Cipher Systems, Inc.

URMA-2450

Report No. CIPH0016 Rev 01

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2009Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: February 11, 2009 Cipher Systems, Inc. Model: URMA-2450

Emissions				
Test Description	Specification	Test Method	Pass/Fail	
Spurious Radiated Emissions	FCC 15.247 (DTS):2009	ANSI C63.4:2003 KDB No. 558074	Pass	
Occupied Bandwidth	FCC 15.247 (DTS):2009	ANSI C63.4:2003 KDB No. 558074	Pass	
Output Power	FCC 15.247 (DTS):2009	ANSI C63.4:2003 KDB No. 558074	Pass	
Band Edge Compliance	FCC 15.247 (DTS):2009	ANSI C63.4:2003 KDB No. 558074	Pass	
Spurious Conducted Emissions	FCC 15.247 (DTS):2009	ANSI C63.4:2003 KDB No. 558074	Pass	
Power Spectral Density	FCC 15.247 (DTS):2009	ANSI C63.4:2003 KDB No. 558074	Pass	
AC Powerline Conducted Emissions	FCC 15.207:2009	ANSI C63.4:2003	Pass	

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-2).

Approved By:

Dean Ghizzone, President

RAJVKI

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision 05/05/03

Revision Description	Date	Page Number
----------------------	------	-------------

01	Updated to reflect new modules	2/12/09	2, 10
01	Better defined Functional Description	2/12/09	7
01	New modules were done to reflect the new testing	2/12/09	18-45

EMC

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (*Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2*)

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC: Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Rev 11/17/06

Party Requesting the Test

Company Name:	Cipher Systems, Inc.	
Address:	1800 NW 169th Place Suite B-100	
City, State, Zip:	Beaverton, OR 97006	
Test Requested By:	Carl VanWormer	
Model:	URMA-2450	
First Date of Test:	November 24, 2008	
Last Date of Test:	February 11, 2009	
Receipt Date of Samples:	November 24, 2008	
Equipment Design Stage:	Preproduction	
Equipment Condition:	No Damage	

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

Digital Transmission System (DTS) radio using a PCB Inverted-F antenna. There is only one data rate of 250kbps.

Testing Objective:	
Seeking modular approval under 15.247.	

Configurations

Revision 9/21/05

CONFIGURATION 1 CIPH0016

Software/Firmware Running during test	
Description	Version
Hyperterminal	5.1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT - DTS Radio Module	Cipher Systems, Inc.	URMA-2450	1016
EUT - DTS Radio Module	Cipher Systems, Inc.	URMA-2450	1014

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
Test Board	Cipher Systems, Inc.	None	None
TTL Converter	B & B Electronics	232LPTTL33	None
Host PC	Dell	Latitude D520	73WN581
AC Adapter	CUI, Inc.	EPS050100-P6P	None

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Serial	Yes	1.0m	No	Host PC	TTL Converter
DC Power	PA	1.8m	PA	Test Board	AC Adapter
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 1 CIPH0017

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT - DTS Radio Module	Cipher Systems, Inc.	URMA-2450	1015

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
Test Board	Cipher Systems, Inc.	None	None
TTL Converter	B & B Electronics	232LPTTL33	None
AC Adapter	CUI, Inc.	EPS050100	None

Remote Equipment Outside of Test Setup Boundary			
Description Manufacturer Model/Part Number Serial Number			
Host PC	Dell	Latitude D520	73WN581

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power	PA	1.8m	PA	Test Board	AC Adapter
Serial	Yes	5.0m	No	Host PC	TTL Converter
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Revision 9/21/05

CONFIGURATION 2 CIPH0017

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
EUT - DTS Radio Module	Cipher Systems, Inc.	URMA-2450	1015		

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
Test Board	Cipher Systems, Inc.	None	None		
TTL Converter	B & B Electronics	232LPTTL33	None		
AC Adapter	CUI	DV-51AAT	None		

