第3次应用介绍课

——一阶动态电路的应用

本讲练习题需要用到 计算器, 也许要用点纸笔 1. 脉冲序列作用下的RC电路(已预习)

2. 主动:能量变换

 \bullet AC-DC

 \bullet DC-DC

3. 主动:信号处理

• 积分器和微分器

• 滞回比较器

• 脉冲序列发生器

电容+二极管

电感+二极管

负反馈运放(线性段)

正反馈运放(非线性段)

4. 被动: MOSFET的传播延迟(课后学习)

Principles of Electric Circuits Application 3 Tsinghua University 2023

本讲重难点

- 脉冲激励下动态电路的稳态分析
- 正反馈理想运放电路的分析

复习

直流激励下一阶动态电路的直觉解法(三要素法)

$$f(t) = f(\infty) + [f(0^+) - f(\infty)]e^{-\frac{t}{\tau}}$$
 $t > 0$

$$RC$$
电路 $\tau = R_{eq}C$

$$RL$$
电路 $au = \frac{L}{R_{eq}}$

复习:脉冲序列作用下的RC电路

$$f(t) = f(\infty) + [f(0^+) - f(\infty)]e^{-\frac{t}{\tau}}$$

$$(1) \quad T >> \tau$$

$$u_{C}(0^{+})=0$$

$$0 < t < T$$
 $u_C(0^+) = 0$ $u_C(\infty) = 100 \text{V}$ $\tau = RC$

$$u_C = 100(1 - e^{-\frac{t}{RC}}) V$$

$$T < t < 2T$$
 $u_C(T^+) = 100V$ $u_C(\infty) = 0$

$$u_{\mathcal{C}}(\infty)=0$$

$$\tau = RC$$

(2) T与τ接近

稳态解

$$u_C(0^+) = U_1$$

$$u_{\scriptscriptstyle C}(\infty) =$$

弹幕

周期开始和结束两个 时刻支路量数值相同

这类问题(周期激励下一阶电路)的分析特点:

- (1) 认为电路已经进入稳态
- (2) 画不同状态下的电路图, 求电路解
- (3) 利用边界条件求出关键点电压/电流

0 < t < T 等效电路图

$$f(t) = f(\infty) + [f(0^+) - f(\infty)]e^{-\frac{t}{\tau}}$$

5

(2) T与τ接近

稳态解

$$u_C(0^+) = U_1$$

$$u_C(\infty) = 100 \text{ V}$$

$$\tau = RC$$

周期开始和结束两个 时刻支路量数值相同

这类问题(周期激励下一阶)的分析特点:

- (1) 认为电路已经进入稳态
- (2) 画不同状态下的电路图, 求电路解
- (3) 利用边界条件求出关键点电压/电流

0 < t < T 等效电路图

$$u_C = 100 + (U_1 - 100)e^{-\frac{l}{RC}}$$
 V

$$f(t) = f(\infty) + [f(0^+) - f(\infty)]e^{-\frac{t}{\tau}}$$

6

$$f(t) = f(\infty) + [f(0^+) - f(\infty)]e^{-\frac{t}{\tau}}$$

这类问题的分析特点:

- (1) 电路已经进入稳态
- (2) 求不同状态下的电路
- (3) 用边界条件求出关键点

$$u_C = 100 + (U_1 - 100)e^{-\frac{t}{RC}}$$

$$u_C = U_2 e^{-\frac{t-1}{RC}}$$

$$t = T$$

$$u_C = U_2 = 100 + (U_1 - 100)e^{-\frac{T}{RC}}$$

$$t = 2T$$

$$u_C = U_1 = U_2 e^{-\frac{2I-I}{RC}}$$

$$U_{1} = \frac{100e^{-\frac{T}{RC}}}{1 + e^{-\frac{T}{RC}}}$$

$$U_2 = \frac{100}{1 + e^{-\frac{T}{RC}}}$$

8

单选题 1分

满足怎样的条件, 才能使得 $U_2 < 1.2U_1$?

$$\bigcirc$$
 $T>\ln(1.2)RC$

$$U_1 = \frac{100e^{-\frac{T}{RC}}}{1+e^{-\frac{T}{RC}}}$$
 $U_2 = \frac{100}{1+e^{-\frac{T}{RC}}}$

9

2 AC-DC变换

用二极管的模型1分析电路。

Principles of Electric Circuits Application 3 Tsinghua University 2023

3 DC-DC变换

问题:如何比分压更高效率地改变直流电压?

