Floorplanning

Course contents:

- Normalized polish expression for slicing floorplans
- Sequence pair for general (non-slicing) floorplans
- Tree based non-slicing floorplans (B*-tree)
- ILP for general floorplans
- Modern floorplanning considerations

Floorplanning/Placement

Partitioning leads to

- Blocks with well-defined areas and shapes (rigid/hard blocks).
- Blocks with approximated areas and no particular shapes (flexible/soft blocks).
- A netlist specifying connections between the blocks.

Objectives

- Find locations for all blocks.
- Consider shapes of soft block and pin locations of all the blocks.

Floorplanning Problem

- Inputs to the floorplanning problem:
 - A set of blocks, hard or soft.
 - Pin locations of hard blocks.
 - A netlist.
- Objectives: minimize area, reduce wirelength for (critical) nets, maximize routability (minimize congestion), determine shapes of soft blocks

A non-optimal floorplan

Floorplan Examples

PowerPC 604

H.-M. Chen
Most Slides Courtesy of Prof. Y.-W.
Chang and Prof. Yih-Lang Li

Pentium 4

Early Layout Decision Methodology

- An IC is a 2-D medium; consider the dimensions of blocks in early stages of the design helps to improve the quality.
- Floorplanning gives early feedback
 - Suggests valuable architectural modifications
 - Estimates the whole chip area
 - Estimates delay and congestion due to wiring
- Floorplanning fits very well in a *top-down* design strategy; the *step-wise refinement* strategy also propagated in software design.
- Floorplanning considers the *flexibility* in the shapes and terminal locations of blocks.

Floorplan Design

- *Area: A=xy*
- Aspect ratio: $r \le y/x \le s$
- Rotation:
- Module connectivity

Slicing Floorplan Structure

- Rectangular dissection: Subdivision of a given rectangle by a finite # of horizontal and vertical line segments into a finite # of nonoverlapping rectangles.
- Slicing structure: a rectangular dissection that can be obtained by repetitively subdividing rectangles horizontally or vertically.
- Slicing tree: A binary tree, where each internal node represents a vertical cut line or horizontal cut line, and each leaf a basic rectangle.
- Skewed slicing tree: One in which no node and its right child are the same.

Floorplan Order

- Wheel: The smallest non-slicing floorplans (Wang and Wong, TCAD, Aug. 92).
- Order of a floorplan: a slicing floorplan is of order 2.
- Floorplan tree: A tree representing the hierarchy of partitioning.

The two possible wheels.

A floorplan of order 5

Corresponding floorplan tree

Slicing Floorplan Design by Simulated Annealing

Related work

- Wong & Liu, "A new algorithm for floorplan design," DAC-86.
 - Considers slicing floorplans.
- Wong & Liu, "Floorplan design for rectangular and L-shaped modules," ICCAD'87.
 - Also considers L-shaped modules.
- Wong, Leong, Liu, Simulated Annealing for VLSI Design, pp. 31--71, Kluwer Academic Publishers, 1988.

Ingredients

- solution space
- neighborhood structure
- cost function
- annealing schedule

Solution Representation

- An expression E = e₁ e₂... e_{2n-1}, where e_i ∈ {1, 2, ..., n, H, V},
 1 ≤ i ≤ 2n-1, is a Polish expression of length 2n-1 iff
 - every operand j, $1 \le j \le n$, appears exactly once in E;
 - 2. **(the balloting property)** for every subexpression $E_i = e_1 \dots e_i$, $1 \le i \le 2n$ -1, # operands > # operators.

```
1 6 H 3 5 V 2 H V 7 4 H V

# of operands = 4 ...... = 7

# of operators = 2 ...... = 5
```

- Polish expression ↔ Postorder traversal.
- *ijH*: rectangle *i* on bottom of *j*; *ijV*: rectangle *i* on the left of *j*.

Redundant Representation

Question: How to eliminate ambiguous representation?

Normalized Polish Expression

- A Polish expression $E = e_1 e_2 \dots e_{2n-1}$ is called **normalized** iff E has no consecutive operators of the same type (H or V).
- Given a normalized Polish expression, we can construct a unique rectangular slicing structure.

