Proposizione. Se X è una variabile aleatoria binomiale di parametri (n; p), allora

$$E(X) = n p,$$
 $Var(X) = n p (1 - p).$

Dimostrazione. Determiniamo il momento di X di ordine k:

$$E(X^k) = \sum_{x: p(x) > 0} x^k \cdot p(x) = \sum_{i=0}^n i^k \cdot \binom{n}{i} p^i (1-p)^{n-i} = \sum_{i=1}^n i^k \cdot \binom{n}{i} p^i (1-p)^{n-i}.$$

Utilizzando l'identità

$$i\binom{n}{i} = i \frac{n!}{i! (n-i)!} = n \frac{(n-1)!}{(i-1)! (n-i)!} = n \binom{n-1}{i-1}$$

ricaviamo che

$$E(X^k) = np \sum_{i=1}^n i^{k-1} \binom{n-1}{i-1} p^{i-1} (1-p)^{n-i} = np \sum_{j=0}^{n-1} (j+1)^{k-1} \binom{n-1}{j} p^j (1-p)^{n-1-j}$$

avendo posto j = i - 1. Si ha quindi

$$E(X^k) = n p E[(Y+1)^{k-1}]$$

dove Y è una variabile aleatoria binomiale di parametri (n-1;p).

Ponendo k=1 nella formula $E(X^k)=n\,p\,E[(Y+1)^{k-1}]$ ricaviamo

$$E(X) = n p$$

così il valore atteso di successi che si verificano in n prove indipendenti quando la probabilità di successo vale p, è pari a n p. Quindi risulta $E(Y+1)=(n-1)\,p+1$. Pertanto, ponendo k=2 nella formula $E(X^k)=n\,p\,E[(Y+1)^{k-1}]$ ricaviamo

$$E(X^2) = n p E(Y + 1) = n p [(n - 1) p + 1].$$

Ricordando che E(X) = n p si ottiene infine

$$Var(X) = E(X^2) - [E(X)]^2 = n p [(n-1) p + 1] - n^2 p^2 = n p (1-p),$$

così la varianza del numero di successi che si verificano in n prove indipendenti quando la probabilità di successo vale p, è pari a n p (1 - p).

Esempio. Da un'urna contenente n biglie numerate da 1 a n si effettuano n estrazioni con reinserimento. Diciamo che si ha una concordanza all'estrazione k-esima se in tale estrazione si estrae la biglia numero k. Se X è il numero di concordanze che si verificano nelle n estrazioni, determinare la distribuzione di X, il suo valore atteso e la varianza. **Soluzione.** Poiché le estrazioni si effettuano con reinserimento, possiamo riguardarle come prove indipendenti aventi probabilità di successo $p = \frac{1}{n}$. Pertanto X è una variabile aleatoria binomiale di parametri n e $p = \frac{1}{n}$, con densità discreta

$$p(k) = P(X = k) = \binom{n}{k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{n-k}, \qquad 0 \le k \le n.$$

Quindi, si ha

$$E[X] = n p = n \frac{1}{n} = 1,$$
 $Var[X] = n p (1 - p) = n \frac{1}{n} \left(1 - \frac{1}{n} \right) = 1 - \frac{1}{n}.$

Ad esempio, per n = 5 risulta:

p(0)	p(1)	p(2)	p(3)	p(4)	p(5)
0,3277	0,4096	0,2048	0,0512	0,0064	0,0003

Esempio. Se X è il numero di successi che si verificano in n prove indipendenti quando la probabilità di successo vale p, determinare valore atteso e varianza della frequenza relativa $F_n = X/n$ del numero di successi

Soluzione. Poiché X è una variabile aleatoria binomiale di parametri (n; p), risulta E(X) = n p e Var(X) = n p (1 - p). Pertanto, ricordando la proprietà di linearità del valore atteso e la proprietà della varianza, si ha

$$E(F_n) = E\left(\frac{X}{n}\right) = \frac{1}{n}E(X) = \frac{1}{n}n p = p,$$

$$Var(F_n) = Var\left(\frac{X}{n}\right) = \frac{1}{n^2}Var(X) = \frac{1}{n^2}n p (1-p) = \frac{p(1-p)}{n}.$$

Osserviamo, in particolare, che $E(F_n)$ è costante in n, mentre $Var(F_n)$ è decrescente e tende a 0 quando n tende a $+\infty$.

