НАЦИОНАЛНА ОЛИМПИАДА ПО ИНФОРМАТИКА

Общински кръг, 05.01.2019 г. Група А, 11-12 клас

Задача А1. Битови проблеми

От стандартния вход се въвежда редица от битове: низ, който се състои само от символите 0 и 1. Като използваме всички въведени символи точно по веднъж, искаме да напишем двоично число N, такова, че:

- да няма два последователни бита 1;
- числото *N* да се дели на 3.

Напишете програма **bits3max**, която намира най-голямото такова число N или установява, че такова не може да бъде създадено.

Вход

От стандартния вход се въвежда един ред, който съдържа само един низ, съставен от символите 0 и 1.

Изход

Програмата трябва да извежда на един ред:

- двоичния запис на най-голямото число N, което използва всички битове от входа, дели се на 3 и не съдържа две последователни единици;
- съобщението NO, ако желаният запис не съществува.

Опеняване

Тестовете са пакетирани по двойки. Точките за всяка двойка се получават само ако и двата теста имат правилен отговор.

Ограничения

Дължината на входния ред не е повече от 2000 символа.

В 25% от двойките тестови примери тя не е повече от 30 символа.

В други 20% от двойките тестови примери тя не надхвърля 60 символа.

Пример

Вход

0101

Изход

1001

Обяснение на примера: Всички различни двоични числа, записани с помощта на въведените битове, са:

 0011_2 =3, 0101_2 =5, 0110_2 =6, 1001_2 =9, 1010_2 =10 и 1100_2 =12. От всички тях на условията в задачата отговаря само 1001.

НАЦИОНАЛНА ОЛИМПИАДА ПО ИНФОРМАТИКА

Общински кръг, 05.01.2019 г. Група А, 11-12 клас

Задача А2. Произведение

В равнината са дадени точките P_i (i=1, 2, ..., n) с целочислени координати (i, a_i), където $a_i > 0$. За всяка двойка точки P_i , P_j , (i < j) образуваме произведението (j = i)*min(a_i, a_j), където min(a_i, a_j) е по-малкото от двете числа a_i и a_j . Напишете програма **product**, която намира стойността на най-голямото произведение от описания вид.

Вход

На първия ред на стандартния вход е дадена стойността на n. На следващия ред са записани стойностите $a_1, a_2, ..., a_n$, разделени с интервали.

Изход

Програмата трябва да изведе на стандартния изход едно цяло число, равно на търсената стойност.

Ограничения

$$1 < n < 500\ 000$$

 $0 < a_i < 100\ 000$ 3a $i = 1, ..., n$.

Пример

Вход

4

1 5 4 3

Изход

6

Забележка. Времето за работа на програмата на състезателя не трябва да надминава два пъти времето за работа на програмата на автора.

НАЦИОНАЛНА ОЛИМПИАДА ПО ИНФОРМАТИКА

Общински кръг, 05.01.2019 г. Група А, 11-12 клас

Задача АЗ. Суперхеронови триъгълници

Херонови триъгълници в геометрията се наричат триъгълници, чиито страни и лице са цели числа. Ще наречем "*суперхеронови*" такива *херонови* триъгълници, за които и радиусът на вписаната, и радиусът на описаната окръжност също са цели числа.

Нека P е цяло положително число. Напишете програма **superheron**, която определя колко два по два нееднакви триъгълника с периметър P съществуват, за които едновременно са цели положителни числа: трите страни, лицето на триъгълника, радиусът на вписаната окръжност и радиусът на описаната окръжност.

Вход

От първия ред на стандартния вход се въвежда едно цяло положително число P.

Изход

Програмата трябва да извежда на стандартния изход един ред, който съдържа само едно цяло неотрицателно число – броя на суперхероновите триъгълници с периметър P.

Ограничения

P не надхвърля 50 000.

Опеняване

Тестовете са пакетирани по двойки. Точките, предвидени за всяка двойка, се дават, само ако отговорите и на двата теста от двойката са верни.

Формули

Ако означим страните на триъгълника с a, b и c, полупериметъра му с p и лицето му с S, според Хероновата формула:

$$S = \sqrt{p(p-a)(p-b)(p-c)}.$$

Известни са още формулите:

 $S = \frac{abc}{4R}$ и S = pr, където R и r са съответно радиусите на описаната и вписаната окръжност.

Пример

Вход

240

Изход

4

Обяснение на изхода

Решенията на задачата са показани на фиг. 1:

$$a_1$$
=50, b_1 =78, c_1 =112, r_1 =14, R_1 =65

$$a_2$$
=60, b_2 =80, c_2 =100, r_2 =20, R_2 =50

$$a_3$$
=40, b_3 =96, c_3 =104, r_3 =16, R_3 =52

$$a_4$$
=48, b_4 =90, c_4 =102, r_4 =18, R_4 =51

