

Feature Importance & Selection Untuk Klasifikasi & Regresi

Dina Chahyati*, Adila Alfa Krisnadhi, Siti Aminah, Aruni Yasmin Azizah, Fariz Darari, Dinial Utami

CSGE603130: Kecerdasan Artifisial dan Sains Data Dasar Genap 2022/2023

Referensi

- Understanding Feature Importance and How to Implement it in Python | by Terence Shin | Towards Data Science
- A Complete Guide to Sequential Feature Selection -(analyticsindiamag.com)
- Feature Selection Techniques | 7 Feature Selection Techniques in ML (analyticsvidhya.com)
- Using the Chi-Squared test for feature selection with implementation | by Dr. Saptarsi Goswami | Towards Data Science

Motivasi

Motivasi

Name	Body	Skin	Gives	Aquatic	Aerial	Has	Hiber-	Class
	Temperature	Cover	Birth	Creature	Creature	Legs	nates	Label
human	warm-blooded	hair	yes	no	no	yes	no	mammal
python	cold-blooded	scales	no	no	no	no	yes	reptile
salmon	cold-blooded	scales	no	yes	no	no	no	fish
whale	warm-blooded	hair	yes	yes	no	no	no	mammal
frog	cold-blooded	none	no	semi	no	yes	yes	amphibian
komodo	cold-blooded	scales	no	no	no	yes	no	reptile
dragon								
bat	warm-blooded	hair	yes	no	yes	yes	yes	mammal
pigeon	warm-blooded	feathers	no	no	yes	yes	no	bird
cat	warm-blooded	fur	yes	no	no	yes	no	mammal
leopard	cold-blooded	scales	yes	yes	no	no	no	fish
shark								

Dataset A: 8 fitur, 1000 baris

Jumlah Kolom x Baris

60 kolom x 16710 baris

Deskripsi Kolom

ID	Unique id untuk setiap pemain sepak bola					
Name	Nama seorang pemain sepak bola					
Age	Umur seorang pemain sepak bola					
Nationality	Negara atau kewarganegaraan seorang pemain sepak bola					
Overall	Rating seorang pemain sepak bola					
Potential	Potensi Rating untuk seorang pemain sepak bola					
Best Overall Rating	Rating tertinggi yang pernah didapat oleh seorang pemain sepak bola					
Club	Tim sepak bola yang dibela oleh seorang pemain sepak bola					
Value	Nilai pasar scorang pemain sepak bola					
Wage	Gaji yang diterima oleh seorang pemain sepak bola					
Release Clause	Biaya transfer minimum seorang pemain sepak bola					
Joined	Waktu bergabungnya seorang pemain sepak bola ke suatu tim sepak bola					
Contract Valid Until	Waktu berakhirnya kontrak seorang pemain sepak bola dengan tim sepak bola					
Position	Posisi dari seorang pemain sepak bola					
Jersey Number	Nomor punggung yang digunakan seorang pemain sepak bola					
Special	Nilai kespesialan seorang pemain sepak bola					

Preserved Poot	seorang pemain sepak bola					
International Reputation	Reputasi yang dimiliki oleh seorang pemain sepak bola					
Weak Foot	Tingkat kemahiran seorang pemain sepak bola menggunakan kaki yang bukan kaki terkuatnya (1-5)					
Skill Moves	Tingkat kemahiran seorang pemain sepak bola dalam mengolah bola dengan pergerakan skillnya (1-5)					
Body Type	Tipe badan dari seorang pemain sepak bola					
Height	Tinggi badan dari seorang pemain sepak bola					
Weight	Berat badan dari seorang pemain sepak bola					
Crossing	Nilai kualitas seorang pemain sepak bola dalam melakukan umpan silang					
Finishing	Nilai kualitas seorang pemain sepak bola dalam melakukan penyelesaian peluang untuk menjadi gol					
Heading Accuracy	Nilai kualitas akurasi seorang pemain sepak bola dalam melakukan sundulan					
Short Passing	Nilai kualitas seorang pemain sepak bola dalam melakukan umpan pendek					
Volleys	Nilai kualitas seorang pemain sepak bola dalam melakukan tendangan voli					
Dribbling	Nilai kualitas seorang pemain sepak bola dalam menggiring bola					
Curve	Nilai kualitas seorang pemain sepak bola dalam melakukan tendangan melengkung					
FK Accuracy	Nilai kualitas akurasi seorang pemain sepak bola dalam melakukan tendangan bebas					
Long Passing	Nilai kualitas seorang pemain sepak bola dalam melakukan umpan jauh					

