ALJABAR LINIER

DR. RETNO KUSUMANINGRUM, S.SI., M.KOM.

Matriks ~ Transformasi Elementer ~

OPERASI BARIS DAN KOLOM ELEMENTER

OPERASI BARIS ELEMENTER (OBE)

Terhadap suatu matriks A dapat dilakukan manipulasi anggotanya dengan melakukan operasi baris elementer (OBE).

Tipe	Simbol	arti	
I	H _{ij} (A)	Menukar baris ke <i>i</i> dengan baris ke <i>j</i> dari matriks A	
II	$H_{i(k)}(A)$	Mengalikan baris ke <i>i</i> dengan skalar <i>k</i> ≠ 0	
III	$H_{ij(k)}(A)$	Menjumlahkan baris ke <i>i dengan k kali baris ke j (k = skalar yang tidak nol)</i>	

$$A = \begin{pmatrix} 2 & -1 & 1 & 3 \\ 0 & 2 & -1 & -2 \\ 1 & 1 & 2 & 2 \end{pmatrix} \qquad H_{13}(A) =$$

OPERASI BARIS ELEMENTER (OBE)

Terhadap suatu matriks A dapat dilakukan manipulasi anggotanya dengan melakukan operasi baris elementer (OBE).

Tipe	Simbol	arti	
I	H _{ij} (A)	Menukar baris ke <i>i</i> dengan baris ke <i>j</i> dari matriks A	
II	$H_{i(k)}(A)$	Mengalikan baris ke <i>i</i> dengan skalar <i>k</i> ≠ 0	
III	$H_{ij(k)}(A)$	Menjumlahkan baris ke <i>i dengan k kali baris ke j (k = skalar yang tidak nol)</i>	

$$A = \begin{pmatrix} 2 & -1 & 1 & 3 \\ 0 & 2 & -1 & -2 \\ 1 & 1 & 2 & 2 \end{pmatrix} \qquad H_{3(-1)}(A) =$$

OPERASI BARIS ELEMENTER (OBE)

Terhadap suatu matriks A dapat dilakukan manipulasi anggotanya dengan melakukan operasi baris elementer (OBE).

Tipe	Simbol	arti	
I	H _{ij} (A)	Menukar baris ke <i>i</i> dengan baris ke <i>j</i> dari matriks A	
II	$H_{i(k)}(A)$	Mengalikan baris ke <i>i</i> dengan skalar <i>k</i> ≠ 0	
III	$H_{ij(k)}(A)$	Menjumlahkan baris ke <i>i dengan k kali baris ke j (k = skalar yang tidak nol)</i>	

$$A = \begin{pmatrix} 2 & -1 & 1 & 3 \\ 0 & 2 & -1 & -2 \\ 1 & 1 & 2 & 2 \end{pmatrix} \qquad H_{120}$$

OPERASI KOLOM ELEMENTER (OKE)

Terhadap suatu matriks A dapat dilakukan manipulasi anggotanya dengan melakukan operasi kolom elementer (OKE).

Tipe	Simbol	arti
I	K _{ij} (A)	Menukar kolom ke i dengan kolom ke j dari matriks A
II	$K_{i(k)}(A)$	Mengalikan kolom ke <i>i</i> dengan skalar <i>k</i> ≠ 0
III	$K_{ij(k)}(A)$	Mengalikan kolom ke j dengan skalar $k \neq 0$, kemudian hasilnya ditambahkan kepada kolom ke i .

$$A = \begin{pmatrix} 2 & -1 & 1 & 3 \\ 0 & 2 & -1 & -2 \\ 1 & 1 & 2 & 2 \end{pmatrix} \qquad K_{24}(A) =$$

OPERASI KOLOM ELEMENTER (OKE)

Terhadap suatu matriks A dapat dilakukan manipulasi anggotanya dengan melakukan operasi kolom elementer (OKE).

