Brownian motion

Danil Chulkov

February 2023

Change of Measure

To change from \mathbb{P} to $\tilde{\mathbb{P}}$ we need to reassign probabilities in Ω using Z to tell us where in Ω we should revise probability upward (Z > 1) and when downward (Z < 1).

Theorem Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let Z be an almost surely nonnegative random variable with $\mathbb{E}Z = 1$. For $A \in \mathcal{F}$, define

$$\tilde{\mathbb{P}}(A) = \int_{A} Z(\omega) d\mathbb{P}(\omega)$$

Then $\tilde{\mathbb{P}}$ is a probability measure. Furthermore, if X is a nonnegative random variable, then

$$\tilde{\mathbb{E}}X = \mathbb{E}[XZ]$$

If Z is almost surely strictly positive, we also have

$$\mathbb{E}Y = \tilde{\mathbb{E}} \left[\frac{Y}{Z} \right]$$

for every nonnegative random variable Y.

Definition Let Ω be a nonempty set and \mathcal{F} a σ -algebra of subsets of Ω . Two probability measures \mathbb{P} and $\tilde{\mathbb{P}}$ on (Ω, \mathcal{F}) are said to be equivalent if they agree which sets in \mathcal{F} have probability zero.

If $A \in \mathcal{F}$ is such that $\mathbb{P}(A) = 0$, then the random variable $\mathbb{I}_A Z$ is \mathbb{P} almost surely zero, which implies:

$$\widetilde{\mathbb{P}}(A) = \int_{A} Z(\omega) d\mathbb{P}(\omega) = \int_{\Omega} \mathbb{I}_{A}(\omega) Z(\omega) d\mathbb{P}(\omega) = 0.$$

The converse is also true (assuming that Z > 0 almost surely): suppose $B \in \mathcal{F}$ and $\tilde{\mathbb{P}}(B) = 0$, then $\frac{1}{Z}\mathbb{I}_B = 0$ almost surely under $\tilde{\mathbb{P}}$, so

$$\tilde{\mathbb{E}}\left[\frac{1}{Z}\mathbb{I}_{B}\right] = 0;$$

Definition Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $\tilde{\mathbb{P}}$ be another probability measure on (Ω, \mathcal{F}) that is equivalent to \mathbb{P} , and let Z be an almost surely positive random variable that relates measures. Then Z is called the Radon-Nikodym derivative of $\tilde{\mathbb{P}}$ with respect to \mathbb{P} , and we write:

$$Z = \frac{d\tilde{\mathbb{P}}}{d\mathbb{P}}$$

Theorem (Randon-Nikodym). Let \mathbb{P} and $\tilde{\mathbb{P}}$ be equivalent probability measures on (Ω, \mathcal{F}) . Then there exists an almost surely positive random variable Z such that $\mathbb{E}Z = 1$ and

$$\tilde{\mathbb{P}}(A) = \int_A Z(\omega) d\mathbb{P}(\omega)$$
 for every $A \in \mathcal{F}$.