

DATASHEET

Capteur Graphite

Description générale du capteur

Le capteur graphite permet de mesurer la variation de résistance en fonction de la déformation de la feuille de papier. Ce capteur est fabriqué à partir de graphite sur une feuille de 0,16mm d'épaisseur. Le graphite peut être de type 2B, 2H, 6B, H, qui donneront des valeurs de résistances différentes. Lorsque ce capteur est compressé, les molécules de carbones se rapprochent et la résistance de celui-ci va diminuer. A l'inverse, lorsque le capteur est mis sous tension, les particules de graphites vont s'éloigner donc la résistance du capteur va augmenter.

Propriétés du capteur

- Poids faible (<10g)
- Facile d'utilisation
- Fabrication facile qui nécessite peu de matériel
- Produit Low-tech
- Température ambiante

Dimensions du capteur

Figure 1 : Dimensions du capteur (en mm)

Description des pins

Numéro du pin	Spécifications
1	Vcc
2	Vout

Figure : Description des pins

Caractéristiques électrique typiques

	Unité	Valeurs		
		Min	Typique	Max
Tension	V	3	5	7
d'entrée				
Crayon 2H	MOhm	5	15	35
Crayon HB	MOhm	630	800	1019
Crayon 2B	MOhm	380	680	1019

Spécifications

Capteur	Jauge de contrainte	
Туре	Passif (Tension d'entrée externe)	
Tension d'entrée	5V	
Type du signal de sortie	Analogique	
Temps de réponse	<500 ms	
Mesurande	Résistance	
Application	Mesure de déformation par tension et	
	compression	

Montage analogique d'amplification

Ce circuit est un exemple d'intégration du capteur à un microprocesseur Arduino Uno.

Le capteur graphite est connecté à un amplificateur opérationnel permettant d'amplifier le signal.

Pour obtenir la valeur de résistance du capteur graphite, il faut utiliser la formule suivante :

$$Rmes = R1 * (1 + \frac{R3}{R2}) * \frac{Vcc}{Vadc} - R1 - R5$$

La résistance variable R2 permet de régler le gain du montage.

Graphiques caractéristiques obtenus

Graphique représentant la résistance relative en fonction de la déformation en tension

Figure : Graphes de résistance relative en fonction de la déformation en flexion et en compression