What is Interpolation?

Given (x_0, y_0) , (x_1, y_1) , (x_n, y_n) , find the value of 'y' at a value of 'x' that is not given.

Figure 1 Interpolation of discrete.

Interpolants

Polynomials are the most common choice of interpolants because they are easy to:

- Evaluate
- Differentiate, and
- Integrate

Direct Method

$$y = a_0 + a_1 x + \dots + a_n x^n$$
.

- Set up 'n+1' equations to find 'n+1' constants.
- To find the value 'y' at a given value of 'x', simply substitute the value of 'x' in the above polynomial.

Example 1

The velocity of a rocket is given as a function of time in Table 1.

Find the velocity at t=16 seconds using the direct method for linear, quadratic and cubic interpolation.

Table 1 Velocity as a function of time.

t, (s)	v(t), (m/s)	
0	0	
10	227.04	
15	362.78	
20	517.35	
22.5	602.97	
30	901.67	

Figure 2 Velocity vs. time data for the rocket example

Linear Interpolation

$$v(t) = a_0 + a_1 t$$

$$v(15) = a_0 + a_1 (15) = 362.78$$

$$v(20) = a_0 + a_1 (20) = 517.35$$

Solving the above two equations gives,

$$a_0 = -100.93$$
 $a_1 = 30.914$

Figure 3 Linear interpolation.

Hence

$$v(t) = -100.93 + 30.914t$$
, $15 \le t \le 20$.
 $v(16) = -100.93 + 30.914(16) = 393.7 \text{ m/s}$

$$v(t) = a_0 + a_1 t + a_2 t^2$$

$$v(10) = a_0 + a_1 (10) + a_2 (10)^2 = 227.04$$

$$v(15) = a_0 + a_1 (15) + a_2 (15)^2 = 362.78$$

$$v(20) = a_0 + a_1 (20) + a_2 (20)^2 = 517.35$$

Figure 4 Quadratic interpolation.

Solving the above three equations gives

$$a_0 = 12.05$$
 $a_1 = 17.733$ $a_2 = 0.3766$

$$v(t) = 12.05 + 17.733t + 0.3766t^2, \ 10 \le t \le 20$$

 $v(16) = 12.05 + 17.733(16) + 0.3766(16)^2$
 $= 392.19 \text{ m/s}$

The absolute relative approximate error $|\epsilon_a|$ obtained between the results from the first and second order polynomial is

$$\left| \in_{a} \right| = \left| \frac{392.19 - 393.70}{392.19} \right| \times 100$$

= 0.38410%

$$v(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

$$v(10) = 227.04 = a_0 + a_1(10) + a_2(10)^2 + a_3(10)^3$$

$$v(15) = 362.78 = a_0 + a_1(15) + a_2(15)^2 + a_3(15)^3$$

$$v(20) = 517.35 = a_0 + a_1(20) + a_2(20)^2 + a_3(20)^3$$

Figure 5 Cubic interpolation.

$$v(22.5) = 602.97 = a_0 + a_1(22.5) + a_2(22.5)^2 + a_3(22.5)^3$$

$$a_0 = -4.2540$$
 $a_1 = 21.266$ $a_2 = 0.13204$ $a_3 = 0.0054347$

$$v(t) = -4.2540 + 21.266t + 0.13204t^{2} + 0.0054347t^{3}, \quad 10 \le t \le 22.5$$
$$v(16) = -4.2540 + 21.266(16) + 0.13204(16)^{2} + 0.0054347(16)^{3}$$
$$= 392.06 \text{ m/s}$$

The absolute percentage relative approximate error $|\epsilon_a|$ between second and third order polynomial is

$$\left| \in_a \right| = \left| \frac{392.06 - 392.19}{392.06} \right| \times 100$$

= 0.033269 %

Table 4 Comparison of different orders of the polynomial.

t(s)	v (m/s)		
0	0		
10	227.04		
15	362.78		
20	517.35		
22.5	602.97		
30	901.67		

Order of Polynomial	1	2	3
$v(t=16)\mathrm{m/s}$	393.7	392.19	392.06
Absolute Relative Approximate Error		0.38410 %	0.033269 %

Distance from Velocity

Find the distance covered by the rocket from t=11 to t=16?

