10/063,534

Filed

•

May 2, 2002

REMARKS

Applicants thank the Examiner for his review of the instant application. For the reasons stated below, the rejections of the presently pending claims are respectfully traversed. Claims 1-5 are presented for examination.

Status of the Claims

Applicants mailed an Amendment with the Notice of Appeal on September 20, 2005, amending Claim 1 to add the term "isolated." The listing of the claims above reflects this amendment.

Priority

The PTO asserts that because the disclosure of PCT/US00/23328 is not enabling for the instant invention, the filing date of the present application, May 2, 2002, is considered the priority date. For the reasons of record, Applicants maintain that the present application is entitled to at least the priority date of August 24, 2000.

Rejection Under 35 U.S.C. §101

The PTO maintains its rejection of pending Claims 1-5 under 35 U.S.C. § 101 as lacking utility for the reasons set forth in the previous Office Actions. The PTO states that the specification discloses that the PRO831 polynucleotide is more highly expressed in kidney tumor tissue and normal lung tissue compared to normal kidney and lung tumor tissue, respectively, and that Applicants have asserted the use of the molecule for diagnosis. However, the PTO rejects this utility, stating that "[t]here is no further supporting evidence to indicate that the polypeptide encoded by the polynucleotide of the instant invention is also differentially expressed in the normal tissue compared to the tumor tissue and as such one of skill in the art would conclude that it is not supported by a substantial asserted utility or a well-established utility." *Final Office Action* at 4.

Applicants incorporate by reference their previously submitted arguments, including those made in their Appeal Brief, and for the reasons of record assert that the specification contains a disclosure of utility which corresponds in scope to the subject matter sought to be patented and therefore must be taken as sufficient to satisfy the utility requirement of 35 U.S.C.

10/063,534

Filed

•

May 2, 2002

§ 101. Applicants also submit that for reasons of record, the PTO has not met its burden of providing evidence showing that one of ordinary skill in the art would reasonably doubt the asserted utility. However even if the PTO has met its initial burden, Applicants' rebuttal evidence previously submitted and additional evidence submitted herewith is sufficient to prove that it is more likely than not that a person of skill in the art would be convinced, to a reasonable probability, that the asserted utility is true. As stated previously, Applicants' evidence need not be direct evidence, so long as there is a reasonable correlation between the evidence and the asserted utility. The standard is not absolute certainty.

Substantial Utility

Summary of Applicants' Arguments and the PTO's Response

Applicants' asserted utility rests on the following argument:

- 1. Applicants have provided reliable evidence that mRNA for the PRO831 polypeptide is expressed at least two-fold higher in kidney tumors, and normal lung tissue, compared to normal kidney tissue, and lung tumors, respectively;
- 2. Applicants assert that it is well-established in the art that a change in the level of mRNA for a particular protein, e.g. an increase, generally leads to a corresponding change in the level of the encoded protein, e.g. an increase;
- 3. Given the differential expression of the PRO831 mRNA in kidney and lung tumors compared to their normal tissue counterparts, it is more likely than not that the PRO831 polypeptide is also differentially expressed in kidney and lung tumors compared to their normal tissue counterparts, making the claimed antibodies useful as diagnostic tools, alone or in combination with other diagnostic tools.

Applicants understand the PTO to be making two arguments in response to Applicants' asserted utility:

1. The PTO challenges the reliability of the evidence reported in Example 18, stating for example that there is no guidance in the specification as to how high the expression levels are, and that the literature cautions against drawing conclusions based on small changes in transcript expression levels between normal and cancerous tissue, citing Hu *et al.* for support;

2. The PTO cites Haynes *et al.* (Electrophoresis, (1998) 19(11):1862-71), Chen *et al.* (Mol. and Cell. Proteomics, (2002) 1:304-313) and Gygi *et al.* (Mol. and Cell. Bio., (1999) 19(3):1720-30) to support its assertion that polypeptide levels cannot be accurately predicted from mRNA levels. Therefore, further research needs to be done to determine if the increase or decrease in PRO831 cDNA expression supports a role for the peptide in cancerous tissue.

