The Casimir Invariant

Zajj Daugherty

April 24, 2008

Let \mathfrak{g} be an *n*-dimensional semisimple Lie algebra. Let $\{b_i\}_i$ be any basis of \mathfrak{g} and let $\{b^i\}$ be the dual basis of \mathfrak{g} with respect to a fixed invariant (nondegenerate symmetric associative?) bilinear form on \mathfrak{g} (the Killing form is a good example). To be precise, each b^i is the unique element of \mathfrak{g} for which $\langle b^i, b_j \rangle = \delta_{i,j}$. So in \mathbb{R}^n the standard basis is its own dual with respect to the standard inner product.

The *casimir element* is an element of the universal enveloping algebra $U\mathfrak{g}$ given by the formula

$$\kappa = \sum_{i} b_i b^i.$$

Although κ seems to depend on the chosen basis of \mathfrak{g} , one can show that it is indeed independent of this choice. Moreover, the invarience of \langle , \rangle puts κ in the center of $U\mathfrak{g}$ as it commutes with each element of \mathfrak{g} .

Given a representation ρ of \mathfrak{g} on V, the corresponding casimir is $\rho(\kappa)$, the linear operator on V given (appropriately enough) by

$$\rho(\kappa) = \sum_{i} \rho(b_i) \rho(b^i).$$

The quantum Casimir is

$$\kappa_q = e^{-h\rho} \sum S(b_i) a_i \in \mathcal{Z}(U_q \mathfrak{g}).$$

So $\Delta(\kappa_q) = (R_{21}R_{12})^{-1}(\kappa_q \otimes \kappa_q)$. This is one reason why we care about $R_{21}R_{12}$. [Recall g is group-like if $\Delta(g) = g \otimes g$.]

Theorem 1. The Casimir element κ acts on a \mathfrak{g} -module $L(\lambda)$ of highest weight λ by the constant

$$\langle \lambda, \lambda + 2\rho \rangle$$
.

Proof. Choose a basis of \mathfrak{g} compatible with the triangular decomposition, and let $e_{\alpha} \in \mathfrak{g}_{\alpha}$, $f_{\alpha} \in \mathfrak{g}_{-\alpha}$, and $h_{\alpha} \in \mathfrak{h}$ generate the subalgebra of \mathfrak{g} isomorphic to \mathfrak{sl}_2 corresponding to $\alpha \in \mathbb{R}^+$. So

$$\langle e_{\alpha}, f_{\alpha} \rangle = \langle -\frac{1}{2} [e_{\alpha}, h_{\alpha}], f_{\alpha} \rangle = \frac{1}{2} \langle h_{\alpha}, [e_{\alpha}, f_{\alpha}] \rangle = \frac{1}{2} \alpha(h_{\alpha}) = \frac{1}{2} 2 = 1.$$

Let h_1^*, \ldots, h_ℓ^* be a basis of \mathfrak{h} , and let h_1^*, \ldots, h_ℓ^* be the dual basis with respect to \langle, \rangle . Then

$$\{h_1,\ldots,h_\ell\}\cup\{e_\alpha,f_\alpha\mid\alpha\in R^+\}$$
 is a basis of \mathfrak{g} , and

$$\{h_1^*, \dots, h_\ell^*\} \cup \{f_\alpha, e_\alpha \mid \alpha \in \mathbb{R}^+\}$$
 is a dual basis of \mathfrak{g} ,

with respect to \langle , \rangle .

Now we compute the constant by which κ acts on $L(\lambda)$: If $L(\lambda)$ is a \mathfrak{g} -module generated by highest weight vector v_{λ}^+ of weight λ , i.e.

$$h_{\alpha}v_{\lambda}^{+} = \lambda(h_{\alpha})v_{\lambda}^{+}$$
 and $e_{\alpha}v_{\lambda}^{+} = 0$ for $\alpha \in \mathbb{R}^{+}$,

then

$$\kappa v_{\lambda}^{+} = \left(\sum_{i=1}^{\ell} h_{i} h_{i}^{*} + \sum_{\alpha \in R^{+}} e_{\alpha} f_{\alpha} + \sum_{\alpha \in R^{+}} f_{\alpha} e_{\alpha}\right) v_{\lambda}^{+}$$

$$= \left(\sum_{i=1}^{\ell} h_{i} h_{i}^{*} + \sum_{\alpha \in R^{+}} \left(\left[e_{\alpha}, f_{\alpha}\right] + f_{\alpha} e_{\alpha} + f_{\alpha} e_{\alpha}\right)\right) v_{\lambda}^{+}$$

