ПРАКТИЧЕСКИЕ ЗАДАНИЯ

ПО КУРСУ "ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ"

6 заданий

Преподаватели: Герасимов Д.Н., Парамонов А.В.

2021г

ЗАДАНИЕ 1. Поиск минимума с помощью методов статической оптимизации

Найти минимум критерия качества для статической задачи оптимизации:

- 1. Поиск глобального минимума J(x,u) на основе необходимого и достаточного условий
 - 1.1. Без ограничений
 - 1.2. С ограничением в виде равенства c(x,u) = 0
 - 1.3. С ограничением в виде неравенства $c(x,u) \le 0$
 - 2. Градиентный поиск минимума критерия качества.

$$J_1(x,u) = J(x,u)$$

- 2.1. Методом Ньютона Рафсона произвести пошаговый расчет экстремума.
- 2.2. Методом наискорейшего спуска для двух различных γ (соответствующей колебательной и апериодической сходимости) произвести пошаговый расчет экстремума.

№ Bap.	J(x,u)	c(x,u)
1	$J(x,u) = 3x^2 + 2u^2 + 3xu + 4x + 5u - 20$	x+5u-1
2	$J(x,u) = 2x^2 + u^2 + 2xu + 3x + 5u - 10$	$x-2u^2$
3	$J(x,u) = 3x^2 + 3u^2 + 5xu + x + 2u - 4$	x + u - 10
4	$J(x,u) = 4x^2 + 2u^2 + 5xu - 2x + 3u - 8$	$2x+u^2-3$
5	$J(x,u) = 2x^2 + 6u^2 + 5xu + 10x + u - 5$	x+2u+2
6	$J(x,u) = 6x^2 + 2u^2 + 5xu - 3x - 2u - 12$	$4x^2 + u + 2$

		T
7	$J(x,u) = 6x^2 + 3u^2 + 7xu + 8x + u - 2$	3x-u+1
8	$J(x,u) = 3x^2 + 6u^2 + 7xu + x + 2u - 14$	$3x - u^2 + 1$
9	$J(x,u) = 4x^2 + 5u^2 + 7xu + 5x + 6u - 8$	$x-u^2-8$
10	$J(x,u) = 5x^2 + 4u^2 + 7xu + 11x + 2u - 3$	$-x + 2u^2 + 5$
11	$J(x,u) = 8x^2 + 6u^2 + 4xu + x + 3u - 10$	$3x - u^2 + 1$
12	$J(x,u) = 9x^2 + 5u^2 + 3xu + x + 8u - 5$	$x + 2u^2 + 7$
13	$J(x,u) = 5x^2 + 2u^2 + 3xu + 4x + u - 5$	$4x^2 + u + 1$
14	$J(x,u) = 7x^2 + 4u^2 + 4xu + 3x + 3u - 4$	$2x + 3u^2 + 2$
15	$J(x,u) = 4x^2 + 8u^2 + 5xu + 9x + 2u - 4$	$4x^2 + 2u + 7$
16	$J(x,u) = x^2 + 5u^2 + 3xu + 4x + 2u - 7$	$-2x + 5u^2 + 3$
17	$J(x,u) = 5x^2 + 2u^2 + 5xu + 4x + 3u - 15$	$x^2 - 5u + 6$
18	$J(x,u) = 6x^2 + u^2 + 4xu + 3x + 4u - 9$	$3x + 4u^2 - 7$
19	$J(x,u) = 3x^2 + 4u^2 + xu + 6x + 7u - 2$	$3x^2 + 5u - 5$
20	$J(x,u) = x^2 + 4u^2 + 3xu + 3x + 2u - 19$	$-2x+7u^2-3$
21	$J(x,u) = 8x^2 + 3u^2 + 6xu + x + 4u - 13$	$x^2 - 8u - 4$
22	$J(x,u) = 4x^2 + 5u^2 + xu + 2x + 8u - 3$	$2x + 6u^2 + 9$
23	$J(x,u) = 2x^2 + 3u^2 + 4xu + 8x + u - 4$	$2x^2 + 3u + 9$
24	$J(x,u) = x^2 + 6u^2 + 3xu + 8x + 3u - 5$	$-x + 4u^2 + 3$
25	$J(x,u) = 4x^2 + 4u^2 + 2xu + 3x + u - 11$	$4x^2 - 2u + 5$
26	$J(x,u) = 7x^2 + 9u^2 + 5xu + x + 6u - 1$	$3x + u^2 - 2$
27	$J(x,u) = 9x^2 + 7u^2 + 3xu + 5x + 5u - 6$	4x + 6u - 5
28	$J(x,u) = 8x^2 + 3u^2 + 7xu + 2x + 6u - 5$	-2x + 5u - 4
29	$J(x,u) = 4x^2 + 12u^2 + 5xu + 8x + u - 11$	x-3u-4
30	$J(x,u) = 3x^2 + 6u^2 + 4xu + 15x + 3u - 9$	2x + 2u + 5
31	$J(x,u) = 4x^2 + 3u^2 + 6xu + 9x + 2u - 7$	$8x^2 + 7u + 2$
32	$J(x,u) = 6x^2 + 7u^2 + 4xu + 2x + 3u - 5$	$-7x + 4u^2 + 8$
33	$J(x,u) = 9x^2 + 7u^2 + 11xu + 6x + 8u - 1$	$7x^2 - 3u + 2$
34	$J(x,u) = 5x^2 + 6u^2 + 8xu + 2x + u - 9$	$6x + 7u^2 - 2$
35	$J(x,u) = 3x^2 + 2u^2 + 4xu + 8x + 8u - 6$	$9x^2 + 5u - 1$
36	$J(x,u) = 2x^2 + 5u^2 + 6xu + 5x + 8u - 15$	$-9x + 3u^2 - 7$
37	$J(x,u) = 2x^2 + 6u^2 + 2xu + 2x + 3u - 8$	$9x^2 - 3u - 7$
38	$J(x,u) = 3x^2 + 4u^2 + 3xu + 7x + 3u - 6$	$8x + 2u^2 + 5$
39	$J(x,u) = 8x^2 + 3u^2 + 9xu + 3x + 5u - 2$	$4x^2 + 2u + 5$
<u></u>		