Tipe	Simbol	arti
I	K _{ij} (A)	Menukar kolom ke i dengan kolom ke j dari matriks A
11	$K_{i(k)}(A)$	Mengalikan kolom ke <i>i</i> dengan skalar <i>k</i> ≠ 0
III	$K_{ij(k)}(A)$	Mengalikan kolom ke j dengan skalar $k \neq 0$, kemudian hasilnya ditambahkan kepada kolom ke i .

$$A = \begin{pmatrix} 2 & -1 & 1 & 3 \\ 0 & 2 & -1 & -2 \\ 1 & 1 & 2 & 2 \end{pmatrix} \qquad K_{3(4)}(A) =$$

OPERASI KOLOM ELEMENTER (OKE)

Terhadap suatu matriks A dapat dilakukan manipulasi anggotanya dengan melakukan operasi kolom elementer (OKE).

Tipe	Simbol	arti
I	K _{ij} (A)	Menukar kolom ke i dengan kolom ke j dari matriks A
II	$K_{i(k)}(A)$	Mengalikan kolom ke <i>i</i> dengan skalar <i>k</i> ≠ 0
III	$K_{ij(k)}(A)$	Mengalikan kolom ke j dengan skalar $k \neq 0$, kemudian hasilnya ditambahkan kepada kolom ke i .

$$A = \begin{pmatrix} 2 & -1 & 1 & 3 \\ 0 & 2 & -1 & -2 \\ 1 & 1 & 2 & 2 \end{pmatrix} \qquad K_{41(1)}(A) =$$

MATRIKS EKIVALEN

Terhadap suatu matriks dapat dilakukan <u>berturut-turut sederetan</u> OBE dan/atau OKE

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 2 & -1 \\ 1 & 2 & 1 \\ 2 & 3 & -1 \end{pmatrix} H_{3(-2)} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 2 & -1 \\ -2 & -4 & -2 \\ 2 & 3 & -1 \end{pmatrix} H_{43(1)} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 2 & -1 \\ -2 & -4 & -2 \\ 0 & -1 & -3 \end{pmatrix} H_{21(-3)}$$

$$\begin{pmatrix} 1 & -1 & 2 \\ 0 & 5 & -7 \\ -2 & -4 & -2 \\ 0 & -1 & -3 \end{pmatrix} \quad H_{31(2)} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 5 & -7 \\ 0 & -6 & 2 \\ 0 & -1 & -3 \end{pmatrix} \quad H_{41} \begin{pmatrix} 0 & -1 & -3 \\ 0 & 5 & -7 \\ 0 & -6 & 2 \\ 1 & -1 & 2 \end{pmatrix} = B$$

Perhatikan bahwa dengan lima kali OBE secara berturutan terhadap A diperoleh matriks baru, misalnya B. Jadi dalam hal ini :

$$H_{41} H_{31(2)} H_{21(-3)} H_{43(1)} H_{3(-2)}(A) = B$$

Matriks B yang diperoleh dari A dengan melakukan OBE/OKE disebut matriks-matriks yang ekivalen, dinotasikan A ~ B

Perhatikan kembali:

$$H_{41} H_{31(2)} H_{21(-3)} H_{43(1)} H_{3(-2)}(A) = B$$

Dengan sederetan OBE, A dapat di bawa menjadi matriks baru B. <u>Sebaliknya</u>, tentu juga ada sederetan OBE yang dapat membawa B kembali ke matriks A.

