Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
	Dr. David Flores Granados	Creación del programa para
Cancún, Q. Roo, 18/06/2016	Dr. José Enrique Alvarez	incorporarse en el plan de estudios de
	Ing. Mónica Patricia René	Ingeniería en Datos e Inteligencia
	Ing. Alejandro Martin Canul	Organizacional.

Relación con otras asignaturas

Anteriores	Posteriores
	a) IT0316 Electronica Digital:
N/A	a)Unidad I Fundamentos b)Unidad II Componentes Logico-digitales

Nombre de la asignatura Departamento o Licenciatura

Organización y diseño de computadoras Ingeniería en Datos e Inteligencia Organizacional

Ciclo	Clave	Créditos	Área de formación curricular
1 - 1	ID0103	8	Profesional Asociado y Licenciatura Básica

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	HI
Seminario	32	32	64	64

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Describir los componentes lógicos y digitales básicos de una computadora para el entendimiento de la Arquitectura Von Neumann

Objetivo procedimental

Construir los componentes elementales de una máquina Von Neumann para la simulación de una computadora.

Objetivo actitudinal

Fomentar el trabajo colaborativo para la resolución de problemas y prácticas de laboratorio.

Unidades y temas

Unidad I. FUNDAMENTOS

Diferenciar los sistemas digitales de numeración para la representación de información.

- 1) Sistemas numéricos
- 2) Aritmetica y algebra booleana
- 3) Representación de la Información

Unidad II. COMPONENTES LOGICO-DIGITALES

Clasificar los componentes lógicos digitales que integran los bloques básicos de un computador para el diseño de una computadora

- 1) Compuertas Lógicas
- 2) Registros y Memoria
- 3) Canales del sistema
- 4) Lenguaje de Descripción de Hardware

Unidad III. ARQUITECTURA DE COMPUTADORAS

Aplicar los conocimientos de las arquitecturas Von Neumann y Harvard para la simulación de una computadora

1) Arquitectura Von Neumann vs Arquitectura Harvard	
2) Acumulador	
3) Unidad Aritmético Lógica	
4) Program Counter	
5) Unidad de Control	
6) Operaciones aritméticas (Suma, Resta, Multiplicación y División)	
Unidad IV. DISPOSITIVOS DE MEMORIA, ENTRADA Y SALIDA	
Evaluar el desempeño de los distintos dispositivos de memoria, entrada y salida para la mejora en los diseños de computadoras	
1) Tipos de Memoria	
2) Paginación y Segmentación	
3) Dispositivos externos de Almacenamiento	
4) Módulos de entrada/salida	
5) Medidas de desempeño	

Actividades que promueven el aprendizaje

Promover el trabajo colaborativo en la definición	
de propuestas de solución a problemas	
determinados.	

Docente

Estudiante

Realizar tareas asignadas Participar en el trabajo individual y en equipo Coordinar la discusión de casos prácticos. Realizar foros para la discusión de temas o problemas. Resolver casos prácticos (simulaciones) Discutir temas en el aula

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal para la lectura de artículos:

www.nand2tetris.org

Se promoverá el uso de mecanismos asíncronos (correo electrónico, grupo de noticias, WWW y tecnologías de información) como medio de comunicación.

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Examen	30
Evidencias individuales (problemas, investigación, ensayos, lecturas, etc.)	20
Evidencias equipo (ejercicios, casos, proyectos, etc.)	30
Evidencias grupales (asambleas, Iluvias de ideas, etc.)	20
Total	100

Fuentes de referencia básica

Bibliográficas

Mano M, M. (1994). Arquitectura de computadoras. México: Pearson Educación.

Nisan, N. & Schocken, S. (2005). The elements of computing systems. Cambridge, Mass.: MIT Press.

Patterson, D., Hennessy, J., & Hennessy, J. (2012). Computer organization and design. Waltham, MA: Morgan Kaufmann.

Stallings, W. & Prieto Espinosa, A. (2000). Organización y arquitectura de computadores. Madrid [etc.]: Prentice Hall.

Tanenbaum, A. & Escalona García, L. (2000). Organización de computadoras. México: Prentice Hall.

Web gráficas

Fuentes de referencia complementaria

Bibliográficas

Abd-El-Barr, M. & El-Rewini, H. (2005). Fundamentals of computer organization and architecture. Hoboken, N.J.: Wiley.

Astfalk, G. (1996). Applications on advanced architecture computers. Philadelphia, Pa.: Society for Industrial and Applied Mathematics.

Balch, M. (2003). Complete digital design. New York: McGraw-Hill.

Cragon, H. (2000). Computer architecture and implementation. Cambridge: Cambridge University Press.

Culler, D., Singh, J., & Gupta, A. (1999). Parallel computer architecture. San Francisco: Morgan Kaufmann Publishers.

Goldenberg, R. (2003). Open VMS Alpha internals and data structures. Amsterdam: Digital Press.

Web gráficas

.

Perfil profesiográfico del docente

Académicos

Ingeniería, licenciatura o posgrado en Ciencias de la computación, Sistemas, o Electrónica.

Docentes

Tener experiencia docente a nivel superior mínima de 3 años en ingeniería.

Profesionales

Tener experiencia en el desarrollo de software de base, sistemas embebidos, controladores de dispositivos