40	$J(x,u) = 9x^2 + 4u^2 + 5xu + 6x + 4u - 7$	$-2x + 2u^2 + 7$
41	$J(x,u) = 7x^2 + 8u^2 + 2xu + 5x + u - 2$	$4x^2 - 2u + 5$
42	$J(x,u) = 3x^2 + 8u^2 + 7xu + 3x + 3u - 2$	$3x + u^2 - 2$
43	$J(x,u) = x^2 + 9u^2 + 5xu + 2x + 6u - 6$	4x + 6u - 5
44	$J(x,u) = 6x^2 + 2u^2 + 4xu + 5x + 3u - 2$	-2x + 5u - 4
45	$J(x,u) = 7x^2 + u^2 + 2xu + 4x + 8u - 4$	x-3u-4
46	$J(x,u) = 4x^2 + 4u^2 + 6xu + 3x + 3u - 1$	$6x^2 - 5u + 9$
47	$J(x,u) = 4x^2 + 6u^2 - 7xu - 5x - 6u - 2$	$2x + 5u^2 - 1$
48	$J(x,u) = 3x^2 + 5u^2 - 5xu - 9x - 11u - 6$	$7x-6u^2-2$
49	$J(x,u) = 6x^2 + 9u^2 - 2xu - 7x - 4u - 2$	$-5x + 7u^2 + 4$
50	$J(x,u) = 2x^2 + 2u^2 - 3xu - x - 6u - 4$	$5x - 8u^2 + 3$

ЗАДАНИЕ 2. Синтез оптимального регулятора для линейного стационарного объекта

1. Рассчитать коэффициенты оптимального регулятора для линейного объекта

$$\dot{x} = Ax + bu$$
, $x(0)$.

Структура регулятора u = -Kx. Расчет произвести на основе уравнения Риккати

$$A^{T}P + PA + Q - Pbr^{-1}b^{T}P = 0,$$

$$K = r^{-1}b^{T}P,$$

и критерия качества вида

$$J = \int_{0}^{\infty} x^{T}(\tau)Qx(\tau) + ru^{2}(\tau)d\tau.$$

- 2. Произвести моделирование замкнутой системы при начальных условиях $x(0) = [1, 0]^T$. Построить графики моделирования x_1, x_2, u и J. Рассчитать установившееся значение J.
- 3. Незначительно отклонить расчетные значения K так, чтобы система сохранила устойчивость, и повторить п. 2 при том же времени моделирования. Сравнить с результатами п. 2 и сделать выводы.
- 4. Провести моделирование для трех разных значений параметра r и трех разных матриц Q при условиях, что r > 0, $Q = kQ^*$, k положительный коэффициент, матрица Q^* равна исходной матрице Q в соответствии с вариантом задания. По результатам экспериментов построить графики моделирования x_1, x_2, u и J.

Bap.	Матрица	Матрица	Матрица	Параметр
Bup.	A	b	Q	r
1	$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	1
2	$\begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	2

3	$\begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	3
4	$\begin{bmatrix} 0 & 1 \\ 1 & 4 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$	4
5	$\begin{bmatrix} 0 & 1 \\ -2 & 5 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$	5
6	$\begin{bmatrix} 0 & 1 \\ 9 & -1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$	1
7	$\begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$	2
8	$\begin{bmatrix} 0 & 1 \\ 2 & 2 \end{bmatrix}$	$\begin{bmatrix} 5 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$	3
9	$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 5 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$	4
10	$\begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$	5
11	$\begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 10 & 0 \\ 0 & 2 \end{bmatrix}$	1
12	$\begin{bmatrix} 0 & 1 \\ 1 & -6 \end{bmatrix}$	$\begin{bmatrix} 8 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$	1
13	$\begin{bmatrix} 0 & 1 \\ 4 & 3 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 6 \end{bmatrix}$	$\begin{bmatrix} 6 & 0 \\ 0 & 3 \end{bmatrix}$	2
14	$\begin{bmatrix} 0 & 1 \\ -6 & 4 \end{bmatrix}$	$\begin{bmatrix} 7 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 0 & 9 \end{bmatrix}$	3
15	$\begin{bmatrix} 0 & 1 \\ -3 & 6 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 0 & 7 \end{bmatrix}$	4

16	$\begin{bmatrix} 0 & 1 \\ -7 & 2 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 8 \end{bmatrix}$	$\begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$	5
17	$\begin{bmatrix} 0 & 1 \\ 8 & -9 \end{bmatrix}$	$\begin{bmatrix} 5 \\ 6 \end{bmatrix}$	$\begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}$	1
18	$\begin{bmatrix} 0 & 1 \\ 5 & -3 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 6 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$	2
19	$\begin{bmatrix} 0 & 1 \\ 6 & 2 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 5 \end{bmatrix}$	$\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$	3
20	$\begin{bmatrix} 0 & 1 \\ 4 & -9 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 7 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$	4
21	$\begin{bmatrix} 0 & 1 \\ 5 & -4 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$	5
22	$\begin{bmatrix} 0 & 1 \\ 4 & 11 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 10 & 0 \\ 0 & 2 \end{bmatrix}$	1
23	$\begin{bmatrix} 0 & 1 \\ -2 & 9 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 8 \end{bmatrix}$	$\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$	1
24	$\begin{bmatrix} 0 & 1 \\ 4 & -6 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	2
25	$\begin{bmatrix} 0 & 1 \\ 0 & 7 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	3
26	$\begin{bmatrix} 0 & 1 \\ 7 & -2 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 7 \end{bmatrix}$	$\begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$	4
27	$\begin{bmatrix} 0 & 1 \\ 3 & 8 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 7 \end{bmatrix}$	$\begin{bmatrix} 3 & 0 \\ 0 & 6 \end{bmatrix}$	5
28	$\begin{bmatrix} 0 & 1 \\ 4 & -5 \end{bmatrix}$	$\begin{bmatrix} 9 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 9 & 0 \\ 0 & 7 \end{bmatrix}$	1

