1.
$$f(x) = x^2 + 2x - 1$$
, $[0,1]$

$$\frac{f(1) - f(0)}{1 - 0} = \frac{2 - (-1)}{1} = 3$$

$$f'(x) = 2x + 2$$

$$2x + 2 = 3$$

$$x = \frac{1}{2}$$
2. $f(x) = x^{\frac{2}{3}}$, $[0,1]$

$$\frac{f(1) - f(0)}{1 - 0} = \frac{1 - 0}{1} = 1$$

$$f'(x) = \frac{2}{3}x^{-\frac{1}{3}} = 1$$

$$x = \frac{1}{2}$$

$$(x) = \frac{3}{2}x^{-\frac{1}{3}}$$

$$(x) = \frac{3}{2}$$

$$(x) = \frac{3}{2}$$

$$(x) = \frac{3}{2}$$

3.
$$f(x) = \sqrt{x-1}$$
, [1,3]

$$\frac{f(3)-f(1)}{3-1} = \frac{\sqrt{2}-0}{2} = \frac{\sqrt{2}}{2}$$

$$f'(X) = \frac{1}{2\sqrt{X-1}}$$

$$\frac{1}{2\sqrt{x-1}} = \frac{\sqrt{2}}{2}$$

$$2 = 2\sqrt{2\chi-2}$$

$$1 = \sqrt{2x-2}$$

$$| = 2\chi^{-1}$$

$$\chi = \frac{3}{2}$$

$$\chi = \frac{3}{2}$$

4.
$$f(x) = x^3 - x^2$$
, [-1,2]

$$\frac{f(2)-f(-1)}{2-(-1)} = \frac{4+2}{3} = 2$$

$$f'(\chi) = 3\chi^2 - 2\chi$$

$$7\chi^2 - 2\chi = 2$$

$$3\chi^{2} - 2\chi - 2 = 0$$

$$\chi = \frac{2^{\pm \sqrt{4+24}}}{b}$$

$$=\frac{1\pm\sqrt{7}}{3}$$

11.
$$f(-1) = 3$$
, $f'(x) = 0$, $f(x) = 3$?

$$f'(x) = 0$$

$$f(x) = 0x + C$$

$$f(-1) = 3$$

$$C = 3$$

12.
$$f'(x) = 2x$$
, $f(x) = 3$

(A)
$$f(0) = 0$$

$$f(x) = \chi^2 + C$$
 $f(0) = 0$
 $C = 0$
 $f(2) = 4$

(c)
$$f(-2) = 3$$

 $f(x) = x^2 + C$ $f(2) = 3$
 $3 = 4 + C$
 $C = -1$

13. (a)
$$y' = x$$

$$\gamma = \frac{1}{2}\chi^2 + \zeta$$

(b)
$$y' = x^2$$

 $y = \frac{1}{3}x^3 + C$

(c)
$$y' = x^3$$

 $y = \frac{1}{4}x^4 + C$

14.

(a)
$$y' = -\frac{1}{x^2}$$
 $= -x^{-2}$
 $y = x^{-1} + C$

(b)
$$y' = 1 - \frac{1}{x^2}$$

 $y = x + x^{-1} + C$

(c)
$$y' = 5 + \frac{1}{x^2}$$

 $y' = 5x - x^{-1} + C$

15. (a)
$$y' = \sin 2t$$

$$y = -652t \cdot \frac{1}{2}$$
$$= -\frac{1}{2} \cos 2t$$

(b)
$$y' = 65 \frac{t}{2}$$

(c)
$$y' = \sin 2t + \cos \frac{t}{2}$$

$$y = -\omega_5 2t \cdot \frac{1}{2} + \sin \frac{t}{2} \cdot 2$$
$$= -\frac{1}{2} \omega_5 2t + 2 \sin \frac{t}{2}$$

16.
$$f'(x) = 2x - 1$$
, $P(0,0)$

$$f(\chi) = \chi^2 - \chi + \zeta$$

$$f(0) = 0$$

$$f(x) = \chi^2 - \chi$$

17.
$$f(x) = e^{2x}$$
, $P(0, \frac{3}{2})$

$$f(x) = e^{2x} \cdot \frac{1}{2} + c$$

$$f(0) = \frac{3}{2}$$

$$\frac{3}{2} = \frac{1}{2} + ($$

$$f(x) = \frac{1}{2} e^{2x} + 1$$