

Eloísa Grifo

PhD Thesis Defense

Symbolic Powers and the Containment Problem

Thesis outline

Chapter 1 Symbolic powers

Chapter 2 Symbolic powers in characteristic p

Chapter 3 Height 2 ideals in 3 variables

Chapter 4 A stable version of Harbourne's Conjecture

Chapter 5 Symbolic Rees algebras

Chapter 6 Reduction to positive characteristic

Chapter 7 Algorithms for computing symbolic powers

What are symbolic powers?

All rings are noetherian (with identity).

Ideal

An ideal I in a ring R is a subset of R that is closed under addition and closed for products by elements in the ring.

Prime ideal

A proper ideal P is prime if R/P is an integral domain.

Hilbert's Nullstellensatz

$$\mathbb{C}[x_1,\ldots,x_d]$$

ideal $I \vdash$

ideal $I \leftarrow$

prime ideal $P \leftarrow$

 $\mathbb{C}[x_1,\ldots,x_d]$

zeroes of all the $f \in I$

polynomials that vanish along $\,V\,$

 \mathbb{C}^d

 \rightarrow variety V

 \dashv variety V

 \rightarrow irreducible variety V

Variety corresponding to the ideal (xy, xz, yz) in k[x, y, z].

Powers of ideals

Given an ideal I, I^n is the ideal generated by all elements of the form $f_1 \cdots f_n$, where each $f_i \in I$. General elements in I^n are

$$\sum_{i} c_i f_{i,1} \cdots f_{i,n}, \text{ where each } c_i \in R \text{ and } f_{i,j} \in I.$$

This is a natural algebraic notion of power.

EXAMPLE

The square of I=(xy,xz,yz) is generated by x^2y^2 , x^2z^2 , y^2z^2 , x^2yz , xy^2z , xyz^2 .

$$x = 0, y = 0$$

$$y = 0, z = 0$$

Variety given by $(xy, xz, yz)^2 = (x^2y^2, x^2z^2, y^2z^2, x^2yz, xy^2z, xyz^2)$.

Radical ideal

The radical \sqrt{I} of an ideal I is the ideal generated by all elements f such that $f^n \in I$ for some n. An ideal I is radical if $\sqrt{I} = I$.

Hilbert's Nullstellensatz
$$\mathbb{C}[x_1,\dots,x_d] \qquad \qquad \mathbb{C}^d$$
 radical ideal $I \! \leftarrow \! \longrightarrow \! \text{variety } V$

prime ideal $P \longleftrightarrow$ irreducible variety

Variety given by $(xy, xz, yz)^2 = (x^2y^2, x^2z^2, y^2z^2, x^2yz, xy^2z, xyz^2)$.

Bad news

This notion of power is not meaningful geometrically.

Question

What is a meaningful geometric notion of power?

Question

What is a meaningful geometric notion of power?

We want to consider the functions that vanish up to order n on a given variety.

The *n*-th symbolic power of an ideal I is denoted by $I^{(n)}$.

Theorem (Zariski-Nagata: order of vanishing)

Let Q be a prime ideal in $\mathbb{C}[x_1,\ldots,x_d]$. Then $Q^{(n)}$ is the ideal of polynomials that vanish up to order n in the variety defined by Q.

$$Q^{(n)} = \bigcap_{\substack{\mathfrak{m} \ maximal \\ \mathfrak{m} \supset O}} \mathfrak{m}$$

The n-th symbolic power of an ideal I is denoted by $I^{(n)}$.

Theorem (Zariski–Nagata: differential operators)

Let I be a radical ideal in $\mathbb{C}[x_1,\ldots,x_d]$. A polynomial f is in $I^{(n)}$ if and only if $\frac{\partial}{\partial x_i}(f) \in I^{(n-1)}$ for all $i=1,\ldots,d$.

EXAMPLE

In the variety defined by I=(xy,xz,yz), the polynomial xyz vanishes up to order 2, since $\frac{\partial}{\partial x}(xyz)$, $\frac{\partial}{\partial y}(xyz)$, $\frac{\partial}{\partial z}(xyz) \in I$.