29	$\begin{bmatrix} 0 & 1 \\ 10 & 6 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 7 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$	2
30	$\begin{bmatrix} 0 & 1 \\ 5 & -3 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 9 \end{bmatrix}$	$\begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}$	3
31	$\begin{bmatrix} 0 & 1 \\ -2 & 4 \end{bmatrix}$	$\begin{bmatrix} 8 \\ 9 \end{bmatrix}$	$\begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$	4
32	$\begin{bmatrix} 0 & 1 \\ -3 & 5 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 9 \end{bmatrix}$	$\begin{bmatrix} 5 & 0 \\ 0 & 8 \end{bmatrix}$	5
33	$\begin{bmatrix} 0 & 1 \\ 2 & -5 \end{bmatrix}$	$\begin{bmatrix} 5 \\ 6 \end{bmatrix}$	$\begin{bmatrix} 6 & 0 \\ 0 & 8 \end{bmatrix}$	1
34	$\begin{bmatrix} 0 & 1 \\ 4 & -7 \end{bmatrix}$	$\begin{bmatrix} 5 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 9 & 0 \\ 0 & 11 \end{bmatrix}$	2
35	$\begin{bmatrix} 0 & 1 \\ 8 & 5 \end{bmatrix}$	$\begin{bmatrix} 9 \\ 5 \end{bmatrix}$	$\begin{bmatrix} 5 & 0 \\ 0 & 6 \end{bmatrix}$	3
36	$\begin{bmatrix} 0 & 1 \\ 1 & -4 \end{bmatrix}$	$\begin{bmatrix} 6 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 5 & 0 \\ 0 & 6 \end{bmatrix}$	4
37	$\begin{bmatrix} 0 & 1 \\ 3 & -1 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 9 & 0 \\ 0 & 6 \end{bmatrix}$	5
38	$\begin{bmatrix} 0 & 1 \\ 5 & 4 \end{bmatrix}$	$\begin{bmatrix} 9 \\ 5 \end{bmatrix}$	$\begin{bmatrix} 5 & 0 \\ 0 & 11 \end{bmatrix}$	1
39	$\begin{bmatrix} 0 & 1 \\ -3 & 8 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 5 \end{bmatrix}$	$\begin{bmatrix} 7 & 0 \\ 0 & 6 \end{bmatrix}$	1
40	$\begin{bmatrix} 0 & 1 \\ 3 & -3 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$	2
41	$\begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix}$	$\begin{bmatrix} 6 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$	3

42	$\begin{bmatrix} 0 & 1 \\ 5 & -6 \end{bmatrix}$	$\begin{bmatrix} 9 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 7 & 0 \\ 0 & 8 \end{bmatrix}$	4
43	$\begin{bmatrix} 0 & 1 \\ 9 & 2 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 5 \end{bmatrix}$	$\begin{bmatrix} 8 & 0 \\ 0 & 3 \end{bmatrix}$	5
44	$\begin{bmatrix} 0 & 1 \\ 6 & -4 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 7 \end{bmatrix}$	$\begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$	1
45	$\begin{bmatrix} 0 & 1 \\ 0 & 4 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 5 \end{bmatrix}$	$\begin{bmatrix} 5 & 0 \\ 0 & 6 \end{bmatrix}$	2
46	$\begin{bmatrix} 0 & 1 \\ 7 & 0 \end{bmatrix}$	$\begin{bmatrix} 5 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 7 & 0 \\ 0 & 5 \end{bmatrix}$	3
47	$\begin{bmatrix} 0 & 1 \\ 3 & -1 \end{bmatrix}$	$\begin{bmatrix} 5 \\ 7 \end{bmatrix}$	$\begin{bmatrix} 4 & 0 \\ 0 & 5 \end{bmatrix}$	4
48	$\begin{bmatrix} 0 & 1 \\ 2 & 4 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 6 & 0 \\ 0 & 7 \end{bmatrix}$	5
49	$\begin{bmatrix} 0 & 1 \\ 4 & -3 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 8 & 0 \\ 0 & 5 \end{bmatrix}$	1
50	$\begin{bmatrix} 0 & 1 \\ 2 & 5 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix}$	2

ЗАДАНИЕ 3. Синтез оптимального наблюдателя (фильтра Калмана)

Дан объект управления

$$\dot{x} = Ax + bu + Gw, x(0),$$

$$y = Cx + v,$$

где w, v — сигналы вида "белый шум" с нулевыми математическими ожиданиями $M\left\{w\right\}=M\left\{v\right\}=0$ и автокорреляционными функциями $M\left\{w(t)w^{T}(\tau)\right\}=W\delta(t-\tau), M\left\{v(t)v(\tau)\right\}=V\delta(t-\tau)$ с известными постоянными спектральными плотностями (энергиями) W и V соответственно.

Задача заключается в построении оптимального наблюдателя, генерирующего оценку \hat{x} :

$$||x(t) - \hat{x}(t)|| \le \Delta \quad \forall t \ge T$$
,

где Δ и T — максимальная ошибка и время настройки наблюдателя соответственно. Критерий оптимальности представлен следующим функционалом:

$$J = M \left\{ e_H^T e_H \right\}$$

где $e_{H}=x-\hat{x}$ — ошибка наблюдения, $M\left\{ \cdot \right\}$ — математическое ожидание.

Наблюдатель задается следующей структурой:

$$\dot{\hat{x}} = A\hat{x} + bu + L(y - C\hat{x}) \ \hat{x}(0),$$

где матрица L рассчитывается на основе уравнения Риккати

$$AP + PA^{T} + GWG^{T} - PC^{T}V^{-1}CP = 0,$$

$$L = PC^{T}V^{-1}.$$

Порядок выполнения

1. На основе известных матриц A, b, приведенных в таблице, матрицы $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$, матрицы G = I, а также G, W и V рассчитать матрицу L.

- 2. Произвести моделирование замкнутой системы при начальных условиях $x(0) = [1, 0]^T$. Построить графики моделирования $e_{H\,1}, e_{H\,2}$ и J. Рассчитать J. Моделирование провести для $u = \sin t$.
- 3. Незначительно отклонить расчетные значения L так, чтобы наблюдатель сохранил устойчивость и повторить п. 2 при том же времени моделирования. Сравнить с результатами п. 2 и сделать выводы.
- 4. Отклонить значения W так, чтобы матрица оставалась положительно определенной и симметричной и повторить п. 2 при том же времени моделирования. Сравнить с результатами п. 2 и сделать выводы.
- 5. Отклонить значение V так, чтобы величина V оставалась положительной и повторить п. 3 при том же времени моделирования. Сравнить с результатами п. 3 и сделать выводы.

Bap.	Матрицы	Матрица	Парам.	Bap.	Матрицы	Матрица	Парам.
Dap.	A,b	W	V	Dap.	A,b	W	V
1	$\begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 3 & 2 \\ 2 & 4 \end{bmatrix}$	1	26	$\begin{bmatrix} 0 & 1 \\ -8 & -4 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 4 & 5 \\ 5 & 7 \end{bmatrix}$	1
2	$\begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 1.5 \\ 1.5 & 2 \end{bmatrix}$	2	27	$\begin{bmatrix} 0 & 1 \\ -5 & -7 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 6 & 3.5 \\ 3.5 & 4 \end{bmatrix}$	2
3	$\begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 4 & 1 \\ 1 & 1 \end{bmatrix}$	3	28	$ \begin{bmatrix} -4 & 1 \\ 0 & -3 \end{bmatrix} $ $ \begin{bmatrix} 6 \\ 4 \end{bmatrix} $	$\begin{bmatrix} 3 & 4 \\ 4 & 9 \end{bmatrix}$	3
4	$\begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 3 & 2 \\ 2 & 2 \end{bmatrix}$	4	29	$\begin{bmatrix} -5 & 0 \\ 0 & -5 \end{bmatrix}$	$\begin{bmatrix} 3 & 2 \\ 2 & 2 \end{bmatrix}$	4