E = 16H2V75VH34HVA normalized Polish expression

Neighborhood Structure

• Chain: HVHVH ... or VHVHV ...

- Adjacent: 1 and 6 are adjacent operands; 2 and 7 are adjacent operands; 5 and V are adjacent operand and operator.
- 3 types of moves:
 - M1 (Operand Swap): Swap two adjacent operands.
 - -M2 (Chain Invert): Complement some chain (V = H, H = V).
 - M3 (Operator/Operand Swap): Swap two adjacent operand and operator.

Effects of Perturbation

- Question: The balloting property holds during the moves?
 - M1 and M2 moves are OK.
 - Check the M3 moves! Reject "illegal" M3 moves.
- Check M3 moves: Assume that M3 swaps the operand e_i with the operator e_{i+1} , $1 \le i \le k-1$. Then, the swap will not violate the balloting property iff $2N_{i+1} \le i$.
 - $-N_k$: # of operators in the Polish expression $E = e_1 e_2 \dots e_k$, 1 ≤ k ≤ 2n-1

Cost Function

- $\phi = A + \lambda W$.
 - A: area of the smallest rectangle
 - W: overall wiring length
 - λ : user-specified parameter

- $W=\sum_{ij}c_{ij}d_{ij}$.
 - $-c_{ii}$: # of connections between blocks *i* and *j*.
 - $-d_{ii}$: center-to-center distance between basic rectangles *i* and *j*.

Area Computation for Hard Blocks

Allow rotation

- Wiring cost?
 - Center-to-center interconnection length

Incremental Computation of Cost Function

- Each move leads to only a minor modification of the Polish expression.
- At most two paths of the slicing tree need to be updated for each move.

Incremental Computation of Cost Function (cont)

E = 12H34V56VHV

E = 12H34V56VHV

E = 123H4V56VHV

Annealing Schedule

Initial solution: 12V3V ... nV.

- $T_i = r^i T_0$, i = 1, 2, 3, ...; r = 0.85.
- At each temperature, try kn moves (k = 5-10).
- Terminate the annealing process if
 - # of accepted moves < 5%,</p>
 - temperature is low enough, or
 - run out of time.

Algorithm: Wong-Liu (P, ϵ , r, k)

```
1 begin
2 E \leftarrow 12V3V4V ... nV; /* initial solution */
3 Best \leftarrow E; T_0 \leftarrow \frac{\Delta_{avg}^{cr}}{ln(P)}; M \leftarrow MT \leftarrow uphill \leftarrow 0; N = kn; 4 repeat
4 repeat
     MT \leftarrow \text{uphill} \leftarrow \text{reject} \leftarrow 0; \quad \blacksquare
     repeat
       SelectMove(M);
       Case M of
       M_1: Select two adjacent operands e_i and e_i; NE \leftarrow Swap(E, e_i, e_i);
       M_2: Select a nonzero length chain C; NE \leftarrow Complement(E, C);
10
11
       M_2: done \leftarrow FALSE:
12
           while not (done) do
13
               Select two adjacent operand e_i and operator e_{i+1};
               if (e_{i-1} \neq e_{i+1}) and (2 N_{i+1} < i) then done \leftarrow TRUE;
14
15
           NE \leftarrow Swap(E, e_i, e_{i+1});
       MT \leftarrow MT+1; \triangle cost \leftarrow cost(NE) - cost(E);
       if (\triangle cost \le 0) or (Random < \triangle cost)
17
18
        then
            if (\triangle cost > 0) then uphill \leftarrow uphill + 1;
            E \leftarrow NE:
20
21
            if cost(E) < cost(best) then best \leftarrow E;
22
         else reject \leftarrow reject + 1;
      until (uphill > N) or (MT > 2N);
       T \leftarrow rT; /* reduce temperature */
25 until (reject/MT > 0.95) or (T < \varepsilon) or OutOfTime;
26 end
```

Extension to L-Shaped Modules

- Unary operator L: Change an L-shaped figure into a rectangle
- Binary operators V_1 , V_2 , H_1 , H_2 : Combine 2 rectangles or L-shaped figures to form a rectangle or an L-shaped figure.
- Can generate non-slicing floorplans.