In the language of symbolic powers, this means that $xyz \in I^{(2)}$.

Note that xyz has degree 3 and all elements in I^2 have degree at least 4, so $xyz \notin I^2$.

Properties:

- $\bigcirc I^n \subseteq I^{(n)}.$
- $\bigcirc I^{(n+1)} \subseteq I^{(n)}.$
- $\bigcirc I^{(a)}I^{(b)}\subseteq I^{(a+b)}.$

VERY DIFFICULT OPEN QUESTION

Given a noetherian ring ${\cal R}$, characterize the ideals ${\cal I}$ for which

 $I^n = I^{(n)}$ for all $n \geqslant 1$.

EXAMPLE

If I is an ideal in $k[x_1, \ldots, x_d]$ generated by some of the variables, then we do have $I^n = I^{(n)}$ for all n.

Symbolic powers arise naturally from the theory of primary decomposition.	

Let P be a prime ideal in a noetherian ring R.

Definition (Symbolic Powers)

The n-th symbolic power of P is the ideal

 $= \{ f \in R \mid f/g \in P^n R_P \text{ for some } g \notin P \}$

= P-primary component in a decomposition of P^n

 $= \{ f \in R \mid qf \in P^n \text{ for some } q \notin P \}$

- $P^{(n)} = P^n R_P \cap R.$

EXAMPLE

 $P\subseteq R=k[x,y,z]$ the defining ideal of $k[t^3,t^4,t^5]$, meaning the kernel of the map $x\mapsto t^3$, $y\mapsto t^4$, $z\mapsto t^5$, with $R/P\cong k[t^3,t^4,t^5]$. Set $\deg x=3$. $\deg y=4$. $\deg z=5$.

$$P = (\underbrace{x^2y - z^2}_{f}, \underbrace{xz - y^2}_{\text{deg }10}, \underbrace{yz - x^3}_{\text{deg }9})$$

Since
$$fg - h^2 = xq$$
 for some q and $x \notin P$, $q \in P^{(2)}$.

Since $\deg(fg - h^2) = 18$, $\deg q = 18 - 3 = 15$.

Elements in P^2 have degree at least 16, so $q \notin P^2$.

QUESTION

How do we compare symbolic and ordinary powers?

The Containment Problem

Containment Problem

When is $I^{(b)} \subseteq I^a$?

Definition (Height)

The height of a prime ideal ${\cal P}$ in a regular ring ${\cal R}$ is

- \bigcirc dim(R) dim(R/P)
- \bigcirc the codimension of the variety corresponding to P
- \bigcirc the largest size n of a prime chain $p_0 \subsetneq p_1 \subsetneq \cdots \subsetneq p_n = P$.

Definition (Big height)

The **big height** of the radical ideal $I = P_1 \cap \cdots \cap P_k$ is

= maximal codimension of an irreducible

component of the variety corresponding to I

 $h = \text{maximal height among the } P_i$

Theorem (Ein-Lazarsfeld-Smith, 2001, Hochster-Huneke, 2002, Ma-Schwede, 2017)

Let I be a radical ideal of big height h in a regular ring R. Then for all $n \ge 1$. $I^{(hn)} \subset I^n$.

In particular, $I^{(dn)} \subseteq I^n$ for $d = \dim R$.

Ein-Lazarsfeld-Smith, Hochster-Huneke, Ma-Schwede

 $I^{(hn)} \subset I^n$ for all $n \geqslant 1$.

EXAMPLE

$$P\subseteq R=k[x,y,z] \text{ the defining ideal of } k[t^3,t^4,t^5] \text{, meaning the kernel of the map } x\mapsto t^3 \text{, } y\mapsto t^4 \text{, } z\mapsto t^5 \text{, with } R/P\cong k[t^3,t^4,t^5].$$

 $h=2 \longrightarrow P^{(2n)} \subset P^n \longrightarrow P^{(4)} \subset P^2$

Ein-Lazarsfeld-Smith, Hochster-Huneke, Ma-Schwede

 $I^{(hn)} \subseteq I^n$ for all $n \geqslant 1$.