	mengontrol bola
Acceleration	Nilai kualitas seorang pemain sepak bola dalam melakukan akselerasi
Sprint Speed	Nilai kecepatan seorang pemain sepak bola dalam berlari
Agility	Nilai kelincahan seorang pemain sepak bola
Reactions	Nilai reaksi seorang pemain sepak bola
Balance	Nilai keseimbangan seorang pemain sepak bola
Shot Power	Nilai kualitas seorang pemain sepak bola dalam melakukan tendangan keras
Jumping	Nilai kualitas seorang pemain sepak bola dalam melompat
Stamina	Nilai daya tahan seorang pemain sepak bola
Strength	Nilai kekuatan seorang pemain sepak bola
Long Shots	Nilai kualitas seorang pemain sepak bola dalam melakukan tendangan jarak jauh
Aggression	Nilai kualitas seorang pemain sepak bola dalam mengganjal atau membentur pemain lawan
Interceptions	Nilai kualitas seorang pemain sepak bola dalam melakukan intersep
Positioning	Nilai kualitas seorang pemain sepak bola dalam melakukan penempatan posisi
Vision	Nilai kualitas penglihatan seorang pemain sepal bola
Penalties	Nilai kualitas seorang pemain sepak bola dalam melakukan tendangan penalti
Composure	Nilai ketenangan seorang pemain sepak bola
Marking	Nilai kualitas seorang pemain sepak bola dalam melakukan marking terhadan pemain lain

Standing Tackle	Nilai kualitas seorang pemain sepak bola dalam melakukan tekel berdiri
Sliding Tackle	Nilai kualitas seorang pemain sepak bola dalam melakukan tekel meluncur
GK Diving	Nilai kualitas seorang pemain sepak bola dalam melakukan tepisan melompat saat menjadi seorang kiper
GK Handling	Nilai kualitas seorang pemain sepak bola dalam melakukan tangkapan bola saat menjadi seorang kiper
GK Kicking	Nilai kualitas seorang pemain sepak bola dalam melakukan tendangan saat menjadi seorang kiper
GK Positioning	Nilai kualitas seorang pemain sepak bola dalam melakukan penempatan posisi saat menjadi seorang kiper
GK Reflexes	Nilai kualitas seorang pemain sepak bola dalam reflek terhadap tendangan saat menjadi seorang kiper
Defensive Awareness	Nilai kesadaran bertahan seorang pemain sepak bola
Attacking Work Rate	Tingkat kerja keras seorang pemain sepak bola dalam menyerang
Defensive Work Rate	Tingkat kerja keras seorang pemain sepak bola dalam bertahan

Dataset B: 59 fitur, 17.000 baris

Bandingkan Anda memproses Dataset A vs Dataset B

Motivasi: Mengapa Perlu Seleksi Fitur?

- Untuk mengurangi jumlah fitur yang digunakan
- Untuk mencari model terbaik (better performance), karena terkadang ada fitur tak relevan yang membuat hasil klasifikasi/regresi/clustering tidak optimal
- Untuk mengurangi beban komputasi
- Untuk memperkuat data understanding
- Untuk memperkuat model interpretability
- Seleksi fitur dilakukan dengan cara membandingkan nilai feature importance
- Point: seleksi fitur digunakan untuk mengurangi dimensi data dari fitur yang kurang relevan, sehingga dapat meningkatkan efektifitas dan efisiensi kinerja algoritma.