Applicants respectfully submit that in light of all of the evidence, the PTO's arguments are not adequate to support the utility rejection of the claimed invention under 35 U.S.C. § 101.

The PTO has Acknowledged that the Data Reporting Differential Expression of PRO831 mRNA is Sufficient to Provide Utility for the mRNA as a Diagnostic Tool

Applicants first address the PTO's argument that the evidence of differential expression of the gene encoding the PRO831 polypeptide in kidney and lung tumors is insufficient, and that the literature cautions against drawing conclusions based on small changes in transcript expression levels between normal and cancerous tissue.

Applicants note that in the closely related application Serial No. 10/063,685, directed to nucleic acids related to SEQ ID NO:29 which encodes the PRO831 polypeptide, the PTO has acknowledged that the nucleic acids have utility. See Office Action for Application 10/063,685 dated 6/28/2005 at 2-3. In that case, the exact same data from Example 18 was relied on for utility of the claimed nucleic acids as diagnostic tools for kidney and lung tumors, and the PTO made the same arguments regarding the insufficiency of the data in Example 18 and the cautionary teachings of Hu et al. In response to Applicants' arguments to the contrary, the PTO stated "Applicants assertion that the differentially expressed message can be used as diagnostic tool for lung and kidney tumors is found to be persuasive." Id. at 2-3 (emphasis added). Therefore, Applicants submit that the PTO's rejection of the exact same data in the instant case based on the same arguments of alleged insufficient details or the teaching Hu et al. are moot in light of this statement. As such, the data in Example 18 are sufficient to establish utility for the PRO831 nucleic acids as a diagnostic tool.

In addition to the persuasive reasons articulated in Applicants' arguments of record, the PTO's reliance on Hu is also misplaced because Applicants are not relying on microarray data as discussed in Hu:

In any microarray experiment, thousands of genes may demonstrate statistically significant expression changes, but only a fraction of these may be relevant to the study. Hu at 405, left column, first paragraph (emphasis added).

Instead, Applicants are relying on a more accurate and reliable method of assessing changes in mRNA level, namely quantitative PCR analysis. In a recent study by Kuo *et al.*, (Proteomics 5(4):894-906 (2005)), the authors used microarray analysis combined with proteomic analysis using two-dimensional gel electrophoresis to examine changes in gene expression in leukemia cell lines. The authors report that "[c]omparison of microarray and proteomic expression profiles showed poor correlation. Use of more reliable and sensitive analyses, such as reverse transcriptase polymerase chain reaction [RT-PCR], Western blotting and functional assays, on several genes and proteins, nonetheless, confirmed that there is indeed good correlation between mRNA and protein expression." *Kuo et al.* at Abstract (emphasis added) (attached as Exhibit 1). Thus, even if accurate, Hu's statements regarding microarray studies are not relevant to the instant application which does not rely on microarray data.

In conclusion, Applicants submit that the evidence reported in Example 18, supported by the first Grimaldi Declaration, establish that there is at least a two-fold difference in PRO831 mRNA between kidney and lung tumors compared to their respective normal tissue counterparts. The PTO has accepted that the data in Example 18 are sufficient to establish utility for the nucleic acids encoding the PRO831 polypeptide as diagnostic tools, and therefore any challenge to the sufficiency of the data with respect to the utility of the nucleic acid is inappropriate. Therefore, the only issue which remains is whether the data in Example 18 regarding differential expression of the PRO831 mRNA are reasonably correlated with differential expression of the PRO831 polypeptide such that the antibodies to the PRO831 polypeptide have utility as diagnostic tools as well. As discussed below, even if the PTO has established a reasonable doubt regarding Applicants' assertion that they are reasonably correlated, Applicants' overwhelming rebuttal evidence is more than sufficient to establish that changes in mRNA level more often than not lead to corresponding changes in protein level.

The PTO's Evidence is Not Relevant to Determining Whether a Change in mRNA Level for a Particular Gene lead to Corresponding Change in the Level of the Encoded Protein

Applicants turn next to the second portion of their argument in support of their asserted utility – that it is well-established in the art that a change in the level of mRNA encoding a particular protein generally leads to a corresponding change in the level of the encoded protein; given Applicants' evidence that of differential expression of the mRNA for the PRO831 polypeptide in kidney and lung tumors, it is likely that the PRO831 polypeptide is also differentially expressed; and antibodies to proteins differentially expressed in certain tumors have utility as diagnostic tools.