Remote Equipment Outside of Test Setup Boundary				
Description Manufacturer Model/Part Number Serial Number				
Host PC	Dell	Latitude D520	73WN581	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power	PA	1.8m	PA	Test Board	AC Adapter
Serial	Yes	5.0m	No	Host PC	TTL Converter
AC Power	PA	1.8m	PA	AC Adapter	AC Mains
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Revision 4/28/03

	Equipment modifications					
Item	Date	Test	Modification	Note	Disposition of EUT	
1	1/5/2009	Spurious Radiated Emissions	The operation of the unit was modified to achieve passing data.	The output power settings in software for High channel was lowered to a power level of -12 dBm. Low and mid channel are operating in 'Normal' mode at +3 dBm.	EUT remained at Northwest EMC following the test.	
2	1/14/09	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
3	2/11/2009	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
4	2/11/2009	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
5	2/11/2009	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
6	2/11/2009	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
7	2/11/2009	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was complete.	

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Tx

MODE USED FOR FINAL DATA

Τv

POWER SETTINGS INVESTIGATED

5 VDC

POWER SETTINGS USED FOR FINAL DATA

5 VDC

FREQUENCY RANGE INVESTIGATED				
Start Frequency	30MHz	Stop Frequency	25GHz	

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	6/30/2008	13
Antenna, Horn	ETS	3160-08	AHV	NCR	0
EV01 Cables		Standard Gain Horns Cables	EVF	11/13/2008	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	6/30/2008	13
Antenna, Horn	ETS	3160-07	AHU	NCR	0
High Pass Filter	Micro-Tronics	HPM50111	HFO	5/21/2008	13
Spectrum Analyzer	Agilent	E4446A	AAT	12/12/2008	13
EV01 Cables		Double Ridge Horn Cables	EVB	5/19/2008	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	5/19/2008	13
Antenna, Horn	EMCO	3115	AHC	8/12/2008	24
EV01 Cables		18-26GHz Standard Gain Horn Cable	EVD	12/2/2008	13
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	12/2/2008	13
Antenna, Horn	EMCO	3160-09	AHG	NCR	0
Spectrum Analyzer	Agilent	E4446A	AAY	12/11/2008	13
EV12 Cables		Bilog Cables	EVS	6/17/2008	13
Pre-Amplifier	Miteq	AM-1616-1000	AVM	6/17/2008	13
Antenna, Biconilog	EMCO	3141	AXG	11/4/2008	13

MEASUREMENT BANDWIDTHS							
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data			
	(MHz)	(kHz)	(kHz)	(kHz)			
	0.01 - 0.15	1.0	0.2	0.2			
	0.15 - 30.0	10.0	9.0	9.0			
	30.0 - 1000	100.0	120.0	120.0			
	Above 1000	1000.0	N/A	1000.0			
Measurements were made using the bandwidths and detectors specified. No video filter was used.							

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

0.0 0.0

19850.970

Comments

100mW, 2nd Highest Ch, EUT host bd horizontal, EUT antenna vertical
100mW, 2nd Highest Ch, EUT host bd vertical, EUT antenna horizontal
4dBM, High Ch, EUT host bd horizontal, EUT antenna vertical
4dBM, High Ch, EUT host bd vertical, EUT antenna horizontal
100mW, 2nd Highest Ch, EUT host bd horizontal, EUT antenna horizontal
4dBM, High Ch, EUT host bd horizontal, EUT antenna horizontal
4dBM, High Ch, EUT host bd vertical, EUT antenna horizontal
4dBM, High Ch, EUT host bd vertical, EUT antenna horizontal

Spurious Radiated Emissions

Spurious Radiated Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT							
Description	Manufacturer	Model	ID	Last Cal.	Interval		
Spectrum Analyzer	Agilent	E4407B	AAU	12/7/2007	13		
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13		

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate with the typical modulation.

