Lecture 3 Regular Expressions and Automata

CS 6320

Outline

- Regular Expressions
- Finite State Automata

The Problem of Information Extraction

Sample text:

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PERSON Tim Wagner] said. [ORG United Airlines] an unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

- Identify named entities
- Identify relations

Template Filling

Example template for "airfare raise"

FARE-RAISE ATTEMPT: LEAD AIRLINE: UNITED AIRLINES

AMOUNT: \$6

EFFECTIVE DATE: 2006-10-26

FOLLOWER: AMERICAN AIRLINES

List of Named Entity Types

Type	Tag	Sample Categories	
People	PER	Individuals, fictional characters, small groups	
Organization	ORG	Companies, agencies, political parties, religious groups, sports teams	
Location	LOC	Physical extents, mountains, lakes, seas	
Geo-Political Entity	GPE	Countries, states, provinces, counties	
Facility	FAC	Bridges, buildings, airports	
Vehicles	VEH	Planes, trains, and automobiles	

Examples of Named Entity Types

Туре	Example	
People	Turing is often considered to be the father of modern computer science.	
Organization	The <i>IPCC</i> said it is likely that future tropical cyclones will become more intense.	
Location	The Mt. Sanitas loop hike begins at the base of Sunshine Canyon.	
Geo-Political Entity	Palo Alto is looking at raising the fees for parking in the University Avenue dis-	
	trict.	
Facility	Drivers were advised to consider either the Tappan Zee Bridge or the Lincoln	
	Tunnel.	
Vehicles	The updated <i>Mini Cooper</i> retains its charm and agility.	

Categorical Ambiguities

Name	Possible Categories
Washington	Person, Location, Political Entity, Organization, Facility
Downing St.	Location, Organization
IRA	Person, Organization, Monetary Instrument
Louis Vuitton	Person, Organization, Commercial Product

Categorical Ambiguity

[PERS Washington] was born into slavery on the farm of James Burroughs.

[ORG Washington] went up 2 games to 1 in the four-game series.

Blair arrived in [LOC Washington] for what may well be his last state visit.

In June, [GPE Washington] passed a primary seatbelt law.

The [FAC Washington] had proved to be a leaky ship, every passage I made...

Regular Expressions

- Regular Expressions (RE)
 - There are a few ways of viewing REs
 - to specify textual search strings
 - to describe finite state automata (FSA)
- RE are widely used
 - e.g.: Perl, emacs, vi, grep, Word, etc.

Examples of RE 1/2

```
/the/
/[tT]he/
\b| tT = \b|
/colou?r/
/[0-9]/
/[^A-Z]/
/[^\.]/
/beg.n/
/a*/
/aa*/
/[0-9]+/
/^The dog\.$/
```

Examples of RE 2/2

Disjunction, Grouping

```
/cat|dog/
/gupp(y|ies)/
/(Column [0-9]+ *)*/
```

Precedence

Parenthesis	()	Highest
Counters	*+?{}	
Sequences and anchors	The ^my end\$	
Disjunction		Lowest

Advanced Operators

RE	Expansion	Match	Examples
\d	[0-9]	any digit	Party_of_ <u>5</u>
\D	[^0-9]	any non-digit	Blue_moon
/w	[a-zA-Z0-9_]	any alphanumeric/underscore	<u>D</u> aiyu
\W	[^\w]	a non-alphanumeric	<u>!</u> !!!
\s	[whitespace (space, tab)	
\S	[^\s]	Non-whitespace	<u>i</u> n_Concord

Figure 2.6 Aliases for common sets of characters.

RE	Match
*	zero or more occurrences of the previous char or expression
+	one or more occurrences of the previous char or expression
?	exactly zero or one occurrence of the previous char or expression
{n}	n occurrences of the previous char or expression
{n,m}	from n to m occurrences of the previous char or expression
{n,}	at least n occurrences of the previous char or expression

Figure 2.7 Regular expression operators for counting.

RE	Match	Example Patterns Matched
*	an asterisk "*"	"K <u>*</u> A*P*L*A*N"
١.	a period "."	"Dr. Livingston, I presume"
\?	a question mark	"Why don't they come and lend a hand?"
\n	a newline	
\t	a tab	

Figure 2.8 Some characters that need to be backslashed.

Finite State Automata 1/4

- REs can describe a FSA machine.
- FSAs are useful for NLP.
- FSA to recognize the ``sheep language" / baa+!/

Figure 2.10 A finite state automaton for talking sheep.

- It has five states
- q₀ is the start state
- q₄ is the final state
- It has four transitions.

Finite State Automata 2/4

FSAs can be encoded as tables.

Figure 2.10 A finite-state automaton for talking sheep.

	Input		
State	b	a	!
0	1	Ø	Ø
1	Ø	2	Ø
2	Ø	3	Ø
3	Ø	3	4
4:	Ø	Ø	Ø

state-transition table

Finite State Automata 3/4

- An example: FSA to recognize amounts of money.
- Ten cents, three dollars, one dollar thirtyfive cents

Finite State Automata 4/4

Figure 2.16 FSA for the simple dollars and cents

- FSAs can be formally specified as a 5tuple:
 - The set of states: Q
 - A finite alphabet: Σ
 - A start state
 - A set of final states
 - A transition function that maps $Q \times \Sigma$ to Q.

Recognition

- Recognition is the process of determining whether or not a given input is accepted by a machine.
- In terms of REs, it is the process of determining whether or not a given input matches a particular RE.
- Recognition is viewed as processing an input written on a tape consisting of cells containing elements from the alphabet.

Figure 2.13 Tracing the execution of FSA #1 on some sheeptalk.

Deterministic vs. Non-Deterministic FSAs

Figure 2.10 A finite-state automaton for talking sheep.

Figure 2.17 A non-deterministic finite-state automaton for talking sheep (NFSA #1). Compare with the deterministic automaton in Fig. 2.10

Figure 2.18 Another NFSA for the sheep language (NFSA #2). It differs from NFSA #1 in Fig. 2.17 in having an ϵ -transition.

ND Recognition as Search 1/3

Idea:

- A search state is a pairing of a single machine state with a position on the input tape.
- By keeping track of not yet explored search states, a recognizer can systematically explore all possible paths through a machine given some input.

ND Recognition as Search 2/3

Depthfirst search or LIFO

Figure 2.20 Tracing the execution of NFSA #1 (Fig. 2.17) on some sheeptalk.

ND Recognition as Search 3/3

Breathfirst search or FIFO

Figure 2.21 A breadth-first trace of FSA #1 on some sheeptalk

Generative Grammars and Formal Languages

- A Formal Language is a set of strings composed of symbols from a finite set of symbols.
- FSAs (and REs) define formal languages without having to explicitly enumerate the set.
- The term generative refers to the idea that FSAs can be viewed as generators of formal languages as well as acceptors.
- To generate you traverse the machine and transition symbols on the tape rather than reading them.