Neural Networks

อ. ปรัชญ์ ปิยะวงศ์วิศาล

Pratch Piyawongwisal

Today

- Artificial Neural Networks
 - Brief History of ANN
 - Applications of ANN
 - Main components of basic ANN model
 - Neuron
 - Weight & Bias
 - Activation Function
 - Layer of Neurons
 - Number of Parameters
 - Training algorithms: Gradient Descent & Backprop
 - Activation Functions & Non-linearity
 - Softmax Layer
 - Feedforward Neural Networks
 - Lab: MNIST with TF/Keras
 - (ไม่ออกสอบ) Historical ANN models: Perceptron, MLP

Artificial Neural Network (โครงข่ายประสาทเทียม)

- เป็น supervised learning
 - ใช้ทำ classification เป็นหลัก (สามารถทำ regression ได้)
 - เป็นวิธีแบบ parametric (มีโมเดล/สมมติฐานเกี่ยวกับข้อมูล)
- ข้อดี
 - ความแม่นยำสูงมาก
 - สามารถนำไปประยุกต์ใช้กับปัญหาที่มีขนาดใหญ่และซับซ้อนมากได้
 - เหมาะกับงานประมวลผลภาพ ภาษา
- ข้อเสีย
 - ต้องใช้ข้อมูลจำนวนมหาศาล, ใช้ทรัพยากรในการประมวลผลสูง (GPU)
 - cost function ไม่ convex (มี minima ได้หลายจุด) ดังนั้นการเลือก initialize ค่าพารามิเตอร์เริ่มต้นจึงมีผลมากต่อ คำตอบสุดท้ายของ gradient descent
 - เป็น black box model ตีความ/อธิบายที่มาที่ไปของผลลัพธ์ได้ยาก (ตรงข้ามกับ decision tree)

Origin of Artificial Neural Network

- ได้แรงบันดาลใจมาจาก Biological neurons
- ในช่วงปี 1960s เชื่อกันว่าการสร้าง ANN เพื่อจำลองการคำนวณ ที่ซับซ้อนของสมองจะนำไปสู่ AI ที่ฉลาดจริง (Connectionism)
- แต่ก็ล้มเหลวไปด้วยข้อจำกัดเหล่านี้
 - Lack of computation power
 - Lack of data
 - Lack of efficient training algorithms
- ปัจจุบัน ANN (ในนาม "Deep Learning") กลับมา dominate สาขา ML อีกครั้ง เนื่องจากเกิด
 - Fast CPU, GPU
 - Big Data
 - Algorithms: Backpropagation, SGD, dropout, Adam

Some Applications of ANN

Image Classification

- การจำแนกประเภทรูปภาพ
- AlexNet: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
- Speech Recognition

- การรู้จำเสียงพูด
- Apple's Siri: https://machinelearning.apple.com/2017/10/01/hey-siri.html
- Video Recommendation
 - ระบบแนะนำวิดีโอ
 - YouTube: https://ai.google/research/pubs/pub45530
- Games
 - DeepMind's AlphaGo: https://deepmind.com/documents/119/agz unformatted nature.pdf
 - Marl/O: https://www.youtube.com/watch?v=qv6UVOQ0F44
 - Atari game: https://www.youtube.com/watch?v=V1eYniJ0Rnk
- Drug Discovery
 - https://lips.cs.princeton.edu/pdfs/duvenaud2015fingerprints.pdf

Marl/O

https://www.youtube.com/watch?v=qv6UVOQ0F44

Main components of basic ANN models

- ANN (หรือเรียกสั้นๆ ว่า NN) เป็น model ที่ประกอบด้วย <u>neuron</u> จำนวนมากที่ทำงานร่วมกัน
- คำศัพท์เกี่ยวกับองค์ประกอบของ NN ที่ต้องรู้:
 - Neuron
 - Weight & Bias
 - Activation Function
 - Activation
 - Layer (Input/Hidden/Output)

ทบทวน: Logistic Regression as Computation Graph

• เราสามารถมองโมเดล Logistic Regression เป็น กราฟการคำนวณ ได้

$$\hat{p} = \sigma(\theta^T \mathbf{x})$$

$$= \sigma(\theta_0 + \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \dots + \theta_n \mathbf{x}_n)$$