Metode Seleksi Fitur

A. Metode Filter

- Cepat dan mudah
- Dilakukan pada saat pra-pemrosesan data, sebelum data masuk ke algoritma machine learning (klasifikasi/regresi/clustering)
- Contoh: Koefisien korelasi, variance threshold, Chi-square-test, dll

B. Metode Wrapper (Greedy Algorithm)

- Umumnya berusaha memilih subset-subset dari himpunan fitur secara iteratif, dengan cara membandingkan hasil kinerja jika subset fitur tersebut dijadikan input ke algoritma machine learning
- Contoh: SFFS, SBFS, dll

C. Metode Embedded

- Kombinasi metode filter dan wrapper. Cepat seperti metode filter dan hasilnya akurat seperti metode wrapper. Seleksi fitur merupakan bagian dari algoritma machine learning itu sendiri.
- Contoh: Decision Tree, Linear regression, Lasso regression, dll

A. Metode Filter

A. Metode Filter

- Cepat dan mudah, biasanya pendekatan yang lebih baik ketika jumlah fitur yang sangat banyak.
- Dilakukan pada saat pre-processing data, sebelum data digunakan pada algoritma machine learning (klasifikasi/regresi/clustering)
- Contoh: koefisien korelasi, variance threshold, Chi-square-test, dll

- Data dari hasil seleksi fitur menggunakan metode Filter, akan diuji pada algoritma Klasifikasi / Regresi hanya satu kali pemrosesan saja.
- Kekurangan :
 - Terkadang metode Filter gagal dalam memilih fitur terbaik, karena metode filter dilakukan tanpa model prediktif.

A. Metode Filter: Koefisien Korelasi

 Hitung korelasi antara setiap fitur dengan label target. Fitur dengan korelasi mendekati nol bisa diabaikan.

Hitung korelasi antar fitur. Jika ada 2 fitur dengan korelasi tinggi, dipilih

salah satu saja.

Gambar diambil dari
Feature Selection
Techniques | 7
Feature Selection
Techniques in ML
(analyticsvidhya.com)

Apakah PCA masuk ke kategori ini?

- 0.8

- 0.6

- 0.4

- 0.2

0.0

A. Metode Filter: Variance Threshold

- Motivasi: data dengan variansi rendah cenderung tidak memberikan banyak informasi
- Cara seleksi:
 - Pastikan data berada pada skala yang sama (normalisasi)
 - Hitung variansi tiap data
 - Abaikan data dengan variansi rendah (berdasarkan threshold tertentu)

- Sebenarnya yang dilakukan oleh Chi-Square Test adalah Uji Hipotesa, untuk mengetahui apakah suatu fitur berpengaruh/tidak berpengaruh terhadap label kelas (klasifikasi).
- Digunakan untuk membandingkan dua data bertipe kategorikal.
- Ingat pada kuliah Statprob, Uji Hipotesa digunakan untuk membandingkan mean, sehingga menggunakan
 - Tabel distribusi normal (jika variansi populasi diketahui)
 - Tabel distribusi student-t (jika variansi populasi tidak diketahui)
- Pada seleksi fitur, yang ingin dibandingkan adalah hasil observasi (observed) dan hasil yang diharapkan (expected)
- Jika fitur yang dibandingkan bersifat numerik, uji hipotesa bisa dilakukan dengan F-test (ANOVA – ANalysis Of VAriance)