In response to Applicants' assertion, the PTO cites Haynes *et al.* (Electrophoresis, (1998) 19(11):1862-71), Chen *et al.* (Mol. and Cell. Proteomics, (2002) 1:304-313) and Gygi *et al.* (Mol. and Cell. Bio., (1999) 19(3):1720-30) as support for its argument that "polypeptide levels cannot be accurately predicted from mRNA levels."

Applicants have previously discussed at length why the Haynes, Chen and Gygi references are not relevant to the issue of whether changes in mRNA level for a particular gene lead to changes in protein level. Applicants incorporate by reference the previous arguments, and will not repeat them here.

However, in an attempt to illustrate why references which relate to static global levels of mRNA and protein across different genes are not relevant to this issue, Applicants offer the following illustration and analogy with the understanding that like all illustrations and analogies, they are not perfect and therefore do not represent any admissions or binding statements regarding Applicants' disclosure or invention.

Haynes, Gygi, and portions of Chen all discuss whether there is a correlation between the static level of mRNAs and proteins globally, *i.e.* across different genes. This is equivalent to conducting a hypothetical Experiment 1, where a particular cell type has 100 copies of mRNA for gene X, 200 copies of mRNA for gene Y, and 400 copies of mRNA for gene Z. If there is a global correlation between static mRNA levels and protein levels across genes, the ratio of the amount of proteins X:Y:Z would be approximately 1:2:4. This is essentially what the cited references examined.

In contrast, Applicants are relying on a correlation between changes in mRNA level for a particular gene leading to a corresponding change in the level of the encoded protein. For example, in hypothetical Experiment 2, if gene X has 100 copies of mRNA per cell in condition A (e.g. normal), and 200 copies of mRNA for gene X in condition B (e.g. tumor), the ratio of the amount of protein X in condition A:B would be approximately 1:2, such that there is a correlation between the change in the level of mRNA and protein for a particular gene.

The PTO argues that because there is no correlation between static levels of mRNA and protein across genes, as illustrated by Experiment 1, one of skill in the art would not expect an increase or decrease in the amount of mRNA for a particular gene to result in a corresponding change in the amount of the encoded protein, as illustrated in Example 2. This is simply wrong.

For example, Haynes reports that the amount of protein produced by similar levels of mRNA varied by as much as fifty-fold, and that similar amounts of protein were sustained by amounts of mRNA that varied by as much as forty-fold. *Haynes* at 1863, first full paragraph. Based on these results, Haynes concludes that "protein levels cannot be accurately predicted from the level of the corresponding mRNA transcript." *Id.*

This is analogous to a finding that on one gallon of gas, a hybrid car can travel 70 miles but a large truck can only travel 5 miles, or that to travel 70 miles, a hybrid car requires 1 gallon of gas, but a large truck requires 14 gallons. That is to say, there are many things which affect the fuel efficiency of a car. Based on these observations, one could conclude that without knowing an automobile's fuel efficiency, one cannot predict how far an automobile will travel based on the amount of gas in the tank.

Even if true, Haynes' data and conclusions are irrelevant to Applicants' assertion, which is that increasing or decreasing the amount of mRNA for a particular gene will result in a corresponding increase or decrease in the amount of the encoded protein. This is analogous to increasing or decreasing the amount of gas in an automobile – it will travel farther if you add more gas, and not as far with less. The fact that there are many things which affect fuel efficiency and therefore you cannot predict how far and automobile will travel without knowing if it is a hybrid or a large truck is irrelevant – both a hybrid and a truck travel farther on more gas, and not as far on less.

Similarly, Chen et al. report that plotting the level of mRNA for a particular gene against the level of the corresponding protein as measured across numerous samples, they found a lack of correlation for most genes studied. Chen at Abstract. However, with the exception of three genes reported in Figures 2A-2C, Chen does not indicate whether the level of mRNA varied significantly across samples, and Chen did not select samples or genes which were expected to vary across samples (e.g. normal versus tumor). Therefore, it is not known if Chen examined changes in mRNA level, or if the level of mRNA was unchanged. Therefore, the relevance of Chen's finding to Applicants' asserted correlation between changes in mRNA and protein is not known.

