Chapitre 11

Relations de comparaison de suites et de fonctions

1 Relations de comparaison entre suites

Dans tout ce paragraphe, on doit travailler avec des suites qui ne s'annulent pas à partir d'un certain rang. Pour simplifier, et quitte à décaler les indices, on supposera qu'aucune suite de ce paragraphe ne s'annule.

1.1 Définitions

Définition 1.1

Soient $(u_n), (v_n)$ deux suites réelles.

- 1. La suite (u_n) est dominée par (v_n) si la suite $(u_n/v_n)_n$ est bornée. On note alors $u_n = O(v_n)$.
- 2. La suite (u_n) est négligeable devant (v_n) si $\frac{u_n}{v_n} \underset{n \to +\infty}{\longrightarrow} 0$. On note alors $u_n = o(v_n)$.
- 3. La suite (u_n) est équivalente à (v_n) si $\frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 1$. On note alors $u_n \sim v_n$.

Proposition 1.2

Soit (u_n) une suite réelle. Alors $u_n \underset{n \to +\infty}{\longrightarrow} 0 \iff u_n = o(1)$.

Proposition 1.3

Soient $(u_n), (v_n)$ deux suites réelles. Alors $u_n \sim v_n \iff u_n - v_n = o(v_n) \iff u_n = v_n + o(v_n)$.

Méthode 1.4

Si $u_n = o(w_n)$ et $v_n = o(w_n)$, alors $u_n + v_n = o(w_n)$. Le " $o(w_n)$ " n'est qu'une notation, et en les ajoutant, on n'obtient pas " $2 \times o(w_n)$ ".

De même, on aura $u_n - v_n = o(w_n)$. Les " $o(w_n)$ " ne se simplifient pas.

Remarques.

- 1. ATTENTION : $u_n \sim v_n$ n'est pas équivalent à $u_n v_n \xrightarrow[n \to +\infty]{} 0$. Par exemple, les suites (n) et (n+1) sont équivalentes, mais la différence ne tend pas vers 0. Puis, les suites (1/n) et $(1/n^2)$ ne sont pas équivalentes, mais leur différence tend vers 0.
- 2. ATTENTION : en général, $u_n \not\sim u_{n+1}$. Par exemple, si $u_n = e^n$, $\frac{u_{n+1}}{u_n} = e$, qui ne tend pas vers 1. Et si $u_n = e^{n^2}$, alors $\frac{u_{n+1}}{u_n} = e^{2n+1} \xrightarrow[n \to +\infty]{} +\infty$, donc $u_n = o(u_{n+1})$.

1.2 Propriétés

Proposition 1.5

Soient ℓ un réel **non nul** et $(u_n) \in \mathbb{R}^{\mathbb{N}}$. Alors $u_n \sim \ell \iff u_n \underset{n \to +\infty}{\longrightarrow} \ell$.

Remarques.

- 1. Attention : une suite ne peut pas être équivalente à 0 (sauf si elle est nulle à partir d'un certain rang, ce qui est exclu de notre étude). En particulier, si une suite converge vers 0, la proposition précédente n'est pas vérifiée.
- 2. Si $u_n \xrightarrow[n \to +\infty]{} \ell \neq 0$, on va en général plutôt chercher un équivalent de $u_n \ell$.

Proposition 1.6

Soient (u_n) et (v_n) deux suites réelles et $\lambda, \mu \in \mathbb{R}^*$.

- 1. Si $u_n \sim v_n$, alors $\lambda u_n \sim \lambda v_n$.
- 2. Si $u_n = o(v_n)$ et $\mu \neq 0$, alors $\lambda u_n = o(\mu v_n)$.
- 3. Si $u_n = O(v_n)$ et $\mu \neq 0$, alors $\lambda u_n = O(\mu v_n)$.
- 4. Si $u_n = o(v_n)$, alors $u_n = O(v_n)$.

Proposition 1.7

Soient $(u_n), (v_n), (w_n)$ trois suites réelles.

- 1. On a $u_n \sim v_n$ si et seulement si $v_n \sim u_n$.
- 2. Si $u_n \sim v_n$, alors à partir d'un certain rang, (u_n) et (v_n) ont même signe.
- 3. Si $u_n \sim v_n$, la suite (u_n) converge si et seulement si (v_n) converge, et dans ce cas $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n$.
- 4. Si $u_n \sim v_n$ et $v_n \sim w_n$, alors $u_n \sim w_n$.