Shape Curve for Floorplan Sizing

- A soft (flexible) blocks b can have different aspect ratios, but is with a fixed area A.
- The shape function of b is a hyperbola: xy = A, or y = AIx, for width x and height y.
- Very thin blocks are often not interesting and feasible to design
 - Add two straight lines for the constraints on aspect ratios.
 - Aspect ratio: $r \le y/x \le s$.

Shape Curve

- Since a basic block is built from discrete transistors, it is not realistic to assume that the shape function follows the hyperbola continuously.
- In an extreme case, a block is rigid/hard: it can only be rotated and mirrored during floorplanning or placement.

The shape curve of a 2×4 hard block.

Shape Curve (cont)

- In general, a *piecewise linear* function can be used to approximate any shape function.
- The points where the function changes its direction, are called the corner (break) points of the piecewise linear function.

Feasible Implementations

 Shape curves correspond to different kinds of constraints where the shaded areas are feasible regions.

(a) rigid, fixed orientation

orientation

orientation

orientation

Vertical Abutment

 Composition by vertical abutment (horizontal cut) ⇒ the addition of shape functions.

Deriving Shapes of Children

 A choice for the minimal shape of a composite block fixes the shapes of its children blocks.

Slicing Floorplan Sizing

- The shape functions of all leaf blocks are given as piecewise linear functions.
- Traverse the slicing tree to compute the shape functions of all composite blocks (bottom-up composition).
- Choose the desired shape of the top-level block
 - Only the corner points of the function need to be evaluated for area minimization.
- Propagate the consequences of the choice down to the leaf blocks (top-down propagation).
- The sizing algorithm runs in polynomial time for slicing floorplans
 - NP-complete for non-slicing floorplans

P*-admissible Solution Space

- P-admissible solution space for Problem P (Murata et al., ICCAD-95)
 - the solution space is finite,
 - every solution is feasible,
 - evaluation for each configuration is possible in polynomial time and so is the implementation of the corresponding configuration (P), and
 - 4. the configuration corresponding to the best evaluated solution in the space coincides with an optimal solution of P. (admissible)
- P*-admissible solution space (Lin & Chang, DAC-2002)
 - 5. The relationship between any two blocks is defined in the representation (topological representation).
- Slicing floorplan is **not** P-admissible. Why?
- P*-admissible floorplan representations: Sequence Pair, BSG, TCG, TCG-S.

Sequence Pair (SP)

- Murata, Fujiyoshi, Nakatake, Kajitani, "Rectangle-Packing Based Module Placement," ICCAD-95 (also in *The Best of ICCAD*)
- Represent a packing by a pair of module-name sequences (e.g., (abdecf, cbfade)).
 - Solution space: (n!)²
- Correspond all pairs of the sequences to a P-admissible solution space.
- Search in the P-admissible solution space (by simulated annealing).
 - Swap two nodes only in a sequence
 - Swap two nodes in both sequences

A floorplan
Chang and Prof. Yin-Lang Li

Relative Module Positions

- A floorplan is a partition of a chip into rooms, each containing at most one block.
- Locus (right-up, left-down, up-left, down-right)
 - 1. Take a non-empty room.
 - 2. Start at the center of the room, walk in two alternating directions to hit the sides of rooms.
 - 3. Continue until to reach a corner of the chip.
- **Positive locus** Γ_+ : Union of right-up locus and left-down locus.
- Negative locus Γ₋: Union of up-left locus and down-right locus.

Geometrical Information

- No pair of positive (negative) loci cross each other, i.e., loci are linearly ordered.
- SP uses two sequences (Γ_+, Γ_-) to represent a floorplan.
 - H-constraint: (..a..b.., ..a..b..) iff a is on the left of b
 - V-constraint: (..a..b..,..b..a..) iff b is below a

Loci of module b

Positive loci: abdecf

Negative loci: cbfade

 $(\Gamma_+, \Gamma_-) = (abdecf, cbfade)$

(\square_+, \square_-) -Packing

- For every SP (□₊, □₋), there is a (□₊, □₋) packing.
- Horizontal constraint graph $G_H(V, E)$ (similarly for $G_V(V, E)$):
 - V: source s, sink t, n vertices for modules.
 - E: (s, x) and (x, t) for each module x, and (x, y) iff x must be left to y.

