## **Claims**

What is claimed is:

1. A compound having Formula II:

$$R_2$$
 $R_1$ 
 $R_2$ 
 $R_3$ 
 $R_3$ 

or pharmaceutically acceptable salts, stereoisomers, hydrates or pro-drugs thereof, wherein,

the ring formed by T, U, V is

$$R_5$$
  $N-N$   $R_6$   $N-N$   $R_6$   $R_6$   $R_6$   $R_6$ 

Z is O, S, nitro, or NR<sub>4</sub>;

 $R_1$ ,  $R_2$ , or  $R_5$  each independently is:

- 1) hydrogen, hydroxyl, halo, nitro, or cyano;
- 2)  $C_1$ - $C_8$  alkyl;
- 3) C<sub>2</sub>-C<sub>8</sub> alkenyl;
- 4) C<sub>2</sub>-C<sub>8</sub> alkynyl;
- 15 5)  $C_1$ - $C_8$  alkoxy;
  - 6) C<sub>3</sub>-C<sub>8</sub> cycloalkyl or heterocyclyl;
    - 7) C<sub>4</sub>-C<sub>8</sub> cycloalkylalkyl or heterocyclylalkyl;
    - 8) C<sub>3</sub>-C<sub>10</sub> aryl;
    - 9) C<sub>5</sub>-C<sub>10</sub> aralkyl;
- 20 10)  $C_6$ - $C_{10}$  aryloxy;

25

- 11)  $NH_2$ ,  $NHR_7$ , or  $NR_7R_7$ ; or
- 12) -SO<sub>2</sub>R<sub>7</sub>,

wherein  $R_7$  is independently H, hydroxyl, halo,  $C_1$ - $C_6$  alkyl optionally substituted with at least one  $R_{10}$ ,  $C_1$ - $C_6$  alkoxy optionally substituted with at least one  $R_{10}$ ,  $C_3$ - $C_8$  cycloalkyl optionally substituted with at least one  $R_{10}$ ,  $C_4$ - $C_8$  heterocycloalkyl optionally substituted with at least one  $R_{10}$ ,  $C_3$ - $C_{10}$  aryl optionally substituted with at least one  $R_{10}$ ,  $NH_2$ ,  $NHR_{10}$ ,  $NR_{10}R_{10}$ , or  $SO_2R_{10}$ , wherein  $R_{10}$  is independently halo, cyano, nitro,  $C_1$ - $C_4$ 

alkyl, C<sub>1</sub>-C<sub>4</sub> alkoxy, or NH<sub>2</sub>; optionally, R<sub>1</sub> and R<sub>2</sub> taken together form a ring structure including cycloalkyl, heterocyclyl, or aryl ring;

R<sub>3</sub> is:

- 1) hydrogen;
- 5 2)  $C_1$ - $C_8$  alkyl;
  - 3) C<sub>2</sub>-C<sub>8</sub> alkenyl;
  - 4) C<sub>2</sub>-C<sub>8</sub> alkynyl;
  - 5)  $C_1$ - $C_8$  alkoxy;
  - 6) C<sub>3</sub>-C<sub>10</sub> cycloalkyl or heterocyclyl;
- 7) C<sub>4</sub>-C<sub>10</sub> cycloalkylalkyl or heterocyclylalkyl;
  - 8)  $C_3$ - $C_{10}$  aryl;
  - 9)  $C_4$ - $C_{10}$  aralkyl;
  - 10) carbonyl; or
  - 11)  $-SO_2R_8$ ,  $-CO_2R_8$ ,  $-SR_8$ , or  $-SOR_8$ ;

wherein R<sub>8</sub> is independently H, halo, cyano, nitro, C<sub>1</sub>-C<sub>4</sub> alkyl optionally substituted with at least one R<sub>11</sub>, C<sub>1</sub>-C<sub>4</sub> alkoxy optionally substituted with at least one R<sub>11</sub>, C<sub>3</sub>-C<sub>8</sub> cycloalkyl optionally substituted with at least one R<sub>11</sub>, C<sub>3</sub>-C<sub>8</sub> heterocyclyl optionally substituted with at least one R<sub>11</sub>, C<sub>6</sub>-C<sub>10</sub> aryl optionally substituted with at least one R<sub>11</sub>, C<sub>6</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>11</sub>, NH<sub>2</sub>, NHR<sub>11</sub>,

NR<sub>11</sub>R<sub>11</sub>, or SO<sub>2</sub>R<sub>11</sub>, wherein R<sub>11</sub> is independently halo, cyano, nitro, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> alkoxy, C<sub>6</sub>-C<sub>10</sub> aryl, C<sub>3</sub>-C<sub>8</sub> aralkyl, C<sub>3</sub>-C<sub>8</sub> heterocyclyl, or NH<sub>2</sub>,

R<sub>4</sub> is:

- 1) hydrogen;
- 2)  $C_1$ - $C_8$  alkyl;
- 25 3) C<sub>2</sub>-C<sub>8</sub> alkenyl;
  - 4) C<sub>2</sub>-C<sub>8</sub> alkynyl;
  - 5) C<sub>3</sub>-C<sub>8</sub> cycloalkyl or heterocyclyl;
  - 6) C<sub>4</sub>-C<sub>8</sub> cycloalkylalkyl or heterocyclylalkyl;
  - 7)  $C_3$ - $C_{10}$  aryl;
- 30 8) C<sub>5</sub>-C<sub>10</sub> aralkyl;
  - 9) carbonyl; or
  - 10)  $-SO_2R_{12}$ , or  $-SOR_{12}$ ;

wherein  $R_{12}$  is independently H, halo, cyano, nitro,  $C_1$ - $C_6$  alkyl optionally substituted with at least one  $R_{13}$ ,  $C_1$ - $C_4$  alkoxy optionally substituted with at least one  $R_{13}$ ,