NORTHWEST		OCCUPIED	DANDWIDTH			XMit 2007.06.13
EMC		OCCUPIED	BANDWIDTH			
EUT	: URMA-2450				Work Order: CIPH0016	i
Serial Number:	: 1016 (low and mid), 1014 ((high)			Date: 02/11/09	
Customer	: Cipher Systems, Inc.			Т	emperature: 21°C	
Attendees	: Steve McCoy, Carl Van We	ormer			Humidity: 32%	
Project	None			Baroi	metric Pres.: 30.14 in	
Tested by	: Rod Peloquin		Power: 5 VDC		Job Site: EV06	
TEST SPECIFICAT	TIONS		Test Method			
FCC 15.247 (DTS):	2009		ANSI C63.4:2	003 KDB No. 558074		
COMMENTS						
Operating in a typi	ical mode with a duty cycle	of one .748 ms pulse on a period of	of 25.54 ms. 0.5 dB compens	ation for adapter cable.	Low and mid channel	are operating
		tting was operating the software in				
			•			
DEVIATIONS FROM	M TEST STANDARD					
No Deviations						
		101	PI			
Configuration #	1	Morling la	Releng			
		Signature				
	_	_				
				Value	Limit	Results
Low Channel, 11, 2	405 MHz	_	•	1.604 MHz	> 500 kHz	Pass
Mid Channel, 18, 24	440 MHz			1.588 MHz	> 500 kHz	Pass
High Channel, 26, 2	2480 MHz			1.558 MHz	> 500 kHz	Pass

Low Channel

Result: Pass Value: 1.604 MHz Limit: > 500 kHz

Mid Channel

Result: Pass Value: 1.588 MHz Limit: > 500 kHz

High Channel

Result: Pass Value: 1.558 MHz Limit: > 500 kHz

OUTPUT POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	12/7/2007	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13
e-Amplifier (FOR REFERENCE ONL	Hewlett-Packard	83017A	APL	NCR	0
Signal Generator	Hewlett-Packard	8648D	TGC	12/7/2007	13

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

NORTHWEST EMC		OUTPU	T POWER			XMit 2007.06.13
EUT:	URMA-2450			V	Vork Order: CIPH001	6
Serial Number:	1016 (low and mid), 1014 (h	nigh)			Date: 02/11/09	
Customer:	Cipher Systems, Inc.	-		Te	mperature: 21°C	
Attendees:	Steve McCoy, Carl Van Wo	rmer			Humidity: 32%	
Project:	None			Barom	etric Pres.: 30.14 in	
Tested by:	Rod Peloquin		Power: 5 VDC		Job Site: EV06	
TEST SPECIFICAT	IONS		Test Method			
FCC 15.247 (DTS)::	2009		ANSI C63.4:2	003 KDB No. 558074		
COMMENTS						
in 'Normal' mode a	t +3 dBm. High channel sett	of one .748 ms pulse on a period ling was operating the software i			ow and mid channel	are operating
	M TEST STANDARD					
No Deviations						
Configuration #	1	Signature Rocky L	Religs			
				Value	Limit	Results
Low Channel, 11, 24	105 MHz		•	100.4 mW	1 W	Pass
Mid Channel, 18, 24	40 MHz			82.1 mW	1 W	Pass
High Channel, 26, 2	480 MHz			3.06 mW	1 W	Pass

OUTPUT POWER

Low Channel

Result: Pass Value: 100.4 mW Limit: 1 W

Mid Channel

Result: Pass Value: 82.1 mW Limit: 1 W

OUTPUT POWER

High Channel				
Result: Pass	Value: 3.06 mW	Limit:	1 W	

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT									
Description	Manufacturer	Model	ID	Last Cal.	Interval				
Spectrum Analyzer	Agilent	E4407B	AAU	12/7/2007	13				
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13				

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The requirements of FCC 15.247(d) for emissions at least 20dB below the carrier in any 100kHz bandwidth outside the allowable band was measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from 10 MHz below the band edge to 10 MHz above the band edge.

