

HERRAMIENTAS MATÉMATICAS EN LATEX

Las matemáticas que no están escritas en LATEX no son matemáticas serias.

LATEX una herramienta para procesar textos utilizando Software Libre

> Henry R. Moncada Universidad Nacional de Callao

CONTENIDO

MODOS

FÓRMULAS MATEMÁTICAS
Inline y Displayed Formulas
Espacios y Texto en Fórmulas
Ecuaciónes Multiples
Llaves y Acentos
Numerando Fórmulas

MATRICES

CANCEL

CAJAS

TABLAS

INCLUSIÓN DE IMAGENES y GRÁFICOS

MODOS

Cuando LATEX está procesando el texto fuente, este siempre está en uno de tres modos:

- ► Modo Párrafo: Cuando LATEX está procesando texto ordinario. En ese modo, LATEX rompe el texto en líneas y separa líneas en páginas.
- ► **Modo Math:** En este modo generando fórmulas matemáticas.
- ▶ Modo de Izquierda a derecha (Left-to-Right), llamado modo LR para abreviar: En modo LR, como en modo párrafo, LATEX considera que la salida que produce es una cadena de palabras con espacios entre ellas. Sin embargo, a diferencia del modo párrafo, LATEX sigue yendo de izquierda a derecha; nunca inicia una nueva línea en modo LR.

Existen tres entornos que ponen a LATEX en modo math:

math Para fórmulas que aparecer directamente en el texto.

displaymath Para fórmulas que aparecer en su propia línea.

equation El mismo que el del entorno displaymath salvo que este añade un número de ecuación en el margen derecho.

Otra forma de escribir ecuaciones

```
\(...\) en lugar de \begin{math}...\end{math}
\[...\] en lugar de \begin{displaymath}...\end{displaymath}
$ ... $ en lugar de \(...\)
```

La declaración \displaystyle presiona para que el tamaño y estilo de la fórmula sea el de displaymath, por ejemplo, con limites por encima y debajo de sumatorias. Por ejemplo

```
\sum_{n=0}^{\infty} x_n \qquad \text{$\langle n=0 \rangle^\infty x_n = 0 }
```

INLINE Y DISPLAYED FORMULAS

4□ ト 4 億 ト 4 億 ト ■ ■ 9000

ESPACIO Y TEXTO EN FORMULAS

```
frac{1}{\langle displaystyle 1 +
      \frac{1}{1+\frac{1}{2+\frac{1}{3+x}}} + \frac{1}{1+\frac{1}{2+\frac{1}{3+x}}} + \frac{1}{1+\frac{1}{2+\frac{1}{3+x}}} \times 
                                                                                                                                                                                    \frac{1}{1+\frac{1}{2+\frac{1}{3+x}}}$$
                                                                                                                                                                                    $\sqrt{2} \sin x$\\
                                                                                                                                                                                     $\sqrt{2}\,\sin x$\\
 \sqrt{2}\sin x
                                                                                                                                                                                    $\sqrt{2}\;\sin x$\\
 \sqrt{2} \sin x
                                                                                                                                                                                     $\sqrt{2}\quad\sin x$\\
 \sqrt{2} \sin x
                                                                                                                                                                                     $\sqrt{2}\!\!\!\sin x$\\
 \sqrt{2} \sin x
\sqrt{2}in x
                                                                                                                                                                                     \mathrm{d}x\mathrm{d}v$
\iint f(x,y) dxdy
                                                                                                                                                                                     \[ \mathbf \cdot \] 
                                                                                                                                                                                     \int_{\mathrm{x}} \mathrm{mathbf}\{x\} \in \mathrm{R}^2\}
                                                                                                                                                                                     \! \langle \mathbf{x}, \mathbf{y}\rangle
                                                                                                                                                                                     \d \mathbf{x}\
                x_1 = a + b and x_2 = a - b
                                                                                                                                                                                     $$ x_1 = a+b \mod x_2=a-b $$
            x_1 = a + b and x_2 = a - b
                                                                                                                                                                                     $$ x_1 = a+b ~~\mbox{and}~~ x_2=a-b $$
```

