## Time and space complexity Assignment

Question 1. Analyze the time complexity int sum = 0; for (int i = 1; i  $\leq$  n; i $\leftrightarrow$ ) { for (int j = 1; j  $\leq$  1; j $\leftrightarrow$ ) { sum +: j uestion 2: Find the value of T(2) for the recurr Question 3: Given a recurrence relation, solve it using a substitution method. Relation: T(n) = T(n-1) + c

Question 6. T(n) = 2T(n/2) + K, Solve using Recurrence tree method.

Ans 1.— Time Complexity of the following Java Code is - 
$$O(n^2)$$
. Whe can veduce the time Complexity of it to -  $O(1)$ 

public class SumCalculator {
public static void main(String[] angsl {
 int n = 10;
 int sum = calculateSum(n);
 System.out.println("The sum is:" + sum);
}

Ans 2 - T(2)

$$T(n) = 3T(n-1)+12n$$
  
 $T(1) = 3T(1-1)+12x1$ 

$$T(2) = 3T(2-1) + 12X2$$
  
=  $3T(1) + 2Y$   
=  $3X27 + 2Y$   
=  $81 + 2Y$   
=  $105$ 

T(2) = 105

Ans 3- Relation: 
$$T(n) = T(n-1) + C$$

$$T(n) = T(n-2) + 2C$$

$$T(n-2) = T(n-2-1) + C$$
  
 $T(n-2) = T(n-3) + C$ 

$$T(n) = T(n-3) + 3C$$

$$K$$
-  $S$ +e $p$ 

$$T(n) = T(n-K) + 3K$$

Base Case: -

$$T(n) = T(0) + nC$$

this is first case

Ans 5:- 
$$T(n) = 2T(\frac{n}{2}) + n$$

" 
$$T\left(\frac{\eta}{2}\right) + T\left(\frac{\eta}{2}\right) + \eta$$



$$T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + \eta$$



$$2^{i} \times \underline{N} = N$$

$$\frac{n}{2^{i}} = 1$$
, i.e.,  $n = 2^{i}$ .

Eg: 
$$T(n) = 2T(Y_2) + \frac{n^2}{2}$$

$$T(n) = T(\frac{n}{2}) + T(\frac{n}{2}) + \frac{n^2}{2}$$
(est



Ans 6- 
$$T(n) = 2T\left(\frac{n}{2}\right) + K$$

Level-0 
$$T(n) = 2T(\frac{n}{2}) + K$$
 Cost = K

Level-1 
$$T\left(\frac{n}{2}\right) = 2T\left(\frac{m}{4}\right) + K$$
 Cost = 2K

Level - 2 
$$T\left(\frac{n}{4}\right) = 2T\left(\frac{n}{8}\right) + K$$
 Cost=4K

Level - 
$$\hat{i}$$
 —  $cost$   $2^{i} \times k$ 

$$\frac{h}{2^{i}} = 1 \quad \Rightarrow \quad n = 2^{i}$$

$$\hat{i} = \log_{2} n$$

Total Cost = 
$$KK (1+2+4+....+2^{\log n})$$
  
 $G.P. - a(r^n-1)$  Here  $r=2$ .

$$= K \times \left( \sqrt{2 \log_{10} - 1} \right) \approx K \times N$$