1 Preliminaries

D $f: I \to \mathbb{R}^d$, where $f(x) = (f_1(x), \dots f_d(x))$

- f is continuous if **each** f_i is continuous
- f is differentiable if **each** f_i is differentiable
- \bullet f is injective if at least one f_i is injective
- If f is surjective, each f_i is surjective

T Mean Value Let $f:[a,b] \to \mathbb{R}$ be continuous and differentiable. Then $\exists c \in [a,b[$ s.t.

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

2 ODE

2.1 Introduction

D ODE: An equation for an unknown function f

- f is a function of one variable
- The equation relates f(x) to the values of its derivatives at the same point
- Order of ODE: order of the highest derivative

2.2 Linear ODEs

D Linear ODE is an equation of the form

$$y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_0y = b$$
, where

y=f(x) is the unknown function $a_{k-1}(x),...,a_0(x),b(x)$ are continuous functions

- **D** Linear homogeneous ODE: b(x) = 0
- **D** Linear inhomogeneous ODE: $b(x) \neq 0$

D Initial Value Problem for ODE: Specifying values of $y, y', ..., y^{(k-1)}$ at an initial point x_0

$$y(x_0) = y_0, y'(x_0) = y_1, ..., y^{(k-1)}(x_0) = y_{k-1}$$

T 2.2.3 $I \subset \mathbb{R}$, linear ODE of order $k \geq 1$

- (1) Let S_0 be the set of solutions for b=0. Then is S_0 a vector space of dimension k.
- (2) For any initial conditions, there is a unique solution $f \in S_0$, s.t.

$$y(x_0) = y_0, y'(x_0) = y_1, ..., y^{(k-1)}(x_0) = y_{k-1}$$

- (3) For an arbitrary b, the set of solutions is $S_b = \{f + f_p | f \in S_0\}$, where f_p is a particular solution
- (4) For any initial value problem, there is a unique solution $f \in S_b$

Bem: If $b \neq 0$, then S_b is not a vector space **Bem:** If f_1, f_2 are solutions for $b_1(x), b_2(x), f_1 + f_2$ is a solution for $b_1(x) + b_2(x)$

2.3 Linear ODEs of order 1

D Consider linear ODE of order 1: y' + ay = b

- 1. Solve homogeneous equation y' + ay = 0
- 2. Find a solution of inhomogeneous equation, s.t. S_b contains $f_0 + f$ where $f \in S$.

Bem: The solutions are given by $f_0 + zf_1$, where $z \in \mathbb{C}$ and f_1 is a basis of S

Bem: To solve the real value problem $f(x_0) = y_0$, one can solve $f_0(x_0) + zf_1(x_0) = y_0$

Bem: If $a \in \mathbb{R}$, then there exists $f_0, f_1 \in \mathbb{R}$

Procedure: Solving homogeneous equations

$$f_0(x) = z \cdot e^{-A(x)}$$
 for $z \in \mathbb{C}$

Procedure: Solving inhomogeneous equations

$$f_p(x) = \int b(x) \cdot e^{A(x)} dx \cdot e^{-A(x)}$$

$$f(x) = f_0(x) + f_p(x)$$

$$= z \cdot e^{-A(x)} + \int b(x) \cdot e^{A(x)} dx \cdot e^{-A(x)}$$

2.4 Linear ODE with constant coefs.

The equation takes the form: Let $a_{k-1},...,a_0\in\mathbb{C}$

$$y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_0y = b(x)$$

Procedure: Solving homogeneous equations We look for solutions of the form $f(x) = e^{\alpha x}, \alpha \in \mathbb{C}$

$$0 = y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_0y$$

= $e^{\alpha x}(\alpha^k + a_{k-1}\alpha^{k-1} + \dots + a_1\alpha + a_0)$
= $e^{\alpha x}P(\alpha)$

T f is a solution if and only if $P(\alpha) = 0$.

Bem: According to the Fundamental Theorem of Algebra, there are k roots for P in \mathbb{C} .

Bem: $P(\alpha)$ is the characteristic polynomial and the roots are called eigenvalues

Case 1: k distinct solutions for $P(\alpha) = 0$ $f_j(x) = e^{\alpha_j x}$ are linearly independent.

Every solution for the ODE is of the form:

$$f(x) = z_1 e^{\alpha_1 x} + \dots + z_k e^{\alpha_k x}$$
, with $z_1, ..., z_2 \in \mathbb{C}$

Case 2: $\exists \alpha$, which is a root of order $2 \le j \le k$

$$f_{\alpha,0}(x) = x^0 e^{\alpha x}, \dots, f_{\alpha,j-1}(x) = x^{j-1} e^{\alpha x}$$

Taking the union of the functions $f_{\alpha,j}$ for all roots of P, each with its multiplicity, gives a basis of the space of solutions.