МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа № 1 по дисциплине «Методы машинного обучения»

Тема: «Разведочный анализ данных. Исследование и визуализация данных.»

ИСПОЛНИТЕЛЬ:	<u>Шапиев М.М.</u>			
группа ИУ5-24М	подпись			
	""2020 г.			
ПРЕПОДАВАТЕЛЬ:	<u>Гапанюк Ю.Е.</u> _{ФИО}			
	лодпись " " 2020 г.			

Москва - 2020

Цель лабораторной работы

Изучить различные методы визуализация данных. Построить основные графики, входящие в этап разведочного анализа данных. Корреляционный анализ данных. Формирование выводов о возможности построения моделей машинного обучения и о возможном вкладе признаков в модель.

Реализация задания

```
In [13]: #Подомчаем библиомени для ана
            import numpy as np
import pandas as pd
            import seaborn as sns
            import matplotlib.pyplot as plt
            Matplotlib inline
            sns.set(style="ticks")
  In [ ]: #Подличием дам
            data = pd.read_csv('wine.data', sep=",")
            total_count = data.shape
print('Scero строк: ()'.format(total_count[#]))
print('Scero жолонок: ()'.format(total_count[#]))
            Всего строк: 178
            Всего колонок: 14
 In [16]: # Список колонок с липами данных
            data.dtypes
 Out[16]: class
                                                    int64
            Alcohol
                                                  float64
            Malic acid
                                                  float64
            Ash
                                                  float64
            Alcalinity of ash
            Magnesium
Total phenols
                                                    int64
                                                  float64
            Fiavanoids
                                                  float64
            Nonflavanoid phenols
                                                  float64
            Proanthocyanins
            Color intensity
                                                  float64
            00288/00315 of diluted wines
                                                float64
            Proline
                                                    int64
            dtype: object
In [12]: Whidedex nepthre 5 capox
           data.head()
Out[12]:
                                                                                                                                         OD280/OD315 of Proline
               class Alcohol Malic Ash
                                                                     Total Plavanoids
                                                                                           Nonflavanoid Proanthocyanins Color Hue phenois
                                            Alcalinity Magnesium
                                                          127
                                                                    2.80
            0 1 14.23 1.71 2.43
                                                  15.8
                                                                                   3.06
                                                                                                   0.28
                                                                                                                   2.29
                                                                                                                         5.64 1.04
                                                                                                                                                    3.92
                                                                                                                                                            1085
            1 1
                      13.20
                               1.78 2.14
                                                  11.2
                                                              100
                                                                        2.65
                                                                                    2.76
                                                                                                   0.26
                                                                                                                    128
                                                                                                                              4.38 1.05
                                                                                                                                                    3.40
                                                                                                                                                            1050
           2 1 13.16 2.36 2.67
                                                 18.6
                                                              101
                                                                        2.80
                                                                                                                    2.81
                                                                                                                                                    3.57
                                                                                   3.24
                                                                                                   0.30
                                                                                                                             5.68 1.03
                                                                                                                                                           1185
            3 1 14.37
                               1.95 2.50
                                                  16.8
                                                              113
                                                                        3.85
                                                                                    3.49
                                                                                                   0.24
                                                                                                                    2.18
                                                                                                                              7.80 0.86
                                                                                                                                                    3.45
                                                                                                                                                            1480
           4 1 13.24 2.59 2.87 21.0
                                                              118
                                                                        2.80
                                                                                   2.69
                                                                                                   0.39
                                                                                                                    1.82
                                                                                                                              4.32 1.04
                                                                                                                                                    2.93
In [17]: # ApoSepuw manusur mycmoc swarenuù
for col in data.columns:
    temp_null_count = data[data[col].isnull()].shape[0]
    print('[) - ()'.format(col, temp_null_count))
           class - 0
           Alcohol - 0
           Malic acid - 0
Ash - 0
           Alcalinity of ash - 0
           Magnesium - 0
Total phenols - 0
           Flavanoids - 0
           Nonflavanoid phenols - 0
           Proanthocyanins - 0
Color intensity - 0
           00280/00315 of diluted wines - 0
           Proline - 0
```

