

Linear Regression Machine Learning and Pattern Recognition

(Largely based on slides from Andrew Ng)

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

MC886/MO444, August 18, 2017

Today's Agenda

- Linear Regression with One Variable
 - Model Representation
 - Cost Function
 - Gradient Descent
- Linear Regression with Multiple Variables
 - Gradient Descent for Multiple Variables
 - Feature Scaling
 - Learning Rate
 - Features and Polynomial Regression
 - Normal Equation

Recall from last time ...

House Price Prediction

Model Representation

How do we represent h?

Linear regression with one variable. Univariate linear regression.

Cost Function

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$

 $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Choose θ_0 , θ_1 so that $h_{\theta}(x)$ close to y for our training examples (x,y)

$$\underset{\theta_0,\theta_1}{\text{minimize } J(\theta_0,\theta_1)}$$

Cost function (Squared error function)

Cost Function Intuition I

$h_{\theta}(x)$ (for fixed θ_1 , this is a function of x)

 $J(heta_1)$ (function of the parameters $heta_1$)

Cost Function Intuition II

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

Gradient Descent

Have some function $J(\theta_0, \theta_1)$

Want minimize
$$J(\theta_0, \theta_1)$$

Outline:

- Start with some θ_0 , θ_1
- Keep changing θ_0 , θ_1 to reduce $J(\theta_0,\theta_1)$ until we hopefully end up at a minimum

Gradient Descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update } j = 0 \text{ and } j = 1\text{)}$$
 Learning rate
$$Derivative \text{ term}$$

$$j = 0 \text{ and } j = 1)$$

Derivative term

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can be overshoot the minimum. It may fail to converge, or even diverge.

Gradient Descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for j = 0 and j = 1)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1)$

$$h_{\theta}(x) = \theta_0 + \theta_1 x \implies y = b + mx$$

$$y = b + mx$$

Credit: https://alykhantejani.github.io/a-brief-introduction-to-gradient-descent/

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

- Stochastic Gradient Descent
- Mini-batch Gradient Descent

"Batch" Gradient Descent

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$
 update θ_0 and θ_1 simultaneously

Stochastic Gradient Descent

Each step of gradient descent uses one training example.

```
repeat until convergence { for i = 1, ..., m  { \theta_0 := \theta_0 - \alpha(h_\theta(x^{(i)}) - y^{(i)}) \theta_1 := \theta_1 - \alpha(h_\theta(x^{(i)}) - y^{(i)})x^{(i)} }
```

Mini-batch Gradient Descent

Each step of gradient descent uses b training examples.

Say b = 10, m = 1000. repeat until convergence { for i = 1, 11, 21..., 991 { $\theta_0 := \theta_0 - \alpha \frac{1}{10} \sum_{k=0}^{i+9} (h_{\theta}(x^{(k)}) - y^{(k)})$ $\theta_1 := \theta_1 - \alpha \frac{1}{10} \sum_{i+9}^{i=k} (h_{\theta}(x^{(k)}) - y^{(k)}) x^{(k)}$

Linear Regression with multiple variables

Multiple Variables Features

Size in feet ² x_I	Number of bedrooms x_2	Number of floors x_2	Age of home (years) $x_{_{\mathcal{I}}}$	Price (\$) in 1000's
1	2	3	4	y
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	2	36	178

Notation:

```
n = number of features x^{(i)} = input (features) of i^{th} training example x_i^{(i)} = value of features j in i^{th} training example
```

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$.

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \ \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1} \quad \begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$h_{\theta}(x) = \theta^T x \leftarrow \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Multivariate linear regression.

Parameters: $\theta_0, \theta_1, \ldots, \theta_n$ Cost Function: $J(\theta_0, \theta_1, \ldots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

 $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1, ..., \theta_n)$ (simultaneously update for every j = 0, 1, ..., n)

Feature Scaling

Feature Scaling

Idea: Make sure features are on similar scale.

E.g.
$$x_1$$
= size (0–2000 feet²)
 x_2 = number of bedrooms (1–5)

Mean Normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (do not apply to $x_0 = 1$).

E.g.
$$x_1 = \frac{\text{size} - 1000}{2000}$$
 $\longrightarrow -0.5 \le x_1 \le 0.5$ $x_2 = \frac{\text{\#bedrooms} - 2.5}{5}$ $\longrightarrow -0.5 \le x_2 \le 0.5$

$$x_1 = \frac{x_1 - \mu_1}{s_1}$$
 $x_2 = \frac{x_2 - \mu_2}{s_2}$

Learning Rate

Purple: $\alpha = 0.016$

Black: $\alpha = 0.1$

Red: $\alpha = 0.6$

Credit: https://blog.sigopt.com/posts/tensorflow-convnets-on-a-budget-with-bayesian-optimization

Features and Polynomial Regression

$$h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$$

$$h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$$

$$x_1 \qquad x_2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$$

$$x_1 \qquad x_2$$

Area $x = \text{frontage} \times \text{depth}$

$$h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$$

$$x_1 \qquad x_2$$

Area
$$x$$
 = frontage \times depth
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

Choice of Features

Choice of Features

Normal Equation

Gradient Descent

Normal equation: Method to solve θ analytically.

