

41 GGAGGCCGGCCTGGGCAG[†]GTGGGTGTCGGCACCCC

FIGURE 2

FIGURE 3

FIGURE 5

300 bp

```
60
     GCCACCTCACGTTCTGCTTCCGTCTGACCCCCTCCGACTTCCGGTAAAGAGTCCCTATCCG
                                                       120
     \texttt{CACCTCCGACCCGGCGCGCCCGCCCTCCGATGCGCTCAGCGGCCGCA}
 121
                                                       180
                                      MRSAAA
                                                       6
     GCTCCTCGGAGTCCCGCGGTGGCCACCGAGTCTCGCCGCTTCGCCGCAGCCAGGTGGCCC
 181
                                                       240
     A P R S P A V A T E S R R F A A A R W P
                                                       26
     211
                                                       300
       W R S I, O R P Å R R S G R G G G A A
                                                       16
     CCGGGACCGTATCCCTCCGCCGCCCCCCCCGCCCCGGCCCCCCCTCCCGG
 301
                                                       360
       G P Y P S A A P P P F G P G P P P S R
                                                      66
     CAGAGCTCGCCTCCGCCTCAGACTGTTTTGGTAGCAACGGCAACGGCGGCGGCGCGCG
 361
                                                      120
     O S S P P S A S D C F G S N G N G G G A
                                                      86
     421
                                                      180
 87
     F R P G S R R L L G L G G P
                                     PRPFVV
                                                      106
     GTCCTTCTCCCCCTCGCCAGCCCGGGCGCCCCTCCGGCCGCCCAACCCGCGCCTCCCCG
 481
                                                      510
 107
            PLASPGAPPAAPTRASP
                                                      126
     CTCGGCGCCGTGCGTCCCGGCGTTCCGGCGTCTCCTTGGCGCGCCCGGCTCCCGGC
 541
                                                      600
     L G A R A S P P R S G V S L A R P A P G
                                                      146
                                 5CA2 - A
    TGTCCCCGCCCGGCGTGCGAGCCGGTGTATGGGCCCCTCACCATGTCGCTGAAGCCCCAG
 60 l
                                                      660
    C P R P A C E P V Y G P t. T M S t. K P Q
 147
                                                      166
    661
                                                      720
    167
                                                      186
                        SCA2-B
    CAGCCGCCGCGCGGCTGCCAATGTCCGCAAGCCCGGCGGCAGCGGCCTTCTAGCGTCG
                                                      780
    O P P P A A A N V R K P G G S G L I. A S
 187
                                                      206
    781
                                                      840
207
        \begin{smallmatrix} \Lambda & \Lambda & \Lambda & \Gamma & S & \Gamma & S & S & S & S & V & S & S & S & \Lambda & \prod & \Lambda & P \\ \end{smallmatrix} 
                                                      226
    тсстсостоссоссостссоссоссоссоссосствослобостсолллс
841
                                                      900
227
      S V V A A T S G G G R P G L G R G R N
                                                      246
    AGTAACAAAGGACTGCCTCAGTCTACGATTTCTTTTGATGGAATCTATGCAAATATGAGG
901
                                                      960
    S N K G L P O S T I S F D G I Y A N M R
217
                                                      266
    ATGGTTCATATACTTACATCAGTTGTTGGCTCCAAATGTGAAGTACAAGTGAAAAATGGA
961
                                                      1020
      \begin{smallmatrix}V&H&I&I,&T&S&V&V&G&S&K&C&E&V&Q&V&K&N&G\end{smallmatrix}
267
                                                      286
                                            SCA2 - 14B
    GGTATATATGAAGGAGTTTTTAAAACTTACAGTCCGAAGTGTGATTTGGTACTTGATGCC
1021
                                                      1080
    GIYEGVFKTYSPKCDLVLDA
287
                                                      306
    GCACATGAGAAAAGTACAGAATCCAGTTCGGGGCCGAAACGTGAAGAAATAATGGAGAGT
1081
                                                      1140
307
      HEKSTESSSGPKREEIMES
                                                      326
    <u> ATTTTGTTCAAATGTTCAGACTTTGTTGTGGTACAGTTTAAAAGATATGGACTCCAGTTAT</u>
                                                      1200
      L F K C S D F V V V D F K D M D S S Y
327
                                                      346
    GCAAAAAGAGATGCTTTTACTGACTCTGCTATCAGTGCTAAAAGTGAATGGCGAACACAAA
1201
                                                      1260
    A K R D A F T D S A I S A K V H G E H K
317
                                                      366
    GAGAAGGACCTGGAGCCCTGGGATGCAGGTGAACTCACAGCCAATGAGGAACTTGAGGCT
1261
                                                      1320
367
    EKDLEPHDAGELTANEELEA
                                                      386
    TTGGAAAATGACGTATCTAATGGATGGGATCCCAATGATATGTTTCGATATAATGAAGAA
1321
                                                      1380
    LEUDYSUGWDPNDMFRYNEE
                                                      406
    AATTATGGTGTAGTGTCTACGTATGATAGCAGTTTATCTTCGTATACAGTGCCCTTAGAA
1381
                                                      1440
    u r g v y s r r b s s L s s
                                     TVPLE
                                                      126
    AGAGATAACTCAGAAGAATTTTTAAAACGGGAAGCAAGGGCAAACCAGTTAGCAGAAGAA
1441
                                                      1500
    RDHSEEFLKREARAHOLA
427
                                                      446
```

