও প্র্যালোচনার মাধ্যমে নীতি নির্ধারণের জন্য পরিসংখ্যান পদ্ধতি প্রয়োগ করা হয়।

- (iii) পরিসংখ্যান অন্যান্য বিজ্ঞানকে সাহায্য করে: অন্যান্য সামাজিক ও প্রাকৃতিক বিজ্ঞান যেমন: পদার্থ, রসায়ন, জীববিদ্যা, মনোবিজ্ঞান, সমাজ বিজ্ঞান ইত্যাদি বিষয়ের গবেষণায় ও ফলাফলের সঠিকতা নিরূপণে পরিসংখ্যানিক পদ্ধতি ব্যবহার করা হয়।
- (iv) পরিসংখ্যান অর্থনৈতিক বিশ্লেষণে সহায়তা করে: অর্থনীতিতে চাহিদার বিশ্লেষণ, কালীন সারির বিশ্লেষণ, সূচক সংখ্যা ও মুদ্রা সংক্রান্ত হিসাব নিকাশের কাজে পরিসংখ্যানিক পদ্ধতি প্রয়োগ হয়ে থাকে। বিভিন্ন দ্রব্যের উৎপাদন, চাহিদা, যোগান, বিনিয়াগ, আমদানী-রপ্তানী, আয়-বয়য়, ক্রয়-বিক্রয় ইত্যাদি অবস্থার বিশ্লেষণের কাজে পরিসংখ্যান ব্যবহার করা হয়ে থাকে। জনসম্পদ, কর্মসংস্থান, কর, রাজস্ব ইত্যাদি হিসাব নিকাশের কাজে পরিসংখ্যান ব্যবহার করা হয়।
- (v) ব্যবসা-বাণিজ্যে পরিসংখ্যান: মানুষের জীবনে রুচি এবং প্রয়োজন প্রতিনিয়তই পরিবর্তনশীল। সেই পরিবর্তন অনেক ক্ষেত্রেই হয় সময়ের প্রেক্ষিতে। যেমন: বর্ষাকালে ছাতার চাহিদা বৃদ্ধি পায়, শীতকালে গরম পোশাকের প্রয়োজন বাড়ে। পরিসংখ্যানের মাধ্যমে ব্যবসায়ীরা সময়ের পরিবর্তনে ক্রয়-বিক্রয়ের পরিমাপ, লাভ-ক্ষতির হিসাব প্রভৃতি করতে পারেন। যার ফলশ্রুতিতে কোন সময় কী পরিমাণ মাল স্টক করতে হবে, বাজারের অবস্থা কতটা ভাল বা মন্দ তা তারা জানতে পারে এবং সঠিক সময়ে সঠিক পদক্ষেপ নিতে পারে।
- (vi) চিকিৎসা শাস্ত্রে পরিসংখ্যান: বর্তমানে চিকিৎসা শাস্ত্রে পরিসংখ্যানের গুরুত্ব অপরিসীম। বিভিন্ন উন্ধরের কার্যকারিতা, রোগের সঠিক লক্ষণ এবং প্রকাশ প্রভৃতি পরিমাপ করতে পরিসংখ্যান আবশ্যক হাতিয়ার (Tools) হিসাবে ব্যবহৃত হয়।
- (vii) আবহাওয়ার পূর্বাভাস প্রদানে পরিসংখ্যান: আবহাওয়ার অতীত ও বর্তমান তথ্যের উপর ভিত্তি করে আমরা আগামী দিনের আবহাওয়ার পূর্বাভাস পেতে পারি। এক্ষেত্রে পরিসংখ্যানের "কালীন সারি" ব্যবহৃত হয়ে থাকে। এছাড়া বন্যা, খরা, জলোচ্ছ্লাস বা অন্যান্য প্রাকৃতিক দুর্মোগের আগমন সম্বন্ধে আমরা আগে থেকে অনুমান করতে পারি। ফলে প্রাকৃতিক দুর্মোগ মোকাবেলায় আমরা আগে থেকে প্রস্তুত হতে পারি এবং মানুষের জানমালের নিরাপত্তা অনেকাংশে নিশ্চিত করতে পারি।
- (viii) জনমিতির পরিসংখ্যান: জনমিতি হলো কোন জনগোষ্ঠির বা সম্প্রদায়ের মানুষের জীবন সম্পর্কিত ঘটনাবলীর বর্ণনা। এই বর্ণনায় মানুষের জন্ম-মৃতু, বৈবাহিক অবস্থা, বেকারত্ব প্রভৃতি সম্পর্কে তথ্য সংগ্রহ এবং হারের পরিমাপ করা হয়। এছাড়া কোন অধ্যলের আদম শুমারিতে পরিসংখ্যানের ব্যবহার সর্বজনবিদিত।
- (ix) কম্পিউটার বিজ্ঞানে পরিসংখ্যান: সম্প্রতি পাসেনিল কম্পিউটার এবং মাইক্রো-কম্পিউটারের ব্যবহার ব্যাপকভাবে বৃদ্ধি পেয়েছে। তথ্য সংগ্রহ, উপস্থাপন, বিশ্লেষণ ইত্যাদি পরিসংখ্যানিক পদ্ধতিগুলো ব্যবহার করে কম্পিউটারের মাধ্যমে অনেক জটিল সমস্যা সমাধানের পথ সুগম হয়েছে।

১.০৬ পরিসংখ্যানের কার্যাবলী

Functions of Statistics

- কোন ঘটনা বা বিষয়ে সংখ্যাত্মক অনুসন্ধান করাই হল পরিসংখ্যানের প্রথম কাজ। বিভিন্ন পরিসংখ্যাবিদর্গণের দেওয়া সংজ্ঞা বিশ্লেষণ করে পরিসংখ্যানের কার্যাবলীর ধাপসমূহ আলোচনা করা হল:
- তথ্য সংগ্রহ (Data Collection): পরিসংখ্যানের প্রথম কাজ হল তথ্য বা উপাত্ত সংগ্রহ। সেহেতু পরিসংখ্যানবিদগণের মতে, তথ্য হল পরিসংখ্যানের ব্যবহৃত কাঁচামাল স্বরূপ। যেহেতু সংগৃহীত তথ্যের মধ্যে কোন প্রকার ভুল-ক্রণ্ট থাকলে পরবর্তীতে যেকোন ধরণের সিদ্ধান্ত গ্রহণ করতে পরিসংখ্যান ব্যর্থ হয়। তাই গবেষণার উদ্দেশ্যের সাথে সঙ্গতি রেখে বিশেষ সর্তকতা, দক্ষতা ও বিজ্ঞতার সাথে বৈজ্ঞানিক পদ্ধতিতে বিশুদ্ধ তথ্য সংগ্রহ করা বাঞ্চনীয়।
- তথ্য প্রক্রিয়াকরণ (Organisation of Data):সংগৃহীত তথ্য প্রক্রিয়াকরণ করাই হল পরিসংখ্যানীয় অনুসন্ধানের দ্বিতীয় ধাপ। এই ধাপে সংগৃহীত তথ্যের মধ্যে কোন প্রকার ভুল-ক্রণটি আছে কিনা তা যাচাই করেও দেখা হয় এবং ভুল-ক্রণটি থাকলে তা সংশোধন করা হয়। এ উদ্দেশ্যে তথ্য সম্পূর্ণ সমজাতীয় সামঞ্জস্যপূর্ণ সঠিক ও নির্ভুল কিনা এসব বিষয়ের উপর লক্ষ্য রাখতে হবে।
- তথ্য উপস্থাপন (Data Presentation): তথ্য সংগ্রহ ও প্রক্রিয়াকরণের পর পরিসংখ্যানীয় অনুসন্ধানের তৃতীয় ধাপ হল উপস্থাপন। এ ধাপ হল কতগুলো সাধারণ বৈশিষ্ট্য অনুসারে তথ্য প্রকাশের প্রক্রিয়া। এ ধাপে তথ্য সমূহের অভ্যন্তরীণ বৈশিষ্ট্য সমূহের শ্রেণীকরণ, সারণীকরণ, লৈখিক চিত্র ইত্যাদি পদ্ধতির মাধ্যমে সহজ-সরল আকর্ষণীয় ও প্রাণবন্ত আকারে উপস্থাপন করা হয়।
- তথ্য বিশ্লেষণ (Data analysis): এ ধাপে উপস্থাপিত থেকে বিভিন্ন পরিসংখ্যানিক পদ্ধতি যেমন কেন্দ্রীয় প্রবণতা, বিস্তার, বদ্ধিমতা, সূঁচালতা, সংশ্লেষ, নির্ভরণ ইত্যাদির মাধ্যমে বিশ্লেষণ করে সরল ও সংক্ষিপ্ত আকারে প্রকাশ করা হয়।
- ব্যাখ্যা প্রদান (Interpretation): সংগৃহীত তথ্যের উপর সিদ্ধান্ত গ্রহণের ক্ষেত্রে ব্যাখ্যা প্রদান হল পরিসংখ্যানীয় অনুসন্ধানের সর্বশেষ ধাপ। এ ধাপে বিশ্লেষণের মাধ্যমে প্রাপ্ত ফলাফলের উপর ব্যাখ্যা প্রদান করা হয় এবং সেই ব্যাখ্যা অনুসারে সিদ্ধান্ত গ্রহণ করা হয়ে থাকে।

১.০৭ চলক, ধ্রুবক, সমগ্রক ও নমুনা

Variable, Constant, Population & Sample

চলক: চলক হলো এমন এক ধরনের বৈশিষ্ট্য যা ব্যক্তি, বস্তু বা ঘটনা ভেদে ভিন্ন ভিন্ন মান গ্রহন করে থাকে। অর্থাৎ যে সকল বৈশিষ্ট্য সমগ্রক বা তথ্যবিশ্বের বিভিন্ন একক সমূহের সাপেক্ষে পরিমাণ গত ভাবে পরিবর্তিত হয় তাকে চলক বলে। যেমন—মানুষের বয়স, ওজন, উচ্চতা ইত্যাদি চলক। চলককে সাধারণত x, y, z দ্বারা প্রকাশ করা হয়।

উচ্চমাধামিক পরিসংখান

- শ্রুণকঃ তথ্যের যে বৈশিষ্ট্য তথ্যবিশ্বের সকল এককে একই থাকে অর্থাৎ অপরিবর্তিত অবস্থায় থাকে তাকে প্রদান করে । অন্যভাবে সমগ্রকের যে সমস্ত লক্ষণ বা বৈশিষ্ট্য উপাদানভেদে বিভিন্নরূপ হয় না। অর্থাৎ উপাদান বা মৌলভেদে তারতম্য পরিলক্ষিত হয় না, একই থাকে, সে সমস্ত বৈশিষ্ট্যকে প্রুন্বক বলে। যেমন- মানুষের হাত, পা ও হাত-পায়ের আঙ্গুলের সংখ্যা ইত্যাদি প্রুন্বক। প্রুন্বককে সাধারণত a. b. c ঘারা প্রকাশ করা হয়।
- সমগ্রক (Population): কোন একটি পরীক্ষণে বা পর্যবেক্ষণে সুনির্দিষ্ট কিছু বৈশিষ্ট্যের অধিকারী সম্ভাব্য সকল উপাদানের সমষ্ট্রিকে সমগ্রক বা তথ্যবিশ্ব বলে। সমগ্রকের অন্তর্গত উপাদানগুলোকে সমগ্রকের একক বলা হয়।

যেমন: কোন শ্রেণীকক্ষের ছাত্রদের গড় বয়স অনুসন্ধানে উক্ত শ্রেণীকক্ষের ছাত্রদের সেট হলো একটি সমগ্রক। আর শ্রেণীকক্ষের প্রত্যেক ছাত্রই হলো সমগ্রকের এক একটি সদস্য বা একক।

নমুনা (Sample): কোন সমগ্রকের এক বা একাধিক বৈশিষ্ট্য নির্ণয়ের জন্য ইহা হতে প্রনিধিত্বকারী অংশ নির্বাচন করা হয় তখন ঐ নির্বাচিত অংশটিকেই নমুনা বলে। অর্থাৎ নমুনা হলো সমগ্রকের প্রতিনিধিত্বকারী অংশ যা সমগ্রকের কোন বৈশিষ্ট্য পরিমাপে ব্যবহৃত হয়। আর নমুনার অন্তর্গত প্রতিটি মানকে নমুনার এক একটি একক বলে।

যেমন— কোন শ্রেণিকক্ষের 100 জন ছাত্রের গড় উচ্চতা পরিমাপের জন্য উক্ত ছাত্রের মধ্যে থেকে প্রতিনিধিতুকারী 10 জন ছাত্র লটারীর মাধ্যমে নির্বাচন করা হলো। এখানে 10 জন ছাত্র হলো নমুনা।

১.০৮ চলকের প্রকারভেদ

Types of variable

চলক দুই প্রকার। যথা-

- গুণবাচক চলক।
 সংখ্যাবাচক চলক/পরিমাণবাচক চলক ।
 সংখ্যাবাচক চলক/পরিমাণবাচক চলক দুই প্রকার যথা-
- (i) বিচ্ছিন্ন চলক।
- (ii) অবিচ্ছিন্ন চলক।

১.০৯ গুণবাচক ও সংখ্যাবাচক চলক

Qualitative & Quantitative Variable

গুণবাচক চলক (Qualitative variable):

যে চলকের মানগুলো পরিমাপ বা গণনা করা যায় না অর্থাৎ সংখ্যায় প্রকাশ করা যায় না কিন্তু কোন বৈশিষ্ট্যের ভিত্তিতে শ্রেণী বিভাগ করা যায় তাকে গুণবাচক চলক বলে। যেমন- পেশা, আবেগ, ধর্ম, দক্ষতা, বর্ণ ইত্যাদি বৈশিষ্ট্যের চলক হচ্ছে গুণবাচক চলক। বিভিন্ন গুণের ভিত্তিতে তথ্যবিশ্বে কতগুলো শ্রেণীতে বিভক্ত করা যায় এই শ্রেণীগুলোকে গুণশ্রেণী (category) বলা হয়। এই শ্রেণীগুলো পারস্পারিকভাবে বিচ্ছিন্ন হয়।

পরিমাণবাচক / সংখ্যাবাচক চলক (Quantitative variable):

যে চলকের মানগুলি পরিমাপ বা গণনা করা যায় অর্থাৎ সংখ্যায় প্রকাশ করা যায় তাকে পরিমাণ বাচক চলক বলে। পরিমাণ বাচক চলক যেমন-বয়স, ওজন, উচ্চতা ইত্যাদি।

১.১০ বিচ্ছিন্ন ও অবিচ্ছিন্ন চলক

Discrete & Continous Variable

বিচ্ছিন্ন চলক: যে চলক কেবল মাত্র বিচ্ছিন্ন অর্থাৎ পৃথক পৃথক মান গ্রহণ করতে পারে তাকে বিচ্ছিন্ন চলক বলে। বিচ্ছিন্ন চলকের মূল বৈশিষ্ট্য হচ্ছে এর গণনশীলতা (countable) অর্থাৎ বিচ্ছিন্ন চলক যে মানগুলো গ্রহণ করে সে গুলো গণনা করা যায়। বিচ্ছিন্ন চলকের মানগুলো সাধারণত পূর্ণসংখ্যা হয়। যেমন-কোন বইয়ের প্রতি পৃষ্ঠার ভুলের সংখ্যা, পরিবারের সদস্য সংখ্যা।

অবিচিহন্ন চলক: যে সকল চলক কোন নির্দিষ্ট পরিসরের (Range) অন্তর্ভূক্ত যে কোন মান গ্রহণ করতে পারে তাকে অবিচিহন্ন চলক বলে। অবিচিহন্ন চলকের মানগুলোকে বিচিহন্ন চলকে মানগুলোর মত গণনা করা যায় না। যেমন-উচ্চতা, ওজন ইত্যাদি।

১.১১ পরিমাপণ

Measurement

পরিমাপণঃ পূর্ব নির্ধারিত নিয়ম অনুযায়ী কোন বৈশিষ্ট্য, বস্তু বা ঘটনাকে সংখ্যা বা প্রতীক দ্বারা প্রকাশ করাকে পরিমাপন বলা হয়।

বৈজ্ঞানিক ক্যাম্পবেলের মতে, "পরিমাপন হলো কোন নিয়মানুসারে বস্তু বা ঘটনাতে সংখ্যা আরোপ করা" æMeasurement is the assignment of numbers to objects or events according to rules." বেমন-একটি বইকে তার পৃষ্ঠার সংখ্যা, উচ্চতা, বিস্তার, ওজন ইত্যাদি দ্বারা পরিমাপ করা যায়। এখানে পৃষ্ঠার সংখ্যা, উচ্চতা, বিস্তার, ওজন ইত্যাদি প্রত্যেকেই এক একটি পরিমাপন।

১.১২ পরিমাপন স্কেল ও পরিমাপন স্কেলের প্রকারভেদ

Scale of Measurement & Types of Scale of Measurement

পরিমাপন স্কেল:

যে বৈজ্ঞানিক নিয়মের সাহায্যে কোন বৈশিষ্ট্য, বস্তু বা ঘটনাকে সংখ্যায় প্রকাশ করা হয়, তাকে পরিমাপন ক্ষেল বলে। আরো সহজভাবে বলা যায়, যেকোন বৈশিষ্ট্য গণনা বা পরিমাপ করতে উহাকে কোন একটি আদর্শ রাশির সাথে তুলনা করা হয়। পরিমাপনের কাজে যার সাথে তুলনা করা হয় তাকে পরিমাপন ক্ষেল বলে। যেমন- ইডেন কলেজের অনার্স প্রথম বর্ষের ছাত্রীদের গড় উচ্চতা 5 ফুট। এখানে ফুট, ক্ষেল ব্যবহার করা হয়েছে। ১৯৬৮ সালে Stevens ক্ষেলের উপর ভিত্তি করে পরিমাপনকে চারভাগে ভাগ করেছেন—

- ১. নামসূচক স্কেল (Nominal scale)
- ২. ক্রমিক সূচক ক্ষেল (Ordinal scale)
- ৩. ব্যাপ্তি সূচক ক্ষেল (Interval scale)
- 8. অনুপাত সূচক কেল (Ratio scale)

- ১) নামসূচক ক্ষেল: যে পরিমাপন পদ্ধতিতে একটি বস্তু বা শ্রেণীকে চিহ্নিত করার জন্য একটি সংখ্যা ব্যবহার করে তথ্যকে শ্রেণীকরণ করা হয় তাকে নামসূচক ক্ষেল (Nominal scale) বলে। এই শ্রেণীর উপাদানগুলির মধ্যে যে কোন একদিক থেকে মিল থাকে এবং শ্রেণীগুলো পরস্পর বর্জনশীল হয়। এই পরিমাপন পদ্ধতিতে প্রাপ্ত তথ্য কোন গাণিতিক প্রক্রিয়া (যোগ, বিয়োগ, গুণ, ভাগ) ব্যবহার করা যায় না। যেমন-কোন ছাত্রাবাসের কক্ষ নম্বর, গাড়ীর নম্বর, বাড়ীর হল্ডিং নম্বর, মোবাইল সেটের নম্বর, লিন্ধ, শিক্ষা ইত্যাদি হচ্ছে নামসূচক ক্ষেলের উদাহরণ।
- হ) ক্রমিক সূচক স্কেল: যে পরিমাপন পদ্ধতিতে কতকগুলি বস্তু, ব্যক্তি বা ঘটনাকে ছোট থেকে বড় বা বড় থেকে ছোট ক্রমানুসারে সাজানো হয় তাকে ক্রমিক সূচক স্কেল (Ordinal scale) বলে। এই পরিমাপন পদ্ধতিতে প্রাপ্ত তথ্য কোন গাণিতিক প্রক্রিয়া (যোগ, বিয়োগ গুণ, ভাগ) ব্যবহার করা যায় না। যেমন-প্রাপ্ত নম্বরের ভিত্তিতে ছাত্রদের রোল নম্বর বিন্যন্ত করা হচ্ছে ক্রমিকসূচক পরিমাপ। এখানে সর্বোচ্চ নম্বর প্রাপ্ত ছাত্রটি প্রথম অবস্থানে বা ১নং ক্রমিক, ২য় সর্বোচ্চ নম্বর প্রাপ্ত ছাত্রটি ২নং ক্রমিক অবস্থান করবে। এভাবে তার পরের জন, তার পরের জন, ইত্যাদি। অর্থনৈতিক অবস্থা ক্রমিক সূচক স্কেলের উদাহরণ।
- ত) ব্যস্তি সূচক / শ্রেণী সূচক ক্ষেল: যদি কোন বৈশিষ্ট্যের ভিত্তিতে এককগুলির মধ্যে সমহারে বৃদ্ধি পরিলক্ষিত হয় তবে উহা পরিমাপের জন্য যে ক্ষেল ব্যবহার করা হয় তাকে ব্যাপ্তিসূচক বা শ্রেণী সূচক ক্ষেল বলে। এতে প্রতিটি একক তার আগের ও পরের একক থেকে সমান ব্যবধানে থাকে। থার্মোমিটার একটি শ্রেণী ভিত্তিক ক্ষেলের উদাহরণ। তাছাড়া রক্তচাপ পরিমাপ, পরীক্ষার গ্রেডিং নন্দর, শ্রেণী ভিত্তিক ক্ষেলের উদাহরণ। এই পরিমাপন পদ্ধতিতে প্রাপ্ত তথ্যের উপর যোগ, বিয়োগ, গাণিতিক প্রক্রিয়া আরোপ করা যায়। কিয়্তু গুণ ও ভাগ প্রক্রিয়া আরোপ করা যায় না।
- ৪) অনুপাত সূচক স্কেল: যে পরিমাপন পদ্ধতিতে একটি নির্দিষ্ট গোষ্ঠির পরিমাপকে প্রমাণ বা আদর্শ পরিমাণ হিসাবে ধরে তার সাথে তুলনা করে অন্যান্য একক পরিমাপ করা হয় তাকে অনুপাত সূচক স্কেল বলে। এই ক্ষেলে জন্যকে পরম জন্য ধরা হয়। জন্য থেকে সমব্যবধানে দূরত্বকে আমরা আনুপাতিক হারে প্রকাশ করতে পারি। ওজন, উচ্চতা ইত্যাদি হচ্ছে অনুপাত সূচক ক্ষেলের উদাহরণ। এতে একক থেকে এককের মধ্যে দুরত্ব বা ব্যবধান সমান থাকে। এই প্রক্রিয়া প্রাপ্ত তথ্যাবলীর উপর সব ধরণের গাণিতিক প্রক্রিয়া (য়োগ, বিয়োগ, গুণ, ভাগ) আরোপ করা য়ায়।

১.১৩ প্রতীকের ধারণা ও ব্যবহার

Concepts and Uses of Symbols

আমরা, একটি চলক একাধিক মান গ্রহণ করে। বিভিন্ন পরিসংখ্যান পদ্ধতি প্রয়োগের সময় এ মানগুলোর যোগফল ও গুণফল নির্ণয়ের প্রয়োজন পড়ে। এখানে যোগফলকে একটি বিশেষ চিহ্ন $\Sigma({\rm Summation})$ এবং গুণফলকে একটি বিশেষ চিহ্ন Π (Product) এর সাহায্যে সংক্ষিপ্তরূপে প্রকাশ করা যায়। নিম্নে গ্রীক বর্ণমালা বড় হাতের অক্ষর সিগমা (Sigma) Σ ও পাই (Pie) Π এর ব্যবহার কতিপয় উদাহরণের মাধ্যমে উপস্থাপন করা হল।

মনে করি, কোন চলক x এর n সংখ্যক মানসমূহ যথাক্রমে $x_1,\,x_2,\,$

- (i) কে) চলক x এর মানগুলোর সমষ্টি, $x_1+x_2+x_3+\cdots\cdots+x_n=\sum_{i=1}^n x_i$ এখানে, $\sum_{i=1}^n x_i$ কে পড়া হয় সামেসন (Summation) x_i যেখানে i=1 হতে n পর্যন্ত i কে বলা হয় সাফিব্র (Suffix)। অনেক সময় $\sum_{i=1}^n x_i$ এর পরিবর্তে $\sum x_i$ বা $\sum x$ লেখা হয়।
 - (খ) চলক ${\bf X}$ এর মানগুলোর বর্গের সমষ্টি, $x_1^2+x_2^2+x_3^2+----+x_n^2=\sum_{i=1}^n x_i^2$
 - (গ) অনুরূপভাবে, চলক ${\bf x}$ এর মানগুলোর ${\bf k}$ তম ঘাতের সমষ্টি, $x_1^k + x_2^k + x_3^k + - - + x_n^k = \sum_{i=1}^n x_i^k$
- (ii) চলক x এর মানগুলোর গুণফল, $x_1.x_2.x_3$ ------ $x_n = \prod_{i=1} x_i$ এখানে $\prod_{i=1}^n x_i$ কে পড়া হয় প্রভাষ্ট (Product) x_i যেখানে i=1 হতে n পর্যন্ত i=1 কে পড়া হয় পাই (Capital Pi).

কতিপয় উপপাদ্য ও প্রমাণ

i)
$$\sum_{i=1}^{n} ax_i = a \sum_{i=1}^{n} x_i$$

ii)
$$\sum_{i=1}^{n} (ax_i + b) = a \sum_{i=1}^{n} x_i + nb$$

iii)
$$\sum_{i=1}^{n} (ax_i - b) = a \sum_{i=1}^{n} x_i - nb$$

iv)
$$\sum_{i=1}^{n} (ax_i + b + c) = a\sum_{i=1}^{n} x_i + nb + nc$$

v)
$$\sum_{i=1}^{n} (ax_i - b - c) = a\sum_{i=1}^{n} x_i - n(b+c)$$

$$vi) \quad \sum_{i=1}^{n} ab x_i = ab \sum_{i=1}^{n} x_i$$

vii)
$$\sum_{i=1}^{n} (ax_i^2 + bx_i + c) = a\sum_{i=1}^{n} x_i^2 + b\sum_{i=1}^{n} x_i + nc$$

viii)
$$\sum_{i=1}^{n} (ax_i^2 - bx_i - c) = a\sum_{i=1}^{n} x_i^2 - b\sum_{i=1}^{n} x_i - nc$$

ix)
$$\sum_{i=1}^{n} (x_i + y_i) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i$$

$$\sum_{i=1}^{n} (ax_i + by_i + c) = a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} y_i + nc$$

$$xi$$
) $\sum_{i=1}^{n} (ax_i + by_i) = a\sum_{i=1}^{n} x_i + b\sum_{i=1}^{n} y_i$

XII)
$$\sum_{i=1}^{m} \sum_{j=1}^{n} (x_i + y_j) = n \sum_{i=1}^{m} x_i + m \sum_{j=1}^{n} y_j$$

XIII)
$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j = (\sum_{i=1}^{m} x_i) (\sum_{j=1}^{n} y_j)$$

$$xiv) \sum_{i=1}^{n} (x_i - c) = \sum_{i=1}^{n} x_i - nc$$

$$xv) \sum_{i=1}^{k} (ax_i - b)^2 = a^2 \sum_{i=1}^{k} x_i^2 - 2ab \sum_{i=1}^{k} x_i + kb^2$$

$${
m xvi}$$
) $\sum_{i=1}^k f_i(x_i-c)^2 = \sum_{i=1}^k f_i x_i^2 - 2c \sum_{i=1}^k f_i x_i + Nc^2$; যেখানে ${
m c}$ ধ্রুবক এবং $\sum_{i=1}^k f_i = N$

xvii)
$$\left(\sum_{i=1}^{n} x_{i}\right)^{2} = \sum_{i=1}^{n} x_{i}^{2} + \sum_{i} \sum_{\neq i} x_{i} x_{i}$$

i)
$$\sum_{i=1}^{n} a x_i = a \sum_{i=1}^{n} x_i$$

প্রমাণ: মনে করি, চলক-x এর n সংখ্যক মানসমূহ X₁, X₂----- X_n এবং a একটি ধ্রুবক।

$$\therefore x_1 + x_2 + \dots + x_n = \sum_{i=1}^{n} x_i$$
L. H. S = $\sum_{i=1}^{n} ax_i$

$$= ax_1 + ax_2 + - - - + ax_n$$

= $a(x_1 + x_2 + - - - + x_n)$

$$= a \sum_{i=1} x_i$$

= R.H.S

$$\therefore \sum_{i=1}^{n} a x_i = a \sum_{i=1}^{n} x_i$$
 (প্রমাণিত)

(ii)
$$\sum_{i=1}^{n} (ax_i + b) = a \sum_{i=1}^{n} x_i + nb$$

প্রমাণঃ মনে করি , চলক x-এর n সংখ্যক মানসমূহ $x_1,\,x_2.....x_n$ এবং a ও b দুইটি ধ্রুবক।

$$\therefore x_1 + x_2 + \dots + x_n = \sum_{i=1}^n x_i$$

$$L.H.S = \sum_{i=1}^{n} (ax_i + b)$$

$$= (ax_1 + b) + (ax_2 + b) + \dots + (ax_n + b)$$

$$= (ax_1 + ax_2 + \dots + ax_n) + (b + b + \dots + b)$$

$$= a(x_1 + x_2 + \dots + x_n) + nb$$

$$= a\sum_{i=1}^{n} x_i + nb$$

$$= R.H.S$$

$$\therefore \sum_{i=1}^{n} (ax_i + b) = a\sum_{i=1}^{n} x_i + nb$$
(প্রমাণিত)

(iii)
$$\sum_{i=1}^{n} (ax_i - b) = a \sum_{i=1}^{n} x_i - nb$$

প্রমাণ: মনি করি, x একটি চলক যার n সংখ্যক মানসমূহ x_1, x_2 ----- x_n এবং a ও b দুইটি ধ্রুবক।

$$\therefore x_1 + x_2 + \dots + x_n = \sum_{i=1}^n x_i$$

$$L.H.S = \sum_{i=1}^{n} (ax_{i} - b)$$

$$= (ax_{1} - b) + (ax_{2} - b) + \dots + (ax_{n} - b)$$

$$= (ax_{1} + ax_{2} + \dots + ax_{n}) - (b + b + \dots + b)$$

$$= a(x_{1} + x_{2} + \dots + x_{n}) - nb$$

$$= a\sum_{i=1}^{n} x_{i} - nb$$

$$= R.H.S$$

$$\therefore \sum_{i=1}^{n} (ax_{i} - b) = a\sum_{i=1}^{n} x_{i} - nb$$
(প্রমাণিত)

(iv)
$$\sum_{i=1}^{n} (ax_i + b + c) = a \sum_{i=1}^{n} x_i + nb + nc$$

প্রমাণঃ মনে করি, চলক x-এর n সংখ্যক মানসমূহ x₁, x₂......x_n এবং a,b ও c তিনটি ধ্রুবক।

$$\therefore x_1 + x_2 + \dots + x_n = \sum_{i=1}^n x_i$$
L.H.S = $\sum_{i=1}^n (ax_i + b + c)$
= $(ax_1 + b + c) + (ax_2 + b + c) + \dots + (ax_n + b + c)$
= $(ax_1 + ax_2 + \dots + ax_n) + (b + b + \dots + b) + (c + c + \dots + c)$
= $a(x_1 + x_2 + \dots + x_n) + nb + nc$
= $a\sum_{i=1}^n x_i + nb + nc$

$$= R.H.S$$

$$\therefore \sum_{i=1}^{n} (ax_i + b + c) = a \sum_{i=1}^{n} x_i + nb + nc$$
 (প্রমাণিত)

(v)
$$\sum_{i=1}^{n} (ax_i - b - c) = a \sum_{i=1}^{n} x_i - n(b+c)$$

প্রমাণঃ মনে করি, কোন চলক x-এর $\mathbf n$ সংখ্যক মানসমূহ x_1,x_2,\ldots,x_n এবং $\mathbf a,\mathbf b$ ও $\mathbf c$ তিনটি ধ্রুবক।

$$\therefore x_1 + x_2 + \dots + x_n = \sum_{i=1}^n x_i$$

L.H.S =
$$\sum_{i=1}^{n} (ax_i - b - c)$$

= $(ax_1 - b - c) + (ax_2 - b - c) + \dots + (ax_n - b - c)$
= $(ax_1 + ax_2 + \dots + ax_n) - (b + b + \dots + b) - (c + c + \dots + c)$
= $a(x_1 + x_2 + \dots + x_n) - nb - nc$
= $a\sum_{i=1}^{n} x_i - n(b + c)$
= R.H.S

 $\sum_{i=1}^{n} (ax_{i} - b - c) = a \sum_{i=1}^{n} x_{i} - n(b + c)$ (প্রমাণিত)

(vi)
$$\sum_{i=1}^{n} abx_i = ab\sum_{i=1}^{n} x_i$$

প্রমাণঃ মনে করি, কোন চলক x-এর n সংখ্যক মানসমূহ x_1, x_2, \dots, x_n এবং $a ext{ ও } b$ দুইটি ধ্রুবক।

$$\therefore x_1 + x_2 + \dots + x_n = \sum_{i=1}^n x_i$$

$$L.H.S = \sum_{i=1}^{n} abx_{i}$$

$$= abx_1 + abx_2 + \dots + abx_n$$

$$= ab(x_1 + x_2 + \dots + x_n)$$

$$= ab\sum_{i=1}^{n} x_{i} = \text{R.H.S}$$

$$\therefore \sum_{i=1}^{n} abx_{i} = ab\sum_{i=1}^{n} x_{i}$$
 (প্রমাণিত)

উচ্চমাধ্যমিক পরিসংখ্যান

(vii)
$$\sum_{i=1}^{n} (ax_i^2 + bx_i + c) = a\sum_{i=1}^{n} x_i^2 + b\sum_{i=1}^{n} x_i + nc$$

প্রমাণ: মনে করি, কোন চলক x-এর n সংখ্যক মানসমূহ যথাক্রমে x_1,x_2 x_n এবং a,b ও c তিনটি ধ্রুবক।

$$\therefore x_1 + x_2 + \dots + x_n = \sum_{i=1}^n x_i$$

$$\therefore x_1^2 + x_2^2 + \dots + x_n^2 = \sum_{i=1}^n x_i^2$$

L.H.S =
$$\sum_{i=1}^{n} (ax_i^2 + bx_i + c)$$

$$=(ax_1^2+bx_1+c)+(ax_2^2+bx_2+c)+\dots+(ax_n^2+bx_n+c)$$

$$= (ax_1^2 + ax_2^2 + \dots + ax_n^2) + (bx_1 + bx_2 + \dots + bx_n) + (c + c + \dots + c)$$

$$= a(x_1^2 + x_2^2 + \dots + x_n^2) + b(x_1 + x_2 + \dots + x_n) + nc$$

$$= a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i + nc$$
 = R.H.S

$$\therefore \sum_{i=1}^{n} (ax_i^2 + bx_i + c) = a\sum_{i=1}^{n} x_i^2 + b\sum_{i=1}^{n} x_i + nc$$
 (প্রমাণিত)

(viii)
$$\sum_{i=1}^{n} (ax_i^2 - bx_i - c) = a\sum_{i=1}^{n} x_i^2 - b\sum_{i=1}^{n} x_i - nc$$

প্রমাণঃ মনে করি, কোন চলক x-এর n সংখ্যক মানসমূহ যথাক্রমে x_1,x_2 x_n এবং a,b ও c তিনটি ধ্রুবক।

$$\therefore x_1 + x_2 + \dots + x_n = \sum_{i=1}^n x_i$$

$$\therefore x_1^2 + x_2^2 + \dots + x_n^2 = \sum_{i=1}^n x_i^2$$

L.H.S =
$$\sum_{i=1}^{n} (ax_i^2 - bx_i - c)$$
=
$$(ax_1^2 - bx_1 - c) + (ax_2^2 - bx_2 - c) + \dots + (ax_n^2 - bx_n - c)$$
=
$$(ax_1^2 + ax_2^2 + \dots + ax_n^2) - (bx_1 + bx_2 + \dots + bx_n) - (c + c + \dots + c)$$

$$= a(x_1^2 + x_2^2 + \dots + x_n^2) - b(x_1 + x_2 + \dots + x_n) - nc$$

$$= a\sum_{i=1}^n x_i^2 - b\sum_{i=1}^n x_i - nc$$

$$= R.H.S$$

$$\therefore \sum_{i=1}^{n} (ax_i^2 - bx_i - c) = a \sum_{i=1}^{n} x_i^2 - b \sum_{i=1}^{n} x_i - nc$$
 (প্রমাণিত)

(ix)
$$\sum_{i=1}^{n} (x_i + y_i) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i$$

প্রমাণঃ মনে করি, কোন চলক x-এর $\mathbf n$ সংখ্যক মানসমূহ x_1,x_2,\ldots,x_n এবং অপর চলক y-এর

 $\mathbf n$ সংখ্যক মানসমূহ y_1,y_2,\ldots,y_n

$$x_1 + x_2 + \dots + x_n = \sum_{i=1}^n x_i$$

$$\therefore y_1 + y_2 + \dots + y_n = \sum_{i=1}^n y_i$$

$$\begin{aligned} \text{L.H.S} &= \sum_{i=1}^{n} (x_i + y_i) \\ &= (x_1 + y_1) + (x_2 + y_2) + \dots + (x_n + y_n) \\ &= (x_1 + x_2 + \dots + x_n) + (y_1 + y_2 + \dots + y_n) \\ &= \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i \\ &= \text{R.H.S} \\ &\therefore \sum_{i=1}^{n} (x_i + y_i) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i \end{aligned}$$

(x)
$$\sum_{i=1}^{n} (ax_i + by_i + c) = a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} y_i + nc$$

প্রমাণ: মনে করি, কোন চলক x-এর n সংখ্যক মানসমূহ x_1,x_2,\dots,x_n এবং অপর চলক y-এর n সংখ্যক মানসমূহ y_1,y_2,\dots,y_n এবং a, b, ও c তিনটি ধ্রুবক।

$$\therefore x_1 + x_2 + \dots + x_n = \sum_{i=1}^n x_i$$

$$y_1 + y_2 + \dots + y_n = \sum_{i=1}^n y_i$$

L.H.S =
$$\sum_{i=1}^{n} (ax_i + by_i + c)$$

=
$$(ax_1+by_1+c)+(ax_2+by_2+c)+\dots+(ax_n+by_n+c)$$

=
$$(ax_1+ax_2+....+ax_n)+(by_1+by_2+...+by_n)+(c+c+...+c)$$

$$= a(x_1+x_2+....+x_n)+b(y_1+y_2+....+y_n)+nc$$

$$= a \sum_{i=1}^{n} x_{i} + b \sum_{i=1}^{n} y_{i} + nc$$

= R.H.S

$$\therefore \sum_{i=1}^{n} (ax_i + by_i + c) = a\sum_{i=1}^{n} x_i + b\sum_{i=1}^{n} y_i + nc$$
 (প্রমাণিত)

(xi)
$$\sum_{i=1}^{n} (ax_i + by_i) = a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} y_i$$

প্রমাণ: মনে করি, কোন চলক x-এর n সংখ্যক মানসমূহ x_1,x_2,\ldots,x_n অপর চলক y-এর n সংখ্যক মানসমূহ y_1,y_2,\ldots,y_n এবং a ও b দুটি ধ্রুবক।

$$\therefore x_1 + x_2 + \dots + x_n = \sum_{i=1}^n x_i$$

$$\therefore y_1 + y_2 + \dots + y_n = \sum_{i=1}^n y_i$$

$$L.H.S = \sum_{i=1}^{n} (ax_i + by_i)$$

$$= (ax_1 + by_1) + (ax_2 + by_2) + \dots + (ax_n + by_n)$$

$$= (ax_1 + ax_2 + \dots + ax_n) + (by_1 + by_2 + \dots + by_n)$$

$$= a(x_1 + x_2 + \dots + x_n) + b(y_1 + y_2 + \dots + y_n)$$

$$= a\sum_{i=1}^{n} x_i + b\sum_{i=1}^{n} y_i$$

$$= R.H.S$$

$$\therefore \sum_{i=1}^{n} (ax_i + by_i) = a\sum_{i=1}^{n} x_i + b\sum_{i=1}^{n} y_i$$

$$\sum_{i=1}^{n} (x_i + y_j) = n\sum_{i=1}^{m} x_i + m\sum_{j=1}^{n} y_j$$

$$\text{মনে করি, কোন চলক } x \text{ এর } m \text{ সংখ্যক মানসমূহ } x_1, x_2, \dots, x_m \text{ এবং অপর চলক } y$$

$$\text{এর } n \text{ সংখ্যক মানসমূহ } y_1, y_2, \dots, y_n$$

$$\therefore x_1 + x_2 + \dots + x_m = \sum_{i=1}^{m} x_i$$

$$\therefore y_1 + y_2 + \dots + y_n = \sum_{j=1}^{n} y_j$$

$$L.H.S. = \sum_{i=1}^{m} \sum_{j=1}^{n} (x_i + y_j)$$

$$\therefore y_{1} + y_{2} + \dots + y_{n} = \sum_{j=1}^{n} y_{j}$$

$$LHS. = \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{i} + y_{j})$$

$$= \sum_{i=1}^{m} \{(x_{i} + y_{1}) + (x_{i} + y_{2}) + \dots + (x_{i} + y_{n})\}$$

$$= \sum_{i=1}^{m} \{(x_{i} + x_{i} + \dots + x_{i}) + (y_{1} + y_{2} + \dots + y_{n})\}$$

$$= \sum_{i=1}^{m} (nx_{i} + \sum_{j=1}^{n} y_{j})$$

$$= (nx_{1} + \sum_{j=1}^{n} y_{j}) + (nx_{2} + \sum_{j=1}^{n} y_{j}) + \dots + (nx_{m} + \sum_{j=1}^{n} y_{j})$$

$$= (nx_{1} + nx_{2} + \dots + nx_{m}) + (\sum_{j=1}^{n} y_{j} + \sum_{j=1}^{n} y_{j} + \dots + \sum_{j=1}^{n} y_{j})$$

$$= n(x_1 + x_2 + \dots + x_m) + m \sum_{j=1}^n y_j$$

$$= n \sum_{i=1}^m x_i + m \sum_{j=1}^n y_j$$

$$= R.H.S$$

$$\therefore \sum_{i=1}^m \sum_{j=1}^n (x_i + y_j) = n \sum_{i=1}^m x_i + m \sum_{j=1}^n y_j$$
(প্রমাণিত)

(xiii)
$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j = \left(\sum_{i=1}^{m} x_i\right) \left(\sum_{j=1}^{n} y_j\right)$$

প্রমাণ: মনে করি, কোন চলক x এর m সংখ্যক মানসমূহ x_1,x_2,\ldots,x_m এবং অপর চলক y এর n সংখ্যক মানসমূহ

$$y_1, y_2 \dots y_n$$

$$\therefore x_1 + x_2 + \dots + x_m = \sum_{i=1}^m x_i$$

$$y_1 + y_2 + \dots + y_n = \sum_{i=1}^n y_i$$

$$LHS. = \sum_{i=1}^{m} \sum_{i=1}^{n} x_i y_i$$

$$= \sum_{i=1}^{m} \{(x_i y_1) + (x_i y_2) + \dots + (x_i y_n)\}$$

$$= \sum_{i=1}^{m} \{x_i(y_1 + y_2 + \dots + y_n)\}$$

$$=\sum_{i=1}^m \left\{ x_i \sum_{j=1}^n y_j \right\}$$

$$= \left(x_1 \sum_{j=1}^{n} y_j \right) + \left(x_2 \sum_{j=1}^{n} y_j \right) + \dots + \left(x_m \sum_{j=1}^{n} y_j \right)$$

$$= (x_1 + x_2 + \dots + x_m) \sum_{j=1}^n y_j$$

$$= \left(\sum_{i=1}^m x_i\right) \left(\sum_{j=1}^n y_j\right)$$

= RH.S

$$\therefore \sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j = \left(\sum_{i=1}^{m} x_i\right) \left(\sum_{j=1}^{n} y_j\right)$$
 (প্রমাণিত)

(xiv)
$$\sum_{i=1}^{n} (x_i - c) = \sum_{i=1}^{n} x_i - nc$$

প্রমাণঃ মনে করি, কোন চলক x-এর $\mathbf n$ সংখ্যক মানসমূহ x_1,x_2,\ldots,x_n এবং $\mathbf c$ একটি ধ্রুবক।

$$x_1 + x_2 + \dots + x_n = \sum_{i=1}^n x_i$$

$$L.H.S = \sum_{i=1}^{n} (x_i - c)$$

$$= (x_1 - c) + (x_2 - c) + \dots + (x_n - c)$$

$$= (x_1 + x_2 + \dots + x_n) - (c + c + \dots + c)$$

$$= a \sum_{i=1}^{n} x_i - nc$$

$$= R.H.S$$

$$\therefore \sum_{i=1}^{n} (x_i - c) = a \sum_{i=1}^{n} x_i - nc$$
(প্রমাণিত)

(xv)
$$\sum_{i=1}^{k} (ax_i - b)^2 = a^2 \sum_{i=1}^{k} x_i^2 - 2ab \sum_{i=1}^{k} x_i + kb^2$$

প্রমাণঃ মনে করি, কোন চলক x-এর k সংখ্যক মানসমূহ x_1,x_2,\ldots,x_k এবং a ও b দুটি ধ্রুবক।

উচ্চমাধ্যমিক পরিসংখ্যান

(xvi) প্রমাণ কর যে,
$$\sum_{i=1}^k f_i(x_i-c)^2 = \sum_{i=1}^k f_i x_i^2 - 2c \sum_{i=1}^k f_i x_i + Nc^2$$
; যেখানে \mathbf{c} ধ্রুবক এবং $\sum_{i=1}^k f_i = N$

মনে করি, কোন চলক x-এর k সংখ্যক মানসমূহ x_1, x_2, \ldots, x_k যাদের গণসংখ্যা

যথাক্রমে $f_{_{\! 1}}, f_{_{\! 2}}, \ldots f_{_{\! k}}$ যেখানে, $\sum_{i=1}^{\circ} f_{_i} = N$ এবং c একটি ধ্রুবক ।

$$\begin{aligned} &\mathbf{I}_{1}, \mathbf{J}_{2}, \dots, \mathbf{J}_{k} \text{ (વર્ષાભ, } \sum_{i=1}^{J_{i}} f_{i} = \mathbb{N} \text{ (act easily seek for } \mathbf{J}_{1}, \mathbf{J}_{2}, \dots, \mathbf{J}_{k} \end{aligned}$$

$$&\mathbf{L.H.S} = \sum_{i=1}^{k} f_{i}(x_{i}^{2} - 2cx_{i} + c^{2})$$

$$&= \sum_{i=1}^{k} (f_{i}x_{i}^{2} - 2cf_{i}x_{i} + c^{2}f_{i})$$

$$&= (f_{1}x_{1}^{2} - 2cf_{i}x_{1} + c^{2}f_{1}) + (f_{2}x_{2}^{2} - 2cf_{2}x_{2} + c^{2}f_{2}) + \dots + (f_{k}x_{k}^{2} - 2cf_{k}x_{k} + c^{2}f_{k})$$

$$&= (f_{1}x_{1}^{2} + f_{2}x_{2}^{2} + \dots + f_{k}x_{k}^{2}) - 2c(f_{1}x_{1} + f_{2}x_{2} + \dots + f_{k}x_{k}) + c^{2}(f_{1} + f_{2} + \dots + f_{k})$$

$$&= \sum_{i=1}^{k} f_{i}x_{i}^{2} - 2c\sum_{i=1}^{k} f_{i}x_{i} + c^{2}\sum_{i=1}^{k} f_{i}$$

$$&= \sum_{i=1}^{k} f_{i}x_{i}^{2} - 2c\sum_{i=1}^{k} f_{i}x_{i} + Nc^{2}$$

$$&= \mathbf{R.H.S.} \tag{example 2}$$

(xvii) প্রমাণ কর যে,
$$\left(\sum_{i=1}^n x_i\right)^2 = \sum_{i=1}^n x_i^2 + \sum_i \sum_{j} x_i x_i$$
প্রমাণ: মনে করি, কোন চলক x -এর n সংখ্যক মানসমূহ x_1, x_2, \dots, x_n
এখন, $\left(\sum_{i=1}^n x_i\right)^2 = (x_1 + x_2 + \dots + x_n)^2$

$$= (x_1 + x_2 + \dots + x_n)(x_1 + x_2 + \dots + x_n)$$

$$= x_1^2 + x_1 x_2 + \dots + x_1 x_n$$

$$+ x_2 x_1 + x_2^2 + \dots + x_2 x_n$$

$$+ \dots + x_n x_1 + x_n x_2 + \dots + x_n^2$$

$$= (x_1^2 + x_2^2 + \dots + x_n^2) + (x_1 x_2 + \dots + x_1 x_n + x_2 x_1 + \dots + x_n x_1 + x_n x_2 + \dots + x_n x_{n-1})$$

$$= \sum_{i=1}^n x_i^2 + \sum_i \sum_{j=1}^n x_i x_i$$

$$\therefore \left(\sum_{i=1}^n x_i\right)^2 = \sum_{i=1}^n x_i^2 + \sum_i \sum_{j=1}^n x_i x_i$$

$$(প্রমাণিত)$$

দ্বিতীয় অধ্যায়

তথ্য সংগ্রহ, সংক্ষিপ্তকরণ ও উপস্থাপন

DATA COLLECTION, SUMMARISATION & PRESENTATION

পরিসংখ্যান পদ্ধতির প্রথম গুরুত্বপূর্ণ পদক্ষেপ হচ্ছে পরিসংখ্যানিক তথ্য বা উপাত্ত সংগ্রহ করা। বাস্তবিক পক্ষে পরিসংখ্যানীয় বিশ্লেষণের ভিত্তি হলো পরিসংখ্যানিক তথ্য বা উপাত্ত।

অনুসন্ধান ক্ষেত্র হতে সংগৃহীত তথ্য অশোধিত ও অবিন্যন্ত থাকে। এসকল তথ্যের আকার বড় হয় এবং তথ্যে কিছুটা ক্রাটি থাকে। ফলে অশোধিত তথ্যের বৈশিষ্ট্য সম্পর্কে ধারণা করা যায় না এবং এই তথ্য গাণিতিক বিশ্লেষণের উপযোগী নয়। তাই সংগৃহীত অশোধিত তথ্যের ভুল ক্রাটি সংশোধন করে, তাকে সংক্ষিপ্ত আকারে প্রকাশ করার জন্য প্রক্রিয়াকরণ করা হয়। এটি হল তথ্য উপস্থাপন।

এ অধ্যায় পাঠ শেষে শিক্ষার্থীরা—

- তথ্য ও তথ্যের প্রকারভেদ ব্যাখ্যা করতে পারবে ।
- প্রাথমিক তথ্য সংগ্রহের পদ্ধতি বর্ণনা করতে পারবে।
- প্রাথমিক তথ্য সংগ্রহের পদ্ধতিগুলো সুবিধা ও অসুবিধা বর্ণনা করতে পারবে।
- মাধ্যমিক তথ্যের উৎসগুলো ব্যাখ্যা করতে পারবে ।
- মাধ্যমিক তথ্যের গুরুত্ব ও সীমাবদ্ধতা বলতে পারবে।
- প্রাথমিক ও মাধ্যমিক তথ্য একই তথ্য বলতে পারবে।
- তথ্য সংগ্রহের প্রয়োজনীয়তা ও গুরুত্ব বর্ণনা করতে পারবে।
- মাধ্যমিক তথ্যে সংগ্রহে সতর্কতা ব্যাখ্যা করতে পারবে।
- তথ্য উপস্থাপন ও তথ্য উপস্থাপনের উপায়গুলো বর্ণনা করতে পারবে।
- শ্রেণিবদ্ধকরণ ও শ্রেণিবদ্ধকরণের প্রকারভেদ ব্যাখ্যা করতে পারবে।
- তালিকাবদ্ধকরণ ও বিভিন্ন অংশ ব্যাখ্যা করতে পারবে।
- গণসংখ্যা নিবেশন ও প্রকারভেদ বলতে পারবে।
- গণসংখ্যা নিবেশনের গুরুত্ব ও প্রয়োজনীতা ব্যাখ্যা করতে পারবে।
- একটি গণসংখ্যা নিবেশন তৈরির ধাপ বর্ণনা করতে পারবে ।
- তথ্য উপস্থাপনে লেখ ও চিত্রের গুরুত্ব ও প্রয়োজনীয়তা বলতে পারবে।
- চিত্রের মাধ্যমে তথ্য উপস্থাপন বিভিন্ন পদ্ধতির নাম ও বর্ণনা করতে পারবে।
- কান্ত ও পত্র বা শাখা ও পত্রক সমাবেশ ব্যাখ্যা করতে পারবে।
- শাখা ও পত্রক সমাবেশের গুরুত্ব বলতে পারবে।

২.০১ তথ্য ও তথ্যের প্রকারভেদ

Data and Types of Data

তথ্য (Data):

তথ্য হচ্ছে পরিসাংখ্যিক গবেষণার কাঁচামাল। যেকোন গবেষণার কাজে অনুসন্ধান ক্ষেত্র হতে কোন বৈশিষ্ট্য গণনা করে বা পরিমাপ করে যে সংখ্যাত্মক পরিমাপ বা কাঁচামাল সংগ্রহ করা হয় তাকে তথ্য বলে। প্রকৃত পক্ষে তথ্য হলো তথ্য বিশ্বের প্রতিটি এককের পরিবর্তনশীল বৈশিষ্ট্য সম্পর্কিত সংখ্যাসূচক ধারণা। একে উপাত্তও বলা হয়।

উদাহরণ:

কোন জেলার একর প্রতি ধান উৎপাদনের হার নির্ণয়ের জন্য উক্ত জেলার কৃষকের কাছ থেকে উক্ত ধান উৎপাদনের উপর যে সংখ্যাবাচক হিসাব বা পরিমাপ সংগ্রহ করা হয় তাকে তথ্য বলে।

তথ্যের প্রকারভেদ (Classification of Data):

তথ্যকে মূলত: দুইটি উৎস হতে সংগ্রহ করা যায়। তাই উৎসের ভিত্তিতে তথ্যকে দুইভাগে ভাগ করা যায়। যথা—

- ক. প্রাথমিক তথ্য (Primary Data)
- খ. মাধ্যমিক তথ্য (Secondary Data)

নিমে এদের বর্ণনা দেওয়া হলো-

ক. প্রাথমিক তথ্য (Primary Data):

যে তথ্য মৌলিক অনুসন্ধানের মাধ্যমে বা সরাসরি পর্যবেক্ষণের মাধ্যমে মূল উৎস হতে সংগ্রহ করা হয় তাকে প্রাথমিক তথ্য বলে। তথ্য সংগ্রহ করার পর যদি তাতে কোন পরিসাংখ্যিক পদ্ধতি প্রয়োগ করা না হয় তবে তাকে প্রাথমিক তথ্য বলে।

উদাহরণ:

- ১। ক্যামব্রিয়ান কলেজের হলগুলোতে অবস্থানকারী ছাত্রদের আর্থ-সামাজিক অবস্থা জানতে সরাসরি হলে বসবাসরত ছাত্রদের নিকট হতে তাদের আর্থ-সামাজিক অবস্থার বিভিন্ন তথ্য সংগ্রহ করা হলে প্রাপ্ত তথ্যকে প্রাথমিক তথ্য বলা হবে।
- ২। কোন গবেষক রিক্সাচালকদের আর্থ-সামাজিক অবস্থা জানতে চায়। এখন যদি গবেষক নিজে কিংবা তার নির্ধারিত ব্যক্তির মাধ্যমে সরাসরি রিক্সাচালকদের নিকট হতে তথ্য সংগ্রহ করে তবে এরূপ তথ্য প্রাথমিক তথ্য।

খ. মাধ্যমিক তথ্য (Secondary Data):

যে তথ্য পরোক্ষ উৎস হতে অর্থাৎ পূর্বে প্রকাশিত বা সংগৃহীত তথ্য হতে সংগ্রহ করা হয় অথবা কোন প্রকাশনা হতে সংগ্রহ করা হয় তাকে মাধ্যমিক তথ্য বা পরোক্ষ তথ্য বলা হয়।

উচ্চমাধ্যমিক পরিসংখ্যান

উদাহরণ:

- ১। বাংলাদেশের ডায়াবেটিক সমিতি প্রতিবছর তাদের সংগৃহীত প্রাথমিক তথ্য দিয়ে বার্ষিক প্রকাশনা প্রকাশ করে। কোন সংস্থা বা ব্যক্তি যদি এই তথ্য গবেষণার প্রয়োজনে উক্ত প্রকাশনা হতে তথ্য সংগ্রহ করে তবে তা হবে মাধ্যমিক তথ্য।
- ২। বাংলাদেশ পরিসংখ্যার ব্যুরো কৃষি শুমারীর মাধ্যমে কৃষি সংক্রান্ত বিভিন্ন তথ্য সংগ্রহ করে থাকে। যদি কোন গবেষক বা সংস্থা নিজ প্রয়োজনে উক্ত তথ্য ব্যবহার করে তবে ঐ গবেষক বা সংস্থার কাছে ইহা একটি মাধ্যমিক তথ্য।

২.০২ প্রাথমিক তথ্য সংগ্রহের পদ্ধতি

The Methods of Primary Data Collection

প্রাথমিক তথ্য সংগ্রহের পদ্ধতিগুলো হলো:

- (i) সরাসরি ব্যক্তিগত পর্যবেক্ষণ
- (ii) পরোক্ষ অনুসন্ধান
- (iii) গণনাকারীর মাধ্যমে অনুসন্ধান
- (iv) স্থানীয় উৎস
- (v) ডাক মারফত প্রশ্নপত্র সংগ্রহ পদ্ধতি
- (vi) টেলিফোনে সাক্ষাতকার পদ্ধতি।

নিম্নে প্রাথমিক তথ্য সংগ্রহের পদ্ধতিগুলো বর্ণনা করা হলো:

- (i) সরাসরি ব্যক্তিগত পর্যবেক্ষণ: এ পদ্ধতিতে গবেষক বা অনুসদ্ধানকারী ব্যক্তিগতভাবে তথ্য সংগ্রহ করেন। অনুসদ্ধানকারী নিজে কার্যক্ষেত্রে গিয়ে উত্তরদাতার সাথে সাক্ষাৎ করে বা পর্যবেক্ষণ করে তথ্য সংগ্রহ করেন। এতে করে তিনি গবেষণার উদ্দেশ্য বুরিয়ে দিয়ে সঠিক তথ্য সংগ্রহ করতে পারেন।
- (ii) পরোক্ষ অনুসন্ধান: যে সব জটিল ক্ষেত্রে উত্তরদাতা গণনাকারীর তথ্য সংগ্রহ করতে চান বা উত্তরদাতা সঠিক উত্তর দিবেন না বা দিছেন না বলে মনে হয়, সে সব ক্ষেত্রে পরোক্ষ অনুসন্ধানের মাধ্যমে তথ্য সংগ্রহ করা হয়। ঘটনার সহিত জড়িত বা তথ্য সন্ধর্মে সঠিকভাবে অবগত আছেন এমন বা সংখ্লিষ্ট ব্যক্তির ঘনিষ্ঠ পরিচিত কোন ব্যক্তির নিকট থেকে তথ্য সংগ্রহ করা হয়। কোন কোন উত্তরদাতা ব্যক্তিগত দুর্বলতা বা রেষারেষির দরণ অনেক সময় ভুল তথ্য দিতে পারেন বলে তার জবাবের সঠিকতা যাচাইয়ের জন্য পরোক্ষ প্রমান দরকার হয়। অন্যভাবে বলা য়য়য়, এ পদ্ধতিতে অনুসন্ধানকারী উত্তরদাতার নিকট হতে তথ্য সংগ্রহ না করে তার চারপাশের প্রত্যক্ষদর্শীর বর্ণনা থেকে তথ্য সংগ্রহ করেন তাকে পরোক্ষ অনুসন্ধান বলে।
- (iii) গণনাকারীর মাধ্যমে অনুসন্ধান: এ পদ্ধতিতে তথ্য সংগ্রহকারী প্রয়োজনীয় তথ্যের একটি প্রশ্নমালা নিয়ে উত্তরদাতার সাথে সাক্ষাৎ করেন এবং জিজ্ঞাসাবাদের মাধ্যমে উত্তর লিপিবদ্ধ করেন। ব্যাপক অনুসন্ধানের ক্ষেত্রে (যেমন-আদমন্তমারী) এই পদ্ধতিতে তথ্য সংগ্রহ করা হয়। এই পদ্ধতিতে প্রশ্নপত্র বেশ সহজ, সাবলীল, বাস্তবমূখী এবং গণনাকারী প্রশিক্ষণপ্রাপ্ত হওয়া উচিত।

- (iv) স্থানীয় উৎস: এই পদ্ধতিতে স্থানীয় প্রতিনিধি বা সংবাদদাতার মাধ্যমে তথ্য সংগ্রহ করা হয়। বিশেষ করে অঞ্চলভিত্তিক তথ্য যেমন-শস্যের উৎপাদন, বন্যা পরিস্থিতি, অগ্নি ও ঘূর্ণিবাড়ে ক্ষয়ক্ষতির বিবরণ ইত্যাদি ক্ষেত্রে স্থানীয় উৎসের মারফতে তথ্য সংগ্রহ করা যায়।
- (v) ভাক মারফত প্রশ্নপত্র সংগ্রহ পদ্ধৃতি: এই পদ্ধৃতিতে গবেষণার বিষয়বস্তুর উপর এই সুন্দর ও সহজ প্রশ্নপত্র তৈরি করে ডাকযোগে উত্তরদাতার নিকট পাঠানো হয়। উত্তরদাতা প্রশ্নপত্রটি পূরণ করে ফেরত পাঠান। এতে সময় ও খরচ কম হয়। সাধারণত মতামত যাচাই জাতীয় অনুসন্ধানে এ পদ্ধৃতিতে তথ্য সংগ্রহ করা হয়।
- (vi) টেলিফোন সাক্ষাৎকার পদ্ধতি: অনেক সময় জরুরী ভিত্তিতে স্বল্প পরিসরে তথ্য সংগ্রহ করার জন্য টেলিফোন সাক্ষাৎকার পদ্ধতি প্রয়োগ করা হয়। এতে সময় ও খরচ কম লাগে। তবে তথ্য সংগ্রহকারীর কথাবার্তা মার্জিত হওয়া বাঞ্ছনীয়।

২.০৩ প্রাথমিক তথ্য সংগ্রহের পদ্ধতিগুলো সুবিধা ও অসুবিধা

Merits and Demerits of Primary Data Collection.

প্রাথমিক তথ্য মূল অনুসন্ধান ক্ষেত্র অর্থাৎ তথ্যের উৎপত্তি স্থল হতে সংগ্রহ করা হয়। প্রাথমিক তথ্য সংগ্রহের জন্য কিছু পদ্ধতি রয়েছে। এগুলো হলো—

- ক. সরাসরি ব্যক্তিগত পর্যবেক্ষণ;
- খ. পরোক্ষ অনুসন্ধান;
- গ. গণনাকারীর মাধ্যমে অনুসন্ধান;
- ঘ. স্থানীয় উৎস;
- ডাক মারফত প্রশ্নপত্র সংগ্রহ পদ্ধতি;
- চ. টেলিফোনে সাক্ষাতকার পদ্ধতি।

ক. সরাসরি ব্যক্তিগত পর্যবেক্ষণ:

- সুবিধা: (i) তথ্য বেশ সঠিক ও নির্ভরযোগ্য হয়;
 - (ii) ব্যক্তিগতভাবে যোগাযোগের দরুণ অধিক সংখ্যক উত্তর দাতার নিকট হতে তথ্য পাওয়া যায়;
 - (iii) প্রয়োজনে অতিরিক্ত তথ্য সংগ্রহ করা যায়;
 - (iv) তথ্যের গোপনীয়তা রক্ষা করা যায়;
 - (v) ছোট অনুসন্ধান ক্ষেত্রে এটি বেশি উপযোগী।
- অসুবিধা: (i) এটি সময় ও ব্যয় সাপেক;
 - (ii) ব্যাপক অনুসন্ধান ক্ষেত্রে এই পদ্ধতি প্রয়োগ করা যায় না;
 - (iii) তথ্য ব্যক্তিগত পক্ষপাতদুষ্ট হতে পারে;
 - (iv) এটি ঝুঁকিপূর্ণ হতে পারে।

উচ্চমাধ্যমিক পরিসংখ্যান

খ. পরোক্ষ অনুসন্ধানঃ

- সুবিধা: (i) এটি সহজ ও সুস্পষ্ট;
 - (ii) এই পদ্ধতিতে সময়, শ্রম ও অর্থ কিছুটা কম লাগে;
 - (iii) এই পদ্ধতিটি ঝুঁকিহীন;
 - (iv) বৃহৎ তথ্যবিশ্বের ক্ষেত্রে এটি উপযোগী;
 - (v) গুণবাচক তথ্য সংগ্রহে এ পদ্ধতিটি অধিক গ্রহণযোগ্য।
- অসুবিধা: (i) প্রাপ্ত তথ্য সবসময় নির্ভরশীল নাও হতে পারে;
 - (ii) ব্যক্তি স্বার্থে তথ্য প্রদানকারী অনেক সময় ভুল তথ্য প্রদান করতে পারে;
 - (iii) অনুপযুক্ত কর্মী এ অনুসন্ধানকে বিফলে নিতে পারে।

গ. গণনাকারীর মাধ্যমে অনুসন্ধান:

- সুবিধাঃ (i) এই পদ্ধতিতে সঠিক তথ্য সংগ্রহ করা যায়;
 - (ii) ব্যাপক অনুসন্ধানের ক্ষেত্রে এই পদ্ধতি খুব সুবিধাজনক;
 - (iii) এ তথ্য সংগ্রহ করতে সময় কম লাগে;
 - (iv) তথ্য সংগ্রহকারী প্রশ্নের জটিলতা ও অনুসন্ধানের উদ্দেশ্য ব্যাখ্যা-বিশ্লেষণ করতে পারেন এবং উত্তরদাতাকে বুঝাতে পারেন।
- অসুবিধাঃ (i) এটি অত্যন্ত ব্যয়বহুল পদ্ধতি;
 - (ii) গণনাকারী দক্ষ না হলে ভুল তথ্য সংগৃহীত হতে পারে;
 - (iii) জনশক্তি অপেক্ষাকৃত বেশি লাগে।

ঘ. স্থানীয় উৎসঃ

- সুবিধা: (i) সময় ও অর্থ বেশি লাগে না;
 - (ii) সার্বক্ষণিক ও তাৎক্ষণিক তথ্য পাওয়া যায়;
 - (iii) তেমন জনশক্তির প্রয়োজন হয় না।
- অসুবিধা: (i) পরিবেশিত তথ্য পক্ষপাতদুষ্ট হতে পারে;
 - (ii) এই পদ্ধতিতে অনেক সময় অনুমানের উপর নির্ভর করে তথ্য সংগ্রহ করা হয় বলে ঘটনার পুরোপুরি হিসাব পাওয়া যায় না।

৬. ডাক মারফত প্রশ্নপত্র সংগ্রহ পদ্ধতি:

- সুবিধা: (i) এই পদ্ধতিতে কোন গণনাকারী নিয়োগ করা হয় না;
 - (ii) এতে অর্থ ও সময় কম লাগে;
 - (iii) তথ্য সঠিক ও নির্ভুল হয়;
 - (iv) তথ্যের গোপনীয়তা রক্ষা করা যায়।
- অসুবিধা: (i) অশিক্ষিত জনগোষ্ঠীতে এ পদ্ধতি প্রয়োগ করা যায় না;
 - (ii) অনেকে ভুল তথ্য প্রদান করতে পারে;
 - (iii) অনেকে প্রশ্নপত্র অসম্পূর্ণভাবে পাঠায়;
 - (iv) পরিবেশিত তথ্য পক্ষপাতদুষ্ট হতে পারে।

টেলিফোনে সাক্ষাতকার পদ্ধতি:

- সুবিধা: (i) এতে সময় ও খরচ কম লাগে;
 - (ii) অল্প সময় ও সংক্ষেপে অল্প তথ্য সংগ্রহ করতে এই পদ্ধতি বেশি সুবিধাজনক;
 - (iii) ছোট আকারের অনুসন্ধানক্ষেত্রে এই পদ্ধতি খুবই উপযোগী।
- অসুবিধাঃ (i) উত্তরদাতার টেলিফোন না থাকলে কিংবা সে উপস্থিত না থাকলে এ পদ্ধতিতে তথ্য সংগ্রহ করা যায় না;
 - (ii) এ পদ্ধতিতে সংগৃহীত তথ্য খুব ছোট ও সংক্ষিপ্ত হয়।

২.০৪ মাধ্যমিক তথ্যের উৎস

Source of Secondary Data

মাধ্যমিক তথ্য প্রধানত: দুটি উৎস হতে সংগ্রহ করা হয়। যথা-

- ক. প্রকাশিত উৎস;
- খ. অপ্রকাশিত উৎস।
- ক) প্রকাশিত উৎস: প্রতিষ্ঠানের ব্যবস্থাপনা ও পরিচালনার জন্য অনেক সময় মৌলিক দলিল পত্র বা প্রতিবেদন পরবর্তী সময়ে মাধ্যমিক তথ্যের উৎস হিসেবে পরিগণিত হয়। মাধ্যমিক তথ্য নিশ্লিখিত তিন ধরণের প্রকাশিত প্রতিবেদন হতে পাওয়া যায়।
 - * আর্থিক প্রতিবেদন:
 - * পরিচালনা সংক্রান্ত প্রতিবেদন;
 - * বিশেষ প্রতিবেদন।

বিভিন্ন প্রতিবেদন ও মাধ্যমিক তথ্যের উৎস নিচে আলোচনা করা হলো—

- (i) আন্তর্জাতিক প্রতিষ্ঠান: বিভিন্ন আন্তর্জাতিক প্রতিষ্ঠান যেমন: জাতিসংঘ, আন্তর্জাতিক অর্থ তহবিল (IMF), বিশ্ব ব্যাংক, আন্তর্জাতিক শ্রম সংস্থা (ILO), খাদ্য ও কৃষি সংস্থা (FAO), বিশ্ব স্বাস্থ্য সংস্থা (WHO) ইত্যাদি প্রতিষ্ঠানের বার্ষিক রিপোর্ট ও প্রাতিষ্ঠানিক প্রতিবেদন থেকে মাধ্যমিক তথ্য সংগ্রহ করা হয়।
- (ii) সরকারী প্রতিষ্ঠান: বাংলাদেশ পে-কমিশন, পাবলিক সার্ভিস কমিশন, অর্থ দফতর, পরিসংখ্যান ব্যুরো, শিক্ষা, বাণিজ্য, কৃষি, শ্রুম, অর্থ ইত্যাদি মন্ত্রণালয়ের বার্ষিক রিপোর্ট থেকে মাধ্যমিক তথ্য সংগ্রহ করা যায়।
- (iii) আধাসরকারী প্রতিষ্ঠান: আধাসরকারী অফিস যেমন: জেলা পরিষদ, বাংলাদেশ বিমান, মিউনিসিপ্যাল কর্পোরেশন, সাধারণ বীমা, ব্যাংক, চা বোর্ড, মৎস্য উন্নয়ন বোর্ড, জুট মিল্স কর্পোরেশন ইত্যাদি প্রতিষ্ঠানের প্রতিবেদন থেকে মাধ্যমিক তথ্য সংগ্রহ করা যায়।
- (iv) গবেষণা প্রতিষ্ঠান: বিভিন্ন গবেষণা প্রতিষ্ঠান যেমন: বি আই ডি এস (BIDS), আই এস আর টি (ISRT), বি এ আর আই (BARI), বিশ্ববিদ্যালয় মঞ্জুরী কমিশন ইত্যাদি প্রতিষ্ঠানের প্রতিবেদন থেকেও মাধ্যমিক তথ্য সংগ্রহ করা যায়।

- অর্থলিপ্ন প্রতিষ্ঠান: বিভিন্ন অর্থলিপ্নি প্রতিষ্ঠান যেমন ব্যাংক, বীমা, ইক একচেঞ্জ, চেমার অব
 কমার্স এন্ড ইভান্তিজ, বিভিন্ন ব্যবসায়িক সমিতি প্রভৃতি প্রতিষ্ঠানের জার্নাল পেকে সংশ্লিষ্ট
 বিষয়ের তথ্য সংগ্রহ করা যায়।
- (vi) বিভিন্ন পত্র পত্রিকাঃ পত্র পত্রিকার মাধ্যমে বিভিন্ন প্রকার তথ্য যেমন চাকরির চাহিদা, বৈদেশিক মুদ্রা বিনিময় হার, শেয়ার বাজার তথ্য, খেলাধুলা ইত্যাদি প্রকাশিত হয় যা থেকে মাধ্যমিক তথ্য সংগ্রহ করা যায়।

(খ) অপ্রকাশিত উৎসঃ

প্রতিটি অফিস বা প্রতিষ্ঠান তাদের দৈনন্দিন কাজে বিভিন্ন তথ্য সংগ্রহ ও সংরক্ষণ করে থাকে। কিন্তু এদের সব তথ্যই প্রতিবেদন আকারে প্রকাশ করে না। সেগুলিকে অপ্রকাশিত তথ্য হিসেবে ধরা হয়। অনেক ব্যবসায়ী প্রতিষ্ঠানেরই দৈনন্দিন আয়-ব্যয়ের হিসাব রাখা হয় অথচ তা প্রকাশ করা হয় না। অনেকের ব্যক্তিগত গবেষণা, পণ্ডিত ব্যক্তিদের রচনা ও সংগ্রহ ইত্যাদি অনেক তথ্য প্রকাশ করা হয় না। এসব তথ্যকে অপ্রকাশিত তথ্য বলা হয় এবং প্রয়োজনবোধে এসব উৎস থেকে তথ্য সংগ্রহ করা যায়।

২.০৫ মাধ্যমিক তথ্যের গুরুত্ব ও সীমাবদ্ধতা

The Importance and Limitations of Secondary Data.