 $C_3$ - $C_8$  cycloalkyl optionally substituted with at least one  $R_{13}$ ,  $C_2$ - $C_8$  heterocyclyl optionally substituted with at least one  $R_{13}$ ,  $C_3$ - $C_{10}$  aryl optionally substituted with at least one  $R_{13}$ ,  $NH_2$ ,  $NHR_{13}$ ,  $NR_{13}R_{13}$ , or  $SO_2R_{13}$ , wherein  $R_{13}$  is independently halo, cyano, nitro,  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy,  $C_3$ - $C_9$  aryl,  $C_3$ - $C_8$  heterocyclylalkyl, or  $NH_2$ ; optionally,  $R_3$  and  $R_4$  are taken together to form a  $C_4$ - $C_6$  heterocyclyl optionally substituted with  $R_{13}$ , or aryl; and

R<sub>6</sub> is:

5

20

25

30

- 1)  $C_1$ - $C_8$  alkyl;
- 2) C<sub>2</sub>-C<sub>8</sub> alkenyl;
- 10 3)  $C_2$ - $C_8$  alkynyl;
  - 4)  $C_1$ - $C_8$  alkoxy;
  - 5) C<sub>3</sub>-C<sub>10</sub> cycloalkyl or heterocyclyl;
  - 6) C<sub>4</sub>-C<sub>10</sub> cycloalkylalkyl or heterocyclylalkyl;
  - 7)  $C_4$ - $C_{10}$  aryl;
- 15 8)  $C_5$ - $C_{10}$  aralkyl; or
  - 9) NH<sub>2</sub>, NHR<sub>9</sub> or NR<sub>9</sub>R<sub>9</sub>,

wherein  $R_9$  is independently hydroxyl, halo, nitro,  $C_1$ - $C_6$  alkyl optionally substituted with at least one  $R_{14}$ ,  $C_2$ - $C_6$  alkynyl optionally substituted with at least one  $R_{14}$ ,  $C_1$ - $C_6$  alkoxy optionally substituted with at least one  $R_{14}$ ,  $C_3$ - $C_{10}$  cycloalkyl optionally substituted with at least one  $R_{14}$ ,  $C_2$ - $C_8$  heterocyclyl optionally substituted with at least one  $R_{14}$ ,  $C_4$ - $C_8$  cycloalkylalkyl optionally substituted with  $R_{14}$ , heterocyclylalkyl optionally substituted with  $R_{14}$ ,  $C_4$ - $C_{10}$  aryl optionally substituted with at least one  $R_{14}$ ,  $C_5$ - $C_{10}$  aralkyl optionally substituted with at least one  $R_{14}$ ,  $-NH_2$ ,  $-NHR_{14}$ ,  $-NR_{14}R_{14}$ , or  $-SO_2$ - $R_{14}$ , wherein  $R_{14}$  is independently halo, cyano, nitro,  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy,  $C_4$ - $C_9$  cycloalkyl,  $C_4$ - $C_9$  heterocycloalkyl,  $C_4$ - $C_{10}$  aryl,  $-SO_2$ ( $C_6$ - $C_{10}$  aryl),  $-NH_2$ ,  $-NH[(C_1$ - $C_4$ ) alkyl],  $-N[(C_1$ - $C_4$ ) alkyl],  $-NH(C_5$ - $C_8$  heterocyclylalkyl),  $-NH(C_6$ - $C_8$  aryl), or  $-NH(C_6$ - $C_8$  heterocyclyl).

- 2. The compounds according to claim 1, wherein Z is O or NH.
- 3. The compounds according to claim 1, wherein  $R_1$ ,  $R_2$ , or  $R_5$  is substituted with  $R_7$ , wherein  $R_7$  is independently hydroxyl, halo,  $C_1$ - $C_6$  alkyl optionally substituted with at least one  $R_{10}$ ,  $C_1$ - $C_6$  alkoxy optionally substituted with at least one  $R_{10}$ ,  $C_3$ - $C_8$  cycloalkyl

optionally substituted with at least one  $R_{10}$ ,  $C_4$ - $C_8$  heterocycloalkyl optionally substituted with at least one  $R_{10}$ ,  $C_3$ - $C_{10}$  aryl optionally substituted with at least one  $R_{10}$ ,  $NH_2$ ,  $NHR_{10}$ ,  $NR_{10}R_{10}$ , or  $SO_2R_{10}$ , wherein  $R_{10}$  is independently halo, cyano, nitro,  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy, or  $NH_2$ .

