IV simulation of NMOS for Long and short Channel

AIM: Simulating I-V Characterstics of Nmos using 180 nm Technology

SOFTWARE USED: cadence Virtuoso

- **PROCEDURE:**
 - Create a Schematic:Open Cadence Virtuoso and create a new schematic cell.
 - Place an NMOS transistor and connect the gate to a DC voltage source (VGS), the drain to another DC voltage source (VDS), and the source to ground.
 - Set Simulation in ADE:
 - Launch ADE L/XL.
 - Set up a **DC Sweep** for **VDS** (sweep from 0.5V to 1.5V).
 - Fix VDS in 3 steps to plot multiple I-V curves.
 - Run the Simulation:
 - Click Launch → Run to simulate the circuit.
 - Plot the Results:
 - After simulation, go to **Results** \rightarrow **Direct Plot** \rightarrow **DC**.
 - Plot **ID** vs VGS for each VDS value. Do same by fixing Vgs for 3 steps and
 - Plot **ID** vs **VDS** for each VGS value.
 - Save/Export the Plot:
 - Save the plot or export it as needed.
 - Export as .CSV file next experiment

Long channel NMOS:

In schematic I have taken

W = 1.8 uM

L = 1.8 uM

For Ids vs Vgs plot:

Sweep Vgs and observe the drain current Id by taking Vds values as 0.5v, 1v, 1.5v For Ids vs Vds plot :

Sweep Vds and observe the drain current Id by taking Vgs values as 0.5v, 1v, 1.5v

Schematic Representation

Simulation Result:

Id vs Vgs:

Short Channel NMOS:

In schematic I have taken

W = 1.8 uM

L = 0.18

uM For Ids

vs Vgs plot:

Sweep Vgs and observe the drain current Id by taking Vds values as 0.5v, 1v, 1.5v For

Ids vs Vds plot:

Sweep Vds and observe the drain current Id by taking Vgs values as 0.5v, $1v\ , 1.5v$

Schematic Representation

Simulation result :

Id vs Vgs

Id vs Vds

Result:

Simulation of I-V characterstics of Nmos performed