মাধ্যমিক তথ্যের শুরুত্ব: কিছু কিছু সীমাবদ্ধতা থাকা সত্ত্বেও পরিসাংখ্যিক গবেষণার ক্ষেত্রে মাধ্যমিক তথ্যের শুরুত্ব অপরিসীম। কারণ এ তথ্য অনেক সুশৃঙ্খল ও সুবিন্যন্ত আকারে পাওয়া যায়। প্রাথমিক তথ্যকে সংঘবদ্ধকরণ, শ্রেণীকরণ ও সম্পাদনার মাধ্যমে নির্ভুল আকারে সংরক্ষণ করা হয় এবং সেই সংরক্ষিত তথ্য থেকে মাধ্যমিক তথ্য সংগ্রহ করা হয় বলে এ তথ্য বেশ নির্ভরযোগ্য হয়। অধিকাংশ মাধ্যমিক তথ্য এমন যে এতে ইত্যেপূর্বে কোন না কোন পরিসংখ্যানিক পদ্ধতি প্রয়োগ করা হয়ে থাকে ফলে এ তথ্য বেশ নির্ভরযোগ্য ও গ্রহণযোগ্য হয়। মাধ্যমিক তথ্য সম্পাদনা ও বিশ্লেষণে অনেক সুবিধা।

মাধ্যমিক তথ্যের সীমাবদ্ধতাঃ

মাধ্যমিক তথ্য অনেকটা সহজে সংগ্রহ করা গেলেও এর কিছু কিছু সীমাবদ্ধতা আছে। যেমন:

- সাদৃশ্যতা: অনেক সময় ভিন্ন ভিন্ন উৎস থেকে প্রাপ্ত একই তথ্যের মধ্যে বেশ গরমিল পাওয়া যায়।
- নির্ভরযোগ্যতার অভাব: ক্ষেত্রবিশেষে অনেক প্রতিষ্ঠান দায়সারা গোছের তথ্য সংগ্রহ করে থাকে। এসব তথ্যের নির্ভরযোগ্যতা অনেক কম।
- (iii) পর্যাপ্ততার অভাব: অনেক সময় মাধ্যমিক তথ্য সংগ্রহে ইচ্ছুক ব্যক্তি বা প্রতিষ্ঠানের সঠিক চাহিদা অনুযায়ী প্রাথমিক তথ্য পাওয়া যায় না। কারণ উভয় প্রকার তথ্য সংগ্রহকারীদের উদ্দেশ্যের মধ্যে মিল পাকলেও কোন কোন অংশে অমিল থাকার সম্ভাবনা থাকে।
- (iv) পক্ষপাতদুষ্ট: এ তথ্য অনেক সময় পক্ষপাতদুষ্ট হতে পারে।
- (v) পদ্ধতি: অনেক সময় উপযুক্ত পদ্ধতিতে তথ্য সংগ্রহ করা হয় না ।

২.০৬ প্রাথমিক ও মাধ্যমিক তথ্য একই তথ্য

Primary and Secondary Data are Basically Same

কোন গবেষণার জন্য সরাসরি তথ্যের উৎপত্তিস্থল থেকে যে তথ্য সংগ্রহ করা হয় তাকে প্রাথমিক তথ্য বলা হয়। গবেষক বা গবেষণাকারী প্রতিষ্ঠান এ তথ্য বিশ্লেষণ করে প্রাপ্ত ফলাফলের উপর সিদ্ধান্ত গ্রহণ করেন। অতঃপর এই বিশ্লেষিত তথ্য ফাইলবন্দী করে রাখেন বা পুন্তক বা প্রকাশনা আকারে প্রকাশ করেন। আবার কখনও তথ্য মূল অবস্থায় রেখে দেয়া হয়। অন্য কোন ব্যক্তি বা প্রতিষ্ঠান নিজস্ব গবেষণার কাজে ঐ তথ্য ব্যবহার করলে সে তথ্যকে মাধ্যমিক তথ্য বলা হয়। তাই প্রাথমিক তথ্য ও মাধ্যমিক তথ্যের মধ্যে বৈশিষ্ট্যগত কোন পার্থক্য নাই। কেবল এদের ব্যবহারগত পার্থক্য দেখা যায়।

যেমন: ধরা যাক ভূমি কর আদায়কারী তহশীল অফিস ভূমি রাজস্ব আদায়ের জন্য জমির পরিমাণ ও মালিক সম্পর্কিত তথ্য রেকর্ড করেছেন। এ তথ্য প্রাথমিক তথ্য। পাঁচ এককের অধিক জমির মালিকদের শতকরা হার কত তা ভূমি মন্ত্রণালয় জানতে চায়। এ লক্ষ্যে যদি ভূমি মন্ত্রণালয় তহশিল অফিস হতে তথ্য সংগ্রহ করেন, তবে সে তথ্য হবে ভূমি মন্ত্রণালয়ের কাছে মাধ্যমিক তথ্য। সুতরাং দেখা যাচেছে যে, মাধ্যমিক তথ্য ও প্রাথমিক তথ্য কার্যত একই তথ্য।

২.০৭ তথ্য সংগ্রহের প্রয়োজনীয়তা ও গুরুত্ব

Necessity and Importance of Collecting Data

তথ্য সংগ্রহের প্রয়োজনীয়তা ও গুরুত্ব:

যেকোন বিষয়ে গবেষণার পূর্বশর্ত হলো তথ্য। তাই তথ্য সংগ্রহের প্রয়োজনীয়তা অনস্বীকার্য। পরিসাংখ্যিক গবেষণার কাজে পরিকল্পনা বান্তবায়নের প্রথম এবং গুরুত্বপূর্ণ পদক্ষেপ হচ্ছে তথ্য সংগ্রহ করা। তাই যে কোন পরিসংখ্যানিক অনুসন্ধানে সিদ্ধান্ত গ্রহণকারীকে অনুসন্ধান বিষয়ের উপর তথ্য সংগ্রহ করতে হয়। সংগৃহীত তথ্য বিশ্লেষণ করে অনুসন্ধানের বিষয়ের উপর ব্যাখ্যা প্রদান ও সিদ্ধান্ত গ্রহণ করা হয়। সংগৃহীত তথ্যের নির্ভূলতা ও উৎকর্ষতার উপরই সিদ্ধান্তের সঠিকতা নির্ভ্র করে।

অতএব পরিসংখ্যান নীতি অনুসরণ করেই তথ্য সংগ্রহ করা উচিত। সঠিক ফলাফল ও মূল্যায়নের জন্য সমসাময়িক তথ্য সংগ্রহ করা উচিত।

২.০৮ মাধ্যমিক তথ্যে সংগ্রহে সতর্কতা

Precautions of Secondary Data

কোন সংস্থা বা প্রতিষ্ঠানের সংগৃহীত তথ্য হতে যে তথ্য ব্যবহার করা হয়, তাকে মাধ্যমিক তথ্য বলে। মাধ্যমিক তথ্যের অনেক সুবিধা থাকা সত্ত্বেও এর কিছু সীমাবদ্ধতা রয়েছে। এই তথ্য ব্যবহার করতে নিমুরূপ বিষয়গুলোর উপর সজাগ দৃষ্টি রাখা উচিত।

অনুসন্ধানের উদ্দেশ্য: উদ্দেশ্যের সাথে সংগতি রেখে মাধ্যমিক তথ্য সংগ্রহ করতে হয়।
 অনুসন্ধানকারীকে লক্ষ্য রাখতে হবে প্রাথমিক তথ্য সংগ্রহকারীর উদ্দেশ্য ও তার উদ্দেশ্য একই কিনা।

উচ্চমাধ্যমিক পরিসংখ্যান

- অনুসন্ধান ক্ষেত্র: মাধ্যমিক তথ্য ব্যবহারকারীর অনুসন্ধান ক্ষেত্র এবং প্রাথমিক তথ্য সংগ্রহকারীর অনুসন্ধান ক্ষেত্র এক হলে শুধুমাত্র ঐ তথ্য ব্যবহার করা যাবে।
- (iii) তথ্যেও কার্যকারিতা: প্রাথমিক তথ্য ও মাধ্যমিক তথ্যের মধ্যে সময়ের ব্যবধান খুব বেশি হলে তথ্যমানে ব্যাপক পরিবর্তন ঘটতে পারে। তাই এ ধরণের প্রাথমিক তথ্য হতে মাধ্যমিক তথ্য সংগ্রহ করা উচিত নয়।
- তথ্যের একক: প্রাথমিক তথ্য যে এককে সংগ্রহ করা হয়েছে মাধ্যমিক তথ্যের সেই একক ব্যবহার করতে হবে। নতুবা তথ্যের ব্যবহার ঠিক হবে না।
- (v) তথ্যের বিশ্বস্ততা: মাধ্যমিক তথ্য সংগ্রহ করার পূর্বে তথ্যের বিশ্বস্ততা যাচাই করতে হবে যে, তথ্য সঠিক পদ্ধতিতে, উপযুক্ত, দক্ষ ও প্রশিক্ষণপ্রাপ্ত কর্মী দ্বারা সংগ্রহ করা হয়েছে কিনা। তা না জানলে মাধ্যমিক তথ্য ব্যবহারে সিদ্ধান্ত ভুল হতে পারে।

উপরোক্ত আলোচনা হতে স্পষ্ট বুঝা যায় যে, মাধ্যমিক তথ্য নির্বিচারে ব্যবহার করা উচিত নয়। মাধ্যমিক তথ্য ব্যবহারের পূর্বে উল্লেখিত বিষয়গুলোর উপর সতর্ক দৃষ্টি রাখা একান্ত প্রয়োজন।

২.০৯ তথ্য উপস্থাপন ও তথ্য উপস্থাপনের উপায়গুলো

Presentation of Data and Different Methods of Presentation of Data

তথ্য উপস্থাপন:

কোন অনুসন্ধানে সংগৃহীত অশোধিত তথ্য প্রক্রিয়াকরনের মাধ্যমে সংক্ষিপ্ত, আকর্ষণীয়, সহজবোধ্য ও বিশ্লেষণের উপযোগী করে প্রকাশ করাকে তথ্য উপস্থাপন বলে।

প্রধানতঃ দুটি উপায়ে তথ্যকে উপস্থাপন করা যায় যেমনঃ

- ক. পরিসংখ্যানিক সারণী;
- খ. পরিসংখ্যানিক **লে**খ।

ক) পরিসংখ্যানিক সারণী:

কোন নির্দিষ্ট বৈশিষ্ট্যের প্রেক্ষিতে সমজাতীয় এককগুলিকে একটি শ্রেণীতে লিখে এবং এভাবে পুরো তথ্যকে কতকগুলি শ্রেণীতে সাজিয়ে লিখে যে সারণী পাওয়া যায় তাকে পরিসংখ্যানিক সারণী বলে। তিন ধরনের সারণীর সাহায্যে তথ্যকে উপস্থাপন করা যায়। যেমন:

- i. শ্রেণীবদ্ধকরণ;
- ii. তালিকাবদ্ধকরণ;
- iii. গণসংখ্যা নিবেশন।

খ) পরিসংখ্যানিক লেখ:

পরিসংখ্যানিক উপাস্তকে স্থান, কাল, পরিমাণ ইত্যাদি বৈশিষ্ট্যে অনুসারে বিভিন্ন ধরণের চিত্রের সাহায্যে উপস্থাপন করা যায়। এই সব চিত্রগুলিকে পরিসংখ্যানিক লেখ বলে। পরিসংখ্যানিক তথ্যকে উপস্থাপনের জন্য নিম্নলিখিত লেখগুলি ব্যবহার করা হয়ে থাকে।

- i) আয়তলেখ ii) গণসংখ্যা বহুভুজ
- iii) গণসংখ্যা রেখা iv) অজিভ রেখা।

২.১০ শ্রেণিবদ্ধকরণ ও শ্রেণিবদ্ধকরণের প্রকারভেদ

Difine Classification and Types of Classification

শ্রেণীবন্ধকরণঃ যে পদ্ধতির সাহায্যে কোন অনুসন্ধানের তথ্যসমূহ বৈশিষ্ট্য অনুযায়ী কতকগুলো শ্রেণী বা দলে সাজানো হয় তাকে শ্রেণীবদ্ধকরণ বলে।

উদাহরণ: একজন ছাত্রকে এইচ.এস.সি পরীক্ষায় প্রাপ্ত নম্বর অনুযায়ী প্রথম, দ্বিতীয়, তৃতীয় অথবা অকৃতকার্য হিসাবে শ্রেণীবদ্ধকরণ করা যেতে পারে।

শ্রেণীবদ্ধকরণ চার প্রকার। যেমন:

- ক. ভৌগলিক শ্রেণিবদ্ধকরণ
- খ. সময়ভিত্তিক শ্রেণিবদ্ধকরণ
- গ. গুণবাচক শ্রেণিবদ্ধকরণ
- পরিমাণবাচক শ্রেণিবদ্ধকরণ।
- ক. ভৌগলিক শ্রেণীবদ্ধকরণ: যদি কোন তথ্যসারির, এককগুলোকে ভৌগলিক অবস্থান বা এলাকাভিত্তিক পার্থক্য অনুসারে শ্রেণীবদ্ধকরণ করা হয় তবে সেই শ্রেণীবদ্ধকরণকে ভৌগলিক শ্রেণীবদ্ধকরণ বলে। এই পদ্ধতিতে তথ্যসারিকে বিভাগ, জেলা, উপজেলা, ইউনিয়ন, গ্রাম ইত্যাদি এককে বিভক্ত করে শ্রেণীবদ্ধকরণ করা হয়।

উদাহরণ: নিচে বাংলাদেশের বিভাগভিত্তিক জনসংখ্যার পরিমাণ দেখানো হলো:

বিভাগের নাম	জনসংখ্যা (হাজারে) ৩৩৯৪০	
ঢাকা		
রাজশাহী	২৭৫০০	
খুলনা	১৩২৪৩	
চট্টগ্রাম	২১৮৬৯	
বরিশাল	৭৭৫৭	
সিলেট	9389	

(খ) সময়ভিত্তিক শ্রেণীবদ্ধকরণ:

সময়ের পরিবর্তনের সাথে সাথে কোন ঘটনা বা বিষয়ে কতটুকু পরিবর্তন হয় তার ভিত্তিতে তথ্যমালাকে শ্রেণীবদ্ধকরণ করার পদ্ধতিকে সময়ভিত্তিক শ্রেণীবদ্ধকরণ বলে। সময়ের বিভিন্ন পরিসরে যেমন: সেকেন্ড, মিনিট, ঘন্টা, মাস ইত্যাদি পরিসরে চলকের পরিমাপ প্রদর্শন করার জন্য সেকেন্ড, মিনিট, ঘন্টা, মাস, দিন ও বৎসর ইত্যাদি সময়কাল অনুসারে শ্রেণীবদ্ধকরণ করা হয়।

উদাহরণ: নিম্নে ১৯৯২ সন হতে ১৯৯৬ সন পর্যন্ত বাংলাদেশে ধান চাষে ব্যবহৃত জমির পরিমাণ (একরে) দেখানো হলো:

সন	ধান চাষে ব্যবহৃত জমি (একর)
১৯৯২	৭৯ ৭৮
১৯৯৩	boob
১৯৯৪	৮১২৬
১ ৯৫৫	৮৪৭২
১৯৯৬	৮৭৮৮

(গ) গুণবাচক শ্রেণীবদ্ধকরণ:

সাধারণত গুণবাচক তথ্যের ক্ষেত্রে এই ধরনের শ্রেণীকরণ করা হয়। কোন তথ্য সারির এককগুলোকে গুণবাচক বৈশিষ্ট্য যেমন-শিক্ষা, ধর্ম, কর্ম, বৈবাহিক অবস্থা ইত্যাদির ভিত্তিতে শ্রেণীবদ্ধকরণকে গুণবাচক শ্রেণীবদ্ধকরণ বলা হয়।

উদাহরণ: নিম্নে ক্যামব্রিয়ান কলেজের একটি শ্রেণীকক্ষের পরিসংখ্যান বিভাগের ৩০জন শিক্ষার্থীর ধর্মের শ্রেণীবিন্যাস দেখানো হলো:

ধর্ম	শিক্ষার্থীর সংখ্যা
ইসলাম	20
হিন্দু	৩
খ্রিষ্টান	2
বৌদ্ধ	2
মোট	9 0

(ঘ) পরিমাণবাচক শ্রেণীবদ্ধকরণ: কোন নির্দিষ্ট বৈশিষ্ট্যের প্রেক্ষিতে তথ্যসারির এককগুলোকে সংখ্যায় প্রকাশ করলে এককগুলোর মধ্যে পরিমাণগত পার্থক্য দেখা যায়। এই ধরণের পার্থক্যের ভিত্তিতে তথ্যমালাকে শ্রেণীবদ্ধকরণ করাকে পরিমাণবাচক শ্রেণীবদ্ধকরণ বলে। আয় ব্যয়, আমদানি-রপ্তানী, দৈর্ঘ্য, ওজন, উচ্চতা ইত্যাদি বৈশিষ্ট্যের প্রেক্ষিতে তথ্যসারির এককগুলোর মধ্যে পরিমাণবাচক পার্থক্য পরিলক্ষিত হয়। একটি ক্যামবিয়ান ভিজ্ঞিল প্রকাশনা

উদাহরণ: নিম্নে বাংলাদেশের বয়সভিত্তিক জনসংখ্যার শতকরা হার দেখানো হলো:

বয়স গ্ৰুপ	জনসংখ্যা (শতকরা হার)
১০ এর কম	২৭
30-50	২২
২০-৩০	١ ٩
೨೦-8೦	\$8
80-00	৯
৫০-৬০	৬
৬০ এর উর্ধে	¢

২.১১ তালিকাবদ্ধকরণ ও তার বিভিন্ন অংশ

Tabulation And Different Parts Of Table.

তালিকাবদ্ধকরণঃ সংগৃহীত তথ্যাবলীকে বিভিন্ন বৈশিষ্ট্য অনুযায়ী নিয়মক্রমে সারি ও কলামে সাজিয়ে উপস্থাপন করার প্রণালীকে সারণীবদ্ধকরণ বা তালিকাবদ্ধকরণ বলে।

একটি তালিকায় নিমুলিখিত অংশগুলি থাকা আবশ্যকঃ

- ১. তালিকা নম্বর ২. শিরোনাম ৩. সারি শিরোনাম ৪. সারি বর্ণনা
- ৫. কলাম শিরোনাম ৬. তালিকার বিষয়বস্তু ৭. পাদটীকা
- ৮. উৎস টীকা

নিচে একটি সারণির নমুনা দেওয়া হলো:

		C .	
1	10	CT < 201	নম্বর
•	1 01	1 -1 4-1	14.

২। শিরোনাম	
৩। সারি শিরোনাম	৫। কলাম শিরোনাম
৪। সারি বর্ণনা	৬। তালিকার বিষয়বস্তু

৭। পাদটীকা	
------------	--

৮। উৎস টীকা -----

নিচে অংশগুলির বিবরণ দেওয়া হলো:

- তালিকা নম্বর: প্রত্যেকটি তালিকার একটি নম্বর থাকা আবশ্যক। যদি কোন তালিকায় একাধিক 3) সারি বা কলাম থাকে তখন প্রতিটি সারি বা কলামের পথক নম্বর থাকা উচিত যেন তুলনা ও বিশ্লেষণের কাজে সুবিধা হয় এবং সহজে তত্ত্ব খুঁজে পাওয়া যায়।
- শিরোনাম: প্রতিটি তালিকা বা সারণীর একটি সুস্পষ্ট ও যথোচিত শিরোনাম থাকা উচিত যেন 2) শিরোনাম দেখেই তালিকার বিষয়বস্তু সম্বন্ধে কিছুটা অবগত হওয়া যায়।

- সারি শিরোনাম: তালিকায় প্রতিটি সারির একটি নির্দিষ্ট শিরোনাম থাকা আবশ্যক। ইহাতে সারির অন্তর্ভুক্ত বিষয়বস্তুর সংক্ষিপ্ত বিবরণ দিয়ে থাকে। সারি শিরোনাম তালিকার বামপার্শ্বের প্রথম কলামে লেখা হয়।
- 8) সারি বর্ণনা: তথ্যসারির বিভিন্ন অংশে বিরাজমান তথ্যের গুরুত্বের ভিত্তিতে যে কয়টি অংশে বা শ্রেণীতে বিভক্ত করা হয় তাদেরকে সারি বর্ণনা বলে। এ অংশটি সারণীর একেবারে বামদিকে এবং শিরোনামের নিচের দিকে থাকে।
- ৫) কলাম শিরোনাম: তালিকার বিভিন্ন কলামের অম্ভর্ভুক্ত তথ্যাবলীর বিষয়বস্তুর পরিচিতি ও বর্ণনা দেয়ার জন্য প্রতিটি কলামের একটি সঠিক শিরোনাম থাকা আবশ্যক। কোন কলামে কোন ধরনের তথ্য আছে তা সেই কলামের শিরোনাম দেখেই বুঝা যাবে। তালিকায় উপ-কলাম ব্যবহার করা হলে তারও শিরোনাম দিতে হবে।
- তালিকার বিষয়বন্তঃ সংগৃহীত তথ্যবলীকে তালিকার বিষয়বন্ত অংশে লিপিবদ্ধ করা হয়। তথ্যকে
 সঠিক যুক্তি সহকারে সুন্দর ও সুস্পষ্টভাবে এই অংশে উপস্থাপন করা হয়।
- পাদটীকা: তালিকার বিষয়বস্তু বা তথ্যের কোন অংশের সুস্পষ্ট ব্যাখ্যা দেবার প্রয়োজন হলে
 তালিকার নিচে সংক্ষেপে বিশেষ দ্রষ্টব্য বা Footnote আকারে লেখা হয়।
- b) উৎস টীকা: এ অংশে তথ্যের উৎস সম্বন্ধে অবহিত করা হয়। ইহা খুব প্রয়োজনীয অংশ। ইহা পাঠক-পাঠিকাদের মূল তথ্য অনুসন্ধানে সহায়তা করে।

২.১২ গণসংখ্যা নিবেশন ও তার প্রকারভেদ

Frequencey Distribution and Types of Freequency Distribution.

উত্তর: গণসংখ্যা নিবেশন: কোন তথ্য সারিকে কতগুলি ক্ষুদ্র ক্ষুদ্র অংশে বিভক্ত করে অংশগুলিকে তথ্য সমূহের অবস্থান নির্ণয় করার জন্য প্রথম ট্যালি চিহ্ন ও পরে গণসংখ্যার মাধ্যমে উপস্থাপন করে যে সারণী পাওয়া যায় তাকে গণসংখ্যা নিবেশন বলে। একটি প্রাথমিক গণসংখ্যা নিবেশনে শ্রেণীব্যাপ্তি, ট্যালি ও গণসংখ্যা শিরোনামে তিনটি কলাম থাকে। তবে একটি পূর্ণান্স গণসংখ্যা নিবেশন শ্রেণীব্যাপ্তি, শ্রেণী মধ্যবিন্দু, ট্যালী, গণসংখ্যা ও যোজিত গণসংখ্যা শিরোনামে পাঁচটি কলাম থাকে।

গণসংখ্যা নিবেশন দুই প্রকারের হয়ে থাকে। যথা-

- i) বিচ্ছিন্ন গণসংখ্যা নিবেশন (Discrete Frequency Distribution)
- ii) অবিচ্ছিন্ন গণসংখ্যা নিবেশন (Continuous Frequency Distribution)
- i. বিচ্ছিন্ন গণসংখ্যা নিবেশন: কোন তথ্য সারির প্রত্যেকটি সংখ্যা ও তার গণসংখ্যা পাশাপাশি সাজিয়ে লিখে যে সারণী পাওয়া যায় তাকে বিচ্ছিন্ন গণসংখ্যা নিবেশন বলে। কেবল বিচ্ছিন্ন চলককে বিচ্ছিন্ন গণসংখ্যা নিবেশনের সাহায্য উপস্থাপন করা হয়ে থাকে। তথ্য সারিতে তথ্যের সংখ্যা কম হলে বিরত নিবেশন বেশ উপযোগী।

নিচে একটি বিচ্ছিন্ন গণসংখ্যা নিবেশনের উদাহরণ দেওয়া হল:

সংখ্যা	গণসংখ্যা
৩	>@
8	২৩
৬	৩৬
٩	20

ii. অবিচ্ছিন্ন গণসংখ্যা নিবেশন:

কোন তথ্যসারির পরিসরকে কতকগুলি ভিন্ন ভিন্ন শ্রেণীতে বিভক্ত করে এবং তার গণসংখ্যা পাশাপাশি সাজিয়ে লিখে যে সারণী পাওয়া যায় তাকে অবিচ্ছিন্ন গণসংখ্যা নিবেশন বলে। বিচ্ছিন্ন ও অবিচ্ছিন্ন উভয় ধরনের চলককেই অবিচ্ছিন্ন গণসংখ্যা নিবেশনের সাহায্য উপস্থাপন করা হয়ে থাকে।

নিচে একটি অবিচ্ছিন্ন গণসংখ্যা নিবেশনের উদাহরণ দেওয়া হল:

শ্ৰেণিসীমা	গণসংখ্যা
২০-৩০	¢
৩০-৪০	20
80-60	২৬
৫০-৬০	\$0

২.১৩ গণসংখ্যা নিবেশনের গুরুত্ব ও প্রয়োজনীতা

Importance and Necessity of Frequency Distribution পরিসংখ্যান শাস্ত্রে বিভিন্ন ধরণের তত্ত্বীয় বিশ্লেষণে এবং ব্যবহারিক ক্ষেত্রে যে সকল কাজে গণসংখ্যা নিবেশন গুরুত্বপূর্ণ ভূমিকা পালন করে তা নিম্নে উপস্থাপন করা হলো:

- i) তথ্যকে সংক্ষিপ্ত, সহজবোধ্য ও বিজ্ঞান সম্মত উপায়ে উপস্থাপন করে গণসংখ্যা নিবেশন।
- ii) তথ্যকে লেখে উপস্থাপন করার জন্য অবশ্যই তথ্যকে গণসংখ্যা নিবেশনে উপস্থাপন করতে হবে।
- iii) গণসংখ্যা নিবেশন আকারে উপস্থাপিত তথ্য হতে বিভিন্ন পরিসাংখ্যিক পরিমাপ। যেমন-কেন্দ্রীয় মান, বিস্তার, পরিঘাত, বঙ্কিমতা, সূঁচালতা ইত্যাদি নির্ণয় করা সহজ।
- iv) বিভিন্ন সম্ভাবনা বিন্যাসকে গণসংখ্যা নিবেশণের মাধ্যমেই উপস্থাপন করা হয়।
- গণসংখ্যা নিবেশনের মাধ্যমে অংকিত গণসংখ্যা রেখার সাহায্য তথ্যের আকৃতি ও প্রকৃতি সম্পর্কে ধারণা পাওয়া যায়।
- vi) গণসংখ্যা নিবেশন তথ্যের অন্তনির্হিত ঝোঁক বা প্রবণতা বুঝতে সাহায্য করে।
 উক্তমাধামিক পরিসখ্যোন

২.১৪ গণসংখ্যা নিবেশন তৈরির ধাপ

Construction of Frequency Distribution

বিচ্ছিন্ন গণসংখ্যা নিবেষণ তৈরির ধাপ:

তথ্যের ক্রমবিন্যাস: সংগৃহীত তথ্যসমূহকে মানের ভিত্তিতে পুনরাবৃত্তি ছাড়া উর্ধ্বক্রম অনুসারে প্রথম কলামে উপস্থাপন করা হয়।

ট্যালি চিহ্ন: অতঃপর দ্বিতীয় কলামে তথ্যসারির যে মানটি যতবার আছে বা ঘটেছে, সে তথ্য বরাবর ট্যালি চিহ্নের সাহায্যে দেখানো হয়।

গণসংখ্যাঃ এখন প্রতিটি তথ্যমানের সাথে সংশ্লিষ্ট ট্যালি চিহ্ন গণনা করে তথ্যের গণসংখ্যা হিসেবে তৃতীয় কলামে নিজ নিজ তথ্যমানের বিপরীতে লেখা হয়।

উদাহরণ: নিম্নে জাতীয় বিশ্ববিদ্যালয়ের অধীনে কোন কলেজের 20 জন শিক্ষকের পরিবারের সদস্য সংখ্যার তথ্য দেয়া আছে। একটি বিচ্ছিন্ন গণসংখ্যা সারণী তৈরি কর।

7, 4, 8, 5, 4, 6, 2, 8, 7, 3, 10, 6, 11, 8, 6, 5, 2, 3, 5, 4.

সমাধান: প্রদত্ত তথ্যে সর্বনিমু মান = 2 এবং সর্বোচ্চ মান = 11.

একটি বিচ্ছিন্ন গণসংখ্যার নিবেশনের সারণী

তথ্য	छे ऽानि	গণসংখ্যা
2	II	2
3	II	2
4	111	3
5	III	3
6	Ш	3
7	II	2
8	Ш	3
10	1	1
11	1	1
মোট		20

অবিচ্ছিন্ন গণসংখ্যা নিবেশন তৈরির ধাপ:

গণসংখ্যা বিন্যাস তৈরীর সুনির্দিষ্ট কোন নিয়ম নেই। পরিসংখ্যান গবেষকগণ তাদের প্রয়োজনে বিভিন্ন সময়ে বিভিন্নভাবে এই গণসংখ্যা বিন্যাস তৈরি করে থাকেন। গণসংখ্যা বিন্যাস তৈরীর সচরাচর ব্যবহৃত ধাপগুলো নিম্নে আলোচনা করা হলো:

- পরিসর;
- ২) শ্রেণী সংখ্যা নির্ণয়;
- ৩) শ্রেণী ব্যাপ্তি নির্ণয়;
- 8) বিভিন্ন শ্রেণীর সীমা নির্ণয়;
- গণসংখ্যা ও ট্যালি মার্ক।

পরিসর নির্ণয়: কোন উপান্তের (Data) সর্বোচ্চ ও সর্বনিম্ন মানের পার্থক্যকে পরিসর বলে। পরিসরের সাথে শ্রেণী ব্যাপ্তির আকার নির্ণয় করা হয়। কোন তথ্য সারির সর্বোচ্চমান x_H এবং সর্বনিম্ন মান x_L হয় তবে পরিসর $R=x_H-x_L$

শ্রেণী সংখ্যা নির্ণয়:

গণসংখ্যা বিন্যাসে যে কয়টি শ্রেণী থাকে তাকে শ্রেণী সংখ্যা বলে। ইহা সাধারণত তথ্যের আকার ও উপাত্তের পরিসরের উপর নির্ভর করে। পরিসংখ্যানবিদগণের মতে শ্রেণী সংখ্যা ৫টি কম বা ২৫টির বেশী হুওয়া উচিত নয়।

আবার, H. A. Sturges শ্রেণী সংখ্যা নির্ণয়ের জন্য নিমুলিখিত সুত্র প্রদান করেন।

$$K = 1 + 3.322 log_{10} N$$

এখানে, N = সমগ্রকের একক সংখ্যা

K = শ্রেণী সংখ্যা

Log₁₀ = 10 ভিত্তিক লগারিদম ।

শ্রেণী ব্যাপ্তি নির্ণয়:

শ্রেণী ব্যাপ্তি বলতে কোন শ্রেণীর অন্তর্ভুক্ত সর্বনিম্ম মান ও সর্বোচ্চ মানের পার্থক্যকে বুঝায়। শ্রেণীর উচ্চ সীমা হতে নিম্মুসীমা মানের মধ্যে ড্যাস চিহ্ন দিয়ে একটি শ্রেণী প্রকাশ করা হয়। শ্রেণী ব্যাপ্তি যতদূর সম্ভব সমান রাখা উচিত। যদি কোন তথ্য সারির পরিসর R হয় এবং তাকে K সংখ্যক শ্রেণীতে ভাগ করা হয়, তবে শ্রেণী ব্যাপ্তি C.I হবে।

$$C.I = \frac{R}{K} = \frac{$$
পরিসর $}{$ শ্রেণীর সংখ্যা

বিভিন্ন শ্রেণীর সীমা নির্ণয়:

শ্রেণীসীমা এমনভাবে নির্ণয় করতে হবে যেন শ্রেণীগুলো পারস্পরিকভাবে একটি হতে অন্যটি ভিন্ন হয়। শ্রেণীসীমা নির্ণয় করার সময় শ্রেণী মধ্যমান এর ব্যাপারটি মনে রাখা বাঞ্চ্নীয়। গণসংখ্যা বিন্যাস প্রস্তুত করার সময় শ্রেণীসীমা নির্ধারণে সাধারণত দুটি পদ্ধতি ব্যবহার করা হয়। যথা:

- ক) বহিৰ্ভুক্ত পদ্ধতি;
- খ) অন্তর্ভুক্ত পদ্ধতি।
- ক) বহির্ভুক্ত পদ্ধতি: এই পদ্বতিতে কোন শ্রেণীর উর্ধ্বসীমা পরবর্তী শ্রেণীর নিম্নসীমা হিসাবে নির্ধারণ করা হয়। এতে প্রথম শ্রেণীর উর্ধ্বসীমাকে ঐ শ্রেণীর বহির্ভুক্ত ধরে পরবর্তী শ্রেণীর অন্তর্ভুক্ত করা হয়। যেমন:

উচ্চসীমা
೨೦
80
¢0
৬০

এখানে ৩০ দ্বিতীয় শ্রেণীর অন্তর্ভুক্ত এবং ৪০ তৃতীয় শ্রেণীর অন্তর্ভুক্ত।

খ) অন্তর্ভুক্ত পদ্ধতি: এ পদ্বতিতে কোন শ্রেণীর উচ্চসীমা নির্দেশক সংখ্যাটিকে ঐ শ্রেণীভুক্ত করা হয় এবং উক্ত উচ্চ সীমার পরবর্তী সংখ্যা শ্রেণীর নিম্নসীমা নির্দেশ করে। উদাহরণ:

নিমুসীমা	উচ্চসীমা	П
২০	২৯	
೨೦	৩৯	
80	88	

এখানে ২০ এবং ২৯ সংখ্যা দুইটি প্রথম শ্রেণীর ৩০ এবং ৩৯ সংখ্যা দুইটি দ্বিতীয় শ্রেণীতে পড়েছে।

৫) গণসংখ্যা ও ট্যালীমার্ক:

তথ্যসারির প্রতিটি মান যে শ্রেণীর অর্দ্ধভূক্ত সে শ্রেণী বরাবর পরবর্তী কলামে ঐ মানের জন্য একটি ট্যালি (I) চিহ্ন দেওয়া হয়। কোন শ্রেণীর বিপরীতে চারটি ট্যালি (IIII) চিহ্নের পর পঞ্চম ট্যালি চিহ্নটি (IIII) দিতে হয়। তারপর প্রতিটি শ্রেণীর সাথে সংশ্লিষ্ট ট্যালি চিহ্ন গণনা করে শ্রেণী গণসংখ্যা হিসাবে পরবর্তী কলামে নিজ নিজ শ্রেণীর বিপরীতে লেখা হয়।

২.১৫ প্রয়োজনীয় সংজ্ঞা

Some Necessary Definitions

শ্রেণী ব্যান্তি: কোন শ্রেণীর উচ্চসীমা ও নিমুসীমার ব্যবধান বা পার্থক্য হল ঐ শ্রেণীর শ্রেণী ব্যবধান। অর্থাৎ শ্রেণী ব্যবধান = শ্রেণীর উচ্চসীমা-শ্রেণীর নিমুসীমা। ২৪–২৬ শ্রেণীর শ্রেণী ব্যবধান = ২৬ – ২৪ = ২।

শ্রেণী মধ্যবিন্দু: কোন শ্রেণীর নিমুসীমা ও উচ্চসীমার দুইটির যোগফলকে ২ দ্বারা ভাগ করলে যে মান পাওয়া যায় তাকে ঐ শ্রেণীর মধ্যবিন্দু বলে। নিচের ছকে শ্রেণী ব্যাপ্তি ও শ্রেণী মধ্যবিন্দু দেখানো হল:

শ্ৰেণী সীমা	শ্ৰেণী মধ্যবিন্দু
२० – ७०	(২০+৩০)/২=২৫
9 0 – 80	(७०+8०)/২=७৫
80 - ¢0	(80+৫0)/≥=8৫

শ্রেণী ব্যবধান: কোন শ্রেণীর দৈর্ঘ্য অর্থাৎ দুই সীমার বিস্তারকে শ্রেণী ব্যবধান বলে। তবে পর পর দুইটি শ্রেণীর নিম্নসীমার পার্থক্যকে শ্রেণী ব্যবধান হিসাবে ধরা হয়।

নিম্নে নিবেশন দুটি লক্ষ্য করা যায়:

নিবে*	ন "ক"	নিবেশন "খ"		
শ্ৰেণী	গণসংখ্যা	শ্ৰেণী	গণসংখ্যা	
২০-২৯	¢	২০-৩০	Č	
৩০-৩৯	٩	७ ०-8०	٩	
৪০-৪৯	20	80-60	20	

শ্রেণী সীমা: প্রত্যেক শ্রেণীর সীমা নির্ধারণী ছোট ও বড় মান দু'টিকে ঐ শ্রেণীর সীমা বলে। শ্রেণীর সীমা নির্ধারণী ছোট সংখ্যাটিকে শ্রেণী নিমুসীমা এবং বড় সংখ্যাটিকে শ্রেণীর উচ্চসীমা বলে। যেমন: ২০-৩০ শ্রেণীর নিমুসীমা ২০ এবং উচ্চ সীমা ৩০।

শ্রেণীর সীমানা: অর্ন্তভুক্ত শ্রেণী ব্যাপ্তিতে একটি শ্রেণীর নিমুসীমা এবং তারপরের শ্রেণীর উচ্চসীমা দুটি ক্রমিক সংখ্যা থাকে। নিমুসীমা ও উচ্চসীমা দুটি যদি পূর্ণ সংখ্যা হয় তবে নিমুসীমা থেকে ০.৫ বিয়োগ ও উচ্চসীমার সাথে ০.৫ যোগ করলে বহির্ভুক্ত শ্রেণী ব্যাপ্তি পাওয়া যায়। এভাবে শ্রেণীর সীমা নির্ধারণী যে দুটি নতুন সংখ্যা পাওয়া যায় তাদেরকে শ্রেণী সীমানা বলে। শ্রেণীসীমা দুটি পূর্ণ সংখ্যা না হলে ০.০৫ বা ০.০০৫ যোগ বা বিয়োগ করতে হবে।

নিচে উদাহরণ দেয়া হল:

শ্ৰেণী সীমা	শ্ৰেণী সীমান
২০-২৯	\$5.6-25.64
৩০-৩৯	২৯.৫-৩৯.৫
80-85	৩৯.৫-৪৯.৫

গণসংখ্যাঃ কোন শ্রেণীতে যে কয়টি সংখ্যা থাকে তাকে ঐ শ্রেণীর গণসংখ্যা বা ঘটনসংখ্যা বলে। যেমন উপরোক্ত 'ক' নিবেশনে ২০-২৯ শ্রেণীর গণসংখ্যা ৫।

যোজিত গণসংখ্যা কোন সংখ্যা নিবেশনের শ্রেণী গণসংখ্যা সমূহের পর্যায়ক্রমিক যোগফলকে যোজিত গণসংখ্যা বলে। গণসংখ্যা নিবেশনের কোন নির্দিষ্ট শ্রেণীর গণসংখ্যার সাথে উহার পূর্ববর্তী সকল শ্রেণীর গণসংখ্যা যোগফলকে ঐ শ্রেণীর ক্রমযোজিত গণসংখ্যা পাওয়া যায়। নিম্মে সারণির মাধ্যমে উপস্থাপন করা হলো:

শ্ৰেণী	গণসংখ্যা	উর্ধ্বমুখী ক্রমযোজিত গণসংখ্যা	নিমুমুখী ক্রমযোজিত গণসংখ্যা
১০–২০	٩	٩	30 + b + d = 50
২০–৩०	ъ	۹ + ۴ = ۶۵	50 + p = 2p
೨ ೦–80	20	9 + 6 + 30 = 56	>0

গণসংখ্যা ঘনতুঃ কোন শ্রেণী গণসংখ্যাকে ঐ শ্রেণীর শ্রেণী ব্যবধান দ্বারা ভাগ করে যে রাশি পাওয়া যায় তাকে ঐ শ্রেণীর গণসংখ্যা ঘনতু বলে। অর্থাৎ গণসংখ্যা ঘনতু = শ্রেণির গণসংখ্যা শ্রেণি ব্যবধান

উদাহরণ:

শ্রেণিসীমা	গণসংখ্যা	শ্ৰেণি ব্যবধান	গণসংখ্যা ঘনত্ব
২০–৩০	25	70	> 2/>0
೨ ೦–8&	20	26	২৫/১৫
8¢-5¢	20	20	২০/২০

আপেক্ষিক গণসংখ্যা:

কোন একটি গণসংখ্যা নিবেশনের যে কোন শ্রেণিতে বিরাজমান গণসংখ্যা মোট গণসংখ্যার যত অংশ তাকে ঐ শ্রেণির আপেক্ষিক গণসংখ্যা বলে।

আপেক্ষিক গণসংখ্যা = <u>একটি নির্দিষ্ট শ্রেণির গণসংখ্যা</u> মোট গণসংখ্যা

শতকরা গণসংখ্যা:

কোন একটি গণসংখ্যা নিবেশনের যে কোন শ্রেণির গণসংখ্যাকে মোট গণসংখ্যার সাপেক্ষে শতকরায় প্রকাশ করা হলে তাকে শতকরা গণসংখ্যা বলে।

অসম শ্রেণিসীমা: কোন তথ্য বিন্যাসের তালিকাভিত্তিক উপস্থাপনার ক্ষেত্রে সব শ্রেণির সীমা যদি সমান না হয়, তবে সেই শ্রেণি ব্যাপ্তিকে অসম শ্রেণিসীমা বলে।

যেমন: 15-20, 20-20, 40-100, 100-200 ইত্যাদি অসম শ্রেণি সীমার উদাহরণ। একটি ক্যামব্রিয়ান ডিজিটাল প্রকাশনা

খোলা শ্রেণিসীমা: যদি কোন শ্রেণির উচ্চসীমা বা নিমুসীমার কোন একটি বা উভয়টি সুস্পষ্টভাবে নির্দেশিত না থাকে তবে প্রান্ত খোলা শ্রেণি ব্যাপ্তি বলে। শ্রেণিকৃত গণসংখ্যার ক্ষেত্রে প্রান্ত খোলা শ্রেণি থাকলে তা সাধারণত সর্বপ্রথম বা সর্বশেষ না উভয় শ্রেণিতে হয়ে থাকে।

উদাহরণ: কোন এলাকার 500 জন লোকের দৈনিক আয়ের গণসংখ্যা নিবেশন দেয়া হল:

দৈনিক আয় (টাকায়)	লোকসংখ্যা
100 এর কম	50
100 - 150	100
150 - 200	200
200 - 250	100
250 এর বেশি	50
মোট	500

প্রকৃত শ্রেণিসীমা (Class Boundary):

সাধারণত বিচ্ছিন্ন চলকের গণসংখ্যা নিবেশন অন্তর্ভুক্ত পদ্ধতিতে শ্রেণিকরণ করে তৈরি করা হয়। বান্তবে অবিচ্ছিন্ন চলকের তথ্যকেও অন্তর্ভুক্ত পদ্ধতিতে শ্রেণীকরণ করে গণসংখ্যা নিবেশন তৈরি করা হয়। এক্ষেত্রে শ্রেণিগুলো পৃথক পৃথক বা পরস্পর বর্জনশীল থাকে। যার ফলে কোন শ্রেণির উচ্চসীমা ও তার পরবর্তী শ্রেণির নিম্মসীমা সমান হয় না। অর্থাৎ একটি শ্রেণির উচ্চসীমার সাথে তার পরবর্তী শ্রেণির নিম্মসীমার একটি নির্দিষ্ট পরিমাণ ব্যবধান থাকে। এই ব্যবধানের অর্ধেক প্রত্যেক শ্রেণির নিম্মসীমা হতে বিয়োগ এবং উচ্চ সীমার সাথে যোগ করে প্রকৃত শ্রেণির নিম্মসীমা ও উচ্চসীমা পাওয়া যায়। অর্থাৎ যে কোন একটি শ্রেণির.

প্রকৃত নিমুসীমা = উক্ত শ্রেণীর নিমুসীমা $-\frac{1}{2}\,\mathrm{d}$

প্রকৃত উচ্চসীমা = উক্ত শ্রেণির উচ্চসীমা $+\frac{1}{2}\,\mathrm{d}$

এখানে, d= কোন শ্রেণির উচ্চ সীমা ও তার পরবর্তী শ্রেণির নিম্নসীমার পার্থক্য। উদাহরণ: নিম্নের সারণীতে শ্রেণিসীমাগুলোর প্রকৃত শ্রেণিসীমা নির্ণয় করে দেখানো হল:

শ্ৰেণিসীমা	প্ৰকৃত শ্ৰেণিসীমা
10 – 19	9.5 – 19.5
20 – 29	19.5 – 29.5
30 – 39	29.5–39.5
40 – 49	39.5 – 49.5
50 - 59	49.5 - 59.5

২.১৬ তথ্য উপস্থাপনে লেখ ও চিত্রের গুরুত্ব ও প্রয়োজনীয়তা

Importance and necessity of Graphical and Diagramatical Presentation of Data.

তথ্য উপস্থাপনে লেখ ও চিত্রের গুরুত্ব ও প্রয়োজনীয়তাঃ

- i) লেখ ও চিত্র মনে দাগ কাটে ও স্বল্প শিক্ষিত লোককে ধারনা দেওয়া যায়।
- াi) ব্যবসায়ী ও প্রশাসকগণের নিকট লেখ ও চিত্র খুবই জনপ্রিয় পদ্ধতি। আজকাল বিভিন্ন প্রদর্শনী
 ও প্রকাশনায় এর প্রয়োগ দেখা য়য়।
- iii) লেখ ও চিত্র জটিল তথ্য বিশ্লেষণে সহায়তা করে।
- iv) লেখের সাহায্যে সংগৃহীত তথ্যের বিভিন্ন বৈশিষ্ট্য যেমন-মধ্যমা, প্রচুরক, চতুর্থক প্রভৃতি নির্ণয় করা যায়।
- v) অনেক সময় লেখ ও চিত্রের সাহায্যে দুই বা ততোধিক চলকের মধ্যে সম্পর্ক তুলনা করা যায়।
- vi) লেখ ও চিত্রের মধ্যে অল্প সময়ে তথ্য সন্দের ভাল ধারণা করা যায়। ফলে সময় ও অর্থের
 অপচয় কম হয়।
- vii) লেখ ও চিত্র সংগৃহীত তথ্যের ভুল ক্রণ্টি উদঘাটনে সাহায্য করে।
- viii) লেখ ও চিত্র হতে সিদ্ধান্ত গ্রহণ করা সহজ হয়।

২.১৭ লেখের মাধ্যমে তথ্য উপস্থাপনের বিভিন্ন পদ্ধতির নাম ও বর্ণনা

Description of Different Methods of Graphical Presentation.

উত্তর: পরিসংখ্যানে তথ্যের প্রকৃতি ও উদ্দেশ্যের উপর ভিত্তি করে তথ্য উপস্থাপনে সাধারণত নিম্নলিখিত লেখগুলো ব্যবহার করা হয়ে থাকে:

ক. আয়তলেখ খ. গণসংখ্যা বহুভুজ গ. গণসংখ্যা রেখা ঘ. অজিভ রেখা।

ক. নিম্নে আয়তলেখের বর্ণনা দেওয়া হলো:

আয়তলেখা কোন গণসংখ্যা নিবেশনের প্রতিটি শ্রেণীর গণসংখ্যাকে যে লেখের মাধ্যমে এক একটি উলম্ব আয়তন্দেত্র দ্বারা প্রদর্শন করা হয় তাকে আয়তলেখ বলে। এই পদ্ধতিতে গণসংখ্যা নিবেশন শ্রেণীকৃত করার প্রয়োজন পড়ে। এতে আনুভূমিক অক্ষ (ম অক্ষ) বরাবর শ্রেণীব্যাপ্তি (Class interval) এবং উলম্ব অক্ষ (ম অক্ষ) বরাবর তাদের পারস্পরিক গণসংখ্যা উপস্থাপন করে পাশাপাশি যে আয়তক্ষেত্র গুলোর সেট পাওরা যায় তাদের আয়তলেখ বলে। শ্রেণীগুলো পরস্পর অবিচ্ছিন্ন থাকার কারণে আয়তক্ষেত্র গুলোর মধ্যে কোন ফাঁক থাকে না। তাই বহির্ভুক্ত পদ্ধতির গণসংখ্যা নিবেশনকে সরাসরি লেখের মাধ্যমে উপস্থাপন করা যায় কিন্তু অন্তর্ভুক্ত পদ্ধতির গণসংখ্যা নিবেশনের ক্ষেত্রে প্রথমে প্রকৃত শ্রেণীসীমা নির্ণয় করে আয়তলেখ অংকন করা হয়। কোন গণসংখ্যা নিবেশনের শ্রেণী ব্যবধান সমান হলে প্রতিটি আয়তক্ষেত্রের উচ্চতা সংশ্লিষ্ট শ্রেণীর গণসংখ্যার সমানুপাতিক হয়।

- ব্যবহার: ক. আয়তলেখের সাহায্যে অবিচ্ছিন্ন গণসংখ্যা নিবেশনকে উপস্থাপন করা হয়।
 - খ. আয়তলেখ হতে গণসংখ্যা বহুভূজ, গণসংখ্যা রেখা ইত্যাদি অংকন করা যায়।
 - গ. আয়তলেখের মাধ্যমে প্রচুরক নির্ণয় করা যায়।

উদাহরণঃ নিম্নের গণসংখ্যা নিবেশনকে আয়তলেখের সাহায্যে উপস্থাপন কর -

শ্রেণী ব্যাপ্তি	50-60	60-70	70-80	80-90	90-100
গণসংখ্যা	6	18	30	14	12

খ) গণসংখ্যা বহুভূজ:

গণসংখ্যা বহুভূজ অংকনের ক্ষেত্রে এটা ধরে নেয়া হয় যে প্রতিটি শ্রেণীর গণসংখ্যা শ্রেণী ব্যাপ্তির মাঝামাঝি অবস্থান করে এবং শ্রেণী মধ্যবিন্দু শ্রেণীর প্রতিনিধিত্ব করে। আয়তলেখের দণুগুলোর শীর্ষদেশের মধ্যবিন্দুগুলো সরলরেখা দ্বারা যোগ করেও গণসংখ্যা বহুভূজ পাওয়া যায়। অবশ্য আয়তলেখের সাহায়্য ছাড়াই আমরা গণসংখ্যা বহুভূজ অদ্ধন করতে পারি। এজন্য শ্রেণীব্যাপ্তি সহ শ্রেণীগুলোকে x অক্ষ বরাবর এবং তাদের গণসংখ্যা প্রতিটি শ্রেণীর মধ্যবিন্দুর উপরে y অক্ষ বরাবর স্থাপন করতে হবে। তারপর এই বিন্দুগুলো যোগ করলে গণসংখ্যা বহুভূজ পাওয়া যাবে। দুই বা ততোধিক গণসংখ্যা নিবেশনের তুলনা করার জন্য এটি একটি উৎকৃষ্ট পদ্ধতি।

ব্যবহার:

- ক) দুই বা ততোধিক গণসংখ্যা নিবেশনকে একই সাথে গণসংখ্যা বহুভূজের মাধ্যমে তুলনা করা যায়।
- খ) ইহার সাহায্যে গণসংখ্যা নিবেশনের আকার ও বিভিন্ন বৈশিষ্ট্য সম্বন্ধে ধারণা পাওয়া যায়। উদাহরণ: নিমে কোন শেণীর ছাত্রদের উচ্চতার গণসংখ্যা নিবেশন দেয়া হলো:

উচ্চতা (ইঞ্চিতে)	44–46	47–49	50-52	53–55	56–58	59-61	62–64	65–67
ছাত্রদের সংখ্যা	4	6	18	30	24	15	12	7

এ গণসংখ্যা নিবেশন হতে গণসংখ্যা বহুভুজ অংকন কর।

সমাধানঃ গণসংখ্যা বহুভুজ অংকন করার জন্য প্রয়োজনীয় তালিকাঃ

শ্ৰেণী	শ্রেণীর মধ্যবিন্দু	গণসংখ্যা
44–46	45	4
47–49	48	6
50-52	51	18
53-55	54	30
6-58	57	24
59–61	60	15
62-64	63	12
65-67	66	7

নিম্নে প্রদত্ত গণসংখ্যা নিবেশনকে গণসংখ্যা বহুভুজের মাধ্যমে উপস্থাপন করা হলো:

গ) গণসংখ্যা রেখা (Frequency Curve):

গণসংখ্যা রেখা হল গণসংখ্যা বহুভূজের একটি পরিবর্তিত রূপ। যে মস্ন বক্ররেখার সাহায্যে গণসংখ্যা নিবেশনকে উপস্থাপন করা হয় তাকে গণসংখ্যা রেখা বলে। গণসংখ্যা নিবেশনের শ্রেণীর মধ্যবিন্দুগুলিকে x অক্ষ বরাবর এবং তাদের গণসংখ্যা প্রতিটি শ্রেণীর মধ্যবিন্দুর উপর y অক্ষ বরাবর স্থাপন করতে হবে। অতঃপর এই বিন্দুগুলো পর্যায়ক্তমে মুক্ত হত্তে যোগ করে যে রেখা পাওয়া যায় তাকে গণসংখ্যা রেখা বলে।

ব্যবহার:

- ক) দুই বা ততোধিক গণসংখ্যা নিবেশনকে তুলনা করতে গণসংখ্যা রেখা গুরুতৃপূর্ণ ভূমিকা পালন করে।
- খ) ইহার সাহায্যে কোন গণসংখ্যা নিবেশনের গড়, মধ্যমা ও প্রচুরকের অবস্থান সম্পকে মোটামুটি ধারণা পাওয়া যায়।
- গ) ইহার সাহায্যে গণসংখ্যা বিন্যাসকে তাত্ত্বিক সম্ভাবনা বিন্যাসের সাথে মিলকরণ করা হয়। উদাহরণ: নিম্নলিখিত গণসংখ্যা সারণী হতে একটি গণসংখ্যা নিবেশন তৈরি কর:

শ্রেণী	50-70	70-90	90-110	110-130	130-150	150-170
গণসংখ্যা	26	35	42	50	38	19

সমাধান: প্রদত্ত গণসংখ্যা সারণী নিমুরূপ:

শ্ৰেণী	শ্রেণীর মধ্যবিন্দু	গণসংখ্যা
50-70	60	26
70-90	80	35
90-110	100	42
110-130	120	50
130-150	140	38
150-170	160	19

উচ্চমাধ্যমিক পরিসংখ্যান

ঘ) অজিভ রেখা: ক্রমযোজিত গণসংখ্যা নিবেশন যে বক্ররেখার সাহায্যে উপস্থাপন করা হয় তাকে অজিভ রেখা বলে। অজিভরেখা অংকন করতে হলে প্রথমে গণসংখ্যা নিবেশন হতে ক্রমযোজিত গণসংখ্যা নির্ণয় করতে হবে। এই সকল ক্রমযোজিত উহাদের নিজ নিজ শ্রেণী ব্যাপ্তির উচ্চসীমার বিপরীতে স্থাপন করা হয়। এরূপে প্রাপ্ত বিন্দুসমূহ পর্যায়ক্রমে একটি রেখা দ্বারা মুক্তহন্তে যোগ করা হয়। এই অংকিত রেখাকে অজিভ রেখা বলে। ব্যবহার:

- ক) ইহার সাহায্যে মধ্যমা, চতুর্থক, দশমক ও শতমক ইত্যাদি নির্ণয় করা যায়।
- খ) দুই বা ততোধিক গণসংখ্যা নিবেশন তুলনা করতে অজিভ রেখা গুরুত্বপূর্ণ ভূমিকা পালন করে।
- গ) ইহার সাহায্যে কোন গণসংখ্যা নিবেশনের ক্রমযোজিত গণসংখ্যাকে উপস্থাপন করা যায়।
 উদাহরণ: নিমে গণসংখ্যা নিবেশনকে অজিত রেখার মাধ্যমে উপস্থাপন কর।

শ্রেণী ব্যাপ্তি	50-60	60-70	70-80	80-90	90-100
গণসংখ্যা	6	18	30	14	12

সমাধান: অজিভ রেখা নির্ণয়ের গণনা তালিকা:

শ্ৰেণী ব্যপ্তি	গণসংখ্যা	ক্রমযোজিত গণসংখ্যা
50-60	6	6
60-70	18	24
70-80	30	54
80-90	14	68
90-100	12	80
মোট	N=80	

২.১৮ চিত্রের মাধ্যমে তথ্য উপস্থাপন বিভিন্ন পদ্ধতির নাম ও বর্ণনা

Description of Different Methods of Diagrams.

তথ্য উপস্থাপনে বিভিন্ন প্রকার চিত্র বিভিন্ন ক্ষেত্রে ব্যবহৃত হয়ে তাকে। তার মধ্যে নিম্নলিখিত কয়েকটি প্রধান:

- ক) দণ্ডচিত্র (Bar Diagram)
- খ) বৃত্তাকার চিত্র (Pie Diagram)
- ক) দপ্ততি (Bar Diagram): সময়ভিত্তিক বা স্থানভিত্তিক তথ্যকে দপ্ততিত্রের মাধ্যমে উপস্থাপন করা যায়। এতে চলকের মানগুলিকে কতকগুলি সমান প্রস্থের মাধ্যমে প্রকাশ করা হয়। দপ্তগুলির দৈঘ্য চলকের মানের সমানুপাতিক হয়। বিন্তারের কোন গুরুত্ব নেই বলে এর বিন্তার ইচছামূলকভাবে নেয়া হয়। দুই বা ততোধিক বৈশিষ্ট্যের তুলনা করতে দপ্ততিত্র সুবিধাজনক ফল দেয়।

দণ্ডচিত্র প্রধানত দুই প্রকার:

- ক) সরল দণ্ডচিত্র
- খ) যৌগিক দণ্ডচিত্র

উদাহরণ: নিচের ছকে চা রফতানির হিসাব দেয়া হলো। তথ্যকে দণ্ডচিত্রের সাহায্যে উপস্থাপন কর-

সাল	চা রফতানি
1972	50
1973	60
1974	71
1975	75
1976	80

সমাধান: x অক্ষে সাল ও y অক্ষে উৎপাদন বসিয়ে দণ্ডচিত্র আঁকা হল:

খ) বৃত্তাকার চিত্র (Pie Diagram): কোন তথ্যসারির বিভিন্ন উপাদানের আনুপাতিক হারে একটি বৃত্তকে কয়েকটি অংশে বিভক্ত করে তথ্যকে উপস্থাপন করার জন্য যে চিত্র ব্যবহার করা হয় তাকে বৃত্তাকার চিত্র বলে। এতে বিভিন্ন উপাদানের তুলনা করা সুবিধা হয়। বৃত্তের কেন্দ্রে মোটের কোণের পরিমাণ 360°। তথ্যের বিভিন্ন উপাদানের মোট পরিমাপের সাথে কোন নির্দিষ্ট উপাদানের পরিমাণের অনুপাতে বৃত্তে কতকগুলি অংশে পাওয়া যায়। এই অংশে নীচে প্রদত্ত সূত্রের সাহায্যে নির্ধারণ করা হয়।

কোন নির্দিষ্ট উপাদানের পরিমাণ f এবং মোট উপাদানের পরিমাণ N হলে উক্ত উপাদানের পরিমাণের জন্য বৃত্তের কেন্দ্রের নির্ধারিত কোণের পরিমাণ হবে— $\theta = \frac{f}{M} \times 360^{\circ}$

- অল্প সংখ্যক উপাদানকে বা তথ্যকে বৃত্তাকার চিত্রের মাধ্যমে সঠিকভাবে দেখানো যায়; কোন তথ্য সমষ্টির বিভিন্ন অংশকে অভি সুন্দর ও নিখুঁতভাবে দেখানো যায়।

অসুবিধাঃ

- তথ্য সংখ্যা বা উপাদান সংখ্যা বেশি হলে বৃত্তাকার চিত্র দেখানো সম্ভব নয়।
- ইহা অংকন পদ্ধতি বেশ জটিল।

উদাহরণ: নিচের তথ্যকে ব্যাকার চিত্রের মাধ্যমে উপস্থাপন কর-

খরচের খাত	খরচের পরিমাণ
খাদ্য	40
বস্ত্র	10
বাড়ীভাড়া	9
জ্বালানী	7
বিবিধ	6

সমাধানঃ বৃত্তাকার চিত্র অংকনের তালিকা নিম্নে তৈরি করা হলো। বৃত্তের কেন্দ্রের কোণের পরিমাণ $heta=(rac{f}{N} imes360)^\circ$

খরচের খাত	খরচের পরিমাণ f	θ
খাদ্য	40	200°
বস্ত্র	10	50°
বাড়ীভাড়া	9	45°
क्षानानी	7	35°
বিবিধ	6	30°
	N=72	360°

২.১৯ কাভ ও পত্র বা শাখা ও পত্রক সমাবেশ

Stem and Leaf Display

শাখা ও পত্রক সমাবেশ গণসংখ্যা নিবেশনের আরেকটি তালিকা ভিত্তিক পদ্ধতি। এই পদ্ধতিতে আমরা তথ্য নিবেশনকে সহজে এবং অল্প আয়াসে প্রকাশ করতে পারি। পদ্ধতিটি বৃক্ষের শাখা এবং শাখান্বিত পত্রকের সদৃশ। এটি প্রথম উদ্ভাবন করেন টুকি (Tukey) ১৯৭৭ সালে।

পত্রক (Leaf): শাখা ও পত্রক সমাবেশে পত্রক (বা পাতা) হলো তথ্যসারির যে কোন সংখ্যামানের শেষ অংক। যেমন-27 যদি তথ্যসারির একটি মান হয় তবে 7 হবে পত্রক।

শাখা (Stem): শাখা ও পত্রক সমাবেশে শাখা হলো তথ্যসারির যে কোন সংখ্যামানের প্রথম এক বা একাধিক অংক। যেমন-27 তথ্যসারির একটি মান হলে 2 শাখা হবে।

শাখা ও পত্রক সমাবেশে শাখার মানগুলো উলমভাবে (Vertically) একটি আরেকটির নিচে বসে। আর প্রত্যেক শাখার সাথে সামঞ্জস্যপূর্ণ পত্রকগুলো ঐ শাখার পাশে একের পর এক আনুভূমিকভাবে একটি সারিতে বসবে। এক্ষেত্রে পত্রকের মানগুলো ছোট থেকে বড় ক্রমে সাজানো হয়।

২.২০ শাখা ও পত্রক সমাবেশের গুরুত্ব

Importance of Stem and Leaf Display

- (i) গণসংখ্যা নিবেশনের গঠন জানতে শাখা ও পত্রক বিন্যাস আবশ্যক।
- (ii) তথ্যসারির পরিসর নির্ণয় করতে এটি কার্যকর ভূমিকা রাখে।
- (iii) তথ্যসারির মানগুলোর কেন্দ্রীয় প্রবণতা পরিমাপের জন্য শাখা ও পত্রক বিন্যাস গুরুত্বপূর্ণ অবদান রাখে।
- (iv) লৈখিক উপস্থাপনে শাখা ও পত্রক বিন্যাস অত্যন্ত কার্যকর ভূমিকা পালন করে।

উদাহরণ: নিমে 20 জন ছাত্রের কোন একটি পরীক্ষার প্রাপ্ত নম্বর দেওয়া হল: 65, 70, 85, 45, 50, 72, 60, 52, 60, 32, 80, 42, 55, 60, 65, 20, 45, 55, 68, 72 উক্ত তথ্যকে শাখা ও পত্রক চিত্রে উপস্থাপন কর।

সমাধান:

এখানে, বৃহত্তম তথ্য সংখ্যা = 85 এবং ক্ষুদ্রতম তথ্য সংখ্যা = 20

শাখা ও পত্ৰক চিত্ৰ

শাখা	পত্ৰক	গণসংখ্যা
2	0	1
3	2	1
4	2 5 5	3
5	0 2 5 5	4
6	0 0 0 5 5 8	6
7	0 1 2	3
8 05	0 5	2
		মোট = 20

সহায়ক (Key): 4|5 দ্বারা বুঝায় 45

উচ্চমাধ্যমিক প্রসংখ্যান

তৃতীয় অধ্যায়

কেন্দ্রীয় প্রবণতার পরিমাপ

MEASURES OF CENTRAL TENDENCY

তথ্য উপস্থাপন, গণসংখ্যা নিবেশন তৈরি এবং লেখ ও নকশার মাধ্যমে তথ্যকে সংক্ষিপ্ত করে বৈশিষ্ট্য ফুটিয়ে তোলা যায়। কিন্তু তথ্যের গাণিতিক বৈশিষ্ট্য জানার জন্য কেন্দ্রীয় মান, কেন্দ্রীয় প্রবণতা ও কেন্দ্রীয় প্রবণতার পরিমাপ জানা দরকার। তথ্যের একটি সংখ্যাগত মানের সাহায্যে তার অন্তর্নিহিত বৈশিষ্ট্য এবং তুলনামূলক বৈশিষ্ট্য কেন্দ্রীয় প্রবণতার পরিমাপ নামক পদ্ধতির সাহায়ে জানা যায়।

এ অধ্যায় পাঠ শেষে শিক্ষার্থীরা—

- কেন্দ্রীয় প্রবণতা ও কেন্দ্রীয় প্রবণতার পরিমাপ ব্যাখ্যা করতে পারবে।
- কেন্দ্রীয় প্রবণতার পরিমাপগুলোর বর্ণনা করতে পারবে।
- একটি আর্দশ গডের প্রয়োজনীয় গুণাবলী ব্যাখ্যা করতে পারবে ।
- কেন্দ্রীয় প্রবণতা পরিমাপগুলোর তুলনামূলক আলোচনা করতে পারবে।
- কেন্দ্রীয় প্রবণতা পরিমাপগুলোর সুবিধা ও অসুবিধা বর্ণনা করতে পারবে।
- গাণিতিক গড়ের বৈশিষ্ট্য বা ধর্মাবলী বর্ণনা করতে পারবে।
- ভার আরোপিত গড় ও এদের প্রয়োজনীয়তা ব্যাখ্যা করতে পারবে।
- বিভাজক মানসমূহ নির্ণয় করতে পারবে।

৩.০১ কেন্দ্রীয় প্রবণতা ও কেন্দ্রীয় প্রবণতার পরিমাপ

Central Tendency & Measures of Central Tendency

কেন্দ্রীয় প্রবণতাঃ কোন একটি নিবেশন বা তথ্যসারিতে অনেকগুলো মান থাকে। আর একটি মান কেন্দ্রে থাকে। কেন্দ্রের মানটিকে কেন্দ্রীয় মান বলে। কেন্দ্রীয় মানের চতুর্দিকে নিবেশনের বাকী মানগুলো একত্রিত বা ঘনীভূতভাবে থাকতে চায়। কেন্দ্রীয় মানের দিকে নিবেশনের বাকি মানগুলো একত্রিত বা ঘনীভূতভাবে থাকার ইচ্ছা বা প্রবণতাকে কেন্দ্রীয় প্রবণতা বলে।

কেন্দ্রীয় প্রবণতার পরিমাপ:

কোন একটি নিবেশন বা তথ্যসারিতে অনেকগুলো মান থাকে। আর একটি মান কেন্দ্রে থাকে। কেন্দ্রের মানটিকে কেন্দ্রীয় মান বলে। কেন্দ্রীয় মানের চতুর্দিকে নিবেশনের বাকী মানগুলো একত্রিত বা ঘনীভূতভাবে থাকতে চায়। কেন্দ্রীয় মানের দিকে নিবেশনের বাকি মানগুলো একত্রিত বা ঘনীভূতভাবে থাকার ইচ্ছা বা প্রবণতাকে কেন্দ্রীয় প্রবণতা বলে। যে সকল গাণিতিক পরিমাপের সাহায্যে কোন তথ্যের কেন্দ্রীয় মান নির্ণয় করা হয় তাকে কেন্দ্রীয় প্রবণতার পরিমাপ বলে।

৩.০২ কেন্দ্রীয় প্রবণতার পরিমাপগুলোর বর্ণনা

Discuss Measures of Central Tendency

কেন্দ্রীয় প্রবণতার পরিমাপ ৫ প্রকার। যথা-

- ক. গাণিতিক গড় (Arithmetic Mean)
- খ. জ্যামিতিক গড় (Geometric Mean)
- গ. তরঙ্গ গড় (Harmonic Mean)
- ঘ. মধ্যমা (Median)
- ঙ. প্রচুরক (Mode)
- গাণিতিক গড়/যোজিত গড় (Arithmetic Mean): কোন তথ্যসারিতে যতগুলি মান থাকে তাদের সমষ্টিকে মোট পদসংখ্যা দ্বারা ভাগ করে যে মান পাওয়া যায় তাকে ঐ তথ্যসারির গাণিতিক গড় বলে। ইহাকে AM দ্বারা চিহ্নিত করা হয়। তবে চলকের ভিত্তিতে একে $\overline{x}, \overline{y}, \overline{z}$ ইত্যাদি দ্বারা প্রকাশ করা হয়।
- অশ্রেণীকৃত তথ্যের ক্ষেত্রে: মনে করি, কোন চলক x এর $\mathbf n$ সংখ্যক মানসমূহ x_1,x_2,\dots,x_n এবং উহাদের গাণিতিক গড $\overline x$ হলে.