By analogy, if a person drives a particular car as far as possible on 5 gallons of gas 20 different times, and then plots the amount of gas against the distance driven, a lack of correlation between the amount of gas and distance is meaningless, and merely reflects systematic error in measuring the amount of gas and distance driven. Only if substantially different amounts of gas were plotted against their respective distances can you answer the question of whether increasing or decreasing the amount of gas results in increasing or decreasing the distance driven.

Applicants emphasize, and the PTO will recognize, that these are simplified illustrations to demonstrate the difference between the two issues being examined. However, these illustrations make clear that even if there is no correlation in the first experiment looking at static levels of mRNA and protein across genes, there can still be a correlation between changes in mRNA and protein for a particular gene as examined in the second experiment. As these illustrations make clear, the PTO's evidence simply is not relevant to answering the question of whether it is more likely than not that a person of skill in the art would be convinced, to a reasonable probability, that the asserted utility is true.

Applicants' Evidence Establishes that a Change in mRNA Level for a Particular Gene lead to Corresponding Change in the Level of the Encoded Protein

In support of the assertion that changes in mRNA are positively correlated to changes in protein levels, Applicants previously submitted a copy of a second Declaration by J. Christopher Grimaldi, a copy of the declaration of Paul Polakis, Ph.D., excerpts from the Molecular Biology of the Cell, a leading textbook in the field (Bruce Alberts, *et al.*, Molecular Biology of the Cell

(3rd ed. 1994) and (4th ed. 2002), excerpts from the textbook, Genes VI, (Benjamin Lewin, Genes VI (1997)), a reference by Zhigang *et al.*, World Journal of Surgical Oncology 2:13, 2004, and a reference by Meric *et al.*, Molecular Cancer Therapeutics, vol. 1, 971-979 (2002). The details of the teachings of these declarations and references, and how they support Applicants' asserted utility, are of record and will not be repeated here.

In addition to the supporting references previously submitted by Applicants, Applicants submit the following references to further support the assertion that changes in mRNA levels generally lead to corresponding changes in the level of the encoded polypeptide.

In a comprehensive study by Orntoft *et al.* (Mol. Cell. Proteomics. 2002; 1(1):37-45) (previously submitted with IDS, attached hereto as Exhibit 2), the authors examined gene amplification, mRNA expression level, and protein expression in pairs of non-invasive and invasive human bladder tumors. *Id.* at Abstract. The authors examined 40 well resolved abundant known proteins, and found that "[i]n general there was a highly significant correlation (p<0.005) between mRNA and protein alterations. Only one gene showed disagreement between transcript alteration and protein alteration." *Id.* at 42, col. 2. The alternations in mRNA and protein included both increases and decreases. *Id.* at 43, Table II. Clearly, a correlation in 39 of 40 genes examined supports Applicants' assertion that changes in mRNA level generally lead to corresponding changes in protein level.

In a study by Wang et al. (Urol. Res. 2000; 28(5):308-15) (abstract attached as Exhibit 3) the authors report that down-regulation of E-cadherin protein has been shown in various human tumors. Id. at Abstract. In the reported study, the authors examined the expression of cadherins and associated catenins at the mRNA level in paired tumor and nonneoplastic primary prostate cultures. They report that "[s]ix of seven cases of neoplastic cultures showed moderately-to-markedly decreased levels of E-cadherin and P-cadherin mRNA. Similar losses of alpha-catenin and beta-catenin mRNA were also observed." Id. As Applicants' assertion would predict, the authors state that the mRNA measures showed "good correlation" with the results from protein measures. The authors conclude by stating that "this paper presents a coordinated down-regulation in the expression of E-cadherin and associated catenins at the mRNA and protein level in most of the cases studied." Id.

