Lecture in Number Theory

College of Science for Women Baghdad University

MARCH 31, 2014

The Riemann Hypothesis, History and ideas

FRANCESCO PAPPALARDI

The Twin prime Conjecture.

There exist infinitely many prime numbers p such that p+2 is prime

The Twin prime Conjecture.

There exist infinitely many prime numbers p such that p+2 is prime

```
Examples:
3 and 5,
11 and 13,
17 and 19,
101 and 103,
10^{100} + 35737 and 10^{100} + 35739,
3756801695685 \cdot 2^{666669} \pm 1
```


Goldbach Conjecture.

Every even number (except 2) can be written as the sum of two primes

Goldbach Conjecture.

Every even number (except 2) can be written as the sum of two primes

```
fabour, mift bejohnton, at maken about Jon made fourantiefed,

manusingly fories bankan numeros uniso mode in due operation

dissibiled gates galf folgo denify will of suf mine conjecture

kazardiam: Infe jedo zalf modely and zaman numeros prioris

tazardiam: Infe jedo zalf modely and zaman numeros prioris

primorum ghay all was will fi die unitation mit serie quandone

figural din congesion oracion unitation? zince formigal

+=\begin{cases}
1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 & 1-11-12 &
```


Goldbach Conjecture.

Every even number (except 2) can be written as the sum of two primes

Examples:

$$42 = 5 + 37,$$

$$1000 = 71 + 929,$$

$$888888 = 601 + 888287,$$

•

The Hardy-Littlewood Conjecture.

The Hardy-Littlewood Conjecture.

 \exists infinitely many primes p s.t. p-1 is in perfect square

The Hardy-Littlewood Conjecture.

 \exists infinitely many primes p s.t. p-1 is in perfect square

The Hardy-Littlewood Conjecture.

 \exists infinitely many primes p s.t. p-1 is in perfect square

Examples:

$$5 = 2^{2} + 1,$$

 $17 = 4^{2} + 1,$
 $37 = 6^{2} + 1,$
 $101 = 10^{2} + 1,$

$$101 = 10^2 + 1,$$

$$677 = 26^2 + 1,$$

$$10^{100} + 420 \cdot 10^{50} + 42437 = (10^{50} + 206)^2 + 1$$

Artin Conjecture.

Artin Conjecture.

The period of 1/p has length p-1 per infinitely many primes p

Artin Conjecture.

The period of 1/p has length p-1 per infinitely many primes p

Artin Conjecture.

The period of 1/p has length p-1 per infinitely many primes p


```
\begin{aligned} & \underbrace{Examples:}_{\frac{1}{7}} = 0.\overline{142857}, \\ & \underbrace{\frac{1}{17}} = 0, \overline{0588235294117647}, \\ & \underbrace{\frac{1}{19}} = 0.\overline{052631578947368421}, \\ & \vdots \\ & \underbrace{\frac{1}{47}} = 0.\overline{0212765957446808510638297872340425531914893617} \dots \end{aligned}
```


Artin Conjecture.

The period of 1/p has length p-1 per infinitely many primes p

$$\begin{aligned} & \underbrace{Examples:}_{\frac{1}{7}} = 0.\overline{142857}, \\ & \underbrace{\frac{1}{17}} = 0, \overline{0588235294117647}, \\ & \underbrace{\frac{1}{19}} = 0.\overline{052631578947368421}, \\ & \vdots \\ & \underbrace{\frac{1}{47}} = 0.\overline{0212765957446808510638297872340425531914893617} \dots \end{aligned}$$

Primes with this property: 7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, ...

The Riemann Hypothesis. $\zeta(\sigma+it)=0, \sigma\in(0,1) \Rightarrow \sigma=\frac{1}{2}$

The Riemann Hypothesis. $\zeta(\sigma + it) = 0, \sigma \in (0,1) \implies \sigma = \frac{1}{2}$

Georg Friedrich Bernhard Riemann

Birth: 17.09.1826 in Breselenz / Königreich Hannover

Death: 20.07.1866 in Selasca / Italy

The Riemann Hypothesis. $\zeta(\sigma + it) = 0, \sigma \in (0,1) \implies \sigma = \frac{1}{2}$

Georg Friedrich Bernhard Riemann

Birth: 17.09.1826 in Breselenz / Königreich Hannover

Death: 20.07.1866 in Selasca / Italy

Examples:

$$s_1 = \frac{1}{2} + 14.135 \cdots i,$$

 $s_2 = \frac{1}{2} + 21.022 \cdots i,$
 $s_3 = \frac{1}{2} + 25.011 \cdots i,$
 $s_4 = \frac{1}{2} + 30.425 \cdots i,$
 $s_5 = \frac{1}{2} + 32.935 \cdots i,$

•

$$s_{126} = \frac{1}{2} + 279.229 \cdots i,$$

$$s_{127} = \frac{1}{2} + 282.455 \cdots i,$$

B

B

B

B

Problem. How to produce efficiently $p \approx 10^{150}$?;