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

$$= \frac{\sum_{i=1}^{n} x_i}{n}$$

শ্রেণিকৃত তথ্যের ক্ষেত্রে: মনে করি, কোন চলক x এর n সংখ্যক মানসমূহ x_1, x_2 ------ x_n এবং উহাদের গণসংখ্যা যথাক্রমে $f_1, f_2 \dots f_n$; যেখানে $\sum_{i=1}^n f_i = N$ এবং গাণিতিক গড় \overline{x} হলে,

$$\overline{x} = \frac{f_1 x_1 + f_2 x_2 + \dots + f_n x_n}{N}$$

$$= \frac{\sum f_i x_i}{N}$$

উদাহরণ: 1, 2, 3 সংখ্যাগুলোর গাণিতিক গড়,

$$\overline{x} = \frac{1+2+3}{3} = \frac{6}{3} = 2$$

ii) জ্যামিতিক/গুণিতক গড় (Geometric Mean): কোন তথ্যসারিতে যতগুলো অন্তন্য ধনাত্মক মান থাকে তাদের গুণফলের তত তম মূলকে উক্ত তথ্যসারির জ্যামিতিক গড় বলে। খন্য কিংবা ঋণাত্মক মান হলে জ্যামিতিক গড় নির্ণয় করা যায় না। ইহাকে GM দ্বারা প্রকাশ করা হয়। অশ্রেণীকৃত তথ্যের ক্ষেত্রে: মনে করি, কোন চলক x এর ${\bf n}$ সংখ্যক অন্তন্য ধনাত্যক মানসমূহ x_1, x_2 --- $x_{\bf n}$ এবং উহাদের জ্যামিতিক গড় GM হলে,

$$GM = \sqrt[n]{x_1.x_2....x_n} = (x_1.x_2....x_n)^{\frac{1}{n}}$$

শ্রেণিকৃত তথ্যের ক্ষেত্রে: মনে করি, কোন চলক x এর n সংখ্যক অপ্তন্য ধনাত্মক মানসমূহ $x_1,\,x_2$ ---- x_n এবং উহাদের গণসংখ্যা যথাক্রমে $f_1,\,f_2$ f_n যেখানে $\sum_{i=1}^n f_i = N$, জ্যামিতিক গড়

GM হলে,

$$GM = \sqrt[N]{(x_1^{f_1} x_2^{f_2} x_n^{f_n})}$$

$$= (x_1^{f_1} x_2^{f_2} x_n^{f_n})^{\frac{1}{N}}$$

উদাহরণ: 1,2 ও 3 এর জ্যামিতিক গড়, $GM = (1 \times 2 \times 3)^{\frac{1}{3}} = 1.82$

iii) তরঙ্গ গড় (Harmonic mean): কোন তথ্যসারিতে যতগুলো অশুন্য মান থাকে তাদের উল্টামানের গাণিতিক গড়ের উল্টামানকে তরঙ্গ গড় বলে। ইহাকে HM দ্বারা প্রকাশ করা হয়।

অশ্রেণীকৃত তথ্যের ক্লেত্রে: মনে করি, কোন চলক x এর n সংখ্যক অশুন্য মানসমূহ x_1, x_2 ———— x_n এবং উহাদের তরঙ্গ গড় HM হলে.

HM =
$$\frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

= $\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}$

শ্রেণিকৃত তথ্যের ক্ষেত্রে: মনে করি, কোন চলক x এর $\mathbf n$ সংখ্যক অন্তন্য মানসমূহ x_1, x_2, \dots, x_n এবং

উহাদের গণসংখ্যা যথাক্রমে $f_1,\,f_2 ext{---}f_n$ যেখানে $\sum_{i=1}^n f_i=N$ এবং তরঙ্গ গড় HM হলে,

HM =
$$\frac{N}{\frac{f_1}{x_1} + \frac{f_2}{x_2} + \dots + \frac{f_n}{x_n}}$$

= $\frac{N}{\sum_{i=1}^{n} \frac{f_i}{x_i}}$

উদাহরণ: $1,\,2$ এবং 3 এর তরঙ্গ গড়, $\mathrm{HM}=\dfrac{3}{\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}}=1.64$

মধ্যমা (Median): কোন নিবেশন বা তথ্যসারির মানগুলোকে উর্ধ্ব বা নিমুক্রমে সাজানোর পর যে মানটি তথ্যসারিকে দুইটি সমান অংশে বিভক্ত করে ঐ মানটিকে উক্ত তথ্যসারির মধ্যমা বলে। ইহাকে $M_{_{\varrho}}$ দারা প্রকাশ করা হয়।

মনে করি, কোন তথ্যসারিতে n সংখ্যক মান আছে। এখন মধ্যমা নির্ণয় করতে নিম্নুলিখিত নিয়ম অনুসরণ করতে হবে।

- ১. তথ্যসারির n সংখ্যক মানকে উর্ধ্ব বা নিম্লক্রমে সাজাতে হবে।
- ২. যদি তথ্যসংখ্যা n বিজোড় হয়, তবে $\dfrac{n+1}{2}$ তম রাশি হবে মধ্যমা।
- ৩. যদি তথ্যসংখ্যা n জোড় হয়, তবে $\dfrac{\dfrac{n}{2}$ তম রাশি $+(\dfrac{n}{2}+1)$ তম রাশি $}{2}$ হবে মধ্যমা।

শ্রেণিকৃত তথ্যের ক্ষেত্রে মধ্যমাঃ

$$M_e = L + \frac{\frac{N}{2} - F_c}{f_m} \times c$$

এখানে. L = মধ্যমা শ্রেণির নিয়ুসীমা

Fc = মধ্যমা শ্রেণির পূর্ববর্তী শ্রেণির ক্রমযোজিত গণসংখ্যা

 $F_m = \pi \omega \pi \pi \omega$ भारता स्थापित भारत्या

C = মধ্যমা শ্রেণির শ্রেণি ব্যবধান

N = মোট গণসংখ্যা।

উদাহরণ-১ । -2, -3, 0, -1, 7 তথ্যসারিটির মধ্যমা নির্ণয় কর ।

সমাধানঃ প্রদত্ত তথ্যসারিকে মানের উর্ধ্বক্রম হিসাবে সাজালে আমরা পাই, -3, -2, -1, 0, 7

এখানে, তথ্যসংখ্যা, n = 5 (বিজোড়)

সুতরাং, নির্ণেয় মধ্যমা =
$$\frac{n+1}{2}$$
 তম পদ = $\frac{5+1}{2}$ তম পদ = 3 তম পদ = -1

∴ নির্ণেয় মধ্যমা, -1

উদাহরণ-২। 10, 9, 20, 12, 5, 16 তথ্যসারিটির মধ্যমা নির্ণয় কর।

সমাধান: প্রদত্ত তথ্যসারিকে মানের উর্ধ্বক্রম অনুসাওে সাজিয়ে পাই-

উচ্চমাধামিক পরিসংখ্যান

সূতরাং, নির্ণেয় মধ্যমা,
$$Me=rac{rac{n}{2}}{2}$$
 তম পদ $+(rac{n}{2}+1)$ তম পদ
$$=rac{rac{6}{2}}{2}$$
 তম পদ $+(rac{6}{2}+1)$ তম পদ
$$=rac{6}{2}$$
 তম পদ $+(rac{6}{2}+1)$ তম পদ
$$=rac{3}{2}$$
 তম পদ $+4$ তম পদ
$$=rac{10+12}{2}=11$$

প্রচুরক (Mode): কোন তথ্যসারিতে যে মানটি অধিক সংখ্যক বার থাকে ঐ মানটিকে উক্ত তথ্যসারির প্রচুরক বলে। ইহাকে Ma দ্বারা প্রকাশ করা হয়।

উদাহরণ: $2,\,3,\,3,\,4,\,5,\,3$ এই সংখ্যা গুলোর প্রচুরক, ${
m M_o}=3$ কারণ 3 সংখ্যাটি বেশি বার আছে।

শ্রেণিকৃত তথ্যের ক্ষেত্রে প্রচুরক: শ্রেণিকৃত গণসংখ্যা নিবেশনে যে শ্রেণিতে বেশী গণসংখ্যা থাকে সেই শ্রেণিই প্রচুরক শ্রেণী। এক্ষেত্রে প্রচুরক,

$$M_{o} = L + \frac{\Delta_{1}}{\Delta_{1} + \Delta_{2}} \times C$$

এখানে, L = প্রচুরক শ্রেণির নিমুসীমা

 $\Delta_{_{\parallel}}=$ প্রচুরক শ্রেণি ও তার পূর্ববর্তী শ্রেণির গণসংখ্যার পার্থক্য

 $\Delta_{,}=$ প্রচুরক শ্রেণি ও তার পরবর্তী শ্রেণির গণসংখ্যার পার্থক্য

C = প্রচুরক শ্রেণির শ্রেণি ব্যবধান।

৩.০৩ একটি আর্দশ গড়ের প্রয়োজনীয় গুণাবলী

The properties of an Ideal Average

পরিসংখ্যানবিদ Yule এর মতে একটি আদর্শ মধ্যকমান / গড়ের নিমুলিখিত বৈশিষ্ট্য থাকা উচিতঃ

- i. ইহার সঠিক ও সুস্পষ্ট সংজ্ঞা থাকা উচিত;
- ii. ইহা তথ্যসারির সকল মানের উপর নির্ভরশীল হওয়া উচিত;
- ইহা সহজবোধ্য ও সহজে গণনার উপযোগী হওয়া উচিত;
- ইহা সহজে গাণিতিক ও বীজগাণিতিক পরিগণনার উপযোগী হওয়া উচিত;
- ইহা নমুনা তারতম্য বা নমুনা বিচ্যুতি দ্বারা কম প্রভাবিত হওয়া উচিত;
- vi. ইহার চরম মান দ্বারা কম প্রভাবিত হওয়া উচিত ।

৩.০৪ কেন্দ্রীয় প্রবণতা পরিমাপগুলোর তুলনামূলক আলোচনা

Compare of the Difference Measures of Central Tendency পরিসংখ্যানবিদ Yule এর মতে, একটি আদর্শ মধ্যক মান / গড়ের নিম্নলিখিত বৈশিষ্ট্য থাকা আবশ্যক:

- ইহার সঠিক ও সুস্পষ্ট সংজ্ঞা থাকা উচিত;
- (ii) ইহা তথ্যসারির সকল মানের উপর নির্ভরশীল হওয়া উচিত;
- (iii) ইহা সহজবোধ্য ও সহজে গণনার উপযোগী হওয়া উচিত;
- (iv) ইহা সহজে গাণিতিক ও বীজগাণিতিক পরিগণনার উপযোগী হওয়া উচিত;
- (v) ইহা নমুনা তারতম্য বা নমুনা বিচ্যুতি দ্বারা কম প্রভাবিত হওয়া উচিত;
- (vi) ইহার চরম মান দ্বারা কম প্রভাবিত হওয়া উচিত।

উপরিউক্ত বৈশিষ্ট্যসমূহ একটি আদর্শ মধ্যক মানের মাপকাঠি হিসেবে ব্যবহৃত হয়। নিম্নে কেন্দ্রীয় প্রবণতার বিভিন্ন পরিমাপগুলোর মধ্যে তুলনামূলক আলোচনা করা হল—

গাণিতিক গড় আদর্শ মধ্যক মানের প্রায় সবগুলো বৈশিষ্ট্যের অধিকারী। এর সঠিক ও সুষ্পষ্ট সংজ্ঞা রয়েছে। ইহা তথ্যসারির সকল মানের উপর নির্ভরশীল। ইহা সহজে বুঝা যায় ও সহজে গণনা করা যায়। এতে সহজে গাণিতিক ও বীজগাণিতিক প্রক্রিয়া প্রয়োগ করা যায় ও সহজে গণনা করা যায় এবং ইহা নমুনা তারতম্য দ্বারা কম প্রভাবিত হয় কিন্তু গাণিতিক গড়ের প্রধান অসুবিধা হল এটি চরম মান দ্বারা প্রভাবিত হয়। জ্যামিতিক গড় তথ্যসারির সকল মানের উপর নির্ভরশীল। এতে সহজে গাণিতিক ও বীজগাণিতিক প্রক্রিয়া প্রয়োগ করা যায়। ইহা চরম মান দ্বারা প্রভাবিত হয় না। এটি নমুনা তারতম্য দ্বারা কম প্রভাবিত হয়। জ্যামিতিক গড়ের প্রধান অসুবিধা হল ইহা সহজে নির্ণয় করা যায় না। ইহা নির্ণয় করতে লগারিদমের ভাল জ্ঞান থাকা আবশ্যক।

তরন্ধ গড় তথ্যসারির সকল মানের উপর নির্ভরশীল। এতে সহজে গাণিতিক ও বীজগাণিতিক প্রক্রিয়া প্রয়োগ করা যায়। ইহা চরম মান দ্বারা কম প্রভাবিত হয় কিন্তু তরন্ধ গড় সহজবোধ্য নয় এবং ইহা সহজে নির্ণয় করা যায় না।

মধ্যমা ও প্রচুরক উভয়ই সহজবোধ্য ও সহজে নির্ণয় করা যায়। ইহারা চরম মান দ্বারা প্রভাবিত হয় না কিন্তু এরা তথ্যসারির সকল মানের উপর নির্ভরশীল নয়। ইহারা গাণিতিক ও বীজগাণিতিক পরিগণনার উপযোগী নয়। নমুনা তারতম্য দ্বারা এরা বেশী প্রভাবিত হয়।

উপরোক্ত আলোচনা হতে দেখা যায় যে, গাণিতিক গড় আদর্শ মধ্যক মানের গুরুত্বপূর্ণ বৈশিষ্ট্যগুলোর অধিকারী এবং এর অসুবিধাগুলো সুবিধাগুলোর তুলনায় অতি নগন্য। তাই গাণিতিক গড়কে কেন্দ্রীয় প্রবণতার পরিমাপসমূহের মধ্যে সর্বোৎকৃষ্ট পরিমাপ বলা যায়।

উচ্চমাধ্যমিক পরিসংখ্যান

৩.০৫ কেন্দ্রীয় প্রবণতা পরিমাপগুলোর সুবিধা ও অসুবিধা

The Merits and Demerits Measures of Central Tendency

কেন্দ্রীয় প্রবণতার পরিমাপগুলোর সুবিধা ও অসুবিধাগুলো পৃথক পৃথকভাবে আলোচনা করা হলো: গাণিতিক গড়ের সুবিধা:

- ক) গাণিতিক গড় সহজে বুঝা যায় এবং সঠিক ও সুস্পষ্ট সংজ্ঞা দ্বারা বুঝানো যায়;
- খ) এটি তথ্যসারির সকল মানের উপর নির্ভরশীল;
- গ) এতে সহজে গাণিতিক ও বীজগাণিতিক প্রক্রিয়া প্রয়োগ করা যায়;
- ঘ) এটি নমুনা তারতম্য দ্বারা কম প্রবাভিত হয়;
- ঙ) ধারাভুক্ত কোন সংখ্যা শুন্য বা ঋণাত্মক হলেও গাণিতিক গড় নির্ণয় করা যায়।

গাণিতিক গড়ের অসুবিধাঃ

- ক) গাণিতিক গড় প্রান্তীয় মান দ্বারা বেশি প্রভাবিত হয়;
- খ) গুণবাচক তথ্যের গাণিতিক গড় নির্ণয় করা যায় না;
- গ) নিবেশনের লেখ হতে গাণিতিক গড় নির্ণয়ের পদ্ধতি নেই;
- ঘ) এক বা একাধিক মান অজানা থাকলে ইহা নির্ণয় করা যায় না।

জ্যামিতিক গড়ের সুবিধাঃ

- ক) একে সঠিক ও সুস্পষ্ট সংজ্ঞা দ্বারা বুঝানো যায়;
- খ) এটি সকল মানের উপর নির্ভরশীল;
- গ) এটি প্রান্তীয় মান দ্বারা কম প্রভাবিত হয়;
- ঘ) এটি নমুনা তারতম্য দ্বারা খুব একটা প্রভাবিত হয় না।

জ্যামিতিক গড়ের অসুবিধাঃ

- ক) এটি সহজে বুঝা যায় না;
- খ) এটি নির্ণয় করতে লগারিদমের প্রয়োজন হয় বলে সকলের পক্ষে নির্ণয় করা সম্ভব নয়;
- গ) ধারাভুক্ত একটি মান শূন্য বা বিজোড় সংখ্যক মান ঋণাত্মক হলে জ্যামিতিক গড় নির্ণয় করা যায় না। তরঙ্গ গড়ের সুবিধাঃ
 - ক) এটি সকল মানের উপর নির্ভরশীল;
 - খ) হার, বেগ ও গড় নির্ণয়ের ক্ষেত্রে ইহা ভাল ফল দেয়;
 - গ) ইহা প্রান্তীয় মান দ্বারা কম প্রভাবিত হয়;
 - ঘ) এতে সহজে গাণিতিক ও বীজগাণিতিক প্রক্রিয়া প্রয়োগ করা যায়।

তরঙ্গ গড়ের অসুবিধাঃ

- ক) ইহা সহেজ বুঝা যায় না।
- খ) তথ্যসারির সকল মান জানা না থাকলে এই গড় নির্ণয় করা যায় না।
- গ) সিরিজের কোন রাশির মান শুন্য হলে তরঙ্গ গড় এই নির্ণয় করা যায় না।

মধ্যমার সুবিধা:

- মধ্যমা সহজে বুঝা যায় এবং সহজে নির্ণয় করা যায়;
- খ) ইহা প্রান্তীয় মান দ্বারা প্রভাবিত হয় না;
- গ) ইহা লেখের সাহায্য নির্ণয় করা যায়;
- খণবাচক তথ্যের ক্ষেত্রে মধ্যমা অন্যান্য পরিমাপ অপেক্ষা ভাল ফল দেয়।

মধ্যমার অসুবিধাঃ

- ইহা সকল মানের উপর নির্ভর করে না;
- খ) মধ্যমা পরবর্তীতে কোন গাণিতিক পরিগণনার উপযোগী নয়;
- গ) তথ্যের উপাদান সজ্জিত না করলে মধ্যমা নির্ণয় করা যায় না।

প্রচুরকের সুবিধাঃ

- প্রচুরক সহজে বুঝা যায় এবং সহজে নির্ণয় করা যায়;
- খ) ইহা চরম মান দ্বারা প্রবাবিত হয় না;
- গ) গুণবাচক তথ্যের ক্ষেত্রেও প্রচুরক নির্ণয় করা যায়;
- ঘ) ইহা লেখচিত্র সাহায্যে নির্ণয় করা য়ায়।

প্রচুরকের অসুবিধাঃ

- ইহা সকল মানের উপর নির্ভর করে না;
- খ) এতে অধিক বীজগাণিতিক প্রক্রিয়া প্রয়োগ করা যায় না;
- গ) তথ্যের কোন মান পুণরাবৃত্তি না ঘটলে প্রচুরক নির্ণয় করা কঠিন;
- ঘ) ইহার নমুনা বিচ্যুতি অধিক হয়।

৩.০৬ গাণিতিক গড়ের বৈশিষ্ট্য বা ধর্মাবলী

Properties of Arithmetic Mean

নিয়ে গাণিতিক গড়ের বৈশিষ্ট্য বা ধর্মাবলী দেওয়া হলোঃ

- ক. কোন তথ্যসারির সংখ্যাগুলোর সমষ্টি = পদসংখ্যা

 গাণিতিক গড়;
- খ. তথ্য সারির প্রতিটি মান হতে গাণিতিক গড়ের ব্যবধানের সমষ্টি শুন্য;
- গ. তথ্য সারির প্রতিটি মান হতে গাণিতিক গড়ের ব্যবধানের বর্গের সমষ্টি ক্ষুদ্রতম;
- ঘ. গাণিতিক গড মূল ও মাপনির উপর নির্ভরশীল;
- ঙ. গাণিতিক গড় তথ্যসারির প্রত্যেকটি মানের উপর নির্ভরশীল;
- দুটি চলকের যোগফল বা বিয়োগফলের গাণিতিক গড় উহাদের নিজ নিজ গাণিতিক গড়ের যোগফল বা বিয়োগফলের সমান:
- ছ. k সংখ্যক তথ্যসারির সম্মিলিত গাণিতিক গড

$$\overline{x}_c = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2 + \dots + n_k \overline{x}_k}{n_1 + n_2 + \dots + n_k}$$

৩.০৭ ভার আরোপিত বা গুরুত্ব প্রদত্ত গড় ও এদের প্রয়োজনীয়তা

Weighted Arithmetic Mean & Importance of Weighted Arithmetic Mean

ভার আরোপিত গড়ঃ

তথ্যসারির মানগুলো ব্যবহারের পাশাপাশি তাদের ভার বা গুরুত্বকে ব্যবহার করে যে গড় মান বের করা হয় তাকে ভার আরোপিত গড় বলে। ভার আরোপিত গড় মোট তিন প্রকার। যথা—

- ১. ভার আরোপিত গাণিতিক গড়।
- ২. ভার আরোপিত জ্যামিতিক গড়।
- ৩. ভার আরোপিত তরঙ্গ গড়।

উচ্চমাধ্যমিক পরিসংখ্যান

নিম্নে এদের বিস্তারিত আলোচনা করা হলো:

ভার আরোপিত গাণিতিক গড়:

কোন চলকের প্রতিটি মানকে তাদের নিজ নিজ ভার দ্বারা গুণ করে তাদের সমষ্টিকে মোট ভার দ্বারা ভাগ করলে যে মান পাওয়া যায় তাকে গুরুত্ব প্রদন্ত গড় বা ভার আরোপিত গাণিতিক গড় বলে। কোন চলক x এর x_1,x_2,\ldots,x_n মানগুলোর ভার যথাক্রমে w_1,w_2,\ldots,w_n হলে ভার আরোপিত গাণিতিক গড় \overline{x}_m হলে,

$$\overline{x}_{w} = \frac{w_{1}x_{1} + w_{2}x_{2} + \dots + w_{n}x_{n}}{w_{1} + w_{2} + \dots + w_{n}}$$

$$\overline{x}_{w} = \frac{\sum\limits_{i=1}^{n} w_{i} x_{i}}{\sum\limits_{i=1}^{n} w_{i}}$$
 যেখানে $\sum\limits_{i=1}^{n} w_{i} > 0$

প্রয়োজনীয়তাঃ ভার আরোপিত গাণিতিক গড়ের প্রয়োজনীয়তা নিম্নে উল্লেখ করা হলো

- i. তথ্যের ভারের তারতম্য হলে গাণিতিক গড়ের পরিবর্তে ভার আরোপিত গাণিতিক গড় ব্যবহৃত হয়।
- ii. একাধিক বিন্যাসের তুলনামূলক আলোচনায় এটা ব্যবহৃত হয়।
- iii. সূচক সংখ্যা ও জীবনযাত্রার ব্যয়সূচক সংখ্যা প্রস্তুত করতে এটা ব্যবহার করা হয়।
- iv. জীব পরিসংখ্যানে আদর্শ জন্মহার এবং আদর্শ মৃত্যুহার নির্ণয় করতে এটা ব্যবহার করা হয়।

৩.০৮ বিভাজক মানসমূহ

Partition Values

চতুর্থক (Quartile): কোন তথ্যসারির মানগুলোকে মানের উর্ধ্বক্রম বা নিমুক্রম অনুসারে সাজানোর পরে যে মানগুলো ঐ তথ্যসারিকে সমান চারটি ভাগে বিভক্ত করে, তাদেরকে উক্ত তথ্যসারির চতুর্থক বলে। একটি তথ্যসারিকে চতুর্থক থাকে তিনটি। কারণ তিনটি মানের সাহায্যেই একটি তথ্যসারিকে সমান চারটি ভাগে বিভক্ত করা যায়।

চতুর্থককে $Qi\ (i=1,2,3)$ দ্বারা প্রকাশ করা হয়। এখানে Q_1 হল প্রথম চতুর্থক, Q_2 হল দ্বিতীয় চতুর্থক (মধ্যমা) এবং Q_3 হল তৃতীয় চতুর্থক। একটি তথ্যসারিকে নিম্নে একটি রেখায় কল্পনা করে চতুর্থকসমূহ দেখানো হল।

■ অশ্রেণীকৃত তথ্যের ক্ষেত্রে: তথ্যসারির মোট তথ্যসংখ্যা n হলে।

$$i$$
 – তম চতুৰ্থক, $Q_i = rac{(n+1)}{4} imes i$ তম পদ; $i=1,2,3$

শ্রেণিকৃত তথ্যের ক্ষেত্রেः

চতুর্থক,
$$\mathbf{Q_i} = \mathbf{L} + \frac{\frac{n}{4} \times i - F_c}{f_q} \times c$$

যেখানে. L = i তম চতুর্থক শ্রেণির নিমুসীমা

 $F_c = i$ তম চতুর্থক শ্রেণির পূর্ববর্তী শ্রেণির ক্রমযোজিত গণসংখ্যা

fq = i তম চতুর্থক শ্রেণির গণসংখ্যা

c = i তম চতুর্থক শ্রেণির শ্রেণি ব্যবধান।

■ দশমক (Decile)

কোন তথ্যসারির মানগুলোকে উর্ধ্বক্রম বা নিমুক্রম অনুসারে সাজানোর পর যে মানগুলো ঐ তথ্যসারিকে সমান দশ ভাগে বিভক্ত করে, সেই মানগুলোর প্রত্যেকটিই হল এক একটি দশমক। দশমককে $D_i(i=1,2,3,------,9)$ দ্বারা প্রকাশ করা হয়।

অশ্রেণীকৃত তথ্যের ক্ষেত্রে: কোন তথ্যসারির মোট তথ্যসংখ্যা n হলে,

$$i$$
 -তম দশমক, $D_i = \frac{(n\!+\!1)i}{10}$ তম তথ্যের মান; $i=1,2,$ ------, 9

শ্রেণিকৃত তথ্যের ক্ষেত্রে: কোন শ্রেণিকৃত তথ্যের ক্ষেত্রে—

দশমক,
$$\mathbf{D_i} = \mathbf{L} + \frac{\frac{n}{10} \times i - F_c}{f_d} \times c$$

যেখানে.

L=i তম দশমক শ্রেণির নিমুসীমা

 $F_c=i$ তম দশমক শ্রেণির পূর্ববর্তী শ্রেণির ক্রমযোজিত গণসংখ্যা

 $\mathbf{f}_d = \mathbf{i}$ তম দশমক শ্রেণির গণসংখ্যা

c = i তম দশমক শ্রেণির শ্রেণি ব্যবধান।

■ শতমক (Percentile)

কোন তথ্যসারির মানগুলোকে উর্ধ্বক্রম বা নিম্নক্রম অনুসারে সাজানোর পরে মানগুলো ঐ তথ্যসারিকে সমান একশতভাগে বিভক্ত করে, সেই মানগুলোর প্রত্যেকটিই এক একটি শতমক।

শতমককে, $P_i (i=1,\,2,\,3,\,\dots,\,99)$ দ্বারা প্রকাশ করা হয়।

অশ্রেণিকৃত তথ্যের ক্ষেত্রে: কোন অশ্রেণিকৃত তথ্যসারির মোট তথ্যসংখ্যা n হলে,

$$i$$
 –তম শতমক, $P_i = \frac{(n{+}1)i}{100}$ তম তথ্যেও মান; $i=1,\,2,\,3,\,-----,\,99$

শ্রেণিকৃত তথ্যের ক্ষেত্রে: কোন বিন্যস্ত বা শ্রেণিকৃত তথ্যের ক্ষেত্রে,

শতমক,
$$P_i = L + \frac{\frac{n}{100} \times i - Fc}{f_p} \times c$$

উচ্চমাধ্যমিক পরিসংখ্যান

যেখানে,

L = i তম শতমক শ্রেণির নিমুসীমা

 $F_c=i$ তম শতমক শ্রেণির পূর্ববর্তী শ্রেণির ক্রমযোজিত গণসংখ্যা

 $f_{
m p}=i$ তম শতমক শ্রেণির গণসংখ্যা

c = i তম শতমক শ্রেণির শ্রেণি ব্যবধান।

কতিপয় উপপাদ্য ও তার প্রমাণ

Some Theorem and its Proof

১। প্রমাণ কর যে, তথ্যসারির প্রতিটি মান হতে গাণিতিক গড়ের ব্যবধানের সমষ্টি শুন্য।

অথবা, প্রমাণ কর যে,
$$\sum_{i=1}^{n}(x_{i}-\overline{x})=0$$

প্রমাণ : অশ্রেণীকৃত তথ্যের ক্ষেত্রে : মনে করি, x চলকের $\mathbf n$ সংখ্যক মানসমূহ x_2 ----- x_n এবং উহাদের গাণিতিক গড় $\overline x$ হলে,

$$\bar{x} = \frac{\sum x_i}{n}$$

$$\therefore \sum x_i = n\overline{x}$$

এখন, তথ্য সারির প্রতিটি মান হতে গাণিতিক গড়ের ব্যবধানের সমষ্টি,

$$\sum_{i=1}^{n} (x_i - \overline{x})$$

$$= \sum_{i} x_{i} - \sum_{i} \bar{x}$$
$$= n \bar{x} - n \bar{x}$$

$$\therefore \sum (x_i - \overline{x}) = 0$$

় তথ্য সারির প্রতিটি মান হতে গাণিতিক গড়ের ব্যবধানের সমষ্টি ওণ্য। (প্রমাণিত)

শ্রেণিকৃত তথ্যের ক্ষেত্রে:

প্রমাণ কর যে, গাণিতিক গড় থেকে সংখ্যাগুলির ব্যবধানের সমষ্টি শুণ্য।

অথবা, প্রমাণ কর যে,
$$\sum_{i=1}^{n} f_i(x_i - \overline{x}) = 0$$

প্রমাণ: মনে করি, x চলকের $\mathbf n$ সংখ্যক মানসমূহ x_1, x_2 ----- x_n এদের গণসংখ্যা যথাক্রমে $\mathbf f_1, \mathbf f_2$ ----- $\mathbf f_n$ যেখানে, $\sum f_i = N$, গাণিতিক গড়, $\overline x$ হলে,

$$\bar{x} = \frac{\sum f_i x_i}{N}$$

$$\therefore \sum f_i x_i = N\overline{x}$$

এখন, তথ্যসারির প্রতিটি মান হতে গাণিতিক গড়ের ব্যবধানের সমষ্টি,

$$\sum_{i=1}^{n} f_i(x_i - \overline{x})$$

$$= \sum_{i=1}^{n} f_i x_i - \sum_{i} f_i \overline{x}$$

$$= N \overline{x} - N \overline{x}$$

$$\therefore \sum_{i} f_i(x_i - \overline{x}) = 0$$

্ . গাণিতিক গড় হতে সংখ্যাগুলির ব্যবধানের সমষ্টি শূন্য । **(প্রমাণিত)**

২। প্রমাণ কর যে, গাণিতিক গড় মূল ও মাপনির উপর নির্ভরশীল। অথবা, প্রমাণ কর যে, $\overline{x}=a+c\overline{d}$

প্রমাণ: অশ্রেণীকৃত তথ্যের ক্ষেত্রে: মনে করি, x চলকের n সংখ্যক মানসমূহ $x_1, x_2............x_n$ এবং উহাদের গাণিতিক গড় \overline{x} হলে.

$$\overline{x}=rac{\sum x_i}{n}$$
ধরি, $d_i=rac{x_i-a}{c}$
বা, x_i -a = cd $_i$
বা, x_i =a + cd $_i$
বা, $\overline{x}=a+c\overline{d}$
 \overline{n}
 $\overline{x}=a+c\overline{d}$
গাণিতিক গড় মূল ও মাপনির উপর নির্ভরশীল । (প্রমাণিত)

a= মূল c= মাপনি $d_i=$ নতুন চলক।

শ্রেণিকৃত তথ্যের ক্ষেত্রে:

প্রমাণ কর যে, গাণিতিক গড় মূল ও মাপনির উপর নির্ভরশীল।

অথবা, প্রমাণ কর যে,
$$\overline{x} = a + \frac{\sum f_i d_i}{N} \times c$$

প্রমাণ: মনে করি, x চলকের $\mathbf n$ সংখ্যক মানসমূহ x_1, x_2, \dots, x_n এবং উহাদের গণসংখ্যা যথাক্রমে f_1, f_2, \dots, f_n যেখানে $\sum f_i = N$ ও গাণিতিক গড় $\overline x$ হলে,

$$\overline{x}=rac{\sum f_i x_i}{N}$$
 ধরি, $d_i=rac{x_i-a}{c}$ d_i $d_i=r$ তেন চলক। $d_i=r$

উচ্চমাধামিক পরিসংখ্যান

বা, $x_i = a + cd_i$

(প্রমাণিত)।

বা,
$$f_i x_i = a f_i + c f_i d_i$$
 [উভয় পক্ষে f_i ছারা গুণ করে]
$$\overline{a} = a \sum_{i} f_i x_i = a \sum_{i} f_i + c \sum_{i} f_i d_i$$
 [উভয় পক্ষে \sum_{i} ছারা গুণ করে ও N ছারা ভাগ করে]
$$\overline{x} = a \frac{N}{N} + \frac{\sum_{i} f_i d_i}{N} \times c$$

$$\overline{x} = a + \overline{d} c$$

$$\overline{x} = a + c \overline{d}$$

৩। প্রমাণ কর যে, তথ্যসারির প্রতিটি মান হতে গাণিতিক গড়ের ব্যবধানের বর্গের সমষ্টি ক্ষ্দ্রতম। অথবা

প্রমাণ কর যে,
$$\sum (x_i-\bar x)^2<\sum (x_i-a)^2$$
 [অশ্রেণীকৃত তথ্যের ক্ষেত্রে] প্রমাণ কর যে, $\sum f_i(x_i-\bar x)^2<\sum f_i(x_i-a)^2$ [শ্রেণিকৃত তথ্যের ক্ষেত্রে]

সুতরাং গাণিতিক গড় মূল ও মাপনির উপর নির্ভরশীল।

অশ্রেণীকৃত তথ্যের ক্ষেত্রে:

প্রমাণ: মনে করি, x চলকের ${f n}$ সংখ্যক মানসমূহ $x_1,\,x_2$ ------ x_n এবং উহাদের গাণিতিক গড় ${ar x}$ ও ${f a}$ যেকোন একটি বাস্তব সংখ্যা যেখানে ${ar x} \neq a$ ।

এখন,
$$\sum (x_i - a)^2 = \sum (x_i - \overline{x} + \overline{x} - a)^2$$

$$= \sum \{(x_i - \overline{x})^2 + 2(x_i - \overline{x})(\overline{x} - a) + (\overline{x} - a)^2 \}$$

$$= \sum (x_i - \overline{x})^2 + 2(\overline{x} - a) \sum (x_i - \overline{x}) + \sum (\overline{x} - a)^2$$

$$= \sum (x_i - \overline{x})^2 + 2(\overline{x} - a) \cdot 0 + (\overline{x} - a)^2 \cdot n \qquad \left[\sum (x_i - \overline{x}) = 0\right]$$

$$= \sum (x_i - \overline{x})^2 + n(\overline{x} - a)^2$$

বৈহেতু
$$\overline{x} \neq a$$
, $n > 0$ এবং $(\overline{x} - a)^2 > 0$ $\therefore n (\overline{x} - a)^2 > 0$

$$\Rightarrow \sum (x_i - a)^2 = \sum (x_i - \overline{x})^2 + \text{একটি ধনাতমুক সংখ্যা }$$

$$\Rightarrow \sum (x_i - a)^2 > \sum (x_i - \overline{x})^2$$

$$\therefore \sum (x_i - \overline{x})^2 < \sum (x_i - a)^2$$

অর্থাৎ তথ্যসারির প্রতিটি মান হতে গাণিতিক গড়ের ব্যবধানের বর্গের সমষ্টি ক্ষুদ্রতম। (প্রমাণিত)।
একটি কামব্রিয়ান ডিজিটাল প্রকাশনা

শ্রেণিকৃত তথ্যের ক্ষেত্রে:

প্রমাণ: মনে করি, x চলকের $\mathbf n$ সংখ্যক মানসমূহ $x_1,\,x_2$ ------ x_n এবং উহাদের গণসংখ্যা যথাক্রেমে $\mathbf f_1,\,\mathbf f_2$ --------- $\mathbf f_n$ যেখানে $\sum f_i=N$ এবং উহাদের গাণিতিক গড় x ও $\mathbf a$ যে কোন একটি বাস্তব সংখ্যা। যেখানে $x\neq a$ ।

এখন,
$$\sum f_i(x_i - a)^2 = \sum f_i(x_i - \overline{x} + \overline{x} - a)^2$$

 $= \sum f_i \left\{ (x_i - \overline{x})^2 + 2(x_i - \overline{x})(\overline{x} - a) + (\overline{x} - a)^2 \right\}$
 $= \sum f_i(x_i - \overline{x})^2 + 2(\overline{x} - a) \sum f_i(x_i - \overline{x}) + \sum f_i(\overline{x} - a)^2$
 $= \sum f_i(x_i - \overline{x})^2 + 2(\overline{x} - a) \cdot 0 + (\overline{x} - a)^2 \cdot N \quad \left[\sum f_i(x_i - \overline{x}) = 0 \right]$
 $= \sum f_i(x_i - \overline{x})^2 + N(\overline{x} - a)^2$

যেহেতু
$$\overline{x} \neq a$$
 , $N > 0$ এবং $(\overline{x} - a)^2 > 0$ $\therefore N (\overline{x} - a)^2 > 0$

$$\Rightarrow \sum f_i(x_i - a)^2 = \sum f_i(x_i - \overline{x})^2 +$$
 একটি ধনাত্মক সংখ্যা $\Rightarrow \sum f_i(x_i - a)^2 > \sum f_i(x_i - \overline{x})^2$

$$\Rightarrow \sum f_i(x_i - a)^2 > \sum f_i(x_i - x)^2$$

∴ তথ্যসারির প্রতিটি মান হতে গাণিতিক গড়ের ব্যবধানের বর্গের সমষ্টি ক্ষুদ্রতম। 🛾 (প্রমাণিত)

8। প্রমাণ কর যে, n_1 সংখ্যক সংখ্যার গাণিতিক গড় \overline{x}_1 , n_2 সংখ্যক সংখ্যার গাণিতিক গড় \overline{x}_2 হলে, (n_1+n_2) সংখ্যক সংখ্যার সন্মিলিত গাণিতিক গড়, $\overline{x}_c=rac{n_1\overline{x}_1+n_2\overline{x}_2}{n_1+n_2}$

প্রমাণঃ মনে করি, x_1 চলকের n_1 সংখ্যক মানসমূহ x_{11},x_{12} ----- x_{1r_1} এবং উহাদের গাণিতিক

গড়
$$\overline{x}_1$$
 হলে,
$$\overline{x}_1 = \frac{x_{11} + x_{12} + - - - - + x_{1n_1}}{n_1}$$

 $\therefore x_{11}+x_{12}+----+x_{1n_1}=n_1\overline{x}_1------$ ় আবার, x_2 চলকের \mathbf{n}_2 সংখ্যক মানসমূহ $\mathbf{x}_{21},\mathbf{x}_{22},----$, \mathbf{x}_{2n_2} এবং উহাদের গাণিতিক গড় \overline{x}_2 হলে,

$$\overline{x}_2 = \frac{x_{21} + x_{22} + \dots - x_{2n_2}}{n_2}$$

$$\therefore x_{21} + x_{22} + \dots - x_{2n_1} = n_2 \overline{x}_2 - \dots - (ii)$$

সুতরাং (n_1+n_2) সংখ্যক সংখ্যার সম্মিলিত গাণিতিক গড় \overline{x}_c হলে,

উচ্চমাধ্যমিক পরিসংখ্যান

৫। ১ম n সংখ্যক স্বাভাবিক সংখ্যার গড় নির্ণয়।
 মনে করি, x চলকের মান n স্বাভাবিক সংখ্যা নির্দেশ করে।
 অর্থাৎ x₁ = 1, x₂ = 2,-----, x_n = n

গাণিতিক গড়,

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

$$= \frac{1 + 2 + \dots + n}{n}$$

$$= \frac{1}{n}(1 + 2 + \dots + n) \qquad \left[1 + 2 + \dots + n = \frac{n(n+1)}{2}\right]$$

$$= \frac{1}{n}\frac{n(n+1)}{2}$$

$$\overline{x} = \frac{n+1}{2}$$

৬। n_1 সংখ্যক সংখ্যার জ্যামিতিক গড় G_1,n_2 সংখ্যক সংখ্যার জ্যামিতিক গড় G_2 এবং (n_1+n_2) সংখ্যক সংখ্যার জ্যামিতিক গড় ${f G}$ হলে, প্রমাণ কর যে, ${f G}=\sqrt{G_1.G_2}$ [যেখানে $n_1=n_2=n$]

প্রমাণ: মনে করি, চলক x এর n_1 সংখ্যক অওন্য ধনাতাক মানসমূহ $x_1,x_2,.....x_{n_1}$ এবং উহাদের জ্যামিতিক গড় G_1 হলে,

অপর চলক y এর n_2 সংখ্যক অন্তন্য ধনাত্মক মানসমূহ $y_1,y_2,...,y_{n_2}$ এবং উহাদের জ্যামিতিক গড় G_2 হলে,

$$G_{2} = (y_{1}, y_{2}, \dots, y_{n_{2}})^{1/n_{2}}$$

$$= (y_{1}, y_{2}, \dots, y_{n_{1}})^{1/n}, \dots, y_{n_{2}}$$
(ii) [$n_{2} = n$]

সুতরাং $(n_1 + n_2) = (n+n) = 2n$ সংখ্যক সংখ্যার জ্যামিতিক গড় G হলে,

$$G = \{(x_1.x_2 - \cdots - x_n).(y_1.y_2 - \cdots - y_n)\}^{\frac{1}{2n}}$$

$$G^2 = \left[\{(x_1.x_2 - \cdots - x_n).(y_1.y_2 - \cdots - y_n)\}^{\frac{1}{2n}}\right]^2 \qquad [$$
 উভয় পক্ষে বৰ্গ করে]
$$= \{(x_1.x_2 - \cdots - x_n).(y_1.y_2 - \cdots - y_n)\}^{\frac{1}{n}}$$

$$= (x_1.x_2 - \cdots - x_n)^{\frac{1}{n}}.(y_1.y_2 - \cdots - y_n)^{\frac{1}{n}}$$

$$G^2 = G_1.G_2 \qquad [$$
সমীকরণ (i) ও (ii) এর সাহায্যে $]$

 $\therefore G = \sqrt{G_1.G_2}$ (প্রমাণিত)

৭। দুটি অশুন্য ধনাত্মক সংখার ক্ষেত্রে প্রমাণ কর যে, $AM \ge GM \ge HM$ প্রমাণ: মনে করি, x_1 ও x_2 দুইটি অশুন্য ধনাত্মক সংখ্যা।

সংজ্ঞানুসারে,
$$AM = \frac{x_1 + x_2}{2}$$
 $GM = \sqrt{x_1.x_2}$ এবং $HM = \frac{2}{\frac{1}{x_1} + \frac{1}{x_2}}$

আমরা জানি, বর্গসংখ্যা ঋণাতাক হতে পারে না। সুতরাং

$$(x_1 - x_2)^2 \ge 0$$

$$\Rightarrow (x_1 + x_2)^2 - 4x_1x_2 \ge 0$$

$$\Rightarrow (x_1 + x_2)^2 \ge 4x_1x_2$$

$$\Rightarrow x_1 + x_2 \ge 2\sqrt{x_1x_2}$$

$$\Rightarrow \frac{x_1 + x_2}{2} \ge \sqrt{x_1x_2}$$

$$\therefore AM \ge GM - (i)$$
আবার,
$$\left(\frac{1}{x_1} - \frac{1}{x_2}\right)^2 \ge 0$$

$$\Rightarrow \left(\frac{1}{x_1} + \frac{1}{x_2}\right)^2 - 4 \cdot \frac{1}{x_1} \cdot \frac{1}{x_2} \ge 0$$

$$\Rightarrow \left(\frac{1}{x_1} + \frac{1}{x_2}\right)^2 \ge \frac{4}{x_1x_2}$$

$$\Rightarrow \left(\frac{1}{x_1} + \frac{1}{x_2}\right) \ge \sqrt{\frac{4}{x_1x_2}}$$

$$\Rightarrow \left(\frac{1}{x_1} + \frac{1}{x_2}\right) \ge \frac{2}{\sqrt{x_1x_2}}$$

$$\Rightarrow \sqrt{x_1x_2} \ge \frac{2}{\frac{1}{x_1} + \frac{1}{x_2}}$$

$$\Rightarrow GM \ge HM - (i i)$$

৮। দুইটি অন্তন্য ধনাত্মক সংখ্যার ক্ষেত্রে প্রমাণ কর যে,
$$AM.HM=(GM)^2$$
 অথবা, $\sqrt{AM.HM}=GM$ প্রমাণ:মনে করি, অন্তন্য ধনাত্মক সংখ্যা দুইটি x_1 ও x_2 ।

$$AM = \frac{x_1 + x_2}{2}$$

$$GM = (x_1 x_2)^{\frac{1}{2}}$$
 এবং $HM = \frac{2}{\frac{1}{2} + \frac{1}{2}}$

সংজ্ঞানুসারে,

এখন, AM. HM=
$$\frac{x_1 + x_2}{2} \cdot \frac{2}{\frac{1}{x_1} + \frac{1}{x_2}}$$

$$\frac{x_1 \times x_1}{x_1 x_2}$$

$$= (x_1 + x_2) \frac{x_1 x_2}{(x_1 + x_2)} = x_1 x_2$$

$$= \left(\sqrt{x_1 x_2}\right)^2$$

$$AM.HM = (GM)^2$$

$$\therefore \sqrt{AM.HM} = GM$$

(প্রমাণিত)

প্রয়োজনীয় সূত্রাবলী:

১। গাণিতিক গড়,
$$AM$$
 অথবা $\overline{x}=\frac{x_1+x_2+.....+x_n}{n}$ (অশ্রেণীকৃত তথ্যের ক্ষেত্রে)
$$=\frac{\sum x_i}{n}$$

$$=\frac{f_1x_1+f_2x_2+.....+f_nx_n}{N}$$
 (শ্রেণিকৃত তথ্যের ক্ষেত্রে)
$$=\frac{\sum f_ix_i}{N}$$

২ । জ্যামিতিক গড়,
$$GM = \sqrt[n]{x_1.x_2.....x_n} / (x_1.x_2......x_n)^{\frac{1}{n}}$$
 (অশ্রেণীকৃত তথ্যের ক্ষেত্রে)
$$= \sqrt[n]{x_1^{f_1}.x_2^{f_2}.....x_n^{f_n}} / (x_1^{f_1}.x_2^{f_2}......x_n^{f_n})^{\frac{1}{N}}$$
 (শ্রেণিকৃত তথ্যের ক্ষেত্রে)
$$9 + \text{তরঙ্গ গড়, } HM = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + + \frac{1}{x_n}}$$
 (অশ্রেণীকৃত তথ্যের ক্ষেত্রে)
$$= \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}$$

$$= \frac{N}{\frac{f_1}{x_1} + \frac{f_2}{x_2} + + \frac{f_n}{x_n}}$$
 (শ্রেণিকৃত তথ্যের ক্ষেত্রে)
$$= \frac{N}{\sum_{i=1}^{n} \frac{f_i}{x_i}}$$
 8 + মধ্যমা, $M_e = \frac{n+1}{2}$ তম পদ ; যখন n বিজ্ঞোড় সংখ্যা
$$\frac{n}{2}$$
 তম পদ + $\left(\frac{n}{2} + 1\right)$ তম পদ ; যখন n জ্ঞোড় সংখ্যা

$$\mathfrak{E}$$
। প্রচুরক = $3 \times \mathrm{Meg}$ মা $-2 \times \mathrm{Meg}$ গাণিতিক গড়
= $3M_{\circ} - 2\overline{x}$

৬। দুটি সংখ্যার ক্ষেত্রে, $AM \times HM = (GM)^2$

৭।
$$\overline{x} = a + c\overline{u}$$
 ; যেখানে a মূল ও $c = x$ মাপনি

৮। সন্দিলিত গাণিতিক গড়,
$$\overline{x}_c = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2}$$

$$\overline{x}_c = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2 + n_3 \overline{x}_3}{n_1 + n_2 + n_3}$$

$$\overline{x}_c = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2 + \dots + n_k \overline{x}_k}{n_1 + n_2 + \dots + n_k \overline{x}_k}$$

উচ্চমাধ্যমিক পরিসংখ্যান

৯। প্রথম
$$n$$
 স্বাভাবিক সংখ্যার গাণিতিক গড় ও মধ্যমা সমান অর্থাৎ $\overline{x}=M_{_{arepsilon}}=rac{n+1}{2}$

১০। ভার আরোপিত গাণিতিক গড়,
$$\overline{x}_{_{\! \! w}}=\dfrac{w_1x_1+w_2x_2+.....+w_nx_n}{w_1+w_2+....+w_n}$$

$$=\frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

$$33 + 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$32 + 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

১৩ ৷
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left\{\frac{n(n+1)}{2}\right\}^2$$

$$38 + 1 + r + r^2 + \dots + r^n = \frac{r^{n+1} - 1}{r - 1}; r > 1$$

$$rac{1}{2} + r + r^2 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}; r < 1$$

১৬। নতুন চলক,
$$d_i = \frac{x_i - ($$
প্রথম পদ – সাধারণ অম্ড্র)} সাধারণ অম্ড্র

১৭। শেষ পদ = প্রথম পদ + (n-1) x সাধারণ অন্তর

$$3b + (x_1 - x_2)^2 = (x_1 + x_2)^2 - 4x_1x_2$$

$$38 + (x_1 + x_2)^2 = (x_1 - x_2)^2 + 4x_1x_2$$

$$90 + x_1^2 + x_2^2 = (x_1 - x_2)^2 + 2x_1x_2$$

$$=(x_1+x_2)^2-2x_1x_2$$

২০। ভুলবশতঃ তথ্যের সমষ্টি,
$$\sum x_i = n\overline{x}$$

২১। সঠিক তথ্যের সমষ্টি,
$$\sum x_i' = \sum x_i -$$
ভুল তথ্য + সঠিক তথ্য

২২। সঠিক গড়,
$$\bar{x}' = \frac{\sum x_i'}{n}$$

$$89 + a^3 + b^3 + c^3 - 3abc = \frac{1}{2}(a+b+c)\{(a-b)^2 + (b-c)^2 + (c-a)^2\}$$

গাণিতিক সমস্যা ও সমাধান

১। দূটি অন্তন্য ধনাত্মক মানের গাণিতিক গড় ও জ্যামিতিক গড় যথাক্রমে 50 ও 40 হলে তরঙ্গ গড় ও মান দূটি নির্ণয় কর।

সমাধান:

দেওয়া আছে,

AM = 50

GM = 40

আমরা জানি,
$$AM \times HM = (GM)^2$$

$$HM = \frac{(GM)^2}{AM}$$

$$= \frac{(40)^2}{50}$$

$$= \frac{1600}{50}$$

$$= 32$$

মনে করি, অশুন্য ধনাত্মক সংখ্যা দুইটি x_1 ও x_2

এখন,

$$AM = 50$$

$$\Rightarrow \frac{x_1 + x_2}{2} = 50$$

আবার,

GM = 40
⇒
$$\sqrt{x_1 x_2}$$
 = 40
∴ $x_1 x_2$ = 1600 - - - - (2)

আমরা জানি,

সমীকরণ (1) ও (3) যোগ করিয়া পাই,

$$x_1 + x_2 + x_1 - x_2 = 100 + 60$$

$$2x_1 = 160$$

$$x_1 = \frac{160}{2}$$

$$= 80$$

সমীকরণ (1) থেকে (3) বিয়োগ করিয়া পাই,

$$x_1 + x_2 - x_1 + x_2 = 100 - 60$$

at, $2x_2 = 40$

∴ $x_2 = \frac{40}{2}$

= 20

নির্ণেয়, HM=32 এবং সংখ্যা দুইটি 80 ও 20।

২। 2টি রাশির গাণিতিক গড় 5 এবং জ্যামিতিক গড় 3 হলে রাশিষয় নির্ণয় কর।
সমাধানঃ

দেওয়া আছে.

AM = 5

GM = 3

ধরি, রাশি দুইটি x_1 ও x_2

এখন,
$$AM = 5$$

$$\Rightarrow \frac{x_1 + x_2}{2} = 5$$

$$\therefore x_1 + x_2 = 10 - - - - - - (i)$$
আবার, $GM = 3$

$$\Rightarrow \sqrt{x_1.x_2} = 3$$

$$\therefore x_1x_2 = 9.....(ii)$$

[বর্গ করে]

আমরা জানি,

$$(x_1 - x_2)^2 = (x_1 + x_2)^2 - 4x_1.x_2$$

$$= (10)^2 - 4 \times 9$$

$$= 100 - 36$$

$$= 64$$

$$\therefore x_1 - x_2 = \sqrt{64} = 8 - - - - - (iii)$$

সমীকরণ (i) ও (iii) যোগ করিয়া পাই,

$$x_1 + x_2 - x_1 - x_2 = 10 + 8$$

$$\Rightarrow 2x_1 = 18$$
$$\therefore x_1 = 9$$

(i) নং সমীকরণে x_i এর মান বসিয়ে পাই.

$$9 + x_2 = 10$$

$$x_2 = 10 - 9$$

় নির্ণেয় রাশি দুইটি 9 ও 1।

৩। দুইটি সংখ্যার গাণিতিক গড় 25, জ্যামিতিক গড় 15 হলে তরঙ্গ গড় ও সংখ্যা দুইটি নির্ণয় কর। সমাধান:

দেওয়া আছে.

$$AM = 25$$

$$GM = 15$$

 $HM = ?$

আমরা জানি.

$$AM \times HM = (GM)^2$$

$$\Rightarrow 25 \times HM = (15)^2$$

$$\Rightarrow HM = \frac{225}{25}$$

ধরি.

সংখ্যা দুইটি x_1 ও x_2

∴ সংজ্ঞানুসারে.

$$AM = \frac{x_1 + x_2}{2}$$

$$\Rightarrow 25 = \frac{x_1 + x_2}{2}$$

$$\therefore$$
 $x_1+x_2=50$(i) এবং $GM=\sqrt{x_1x_2}$

$$\Rightarrow$$
 15 = $\sqrt{x_1 x_2}$

$$\Rightarrow 15 = \sqrt{x_1 x_2}$$

$$\Rightarrow (15)^2 = x_1 x_2$$

$$x_1 x_2 = 225....(ii)$$

আমরা জানি,

$$(x_1 - x_2)^2 = (x_1 + x_2)^2 - 4x_1x_2$$

$$= (50)^2 - 4 \times 225$$

$$= 2500 - 900$$

$$= 1600$$

$$\therefore x_1 - x_2 = 40....(iii)$$

সমীকরণ(i) ও (iii) যোগ করিয়া পাই,

$$x_1 + x_2 + x_1 - x_2 = 50 + 40$$

 $\Rightarrow 2x_1 = 90$
 $\therefore x_1 = 45$

সমীকরণ (i) ও (iii) বিয়োগ করিয়া পাই,

$$x_1 + x_2 - x_1 + x_2 = 50 - 40$$

 $\Rightarrow 2x_1 = 10$

$$\therefore x_2 = 5$$

∴তরঙ্গ গড় ৪. সংখ্যা দুইটি 45. 5।

৪। দুইটি রাশির গাণিতিক গড় 5 ও তরঙ্গ গড় 1.8 হলে জ্যামিতিক গড় ও রাশিষয় নির্ণয় কর। সমাধান :

দেওয়া আছে,

$$AM = 5$$
$$HM = 1.8$$

GM = ?

আমরা জানি,

$$AM \times HM = (GM)^{2}$$

$$\Rightarrow GM = \sqrt{AM \times HM}$$

$$= \sqrt{5 \times 1.8}$$

$$= \sqrt{9.0}$$

$$= 3$$

ধরি, সংখ্যা দুইটি
$$x_1$$
 ও x_2 $AM=5$
$$\Rightarrow \frac{x_1+x_2}{2}=5$$
 $\therefore x_1+x_2=10.....(i)$

আবার,
$$HM = 1.8$$

$$\Rightarrow \frac{2x_1 x_2}{x_1 + x_2} = 1.8$$

$$\Rightarrow \frac{2 \times x_1 x_2}{10} = 1.8$$

$$\therefore x_1 x_2 = 9....(ii)$$

আমরা জানি,

$$(x_1 - x_2)^2 = (x_1 + x_2)^2 - 4x_1x_2$$

$$= (10)^2 - 4 \times 9$$

$$= 100 - 36$$

$$= 64$$

$$\therefore x_1 - x_2 = 8 \dots (iii)$$

সমীকরণ (i) ও (iii) যোগ করিয়া পাই,

$$x_1 + x_2 + x_1 - x_2 = 10 + 8$$

$$\Rightarrow 2x_1 = 18$$

$$\therefore x_1 = 9$$

সমীকরণ (i) থেকে (iii) বিয়োগ করিয়া পাই,

$$x_1 + x_2 - x_1 + x_2 = 10 - 8$$
$$\Rightarrow 2x_2 = 2$$

$$\therefore x_2 = 1$$

নির্ণেয়, জ্যামিতিক গড 3 এবং সংখ্যা দুইটি 9 ও 1.

c। 2টি ধনাত্মক রাশির গাণিতিক গড় ও তরঙ্গ গড় যথাক্রমে 9 ও 4 হলে জ্যামিতিক গড় নির্ণয় কর। সমাধানঃ

দেওয়া আছে,

$$AM = 9$$

$$HM = 4$$

GM = ?

আমরা জানি,

$$AM.HM = (GM)^2$$
$$9 \times 4 = (GM)^2$$

$$GM = \sqrt{36} = 6$$

৬। কতিপয় ধনাত্মক রাশির গাণিতিক গড় 50 ও জ্যামিতিক গড় 40। রাশিগুলোকে 5 দ্বারা ভাগ করা হলে ভাগফলগুলোর গাণিতিক গড় ও জ্যামিতিক গড় নির্ণয় কর।

সমাধান:

মনে করি, কোন চলকের x এর n সংখ্যক মানসমূহ $x_1, x_2, \dots -x_n$

গাণিতিক গড় =
$$\frac{x_1 + x_2 + \dots + x_n}{n} = 50$$

জ্যামিতিক গড় =
$$(x_1x_2 - - - - x_n)^{\frac{1}{n}} = 40$$

প্রতিটি মানকে 5 দ্বারা ভাগ করে পাই.

$$\frac{x_1}{5}, \frac{x_2}{5} - \dots - \frac{x_n}{5}$$
নতুন গাণিতিক গড় = $(\frac{x_1}{5} + \frac{x_2}{5} + \dots - \dots + \frac{x_n}{5}) \bigg/ n$
= $\frac{x_1 + x_2 + \dots - \dots + x_n}{5n}$
= $\frac{1}{5} \bigg(\frac{x_1 + x_2 + \dots - \dots + x_n}{n} \bigg)$
= $\frac{1}{5} \times 50 = 10$

নতুন জ্যামিতিক গড়
$$=$$
 $\left(\frac{x_1}{5}, \frac{x_2}{5}, \dots, \frac{x_n}{5}\right)^{\frac{1}{n}}$ $=$ $\frac{(x_1x_2 - \dots - x_n)^{\frac{1}{n}}}{(5.5 - \dots - 5)^{\frac{1}{n}}}$ $=$ $\frac{(x_1x_2 - \dots - x_n)^{\frac{1}{n}}}{(5^n)^{\frac{1}{n}}}$ $=$ $\frac{40}{5}$ $=$ 8

∴ নির্ণেয় গাণিতিক গড় 10 ও জ্যামিতিক গড় 8।

৭। কোন চলকের গড় 45 উহার প্রতিটি মান থেকে 20 বিয়োগ করে বিয়োগফলকে 5 দ্বারা ভাগ করলে নতুন চলকের গড় মান কত হবে?

সমাধানঃ মনে করি, কোন চলক x এর n সংখ্যক মান $x_1, x_2 - - - x_n$ এবং উহাদের গাণিতিক গড় \overline{x} প্রশ্নমতে,

ভ,
$$u_i = \frac{x_i - 20}{5}$$

$$u_i = \frac{n}{2} = \frac{n}{2} = \frac{n}{2}$$

$$u_i = \frac{n}{2} = \frac{n}{2} = \frac{n}{2}$$

$$u_i = \frac{n}{2} = \frac{n}{2} = \frac{n}{2} = \frac{n}{2} = \frac{n}{2}$$

$$v_i = \frac{n}{2} = \frac{n}{2}$$

$$v_i = \frac{n}{2} = \frac{n}{2}$$

বা,
$$\overline{x} = 5\overline{u} + 20$$

বা,
$$45 = 20 + 5\overline{u}$$

বা,
$$45 - 20 = 5\overline{u}$$

বা.
$$25 = 5\overline{u}$$

বা,
$$\overline{u} = \frac{25}{5}$$

$$\bar{u} = 5$$

∴ নির্ণেয় নতন চলকের গড়, 5।

৮। কোন চলকের গড় 10 উহার প্রতিটি মানকে 5 দ্বারা গুণ করে গুণফলের সাথে 25 যোগ করলে নতুন চলকের গাণিতিক গড় কত হবে?

সমাধানঃ মনে করি, কোন চলক x এর n সংখ্যক মানসমূহ x_1,x_2--x_n এবং উহাদের গাণিতিক গড় \overline{x} । প্রশ্নমতে,

$$u_i = 5x_i + 25$$
বা, $\sum_{i=1}^n u_i = 5\sum_{i=1}^n x_i + \sum_{i=1}^n 25$
 \overline{u}_i
 $\overline{u}_i = 5\sum_{i=1}^n x_i + \sum_{i=1}^n 25$
 $\overline{u}_i = \frac{5\sum_{i=1}^n x_i}{n} + \frac{25.n}{n}$
বা, $\overline{u}_i = 5\overline{x} + 25$
 $= 5 \times 10 + 25$
 $= 50 + 25 = 75$
 \therefore নির্ণেয় নম্বন চলকের গড়, $75 + 1$

৯। কোন চলকের প্রতিটি মান 250 বিয়োগ দিয়ে বিয়োগফলকে 10 দ্বারা ভাগ করে বিচ্যুতি চলক নির্ণয় করা হয়। বিচ্যুতি চলকের গড় 3.57 হলে মূল চলকের গড় নির্ণয় কর।

সমাধানঃ মনে করি, কোন চলকের x এর n সংখ্যক মানসমূহ $x_1,x_2=--x_n$ এবং উহাদের গাণিতিক গড় \overline{x} ।

প্রশ্নমতে,

$$u_i = \frac{x_i - 250}{10}$$
 $\Rightarrow x_i - 250 = 10u_i$
 $\Rightarrow x_i = 250 + 10u_i$
 $\Rightarrow \frac{\sum x_i}{n} = \frac{\sum 250}{n} + 10 \frac{\sum u_i}{n}$
 $\Rightarrow \overline{x} = \frac{n.250}{n} + 10\overline{u}$
 $\Rightarrow \overline{x} = 250 + 10(3.57)$
 $\Rightarrow \overline{x} = 250 + 35.7$

: লিপেয়া গাণিতকক গছ 285.7

এখানে, $u_i = \text{Table} \ \text{চচ beta}$ $\overline{u} = 3.57$ $\overline{x} = ?$

১০। 5, 10, ----- 125 এই ধারাটির গাণিতিক গড় নির্ণয় কর।

সমাধান:

ধরি,
$$x_i = \{5, 10, \dots 125\}$$
এবং $u_i = \frac{x_i - a}{c}$

$$= \frac{x_i - 0}{5}$$

$$= \frac{x_i}{5}$$
 $u_i = \{1, 2, \dots 25\}$
ইহা 25টি স্বাভাবিক সংখ্যার সেট,

মূল,
$$a=0$$
মাপনী, $c=5$
 $u_i=$ বিচ্নতি চলক $\overline{x}=$?

∴ প্রথম n স্বাভাবিক সংখ্যার গাণিতিক গড়

$$\overline{u} = \frac{n+1}{2}$$

$$= \frac{25+1}{2} \qquad [এখানে n = 25]$$

$$= \frac{26}{2} = 13$$

আমরা জানি, গাণিতিক গড় মূল ও মাপনির উপর নির্ভরশীল,

$$\overline{x} = a + c\overline{u}$$
$$= 0 + 5 \times 13$$

$$= 65$$

১১। 20, 25, 30 ----- 100 সংখ্যাগুলির গড নির্ণয় কর।

সমাধান:

ধরি,
$$x = \{20,25,30------100\}$$
এবং $u_i = \frac{x_i - a}{c}$

$$= \frac{x_i - 15}{5}$$

$$\therefore u_i = \{1,2,3---17\}$$

মূল, a=15মাপনী, c=5 $u_i=$ নতুন চলক $\overline{x}=$?

ইহা 17টি স্বাভাবিক সংখ্যার সেট.

∴ প্রথম n স্বাভাবিক সংখ্যার গাণিতিক গড.

$$\overline{u} = \frac{n+1}{2}$$

$$= \frac{17+1}{2} \qquad [এখানে n = 17]$$

$$= \frac{18}{2} = 9$$

আমরা জানি, গাণিতিক গড মূল ও মাপনীর উপর নির্ভরশীল,

$$\overline{x} = a + c\overline{u}$$

$$= 15 + 5 \times 9$$

$$= 15 + 45$$

$$= 60$$

১২ । a, a + c, a + 2c, a + 3c - - - - - a + 2nc ধারাটির গাণিতিক গড় নির্ণয় কর।

সমাধান:

ধরি, $x_c = \{a, a+c, a+2c, a+3c----a+2nc\}$ এবং $u_i = \frac{x_i - b}{d}$

ইহা (2n+1)টি স্বাভাবিক সংখ্যার সেট,

∴প্রথম n স্বাভাবিক সংখ্যার গাণিতিক গড়,

$$\overline{u} = \frac{n+1}{2}$$

$$= \frac{2n+1+1}{2} \qquad [এখানে n = 2n+1]$$

$$= \frac{2n+2}{2}$$

$$= \frac{2(n+1)}{2}$$

$$\therefore \overline{u} = n+1$$

আমরা জানি, গাণিতিক গড় মূল ও মাপনীর উপর নির্ভরশীল,

$$\overline{x} = b + d\overline{u}$$

$$= a - c + c(n+1)$$

$$= a - c + nc + c$$

$$= a + nc$$

১৩। কোন নির্দিষ্ট শ্রেণিতে 150 জন ছাত্র ছাত্রীর গড় ওজন 60 কেজি। তাদের মধ্যে ছাত্রদের গড় ওজন 70 কেজি এবং ছাত্রীদের গড় ওজন 55 কেজি। ঐ শ্রেণির ছাত্র ছাত্রীর সংখ্যা বের কর।

সমাধানঃ মনে করি, ছাত্রদের সংখ্যা n_1 ও গড় ওজন \overline{x}_1 এবং ছাত্রীদের সংখ্যা n_2 ও গড় ওজন \overline{x}_2

দেওয়া আছে,
$$n_1 + n_2 = 150$$

$$n_1 = 150 - n_2 - - - - - - (i)
 \bar{x}_1 = 70$$

$$\overline{x}_2 = 55$$

সম্মিলিত গড় ওজন, $\, \bar{x}_{\scriptscriptstyle \mathcal{C}} = 60 \,$

আমরা জানি, সম্মিলিত গড়,

$$\overline{x}_c = \frac{n_1\overline{x}_1 + n_2\overline{x}_2}{n_1 + n_2}$$
 $\Rightarrow 60 = \frac{(150 - n_2).70 + n_2.55}{150}$
 $\Rightarrow 9000 = 10500 - 70n_2 + 55n_2$
 $\Rightarrow 9000 = 10500 - 15n_2$
 $\Rightarrow 15n_2 = 10500 - 9000$
 $\Rightarrow 15n_2 = 1500$
 $\Rightarrow n_2 = \frac{1500}{15} = 100$
 n_2 এর মান (i) নং সমীকরণে বসিয়ে পাই, $n_1 = 150 - 100 = 50$

.. নির্ণেয় ছাত্রদের সংখ্যা 50 জন ও ছাত্রীদের সংখ্যা 100 জন।

১৪। কোন কলেজে 75 জন ছাত্রছাত্রী আছে। ছাত্রদের গড় নম্বর 80, ছাত্রীদের গড় নম্বর 75 ও সম্মিলিত গড় নম্বর 78 হলে ছাত্র ও ছাত্রীর সংখ্যা নির্ণয় কর।

সমাধান:

দেওয়া আছে,

$$n_1 + n_2 = 75$$

মনে করি,

ছাত্র সংখ্যা n_1 ও গড় নম্বর \overline{x}_1 এবং ছাত্রী সংখ্যা n_2 ও গড় নম্বর \overline{x}_2 ধরি

$$n_1=n$$
 এবং $\overline{x}_1=80$
$$n_2=75-n$$
 এবং $\overline{x}_2=75$

সন্মিলিত গড়, $\bar{x}_c = 78$

আমরা জানি,

$$\overline{x}_c = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2}$$

$$\Rightarrow 78 = \frac{(n \times 80) + (75 - n) \times 75}{n + 75 - n}$$

$$\Rightarrow 78 = \frac{80n + (75 \times 75) - 75n}{75}$$

$$\Rightarrow 78 = \frac{5n + 5625}{75}$$

$$\Rightarrow$$
 5n + 5625 = (75 × 78)

$$\Rightarrow 5n + 5625 = 5850$$

$$\Rightarrow 5n = 5850 - 5625$$

$$\Rightarrow$$
 5n = 225

$$\Rightarrow n = \frac{225}{5}$$

$$n = 45$$

∴निर्त्वं ष्टां ७ ष्टां वीत्रः था यथा करम 45 ७ 30 जन।

১৫। কোন কলেজের মানবিক, বিজ্ঞান ও ব্যবসায় শিক্ষা শাখার 20, 45 ও 60 জন ছাত্রের নম্বরের গড় যথাক্রমে 42, 50 ও 62 নম্বর হলে তাদের সমিলিত গড় কত?