NORTHWEST			COMPLIANCE			XMit 2007.06.13
EMC		BAND EDGE	COMPLIANCE			
EUT:	URMA-2450				Work Order: CIPH0016	i
Serial Number:	1016 (low and mid), 1014 (h	igh)			Date: 02/11/09	
Customer:	Cipher Systems, Inc.			T	emperature: 21°C	
Attendees:	Steve McCoy, Carl Van Wor	mer			Humidity: 32%	
Project:	None			Baror	netric Pres.: 30.14 in	
	Rod Peloquin		Power: 5 VDC		Job Site: EV06	
TEST SPECIFICAT	IONS		Test Method			
FCC 15.247 (DTS)::	2009		ANSI C63.4:20	03 KDB No. 558074		
COMMENTS						
Operating in a typi	cal mode with a duty cycle o	of one .748 ms pulse on a period of	of 25.54 ms. 0.5 dB compensa	tion for adapter cable.	Low and mid channel	are operating
		ing was operating the software in				
	· ·		•			
DEVIATIONS FROM	M TEST STANDARD					
No Deviations						
		00	PO			
Configuration #	1	Locking to	· Releng			
		Signature				
				Value	Limit	Results
Low Channel				-44.5 dBc	≤ -20 dBc	Pass
High Channel				-36.8 dBc	≤ -20 dBc	Pass

BAND EDGE COMPLIANCE

 Low Channel

 Result: Pass
 Value: -44.5 dBc
 Limit: ≤ -20 dBc

High Channel

Result: Pass Value: -36.8 dBc Limit: ≤ -20 dBc

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT									
Description	Manufacturer	Model	ID	Last Cal.	Interval				
Spectrum Analyzer	Agilent	E4407B	AAU	12/7/2007	13				
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13				

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

NORTHWEST		IOTER	FMICOLONIO			XMit 2007.06.13
EMC	SPURIOUS CONDU	JUIEL	EMISSIONS			
EUT:	URMA-2450			Work Order:	CIPH0016	
Serial Number:	Serial Number: 1016 (low and mid), 1014 (high)					
Customer:	Customer: Cipher Systems, Inc.			Temperature:	21°C	
Attendees:	Steve McCoy, Carl Van Wormer			Humidity:	32%	
Project:	None			Barometric Pres.:	30.14 in	
Tested by:	Rod Peloquin	Power:	5 VDC	Job Site:	EV06	
TEST SPECIFICAT	IONS		Test Method			
FCC 15.247 (DTS):2009 ANSI C63.4:2003 KDB N			. 558074			

COMMENTS

Operating in a typical mode with a duty cycle of one .748 ms pulse on a period of 25.54 ms. 0.5 dB compensation for adapter cable. Low and mid channel are operating in 'Normal' mode at +3 dBm. High channel setting was operating the software in 'Normal' mode and power level set to -12 dBm.

DEVIATIONS FROM TEST STANDARD No Deviations

Rolly be Rolly Configuration # 1 Signature

Value < - 40 dBc -29.8 dBc	Limit ≤ -20 dBc	Results Pass
		Pass
		Pass
-29.8 dBc		
	≤ -20 dBc	Pass
< -40 dBc	≤ -20 dBc	Pass
< -40 dBc	≤ -20 dBc	Pass
< -40 dBC	≤ -20 dBc	Pass
- 30 dBc	≤ -20 dBc	Pass
< -40 dBc	≤ -20 dBc	Pass
< -40 dBc	≤ -20 dBc	Pass
< - 40 dBc	≤ -20 dBc	Pass
< - 40 dBc	≤ -20 dBc	Pass
< -40 dBc	≤ -20 dBc	Pass
< - 40 dBc	≤ -20 dBc	Pass
	< -40 dBc < -40 dBC < -40 dBC - 30 dBc < -40 dBc < -40 dBc < -40 dBc < -40 dBc < -40 dBc < -40 dBc	 < 40 dBc < 40 dBc < 20 dBc < 40 dBc < 20 dBc < 30 dBc < 40 dBc < 20 dBc

Low Channel, 0 MHz - 2 GHz			
Result: Pass	Value: < - 40 dBc	Limit:	≤ -20 dBc

 Low Channel, 2 GHz - 6.5 GHz

 Result: Pass
 Value: -29.8 dBc
 Limit: ≤ -20 dBc

Low Channel, 6.5 GHz - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

 Low Channel, 12.5 GHz - 25 GHz

 Result: Pass
 Value: < -40 dBc</th>
 Limit: ≤ -20 dBc

Mid Channel, 0 MHz - 2 GHz

Result: Pass Value: < -40 dBC Limit: ≤ -20 dBc

 Mid Channel, 2 GHz - 6.5 GHz

 Result: Pass
 Value: - 30 dBc
 Limit: ≤ -20 dBc

Mid Channel, 6.5 GHz - 12.5 GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

