제주도 음식물 쓰레기양 예측을 통한 배출량 감소 방안 도출 🌥

팀명: 에코탐라

팀장: 김소은(trit1268@naver.com)

팀원: 김서린(tjfls96@naver.com), 신정아(alalwjddk2@naver.com), 이윤지(pioneer0305@naver.com)

- 1.1 분석 배경
- 1.2 제공데이터 추이 확인
- 1.3 분석 내용 요약

03 활용 알고리즘

- 3.1 상관분석
- 3.2 회귀분석
- 3.3 XGBoost
- 3.4 ARIMA model

04 최종예측 결과

- 4.1 행정동별 예측 결과
- 4.2 행정동 "알 수 없음"데이터 예측 결과

02 데이터 전처리

- 2.1 구분변수
- 2.2 설명변수
- 2.3 반응변수

05 결론

5.1 분석결과 활용 및 시사점

01 서론 🖺

01 서론 **1.1 분석 배경**

대한민국 유일한 유네스코 3관왕 지역, but 1인당 생활 폐기물 배출량 전국 1위

01 서론 **1.1 분석 배경**

제주도 음식물 쓰레기 배출량 감소 방안 필요

- 1. 음식물 쓰레기 배출의 주요 요인 찾기
- 2. 음식물 쓰레기 배출량 예측
- 3. 음식물 쓰레기 감소 방안 모색

1.2 제공데이터 추이 확인

1 음식물 쓰레기 배출량(g) 일일 그래프

- 2018년부터 지속적으로 감소하는 추세
- 코로나가 발발한 2020년부터 크게 감소

1.2 제공데이터 추이 확인

2 음식물 쓰레기 배출량(g) 월별 그래프

2018년

2019년

1.2 제공데이터 추이 확인

2 음식물 쓰레기 배출량(g) 월별 그래프

2020년

2021년 (1~6월)

- 1.2 제공데이터 추이 확인
- 2 음식물 쓰레기 배출량(g) 월별 그래프
 - 여름 휴가철인 6, 7, 8월에 급증
 - 겨울 휴가철인 12, 1, 2월에도 증가
 - 따라서 휴가철에 음식물 쓰레기 배출량이 많음을 알 수 있음

1.2 제공데이터 추이 확인

3 제주 총 거주 인구수(명) 월별 그래프

2018년

2019년

1.2 제공데이터 추이 확인

3 제주 총 거주 인구수(명) 월별 그래프

2020년

2021년 (1~6월)

- 1.2 제공데이터 추이 확인
- 3 제주 총 거주 인구수(명) 월별 그래프

- 2018, 2019년에 지속적으로 증가
- 2020년 초부터 감소, 증가를 반복

1.2 제공데이터 추이 확인

- 2020년 : 음식물 쓰레기 배출량이 확연히 감소하기 시작
- 2020년 : 계속해서 증가하던 총 거주 인구수가 감소하기 시작 따라서 두 변수 사이에 관련성이 있을 것으로 예상됨
- 분석목표
 이와 같이 음식물 쓰레기 배출량과 다른 변수들 사이에 관련성이 있을
 것으로 예상되므로, 관련성을 확인하고 최종적으로 배출량 감소방안 강구

01 서론 1.3 분석 내용 요약

1. 제공데이터 추이 확인

2. 데이터 전처리

3. 상관분석

4. 회귀분석

- 분석 목적 설정
- 분석 방향 설정

- 외부 데이터 불러오기

- 각 변수를 행정동마다의 월별 데이터로 변환 - 외부데이터의 적합성 확인 -외부데이터와 반응변수 사이의 인과관계 확인

01 서론 1.3 분석 내용 요약

5. XGBoost

- 파라미터 조절해최적 모델 선정- 주요 변수 선정

6. ARIMA model

시계열 데이터의정상성 확인독립변수의 2021년7,8월 값 예측

7. 최종 예측

 XGBoost로 선정한 주요 변인을 ARIMA를 통해 2021년 7, 8월 값 예측
 -Qgis를 이용해 음식물쓰레 기 배출량(y)의 예측값 시각화

- 행정동 "알 수 없음"의 데이터 예측

8. 결론

- 최종 예측을 통해 제주도의 음식물쓰레기 배출량을 줄일 수 있는 방안 강구

02 데이터 전처리 🕌

02 데이터 전처리 2.1 구분변수

1

base_date (배출일자)

- 타입 : DATETIME
- YYYY-MM-DD
- 분석에 사용될 각 설명변수들을 base_date 를 이용해 월 단위 데이터로 변환해 사용

	base_date
2018-01-31	2018-01-31
2018-02-28	2018-02-28
2018-03-31	2018-03-31
2018-04-30	2018-04-30
2018-05-31	2018-05-31
2021-02-28	2021-02-28
2021-03-31	2021-03-31
2021-04-30	2021-04-30
2021-05-31	2021-05-31
2021-06-30	2021-06-30
1806 rows × 3	columns

02 데이터 전처리 2.1 구분변수

2

emd_cd (행정동 코드)

- 타입: STRING
- 43개 행정동 코드 + 알 수 없음
- 분석에 사용될 각 데이터를 emd_cd별로 정리한 후 분석
- "알 수 없음 "데이터는 따로 모아서 분석

1	2	50110253	애월읍
2	3	50110256	구좌읍
3	4	50110259	조천읍
4	5	50110310	한경면
5	6	50110320	추자면
6	7	50110330	우도면
7	8	50110510	일도1동
8	9	50110520	일도2동
9	10	50110530	이도1동
10	11	50110540	이도2동
11	12	50110550	삼도1동
12	13	50110560	삼도2동
13	14	50110570	용담1동
14	15	50110580	용담2동
15	16	50110590	건입동
16	17	50110600	화북동
17	18	50110610	삼양동
18	19	50110620	봉개동
19	20	50110630	아라동
20	21	50110640	오라동
21	22	50110650	연동
22	23	50110660	노형동
23	24	50110670	외도동
24	25	50110680	이호동
25	26	50110690	도두동

