1.10. Třída co- \mathcal{NP} [120429-2153] 33

1.10 Třída co- \mathcal{NP}

Je-li jazyk L ve třídě \mathcal{P} , pak i jeho doplněk \overline{L} patří do třídy \mathcal{P} . Obdobné tvrzení se pro jazyky třídy \mathcal{NP} neumí dokázat.

1.10.1 Definice. Jazyk L patří do třídy co- \mathcal{NP} , jestliže jeho doplněk patří do třídy \mathcal{NP} .

1.10.2 Příklady.

- Jazyk USAT, který je doplňkem jazyka SAT splnitelných booleovských formulí, leží ve třídě co-NP. (Jazyk USAT se skládá ze všech nesplnítelných booleovských formulí a ze všech slov, které neodpovídají booleovské formuli.)
- Jazyk TAUT, který se skládá ze všech slov odpovídajících tautologii výrokové logiky, patří do třídy co- \mathcal{NP} .
- 1.10.3 Otázka, zda co- $\mathcal{NP} = \mathcal{NP}$, je otevřená.
- **1.10.4** Tvrzení. co- $\mathcal{NP} = \mathcal{NP}$ právě tehdy, když existuje \mathcal{NP} úplná úloha, jejíž doplněk je ve třídě \mathcal{NP} .

Nástin důkazu: Kdyby co- $\mathcal{NP} = \mathcal{NP}$, pak samozřejmě platí, že každý doplněk \mathcal{NP} úplné úlohy je ve třídě \mathcal{NP} .

Předpokládejme, že existuje \mathcal{NP} úplná úloha \mathcal{U} , jejíž doplněk patří $\overline{L_{\mathcal{U}}}$ do třídy \mathcal{NP} . Ukážeme, že v tomto případě co- $\mathcal{NP} = \mathcal{NP}$.

Uvažujme dvě \mathcal{NP} úlohy \mathcal{V} a \mathcal{W} takové, že $L_{\mathcal{V}}$ se polynomiálně redukuje na $L_{\mathcal{W}}$. To znamená, že existuje polynomiální algoritmus \mathcal{A} , který pro každé slovo w vytvoří slovo x tak, že

$$w \in L_{\mathcal{V}}$$
 iff $x \in L_{\mathcal{W}}$.

Tedy

$$w \notin L_{\mathcal{V}}$$
 iff $x \notin L_{\mathcal{W}}$.

To znamená, že algoritmus $\mathcal A$ je polynomiální redukcí jazyka $\overline{L_{\mathcal V}}$ na $\overline{L_{\mathcal W}}.$

- a) co- $\mathcal{NP} \subseteq \mathcal{NP}$. Uvažujme libovolný jazyk $L_{\mathcal{V}}$ ze třídy co- \mathcal{NP} . Pak jazyk $\overline{L_{\mathcal{V}}}$ patří do třídy \mathcal{NP} a proto se polynomiálně redukuje na \mathcal{U} . Máme tedy polynomiální redukci $\overline{L_{\mathcal{V}}}$ na $L_{\mathcal{U}}$ a tedy i polynomiální redukci $L_{\mathcal{V}}$ na $\overline{L_{\mathcal{U}}}$. Protože $\overline{L_{\mathcal{U}}}$ patří do třídy \mathcal{NP} , patří do třídy \mathcal{NP} i jazyk $L_{\mathcal{V}}$.
- b) $\mathcal{NP} \subseteq \text{co-}\mathcal{NP}$. Uvažujme libovolný jazyk $L_{\mathcal{V}}$ ze třídy \mathcal{NP} . Protože $L_{\mathcal{U}}$ je \mathcal{NP} -úplný jazyk, existuje polynomiální redukce jazyka $L_{\mathcal{V}}$ na $L_{\mathcal{U}}$. Z výše uvedeného vyplývá, že je to také polynomiální redukce $\overline{L_{\mathcal{V}}}$ na $\overline{L_{\mathcal{U}}}$. Navíc, je jazyk $\overline{L_{\mathcal{U}}}$ ve třídě \mathcal{NP} 'tedy i jazyk $\overline{L_{\mathcal{V}}}$ je ve třídě \mathcal{NP} . Odtud dostáváme, že jazyk $L_{\mathcal{V}}$ patří do třídy co- \mathcal{NP} .

1.11 Třídy PSPACE a NPSPACE

1

Marie Demlová: Teorie algoritmů Před. 13: 17/4/2012

- **1.11.1** Je dán Turingův stroj M (determininstický nebo nedeterministický). Připomeňme, že M pracuje s paměťovou složitostí p(n) právě tehdy, když pro každé slovo délky n nepoužije paměťovou buňku větší než p(n).
- **1.11.2 Třída** PSPACE. Jazyk L patří do třídy PSPACE právě tehdy, když existuje deterministický Turingův stroj M, který přijímá jazyk L a pracuje s polynomiální paměťovou složitostí.

1.11.3 Tvrzení. Platí

$$\mathcal{P} \subseteq \mathcal{P}SPACE$$
.

