1.	(1	pt)	If	f(x)	$=2x^{2}$	-4x-	15.	find	f'	(x)	١.
	(<u>+</u>	PU		, (~)	- 20	170	10,	IIIIG	./ \	(~)	, .

Answer(s) submitted:

• 4(x-1)

(correct)

2. (1 pt) Let
$$f(x) = 4x^8 - 5x^5 - 2x^3 + 3x$$
, find $f'(x)$.

Answer: _____

Find f'(4).

Answer:

Answer(s) submitted:

- 32x^7-25x^4-6x^2+3
- 517795

(correct)

3. (1 pt) If
$$f(t) = 3\sin t - 4\pi\cos t$$
, find $f'(t)$

Answer(s) submitted:

• 4pisin(t) + 3cos(t)

(correct)

4. (1 pt) If

$$f(t) = \frac{\sqrt{4}}{t^7},$$

find f'(t).

Find f'(5).

Answer(s) submitted:

- -14/t^8
- -14/390625

(correct)

5. (1 pt) If
$$f(x) = 6 + \frac{2}{x} + \frac{7}{x^2}$$
, find $f'(x)$.

Answer(s) submitted:

• $-(2(x+7) / x^3)$

(correct)

6. (1 pt) If
$$f(x) = (x-7)(9x+5)$$
, then

$$f'(x) =$$

Answer(s) submitted:

• 18x-58

(correct)

7. (1 pt) If
$$f(t) = 3t^{-5/3}$$
, find $f'(t)$.

Answer(s) submitted:

• -5/t^(8/3)

(correct)

8. (1 pt)

Differentiate the following function:

$$V(r) = \frac{4}{3}\pi r^3$$

V'(r) =

Answer(s) submitted:

• 4pir^2

(correct)

9. (1 pt) If
$$f(x) = 15\sqrt{x}(x-5)$$
, find $f'(x)$. $f'(x) = \underline{\hspace{1cm}}$

Answer(s) submitted:

• 15(3x-5)/(2sqrt(x))

(correct)

10. (1 pt) If
$$f(x) = 6\sqrt{x}(x^3 - 3\sqrt{x} + 6)$$
, find $f'(x)$.

Find f'(3).

Answer(s) submitted:

•
$$3((7x^{(5/2)}) + (6/sqrt(x)) - 6)$$

• 319.75

(correct)

11. (1 pt) If $y = 4\pi^7$, find y'.

Answer(s) submitted:

• 0

(correct)

12. (1 pt) If
$$f(u) = \sqrt{1}u + \sqrt{8u}$$
, find $f'(u)$

Answer(s) submitted:

• (sqrt(2)/sqrt(u)) + 1

(correct)

13. (1 pt) If
$$f(x) = \frac{7x^2 + 8x + 25}{\sqrt{x}}$$
, find $f'(x)$.

Answer(s) submitted:

• $((x(21x + 8) - 25) / (2x^{(3/2)}))$

(correct)

14. (1 pt) If
$$f(x) = \frac{-5x^5 + 5x^4 - 7x^3}{x^4}$$
, find $f'(x)$.

Answer(s) submitted:

• $((7/x^2) - 5)$

(correct)

15. (1 pt) If
$$f(t) = 3\sqrt{t} + \frac{7}{\sqrt{t}}$$
, find $f'(t)$.

Answer(s) submitted:

• ((3t-7)/(2t^(3/2)))

(correct)

16. (1 pt)

Let
$$f(x) = -7x^6\sqrt{x} + \frac{6}{x^3\sqrt{x}}$$
.

$$f'(x) =$$

[NOTE: Your answer should be a function in terms of the variable 'x' and not a number!]

Answer(s) submitted:

•
$$-(7(13x^10 + 6) / (2x^(9/2)))$$

(correct)

17. (1 pt) If
$$f(t) = \frac{\sin t}{3} + \frac{4}{t}$$
, then

$$f'(t) =$$

Answer(s) submitted:

• $(\cos(t)/3) - (4/t^2)$

(correct)

18. (1 pt) If
$$f(t) = \sqrt[3]{t^2} + 2\sqrt{t^3}$$
, find $f'(t)$.

Answer(s) submitted:

• $(9t^{(3/2)} + 2t^{(2/3)})/(3t)$

(correct)

19. (1 pt)

Find the equation of the tangent line to the curve $y = 6 \sin x$ at the point $(\pi/6,3)$.