ATTGAGTCAAGTGCCCAGTACAAAGCTCGAGTGGCCCTGGAAAATGATGATAGGAGTGAG 1501 1560 E S S A O Y K A R V A L E N D D R S E 117 GAAGAAAAATACACAGCAGTTCAGAGAAATTCCAGTGAACGTGAGGGGCACAGCATAAAC 166 1561 E E K Y T A V O R N S S E R E G H S 1620 ACTAGGGAAAATAAATATATTCCTCCTGGACAAAGAAATAGAGAAGTCATATCCTGGGGA 186 1621 1680 TRENKYIPPGORNREVISWG AGTGGGAGACAGAATTCACCGCGTATGGGCCAGCCTGGATCGGGCTCCATGCCATCAAGA 506 1681 1740 507 ONSPRMGQPGSGSMPSR TCCACTTCTCACACTTCAGATTTCAACCCGAATTCTGGTTCAGACCAAAGAGTAGTTAAT 526 1741 1800 S II T S D F ,N P N S G S D O R V V N 527 516 1801 G G V P W P S P C P S P S S R P 1860 517 P S R Y 566 CAGTCAGGTCCCAACTCTCTTCCACCTCGGGCAGCCACCCCTACACGGCCGCCCTCCAGG OSGPWSLPPRAATPTRPPSR 1920 567 CCCCCCTCGGGGCCATCGAGACCCCGGTCTCACCCCTTGGTCATGGTTCTCCAGCTCCT 586 1921 1980 587 GTCTCTACTATGCCTAAACGCATGTCTTCAGAAGGGCCTCCAAGGATGTCCCCAAAGGCC 606 1981 V S T M F F F H S S E G P P R M S P K A 2010 CAGCGACATCCTCGAAATCACAGAGTTTCTGCTGGGAGGGGTTCCATATCCAGTGGCCTA 626 2041 R H P R H H R V S A G R G S I S S G L 2100 627 GAATTTGTATCCCACAACCCACCCAGTGAAGCAGCTACTCCTCCAGTAGCAAGGACCAGT 616 2101 E F V S H H P P S E A A T P P V A R T S 2160 517 CCCTCGGGGGGAACGTGGTCATCAGTGGTCAGTGGGGTTCCAAGATTATCCCCTAAAACT 666 2220 667 PSGGTHSSVVSGVPRLS P K 686 CATAGACCCAGGTCTCCCAGACAGAACAGTATTGGAAATACCCCCAGTGGGCCAGTTCTT 2221 2280 R P R S F R O N S I G N T P SGPVL GCTTCTCCCCAAGCTGGTATTATTCCAACTGAAGCTGTTGCCATGCCTATTCCAGCTGCA 706 2281 2340 POAGIPTEAVAMPIPAA 707 726 TCTCCTACGCCTGCTAGTCCTGCATCGAACAGAGCTGTTACCCCCTTCTAGTGAGGCTAAA 2341 2400 PTPASPASNRAVTPSSEAK 727 GATTCCAGGCTTCAAGATCAGAGGCAGAACTCTCCTGCAGGGAATAAAGAAAATATTAAA 746 2401 2460 SRLODORONSPAGNKENIK 766 CCCAATGAAACATCACCTAGCTTCTCAAAAAGCTAAAAACAAAGGTATATCACCAGTTGTT 2461 2520 E T S P S F S K A E N K G I S P V V 786 TCTGAACATAGAAAAGATTGATGATTTAAAGAAATTTAAGAATGATTTTAGGTTACAG 2521 2580 EHRKOIDDLKKFKNDFRLQ 806 CCAAGTTCTACTTCTGAATCTATGGATCAACTACTAAACAAAAAATAGAGAGGGAGAAAAA 2640 S S T S E S M D O L L N K N R E G E K TCAAGAGATTTGATCAAAGACAAAATTGAACCAAGTGCTAAGGATTCTTTCATTGAAAAT 826 2641 2700 RDLIRDKIEPSAKDSFI 827 ${\tt AGCAGCAACTGTACCAGTGGCAGCAGCAAGCCGAATAGCCCCAGCATTTCCCCTTCA}$ 816 2701 2760 S S N C T S G S S K P N S P S I S P S 817 866 ATACTTAGTAACACGGAGCACAAGAGGGGACCTGAGGTCACTTCCCAAGGGGTTCAGACT 2820 LSNTEHKRGPEVTSQGVQT 886 TCCAGCCCAGCATGTAAACAAGAGAAAAGACGATAAGGAAGAAGAAGAAGACGCAGCTGAG 2821 2880 A C F O E K D D K E E K K D A A E CANGTTAGGAAATCAACATTGAATCCCAATGCAAAGGAGTTCAACCCACGTTCCTTCTCT 906 2881 2940 V R K S T L H P N A K E F N P R S F S CAGCCAAAGCCTTCTACTACCCCAACTTCACCTCGGCCTCAAGCACAACCTAGCCCATCT 926 2941 3000 927 PKPSTIPTSPR POAOP S P S 916 3001 3060 VGHOOFTPVYTOFVCFAPN 917 ATGATGTATCCAGTCCCAGTGAGCCCAGGCGTGCAACCTTTATACCCAATACCTATGACG 966 3061 3120 ммүругүзгсуорьүртрмт 986