B

B

B

Problem. How to produce efficiently $p \approx 10^{150}$?;

It is necessary to understand how prime numbers are discributed;

B

B

Problem. How to produce efficiently $p \approx 10^{150}$?;

It is necessary to understand how prime numbers are discributed;

 $\pi(x) = \#\{p \le x \text{ s.t. } p \text{ is prime}\};$

B

Problem. How to produce efficiently $p \approx 10^{150}$?;

It is necessary to understand how prime numbers are discributed;

 $\pi(x) = \#\{p \le x \text{ s.t. } p \text{ is prime}\};$

That is $\pi(x)$ is the number of prime numbers less or equal than x;

Problem. How to produce efficiently $p \approx 10^{150}$?;

It is necessary to understand how prime numbers are discributed;

 $\pi(x) = \#\{p \leq x \text{ s.t. } p \text{ is prime}\};$

That is $\pi(x)$ is the number of prime numbers less or equal than x;

Examples: $\pi(10) = 4$ $\pi(100) = 25$ $\pi(1,000) = 168$

$$\pi(x) = \#\{p \le x \text{ such that } p \text{ is prime}\}$$

$$\pi(x) = \#\{p \le x \text{ such that } p \text{ is prime}\}$$

That is $\pi(x)$ is the number of prime numbers less or equal than x

$$\pi(x) = \#\{p \le x \text{ such that } p \text{ is prime}\}$$

That is $\pi(x)$ is the number of prime numbers less or equal than x

Examples:

$$\pi(10) = 4,$$
 $\pi(100) = 25,$
 $\pi(1,000) = 168$
...
 $\pi(104729) = 10^5$
...
 $\pi(10^{24}) = 18435599767349200867866.$

x	$\pi(x)$
10000	1229
100000	9592
1000000	78498
10000000	664579
100000000	5761455
1000000000	50847534
10000000000	455052511
100000000000	4118054813
100000000000	37607912018
10000000000000	346065536839
100000000000000	3204941750802
1000000000000000	29844570422669
10000000000000000	279238341033925
100000000000000000	2623557157654233
1000000000000000000	24739954287740860
10000000000000000000	234057667276344607
1000000000000000000000	2220819602560918840
10000000000000000000000	21127269486018731928
100000000000000000000000000000000000000	201467286689315906290

The plot of $\pi(x)$

The sieve to count primes

220AC Greeks (Eratosthenes of Cyrene)

Legendre's Intuition

Adrien-Marie Legendre 1752-1833

$$\pi(x)$$
 is about $\frac{x}{\log x}$

 $\log x$ is the natural logarithm

 $\pi(x)$ is about $\frac{x}{\log x}$

 $\pi(x)$ is about $\frac{x}{\log x}$

 $\pi(x)$ is about $\frac{x}{\log x}$

What does it mean $\log x$?

•

$$\pi(x)$$
 is about $\frac{x}{\log x}$

What does it mean $\log x$? It is the natural logarithm of x;

B

B

B

B

- What does it mean $\log x$? It is the natural logarithm of x;
- Recall that the logarithm in base a of b is that number t s.t. $a^t = b$;

.

$$\pi(x)$$
 is about $\frac{x}{\log x}$

- What does it mean $\log x$? It is the natural logarithm of x;
- Racall that the logarithm in base a of b is that number t s.t. $a^t = b$;
- Therefore $t = \log_a b$ means that $a^t = b$;

B

$$\pi(x)$$
 is about $\frac{x}{\log x}$

- What does it mean $\log x$? It is the natural logarithm of x;
- Racall that the logarithm in base a of b is that number t s.t. $a^t = b$;
- Therefore $t = \log_a b$ means that $a^t = b$; for example $\log_2 8 = 3$ since $2^3 = 8$

B

$$\pi(x)$$
 is about $\frac{x}{\log x}$

- lacksquare What does it mean $\log x$? It is the natural logarithm of x;
- Racall that the logarithm in base a of b is that number t s.t. $a^t = b$;
- Therefore $t = \log_a b$ means that $a^t = b$; for example $\log_2 8 = 3$ since $2^3 = 8$ and $\log_5 625 = 4$ since $5^4 = 625$.

