Vrstva síťového přístupu, Ethernet

Účel fyzické vrstvy

Fyzické připojení

- Bez ohledu na to, zda se připojujete k místní tiskárně v domácnosti nebo na web v jiné zemi, než může dojít k jakékoli síťové komunikaci, musí být navázáno fyzické připojení k místní síti
 - o kabelové připojení pomocí kabelů (switch, PC, notebook, ...)
 - bezdrátového připojení pomocí rádiových vln (Mobilní zařízení, tablet, notebook, router
 ...)

Bezdrátový router

- 1) Bezdrátová anténa
- 2) Ethernetové switchporty
- 3) Internet port

Připojení k bezdrátovém portu

- NIC (Network Interface Card)
 - o Připojuje zařízení k síti
 - Ethernet NICs = drátové připojení
 - WLAN NICs = bezdrátové připojení

Fyzická vrstva

- Poskytuje prostředky k přenosu bitů, které tvoří rámec vrstvy datové spojení, přes síťové médium
- Tato vrstva přijímá celá rámec z vrstvy datového spojení a kóduje jej jako sérii signálů, které jsou přenášeny na místní média
- Kódované bity, které obsahují rámec, jsou přijímány buď koncovým zařízením nebo mezilehlým zařízením

Charakteristiky fyzické vrstvy

Standarty fyzické vrstvy

- Fyzická vrstva se skládá z:
 - o Elektrických obvodů
 - Média
 - Konektorů

Fyzické komponenty

- Standarty fyzické vrstvy se zabývají třemi funkčními oblastmi
 - Fyzické komponenty
 - Kódování
 - Signalizace

Fyzické komponenty

- Hardwarová zařízení, média a další konektory, které přenášejí signály představující bity
 - o NIC
 - o Interface
 - Konektory
 - Kabelové materiály
 - o Kabelový design

Kódování

- Kódování nebo Kódování řádků je metoda převodu proudu datových bitů na předdefinovaný "kód"
- Kódy jsou seskupení bitů používaných k zajištění předvídatelného vzoru, který lze rozpoznat odesílatelem i přijímačem
- Kódování je metoda nebo vzor používaný k reprezentaci digitálních informací
- Manchester kódování reprezentuje 0 jako high->low a 1 jako low->high

The transition occurs at the middle of each bit period.

Signalizování

Fyzická vrstva musí generovat elektrické, optické nebo bezdrátové signály, které představují "1"
 a "0" na mediu

Měděný kabel

Optický kabel

Bezdrátová media

Šířka pásma

- Různá fyzická média podporují přenos bitů různou rychlostí
- O přenosu dat se obvykle hovoří z hlediska šířky pásma
- Šířka pásma je kapacita, pří, které může médium přenášet data
- Digitální šířka pásma měří množství dat, která mohou v daném čase proudit z jednoho místa na druhé
- Praktickou šířku pásma sítě určuje kombinace faktorů:
 - Vlastnosti fyzického média
 - o Technologie zvolené pro signalizaci a detekci síťových signálů
- Běžné používané měrné jednotky pro šířku pásma:

Unit of Bandwidth	Abbreviation	Equivalence
Bits per second	bps	1 bps = fundamental unit of bandwidth
Kilobits per second	Kbps	1 Kbps = 1,000 bps = 10 ³ bps
Megabits per second	Mbps	1 Mbps = 1,000,000 bps = 10 ⁶ bps
Gigabits per second	Gbps	1 Gbps = 1,000,000,000 bps = 10 ⁹ bps
Terabits per second	Tbps	1 Tbps = 1,000,000,000,000 bps = 10 ¹² bps

Terminologie

- Termíny používané k měření kvality šířky pásma:
 - Latence
 - o Propustnost
 - Goodput

Latence

0

 Množství času, včetně zpoždění, za které mohou data cestovat z jednoho daného bodu do druhého

Propustnost

- o Míra přenosu bitů napříč médii za dané časové obdoví
- Faktory, které ovlivňují propustnost:

- Množství provozu
- Druh provozu
- Latence vytvořená počtem síťových zařízení zjištěných mezi zdrojem a cílem

Goodput

- Míra použitelných dat přenesených za dané časové období
- Propustnost mínus režie provozu pro navázání relací, potvrzení, zapouzdření a znovu přenášené bity
- Goodput je vždy nižší než propustnost, která je obecně nižší než šířka pásma

0

Měděné kabely

Charakteristiky měděných kabelů

- Existují tři různé typy měděných kabelů, které se používají v konkrétních situacích
- Používá se, protože je:
 - Levné
 - o Jednoduché na instalaci
 - Nízký odpor vůči elektrickému proudu
- Limitovány:
 - Vzdáleností
 - Interferencí signálu
- Data jsou přenášena na měděných kabelech jako elektrické impulsy
- Detektor v síťovém rozhraní cílového zařízení musí přijímat signál, který lze úspěšně dekódovat, aby odpovídal odeslanému signálu
- Čím dále se však signál šíří, tím více se zhoršuje => útlum signálu
- Hodnoty časování a napětí elektrických impulzů jsou také náchylné k rušení ze dvou zdrojů:
 - Electromagnetic interference (EMI) nebo Radio Frequency Interference (RFI)
 - Signály EMI a RFI mohou narušit a poškodit datové signály přenášené měděnými médii
 - Potenciální zdroje EMI a RFI zahrnují rádiové vlny a elektromagnetická zařízení, jako jsou zářivky nebo elektromotory