26	27	50130250	대정읍
27	28	50130253	남원읍
28	29	50130259	성산읍
29	30	50130310	안덕면
30	31	50130320	표선면
31	32	50130510	송산동
32	33	50130520	정방동
33	34	50130530	중앙동
34	35	50130540	천지동
35	36	50130550	효돈동
36	37	50130560	영천동
37	38	50130570	동흥동
38	39	50130580	서용동
39	40	50130590	대륜동
40	41	50130600	대천동
41	42	50130610	중문동
42	43	50130620	예래동
43	44	XXXXXXXXX	알수없음

1

korean (내국인 유동인구)

- 거주인구(res_pop_cnt) + 근무인구(work_pop_cnt) + 방문인구(visit_pop_cnt)
- 타입: FLOAT
- 해당 시각 정각에 측정한 거주, 근무, 방문인구(명)의 합
- 거주/근무/방문인구 : 1~24시 해당 시간 정각에 측정한 인구

(거주지/근무지/방문지와 근무지 외 지역에 머문 시간(분) / 60분)

- 시간별 내국인 유동인구 데이터를 월별 내국인 유동인구 데이터로 정리해 사용
- 행정동별 월 내국인 유동인구 수로 변환 후 분석에 사용

 base_date
 emd_cd
 pop_cnt

 2018-01-31
 2018-01-31
 50110250
 7.209306e+06

 2018-02-28
 2018-02-28
 50110250
 5.579125e+06

 2018-03-31
 2018-03-31
 50110250
 7.615021e+06

 2018-04-30
 50110250
 8.498349e+06

 2018-05-31
 2018-05-31
 50110250
 8.916782e+06

 ...
 ...
 ...
 ...

 2021-02-28
 2021-02-28
 50130620
 4.321265e+06

 2021-03-31
 2021-03-31
 50130620
 4.744309e+06

 2021-04-30
 50130620
 5.236706e+06

 2021-05-31
 2021-05-31
 50130620
 5.805413e+06

 2021-06-30
 2021-06-30
 50130620
 5.705196e+06

2 long_term_frgn (장기체류 외국인 유동인구)

- 거주인구(res_pop_cnt) + 근무인구(work_pop_cnt) + 방문인구(visit_pop_cnt)
- 타입: FLOAT
- 해당 시각 정각에 측정한 거주, 근무, 방문인구(명)의 합
- 거주/근무/방문인구 : 1~24시 해당 시간 정각에 측정한 인구

(거주지/근무지/방문지와 근무지 외 지역에 머문 시간(분) / 60분)

- 시간별 장기체류 외국인 유동인구 데이터를 월별 장기체류 외국인 유동인구 데이터로 정리해 사용
- 행정동별 월 장기체류 유동인구 수로 변환 후 분석에 사용

short_term_frgn (단기체류 외국인 유동인구)

2018-03-31 2018-03-31 50110250 98026.6381
2018-04-30 2018-04-30 50110250 103289.7891
2018-05-31 2018-05-31 50110250 115255.9750
...
2021-02-28 2021-02-28 50130620 280.6159
2021-03-31 2021-03-31 50130620 1475.8404
2021-04-30 2021-04-30 50130620 1283.0997
2021-05-31 2021-05-31 50130620 1212.2652
2021-06-30 2021-06-30 50130620 1194.0627

2018-01-31 2018-01-31 50110250 58090.5960

2018-02-28 2018-02-28 50110250 69710.8394

base date emd cd visit pop cnt

- 타입: FLOAT
- 해당 시각 정각에 측정한 방문인구(명)
- 시간별 단기체류 외국인 유동인구 데이터를 월별 단기체류 외국인 유동인구 데이터로 정 리해 사용
- 행정동별 월 단기체류 유동인구 수로 변환 후 분석에 사용

4

resident (총 거주인구)

- 타입: INT
- 행정동별 총 거주인구
- 주민등록 거주인구(resid_reg_pop)와 외국인 거주 인구(foreign_pop)의 합
- 행정동별 월 총 거주인구 수 데이터 그대로 사용

	base_date	emd_cd	total_pop
2018-01-31	2018-01-31	50110250	24419
2018-02-28	2018-02-28	50110250	24427
2018-03-31	2018-03-31	50110250	24532
2018-04-30	2018-04-30	50110250	24606
2018-05-31	2018-05-31	50110250	24715
2021-02-28	2021-02-28	50130620	4173
2021-03-31	2021-03-31	50130620	4178
2021-04-30	2021-04-30	50130620	4161
2021-05-31	2021-05-31	50130620	4178
2021-06-30	2021-06-30	50130620	4152
1806 rows × 3	3 columns		

	base_date	emd_cd	use_cnt	use_amt
2018-01-31	2018-01-31	50110250	215.79479	8171132.98371
2018-02-28	2018-02-28	50110250	213.71326	8605532.33333
2018-03-31	2018-03-31	50110250	228.40134	8517373.71572
2018-04-30	2018-04-30	50110250	239.89597	8640048.18456
2018-05-31	2018-05-31	50110250	250.34839	9384709.80968

2021-02-28	2021-02-28	50130620	65.21600	2463788.71200
2021-03-31	2021-03-31	50130620	67.70000	2572585.70000
2021-04-30	2021-04-30	50130620	68.64234	2473174.90146
2021-05-31	2021-05-31	50130620	69.33333	2864493.94898
2021-06-30	2021-06-30	50130620	69.89299	2404632.73432
1806 rows × 4	l columns			

card_cnt (음식관련 카드 결제건수)

