$$= \sum_{i=1}^{n} \operatorname{depth}_{T}(k_{i}) \cdot p_{i} + \sum_{i=1}^{n} p_{i}$$

$$= 1 + \sum_{i=1}^{n} \operatorname{depth}_{T}(k_{i}) \cdot p_{i} \qquad \text{(since probabilities sum to 1)} \qquad (*)$$

[Keep equation (*) on board.]

[Similar to optimal BST problem in the textbook, but simplified here: we assume that all searches are successful. Textbook has probabilities of searches between keys in tree.]

Example

i	$depth_T(k_i)$	$depth_T(k_i) \cdot p_i$
1	1	.25
2	0	0
3	2	.1
4	1	.2
5	2	.6
		1.15

Therefore, E[search cost] = 2.15.

i	$depth_T(k_i)$	$depth_T(k_i) \cdot p_i$
1	1	.25
2	0	0
3	3	.15
4	2	.4
5	1	.3
		1 10

Therefore, E[search cost] = 2.10, which turns out to be optimal.