VECTORES EN Rⁿ

TRABAJO PRÁCTICO Nº 1

Enlace al software GeoGebra: https://www.geogebra.org/classic?lang=es-AR 1. Dados los puntos A(2,-3), B(3,-4) y C(-2,5) en R^2 : a. Determinar las componentes de los vectores \overrightarrow{AB} , \overrightarrow{BA} , \overrightarrow{CB} , \overrightarrow{BC} , y representarlos gráficamente. b. Encontrar las coordenadas del punto D, para que: i. \overrightarrow{AD} sea equipolente al vector (5,2) ii. \overrightarrow{DB} sea equipolente al vector (-4,3)iii. \overrightarrow{AB} y \overrightarrow{CD} sean iguales iv. $(\overrightarrow{AD} + \overrightarrow{BD})$ sea equipolente al vector (9,3) v. $2.\overrightarrow{DB}$ sea opuesto al vector (2, -4)Verificar los resultados del inciso a) en Geogebra: Sugerencia: Ingresar los puntos (origen y extremo) desde la barra de entrada y determinar el vector usando la herramienta o comando Vector. Verificar el resultado del inciso b) i. en Geogebra: Sugerencia: Ingresar el origen (punto A) y el vector $\vec{u} = (5,2)$ desde la barra de entrada, y determinar el vector equipolente \overrightarrow{AD} usando la herramienta *Equipolente*. 2. Dados los puntos A(1,-2,4), B(-2,3,-4) y C(4,-2,3) en \mathbb{R}^3 : a. Determinar las componentes de los vectores \overrightarrow{AB} , \overrightarrow{BA} , \overrightarrow{CB} , \overrightarrow{BC} , y representarlos gráficamente. b. Encontrar las coordenadas del punto *D*, para que: i. \overrightarrow{AD} sea equipolente al vector (3, 5, 4) ii. \overrightarrow{DB} sea equipolente al vector (2, -4, 5)iii. \overrightarrow{AC} y \overrightarrow{DA} sean iguales iv. $(\overrightarrow{AD} + \overrightarrow{BD})$ sea equipolente al vector (-5, 9, 6)v. $-3.\overrightarrow{DB}$ sea opuesto al vector (3, -3, 6)Verificar los resultados del inciso a) en Geogebra: Sugerencia: Ingresar los puntos (origen y extremo) desde la barra de entrada y determinar el vector usando la herramienta o comando Vector. Verificar el resultado del inciso b) i. en Geogebra: Sugerencia: Ingresar el origen (punto A) y el vector $\vec{u} = (3,5,4)$ desde la barra de entrada, y determinar el vector equipolente \overrightarrow{AD} usando la herramienta *Equipolente*.

3. Dados los vectores $\vec{u} = (-1,3)$; $\vec{v} = (2,4)$ y $\vec{w} = (3,-5)$; resolver gráficamente y verificar el resultado en forma analítica:

a)
$$\vec{u} + \vec{v} =$$

b)
$$\vec{u} - \vec{v} =$$

c)
$$\vec{u} + \vec{v} + \vec{w} =$$

$$d) \ 3\vec{u} + 2\vec{v} =$$

b)
$$\vec{u} - \vec{v} = c$$
) $\vec{u} + \vec{v} + \vec{w} = d$) $3\vec{u} + 2\vec{v} = e$) $2\vec{v} - \frac{1}{2}\vec{w} = e$

- Verificar los resultados en Geogebra: Sugerencia: Ingresar los vectores y las operaciones desde la barra de entrada.
- 4. Sean $\vec{u} = -2i + 2j$; $\vec{v} = 5i 4j$ y $\vec{w} = (-3, 4)$; calcular:

a)
$$\vec{u} \cdot (\vec{v} \cdot \vec{w})$$

b)
$$(\vec{u} \cdot \vec{v}) \cdot \vec{w}$$

c)
$$(\vec{u} + \vec{v}) \cdot \vec{w}$$

d)
$$\vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$$

e)
$$\|\vec{u} + \vec{v}\|^2$$

e)
$$\|\vec{\mathbf{u}} + \vec{\mathbf{v}}\|^2$$
 f) $\|\vec{\mathbf{u}}\|^2 + \|\vec{\mathbf{v}}\|^2 + 2 \cdot (\vec{\mathbf{u}} \cdot \vec{\mathbf{v}})$ g) $\frac{1}{\|\vec{\mathbf{w}}\|} \cdot \vec{\mathbf{w}}$ h) $\|\frac{1}{\|\vec{\mathbf{w}}\|} \cdot \vec{\mathbf{w}}\|$