5

- 4. The compounds according to claim 1, wherein  $R_1$  and  $R_2$  taken together form a ring structure including cycloalkyl, heterocyclyl or aryl rings.
- 5. The compound according to claim 1, wherein R<sub>3</sub> is substituted with R<sub>8</sub> wherein R<sub>8</sub> is independently halo, cyano, nitro, C<sub>1</sub>-C<sub>4</sub> alkyl optionally substituted with at least one R<sub>11</sub>, C<sub>1</sub>-C<sub>4</sub> alkoxy optionally substituted with at least one R<sub>11</sub>, C<sub>3</sub>-C<sub>8</sub> cycloalkyl optionally substituted with at least one R<sub>11</sub>, C<sub>3</sub>-C<sub>8</sub> heterocyclyl optionally substituted with at least one R<sub>11</sub>, C<sub>6</sub>-C<sub>10</sub> aryl optionally substituted with at least one R<sub>11</sub>, C<sub>6</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>11</sub>, NH<sub>2</sub>, NHR<sub>11</sub>, NR<sub>11</sub>R<sub>11</sub>, or SO<sub>2</sub>R<sub>11</sub>, wherein R<sub>11</sub> is independently halo, cyano, nitro, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> alkoxy, C<sub>6</sub>-C<sub>10</sub> aryl, C<sub>3</sub>-C<sub>8</sub> aralkyl, C<sub>3</sub>-C<sub>8</sub> heterocyclyl, or NH<sub>2</sub>.
  - 6. The compound according to claim 1, wherein  $R_4$  is substituted with  $R_{12}$  wherein  $R_{12}$  is independently halo, cyano, nitro,  $C_1$ - $C_6$  alkyl optionally substituted with at least one  $R_{13}$ ,  $C_1$ - $C_4$  alkoxy optionally substituted with at least one  $R_{13}$ ,  $C_3$ - $C_8$  cycloalkyl optionally substituted with at least one  $R_{13}$ ,  $C_2$ - $C_8$  heterocyclyl optionally substituted with at least one  $R_{13}$ ,  $C_3$ - $C_{10}$  aryl optionally substituted with at least one  $R_{13}$ ,  $N_{13}$ ,

25

30

20

7. The compound according to claim 1, wherein  $R_6$  is substituted with  $R_9$  wherein  $R_9$  is independently hydroxyl, halo, nitro,  $C_1$ - $C_6$  alkyl optionally substituted with at least one  $R_{14}$ ,  $C_2$ - $C_6$  alkynyl optionally substituted with at least one  $R_{14}$ ,  $C_1$ - $C_6$  alkoxy optionally substituted with at least one  $R_{14}$ ,  $C_3$ - $C_{10}$  cycloalkyl optionally substituted with at least one  $R_{14}$ ,  $C_2$ - $C_8$  heterocyclyl optionally substituted with at least one  $R_{14}$ ,  $C_4$ - $C_8$  cycloalkylalkyl optionally substituted with  $R_{14}$ , heterocyclylalkyl optionally substituted with  $R_{14}$ ,  $C_4$ - $C_{10}$  aryl optionally substituted with at least one  $R_{14}$ ,  $C_5$ - $C_{10}$  aralkyl optionally substituted with at least one  $R_{14}$ ,  $C_5$ - $C_{10}$  aralkyl optionally substituted with at least one  $R_{14}$ ,  $C_7$ - $C_8$  aralkyl, or -SO<sub>2</sub>- $C_8$ - $C_9$  cycloalkyl,  $C_8$ - $C_9$  cycloalkyl,  $C_9$ - $C_9$  cycloalkyl,  $C_9$ - $C_9$  cycloalkyl,  $C_9$ - $C_9$ 

heterocycloalkyl,  $C_4$ - $C_{10}$  aryl, -SO<sub>2</sub>( $C_6$ - $C_{10}$  aryl), -NH<sub>2</sub>, -NH[( $C_1$ - $C_4$ ) alkyl], -N[( $C_1$ - $C_4$ ) alkyl]<sub>2</sub>, -NH( $C_5$ - $C_8$  heterocyclylalkyl), -NH( $C_6$ - $C_8$  aryl), or -NH( $C_6$ - $C_8$  heterocyclyl).

## 8. A compound of Formula III:

$$R_{1}$$
 $R_{1}$ 
 $R_{1}$ 
 $R_{2}$ 
 $R_{3}$ 
 $R_{3}$ 

## 5 wherein,

15

25

the ring formed by T, U, V is

$$R_5$$
  $N-N$   $R_6$   $N-N$   $R_6$   $R_6$   $R_6$ 

Z is O, S, nitro, or NR4;

 $R_1$ ,  $R_2$ , or  $R_5$  each independently is:

1) hydrogen, hydroxyl, halo, nitro, or cyano;

2)  $C_1$ - $C_8$  alkyl;

3) C2-C8 alkenyl;

4) C<sub>2</sub>-C<sub>8</sub> alkynyl;

5)  $C_1$ - $C_8$  alkoxy;

6) C<sub>3</sub>-C<sub>8</sub> cycloalkyl or heterocyclyl;

7) C<sub>4</sub>-C<sub>8</sub> cycloalkylalkyl or heterocyclylalkyl;

8) C<sub>3</sub>-C<sub>10</sub> aryl;

9) C<sub>5</sub>-C<sub>10</sub> aralkyl;

10) C<sub>6</sub>-C<sub>10</sub> aryloxy;

20 11) NH<sub>2</sub>, NHR<sub>7</sub>, or NR<sub>7</sub>R<sub>7</sub>; or

12)  $-SO_2R_7$ ,

wherein  $R_7$  is independently H, hydroxyl, halo,  $C_1$ - $C_6$  alkyl optionally substituted with at least one  $R_{10}$ ,  $C_1$ - $C_6$  alkoxy optionally substituted with at least one  $R_{10}$ ,  $C_3$ - $C_8$  cycloalkyl optionally substituted with at least one  $R_{10}$ ,  $C_4$ - $C_8$  heterocycloalkyl optionally substituted with at least one  $R_{10}$ ,  $C_3$ - $C_{10}$  aryl optionally substituted with at least one  $R_{10}$ ,  $NH_2$ ,  $NHR_{10}$ ,  $NR_{10}R_{10}$ , or  $SO_2R_{10}$ , wherein  $R_{10}$  is independently halo, cyano, nitro,  $C_1$ - $C_4$ 

alkyl, C<sub>1</sub>-C<sub>4</sub> alkoxy, or NH<sub>2</sub>; optionally, R<sub>1</sub> and R<sub>2</sub> taken together form a ring structure including cycloalkyl, heterocyclyl, or aryl ring;

