Основи системного аналізу

Метод аналізу ієрархій

Метод аналізу ієрархій (MAI)

• Моделювання взаємозв'язків між окремими складовими частинами задачі прийняття рішення за допомогою ієрархічної структури з наступним визначенням ваг або пріоритетів альтернативних варіантів рішень відносно елементів цієї структури

Функції і принципи МАІ

Функції

- Структуризація складності
- Вимірювання у шкалі відношень
- Синтез

Принципи

• Декомпозиція

- Порівняльні судження
- Ієрархічна композиція

Принцип декомпозиції

Структуризація складної проблеми у вигляді ієрархії факторів, які впливають на головну ціль прийняття рішення.

Ієрархію можуть утворювати:

- Критерії, підкритерії
- Групи зацікавлених осіб (актори)
- Цілі, підцілі, політики акторів
- Сценарії
- Альтернативні варіанти рішень

Принцип порівняльних суджень

- Суб'єктивні оцінки експертів є основною інформацією для визначення переваг одного елемента ієрархії над іншим
- Елементи одного рівня ієрархії порівнюються між собою відносно їх впливу на спільний елемент вищого рівня

Принцип ієрархічної композиції — синтез пріоритетів за всіма рівнями ієрархії

Приклади ієрархій

- А головна мета
- С альтернативи

Приклади ієрархій

Задача оцінювання майбутнього транспортної системи м. Києва

Майбутнє транспортної системи м. Києва

Фактори

Актори

Цілі акторів

Економічний

КМДА

- Зменшення заторів
- Збільшення провізної спроможності ТС
- Покращення екологічної ситуації
- Зменшення обсягів фінансування ТС

Соціальний

Бізнес

- Збільшення прибутків
- Мінімізація ризиків
- Зменшення витрат через простої і перепробіг
- Зменшення енергетичних витрат

Екологічний

Населення

- Безпека
- Екологічна ситуація
- Швидкість перевезення
- Комфорт перевезення
- Охоплення всього міста
- Низькі ціни на проїзд

Задача оцінювання майбутнього транспортної системи м. Києва

Нижній рівень ієрархії – проекти (альтернативи)

Розширення мережі доріг

Розв'язки, реконструкція площ Реконструкція, будівництво мостів

Впровадження АСКДР

Покращення екологічності двигунів Обмеження руху автомобілів

Реконструкція громадського транспорту

Аксіоми MAI

Однорідність

• Елементи, які порівнюються, не повинні відрізнятись більше, ніж на порядок

Оберненість (взаємність)

• Оберненість симетричних парних порівнянь відносно батьківського елемента

Одностороння залежність елементів рівнів ієрархії

• Не повинно існувати циклів

Етапи MAI

відносно ел-ту вищого рівня ієрархії Побудова ієрархії

Парні порівняння елементів ієрархії

фундаментальна шкала мультиплікативні

МПП

відносно ел-ту вищого рівня ієрархії Мат. обробка експерт. оцінок

Розрахунок локальних пріоритетів ел-тів ієрархії методи: EM, RGMM, AN

відносно вершини ієрархії (головної цілі) Оцінювання узгодженості експертних оцінок показники узгодженості: CR, GCI, HCR

Розрахунок глобальних пріоритетів ел-тів ієрархії

методи синтезу: дистрибутивний ідеальний, мультиплікативний

Локальні і глобальні ваги

Означення. Локальна вага — вага елемента ієрархії відносно елементу сусіднього вищого рівня ієрархії.

Розраховується з МПП методами EM, RGMM та ін.

Означення. Глобальна вага — вага елемента ієрархії відносно вершини ієрархії (в більшості випадків це головна ціль прийняття рішення).

Розраховується за локальними вагами методом ієрархічного синтезу.

Постановка задачі розрахунку глобальних ваг альтернатив

Дано:

- $A = \{A_i \mid i = \overline{1,n}\}$ множина альтернатив
- $C = \{C_j | j = \overline{1,m}\}$ множина критеріїв
- $V = \{v_{ij} \mid i = \overline{1,n}, j = \overline{1,m}\}$ локальні ваги альтернатив відносно критеріїв, ненормовані
- $w^{C} = \{w_{j}^{C} \mid j = \overline{1,m}\}$ ваги критеріїв: $\sum_{j=1}^{m} w_{j}^{C} = 1$

Потрібно:

• $w^{glob} = \{w_i^{glob} \mid i = \overline{1,n}\}$ — глобальні ваги альтернатив, нормовані

