# 1 Constants

| Symbol                 | Unit              | Value        | Explanation                                              |
|------------------------|-------------------|--------------|----------------------------------------------------------|
| $\Delta t$             | S                 | 0.01 - 0.001 | Timestep                                                 |
| $	au_{adj}$            | s                 | 0.5          | Characteristic time in which agent adjusts its movement. |
| k                      | N                 | 1.5          | Social force scaling constant.                           |
| $	au_0$                | $\mathbf{s}$      | 3.0          | Interaction time horizon.                                |
| $\mu$                  | $\mathrm{kg/s^2}$ | 1.2e + 05    | Compression counteraction constant.                      |
| $\kappa$               | kg/(m s)          | 2.4e + 05    | Sliding friction constant.                               |
| A                      | N                 | 2.0e + 03    | Scaling coefficient for social force.                    |
| B                      | m                 | 0.08         | Coefficient for social force.                            |
| $\ \mathbf{f}_{max}\ $ | N                 |              | Force magnitude limit.                                   |



 $\textbf{Figure 1:} \ \, \textbf{Circle}, \, \textbf{ellipse} \, \, \textbf{and} \, \, \textbf{three} \, \, \textbf{circle} \, \, \textbf{representations} \, \, \textbf{of} \, \, \textbf{an} \, \, \textbf{agent}. \, \,$ 

# 2 Agents

# 2.1 Properties

Table 1: Shoulder, torso and total radii.

|        | Total |       | Torso        | Shoulder     |            |
|--------|-------|-------|--------------|--------------|------------|
|        | r     | ±     | $r_{ m t}/r$ | $r_{ m s}/r$ | $r_{ts}/r$ |
| adult  | 0.255 | 0.035 | 0.5882       | 0.3725       | 0.6275     |
| child  | 0.210 | 0.015 | 0.5714       | 0.3333       | 0.6667     |
| eldery | 0.250 | 0.020 | 0.6000       | 0.3600       | 0.6400     |
| female | 0.240 | 0.020 | 0.5833       | 0.3750       | 0.6250     |
| male   | 0.270 | 0.020 | 0.5926       | 0.3704       | 0.6296     |

Table 2: Properties

| r                    | m                              |             | Total radius         |
|----------------------|--------------------------------|-------------|----------------------|
| m                    | kg                             | 80          | Mass                 |
| I                    | $\mathrm{kg}\cdot\mathrm{m}^2$ | 4.0         | Rotational moment    |
| x                    | m                              |             | Position             |
| $\mathbf{v}$         | m/s                            |             | Velocity             |
| $v_0$                | m/s                            |             | Goal velocity        |
| $\hat{\mathbf{e}}_0$ |                                |             | Goal direction       |
| $\hat{\mathbf{e}}$   |                                |             | Target direction     |
| φ                    | rad                            | $[0, 2\pi]$ | Body angle           |
| $\omega$             | rad/s                          |             | Angular velocity     |
| $\varphi_0$          | rad                            |             | Target angle         |
| $\omega_0$           | rad/s                          | $4\pi$      | Max angular velocity |
| p                    |                                | 0 - 1       | Herding tendency     |
|                      |                                |             |                      |

Table 3: Relative

| $\tilde{\mathbf{x}} = \mathbf{x}_i - \mathbf{x}_j$ | Relative position |
|----------------------------------------------------|-------------------|
| $\tilde{\mathbf{v}} = \mathbf{v}_i - \mathbf{v}_j$ | Relative velocity |

# 2.2 Circular agent

| $d = \ \tilde{\mathbf{x}}\ $                             | Distance       |
|----------------------------------------------------------|----------------|
| $\hat{\mathbf{n}} = \tilde{\mathbf{x}}/d$                | Normal vector  |
| $\hat{\mathbf{t}} = R(-90^\circ) \cdot \hat{\mathbf{n}}$ | Tangent vector |

