Smooth Functions

- 1. Prove that every continuous linear functional; is differentiable with $Df[x] = \alpha$.
- 2. Prove that if a differentiable functional $f: \mathbb{R}^n \to \mathbb{R}$ is increasing, then $Df[\boldsymbol{x}_0](\boldsymbol{x}) \geq 0$ for all $\boldsymbol{x} \in X$, or $\frac{\partial f}{\partial x_i} \geq 0$ for all $i \in \{x_1,...,x_n\}$.
- 3. Let f be a differentiable functional. Prove that the $\nabla f(\mathbf{x}_0)$ is orthogonal to the hyperplane tangent to the contour through $f(\mathbf{x}_0)$.
- 4. Let the policy production function discussed above be written

$$f(x,y) = x^{\alpha} y^{\beta}$$

Give a sufficient condition for this function to be concave on $\{\mathbb{R}_{++} \times \mathbb{R}_{++}\}$. **Hint:** A 2×2 symmetric matrix A is negative definite if $A_{11} < 0$ and $A_{11}A_{22} - A_{12}A_{21} > 0$.

¹Carter 4.6