Vertex weight: 0 for s and t, width of module x for the other vertices.

Pucking for sequence pair: (ubdecf, cbfude)

Horizontal constraint graph (Transitive edges are not shown)

Verticul construint gruph (Trunsitive edges ure not shown)

Cost Evaluation for Sequence Pair (1/3)

- Graph-based packing computation
 - Optimal (□₊, □₋)-Packing can be obtained in O(n²) time by applying a longest path algorithm on a vertex-weighted directed acyclic graph. (Murata et.al., ICCAD-95)
 - G_H and G_V are independent.
 - The X and Y coordinates of each module are the minimum values of the longest path length between s and the corresponding vertex in G_H and G_V , respectively.

Cost Evaluation for Sequence Pair (2/3)

- Graph-based packing computation (cont)
 - Building constraint graph (relative placement computation)
 - $O(n^2)$ time (Murata et.al., ICCAD-95)
 - O(nlogn) time (Lin et.al., ISCAS-2000) : Direct view algorithm
 - Mapping (absolute placement computation)
 - $O(n^2) \rightarrow O(n \log n)$
 - Incremental packing computation
 - $O(\sqrt{n} \log \sqrt{n})$ (Lin et.al., ECCTD-2001)

Cost Evaluation for Sequence Pair (3/3)

- Non-graph-based packing computation
 - Maximum-weighted common subsequence (Tang & Wong, DATE-2000 and ASP-DAC-2001)
 - Compute block positions
 - Based on computing the longest common subsequence in a pair of weighted sequences
 - Cost evaluation can be done in O(n lg lg n) time (ASP-DAC-2001)

Maximum-Weight Common Subsequence (MWCS) (1/6)

- A weighted sequence is a sequence on a given set S, and every element in S has a weight.
- Example:

A sequence (4 3 1 6 2 5) weight: 4 3 3 2 4 6

- Given 2 weighted sequences X and Y, a sequence Z is a common subsequence of X and Y if Z is a subsequence of both X and Y.
- Example:

```
X=(4\ 3\ 1\ 6\ 2\ 5) Y=(6\ 3\ 5\ 4\ 1\ 2)
Z=(3\ 1\ 2) is a common subsequence
```

Source: X. Tang

Maximum-Weight Common Subsequence (MWCS) (2/6)

The length of a common subsequence

$$Z=(z_1z_2...z_n)$$
 is: $\sum_{i=1}^n w(z_i)$

MWCS is the common subsequence with the maximal length:

 $\max_{Z} \sum_{i} w(z_{i})$

• Example:

X=(431625) Y=(635412) weight: 234634 634243 (312) is a MWCS. Its length is 10=3+4+3.

Maximum-Weight Common Subsequence (MWCS) (3/6)

5 paths correspond to 5 comm. subseq. of (*X*, *Y*)

4 1 2

3 1 2

3 5

62

6 5

weight = width of block

Correspondence with constraint graph G_h

$$(X, Y) = <431625, 635412>$$

Maximum-Weight Common Subsequence (MWCS) (4/6)

5 paths correspond to

5 comm. subseq. of (X^R, Y)

634

6 1

5 4

5 1

5 2

weight = height of block

Correspondence with constraint graph G_v

$$(X^R, Y) = <5 \ 2 \ 6 \ 1 \ 3 \ 4, 6 \ 3 \ 5 \ 4 \ 1 \ 2>$$

 X^R is the reverse of X

Maximum-Weight Common Subsequence (MWCS) (5/6)

Oblique grid

placement

Seq-Pair (X,Y)=(4 3 1 6 2 5, 6 3 5 4 1 2), weight: blocks' width

Maximum-Weight Common Subsequence (MWCS) (6/6)

Oblique grid

placement

Seq-Pair, (X^R,Y)= (5 2 6 1 3 4, 6 3 5 4 1 2), weights: blocks' height

B*-Tree: Compacted Floorplan Representation

- Chang et. al., "B*-tree: A new representation for non-slicing floorplans," DAC-2k.
 - Compact modules to left and bottom.
 - Construct an ordered binary tree (B*-tree).
 - Left child: the lowest, adjacent block on the right $(x_j = x_i + w_i)$.
 - Right child: the first block above, with the same xcoordinate ($x_i = x_i$).

