HW01

資工科碩一 殷暐智 313551087

Introduction

在本次實驗中為透過 numpy 來設計神經網路來分類 Input 資料,規則為須使用兩層 hidden layer 來實作,並包含神經網路中學習的細節,如 forward、Backpropagation、activate function、optimize 的實作。在 Input 資料的部分則是預先提供的 linear、XOR_easy,在實驗上分別使用兩者來進行不同的實驗設

置來比較彼此在不同的 learning rates、hidden units、activation functions 下的 差異性。

Experiment setups:

A. Sigmoid functions

Sigmoid 根據定義公式如下:

$$\sigma(X) = \frac{1}{1 + e^{-1}}$$

接下來也需實作 Sigmoid 的偏微分,根據此處得推導可以得出如下:

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1 - \sigma(x))$$

在程式的實作上就不用再添加 sigmoid(),因為 x 已是 sigmoid(X)的輸出

```
# Sigmoid

def sigmoid(x):
    return 1/(1 + np.exp(-x))

def sigmoid_derivative(x):
    return x * (1 - x)
```

B. Neural network

在神經網路的設計上使用兩層 hidden layer,分別包含 10 個 Neural,並且預設使用 10000 epoch、0.1 的 learning rate 和 sigmoid 作為 activation function。

```
hidden_size1 = 10
hidden_size2 = 10
epochs = 10000
learning_rate = 0.1
```

```
model = NeuralNetwork()
model.add_layer(Layer(input_size, hidden_size1))
model.add_layer(Layer(hidden_size1, hidden_size2))
model.add_layer(Layer(hidden_size2, output_size))
```

在計算 loss 上則使用 MSE 作為 loss 的計算方式

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

C. Backpropagation

在 Backpropagation 的部分透過 Neural Network 底下的 backward 去呼叫逐層 layer 進行 backward,由於每一層都是透過前一層計算出來的值去乘上 activation function 的偏微分去更新 w 和 b,最後一層則是透過計算y與 \hat{y} 之間的 loss 偏微分。

class Neural Network:

```
def backward(self, loss_derivative, learning_rate,optimize,decay_rate):
    # backward
    for layer in reversed(self.layers):
        loss_derivative = layer.backward(loss_derivative, learning_rate,optimize,decay_rate)
```

class Layer:

```
def backward(self, loss_derivative, learning_rate,optimize,decay_rate):
    if self.activation_function == "sigmoid":
       activation_derivative = sigmoid_derivative(self.output)
    elif self.activation_function == "ReLU":
        activation_derivative = ReLU_derivative(self.output)
    else:
        raise ValueError("Unsupported activation function")
    delta = loss_derivative * activation_derivative
    dw = np.dot(self.input.T, delta)
    db = np.sum(delta)
    if optimize == "SGD":
        self.W -= learning_rate * dw
        self.b -= learning rate * db
        self.v_w = decay_rate * self.v_w + learning_rate * dw
        self.W -= self.v_w
        self.v_b = decay_rate * self.v_b + learning_rate * db
        self.b -= self.v_b
        raise ValueError("Unsupported optimize function")
    return np.dot(delta, self.W.T)
```

Results of your testing:

A. Screenshot and comparison figure

Linear data:

XOR data:

B. Show the accuracy of your prediction

Linear data:

```
Accuracy: [1.]

Prediction:

Iter 1 | Ground truth: [1] | Prediction: [0.95912896]

Iter 2 | Ground truth: [1] | Prediction: [0.64641015]

Iter 3 | Ground truth: [1] | Prediction: [0.99958021]

Iter 4 | Ground truth: [1] | Prediction: [0.96738516]

Iter 5 | Ground truth: [1] | Prediction: [0.78663123]

Iter 6 | Ground truth: [1] | Prediction: [0.9957539]

Iter 7 | Ground truth: [0] | Prediction: [0.00042813]

Iter 8 | Ground truth: [0] | Prediction: [0.00187183]

Iter 9 | Ground truth: [0] | Prediction: [0.00629601]
```

