STATISTICAL INFERENCES (2cr)

Chapter 10 One- and Two-Sample Tests of Hypotheses

Zhong Guan

Math, IUSB

Outline

- 1
- 10.10 One- and Two-Sample Tests Concerning Variances
- Hypothesis Test for one Variance
 - The Two-Tailed Test
 - One-Tailed Test
- Hypothesis Testing About σ_1^2/σ_2^2

Outline

- 10.10 One- and Two-Sample Tests Concerning Variances
 - Hypothesis Test for one Variance
 - The Two-Tailed Test
 - One-Tailed Test
 - Hypothesis Testing About σ_1^2/σ_2^2

The chi-square distribution has only one parameter called the degrees of freedom.

The shape of a chi-squared distribution curve is skewed to the right for small df and becomes symmetric for large df.

The entire chi-square distribution curve lies to the right of the vertical axis.

The chi-square distribution has only one parameter called the degrees of freedom.

The shape of a chi-squared distribution curve is skewed to the right for small df and becomes symmetric for large df.

The entire chi-square distribution curve lies to the right of the vertical axis.

The chi-square distribution has only one parameter called the degrees of freedom.

The shape of a chi-squared distribution curve is skewed to the right for small df and becomes symmetric for large df.

The entire chi-square distribution curve lies to the right of the vertical axis.

The chi-square distribution has only one parameter called the degrees of freedom.

The shape of a chi-squared distribution curve is skewed to the right for small df and becomes symmetric for large df.

The entire chi-square distribution curve lies to the right of the vertical axis.

The Shape of The Chi-Square Distribution

Table 5 Chi-Square Distribution

For df = 7 and .10 Area in the Right Tail

df	Area in the Right Tail Under the Chi-Square Distribution Curve				
	.995		.100	****	.005
1	0.000		2.706		7.879
2	0.010		4.605		10.597
	100				
7	0.989		12.017 ←	1	20.278
100	67.328		118.498		140.169

For df = 7 and .10 Area in the Right Tail

- Enter equation for χ^2 cdf : $Y = -> Y1 = \chi^2 \text{cdf}(0, X, 19)$
- Enter equation: Y2=1-.025=0.975.

- Press GRAPH and adjust WINDOW if needed.
- Press 2ND and CALC to find intersection of the two graphs. We can obtain $\chi^2_{025} = 32.85$.

- Enter equation for χ^2 cdf : Y= -> Y1= χ^2 cdf(0, X, 19)
- Enter equation: Y2=1-.025=0.975.

- Press GRAPH and adjust WINDOW if needed.
- Press 2ND and CALC to find intersection of the two graphs. We can obtain $\chi^2_{.025} = 32.85$.

- Enter equation for χ^2 cdf : $Y = -> Y1 = \chi^2 \text{cdf}(0, X, 19)$
- Enter equation: Y2=1-.025=0.975.

- Press GRAPH and adjust WINDOW if needed.
- Press 2ND and CALC to find intersection of the two graphs. We can obtain $\chi^2_{.025} = 32.85$.

- Enter equation for χ^2 cdf : $Y = Y1 = \chi^2 \text{cdf}(0, X, 19)$
- Enter equation: Y2=1-.025=0.975.

- Press GRAPH and adjust WINDOW if needed.
- Press 2ND and CALC to find intersection of the two graphs. We can obtain $\chi^2_{.025} = 32.85$.

- Enter equation for χ^2 cdf : $Y = Y1 = \chi^2 \text{cdf}(0, X, 19)$
- Enter equation: Y2=1-.025=0.975.

- Press GRAPH and adjust WINDOW if needed.
- Press 2ND and CALC to find intersection of the two graphs. We can obtain $\chi^2_{.025} = 32.85$.

Let s^2 be the sample variance of x_1, \ldots, x_n and σ^2 be the population variance.

Step 1. State the hypotheses

$$H_0: \sigma^2 = \sigma_0^2, \quad \textit{vs} \quad H_1: \sigma^2 \neq \sigma_0^2$$

Step 2. Choose the distribution: If population is normal then use

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

which has χ^2 -distribution with df = n-1 if H_0 is true.

