

深度學習 Deep Learning

常見目標函數

Instructor: 林英嘉 (Ying-Jia Lin)

2025/10/01

Outline

- Common objective functions [60 min]
- PyTorch modeling [60 min]
 - PyTorch modeling code using MNIST
 - PyTorch Gradient Descent code (if we have time)
- Quiz [20 min]

[Recap] 深度學習模型訓練流程

Forward Pass and Objective Function

由輸入層到輸出層進行

迴歸任務:使用 Mean Squared Error (MSE) 作為目標函數

Forward Pass and Objective Function

由輸入層到輸出層進行

分類任務:使用 Cross-entropy 作為目

標函數

Entropy (資訊理論)

- Entropy (熵): 定義為不確定性的量度
- 特性:
 - 越不可能發生的事情,當它發生了, 越會提供更多的資訊,entropy 就越高 🚱

• Claude Shannon 將熱力學的熵引入到資 訊理論 – 夏農熵 (Shannon entropy)

[定義] 事件發生的機率越低代表資訊量越高

機率 (P)

1 / P

50%

2

25%

4

25%

4

從通訊的角度 理解 Entropy

Figure source: https://newsweb.ncc.gov.tw/201910/ch4.html

通訊傳輸 (核心概念)

通訊傳輸很貴,

如果我們讓發生機率較高的事件,用較少的資訊量來傳遞,可以節省通訊傳輸成本。

通訊傳輸 (Example)

Entropy:平均傳輸成本的理論下限

Entropy =

每個事件發生的機率

log(每個事件發生的資訊量)

$$=H(P)=P imes \log_2 rac{1}{P}$$
 <- 通常是自然對數,本堂課以2為底數作為範例

$$= -P \times \log_2 P$$

▼Entropy 是我們能達到的最低平均傳輸成本 (link)

Entropy:最低的傳輸成本(以學為例)

Entropy =
$$H(P) = P \times \log_2 \frac{1}{P}$$

^	機率 (P)	1 / P	$\log_2 \frac{1}{P}$	H(P)	
	50%	2	1	0.5	log以2為底 數的單位
	25%	4	2	0.5	1.5 bits
\bigcirc	25%	4	2	0.5	

Entropy:最低的傳輸成本(以學為例)

Entropy = $H(P) = P \times \log_2 \frac{1}{P}$

^	機率 (P)	1 / P	$\log_2 \frac{1}{P}$	H(P)	
	100%	1	0	0	log以2為底 數的單位
	0%	0	0	0	0 bits
\bigcirc	0%	0	0	0 _	

從ML的角度理解 Cross-Entropy

Cross-Entropy:可能不是最低的傳輸成本

Entropy

每個事件發生的機率

X

log(每個事件發生的**資訊量**)

Cross-**Entropy** 交叉熵

每個事件發生的機率

X

log(預測每個事件發生的資訊量)

$$= H(P, \mathbf{Q}) = P \times \log_2 \frac{1}{\mathbf{Q}}$$

<- 通常是自然對數,本堂課以2為底數作為範例

$$= -P \times \log_2 Q$$

 $= -P \times \log_2 Q$ <- P 是每個事件發生的機率,

Q 是<mark>預測</mark>每個事件發生的機率

Cross-entropy (Case1)

$$H(P,Q) = P \times \log_2 \frac{1}{Q}$$

機率 (P) 機率 (Q) 1/Q $\log_2 \frac{1}{Q}$ H(P, Q)

50%

25%

4

2

1

25%

25%

4

2

0.5

1.75 bits

25%

50%

2

1

0.25

Cross-entropy (Case2)

$$H(P,Q) = P \times \log_2 \frac{1}{Q}$$

機率 (P) 機率 (Q) 1/Q $\log_2 \frac{1}{Q}$ H(P, Q)

50%

60%

1.67

0.74

0.37

25%

20%

5

2.32

0.58

1.53 bits

25%

20%

5

2.32

0.58

Summary for Cross-entropy

- Entropy 帶來最低的平均傳輸成本
 - 初衷:發生機率高的事件,可以用較低的資訊量進行傳輸
- Cross-entropy 代表用了錯估的資訊量後所得到的平均傳輸成本
 - 許多機器學習就是採用 Cross-entropy 來讓錯誤的分佈接近最佳的分佈