সমাধান:

আমরা জানি,

সম্মিলিত গড়,

$$\overline{x}_c = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2 + n_2 \overline{x}_2}{n_1 + n_2 + n_3}$$

$$= \frac{(20 \times 42) + (45 \times 50) + (60 \times 62)}{20 + 45 + 60}$$

$$= 54$$

া এখানে,
$$n_1 = 20, \quad \overline{x}_1 = 42$$

$$n_2 = 45, \quad \overline{x}_2 = 50$$

$$n_3 = 60, \quad \overline{x}_3 = 62$$

১৬। সমান সংখ্যক ছাত্রী বিশিষ্ট দুইটি শ্রেণির ছাত্রীদের পরিসংখ্যানের প্রাপ্ত নন্দরের গড় যথাক্রমে 90 ও 95 হলে সম্মিলিত গড় কত?

সমাধান :

আমরা জানি.

সন্মিলিত গড়,

$$\overline{x}_c = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2}$$
 -----(i)

এখানে $n_1 = n_2$ (সমান সংখ্যক ছাত্রী)

$$\bar{x}_1 = 90, \bar{x}_2 = 95$$

(i) নং সমীকরণ হতে পাই,

$$\begin{split} \overline{x}_{c} &= \frac{n_{1}.90 + n_{1}.95}{n_{1} + n_{1}} \\ &= \frac{185 \, n_{1}}{2 n_{1}} \\ &= 92.5 \end{split}$$

∴নির্ণেয় সম্মিলিত গড়, $\bar{x}_c = 92.5$ ।

১৭। কোন গার্মেন্টেস ফ্যান্টরীতে পুরুষ ও মহিলা কর্মচারীদের মাসিক গড় বেতন যথাক্রমে 1260 টাকা ও 960 টাকা কিন্তু সমস্ত কর্মচারীদের গড় বেতন 1200 টাকা। ঐ ফ্যান্টরীতে পুরুষ ও মহিলা কর্মচারীদের শতকরা হার নির্ণয় কর।

সমাধানঃ মনে করি, পুরুষ কর্মচারীর সংখ্যা n_1 ও গড় বেতন \overline{x}_1 এবং মহিলা কর্মচারীর সংখ্যা n_2 ও গড় বেতন \overline{x}_2

দেওয়া আছে, $\bar{x}_1 = 1260, \bar{x}_2 = 960$ সম্মিলিত গড়, $\bar{x}_2 = 1200$

আমরা জানি.

সন্মিলিত গড.

$$egin{align*} ar{x}_c &= rac{n_1 ar{x}_1 + n_2 ar{x}_2}{n_1 + n_2} \ &\Rightarrow 1200 = rac{n_1.1260 + n_2960}{n_1 + n_2} \ &\Rightarrow 1200 n_1 + 1200 n_2 = 1260 n_1 + 960 n_2 \ &\Rightarrow 1260 n_1 + 960 n_2 = 1200 n_1 + 1200 n_2 \ &\Rightarrow 1260 n_1 - 1200 n_1 = 1200 n_2 - 960 n_2 \ &\Rightarrow 60 n_1 = 240 n_2 \ &\Rightarrow rac{n_1}{n_2} = rac{240}{60} = rac{4}{1} \ &\therefore n_1 \colon n_2 = 4 \colon 1 \ &\end{cases}$$
 পুৰুষ কৰ্মচাৱীর সংখ্যা = $rac{n_1}{n_1 + n_2} imes 100 \ &= rac{4}{4 + 1} imes 100 \ &= rac{4}{5} imes 100 \ &= 1000 \ &= 100 \ &= 1000 \ &= 1000 \ &= 1000 \ &= 1000 \ &= 1000 \ &= 1000 \ &= 1000 \ &= 1000 \ &= 1000 \ &= 1000 \ &= 1000 \ &= 1000 \ &= 10000 \ &=$

মহিলা কর্মচারীর সংখ্যা =
$$\frac{n_2}{n_1+n_2} \times 100$$

$$= \frac{1}{4+1} \times 100$$

$$= \frac{1}{5} \times 100$$

$$= 20%$$

= 80%

১৮। কোন কারখানায় শ্রমিকের গড় বেতন 500 টাকা। ঐ কারখানায় পুরুষ ও মহিলা শ্রমিকের গড় বেতন যথাক্রমে 520 টাকা ও 420 টাকা হলে পুরুষ ও মহিলা শ্রমিকের অনুপাত ও সংখ্যা নির্ণয় কর।

সমাধান:

ধরি, পুরুষ শ্রমিকের সংখ্যা,
$$n_1 = m$$

মহিলা কর্মচারীর সংখ্যা, $n_2 = n$

$$\overline{x}_c = 500$$

$$\overline{x}_1 = 520$$

$$\overline{x}_2 = 420$$

$$\bar{x}_1 = 520$$

$$\bar{x}_2 = 420$$

সন্মিলিত গড়,

$$\overline{x}_{c} = \frac{n_{1}\overline{x}_{1} + n_{2}\overline{x}_{2}}{n_{1} + n_{2}}$$

$$\Rightarrow 500 = \frac{(m \times 520) + (n \times 420)}{m + n}$$

$$\Rightarrow 500 = \frac{520 m + 420 n}{m + n}$$

$$\Rightarrow 520 m + 420n = 500 (m + n)$$

$$\Rightarrow 520 m + 420n = 500 m + 500 n$$

$$\Rightarrow 20 m = 80 n$$

$$\Rightarrow \frac{m}{n} = \frac{4}{1}$$

$$\therefore m : n = 4 : 1$$

∴ পুরুষ শ্রমিকের সংখ্যা = 500 এর
$$\frac{4}{5}$$
= 400 জন

$$\therefore$$
 মহিলা শ্রমিকের সংখ্যা $=500\,$ এর $\frac{1}{5}\,$

∴ পুরুষ ও মহিলা শ্রমিকের অনুপাত = 4:1 পুরুষ শ্রমিকের সংখ্যা = 400 জন মহিলা শ্রমিকের সংখ্যা = 100 জন

= 100 জন

১৯। 100 জন শ্রমিকের মাসিক গড় বেতন 1000 টাকা। পরে দেখা গেল যে, দু'জনের ভূলক্রমে 580 ও 590 টাকা ধরা হয়েছে, যেখানে তাদের সঠিক বেতন 850 টাকা ও 950। শ্রমিকের সঠিক গড় বেতন নির্ণয় কর।

সমাধান:

দেওয়া আছে,

শ্রমিক সংখ্যা, n=100

গড় বেতন, $\bar{x} = 1000$ টাকা

ভুলবশত বেতনের সমষ্টি, $\sum x_i = n\overline{x} = 100 \times 1000$

= 100000 টাকা

সঠিক বেতনের সমষ্টি,
$$\sum x_i' = \sum x_i -$$
ভুল তথ্য $+$ সঠিক তথ্য
$$= 100000 - (580 + 590) + (850 + 950)$$

$$= 100630 \text{ টাকা}$$

সঠিক গড় বেতন =
$$\frac{\sum x_i'}{n}$$
= $\frac{100630}{100}$
= 1006.3 টাকা।

২০। কোন কারখানায় 50 জন শ্রমিকের দৈনিক গড় বেতন 90 টাকা নির্ণয় করা হয়েছিল। কিন্তু পরে দেখা পোল দুইজন শ্রমিকের বেতন ভূলক্রমে 94 টাকা এবং 89 এর স্থলে 49 এবং 98 লেখা হয়েছিল। তাদের সঠিক গড় বেতন কত?

সমাধান: ধরি,

শ্রমিকের সংখ্যা,
$$n = 50$$
 গড় বেতন, $\bar{x} = 90$

ভুলবশতঃ বেতনের সমষ্টি, $\sum x_i = n\overline{x}$

$$= 50 \times 90$$

= 4500

সঠিক বেতনের সমষ্টি,
$$\sum x_i^{'}=\sum x_i^{}-(49+98)+(94+89)$$

$$=4500-147+183$$

$$=4683-147$$

$$=4536$$

সঠিক গড় বেতন,
$$\overline{x}' = \frac{\sum x_i'}{n} = \frac{4536}{50} = 90.72$$

২১। কোন নিবেশনের প্রতিটি মানকে 4 দ্বারা ভাগ করলে প্রাপ্ত নিবেশনের জ্যামিতিক গড় 4 পাওয়া গেল। মূল নিবেশনের জ্যামিতিক গড় নির্ণয় কর।

সমাধান: মনে করি, কোন চলকের x এর $\mathbf n$ সংখ্যক মাননমূহ, x_1,x_2----x_n এবং উহাদের জ্যামিতিক গড় G্হলে,

এখানে,

$$G_u = 4$$

u = নতন চলব

সুতরাং u চলকের জ্যামিতিক গড়,

$$G_{u} = (u_{1} u_{2}.....u_{n})^{\frac{1}{n}}$$

$$4 = (\frac{x_{1}}{4}.\frac{x_{2}}{4}.....\frac{x_{n}}{4})^{\frac{1}{n}}$$

$$4 = \frac{(x_{1}x_{2} - - - - x_{n})^{\frac{1}{n}}}{(4.4......4)^{\frac{1}{n}}}.$$

$$4 = \frac{G_{x}}{(4^{n})^{\frac{1}{n}}}$$

$$4 = \frac{G_{x}}{4}$$

$$\therefore G_{x} = 16 + 1$$

২২। কতক্ষলি সংখ্যার জ্যমিতিক গড় 4 উহার প্রতিটি মানকে 5 দ্বারা গুণ করে প্রাপ্ত মানগুলির জ্যামিতিক গড় কত? সমাধানঃ মনে করি, কোন চলকের x এর n সংখ্যক মাননমূহ, $x_1, x_2 -----x_n$ এবং উহাদের জ্যামিতিক গড় G_z হলে,

এখানে,

 $G_x = 4$ $G_u = ?$

u, = নতুন চলব

সুতরাং u চলকের জ্যামিতিক গড়,

২৩। কতগুলির সংখ্যার জ্যামিতিক গড় 40 উহার প্রতিটি মানকে 5 দ্বারা ভাগ করে প্রাপ্ত মানগুলির জ্যামিতিক গড় কত?

সমাধানঃ মনে করি, কোন চলকের x এর n সংখ্যক মানসমূহ x_1,x_2,\ldots,x_n এবং উহাদের জ্যামিতিক

 $G_x = 40$ $G_u = ?$

গড়
$$G_x$$
 হলে, $G_x=(x_1,x_2---x_n)^{\frac{1}{n}}$

$$40=\ (x_1,x_2---x_n)^{\frac{1}{n}} \(i)$$

ধরি,

$$u_i = \frac{x_i}{5}$$

$$u_1 = \frac{x_1}{5}$$

$$u_2 = \frac{x_2}{5}$$

.....

$$u_n = \frac{x_n}{5}$$

সুতরাং ॥ চলকের জ্যামিতিক গড়,

$$G_{u} = (u_{1}u_{2}.....u_{n})^{\frac{1}{n}}$$

$$= \left(\frac{x_{1}}{5} \cdot \frac{x_{2}}{5} - - - \frac{x_{n}}{5}\right)^{\frac{1}{n}}$$

$$= \left(\frac{x_{1}x_{2} - - - x_{n}}{5 \cdot 5 - - - 5}\right)^{\frac{1}{n}}$$

$$= \frac{(x_{1}x_{2} - - - x_{n})^{\frac{1}{n}}}{(5^{n})^{\frac{1}{n}}}$$

$$= \frac{40}{5} \qquad [সমীকরণ (i) এর সাহায্যে]$$

$$= 8$$

২৪। যদি কোন চলক $m{x}$ এর জ্যামিতিক গড় $m{15}$ হয় তবে নতুন চলক $m{y}=rac{x}{5}$ জ্যামিতিক গড় নির্ণয় কর।

সমাধানঃ মনে করি, কোন চলকের x এর n সংখ্যক মানসমূহ x_1,x_2,\ldots,x_n এবং উহাদের জ্যামিতিক গড় G্হলে,

দেওয়া আছে, নতুন চলক, $y = \frac{x}{5}$

$$x = 5y$$

$$x_i = 5y_i$$

$$\therefore x_1 = 5y_1, x_2 = 5y_2 - - - - - - - - x_n = 5y_n (i = 1, 2, ..., n)$$

(i) নং সমীকরণ হতে পাই.

$$15 = (5y_1.5y_2 - - - 5y_n)^{\frac{1}{n}}$$

$$15 = \{(5.5 - - - - 5)(y_1 y_2 - - - - y_n)\}^{\frac{1}{n}}$$

$$15 = (5.5 - - - - - - 5)^{\frac{1}{n}} (y_1 y_2 - - - y_n)^{\frac{1}{n}}$$

$$15 = (5^n)^{\frac{1}{n}}G_y$$
 [নতুন জ্যামিতিক গড়, $G_y = (y_1y_2.....y_n)^{\frac{1}{n}}$]

$$\frac{15}{5} = G_y$$

$$\therefore G_v = 3$$

২৫। 3টি সংখ্যার জ্যামিতিক গড় 6 চতুর্থ একটি সংখ্যা নেওয়া হলে তাদের জ্যামিতিক গড় 12 চতুর্থ সংখ্যাটি কত?

সমাধান:

মনে করি, সংখ্যা তিনটি x_1, x_2, x_3

$$GM = (x_1 x_2 x_3)^{\frac{1}{3}} = 6$$
$$\Rightarrow x_1 x_2 x_3 = 6^3$$
$$= 216$$

ধরি, চতুর্থ সংখ্যাটি $=x_4$

GM =
$$(x_1.x_2.x_3.x_4)^{\frac{1}{4}} = 12$$

 $\Rightarrow x_1.x_2.x_3.x_4 = (12)^4$
 $\Rightarrow 216x_4 = 20736$
 $\Rightarrow x_4 = \frac{20736}{216}$
 $\Rightarrow x_4 = 96$

∴নির্ণেয় চতুর্থ সংখ্যাটি 96।

২৬। a, ar, ar^2 ——— ar^{n-1} ধারাটির জন্য দেখাও যে, $GM = \sqrt{AMHM}$ অথবা, n সংখ্যক সমানুপাতিক সংখ্যার গাণিতিক গড়, জ্যামিতিক গড় ও তরঙ্গ গড় নির্ণয় কর এবং দেখাও যে,

$$\sqrt{AM \times HM} = GM$$

সমাধানঃ a, ar, ar 2 -------------------------------- ধারাটির পদসংখ্যা = n-1+1=n এখন,

$$AM = \frac{a + ar + ar^{2} + \dots + ar^{n-1}}{n}$$

$$AM = \frac{a(1 + r + r^{2} + \dots + r^{n-1})}{n} - \dots - (i)$$

$$GM = (a \cdot ar \cdot ar^{2} - \dots - ar^{n-1})^{\frac{i}{n}}$$

$$= \left\{ (aa - \dots - a)(r^{1}r^{2} - \dots - r^{n-1}) \right\}_{n}^{\frac{i}{n}}$$

$$= \left\{ a^{n} \right\}_{n}^{\frac{i}{n}} \left\{ r^{1+2+\dots - (n-1)} \right\}_{n}^{\frac{i}{n}}$$

$$= a \left\{ r^{\frac{(n-1)(n-1+1)}{2}} \right\}_{n}^{\frac{i}{n}}$$

$$GM = a \left\{ r^{\frac{(n-1)n}{2}} \right\}_{n}^{\frac{i}{n}} = ar^{\frac{n-1}{2}} - \dots - (ii)$$

$$HM = \frac{n}{\frac{1}{a} + \frac{1}{ar} + \frac{1}{ar^{2}} + \dots + \frac{1}{ar^{n-1}}}$$

$$= \frac{n}{\frac{1}{a} (1 + \frac{1}{r} + \frac{1}{r^{2}} + \dots + \frac{1}{r^{n-1}})}$$

$$= \frac{na}{(1 + \frac{1}{r} + \frac{1}{r^{2}} + \dots + \frac{1}{r^{n-1}})}$$

$$= \frac{na}{r^{n-1} + r^{n-2} + \dots + 1}$$

$$HM = \frac{nar^{n-1}}{1 + r + \dots + r^{n-1}}$$

$$+ HM = \frac{nar^{n-1}}{1 + r + \dots + r^{n-1}} - \dots - (iii)$$

এখন (i) ও (iii) নং গুণ করে পাই.

$$AM.HM = \frac{a(1+r+r^2+---+r^{n-1})}{n} \times \frac{nar^{n-1}}{(1+r+---+r^{n-1})}$$
 $AM.HM = a^2r^{n-1}$

$$\sqrt{AM.HM} = \sqrt{a^2r^{n-1}} = (a^2r^{n-1})^{\frac{1}{2}}$$

$$= (a^2)^{\frac{1}{2}}(r^{n-1})^{\frac{1}{2}}$$

$$= ar^{\frac{n-1}{2}} = GM \quad [(2)$$

$$\sqrt{AM.HM} = GM \quad (প্রমাণিত)$$

২৭। $1,\ 2,\ 4,\ 8,\ ------2^n$ সংখ্যাগুলির গাণিতিক গড়, জ্যামিতিক গড় ও তরঙ্গ গড় নির্ণয় কর এবং দেখাও যে, $AM imes HM = (GM)^2$

সমাধান : 1, 2, 4.8----- 2^n ধারাটির পদসংখ্যা = n+1 এখন গাণিতিক গড়

$$AM = \frac{1+2+4+8+---+2^{n}}{n+1}$$

$$= \frac{1+2+2^{2}+2^{3}+---+2^{n}}{n+1}$$

$$= \frac{2^{n+1}-1/2-1}{n+1}$$

$$= \frac{2^{n+1}-1/2-1}{n+1}$$

জ্যামিতিক গড়,

$$GM = (1.2.4.8 - ... - 2^{n})^{\frac{1}{n+1}}$$

$$= (2^{0}.2^{1}.2^{2}.2^{3} - ... - 2^{n})^{\frac{1}{n+1}}$$

$$= (2^{0+1+2+3+...+n})^{\frac{1}{n+1}}$$

$$= (2^{\frac{n(n+1)}{2}})^{\frac{1}{n+1}}$$

$$= 2^{\frac{n/2}{2}}$$

$$(GM)^{2} = (2^{\frac{n/2}{2}})^{2} = 2^{n}$$

তরঙ্গ গড়,

$$HM = \frac{n+1}{\frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}}$$

$$= \frac{n+1}{\frac{1}{1} + \frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n}}$$

$$= \frac{n+1}{\frac{2^n + 2^{n-1} + \dots + 2 + 1}{2^n}}$$

$$= \frac{2^n (n+1)}{1 + 2 + \dots + 2^n}$$

$$= \frac{2^n (n+1)}{\frac{2^{n+1} - 1}{2} - 1}$$

$$= \frac{2^n (n+1)}{2^{n+1} + 1}$$

এখন,

$$AM \times HM = \frac{2^{n+1} - 1}{n+1} \times \frac{2^{n} (n+1)}{2^{n+1} - 1}$$
$$= 2^{n}$$

২৮। 1, 2, 4, 8, ----- 2^{10} সংখ্যাগুলির গাণিতিক গড়, জ্যামিতিক গড় ও তরঙ্গ গড় নির্ণয় কর। সমাধান: $1, 2, 4, 8, \ldots 2^{10}$ বা $1, 2^1, 2^2, 2^3, \ldots 2^{10}$

ধারাটির পদসংখ্যা
$$= 10+1 = 11$$

সুতরাং গাণিতিক গড়,
$$AM=\frac{1+2+4+8+.....+2^{10}}{11}$$

$$=\frac{1+2^1+2^2+2^3+....+2^{10}}{11}$$

$$=\frac{2^{10+1}-1}{2-1}$$

$$=\frac{2^{11}-1}{11}$$

$$=\frac{2^{11}-1}{11}$$

তরঙ্গ গড়, H.M.
$$= \frac{10+1}{1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\dots+\frac{1}{2^{10}}}$$

$$= \frac{11}{1-\left(\frac{1}{2}\right)^{11}}$$

$$= \frac{1}{2}\times\frac{11}{1-\left(\frac{1}{2}\right)^{11}}$$

$$= \frac{1}{2}\times\frac{11}{2^{11}-1}$$

$$= \frac{1}{2}\times\frac{2^{11}\times11}{2^{11}}$$

$$= \frac{11\times2^{10}}{2^{11}-1}$$

$$= \frac{11\times2^{10}}{2^{11}-1}$$

২৯। যদি x চলকের গাণিতিক গড় 15 এবং y=2x -3 হয় তবে y চলকের গাণিতিক গড় নির্ণয় কর? সমাধান:

মনে করি, কোন চলকের x এর ${\bf n}$ সংখ্যক মানসমূহ $x_1, x_2 - - - x_n$ এবং উহাদের গাণিতিক গড় \overline{x} । দেওয়া আছে,

$$y = 2x-3$$

$$y_i = 2x_i - 3$$

$$\sum y_i = 2\sum x_i - \sum 3$$

$$\frac{\sum y_i}{n} = 2\frac{\sum x_i}{n} - \frac{3n}{n}$$

$$\therefore \overline{y} = 2\overline{x} - 3$$

$$= 2 \times 15 - 3$$

$$= 30 - 3$$

$$= 27$$

এখানে,
$$\overline{x} = 15$$
 $\overline{y} = ?$

৩০। প্রথম 50 টি স্বাভাবিক সংখ্যার গড় নির্ণয় কর। সমাধান: আমরা জানি, প্রথম স্বাভাবিক সংখ্যার গড়,

$$\bar{x} = \frac{n+1}{2}$$
 [এখানে n=50]
$$= \frac{50+1}{2}$$

$$= \frac{51}{2}$$

$$= 25.5$$

৩১। A, B ও C শহর তিনটি পরস্পর থেকে সমদূরবর্তী। একজন মোটরযাত্রী A থেকে B তে ঘন্টায় 45 কি: মি: বেগে, B থেকে C তে ঘন্টায় 60 কি: মি: বেগে এবং C থেকে A তে ঘন্টায় 75 কি: মি: বেগে যায়। সম্পূর্ণ পথে তার গড় গতিবেগ কত?

সমাধান: গতিবেগগুলির তরন্ধ গড়ই হবে নির্ণেয় গড়বেগ।

$$HM = \frac{3}{\dfrac{1}{x_1} + \dfrac{1}{x_2} + \dfrac{1}{x_3}}$$
 ; এখানে $x_1 = 45, x_2 = 60$ ও $x_3 = 75$
$$= \dfrac{3}{\dfrac{1}{45} + \dfrac{1}{60} + \dfrac{1}{75}} = \dfrac{3 \times 900}{47} = 57.5$$
 মাইল / ঘন্টা।

৩২। একজন সাইকেল আরোহী তার যাত্রাপথের প্রথম 30 মাইল ঘন্টায় 40 মাইল বেগে, পরবর্তী 25 মাইল ঘন্টায় 35 মাইল বেগে ও শেষ 20 মাইল ঘন্টায় 30 মাইল বেগে অভিক্রম করে। তার গড়বেগ কত? সমাধান: ধরি.

গতিবেগ =
$$x_i$$
 দূরত্ব = w_i এখানে, $w_1+w_2+w_3$ = $30+25+20$ = 75

আমরা জানি,
$$HM = \frac{w_1 + w_2 + w_3}{\frac{w_1}{x_1} + \frac{w_2}{x_2} + \frac{w_3}{x_3}}$$

$$= \frac{75}{\frac{30}{40} + \frac{25}{35} + \frac{20}{30}}$$

$$= \frac{75 \times 84}{179}$$

$$= 35.20$$
 মাইল / ঘন্টা /

এখানে,
$$x_1 = 40, \qquad w_1 = 30$$

$$x_2 = 35, \qquad w_2 = 25$$

$$x_3 = 30, \qquad w_3 = 20$$

৩৩। তুমি তোমার যাত্রাপথে প্রতি ঘন্টায় 60 মাইল বেগে 900 মাইল ট্রেনে, প্রতি ঘন্টায় 25 মাইল বেগে 300 মাইল নৌকায়, প্রতি ঘন্টায় 350 মাইল বেগে 400 মাইল বিমানে এবং প্রতি ঘন্টায় 25 মাইল বেগে 15 মাইল ট্যাক্সিতে গেলে। তোমার সমগ্র পথের ঘন্টায় গড় গতিবেগ নির্ণয় কর।

সমাধান:যেহেতু গড় গতিবেগ বের করতে হবে তাই তরন্ধ গড় ভাল ফলাফল দিবে।

ধরি, বেগ $=x_i$ এবং অতিক্রান্ত পথ $=w_i$

x_{i}	w_{i}	w_i/x_i		
60	900	15		
25	300	12		
350	400	1.33		
25	15	0.6		
মোট =	$\sum w_i = 1615$	$\sum w_i / x_i = 28.93$		

গড় গতিবেগ,
$$HM=\dfrac{\sum w_i}{\sum \dfrac{w_i}{x_i}}$$

$$=\dfrac{1615}{28.93}$$

$$=55.82 \ \ \mbox{মাইল/ঘন্টা} \ .$$

৩৪। একটি ট্রেন ঘণ্টায় 200, 400, 800 এবং 1000 কি. মি. গতিবেগে 1000 কি.মি. বাহুবিশিষ্ট একটি বর্গাকার ট্রেন লাইন অতিক্রম করে। ট্রেনটির গড গতিবেগ নির্ণয় কর।

সমাধানঃ গড় গতিবেগ নির্ণয়ের ক্ষেত্রে তরঙ্গ গড়ই সঠিক ফলাফল প্রদান করে।, এখানে,
$$x_1=200,\,x_2=400,\,x_3=800,\,x_4=1000$$

ভরম্ব গড়
$$\mathrm{HM} = \dfrac{4}{\dfrac{1}{x_1} + \dfrac{1}{x_2} + \dfrac{1}{x_3} + \dfrac{1}{x_4}}$$

$$= \dfrac{4}{\dfrac{1}{200} + \dfrac{1}{400} + \dfrac{1}{800} + \dfrac{1}{1000}}$$

$$= \dfrac{4}{0.005 + 0.0025 + 0.00125 + 0.001}$$

$$= \dfrac{4}{0.00975}$$

$$= 410.26$$

∴ গড় গতিবেগ ঘণ্টায় 410.26 কি. মি.।

৩৫ ।
$$\sum_{i=1}^{n} f_i(x_i - k) = 0$$
 হলে k এর মান কত?

সমাধান: মনে করি, x চলকের $\mathbf n$ সংখ্যক মানসমূহ x_1,x_2,\ldots,x_n এবং উহাদের গণসংখ্যা যথাক্রমে $\mathbf f_1,\mathbf f_2,\ldots,\mathbf f_n$ যেখানে, $\sum f_i=N$ ও গাণিতিক গড় $\overline x$ হলে,

$$\overline{x} = \frac{\sum f_i x_i}{N}$$

দেওয়া আছে,
$$\sum_{i=1}^{n} f_i(x_i - k) = 0$$

$$\sum_{i=1}^{n} f_i x_i - \sum_{i=1}^{n} f_i \ k = 0$$

$$\Rightarrow \sum_{i=1}^{n} f_i x_i - Nk = 0$$

$$\Rightarrow \sum_{i=1}^{n} f_i x_i = Nk$$

$$\Rightarrow Nk = \sum_{i=1}^{n} f_i x_i$$

$$\Rightarrow k = \frac{\sum_{i=1}^{n} f_i x_i}{N}$$

 $k = \bar{x}$

৩৬। 2,1,0,5,-6,7,-4 তথ্যসারিটির তৃতীয় চতুর্থক, ৭ম দশমক এবং ৬০তম শতমক নির্ণয় কর। সমাধানঃ প্রদত্ত তথ্যসারিকে মানের উর্ধ্বক্রম হিসাবে সাজালে আমরা পাই—

সুতরাং তৃতীয় চতুর্থক,
$$Q_3=\frac{(n+1)\times 3}{4}$$
 তম পদ $=\frac{(7+1)\times 3}{4}$ তম পদ $=\frac{8\times 3}{4}$ তম পদ $=6$ তম পদ $=5$

৭ম দশমক,
$$D_7=rac{(n+1) imes7}{10}$$
 তম পদ $=rac{(7+1) imes7}{10}$ তম পদ $=rac{8 imes7}{10}$ তম পদ $=5.6$ তম পদ $=5+0.6$

$$\therefore D_7 = 5$$
 তম পদ + (6 তম পদ - 5 তম পদ) $\times 0.6$
= $2 + (5 - 2) \times 0.6 = 2 + 3 \times 0.6 = 3.8$

৬০ তম শতমক,
$$P_{60}=\frac{(n+1)\times 60}{100}$$
 তম পদ $=\frac{(7+1)\times 60}{100}$

$$=\frac{8\times60}{100}$$
 তম পদ $=4.8$ তম পদ $=4+0.8$

$$\therefore$$
 $P_{60} = 4$ অম পদ + (5 অম পদ - 4 অম পদ) \times 0.8 $= 1 + (2 - 1) \times 0.8 = 1 + 0.8 = 1.8$

৩৭। নিম্নে কোন একটি জুতোর দোকানে বিক্রিত জুতোর সাইজের গণসংখ্যা দেওয়া হলো:

জুতার সাইজ	12	14	16	18	20	22	24
গণসংখ্যা	15	18	30	36	32	22	10

উপরের গণসংখ্যা নিবেশন হতে চতুর্থকদ্বয়, চতুর্থ দশমক, ৪০ তম শতমক নির্ণয় কর। সমাধানঃ

	गन्ना शार्याका				
জুতার সাইজ	গণসংখ্যা	ক্ৰম যোজিত গণসংখ্যা			
12	15	15			
14	18	33			
16	30	63			
18	36	99			
20	32	131			
22	22	153			
24	10	163			
	N = 163				

প্রথম চতুর্থক,
$$\, \, Q_1 = \frac{N\!+\!1}{4} \,$$
তম পদ $= \frac{163+1}{4} \,$ তম পদ $= 41 \,$ তম পদ $= 16 \,$

তৃতীয় চতুৰ্থক,
$$Q_3=\dfrac{(N+1)\times 3}{4}$$
 তম পদ $=\dfrac{(163+1)\times 3}{4}$ তম পদ

$$= 41 \times 3$$
 তম পদ = 123 তম পদ = 20

চতুৰ্থক দশমক,
$$D_4=\frac{(N+1)}{10} imes 4$$
 তম পদ $=\frac{(163+1)}{10} imes 4$ তম পদ $=\frac{164}{10} imes 4$ তম পদ $=65.6$ তম পদ

এখন, 65 তম ও 66 তম পদ একই পদ বলে, $D_4 = 18$

$$80$$
 তম শতমক $P_{80}=rac{(N+1)}{10} imes 80$ তম পদ $=rac{(163+1)}{10} imes 80$ তম পদ $=rac{164}{10} imes 8$ তম পদ $=131.2$ তম পদ

এখানে, 131 তম পদ = 20

1টি পদের জন্য মানের বৃদ্ধি = 22 - 20 = 2

$$\therefore 0.2$$
 " = 2 × 0.2 = 0.4

$$\therefore$$
 80 তম শতমক, $P_{80} = 131.2$ তম পদ = $20 + 0.4 = 20.4$

চতুর্থ অধ্যায়

বিস্তার পরিমাপ

MEASURES OF DISPERSION

কেন্দ্রীয় প্রবণতার পরিমাপ ঘারা আমরা কোন একটি তথ্যসারির মধ্যকমান সম্পর্কে ধারণা লাভ করতে পারি । এক্মেত্রে আমরা তথ্যসারির রাশিগুলোর বিত্তি বা ব্যাপ্তি সম্বদ্ধে কোন ধারণা পাই না । এমন হতে পারে যে একাধিক তথ্যসারির মধ্যক মান একই কিন্তু রাশিগুলোর ব্যাপ্তি ভিন্ন । যেমন: 5, 10, 15 এবং 0, 5, 25 তথ্যসারির দুইটির গাণিতিক গড় 10 কিন্তু রাশিগুলোর ব্যাপ্তি ভিন্ন । প্রথম তথ্যসারিতে রাশিগুলো মধ্যক মান হতে কম বিস্তৃত এবং দ্বিতীয় তথ্যসারির ক্ষেত্রে রাশিগুলো মধ্যক মান হতে বেশি বিক্ষিপ্ত । একইভাবে কোন দুইটি ভিন্ন তথ্যসারির রাশিগুলোর বিস্তৃতি ভিন্ন হওয়া সত্ত্বেও তাদের গড়, মধ্যমা, প্রচুরক একই হতে পারে । এ জাতীয় অবস্থায় মধ্যক মান সম্পর্কিত তথ্য বা কেন্দ্রীয় প্রবণতার পরিমাপ যথেষ্ট নয়-এক্ষেত্রে আমাদের প্রয়োজন হয় তথ্যসারির বিস্তৃতি জানার ।

এ অধ্যায় পাঠ শেষে শিক্ষার্থীরা-

- বিস্তার, বিস্তার পরিমাপ ও বিস্তার পরিমাপের প্রকারভেদ আলোচনা করতে পারবে।
- অনপেক্ষ বা পরম বিস্তার পরিমাপের প্রকারভেদগুলো আলোচনা করতে পারবে ।
- বিস্তার পরিমাপের প্রয়োজনীয়তা ব্যাখ্যা করতে পারবে।
- একটি আদর্শ বিস্তারের গুণাবলি বর্ণনা করতে পারবে।
- বিস্তার পরিমাপসমূহের তুলনামূলক আলোচনা করতে পারবে।
- বিভেদাংকের প্রয়োজনীয়তা ব্যাখ্যা করতে পারবে।
- ভেদাংক, বিভেদাংক ও সহভেদাংক কী তা বলতে পারবে।

৪.০১ বিস্তার, বিস্তার পরিমাপ ও বিস্তার পরিমাপের প্রকারভেদ আলোচনা

Dispersion, Measures of Dispersion and Types of Dispersion

বিস্তার (Dispersion):

কেন্দ্রীয় মান হতে নিবেশনের অন্যান্য মানগুলোর ব্যবধানকে বিস্তার বলে। এর সাহায্যে নিবেশনের কেন্দ্রীয় মান হতে অন্যান্য মানগুলো কত দূরে অবস্থান করছে সে সম্পর্কে ধারণা পাওয়া যায়, অর্থাৎ নিবেশনের মধ্যক মান থেকে উহার সংখ্যাগুলো কত ছোট বা বড় তার পরিমাপকে বিস্তার বলে। কোন নিবেশনের সংখ্যাগুলি যতই বিক্ষিপ্ত হতে থাকে উহাদের বিস্তার ও তত বাড়তে থাকে। কিন্তু সংখ্যাগুলি যদি পরস্পর সমান হয় তবে উহাদের বিস্তার গুন্য হয়।

পরিসংখ্যানবিদ A. L. Bowley এর মতে, "Dispersion is the measures of the variation of the items" অর্থাৎ বিস্তার হলো তথ্যসারির উপাদানগুলোর ভিন্নতার পরিমাপ।

উদাহরণ: নিম্নে A এবং B দুটি তথ্যসারির মানগুলোর বিস্তারের মধ্যে তুলনা করা হলো।

Α	В
47	33
43	28
53	63
50	55
57	71
$\overline{x}_A = 50$	$\bar{x}_B = 50$

উপরোজ্ঞ তথ্যসারি দু'টিতে গড় সমান হলেও তাদের বিন্যাসের গঠন প্রকৃতির মধ্যে সুস্পষ্ট পার্থক্য বিদ্যমান। কারণ A সারির বিভিন্ন মানগুলো গড়ের কাছাকাছি অবস্থান করে কিন্তু B সারির মানগুলো গড় থেকে অনেক বেশি দূরে অবস্থান করে। এইরূপ তথ্যসারির ক্ষেত্রে বিস্তারের ব্যবহার উৎকৃষ্ট।

বিস্তার পরিমাপ (Measures of Dispersion):

দুই বা ততোধিক নিবেশনে তুলনা করতে বা কোন নিবেশনের কেন্দ্রীয় মান থেকে উহার সংখ্যাগুলি কত বড় বা কত ছোট সেই পার্থক্য জ্ঞাপক পরিমাপটিই হলো বিস্তার পরিমাপ অর্থাৎ যে গাণিতিক পরিমাপের সাহায্যে কোন নিবেশনের কেন্দ্রীয় মান হতে অন্যান্য মানগুলোর ব্যবধান নির্ণয় করা হয় তাকে বিস্তার পরিমাপ বলে। যেমনঃ পরিমিত ব্যবধান, বিভেদাংক ইত্যাদি।

বিস্তার পরিমাপের প্রকারভেদ:

উদ্দেশ্য ও বৈশিষ্ট্যগত দিক থেকে বিস্তার পরিমাপকে দুইভাগে ভাগ করা যায়। যথা :

- ক. অনপেক্ষ বা পরম বিস্তার পরিমাপ (Absolute measures of dispersion)
- খ. অপেক্ষিক বিস্তার পরিমাপ (Relative measures of dispersion)
- (क) অনপেক্ষ বা পরম বিস্তার পরিমাপ: বিস্তারের যে পরিমাপ সমূহ নিবেশনের মধ্যক মান থেকে সংখ্যাগুলির বিস্তৃতি অর্থাৎ নিবেশনের অভ্যন্তরীণ ভেদ পরিমাপ করে তাদেরকে অনপেক্ষ বা পরম বিস্তার পরিমাপ বলে। পরম পরিমাপসমূহ চলকের এককে পরিমাপ করা হয়। ইহা একটি সরল রাশি। একক আছে, মাপা হয়।
- (খ) আপেক্ষিক বিস্তার পরিমাপ: বিস্তারের যে পরিমাপগুলো দুই বা ততোধিক নিবেশনের বিস্তৃতি তুলনার কাজে ব্যবহৃত হয় তাদেরকে আপেক্ষিক বিস্তার পরিমাপ বলে। আপেক্ষিক বিস্তার পরিমাপসমূহ সহগ, শতকরা, অনুপাত আকারে প্রকাশ করা হয়। এরা এককমুক্ত সংখ্যা।

৪.০২ অনপেক্ষ বা পরম বিস্তার পরিমাপের প্রকারভেদগুলো আলোচনা।

Discuss Absolute Measures of Dispersion

অনপেক্ষ বিস্তার পরিমাপকে চারভাগে ভাগ করা যায়। যথা-

- i. পরিসর (Range)
- ii. চতুর্থক ব্যবধান (Quartile Deviation)
- iii. গড় ব্যবধান (Mean Deviation)
- iv. পরিমিত ব্যবধান (Standard Deviation)

 গরিসর (Range): পরিসর হলো তথ্যসারির সবচেয়ে সহজতম পরিমাপক। অশ্রেণীকৃত তথ্যসারির ক্ষেত্রে কোন তথ্যসারির বৃহত্তম তথ্যসংখ্যা ও ক্ষুদ্রতম তথ্যসংখ্যার ব্যবধানকে পরিসর বলে। পরিসরকে R দ্বারা প্রকাশ করা হয়।

অর্থাৎ
$$R = x_H - x_L$$

যেমন: 7, 10, 15, 26, 30 সংখ্যাগুলির পরিসর হবে।

$$R = 30 - 7 = 23$$

আবার গণসংখ্যা নিবেশনের ক্ষেত্রে শেষ শ্রেণীর উচ্চসীমা ও প্রথম শ্রেণীর নিমুসীমার বিয়োগফলকে উহার পরিসর বলা হয়।

ii) চতুর্থক ব্যবধান (Quartile deviation): কোন নিবেশনের মধ্যমা হতে প্রথম চতুর্থক এবং তৃতীয় চতুর্থক হতে মধ্যমার ব্যবধানদ্বয়ের গাণিতিক গড়কে চতুর্থক ব্যবধান বলে। একে Q.D দ্বারা প্রকাশ করা হয়। প্রথম চতুর্থক Q_1 মধ্যমা M_e এবং তৃতীয় চতুর্থক Q_3 হলে,

চতুর্থক ব্যবধান,
$$Q.D = \frac{(M_e - Q_1) + (Q_3 - M_e)}{2}$$

অন্যভাবে বলা যায়, কোন নিবেশনের তৃতীয় চতুর্থক থেকে প্রথম চতুর্থকের বিয়োগফলকে 2 দ্বারা ভাগ করলে যে মান পাওয়া যায় তাকে চতুর্থক ব্যবধান বলে।

$$Q.D = \frac{Q_3 - Q_1}{2}$$

iii) গড় ব্যবধান (Mean deviation): কোন নিবেশনের গড়, মধ্যমা ও প্রচুরক থেকে সংখ্যাগুলির ব্যবধানের পরম মানের সমষ্টিকে উহাদের পদসংখ্যা দ্বারা ভাগ করলে যে মান পাওয়া যায় তাকে গড় ব্যবধান বলা হয় । গড় ব্যবধানকে M.D দ্বারা প্রকাশ করা হয় ।

অশ্রেণিকৃত তথ্যের ক্ষেত্রে:

মনে করি, কোন চলক x এর $\mathbf n$ সংখ্যক মানসমূহ x_1,x_2----x_n এবং উহাদের গাণিতিক গড়, মধ্যমা ও প্রচুরক যথাক্রমে $\overline x,M_x$ ও M_x .

এখন
$$\overline{x}$$
 হতে নির্ণীত গড় ব্যবধান $M.D_{(\overline{x})}=\frac{\sum |x_i-\overline{x}|}{n}$
$$M_e \qquad \qquad \qquad \qquad M.D_{(M_o)}=\frac{\sum |x_i-\mathrm{M_e}|}{n}$$

$$M_O \qquad \qquad \qquad \qquad \qquad M.D_{(M_o)}=\frac{\sum |x_i-\mathrm{M_o}|}{n}$$

শ্রেণিকৃত তথ্যের ক্ষেত্রে: মনে করি, কোন চলক x এর ${\bf n}$ সংখ্যক মানসমূহ x_1,x_2----x_n এবং উহাদের গণসংখ্যা যথাক্রমে, ${\bf f}_1,{\bf f}_2-----{\bf f}_n$ এবং উহাদের গাণিতিক গড় $\overline{\bf x}$, মধ্যমা M_e ও প্রচুরক M_o হলে,

এখন
$$\overline{x}$$
 হতে নিৰ্ণীত গড় ব্যবধান, $M.D_{(\overline{x})}=\frac{\sum f_i|\mathbf{x_i}\cdot\overline{\mathbf{x}}|}{\mathbf{N}}$
$$M_e \qquad \qquad \qquad M.D_{(Me)}=\frac{\sum f_i|\mathbf{x_i}\cdot\mathbf{M_e}|}{\mathbf{N}}$$

$$M_O \qquad \qquad M.D_{(Me)}=\frac{\sum f_i|\mathbf{x_i}\cdot\mathbf{M_e}|}{\mathbf{N}}$$
 এখানে,
$$N=\sum_{i=1}^n f_i=\text{মোট গণসংখ্যা}\mid$$

$$\overline{x}=\text{গাণিতিক গড় }\mid$$

$$n=\text{তথ্যসংখ্যা}/\text{ পদসংখ্যা}\mid$$

$$M_e=\text{মধ্যমা}\mid$$

$$M_e=\text{মধ্যমা}\mid$$

iv) পরিমিত ব্যবধান (Standard Deviation): কোন তথ্যসারির মানগুলো হতে গাণিতিক গড়ের ব্যবধানের বর্গের সমষ্টিকে মোট পদসংখ্যা দ্বারা ভাগ করে যে মান পাওয়া যায় তার ধনাতাক বর্গমূলকে পরিমিত ব্যবধান বলা হয়। ইহাকে σ বা SD দ্বারা প্রকাশ করা হয়।

অশ্রেণিকৃত তথ্যের ক্ষেত্রে: মনে করি, কোন চলক x এর $\mathbf n$ সংখ্যক মানসমূহ x_1,x_2----x_n এবং উহাদের গাণিতিক গড় $\overline x$, পরিমিত ব্যবধান σ হলে,

$$\sigma = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n}}$$

শ্রেণিকৃত তথ্যের ক্ষেত্রে: মনে করি, কোন চলক x এর $\mathbf n$ সংখ্যক মানসমূহ $x_1, x_2 - \cdots - x_n$ এবং

উহাদের গণসংখ্যা যথাক্রমে $\mathbf{f}_1,\mathbf{f}_2-\cdots-\mathbf{f}_n$ যেখানে $\sum_{i=1}^n f_i=N$, পরিমিত ব্যবধান σ হলে,

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} f_i(x_i - \overline{x})^2}{N}}$$

৪.০৩ বিস্তার পরিমাপের গুরুত্ব ও প্রয়োজনীয়তা

Necessity and Importance Measres of Dispersion

নিমে বিস্তারের গুরুত্ব ও প্রয়োজনীয়তা উল্লেখ করা হলো:

 দুটো নিবেশনের মধ্যকমান সমান হলেও তাদের গঠন পদ্ধতি ভিন্ন হতে পারে। এইরূপ ক্ষেত্রে নিবেশন দুটোর মধ্যে তুলনা করার জন্য বিস্তার পরিমাপ ব্যবহার করা হয়। যেমন:

Column-A	90	80	50	60	65	75
Column-B	0	95	70	80	75	100

এখানে $\bar{x}_{\scriptscriptstyle A} = 70$ এবং $\bar{x}_{\scriptscriptstyle B} = 70$

এক্ষেত্রে $A \otimes B$ তথ্যসারির গড় সমান হলেও তাদের গঠন ও প্রকৃতির মধ্যে সুষ্পষ্ট পার্থক্য বিদ্যমান। কারণ গড় হতে A সারির বিভিন্ন মানের বিস্তৃতি অপেক্ষাকৃত কম এবং B সারির মানগুলোর বিস্তৃতি খুব বেশী।

- ii. উচ্চতর পর্যায়ের বিভিন্ন পরিসাংখ্যিক পদ্ধতির পরিমাপক হিসেবে এটি ব্যবহৃত হয়। যেমনঃ সংশ্লেষ, নির্ভরণ, নমুনায়ন, যথার্থতা যাচাই প্রভৃতি ক্ষেত্রে বিস্তার ব্যবহৃত হয়।
- iii. কোন কারখানায় উৎপাদিত পণ্যের যথাযথ মান নিয়ন্ত্রণে এটি ব্যবহৃত হয়।
- iv. এটি কেন্দ্রীয় মানের যথার্থতা যাচাই করে। যে তথ্যসারির বিস্তার যত কম তার কেন্দ্রীয় মানগুলি ততো বেশি প্রতিনিধিত্রকারী।
- থ. বিস্তার তথ্যসারির মানগুলির সামঞ্জস্যতা পরিমাপ করে। যে তথ্যসারির বিস্তার যত বেশি তার মানগুলি ততো বেশি অসামঞ্জস্যপূর্ণ।

8.08 একটি আদর্শ বিস্তারের গুণাবলি

The Properties of an Ideal Measures of Dispersion

একটি আদর্শ বিস্তার পরিমাপের গুণাবলীঃ

পরিসংখ্যানবিদ Yule-এর মতে একটি আদর্শ মধ্যক মানের যে সমস্ত গুণাবলী থাকা আবশ্যক একটি আদর্শ বিস্তার পরিমাপের ও সেইসব গুণাবলী থাকা আবশ্যক। অর্থাৎ,

- ইহার সঠিক ও সুস্পষ্ট সংজ্ঞা থাকা উচিত।
- ইহা তথ্যসারির সকল মানের উপর নির্ভরশীল।
- এটা সহজবোধ্য ও সহজে গণনার উপযোগী হওয়া উচিত।
- এটা সহজে গাণিতিক ও বীজগাণিতিক পরিগণনার উপযোগী হওয়া উচিত।
- ইহা নমুনা বিচ্যুতি দ্বারা খুব বেশী প্রভাবিত হওয়া উচিত নয়।
- এটা প্রান্তিকমান বা চরমমান দ্বারা খুব বেশি প্রভাবিত হওয়া উচিত নয়।

8.০৫ বিস্তার পরিমাপসমূহের তুলনামূলক আলোচনা

Compare Different Measures of Dispersion

বিস্তার পরিমাপ প্রধানত দুই প্রকার। যথা বিস্তারের পরম ও আপেক্ষিক পরিমাপ। পরম পরিমাপ চারটি যথা:
(১) পরিসর (২) চতুর্থক ব্যবধান (৩) গড় ব্যবধান এবং (৪) পরিমিত ব্যবধান। এখানে শুধু পরম পরিমাপগুলোর সাহায্যেই আপেক্ষিক পরিমাপগুলো নির্ণয় করা হয়। বিস্তারের কোন পরিমাপটি উৎকৃষ্ট তা একশত ভাগ নিশ্চিত করে বলা সম্ভব নয়। তবে সবগুলি পরিমাপের মধ্যে যেটি সর্বোচ্চ সংখ্যক গুণাবলী সমর্থন করবে তাকেই উৎকৃষ্ট বিস্তার পরিমাপ বলা হবে। আদর্শ বিস্তার পরিমাপের বৈশিষ্ট্যগুলোর প্রেক্ষিতে বিস্তারের বিভিন্ন পরিমাপগুলোর তুলনামূলক আলোচনা করা হলো:

- ১. পরিসর: সহজে বুঝা যায় ও সহজে গণনা করা যায়। কিন্তু ইহা সকল মানের উপর নির্ভরশীল নয়। ইহা প্রান্তিক মান দ্বারা প্রভাবিত হয়। ইহাতে সহজে গাণিতিক ও বীজগাণিতিক প্রক্রিয়া প্রয়োগ করা যায় না। ইহা নিবেশনের মধ্যক মান থেকে অন্যান্য সংখ্যাগুলির বিস্তৃতি সম্বন্ধে সঠিক ধারণা দিতে পারে না। তবে সিরিজের আকার ছোট হলে ইহা নির্ভরযোগ্য হতে পারে।
- ২. চতুর্থক ব্যবধান: চতুর্থক ব্যবধান সহজে বুঝা যায়, সহজে গণনা করা যায় এবং প্রান্তিক মান দ্বারা কম প্রভাবিত হয়। ইহাতে সহজে বীজগাণিতিক প্রক্রিয়া আরোপ করা যায় না। ইহা নিবেশনের গঠন প্রকৃতি সম্বন্ধে সঠিক ধারণা দিতে পারে না। তথাপিও পরিসরের তুলনায় ইহা বেশী নির্ভরযোগ্য।
- ৩. গড় ব্যবধান: গড় ব্যবধান প্রায় সবগুলো আবশ্যকীয় বৈশিষ্ট্যের অধিকারী। ইহা সহজে বুঝা যায়। সকল মানের উপর নির্ভরশীল। ইহা নমুনা তারতম্য ও প্রান্তিক মান কম প্রভাবিত হয়। কিন্তু ইহাতে পরবর্তীতে কোন গাণিতিক প্রক্রিয়া প্রয়োগ করা যায় না।
- ৪. পরিমিত ব্যবধান: আবশ্যকীয় বৈশিষ্ট্যগুলোর মধ্যে পরিমিত ব্যবধান সহজবোধ্য ছাড়া প্রায় সবগুলো বৈশিষ্ট্যের অধিকারী। ইহা সকল মানের উপর নির্ভরশীল। ইহাতে অধিক গাণিতিক ও বীজগাণিতিক প্রক্রিয়া প্রয়োগ করা যায়। ইহা নমুনা বিচ্যুতির ক্ষেত্রে প্রায় স্থির পাকে। অর্থাৎ ইহা নমুনা তারতম্য দ্বারা প্রভাবিত হয় না।

উপসংহার: একটি আদর্শ বিস্তার পরিমাপের উল্লেখিত বৈশিষ্ট্যের প্রেক্ষিতে তুলনামূলক আলোচনা হতে দেখা যায় যে, সহজে গণনা ও সহজবোধ্যতার উপর বেশি গুরুত্ব দেওয়া না হলে পরিমিত ব্যবধান একটি আদর্শ বিস্তার পরিমাপ। অন্যদিকে গাণিতিক গড় কেন্দ্রীয় প্রবণতার পরিমাপের উৎকৃষ্ট পরিমাপ হওয়ায় উভয়ের সমন্বয়ে সৃষ্ট বিভেদাংককে আপেন্দিক পরিমাপগুলোর মধ্যে উৎকৃষ্ট বলা যায়।

৪.০৬ বিভেদাংকের প্রয়োজনীয়তা

Necessity of Coefficient of variation

বিভেদাংক একটি একক মুক্ত সংখ্যা যা ভিন্ন ভিন্ন এককে প্রকাশিত দুইটি নিবেশনের তুলনা করতে ব্যবহৃত হয়।
শিল্পক্ষেত্রে বিভিন্ন দ্রব্যের উৎকর্ষতা যাচাই, জনসংখ্যা, দেশীয় সম্পত্তি ইত্যাদির সমসত্তৃতা বিশ্লেষণ করতে এর
প্রয়োজন রয়েছে। এছাড়াও ভিন্ন ভিন্ন মধ্যক মান বিশিষ্ট নিবেশনের তুলনায় এবং নিবেশনের গঠন প্রকৃতি সম্পর্কে
জানতে বিভেদাংকের প্রয়োজনীয়তা উল্লেখ্যযোগ্য। তাই পরিসংখ্যানে বিভেদাংকের প্রয়োজনীয়তা অপরিসীম।

8.০৭ ভেদাংক, বিভেদাংক ও সহভেদাংক।

Variance, Co-efficient of Variation and Co-variance

ভেদাংকঃ কোন নিবেশনের গড় থেকে সংখ্যাগুলির ব্যবধানের বর্গের সমষ্টিকে মোট তথ্যসংখ্যা দ্বারা ভাগ করলে যে মান পাওয়া যায় তাকে ভেদাংক বলে। ভেদাংককে σ^2 দ্বারা প্রকাশ করা হয়। অশ্রেণিকৃত তথ্যের ক্ষেত্রেঃ মনে করি, কোন চলক x এর n সংখ্যক মানসমূহ, x_1, x_2, \ldots, x_n এবং

উহাদের গাণিতিক গড়, $ar{x}$, ভেদাংক σ^2 হলে,

$$\sigma^2 = \frac{\sum (x_i - \overline{x})^2}{n}$$

শ্রেণিকৃত তথ্যের ক্ষেত্রেঃ মনে করি, কোন চলক x এর ${\bf n}$ সংখ্যক মানসমূহ, x_1,x_2,\ldots,x_n এবং উহাদের গণসংখ্যা যথাক্রমে f_1,f_2,\ldots,f_n এবং $\sum f_i=N$, ভেদাংক σ^2 হলে,

$$\sigma^2 = \frac{\sum f_i (x_i - \overline{x})^2}{N}$$

বিভেদাংক (coefficient of variation): কোন তথ্যসারির পরিমিত ব্যবধানকে ঐ তথ্যসারির গাণিতিক গড় দ্বারা ভাগ করে শতকরায় প্রকাশ করলে যে মান পাওয়া যায় তাকে বিভেদাংক বলে। ইহাকে CV দ্বারা প্রকাশ করা হয়। মনে করি, x চলকের পরিমিত ব্যবধান σ এবং এর গাণিতিক গড় \overline{x} , বিভেদাংক C.V হলে,

$$C.V = \frac{\sigma}{\overline{x}} \times 100$$

সহভেদাংক (Co-variance): কোন দ্বি-চলক তথ্যের একটি তথ্যমান হতে নিজস্ব গাণিতিক গড়ের বিয়োগফল ও অপর চলকটির মানগুলো হতে তার নিজস্ব গাণিতিক গড়ের বিয়োগফলের গুণফলের সমষ্টিকে যেকোন একটি তথ্যমানের মোট পদসংখ্যা দ্বারা ভাগ করে যে মান পাওয়া যায় তাকেই সহ-ভেদাংক বলে। মনে করি, পরস্পর সম্পর্কযুক্ত চলক x ও y –এর n জোড়া মানসমূহ যথাক্রমে $(x_1,y_1)(x_2,y_2)...(x_n,y_n)$ এবং এদের গাণিতিক \overline{x} ও \overline{y} সহভেদাংক $\operatorname{cov}(x,y)$ হলে,

$$\therefore \operatorname{cov}(\mathbf{x}, \mathbf{y}) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{n}$$

কতিপয় উপপাদ্য ও প্রমাণ

🕽 । প্রমাণ কর যে, ভেদাংক মূল হতে স্বাধীন কিন্তু মাপনির উপর নির্ভরশীল।

প্রমাণ: মনে করি, কোন চলক x এর n সংখ্যক মানসমূহ $x_1, x_2 - \cdots - x_n$ এবং উহাদের গাণিতিক গড়, \overline{x}

ভেদাংক,
$$\sigma_x^2 = \frac{\sum (x_i - \overline{x})^2}{n}$$
 (i) ধরি, $u_i = \frac{x_i - a}{c}$
$$\Rightarrow x_i - a = cu_i$$

$$\Rightarrow x - a + cu$$

$$u_i = \frac{x_i - a}{c}$$

$$u_i = \frac{x_i - a}{c}$$

$$u_i = \frac{x_i - a}{c}$$

$$\Rightarrow \sum_{i=1}^n x_i = \sum_{i=1}^n \ a + c \sum_{i=1}^n u_i$$
 ্উভয় পক্ষে $\sum_{i=1}^n$ নিয়ে]

 $\Rightarrow x_i = a + cu$

$$\Rightarrow \frac{\sum_{i=1}^{n} x_{i}}{n} = \frac{na}{n} + c \frac{\sum_{i=1}^{n} u_{i}}{n}$$
 [উভয় পক্ষে n দ্বারা ভাগ করে]
$$\therefore \overline{x} = a + c\overline{u}$$

(i) নং সমীকরণ হতে পাই.

$$\sigma_x^2 = \frac{\sum (a + cu_i - a - c\overline{u})^2}{n}$$

$$= \frac{\sum (cu_i - c\overline{u})^2}{n}$$

$$= \frac{\sum \{c(u_i - \overline{u})\}^2}{n} = c^2 \frac{\sum (u_i - \overline{u})^2}{n}$$

$$\therefore \sigma_x^2 = c^2 \sigma_u^2$$

সুতরাং ভেদাংক মূল হতে স্বাধীন কিন্ত মাপনীর উপর নির্ভরশীল।

(প্রমাণিত)

২। প্রমাণ কর যে, পরিমিত ব্যবধান মূল হতে স্বাধীন কিন্তু মাপনির উপর নির্ভরশীল।

প্রমাণ:

মনে করি, কোন চলক x এর n সংখ্যক মানসমূহ $x_1, x_2 - \cdots - x_n$ এবং উহাদের গাণিতিক গড় \overline{x} ও পরিমিত ব্যবধান σ হলে,

$$\sigma_x = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}} - - - - - - - (1)$$

ধরি,

$$u_i = \frac{x_i - a}{c}$$

$$\Rightarrow x_i - a = cu_i$$

$$\Rightarrow x_i = a + cu_i$$

$$\Rightarrow \sum_{i=1}^n x_i = \sum_{i=1}^n a + c \sum_{i=1}^n u_i$$

$$\Rightarrow \frac{\sum_{i=1}^n x_i}{n} = \frac{na}{n} + c \frac{\sum_{i=1}^n u_i}{n}$$

$$\Rightarrow \frac{x_i}{n} = \frac{na}{n} + c \frac{\sum_{i=1}^n u_i}{n}$$

$$\Rightarrow \frac{x_i}{n} = \frac{na}{n} + c \frac{x_i}{n}$$

$$\Rightarrow \frac{x_i}{n} = \frac{x_i}{n} + c \frac{x_i}{n} + c \frac{x_i}{n}$$

$$\Rightarrow \frac{x_i}{n} = \frac{x_i}{n} + c \frac{x_$$

(i) নং সমীকরণ হতে পাই,

$$\sigma_{x} = \sqrt{\frac{\sum (x_{i} - \overline{x})^{2}}{n}}$$

$$= \sqrt{\frac{\sum (a + cu_{i} - a - c\overline{u})^{2}}{n}}$$

$$= \sqrt{\frac{\sum \{c(u_{i} - \overline{u})\}^{2}}{n}}$$

$$= \sqrt{\frac{c^{2} \sum (u_{i} - \overline{u})^{2}}{n}}$$

$$= c\sqrt{\frac{\sum (u_{i} - \overline{u})^{2}}{n}}$$

$$\therefore \sigma_{x} = c\sigma_{u}$$

সুতরাং পরিমিত ব্যবধান মূলের পরিবর্তন হতে স্বাধীন কিন্তু মাপনির উপর নির্ভরশীল। (প্রমাণিত)

৩। প্রমাণ কর যে, দুটি সংখ্যার গড় ব্যবধান এবং পরিমিত ব্যবধান তাদের পরিসরের অর্বেক।

প্রমাণ: মনে করি, x_1 ও x_2 দুটি সংখ্যা যেখানে $x_1>x_2$ গাণিতিক গড়, $\overline{x}=\frac{x_1+x_2}{2}$ পরিসর, $R=x_1-x_2$

গড় ব্যবধান,
$$MD=\frac{\sum\limits_{i=1}^{2}|x_i-\overline{x}|}{2}$$

$$=\frac{\left|x_1-\overline{x}\right|+\left|x_2-\overline{x}\right|}{2}$$

$$=\frac{\left|x_1-\frac{x_1+x_2}{2}\right|+\left|x_2-\frac{x_1+x_2}{2}\right|}{2}$$

$$=\frac{\left|\frac{2x_1-x_1-x_2}{2}\right|+\left|\frac{2x_2-x_1-x_2}{2}\right|}{2}$$

$$=\frac{\left|\frac{x_1-x_2}{2}\right|+\left|\frac{x_2-x_1}{2}\right|}{2}$$

$$=\frac{\frac{x_1-x_2}{2}+\frac{x_1-x_2}{2}}{2}$$

$$=\frac{2\left(\frac{x_1-x_2}{2}\right)}{2}$$

$$=\frac{x_1-x_2}{2}$$

$$=\frac{x_1-x_2}{2}$$

$$=\frac{R_2}{2}$$

$$MD=\frac{R}{2}$$

$$MD=\frac{R}{2}$$

পরিমিত ব্যবধান,

$$\sigma = \sqrt{\frac{\sum_{i=1}^{2} (x_i - \overline{x})^2}{2}}$$

$$= \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2}{2}}$$

$$= \sqrt{\frac{\left(x_1 - \frac{x_1 + x_2}{2}\right)^2 + \left(x_2 - \frac{x_1 + x_2}{2}\right)^2}{2}}$$

$$= \sqrt{\frac{2x_1 - x_1 - x_2}{2} + \left(\frac{2x_2 - x_1 - x_2}{2}\right)^2}$$

$$= \sqrt{\frac{\left(\frac{x_1 - x_2}{2}\right)^2 + \left(\frac{x_2 - x_1}{2}\right)^2}{2}}$$

$$= \sqrt{\frac{\left(\frac{x_1 - x_2}{2}\right)^2 + \left(\frac{x_1 - x_2}{2}\right)^2}{2}}$$

$$= \sqrt{\frac{\left(\frac{x_1 - x_2}{2}\right)^2}{2}}$$

$$= \sqrt{\left(\frac{x_1 - x_2}{2}\right)^2}$$

$$= \frac{x_1 - x_2}{2}$$

$$\sigma = \frac{R}{2} - - - - - - - - (iii)$$

সমীকরণ (i) ও (ii) নং হতে পাই,

$$\therefore MD = \sigma = \frac{R}{2}$$

(প্রমাণিত)

৪। প্রথম n স্বাভাবিক সংখ্যার ভেদাংক, পরিমিত ব্যবধান ও বিভেদাংক নির্ণয় কর। ধরি, প্রথম n স্বাভাবিক সংখ্যার সেট,

$$x_i:\{1,2,3.....n\}$$

$$\begin{array}{ll} \therefore \text{ GSM(sq.} & \sum\limits_{\frac{n}{2}=1}^{n} x_i^2 - \left(\sum\limits_{\frac{1}{2}=1}^{n} x_i\right)^2 \\ = \frac{1^2 + 2^2 + \dots + n^2}{n} - \left(\frac{1 + 2 + \dots + n}{n}\right)^2 \\ = \frac{n(n+1)(2n+1)}{6} - \left(\frac{n(n+1)}{2}\right)^2 \\ = \frac{n(n+1)(2n+1)}{6n} - \left(\frac{n(n+1)}{2n}\right)^2 \\ = (n+1)\left\{\frac{(2n+1)}{6} - \frac{(n+1)}{4}\right\} \\ = (n+1)\left(\frac{4n + 2 - 3n - 3}{12}\right) \\ = (n+1)\left(\frac{n-1}{12}\right) \\ = \frac{(n+1)(n-1)}{12} = \frac{n^2 - 1}{12} \end{array}$$

 \therefore প্রথম \mathbf{n} সংখ্যক স্বাভাবিক সংখ্যার ভেদাংক, $\sigma_{_{_{X}}}{}^{^{2}}=\frac{n^{2}-1}{12}$

 \therefore প্রথম ${\bf n}$ স্বাভাবিক সংখ্যার পরিমিত ব্যবধান, $\sigma_x=\sqrt{rac{n^2-1}{12}}$ আমরা জানি,

প্রথম
$$n$$
 স্বাভাবিক সংখ্যা, $\bar{x}=rac{n+1}{2}$

় . বিভেদাংক, c.v
$$= \frac{\sigma_x}{\overline{x}} \times 100$$
 $= \frac{\sqrt{\frac{n^2-1}{12}}}{\frac{n+1}{2}} \times 100$ $= \frac{\sqrt{\frac{n^2-1}{12}}}{\sqrt{\left(\frac{n+1}{2}\right)^2}} \times 100$ $= \sqrt{\frac{(n+1)(n-1)}{12}} \times \frac{4}{(n+1)(n+1)} \times 100$ $= \sqrt{\frac{3(n-1)}{3(n+1)}} \times 100$

৫। প্রমাণ কর যে, প্রথম n সংখ্যক ধনাত্মক সংখ্যার গড়x এবং পরিমিত ব্যবধান σ হলে,

i)
$$\bar{x}\sqrt{n-1} \ge \sigma$$
 ii) $100\sqrt{n-1} \ge$ বিভেদাংক।

প্রমাণঃ মনে করি, x চলকের n সংখ্যক ধনাত্মক মানসমূহ x_2,x_2,\dots,x_n এবং উহাদের গাণিতিক গড় \overline{x} পরিমিত ব্যবধান, σ হলে,

$$\overline{x} = \frac{\sum x_i}{n}$$

$$\therefore \sum x_i = n\overline{x} \qquad (i)$$

ভেদাংক,
$$\sigma^2 = \frac{\sum x_i^2}{n} - \overline{x}^2 - - - - (2)$$

আমরা জানি,

$$\left(\sum_{i=1}^{n} x_{i}\right)^{2} = \sum_{i=1}^{n} x_{i}^{2} + 2\sum_{i < j} x_{i} x_{j}$$

বা,
$$\left(\sum x_i\right)^2 \ge \sum x_i^2$$

[তথ্যবিন্দুগুলি অঋনাত্বক বলে $2\sum_{i < j} x_i x_j \ge 0$]

বা,
$$(n\overline{x})^2 \ge \sum x_i^2$$

বা,
$$n\overline{x}^2 \ge \frac{\sum x_i^2}{n}$$

[উভয় পক্ষকে n দ্বারা ভাগ করে]

বা,
$$n\bar{x}^2 - \bar{x}^2 \ge \frac{\sum x_i^2}{n} - \bar{x}^2$$

[উভয় পক্ষে \bar{x}^2 বিয়োগ করে]

বা,
$$\bar{x}^2(n-1) \ge \sigma^2$$

[(2) নং হতে]

বা,
$$\bar{x}\sqrt{n-1} \geq \sigma$$

(প্রমাণিত)

বা,
$$\sqrt{n-1} \ge \frac{\sigma}{\bar{x}}$$

বা,
$$\sqrt{n-1} \times 100 \ge \frac{\sigma}{2} \times 100$$

[উভয় পক্ষে 100 দ্বারা গুণ করে]

বা,
$$100\sqrt{n-1} \ge CV$$

[বিভেদাংক $C.V = \frac{\sigma}{\overline{x}} \times 100$]

$$\therefore 100 \sqrt{n-1} \ge বিভেদাংক।$$

(প্রমাণিত)

ঙ। প্রমাণ কর যে, সন্মিলিভ পরিমিভ ব্যবধান
$$\sigma_c = \sqrt{\frac{n_1(\sigma_1^2 + d_1^2) + n_2(\sigma_2^2 + d_2^2)}{n_1 + n_2}}$$

প্রমাণ: মনে করি, $x_{11}, x_{12}, \ldots, x_{1n_1}$ এবং $x_{21}, x_{22}, \ldots, x_{2n_2}$ দুটি তথ্যসারি। তাদের মোট তথ্যসংখ্যা যথাক্রমে n_1 এবং n_2 গাণিতিক গড় \bar{x}_1 এবং \bar{x}_2 এবং পরিমিত ব্যবধান σ_1 ও σ_2 ।

সম্মিলিত গাণিতিক গড়,
$$\overline{x}_c=\frac{n_1\overline{x}_1+n_2\overline{x}_2}{n_1+n_2}$$

এবং সম্মিলিত ভেদাংক,

$$\sigma_{c}^{2} = \frac{\sum_{i=1}^{n_{1}} (x_{1i} - \overline{x}_{c})^{2} + \sum_{i=1}^{n_{2}} (x_{2i} - \overline{x}_{c})^{2}}{n_{1} + n_{2}}$$

$$\Rightarrow (n_{1} + n_{2})\sigma_{c}^{2} = \sum_{i=1}^{n_{1}} (x_{1i} - \overline{x}_{c})^{2} + \sum_{i=1}^{n_{2}} (x_{2i} - \overline{x}_{c})^{2} \dots (i)$$

১ম উপসেটের ভেদাংক,
$$\ {\sigma_1}^2=rac{\sum_{i=1}^{n_1}\left(x_{1i}-\overline{x}_1^{}\right)^2}{n_1}$$

$$\Rightarrow \sum_{i=1}^{n} (x_{1i} - \overline{x_1})^2 = n_1 \sigma_1^2 \dots (ii)$$
 ২য় উপসেটের ভেদাংক, $\sigma_2^2 = \frac{\sum_{i=1}^{n_2} (x_{2i} - \overline{x_2})^2}{n_2}$

$$\Rightarrow \sum_{n_2}^{n_2} (x_1 - \overline{x}_1)^2 = n_1 \sigma^2$$

$$\Rightarrow \sum_{i=1}^{\infty} (x_{2i} - \overline{x}_{2})^{2} = n_{2} \sigma_{2}^{2} \dots (iii)$$