Let s^2 be the sample variance of x_1, \ldots, x_n and σ^2 be the population variance.

Step 1. State the hypotheses

$$H_0: \sigma^2 = \sigma_0^2, \quad \textit{vs} \quad H_1: \sigma^2 \neq \sigma_0^2$$

Step 2. Choose the distribution: If population is normal then use

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

which has χ^2 -distribution with df = n-1 if H_0 is true.

Let s^2 be the sample variance of x_1, \ldots, x_n and σ^2 be the population variance.

Step 1. State the hypotheses

$$H_0: \sigma^2 = \sigma_0^2, \quad \textit{vs} \quad H_1: \sigma^2 \neq \sigma_0^2$$

Step 2. Choose the distribution: If population is normal then use

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

which has χ^2 -distribution with df = n-1 if H_0 is true.

Step 3. Calculate *p*-value or find critical value.

Find the *p*-value: Twice the smaller tail area at χ^2 . Using Tl83/4, p-value is the smaller one of $2^*\chi^2$ cdf(0, χ^2 n-1) and $2^*\chi^2$ cdf(χ^2 , E99, n-1). See example below. The critical values for χ^2 are χ^2 and χ^2

Step 3. Calculate *p*-value or find critical value. Find the *p*-value: Twice the smaller tail area at χ^2 .

Using Tl83/4, p-value is the smaller one of $2^*\chi^2$ cdf(0, χ^2 n-1) and $2^*\chi^2$ cdf(χ^2 , E99, n-1). See example below. The critical values for χ^2 are $\chi^2_{-1/2}$ and $\chi^2_{-1/2}$:

Jsing Table 5 or TI 83/84.

Step 3. Calculate p-value or find critical value. Find the p-value: Twice the smaller tail area at χ^2 . Using Tl83/4, p-value is the smaller one of $2^*\chi^2$ cdf($0, \chi^2, n-1$) and $2^*\chi^2$ cdf(χ^2 , E99, n-1). See example below.

Step 3. Calculate *p*-value or find critical value. Find the *p*-value: Twice the smaller tail area at χ^2 . Using Tl83/4, p-value is the smaller one of $2^*\chi^2$ cdf(0, χ^2 , n-1) and $2^*\chi^2$ cdf(χ^2 , E99, n-1). See example below. The critical values for χ^2 are $\chi^2_{\alpha/2}$ and $\chi^2_{1-\alpha/2}$:

Using Table 5 or TI 83/84.

Step 4. Make decision: If p-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 . If $\chi^2 < \chi^2_{1-\alpha/2}$ or $\chi^2 > \chi^2_{\alpha/2}$, reject H_0 , otherwise, do not

Step 4. Make decision:

If p-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 . if $\chi^2 < \chi^2_{1-\alpha/2}$ or $\chi^2 > \chi^2_{\alpha/2}$, reject H_0 , otherwise, do not reject H_0 .

Example

The variance of scores on a standardized mathematics test for all high school seniors was 150 in 2009. A sample of scores for 20 high school seniors who took this test this year gave a variance of 170. Test at the 5% significance level if the variance of current scores of all high school seniors on this test is different from 150. Assume that the scores of all high school seniors on this test are (approximately) normally distributed.

Solution:

Step 1. Hypotheses: $H_0: \sigma^2 = 150$ $H_A: \sigma^2 \neq 150$

Step 2. The population is (approximately) normal. We use the chi-square distribution to test a hypothesis about σ^2 .

Solution:

Step 1. Hypotheses: $H_0: \sigma^2 = 150$ $H_A: \sigma^2 \neq 150$

Step 2. The population is (approximately) normal. We use the chi-square distribution to test a hypothesis about σ^2 .

Step 3. $\alpha = 0.05$,

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{(20-1)(170)}{150} = 21.533$$

The p-value Approach: The p-value is

p-value =
$$2 \min[\chi^2 \text{cdf}(0, 21.533, 19), \chi^2 \text{cdf}(21.533, E99, 19)]$$

= 0.6162207

The Critical Value Approach:

The critical values are $\chi^2_{.975} = 8.907$ and $\chi^2_{.025} = 32.852$.

Step 4. Since the *p*-value $> \alpha$, we do not reject H_0 .

