ر سیرلیهان حدایی - 401106696 ۱. (۱۲ نمره، درجه سختی ۴) یالهای شبکهی بیزی زیر را جهت دار کنید بطوری که متغیرهای A و B به شرط D مستقل باشند. (توجه کنید که جواب لزوما یکتا نیست و ذکر یک پاسخ صحیح کفایت میکند)

سرلهان معدای - 401106696

دراند ا دارای ماکورهای هرگره به طرط به رهایش هستم: f(BIA), f(EIB), f(EIB), f(FID,E), f(GIF) و (CIB), f(EIB), f(EIB) و در نهایت منصر عرا مدت ی کنیم:

nerge
$$(f(E|B), f(D|E), f(F|D, E)) = f(D, E, F|B)$$
 summing out E new factor E f(D, E, F|B) E f(D, F|B)

f(A), f(B)A), f(C)B), f(D,F)B), f(G)F)

بنېراني مالغرهايمان به صورت دوېرو خواهندېو د :

به هس نرس عملیات مشه ۱٫۰۱۸ شغیر کی انجا)ی دهیم:

merge
$$(f(G|F)) = f(G|F)$$
 summing out G new factor $= \sum_{g} f(g|F) \longrightarrow Parameter G is summed out$

f(A), f(B(A), f(C(B), f(D, F(B)

ر فالتورهای هدینمان به صورت رو برو هسسه :

فرانینی مشابه را بردوی منعیر <u>B</u> انجآمی دهیم:

merge
$$(f(B|A), f(C|B), f(D,F|B)) = f(B,C,D,F|A)$$

$$f(C,D,F|B)$$
= $f(C,D,F|B)$

حال با ناکتور های حبیبای که داریم ((A) , f(A)) استفاده ی نیم:

merge (f(A), f(C,D,F(A)) = f(A,C,D,F)

بالسناده ازاین ماکند، احتمال تو از (A,C,D,F) را داریم که بی توان با استاده از آن به احتمال (P(A,C,D)+

ر سي ،

$$P(A,C,D|+f) = \frac{P(A,C,D,+f)}{P(+f)}$$

٣. (١۵ نمره، درجه سختي ٥) با توجه به جداول زير به سوالات پاسخ دهيد.

ىر سىرلىمان معدايى - 401106696

A	P(A)	
F	.19	
T	٠/۴	

	-	D(DLA)
A	В	P(B A)
F	F	٠/٧
T	F	٠/٢
F	T	٠/٣
T	T	٠/٨

l)	A	D	P(D)
	F	F	٠/٥
	T	F	٠/٨
	F	T	٠/٥
	T	T	•/1
MD / ADVI A	D)	1	

B	A	C	P(C A,B)		
F	F	F	•/٩		
T	F	F	٠/٧٥		
F	T	F	٠/٢		
T	T	F	•/9		
F	F	T	•/1		
T	F	T	٠/٢٥		
F	T	T	•/٨		
T	T	T	•/۴		

را بدست آورید. P(+a|+b,-c)، $Likelihood\ Weighting$ را بدست آورید.

- (\mathbf{p}) حال با کمک نمونههای بخش آ، و با استفاده از روش P(+d)، مقدار P(+d) را محاسبه کنند.
- (چ) اگر در روش (abbs Sampling)، نمونهی اولیه به صورت (a,+b,+c,+d) باشد و پس از آن مقدار B را برداریم، احتمال اینکه در نمونهی بعدی مقدار B برابر (a,+d) باشد چقدر است (a,+d)

: - ulzis vis le zle collection value visione C= - c 3B=+b Ulzevidence value visione visione (~

W = P(+b|A)P(-c|A,+b)

بانده به نابعتی که ساهده ی کنم ، مشفی است که س به مقدار A وانسته است.

حال وزن نمونههای داده شده را مېدست ی آودیم:

3)
$$-a + b - c - d$$

$$w_1 = 0.8 \times 0.6 = 0.48$$

$$w_2 = 0.3 \times 0.75 = 0.225$$

$$w_3 = 0.3 \times 0.75 = 0.225$$

$$w_4 = 0.8 \times 0.6 = 0.48$$

$$w_5 = 0.8 \times 0.6 = 0.48$$

$$P(+\alpha|+b,-c) = \frac{w_1 + w_4 + w_5}{w_1 + w_2 + w_3 + w_4 + w_5} \approx 0.76$$

ب) هاین حالت، احتمال برابر با نسبت نقداد حالات معلوب در دا دوحا به نقداد کل حالات است:

$$P(+d) = \frac{3}{5} \approx 0.6$$
ج) برای ایند سنم به چم اهتمال شمار جدید $\frac{9}{4}$ برابر $\frac{1}{4}$ خواهد بود ، باید اهتمال (۱٫۹(+b)+۵,+c,+b) برای ایند نیز به چم اهتمال شمار جدید $\frac{9}{4}$ برابر $\frac{1}{4}$ خواهد بود ، باید اهتمال (۱٫۹(+b)+۵,+c,+b) برای ایند نیز به چم اهتمال شمار جدید $\frac{9}{4}$ برابر $\frac{1}{4}$ خواهد بود ، باید اهتمال (۱٫۹(+b)+۵,+c,+b) برای ایند نیز به خواهد بود ، باید اهتمال (۱٫۹(+b)+۵,+c,+b) برای ایند نیز به خواهد بود ، باید اهتمال (۱٫۹(+b)+۵,+c,+b) برای ایند نیز به خواهد بود ، باید اهتمال (۱٫۹(+b)+۵,+c,+b) برای به نماید بود ، باید اهتمال (۱٫۹(+b)+۵,+c,+b) برای به نماید به نماید

$$P(+b|+a,+c,+d) = \frac{P(+a,+b,+c,+d)}{P(+a,+c,+d)} = \frac{P(+a)P(+b|+a)P(+c|+a,+b)P(+d|+a)}{\sum_{b \in \{-b,+b\}} P(+a,b,+c,+d)}$$

$$=\frac{P(+\alpha)P(+b|+\alpha)P(+c|+\alpha,+b)P(+d|+\alpha)}{\sum P(+\alpha)P(b|+\alpha)P(+c|+\alpha,b)P(+d|\alpha)} = \frac{P(+\alpha)P(+b|+\alpha)P(+c|+\alpha,+b)P(+d|+\alpha)}{P(+\alpha)P(+d|\alpha)\sum P(b|+\alpha)P(+c|+\alpha,b)}$$

$$be\{-b,+b\}$$

$$=\frac{P(+b|+\alpha)P(+c|+\alpha,+b)}{\sum P(b|+\alpha)P(+c|+\alpha,b)}=\frac{P(+b|+\alpha)P(+c|+\alpha,+b)}{P(-b|+\alpha)P(+c|+\alpha,-b)+P(+b|+\alpha)P(+c|+\alpha,+b)}$$

$$= \frac{0.8 \times 0.4}{0.2 \times 0.8 + 0.8 \times 0.4} = \frac{2}{3} \approx 0.67$$