

ViEqui

Optimal Stateless Model Checking based on *View-equivalence*

Sanjana Singh and Subodh Sharma

Indian Institute of Technology Delhi

Interleaving model of concurrency

Interleaving model of concurrency

Interleaving model of concurrency

Equivalence classes

Stateless model checkers partition executions into

equivalence classes based on equivalence relations

Stateless model checkers explore a reduced state graph

Stateless model checkers partition executions into

equivalence classes based on equivalence relations

• Classical (Mazurkiewicz)

[Flanagan & Godefroid, POPL'05], [Abdulla et al., POPL'14] [Nguyen et al., CAV'18] [Zhang et al., PLDI'15] [Abdulla et al., TACAS'15]

• Classical (Mazurkiewicz)

• reads-from

[Albert et al., CAV'17] [Chalupa et al., POPL'18] [Abdulla et al., OOPSLA'18]

• Classical (Mazurkiewicz)

• reads-from

• reads-value-from

[Agarwal et al., CAV '21]

equivalence relation

View-equivalence

View-equivalence

I. same set of read events

View-equivalence

- I. same set of *read events*
- II. Each read event reads the same value

reads-value-from vs view-equivalence

ordering on events

equivalence relation

ordering on events

equivalence relation

equivalence relation

Has necessary information for constructing a coherent ordering

ordering on events

#loops	ODPOR (classical)		RVF-SMC		ViEqui	
	#Seq	Time	#Seq	Time	#Seq	Time
10	-	Timeout	3703196	705.69	40	0.06
20	-	Timeout	_	Timeout	80	0.28

equivalence relation

finer coarser

higher lower

 Has necessary information for constructing a coherent ordering ordering on events

- can reduce the number of explorations and achieve higher performance
- compute coherence operationally

ViEqui Scheduler

Scheduling directives

what has been examined previously?

what needs to be explored next?

Scheduling directives

what has been examined previously?

what needs to be explored next?

Scheduling directives

Scheduling directives

(φ : a boolean formula) what has been examined previously?

(next: an sequence of events) what needs to be explored next?

R(x)

 $\bullet s_{[\langle \rangle]}$

R(x,1)

- A. choose a state $S[\langle \rangle]$
- B. compute *next*
 - 1. enable write $\langle \rangle$

- A. choose a state $S[\langle \rangle]$
- B. compute *next*
 - 1. enable write $\langle\,
 angle$
 - 2. enable read

- A. choose a state $S[\langle \rangle]$
- B. compute *next*
 - 1. enable write $\langle\,
 angle$
 - 2. enable read $R(y) \bullet R(x)$
 - 3. necessary rf $\langle \rangle \bullet | R(x)$

- A. choose a state $S[\langle \rangle]$
- B. compute *next*
 - 1. enable write $\langle\,
 angle$
 - 2. enable read $R(y) \bullet R(x)$
 - 3. necessary $rf \left\langle \right\rangle \bullet R(x)$
 - 4. other values $W(x,1) \bullet R(x)$

Computing scheduling directives

ViEqui is

 $\mathbb E$ explorations by $\begin{tabular}{l} \mathbb E \\ \Pi \end{tabular}$ view-equivalence class of $au \in \mathbb E$

• Complete: each maximal sequence represents an equivalence class

$$\forall \tau \in \mathbb{E}, \exists \pi \in \Pi \text{ s.t. } \llbracket \tau \rrbracket = \pi$$

ensured by:

runtime analysis and ⊕

ViEqui is

 \mathbb{E} explorations by $\begin{tabular}{l} \mathbb{E} & \mathbb{E} \ \mathbb{E} \$

• Complete: each maximal sequence represents an equivalence class

$$\forall \tau \in \mathbb{E}, \exists \pi \in \Pi \text{ s.t. } \llbracket \tau \rrbracket = \pi$$

• Sound: each equivalence class is explored

$$\forall \pi \in \Pi, \exists \tau \in \mathbb{E} \text{ s.t. } \llbracket \tau \rrbracket = \pi$$

ensured by:

analyzing all write events and +

ViEqui is

 \mathbb{E} explorations by $\begin{tabular}{l} \mathbb{E} & \mathbb{E} \ \mathbb{E} \$

• Complete: each maximal sequence represents an equivalence class

$$\forall \tau \in \mathbb{E}, \exists \pi \in \Pi \text{ s.t. } \llbracket \tau \rrbracket = \pi$$

• Sound: each equivalence class is explored

$$\forall \pi \in \Pi, \exists \tau \in \mathbb{E} \text{ s.t. } \llbracket \tau \rrbracket = \pi$$

