SARS-CoV-2 E Protein Induces Asymmetric Hydrophobic Mismatch in Saturated Membranes

Jesse W Sandberg¹ and Grace Brannigan^{1,2}

¹Center for Computational & Integrative Biology, and ²Dept. of Physics, Rutgers University, Camden

Background & Approach

Fig 1: The E protein of SARS-CoV (pdb id 5x29) shown in extracellular (top) and membrane/lateral (bottom) view. Black bars indicate approx. membrane position.

- Pentameric, weakly-selective ion channel
- Highly conserved across many coronaviruses, including SARS-CoV and SARS-CoV-21
- Primarily found in the ER-Golgi Intermediate Complex (ERGIC) of infected host cells
- Known to induce membrane curvature, allowing a new virion to bud out and escape the host cell²
- Knock-out or mutation produces weakened virions that are unable to infect new cells³
- Key role plus high conservation makes the E protein an important target for further study
- Coarse-grained Molecular Dynamics (CG-MD) simulations confirm that E protein bends membranes, but the precise mechanism is unknown
- In order to understand the global bending effect, we sought first to explore the *local* effect E protein has on membrane leaflets
- The following investigation focusses solely on saturated lipids, as they bend less than unsaturated lipids and therefore offer a more tractable first step in our study

Fig 2: Still from MD trajectory of E protein (grey, center) embedded in 100% POPC membrane (cyan, transparent).

Ultimate Aim: How does the E protein bend membranes? First Milestone: How do saturated lipids behave near the E protein?

Methods & Analysis

- Five coarse-grain molecular dynamics (CG-MD) simulations
- Each system has 100% composition of PC lipid with different equilibrium thickness
- E protein is embedded in large (40 nm x 40 nm) membrane to control for finite size effects
- Lipid number asymmetry is present, but kept constant across simulations

Saturated lipids with PC head groups in Martini 2 representation

The E protein is embedded in a membrane and simulated for 2 μs using the Martini 2 forcefield and Gromacs 2016

Analysis suite *nougat* bins and averages membrane quantities of interest over the course of the trajectory for both leaflets

Output from *nougat* is averaged across the θ dimension to produce 1d plots of the quantity of interest in this case membrane height - as a function of distance from the protein

Large Deviations in Elastic **Terms Local to Protein**

Fig 4: Average normalized mean curvature $(\tilde{H}^+)^2$ shows larger curvature values close the interface between protein and membrane. It also shows that as membranes grow thinner they experience higher curvature in the bulk.

Fig 5: Average leaflet asymmetry times mean curvature (εH^+) is negative everywhere, especially where there is high curvature (see Fig. 4). This shows that areas with high curvature are energetically compensated by the combination of curvature and leaflet asymmetry.

Membrane Bending 101

Classical hydrophobic mismatch occurs when the hydrophobic surface of the protein differs from the equilibrium thickness of the membrane, causing inward or outward symmetrical bending4

Figure adapted from: Mouritsen & Bloom, Biophysical Journal, 1984

If hydrophobic mismatch:

Varying thickness should vary the level of

mismatch; we would expect membrane

properties to vary as a function of

thickness

Membrane bending also occurs in the presence of a wedge-shaped inclusion because the membrane will align to intersect the inclusion at a 90 degree angle. This is known as a contact angle

If contact angle:

Varying thickness should have no effect

on the contact angle exerted on the

membrane; we would expect membrane

properties to be invariant

"Which one am I?"

Potential Test: What if we altered membrane equilibrium thickness?

Asymmetric Thickness Deformations

Fig 3a: Average normalized thickness \tilde{t} shows lipids are compressed close to the protein.

Tail Length -0.04 6 beads 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Fig 3b: Average normalized leaflet asymmetry ε/t_0 shows that leaflets are differentially compressed close to the protein.

To account for the asymmetric thickness deviations observed, we revised an earlier expression [5] for the bending energy of the membrane to allow for local leaflet asymmetry.

This new expression adds two terms that contain an explicit measure of local leaflet asymmetry: ϵ .

$$f_z = \frac{1}{2}K_C(H^-)^2 + 2K_Cc_0H^- + \frac{2K_C\zeta z^-H^-}{t_0} + \frac{K_A(z^-)^2}{2t_0^2} + \frac{1}{2}K_C(H^+)^2 + \frac{2K_C\varepsilon\zeta H^+}{t_0} + \frac{K_A\varepsilon^2}{2t_0^2}$$

Conclusions

- Simulation series show clear variation of membrane properties as a function of equilibrium thickness
- This suggests that hydrophobic mismatch is present in the system
- Despite this we have not been able to eliminate bending altogether, suggesting other factors may be present that need to be elucidated
- Local leaflet thickness symmetry assumption not supported in systems with asymmetric protein inclusions
- Preliminary results from continuum simulations (not shown) using new Hamiltonian match bending profile from MD simulations, indicating local leaflet asymmetry may have outsize effect on membrane

Next Steps

- Investigate effect of lipid asymmetry on bending
- Include degrees of unsaturation
- Explore lipid recruitment by E protein (tail length, head group)
- Run further continuum simulations with new Hamiltonian to compare agains MD results
- Further characterize lipid ordering at interface with protein
- Understand how local lipid effects create global bending pattern seen in simulations

Acknowledgments & Funding

NRT Award: NSF DGE 2152059 ACCESS (formerly XSEDE): BIO220103 Rutgers Office of Advanced Research Computing (OARC) CAREERS Cyberteam

References

- 1. Rahman, et al. Gene Reports, 2021
- 2. Schoeman & Fielding, Virology, 2019
- 3. Fischer, et al. Journal of Virology, 1998
- 4. Mouritsen & Bloom, Biophysical Journal, 1984 5. Brannigan & Brown, Biophysical Journal, 2006

Try nougat!

Heat maps in polar and cartesian coordinates

github.com/BranniganLab/nougat