R<sub>3</sub> is:

- 1) hydrogen;
- 5 2)  $C_1$ - $C_8$  alkyl;
  - 3) C<sub>2</sub>-C<sub>8</sub> alkenyl;
  - 4) C<sub>2</sub>-C<sub>8</sub> alkynyl;
  - 5) C<sub>1</sub>-C<sub>8</sub> alkoxy;
  - 6) C<sub>3</sub>-C<sub>10</sub> cycloalkyl or heterocyclyl;
- 7) C<sub>4</sub>-C<sub>10</sub> cycloalkylalkyl or heterocyclylalkyl;
  - 8)  $C_3$ - $C_{10}$  aryl;
  - 9)  $C_4$ - $C_{10}$  aralkyl;
  - 10) carbonyl; or
  - 11)  $-SO_2R_8$ ,  $-CO_2R_8$ ,  $-SR_8$ , or  $-SOR_8$ ;
- wherein R<sub>8</sub> is independently H, halo, cyano, nitro, C<sub>1</sub>-C<sub>4</sub> alkyl optionally substituted with at least one R<sub>11</sub>, C<sub>1</sub>-C<sub>4</sub> alkoxy optionally substituted with at least one R<sub>11</sub>, C<sub>3</sub>-C<sub>8</sub> cycloalkyl optionally substituted with at least one R<sub>11</sub>, C<sub>3</sub>-C<sub>8</sub> heterocyclyl optionally substituted with at least one R<sub>11</sub>, C<sub>6</sub>-C<sub>10</sub> aryl optionally substituted with at least one R<sub>11</sub>, C<sub>6</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>11</sub>, NH<sub>2</sub>, NHR<sub>11</sub>,
- NR<sub>11</sub>R<sub>11</sub>, or SO<sub>2</sub>R<sub>11</sub>, wherein R<sub>11</sub> is independently halo, cyano, nitro, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> alkoxy, C<sub>6</sub>-C<sub>10</sub> aryl, C<sub>3</sub>-C<sub>8</sub> aralkyl, C<sub>3</sub>-C<sub>8</sub> heterocyclyl, or NH<sub>2</sub>,

R<sub>4</sub> is:

- 1) hydrogen;
- 2)  $C_1$ - $C_8$  alkyl;
- 25 3)  $C_2$ - $C_8$  alkenyl;
  - 4) C<sub>2</sub>-C<sub>8</sub> alkynyl;
  - 5) C<sub>3</sub>-C<sub>8</sub> cycloalkyl or heterocyclyl;
  - 6) C<sub>4</sub>-C<sub>8</sub> cycloalkylalkyl or heterocyclylalkyl:
  - 7)  $C_3$ - $C_{10}$  aryl;
- 30 8)  $C_5$ - $C_{10}$  aralkyl;
  - 9) carbonyl; or
  - 10)  $-SO_2R_{12}$ , or  $-SOR_{12}$ ;

wherein  $R_{12}$  is independently H, halo, cyano, nitro,  $C_1$ - $C_6$  alkyl optionally substituted with at least one  $R_{13}$ ,  $C_1$ - $C_4$  alkoxy optionally substituted with at least one  $R_{13}$ ,

 $C_3$ - $C_8$  cycloalkyl optionally substituted with at least one  $R_{13}$ ,  $C_2$ - $C_8$  heterocyclyl optionally substituted with at least one  $R_{13}$ ,  $C_3$ - $C_{10}$  aryl optionally substituted with at least one  $R_{13}$ ,  $NH_2$ ,  $NHR_{13}$ ,  $NR_{13}R_{13}$ , or  $SO_2R_{13}$ , wherein  $R_{13}$  is independently halo, cyano, nitro,  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy,  $C_3$ - $C_9$  aryl,  $C_3$ - $C_8$  heterocyclylalkyl, or  $NH_2$ ; optionally,  $R_3$  and  $R_4$  are taken together to form a  $C_4$ - $C_6$  heterocyclyl optionally substituted with  $R_{13}$ , or aryl; and

 $R_6$  is:

5

20

25

30

- 1) C<sub>1</sub>-C<sub>8</sub> alkyl;
- 2) C<sub>2</sub>-C<sub>8</sub> alkenyl;
- 10 3)  $C_2$ - $C_8$  alkynyl;
  - 4)  $C_1$ - $C_8$  alkoxy;
  - 5) C<sub>3</sub>-C<sub>10</sub> cycloalkyl or heterocyclyl;
  - 6) C<sub>4</sub>-C<sub>10</sub> cycloalkylalkyl or heterocyclylalkyl;
  - 7)  $C_4$ - $C_{10}$  aryl;
- 15 8)  $C_5$ - $C_{10}$  aralkyl; or
  - 9) NH<sub>2</sub>, NHR<sub>9</sub> or NR<sub>9</sub>R<sub>9</sub>,