Since $\chi^2_{1-\alpha/2} < \chi^2 < \chi^2_{\alpha/2}$, we do not reject H_0

Step 3. $\alpha = 0.05$,

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{(20-1)(170)}{150} = 21.533$$

The *p*-value Approach: The *p*-value is

p-value =
$$2 \min[\chi^2 \text{cdf}(0, 21.533, 19), \chi^2 \text{cdf}(21.533, E99, 19)]$$

= 0.6162207

The Critical Value Approach:

The critical values are $\chi^2_{.975} = 8.907$ and $\chi^2_{.025} = 32.852$

Step 4. Since the *p*-value $> \alpha$, we do not reject H_0 .

(□) (□) (□) (□)

Step 3. $\alpha = 0.05$,

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{(20-1)(170)}{150} = 21.533$$

The *p*-value Approach: The *p*-value is

p-value =
$$2 \min[\chi^2 \text{cdf}(0, 21.533, 19), \chi^2 \text{cdf}(21.533, E99, 19)]$$

= 0.6162207

The Critical Value Approach:

The critical values are $\chi^2_{.975} = 8.907$ and $\chi^2_{.025} = 32.852$.

Step 4. Since the *p*-value $> \alpha$, we do not reject H_0 . Since $\chi^2_{1-\alpha/2} < \chi^2 < \chi^2_{\alpha/2}$, we do not reject H_0 .

Step 3. $\alpha = 0.05$,

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{(20-1)(170)}{150} = 21.533$$

The p-value Approach: The p-value is

p-value =
$$2 \min[\chi^2 \text{cdf}(0, 21.533, 19), \chi^2 \text{cdf}(21.533, E99, 19)]$$

= 0.6162207

The Critical Value Approach:

The critical values are $\chi^2_{.975} = 8.907$ and $\chi^2_{.025} = 32.852$.

Step 4. Since the *p*-value $> \alpha$, we do not reject H_0 .

Since $\chi^2_{1-\alpha/2} < \chi^2 < \chi^2_{\alpha/2}$, we do not reject H_0 .

Step 3. $\alpha = 0.05$,

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{(20-1)(170)}{150} = 21.533$$

The p-value Approach: The p-value is

p-value =
$$2 \min[\chi^2 \text{cdf}(0, 21.533, 19), \chi^2 \text{cdf}(21.533, E99, 19)]$$

= 0.6162207

The Critical Value Approach:

The critical values are $\chi^2_{.975} = 8.907$ and $\chi^2_{.025} = 32.852$.

Step 4. Since the *p*-value $> \alpha$, we do not reject H_0 . Since $\chi^2_{1-\alpha/2} < \chi^2 < \chi^2_{\alpha/2}$, we do not reject H_0 .

Critical Value of Two-Tailed

Confidence Interval for σ^2

The 100(1 – α)% confidence interval for σ^2 is

$$\left(\frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}, \frac{(n-1)s^2}{\chi^2_{\alpha/2}}\right)$$

Confidence Interval for σ^2

The 100(1 $-\alpha$)% confidence interval for σ^2 is

$$\left(\frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}, \frac{(n-1)s^2}{\chi^2_{\alpha/2}}\right)$$

Confidence Interval for σ^2

The 100(1 $-\alpha$)% confidence interval for σ^2 is

$$\left(\frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}, \frac{(n-1)s^2}{\chi^2_{\alpha/2}}\right)$$

$$H_0: \sigma^2 = \sigma_0^2$$
, normal population, $\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$

Alternative Hypothesis	Rejection Region	n volue
пурошезіз		$ ho extsf{-} extsf{value}$
$H_1: \sigma^2 < \sigma_0^2$	$\chi^2 < \chi^2_{1-\alpha}(n-1)$	The area to the left of χ^2
$H_1: \sigma^2 > \sigma_0^2$	$\chi^2 > \chi^2_\alpha(n-1)$	The area to the right of χ^2

Outline

- 10.10 One- and Two-Sample Tests Concerning Variances
 - Hypothesis Test for one Variance
 - The Two-Tailed Test
 - One-Tailed Test
 - Hypothesis Testing About σ_1^2/σ_2^2

- Let x_{11}, \ldots, x_{1n_1} be a sample from normal population with variance σ_1^2 ,
 - and x_{21}, \ldots, x_{2n_2} be a sample from normal population with variance σ_2^2 .
- Assume the two samples are independent and have sample variances s_1^2 and s_2^2 , respectively.
- The distribution of $\frac{s_1^2/\sigma_2^2}{s_2^2/\sigma_2^2}$ is F-distribution with numerator degrees of freedom $n_1 1$ and denominator degrees of freedom $n_2 1$.