B*-tree Packing

- x-coordinates can be determined by the tree structure.
 - Left child: the lowest, adjacent block on the right $(x_i = x_i + w_i)$.
 - Right child: the first block above, with the same x-coordinate $(x_i = x_i).$

Computing y-coordinates

 Reduce the complexity of computing a y-coordinate to amortized O(1) time. (same as in O-tree)

Contour Data Structure

Electronic Design Automation

Ch. 10 - Floorplanning - P. 46

B*-Tree Perturbation

- □ Op1: rotate a macro
- □ Op2: move a node to another place
- □ Op3: swap two nodes

Simulated Annealing Using B*-trees

□ The cost function is based on problem requirements.

Pros and Cons

Advantages

- Binary tree based, efficient and easy.
- Flexible to deal with hard, preplaced, soft, and rectilinear modules.
- Transformation between a tree and its placement takes only linear time (v.s. $O(n^2)$ or $O(n \log n)$ for sequence pair).
- Operate only on one B*-tree (v.s. 2 O-trees).
- Can evaluate area cost incrementally.
- Smaller solution space: only $O(n! \, 4^n/n^{1.5})$ combinations (v.s. $O((n!)^2)$ for sequence pair).
- Directly corresponds to multilevel framework for large-scale floorplan designs.

Disadvantages

- Representation may change after packing.
- Less flexible than sequence pair in representation
 - Can represent only compacted placement.

B*-Tree May Change after Packing

For compacted floorplan representations, the representation might change after packing.

The resulting placement might not correspond to the original B*-tree due to the compacting operation during packing.

Coping with Pre-placed Modules

- If there are modules ahead or lower than b_i so that b_i cannot be placed at its fixed position (x^f_i, y^f_i) , exchange b_i with the module in $D_i = \{b_i \mid (x_i, y_i) \le (x^f_i, y^f_i)\}$ that is closest to (x^f_i, y^f_i) .
- Incremental area cost update is possible.
 - = E.g., the positions of b_0 , b_7 , b_8 , b_{11} , b_9 , b_{10} , and b_1 (before b_2 in the DFS order of T) remain unchanged after the exchange since they are in front of b_2 in the DFS order.

b₆ is a preplaced module

Coping with Rectilinear Modules

- Wu, Chang, Chang, "Rectilinear block placement using B*trees," ICCD-00
- Partition a rectilinear module into rectangular sub-modules.

- Keep **location constraints** for the sub-modules.
 - E.g., Keep the right sub-module as the left child in the B*-tree.
- Align sub-modules, if necessary.
- Treat the sub-modules of a module as a whole during processing.

Coping with Soft Modules (1/2)

- Step1: Change the shape of the inserted soft module.
- Step2: Change the shapes of other soft modules.

Coping with Soft Modules (1/2)

- Step1: Change the shape of the inserted soft module
- Step2: Change the shape of other soft modules

H.-M. Chen
Most Slides Courtesy of Prof. Y.-W.
Chang and Prof. Yih-Lang Li

Coping with Soft Modules (2/2)

- Step1: Change the shape of the inserted soft module
- Step2: Change the shapes of other soft modules

Coping with Soft Modules (2/2)

- Step1: Change the shape of the inserted soft module
- Step2: Change the shape of other soft modules

H.-M. Chen
Most Slides Courtesy of Prof. Y.-W.
Chang and Prof. Yih-Lang Li

Perturbations & Solutions

- Perturbing B*-trees in simulated annealing
 - Op1: Rotate a module.
 - [Op2: Flip a module.]
 - Op3: Move a module to another place.
 - Op4: Swap two modules.
- ami49: Area = 36.74 mm²; dead space = 3.53%; CPU time = 0.25 min on SUN Ultra 60 (optimum = 35.445 mm²).

Rectangular, L-, and T-shaped modules

Multilevel B*-trees

- Lee, Hsu, Chang, Yang, "Multilevel floorplanning/placement for large-scale modules using B*-trees," DAC-2003.
- Two stages for MB*-tree: clustering followed by declustering.
- Clustering
 - Iteratively groups a set of modules based on area utilization and module connectivity.
 - Constructs a B*-tree to keep the geometric relations for the newly clustered modules.
- Declustering
 - Iteratively ungroups a set of the previously clustered modules (i.e., perform tree expansion)
 - Refines the solution using simulated annealing.