[定義] 機率分佈

機率分佈:機率分佈是指對一個隨機變數的所有可能取值,分別給出它們發生的機率,而這些機率的總和必須為 1。

越接近越好

為什麼分類任務不用 MSE?

code/w5_plot_loss.py

• Ans: 在分類任務上使用 Cross-entropy, 能夠在模型預測差時帶來更大的梯度 -> 模型能有更大的幅度更新參數

實作細節

Cross-entropy in ML

• 對於多數的機器學習分類任務來說,我們目標讓模型學會正確的類別

Cat
$$H(P,Q) = P \times \ln \frac{1}{Q} = -\ln Q$$

Cross-entropy in ML

• 對於多數的機器學習分類任務來說,我們目標讓模型學會正確的類別

Cat
$$H(P,Q) = P \times \ln \frac{1}{Q} = 0$$

$$Dog \qquad H(P,Q) = P \times \ln \frac{1}{Q} = -\ln Q$$

Cross-entropy in ML

• 對於多數的機器學習分類任務來說,我們目標讓模型學會正確的類別

Cat
$$H(P,Q) = P \times \ln \frac{1}{Q} = 0$$

Apple
$$H(P,Q) = P \times \ln \frac{1}{Q} = -\ln Q$$

Cross-entropy 公式

$$H(P,Q) = -P \times \ln Q$$

模型看到 x_i 預測 \hat{y}_i 的機率值 (Q)

所有類別的 cross-entropy 加總

Cross-entropy: $\mathcal{L}_i = -\sum_{j} y_j \ln \frac{P(\hat{y}_j|x_i)}{\uparrow}$

 x_i : 資料集中第 i 筆資料

 y_i : label,在此範例中 j = 1,2,3

 y_i 發生的機率值 (P)

				Model output (logits)	Softmax $P(\hat{y}_j x_i)$	label (y_j)	Cross- entropy
x_i	\rightarrow		y ₁ Cat	0.5	0.225	1	-ln 0.225
		Model	$\rightarrow y_2 \text{Dog}$	0.7	0.275	0	0
			y ₃ Apple	2 1.3	0.500	0	0

各類別加總: $\mathcal{L}_i = -\ln 0.225$

如何把模型輸出變成機率值(0~1)?

Class_0 Class_1 Class_2 **50 25** $\frac{X}{\sum_{j} x_{j}} = [0.5, 0.25, 0.25]$

- Softmax function,採用 exponential -> 大的數值更大,小的數值更小
 - 有助於梯度下降

Softmax
$$(x_i) = \frac{e_i^x}{\sum_j e^{x_j}} = [0.665, 0.244, 0.090]$$

注意!Softmax 有考慮到類別總和

兩種方法來做 Binary Classification

多類別分類任務

是貓

不是貓

對兩個模型輸出值取機率值, 且機率值總和為**1**

二元分類任務

> 0.5 是貓, 否則不是貓

對一個模型輸出值取機率值

實作上採用 BinaryCrossEntropy

如何對一個模型輸出值取機率值 (0~1)?

• **Sigmoid** function:

Multi-class vs. Multi-label Classification

馬 2

一次只會有一個類別

囊腫
 血管瘤
 脂肪瘤 ✓

[1, 0, 1]

Multi-label Classification

一次可以有多個類別

[注意事項] Multi-label Classification

- Multi-label Classification 實作上與二元分類任務類似:
 - 模型輸出需經過 Sigmoid function
 - Loss 同樣採用 BinaryCrossEntropy
 - 相當於是做很多次 (次數等於標籤數量) 的二元分類任務

Multi-class vs. Multi-label Classification

• Multi-label (多標籤任務):

• Multi-class (多類別任務):

Summary

• 許多機器學習任務採用 Cross-entropy 來讓錯誤的分佈接近最佳的分佈

Object Detection

Segmentation

深度學習 Deep Learning

PyTorch Modeling

Instructor: 林英嘉 (Ying-Jia Lin)

