VIETNAM NATIONAL UNIVERSITY HO CHI MINH CITY UNIVERSITY OF TECH. FACULTY OF CSE

EXAMINATIONCOMPUTER GRAPHICS (Total 11, clipped to 10)

Students code the following questions in the Ipython Notebook shared via email.

Let P be a matrix,

$$P = \begin{bmatrix} -1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & 1 \end{bmatrix}$$

A, B, and C are three points in a 3D-space, the coordinates (x,y,z) of A, B, and C **respectivey** picked up from the first, the second, and the last row of matrix *P*.

- (1) [3 points] Fill python code for the following functions:
 - a) normal_of_face
 - b) normal of
 - c) averaged
 - d) area
 - e) interpolate
 - f) reflect
 - g) o2c_vec
- (2) [1 points] On the ray passing Point [1, 0, 0] and along n_{BAC} ; choose a point D such that AD = 5 units. Fill code to function deter D to determine point D
- (3) [2 points] On the ray passing A (i.e., ray OA) and along $-n_{ABC}$; choose a point P_{eye} such that $AP_{eye} = 10$ units. Place the camera at P_{eye} . The camera looks at point B given above; and its orientation is $[0,1,0]^T$.
 - Determine P_{eve};
 - Determine M_{model}, M_{view} and M_{model-view} (also named: M_{mv})
 - Let M_{o2c_vec} be the matrix for transforming every vector in object space to camera space. M_{o2c_vec} is computed from M_{mv} by taking the inversion and then transpose of M_{mv}

Fill code to determine Peye, M_{model}, M_{view}, M_{model-view} and M_{o2c_vec}

- 2) [2 points] Let A_c, B_c and C_c be the point A, B, C repsectively in camera space; Fill code in NoteBook to determine A_c, B_c and C_c.
- 3) [1 points] Let M be middle point of AB and Q be the middle point of MD. Detemine Q
- 4) [2 points] Determine the color of Q with following information:
 - Shading model: BUI Tuong Phong
 - Light source at (in world space): [10, 10, -10][™]

Materials specified in matrix K in the following (columns: red, green, blue):

```
K = [
[0.6, 0.8, 0.8], #diffuse
[1,0, 0.8, 0.4], #specular
[0.6, 0.8, 0.2], #ambient
]
```

• Light intensity specified in matrix I in the following (columns: red, green, blue):

```
I =[
[1, 0.4, 1], #diffuse
[1, 0.4, 1], #specular
[1, 0.4, 1], #ambient
```

• Shininess: 200

---THE END---