DSB-SC, SSB and VSB

Contents

- Theory
- Implementation
 - Transmitter
 - Detector
 - Synchronous
 - Square
- Power analysis
- Summary

Double Side Band Suppressed Carrier

From AM spectrum:

- Carries signal ω_c carries no information ω_m .
- Carries signal consumes a lot of power more than 50%

Single frequency

Question: Why transmit carrier at all?

Ans:

Question: Can one suppress the carrier?

Ans.: Yes, just transmit two side bands (i.e DSB-SC)

But what is the penalty?

DSB-SC - Theory

General expression:
$$c(t) = [k_1 m(t) + C] \cos(\omega_c t + \phi_c)$$

Let $k_1 = 1$, C = 0 and $\phi_c = 0$, the modulated carrier signal, therefore:

$$c(t) = m(t) \cos \omega_c t$$

Information signal $m(t) = E_m \cos \omega_m t$ Thus

$$c(t) = E_m \cos \omega_m t \cos \omega_c t$$

$$= \frac{ME_c}{2} \cos(\omega_c + \omega_m)t + \frac{ME_c}{2} \cos(\omega_c - \omega_m)t$$

upper side band

lower side band

DSB-SC - Waveforms

Balanced modulator

- Ring modulator
- Square-law modulator

Fig: Balanced Ring Modulator

Fig. 1.5.6 (a) A carrier signal (b) Sinusoidal modulating signal (c) DSB signal at primary of T_2 (d) DSB output at secondary of T_2

DSB-SC - Detection

 ω_m

 $2\omega_c - \omega_m 2\omega_c + \omega_m$

© Rashed Md. Murad Hasan

DSB-SC - Synchronous Detection

Condition:

•Local oscillator has the same **frequency** but *different* **phase** compared to carrier signal at the transmitter.

© Rashed Md. Murad Hasan

Demodulation of DSB-SC AM Signals

Consequently, the output of the ideal lowpass filter

$$y_l(t) = \frac{1}{2} A_c m(t) \cos(\phi)$$

- Note that m(t) is multiplied by $cos(\phi)$
 - So the power in the demodulated signal is decreased by a factor of $\cos^2\phi$
 - Thus, the desired signal is scaled in amplitude by a factor that depends on the phase ϕ of the locally generated sinusoid
 - 1. When $\phi \neq 0$, the amplitude of the desired signal is reduced by the factor $\cos(\phi)$
 - 2. If $\phi = 45^{\circ}$, the amplitude of the signal is reduced by $\sqrt{2}$ and the power is reduced by a factor of two
 - 3. If $\phi = 90^{\circ}$, the desired signal component vanishes

Phase Synchronisation - Costa Loop

- When there is no phase error. The quadrature component is zero
- When $\theta \neq 0$, $y_{ip}(t)$ decreases, while $y_{qp}(t)$ increases
- •The out put of the phase discriminator is proportional to θ © Rashed Md. Murad Hasan

DSB-SC - Synchronous Detection

 ω_m

Low pass filter

 $2\omega_c - \omega_m 2\omega_c + \omega_m$

© Rashed Md. Murad Hasan

transmitter.

compared to carrier signal at the

DSB-SC - Square Detection

$$g(t) = S_i^2(t) = B^2 \cos^2 \omega_m t \cos^2 \omega_c t$$

$$= B^2 (\frac{1}{2} + \frac{1}{2} \cos 2 \omega_m t)(\frac{1}{2} + \frac{1}{2} \cos 2 \omega_c t)$$

$$= B^2/4 \left[1 + \frac{1}{2} \cos 2(\omega_c + \omega_m)t + \frac{1}{2} \cos 2(\omega_c - \omega_m)t + \cos 2\omega_m t + \frac{\cos 2\omega_c t}{2\omega_c t}\right]$$

$$y(t) = B^2/4 \cos 2w_c t$$

DSB-SC - Power

• The total power (or average power):

$$P_{T-DSB-SC} = \frac{2}{R} \left[\frac{kA_c / \sqrt{2}}{2} \right]^2$$
$$= \frac{(kA_c)^2}{4R}$$

The maximum and peak envelop power

$$P_{P-DSB-SC} = \frac{(kA_c)^2}{R}$$

DSB-SC - Summary

Advantages:

Lower power consumption

Disadvantage:

- Complex detection

Applications:

- Analogue TV systems: to transmit colour information
- For transmitting *stereo* information in FM sound broadcast at VHF

Single Side band Suppress Carrier (SSB-SC)

Frequency spectrum:

Bandwidth=f_{m(max)}

Total Power=+Push

Cont'd...

