simulation_rst

Rui Hu

8/2/2021

Generating Y depending on A

Using SL.gam to estimate $\hat{\pi}$ and $\hat{\mu}$

When n is large, one-step estimator of $\psi(P)$ tend to be non-negative.

```
# ests.sim.1 <- est.psi.sim(200*c(1:10), 1:500,
# func_1 = "SL.gam", func_2 = "SL.gam", null.sims=FALSE)
load("ests.sim.1.RData")
est.psi.plot(ests.sim.1, plot.type='density')</pre>
```


one-step estimator of $\theta(P)$ tend to be negative.

```
est.theta.plot(ests.sim.1, plot.type='density')
```


When n is increasing, the coverage is decreasing and the bias is increasing.

```
summaries.psi <- est.psi.summary(ests.sim.1)
ggplot(summaries.psi) +
  geom_line(aes(n, coverage, color=type)) +
  geom_hline(yintercept=.95)</pre>
```


I am looking for possible explanations.

* [x] The MSE of gam model is the lowest among the three models. Thus the reason that leads to low coverage should not be the selection of model.

```
summaries.theta <- est.theta.summary(ests.sim.1)
ggplot(summaries.theta) +
  geom_line(aes(n, coverage, color=type)) +
  geom_hline(yintercept=.95)</pre>
```


Using SL.earth to estimate $\hat{\pi}$ and $\hat{\mu}$

Since the model will do the variable selection, A might not be included to the estimated model and thus $\hat{\tau} = 0$ and $\hat{\theta}(P) = 0$.

```
load("ests.sim.3.RData")
est.theta.plot(ests.sim.3, plot.type='density')
```


Generating Y not depending on A

```
# ests.sim.1.null <- est.psi.sim(200*c(1:10), 1:500,

# func_1 = "SL.gam", func_2 = "SL.gam", null.sims=TRUE)
load("ests.sim.1.null.RData")
est.psi.plot(ests.sim.1.null, plot.type='density')</pre>
```


est.theta.plot(ests.sim.1.null, plot.type='density')

