Leveraging the causal effects of stochastic interventions to evaluate vaccine efficacy in two-phase trials

Nima Hejazi

Tuesday 3rd March, 2020

Graduate Group in Biostatistics, and Center for Computational Biology, University of California, Berkeley

nhejazi 🗘

Illi nimahejazi.org Joint work with David Benkeser, Mark van der Laan, Holly Janes, Peter Gilbert

SER: "Methods for the thorny challenges of real studies"

The burden of HIV-1

- The HIV-1 epidemic the facts:
 - now in its fourth decade,
 - 2.5 million new infections occurring annually worldwide,
 - new infections outpace patients starting antiretroviral therapy.
- Most efficacious preventive vaccine: 31% reduction rate.
- Question: To what extent can HIV-1 vaccines be improved by modulating immunogenic CD4+/CD8+ response profiles?

HVTN 505 trial examined new antibody boost vaccines

- HIV Vaccine Trials Network's (HVTN) 505 vaccine efficacy;
 randomized controlled trial, n = 2504 (Hammer et al. 2013).
- Question: How would HIV-1 infection risk in week 28 have changed had immunogenic response (due to vaccine) differed?
- Immunogenic response profiles only available for second-stage sample of n=189 (Janes et al. 2017) due to cost limitations.
- Two-phased sampling mechanism: 100% inclusion rate if HIV-1 positive in week 28; based on matching otherwise.

Two-phase sampling censors the complete data structure

- Complete (<u>unobserved</u>) data $X = (W, A, Y) \sim P_0^X \in \mathcal{M}^X$, as per the full HVTN 505 trial cohort (Hammer et al. 2013):
 - W (baseline covariates): sex, age, BMI, behavioral HIV risk,
 - A (exposure): immune response profile for CD4+ and CD8+,
 - Y (outcome of interest): HIV-1 infection status at week 28.
- Observed data $O = (C, CX) = (W, C, CA, Y); C \in \{0, 1\}$ is an indicator for inclusion in the second-stage sample.

NPSEM with static interventions

 Use a nonparametric structural equation model (NPSEM) to describe the generation of X (Pearl 2009), specifically

$$W = f_W(U_W); A = f_A(W, U_A); Y = f_Y(A, W, U_Y)$$

- Implies a model for the distribution of counterfactual random variables generated by interventions on the process.
- A static intervention replaces f_A with a specific value a in its conditional support A | W.
- This requires specifying a particular value of the exposure under which to evaluate the outcome a priori.

NPSEM with stochastic interventions

- Stochastic interventions modify the value A would naturally assume by drawing from a modified exposure distribution.
- Consider the post-intervention value $A^* \sim G^*(\cdot \mid W)$; static interventions are a special case (degenerate distribution).
- Such an intervention generates a counterfactual random variable $Y_{G^*} := f_Y(A^*, W, U_Y)$, with distribution P_0^{δ} , .
- We aim to estimate $\psi_{0,\delta} := \mathbb{E}_{P_0^\delta}\{Y_{G^\star}\}$, the counterfactual mean under the post-intervention exposure distribution G^\star .

Stochastic interventions for the causal effects of shifts

Díaz and van der Laan (2012; 2018)'s stochastic interventions

$$d(a, w) = \begin{cases} a + \delta, & a + \delta < u(w) & \text{(if plausible)} \\ a, & a + \delta \ge u(w) & \text{(otherwise)} \end{cases}$$

- Our estimand is $\psi_{0,d} := \mathbb{E}_{P_0^d} \{ Y_{d(A,W)} \}$, mean of $Y_{d(A,W)}$.
- Statistical target parameter is $\Psi(P_0^X) = \mathbb{E}_{P_0^X} \overline{Q}(d(A, W), W)$, counterfactual mean of the *shifted* outcome mechanism.
- For HVTN 505, $\psi_{0,d}$ is the counterfactual risk of HIV-1 infection, had the observed value of the immune response been altered under the rule d(A, W) defining $G^*(\cdot \mid W)$.

