Dynamique newtonienne

Méthode d'Euler

L'objectif de ce TP est de construire les trajectoires de points matériels soumis à diverses forces (ressort, poids, frottement, gravité) de façon numérique, c'est-à-dire sans résoudre analytiquement l'équation différentielle de la dynamique :

$$ec{f}=mec{a}=mrac{dec{v}}{dt}$$

Cette équation signifie qu'à un instant donné t on a

$$ec{a}(t) = rac{ec{f}\left(t
ight)
ight)}{m} = lim_{dt
ightarrow 0} rac{ec{v}(t+dt) - ec{v}(t)}{dt}$$

ou encore que

$$ec{v}(t+dt) = ec{v}(t) + rac{ec{f}\left(t
ight)}{m}dt = ec{v}(t) + ec{a}(t)dt$$

quand dt tend vers 0. De même, par définition, la vitesse est la dérivée du vecteur position \vec{OM} et on a

$$\vec{OM}(t+dt) = \vec{OM}(t) + \vec{v}(t)dt$$

quand dt tend vers 0.

On voit qu'à partir de ces équations, si on connait \vec{OM} et \vec{v} à un instant t donné, on est alors capable de déterminer \vec{OM} et \vec{v} à un instant ultérieur t+dt et ainsi de construire pas à pas la trajectoire d'un point matériel au cours du temps.

Pendule simple (sans frottement)

Dans le cas d'un pendule simple sans frottement, les deux forces sont le poids et la reaction du fil (ou de la tige sans mass) : $\vec{P}=-mq\vec{e}_z$

implémenter l'algorithme d'Euler pour calculer sur N pas de temps dt l'angle et la vitesse angulaire d'un pendule sans vitesse initiale.

Dans la direction orthoradiale, l'équation du mouvement est

$$l\ddot{ heta}=gsin(heta)$$

Cette équation signifie qu'à un instant donné t on a

$$llim_{dt
ightarrow 0}rac{\dot{ heta}(t+dt)-\dot{ heta}(t)}{dt}=rac{g}{l}sin(heta)$$

ou encore que

$$\dot{ heta}(t+dt)=\dot{ heta}(t)+rac{g}{l}sin(heta)$$

ou en linéarisant pour les petits angles :

$$\dot{ heta}(t+dt)=\dot{ heta}(t)+rac{g}{l} heta$$

quand dt tend vers 0. De même, par définition, la vitesse angulaire est la dérivée temporelle de l'angle heta(t) et on a

$$heta(t+dt)= heta(t)+\dot{ heta}(t)dt$$

quand dt tend vers 0.

On prendra g=9.81, l=1 m, et un angle initial de 1 rad.

Cas non linéaire

Ajouter le cas d'un angle initial de 2 rad.

Ecrire un algorithme pour mesurer la période du mouvement Ajouter le cas d'un angle initial de 3.1 rad.

Calculer puis tracer les énergies cinétique, potentielle et mécanique

Cas heterodyne

Cas avec une vitesse angulaire initiale de -0.25 rad/s

