Vers une notion d'Intégrabilité

Carlos León

Laboratoire de Mathématiques et Applications Université de Poitiers

> Journée des doctoriales Poitiers 5 juillet 2019

En mécanique classique on trouve des systèmes mécaniques avec un nombre suffisant de constantes de mouvement, souvent provenant d'une symétrie :

En mécanique classique on trouve des systèmes mécaniques avec un nombre suffisant de constantes de mouvement, souvent provenant d'une symétrie :

- ♦ Invariance par traslation,
- ♦ Invariance par rotation, etc.

En mécanique classique on trouve des systèmes mécaniques avec un nombre suffisant de constantes de mouvement, souvent provenant d'une symétrie :

- ♦ Invariance par traslation,
- ♦ Invariance par rotation, etc.

Ceci implique qu'une integration explicite des equations de mouvement soit possible.

- q: position, p: impulsion.
- Energie totale du système : $H = \frac{1}{2}(p^2 + q^2)$.
- Equations de mouvement :

$$\begin{aligned} \dot{q} &= p, \\ \dot{p} &= -q. \end{aligned}$$

- q: position, p: impulsion.
- Energie totale du système : $H = \frac{1}{2}(p^2 + q^2)$.
- Equations de mouvement :

$$\dot{q} = p,$$
 $\dot{p} = -q.$

Étant donné que l'énergie est constante, on peut écrire :

$$\mathrm{d}t = \frac{\mathrm{d}q}{\sqrt{2H - q^2}}.$$

- q: position, p: impulsion.
- Energie totale du système : $H = \frac{1}{2}(p^2 + q^2)$.
- Equations de mouvement :

$$\begin{aligned} \dot{q} &= p, \\ \dot{p} &= -q. \end{aligned}$$

Étant donné que l'énergie est constante, on peut écrire :

$$\mathrm{d}t = \frac{\mathrm{d}q}{\sqrt{2H - q^2}}.$$

En fait, on a : $q(t) = A\sin(t+\delta)$, $p(t) = A\cos(t+\delta)$.

S'il y en a assez, Liouville a demontré au XIXème siècle que l'on peut résoudre le système différentiel par des quadratures.

S'il y en a assez, Liouville a demontré au XIXème siècle que l'on peut résoudre le système différentiel par des quadratures.

Le mouvement décrit par un système hamiltonien intégrable est extrêmement régulier.

S'il y en a assez, Liouville a demontré au XIXème siècle que l'on peut résoudre le système différentiel par des quadratures.

Le mouvement décrit par un système hamiltonien intégrable est extrêmement régulier.

Dans la terminologie moderne : Arnold-Lioville

Les trajectoires s'enroulent sur des tores, chacune revenant régulièrement près de son point initial. On parle d'un mouvement quasi-périodique.

Les systèmes hamiltoniens sont-ils tous intégrables?

Les systèmes hamiltoniens sont-ils tous intégrables?

Poincaré : Le problème à trois corps n'est pas intégrable (il ne possède pas assez d'intégrales premières analytiques).

Les systèmes hamiltoniens sont-ils tous intégrables?

Poincaré : Le problème à trois corps n'est pas intégrable (il ne possède pas assez d'intégrales premières analytiques).

M : variété réelle lisse ; $U \subseteq M$: un ouvert.

 $\mathcal{F}(U)$: fonctions lisses sur U.

M: variété réelle lisse; $U \subseteq M$: un ouvert.

 $\mathcal{F}(U)$: fonctions lisses sur U.

 (M,π) est une variété de Poisson si le bivecteur π est de carré nul pour le crochet de Schouten; c'est-à-dire $[\pi,\pi]_S=0$.

M: variété réelle lisse; $U \subseteq M$: un ouvert.

 $\mathcal{F}(U)$: fonctions lisses sur U.

 (M,π) est une variété de Poisson si le bivecteur π est de carré nul pour le crochet de Schouten; c'est-à-dire $[\pi,\pi]_S=0$.