One-step and targeted minimum loss estimators

One-step estimator relies on a bias correction:

$$\Psi_n^+ = \frac{1}{n} \sum_{i=1}^n \overline{Q}_n(d(A_i, W_i), W_i) + D^*(P_0^X)(X_i).$$

■ TML estimator constructs \overline{Q}_n^{\star} via a (logistic) tilting model

$$\Psi_n^{\star} := \Psi(P_n^{\star}) = \frac{1}{n} \sum_{i=1}^n \overline{Q}_n^{\star}(d(A_i, W_i), W_i).$$

In this case, the efficient influence function (EIF) is

$$D^*(P_0^X)(x) = H(a,w)(y-\overline{Q}(a,w)) + \overline{Q}(d(a,w),w) - \Psi(P_0^X),$$
 where the auxiliary ("clever") covariate is

$$H(a, w) = \mathbb{I}(a + \delta < u(w)) \frac{g_0(a - \delta \mid w)}{g_0(a \mid w)} + \mathbb{I}(a + \delta \geq u(w)).$$

Augmented estimators for two-phase sampling designs

- Rose and van der Laan (2011) introduce the IPCW-TMLE, to be used when observed data is subject to two-phase sampling.
- Initial proposal: correct for two-phase sampling by using a loss function with inverse probability of censoring weights:

$$\mathcal{L}(P_0^X)(O) = \frac{C}{\pi_0(Y, W)} \mathcal{L}^F(P_0^X)(X)$$

- When the sampling mechanism $\pi_0(Y, W)$ can be estimated by a parametric form, this procedure yields an efficient estimator.
- However, when machine learning is used, this is insufficient.

Efficient estimation under two-phase sampling

- When the sampling mechanism is not known by design, it is best to employ a flexible (ML) estimator of $\pi_0(Y, W)$.
- Then, the IPCW augmentation must be applied to the EIF:

$$D(P_0^X)(o) = \frac{c}{\pi_0(y, w)} D^F(P_0^X)(x) - \left(1 - \frac{c}{\pi_0(y, w)}\right) \cdot \mathbb{E}(D^F(P_0^X)(x) \mid C = 1, Y = y, W = w),$$

- Expresses observed data EIF $D^F(P_0^X)(o)$ in terms of full data EIF $D^F(P_0^X)(x)$; inclusion of second term induces efficiency.
- The expectation of the full data EIF $D^F(P_0^X)(x)$, taken only over units selected by the sampling mechanism (i.e., C=1).

Emergent property: multiple robustness

- A unique multiple robustness property combinations of $(g_0, \overline{Q}_0) \times (\pi_0, \mathbb{E}(D^F(P_0^X)(x) \mid C = 1, Y, W)).$
- We now have a semiparametric-efficient and robust procedure for assessing the effect of the intervention $d(a, w) = a + \delta$.
- Due to the construction of the IPCW-TMLE, the resultant estimator is robust and efficient under two-phase sampling.
- This allows us to assess how posited shifts in the assayed immune responses would have affected HIV-1 infection risk.

Finding the "best" efficient estimator: relative performance

Helping to fight the HIV-1 epidemic

Figure 2: Analysis of HIV-1 risk as a function of CD8+ immunogenicity, using R package txshift (https://github.com/nhejazi/txshift.)

Big picture takeaways

- Vaccine efficacy evaluation helps to develop enhanced vaccines better informed by biological properties of the target disease.
- HIV-1 vaccines modulate immunogenic response profiles as part of their mechanism for lowering HIV-1 infection risk.
- Stochastic interventions constitute a flexible framework for considering realistic treatment/intervention policies.
- Large-scale (vaccine) trials often use two-phase designs need to (carefully!) accommodate for sampling complications.
- We've developed robust, open source statistical software for assessing stochastic interventions in observational studies.

