Homework 2

CMPSC 360

Kinner Parikh January 24, 2022

Question 1:

- 1. This is a statement because the truth value of the statement can be determined: Obama was the president during 2010 or not
- 2. This is a statement because the quantity x + 3 could be a positive integer or not, which means the truth value can be determined
- 3. This is a statement because 15 is either an odd number or it is not
- 4. This is a statement because a natural number times two has the possibility of being an even number the truth value can be determined
- 5. This is not a statement because it is an open ended question. There is no truth value that can be determined.

Question 2:

- a) If $1 + 1 = 3 \rightarrow F$, then dogs can fly $\rightarrow F \Rightarrow T$
- b) If $1 + 1 = 2 \rightarrow T$, then dogs can fly $\rightarrow F \Rightarrow F$
- c) If $2 + 2 = 4 \rightarrow T$, then $1 + 2 = 3 \rightarrow T \Rightarrow T$

Question 3:

- 1. $p = the sun is shining, q = I will play tennis this afternoon : <math>p \rightarrow q$
- 2. p = finishing the writing of my computer program before lunch, q = tennis playing this afternoon $\Rightarrow p \rightarrow q$
- 3. $p = low humidity, q = sunshine, r = I will play tennis this afternoon <math>\Rightarrow (p \land q) \rightarrow r$

Question 4:

- a) The election is not decided or the votes have been counted
- b) If the votes have not been counted then the election is not decided
- c) The election is not decided or the election is not decided and the votes have been counted

Question 5:

Table 1: $\neg(p \to q) \equiv p \land \neg q$

		/1	1/ 1	
p	q	$p \rightarrow q$	$\neg(p \to q)$	$p \wedge \neg q$
Т Т	Τ	Т	F	\mathbf{F}
Τ	F	F	${ m T}$	${ m T}$
F	Τ	Т	\mathbf{F}	\mathbf{F}
\mathbf{F}	F	T	F	F

Table 2: $p \vee \neg (p \wedge q) \equiv T$

p	q	$p \wedge q$	$\neg (p \land q)$	$p \vee \neg (p \wedge q))$
Т	Т	Т	F	T
T F	F	F	$^{\mathrm{T}}$	${f T}$
\mathbf{F}	Т	F	T	${f T}$
F	F	F	T	${f T}$

Question 6:

- a) $p \leftrightarrow q$
- b) $(p \wedge q)$
- c) $(p \land q) \rightarrow r$
- d) $r \leftrightarrow (q \lor p)$

Question 7:

$$\begin{array}{ll} 1. \ \neg [(p \wedge q) \rightarrow r] \\ \neg [\neg (p \wedge q) \vee r] & \text{Identity Rule} \\ \neg \neg (p \wedge q) \wedge \neg r & \text{DeMorgan's Law} \\ \hline (p \wedge q) \wedge \neg r & \text{Double Negation} \end{array}$$

$$\begin{array}{ll} 2. \ \neg[p \to (\neg q \land r)] \\ \neg[\neg p \lor (\neg q \land r)] & \text{Identity Rule} \\ \neg\neg p \land \neg(\neg q \land r) & \text{DeMorgan's Law} \\ p \land \neg(\neg q \land r) & \text{Double Negation} \\ p \land (\neg \neg q \lor \neg r) & \text{DeMorgan's Law} \\ p \land (q \lor \neg r) & \text{Double Negation} \\ \hline p \land (r \to q) & \text{Identity Rule} \\ \end{array}$$

3.
$$\neg [p \lor q \lor (\neg p \land \neg q \land r)]$$

 $\neg p \land \neg q \land \neg (\neg p \land \neg q \land r)$ DeMorgan's Law
 $\neg p \land \neg q \land (\neg \neg p \lor \neg \neg q \lor \neg r)$ DeMorgan's Law
 $\neg p \land \neg q \land (p \lor q \lor \neg r)$ Double Negation
 $\neg (p \lor q) \land (p \lor q \lor \neg r)$ DeMorgan's Law
NOT DONE

Question 8:

$$\begin{array}{lll} \text{Simplify } \neg ((r \to \neg p) \land (r \to p)) \\ \\ \neg (r \to \neg p) \lor \neg (r \to p) & \text{DeMorgan's Law} \\ \neg (\neg r \lor \neg p) \lor \neg (\neg r \lor p) & \text{Identity Rule} \\ (\neg \neg r \land \neg \neg p) \lor (\neg \neg r \land \neg p) & \text{DeMorgan's Law} \\ (r \land p) \lor (r \land \neg p) & \text{Double Negation} \\ r \land (p \lor \neg p) & \text{Distribution} \\ r \land T & \text{Tautology} \\ r & \text{Identity Rules} \end{array}$$

Question 9:

Prove that
$$[p \to (q \lor r)] \equiv [(p \land \neg q) \to r]$$

$$p \to (q \lor r)$$

$$\neg p \lor (q \lor r)$$

$$(\neg p \lor q) \lor r$$

$$\neg (\neg p \land \neg q) \lor r$$

$$\neg (p \land \neg q) \lor r$$

$$\neg (p \land \neg q) \to r$$

$$\neg (p \land \neg q) \to r$$

$$\neg (p \land \neg q) \to r$$

$$\neg (p \land \neg q) \lor r$$

$$\neg (p \lor \neg \neg q) \lor r$$

$$\neg (p \lor q) \lor r$$

Question 10:

- 1. $Q(1) \Rightarrow False$
- 2. $\neg P(3) \Rightarrow False$
- 3. $P(7) \vee Q(7) = F \vee F \Rightarrow False$
- 4. $P(3) \wedge Q(4) = T \wedge T \Rightarrow True$