

ELEMENTI DI INFORMATICA

DOCENTE: FRANCESCO MARRA

INGEGNERIA CHIMICA
INGEGNERIA ELETTRICA
SCIENZE ED INGEGNERIA DEI MATERIALI
INGEGNERIA GESTIONALE DELLA LOGISTICA E DELLA PRODUZIIONE
INGEGNERIA NAVALE

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II SCUOLA POLITECNICA E DELLE SCIENZE DI BASE

AGENDA

- Sistemi di numerazione
 - Non posizionale
 - Posizionale
- Diversi sistemi di numerazione
 - Decimale, Binario, Ottale, Esadecimale
- Conversioni tra diversi sistemi
- Operazioni con i numeri binari

SISTEMI DI NUMERAZIONE

• Insiemi di simboli (cifre) e regole che assegnano ad ogni sequenza di cifre uno ed un solo valore numerico

Posizionali

- Ogni cifra ha un'importanza variabile a seconda della relativa posizione
 - nel sistema decimale la prima cifra a destra indica l'unità, la seconda le decine, la terza le centinaia e così via

3	2	1	0
1	3	4	5

Non posizionali

- Ogni cifra esprime una quantità non dipendente dalla posizione
 - ullet nel sistema romano il simbolo ${f L}$ esprime la quantità 50 indipendentemente dalla posizione

SISTEMI DI NUMERAZIONE POSIZIONALE

- Stringa: una qualsiasi sequenza di cifre/simboli/bit in un sistema di numerazione posizionale
 - ullet Ai simboli c è associato un diverso peso in base alla posizione i occupata nella stringa che compone il numero
 - Il peso dipende dalla base **b** di numerazione
- Rappresentazione posizionale di un numero reale

... +
$$c_2 \cdot b^2 + c_1 \cdot b^1 + c_0 \cdot b^0 + c_{-1} \cdot b^{-1} + c_{-2} \cdot b^{-2} + ...$$

• Rappresentazione posizionale di un *numero intero*

... +
$$c_2 \cdot b^2 + c_1 \cdot b^1 + c_0 \cdot b^0$$

- Definiti dalla base (o radice) utilizzata per la rappresentazione
- In un sistema posizionale in base b servono b simboli per rappresentare i diversi valori delle cifre compresi tra 0 e (b-1)

Base	Denominazione	Valore delle cifre
10	Decimale	0123456789
2	Binaria	0 1
8	Ottale	01234567
16	Esadecimale	0123456789ABCDEF

SISTEMI DI NUMERAZIONE POSIZIONALE

 Numeri rappresentati in basi diverse con un pedice indicante la base dopo aver racchiuso la stringa tra parentesi

$$(1011111)_2 = (142)_5 = (47)_{10}$$

- Il significato degli altri simboli è uguale in tutte le basi
 - Il segno meno: -
 - I simboli delle operazioni: + x /
 - La virgola: .
 - Gli zeri a sinistra possono essere omessi, così come quelli a destra se il numero è dotato di virgola.

SISTEMI DI NUMERAZIONE POSIZIONALE

- Solo nel sistema decimale è possibile leggere i numeri
 - Ad es., "quarantasette"
- Negli altri sistemi di numerazione, cifre lette da quella di peso maggiore fino a quella di minor peso, con indicazione della base
 - Ad es., "uno quattro due" in base cinque

CONVERSIONE DI UN NUMERO IN BASE 10

- Conversione in base 10 del valore x rappresentato in una qualsiasi base b
 - Si calcola la sommatoria dei prodotti delle cifre per i pesi

$$x = \sum_{i=-\infty}^{+\infty} (c_i \cdot b^i)$$

Esempi

•
$$(1011111)_2 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 32 + 8 + 4 + 2 + 1 = 47$$

•
$$(142)_5 = 1 \times 5^2 + 4 \times 5^1 + 2 \times 5^0 = 25 + 20 + 2 = 47$$

•
$$(47)_{10} = 4 \times 10^1 + 7 \times 10^0 = 47$$

SISTEMA DI NUMERAZIONE POSIZIONALE BINARIO

- Minor numero di simboli rispetto al sistema decimale
 - (2 contro 10)
- Parola codice più lunga che non in notazione decimale per rappresentare un numero
 - Per rappresentare le dieci cifre occorrono $log_2 10$ bit ($\cong 3,3$ bit)
 - Stringa di cifre in bit circa tre volte più lunga di quella decimale