,

B

$$\pi(x)$$
 is about $\frac{x}{\log x}$

- What does it mean $\log x$? It is the natural logarithm of x;
- Racall that the logarithm in base a of b is that number t s.t. $a^t = b$;
- Therefore $t = \log_a b$ means that $a^t = b$; for example $\log_2 8 = 3$ since $2^3 = 8$ and $\log_5 625 = 4$ since $5^4 = 625$.
- When the base $a = e = 2,7182818284590 \cdots$ is the Nepier number,

,

B

$$\pi(x)$$
 is about $\frac{x}{\log x}$

- **What does it mean** $\log x$? It is the natural logarithm of x;
- Recall that the logarithm in base a of b is that number t s.t. $a^t = b$;
- Therefore $t = \log_a b$ means that $a^t = b$; for example $\log_2 8 = 3$ since $2^3 = 8$ and $\log_5 625 = 4$ since $5^4 = 625$.
- When the base $a = e = 2,7182818284590 \cdots$ is the Nepier number, the logarithm in base e is called natural logarithm;
- **F**
- Rep.

$$\pi(x)$$
 is about $\frac{x}{\log x}$

- **What does it mean** $\log x$? It is the natural logarithm of x;
- Racall that the logarithm in base a of b is that number t s.t. $a^t = b$;
- Therefore $t = \log_a b$ means that $a^t = b$; for example $\log_2 8 = 3$ since $2^3 = 8$ and $\log_5 625 = 4$ since $5^4 = 625$.
- When the base $a = e = 2,7182818284590 \cdots$ is the Nepier number, the logarithm in base e is called natural logarithm;
- hence $\log 10 = 2.30258509299404568401$ since $e^{2.30258509299404568401} = 10$

$$\pi(x)$$
 is about $\frac{x}{\log x}$

- lacktriangledown What does it mean $\log x$? It is the natural logarithm of x;
- Racall that the logarithm in base a of b is that number t s.t. $a^t = b$;
- Therefore $t = \log_a b$ means that $a^t = b$; for example $\log_2 8 = 3$ since $2^3 = 8$ and $\log_5 625 = 4$ since $5^4 = 625$.
- When the base $a = e = 2,7182818284590 \cdots$ is the Nepier number, the logarithm in base e is called natural logarithm;
- hence $\log 10 = 2.30258509299404568401$ since $e^{2.30258509299404568401} = 10$
- $rac{1}{8}$ finally $\log x$ is a function

The function $x/\log x$

$$\pi(x)$$
 is about $\frac{x}{\log x}$

that is

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\log x} = 1$$

and we write

$$\pi(x) \sim \frac{x}{\log x}$$

$$\pi(x)$$
 is about $\frac{x}{\log x}$

that is

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\log x} = 1$$

and we write

$$\pi(x) \sim \frac{x}{\log x}$$

x	$\pi(x)$	$\frac{x}{\log x}$	
1000	168	145	
10000	1229	1086	
100000	9592	8686	
1000000	78498	72382	
10000000	664579	620420	
10000000	5761455	5428681	
100000000	50847534	48254942	
1000000000	455052511	434294482	
10000000000	4118054813	3948131654	
100000000000	37607912018	36191206825	
1000000000000	346065536839	334072678387	
10000000000000	3204941750802	3102103442166	
1000000000000000	29844570422669	28952965460217	
10000000000000000	279238341033925	271434051189532	
100000000000000000	2623557157654233	2554673422960305	
10000000000000000000	24739954287740860	24127471216847324	
100000000000000000000	234057667276344607	228576043106974646	
100000000000000000000000000000000000000	2220819602560918840	2171472409516259138	

The Gauß Conjecture

Johann Carl Friedrich Gauß(1777 - 1855)

The Gauß Conjecture

Johann Carl Friedrich Gauß(1777 - 1855)

$$\pi(x) \sim \int_0^x \frac{du}{\log u}$$

What is it means $\int_0^x \frac{du}{\log u}$?

16

What is it means $\int_0^x \frac{du}{\log u}$?

What is it the integral of a function?

What is it means $\int_0^x \frac{du}{\log u}$?

What is it the integral of a function?

$$S = \int_{a}^{b} f(x)dx$$

What is it means $\int_0^x \frac{du}{\log u}$?

What is it the integral of a function?

$$S = \int_{a}^{b} f(x)dx$$

Therefore $f(x) = \int_0^x \frac{du}{\log u}$ is a function. Here is the plot:

Therefore $f(x) = \int_0^x \frac{du}{\log u}$ is a function. Here is the plot:

 $1/\log x$

We set $li(x) = \int_0^x \frac{du}{\log u}$, the function Logarithmic Integral. Here is the plot:

We set $li(x) = \int_0^x \frac{du}{\log u}$, the function Logarithmic Integral. Here is the plot:

li(x)

More recent picture of Gauß

Johann Carl Friedrich Gauß(1777 - 1855)

$$\pi(x) \sim \operatorname{li}(x) := \int_0^x \frac{du}{\log u}$$

The function "logarithmic integral" of Gauß

$$\operatorname{li}(x) = \int_0^x \frac{du}{\log u}$$

x	$\pi(x)$	$\mathrm{li}(x)$	$\frac{x}{\log x}$
1000	168	178	145
10000	1229	1246	1086
100000	9592	9630	8686
1000000	78498	78628	72382
10000000	664579	664918	620420
100000000	5761455	5762209	5428681
1000000000	50847534	50849235	48254942
1000000000	455052511	455055614	434294482
10000000000	4118054813	4118066401	3948131654
100000000000	37607912018	37607950281	36191206825
1000000000000	346065536839	346065645810	334072678387
10000000000000	3204941750802	3204942065692	3102103442166
1000000000000000	29844570422669	29844571475288	28952965460217
10000000000000000	279238341033925	279238344248557	271434051189532
100000000000000000	2623557157654233	2623557165610822	2554673422960305
10000000000000000000	24739954287740860	24739954309690415	24127471216847324
100000000000000000000	234057667276344607	234057667376222382	228576043106974646
100000000000000000000000000000000000000	2220819602560918840	2220819602783663484	2171472409516259138