 Mid Channel, 12.5 GHz - 25 GHz

 Result: Pass
 Value: < -40 dBc</th>
 Limit: ≤ -20 dBc

	High Channel, 0 MHz - 2 GHz	
Result: Pass	Value: < - 40 dBc	Limit: ≤ -20 dBc

High Channel, 2 GHz - 6.5 GHz

Result: Pass Value: < - 40 dBc Limit: ≤ -20 dBc

High Channel, 12.5 GHz - 25 GHz

Result: Pass Value: < - 40 dBc Limit: ≤ -20 dBc

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	12/7/2007	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13
Pre-Amplifier (FOR REFERENCE ONLY)	Hewlett-Packard	83017A	APL	NCR	0
Signal Generator	Hewlett-Packard	8648D	TGC	12/7/2007	13

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The peak power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate for each modulation type available. Per the procedure outlined in FCC KDB 558074, March 23, 2005, the spectrum analyzer was used as follows:

The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be 1.5 x $10^6 \div 3 \times 10^3 = 500$ seconds. External attenuation was used and added to the reading. The following FCC procedure was used for modifying the power spectral density measurements:

"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 34.8 dB for correction to 3 kHz."

NORTHWEST EMC		POWER S	PECTRAL	DENSITY			XMit 2007.06.13
EUT: URM	IA-2450				Wor	k Order: CIPH00	016
Serial Number: 1016	(low and mid), 1014 (l	nigh)				Date: 02/11/0)9
Customer: Ciph	er Systems, Inc.				Temp	erature: 21°C	
Attendees: Stev	e McCoy, Carl Van Wo	rmer			H	umidity: 32%	
Project: None	е				Barometri	ic Pres.: 30.14 i	n
Tested by: Rod	Peloquin		: 5 VDC	J	ob Site: EV06		
EST SPECIFICATIONS				Test Method			
CC 15.247 (DTS):2008		ANSI C63.4:2003 KDB No	o. 558074				
COMMENTS Operating with a duty cy		•		nel are operating in 'Norma	al' mode at +3 dB	m. High channe	l setting was
COMMENTS Operating with a duty cy	n 'Normal' mode and p	ided for adapter cable los ower level set to -12 dBm		nel are operating in 'Norm	al' mode at +3 dB	m. High channe	l setting was
COMMENTS Operating with a duty cy operating the software i	n 'Normal' mode and p	ower level set to -12 dBm		nel are operating in 'Norm	al' mode at +3 dBi	m. High channe	l setting was
COMMENTS Departing with a duty cyperating the software in DEVIATIONS FROM TESTON DEVIATIONS	n 'Normal' mode and p	ower level set to -12 dBm	1.		al' mode at +3 dBi	m. High channe	I setting was
COMMENTS Decrating with a duty cyperating the software in DEVIATIONS FROM TESTO Deviations Configuration #	n 'Normal' mode and p	ower level set to -12 dBm	1.	Va			•
COMMENTS Deprating with a duty cyperating the software in DEVIATIONS FROM TESTED DEVIATIONS	n 'Normal' mode and p	ower level set to -12 dBm	1.	. Va 6.27 dB	ılue	Limit	Results

Low Channel

Result: Pass Value: 6.27 dBm / 3kHz Limit: 8 dBm / 3kHz

Mid Channel

Result: Pass Value: 5.87 dBm / 3kHz Limit: 8 dBm / 3kHz

High Channel								
Result: Pass	Value: -8.79 dBm / 3kHz	Limit: 8 dBm / 3kHz						

AC POWERLINE CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Tx, High Channel