Más Fórmulas 1

```
||x||_2 = 1
                                             \ \Vert x \Vert 2=1$\\
                                             \sqrt{-7}
                                             m|n, \quad m|n
\langle x, y \rangle, \langle x, y \rangle
                                             <x,y>,\quad \langle x, y\rangle$
            \forall x \in X, \quad \exists y < \epsilon
                                             \[\forall x \in X, \quad \exists v
                                             \leq \epsilon\]
          \frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0
                                             \[\frac{\rm d}{{\rm d}t}
                                             \left(\dfrac{\partial L}
                                             {\partial\dot q_j}\right)
                                             -\frac{\partial L}
                                             {\text{partial q_j} = 0 }
                                             \[ \] = 1 + frac{1}{2} +
                                             \frac{1}{2} + \frac{1}{2} +
                                             \frac{1}{\ddots}}} \]
                                             \[ \gr 2 = 1 + \dfrac{1}{2} + \]
                                             dfrac{1}{2} + dfrac{1}{2} +
                                             \dfrac{1}{\ddots}}} \]
```

4日ト4月ト4日ト4日ト ヨ めなべ

\begin{eqnarray}

ECUACIÓNES MULTIPLES

```
y = x^4 + 4
                                                   &=& (x^2+2)^2 -4x^2 \setminus (x^2+2)^2
                                                   &\le&(x^2+2)^2
               = (x^2 + 2)^2 - 4x^2
                                                \end{egnarray}
               < (x^2 + 2)^2
(1)
                                                \begin{eqnarray*}
                                                 e^x &\approx& 1+x+x^2/2! + \\
                                                   && {}+x^3/3! + x^4/4! + \
         e^x \approx 1 + x + x^2/2! +
                                                   && + x^5/5!
                                                \end{egnarrav*}
                  + x^3/3! + x^4/4! +
                                                \begin{eqnarray*}
                  +x^{5}/5!
                                                 \left\{ eftean\{w+x+v+z=\} \right\}
                                                   && a+b+c+d+e+\\
                                                   && {}+f+q+h+i
          w + x + y + z =
                                                \end{egnarrav*}
                a + b + c + d + e +
                                                \begin{scriptsize}\begin{eqnarray*}
                 + f + g + h + i
                                                 x&=&\sin \alpha = \cos \beta\\
                                                  &=&\cos(\pi-\alpha) = \sin(\pi-\beta)
                                                \end{eqnarray*}
          = \sin \alpha = \cos \beta
      x
                                                {\setlength\arravcolsep{0.1em}
             cos(\pi - \alpha) = sin(\pi - \beta)
                                                 \begin{eqnarray*}
                                                  x&=&\sin \alpha = \cos \beta
                                                   &=&\cos(\pi-\alpha) = \sin(\pi-\beta)
                                                 \end{eqnarray*}}
         x = \sin \alpha = \cos \beta
          = \cos(\pi - \alpha) = \sin(\pi - \beta)
                                                               4日ト4月ト4日ト4日ト ヨ かなべ
```

Más Fórmulas 2

$$x = \frac{a_2 x^2 + a_1 x + a_0}{1 + 2z^3}$$

$$x + y^{2n+2} = \sqrt{b^2 - 4ac}$$

$$S_n = a_1 + \dots + a_n = \sum_{i=1}^n a_i$$

$$\int_{x=0}^{\infty} x e^{-x^2} dx = \frac{1}{2}$$

$$\int_{x=0}^{\infty} x e^{-x^2} dx = \frac{1}{2}$$

$$e^{i\pi} + 1 = 0$$

$$e^{i\pi} + 1 = 0$$

$$\lim_{1 \le x \le 2} \left(x + \frac{1}{x} \right) = 2$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e^x$$

```
\[x=\frac{a_2 \ x^2 + a_1 \ x + a \ 0}\]
{1+2z^3}\1
[x+y^{2n+2}=\left[b^2-4ac\right]]
\[ S n=a 1+\cdots + a n
= \sum {i=1}^n a i
\{x=0}^{\int x=0}^{\int x^{-1}}
e^{-x^2} dx =
 \frac{1}{2}\1
\left(\int x=0\right)^{\left(\int x\right)} x\right)
{\rm rm \ e}^{-x^2}{\rm d}x =
 \frac{1}{2}\1
[e^{i\pi}]+1=0
\{\rm e}^{i\neq i\neq i+1=0}
\[\min {1\le x\le 2}
\left(x+\left(x+\left(x\right)\right)=2\right)
\[ \lim_{x\to \infty} \left( x \right) \]
\frac{1}{x}\right)^x = {\rm e}^x\
```