wherein  $R_9$  is independently hydroxyl, halo, nitro,  $C_1$ - $C_6$  alkyl optionally substituted with at least one  $R_{14}$ ,  $C_2$ - $C_6$  alkynyl optionally substituted with at least one  $R_{14}$ ,  $C_1$ - $C_6$  alkoxy optionally substituted with at least one  $R_{14}$ ,  $C_3$ - $C_{10}$  cycloalkyl optionally substituted with at least one  $R_{14}$ ,  $C_2$ - $C_8$  heterocyclyl optionally substituted with at least one  $R_{14}$ ,  $C_4$ - $C_8$  cycloalkylalkyl optionally substituted with  $R_{14}$ , heterocyclylalkyl optionally substituted with  $R_{14}$ ,  $C_4$ - $C_{10}$  aryl optionally substituted with at least one  $R_{14}$ ,  $C_5$ - $C_{10}$  aralkyl optionally substituted with at least one  $R_{14}$ ,  $-NH_2$ ,  $-NHR_{14}$ ,  $-NR_{14}R_{14}$ , or  $-SO_2$ - $-R_{14}$ , wherein  $R_{14}$  is independently halo, cyano, nitro,  $C_1$ - $-C_6$  alkyl,  $C_1$ - $-C_6$  alkoxy,  $C_4$ - $-C_9$  cycloalkyl,  $-C_4$ - $-C_9$  heterocycloalkyl,  $-C_4$ - $-C_9$  heterocycloalkyl,  $-C_4$ - $-C_9$  heterocycloalkyl,  $-C_4$ - $-C_9$  heterocycloalkyl,  $-NH(C_5$ - $-C_8$  heterocyclylalkyl),  $-NH(C_6$ - $-C_8$  aryl), or  $-NH(C_6$ - $-C_8$  heterocyclylalkyl).

- 9. The compound according to claim 8, wherein Z is O or NR<sub>4</sub>.
- 10. The compound according to claim 8, wherein  $R_1$ ,  $R_2$ , or  $R_5$  is substituted with  $R_7$  wherein  $R_7$  is independently hydroxyl, halo,  $C_1$ - $C_6$  alkyl optionally substituted with at least one  $R_{10}$ ,  $C_1$ - $C_6$  alkoxy optionally substituted with at least one  $R_{10}$ ,  $C_3$ - $C_8$  cycloalkyl optionally substituted with at least one  $R_{10}$ ,  $C_4$ - $C_8$  heterocycloalkyl optionally substituted

with at least one  $R_{10}$ ,  $C_3$ - $C_{10}$  aryl optionally substituted with at least one  $R_{10}$ ,  $NH_2$ ,  $NHR_{10}$ ,  $NR_{10}R_{10}$ , or  $SO_2R_{10}$ , wherein  $R_{10}$  is independently halo, cyano, nitro,  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy, or  $NH_2$ .

- 5 11. The compound according to claim 8, wherein when taken together R<sub>1</sub> and R<sub>2</sub> form a ring structure including cycloalkyl, heterocyclyl, or aryl.
  - 12. The compound according to claim 8, wherein  $R_3$  is substituted with  $R_8$  wherein  $R_8$  is independently halo, cyano, nitro,  $C_1$ - $C_4$  alkyl optionally substituted with at least one  $R_{11}$ ,  $C_1$ - $C_4$  alkoxy optionally substituted with at least one  $R_{11}$ ,  $C_3$ - $C_8$  cycloalkyl optionally substituted with at least one  $R_{11}$ ,  $C_6$ - $C_{10}$  aryl optionally substituted with at least one  $R_{11}$ ,  $C_6$ - $C_{10}$  aryl optionally substituted with at least one  $R_{11}$ ,  $C_6$ - $C_{10}$  aralkyl optionally substituted with at least one  $R_{11}$ ,  $NR_{11}$ ,  $NR_{11}$ , or  $SO_2R_{11}$ , wherein  $R_{11}$  is independently halo, cyano, nitro,  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy,  $C_6$ - $C_{10}$  aryl,  $C_3$ - $C_8$  aralkyl,  $C_3$ - $C_8$  heterocyclyl, or  $NH_2$ .

10

15

20

- 13. The compound according to claim 8, wherein  $R_4$  is substituted with  $R_{12}$  wherein  $R_{12}$  is independently halo, cyano, nitro,  $C_1$ - $C_6$  alkyl optionally substituted with at least one  $R_{13}$ ,  $C_1$ - $C_4$  alkoxy optionally substituted with at least one  $R_{13}$ ,  $C_3$ - $C_8$  cycloalkyl optionally substituted with at least one  $R_{13}$ ,  $C_2$ - $C_8$  heterocyclyl optionally substituted with at least one  $R_{13}$ ,  $C_3$ - $C_{10}$  aryl optionally substituted with at least one  $R_{13}$ ,  $NH_2$ ,  $NHR_{13}$ ,  $NR_{13}R_{13}$ , or  $SO_2R_{13}$ , wherein  $R_{13}$  is independently halo, cyano, nitro,  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy,  $C_3$ - $C_9$  aryl,  $C_3$ - $C_8$  heterocyclylalkyl, or  $NH_2$ .
- 25 14. The compound according to claim 8, wherein R<sub>6</sub> is substituted with R<sub>9</sub> wherein R<sub>9</sub> is independently hydroxyl, halo, nitro, C<sub>1</sub>-C<sub>6</sub> alkyl optionally substituted with at least one R<sub>14</sub>, C<sub>2</sub>-C<sub>6</sub> alkynyl optionally substituted with at least one R<sub>14</sub>, C<sub>1</sub>-C<sub>6</sub> alkoxy optionally substituted with at least one R<sub>14</sub>, C<sub>2</sub>-C<sub>8</sub> heterocyclyl optionally substituted with at least one R<sub>14</sub>, C<sub>4</sub>-C<sub>8</sub> cycloalkylalkyl optionally substituted with R<sub>14</sub>, heterocyclylalkyl optionally substituted with R<sub>14</sub>, C<sub>4</sub>-C<sub>10</sub> aryl optionally substituted with at least one R<sub>14</sub>, C<sub>5</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>5</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>7</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>7</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>7</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, C<sub>7</sub>-C<sub>7</sub> aralkyl optionally substituted with at least one R<sub>1</sub>