~ ²	- \(\nabla \)	$(O-E)^2$
X	- <u>L</u>	\overline{E}

n P	0.995	0.975	0.9	0.5	0.1	0.05	0.025	0.01	0.005	df
1	.000	.000	0.016	0.455	2.706	3.841	5.024	6.635	7.879	1
2	0.010	0.051	0.211	1.386	4.605	5.991	7.378	9.210	10.597	2
3	0.072	0.216	0.584	2.366	6.251	7.815	9.348	11.345	12,838	3
4	0.207	0.484	1.064	3.357	7.779	9,488	11.143	13.277	14.860	4
5	0.412	0.831	1.610	4.351	9.236	11,070	12.832	15,086	16.750	5
6	0.676	1.237	2.204	5.348	10.645	12.592	14.449	16.812	18.548	6
7	0.989	1.690	2.833	6.346	12.017	14.067	16.013	18.475	20.278	7
8	1.344	2.180	3,490	7.344	13.362	15.507	17.535	20.090	21.955	8
7 8 9	1,735	2,700	4.168	8.343	14,684	16.919	19.023	21,666	23.589	9
10	2.156	3.247	4.865	9.342	15.987	18.307	20.483	23.209	25.188	10
11	2.603	3.816	5.578	10.341	17.275	19.675	21,920	24.725	26.757	11
12	3.074	4.404	6.304	11.340	18.549	21.026	23.337	26.217	28,300	12
13	3.565	5.009	7.042	12.340	19,812	22.362	24.736	27,688	29.819	13
14	4.075	5.629	7.790	13.339	21.064	23,685	26.119	29.141	31.319	14
15	4.601	6.262	8.547	14,339	22,307	24.996	27,488	30.578	32,801	15

Gambar diambil dari
PPT - The ChiSquare Test for
Association
PowerPoint
Presentation, free
download ID:2536011
(slideserve.com)

 Contoh Chi-Square Test (<u>Using the Chi-Squared test for feature selection</u> with implementation | by Dr. Saptarsi Goswami | Towards Data Science)

Pld	Pclass	Name	Sex	Age	Fare	Survived
1	3	Braund, Mr. Owen Harris	male	22	7.25	0
2	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)		38	71.2833	1
3	3	Heikkinen, Miss. Laina	female	26	7.925	1
4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	53.1	1
5	3	Allen, Mr. William Henry	male	35	8.05	0
6	3	Moran, Mr. James	male		8.4583	0
7	1	McCarthy, Mr. Timothy J	male	54	51.8625	0
8	3	Palsson, Master. Gosta Leonard	male	2	21.075	0
9	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27	11.1333	1
10	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14	30.0708	1

- Titanic Shipwreck Problem, ingin diketahui: Survived atau Not Survived
- Ingin diketahui pengaruh atribut "Sex" pada "Survived"

Tentukan pernyataan Hipotesa:

- H₀: Atribut/fitur sex tidak memiliki pengaruh pada atribut survival penumpang kapal (fitur tidak penting)
- H₁: Atribut/fitur sex memiliki pengaruh pada atribut survival penumpang kapal (fitur penting)

Sex	NotSurvied	Survived	Total
female	156	307	463
male	708	142	850
Total	864	449	1313

$$egin{aligned} \chi^2 = & \underbrace{ \begin{bmatrix} O_{11} - E_{11} \end{bmatrix}^2}_{E_{11}} + \underbrace{ \frac{(O_{12} - E_{12})^2}{E_{12}} + \cdots + \frac{(O_{mn} - E_{mn})^2}{E_{mn}} } \\ &= \sum_{i=1}^m \sum_{j=1}^n \frac{(O_{ij} - E_{ij})^2}{E_{ij}} \end{aligned}$$

The above table shows Sex vs survival status of the passengers. This is also called the contingency table.

- If they are independent then the male-female ratio across survived and not survived should be the same.
- A ratio of 449/1313 survived
- If there is no dependence or association 463 * 449/1313 of the females should survive i.e 158.13
- This is the expected count under independence
- The calculation for all four cases are given below

E_{female}-survived

 $O_{female-survived}$

Categories	Obse	rved	Ex	pected	Chi-square
Female Survived		307		158.33	139.5994
Female Not Survived		156		304.67	72.54659
Male Survived		142		290.67	76.04076
Male not Survived		708		559.33	39.51651
					327.7032

Selanjutnya:

- Hitung chi-square untuk setiap fitur kategorikal
- Sebenarnya bisa ditentukan nilai level of confidence tertentu untuk menentukan apakah H₀ ditolak atau diterima
- Namun bisa juga diurutkan saja nilai chi-square dari setiap fitur lalu diurutkan, ambil fitur-fitur berdasarkan nilai chi-square yang tertinggi.

