10. Solving systems of linear equations

Summary of last lecture

- Calculating derivatives numerically:
 - Finite differences with error bounds:

$$f'(a) = \frac{f(a+h) - f(a-h)}{2h} + \mathcal{O}(h^2)$$

- Automatic differentiation with dual numbers
 - $\qquad \qquad c + d\epsilon \text{ represents } f$

with
$$f(a) = c$$
, $f'(a) = d$

Goals for today

- Solving systems of linear equations
- Iterative methods
- Gaussian elimination: LU factorization

Systems of linear equations

■ How can we **solve** the system of linear equations

$$\begin{cases} x + 3y = 7 \\ 2x - y = 0 \end{cases}$$

Systems of linear equations

■ How can we solve the system of linear equations

$$\begin{cases} x + 3y = 7 \\ 2x - y = 0 \end{cases}$$

 \blacksquare A **solution** is a vector $\mathbf{x}=(x,y)$ satisfying both equations simultaneously

Why solve systems of linear equations?

Systems of linear equations forms a key part of many computations in scientific computing:

Why solve systems of linear equations?

Systems of linear equations forms a key part of many computations in scientific computing:

Multi-dimensional Newton method

- Boundary-value problems in ODEs
- Discretization of PDEs

- Stationary solutions of Markov chains
- Google Pagerank algorithm

Why solve systems of linear equations?

Systems of linear equations forms a key part of many computations in scientific computing:

Multi-dimensional Newton method

- Boundary-value problems in ODEs
- Discretization of PDEs

- Stationary solutions of Markov chains
- Google Pagerank algorithm

notation using matrices:

$$A \mathbf{x} = \mathbf{b}$$

notation using matrices:

$$A \mathbf{x} = \mathbf{b}$$

- lacksquare $\mathbf{A} \in \mathbb{R}^{n \times n}$ is an $(n \times n)$ matrix
- $\blacksquare \text{ With entries } (\mathsf{A})_{i,j} =: a_{i,j}$

notation using matrices:

$$A \mathbf{x} = \mathbf{b}$$

- lacksquare $\mathbf{A} \in \mathbb{R}^{n \times n}$ is an $(n \times n)$ matrix
- $\blacksquare \text{ With entries } (\mathsf{A})_{i,j} =: a_{i,j}$
- lacksquare And lacksquare $\in \mathbb{R}^n$ is an n-vecvtor

notation using matrices:

$$A \mathbf{x} = \mathbf{b}$$

- lacksquare $A \in \mathbb{R}^{n \times n}$ is an $(n \times n)$ matrix
- With entries $(A)_{i,j} =: a_{i,j}$
- lacksquare And lacksquare $\in \mathbb{R}^n$ is an n-vecvtor

lacksquare We want to find the unknown n-vector $\mathbf{x} \in \mathbb{R}^n$

Matrix notation II

 \blacksquare A **x** = **b** written out:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

■ When is it possible to solve $A \mathbf{x} = \mathbf{b}$?

■ When is it possible to solve $A \mathbf{x} = \mathbf{b}$?

Linear algebra: solutions "usually" exist and are unique

■ When is it possible to solve A $\mathbf{x} = \mathbf{b}$?

- Linear algebra: solutions "usually" exist and are unique
- lacksquare Namely when the **determinant** det A
 eq 0

■ When is it possible to solve $A \mathbf{x} = \mathbf{b}$?

- Linear algebra: solutions "usually" exist and are unique
- lacksquare Namely when the **determinant** det A
 eq 0

- lacktriangle Or when the columns of A are linearly independent
- And several other equivalent conditions

Collaboration I

Let's temporarily suspend any prior knowledge we might have about how to solve linear equations.

Solving linear systems

- With ideas from the course so far, how could you try to solve the linear system from two slides ago?
- Can you see a way to possibly improve the resulting method?

Create an iterative method

- Create an iterative method
- Idea: Solve the *i*th equation for x_i in terms of the others:

$$x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j \right)$$

- Create an iterative method
- Idea: Solve the *i*th equation for x_i in terms of the others:

$$x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j \right)$$

How can we convert this into an iterative method?