Thank you

For more, check out https://arxiv.org/abs/TODO

★ https://nimahejazi.org

Ohttps://github.com/nhejazi

https://twitter.com/nshejazi

Appendix

From the causal to the statistical target parameter

Assumption 1: *Consistency*

$$Y_i^{d(a_i,w_i)} = Y_i$$
 in the event $A_i = d(a_i, w_i)$, for $i = 1, \ldots, n$

Assumption 2: SUTVA

 $Y_i^{d(a_i,w_i)}$ does not depend on $d(a_j,w_j)$ for $i=1,\ldots,n$ and $j\neq i$, or lack of interference (Rubin 1978; 1980)

Assumption 3: Strong ignorability

$$A_i \perp \!\!\! \perp Y_i^{d(a_i,w_i)} \mid w_i$$
, for $i=1,\ldots,n$

From the causal to the statistical target parameter

Assumption 4: Positivity (or overlap)

 $a_i \in \mathcal{A} \implies d(a_i, w_i) \in \mathcal{A} \text{ for all } w \in \mathcal{W}, \text{ where } \mathcal{A} \text{ denotes}$ the support of A conditional on $W = w_i$ for all i = 1, ... n

- This positivity assumption is not quite the same as that required for categorical interventions.
- In particular, we do not require that the intervention density place mass across all strata defined by W.
- Rather, we merely require the post-intervention quantity be seen in the observed data for given $a_i \in A$ and $w_i \in W$.

Literature: Díaz and van der Laan (2012)

- Proposal: Evaluate outcome under an altered intervention distribution e.g., $P_{\delta}(g_0)(A = a \mid W) = g_0(a \delta(W) \mid W)$.
- Identification conditions for a statistical parameter of the counterfactual outcome $\psi_{0,d}$ under such an intervention.
- Show that the causal quantity of interest $\mathbb{E}_0\{Y_{d(A,W)}\}$ is identified by a functional of the distribution of X:

$$\psi_{0,d} = \int_{\mathcal{W}} \int_{\mathcal{A}} \mathbb{E}_{P_0^{\mathsf{X}}} \{ Y \mid A = d(a, w), W = w \} \cdot$$

$$q_{0,A}^{\mathsf{X}} (a \mid W = w) \cdot q_{0,W}^{\mathsf{X}} (w) d\mu(a) d\nu(w)$$

 Provides a derivation based on the efficient influence function (EIF) with respect to the nonparametric model M.

Literature: Haneuse and Rotnitzky (2013)

- Proposal: Characterization of stochastic interventions as modified treatment policies (MTPs).
- Assumption of piecewise smooth invertibility allows for the intervention distribution of any MTP to be recovered:

$$g_{0,\delta}(a \mid w) = \sum_{j=1}^{J(w)} I_{\delta,j}\{h_j(a, w), w\}g_0\{h_j(a, w) \mid w\}h_j'(a, w)$$

- Such intervention policies account for the natural value of the intervention A directly yet are interpretable as the imposition of an altered intervention mechanism.
- Identification conditions for assessing the parameter of interest under such interventions appear technically complex (at first).

Literature: Young et al. (2014)

- Establishes equivalence between g-formula when proposed intervention depends on natural value and when it does not.
- This equivalence leads to a sufficient positivity condition for estimating the counterfactual mean under MTPs via the same statistical functional studied in Díaz and van der Laan (2012).
- Extends earlier identification results, providing a way to use the same statistical functional to assess $\mathbb{E}Y_{d(A,W)}$ or $\mathbb{E}Y_{d(W)}$.
- The authors also consider limits on implementing shifts d(A, W), and address working in a longitudinal setting.

Literature: Díaz and van der Laan (2018)

- Builds on the original proposal, accommodating MTP-type shifts d(A, W) proposed after their earlier work.
- To protect against positivity violations, considers a specific shifting mechanism:

$$d(a, w) = \begin{cases} a + \delta, & a + \delta < u(w) \\ a, & \text{otherwise} \end{cases}$$

- Proposes an improved "1-TMLE" algorithm, with a single auxiliary covariate for constructing the TML estimator.
- Our (first) contribution: implementation of this algorithm.