In a more recent study by Munaut *et al.* (Int. J. Cancer. 2003; 106(6):848-55) (abstract attached as Exhibit 4) the authors report that vascular endothelial growth factor (VEGF) is expressed in 64-95% of glioblastomas (GBMs), and that VEGF receptors (VEGFR-1, its soluble form sVEGFR-1, VEGFR-2 and neuropilin-1) are expressed predominantly by endothelial cells. *Id.* at Abstract. The authors explain that infiltrating tumor cells and newly-formed capillaries progress through the extracellular matrix by local proteolysis involving matrix metalloproteinases (MMPs). In the present study, the authors "used quantitative RT-PCR, Western blot, gelatin zymography and immunohistochemistry to study the expression of VEGF, VEGFR-1, VEGFR-2, sVEGFR-1, neuropilin-1, MT1-MMP, MMP-2, MMP-9 and TIMP-2 in 20 human GBMs and 5 normal brains. The expression of these MMPs was markedly increased in most GBMs with excellent correlation between mRNA and protein levels." *Id.* Thus, the results support Applicants' assertion that changes in mRNA level lead to corresponding changes in protein level.

In another recent study, Hui et al. (Leuk. Lymphoma. 2003; 44(8):1385-94 (abstract attached as Exhibit 5) used real-time quantitative PCR and immunohistochemistry to evaluate cyclin D1 mRNA and protein expression levels in mantle cell lymphoma (MCL). Id. at Abstract. The authors report that seven of nine cases of possible MCL showed overexpression of cyclin D1 mRNA, while two cases showed no cyclin D1 mRNA increase. Id. Similarly, "[s]ix of the seven cyclin D1 mRNA overexpressing cases showed increased cyclin D1 protein on tissue array immunohistochemistry; one was technically suboptimal." Id. The authors conclude that the study "demonstrates good correlation and comparability between measure of cyclin D1 mRNA ... and cyclin D1 protein." Id. Thus, this reference supports Applicants' assertion.

In a recent study by Khal et al. (Int. J. Biochem. Cell Biol. 2005; 37(10):2196-206) (abstract attached as Exhibit 6) the authors report that atrophy of skeletal muscle is common in patients with cancer and results in increased morbidity and mortality. Id. at Abstract. To further understand the underlying mechanism, the authors studied the expression of the ubiquitin-proteasome pathway in cancer patient muscle using a competitive RT-PCR to measure expression of mRNA for proteasome subunits C2 and C5, while protein expression was determined by western blotting. "Overall, both C2 and C5 gene expression was increased by about three-fold in skeletal muscle of cachectic cancer patients (average weight loss 14.5+/-

2.5%), compared with that in patients without weight loss, with or without cancer. ... There was a good correlation between expression of proteasome 20Salpha subunits, detected by western blotting, and C2 and C5 mRNA, showing that increased gene expression resulted in increased protein synthesis." These findings support Applicants' assertion that changes in mRNA level lead to changes in protein level.

Maruyama et al. (Am. J. Patho. 1999; 155(3):815-22) (abstract attached as Exhibit 7) investigated the expression of three Id proteins (Id-1, Id-2 and Id-3) in normal pancreas, in pancreatic cancer and in chronic pancreatitis (CP). The authors report that pancreatic cancer cell lines frequently coexpressed all three Ids, "exhibiting good correlation between Id mRNA and protein levels." *Id.* at Abstract. In addition, the authors teach that all three Id mRNA levels were expressed at high levels in pancreatic cancer samples compared to normal or CP samples. At the protein level, Id-1 and Id-2 staining was faint in normal tissue, while Id-3 ranged from weak to strong. In contrast, in the cancer tissues "many of the cancer cells exhibited abundant Id-1, Id-2, and Id-3 immunoreactivity," and Id-1 and Id-2 protein was increased significantly in the cancer cells by comparison to the respective controls, mirroring the overexpression at the mRNA level. Thus, the authors report that in both cell lines and tissue samples, increased mRNA levels leads to an increase in protein overexpression, supporting Applicants' assertion.

