Álgebra Linear

* 5

Mestrado Integrado em Engenharia Informática

Teste 2 - A

Departamento de Matemática

21 dezembro 2019	Duração: 2 horas

Nome: ______ Número: _____

Grupo I

Responda às questões deste grupo nos espaços indicados, sem apresentar os seus cálculos.

1. A forma em escada reduzida da matriz

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix} \qquad \acute{\text{e}} \qquad \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

- a) $\mathcal{C}(A)$ é um subespaço de ______ de dimensão _____. Uma base de $\mathcal{C}(A)$ é: ______
- **b)** $\mathcal{N}(A)$ é um subespaço de ______ de dimensão _____.
- **c)** $(1,-1,1,0) \in \mathcal{N}(A)$? ______.
- **d)** Uma base de $\mathcal{L}(A)$ é: ______
- **e)** Um vetor de \mathbb{R}^4 não pertencente a $\mathcal{L}(A)$ é: ______
- **2.** Para cada $k \in \mathbb{R}$, considere a aplicação linear $T_k : \mathbb{R}^4 \to \mathbb{R}^3$ associada à matriz $\begin{pmatrix} 2k & 1 & 1 & 0 \\ 0 & k-1 & 1 & 1 \\ 0 & 0 & k & 0 \end{pmatrix}$.
 - a) $T_2(1,2,3,1) = \underline{\hspace{1cm}}$.
 - **b)** Um vetor não nulo x tal que $x \in \text{Im } T_1$ é: ______.
 - c) $\dim(\operatorname{Im} T_0) = \underline{\qquad}$ e $\dim(\operatorname{Nuc} T_2) = \underline{\qquad}$
 - d) Os valores de k para os quais a aplicação T_k é sobrejetiva são:
 - e) Os valores de k para os quais a aplicação T_k não é injetiva são: ______
- 3. Considere uma matriz A de ordem 3 cujos valores próprios são -1,1,3.
 - a) $\det A = \underline{\hspace{1cm}}$.
 - **b)** O sistema $(A + 2I_3)x = 0$ é
 - c) Os valores próprios da matriz $(2A+4I_3)^T$ são: _____
 - **d)** A matriz $B = \begin{pmatrix} & & \\ & & \end{pmatrix}$ é semelhante à matriz A.
 - e) A^2 é diagonalizável?______, porque ______

Grupo II

Responda às questões deste grupo numa folha de teste, apresentando os seus cálculos.

1. Considere o subespaço vetorial de \mathbb{R}^4

$$U = \{(x, y, z, w) \in \mathbb{R}^4 : 3x + 3y - 4w = 0 \text{ e } z = 0\}.$$

- a) Determine uma base e indique qual a dimensão de U.
- **b)** Verifique que o vetor (5,3,0,6) pertence a U e escreva as suas coordenadas na base encontrada na alínea anterior.
- c) Diga, justificando, se os vetores $u=(2,-2,0,0),\ v=(4,0,0,3)$ e w=(6,-2,0,3) são vetores geradores de U.
- **d)** Indique, caso exista, uma base de \mathbb{R}^4 que inclua os vetores $u, v \in w$.
- 2. Considere a matriz

$$A = \begin{pmatrix} 1 & a & a \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{pmatrix}.$$

- a) Mostre que o polinómio característico de A não depende de a.
- **b)** Verifique que (0, -1, 1) é um vetor próprio de A.
- c) Verifique que existe um valor de a para o qual a matriz A é diagonalizável e indique, para este valor, uma matriz que a diagonaliza.
- **3.** Seja $A \in \mathbb{R}^{n \times n}$ uma dada matriz e seja $f_A : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ a aplicação definida por $f_A(X) = XA AX$, para qualquer $X \in \mathbb{R}^{n \times n}$.
 - a) Mostre que f_A é uma aplicação linear.
 - **b)** Sendo $A=egin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$, determine Nuc f_A e indique uma sua base.