- Create an iterative method
- Idea: Solve the *i*th equation for x_i in terms of the others:

$$x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j \right)$$

- How can we convert this into an iterative method?
- Jacobi method:

$$x_i^{(n+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j^{(n)} \right)$$

■ The Jacobi method corresponds to *splitting* A

- The Jacobi method corresponds to splitting A
- Separate diagonal and non-diagonal elements:

$$A = D + L + U = D + A'$$

- Where:
 - \blacksquare D are the diagonal entries a_{ii}
 - lacktriangleright L are the strictly lower-triangular entries a_{ij} with i>j
 - \blacksquare U are the strictly upper-triangular entries a_{ij} with i < j

- The Jacobi method corresponds to splitting A
- Separate diagonal and non-diagonal elements:

$$A = D + L + U = D + A'$$

- Where:
 - lacktriangle D are the diagonal entries a_{ii}
 - lacktriangleright L are the strictly lower-triangular entries a_{ij} with i>j
 - $\ \ \, \ \ \,$ U are the strictly upper-triangular entries $\vec{a_{ij}}$ with i < j
- We need to solve $(D + L + U) \mathbf{x} = \mathbf{b}$

■ We need to solve $(D + A') \mathbf{x} = \mathbf{b}$

■ We need to solve $(D + A') \mathbf{x} = \mathbf{b}$

So try

$$\operatorname{D}\mathbf{x}_{n+1} = \mathbf{b} - \operatorname{A}'\mathbf{x}_n$$

■ We need to solve $(D + A') \mathbf{x} = \mathbf{b}$

So try

$$\operatorname{D}\mathbf{x}_{n+1} = \mathbf{b} - \operatorname{A}'\mathbf{x}_n$$

So

$$\mathbf{x}_{n+1} = \mathrm{D}^{-1} \left[\mathbf{b} - \mathrm{A}' \mathbf{x}_n \right]$$

■ We need to solve $(D + A') \mathbf{x} = \mathbf{b}$

So try

$$\operatorname{D}\mathbf{x}_{n+1} = \mathbf{b} - \operatorname{A}'\mathbf{x}_n$$

So

$$\mathbf{x}_{n+1} = \mathrm{D}^{-1} \left[\mathbf{b} - \mathrm{A}' \mathbf{x}_n \right]$$

■ The point is that D is easy to invert!

■ When should we stop the iteration?

- When should we stop the iteration?
- When we are "sufficiently close" to the solution

- When should we stop the iteration?
- When we are "sufficiently close" to the solution
- lacksquare Define the **residual** $\mathbf{r}^{(n)} := A\mathbf{x}^{(n)} \mathbf{b}$

- When should we stop the iteration?
- When we are "sufficiently close" to the solution
- lacksquare Define the **residual** $\mathbf{r}^{(n)} := A\mathbf{x}^{(n)} \mathbf{b}$
- Continue the iteration until the residual is sufficiently small (below a pre-assigned tolerance)

- When should we stop the iteration?
- When we are "sufficiently close" to the solution
- lacksquare Define the **residual** $\mathbf{r}^{(n)} := A\mathbf{x}^{(n)} \mathbf{b}$
- Continue the iteration until the residual is sufficiently small (below a pre-assigned tolerance)

- We need a way to define the "size" of a vector, i.e. a norm
- lacksquare E.g. the 2-norm: $\|\mathbf{x}\|_2 := \sqrt{\sum_i x_i^2}$

■ The Jacobi method does *not* always converge

- The Jacobi method does not always converge
- lacksquare Look at the distance $\pmb{\delta}^{(n)} := \mathbf{x}^{(n+1)} \mathbf{x}^{(n)}$

Jacobi method: Convergence II

- The Jacobi method does not always converge
- lacksquare Look at the distance $\pmb{\delta}^{(n)} := \mathbf{x}^{(n+1)} \mathbf{x}^{(n)}$
- We get

$$\boldsymbol{\delta}_n = -(D^{-1}A')\,\boldsymbol{\delta}_{n-1}$$

Jacobi method: Convergence II

- The Jacobi method does not always converge
- lacksquare Look at the distance $oldsymbol{\delta}^{(n)} := \mathbf{x}^{(n+1)} \mathbf{x}^{(n)}$
- We get

$$\pmb{\delta}_n = -(D^{-1}A')\,\pmb{\delta}_{n-1}$$

- Hence to study convergence we need to understand iterated multiplication by the same matrix
- A sufficient condition for convergence is that A is diagonally dominant:

$$|a_{ii}| \ge \sum_{j \ne i} |a_{ij}|$$

Collaboration II

Improving the Jacobi method

Is there a way to modify Jacobi to use the new information that is generated?