Support for Applicants' assertion is also found in an article by Caberlotto *et al.* (Neurosci. Lett. 1999; 256(3):191-4) (abstract attached as Exhibit 8). In a previous study, the authors investigated alterations of neuropeptide Y (NPY) mRNA expression in the Flinders Sensitive Line rats (FSL), an animal model of depression. *Id.* at Abstract. The authors reported that in the current study, that NPY-like immunoreactivity (NPY-LI) was decreased in the hippocampal CA region, and increased in the arcuate nucleus, and that fluoxetine treatment elevated NPY-LI in the arcuate and anterior cingulate cortex. The authors state that "[t]he results demonstrate a good correlation between NPY peptide and mRNA expression." Thus, increases and decreases in mRNA levels were reflected in corresponding changes in protein level.

Misrachi and Shemesh (Biol. Reprod. 1999; 61(3):776-84) (abstract attached as Exhibit 9) investigated their hypothesis that FSH regulates the bovine cervical prostaglandin E(2) (PGE(2)) synthesis that is known to be associated with cervical relaxation and opening at the time of estrus. *Id.* at Abstract. Cervical tissue from pre-estrous/estrous, luteal, and postovulatory

cows were examined for the presence of bovine (b) FSH receptor (R) and its corresponding mRNA. The authors report that bFSHR mRNA in the cervix was maximal during pre-estrus/estrus, and that the level of FSHR protein was significantly higher in pre-estrous/estrous cervix than in other cervical tissues. *Id.* The authors state that "[t]here was a good correlation between the 75-kDa protein expression and its corresponding transcript of 2.55 kb throughout the estrous cycle as described by Northern blot analysis as well as RT-PCR." *Id.* Thus, changes in the level of mRNA for bFSHR led to corresponding changes in FSHR protein levels, a result which supports Applicants' assertion.

In a study by Stein et al. (J. Urol. 2000; 164(3 Pt 2):1026-30) (abstract attached as Exhibit 10), the authors studied the role of the regulation of calcium ion homeostasis in smooth muscle contractility. Id. at Abstract. The authors investigated the correlation between sarcoplasmic endoplasmic reticulum, calcium, magnesium, adenosine triphosphatase (SERCA) protein and gene expression, and the contractile properties in the same bladder. Partial bladder outlet obstructions were created in adult New Zealand white rabbits, which were divided into control, sham operated and obstructed groups. Stein et al. report that "[t]he relative intensities of signals for the Western [protein] and Northern [mRNA] blots demonstrated a strong correlation between protein and gene expression. ... The loss of SERCA protein expression is mediated by down-regulation in gene expression in the same bladder." Id. This report supports Applicants' assertion that changes in mRNA level, e.g. a decrease, lead to a corresponding change in the level of the encoded protein, e.g. a decrease.

In an article by Gou and Xie (Zhonghua Jie He He Hu Xi Za Zhi. 2002; 25(6):337-40) (abstract attached as Exhibit 11) the authors investigated the expression of macrophage migration inhibitory factor (MIF) in human acute respiratory distress syndrome(ARDS) by examining the expression of MIF mRNA and protein in lung tissue in ARDS and normal persons. *Id.* at Abstract. The authors report "undetectable or weak MIF mRNA and protein expression in normal lungs. In contrast, there was marked upregulation of MIF mRNA and protein expression in the ARDS lungs." *Id.* This is consistent with Applicants' assertion that a change in mRNA for a particular gene, e.g. an increase, generally leads to a corresponding change in the level of protein expression, e.g. an increase.

These studies are representative of <u>numerous</u> published studies which support Applicants' assertion that changes in mRNA level generally lead to corresponding changes in the level of the expressed protein. Applicants submit herewith an addition 70 references (abstracts attached as Exhibit 12) which support Applicants' assertion.

In addition to these supporting references, Applicants also submit herewith additional references which offer indirect support of Applicants' asserted utility. As discussed in detail above, Applicants have challenged the relevance of references such as Haynes *et al.*, Gygi *et al.*, and Chen *et al.* which do not attempt to examine the correlation between a change in mRNA level and a change in the level of the corresponding protein level. Because the PTO continues to rely on these references, Applicants are submitting references which report results that are contrary to the PTO's cited references and offer indirect support for Applicants' asserted utility.

