

Integrantes:

Edgar Ochoa

Aviles Alonso

Castro Vega

Carrera:

Ingeniería En Sistemas Computacionales

Materia:

Inteligencia Artificial

Tarea:

Tarea 1 Modulo 4 Manual

Profesor:

ZURIEL DATHAN MORA FELIX

Grupo:

11:00 a 12:00 a.m

1. Requisitos Previos

- Entorno de Ejecución:
 - o Opción 1: Google Colab (recomendado para GPU gratuita).
 - Opción 2: Entorno local con Python 3.8+ y 12 GB de RAM mínimo.
- Dependencias:
- bash
- Copy
- Download
- !pip install numpy pandas opencv-python tensorflow albumentations matplotlib scikit-learn
- Dataset:
 - Archivo ZIP estructurado con:
 - markdown
 - Copy
 - Download

dataset/

○ | L— metadata.csv

2. Ejecución Paso a Paso

2.1. Carga Inicial en Google Colab

1. Habilitar GPU:

Ir a Entorno de ejecución > Cambiar tipo de entorno de ejecución > GPU.

2. Ejecutar Configuración Inicial:

- 3. python
- 4. Copy
- 5. Download
- # Ejecutar todas las celdas hasta la función main()
 El programa detectará automáticamente si está en Colab.

2.2. Subir Dataset

En Google Colab:

- Al ejecutar main(), se mostrará un botón para subir el ZIP.
- Seleccionar el archivo ZIP que contiene las imágenes y CSVs.

- En Local:
 - Proporcionar la ruta absoluta del ZIP cuando se solicite:
 - o python
 - Copy
 - Download
 - Ruta del archivo ZIP: /ruta/al/dataset.zip

2.3. Procesamiento Automático

El programa realizará:

- 1. Extracción del ZIP en ./dataset.
- 2. Validación de Datos:
 - Chequeo de correspondencia imagen-CSV.
 - Filtrado de imágenes corruptas (se muestran en consola).
- 3. División del Dataset:
 - o 80% entrenamiento, 10% validación, 10% prueba (estratificado).
- 4. Data Augmentation:
 - Aumenta el dataset original x3 usando transformaciones aleatorias.
- 3. Parámetros Personalizables

Modificar antes de ejecutar main():

python

Copy

Download

Configuración Global (buscar en el código)

- 4. Salidas y Resultados
- 4.1. Visualizaciones
 - Muestras del Dataset:
 - Se mostrarán 12 imágenes aleatorias con sus etiquetas.

 - Verificación Post-Aumentación:
 - Gráficos de distribución de clases y muestras aumentadas.
- 4.2. Datos para Entrenamiento

Acceder a los datos procesados:

python Copy Download # Retorna diccionario con: # Datos de entrenamiento (aumentados) # Validación # Prueba # Codificador de etiquetas 5. Gestión de Memoria (Google Colab) Monitorear RAM: python Copy Download • !free -h # Ver uso de memoria Si falla por memoria: 1. Reducir AUGMENT_FACTOR (ej. de 3 a 2). 2. Limpiar variables innecesarias: 3. python 4. Copy 5. Download del X train, y train 6. import gc; gc.collect() 6. Customización Avanzada 6.1. Añadir Nuevas Emociones

- 1. Modificar la lista EMOTIONS:
- 2. python
- 3. Copy
- 4. Download
- 5. EMOTIONS = ['surprise', 'disgust', ...] # Máximo 8 clases para 12 GB RAM
- 6. Asegurar que los CSVs usen estas mismas etiquetas.
- 6.2. Modificar Aumentación

Editar create augmentation pipeline():

```
python
```

Copy

Download

```
def create_augmentation_pipeline():
    return A.Compose([
        A.RandomRain(p=0.3), # Añadir Iluvia
        A.ColorJitter(p=0.5), # Modificar saturación
        # ... otras transformaciones
])
```

7. Solución de Errores Comunes

Error	Solución
FileNotFoundError	Verificar rutas en CSVs y nombres de archivos.
RAM agotada	Reducir IMG_SIZE o AUGMENT_FACTOR.
Discrepancia etiquetas-imágenes	Revisar que la columna emotion en CSVs coincida con EMOTIONS.
Formato de imagen no soportado	Convertir imágenes a JPG/PNG con PIL.Image.open().convert('RGB').

8. Ejemplo de Uso para Entrenamiento

python

Copy

Download

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Conv2D, Flatten

Crear modelo simple

Verificando integridad de Pruel Total de imágenes: 276 Total de etiquetas: 276 Distribución:

> angry: 61 imágenes fear: 21 imágenes happy: 66 imágenes neutral: 72 imágenes sad: 56 imágenes

> > angry (código: 0)

Paso 8: Aplicando data augmentat Método de augmentación: albumenta

✓ Aplicando augmentación (factor Generadas 0/4408 imágenes aume

Variables 🔼 Terminal