Gauss-Seidel method

lacktriangle Jacobi uses only components of $oldsymbol{x}^{(n)}$ (previous generation)

Gauss-Seidel method

■ Jacobi uses only components of $\mathbf{x}^{(n)}$ (previous generation)

- The Gauss-Seidel method modifies the Jacobi method
- lacktriangle We use newly-generated $x_i^{(n+1)}$ that are already available:

$$x_i^{(n+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j < i} a_{ij} x_j^{(n+1)} - \sum_{j > i} a_{ij} x_j^{(n)} \right)$$

Gauss-Seidel method

■ Jacobi uses only components of $\mathbf{x}^{(n)}$ (previous generation)

- The Gauss-Seidel method modifies the Jacobi method
- lacktriangle We use newly-generated $x_i^{(n+1)}$ that are already available:

$$x_i^{(n+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j < i} a_{ij} x_j^{(n+1)} - \sum_{j > i} a_{ij} x_j^{(n)} \right)$$

In matrix language this corresponds to

$$L \mathbf{x}_{n+1} = \mathbf{b} - (D + U) \mathbf{x}_n$$

L is again easy to invert (by forward substitution)

Computational complexity

The running time of an algorithm is the number of "operations" that it uses

Computational complexity

- The running time of an algorithm is the number of "operations" that it uses
- We will only want the dominant term in the running time and its dependence on the input size

Computational complexity

- The running time of an algorithm is the number of "operations" that it uses
- We will only want the dominant term in the running time and its dependence on the input size

We call this the (computational) complexity of the algorithm

Collaboration III

Computational complexity of iterative methods

What is the computational complexity of one iteration of Jacobi and Gauss-Seidel?

lacktriangle We have an $(n \times n)$ matrix A

- lacktriangle We have an $(n \times n)$ matrix A
- lacktriangle Each row has 1 division, n multiplications and n additions

- lacktriangle We have an $(n \times n)$ matrix A
- lacksquare Each row has 1 division, n multiplications and n additions
- lacktriangle So approximately 2n operations per row
- lacksquare Or $2n^2$ operations in total

- We have an $(n \times n)$ matrix A
- lacksquare Each row has 1 division, n multiplications and n additions
- lacktriangle So approximately 2n operations per row
- lacksquare Or $2n^2$ operations in total
- Hence the complexity is $\mathcal{O}(n^2)$

Gaussian elimination

Gaussian elimination

How can we "exactly" solve a linear system in a finite number of operations?

- How can we "exactly" solve a linear system in a finite number of operations?
- Idea: Eliminate one variable
- Solve 1 equation for 1 variable in terms of other variables

- How can we "exactly" solve a linear system in a finite number of operations?
- Idea: Eliminate one variable
- Solve 1 equation for 1 variable in terms of other variables

- Substitute that variable into the other equations
- lacktriangle This gives n-1 equations in n-1 unknowns

- How can we "exactly" solve a linear system in a finite number of operations?
- Idea: Eliminate one variable
- **Solve** 1 equation for 1 variable in terms of other variables

- Substitute that variable into the other equations
- lacksquare This gives n-1 equations in n-1 unknowns

- Recursively solve to reduce by one equation each time
- Until we end up with a single equation in a single unknown

- How can we "exactly" solve a linear system in a finite number of operations?
- Idea: Eliminate one variable
- **Solve** 1 equation for 1 variable in terms of other variables

- Substitute that variable into the other equations
- lacksquare This gives n-1 equations in n-1 unknowns

- Recursively solve to reduce by one equation each time
- Until we end up with a single equation in a single unknown

 $\hfill\blacksquare$ Number equations as E_1 , E_2 , etc.