Si noti, inoltre, che F_n è una variabile aleatoria discreta che assume valori $0, \frac{1}{n}, \frac{2}{n}, \dots, 1$.

Proposizione. Se X è una variabile aleatoria binomiale di parametri (n; p), con 0 , allora per <math>k = 0, 1, ..., n la densità discreta sarà inizialmente strettamente crescente e successivamente strettamente decrescente, con massimo in corrispondenza del più grande intero $k \le (n + 1)p$.

Dimostrazione. Si ha

$$\frac{P(X=k)}{P(X=k-1)} = \frac{\frac{n!}{k! (n-k)!} p^k (1-p)^{n-k}}{\frac{n!}{(k-1)! (n-k+1)!} p^{k-1} (1-p)^{n-k+1}}$$
$$= \frac{(n-k+1) p}{k (1-p)}.$$

Quindi $P(X = k) \ge P(X = k - 1)$ se e solo se

$$(n-k+1) p \ge k (1-p)$$

ossia

$$k \le (n+1)p.$$

Nel caso di una variabile binomiale di parametri $(10, \frac{1}{2})$ la densità discreta

$$p(k) = \binom{10}{k} \left(\frac{1}{2}\right)^{10}$$

è strettamente crescente per $k \leq 5$, ed è simmetrica: $p(k) = p(10 - k) \ \forall k$.

Proposizione. Se X e Y sono variabili aleatorie binomiali di parametri (n; p) e (n; 1-p), rispettivamente, allora

$$P(X = k) = P(Y = n - k),$$
 $k = 0, 1, ..., n.$

Dimostrazione. Si ricava immediatamente notando che:

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k} = \binom{n}{n - k} (1 - p)^{n - k} p^k = P(Y = n - k).$$

Esempio. In un sistema elaborativo l'unità centrale prova a connettersi con n unità periferiche, ogni prova avente successo con probabilità p. Determinare media e varianza del numero totale di unità connesse, inclusa la centrale. Se una risorsa viene condivisa tra le unità connesse, determinare la frazione attesa di risorsa per ogni unità.

Soluzione. Nell'ipotesi di indipendenza delle prove, il numero di periferiche connesse è descritto da una variabile aleatoria binomiale X, di parametri n e p. Quindi il numero totale di unità connesse è X+1, pertanto E(X+1)=E(X)+1=np+1 e Var(X+1)=Var(X)=np(1-p). La frazione attesa di risorsa per ogni unità è

$$E\left(\frac{1}{X+1}\right) = \sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k} p^k (1-p)^{n-k} = \sum_{k=0}^{n} \frac{1}{k+1} \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$

$$\frac{1}{k} \sum_{k=0}^{n} \frac{(n+1)!}{(n+1)!} p^k (1-p)^{n-k} = \sum_{k=0}^{n} \frac{1}{k+1} \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$

$$= \frac{1}{n+1} \sum_{k=0}^{n} \frac{(n+1)!}{(k+1)!(n-k)!} p^k (1-p)^{n-k} = \frac{1}{n+1} \frac{1}{p} \sum_{j=1}^{n+1} \binom{n+1}{j} p^j (1-p)^{n+1-j}$$

$$=\frac{1-(1-p)^{n+1}}{(n+1)p}\neq\frac{1}{E(X+1)} \qquad \text{(per } j=k+1 \text{ e per la formula del binomio)}.$$

4.8 La variabile aleatoria di Poisson

Una variabile aleatoria X, che assuma i valori $0,1,2,\ldots$, è detta variabile aleatoria di Poisson con parametro $\lambda>0$ se

$$p(k) = P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \qquad k = 0, 1, 2, \dots$$