Esempio

$$(1001101)_2 = 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 =$$

= 64 + 0 + 0 + 8 + 4 + 0 + 1 = (77)₁₀

• Introdotti per evitare di dover trattare con stringhe di bit troppo lunghe

Ottale	Binario
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Esadecimale	Binario	Esadecimale	Binario
0	0000	8	1000
1	0001	9	1001
2	0010	Α	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

• Trasformazione di rappresentazioni di valori nella base 2 (e viceversa) immediata

- Binario → Ottale
 - Cifre binarie raggruppate in gruppi di tre a partire dalla posizione di peso minore
- Ottale → Binario
 - Ogni cifra ottale esplosa nelle tre cifre binarie che la rappresentano

- Binario Sadecimale
 - Cifre binarie raggruppate in gruppi di quattro a partire dalla posizione di peso minore

- Esadecimale → Binario
 - Ogni cifra esadecimale esplosa nelle quattro cifre binarie che la rappresentano

CONVERSIONE DI UN NUMERO DECIMALE IN BINARIO

Passo 1

Separazione della parte intera da quella decimale

Passo 2

 Applicazione di due procedimenti (algoritmi) diversi per la parte intera e quella decimale

CONVERSIONE DI UN NUMERO DECIMALE IN BINARIO: PASSO 1

• Valore d: scomposizione in parte intera e frazionaria

$$d = d_{pi} + d_{pf}$$

• Per b = 2 si può scrivere:

$$d_{pi} = \dots + c_2 \times 2^2 + c_1 \times 2^1 + c_0 \times 2^0$$
$$d_{pf} = c_{-1} \times 2^{-1} + c_{-2} \times 2^{-2} + \dots$$

• Vogliamo trovare le cifre relative a b = 2.

CONVERSIONE DI UN NUMERO DECIMALE IN BINARIO: PASSO 2 (PER LA PARTE INTERA)

• Divisione della parte intera d_{pi} per 2

$$d_{pi}/2 = ... + c_2 \times 2^1 + c_1 \times 2^0 + c_0 \times 2^{-1}$$

• Si ottiene:

•
$$d_{pil} = ... + c_2 \times 2^1 + c_1 \times 2^0$$

- con resto c_0
- dunque il resto c_0 è proprio la cifra in posizione $\mathbf{0}$ che cercavamo

CONVERSIONE DI UN NUMERO DECIMALE IN BINARIO: PASSO 2 (PER LA PARTE INTERA)

• Divisione della parte intera d_{pil} per 2

$$d_{pil}/2 = ... + c_2 \times 2^0 + c_1 \times 2^{-1}$$

• Si ottiene:

•
$$d_{pi2} = ... + c_2 \times 2^0$$

- con resto c_1
- dunque il resto c_1 è la cifra in posizione 1 che cercavamo

CONVERSIONE DI UN NUMERO DECIMALE IN BINARIO: PASSO 2 PER LA PARTE INTERA

 Ripetere fino a quando si ottiene un quoziente uguale a 0

- La stringa in binario della parte intera di d corrisponde a:
 - Insieme dei resti delle diverse divisioni
 - Resto della prima divisione
 - cifra binaria del bit meno significativo
 - Resto dell'ultima divisione
 - cifra binaria del bit più significativo

CONVERSIONE DI UN NUMERO DECIMALE IN BINARIO: PASSO 2 (PER LA PARTE FRAZIONARIA)

• Moltiplicazione della parte frazionaria d_{pf} per 2:

$$d_{pf} \times 2 = c_{-1} \times 2^{0} + c_{-2} \times 2^{-1} + \dots$$

• Si ottiene:

•
$$d_{pf1} = c_{-2} \times 2^{-1} + c_{-3} \times 2^{-2} + \dots$$

- con c_1 a sinistra della virgola che diventa parte intera
- dunque la parte intera c_{-1} è la cifra in posizione -1 da trovare

CONVERSIONE DI UN NUMERO DECIMALE IN BINARIO: PASSO 2 PER LA PARTE FRAZIONARIA

- Ripetere fino a quando
 - ullet La parte frazionaria $oldsymbol{d_{\it pfi-esima}}$ non si annulla
 - conversione senza approssimazione
 - ullet La parte frazionaria $oldsymbol{d_{pfi-esima}}$ si ripete con periodicità
 - Si raggiunge il numero di cifre binarie prefissate
 - rappresentazione approssimata
- Stringa in binario della parte frazionaria di d
 - Insieme delle parti intere ottenute dai prodotti

ESERCIZI DI CONVERSIONE

• Convertire in base binaria i numeri:

• 382.25

• 82.84

• Convertire in base esadecimale i numeri:

- 84
- 382

ESERCIZI DI CONVERSIONE

Convertire in base binaria i numeri:

$$\bullet$$
 382.25 = 101111110.01

• 82.84 =
$$1010010.11010111000010100011 \simeq 1010010.11010111$$

• Convertire in base esadecimale i numeri:

•
$$382 = 17E$$

- 382.25 da decimale a binario
 - La parte intera 382 si divide per 2 finché non si ottiene 0
 - Si prendono i resti in ordine inverso.