Crosstalk

 Je rušení způsobené elektrickým nebo magnetickým polem signálu na jednom vodiči na signál v sousedním vodiči

- V telefonních obvodech, crosstalk může vést ke slyšení části jiné hlasové konverzace ze sousedního obvodu
- Když elektrický proud protéká drátem, vytváří kolem drátu malé kruhové magnetického pole, které může být zachyceno sousedním vodičem

- 1. A pure digital signal is transmitted
- 2. On the medium, there is an interference signal
- 3. The digital signal is corrupted by the interference signal.
- 4. The receiving computer reads a changed signal. Notice that a 0 bit is now interpreted as a 1 bit.
- Aby se zabránilo negativním účinkům:
 - EMI a RFI, jsou některé typy měděných kabelů obaleny kovovým stíněním a vyžadují řádné uzemnění
 - Crosstalk, některé typy měděných kabelů mají protilehlé páry vodičů obvodu zkroucené dohromady, což efektivně ruší přeslech
- Citlivost měděných kabelů na elektronický šum lze také omezit pomocí těchto doporučení:
 - Výběru typu nebo kategorie kabelu nejvhodnější pro dané síťové prostředí
 - Navrhování kabelové infrastruktury tak, aby se zabránilo známým a potenciálním zdrojům interference v konstrukci budovy
 - Používání kabelážních technik, které zahrnují správné zacházení a ukončení kabelů

Druhy měděných kabelů

• V síti se používají tři hlavní typy měděných médií

Shielded Twisted-Pair (STP) Cable

Coaxial Cable

UTP (Unshielded twisted-pair)

- Zakončena konektorem RJ-45 se používá k propojení hostitelů sítě se zprostředkujícími síťovými zařízeními (router, switch, ...)
- V LAN síti se UTP kabel skládá z 4 párů barevně odlišených vodičů, které byly stočeny dohromady a poté obaleny pružným plastovým pláštěm, který chrání před drobným fyzickým poškozením
- Zkroucení vodičů pomáhá chránit před interferencí signálu z jiných vodičů

The numbers in the figure identify some key characteristics of unshielded twisted pair cable:

- 1. The outer jacket protects the copper wires from physical damage.
- 2. Twisted-pairs protect the signal from interference.
- 3. Color-coded plastic insulation electrically isolates wires from each other and identifies each pair.

STP (Shielded twisted-pair)

- Poskytuje lepší ochranu proti hluku než kabeláž UTP
- Ve srovnání s kabelem UTP je však kabel STP výrazně dražší a obtížně se instaluje
- STP také používá RJ-45 konektor
- Kombinují techniky stínění proti EMI a RFI a kroucení drátu pro potlačení crosstalku
- Aby bylo možné plně využít výhody stínění, jsou kabely STP zakončeny speciálními stíněnými datovými konektory STP

 Pokud je kabel nesprávně uzemněn, může štít fungovat jako anténa a zachytávat nežádoucí signály

The numbers in the figure identify some key features of shielded twisted pair cable:

- 1. Outer jacket
- 2. Braided or foil shield
- 3. Foil shields
- 4. Twisted pairs

Koaxiál

- Pojmenován podle skutečnosti, že existují dva vodiče, které sdílejí stejnou osu
- Skládá se z následujících prvků:
 - Měděný vodič k přenosu elektrických signálů
 - Pružná plastová izolace
 - Tkaný měděný opletení nebo kovová fólie, která působí jako druhý vodič v obvodu a
 jako štít pro vnitřní vodič
 - Snižuje množství vnějšího elektromagnetického rušení
 - Celý kabel je pokryt pláštěm kabelu, aby nedošlo k drobnému fyzickému poškození
- Používají se v následujících situacích:
 - Bezdrátové instalace
 - Připevňují antény k bezdrátovým zařízením
 - Přenáší vysokofrekvenční (RF) energii mezi anténami a rádiovým zařízením
 - o Instalace kabelového internetu
 - Poskytovatelé kabelových služeb poskytují svým zákazníkům připojení
 k internetu nahrazením částí koaxiálního kabelu a podporou zesilovacích prvků
 kabelem z optických vláken

The numbers in the figure identify some key features of coaxial cable:

- 1. Outer lacket
- 2. Braided copper shielding
- Plastic insulation

UTP kabeláž

Vlastnosti UTP kabeláže

- Způsoby, jak omezit negativní účinek crosstalku:
 - Cancellation
 - Když jsou dva vodiče v elektrickém obvodu umístěny blízko sebe, jejich magnetická pole jsou přesně opačná
 - Proto se obě magnetická pole navzájem ruší a také ruší jakékoliv vnější signály
 EMI a RFI
 - Měnící se počet zákrutů na pár vodičů
 - UTP kabel musí odpovídat přesným specifikacím, které určují, kolik zkroucení nebo opletení je povoleno na metr kabelu

