Разобраться предварительно с **вводом-выводом** по пособию В.Г.Баулы http://arch32.cs.msu.su (глава 6, раздел 6.5.1), и со **структурой программы на языке ассемблера** (глава 6, раздел 6.5.2). Только после этого приступать к написанию программ.

Обязательно усвоить следующие макрокоманды (из раздела 6.5.1): ClrScr, ConsoleTitle, outstr[ln], inchar, outchar, inint[ln], outint[ln], outword[ln], newline, flush, pause, exit (обратите при этом внимание, что названия этих макрокоманд — имена пользователя, следовательно, малые и большие буквы в этих названиях - различаются). Остальные макрокоманды осваивать не обязательно (но если есть желание и интерес, то их можно использовать, но не увлекаться...).

В программах в заголовке консольного окна выдавать обязательно информацию:

- фамилию и имя студента, номер учебной группы;
- номер решаемой задачи (из какого она блока) и название задачи, если оно имеется, например:
- Идеальный С. (гр 100) Задача 5 (блок 1) "Произведение старшей и младшей цифр"
- приглашение к вводу данных (чего ожидаете от пользователя и в каком виде), например:
- Идеальный С. (гр 100) Задача 5 (блок 1) "Произведение старшей и младшей цифр"

Введите целое б/зн из диапазона [0 .. 4294967295]:

- объяснение (лаконично), что выдаётся вашей программой в качестве результатов её работы, например:
- Идеальный С. (гр 100) Задача 5 (блок 1) "Произведение старшей и младшей цифр"

Введите целое б/зн из диапазона [0 .. 4294967295]: 3123456987 Произведение 3*7 равно : 21

Следует комментировать исходный текст программы (лаконично, только наиболее важные этапы и тонкие места). Перед макрокомандой **exit** ставьте обязательно (!!!) макрокоманду **pause** (для удержания экрана с результатами работы программы – это нужно ТОЛЬКО при отправке программ на проверку по электронной почте), *например*:

```
include console.inc
.data
       K dd?
. code
start:
       clrscr
       ConsoleTitle 'Идеальный С. (гр 100) Задача 5 (блок 1) "Произведение старшей и младшей цифр"'
       inint K, 'Введите целое б/зн из диапазона [0 .. 4294967295]: '
       mov EAX, K ; можно было сразу inint EAX без использования K
       mov EDX, 0 ; (EDX,EAX) - делимое для сверхдлинного б/зн деления
       mov EBX, 10
                    ; делитель
                    ; (EDX,EAX)/EBX => EAX:=div, EDX:=mod
       div EBX
       ; другие команды программы
       pause
       exit
end start
```

Присылайте на ПРОВЕРКУ БЛОКОВ (110.111.112@mail.ru) свои программы (даже если она одна!) в zip-архиве, названном по фамилии автора, номеру учебной группы и номеру отправляемого блока задач. Например, Ivanov-112-4.zip или Ivanov-112-4-add.zip для обязательных или дополнительных (add) задач блока-4 студента Иванова из 112 группы. По каждой задаче присылайте три файла - с расширениями asm, lst, exe. Если в архиве несколько задач, то каждую задачу помещайте в отдельную папку с номером этой задачи. В названиях архива, папок и программ русские буквы и пробелы - не использовать. Проследите, чтобы в отправляемом exe-файле было предусмотрено удержание экрана с результатами работы программы (с помощью макрокоманды pause). Не забывайте также о нашей договорённости: если обязательная задача решена не самостоятельно, то необходимо об этом заранее предупредить при отправке решения (с кем консультировались, по какому вопросу; с кем совместно работали над задачей, какова доля вашего участия в решении), никаких санкций за эту информацию от меня не последует. Дополнительные задачи — только самостоятельно, совместные решения или консультации с коллегами - не приемлемы.

Задачи (блок 1). Арифметика, переходы, циклы.

Обязательно нужно решить три любых задачи из десяти предлагаемых.

За каждую дополнительную задачу начисляется по 10 очков.

Решения обязательных задач нужно прислать до 21-го марта, дополнительных – до конца семестра

Задача 1. " Степень тройки"

Ввести число ≥ 1 (считать, что ввод будет корректный и число укладывается в формат двойного слова). Определить, является ли это число **степенью тройки** (1, 3, 9, 27, ...). Если да, то вывести на экран показатель степени, иначе вывести число **-1**.

Решать согласно следующей блок-схеме (условные обозначения: N – исходное число, K – искомый показатель):

РЕКОМЕНДАЦИИ: Решать строго *методом деления на 3*: делимое представлять в формате учетверенного слова, делитель - в формате двойного слова, т.к. нет гарантии, что *результат деления на 3* укладывается в байт или в слово (например, 900/3=300>255, 300000/3=100000>65535). То есть требуется **сверхдлинное деление**. В решении не отклоняться от предлагаемой блок-схемы. Считывать (по **inint**) исходное число (N) выгодно сразу на регистр **EAX**; ответ (K) выгодно тоже формировать сразу на регистре (для повышения быстродействия программы). Добейтесь, чтобы в теле цикла не было обращений к ячейкам оперативной памяти (в этой задаче все данные лучше размещать на регистрах).