A. Metode Filter di Sklearn

sklearn.feature_selection: Feature Selection

<pre>feature_selection.chi2(X, y)</pre>	Compute chi-squared stats between each non-negative feature and class.
<pre>feature_selection.f_classif(X, y)</pre>	Compute the ANOVA F-value for the provided sample.
<pre>feature_selection.f_regression(X, y, *[,])</pre>	Univariate linear regression tests returning F-statistic and p-values.
<pre>feature_selection.r_regression(X, y, *[,])</pre>	Compute Pearson's r for each features and the target.
<pre>feature_selection.mutual_info_classif(X, y, *)</pre>	Estimate mutual information for a discrete target variable.
${\tt feature_selection.mutual_info_regression}(X,y,{}^*)$	Estimate mutual information for a continuous target variable.
4	

17

B. Metode Wrapper

B. Metode Wrapper

- Umumnya berusaha memilih subset-subset dari himpunan fitur secara iteratif, dengan cara membandingkan kinerjanya jika subset fitur tersebut dijadikan input ke algoritma machine learning
- "Kinerja" bisa dihitung dengan akurasi, F1-Score, AUC, dlsb

- Klasifikasi / Regresi / Clustering dilakukan berulang kali
- Kekurangan
 - Karena bersifat (Greedy) Metode Wrapper memiliki komputasi yang tinggi dan cenderung sering terjadi overfitting ketika masuk pada algoritma supervised dan unsupervised Learning.

B. Metode Wrapper: SFFS

- SFS: Sequential Feature Selection
- Varian: Backward, Forward
- SFFS (Sequential Forward Feature Selection)
 - Misal ada 10 fitur (A,B,C,...,J)
 - Kondisi awal: belum ada fitur yang terpilih
 - Lakukan 10 eksperimen (klasifikasi/regresi/clustering) menggunakan satu fitur saja setiap eksperimen. Ambil fitur dengan kinerja tertinggi (misal fitur B)
 - Lakukan 9 eksperimen menggunakan 1 tambahan fitur (BA, BC, ..., BJ), ambil kombinasi fitur yang memberikan kinerja tertinggi.
 - Demikian seterusnya sehingga diperoleh k buah fitur yang diinginkan.
 - Misal kita menginginkan 3 fitur saja, maka jumlah eksperimen yang dilakukan adalah 10 + 9 + 8 = 27 kali
 - Jika kita mencoba semua kemungkinan: C(10,3) = 120 eksperimen
 - Sekuensial: tidak bisa backtrack. Fitur yang sudah terpilih tidak bisa dibuang di langkah selanjutnya

B. Metode Wrapper: SBFS

- SBFS (Sequential Backward Feature Selection)
 - Misal ada 10 fitur (A,B,C,...,J)
 - Kondisi awal: semua fitur terpilih
 - Lakukan 10 eksperimen (klasifikasi/regresi/clustering) menggunakan 9 dari 10 fitur saja setiap eksperimen. Buang fitur yang memberikan kinerja terburuk.
 - Lakukan 9 eksperimen lagi, dengan membuang salah satu fitur di setiap eksperimen. Buang fitur yang memberikan kinerja terburuk
 - Demikian seterusnya sehingga diperoleh k buah fitur yang diinginkan.
 - Sekuensial: tidak bisa backtrack. Fitur yang sudah terbuang tidak bisa dipilih di langkah selanjutnya
 - Untuk mendapatkan 3 fitur, berapa eksperimen yang harus dilakukan?

B. Metode Wrapper di sklearn

sklearn.feature_selection.SequentialFeatureSelector

```
class sklearn.feature\_selection.SequentialFeatureSelector(estimator, *, n\_features\_to\_select='warn', tol=None, direction='forward', scoring=None, cv=5, n\_jobs=None) [source]
```


C. Metode Embedded

C. Metode Embedded

- Kombinasi metode filter dan wrapper. Cepat seperti metode filter dan hasilnya akurat seperti metode wrapper. Seleksi fitur merupakan bagian dari algoritma machine learning itu sendiri.
- "Akurat" dalam pengertian: pengaruh seleksi fitur sudah benar-benar dihitung berdasarkan hasil klasifikas/regresi/clustering (berbeda halnya dengan metode filter).
- Contoh: Decision Tree, Regresi Lasso

C. Metode Embedded: Decision Tree

- Contoh pada slide kuliah sebelumnya, fitur "Suka Popcorn" tidak digunakan di decision tree.
 Mengapa?
- Apakah nilai Gini Index secara tidak langsung "menyeleksi" fitur?

