

MULTIPLE REGRESSION MODEL - I

Dr. A. Ramesh

DEPARTMENT OF MANAGEMENT STUDIES

Agenda

- Multiple regression model
- Least squares method
- Multiple coefficient of determination
- Model assumptions
- Testing for significance F-Test, t-Test

Multiple regression model

MULTIPLE REGRESSION MODEL

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_p x_p + \epsilon$$

MULTIPLE REGRESSION EQUATION

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_p x_p$$

The estimation process For multiple regression

Simple vs multiple regression

- In simple linear regression, b_0 and b_1 were the sample statistics used to estimate the parameters β_0 and β_1 .
- Multiple regression parallels this statistical inference process, with $b_0, b_1, b_2, \ldots, b_p$ denoting the sample statistics used to estimate the parameters $\beta_0, \beta_1, \beta_2, \ldots, \beta_p$.

$$\begin{array}{cccc}
b_0 & \rightarrow & \beta_0 \\
b_1 & \rightarrow & \beta_1 \\
b_2 & \rightarrow & \beta_2
\end{array}$$

Least Squares Method

LEAST SQUARES CRITERION

$$\min \Sigma (y_i - \hat{y}_i)^2$$

Least Squares Method

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \cdots + b_p x_p$$

An Example: Trucking Company

- As an illustration of multiple regression analysis, we will consider a problem faced by the Trucking Company.
- A major portion of business involves deliveries throughout its local area.
- To develop better work schedules, the managers want to estimate the total daily travel time for their drivers.

Source: Statistics for Business and Economics, 2012, Anderson

PRELIMINARY DATA FOR BUTLER TRUCKING

Dri	ving
Assig	nment

2

4

5

6

7

ŏ

9

10

$x_1 = Miles$ Traveled

100 50

100 100

50

80

75

65

90

90

y =Travel Time (hours)

9.3

4.8

8.9

6.5

4.2

6.2

7.4

6.0

7.6

6.1

Using python import data

```
In [1]: import pandas as pd
    from statsmodels.formula.api import ols
    from statsmodels.stats.anova import anova_lm
    import matplotlib.pyplot as plt

In [2]: df1 = pd.read_excel('Trucking.xlsx')
    df1
```


Using python import data

Out[2]:

	Driving Assignmnet	x1	n_of_deliveries	travel_time
0	1	100	4	9.3
1	2	50	3	4.8
2	3	100	4	8.9
3	4	100	2	6.5
4	5	50	2	4.2
5	6	80	2	6.2
6	7	75	3	7.4
7	8	65	4	6.0
8	9	90	3	7.6
9	10	90	2	6.1

Scatter Diagram Of Preliminary Data For Trucking x₁

```
In [3]: import matplotlib.pyplot as plt
   plt.scatter(df1['x1'],df1['travel_time'], color = "green")
   plt.ylabel('Travel time')
   plt.title(' Simple linear regression with Miles travelled ')
Out[3]: Text(0.5,1,' Simple linear regression with Miles travelled ')
```


Scatter Diagram Of Preliminary Data For Trucking x₂

```
In [11]: plt. scatter(df1['n_of_deliveries'], df1['travel_time'], color = "red")
    plt.ylabel('Travel time') |
    plt.title('linear regression with number of deliveries')

Out[11]: Text(0.5,1,'linear regression with number of deliveries')
```


Scatter Diagram For x₁ and x₂

```
import matplotlib.pyplot as plt
plt.figure()
plt.scatter(df1['x1'],df1['travel_time'], color = "green")
plt. scatter(df1['n_of_deliveries'], df1['travel_time'], color = "red")
plt.ylabel('Travel time')
plt.title('Multiple regression ') |
plt.xlabel('x1 in green and x2 in red')
```

Out[14]: Text(0.5,0,'x1 in green and x2 in red')