હાલન,
$$\sum_{n_1}^{n_1} (\mathbf{x}_{1i} - \overline{\mathbf{x}}_{\mathbf{c}})^2 = \sum_{n_1} \{ (\mathbf{x}_{1i} - \overline{\mathbf{x}}_{1}) + (\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{\mathbf{c}}) \}^2$$

$$\begin{split} &= \sum_{i=1}^{n_1} (x_{1i} - \overline{x}_1)^2 + 2(\overline{x}_1 - \overline{x}_c) \sum_{i=1}^{n_1} (x_{1i} - \overline{x}_1) + n_1(\overline{x}_1 - \overline{x}_c)^2 \\ &= \sum_{i=1}^{n_1} (x_{1i} - \overline{x}_1)^2 + 2(\overline{x}_1 - \overline{x}_c) \cdot 0 + n_1(\overline{x}_1 - \overline{x}_c)^2 \quad \left[\because \sum_{i=1}^{n_1} (x_{1i} - \overline{x}_1) = 0 \right] \\ &= n_1 \sigma_1^2 + n_1(\overline{x}_1 - \overline{x}_2)^2 \qquad \left[(ii) \ \overline{\Rightarrow} \ \mathcal{C}(\overline{x}) \overline{\Rightarrow} \right] \end{split}$$

$$\therefore \sum_{i=1}^{n_1} (x_{1i} - \overline{x}_c)^2 = n_1 \sigma_1^2 + n_1 (\overline{x}_1 - \overline{x}_c)^2 \dots (iv)$$

অনুরূপভাবে, প্রমাণ করা যায় যে,

$$\sum_{i=1}^{n_2} (x_{2i} - \overline{x}_c)^2 = n_2 \sigma_2^2 + n_2 (\overline{x}_2 - \overline{x}_c)^2 \dots (v)$$

ধরি, $\overline{x}_1 - \overline{x}_c = d_1 \ \overline{x}_2 - \overline{x}_c = d_2$

তাহলে (iv) এবং (v) নং সমীকরণকে নিম্নরূপে লিখা যায়,

$$\sum_{i=1}^{n_2} (x_{2i} - \overline{x}_c)^2 = n_2 \sigma_2^2 + n_2 d_2^2 \dots (vii)$$

$$\sum_{i=1}^{n_1} (x_{1i} - \overline{x}_c)^2 = n_1 \sigma_1^2 + n_1 d_1^2 \dots (vi)$$

$$\stackrel{\text{i=1}}{\text{(vii)}}$$
 নং সমীকরণকে (i) নং সমীকরণে বসিয়ে পাই,
$$(n_1+n_2)\sigma_c^{\ 2}=n_1\sigma_1^{\ 2}+n_1d_1^{\ 2}+n_2\sigma_2^{\ 2}+n_2d_2^{\ 2}$$

$$(n_1+n_2)\sigma_c^{\ 2}=n_1(\sigma_1^{\ 2}+d_1^{\ 2})+n_2(\sigma_2^{\ 2}+d_2^{\ 2})$$

$$\Rightarrow \sigma_c^{\ 2}=\frac{n_1(\sigma_1^{\ 2}+d_1^{\ 2})+n_2(\sigma_2^{\ 2}+d_2^{\ 2})}{n_1+n_2}$$

$$\therefore \sigma_c=\sqrt{\frac{n_1(\sigma_1^{\ 2}+d_1^{\ 2})+n_2(\sigma_2^{\ 2}+d_2^{\ 2})}{n_1+n_2}}$$
 (শ্রমাণিত)

প্রয়োজনীয় সূত্রাবলী

 $oldsymbol{\lambda}$ । পরিসর, R= বৃহত্তম তথ্যসংখ্যা - ক্ষুদ্রতম তথ্য সংখ্যা $= x_H - x_L$

২। চতুর্থক ব্যবধান,
$$Q.D=rac{Q_3-Q_1}{2}$$

৩। গড় ব্যবধান,
$$MD_{(\overline{x})}=rac{\displaystyle\sum_{i=1}^{n}\left|x_{i}-\overline{x}
ight|}{n}$$
 (অশ্রেণীকৃত তথ্যের ক্ষেত্রে)

$$=rac{\sum\limits_{i=1}^{n}f_{i}ig|x_{i}-\overline{x}ig|}{N}$$
 (শ্রেণীকৃত তথ্যের ক্ষেত্রে)

$$8$$
। পরিমিত ব্যবধান, $SD/\sigma = \sqrt{rac{\sum (x_i - \overline{x})^2}{n}}$ (অশ্রেণীকৃত তথ্যের ক্ষেত্রে)

$$=\sqrt{rac{\sum f_i (x_i - ar{x})^2}{N}}$$
 (শ্রেণীকৃত তথ্যের ক্ষেত্রে)

$$\mathfrak{C} + (\mathbf{i})$$
 ভেদাংক, $\sigma^2 = \frac{\sum (x_i - \bar{x})^2}{n}$ (অশ্রেণীকৃত তথ্যের ক্ষেত্রে)

$$=rac{\sum x_i^2}{n}-\left(rac{\sum x_i}{n}
ight)^2$$
 (অশ্রেণীকৃত তথ্যের ক্ষেত্রে)

$$=rac{\sum x_i^2}{n}-ar{x}^2$$
 (অশ্রেণীকৃত তথ্যের ক্ষেত্রে)

(ii) ভেদাংক,
$$\sigma^2 = \frac{\sum f_i (x_i - \overline{x})^2}{N}$$
 (শ্রেণীকৃত তথ্যের ক্ষেত্রে)
$$= \frac{\sum f_i x_i^2}{N} - \left(\frac{\sum f_i x_i}{N}\right)^2 \quad (শ্রেণীকৃত তথ্যের ক্ষেত্রে)$$

$$= \frac{\sum f_i x_i^2}{N} - \overline{x}^2 \quad (শ্রেণীকৃত তথ্যের ক্ষেত্রে)$$

৬। বিভেদাংক,
$$C.V. = \frac{\sigma}{\overline{x}} \times 100$$

৭। পরিমিত ব্যবধান মূল হতে স্বাধীন কিন্তু মাপনীর উপর নির্ভরশীল।

অর্থাৎ
$$\sigma_x = c\sigma_u$$

৮। ভেদাংক মূল হতে স্বাধীন কিন্তু মাপনীর উপর নির্ভরশীল।

অর্থাৎ
$$\sigma_x^2 = c^2 \sigma_u^2$$
 ।

৯। দুটি সংখ্যার ক্ষেত্রে
$$MD=SD=rac{R}{2}$$
 ; যেখানে $MD=$ গড় ব্যবধান,

$$SD=$$
 পরিমিত ব্যবধান, $R=$ পরিসর

১০। প্রথম
$$n$$
 স্বাভাবিক সংখ্যার ভেদাংক, $\sigma^2\!=\!\frac{n^2-1}{12}$ ও পরিমিত ব্যবধান $\sigma\!=\!\sqrt{\frac{n^2-1}{12}}$

১২। সহভেদাংক,
$$\operatorname{cov}(x, y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{n}$$

যখন x ও y সাধীন চলক তখন cov(x, y) = 0

১৩। প্রথম
$$n$$
জোড় \int বিজোড় সংখ্যার ভেদাংক, $\sigma^2=\frac{n^2-1}{3}$ ও পরিমিত ব্যবধান, $\sigma=\sqrt{\frac{n^2-1}{3}}$

$$egin{align*} {\bf y}$$
8। সন্মিলিত পরিমিত ব্যবধান, ${m \sigma}_{\scriptscriptstyle \mathcal{G}} = \sqrt{rac{n_1({m \sigma}_{\scriptscriptstyle 1}^{\ 2} + {m d}_{\scriptscriptstyle 1}^{\ 2}) + n_2({m \sigma}_{\scriptscriptstyle 2}^{\ 2} + {m d}_{\scriptscriptstyle 2}^{\ 2})}{n_1 + n_2} }$

যেখানে,
$$d_1=\overline{x}_1-\overline{x}_{\scriptscriptstyle \mathcal{C}},\ d_2=\overline{x}_2-\overline{x}_{\scriptscriptstyle \mathcal{C}}$$

১৫। সম্মিলিত ভেদাংক,
$$\sigma^2_{\ c}=\frac{n_1(\sigma_1^{\ 2}+d_1^{\ 2})+n_2(\sigma_2^{\ 2}+d_2^{\ 2})}{n_1+n_2}$$
 ;

যেখানে,
$$d_1 = \overline{x}_1 - \overline{x}_c$$
, $d_2 = \overline{x}_2 - \overline{x}_c$

১৬। সঠিক তথ্যের বর্গের সমষ্টি
$$\sum {x_i'}^2 = \sum {x_i}^2 - ($$
ভুল তথ্য $)^2 + ($ সঠিক তথ্য $)^2$

গাণিতিক সমস্যার সমাধান

১। 35 ও 45 সংখ্যা দুটির গড় ব্যবধান ও পরিমিত ব্যবধান নির্ণয় কর। সমাধান:

মনে করি, সংখ্যা দুইটি,

$$x_1 = 35$$
$$x_2 = 45$$

[এখানে, $x_2 > x_1$]

পরিসর.

$$R = x_2 - x_1$$
$$= 45 - 35$$
$$= 10$$

গড় ব্যবধান,

$$MD = \frac{R}{2}$$
$$= \frac{10}{2}$$
$$= 5$$

পরিমিত ব্যবধান,

$$\sigma = \frac{R}{2}$$

$$= \frac{10}{2}$$

$$= 5$$

২। -15 ও -55 সংখ্যা দুটির গড় ব্যবধান ও পরিমিত ব্যবধান নির্ণয় কর। সমাধান । মনে করি, সংখ্যা দুইটি,

$$x_1 = -15$$

$$x_2 = -55 \hspace{1cm} \mbox{[এখান, } x_1 > x_2 \mbox{]}$$

পরিসর.

$$R = x_1 - x_2$$
= -15 - (55)
= -15 + 55
= 40

গড় ব্যবধান,

$$MD = \frac{R}{2}$$
$$= \frac{40}{2}$$
$$= 20$$

পরিমিত ব্যবধান,
$$\sigma = \frac{R}{2}$$

$$=\frac{40}{2}$$

সমাধান: ধরি, সংখ্যা দুইটি,

$$x_1 = 25$$

$$x_2 = 35$$

[এখানে
$$x_2 > x_1$$
]

পরিমিত ব্যবধান,

$$\sigma = \frac{R}{2}$$

$$= \frac{x_2 - x_1}{2}$$

$$= \frac{35 - 25}{2}$$

$$= \frac{10}{2}$$

$$\sigma = 3$$
$$\therefore \sigma^2 = (5)^2$$

$$= 25$$

বিভেদাংক,
$$C.V = \frac{\sigma}{\overline{x}} \times 100 - - - - - (1)$$

(1) নং হতে পাই,

$$CV = \frac{5}{30} \times 100$$
$$= 16.67$$

∴নির্ণেয় ভেদাংক,
$$25$$
 ও বিভেদাংক $(C.V) = 16.67\%$

এখানে,
$$\bar{x} = \frac{x_1 + x_2}{2}$$
$$= \frac{25 + 35}{2} = \frac{60}{2} = 30$$

8। 13 ও 17 সংখ্যা দুইটি বিভেদাংক নির্ণয় কর।

সমাধান: এখানে ,17>13

$$\overline{x} = \frac{13 + 17}{2}$$
$$= \frac{30}{2}$$
$$= 15$$

$$=4$$

পরিমিত ব্যবধান, $\sigma=\frac{R}{2}$
 $=\frac{4}{2}$

∴বিভেদাংক=
$$\frac{\sigma}{\overline{x}} \times 100$$

$$= \frac{2}{15} \times 100$$

$$= 13.33$$

∴নির্ণেয় বিভেদাংক =13.33%।

৫। -3, 0, 3 সংখ্যাগুলির গড় ব্যবধান ও পরিমিত ব্যবধান নির্ণয় কর। সমাধানঃ

ধরি,
$$x_1 = -3$$
 $x_2 = 0$
এবং $x_3 = 3$
গাণিতিক গড়, $\overline{x} = \frac{x_1 + x_2 + x_3}{3}$

$$= \frac{-3 + 0 + 3}{3}$$

$$= \frac{0}{3}$$

$$= 0$$

গড় ব্যবধান,

$$MD = \frac{\sum_{i=1}^{3} |x_i - \overline{x}|}{3}$$

$$= \frac{\sum_{i=1}^{3} |x_i - 0|}{3}$$

$$= \frac{\sum_{i=1}^{3} |x_i|}{3}$$

$$= \frac{|x_1| + |x_2| + |x_3|}{3}$$

$$= \frac{|-3| + |0| + |3|}{3}$$

$$= \frac{3 + 0 + 3}{3}$$

$$= \frac{6}{3} = 2$$
পরিমিত ব্যবধান, $\sigma = \sqrt{\frac{\sum_{i=1}^{3} (x_i - \overline{x})^2}{3}}$

$$= \sqrt{\frac{\sum_{i=1}^{3} (x_i - 0)^2}{3}}$$

$$= \sqrt{\frac{x_1^2 + x_2^2 + x_3^2}{3}}$$

$$= \sqrt{\frac{(-3)^2 + 0^2 + (3)^2}{3}}$$

$$= \sqrt{\frac{9 + 0 + 9}{3}}$$

$$= \sqrt{\frac{18}{3}}$$

৬। -2a,-a,0,a,2a সংখ্যাগুলোর গড় ব্যবধান ও পরিমিত ব্যবধান নির্ণয় কর।

সমাধান:

ধরি,

$$x_1 = -2a$$

$$x_2 = -a$$

$$x_3 = 0$$

$$x_4 = a$$

 $x_s = 2a$

গাণিতিক গড়.

$$\overline{x} = \frac{x_1 + x_2 + x_3 + x_4 + x_5}{5}$$

$$= \frac{-2a - a + 0 + a + 2a}{5}$$

$$= \frac{0}{5}$$

গড ব্যবধান.

$$MD = \frac{\sum_{i=1}^{5} |x_i - \overline{x}|}{5}$$

$$= \frac{\sum_{i=1}^{5} |x_i - 0|}{5}$$

$$= \frac{\sum_{i=1}^{5} |x_i|}{5}$$

$$= \frac{|x_1| + |x_2| + |x_3| + |x_4| + |x_5|}{5}$$

$$= \frac{|-2a| + |-a| + |0| + |a| + |2a|}{5}$$

$$= \frac{2a + a + 0 + a + 2a}{5}$$

$$= \frac{6a}{5}$$

ভেদাংক,
$$\sigma^2 = \frac{\sum_{i=1}^5 (x_i - \overline{x})^2}{5}$$

$$= \frac{\sum_{i=1}^5 (x_i - 0)^2}{5}$$

$$= \frac{\sum_{i=1}^5 x_i^2}{5}$$

$$= \frac{x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2}{5}$$

$$= \frac{(-2a)^2 + (-a)^2 + 0^2 + (a)^2 + (2a)^2}{5}$$

$$= \frac{4a^2 + a^2 + 0 + a^2 + 4a^2}{5}$$

$$= \frac{10a^2}{5}$$

$$\sigma^2 = 2a^2$$

$$= \sqrt{2}a^2$$

$$\therefore \sigma = \sqrt{2} \ a$$

 \therefore নির্ণেয়, গড় ব্যবধান $\frac{6a}{5}$ ও পরিমিত ব্যবধান $\sqrt{2}\,a$

৭। 3,7,11-----55 সংখ্যাগুলির পরিমিত ব্যবধান ও বিভেদাংক নির্ণয় কর। সমাধান:

ধরি,
$$x_i = \{3,7,11-----55\}$$
 এখানে,
$$\underbrace{v_i = \{3,7,11----55\}}_{\text{up}} = \frac{x_i - a}{c}$$

$$= \frac{x_i + 1}{4}$$

$$= \{1,2,3-----14\}$$

ইহা 14টি স্বাভাবিক সংখ্যার সেট।

∴ প্রথম n স্বাভাবিক সংখ্যার গাণিতিক গড়

$$\overline{u} = \frac{n+1}{2}$$

$$= \frac{14+1}{2}$$

$$= \frac{15}{2}$$

— 7.5 আমরা জানি, গাণিতিক গড় মূল ও মাপনির উপর নির্ভরশীল।

$$\overline{x} = a + c\overline{u}$$

$$= -1 + 4 \times 7.5$$

$$= -1 + 30$$

$$= 29$$

∴ প্রথম n স্বাভাবিক সংখ্যার পরিমিত ব্যবধান,

$$\sigma_{u} = \sqrt{\frac{n^{2} - 1}{12}}$$

$$\sigma_{u} = \sqrt{\frac{(14)^{2} - 1}{12}}$$

$$= \sqrt{\frac{196 - 1}{12}}$$

$$= \sqrt{\frac{195}{12}}$$

$$= \sqrt{16.25}$$

$$= 4.03$$

আমরা জানি, পরিমিত ব্যবধান মূল থেকে স্বাধীন কিন্তু মাপনির উপর নির্ভরশীল।

$$\sigma_x = c\sigma_u$$
$$= 4 \times 4.03$$
$$= 16.12$$

∴ বিভেদাংক,
$$CV = \frac{\sigma_x}{\overline{x}} \times 100$$

$$= \frac{16.12}{29} \times 100$$

$$= 55.59\%$$

∴নির্ণেয় পরিমিত ব্যবধান, 16.12 এবং বিভেদাংক 55.59%।

৮। 4030, 4040-----4500 ধারার ভেদাংক ও বিভেদাংক নির্ণয় কর।

সমাধান: ধরি,

$$x_i = \{4030, 4040 -----4500\}$$
 এবং $u_i = \frac{x_i - a}{c}$
$$= \frac{x_i - 4020}{10}$$

$$= \{1, 2, -----48\}$$

ইহা 48টি স্বাভাবিক সংখ্যার সেট।

∴ প্রথম n স্বাভাবিক সংখ্যার গাণিতিক গড

$$\overline{u} = \frac{n+1}{2}$$

$$= \frac{48+1}{2}$$

$$= \frac{49}{2}$$

$$= 24.5$$

আমরা জানি, গাণিতিক গড় মূল ও মাপনির উপর নির্ভরশীল।

$$\overline{x} = a + c\overline{u}$$

= 4020 + 10 × 24.5
= 4020 + 245
= 4265

 \therefore প্রথম \mathbf{n} স্বাভাবিক সংখ্যার ভেদাংক $\sigma_u^2 = \frac{n^2 - 1}{12}$

$$\sigma_u^2 = \frac{(48)^2 - 1}{12}$$

$$= \frac{2304 - 1}{12}$$

$$= \frac{2303}{12}$$

$$= 191, 92$$

আমরা জানি, ভেদাংক মূল থেকে স্বাধীন কিন্তু মাপনীর উপর নির্ভরশীল।

$$\sigma_x^2 = c^2 \sigma_u^2$$

= $(10)^2 \times 191.92$
= 19191.67

উচ্চমাধ্যমিক পরিসংখ্যান

এখানে, মূল, a=4020মাপনী, c=10 $u_i=$ নতুন চলক। সুতরাং পরিমিত ব্যবধান, $\sigma_x = \sqrt{1919.67}$

$$=138.53$$

∴ বিভেদাংক,

$$CV = \frac{\sigma_x}{\overline{x}} \times 100$$
$$= \frac{138.53}{4265} \times 100$$
$$= 3.25\%$$

৯। 7, 12, 17, 22-----102 রাশিগুলোর ভেদাংক নির্ণয় কর। সমাধান:

ধরি,
$$x_i=\{7,12,17,22-----102\}$$
 এবং $u_i=\frac{x_i-a}{c}$
$$=\frac{x_i-2}{5}$$

$$=\{1,2,3,4---20\}$$

ইহা 20টি স্বাভাবিক সংখ্যার সেট,

∴ প্রথম n স্বাভাবিক সংখ্যার ভেদাংক

$$\sigma_{u}^{2} = \frac{n^{2} - 1}{12}$$

$$= \frac{(20)^{2} - 1}{12}$$

$$= 33.25$$

আমরা জানি, ভেদাংক মূল থেকে স্বাধীন কিন্তু মাপনীর উপর নির্ভরশীল।

$$\sigma_x^2 = c^2 \sigma_u^2$$
= 5² × 33.25
= 831.25

এখানে,
মূল,
$$a=2$$

মাপনী, $c=5$
 $u_i=$ নতুন চলক।

১০। 20, 25, 30 110 সংখ্যাগুলোর ভেদাংক, পরিমিত ব্যবধান ও বিভেদাংক নির্ণয় কর।

সমাধান: ধরি,

$$x_i = \{20, 25, 30......110\}$$

এবং $u_i = \frac{x_i - a}{c}$
$$= \frac{x_i - 15}{5}$$

$$= \{1, 2, 3.....19\}$$

ইহা 19টি স্বাভাবিক সংখ্যার সেট.

১ম
$${f n}$$
 স্বাভাবিক সংখ্যার গাণিতিক গড় ${ar u}=rac{n+1}{2}$

১ম 19টি স্বাভাবিক সংখ্যার গড়
$$\overline{u}=\frac{19+1}{2}$$

$$=\frac{20}{2}$$

$$=10$$

আমরা জানি,

গাণিতিক গড় মূল ও মাপনীর উপর নির্ভরশীল।

$$\therefore \overline{x} = a + c\overline{u}$$

$$= 15 + (5 \times 10)$$

$$= 15 + 50$$

$$= 65$$

19টি স্বাভাবিক সংখ্যার ভেদাংক.

$$\sigma_u^2 = \frac{(19)^2 - 1}{12}$$

$$= \frac{361 - 1}{12}$$

$$= \frac{360}{12}$$

$$= 30$$

এখানে, মূল, a=15মাপনী, c=5 $u_i=$ নতুন চলক আমরা জানি, ভেদাংক মূল হতে স্বাধীন কিন্তু মাপনীর উপর নির্ভরশীল।

$$\sigma_x^2 = c^2 \times \sigma_u^2$$

$$= (5)^2 \times 30$$

$$= 25 \times 30$$

$$= 750$$

$$= \sqrt{750}$$

$$= 27.38$$

∴ বিভেদাংক,
$$c.v = \frac{\sigma_x}{\overline{x}} \times 100$$

$$= \frac{27.38}{65} \times 100$$

$$= 42.13$$

$$= 42.13 \%$$

১১। দুটি রাশির গাণিতিক গড় ও ভেদাংক 10 ও 4 হলে রাশিষয় নির্ণয় কর।

সমাধান :

$$AM = 10$$

$$\sigma^2 = 4$$

$$\therefore \sigma = 2$$

মনে করি, রাশি দুইটি x_1 ও x_2 যেখানে $x_1 > x_2$

$$AM = 10$$

বা,
$$\frac{x_1 + x_2}{2} = 10$$

$$x_1 + x_2 = 20 - - - - - (i)$$

আবার $\sigma = 2$

বা,
$$\frac{R}{2}=2$$

বা,
$$R=4$$

$$x_1 - x_2 = 4 - - - - - - (ii)$$

সমীকরণ (i) ও (ii) যোগ করে পাই,

$$x_1 + x_2 + x_1 - x_2 = 20 + 4$$

$$\Rightarrow 2x_1 = 24$$
$$\therefore x_1 = 12$$

সমীকরণ (i) থেকে (ii) বিয়োগ করে পাই,

$$x_1 + x_2 - x_1 + x_2 = 20 - 4$$

$$2x_2 = 16$$
$$\therefore x_2 = 8$$

নির্ণেয় রাশি দুইটি 12 ও 8।

সমাধান : দেওয়া আছে,

$$AM = 6$$

ভেদাংক,
$$\sigma^2 = 9$$

$$\therefore \sigma = 3$$

মনে করি, অসম রাশি দুইটি
$$x_1$$
 ও x_2 যেখানে $x_1\!>\!x_2$

$$AM = 10$$

$$\frac{x_1 + x_2}{2} = 6$$

$$x_1 + x_2 = 12 - - - - (i)$$

 $\Rightarrow x_1 - x_2 = 6 - - - - - (ii)$

আবার,
$$\sigma = 3$$

$$\Rightarrow \frac{R}{2} = 3$$

$$\Rightarrow \frac{x_1 - x_2}{2} = 3$$

সমীকরণ (i) ও (ii) যোগ করে পাই,

$$x_1 + x_2 + x_1 - x_2 = 12 + 6$$

$$2x_1 = 18$$

সমীকরণ (i) থেকে (ii) বিয়োগ করে পাই,

$$x_1 + x_2 - x_1 + x_2 = 12 - 6$$

$$2x_2 = 6$$

$$\therefore x_2 = 3$$

নির্ণেয় রাশি দুইটি 9 ও 3।

১৩। দুটি সংখ্যার গড় 7 ও ভেদাংক 1 হলে সংখ্যা দুটি কত? সমাধান: দেওয়া আছে.

$$AM = 7$$

$$\sigma^2 = 1$$

 $\therefore \sigma = 1$

ধরি, সংখ্যা দুইটি x_1 ও x_2 যেখানে $x_1 > x_2$

$$AM = 7$$

বা,
$$\frac{x_1 + x_2}{2} = 7$$

$$x_1 + x_2 = 14 - - - - - (i)$$

আবার, $\sigma=1$

$$\Rightarrow \frac{R}{2} = 1$$

$$\Rightarrow \frac{x_1 - x_2}{2} = 1$$

$$x_1 - x_2 = 2 - - - - - (ii)$$

সমীকরণ (i) ও (ii) যোগ করে পাই,

$$x_1 + x_2 + x_1 - x_2 = 14 + 2$$

$$2x_1 = 16$$

$$\therefore x_1 = 8$$

সমীকরণ (i) থেকে (ii) বিয়োগ করে পাই,

$$x_1 + x_2 - x_1 + x_2 = 14 - 2$$

$$\Rightarrow 2x_2 = 12$$

$$\therefore x_2 = 6$$

নির্ণেয় সংখ্যা দুইটি 8 ও 6।

 $oldsymbol{38}$ । দুইটি তথ্যমানের জ্যামিতিক গড় $3\sqrt{3}$ এবং ভেদাংক $oldsymbol{9}$ হলে তথ্যমান দুটি নির্ণয় কর।

সমাধানঃ দেওয়া আছে,

$$GM = 3\sqrt{3}$$

ভেদাংক,
$$\sigma^2 = 9$$

$$\therefore \sigma = 3$$

ধরি, তথ্য সংখ্যা দুইটি
$$x_{\!\scriptscriptstyle 1}$$
 ও $x_{\!\scriptscriptstyle 2}$ যেখানে $x_{\!\scriptscriptstyle 1}>\!x_{\!\scriptscriptstyle 2}$

এখন,
$$GM = 3\sqrt{3}$$

বা,
$$\sqrt{x_1 x_2} = 3\sqrt{3}$$

 $\therefore x_1 x_2 = 27$ [বর্গ করে পাই]

আবার.
$$\sigma=3$$

বা,
$$\frac{R}{2} = 3$$

বা,
$$\frac{x_1 - x_2}{2} = 3$$

$$x_1 - x_2 = 6 - - - - - - - (i)$$

আমরা জানি,

$$(x_1 + x_2)^2 = (x_1 - x_2)^2 + 4x_1x_2$$

$$=6^2 + 4 \times 27$$

$$=36 + 108$$

$$(x_1 + x_2)^2 = 144$$
$$x_1 + x_2 = \sqrt{144}$$

$$x_1 - x_2 + x_1 + x_2 = 6 + 12$$

বা,
$$2x_1 = 18$$

$$\therefore x_1 = 9$$

সমীকরণ(i) থেকে (ii) বিয়োগ করে
$$x_1 - x_2 - x_1 - x_2 = 6 - 12$$

বা,
$$-2x_2 = -6$$

বা,
$$x_2 = \frac{-6}{2}$$

১৫। তিনটি বিন্যাসের গণসংখ্যা যথাক্রমে $200,\,250\,$ ও $300\,$ । তাদের গড় $25,\,10\,$ ও $15\,$ এবং পরিমিত ব্যবধান $3,\,4\,$ ও $5\,$ হলে সম্মিলিত গড়, ভেদাংক ও পরিমিত ব্যবধান নির্ণয় কর।

$$\begin{split} \overline{x}_1 &= 25, \overline{x}_2 = 10, \overline{x}_3 = 15 \\ \sigma_1 &= 3, \ \sigma_2 = 4, \ \sigma_3 = 5 \\ \sigma_1^2 &= 9, \sigma_2^2 = 16, \ \sigma_3^2 = 25 \\ \hline{ সামিলিত গড়, } \ \overline{x}_c &= \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2 + n_3 \overline{x}_3}{n_1 + n_2 + n_3} \\ &= \frac{200 \times 25 + 250 \times 10 + 300 \times 15}{200 + 250 + 300} \\ &= \frac{5000 + 2500 + 4500}{750} \\ &= \frac{12000}{750} \\ &= 16 \end{split}$$

 $n_1 = 200, n_2 = 250, n_3 = 300$

সম্মিলিত ভেদাংক,

$$\sigma_{c}^{2} = \frac{n_{1}(\sigma_{1}^{2} + d_{1}^{2}) + n_{2}(\sigma_{2}^{2} + d_{2}^{2}) + n_{3}(\sigma_{3}^{2} + d_{3}^{2})}{n_{1} + n_{2} + n_{3}}$$
 (i)
$$d_{1} = \overline{x}_{1} - \overline{x}_{c} = 25 - 16 = 9$$

$$d_{1}^{2} = 81$$

$$\sigma_{1}^{2} + d_{1}^{2} = 9 + 81 = 90$$

$$d_{2} = \overline{x}_{2} - \overline{x}_{c} = 10 - 16 = -6$$

$$d_{2}^{2} = 36$$

$$\sigma_{2}^{2} + d_{2}^{2} = 16 + 36 = 52$$

$$d_{3} = \overline{x}_{3} - \overline{x}_{c} = 15 - 16 = -1$$

$$d_{3}^{2} = 1$$

$$\sigma_{3}^{2} + d_{3}^{2} = 25 + 1 = 26$$

(i) নং সমীকরণ হতে পাই,

$$\begin{split} \sigma_c^2 &= \frac{200 \times 90 + 250 \times 52 + 300 \times 26}{200 + 250 + 300} \\ &= \frac{18000 + 13000 + 7800}{750} \\ &= \frac{38800}{750} \\ &= 51.73 \\ \sigma_c &= \sqrt{51.73} = 7.19 \end{split}$$

১৬। ১ম n স্বাভাবিক সংখ্যার পরিমিত ব্যবধান $\sqrt{10}$ হলে n এর মান ও বিভেদাংক নির্ণয় কর। সমাধানঃ আমরা জানি, ১ম n স্বাভাবিক সংখ্যার পরিমিত ব্যবধান,

$$\sigma = \sqrt{\frac{n^2 - 1}{12}}$$
 [এখানে, $\sigma = \sqrt{10}$]

প্রশ্নতে,

$$\sqrt{\frac{n^2-1}{12}} = \sqrt{10}$$

বা,
$$\frac{n^2-1}{12} = 10$$
 [বৰ্গ করে]

বা,
$$n^2 - 1 = 120$$

বা,
$$n^2 = 120 + 1$$

বা.
$$n^2 = 121$$

$$\therefore n = 11$$

:. ১ম n স্বাভাবিক সংখ্যার গড়,

$$\overline{x} = \frac{n+1}{2}$$

$$= \frac{11+1}{2}$$

$$= \frac{12}{2} = 6$$

বিভেদাংক,
$$C.V = \frac{\sigma}{\overline{x}} \times 100$$

$$= \frac{\sqrt{10}}{6} \times 100$$

$$= 52.70\%$$

১৭। একটি তথ্যসারির বিভেদাংক, মধ্যমা ও পরিমিত ব্যবধান যথাক্রমে 25%, 21 এবং 5। তথ্যসারির প্রচুরক ও গাণিতিক গড় বের কর।

সমাধান: দেওয়া আছে.

বিভেদাংক,
$$CV=\frac{\sigma}{\overline{x}}\times 100=25-----(i)$$
 মধ্যমা, $M_{\varepsilon}=21$ পরিমিত ব্যবধান, $\sigma=5$

(i) নং হতে পাই.

$$\Rightarrow \frac{5}{\overline{x}} \times 100 = 25$$

$$\Rightarrow 25\overline{x} = 500$$

$$\Rightarrow \overline{x} = \frac{500}{25} = 20$$

আমরা জানি.

প্রচুরক =
$$3 \times$$
মধ্যমা $-2 \times$ গাণিতিক গড়
$$M_o = 3M_e - 2\overline{x}$$

$$= 3 \times 21 - 2 \times 20$$

$$= 63 - 40$$

$$= 23$$

নির্ণেয় প্রচুরক 23 ও গাণিতিক গড় 20।

১৮। কোন তথ্যসারির প্রতিটি মান হতে 3 বিয়োগ করে 5 দ্বারা ভাগ করে যে নতুন তথ্যসারি পাওয়া গেল তার পরিমিত ব্যবধান 4 হলে মূল তথ্যসারির পরিমিত ব্যবধান নির্ণয় কর।

সমাধান : মনে করি, x চলকের n সংখ্যক মান $x_1, x_2 - \cdots - x_n$

ধরি, নতুন চলক
$$u=\frac{x-a}{c}$$
 [$a=3, c=5$]
$$\Rightarrow u_t=\frac{x_t-3}{5}$$

$$\Rightarrow x_t-3=5u_t$$

$$\Rightarrow x_t=5u_t+3$$

$$\Rightarrow \overline{x}=5\overline{u}+3$$

পরিমিত ব্যবধান,

$$\sigma_{x} = \sqrt{\frac{\sum (x_{i} - \overline{x})^{2}}{n}}$$

$$= \sqrt{\frac{\sum (5u_{i} + 3 - 5\overline{u} - 3)^{2}}{n}}$$

$$= \sqrt{\frac{\sum \{5(u_{i} - \overline{u})\}^{2}}{n}}$$

$$= \sqrt{\frac{25\sum (u_{i} - \overline{u})^{2}}{n}}$$

$$= 5\sqrt{\frac{\sum (u_{i} - \overline{u})^{2}}{n}}$$

$$= 5\sigma_{u}$$

$$= 5 \times 4 = 20$$

১৯। যদি চলক x এর ভেদাংক ${\bf 10}$ হয় এবং y=2x-3 হয় তবে y এর ভেদাংক নির্ণয় কর। সমাধান: দেওয়া আছে, x চলকের ভেদাংক, ${\sigma_x}^2=10$ এবং y=2x-3

$$=4\frac{\sum (x_i - \bar{x})^2}{n}$$
$$=4\sigma_x^2$$

 $= 4 \times 10 = 40$

২০। যদি চলক x এর গড় ও ভেদাংক যথাক্রমে ${f 25}$ ও ${f 36}$ হয় এবং y=2x-5 হয় তবে চলক y এর গড় ও ভেদাংক বের কর।

সমাধান: দেওয়া আছে.

$$x$$
 এর গড়, $\bar{x}=25$

x এর ভেদাংক, $\sigma_x^2 = 36$

উচ্চমাধ্যমিক পরিসংখ্যান

v এর ভেদাংক,

$$\sigma_{y}^{2} = \frac{\sum (y_{i} - \overline{y})^{2}}{n}$$

$$= \frac{\sum (2x_{i} - 5 - 2\overline{x} + 5)^{2}}{n}$$

$$= \frac{\sum \left\{2(x_{i} - \overline{x})\right\}^{2}}{n}$$

$$= 4\frac{\sum (x_{i} - \overline{x})^{2}}{n}$$

$$= 4\sigma_{x}^{2}$$

$$= 4 \times 36$$

$$= 144$$

২১। দশটি রাশির সমষ্টি 100 এবং বর্গের সমষ্টি 1250 হলে তাদের পরিমিত ব্যবধান নির্ণয় কর। সমাধান :

মনে করি, দশটি রাশি,
$$x_1, x_2 - \cdots - \cdots$$
 দশটি রাশির সমষ্টি, $\sum_{i=1}^{10} x_i = 100$ দশটি রাশির বর্গের সমষ্টি, $\sum_{i=1}^{10} x_i^2 = 1250$ ভেদাংক, $\sigma^2 = \frac{\sum_{i=1}^{10} x_i^2}{10} - \left(\frac{\sum x_i}{10}\right)^2$
$$= \frac{1250}{10} - \left(\frac{100}{10}\right)^2$$

$$= 125 - 100$$

 $\sigma^2 = 25$ $\therefore \sigma = 5$

২২। ${f 19}$ টি স্বাভাবিক সংখ্যার ভেদাংক ও বিভেদাংক নির্ণয় কর। সমাধানঃ আমরা জানি, প্রথম ${f n}$ স্বাভাবিক সংখ্যার গড় ${f x}=rac{n+1}{2}$

এখানে,
$$n = 19$$

$$\therefore \overline{x} = \frac{19+1}{2} = \frac{20}{2} = 10$$

এবং প্রথম ${f n}$ স্বাভাবিক সংখ্যার ভেদাংক, $\sigma^2=rac{n^2-1}{12}$ $=rac{(19)^2-1}{12}$ $=rac{361-1}{12}=rac{360}{12}=30$

$$\sigma = \sqrt{30} = 5.48$$

বিভেদাংক,
$$C.V = \frac{\sigma}{\overline{x}} \times 100$$

$$= \frac{5.48}{10} \times 100 = 54.8\%$$

২৩। 25টি ক্রমিক সংখ্যার ভেদাংক ও বিভেদাংক নির্ণয় কর। সমাধান: এখানে, n=25 আমরা জানি. ১ম n স্বাভাবিক সংখ্যায় ভেদাংক.

$$\sigma^{2} = \frac{n^{2} - 1}{12}$$

$$= \frac{(25)^{2} - 1}{12}$$

$$= \frac{625 - 1}{12}$$

$$= \frac{624}{12}$$

$$= 52$$

$$\therefore \sigma = \sqrt{52} = 7.21$$

গাণিতিক গড়, $\bar{x}=\frac{n+1}{2}$ $=\frac{25+1}{2}$ $=\frac{26}{2}$ =13

বিভেদাংক,
$$\text{C.V} = \frac{\sigma}{\overline{x}} \times 100$$

$$= \frac{7.21}{13} \times 100$$

$$= 55.46\%$$

উচ্চমাধ্যমিক পরিসংখ্যান

পঞ্চম অধ্যায়

পরিঘাত, বঙ্কিমতা ও সূঁচালতা MOMENTS, SKEWNESS AND KURTOSIS

কেন্দ্রীয় প্রবণতা ও বিস্তার পরিমাপের সাহায্যে কোন একটি নিবেশনের গঠন ও প্রকৃতি সম্পর্কে কোন ধারণা পাওয়া যায় না। নিবেশনের গঠন ও প্রকৃতি পরিমাপের উৎকৃষ্ট পরিমাপ হলো বঙ্কিমতা ও সূঁচালতা। বঙ্কিমতার সাহায্যে কোন নিবেশন ধনাত্মক না ঋণাত্মক তা পরিমাপ করা যায়। এছাড়াও গণসংখ্যা রেখাটি ডানে বা বামে কোন দিকে বিস্তৃত তা জানা যায়। সূঁচালতা নিবেশনের গণসংখ্যা রেখা (Frequency Curve) কতটুকু তীক্ষ তা পরিমাপ করে। আর বঙ্কিমতা ও সূঁচালতা পরিমাপের মাধ্যম হলো পরিঘাত।

এ অধ্যায় পাঠ শেষে শিক্ষার্থীরা—

- পরিঘাত ও পরিঘাতের শ্রেণী বিভাগ ব্যাখ্যা করতে পারবে।
- প্রথম চারটি কাঁচা পরিঘাত/অশোধিত পরিঘাতকে কেন্দ্রীয় পরিঘাতের মাধ্যমে প্রকাশ করতে পারবে।
- পরিঘাতের প্রয়োজনীয়তা ও ব্যবহার ব্যাখ্যা করতে পারবে।
- বিদ্ধমতা ও ইহার প্রকারভেদ বর্ণনা করতে পারবে।
- বঙ্কিমতার পরিমাপসমূহ ব্যাখ্যা করতে পারবে।
- সূচাঁলতা ও ইহার প্রকারভেদ বর্ণনা করতে পারবে।
- সূচাঁলতা পরিমাপসমূহ ব্যাখ্যা করতে পারবে।
- পাঁচ সংখ্যা সার ব্যবহার করে তথ্যের বৈশিষ্ট্য ব্যাখ্যা করতে পারবে।
- বক্স ও হুইস্কার প্রদর্শনী সাহায্যে তথ্য বিশ্লেষণ করতে পারবে।
- বক্স এবং হুইস্কার প্রদর্শনের ব্যবহার ব্যাখ্যা করতে পারবে।
- বক্স প্লাটের সুবিধা বলতে পারবে।

৫.০১ পরিঘাত ও পরিঘাতের শ্রেণী বিভাগ

Moment and Types of Moments

পরিঘাত (Moment):

ইংরেজি Moment শব্দের বাংলা প্রতিশব্দ হলো পরিঘাত। গণসংখ্যা নিবেশনের আকৃতি ও প্রকৃতি নির্ধারণের জন্য নিবেশনের গড় বা অনুমিত গড় থেকে অন্যান্য সংখ্যাগুলোর ব্যবধানের বিভিন্ন ঘাতের সমষ্টিকে মোট পদসংখ্যা দ্বারা ভাগ করে যে মানগুলি পাওয়া যায়, তাদেরকে পরিঘাত বলে।

অন্যভাবে বলা যায়, কোন নিবেশনের প্রতিটি তথ্যবিন্দু হতে গাণিতিক গড় বা গড় ভিন্ন অন্য মানের ব্যবধানের একই ধনাত্মক পূর্ণসংখ্যা বিশিষ্ট ঘাত নিয়ে তাদের সমষ্ট্রিকে মোট তথ্যসংখ্যা দ্বারা ভাগ করে যে মান পাওয়া যায় তাকে পরিঘাত বলে।

পরিঘাতের প্রকারভেদ (Types of Moments)

নিবেশনের গড় বা অনুমিত গড় (গড় ছাড়া অন্য যেকোন মান) থেকে পরিঘাত নির্ণয় করা যায়। এই জন্য পরিঘাতকে দুই ভাগে ভাগ করা যায়। যথা: (১) শোধিত বা কেন্দ্রীয় পরিঘাত (Central Moment) (২) অশোধিত বা কাঁচা পরিঘাত (Raw Moment).

একটি ভিজিটাল ক্যামব্রিয়ান প্রকাশনা

শোধিত বা কেন্দ্রীয় পরিঘাত: কোন তথ্য সারির প্রতিটি মান হতে উহার গাণিতিক গড়ের ব্যবধানের বিভিন্ন ঘাতের সমষ্ট্রিকে মোট পদসংখ্যা দ্বারা ভাগ করলে যে মান পাওয়া যায় তাকে কেন্দ্রীয় পরিঘাত বলে। ইহাকে সাধারণ μ_c দ্বারা প্রকাশ করা হয়।

অশ্রেণীকৃত তথ্যের ক্ষেত্রে:

মনে করি, কোন চলকx এর n সংখ্যক মানসমূহ x_1x_2 x_n এবং উহাদের গাণিতিক গড় \overline{x} ধারাটির rতম কেন্দ্রীয় পরিঘাত μ_c হলে,

$$\mu_{\rm r} = \frac{\sum (x_i - \overline{x})^r}{n}$$

যেখানে, r=1,2,3,4...ইত্যাদি বসিয়ে ১ম, ২য়, ৩য়, ৪র্থ ইত্যাদি পরিঘাত নির্ণয় করা যায়।

শ্রেণীকৃত তথ্যের ক্ষেত্রে: মনে করি, কোন চলক x এর n সংখ্যক মান সমূহ x_1x_2 x_n এবং উহাদের গণসংখ্যা যথাক্রমে,

$$f_1,\ f_2.....f_n$$
 , যেখানে $\sum_{i=1}^n f_i = N$ r -তম কেন্দ্রীয় পরিঘাত,

$$\mu_{\rm r} = \frac{\sum_{i=1}^n f_i (x_i - \overline{x})^r}{N} +$$

r=1,2,3,4...ইত্যাদি বসিয়ে ১ম, ২য়, ৩য়, ৪র্থ, পরিঘাত নির্ণয় করা যায়।

অশোধিত বা কাঁচা পরিঘাত: কোন নিবেশনের প্রতিটি মান হতে গাণিতিক গড় ছাড়া অন্য যে কোন ধ্রুত্বকের ব্যবধানের বিভিন্ন ঘাতের সমষ্টিকে মোট পদসংখ্যা দ্বারা ভাগ করলে যে মান পাওয়া যায় তাকে অশোধিত বা কাঁচা পরিঘাত বলে। ইহাকে সাধারণত μ' দ্বারা প্রকাশ করা হয়।

অশ্রেণীকৃত তথ্যের ক্ষেত্রে: মনে করি, কোন চলক x এর n সংখ্যকমান সমূহ x_1,x_2,\ldots,x_n এবং উহাদের গাণিতিক গড় \overline{x} । a যে কোন একটি সংখ্যা, যেখানে $a \neq \overline{x}$ । ধারাটির rতম অশোধিত পরিঘাত μ'_r হলে,

$$\mu_r' = \frac{\sum_{i=1}^n (x_i - a)^r}{r^2}$$

শ্রেণীকৃত তথ্যের ক্ষেত্রে: মনে করি, কোন চলক x এর n সংখ্যক মান সমূহ x_1, x_2, \dots, x_n এবং উহাদের গণসংখ্যা যথাক্রমে.

$$f_1,\ f_2......f_n$$
 যেখানে, $\sum\limits_{i=1}^n f_i=N$ ধারাটির r-তম অশোধিত পরিঘাত μ_r' হলে,

$$\mu_r' = \frac{\sum_{i=1}^n f_i(x_i - a)^r}{N}$$

r=1,2,3,4...ে বসিয়ে ১ম, ২য়, ৩য়, ও ৪র্থ ইত্যাদি অশোধিত পরিঘাত নির্ণয় করা যায়। উচ্চমাধ্যাকিক পরিসংখ্যান

প্রথম চারটি কাঁচা পরিঘাত / অশোধিত পরিঘাতকে কেন্দ্রীয় পরিঘাতের মাধ্যমে প্রকাশ

Express the first four raw moments in terms of central moments

অশোধিত পরিঘাতকে শোধিত পরিঘাতে রূপান্তর: মনে করি, কোন চলক x এর n সংখ্যক মান সমহ x_1, x_2, \dots, x_n এবং উহাদের গাণিতিক গড় \bar{x} । a যেকোন একটি সংখ্যা যেখানে $a \neq \bar{x}$ । সুতরাং, r-তম শোধিত পরিঘাত μ_r হলে,

$$\mu_r = \frac{\sum_{j=1}^{n} (x_i - \bar{x})^r}{n}$$
; $r = 1, 2, 3, 4$

১ম কেন্দ্রীয় পরিঘাত.

$$\mu_{i} = \frac{\sum_{j=1}^{n} (x_{j} - \overline{x})}{n}$$

$$= \frac{\sum_{j=1}^{n} x_{j}}{n} - \frac{n\overline{x}}{n}$$

$$= \overline{x} - \overline{x}$$

$$= 0$$

২য় কেন্দ্রীয় পরিঘাত.

$$\mu_2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

৩য় কেন্দ্রীয় পরিঘাত.

$$\mu_{\scriptscriptstyle 3}=rac{\sum\limits_{i=1}^{n}\left(x_{i}-\overline{x}
ight)^{3}}{n}$$
৪র্থ কেন্দ্রীয় পরিঘাত,

$$\mu_4 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^4}{n}$$

r তম অশোধিত পরিঘাত হবে.

$$\mu_r^{j} = \frac{\sum_{i=1}^{n} (x_i - a)^{j}}{n}$$
 ; $r = 1, 2, 3, 4$

১ম অশোধিত পরিঘাত.

$$\mu_{i}' = \frac{\sum_{i=1}^{n} (x_{i} - a)}{n}$$

$$= \frac{\sum_{i=1}^{n} x_{i}}{n} - \frac{na}{n}$$

$$= \frac{\sum_{i=1}^{n} x_{i}}{n} - \frac{na}{n}$$

২য় অশোধিত পরিঘাত,

$$\mu_{2}' = \frac{\sum (x_{i} - a)^{2}}{n}$$

$$= \frac{\sum \{(x_{i} - \overline{x}) + (\overline{x} - a)\}^{2}}{n}$$

$$= \frac{\sum \{(x_{i} - \overline{x}) + \mu_{1}'\}^{2}}{n}$$

$$= \frac{\sum \{(x_{i} - \overline{x})^{2} + 2(x_{i} - \overline{x})\mu_{1}' + \mu_{1}'^{2}\}}{n}$$

$$= \frac{\sum (x_{i} - \overline{x})^{2} + 2\mu_{1}' \sum (x_{i} - \overline{x}) + n\mu_{1}'^{2}}{n}$$

$$= \frac{\sum (x_{i} - \overline{x})^{2} + 2\mu_{1}' \sum (x_{i} - \overline{x}) + n\mu_{1}'^{2}}{n}$$

$$= \frac{\sum (x_{i} - \overline{x})^{2}}{n} + 2\mu_{1}' \frac{\sum (x_{i} - \overline{x})}{n} + \frac{n\mu_{1}'^{2}}{n}$$

$$= \mu_{2} + 2\mu_{1}' \times \frac{0}{n} + \mu_{1}'^{2}$$

$$= \mu_{2}' = \mu_{2} + \mu_{1}'^{2}$$

৩য় অশোধিত পরিঘাত.

$$\mu_{3}' = \frac{\sum (x_{i} - a)^{3}}{n}$$

$$= \frac{\sum \{(x_{i} - \overline{x}) + (\overline{x} - a)\}^{3}}{n}$$

$$= \frac{\sum \{(x_{i} - \overline{x}) + \mu_{1}'\}^{3}}{n}$$

$$= \frac{\sum \{(x_{i} - \overline{x})^{3} + 3(x_{i} - \overline{x})^{2} \mu_{1}' + 3(x_{i} - \overline{x}) \mu_{1}'^{2} + \mu_{1}'^{3}\}}{n}$$

$$= \frac{\sum (x_{i} - \overline{x})^{3} + 3\mu_{1}' \sum (x_{i} - \overline{x})^{2} + 3\mu_{1}'^{2} \sum (x_{i} - \overline{x}) + n\mu_{1}'^{3}}{n}$$

$$= \frac{\sum (x_{i} - \overline{x})^{3}}{n} + 3\mu_{1}' \frac{\sum (x_{i} - \overline{x})^{2}}{n} + 3\mu_{1}'^{2} \frac{\sum (x_{i} - \overline{x})}{n} + \frac{n\mu_{1}'^{3}}{n}$$

$$= \mu_{2} + 3\mu_{1}' \mu_{2} + 3\mu_{1}'^{2} \times \frac{0}{n} + \mu_{1}'^{3}$$

৪র্থ অশোধিত পরিঘাত,

$$\mu_{4}' = \frac{\sum (x_{i} - a)^{4}}{n}$$

$$= \frac{\sum \{(x_{i} - \overline{x}) + (\overline{x} - a)\}^{4}}{n}$$

$$= \frac{\sum \{(x_{i} - \overline{x}) + \mu_{1}'\}^{4}}{n}$$

$$= \frac{\sum \{(x_{i} - \overline{x})^{4} + 4(x_{i} - \overline{x})^{3} \mu_{1}' + 6(x_{i} - \overline{x})^{2} \mu_{1}'^{2} + 4(x_{i} - \overline{x}) \mu_{1}'^{3} + \mu_{1}'^{4}\}}{n}$$

$$= \frac{\sum (x_{i} - \overline{x})^{4} + 4\mu_{1}' \sum (x_{i} - \overline{x})^{3} + 6\mu_{1}'^{2} \sum (x_{i} - \overline{x})^{2} + 4\mu_{1}'^{3} \sum (x_{i} - \overline{x}) + n\mu_{1}'^{4}}{n}$$

$$= \frac{\sum (x_{i} - \overline{x})^{4} + 4\mu_{1}' \sum (x_{i} - \overline{x})^{3} + 6\mu_{1}'^{2} \sum (x_{i} - \overline{x})^{2} + 4\mu_{1}'^{3} \sum (x_{i} - \overline{x}) + n\mu_{1}'^{4}}{n}$$

$$= \frac{\sum (x_{i} - \overline{x})^{4}}{n} + 4\mu_{1}' \sum (x_{i} - \overline{x})^{3} + 6\mu_{1}'^{2} \sum (x_{i} - \overline{x})^{2} + 4\mu_{1}'^{3} \sum (x_{i} - \overline{x}) + n\mu_{1}'^{4}}{n}$$

$$= \mu_{4} + 4\mu_{1}'\mu_{3} + 6\mu_{1}'^{2}\mu_{2} + 4\mu_{1}'^{3} \times \frac{0}{n} + \mu_{1}'^{4}$$

$$\therefore \mu_{4}' = \mu_{4} + 4\mu_{2}\mu_{1}' + 6\mu_{3}\mu_{1}'^{2} + \mu_{1}'^{4}$$

৫.০৩ পরিঘাতের প্রয়োজনীয়তা ও ব্যবহার

Necessity and Uses of moments

প্রয়োজনীয়তা ও ব্যবহার:

- গণসংখ্যা নিবেশনের আকৃতি ও প্রকৃতি নির্ধারণের জন্য পরিঘাত ব্যবহার করা হয়।
- খন্য হতে নির্ণীত প্রথম কাঁচা পরিঘাত গাণিতিক গড়ের সমান বিধায় উহা কেন্দ্রীয় প্রবণতার পরিমাপ হিসেবে ব্যবহৃত হয়।
- দ্বিতীয় কেন্দ্রীয় পরিঘাত ভেদাংকের সমান বিধায় উহা বিস্তার পরিমাপ হিসাবে ব্যবহৃত হয়।
- ৩য় কেন্দ্রীয় পরিঘাত বিয়য়য়তা পরিয়াপের ব্যবহৃত হয়।
- চতুর্থ কেন্দ্রীয় পরিঘাত স্ঁচালতা পরিমাপে ব্যবহৃত হয়।
- বিভিন্ন ধরণের সম্ভাবনা বিন্যাসে পরিঘাত ব্যবহৃত হয়।
- উচ্চতর পরিসংখ্যানিক শাস্ত্রে পরিঘাত ব্যবহৃত হয়।
- বিভিন্ন ধরণের রাজনৈতিক তথ্যমালা ও সামাজিক তথ্যমালা বিশ্লেষণের পরিঘাত ব্যবহৃত হয়

৫.০৪ বঙ্কিমতা ও ইহার প্রকারভেদ

Skewness and Types of Skewness

বিষ্কমতা (skewness): কোন গণসংখ্যা নিবেশনের সুষমতার অভাবই হচ্ছে বন্ধিমতা অর্থাৎ অন্য কথায় কোন নিবেশনের সুষম অবস্থা থেকে বিচ্যুতি অবস্থাকে বন্ধিমতা বলে।

বঙ্কিমতাকে দুই ভাগে ভাগ করা যায়। যথা— (i) ধনাত্মক বঙ্কিমতা (ii) ঋণাত্মক বঙ্কিমতা।

(i) ধনাত্মক বিষ্কমতা: কোন গণসংখ্যা রেখা তার বামদিক হতে ডানদিকে অপেক্ষাকৃত বেশি বিস্তৃত হলে তার বিষ্কমতাকে ধনাত্মক বিষ্কমতা বলে। ধনাত্মক বিষ্কমতার ক্ষেত্রে গড়, মধ্যমা ও প্রচুরকের সম্পর্ক হল-

(ii) ঋণাত্মক বন্ধিমতা: কোন গণসংখ্যা রেখা তার ডানদিক হতে বামদিকে বেশি পরিমাণে বিস্তৃত হলে তার বন্ধিমতাকে ঋণাত্মক বন্ধিমতা বলে। এক্ষেত্রে গড়, মধ্যমা ও প্রচরকের সম্পর্ক হল $\overline{x} < Me < Mo$

একটি সুষম নিবেশনের গড়, মধ্যমা ও প্রচুরকের মান পরস্পর সমান হয়। এক্ষেত্রে $\overline{x}=Me=Mo$

উচ্চমাধ্যমিক পরিসংখ্যান

৫.০৫ বঙ্কিমতার পরিমাপসমূহ

Measures of Skewness

বিদ্ধিমতার গাণিতিক পরিমাপকে বিদ্ধিমতাংক বলে। একে পরম ও আপেক্ষিক দুই ভাগে ভাগ করা যায়। বিদ্ধিমতার পরম পরিমাপ একক নির্ভর বলে, দুই বা ততোধিক তথ্যের মধ্যে তুলনা করার জন্য সর্বদা ব্যবহার করা যায় না। কিন্তু বিদ্ধিমতার আপেক্ষিক পরিমাপ একক নিরপেক্ষ বলে, সব অবস্থায় ব্যবহার উপযোগী হয়। নিম্নে বিদ্ধিমতার বিভিন্ন আপেক্ষিক পরিমাপের বর্ণনা দেয়া হলো:

a) কার্লিপিয়ারসনের সূত্র (Karl Pearson's Formula): একটি সুষম বিন্যাসের গড়, মধ্যমা ও প্রচুরক সমান। কিন্তু বিল্পম নিবেশনে গড়, মধ্যমা ও প্রচুরক একই বিন্দুতে অবস্থান করে না। এই অনুসিদ্ধান্তের উপর ভিত্তি করে কার্লিপিয়ারসন বিদ্ধমতাংক পরিমাপের সূত্র প্রদান করেন।

ক) বন্ধিমতাংক,
$$Sk=rac{$$
গড় $-$ প্রচুরক $}{$ পরিমিত ব্যবধান $}=rac{ar{x}-M_{\odot}}{\sigma}$

আবার গড়, মধ্যমা ও প্রচুরকের পারস্পরিক সম্পর্ক হল: গড় – প্রচুরক = 3 (গড়-মধ্যমা)

সুতরাং উপরোক্ত সূত্রটিকে নিম্নরুপে প্রকাশ করা যায়।

খ) বন্ধিমতাংক,
$$Sk=rac{3~(গড় - মধ্যমা)}{পরিমিত ব্যবধান}$$

$$=rac{3(ar x-M_e)}{\sigma}$$

যদি কোন নিবেশনের বঙ্কিমতাংকের মান-

- i) SK=0 হলে নিবেশনটি সুষম।
- ii) SK>0 হলে নিবেশনটি ধনাত্মক বঙ্কিম।
- iii) SK<0 হলে নিবেশনটি ঋণাত্মক বঙ্কিম হয়।

b) বাউলীর বঙ্কিমতাংক (Bowley's Coefficient of Skewness): বঙ্কিম নিবেশনের মধ্যমা, চতুর্থকের ভিত্তিতে বঙ্কিমতা নির্ণয়ের জন্য Bowley ন্ফিলিখিত সূত্রটি প্রদান করেন।

Bowley's বিশ্বমতাংক
$$=rac{Q_3+Q_1-2M_e}{Q_3-Q_1}$$
 এখানে, $Q_1=$ ১ম চতুৰ্থক $Q_3=$ ৩য় চতুৰ্থক $M_e=$ মধ্যমা।

c) কেলীর বন্ধিমতাংক (Kelley's Coefficient of Skewness): কেলী দশমক ব্যবহার করে বন্ধিমতার পরিমাপ করেন।

Kelley's বন্ধিমতাংক
$$=$$
 $\frac{D_9+D_1-2M_e}{D_9-D_1}$ এখানে $D_1=$ ১ম দশমক $D_9=$ ৯ম দশমক $M_e=$ মধ্যমা ।

d) পরিঘাত ভিত্তিক বঙ্কিমতাংক (skewness calculated from momets): বঙ্কিমতা পরিমাপের যথাযথ প্রণালী হলো β_1 এর বর্গমূল নেওয়া। পরিঘাত ব্যবহার করে নিচের পদ্ধতিতে বঙ্কিমতাংক পরিমাপ করা যায়-

বিছিমতাংক,
$$\sqrt{\beta_1}=\sqrt{\frac{{\mu_3}^2}{{\mu_2}^3}}$$

$$=\frac{\mu_3}{\sqrt{{\mu_2}^3}}$$
 যেখানে, $\beta_1=\frac{{\mu_3}^2}{{\mu_2}^3}$ ধনাত্মক বিছিম নিবেশনের ক্ষেত্রে, $\sqrt{\beta_1}>0$ খাণাত্মক বিছিম নিবেশনের ক্ষেত্রে, $\sqrt{\beta_1}<0$ সুষম নিবেশনের ক্ষেত্রে, $\sqrt{\beta_1}=0$

৫.০৬ সূচাঁলতা ও ইহার প্রকারভেদ

Kurtosis and types of kurtosis

সূচাঁপতা (Kurtosis): পরিমিত রেখার তুলনায় কোন গণসংখ্যা রেখার উচু নিচুর মাত্রাকে সূঁচালতা বলে। গণসংখ্যা রেখার গঠন প্রকৃতির উপর ভিত্তি করে সূচলতাকে তিন ভাগে ভাগ করা যায়। যথা:

- ক) অতি সূচাঁল (Leptokurtic)
- খ) মধ্যম সূচাল (Mesokurtic)
- গ) অনতি সূচাঁল (Platykurtic)

অতি সূচাঁলঃ পরিমিত রেখার তুলনায় যদি গণসংখ্যা রেখাটি অধিক উঁচু হয় তখন তাকে অতি সূঁচাল বলা হয়। এইক্ষেত্রে $eta_3>3$

নিম্নে লেখচিত্রের মাধ্যমে এটি উপস্থাপিত হলো:

চিত্র: অতি সূচাঁল

মধ্যম সূচাঁলঃ পরিমিত রেখার তুলনায় যদি গণসংখ্যা রেখাটি সমান হয় তখন তাকে মধ্যম সূঁচাল বলা হয়। এইক্ষেত্রে $eta_2=3$

নিম্নে লেখচিত্রের মাধ্যমে এটি উপস্থাপিত হলো:

অনতি সূচাঁলঃ পরিমিত রেখার তুলনায় যদি গণসংখ্যা রেখাটি অধিক নিচু হয় তখন তাকে অনতি সূঁচাল বলা হয়। এইক্ষেত্রে $eta_{>} < 3$

নিম্নে লেখচিত্রের মাধ্যমে এটি উপস্থাপিত হলো:

৫.০৭ সূচাঁলতা পরিমাপসমূহ

Measures of Kurtosis

সূঁচালতার পরিমাপ: যে নির্দিষ্ট সংখ্যার সাহায্যে কোন গণসংখ্যা নিবেশনের সূঁচালতার পরিমাপ করা হয় তাকে সূঁচালতাংক বলে। এটি সূঁচালতার একটি আপেক্ষিক পরিমাপ।

কার্শপিয়ারসনের সূত্র: দ্বিতীয় ও চতুর্থ কেন্দ্রীক পরিঘাতের সাহায্য সূঁচালতা নির্ণয় করা হয়। নিম্নে কার্লপিয়ারসনের সূত্রটি উল্লেখ করা হলো।

সূঁচালতাংক,
$$\beta_2=\frac{\mu_4}{{\mu_2}^2}$$
 (Beta two; Greek letter) এখানে,

 μ_2 ও μ_4 হলে মথাক্রমে দ্বিতীয় ও চতুর্থ কেন্দ্রীয় পরিঘাত। যদি $\beta_2=3$ হয়, তবে গণসংখ্যা নিবেশন মধ্যম সূঁচাল হয়। যদি $\beta_2>3$ হয়, তবে গণসংখ্যা নিবেশন অতি সূঁচাল হয়। যদি $\beta_2<3$ হয়, তবে গণসংখ্যা নিবেশন অনতি সূঁচাল হয়।

৫.০৮ পাঁচ সংখ্যা সার

Five Number Summary

কোন নিবেশন বা তথ্যসারির সর্বনিম্ন মান, প্রথম চতুর্থক (Q_1) , মধ্যমা (Me), তৃতীয় চতুর্থক (Q_3) এবং সর্বোচ্চ মানকে একত্রে পাঁচ সংখ্যা সার $(Five\ Number\ Summary)$ বলা হয়।

পাঁচ সংখ্যা সারে নিম্নলিখিত সম্পর্ক পরিলক্ষিত হয়:

- i. ঋণাত্মক বঙ্কিম নিবেশনে মিডরেঞ্জ, মধ্যমা ও মিডহিঞ্জ অপেক্ষা ছোট হয়।
- ii. ধনাত্মক বঙ্কিম নিবেশনে মিডরেঞ্জ, মধ্যমা ও মিডহিঞ্জ অপেক্ষা বড় হয়।
- iii. সুষম নিবেশনে প্রথম চতুর্থক হতে মধ্যমার দূরত্ব ও মধ্যমা হতে তৃতীয় চতুর্থকের দূরত্ব সমান।
- iv. সুষম নিবেশনে সর্বনিম্ন তথ্যমান হতে প্রথম চতুর্থকের দ্রত্ব এবং তৃতীয় চতুর্থক হতে সর্বোচ্চ তথ্যমানের দ্রত্ব সমান হয়।
- v. সুষম নিবেশনের ক্ষেত্রে মধ্যমা, মিডরেঞ্জ ও মিডহিঞ্জ পরস্পর সমান হয়।

৫.০৯ বক্স ও হুইস্কার প্রদর্শনী

Box and Whiskers Plot

বক্স ও ছইন্ষার প্রদর্শনী হলো কোন একটি তথ্য সারির সেই ধরণের উপস্থাপন বা সমাবেশ যেখানে চতুর্থকগুলো অবস্থান পরিমাপ (Location Measures) হিসাবে কাজ করে এবং আন্তঃচতুর্থক পরিসর (Interquartile range) ভেদ (Variability) এর পরিমাপ হিসাবে ব্যবহৃত হয়। তথ্যসারিকে চিত্রের মাধ্যমে উপস্থাপন করতে এবং তাদের ভিতরকার বন্ধিমতা সম্পর্কে জানতে এটি একটি সহজ পদ্ধতি। তথ্য বিশ্লেষণের ক্ষেত্রে (In Explanatory data analysis) এটি বহুল ব্যবহৃত হয়ে থাকে।

বক্স ও হুইন্কার প্লুট তথ্যসারির পাঁচ সংখ্যা সার অর্থাৎ সর্বনিম্ম মান, প্রথম চতুর্থক, মধ্যমা, তৃতীয় চতুর্থক এবং সর্বোচ্চ মান দারা উপস্থাপন করা হয়।

নিমুলিখিতভাবে বক্স এবং হুইস্কার প্রদর্শন করা হয়:

প্রথম ধাপ: আনুভূমিক অক্ষ বরাবর উপযুক্ত কেল নিয়ে বক্স অঙ্কন করা হয়।

দ্বিতীয় ধাপ: প্রথম চতুর্থক (Q_1) হতে তৃতীয় চতুর্থক (Q_3) পর্যন্ত বিস্তৃত একটি বক্স অন্ধন করা হয়। উলম্ব অক্ষ বরাবর বক্সের মধ্যে মধ্যকার অবস্থান নির্দেশ করা হয়।

ভৃতীয় ধাপঃ অন্তঃঘের (Inner fence) এবং বহিঃঘের (Outer fence) এর মান নির্ণয় করা হয়। অন্তঃঘেরম্বয় Q_1 এর 1.5~IQR পরিমাণ নিম্নে এবং Q_3 এর 1.5~IQR পরিমাণ উর্দের্ব উলম্ব রেখা দ্বারা নির্দেশ করা হয়। অর্পাৎ অন্তঃঘেরম্বয় যথাক্রমে $Q_1-1.5~IQR$ এবং $Q_3+1.5~IQR$

আবার, বহিঃঘেরদ্বয় Q_1 এর 3.0~IQR পরিমাণ নিম্নে এবং Q_3 এর 3.0~IQR পরিমাণ উর্ধের্ব উলম্ব রেখা দ্বারা নির্দেশ করা হয় । অর্থাৎ বহিঃঘেরদ্বয় $Q_1-3.0~IQR$ এবং $Q_3+3.0~IQR$.