$$= \left(\sum_{i=1}^{\ell} h_{i} \lambda (h_{i}^{*}) + \sum_{\alpha \in R^{+}} \left(h_{\alpha} + 2 f_{\alpha} e_{\alpha}\right)\right) v_{\lambda}^{+}$$

$$= \left(\langle \lambda, \lambda \rangle + \sum_{\alpha \in R^{+}} \left(\langle \lambda, \alpha \rangle + 0\right)\right) v_{\lambda}^{+}$$

$$= \langle \lambda, \lambda + 2\rho \rangle$$

So if M and V are \mathfrak{g} -modules,

$$\kappa \cdot (M \otimes V) = ((\kappa \otimes 1) + (1 \otimes \kappa) + 2t) \cdot (M \otimes V), \quad \text{where} \quad t = \sum_{i} b_{i} \otimes b_{i}^{*}. \tag{0.1}$$

Thus the element t acts on the $L(\lambda)$ isotypic component of $L(\mu) \otimes L(\nu)$ by the constant

$$\frac{1}{2}(\langle \lambda, \lambda + 2\rho \rangle - \langle \mu, \mu + 2\rho \rangle - \langle \nu, \nu + 2\rho \rangle). \tag{0.2}$$

Some κ lemmas:

Let $\mathfrak{g} = \mathfrak{sl}_n$, \mathfrak{so}_n , or \mathfrak{sp}_n and $\nu = \omega_1$.

Lemma 2. Let $V = L(\omega_1)$.

1. If
$$\mathfrak{g} = \mathfrak{sl}(V)$$
, then

$$t_{\mu\nu_1}^{\lambda} = c(b),$$

where b is the box added to obtain λ from μ .

2. If $\mathfrak{g} = \mathfrak{so}(V)$, then

$$t^{\lambda}_{\mu\omega_1} = \left\{ \begin{array}{cc} c(b) & \text{if b is added,} \\ -c(b)-(n-1) & \text{if b is removed,} \end{array} \right.$$

where b is the box added or removed to obtain λ from μ .

3. If $\mathfrak{g} = \mathfrak{sp}(V)$, then

$$t^{\lambda}_{\mu\omega_1} = \left\{ \begin{array}{cc} c(b) & \text{if b is added,} \\ -c(b)-(n+1) & \text{if b is removed,} \end{array} \right.$$

where b is the box added or removed to obtain λ from μ .

Proof.

Case 1: $\mathfrak{g} = \mathfrak{sl}(V)$. Adding a box to μ in the i^{th} row is equivalent to adding $\varepsilon_i - \frac{1}{n}(\varepsilon_1 + \cdots + \varepsilon_n)$. Note that $\omega_1 = \varepsilon_1 - \frac{1}{n}(\varepsilon_1 + \cdots + \varepsilon_n)$. So

$$\lambda = \mu + (\varepsilon_i - \varepsilon_1 + \omega_1).$$

Finally, recall $2\rho = \sum_{i} \omega_{i} = \sum_{j} (n+1-2j)\varepsilon_{j}$. If i = 1, then $\lambda = \mu + \omega_{1}$, so

$$\begin{array}{lll} 2t^{\lambda}_{\mu\omega_{1}} & = & \langle \lambda,\lambda+2\rho\rangle - \langle \mu,\mu+2\rho\rangle - \langle \omega_{1},\omega_{1}+2\rho\rangle \\ & = & \langle \mu+\omega_{1},\mu+\omega_{1}+2\rho\rangle - \langle \mu,\mu+2\rho\rangle - \langle \omega_{1},\omega_{1}+2\rho\rangle \\ & = & \langle \mu,\omega_{1}\rangle + \langle \omega_{1},\omega_{1}+2\rho\rangle - \langle \omega_{1},\omega_{1}+2\rho\rangle \\ & = & 2(\langle \mu,\varepsilon_{1}\rangle - \langle \mu,\frac{1}{n}(\varepsilon_{1}+\cdots+\varepsilon_{n})\rangle) \\ & = & 2\left(\mu_{1}-\frac{|\mu|}{n}\right) & = & 2\left((\mu_{1}+1)-1\right)-2\frac{|\mu|}{n} \end{array}$$

