Prednáška 3

materiály pre A++ študentov

vektory

20 Vypočítejte skalární součin vektorů \boldsymbol{u} , \boldsymbol{v} (φ označuje jejich úhel).

a)
$$\mathbf{u} = (1; 2), \mathbf{v} = (-1; 1)$$
 b) $\mathbf{u} = (2; -1), \mathbf{v} = (1; 3)$

b)
$$\mathbf{u} = (2; -1), \mathbf{v} = (1; 3)$$

c)
$$\mathbf{u} = (1; 1; 3), \mathbf{v} = (2; 1; -1)$$

d)
$$\mathbf{u} = (1; 0; 1), \mathbf{v} = (0; 2; -1)$$

e)
$$|\mathbf{u}| = 1$$
, $|\mathbf{v}| = 2$, $\varphi = 60^{\circ}$

c)
$$\mathbf{u} = (1; 1; 3), \mathbf{v} = (2; 1; -1)$$
 d) $\mathbf{u} = (1; 0; 1), \mathbf{v} = (0; 2; -1)$ e) $|\mathbf{u}| = 1, |\mathbf{v}| = 2, \varphi = 60^{\circ}$ f) $|\mathbf{u}| = 3, |\mathbf{v}| = \frac{1}{2}, \varphi = 135^{\circ}$

21 Je dán pravidelný šestiúhelník ABCDEF o délce strany 2. Vypočítejte skalární součiny (C-A)(D-A), (C-D)(F-E), (D-F)(F-A).

vektory

3 Vypočítejte úhel vektorů u, v.

a)
$$\mathbf{u} = (1; 1), \mathbf{v} = (-1; 1)$$

a)
$$\mathbf{u} = (1;1), \mathbf{v} = (-1;1)$$
 b) $\mathbf{u} = (-2;3), \mathbf{v} = (4;-6)$

c)
$$\mathbf{u} = (1; 1; -1), \mathbf{v} = (2; 1; 3)$$

c)
$$\mathbf{u} = (1; 1; -1), \mathbf{v} = (2; 1; 3)$$
 d) $\mathbf{u} = (0; 1; 2), \mathbf{v} = (3; 3; -1)$

4 Určete číslo t tak, aby vektory u, v byly navzájem kolmé.

a)
$$\mathbf{u} = (t; 2; -1), \mathbf{v} = (1; -t; 3)$$

b)
$$\mathbf{u} = (1; 1; 2t), \mathbf{v} = (t; t; -1)$$

c)
$$\mathbf{u} = (1; 2 - t; 3), \mathbf{v} = (-t; 2; 1 + t)$$

5 Vypočítejte velikosti vnitřních úhlů trojúhelníku ABC.

a)
$$A[0;1], B[-1;2], C[1;3]$$

a)
$$A[0;1]$$
, $B[-1;2]$, $C[1;3]$ b) $A[1;1;1]$, $B[-1;0;2]$, $C[3;1;2]$

vektory

Příklad 5

Ve stropě tovární haly jsou zabudovány dva háky, jejichž vzdálenost

je $10,5\,\mathrm{m}$. Na jeden z nich zavěsíme lano dlouhé $8,5\,\mathrm{m}$, na druhý z nich za-O=A věsíme lano dlouhé $5\,\mathrm{m}$. Volné konce lan spojíme a zavěsíme na ně kladkostroj (situace je schematicky znázorněna na obr. 2.25). Obě lana mají nosnost $10\,\mathrm{tun}$. Jak těžký předmět můžeme maximálně zavěsit na kladkostroj, nechceme-li překročit nosnost lan?