The equation of this tangent line can be written in the form y = mx + b where

 $m = \underline{\hspace{1cm}}$ and $b = \underline{\hspace{1cm}}$

Answer(s) submitted:

- 3sqrt(3)
- -((sqrt(3)pi)/2) + 3

(correct)

20. (1 pt) Find the equation of the tangent line and normal line to the curve $y = (3 + 5x)^2$ at the point (4,529). Write the equations of the lines in the form y = mx + b.

Tangent line: y =______Normal line: y =_____

Answer(s) submitted:

- 230x-391
- \bullet (-x/230) + 529.02

(correct)

21. (1 pt) Find the first and second derivative of the function.

$$f(x) = 6\sin x + 10\cos x.$$

f'(x) =_____

$$f''(x) =$$

Answer(s) submitted:

- 6cos(x) 10sin(x)
- $-2(3\sin(x) + 5\cos(x))$

(correct)

	(correct)				
22. (1 pt) Find the points on the graph of $f(x) = 2x^3 + 12x^2 - 72x + 18$ where the tangent is horizontal. List the <i>x</i> -values of these points. (Separate answers by commas if there are more than one.)	26. (1 pt) A particle moves along a straight line and its position at time t is given by $s(t) = t^4 - 12t + 21$, $t \ge 0$. where s is measured in feet and t in seconds.				
$x \text{ value}(s) = \underline{\hspace{1cm}}$	(A) Find the velocity at time t:				
Answer(s) submitted:	(B) Find the velocity (in ft/sec) of the particle at time $t = 3$.				
• -6 , 2	(C) Find all values of t for which the particle is at rest. (If there				
(correct)	are no such values, enter <i>none</i> . If there are more than one				
23. (1 pt) For what value(s) of x is the tangent line of the	value, list them separated by commas.)				
graph of	t =				
8-4	(D) Use interval notation to indicate when the particle is mov-				
$f(x) = 8x^3 - 12x^2 - 143x - 24$	ing in the positive direction. (If needed, enter inf for ∞ . If the				
parallel to the line $y = x - 1.1$?	particle is never moving in the positive direction, enter <i>none</i> .)				
If there is more than one value of x , list them as a comma separated list.	(E) Find the total distance traveled during the first 8 seconds.				
	Answer(s) submitted:				
Answer(s) submitted:	• 4(t^3-3)				
• -2, 3	• 96				
(correct)	• 3^(1/3)				
	• (3^(1/3), Inf) • 4024				
24. (1 pt) At what point does the normal to $y = 4 - 3x + 4x^2$					
at (1,5) intersect the parabola a second time?	(correct)				
The normal line is perpendicular to the tangent line. If two lines are perpendicular their slopes are negative reciprocals – i.e. if the slope of the first line is m then the slope of the second line is $-1/m$	27. (1 pt) If a ball is thrown vertically upward from the roof of 48 foot building with a velocity of 64 ft/sec, its height after t seconds is $s(t) = 48 + 64t - 16t^2$.				
1s - 1/m Answer(s) submitted:					
• -0.3	a.) What is the maximum height the ball reaches?				
• 5.26	Answer:				
(correct)					
25. (1 pt) Suppose that the equation of motion for a particle (where s is in meters and t in seconds) is	b.) What is the velocity of the ball when it hits the ground (height 0)?				
	Answer:				
$s = (1/3)t^3 - 2t^2 + 4t + 5$	Answer(s) submitted:				
•	• 112				
(a) Find the velocity and acceleration as functions of t .	• -84.66				
Velocity at time $t = $	(correct)				
Acceleration at time $t = $	28. (1 pt) A spherical balloon is being inflated. Find the				
(b) Find the acceleration after 1 second.	rate of increase (with respect to the radius <i>r</i>) of the surface area				
Acceleration after 1 second:	$(S=4\pi r^2)$ when:				
(c) Find the acceleration at the instant when the velocity is 0.	(A) $r = 2$ inches \rightarrow Rate of increase =				
Acceleration:	(B) $r = 4$ inches \rightarrow Rate of increase =				
	(C) $r = 5$ inches \rightarrow Rate of increase =				
Answer(s) submitted:					
• (t-2)^2	16pi32pi				
• 2(t-2) • -2	• 40pi				
■ − /	1 7757				

• 0

(correct)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America