- Number equations as E_1 , E_2 , etc.
- \blacksquare Eliminate x by adding multiple of E_1 to E_2
- Form new equation $E_2' := E_2 + \alpha E_1$

- \blacksquare Number equations as E_1 , E_2 , etc.
- \blacksquare Eliminate x by adding multiple of E_1 to E_2
- \blacksquare Form new equation $E_2' := E_2 + \alpha E_1$
- lacktriangle Choose lpha to make coefficient of x in the result equal to 0
- Gives equivalent system

Act on matrix A and right-hand side **b** in same way

- Act on matrix A and right-hand side b in same way
- Form **augmented matrix** by **adjoining b** to A:

$$\left[\begin{array}{cc|c} 1 & 3 & 7 \\ 2 & -1 & 0 \end{array}\right]$$

- Act on matrix A and right-hand side b in same way
- Form augmented matrix by adjoining b to A:

$$\left[\begin{array}{cc|c} 1 & 3 & 7 \\ 2 & -1 & 0 \end{array}\right]$$

Take

$$\alpha = -\frac{a_{2,1}}{a_{1,1}}$$

so that
$$a_{2,1}' = a_{2,1} + \alpha \, a_{1,1} = 0$$

■ Applying the above row operation gives

$$\left[\begin{array}{cc|c} 1 & 3 & 7 \\ 0 & -7 & -14 \end{array}\right]$$

Applying the above row operation gives

$$\left[\begin{array}{cc|c} 1 & 3 & 7 \\ 0 & -7 & -14 \end{array}\right]$$

- \blacksquare 2nd row shows that -7y=-14, so y=2
- Then **backsubstitute** to find *x*:

$$x + 3y = 7$$
, so $x + 6 = 7$, so $x = 1$

Generalise to matrix of any size

Generalise to matrix of any size

- lacktriangle Apply row operations until get **upper-triangular matrix** U
- i.e. all entries below main diagonal are 0

Generalise to matrix of any size

- lacktriang Apply row operations until get **upper-triangular matrix** U
- i.e. all entries below main diagonal are 0

 Backsubstitution effectively does row operations to introduce zeros in upper triangular part

Several right-hand sides

- Suppose that we want to solve $A \mathbf{x} = \mathbf{b}$ with the same matrix A for several right-hand sides \mathbf{b}_i
- We will execute the same sequence of row operations to reduce to upper-triangular form

Several right-hand sides

- Suppose that we want to solve $A \mathbf{x} = \mathbf{b}$ with the same matrix A for several right-hand sides \mathbf{b}_i
- We will execute the *same sequence* of row operations to reduce to upper-triangular form

Can we use this by recording only the row operations?

Row operations as elementary matrices

- Applying a row operation to an augmented matrix A produces a new augmented matrix
- Express as L₁ A for a suitable matrix L₁:

Row operations as elementary matrices

- Applying a row operation to an augmented matrix A produces a new augmented matrix
- **Express** as L_1 A for a suitable matrix L_1 :
- \blacksquare E.g. the row operation $E_2 \leftarrow E_2 + \alpha E_1$ is

$$\mathsf{L}_1 = \begin{pmatrix} 1 & 0 \\ \alpha & 1 \end{pmatrix}$$

Sequence of row operations

■ Row reduction of A to an upper-triangular matrix U is a sequence of *n* row operations:

$$\mathsf{L}_n\mathsf{L}_{n-1}\cdots\mathsf{L}_1A=\mathsf{U}$$

Sequence of row operations

■ Row reduction of A to an upper-triangular matrix U is a sequence of *n* row operations:

$$\mathsf{L}_n\mathsf{L}_{n-1}\cdots\mathsf{L}_1A=\mathsf{U}$$

Hence

$$\mathsf{A} = \mathsf{L}_1^{-1} \mathsf{L}_2^{-1} \cdots \mathsf{L}_n^{-1} \mathsf{U}$$

■ So A = L U where L is lower-triangular

Sequence of row operations

■ Row reduction of A to an upper-triangular matrix U is a sequence of *n* row operations:

$$\mathsf{L}_n\mathsf{L}_{n-1}\cdots\mathsf{L}_1A=\mathsf{U}$$

Hence

$$A = L_1^{-1}L_2^{-1} \cdots L_n^{-1}U$$

- So A = L U where L is lower-triangular
- Note that $L_1^{-1} = \begin{pmatrix} 1 & 0 \\ -\alpha & 1 \end{pmatrix}$

Structure of L

- lacksquare L_k has 1s on main diagonal
- lacktriangle And nonzero entries below diagonal only on kth column

$$(\mathbf{L}_k)_{i,k} = -\frac{a_{i,k}^{(k-1)}}{a_{k,k}^{(k-1)}}$$

where $\mathbf{A}^{(k-1)}$ is matrix after (k-1) steps

Structure of L

- \blacksquare L_k has 1s on main diagonal
- lacktriangle And nonzero entries below diagonal only on kth column

$$(\mathbf{L}_k)_{i,k} = -\frac{a_{i,k}^{(k-1)}}{a_{k,k}^{(k-1)}}$$

where $A^{(k-1)}$ is matrix after (k-1) steps

- $\blacksquare \ \mathsf{L} = \mathsf{L}_n \cdots \mathsf{L}_1$
- Below-diagonal entries are those of the individual Ls!