EXAMPLE

$$P\subseteq R=k[x,y,z]$$
 the defining ideal of $k[t^3,t^4,t^5]$, meaning the kernel of the map $x\mapsto t^3$, $y\mapsto t^4$, $z\mapsto t^5$, with $R/P\cong k[t^3,t^4,t^5]$.

kernel of the map
$$x\mapsto t^r, y\mapsto t^r, z\mapsto t^r$$
, with $R/P \cong k[t^r, t^r, t^r]$.
$$h=2 \iff P^{(2n)} \subseteq P^n \iff P^{(4)} \subseteq P^2.$$

In fact, $P^{(3)} \subseteq P^2$.

Question (Huneke, 2000)

Let P be a height 2 prime in a regular ring. Is $P^{(3)} \subseteq P^2$?

If f vanishes up to order 3 on some variety V, can we write it algebraically in a simpler way, using combinations of products of 2 functions that vanish along V?

Question (Huneke, 2000)

Let P be a height 2 prime in a regular ring. Is $P^{(3)} \subseteq P^2$?

Conjecture (Harbourne, ≤ 2008)

Let I be a radical ideal of big height h in a regular ring.

For all $n\geqslant 1$, $I^{(hn-h+1)}\subseteq I^n.$

Key Lemma (Hochster-Huneke)

Let I be a radical ideal of big height h in a regular ring of characteristic p>0. Then for all $q=p^e,\,$

$$p>0.$$
 Then for all $q=p^e$, $I^{(hq)}\subset I^{[q]}.$

Notation: $I^{[q]} = (f^q | f \in I)$.

Theorem (Hochster-Huneke)

Let I be a radical ideal of big height h in a regular ring of characteristic p > 0. Then for all $q = p^e$,

teristic
$$p>0$$
 . Then for all $q=p^e$,
$$I^{(hq-h+1)}\subset I^{[q]}.$$

Notation: $I^{[q]} = (f^q | f \in I)$.

Harbourne's Conjecture

Let I be a radical ideal in a regular ring of big height h.

For all $n \ge 1$,

$$I^{(hn-h+1)} \subseteq I^n$$
.

Dumnicki, Szemberg, Tutaj-Gasińska, 2013

There exists a radical ideal in $\mathbb{C}[x,y,z]$ with h=2 and $I^{(3)} \nsubseteq I^2$:

$$I = (z(x^3 - y^3), x(y^3 - z^3), y(z^3 - x^3)).$$

This corresponds to the Fermat configuration of 12 points in \mathbb{P}^2 .

Harbourne's Conjecture

Let I be a radical ideal of big height h in a regular ring.

For all $n \geqslant 1$,

$$I^{(hn-h+1)} \subseteq I^n$$
.

When does Harbourne's Conjecture hold?

- For monomial ideals.
- \bigcirc For general points in \mathbb{P}^2 (Harbourne–Huneke) and \mathbb{P}^3 (Dumnicki).
- For star configurations (Harbourne–Huneke).

Goals:

O Study the smallest open case of this open question:

OPEN QUESTION (HUNEKE, 2000)

Let P be a height 2 prime in a regular ring. Is $P^{(3)} \subseteq P^2$?

Find versions of Harbourne's Conjecture that hold:

Conjecture (Harbourne, ≤ 2008)

Let I be a radical ideal of big height h in a regular ring. For all $n \geqslant 1$,

$$I^{(hn-h+1)} \subseteq I^n.$$

Chapter 1 Symbolic powers

Chapter 2 Symbolic powers in Characteristic p

Chapter 3 Height 2 ideals in 3 variables

Chapter 4 A stable version of Harbourne's Conjecture

Chapter 5 Symbolic Rees algebras

Chapter 6 Reduction to positive characteristic

Chapter 7 Algorithms for computing symbolic powers

Symbolic powers in char p

Harbourne's Conjecture

Let I be a radical ideal of big height h in a regular ring. For all $n\geqslant 1,$

 $I^{(hn-h+1)} \subseteq I^n.$

When does Harbourne's Conjecture hold?