2025/10/01

PyTorch Tutorial

[Recap] 深度學習模型訓練流程

Steps for building your first PyTorch program

Step 1 (Data):

- Prepare the dataset
- Overwrite PyTorch Dataset
- Define DataLoader

Step 2 (Model):

- Construct the model
- Define the loss function
- Define the optimizer

Step 3 (Training):

Write the training process

Step 4 (Evaluation):

Write the evaluation process

Step 1: Prepare the dataset

- From torchvision (image data) or torchtext (text data)
 - You may skip Step 1-2.
- User-defined dataset
 - Download from the Internet
 - Your own dataset

What is a dataset?

data / instance /example

Step 1-2: 建立 PyTorch Dataset

```
1. Data

2. Model

4. Evaluation

3. Training
```

- 為了符合我們載入資料的需求
 - 例如:適合我們資料的前處理過程
- 簡潔且容易維護的資料存取介面:

Step 1-2: 建立 PyTorch Dataset

```
1. Data

2. Model

4. Evaluation

3. Training
```

• 我們需要繼承 torch.utils.data.Dataset,並改寫三個項目 (__init__, __getitem__, __len__):

```
import torch
class CustomDataset(torch.utils.data.Dataset):
   def __init__(self, parameter_1, parameter_2, ...):
       # Prepare some things
       # that you are going to use in `__getitem__` and `__len__`
   def getitem (self, index):
       # do something
       return data, label
   def len (self):
       return len(data variable)
```

- ___init___: 初始化 class 中的變數
- __getitem__ : 讓PyTorch Dataset可以透過 index 來取得任一筆資料
- __len__ : 取得資料集的總數

Step 1-2: 建立 PyTorch Dataset

```
1. Data

2. Model

4. Evaluation

3. Training
```

```
import torch
class HandWrite(torch.utils.data.Dataset):
   def __init__(self, files: list, word_to_id: dict, transform=None):
       self.files = files # 全部的資料
       self.transform = transform # 影像資料前處理的流程
   def __getitem__(self, index):
       fname = self.files[index]
       image = Image.open(fname)
       if self.transform is not None:
       image = self.transform(image)
       label = fname.split('/')[-1].split('_')[0]
       return image, torch.tensor(word to id[label])
   def __len__(self):
       return len(self.files)
```


Step 1-3: 建立 DataLoader

We should split the dataset into train / validation / test sets first.
train_loader = torch.utils.data.DataLoader(trainset, batch_size=TRAIN_BS, shuffle=True)
val_loader = torch.utils.data.DataLoader(valset, batch_size=VAL_BS, shuffle=False)
test_loader = torch.utils.data.DataLoader(testset, batch_size=TEST_BS, shuffle=False)

Advantages of batching

- Training:
 - mini-batch gradient descent 有機會避免模型陷入局部最小值
- Inference (validation or test):
 - 省記憶體
 - 不需要累積梯度,所以 inference 時期的 batch size (bs) 通常可以比 training 時期的 bs 還大

Step 2-1: Construct the model

- 我們需要:
 - 1. 繼承 torch.nn.Module,
 - 2. 初始化 torch.nn.Module 原本定義的內容
 - 3. 改寫兩個項目 (___init___, forward)

```
class MyModel(torch.nn.Module):
    def __init__(self):
        super().__init__() # 初始化 torch.nn.Module 原本定義的內容
        # Define our new variables
        # Define our model layers

def forward(self, x):
    # Do something (forward pass)
    return output
```


為什麼需要 super().___init__()?

```
1. Data

2. Model

4. Evaluation

3. Training
```

 模型需要繼承 torch.nn.Module, 並且透過 super().__init__() 初始化原本在 nn.Module 中被定 義好的內容,如下圖所示:

```
206 • • •
            def __init__(self):
                                                                                                                        83 ⋅
207
                Initializes internal Module state, shared by both nn.Module and ScriptModule.
208
209
210
                torch._C._log_api_usage_once("python.nn_module")
211
                self.training = True
212
                self._parameters = OrderedDict()
213
                self._buffers = OrderedDict()
214
                self._non_persistent_buffers_set = set()
215
216
                self. backward hooks = OrderedDict()
217
                self._forward_hooks = OrderedDict()
218
                self._forward_pre_hooks = OrderedDict()
219
                self._state_dict_hooks = OrderedDict()
220
                self._load_state_dict_pre_hooks = OrderedDict()
221
                self._modules = OrderedDict()
```


