ДЗ Д01-021 02. Базовый С

Домашнее задание №2 - Лекция 2 Системы счисления 25-02-2024

Оюн Олег

Задача №1.

Перевести из 10 в 16 систему 12345678, 1000000

- 1.1 Делим число 12345678 (а также все частные от деления) на 16, получая остатки:
 - 12345678 % 16 = 14 (E)
 - 771604 % 16 = 4 (4)
 - 48225 % 16 = 1 (1)
 - 3014 % 16 = 6 (6)
 - 188 % 16 = 12 (C)
 - 11 % 16 = 11 (B)

Результат: ВС614Е

- 1.2 Делим число 1000000 (а также все частные от деления) на 16, получая остатки:
 - 1000000 % 16 = 0 (0)
 - 62500 % 16 = 4 (4)
 - -3906 % 16 = 2 (2)
 - -244%16 = 4(4)
 - 15 % 16 = 15 (F)

Результат: F4240

Задача №2.

Перевести из 16 в 10 систему 12345678, 1000000

- 2.1 Шестнадцатеричное 12345678 в десятичное
 - 8×16^0=8
 - 7×16^1=7×16=112
 - 6×16^2=6×256=1536
 - 5×16^3=5×4096=20480

- 4×16^4=4×65536=262144

- 3×16^5=3×1048576=3145728

- 2×16^6=2×16777216=33554432

- 1×16^7=1×268435456=268435456

Результат: 305419896

2.2 Шестнадцатеричное 1000000 в десятичное

- Позиции от 0 до 5 включительно являются 0;

- 1×16^6=1×16777216=16777216

Результат: 16777216

Задача №3.

Записать в виде логического выражение ответ Винни Пуха "Сгущенного молока и меда и можно без хлеба".

Решение:

Молоко && Мёд

Эдесь необходимы молоко и мед, а наличие или отсутствие хлеба никак не влияет на истинность выражения.

Задача №4.

Доказать тождества $A \to B = |A||B$, $A \leftrightarrow B = (A \&\& B) || (!A \&\& !B)$, таблицы истинности на Си можно распечатать**

4.1)
$$A \rightarrow B = |A| |B|$$

Α	В	!A	!A B	$A \rightarrow B$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	0	1	1

Колонка !А показывает инвертированные значения А.

Колонка !А || В показывает результат логического "ИЛИ" между !А и В.

Колонка $A \to B$ показывает значения импликации. Импликация истинна, когда A ложно (независимо от B) и когда обе A и B истинны.

Значения в колонках A \to B и !A || В совпадают во всех возможных комбинациях значений A и B. Это доказывает, что A \to B и !A || В эквивалентны.

4.2) $A \leftrightarrow B = (A \&\& B) || (!A \&\& !B)$

Α	В	A && B	!A	!B	!A && !B	(A && B) (!A &&	$A \leftrightarrow B$
						(!A &&	
						!B)	
0	0	0	1	1	1	1	1
0	1	0	1	0	0	0	0
1	0	0	0	1	0	0	0
1	1	1	0	0	0	1	1

Колонка А && В показывают результаты логического "И" для А и В.

Колонки !А и !В показывают инвертированные значения А и В.

Колонка (А && В) || (!А && !В) показывает результат логического "ИЛИ".

Колонка А ↔ В показывает значения биимпликации. Биимпликация истинна, когда обе переменные имеют одинаковые значения.

Поскольку значения в колонках $A \leftrightarrow B$ и $(A \&\& B) \parallel (!A \&\& !B)$ совпадают во всех возможных комбинациях значений A и B, то $A \leftrightarrow B$ и $(A \&\& B) \parallel (!A \&\& !B)$ эквивалентны.

Задача №5. Найти эквивалент для A ⊕ B = (A || B) && (!A || !B)

А	В	A⊕B	(A B)	!A	!B	(!A !B)	(A B) && (!A
							!B)
0	0	0	0	1	1	1	0
0	1	1	1	1	0	1	1
1	0	1	1	0	1	1	1
1	1	0	1	0	0	0	0

Колонка $A \oplus B$ показывает значения XOR. XOR истинен, когда только одна из переменных истинна.

Колонка (А | В) истинна, когда хотя бы одна из переменных истинна.

Колонка (!А | !В) истинна, когда хотя бы одна из переменных ложна.

Колонка (A || B) && (!A || !B) показывает результат комбинации этих двух условий, что соответствует логике XOR.