<mark>Задача 2</mark> . " Простое число "

N dd ? ; N > 1

Ввести число N (>1), считая, что ввод будет корректный и число укладывается в формат двойного слова. Проверить, является ли это число простым.

Ответ напечатать в виде одного из слов: ПРОСТОЕ или СОСТАВНОЕ.

РЕКОМЕНДАЦИИ: В цикле делить исходное **N** на числа от **2** до **N** div **2** (с целью поиска первого делителя), т.е. максимальное число шагов цикла **N** div **2** -1. Как только найдется первый делитель – досрочно выходить из цикла (число составное). Вышли по концу цикла – число простое. Выбрать правильный вид деления (короткое, длинное или сверхдлинное).

Для облегчения вывода ответа сделать начальное предположение, что **N** составное (т.е. до начала проверки числа загрузить, например, в регистр **ESI** (или другой) адрес начала строки со словом "COCTABHOE"). Но если в конце выяснится, что делителей у числа не нашлось, то перед выводом ответа (по макрокоманде **outstrln ESI**) скорректировать значение в **ESI** (поместив в него адрес начала строки со словом "ПРОСТОЕ"). *Требование*: для вывода ответа иметь в программе только одну макрокоманду **outstrln ESI** (чтобы код программы не разрастался).

Как поместить адрес начала строки S в регистр? Можно по-разному:

1 способ (хороший)	2 способ (хороший)	3 способ (допустимый, но не рекомендуется)
.data	.data	.data
S db 'COCTABHOE', 0,'ПРОСТОЕ',0	S db 'COCTABHOE', 0, 'ПРОСТОЕ', 0	S db 'COCTABHOE', 0,'ПРОСТОЕ',0
.code	.code	adr_S dd S; это двойное слово
mov ESI, offset S	lea ESI, S; скоро изучим это!	; хранит адрес начала строки S
; offset $S = c$ мещение ячейки c адресом S	; загрузка в регистр ESI	.code
; от начала секции данных, где	; исполнительного адреса	mov ESI, adr_S
; offset – одноместный оператор	; второго операнда	; далее - решение, и если надо,
; далее - решение, и если надо,	; далее - решение, и если надо,	корректировка содержимого ESI
корректировка содержимого ESI	корректировка содержимого ESI	

<mark>Задача 3.</mark> " Баланс скобок "

Ввести последовательность символов (отличных от точки), конец ввода - точка. Ввод осуществить за один сеанс, т.е. набрать всю последовательность символов (с точкой на конце) и затем нажать ENTER – как мы это делали в 1-ом семестре. Определить, сбалансирована ли эта последовательность по круглым скобкам. Ответ в виде одного из слов: ДА или НЕТ. (*Требование*: текст не сохранять в памяти.)

Пример сбалансированной последовательности:

```
a(b()cd(ef(sdf)k)s)s(s)d.
```

Примеры несбалансированных последовательностей:

```
(a) (asd.
  (as))s(sd).
) (.
```

РЕКОМЕНДАЦИИ:

Завести счётчик баланса скобок (увеличивается при появлении открывающей скобки, уменьшается при появлении закрывающей скобки). Обратить особое внимание на 2 случая: 1) появление непарной закрывающей скобки, т.е. счётчик стал отрицательным (далее нет смысла продолжать анализ текста, т.е. надо завершать цикл и выдавать ответ); 2) наличие непарных открывающих скобок (отлавливается в конце, по окончании ввода всего текста). Удачный исход: если дошли до точки и при этом счётчик баланса - нулевой.

Для облегчения вывода ответа сделать начальное предположение, что последовательность не сбалансирована (т.е. до начала чтения текста настроиться с помощью регистра **EDX**, например, на начало строки со словом "HET"). Но если в конце выяснится, что имеет место баланс скобок, то перед выводом ответа (по макрокоманде **outstr EDX**) скорректировать значение в **EDX**. Как настраиваться на начало строки с выводимым текстом – написано в рекомендациях к задаче 2 (см. *три способа*).

<mark>Задача 4 .</mark> " Дробь Р/Q "

Описать в программе следующие переменные:

```
P dd ? ; P≥0
O dd ? ; O>0
```

Ввести с клавиатуры значения для переменных Р и О.

Напечатать дробь P/Q в виде вещественного числа с 5 цифрами в дробной части.