Tx, Mid Channel

Tx, Low Channel

POWER SETTINGS INVESTIGATED

120V/60Hz

CONFIGURATIONS INVESTIGATED

CIPH0016 - 2

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT												
Description	Manufacturer	Model	ID	Last Cal.	Interval							
Receiver	Rohde & Schwarz	ESCI	ARH	8/28/2008	12 mo							
EV07 Cables		Conducted Cables	EVG	5/2/2008	13 mo							
Attenuator	Coaxicom	66702 2910-20	ATO	6/30/2008	13 mo							
High Pass Filter	T.T.E.	7766	HFG	2/5/2008	13 mo							
LISN	Solar	9252-50-R-24-BNC	LIR	1/4/2008	13 mo							

Frequency Range	Peak Data	Quasi-Peak Data	Average Data	
(MHz)	(kHz)	(kHz)	(kHz)	
0.01 - 0.15	1.0	0.2	0.2	
0.15 - 30.0	10.0	9.0	9.0	
30.0 - 1000	100.0	120.0	120.0	
Above 1000	1000.0	N/A	1000.0	

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.4-2003.

18.300

4.520

2.016

3.576

1.336

-23.9

-24.0

-24.0

-24.1

-24.1

15.3

11.4

11.4

11.3

11.3

36.1

32.0

32.0

31.9

31.9

46.0

46.0

46.0

46.0

-13.9

-14.0

-14.0

-14.1

-14.1

20.8

20.6

20.6

20.6

20.6

18.300

4.520

2.016

3.576

1.336

15.3

11.4

11.4

11.3

11.3

20.6

20.6

20.6

20.6

32.0

32.0

31.9

31.9

56.0

56.0

56.0

56.0

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.182	23.2	21.4	44.6	64.4	-19.8	·	0.182	23.2	21.4	44.6	54.4	-9.8
0.191	22.4	21.2	43.6	64.0	-20.4		0.191	22.4	21.2	43.6	54.0	-10.4
4.024	14.5	20.6	35.1	56.0	-20.9		4.024	14.5	20.6	35.1	46.0	-10.9
16.850	18.2	20.8	39.0	60.0	-21.0		16.850	18.2	20.8	39.0	50.0	-11.0
0.160	22.2	21.9	44.1	65.5	-21.4		0.160	22.2	21.9	44.1	55.5	-11.4
0.150	22.3	22.1	44.4	66.0	-21.6		0.150	22.3	22.1	44.4	56.0	-11.6
14.730	17.4	20.8	38.2	60.0	-21.8		14.730	17.4	20.8	38.2	50.0	-11.8
1.952	13.4	20.6	34.0	56.0	-22.0		1.952	13.4	20.6	34.0	46.0	-12.0
16.490	16.8	20.8	37.6	60.0	-22.4		16.490	16.8	20.8	37.6	50.0	-12.4
16.550	16.7	20.8	37.5	60.0	-22.5		16.550	16.7	20.8	37.5	50.0	-12.5
1.776	12.8	20.6	33.4	56.0	-22.6		1.776	12.8	20.6	33.4	46.0	-12.6
3.728	12.6	20.6	33.2	56.0	-22.8		3.728	12.6	20.6	33.2	46.0	-12.8
3.784	12.4	20.6	33.0	56.0	-23.0		3.784	12.4	20.6	33.0	46.0	-13.0
15.790	16.2	20.8	37.0	60.0	-23.0		15.790	16.2	20.8	37.0	50.0	-13.0
2.184	12.3	20.6	32.9	56.0	-23.1		2.184	12.3	20.6	32.9	46.0	-13.1
16.430	16.1	20.8	36.9	60.0	-23.1		16.430	16.1	20.8	36.9	50.0	-13.1
16.790	16.0	20.8	36.8	60.0	-23.2		16.790	16.0	20.8	36.8	50.0	-13.2
16.610	16.0	20.8	36.8	60.0	-23.2		16.610	16.0	20.8	36.8	50.0	-13.2
4.088	12.1	20.6	32.7	56.0	-23.3		4.088	12.1	20.6	32.7	46.0	-13.3
3.672	12.1	20.6	32.7	56.0	-23.3		3.672	12.1	20.6	32.7	46.0	-13.3