g)
$$\frac{1}{\|\overrightarrow{w}\|} \cdot \overrightarrow{w}$$

h)
$$\left\| \frac{1}{\|\overrightarrow{w}\|} \cdot \overrightarrow{w} \right\|$$

i)
$$\|\vec{u}\| \cdot (3.\vec{v} + \vec{w})$$

j)
$$\|2\vec{\mathbf{u}} + \vec{\mathbf{v}}\| \cdot (\vec{\mathbf{w}} \cdot \vec{\mathbf{u}})$$
 k) $(\|\vec{\mathbf{u}}\| \cdot \vec{\mathbf{v}}) \cdot \vec{\mathbf{w}}$

k)
$$(\|\vec{\mathbf{u}}\| \cdot \vec{\mathbf{v}}) \cdot \vec{\mathbf{w}}$$

- Verificar el resultado del inciso j) en Geogebra: Sugerencia: Ingresar los vectores y las operaciones desde la barra de entrada. Usar los comandos Longitud y ProductoEscalar para calcular el módulo y el producto escalar, respectivamente.
- 5. Sean $\vec{u} = (4, -2, 4)$; $\vec{v} = i 2j + 2k$ y $\vec{w} = 3i + 4j 2k$; calcular:

a)
$$\vec{w} \cdot (\vec{u} - \vec{v})$$

b)
$$\vec{w} \cdot \vec{u} - \vec{w} \cdot \vec{v}$$

c)
$$(\vec{w} \cdot \vec{w}) \cdot (\vec{u} \cdot \vec{v})$$

b)
$$\overrightarrow{w} \cdot \overrightarrow{u} - \overrightarrow{w} \cdot \overrightarrow{v}$$
 c) $(\overrightarrow{w} \cdot \overrightarrow{w}) \cdot (\overrightarrow{u} \cdot \overrightarrow{v})$ d) $||\overrightarrow{w}||^2 \cdot (\overrightarrow{u} \cdot \overrightarrow{v})$

e)
$$\frac{1}{\parallel \vec{u} \parallel} \cdot \vec{u}$$

f)
$$\left\| \frac{1}{\|\vec{u}\|} \cdot \vec{u} \right\|$$

g)
$$-3.(\vec{v}-8\vec{w})$$

f)
$$\left\| \frac{1}{\|\vec{u}\|} \cdot \vec{u} \right\|$$
 g) $-3 \cdot (\vec{v} - 8\vec{w})$ h) $\|\vec{u} - \vec{v}\| \cdot (\vec{u} \cdot \vec{w})$

i)
$$5.(\vec{u} \cdot \vec{v}).\vec{w}$$

j)
$$\|\vec{u}\| + \|\vec{v}\|$$

k)
$$(2.\vec{u} - 3.\vec{v}) \cdot \vec{w}$$

- 6. Dados los vectores $\vec{u} = (2,4)$; $\vec{v} = (-3,4)$; $\vec{w} = 6i 8j$:
 - a) Calcular el ángulo determinado por \vec{u} y \vec{v} ; y el determinado por \vec{w} y \vec{v}
 - b) Determinar cuáles de los siguientes vectores: (-4,2); (-1,-2); 3i+6j; son paralelos a \vec{u}
 - c) Determinar cuáles de los siguientes vectores: $(2,\frac{3}{2})$; (-4,-3); 3i-6j; son perpendiculares a \vec{w}
 - d) Hallar un vector unitario paralelo a \vec{u}
 - e) Encontrar un vector de igual dirección y sentido que \vec{v} y de módulo 4
 - f) Encontrar un vector de módulo 6 con las misma dirección y sentido opuesto que $\overrightarrow{\mathbf{w}}$
- Verificar el resultado de los incisos a), b) y c) en Geogebra: Sugerencia: Ingresar los vectores desde la barra de entrada. Usar los comandos Longitud, Ángulo, ProductoEscalar.
- 7. Dados los vectores $\vec{u} = (2, 4, 1)$; $\vec{v} = (3, -1, -2)$; $\vec{w} = 2i 2j + k$:
 - a) Calcular el ángulo determinado por \vec{u} y \vec{v} y el determinado por \vec{w} y \vec{v}
 - b) Determinar cuáles de los siguientes vectores: (-4, 8, -2); (-4, -8, -2); (3i + 6j + 2i) $\frac{3}{2}$ k, son paralelos a \vec{u}
 - c) Determinar cuáles de los siguientes vectores: (-4, -2, 4); (0, -1, 2); 3i + 6j + 6k,

