Intuition of Random Forest

Tree 1

old young
healthy diseased

female

healthy

Tree 3

Tree 2

male

healthy

New sample: old, retired, male, short Tree predictions:

diseased, healthy, diseased

Majority rule: diseased

2

The Random Forest Algorithm

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression: $\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{rf}^B(x) = majority\ vote\ \{\hat{C}_b(x)\}_1^B$.

3

Differences to standard tree

- Train each tree on bootstrap resample of data (Bootstrap resample of data set with N samples: Make new data set by drawing with replacement N samples; i.e., some samples will probably occur multiple times in new data set)
- For each split, consider only m randomly selected variables
- Don't prune
- Fit B trees in such a way and use average or majority voting to aggregate results

4