25. Sea
$$M_{22}$$
: $\begin{pmatrix} 1 & -1 \\ 0 & 6 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 3 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

- **26.** En C[0, 1]: e^x , e^{-x}
- *27. En C[0, 1]: sen x, cos x
- *28. En $C[0, 1]: x, \sqrt{x}, \sqrt[3]{x}$
- **29.** Determine una condición sobre los números a, b, c y d tal que los vectores $\begin{pmatrix} a \\ b \end{pmatrix}$ y $\begin{pmatrix} c \\ d \end{pmatrix}$ sean linealmente dependientes.
- *30. Encuentre una condición sobre los números a_{ij} tal que los vectores $\begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix}$, $\begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix}$, $\begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix}$
- 31. ¿Para qué valor(es) de α serán linealmente dependientes los vectores $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 3 \\ \alpha \\ 4 \end{pmatrix}$?
- 32. ¿Para qué valor(es) de α serán linealmente dependientes los vectores $\begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -4 \\ 6 \\ -2 \end{pmatrix}$, $\begin{pmatrix} \alpha \\ 1 \\ 2 \end{pmatrix}$?
- 33. ¿Para qué valor(es) de α serán linealmente dependientes los vectores $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -2 \\ -1 \\ -1 \end{pmatrix}$, $\begin{pmatrix} \alpha \\ 5 \\ 2 \end{pmatrix}$?
- **34.** ¿Para qué valor(es) de α y β serán linealmente independientes los vectores $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -2 \\ -1 \\ \beta \end{pmatrix}$, $\begin{pmatrix} \alpha \\ 5 \\ 2 \end{pmatrix}$?
- 35. Pruebe el teorema 5.4.3. [Sugerencia: Observe con atención el sistema 5.4.10.]
- **36.** Demuestre que si los vectores $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ son linealmente dependientes en \mathbb{R}^m , con m < n, y si \mathbf{v}_{n+1} es cualquier otro vector en \mathbb{R}^m , entonces el conjunto $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n, \mathbf{v}_{n+1}$ es linealmente dependiente.
- 37. Demuestre que si v_1, v_2, \ldots, v_n $(n \ge 2)$ son linealmente independientes, entonces también lo son v_1, v_2, \ldots, v_k , donde k < n.
- 38. Demuestre que si los vectores \mathbf{v}_1 y \mathbf{v}_2 diferentes de cero en \mathbb{R}^n son ortogonales (vea la página 82), entonces el conjunto $\{\mathbf{v}_1, \mathbf{v}_2\}$ es linealmente independiente.
- *39. Suponga que \mathbf{v}_1 es ortogonal a \mathbf{v}_2 y \mathbf{v}_3 y que \mathbf{v}_2 es ortogonal a \mathbf{v}_3 . Si \mathbf{v}_1 , \mathbf{v}_2 y \mathbf{v}_3 son diferentes de cero, demuestre que el conjunto $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ es linealmente independiente.
- **40.** Sea A una matriz cuadrada (de $n \times n$) cuyas columnas son los vectores, $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$. Demuestre que $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ son linealmente independientes si y sólo si la forma escalonada por renglones de A no contiene un renglón de ceros.

De los problemas 41 al 49 escriba las soluciones a los sistemas homogéneos dados en términos de uno o más vectores linealmente independientes.

41.
$$x_1 + x_2 + x_3 = 0$$
 42. $-3x_1 - x_2 + 8x_3 + 3x_4 = 0$ $_14x8x_2 - 5x_3 + 2x_4 = 0$