第三部分 代数结构

主要内容

- 代数系统----二元运算及其性质、代数系统和子代数
- 半群与群----半群、独异点、群
- 环与域----环、整环、域
- 格与布尔代数----格、布尔代数

第九章 代数系统

主要内容

- 二元运算及其性质
- 一元和二元运算定义及其实例
- 二元运算的性质

代数系统

- 代数系统定义及其实例
- 子代数
- 积代数

代数系统的同态与同构

9.1 二元运算及其性质

定义9.1 设S为集合,函数 $f: S \times S \rightarrow S$ 称为S上的二元运算,简称为二元运算.

- S中任何两个元素都可以进行运算,且运算的结果惟一.
- \bullet S中任何两个元素的运算结果都属于S,即S对该运算封闭.
- 例1 (1) 自然数集合N上的加法和乘法是N上的二元运算,但减法和除法不是.
- (2) 整数集合Z上的加法、减法和乘法都是Z上的二元运算, 而除法不是.
- (3) 非零实数集R*上的乘法和除法都是R*上的二元运算,而加法和减法不是.

实例

(4) 设 $M_n(\mathbf{R})$ 表示所有n 阶($n \ge 2$)实矩阵的集合,即

$$M_{n}(R) = \left\{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \middle| a_{ij} \in R, i, j = 1, 2, ..., n \right\}$$

则矩阵加法和乘法都是 $M_n(\mathbf{R})$ 上的二元运算.

- (5) S为任意集合,则 ∪ 、∩ 、− 、⊕ 为P(S)上二元运算.
- (6) S^S 为S上的所有函数的集合,则合成运算°为 S^S 上二元运算.

一元运算的定义与实例

- 定义9.2 设S为集合,函数 $f:S \rightarrow S$ 称为S上的一元运算,简称一元运算.
- 例2 (1) 求相反数是整数集合Z,有理数集合Q和实数集合R上的一元运算
- (2) 求倒数是非零有理数集合Q*,非零实数集合R*上一元运算
- (3) 求共轭复数是复数集合C上的一元运算
- (4) 在幂集P(S)上规定全集为S,则求绝对补运算~是P(S)上的一元运算.
- (5) 设S为集合,令A为S上所有双射函数的集合, $A \subseteq S^S$,求一个双射函数的反函数为A上的一元运算.
- (6) 在 $n(n \ge 2)$ 阶实矩阵的集合 $M_n(R)$ 上,求转置矩阵是 $M_n(R)$ 上的一元运算.

离散数学

二元与一元运算的表示

1. 算符

可以用 \circ ,*,·, Θ , \otimes , Δ 等符号表示二元或一元运算,称为算符. 对二元运算 \circ ,如果 x 与 y 运算得到 z,记做 $x \circ y = z$ 对一元运算 Δ ,x的运算结果记作 Δx .

2. 表示二元或一元运算的方法:解析公式和运算表公式表示

例 设R为实数集合,如下定义R上的二元运算*: $\forall x, y \in \mathbb{R}, x * y = x$.

那么 3*4=3, 0.5*(-3)=0.5

运算表

运算表:表示有穷集上的一元和二元运算

О	a_1	a_2		a_n
a_1	$a_1 \circ a_1$	a_1 0 a_2		$a_1 \circ a_n$
a_2	$a_2 \circ a_1$	a_2 o a_2	•••	$a_2 \circ a_n$
•				
•		•••		
•		• • •		
a_n	$a_n \circ a_1$	$a_n \circ a_2$	•••	$a_n \circ a_n$

	$\circ a_i$
a_1	o <i>a</i> ₁
a_2	o a_2
•	•
•	•
•	-
a_n	oa_n

二元运算的运算表

一元运算的运算表

运算表的实例

例3 设 $S=P(\{a,b\})$, S上的 \oplus 和 ~运算的运算表如下

\oplus	Ø	<i>{a}</i>	{ <i>b</i> }	<i>{a,b}</i>
Ø	Ø	<i>{a}</i>	{ b }	{ <i>a</i> , <i>b</i> }
{a}	{a}	Ø	$\{a.b\}$	{ b }
{ b }	{ b }	$\{a,b\}$	Ø	{ <i>a</i> }
{ <i>a</i> , <i>b</i> }	$\{a,b\}$	{b}	<i>{a}</i>	Ø

x	~x
Ø	{a,b}
{a}	{a}
{ b }	{ b }
{a,b}	Ø

二元运算的性质

定义9.3 设。为S上的二元运算,

- (1) 若对任意 $x,y \in S$ 有 $x \circ y = y \circ x$, 则称运算在S上满足交换律.
- (2) 若对任意 $x,y,z \in S$ 有 $(x \circ y) \circ z = x \circ (y \circ z)$,则称运算在S上满足结合律.
- (3) 若对任意 $x \in S$ 有 $x \circ x = x$, 则称运算在S上满足幂等律.