son perpendiculares a \vec{w}

- d) Hallar un vector unitario paralelo a \vec{w}
- e) Encontrar un vector de igual dirección y sentido que \vec{v} y de módulo 4
- f) Encontrar un vector de módulo 6 con la misma dirección y sentido opuesto que \overrightarrow{w}
- 8. Sean los vectores $\vec{u} = (2, 3, -1)$; $\vec{v} = (2, -2, 0)$ y $\vec{w} = (-2, 4, 1)$; calcular:

a)
$$(\vec{u} \times \vec{v}) + (\vec{v} \times \vec{u})$$

b)
$$\vec{u} \times (\vec{v} + \vec{w})$$

c)
$$\vec{u} \times \vec{v} + \vec{u} \times \vec{w}$$

d)
$$\vec{u} \times (\vec{v} \times \vec{w})$$

e)
$$(\vec{u} \times \vec{v}) \times \vec{w}$$

f)
$$(\vec{u} \times \vec{v}) - 2.\vec{w}$$

g)
$$\vec{u} \cdot (\vec{v} \times \vec{w})$$

h)
$$(\vec{u} \times \vec{v}) \cdot \vec{w}$$

i)
$$\vec{v} \cdot (\vec{w} \times \vec{w})$$

- Verificar el resultado del inciso b), c), f) y h) en Geogebra: Sugerencia: Ingresar los vectores y las operaciones desde la barra de entrada. Usar los comandos *ProductoEscalar* y *ProductoVectorial*.
- 9. Sean los vectores $\vec{u} = 2i j + 3k$; $\vec{v} = (2, -2, 0)$ y $\vec{w} = -2i + 3j + k$; determinar:
 - a) El área del paralelogramo y del triángulo que tienen por lados los vectores \vec{u} y \vec{v}
 - b) El área del paralelogramo y del triángulo que tienen por lados los vectores \vec{w} y \vec{v}
 - c) El volumen del paralelepípedo que tiene como aristas los vectores \vec{u} , \vec{v} y \vec{w}
 - d) El volumen del paralelepípedo que tiene como aristas los vectores \vec{u} , $\vec{v}\,$ y el versor í
 - e) Si los vectores \vec{u} , \vec{v} y (2, -3, -3) son coplanares
- Verificar el resultado del inciso a), c) y e) en Geogebra: Sugerencia: Ingresar los vectores y las operaciones desde la barra de entrada. Usar los comandos *Longitud*, *ProductoEscalar y ProductoVectorial*.

$m VECTORES~EN~R^n$

TRABAJO PRÁCTICO Nº 2

- Enlace al software GeoGebra: https://www.geogebra.org/classic?lang=es-AR
- 1) Sabiendo que $\|\vec{a}\| = 4$; $\|\vec{b}\| = 5$ y el ángulo entre \vec{a} y \vec{b} es $\alpha = \frac{\pi}{3}$, calcular:
 - a) $\vec{a} \cdot \vec{a} =$