Crochet de Poisson : $\{f, g\} = \pi(df, dg), \qquad f, g \in \mathcal{F}(U).$

M: variété réelle lisse; $U \subseteq M$: un ouvert.

 $\mathcal{F}(U)$: fonctions lisses sur U.

 (M,π) est une variété de Poisson si le bivecteur π est de carré nul pour le crochet de Schouten; c'est-à-dire $[\pi,\pi]_S=0$.

Crochet de Poisson : $\{f, g\} = \pi(df, dg), \qquad f, g \in \mathcal{F}(U).$

Champ de vecteurs hamiltonien : Pour $H \in \mathcal{F}(U), \ \chi_H := \{\cdot, H\}.$

M: variété réelle lisse; $U \subseteq M$: un ouvert.

 $\mathcal{F}(U)$: fonctions lisses sur U.

 (M,π) est une variété de Poisson si le bivecteur π est de carré nul pour le crochet de Schouten; c'est-à-dire $[\pi,\pi]_S=0$.

Crochet de Poisson : $\{f,g\} = \pi(df, dg), \qquad f,g \in \mathcal{F}(U).$

Champ de vecteurs hamiltonien : Pour $H \in \mathcal{F}(U), \ \chi_H := \{\cdot, H\}.$

Dynamique du système hamiltonien : Pour $f \in \mathcal{F}(U)$,

$$\dot{f} = \chi_H(f) = \{f, H\}.$$

M: variété réelle lisse; $U \subseteq M$: un ouvert.

 $\mathcal{F}(U)$: fonctions lisses sur U.

 (M,π) est une variété de Poisson si le bivecteur π est de carré nul pour le crochet de Schouten; c'est-à-dire $[\pi,\pi]_S=0$.

Crochet de Poisson : $\{f, g\} = \pi(df, dg), \qquad f, g \in \mathcal{F}(U).$

Champ de vecteurs hamiltonien : Pour $H \in \mathcal{F}(U), \ \chi_H := \{\cdot, H\}.$

Dynamique du système hamiltonien : Pour $f \in \mathcal{F}(U)$,

$$\dot{f} = \chi_H(f) = \{f, H\}.$$

On dit que f est une intégrale première (constante de mouvement) si $\dot{f} = \{f, H\} = 0$.

M: variété réelle lisse; $U \subseteq M$: un ouvert.

 $\mathcal{F}(U)$: fonctions lisses sur U.

 (M,π) est une variété de Poisson si le bivecteur π est de carré nul pour le crochet de Schouten; c'est-à-dire $[\pi,\pi]_S=0$.

Crochet de Poisson : $\{f,g\} = \pi(df, dg), \qquad f,g \in \mathcal{F}(U).$

Champ de vecteurs hamiltonien : Pour $H \in \mathcal{F}(U), \ \chi_H := \{\cdot, H\}.$

Dynamique du système hamiltonien : Pour $f \in \mathcal{F}(U)$,

$$\dot{f} = \chi_H(f) = \{f, H\}.$$

On dit que f est une intégrale première (constante de mouvement) si $\dot{f} = \{f, H\} = 0$.

Poisson : Si f et g sont deux intégrales premières, alors $\{f,g\}$ l'est aussi.

On suppose que S est engendrée par s fonctions : $S=\langle \mathbf{F} \rangle,$ où

$$\mathbf{F}=(F_1,\ldots,F_s).$$

On suppose que S est engendrée par s fonctions : $S = \langle \mathbf{F} \rangle$, où

$$\mathbf{F}=(F_1,\ldots,F_s).$$

Ecrivons $\dim(M) = n$ et $\operatorname{rang}(\pi) = 2r$. Lorsque S est involutive et indépendente, on a $s \leq n - r$

On suppose que S est engendrée par s fonctions : $S=\langle \mathbf{F} \rangle,$ où

$$\mathbf{F}=(F_1,\ldots,F_s).$$

Ecrivons $\dim(M) = n$ et $\operatorname{rang}(\pi) = 2r$. Lorsque S est involutive et indépendente, on a $s \leq n - r$

On dit que (M, π, S) est intégrable au sens de Liouville si S est involutive, indépendente et s = n - r.