Proposition 1.8

Soient $(u_n), (v_n)$ deux suites équivalentes, et $(u'_n), (v'_n)$ deux autres suites équivalentes. Alors $u_n u'_n \sim v_n v'_n$ et $u_n/u'_n \sim v_n/v'_n$.

Remarque.

Attention : c'est faux pour la somme de suites équivalentes. Par exemple, si $u_n = n + 1/n$, $v_n = -n$, u'n = n, $v'_n = -n + 1/n^2$, alors $u_n \sim u'_n$, $v_n \sim v'_n$, $u_n + v_n \sim 1/n$ et $u'_n + v'_n \sim 1/n^2$, donc ces deux suites ne sont pas équivalentes. Il faut faire attention à la forêt (ici, n pour v) qui cache l'arbre (1/n).

Proposition 1.9 (Sommes 1)

Soient $(u_n), (v_n), (w_n)$ trois suites réelles. Si $v_n = o(w_n)$ et $u_n = v_n + w_n$, alors $u_n \sim w_n$.

Méthode 1.10 (Sommes 2)

Si $u_n \sim \lambda w_n$ et $v_n \sim \mu w_n$, et si $\lambda + \mu \neq 0$, alors $u_n + v_n \sim (\lambda + \mu)w_n$. En effet, on a $u_n = \lambda w_n + o(w_n)$ et $v_n = \mu w_n + o(w_n)$, donc

$$u_n + v_n = (\lambda + \mu)w_n + o(w_n).$$

Comme $\lambda + \mu \neq 0$, on a bien $u_n + v_n \sim (\lambda + \mu)w_n$.

Ceci prouve d'ailleurs aussi que si $\lambda + \mu = 0$, alors $u_n + v_n = o(w_n)$.

Remarque.

On ne peut pas utiliser cette méthode simplement en l'énonçant. Il faut systématiquement la redémontrer pour le cas précis où on l'utilise.

1.3 Relations usuelles

Proposition 1.11 (Suites polynomiales)

- 1. Soient $p, q \in \mathbb{Z}$ avecp < q. Alors $n^p = o(n^q)$.
- 2. Une suite polynomiale est équivalente à son terme de plus haut degré.

Proposition 1.12

Soit $a \in \mathbb{R}$ avec |a| > 1. Alors $a^n = o(n!)$.

Remarque.

Si $-1 \le a \le 1$, le résultat est encore vrai car (a^n) est bornée dans ce cas.

Proposition 1.13 (Croissances comparées)

Soit $\alpha, \beta \in \mathbb{R}$ avec $\alpha > 0$. Alors

- 1. $\ln^{\beta}(n) = o(n^{\alpha}).$
- $2. \quad \ln^{\beta}(n) = o(e^{\alpha n}).$
- 3. $n^{\beta} = o(e^{\alpha n})$.

4. Si $x \in \mathbb{R}$ et x > 1, on a $n^{\beta} = o(x^n)$.

Proposition 1.14 (Équivalents de référence)

On fixe une suite $(u_n)_n$ convergente vers 0 et $\alpha \in \mathbb{R}^*$. Alors

$$\sin(u_n) \sim u_n$$
, $\cos(u_n) \sim 1$, $1 - \cos(u_n) \sim \frac{u_n^2}{2}$, $(1 + u_n)^{\alpha} - 1 \sim \alpha u_n$
 $\tan(u_n) \sim u_n$, $e^{u_n} - 1 \sim u_n$, $\ln(1 + u_n) \sim u_n$, $\sin(u_n) \sim u_n$.

Corollaire 1.15

Soit (v_n) une suite convergente vers 1. Alors $\ln(v_n) \sim v_n - 1$.

Méthode 1.16

Si $v_n = o(u_n)$, pour obtenir un équivalent de $\ln(u_n + v_n)$, on procède ainsi :

$$\ln(u_n + v_n) = \ln(u_n(1 + v_n/u_n)) = \ln(u_n) + \ln(1 + v_n/u_n).$$

Le deuxième terme tend vers 0, donc si $\lim u_n = 0$ ou $\lim (u_n) = +\infty$, un équivalent sera $\ln(u_n)$.