Quoziente	Resto
191	0
95	1
47	1
23	1
11	1
5	1
2	1
1	0
0	1

$$(382)_{10} = (1011111110)_2$$

- 382.25 da decimale a binario
 - La parte decimale 0.25 si moltiplica per 2 finché la parte decimale non si annulla o si ripete con periodicità.
 - Si prendono le parti intere nell'ordine.

Frazione	Prodotto	Parte intera
0,25	0,50	0
0,50	1,00	1

$$(0.25)_{10} = (0.01)_2$$

$$(382.25)_{10} = (1011111110.01)_2$$

- 82.84 da decimale a binario
 - La parte intera 82 si divide per 2 finché non si ottiene 0
 - Si prendono i resti in ordine inverso.

Quoziente	Resto	
41	0	
20	1	
10	0	
5	0	$(82)_{10} = (101001)$
2	1	10
1	0	
0	1	

- 82.84 da decimale a binario
 - La parte decimale 0.84 si moltiplica per 2 finché la parte decimale non si annulla o si ripete con periodicità.
 - Si prendono le parti intere nell'ordine.

Frazione	Prodotto	Parte intera
0,84	1,68	1 -
0,68	1,36	1
0,36	0,72	0
0,72	1,44	1
0,44	0,88	0
0,88	1,76	1
0,76	1,52	1
0,52	1,04	1
0.04		

 $(0.84)_{10} \approx (0.11010111)_2$

• 82.84 da decimale a binario

 $(82.84)_{10} \approx (1010010.11010111)_2$

ESERCIZI DI CONVERSIONE: DECIMALE A ESADECIMALE

- 382 da decimale a esadecimale
 - Si converte 382 in binario
 - Si prendono 4 cifre alla volta

$$(382)_{10} = (1011111110)_2 = (17E)_{16}$$

OPERAZIONI ARITMETICHE SU NUMERI BINARI

- Algoritmi di somma e sottrazione, prodotto e divisione applicabili in modo del tutto analogo ai numeri in base 10
- Tabella di somma e prodotto per cifre binarie

a	b	a + b	a * b
0	0	0	0
0	1	1	0
1	0	1	0
1	1	10	1

ADDIZIONE

- Si deve tener conto del riporto
 - Si propaga a sinistra come nell'aritmetica decimale

1	0	0	1	0	1	0	+
		1	1	0	1	1	=
1	1	0	0	1	0	1	

SOTTRAZIONE

 • In presenza dell'operazione "0 − 1", attivare il prestito dalle cifre più a sinistra

1	0	1	0	0	0	0	1	-
	1	0	1	0	1	0	1	=
	1	0	0	1	1	0	0	

MOLTIPLICAZIONE

		1	0	1	0	0	0	0	1	*
							1	0	1	=
		1	0	1	0	0	0	0	1	+
	0	0	0	0	0	0	0	0		+
1	0	1	0	0	0	0	1			=

		1	0	1	0	0	0	0	1	*
							1	0	1	=
		1	0	1	0	0	0	0	1	+
	0	0	0	0	0	0	0	0		+
1	0	1	0	0	0	0	1			=
1	1	0	0	- 1	0	0	1	0	1	

ESERCIZI

- Per fare le seguenti operazioni:
 - Convertire in binario
 - Effettuare l'operazione in binario
 - Convertire il risultato in decimale
 - Verificare il risultato
 - 85 + 98
 - 24.12 16.219
 - 34 * 9
 - 156 / 12

ESERCIZI

- Per fare le seguenti operazioni:
 - Convertire in binario
 - Effettuare l'operazione in binario
 - Convertire il risultato in decimale
 - Verificare il risultato

$$^{\bullet}$$
 85 + 98 = 183

$$\bullet$$
 24.12 - 16.219 = 7.901

•
$$156 / 12 = 13$$

