

Canonical Robot Command Language

Presented by: Andrew Price Georgia Tech Research Institute March, 2015

POCS: Stephen Balakirsky, GTRI

Stephen.Balakirsky@gtri.gatech.edu

Craig Schlenoff, NIST

Craig.Schlenoff@nist.gov

Our Goals

- Georgia Tech and NIST are performing cooperative research on agile assembly
 - Fixtureless assembly
 - Direct CAD to assembly
 - Robot, planning system, vision system, ... agnostic
 - Error recovery and correction
- Will allow:
 - Lot-size 1 assembly on automated lines
 - Reduced line down time due to programming
 - Less human intervention due to assembly errors
 - More competition in all aspects of robotics

Building Blocks

- P1872-2015 IEEE Standard for Ontologies for Robotics and Automation
 - Standardizes how artificial agents represent and communicate their knowledge about the world
 - Defines core ontology that represents the most general concepts, vocabulary, relations, and axioms
- Subgroup titled "Industrial Robot Ontology" of P1872 has been proposed

Industrial Robot Ontology

- Desire to create an ontology that allows industrial robots to be more flexible and agile
- Examining workcell description and low-level robot control
- This talk focused on low-level robot control
 - Basis set of commands
 - Formal definition that allows compliant code to run on multiple robots without change
 - Ability to utilize set of commands on different vendor's robots with same results
 - Implemented as XML (schema and instance files)

Two Classes of Commands

Robot Agnostic

- Initialization/Termination
- Open/Close tool changer
- Dwell
- Get status
- Message
- Linear movement related
 - Move through
 - Move to
- Screw motion
- Run program
- Set (acc, speed, units, tolerance)
- Set end effector operation
- Stop motion

Robot Specific

- Joint related
 - Control mode (position, force, torque)
 - Actuate joint(s)
 - Configure joint(s) report
- Set parameters (robot, end effector)

Example Command

 MoveTo allows robot motion to single Cartesian pose

MoveToType

 Composed of multiple schema EndPosition

CommandID

Move Straight

RefObjectName

VectorType

Point F

XAxis

ZAxis +

PoseOnlyLocationType

Allows:

elements

- Requirement for straight-line motion
- Specification of allowed deviations
- Specification of 6-DOF pose

PositionStandardDeviation

industrial consortium americas

 May be represented as programs or single command instances

> Program includes init, set of "middle" middle commands, and end

CRCLProgramType

CRCL In Operation

Georgia Tech Kitting

NIST Kitting

Also Needed...

- Vision commands
 - CVCLAddPoseType
 - CVCLInitCanonType
 - CVCLLookForGraspType
 - CVCLLookForObjectType
- High-level planning language
 - PDDL-to-CxCL mapping contained in separate schema to allow new PDDL commands without need to program robot

Future Work

- Include in ROS-I distribution (anticipated mid April)
- Work with community to validate set of CRCL commands
 - Move towards IEEE standard
- Develop basis set of vision/math commands necessary for low-level control of assembly system
- Continue development of sample implementation

How To Get Involved

- IEEE Study Group Meeting at ICRA
 - Seattle, Washington
 - May 26th (Tuesday) same day as some ICRA workshops
 - Part of the IEEE Ontologies for Robotics and Automation (ORA) Study Group Meeting
 - Room and time TBD
 - All are welcome!
- Participate in monthly IEEE ORA telecons
- Contact Steve or Craig for more information (contact info on next slide)

Contact Info

Senior Research Scientist

GTRI

Atlanta, GA

Stephen.Balakirsky@gtri.gatech.edu

Andrew Price
Graduate Student
GTRI
Atlanta, GA
arprice@gatech.edu

Craig Schlenoff
Group Leader
NIST
Gaithersburg, MD
Craig.Schlenoff@nist.gov

http://www.nist.gov/el/isd/crcl.cfm