Дистрибутивний синтез

$$w_i^{glob} = \sum_{j=1}^m w_j^C \cdot r_{ij} \qquad i = \overline{1, n}$$

$$r_{ij} = \frac{v_{ij}}{\sum_{k=1}^{n} v_{kj}} \qquad \sum_{i=1}^{n} r_{ij} = 1 \qquad j = \overline{1, m}$$

$$\sum_{i=1}^{n} w_i^{glob} = \sum_{i=1}^{n} \sum_{j=1}^{m} w_j^C \cdot r_{ij} = \sum_{j=1}^{m} \sum_{i=1}^{n} w_j^C \cdot r_{ij} = \sum_{j=1}^{m} w_j^C \sum_{i=1}^{n} r_{ij} = \sum_{j=1}^{m} w_j^C = 1$$

Ідеальний синтез

$$v_i^{glob} = \sum_{j=1}^m w_j^C \cdot r_{ij} \qquad i = \overline{1, n}$$

$$r_{ij} = \frac{v_{ij}}{\max_{k=1,\dots,n} v_{kj}} \qquad j = \overline{1,m}$$

$$W_i^{glob} = \frac{v_i^{glob}}{\sum_{k=1}^n v_k^{glob}} \quad i = \overline{1, n}$$

Мультиплікативний синтез

$$v_i^{glob} = \prod_{j=1}^m \left(v_{ij}\right)^{w_j^C} \qquad i = \overline{1,n}$$

$$w_i^{glob} = \frac{v_i^{glob}}{\sum_{k=1}^n v_k^{glob}} \qquad i = \overline{1, n}$$

Ієрархії з чотирма і більше рівнями

В загальному випадку ієрархія складається з p рівнів, $p \ge 2$.

Тоді для розрахунку глобальних ваг елементів розглянуті вище методи ієрархічного синтезу (агрегування) використовуються рекурсивно на кожному рівні ієрархії.

Оцінювання сценаріїв розвитку компанії

За допомогою методу аналізу ієрархій оцінюються можливі шляхи розвитку компанії.

Головна мета – благополуччя компанії.

Побудуємо трьохрівневу ієрархію.

Оцінювання сценаріїв розвитку компанії: критерії

Дохід

• Поточні грошові надходження від продажу товарів

Витрати

• Зменшення виробничих та інших витрат

Конкурентоспроможність

• Привабливість продукції порівняно з іншими компаніями на ринку

Перспективи

• Здатність компанії до довгострокового розвитку і процвітання

Репутація

• Довіра покупців і привабливість бренду

Оцінювання сценаріїв розвитку компанії: сценарії

Сценарій 1: "Масове виробництво"

• Збільшення обсягів виробництва товарів

Сценарій 2: "Нові технології"

• Розробка вдосконалених варіантів товару

Сценарій 3: "Дешево й сердито"

• Економія на виробництві для забезпечення максимально низької собівартості

Сценарій 4: "Елітний бренд"

• Орієнтація на покупців вищого класу

Оцінювання сценаріїв розвитку компанії: ієрархія

Етапи MAI

відносно ел-ту вищого рівня ієрархії Побудова ієрархії

Парні порівняння елементів ієрархії

фундаментальна шкала мультиплікативні

Мат. обробка експерт. оцінок

відносно ел-ту вищого рівня ієраруїї man oopoona enemeph oqiilo

Розрахунок локальних

пріоритетів ел-тів ієрархії

<u>методи:</u> EM, RGMM, AN

МПП

ієрархії

Оцінювання узгодженості експертних оцінок

показники узгодженості: CR, GCI, HCR

відносно вершини ієрархії (головної цілі)

Розрахунок глобальних пріоритетів ел-тів ієрархії

методи синтезу: дистрибутивний ідеальний, мультиплікативний

Оцінювання сценаріїв розвитку компанії: опитування

Питання експерту:

Який критерій важливіший: «Дохід» чи «Мінімізація витрат» для благополуччя компанії? Яким є ступінь переваги?

Варіанти відповіді:

- обидва критерії в рівній мірі впливають на досягнення головної мети (однаково важливі (1))
- збільшення доходу є важливішим за мінімізацію витрат (напр., слабка перевага (3))
- мінімізація витрат важливіша за збільшення доходу (напр., слабка перевага (3))

Мультиплікативна МПП

	Прибу- ток	Витрати	Конк ть	Персп.	Реп.
Дохід	1	1 (3)			
Витрати	1 (1/3)	1			
Конкурентозд.			1		
Перспективи				1	
Репутація					1

