

VIB AI Summer School 2025

Francesco Carli

Next token predicton

Pre-training: a simple loss function

[START]	Target: "The"	loss_token_1	
The	Target: "cat"	loss_token_2	
The cat	Target: "is"	loss_token_3	
The cat is	Target: "on"	loss_token_4	Total Loss Σ = loss_token_1 + + loss_token_6
The cat is on	Target: "the"	loss_token_5	Average = Σ ÷ 6
The cat is on the	Target: "mat"	loss_token_6	

The finest collection of data the web has to offer

What is it?

The FineWeb dataset consists of more than **15T tokens** of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the <u>images</u> datatrove library, our large scale data processing library.

The FineWeb dataset consists of more than **15T tokens** of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the <u>images</u> datatrove library, our large scale data processing library.

The FineWeb dataset consists of more than **15T tokens** of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the <u>images</u> datatrove library, our large scale data processing library.

library, our large scale data processing library.

EMBL-EBI

Is "just a simulator"

"Moebius illustration of a simulacrum living in an AI-generated story discovering it is in a simulation" by DALL-E 2

P(*new token*|{*old tokens*})

Understanding hallucinations

Started seeing someone

As in dating or hallucinations

Understanding hallucinations

Sub-Type	User Input	Model Output	Explanation
Factual Inconsistency	Tell me about the first person to land on the Moon.	Yuri Gagarin was the first person to land on the Moon	The LLM's response is factual inconsistency as Neil Armstrong was the first person to land on the Moon, not Yuri Gagarin, who was the first human in space
Factual Fabrication	Tell me about the historical origins of unicorns	Unicorns were documented to have roamed the plains of Atlantis around 10,000 BC, where they were considered sacred creatures and were often associated with royalty.	The LLM's response is a fabricated claim since there's no verified, real-world evidence supporting the existence of unicorns in Atlantis, especially in connection with royalty

Understanding hallucinations

The role of the system prompt

'We are talking about animals"

Distribution Sharpening with System Prompts

How system prompts reshape probability distributions

 ${old\ tokens} = {sys\ prompt} + {already\ sampled\ tokens}$

Likewise for RAG

Retrieval augmentation

Instruction tuning: reinforcement learning from human feedback (RLHF)

Explain reinforcement

learning to a 6 year old.

D > G > A > B

In reinforcement

C

Step 1

Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3.5 with supervised learning.

Step 2

Collect comparison data and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

A new prompt is sampled from the dataset.

The PPO model is initialized from the supervised policy.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

Post training: reinforcement learning with verifiable rewards (RLVR)

DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models

Zhihong Shao^{1,2*†}, Peiyi Wang^{1,3*†}, Qihao Zhu^{1,3*†}, Runxin Xu¹, Junxiao Song¹ Xiao Bi¹, Haowei Zhang¹, Mingchuan Zhang¹, Y.K. Li¹, Y. Wu¹, Daya Guo^{1*}

¹DeepSeek-AI, ²Tsinghua University, ³Peking University

Post training: reinforcement learning with verifiable rewards (RLVR)

Agentic Reasoning and Tool Integration for LLMs via Reinforcement Learning

Joykirat Singh, Raghav Magazine, Yash Pandya, Akshay Nambi Microsoft Research

corresponding author: akshayn@microsoft.com

Recap of the training steps

Pre-training: raw next token prediction;

Instruction tuning (RLHF): alignment with human preferences;

Post-training: extension to specific thinking/agentic behaviors

Mixture of Experts

Key points:

- Have faster inference compar ed to a model with the same number of parameters;
- Require high
 VRAM as all
 experts are
 loaded in memory
- Face many challenges in fine-tuning

Thinking models vs. standard models

- Reasoning models produce intermediate "chain-ofthought" traces; regular models output only final answers.
- Thinking models are trained on or fine-tuned with step-by-step reasoning examples; regular models are trained on direct input—output pairs only
- Reasoning models perform better on multi-step tasks, such as logic, math, programming, and planning; regular models struggle or approximate.
- They often require more compute and generate longer outputs, due to reasoning steps; regular models are faster and leaner

Where to find models

Two big families

"Open" models

- Llama3 (meta.ai)
- Qwen3 (alibaba)
- GLM 4.5 (z.ai)
- DeepSeek 3.1 (DeepSeek)
- Kimi-K2 (moonshot.ai)
- Mistral Small 3.1 (Mistral.Al)

Commercial models

- GPT5 (OpenAI)
- Gemini (Google DeepMind)
- Claude 4 (anthropicAl)
- Grok 4 (xAI)

Where to find open models

Where to find open models

Download

https://ollama.com

Size calculator

https://research.aimultiple.com/self-hosted-llm/

Quantization

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

Other libraries for open models

https://github.com/vllm-project/vllm

https://github.com/ggml-org/llama.cpp

https://github.com/sgl-project/sglang

Where to find closed models

OpenRouter