定义9.4设 \circ 和*为S上两个不同的二元运算,

- (1) 若对任意 $x,y,z \in S$ 有 $(x*y)\circ z=(x\circ z)*(y\circ z)$, $z\circ (x*y)=(z\circ x)*(z\circ y)$, 则称 \circ 运算对*运算满足分配律.
- (2) 若°和*都可交换,且对任意 $x,y \in S$ 有 $x^{\circ}(x*y)=x$, $x*(x^{\circ}y)=x$, 则称°和*运算满足吸收律.

实例

Z, Q, R分别为整数、有理数、实数集; $M_n(R)$ 为n阶实 矩阵集合, $n \ge 2$; P(B)为幂集; A^A 为从A到A的函数集, $|A| \ge 2$

集合	运算	交换律	结合律	幂等律
Z,Q,R	普通加法+ 普通乘法×	有 有	有 有	无 无
$M_n(R)$	矩阵加法+ 矩阵乘法×	有 无	有 有	无 无
P(B)	并∪ 交∩ 相对补– 对称差⊕	有有无有	有有无有	有有无无无
A^A	函数复合°	无	有	无

实例

Z, Q, R分别为整数、有理数、实数集; $M_n(R)$ 为n阶实 矩阵集合, $n \ge 2$; P(B)为幂集; A^A 为从A到A的函数集, $|A| \ge 2$

集合	运算	分配律	吸收律
Z,Q,R	普通加法+与乘法×	×对+可分配 +对×不分配	无
$M_n(R)$	矩阵加法+与乘法×	×对+可分配 +对×不分配	无
P(B)	并∪与交∩	∪对∩可分配 ∩对∪可分配	有
	交∩与对称差⊕	○对⊕可分配	无

特异元素:单位元、零元

定义9.5 设。为S上的二元运算,

(1) 如果存在 $e_l(\bar{\mathbf{u}}e_r) \in S$, 使得对任意 $x \in S$ 都有

$$e_l^{\circ} x = x \ (\overrightarrow{\mathfrak{P}} x^{\circ} e_r = x),$$

则称 $e_l(或e_r)$ 是S中关于。运算的左(或右)单位元.

若e∈S关于。运算既是左单位元又是右单位元,则称e为S上 关于。运算的单位元.单位元也叫做幺元.

(2) 如果存在 θ_I (或 θ_I) $\in S$, 使得对任意 $x \in S$ 都有

$$\theta_1 \circ x = \theta_1 \ (\text{iff } x \circ \theta_r = \theta_r),$$

则称 $\theta_I(或\theta_r)$ 是S中关于。运算的左(或右)零元.

若 θ ∈ S 关于。运算既是左零元又是右零元,则称 θ 为S上关于运算。的零元.

可逆元素和逆元

(3) 设 $^{\circ}$ 为S上的二元运算, $^{\circ}$ e为S中关于运算 $^{\circ}$ 的单位元. 对于 $x \in S$,如果存在 y_{l} (或 y_{r}) $\in S$ 使得 $y_{l} ^{\circ} x = e$ (或 $x ^{\circ} y_{r} = e$)

则称 y_t (或 y_r)是x的左逆元(或右逆元).

关于。运算,若 $y \in S$ 既是 x 的左逆元又是 x 的右逆元,则称 y为x的逆元. 如果 x 的逆元存在,就称 x 是可逆的.

实例

集合	运算	单位元	零元	逆元
Z,Q,R	普通加法+ 普通乘法×	0 1	无 0	<i>x</i> 逆元– <i>x</i> <i>x</i> 逆元 <i>x</i> ⁻¹ (<i>x</i> ⁻¹ ∈给定集合)
$M_n(R)$	矩阵加法+ 矩阵乘法×	n阶全0矩阵 n阶单位矩阵	无 n阶全0 矩阵	X逆元-X X的逆元X-1 (X可逆)
P(B)	并∪ 交∩ 对称差⊕	Ø B Ø	B Ø 无	Ø的逆元为Ø <i>B</i> 的逆元为 <i>B</i> <i>X</i> 的逆元为 <i>X</i>

惟一性定理

定理9.1 设。为S上的二元运算, e_l 和 e_r 分别为S中关于运算的 左和右单位元,则 e_l = e_r =e为S上关于。运算的惟一的单位元.

