CS3388B, Winter 2023

Problem Set 3

Due: January 27, 2023

Exercise 1.

Consider a window with width 1000px and height 800px with a viewport whose opposite corners, in pixels, are (200, 100) and (800, 700).

Give the viewport matrix which transforms normalized device coordinates to this viewport.

$$\begin{bmatrix} w/2 & 0 & x0 + w/2 \end{bmatrix} \\ \begin{bmatrix} 0 & h/2 & y0 + h/2 \end{bmatrix} \\ \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

Exercise 2. Consider the following affine transforms:

$$T = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \qquad \qquad R = \begin{bmatrix} \cos(30) & -\sin(30) & 0 \\ \sin(30) & \cos(30) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Let $M_1 = TR$ and $M_2 = RT$ be two transformation matrices. Consider the line segment defined by $v_1 = (0,0)$ and $v_2 = (2,1)$. Draw the line segment when transformed by M_1 and when transformed by M_2 . Describe, in words, what is the difference between the affine transforms M_1 and M_2 ? Why is the result different?

Exercise 3.

Consider the shear matrix

$$S = \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix}.$$

Find the inverse of S in homogeneous coordinates and show that $SS^{-1} = I_3$, the 3x3 identity matrix.

Exercise 4.

The below triangle (v_1, v_2, v_3) has been affinely transformed to (w_1, w_2, w_3) by a combination of a scaling, a trans-

lation, and a rotation. Let those individual transformations be described by the matrices *S*, *T*, *R*, respectively.

Using homogeneous coordinates, find the matrices S, T, R. Then find (through matrix-matrix and matrix-vector multiplication) the coordinates of w_1 and w_2 . What is the correct order of matrix multiplications to get the correct result?

TSRv is one correct order (of many). T, S, R :=

[1/2]
[3]
[1/2		0]
[2]
[]
[1/2]
[3]
[1/2	0]
[2]
[]
[0	0	1]