$$v(t) = -4.3810 + 21.289t + 0.13064t^2 + 0.0054606t^3$$
, $10 \le t \le 22.5$

$$s(16)-s(11) = \int_{11}^{16} v(t)dt$$

$$= \int_{11}^{16} (-4.2540 + 21.266t + 0.13204t^2 + 0.0054347t^3)dt$$

$$= \left[-4.2540t + 21.266\frac{t^2}{2} + 0.13204\frac{t^3}{3} + 0.0054347\frac{t^4}{4} \right]_{11}^{16}$$

$$= 1605 \text{ m}$$

Acceleration from Velocity

Find the acceleration of the rocket at t=16 given that $v(t) = -4.2540 + 21.266t + 0.13204^2 + 0.0054347t^3, 10 \le t \le 22.5$ $a(t) = \frac{d}{dt}v(t)$ $= \frac{d}{dt} \left(-4.2540 + 21.266t + 0.13204t^2 + 0.0054347t^3 \right)$ $= 21.289 + 0.26130t + 0.016382t^2$, $10 \le t \le 22.5$ $a(16) = 21.266 + 0.26408(16) + 0.016304(16)^{2}$ $= 29.665 \,\mathrm{m/s^2}$

Newton's Divided Difference Method of Interpolation

Newton's Divided Difference Method

Linear interpolation: Given (x_0, y_0) , (x_1, y_1) , pass a linear interpolant through the data

$$f_1(x) = b_0 + b_1(x - x_0)$$

where

$$b_0 = f(x_0)$$

$$b_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Given (x_0, y_0) , (x_1, y_1) , and (x_2, y_2) , fit a quadratic interpolant through the data.

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

$$b_0 = f(x_0)$$

$$b_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$b_2 = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}$$

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

where

$$b_0 = f[x_0] = f(x_0)$$

$$b_1 = f[x_1, x_0] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$b_2 = f[x_2, x_1, x_0] = \frac{f[x_2, x_1] - f[x_1, x_0]}{x_2 - x_0} = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}$$

Rewriting

$$f_2(x) = f[x_0] + f[x_1, x_0](x - x_0) + f[x_2, x_1, x_0](x - x_0)(x - x_1)$$

The third order polynomial, given (x_0, y_0) , (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) , is

$$f_{3}(x) = f[x_{0}] + f[x_{1}, x_{0}](x - x_{0}) + f[x_{2}, x_{1}, x_{0}](x - x_{0})(x - x_{1})$$

$$+ f[x_{3}, x_{2}, x_{1}, x_{0}](x - x_{0})(x - x_{1})(x - x_{2})$$

$$x_{0} \qquad f(x_{0}) \qquad b_{1}$$

$$f[x_{1}, x_{0}] \qquad b_{2}$$

$$f[x_{2}, x_{1}, x_{0}] \qquad f[x_{2}, x_{1}, x_{0}]$$

$$x_{2} \qquad f(x_{2}) \qquad f[x_{3}, x_{2}, x_{1}]$$

$$f[x_{3}, x_{2}, x_{1}] \qquad f[x_{3}, x_{2}, x_{1}]$$

General Form

Given (n+1) data points, $(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1}), (x_n, y_n)$ as $f_n(x) = b_0 + b_1(x - x_0) + \dots + b_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$

where

$$b_{0} = f[x_{0}]$$

$$b_{1} = f[x_{1}, x_{0}]$$

$$b_{2} = f[x_{2}, x_{1}, x_{0}]$$

$$\vdots$$

$$b_{n-1} = f[x_{n-1}, x_{n-2},, x_{0}]$$

$$b_{n} = f[x_{n}, x_{n-1},, x_{0}]$$

$$f[x_0, x_1, \dots, x_n] = \frac{f[x_1, \dots, x_n] - f[x_0, \dots, x_{n-1}]}{x_n - x_0}$$

General form

Format for constructing divided differences of f(x)

х,	$f(x_i)$	$f[x_i, x_{i+1}]$	$f[x_i, x_{i-1}, x_{i-2}] \cdots$
x_0	f_0		
		$f[x_0,x_1]$	
x_1	f_1		$f[x_0, x_1, x_2] \cdots$
		$f[x_1, x_2]$	
x ₂	f_2		$f[x_1, x_2, x_3] \cdots$
		$f[x_2, x_3]$	
x_3	f_3		$f[x_2, x_3, x_4] \cdots$
		$f[x_3, x_4]$	
x4	f_4		$f[x_3, x_4, x_5] \cdots$
		$f[x_4, x_5]$	
x ₅	f_5		
	:		

$$p_n(x) = f(x_0) + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2]$$
$$+ \cdots + (x - x_0) \cdots (x - x_{n-1}) f[x_0, x_1, \dots, x_n]$$

Example 1

The velocity of a rocket is given as a function of time in Table 1.