Multilevel B*-tree Example

(d) Cluster 3, 8, 9 into 10; Construct a B*-subtree

(e) Decluster 10 to 3, 8, 9

(f) Refine the solution by moving 8

Multilevel B*-tree Example (cont'd)

(g) Decluster 9 to 1, 2, 4 (h) Refine the solution by moving 2, 3

(i) Decluster 8 to 5, 6, 7

(j) Refine the solution by moving 4

Floorplanning by Mathematical Programming

- Sutanthavibul, Shragowitz, and Rosen, "An analytical approach to floorplan design and optimization," 27th DAC, 1990.
- Notation:
 - w_i , h_i : width and height of module M_i .
 - (x_i, y_i) : coordinate of the lower left corner of module M_i .
 - $a_i \le w_i/h_i \le b_i$: aspect ratio w_i/h_i of module M_i . (Note: We defined aspect ratio as h_i/w_i before.)
- Goal: Find a mixed integer linear programming (ILP) formulation for the floorplan design.
 - Linear constraints? Objective function?

Nonoverlap Constraints

• Two modules M_i and M_j are nonoverlap, if at least one of the following linear constraints is satisfied (cases encoded by p_{ij} and q_{ij}):

$$\begin{array}{lll} \textit{M_i to the left of M_j:} & \textit{$x_i+w_i\leq x_j$} & \textit{0} & \textit{0} \\ \textit{M_i below M_j:} & \textit{$y_i+h_i\leq y_j$} & \textit{0} & \textit{1} \\ \textit{M_i to the right of M_j:} & \textit{$x_i-w_j\geq x_j$} & \textit{1} & \textit{0} \\ \textit{M_i above M_j:} & \textit{$y_i-h_j\geq y_j$} & \textit{1} & \textit{1} \end{array}$$

- Let W, H be upper bounds on the floorplan width and height, respectively.
- Introduce two 0, 1 variables p_{ij} and q_{ij} to denote that one of the above inequalities is enforced; e.g., $p_{ij} = 0$, $q_{ij} = 1 \Rightarrow y_i + h_i \leq y_j$ is satisfied

$$x_i + w_i \le x_j + W(p_{ij} + q_{ij})$$

 $y_i + h_i \le y_j + H(1 + p_{ij} - q_{ij})$
 $x_i - w_j \ge x_j - W(1 - p_{ij} + q_{ij})$
 $y_i - h_j \ge y_j - H(2 - p_{ij} - q_{ij})$

Cost Function & Constraints

- Minimize Area = xy, nonlinear! (x, y: width and height of the resulting floorplan)
- How to fix?
 - Fix the width W and minimize the height y!
- Four types of constraints:
 - no two modules overlap $(\forall i, j: 1 \le i \le j \le n)$;
 - each module is enclosed within a rectangle of width W and height $H(x_i + w_i \le W, y_i + h_i \le H, 1 \le i \le n)$;
 - 3. $x_i \ge 0, y_i \ge 0, 1 \le i \le n$;
 - 4. $p_{ij}, q_{ij} \in \{0, 1\}.$
- w_i , h_i are known.

Mixed ILP for Floorplanning

Mixed ILP for the floorplanning problem with rigid, fixed modules.

- Size of the mixed ILP: for *n* modules,
 - # continuous variables: O(n); # integer variables: $O(n^2)$; # linear constraints: $O(n^2)$.
 - Unacceptably huge program for a large n! (How to cope with it?)
- Popular LP software: LINDO, lp_solve, etc.

Mixed ILP for Floorplanning (cont)

Mixed ILP for the floorplanning problem: rigid, freely oriented modules.

- For each module i with free orientation, associate a 0-1 variable r_i:
 - r_i = 0: 0° rotation for module i.
 - $-r_i$ = 1: 90° rotation for module *i*.
- $M = \max\{W, H\}$.