	$\begin{bmatrix} 3 \\ 1 \end{bmatrix}$			$\begin{bmatrix} 6 \\ 2 \end{bmatrix}$
5	$\begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 5 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$	5	$ \begin{array}{c c} 30 & \begin{bmatrix} 0 & -4 \\ 1 & -4 \end{bmatrix} & \begin{bmatrix} 4 & 3.5 \\ 3.5 & 5 \end{bmatrix} & 5 \end{array} $
6	$\begin{bmatrix} 0 & -6 \\ 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$	1	$ \begin{array}{c c} 31 & \begin{bmatrix} 0 & -9 \\ 1 & -4 \end{bmatrix} & \begin{bmatrix} 7 & 5 \\ 5 & 6 \end{bmatrix} & 1 \end{array} $
7	$\begin{bmatrix} 0 & 1 \\ -1 & -5 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 2.5 \\ 2.5 & 4 \end{bmatrix}$	2	$32 \begin{bmatrix} 0 & 1 \\ -4 & -3 \end{bmatrix} \begin{bmatrix} 5 & 4.5 \\ 4.5 & 6 \end{bmatrix} \qquad 2$
8	$\begin{bmatrix} -2 & 1 \\ 0 & -2 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 \\ 1 & 7 \end{bmatrix}$	3	$ \begin{array}{c c} 33 & \begin{bmatrix} -5 & 1 \\ 0 & -4 \end{bmatrix} & \begin{bmatrix} 3 & 4 \\ 4 & 9 \end{bmatrix} & 3 \end{array} $
9	$\begin{bmatrix} 0 & 1 \\ -1 & -5 \end{bmatrix}$ $\begin{bmatrix} 5 \\ 6 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$	4	$ \begin{array}{c c} 34 & \begin{bmatrix} 0 & 1 \\ -4 & -6 \end{bmatrix} & \begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix} & 4 \end{array} $
10		$\begin{bmatrix} 6 & 3 \\ 3 & 2 \end{bmatrix}$	5	$ \begin{array}{c cccc} 35 & \begin{bmatrix} 0 & -7 \\ 1 & -6 \end{bmatrix} & \begin{bmatrix} 8 & 5 \\ 5 & 6 \end{bmatrix} & 5 \\ & & & & & & & & & & & & & & & & & & $

11	$\begin{bmatrix} -5 & 0 \\ 0 & -2 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 10 & 2 \\ 2 & 1 \end{bmatrix}$	7	$ \begin{array}{c cccc} 36 & \begin{bmatrix} -1 & 0 \\ 0 & -6 \end{bmatrix} & \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} & 7 \end{array} $
12	$\begin{bmatrix} 0 & -3 \\ 1 & -6 \end{bmatrix}$ $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 7 & 2 \\ 2 & 6 \end{bmatrix}$	1	$ \begin{array}{c c} 37 & \begin{bmatrix} 0 & -2 \\ 1 & -7 \end{bmatrix} \\ $
13	$\begin{bmatrix} 0 & 1 \\ -4 & -7 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$	7 4.5 4.5 6	2	$ \begin{array}{c c} 38 & \begin{bmatrix} 0 & 1 \\ -7 & -6 \end{bmatrix} \\ \begin{bmatrix} 2 \\ 1 \end{bmatrix} & \begin{bmatrix} 9 & 7.5 \\ 7.5 & 8 \end{bmatrix} & 2 \end{array} $
14	$\begin{bmatrix} -3 & 1 \\ 0 & -4 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 3 & 4 \\ 4 & 8 \end{bmatrix}$	3	$ \begin{array}{c c} & \begin{bmatrix} -5 & 1 \\ 0 & -9 \end{bmatrix} \\ & \begin{bmatrix} 6 \\ 5 \end{bmatrix} & \begin{bmatrix} 9 & 4 \\ 4 & 6 \end{bmatrix} & 3 \end{array} $
15	$\begin{bmatrix} 0 & 1 \\ -3 & -2 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 8 \end{bmatrix}$	$\begin{bmatrix} 9 & 4 \\ 4 & 3 \end{bmatrix}$	4	$ \begin{array}{c c} 40 & \begin{bmatrix} 0 & 1 \\ -2 & -8 \end{bmatrix} & \begin{bmatrix} 3 & 1 \\ 1 & 7 \end{bmatrix} & 4 \\ $
16	$\begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 3 & 4 \\ 4 & 7 \end{bmatrix}$	4	$ \begin{array}{c c} 41 & \begin{bmatrix} -9 & 1 \\ 0 & -6 \end{bmatrix} \\ \begin{bmatrix} 4 \\ 2 \end{bmatrix} & \begin{bmatrix} 7 & 4 \\ 4 & 5 \end{bmatrix} & 3 \end{array} $
17	$\begin{bmatrix} 0 & -5 \\ 1 & -5 \end{bmatrix}$	$\begin{bmatrix} 5 & 2 \\ 2 & 3 \end{bmatrix}$	5	$42 \begin{bmatrix} 0 & 1 \\ -6 & -7 \end{bmatrix} \begin{bmatrix} 9 & 8 \\ 8 & 9 \end{bmatrix} \qquad 4$