Linear regression Vs. multiple regression model

Linear regression

$$\hat{y} = 1.27 + .0678x_1$$

Linear regression Vs. multiple regression model

```
In [8]: Reg1 = ols(formula ="travel_time ~ x1", data = df1)
         Fit1 = Reg1.fit()
         print(Fit1.summary())
                                     OLS Regression Results
         Dep. Variable:
                                   travel time
                                                  R-squared:
                                                                                    0.664
        Model:
                                                  Adj. R-squared:
                                                                                    0.622
                                            OLS
         Method:
                                 Least Squares
                                                 F-statistic:
                                                                                    15.81
                              Fri, 06 Sep 2019
                                                  Prob (F-statistic):
         Date:
                                                                                   0.00408
                                                  Log-Likelihood:
         Time:
                                       11:09:17
                                                                                   -13.092
         No. Observations:
                                             10
                                                  AIC:
                                                                                     30.18
        Df Residuals:
                                                  BIC:
                                                                                     30.79
        Df Model:
         Covariance Type:
                                      nonrobust
                          coef
                                   std err
                                                            P>|t|
                                                                       [0.025
                                                                                    0.9751
        Intercept
                        1.2739
                                     1,401
                                                0.909
                                                            0.390
                                                                       -1.956
                                                                                    4.504
                        0.0678
                                     0.017
                                                                        0.028
                                                3.977
                                                            0.004
                                                                                     0.107
         Omnibus:
                                          0.694
                                                  Durbin-Watson:
                                                                                    1.723
         Prob(Omnibus):
                                          0.707
                                                  Jarque-Bera (JB):
                                                                                    0.623
         Skew:
                                         -0.333
                                                  Prob(JB):
                                                                                    0.732
         Kurtosis:
                                          1,974
                                                  Cond. No.
                                                                                      363.
```


Linear regression Vs. Multiple regression model

Multiple regression

$$\hat{y} = -.869 + .0611x_1 + .923x_2$$

Linear regression Vs. Multiple regression model

Cond. No.

Kurtosis: 2.418

Multiple Coefficient of Determination

RELATIONSHIP AMONG SST, SSR, AND SSE

$$SST = SSR + SSE$$

where

SST = total sum of squares =
$$\Sigma (y_i - \bar{y})^2$$

SSR = sum of squares due to regression =
$$\Sigma(\hat{y}_i - \bar{y})^2$$

SSE = sum of squares due to error =
$$\Sigma (y_i - \hat{y}_i)^2$$

Multiple Coefficient of Determination for linear model

```
In [9]: print(anova lm(Fit1))
                                                PR(>F)
                      sum sq
                              mean sq
                   15.871304 15.871304 15.814578
                                               0.00408
       Residual
               8.0
                    8.028696
                             1.003587
                                                  NaN
                                           NaN
               SST- 15.87+8.02: 23.89
               SSF=
                                        8.02
              SSR =
                                        15.821
```


Multiple Coefficient of Determination for Multiple regression model

```
In [18]: anova_table = anova_lm(model, typ=1)
anova_table
```

Out[18]:

	df	sum_sq	mean_sq	F	PR(>F)
x1	1.0	15.871304	15.871304	48.315660	0.000221
n_of_deliveries	1.0	5.729252	5.729252	17.441075	0.004157
Residual	7.0	2.299443	0.328492	NaN	NaN

Multiple Coefficient of Determination

MULTIPLE COEFFICIENT OF DETERMINATION

$$R^2 = \frac{\text{SSR}}{\text{SST}}$$

$$R^2 = \frac{21.601}{23.900} = .904$$

Multiple Coefficient of Determination

- Adding independent variables causes the prediction errors to become smaller, thus reducing the sum of squares due to error, SSE.
- Because SSR = SST- SSE, when SSE becomes smaller, SSR becomes larger, causing R^2 = SSR/SST to increase.
- Many analysts prefer adjusting R² for the number of independent variables to avoid overestimating the impact of adding an independent variable on the amount of variability explained by the estimated regression equation.

