

LISTS

Why

We want to talk about several objects in order.

Definition

A list of length n with entries in A is a function $a: \{1, \ldots, n\} \to A$. In other words, a list is a family whose index set is $\{1, \ldots, n\}$. The result a_k is the kth entry of A.

Many authors refer to a list as a *finite sequence*, string, or n-tuple, and some refer to the length of the list as its size. Some authors say that the list is "in" A, or that it is a list "of" elements of A, and call an entry of k a term.

Notation

Since the natural numbers are ordered, we regularly denote lists from left to right between parentheses. For example, we denote $a: \{1, \ldots, 4\} \to A$ by (a_1, a_2, a_3, a_4) .

Orderings and numberings

Let A be a set with |A| = n. A sequence $a : \{1, ..., n\} \to A$ is an *ordering* of A if a is invertible. In this case, we call the inverse a *numbering* of A. An ordering associates with each number a unique object and a numbering associates with each object a unique number (the object's *index*).

Relation to Direct Products

A natural direct product is a product of a list of sets. We denote the direct product of a list of sets A_1, \ldots, A_n by $\prod_{i=1}^n A_i$. If each A_i is the same set A, then we denote the product $\prod_{i=1}^n A_i$ by A^n . The direct product A^n is set of lists in A.

Natural unions and intersections

We denote the family union of the list of sets A_1, \ldots, A_n by $\bigcup_{i=1}^n A_i$. Similarly, we denote the intersection by $\bigcap_{i=1}^n A_i$.

Slices

An index range for a list s of length n is a pair (i, j) for which $1 \le i < j \le n$. The slice corresponding to (i, j) is the length j - i list s' defined by $s'_1 = s_i$, $s'_2 = s_{i+1}, \ldots, s'_j = s_{i+j-1}$.

We denote the (i, j)-slice of s by $s_{i:j}$. If i = 1 we use $s_{:j}$ and if j = n we use $s_{i:}$ as shorthands for the slices $s_{1:j}$ and $s_{i:n}$.