• 타입 : INT

• 단위:건

- 일별 음식관련 카드 결제건수 데이터를 월 별 음식관련 카드 결제건수 데이터로 정리 해 사용
- 행정동별 월 음식관련 카드 결제건수로 변 환 후 분석에 사용

6 card_amt (음식관련 카드 결제금액)

• 타입 : INT

• 단위 : 원

- 일별 음식관련 카드 결제금액 데이터를 월 별 음식관련 카드 결제금액 데이터로 정리 해 사용
- 행정동별 월 음식관련 카드 결제금액으로 변환 후 분석에 사용

- **7** waste_cnt (음식물 쓰레기 배출건수)
- 타입: INT
- 배출거점지역 음식물 쓰레기 배출건수(건)
- 일별 음식물 쓰레기 배출건수 데이터를 월별 음식
 물 쓰레기 배출건수 데이터로 정리해 사용
- 행정동별 월 음식물 쓰레기 배출건수로 변환 후 분석에 사용

	base_date	emd_cd	em_cnt
2019-11-30	2019-11-30	50110250	620
2019-12-31	2019-12-31	50110250	8178
2020-01-31	2020-01-31	50110250	13042
2020-02-29	2020-02-29	50110250	12264
2020-03-31	2020-03-31	50110250	14316
2021-02-28	2021-02-28	50130620	4563
2021-03-31	2021-03-31	50130620	4920
2021-04-30	2021-04-30	50130620	5256
2021-05-31	2021-05-31	50130620	6346
2021-06-30	2021-06-30	50130620	6328
1634 rows × 4	columns		

	base_date	emd_cd	detached	apt	town	multiplex	commercial_building
0	2018-01-31	50110250	59279	56760	17641	27893	3647
1	2018-01-31	50110253	59279	56760	17641	27893	3647
2	2018-01-31	50110256	59279	56760	17641	27893	3647
3	2018-01-31	50110259	59279	56760	17641	27893	3647
4	2018-01-31	50110310	59279	56760	17641	27893	3647

1801	2021-06-30	50130580	852	1758	512	625	66
1802	2021-06-30	50130590	1844	2143	1688	397	81
1803	2021-06-30	50130600	1612	2529	797	214	39
1804	2021-06-30	50130610	1484	1667	1152	615	88
1805	2021-06-30	50130620	1023	0	219	39	29
1806 ro	1806 rows × 7 columns						

8

detached(단독주택), apt(아파트), town(연립주택), multiplex(다세대 주택), commercial building(비거주용 건물 내 주택)

- 타입 : INT
- 외부 데이터 KOSIS의 '주택의 종류별 주택 -읍면동(2015, 2020), 시군구(2016~2019) 이용
- 2018년 : 제주도시, 서귀포시의 년 단위 주택 수, 12개월을 같은 주택 수라고 가정
- 2019년 : 제주도시, 서귀포시의 년 단위 주택 수, 12개월을 같은 주택 수라고 가정
- 2020년 : 행정동별 년 단위 주택 수, 12개월을 같은 주택 수라고 가정
- 2021년 : 2020년 데이터 사용, 6개월을 같은 주택 수라고 가정

- 9 distancing (사회적 거리두기 단계)
- 타입: FLOAT
- 외부 데이터 'covid19.jeju'와 기사를 통해 자료 수 집
- 제주의 사회적 거리두기 단계를 일별로 정리한 후 월평균으로 구하여 사용
- 사회적 거리두기 단계 체계가 등장하기 이전은 0 단계라고 가정

	base_date	emd_cd	distancing
0	2018-01-31	50110250	0.0
1	2018-01-31	50110253	0.0
2	2018-01-31	50110256	0.0
3	2018-01-31	50110259	0.0
4	2018-01-31	50110310	0.0
1801	2021-06-30	50130580	2.0
1802	2021-06-30	50130590	2.0
1803	2021-06-30	50130600	2.0
1804	2021-06-30	50130610	2.0
1805	2021-06-30	50130620	2.0
1806 rd	ws × 3 column	s	

10

temp (월평균기온 총합)

11

rain (월별 강수량 총합)

- 타입: FLOAT
- 외부 데이터 기상청과 제주데이터허브를
 통해 자료 수집
- 행정동별 일 평균기온을 행정동별 월평균 기온의 총합으로 정리 후 사용

- 타입: FLOAT
- 외부 데이터 기상청과 제주데이터허브를
 통해 자료 수집
- 행정동별 일 강수량을 행정동별 월강수량
 의 총합으로 정리 후 사용

02 데이터 전처리 2.3 반응변수

- 1 waste_amt (음식물 쓰레기 배출량)
- 타입: INT
- 배출거점지역 음식물 쓰레기 총 배출량(g)
- 일별 음식물 쓰레기 배출량 데이터를 월별 음식물 쓰레기 배출량 데이터로 정리해 사용
- 행정동별 월 음식물 쓰레기 총 배출량으로 변환 후 분석에 사용

	base_date	emd_cd	em_g
2019-11-30	2019-11-30	50110250	2279550
2019-12-31	2019-12-31	50110250	31493650
2020-01-31	2020-01-31	50110250	49632850
2020-02-29	2020-02-29	50110250	46197050
2020-03-31	2020-03-31	50110250	52561750
2021-02-28	2021-02-28	50130620	15566250
2021-03-31	2021-03-31	50130620	17300600
2021-04-30	2021-04-30	50130620	17646850
2021-05-31	2021-05-31	50130620	19494750
2021-06-30	2021-06-30	50130620	18753350
1634 rows × 3	columns		

03 활용 알고리즘 🛎

03 활용 알고리즘 3.1 **상관분석**

1 상관분석의 의미와 선정 이유

- 상관분석(correlation analysis)이란?
- 두 변수 간에 어떤 선형적 또는 비선형적 관계를 갖는지 분석하는 방법 으로 상관계수를 이용해 측정
- 상관계수(correlation coefficient)이란?
- 두 변수 사이의 선형 관계 정도를 수치화한 계수
- '+1'은 완벽한 양의 선형 상관관계, '0'은 선형 상관관계 없음, '-1'은 완벽한 음의 선형 상관관계를 의미한다.