XOR data:

```
Accuracy: [1.]
Prediction:

Iter 1 | Ground truth: [0] | Prediction: [0.05260297]

Iter 2 | Ground truth: [1] | Prediction: [0.98512438]

Iter 3 | Ground truth: [0] | Prediction: [0.0722881]

Iter 4 | Ground truth: [1] | Prediction: [0.9664167]

Iter 5 | Ground truth: [0] | Prediction: [0.13193126]

Iter 6 | Ground truth: [1] | Prediction: [0.9076514]

Iter 7 | Ground truth: [0] | Prediction: [0.25397888]

Iter 8 | Ground truth: [1] | Prediction: [0.74749249]

Iter 9 | Ground truth: [1] | Prediction: [0.37681844]

Iter 10 | Ground truth: [1] | Prediction: [0.51181465]
```

C. Learning curve (loss, epoch curve)

D. Anything you want to present

更具實驗結果可以看到在相同的設置下 Linear data 相較於 XOR data 更早收斂,同時 loss 也來的更低,表示出 Linear data 相較於 XOR data 更容易學習。

Discussion

A. Try different learning rates

Linear data:

不同的學習率會造成不同的學習時間,在 0.01 時就需要更多的 epoch 來去訓練,在 accuracy 上也沒有造成其他的影響。

XOR data:

在 XOR data 的資料上可以發現雖然很快就收斂,但是可以看到準確度大幅的下降,所以可以發現在 gradient 下降的過程中尚未到達最低點,需要更長的訓練來達到最低點。

B. Try different numbers of hidden units

Linear data:

在使用不同的 hidden units 下看到 Accuracy 保持一樣,但是在 loss 上還是呈現下降的趨勢,未達到收斂。

XOR data:

在 XOR data 的資料上與 Linear data 一樣可以看到 loss 還未收斂,同時在 準確度上也大幅下降。

Hidden Unit =10	Hidden Unit =2
-----------------	----------------

C. Try without activation functions

在不使用 activation functions 的情況下在 linear 還能達到一定的準確度,但是在 xor 這種非線性的資料下則是大約一半的準確略

D. Anything you want to share

在嘗試 activation functions 時一開始按照原本設定的訓練會出現只有前幾個 epoch 有 loss,後面的 epoch 則是出現 nan,一開始會以為程式碼的是設計上出現問題,但後來發現是梯度爆炸導致消失,所以後來透過減少神經元和減小學習率就可以解決此問題。

Extra

A. Implement different optimizers.

Linear data:

XOR data:

在準確度上並沒有差異,但是 loss curve 上可以發現 momentum 可以更快的收斂。

B. Implement different activation functions. Linear data:

XOR data:

在使用不同的 activation functions 上原先全部的輸出都會接上 sigmoid,在這裡每一層都使用 relu 作為 activation function,只有輸出層一樣是接上 sigmoid,從結果來看可以發現 loss 更快的下降與收斂。

C. Implement convolutional layers.

Linear data:

```
input_size = 2
hidden_size1 = 10
hidden_size2 = 10
output_size = 1
epochs = 100
learning_rate = 0.1

model = NeuralNetwork()
# logging.debug("X shape: %s", x.shape)
model.add_layer(Conv_Layer(3, 1,1, activation_function="sigmoid"))
model.add_layer(FlattenLayer())
model.add_layer(Layer(input_size, output_size, activation_function="sigmoid"))
```

XOR data:

```
input_size = 2
hidden_size1 = 10
hidden_size2 = 10
output_size = 1
epochs = 500
learning_rate = 1

model = NeuralNetwork()
# logging.debug("X shape: %s", x.shape)
model.add_layer(Conv_Layer(3, 1,1, activation_function="sigmoid"))
model.add_layer(FlattenLayer())
model.add_layer(Layer(input_size, output_size, activation_function="sigmoid"))
```

將輸入去做 convolutional 做完之後加上 flatten,以便於接上全連接層,在架構使用都用一樣的,唯一差別在於 epoch 和 lr 的數值差異,由於用原始 linear 的參數時會導致,XOR 的準確率不到 50%,因此在這裡加上更多的 epoch 和增加 lr。