The function li(x) vs $\frac{x}{\log x}$

The function li(x) vs $\frac{x}{\log x}$

The function li(x) vs $\frac{x}{\log x}$

$$\left(\operatorname{li}(x) = \frac{x}{\log x} + \int_0^x \frac{dt}{\log^2 t} \sim \frac{x}{\log x}\right)$$

via integration by parts

Chebishev Contribution

Tr. Costins

Pafnuty Lvovich Chebyshev 1821 – 1894

CHEBYSHEV THEOREMS

$$\bullet \ \frac{7}{8} \le \frac{\pi(x)}{x} \le \frac{9}{8}$$

•
$$\liminf_{x \to \infty} \frac{\pi(x)}{x/\log x} \le 1$$

•
$$\limsup_{x \to \infty} \frac{\pi(x)}{x/\log x} \ge 1$$

• $\forall n, \exists p, n (Bertrand Postulate)$

B

B

B

B

To prove the Conjecture of Legendre – Gauß $\pi(x) \sim \frac{x}{\log x}$ if $x \to \infty$

B

B

B

To prove the Conjecture of Legendre – Gauß $\pi(x) \sim \frac{x}{\log x}$ if $x \to \infty$

that is:
$$\left| \frac{\pi(x)}{\frac{x}{\log x}} - 1 \right| \to 0 \text{ if } x \to \infty$$

B

B

To prove the Conjecture of Legendre – Gauß $\pi(x) \sim \frac{x}{\log x}$ if $x \to \infty$

that is:
$$\left| \frac{\pi(x)}{\frac{x}{\log x}} - 1 \right| \to 0 \text{ if } x \to \infty$$

that is: $\left| \pi(x) - \frac{x}{\log x} \right|$ is "much smaller" than $\frac{x}{\log x}$ if $x \to \infty$

Università Roma Tre

B

To prove the Conjecture of Legendre – Gauß $\pi(x) \sim \frac{x}{\log x}$ if $x \to \infty$

that is:
$$\left| \frac{\pi(x)}{\frac{x}{\log x}} - 1 \right| \to 0 \text{ if } x \to \infty$$

that is: $\left| \pi(x) - \frac{x}{\log x} \right|$ is "much smaller" than $\frac{x}{\log x}$ if $x \to \infty$

that is:
$$\left| \pi(x) - \frac{x}{\log x} \right| = o\left(\frac{x}{\log x}\right)$$
 if $x \to \infty$

To prove the Conjecture of Legendre – Gauß $\pi(x) \sim \frac{x}{\log x}$ if $x \to \infty$

that is:
$$\left| \frac{\pi(x)}{\frac{x}{\log x}} - 1 \right| \to 0 \text{ if } x \to \infty$$

- that is: $\left| \pi(x) \frac{x}{\log x} \right|$ is "much smaller" than $\frac{x}{\log x}$ if $x \to \infty$
- that is: $\left| \pi(x) \frac{x}{\log x} \right| = o\left(\frac{x}{\log x}\right)$ if $x \to \infty$
- that is (to say it à la Gauß): $|\pi(x) \operatorname{li}(x)| = o(\operatorname{li}(x))$ if $x \to \infty$

To prove the Conjecture of Legendre – Gauß $\pi(x) \sim \frac{x}{\log x}$ if $x \to \infty$

that is:
$$\left| \frac{\pi(x)}{\frac{x}{\log x}} - 1 \right| \to 0 \text{ if } x \to \infty$$

that is: $\left| \pi(x) - \frac{x}{\log x} \right|$ is "much smaller" than $\frac{x}{\log x}$ if $x \to \infty$

that is:
$$\left| \pi(x) - \frac{x}{\log x} \right| = o\left(\frac{x}{\log x}\right)$$
 if $x \to \infty$

that is (to say it à la Gauß): $|\pi(x) - \operatorname{li}(x)| = o(\operatorname{li}(x))$ if $x \to \infty$

This statement became part of history as The Prime Number Theorem.

Riemann Paper 1859

RIEMANN HYPOTHESIS:

$$|\pi(x) - \operatorname{li}(x)| \ll \sqrt{x} \log x$$

REVOLUTIONARY IDEA: Use the function:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

and complex analysis.