• Optimal: each equivalence class is explored exactly once

$$\not\exists \tau_1, \tau_2 \in E$$
, where $\tau_1 \neq \tau_2$, s.t. $\llbracket \tau_1 \rrbracket = \llbracket \tau_2 \rrbracket$

ensured by:

non-redundant scheduling directives using +

Time complexity

$$O(|\mathcal{V}|^{|\mathcal{E}^{\mathbb{R}}|}.|\mathcal{E}^{\mathbb{R}}|.(\mathcal{F}+\mathcal{B}))$$

backward-analysis

for each read event

for each explored sequence

where,
$$\mathscr{F} = O(|\mathcal{T}|^2 + \log(|\mathcal{V}|^{|\mathcal{E}^{\mathbb{R}}|}))$$

$$\mathscr{B} = O(|\mathcal{E}^{\mathbb{W}}|.(|\tau|^3 + |\mathcal{V}|^{|\mathcal{E}^{\mathbb{R}}|}.|\tau|))$$

Space complexity

$$\mathcal{O}(|\mathcal{E}|^2.|\mathcal{V}|^{|\mathcal{E}^{\mathbb{R}}|})$$
 view-equivalence classes events

existing DPOR algorithms are either exploration-optimal but may use exponential in the size of the program¹, or maintain polynomial memory consumption but potentially explore exponentially many redundant interleavings²." [Kokologiannakis et al. POPL '22]

¹ [Abdulla et al. 2014; Albert et al. 2019; Aronis et al. 2018; Kokologiannakis et al. 2017]

² [Abdulla et al. 2017; Godefroid 2005]."

ViEqui tool

Implemented over Nidhugg.

available at: https://github.com/nidhugg/nidhugg

Tested over 16,154 litmus tests of concurrent C programs borrowed from [Abdulla et al., OOPSLA '18]

						reads-fro	m equiv	/alence [dulla et al., POPL' Abdulla et al., OO ence [Agarwal et a
	ODP	OR	rf	sc	RVF	-SMC	ViI	Equi	
benchmark	#Seq	Time	#Seq	Time	#Seq	Time	#Seq	Time	
monabsex(5)	14400	2.56	1296	3.56	6	0.01	1	0.02	
monabsex(100)	-	To	-	To	101	0.99	1	0.09	
monabsex(500)	-	To	-	To	501	162.84	1	3.00	
redundant-co(8)	1969110	338.84	217	0.12	11	0.02	7	0.02	
redundant-co(10)	-	To	331	0.32	11	0.01	7	0.02	
redundant-co(50)	-	To	7651	2.11	11	0.02	7	0.03	
redundant-co (1000)	-	To	-	To	11	0.11	7	3.79	
IBM-incdec(50)	-	To	-	То	-	To	3	9.03	
IBM-incdec(100)	-	To	-	To	-	To	3	38.46	

	ODPOR		rf	Sc	RVF	S-SMC	ViEqui	
benchmark	#Seq	Time	#Seq	Time	#Seq	Time	#Seq	Time
monabsex(5)	14400	2.56	1296	3.56	6	0.01	1	0.02
monabsex(100)	-	To	_	To	101	0.99	1	0.09
monabsex(500)	-	To	-	To	501	162.84	1	3.00
redundant-co(8)	1969110	338.84	217	0.12	11	0.02	7	0.02
redundant-co(10)	-	To	331	0.32	11	0.01	7	0.02
redundant-co(50)	-	To	7651	2.11	11	0.02	7	0.03
redundant-co(1000)	-	To	-	To	11	0.11	7	3.79
IBM-incdec(50)	-	To	-	To	-	To	3	9.03
IBM-incdec(100)	-	To	-	To	-	To	3	38.46

	ODPOR		rfs	c	RVF-S	SMC	ViI	Equi
benchmark	#Seq	Time	#Seq	Time	#Seq	Time	#Seq	Time
burns(5)	2353602	1046.92	2353602	582.46	17382	5.14	36	0.05
burns(40)	-	To	-	To	-	To	1681	188.63
burns(60)	-	To	-	To	-	To	3721	1589.24
dekker-simple(10)	739021	420.96	739021	264.73	2713870	704.97	21	0.03
dekker-simple(100)	-	To	-	To	-	To	201	42.99
dekker-simple(150)	-	To	-	To	-	To	301	302.43
dekker-simple(200)	-	To	-	To	-	To	401	1331.79
peterson(5)	2782162	1432.44	2709013	769.10	-	То	31	0.04
peterson(50)	-	To	-	To	-	To	301	20.30
peterson(100)	-	To	-	To	-	To	601	495.38
peterson(120)	-	To	-	To	-	To	721	1230.92
szymanski(4)	396583	198.87	396583	108.56	1444246	319.78	5335	5.08
szymanski(5)	-	То	-	To	-	To	19349	26.86
szymanski(7)	-	To	-	To	-	To	264209	678.89

	OD:	POR	rfsc		RVF-	SMC	ViEqui		
benchmark	#Seq	Time	#Seq	Time	#Seq	Time	#Seq	Time	
swsc-co1(20)	-	То	8040	4.48	8060	14.14	7240	4.91	
swsc-co1(50)	-	To	125100	228.18	125150	1705.93	120100	327.25	
swsc-co1(60)	-	To	216120	518.64	-	To	208920	771.69	
swsc-co10(10)	-	To	10	0.12	11	0.02	10	0.02	
swsc-co10(100)	-	To	100	0.60	101	7.46	100	0.62	
swsc-co10(250)	-	To	250	7.03	251	278.73	250	7.24	