Othewise, $i \neq 1$, so $\lambda = \mu + (\varepsilon_i - \varepsilon_1) + \omega_1$, so

$$\begin{aligned} 2t^{\lambda}_{\mu\omega_{1}} &= \left(\langle \mu + \varepsilon_{i} - \varepsilon_{1} + \omega_{1}, \mu + \varepsilon_{i} - \varepsilon_{1} + \omega_{1} + 2\rho \rangle - \langle \mu, \mu + 2\rho \rangle - \langle \omega_{1}, \omega_{1} + 2\rho \rangle \right) \\ &= \left(2\langle \mu, \omega_{1} \rangle + 2\langle \varepsilon_{i} - \varepsilon_{1}, \mu \rangle + 2\langle \varepsilon_{i} - \varepsilon_{1}, \omega_{1} \rangle + \langle \varepsilon_{i} - \varepsilon_{1}, \varepsilon_{i} - \varepsilon_{1} + 2\rho \rangle \right) \\ &= 2\left(\left(\mu_{1} - \frac{|\mu|}{n} \right) + (\mu_{i} - \mu_{1}) + \left(-\frac{1}{n} - 1 + \frac{1}{n} \right) + \frac{1}{2} \left((1 + n + 1 - 2i) - (-1 + n + 1 - 2) \right) \right) \\ &= 2\left(\mu_{i} - \frac{|\mu|}{n} - 1 + 2 - i \right) = 2\left((\mu_{i} + 1) - i \right) - 2\frac{|\mu|}{n} \end{aligned}$$

The content of a box added rom row i of μ is $(\mu_i + 1) - i$. Likewise, the content of a box removed from row i of μ is $(\mu_i - 1) - i$.

Case 2: $\mathfrak{g} = \mathfrak{so}(V)$. Adding or removing a box from μ in the i^{th} row is equivalent to adding or subtracting ε_i , i.e. $\lambda = \mu \pm \varepsilon_i$. Recall $\omega_1 = \varepsilon_1$, and let y = n, so $2\rho = \sum_i (y - 2i)\varepsilon_i$. Thus

$$\begin{array}{lll} 2t^{\lambda}_{\mu\nu} & = & \left(\langle\lambda,\lambda+2\rho\rangle - \langle\mu,\mu+2\rho\rangle - \langle\omega_1,\omega_1+2\rho\rangle\right) \\ & = & \left(\langle\mu\pm\varepsilon_i,\mu\pm\varepsilon_i+2\rho\rangle - \langle\mu,\mu+2\rho\rangle - \langle\varepsilon_1,\varepsilon_1+2\rho\rangle\right) \\ & = & \left(\pm2\langle\varepsilon_i,\mu\rangle + \langle\varepsilon_i,\varepsilon_i\pm2\rho\rangle - \langle\varepsilon_1,\varepsilon_1+2\rho\rangle\right) \\ & = & \pm2\mu_i + \left(1\pm(y-2i)-(1+y-2)\right) \\ & = & \left\{ \begin{array}{ll} 2(\mu_i+1-i), & \text{if a box is added,} \\ -2(\mu_i-i+y-1), & \text{if a box is removed,} \end{array} \right. \\ & = & \left\{ \begin{array}{ll} 2c(b), & \text{if b is added,} \\ 2(-c(b)-(n-1)), & \text{if b is removed,} \end{array} \right. \end{array}$$

since a box added would be in column $\mu_i + 1$ and row i, where a box removed would be in column μ_i and row i.

Case 3: $\mathfrak{g} = \mathfrak{sp}(V)$. Just as in case 2, $\lambda = \mu \pm \varepsilon_i$ and $\omega_1 = \varepsilon_1$. However, in this case $2\rho = \sum_i (y-2i)\varepsilon_i$ if we let y = n+2. So

$$2t^{\lambda}_{\mu\nu} = \begin{cases} 2(\mu_i + 1 - i) & \text{if a box is added,} \\ -2(\mu_i - i + y + 1) & \text{if a box is removed,} \end{cases}$$
$$= \begin{cases} 2c(b) & \text{if } b \text{ is added,} \\ 2(-c(b) - (n+1)) & \text{if } b \text{ is removed,} \end{cases}$$

The remaining lemmas can be shown similarly as in lemma 2.

Lemma 3. If $M = L((s)^m)$, then

$$\kappa_M = (sm)y + sm(s-m)$$
= area(s × m rectangle) · (y + content of corner box),

where

$$y = \begin{cases} 2N - 1 & \mathfrak{gl}_N \\ N & \mathfrak{sl}_N \\ N - 1 & \mathfrak{so}_N \\ N + 1 & \mathfrak{sp}_N \end{cases}$$

So κ "recovers" your rectangle.

Lemma 4. If $M = L(\mu) = L((s)^m)$, $N = L(\nu) = L((t)^n)$, $n \le m$, then

$$\kappa_{\mu+\nu} - \kappa_{\mu} - \kappa_{\nu} = 2stn.$$

Lemma 5. If $\lambda = \mu - \varepsilon_i + \varepsilon_j$ is obtained from μ by moving a box from one row and into another, then

$$\kappa_{\lambda} = \kappa_{\mu} - 2((\lambda_i - i) - (\lambda_j + 1 - j))$$

$$= \kappa_{\mu} - 2(\text{content of old box} - \text{content of new box})$$