$$\mathsf{B} = \begin{pmatrix} 0 & -1 & -3 \\ 0 & 5 & -7 \\ 0 & -6 & 2 \\ 1 & -1 & 2 \end{pmatrix} + \mathsf{H}_{41} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 5 & -7 \\ 0 & -6 & 2 \\ 0 & -1 & -3 \end{pmatrix} + \mathsf{H}_{31(-2)} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 5 & -7 \\ -2 & -4 & -2 \\ 0 & -1 & -3 \end{pmatrix} + \mathsf{H}_{21(3)} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 2 & -1 \\ -2 & -4 & -2 \\ 0 & -1 & -3 \end{pmatrix}$$

$$H_{43(-1)} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 2 & -1 \\ -2 & -4 & -2 \\ 2 & 3 & -1 \end{pmatrix}
 H_{3(-1/2)} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 2 & -1 \\ 1 & 2 & 1 \\ 2 & 3 & -1 \end{pmatrix} = A$$

Jadi dengan sederetan OBE : $H_{3(-1/2)} H_{43(-1)} H_{21(3)} H_{31(-2)} H_{41}(B) = A$

Ini berarti B ekivalen A, ditulis B ~ A

Karenanya operasi OBE (OKE) mempunyai invers (*kebalikan*).

Perhatikan:

$$H_{41} H_{31(2)} H_{21(-3)} H_{43(1)} H_{3(-2)}(A) = B$$

Sebaliknya,

$$H_{3(-1/2)} H_{43(-1)} H_{21(3)} H_{31(-2)} H_{41} (B) = A$$

Dapat di amati bahwa invers OBE adalah :

OBE	Invers OBE	<u> </u>
H _{ij}	H_{ij}^{-1}	$= H_{ij}$
H _{i(k)}	$H_{i(k)}^{-1}$	$= H_{i(1/k)}$
H _{ij(k)}	$H_{ij(k)}^{-1}$	= H _{ij(-k)}

Analogi, invers OKE:

OKE	Invers OKE
K _{ij}	$K_{ij}^{-1} = K_{ij}$
K _{i(k)}	$K_{i(k)}^{-1} = K_{i(1/k)}$
K _{ij(k)}	$K_{ij(k)}^{-1} = K_{ij(-k)}$

$$\mathsf{P} = \begin{pmatrix} 1 & 3 & -2 \\ -1 & -4 & 3 \\ 2 & 5 & 1 \end{pmatrix} \quad \mathsf{H}_{21(1)} \begin{pmatrix} 1 & 3 & -2 \\ 0 & -1 & 1 \\ 2 & 5 & 1 \end{pmatrix} \mathsf{H}_{31(-2)} \begin{pmatrix} 1 & 3 & -2 \\ 0 & -1 & 1 \\ 0 & -1 & 5 \end{pmatrix} \quad \mathsf{K}_{32(5)} \begin{pmatrix} 1 & 3 & 13 \\ 0 & -1 & -4 \\ 0 & -1 & 0 \end{pmatrix} = \mathsf{Q}$$

Sebaliknya, mudah diamati bahwa:

$$Q = \begin{pmatrix} 1 & 3 & 13 \\ 0 & -1 & -4 \\ 0 & -1 & 0 \end{pmatrix} \quad \begin{matrix} K_{32(-5)} \begin{pmatrix} 1 & 3 & -2 \\ 0 & -1 & 1 \\ 0 & -1 & 5 \end{pmatrix} \quad \begin{matrix} H_{31(2)} \begin{pmatrix} 1 & 3 & -2 \\ 0 & -1 & 1 \\ 2 & 5 & 1 \end{pmatrix} \quad \begin{matrix} H_{21(-1)} \begin{pmatrix} 1 & 3 & -2 \\ -1 & -4 & 3 \\ 2 & 5 & 1 \end{pmatrix} = P$$

Dalam hal ini P ~ Q atau Q ~ P.