No.	Suka popcorn	Suka Minuman Soda	Umur	Suka "Ice Age"
1	lya	lya	7	Tidak
2	lya	Tidak	12	Tidak
3	Tidak	lya	18	lya
4	Tidak	lya	35	lya
5	lya	lya	38	lya
6	lya	Tidak	50	Tidak
7	Tidak	Tidak	83	Tidak

C. Metode Embedded: Linear Regression

- Output dari linear regression adalah sebuah fungsi dengan bentuk umum $y^* = w_1x_1 + w_2x_2 + w_3x_3 + \cdots + w_nx_n + d$, dengan
- x_1 , x_2 , x_3 , ..., x_n adalah fitur
- w_1 , w_2 , w_3 , ..., w_n adalah koefisien atau bobot yang terkait dengan fitur
- Feature importance bisa langsung diketahui dari koefisien/bobot dari setiap fitur. Semakin besar bobot, semakin penting fitur tersebut.
- Penjelasan lebih lanjut akan dipelajari pada materi tentang Regresi.

Perbedaan Ketiga Metode Seleksi Fitur

Metode Filter

- Use proxy measure
- Fast but not accurate

Metode Wrapper

- Use predictive model
- Accurate but not fast

Metode Embedded

- Selects

 feature during
 model building
- Combine fast and accurate

More Discussion

Feature Selection vs Ablation Study

- Apa perbedaan antara Feature Selection & Ablation Study pada machine learning?
 - Feature Selection: memilih fitur (dari data input) yang dapat memberikan kinerja terbaik.
 - Ablation Study: mempelajari pengaruh modul-modul pada suatu machine learning system terhadap kinerja akhir.

Machine Learning:
What Is Ablation
Study? | Baeldung
on Computer
Science

Bagaimana membandingkan model ML?

- Misalkan kita memiliki 2 atau lebih model ML untuk melakukan klasifikasi terhadap suatu permasalahan. Misalkan: KNN dan CART. Bagaimana menyatakan bahwa satu model lebih baik dari yang lain?
- Apakah cukup hanya dengan melakukan satu kali eksperimen?
- Apakah cukup dengan melakukan k-fold cross validation lalu mengambil reratanya?
- Nilai apa yang perlu dibandingkan? Akurasi, F1-score, sensitivity, specificity, AUC?

Benchmark Dataset

- Seringkali suatu dataset memiliki sistem benchmarking, sehingga dapat membandingkan kinerja suatu model dan model lainnya secara langsung.
- Biasanya model akan diujikan dengan data testing yang sama (yang hanya diketahui oleh pengelola), lalu kinerjanya dievaluasi menggunakan metrik yang sudah ditentukan.
- Jika sudah ada benchmark, maka cukup dibandingkan kinerja model berdasarkan metrik yang sudah ditentukan.
- Model hanya dievaluasi berdasarkan hasil satu kali eksperimen saja.