করা নিশেশ করা হয়। বনাং বাহতবেরর $Q_1=3.0$ বিশ্বেষ্টির $Q_3=3.0$ বিশ্বেষ্টির বিশ্বর $Q_3=3.0$ বিশ্বেষ্টির বিশ্বর $Q_3=3.0$ বিশ্বর বি

চিত্র: বক্স এবং হুইস্কার প্রদর্শন

৫.১০ বক্স এবং হুইস্কার প্রদর্শনের ব্যবহার

Uses of box and whiskers plot

বক্স এবং হুইস্কার প্রদর্শনের নিম্নলিখিত ব্যবহারসমূহ পরিলক্ষিত হয়—

- (i) ইহা তথ্যসারির বিস্তার পরিমাপ করে। ইহাতে সর্বোচ্চ মান ও সর্বনিম্ন মান প্রদর্শিত হয় বলে বিস্তার পরিমাপের পরিসর নির্ণয় করা যায় এবং আন্তঃচতুর্থক পরিসরের জন্য তথ্যসারির কেন্দ্রীয় 50% তথ্যের বিস্তার পরিমাপ করা যায়।
- (ii) ইহার মাধ্যমে তথ্যসারির বঙ্কিমতা পরিমাপ করা যায়। যেমন:
- (ক) মধ্যমা হতে বক্সের উভয় দিকে সমান দূরত্ব থাকলে বুঝা যায় যে, তথ্যসারিটি সুষম।
- (খ) মধ্যমা বন্ধের বাম প্রান্তের নিকট অবস্থান করলে বুঝা যায় যে, তথ্যসারিটি ধনাত্যক বন্ধিম নিবেশন অর্থাৎ মধ্যমার নিম্নভাগে অধিক সংখ্যক তথ্যমান থাকরে এবং উর্ধ্বভাগে অল্প সংখ্যক তথ্য অবস্থান করে।
- (গ) মধ্যমা বল্পের ডান প্রান্তের নিকট অবস্থান করলে বুঝা যায় যে, তথ্যসারিটি ঋণাতাক বিদ্ধম নিবেশন অর্থাৎ মধ্যমার ডানদিকে অধিক পরিমাণ তথ্য থাকে কিন্তু বাম প্রান্তে অল্প সংখ্যক পরিমাণ তথ্য অবস্থান করে।
- (iii) বন্ধ এবং হুইন্ফার প্রদর্শনের দ্বারা তথ্যসারির সম্ভাব্য ক্রটি সনাক্ত করা যায়।
- (iv) ইহা প্রদর্শনের দ্বারা তথ্যসারির সূঁচলতা সম্পর্কেও ধারণা পাওয়া যায়। যেমনः
 - ক) যদি বঞ্জের দৈর্ঘ্য < হুইস্কারের দৈর্ঘ্য হয়, তবে তথ্যসারিটি হবে অতি সূঁচাল।
 - (খ) যদি বক্সের দৈর্ঘ্য > হুইস্কারের দৈর্ঘ্য হয়, তবে তথ্যসারিটি হবে অনতি সূঁচাল।
 - (গ) যদি বন্ধের দৈর্ঘ্য = হুইস্কারের দৈর্ঘ্য হয় তথ্যসারিটি হবে মধ্যম সূঁচাল।

৫.১১ বক্স প্লটের সুবিধা

Advantages of Box Plot

বক্স প্লটের সুবিধাসমূহ:

- লৈখিকভাবে তথ্যের অবস্থা ও বিস্তার এক নজরে দেখা যায়।
- এটি তথ্যের স্থমতা ও বঙ্কিমতা সম্পর্কে কিছ নির্দেশনা দেয়।
- তথ্য প্রদর্শনের অন্যান্য উপায় অপেক্ষায় বক্স প্লটের একটি বড় সুবিধা হল এর মাধ্যমে আউটলিয়ায় প্রদর্শন করা যায়।
- বব্দ প্লটের মাধ্যমে বিভিন্ন ধরনের তথ্যকে পরস্পর একই লেখে উপস্থাপন করা যায়। ফলে অতি সহজেই একাধিক তথ্যসারির মধ্যে অতি দ্রুত তুলনা করা যায়।

প্রয়োজনীয় সূত্রাবলী

১। r-তম শোধিত পরিঘাত,

$$\mu_r = rac{\sum (x_i - \overline{x})^r}{n}$$
 (অশ্রেণীকৃত তথ্যের ক্ষেত্রে)
$$= rac{\sum f_i(x_i - \overline{x})^r}{N} \left(শ্রেণীকৃত তথ্যের ক্ষেত্রে
ight)$$

২। r-তম অশোধিত পরিঘাত.

$$\mu_r' = rac{\sum (x_i - a)^r}{n}$$
 (অশ্রেণীকৃত তথ্যের ক্ষেত্রে)
$$= rac{\sum f_i(x_i - a)^r}{N} \ \ (শ্রেণীকৃত তথ্যের ক্ষেত্রে)$$

- ৩। (i) ১ম শোধিত পরিঘাতের মান, $\mu_1=0$
 - (ii) ২য় শোধিত পরিঘাতের মান, $\mu_2 = \mu_2' {\mu_1'}^2$
 - (iii) তৃতীয় শোধিত পরিঘাতের মান, $\mu_3 = \mu_3' 3\mu_2'\mu_1' + 2\mu_1'^3$
 - (iv) চতুর্থ শোধিত পরিঘাতের মান, $\mu_{A} = \mu'_{A} 4\mu'_{2}\mu'_{1} + 6\mu'_{2}\mu'_{1}^{2} 3\mu'_{1}^{4}$
- ৪। (i) ১ম অশোধিত পরিঘাতের মান, $\mu'_1 = \overline{x} a$
 - (ii) ২য় অশোধিত পরিঘাতের মান, $\mu_2' = \mu_2 + {\mu_1'}^2$
 - (iii) ৩য় অশোধিত পরিঘাতের মান, $\mu_3' = \mu_3 + 3\mu_2\mu_1' + \mu_1'^3$
 - (iv) চতুর্থ অশোধিত পরিঘাতের মান, $\mu_4' = \mu_4 + 4\mu_3\mu_1' + 6\mu_2\mu_1'^2 + \mu_1'^4$

৫। বঙ্কিমতাংক,
$$\sqrt{\beta_1}=\frac{\mu_3}{\sqrt{{\mu_2}^3}}$$
 ; যেখানে $\beta_1=\frac{{\mu_3}^2}{{\mu_2}^3}$

৬। কার্লপিয়ারসনের বঙ্কিমতাংক,

(i)
$$SK = \frac{\overline{x} - M_o}{\sigma}$$

(ii) $SK = \frac{3(\overline{x} - M_e)}{\sigma}$

৭। সূঁচালতার সহগ,
$$eta_2=rac{\mu_4}{{\mu_2}^2}$$

৮। দ্বিতীয় কেন্দ্রীয় পরিঘাত ভেদাংকের সমান অর্থাৎ
$$\mu_{\gamma}=\sigma^2$$

৯। নিবেশনটি মধ্যম সূঁচাল হলে,
$$\beta_2 = 3$$

$$\Rightarrow (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$32 + (a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

$$30 + (a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4$$

$$38 + (a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

গাণিতিক সমস্যার সমাধান

১। কোন নিবেশনের 2 থেকে নির্ণীত ১ম ও ২য় পরিঘাত যথাক্রমে 13 এবং 195 হলে তার গড় ও ভেদাংক কত?

সমাধান: মনে করি, a = 2 থেকে নির্ণীত ১ম ও ২য় অশোধিত পরিঘাত যথাক্রমে,

$$\mu_1' = 13$$

$$\mu_2' = 195$$

আমরা জানি, $\mu'_1 = \overline{x} - a$

$$\Rightarrow 13 = \overline{x} - 2$$

$$\Rightarrow \bar{x} - 2 = 13$$

$$\Rightarrow \bar{x} = 13 + 2$$

$$=15$$

আমরা জানি, ২য় কেন্দ্রীয় পরিঘাত ভেদাংকের সমান।

অর্থাৎ

$$\sigma^{2} = \mu_{2}$$

$$= \mu'_{2} - {\mu'_{1}}^{2}$$

$$\sigma^{2} = 195 - (13)^{2}$$

$$= 195 - 169$$

$$= 26$$

∴ নির্ণেয়, গড় 15 ও ভেদাংক 26। একটি ক্যামবিয়ান ডিজিটাল প্রকাশনা ২। কোন নিবেশনের $\,\mu_1'=1,\;\mu_2'=1.5,\;\mu_3'=2.5,\;\mu_4'=15\,$ হলে $\,\mu_2,\;\mu_3,\,\mu_4\,$ নির্ণয় কর।

সমাধান:

দেওয়া আছে,

$$\mu_{1}' = 1$$

$$\mu_2' = 1.5$$
 $\mu_2' = 2.5$

$$u'_{*} = 15$$

আমরা জানি.

$$\mu_{2} = \mu'_{2} - \mu'^{2}$$

$$= 1.5 - 1^{2}$$

$$= 1.5 - 1$$

$$= 0.5$$

$$\mu_{3} = \mu'_{3} - 3\mu'_{2}\mu'_{1} + 2\mu'^{3}$$

$$= 2.5 - 3 \times 1.5 \times 1 + 2 \times (1)^{3}$$

$$= 2.5 - 4.5 + 2$$

$$= 4.5 - 4.5$$

$$= 0$$

$$\mu_{4} = \mu'_{4} - 4\mu'_{3}\mu'_{1} + 6\mu'_{2}\mu'^{2}_{1} - 3\mu'^{4}_{1}$$

$$= 15 - 4 \times 2.5 \times 1 + 6 \times 1.5 \times (1)^{2} - 3 \times (1)^{4}$$

$$= 15 - 10 + 9 - 3$$

$$= 11$$

৩। কোন নিবেশনের গড় 1 এবং প্রথম চারটির কেন্দ্রীয় পরিঘাত যথাক্রমে 0, 2.5, 0.7, 18.75 হলে 2 এর সাপেক্ষে প্রথম চারটি পরিঘাত নির্ণয় কর।

সমাধান:

দেওয়া আছে,

$$\bar{x} = 1$$

$$\mu_1 = 0$$

$$\mu_2 = 2.5$$

$$\mu_3 = 0.7$$

$$\mu_4 = 18.75$$

এবং a=2

আমরা জানি,

$$\mu'_{1} = \overline{x} - a$$

$$= 1 - 2$$

$$= -1$$

$$\mu'_{2} = \mu_{2} + {\mu'_{1}}^{2}$$

$$= 2.5 + (-1)^{2}$$

$$= 2.5 + 1$$

$$= 3.5$$

$$\mu'_{3} = \mu_{3} + 3\mu_{2}\mu'_{1} + {\mu'_{1}}^{3}$$

$$= 0.7 + 3 \times 2.5 \times (-1) + (-1)^{3}$$

$$= 0.7 - 7.5 - 1$$

$$= -7.8$$

$$\mu'_{4} = \mu_{4} + 4\mu_{3}\mu'_{1} + 6\mu_{2}{\mu'_{1}}^{2} + {\mu'_{1}}^{4}$$

$$= 18.75 + 4 \times 0.7 \times (-1) + 6 \times 2.5 \times (-1)^{2} + (-1)^{4}$$

$$= 18.75 - 2.8 + 15 + 1$$

৪। একটি নিবেশনের 2 এর সাপেক্ষে নির্ণীত প্রথম চারটি পরিঘাত যথাক্রমে 1, 2.5, 5.5 ও 16 হলে 4 এর সাপেক্ষে নির্ণীত প্রথম চারটি পরিঘাত নির্ণয় কর।

সমাধানঃ

দেওয়া আছে,

= 31.95

$$2$$
 এর সাপেক্ষে প্রথম চারটি পরিঘাত $-$
$$\mu_1' = \frac{\Sigma\left(x_i-2\right)}{n} = 1$$

$$\mu_2' = \frac{\sum (x_i - 2)^2}{n} = 2.5$$

$$\mu_3' = \frac{\sum (x_i - 2)^3}{n} = 5.5$$

$$\mu_4' = \frac{\sum (x_i - 2)^4}{n} = 16$$

4 এর সাপেক্ষে প্রথম চারটি পরিঘাত—

া সাপেকে প্ৰথম চাৱটি পরিঘাত—
$$\mu_1' = \frac{\sum (x_i - 4)}{n}$$

$$= \frac{\sum (x_i - 2 - 2)}{n}$$

$$= \frac{\sum (x_i - 2) - 2n}{n}$$

$$= \frac{\sum (x_i - 2)}{n} - \frac{2n}{n}$$

$$= 1 - 2$$

$$= -1$$

$$\mu_2' = \frac{\sum (x_i - 4)^2}{n}$$

$$= \frac{\sum (x_i - 2 - 2)^2}{n}$$

$$= \frac{\sum (x_i - 2) - 2}{n}$$

$$= \frac{\sum (x_i - 2)^2}{n} - 2 \cdot \frac{\sum (x_i - 2)}{n} \cdot 2 + (2)^2$$

$$= 2 \cdot 5 - 2 \times 1 \times 2 + 4$$

$$= 2 \cdot 5 - 4 + 4$$

$$= 2 \cdot 5$$

$$\mu_3' = \frac{\sum (x_i - 4)^3}{n}$$

$$= \frac{\sum (x_i - 2 - 2)^3}{n}$$

$$= \frac{\sum (x_i - 2 - 2)^3}{n} \cdot 3 \cdot \frac{\sum (x_i - 2)^2}{n} \cdot 2 + 3 \cdot \frac{\sum (x_i - 2)}{n} \cdot (2)^2 - (2)^3$$

$$= 5 \cdot 5 - 3 \times 2 \cdot 5 \times 2 + 3 \times 1 \times 4 - 8$$

$$= 5 \cdot 5 - 15 + 12 - 8 = -5 \cdot 5$$

$$\mu_4' = \frac{\sum (x_i - 4)^4}{n} = \frac{\sum (x_i - 2 - 2)^4}{n}$$

$$= \frac{\sum (x_i - 2)^4}{n} - 4 \cdot \frac{\sum (x_i - 2 - 2)^4}{n} \cdot 2 + 6 \cdot \frac{\sum (x_i - 2)^2}{n} \cdot (2)^2 - 4 \cdot \frac{\sum (x_i - 2)}{n} \cdot (2)^3 + 2^4$$

= 16 - 44 + 60 - 32 + 16

 $= 16 - 4 \times 5.5 \times 2 + 6 \times 2.5 \times 4 - 4 \times 1 \times 8 + 16$

৫। একটি বিন্যাসের 40 কেন্দ্রীক ১ম চারটি পরিঘাত যথাক্রমে 1, 17, 20 ও 101। বিন্যাসটির দ্বিতীয়
ও তৃতীয় কেন্দ্রীয় পরিঘাত নির্শয় কর।

সমাধান: মনে করি, a=40 হতে নির্ণীত ১ম চারটি অশোধিত পরিঘাত যথাক্রমে-

$$\mu'_1 = -1$$
 $\mu'_2 = 17$

$$\mu'_{3} = 20$$

 $\mu'_4 = 101$

আমরা জানি,

$$\mu_2 = \mu'_2 - {\mu'_1}^2$$

$$= 17 - (-1)^2$$

$$= 17 - 1$$

$$= 16$$

$$\mu_3 = {\mu'_3} - 3{\mu'_2}{\mu'_1} + 2{\mu'_1}^3$$

$$= 20 - 3 \times 17(-1) + 2(-1)^3$$

$$= 20 + 51 - 2$$

$$= 71 - 2 = 69$$

৬। একটি তথ্যসারির 9 এর সাপেক্ষে প্রথম চারটি পরিঘাত যথাক্রমে 0, 8, -16 এবং 25 হলে কেন্দ্রীয় পরিঘাতগুলো নির্ণয় কর।

সমাধান: দেওয়া আছে, a=9

$$\mu_1' = 0$$

$$\mu_2' = 8$$

$$\mu_2 = 8$$

$$\mu_3' = -16$$
 $\mu_1' = 25$

আমরা জানি, ১ম চারটি কেন্দ্রীয় পরিঘাত-

$$\mu_1 = 0$$

$$\mu_2 = \mu'_2 - {\mu'_1}^2$$

$$= 8 - 0$$

$$= 8$$

= 8

$$\mu_3 = \mu'_3 - 3\mu'_2\mu'_1 + 2\mu'^3$$

= -16 - 3 \times 8 \times 0 + 2 \times 0^3
= -16 - 0 + 0
= -16

$$\begin{split} \mu_4 &= \mu_4' - 4\mu_3'\mu_1' + 6\mu_2'\mu_1'^2 - 3\mu_1'^4 \\ &= 25 - 4 \times (-16) \times 0 + 6 \times 8 \times 0^2 - 3 \times 0^3 \\ &= 25 - 0 + 0 - 0 \\ &= 25 \end{split}$$
 Fig. (4) $\mu_1 = 0, \ \mu_2 = 8, \ \mu_3 = -16, \ \mu_4 = 25$

৭। নির্দিষ্ট মান ${m 3}$ এর ভিন্তিতে প্রথম তিনটি পরিঘাতের মান যথাক্রমে $-1,\ 5,\ {m 8}$ 9 হলে বিভেদাংক ও ভৃতীয় কেন্দ্রীয় পরিঘাত নির্ণয় কর।

সমাধান: দেওয়া আছে.

$$\mu_1' = -1$$

$$\mu_2' = 5$$

$$\mu_3' = 9$$

আমরা জানি,

$$\mu'_1 = \overline{x} - a$$

বা, $-1 = \overline{x} - 3$
 $\therefore \overline{x} = 2$

এখন,
$$\mu_2 = \mu_2' - {\mu_1'}^2$$

 $= 5 - (1)^2$
 $= 5 - 1 = 4$
 $\mu_3 = \mu_3' - 3\mu_2' \mu_1' + 2{\mu_1'}^3$
 $= 9 - 3 \times 5 \times 1 + 2 \times (1)^3$
 $= 9 - 15 + 2$
 $= -4$

∴ পরিমিত ব্যবধান,

$$\sigma = \sqrt{\mu_2}$$

$$= \sqrt{4} = 2$$

∴ বিভেদাংক
$$c.v = \frac{\sigma}{\overline{x}} \times 100$$

$$= \frac{2}{2} \times 100$$

$$= 100$$

নির্ণেয় c.v = 100 % এবং $\mu_3 = -4$

৮। কোন নিবেশনের মূল হতে মাপা প্রথম তিনটি পরিঘাত যথাক্রমে 1,5 ও 10 হলে β_1 নির্ণয় কর নিবেশনটির সম্পর্কে মন্তব্য কর।

সমাধান:

$$\gamma_1 = 1$$

$$\gamma_2 = 5$$

$$\gamma_3 = 10$$

আমরা জানি.

$$\beta_1 = \frac{{\mu_3}^2}{{\mu_2}^3}....(i)$$

এখন,

$$\mu_2 = \gamma_2 - {\gamma_1}^2$$
= 5-1²
= 5-1

$$\mu_3 = \gamma_3 - 3\gamma_2\gamma_1 + 2\gamma_1^3$$

$$= 10 - 3 \times 5 \times 1 + 2 \times 1^3$$

$$= 10 - 15 + 2$$

$$= -3$$

$$\therefore \beta_1 = \frac{(-3)^2}{(4)^3}$$
$$= \frac{9}{64} = 0.1406$$

এখন,
$$\sqrt{\beta_1} = \frac{\mu_3}{\sqrt{{\mu_2}^3}}$$

$$= \frac{-3}{\sqrt{4^3}}$$

$$= -0.375$$

যেহেতু $\sqrt{eta_1} = -0.375$ সুতরাং নিবেশনটি ঋণাত্মক বঙ্কিমতা বিদ্যমান। একটি কামবিয়ান ডিভিটাল প্রকাশনা ৯। কোন নিবেশনের 2 এর সাপেক্ষে প্রথম চারটি পরিঘাত যথাক্রমে $1,\ 5,\ 10$ এবং 112 হলে নিবেশনটির গড়, ভেদাংক এবং $m{\beta_1}$ ও $m{\beta_2}$ নির্ণয় কর।

সমাধানঃ দেওয়া আছে,

$$a = 2$$

 $\mu'_1 = 1$
 $\mu'_2 = 5$
 $\mu'_3 = 10$
 $\mu'_4 = 112$

r তম কেন্দ্রীয় পরিঘাত μ_r হলে,

$$\mu_{1} = 0$$

$$\mu_{2} = \mu'_{2} - {\mu'_{1}}^{2}$$

$$= 5 - (1)^{3}$$

$$= 5 - 1$$

$$= 4$$

$$\mu_{3} = {\mu'_{3}} - 3{\mu'_{2}}{\mu'_{1}} + 2{\mu'_{1}}^{3}$$

$$= 10 - 3 \times 5 \times 1 + 2 \times (1)^{3}$$

$$= 10 - 15 + 2$$

$$= -3$$

$$\mu_{4} = {\mu'_{4}} - 4{\mu'_{3}}{\mu'_{1}} + 6{\mu'_{2}}{\mu'_{1}}^{2} - 3{\mu'_{1}}^{4}$$

$$= 112 - 4 \times 10 \times 1 + 6 \times 5 \times 1^{2} - 3 \times 1^{4}$$

$$= 112 - 40 + 30 - 3$$

$$= 99$$

এখন, $\mu_1 = \overline{x} - a$ বা, $1 = \overline{x} - 2$

$$\vec{x} = 3$$

ভেদাংক.

$$\sigma^{2} = \mu_{2} = 4$$

$$\therefore \beta_{1} = \frac{\mu_{3}^{2}}{\mu_{2}^{3}}$$

$$= \frac{(-3)^{2}}{(4)^{3}}$$

$$= \frac{9}{64}$$

$$= 0.14$$

$$\beta_{2} = \frac{\mu_{4}}{\mu_{2}^{2}}$$

$$= \frac{99}{(4)^{2}}$$

$$= \frac{99}{16} = 6.19$$

১০। কোন গণসংখ্যা নিবেশনের কল্পিত গড় 2 হতে পরিমাপিত প্রথম চারটি পরিঘাত যথাক্রমে $1,\,3,\,6$ এবং 15। নিবেশনটির গাণিতিক গড়, ভেদাংক এবং প্রথম চারটি শোধিত পরিঘাত নির্ণয় কর।

সমাধান:

মনে করি, a=2 হতে মাপা প্রথম চারটি অশোধিত পরিঘাত,

$$\mu_{1}' = 1$$

$$\mu_{2}' = 3$$

$$\mu_3' = 6$$

$$\mu'_{4} = 15$$

আমরা জানি.

$$\mu'_1 = \bar{x} - a$$

$$\Rightarrow 1 = \bar{x} - 2$$

$$\Rightarrow 1 + 2 = \overline{x}$$
$$\therefore \overline{x} = 3$$

$$\mu_2 = \mu_2' - {\mu_2'}^2$$

$$=3-1^2$$

$$=3-1$$

$$\sigma^2 = \mu_1 = 2$$

আবার, ১ম শোধিত পরিঘাতের মান,

$$\mu_1 = 0$$

$$\mu_2 = 2$$

$$\mu_3 = \mu_3' - 3\mu_2'\mu_1' + 2\mu_1'^3$$

$$=6-3\times3\times1+2(1)^3$$

$$=6-9+2$$

$$=8-9$$

$$= -]$$

$$\mu_4 = \mu_4' - 4\mu_3'\mu_1' + 6\mu_2'\mu_1'^2 - 3\mu_1'^4$$

= 15 - 4×6×1+6×3×1² - 3.(1)⁴

$$=15-24+18-3$$

$$= 33 - 27$$

$$= 6$$

১১। 4 হতে মাপা প্রথম তিনটি পরিঘাত 1, 5 ও 10 হলে বিভেদাংক এবং তৃতীয় কেন্দ্রীয় পরিঘাত নির্ণয় কর। সমাধানঃ মনে করি, a=4হতে মাপা ১ম তিনটি অশোধিত পরিঘাত,

$$\mu'_1 = 1$$
 $\mu'_2 = 5$
 $\mu'_3 = 10$
আমরা জানি, $\mu'_1 = \overline{x} - a$
 $1 = \overline{x} - 4$
 $1 + 4 = \overline{x}$
 $5 = \overline{x}$

∴ $\bar{x}=5$ ২য় কেন্দ্রীয় পরিঘাত,

$$\mu_2 = \mu'_2 - {\mu'_1}^2$$
= 5 - (1)²
= 5 - 1
= 4

আমরা জানি, $\sigma^2 = \mu_2 = 4$

$$\sigma = \sqrt{4} = 2$$

বিভেদাংক,
$$\text{C.V} = \frac{\sigma}{\overline{x}} \times 100$$

$$= \frac{2}{5} \times 100$$

$$= 40\%$$

৩য় কেন্দ্রীয় পরিঘাত.

$$\mu_3 = \mu'_3 - 3\mu'_2\mu'_1 + 2\mu'^3$$

$$= 10 - 3 \times 5 \times 1 + 2(1)^3$$

$$= 10 - 15 + 2$$

$$= 12 - 15$$

১২। একটি বিন্যাসের 5 কেন্দ্রীক ১ম চারটি পরিঘাত যথাক্রমে 1,5,-3 এবং 98। বিন্যাসের গড়, ভেদাংক, μ_3 এবং μ_4 এর মান নির্ণয় কর।

সমাধান: মনে করি, a=5 এর সাপেক্ষে ১ম চারটি অশোধিত পরিঘাত,

$$\mu'_1 = 1$$
 $\mu'_2 = 5$
 $\mu'_3 = -3$
 $\mu'_4 = 98$

⇒
$$1 = \overline{x} - 5$$

⇒ $1 + 5 = \overline{x}$
∴ $\overline{x} = 6$
 $\mu_2 = \mu'_2 - {\mu'_1}^2$
 $= 5 - 1^2$
 $= 5 - 1$
 $= 4$
আমরা জানি,
 $\sigma^2 = \mu_2$
 $= 4$
 $\mu_3 = {\mu'_3} - 3{\mu'_2}{\mu'_1} + 2{\mu'_1}^3$
 $= -3 - 3 \times 5 \times 1 + 2 \times (1)^3$
 $= -3 - 15 + 2$
 $= -18 + 2$
 $= -16$
 $\mu_4 = {\mu'_4} - 4{\mu'_3}{\mu'_1} + 6{\mu'_2}{\mu'_1}^2 - 3{\mu'_1}^4$
 $= 98 - 4 \times (-3) \times 1 + 6 \times 5 \times (1)^2 - 3(1)^4$
 $= 98 + 12 + 30 - 3$
 $= 137$

১৩। একটি তথ্যসারির 4 এর সাপেক্ষে প্রথম চারটি পরিঘাত যথাক্রমে $-1.5,\ 17,\ -30$ এবং 108 হলে বিভেদাংক ও eta, নির্ণয় কর।

সমাধান: মনে করি, a=4 এর সাপেক্ষে প্রথম চারটি অশোধিত পরিঘাত,

$$\mu_{\scriptscriptstyle \rm I}'=-1.5$$

$$\mu_2' = 17$$
 $\mu_2' = -30$

আমরা জানি, $\mu'_1 = \overline{x} - a$

$$\mu_3' = 108$$

বিভেদাংক.

$$C.V = \frac{\sigma}{\overline{x}} \times 100 - - - - (i)$$

$$\beta_2 = \frac{\mu_4}{{\mu_2}^2} - - (ii)$$

আমরা জানি.

১ম অশোধিত পরিঘাত.

$$\mu_1' = \overline{x} - a$$

বা,
$$-1.5 = \bar{x} - 4$$

বা, $-1.5 + 4 = \bar{x}$

$$\bar{x} = 2.5$$

২য় শোধিত পরিঘাত,

$$\mu_2 = \mu_2' - \mu_1'^2$$
= 17 - (-1.5)²
= 17 - 2.25
= 14 75

আমরা জানি, ২য় কেন্দ্রীয় পরিঘাত ভেদাংকের সমান।

$$\sigma^2 = 14.75$$

অর্থাৎ $\sigma^2 = \mu_0$

$$\sigma = \sqrt{14.75}$$

$$=3.84$$

৪র্থ শোধিত পরিঘাত,

$$\mu_4 = \mu_4' - 4\mu_3' \mu_1' + 6\mu_2' \mu_1'^2 - 3\mu_1'^4$$

$$= 108 - 4(-30)(-1.5) + 6 \times 17(-1.5)^2 - 3(-1.5)^4$$

$$= 108 - 180 + 229.5 - 15.187$$

$$= 142.31$$

$$(i)$$
 নং হতে পাই, $C.V = \frac{3.84}{2.5} \times 100$

$$=153.6\%$$

$$(ii)$$
 নং হতে পাই, $\beta_2=rac{142.31}{(14.75)^2}$ $=rac{142.31}{217.56}$

একটি নিবেশনের আদর্শ বিচ্যুতি $\sqrt{2}$ এবং নিবেশনটি মধ্যম সূঁচাল হতে হলে উহার চতুর্থ কেন্দ্রীয় পরিঘাত কত হবে?

সমাধান: দেওয়া আছে.

আদর্শ বিচ্যুতি
$$\sigma = \sqrt{2}$$

$$\sigma^2 = 2$$

আমরা জানি, ২য় কেন্দ্রীয় পরিঘাত ভেদাংকের সমান অর্থাৎ

$$\sigma^2 = \mu_2 = 2$$

যেহেতু নিবেশনটি মধ্যম সূঁচাল.

$$\beta_2 = 3$$

$$\frac{\mu_4}{{\mu_2}^2} = 3$$

$$\Rightarrow \mu_4 = 3\mu_2^2$$
$$= 3(2)^2$$

$$=3\times4$$

১৫। একটি মধ্যম সূঁচাল নিবেশনের চতুর্থ কেন্দ্রীয় পরিঘাত 75 এবং গড় 25 হলে নিবেশনটির বিভেদাংক কত? সমাধান: দেওয়া আছে.

$$\mu_4 = 75$$

$$\overline{x} = 25$$

যেহেতু নিবেশনটি মধ্যম সূঁচাল, $\beta_2 = 3$

$$\Rightarrow \frac{\mu_4}{{\mu_2}^2} = 3$$

$$\Rightarrow \mu_4 = 3\mu_2^2$$

$$\Rightarrow 75 = 3\mu_2^2$$

$$\Rightarrow \mu_2^2 = \frac{75}{2}$$

$$\Rightarrow \mu_2^2 = 25$$

$$\therefore \mu_2 = 5$$

আমরা জানি. ২য় কেন্দ্রীয় পরিঘাত ভেদাংকের সমান।

অর্থাৎ
$$\sigma^2 = \mu_2$$

$$\therefore \sigma^2 = 5$$

$$\sigma = \sqrt{5}$$

বিভেদাংক C.V =
$$\frac{\sigma}{x} \times 100$$

= $\frac{\sqrt{5}}{25} \times 100$ = 8.95 %

১৬। একদপ শ্রমিকের দৈনিক আয়ের গড় 20 টাকা ও মধ্যমা 17 টাকা। তাদের আয়ের বিভেদাংক 20% হলে আয়ের বন্ধিমতাংক কত?

সমাধান: দেওয়া আছে.

গড়,
$$\bar{x} = 20$$

মধ্যমা,
$$M_e = 17$$

বিভেদাংক, C.V = 20 %

$$\Rightarrow \frac{\sigma}{\pi} \times 100 = 20$$

$$\Rightarrow \frac{\sigma}{20} \times 100 = 20$$

$$\Rightarrow 5\sigma = 20$$

$$\Rightarrow \sigma = \frac{20}{5} = 4$$

বঙ্কিমতাংক SK =
$$\frac{3(\bar{x}-M_s)}{\sigma}$$

$$=\frac{3(20-17)}{4}$$

$$=\frac{3\times3}{4}$$

$$=\frac{9}{4}=2.25$$

১৭। একটি নিবেশনের গড় 50, কার্লপিয়ারসনের বিদ্ধমতাংক -0.4 এবং বিভেদাংক 40% হলে পরিমিত ব্যবধান, মধ্যমা ও প্রচরক নির্ণয় কর।

সমাধান: দেওয়া আছে, গড় $\overline{x}=50$

কার্ল পিয়ারসনের বঙ্কিমতাংক, SK = -0.4

বিভেদাংক. C.V = 40%

বা,
$$\frac{\sigma}{\overline{x}} \times 100 = 40$$

বা,
$$\frac{\sigma}{50} \times 100 = 40$$

বা,
$$2\sigma = 40$$

বা,
$$\sigma = \frac{40}{2} = 20$$

কার্লপিয়ায়সনের বঙ্কিমতাংক,

$$SK = \frac{3(\bar{x} - M_e)}{\sigma}$$

$$\Rightarrow -0.4 = \frac{3(50 - M_e)}{20}$$

$$\Rightarrow -8 = 150 - 3M_e$$

$$\Rightarrow 3M_e = 150 + 8$$

$$\Rightarrow M_e = \frac{158}{3} = 52.67$$
প্রচরক, $M_o = 3M_e - 2\bar{x}$

$$= 3 \times 52.67 - 2 \times 50$$

$$= 158.01 - 100$$

$$= 58.01$$

১৮। কোন নিবেশনের গড় 100 প্রচুরক 123 এবং বঙ্কিমতাংক -0.3 হলে বিভেদাংক কত?

সমাধানঃ

গড়,
$$\bar{x} = 100$$

প্রচুরক,
$$M_a = 123$$

বঙ্কিমতাংক,
$$SK = -0.3$$

আমরা জানি, বঙ্কিমতাংক,

$$SK = \frac{\overline{x} - M_{o}}{\sigma}$$

$$\overline{\sigma}, -0.3 = \frac{100 - 123}{\sigma}$$

$$\overline{a}$$
, $-0.3 = \frac{-23}{\sigma}$

$$\Rightarrow \sigma = \frac{-23}{-0.3}$$

$$= 76.67$$

বিভেদাংক,
$$C.V = \frac{\sigma}{\bar{x}} \times 100$$

$$= \frac{76.67}{100} \times 100$$

১৯। কোন নিবেশনের বন্ধিমতাংক 0.3 মধ্যমা 55 এক বিভেদাংক 30% হলে গড় ও ভেদাংক নির্ণয় কর। সমাধানঃ দেওয়া আছে.

বঙ্কিমতাংক, SK = 0.3

মধ্যমা,
$$M_e=55$$
বিভেদাংক, $C.V=30\%$

$$\frac{\sigma}{\overline{x}}\times 100=30$$

$$\Rightarrow 10\sigma=3\overline{x}-----$$
এবং $SK=\frac{3(\overline{x}-M_e)}{\sigma}$

$$0.3=\frac{3(\overline{x}-55)}{\sigma}$$

 $\Rightarrow 0.3\sigma = 3\overline{x} - 165 - - - - (ii)$

সমীকরণ (i) কে (ii) দ্বারা ভাগ করিয়া পাই,

$$\frac{10\sigma}{0.3\sigma} = \frac{3\overline{x}}{3\overline{x} - 165}$$

$$\Rightarrow \frac{10}{0.3} = \frac{3\overline{x}}{3\overline{x} - 165}$$

$$\Rightarrow 30\overline{x} - 1650 = 0.9\overline{x}$$

$$\Rightarrow 30\overline{x} - 0.9\overline{x} = 1650$$

$$\Rightarrow 29.1\overline{x} = 1650$$

$$\Rightarrow \overline{x} = \frac{1650}{29.1} = 56.70$$
সামীকরণ (i) হতে পাই,
$$10\sigma = 3 \times 56.70$$

$$\sigma = \frac{170.10}{10} = 17.01$$

 $\sigma^2 = (17.01)^2 = 289.35$

২০। কোন গণসংখ্যা নিবেশনের গড়, প্রচুরক ও বিভেদাংক যথাক্রমে 30, 38 ও 35% হলে নিবেশনটির পরিমিত বাবধান ও বছিমতাংক নির্ণয় কর।

সমাধান :

দেওয়া আছে,
$$\bar{x} = 30$$
 $M_o = 38$

বিভেদাংক,
$$CV = \frac{\sigma}{\overline{x}} \times 100$$

$$\Rightarrow \frac{\sigma}{30} \times 100 = 35$$

$$\Rightarrow 100 \sigma = 30 \times 35$$

$$\sigma = \frac{30 \times 35}{100}$$

বন্ধিমতাংক,
$$SK = \frac{\overline{x} - M_o}{\sigma}$$

$$=\frac{30-38}{10.5}$$

$$=\frac{-8}{10.5}$$

$$=-0.76$$

পরিমিত ব্যবধান, $\sigma = 10.5$ ও বন্ধিমতাংক, -0.76।

২১। কোন নিবেশনের বঙ্কিমতাংক 0.6 বিভেদাংক 20% এবং পরিমিত ব্যবধান 4 হলে উহার গড় ও প্রচরক নির্ণয় কর।

সমাধান: দেওয়া আছে.

বঙ্কিমতাংক,
$$SK = 0.6$$

বিভেদাংক,
$$c.v = 20\%$$

এবং পরিমিত ব্যবধান, $\sigma=4$

$$\therefore c.v = \frac{\sigma}{\overline{r}} \times 100$$

$$\Rightarrow 20 = \frac{4}{\overline{x}} \times 100$$

$$\Rightarrow \overline{x} = \frac{4 \times 100}{20}$$
$$= 20$$

এখন,

$$SK = \frac{\overline{x} - M_o}{\sigma}$$

$$20 - M$$

$$\Rightarrow 0.6 = \frac{20 - M_o}{4}$$

$$\Rightarrow 2.4 = 20 - M_o$$
$$\Rightarrow M_o = 20 - 2.4$$

$$M_{\circ} = 17.6$$

২২। কোন নিবেশনের গড় ও মধ্যমা 25 ও 20 এবং বিভেদাংক 50 % হলে উহার ভেদাংক ও প্রচুরক এবং বিষ্কিমতাংক নির্ণয় কর।

সমাধান: দেওয়া আছে,

গড়,
$$\bar{x} = 25$$

মধ্যমা,
$$M_c = 20$$

এবং বিভেদাংক, c.v = 50%

$$\therefore cv = \frac{\sigma}{\overline{x}} \times 100$$

বা,
$$50 = \frac{\sigma}{25} \times 100$$

বা,
$$\sigma = \frac{50}{4}$$

বা,
$$\sigma = 12.5$$

বা,
$$\sigma^2 = 156.25$$

আবার.

প্রচরক =
$$3 \times M_e - 2 \times \overline{x}$$

= $3 \times 20 - 2 \times 25$
= 10

বঙ্কিমতাংক,
$$SK = \frac{\overline{x} - M_o}{\sigma}$$

$$=\frac{25-10}{12.5}$$

$$=1.2$$

নির্ণেয় ভেদাংক = 156.25

প্রচুরক = 10

বন্ধিমতাংক = 1.2

২৩। কার্লপিয়ারসনের বন্ধিমতাংক 0.3 বিভেদাংক 30% এবং মধ্যমা 55 হলে যোজিত গড় ও দিতীয় কেন্দ্রীয় পরিঘাত নির্ণয় কর।

সমাধান: দেওয়া আছে,

কার্লপিয়ারসনের বঙ্কিমতাংক,

$$SK = 0.3 - - - - - (i)$$

বিভেদাংক,

$$C.V = 30\% - - - - - - - (ii)$$

যোজিত গড়,
$$\bar{\mathbf{x}} = ?$$

দ্বিতীয় কেন্দ্রীয় পরিঘাত, $\mu_2 = ?$

সমীকরণ (i) হতে পাই,

$$SK = \frac{3(\bar{x} - M_e)}{\sigma}$$

$$0.3 = \frac{3(\overline{x} - 55)}{\sigma}$$

$$\Rightarrow \frac{0.3}{3} = \frac{\overline{x} - 55}{5}$$

$$\Rightarrow 0.1 = \frac{\overline{x} - 55}{\sigma}$$

$$\Rightarrow \sigma = \frac{\overline{x} - 55}{0.1}$$

সমীকরণ (ii) হতে পাই,

$$\frac{\sigma}{\overline{x}} \times 100 = 30 - - - - - (iii)$$

$$\Rightarrow \frac{(\bar{x}-55)}{0.1\bar{x}} \times 100 = 30$$

$$\Rightarrow 100\overline{x} - 5500 = 3\overline{x}$$

$$\Rightarrow 100\bar{x} - 3\bar{x} = 5500$$

$$\Rightarrow 97\bar{x} = 5500$$

$$\therefore \bar{x} = \frac{5500}{97} = 56.70$$

সমীকরণ (iii) হতে পাই,

$$\frac{\sigma}{56.70} \times 100 = 30$$

বা,
$$100\sigma = 30 \times 56.70$$

$$= 1701.03$$

$$\sigma = \frac{1701.03}{100}$$
$$= 17.01$$

$$\sigma^2 = (17.01)^2 = 289.35$$

২য় কেন্দ্রীয় পরিঘাত ভেদাংকের সমান অর্থাৎ

$$\therefore \mu_2 = \sigma^2$$
$$= 289.35$$

২৪। একটি বিন্যাসের মধ্যমা 120 পরিমিত ব্যবধান 15 এর বিভেনাংক 12% হলে এর বঙ্কিমতাংক নির্ণয় কর।

সমাধান:

মধ্যমা,
$$M_e = 120$$

পরিমিত ব্যবধান, ত = 15

বিভেদাংক, C.V = 12%

$$\frac{\sigma}{\bar{x}} \times 100 = 12$$

$$\Rightarrow \frac{15}{8} \times 100 = 12$$

$$\Rightarrow 12\bar{x} = 1500$$

$$\Rightarrow \bar{x} = \frac{1500}{12} = 125$$

বন্ধিমতাংক,
$$SK = \frac{3(\overline{x} - M_e)}{\sigma}$$
$$= \frac{3(125 - 120)}{15}$$

$$=\frac{3\times5}{15}$$

$$=\frac{15}{15}=1$$

২৫। 2, 1, 0, 5, -6, 7, -4 তথ্য সারিটির পাঁচ সংখ্যা সার বর্ণনা কর।

সমাধান: প্রদত্ত তথ্যসারিকে মানের উর্ধ্বক্রম হিসাবে সাজিয়ে পাই.

$$-6, -4, 0, 1, 2, 5, 7$$

এখানে, তথ্যসংখ্যা n = 7 (বিজোড়)

প্রথম চতুর্থক,
$$\mathrm{Q}_1=rac{\mathrm{n}+1}{4}$$
 তম পদ $=rac{7+1}{4}$ তম পদ $=2$ তম পদ $=-4$

তৃতীয় চতুর্থক,

$$Q_3\!=\!rac{3\;(n+1)}{4}$$
 তম পদ $=3igg(rac{7\!+\!1}{4}igg)$ তম পদ $=6$ তম পদ $=5$

মধ্যমা,

$$\mathrm{Me}=rac{n+1}{2}$$
 তম পদ $=\left(rac{7+1}{2}
ight)$ তম পদ $=4$ তম পদ $=1$

সর্বনিমু মান = -6, সর্বোচ্চ মান = 7

সুতরাং, পাঁচ সংখ্যা সার নিমুরূপ:

$$-6, -4, 1, 5, 7$$

২৬। 12, 5, 6, 12, 6, 14, 16, 12 তথ্য সারিটিকে বক্স এবং হুইস্কার প্রদর্শনে উপস্থাপন কর।

সমাধানঃ প্রথমতঃ তথ্য সারিটিকে আমাদেরকে ছোট থেকে বড় ক্রমে সাজাতে হবে, যা নিমুরূপঃ

এখানে তথ্যসংখ্যা, n = 8

তৃতীয় চতুর্থক,

$$Q_3 = rac{1}{2} \left[rac{3n}{4}$$
 তম তথ্য $+ \left(rac{3n}{4} + 1
ight)$ তম তথ্য $brace$
$$= rac{1}{2} \left[rac{(3 \! ext{d})}{4}$$
 তম তথ্য $+ \left(rac{3 \! ext{d}}{4} + 1
ight)$ তম তথ্য $brace$
$$= rac{1}{2} \left[6$$
 তম তথ্য $+ 7$ তম তথ্য $brace = rac{1}{2} \left[12 + 14
ight] = 13.0$

প্রথম চতুর্থক,

$$Q_1 = \frac{1}{2} \left[\frac{n}{4}$$
 অম তথ্য + $(\frac{n}{4} + 1)$ অম তথ্য
$$= \frac{1}{2} \left[\frac{8}{4} \text{ অম তথ্য + } (\frac{8}{4} + 1) \text{ অম তথ্য} \right]$$
$$= \frac{1}{2} \left[2 \text{ অম তথ্য + } 3 \text{ অম তথ্য} \right] = \frac{1}{2} \left[6 + 6 \right] = 6.0$$

 \therefore আন্তঃ চতুর্থক পরিসর, $IQR = Q_3 - Q_1 = 13 - 6 = 7$ একটি ক্যামব্রিয়ান ডিভিটাল প্রকাশনা

প্রথম অন্তঃঘের =
$$Q_1-(1.5\times IQR)=6-(1.5\times 7)=6-10.5=-4.5$$
দ্বিতীয় অন্তঃঘের = $Q_3+(1.5\times IQR)=13+(1.5\times 7)=13+10.5=23.5$
প্রথম বহিঃঘের = $Q_1-(3\times IQR)=6-(3\times 7)=6-21=-15$
দ্বিতীয় বহিঃঘের = $Q_3+(3\times IQR)=13+(3\times 7)=13+21=34$

মধ্যমা,
$$Me=rac{rac{n}{2}\,$$
তম পদ $+\,(rac{n}{2}+1)\,$ তম পদ 2
$$=rac{4\,$$
তম পদ $+\,$ 5 তম পদ 2
$$=rac{12+12}{2}$$
 $=12$

এক্ষেত্রে বক্স এবং হুইস্কার প্রদর্শন হবে নিমুরূপ:

চিত্র: বক্স এবং হুইস্কার প্রদর্শন

ষষ্ঠ অধ্যায়

সংশ্লেষ ও নির্ভরণ

CORRELATION AND REGRESSION

পূর্ববর্তী অধ্যায়গুলোতে একচলক তথ্যের বিশ্লেষণ পদ্ধতি আলোচনা করা হয়েছে। বাস্তব ক্ষেত্রে দুই বা ততোধিক চলকের পারস্পরিক সম্পর্ক নির্ণয় করা প্রয়োজন। যদি একটি চলকের পরিবর্তনে অপর চলকের মানের পরিবর্তন হয়, তাহলে এরূপ চলকদ্বয়কে সম্পর্কয়ুক্ত (Correlated) চলক বলা হয়। যেমন-পণ্যের মূল্য ও চাহিদার মধ্যে, স্বামী ও স্ত্রীর বয়সের মধ্যে, পারিবারিক আয় ও ব্যয়ের মধ্যে কিরূপ সম্পর্ক আছে-তা জানা আবশ্যক।

এধরনের দুটি সম্পর্কযুক্ত চলককে দ্বিচলক তথ্য (Bivariate distribution) বলা হয়। দ্বিচলক তথ্যকে দুই পদ্ধতিতে বিশ্লেষণ করা যায়, যেমন—(i) সংশ্লেষ বিশ্লেষণ (Correlation Analysis) ও
(ii) নির্ভরণ বিশ্লেষণ (Regression Analysis)।

এ অধ্যায় পাঠ শেষে শিক্ষার্থীরা-

- দ্বি-চলক তথ্য, সংশ্লেষ ও সংশ্লেষাংকের ধারণা বর্ণনা করতে পারবে।
- সংশ্রেষের প্রকারভেদ বর্ণনা করতে পারবে ।
- বিক্ষেপ চিত্র ও বিক্ষেপ চিত্রের সাহায্যে দুটি চলকের সংশ্লেষের ব্যাখ্যা করতে পারবে।
- সংশ্লেষাংকের ধর্ম ও ব্যবহার ব্যাখ্যা করতে পারবে।
- ক্রম সংশ্লেষ ও ক্রম সংশ্লেষের সূত্র উদ্ভাবন করতে পারবে।
- নির্ভরণ ও নির্ভরাংক ধারণা ব্যাখ্যা করতে পারবে।
- নির্ভরণের প্রকারভেদ বর্ণনা করতে পারবে।
- নির্ভরণের ব্যবহার ব্যাখ্যা করতে পারবে।
- নির্ভরাংকের ধর্ম ব্যাখ্যা করতে পারবে।
- নির্ভরণ সমীকরণ ও নির্ভরণ রেখা নিরূপণ করতে পারবে।

৬.০১ দ্বি-চলক তথ্য, সংশ্লেষ ও সংশ্লেষাংক

Bivariate Data, Correlation and Coefficient of Correlation

ছি-চলক তথ্য: দু'টি তুলনাযোগ্য বৈশিষ্ট্যের প্রকাশ সূচক তথ্যকে দ্বিচলক তথ্য বলে। যেমন-স্বামী ও স্ত্রীর বয়স, দ্রব্যের মূল্য ও চাহিদা ইত্যাদি দ্বিচলক তথ্য।

সংশ্রেষ শপটের অর্থ হল পরস্পর সম্পর্কযুক্ত অর্থাৎ দুই বা ততোধিক পরিবর্তনশীল চলকের মধ্যে যে পারস্পরিক সম্পর্ক পরিলক্ষিত হয় তাই হল সংশ্লেষ। দুই বা ততোধিক চলকের মধ্যে সমমূখী বা বিপরীতমূখী পরিবর্তিত হওয়ায় যে সম্ভাব্য প্রবণতা দেখা যায় তাকে সংশ্লেষ বলে। অন্যভাবে বলা যায় দুই বা ততোধিক তথ্যসারির ভিতরকার সম্পর্ককে যে পরিসাংখ্যিক পদ্ধতির সাহায্যে নির্ণয় করা হয় তাকে সংশ্লেষ বলা হয়।

একটি ডিজিটাল ক্যামব্রিয়ান প্রকাশনা

সংশ্লেষাংক: দুটি পরিবর্তনশীল চলকের মধ্যকার সম্পর্কের মাত্রা ও প্রকৃতি পরিমাপ করার জন্য যে গাণিতিক পরিমাপ করা হয় তাকে সংশ্লেষাংক বলে। অর্থাৎ চলক দুটির পরিবর্তনের প্রকৃতি ও তাদের মধ্যে বিদ্যমান সম্পর্কের মাত্রাকে সংশ্লেষাংক বলা হয়। পরিসংখ্যানবিদ কার্লাপিয়ারসন সংশ্লেষাংক নির্ণয়ের জন্য একটি সূত্র প্রদান করেন। মনে করি, পরম্পর সম্পর্কযুক্ত দুটি চলক x ও y এর n জোড়া মান যথাক্রমে $(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$ যাদের গাণিতিক গড় যথাক্রমে \overline{x} ও \overline{y} ।

কার্ল-পিয়ারর্সনের সংশ্লেষাংক,

$$r = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$$

৬.০২ সংশ্রেষের প্রকারভেদ

Types of Correlation

চলকের সংখ্যা অনুসারে সংশ্লেষকে দুইভাগে ভাগ করা যায়। যেমন:

- (i) সরল সংশ্লেষ (Simple Correlation)
- (ii) বহুধা সংশ্লেষ (Multiple correlation)

সরল সংশ্লেষ (Simple Correlation):

দুটি চলকের মধ্যে একটি চলকের পরিবর্তনের ফলে যদি অপর চলকের সমদিকে বা বিপরীত দিকে পরিবর্তন ঘটে তবে তাদের মধ্যকার সম্পর্ককে সরল সংশ্লেষ বলে। যেমন: কোন একটি শ্রেণীর ছাত্রদের ওজন ও উচ্চতার ভিতরকার সম্পর্ক, কোন একটি পণ্যের মূল্য ও চাহিদার ভিতরকার সম্পর্ক ইত্যাদি।

বহুধা সংশ্লেষ (Multiple Correlation):

যদি দু'রের অধিক চলকের মধ্যে একটি চলকের পরিবর্তনের ফলে অপর একাধিক চলকের পরিবর্তন ঘটে তবে তাদের মধ্যকার সম্পর্ককে বহুধা সংশ্লেষ বলে।

যেমন: কোন একটি শ্রেণীর ছাত্র-ছাত্রীদের বার্ষিক ফলাফলের সাথে তাদের পারিবারিক আয়, পিতামাতার পেশা, পরিবারের লোকসংখ্যা ইত্যাদির ভিতরকার সংশ্লেষ নির্ণয় করা হলে তা হবে একটি বহুধা সংশ্লেষ।

সরল সংশ্লেষের প্রকারভেদঃ প্রকৃতিগতভাবে সরল সংশ্লেষকে পাঁচ ভাগে ভাগ করা যায়। যেমনঃ

- (i) আংশিক ধনাতাক সংশ্লেষ (Partial positive correlation)
- (ii) পূর্ণ ধনাত্মক সংশ্লেষ (Perfect positive correlation)
- (iii) আংশিক ঋণাত্মক সংশ্লেষ (Partial negative correlation)
- (iv) পূর্ণ ঋণাত্মক সংশ্লেষ (Perfect negative correlation)
- (v) শুন্য সংশ্লেষ (Zero correlation)

- আংশিক ধনাত্মক সংশ্লেষ: যদি দুইটি সম্পর্কযুক্ত চলকের একটির পরিবর্তনের ফলে অপরটির (i) অসমহারে ও সমদিকে পরিবর্তন ঘটে তবে তাদের মধ্যকার সম্পর্ককে আংশিক ধনাত্মক সংশ্লেষ বলে। যেমন: মূল্য বৃদ্ধির ফলে যোগান অসমহারে বৃদ্ধি পেলে তাকে আংশিক ধনাত্মক সংশ্লেষ বলে।
- পূর্ণ ধনাত্মক সংশ্লেষ: যদি দুইটি সম্পর্কযুক্ত চলকের একটির পরিবর্তনের ফলে অপরটির সমহারে (ii) ও সমদিকে পরিবর্তন ঘটে তবে তাদের মধ্যকার সম্পর্ককে পূর্ণ ধনাত্মক সংশ্লেষ বলে। যেমন: ব্তের ব্যাসার্ধের বৃদ্ধির ফলে উহার পরিধি নির্দিষ্ট অনুপাতে বৃদ্ধি পায় তবে তাদের মধ্যকার সংশ্লেষকে পূর্ণ ধনাতাক সংশ্লেষ বলে।
- আংশিক ঋণাত্মক সংশ্লেষ: দুটি চলকের মধ্যে একটি চলকের পরিবর্তনের ফলে অপর চলকের (iii) অসমহারে ও বিপরীতদিকে পরিবর্তন ঘটে তবে তাদের মধ্যকার সম্পর্ককে আংশিক ঋণাত্মক সংশ্লেষ বলে। যেমন: মূল্য যে হারে বৃদ্ধি পায় চাহিদা যদি অসমহারে হ্রাস পায় তবে মূল্য ও চাহিদার মধ্যে সম্পর্ককে আংশিক ঋণাত্মক সংশ্লেষ বলে।
- পূর্ণ ঋণাত্মক সংশ্লেষ: দুইটি সম্পর্কযুক্ত চলকের একটি চলকের পরিবর্তনের ফলে যদি অপর (iv) চলকের সমহারে ও বিপরীতদিকে পরিবর্তন ঘটে তবে তাদের মধ্যকার সম্পর্ককে পূর্ণ ঋণাত্মক সংশ্লেষ বলে। যেমনঃ গ্যাসের চাপ বৃদ্ধিতে একই অণুপাতে উহার আয়তন হ্রাস পায় তবে এদের মধ্যকার সম্পর্কে পূর্ণ ঋণাত্মক সংশ্লেষ বলে।
- শুন্য সংশ্লেষঃ যদি চলকদ্বয়ের পরিবর্তন সম্পর্কহীন অর্থাৎ একটি চলকের মানের হ্রাস বা বৃদ্ধির ফলে (v) অপর চলকের কোন পরিবর্তন না ঘটে তবে চলক্ষয়ের মধ্যে বিদ্যমান সম্পর্ককে শুন্য সংশ্লেষ বলে। যেমন-ছাত্রদের পরীক্ষার নম্বরের সাথে বাজারের দ্রব্যের চাহিদার কোন সম্পর্ক নাই।

বিক্ষেপ চিত্র ও বিক্ষেপ চিত্রের সাহায্যে দুটি চলকের সংশ্লেষের ব্যাখ্যা 6.00

Scatter diagram and Different Nature of Correlation with the help of scatter diagram.

বিক্ষেপ চিত্রঃ

দ্বিচলক তথ্য x ও y এর প্রতিজোড়া মানকে ছক কাগজে আনুভূমিক অক্ষে x এবং উলস্ব অক্ষে y বসিয়ে কতগুলো বিন্দু পাওয়া যায়। এই বিন্দুগুলোকে একত্রে বিক্ষেপ চিত্র বলে।

वित्कृष हित्व श्रांश विन्दृश्वलात प्रधानित्य वकि गतलातथा जन्न कता रय या विन्दृश्वलात त्याँक वा श्रवणा নির্দেশ করে। তাই এই সরলরেখাটিকে প্রবণতা রেখা বা ঝোঁক নির্দেশকারী সরলরেখা বলা হয়।

বিক্ষেপ চিত্র

বিক্ষেপ চিত্রের সাহায্যে দুটি চলকের মধ্যকার সম্পর্কের মাত্রা ও প্রকৃতি ব্যাখ্যা করা হলো:

→বিক্ষেপ চিত্রের বিন্দুগুলো যদি বামদিক হতে ডানদিক ক্রমশ: উর্দ্ধগামী হয় এবং একই সরল রেখায় পতিত না হয় তবে বোঝা যাবে যে. চলকদ্বয়ের মধ্যে আংশিক ধনাত্মক সংশ্লেষ বিদ্যমান।

→ বিক্ষেপ চিত্রের বিন্দুগুলো যদি বামদিক থেকে ডানদিকে ক্রমশ: উর্দ্ধগামী হয় এবং একই সরল রেখায় হয়, তবে বোঝা যাবে যে, চলকদ্বয়ের মধ্যে পূর্ণ ধনাতাক সংশ্লেষ বিদ্যমান।

r = 1

→ বিক্ষেপ চিত্রের বিন্দুগুলি যদি বাম দিক থেকে ডানদিকে ক্রমশ: কিগামী হয় এবং একই সরল রেখায় না পরে তবে বোঝা যাবে যে, চলকদ্বয়ের মধ্যে আংশিক ঋণাত্মক সংশ্লেষ বিদ্যমান।

→ বিক্ষেপ চিত্রের বিন্দুগুলো যদি বামদিক থেকে ডানদিকে ক্রমশঃ নিংগামী হয় এবং একই সরল রেখায় পড়ে তবে বোঝা যাবে য়ে, চলকয়য়ের মধ্যে পূর্ণ ঋণাতাক সংশ্লেষ বিদ্যমান।

→ বিক্ষেপ চিত্রের প্রাপ্ত বিন্দুগুলো দিয়ে যদি কোনরূপ গতি কল্পনা করা না যায় অথবা বিন্দুগুলো x অক্ষের সমান্তরাল বা y অক্ষের সমান্তরাল হয় তখন বোঝা যাবে যে, চলকছয়ের মধ্যে শুন্য সংশ্লেষ বিদ্যমান।

৬.০৪ সংশ্লেষাংকের ধর্ম ও ব্যবহার

Importance and uses of coffecient of correlation

সংশ্লেষাংকের ধর্ম:

- (i) সংশ্লেষাংক একটি একক মুক্ত অথবা একক বিহীন সংখ্যা।
- (ii) সংশ্লেষাংক দুটি প্রতিসম বা নিরপেক্ষ অর্থাৎ $r_{xy}=r_{yx}$
- (iii) দুটি স্বাধীন চলকের ক্ষেত্রে সংশ্লেষাংকের মান (0) শুণ্য অর্থাৎ x ও y স্বাধীন চলক হলে $r_{xy}=0$
- (iv) সংশ্লেষাংকের মান -1 থেকে +1 এর মধ্যে থাকে। অর্থাৎ $-1 \le r \le 1$
- $({f v})$ সংশ্লেষাংক মূল ও মাপনী উভয় হতে স্বাধীন। অর্থাৎ $r_{xy} = r_{uv}$.
- (vi) দুটি চলকের সংশ্লেষাংক উহাদের নির্ভরাংকদ্বয়ের জ্যামিতিক গড়ের সমান। অর্থাৎ

$$r_{xy} = \sqrt{b_{xy} \times b_{yx}}.$$

(vii) সংশ্লেষাংক তথ্যসারির সকল মানের উপর নির্ভরশীল।

ব্যবহার:

- (i) সংশ্লেষাংকের মাধ্যমে দুইটি চলকের মধ্যে কিরূপ সম্পর্ক বিরাজ করে তা জানা যায়।
- r² দ্বারা বা r² এর মান দ্বারা অধীন চলকের পরিবর্তনের শতকরা কত অংশ স্বাধীন চলক
 দ্বারা প্রভাবিত হয় তা জানা যায়।
- (iii) এর সাহায্যে নির্ভরণও নির্ণয় করা যায়।
- (iv) সামাজিক তথ্যাবলী যেমন-স্বামী-স্ত্রীর বয়স, অপরাধ প্রবণতা, মাদকাসজি ইত্যাদির মাধ্যমে সম্পর্ক বিশ্লেষণ ও মন্তব্য প্রদানে সংশ্লেষণ ব্যবহৃত হয়।
- (v) মেধা, বুদ্ধি, নৈপুণ্য ইত্যাদি গুণবাচক চলকের বিশ্লেষণ ও মন্তব্য প্রদানে সংশ্লেষণ ব্যবহৃত হয়।
- অর্থনৈতিক তথ্যাবলী যেমন: চাহিদার সাথে মূল্যের, উৎপাদনের সাথে মূল্যের ইত্যাদি বিশ্লেষণে সংশ্লেষণ ব্যবহৃত হয়।
- (vii) উচ্চতর পরিসংখানে নির্ভরণ রেখা বিশ্লেষণে সংশ্লেষণ কাজে লাগে।
- (viii) কোন এলাকার নতুন পণ্য বাজারজাত করা হলে ঐ এলাকায় উক্ত পণ্যের চাহিদা পণ্যের বাজারজাতকরণ খরচ, শ্রমিক খরচ, পণ্যের উৎকর্ষতা ইত্যাদি যাচাই করে। অতপর: পণ্যের দাম ধরা হয় এবং লভ্যাংশ অনুমান করা হয়।

৬.০৫ ক্রম সংশ্লেষ ও ক্রম সংশ্লেষের সূত্র উদ্ভাবন

Rank correlation & Derive its formula

ক্রম সংশ্লেষ (Rank Correlation):

দুটি গুণবাচক চলকের মানের ভিত্তিতে তথ্যসারিকে ক্রমানুসারে সাজানোর পর তাদের মধ্যে বিদ্যমান সংশ্লেষকে সহজ ক্রম সংশ্লেষ (Simple Rank Correlation) বলে। এই ক্রমমানগুলোর মধ্যে সম্পর্কের মাত্রা ও প্রকৃতির পরিমাপকে ক্রম সংশ্লেষাংক বলে।

ক্রম সংশ্লেষের সূত্র উদ্ভাবনঃ

মনে করি, x ও y চলক দুটির $\mathbf n$ সংখ্যক মান যথাক্রমে x_1 , x_2 ———— x_n এবং $y_1,y_2,$ ———— y_n

ধরি,
$${\bf x}$$
 চলকের ক্রম ${\bf x}_i=1,2,.......$
এবং ${\bf y}$ চলকের ক্রম ${\bf y}_i=1,2,.......$

আমরা জানি,

সংশ্লেষাংক,
$$r = \frac{\text{cov }(x, y)}{\sigma_x \sigma_y}$$
....(i)

প্রথম n স্বাভাবিক সংখ্যার গড়
$$\frac{n+1}{2}$$
 এবং ভেদাংক $\frac{n^2-1}{12}$

$$\therefore \overline{x} = \overline{y} = \frac{n+1}{2}$$
 এবং $\sigma_x^2 = \sigma_y^2 = \frac{n^2-1}{12}$

ধরি,
$$d_i = x_i - y_i$$

$$= x_i - \overline{x} + \overline{x} - y_i$$

$$= (x_i - \overline{x}) - (y_i - \overline{y})$$

$$d_i^2 = \{(x_i - \overline{x}) - (y_i - \overline{y})\}^2$$

$$\Rightarrow d_i^2 = (x_i - \overline{x})^2 + (y_i - \overline{y})^2 - 2(x_i - \overline{x})(y_i - \overline{y})$$

$$\Rightarrow \frac{\sum d_i^2}{n} = \frac{\sum (x_i - \overline{x})^2}{n} + \frac{\sum (y_i - \overline{y})^2}{n} - 2\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{n}$$

$$\Rightarrow \frac{\sum d_i^2}{n} = \sigma_x^2 + \sigma_y^2 - 2\operatorname{cov}(x, y)$$

$$\Rightarrow 2\operatorname{cov}(x, y) = \sigma_x^2 + \sigma_y^2 - \frac{\sum d_i^2}{n}$$

$$\Rightarrow \operatorname{cov}(x, y) = \frac{\sigma_x^2 + \sigma_y^2}{2} - \frac{\sum d_i^2}{2n}$$

$$= \frac{n^2 - 1}{12} + \frac{n^2 - 1}{12} - \frac{\sum d_i^2}{2n}$$

$$= \frac{2(\frac{n^2 - 1}{12})}{2} - \frac{\sum d_i^2}{2n}$$

$$= \frac{n^2 - 1}{12} - \frac{\sum d_i^2}{2n}$$

$$= \frac{n^2 - 1}{12} - \frac{\sum d_i^2}{2n}$$

$$(i)$$
 দং সমীকরণ হতে পাই,

(i) নং সমীকরণ হতে পাই,

$$r = \frac{\frac{n^2 - 1}{12} - \frac{\sum_{i=1}^{n} d_i^2}{2n}}{\sqrt{\frac{n^2 - 1}{12}} \sqrt{\frac{n^2 - 1}{12}}}$$

$$= \frac{\frac{n^2 - 1}{12} - \frac{\sum_{i=1}^{n} d_i^2}{2n}}{\frac{n^2 - 1}{12}}$$

$$= 1 - \frac{\sum_{i=1}^{n} d_i^2}{\frac{n^2 - 1}{12}}$$

$$= 1 - \frac{\sum_{i=1}^{n} d_i^2}{2n} \times \frac{12}{n^2 - 1}$$

$$r = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)}$$

স্পেয়ারম্যানের ক্রম সংশ্লেষাংককে সাধারণত ho(rho) দ্বারা প্রকাশ করা হয়। অর্থাৎ

$$\therefore \rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

৬.০৬ নির্ভরণ ও নির্ভরাংক

Regression and Regression Co-efficient

 নির্জরণ (Regression): দুটো চলক সম্পর্কিযুক্ত হলে একটি স্বাধীন চলক ও একটি অধীন চলক থাকে। স্বাধীন চলকের জানা মানের সাহায্যে অধীন চলকের অজানা মান নির্ণয় করায় পদ্ধতিকে নির্ভরণ বলা হয়। অন্য কথায় যদি দুটি পরস্পর সম্পর্কযুক্ত চলকের একটির প্রাপ্ত মানের জন্য অপরটির প্রত্যাশিত গড় মান নির্ণয় করা যায় তবে তাকে নির্ভরণ বলা হয়।

উদাহরণ: একদল লোকের উচ্চতা জানা থাকলে তাদের প্রত্যাশিত গড় ওজন জানা যায়। আবার কোন এলাকার বৃষ্টিপাতের পরিমাণ জানা থাকলে উৎপন্ন ফসলের পরিমাণ জানা যায়। এখানে যে চলক জানা থাকে সেটি স্বাধীন চলক। আর যে চলকের প্রত্যাশিত মান স্বাধীন চলক হতে নির্ণয় করা যায় তাকে অধীন চলক বলে।

নির্জরাংক (Regression co- efficient): নির্জরণের সহগকে সাধারণত: নির্জরাংক বলা হয় । অন্য
কথায় কোন দ্বি-চলক তথ্যের ক্ষেত্রে স্বাধীন চলকের উপর অধীন চলকের নির্ভরশীলতার গড় হারকে
নির্জরাংক বলে ।

$$x$$
 এর উপর y এর নির্ভরাংক, $b_{yx} = \frac{\displaystyle\sum_{i=1}^{n}(x_i-\overline{x})(y_i-\overline{y})}{\displaystyle\sum_{i=1}^{n}(x_i-\overline{x})^2}$

$$y$$
 এর উপর x এর নির্ভরাংক, $b_{xy} = \frac{\displaystyle\sum_{i=1}^{n}(x_i-\overline{x})(y_i-\overline{y})}{\displaystyle\sum_{i=1}^{n}(y_i-\overline{y})^2}$

৬.০৭ নির্ভরণের প্রকারভেদ

Types of Regression

নির্ভরণকে স্বাধীন চলকের উপর ভিত্তি করে দু'ভাগে ভাগ করা যায় । যেমন:

- i) সরল নির্ভরণ (Simple Regression)
- ii) বহুধা নির্ভরণ (Multiple Regression)

সরল নির্ভরণ: পরস্পর সম্পর্কযুক্ত দুটি চলকের মধ্যে যদি কোনরূপ নির্ভরশীলতা দেখা যায় তবে তাদের একটির পরিবর্তন অন্যটির উপর কতটুকু প্রভাব ফেলে তা গাণিতিকভাবে পরিমাপ করার জন্য যে পরিসাংখ্যিক পদ্ধতির প্রয়োগ করা হয় তাকে সরল নির্ভরণ বলে।

উদাহরণ: নির্দিষ্ট পরিমাণ ইউরিয়া সার ব্যবহারের ফলে ধানের ফলনের পরিবর্তন পরিমাপ করতে সরল নির্তরণ পদ্ধতি প্রয়োগ করা হয়।

বহুধা নির্ভরণ: পরস্পর সম্পর্কযুক্ত দুই বা ততোধিক স্বাধীন চলকসমূহের কতকগুলো নির্দিষ্ট মানের জন্য অধীন চলকের গড় মান নির্ধারণ করতে যে পরিসংখ্যানিক পদ্ধতি প্রয়োগ করা হয় তাকে বহুধা নির্ভরণ বলে।

উদাহরণ: ধানের ফলন সরবরাহকৃত পানি এবং সার দ্বারা কি পরিমাণে প্রভাবিত হয় তা নির্ণয় করতে বহুধা নির্ভরণ পদ্ধতি প্রয়োগ করা হয়।

৬.০৮ নির্ভরণের ব্যবহার

Use of Regression

নিম্নে নির্ভরণের কয়েকটি ব্যবহার উল্লেখ করা হলো:

- i) নির্ভরণ বিশ্লেষণের সাহায্যে স্বাধীন চলকের সাথে অধীন চলকের তাৎপর্যপূর্ণ সম্পর্ক আছে
 কিনা নির্ণয় করা যায়।
- লা) স্বাধীন চলকের পরিবর্তনের ফলে অধীন চলকের কি পরিমাণ পরিবর্তিত হয় তা নির্ভরণের সাহায্যে নির্ণয় করা যায়।
- iii) ভবিষ্যতের উৎপাদন, মূল্য, সরবরাহ, আয়, বয়য়, লোকসান, লোকসংখ্যা ইত্যাদি নির্ভরণের সাহায্যে নিরূপণ করা যায় যা যে কোন দেশের অর্থনৈতিক পরিকল্পনায় গুরুত্বপূর্ণ ভূমিকা রাখে।
- iv) পরস্পের সম্পর্কযুক্ত দুটি তথ্যসারির মধ্যে একটি তথ্যসারির মান জানা থাকলে নির্ভরণের সাহায়্যে অন্য তথ্যসারির মান নিরূপণ করা যায়।
- v) অর্থনীতি ও ব্যবসা বাণিজ্য গবেষণার ক্ষেত্রে নির্ভরণ গুরুত্বপূর্ণ হাতিয়ার কারণ অর্থনৈতিক বিশ্লেষণে অধিকাংশ সমস্যা গুলো চলকসমূহের সম্পর্কের কারণ ও তাদের প্রভাব নিয়ন্ত্রণ করা যায়।

৬.০৯ নির্ভরাংকের ধর্ম

Properties of Regression Co-efficient

নির্ভরাংকের ধর্ম:

- (i) নির্ভরাংক স্বাধীন চলকের সাপেক্ষে অধীন চলকের মানের পরিবর্তনের হার নির্দেশ কর।
- (ii) দুইটি চলকের নির্ভরাংকষয়ের জ্যামিতিক গড় তাদের সংশ্লেষাংকের সমান। অর্থাৎ $r_{xy} = \sqrt{b_{yx} imes b_{yy}}$.
- (iii) নির্ভরাংকের মান চলক নিরপেক্ষ নয়, অর্থাৎ, $b_{yx} \neq b_{xy}$.
- (iv) দুইটি চলকের নির্ভরাংকদ্বরের গাণিতিক গড় তাদের সংশ্লেষাংক অপেক্ষা বড়। অর্থাৎ $\frac{b_{yx}+b_{xy}}{2} \geq r_{xy} \,.$

- (v) নির্ভরাংকদ্বয়ের একটি 1 অপেক্ষা বড় হলে অন্যটি 1 অপেক্ষা ছোট হবে । অর্থাৎ $b_{xy}>1$ হলে $b_{yx}<1$ হবে ।
- (vi) নির্ভরাংক মূল হতে স্বাধীন কিন্তু মাপনীর উপর নির্ভরশীল।
- (vii) নির্ভরাংক চলকদ্বয়ের এককের উপর নির্ভরশীল।
- (viii) নির্ভরাংকের মান $-\infty$ থেকে $+\infty$ এর মধ্যে থাকে।

৬.১০ নির্ভরণ সমীকরণ ও নির্ভরণ রেখা

Regression Equation and Regression Line

নি**র্ভরণ সমীকরণ :** একটি স্বাধীন চলকের উপর একটি অধীন চলকের নির্ভরণকে যে গাণিতিক সমীরকণের মাধ্যমে প্রকাশ করা হয় তাকে নির্ভরণ সমীকরণ বলে। যদি x স্বাধীন চলক ও y অধীন চলক হয় তবে x এর উপর y এর নির্ভরণ সমীকরণ হবে—

$$y = a + bx + e$$

এখানে. v = অধীন চলক

X = স্বাধীন চলক

a = একটি ধ্রুবক

 $\mathbf{b} = \mathbf{x}$ এর উপর \mathbf{y} এর নির্ভরাংক

e = ত্ৰুটি

নির্ভরণ রেখা: একটি নির্ভরণ সমীকরণ যে লেখের মাধ্যমে উপস্থাপন করা যায় তাকে নির্ভরণ রেখা বলে।

কতিপয় উপপাদ্য ও প্রমাণ

১। প্রমাণ কর যে, সংস্থোষাংকের মান -1 থেকে +1 এর মধ্যে থাকে। অথবা, প্রমাণ কর যে, $-1 \le r \le 1$

প্রমাণ: মনে করি, পরম্পর সম্পর্কযুক্ত দুইটি চলক x ও y এর n জোড়া মানসমূহ যথাক্রমে, $(x_1,\ y_1,)(x_2,\ y_2).....(x_n,\ y_n)$ এবং উহাদের গাণিতিক গড় \overline{x} ও \overline{y} হলে,

$$r = \frac{\Sigma(x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\Sigma(x_i - \overline{x})^2 \Sigma(y_i - \overline{y})^2}}....(i)$$

ধরি,

$$u_{i} = \frac{(x_{i} - \overline{x})}{\sqrt{\Sigma (x_{i} - \overline{x})^{2}}}$$

$$u_{i}^{2} = \frac{(x_{i} - \overline{x})^{2}}{\Sigma (x_{i} - \overline{x})^{2}}$$

$$\Sigma u_{i}^{2} = \frac{\Sigma (x_{i} - \overline{x})^{2}}{\Sigma (x_{i} - \overline{x})^{2}}$$

$$\begin{aligned} \text{QFR} \qquad & v_i = \frac{\left(y_i - \overline{y}\right)}{\sqrt{\Sigma(y_i - \overline{y})^2}} \\ v_i^2 &= \frac{\left(y_i - \overline{y}\right)^2}{\Sigma(y_i - \overline{y})^2} \\ & \Sigma v_i^2 = \frac{\Sigma(y_i - \overline{y})^2}{\Sigma(y_i - \overline{y})^2} \\ &= 1 \qquad (iii) \end{aligned}$$

আবার,
$$u_i v_i = \frac{(x_i - \overline{x})}{\sqrt{\Sigma(x_i - \overline{x})^2}} \times \frac{(y_i - \overline{y})}{\sqrt{\Sigma(y_i - \overline{y})^2}}$$

$$= \frac{(x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\Sigma(x_i - \overline{x})^2 - \Sigma(y_i - \overline{y})^2}}$$

$$\Sigma u_i v_i = \frac{\Sigma(x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\Sigma(x_i - \overline{x})^2 - \Sigma(y_i - \overline{y})^2}}$$

 $\mathbf{v}^{2}(x_{i}-x_{j})^{2}(y_{i}-y_{j})$ =r.....(iv)সিমীকরণ (i) ও এর সাপেন্দে

আমরা জানি, বর্গসংখ্যা কখনও ঋণাত্মক হতে পারে না। সুতরাং

$$\Sigma (u_i \pm v_i)^2 \ge 0$$
 $\Rightarrow \Sigma (u_i^2 \pm 2u_i v_i + v_i^2) \ge 0$
 $\Rightarrow \Sigma u_i^2 \pm 2\Sigma u_i v_i + \Sigma v_i^2 \ge 0$
 $\Rightarrow 1 \pm 2r + 1 \ge 0$
 $\Rightarrow 2 \pm 2r \ge 0$
 $\Rightarrow 2(1 \pm r) \ge 0$
 $\Rightarrow 1 \pm r \ge 0$

যোগ বোধক চিহ্ন নিয়ে পাই,

বিয়োগ বোধক চিহ্ন নিয়ে পাই,

$$1+r \ge 0$$

$$r \ge -1$$

$$\therefore -1 \le r \dots (v)$$

$$1-r \ge 0$$

$$\Rightarrow -r \ge -1$$

$$\therefore r \le 1....(vi)$$

∴ সমীকরণ (v) ও (vi) থেকে পাই, $-1 \le r \le 1$ ∴ সংশ্রেষাংকের মান -1 থেকে +1 এর মধ্যে থাকে 1

(প্রমাণিত)

২। প্রমাণ কর যে, সংশ্লেষাংক মূল ও মাপনী হতে স্বাধীন ।

প্রমাণ: মনে করি, x ও y চলকের n জোড়া মানসমূহ যথাক্রমে $(x_1,y_1),(x_2,y_1)----(x_n,y_n)$ এবং উহাদের গাণিতিক গড় যথাক্রমে \overline{x} ও \overline{y} .

