MSO202A: Assignment-V

1. Find

- (a) Taylor series of the function $f(z) = 1/z^2$ in powers of z 1.
- (b) Laurent series of the function $f(z) = 1/z^2$ for $\{z : |z 1| > 1\}$.
- (a) Find Laurent series of the function $f(z) = \frac{6z+8}{(2z+3)(4z+5)}$ in the region (i) $\{z\in\mathbb{C}:|z|<\frac{5}{4}\}$ (ii) $\{z\in\mathbb{C}:\frac{5}{4}<|z|<\frac{3}{2}\}$ (iii) $\{z\in\mathbb{C}:|z|>\frac{3}{2}\}$

- (b) Find Laurent series of the function $f(z) = \frac{1}{z^3 z^4}$ in the region
 - (i) $\{z \in \mathbb{C} : 0 < |z| < 1\}$ (ii) $\{z \in \mathbb{C} : |z| > 1\}$
- 3. Find the Laurent series of the function $f(z) = \exp(z + \frac{1}{z})$ around z = 0. Hence, show that (for $n \ge 0$)

$$\frac{1}{2\pi} \int_0^{2\pi} e^{2\cos\theta} \cos n\theta \, d\theta = \sum_{j=0}^{\infty} \frac{1}{(n+j)!j!}.$$

- 4. Is there a polynomial P(z) such that $P(z)e^{1/z}$ is an entire function? Justify your answer.
- 5. Which of the following singularities are removable/pole:
 - (i) $\frac{\sin z}{z^2 \pi^2}$ at $z = \pi$
 - (ii) $\frac{\sin \pi z}{(z-\pi)^2}$ at $z=\pi$ pi must not be present
 - (iii) $\frac{z\cos z}{1-\sin z}$ at $z=\pi/2$
- 6. Suppose f and g are two analytic functions in a neighbourhood of a point $z_0 \in \mathbb{C}$ such that $g(z_0) \neq 0$ and f has a simple zero at z_0 . Prove that

$$\operatorname{Res}\left(\frac{g}{f}: z_0\right) = \frac{g(z_0)}{f'(z_0)}$$

7. Let f be analytic in a domain Ω and γ be a simple closed curve in Ω in the counterclockwise sense. Suppose z_0 is the only zero of f in the region enclosed by Ω . Show that

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi i m,$$

where m is the order of zero of f at z_0 .

8. Find the isolated singularities and compute the residue of the functions

(i)
$$\frac{e^z}{z^2 - 1}$$
 (ii) $\frac{3z}{z^2 + iz + 2}$ (iii) $\cot \pi z$ (iv) $\frac{\pi \cot \pi z}{(z + 1/2)^2}$

9. Evaluate

$$(i) \int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^{2n}_{\mathsf{I}}}, \quad n \ge 1 \qquad \text{(ii)} \int_{-\infty}^{\infty} \frac{x \sin 3x}{x^2 + a^2} dx \qquad \text{(iii)} \int_{0}^{\pi} \sin^{2n} \theta \, d\theta$$

10. Compute the following integrals

(i)
$$\int_{-\infty}^{\infty} \frac{\sin x}{x} dx$$

$$\underbrace{(ii)}_{-\infty} \int_{-\infty}^{\infty} \frac{\cos ax - \cos bx}{x^2}$$

(i)
$$\int_{-\infty}^{\infty} \frac{\sin x}{x} dx$$
 (ii)
$$\int_{-\infty}^{\infty} \frac{\cos ax - \cos bx}{x^2}$$
 (iii)
$$\int_{-\infty}^{\infty} \frac{e^{ax}}{e^x + 1} dx$$
, $0 < a < 1$.