- For monomial ideals.
- \bigcirc For general points in \mathbb{P}^2 (Harbourne–Huneke) and \mathbb{P}^3 (Dumnicki).
- For star configurations (Harbourne–Huneke).

Theorem (G-Huneke)

Let I be a radical ideal of big height h in a regular ring of characteristic p. If R/I is an F-pure ring, then for all $n\geqslant 1$,

$$I^{(hn-h+1)} \subseteq I^n.$$

Theorem (G-Huneke)

Let I be a radical ideal of big height h in a regular ring of characteristic p. If R/I is an F-pure ring, then for all $n\geqslant 1$,

$$I^{(hn-h+1)} \subseteq I^n.$$

This includes the case when I is a monomial ideal.

Some *F*-pure rings include determinantal rings, Veronese rings.

Theorem (Fedder's Criterion)

Let (R,\mathfrak{m}) be a regular local ring of characteristic p, and I a radical ideal in R. The ring R/I is F-pure if and only if

radical ideal in
$$R$$
. The ring R/I is F -pure if and only if
$$\left(I^{[p]}:I\right)\nsubseteq\mathfrak{m}^{[p]}.$$

$$I^{[p]} = (f^p \mid f \in I).$$

$$(J:I) = \{ r \in R \mid rI \subseteq J \}.$$

Theorem (Fedder's Criterion)

Let (R,\mathfrak{m}) be a regular local ring of characteristic p, and I a radical ideal in R. The ring R/I is F-pure if and only if for all $q=p^e$

deal in
$$R$$
. The ring R/I is F -pure if and only if for all $q=p^e$
$$\left(I^{[q]}:I\right)\nsubseteq\mathfrak{m}^{[q]}.$$

Notation: $I^{[q]} = (f^q | f \in I)$.

Steps in the proof

 \bigcirc Reduce to the local case.

Steps in the proof

- Reduce to the local case.
- \bigcirc Note that $I \subseteq J$ if and only if J : I = R. We need to show

$$I^n: I^{(hn-h+1)} = R.$$

Steps in the proof

- Reduce to the local case.
- \bigcirc Note that $I \subseteq J$ if and only if J : I = R. We need to show

$$I^n: I^{(hn-h+1)} = R.$$

Show that

$$\left(I^{[q]}:I\right)\subseteq \left(I^n:I^{(hn-h+1)}\right)^{[q]}$$
 for all $q=p^e\gg 0$.

Proof sketch (part II)

and R/I is not F-pure.

For all $q = p^e \gg 0$,

 $\left(I^{[q]}:I\right)\subseteq\left(I^n:I^{(hn-h+1)}\right)^{[q]}.$

 $(I^{[q]}:I)\subseteq (I^n:I^{(hn-h+1)})^{[q]}\subseteq \mathfrak{m}^{[q]},$

If $I^{(hn-h+1)} \nsubseteq I^n$ for some n, then there exists $q = p^e$ such that

Theorem (G-Huneke)

Let I be a radical ideal of big height h in a regular ring of characteristic p. If R/I is an F-pure ring, then for all $n \ge 1$,

$$I^{(hn-h+1)} \subseteq I^n.$$

This is in fact best possible over the class of squarefree monomial ideals, and thus more generally for the class of ideals defining F-pure rings.

EXAMPLE

The squarefree monomial ideal

$$I = \bigcap_{i \neq j} (x_i, x_j) \subseteq k[x_1, \dots, x_v].$$

verifies $I^{(2n-2)} \nsubseteq I^n$ for n < v.

But we can do better if we restrict our class of ideals.