https://motchallenge.net/results/MOT20/

Multiple Object Tracking Benchmark

⊟ vis

FAQ

people

🖍 sign up

Benchmark Statistics

Tracker	↑ MOTA	IDF1	HOTA	MT	ML	FP	FN	RcII	Prcn	AssA	DetA	AssRe	AssPr	DetRe	DetPr	LocA	FAF	ID Sw.	Frag	Hz
GMOTv2 1. ☑	77.1	74.2	61.5	895 (72.1)	117 (9.4)	43,118	73,849	85.7	91.1	59.3	63.9	66.5	72.2	71.7	76.2	83.7	9.6	1,687	1,884	0.9
BOETrackerV2 2.	74.5	73.7	60.8	792 (63.8)	163 (13.1)	18,070	112,717	78.2	95.7	60.6	61.3	65.9	78.3	65.7	80.4	84.2	4.0	1,401	1,891	14.9
STC pub 3. ○ ✓	73.0	67.6	56.1	833 (67.1)	147 (11.8)	30,880	106,876	79.3	93.0	52.9	59.8	59.5	72.7	65.6	76.9	83.2	6.9	2,172	3,313	1.4
<u>MrMOT</u> 4. ○ ✓	67.7	67.8	53.9	689 (55.5)	162 (13.0)	32,536	131,330	74.6	92.2	52.9	55.1	58.8	71.7	60.5	74.7	81.7	7.3	3,176	8,874	16.9
kalman_pub 5.	67.0	70.2	56.4	592 (47.7)	263	9,685	160,303	69.0	97.4	58.3	54.8	65.0	73.6	57.7	81.4	84.1	2.2	680	1,738	17.7
	Y. Zhang,	P. Sun, Y	′. Jiang, D. \	Yu, F. Wen	g, Z. Yuan	, P. Luo, W. L	iu, X. Wang. B	yteTrack	: Multi-Ob	ject Trackin	ng by Asso	ciating Every	Detection E	ox. In Proce	edings of tl	ne Europea	n Confer	ence on Com	puter Vision	(ECCV), 2022.
OUTrack fm p 6.	65.4	65.1	52.1	615 (49.5)	165 (13.3)	38,243	137,770	73.4	90.8	50.7	53.8	53.9	77.8	59.4	73.6	81.4	8.5	2,885	7,205	5.1

Jika tidak ada benchmark?

- Bagaimana jika kita ingin membandingkan kinerja model yang kita usulkan dengan model peneliti lain yang sudah di publish di jurnal/publikasi lainnya?
 - Pastikan kita menggunakan data training/testing yang sama dengan peneliti lain
 - Jika informasi tersebut tidak ada, lakukan eksperimen ulang menggunakan data yang sama, dengan k-fold cross validation.

J. Zheng et al.

ISPRS Journal of Photogrammetry and Remote Sensing 173 (2021) 95-121

Table 4

The F1-score of other state-of-the-art tree crown detection methods in Site 1.

Growing status observation for oil palm trees using Unmanned Aerial Vehicle (UAV) images

Method	Healthy palm	Dead palm	Mismanaged palm	Smallish palm	Yellowish palm	Average F1-score
RF	79.05%	0.46%	0.00%	37.50%	12.91%	25.98%
SVM	77.47%	0.00%	0.00%	33.45%	5.03%	23.19%
CNN (ResNet-101)	74.76%	7.33%	2.86%	35.93%	19.26%	28.03%
Faster R-CNN	90.46%	6.47%	42.48%	65.76%	73.54%	55.74%
Grid R-CNN	90.62%	13.37%	41.82%	66.14%	69.22%	56.23%
GA Faster R-CNN	88.60%	15.67%	54.70%	61.52%	71.18%	58.33%
Cascade R-CNN	91.22%	36.36%	40.00%	64.48%	71.46%	60.71%
Libra Faster R-CNN	91.00%	30.54%	55.74%	65.17%	69.87%	62.46%
MOPAD (ours)	91.10%	55.28%	51.76%	77.06%	88.92%	72.83%

Uji Statistik

- Misalkan model kita berhasil mencapai rerata kinerja 76%, sedangkan model lain memperoleh kinerja 74%, apakah kita dapat mengatakan model kita lebih baik secara signifikan?
 - Perlu lakukan uji statistik
 - Yang ingin diuji adalah rerata kinerjanya (akurasi atau F1-score, sensitivity, dlll),
 - Variansi populasi tidak diketahui, hanya variansi sampel (hasil eksperimen) yang diketahui
 - Gunakan t-test

t - test

Tahapan t-test adalah sebagai berikut:

- 1. Buat hipotesa H₀ dan H₁
- 2. Tentukan level of significance yang ingin digunakan, dapatkan daerah tolak H₀ dan terima H₀
- 3. Hitung test-score dari data kita
- Bandingkan apakah test score tersebut berada di daerah tolak atau terima H₀
- 5. Buat kesimpulan

Badu sedang mengembangkan algoritma sorting baru. Untuk menguji kinerja algoritma yang dikembangkannya, Badu membandingkannya dengan algoritma merge-sort. Badu merasa yakin bahwa algoritma yang dikembangkannya tersebut lebih baik daripada algoritma merge-sort.