-23.4

-23.5

-23.5

-23.7

-23.7

56.0

56.0

60.0

56.0

56.0

1.528

1.832

15.040

0.900

4.392

12.0

11.9

15.7

11.7

11.7

32.6

32.5

36.5

32.3

32.3

46.0

50.0

46.0

46.0

20.6

20.6

20.8

20.6

20.6

-13.4

-13.5

-13.5

-13.7

-13.7

1.528

1.832

15.040

0.900

4.392

12.0

11.9

15.7

11.7

11.7

20.6

20.8

20.6

20.6

32.5

36.5

32.3

32.3

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.150	23.5	22.1	45.6	66.0	-20.4	0.150	23.5	22.1	45.6	56.0	-10.4
16.850	17.3	20.8	38.1	60.0	-21.9	16.850	17.3	20.8	38.1	50.0	-11.9
15.780	17.2	20.8	38.0	60.0	-22.0	15.780	17.2	20.8	38.0	50.0	-12.0
17.890	16.2	20.8	37.0	60.0	-23.0	17.890	16.2	20.8	37.0	50.0	-13.0
14.740	16.1	20.8	36.9	60.0	-23.1	14.740	16.1	20.8	36.9	50.0	-13.1
0.531	11.9	20.9	32.8	56.0	-23.2	0.531	11.9	20.9	32.8	46.0	-13.2
0.189	19.5	21.3	40.8	64.1	-23.3	0.189	19.5	21.3	40.8	54.1	-13.3
3.664	11.9	20.6	32.5	56.0	-23.5	3.664	11.9	20.6	32.5	46.0	-13.5
2.352	11.7	20.6	32.3	56.0	-23.7	2.352	11.7	20.6	32.3	46.0	-13.7
16.690	15.4	20.8	36.2	60.0	-23.8	16.690	15.4	20.8	36.2	50.0	-13.8
15.320	15.4	20.8	36.2	60.0	-23.8	15.320	15.4	20.8	36.2	50.0	-13.8
0.555	11.3	20.9	32.2	56.0	-23.8	0.555	11.3	20.9	32.2	46.0	-13.8
3.720	11.5	20.6	32.1	56.0	-23.9	3.720	11.5	20.6	32.1	46.0	-13.9
19.990	15.3	20.8	36.1	60.0	-23.9	19.990	15.3	20.8	36.1	50.0	-13.9
0.201	18.6	21.1	39.7	63.6	-23.9	0.201	18.6	21.1	39.7	53.6	-13.9
1.408	11.5	20.6	32.1	56.0	-23.9	1.408	11.5	20.6	32.1	46.0	-13.9
16.790	15.3	20.8	36.1	60.0	-23.9	16.790	15.3	20.8	36.1	50.0	-13.9
0.867	11.4	20.7	32.1	56.0	-23.9	0.867	11.4	20.7	32.1	46.0	-13.9
2.512	11.4	20.6	32.0	56.0	-24.0	2.512	11.4	20.6	32.0	46.0	-14.0
4.952	11.3	20.6	31.9	56.0	-24.1	4.952	11.3	20.6	31.9	46.0	-14.1

