Hardware Solutions to Critical Section Problem

- · <u>Peterson</u> Solution is not guranteed to voork on modern computers with multiple cores.
- Use hardware instructions provided by modern Computers
- · Test And Set Instruction
- · Swap Instruction

Important characterstics of these instructions:—

1) Two TestAndSet() instructions cannot be run
in parallel on two different chuis. Test Test

2) TestAndSet() instruction is executed atomically

TestAndSet() instruction is executed atomically,

TestAndSet() instruction is execution —

) Parallel execution —

) Interrupts —

)

Fair - Many process can stea starve.

wasting cpo cycles ←

Swap () Instruction For Critical Section Problem

1) Two process cannot	run swep() instruction]
in parallel on two	different chuis.
2) swap() instruction	is executed atomically!
(=2	i) Parallel executions
	i) Parallel executions
lock = False (P1)	Troid Swap (boolean # a, boolean # b) s
do {	boolean temb = +a;
Swhile (key = = Frue) {) -> +a = +b;
Swap (Block, & Key);	Void Swap(boolean *a, boolean *b) ? - boolean temp = *a; - *a = *b; - *b = temp; 3
-7//Critical Section =	
> lock = False; K	Key = = False Key = FT]
3 while (True). Re sleep()	Lock = False lock = T
P2 P3 15t	Progress - Bounded wait
L	