Obr. 2.25

- 5 Jsou dány body A, B, C. Určete souřadnice těžiště T trojúhelníku ABC.
 - a) A[-1,0], B[3,-2], C[1,5]
 - b) A[4,1], B[1,-2], C[-2,7]
- 6 Jsou dány vrcholy A, B a těžiště T trojúhelníku ABC. Určete souřadnice vrcholu C.
 - a) A[5,2], B[1,7], T[2,3]
 - b) A[8,1], B[0,7], T[3,2]
- . 7 Je dán vrchol A, střed S strany AB a těžiště T trojúhelníku ABC. Určete souřadnice jeho vrcholů B, C.
 - a) A[3,-1], S[1,0], T[2,1]
 - b) A[-2,4], S[0,4], T[1,3]

- 12 V parametrickém vyjádření přímky $p\colon x=2+t,\ y=1+a-2t,\ t\in \mathsf{R},\ \text{volte}$ číslo $a\in \mathsf{R}$ tak, aby přímka p, procházela průsečíkem přímek $p(P,\textbf{\textit{u}})$ a $q(Q,\textbf{\textit{v}}),$ kde $P[1;3],\ \textbf{\textit{u}}=(-1;2),\ Q[1;4],\ \textbf{\textit{v}}=(2;-3).$
- 13 Napište parametrické vyjádření všech těžnic trojúhelníku s vrcholy A[-2;-1], B[3;0], C[2;4]. Určete jeho těžiště T jako průsečík dvou těžnic a ověřte, že jím prochází i třetí těžnice.

14 Máme dán libovolný obdélník ABCD (obr. 3.6). Označme K střed strany AD, L střed strany BC, M střed strany CD a N bod, který

leží na úsečce CD v jedné třetině od bodu C. Dokažte, že přímky AM, DL, KN, se protínají v jednom bodě.

[Návod: Zvolte vhodně kartézskou soustavu souřadnic, vypočítejte průsečík dvou ze tří daných přímek a přesvědčte se, že jím prochází i třetí přímka.]

- 31 Jsou dány body A[0;0], B[3;1], C[1;2]. Napište obecné rovnice všech výšek trojúhelníku ABC, vypočítejte průsečík dvou z nich a ověřte, že jím prochází i třetí výška.
- 32 Jsou dány body A[1; -4], B[4; 5], C[-3; 4]. Napište obecné rovnice os všech stran trojúhelníku ABC, vypočítejte střed kružnice jemu opsané jako průsečík dvou z nich a ověřte, že jím prochází i třetí osa.
- 33 Jsou dány body A[-5; -4], B[4,6; 3,2], C[2,5; 6]. Napište obecné rovnice os úhlů trojúhelníku ABC, vypočítejte střed kružnice jemu vepsané jako průsečík dvou z nich a ověřte, že jím prochází i třetí osa.

- 34 Určete vrchol C trojúhelníku ABC. Jsou dány body A[1;2], B[-1;0] a průsečík výšek V[1;-1].
- **35** Určete odchylku přímek p, q, které jsou dány rovnicemi p: 3x 4y + 7 = 0, q: x + 2y 1 = 0.
- **36** Je dán bod A[2;4] a přímka p: x-2y+1=0. Určete na přímce p bod R tak, aby přímky AR a p měly odchylku $\frac{\pi}{4}$.

18 V rovnici přímky p zvolte číslo m tak, aby přímka p byla rovnoběžná s přímkou q.

a)
$$p: (1+m)x - (2-3m)y + m = 0, q: x + 8y - 1 = 0$$

b)
$$p: (2+m)x - (1+\frac{1}{2}m)y - 1 = 0, q: -2x+y-3 = 0$$

c)
$$p: (3-2m)x + (m-4)y + 1 = 0, q: -2x + y - 1 = 0$$

19 V rovnici přímky p zvolte číslo m tak, aby přímka p obsahovala bod A.

a)
$$p: (3+m)x + (1-2m)y + 3m = 0, A[3;7]$$

b)
$$p: (2+m)x + (1+3m)y - 1 + 2m = 0, A[1; -1]$$

c)
$$p: (1+m)x + (1-m)y + 2m = 0, A[1; 5]$$

d)
$$p: (1-2m)x + (4m-2)y + 3 - 6m = 0, A[2;1]$$