Nonparametric conditional density estimation

- To compute the auxiliary covariate H(a, w), we need to estimate conditional densities $g(A \mid W)$ and $g(A \delta \mid W)$.
- There is a rich literature on density estimation, we follow the approach proposed in Díaz and van der Laan (2011).
- To build a conditional density estimator, consider

$$g_{n,\alpha}(a \mid W) = \frac{\mathbb{P}(A \in [\alpha_{t-1}, \alpha_t) \mid W)}{\alpha_t - \alpha_{t-1}},$$

for $\alpha_{t-1} \leq a < \alpha_t$.

- This is a classification problem, where we estimate the probability that a value of A falls in a bin $[\alpha_{t-1}, \alpha_t)$.
- The choice of the tuning parameter *t* corresponds roughly to the choice of bandwidth in classical kernel density estimation.

Nonparametric conditional density estimation

- Díaz and van der Laan (2011) propose a re-formulation of this classification approach as a set of hazard regressions.
- To effectively employ this proposed re-formulation, consider

$$\mathbb{P}(A \in [\alpha_{t-1}, \alpha_t) \mid W) = \mathbb{P}(A \in [\alpha_{t-1}, \alpha_t) \mid A \ge \alpha_{t-1}, W) \times \Pi_{j=1}^{t-1} \{1 - \mathbb{P}(A \in [\alpha_{j-1}, \alpha_j) \mid A \ge \alpha_{j-1}, W)\}$$

- The likelihood of this model may be expressed to correspond to the likelihood of a binary variable in a data set expressed via a long-form repeated measures structure.
- Specifically, the observation of X_i is repeated as many times as intervals $[\alpha_{t-1}, \alpha_t)$ are before the interval to which A_i belongs, and the binary variables indicating $A_i \in [\alpha_{t-1}, \alpha_t)$ are recorded.

Density estimation with the Super Learner algorithm

- To estimate $g(A \mid W)$ and $g(A \delta \mid W)$, use a pooled hazard regression, spanning the support of A.
- We rely on the Super Learner algorithm of van der Laan et al. (2007) to build an ensemble learner that optimally weights each of the proposed regressions, using cross-validation (CV).
- The Super Learner algorithm uses V-fold CV to train each proposed regression model, weighting each by the inverse of its average risk across all V holdout sets.
- By using a library of regression estimators, we invoke the result of van der Laan et al. (2004), who prove this likelihood-based cross-validated estimator to be asymptotically optimal.

Key properties of TML estimators

Asymptotic linearity:

$$\Psi(P_n^*) - \Psi(P_0^X) = \frac{1}{n} \sum_{i=1}^n D(P_0^X)(X_i) + o_P\left(\frac{1}{\sqrt{n}}\right)$$

Gaussian limiting distribution:

$$\sqrt{\textit{n}}(\Psi(\textit{P}^{\star}_\textit{n}) - \Psi(\textit{P}^{X}_\textit{0})) \rightarrow \textit{N}(0, \textit{Var}(\textit{D}(\textit{P}^{X}_\textit{0})(\textit{X})))$$

Statistical inference:

Wald-type confidence interval :
$$\Psi(P_n^\star) \pm z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma_n}{\sqrt{n}}$$
,

where σ_n^2 is computed directly via $\sigma_n^2 = \frac{1}{n} \sum_{i=1}^n D^2(\cdot)(X_i)$.

Algorithm for TML estimation

- 1. Construct initial estimators g_n of $g_0(A, W)$ and Q_n of $\overline{Q}_0(A, W)$, perhaps using data-adaptive regression techniques.
- 2. For each observation *i*, compute an estimate $H_n(a_i, w_i)$ of the auxiliary covariate $H(a_i, w_i)$.
- 3. Estimate the parameter ϵ in the logistic regression model

$$\operatorname{logit} \overline{Q}_{\epsilon,n}(a,w) = \operatorname{logit} \overline{Q}_n(a,w) + \epsilon H_n(a,w),$$

or an alternative regression model incorporating weights.