- Let x_{11}, \ldots, x_{1n_1} be a sample from normal population with variance σ_1^2 , and x_{21}, \ldots, x_{2n_2} be a sample from normal population with variance σ_2^2 .
- Assume the two samples are independent and have sample variances s_1^2 and s_2^2 , respectively.
- The distribution of $\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$ is F-distribution with numerator degrees of freedom $n_1 1$ and denominator degrees of freedom $n_2 1$.

- Let x_{11}, \ldots, x_{1n_1} be a sample from normal population with variance σ_1^2 , and x_{21}, \ldots, x_{2n_2} be a sample from normal population with variance σ_2^2 .
- Assume the two samples are independent and have sample variances s_1^2 and s_2^2 , respectively.
- The distribution of $\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$ is F-distribution with numerator degrees of freedom $n_1 1$ and denominator degrees of freedom $n_2 1$.

- Let x_{11}, \ldots, x_{1n_1} be a sample from normal population with variance σ_1^2 , and x_{21}, \ldots, x_{2n_2} be a sample from normal population with variance σ_2^2 .
- Assume the two samples are independent and have sample variances s_1^2 and s_2^2 , respectively.
- The distribution of $\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$ is F-distribution with numerator degrees of freedom n_1-1 and denominator degrees of freedom n_2-1 .

The F Critical Value (Table 6)

Table 7 gives F_{α} for $\alpha = .100, .050, .025, .010$, and .005. For example, $\nu_1 = 5$, $\nu_2 = 7$, $F_{.025} = 5.29$ by Table 6.

The F Critical Value (Table 6)

Table 7 gives F_{α} for $\alpha = .100, .050, .025, .010$, and .005. For example, $\nu_1 = 5$, $\nu_2 = 7$, $F_{.025} = 5.29$ by Table 6.

The F Critical Value using Technology

- In Excel: F_{.025}=F.INV.RT(0.025,5,7)=5.285236852, or =F.INV(1-0.025,5,7)=5.285236852.
- In TI-8x: Graph Y1=Fcdf(0, X, 5,7) and Y2=1-.025=0.975, the x-coordinate of the intersection is F_{0.25}=5.2852369.

• In R: F_{.975}= "qf(.975,5,7)=5.285237".

The F Critical Value using Technology

- In Excel: F_{.025}=F.INV.RT(0.025,5,7)=5.285236852, or =F.INV(1-0.025,5,7)=5.285236852.
- In TI-8x: Graph Y1=Fcdf(0, X, 5,7) and Y2=1-.025=0.975, the x-coordinate of the intersection is F_{.025}=5.2852369.

• In R: F_{.975}= "qf(.975,5,7)=5.285237".

The F Critical Value using Technology

- In Excel: F_{.025}=F.INV.RT(0.025,5,7)=5.285236852, or =F.INV(1-0.025,5,7)=5.285236852.
- In TI-8x: Graph Y1=Fcdf(0, X, 5,7) and Y2=1-.025=0.975, the x-coordinate of the intersection is F_{.025}=5.2852369.

• In R: F_{.975}= "qf(.975,5,7)=5.285237".

Hypothesis Testing About σ_1^2/σ_2^2

$$H_0: \sigma_1^2/\sigma_2^2 = 1$$
, normal populations, $F = \frac{s_1^2}{s_2^2}$.