Total radius and relative distance

$$\tilde{r} = r_i + r_j$$
$$h = \tilde{r} - d$$

#### 2.3 Three circles

$$\mathbf{c}_r = \hat{\mathbf{t}}r_{ts} + \mathbf{x}$$

$$\mathbf{c}_l = -\hat{\mathbf{t}}r_{ts} + \mathbf{x}$$

$$\hat{\mathbf{t}} = [-\sin(\varphi), \cos(\varphi)]$$

$$\mathbf{h} = \left( \begin{bmatrix} r_t & r_s & r_s \end{bmatrix}_i + \begin{bmatrix} r_t \\ r_s \\ r_s \end{bmatrix}_j \right) - \left\| \begin{bmatrix} \mathbf{x} & \mathbf{c}_r & \mathbf{c}_l \end{bmatrix}_i - \begin{bmatrix} \mathbf{x} \\ \mathbf{c}_r \\ \mathbf{c}_l \end{bmatrix}_j \right\|$$

$$\begin{bmatrix} 0 & \hat{\mathbf{t}}r_{ts} & -\hat{\mathbf{t}}r_{ts} \end{bmatrix}_i - \begin{bmatrix} 0 \\ \hat{\mathbf{t}}r_{ts} \\ -\hat{\mathbf{t}}r_{ts} \end{bmatrix}_j + (\mathbf{x}_i - \mathbf{x}_j) \end{bmatrix}$$

$$\begin{bmatrix} \begin{bmatrix} 0 & 1 & -1 \end{bmatrix} (\hat{\mathbf{t}} r_{ts})_i - \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} (\hat{\mathbf{t}} r_{ts})_j + \tilde{\mathbf{x}} \end{bmatrix}$$

- 1. Find  $h_{max} = \max(\mathbf{h})$  and keep tract of the circles that maximizes this distance.
- 2. Two circles found  $(\mathbf{p}_0, r_0)$  and  $(\mathbf{p}_1, r_1)$
- 3. Compute  $\mathbf{r}_i^{soc}$
- 4. If h > 0 compute  $\mathbf{r}_i^c$  else **0**
- 5. Return  $(h_{max}, \mathbf{r}_i^{soc}, \mathbf{r}_i^c)$

#### 2.4 Rotational equation

Rotational equation of motion

$$I\frac{d^2}{dt^2}\varphi(t) = M(t) + \eta(t),$$

where  $\eta(t)$  is small random fluctuation torque, and M(t) is total torque, which is the sum of contact, social and motivational torque

$$M_i(t) = M_i^c + M_i^{soc} + M_i^{\tau}$$

Torque from contact forces

$$\mathbf{M}_{i}^{c} = \sum_{j 
eq i} \left( \mathbf{r}_{i}^{c} imes \mathbf{f}_{ij}^{c} 
ight)$$

and from social forces

$$\mathbf{M}_{i}^{soc} = \sum_{j 
eq i} \left( \mathbf{r}_{i}^{soc} imes \mathbf{f}_{ij}^{soc} 
ight)$$

Motivational torque

$$M_i^{\tau} = \frac{I_i}{\tau_i} \left( (\varphi_i(t) - \varphi_i^0) \omega^0 - \omega(t) \right)$$

As vector

$$\mathbf{r} \times \mathbf{f} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ R_1 & R_2 & R_3 \\ f_1 & f_2 & f_3 \end{vmatrix}$$

In two dimensions

$$\begin{vmatrix} R_1 & R_2 \\ f_1 & f_2 \end{vmatrix} = R_1 \cdot f_2 - R_2 \cdot f_1$$



Figure 2: Absolute distance from a linear wall.



Figure 3: Velocity dependent distance from a linear wall.

# 3 Linear wall

# 3.1 Properties

| $egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$ | Start point<br>End point |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Length                   |
| $\hat{\mathbf{n}}_w = R(90^\circ) \cdot \hat{\mathbf{t}}_w$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |

#### 3.2 Absolute distance

Solving linear system of equations determining the position of the agent  $\mathbf{x}_i$  in relation to wall

$$\begin{cases} \mathbf{p}_0 + l_{n_0} \hat{\mathbf{n}}_w = \mathbf{x}_i + l_{t_0} \hat{\mathbf{t}}_w \\ \mathbf{p}_1 + l_{n_1} \hat{\mathbf{n}}_w = \mathbf{x}_i + l_{t_1} \hat{\mathbf{t}}_w \end{cases}$$
$$\begin{cases} l_{n_0} \hat{\mathbf{n}}_w - l_{t_0} \hat{\mathbf{t}}_w = \mathbf{x}_i - \mathbf{p}_0 = \mathbf{q}_0 \\ l_{n_1} \hat{\mathbf{n}}_w - l_{t_1} \hat{\mathbf{t}}_w = \mathbf{x}_i - \mathbf{p}_1 = \mathbf{q}_1 \end{cases}$$