РЕКОМЕНДАЦИИ:

- 1) Сначала вывести целую часть от деления Р на Q.
- 2) Затем вывести *точку* (макрокоманда **outchar** '.').
- 3) Наконец, запустить цикл (**loop**) из пяти шагов. На каждом шаге будет выводиться очередная цифра дробной части: для её нахождения надо последний найденный остаток домножить на 10, а затем полученный результат разделить на Q. Внимание: команда **loop** реализует только короткий переход (то есть тело цикла не может содержать более 30-40 команд). Может так случиться, что придётся отказаться в этой задаче от использования **loop** (заменив её другими командами). Но сначала попробуйте воспользоваться **loop** (надеюсь, повезёт).

Задача 5. "Произведение старшей и младшей десятичных цифр"

Ввести число без знака из диапазона $[0..2^{32}-1]$ (по **inint**) и напечатать произведение **старшей** (значащей) и **младшей** цифр в десятичной записи этого числа (значащей называется цифра, удаление которой меняет величину числа).

Например, для числа **234567** напечатать **2*7=14**, для числа **6** напечатать **6*6=36** и т.п.

РЕКОМЕНДАЦИИ: Решать путём последовательного деления на **10**. Разобраться, какое деление (длинное, короткое или сверхдлинное) здесь необходимо. Не забыть про случай, когда в числе одна цифра (она является одновременно старшей и младшей).

<mark>Задача 6.</mark> " Пятеричное число "

Ввести (по **inchar**) непустую последовательность цифр, оканчивающуюся пробелом, которая является правильной записью неотрицательного числа в пятеричной системе счисления. Напечатать это число (за одно обращение к команде **outword**) в десятичной системе. Считать, что искомое число уместится в формат двойного слова. *Например*, при вводе последовательности цифр **4321432** должно быть напечатано **73367**, а при вводе последовательности цифр **1000000000** должно быть напечатано **1953125**

РЕКОМЕНДАЦИИ: Ввод пятеричного числа осуществлять с использованием схемы Горнера. Разобраться, какой вид умножения (короткое, длинное или сверхдлинное) надо использовать.

Задача 7. " Ближайшее число, кратное семи "

Ввести (по **inint**) число без знака из диапазона $[0..2^{32}-1]$ и напечатать ближайшее к нему число, **кратное семи**. *Например*, для числа **4294967295** получится ответ **4294967292**

РЕКОМЕНДАЦИИ: Разобраться, какое деление (длинное, короткое или сверхдлинное) здесь необходимо. Проверить остаток от деления исходного числа на **7**. Если остаток равен **1**, **2**, **3**, то искомое число лежит (на числовой оси) *певее* заданного. Если остаток равен **4**, **5**, **6**, то искомое число лежит (на числовой оси) *правее* заданного. Если остаток **нулевой** – искомое число совпадает с заданным.

<mark>Задача 8 .</mark> " Алгебраическая сумма "

Дан текст следующего вида:

$$d_1 \pm d_2 \pm ... \pm d_k$$
.

где d_i - цифра от 0 до 9, k≥1, в конце текста - точка. Найти значение этой алгебраической суммы.

Вводить символы текста до появления точки. Считать, что в общем случае результат суммирования может не уместиться в формат байта. В этой задаче для ввода использовать только макрокоманду **inchar** (т.е. все числа и знаки вводятся **посимвольно**). Значение найденной суммы выводить по макрокоманде **outint**.

<mark>Задача 9 .</mark> "Первая и последняя буквы"

Дана непустая последовательность непустых слов из малых латинских букв; между соседними словами - запятая, за последним словом - точка. Подсчитать количество слов, которые начинаются и оканчиваются одной и той же буквой.

РЕКОМЕНДАЦИИ: Реализовать двойной цикл. *Внешний* цикл – по словам; *внутренний* – по символам текущего слова (до точки или запятой). Выйдя из внутреннего цикла – сравнить крайние буквы прочитанного слова. Текст набирать на клавиатуре следует сразу целиком (по аналогии с решением аналогичных задач на Паскале), ставить точку и нажимать **Enter** (предполагается, что текст не будет очень длинным и поэтому целиком "влезет" в буфер ввода). Символы текста вводить с помощью **inchar**. *Например*, при вводе текста **аsd,w,dfgd.** должно быть напечатано **2**

<mark>Задача 10 .</mark> " Таблица умножения "

Напечатать таблицу умножения в десятичной системе счисления.

Требование: умножение в решении не использовать!

Постараться красиво оформить вывод, например, так (см. следующую страницу):

	ŀ	0	1	2	3	4	5	6	7	8	9
-0123456789			01234567		15 18	0 4 8 12 16 20 24 28	25 30		28 35 42	24 32	45
8 9		0 0	89	16		32	40	48 54	56		72

или так:

Таблица умножения										
XX	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	10	12	14	16	18
3	0	3	6	9	12	15	18	21	24	27
4	0	4	8	12	16	20	24	28	32	36
5	0	5	10	15	20	25	30	 35	40	45
6	0	6	12	18	24	30	36	42	48	54
7	0	7	14	21	28	35	42	49	56	63
8	0	8	16	24	32	40	48	56	64	72
9 	0	9 	18	27	36 	45	54	63	72 	81

Или еще красивее...