On suppose que S est engendrée par s fonctions : $S = \langle \mathbf{F} \rangle$, où

$$\mathbf{F}=(F_1,\ldots,F_s).$$

Ecrivons $\dim(M) = n$ et $\operatorname{rang}(\pi) = 2r$. Lorsque S est involutive et indépendente, on a $s \leq n - r$

On dit que (M, π, S) est intégrable au sens de Liouville si S est involutive, indépendente et s = n - r.

Théorème : Si (M, π, S) est un système intégrable au sens de Liouville, alors pour tout point $raisonable\ p$ de la variété, la courbe intégrale de χ_{F_i} partant de p peut être déterminée par quadratures.

 ${\bf Exemple: L'oscillateur\ harmonique}\ n\hbox{-}{\bf dimensionnel}$

${\bf Exemple: L'oscillateur\ harmonique}\ {\it n$-$dimensionnel}$

- $M = \mathbb{R}^{2n}$; coordonnées : $(q_1, \dots, q_n, p_1, \dots, p_n)$.
- Crochet de Poisson : $\{q_i, p_j\} = \delta_{i,j}$. Ici rang $(\pi) = 2n$.
- Hamiltonien (énergie du système) : $H = \frac{1}{2} \sum_{i=1}^{n} (p_i^2 + \nu q_i^2)$.
- Pour i = 1, ..., n, posons $F_i := \frac{1}{2}(p_i^2 + \nu q_i^2)$. Alors $F = (F_1, ..., F_n)$ est indépendent et involutif.

Exemple: L'oscillateur harmonique n-dimensionnel

- $M = \mathbb{R}^{2n}$; coordonnées : $(q_1, \dots, q_n, p_1, \dots, p_n)$.
- Crochet de Poisson : $\{q_i, p_j\} = \delta_{i,j}$. Ici rang $(\pi) = 2n$.
- Hamiltonien (énergie du système) : $H = \frac{1}{2} \sum_{i=1}^{n} (p_i^2 + \nu q_i^2)$.
- Pour i = 1, ..., n, posons $F_i := \frac{1}{2}(p_i^2 + \nu q_i^2)$. Alors $F = (F_1, ..., F_n)$ est indépendent et involutif.

L'oscillateur harmonique est intégrable au sens de Liouville!

Exemple: L'oscillateur harmonique n-dimensionnel

- $M = \mathbb{R}^{2n}$; coordonnées : $(q_1, \dots, q_n, p_1, \dots, p_n)$.
- Crochet de Poisson : $\{q_i, p_j\} = \delta_{i,j}$. Ici rang $(\pi) = 2n$.
- Hamiltonien (énergie du système) : $H = \frac{1}{2} \sum_{i=1}^{n} (p_i^2 + \nu q_i^2)$.
- Pour i = 1, ..., n, posons $F_i := \frac{1}{2}(p_i^2 + \nu q_i^2)$. Alors $F = (F_1, ..., F_n)$ est indépendent et involutif.

L'oscillateur harmonique est intégrable au sens de Liouville!

Remarque : Pour un point générique $c = (c_1, \ldots, c_n) \in \mathbb{R}^n_+$, la sous-variété

$$\mathbf{F}_c = \{ p \in \mathbb{R}^{2n} \mid F_i(p) = c_i \}$$

est un produit de cercles $p_i^2 + \nu q_i^2 = r_i^2$ (*i.e.*, un tore de dimension n) - (**Théorème de Liouville**).

On se place maintenant dans le cas complexe (sur \mathbb{C}).

On se place maintenant dans le cas complexe (sur \mathbb{C}).