In matrix form

$$\begin{bmatrix} l_{n_0} & l_{n_1} \\ l_{t_0} & l_{t_1} \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} \mathbf{q}_0 & \mathbf{q}_1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} \hat{\mathbf{n}}_w & -\hat{\mathbf{t}}_w \end{bmatrix} = \begin{bmatrix} -t_1 & -t_0 \\ t_0 & -t_1 \end{bmatrix}$$

$$\mathbf{A}^{-1} = \frac{1}{t_0^2 + t_1^2} \begin{bmatrix} -t_1 & t_0 \\ -t_0 & -t_1 \end{bmatrix} = \begin{bmatrix} -t_1 & t_0 \\ -t_0 & -t_1 \end{bmatrix}$$

$$= \begin{bmatrix} \hat{\mathbf{n}}_w \\ -\hat{\mathbf{t}}_w \end{bmatrix} = \mathbf{A}^T$$

Conditions

$$l_n = l_{n_0} \vee l_{n_1} = \hat{\mathbf{n}}_w \cdot \mathbf{q}_0 \vee \hat{\mathbf{n}}_w \cdot \mathbf{q}_1$$
$$l_t = l_{t_1} + l_{t_0} = -\hat{\mathbf{t}}_w \cdot \mathbf{q}_1 - \hat{\mathbf{t}}_w \cdot \mathbf{q}_0$$

Distance between agent and linear wall

$$d_{iw} = \begin{cases} \|\mathbf{q}_0\| & l_t > l_w \\ |l_n| & \text{otherwise} \\ \|\mathbf{q}_1\| & l_t < -l_w \end{cases}$$

Normal vector away from the wall

$$\hat{\mathbf{n}}_{iw} = \begin{cases} \hat{\mathbf{q}}_0 & l_t > l_w \\ \operatorname{sign}(l_n)\hat{\mathbf{n}}_w & \text{otherwise} \\ \hat{\mathbf{q}}_1 & l_t < -l_w \end{cases}$$

# 3.3 Velocity relative distance

$$\tilde{\mathbf{x}} = \mathbf{x}_{iw}$$
 Relative position  $\tilde{\mathbf{v}} = \mathbf{v}_{iw} = \mathbf{v}_i$  Relative velocity  $\tilde{r} = r_{iw}$  Total radius  $d = ||\tilde{\mathbf{x}}||$  Distance  $h = \tilde{r} - d$  Relative distance

Dividing vectors

$$\begin{aligned} \mathbf{q}_0 &= \mathbf{p}_0 - \mathbf{x} \\ \mathbf{q}_1 &= \mathbf{p}_1 - \mathbf{x} \\ \hat{\mathbf{n}}_{iw} &= -\operatorname{sign}(\hat{\mathbf{n}}_w \cdot \mathbf{q}_0) \hat{\mathbf{n}}_w \end{aligned}$$

Angle of 2D vector is found using https://en.wikipedia.org/wiki/Atan2 where angle is between  $[-\pi, \pi]$ 

$$oldsymbol{lpha} = [\mathrm{angle}(\mathbf{q}_0), \mathrm{angle}(\mathbf{q}_1), \mathrm{angle}(\hat{\mathbf{n}}_{iw})]$$
 
$$\varphi = \mathrm{angle}(\mathbf{v})$$

# 4 Crowd dynamics

### 4.1 Social force model

Total force exerted on the agent is the sum of movement adjusting, social and contact forces between other agents and wall.

$$\mathbf{f}_{i}(t) = \mathbf{f}_{i}^{adj} + \sum_{j \neq i} \left( \mathbf{f}_{ij}^{soc} + \mathbf{f}_{ij}^{c} \right) + \sum_{w} \left( \mathbf{f}_{iw}^{soc} + \mathbf{f}_{iw}^{c} \right) + \boldsymbol{\xi}_{i}$$

