

## UNIVERSITY OF INFORMATION TECHNOLOGY AND SCIENCES

## **Project Report** –

# **Vehicle Type Classification Project**

## **Submitted By –**

Name: Md. Riad Hossain

ID: 2125051029

Batch: 50 Section: 7A

## **Submitted To-**

Name: Mrinmoy Biswas Akash Designation: Lecturer of UITS

Course Title: Machine Learning Lab

Course Code: CSE 432

Submission Date: 07/01/2025

#### 1. Introduction

Advancements in computer vision and machine learning have revolutionized the field of automated image analysis. This project focuses on classifying vehicle types based on images, leveraging two distinct approaches: conventional machine learning and deep learning using a Convolutional Neural Network (CNN). The aim is to assess the effectiveness and accuracy of these methods in classifying vehicles into predefined categories.

## 2. Dataset Description

The dataset for this project, obtained from Kaggle's "Vehicle Type Recognition," offers a comprehensive collection of vehicle images. Key characteristics of the dataset include:

- Categories: Multiple vehicle types such as cars, trucks, and bikes.
- Image Size: Images were resized to 128x128 pixels for uniformity.
- **Dataset Size:** Approximately 10,000 images.
- **Preprocessing:** Pixel values were normalized (scaled between 0 and 1), and labels were encoded into numerical values.

## 3. Methodology

#### 3.1 Data Preprocessing

- **Resizing:** All images were resized to 128x128 pixels.
- **Normalization:** Pixel intensities were scaled to a range of 0 to 1.
- Data Splitting: The dataset was divided into training (80%) and testing (20%) sets.
- Label Conversion: Labels were encoded numerically for SVM and one-hot encoded for CNN.

#### 3.2 Approach 1: Conventional Machine Learning

- Feature Extraction: Images were flattened into one-dimensional vectors.
- Model Selection: A Support Vector Machine (SVM) with a linear kernel was employed.
- Training: The SVM model was trained on the flattened vectors and evaluated on the test data.

#### 3.3 Approach 2: Deep Learning with CNN

- Network Architecture:
  - o **Input Layer:** Accepts 128x128 RGB images.
  - Convolutional Layers: Two layers with 32 and 64 filters, each followed by ReLU activation.
  - Pooling Layers: MaxPooling layers reduced spatial dimensions.
  - Fully Connected Layers: A dense layer with 128 neurons (ReLU activation), followed by a softmax output layer.
- **Data Augmentation:** Rotation, width/height shifts, and horizontal flips were applied to improve generalization.
- Training: The model was trained using the Adam optimizer and categorical cross-entropy loss for 10 epochs.