heterocycloalkyl,  $C_4$ - $C_{10}$  aryl, - $SO_2(C_6$ - $C_{10}$  aryl), - $NH_2$ , - $NH[(C_1$ - $C_4)$  alkyl], - $N[(C_1$ - $C_4)$  alkyl]<sub>2</sub>, - $NH(C_5$ - $C_8$  heterocyclylalkyl), - $NH(C_6$ - $C_8$  aryl), or - $NH(C_6$ - $C_8$  heterocyclyl).

15. A method for treating cancer comprising administering a therapeutically effective amount of a compound of Formula II to a subject in need of such treatment, wherein the compound of Formula II has the formula:

$$R_{1}$$
 $R_{1}$ 
 $R_{2}$ 
 $R_{1}$ 
 $R_{3}$ 
 $R_{3}$ 

or pharmaceutically acceptable salts, stereoisomers, hydrates or pro-drugs thereof, wherein,

the ring formed by T, U, V is

$$R_5$$
  $N-N$   $R_6$   $N-N$   $R_6$   $R_6$   $R_6$   $R_6$ 

10

Z is O, S, nitro, or NR<sub>4</sub>;

R<sub>1</sub>, R<sub>2</sub>, or R<sub>5</sub> each independently is:

- 1) hydrogen, hydroxyl, halo, nitro, or cyano;
- 2)  $C_1$ - $C_6$  alkyl;

15

- 3) C<sub>2</sub>-C<sub>6</sub> alkenyl;
- 4) C<sub>2</sub>-C<sub>6</sub> alkynyl;
- 5)  $C_1$ - $C_6$  alkoxy;
- 6) C<sub>3</sub>-C<sub>8</sub> cycloalkyl or heterocyclyl;
- 7) C<sub>4</sub>-C<sub>8</sub> cycloalkylalkyl or heterocyclylalkyl;

20

- 8)  $C_4$ - $C_{10}$  aryl;
- 9)  $C_5$ - $C_{10}$  aralkyl;
- 10)  $C_6$ - $C_{10}$  aryloxy;
- 11) NH<sub>2</sub>, NHR<sub>7</sub>, or NR<sub>7</sub>R<sub>7</sub>; or
- 12)  $-SO_2R_7$ ,

wherein R<sub>7</sub> is independently H, hydroxyl, halo, C<sub>1</sub>-C<sub>4</sub> alkyl optionally substituted with at least one R<sub>10</sub>, C<sub>1</sub>-C<sub>4</sub> alkoxy optionally substituted with at least one R<sub>10</sub>, C<sub>3</sub>-C<sub>8</sub> cycloalkyl optionally substituted with at least one R<sub>10</sub>, C<sub>4</sub>-C<sub>8</sub> heterocycloalkyl optionally

substituted with at least one  $R_{10}$ ,  $C_6$ - $C_{10}$  aryl optionally substituted with at least one  $R_{10}$ ,  $NH_2$ ,  $NHR_{10}$ ,  $NR_{10}R_{10}$ , or  $SO_2R_{10}$ , wherein  $R_{10}$  is independently halo, cyano, nitro,  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy, or  $NH_2$ , wherein when taken together  $R_1$  and  $R_2$  form a ring structure including heterocyclyl or aryl rings;

- 5  $R_3$  is:
  - 1) hydrogen;
  - 2)  $C_1$ - $C_6$  alkyl;
  - 3) C<sub>2</sub>-C<sub>6</sub> alkenyl;
  - 4) C<sub>2</sub>-C<sub>6</sub> alkynyl;
- 10 5)  $C_1$ - $C_6$  alkoxy;
  - 6) C<sub>3</sub>-C<sub>10</sub> cycloalkyl or heterocyclyl;
  - 7) C<sub>4</sub>-C<sub>10</sub> cycloalkylalkyl or heterocyclylalkyl;
  - $^{\circ}$ 8) C<sub>4</sub>-C<sub>10</sub> aryl;
  - 9)  $C_4$ - $C_{10}$  aralkyl;
- 15 10) carbonyl; or
  - 11)  $-SO_2R_8$ ,  $-CO_2R_8$ ,  $-SR_8$ , or  $-SOR_8$ ;

wherein R<sub>8</sub> is independently H, halo, cyano, nitro, C<sub>1</sub>-C<sub>4</sub> alkyl optionally substituted with at least one R<sub>11</sub>, C<sub>1</sub>-C<sub>4</sub> alkoxy optionally substituted with at least one R<sub>11</sub>, C<sub>3</sub>-C<sub>8</sub> cycloalkyl optionally substituted with at least one R<sub>11</sub>, C<sub>3</sub>-C<sub>8</sub> heterocyclyl optionally substituted with at least one R<sub>11</sub>, C<sub>6</sub>-C<sub>10</sub> aryl optionally substituted with at least one R<sub>11</sub>, C<sub>6</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>11</sub>, NH<sub>2</sub>, NHR<sub>11</sub>, NR<sub>11</sub>R<sub>11</sub>, or SO<sub>2</sub>R<sub>11</sub>, wherein R<sub>11</sub> is independently halo, cyano, nitro, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> alkoxy, C<sub>6</sub>-C<sub>10</sub> aryl, C<sub>3</sub>-C<sub>8</sub> aralkyl, C<sub>3</sub>-C<sub>8</sub> heterocyclyl, or NH<sub>2</sub>,