Relasi ekivalen (~) suatu matriks memenuhi sifat :

- 1. refleksif, A~A
- 2. simetri, A ~ B, maka B ~ A
- 3. transitif, A ~ B, dan B ~ C, maka A ~ C

Dua matriks yang ekivalen mempunyai rank yang sama

MATRIKS ELEMENTER

Matriks Elementer:

Matriks elementer adalah matriks identitas yang sudah mengalami **satu kali OBE** (atau **satu kali OKE**)

Misalnya
$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Matriks Elementer (baris)

$$\mathsf{H}_{12}(\mathsf{I}) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathsf{E}_{12}$$

$$\mathsf{H}_{3(-2)}(\mathsf{I}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} = \mathsf{E}_{3(-2)}$$

$$\mathsf{H}_{23(-1)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = \mathsf{E}_{23(-1)}$$

Matriks Elementer (kolom)

$$\mathbf{K}_{13(1)}(\mathbf{I}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \mathbf{F}_{13(1)}$$

$$\mathsf{K}_{2(-3)} \left(\mathsf{I} \right) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathsf{F}_{2(-3)}$$

$$\mathsf{K}_{32}(\mathsf{I}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \mathsf{F}_{32}$$

Karena OBE/OKE mempunyai invers, maka matriks elementer tentu juga mempunyai invers

Matris elementer (baris)	Invers matriks elementer (baris)
E _{ij}	$E_{ij}^{-1} = E_{ij}$
E _{i(k)}	$E_{i(k)}^{-1} = E_{i(1/k)}$
E _{ij(k)}	$E_{ij(k)}^{-1} = E_{ij(-k)}$

Matris elementer (kolom)	Invers matriks elementer (kolom)
F _{ij}	$F_{ij}^{-1} = F_{ij}$
F _{i(k)}	$F_{i(k)}^{-1} = F_{i(1/k)}$
F _{ij(k)}	$F_{ij(k)}^{-1} = F_{ij(-k)}$

Apa keistimewaan matriks elementer?

$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 1 & 2 \\ 2 & 1 & 1 & 3 \\ -1 & 1 & -1 & 1 \end{pmatrix} \qquad \mathbf{I}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{I_3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$H_{31}(A) = \begin{pmatrix} -1 & 1 & -1 & 1 \\ 2 & 1 & 1 & 3 \\ 1 & -2 & 1 & 2 \end{pmatrix} \qquad E_{31} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} \text{OBE identik dengan penggandaan} \\ \text{di depan dengan matriks elementer} \\ \text{dengan tipe yang sama} \end{array}$$

$$\mathsf{E}_{31}\mathsf{A} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -2 & 1 & 2 \\ 2 & 1 & 1 & 3 \\ -1 & 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 & -1 & 1 \\ 2 & 1 & 1 & 3 \\ 1 & -2 & 1 & 2 \end{pmatrix} = \mathsf{H}_{31}(\mathsf{A})$$

$$\mathbf{H}_{21(-1)}(\mathbf{A}) = \begin{pmatrix} 1 & -2 & 1 & 2 \\ 1 & 3 & 0 & 1 \\ -1 & 1 & -1 & 1 \end{pmatrix}$$

$$\mathsf{E}_{21(-1)} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$H_{31}(A) = E_{31} A$$

 $H_{21(-1)}(A) = E_{21(-1)} A$

$$\begin{vmatrix} 1 \\ 3 \\ 2 \end{vmatrix} = H_{31}(A)$$

$$\mathsf{H}_{21(-1)}(\mathsf{A}) = \begin{pmatrix} 1 & -2 & 1 & 2 \\ 1 & 3 & 0 & 1 \\ -1 & 1 & -1 & 1 \end{pmatrix}$$

$$\mathsf{E}_{21(-1)} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 & 1 & 2 \\ 2 & 1 & 1 & 3 \\ -1 & 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 1 & 2 \\ 1 & 3 & 0 & 1 \\ -1 & 1 & -1 & 1 \end{pmatrix}$$

$$= \mathsf{H}_{21(-1)}(\mathsf{A})$$

$$A = \begin{pmatrix} 1 & -2 & 1 & 2 \\ 2 & 1 & 1 & 3 \\ -1 & 1 & -1 & 1 \end{pmatrix} \quad I_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \text{Jadi: } K_{3(-2)}(A) = A \quad F_{3(-2)}$$