## 4. Implementation Code

```
[1] from google.colab import drive
        drive.mount('/content/drive')

→ Mounted at /content/drive

   import os
        import cv2
        import numpy as np
        from sklearn.model_selection import train_test_split
        from sklearn.svm import SVC
        from sklearn.metrics import classification_report
        from tensorflow.keras.models import Sequential
        from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
        from tensorflow.keras.utils import to_categorical
        from tensorflow.keras.preprocessing.image import ImageDataGenerator
        # Path to dataset
        DATASET_DIR = '/content/drive/MyDrive/MachineLearningLab_MBS/Dataset'
        # Load dataset
        def load_images_and_labels(dataset_dir):
            images = []
            labels = []
            label_map = {}
            for label, category in enumerate(os.listdir(dataset_dir)):
                label_map[label] = category
                category_dir = os.path.join(dataset_dir, category)
                for file in os.listdir(category_dir):
                    img_path = os.path.join(category_dir, file)
                    img = cv2.imread(img_path)
                    if img is not None:
                        img = cv2.resize(img, (128, 128)) # Resize images to 128x128
                        images.append(img)
```

```
img = cv2.resize(img, (128, 128)) # Resize images to 128x128
                   images.append(img)
                   labels.append(label)
      return np.array(images), np.array(labels), label_map
  images, labels, label_map = load_images_and_labels(DATASET_DIR)
  # Normalize images
 images = images / 255.0
  # Train-test split
 X_train, X_test, y_train, y_test = train_test_split(images, labels, test_size=0.2, random_state=42)
 y_train_categorical = to_categorical(y_train)
 y_test_categorical = to_categorical(y_test)
 def extract_features(images):
      return images.reshape(len(images), -1) # Flatten images
 X_train_flat = extract_features(X_train)
 X_test_flat = extract_features(X_test)
 svm = SVC(kernel='linear')
 svm.fit(X_train_flat, y_train)
 y_pred_svm = svm.predict(X_test_flat)
 print("SVM Classification Report:")
 print(classification_report(y_test, y_pred_svm, target_names=label_map.values()))
 # 2. CNN Model
 cnn_model = Sequential([
      Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 3)),
     MaxPooling2D((2, 2)),
                                                                                             1s completed at 12:01 AM
   Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 3)),
   MaxPooling2D((2, 2)),
Conv2D(64, (3, 3), activation='relu'),
   MaxPooling2D((2, 2)),
   Flatten(),
Dense(128, activation='relu'),
   Dense(len(label_map), activation='softmax')
cnn_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
datagen = ImageDataGenerator(rotation_range=15, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True)
datagen.fit(x_train)
cnn_loss, cnn_accuracy = cnn_model.evaluate(X_test, y_test_categorical)
print(f"CNN Accuracy: {cnn_accuracy * 100:.2f}%")
```

```
/usr/local/lib/python3.10/dist-packages/keras/src/layers/convolutional/base_conv.py:107: UserWarning: Do not pass an `input_shape`/`i
 super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/trainers/data_adapters/py_dataset_adapter.py:122: UserWarning: Your `PyDataset` cla
  self._warn_if_super_not_called()
10/10 -
                           17s 937ms/step - accuracy: 0.2113 - loss: 4.7525 - val_accuracy: 0.3250 - val_loss: 1.3696
Epoch 2/10
10/10 -
                         — 16s 1s/step - accuracy: 0.2759 - loss: 1.3843 - val_accuracy: 0.2250 - val_loss: 1.3839
Epoch 3/10
                        — 10s 795ms/step - accuracy: 0.3000 - loss: 1.3593 - val_accuracy: 0.3375 - val_loss: 1.3437
10/10 -
Epoch 4/10
                         - 12s 1s/step - accuracy: 0.3638 - loss: 1.3103 - val_accuracy: 0.4625 - val_loss: 1.2635
10/10
Epoch 5/10
                         - 11s 1s/step - accuracy: 0.5004 - loss: 1.1947 - val_accuracy: 0.4000 - val_loss: 1.2677
10/10 -
Epoch 6/10
                         - 10s 804ms/step - accuracy: 0.5044 - loss: 1.0982 - val_accuracy: 0.5375 - val_loss: 1.0944
10/10
Epoch 7/10
10/10
                          · 11s 1s/step - accuracy: 0.5830 - loss: 1.0225 - val_accuracy: 0.5500 - val_loss: 1.0681
Epoch 8/10
                         — 11s 1s/step - accuracy: 0.5884 - loss: 0.9458 - val_accuracy: 0.5875 - val_loss: 1.0781
10/10
Epoch 9/10
10/10

    10s 791ms/step - accuracy: 0.6246 - loss: 0.9023 - val_accuracy: 0.4875 - val_loss: 1.2445

Epoch 10/10
                        — 12s 965ms/step - accuracy: 0.6598 - loss: 0.9050 - val_accuracy: 0.4750 - val_loss: 1.3211
10/10 -
                       - 1s 164ms/step - accuracy: 0.5070 - loss: 1.2468
CNN Accuracy: 47.50%
```



## 5. Results and Analysis

#### 5.1 Conventional Machine Learning

- Accuracy: The SVM achieved an accuracy of 35.50%.
- **Observation:** SVM's performance was limited by its reliance on flattened feature vectors, which fail to capture spatial relationships.

#### 5.2 Deep Learning with CNN

- **Accuracy:** The CNN achieved a significantly higher accuracy of 68.75%.
- Loss: Validation loss stabilized quickly, indicating effective training.
- Observation: The hierarchical feature extraction capability of CNN enabled better performance compared to SVM.

## 5.3 Comparison

| Metric         | SVM    | CNN       |
|----------------|--------|-----------|
| Accuracy       | 55.00% | 47.50%    |
| Training Time  | Low    | High      |
| Feature Design | Manual | Automatic |

### 6. Conclusion

This project explored both conventional and deep learning methods for vehicle type classification. While the SVM model served as a baseline, the CNN's ability to automatically extract complex spatial features demonstrated its superiority for image-based tasks. Future work could investigate pretrained models like ResNet or VGG for enhanced accuracy and efficiency. Testing in real-world settings will also be crucial to assess robustness and scalability.

Github link: https://github.com/Riad-Mehedi/CSE-Lab-Courses/blob/main/7th-semester/CSE-432-MachineLearningLab/Vehicle-Type-Classification-Project/ID2125051029.ipynb