LLAVES Y ACENTOS

\r Angstr\"om

LLAVES Y ACENTOS

$$n(n-1)(n-2)\dots(n-m+1)$$

total of m factors

$$\underbrace{a + b + \dots + z}_{\text{total}} a + \underbrace{b + \dots}_{126} + z$$

$$\begin{array}{l}
a + \underline{b} + \underline{c} + \underline{d} \\
\hat{x}, \underline{x}, \underline{\tilde{a}}, \underline{\tilde{\ell}}, \underline{\dot{y}}, \underline{\ddot{y}}, \underline{z_1}, \underline{\ddot{z}_1} \\
\overline{a^2 + xy + \overline{\overline{z}}}
\end{array}$$

garçon í i tòśġô naïve naïve Haček Ångström

```
s\ underbrace{n(n-1)(n-2)\dots(n-m+1)}
{\mbox{total of $m$ factors}}$$
$$\underbrace{a+\overbrace{b+\cdots}^{{}}=t}+z}
_{\mathrm{total}}
a+{\operatorname{overbrace}\{b+\operatorname{cdots}\}}^{126}+z
$\overbrace{a+\underbrace{b+c}+d}$
$\hat{x}$, $\check{x}$, $\tilde{a}$,
$\bar{\ell}$, $\dot{y}$, $\dot{y}$,
$\vec{z 1}$, $\vec{z} 1$
ŠŠ
 \overline{\overline{a}^2+\underline{xv}
 +\overline{\overline{z}}}
$$
gar\c con \'\i{} i
t\'o\'s\.g\^o na\"\i ve na\"ive
Ha\v cek
```

Numerando Fórmulas

$$x = y + 3$$

En la ecuación (2) vemos que . . .

$$x = y + 3$$

En la ecuación (3) vemos que . . .

$$\int 1 = x + C$$

$$\int x = \frac{x^2}{2} + C$$

$$\int x^2 = \frac{x^3}{3} + C$$

En la ecuación (4) vemos que . . .

$$\int 1 = x + C$$

$$\int x = \frac{x^2}{2} + C$$

$$\int x^2 = \frac{x^3}{3} + C$$

En la ecuación (5) vemos que . . .

(5)

```
\begin{equation} x=y+3
2) \label{eq:xdefl}\end{equation}
In equation (\ref{eq:xdefl})
we saw $\dots$
```

```
(3) \usepackage{leqno}
\begin{equation} x=y+3
\label{pepe}\end{equation}
In equation (\ref{pepe})
we saw $\dots$
```

```
\begin{eqnarray}
&& \int 1 = x + C \nonumber\\
&& \int x = \frac{x^2}{2} + C \nonumber\\
&& \int x^2 = \frac{x^3}{3} + C
\label{conga no va}
\end(eqnarray)
En la ecuac\'ion (\ref{conga no va})
vemos que $\dots$
```

MATRICES

```
\[\left(\begin{array}{cc}
x 1 & y 1 \\ x 2 & y 2
\end{array}\right)\]
\begin{equation*}
|x| = \langle begin\{cases\} \rangle
 x & \text{if } x > 0$,}\
-x &\text{if $x \le 0$.}
\end{cases}\end{equation*}
\[\left| \begin{array}{ccc}
1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2
\end{array} \right = (x-y)(y-z)(z-x)
\[\left[\begin{array}{ccc}
a {11} & a {12} & a {13} \\
a_{21} & a_{22} & a_{23} \\
a {31} & a {32} & a {33}\end{array} \right]
\left( \frac{x }{x } \right) 
\end{array} \right\} = \left( \begin{array}{c}
 b_1 \ b_2 \ b_3\end{array} \right]
[\delta_{ij} = \left\{ \begin{array}{l} \left( \begin{array}{l} \\ \end{array} \right) \end{array} ]
1 & {\rm si\ } i=j \\
0 & {\rm si\ } i\ne j\end{array}\right.\]
\[\begin{array}{c|c}
c & A \\ \hline & b^{T}\end{array}\]
```

4日 → 4周 → 4 三 → 4 三 → 9 Q (*)