Proposition 1.17 (Deux cas particuliers)

- 1. Soient $(u_n), (v_n)$ deux suites équivalentes, strictement positives, et convergente dans $\overline{\mathbb{R}}$ de limite différente de 1 (en général 0 ou $+\infty$). Alors $\ln(u_n) \sim \ln(v_n)$.
- 2. Soient $(u_n)_n$ et $(v_n)_n$ deux suites strictement positives et équivalentes, et $\alpha \in \mathbb{R}$. Alors $u_n^{\alpha} \sim v_n^{\alpha}$. En particulier, $\sqrt{u_n} \sim \sqrt{v_n}$.

Méthode 1.18 (Avec l'exponentielle)

Soit $(u_n)_n$ une suite convergente et $\ell \in \mathbb{R}$ sa limite. Alors $e^{u_n} \sim e^{\ell}$, car $e^{u_n} \xrightarrow[n \to +\infty]{} e^{\ell} \neq 0$.

Remarques.

- 1. Attention, en général, on ne peut pas composer des équivalents. En général, si $u_n \sim v_n$, et f est une fonction, on n'a pas $f(u_n) \sim f(v_n)$. L'exemple des suites $u_n = n$ et $v_n = n + \pi$ et la fonction cosinus le prouve, puisque $u_n \sim v_n$ et $f(u_n) = \cos(n)$ et $f(v_n) = -\cos(n)$, qui ne sont pas des suites équivalentes.
- 2. ATTENTION AUX TROIS PÊCHÉS CAPITAUX : dire qu'une suite est équivalente à 0, ajouter des équivalents sans le justifier, composer des équivalents sans le justifier.

Méthode 1.19 (Équivalent d'une somme)

On cherche par exemple un équivalent de $s_n = u_n + v_n + w_n$.

- 1. Si un (ou plusieurs) terme est compliqué, on en cherche un équivalent, disons ici u'_n , v'_n et w'_n .
- 2. On compare ces équivalents entre eux.
- Si par exemple $v'_n = o(u'_n)$ et $w'_n = o(u'_n)$, on aura aussi $v_n = o(u_n)$ et $w_n = o(u_n)$, donc d'après la proposition 1.9, on a $s_n \sim u_n$.

— Si par exemple $v'_n \sim \lambda u'_n$ et $w'_n \sim \mu u'_n$, on aura aussi $v_n \sim \lambda u_n$ et $w_n \sim \mu u_n$, donc d'après la proposition 1.10, si $1 + \lambda + \mu \neq 0$, on a $s_n \sim u_n$.

Méthode 1.20 (Équivalent d'une suite)

Pour déterminer un équivalent simple d'une suite (u_n) :

- 1. On commence par factoriser l'expression de u_n puisque les produits et quotients d'équivalents sont les équivalents des produits et quotients.
- 2. On détermine alors un équivalent du numérateur et du dénominateur en déterminant un équivalent de chaque facteur.
- 3. Lorsque dans un facteur on rencontre une somme, on essaye d'appliquer la méthode 1.19.
- 4. Pour les autres facteurs, on cherche un équivalent à l'aide des propositions 1.14 et 1.17.
- 5. On conclut grâce à la compatibilité des équivalents avec le produit et le quotient.

Relations de comparaison entre fonctions

Dans ce paragraphe, on considère un point $a \in \overline{\mathbb{R}}, h > 0$, et on pose

si
$$a\in\mathbb{R},\ D=]a,a+h[$$
 ou $D=]a-h,a[$ ou $D=]a-h,a+h[\setminus\{a\}\,,$ si $a=+\infty,\ D=]h,+\infty[,$ si $a=-\infty,\ D=]-\infty,-h[.$

On supposera les trois points suivant :

- 1. Toutes les fonctions de ce paragraphe seront définies sur le même ensemble D, et éventuellement en a (on dit que les fonctions sont définies au voisinage de a).
- 2. Les fonctions ne s'annulent pas sur D, mais peuvent s'annuler en a.
- 3. Si une fonction est définie en a, elle est continue en a i.e. $f(x) \xrightarrow[x \to a]{} f(a)$.