证:
$$e_l = e_l^{\circ} e_r$$
 $(e_r$ 为右单位元) $e_l^{\circ} e_r = e_r$ $(e_l$ 为左单位元)

所以 $e_l = e_r$,将这个单位元记作e. 假设e'也是 S 中的单位元,则有 $e' = e \circ e' = e$. 惟一性得证. 类似地可以证明关于零元的惟一性定理.

注意:

- 当 |S| ≥ 2,单位元与零元是不同的;
- 当 |S| = 1时,这个元素既是单位元也是零元.

惟一性定理

定理9.2 设。为S上可结合的二元运算,e为该运算的单位元,对于 $x \in S$ 如果存在左逆元 y_l 和右逆元 y_r ,则有 $y_l = y_r = y$,且 y 是 x 的惟一的逆元.

证: 由 $y_l \circ x = e$ 和 $x \circ y_r = e$ 得

$$y_l = y_l \circ e = y_l \circ (x \circ y_r) = (y_l \circ x) \circ y_r = e \circ y_r = y_r$$

 $\phi y_t = y_r = y$, 则 $y \in X$ 的逆元.

假若 $y' \in S$ 也是 x 的逆元,则

$$y'=y'\circ e=y'\circ (x\circ y)=(y'\circ x)\circ y=e\circ y=y$$

所以y是x惟一的逆元.

• 说明:对于可结合的二元运算,可逆元素 x 只有惟一的逆元,记作 x^{-1}

9.2 代数系统

定义9.6 非空集合S和S上k个一元或二元运算 $f_1,f_2,...,f_k$ 组成的系统称为代数系统,简称代数,记做< $S,f_1,f_2,...,f_k>$.

实例:

- (1) <N,+>,<Z,+,·>,<R,+,·>是代数系统,+和·分别表示普通加法和乘法.
- (2) $< M_n(R)$, +, $\cdot>$ 是代数系统, + 和·分别表示 n 阶($n \ge 2$)实矩 阵的加法和乘法.
- (3) $\langle Z_n, \oplus, \otimes \rangle$ 是代数系统, $Z_n = \{0,1,...,n-1\}$, \oplus 和 \otimes 分别表示 模n 的加法和乘法,对于 $x,y \in Z_n$, $x \oplus y = (x+y) \bmod n$, $x \otimes y = (xy) \bmod n$
- $(4) < P(S), \cup, \cap, \sim >$ 是代数系统, \cup 和 \cap 为并和交, \sim 为绝对补

代数系统的成分与表示

构成代数系统的成分:

- 集合(也叫载体,规定了参与运算的元素)
- 运算(这里只讨论有限个二元和一元运算)
- 代数常数(通常是与运算相关的特异元素:如单位元等)

研究代数系统时,如果把运算具有它的特异元素也作为系统的性质之一,那么这些特异元素可以作为系统的成分,叫做代数常数.

例如:代数系统<Z,+,0>:集合Z,运算+,代数常数0代数系统<P(S), \cup , \cap >:集合P(S),运算 \cup 和 \cap ,无代数常数

代数系统的表示

- (1) 列出所有的成分:集合、运算、代数常数(如果存在)如<**Z**,+,0>,<*P*(*S*), \cup , $\cap>$
- (2) 列出集合和运算,在规定系统性质时不涉及具有单位元的性质(无代数常数)如<**Z**,+>,<*P*(*S*), \cup , \cap >
- (3) 用集合名称简单标记代数系统 在前面已经对代数系统作了说明的前提下使用 如代数系统Z, P(B)

同类型与同种代数系统

定义9.7

- (1) 如果两个代数系统中运算的个数相同,对应运算的元数相同,且代数常数的个数也相同,则称它们是同类型的代数系统.
- (2) 如果两个同类型的代数系统规定的运算性质也相同,则称为同种的代数系统.

例如 V_1 =<R,+,·,0,1>, V_2 =< M_n (R),+,·,0,E>,0为n 阶全0 矩阵,E为n 阶单位矩阵, V_3 =<P(B), \cup , \cap , \varnothing ,B>

- V_1, V_2, V_3 是同类型的代数系统,它们都含有2个二元运算,2个代数常数.
- V_1, V_2 是同种的代数系统, V_1, V_2 与 V_3 不是同种的代数系统

运算性质比较

V_1	V_2	V_3
+可交换、可结合 +可交换、可结合 +可交换、可结合 +满足消去律 ·不满足消去律 ·对于可分配 +对于可分配 +与	+ 可结合 ・可交換、可结合 ・可交換、する ・ 対 大 ・	U可交换、可结合 ○可交换、可结合 ○可交换、可结合 ○不满足消去律 ○不满足消去律 ○对□可分配 □对□可分配 □与○满足吸收律

子代数系统

定义9.8 设 $V=\langle S, f_1, f_2, ..., f_k \rangle$ 是代数系统,B是S的非空子集,如果B对 $f_1, f_2, ..., f_k$ 都是封闭的,且B和S含有相同的代数常数,则称 $\langle B, f_1, f_2, ..., f_k \rangle$ 是V的子代数系统,简称子代数.有时将子代数系统简记为B.