b) $\vec{b} \cdot \vec{b} =$

c) $\vec{b} \cdot (3.\vec{b}) =$

- d) $(\vec{a} + \vec{b}) \cdot \vec{b} =$ e) $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b}) =$
- f) $\|\vec{a} + \vec{b}\|^2 =$
- 2) Calcular el valor de los parámetros $x, y \in \mathbb{R}$, según corresponda en cada caso, para
 - a) Se cumpla la igualdad: (-8, -2) = x(5, -4) + y(-2, 3)
 - b) Los vectores $\vec{u} = xi + j$ $\vec{v} = 4i 3j$ sean paralelos
 - c) El vector $\vec{u} = (x, y)$ sea perpendicular al vector $\vec{v} = (3, -4) y ||\vec{u}|| = 1$
 - d) Los vectores $\vec{a}=(1,0,1)$ y $\vec{b}=(x,y,0)$ formen un ángulo de 45°, y $\|\vec{b}\|=2$
 - e) El vector $\vec{w} = (x, -2, 2y, 2)$ sea paralelo a $(\vec{v} + \vec{u})$, siendo $\vec{u} = (2, 0, -1, -1)$ y $\vec{v} =$ (3, 1, -2, 0)
 - f) Los vectores de R⁴: $\vec{u} = (2, -x, -3, 1)$ y $\vec{v} = (x^2, 2, x, -3)$ sean perpendiculares
 - g) El ángulo formado por los vectores $\vec{a}=(1,-2,4,2)$ y $\vec{b}=(1,0,x,0)\in\mathbb{R}^4$ sea de 45°
- 3) Sean los vectores $\vec{u} = (\alpha 2, 6 \alpha)$ y $\vec{v} = (1, \alpha)$, encontrar, si es posible, los valores de $\alpha \in \mathbb{R}$ tal que:
 - a) $\|\vec{u}\| = \|\vec{v}\|$
- b) $\vec{u} \cdot \vec{v} = 8$
- c) $2\vec{u} + 3\vec{v} = (3, 14)$

- d) \vec{u} // \vec{v}
- e) $(\vec{u} + \vec{v}) \perp \vec{v}$
- 4) Dados los vectores $\vec{a} = (-9,3,2)$ y $\vec{b} = (12,-4,x)$, calcular, si es posible, los valores de $x \in \mathbb{R}$ tal que:
 - a) $\frac{1}{4}\vec{b} + 2\vec{a} = -5(3, -1, -1)$ b) $\vec{a} // \vec{b}$ c) $(\vec{a} + \vec{b}) \perp \vec{a}$

d) $\vec{a} \cdot \vec{b} = -100$

- e) $\vec{a} \times \vec{b} = 2i + 6i$
- f) El área del paralelogramo formado por \vec{a} y \vec{b} sea igual a $\sqrt{10}$ [ul]²
- g) El volumen del paralelepípedo formado por \vec{a} , \vec{b} y $\vec{c} = (2, 2, 0)$ sea igual a 16 [ul]³
- Verificar los resultados con Geogebra: Sugerencia: Ingresar los vectores desde la entrada. Usar los comandos: Ángulo, Longitud, ProductoEscalar, ProductoVectorial.

- 5) Dados los vectores $\vec{u} = (2, 1, 2)$ y $\vec{v} = (-3, 4, 1)$, encontrar, de ser posible, un vector \vec{w} de manera que:
 - a) Se cumpla la siguiente relación: $2\vec{w} + \vec{u} \vec{v} = 4\vec{w} + 3\vec{v}$
 - b) Se encuentre en el plano XZ y $\vec{u} \times \vec{w} = \vec{v}$
 - c) Sea perpendicular a \vec{u} y \vec{v} , y $\vec{w} \cdot (2, -2, 1) = -13$
 - d) Sea coplanar con \vec{u} y \vec{v} , se encuentre sobre el plano XY y $\vec{u} \cdot \vec{w} = -9$
 - e) Se encuentre en el plano YZ, el ángulo formado por \vec{u} y \vec{w} sea igual a $\frac{\pi}{2}$ y $||\vec{w}|| = \sqrt{20}$
 - f) Sea paralelo a $\vec{u} + \vec{v} y ||\vec{w}|| = 2\sqrt{35}$
- 6) Sean los puntos A(1,2,0), B(1,2,2), C(2,1,-1), D(2,1,0) y E(x,-1,-3), determinar:
 - a) El valor de x para que los puntos A, C y E resulten colineales
 - b) Si los puntos A, B, C y D son coplanares
 - c) De ser posible, el área del cuadrilátero que tiene como vértices los puntos A, B, C y D
 - d) El valor de $x \in \mathbb{R}$ para que el área del paralelogramo formado por los vectores \overrightarrow{AB} y \overrightarrow{AE} sea igual a 6 [ul]².
 - e) El valor de $x \in \mathbb{R}$ para que el volumen del paralelepípedo formado por los vectores \overrightarrow{AB} , \overrightarrow{AC} y \overrightarrow{AE} sea igual a 2 [ul]³
 - f) El valor de $x \in \mathbb{R}$ para que los puntos A, B, C y E resulten coplanares.

