Отчёт по лабораторной работе №6

Архитектура компьютера

Морозова Мария Вячеславовна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Ответы на вопросы	15
6	Выполнение самостоятельной работы	16
7	Листинги	18
8	Выводы	20

Список иллюстраций

4.1	Создание каталога и фаила	8
4.2	Создание файла, запуск	8
4.3	Исправленный текст программы	9
4.4	Создание файла, запуск	9
4.5		10
4.6	Создание файла, запуск	10
4.7		10
4.8	Создание, запуск	11
4.9	Замена	11
4.10	Создание, запуск	11
4.11	Создание файла	12
4.12	Текст программы	12
	,	13
4.14	Изменённый текст	13
4.15	Создание файла, запуск	13
4.16	Создание файла	14
4.17	Текст программы	14
4.18	Создание файла, запуск	14
6.1	Текст программы	16
6.2		16
6.3		17

Список таблиц

1 Цель работы

Освоение арифметических инструкций языка ассемблера NASM.

2 Задание

Написать программу вычисления выражения y=f(x).

3 Теоретическое введение

Схема команды целочисленного сложения add (от англ. addition - добавление) выполняет сложение двух операндов и записывает результат по адресу первого операнда. Команда add работает как с числами со знаком, так и без знака и выглядит следующим образом: add , Команда целочисленного вычитания sub (от англ. subtraction – вычитание) работает анало- гично команде add и выглядит следующим образом: sub , Еще одна команда, которую можно отнести к арифметическим командам это команда изменения знака neg: neg Умножение и деление, в отличии от сложения и вычитания, для знаковых и беззнаковых чисел производиться по-разному, поэтому существуют различные команды. Для беззнакового умножения используется команда mul (от англ. multiply – умножение): mul Для знакового умножения используется команда imul: imul Для деления, как и для умножения, существует 2 команды div (от англ. divide - деление) и idiv: div; Беззнаковое деление idiv; Знаковое деление

4 Выполнение лабораторной работы

Создала каталог для программ лабораторной работы No 6, перешла в него и создала файл lab6-1.asm. (рис. 4.1).

```
mvmorozova@dk2n24 ~ $ mkdir ~/work/arch-pc/lab06
mvmorozova@dk2n24 ~ $ cd ~/work/arch-pc/lab06
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ touch lab6-1.asm
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $
```

Рис. 4.1: Создание каталога и файла

Создала исполняемый файл и запустила его. (рис. 4.2).

```
mvmorozova@dk2n24 -/work/arch-pc/lab06 $ nasm -f elf lab6-1.asm
mvmorozova@dk2n24 -/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-1 lab6-1.o
mvmorozova@dk2n24 -/work/arch-pc/lab06 $ ./lab6-1
j
mvmorozova@dk2n24 -/work/arch-pc/lab06 $ ...
```

Рис. 4.2: Создание файла, запуск

Изменила текст программы и вместо символов, записала в регистры числа. (рис. 4.3).

```
%include 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

Рис. 4.3: Исправленный текст программы

Создала исполняемый файл и запустила его. (рис. 4.4).

```
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ nasm -f elf lab6-1.asm
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-1 lab6-1.o
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ ./lab6-1

mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ ...
```

Рис. 4.4: Создание файла, запуск

Изменила текст программы. (рис. 4.5).

```
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
call iprintLF
call quit
```

Рис. 4.5: Изменения

Создала файл, скомпоновала его и запустила. (рис. 4.6).

```
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ touch ~/work/arch-pc/lab06/lab6-2.asm
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ nasm -f elf lab6-2.asm
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ ./lab6-2
106
```

Рис. 4.6: Создание файла, запуск

Изменила текст программы. (рис. 4.7).

```
Minclude 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
call iprintLF
call quit
```

Рис. 4.7: Изменения

Создала исполняемый файл и запустила его. (рис. 4.8).

```
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ nasm -f elf lab6-2.asm
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ ./lab6-2
10
```

Рис. 4.8: Создание, запуск

Заменила iprintLF на iprint. (рис. 4.9).

```
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
call iprint
call quit
```

Рис. 4.9: Замена

Создала исполняемый файл и запустила его. (рис. 4.10).

```
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ nasm -f elf lab6-2.asm
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ ./lab6-2
10mvmorozova@dk2n24 ~/work/arch-pc/lab06 $
```

Рис. 4.10: Создание, запуск

Создала файл lab6-3.asm в каталоге lab06. (рис. 4.11).