实例

N是<Z,+>的子代数,N也是<Z,+,0>的子代数 N-{0}是<Z,+>的子代数,但不是<Z,+,0>的子代数 说明:

- 子代数和原代数是同种的代数系统
- 对于任何代数系统 $V = \langle S, f_1, f_2, ..., f_k \rangle$, 其子代数一定存在.

关于子代数的术语

- (1) 最大的子代数: 就是 V本身
- (2) 最小的子代数:如果令V中所有代数常数构成的集合是B,且B对V中所有的运算都是封闭的,则B就构成了V的最小的子代数
- (3) 最大和最小的子代数称为1/的平凡的子代数
- (4) 若B是S的真子集,则B构成的子代数称为V的真子代数.
- 例 设 $V=\langle Z,+,0\rangle$,令 $nZ=\{nz\mid z\in Z\}$,n为自然数,则nZ是V的子代数

当n=1和0时,nZ是V的平凡的子代数,其他的都是V的非平凡的真子代数.

积代数

定义9.9 设 V_1 =<A, \circ >和 V_2 =<B,*>是同类型的代数系统, \circ 和*为二元运算,在集合 $A\times B$ 上如下定义二元运算 \blacksquare , \forall < a_1,b_1 >,< a_2,b_2 > \in $A\times B$,有

$$< a_1, b_1 > \blacksquare < a_2, b_2 > \equiv < a_1 \circ a_2, b_1 * b_2 >$$

称 $V=<A\times B$,■>为 V_1 与 V_2 的积代数,记作 $V_1\times V_2$. 这时也称 V_1 和

V,为V的因子代数.

注意:积代数的定义可以推广到具有多个运算的同类型的代数系统

积代数的性质

- 定理9.3 设 $V_1 = \langle A, \circ \rangle$ 和 $V_2 = \langle B, * \rangle$ 是同类型的代数系统, $V_1 \times V_2 = \langle A \times B, \bullet \rangle$ 是它们的积代数.
- (1) 如果[◦]和 *运算是可交换(可结合、幂等)的,那么■运 算也是可交换(可结合、幂等)的
- (2) 如果 e_1 和 e_2 (θ_1 和 θ_2) 分别为[◦] 和 *运算的单位元(零元),那么< e_1 , e_2 > (< θ_1 , θ_2 >) 也是■运算的单位元(零元)
- (3) 如果 x 和 y 分别为∘和 *运算的可逆元素,那么<x,y>也是 ■运算的可逆元素,其逆元就是< x^{-1},y^{-1} >

9.3 代数系统的同态与同构

定义9.10 设 V_1 =<A,o>和 V_2 =<B,*>是同类型的代数系统, $f:A\to B$,且 $\forall x,y\in A$ 有 $f(x\circ y)=f(x)*f(y)$,则称f是 V_1 到 V_2 的同态映射,简称同态.

同态分类:

- (1) ƒ如果是单射,则称为单同态
- (2) 如果是满射,则称为满同态,这时称 V_2 是 V_1 的同态像,记作 $V_1 \sim V_2$
- (3) 如果是双射,则称为同构,也称代数系统 V_1 同构于 V_2 ,记作 $V_1 \cong V_2$
- (4) 如果 $V_1=V_2$,则称作自同态

实例

(1) 设 V_1 =< Z_n +>, V_2 =< Z_n , Θ >. 其中Z为整数集,+为普通加法; Z_n ={0,1,...,n-1}, Θ 为模n加. 令

 $f: \mathbb{Z} \to \mathbb{Z}_n$, $f(x)=(x) \mod n$ 那么 $f \in V_1$ 到 V_2 的满同态.

(2) 设 V_1 =<R,+>, V_2 =<R*,·>,其中R和R*分别为实数集与非零实数集,+和·分别表示普通加法与乘法.令

$$f: \mathbf{R} \rightarrow \mathbf{R}^*, \ f(x) = \mathbf{e}^x$$

则f是 V_1 到 V_2 的单同态.