Оцінювання сценаріїв розвитку компанії: опитування

	Дохід	Витрати	Конкуренто- здатність	Перспек- тиви	Репутація
Дохід	1	2	1	1/2	3
Витрати	1/2	1	1/2	1/3	2
Конкурентоздатність	1	2	1	1	3
Перспективи	2	3	1	1	4
Репутація	1/3	1/2	1/3	1/4	1

Оцінювання сценаріїв розвитку компанії: ієрархія

Оцінювання сценаріїв розвитку компанії: опитування

Відносно критерію "Дохід":

	Сцен. 1	Сцен. 2	Сцен. 3	Сцен. 4
Сценарій 1	1	3	2	1
Сценарій 2	1/3	1	1/2	1/2
Сценарій 3	1/2	2	1	1/2
Сценарій 4	1	2	2	1

Відносно критерію "Витрати":

	Сцен. 1	Сцен. 2	Сцен. 3	Сцен. 4
Сценарій 1	1	3	1/3	1/2
Сценарій 2	1/3	1	1/8	1/5
Сценарій 3	3	8	1	3
Сценарій 4	2	5	1/3	1

"Репутація":

"Конкурентоспроможність":

"Перспективи": Сцен. Сцен. Сцен. Сцен. Сцен. Сцен. Сцен. Сцен. 4 Сцен. Сцен. Сцен. Сцен. 1/2 Сцен. 1 1/3 1/2 2 1 н. 1 1/4 1/2 lен. 1 Сцен. 2 6 4 2 3 2 ен. 2 1 4 1/3 1/2 1/6 Сцен. 3 1/3 1/3 1/3 ен. 3 1/2 1/7 1 1 1/4 3 Сцен. 4 1/2 3 1 H. 4 1/2 Сцен. 4 1

Етапи MAI

відносно ел-ту вищого рівня ієрархії Побудова ієрархії

Парні порівняння елементів ієрархії

фундаментальна шкала мультиплікативні

МПП

відносно ел-ту вищого рівня ієрархії Мат. обробка експерт. оцінок

Розрахунок локальних пріоритетів ел-тів ієрархії методи: EM, RGMM, AN

відносно вершини ієрархії (головної цілі) Оцінювання узгодженості експертних оцінок

показники узгодженості: CR, GCI, HCR

Розрахунок глобальних пріоритетів ел-тів ієрархії

методи синтезу: дистрибутивний ідеальний, мультиплікативний

Оцінювання сценаріїв розвитку компанії: локальні ваги

	Дохід	Витрати	Конкуренто -здатність	Перспек- тиви	Репутація	Ваги методом ЕМ
Дохід	1	2	1	1/2	3	0,218
Витрати	1/2	1	1/2	1/3	2	0,122
Конкуренто- здатність	1	2	1	1	3	0,251
Перспективи	2	3	1	1	4	0,331
Репутація	1/3	1/2	1/3	1/4	1	0,073

Оцінювання сценаріїв розвитку компанії: локальні ваги

	Дохід	Витрати	Конкуренто- здатність	Перспективи	Репутація
Сценарій 1	0,356	0,154	0,174	0,137	0,158
Сценарій 2	0,124	0,055	0,566	0,531	0,419
Сценарій 3	0,194	0,541	0,079	0,076	0,128
Сценарій 4	0,326	0,25	0,182	0,256	0,295
CR	0,017	0,022	0,017	0,003	0,03

Оцінювання сценаріїв розвитку компанії: локальні ваги

Етапи MAI

відносно ел-ту вищого рівня ієрархії Побудова ієрархії

Парні порівняння елементів ієрархії

фундаментальна шкала мультиплікативні МПП

відносно ел-ту вищого рівня ієрархії Мат. обробка експерт. оцінок

Розрахунок локальних пріоритетів ел-тів ієрархії методи: EM, RGMM, AN

відносно вершини ієрархії (головної цілі) Оцінювання узгодженості експертних оцінок показники узгодженості: CR, GCI, HCR

Розрахунок глобальних пріоритетів ел-тів ієрархії

методи синтезу: дистрибутивний ідеальний, мультиплікативний

Дистрибутивний синтез

$$w_i^{glob} = \sum_{j=1}^m w_j^C \cdot r_{ij} \qquad i = \overline{1, n}$$

$$r_{ij} = \frac{v_{ij}}{\sum_{k=1}^{n} v_{kj}}$$
 $\sum_{i=1}^{n} r_{ij} = 1$ $j = \overline{1, m}$

$$w_1^{glob} = 0,218 \cdot 0,356 + 0,122 \cdot 0,154 + 0,251 \cdot 0,174 + 0,331 \cdot 0,137 + 0,073 \cdot 0,158 = 0,197$$