```
mvmorozovaedkzn24 */work/arch-pc/lab06 $ ./lab6=2
10mvmorozova@dk2n24 */work/arch-pc/lab06 $ touch */work/arch-pc/lab06/lab6-3.asm
mvmorozova@dk2n24 */work/arch-pc/lab06 $ |
```

Рис. 4.11: Создание файла

Ввела текст программы из листинга. (рис. 4.12).

```
%include 'in_out.asm' ; подключение внешнего файла
      ON .<mark>data</mark>
DB 'Результат: ',0
      DB 'Остаток от деления: ',0
       _start
; ---- Вычисление выражения
mov eax,5 ; EAX=5
mov ebx,2 ; EBX=2
mov ebx,2; EBX=2
mul ebx; EAX=EAX*EBX
add eax,3; EAX=EAX+3
xor edx,edx ; обнуляем EDX для корректной работы div
mov ebx,3 ; EBX=3
div ebx ; EAX=EAX/3, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
mov eax,div ; вызов подпрограммы печати
call sprint ; сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати значения
call iprintLF ; из 'edi' в виде символов
mov eax,rem ; вызов подпрограммы печати
call sprint ; сообщения 'Остаток от деления: '
mov eax,edx ; вызов подпрограммы печати значения
call iprintLF ; из 'edx' (остаток) в виде символов
call quit ; вызов подпрограммы завершения
```

Рис. 4.12: Текст программы

Создала исполняемый файл и запустила его. (рис. 4.13).

```
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ nasm -f elf lab6-3.asm
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-3 lab6-3.o
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ ./lab6-3
Результат: 4
Остаток от деления: 1
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $
usergdk4n31:-$
```

Рис. 4.13: Компоновка, запуск

Изменила текст программы. (рис. 4.14).

```
GNU nano 7.2 /afs/.dk.sci.pfu.edu.ru/home/m/v/mvmo
%include 'in_out.asm'; подключение внешнего файла
SECTION .data
div: DB 'Peayльтат: ',0
rem: DB 'Ocтаток от деления: ',0
SECTION .text
GLOBAL _start
_start:
; ---- Вычисление выражения
mov eax,4; EAX=5
mov ebx,6; EBX=2
mul ebx; EAX=EAXXEBX
add eax,2; EAX=EAXXEBX
add eax,2; EAX=EAXXEBX
add eax,2; EAX=EAXX/3, EDX=octatok от деления
mov edi,eax; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
mov eax,div; вызов подпрограммы печати
call sprint; сообщения 'Результат: '
mov eax,edi; вызов подпрограммы печати
call iprintLF; из 'edi' в виде символов
mov eax,rem; вызов подпрограммы печати
call sprint; сообщения 'Остаток от деления: '
mov eax,edx; вызов подпрограммы печати
call iprintLF; из 'edi' в виде символов
call quit; вызов подпрограммы печати значения
call iprintLF; из 'edx' (остаток) в виде символов
call quit; вызов подпрограммы завершения
```

Рис. 4.14: Изменённый текст

Создала исполняемый файл, запустила его, чтобы проверить его работу. (рис. 4.15).

```
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ nasm -f elf lab6-3.asm
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-3 lab6-3.o
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ ./lab6-3
Результат: 5
Остаток от деления: 1
```

Рис. 4.15: Создание файла, запуск

Создала файл variant.asm. (рис. 4.16).

```
mvmorozova@dk2n24 -/work/arch-pc/lab06 $ touch ~/work/arch-pc/lab06/variant.asm
|mvmorozova@dk2n24 -/work/arch-pc/lab06 $ |
```

Рис. 4.16: Создание файла

Ввела текст из листинга. (рис. 4.17).

```
GNU nano /.2
                                             /ats/.ak.
%include 'in_out.asm'
       'Введите № студенческого билета: ',0
      ов 'Ваш вариант: ',0
       .bss
       80
      _start
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,x ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, 'eax=x'
xor edx,edx
mov ebx,20
div ebx
inc edx
mov eax, rem
call sprint
mov eax,edx
call iprintLF
call quit
```

Рис. 4.17: Текст программы

Создала исполняемый файл и запустила его, узнала номер варианта. (рис. 4.18).