Notiamo che

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!} > 0 \quad \forall k;$$

inoltre si ha

$$\sum_{k=0}^{\infty} p(k) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1,$$

essendo

$$\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{\lambda}.$$

La variabile aleatoria di Poisson può essere utilizzata come approssimazione di una variabile aleatoria binomiale Y di parametri (n; p), quando n è grande e p è piccolo in modo che il prodotto n p tenda ad un valore positivo finito. Sia $\lambda = n$ p; allora

$$P(Y = k) = \frac{n!}{k! (n - k)!} p^k (1 - p)^{n - k}$$

$$= \frac{(n)_k}{k!} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n - k}$$

$$= \frac{\lambda^k}{k!} \cdot \frac{n(n - 1)(n - 2) \cdots (n - k + 1)}{n^k} \cdot \frac{(1 - \lambda/n)^n}{(1 - \lambda/n)^k}.$$

Per n grande risulta

$$\frac{n(n-1)(n-2)\cdots(n-k+1)}{n^k}\approx 1, \qquad \left(1-\frac{\lambda}{n}\right)^n\approx e^{-\lambda}, \qquad \left(1-\frac{\lambda}{n}\right)^k\approx 1.$$

Pertanto, quando n è grande e p è piccolo in modo che $n p = \lambda > 0$ si ha

$$P(Y = k) = \binom{n}{k} p^k (1 - p)^{n - k} \approx \frac{\lambda^k}{k!} e^{-\lambda} = \frac{(np)^k}{k!} e^{-np} \qquad (k = 0, 1, \ldots).$$

Illustriamo il significato dell'approssimazione

$$P(Y = k) = \binom{n}{k} p^k (1 - p)^{n - k} \approx \frac{\lambda^k}{k!} e^{-\lambda}$$
 $(k = 0, 1, ...).$

Se si eseguono n prove indipendenti, ognuna che dia successo con probabilità p, allora per n grande e p piccolo in modo che n p sia un valore positivo finito, il numero totale di successi è ben approssimato da una variabile aleatoria di Poisson di parametro $\lambda = n$ p.

Ad esempio, se n=90 e p=1/18 si ha $\lambda=5$ e quindi

$$P(Y = k) = {90 \choose k} \left(\frac{1}{18}\right)^k \left(1 - \frac{1}{18}\right)^{90-k} \approx \frac{(5)^k}{k!} e^{-5};$$

$$P(Y=0) = \left(1 - \frac{1}{18}\right)^{90} = 0,0058 \qquad \approx e^{-5} = 0,0067.$$

Se n = 900 e p = 1/180 si ha ancora $\lambda = 5$ e quindi

$$P(Y=0) = \left(1 - \frac{1}{180}\right)^{900} = 0,0066 \qquad \approx e^{-5} = 0,0067.$$

Esempio. Supponiamo che il numero di errori tipografici di una pagina di un libro sia descritto da una variabile aleatoria X di Poisson con parametro $\lambda = \frac{1}{2}$. Calcolare la probabilità che ci sia almeno un errore in una pagina fissata.

Soluzione. Si ha $P(X \ge 1) = 1 - P(X = 0) = 1 - e^{-1/2} \approx 0.393$.

Esempio. Supponiamo che un pezzo prodotto da un macchinario sia difettoso con probabilità pari a 0,1. Determinare la probabilità che un lotto di 10 pezzi ne contenga al più uno difettoso.

Soluzione. La probabilità desiderata è $\binom{10}{0}(0,1)^0(0,9)^{10} + \binom{10}{1}(0,1)^1(0,9)^9 = 0,7361$, mentre l'approssimazione di Poisson fornisce $\frac{1^0}{0!}e^{-1} + \frac{1^1}{1!}e^{-1} = 2e^{-1} = 0,7358$.

Esempio. Il numero di richieste di stampa che giunge ad una stampante aziendale è in media 3,2 al minuto. Approssimare la probabilità che non giungano più di 2 richieste. **Soluzione.** Pensiamo che le richieste di stampa giungono da un grande numero n di utenti, ognuno dei quali ha probabilità 3,2/n di fare una richiesta al minuto; allora, per l'approssimazione di Poisson, $P(X \le 2) = e^{-3,2} + 3,2 e^{-3,2} + \frac{(3,2)^2}{2} e^{-3,2} \approx 0,3799$.