STACK AND QUEUE

Problem Solving with Computers-II

C++STL

- The C++ Standard Template Library is a very handy set of three built-in components:
 - Containers: Data structures
 - Iterators: Standard way to search containers
 - Algorithms: These are what we ultimately use to solve problems

C++ STL container classes

```
array
                     vector
               forward list
                       list
                        set
                      stack
                      queue
            priority queue
multiset (non unique keys)
                      deque
             unordered set
                        map
             unordered map
                   multimap
                     bitset
```

Stacks – container class available in the C++ STL

- Container class that uses the Last In First Out (LIFO) principle
- Methods
- i. push()
- ii. pop()
- iii. top()
- iv. empty()

Lab05: Evaluate a fully parenthesized infix expression

```
(4*((5+3.2)/1.5))// okay
(4 * ((5 + 3.2) / 1.5) // unbalanced parens - missing last ')'
(4 * (5 + 3.2) / 1.5)) // unbalanced parens - missing one '('
4 * ( (5 + 3.2 ) / 1.5 ) // not fully-parenthesized at '*' operation
(4 * (5 + 3.2) / 1.5) // not fully-parenthesized at '/' operation
```

Checking if the parenthesis are balanced

Initial empty stack

Read and push first (

Read and push second (

$$((2*2)+(8+4))$$

Checking if the parenthesis are balanced

Initial empty stack

Read and push first (

Read and push second (

What should be the next step after the first right parenthesis is encountered?

- A. Push the right parenthesis onto the stack
- B. If the stack is not empty pop the next item on the top of the stack
- C. Ignore the right parenthesis and continue checking the next character
- D. None of the above

$$((2*2)+(8+4))$$

$$((2*2)+(8+4))$$

$$(((6 + 9)/3)*(6 - 4))$$

Characters read so far (shaded):

$$(((6 + 9) / 3) * (6 - 4))$$

Characters read so far (shaded):

$$(((6 + 9) / 3) * (6 - 4))$$

Notations for evaluating expression

- Infix number operator number
- (Polish) Prefix operators precede the operands
- (Reverse Polish) Postfix operators come after the operands

Evaluating post fix expressions using a single stack

Postfix: Infix: ((6+9)/3)*(6-4)

Queue Operations

- A queue is like a queue of people waiting to be serviced
- The queue has a <u>front</u> and a <u>back</u>.

Queue Operations

• New people must enter the queue at the back. The C++ queue class calls this a <u>push</u>, although it is usually called an <u>enqueue</u> operation.

Queue Operations

• When an item is taken from the queue, it always comes from the front. The C++ queue calls this a <u>pop</u>, although it is usually called a <u>dequeue</u> operation.

Queue Class

- The C++ standard template library has a queue template class.
- The template parameter is the type of the items that can be put in the queue.

```
template <class Item>
class queue<Item>
public:
    queue();
    void push(const Item& entry);
    void pop( );
    bool empty( ) const;
    Item front( ) const;
```

Breadth first traversal

- Take an empty Queue.
- Start from the root, insert the root into the Queue.
- Now while Queue is not empty,
 - Extract the node from the Queue and insert all its children into the Queue.
 - Print the extracted node.

Summary of operations

Operation	Sorted Array	Binary Search Tree	Linked List
Min			
Max			
Median			
Successor			
Predecessor			
Search			
Insert			
Delete			