Denavit Hartenberg

Verónica E. Arriola-Rios

Robótica móvil

23 de octubre de 2024

Temas

Marcos de referencia

2 Matrices de transformación

3 Cinemática inversa

Eslabón

Definición (Eslabón)

Un eslabón es un cuerpo sólido con al menos un punto particular, llamado *nodo*, que soporta el montaje de otro eslabón.

Figura: Cadena con dos eslabones: l₁ y l₂

Para un eslabón i con dos nodos:

- Alinear z_i con el eje en movimiento de la articulación distal.
- La articulación proximal J del enlace i también tiene el índice i, ya que ella es la responsable de su comportamiento.
- El origen o del marco de referencia se coloca en la intersección entre el eje z_i y el vector normal común a los ejes z_{i-1} y z_i .
- El eje x se coloca sobre el vector normal anterior, $\hat{x}_i = \hat{z}_i \times \hat{z}_{i-1}$. Sin son paralelos x_i va de z_{i-1} a z_i .
- El eje y se elige con la regla de la mano derecha.

Figura: El eslabón l_1 tiene dos nodos.

Asignación clásica y alternativa

- (a) Convención clásica, parámetros distales.
- (b) Convención modificada, parámetros proximales.

Fuente: https://en.wikipedia.org/wiki/File:Classic_DH_Parameters_Convention.png Fuente: https://commons.wikimedia.org/wiki/File:DHParameter.png

Cadena cinemática abierta simple

Figura: Cadena cinemática abierta simple con cuatro eslabones planos (incluyendo el eslabón base). El marco w es el sistema de coordenadas del mundo.

Temas

Marcos de referencia

2 Matrices de transformación

3 Cinemática inversa

Denavit Hartenberg

Figura: Cuatro transformaciones permiten trasladar el marco i a la posición del marco i-1.

Para expresar las coordenadas del marco i con respecto al marco i-1 sean:

- β_i: ángulo de rotación alrededor del eje X_i para alinear los ejes Z;
- b_i: desplazamiento lineal a lo largo del eje X_i para colocar los orígenes sobre el mismo plano;
- θ_i : ángulo de rotación alrededor del eje Z_{i-1} , que es la variable de la articulación si i es una articulación revoluta.
- $\mathbf{0}$ \mathbf{d}_i : desplazamiento lineal a lo largo del eje Z_{i-1} , que es la variable de la articulación si la articulación i es prismática.

Matriz de transformación homogénea

$$\mathsf{T} = \begin{bmatrix} \mathsf{R}_{3\times3} & \mathsf{P}_{3\times1} \\ \mathsf{F}_{1\times3} & W_{1\times1} \end{bmatrix} = \begin{bmatrix} \mathsf{Rotaci\acute{o}n} & \mathsf{Traslaci\acute{o}n} \\ \mathsf{Perspectiva} & \mathsf{Escalado} \end{bmatrix}$$

1 Traslación y rotación alrededor del eje X.

$${}^{k}M_{i} = \begin{pmatrix} 1 & 0 & 0 & b_{i} \\ 0 & \cos(\beta_{i}) & -\sin(\beta_{i}) & 0 \\ 0 & \sin(\beta_{i}) & \cos(\beta_{i}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (1)

Traslación y rotación alrededor del eje Z.

$${}^{i-1}M_{k} = \begin{pmatrix} \cos(\theta_{i}) & -\sin(\theta_{i}) & 0 & 0\\ \sin(\theta_{i}) & \cos(\theta_{i}) & 0 & 0\\ 0 & 0 & 1 & d_{i}\\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(2)

3 Para obtener las coordenadas del marco i con respecto a i-1:

$$^{i-1}M_i = Tra_{z_{i-1}}(d_i)Rot_{z_{i-1}}(\theta_{z-1})Tra_{x_i}(b_i)Rot_{x_i}(\beta_i)$$

Temas

Marcos de referencia

2 Matrices de transformación

3 Cinemática inversa

Dada la posición del efector

• Determinar la posición final del efector final en coordenadas cartesianas en términos de las coordenadas generalizadas.

$$\vec{q}^0 = M_n \vec{q}^n \tag{3}$$

- Obtener el Jacobiano.
- **1** Indicar una posición inicial, para la cual conocemos las coordenadas generalizadas. Por ejemplo el vector $\vec{0}$.
- Evaluar el Jacobiano J en la posición actual \vec{q} y calcular ahí su pseudoinversa J^+ .
- Multiplicar la pseudoinversa por el error: la diferencia entre la posicion actual y la posicion deseada.

$$\vec{q}^{i+1} = \vec{q}^i + J^+(\vec{r}^{met\alpha} - \vec{r}^i) \tag{4}$$