VALIDADE MEDIANTE REGRAS DE INFERÊNCIA

Lógica Matemática

TESTAR VALIDADE MEDIANTE REGRAS DE ÎNFERÊNCIA

X Um método eficiente para demostrar, verificar ou testar a validade de um argumento $P_1,\ P_2,\ \dots,P_n\vdash Q$ consiste em deduzir a conclusão Q a partir das premissas $P_1,\ P_2,\ \dots\ ,P_n$ mediante o uso de algumas regras de inferência.

x 1) Verificar que é válido o seguinte argumento:

$$(p \rightarrow q), \qquad (p \wedge r) \qquad \vdash \qquad q$$

2	$\xrightarrow{\bigcirc}$	1. 2.	$p \to q$ $p \wedge r$	Por premissa Por premissa
2		3. 4.	р q	De (2) por SIMP De (1) e (3) por MP

x 2) Verificar que é válido o seguinte argumento:

$$(p \land q), \qquad (p \lor r \to s) \qquad \vdash \quad p \land s$$

3	 1. 2. 	$p \land q$ $p \lor r \to s$	Por premissa Por premissa
	$2 \rightarrow 3$.	${p}$	De (1) por SIMP
3	── 4.	$p \lor r$	De (3) por AD
4 —		S	De (2) e (4) por MP
	6.	$p \wedge s$	De (3) e (5) por CONJ

x 3) Verificar que é válido o seguinte argumento:

$$(p \to (q \to r)), (p \to q), p \vdash r$$

x Resolução:

1.
$$p \rightarrow (q \rightarrow r)$$
 Por premissa
2. $p \rightarrow q$ Por premissa
2. $p \rightarrow q$ Por premissa
3. p Por premissa
4. $q \rightarrow r$ De (1) e (3) por MP
5. q De (2) e (3) por MP

De (4) e (5) por MP

4) Verificar que é válido o seguinte argumento:

$$(p \to q)$$
, $(p \land q \to r)$, $\neg (p \land r) \vdash \neg p$

x 5) Verificar que é válido o seguinte argumento:

$$(p \lor q \to r), \qquad (r \lor q \to (p \to (s \leftrightarrow t))), \qquad (p \land s) \qquad \vdash \quad (s \leftrightarrow t)$$

x 6) Verificar que é válido o seguinte argumento:

$$(p \to \neg q), \quad (\neg p \to (r \to \neg q)), \quad (\neg s \lor \neg r) \to \neg \neg q, \quad \neg s \vdash \neg r$$

x 7) Verificar que é válido o seguinte argumento:

$$(p \land q \rightarrow r), \quad (r \rightarrow s), \quad t \rightarrow \neg u, \quad t, \quad \neg s \lor u \quad \vdash \quad \neg (p \land q)$$

x 8) Verificar que é válido o seguinte argumento:

$$(p \rightarrow q), \qquad (q \rightarrow r), \qquad (s \rightarrow t), \qquad (p \lor s) \vdash (r \lor t)$$

1.
$$p \rightarrow q$$
 Por premissa
2. $q \rightarrow r$ Por premissa
3. $s \rightarrow t$ Por premissa
4. $p \lor s$ Por premissa
5. $p \rightarrow r$ De (1) e (2) por SH
6. $r \lor t$ De (5), (3) e (4) por DC

x 9) Verificar que é válido o seguinte argumento:

$$(p \to q), \quad (\neg r \to (s \to t)), \quad r \lor (p \lor s), \quad \neg r \vdash (q \lor t)$$

x 10) Verificar que é válido o seguinte argumento:

$$(p \to q), \qquad ((p \to r) \to s \lor q), \qquad (p \land q \to r), \qquad \neg s \vdash q$$

x 11) Verificar que é válido o seguinte argumento:

$$(p \to q), \quad (p \lor (\neg \sim r \land \neg \neg q)), \quad (s \to \neg r), \quad \neg (p \land q) \vdash \neg s \lor \neg q$$

x 12) Verificar que é válido o seguinte argumento:

$$(p \rightarrow r)$$
, $(q \rightarrow s)$, $\neg r$, $(p \lor q) \land (r \lor s) \vdash s$

```
1.p \rightarrow rPor premissa2.q \rightarrow sPor premissa3.\neg rPor premissa4.(p \lor q) \land (r \lor s)Por premissa
```

x 13) Verificar que é válido o seguinte argumento:

$$(p \rightarrow q)$$
, $(q \rightarrow r)$, $(r \rightarrow s)$, $\neg s$, $(p \lor t) \vdash t$

```
1.p \rightarrow qPor premissa2.q \rightarrow rPor premissa3.r \rightarrow sPor premissa4.\neg sPor premissa5.p \lor tPor premissa
```

x 14) Verificar que é válido o seguinte argumento:

$$(p \to q) \land (r \to s), \qquad (t \to u), \qquad (u \to v), \qquad (\neg q \lor \neg v) \vdash (\neg p \lor \neg t)$$

1.
$$(p \rightarrow q) \land (r \rightarrow s)$$
Por premissa2. $t \rightarrow u$ Por premissa3. $u \rightarrow v$ Por premissa4. $\neg q \lor \neg v$ Por premissa

x 15) Verificar que é válido o seguinte argumento:

$$(x = y \to x = z), (x = z \to x = 1), (x = 0 \to x \neq 1), (x = y) \vdash (x \neq 0)$$

- x Resolução:
- X Neste caso, vale a pena converter as expressões matemáticas em proposições utilizando símbolos proposicionais.

$$p: x = y$$
 $r: x = 1$
 $q: x = z$ $s: x = 0$

X Temos assim:

$$(p \rightarrow q)$$
, $(q \rightarrow r)$, $(s \rightarrow \neg r)$, $p \vdash \neg s$

x 16) Verificar que é válido o seguinte argumento:

1. se
$$x = y$$
 então $x = z$
2. se $x = z$ então $x = t$
3. ou $x = y$ ou $x = 0$
4. se $x = 0$ então $x + u = 1$
5. mas $x + u \neq 1$
Portanto, $x = t$

x Resolução:

X Neste caso, devemos converter as expressões matemáticas em proposições utilizando símbolos proposicionais.

$$p: x = y$$
 $r: x = t$ $w: x + u = 1$
 $q: x = z$ $s: x = 0$

X Substituindo temos:

1.
$$p \rightarrow q$$

2. $q \rightarrow r$
3. $\neg (p \leftrightarrow s)$
4. $s \rightarrow w$
5. $\neg w$
 \vdots r

x 17) Verificar que é válido o seguinte argumento:

$$(x = y \rightarrow x = z), (x \neq y \rightarrow x < z), (x \lessdot z \lor y > z), (y \neq z) \land (x \neq z) \vdash (y > z)$$

- x Resolução:
- X Neste caso, vale a pena converter as expressões matemáticas em proposições utilizando símbolos proposicionais.

$$p: x = y$$
 $r: x < z$ $t: y \neq z$ $q: x = z$ $s: y > z$

X Temos assim:

$$(p \rightarrow q), (\neg p \rightarrow r), (\neg r \lor s), t \land \neg q \vdash s$$

REFERÊNCIAS

Matemática. Capítulo 11. Validade mediante Regras de Inferência. Editora Nobel. São Paulo. 1975. Reimpresso em 2015.