For example, in an article by Futcher *et al.* (Mol. Cell Biol. 1999; 19(11):7357-68) (abstract attached as Exhibit 13) the authors conducted a study of mRNA and protein expression in yeast which was nearly identical to the one conducted by Gygi *et al.* and reported in Haynes *et al.* Contrary to the results of the earlier study by Gygi, Futcher *et al.* report "a good correlation between protein abundance, mRNA abundance, and codon bias." *Id.* at Abstract.

In a study which is more closely related to Applicants' asserted utility, Godbout *et al.* (J. Biol. Chem. 1998; 273(33)21161-8) (abstract attached as Exhibit 14) studied the DEAD box gene, DDX1, in retinoblastoma and neuroblastoma tumor cell lines. The authors report that "there is a good correlation with DDX1 gene copy number, DDX1 transcript levels, and DDX1 protein levels in all cell lines studied." *Id.* Thus, in these cancer cell lines, DDX1 mRNA and protein levels are correlated.

Similarly, in an article by Papotti *et al.* (Virchows Arch. 2002; 440(5):461-75) (abstract attached as Exhibit 15) the authors examined the expression of three somatostatin receptors (SSTR) at the mRNA and protein level in forty-six tumors. *Id.* at Abstract. The authors report a "good correlation between RT-PCR [mRNA level] and IHC [protein level] data on SSTR types 2, 3, and 5." *Id.*

Van der Wilt et al. (Eur. J. Cancer. 2003; 39(5):691-7) (abstract attached as Exhibit 16) studied deoxycytidine kinase (dCK) in seven cell lines, sixteen acute myeloid leukemia samples, ten human liver samples, and eleven human liver metastases of colorectal cancer origin. *Id.* at

Abstract. The authors report that "enzyme activity and protein expression levels of dCK in cell lines were closely related to the mRNA expression levels" and that there was a "good correlation between the different dCK measurements in malignant cells and tumors." *Id.*

Grenback *et al.* (Regul. Pept. 2004; 117(2):127-39) (abstract attached as Exhibit 17) studied the level of galanin in human pituitary adenomas using a specific radioimmunoassay. *Id.* at Abstract. The authors report that "[i]n the tumors analyzed with in situ hybridization there was a good correlation between galanin peptide levels and galanin mRNA expression." *Id.*

Similarly, Shen *et al.* (Blood. 2004; 104(9):2936-9) (abstract attached as Exhibit 18) examined the level of B-cell lymphoma 2 (BCL2) protein expression in germinal center (GC) B-cells and diffuse large B-cell lymphoma (DLBCL). *Id.* at Abstract. The authors report that "GC cells had low expression commensurate with the low protein expression level" and that in DLBCL the level of BCL2 mRNA and protein expression showed "in general, a good correlation." *Id.*

Likewise, in an article by Fu *et al.* (Blood 2005; 106(13):4315-21) (abstract attached as Exhibit 19) the authors report that six mantle cell lymphomas studied "expressed either cyclin D2 (2 cases) or cyclin D3 (4 cases)." *Id.* at Abstract. "There was a good correlation between cyclin D protein expression and the corresponding mRNA expression levels by gene expression analysis." *Id.*

These examples are only a few of the many references Applicants could cite in rebuttal to the PTO's arguments. Applicants submit herewith 26 additional references (abstracts attached as Exhibit 20) which also support Applicants' assertion in that the references report a correlation between the level of mRNA and corresponding protein, contrary to the assertion of the PTO that mRNA and protein levels are not correlated.

In summary, Applicants submit herewith a total of 113 references in addition to the declarations and references already of record which support Applicants' asserted utility, either directly or indirectly. These references support the assertion that in general, a change in mRNA expression level for a particular gene leads to a corresponding change in the level of expression of the encoded protein. As Applicants have previously acknowledged, the correlation between changes in mRNA level and protein level is not exact, and there are exceptions (see, e.g., abstracts attached as Exhibit 21). However, Applicants remind the PTO that the asserted utility

10/063,534

Filed

May 2, 2002

does not have to be established to a statistical certainty, or beyond a reasonable doubt. See M.P.E.P. at § 2107.02, part VII (2004). Therefore, the fact that there are exceptions to the correlation between changes in mRNA and changes in protein does not provide a proper basis for rejecting Applicants' asserted utility. Applicants submit that considering the evidence as a whole, with the overwhelming majority of the evidence supporting Applicants' asserted utility, a person of skill in the art would conclude that Applicants' asserted utility is "more likely than not true." Id.