LU factorization

- Any square matrix has an LU factorization
- \blacksquare To solve $A\mathbf{x} = \mathbf{b}$:
 - Factorise to get L and U with LU = A
 - We want to solve LU $\mathbf{x} = \mathbf{b}$
 - Solve L y = b
 - Then solve $\cup \mathbf{x} = \mathbf{y}$

LU factorization

- Any square matrix has an LU factorization
- \blacksquare To solve $A\mathbf{x} = \mathbf{b}$:
 - Factorise to get L and U with LU = A
 - We want to solve LU x = b
 - Solve L **y** = **b**
 - Then solve U x = y

 Solving triangular systems is easy using forward- or back-substitution

- lacksquare In elimination algorithm may need to divide by $a_{i,i}=0$
- Clearly we cannot do this

- lacksquare In elimination algorithm may need to divide by $a_{i,i}=0$
- Clearly we cannot do this
- lacksquare Solution: **pivot**: swap with row with largest $a_{j,i}$

- lacksquare In elimination algorithm may need to divide by $a_{i,i}=0$
- Clearly we cannot do this
- lacksquare Solution: **pivot**: swap with row with largest $a_{i,i}$
- We track which rows are swapped using a permutation matrix P:

$$PA = LU$$

- lacksquare In elimination algorithm may need to divide by $a_{i,i}=0$
- Clearly we cannot do this
- Solution: **pivot**: swap with row with largest $a_{j,i}$
- We track which rows are swapped using a permutation matrix P:

$$PA = LU$$

In fact for numerical stability we should always pivot

 \blacksquare We subtract n elements of the 1st row from each (n-1) other row, wth

- \blacksquare We subtract n elements of the 1st row from each (n-1) other row, wth
- \blacksquare We subtract n-1 elements of the 1st row from each (n-2) other rows

- \blacksquare We subtract n elements of the 1st row from each (n-1) other row, wth
- $\begin{tabular}{ll} \hline & We subtract $n-1$ elements of the 1st row from each $(n-2)$ other rows $$ \\ \hline \end{tabular}$

So the total number of operations is

$$2[n(n-1)+(n-1)(n-2)+(n-2)(n-3)+\cdots+2\cdot 1]$$

- $\begin{tabular}{ll} \blacksquare & \begin{tabular}{ll} We subtract n elements of the 1st row from each $(n-1)$ other row, wth \\ \end{tabular}$
- $\begin{tabular}{ll} \hline & We subtract $n-1$ elements of the 1st row from each $(n-2)$ other rows $$ \\ \hline \end{tabular}$

So the total number of operations is

$$2[n(n-1)+(n-1)(n-2)+(n-2)(n-3)+\cdots+2\cdot 1]$$

■ This is approximately $\frac{2}{3}n^3$ (exercise)

Should we use direct or iterative methods?

- Gaussian elimination gives, in principle, the exact result
- Up to round-off error, but see also later

Should we use direct or iterative methods?

- Gaussian elimination gives, in principle, the exact result
- Up to round-off error, but see also later
- Iterative methods give an approximation, but possibly much faster: $\mathcal{O}(n^2)$, instead of $\mathcal{O}(n^3)$

Should we use direct or iterative methods?

- Gaussian elimination gives, in principle, the exact result
- Up to round-off error, but see also later
- Iterative methods give an approximation, but possibly much faster: $\mathcal{O}(n^2)$, instead of $\mathcal{O}(n^3)$

 Bear in mind these very different methods and their properties

Summary

- Solving linear systems
- Iterative methods: Jacobi & Gauss-Seidel
- With complexity $\mathcal{O}(n^2)$

- Direct method: Gaussian elimination
- Equivalent to factorization A = LU or PA = LU
- Solve A $\mathbf{x} = \mathbf{b}$ by solving L $\mathbf{y} = \mathbf{b}$ and U $\mathbf{x} = \mathbf{y}$