Out[18]:

	class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenois	Flavanoids	Nonflavanoid phenois	Proanthocyanins	Color intensity	H
count	178 000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178 900000	178.0000X
mean	1.938202	13.000618	2.036348	2.366517	19.494944	99.741573	2.295112	2.029270	0.361854	1.590899	6.058090	0.9574
utd	0.775035	0.811827	1.117146	0.274344	3.339584	14.282484	0.625851	0.996859	0.124453	0.572359	2.318286	0.2285
min	1.000000	11,030000	0.740000	1.360000	10.800000	70.000000	0.980000	0.340000	0.130000	0.410000	1.280000	0.48000
25%	1.000000	12.382500	1.602500	2.210000	17 200000	88.000000	1.742500	1.205000	0.270000	1.250000	3.220000	0.78250
50%	2.000000	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	0.340000	1.555000	4.690000	0.96500
75%	3.000000	13.677500	3.082500	2.567500	21.500000	107.000000	2.800000	2.675000	0.437500	1.950000	8.200000	1.12000
max	3.000000	14.830000	5.800000	3.230000	30 000000	162.000000	3.880000	5.080000	0.660000	3.580000	13.000000	1.71000

In [19]: #Spodedew коррелиционный инализ data.corr()

Out[19]:

	class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenois	Flavanoids	Nonflavanoid phenois	Proanthocyanins	Color intensity	Hue
class	1 000000	-0.328222	0.437776	-0.049643	0.517859	-0.209179	-0.719163	-0.847496	0.489109	-0.499130	0.265668	-0.617360
Alcohol	-0.328222	1.000000	0.094397	0.211545	-0.310235	0.270798	0.289101	0.238815	-0.155929	0.138898	0.546364	-0.071747
Malic acid	0.437776	0.094397	1.000000	0.164045	0.288500	-0.054575	-0.335167	-0.411007	0.292977	-0.220746	0.248985	-0.581296
Ash	-0.049643	0.211545	0.164045	1.000000	0.443367	0.286587	0.128980	0.115077	0.186230	0.009652	0.258887	-0.074667
Alcalinity of ash	0.517859	-0.310236	0,288500	0.443367	1.000000	-0.083333	-0.321113	-0.361370	0.361922	-0.197327	0.018732	-0.273966
Magnesium	-0.209179	0.270798	-0.054575	0.285587	-0.083333	1.000000	0.214401	0.195784	-0.256294	0.236441	0.199950	0.055398
Total phenols	-0.719163	0.289101	-0.335167	0.128980	-0.321113	0.214401	1,000000	0.864564	-0.449935	0.612413	-0.055136	0.433681
Flavanoids	-0.847498	0.236815	-0.411007	0.115077	-0.351370	0.196784	0.964584	1.000000	-0.537900	0.652692	-0.172379	0.543479
Nonflavanoid	0.489109	-0.155929	0.292977	0.186230	0.361922	-0.256204	-0.449935	-0.537900	1.000000	-0.365845	0.139057	-0.262640

In [22]: #Диаграмма рассеивания
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='0D280/OD315 of diluted wines', y='Flavanoids', data=data)

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x25ac9066940>


```
In [26]: #Диаграмма рассеивания + гистограмма sns.jointplot(x='OD280/OD315 of diluted wines', y='Flavanoids', data=data, kind="hex")
```

Out[26]: <seaborn.axisgrid.JointGrid at 0x25ac90816d8>


```
In [28]: # Распределение параметра 'Flavanoids' сгруппированные по 'OD280/OD315 of diluted wines'. sns.violinplot(x='OD280/OD315 of diluted wines', y='Flavanoids', data=data)
```

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x25ad129eeb8>