# 4.2 Adjusting force

Force adjusting agent's movement towards desired in some characteristic time

$$\mathbf{f}^{adj} = \frac{m}{\tau^{adj}} (v_0 \cdot \hat{\mathbf{e}} - \mathbf{v})$$

#### 4.3 Social force

Psychological force for collision avoidance

#### 4.3.1 Velocity independent

$$\mathbf{f}^{soc} = A \exp\left(\frac{h}{B}\right) \hat{\mathbf{n}}$$

#### 4.3.2 Velocity dependent

$$\begin{split} \mathbf{f}^{soc} &= -\nabla_{\tilde{\mathbf{x}}} E(\tau) \\ &= -\nabla_{\tilde{\mathbf{x}}} \left( \frac{k}{\tau^2} \exp\left( -\frac{\tau}{\tau_0} \right) \right) \\ &= -\left( \frac{k}{a\tau^2} \right) \left( \frac{2}{\tau} + \frac{1}{\tau_0} \right) \exp\left( -\frac{\tau}{\tau_0} \right) \left( \tilde{\mathbf{v}} - \frac{a\tilde{\mathbf{x}} + b\tilde{\mathbf{v}}}{d} \right), \end{split}$$

where

$$\begin{split} a &= \tilde{\mathbf{v}} \cdot \tilde{\mathbf{v}} \\ b &= -\tilde{\mathbf{x}} \cdot \tilde{\mathbf{v}} \\ c &= \tilde{\mathbf{x}} \cdot \tilde{\mathbf{x}} - \tilde{r}^2 \\ d &= \sqrt{b^2 - ac}, \quad b^2 - ac > 0 \\ \tau &= \frac{b - d}{a} > 0. \end{split}$$

#### 4.4 Contact force

Physical contact force

$$\mathbf{f}^c = h \cdot (\mu \cdot \hat{\mathbf{n}} - \kappa \cdot (\mathbf{v} \cdot \hat{\mathbf{t}})\hat{\mathbf{t}}), \quad h > 0$$

#### 4.5 Random Fluctuation

Uniformly distributed random fluctuation force

$$\boldsymbol{\xi} = f \cdot [\cos(\varphi), \sin(\varphi)],$$

where

$$f \in [0, f_{max}], \quad \varphi \in [0, 2\pi)$$

# 4.6 Target direction

Herding behavior

$$\mathbf{e}_i = (1 - p_i)\hat{\mathbf{e}}_i^0 + p_i \left\langle \hat{\mathbf{e}}_j^0 \right\rangle_i$$

# 5 Integrators

# 5.1 Differential systems

Angle and angular velocity

$$I\frac{d^2}{dt^2}\varphi(t) = M(t)$$

Position and velocity

$$m\frac{d^2}{dt^2}\mathbf{x}(t) = \mathbf{f}(t)$$

### 5.2 Numerical methods

Updating using discrete time step  $\Delta t$ 

$$t_0 = 0$$

$$t_1 = t_0 + \Delta t$$

$$\vdots$$

$$t_k = t_{k-1} + \Delta t$$

# 5.3 Excelicit Euler Method

Angular acceleration

$$\alpha_k = M_k / I$$

$$\omega_{k+1} = \omega_k + \alpha_k \Delta t$$

$$\varphi_{k+1} = \varphi_k + \omega_{k+1} \Delta t$$

Acceleration on an agent

$$a_k = \mathbf{f}_k / m$$

$$\mathbf{v}_{k+1} = \mathbf{v}_k + a_k \Delta t$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{v}_{k+1} \Delta t$$

# 5.4 Velocity verlet

Velocity verlet algorithm

$$\begin{aligned} \mathbf{v}_{k+\frac{1}{2}} &= \mathbf{v}_k + \frac{1}{2} a_k \Delta t \\ \mathbf{x}_{k+1} &= \mathbf{x}_k + \mathbf{v}_{k+\frac{1}{2}} \Delta t \\ \mathbf{v}_{k+1} &= \mathbf{v}_{k+\frac{1}{2}} + \frac{1}{2} a_{k+1} \Delta t \end{aligned}$$

or more simply

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{v}_k \Delta t + \frac{1}{2} a_k \Delta t^2$$
$$\mathbf{v}_{k+1} = \mathbf{v}_k + \frac{1}{2} (a_k + a_{k+1}) \Delta t$$