(Ueber die Anzahl der Primzahlen unter einer

gegebenen Grösse.) Monatsberichte der

Berliner Akademie, 1859

B

B

B

B

B

The Riemann Hypothesis (1859) $\left(|\pi(x) - \operatorname{li}(x)| \ll \sqrt{x} \log x \right)$

B

B

B

B

- The Riemann Hypothesis (1859) $\left(|\pi(x) \operatorname{li}(x)| \ll \sqrt{x} \log x \right)$
- Riemann does not complete the proof del Prime Number Theorem but he suggests the right way.

B

B

B

- The Riemann Hypothesis (1859) $\left(|\pi(x) \operatorname{li}(x)| \ll \sqrt{x} \log x \right)$
- Riemann does not complete the proof del Prime Number Theorem but he suggests the right way.
- The idea is to use the function ζ as a complex variable function

B

B

- The Riemann Hypothesis (1859) $(|\pi(x) \operatorname{li}(x)| \ll \sqrt{x} \log x)$
- Riemann does not complete the proof del Prime Number Theorem but he suggests the right way.
- The idea is to use the function ζ as a complex variable function
- Hadamard and de the Vallée Poussin (1897) add the missing peace to Riemann's program and prove the Prime Number Theorem

$$\left(|\pi(x) - \operatorname{li}(x)| \ll x \exp\left(-\sqrt{\log x}\right). \right)$$

- The Riemann Hypothesis (1859) $\left(|\pi(x) \operatorname{li}(x)| \ll \sqrt{x} \log x \right)$
- Riemann does not complete the proof del Prime Number Theorem but he suggests the right way.
- The idea is to use the function ζ as a complex variable function
- Hadamard and de the Vallée Poussin (1897) add the missing peace to Riemann's program and prove the Prime Number Theorem

$$[\pi(x) - \operatorname{li}(x)] \ll x \exp(-\sqrt{\log x}).$$

 \blacksquare The idea is to use ζ to study primes was already suggested by Euler!!

- The Riemann Hypothesis (1859) $\left| |\pi(x) \operatorname{li}(x)| \ll \sqrt{x} \log x \right|$
- Riemann does not complete the proof del Prime Number Theorem but he suggests the right way.
- The idea is to use the function ζ as a complex variable function
- Hadamard and de the Vallée Poussin (1897) add the missing peace to Riemann's program and prove the Prime Number Theorem

$$\left[|\pi(x) - \operatorname{li}(x)| \ll x \exp\left(-\sqrt{\log x}\right). \right]$$

- The idea is to use ζ to study primes was already suggested by Euler!!
- Schoenfeld (1976), Riemann Hypothesis is equivalent to

$$\left(|\pi(x) - \text{li}(x)| < \frac{1}{8\pi} \sqrt{x} \log(x) \text{ if } x \ge 2657 \right)$$

The Prime Number Theorem is finally proven (1896)

Jacques Salomon Hadamard 1865 - 1963

Charles Jean Gustave Nicolas
Baron de the Vallée Poussin 1866 - 1962

The Prime Number Theorem is finally proven (1896)

Jacques Salomon Hadamard 1865 - 1963

Charles Jean Gustave Nicolas Baron de the Vallée Poussin 1866 - 1962

$$|\pi(x) - \operatorname{li}(x)| \ll x \exp(-a\sqrt{\log x}) \quad \exists a > 0$$

Euler Contribution

Leonhard Euler (1707 - 1783)

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 has to do with prime numbers

Euler Contribution

Leonhard Euler (1707 - 1783)

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}$$

The beautiful formula of Riemann

The beautiful formula of Riemann

$$\left(\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \pi^{\frac{s}{2}} \frac{\frac{1}{s(s-1)} + \int_1^{\infty} \left(x^{\frac{s}{2}-1} + x^{-\frac{s+1}{2}}\right) \left(\sum_{n=1}^{\infty} e^{-n^2 \pi x}\right) dx}{\int_0^{\infty} e^{-u} u^{\frac{s}{2}-1} \frac{du}{u}}\right)$$

The beautiful formula of Riemann

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \pi^{\frac{s}{2}} \frac{\frac{1}{s(s-1)} + \int_1^{\infty} \left(x^{\frac{s}{2}-1} + x^{-\frac{s+1}{2}}\right) \left(\sum_{n=1}^{\infty} e^{-n^2 \pi x}\right) dx}{\int_0^{\infty} e^{-u} u^{\frac{s}{2}-1} \frac{du}{u}}$$

Exercise

To prove that, if $\sigma, t \in \mathbb{R}$ are such that

$$\begin{cases}
\int_{1}^{\infty} \frac{\{x\}}{x^{\sigma+1}} \cos(t \log x) dx = \frac{\sigma}{(\sigma-1)^2 + t^2} \\
\int_{1}^{\infty} \frac{\{x\}}{x^{\sigma+1}} \sin(t \log x) dx = \frac{t}{(\sigma-1)^2 + t^2}
\end{cases}$$

Then $\sigma = \frac{1}{2}$.

(Here $\{x\}$ denotes the fractional part of $x \in \mathbb{R}$.)

