Colles - Semaine 13

Série 1

Question de cours

Énoncer et démontrer l'inégalité de Cauchy-Schwarz.

Exercice

- 1. Soit F la fonction définie sur \mathbb{R} par : $\forall x \in \mathbb{R}$, $F(x) = \exp(-e^{-x})$.
 - a) Justifier que F est une fonction de répartition.
 - b) Soit X une v.a.r. de fonction de répartition F. Déterminer une densité f de X.

On suppose désormais que X est une v.a.r. sur $(\Omega, \mathscr{A}, \mathbb{P})$ et que toutes les v.a.r. citées sont définies sur ce même espace.

- 2. a) Soit $Z = e^{-X}$. Justifier que Z est une variable aléatoire réelle sur $(\Omega, \mathscr{A}, \mathbb{P})$ et déterminer sa loi.
 - b) On rappelle que grand(1,1,'exp',1) simule une variable aléatoire et suivant une loi exponentielle de paramètre 1. Écrire une fonction Scilab qui simule la variable aléatoire X.
 - c) Soient x et y deux réels strictement positifs. Établir une relation entre la probabilité conditionnelle $\mathbb{P}_{[X \le -\ln(X)]}([X \le -\ln(x+y)])$ et $\mathbb{P}([X \le -\ln(y)])$.
- 3. Soit $(Y_i)_{i\in\mathbb{N}^*}$ une suite de v.a.r. définies sur $(\Omega, \mathscr{A}, \mathbb{P})$, mutuellement indépendantes et de même loi exponentielle de paramètre 1.

Soit d'autre part L une v.a.r. de loi de Poisson de paramètre 1 indépendante des variables aléatoires de la suite $(Y_i)_{i \in \mathbb{N}^*}$.

On définit S par :

- \times si $L(\omega) = 0$, alors $S(\omega) = 0$.
- \times si $L(\omega) = k$, avec $k \in \mathbb{N}^*$, alors $S(\omega) = \max(Y_1(\omega), \dots, Y_k(\omega))$.
- a) Soit k un entier naturel non nul. Déterminer la loi de la variable aléatoire $S_k = \max(Y_1, \dots, Y_k)$.
- b) Démontrer que pour tous réels a et b tels que 0 < a < b, on a :

$$\mathbb{P}([a \leqslant S \leqslant b]) = \mathbb{P}([a \leqslant X \leqslant b])$$

c) Calculer $\mathbb{P}([S=0])$.

Série 2

Question de cours

Déterminer le spectre de $A = \begin{pmatrix} 3 & 0 & 1 \\ -1 & 2 & -1 \\ -2 & 0 & 0 \end{pmatrix}$.

Exercice

Soit $n \in \mathbb{N}^*$. On note $\langle \cdot, \cdot \rangle$ le produit scalaire canonique de \mathbb{R}^n .

On dit que deux familles (u_1, \ldots, u_k) et (v_1, \ldots, v_k) de vecteurs de \mathbb{R}^n sont biorthogonales si l'on a :

$$\forall (i,j) \in [1,k]^2, \ \langle u_i, v_j \rangle = \begin{cases} 1 & \text{si } i=j \\ 0 & \text{sinon} \end{cases}$$

- 1. a) Montrer que si les familles (u_1, \ldots, u_k) et (v_1, \ldots, v_k) de \mathbb{R}^n sont biorthogonales, alors ces deux familles sont libres. Que peut-on en déduire pour k?
 - b) Montrer que si $\mathscr{B}' = (u_1, \ldots, u_n)$ est une base quelconque de \mathbb{R}^n , alors il existe une unique base $\mathcal{C}' = (v_1, \ldots, v_n)$ telle que \mathscr{B}' et \mathcal{C} soient biorthogonales. La base \mathcal{C} s'appelle la base biorthogonale de la base \mathscr{B}' .

Dans la suite de l'exercice, on confond tout vecteur de \mathbb{R}^n avec la matrice colonne canoniquement associée.

2. Soit A la matrice carrée d'ordre n pour laquelle il existe un entier naturel r, des familles (u_1, \ldots, u_r) et (v_1, \ldots, v_r) de \mathbb{R}^n biorthogonales et r réels non nuls $(\lambda_1, \ldots, \lambda_r)$ tels que :

$$A = \sum_{i=1}^{r} \lambda_i \, u_i^{\ t} v_i$$

- a) Montrer que u_i est un vecteur propre de A.
- b) Montrer que $\operatorname{Ker}(A) = (\operatorname{Vect}(v_1, \dots, v_r))^{\perp}$. En déduire le rang de A.
- c) Montrer que A est diagonalisable.
- d) Réciproquement, montrer que si A est diagonalisable de rang r, alors il existe (u_1, \ldots, u_r) et (v_1, \ldots, v_r) de \mathbb{R}^n biorthogonales et des réels non nuls $\lambda_1, \ldots, \lambda_r$ tels que :

$$A = \sum_{i=1}^{r} \lambda_i \, u_i^{\ t} v_i$$

3. Soit $A \in \mathcal{M}_n(\mathbb{R})$, symétrique de rang r. Montrer qu'il existe une famille (u_1, \ldots, u_r) et des réels non nuls $\lambda_1, \ldots, \lambda_r$) tels que :

$$A = \sum_{i=1}^{r} \lambda_i \, u_i^{\ t} u_i$$

2

La réciproque est-elle vraie?

Série 3

Question de cours

Démontrer la stabilité par somme des lois de Poisson.

Exercice

Soit α un réel strictement positif et $(Y_i)_{i\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes définies sur le même espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$. On suppose de plus que pour tout i, Y_i suit la loi exponentielle de paramètre i α .

Pour tout $n \in \mathbb{N}^*$, on pose $Z_n = \sum_{i=1}^n Y_i$ et on note g_n la densité de Z_n nulle sur \mathbb{R}_+ et continue sur \mathbb{R}_+^* .

- 1. a) Déterminer la fonction g_2 .
 - b) Montrer que pour $n \ge 1$ et x > 0, on a : $g_n(x) = n \alpha e^{-\alpha x} (1 e^{-\alpha x})^{n-1}$
 - $\boldsymbol{c})$ Calculer l'espérance de Z_n et en donner un équivalent simple lorsque n tend vers l'infini.
 - d) Calculer la variance de Z_n et montrer qu'elle admet une limite finie lorsque n tend vers l'infini.
- 2. Pour $n \in \mathbb{N}^*$, on pose $U_n = \frac{1}{n} Z_n$.
 - a) Déterminer la fonction de répartition H_n de U_n .
 - b) Montrer que, pour tout $x \in \mathbb{R}$, la suite $(F_{U_n}(x))$ converge vers un réel F(x). Montrer que F est la fonction de répartition d'une v.a.r. que l'on précisera.
 - c) Déterminer la limite quand n tend vers l'infini de $\mathbb{E}(U_n)$ et $\mathbb{V}(U_n)$.