R<sub>4</sub> is:

- 251) hydrogen;
  - 2)  $C_1$ - $C_6$  alkyl;
  - 3)  $C_2$ - $C_6$  alkenyl;
  - 4) C<sub>2</sub>-C<sub>6</sub> alkynyl;
  - 5) C<sub>3</sub>-C<sub>8</sub> cycloalkyl or heterocyclyl;
- 30 6) C<sub>4</sub>-C<sub>8</sub> cycloalkylalkyl or heterocyclylalkyl;
  - 7)  $C_4$ - $C_{10}$  aryl;
  - 8)  $C_5$ - $C_{10}$  aralkyl;
  - 9) carbonyl; or
  - 10)  $-SO_2R_{12}$ , or  $-SOR_{12}$ ;

wherein  $R_{12}$  is independently H, halo, cyano, nitro,  $C_1$ - $C_6$  alkyl optionally substituted with at least one  $R_{13}$ ,  $C_1$ - $C_4$  alkoxy optionally substituted with at least one  $R_{13}$ ,  $C_3$ - $C_8$  cycloalkyl optionally substituted with at least one  $R_{13}$ ,  $C_2$ - $C_8$  heterocyclyl optionally substituted with at least one  $R_{13}$ ,  $C_6$ - $C_{10}$  aryl optionally substituted with at least one  $R_{13}$ ,  $NH_2$ ,  $NHR_{13}$ ,  $NR_{13}R_{13}$ , or  $SO_2R_{13}$ , wherein  $R_{13}$  is independently halo, cyano, nitro,  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy,  $C_3$ - $C_9$  aryl,  $C_3$ - $C_8$  heterocyclylalkyl, or  $NH_2$ ; and

R<sub>6</sub> is:

5

20

25

30

- 1) C<sub>1</sub>-C<sub>6</sub> alkyl;
- 2)  $C_2$ - $C_6$  alkenyl;
- 10 3) C<sub>2</sub>-C<sub>6</sub> alkynyl;
  - 4)  $C_1$ - $C_6$  alkoxy;
  - 5) C<sub>3</sub>-C<sub>8</sub> cycloalkyl or heterocyclyl;
  - 6) C<sub>4</sub>-C<sub>8</sub> cycloalkylalkyl or heterocyclylalkyl;
  - 7)  $C_4$ - $C_{10}$  aryl;
- 15 8)  $C_5$ - $C_{10}$  aralkyl; or
  - 9) -NH<sub>2</sub>, -NHR<sub>9</sub>, or -NR<sub>9</sub>R<sub>9</sub>,

wherein  $R_9$  is independently hydroxyl, halo, nitro,  $C_1$ - $C_4$  alkyl optionally substituted with at least one  $R_{14}$ ,  $C_2$ - $C_4$  alkynyl optionally substituted with at least one  $R_{14}$ ,  $C_1$ - $C_4$  alkoxy optionally substituted with at least one  $R_{14}$ ,  $C_3$ - $C_8$  cycloalkyl optionally substituted with at least one  $R_{14}$ ,  $C_2$ - $C_8$  heterocyclyl optionally substituted with at least one  $R_{14}$ ,  $C_6$ - $C_{10}$  aryl optionally substituted with at least one  $R_{14}$ ,  $C_5$ - $C_{10}$  aralkyl optionally substituted with at least one  $R_{14}$ ,  $-NH_{2}$ ,  $-NHR_{14}$ ,  $-NR_{14}R_{14}$ , or  $-SO_2$ - $R_{14}$ , wherein  $R_{14}$  is independently halo, cyano, nitro,  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy,  $C_4$ - $C_9$  cycloalkyl,  $C_6$ - $C_{10}$  aryl,  $C_4$ - $C_9$  heterocycloalkyl,  $-SO_2(C_6$ - $C_{10}$  aryl),  $NH_2$ ,  $-NH[(C_1$ - $C_4)$  alkyl],  $-N[(C_1$ - $C_4)$  alkyl]<sub>2</sub>,  $-NH(C_5$ - $C_9$  heterocyclylalkyl),  $-NH(C_6$ - $C_8$  aryl), or  $-NH(C_6$ - $C_8$  heterocyclyl) or a pharmaceutically acceptable salt, hydrate or pro-drug thereof, in combination with a pharmaceutically acceptable carrier.

- 16. The method according to claim 15, wherein Z is O or NH.
- 17. The method according to claim 15, wherein  $R_1$ ,  $R_2$ , or  $R_5$  is substituted with  $R_7$  wherein  $R_7$  is independently hydroxyl, halo,  $C_1$ - $C_6$  alkyl optionally substituted with at least one  $R_{10}$ ,  $C_1$ - $C_6$  alkoxy optionally substituted with at least one  $R_{10}$ ,  $C_3$ - $C_8$  cycloalkyl optionally substituted with at least one  $R_{10}$ ,  $C_4$ - $C_8$  heterocycloalkyl optionally substituted

with at least one  $R_{10}$ ,  $C_3$ - $C_{10}$  aryl optionally substituted with at least one  $R_{10}$ ,  $NH_2$ ,  $NHR_{10}$ ,  $NR_{10}R_{10}$ , or  $SO_2R_{10}$ , wherein  $R_{10}$  is independently halo, cyano, nitro,  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy, or  $NH_2$ .