Theorem. (Rosser - Schoenfeld) if
$$x \ge 67$$

$$\frac{x}{\log x - 1/2} < \pi(x) < \frac{x}{\log x - 3/2}$$

Theorem. (Rosser - Schoenfeld) if
$$x \ge 67$$

$$\frac{x}{\log x - 1/2} < \pi(x) < \frac{x}{\log x - 3/2}$$

Therefore

$$\frac{10^{100}}{\log(10^{100})-1/2} < \pi(10^{100}) < \frac{10^{100}}{\log(10^{100})-3/2}$$

Theorem. (Rosser - Schoenfeld) if
$$x \ge 67$$

$$\frac{x}{\log x - 1/2} < \pi(x) < \frac{x}{\log x - 3/2}$$

Therefore

$$\frac{10^{100}}{\log(10^{100})-1/2} < \pi(10^{100}) < \frac{10^{100}}{\log(10^{100})-3/2}$$

$$<\pi(10^{100})<$$

Twin primes. there exists infinitely many primes p such that p+2 is prime; that is

Twin primes. there exists infinitely many primes p such that p+2 is prime; that is

$$\left(\liminf_{n\to\infty} \left(p_{n+1} - p_n\right) = 2\right)$$

 $p_1 = 2, p_2 = 3, p_3 = 5, \dots, p_n \text{ is the } n\text{-th prime}$

Twin primes. there exists infinitely many primes p such that p+2 is prime; that is

$$\left(\liminf_{n\to\infty} \left(p_{n+1} - p_n\right) = 2\right)$$

$$p_1 = 2, p_2 = 3, p_3 = 5, \dots, p_n \text{ is the } n\text{-th prime}$$

Enrico Bombieri and Harald Davenport in 1966;

Twin primes. there exists infinitely many primes p such that p+2 is prime; that is

$$\left[\liminf_{n \to \infty} \left(p_{n+1} - p_n \right) = 2 \right]$$

 $p_1 = 2, p_2 = 3, p_3 = 5, \dots, p_n \text{ is the } n\text{-th prime}$

Enrico Bombieri and Harald Davenport in 1966;

$$\left(\liminf_{n\to\infty}\frac{p_{n+1}-p_n}{\log p_n}<0.46\cdots\right)$$

in other words, for infinitely many n, $(p_{n+1} - p_n) < 0, 46 \cdots \log p_n$

Twin primes. there exists infinitely many primes p such that p+2 is prime; that is

$$\left[\liminf_{n \to \infty} \left(p_{n+1} - p_n \right) = 2 \right]$$

 $p_1 = 2, p_2 = 3, p_3 = 5, \dots, p_n \text{ is the } n\text{-th prime}$

Enrico Bombieri and Harald Davenport in 1966;

$$\left(\liminf_{n\to\infty}\frac{p_{n+1}-p_n}{\log p_n}<0.46\cdots\right)$$

in other words, for infinitely many n, $(p_{n+1} - p_n) < 0, 46 \cdots \log p_n$

Twin primes. there exists infinitely many primes p such that p+2 is prime; that is

$$\left[\liminf_{n \to \infty} \left(p_{n+1} - p_n \right) = 2 \right]$$

 $p_1 = 2, p_2 = 3, p_3 = 5, \dots, p_n \text{ is the } n\text{-th prime}$

Enrico Bombieri and Harald Davenport in 1966;

$$\left(\liminf_{n\to\infty}\frac{p_{n+1}-p_n}{\log p_n}<0.46\cdots\right)$$

in other words, for infinitely many n, $(p_{n+1} - p_n) < 0, 46 \cdots \log p_n$

$$\left(\liminf_{n\to\infty} \frac{p_{n+1} - p_n}{\sqrt{\log p_n} \log \log p_n} = 0\right)$$

ĕ Yitang Zhang on May 14th 2013;

Twin primes. there exists infinitely many primes p such that p+2 is prime; that is

$$\left[\liminf_{n \to \infty} \left(p_{n+1} - p_n \right) = 2 \right]$$

 $p_1 = 2, p_2 = 3, p_3 = 5, \dots, p_n \text{ is the } n\text{-th prime}$

Enrico Bombieri and Harald Davenport in 1966;

$$\left(\liminf_{n\to\infty}\frac{p_{n+1}-p_n}{\log p_n}<0.46\cdots\right)$$

in other words, for infinitely many n, $(p_{n+1} - p_n) < 0, 46 \cdots \log p_n$

$$\left(\liminf_{n\to\infty} \frac{p_{n+1} - p_n}{\sqrt{\log p_n} \log \log p_n} = 0\right)$$

ĕ Yitang Zhang on May 14th 2013;

$$\lim_{n \to \infty} \inf \left(p_{n+1} - p_n \right) \le 7 \cdot 10^7$$

The contribution of Zhang

Yitang Zhang

(http://en.wikipedia.org/wiki/Yitang_Zhang)

May 14th 2013: $\liminf_{n\to\infty} (p_{n+1}-p_n) \le 70.000.000$

http://michaelnielsen.org/polymath1/index.php?title=Timeline_of_prime_gap_bounds

May 14th 2013:
$$\liminf_{n\to\infty} (p_{n+1} - p_n) \le 70.000.000$$

In this table, infinitesimal losses in δ, ϖ are ignored.