∴ x ও y এর সংশ্লেষাংক,

$$r_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}} - - - - (i)$$

ধরি,

ৰাতুৰ চলাক
$$u_i = \frac{x_i - a}{c}$$
 এবং $v_i = \frac{y_i - b}{d}$ বা, $x_i - a = cu_i$ বা, $y_i - b = dv_i$ বা, $x_i = a + cu_i$ বা, $y_i = b + dv_i$ বা, $\sum_{n=0}^{\infty} \frac{x_i}{n} = \frac{na}{n} + c \sum_{n=0}^{\infty} \frac{u_i}{n}$ বা, $\sum_{n=0}^{\infty} \frac{y_i}{n} = \frac{nb}{n} + \frac{d \sum_{i=0}^{\infty} v_i}{n}$ $\therefore \overline{y} = b + d\overline{v}$

(i) নং সমীকরণ হতে পাই,

$$\begin{split} r_{XY} &= \frac{\sum (a + cu_i - a - c\overline{u})(b + dv_i - b - d\overline{v})}{\sqrt{\sum (a + cu_i - a - c\overline{u})^2 \sum (b + dv_i - b - d\overline{v})^2}} \\ &= \frac{\sum \{c(u_i - \overline{u})\}\{d(v_i - \overline{v})\}}{\sqrt{\sum \{c(u_i - \overline{u})\}^2 \sum \{d(v_i - \overline{v})\}^2}} \\ &= \frac{cd\sum (u_i - \overline{u})(v_i - \overline{v})}{\sqrt{c^2 \sum (u_i - \overline{u})^2 d^2 \sum (v_i - \overline{v})^2}} \\ &= \frac{cd\sum (u_i - \overline{u})(v_i - \overline{v})}{cd\sqrt{\sum (u_i - \overline{u})^2 \sum (v_i - \overline{v})^2}} \\ &= \frac{\sum (u_i - \overline{u})(v_i - \overline{v})}{\sqrt{\sum (u_i - \overline{u})^2 \sum (v_i - \overline{v})^2}} \\ &= r_{uv} \\ \therefore r_{xy} &= r_{uv} \end{split}$$

উপরের সম্পর্ক হতে দেখা যায় যে, মূল a, b এবং মাপনি c, d এর কোন অন্তিত্ব নেই। সুতরাং সংশ্লেষাংক মূল ও মাপনি হতে স্বাধীন। (প্রমাণিত)।

৩। দুটি চলকের সংশ্লেষাংক উহাদের নির্ভরাংকদ্বয়ের জ্যামিতিক গড়ের সমান। অথবা, প্রমাণ কর যে, $r=\sqrt{b_{yx}.b_{xy}}$

প্রমাণ: মনে করি, x ও y চলকের $\mathbf n$ জোড়া মানসমূহ যথাক্রমে $(x_1,y_1),(x_2,y_2)----(x_n,y_n)$ এবং উহাদের গাণিতিক গড় যথাক্রমে $\overline x$ ও $\overline y$.

এখন,

$$x$$
 এর উপর y এর নির্ভরাংক, $b_{yx} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$
 y এর উপর x এর নির্ভরাংক, $b_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (y_i - \overline{y})^2}$
এবং x ও y এর মধ্যে সংশ্লেষাংক, $r = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$

$$:$$
 নির্ভরাংকঘয়ের জ্যামিতিক গড় $= \sqrt{b_{yx} \times b_{xy}}$

$$= \sqrt{\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$$

$$= \sqrt{\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$$

$$= \sqrt{\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}}$$

$$= \sqrt{b_{yx} \cdot b_{xy}} = r$$

$$: r = \sqrt{b_{yx} \cdot b_{xy}}$$

অর্থাৎ নির্ভরাংকদ্বয়ের জ্যামিতিক গড সংশ্লেষাংকের সমান ।

(প্রমাণিত)।

প্রয়োজনীয় সূত্রাবলী

১। (i) সংশ্লেষাংক,
$$r=rac{\sum (x_i-\overline{x})(y_i-\overline{y})}{\sqrt{\sum (x_i-\overline{x})^2\sum (y_i-\overline{y})^2}}$$

(ii) সংশ্লেষাংক,
$$r = \frac{\sum x_i y_i - \frac{\sum x_i}{n} \sum y_i}{\sqrt{\left\{\sum x_i^2 - \frac{(\sum x_i)^2}{n}\right\} \left\{\sum y_i^2 - \frac{(\sum y_i)^2}{n}\right\}}}$$

81

61

(iii) সংশ্লেষাংক,
$$r = \frac{\text{cov}(x, y)}{\sigma_x \cdot \sigma_y}$$

$$(iv)$$
 সংশ্লেষাংক, $r = \sqrt{b_{yx} \cdot b_{xy}}$

$$(v)$$
 সংশ্লেষাংক, $r = \frac{SP(x,y)}{\sqrt{SS(x).SS(y)}}$

$$(vi) \ \operatorname{সংশ্লেষাংক,} \ r = \frac{\sum x_i y_i - n \overline{x} \overline{y}}{\sqrt{\left\{\sum x_i^2 - n \overline{x}^2\right\} \left\{\sum y_i^2 - n \overline{y}^2\right\}}}$$

২। ক্রম সংশ্লেষাংক,
$$\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

৩। x এর উপর y এর নির্ভরাংক,

(i)
$$b_{yx} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

(ii)
$$b_{yx} = \frac{\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}}{\sum x_i^2 - \frac{(\sum x_i)^2}{n}}$$

(iii)
$$b_{yx} = \frac{sp(x, y)}{ss(x)}$$

y এর উপর x এর নির্ভরাংক,

$$y$$
 এর উপর x এর নির্ভরাংক,
$$(i) b_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (y_i - \overline{y})^2}$$

(ii)
$$b_{xy} = \frac{\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}}{\sum y_i^2 - \frac{(\sum y_i)^2}{n}}$$

$$\sum y_i^2 - \frac{(\sum y_i)}{n}$$
(iii) $b_{xy} = \frac{sp(x, y)}{ss(y)}$

$$(i)x$$
 এর উপর y এর নির্ভরণ সমীকরণ, $y-\overline{y}=b_{yx}(x-\overline{x})$

$$(ii)$$
 y এর উপর x এর নির্ভরণ সমীকরণ, $x - \overline{x} = b_{xy}(y - \overline{y})$

৬। (i)x এর উপর y এর নির্ভরাংক, $b_{yx}=rrac{\sigma_y}{\sigma_x}$ (ii)y এর উপর x এর নির্ভরাংক, $b_{xx}=rrac{\sigma_x}{\sigma_x}$

গাণিতিক সমস্যার সমাধান

১। y = a - bx হলে $x \in y$ এর সংশ্লেষাংকের মান কত?

সমাধান:

দেওয়া আছে,

$$y = a - bx$$

$$\exists i, \quad y_i = a - bx_i \quad (i = 1, 2, \dots, n)$$

$$\exists i, \quad \sum_{i=1}^n y_i = \sum_{i=1}^n a - b \sum_{i=1}^n x_i$$

$$\exists i, \quad \frac{\sum y_i}{n} = \frac{na}{n} - b \frac{\sum x_i}{n}$$

$$\therefore \overline{y} = a - b\overline{x}$$

x ও y এর মধ্যে সংশ্লেষাংক,

$$r = \frac{\sum (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum (x_{i} - \bar{x})^{2} \sum (y_{i} - \bar{y})^{2}}}$$

$$= \frac{\sum (x_{i} - \bar{x})(a - bx_{i} - a + b\bar{x})}{\sqrt{\sum (x_{i} - \bar{x})^{2} \sum (a - bx_{i} - a + b\bar{x})^{2}}}$$

$$= \frac{\sum (x_{i} - \bar{x})^{2} \sum (a - bx_{i} - a + b\bar{x})^{2}}{\sqrt{\sum (x_{i} - \bar{x})^{2} \sum \{-b(x_{i} - \bar{x})\}^{2}}}$$

$$= \frac{-b\sum (x_{i} - \bar{x})(x_{i} - \bar{x})}{\sqrt{\sum (x_{i} - \bar{x})^{2} b^{2} \sum (x_{i} - \bar{x})^{2}}}$$

$$= \frac{-b\sum (x_{i} - \bar{x})^{2}}{b\sqrt{\{\sum (x_{i} - \bar{x})^{2}\}^{2}}}$$

$$= \frac{-\sum (x_{i} - \bar{x})^{2}}{\sum (x_{i} - \bar{x})^{2}}$$

$$r = -1$$

∴ x ও y এর মধ্যে পূর্ণ ঋণাত্মক সংশ্লেষ বিদ্যমান।

২। y=-2x হলে x ও y মধ্যে সংশ্রেষাংকের মান কত? সমাধান : দেওয়া আছে, y=-2x

$$v_{x} = -2x$$

$$\sum y_i = -2\sum x_i$$

$$\frac{\sum y_i}{n} = -2\frac{\sum x_i}{n}$$

$$\therefore \overline{y} = -2\overline{x}$$

x ও y এর সংশ্লেষাংক,

$$r = \frac{\sum (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sqrt{\sum (x_{i} - \overline{x})^{2} \sum (y_{i} - \overline{y})^{2}}}$$

$$= \frac{\sum (x_{i} - \overline{x})(-2x_{i} + 2\overline{x})}{\sqrt{\sum (x_{i} - \overline{x})^{2} \sum (-2x_{i} + 2\overline{x})^{2}}}$$

$$= \frac{\sum (x_{i} - \overline{x}) \{-2(x_{i} - \overline{x})\}}{\sqrt{\sum (x_{i} - \overline{x})^{2} \sum \{-2(x_{i} - \overline{x})\}^{2}}}$$

$$= \frac{-2\sum (x_{i} - \overline{x})(x_{i} - \overline{x})}{\sqrt{\sum (x_{i} - \overline{x})^{2} 4 \sum (x_{i} - \overline{x})^{2}}}$$

$$= \frac{-2\sum (x_{i} - \overline{x})^{2}}{2\sqrt{\{\sum (x_{i} - \overline{x})^{2}\}^{2}}}$$

$$= \frac{-2\sum (x_{i} - \overline{x})^{2}}{2\sum (x_{i} - \overline{x})^{2}} = -1$$

$$\therefore r = -1$$

...r = −1 x ও y চলকদ্বয়ের মধ্যে পূর্ণ ঋণাত্মক সংশ্লেষ বিদ্যমান।

৩। যদি $y=-\frac{x}{2}$ তবে r_{xy} এর মান বের কর এবং মন্তব্য কর। সমাধানঃ দেওয়া আছে.

$$y = -\frac{x}{2}$$
 $\Rightarrow 2y = -x$
 $\Rightarrow x = -2y$
 $\Rightarrow \sum x_i = -2\sum y_i$ [উভয় পক্ষে \sum নিয়ে]
 $\Rightarrow \frac{\sum x_i}{n} = -2\frac{\sum y_i}{n}$
 $\therefore \overline{x} = -2\overline{y}$

সংশ্লেষাংক,

$$\begin{split} r_{xy} &= \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}} \\ &= \frac{\sum (-2y_i + 2\overline{y})(y_i - \overline{y})}{\sqrt{\sum (-2y_i + 2\overline{y})^2 \sum (y_i - \overline{y})^2}} \\ &= \frac{\sum (-2)(y_i - \overline{y})(y_i - \overline{y})}{\sqrt{\sum \{-2(y_i - \overline{y})\}^2 \sum (y_i - \overline{y})^2}} \\ &= \frac{-2\sum (y_i - \overline{y})^2}{\sqrt{4\sum (y_i - \overline{y})^2 \sum (y_i - \overline{y})^2}} \\ &= \frac{-2\sum (y_i - \overline{y})^2}{2\sqrt{\sum (y - \overline{y})^2 \sum (y_i - \overline{y})^2}} \\ &= \frac{-\sum (y_i - \overline{y})^2}{\sqrt{\{\sum (y_i - \overline{y})^2\}^2}} \\ &= \frac{-\sum (y_i - \overline{y})^2}{\sum (y_i - \overline{y})^2} \\ &= \frac{-\sum (y_i - \overline{y})^2}{\sum (y_i - \overline{y})^2} \end{split}$$

 $r_{xy} = -1$

∴x ও y চলকদ্বয়ের মধ্যে পূর্ণ ঋণাত্মক সংশ্লেষ বিদ্যমান।

8।
$$y-5x-3=0$$
 হলে x ও y এর মধ্যে সংশ্লেষাংকের মান কত?

সমাধান :

দেওয়া আছে.

$$y-5x-3=0$$

$$\overline{1}, \quad y=5x+3$$

$$\overline{1}, \quad y_i=5x_i+3$$

$$\overline{1}, \quad \sum y_i=5\sum x_i+\sum 3$$

$$\overline{1}, \quad \frac{\sum y_i}{n}=5\frac{\sum x_i}{n}+\frac{3n}{n}$$

$$\overline{1}, \quad \overline{y}=5\overline{x}+3$$

x ও y এর মধ্যে সংশ্লেষাংক,

$$r = \frac{\sum (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum (x_{i} - \bar{x})^{2} \sum (y_{i} - \bar{y})^{2}}}$$

$$= \frac{\sum (x_{i} - \bar{x})(5x_{i} + 3 - 5\bar{x} - 3)}{\sqrt{\sum (x_{i} - \bar{x})^{2} \sum (5x_{i} + 3 - 5\bar{x} - 3)^{2}}}$$

$$= \frac{\sum (x_{i} - \bar{x})^{2} \sum (5x_{i} - \bar{x})^{2}}{\sqrt{\sum (x_{i} - \bar{x})^{2} \sum (5(x_{i} - \bar{x}))^{2}}}$$

$$= \frac{5\sum (x_{i} - \bar{x})^{2}}{\sqrt{\sum (x_{i} - \bar{x})^{2} 25\sum (x_{i} - \bar{x})^{2}}}$$

$$= \frac{5\sum (x_{i} - \bar{x})^{2}}{5\sqrt{\{\sum (x_{i} - \bar{x})^{2}\}^{2}}}$$

$$= \frac{\sum (x_{i} - \bar{x})^{2}}{\sum (x_{i} - \bar{x})^{2}}$$

r=1

∴ xও y চলকদ্বয়ের মধ্যে পূর্ণ ধণাতাক সংশ্লেষ বিদ্যমান।

৫। $r_{xy}=0.75$, u=3x-2 এবং v=5-y হলে r_{uv} এর মান নির্ণয় কর।

সমাধান :

দেওয়া আছে,
$$u=3x-2$$
 এবং
$$\Rightarrow u_i=3x_i-2$$

$$\Rightarrow \sum u_i=3\sum x_i-\sum 2$$

$$\Rightarrow \frac{\sum u_i}{n}=3\frac{\sum x_i}{n}-\frac{2.n}{n}$$

$$\therefore \overline{u}=3\overline{x}-2$$

$$r_{uv}=\frac{\sum (u_i-\overline{u})(v_i-\overline{v})}{\sqrt{\sum (u_i-\overline{u})^2\sum (v_i-\overline{v})^2}}$$

$$=\frac{\sum (3x_i-2-3\overline{x}+2)(5-y_i-5+\overline{y})}{\sqrt{\sum (3x_i-2-3\overline{x}+2)^2\sum (5-y_i-5+\overline{y})^2}}$$

$$v = 5 - y$$

$$v_i = 5 - y_i$$

$$\sum v_i = \sum 5 - \sum y_i$$

$$\sum v_i = \frac{n.5}{n} - \frac{\sum y_i}{n}$$

$$\therefore \overline{v} = 5 - \overline{y}$$

$$= \frac{\sum 3(x_i - \bar{x}) \{-(y_i - \bar{y})\}}{\sqrt{\sum \{3(x_i - \bar{x})\}^2 \sum \{-(y_i - \bar{y})\}^2}}$$

$$= \frac{-3\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{3^2 \sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$

$$= \frac{-3\sum (x_i - \bar{x})(y_i - \bar{y})}{3\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$

$$= -r_{xy}$$

$$= -0.75$$

৬। y = mx + c হলে x ও y এর মধ্যে সংশ্লেষাংকের মান কত?

সমাধান:

দেওয়া আছে ,
$$y = mx + c$$
 বা,
$$y_i = mx_i + c$$
 বা,
$$\sum y_i = m\sum x_i + \sum c$$
 বা,
$$\sum y_i = m \sum x_i + \sum c$$
 \vdots \vdots $y = m\overline{x} + c$

x ও y এর মধ্যে সংশ্লেষাংক,

$$r = \frac{\sum (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sqrt{\sum (x_{i} - \overline{x})^{2} \sum (y_{i} - \overline{y})^{2}}}$$

$$= \frac{\sum (x_{i} - \overline{x})(mx_{i} + c - m\overline{x} - c)}{\sqrt{\sum (x_{i} - \overline{x})^{2} \sum (mx_{i} + c - m\overline{x} - c)^{2}}}$$

$$= \frac{\sum (x_{i} - \overline{x})\{m(x_{i} - \overline{x})\}}{\sqrt{\sum (x_{i} - \overline{x})^{2} m^{2} \sum (x_{i} - \overline{x})^{2}}}$$

$$= \frac{m\sum (x_{i} - \overline{x})^{2}}{m\sqrt{\{\sum (x_{i} - \overline{x})^{2}\}^{2}}}$$

$$= \frac{\sum (x_{i} - \overline{x})^{2}}{\sum \sum (x_{i} - \overline{x})^{2}}$$

r = 1

 $\therefore x$ ও y চলকদ্বয়ের মধ্যে পূর্ণ ধনাতা্রক সংশ্লেষ বিদ্যমান।

৭। যদি x+3y=0 হয় তবে x ও y এর মধ্যে সংশ্লেষাংক নির্ণয় কর। সমাধান :

দেওয়া আছে,
$$x+3y=0$$

$$\Rightarrow x=-3y$$

$$\Rightarrow x_i=-3y_i$$

$$\Rightarrow \frac{\sum x_i}{n}=-3\frac{\sum y_i}{n}$$

$$\therefore \overline{x}=-3\overline{y}$$

x ও v এর মধ্যে সংশ্লেষাংক,

$$\begin{split} r_{yy} &= \frac{\sum (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum (x_{i} - \bar{x})^{2} \sum (y_{i} - \bar{y})^{2}}} \\ &= \frac{\sum (-3y_{i} + 3\bar{y})(y_{i} - \bar{y})}{\sqrt{\sum (-3y_{i} + 3\bar{y})^{2} \sum (y_{i} - \bar{y})^{2}}} \\ &= \frac{\sum (-3)(y_{i} - \bar{y})(y_{i} - \bar{y})}{\sqrt{\sum \{-3(y_{i} - \bar{y})^{2} \sum (y_{i} - \bar{y})^{2}}} \\ &= \frac{-3\sum (y_{i} - \bar{y})^{2}}{\sqrt{9\sum (y_{i} - \bar{y})^{2}} \sum (y_{i} - \bar{y})^{2}}} \\ &= \frac{-3\sum (y_{i} - \bar{y})^{2}}{3\sqrt{\{\sum (y_{i} - \bar{y})^{2}\}^{2}}} \\ &= \frac{-\sum (y_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}} \\ &= -1 \end{split}$$

 $x \otimes y$ চলকদ্বয়ের মধ্যে পূর্ণ ঋণাত্মক সংশ্লেষ বিদ্যমান। $x \otimes a - x$ এর সংশ্লেষাংক নির্ণয় কর।

সমাধান: ধরি.

$$u=x$$
বা, $u_i=x_i$
বা, $\sum_n u_i = \sum_n x_i$
 $\overline{u}=\overline{x}$
এবং $v=a-x$

ৰাব
$$v = a - x$$

বা, $v_i = a - x_i$

$$\frac{\sum v_i}{n} = \frac{\sum a}{n} - \frac{\sum x_i}{n}$$

$$\overline{v} = a - \overline{x}$$

u ও v এর মধ্যে সংশ্লেষাংক,

$$\begin{split} r_{uv} &= \frac{\sum (u_i - \overline{u})(v_i - \overline{v})}{\sqrt{\sum (u_i - \overline{u})^2 \sum (v_i - \overline{v})^2}} \\ &= \frac{\sum (x_i - \overline{x})(a - x_i - a + \overline{x})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (a - x_i - a + \overline{x})^2}} \\ &= \frac{\sum (x_i - \overline{x})^2 \sum (a - x_i - a + \overline{x})^2}{\sqrt{\sum (x_i - \overline{x})^2 \sum \left\{ (-(x_i - \overline{x})\right\}^2}} \\ &= \frac{-\sum (x_i - \overline{x})^2}{\sqrt{\sum (x_i - \overline{x})^2 \sum (x_i - \overline{x})^2}} \\ &= \frac{-\sum (x_i - \overline{x})^2}{\sqrt{\left\{ \sum (x_i - \overline{x})^2 \right\}^2}} \\ &= \frac{-\sum (x_i - \overline{x})^2}{\sum (x_i - \overline{x})^2} \\ &= \frac{-\sum (x_i - \overline{x})^2}{\sum (x_i - \overline{x})^2} \\ &= -1 \end{split}$$

৯। যদি চলক old x ও old y এর সংশ্রোষাংক old 0.75 হয় তবে (3x-2) এবং (5-4y)এর সংশ্রোষাংক নির্ণয় কর।

সমাধান:

দেওয়া আছে, \mathbf{x} ও \mathbf{y} এর সংশ্লেষাংক $\mathbf{r}_{\mathbf{x}\mathbf{y}}=0.75$ ধরি, এবং v=5-4y $v_i=5-4y_i$ $v_i=5-4y_i$ $\mathbf{x}_i=3x_i-2$ $\mathbf{x}_i=\frac{\sum v_i}{n}=\frac{5n}{n}-4\frac{\sum y_i}{n}$ $\frac{\sum u_i}{n}=3\frac{\sum x_i}{n}-\frac{\sum 2}{n}$ $\mathbf{x}_i=\frac{5}{n}-4\frac{\sum y_i}{n}$ $\mathbf{x}_i=\frac{5}{n}-4\frac{\sum y_i}{n}$

∴ $\overline{u} = 3\overline{x} - 2$ একটি কামবিয়ান ডিজিটাল প্রকাশনা

$$\begin{split} r_{uv} &= \frac{\sum (u_i - \overline{u})(v_i - \overline{v})}{\sqrt{\sum (u_i - \overline{u})^2 \sum (v_i - \overline{v})^2}} \\ &= \frac{\sum (3x_i - 2 - 3\overline{x} + 2)(5 - 4y_i - 5 + 4\overline{y})}{\sqrt{\sum (3x_i - 2 - 3\overline{x} + 2)^2 \sum (5 - 4y_i - 5 + 4\overline{y})^2}} \\ &= \frac{\sum 3(x_i - \overline{x})\{(-4(y_i - \overline{y})\}\}}{\sqrt{\sum \{3(x_i - \overline{x})\}^2 \sum \{-4(y_i - \overline{y})\}^2}} \\ &= \frac{-12\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{9\sum (x_i - \overline{x})^2 16\sum (y_i - \overline{y})^2}} \\ &= \frac{-12\sum (x_i - \overline{x})(y_i - \overline{y})}{3 \times 4\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}} \\ &= \frac{-\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}} \\ &= -r_{\overline{x}\overline{y}} = -0.75 \end{split}$$

১০। u=2x+5, v=7-3y এবং x ও y এর সংশ্রেষাংক $r_{xy}=0.75$ হলে r_{uv} এর মান কত?

সমাধান:

দেওয়া আছে,
$$u=2\mathbf{x}+5$$
 বা, $u_i=2x_i+5$ বা, $\frac{\sum u_i}{n}=2\frac{\sum x_i}{n}+\frac{\sum 5}{n}$ বা, $\overline{u}=2\overline{x}+5$

এবং
$$\mathbf{v} = 7 - 3\mathbf{y}$$

$$v_i = 7 - 3y_i$$

$$\sqrt{\frac{\sum v_i}{n}} = \frac{\sum 7}{n} - 3\frac{\sum y_i}{n}$$

$$\sqrt{\frac{\sum 7}{n}} = 7 - 3\frac{\sum y_i}{n}$$

$$\begin{split} r_{uv} &= \frac{\sum (u_i - \overline{u})(v_i - \overline{v})}{\sqrt{\sum (u_i - \overline{u})^2 \sum (v_i - \overline{v})^2}} \\ &= \frac{\sum (2x_i + 5 - 2\overline{x} - 5)(7 - 3y_i - 7 + 3\overline{y})}{\sqrt{\sum (2x_i + 5 - 2\overline{x} - 5)^2 \sum (7 - 3y_i - 7 + 3\overline{y})^2}} \\ &= \frac{\sum 2(x_i - \overline{x}) \{-3(y_i - \overline{y})\}}{\sqrt{\sum \{2(x_i - \overline{x})\}^2 \sum \{-3(y_i - \overline{y})\}^2}} \\ &= \frac{2(-3)\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{4\sum (x_i - \overline{x})^2 9 \sum (y_i - \overline{y})^2}} \\ &= \frac{-6\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{36\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}} \\ &= \frac{-6\sum (x_i - \overline{x})(y_i - \overline{y})}{6\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}} \\ &= -r_{xy} \\ &= -0.75 \end{split}$$

১১। দুটি চলক xও y এর সংশ্লেষাংক $\mathbf{0.8}$ সহভেদাংক $\mathbf{15}$ এবং x এর ভেদাংক $\mathbf{6.25}$ হলে y এর ভেদাংক কত?

সমাধান:

দেওয়া আছে,
$$x$$
ও y এর মধ্যে সংশ্লেষাংকের $r_{xy}=0.8$ সহভেদাংক, $\mathrm{cov}(x,y)=15$ x এর ভেদাংক, $\sigma_x^{\ 2}=6.25$ $\therefore \sigma_x=\sqrt{6.25}=2.5$ আমরা জানি, $r_{xy}=\frac{\mathrm{cov}(x,y)}{\sigma_x\sigma_y}$ $\sigma_y=\frac{\mathrm{cov}(x,y)}{r_{x,y}\sigma_x}=\frac{15}{0.8\times 2.5}$

$$r_{xy}\sigma_x \qquad 0.8 \times 2$$

$$\sigma_y = 7.5$$

$$\therefore \sigma_{y}^{2} = 56.25$$

∴ নির্ণেয় ভেদাংক, 56.25।

১২। চলক x এর উপর y এর নির্ভরণ সমীকরণ 5x+6y=90 এবং y উপর x এর নির্ভরণ সমীকরণ 15x+8y=130 হলে নির্ভরাংক্ষয় ও সংশ্লেষাংক নির্ণয় কর।

সমাধান:

দেওয়া আছে,

x এর উপর y নির্ভরণ সমীকরণ,

$$5x + 6y = 90$$

$$6y = 90 - 5x$$

$$y = \frac{90}{6} - \frac{5}{6}x$$

$$y = 15 + \left(-\frac{5}{6}\right)x$$

∴ x এর উপর y এর নির্ভরাংক,

$$b_{yx} = -\frac{5}{6} = -0.83$$

y এর উপর x এর নির্ভরণ সমীকরণ,

$$15x + 8y = 130$$

$$15x = 130 - 8y$$

$$x = \frac{130}{15} - \frac{8}{15}y$$

$$x = 8.6 + \left(\frac{-8}{15}\right)y$$

v এর উপর x এর নির্ভরাংক,

$$b_{xy} = -\frac{8}{15} \\ = -0.53$$

আমরা জানি,

$$r = \sqrt{b_{yx} \cdot b_{xy}}$$

$$= \sqrt{(-0.83)(-0.53)}$$

$$= \sqrt{0.4399}$$

$$= 0.66$$

আমরা জানি, সংশ্লেষাংক ও নির্ভরাংকদম একই চিহ্ন বিশিষ্ট।

$$r = -0.66$$

১৩। x এর উপর y এর নির্ভরণ সমীকরণ 4x - 5y + 33 = 0 এবং y এর উপর x এর নির্ভরণ সমীকরণ 20x - 9y - 107 = 0 x এর পরিমিত ব্যবধান 6 হলে xও y এর গড় মান y এর পরিমিত ব্যবধান ও সংশ্রেষাংক নির্ণয় কর।

সমাধানঃ দেওয়া আছে.

$$4x - 5y + 33 = 0 - - - - - (i)$$

$$20x - 9y - 107 = 0 - - - - - - - (ii)$$

$$20x - 25y + 165 - 20x + 9y + 107 = 0$$

$$\Rightarrow -16y + 272 = 0$$

$$\Rightarrow -16y = -272$$

$$\Rightarrow y = \frac{-272}{-16} = 17$$

$$4x-5\times17+33=0$$

$$\Rightarrow 4x - 85 + 33 = 0$$

$$\Rightarrow 4x - 52 = 0$$

$$\Rightarrow 4x = 52$$

$$\Rightarrow x = \frac{52}{4} = 13$$

্র নির্ভরণ রেখাদ্বয় পরস্পরকে চলকদ্বয়ের গড় বিন্দুতে ছেদ করে।

$$\therefore \overline{x} = 13$$
 এবং $\overline{y} = 17$

দেওয়া আছে.

$$x$$
 এর পরিমিত ব্যবধান, $\sigma_{x} = 6$

(i) নং হতে পাই.

$$-5y = -33 - 4x$$

$$5y = 33 + 4x$$

$$y = \frac{33}{5} + \frac{4}{5}x$$

$$y = 6.6 + 0.8x$$

$$x$$
 এর উপর y এর নির্ভরাংক $\mathbf{b}_{\mathrm{yx}} = 0.8$

(ii) নং হতে পাই,

$$20x - 9y - 107 = 0$$

$$20x = 107 + 9y$$

$$\Rightarrow x = \frac{107}{20} + \frac{9}{20} y$$

$$x = 5.35 + 0.45y$$

$$y$$
 এর উপর x এর নির্ভরাংক,

$$b_{xy} = 0.45$$

সংশ্রেষাংক,
$$r=\sqrt{b_{yx}.b_{xy}}$$
 $=\sqrt{0.8 imes0.45}$
 $=\sqrt{0.36}$
 $r=0.6$

আমরা জানি,
$$b_{yx}=r\frac{\sigma_y}{6_x}$$

$$\Rightarrow 0.8=0.6\frac{\sigma_y}{6}$$

$$\Rightarrow 0.8=0.1\sigma_y$$

$$\Rightarrow \sigma_y=\frac{0.8}{0.1}=8$$

নির্ণেয়,
$$\bar{x}=13, \bar{y}=17, \sigma_y=8$$
 এবং ${\bf r}=0.6$ ।

১৪। দুইটি চলক x ও y এর সহভেদাংক এবং সংশ্লেষাংক যথাক্রমে 36 এবং 0.6.x চলকের পরিমিত ব্যবধান, 6 হলে σ_y এবং b_{yx} নির্ণয় কর।

সমাধান :

দেওয়া আছে,

$$x$$
 ও y এর সহভেদাংক, $cov(x, y) = 36$

x ও y এর সংশ্লেষাংক, $r_{xy}=0.6$

x চলকের পরিমিত ব্যবধান, $\sigma_x = 6$

আমরা জানি,

$$r_{xy} = \frac{\text{cov}(x, y)}{\sigma_x \cdot \sigma_y}$$

$$\Rightarrow 0.6 = \frac{36}{6.\sigma_y}$$

$$\Rightarrow \sigma_y = \frac{6}{0.6}$$

$$\Rightarrow \sigma_y = 10$$

$$\therefore b_{yx} = r \cdot \frac{\sigma_y}{\sigma_x}$$

$$= 0.6 \times \frac{10}{6} = 1$$

 \therefore নির্ণেয় মান, $\sigma_y=10$ এবং $b_{yx}=1$

১৫। $\overline{x}=20,\overline{y}=15,\sigma_x=4,\sigma_y=3$ এবং r=0.7 হলে নির্ভরণ সমীকরণদ্বয় নির্ণয় কর। সমাধান : আমরা জানি.

$$b_{yx}=rrac{\sigma_y}{\sigma_x}$$

$$=0.7 imesrac{3}{4}$$

$$=0.525$$
আবার, $b_{xy}=rrac{\sigma_x}{\sigma_y}$

$$=0.7 imesrac{4}{2}$$

= 0.93 x এর উপর y নির্ভরণ সমীকরণ,

$$(y - \overline{y}) = b_{yx} (x - \overline{x})$$

 $y - 15 = 0.525(x - 20)$
 $y - 15 = 0.525x - 10.5$

$$y = 15 + 0.525 x - 10.5$$

$$\therefore y = 4.5 + 0.525 x$$

y এর উপর x এর নির্ভরণ সমীকরণ,

$$(x - \overline{x}) = b_{xy}(y - \overline{y})$$

 $\Rightarrow x - 20 = 0.93(y - 15)$
 $\Rightarrow x - 20 = 0.93 \text{ y} - 13.95$
 $\Rightarrow x = 20 + 0.93 \text{ y} - 13.95$

 $\therefore x = 6.05 + 0.93y$

নির্ণেয় নির্ভরণ সমীকরণ,
$$y = 4.5 + 0.525x$$

 $x = 6.05 + 0.93y$

১৬। নিম্নের তথ্য থেকে নির্ভরাংকদ্বয় এবং সংশ্লেষাংকের মান নির্ণয় কর।

$$\sum x = 56, \sum y = 40, \sum x^2 = 524, \sum y^2 = 256, \sum xy = 364$$
 এবং $n = 8$

সমাধান: মনে করি, x এর উপর y এর নির্ভরাংক,

$$b_{yx} = \frac{\sum xy - \frac{(\sum x)(\sum y)}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$

$$= \frac{364 - \frac{40 \times 56}{8}}{524 - \frac{(56)^2}{8}}$$
$$= \frac{364 - 280}{524 - 392}$$
$$= \frac{84}{132}$$
$$= 0.64$$

আবার,

y এর উপর x এর নির্ভরাংক,

$$b_{xy} = \frac{\sum xy - \frac{(\sum x)(\sum y)}{n}}{\sum y^2 - \frac{(\sum y)^2}{n}}$$

$$= \frac{364 - \frac{40 \times 56}{8}}{256 - \frac{(40)^2}{8}}$$

$$= \frac{364 - 280}{256 - 200}$$

$$= \frac{84}{56}$$

$$= 1.5$$

সংশ্লেষাংক,
$$r = \sqrt{b_{yx} b_{xy}}$$

$$= \sqrt{0.64 \times 1.5}$$

$$= \sqrt{0.96} = 0.98$$

অতএব, চলকদ্বয়ের মধ্যে আংশিক ধনাত্যক সংশ্লেষ বিদ্যমান।

১৭। $b_{xy}=-~0.2$ এবং $b_{yx}=-~0.8$ হলে r_{xy} এর মান নির্ণয় কর। সমাধানঃ

আমরা জানি, $r_{xy} = \sqrt{b_{yx} \times b_{xy}}$ $= \sqrt{(-0.8) \times (-0.2)}$ $= \sqrt{0.16} = 0.4$

∴ সংশ্লেষাংক ও নির্ভরাংক একই চিহ্ন বিশিষ্ট হয়।

$$\therefore r_{xy} = -0.4$$

উচ্চমাধ্যমিক পরিসংখ্যান

সপ্তম অধ্যায়

কালীন সারি

TIME SERIES

তথ্যের একটি বিশেষ বৈশিষ্ট্য হল সময়ের পরিবর্তনের সাথে চলকের মান পরিবর্তন হয়। কোন কোন ক্ষেত্রে অস্বাভাবিকভাবে তথ্যের বৃদ্ধি বা হ্রাস হতে পারে। সাধারণত স্বাভাবিক অবস্থায় সময়ের পরিবর্তনের সাথে চলকের মানের পরিবর্তন লক্ষ্য করা যায়। একে কালীন সারি বলে। অর্থনৈতিক, রাজনৈতিক, সামাজিক বিভিন্ন তথ্য এই কালীন সারির আওতায় পড়ে। ঋতু পরিবর্তনের সাথেও কালীন সারির তথ্যের সম্পর্ক রয়েছে। যেমন-শীতকালে শাক-সবজী বেশি উৎপন্ন হয় বলে এদের মূল্য কম থাকে কিন্তু গ্রীষ্মকালে এদের মূল্য বৃদ্ধি পেতে থাকে। কালীন সারিতে দুইটি চলক থাকে। এর মধ্যে একটি চলক সময় হল স্বাধীন চলক এবং অপর চলককে অধীন চলক বলা হয়। স্বাধীন চলকের মানগুলোর ব্যবধান সাধারণতঃ সমদূরবর্তী হয়ে থাকে; আবার অসমানও হতে পারে। এজন্য স্বাধীন চলকের মানকে পরিবর্তন করে অধীন চলকের পরিবর্তিত মান নির্নয় করা যায়। স্বাধীন চলকের সাহায্যে অধীন চলকের ভবিষ্যৎ মান নির্ণয় করা যায়। অতএব তথ্যের পূর্বাভাস কালীন সারি বিশ্লেষণ করে পাওয়া যায়।

এ অধ্যায় পাঠ শেষে শিক্ষার্থীরা—

- কালীন সারি ও কালীন সারির উপাদান ব্যাখ্যা করতে পারবে।
- সাধারণ ধারা নির্ণয়ের পদ্ধতিগুলোর সুবিধা ও অসুবিধা বর্ণনা করতে পারবে ।
- সাধারণ ধারা ও সাধারণ ধারা নির্ণয়ের বিভিন্ন পদ্ধতি বর্ণনা করতে পারবে ।
- কালীন সারির ব্যবহার বলতে পারবে ।

কালীন সারি ও কালীন সারির উপাদান 4.05

Time Series & Components of Time Series

কালীন সারিঃ সময়ের সাথে সম্পর্কিত যে কোন তথ্যের সংখ্যাত্মক বিন্যাসকেই কালীন সারি বলা হয়। যদি কোন চলকের মান সময়ের ভিত্তিতে প্রতিষ্ঠিত হয় তবে সেই চলকের মানসমূহ দ্বারা গঠিত তথ্য সারিকে কালীন সারি বলা হয়।

উদাহরণ: 2000 সাল থেকে 2005 সাল পর্যন্ত চালের মন প্রতি মল্য নিচে কালীন সারির মাধ্যমে দেখানো হলো:

সাল	2000	2001	2002	2003	2004	2005
মূল্য (মন প্রতি)	540	580	620	660	700	740

কালীন সারির উপাদান চার প্রকার। যেমনঃ

- i) সাধারণ ধারা
- ii) ঋতুগত ভেদ
- iii) চক্রক্রমিক হ্রাস বৃদ্ধি iv) অনিয়মিত ভেদ

নিম্নে কালীন সারির উপাদান গুলোকে বর্ণনা করা হলোঃ

দীর্ঘকালীন প্রবণতা বা সাধারণ ধারাঃ দীর্ঘসময় ধরে সংগৃহীত কালীন সারিতে তথ্যসমূহের ক্রমহাস i) বা ক্রমবৃদ্ধি বা স্থিতিশীল অবস্থায় প্রবণতা লক্ষ্য করা যায়। কালীন সারিতে চলকের এই দীর্ঘমেয়াদি সাধারণ হ্রাস বা বৃদ্ধি বা স্থিতিশীলতার প্রবণতা বা বৈশিষ্ট্যকে দীর্ঘকালীন প্রবণতা বা সাধারণ ধারা বলা হয়।

একটি ডিজিটাল ক্যামব্রিয়ান প্রকাশনা

সাধারণ ধারাতে তিন ধরনের পরিবর্তন লক্ষ্য করা যায়:

- (1) উধর্বমূখী (2) নিমুমূখী (3) স্থিতিশীলতা।
- (1) উর্ধ্বমূখী: জনসংখ্যা বৃদ্ধি, মাথাপিছু আয়, আভ্যন্তরীণ বাণিজ্য ইত্যাদি উর্ধ্বমুখী সাধারণ ধারা।
- (2) নিমুম্খী: জনসংখ্যা বৃদ্ধির হার, শিশু মৃত্যুর হার ইত্যাদি নিমুম্খী সাধারণ ধারা।
- (3) স্থিতিশীলতাঃ প্রভিডেন্ট ফান্ড, ব্যাংক মুনাফা, বীমার প্রিমিয়ারের হার ইত্যাদি স্থিতিশীলতা সাধারণ ধারা।
- ii) ঋতুগত ভেদ: ঋতু পরিবর্তনের সাথে সাথে কালীন সরির মধ্যে যে পরিবর্তন লক্ষ্য করা যায় তাকে ঋতুগত ভেদ বলে। এই পরিবর্তনের সময়কাল সাধারণত এক বৎসর হয়ে থাকে। ঋতুগত ভেদ নিয়মিতভাবে একটি নিদিষ্ট সময় ব্যবধানে ঘটে থাকে।

ঋতুগতভেদের জন্য ক্রিয়াশীল কারণ দুইটি। যেমন—(i) আবহাওয়া পরিবর্তন (ii) মানুষের সৃষ্ট ঐতিহ্য ও উৎসব।

উদাহরণ: বর্যাকালে ছাতার চাহিদা বৃদ্ধি, গরমকালে ফ্যান, ঠান্ডা পানীয় ইত্যাদি চাহিদা বেশি, ঈদ বা পুঁজার সময় পন্য সামগ্রীর চাহিদা বৃদ্ধি পায়।

iii) চক্রক্রমিক হাসবৃদ্ধি: সময়ের পরিবর্তনের সাথে সাথে অর্থনৈতিক ক্ষেত্রে যে উত্থান, পতন ও পূর্ণজাগরণ দেখা যায় তাকে চক্রক্রমিক হ্রাস বৃদ্ধি বলে। এই ধরনের পরিবর্তন সাধারণত এক বছরের অধিক সময় কালের ব্যবধানে ঘটে থাকে। উৎপাদন, বিক্রয়, বিনিয়োগ, মুনাফা অর্থণীতির প্রভৃতি ক্ষেত্রে একবার তেজীভাব আবার অধঃগতি বা উদ্ধগতি কয়েক বছর পরপর চক্রাকারে ঘটে থাকে বলে এরুপ পরিবর্তনকে চক্রক্রমিক হাস বৃদ্ধি বলা হয়।
উদাহরণ: গার্মেন্টস ফ্যান্টরী কর্ত্ক উৎপাদিত তৈরি পোশাকের পরিমান।

৭.০২ সাধারণ ধারা নির্ণয়ের পদ্ধতিগুলোর সুবিধা ও অসুবিধা

Merits & Demerits of Different Method to Determine Trend

মুক্ত হস্ত রেখা পদ্ধতিঃ সুবিধাঃ

- এটি সাধারণ ধারা নির্ণয়ের সহজ পদ্ধতি।
- খ) গাণিতিক হিসাব না থাকায় সহজে বোধগম্য ।
- গ) সময় অপচয় কম হয়।
- ঘ) যেকোন ধরনের সাধারণ ধারার ক্ষেত্রে ব্যবহৃত হয়।

অসুবিধাঃ

- ক) এটা অনুমান নির্ভর পদ্ধতি হওয়ায় বস্তুনিষ্ঠ নয়।
- খ) ধারা নির্ণয়ে দক্ষ ও অভিজ্ঞ গবেষক প্রয়োজন।
- গ) এর কোন গানিতিক ভিত্তি নেই।
- ঘ) এটি কালীন সারির গতি প্রকৃতি নির্ণয় করে কিন্তু গতির পরিমাপ করে না।

ii) আধা গড় পদ্ধতি:

- সুবিধা: ক) কালীন সারির তথ্য সরল রৈখিক হলে এ পদ্ধতিতে নির্ভরযোগ্য পরিমাপ পাওয়া যায়।
 - খ) অনুমান নির্ভর না হওয়ায় অধিক যুক্তিযুক্ত।
 - গ) এটা চলিষ্ণু গড় পদ্ধতি ও ন্যূনতম গড় পদ্ধতি অপেক্ষা সহজ।
- অসুবিধাঃ ক) কালীন সারির তথ্য সরল রৈখিক না হলে এ পদ্ধতিতে সাধারণ ধারার সঠিক পরিমাপ সম্ভব নয়।
 - খ) এই পদ্ধতিতে গাণিতিক গড় ব্যবহার করা হয় বলে প্রাপ্ত ফলাফল প্রাস্তীয় মান দ্বারা প্রভাবিত হয়।
 - গ) এই পদ্ধতিতে কালীন সারি তথ্যমানের পূর্বাভাস পুরোপুরি নির্ভরযোগ্য নয়।

iii) চলিষ্ণু গড় পদ্ধতি:

- সুবিধা:
 ক) কালীন সারির অপর উপাদানসমূহ বিশ্লেষণ এই পদ্ধতি প্রয়োগ করা হয়।
 - খ) চলকণ্ডলোর সম্পর্ক সরল রৈখিক হলে এ পদ্ধতি সঠিক সাধারণ ধারা নির্দেশ করে।
 - গ) এতে ব্যক্তিগত বুঁকি কম থাকে।
- অসুবিধাঃ ক) এই পদ্ধতিতে কালীন সারির প্রদত্ত সকল বৎসরের জন্য চলিষ্ণু গড় ণির্ণয় করা যায় না।
 - খ) চলিফু গড় সমূহ প্রান্তীয় মান দ্বারা প্রভাবিত হয়।
 - গ) এতে অনিয়মিত ভেদ পুরোপুরি দূর করা যায় না।

iv) ন্যুনতম বর্গ পদ্ধতি:

- সুবিধাঃ ক) এই পদ্ধতিতে কালীন সারিতে প্রদন্ত সকল সময়ের জন্য সাধারণ ধারার মান নির্ণয় করা সম্ভব ।
 - খ) গাণিতিক ভিত্তি থাকবার কারণে পদ্ধতিটি বহুল প্রচলিত।
 - গ) এই পদ্ধতিতে সরলরৈখিক বা বক্ররৈখিক উভয় প্রকার সাধারণ ধারা পরিমাপ করা যায়।
- অসুবিধা: ক) অন্যান্য পদ্ধতি অপেক্ষা গণনাকার্য অপেক্ষাকৃত জটিল।
 - খ) সময়ের সাথে সঙ্গতি রেখে এ পদ্ধতিতে গাণিতিক আকার নির্ধারণ করা বেশ কষ্ট কর।
 - গ) এই পদ্ধতিতে পূর্বাভাস প্রদানের ক্ষেত্রে কালীন সারির অন্যান্য উপাদানগুলোর প্রভাব উপেক্ষা করা হয়।

৭.০৩ সাধারণ ধারা ও সাধারণ ধারা নির্ণয়ের বিভিন্ন পদ্ধতি

Secular Trend and Different Method of Determine Secular Trend

কালীন চলকের উর্ধ্বমূখী, নিমুমূখী বা স্থির সাধারণ ধারা নির্ণয়ের জন্য কতগুলি পদ্ধতি ব্যবহার করা হয়। এদেরকে সাধারণ ধারা নির্ণয়ের পদ্ধতি বলে।

সাধারণ ধারা নির্ণয়ের পদ্ধতি ৪টি। যথা: (i) লৈখিক পদ্ধতি (ii) আধা গড় পদ্ধতি (iii) চলিফু গড় পদ্ধতি (iv) ক্ষুদ্রতম বর্গ পদ্ধতি বা ন্যূনতম বর্গ পদ্ধতি।

(i) লৈখিক পদ্ধতি: এই পদ্ধতিতে সাধারণ ধারা নির্ণয়ের জন্য ছক কাগজের x অক্ষে সময় (t) এবং y অক্ষে চলকের মান (y) বসাইরা প্রতিটি সময়ের জন্য একটি করে বিন্দু পাওয়া যায়। বিন্দুগুলোকে সরলরেখার সাহায়েয় যুক্ত করা হয়। অতঃপর ব্যক্তিগত অভিজ্ঞতা ও বিচার বুদ্ধি দ্বারা বিন্দুগুলোর মধ্য দিয়ে একটি সরলরেখা আঁকা হয় যেন রেখাটি বিন্দুগুলো গতির সাধারণ ঝোঁক বা প্রবণতা নির্দেশ করে। এই রেখাটিকে সাধারণ ধারা রেখা বলা হয়। x অক্ষ হতে এই রেখার দূরত্ব দ্বারা যে কোন সময়ের সাধারণ ধারার মান নির্ণয় করা যায়।

উদাহরণ: নিম্নের কালীন সারি হতে মুক্ত হস্ত রেখা পদ্ধতির সাহায্যে সাধারণ ধারা নির্ণয় কর:

সাল	1990	1991	1992	1993	1994	1995	1996
দ্রব্য (মেট্রিক টন)	80	100	95	110	130	175	200

মুক্ত হস্ত রেখা পদ্ধতিতে সাধারণ ধারা নির্ণয় :

(ii) দীর্ঘকালীন প্রবণতার আধা গড় পদ্ধতি :

সাধারণ ধারা পরিমাপের আরেকটি সহজ পদ্ধতি হল আধা গড় পদ্ধতি। আধা গড় পদ্ধতিতে পদন্ত কালীন সারিকে সমান দুইভাগে বিভক্ত করা হয় (জোড় সংখ্যক তথ্যসারির ক্ষেত্রে)। যদি কালীন সারিতে বিজোড় সংখ্যক বৎসর থাকে তবে মাঝখানের বছরটিকে বাদ দিয়ে কালীন সারিকে সমান দুইভাগে ভাগ করা হয়। প্রথম অংশের সময়ের গড় ও চলকের গড় নির্ণয় করা হয়। অনুরুপে দ্বিতীয় অংশের সময় ও চলকের গড় মান নির্ণয় করা হয়। এই গড় মানকে ছক কাগজে উপস্থাপন করে দুইটি বিন্দু পাওয়া যায়। এদেরকে সংযোগ করলে যে সরল রেখা পাওয়া যায় তাকে সাধারণ ধারা রেখা বলা হয়। একে সাধারণ ধারা নির্ণয়ের আধাগড় পদ্ধতি বলা হয়।

উদাহরণঃ নিম্নে কালীন সারি হতে আধাগড় পদ্ধতিতে সাধারণ ধারা নির্ণয় কর।

সাল	1992	1993	1994	1995	1996	1997	1998	1999	2000
উৎপন্ন দ্রব্য	80	85	90	92	93	90	100	102	104

সমাধান: এখানে তথ্যসংখ্যা বিজ্ঞোড় সংখ্যা তাই মাঝের সন 1996 সালকে বাদ দিয়ে তথ্যসারিকে সমান দুইভাগে ভাগ করা যায়।

প্রথম অর্ধকালীন সারি
$$1992$$
 হতে 1995 পর্যন্ত গড় সাল = $\frac{1992 + 1993 + +1994 + 1995}{4}$ = 1993.5

গড় উৎপাদন
$$=$$
 $\frac{80 + 85 + 90 + 92}{4} = 86.75$

ছিতীয় অর্থকালীন সারি
$$1997$$
 হতে 2000 সাল পর্যন্ত গড় সাল $=\frac{1997+1998+1999+2000}{4}=1998.5$

আধাগড় পদ্ধতিতে সাধারণ ধারা নির্ণয়

(iii) চলিষ্ণু গড় বা গতিশীল গড় পদ্ধতি: এই পদ্ধতিতে প্রথমেই কত বংসর বা সময়কাল ধরে চলমান গড় বের করতে হবে তা ঠিক করতে হবে। সাধারণত 3, 4, 5 ইত্যাদি সময়কাল ধরে চলমান গড় নির্ণয় করা হয়। নিম্নে সময়কাল বিজ্ঞোড় বা জোড় সংখ্যা হলে এ পদ্ধতিতে কীভাবে সাধারণ ধারা করতে হবে তা পৃথকভাবে দেখানো হলো:

সময়কাল বিজোড় সংখ্যা হলে (3/5/7....):

ধরি চলমান গড়ের সময়কাল 3 বৎসর। এখন কালীন সারির ১ম তিনটি মানের গড় নির্ণয় করে তাদের মধ্যবর্তী বৎসর অর্থাৎ ২য় বৎসরের বিপরীতে বসাতে হবে। এরপর ১ম তথ্যটি বাদ দিয়ে পরবর্তী তিনটি মানের গড় নির্ণয় করে তৃতীয় বৎসরের বিপরীতে বসাতে হবে। এভাবে উপরের দিক হতে একটি একটি করে তথ্যমান বাদ দিয়ে পরবর্তী তিন তথ্যমানের গড় নির্ণয় করতে হবে যতক্ষণ না শেষ তথ্যমান নেগুয়া হয়। এভাবে 5 বৎসর, 7 বৎসর ইত্যাদি সময়কাল ভিত্তিক ছক কাগজে x অক্ষে সময় এবং y অক্ষে চলমান গড় বিসিয়ে প্রাপ্ত রেখাই হলো সাধারণ ধারা রেখা।

সময়কাল জোড় সংখ্যা হলে (4/6/8.....):

ধরি, চলমান গড়ের সময়কাল 4 বৎসর। যেহেতু সময়কাল জোড় সংখ্যা। সুতরাং ঐ সময়কালের মধ্যবর্তী কোন বৎসর নেই। এক্ষেত্রে প্রাপ্ত গড়গুলাকে তাদের মধ্যবর্তী বৎসরের বিপরীতে বসাতে হবে। যেহেতু গড়গুলো কোন নির্দিষ্ট বৎসরের বিপরীতে থাকে না বলে প্রাপ্ত গড়গুলোকে আবার দুটি দুটি করে চলমান গড় নির্ণয় করে, গড়ের ১ম মান ৩য় বৎসর, ২য় মান ৪র্থ বৎসরের বিপরীতে, এভাবে সকল গড়কে বসাতে হবে। এই গড়গুলোকে কেন্দ্রীয় চলমান গড় বলা হয়। এভাবে 6 বৎসর, 8 বৎসর ইত্যাদি সময়কাল ভিত্তিক চলমান গড় নির্ণয় করে ছক কাগজে x অক্ষে সময় এবং y অক্ষে কেন্দ্রীয় চলমান গড় বসিয়ে প্রাপ্ত রেখাই হলো সাধারণ ধারা রেখা।

উদাহরণ: নিম্নের কালীন সারি হতে 3 বৎসর সময়কালের চলিষ্ণু গড় নির্ণয় করে সাধারণ ধারা দেখাও:

সন	1990	1991	1992	1993	1994	1995	1996
লোকসংখ্যা (মিলিয়ন)	412	438	446	454	470	483	490

সমাধানঃ চলিষ্ণ গড় নির্ণয়ের তালিকা:

সন	লোকসংখ্যা (মিলিয়নে)	3 বৎসর ভিত্তিক চলিষ্ণু গড়
1990	412	
1991	438	$\frac{412 + 438 + 446}{3} = 432$
1992	446	$\frac{438 + 446 + 454}{2} = 446$
1993	454	$\frac{3}{446 + 454 + 470} = 457$
1994	470	$\frac{454 + 470 + 483}{3} = 469$
1995	483	$\frac{470 + 483 + 490}{3} = 481$
1996	490	

৭.০৪ কালীন সারির ব্যবহার

Uses of Time Series

- কালীন সারির সাহায্যে অতীতের চলক নিয়ে পরীক্ষা নিরীক্ষা করা সম্ভব এবং এর সাহায্যে বিস্তৃতির ধরণ এবং প্রকৃতি নির্ণয় করা যায়।
- কালীন সারির বিভিন্ন উপাদান বিশ্লেষণ ব্যবসায়ীদের জন্য ভবিষ্যৎ পরিকল্পনা প্রণয়নে এবং প্রশাসনিক ব্যাপারে সিদ্ধান্ত গ্রহণ করতে সুবিধা হয়।
- iii) ইহার সাহায্যে চলকের প্রাপ্ত ও প্রত্যাশিত মানের মধ্যে তুলনা করা হয়।
- এটি ভবিষ্যত সম্পর্কে পূর্বাভাস দিতে সক্ষম, যা ব্যবসায়ীদের পরিকল্পনার জন্য খুবই প্রয়োজনীয় বিষয়।
- এটি সময়ের ও স্থানের পরিবর্তনের সাথে সাথে চলকের মানের মধ্যে তুলনার কাজে সাহায্য করে থাকে।
- চাহিদা, উৎপাদন, বিক্রয়, দাম ইত্যাদি তথ্যের পূর্বাভাসের জন্য কালীন সারি বিশ্লেষণের প্রয়োজন হয়।

অষ্টম অধ্যায়

বাংলাদেশের প্রকাশিত পরিসংখ্যান

PUBLISHED STATISTICS IN BANGLADESH

কোন একটি প্রতিষ্ঠান বা রাষ্ট্র বা আন্তর্জাতিক সংস্থা, যাই হোক না কেন, তার সুষ্ঠু তদারকি এবং ক্রিয়া কান্ডের জন্য পরিসংখ্যানিক তথ্য প্রয়োজন। এই তথ্যের দ্বারা ঐ প্রতিষ্ঠানটির সামগ্রিক অবস্থা অনুধাবন করা যায় এবং প্রয়োজনমত ব্যবস্থা গ্রহণ করা সম্ভবপর হয়। বাংলাদেশেও তেমনি বিভিন্ন প্রতিষ্ঠানের দ্বারা বিভিন্ন (যেমন: অর্থনৈতিক, শিক্ষা, চিকিৎসা ও স্বাস্থ্য, ব্যবসায়, অর্থনীতি প্রভৃতি বিষয়ক) তথ্য সংগৃহীত, সন্ধলিত ও প্রকাশিত হয়ে থাকে।

এ অধ্যায় পাঠ শেষে শিক্ষার্থীরা-

- প্রকাশিত পরিসংখ্যান ও বাংলাদেশে প্রকাশিত পরিসংখ্যান বলতে পারবে।
- উৎস অনুসারে বাংলাদেশের প্রকাশিত পরিসংখ্যানের প্রকারভেদ বর্ননা করতে পারবে।
- বাংলাদেশে প্রকাশিত পরিসংখ্যানের সীমাবদ্ধতা ব্যাখ্যা করতে পারবে।
- বাংলাদেশের প্রকাশিত পরিসংখ্যানের উৎকর্ষতা বৃদ্ধির জন্য কতিপয় সুপারিশ প্রধান করতে পারবে।
- বাংলাদেশে প্রকাশিত পরিসংখ্যানের দোষ-ক্রটি দূরীকরণের উপায় বর্ণনা করতে পারবে।
- সর্বশেষ আদমশুমারী অনুযায়ী প্রকাশিত তথ্য (জনসংখ্যা সম্পর্কিত) ব্যাখ্যা করতে পারবে ।

৮.০১ প্রকাশিত পরিসংখ্যান ও বাংলাদেশে প্রকাশিত পরিসংখ্যান

Published Statistics & Published Statistics In Bangladesh

প্রকাশিত পরিসংখ্যানঃ

কোন প্রতিষ্ঠান দেশের বিভিন্ন অবস্থার উপর ভিত্তি করে তাদের প্রশাসনিক ও অন্যান্য কাজের জন্য যে সমস্ত তথ্য প্রকাশ করে থাকে তাকে প্রকাশিত পরিসংখ্যান বলে।

উদাহরণ:

- i) Year book agricultural statistics of Bangladesh.
- ii) Bangladesh Bank Bulletin.

বাংলাদেশে প্রকাশিত পরিসংখ্যানঃ

বাংলাদেশের বিভিন্ন সরকারী, আধা সরকারী বা বেসরকারী প্রতিষ্ঠান ও সংস্থা এবং বিভিন্ন পত্র পত্রিকা দেশের সার্বিক উন্নয়নে যে সমস্ত পরিসংখ্যানিক তথ্য সংগ্রহ, সংকলন, বিশ্লেষন ও প্রকাশ করে থাকে তাদেরকে সামগ্রিকভাবে বাংলাদেশে প্রকাশিত পরিসংখ্যান বলে।

উদাহরণ:

- i) Foreign Trade statistics of Bangladesh.
- ii) The Year book of Agricultural statistics of Bangladesh.

