

Machine Learning for Software Engineering

Michele Tosi – matricola 0327862

Agenda

- Contesto e obiettivo
- Metodologia:
 - Individuazione delle coppie (classe, release) buggy
 - Costruzione del dataset per i classificatori
 - Metriche considerate
 - Valutazione dei classificatori
 - Classificatori e tecniche di utilizzo confrontate
- Risultati e conclusioni
- Minacce alla validità
- Links a GitHub e Sonarcloud

Contesto

- Ogni progetto di ingegneria del software include il testing per identificare e correggere i bug.
- L'attività di testing è onerosa e costosa, quindi, non può essere effettuata in modo esaustivo.
- Problema: individuare le porzioni del progetto che più verosimilmente contengono bug su cui incentrare i test.
- Idea: sfruttare le informazioni del passato riguardanti le classi caratterizzate da bug per predire quali classi in futuro potranno averne.

Obiettivo

- Rendere il processo di testing più efficiente e mirato.
- Dopo aver individuato quali classi sono state buggy e in quali release, stabilire quale classificatore effettua le predizioni migliori e con quali tecniche di utilizzo.
 - Classificatori considerati: Random, Forest Naive Bayes e IBk.
 - Tecniche di utilizzo considerate: feature selection, il sampling, il cost sensivity e alcune loro combinazioni.

Individuazione coppie (classi, release) buggy

Idea: ogni bug ha un ciclo di vita.

- Le classi affette dal bug sono quelle comprese tra l'injected version (inclusa) e la fixed version (esclusa).
- Le informazioni su IV, OV e FV sono state recuperate tramite le issue presenti su Jira.
- Problema: non tutti i ticket in Jira hanno la injected version.

Individuazione coppie (classi, release) buggy (2)

- Idea: supporre proporzionalità tra l'arco di tempo che trascorre da quando un bug è rilevato a quando viene risolto e l'arco di tempo che trascorre da quando un bug viene introdotto a quando viene risolto.
- Proportion: tecnica utilizzata per stimare l'injected version dei bug, si basa sull'utilizzo della costante di proporzionalità p calcolata sui bug per cui IV è nota.

$$P = \frac{FV - IV}{FV - OV}$$

$$IV = FV - (FV - OV) \times P$$

Individuazione coppie (classi, release) buggy (3)

- Si sono utilizzate le seguenti varianti di proportion:
 - Cold-Start:
 - proportion calcolata a partire dai ticket di altri progetti simili e non da quelli del progetto in esame.
 - Utilizzato nel caso in cui i ticket a disposizione sono considerati troppo pochi (meno della taglia della moving window).
 - Moving-Window:
 - proportion calcolata su un numero limitato di difetti dello stesso progetto (rilassa l'assunzione di incremental secondo cui p rimane mediamente costante durante tutto il progetto).
 - Problema: scelta della dimensione della finestra.

Costruzione del dataset

- Per ridurre il fenomeno dello snoring sono state eliminati tutti i dati relativi alla seconda metà delle release.
- A ciascuna coppia (classe, release) vengono assegnate alcune metriche che verranno sfruttate dai classificatori per effettuare le predizioni.
- A ciascuna coppia (classe, release) viene assegnata una label booleana buggy o non buggy (a seconda se nella release la classe era buggy).

Metriche considerate

Nome	Descrizione
Size	Numero di linee di codice.
LOC added*	Somma delle linee di codice aggiunte sulle revisioni relative alle release.
Churn*	Somma di LOC aggiunte – LOC rimosse sulle revisioni di una release.
NR	Numero di revisioni all'interno della singola release.
Nauth	Numero di autori.
Change set size*	Numero di file committati insieme nelle revisioni relative alla release.

Delle metriche segnate con '*' sono stati considerati anche i valori massimo e medio, non sono stati inseriti nella tabella per migliorare la leggibilità.