Date	$arpi$ or $(arpi,\delta)$	k ₀	Н	Comments		
14 May	1/1,168 (Zhang 🖹)	3,500,000 (Zhang 🖹)	70,000,000 (Zhang 🖹)	All subsequent work is based on Zhang's breakthrough paper.		
21 May			63,374,611 (Lewko 년)	Optimises Zhang's condition $\pi(H) - \pi(k_0) > k_0$; can be reduced by 1 & by parity considerations		
28 May			59,874,594 (Trudgian ៤)	Uses $(p_{m+1},\ldots,p_{m+k_0})$ with $p_{m+1}>k_0$		
30 May			59,470,640 (Morrison 윤) 58,885,998? (Tao 윤) 59,093,364 (Morrison 윤) 57,554,086 (Morrison 윤)	Uses $(p_{m+1},\ldots,p_{m+k_0})$ and then $(\pm 1,\pm p_{m+1},\ldots,\pm p_{m+k_0/2-1})$ following [HR1973], [HR1973b], [R1974] and optimises in m		
31 May		2,947,442 (Morrison &) 2,618,607 (Morrison &)	48,112,378 (Morrison &) 42,543,038 (Morrison &) 42,342,946 (Morrison &)	Optimizes Zhang's condition $\omega>0,$ and then uses an improved bound $\ensuremath{\varpi}$ on δ_2		
1 Jun			42,342,924 (Tao &)	Tiny improvement using the parity of k_0		

June 15th 2013:
$$\liminf_{n\to\infty} (p_{n+1} - p_n) \le 60.764$$

Taking more advantage of the α convolution in the Type III sums

Jun 10	23,283? (Harcos ∰	253,118 & (xfxie & 386,532* & (Suther 252,990 & (Suther 252,976 &	More efficient contro with no small prime	ol of the κ error using the fact that numbers factor are usually coprime
 Jun 11		252,804 & (Sutherl 2,345,896* & (Suth	An issue with the ka	djustment" optimizations, as detailed here of computation has been discovered, but is in repaired.
Jun 12	22,951 (Tao 函/v08 22,949 (Ha		Improved bound on i	k_0 avoids the technical issue in previous
Jun 13		248,970 & (Sutherl 248,910 & (Sutherl		
Jun 14		248,898 & (Sutherl		

60,812? & (Sutherland &)

60,764 🗗 (xfxie 🗗)

6,330? (v08ltu 🗗)

6,329? (Harcos 🗗)

July 27th 2013:
$$\liminf_{n\to\infty} (p_{n+1} - p_n) \le 4.680$$

_	•	_	
•	,	<i>-</i> -	

յսո 27	$108arpi+30\delta<$ 1? (Tao 🗗)	902? (Hannes &)	6,966 ଜି? (Engelsma ଜି)	slight improvements to the Type II sums. Tuples page & is now accepting submissions.
Jul 1	$(93+\frac{1}{3})\varpi+(26+\frac{2}{3})\delta<1^{?}$ (Tao &)	873? (Hannes &) 8 72? (xfxie &)	6,712? & (Sutherland &) 6,696? & (Engelsma &)	Refactored the final Cauchy-Schwarz in the Type I sums to rebalance the off-diagonal and diagonal contributions
Jul 5	$(93+\frac{1}{3})\varpi+(26+\frac{2}{3})\delta<1$	720 (xfxie ଜ/Harcos 윤)	5,414 ਛਾਂ (Engelsma ਛਾਂ)	Weakened the assumption of x^{δ} -smoothness of the original moduli to that of double x^{δ} -dense divisibility
Jul 10	7/600? (Tao &)			An in principle refinement of the van der Corput estimate based on exploiting additional averaging
	$(85 + \frac{5}{7})\varpi + (25 + \frac{5}{7})\delta < 1^{7}$			A more detailed computation of the Jul 10 refinement
Jul 20				Jul 5 computations now confirmed &
Jul 27		633? (Tao &) 632? (Harcos &)	4,686 ଜ୍ୱ? (Engelsma ଜ୍ୱ) 4,680 ଜ୍ୱ? (Engelsma ଜ୍ୱ)	
Jul 30	$168arpi+48\delta < 1$ **? (Tao 🗗)	1,788**? (Tao &)	14,994 출**? (Sutherland 출)	Bound obtained without using Deligne's theorems.
Aug 17		1,783**? (xfxie &)	14,950 &**? (Sutherland &)	