 On fixe deux fonctions f et g définies sur D, et éventuellement en a.

2.1 Définitions

Définition 2.1

2

- 1. La fonction f est $domin\acute{e}$ par g en a si la fonction f/g est bornée au voisinage de a. On note alors $f(x) \underset{x=a}{=} O(g(x))$.
- 2. La fonction f est négligeable devant g en a si $\frac{f(x)}{g(x)} \xrightarrow[x \to a]{} 0$. On note f(x) = o(g(x)).
- 3. La fonction f est équivalente à g en a si $\frac{f(x)}{g(x)} \xrightarrow[x \to a]{} 1$. On note $f(x) \underset{x=a}{\sim} g(x)$.

Remarque.

Quand il n'y a pas ambiguïté, on omet le "x = a" pour alléger les notations.

Remarque.

On peut aussi parler de dominance, négligeabilité et équivalence en a^+ , a^- .

Proposition 2.2

$$f(x) \xrightarrow[x \to a]{} 0 \iff f(x) = o(1).$$

Proposition 2.3

$$f(x) \underset{x=a}{\sim} g(x) \iff f(x) - g(x) \underset{x=a}{=} o(g(x)) \iff f(x) = g(x) + \underset{x=a}{o} (g(x)).$$

Méthode 2.4

Si f(x) = o(h(x)) et g(x) = o(h(x)), alors f(x) + g(x) = o(h(x)). Le "o(h(x))" n'est qu'une notation, et en les ajoutant, on n'obtient pas " $2 \times o(h(x))$ ".

De même, on aura f(x) - g(x) = o(h(x)) : les "o(h(x))" ne se simplifient pas.

2.2 Propriétés

Proposition 2.5

Soit ℓ un réel non nul. Alors $f(x) \xrightarrow[x \to a]{} \ell \iff f(x) \sim_a \ell$.

Remarque.

ATTENTION : une fonction n'est jamais équivalente à 0. En particulier, si $f(x) \xrightarrow[x \to a]{} 0$, la proposition précédente n'est pas vérifiée.

Corollaire 2.6

Si f est dérivable en a et $f'(a) \neq 0$, alors $f(x) - f(a) \sim f'(a)(x - a)$.

Proposition 2.7

- 1. On a $f(x) \sim g(x) \iff g(x) \sim f(x)$.
- 2. Si $f(x) \sim g(x)$, alors f admet une limite en a si et seulement si g en admet une et alors ces limites sont égales.
- 3. Si $f(x) \sim g(x)$, f et g sont de même signe au voisinage de a, et f est bornée au voisinage de a si et seulement si g l'est.

Proposition 2.8

1. Si $f(x) \sim g(x)$ et $g(x) \sim h(x)$, alors $f(x) \sim h(x)$.

2. Si $f(x) \sim g(x)$ et g(x) = o(h(x)), alors f(x) = o(h(x)).

Proposition 2.9 (Produit et quotient)

Si
$$f(x) \sim g(x)$$
 et $h(x) \sim \varphi(x)$, alors $f(x)h(x) \sim g(x)\varphi(x)$ et $\frac{f(x)}{h(x)} \sim \frac{g(x)}{\varphi(x)}$.

Proposition 2.10 (Propriétés diverses)

Soient $\lambda, \mu \in \mathbb{R}$.

- 1. Si f(x) = o(g(x)) et h(x) = o(g(x)), alors $\lambda f(x) + \mu h(x) = o(g(x))$.
- 2. f(x) = 0(g(x)) h(x) = 0(g(x))alors $\lambda f(x) + vh(x) = 0(g(x))$.
- 3. f(x) = o(g(x)) alors f(x) = O(g(x)).

Proposition 2.11 (Substitution dans un équivalent)

Soit u une fonction définie au voisinage de $b \in \mathbb{R}$ à valeurs dans D telle que $u(x) \xrightarrow[x \to b]{} a$. Si $f(x) \underset{a}{\sim} g(x)$, alors

$$f(u(x)) \sim g(u(x)).$$

Remarques.

