Vibration Open-Ended Project

REPORT 2019

[Experimental Investigation of Torsional Oscillations of a Single Rotor with Viscous Damping using MEMS accelerometer of an Android Smartphones and MATLAB.]

Meraj Ali Shah

Department of Mechanical Engineering, NEDUET, Karachi.

Sumaika Khan

Department of Mechanical Engineering, NEDUET, Karachi

- (1) Smartphone :Google Nexus 6p (2015); Sensor model: BMI160; Resolution:4.8mm/s²
- (2) Smartphone: Samsung Galaxy S5 (2015); Sensor model: MPU6500; Resolution: 0.6 mm/s²

Introduction:

This work describes the potential of modern mobile devices for vibration analysis & system identification. It shows how smartphones can be used as a vibration data logger to record acceleration time-history of a vibrating system that can be analyzed later with a well-developed tool like Tom Irvine's vibrationdata MATLAB GUIⁱ on MATLAB. Moreover, due to improved computational

performance & visual capabilities on recent smartphones, the data being logged can be processed using FFT algorithm and monitored simultaneously using some open-source apps like "iDynamics" available at Google Play. Since MEMS accelerometer used in mobile phones are low-power and have relatively higher noise ratios compared to that of industrial grade MEMS accelerometers (AdxI100x), use of Butterworth filter of higher order can give satisfactory results.

Experimental Setup:

The setup includes:

- Single Rotor with Viscous damping apparatus.
- Android Smartphone.
- A PC with MATLAB pre-installed.
- "Vibrationdata MATLAB GUI" by Tom Irvine.

The conical bottom of the rotor has the following marks

Mark Name`	Distance from the bottom(mm)	Radius(mm)	
Α	12.5	12.5	
В	25.0	25.0	
С	37.5	37.5	
D	50.0	50.0	
E	62.5	62.5	
F	75.0	75.0	
G	87.5	87.5	

Comparison of Accelerometer Data of Two Smartphones

Galaxy S5 sensor draw more power from battery (0.25 mA) but offers a good resolution(0.6mm/s²) Therefore more reliable for vibration measurements.

Nexus 6p sensor draw less power from battery (0.001 mA) but offers an average resolution(4.8mm/s²) The data can still give satisfactory results after applying Butterworth filter.

Comparison of Unfiltered & Filtered Data:

Here is a Comparison of Unfiltered accelerometer data which was taken when the oil in the oil sump is at mark **A**.

Since we are going to use Butterworth's Bandpassⁱⁱⁱ filter, we must first figure out the damped natural frequency of our underdamped system which can be found by doing an FFT of measured data.

FFT of our data shows a peak at 1.718Hz

We can now apply a 6th order band pass filter between **1.5Hz & 2Hz**

Determination of Damping:

Using "Damped-Sine Curve-Fit" from "Vibrationdata MATLAB GUI" to our filtered data (with oil level at mark A) results in a damping ratio of ξ =0.0016

1 damped sine curve fit between amplitude 0.4 m/s 2 to 0.2 m/s 2

Similarly, for different oil levels we obtained following results from two smartphones.

Mark Name`	Curve fit between 1m/s ² to 0.8 m/s ²		betv 0.4 m	ve fit ween n/s² to m/s²
	ξ	ω_{d}	ξ	ω_{d}
Α	0.0023	1.7124	0.0016	1.7168
В	0.0023	1.7126	0.0017	1.7168
С	0.0023	1.7124	0.0017	1.7168
D	0.0024	1.7127	0.0018	1.7168
Smartphone: Google Nexus 6p (2015)				

Sensor model: BMI160

Resolution: 4.8 mm/s²

Mark Name`	Curve fit between 1m/s ² to 0.8 m/s ²		between between 1m/s² to 0.4		bet 0.4 n	ve fit ween n/s² to m/s²
	ξ	ω_{d}	ξ	ω_{d}		
Α	0.0020	1.7152	0.0017	1.7198		
В	0.0020	1.7152	0.0017	1.7196		
С	0.0020	1.7152	0.0019	1.7199		
D	0.0022	1.7155	0.0020	1.7199		

Smartphone: Samsung Galaxy S5 (2015) Sensor model: MPU6500 Resolution:0.6mm/s²

Conclusions:

- Result shows a very slight increase in the damping ratio ξ by increasing the wetted area(oil level).
- Damping ratio is not constant instead it deceases as the amplitude decreases.

Ket	erer	nces:	

ⁱ-Tom Irvine MATLAB GUI https://www.Vibrationdata.com

ii -Vibration analysis using mobile devices (smartphones or tablets)

A.Feldbusch, H.Sadegh-Azar, P.Agne https://doi.org/10.1016/j.proeng.2017.09.543

iii In Wireless Engineer, vol. 7, 1930, pp. 536–541 - "On the Theory of Filter Amplifiers"-S. Butterworth