- A form of amplitude modulation in which the carrier is totally suppressed and one of the sidebands removed.
- Therefore, SSBSC requires half as much bandwidth as conventional DSB AM and considerably less transmitted power

Comparison of time domain representation of three common AM transmission systems:

Example 1

For an AM DSCFC wave with a peak unmodulated carrier voltage Vc = 10 Vp,frequency of 100kHz, a load resistor of $RL = 10 \Omega$, frequency of modulating signal of 10kHz and m = 1, determine the following

- i) Powers of the carrier and the upper and lower sidebands.
- ii) Total power of the modulated wave.
- iii) Bandwidth of the transmitted wave.
- iv) Draw the power and frequency spectrum. © Rashed Md. Murad Hasan

• For the same given values, determine questions (ii)-(iv) for a AM DSB-SC, AM SSB-FC and AM SSB-SC systems. Determine also the percentage of power saved in each of the system design.

O Solution for DSBFC;

i) $P_c = \frac{(V_c / \sqrt{2})^2}{R} = \frac{V_c^2}{2R} = \frac{(10)^2}{2*10} = 5W$ $R = \frac{k^2 P_c}{2} = \frac{1.25W}{2}$

$$P_{usb} = P_{lsb} = \frac{k^2 P_c}{4} = 1.25W$$

$$P_{t} = P_{c} + \frac{k^{2}}{4} P_{c} + \frac{k^{2}}{4} P_{c}$$

$$= 5 + \frac{1^{2}}{4} (5) + \frac{1^{2}}{4} (5) = 7.5W$$

iii) Bandwidth=2xf_{mmax}=2(10kHz)=20kHz

Solution:For DSB-SC

ii)
$$P_{t} = \frac{k^{2}}{4} P_{c} + \frac{k^{2}}{4} P_{c}$$
$$= \frac{1^{2}}{4} (5) + \frac{1^{2}}{4} (5) = 2.5W$$

$$Power_{saved} = 7.5W - 2.5W$$

$$= 5W$$

$$% Power_{saved} = \frac{5W}{7.5W} \times 100\%$$

$$= 66.67\%$$

111) Bandwidth= $2xf_{mmax}$ =2(10kz)=20kHz

Solution:For SSB-FC

ii)
$$P_{t} = P_{c} + \frac{k^{2}}{4} P_{c}$$
$$= 5 + \frac{1^{2}}{4} (5) = 6.25W$$

$$Power_{saved} = 7.5W - 6.25W$$

$$= 1.25W$$

$$% Power_{saved} = \frac{1.25W}{7.5W} \times 100\%$$

$$= 16.67\%$$

iii)Bandwidth=f_{mmax}=10kHz

• Solution:For SSB-sC

ii)
$$P_{t} = \frac{k^{2}}{4} P_{c}$$
$$= \frac{1^{2}}{4} (5) = 1.25W$$

$$Power_{saved} = 7.5W - 1.25W$$

$$= 6.25W$$

$$% Power_{saved} = \frac{6.25W}{7.5W} x100\%$$

$$= 83.33\%$$

iii)Bandwidth=f_{mmax}=10kHz

Methods of Generating SSB

i) Filtering method

- A filter removes the undesired sideband producing SSB.
- Balanced modulators is used to suppress the unwanted carrier and filters to suppress the unwanted sidebands
- Quartz crystal filters are the most widely used sideband filters since they are very selective and inexpensive.

Block diagram of filtering method

Cont'd...

ii) Phasing method using two balance modulator

- Another way to produce SSB uses a phase shift method to eliminate one sideband.
- Two balanced modulators driven by carriers and modulating signals 90° out of phase produce DSB.
- Adding the two DSB signals together results in one sideband being cancelled out.

