1. Multivariate Normal distributions have a number of theoretical properties, which is one reason they are frequently used as models for multivariate phenomena. The joint density function for the bivariate Normal distribution where X and Y have N(0,1) marginal distribution and correlation ρ is given by:

$$f(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{x^2 - 2\rho xy + y^2}{2(1-\rho^2)}\right)$$

where $\exp(z) = e^z$ is used to improve readability.

- (a) Show using the formula for the joint PDF that if X and Y are uncorrelated, then X and Y are independent.
- (b) Show that indeed the marginal distribution of X and of Y is N(0,1). To do so...
 - i. Verify the following equality (completing the square in terms of x):

$$x^{2} - 2\rho xy + y^{2} = (x - \rho y)^{2} + (1 - \rho^{2})y^{2}$$

- ii. Make an appropriate substitution in the exponential, perform an appropriate integration and then simplify.
- (c) Show that for **every** value of x, the conditional density of Y given X = x is Normally distributed. (A similar fact true for every value of y, and the proof is analogous).
- (d) Show that if $Z_1 = X$ and $Z_2 = \frac{Y \rho X}{\sqrt{1 \rho^2}}$, then Z_1, Z_2 are iid N(0, 1). To do so...
 - i. Explain why every linear combination of Z_1 and Z_2 are Normal, and therefore, why Z_1 and Z_2 are bivariate Normal.
 - ii. Compute the means and variances of Z_1 and Z_2 .
 - iii. Show that Z_1 and Z_2 are uncorrelated. Use this to argue that Z_1, Z_2 are independent.