In conclusion, Applicants submit that they have offered sufficient evidence to establish that it is more likely than not that one of skill in the art would believe that because the PRO831 mRNA is differentially expressed in kidney and lung tumors compared to their normal tissue counterparts, the PRO831 polypeptide will likewise be differentially expressed in kidney and This differential expression of the PRO831 polypeptide makes the claimed antibodies useful as diagnostic tools for cancer, particularly kidney and lung cancer.

Specific Utility

The Asserted Substantial Utilities are Specific to the Claimed Antibodies

Applicants next address the PTO's assertion that the asserted utilities are not specific to the claimed antibodies related to PRO831. Applicants respectfully disagree.

Specific utility is defined as utility which is "specific to the subject matter claimed," in contrast to "a general utility that would be applicable to the broad class of the invention." M.P.E.P. § 2107.01 I. Applicants submit that the evidence of differential expression of the PRO831 gene and polypeptide in certain types of tumor cells, along with the declarations and references discussed above, provide a specific utility for the claimed antibodies.

As discussed above, there are significant data which show that the gene for the PRO831 polypeptide is expressed at least two-fold higher in kidney tumors and normal lung tissue compared to normal kidney tissue and lung tumors, respectively. These data are strong evidence that the PRO831 gene and polypeptide are associated with kidney and lung tumors. Thus, contrary to the assertions of the PTO, Applicants submit that they have provided evidence associating the PRO831 gene and polypeptide with a specific disease. The asserted utility for the

10/063,534

Filed

May 2, 2002

claimed antibodies as diagnostic tools for cancer, particularly kidney and lung tumors, is a specific utility – it is not a general utility that would apply to the broad class of antibodies.

Utility - Conclusion

Applicants remind the PTO that the evidence supporting utility does not need to be direct evidence, nor does it need to provide an exact correlation between the submitted evidence and the asserted utility. Instead, evidence which is "reasonably" correlated with the asserted utility is sufficient. See Fujikawa, 93 F.3d at 1565 ("a 'rigorous correlation' need not be shown in order to establish practical utility; 'reasonable correlation' suffices"); Cross, 753 F.2d at 1050 (same); Nelson, 626 F.2d at 857 (same). In addition, utility need only be shown to be "more likely than not true." M.P.E.P. at § 2107.02, part VII (2004). Considering the evidence as a whole in light of the relevant standards for establishing utility, Applicants have established at least one specific, substantial, and credible utility. In view of the above, Applicants respectfully request that the PTO reconsider and withdraw the utility rejection under 35 U.S.C. §101.

Rejections under 35 U.S.C. § 112, first paragraph - Enablement

The PTO also maintains its rejection of pending Claims 1-5 under 35 U.S.C. § 112, first paragraph. Specifically, the PTO asserts that because the claimed invention is not supported by either a specific or substantial asserted utility or a well established utility, one skilled in the art would not know how to use the claimed invention. *Final Office Action* at 3.

Applicants submit that in the discussion of the 35 U.S.C. § 101 rejection above, Applicants have established a substantial, specific, and credible utility for the claimed antibodies. To the extent that the enablement rejection is based on a lack of utility, Applicants respectfully request that the PTO reconsider and withdraw the enablement rejection under 35 U.S.C. §112.

: 10/063,534

Filed

: May 2, 2002

CONCLUSION

In view of the above, Applicants respectfully maintain that claims are patentable and request that they be passed to issue. Applicants invite the Examiner to call the undersigned if any remaining issues may be resolved by telephone.

Please charge any additional fees, including any fees for additional extension of time, or credit overpayment to Deposit Account No. 11-1410.

Respectfully submitted,

KNOBBE, MARTENS, OLSON & BEAR, LLP

Dated: 3/31/06

By:

Marc T. Morley

Registration No. 52,051

Attorney of Record Customer No. 30,313

(619) 235-8550

2440877 031406