Find the velocity at t=16 seconds using the Newton Divided Difference method for linear, quadratic and cubic interpolations.

Table 1 Velocity as a function of time.

t, (s)	v(t), (m/s)	
0	0	
10	227.04	
15	362.78	
20	517.35	
22.5	602.97	
30	901.67	

Figure 2 Velocity vs. time data for the rocket example

Linear Interpolation

$$v(t) = b_0 + b_1(t - t_0)$$

$$t_0 = 15$$
, $v(t_0) = 362.78$

$$t_1 = 20$$
, $v(t_1) = 517.35$

$$b_0 = v(t_0) = 362.78$$

$$b_1 = \frac{v(t_1) - v(t_0)}{t_1 - t_0} = 30.914$$

Linear Interpolation

$$v(t) = b_0 + b_1(t - t_0)$$

$$= 362.78 + 30.914(t - 15), 15 \le t \le 20$$
At $t = 16$

$$v(16) = 362.78 + 30.914(16 - 15)$$

$$= 393.69 \text{ m/s}$$

$$t_0 = 10, \ v(t_0) = 227.04$$

$$t_1 = 15, \ v(t_1) = 362.78$$

$$t_2 = 20, v(t_2) = 517.35$$

$$b_0 = v(t_0)$$

$$= 227.04$$

$$b_1 = \frac{v(t_1) - v(t_0)}{t_1 - t_0} = \frac{362.78 - 227.04}{15 - 10}$$

$$= 27.148$$

$$b_2 = \frac{\frac{v(t_2) - v(t_1)}{t_2 - t_1} - \frac{v(t_1) - v(t_0)}{t_1 - t_0}}{t_2 - t_0} = \frac{\frac{517.35 - 362.78}{20 - 15} - \frac{362.78 - 227.04}{15 - 10}}{20 - 10}$$

$$= \frac{\frac{30.914 - 27.148}{10}}{10}$$

$$= 0.37660$$

$$v(t) = b_0 + b_1(t - t_0) + b_2(t - t_0)(t - t_1)$$

$$= 227.04 + 27.148(t - 10) + 0.37660(t - 10)(t - 15), \quad 10 \le t \le 20$$
At $t = 16$,
$$v(16) = 227.04 + 27.148(16 - 10) + 0.37660(16 - 10)(16 - 15) = 392.19 \text{ m/s}$$

The absolute relative approximate error $|\epsilon_a|$ obtained between the results from the first order and second order polynomial is

$$\left| \in_{a} \right| = \left| \frac{392.19 - 393.69}{392.19} \right| \times 100$$

$$= 0.38502 \%$$

The velocity profile is chosen as

$$v(t) = b_0 + b_1(t - t_0) + b_2(t - t_0)(t - t_1) + b_3(t - t_0)(t - t_1)(t - t_2)$$

we need to choose four data points that are closest to t = 16

$$t_0 = 10, \quad v(t_0) = 227.04$$
 $t_1 = 15, \quad v(t_1) = 362.78$
 $t_2 = 20, \quad v(t_2) = 517.35$
 $t_3 = 22.5, \quad v(t_3) = 602.97$

The values of the constants are found as:

$$b_0 = 227.04$$
; $b_1 = 27.148$; $b_2 = 0.37660$; $b_3 = 5.4347 \times 10^{-3}$

$$b_0 = 227.04$$
; $b_1 = 27.148$; $b_2 = 0.37660$; $b_3 = 5.4347 \times 10^{-3}$

Hence

$$v(t) = b_0 + b_1(t - t_0) + b_2(t - t_0)(t - t_1) + b_3(t - t_0)(t - t_1)(t - t_1)$$

$$= 227.04 + 27.148(t - 10) + 0.37660(t - 10)(t - 15)$$

$$+ 5.4347 * 10^{-3}(t - 10)(t - 15)(t - 20)$$

At t = 16,

$$v(16) = 227.04 + 27.148(16 - 10) + 0.37660(16 - 10)(16 - 15) + 5.4347 * 10^{-3} (16 - 10)(16 - 15)(16 - 20)$$

$$= 392.06 \text{ m/s}$$

The absolute relative approximate error $|\epsilon_a|$ obtained is

$$\left| \in_a \right| = \left| \frac{392.06 - 392.19}{392.06} \right| \times 100$$

Comparison Table

Order of	1	2	3
Polynomial			
v(t=16)	393.69	392.19	392.06
m/s			
Absolute Relative		0.38502 %	0.033427 %
Approximate Error			