03 활용 알고리즘 3.1 **상관분석**

- 외부 데이터 temp(월 평균기온의 총합) & waste_amt(음식물 쓰레기 배출량)
- rain(월별 강수량의 총합) & waste_amt(음식물 쓰레기 배출량)

각각의 관계의 정도를 알아보기 위해 상관분석을 실시

03 활용 알고리즘 3.1 **상관분석**

2 em_g와 temp, rain간의 상관분석

- em_g와 temp의 상관계수: -0.02
- em_g와 rain의 상관계수: 0.13
 - => 상관계수가 0에 가까운 값. 따라서 음식물 쓰레기 배출량의 주

요 요인으로 적합하지 않다고 판단

corr=food_waste_sort_201819.corr(method='pearson')
corr

	emd_cd	em_cnt	em_g	temp	rain
emd_cd	1.000000	-0.451129	-0.382820	0.053998	-0.070709
em_cnt	-0.451129	1.000000	0.986177	0.00442	173686
em_g	-0.382820	0.986177	1.000000	-0.022951	0.129840
temp	0.053998	-0.004420	-0.022951	1.00000	333577
rain	-0.070709	0.173686	0.129840	0.333577	1.000000

- 회귀분석(regression analysis)이란?
 - 관찰된 연속형 변수들에 대해 변수 간의 인과관계를 밝히고 모형을 적합 하여 관심 있는 변수를 예측하거나 추론하기 위한 분석방법
- 설명변수로 반응변수가 반응변수에 미치는 영향을 일반화
- 선형회귀분석은 선형성, 등분산성, 독립성, 비상관성, 정규성을 가정

1 회귀분석의 의미와 선정 이유

- 외부 데이터 temp(월 평균기온의 총합), rain(월별 강수량의 총합)과 waste_amt(음식물 쓰레기 배출량) 사이의 인과관계를 살펴보기 위해 회귀분석 실시
 - => 이는 매일의 날씨에 따라 음식 배달 빈도가 달라지며, 음식물 쓰레기 배출량 역시 달라질 것이란 생각에서 출발했다.

2 temp와 waste_amt의 회귀분석

OLS Regression Results									
Dep. Variable:		em_g	ı	R-squ	ared (uncentered	d):	0.208	
Model:	OLS		Adj. R-squared (uncente			uncentered	d):	0.207	
Method:	Leas	F-statistic:				ic:	220.1		
Date:	Thu, 09	Sep 2021			Prob	(F-statistic	c):	4.02e-46	
Time:		23:42:53			Log	g-Likelihoo	d:	-17139.	
No. Observations:		873				Al	C:	3.428e+04	
Df Residuals:		872				ВІ	C:	3.428e+04	
Df Model:		1							
Covariance Type:		nonrobust							
coef	std err	t	P> t	[0	.025	0.975]			
temp 1.21e+05	7994.329	15.135	0.000	1.056	e+05	1.37e+05			
Omnibus:	190.241	Durbin-	Watsor	ո։	0.101	I			
Prob(Omnibus):	0.000	Jarque-Be	era (JB): 3	55.314	ı			
Skew:	1.287	P	rob(JB): 6.	99e-78	3			
Kurtosis:	4.773	Co	ond. No	o .	1.00)			

- waste_amt 변동의 약 20%만이 temp 변동에 의해 설명됨을 의미
- temp와 waste_amt 사이의 회귀식의 정확도는 매우 낮으므로 설명변수 temp로서의 역할을 하기 어렵다고 판단해 제거

3 rain와 waste_amt의 회귀분석

- waste_amt 변동의 32.70%만이
 rain 변동에 의해 설명됨을 의미
- rain과 waste_amt 사이의 회귀식의 정확도는 매우 낮으므로 설명변수 rain으로서의 역할을 하기어렵다고 판단해 제거

03 활용 알고리즘 3.2 회귀분석

OLS Re	gression Re	esults				
De	ep. Variable	:	em_g	F	R-squared:	0.022
	Model	:	OLS	Adj. F	R-squared:	0.020
	Method	: Leas	st Squares		F-statistic:	000
	Date	: Thu, 09	Sep 2021	Prob (F	-statistic):	6.86e-05
	Time	:	23:26:57	Log-L	ikelihood:	-16915.
No. Ob	servations	:	873		AIC:	3.384e+04
D	f Residuals	:	870		BIC:	3.385e+04
	Df Model	:	2			
Covar	riance Type	:	nonrobust			
	coe	ef stde	err t	P> t	[0.025	0.975]
const	5.977e+0	7 3.25e+0	06 18.409	0.000	5.34e+07	6.61e+07
temp	-1.817e+0	4 8667.49	93 -2.096	0.036	-3.52e+04	-1156.920
rain	4.275e+0	4 9829.30	08 4.350	0.000	2.35e+04	6.2e+04
	Omnibus:	265.817	Durbin-V	Vatson:	0.170	
Prob(C	Omnibus):	0.000	Jarque-Bei	ra (JB):	608.572	
	Skew:	1.669	Pro	ob(JB):	7.08e-133	
	Kurtosis:	5.363		nd. No.	654.	