PMPVNOAKTYRAVPNMPOOR ${\tt CAMGACCAGCATCATCAGAGTGCCATGATGCACCCAGCGTCAGCAGCGGGCCCACCGATT}$ Q D Q II II O S A M M H P A S A A G P P I GCAGCCACCCACCAGCTTACTCCACGCAATATGTTGCCTACAGTCCTCAGCAGTTCCCA A A T P P A Y S T O Y V A Y S P O O F P AATCAGCCCCTTGTTCAGCATGTGCCACATTATCAGTCTCAGCATCCTCATGTCTATAGT NOPLVOHVPHYOSOHPHVYS CCTGTAATACAGGGTAATGCTAGAATGATGGCACCAACAACACACGCCCAGCCTGGTTTAPVIOGNARMMAPPTHAOPGL GTATCTTCTTCAGCAACTCAGTACGGGGCTCATGAGCAGACGCATGCGATGTATGCATGT S S S A T O Y G A H E O T H A M Y A C K L P Y N K E T S P S F Y F A I S T G TCCCTTGCTCAGCAGTATGGGCACCCTAACGCTACCCTGCACCCACATACTCCACACCCT LAOOYAHPNATLHPHTPHP CAGCCTTCAGCTACCCCCACTGGACAGCAGCAAAGCCAACATGGTGGAAGTCATCCTGCA P S A T P T G O O O S O H G G S H P A CCCAGTCCTGTTGAGGAGGATGAGGACCAGGCCGCCCAGGCTCTCCATCTGGCCAGTCCA CAGCAGCAGTCAGCCATTTACCACGCGGGGGCTTGCGCCAACTCCACCCTCCATGACACCT QQOSAIYHAGLAPTPPSMTP GCCTCCAACACGCAGTCGCCACAGAATAGTTTCCCAGCAGCACAACAGACTGTCTTTACG SNTOSPONSFPAAOOTVFT IHPSHVQPAYTNFFHMAHVP CAGGCTCATGTACAGTCAGGAATGGTTCCTTCTCATCCAACTGCCCATGCGCCAATGATG O A H V O 5 G M V P S H P T A H A P M M CTAATGACGACACAGCCAGCCGGCGGTCCCCAGGCCGCCCTCGCTCAAAGTGCACTACAG LMTTOPPGGPQAALAQSALQ CCCATTCCAGTCTCGACAACAGCGCATTTCCCCTATATGACGCACCCTTCAGTACAAGCC I P V S T T A H F P Y M T H P S V O A CACCACCAACAGCAGTTGTAAGGCTGCCCTGGAGGAAACCGAAAAGGCCAAATTCCCTCCTC н н о о о ь . **TAAAATATATATGTTGATTTCTTGTAACATCCAATAGGAATGCTAACAGTTCACTTGCAG** TGGAAGATACTTGGACCGAGTAGAGGCATTTAGGAACTTGGGGGGCTATTCCATAATTCCA TATGCTGTTTCAGAGTCCCGCAGGTACCCCAGCTCTGCTTGCCGAAACTGGAAGTTATTT **ATTTTTTAATAACCCTTGAAAGTCATGAACACATCAGCTAGCAAAAGAAGTAACAAGAGT**