 $\{F$ -pure rings $\} \supseteq \{$ strongly F-regular rings $\}$

But we can do better if we restrict our class of ideals.

 $\{F
endalign{subarray}{c} \{F
endalign{subarray}{c} F
endalign{subarray}{c} F
endalign{subarray}{c} F
endalign{subarray}{c} \{F
endalign{subarray}{c} F
endalign{s$

Good news! There is a Fedder-like criterion for strongly \emph{F} -regular rings by Donna Glassbrenner.

Theorem (G-Huneke)

Let I be a radical ideal of big height h in an F-finite regular ring of characteristic p. If R/I is a strongly F-regular ring, then for all $n\geqslant 1$,

$$I^{((h-1)n+1)} \subseteq I^{n+1}.$$

Determinantal rings, Veronese rings.

Theorem (G-Huneke)

Let I be a radical ideal of big height h in an F-finite regular ring of characteristic p. If R/I is a strongly F-regular ring, then for all $n\geqslant 1$,

$$I^{((h-1)n+1)} \subseteq I^{n+1}.$$

OPEN QUESTION

Is this best possible?

Corollary

Let I be a radical ideal of big height 2 in an F-finite regular ring of characteristic p.

If R/I is a strongly F-regular ring, then for all $n \geqslant 1$, $I^n = I^{(n)}$.

Chapter 1 Symbolic powers

Chapter 2 Symbolic powers in characteristic pChapter 3 HEIGHT 2 IDEALS IN 3 VARIABLES

Chapter 4 A stable version of Harbourne's Conjecture

Chapter 5 Symbolic Rees algebras

Chapter 6 Reduction to positive characteristic

Chapter 7 Algorithms for computing symbolic powers

Height 2 ideals in 3 variables

OPEN QUESTION (HUNEKE, 2000)

Let P be a height 2 prime in a regular ring. Is $P^{(3)} \subseteq P^2$?

OPEN QUESTION (HUNEKE, 2000)

Let P be a height 2 prime in k[x, y, z]. Is $P^{(3)} \subseteq P^2$?

OPEN QUESTION (HUNEKE, 2000)

Let P be a height 2 prime in k[x, y, z]. Is $P^{(3)} \subseteq P^2$?

Theorem (-)

Let k be a field of characteristic not 3, let a, b and c be integers, and let P be the defining ideal of $k[t^a,t^b,t^c]$. Then

$$P^{(3)} \subseteq P^2.$$

Monomial space curves

Let k be a field. The kernel of the map

$$k[x, y, z] \longrightarrow k[t^a, t^b, t^c] \subseteq k[t]$$

is a prime ideal of height 2, generated by the maximal minors of

is a prime ideal of height 2, generated by the maximal minors o
$$\begin{pmatrix} x^{\alpha_3} & y^{\beta_1} & z^{\gamma_2} \\ z^{\gamma_1} & x^{\alpha_2} & y^{\beta_3} \end{pmatrix}.$$

More generally

We study the ideals I generated by the 2×2 minors of

$$M = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}.$$

So $I = (f_1 = a_2b_3 - a_3b_2, f_2 = a_3b_1 - a_1b_3, f_3 = a_1b_2 - a_2b_1).$

More generally

We study the ideals I generated by the 2×2 minors of

$$M = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}.$$

So
$$I = (f_1 = a_2b_3 - a_3b_2, f_2 = a_3b_1 - a_1b_3, f_3 = a_1b_2 - a_2b_1).$$

The key ideas in this chapter follow work by Alexandra Seceleanu.

She studied examples with $I^{(3)} \nsubseteq I^2$, but her ideas can also be applied to any $I^{(a)} \subseteq I^b$ and to obtain positive results.

