Claremont Graduate University, M453, Financial Time Series

Midterm

Instructor: Qidi Peng

Oct. 21, 2016

Only an A3 size cheating sheet is allowed. No computers, no smart phones, no wifi. Degree of difficulty: * easy, *** medium, **** hard

Financial Time Series

- 1. (Time series modeling) Find a time series corresponding to each of the following sequence of observations (you should estimate all the parameters of your model, except the variance σ^2 of white noise):
 - (a) * The daily number of sold items of a product: $2, 6, 12, 20, 30, 42, \ldots$;
 - (b) * The yearly stock price of a startup company: $4, 10, 20, 36, 62, 104, \ldots$;
 - (c) *** The weekly balance of an individual's bank account: $3270, 2160, 1490, 6490, 3330, 2240, 1390, 6390, \dots$

(Hint: draw the trajectory of the sample first.)

- 2. (Time series modeling) The daily log returns $\{\log(S_t)\}_t$ of some asset price $\{S_t\}_t$ are observed to behave as follows:
 - (1) The log return at day t linearly depends on its value at day t-1;
 - (2) If this log return at day t is 1.6, then it is predicted to be 1.3 at day t+1 and 1.15 at day t+2.
 - (a) *** Propose a time series model to fit this log return. Your model should satisfy (1) and (2).
 - **(b)** *** Estimate all parameters in your model.
 - (c) * Compute $E[\log(S_t)]$ and $Var(\log(S_t))$. Is your model second-order stationary? Why?
- 3. (Autoregressive model: Part 1) Consider an AR(3) model $\{X_t\}_t$:

$$X_{t} = -\frac{1}{2} \left(X_{t-1} + X_{t-2} - X_{t-3} \right) + w_{t}, \tag{1}$$

where $\{w_t\}_t$ is some white noise.

(a) * Let B be the backward shift operator, i.e. $BX_t = X_{t-1}$. Determine a polynomial $\theta(B)$ such that

$$\theta(B)X_t = w_t.$$

- (b) *** Is $\{X_t\}_t$ second-order stationary? Why? (Hint: guess one root of $\theta(B)$.)
- 4. (Autoregressive model: Part 2) We will show that the AR(3) defined in (1) CAN'T have period 3. Recall that a time series $\{Y_t\}_t$ has period 3 means that $Y_{t-3} = Y_t$ for all t.
 - (a) *** Show that if the time series $\{X_t\}_t$ has period 3, then $X_t + X_{t-1} + X_{t-2}$ does not depend on t.
 - (b) *** Using the above result to show that $\theta(B)$ given in Question (a) Exercise 3 transforms every time series of period 3 to a constant, i.e., if $\{X_t\}_t$ has period 3, then

$$\theta(B)X_t = constant.$$

(Remark: this result contradicts the fact that $\theta(B)X_t = w_t$, as a consequence X_t can't have period 3.)

5. ***** A sample of a stationary time series $\{X_t\}_t$ has been observed: X_1, \ldots, X_n . The sample statistics show that

$$\overline{X} = 0.0013, \ corr(X_t, X_{t+1}) \approx 0.493, \ corr(X_t, X_{t+2}) \approx 0.248, \ corr(X_t, X_{t+3}) \approx 0.125,$$

 $corr(X_t, X_{t+4}) \approx 0.062, \ corr(X_t, X_{t+5}) \approx 0.031, \ corr(X_t, X_{t+6}) \approx 0.016.$

According to your opinion, which kind of time series is $\{X_t\}_t$ most likely to be? (You should provide estimates of all parameters.)

(Hint: draw a correlogram, guess which time series does it represent.)