16.4 GROEN'S THEOREM GREEN'S THM FICIL Let D be a domain in 12 with boundary dD. Orient DD so that as you walk you keep D on your left. F=Pi+Qj bea vfon D $\iint \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA = \iint P_{dx} + Q_{dy}$ Green's Thin is FTC for Double Integrals It is analogous to $\int_{a}^{b} F(x) dx = F(b) - F(a) = b$

	FIC ON IR	GREEN'S THY
	1	
	1D INTERVAL [a,]	20 DOMAN D
	OD BONDARY (a) Ub)	LD BOUNDARY JO VETOR FIELD F=PITO
	DERIVATIVE F'	,
		DERLYANUZ ST F
12	both ceses:	
Integral of Derivative over Donain		
- Integral (or Sim) of original the		
veder fæld (or function) over boundary.		
	Lounday.	
EX	Lots VERIFY Green's Th	
	3	
F(xy) = -yt+xj or unit disc, D		
	D: ~ (t)=(costpant)	
	0	
RH	J Pdn+Ody	π-
(-ydx+)de = (-sint)(-sint) + bootxcodlat		
$= \int_{-\infty}^{\infty} -y dx + sidy = \int_{-\infty}^{\infty} (-sint)(-sint) + (cost)(cost)dt$ $= \int_{-\infty}^{\infty} 1 dt = 2\pi$		
1		

SS 2dA = 2. Ar LIS = RIS / OBJERVATION Aea (D) = 1/2 J. EX IP Des atta ellipse ~ (a cost b sunt) 05+ 52-(a) + (b) = 1 //

THEN AREA (D) = = = J -y dret sedy 1 (- bsint)(-asint) + (a cost (b cost) = 2 sabet $=\frac{ab}{\pi} \cdot 2\pi = \pi ab$ THIS GIVES YET ANOTHER PROOF OF FACT THAT AREA OF DISC = IT where 2TT is defined to be circumference of cent circle! Recall from 16.3

THM If F=Pi+Oj us defined on allofie? PROOF We know IFI Indept of Pol > Show IF. Li is Indept of Path $\frac{1}{\sqrt{2}} = C_2 - C_1$ SF. Li-SF. Li = Sp. F. Li The = In Partaly = I (on JP) dA = I odA =0