FIGURE 6C

	1				50
Ataxin-2	VYGPLTMSLK	1,000000000	0000000000	ОООГГРАЛЛИ	VRKPGGSGLL
Mouse Ataxin-2					
AZRP			ER		
Consensus		ro		• • • • • • • • • • • • • • • • • • • •	
	51				100
Ataxin-2		SSSVSSSSAT	APSSVVA	ATSGGGREGI.	
Mouse Ataxin-2			λρλλργλSSS		
N2RP					
Consensus	$\cdots r \cdot \lambda \lambda \cdots s$	• • • • • • • • • • • • • • • • • • • •			- RG KG -
	101				150
Ataxin-2			TSVVGSKCEV		
Mouse Ataxin-2 A2RP			TSVVGSKCEV TAVVGSTCDV		
Consensus			T-VVGS-C-V		, _
			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1111	TRI B R
	151				200
Ataxin-2			EIMESILFKC		
Mouse Ataxin-2			EIMESVLFKC		
A2RP			DIVDTMVFKP		
Consensus	UDN-H-K-	-EGP-RE	- I FK -	SDV-F	-DYλD-
	201				250
Ataxin-2		KVNGEHKEKD	LEPWDAGELT	ANEELEALEN	
Mouse Ataxin-2			LEPWDAGELT		
A2RP			LORWEGGD . S		
Consensus			LWG		
	251				300
Ataxin-2			SYTVPLERDN		
Mouse Ataxin-2 A2RP			SYTVPLERDN		•
Consensus			SYTVPLEKON SYTVPLE-ON		
44.00.00			3117100 011	Jose Ro R	N-08N 6163
	301				350
Ataxin-2			KYTAVQRNSS		
Mouse Ataxin-2			KYTAVQRNCS		
A2RP			KHSAVQRQGS		
Consensus	S-01E-A-	ENDD - R - EEE	K AVQR S	-RER	KYIP
	351				
Ataxin-2					
	NR				
Mouse Ataxin-2	HR HR				
Mouse Ataxin-2 A2RP					

FIGURE 7

SCA2 Gene

- Largest exon: exon 1, 928 bps; contains CAG repeat - Largest intron: intron 1 with approximately 15 Kbps

- Smallest exon: exon 2, 37 bps

]

- Exon sizes: 8 < 100 bps 100 bps < 12 < 200 bps 200 bps < 4 < 400 bps

400 bps < 1

- known Intron sizes:
intron 2 : 1.6 Kb
intron 19: 0.3 Kb
intron 22: 1.0 Kb
· intron 24: 1.6 Kb