2019 OSS 개발자 포럼 겨울 캠프

AlphaZero - Day 2

옥찬호

Nexon Korea, Microsoft MVP utilForever@gmail.com

오늘 다룰 내용

- 신경망 구조 설계
 - 입력 데이터 전처리
 - 신경망 구조
- MCTS 변형
- 학습 시키기
 - 학습 데이터 만들기
 - 학습

PyTorch 설치

https://pytorch.org/get-started/locally/

torch.Tensor

- 다차원의 행렬을 표현할 때 사용되는 numpy의 ndarray와 비슷한 자료형.
- GPU를 효율적으로 사용할 수 있다.

torch.empty, torch.zeros 등을 이용해서 tensor를 만들 수 있다.

```
x = torch.empty((1, 2))
y = torch.zeros((1, 2))
print(x)
print(y)
tensor([[4.2141e-36, 0.0000e+00]])
tensor([[0., 0.]])
```

torch_tensor를 이용해 파이썬 변수를 Tensor로 변환할 수 있다.

```
\times = torch.tensor(1.)
y = torch.tensor([0., 1., 2., 3.])
print(x, y)
tensor(1.) tensor([0., 1., 2., 3.])
```

torch_cuda_is_available()가 True일 경우, GPU로 Tensor를 옮겨 연산 속도를 높일 수 있다.

방법 1

```
x = torch.zeros((1, 2))
x = x.cuda()
print(x)

tensor([[0., 0.]], device='cuda:0')
```

방법 2

```
x = torch.zeros((1, 2))
device = torch.device('cuda')
x = x.to(device)
print(x)

tensor([[0., 0.]], device='cuda:0')
```

사칙연산, 내적 등의 연산을 할 수 있다.

```
x = torch.tensor([[1, 2], [3, 4]])
y = torch.tensor([[5, 6], [7, 8]])
print(x + y) # 방법 1
print(torch.add(x, y)) # 방법 2
tensor([[ 6, 8],
       [10, 12]])
tensor([[ 6, 8],
       [10, 12]])
```

```
\times = torch.tensor([[1, 2], [3, 4]])
y = torch.tensor([[5, 6], [7, 8]])
print(x * y) # 방법 1
print(torch.mul(x, y)) # 방법 2
tensor([[ 5, 12],
    [21, 32]])
tensor([[ 5, 12],
     [21, 32]])
```

값이 하나뿐이라면, item을 이용해 파이썬 정수로 바꿀 수 있다.

```
\times = torch.tensor([[1.]])
n = x.item()
print(n)
```

view를 이용해 Tensor의 shape를 바꿀 수 있다.

```
\times = torch.tensor([1., 2., 3., 4.])
y = x.view(-1, 2)
print(x)
print(v)
tensor([1., 2., 3., 4.])
tensor([[1., 2.],
         [3., 4.]])
```

Tensor의 backward로, requires_grad=True인 Tensor들이 포함된 연산들에 대해 Backpropagation을 할 수 있다.

```
w = torch.tensor([1., 2.], requires_grad=True)
b = torch.tensor([1.], requires_grad=True)
x = torch.tensor([[1., 1.]])
p = w * x + b
p = p.mean()
p.backward()
print(p.grad_fn, w.grad)
<MeanBackwardO object at 0x7f47478c30f0> tensor([0.5000, 0.5000])
```

torch.nn.Module

torch,nn에 있는 Module 클래스는 복잡한 신경망 구현을 효율적으로 할 수 있게 도와준다.

이후 슬라이드에서 다룰 클래스들은 모두 Module의 서브클래스이다.

from torch import nn

torch_nn_Linear(in_features, out_features, bias=True) $Linear(x) = W^{T}x + b$

```
m = nn.Linear(2, 1)
input = torch.tensor([[1.0, 1.0]])
output = m(input)
print(m.weight)
print(m.bias)
print(output)
```

```
Parameter containing:
tensor([[-0.6183, -0.1833]]
Parameter containing:
tensor([-0.3479], requires_:
tensor([[-1.1494]], grad_fn:
```

torch.nn.ReLU

torch.nn.ReLU(inplace=False)

