1. Solution

The sample size, *n*, is 15. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	[0.25 × 15]	4	44.07
Q2	$\lceil 0.5 \times 15 \rceil$	8	45.25
Q3	$\lceil 0.75 \times 15 \rceil$	12	48.16

We determine the IQR.

$$IQR = Q3 - Q1$$

= $48.16 - 44.07$
= 4.09

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $44.07 - 1.5 \times 4.09$
= 37.935
upper boundary = Q3 + $1.5 \times IQR$
= $48.16 + 1.5 \times 4.09$
= 54.295

We determine the outliers.

outliers =
$$\{55.44\}$$

We identify the ends of the whiskers: 40.61 and 51.62. We plot the boxplot.

2. Solution

The sample size, *n*, is 35. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 35 ceil$	9	37.73
Q2	$\lceil 0.5 imes 35 \rceil$	18	43.93
Q3	$\lceil 0.75 \times 35 \rceil$	27	45.87

We determine the IQR.

$$IQR = Q3 - Q1$$

= $45.87 - 37.73$
= 8.14

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $37.73 - 1.5 \times 8.14$
= 25.52
upper boundary = Q3 + $1.5 \times IQR$
= $45.87 + 1.5 \times 8.14$
= 58.08

We determine the outliers.

outliers =
$$\{16.03\}$$

We identify the ends of the whiskers: 27.55 and 49.26. We plot the boxplot.