Neuron

- Neuron เป็นหน่วยคำนวณพื้นฐานใน Neural Network (NN)
- Neuron ประกอบด้วย
 - input: $x_1, x_2, ..., x_n$
 - weights: $w_1, w_2, ..., w_n$
 - bias: *b*
 - activation function: $g(\cdot)$

- Neuron จะทำการคำนวณ:
 - $z = w \cdot x + b = w_1 x_1 + \dots + w_n x_n + b$
 - $a = g(z) = g(w \cdot x + b)$

 $(z = \underline{\text{linear combination}} \text{ of } x)$ $(a = \underline{\text{activation}} \text{ of neuron})$

• Neuron สามารถทำหน้าที่เป็น binary linear classifier (เหมือน logistic regression)

Layer of Neurons

- Layer คือ ชั้นของ NN ที่ประกอบด้วย Neuron หลายๆ ตัว
 - ใน 1 layer อาจมี 3-4 neurons หรือ >1,000,000 neurons ก็ได้
 - แต่ละ Neuron มีค่า weight เป็นของตัวเอง อิสระจากกัน
 - ใช้หลาย neurons ดีอย่างไร?
 - ทำให้ NN สามารถทำงาน multi-class classification ได้
 - แต่ละ neuron ทำหน้าที่ในการตรวจจับ pattern ที่ต่างกันไปในข้อมูลได้

Stacking multiple layers

- NN สามารถประกอบด้วยหลายๆ layers ที่ถูกนำมาพ่วงต่อกัน (stack) ได้
 - ในภาพตัวอย่าง คือ NN ที่มี 3 layers (2 hidden + 1 output, ไม่นับ Input)
 - สังเกตว่า activation ของ layer l o input ของ layer l+1
- Layer 3 แบบ:
 - <u>Input Layer</u> คือ layer แรกสุดที่ใช้นำข้อมูลเข้ามา (ไม่มีการคำนวณใดๆ)
 - Output Layer คือ layer สุดท้ายที่ตอบค่า \widehat{y} ที่เราต้องการ
 - <u>Hidden layer(s) คือ layer ที่อยู่ระหว่าง input/output layer</u>
- ทุก NN ต้องมี input layer และ output layer เป็นอย่างน้อย
- ลักษณะการเชื่อมต่อเป็นแบบ Fully-connected
 - มีเส้นเชื่อมครบระหว่างทุกคู่ neuron ใน 2 layer ที่ติดกัน

- เราสามารถมอง NN model เป็นสมการในรูป
 - $\hat{y} = f(\overline{x})$
 - ซึ่งภายในนั้นมีค่า weight/bias จำนวนมาก ที่นำมาใช้คูณ/บวกกับ input

- 1 เส้นเชื่อมในภาพ = 1 parameter ที่ต้องปรับในระหว่างการ train
- ขนาดของ model (เล็ก/ใหญ่) วัดจาก<u>จำนวน parameter</u>
 - เช่น LLaMA (language model ของ Meta AI) มีหลายขนาดให้เลือกใช้
 - 7B, 13B, 33B, 65B

- Recap: จำนวน parameter ของ NN คือจำนวนเส้น weight + จำนวน biases
- Exercise 1: จงนับจำนวน parameter ของ Neural Network ในภาพ

• Exercise 2: จงนับจำนวน parameter ของ Neural Network ในภาพ

• Exercise 2: จงนับจำนวน parameter ของ Neural Network ในภาพ

จำนวนเส้นเชื่อม = 8*6 + 6*6 + 6*4 = 108 จำนวน bias = 6 + 6 + 4 = 16 (เฉพาะ hidden/output layers) total params = 108 + 16 = 124

How to train neural networks?

- ทบทวน:
 - ML model จะเก่ง/ไม่เก่งขึ้นกับค่าของ parameter
 - การ train ML model คือการหาค่าของ parameter ทุกตัวที่ทำให้ model ตอบได้แม่นยำที่สุด (= มีค่า cost/loss $\mathcal{L}(\hat{y}, y)$ ต่ำที่สุด)
- เราสามารถ train NN ด้วยวิธี

How to train neural networks?

