

도로보행 위험행동인식

2143978 김예령 2143993 백수민

이전 발표 요약

객체 탐지

> 기계학습 기반 방법, 딥러닝 기반 방법

딥러닝 기반 방법

> R-CNN, YOLO

객체 구별 방법

1. 차도 보행하는 사람

보행자의 위치와 차량의 위치, 보행자와 차량 사이의 거리, 보행자의 이동 방향 등의 특징을 추출하여 분석

ex) 보행자의 위치가 보행자 도로와 차도 경계에 가까울 때, 차도를 걷는 것으로 판별 할 수 있다.

ex) 보행자와 차량 사이의 거리가 가까울 때, 차도를 걷고 있는 것으로 판별 할 수 있다.

객체 구별 방법

2. 스마트폰을 보며 보행하는 사람

얼굴을 인식하고 얼굴 각도와 크기를 분석, 손 모양과 손의 위치를 파악하여 스마트폰을 잡고 있는 것인지 판별

ex) 얼굴이 비스듬한 각도로 촬영된 경우와 스마트폰의 객체를 인식할 경우, 스마트폰을 사용하는 것과 유사한 모습을 보일 수 있다.

필요한 기술

- 1. 객체 탐지 기술
 - YOLO, OpenCV 등

- 2. 딥러닝 알고리즘
 - TensorFlow나 PyTorch 등의 프레임워크를 활용

활용할 라이브러리

1. OpenCV

Python, c++ 등 다양한 언어에서 사용할 수 있는 라이브러리로,이미지 및 비디오 처리와 관련된 얼굴 검출, 객체 추적, 이미지 필터링 등 다양한 기능을 제공함.

2. TensorFlow

Google에서 개발한 오픈소스 머신러닝 프레임워크로, 딥러닝 모델을 개발하고 학습하는데 사용함. 이미지 분류, 객체 검출, 세그멘테이션 등 다양한 딥러닝 태스크를 지원함.

3. PyTorch

Facebook에서 개발한 오픈소스 머신러닝 프레임워크로, 딥러닝 모델 개발 및 학습에 사용됨. TensorFlow와는 다르게 동적 계산 그래프(Dynamic Computational Graph)를 사용하여 디버깅과 모델 개발에 유용하며, 이미지 분류, 객체 검출 등 다양한 딥러닝 태스크를 지원함.

YOLO 시행착오

저번 시간의 피드백을 바탕으로 YOLO로 객체 인식을 실험 진행

학습을 시작하는 부분에서 다음과 같은 오류 발생

> AssertionError: train: No labels found in /content/dataset/train.cache, can not start training data.yaml파일 문제 > 파일이 제대로 업데이트 되지 않음

YOLOv5의 경우 xml파일이 아닌 txt파일 형식이 필요 > 파일 변경 > 해결

YOLO 결과

300장의 이미지, batch size: 16, epochs: 50

아직 정확도가 부족하지만,

그래도 Loss 그래프는 우하향하고, Train 학습 그래프가 우상향 하는 것을 보니

=> 제대로 학습