	$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$			
18	$\begin{bmatrix} -3 & 0 \\ 0 & -5 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 6 & 6 \\ 6 & 8 \end{bmatrix}$	7	$ \begin{array}{c c} & \begin{bmatrix} 0 & -9 \\ 1 & -9 \end{bmatrix} \\ & \begin{bmatrix} 3 \\ 7 \end{bmatrix} & \begin{bmatrix} 7 & 5 \\ 5 & 4 \end{bmatrix} & 5 \end{array} $
19	$\begin{bmatrix} 0 & -8 \\ 1 & -4 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 7 & 2 \\ 2 & 6 \end{bmatrix}$	1	$ \begin{array}{c cccc} 44 & \begin{bmatrix} -3 & 0 \\ 0 & -1 \end{bmatrix} & \begin{bmatrix} 9 & 6 \\ 6 & 5 \end{bmatrix} & 7 \\ & \begin{bmatrix} 1 \\ 9 \end{bmatrix} & \begin{bmatrix} 9 & 6 \\ 6 & 5 \end{bmatrix} & 7 \end{array} $
20	$\begin{bmatrix} 0 & 1 \\ -3 & -6 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 7 & 5 \\ 5 & 9 \end{bmatrix}$	2	$ \begin{array}{c cccc} & \begin{bmatrix} 0 & -4 \\ 1 & -6 \end{bmatrix} & \begin{bmatrix} 8 & 3 \\ 3 & 2 \end{bmatrix} & 1 \\ & \begin{bmatrix} 4 \\ 0 \end{bmatrix} & \begin{bmatrix} 4 \\ 0 \end{bmatrix} & \begin{bmatrix} 8 & 3 \\ 3 & 2 \end{bmatrix} & 1 \end{array} $
21	$\begin{bmatrix} -5 & 1 \\ 0 & -8 \end{bmatrix}$ $\begin{bmatrix} 6 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 8 & 3 \\ 3 & 2 \end{bmatrix}$	3	$ \begin{array}{c cccc} & \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} & \begin{bmatrix} 9 & 7 \\ 7 & 6 \end{bmatrix} & 2 \\ & \begin{bmatrix} 5 \\ 4 \end{bmatrix} & \begin{bmatrix} 5 \\ 4 \end{bmatrix} \end{array} $
22	$\begin{bmatrix} 0 & 1 \\ -8 & -6 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 5 \end{bmatrix}$	$\begin{bmatrix} 11 & 3 \\ 3 & 2 \end{bmatrix}$	4	$ \begin{array}{c c} & \begin{bmatrix} -3 & 1 \\ 0 & -4 \end{bmatrix} \\ & \begin{bmatrix} 3 & 4 \\ 4 & 6 \end{bmatrix} \end{array} $ $ 3 $
23	$\begin{bmatrix} 0 & 1 \\ -9 & -2 \end{bmatrix}$ $\begin{bmatrix} 8 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 7 & 4 \\ 4 & 5 \end{bmatrix}$	4	$ \begin{array}{c c} 48 & \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} \\ $

24	$\begin{bmatrix} 0 & 1 \\ -1 & -3 \end{bmatrix}$ $\begin{bmatrix} 5 \\ 6 \end{bmatrix}$	$\begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix}$	5	$\begin{bmatrix} 49 & \begin{bmatrix} 0 & 1 \\ -6 & -6 \end{bmatrix} & \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} & 5$
25	$\begin{bmatrix} 0 & 1 \\ -5 & -8 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 6 \end{bmatrix}$	$\begin{bmatrix} 7 & 2 \\ 2 & 8 \end{bmatrix}$	6	$ \begin{array}{c cccc} 50 & \begin{bmatrix} -2 & 1 \\ 0 & -1 \end{bmatrix} & \begin{bmatrix} 5 & 2 \\ 2 & 3 \end{bmatrix} & 6 \end{array} $

ЗАДАНИЕ 4. Синтез оптимального управления. Принцип максимума

Порядок выполнения

- 1. Построить оптимальный в смысле заданного критерия регулятор и промоделировать его работу на заданном интервале времени.
- 2. Построить графики управления, переменных состояния и критерия.
- 3. Рассчитать критерий при отклонениях параметров регулятора от оптимальных значений.

Bap	Объект	Критерий	Начальные условия и ограничения
1	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = u \end{cases}$	$J = \int_{0}^{1} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(1) = 1, x_2(1) = 0$
2	$\dot{x} = -2x + u$	$J = \int_0^1 x^2(\tau) + u^2(\tau)d\tau$	x(1) = 5
3	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -x_1 + u \end{cases}$	$J = \int_{0}^{\pi} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(\pi) = 1, x_2(\pi) = 0$
4	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -4x_1 + u \end{cases}$	$J = \int_{0}^{1} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(1) = 10, x_2(1) = 0$
5	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -6x_1 - 5x_2 + u \end{cases}$	$J = \int_{0}^{4} x_{1}^{2} + 4x_{2}^{2} + 5u^{2}(\tau)d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(4) = 1, x_2(4) = 0$
6	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = u \end{cases}$	$J = \int_{0}^{5} 3u^{2}(\tau)d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(5) = 1, x_2(5) = 0$
7	$\dot{x} = u$	$J = \int_{0}^{6} 4x^{2}(\tau) + 9u^{2}(\tau)d\tau$	x(6) = 6

8	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -9x_1 + u \end{cases}$	$J = \int_{0}^{\pi/2} u^2(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(\pi) = 2,$ $x_2(\pi/2) = 0$
9	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -x_1 - 2x_2 + u \end{cases}$	$J = \int_{0}^{1} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(1) = 100,$ $x_2(1) = 0$
10	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = x_1 + x_2 + u \end{cases}$	$J = \int_{0}^{3} (x_1^2 + 2x_1 x_1 + 4x_2^2 + u^2(\tau) d\tau)$	$x_1(0) = x_2(0) = 0,$ $x_1(3) = 1,$ $x_2(3) = 0$
11	$\begin{cases} \dot{x}_1 = 4x_2, \\ \dot{x}_2 = x_1 + u \end{cases}$	$J = \int_{0}^{9} (x_1^2 + 2x_1 x_2 + 9x_2^2 + 7u^2(\tau))d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(9) = 1,$ $x_2(9) = 0$
12	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -x_1 + u \end{cases}$	$J = \int_{0}^{2} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(2) = 1,$ $x_2(2) = 0$
13	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -x_1 + u \end{cases}$	$J = \int_{0}^{1} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(1) = 2, x_2(1) = 0$
14	$\dot{x} = -4x + u$	$J = \int_{0}^{1} 2x^{2}(\tau) + 5u^{2}(\tau)d\tau$	x(1) = 4
15	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -3x_1 - 6x_2 + u \end{cases}$	$J = \int_{0}^{\pi} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(\pi) = 7, x_2(\pi) = 0$
16	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -7x_1 + u \end{cases}$	$J = \int_{0}^{1} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(1) = 3, x_2(1) = 0$
17	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -2x_1 - 9x_2 + u \end{cases}$	$J = \int_{0}^{6} 3x_{1}^{2} + 3x_{2}^{2} + 6u^{2}(\tau)d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(6) = 2, x_2(6) = 0$
18	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -5x_2 + u \end{cases}$	$J = \int_{0}^{9} 5u^{2}(\tau)d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(9) = 1, x_2(9) = 0$