MATRICES

$$A_{m,n} = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & \alpha & \ddots & \\ & & & 1 \end{pmatrix}$$

$$\begin{bmatrix} \frac{1}{0} & \frac{d_1}{a_{22}} & \cdots & \frac{d_n}{a_{2n}} \\ \vdots & & \ddots & & \vdots \\ 0 & & & a_{nn} \end{bmatrix}$$

$$A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & & \ddots & & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$

reemplace pmatrix = bmatrix, Bmatrix, vmatrix,

Vmatrix

```
\[\bordermatrix{& & & j & &\cr
& & \ddots\cr
& & & 1\cr
i\ & & & \alpha & \ddots\cr
& & & & & &1}\]
\[\left[\begin{array}{c|ccc}
1&d_1&\cdots &d_n\\hline
0&a {22} & \cdots & a {2n} \\
\vdots & &\ddots & \vdots \\
0& & & a_{nn}\end{array} \right]\]
\[A_{m,n} =\begin{pmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \
\vdots & \vdots & \ddots & \vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n}
\end{pmatrix}\]
reemplace pmatrix= bmatrix, Bmatrix,
```

vmatrix. Vmatrix

Más Fórmulas 3

$$M = \begin{bmatrix} \frac{5}{6} & \frac{1}{6} & 0\\ \frac{5}{6} & 0 & \frac{1}{6}\\ 0 & \frac{5}{6} & \frac{1}{6} \end{bmatrix}$$

$$M = \begin{bmatrix} x & y & & & \\ A & \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} & & \\ B & \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} & & \\ f(n) = \begin{cases} n/2 & \text{if } n \text{ is even}\\ -(n+1)/2 & \text{if } n \text{ is odd} \end{cases}$$

$$y = 1 + x + x^2 + x^3 + \cdots$$

(6)
$$y = 1 + x + x^{2} + x^{3} + \cdots$$
$$= 1 + x \left(1 + x + x^{2} + \cdots\right)$$

$$F = ma$$
$$= mv^2/r$$

```
\[M = \left\{b \in \{b \in \}\}\right\}
\frac{5}{6} & \frac{1}{6} & 0 \\[0.3em]
\frac{5}{6} & 0 & \frac{1}{6} \\[0.3em]
0 & \frac{5}{6} & \frac{1}{6}
\end{bmatrix}\]
\[M = \bordermatrix{~ & x & y \cr
A & 1 & 0 \cr
B & 0 & 1 \cr}\l
\f(n) = \left\{ eft \right\}
\begin{array}{l 1}
n/2 & \quad \text{if $n$ is even}\\
-(n+1)/2 & \quad \text{quad } \text{if } n\ is odd}
\end{array} \right.\]
\begin{eqnarray}
y &= & 1+x+x^2 +x^3 + \cdot cdots \cdot nonumber \cdot \cdot
&=& 1+x\left(1+x+x^2+\right) \right)
\label{ecu1}
\end{eqnarray}
```

```
(7) \begin{align}
F &= ma\\
```

CANCEL

\usepackage {cancel}

$$a+b+c=b+c+d$$

$$\frac{32}{64} = \frac{2\times4\times4}{4\times4\times4} = \frac{1}{2} \times \cancel{4}\times\cancel{4} = \frac{1}{2}$$

$$| (\frac{32}{64}) = \frac{2\times4\times4}{4\times4\times4} = \frac{1}{2} \times \cancel{4}\times\cancel{4} = \frac{1}{2}$$

$$| (\frac{32}{64}) = \frac{2\times4\times4}{4\times4\times4} = \frac{1}{2} \times \cancel{4}\times\cancel{4} = \frac{1}{2}$$

$$| (\frac{32}{64}) = \frac{1}{2} \times \cancel{4}\times\cancel{4} = \frac{1}{2} \times \cancel{4}\times\cancel{4} = \frac{1}{2}$$

$$| (\frac{32}{64}) = \frac{4\times4\times4}{1\times4\times4} = \frac{1}{2} \times \cancel{4}\times\cancel{4} = \frac{1}{2}$$

$$| (\frac{32}{64}) = \frac{4\times4\times4}{1\times4\times4} = \frac{1}{2} \times \cancel{4}\times\cancel{4} = \frac{1}{2}$$

$$| (\frac{32}{64}) = \frac{4\times4\times4}{1\times4\times4} = \frac{1}{2} \times \cancel{4}\times\cancel{4} = \frac{1}{2}$$

$$| (\frac{32}{64}) = \frac{1}{2} \times \cancel{4}\times\cancel{4} = \frac{1}{2} \times \cancel{4}\times\cancel{4} = \frac{1}{2}$$

$$| (\frac{32}{64}) = \frac{1}{2} \times \cancel{4}\times4 = \frac{1}{2} \times \cancel{4}\times\cancel{4} = \frac{1}{2}$$