ImageNet Competition

Complete name: ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Step 2-2: Define the optimizer

Loss functions	Meaning
torch.optim.SGD	Stochastic gradient descent (with momentum)
torch.optim.RMSprop	RMSProp (Root Mean Square Propagation)
torch.optim.Adam	Adam (Adaptive Moment Estimation)
torch.optim.AdamW	AdamW (Adam with decoupled weight decay)

learning_rate = 1e-3 # 代表 0.001
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

Step 2-2: Define the loss function

Loss functions	Usage
torch.nn.CrossEntropyLoss	Classification
torch.nn.MSELoss	Regression
torch.nn.BCELoss	Binary classification

```
# example
loss_function = torch.nn.CrossEntropyLoss()
```


[PyTorch小細節] BCEWithLogitsLoss 已經包含了 Sigmoid CrossEntropyLoss 已經包含了 Softmax

Step 2-2: 訓練過程中的模型輸出

迴歸任務:

Step 3: 訓練模型

清空 optimizer (過去累積)的梯度

optimizer.zero_grad()

重複直到 訓練完成 或到達指 定條件 模型前向傳播得到輸出

output = model(inputs)

模型反向傳播計算梯度

loss = loss_function(output, target)

loss.backward()

optimizer 更新模型參數

optimizer.step()

Step 3: 訓練模型


```
for batch in train_loader:
   # 把資料移動到 GPU
   images, labels = batch[0].to(device), batch[1].to(device)
   optimizer.zero grad()
   # 1. 前向傳播
   outputs = model(images) # 形狀是 (batch_size, num_classes)
   loss = loss fn(outputs, labels)
   # 2. 反向傳播 (計算梯度)
   loss.backward()
   # 3. 更新模型權重
   optimizer.step()
```


Step 3: 訓練模型

外層通常會有epoch (模型經過一次完整訓練集的更新稱為1個epoch)

```
for epoch in range(epochs):
   for batch in train_loader:
       # 把資料移動到 GPU
       images, labels = batch[0].to(device), batch[1].to(device)
       optimizer.zero grad()
       # 1. 前向傳播
       outputs = model(inputs) # 形狀是 (batch_size, num_classes)
       loss = loss fn(outputs, labels)
       # 2. 反向傳播 (計算梯度)
       loss.backward()
       # 3. 更新模型權重
       optimizer.step()
```


Step 4: 模型評估


```
with torch.no_grad(): —— 在這底下縮排屬於不計算梯度的環境 for batch in test_loader: images, labels = batch[0].to(device), batch[1].to(device) outputs = model(inputs) # 形狀是 (batch_size, num_classes) loss = loss_fn(outputs, labels) # 純粹紀錄數值用,沒有要更新模型 total_loss += loss.item()
```


Step 4: 模型評估


```
with torch.no grad():
   for batch in progress_bar:
       images, labels = batch[0].to(device), batch[1].to(device)
       outputs = model(images) # `outputs` 的形狀是 (batch size, 10)
       loss = loss_fn(outputs, labels)
       total loss += loss.item()
       prediction = outputs.argmax(dim=1) # 找出數值最大的類別作爲模型預測
       # 我們希望 `predictions` 的長相是 [1, 2, 0, 4, 5, 7, ...]
       # 如果用 append 的話可能會變成 [[1, 2, 0], [4, 5, 7], ...]
       prediction_list.extend(prediction.tolist())
       label list.extend(labels.tolist())
avg_loss = total_loss / len(data_loader)
accuracy = accuracy_score(label_list, prediction_list)
```


Thank you!

Instructor: 林英嘉

yjlin@cgu.edu.tw

TA: 劉美辰

m1461014@cgu.edu.tw