第九章 习题课

主要内容

- 代数系统的构成:非空集合、封闭的二元和一元运算、代数常数
- 二元运算性质和特异元素:交换律、结合律、幂等律、分配律、吸收律、单位元、零元、可逆元和逆元
- 同类型的与同种的代数系统
- 子代数的定义与实例
- 积代数的定义与性质
- 代数系统的同态与同构

基本要求

- 判断给定集合和运算能否构成代数系统
- 判断给定二元运算的性质
- 求而二元运算的特异元素
- 了解同类型和同种代数系统的概念
- 了解子代数的基本概念
- 计算积代数
- 判断函数是否为同态映射和同构映射

练习1

1. 设。运算为Q上的二元运算,

$$\forall x, y \in Q, \ x \circ y = x + y + 2xy,$$

- (1) 判断。运算是否满足交换律和结合律,并说明理由.
- (2) 求出。运算的单位元、零元和所有可逆元素的逆元.
- (1)。运算可交换,可结合.

任取 $x, y \in Q$,

$$x \circ y = x + y + 2xy = y + x + 2yx = y \circ x,$$

任取 $x, y, z \in Q$,

$$(x \circ y) \circ z = (x+y+2xy)+z+2(x+y+2xy)z$$

= $x+y+z+2xy+2xz+2yz+4xyz$
 $x \circ (y \circ z) = x+(y+z+2yz)+2x(y+z+2yz)$
= $x+y+z+2xy+2xz+2yz+4xyz$

解答

(2) 设。运算的单位元和零元分别为 e 和 θ ,则对于任意 x 有 xoe = x 成立,即

$$x+e+2xe = x \Rightarrow e = 0$$

由于。运算可交换,所以0是幺元.

对于任意 x 有xo θ = θ 成立,即

$$x+\theta+2x\theta=\theta \Rightarrow x+2x\theta=0 \Rightarrow \theta=-1/2$$

给定x,设x的逆元为y,则有 $x \circ y = 0$ 成立,即

$$x+y+2xy = 0 \implies y = -\frac{x}{1+2x} \quad (x \neq -1/2)$$

因此当 $x \neq -1/2$ 时, $-\frac{x}{1+2x}$ 是x的逆元.

练习2

- 2. 下面是三个运算表
- (1) 说明那些运算是可交换的、可结合的、幂等的.
- (2) 求出每个运算的单位元、零元、所有可逆元素的逆元

*	a	b	c
a	c	a	b
b	a	b	\boldsymbol{c}
C	b	c	a

0	a	b	С
a b	а <i>b</i>	a b	a b
c	c	c	C

•	a	b	С
a	a	b	c
$\mid b \mid$	b	C	\mathcal{C}
C	С	C	C

解答

- (1)*满足交换律,满足结合律,不满足幂等律.
 - 。不满足交换律,满足结合律,满足幂等律.
 - 满足交换律,满足结合律,不满足幂等律.
- (2)*的单位元为b,没有零元, $a^{-1}=c, b^{-1}=b, c^{-1}=a$
 - 。的单位元和零元都不存在,没有可逆元素.
 - 的单位元为 a,零元为c, $a^{-1}=a$,b, c不是可逆元素.

说明:关于结合律的判断

需要针对运算元素的每种选择进行验证,若|A|=n,一般需要验证 n^3 个等式.

单位元和零元不必参与验证.

通过对具体运算性质的分析也可能简化验证的复杂性.

练习3

- 3. 设*G*为非0实数集*R**关于普通乘法构成的代数系统, 判断下述函数是否为*G*的自同态?如果不是,说明理由. 如果是,判别它们是否为单同态、满同态、同构.
- (1) f(x) = |x| + 1
- (2) f(x) = |x|
- (3) f(x) = 0
- $(4) \ f(x) = 2$

解答

- 解 (1) 不是同态, 因为 $f(2\times2)=f(4)=5$, $f(2)\times f(2)=3\times3=9$
- (2) 是同态,不是单同态,也不是满同态,因为f(1)=f(-1),且 ran f 中没有负数.
- (3) 不是G 的自同态,因为f 不是G 到G 的函数
- (4) 不是G 的自同态,因为 $f(2\times2)=2$, $f(2)\times f(2)=2\times2=4$

说明: 判别或证明同态映射的方法

- (1) 先判断(或证明) $f \in G_1$ 到 G_2 的映射 $f: G_1 \rightarrow G_2$. 如果已 知 $f: G_1 \rightarrow G_2$,则这步判断可以省去.
- $(2) \forall x, y \in G_1, 验证 f(xy) = f(x) f(y)$
- (3) 判断同态性质只需判断函数的单射、满射、双射性即可.