 $\overline{\text{ReLU}(x)} = \overline{\text{max}(0,x)}$

inplace=True일 경우, input으로 들어온 Tensor를 수정한다.

```
m = nn.ReLU()
input = torch.tensor([1., -1.]) input = torch.tensor([1., -1.])
output = m(input)
print(output)
tensor([1., 0.])
```

```
m(input)
print(input)
tensor([1., 0.])
```

torch.nn.Tanh

torch.nn.Tanh()

$$Tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

```
m = nn.Tanh()
input = torch.tensor([1., -1.])
output = m(input)
print(output)

tensor([ 0.7616, -0.7616])
```

torch.nn.Conv2d

2019 OSS Winter AlphaZero 오목 Al - Day 2

torch_nn_Conv2d(in_channels, out_channels, kernel_size, padding=1)

```
m=nn.Conv2d(33, 12, 4, padding=2)
input = torch.randn(5, 33, 15, 15)
output = m(input)
print(input.shape, output.shape)

torch.Size([5, 33, 15, 15]) torch.Size([5, 12, 16, 16])
```

torch.nn.Sequential(*args)

args에 전달된 순서대로 Module을 연결해 새로운 Module을 만든

```
model = nn.Sequential(

nn.Conv2d(1, 20, 5),

nn.ReLU(),

nn.Conv2d(20, 64, 5),

nn.ReLU()
```

```
input = torch.randn(5, 1, 15, 15)
output = model(input)
print(input.shape)
print(output.shape)

torch.Size([5, 1, 15, 15])
torch.Size([5, 64, 7, 7])
```

사용자 정의 Module

이전 슬라이드에서 다루었던 Module들 보다 더 복잡한 모델을 원한다면, Module의 서브클래스를 정의하면 된다.

```
class Network(nn.Module):
    def __init__(self, input_dim):
        super(Netword, self).__init__()
        self.linear = nn.Linear(input_dim, 128)
        self.relu = nn.ReLU()
    def forward(self, x):
        return self.relu(self.linear(x))
```

parameters

Module의 parameters를 이용하면, Module에 있는 Tensor중에서 학습시킬 수 있는(requires_grad=True) Tensor를 추출할 수 있다.

```
m = nn.Linear(2, 1)
for p in m.parameters():
 print(p)
|Parameter_containing:
Parameter containing:
tensor([0.4808], requires_grad=True)
```

softmax, mse_loss 등 필요한 함수들이 구현되어 있는 패키지

보통 F라는 이름으로 import해서 사용한다.

import torch.nn.functional as F

F.log_softmax

F.log_softmax(input, dim=None)

log_softmax
$$(x_i) = \log \left(\frac{\exp(x_i)}{\sum_j \exp(x_j)} \right)$$

F.mse_loss

F.mse_loss(input, target)

$$mse_loss(x,y) = \frac{\sum_{N} (x_i + y_i)^2}{N}$$

```
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5)
loss = F.mse_loss(input, target)
loss.backward()
```

torch.optim

다양한 최적화 알고리즘이 구현되어 있는 패키지

- 1. optimizer.zero_grad()로 각 Tensor의 grad를 초기화한다.
- 2. loss.backward()로 grad를 업데이트한다.
- 3. optimizer.step()으로 grad를 이용해 Tensor를 업데이트한다.

torch.optim.SGD

torch_optim_SGD(params, Ir, momentum=0, weight_decay=0)

stochastic gradient descent가 구현되어 있는 클래스이다.

옵션으로 momentum, weight_decay를 추가할 수 있다.

torch.optim.SGD

```
model = nn.Linear(8, 16)
opt = optim.SGD(model.parameters, lr=0.1, momentum=0.9)
opt.zero grad()
input = torch.randn(8)
output = model(input)
target = torch.randn(16)
loss = F.mse_loss(output, target)
loss.backward()
opt.step()
```

torch.save

torch.save(obj, f)
obj를 직렬화하여 f라는 이름으로 저장한다.
model을 저장하려면 obj에 model.state_dict()를 넣어주면 된다.

torch.save(model.state_dict(), 'checkpoint.bin')

torch.load

```
torch_load(f)
```

```
f라는 이름의 파일을 불러와 역직렬화한다.
```

```
model.state_dict()를 저장했으면, 불러올 때는 model.load_state_dict를 이용하면 된다.
```

```
model.load_state_dict(torch.load('checkpoint.bin'))
```

<all keys matched successfully>

오목판의 상태를 신경망에 넣어 주기 위한 처리를 해야 한다.

→ 이를 전처리(Preprocess)라 부른다.

입력 데이터의 모양은 15 × 15 × 17 이다.

- X_t : 나의 돌 위치 정보
- Y_t : 상대의 돌 위치 정보
- C: 나의 돌 색상 정보 (흑이면 전부 1, 백이면 전부 0)

 \rightarrow 입력 데이터 $S_t = [X_t, Y_t, X_{t-1}, Y_{t-1}, \cdots, X_{t-7}, Y_{t-7}, C]$

돌의 위치 정보

백이 둘 차례

돌의 위치 정보

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

백이 둘 차례

돌의 위치 정보

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

백이 둘 차례

돌의 위치 정보

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

백이 둘 차례

전처리한 입력 데이터를 받아 정책(policy)과 가치(value)를 추정하는 신경망을 만들어야 한다.