Rejection	
Region	ho-value
$F < F_{1-\alpha/2}(n_1-1, n_2-1)$	Twice the smaller
or $F > F_{\alpha/2}(n_1 - 1, n_2 - 1)$	tail area at <i>F</i>
$F > F_{\alpha}(n_1 - 1, n_2 - 1)$	The area to the left of F
$F < F_{1-\alpha}(n_1-1, n_2-1)$	The area to the right of F
	Region $F < F_{1-\alpha/2}(n_1 - 1, n_2 - 1)$ or $F > F_{\alpha/2}(n_1 - 1, n_2 - 1)$ $F > F_{\alpha}(n_1 - 1, n_2 - 1)$

TI-83/84: P(a < F(m, n) < b) = Fcdf(a, b, m, n). If $H_0 : \sigma_1^2/\sigma_2^2 = 1$ is accepted, then we can assume equal variance in the two-sample t-test for comparing two population means.

Hypothesis Testing About σ_1^2/σ_2^2

$$H_0: \sigma_1^2/\sigma_2^2 = 1$$
, normal populations, $F = \frac{s_1^2}{s_2^2}$.

Alternative	Rejection	
Hypothesis	Region	ho-value
$H_1: \sigma_1^2/\sigma_2^2 \neq 1$	$F < F_{1-\alpha/2}(n_1-1, n_2-1)$	Twice the smaller
	or $F > F_{\alpha/2}(n_1 - 1, n_2 - 1)$	tail area at <i>F</i>
$H_1: \sigma_1^2/\sigma_2^2 > 1$	$F > F_{\alpha}(n_1 - 1, n_2 - 1)$	The area to the left of F
$H_1: \sigma_1^2/\sigma_2^2 < 1$	$F < F_{1-\alpha}(n_1-1, n_2-1)$	The area to the right of F

TI-83/84:
$$P(a < F(m, n) < b) = Fcdf(a, b, m, n)$$
.

If $H_0: \sigma_1^2/\sigma_2^2=1$ is accepted, then we can assume equal variance in the two-sample *t*-test for comparing two population means.

Hypothesis Testing About σ_1^2/σ_2^2

$$H_0: \sigma_1^2/\sigma_2^2=1$$
, normal populations, $F=\frac{s_1^2}{s_2^2}$.

Alternative	Rejection	
Hypothesis	Region	ho-value
$H_1: \sigma_1^2/\sigma_2^2 \neq 1$	$F < F_{1-\alpha/2}(n_1-1, n_2-1)$	Twice the smaller
	or $F > F_{\alpha/2}(n_1 - 1, n_2 - 1)$	tail area at <i>F</i>
$H_1: \sigma_1^2/\sigma_2^2 > 1$	$F > F_{\alpha}(n_1 - 1, n_2 - 1)$	The area to the left of F
$H_1: \sigma_1^2/\sigma_2^{\bar{2}} < 1$	$F < F_{1-\alpha}(n_1-1, n_2-1)$	The area to the right of F

TI-83/84: P(a < F(m, n) < b) = Fcdf(a, b, m, n).

If H_0 : $\sigma_1^2/\sigma_2^2=1$ is accepted, then we can assume equal variance in the two-sample *t*-test for comparing two population means.

Pressures(mm Hg) under the Pelvis during Static Conditions for spinal cord injury(SCI) and healthy control groups.

Assume the populations are normal. Test $H_0: \sigma_C^2 = \sigma_{SCI}^2$ vs $H_A: \sigma_C^2 \neq \sigma_{SCI}^2$ at level $\alpha = 0.05$.

- $F = \frac{s_C^2}{s_{SCI}^2} = \frac{21.8^2}{32.2^2} = .458$, df.num =df.deno =10-1=9.
- *p*-value: tail areas at F = .458 are Fcdf(0, .458,9,9)=.1301 and Fcdf(.458, E99, 9,9)=.8699. Twice the smaller tail area = 2(.1301)=0.2602> α .
- Do not reject $H_0: \sigma_C^2 = \sigma_{SCI}^2$.
- We can assume that $\sigma_C^2 = \sigma_{SCI}^2$.

Pressures(mm Hg) under the Pelvis during Static Conditions for spinal cord injury(SCI) and healthy control groups.

Assume the populations are normal. Test $H_0: \sigma_C^2 = \sigma_{SCI}^2$ vs $H_A: \sigma_C^2 \neq \sigma_{SCI}^2$ at level $\alpha = 0.05$.