- ทบทวน:
 - ML model จะเก่ง/ไม่เก่งขึ้นกับค่าของ parameter
 - การ train ML model คือการหาค่าของ parameter ทุกตัวที่ทำให้ model ตอบได้แม่นยำที่สุด (= มีค่า cost/loss $\mathcal{L}(\hat{y},y)$ ต่ำที่สุด)
- เราสามารถ train NN ด้วยวิธี gradient descent ได้ ©
 - เริ่มจาก randomize ค่า w, b
 - ค่อยๆ วนปรับ **w**, **b** ด้วย update rule:
 - $\mathbf{w}' = \mathbf{w} \eta \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{b})$
 - $\mathbf{b}' = \mathbf{b} \eta \nabla_{\mathbf{b}} \mathcal{L}(\mathbf{w}, \mathbf{b})$
 - จนกว่า cost จะต่ำพอ

What makes training NN difficult?

- ปัญหาที่ทำให้ gradient descent ทำได้ยากสำหรับ NN
 - ค่า $\mathsf{gradient} \
 abla_w \mathcal{L}(w,b)$ คำนวณยาก
 - ullet เพราะ $oxed{\mathsf{loss}}\, \mathcal{L}$ คำนวณจาก $\widehat{y} = f(w,b)$ ซึ่ง f เป็นฟังก์ชันที่ซับซ้อนมากๆ
 - ถ้าคำนวณ diff แบบตรงๆ จะใช้เวลานานมาก 😌
 - Cost function ของ NN เป็นแบบ non-convex (มี minima ได้หลายจุด)
 - ทำให้ได้คำตอบที่เป็น local minima (ไม่ค่อยเก่ง) 🕾
 - มีจำนวน parameter w, b ที่ต้องปรับเยอะมากๆ
 - ใช้เวลา train นาน 😂

What makes training NN difficult? -- Solutions

- ปัญหาที่ทำให้ gradient descent ทำได้ยากสำหรับ NN
 - ค่า $\mathsf{gradient} \
 abla_w \mathcal{L}(w,b)$ คำนวณยาก
 - Solution: อัลกอริทึม Backprop
 - Cost function ของ NN เป็นแบบ non-convex (มี minima ได้หลายจุด)
 - Solution: เป็น advanced topic ไม่ออกสอบ
 - มีจำนวน parameter w, b ที่ต้องปรับเยอะมากๆ
 - Solution: parallelize, ใช้ hardware แรงๆ

Backpropagation

- ullet อัลกอริทึม Backprop ใช้เพื่อคำนวณหา $abla_W \mathcal{L}$ (gradient ของ loss function w.r.t w)
 - เทคนิค: ใช้ chain rule ใน calculus ทำให้การคำนวณเร็วขึ้นมาก

- รายละเอียดการทำงานของ backprop <u>ไม่ออกสอบ</u> หากต้องการเข้าใจ แนะนำให้ดูวิดีโอของ 3Blue1Brown
 - Part 1: https://www.youtube.com/watch?v=Ilg3gGewQ5U
 - Part 2: https://www.youtube.com/watch?v=tleHLnjs5U8

(ไม่ออกสอบ) Backpropagation Overview

Goal: ต้องการหา matrix $\nabla_W \mathcal{L}$ (ซึ่งก็คือ หา $\frac{\partial \mathcal{L}}{\partial w_i}$ สำหรับทุก w_i) ขั้นตอนวิธีคร่าว ๆ

- for each training instance,
 - make predictions \hat{y} (forward pass)
 - measure loss $\mathcal{L}(\hat{y}, y)$
 - propagate $\frac{\partial \mathcal{L}}{\partial w_i}$ in reverse (apply chain rule) (backward pass)
 - use the computed $\frac{\partial \mathcal{L}}{\partial w_i}$ to adjust w_i (gradient descent)

(ไม่ออกสอบ) Backward Pass

• การคำนวณ gradient ใน backward pass ด้วย chain rule

Adding more layers => Deep Neural Networks

hidden layer *n* output layer Input layer hidden layer 1 Pedestrian? Car? Motorcycle? Truck?