5 18. The method according to claim 15, wherein R<sub>1</sub> and R<sub>2</sub> taken together form a ring structure including cycloalkyl, heterocyclyl, or aryl.

10

15

20

- 19. The method according to claim 15, wherein  $R_3$  is substituted with  $R_8$  wherein  $R_8$  is independently halo, cyano, nitro,  $C_1$ - $C_4$  alkyl optionally substituted with at least one  $R_{11}$ ,  $C_1$ - $C_4$  alkoxy optionally substituted with at least one  $R_{11}$ ,  $C_3$ - $C_8$  cycloalkyl optionally substituted with at least one  $R_{11}$ ,  $C_6$ - $C_{10}$  aryl optionally substituted with at least one  $R_{11}$ ,  $C_6$ - $C_{10}$  aryl optionally substituted with at least one  $R_{11}$ ,  $C_6$ - $C_{10}$  aralkyl optionally substituted with at least one  $R_{11}$ ,  $R_{11}$ ,  $R_{11}$ ,  $R_{11}$ , or  $R_{11}$ , wherein  $R_{11}$  is independently halo, cyano, nitro,  $R_1$ - $R_1$ - $R_2$ - $R_2$  alkoxy,  $R_3$ - $R_3$  heterocyclyl, or  $R_1$ - $R_2$ - $R_3$  heterocyclyl, or  $R_1$ - $R_2$ - $R_3$  heterocyclyl, or  $R_1$ - $R_2$ - $R_3$
- 20. The method according to claim 15, wherein  $R_4$  is substituted with  $R_{12}$  wherein  $R_{12}$  is independently halo, cyano, nitro,  $C_1$ - $C_6$  alkyl optionally substituted with at least one  $R_{13}$ ,  $C_1$ - $C_4$  alkoxy optionally substituted with at least one  $R_{13}$ ,  $C_3$ - $C_8$  cycloalkyl optionally substituted with at least one  $R_{13}$ ,  $C_2$ - $C_8$  heterocyclyl optionally substituted with at least one  $R_{13}$ ,  $C_3$ - $C_{10}$  aryl optionally substituted with at least one  $R_{13}$ ,  $N_{13}$ ,  $N_{13}$ ,  $N_{13}$ ,  $N_{13}$ , or  $SO_2R_{13}$ , wherein  $R_{13}$  is independently halo, cyano, nitro,  $C_1$ - $C_4$  alkyl,  $C_1$ - $C_4$  alkoxy,  $C_3$ - $C_9$  aryl,  $C_3$ - $C_8$  heterocyclylalkyl, or  $N_{12}$ .
- 21. The method according to claim 15, wherein R<sub>6</sub> is substituted with R<sub>9</sub> wherein R<sub>9</sub> is independently hydroxyl, halo, nitro, C<sub>1</sub>-C<sub>6</sub> alkyl optionally substituted with at least one R<sub>14</sub>, C<sub>2</sub>-C<sub>6</sub> alkynyl optionally substituted with at least one R<sub>14</sub>, C<sub>1</sub>-C<sub>6</sub> alkoxy optionally substituted with at least one R<sub>14</sub>, C<sub>3</sub>-C<sub>10</sub> cycloalkyl optionally substituted with at least one R<sub>14</sub>, C<sub>2</sub>-C<sub>8</sub> heterocyclyl optionally substituted with at least one R<sub>14</sub>, C<sub>4</sub>-C<sub>8</sub> cycloalkylalkyl optionally substituted with R<sub>14</sub>, heterocyclylalkyl optionally substituted with R<sub>14</sub>, C<sub>4</sub>-C<sub>10</sub> aryl optionally substituted with at least one R<sub>14</sub>, C<sub>5</sub>-C<sub>10</sub> aralkyl optionally substituted with at least one R<sub>14</sub>, -NH<sub>2</sub>, -NHR<sub>14</sub>, -NR<sub>14</sub>R<sub>14</sub>, or -SO<sub>2</sub>-R<sub>14</sub>, wherein R<sub>14</sub> is independently halo, cyano, nitro, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>4</sub>-C<sub>9</sub> cycloalkyl, C<sub>4</sub>-C<sub>9</sub>

heterocycloalkyl,  $C_4$ - $C_{10}$  aryl, -SO<sub>2</sub>( $C_6$ - $C_{10}$  aryl), -NH<sub>2</sub>, -NH[( $C_1$ - $C_4$ ) alkyl], -N[( $C_1$ - $C_4$ ) alkyl]<sub>2</sub>, -NH( $C_5$ - $C_8$  heterocyclylalkyl), -NH( $C_6$ - $C_8$  aryl), or -NH( $C_6$ - $C_8$  heterocyclyl).

- 22. The method according to claim 15, wherein the dosage form is a tablet,
  5 caplet, troche, lozenge, dispersion, suspension, suppository, solution, capsule, or patch.
  - 23. The method according to claim 15, wherein the compound is administered in about 0.001 mg/kg to about 100 mg/kg.
- 10 24. The method according to claim 15, wherein the compound is administered by oral administration.