특징 추출

- 오목 판은 가로 세로 15픽셀의 이미지로 볼 수 있다.
- 이미지에서 특징을 추출할 때 사용하는 Convolutional Neural Network(CNN)를 사용.
- 최종적으로 15 × 15 × 128 크기의 특징맵(feature map)이 나온다.

특징 추출

Conv2d, 5x5, 128 filters
ReLU
Conv2d, 3x3, 128 filters
ReLU
Conv2d, 3x3, 128 filters
ReLU
Conv2d, 3x3, 128 filters
ReLU
Conv2d, 3x3, 128 filters
ReLU

Policy Head

- 추출된 특징맵에서 정책을 구하는 부분.
- 판 위의 모든 점에 대한 정책과 패스할 정책을 합쳐 크기가 256인 벡터가 나온다.

Policy head

Conv2d, 1x1, 2 filters

ReLU

Linear, out_size 15²

Softmax

Value Head

- 추출된 특징맵에서 가치를 구하는 부분.
- 크기가 1인 승률이 나온다.

value head

Conv2d, 1x1, 1 filters

ReLU

Linear, out_size 256

ReLU

Linear, out_size 1

Tanh

AlphaZero는 변형된 MCTS를 사용한다.

- PUCT(Polynomial Upper Confidence Trees) 알고리즘 사용
- Rollout 제거

PUCT 알고리즘

<u>탐색할 수</u>는 다음 수식에 의해 결정한다.

$$a_t = \operatorname{argmax}_a(Q(s_t, a) + U(s_t, a))$$

이때 $Q(S_t, a)$ 는 평균 승률로 다음과 같이 정의된다.

$$Q(s_t, a) = \frac{W(s_t, a)}{N(s_t, a)}$$

PUCT 알고리즘

 $U(s_t,a)$ 는 다음과 같이 정의된다.

$$U(s_t, a) = C(s_t)P(s_t, a) \frac{\sqrt{\sum_b N(s_t, b)}}{1 + N(s_t, a)}$$

그리고 이전엔 상수였던 temperature가 다음과 같은 함수 $C(s_t)$ 로 바뀌었다.

$$C(s_t) = \log_e \left(\frac{1 + N(s_t, a) + c_{base}}{c_{base}} \right) + c_{init}$$

Alpha Zero에선 Rollout을 제거하고, 대신 승률 추정만 한다.

따라서 Backup 단계에서 각 노드의 값은 다음과 같이 변한다.

$$N(s_t, a) = N(s_t, a) + 1$$

$$W(s_t, a) = W(s_t, a) + v$$

학습 데이터 만들기

학습 데이터는 상태(S), 정책(π), 게임 결과(Z)의 쌍으로 구성된다.

정책은 MCTS에서 선택한 수를 최적의 수로 가정하여 학습한다.

$$ightarrow$$
 정책 $\pi(s,a) = \frac{N(s,a)}{\sum_b N(s,b)}$

가치는 게임의 결과를 예측하도록 학습한다.

$$\rightarrow z = \begin{cases} 1 & (if win) \\ 0 & (if draw) \\ -1 & (if lose) \end{cases}$$

학습 데이터 만들기

강화학습에서 탐험은 매우 중요하고, 현재 모델에 과적합(overfitting)되는 걸 막기 위해 다음과 같이 noise를 섞는다.

$$P(s,a) = (1 - \epsilon)p_a + \epsilon \eta_a$$
 where $\eta \sim \text{Dir}(\alpha)$

 $Dir(\alpha)$ 는 python에서 다음과 같이 구할 수 있다.

```
import numpy
```

```
alpha = 0.03
```

noise = numpy.random.dirichlet([alpha] * 256)

하습 시키기

만들어진 학습 데이터는 Replay Buffer에 저장된다.

학습 시키기

- Selfplay Worker
 - 학습데이터를 만든다.
 - Train Worker에서 학습된 모델을 받아 학습 데이터를 만든다.
- Replay Buffer
 - Selfplay Worker에서 만들어진 데이터를 저장하는 곳이다.
- Train Worker
 - Replay Buffer에서 데이터를 가져와 새로운 신경망을 학습한다.

학습 시키기

신경망(θ)에선 다음의 출력이 나온다.

$$f_{\theta}(s) = (\boldsymbol{p}, v)$$

위 신경망을 다음의 loss function으로 최적화한다.

$$L = (z - v)^2 - \boldsymbol{\pi}^\mathsf{T} \log \boldsymbol{p} + c \|\boldsymbol{\theta}\|^2$$

감사합니다

http://github.com/utilForever 질문 환영합니다!