Effect of deep network

- มองว่าแต่ละ neuron จะทำให้เกิด hyperplane ที่ผ่าแบ่ง feature space
- การที่เรานำ neuron หลายๆ layer มาซ้อนกัน จะทำให้เกิด decision boundary ที่มีความ ซับซ้อนมากขึ้นได้
 - Powerful, but prone to overfitting (นึกถึง 1-NN)

https://github.com/ekapolc/pattern_course18/blob/master/slides/L08-NeuralNetworks.pdf

(ไม่ออกสอบ) Representation Learning

3Blue1Brown Explaining how NN works: https://www.youtube.com/watch?v=aircAruvnKk

(ไม่ออกสอบ) Universal Approximation Theorem

- Think of Neural Network as function approximation.
 - $Y = f(x) + \epsilon$
 - $Y = \hat{f}(x) + \epsilon$
 - NN: $\Longrightarrow \hat{f}(x)$

- One hidden layer is enough to *represent* an approximation of any function to an arbitrary degree of accuracy
- So why deeper?
 - Shallow net may need (exponentially) more width
 - Shallow net may overfit more

(Nonlinear) Activation Function

Viewing a layer as matrix multiplication

- ในการที่จะเข้าใจ activation function ได้นั้น เราต้องเข้าใจก่อนว่า:
- การคำนวณของ layer มองเป็นการนำ <u>weight matrix</u> W มาคูณกับ <u>input vector</u> $\overline{\mathbf{x}}$ ได้ ดังนี้

$$\bar{a} = \sigma(\bar{z}) = \sigma(W\bar{x} + \bar{b})$$

• เช่น layer 3 neurons ในภาพทำการคำนวณดังนี้:

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \sigma(\begin{bmatrix} W_{11} & W_{12} & \dots & W_{1n} \\ W_{21} & W_{22} & \dots & W_{2n} \\ W_{31} & W_{32} & \dots & W_{3n} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \dots \\ X_n \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix})$$

layer of 3 neurons

Problem

- พิจารณา NN ที่มี 2 layers โดยที่
 - ullet W, b_1 คือ weight matrix, bias ของ layer 1
 - V, b_2 คือ weight matrix, bias ของ layer 2
- ถ้าไม่มี nonlinearity $\sigma(\cdot)$ คั่นระหว่าง layer จะได้ว่า

$$a = V(Wx + b_1) + b_2$$

= $VWx + Vb_1 + b_2$
= $(VW)x + (Vb_1 + b_2)$
= $UX + b$

- ผลคือ: ทุก layer ยุบรวมเหลือ layer เดียว
 - ทำให้ NN กลายเป็นแค่ Linear Regression model ธรรมดา 😌

Solution: Nonlinearity

- ทางออกคือ เพิ่ม activation function g ที่เป็น non-linear ให้กับทุก layer
 - $a = g(Vg(Wx + b_1) + b_2)$
 - ไม่สามารถยุบ layer ได้ ©
 - ช่วยให้ NN สามารถตรวจจับความสัมพันธ์แบบ non-linear ได้
- activation function ที่ดีควรเป็นอย่างไร ?
 - สามารถหาอนุพันธ์ได้ (differentiable)
 - คำนวณได้เร็ว
 - ได้ค่า gradient ที่มากพอควรในทุกๆ layer (กันปัญหา vanishing gradient)
- Common choices: ReLU, Sigmoid, tanh, swish, leaky ReLU, MaxOut

ตัวอย่าง Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

Softmax Layer

• สำหรับงาน classification เพื่อให้ output ของ network คำนวณค่าความน่าจะเป็นในช่วง 0-1 ของแต่ละคลาส จึงนิยมให้ layer สุดท้ายเป็นแบบ Softmax (generalized/multiclass sigmoid)

https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60

Feedforward Neural Network

เราเรียก architecture ของ ANN ที่ใหลไปในทางเดียว จาก input ไปยัง output ดังภาพนี้ว่า