19	$\dot{x} = u$	$J = \int_{0}^{7} 11x^{2}(\tau) + 5u^{2}(\tau)d\tau$	x(7) = 7
20	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -3x_1 + u \end{cases}$	$J = \int_{0}^{\pi} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(\pi) = 2,$ $x_2(\pi) = 0$
21	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -3x_1 - 6x_2 + u \end{cases}$	$J = \int_{0}^{1} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(1) = 10,$ $x_2(1) = 0$
22	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = 3x_1 + 2x_2 + u \end{cases}$	$J = \int_{0}^{8} (x_1^2 + x_1 x_1 + 3x_2^2 + u^2(\tau)) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(8) = 4,$ $x_2(8) = 0$
23	$\begin{cases} \dot{x}_1 = 2x_2, \\ \dot{x}_2 = 8x_1 + u \end{cases}$	$J = \int_{0}^{4} (x_1^2 + 5x_1 x_2 + 7x_2^2 + 3u^2(\tau))d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(4) = 5,$ $x_2(8) = 0$
	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -6x_1 + u \end{cases}$	$J = \int_{0}^{9} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(9) = 3,$ $x_2(9) = 0$
25	$\begin{cases} \dot{x}_1 = 11x_2, \\ \dot{x}_2 = u \end{cases}$	$J = \int_{0}^{3} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(3) = 3, x_2(3) = 0$
26	$\dot{x} = -6x + u$	$J = \int_{0}^{4} x^{2}(\tau) + u^{2}(\tau)d\tau$	x(4) = 8
27	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -9x_1 + u \end{cases}$	$J = \int_{0}^{\pi} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(\pi) = 4, x_2(\pi) = 0$
28	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -6x_1 + u \end{cases}$	$J = \int_{0}^{4} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(4) = 70, x_2(4) = 0$
29	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -5x_1 - 8x_2 + u \end{cases}$	$J = \int_{0}^{5} 7x_{1}^{2} + 3x_{2}^{2} + 2u^{2}(\tau)d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(5) = 7, x_2(5) = 0$

30	$\begin{cases} \dot{x}_1 = 3x_2, \\ \dot{x}_2 = u \end{cases}$	$J = \int_{0}^{2} 5u^{2}(\tau)d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(2) = 4, x_2(2) = 0$
31	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -8x_1 + u \end{cases}$	$J = \int_{0}^{3} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(3) = 5, x_2(3) = 0$
32	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -6x_1 - 3x_2 + u \end{cases}$	$J = \int_{0}^{t} 5x_{1}^{2} + 2x_{2}^{2} + 7u^{2}(\tau)d\tau$	-
33	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -7x_2 + u \end{cases}$	$J = \int_{0}^{8} 4u^{2}(\tau)d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(8) = 2, x_2(8) = 0$
34	$\dot{x} = u$	$J = \int_0^4 8x^2(\tau) + 5u^2(\tau)d\tau$	x(4) = 6
35	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -4x_1 + u \end{cases}$	$J = \int_{0}^{\pi/6} u^2(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(\pi/6) = 3,$ $x_2(\pi/6) = 0$
36	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -7x_1 - 5x_2 + u \end{cases}$	$J = \int_{0}^{4} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(4) = 9,$ $x_2(4) = 0$
37	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = 6x_1 + 4x_2 + u \end{cases}$	$J = \int_{0}^{2} (4x_{1}^{2} + 2x_{1}x_{1} + x_{2}^{2} + 2u^{2}(\tau)d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(2) = 5,$ $x_2(2) = 0$
38	$\begin{cases} \dot{x}_1 = 4x_2, \\ \dot{x}_2 = -3x_1 - 7x_2 + u \end{cases}$	$J = \int_{0}^{6} (2x_1^2 + 3x_1x_2 + 3x_2^2 + 4u^2(\tau))d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(6) = 7,$ $x_2(6) = 0$
39	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -5x_1 + u \end{cases}$	$J = \int_{0}^{5} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(5) = 4,$ $x_2(5) = 0$
40	$\begin{cases} \dot{x}_1 = 4x_2, \\ \dot{x}_2 = u \end{cases}$	$J = \int_{0}^{5} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(5) = 3, x_2(5) = 0$

41	$\dot{x} = -2x + u$	$J = \int_0^7 x^2(\tau) + u^2(\tau)d\tau$	x(7) = 5
42	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -5x_1 + u \end{cases}$	$J = \int_{0}^{\pi/4} u^2(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(\pi/4) = 7,$ $x_2(\pi/4) = 0$
43	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -7x_1 + u \end{cases}$	$J = \int_{0}^{6} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(6) = 13, x_2(6) = 0$
44	$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -3x_1 - 7x_2 + u \end{cases}$	$J = \int_{0}^{9} 2x_{1}^{2} + 4x_{2}^{2} + 7u^{2}(\tau)d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(9) = 4, x_2(9) = 0$
45	$\begin{cases} \dot{x}_1 = 4x_2, \\ \dot{x}_2 = u \end{cases}$	$J = \int_{0}^{3} 8u^{2}(\tau)d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(3) = 9, x_2(3) = 0$
46	$\begin{cases} \dot{x}_1 = 3x_2, \\ \dot{x}_2 = 2x_1 + 4u \end{cases}$	$J = \int_{0}^{5} (4x_{1}^{2} + 3x_{1}x_{2} + 5x_{2}^{2} + 2u^{2}(\tau))d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(5) = 6,$ $x_2(5) = 3$
47	$\begin{cases} \dot{x}_1 = 5x_2, \\ \dot{x}_2 = -6x_1 + 2u \end{cases}$	$J = \int_{0}^{4} u^{2}(\tau)d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(4) = 4,$ $x_2(4) = 5$
48	$\begin{cases} \dot{x}_1 = 4x_2, \\ \dot{x}_2 = -11x_1 + 5u \end{cases}$	$J = \int_{0}^{5} u^{2}(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(5) = 3, x_2(5) = 6$
49	$\dot{x} = -7x + 6u$	$J = \int_{0}^{9} 3x^{2}(\tau) + 2u^{2}(\tau)d\tau$	x(9) = 7
50	$\begin{cases} \dot{x}_1 = 4x_2, \\ \dot{x}_2 = -7x_1 - x_2 + 6u \end{cases}$	$J = \int_{0}^{\pi/2} u^2(\tau) d\tau$	$x_1(0) = x_2(0) = 0,$ $x_1(\pi/2) = 2,$ $x_2(\pi/2) = 3$

ЗАДАНИЕ 5. Синтез оптимального управления. Метод динамического программирования Беллмана

1. Дан линейный объект управления

$$\dot{x} = Ax + bu$$
, $x(0)$

и критерий качества

$$J = \int_{0}^{\infty} x^{T}(\tau)Qx(\tau) + ru^{2}(\tau)d\tau.$$

Построить оптимальный регулятор с помощью метода динамического программирования Беллмана и промоделировать его работу на заданном интервале времени.

- 2. Параметры A,b,Q,r взять из задания 2. Начальные условия выбрать $x(0) = [1,0]^T$. Построить графики управления u, переменных состояния x_1, x_2 и критерия J.
- 3. Построить критерий при отклонениях параметров регулятора от оптимальных значений.