Adjusted Multiple Coefficient of Determination

n = number of observationsp = denoting the number of independent variables

ADJUSTED MULTIPLE COEFFICIENT OF DETERMINATION

$$R_a^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1}$$

$$R_a^2 = 1 - (1 - .904) \frac{10 - 1}{10 - 2 - 1} = .88$$

OLS Summary

```
In [15]: from statsmodels.formula.api import ols
           model = ols('travel time ~ x1+n of deliveries ', data=df1).fit()
           model.summary()
           C:\Users\HP\Anaconda3\lib\site-packages\scipy\stats.py:1390: UserWa
           g anyway, n=10
              "anyway, n=%i" % int(n))
Out[15]:
           OLS Regression Results
               Dep. Variable:
                                 travel time
                                                 R-squared:
                                                               0.904
                      Model:
                                      OLS
                                             Adj. R-squared:
                                                               0.876
                                                               32.88
                               Least Squares
                                                 F-statistic:
                    Method:
                       Date: Fri, 06 Sep 2019
                                           Prob (F-statistic):
                                                            0.000276
                                             Log-Likelihood:
                       Time:
                                   11:16:53
                                                              -6.8398
            No. Observations:
                                        10
                                                       AIC:
                                                               19.68
                Df Residuals:
                                                       BIC:
                                                               20.59
                                         2
                   Df Model:
            Covariance Type:
                                  nonrobust
                                              t P>|t| [0.025 0.975]
                             coef
                                  std err
                                         -0.913 0.392 -3.119 1.381
                       x1 0.0611
                                         6.182 0.000
                                                       0.038 0.085
            n_of_deliveries 0.9234
                                   0.221 4.176 0.004 0.401 1.446
                 Omnibus: 0.039
                                   Durbin-Watson: 2.515
            Prob(Omnibus): 0.981
                                 Jarque-Bera (JB): 0.151
                    Skew: 0.074
                                        Prob(JB): 0.927
                 Kurtosis: 2.418
                                        Cond. No. 435.
```


Adjusted Multiple Coefficient Vs Multiple Coefficient

- If a variable is added to the model, R² becomes larger even if the variable added is not statistically significant.
- The adjusted multiple coefficient of determination compensates for the number of independent variables in the model.

Adjusted Multiple Coefficient Vs Multiple Coefficient

If the value of R² is small and the model contains a large number of independent variables, the adjusted coefficient of determination can take a negative value

Model Assumptions

MULTIPLE REGRESSION MODEL

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_p x_p + \epsilon$$

Assumption about error term

1. The error term ϵ is a random variable with mean or expected value of zero;

$$E(\varepsilon) = 0.$$

Implication: For given values of $x_1, x_2, ..., x_p$ the expected , or average , value of y is given by $\underline{E(y)} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + + \beta_p x_p$

- This equation represents the average of all possible values of y, that might occur for the given value of $x_1, x_2, ..., x_p$, by E(y).

Assumption about error term

- 2. The variance of ϵ is denoted by σ^2 and is the same for all values of the independent variables x_1, x_2, \ldots, x_p .

 Implication: The variance of y about the regression line equals σ^2 and is the same for all values of x_1, x_2, \ldots, x_p .
- **3.** The values of ϵ are independent. *Implication:* The value of ϵ for a particular set of values for the independent variables is not related to the value of ϵ for any other set of values.
- **4.** The error term ϵ is a normally distributed random variable reflecting the deviation between the y value and the expected value of y given by $\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_p x_p$. *Implication:* Because $\beta_0, \beta_1, \ldots, \beta_p$ are constants for the given values of x_1, x_2, \ldots, x_p , the dependent variable y is also a normally distributed random variable.

Graph of the regression equation for multiple regression analysis with two independent variables

Response variable and response surface

- In regression analysis, the term response variable is often used in place of the term dependent variable.
- Furthermore, since the multiple regression equation generates a plane or surface, its graph is called a response surface.

Thank You