- waste_amt 변동의 2%만이 temp와 rain 변동에 의해 설명됨을 의미
- temp, rain과 waste_amt 사이의 회 귀식의 정확도는 매우 낮으므로 설 명변수 temp, rain으로서의 역할을 하기 어렵다고 판단해 제거

1 XGBoost의 개념과 선정이유

- 머신러닝 기법 중 의사결정나무(Decision tree)를 기반으로 한 앙상블 방법
- Boosting 기반
- 효율성, 유연성, 휴대성의 장점
- 유연하게 여러 파라미터를 조절해가며 최적의 모델을 만드는 러닝 시스템
- 과적합(over-fitting)을 방지
- 빠른 학습 및 예측 가능
- 높은 성능

2 XGBoost 통해 최적 모델 찾기

- 하이파라미터 설정
 - 전체 데이터셋을 학습용 80%, 테스트용 20%로 분할
- max_depth(트리당 최대 깊이) = 7
- eta(학습률) = 0.1
- 목적함수(objective) = reg:linear (회귀)
- 부스팅 반복횟수 = 1000
- 조기중단을 위한 최소 반복횟수 = 100

2 XGBoost 통해 최적 모델 찾기

- 모델 비교
- 설명변수 waste_amt (음식물쓰레기 배출량, g)의 범위가 매우 크기 때문에 RMSE 대신 RMSLE 사용
- RMSLE: 예측값과 실제값에 로그를 씌운 후 차이를 비교하는 방법

03 활용 알고리즘

3.3 XGBoost

- Ver_1
- 제공데이터의 변수만을 이용해 XGBoost 모델링
- 설명변수(x) :

korean	card_cnt
(내국인 유동인구)	(음식 관련 카드 결제건수)
long_term_frgn	card_amt
(장기체류 외국인 유동인구)	(결제금액)
short_term_frgn	waste_cnt
(단기체류 외국인 유동인구)	(매출건수)
resident	
(총 거주인구)	

2 XGBoost 통해 최적 모델 찾기

- Ver_1Model explanation
- Feature Importance top3
- korean
- long_term_frgn
- short_term_frgn

결과: eval- RMSLE = 0.09863

2 XGBoost 통해 최적 모델 찾기

- Ver_2-1
- 제공데이터의 변수만을 이용해 XGBoost 모델링
- ver_1의 변수 중 korean, long_term_frgn -> 거주/근무/방문인구로 분류
- ver_1의 변수 중 resident -> 주민등록/외국인 거주인구, 남성/여성으로 분류
- ver_1의 변수 중 card_cnt, card_amt
- -> home(배달, 간식, 식품, 마트/슈퍼마켓/농축수산물) / out(한식, 패스트푸드, 주점 및 주류 판매, 양식, 뷔페, 아시아음식) 으로 분류

- 설명변수 (x) :

2 XGBoost 통해 최적 모델 찾기

korean_resd	short_term_frgn_visit	card_amt_home
(내국인 유동인구, 거주인구)	(단기체류 외국인 유동인구)	(결제금액, 가정)
korean_work	resident_fe_korean	card_cnt_out
(내국인 유동인구, 근무인구)	(총 거주인구, 여성, 주민등록 거주인구)	(음식 관련 카드 결제건수, 외식)
korean_visit	resident_fe_frgn	card_amt_out
(내국인 유동인구, 방문인구)	(총 거주인구, 여성, 외국인 거주인구)	(결제금액, 외식)
long_term_frgn_resd	resident_m_korean	waste_cnt
(장기체류 외국인 유동인구, 거주인구)	(총 거주인구, 남성, 주민등록 거주인구)	(배출건수)
long_term_frgn_work (장기체류 외국인 유동인구, 근무인구)	resident_m_frgn (총 거주인구, 남성, 외국인 거주인구)	
long_term_frgn_visit (장기체류 외국인 유동인구, 방문인구)	card_cnt_home (음식 관련 카드 결제건수, 가정)	

2 XGBoost 통해 최적 모델 찾기

- Ver_2-1Model explanation
- Feature Importance top3

korean_resid korean_work korean_visit

- 결과 eval-rmsle = 0.08959
- $\text{ver}_1(0.09862) > \text{ver}_2-1(0.08959)$
- ver_2-1 선택

2 XGBoost 통해 최적 모델 찾기

- Ver_2-2
- 제공데이터의 변수만을 이용해 XGBoost 모델링
- ver_2-1의 변수 중 korean_resd, korean_work, korean_visit을 각각 성별, 연령대별로 분류

2 XGBoost 통해 최적 모델 찾기

- 설명변수 (x) :

korean_resd_	f0 ~ f80 (여성, 0대 ~ 80대)	short_term_frgn_visit	card_amt_home	
(내국인 유동인구, 거주인구)	m0 ~ m80 (남성, 0대 ~ 80대)	(단기체류 외국인 유동인구)	(결제금액, 가정)	
korean_work_	f0 ~ f80 (여성, 0대 ~ 80대)	resident_fe_korean	card_cnt_out	
(내국인 유동인구, 근무인구)	m0 ~ m80 (남성, 0대 ~ 80대)	(총 거주인구, 여성, 주민등록 거주인구)	(음식 관련 카드 결제건수, 외식)	
korean_visit_	f0 ~ f80 (여성, 0대 ~ 80대)	resident_fe_frgn	card_amt_out	
(내국인 유동인구, 방문인구)	m0 ~ m80 (남성, 0대 ~ 80대)	(총 거주인구, 여성, 외국인 거주인구)	(결제금액, 외식)	
long_term_frgn_resd		resident_m_korean	waste_cnt	
(장기체류 외국인 유동인구, 거주인구)		(총 거주인구, 남성, 주민등록 거주인구)	(배출건수)	
long_term_frgn_work		resident_m_frgn		
(장기체류 외국인 유동인구, 근무인구)		(총 거주인구, 남성, 외국인 거주인구)		
long_term_frgn_visit		card_cnt_home		
(장기체류 외국인 유동인구, 방문인구)	N.A.L.N.A.	(음식 관련 카드 결제건수, 가정)		

2 XGBoost 통해 최적 모델 찾기

- Ver_2-2Model explanation
- Feature Importance top3

korean_resid_f0 korean_work_f0 korean_visit_f0

- 결과 eval-rmsle = 0.08853
- $\text{ver}_2 1(0.08959) > \text{ver}_2 2(0.08853)$
- ver_2-2 선택