"Feedforward Neural Network"

Visualizing NN with Tensorflow Playground

https://playground.tensorflow.org

Advanced topics on NN

- (ไม่ออกสอบ)
 - Vanishing Gradient Problem
 - Weight Initialization
 - Learning Rate Scheduling
 - Dealing with overfitting: Dropout, Batch Norm
- (Next week) Specialized NN: CNN, RNN

Lab: MNIST with Neural Network

Lab: MNIST with Neural Network

Popular open-source deep learning libraries

Table 9-1. Open source Deep Learning libraries (not an exhaustive list)

Library	API	Platforms	Started by	Year
Caffe	Python, C++, Matlab	Linux, macOS, Windows	Y. Jia, UC Berkeley (BVLC)	2013
Deeplearning4j	Java, Scala, Clojure	Linux, macOS, Windows, Android	A. Gibson, J. Patterson	2014
H20	Python, R	Linux, macOS, Windows	H20.ai	2014
MXNet	Python, C++, others	Linux, macOS, Windows, iOS, Android	DMLC	2015
TensorFlow	Python, C++	Linux, macOS, Windows, iOS, Android	Google	2015
Theano	Python	Linux, macOS, iOS	University of Montreal	2010
Torch	C++, Lua	Linux, macOS, iOS, Android	R. Collobert, K. Kavukcuoglu, C. Farabet	2002

Lab: MNIST with Neural Network

- Keras เป็น high-level API ที่สามารถนำไปรันบน tensorflow, pytorch ได้
- ใช้งานง่าย เหมาะกับการเรียนรู้ครั้งแรก
- https://keras.io/

Useful Links to Keras Docs

- Sequential Model: https://keras.io/guides/sequential-model/
- Dense Layer: https://keras.io/api/layers/core_layers/dense/
- compile & fit: https://keras.io/api/models/model training apis/
- (*) Example codes: https://keras.io/examples/

MNIST with Keras – Import dataset

```
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train,y_train),(x_test,y_test) = mnist.load_data()

x_train = tf.keras.utils.normalize(x_train, axis=1)
x_test = tf.keras.utils.normalize(x_test, axis=1)
```

MNIST with Keras – Create NN model

```
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(10, activation=tf.nn.softmax))
```

MNIST with Keras – Fit/Evaluate model

```
model.compile(optimizer="adam",
loss="sparse_categorical_crossentropy", metrics=['accuracy'])
model.fit(x_train, y_train, epoch=3)
val_loss, val_acc = model.evaluate(x_test, y_test)
```

model.predict([x test])

Experimenting

- ทดลองใช้ NN ที่มีเพียง input/output layer โดยไม่มี hidden layer แล้วสังเกตว่า test accuracy เปลี่ยนไปอย่างไร
- ทดลองใช้ hidden layer ที่ไม่มีการทำ activation (นำโค้ดส่วน activation=... ออก) แล้ว สังเกตค่า test accuracy
- ทดลองเปลี่ยนค่า epochs, optimizer, จำนวน neuron ใน layer, จำนวน hidden layer
- ทำความเข้าใจข้อมูลที่ model.summary() แสดง
 - จำนวน parameter ของโมเดลคือเท่าใด
 - เลข 784, 10 ใน input_size คืออะไร
 - เลข 32 ใน input_size คืออะไร

คำศัพท์ที่ควรรู้เกี่ยวกับการ implement NN

• batch size

• จำนวนข้อมูลที่ส่งเข้าไปในแต่ละ iteration (default: 32) สำหรับทำ mini-batch SGD

iteration

• การส่งข้อมูล 1 batch เข้าไปใน NN เพื่อทำการ train ปรับค่า param (backprop)

epoch

• การส่งข้อมูล training set เข้าไปใน NN เพื่อทำการ train ครบทั้ง training set 1 รอบ

• ตัวอย่าง:

- จำนวน training data: 50,000 ภาพ
- batch_size: 32 (default) 🛨 แสดงว่าในการ train ส่งข้อมูล iteration ละ 32 ภาพ
- ดังนั้น ใน 1 epoch จึงต้องทำทั้งหมด 50,000/32 = 1563 iterations
 - จึงจะส่งข้อมูลให้ NN ครบทั้ง 50,000 ภาพ
- ปกติเราอาจต้อง train หลาย epoch จึงจะได้ loss ที่พอใจ

(ไม่ออกสอบ) Historical ANN models

Perceptron

- เป็น ANN ที่เรียบง่าย คิดค้นโดย Rosenblatt ปี 1957
- ประกอบด้วย Neuron ที่เป็น Linear Threshold Unit (LTU) ดังรูป

• สำหรับ step function อาจใช้เป็นฟังก์ชัน heaviside หรือ sign

Perceptron

- Single LTU สามารถใช้ทำ binary classification (นึกถึง Iris) ได้
- สังเกตว่าโมเดลของ LTU คือการหา linear combination ของ input แล้วนำมา threshold เพื่อให้ output ทำนายออกมาว่าเป็นคลาส + positive หรือ negative
- คล้าย Logistic Regression

heaviside
$$(z) = \begin{cases} 0 & \text{if } z < 0 \\ 1 & \text{if } z \ge 0 \end{cases}$$
 $sgn(z) = \begin{cases} -1 & \text{if } z < 0 \\ 0 & \text{if } z = 0 \\ +1 & \text{if } z > 0 \end{cases}$

Perceptron

- Perceptron ประกอบด้วย layer ของ LTU เพียง 1 layer
- มี Bias input node ที่มีค่าเป็น 1 เสมอ (เพื่อให้ decision boundary ไม่จำเป็นต้องผ่านจุด origin)
- ในภาพเป็น Perceptron ที่มี 3 LTU สามารถใช้ classify ได้ 3 คลาส

Perceptron - Training

- การ train Perceptron คือการหาค่า weight ที่ทำให้โมเดลสามารถทำนายได้แม่นที่สุด
- Rosenblatt la Hebb's rule: "Cells that fire together, wire together."
- กล่าวคือ ต้องการให้ weight มีค่าสูง หาก neuron คู่นั้น output ค่าเดียวกันบ่อย ๆ
- จึงเกิดเป็น Perceptron learning rule ดังนี้

Equation 10-2. Perceptron learning rule (weight update)

$$w_{i,j}^{\text{(next step)}} = w_{i,j} + \eta (\hat{y}_j - y_j) x_i$$

• สังเกตว่า weight จะถูก update ก็ต่อเมื่อ $\widehat{y} \neq y$ (ทำนายพลาด) เท่านั้น

Perceptron Code

```
import numpy as np
from sklearn.datasets import load iris
from sklearn.linear model import Perceptron
iris = load iris()
X = iris.data[:, (2, 3)] # petal length, petal width
y = (iris.target == 0).astype(np.int) # Iris Setosa?
per_clf = Perceptron(random_state=42)
per clf.fit(X, y)
y pred = per clf.predict([[2, 0.5]])
```

Perceptron - Limitations

- ข้อจำกัดของ Perceptron คือไม่สามารถทำ non-linear classification ได้
 - training data ต้องสามารถถูกแบ่งแดนด้วย hyperplane ตรงได้เท่านั้น (linearly separable)
 - เช่น ไม่สามารถแก้ XOR problem ได้

Linear classifiers cannot solve this

Perceptron - Limitations

- ข้อจำกัดของ Perceptron คือไม่สามารถทำ non-linear classification ได้
 - training data ต้องสามารถถูกแบ่งแดนด้วย hyperplane ตรงได้เท่านั้น (linearly separable)
 - เช่น ไม่สามารถแก้ XOR problem ได้

solution: เพิ่มจำนวน layer (Multilayer Perceptron)

Multilayer Perceptron (MLP)

- เราเรียก ANN มี 2 hidden layer ขึ้นไปว่า Deep Neural Network
- ในยุคนั้น นักวิจัยตันกับการหาวิธี train MLP อยู่หลายปี
- จนกระทั่งปี 1986 Rumelhart ได้ตีพิมพ์อัลกอริทึม ที่ปฏิวัติวงการ ชื่อ Backpropagation

