Amendments to the Sp cification

Please replace the paragraph beginning at page 14, 3rd line from the bottom of the page, with the following rewritten paragraph.

BI

The agents of the invention commonly have a rapid onset of action and have a prolonged stimulating action on the β 2-adrenoreceptor, compounds of the Examples hereinbelow having Ki (β 2) values of the order of 0.1 to 1000 nM, having durations of action of the order of 1 to greater than 12 hours, and having binding selectivites for the β 2-adrenoreceptor relative to the β 1-adrenoreceptor from 1.5 to 500. For example, the compounds of Examples 1, 2, 4, 5, 6, 8, and 27 and 29 have β 2 and β 1 binding potencies, measured by cAMP determination in cells expressing β 2-and β 1-adrenoreceptors, represented by EC50 values (β 2/ β 1) (in nM) of 0.92/9.52, 0.23/1.25, 6.07/14.5, 0.79/6.10, 0.3/3.60, 0.57/8.46 and 0.012/0.5 respectively. The compounds of Examples 2, 4, 5, 27 and 29 have T(50%) times (in minutes) of >400 at 71nM concentration, 82 at 100 nM, 444 at 100nM, 222 at 1.0nM and 279 at 10nM respectively in the guinea pig tracheal strip assay, where T(50%) is the time for inhibition of contraction to decay to 50% of its maximum value.

Please replace the paragraph beginning at page 40, line 3 and ending on page 41, line 9 with the following paragraph

Example 19

- (a) (S)-8-Benzyloxy-5-[2-(5,6-diethyl-indan-2-ylamino)-1-hydroxy-ethyl]-1H-quinolin-2-one is prepared from Intermediate 16 (152mg) and Intermediate 1 (100mg) using a procedure analogous to that of Example 1(a). TLC (silica, dichloromethane / methanol 10:1 R_f = 0.25).
- (b) (S)-5-[2-(4,7 $\underline{5}$,6-Diethyl-indan-2-ylamino)-1-hydroxy-ethyl]-8-hydroxy-1H-quinolin-2-one hydrochloride is prepared from the product of Example 19(a) by a procedure analogous to that of Example 1(b). TLC (silica, dichloromethane / methanol 10:1 R_f = 0.05).

Example 20

(a) 8-Benzyloxy-5-[(R)-1-hydroxy-2-(6,7,8,9-tetrahydro-5H-benzocyclohepten-7-ylamino)-ethyl]-1H-quinolin-2-one is prepared from (R)-8-benzyloxy-5-oxiranylcarbostyril (203mg) and Intermediate 17 (110mg) by a procedure analogous to that of Example 1(a). TLC (silica, dichloromethane / methanol 10:1 $R_f = 0.30$).

(b) S-[(R)-1-Hydroxy-2-(6,7,8,9-tetrahydro-5H-benzocyclohepten-7-ylamino)-ethyl]-8-hydroxy-1H-quinolin-2-one hydrochloride is prepared from the product of Example 20(a) by a procedure analogous to that of Example 1(b). TLC (silica, dichloromethane / methanol 10:1 $R_f = 0.05$).

B

Example 21

(a) (R)- 8-benzyloxy-5-{(S)-2-[benzyl-(5,6-diethyl-indan-2-yl)-amino]-1-hydroxy-ethyl}-1H-quinolin-2-one

A solution of (R)-8-benzyloxy-5-oxiranylcarbostyril (5.00g) and 2-amino-5,6-diethylindan (3.87g) in n-butanol is heated for 4 hours at 110°C. After cooling to room temperature toluene (100ml) is added and the organic phase is washed with water (3 X 25ml), loaded onto a silica gel chromatography column and eluted with toluene followed by a mixture of toluene: ethanol: ethyl acetate: conc. ammonia (45:10:45:2) to give the title compound.

(b) (R)-5-[2-(5,6-diethyl-indan-2-ylamino)-1-hydroxy-ethyl]-8-hydroxy-1H-quinolin-2-one maleate (R)-8-benzyloxy-5-[2-(5,6-diethyl-indan-2-ylamino)-1-hydroxy-ethyl]-1H-quinolin-2-one (360mg) is dissolved in methanol (10mL) and the compound is deprotected by adding a catalytic amount of 10% palladium on charcoal and placing the solution under an atmosphere of hydrogen. The reaction is shown to be complete by TLC after 4 hours. The catalyst is filtered off and the solvent is removed *in vacuo*. The product is taken up into isopropanol and a solution of maleic acid in isopropanol added. The title compound is obtained after recrystallisation from ethanol. TLC (silica, dichloromethane / methanol 10:1 $R_f = 0.05$). E5+ MS m/e 393 (MH⁺).