#loons	ODF	POR	rfs	SC	RVF-S	MC	ViE	qui
#loops	#Seq	Time	#Seq	Time	#Seq	Time	#Seq	Time
10	1	То	-	То	3703196	705.69	40	0.06
20	-	То	_	То	-	То	80	0.28

	ODP	OR	rfs	rfsc		SMC	ViEqui		
benchmark	#Seq	Time	#Seq	Time	#Seq	Time	#Seq	Time	
pgsql(5,5)	781	0.72	781	0.45	19900	3.06	781	0.73	
pgsql(6,7)	55987	68.57	55987	30.72	2292077	654.66	55987	192.92	
pgsql(7,7)	137257	171.45	137257	76.59	5356580	1620.66	137257	943.17	
unverif(5,5)	14400	2.74	14400	1.78	68890	11.70	14400	198.57	
unverif(5,10)	14400	2.98	14400	1.91	70890	12.76	14400	200.92	
unverif(6,5)	518400	110.60	518400	68.04	2625944	699.47	-	To	

	ViE	Equi	Assert
benchmark		•	violation
tas(20,50)	3	49.11	Yes
tas(30,50)	3	108.29	Yes
tas(40,50)	3	197.33	Yes

	ViE	Equi	Assert
benchmark	#Seq	Time	violation
tas(20,50)	3	49.11	Yes
tas(30,50)	3	108.29	Yes
tas(40,50)	3	197.33	Yes

	ODPOR		rf	esc	RVF-S	RVF-SMC		
benchmark	#Seq	Time	#Seq	Time	#Seq	Time		
tas(20,50)	-	To	-	То	23	0.08		
tas(30,50)	-	To	-	To	33	0.15		
tas(40,50)	-	To	-	To	43	0.26		

benchmark		Equi Time	Assert violation
triangular-2(5)	1558	0.97	Yes
triangular-2(7)	31522	442.58	Yes
triangular-2(8)	-	To	Yes

benchmark		Equi Time	Assert violation
triangular-2(5)	1558	0.97	Yes
triangular-2(7)	31522	442.58	Yes
triangular-2(8)	-	To	Yes

	ODPOR		rf	sc	RVF-SMC	
benchmark	#Seq	Time	#Seq	Time	#Seq	Time
triangular-2(5)	20172	2.69	-	Х	26272	2.41
triangular-2(7)	1695856	266.81	-	X	644193	70.10
triangular-2(8)	-	To	-	X	3045756	369.60

large enabling sequences
no well-formed join

highlights weakness of backward-analysis

X: Failed to run

• rfsc time RVF-SMC time ODPOR time 1800 1600 1400 1200 1000 800 600 400 200 400 1000 1200 1400 1600 1800 ViEqui time

benchmarks with no assert violation

benchmarks with assert violation

Future Scope

view-equivalence based SMC for weak memory models

• coarsening by considering the assert condition in the equivalence realtion

applicability for database transactions

Richer constructs like coarse grained synchronization

Future Scope

scalability

	ODPOR		rfsc		RVF-SMC		ViEqui	
benchmark	#Seq	Time	#Seq	Time	#Seq	Time	#Seq	Time
FreeBSD-abd-kbd	1	0.03	1	0.12	1	0.02	1	0.02
FreeBSD-rdma-addr	1	0.02	1	0.12	1	0.01	1	0.02
NetBSD-sysmon-power	4	0.03	26	0.15	6	0.02	6	0.04
Solaris-space-map	2	0.03	2	0.12	1	0.02	1	0.01

Future Scope

scalability

	ODPOR		rfsc		RVF-SMC		ViEqui	
benchmark	#Seq	Time	#Seq	Time	#Seq	Time	#Seq	Time
FreeBSD-abd-kbd	1	0.03	1	0.12	1	0.02	1	0.02
FreeBSD-rdma-addr	1	0.02	1	0.12	1	0.01	1	0.02
NetBSD-sysmon-power	4	0.03	26	0.15	6	0.02	6	0.04
Solaris-space-map	2	0.03	2	0.12	1	0.02	1	0.01
Safestack		oom		oom		То		То

oom: out of memory

ThankYou

Questions?

Handling causality

Handling causality

- 1. enabling sequence $(W(y,1)) = W(x,1) \bullet R(x,1) \bullet W(y,1)$
- 2. well-formed join (\bigoplus) preserves ($po \cup rf$)+

<u>back</u>

View-equivalence of DBMS transactions

2 schedules *S1*, *S2* of transactions are equivalent if in *S1* and *S2*:

- 1. Each reading transaction reads the same value
- 2. Each reading transaction reads from the same transaction
- 3. Final write is performed by the same transaction