4. Compute TML estimator Ψ_n of the target parameter, defining update \overline{Q}_n^* of the initial estimate $\overline{Q}_{n,\epsilon_n}$:

$$\Psi_n = \Psi(P_n^*) = \frac{1}{n} \sum_{i=1}^n \overline{Q}_n^*(d(A_i, W_i), W_i).$$

Algorithm for IPCW-TML estimation

- 1. Using all observed units (X), estimate sampling mechanism $\pi(Y, W)$, perhaps using data-adaptive regression methods.
- 2. Using only observed units in the second-stage sample C=1, construct initial estimators $g_n(A, W)$ and $\overline{Q}_n(A, W)$, weighting by the sampling mechanism estimate $\pi_n(Y, W)$.
- 3. With the approach described for the full data case, compute $H_n(a_i, w_i)$, and fluctuate submodel via logistic regression.
- 4. Compute IPCW-TML estimator Ψ_n of the target parameter, by solving the IPCW-augmented EIF estimating equation.
- 5. Iteratively update estimated sampling weights $\pi_n(Y, W)$ and IPCW-augmented EIF, updating TML estimate in each iteration, until $\frac{1}{n} \sum_{i=1}^{n} \mathsf{EIF}_i < \frac{1}{n}$.

A linear modeling perspective

- Briefly consider a simple data structure: X = (Y, A); we seek to model the outcome Y as a function of A.
- To posit a linear model, consider $Y_i = \beta_0 + \beta_1 A_i + \epsilon_i$, with error $\epsilon_i \sim N(0,1)$.
- Letting δ be a change in A, $Y_{A+\delta} Y_A$ may be expressed

$$\mathbb{E}Y_{A+\delta} - \mathbb{E}Y_A = [\beta_0 + \beta_1(\mathbb{E}A + \delta)] - [\beta_0 + \beta_1(\mathbb{E}A)]$$
$$= \beta_0 - \beta_0 + \beta_1\mathbb{E}A - \beta_1\mathbb{E}A + \beta_1\delta$$
$$= \beta_1\delta$$

• Thus, a *unit shift* in A (i.e., $\delta=1$) may be seen as inducing a change in the difference in outcomes of magnitude β_1 .

A causal inference perspective

- Consider a data structure: $(Y_a, a \in A)$.
- To posit a linear model, let $Y_a = \beta_0 + \beta_1 a + \epsilon_a$ for $a \in \mathcal{A}$, with error $\epsilon_a \sim N(0, \sigma_a^2) \ \forall a \in \mathcal{A}$.
- For the counterfactual outcomes $(Y_{a'+\delta}, Y_{a'})$, their difference, $Y_{a'+\delta} Y_{a'}$, for some $a' \in \mathcal{A}$, may be expressed

$$\mathbb{E}Y_{a'+\delta} - \mathbb{E}Y_{a'} = [\beta_0 + \beta_1(a'+\delta) + \mathbb{E}\epsilon_{a'+\delta}] - [\beta_0 + \beta_1a' + \mathbb{E}\epsilon_{a'}]$$
$$= \beta_1\delta$$

■ Thus, a *unit shift* for $a' \in A$ (i.e., $\delta = 1$) may be seen as inducing a change in the difference in the counterfactual outcomes of magnitude β_1 .

Slope in a semiparametric model

• Consider the stochastic intervention $g^*(\cdot \mid W)$:

$$\mathbb{E}Y_{g^*} = \int_W \int_a \mathbb{E}(Y \mid A = a, W) g(a - \delta \mid W) \cdot da \cdot dP_0(W)$$

$$= \int_W \int_z \mathbb{E}(Y \mid A = z + \delta, W) g(z \mid W) \cdot dz \cdot dP_0(W),$$
defining the change of variable $z = a - \delta$.