Géométriquement, ce qui reste valable :

- Les champs intégrables commutent : $[\chi_{F_i}, \chi_{F_j}] = 0$.
- Les champs des vecteurs sont tangents aux fibres lisses de l'application $p \mapsto (F_1(p), \dots, F_s(p))$. Ces champs définissent génériquement une distribution intégrable.
- Génériquement, les courbes intégrales de χ_{F_i} peuvent être déterminées par quadratures.

On se place maintenant dans le cas complexe (sur \mathbb{C}).

Géométriquement, ce qui reste valable :

- Les champs intégrables commutent : $[\chi_{F_i}, \chi_{F_j}] = 0$.
- Les champs des vecteurs sont tangents aux fibres lisses de l'application $p \mapsto (F_1(p), \dots, F_s(p))$. Ces champs définissent génériquement une distribution intégrable.
- Génériquement, les courbes intégrales de χ_{F_i} peuvent être déterminées par quadratures.

Ce qui ne marche plus : le théorème de Liouville!

Exemple:

- $M = \mathbb{C}^2$; coordonnées : (x, y).
- Crochet de Poisson : $\{x, y\} = 1$. Ici rang $(\pi) = 2$.
- Hamiltonien : $H = y^2 x^5$.
- On a : n=2, r=1 et s=1, d'où s=n-r. En conséquence ce système-ci est intégrable au sens de Liouville.
- Fibre générique : $\Gamma_c = \{(x,y) \in \mathbb{C}^2 \mid y^2 = x^5 + c\}$ est une surface de Riemann de genre 2, privée d'un point à l'infini.
- Problème : On ne peut pas étendre le champ de vecteurs χ_H sur la surface de Riemann compactifiée.

Exemple:

- $M = \mathbb{C}^2$; coordonnées : (x, y).
- Crochet de Poisson : $\{x, y\} = 1$. Ici rang $(\pi) = 2$.
- Hamiltonien : $H = y^2 x^5$.
- On a : n = 2, r = 1 et s = 1, d'où s = n r. En conséquence ce système-ci est intégrable au sens de Liouville.
- Fibre générique : $\Gamma_c = \{(x,y) \in \mathbb{C}^2 \mid y^2 = x^5 + c\}$ est une surface de Riemann de genre 2, privée d'un point à l'infini.
- Problème : On ne peut pas étendre le champ de vecteurs χ_H sur la surface de Riemann compactifiée.

On a besoin d'une notion d'intégrabilité qui soit satisfaisante pour le cas complexe.

Intégrabilité algébrique complète

Intégrabilité algébrique complète

Soit $\mathcal{F} := (\mathbb{C}^n, \{\cdot, \cdot\}, \mathbf{F})$ un système intégrable, où $\{\cdot, \cdot\}$ est un crochet de Poisson polynomial et $\mathbf{F} = (F_1, \dots, F_s)$ est constitué de polynômes. On dit que \mathcal{F} est une système a.c.i. si

Intégrabilité algébrique complète

Soit $\mathcal{F} := (\mathbb{C}^n, \{\cdot, \cdot\}, \mathbf{F})$ un système intégrable, où $\{\cdot, \cdot\}$ est un crochet de Poisson polynomial et $\mathbf{F} = (F_1, \dots, F_s)$ est constitué de polynômes. On dit que \mathcal{F} est une système a.c.i. si

 \diamond Pour $\kappa \in \mathbb{C}^s$ générique, la fibre \mathbf{F}_{κ} est isomorphe à une partie affine d'un tore complexe algébrique,

$$\mathbf{F}_{\kappa} \simeq (\mathbb{C}^{n-s}/\Lambda_{\kappa}) - \mathcal{D}_{\kappa},$$

où Λ_{κ} est un réseau dans \mathbb{C}^{n-s} est \mathcal{D}_{κ} est une hypersurface algébrique de $\mathbb{C}^{n-s}/\Lambda_{\kappa}$;

 \diamond Les champs de vecteurs \mathfrak{X}_{F_i} , restreints à \mathbf{F}_{κ} sont constants.

 $Merci\ pour\ votre\ attention\,!$