Intuition: If 1D ($heta\in\mathbb{R}$)

$$J(\theta) = a\theta^2 + b\theta + c$$

Intuition: If 1D ($\theta \in \mathbb{R}$)

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{d}{d\theta}J(\theta) = \dots = 0$$
 Solve for θ

$$\in \mathbb{R}$$

Intuition: If 1D (
$$\theta \in \mathbb{R}$$
)

$$J(\theta) = a\theta^2 + b\theta + c$$

 $\frac{d}{d\theta}J(\theta) = \dots = 0$ Solve for θ

$$\theta \in \mathbb{R}^{n+1} \qquad J(\theta_0, \, \theta_1, \, \dots, \, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_i} J(\theta) = \dots = 0 \quad \text{Solve for } \theta_0, \, \theta_1, \, \dots, \, \theta_n$$

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$) in 1000's
$\underline{x_1}$	x_2	x_3	x_4	У
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

1	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$) in 1000's
x_0	x_1	x_2	x_3	x_4	У
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$) in 1000's
x_0	x_1	x_2	x_3	x_4	У
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

x_0	Size (feet ²) x_1	Number of bedrooms x_2	Number of floors x_3	Age of home (years) x_4	Price (\$) in 1000's	
1	2104	5	1	45	460	
1	1416	3	2	40	232	
! 1	1534	3	2	30	315	
1	852	2	1	36	178	
1 2104 5 1 45 1 1416 3 2 40						

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$) in 1000's
x_0	x_1	x_2	x_3	x_4	У
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$) in 1000's
x_0	x_1	x_2	x_3	x_4	У
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178
X =	\[\begin{pmatrix} 1 & 210 \\ 1 & 141 \\ 1 & 153 \end{pmatrix}	16 3 2 4	0	$= \begin{bmatrix} 460 \\ 232 \\ 315 \end{bmatrix}$	
	1 85	2 2 1 3	6	178	

v	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$) in 1000's
x_0	x_1	x_2	x_3	x_4	У
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}_{m \times (n+1)}$$

	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$) in 1000's
x_0	x_1	x_2	x_3	x_4	У
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix} \qquad \theta = (X^T X)^{-1} X^T y$$

$$\begin{bmatrix} 45 \\ 40 \\ 30 \\ 36 \end{bmatrix} y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$m \times (n+1)$$

$$\theta = (X^T X)^{-1} X^T y$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} ---- (x^{(1)})^{\mathrm{T}} ----- \\ ----- \end{bmatrix}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} ---- (x^{(1)})^{\mathrm{T}} - ---- \\ ---- (x^{(2)})^{\mathrm{T}} - ----- \\ \end{bmatrix}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} ---- (x^{(1)})^{\mathrm{T}} - ---- \\ ---- (x^{(2)})^{\mathrm{T}} - ----- \\ ---- \vdots \\ ---- (x^{(m)})^{\mathrm{T}} - ------ \end{bmatrix}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} ---- (x^{(1)})^{\mathrm{T}} - --- \\ ---- (x^{(2)})^{\mathrm{T}} - --- \\ ---- \vdots \\ ---- (x^{(m)})^{\mathrm{T}} - --- \end{bmatrix}$$

E.g.
$$x^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \end{bmatrix}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} ---- (x^{(1)})^{\mathrm{T}} - --- \\ ---- (x^{(2)})^{\mathrm{T}} - --- \\ ---- \vdots \\ ---- (x^{(m)})^{\mathrm{T}} - --- \end{bmatrix}$$

 $\text{E.g. } x^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \end{bmatrix} \qquad X = \begin{bmatrix} 1 & x_1^{(1)} \\ \vdots & \vdots \\ 1 & x_m^{(1)} \end{bmatrix} \\ m \times 2$

$$X = \begin{bmatrix} --- (x^{(1)})^{\mathrm{T}} - --- \\ --- (x^{(2)})^{\mathrm{T}} - --- \\ --- \vdots - --- \end{bmatrix} \qquad y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

$$--- (x^{(m)})^{\mathrm{T}} - --- \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$

$$\theta = (X^T X)^{-1} X^T y$$

$$\theta = (X^T X)^{-1} X^T y$$

 $(X^TX)^{-1}$ is inverse of matrix X^TX .

$$\theta = (X^T X)^{-1} X^T y$$

 $(X^TX)^{-1}$ is inverse of matrix X^TX .

Deriving the Normal Equation using matrix calculus ...

https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1a1b16f65dda

$$\theta = (X^T X)^{-1} X^T y$$

 $(X^TX)^{-1}$ is inverse of matrix X^TX .

Deriving the Normal Equation using matrix calculus ...

https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1a1b16f65dda

What if $X^T X$ is noninvertible?

What if X^TX is noninvertible?

The common causes might be having:

- Redundant features, where two features are very closely related (i.e. they are linearly dependent).
- Too many features (e.g. $m \le n$). In this case, delete some features or use "regularization".

Gradient Descent

- ullet Need to choose α .
- Needs many iterations.

Normal Equation

- No need to choose α .
- Don't need to iterate.

m examples and n features

Gradient Descent

- Need to choose α .
- Needs many iterations.
- Works well even when n is large.

Normal Equation

- No need to choose α .
- Don't need to iterate.
- Need to compute $(X^TX)^{-1} \rightarrow O(n^3)$.
- lacksquare Slow if n is very large.

m examples and *n* features

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 2 & 4
- Pattern Recognition and Machine Learning, Chap. 3
- Machine Learning: a Probabilistic Perspective, Chap. 7

Machine Learning Courses

https://www.coursera.org/learn/machine-learning, Week 1 & 2