• For a semiparametric model, $\mathbb{E}(Y \mid A = z, W) = \beta z + \theta(W)$:

$$\mathbb{E}Y_{g^*} - \mathbb{E}Y = \int_{W} \int_{z} \left[\mathbb{E}(Y \mid A = z + \delta, W) - \mathbb{E}(Y \mid A = z, W) \right]$$
$$g(z \mid W) \cdot dz \cdot dP_{0}(W)$$
$$= \left[\beta(z + \delta) + \theta(W) \right] - \left[\beta z + \theta(W) \right]$$
$$= \beta \delta$$

References

- Breiman, L. (1996). Stacked regressions. Machine Learning, 24(1):49-64.
- Díaz, I. and van der Laan, M. J. (2011). Super learner based conditional density estimation with application to marginal structural models. *The international journal of biostatistics*, 7(1):1–20.
- Díaz, I. and van der Laan, M. J. (2012). Population intervention causal effects based on stochastic interventions. *Biometrics*, 68(2):541–549.
- Díaz, I. and van der Laan, M. J. (2018). Stochastic treatment regimes. In Targeted Learning in Data Science: Causal Inference for Complex Longitudinal Studies, pages 167–180. Springer Science & Business Media.

- Dudoit, S. and van der Laan, M. J. (2005). Asymptotics of cross-validated risk estimation in estimator selection and performance assessment. *Statistical Methodology*, 2(2):131–154.
- Hammer, S. M., Sobieszczyk, M. E., Janes, H., Karuna, S. T., Mulligan, M. J., Grove, D., Koblin, B. A., Buchbinder, S. P., Keefer, M. C., Tomaras, G. D., et al. (2013). Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. *New England Journal of Medicine*,
 - Haneuse, S. and Rotnitzky, A. (2013). Estimation of the effect of interventions that modify the received treatment. Statistics in medicine, 32(30):5260–5277.

369(22):2083–2092.

Holland, P. W. (1986). Statistics and causal inference. *Journal of the American statistical Association*, 81(396):945–960.

- Janes, H. E., Cohen, K. W., Frahm, N., De Rosa, S. C., Sanchez, B., Hural, J., Magaret, C. A., Karuna, S., Bentley, C., Gottardo, R., et al. (2017). Higher t-cell responses induced by dna/rad5 hiv-1 preventive vaccine are associated with lower hiv-1 infection risk in an efficacy
- Kennedy, E. H. (2018). Nonparametric causal effects based on incremental propensity score interventions. *Journal of the American Statistical Association*. (just-accepted).

trial. The Journal of infectious diseases, 215(9):1376-1385.

Statistical Association, (just-accepted).

Kennedy, E. H., Ma, Z., McHugh, M. D., and Small, D. S. (2017).

Non-parametric methods for doubly robust estimation of continuous

treatment effects. Journal of the Royal Statistical Society: Series B

- (Statistical Methodology), 79(4):1229–1245.
 Pearl, J. (2009). Causality: Models, Reasoning, and Inference.
 - Cambridge University Press.

- Rose, S. and van der Laan, M. J. (2011). A targeted maximum likelihood estimator for two-stage designs. *The International Journal of Biostatistics*, 7(1):1–21.
- Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. *Biometrika*, 70(1):41–55.
- Rubin, D. B. (1978). Bayesian inference for causal effects: The role of randomization. *The Annals of statistics*, pages 34–58.
- Rubin, D. B. (1980). Randomization analysis of experimental data: The fisher randomization test comment. *Journal of the American Statistical Association*, 75(371):591–593.
- Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling, decisions. *Journal of the American Statistical Association*, 100(469):322–331.

- van der Laan, M. J., Dudoit, S., and Keles, S. (2004). Asymptotic optimality of likelihood-based cross-validation. *Statistical Applications in Genetics and Molecular Biology*, 3(1):1–23.
- van der Laan, M. J., Polley, E. C., and Hubbard, A. E. (2007). Super Learner. *Statistical Applications in Genetics and Molecular Biology*, 6(1).
- van der Laan, M. J. and Rubin, D. (2006). Targeted maximum likelihood learning. *The International Journal of Biostatistics*, 2(1).
- Wolpert, D. H. (1992). Stacked generalization. *Neural networks*, 5(2):241–259.
- Young, J. G., Hernán, M. A., and Robins, J. M. (2014). Identification, estimation and approximation of risk under interventions that depend on the natural value of treatment using observational data. *Epidemiologic methods*, 3(1):1–19.