•
$$F = \frac{s_C^2}{s_{SCI}^2} = \frac{21.8^2}{32.2^2} = .458$$
, df.num =df.deno =10-1=9.

- *p*-value: tail areas at F = .458 are Fcdf(0, .458,9,9)=.1301 and Fcdf(.458, E99, 9,9)=.8699. Twice the smaller tail area = 2(.1301)=0.2602> α .
- Do not reject $H_0: \sigma_C^2 = \sigma_{SCI}^2$
- We can assume that $\sigma_C^2 = \sigma_{SCI}^2$.

Pressures(mm Hg) under the Pelvis during Static Conditions for spinal cord injury(SCI) and healthy control groups.

Assume the populations are normal. Test $H_0: \sigma_C^2 = \sigma_{SCI}^2$ vs $H_A: \sigma_C^2 \neq \sigma_{SCI}^2$ at level $\alpha = 0.05$.

- $F = \frac{s_C^2}{s_{SCI}^2} = \frac{21.8^2}{32.2^2} = .458$, df.num =df.deno =10-1=9.
- *p*-value: tail areas at F = .458 are Fcdf(0, .458,9,9)=.1301 and Fcdf(.458, E99, 9,9)=.8699. Twice the smaller tail area = 2(.1301)=0.2602> α .
- Do not reject $H_0: \sigma_C^2 = \sigma_{SCI}^2$.
- We can assume that $\sigma_C^2 = \sigma_{SCI}^2$

Pressures(mm Hg) under the Pelvis during Static Conditions for spinal cord injury(SCI) and healthy control groups.

Assume the populations are normal. Test $H_0: \sigma_C^2 = \sigma_{SCI}^2$ vs $H_A: \sigma_C^2 \neq \sigma_{SCI}^2$ at level $\alpha = 0.05$.

- $F = \frac{s_C^2}{s_{SCI}^2} = \frac{21.8^2}{32.2^2} = .458$, df.num =df.deno =10-1=9.
- *p*-value: tail areas at F = .458 are Fcdf(0, .458,9,9)=.1301 and Fcdf(.458, E99, 9,9)=.8699. Twice the smaller tail area = 2(.1301)=0.2602> α .
- Do not reject $H_0: \sigma_C^2 = \sigma_{SCI}^2$.
- We can assume that $\sigma_C^2 = \sigma_{SCI}^2$

Pressures(mm Hg) under the Pelvis during Static Conditions for spinal cord injury(SCI) and healthy control groups.

Assume the populations are normal. Test $H_0: \sigma_C^2 = \sigma_{SCI}^2$ vs $H_A: \sigma_C^2 \neq \sigma_{SCI}^2$ at level $\alpha = 0.05$.

- $F = \frac{s_C^2}{s_{SCI}^2} = \frac{21.8^2}{32.2^2} = .458$, df.num =df.deno =10-1=9.
- *p*-value: tail areas at F = .458 are Fcdf(0, .458,9,9)=.1301 and Fcdf(.458, E99, 9,9)=.8699. Twice the smaller tail area = 2(.1301)=0.2602> α .
- Do not reject $H_0: \sigma_C^2 = \sigma_{SCI}^2$.
- We can assume that $\sigma_C^2 = \sigma_{SCI}^2$.

Pressures(mm Hg) under the Pelvis during Static Conditions for spinal cord injury(SCI) and healthy control groups.

Assume the populations are normal. Test $H_0: \sigma_C^2 = \sigma_{SCI}^2$ vs $H_A: \sigma_C^2 \neq \sigma_{SCI}^2$ at level $\alpha = 0.05$.

- $F = \frac{s_C^2}{s_{SCI}^2} = \frac{21.8^2}{32.2^2} = .458$, df.num =df.deno =10-1=9.
- *p*-value: tail areas at F = .458 are Fcdf(0, .458,9,9)=.1301 and Fcdf(.458, E99, 9,9)=.8699. Twice the smaller tail area = 2(.1301)=0.2602> α .
- Do not reject $H_0: \sigma_C^2 = \sigma_{SCI}^2$.
- We can assume that $\sigma_C^2 = \sigma_{SCI}^2$.