Block diagram of phasing method

Mathematical analysis of phasing method

$$a_{0}(t) = a_{1}(t) + a_{2}(t) - --- > (1)$$

$$a_{1}(t) = A_{c} \cos(w_{c}t + 90^{\circ}) * A_{m} \cos w_{m}t$$

$$= \frac{1}{2} \left\{ A_{c} A_{m} \cos(w_{c}t + 90^{\circ} - w_{m}t) + A_{c} A_{m} \cos(w_{c}t + 90^{\circ} + w_{m}t) \right\} - -> (2)$$

$$a_{2}(t) = A_{c} \cos(w_{c}t) * A_{m} \cos(w_{m}t + 90^{\circ})$$

$$= \frac{1}{2} \left\{ A_{c} A_{m} \cos(w_{c}t - 90^{\circ} - w_{m}t) + A_{c} A_{m} \cos(w_{c}t + 90^{\circ} + w_{m}t) \right\} - -> (3)$$

$$a_{0}(t) = (2) + (3)$$

$$= \left\{ A_{c} A_{m} \cos(w_{c}t + 90^{\circ} + w_{m}t) \right\}$$

Vestigial-Sideband Modulation (VSB)

- DSB modulation is wasteful of bandwidth.
- ◆ SSB is difficult to generate when modulating signal bandwidth is wide or has low frequency components.
- ♦ VSB is a compromise :
 - Partial suppression of one sideband reduces bandwidth
 - Filtering requirements are not as severe as SSB
 - Can demodulate via synchronous detection or envelope detection if "large carrier" transmitted

Vestigial-Sideband Modulation (VSB)

Transmitted signal

$$\Phi_{VSB}(\omega) = \left[\frac{1}{2}F(\omega - \omega_c) + \frac{1}{2}F(\omega + \omega_c)\right]H_V(\omega)$$

- We must design the "roll off" of H_V(ω) such that simple synchronous detection results in perfect signal recovery.
- To design $H_{\nu}(\omega)$, need to consider demodulation.

$$\begin{aligned} e_0(t) &= \left[\varphi_{VSB}(t) \cos \omega_c t \right]_{LPF} \\ e_0(\omega) &= \left[\frac{1}{2} \Phi_{VSB}(\omega + \omega_c) + \frac{1}{2} \Phi_{VSB}(\omega - \omega_c) \right]_{LPF} \\ &= \frac{1}{4} F(\omega) H_V(\omega + \omega_c) + \frac{1}{4} F(\omega) H_V(\omega - \omega_c) \\ &= \frac{1}{4} F(\omega) \left[H_V(\omega + \omega_c) + H_V(\omega - \omega_c) \right] \end{aligned}$$

Vestigial-Sideband Demodulation

Consider the demodulation process

Vestigial-Sideband Modulation (VSB)

♦ Thus we need to arrange

$$[H_V(\omega+\omega_c)+H_V(\omega-\omega_c)]$$
=constant

The illustration shows the spectrum after the mixer.

Examples of antisymmetry roll off.

$$+ \longrightarrow constant$$

- VSB is used for analogue television transmissions to conserve bandwidth.
- ◆ South Africa uses the "PAL-I" standard for analogue TV broadcasts, same as UK. It is similar to the NTSC standard used in the USA.
- ◆ There are many different variants of the PAL standard.

Cont'd

- ➤ AM wave is applied to a vestigial sideband filter, producing a modulation scheme VSB + C
- > Mainly used for television video transmission.

Cont'd...vsb

> VSB Frequency Spectrum

Cont'd...vsb

Advantages/Benefits of SSB

- Power consumption
- Bandwidth conservation
- Selective fading
- Noise reduction

Disadvantages of SSB

Vestigial-Sideband Modulation (VSB)

- DSB modulation is wasteful of bandwidth.
- ◆ SSB is difficult to generate when modulating signal bandwidth is wide or has low frequency components.
- ♦ VSB is a compromise :
 - Partial suppression of one sideband reduces bandwidth
 - Filtering requirements are not as severe as SSB
 - Can demodulate via synchronous detection or envelope detection if "large carrier" transmitted