Badu melakukan beberapa kali percobaan terhadap algoritma yang dikembangkannya dan juga algoritma *merge-sort*. Berikut ini adalah data *response time* yang dicatat Badu untuk kedua algoritma tersebut.

Eksperimen Ke-	Response Time Algoritma Badu (ms)	Response Time Algoritma Merge-Sort (ms)
1	100	150
2	200	250
3	100	100
4	250	200
5	450	500
6	350	275
7	450	450
Rerata	271,43	275,00

Dengan memperhitungkan data tersebut dan asumsi bahwa variansi kedua populasi sama, tentukan apakah secara statistik algoritma baru yang dibuat Badu memiliki kinerja yang sama dengan algoritma merge-sort, atau malah lebih baik dari algoritma merge-sort tersebut? Gunakan level of significance 0.1.

Tahap 1: Buat hipotesa H0 dan H1

H₀: mean response time algoritma Badu sama dengan algoritma merge sort. ($\mu_{Badu} = \mu_{MS}$ atau $\mu_{Badu} - \mu_{MS} = 0$)

H₁: mean response time algoritma Badu lebih cepat dari algoritma merge sort. ($\mu_{Badu} < \mu_{MS}$ atau $\mu_{Badu} - \mu_{MS} < 0$)

Alternatif H₀ karena yang dipakai adalah one-tailed:

H₀: mean response time algoritma Badu tidak lebih cepat dari algoritma merge sort. ($\mu_{Badu} \geq \mu_{MS}$ atau $\mu_{Badu} - \mu_{MS} \geq 0$)

<u>Tahap 2:</u> Tentukan *level of significance* yang ingin digunakan, dapatkan daerah tolak/terima H₀ Dari soal, diminta *level of significance* adalah 0.1.

Jumlah data adalah 7, sehingga degree of freedom (df) adalah n+m-2=7+7-2=12.

m adalah jumlah data pada dataset 1 dan n adalah jumlah data pada dataset 2.

Dalam hal ini kebetulan sama yaitu 7.

				t-test table				
cum. prob one-tail	t.50 0.50	t.75 0.25	t.80 0.20	t.85 0.15	t.90 0.10	t _{.95}	t _{.975}	
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	
df 1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	
2	0.000	0.765	0.978	1.250	1.638	2.353	3.182	
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	

Tahap 3: Hitung test-score (TS) dari data kita

Set Data Ke-	Response Time Algoritma Badu (ms)	Response Time Algoritma Merge-Sort (ms)				
1	100	150				
2	200	250				
3	100	100				
4	250	200				
5	450	500				
6	350	275				
7	450	450				
Rerata	271,43	275,00				
Std Deviasi	149,60	149,30				
Variansi	22380,95	22291,67				

$$TS = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{S_p^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \qquad S_p^2 = \frac{(n-1)S_1^2 + (m-1)S_2^2}{n+m-2}$$

$$S_p^2 = \frac{6(22380,95) + 6(22291,67)}{7 + 7 - 2} = 22336,31$$

Pada eksperimen kita, variansi populasi tidak diketahui, tapi diasumsikan sama (anggap saja sama-sama σ^2) S_p^2 disebut dengan **pooled estimator** untuk σ^2 .

$$TS = \frac{271,43 - 275}{\sqrt{22336,31\left(\frac{1}{7} + \frac{1}{7}\right)}} = \frac{-3,57}{79,89} = -0,00471$$

Tahap 4: Bandingkan apakah test score tersebut berada di daerah tolak atau

Tahap 5: Buat kesimpulan

Karena TS > -1.356, maka tidak terdapat cukup bukti untuk mendukung klaim bahwa algoritma Badu lebih cepat daripada algoritma MS pada *level of significance* 0.1

TERIMA KASIH