1.11.4 Třída $\mathcal{NP}SPACE$. Jazyk L patří do třídy $\mathcal{NP}SPACE$ právě tehdy, když existuje nedeterministický Turingův stroj M, který přijímá jazyk L a pracuje s polynomiální paměťovou složitostí.

1.11.5 Tvrzení. Platí

$$\mathcal{NP} \subset \mathcal{NPSPACE}$$
.

- **1.11.6** Věta. Je dán Turingův stroj M (deterministický nebo nedeterministický), který přijímá jazyk L s paměťovou složitostí p(n) (kde p je nějaký polynom). Pak existuje konstanta c taková, že M přijme slovo w délky n po nejvýše $c^{p(n)+1}$ krocích.
- **1.11.7** Myšlenka důkazu věty 1.11.6. Konstantu c volíme tak, abychom měli zajištěno, že Turingův stroj M má při práci se vstupem délky n méně než $c^{p(n)+1}$ různých situací. Zajímají nás totiž pouze takové výpočty, ve kterých se situace neopakují. Označme t počet páskových symbolů Turingova stroje M a označme s počet stavů M. Pak M má p(n) s $t^{p(n)}$ různých situací.

Položme c = t + s. Z binomické věty vyplývá, že

$$c^{p(n)+1} = (t+s)^{p(n)+1} = t^{p(n)+1} + p(n) t^{p(n)} s + \dots$$

Odtud $c^{p(n)+1} \ge p(n) t^{p(n)} s$.

- **1.11.8** Věta. Je-li jazyk L ve třídě $\mathcal{P}SPACE$ ($\mathcal{NP}SPACE$)), pak L je rozhodován deterministickým (nedeterministickým) Turingovým strojem M s polynomiální paměťovou složitostí, který se vždy zastaví po nejvýše $c^{q(n)}$ krocích, kde q(n) je vhodný polynom a c konstanta.
- **1.11.9** Myšlenka důkazy věty 1.11.8. Předpokládejme, že $L \in \mathcal{P}SPACE$. Pak existuje Turingův stroj M_1 , který přijímá jazyk L s paměťovou složitostí p(n) (p(n) je vhodný polynom). Víme (z věty 1.11.6), že existuje konstanta c taková, že Turingův stroj M_1 potřebuje nejvýše $c^{p(n)+1}$ kroků.

Vytvoříme Turingův stroj M_2 , který bude mít dvě pásky: první páska bude simulovat M_1 , druhá bude počítat kroky na první pásce. Jestliže počet kroků překročí $c^{p(n)+1}$, Turingův stroj M_2 se neúspěsně zastaví.

Hledaný Turingův stroj M je Turingův stroj s jednou páskou, který simuluje Turingův stroj M_2 . Turingův stroj M pracuje v s časovou složitostí $\mathcal{O}(c^{2p(n)})$, tedy v maximálně $d\,c^{2p(n)}$ krocích. Nyní stačí položit $q(n)=2p(n)+\log_c d$ nebo jakýkoli polynom větší.

1.11.10 Savitchova věta. Platí

$\mathcal{P}SPACE = \mathcal{NP}SPACE.$

1.11.11 Nástin myšlenky důkazu Savitchovy věty. Zřejmě $\mathcal{P}SPACE \subseteq \mathcal{NP}SPACE$. Důkaz opačné inkluze $\mathcal{NP}SPACE \subseteq \mathcal{P}SPACE$ spočívá v tom, že jsme schopni nedeterministický Turingův stroj pracující s paměťovou složitostí p(n) simulovat deterministickým Turingovým strojem, který pracuje s paměťovou složitostí $\mathcal{O}([p(n)]^2)$.

Je dán nedeterministický Turingův stroj M, který přijímá jazyk L s polynomiální paměťovou složitostí p(n). Konstrukce deterministického Turingova stroje přijímajícího stejný jazyk jako M s polynomiální paměťovou složitostí je založena na rekursivní proceduře dostup(I,J,m), kde I a J jsou situace a m je číslo. Výstup procedury dostup(I,J,m) je buď 1, jestliže Turingův stroj se z situace I do situace J dostane v nejvýše m krocích, 0 v opačném případě. Procedura dostup(I,J,m) pro každou situaci K rekursivně zavolá procedury dostup(I,K,m/2) a dostup(K,J,m/2).

Pro vstup w voláme proceduru $dostup(I_0, J, m)$, kde I_0 je počáteční situace M, J je přijímající situace M a $m = \log_2 c^{p(n)+1}$ (c je konstanta z 1.11.6). Dá se dokázat, že pro vykonání procedury dostup(I, J, m) deterministickým Turingovým strojem stačí paměťová složitost $\mathcal{O}([p(n)]^2)$. (Uvědomte si, že nám nezáleží na tom, jak dlouho deterministický Turingův stroj pracuje, zajímáme se pouze o paměťové nároky.)

1.11.12 Důsledek. Platí

 $\mathcal{P} \subseteq \mathcal{NP} \subseteq \mathcal{P}SPACE$.