

IA BIG DATA

Mineração de Dados

Parte 9
Extração de Padrões
Agrupamento baseado em Densidade
Outliers e Anomalias

Prof. Ricardo M. Marcacini ricardo.marcacini@icmc.usp.br

 Os métodos que estudamos são criticados pelas seguintes limitações:

- Os métodos que estudamos são criticados pelas seguintes limitações:
 - Identificar clusters de formatos arbitrários

- Os métodos que estudamos são criticados pelas seguintes limitações:
 - Identificar clusters de formatos arbitrários
 - Exemplo: observamos que *k-means tende* a identificar *clusters* de formatos globulares (estudamos na Parte 4)

- Os métodos que estudamos são criticados pelas seguintes limitações:
 - Identificar clusters de formatos arbitrários
 - <u>Exemplo</u>: observamos que k-means tende a identificar clusters de formatos globulares (estudamos na Parte 4)

- Os métodos que estudamos são criticados pelas seguintes limitações:
 - Identificar clusters de formatos arbitrários
 - <u>Exemplo:</u> observamos que k-means tende a identificar clusters de formatos globulares (estudamos na Parte 4)
 - Sensíveis à presença de outliers e anomalias

Cliente	Quantidade de Acessos	Taxa de Conversão
1	3	0.2
2	5	0.7
3	11	0.9
n	3	0.4

Taxa de Conversão (Cliente)

Cliente	Quantidade de Acessos	Taxa de Conversão
1	3	0.2
2	5	0.7
3	11	0.9
n	3	0.4

Quantidade de Acessos

Humanos identificam naturalmente estruturas de grupos conforme regiões de alta densidade

Vários métodos, como o *k-means*, não identificam corretamente os grupos de formatos variados.

Ainda, *outliers* são considerados e afetam a estrutura de agrupamento

DBSCAN:

■ Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, 1996 (Vol. 96, No. 34, pp. 226-231).

DBSCAN:

■ Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, 1996 (Vol. 96, No. 34, pp. 226-231).

2014 SIGKDD TEST OF TIME AWARD

Aug 18 2014 /

2014 SIGKDD Test of Time Award:

The SIGKDD Test of Time award recognizes outstanding papers from past KDD Conferences beyond the last decade that have had an important impact on the data mining research community.

The 2014 Test of Time award recognizes the following influential contributions to SIGKDD that have withstood the test of time:

A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise [KDD 1996]

https://www.kdd.org/News/view/2014-sigkdd-test-of-time-award

• DBSCAN:

■ Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, 1996 (Vol. 96, No. 34, pp. 226-231).

DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN

ERICH SCHUBERT, Heidelberg University
JÖRG SANDER, University of Alberta
MARTIN ESTER, Simon Fraser University
HANS-PETER KRIEGEL, Ludwig-Maximilians-Universität München
XIAOWEI XU, University of Arkansas at Little Rock

Pontos de Núcleo

Pontos de Fronteira

Pontos Outliers

Pontos de Núcleo

Pontos de Núcleo

Determinar a vizinhança ɛ de um ponto.

Atenção: o parâmetro E é definido pelo usuário

Pontos de Núcleo

Um ponto de núcleo contém um número mínimo de pontos (*minPTS*) em sua vizinhança (incluindo o próprio ponto).

Exemplo: minPTS=4

Pontos de Núcleo

Um ponto de núcleo contém um número mínimo de pontos (*minPTS*) em sua vizinhança (incluindo o próprio ponto).

Exemplo: minPTS=4

Pontos de Núcleo

Um ponto de núcleo contém um número mínimo de pontos (*minPTS*) em sua vizinhança (incluindo o próprio ponto).

Exemplo: minPTS=4

Pontos de Núcleo

Um ponto de núcleo contém um número mínimo de pontos (*minPTS*) em sua vizinhança (incluindo o próprio ponto).

Exemplo: minPTS=4

Pontos de Núcleo

Um ponto de núcleo contém um número mínimo de pontos (*minPTS*) em sua vizinhança (incluindo o próprio ponto).

Exemplo: minPTS=4

Pontos de Fronteira

Pontos de Fronteira

Um ponto de fronteira não contém *minPTS* pontos em sua vizinhança...

Pontos de Fronteira

Um ponto de fronteira não contém *minPTS* pontos em sua vizinhança...

... mas é alcançável por um ponto de núcleo.

Pontos de Fronteira

Um ponto de fronteira não contém *minPTS* pontos em sua vizinhança...

... mas é alcançável por um ponto de núcleo.

Os *clusters* são obtidos aplicando tais critérios para identificar pontos conectados por densidade

Pontos Outliers

Um *outlier* não possui *minPTS* pontos em sua vizinhança e não é alcançável por um ponto de núcleo.

Pontos Outliers

Um *outlier* não possui *minPTS* pontos em sua vizinhança e não é alcançável por um ponto de núcleo.

- Ferramenta web para demonstrar o DBSCAN
 - https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

Vantagens

Desvantagens

- Vantagens
 - Não precisamos definir o número de clusters

Desvantagens

MBA IA BIG DAYA

- Vantagens
 - Não precisamos definir o número de clusters

- Desvantagens
 - Precisamos definir os parâmetros ε e minPTS

MBA IA BIG DAYA

- Vantagens
 - Não precisamos definir o número de clusters

- Desvantagens
 - Precisamos definir os parâmetros ε e minPTS

- Vantagens
 - Não precisamos definir o número de clusters
 - Robusto a outliers

- Desvantagens
 - Precisamos definir os parâmetros ε e minPTS

- Vantagens
 - Não precisamos definir o número de clusters
 - Robusto a *outliers*
 - Encontra clusters de diferentes formatos

- Desvantagens
 - Precisamos definir os parâmetros ε e minPTS

- Vantagens
 - Não precisamos definir o número de clusters
 - Robusto a outliers
 - Encontra clusters de diferentes formatos

- Desvantagens
 - Precisamos definir os parâmetros ε e minPTS
 - Custo computacional

- Vantagens
 - Não precisamos definir o número de clusters
 - Robusto a *outliers*
 - Encontra clusters de diferentes formatos

- Desvantagens
 - Precisamos definir os parâmetros ε e minPTS
 - Custo computacional

Podemos mitigar essa limitação ao usar estratégias para acelerar a busca dos vizinhos mais próximos!

- Vantagens
 - Não precisamos definir o número de clusters
 - Robusto a *outliers*
 - Encontra clusters de diferentes formatos

- Desvantagens
 - Precisamos definir os parâmetros ε e minPTS
 - Custo computacional

Podemos mitigar essa limitação ao usar estratégias para acelerar a busca dos vizinhos mais próximos!

Já estudamos esse assunto 😎

Bibliografia

Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996, August). A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD (Vol. 96, No. 34, pp. 226-231). https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf

Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Transactions on Database Systems (TODS), 42(3), 1-21. https://doi.org/10.1145/3068335

Tan, P.N.; Steinbach, M.; Karpatne, A.; Kumar, V. (2016). *Introduction to Data Mining (2nd Edition)*. Pearson.