$$| (\frac{32}{64}) = \frac{1}{2} \times \cancel{4}\times4 = \frac{1}{2} \times \cancel{4}\times\cancel{4} = \frac{1}{2}$$

$$| (\frac{32}{64}) = \frac{1}{2} \times \cancel{4}\times4 = \frac{1}{2} \times \cancel{4}\times\cancel{4} = \frac{1}{2}$$

$$| (\frac{32}{64}) = \frac{1}{2} \times \cancel{4}\times4 = \frac{1}{2} \times \cancel{4}\times\cancel{4} = \frac{1}{2}$$

$$| (\frac{32}{64}) = \frac{1}{2} \times \cancel{4}\times4 = \frac{1}{2} \times \cancel{4}\times4 = \frac{1}{2} \times \cancel{4}\times4 = \frac{1}{2}$$

$$| (\frac{32}{64}) = \frac{1}{2} \times \cancel{4}\times4 = \frac{1}{2} \times \cancel{4}\times4 = \frac{1}{2} \times \cancel{4}\times4 = \frac{1}{2} \times \cancel{4}\times4 = \frac{1}{2}$$

$$| (\frac{32}{64}) = \frac{1}{2} \times \cancel{4}\times4 = \frac{1}{2} \times \cancel{4}\times4 = \frac{1}{2} \times \cancel{4}\times4 = \frac{1}{2}$$

$$| (\frac{32}{4}) \times \cancel{4}\times4 = \frac{1}{2} \times \cancel{4}\times4 = \frac{1}{2}$$

CAJAS

```
X + Y = X \operatorname{suma} Y
                                           \fbox{Hola que tal}
Hola que tal
                                          \boldsymbol{\omega} = x+\ldots 
\sin x = x + \cdots
                                           \fbox{Esta \raisebox{-0.1cm}{forma}
                               un poco
Esta forma
                                           \raisebox{-0.3cm}{de}
           ^{\rm de}\,{\rm escribir}
                                           \raisebox{-0.4cm}{escribir}
                      me
                                           \raisebox{-0.6cm}{me}
                         marea
                                           \raisebox{-0.8cm}{marea} un
\[X+Y = X \setminus S \setminus S \setminus Y \]
                                           \raisebox{0.1cm}{poco}}.
```

TABLAS

\begin{table}[position specifier]
\centering
\begin{tabular}{|||}
... your table ...
\end{tabular}
\caption{This table shows some data}
\label{tab:myfirsttable}
\end{table}

1	2	3
4	5	6
7	8	9

1	2	3
4	5	6
7	8	9

7C0	hexadecimal
3700	octal
11111000000	binary
1984	decimal

```
\begin{tabular}{ 1 | c || r }
1 & 2 & 3 \\
```

```
4 & 5 & 6 \\
7 & 8 & 9 \\ \end{tabular}
```

```
\begin{center}
\begin{tabular}{ 1 | c || r }\hline
1 & 2 & 3 \\ \hline
4 & 5 & 6 \\ \hline
7 & 8 & 9 \\ \hline
\end(tabular) \ \end(center)
```

\begin{tabular}{|r||}\hline
7C0 & hexadecimal \\
3700 & octal \\ \cline{2-2}
11111000000 & binary \\ hline \hline
1984 & decimal \\ \hline
end(tabular)

TABLAS

\end{tabular}

Definiendo muchas columnas identicas usando

*{num}{st	:r}	Sl	Lnt	ax:	LS.		
Team	P	W	D	L	F	A	Pts
Manchester United	6	4	0	2	10	5	12
Celtic	6	3	0	3	8	9	9
Benfica	6	2	1	3	7	8	7
FC Copenhagen	6	2	1	2	5	8	7

```
Definiendo muchas columnas identicas usando *{num}{str} sintaxis.  
\begin{tabular} {l*{6}{c}r}  

Team & P & W & D & L & F & A & Pts \\ \hline  

Manchester United & 6 & 4 & 0 & 2 & 10 & 5 & 12 \\ Celtic & 6 & 6 & 3 & 0 & 8 & 8 & 9 & 9 \\ Benfica & & 6 & 2 & 1 & 3 & 7 & 8 & 6 & 7 \\ FC Copenhagen & & 6 & 2 & 1 & 2 & 5 & 8 & 5 & 7 \\ \end{tabular}
```