$$K_{14(1)}(A) = A \quad F_{14(1)}(A) = A \quad F_{14(1)$$

OKE identik dengan penggandaan di akhir (belakang) dengan matriks elementer dengan tipe yang sama

$$\mathbf{K}_{3(-2)}(\mathbf{A}) = \begin{pmatrix} 1 & -2 & -2 & 2 \\ 2 & 1 & -2 & 3 \\ -1 & 1 & 2 & 1 \end{pmatrix} \quad \mathbf{F}_{3(-2)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A F_{3(-2)} = \begin{pmatrix} 1 & -2 & 1 & 2 \\ 2 & 1 & 1 & 3 \\ -1 & 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 & -2 & 2 \\ 2 & 1 & -2 & 3 \\ -1 & 1 & 2 & 1 \end{pmatrix} = K_{3(-2)}(A)$$

$$\mathbf{K}_{14(1)}(\mathbf{A}) = \begin{pmatrix} 3 & -2 & 1 & 2 \\ 5 & 1 & 1 & 3 \\ 0 & 1 & -1 & 1 \end{pmatrix}$$

$$\mathsf{F}_{\mathsf{14(1)}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathsf{K}_{14(1)}(\mathsf{A}) = \begin{pmatrix} 3 & -2 & 1 & 2 \\ 5 & 1 & 1 & 3 \\ 0 & 1 & -1 & 1 \end{pmatrix}$$

$$\mathsf{A} \ \mathsf{F}_{14(1)} = \begin{pmatrix} 1 & -2 & 1 & 2 \\ 2 & 1 & 1 & 3 \\ -1 & 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -2 & 1 & 2 \\ 5 & 1 & 1 & 3 \\ 0 & 1 & -1 & 1 \end{pmatrix}$$

$$\mathsf{F}_{14(1)} = \mathsf{K}_{14(1)}(\mathsf{A})$$

$$= K_{14(1)}(A)$$

$$P = \begin{pmatrix} 1 & 3 & -2 \\ -1 & -4 & 3 \\ 2 & 5 & 1 \end{pmatrix} \quad \begin{matrix} H_{21(1)} \begin{pmatrix} 1 & 3 & -2 \\ 0 & -1 & 1 \\ 2 & 5 & 1 \end{pmatrix} \begin{matrix} H_{31(-2)} \begin{pmatrix} 1 & 3 & -2 \\ 0 & -1 & 1 \\ 0 & -1 & 5 \end{pmatrix} \begin{matrix} K_{32(5)} \begin{pmatrix} 1 & 3 & 13 \\ 0 & -1 & -4 \\ 0 & -1 & 0 \end{pmatrix} = Q$$

Dalam hal ini : $K_{32(5)} H_{31(-2)} H_{21(1)}(P) = Q$

Atau bisa juga dengan matriks elementer:

ECHELON FORM AND REDUCED ECHELON FORM

ECHELON FORM (BENTUK ESELON)

- Semua baris tidak nol di atas sembarang baris yang semuanya nol
- 2. Setiap leading entry (entry paling kiri yang tidak nol) dari sebuah baris adalah di kolom sebelah kanan baris di atasnya
- 3. Semua entry dalam sebuah kolom di bawah leading entry adalah nol

EXAMPLE: Echelon forms

Setiap leading entry (entry paling kiri yang tidak nol) dari sebuah baris adalah di kolom sebelah kanan baris di atasnya

REDUCED ECHELON FORM (BENTUK ESELON TEREDUKSI)

Menambahkan kondisi berikut ini ke dalam kondisi 1, 2, dan 3 sebelumnya

- 4. Leading entry di setiap baris tidak nol adalah I
- Masing-masing leading I
 merupakan satu-satunya elemen
 tidak nol pada kolom terkait

```
\begin{bmatrix} 0 & 1 & * & 0 & 0 & * & * & 0 & 0 & * & * \\ 0 & 0 & 0 & 1 & 0 & * & * & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 1 & * & * & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & * & * \end{bmatrix}
```