Reducing the Size of the Mixed ILP

- Time complexity of a mixed ILP: exponential!
- Recall the large size of the mixed ILP: # variables, # constraints: $O(n^2)$.
 - How to fix it?
- Key: Solve a partial problem at each step
 - successive augmentation
 - Classic cluster-growth greedy approach
 - Repeatedly select subsets of modules and formulate corresponding linear programs, along with additional constraints from previously selected modules
- Questions:
 - How to select next subgroup of modules?
 linear ordering based on connectivity. (cluster growth)
 - How to minimize the # of required variables?

Reducing the Size of the Mixed ILP (cont)

- Size of each successive mixed ILP depends on (1) # of modules in the next group; (2) "size" of the partially constructed floorplan.
- Keys to deal with (2)
 - Minimize the problem size of the partial floorplan.
 - Replace the already placed modules by a set of covering rectangles.
 - # rectangles is usually much smaller than # placed modules.

Interconnect-Centric Floorplanning

Floorplanning greatly influences interconnect structure

Interconnect Planning

- Pin assignment and routing of global interconnects
- Buffer insertion and sizing
 - Buffer block planning
- Wire sizing

Floorplanning and Interconnect Planning

Interconnect-Centric Floorplanning: ami49 (1/2)

Interconnect-Centric Floorplanning: ami49 (2/2)

Fixed-Outline Floorplanning

- □ Input
 - Modules, netlist, fixed outline
- Output
 - Module positions, orientations
- Objectives
 - Minimize the half-perimeter wirelength (HPWL)
 - All modules are within the fixed die (fixed-outline constraint) and no overlaps occur between modules

Fixed-Outline Constraint

- Fixed-outline floorplanning is more prevailing in modern VLSI design
- Given the maximum white-space fraction Γ and desired aspect ratio R*, the outline is defined by

$$H^* = \sqrt{(1+\Gamma)AR^*}$$
 $W^* = \sqrt{(1+\Gamma)A/R^*}$

- $R^* = H^*/W^*, H^*W^* = (1+\Gamma)A$
- □ Cost for floorplan *F*

$$\Phi(F) = \alpha A + \beta L + (1 - \alpha - \beta)(R * - R)^2$$

- A Block area
- L Wirelength
- *R** Fixed-outline aspect ratio
- R Current floorplan aspect ratio

Defer: Fixed-Outline Slicing Floorplan

- Slice line direction (H/V)
- Left-right or top-bottom relative order

J. Z. Yan, and C. Chu, "DeFer: Deferred Decision Making Enabled Fixed-Outline Floorplanning Algorithm," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 367–381, 2010.

Optimal Slack-Driven Block Shaping Algorithm in Fixed-Outline Floorplanning

□ Input

ISPD 2012 Best Paper Award (by J. Z. Yan and C. Chu)

- n Blocks
 - \square Area A_i for block i
 - lacksquare Width bounds W_i^{\min} and W_i^{\max} for block i
 - lacktriangle Height bounds H_i^{\min} and H_i^{\max} for block I
- \blacksquare Constraint graphs G_h and G_v
- Fixed-outline region

□ Output

- Block coordinates (x_i, y_i) , width w_i and height h_i
 - All blocks inside fixed-outline region
 - □ All blocks without overlaps

Optimal Slack-Driven Block Shaping Algorithm in Fixed-Outline Floorplanning

- \bullet G_h, G_v
- Shape of *n* blocks

horizontal slack

$$s_i^h = \max(0, \Delta_{x_i})$$

vertical slack

$$s_i^v = \max(0, \Delta_{y_i})$$

Optimal Slack-Driven Block Shaping Algorithm in Fixed-Outline Floorplanning

- ☐ Horizontal Critical Path (**HCP**)
- □ Vertical Critical Path (VCP)

Length of VCP = Layout height \mathcal{Y}_{n+1}

$$\frac{d}{dx}BL(y=0)$$

Basic Slack-Driven Shaping

- □ Soft blocks are shaped iteratively.
- ☐ At each iteration, apply two operations:

- Globally distribute the total amount of slack to the individual soft block.
- Algorithm stops when there is no identified soft block to shape.
- Layout height is monotonically reducing, and layout width is bouncing, but always within the upper bound.