- 1. On ne peut rien dire sur la composition des équivalents. Par exemple au voisinage de $+\infty$, on a $x \sim x + \sqrt{x}$, mais $e^x = o(e^{x+\sqrt{x}})$, donc $e^x \nsim e^{x+\sqrt{x}}$.
- 2. On ne peut rien dire sur l'addition des équivalents, comme le prouve l'exemple suivant (en 0) : $x \sim x + x^3$, $-x \sim -x + x^2$, mais $x^2 \not\sim x^3$.

Proposition 2.12 (Sommes 1)

Si
$$f(x) = o(g(x))$$
, alors $f(x) + g(x) \sim g(x)$.

Méthode 2.13 (Sommes 2)

Si $f(x) \sim \lambda h(x)$, $g(x) \sim \mu h(x)$ et $\lambda + \mu \neq 0$, alors $f(x) + g(x) \sim (\lambda + \mu)h(x)$. En effet, on a $f(x) = \lambda h(x) + o(h(x))$ et $g(x) = \mu h(x) + o(h(x))$, donc

$$f(x) + g(x) = (\lambda + \mu)h(x) + o(h(x)),$$

et comme $\lambda + \mu \neq 0$, on a $f(x) + g(x) \sim (\lambda + \mu)h(x)$.

2.3 Relations usuelles

Proposition 2.14 (Fonctions polynomiales)

- 1. On a $x^{\alpha} = o(x^{\beta})$ si et seulement si $\alpha < \beta$.
- 2. On a $x^{\alpha} = o(x^{\beta})$ si et seulement si $\alpha > \beta$.
- 3. Une fonction polynomiale est équivalente en $\pm \infty$ à son terme de plus haut degré, et en 0 à son terme de plus bas degré.

Proposition 2.15 (Croissances comparées)

- 1. Une fonction polynomiale est négligeable en $+\infty$ devant $e^{\alpha x}$ pour tout $\alpha > 0$.
- 2. Pour tout $\alpha \in \mathbb{R}$, $(\ln(x))^{\alpha}$ est négligeable devant toute fonction polynomiale non constante au voisinage de $+\infty$.
- 3. Pour a > 1, on a $x^a = o(a^x)$.

Proposition 2.16 (Équivalents de référence en 0)

Tous les équivalents suivants sont en x = 0.

$$\begin{split} e^x - 1 \sim x, & \ln(1+x) \sim x, & \sin(x) \sim x, & \arcsin(x) \sim x, \\ \tan(x) \sim x, & \arctan(x) \sim x, & \sinh(x) \sim x, & \th(x) \sim x, \\ \cosh(x) \sim 1, & \cos(x) \sim 1, & 1 - \cos(x) \sim \frac{x^2}{2}, & (1+x)^a - 1 \sim ax, \ a \neq 0. \end{split}$$

On peut bien entendu combiner ces résultats avec la substitution.

Proposition 2.17

Si
$$f(x) \xrightarrow[x \to a]{} 1$$
, alors $\ln(f(x)) \underset{x \to a}{\sim} f(x) - 1$.

Proposition 2.18 (Deux cas particuliers)

1. Si f et g sont strictement positives au voisinage de a, $f(x) \sim g(x)$ et admettent une limite en a différente de 1, alors

$$\ln(f(x)) \sim \ln(g(x)).$$

2. Si f et g sont strictement positives au voisinage de a et $f(x) \sim g(x)$, alors pour tout $\alpha \in \mathbb{R}$, on a

$$\left(f(x)\right)^{\alpha} \sim \left(g(x)\right)^{\alpha}.$$

En particulier, $\sqrt{f(x)} \sim \sqrt{g(x)}$.

Méthode 2.19 (Avec l'exponentielle)

Si
$$f(x) \xrightarrow[x \to a]{} \ell$$
, alors $e^{f(x)} \sim e^{\ell}$.

Méthode 2.20

Recherche d'équivalents : (suites et fonctions)

- 1. On recherche un équivalent de chaque facteur/quotient. Un équivalent de la fonction est alors obtenu en multipliant/divisant ces équivalents.
- 2. Pour chaque facteur, on recherche un équivalent grâce aux équivalents de référence.
- 3. Si c'est une somme, on utilise la proposition 2.12 : on détermine un équivalent de chaque terme. On les range dans l'ordre de négligeabilité. Si tous sont négligeables devant un des termes, celui-ci est un équivalent (équivalence au terme dominant de la somme).