Legend:

http://michaelnielsen.org/polymath1/index.php?title=Timeline_of_prime_gap_bounds

January 6th 2014:
$$\liminf_{n\to\infty} (p_{n+1} - p_n) \le 270$$

Dec 28		4/4,296 ਓ/ [EH] [m=4] (Sutherland ਓ) 4,137,854 ਓ? [EH] [m=5] (Sutherland ਓ)	
Jan 2 2014		474,290 윤? [EH] [m=4] (Sutherland 윤)	
Jan 6	54# (Nielsen &)	270# (Clark-Jarvis 년)	
Jan 8	4 [GEH] (Nielsen 윤)	8 [GEH] (Nielsen 젊)	Using a "gracefully degrading" lower bound for the numerat problem. Calculations confirmed here &.
Jan 9		474,266 년? [EH] [m=4] (Sutherland 년)	
Jan 28		395,106 ਈ? [m=2] (Sutherland ਈ)	
Jan 29	3 [GEH] (Nielsen ළු)	6 [GEH] (Nielsen 젊)	A new idea of Maynard exploits GEH to allow for cutoff func extends beyond the unit cube
Feb 9			Jan 29 results confirmed here &
Feb 17	53?# (Nielsen &)	264?# (Clark-Jarvis @)	Managed to get the epsilon trick to be computationally feas
Feb 22	51?# (Nielsen &)	252?# (Clark-Jarvis ๗)	More efficient matrix computation allows for higher degrees
Mar 4			Jan 6 computations confirmed &

Leaend:

http://michaelnielsen.org/polymath1/index.php?title=Bounded_gaps_between_primes

http://michaelnielsen.org/polymath1/index.php?title=Bounded_gaps_between_primes

The race to the solution of a more general problem

http://michaelnielsen.org/polymath1/index.php?title=Bounded_gaps_between_primes

The race to the solution of a more general problem

 $H_m = \text{least integer s.t. } n, n+1, \cdots, n+H_m \text{ contains } m \text{ consecutive primes}$

http://michaelnielsen.org/polymath1/index.php?title=Bounded_gaps_between_primes

The race to the solution of a more general problem

 $H_m = \text{least integer s.t. } n, n+1, \cdots, n+H_m \text{ contains } m \text{ consecutive primes}$

m	Conjectural	Assuming EH	Without EH	Without EH or Deligne
1	2	6 년 (on GEH) 12 년 (on EH only)	252 &	252 ₺
2	6	270 🗗	395,106 &	474,266 ଜୁ
3	8	52,116 &	24,462,654 &	32,313,878 ₺
4	12	474,266 &	1,497,901,734 ₺	2,186,561,568 &
5	16	4,137,854 🗗	82,575,303,678 &	131,161,149,090 년
m	$(1+o(1))m\log m$	$O(me^{2m})$	$O(m \exp((4 - \frac{52}{283})m))$	$O(m\exp((4-\frac{4}{43})m))$

The effort of Polymath8 and Terry Tao

LIFE AND TIMES OF TERENCE TAO

Age 7: Begins high school

9: Begins university

10,11,12: Competes in the International Mathematical Olympiads winning bronze, silver and gold medals

16: Honours degree from Flinders University

17: Masters degree from Flinders University

21: PhD from Princeton University

24: Professorship at University of California in Los Angeles

31: Fields Medal, the mathematical equivalent of a Nobel prize

™Goldbach Conjecture.

Every even number (except 2) can be written as the sum of two primes

[™]Goldbach Conjecture.

Every even number (except 2) can be written as the sum of two primes

[™]Goldbach Conjecture.

Every even number (except 2) can be written as the sum of two primes

EQUIVALENT FORMULATION:

Every integer bigger or equal than 5 can be written as the sum of three primes

From Vinogradov to Helfgott

Harald Helfgott

From Vinogradov to Helfgott

Harald Helfgott

- (Vinogradov 1937) Every odd integer greater or equal than $3^{3^{15}}$ is the sum of three primes
- (Helfgott 2013) Every odd integer greater or equal than
 5 is the sum of three primes

The Riemann Hypothesis implies Artin Conjecture.

The Riemann Hypothesis implies Artin Conjecture.

The period of 1/p has length p-1 per infinitely many primes p

The Riemann Hypothesis implies Artin Conjecture.

The period of 1/p has length p-1 per infinitely many primes p

Examples:

$$\frac{1}{7} = 0.\overline{142857},$$

$$\frac{1}{17} = 0, \overline{0588235294117647},$$

$$\frac{1}{19} = 0.\overline{052631578947368421},$$

$$\frac{1}{\sqrt{17}} = 0.0212765957446808510638297872340425531914893617} \cdots$$

The Riemann Hypothesis implies Artin Conjecture.

The period of 1/p has length p-1 per infinitely many primes p

Examples:

$$\frac{1}{7} = 0.\overline{142857},$$

$$\frac{1}{17} = 0, \overline{0588235294117647},$$

$$\frac{1}{19} = 0.\overline{052631578947368421},$$

$$\frac{1}{47} = 0.\overline{0212765957446808510638297872340425531914893617} \cdots$$

Primes with this property: $7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, \dots$