Summary: Floorplanning (1/3)

- Floorplanning objectives: (1) minimize area, (2) meet timing constraints, (3) maximize routability (minimize congestion), ((4) determine shapes of soft modules)
- Existing representations
 - Slicing: slicing tree (DAC-82), normalized Polished expression (DAC-86)
 - Mosaic: CBL (ICCAD-2k), Q-Sequence (AP-CAS-2k, DATE-02), Twin binary tree (ISPD-01)
 - Compacted: O-tree (DAC-99), B*-tree (DAC-2k), MB*-tree (DAC-03),
 CS (TVLSI, 2003)
 - General: SP (ICCAD-95), BSG (ICCAD-96), TCG (DAC-01), TCG-S (DAC-02).
- P*-admissible representations: all representations for general floorplans.
- P-admissible, non-P*-admissible representations (for area): all for compacted floorplans.
- What makes a good representation?
 - Easy, effective, efficient, flexible, stable

Summary: Floorplanning (2/3)

Other issues

- Soft module: shape curve (NPE, DAC-86), (Integer) linear programming (DAC-90, DAC-2k), stretching range (B*-tree, DAC-2k), Lagrangian relaxation (SP, ISPD-2k)
- Preplaced module: ASPDAC-98 (BSG), ASPDAC-01 (SP), DAC-2K (B*-tree), ISCAS-01 (B*-tree), DAC-02 (TCG-S)
- Symmetry module: DAC-99 (SP), ICCAD-02 (B*-tree)
- Rectilinear module: TCAD-2K (SP), ICCAD-98 (SP), ISPD-98 (SP), ISPD-01 (SP), DATE-02 (TCG), TVLSI-02 (TCG), ICCD-2K (B*-tree), ACM TODAES-03 (B*-tree), ISPD-01 (O-tree)
- Range constraint: ISPD-99 (NPE), ASPDAC-01 (SP), DAC-02 (TCG-S)
- Boundary constraint: ASPDAC-01 (SP), DAC-02 (TCG-S), IEE Proc.-02 (B*-tree)
- Since each representation has its pros and cons, so maybe we can
 - Integrate two or more representations to get a better one (e.g., TCG-S, DAC-02)
 - Apply different representations at different stages
- Large-scale module floorplanning/placement (MB*-tree, DAC-03)

Summary: Floorplanning (3/3)

- Performance-driven floorplanning
 - Buffer planning (ICCAD-99, ISPD-2K, DAC-01, ASPDAC-03)
 - Wire planning (ICCAD-99)
 - Power supply planning (ASPDAC-01)
 - Power supply noise-aware floorplanning (ASPDAC-03)
- Fixed-outline floorplanning

2003 MOE IC/CAD Contest: Problem 1

Chip Floorplanning with Hard/Soft Macros


```
Input files :-
[problem1.mac]:
\sim chip, bbox = (100,100)
              2000 0.6 1.5₽
.macro
              3000
                      0.8
                          1.2⊬
.macro
              3000 0.8 1.5₽
.macro
              2000
                      0.8 0.8 // hard macro₽
.macro
[problem1.spc]:\vdash
.net N1 A B C₽
Output files : ₽
[problem1.rpt]+
\underline{\text{macro}} \quad \mathbf{A} \quad (0, 50) \ (40, 100) \leftarrow
.macro B (40, 50) (100, 100) ₽
<u>.macro</u> C (0,0) (60,50)₽
          D = (60, 0) (100, 50) +
.macro
       110∉
.mst
       100000+
.area
```

2003 MOE IC/CAD Contest: Problem 3

 Block and Input/Output Buffer Placement for Skew/Delay Minimization in Flip-chip Design

2005 MOE IC/CAD Contest Problem 5

- Chip placement for MPW (Multiple Project Wafer)
 - Manufacturing cost minimization in shuttle mask sharing in getting certain amount of prototyping chips
- Needs to decide the floorplan of reticle(s) and cut lines for wafer(s) in order to get less cost
 - Also needs to consider manufacturing technology issue (#metal layers)
- Needs some algorithmic aspects and geometrical thinking
- References:
 - A.B. Kahng et.al., "Multi-Project Reticle Floorplanning and Wafer Dicing", ISPD 2004
 - Report from previous generation problem (online soon)

Illustrations for MPW