方法一

缺点: 类似桥式整流, 直流质量较差。

改进思路:

利用电感维持电流的能力。

14

这类问题的分析特点:

- (1) 设电路已进入稳态
- (2) 画电路图,求电路解
- (3) 利用边界条件求出 关键点电压/电流

$$i' = \frac{U_{\rm S}}{R} + (I_{1} - \frac{U_{\rm S}}{R})e^{-\frac{t}{\tau}}$$

$$i'' = I_{2}e^{-\frac{(t-t_{\rm ON})}{\tau}}$$

$$\begin{cases} i'(t_{\text{ON}}) = I_2 \\ i''(t_{\text{ON}} + t_{\text{OFF}}) = I_1 \end{cases} \begin{cases} I_1 = \frac{U_{\text{S}}}{R} \frac{1 - e^{-t_{\text{ON}}/\tau}}{1 - e^{-T/\tau}} e^{-\frac{t_{\text{OFF}}}{\tau}} \\ I_2 = \frac{U_{\text{S}}}{R} \frac{1 - e^{-t_{\text{ON}}/\tau}}{1 - e^{-T/\tau}} \end{cases}$$

 $U_{ ext{AVG}}$

从工程观点来估计U

因为L值取得较大,可看作i=I不变,因此u=U也不变。

稳态时电感在前半个周期吸收的能量等于后半个周期发出的能量

电感吸收的能量为 $W_{ ext{L_abs}} = (U_{ ext{S}} - U) * I * t_{ ext{ON}}$

电感发出的能量为 $W_{L_{dis}} = U * I * t_{OFF}$

稳态时电感每周期能量守恒

$$(U_{\rm S} - U)$$
* $I * t_{\rm ON} = U * I * t_{\rm OFF} \Longrightarrow U = U_{\rm S}$ 占空比

降压斩波器 Buck Converter

20

单选题 1分

对仿真中的降压斩波器 占空比为____时, 输出电压为5V

$$U = U_{\rm S} \frac{t_{\rm ON}}{T}$$

用工程观点分析这个电路

L、C值取得較大, 可看作i=I不变, u=U不变。

稳态时电感在前半周期(ton)吸收的能量等于其后半周期(toff)发出的能量

该电路实现了怎样的功能?

此处可以有投稿(和弹幕)

22

4 用OpAmp构成微分器和积分器

(1) 积分器

如果
$$u_i = U_S$$
 (常数),则

$$u_{o} = -\frac{U_{s}}{RC}t$$

线性函数

$$\frac{u_R}{R} = C \frac{du_C}{dt}$$

$$u_o = -u_C$$

$$u_R = u_i$$

$$\frac{u_i}{R} = -C \frac{du_o}{dt}$$

$$U_o = -\frac{1}{RC} \int u_i dt$$

(2) 微分器

$$C\frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}t} = \frac{u_{R}}{R}$$

$$u_{o} = -u_{R}$$

$$C \frac{du_{i}}{dt} = -\frac{u_{o}}{R}$$

$$u_{o} = -RC \frac{du_{i}}{dt}$$

如果 $u_i = t U_S$ (线性函数),则

$$u_{\rm o} = -RCU_{\rm s}$$

三角波 —— 方波

24

5 Op Amp的滞回比较器 运算放大器正反馈电路的分析

这个电路有什么用?

$$u_{i} < 0$$
 $u_{o} = U_{sat}$
 $u_{i} > 0$ $u_{o} = -U_{sat}$

过零电压比较器

25

利用电压比较器将正弦波变为方波

Principles of Electric Circuits Application 3 Tsinghua University 2023

负反馈

理想运算放大器:

- (1) 放大倍数∞
- (2) 输入电阻∞
- (3) 输出电阻0

将OpAmp的输出引到反相输入端(负反馈)

输出端有微小正扰动 輸出端有微小正扰动 輸入端待放大信号变小 Op Amp 扰动被抑制 輸出端信号变小

Op Amp负反馈电路分析方法:

- (1) $u_{+}=u_{-}$, 虚短 (放大倍数 ∞ +线性工作区)
- (2) $i_{+}=i_{-}$, 虚断 (输入电阻 ∞)

27

滞回比较器

正反馈, u_0 为 $U_{\rm sat}$ 或 $-U_{\rm sat}$

虚短不再适用虚断仍然适用

设 $u_0 = U_{\text{sat}}$, 则 $u_+ =$

滞回比较器

正反馈, u_0 为 $U_{\rm sat}$ 或- $U_{\rm sat}$

设 $u_o = U_{sat}$, 则 $u_+ = 0.5U_{sat}$ $u_i < 0.5U_{sat}$ 时, u_o 维持 U_{sat} 不变。 一旦 $u_i > 0.5U_{sat}$, u_o 变为- U_{sat}

此时
$$u^+=\bigcirc 0.5~U_{\rm sat}$$

虚短不再适用虚断仍然适用

30

$$u_{i} > -0.5U_{sat}$$
时,
 u_{o} 维持 $-U_{sat}$ 不变。

$$-旦u_{i} < -0.5U_{sat},$$
 u_{o} 变为 $+U_{sat}$

 $- 旦 u_{i} < -0.5 U_{sat}$, 调整两个电阻阻值比可改变滞回宽度

输出滞后输入变化

31

单选题 1分

对题图所示滞回比较器 $u_i=0.3U_{sat}$ 时, $u_o=$ ____。

 U_{sat}

不好说

滞回特性可能存在的问题: 给某输入: 不唯一对应输出

32

6 用OpAmp构成脉冲序列发生器

虚短不再适用 虚断仍然适用 是正反馈吗?

是! L15讲

电路开始工作时存在小扰动。由于正反馈, u_0 为 U_{sat} 或 $-U_{\text{sat}}$

设 $u_0 = U_{\text{sat}}$

则
$$u_+ = \frac{U_{\text{sat}}}{2}$$

设此时 $u_c=0$, (负反馈路径上的)等效电路为

投稿

6 用OpAmp构成脉冲序列发生器

设此时 $u_c=0$,等效电路为

虚短不再适用虚断仍然适用

是正反馈吗?

是! L13讲

电路开始工作时存在小扰动。由于正反馈, $u_0 \rightarrow U_{\text{sat}}$ 或 $-U_{\text{sat}}$

$$u_{C}(0^{+}) = 0$$

$$u_{C}(\infty) = U_{\text{sat}}$$

$$v_{C}(\infty) = U_{\text{sat}}$$

$$v_{C}(\infty)$$

$$u_0 = -U_{\text{sat}}$$
 $u_+ = -\frac{U_{\text{sat}}}{2}$

此 时 $u_{\mathrm{C}}=U_{\mathrm{sat}}/2$, (负反馈路径上的)等效电路为

$$u_{C}(0^{+}) = \frac{U_{\text{sat}}}{2} \qquad u_{C}(\infty) = -U_{\text{sat}} \qquad \tau = R_{1}C$$

$$u_{C} = -U_{\text{sat}} + (\frac{U_{\text{sat}}}{2} + U_{\text{sat}})e^{-t/R_{1}C}$$
下降至 $u_{C} = -\frac{U_{\text{sat}}}{2}$ 时, $u_{o} = +U_{\text{sat}}$

看仿真

38

单选题 1分

与前页电路相比,本页电路的特点是 "红包"

- A 周期更短
- B 周期更长
- C 输出幅值更高
- D 输出幅值更低

40

7 MOSFET门电路的传播延迟

MOSFET的寄生电容

为突出主要矛盾, 我们只考虑 C_{GS}

41

缓冲器电路

如果不考虑寄生电容

看仿真

具体分析,参见课后推送视频

42