THEOREM I

UNIQUENESS OF THE REDUCED ECHELON FORM

EACH MATRIX IS ROW EQUIVALENT TO ONE AND ONLY ONE REDUCE ECHELON MATRIX

IMPORTANT TERMS

- pivot position: a position of a leading entry in an echelon form of the matrix.
- pivot: a nonzero number that either is used in a pivot position to create 0's or is changed into a leading 1, which in turn is used to create 0's.
- pivot column: a column that contains a pivot position.

CONTOH SOAL

$$\begin{pmatrix}
-1 & 2 & 1 & 1 \\
1 & -1 & 1 & 2 \\
2 & -3 & 1 & -1
\end{pmatrix}$$

TENTUKAN BENTUK ESELON DAN BENTUK ESELON TEREDUKSI DARI MATRIKS DI ATAS!

LIHAT DI FILE TERPISAH - ADDITIONAL

RUANG BARIS DAN RUANG KOLOM

RUANG BARIS DAN RUANG KOLOM

- Ruang baris dari matriks $A_{m \times n}$ adalah ruang vektor bagian dari R^n yang dibentuk oleh vektor-vektor baris dari A
- Ruang kolom dari matriks $A_{m \times n}$ adalah ruang vektor bagian dari R^m yang dibentuk oleh vektor-vektor kolom dari A
- Matriks yang ekivalen baris/kolom mempunyai ruang baris/ruang kolom yang sama

RANK MATRIKS

- Definisi:
 - Rank baris matriks A = dimensi ruang baris matriks A
 - Rank kolom matriks A = dimensi ruang kolom matriks A
- Rank baris = rank kolom \rightarrow disebut rank matriks A = r(A)
- Rank matriks menyatakan jumlah maksimum vektor-vektor baris/kolom yang bebas linier
- Mencari rank matriks menggunakan operasi elementer, diusahakan baris/kolom vektor menjadi vektor nol
- Dalam bentuk matriks eselon, rank suatu matriks menyatakan banyaknya baris yang tidak memuat baris nol

Contoh 1:

$$\mathsf{B} = \begin{pmatrix} 1 & -2 & 4 \\ -2 & 3 & -6 \\ -1 & 1 & -2 \end{pmatrix} \quad \mathsf{H}_{21(2)} \begin{pmatrix} 1 & -2 & 4 \\ 0 & -1 & 2 \\ -1 & 1 & -2 \end{pmatrix} \quad \mathsf{H}_{31(1)} \quad \begin{pmatrix} 1 & -2 & 4 \\ 0 & -1 & 2 \\ 0 & -1 & 2 \end{pmatrix} \quad \mathsf{H}_{32(-1)} \begin{pmatrix} 1 & -2 & 4 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix} = \mathsf{U}$$

Bentuk eselon dari B adalah
$$U = \begin{pmatrix} 1 & -2 & 4 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$
 Rank dari B adalah $r(B) = 2$

Contoh 2:

$$C = \begin{pmatrix} 1 & -1 & 2 \\ 3 & -2 & -2 \\ 2 & -1 & -4 \\ 1 & 0 & -6 \end{pmatrix} H_{21(-3)} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -8 \\ 2 & -1 & -4 \\ 1 & 0 & -6 \end{pmatrix} H_{31(-2)} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -8 \\ 0 & 1 & -8 \\ 1 & 0 & -6 \end{pmatrix} H_{41(-1)} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -8 \\ 0 & 1 & -8 \\ 0 & 1 & -8 \end{pmatrix}$$

$$H_{32(-1)} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -8 \\ 0 & 0 & 0 \\ 0 & 1 & -8 \end{pmatrix} H_{42(-1)} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = U \qquad \text{Jadi } r(C) = 2$$