Ідеальний синтез

$$v_{i}^{glob} = \sum_{j=1}^{m} w_{j}^{C} \cdot r_{ij} \quad i = \overline{1, n} \qquad r_{ij} = \frac{v_{ij}}{\max_{k=1,...,n} v_{kj}} \quad j = \overline{1, m}$$

$$w_{i}^{glob} = \frac{v_{i}^{glob}}{\sum_{k=1}^{n} v_{k}^{glob}} \quad i = \overline{1, n}$$

$$r_{11} = \frac{0,356}{0,356} = 1 \qquad r_{12} = \frac{0,154}{0,541} = 0,285 \qquad r_{13} = \frac{0,174}{0,566} = 0,307$$

$$r_{14} = \frac{0,137}{0,531} = 0,258 \qquad r_{15} = \frac{0,158}{0,419} = 0,377$$

$$v_{1}^{glob} = 0,218 \cdot 1 + 0,122 \cdot 0,285 + 0,251 \cdot 0,307 + 0,307 \cdot 0,307$$

Мультиплікативний синтез

$$v_{i}^{glob} = \prod_{j=1}^{m} (v_{ij})^{w_{j}^{C}} \quad i = \overline{1,n} \quad w_{i}^{glob} = \frac{v_{i}^{glob}}{\sum_{k=1}^{n} v_{k}^{glob}} \quad i = \overline{1,n}$$

$$v_1^{glob} = 0,356^{0,218} \cdot 0,154^{0,122} \cdot 0,174^{0,251} \cdot 0,137^{0,331} \cdot 0,158^{0,073} = 0,185$$

$$v_2^{glob} = 0,294$$
 $v_3^{glob} = 0,126$ $v_4^{glob} = 0,251$

$$v_4^{glob} = 0,251$$

$$w_1^{glob} = 0,216$$

$$w_2^{glob} = 0,343$$

$$w_1^{glob} = 0,216$$
 $w_2^{glob} = 0,343$ $w_3^{glob} = 0,147$ $w_4^{glob} = 0,293$

$$w_4^{glob} = 0,293$$

Групове врахування бінарних відношень переваг альтернатив (ГВБВПА)

Проводиться декомпозиція множини альтернатив і задача розв'язується окремо для кожної пари альтернатив.

$$\frac{N(N-1)}{2}$$
 підзадач

З кожної підзадачі отримуємо пару ваг (w_i^{ik}, w_k^{ik}) одним із методів синтезу.

Будуємо матрицю
$$P = \{p_{ij}\}, \ p_{ij} = \frac{w_i^{(ij)}}{w_j^{(ij)}}; i,j \in \overline{1,N}$$

Матриця P аналогічна матриці парних порівнянь, з неї знаходимо ваги альтернатив.

Групове врахування бінарних відношень переваг альтернатив (ГВБВПА)

Для альтернатив 1, 2:

$$r_{11} = \frac{0,356}{0,356+0,124} = 0,742 \quad r_{12} = 0,737 \quad r_{13} = 0,235 \quad r_{14} = 0,205 \quad r_{15} = 0,274$$

$$r_{21} = \frac{0,124}{0,356+0,124} = 0,258 \quad r_{22} = 0,263 \quad r_{23} = 0,765 \quad r_{24} = 0,795 \quad r_{25} = 0,726$$

$$w_{1}^{(12)} = 0,218 \cdot 0,742 + 0,122 \cdot 0,737 + 0,251 \cdot 0,235 + 0,331 \cdot 0,205 + 0,073 \cdot 0,274 = 0,399$$

$$w_{2}^{(12)} = 0,601$$

$$p_{12} = \frac{0,399}{0,601} = 0,664 \quad p_{21} = \frac{0,601}{0,399} = 1,506$$

Групове врахування бінарних відношень переваг альтернатив (ГВБВПА)

$$P = \begin{pmatrix} 1 & 0,664 & 1,463 & 0,736 \\ 1,506 & 1 & 1,959 & 1,165 \\ 0,684 & 0,51 & 1 & 0,513 \\ 1,359 & 0,858 & 1,949 & 1 \end{pmatrix}$$

$$w_1^{glob} = 0,221$$

$$w_2^{glob} = 0,327$$

$$w_3^{glob} = 0.156$$

$$w_1^{glob} = 0,221$$
 $w_2^{glob} = 0,327$ $w_3^{glob} = 0,156$ $w_4^{glob} = 0,295$

Порівняння методів

	Дистрибутивний синтез	Ідеальний синтез	Мультиплікатив- ний синтез	ГВБВПА з дистрибутивним
Сценарій 1	0,197	0,213	0,216	0,221
Сценарій 2	0,382	0,357	0,343	0,327
Сценарій 3	0,163	0,166	0,147	0,156
Сценарій 4	0,254	0,263	0,293	0,295

Реверс рангів в МАІ

• Реверс рангів — це зміна рангів альтернатив при їх оцінюванні за багатьма критеріями при додаванні/вилученні альтернативи.