TABLAS

\usepackage{multirow}

\usepackage{multirow}

Team sheet		
Goalkeeper	GK	Paul Robinson
Defenders	LB	Lucus Radebe
	DC	Michael Duberry
	DC	Dominic Matteo
	RB	Didier Domi
Midfielders	MC	David Batty
	MC	Eirik Bakke
	MC	Jody Morris
Forward	FW	Jamie McMaster
Strikers	ST	Alan Smith
	ST	Mark Viduka

```
begin{tabular}{|||||||} hline
\multicolumn{3}{|||||Team sheet} \\ hline
Goalkeeper & GK & Paul Robinson \\ hline
\multirow{4}{**}{Defenders} & LB & Lucus Radebe \\
& DC & Michael Duberry \\
& DC & Dominic Matteo \\
& RB & Diddier Domi \\ hline
\multirow{3}{**}Midfielders} & MC & David Batty \\
& MC & Eirik Bakke \\
& MC & Jody Morris \\ hline
\muntirow{2}{**}{Strikers} & ST & Alan Smith \\
& ST & Mark Viduka \\ hline
\end(tabular)
```

Existen dos maneras de incorporar images en LATEX

► \usepackage{graphicx} Podemos incorparar en LATEX graficos en formato pdf, jpg, png or tif(with one f).

```
\usepackage{graphicx}
\includegraphics[height=3in]{filename}.
```

► \usepackage{graphics} Podemos incorparar en LATEX graficos en formato PostScript (esp. "Encapsulated PostScript")

```
\usepackage{graphics}
\includegraphics{myimage.png}
```

posición	
h	Aquí
t	Comienzo de una pagina de texto
b	Final de una pagina de texto
p	En una pagina sin texto

\includegraphics[opciones]{fichero}

```
\begin{figure}[posici\'on]
cuerpo de la figura
\caption{Descripci\'on de la figura} %opcional
\end{figure}
```

\begin{center} \end{center}\end{document}

Cropping Las dos primeras coordenadas \documentclass{article} son las coordenadas (x.v) en \usepackage[pdftex]{graphicx} píxeles de la esquina inferior \begin{document} izquierda del archivo de imagen. Las otros dos \includegraphics{image1.png} coordenadas son los valores superiores derecha de (x,y). \includegraphics*[viewport= 30 30 120 120]{image1.png} Mediante la eliminación de las Spacing \includegraphics[viewport= líneas en blanco, le estamos 30 30 120 120]{image1.png} diciendo a LATEXque ponga la imagen en la mismas línea que \includegraphics[scale= el texto. Usted vera el desastre 0.25]{image1.png} que los resultados. Escalar fácilmente el tamaño del Scaling and Resizing \includegraphics[width=5in, diagrama utilizando el height=lin]{image1.png} comando opcional escala. Se escala la figura por un factor de \includegraphics[angle=45] 0,25 (en otras palabras, se hace 4 {image1.png} veces menor) \reflectbox{\includegraphics Rotating Rotamos la figura con comando {image1.png}} opcional de ángulo (angle). \scalebox{2}{\rotatebox{60}} Nos Podemos reflejar la figura Reflecting {\reflectbox{This is really weird text!}}} en forma horizontal usando comando \reflectbox. \begin{center} Centering Podemos centrar la imagen \includegraphics{image1.png} usando \end{center}

Incluya los siguentes package \usepackage {graphicx}
\usepackage {graphics}

```
\includegraphics[scale=0.15]{tiger.png}\\
\includegraphics[width=0.15\textheight,angle=-90]{tiger.png}\\
\fbox{\includegraphics[width=2cm, height=2cm, angle=45]{tiger.png}}\\
\includegraphics{tiger.png}\\
\includegraphics[width=60mm] {tiger.png} \\
\includegraphics[height=60mm]{tiger.png}\\
\includegraphics[scale=0.75]{tiger.png}\\
\includegraphics[angle=45, width=52mm] {tiger.png} \\
```

Incluya los siguentes package \usepackage {graphicx},
\usepackage {graphics}

```
\begin{center}
\includegraphics[width=.1\textwidth,
totalheight=0.2\textheight] {tiger.png}
\end{center}
\includegraphics[scale=.15,bb=225 350 275 400,clip]{tiger.png}
\begin{figure}[h]
\begin{center}
\includegraphics[scale=0.075]{tiger.png}
\end{center}
\caption{Tigre}
\end{figure}
\begin{figure}[h]
\centering
\includegraphics[trim=1cm 2cm 3cm 4cm, clip=true,
totalheight=0.15\textheight, angle=90]{tiger.png}
\caption{The caption goes here}
\end{figure}
```