Standarty a konektory UTP kabelů

- Kategorie 3:
 - o Se původně používala pro hlasovou komunikaci po hlasových linkách
 - o Později přenos dat
- Kategorie 5 a 5e:
 - Slouží k přenosu dat
 - o 5 podporuje 100Mbps
 - o 5e podporuje 1000 Mbps

- Kategorie 6:
 - o Má přidaný oddělovač mezi každým párem vodičů pro podporu vyšších rychlostí
 - o Podporuje 10 Gbps
- Kategorie 7:
 - o Podporuje 10 Gbps
- Kategorie 8:
 - o Podporuje 40 Gbps

Category 5 and 5e Cable (UTP)

Přímé a křížené UTP kabely

- Přímý:
 - Nejběžnější typ síťového kabelu
 - Obvykle se používá k propojení hostitele se switchem a switch s routerem
- Křížený:
 - K propojení stejných zařízení
 - Switch -> Switch
 - Host -> Host
 - o Router -> Router

Cable Type	Standard	Application
Ethernet Straight-through	Both ends T568A or both ends T568B	Connects a network host to a network device such as a switch or hub
Ethernet Crossover	One end T568A, other end T568B	Connects two network hosts Connects two network intermediary devices (switch to switch or router to router)
Rollover	Cisco proprietary	Connects a workstation serial port to a router console port, using an adapter

Optické kabely

Vlastnosti kabeláže z optických vláken

- Přenáší data na delší vzdálenosti a na větší šířku pásma než jakékoli jiné síťové médium
- Optické vlákno je flexibilní, ale extrémně tenký, průhledný pramen z velmi čistého skla, který není o moc větší než lidský vlas
- Bity jsou na vlákně kódovány jako světelné impulsy
- Slouží jako vlnovod nebo "světelná trubice" k přenosu světla mezi dvěma konci s minimální ztrátou signálu

Druhy vláknových médii

- Kabely z optických vláken se obecně dělí na dva typy:
 - Single-mode fiber (SMF)
 - Se skládá z velmi malého jádra a používá drahou laserovou technologií k odeslání jediného paprsku světla
 - Populární v situacích na dlouhé vzdálenosti, které se rozprostírají stovky kilometrů (dálkové telefonie, kabelová televize, ...)

Multimode fiber (MMF)

- Se skládá z většího jádra a používá LED vysílače k vysílání světelných pulsů
- Konkrétně světlo z LED vstupuje do multimode vlákna v různých úhlech
- Populární v LAN sítích, protože mohou být napájeny nízkonákladovými LED
- Poskytuje šířku pásma až 10 Gb/s na délku linky až 550 metrů

Použití kabelů s optickými vlákny

- Používá se nyní ve čtyřech průmyslových odvětvích:
 - Podnikové sítě
 - Backbone
 - Propojení infrastrukturních zařízení
 - Fiber-to-the-Home (FTTH)
 - Poskytování trvale širokopásmových služeb domácnostem a malým podnikům
 - Long-Haul Networks
 - Používají poskytovatelé služeb k propojení zemí a měst
 - o Podmořské kabelové sítě
 - Zajištění spolehlivých vysokorychlostních a vysokokapacitních řešení schopných přežít v drsných podmořských prostředích až do transoceánských vzdáleností

Optické konektory

- Hlavními rozdíly mezi typy konektorů jsou rozměry a způsoby připojení
- Straight-Tip (ST)

Subscriber Connector (SC)

Lucent Connector (LC)

• Duplex Multimode LC

0

Vláknové patch kabely

- Použití barvy rozlišuje mezi single-mode a multimode patch kabely
- Žlutá barva je pro single-mode kabely a oranžová (nebo aqua) pro multimode kabely
- SC-SC multimode

• LC-LC Single-mode

• ST-LC Multimode

SC-ST Single-mode

0

Vlákno vs Měď

Implementation Issues	UTP Cabling	Fiber-Optic Cabling
Bandwidth supported	10 Mb/s - 10 Gb/s	10 Mb/s - 100 Gb/s
Distance	Relatively short (1 - 100 meters)	Relatively long (1 - 100,000 meters)
Immunity to EMI and RFI	Low	High (Completely immune)
Immunity to electrical hazards	Low	High (Completely immune)
Media and connector costs	Lowest	Highest
Installation skills required	Lowest	Highest
Safety precautions	Lowest	Highest

Bezdrátové média

- Poskytuje největší možnosti mobility ze všech médií a počet bezdrátových zařízení se neustále zvyšuje
- Omezení bezdrátového připojení:
 - o Pokrytí
 - o Rušení
 - o Bezpečnost
 - o Sdílené médium

Druhy bezdrátových médií

- Wi-Fi
- Bluetooth
- WiMAX
- Zigbee