Distance from Velocity

Find the distance covered by the rocket from t=11 to t=16?

$$v(t) = 227.04 + 27.148(t - 10) + 0.37660(t - 10)(t - 15)$$
$$+ 5.4347 * 10^{-3} (t - 10)(t - 15)(t - 20)$$
$$= -4.2541 + 21.265t + 0.13204t^{2} + 0.0054347t^{3}$$
$$10 \le t \le 22.5$$

So

$$s(16) - s(11) = \int_{11}^{16} v(t)dt$$

$$= \int_{11}^{16} (-4.2541 + 21.265t + 0.13204t^{2} + 0.0054347t^{3})dt$$

$$= \left[-4.2541t + 21.265\frac{t^{2}}{2} + 0.13204\frac{t^{3}}{3} + 0.0054347\frac{t^{4}}{4} \right]_{11}^{16}$$

$$= 1605 m$$

Acceleration from Velocity

Find the acceleration of the rocket at t=16s given that

$$v(t) = -4.2541 + 21.265t + 0.13204t^{2} + 0.0054347t^{3}$$

$$a(t) = \frac{d}{dt}v(t) = \frac{d}{dt}\left(-4.2541 + 21.265t + 0.13204t^{2} + 0.0054347t^{3}\right)$$

$$= 21.265 + 0.26408t + 0.016304t^{2}$$

$$a(16) = 21.265 + 0.26408(16) + 0.016304(16)^{2}$$

$$= 29.664 \, m/s^{2}$$

Home work

construct a divided difference table for $f(x) = \sqrt{x}$

\mathbf{x}_{i}	$f(x_i)$	$f[x_i, x_{i+1}]$	$D^2f[x_i]$	$D^3f[x_i]$	$D^4f[x_i]$
2.0	1.414214				
		.34924			
2.1	1.449138		~.04110		
		.34102		.009167	
2.2	1.483240		03835		002084
		.33335		.008333	
2.3	1.516575		03585		
		.32618			
2.4	1.549193			7	

Lagrange Method of Interpolation

Lagrangian Interpolation

Lagrangian interpolating polynomial is given by

$$f_n(x) = \sum_{i=0}^n L_i(x) f(x_i)$$

where 'n' in $f_n(x)$ stands for the n^{th} order polynomial that approximates the function y = f(x)

given at (n+1) data points as $(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1}), (x_n, y_n)$, and

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}$$

 $L_i(x)$ is a weighting function that includes a product of (n-1) terms with terms of j=i

omitted.

$$p_1(x) = \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1 = \frac{(x_1 - x)y_0 + (x - x_0)y_1}{x_1 - x_0}$$

$$p_2(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} y_0 + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} y_1$$

$$+ \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} y_2$$

Example 1

The polynomial of degree ≤ 2 that passes through the three points (0, 1), (-1, 2), and (1, 3) is

$$p_2(x) = \frac{(x+1)(x-1)}{(0+1)(0-1)} \cdot 1 + \frac{(x-0)(x-1)}{(-1-0)(-1-1)} \cdot 2 + \frac{(x-0)(x+1)}{(1-0)(1+1)} \cdot 3$$
$$= 1 + \frac{1}{2}x + \frac{3}{2}x^2$$

Example 2

The velocity of a rocket is given as a function of time in Table 1.

Find the velocity at t=16 seconds using Lagrangian method for linear, quadratic and cubic interpolations.

Table 1 Velocity as a function of time.

t,(s)	v(t), (m/s)		
0	0		
10	227.04		
15	362.78		
20	517.35		
22.5	602.97		
30	901.67		

Figure 2 Velocity vs. time data for the rocket example

Linear Interpolation

$$v(t) = \sum_{i=0}^{1} L_i(t)v(t_i)$$
$$= L_0(t)v(t_0) + L_1(t)v(t_1)$$

$$t_0 = 15, v(t_0) = 362.78$$

$$t_1 = 20, \nu(t_1) = 517.35$$

Linear Interpolation

$$L_0(t) = \prod_{\substack{j=0\\j\neq 0}}^{1} \frac{t - t_j}{t_0 - t_j} = \frac{t - t_1}{t_0 - t_1}$$

$$L_1(t) = \prod_{\substack{j=0 \ j \neq 1}}^{1} \frac{t - t_j}{t_1 - t_j} = \frac{t - t_0}{t_1 - t_0}$$