# 6 Spatial game

#### 6.1 Game matrix

| $T_i = \lambda_i/\beta$             | Estimated evacuation time              |
|-------------------------------------|----------------------------------------|
| $\lambda_i$                         | Number of other agents closer to the   |
|                                     | exit                                   |
| $\beta$                             | Capacity of the exit                   |
| $T_{ij} = \left(T_i + T_j\right)/2$ | Average evacuation time                |
| $T_{ASET}$                          | Available safe egress time             |
| $T_0$                               | Time difference between $T_{ASET}$ and |
|                                     | $T_i$ before agents start playing the  |
|                                     | game                                   |
| C > 0                               | Cost of conflict                       |

Cost function

$$u(T_i, T_{ASET}), \quad u'(T_i) \ge 0, \quad u''(T_i) \ge 0$$

Increase/decrease in cost

$$\Delta u(T_{ij}) = u(T_{ij}) - u(T_{ij} - \Delta T) \approx u'(T_{ij})\Delta T$$

|           | Impatient                             | Patient                               |
|-----------|---------------------------------------|---------------------------------------|
| Impatient | C,C                                   | $-\Delta u(T_{ij}), \Delta u(T_{ij})$ |
| Patient   | $\Delta u(T_{ij}), -\Delta u(T_{ij})$ | 0,0                                   |

|           | Impatient                                              | Patient |
|-----------|--------------------------------------------------------|---------|
| Impatient | $rac{C}{\Delta u(T_{ij})}, rac{C}{\Delta u(T_{ij})}$ | -1,1    |
| Patient   | 1, -1                                                  | 0,0     |

i) Prisoner's dilemma (PD)

$$0 < \frac{C}{\Delta u(T_{ij})} \le 1$$

ii) Hawk-dove (HD)

$$\frac{C}{\Delta u(T_{ij})} > 1$$

Assumptions

1. Game is not played

$$T_{ij} \leq T_{ASET} - T_0$$

2. Cost function starts to increase quadratically

$$T_{ij} > T_{ASET} - T_0$$

3. Game turns into prisoner's dilemma

$$u'(T_{ASET}) = C, \quad T_{ij} \ge T_{ASET}$$

Cost function that meets the assumptions

$$u(T_{ij}) = \begin{cases} 0 & T_{ij} \le T_{ASET} - T_0 \\ \frac{C}{2T_0} (T_{ij} - T_{ASET} + T_0)^2 & T_{ij} > T_{ASET} - T_0 \end{cases}$$

Derivative

$$u'(T_{ij}) = \begin{cases} 0 & T_{ij} \le T_{ASET} - T_0 \\ \frac{C}{T_0} (T_{ij} - T_{ASET} + T_0) & T_{ij} > T_{ASET} - T_0 \end{cases}$$

Loss/gain of overtaking

$$\Delta u(T_{ij}) \approx u'(T_{ij})\Delta T = \frac{C}{T_0} (T_i - T_{ASET} + T_0) \Delta T$$

Value parameter of the game matrix

$$\frac{C}{\Delta u(T_{ij})} \approxeq \frac{T_0}{T_{ij} - T_{ASET} + T_0}$$

# 6.2 Settings and best-response dynamics

|       | Unit         | Value |                                       |
|-------|--------------|-------|---------------------------------------|
|       |              | 4     | von Neumann neighborhood              |
|       |              | 8     | Moore neighborhood                    |
| $r_n$ | $\mathbf{m}$ | 0.40  | Distance to agent that is considered  |
|       |              |       | as neighbor                           |
| $v_i$ |              |       | Loss defined by game matrix           |
| S     |              |       | Set of strategies                     |
|       |              |       | $\{Patient, Impatient\}$              |
| s     |              |       | $Strategy \in \{Patient, Impatient\}$ |

The best-response strategy

$$s_i^{(t)} = \arg\min_{s_i' \in S} \sum_{j \in N_i} v_i \left( s_i', s_j^{(t-1)}; T_{ij} \right)$$

 $s_j^{(t-1)}$  strategy neighbor played on period t-1 Updating strategy using poisson process.