```
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ nasm -f elf variant.asm
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o variant variant.o
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $ ./variant
Введите № студенческого билета:
1132236066
Ваш вариант: 7
mvmorozova@dk2n24 ~/work/arch-pc/lab06 $
```

Рис. 4.18: Создание файла, запуск

5 Ответы на вопросы

- 1. За вывод сообщения "Ваш вариант" отвечают строки: mov eax,rem call sprint
- 2. mov ecx, x используют, чтобы положить адрес вводимой строки x в регистр ecx mov edx, 80 запись в регистр edx длины вводимой строки call sread вызов подпрограммы из внешнего файла, обеспечивающей ввод сообщения с клавиатуры
- 3. call atoi вызов подпрограммы из внешнего файла, которая преобразует ascii-код символа в целое число и записывает результат в регистр еах
- 4. За вычисления варианта отвечают строки: xor edx,edx ; обнуление edx для корректной работы div mov ebx,20 ; ebx = 20 div ebx ; eax = eax/20, edx остаток от деления inc edx ; edx = edx + 1
- 5. При выполнении инструкции div ebx остаток от деления записывается в регистр edx
- 6. Инструкция inc edx прибавляет 1 к значению регистра edx
- 7. За вывод на экран результатов вычислений отвечают строки: mov eax,edx call iprintLF

6 Выполнение самостоятельной работы

Написала программу для вычисления выражения y=f(x). (рис. 6.1).

```
call sprint ; вызов подпрограммы печати сообщения
mov есх, х ; запись адреса переменной в есх
mov edx, 80 ; запись длины вводимого значения в edx
call sread ; вызов подпрограммы ввода сообщения
mov eax, x ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, 'eax=x'
sub eax,1; eax = eax-1 = x - 1
mov ebx,eax ; запись значения x-1 в регистр ebx
mul ebx; EAX=EAX*EBX = (x-1)*(x-1)
mov ecx,5 ; запись значения 5 в регистр ecx
mul ecx; EAX=EAX*ECX = (x-1)*(x-1)*5
mov edi,eax ; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
mov eax,rem ; вызов подпрограммы печати
call sprint ; сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати значения
```

Рис. 6.1: Текст программы

Проверка работы программы для х1. (рис. 6.2).

```
mvmorozova@dk8n81 ~/work/arch-pc/lab06 $ ./function
Введите значение переменной х: 3
Результат: 20mvmorozova@dk8n81 ~/work/arch-pc/lab06 $ mc
```

Рис. 6.2: Проверка

Проверка работы программы для х2. (рис. 6.3).

```
mvmorozova@dk8n81 ~/work/arch-pc/lab06 $ ./function
Введите значение переменной х: 5
Результат: 80mvmorozova@dk8n81 ~/work/arch-pc/lab06 $
```

Рис. 6.3: Проверка

7 Листинги

```
%include 'in_out.asm' ; подключение внешнего файла
SECTION .data ; секция инициированных данных
msg: DB 'Введите значение переменной х: ',0
rem: DB 'Результат: ',0
SECTION .bss ; секция не инициированных данных
х: RESB 80 ; Переменная, значение к-рой будем вводить с клавиатуры, выделенный ра
SECTION .text ; Код программы
GLOBAL _start ; Начало программы
_start: ; Точка входа в программу
; ---- Вычисление выражения
mov eax, msg ; запись адреса выводимиого сообщения в eax
call sprint ; вызов подпрограммы печати сообщения
mov есх, х ; запись адреса переменной в есх
mov edx, 80 ; запись длины вводимого значения в edx
call sread; вызов подпрограммы ввода сообщения
mov eax, x ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, `eax=x`
sub eax,1; eax = eax-1 = x - 1
mov ebx,eax; запись значения x-1 в регистр ebx
mul ebx; EAX=EAX*EBX = (x-1)*(x-1)
mov ecx,5 ; запись значения 5 в регистр есх
mul ecx; EAX=EAX*ECX = (x-1)*(x-1)*5
```

mov edi,eax ; запись результата вычисления в 'edi'

; ---- Вывод результата на экран

mov eax,rem ; вызов подпрограммы печати

call sprint ; сообщения 'Результат: '

mov eax,edi ; вызов подпрограммы печати значения

call iprint ; из 'edi' в виде символов

call quit ; вызов подпрограммы завершения

8 Выводы

Были освоены арифметические инструкции языка ассемблера NASM.