একটি ডিজিটাল ক্যামব্রিয়ান প্রকাশনা

৮.০২ উৎস অনুসারে বাংলাদেশের প্রকাশিত পরিসংখ্যানের প্রকারভেদ বর্ননা

Defferent Types of Source Published Statistics In Bangladesh

বাংলাদেশে প্রকাশিত পরিসংখ্যানকে সংগৃহীত উৎসের ভিত্তিতে তিন শ্রেণীতে ভাগ করা যায়। যেমন—

- ক. সরকারী পরিসংখ্যান খ. আধা সরকারী পরিসংখ্যান গ. বেসরকারী পরিসংখ্যান।
- ক) সরকারি পরিসংখ্যান (Official Statistics): যে সকল পরিসংখ্যান বিভিন্ন সরকারী প্রতিষ্ঠান বা মন্ত্রণালয় কর্তৃক সংগৃহীত, সংকলিত ও প্রকাশিত হয় তাকে সরকারী পরিসংখ্যান বলে। এসব প্রতিষ্ঠান দেশের বিভিন্ন বিষয় যেমন ঃ কৃষি, খাদ্য, শিক্ষা, স্বাস্থ্য, শিল্প, আদমশুমারী ও নানান বিষয়ের তথ্য সংগ্রহ করে বুলেটিন আকরে প্রকাশ করে থাকে। সরকারী পরিসংখ্যানে পরিসংখ্যানিক তথ্য প্রাথমিক ও মাধ্যমিক উভয় ধরনের হয়ে থাকে। এই পরিসংখ্যান সাধারণত সরকারের বিভিন্ন বিভাগ ও জনসাধারণের প্রয়োজনের কথা বিবেচনা করে সংগ্রহ করা হয়। উদহরন— বাংলাদেশ পরিসংখ্যান ব্যরো (BBS)।
- খ) আধা সরকারী পরিসংখ্যান (Semi Official Statistics): যে সকল পরিসংখ্যান বিভিন্ন স্বায়ত্ব শাসিত বা আধা সরকারী প্রতিষ্ঠান কর্তৃক সংগৃহীত, সংকলিত ও প্রকাশিত হয়ে থাকে তাকে আধা সরকারী পরিসংখ্যান বলে। এই জাতীয় পরিসংখ্যানে প্রতিষ্ঠানের বিভিন্ন কার্যক্রমের চাহিদার সাথে সন্ধৃতিপূর্ণ তথ্য সংগ্রহীত হয়ে থাকে। আধা সরকারী পরিসংখ্যানে ও পরিসাংখিক তথ্যসমূহ প্রাথমিক ও মাধ্যমিক উভয় ধরনের হয়ে থাকে। যেমন: বাংলাদেশ ধান গবেষণা ইনষ্টিটিউট (BRRI) কর্তৃক প্রকাশিত বার্ষিক প্রতিবেদন।
- গ) বেসরকারী পরিসংখ্যান (Non-Official Statistics): যে সকল পরিসংখ্যান বিভিন্ন বেসরকারী প্রভিষ্ঠান যেমন—সেন্টার ফর পলিসি ডায়ালগ (CPD), এন.জি.ও (ব্রাক, প্রশিকা), বণিক সমিতি, উক এক্সচেঞ্জ, বিভিন্ন ব্যাংক বা বীমা প্রতিষ্ঠান। আন্তজার্তিক সংস্থ্যা (UNESCO, UNICEF, WHO,WB, ILO) বা অন্য কোন গবেষণা প্রতিষ্ঠান কর্তৃক সংগ্রহীত, সংকলিত ও প্রকাশিত হয় তাকে বেসরকারী পরিসংখ্যান বলে। যেমন ICDDRB কর্তৃক প্রকাশিত স্বাস্থ্য বিষয়ক বিভিন্ন পরিসংখ্যান।

৮.০৩ বাংলাদেশে প্রকাশিত পরিসংখ্যানের সীমাবদ্ধতা

Limitation Of Published Statistics In Bangladesh

নিম্নে বাংলাদেশের প্রকাশিত পরিসংখ্যানের যে সমস্ত সীমাবদ্ধতা বা অসুবিধা রয়েছে তা নিম্নে প্রদত্ত হলোঃ

- ক) নির্ভূল তথ্যের অভাব: বাংলাদেশের পরিসংখ্যানের তথ্য সংগ্রহে নিযুক্ত প্রতিষ্ঠানসমূহের তথ্যসংগ্রহ ও বিশ্লেষণ পদ্ধতি নির্ভরযোগ্যতা ও বিশ্বাস যোগ্যতার অভাব রয়েছে।
 - খ) তথ্য সংগ্রহের প্রতিরূপতা: বাংলাদেশে পরিসংখ্যান তথ্য সংগ্রহকারী প্রতিষ্ঠানসমূহের তথ্য সংগ্রহ ও বিশ্লেষণ পদ্ধতির নির্ভরযোগতা ও বিশ্বাস যোগ্যতার অভাব রয়েছে।
 - গ) তথ্যের কার্যক্ষেত্রের সীমাবদ্ধতা: বাংলাদেশে প্রতিষ্ঠান সমূহ কেবলমাত্র তাদের নিজেদের প্রয়োজনে তথ্য সংগ্রহ করে থাকে। ফলে ইহার কার্যক্ষেত্র সীমিত।
 - ঘ) তথ্যের অসম্পূর্ণতাঃ বাংলাদেশের প্রতিষ্ঠানসমূহ নিজস্ব পদ্ধতিতে তথ্য সংগ্রহ করার ফলে তাদের অসম্পূর্ণতা থেকে যায়।
 - উ) বৈজ্ঞানিক পদ্ধতির অভাব: তথ্য সংগ্রহের অধিকাংশ ক্ষেত্রে বৈজ্ঞানিক পদ্ধতি প্রয়োগ করা যায় না।
 - চ) তথ্যের অসম্পূর্ণ উপস্থাপনঃ অধিকাংশ পরিসংখ্যান বিবরণীতে তথ্যের উদ্দেশ্য, তাৎপর্বা, অনুসন্ধানক্ষেত্র ও সংকলন পদ্ধতি প্রভৃতি সম্পর্কে ব্যাখ্যা না থাকায় তাদের উপস্থাপনা অসম্পূর্ণ থেকে যায়।
 - ছ) প্রকাশনা বিলম্ব : অধিকাংশ ক্ষেত্রেই সংগ্রহীত তথ্য প্রকাশনায় অহেতুক বিলম্ব ঘটে।

৮.০৪ বাংলাদেশের প্রকাশিত পরিসংখ্যানের উৎকর্ষতা বৃদ্ধির জন্য কতিপয় সুপারিশ

Some Proposals of Increasing Quality Of Published Statistics In Bangladesh

- (ক) দক্ষ, অভিজ্ঞ ও প্রশিক্ষনপ্রাপ্ত পরিসংখ্যানবিদদের সাহায্যে তথ্য সংগ্রহ, উপস্থাপন ও বিশ্লেষণ করা।
- (খ) বৈজ্ঞানিক পদ্ধতির সাহায্য তথ্য সংগ্রহ ও বিশ্লেষণ করা।
- (গ) তথ্য সংগ্রহের পুনরাবৃত্তির জন্য বাংলাদেশে তথ্য সংগ্রহকারী একটি পৃথক বিজ্ঞানসম্মত প্রতিষ্ঠান
 প্রতিষ্ঠা করা উচিত।
- বাংলাদেশে প্রকাশিত পরিসংখ্যানে অত্যাধুনিক মুদ্রণ যন্ত্র ব্যবহার করলে প্রকাশনার শৈল্পিক মান অনেক বেড়ে যাবে।
- (৬) তথ্য সংগ্রহকারী বিভিন্ন প্রতিষ্ঠানের মধ্যে সমন্বয় সাধন করা।
- (চ) তথ্য সংগ্রহে তথ্যের একক নির্ধারণ, সঠিকতার মাত্রা নির্ধারণ, সঠিক প্রশ্নমালা প্রণয়ন করা উচিত।
- পরিসাংখ্যিক পদ্ধতিগুলোর যথার্থতা পরীক্ষা করার জন্য দেশে অধিক সংখ্যক প্রতিষ্ঠান ও গবেষণা সংস্থা স্থাপন করা প্রয়োজন।
- (জ) সংগৃহীত তথ্য বিশ্লেষণ ও রিপোর্ট প্রকাশে বিলম্বতা দ্র করার জন্য প্রয়োজনীয় পদক্ষেপ গ্রহণ করতে হবে।
- ্ঝ) তথ্য সংগ্রহের পূর্বে সংগ্রহকারীকে সংগৃহীত তথ্যের বিষয়বস্তু সম্পর্কে উপযুক্ত প্রশিক্ষণ দেয়া উচিত।

৮.০৫ বাংলাদেশে প্রকাশিত পরিসংখ্যানের দোষ-ক্রটি দূরীকরণের উপায়

Suggestions For Removal of Errors Of Published Statistics In Bangladesh বাংলাদেশে প্রকাশিত পরিসংখ্যানের সীমাবদ্ধতা এবং দোষ ক্রটি দূর করার জন্য নিম্নে বর্ণিত পদক্ষেপসমূহ গ্রহণ করা যেতে পারে-

- ক) পরিসংখ্যান বা তথ্য সংগ্রহ ও প্রকাশনার জন্য সরকারী প্রতিষ্ঠানের পাশাপাশি বেসরকারী প্রতিষ্ঠানও গড়ে তুলতে হবে।
- (খ) পরিসংখ্যান প্রকাশনাসমূহ নিয়মিত এবং যথাযথ সময়ে প্রকাশের ব্যবস্থা নিতে হবে।
- (গ) তথ্য সংগ্রহকারী প্রতিষ্ঠানসমূহের অদক্ষতা দূর করার ব্যবস্থা নিতে হবে।
- (ঘ) পরিসংখ্যান পরিবেশনকারী বিভিন্ন সংস্থার মধ্যে সমন্বয়ের ব্যবস্থা থাকতে হবে।
- (ঙ) তথ্য সংগ্রহ বিষয়ে গবেষণার জন্য দেশে অধিক সংখ্যক গবেষণা প্রতিষ্ঠান স্থাপন করতে হবে।
- পরিসংখ্যান বা তথ্যের যথাযোগ্য ব্যবহারের প্রতি জনগণের দৃষ্টিভঙ্গির পরিবর্তন করতে হবে।
- (ছ) তথ্য সংগ্রহ ও বিশ্লেষণে বৈজ্ঞানিক পদ্ধতি প্রয়োগ করতে হবে।
- (জ) সংগৃহীত তথ্যের নির্ভরযোগ্যতা বৃদ্ধির জন্য তথ্য সংগ্রহকারী প্রতিষ্ঠানসমূহের দক্ষতা বৃদ্ধির ব্যবস্থা নিতে হবে।
- (ঝ) তথ্য সঠিকভাবে সংগ্রহ করার জন্য আরও অধিক সংখ্যক প্রতিষ্ঠান গড়ে তুলতে হবে।

৮.০৬ সর্বশেষ আদমশুমারী অনুযায়ী প্রকাশিত তথ্য (জনসংখ্যা সম্পর্কিত) Published Information According To Last Census Survey

পরিকল্পনা মন্ত্রণালয়ের অধীন পরিসংখ্যান বিভাগের নিয়ন্ত্রণাধীন বাংলাদেশ পরিসংখ্যান ব্যুরো (BBS) কর্তৃক ২০১১ সালের ১৫ থেকে ১৯ মার্চ পর্যন্ত পঞ্চম আদমশুমারী ও গৃহ গণনা অনুষ্ঠিত হয়। ১৬ জুলাই ২০১১ এ আদমশুমারীর প্রাথমিক রিপোর্ট প্রকাশ করা হয়।

যেভাবে গণনাঃ

১৫ থেকে ১৯ মার্চ ২০১১ পর্যন্ত প্রশ্নপত্র ব্যবহার করে দেশের সব গৃহ ও মানুষের মৌলিক তথ্য সংগ্রহ করা হয়। মার্চ পর্যায়ে দুই লাখ ৯৬ হাজার ৭১৮ জন গণনাকারী প্রশ্নপত্র পূরণ করেন এবং ৪৮ হাজার ৫৩১ জন সুপারভাইজার তাদের তদারক করেন। এ কাজে আর্থিক ও কারিগরি সহায়তা দিয়েছে জাতিসংঘ জনসংখ্যা তহবিল (UNFPA) ও ইউএসআইডি। পধ্যম আদমশুমারীর ব্যয় ধরা হয়েছে ২৫০ কোটি টাকা। এর মধ্যে সরকারের নিজস্ব তহবিলের ১৫০ কোটি টাকা এবং প্রকল্প সহায়তা থেকে ১০০ কোটি। আদমশুমারী সুষ্ঠুভাবে শেষ করতে দেশের প্রতিটি গ্রাম ও মহল্লাকে ম্যাপের মাধ্যমে ৩ লাখ ৩০ হাজার গণনা এলাকায় ভাগ করা হয়।

রিপোর্টের তথ্য নিমুরূপ:

মোট জনসংখ্যা ১৪,২৩,১৯,০০০ জন পুরুষ: ৭,১২,৫৫,০০০ জন; মহিলা: ৭,১০,৬৪,০০০ জন

- জনসংখ্যা বৃদ্ধিও হার : ১.৩৪%
- জনসংখ্যার ঘনত্ব (প্রতি বর্গকিলোমিটারে) : ৯৬৪ জন
- পুরুষ ও নারীর অনুপাত : ১০০.৩: ১০০
- জনসংখ্যা বৃদ্ধির হার বেশি : সিলেট
- জনসংখ্যা বৃদ্ধির হার সবচেয়ে কম : বরিশাল বিভাগ

পরীক্ষণ নং : ০১

বিভিন্ন সমীকরণের লেখ অঙ্কন :

নিমুলিখিত বিভিন্ন সমীকরণের লেখ অঙ্কন কর:

(i)
$$y = a + bx$$

(ii)
$$y = \frac{c}{x^2}$$

(iv)
$$v = x^2$$

$$(v)$$
 $v = e^{bx}$

$$(vi) \quad y = a + bx + cx^2$$

(vii)
$$y = 2x$$

(viii)
$$y = \frac{1}{x}$$

সমাধান:

i) দেওয়া আছে, y = a + bx

$$= 3 + 4x$$
 [श्रित, $a = 3$, $b = 4$]

এখন, \mathbf{x} এর কয়েকটি মান নিয়ে \mathbf{v} এর মান নির্ণয় করে নিন্দে তালিকায় উপস্তাপন করা হলো:

X	-2	-1	0	1	2
у	-5	-1	3	7	11

চিত্র: y = 3+4x

এখন ছক কাগজে x অক্ষের প্রতি 5 ঘরকে 1 একক এবং y অক্ষের প্রতি 5 ঘরকে 2 একক ধরে উপরোজ্ঞ প্রতি জোড়া মানকে বিন্দুর সাহায্যে উপস্থাপন করা হলো। তারপর বিন্দুগুলোকে পর্যায়ক্রমে ক্ষেল দ্বারা যোগ করে নির্ণেয় লেখটি পাওয়া যায়।

$$ii)$$
 দেওয়া আছে, $y=rac{c}{x^2}$ $=rac{1}{x^2}$ ধরি, $c=1$

এখন, x এর কয়েকটি মান নিয়ে y এর মান নির্ণয় করে নিল্রে তালিকায় উপস্থাপন করা হলো:

X	-1	-2	-3	1	2	3
У	1	0.25	0.11	1	0.25	0.11

এখন ছক কাগজে x অক্ষের প্রতি 5 ঘরকে 1 একক এবং y অক্ষের প্রতি 5 ঘরকে 0.2 একক ধরে উপরোজ প্রতি জোড়া মানকে বিন্দুর সাহায্যে উপস্থাপন করা হলো। তারপর বিন্দুগুলোকে পর্যায়ক্রমে মুক্ত হন্তে যোগ করে নির্দের লেখটি পাওয়া যায়।

iii) দেওয়া আছে,
$$y=a+b\log x$$

$$=2+3\log x \qquad \mbox{ धति, } a=2, \qquad b=3$$

এখন, x এর কয়েকটি মান নিয়ে y এর মান নির্ণয় করে নিন্তের তালিকায় উপস্থাপন করা হলো:

X	1	2	3	4	5
У	2	2.90	3.43	3.81	4.10

চিত্র: y = 2+3 log x

এখন, ছক কাগজে x অক্ষের প্রতি 5 ঘরকে 1 একক এবং y অক্ষের প্রতি 5 ঘরকে 1 একক ধরে উপরোজ্ঞ প্রতি জোড়া মানকে বিন্দুর সাহায্যে উপস্থাপন করা হলো। তারপর বিন্দুগুলোকে পর্যায়ক্রমে মুক্ত হন্তে যোগ করে নির্দেয় লেখটি পাওয়া যায়।

$$iv$$
) দেওয়া আছে, $y = x^2$

এখন, x এর কয়েকটি মান নিয়ে y এর মান নির্ণয় করে নিলের তালিকায় উপস্থাপন করা হলো:

X	-2	-1	0	1	2
У	4	1	0	1	4

এখন, ছক কাগজে x অক্ষের প্রতি 5 ঘরকে 1 একক এবং y অক্ষের প্রতি 5 ঘরকে 1 একক ধরে উপরোজ্ঞ প্রতি জোড়া মানকে বিন্দুর সাহায্যে উপস্থাপন করা হলো। তারপর বিন্দুগুলোকে পর্যায়ক্রমে মুক্ত হন্তে যোগ করে নির্দেয় লেখটি পাওয়া যায়।

$$v$$
) দেওয়া আছে, $y=e^{bx}$ $\Rightarrow \qquad y=e^{-3x}$ ধরি, $b=-3$

এখন, x এর কয়েকটি মান নিয়ে y এর মান নির্ণয় করে নিন্তর তালিকায় উপস্থাপন করা হলো:

X	0	0.2	0.4	0.6	0.8	1
У	1	0.55	0.30	0.17	0.09	0.05

এখন, ছক কাগজে x অক্ষের প্রতি 25 বর্গঘরকে 1 একক এবং y অক্ষের প্রতি 25 বর্গঘরকে 1 একক ধরে উপরোক্ত প্রতি জোড়া মানকে বিন্দুর সাহায্যে উপস্থাপন করা হলো। তারপর বিন্দুগুলোকে পর্যায়ক্রমে মুক্ত হন্তে যোগ করে নির্দেয় লেখটি পাওয়া যায়।

vi) দেওয়া আছে,

$$y=a+bx+cx^2$$
 $\Rightarrow y=1+2x+3x^2$ ধরি, $a=1, b=2, c=3$

এখন, x এর কয়েকটি মান নিয়ে y এর মান নির্ণয় করে নিলের তালিকায় উপস্থাপন করা হলো:

X	0	0.2	0.4	0.6	0.8	1
У	1	1.52	2.28	3.28	4.52	6

এখন, ছক কাগজে x অক্ষের প্রতি 25 বর্গঘরকে 1 একক এবং y অক্ষের প্রতি 5 বর্গঘরকে 1 একক ধরে উপরোজ প্রতি জোড়া মানকে বিন্দুর সাহায্যে উপস্থাপন করা হলো। তারপর বিন্দুগুলোকে পর্যায়ক্রমে মুক্ত হল্তে যোগ করে নির্ণেয় লেখটি পাওয়া যায়।

vii) দেওয়া আছে, y = 2x

এখন, x এর কয়েকটি মান নিয়ে y এর মান নির্ণয় করে নিহুর তালিকায় উপস্থাপন করা হলো:

X	1	2	3	4	5
у	2	4	6	8	10

চিত্র : y = 2x

এখন, ছক কাগজে x অন্দের প্রতি 5 বর্গঘরকে 1 একক এবং y অন্দের প্রতি 5 বর্গঘরকে 2 একক ধরে উপরোক্ত প্রতি জোড়া মানকে বিন্দুর সাহায্যে উপস্থাপন করা হলো। তারপর বিন্দুগুলোকে পর্যায়ক্রমে ক্ষেল দ্বারা যোগ করে নির্দেগ্য লেখটি পাওয়া যায়।

$$viii$$
) দেওয়া আছে, $y = \frac{1}{x}$

এখন, x এর কয়েকটি মান নিয়ে v এর মান নির্ণয় করে নিলের তালিকায় উপস্থাপন করা হলো :

X	1	2	3	4	5
y	1	0.5	0.33	0.25	0.2

এখন, ছক কাগজে x অক্ষের প্রতি 5 বর্গঘরকে 1 একক এবং y অক্ষের প্রতি 25 বর্গঘরকে 1 একক ধরে উপরোজ্ঞ প্রতি জোড়া মানকে বিন্দুর সাহায্যে উপস্থাপন করা হলো। তারপর বিন্দুগুলোকে পর্যায়ক্তমে মুক্ত হন্তে যোগ করে নির্ণেয় লেখটি পাওয়া যায়।

পরীক্ষণ নং : ২

50 জন ছাত্রের পরিসংখ্যান বিষয়ের প্রাপ্ত নম্বর হলো:

98	65	78	49	51	82	42	92	83	66
59	76	88	84	78	62	59	47	95	89
60	77	99	58	66	88	93	48	54	64
74	84	94	69	85	81	94	76	59	41
61	82	63	75	80	90	50	96	62	82

- (i) উপযুক্ত শ্রেণীব্যাপ্তি নিয়ে গনসংখ্যা বিন্যাস তৈরী কর।
- (ii) গণসংখ্যা বহুভুজ, গণসংখ্যা রেখা, আয়তলেখ ও অজিভ রেখা অঙ্কন কর।
- i) সমাধান : প্রদত্ত তথ্য সারির সর্বোচ্চ মান = 99 এবং সর্বন্দি মান = 41

পরিসর
$$(R)$$
 = সর্বোচ্চ মান — সর্বনিম্ন মান = $99 - 41 = 58$

আমরা জানি,

শ্রেণীসংখ্যা সাধারণত 5 হতে 25 এর মধ্যে হয়।

সুতরাং শ্রেণী ব্যবধান
$$\dfrac{R}{25}=\dfrac{58}{25}=2.32$$
 এবং $\dfrac{R}{5}=\dfrac{58}{5}=11.6$ এর মধ্যবর্তী কোন সুবিধাজনক সংখ্যাকে ধরা হয়।

ধরি, শ্রেণী ব্যবধান 10

বহির্ভুক্ত পদ্ধতিতে একটি গণসংখ্যা বিন্যাস তৈরি করা হলো:

নিৰ্ণয় তালিকা:

শ্ৰেণী	ট্যালি চিহ্ন	গণসংখ্যা
40 - 50	M	5
50 - 60	114/ //	7
60 - 70	M M	10
70 - 80	184 11	7
80 - 90	141 141 11	12
90 - 100	1/4/ ////	9
		N = 50

ii) গণসংখ্যা বহুভুজ, গণসংখ্যা রেখা, আয়তলেখ ও অজিভরেখা অংকনের জন্য প্রয়োজনীয় তালিকা:

শ্ৰেণী	শ্রেণী মধ্যবিন্দু	গণসংখ্যা	ক্রমযোজিত গণসংখ্যা
40 - 50	45	5	5
50 - 60	55	7	12
60 -70	65	10	22
70 -80	75	7	29
80 -90	85	12	41
90 -100	95	9	50
		N = 50	

গণসংখ্যা বহুভুজ অংকন: গ্রাফ পেপারের বামপ্রান্তে X অক্ষ ও Y অক্ষ নির্ণয় করি। X অক্ষে শ্রেণী মধ্যবিন্দু ও Y অক্ষে গণসংখ্যা বসাই। X অক্ষে প্রতি S বর্গঘর S একক এবং S অক্ষে প্রতি S বর্গঘর S একক নিই। উক্ত কেল অনুযায়ী প্রদন্ত তথ্যকে গ্রাফ পেপারে স্থাপন করি। প্রাপ্ত বিন্দুগুলো কেলের সাহায্যে যোগ করি। অতএব, অদ্ধিত চিত্র গণসংখ্যা বহুভুজ।

চিত্র: গণসংখ্যা রেখা

গণসংখ্যা রেখা অঙ্কনঃ গ্রাফ পেপারের বামপ্রান্তে X অক্ষ ও Y অক্ষ নির্ণয় করি। X অক্ষে শ্রেণীর মধ্যবিন্দু ও Y অক্ষে গণসংখ্যা বসাই। X অক্ষে 5 বর্গ ঘর =10 একক এবং Y অক্ষে 5 বর্গঘর =2 একক নিই। উক্ত কেল অনুযায়ী প্রদন্ত তথ্যকে গ্রাফ পেপারে স্থাপন করি। প্রাপ্ত বিন্দুগুলো মুক্ত হত্তে যোগ করি। অতএব, অক্কিত চিত্র গণসংখ্যা রেখা।

ox- বন্ধে 5 বৰ্গদ্ম =10 একৰ oy-বন্ধে 5 বৰ্গদ্ম = 2 একৰ

চিত্র: আয়তলেখ

আয়তলেখ অঙ্কনঃ

গ্রাফ পেপারের বাম প্রান্তে X অক্ষ ও Y অক্ষ নির্ণয় করি। X অক্ষে শ্রেণী ব্যাপ্তি ও Y অক্ষে গণসংখ্যা বসাই। X অক্ষে প্রতি S বর্গঘর S একক নিই। উক্ত ক্ষেল অনুযায়ী প্রদন্ত তথ্যের প্রতিটি শ্রেণীর জন্য গণসংখ্যার সাহায্যে উপস্থাপন করে আয়তলেখ অংকন করি। অতএব, অঙ্কিত চিত্র একটি আয়তলেখ।

২১৬ ব্যবহারিক

অজিভরেখা অঙ্কনঃ

গ্রাফ পেপারের বামপ্রান্তে X ও Y অক্ষ নির্ণয় করি। X অক্ষে শ্রেণীয় উচ্চসীমা ও Y অক্ষে ক্রমযোজিত গণসংখ্যা বসাই। X অক্ষে প্রতি S বর্গঘর S একক নিই। উক্ত কেল অনুযায়ী প্রদন্ত তথ্যকে গ্রাফ পেপারে স্থাপন করে কতকগুলো বিন্দু পাই। প্রাপ্ত বিন্দুগলো মুক্ত হন্তে যোগ করি। অতএব, অঙ্কিত চিত্র অজিভরেখা।

পরীক্ষণ নং : ৩

নিম্নের তথ্য হতে

- (i) গাণিতিক গড়
- (ii) জ্যামিতিক গড়
- (iii) তরন্ধ গড়
- (iv) মধ্যমা
- (v) প্রচুরক ও
- (vi) চতুর্থক নির্ণয় কর।

শ্রেণী ব্যবধান	0-5	5-10	10-15	15-20	20-25	25-30	30–35	35-40	40–4 5
গণসংখ্যা	3	8	10	12	15	11	9	6	4

উচ্চমাধ্যমিক পরিসংখ্যান

প্রয়োজনীয় গণনার তালিকা

সমাধান:

শ্রেণী ব্যবধান	গণসংখ্যা (f_i)	শ্রেণীর মধ্যবিন্দু (x_i)	$u_i = \frac{x_i - A}{c}$ $A = 22.5$ $c = 5$	$f_i u_i$	$f_i \log x_i$	f_i/x_i	ক্রমযোজিত গণসংখ্যা $(F_{_C})$
0-5	3	2.5	-4	-12	1.194	1.2	3
5-10	8	7.5	-3	-24	7.000	1.07	11
10-15	10	12.5	-2	-20	10.969	0.8	21
15-20	12	17.5	-1	-12	14.916	0.686	33
20-25	15	22.5 = A	0	0	20.283	0.67	48
25-30	11	27.5	1	11	15.833	0.4	59
30-35	9	32.5	2	18	13.607	0.277	68
35-40	6	37.5	3	18	9.444	0.16	74
40-45	4	42.5	4	16	6.514	0.094	78
	$\sum f_i = N$ =78			$\sum f_i u_i =$	$= \sum_{i=1}^{n} f_i \log x_i$ $= 99.791$	$\sum_{i=5.35} f_i / x_i$	

(i) আমরা জানি,

গাণিতিক গড়,
$$\overline{x}=A+\dfrac{\sum f_i u_i}{N}\times c$$

$$=22.5+\dfrac{-5}{78}\times 5$$

$$=22.5-0.320 \ =22.18$$

(ii) আমরা জানি,

জ্যামিতিক গড়,
$$GM = Anti \log \left(\frac{\sum f_i \log x_i}{N} \right)$$

$$= Anti \log \left(\frac{99.791}{78} \right)$$

$$= Anti \log \left((1.138) \right) = 19.02$$

(iii) আমরা জানি,

তরঙ্গ গড়,
$$HM = \frac{N}{\sum f_i/x_i}$$

$$= \frac{78}{5.35} = 14.58$$

(iv) মধ্যমার অবস্থান =
$$\frac{N}{2}$$
তম রাশির মান = $\frac{78}{2}$ =39 তম রাশির মান, যাহা 20 – 25 শ্রেণীতে অবস্থিত। সূতরাং মধ্যমা শ্রেণী (20 – 25)

আমরা জানি.

মরা জানি,
$$M_e = L_1 + \frac{\frac{N}{2} - F_C}{f_m} \times c$$

$$= 20 + \frac{39 - 33}{15} \times 5$$

$$= 20 + \frac{6}{3} = 20 + 2 = 22$$

$$Quad definition of the content of the conten$$

(v) এখানে, 20–25 শ্রেণীর গণসংখ্যা বেশি বলে এই শ্রেণীতে প্রচুরক আছে। সুতরাং প্রচুরক শ্রেণী 20–25।

আমরা জানি.

প্রান্ত্রান্ত্র্য,
$$M_o = L_1 + \frac{\Delta_1}{\Delta_1 + \Delta_2} \times c$$

$$= 20 + \frac{3}{3+4} \times 5$$

$$= 20 + \frac{15}{7}$$

$$= 20 + 2.14$$

$$= 22.14$$

্রিখানে,
$$L_1=20$$

$$\Delta_1=15-12=3$$

$$\Delta_2=15-11=4$$

$$c=5$$

(vi) আমরা জানি,

$$i$$
 তম চতুর্থক, $Q_i\!=\!L_1\!+\!rac{N}{4}\! imes\!i-\!F_{_{\!C}}$ প্রথম চতুর্থকের অবস্থান $=rac{N}{4}$ তম রাশির মান

প্রথম চতুথকের অবস্থান = — তম রাশের মা 4

$$=rac{78}{4}$$
 $=19.5\,$ তম রাশির মান, যাহা $10\text{-}15$ শ্রেণীতে অবস্থিত।

সুতরাং প্রথম চতুর্থক শ্রেণী (10–15)।

আমরা জানি,

১ম চতুৰ্থক,
$$Q_1 = L_1 + \frac{\frac{N}{4} - F_C}{f_m} \times c$$

$$= 10 + \frac{19.5 - 11}{10} \times 5$$

$$= 10 + \frac{8.5}{2}$$

$$= 10 + 4.25$$

$$= 14.25$$

এখানে,
$$L_{\rm I}=10$$

$$F_{\rm C}=11$$

$$f_{\rm m}=10$$

$$c=5$$

দ্বিতীয় চতুর্থকের অবস্থান
$$= \frac{N}{4} \times 2$$
 তম রাশির মান
$$= \frac{78}{4} \times 2 = 39 \quad \text{তম রাশির মান, যাহা } 20-25 শ্রেণীতে অবস্থিত ।$$
 সূতরাং দ্বিতীয় চতুর্থক শ্রেণী $(20-25)$ ।

আমরা জানি,

২য় চতুর্থক,
$$Q_2=L_1+\dfrac{\dfrac{N}{4}\times 2-F_C}{f_m}\times c$$

$$=20+\dfrac{39-33}{15}\times 5$$

$$=20+\dfrac{6}{3}$$

$$=20+2$$

$$=22$$

সূতরাং ততীয় চতুর্থক শ্রেণী (25-30)।

এখানে,
$$L_1 = 20$$

$$F_C = 33$$

$$f_m = 15$$

$$c = 5$$

তৃতীয় চতুর্থকের অবস্থান =
$$\frac{N}{4} \times 3$$
 তম রাশির মান
$$= \frac{78}{4} \times 3 = 58.5 \;\;$$
তম রাশির মান, যাহা $25-30$ শ্রেণীতে অবস্থিত।

ব্যবহারিক 220

আমরা জানি,

পরীক্ষণ নং: 8

নিয়ের গণসংখ্যা নিবেশনের

(i) পরিসর (ii) চতুর্থক ব্যবধান (iii) গড় ব্যবধান (iv) পরিমিত ব্যবধান ও

(v) বিভেদাংক নির্ণয় কর।

শ্রেণী ব্যবধান	5-15	15–25	25–35	35–45	45–55	55–65	65–75	75–85
গণসংখ্যা	8	15	22	30	18	12	9	6

প্রয়োজনীয় গণনার তালিকা

সমাধান:

শ্রেণী ব্যাপ্তি	গণসংখ্যা (f_i)	শ্রেণীর মধ্যবিন্দু (x_i)	$u_i = \frac{x_i - A}{c}$ $(A = 40$ $c = 10)$	$f_i u_i$	$f_i u_i^2$	$ f_i x_i-\overline{x} $	ক্রমযোজিত গণসংখ্যা ($F_{_{ m C}}$)
5-15	8	10	-3	-24	72	251.36	8
15-25	15	20	-2	-30	60	321.30	23
25-35	22	30	-1	-22	22	251.24	45
35-45	30	40 =A	0	0	0	42.6	75
45-55	18	50	1	18	18	154.44	93
55-65	12	60	2	24	48	222.96	105
65-75	9	70	3	27	81	257.22	114
75-85	6	80	4	24	96	231.48	120
	$\sum_{i=120} f_i$			$\sum f_i u_i = 17$	$\sum_{i=3}^{\infty} f_i u_i^2$	$\sum f_i \mid x_i - \overline{x}$ = 1732.6	

উচ্চমাধ্যমিক পরিসংখ্যান

এখানে,

$$\bar{x} = A + \frac{\sum f_i u_i}{N} \times c$$

$$= 40 + \frac{17}{120} \times 10$$

$$= 40 + 1.416$$

$$= 41.42$$

(i) আমরা জানি,

(ii) আমরা জানি.

চতুর্থক ব্যবধান,
$$Q.D = \frac{Q_3 - Q_1}{2}$$
.....(i)

প্রথম চতুর্থকের অবস্থান $=\frac{N}{4} \times 1$ তম রাশির মান $=\frac{120}{4}=30$ তম রাশির মান, যাহা 25-30 শ্রেণীতে অবস্থিত।

সুতরাং প্রথম চতুর্থক শ্রেণী (25-30)।

এখানে,

$$Q_{1} = L_{1} + \frac{\frac{N}{4} \times 1 - F_{C}}{f_{m}} \times c$$

$$= 25 + \frac{30 - 23}{22} \times 10$$

$$= 25 + 3.18$$

$$= 28.18$$

$$L_{1} = 25$$

$$F_{C} = 23$$

$$f_{m} = 22$$

$$c = 10$$

তৃতীয় চতুর্পকের অবস্থান $= \frac{N}{4} \times 3$ তম রাশির মান $= \frac{120}{4} \times 3 = 90 \ \,$ তম রাশির মান, যাহা 45-50 শ্রেণীতে অবস্থিত।

সুতরাং তৃতীয় চতুর্থক শ্রেণী (45–50)। একটি ক্যামব্রিয়ান ডিজিটাল প্রকাশনা

এবং
$$Q_3 = L_1 + \frac{\frac{N}{4} \times 3 - F_C}{f_m} \times c$$

$$= 45 + \frac{90 - 75}{18} \times 10$$

=
$$45 + 0.833 \times 10$$
 = 53.33
∴ চতুর্থক ব্যবধান, $Q.D = \frac{Q_3 - Q_1}{2}$

$$=rac{53.33-28.18}{2}$$
 $=rac{25.18}{2}$ =12.575
আমরা জানি,
গড় ব্যবধান, $MD=rac{\sum f_i \mid x_i - \overline{x} \mid}{N}$
 $=rac{1732.6}{120}$

(iii)

=14.43833=14.44আমরা জানি. পরিমিত ব্যবধান, $\sigma = c.\sqrt{\frac{\sum f_i u_i^{\ 2}}{N}} - \left(\frac{\sum f_i u_i}{N}\right)^2$ $=10\sqrt{\frac{397}{120}-\left(\frac{17}{120}\right)^2}$ $=10\sqrt{3.308-0.020}$ $=10\sqrt{3.288}$ $=10 \times 1.82$ =18.2

বিভেদাংক,
$$c.v = \frac{\sigma}{\overline{x}} \times 100$$

$$= \frac{18.2}{41.42} \times 100$$

 $L_1 = 45$ $F_C = 75$ $f_m = 18$

পরীক্ষণ নং : ৫

নিচের তথ্য থেকে (i) প্রথম 4টি অশোধিত পরিঘাত;

- (ii) প্রথম 4টি কেন্দ্রীয় পরিঘাত;
- (iii) β, ও β, নির্ণয় কর ও মন্তব্য কর।

শ্রেণী ব্যবধান	10-20	20-30	30-40	40-50	50-60	60-70
গণসংখ্যা	10	18	32	40	22	18

প্রয়োজনীয় গণনার তালিকা

সমাধান:

শ্ৰেণী ব্যাপ্তি	গণসংখ্যা (f_i)	শ্রেণীর মধ্যবিন্দু (x_i)	$u_i = \frac{x_i - A}{c}$ (A=45 c=10)	$f_i u_i$	$f_i u_i^2$	$f_i u_i^3$	$f_i u_i^4$
10-20	10	15	-3	-30	90	-270	810
20-30	18	25	-2	-36	72	-144	288
30-40	32	35	-1	-32	32	-32	32
40-50	40	45 = A	0	0	0	0	0
50-60	22	55	1	22	22	22	22
60-70	18	65	2	36	72	144	288
	$\sum_{i=140} f_i = N$			$\sum_{i=1}^{n} f_i u_i$	$\sum_{i=288}^{\infty} f_i u_i^2$	$\sum_{i=-280} f_i u_i^3$	$\sum_{i=1}^{n} f_i u_i$
		1	I	1	I	i	1440

প্রথম চারটি অশোধিত পরিঘাত নির্ণয়:

$$\mu_1' = \frac{\sum f_i u_i}{N} \times c$$

$$= \frac{-40}{140} \times 10$$

$$= -2.86$$

$$\mu_2' = \frac{\sum f_i u_i^2}{N} \times c^2$$

$$= \frac{288}{140} \times (10)^2$$

$$= \frac{288}{140} \times 100$$

$$= 205.71$$

$$\mu_{3}' = \frac{\sum f_{i}u_{i}^{3}}{N} \times c^{3}$$

$$= \frac{-280}{140} \times (10)^{3}$$

$$= \frac{-280}{140} \times 1000$$

$$= -2000$$

$$\mu_{4}' = \frac{\sum f_{i}u_{i}^{4}}{N} \times c^{4}$$

$$= \frac{1440}{140} \times (10)^{4}$$

$$= \frac{1440}{140} \times 10000$$

$$= 102857.14$$

প্রথম চারটি কেন্দ্রীয় পরিঘাত নির্ণয়:

 $\mu_{1} = 0$

 $\beta_1 = \frac{{\mu_3}^2}{{\mu_2}^3} = \frac{(-281.80)^2}{(197.53)^3} = 0.0103$ l

 $\beta_2 = \frac{\mu_4}{\mu^2} = \frac{89872.17}{(197.53)^2} = 2.3033$

উচ্চমাধ্যমিক পরিসংখ্যান

 β_1 ও β_2 নির্ণয়ঃ

মন্তব্য :
$$\sqrt{\beta_1} = \frac{\mu_3}{\sqrt{\mu_2^3}} = \frac{-281.80}{\sqrt{(197.53)^3}} = -0.1015$$

যেহেতু, $\sqrt{eta_{\!\scriptscriptstyle 1}} < 0$. শ্বশাতাক বঙ্কিমতা বিদ্যমান।

আবার, $eta_2 < 3$.. অনতি সূঁচালতা বিদ্যমান।

পরীক্ষণ নং : ৬

নিম্নে x এবং y উচ্চতা ইঞ্চিতে দেওয়া হলো:

ক. বিক্ষেপ চিত্র আঁক এবং মন্তব্য কর।

খ, সংশ্লেষাংক নির্ণয় কর।

গ, নির্ভরাংকদ্বয় ও নির্ভরণ সমীকরণ নির্ণয় কর।

ঘ. উচ্চতা x=60 ইঞ্চি হলে y-এর উচ্চতা কত?

জ্রম সংশ্লেষাংক নির্ণয় কর।

	3-24-15-	C 10 200000 00	NACT OF THE SEC.	A 1994					
Γ	X	65	66	67	71	68	69	70	72
Γ	У	67	68	65	70	72	73	69	71

সমাধান:

ক. এখন ছক কাগজে x আক্ষে 5 বর্গঘর =5 একক এবং y আক্ষে 5 বর্গ ঘর =5 একক ধরে x অক্ষ বরাবর x এবং y আক্ষ বরাবর y স্থাপন করে প্রাপ্ত বিন্দুগুলোকে বিক্ষেপ চিত্রে অংকিত হলো। বিক্ষেপ চিত্র পর্যবেক্ষণ করলে দেখা যায় যে বিন্দুগুলো সম্পূর্ণভাবে সরল রেখায় না থেকে ছক কাগজের বামপাশের নিম্মপ্রাপ্ত হতে ক্রমশ ভানপাশের উর্ধপ্রাপ্ত বরাবর প্রসারিত হচ্ছে। সূতরাং চলকদ্বয়ের মধ্যে আংশিক ধনাত্রক সংশ্লেষ্ঠ বিদ্যমান।

বিক্ষেপ চিত্ৰ

ব্যবহারিক

খ. প্রয়োজনীয় গণনার তালিকা

x	у	x ²	y ²	ху	R _(x)	$\mathbf{R}_{(\mathbf{y})}$	$= \mathbf{R}_{(\mathbf{x})} \mathbf{R}_{(\mathbf{y})}$	d²
65	67	4225	4489	4355	8	7	1	1
66	68	4356	4624	4488	7	6	1	1
67	65	4489	4225	4355	6	8	-2	4
71	70	5041	4900	4970	2	4	-2	4
68	72	4624	5184	4896	5	2	3	9
69	73	4761	5329	5037	4	1	3	9
70	69	4900	4761	4830	3	5	-2	4
72	71	5184	5041	5112	1	3	-2	4
Σx	$\Sigma \mathbf{y}$	$\sum x^2$	Σy^2	Σxy				$\sum d^2$
=548	= 555	= 37580	= 38553	= 38043				= 36

আমরা জানি,

সংশ্লেষাংক,
$$\mathbf{r} = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sqrt{\left\{\sum x^2 - \frac{(\sum x)^2}{n}\right\} \left\{\sum y^2 - \frac{(\sum y)^2}{n}\right\}}}$$

$$= \frac{38043 - \frac{548 \times 555}{8}}{\sqrt{\left\{37580 - \frac{(548)^2}{8}\right\} \left\{38553 - \frac{(555)^2}{8}\right\}}}$$

$$= \frac{38043 - \frac{38017.5}{8}}{\sqrt{\left\{37580 - 37538\right\} \left\{38553 - 38503.13\right\}}}$$

$$= \frac{25.5}{\sqrt{42 \times 49.88}}$$

$$= \frac{25.5}{45.77}$$

$$= 0.56$$

চলকদ্বয়ের মধ্যে আংশিক ধনাত্যক সংশ্লেষণ বিদ্যমান।

উচ্চমাধ্যমিক পরিসংখ্যান

গ. X এর উপর y এর নির্ভরাংক

$$b_{yx} = \frac{\sum xy - \frac{\sum x\sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$

$$= \frac{38043 - \frac{548 \times 555}{8}}{37580 - \frac{(548)^2}{8}}$$

$$= \frac{38043 - 38017.5}{37580 - 37538}$$

$$= \frac{25.5}{42}$$

$$= 0.61$$

আবার,

y এর উপর x এর নির্ভরাংক

$$b_{xy} = \frac{\sum xy - \frac{\sum x \sum y}{8}}{\sum y^2 - \frac{(\sum y)^2}{n}}$$

$$= \frac{38043 - \frac{548 \times 555}{8}}{38553 - \frac{(555)^2}{8}}$$

$$= \frac{38043 - 38017.5}{38553 - 38503.13}$$

$$= \frac{25.5}{49.88}$$

$$= 0.51$$

x এর উপর y এর নির্ভরণ সমীকরণ,

$$y = \overline{y} + b_{yx}(x - \overline{x})$$
= 69.38 +0.61 (x-68.5)
= 69.38 + 0.61x-41.79
= 27.59 + 0.61x ------ (i)

$$\overline{x} = \frac{\sum x}{n} = \frac{548}{8} = 68.5$$

$$\sum y = 555$$

$$\overline{y} = \frac{\Sigma y}{n} = \frac{555}{8} = 69.38$$

 $_{
m V}$ এর উপর $_{
m X}$ এর নির্ভরণ সমীকরণ

$$x = \overline{x} + b_{xy} (y - \overline{y})$$
= 68.5 + 0.51 (y-69.38)
= 68.5 + 0.51y-35.38
= 33.11 + 0.51y

ঘ. এখন উচ্চতা x = 60 ইঞ্চি হয়, তবে (i) নং সমীকরণ হতে পাই,

$$y = 27.59 + 0.61 \times 60$$

= 27.59 + 36.6
= 64.19

ঙ. ক্রম সংশ্লেষাংক
$$ho=1-rac{6\Sigma d_i^2}{n(n^2-1)}$$

$$=1-rac{6\times 36}{8\{(8)^2-1\}}$$

$$=1-rac{216}{504}$$

$$=1-0.43$$

$$=0.57$$

পরীক্ষণ নং: ৭

নিমলিখিত কালীন সাবি হতে আধাগড় পদ্ধতিতে সাধাবণ ধাবা নির্ণয় কব :

সাল	1992	1993	1994	1995	1996	1997	1998	1999	2000
উৎপন্ন দ্রব্য	80	85	90	92	93	90	100	102	104

সমাধান:

এখানে তথ্য সংখ্যা বিজ্ঞোড় সংখ্যা তাই মাঝের সন 1996 সালকে বাদ দিয়ে তথ্যসারিকে সমান দুইভাগে ভাগ করা যায়।

প্রথম অর্থকালীন সারি
$$1992$$
 হতে 1995 পর্যন্ত গড় সাল $=$ $\frac{1992 + 1993 + 1994 + 1995}{4} = 1993.5$

গড় উৎপাদন =
$$\frac{80+85+93+92}{4}$$
 = 86.75
দ্বিতীয় অর্ধকালীন সারি 1997 হতে 2000 পর্যন্ত গড় সাল = $\frac{1997+1998+1999+2000}{4}$ = 1998.5
গড় উৎপাদন = $\frac{90+100+102+104}{4}$ = 99

উচ্চমাধ্যমিক পরিসংখ্যান

এমন ছক কাগজে X অক্ষে সময় ও Y অক্ষে উৎপন্ন দ্রব্য বসাইয়া এবং X অক্ষে 5 বর্গঘর 1 একক ও Y অক্ষে 5 বর্গঘর 5 একক ধরে কালীন সারি নির্ণয় করি। তারপর ছক কাগজে X অক্ষ বরারব গড় সাল এবং Y অক্ষ বরাবর গড় উৎপাদন নির্দেশ করি। গড় উৎপাদন দুটি ছক কাগজে বসিয়ে সংযুক্ত করে রেখাটিকে সামনে ও পিছনে বর্ধিত করি। এতে যে রেখা পাওয়া যায় তা আধাগড় পদ্ধতিতে সাধারণ ধারা নির্দেশ করে।

ox- আছ 5 বৰ্গনে =1 একং ov-আৰু 5 বৰ্গনে = 5 একৰ

আধাগড় পদ্ধতিতে সাধারণ ধারা নির্ণয়

নিম্নে কালীন সারি হতে 3 বৎসর সময়কালের চলিষ্ণু গড় নির্ণয় করে সাধারণ ধারা দেখাও এবং সাধারণ ধারা ও কালীন সারির রেখা লেখে প্রদর্শন কর।

সাল	2000	2001	2002	2003	2004	2005	2006
লোক সংখ্যা	412	438	446	454	470	483	490

(66-)				
ા (ગાલકાન)	1			
(1-11-11-1)	1			

সমাধান চলিক্ষ গড় নির্গয়ের ভালিকা

সাল	লোক সংখ্যা (মিলিয়ন)	3 বৎসর ভিত্তিক চলিষ্ণু গড়
2000	412	
2001	438	$\frac{412 + 438 + 446}{3} = 432$
2002	446	$\frac{438 + 446 + 454}{3} = 446$
2003	454	$\frac{446 + 454 + 470}{3} = 457$
2004	470	$\frac{454 + 470 + 483}{3} = 469$
2005	483	$\frac{470 + 483 + 490}{3} = 481$
2006	490	270

এমন ছক কাগজের X অক্ষে সময় ও Y অক্ষে লোকসংখ্যা নির্দেশ করে এবং X অক্ষে 5 বর্গঘরকে 1 একক ও Y অক্ষে 5 বর্গঘরকে 10 একক ধরে কালীন সারি এবং 3 বছর ভিত্তিক চলিষ্ণু গড় সমূহ নির্দেশ করে একই ছক কাগজে কালীনরেখা ও সাধারণ ধারার গতিরেখা অংকন করি।

চলিক্ষু গড় পদ্ধতিতে সাধারণ ধারা নির্ণয়

পরীক্ষণ নং : ৯

নিম্নে ন্যুনতম বর্গপ্রক্রিয়ার মাধ্যমে সাধারণ ধারা নির্ণয় কর এবং সাধারণ ধারা ও কালীন সারির গতিরেখা একই ছক কাগজে দেখাও:

	4 4 4 4 4 11 10	01 6.1 11 01						
12	সাল	2001	2002	2003	2004	2005	2006	2007
	লোক সংখ্যা	1000	1050	1120	1180	1230	1260	1305

সমাধান:

এখানে তথ্যসংখ্যা n=7 অর্থাৎ বিজ্ঞোড়

∴ মধ্যবর্তী সংখ্যাকে মূল ধরে অর্থাৎ 2004 সালকে মূল ধরি.

মনে করি. t = x - 2004

বছর (x)	লোক সংখ্যা (y)	t	ty	t²	সাধারণ ধারা Y_c = 1163.57+51.61t
2001	1000	-3	-3000	9	1008.74
2002	1050	-2	-2100	4	1060.35
2003	1120	-1	-1120	1	1111.96
2004	1180	0	0	0	1163.57
2005	1230	1	1230	1	1215.18
2006	1260	2	2520	4	1266.79
2007	1305	3	3915	9	1318.40
	$\sum y = 8145$		$\sum ty = 1445$	$\sum t^2 = 28$	

সাধারণ ধারার সমীকরণ $Y_c = a + bt$ ন্যূনতম বর্গপদ্ধতিতে পাই,

$$a = \overline{y} = \frac{\sum y}{n} = \frac{8145}{7} = 1163.57$$
এবং $bt = \frac{\sum ty}{\sum t^2} = \frac{1445}{28} = 51.61$

 \therefore প্রাপ্ত রৈখিক মডেল $Y_c = 1163.57 + 51.61t$

যেখানে মূল হলো 2004 এবং t=1 বছর

2004 সাল হতে যথাক্রমে t = -3, -2, -1, 0, 1, 2, 3

2001 সাল হতে 2007 সাল পর্যন্ত সাধারণ ধারার মান সমূহ উপরের সারণীতে সর্বশেষ কলামে দেওয়া হলো। এমন ছক কাগজে X অক্ষে সময় ও Y অক্ষে লোক সংখ্যা নির্দেশ করা হলো। X অক্ষে 5 বর্গঘর 1 একক এবং Y অক্ষে 5 বর্গঘর 25 একক ধরে কালীনসারি ও সাধারণ ধারার গতিরেখা একই ছক কাগজে দেখানো হলো।

২৩২ ব্যবহারিক

উচ্চমাধ্যমিক পরিসংখ্যান

গুরুত্বপূর্ণ বোর্ড প্রশ্নাবলীসমূহ

ঢাকা বোর্ড-২০১০ পরিসংখ্যান (তত্ত্বীয়) প্রথম পত্র

পারসংখ্যান (তত্ত্বায়)							
	প্রথম পত্র						
সময়	য়ঃ ৩ ঘন্টা	পূৰ্ণমান:	96				
	[দ্রষ্টব্য:- ডান পাশের সংখ্যা প্রশ্নের পূর্ণমান জ্ঞাপক]						
	नसूत						
۱ د	(ক) পরিসংখ্যানের বৈশিষ্ট্য ও কার্যাবলি আলোচনা কর।	8+4	9=9				
	(খ) গণসংখ্যা নিবেশন বলতে কি বুঝ? অশ্রেণীকৃত তথ্য হতে গণসংখ্যা নিবেশন সারণী						
	व्यात्मार्क करा	\$+ 2 +@					
	অথবা.	•					
	(ক) জ্যামিতিক গড় ও তরঙ্গ গড়ের সংজ্ঞা দাও। কখন জ্যামিতিক গড় গাণিতিক গড় গ	মুপেহচা ক	ग्रिक				
	र्भ अज्ञासावस पुष् व व्यव पर्वा पर्वा पाव पर्व अज्ञासावस पुष् पातावस पुष्)=9				
	(খ) কোন চলক x-এর n সংখ্যক মানের জন্য অন্য কোন চলক y-এর অনুরূপ n সংখ্যক মান	থাকলে, প্র	ামাণ				
	কর যে উহাদের গুণফলের জ্যামিতিক গড় চলক দুটির নিজ নিজ জ্যামিতিক গড়ের গুণফলের সম	ান।	8				
	(গ) দেখাও যে, গাণিতিক গড় মূলবিন্দু ও মাপনীর উপর নির্ভরশীল।		8				
२ ।	(ক) বিস্তারের অনপেক্ষ ও আপেক্ষিক পরিমাপের মধ্যে পার্থক্য লিখ। অনপেক্ষ বিস্তার পরিমাপ	সমূহের বি	বরণ				
	দাও।	২+ 0	t=9				
	(খ) দেখাও যে, প্রথম ${f n}$ সংখ্যক স্বাভাবিক সংখ্যার ভেদাংক ${n^2-1\over 12}$ ।		0				
	(५) (१५१७ ६५, ६५६ मा गर्य) व वाजायक गर्योश ६७५१६५ ———————————————————————————————————		8				
	(গ) $-1,0,1$ তথ্যগুলোর ভেদাংক ও গড় ব্যবধান নির্ণয় কর।		8				
	অথবা,						
	(ক) কেন্দ্রীয় পরিঘাত ও অশোধিত পরিঘাতের পার্থক্য লিখ। চতুর্থ কেন্দ্রীয় পরিঘাতকে অশোধিত	গরিঘাত	দ্বারা				
	প্রকাশ কর।	2+0					
	(খ) eta_1 ও eta_2 যথাক্রমে বঙ্কিমতা ও সূঁচালতা পরিমাপ প্রকাশ করলে, প্রমাণ কর যে, $eta_2 \geq eta_1$	+1	¢				
	(গ) কোন নিবেশনের গড় ও মধ্যমা বথাক্রমে 20 ও 17 এবং বিভেদাংক 25% হলে নিবেশনটির বঙ্কিমতাং	ক কত?	0				
৩।	(ক) বিক্ষেপ চিত্র কি? ইহার সাহায্যে দু'টি চলকের সংশ্লেষ কিভাবে ব্যাখ্যা করা যায় তা আলোচনা কর।	2+0	?= ⊌				
	(খ) নির্ভরণ কি? সংশ্লেষ ও নির্ভরণের মধ্যে পার্থক্য লেখ।	2+0)=¢				
	(গ) যদি $y=2x+1$ হয় তবে $x \otimes y$ -এর সংশ্লেষাংক নির্ণয় কর।		8				
	অথবা_						
	 ক) কালীন সারিতে সাধারণ ধারা কি? সাধারণ ধারা পরিমাপের অর্ধগড় পদ্ধতি বর্ণনা কর। 	ર+ ૯	t=9				
	(খ) বাংলাদেশে প্রকাশিত সরকারি পরিসংখ্যান প্রকাশনার যে-কোন চারটির বিবরণ দাও।	٠×٤					
	Secretary and the second	₹∧0	, —v				
81	৪। পার্ঘক্য লেখ:						
	(ক) সংখ্যাবাচক চলক ও গুণবাচক চলক।		•				
	(খ) চলক ও ধ্রুবক।		2				

(ক) প্রাথমিক তথ্য ও মাধ্যমিক তথ্য;

0

- (খ) এক-চলক তথ্য ও দ্বি-চলক তথ্য।
- e। দু'টি সংখ্যার জন্য প্রমাণ কর যে, $AM \ge GM \ge HM$ । কখন AM = GM = HM?

0+2=6

(সংকেতগুলো চিরাচরিত)।

অথবা.

প্রমাণ কর যে,

9=¢+0

$$(\mathfrak{F}) \sum_{i=1}^{m} \sum_{j=1}^{n} (x_i + y_j) = n \sum_{i=1}^{m} x_i + m \sum_{j=1}^{n} y_j.$$

$$(\forall) \sum_{i=1}^m \sum_{j=1}^n x_i y_j = \left(\sum_{i=1}^m x_i\right) \left(\sum_{j=1}^n y_j\right).$$

কোন নিবেশনের প্রতিটি মানকে 5 দ্বারা ভাগ করে প্রাপ্ত নিবেশনের জ্যামিতিক গড় 5 পাওয়া গেল। মূল নিবেশনের জ্যামিতিক গড কত?

দু'টি রাশির জন্য প্রমাণ কর যে, পরিমিত ব্যবধান = গড় ব্যবধান = পারসর ।

৭। প্রচলিত সংক্তে প্রমাণ কর যে, $r = \sqrt{b_{yx} \times b_{xy}}$

0

প্রচলিত সংক্তে প্রমাণ কর যে, $G_c = \sqrt{G_1 G_2}$

৮। বঙ্কিমতা বলতে কি বুঝা? বিভিন্ন প্রকার বঙ্কিমতার বর্ণনা দাও। বঙ্কিমতার বৈশিষ্ট্যগুলো লেখ। >++++=0

(ক) $x \otimes y$ এর মধ্যে সংশ্লেষাংক 0.5 হলে $a-2x \otimes c+5y$ -এর মধ্যে সংশ্লেষাংক কত?

(খ) দেখাও যে, $r_{xy}=0$, যেখানে $\mathbf{x} \otimes \mathbf{y}$ দু'টি সম্পর্কহীন চলক।

৯। প্রমাণ কর যে, নির্ভরাংক মূলবিন্দু হতে স্বাধীন কিন্তু মাপনীর উপর নির্ভরশীল।

6

অথবা.

প্রমাণ কর যে, সংশ্লেষাংকের মান -1 হতে +1 এর মধ্যে থাকে।

২৩৪ ব্যবহারিক

ঢাকা বোর্ড-২০১১ পরিসংখ্যান (তন্ত্রীয়) প্রথম পত্র

সময়: ৩ ঘটা পূৰ্ণমান: ৭৫

[দ্রষ্টব্যঃ- দক্ষিণ পার্শ্বস্থ সংখ্যা প্রশ্নের পূর্ণমান জ্ঞাপক]

		.1.4.
۱ د	(ক) পরিসংখ্যানের সংজ্ঞা দাও। এর গুরুত্ব আলোচনা কর। কোন একটি নির্দিষ্ট সংখ্যা কী প	রিসংখ্যান? মন্তব্য
	কর।	ミーセータ
	(খ) তথ্য বলতে কী বুঝ? প্রাথমিক তথ্য সংগ্রহের যে কোন পাঁচটি পদ্ধতি বর্ণনা কর।	> +@=9
	क्राची	

- (ক) কেন্দ্রীয় প্রবণতার পরিমাপ বলতে কি বুঝ? কেন্দ্রীয় প্রবণতার কোন পরিমাপটি সবচেয়ে ভাল? কেন? ১+১+৪=৬
- (খ) গাণিতিক গড়ের ধর্মগুলো কর্না কর। জ্যামিতিক গড় নির্মিরের লগন্ধিক্তর সূত্রটি প্রতিষ্ঠা কর। ৩+৩=৬
 (গ) a, a + d, a + 2d,.....,a + 2d ধারাটির গাণিতিক গড় নির্ণয় কর। ৩
- (গ) a, a + u, a + 2u,,a + 2u বায়াঢ়য় বালালয় বয়য় ।
 ২। (ফ) বিস্তার পরিমাপ বলতে কি বুবাং ভেদাংক ও বিভেদাংকের পার্থক্য লিখ। বিভেদাংকের ব্যবহার আলোচনা কর। ১+৩+৩=৭
- (খ) প্রচলিত প্রতীকে প্রমাণ কর যে, $\overline{\mathbf{x}}\sqrt{\mathbf{n}-\mathbf{l}}\geq \sigma$.
 - (গ) 4, 7, 10,, 91 ধারাটির পরিমিত ব্যবধান ও বিভেদাংক নির্ণয় কর। ২+২=8 অথবা
 - পরিঘাত বলতে কি বুঝু কেন্দ্রীয় পরিঘাতের উপর মূলবিন্দু ও মাপনীর পরিবর্তনের প্রভাব পরীক্ষা কর।
 ১+৩+৩=৭
 - মূচাঁলো কলতে কি বুঝ? চিত্তসহ বিভিন্ন প্রকার সূচাঁলতার বর্ণনা কর।
 ১+৩=8
 - (গ) একটি মধ্যম সূচাঁল বিন্যাসের গড় 40 এবং বিভেদাংক 25%। বিন্যাসটির চতুর্থ কেন্দ্রীয় পরিঘাতের মান
 নির্ণয় কর।
- ত। (क) সংশ্লেষ ও নির্ভরণ বলতে কি বুঝা? সংশ্লেষ ও নির্ভরণের পার্থক্য লিখ। ২+৪=৬
 - (খ) সংশ্লেষাংকের সংজ্ঞা লিখ। এর ধর্ম বর্ণনা কর। প্রচলিত প্রতীকে প্রমাণ কর যে, $r=\sqrt{b_{yx} \times b_{xy}}$. ১+২+৩=৬

(গ) ax + by + c = 0 হলে $x \otimes y$ -এর সংশ্লেষাংক নির্ণয় কর। তথাবা

(ক)কালীন সারি বলতে কি বুঝ? কালীন সারির উপাদানগুলো উদাহরণসহ আলোচনা কর। কালীন সারির ব্যবহার লিখ। ২+৬+৩=১১

- বাংলাদেশে প্রকাশিত পরিসংখ্যানের সীমাবদ্ধতা আলোচনা কর।
- 8। উদাহরণসহ তথ্যবিশ্বের সংজ্ঞা দাও। বিচ্ছিন্ন ও অবিচ্ছিন্ন চলকের পার্থক্য লিখ। ২+৩=৫ অথবা

બર

শ্রেণীবদ্ধকরণ বলতে কি বুঝ? শ্রেণীবদ্ধকরণের ভিত্তিগুলো আলোচনা কর। ১+৪=৫

৫। মাধ্যমিক তথ্য কলতে কি বুঝ? মাধ্যমিক তথ্যের উৎসসমূহ আলোচনা কর।
 ১+৪=৫

অথবা

গাণিতিক গড়ের সংজ্ঞা দাও। প্রচলিত প্রতীকে প্রমাণ কর যে,

≥+0=€

$$\sum_{i=1}^n f_i(x_i - \overline{x})^2 \le \sum_{i=1}^n f_i(x_i - a)^2; \qquad a \neq \overline{x}.$$

৬। জ্যামিতিক গড়ের সংজ্ঞা দাও। প্রচলিত প্রতীকে প্রমাণ কর যে, $G_{\rm c}=\sqrt{G_1.G_2}$; $G_{\rm c}=$ সম্মিলিত জ্যামিতিক গড় এবং $n_1=n_2$ । ২+৩=৫

অথবা

বাংলাদেশে প্রকাশিত পরিসংখ্যানের শ্রেণীবিন্যাস কর এবং মূল্য পরিসংখ্যানের বর্ণনা দাও।

৭। ভেদাংকের সংজ্ঞা দাও। ভেদাংকের উপর মূলবিন্দু ও মাপনীর পরিবর্তনের প্রভাব পরীক্ষা কর। ১+৪=৫

অথব

পরিমাপন বলতে কি বুঝ? শ্রেণীসূচক পরিমাাপনের বর্ণনা দাও।

3=0+5

৮। একটি নিবেশনের 55 কেন্দ্রিক পরিঘাতগুলো যথাক্রমে -1,10,36 ও 178 হলে উহার বিভেদাংক ও বিদ্ধমতাংক নির্ণয় কর। $2\frac{5}{2} + 2\frac{5}{2} = e$

অথবা

কোন কোন অবস্থায় গাণিতিক গড় অপেক্ষা (ক) মধ্যমা, (খ) জ্যামিতিক গড় বেশি উপযোগী? ৩+২=৫

৯। ন্যুনতম বর্গপদ্ধতিতে $\, {
m X}$ -এর উপর $\, {
m y}$ -এর নির্ভরণ সমীকরণ নিরূপণ কর।

œ

অথবা

চলক X-এর মানগুলো ১ম $\, {f n} \,$ স্বাভাবিক সংখ্যা এবং এর গণসংখ্যা নিজ মানের সমান হলে চলকটির ভেদাংক নির্ণয় কর।

ঢাকা বোর্ড-২০১২

পরিসংখ্যান (তত্ত্বীয়) প্রথম পত্র

সময়ঃ ৩ ঘটা

পূর্ণমান: ৭৫

[দ্রষ্টব্যঃ- দক্ষিণ পার্শ্বস্থ সংখ্যা প্রশ্নের পূর্ণমান জ্ঞাপক]

নম্বর

🕽 । (ক) পরিসংখ্যানের অর্থ ব্যাখ্যা কর। এর বৈশিষ্ট্যগুলো আলোচনা কর।

২+৫=9

(খ) গণসংখ্যা বিন্যাস বলতে কি বুঝ? অবিন্যস্ত তথ্য হতে একটি অবিরত গণসংখ্যা বিন্যাস তৈরীর পদ্ধতি আলোচনা কর। ২+৬=৮

অথবা,

- কেন্দ্রিয় প্রবণতা বলতে কি বুঝ? কেন্দ্রীয় প্রবণতার একটি ভাল পরিমাপের কি কি বৈশিষ্ট্য থাকা উচিত?
 তরঙ্গ গড় ও মধ্যমার বর্ণনা দাও।
- (খ) সম্মিলিত গাণিতিক গড়ের সূত্রটি প্রতিষ্ঠা কর। কখন জ্যামিতিক গড় নির্ণয় করা যায় না? ৩+২=৫
- ২। (ক) পরিসংখ্যান তথ্যের বিস্তার ক্লতে কি বুঝ? বিস্তারের পরম পরিমাপগুলোর বর্ণনা দাও। ২+৪=৬
- (খ) পরিমিত ব্যবধানের সংজ্ঞা দাও। কখন পরিমিত ব্যবধান সর্বনিম্ন মান গ্রহণ করে? দুটি অসমান তথ্যমান 🔀
 - ও χ_2 এর জন্য প্রমাণ কর যে, $\mathrm{MD} = \mathrm{SD} = \frac{R}{2}$; যেখানে প্রতীকগুলো চিরাচরিত। ২+১+৪=৭
 - (গ) একটি বিন্যাসের বিভেদাংক ২০% । বিন্যাসটির গড় ও মধ্যমা যথাক্রমে ৫০ ও ৪৫ হলে উহার বঙ্কিমতাংক নির্ণয় কর।

অথবা,

- কেন্দ্রিয় পরিঘাতের সংজ্ঞা দাও। অশোধিত ও কেন্দ্রীয় পরিঘাতের পার্থক্যগুলো লিখ। পরিঘাতের ব্যবহার
 লিখ।
- (খ) বঙ্কিমতা বলতে কি বুঝ? চিত্রসহ বঙ্কিমতার প্রকারভেদ আলোচনা কর।২+৪=৬
- (গ) প্রচলিত প্রতীকে প্রমাণ কর যে, $\mu_o=\dot{\mu_o}-\circ\dot{\mu_s}\dot{\mu_s}+\dot{\nu}(\dot{\mu_s})^\circ$ ।
- ত। (ক) বিক্ষেপ চিত্র বলতে কি বুঝ? সংশ্লেষের ব্যাখ্যায় বিক্ষেপ চিত্র কিভাবে সাহায়্য করে আলোচনা কর।
 ১+৫=৬
 - (খ) নির্ভরাংকের সংজ্ঞা দাও এবং এর যেকোনো একটি ধর্মের প্রমাণ কর।
 ১+৩=8
 - (গ) প্রচলিত প্রতীকে প্রমাণ কর যে, $-\lambda \leq r \leq \lambda$ ।

অথবা,

- (ক) কালীন সারি বিশ্লেষণ বলতে কি বুঝ? কালীন সারি বিশ্লেষণে ব্যবহৃত মডেলগুলো আলোচনা কর।১+৩=8
 - (খ) সাধারণ ধারা বলতে কি বুঝ? সাধারণ ধারা নির্ণয়ের আধাগড় পদ্ধতিটি আলোচনা কর। ২+৫=৭
 - (গ) বাংলাদেশে প্রকাশিত পরিসংখ্যানের উৎকর্ষতা বৃদ্ধিতে তোমার সুপারিশ লিখ।
- ৪। চলক ও ধ্রুবকের সংজ্ঞা দাও। গুণবাচক ও পরিমাণবাচক চলকের পার্থক্য লিখ।

≥+0=€

অথবা, তালিকাবদ্ধকরণ কী? একটি আদর্শ তালিকার বিভিন্ন অংশ বর্ণনা কর।

২+৩=৫

৫। তথ্য বলতে কি বুঝ? তথ্য সংগ্রহের প্রয়োজনীয়তা বর্ণনা কর।

≥+७=€

অথবা,

প্রচলিত প্রতীকে প্রমাণ কর যে,

$$(\Phi) \sum_{i=1}^{m} \sum_{j=1}^{n} (x_i + y_j) = n \sum_{i=1}^{m} x_i + m \sum_{j=1}^{n} y_j$$

$$(\forall) \sum_{i=1}^{m} \sum_{j=1}^{n} x_{i} y_{j} = \left(\sum_{i=1}^{m} x_{i} \right) \left(\sum_{j=1}^{n} y_{j} \right)$$

উচ্চমাধ্যমিক পরিসংখ্যান

300 AIDIAY 114-100-100-100-100	२०२
৬। তথ্যের লৈখিক উপস্থাপন বলতে কি বুঝ? এর গুরুত্ব আলোচনা কর।	≥+ 0=€
অথবা, লেখের সাহায্যে মধ্যমা ও প্রচুরক নির্ণয়ের পদ্ধতি আলোচনা কর।	¢
৭। প্রমাণ কর যে, মধ্যমা কেন্দ্রিক গড় ব্যবধান ক্ষুদ্রতম।	¢
অথবা, দুটি অশূন্য ধনাত্মক রাশির জন্য প্রমাণ কর যে, $A.M \geq G.M \geq H.M$	8+\$=@
৮। বিভেদাংকের সংজ্ঞা দাও। বিস্তারের অনপেক্ষ ও আপেক্ষিক পরিমাপের মধ্যে পার্থক্য লিখ।	5 +8=@
অথবা, প্রচলিত প্রতীকে প্রমাণ কর যে, $eta_2 \geq eta_1 + 1$ ।	
৯। 'মূল্য পরিসংখ্যান' ও 'বাংলাদেশ পরিসংখ্যান ব্যুরো'র কর্ণনা দাও।	¢
অথবা, সংশ্লেষাংকের সংজ্ঞা দাও। যদি $r_{xy} =$ ০.৭৫ এবং $u = \textbf{o} - \textbf{z}_X$ ও $v = \textbf{z} + \textbf{o}_Y$	>+8= @
ঢাকা বোর্ড-২০১৩	
পরিসংখ্যান (তন্ত্রীয়) প্রথম পত্র	
সময়: ৩ ঘটা	পূৰ্ণমানঃ ৭৫
[দ্রষ্টব্যঃ- দক্ষিণ পার্শ্বন্থ সংখ্যা প্রশ্নের পূর্ণমান জ্ঞাপক]	
विकाश- सम्मानाम् अस्या वृद्धित हिमान कार्यनी	নম্বর
🕽 । (ক) পরিসংখ্যান বলতে কি বুঝং এর কার্যাবলি আলোচনা কর।	৩ +8=9
(খ) প্রাথমিক তথ্য সংগ্রহের বিভিন্ন পদ্ধতিগুলো আলোচনা কর।	e e
(গ) বিচ্ছিন্ন ও অবিচ্ছিন্ন চলকের মধ্যে পার্থক্য লিখ।	•
অথবা,	
(ক) কেন্দ্রিয় প্রবণতার পরিমাপ বলতে কি বুঝ? গাণিতিক গড় ও জ্যামিতিক গড়ের বর্ণনা দাও।	২+ ২+২=৬
(খ) গাণিতিক গড়ের ধর্মগুলো লিখ এবং যেকোনো দুটি ধর্মের প্রমাণ দাও।	২+২+২= 5
(গ) দুটি ধনাত্মক সংখ্যার গাণিতিক গড় ২৫ ও তরঙ্গ গড় ১৬। জ্যামিতিক গড় ও সংখ্যা দুটি নিণ	য়ি কর। ৩
২। (ক) ভেদাংকের সংজ্ঞা দাও। বিভেদাংকের প্রয়োজনীয়তা উল্লেখ কর। দেখাও যে, গড় ব্য	
ব্যবধান অপেক্ষা বড় হতে পারে না।	۶+২+8=۹ حص
(খ) প্রথম n স্বাভাবিক সংখ্যার গণসংখ্যা তাদের নিজ নিজ মানের সমান হলে নিবেশনটির পা নির্ণয় কর।	রোমত ব্যবধান ৫
(গ) দুটি সংখ্যার গাণিতিক গড় ৭ এবং ভেদাংক 🕽 । সংখ্যা দুটি নির্ণয় কর ।	৩
অথবা,	
(ক) পরিঘাত বলতে কি বুঝ? ৪র্থ কেন্দ্রীয় পরিঘাতকে অশোধিত পরিঘাতের মাধ্যমে প্রকাশ কর।	২+৩= &
(খ) সূঁচালতা কি? সূঁচালতার ভিত্তিতে বিভিন্ন প্রকার গণসংখ্যা রেখার কর্ণনা দাও।	ঽ+8=৬
(গ) প্রমাণ কর যে, $oldsymbol{eta}_1$ ও $oldsymbol{eta}_2$ উভয়ই মূল ও মাপনীর পরিবর্তনের উপর স্বাধীন। (যেখা	ন প্রতীকগুলো
চিরাচরিত)	₹+₹=8

একটি ক্যামব্রিয়ান ডিজিটাল প্রকাশনা

উচ্চ মাধ্যমিক পরিসংখ্যান-প্রথম পত্র

২৩৭

৩। (ক) সংশ্লেষ বলতে কি বুঝা বিভিন্ন প্রকার সংশ্লেষের বর্ণনা দাও। 2+6=9 (খ) সংশ্লেষাংক ও নির্ভরাংকের মধ্যে পার্থক্য লিখ। (\mathfrak{G}) X এর উপর V এর নির্ভরণ সমীকরণ $\mathfrak{b} X - \mathfrak{E} V - \mathfrak{G} V = \mathfrak{G}$ এবং V এর উপর X এর নির্ভরণ সমীকরণ ২০x - by - 209 = 0 । $x \otimes y$ এর মধ্যে সংশ্লেষাংক নির্ণয় কর। 0 অথবা, (क) কালীন সারি বলতে কি বুঝ? এর উপাদানসমূহ উদাহরণসহ বর্ণনা কর। 2+5=20 (च) সংক্ষেপে বাংলাদেশের সরকারি পরিসংখ্যানের উৎসগুলোর বর্ণনা দাও। ৪। পরিসংখ্যানের গুরুত্ব ও ব্যবহার আলোচনা কর। 0 অথবা শ্রেণিবদ্ধকরণ কি? বিভিন্ন প্রকার শ্রেণিবদ্ধকরণের বর্ণনা দাও। 5+8=6 ৫। পরিমাপন ক্ষেল কি? বিভিন্ন প্রকার পরিমাপন ক্ষেলসমূহ উদাহরণসহ ব্যাখ্যা কর। 1+8=0 অথবা, কোনো নির্দিষ্ট শ্রেণিতে ১৫০ জন শিক্ষার্থীর গড ওজন ৬০ কেজি। তাদের মধ্যে ছাত্রদের গড ওজন ৭০ কেজি এবং ছাত্রীদের গড ওজন ৫৫ কেজি। ঐ শ্রেণির ছাত্র ও ছাত্রীসংখ্যা নির্ণয় কর। ৬। প্রথম n স্বাভাবিক সংখ্যার গড এবং পরিমিত ব্যবধান নির্ণয় কর। 3=0+5 অথবা, n সংখ্যক অঋণাত্মক তথ্যমানের জন্য প্রমাণ কর যে, $C.V \leq$ ১০০ $\sqrt{n-1}$; যেখানে C.V = বিভেদাংক।

9। বিভিন্ন প্রকার লেখ ও চিত্রের নাম লিখ। আয়তলেখ ও দণ্ডচিত্রের মধ্যে পার্থক্য লিখ।

২+৩=৫
অথবা, একটি নিবেশনের ৩ এর ভিস্তিতে নিশীত প্রথম তিনটি পরিঘাতের মান যথাক্রমে –১, ৫ ও ৯। নিবেশনটির
বঙ্কিমতাঙ্ক নির্পেয় কর এবং নিবেশনটির আকৃতি সম্পর্কে মন্তব্য কর।

৪+১=৫
৮। কালিনসারির সাধারণ ধারা নির্ণয়ে ন্যুনতম বর্গ পদ্ধতিটি আলোচনা কর।

৮। কালিনসারির সাধারণ ধারা নির্ণয়ে ন্যূনতম বর্গ পদ্ধতিটি আলোচনা কর।

অথবা,

গুরুত্ প্রদন্ত গড়ের সংজ্ঞা দাও। পরিসংখ্যানে এর প্রয়োজনীয়তা আলোচনা কর।

২+৩=৫

৯। প্রচুরকের সংজ্ঞা দাও। এর সুবিধা ও অসুবিধান্তলো লিখ।

২+৩=৫

অথবা,

(क) বিস্তার পরিমাণের প্রয়োজনীয়তা লিখ।

(খ) ৩২টি সংখ্যার পরিমিত ব্যবধান ৫ এবং সংখ্যাগুলোর বর্গের সমষ্টি ১০০০। গাণিতিক গড় নির্ণয় কর।