Множина критеріїв, ваги критеріїв і оцінки «старих» альтернатив за критеріями не змінюються.

Види реверсу рангів

1. Зміна знаку переваги між «старими» альтернативами

Реверс рангів також має місце, якщо ваги альтернатив були рівні в межах практичної точності, а після додавання альтернативи стали відрізнятися.

Види реверсу рангів

Математичний опис появи реверсу рангів:

$$\Delta v_{ik}^{\it 2006} \cdot \Delta \tilde{v}_{ik}^{\it 2006} < 0$$

або

$$((\Delta v_{ik}^{2006} = 0) \wedge (\Delta \tilde{v}_{ik}^{2006} \neq 0)) \vee ((\Delta v_{ik}^{2006} \neq 0) \wedge (\Delta \tilde{v}_{ik}^{2006} = 0))$$

$$\Delta v_{ik}^{\it 2.7006} = v_i^{\it 2.7006} - v_k^{\it 2.7006}$$

 $ilde{\mathcal{V}}_{ik}^{\scriptscriptstyle{\mathcal{Z}\!N\!O\!O}}$ — ваги після появи n+1-ї альтернативи

$$(\Delta v_{ik}^{\text{2лоб}} = 0) \Leftrightarrow \left| v_i^{\text{2лоб}} - v_k^{\text{2лоб}} \right| < \varepsilon$$

Види реверсу рангів

2. Зміна оптимальної "старої" альтернативи при додаванні/вилученні альтернативи

3. Зміна рангів альтернатив при їх попарному розгляді в порівнянні з розглядом всіх альтернатив одночасно

Приклад реверсу рангів

- Два рівноважливих критерії
- Три альтернативи

$$D_{C_1} = \begin{pmatrix} 1 & 7 & 3 \\ \frac{1}{7} & 1 & \frac{3}{7} \\ \frac{1}{3} & \frac{7}{3} & 1 \end{pmatrix} \qquad D_{C_2} = \begin{pmatrix} 1 & \frac{1}{6} & \frac{1}{3} \\ 6 & 1 & 2 \\ 3 & \frac{1}{2} & 1 \end{pmatrix}$$

A 51 TODUCTIO	Вага					
Альтернатива	Дистрибут.	Ідеальний	ГВБВПА	Мультиплік.		
A_1	0,3887	0,3712	0,3372	0,3418		
A ₂	0,3484	0,3636	0,3219	0,3164		
A_3	0,2629	0,2652	0,3409	0,3418		

Приклад реверсу рангів

Додається четверта альтернатива:

$$D_{C_1} = \begin{pmatrix} 1 & 7 & 3 & 2 \\ \frac{1}{7} & 1 & \frac{3}{7} & \frac{2}{7} \\ \frac{1}{3} & \frac{7}{3} & 1 & \frac{2}{3} \\ \frac{1}{2} & \frac{7}{2} & \frac{3}{2} & 1 \end{pmatrix} D_{C_2} = \begin{pmatrix} 1 & \frac{1}{6} & \frac{1}{3} & \frac{3}{2} \\ 6 & 1 & 2 & 9 \\ 3 & \frac{1}{2} & 1 & \frac{9}{2} \\ \frac{2}{3} & \frac{1}{9} & \frac{2}{9} & 1 \end{pmatrix}$$

A 51 TOPLIOTIADO	Вага					
Альтернатива	Дистрибут.	Ідеальний	ГВБВПА	Мультиплік.		
A_1	0,2999	0,3108	0,2847	0,2855		
A_2	0,3174	0,3044	0,2550	0,2643		
A_3	0,2250	0,2220	0,2797	0,2855		
A ₄	0,1577	0,1628	0,1806	0,1648		

Транзитивність ранжувань

Ефективний метод багатокритеріального прийняття рішень має задовольняти властивості транзитивності.

$$A_1 \succ A_2, A_2 \succ A_3 \Rightarrow A_1 \succ A_3$$

Ранжування, отримані методами **дистрибутивного** та **ідеального** синтезу з узгоджених МПП <u>не завжди</u> задовольняють властивості транзитивності.

Ранжування, отримані методом **мультиплікативного** синтезу з узгоджених МПП <u>задовольняють</u> властивості транзитивності.