2 XGBoost 통해 최적 모델 찾기

- Ver_3-1
- ver_1의 제공데이터 변수
- + 외부 데이터 total_house(총 주택 수)의 종류(단독주택, 아파트, 연립주택,다세대주택, 비거주용 건물내 주택)
- + distancing(사회적 거리두기 단계) 사용

2 XGBoost 통해 최적 모델 찾기

- 설명변수 (x):

korean	card_amt	multiplex
(내국인 유동인구)	(결제금액)	(다세대주택)
long_term_frgn	waste_cnt	commercial_building
(장기체류 외국인 유동인구)	(배출건수)	(비거주용 건물내 주택)
short_term_frgn	detached	distancing
(단기체류 외국인 유동인구)	(단독주택)	(사회적 거리두기 단계)
resident (총 거주인구)	apt (아파트)	
card_cnt (음식 관련 카드 결제건수)	town (연립주택)	

2 XGBoost 통해 최적 모델 찾기

- Ver_3-1Model explanation
- Feature Importance top3

korean
long_term_frgn
short_term_frgn

- 결과 eval-rmsle = 0.07914
- $\text{ver}_3 1(0.08853) > \text{ver}_3 1(0.07914)$
- ver_3-1 선택

2 XGBoost 통해 최적 모델 찾기

- Ver_3-2
- 시계열 ARIMA 모델링 결과 short_term_frgn(단기체류 외국인 유동인구) 의 2021년 7, 8월 값 중 음수(-) 다수 존재
 - → ver_3-1의 변수 중 short_term_frgn(단기체류 외국인 유동인구) 제거

2 XGBoost 통해 최적 모델 찾기

- 설명변수(x) :

korean (내국인 유동인구)	detached (단독주택)
long_term_frgn (장기체류 외국인 유동인구)	apt (아파트)
resident (총 거주인구)	town (연립주택)
card_cnt (음식 관련 카드 결제건수)	multiplex (다세대주택)
card_amt (결제금액)	commercial_building (비거주용 건물내 주택)
waste_cnt (배출건수)	distancing (사회적 거리두기 단계)

2 XGBoost 통해 최적 모델 찾기

- Ver_3-2Model explanation
- Feature Importance top3

korean
long_term_frgn
resident

- 결과 eval-rmsle = 0.07985
- $\text{ver}_3 1(0.07914) < \text{ver}_3 2(0.07985)$
- ver_3-1 선택

2 XGBoost 통해 최적 모델 찾기

- Ver_3-2
- ver_3-1의 total_house(총 주택 수)의 모든 종류를 통합한 total_house 만 사용
- ver_1의 제공데이터 변수 + 외부 데이터 total_house(총 주택 수)
- + distancing(사회적 거리두기 단계) 사용

2 XGBoost 통해 최적 모델 찾기

- 설명변수(x) :

korean (내국인 유동인구)	card_amt (결제금액)
long_term_frgn (장기체류 외국인 유동인구)	waste_cnt (배출건수)
short_term_frgn (단기체류 외국인 유동인구)	total_house (총 주택 수)
resident (총 거주인구)	distancing (사회적 거리두기 단계)
card_cnt (음식 관련 카드 결제건수)	

2 XGBoost 통해 최적 모델 찾기

- Ver_3-3Model explanation
- Feature Importance top3

korean
long_term_frgn
short_term_frgn

- 결과 eval-rmsle = 0.08281
- $\text{ver}_3 1(0.07914) < \text{ver}_3 1(0.08281)$
- ver_3-1 선택

2 XGBoost 통해 최적 모델 찾기

• 최종 모델 선택

- 최종적으로 다음 변수를 설명변수로 이용한 XGBoost 선택

korean (내국인 유동인구)	card_amt (결제금액)	multiplex (다세대주택)
long_term_frgn (장기체류 외국인 유동인구)	waste_cnt (배출건수)	commercial_building (비거주용 건물내 주택)
short_term_frgn (단기체류 외국인 유동인구)	detached(단독주택)	distancing (사회적 거리두기 단계)
resident (총 거주인구)	Apt (아파트)	
card_cnt (음식 관련 카드 결제건수)	Town (연립주택)	

03 활용 알고리즘

3.4 ARIMA model

1 ARIMA model 의 의미와 선정 이유

- 1. ARIMA model 이란?
 - 시계열 모형
 - AR(자기상관)모형 + MA(이동평균)모형 + 추세(trend) 반영
- 2. ARIMA model 선정 이유
 - 설명변수(x)들이 추세와 계절적 요인을 지님
 - 과거 데이터를 사용해 미래 값 예측

03 활용 알고리즘

3.4 ARIMA model

1 ARIMA model 의 의미와 선정 이유

3. 예외

- 1) 종류별 주택 수 : detached(단독주택), apt(아파트), town(연립주택), multiplex(다세대주택), commercial_building(비거주용 건물 내 주택)
- 시계열보다 최근 데이터와 유사
- KOSIS가 제공하는 가장 최근 데이터인 2020년 데이터를 이용
- 2) distancing (사회적 거리두기 단계)
- 시계열 데이터X, 질병관리청에서 지정

2 시계열 데이터의 정상성 확인하기

- ARIMA 모델은 데이터의 정상성을 가정
- 정상성 : 시계열 데이터의 특성이 사건의 흐름에 따라 변하지 않는 것
- 우리 데이터의 대부분 변수들은 비정상적
- 전처리 필요