$$v(t) = \frac{t - t_1}{t_0 - t_1} v(t_0) + \frac{t - t_0}{t_1 - t_0} v(t_1) = \frac{t - 20}{15 - 20} (362.78) + \frac{t - 15}{20 - 15} (517.35)$$

$$v(16) = \frac{16 - 20}{15 - 20}(362.78) + \frac{16 - 15}{20 - 15}(517.35)$$

$$= 0.8(362.78) + 0.2(517.35)$$

$$= 393.7 \text{ m/s}.$$

For the second order polynomial interpolation (also called quadratic interpolation), we choose the velocity given by

$$v(t) = \sum_{i=0}^{2} L_i(t)v(t_i)$$

$$= L_0(t)v(t_0) + L_1(t)v(t_1) + L_2(t)v(t_2)$$

$$t_0 = 10, v(t_0) = 227.04$$

$$t_1 = 15, \ v(t_1) = 362.78$$

$$t_2 = 20, v(t_2) = 517.35$$

$$L_0(t) = \prod_{\substack{j=0\\j\neq 0}}^{2} \frac{t - t_j}{t_0 - t_j} = \left(\frac{t - t_1}{t_0 - t_1}\right) \left(\frac{t - t_2}{t_0 - t_2}\right)$$

$$L_1(t) = \prod_{\substack{j=0\\j\neq 1}}^2 \frac{t - t_j}{t_1 - t_j} = \left(\frac{t - t_0}{t_1 - t_0}\right) \left(\frac{t - t_2}{t_1 - t_2}\right)$$

$$L_{2}(t) = \prod_{\substack{j=0\\j\neq 2}}^{2} \frac{t - t_{j}}{t_{2} - t_{j}} = \left(\frac{t - t_{0}}{t_{2} - t_{0}}\right) \left(\frac{t - t_{1}}{t_{2} - t_{1}}\right)$$

$$v(t) = \left(\frac{t - t_1}{t_0 - t_1}\right) \left(\frac{t - t_2}{t_0 - t_2}\right) v(t_0) + \left(\frac{t - t_0}{t_1 - t_0}\right) \left(\frac{t - t_2}{t_1 - t_2}\right) v(t_1) + \left(\frac{t - t_0}{t_2 - t_0}\right) \left(\frac{t - t_1}{t_2 - t_1}\right) v(t_2)$$

$$v(16) = \left(\frac{16 - 15}{10 - 15}\right) \left(\frac{16 - 20}{10 - 20}\right) (227.04) + \left(\frac{16 - 10}{15 - 10}\right) \left(\frac{16 - 20}{15 - 20}\right) (36278) + \left(\frac{16 - 10}{20 - 10}\right) \left(\frac{16 - 15}{20 - 15}\right) (517.35)$$

$$= (-0.08)(227.04) + (0.96)(36278) + (0.12)(527.35)$$

$$= 39219 \text{ m/s}$$

The absolute relative approximate error $|\epsilon_a|$ obtained between the results from the first and second order polynomial is

$$\left| \in_{a} \right| = \left| \frac{39219 - 393.70}{39219} \right| \times 100$$

= 0.38410%

For the third order polynomial (also called cubic interpolation), we choose the velocity given by

$$v(t) = \sum_{i=0}^{3} L_i(t)v(t_i)$$

$$= L_0(t)v(t_0) + L_1(t)v(t_1) + L_2(t)v(t_2) + L_3(t)v(t_3)$$

$$t_o = 10, \ v(t_o) = 227.04$$
 $t_1 = 15, \ v(t_1) = 362.78$

$$t_2 = 20, \ v(t_2) = 517.35$$
 $t_3 = 22.5, \ v(t_3) = 602.97$

$$L_0(t) = \prod_{\substack{j=0\\j\neq 0}}^3 \frac{t-t_j}{t_0-t_j} = \left(\frac{t-t_1}{t_0-t_1}\right) \left(\frac{t-t_2}{t_0-t_2}\right) \left(\frac{t-t_3}{t_0-t_3}\right);$$

$$L_{1}(t) = \prod_{\substack{j=0\\j\neq 1}}^{3} \frac{t-t_{j}}{t_{1}-t_{j}} = \left(\frac{t-t_{0}}{t_{1}-t_{0}}\right) \left(\frac{t-t_{2}}{t_{1}-t_{2}}\right) \left(\frac{t-t_{3}}{t_{1}-t_{3}}\right)$$