Valutazione dei classificatori

- Reminder: l'obiettivo è stabilire quale classificatore ha le prestazioni migliori e con quali tecniche di utilizzo.
- È necessario effettuare una valutazione dei classificatori.
- La tecnica utilizzata è il Walk Forward.

	Part					
Run	1	2	3	4	5	
1						
2						
3						
4						
5						

Valutazione dei classificatori

- Walk Forward: è una tecnica di validazione time-series, tiene conto dell'ordine temporale dei dati (non si possono utilizzare nel training set informazioni future).
- Il dataset viene diviso per release ordinate cronologicamente:
 - Costruzione del training set: con le prime 'k' release viene eseguito il labeling esclusivamente con le informazioni disponibili fino a quel momento.
 - Costruzione del testing set: per ogni iterazione conterrà le informazioni sulle classi della release k+1-sima su cui andranno fatte le predizioni che avranno il labeling in base a tutte le informazioni disponibili.

Classificatori e tecniche di utilizzo

- Verranno considerate tutte le combinazioni tra i classificatori e le tecniche di utilizzo seguenti:
- Classificatori:
 - Random Forest
 - Naive Bayes
 - IBk
- Tecniche di utilizzo:
 - Nessun filtro
 - Solo feature selection (greedy backward search)
 - Feature selection (greedy backward search) + balancing (undersampling)
 - Feature selection + sensitive learing (CFN=10*CFP)

Bookkeeper – confronto costi

Nessun filtro Feature selection

Feature selection e balancing

Feature selection e sensitive learning

Random forest risulta essere il classificatore con il costo minore.

Bookkeeper senza filtri applicati ai classificatori

Nel complesso Random Forest sembra comportarsi meglio.

Bookkeeper feature selection

Diminuendo il numero di feature considerate recall e precision diminuiscono leggermente.

Bookkeeper feature selection e balancing

Attraverso il balancing aumenta la recall come da attese poiché aumenta la percentuale di positivi nel training set.

Bookkeeper feature selection e sensitive learning

Storm - confronto costi

Nessun filtro

Feature selection e balancing

Feature selection

Feature selection e sensitive learning

I costi dei classificatori risultano essere simili, soprattutto se si prendono in considerazione IBk e Random Forest.

Storm senza filtri applicati ai classificatori

Storm feature selection

Diminuendo il numero di feature considerate recall e precision diminuiscono leggermente.

Storm feature selection e balancing

Storm feature selection e sensitive learning

Conclusioni

- Non è possibile eleggere una configurazione migliore in assoluto:
 - Random Forest con feature selection e sensitive learning sembra essere la configurazione migliore per Bookkeeper.
 - Random Forest con feature selection e balancing, IBk con feature selection e sensitive learning sembrano essere le configurazioni migliori per Storm.
- I risultati ottenuti sono coerenti con quanto atteso dalla teoria (es. con cost sensitive aumenta la recall).
- Le considerazioni formulate per i due progetti sembrano essere compatibili, per cui i risultati possono essere generalizzati per altri progetti.

Minacce alla validità

- In Jira non vengono considerate release senza data.
- Come OV e FV vengono prese le release con data uguale o superiore alla data presente nei campi 'created' e 'resolutionDate' dei ticket Jira.
- IV è assunto come primo fra gli AV se presenti nei ticket Jira.
- Seguendo il 'Proportion Paper' si è presa come threshold per il Cold Start il valore 5 utilizzando come ticket per il calcolo di Proportion solo quelli con gli AV.
- Per il calcolo di Proportion con Cold Start si è ipotizzato che gli altri progetti Apache siano simili a quelli studiati.
- Non sono stati considerati i ticket senza commit associati.
- Si sono assunte come vere le informazioni presenti su Jira come 'resolutionDate'.

Link

https://github.com/MicheleTosi/BugFinder

https://sonarcloud.io/summary/new_code?id=MicheleTosi_BugFinder

