# Assignment – Day 17

-Sarthak Niranjan Kulkarni (Maverick)

- <u>sarthakkul2311@gmail.com</u> - (+91) 93256 02791

## 28/11/2024 (Thursday)

# **Practice of Loading Data:-**

#### 1. "Load and Display Loan Table Data"

→ # data =spark.read.table("samples.nyctaxi.trips")

datatable =spark.read.table("hive\_metastore.default.loan")

datatable.display()



#### 2. "Create RDDs and Load Delta Tables"

→ # to create rdds and dataframe

from pyspark import SparkContext

from pyspark.sql import SparkSession

# Initialize SparkContext and SparkSession

sc = SparkContext.getOrCreate()

spark = Spark Session.builder.app Name ('pyspark first program').get Or Create ()

 $\label{eq:data} data = spark.read.format("delta").load("dbfs:/databricks-datasets/nyctaxi-with-zipcodes/subsampled")$ 

datatable = spark.read.format("delta").load("dbfs:/user/hive/warehouse/loan")

data.display()

### datatable.display()

| □ data: pyspark.sql.dataframe.DataFrame = [tpep_pickup_datetime: timestamp, tpep_dropoff_datetime: timestamp 4 more fields] □ datatable: pyspark.sql.dataframe.DataFrame = [Customer_ID: string, Age: long 13 more fields]  Table ∨ + |                               |                               |      |      |       |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|------|------|-------|--|--|--|--|
|                                                                                                                                                                                                                                       |                               |                               |      |      |       |  |  |  |  |
| 1                                                                                                                                                                                                                                     | 2016-02-16T22:40:45.000+00:00 | 2016-02-16T22:59:25.000+00:00 | 5.35 | 18.5 | 10003 |  |  |  |  |
| 2                                                                                                                                                                                                                                     | 2016-02-05T16:06:44.000+00:00 | 2016-02-05T16:26:03.000+00:00 | 6.5  | 21.5 | 10282 |  |  |  |  |
| 3                                                                                                                                                                                                                                     | 2016-02-08T07:39:25.000+00:00 | 2016-02-08T07:44:14.000+00:00 | 0.9  | 5.5  | 10119 |  |  |  |  |
| 4                                                                                                                                                                                                                                     | 2016-02-29T22:25:33.000+00:00 | 2016-02-29T22:38:09.000+00:00 | 3.5  | 13.5 | 10001 |  |  |  |  |
| 5                                                                                                                                                                                                                                     | 2016-02-03T17:21:02.000+00:00 | 2016-02-03T17:23:24.000+00:00 | 0.3  | 3.5  | 10028 |  |  |  |  |
| 6                                                                                                                                                                                                                                     | 2016-02-10T00:47:44.000+00:00 | 2016-02-10T00:53:04.000+00:00 | 0    | 5    | 10038 |  |  |  |  |
| 7                                                                                                                                                                                                                                     | 2016-02-19T03:24:25.000+00:00 | 2016-02-19T03:44:56.000+00:00 | 6.57 | 21.5 | 10001 |  |  |  |  |
| 8                                                                                                                                                                                                                                     | 2016-02-02T14:05:23.000+00:00 | 2016-02-02T14:23:07.000+00:00 | 1.08 | 11.5 | 10103 |  |  |  |  |
| 9                                                                                                                                                                                                                                     | 2016-02-20T15:42:20.000+00:00 | 2016-02-20T15:50:40.000+00:00 | 0.8  | 7    | 10003 |  |  |  |  |

|   | ABC Customer_ID | 1 <sup>2</sup> 3 Age | ∆ <sup>B</sup> <sub>C</sub> Gender | △B <sub>C</sub> Occupation | △B Marital Status | 123 Family Size | 1 <sup>2</sup> <sub>3</sub> Income |
|---|-----------------|----------------------|------------------------------------|----------------------------|-------------------|-----------------|------------------------------------|
|   | IB14001         | 30                   | MALE                               | BANK MANAGER               | SINGLE            | 4               | 5000                               |
| 2 | IB14008         | 44                   | MALE                               | PROFESSOR                  | MARRIED           | 6               | 5100                               |
| 3 | IB14012         | 30                   | FEMALE                             | DENTIST                    | SINGLE            | 3               | 584                                |
| 4 | IB14018         | 29                   | MALE                               | TEACHER                    | MARRIED           | 5               | 457                                |
| 5 | IB14022         | 34                   | MALE                               | POLICE                     | SINGLE            | 4               | 435                                |
| 6 | IB14024         | 55                   | FEMALE                             | NURSE                      | MARRIED           | 6               | 349                                |
| 7 | IB14025         | 39                   | FEMALE                             | TEACHER                    | MARRIED           | 6               | 466                                |
| 8 | IB14027         | 51                   | MALE                               | SYSTEM MANAGER             | MARRIED           | 3               | 499                                |

# **Summary of Loading Data: -**

In the first code block, I used PySpark to create a Spark session, which is essential for processing data in Databricks. I then loaded the loan data stored in a Delta format table from the Databricks File System (DBFS) into a DataFrame using spark.read.format("delta"). Delta format offers several advantages such as ACID transactions and time travel, making it a reliable choice for working with large datasets in Databricks. After loading the data, I displayed it to visually inspect the information, which allows me to quickly understand the structure of the dataset.

In the second code block, I accessed two tables from the Databricks metastore using spark.table(). This method allows me to easily query tables that have already been registered in the metastore, which is a centralized place to manage metadata for structured data. The first table, loan\_table, was loaded from the default schema (hive\_metastore.default), while the second table, trips\_table, came from the samples.nyctaxi schema. By displaying both tables, I can examine the content and start analyzing them for insights. These two tables represent two different kinds of data: financial data in the loan\_table and transportation data in the trips\_table.

This entire process showcases the simplicity and flexibility of working with various data formats (like Delta) and managing data in Databricks using PySpark, which is a powerful tool for big data analysis. With this setup, I can perform various analyses, transformations, and queries on the data to derive meaningful insights.