ЗАДАНИЕ 6. Синтез оптимального управления. H_{∞} -оптимизация

1. Дан возмущённый линейный объект управления

$$\dot{x} = Ax + Bu + B_f f, x(0).$$

Построить H_{∞} -оптимальный регулятор вида u = Kx. Расчет произвести на основе уравнения Риккати

$$A^{T}P + PA + Q - PBB^{T}P + \gamma^{-2}PB_{f}B_{f}^{T}P = 0,$$

$$K = -B^{T}P.$$

- 2. Экспериментально определить минимальное значение коэффициента $\gamma = \gamma_{\min}$, при котором существует положительно полуопределённая матрица P в качестве решения уравнения Риккати.
- 3. Начальные условия выбрать $x(0) = [1, 0]^T$, возмущение $f = 10\sin 6t + 5\cos 2t + 4\cos 3t + 3\cos 8t$.
- 4. Для γ_{\min} построить графики управления u и переменных состояния x_1, x_2 .
- 5. Определить H_{∞} -нормы передаточных функций $C_1(Is-(A+BK))^{-1}B_f$ и $C_2(Is-(A+BK))^{-1}B_f$, где $C_1=\begin{bmatrix}1&0\end{bmatrix}$ и $C_2=\begin{bmatrix}0&1\end{bmatrix}$.
- 6. Определить H_{∞} -норму передаточной функции $(Is (A + BK))^{-1}B_f$

Bap.	A	В	\pmb{B}_f	Q	Bap.	A	В	B_f	Q
1	$\begin{bmatrix} 2 & 6 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 10 & 0 \\ 0 & 2 \end{bmatrix}$	26	$\begin{bmatrix} 5 & -4 \\ 9 & -1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 6 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$
2	$\begin{bmatrix} -6 & 2 \\ 7 & 0 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 8 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$	27	$\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 7 \end{bmatrix}$	$\begin{bmatrix} 3 & 0 \\ 0 & 6 \end{bmatrix}$
3	$\begin{bmatrix} 3 & 1 \\ 4 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 6 \end{bmatrix}$	$\begin{bmatrix} 6 & 0 \\ 0 & 3 \end{bmatrix}$	28	$\begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix}$	$\begin{bmatrix} 8 \\ 8 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 7 \end{bmatrix}$	$\begin{bmatrix} 9 & 0 \\ 0 & 7 \end{bmatrix}$
4	$\begin{bmatrix} 4 & 5 \\ -6 & 0 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 7 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 0 & 9 \end{bmatrix}$	29	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 9 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$
5	$\begin{bmatrix} 6 & 2 \\ -3 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 0 & 7 \end{bmatrix}$	30	$\begin{bmatrix} 4 & 1 \\ 0 & 9 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 7 \end{bmatrix}$	$\begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}$

			1			1					
6	$\begin{bmatrix} 2 & 3 \\ 7 & 0 \end{bmatrix}$		$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 4 \end{bmatrix}$	31	$\begin{bmatrix} 7 & -4 \\ 5 & 6 \end{bmatrix}$	$\begin{bmatrix} 5 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 4 \end{bmatrix}$
	<u></u>] [0]	[8]	[0	4		[5 6]		[9]	[0	4
7	$\begin{bmatrix} -9 & 2 \end{bmatrix}$	$ \left \begin{array}{c c} 2 \end{array} \right $	$\lceil 5 \rceil$	3	$\begin{bmatrix} 0 \end{bmatrix}$	32	[-9 1]	$\lceil 3 \rceil$	$\lceil 8 \rceil$	\[\[5	$\begin{bmatrix} 0 \end{bmatrix}$
	8 0		[6]	0	5		_4 1	$\lfloor 3 \rfloor$	[9]	0	8
8	$\begin{bmatrix} -3 & 7 \end{bmatrix}$	7 5	$\lceil 0 \rceil$	Γ2	[0	33	∫ 5 −1	$\lceil 4 \rceil$	$\lceil 4 \rceil$	Γ6	$\lceil 0 \rceil$
	$\begin{bmatrix} 5 & 0 \end{bmatrix}$		[6]	0	3		$\begin{bmatrix} -1 & 5 \end{bmatrix}$	$\lfloor 1 \rfloor$	[9]	0	8
9	$\begin{bmatrix} 2 & 3 \end{bmatrix}$		$\lceil 2 \rceil$	Γ 5	0	34	$\begin{bmatrix} 0 & 10 \end{bmatrix}$	$\lceil 10 \rceil$	$\lceil 5 \rceil$	<u> </u>	0]
	6 0		[5]	[0	5		[9 6]	[6]	[6]	0	11
10	[−9 3	$\lceil \lceil 3 \rceil$	$\lceil 0 \rceil$	[2	0	35	[-9 1]	$\lceil 4 \rceil$	$\lceil 5 \rceil$	5	0
	4 0		[7]	0	3		_9 1		$\lfloor 3 \rfloor$	0	6
11	$\begin{bmatrix} 6 & 1 \end{bmatrix}$		$\lceil 1 \rceil$	Γ1	0]	36	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	[5]	[9]	Γ 5	$\lceil 0 \rceil$
	$\begin{bmatrix} 3 & 0 \end{bmatrix}$		[3]	0	1		$\begin{bmatrix} 0 & -6 \end{bmatrix}$	$\lfloor 8 \rfloor$	$\lfloor 5 \rfloor$	0	6
12	$\begin{bmatrix} -1 & 1 \end{bmatrix}$	[8]	$\lceil 2 \rceil$	<u>[1</u>	0]	37	$\begin{bmatrix} 1 & 2 \end{bmatrix}$	$\lceil 15 \rceil$	[6]	<u> [</u> 9	$\lceil 0 \rceil$
	$\begin{bmatrix} 1 & 0 \end{bmatrix}$			0	1		_4 7	$\lfloor 1 \rfloor$	$\lfloor 0 \rfloor$	0	6
13	$\begin{bmatrix} 0 & 1 \end{bmatrix}$		$\lceil 0 \rceil$	Γ1	0]	38	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	[7]	[4]	Γ5	0]
	4 0			0	1		$\begin{bmatrix} 11 & 3 \end{bmatrix}$	$\lfloor 7 \rfloor$	$\lfloor 4 \rfloor$	0	11]
14	\[\begin{array}{c c} 4 & 9 \end{array} \]	[7]	$\lceil 2 \rceil$	Γ1	[0	39	\[\begin{array}{c c} 3 & 11 \end{array} \]	$\lceil 1 \rceil$	[9]	Γ7	[0
	5 0		$\lfloor 3 \rfloor$	0	$2 \rfloor$		$\begin{bmatrix} 9 & -5 \end{bmatrix}$	$\begin{bmatrix} 0 \end{bmatrix}$	$\lfloor 5 \rfloor$	0	6
15	Γ ₅ 3	7 [47	Го٦	Г1	0]	40	$\begin{bmatrix} 1 & -4 \end{bmatrix}$	Го]	[3]	Г <u>б</u>	0]
	$\begin{bmatrix} -2 & 0 \end{bmatrix}$		3	0	$\begin{bmatrix} 2 \end{bmatrix}$		$\begin{bmatrix} -7 & -5 \end{bmatrix}$	$\begin{bmatrix} 2 \end{bmatrix}$	5	$\begin{vmatrix} 0 \end{vmatrix}$	6
16	Г 1 2	7 [27		Γ1		41	[1 0]			Γο	
10	$\begin{bmatrix} -1 & 2 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$		$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$	41	$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 5 \end{bmatrix}$	4	$\begin{bmatrix} 3 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$
17	$\begin{bmatrix} 9 & 0 \end{bmatrix}$] [8]			$\frac{2}{2}$	42		[5]		[0	3]
17	$\begin{bmatrix} 3 & 4 \\ 2 & 0 \end{bmatrix}$		$\begin{vmatrix} 2 \end{vmatrix}$	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	0	42	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	6	6	$\begin{bmatrix} 7 \\ 2 \end{bmatrix}$	0
] [6]		[0	3]		[3 3]	[5]		[0	8
18	$\begin{bmatrix} 2 & 1 \end{bmatrix}$		$\lceil 5 \rceil$	$\lceil 2 \rceil$	$\begin{bmatrix} 0 \end{bmatrix}$	43	$\begin{bmatrix} 7 & 0 \end{bmatrix}$	$\lceil 1 \rceil$	$\lceil 9 \rceil$	[8	0
	<u>[2 0</u>			[0	3		[0 -6]	[10]		[0	3
19	$\begin{bmatrix} 0 & 1 \end{bmatrix}$		$\begin{bmatrix} 0 \end{bmatrix}$	[2	$\begin{bmatrix} 0 \end{bmatrix}$	44	$\begin{bmatrix} 6 & -1 \end{bmatrix}$	$\lceil 2 \rceil$	$\begin{bmatrix} 0 \end{bmatrix}$	$\lceil 4 \rceil$	0
	$\begin{bmatrix} 0 & 0 \end{bmatrix}$		[5]	0	3		$\begin{bmatrix} 0 & -1 \end{bmatrix}$		[5]	0	3
20	$\begin{bmatrix} -1 & 1 \end{bmatrix}$	$\lceil 0 \rceil$	[3]	[2	[0	45	$\begin{bmatrix} 2 & 3 \end{bmatrix}$	[8]	[4]	Γ 5	[0
	0 0] [7]	[4]	0	1		<u> </u>	$\lfloor 4 \rfloor$	[7]	0	6