$$L_2(t) = \prod_{\substack{j=0\\j\neq 2}}^3 \frac{t-t_j}{t_2-t_j} = \left(\frac{t-t_0}{t_2-t_0}\right) \left(\frac{t-t_1}{t_2-t_1}\right) \left(\frac{t-t_3}{t_2-t_3}\right);$$

$$L_3(t) = \prod_{\substack{j=0\\j\neq 3}}^3 \frac{t - t_j}{t_3 - t_j} = \left(\frac{t - t_0}{t_3 - t_0}\right) \left(\frac{t - t_1}{t_3 - t_1}\right) \left(\frac{t - t_2}{t_3 - t_2}\right)$$

$$v(t) = \left(\frac{t - t_1}{t_0 - t_1}\right) \left(\frac{t - t_2}{t_0 - t_2}\right) \left(\frac{t - t_3}{t_0 - t_3}\right) v(t_1) + \left(\frac{t - t_0}{t_1 - t_0}\right) \left(\frac{t - t_2}{t_1 - t_2}\right) \left(\frac{t - t_3}{t_1 - t_3}\right) v(t_2)$$

$$+ \left(\frac{t - t_0}{t_2 - t_0}\right) \left(\frac{t - t_1}{t_2 - t_1}\right) \left(\frac{t - t_3}{t_2 - t_3}\right) v(t_2) + \left(\frac{t - t_1}{t_3 - t_1}\right) \left(\frac{t - t_1}{t_3 - t_1}\right) \left(\frac{t - t_2}{t_3 - t_2}\right) v(t_3)$$

$$v(16) = \left(\frac{16 - 15}{10 - 15}\right) \left(\frac{16 - 20}{10 - 20}\right) \left(\frac{16 - 22.5}{10 - 22.5}\right) (227.04) + \left(\frac{16 - 10}{15 - 10}\right) \left(\frac{16 - 20}{15 - 20}\right) \left(\frac{16 - 22.5}{15 - 22.5}\right) (362.78)$$

$$+ \left(\frac{16 - 10}{20 - 10}\right) \left(\frac{16 - 15}{20 - 15}\right) \left(\frac{16 - 22.5}{20 - 22.5}\right) (517.35) + \left(\frac{16 - 10}{22.5 - 10}\right) \left(\frac{16 - 15}{22.5 - 15}\right) \left(\frac{16 - 20}{22.5 - 20}\right) (602.97)$$

$$= (-0.0416)(227.04) + (0.832)(362.78) + (0.312)(517.35) + (-0.1024)(602.97)$$

$$= 392.06 \,\text{m/s}$$

The absolute relative approximate error $|\epsilon_a|$ obtained between the results from the first and second order polynomial is

$$\left| \in_{a} \right| = \left| \frac{39206 - 39219}{39206} \right| \times 100$$

= 0.03326%

Comparison Table

Order of Polynomial	1	2	3
v(t=16) m/s	393.69	392.19	392.06
Absolute Relative Approximate Error		0.38410%	0.033269%

Distance from Velocity

Find the distance covered by the rocket from t=11 to t=16?

$$v(t) = (t^{3} - 57.5t^{2} + 1087.5t - 6750)(-0.36326) + (t^{3} - 52.5t^{2} + 875t - 4500)(1.9348)$$

$$+ (t^{3} - 47.5t^{2} + 712.5t - 3375)(-4.1388) + (t^{3} - 45t^{2} + 650t - 3000)(2.5727)$$

$$v(t) = -4.245 + 21.265t + 0.13195t^{2} + 0.00544t^{3}, \quad 10 \le t \le 22.5$$

$$s(16) - s(11) = \int_{11}^{16} v(t)dt$$

$$\approx \int_{11}^{16} (-4.245 + 21.265t + 0.13195t^{2} + 0.00544t^{3})dt$$

$$= [-4.245t + 21.265\frac{t^{2}}{2} + 0.13195\frac{t^{3}}{3} + 0.00544\frac{t^{4}}{4}]_{11}^{16}$$

= 1605 m

Acceleration from Velocity

Find the acceleration of the rocket at t=16s given that

$$v(t) = -4.245 + 21.265t + 0.13195t^{2} + 0.00544t^{3}, 10 \le t \le 22.5$$

$$a(t) = \frac{d}{dt}v(t) = \frac{d}{dt}\left(-4.245 + 21.265t + 0.13195t^{2} + 0.00544t^{3}\right)$$

$$= 21.265 + 0.26390t + 0.01632t^{2}$$

$$a(16) = 21.265 + 0.26390(16) + 0.01632(16)^{2}$$

$$= 29.665 m/s^{2}$$