Verificar los resultados con Geogebra: Sugerencia: Ingresar los puntos desde la barra de entrada. Usar los comandos: Recta, Plano, Polígono, Área, Vector, Longitud, ProductoEscalar, ProductoVectorial.

- 7) Dada la pirámide de base ABCD y vértice E, con A(1,0,0); B(2,1,0); C(0,1,0); D(-1,0,0) y E(1,1,4); hallar:
 - a) El área de la cara ABE
 - b) El área de la base
 - c) El volumen de la pirámide
 - d) El valor de la altura

Verificar los resultados con Geogebra: Sugerencia: Ingresar los puntos desde la barra de entrada. Usar los comandos: *Polígono, Área, Pirámide, Vector, Longitud, ProductoEscalar, ProductoVectorial.*

EJERCICIOS DE APLICACIÓN

- 1) Una fábrica produce cinco artículos: pantalones, camperas, camisas, remeras y bermudas. La demanda diaria está dada por el vector demanda $\vec{d} = (80, 50, 85, 70, 60)$. El precio por unidad de cada artículo está representado por el vector precio $\vec{p} = (\$300, \$650, \$200, \$150, \$180)$. Si se cubre toda la demanda, ¿cuánto dinero recibe la fábrica en el lapso de 15 días?
- 2) El equipo olímpico de gimnasia artística de Argentina, con 6 miembros, participó este año en tres competencias internacionales. Si las calificaciones obtenidas en las competencias están representadas por los vectores $\vec{u} = (8, 9, 7, 9, 8, 7), \vec{v} = (10, 9, 10, 9, 8, 10)$ y $\vec{w} = (8, 8, 9, 7, 9, 8),$ determinar el vector promedio de las calificaciones.
- 3) Una empresa que fábrica muebles tiene dos plantas, y en cada una se fabrican sillas de madera y metal. La producción diaria de sillas de ambos materiales de la primera planta está dada por el vector $\overrightarrow{p_1} = (120,90)$, y de la segunda por el vector $\overrightarrow{p_2} = (80,50)$. ¿Cuántos días necesita cada planta para que la empresa cubra una demanda representada por el vector $\overrightarrow{d} = (720,510)$?

AUTOEVALUACIÓN TEÓRICO-PRÁCTICA: VECTORES

- 1. Marcar con tinta, en la casilla correspondiente, las opciones correctas en cada uno de los enunciados.
- a) Con los puntos P(2,3,2) y Q(6,-3,4) se puede formar el vector

$\vec{v} = (-4, 6, -2)$	A
$\vec{v} = (4, 6, 2)$	В

y para que \overrightarrow{QP} sea perpendicular al vector (2,3,x), x debe ser

er	<i>x</i> = 5	С
	x = -13	D

b) Dados $\vec{u}=(1,0,2)$, $\vec{v}=(2,1,0)$ y $\vec{w}=(3,1,2)$, entonces $\vec{u}\times\vec{v}$ es igual a

(1,4,-2)	A
(-2,4,1)	В

, además \vec{u} , \vec{v} y \vec{w} son

coplanares	С
no coplanares	D

c) Sea el vector $\vec{u}=(u_1,u_2)$ y $\lambda \in \mathbb{R}$, si $\overrightarrow{\lambda u}=\vec{0}$, entonces

