NOM	Prénom	Filière
1- (1pt) VRAI ou FAUX? Un graphe simple non orienté dont tous les sommets sont de degré 2 est un cycle. Justifiez.		
2- (1pt) Étant donné un graphe simple non orienté G , combien y a-t'il d'arêtes dans un stable à p sommets de G ?		
3- (1pt) Étant donné un graphe simple non orienté G , combien y a-t'il d'arêtes dans une clique à p sommets de G ?		
4- (1pt) Dessinez en utilisant le moins d'arêtes possibles un graphe d'ordre 7 dont la plus grande clique soit de taille 4 et le plus grand stable de taille 3. Décrivez la clique et un des stables maximum.		
5- (1pt) On considère qu'un parcours en profondeur d'abord dans un graphe G a visité un sommet x avec p et q comme dates de pré et post-visite respectives. Donnez l'information la plus précise que l'on peut en déduire sur le nombre de descendants de x dans G .		
Soit $G_1 = (X_1, U_1)$ le graphe orienté dont le dic	tionnaire des successeurs est	$: \begin{array}{c ccccccccccccccccccccccccccccccccccc$
6- (1pt) Donnez tous les cycles élémentaires de G_1 s'ils existent.		
7- (1pt) Dessinez un graphe G_1' résultant de la suppression de tous les cycles de G_1 en enlevant le minimum d'arcs. Vous choisirez IMPERATIVEMENT les arcs à enlever par ordre alphabétique (par exemple (B, D) est avant (C,A)).		
On appelle <i>centroïde</i> d'un graphe d'ordre nu restantes sont toutes de tailles inférieures ou e		primant les composantes connexes
8- (1pt) Donnez tous les centroïdes de G'_1 s'ils existent.	Surv. a 10/2.	

On considère le graphe G_2 suivant :

x	A	В	С	D	E	F	G	Н	I	J
$\Gamma^+(x)$	E,G,I	D,E	Н	B,H,F	G	B,D,H,J	E	С	C,E,F	D

9-	(1pt)	Donnez	le	dictionnaire	som-
mets/prédécesseurs de G_2 .					

10- (0.5pt) Peut-on décomposer G_2 en niveaux, si oui combien (décrivez-les) sinon pourquoi?

11- (2pts) Dessinez l'arborescence obtenue par un parcours en profondeur d'abord depuis le sommet A (en cas de choix les sommets seront pris IMPÉRATIVEMENT par ordre alphabétique), vous noterez les dates de début (pré-visite) et de fin de traitement (post-visite) des sommets.

12- (3pts) Donnez le nombre de composantes f-connexes de G_2 et décrivez l'ensemble des sommets de chaque composante.

13- (1pt) Dessinez le graphe réduit de G_2 mis en niveaux.

On considère le graphe G_3 suivant :

14- (0.5pt) Combien d'arêtes doit avoir un	
arbre à 6 sommets?	
15- (2.5pts) Listez les arêtes d'un Arbre	
Couvrant de Poids Minimum (ACPM) de	
G_3 .	
16- (0.5pt) Quel est le poids de cet arbre	
couvrant?	
17- (1pt) L'arbre couvrant de poids mini-	
mum pour G_3 est-il unique? Justifiez.	