21	[3 1]	$\lceil 1 \rceil \mid \lceil 3 \rceil$	$\begin{bmatrix} 3 & 0 \end{bmatrix}$	46	$\begin{bmatrix} -1 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 \end{bmatrix}$	$\lceil 4 \rceil$	$\begin{bmatrix} 7 & 0 \end{bmatrix}$
	$\begin{bmatrix} 1 & 1 \end{bmatrix}$	$\lfloor \lfloor 2 \rfloor \mid \lfloor 4 \rfloor$	$\begin{bmatrix} 0 & 5 \end{bmatrix}$		$\begin{bmatrix} 6 & 2 \end{bmatrix}$	[7]	[5]	$\begin{bmatrix} 0 & 5 \end{bmatrix}$
22	$\begin{bmatrix} 2 & 8 \end{bmatrix}$	$\lceil 2 \rceil \lceil 8 \rceil$	$\begin{bmatrix} 4 & 0 \end{bmatrix}$	47	$\begin{bmatrix} 0 & 1 \end{bmatrix}$	[5]	[5]	$\begin{bmatrix} 4 & 0 \end{bmatrix}$
	$\begin{bmatrix} 3 & 6 \end{bmatrix}$	$\lfloor 3 \rfloor \lfloor 5 \rfloor$	$\begin{bmatrix} 0 & 4 \end{bmatrix}$		[13 -1]	$\lfloor 7 \rfloor$	$\lfloor 0 \rfloor$	$\begin{bmatrix} 0 & 5 \end{bmatrix}$
23	$\begin{bmatrix} 0 & 3 \end{bmatrix}$	$\lceil 0 \rceil \mid \lceil 1 \rceil$	$\begin{bmatrix} 5 & 0 \end{bmatrix}$	48	[-9 3]	$\lceil -1 \rceil$	$\lceil 5 \rceil$	$\begin{bmatrix} 6 & 0 \end{bmatrix}$
	$\begin{bmatrix} 4 & 0 \end{bmatrix}$	$\lfloor 2 \rfloor \lfloor 1 \rfloor$	$\begin{bmatrix} 0 & 8 \end{bmatrix}$		[1 7]	$\lfloor -4 \rfloor$	$\lfloor 7 \rfloor$	$\begin{bmatrix} 0 & 7 \end{bmatrix}$
24	[3 1]	$\lceil 2 \rceil \lceil 8 \rceil$	$\begin{bmatrix} 6 & 0 \end{bmatrix}$	49	$\begin{bmatrix} 8 & -1 \end{bmatrix}$	$\lceil 1 \rceil$	$\lceil 0 \rceil$	$\begin{bmatrix} 8 & 0 \end{bmatrix}$
	$\begin{bmatrix} 1 & 4 \end{bmatrix}$	$\lfloor 4 \rfloor \lfloor 5 \rfloor$	$\begin{bmatrix} 0 & 8 \end{bmatrix}$		$\begin{bmatrix} 6 & 4 \end{bmatrix}$	[9]	$\lfloor 3 \rfloor$	$\begin{bmatrix} 0 & 5 \end{bmatrix}$
25	$\begin{bmatrix} 4 & 1 \end{bmatrix}$	$\lceil 5 \rceil \lceil 3 \rceil$	[9 0]	50	$\begin{bmatrix} 9 & 9 \end{bmatrix}$	[6]	[3]	$\begin{bmatrix} 1 & 0 \end{bmatrix}$
	$\begin{bmatrix} -2 & 5 \end{bmatrix}$	$\lfloor 1 \rfloor \lfloor 4 \rfloor$	$\begin{bmatrix} 0 & 11 \end{bmatrix}$		_5 9	$\lfloor 6 \rfloor$		$\begin{bmatrix} 0 & 7 \end{bmatrix}$