2 시계열 데이터의 정상성 확인하기

• ADF 검정을 통해 정상성 만족 여부 확인

귀무가설: 데이터가 정상성을 만족하지 않는다

대립가설: 데이터가 정상성을 만족한다

• 다음 페이지의 방법에 따라 정상성을 만족하는 데이터를 선택

3 최적화 ARIMA 모형 찾기

- ARIMA 모형은 3가지 파라미터 p(AR모형의 lag), d(차분 횟수), q(MA 모형의 lag) 필요
- 자동으로 최적화된 모형을 선정해주는 auto arima 라이브러리 사용

```
ARIMA(0,0,0)(0,0,0)[1] intercept : AIC=-64.907, Time=0.04 sec
ARIMA(0.0.1)(0.0.0)[1] intercept : AIC=-68.786. Time=0.13 sec
ARIMA(0,0,2)(0,0,0)[1] intercept : AIC=-68.664, Time=0.08 sec
ARIMA(0.0.3)(0.0.0)[1] intercept : AIC=-71.097, Time=0.16 sec
ARIMA(0,0,4)(0,0,0)[1] intercept : AIC=-69.414, Time=0.28 sec
ARIMA(0.0.5)(0.0.0)[1] intercept : AIC=-68.843, Time=0.45 sec
ARIMA(1,0,0)(0,0,0)[1] intercept : AIC=-70.618, Time=0.06 sec
ARIMA(1,0,1)(0,0,0)[1] intercept : AIC=-69.002, Time=0.25 sec
ARIMA(1.0.2)(0.0.0)[1] intercept : AIC=-67.615. Time=0.47 sec
ARIMA(1.0.3)(0.0.0)[1] intercept : AIC=-68.574. Time=0.32 sec
ARIMA(1,0,4)(0,0,0)[1] intercept : AIC=-67.488, Time=0.34 sec
ARIMA(2.0.0)(0.0.0)[1] intercept : AIC=-69.221. Time=0.13 sec
ARIMA(2,0,1)(0,0,0)[1] intercept : AIC=-67.210, Time=0.36 sec
ARIMA(2.0.2)(0.0.0)[1] intercept : AIC=-65.905. Time=0.24 sec
ARIMA(2,0,3)(0,0,0)[1] intercept : AIC=-66.456, Time=0.52 sec
ARIMA(3.0.0)(0.0.0)[1] intercept : AIC=-67.231. Time=0.26 sec
ARIMA(3,0,1)(0,0,0)[1] intercept : AIC=-65.057, Time=0.19 sec
ARIMA(3.0.2)(0.0.0)[1] intercept : AIC=-63.197. Time=0.45 sec
ARIMA(4,0,0)(0,0,0)[1] intercept : AIC=-67.376, Time=0.57 sec
ARIMA(4.0.1)(0.0.0)[1] intercept : AIC=-65.203. Time=0.17 sec
ARIMA(5,0,0)(0,0,0)[1] intercept : AIC=-65.433, Time=0.29 sec
```

Best model: ARIMA(0,0,3)(0,0,0)[1] intercept

Total fit time: 5.764 seconds

ARIMA(order=(0, 0, 3), scoring_args={}, seasonal_order=(0, 0, 0, 1), suppress_warnings=True)

3 최적화 ARIMA 모형 찾기

• 최적화 방법을 통해 선정한 최적 모델로 ARIMA 모델 피팅

ARMA Model Results						
Dep. Variab Model: Method: Date: Time: Sample:		ARMA(0, css- , 11 Sep 2 01:37	3) Log Li mle S.D. c O21 AIC	oservations: kelihood of innovatio	ns	42 40.548 0.091 -71.097 -62.408 -67.912
	 coef	====== std err ======	z 	P> z	[0.025	0.975]
const ma.L1.y ma.L2.y ma.L3.y	16.6630 0.4970 0.1383 0.4401	0.028 0.147 0.168 0.132	585.399 3.373 0.822 3.322 Roots	0.000 0.001 0.411 0.001	16.607 0.208 -0.192 0.180	16. 719 0. 786 0. 468 0. 700
	Real	Im	aginary	Modul	us	Frequency
MA.1 MA.2 MA.3	-1.1192 0.4025 0.4025		0.0000j 1.3668j 1.3668j	1.11 1.42 1.42	48	-0.5000 -0.2044 0.2044


```
In [10]:

1 # 2단위 이후의 에축결과
2 fore = model_fit.forecast(steps=2)
3 print(fore)

(array([16.72822029, 16.66296014]), array([0.09093318, 0.10154359]), array([[16.54999453, 16.90644605],
[16.46393836, 16.86198191]]))

1 print( np.exp(16.72822029) - 1 )
2 print( np.exp(16.66296014) - 1 )

18406607.02683503
17243745.94875778
```

• ARIMA 모델로 2021년 7, 8월 값 예측하기

Index	korean	long_term_frgn	short_term_frgn	resident	card_amt	card_cnt	waste_cnt
1	8684899.70	469672.43	387.93	24457.77	10681271.81	292.31	23313.07
2	8084718.33	487440.03	0	24460.11	10741037.02	294.14	29166.39
3	18406607.03	767679.83	24078.52	38348.80	19944449.09	612.17	43546.58
4	17243745.95	738378.19	20402.22	38397.63	20061968.59	616.38	44514.03
5	7144596.61	171265.97	564.44	15952.53	6808693.19	201.47	14990.38
•••		•••		•••			

04 최종예측 결과 🕌

04 최종예측 결과

4.1 행정동별 예측 결과

korean	detached
(내국인 유동인구)	(단독주택)
long_term_frgn	apt
(장기체류 외국인 유동인구)	(아파트)
short_term_frgn	town
(단기체류 외국인 유동인구)	(연립주택)
resident	multiplex
(총 거주인구)	(다세대주택)
card_cnt	commercial_building
(음식관련 카드 결제건수)	(비거주용 건물 내 주택)
card_amt	distancing
(음식관련 카드 결제금액)	(사회적 거리두기 단계)
waste_cnt (음식물 쓰레기 배출건수)	

- XGBoost ver3_1의 모델 채택
- 학습용: 18.01. ~ 21.06.