$\lambda = 0 \ y \vec{u} = \vec{0}$	A	, además $\overrightarrow{\lambda u}$ cumple
$\lambda = 0 \text{ \'o } \vec{u} = \vec{0}$	В	, ademas na campio

con la Ley de Composición

Externa	С
Interna	D

d) El área del paralelogramo formado por los vectores $\overrightarrow{u},\overrightarrow{v}\in\mathbb{R}^3$ e

s	$\frac{ \overrightarrow{u}\times\overrightarrow{v} }{2}$	A	, además $\overrightarrow{u}//\overline{v}$
	$ \overrightarrow{u} \times \overrightarrow{v} $	В	

si se cumple que

$\overrightarrow{u} \times \overrightarrow{v} = \overrightarrow{0}$	С
$\overrightarrow{u} \times \overrightarrow{v} = 0$	D

- 2. Completar con la respuesta que corresponda. Las respuestas deben escribirse con tinta
 - a) El volumen del paralelepípedo formado por los vectores (-2, 0, -2); (0, 3, -3) y (1, -3, 1) es: Vol =.....[ul]³.
 - b) Dado el vector $\vec{u}=(2,-4,2)$, un vector unitario y paralelo a \vec{u} , es:
 - c) Sean los vectores $\vec{u} = (1,0,m)$ y $\vec{v} = (2,0,3m)$, los valores de "m" para que el área del paralelogramo que ellos determinan sea igual a 3[ul]², son: m =
 - d) Dado el vector $\vec{v}=(a\,,b)$, entonces un vector \vec{u} , unitario y con la misma dirección de \vec{v} , es: $\vec{u}=(\ldots,\ldots,\ldots)$
 - e) El área del triángulo cuyos lados son los vectores \vec{u} y $\vec{v} \in \mathbb{R}^3$, está dada por:.....
- 3. Escribir, con tinta, la letra correspondiente a la respuesta correcta. Si ninguna es, escribir una N.
 - a) Los valores de m y n para que los vectores $\vec{u} = (2, m, -4)$ y $\vec{w} = (-4, 10, n)$ sean paralelos,

son:

A)
$$m = 5$$

 $n = -8$

B)
$$m = 5$$

C)
$$m = 8$$

A)
$$m = 5$$

 $n = -8$
B) $m = 5$
 $n = 8$
C) $m = 8$
D) $m = -5$
 $n = 8$

b) Dados $\vec{r} = (3, p, 1)$ y $\vec{v} = (q, 3, 3)$, los valores de "p" y "q" para que sean perpendiculares y para que $\vec{r} + \vec{v} = (4, 1, 4)$ son:

A)
$$p = 2$$

 $q = 1$

C)
$$p = -2$$

$$D) \quad \begin{array}{l} p = 2 \\ a = 2 \end{array}$$

c) Un vector \vec{w} perpendicular a los vectores $\vec{u} = (1, 0, 3)$ $\vec{v} = (2, 3, 9)$, es:

A)
$$\vec{w} = (3, 3, 12)$$

B)
$$\vec{w} = (-1, -3, -6)$$

A)
$$\vec{w} = (3, 3, 12)$$
 B) $\vec{w} = (-1, -3, -6)$ C) $\vec{w} = (-9, -3, 3)$ D) $\vec{w} = (2, 0, 27)$

D)
$$\vec{w} = (2, 0, 27)$$

d) Dados los vectores $\vec{u}=(u_1,\ u_2)\ y\ \vec{v}=(v_1,\ v_2)$, entonces $\vec{u}\ //\ \vec{v}$ si y sólo si:

$$A) u_1. v_1 = u_2. v_2$$

A)
$$u_1.v_1 = u_2.v_2$$
 B) $u_1.u_2 = v_1.v_2$ C) $u_1.v_2 = u_2.v_1$

C)
$$u_1.v_2 = u_2.v_1$$

$$D) u_1. v_2 = v_2. u_1$$

e) Sea el vector \vec{u} y el vector $\lambda \vec{u}$, λ escalar no nulo, entonces se cumple que:

A)
$$\overrightarrow{u} \perp \lambda \overrightarrow{u}$$

B)
$$\overrightarrow{u} \parallel \lambda \overrightarrow{u}$$

C) El sentido de
$$\lambda \vec{u}$$
 es opuesto al de \vec{u}

D)
$$\lambda \vec{u}$$
 y \vec{u} tienen el mismo sentido