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.177	22.4	21.5	43.9	64.6	-20.7	•	0.177	22.4	21.5	43.9	54.6	-10.7
16.850	18.3	20.8	39.1	60.0	-20.9		16.850	18.3	20.8	39.1	50.0	-10.9
16.310	17.9	20.8	38.7	60.0	-21.3		16.310	17.9	20.8	38.7	50.0	-11.3
0.165	21.8	21.8	43.6	65.2	-21.6		0.165	21.8	21.8	43.6	55.2	-11.6
0.155	21.6	22.0	43.6	65.7	-22.2		0.155	21.6	22.0	43.6	55.7	-12.2
15.790	17.0	20.8	37.8	60.0	-22.2		15.790	17.0	20.8	37.8	50.0	-12.2
1.712	12.7	20.6	33.3	56.0	-22.7		1.712	12.7	20.6	33.3	46.0	-12.7
18.960	16.5	20.8	37.3	60.0	-22.7		18.960	16.5	20.8	37.3	50.0	-12.7
17.900	16.5	20.8	37.3	60.0	-22.7		17.900	16.5	20.8	37.3	50.0	-12.7
16.640	16.5	20.8	37.3	60.0	-22.7		16.640	16.5	20.8	37.3	50.0	-12.7
0.184	20.1	21.4	41.5	64.3	-22.8		0.184	20.1	21.4	41.5	54.3	-12.8
0.191	19.8	21.2	41.0	64.0	-23.0		0.191	19.8	21.2	41.0	54.0	-13.0
2.240	12.4	20.6	33.0	56.0	-23.0		2.240	12.4	20.6	33.0	46.0	-13.0
0.624	11.9	20.8	32.7	56.0	-23.3		0.624	11.9	20.8	32.7	46.0	-13.3
2.120	12.1	20.6	32.7	56.0	-23.3		2.120	12.1	20.6	32.7	46.0	-13.3
17.020	15.9	20.8	36.7	60.0	-23.3		17.020	15.9	20.8	36.7	50.0	-13.3
0.601	11.6	20.8	32.4	56.0	-23.6		0.601	11.6	20.8	32.4	46.0	-13.6
18.430	15.5	20.8	36.3	60.0	-23.7		18.430	15.5	20.8	36.3	50.0	-13.7
16.710	15.5	20.8	36.3	60.0	-23.7		16.710	15.5	20.8	36.3	50.0	-13.7
14.750	15.4	20.8	36.2	60.0	-23.8		14.750	15.4	20.8	36.2	50.0	-13.8

	req MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0	.172	22.9	21.6	44.5	64.9	-20.3	· -	0.172	22.9	21.6	44.5	54.9	-10.3
0	.167	22.8	21.7	44.5	65.1	-20.6		0.167	22.8	21.7	44.5	55.1	-10.6
0	.186	22.0	21.3	43.3	64.2	-20.9		0.186	22.0	21.3	43.3	54.2	-10.9
16	6.840	17.8	20.8	38.6	60.0	-21.4		16.840	17.8	20.8	38.6	50.0	-11.4
	5.240	17.4	20.8	38.2	60.0	-21.8		16.240	17.4	20.8	38.2	50.0	-11.8
3	.000	13.4	20.6	34.0	56.0	-22.0		3.000	13.4	20.6	34.0	46.0	-12.0
1	.712	13.4	20.6	34.0	56.0	-22.0		1.712	13.4	20.6	34.0	46.0	-12.0
16	5.410	17.0	20.8	37.8	60.0	-22.2		16.410	17.0	20.8	37.8	50.0	-12.2
	.824	13.1	20.6	33.7	56.0	-22.3		1.824	13.1	20.6	33.7	46.0	-12.3
3	.712	13.0	20.6	33.6	56.0	-22.4		3.712	13.0	20.6	33.6	46.0	-12.4
15	5.780	16.8	20.8	37.6	60.0	-22.4		15.780	16.8	20.8	37.6	50.0	-12.4
	7.890	16.5	20.8	37.3	60.0	-22.7		17.890	16.5	20.8	37.3	50.0	-12.7
1	.672	12.4	20.6	33.0	56.0	-23.0		1.672	12.4	20.6	33.0	46.0	-13.0
16	6.650	15.8	20.8	36.6	60.0	-23.4		16.650	15.8	20.8	36.6	50.0	-13.4
16	6.000	15.7	20.8	36.5	60.0	-23.5		16.000	15.7	20.8	36.5	50.0	-13.5
4	.768	11.8	20.6	32.4	56.0	-23.6		4.768	11.8	20.6	32.4	46.0	-13.6
	.944	11.8	20.6	32.4	56.0	-23.6		1.944	11.8	20.6	32.4	46.0	-13.6
1	.296	11.8	20.6	32.4	56.0	-23.6		1.296	11.8	20.6	32.4	46.0	-13.6
16	6.540	15.6	20.8	36.4	60.0	-23.6		16.540	15.6	20.8	36.4	50.0	-13.6
1	.352	11.7	20.6	32.3	56.0	-23.7		1.352	11.7	20.6	32.3	46.0	-13.7

AC POWERLINE CONDUCTED EMISSIONS

AC POWERLINE CONDUCTED EMISSIONS