테스트용: 21.07. ~ 21.08.

이 때 테스트용 데이터의
 X_feature 값들은
 ARIMA 모형으로 예측한 값임

04 최종예측 결과 4.1 행정동별 예측 결과

base_date emd_cd	2021-07-31	2021-08-31
50110250	76529910.0	9.700360e+07
50110253	107665100.0	1.074393e+08
50110256	46352730.0	4.719103e+07
50110259	75931544.0	8.967203e+07
50110310	29249542.0	2.863940e+07
•••		

04 최종예측 결과

4.1 행정동별 예측 결과

- 제주도 음식물쓰레기 배출량 최종 예측
 - 7월 예측 배출량 읍면동별 시각화

04 최종예측 결과

4.1 행정동별 예측 결과

- 제주도 음식물쓰레기 배출량 최종 예측
 - Qgis 앱을 사용해 배출량을 5단계로 나눠 단계 구분 시각화 수행
 - 예측 배출량(g) top5 읍면동 :

노형동	258207940
이도2동	239246770
연동	199248820
일도2동	165704100
아라동	119296140

→ 노형동, 연동, 이도 2동 등 제주도 시가지 지역을 중심으로 배출량이 많을 것으로 예측

4.1 행정동별 예측 결과

- 제주도 음식물쓰레기 배출량 최종 예측
 - 8월 예측 배출량 읍면동별 시각화

4.1 행정동별 예측 결과

- 제주도 음식물쓰레기 배출량 최종 예측
 - 예측 배출량(g) top5 읍면동 :

노형동	257021470		
이도2동	235867870		
연동	193611630		
일도2동	166047710		
아라동	132510850		

- → 7월 배출량에 비해 전체적으로 배출량이 증가할 것으로 예측
- → 배출량이 상대적으로 많은 읍면동이 7월과 유사할 것으로 예측

4.2 행정동 "알 수 없음" 데이터 예측 결과

- 행정동 "알 수 없음" 데이터 : 음식물 쓰레기 배출량, 카드소비량
- 1 음식물 쓰레기 배출량과 카드결제금액, 카드결제건수 상관관계 파악

	em_g	use_cnt	use_amt
em_g	1.000	-0.112	0.049
use_cnt	-0.112	1.000	0.925
use_amt	0.049	0.925	1.000

• Pearson 상관계수 사용

4.2 행정동 "알 수 없음" 데이터 예측 결과

2 음식물 쓰레기 배출량과 카드결제금액, 카드결제건수 회귀분석

- 1) 음식물 쓰레기 배출량 & 카드결제건수 회귀분석 결과
- 결정계수 R² = 0.403
 수정결정계수 R² = 0.388
- waste_amt 변동의 40.30%만이 card_cnt 변동에 의해 설명됨을 의미
- rain과 card_cnt 사이의 회귀식의 정확도는 매우 낮으므로 설명변수 card_cnt로서의 역할을 하기 어렵다고 판단

4.2 행정동 "알 수 없음" 데이터 예측 결과

2 음식물 쓰레기 배출량과 카드결제금액, 카드결제건수 회귀분석

- 2) 음식물 쓰레기 배출량 & 카드결제금액 회귀분석 결과
- 결정계수 R² = 0.430
 수정결정계수 R² = 0.416
- waste_amt 변동의 43.0%만이 card_amt 변동에 의해 설명됨을 의미
- rain과 card_amt 사이의 회귀식의 정확도는 매우 낮으므로 설명변수 card_amt로서의 역할을 하기 어렵다고 판단

4.2 행정동 "알 수 없음" 데이터 예측 결과

2 음식물 쓰레기 배출량과 카드결제금액, 카드결제건수 회귀분석

결론

"알 수 없음 " 으로 분류된 음식물 쓰레기 배출량 데이터에 대해 카드소비량으로 예측하기엔 부적절하다고 판단

4.2 행정동 "알 수 없음" 데이터 예측 결과

- 3 음식물 쓰레기 배출량 시계열분석(ARIMA 모델)
 - 적당히 예측할 수 있는 변수가 부족해 "알 수 없음"으로 분류된음식물 쓰레기 배출량 데이터만 가지고 ARIMA 모델로 예측

05 결론 🕌

05 결론

5.1 분석결과 활용 및 시사점

- 유동인구가 주요요인 Top3
- 2020년에 음식물 쓰레기 배출량 감소

코로나로 인한 여행, 이동이 축소되면서 음식물 쓰레기 배출량이 줄어든 것!

05 ^{결론} 5.1 분석결과 활용 및 시사점

- 특히, 예측한 7, 8월은 배출량이 높음 : 관광 성수기
- 코로나 이후 관광이 활성화되면 다시 음식물 쓰레기 배출량 증가할 것

관광객을 대상으로 한 대책 필요

05 결론

5.1 분석결과 활용 및 시사점

- 관광지 주변 음식점의 음식물 쓰레기 배출량 감소를 위한 방안
- 관광지 곳곳에 음식물 쓰레기 배출에 경각심을 가질 수 있는
 문구 부착
- 외국인 관광객을 위한 다양한 언어의 경고 문구 부착
- 음식 남김 여부에 따른 이벤트 진행 / 환경부담금 부과

05 ^{결론} 5.1 분석결과 활용 및 시사점

- 배출량 자체는 도민들이 많이
 사는 시가지 지역이 가장 높음
- 관광객 뿐만 아니라 도민들의
 노력도 필요함을 공익광고를
 통해 알리기

감사합니다 ②

팀명: 에코탐라

팀장: 김소은(trit1268@naver.com)

팀원: 김서린(tjfls96@naver.com), 신정아(alalwjddk2@naver.com), 이윤지(pioneer0305@naver.com)