Seceleanu's Ingredients

$$\bigcirc H^0_{\mathfrak{m}}(R/I^n) = I^{(n)}/I^n.$$

Seceleanu's Ingredients

$$\bigcirc \operatorname{H}^{0}_{\mathfrak{m}}(R/I^{n}) = I^{(n)}/I^{n}.$$

 $\bigcirc\ \emph{I}^{(a)}\subseteq \emph{I}^{b}$ if and only if the map induced by $\emph{I}^{a}\subseteq \emph{I}^{b}$

$$\mathrm{H}^0_{\mathfrak{m}}(R/I^a) \longrightarrow \mathrm{H}^0_{\mathfrak{m}}(R/I^b)$$

is the $0\,\mathrm{map}.$

Seceleanu's Ingredients

$$\bigcirc \operatorname{H}^{0}_{\mathfrak{m}}(R/I^{n}) = I^{(n)}/I^{n}.$$

 \bigcirc $I^{(a)}\subseteq I^b$ if and only if the map induced by $I^a\subseteq I^b$

$$\mathrm{H}^0_{\mathfrak{m}}(R/I^a) \longrightarrow \mathrm{H}^0_{\mathfrak{m}}(R/I^b)$$

is the 0 map.

 $O(I^{(a)} \subseteq I^b)$ if and only if the map induced by $I^a \subseteq I^b$ on Ext

$$\operatorname{Ext}^3(R/I^b,R) \longrightarrow \operatorname{Ext}^3(R/I^a,R)$$

is the 0 map.

Seceleanu's ingredients

 \bigcirc $I^{(a)} \subseteq I^b$ if and only if the map induced by $I^a \subseteq I^b$ on Ext

$$\operatorname{Ext}^2(I^b,R) \longrightarrow \operatorname{Ext}^2(I^a,R)$$

is the $0\,\,\mathrm{map}.$

Seceleanu's ingredients

 \bigcirc $I^{(a)} \subseteq I^b$ if and only if the map induced by $I^a \subseteq I^b$ on Ext

$$\operatorname{Ext}^2(I^b,R) \longrightarrow \operatorname{Ext}^2(I^a,R)$$

is the 0 map.

 \bigcirc Get resolutions for all I^n and a lifting of the map $I^{n+1} \subseteq I^n$ from the Rees algebra of I, $\bigoplus I^n t^n \subseteq R[t]$.

$$0 \longrightarrow F_2 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow I^2 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow G_2 \longrightarrow G_1 \longrightarrow G_0 \longrightarrow I^3 \longrightarrow 0$$

$$0 \longrightarrow F_2 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow I^2 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow G_2 \longrightarrow G_1 \longrightarrow G_0 \longrightarrow I^3 \longrightarrow 0$$

Apply $\operatorname{Hom}_R(-,R)$.

$$0 \longleftarrow F_2 \longleftarrow F_1 \longleftarrow F_0 \longleftarrow I^2 \longleftarrow 0$$

$$\downarrow^B \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longleftarrow G_2 \stackrel{A}{\longleftarrow} G_1 \longleftarrow G_0 \longleftarrow I^3 \longleftarrow 0$$

 $I^{(3)} \subseteq I^2$ if and only if all the columns of B are in the image of A.

We need to solve an explicit linear algebra question.

Theorem (Seceleanu)

The containment $I^{(3)} \subseteq I^2$ is equivalent to

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} \in \operatorname{im} \begin{pmatrix} a_1 & a_2 & a_3 & 0 & 0 & 0 & b_1 & b_2 & b_3 & 0 & 0 & 0 \\ 0 & a_1 & 0 & a_2 & a_3 & 0 & 0 & b_1 & 0 & b_2 & b_3 & 0 \\ 0 & 0 & a_1 & 0 & a_2 & a_3 & 0 & 0 & b_1 & 0 & b_2 & b_3 \end{pmatrix}.$$

$$I = I_2(M) \text{ for } M = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}.$$

Theorem (-)

Let k be a field of characteristic not 3, and I be the ideal of 2×2

minors of
$$M = \begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix}$$

 $M = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}$

in k[x, y, z]. If $a_1|b_2$, then $I^{(3)} \subseteq I^2$.

Harbourne's Conjecture

 $\text{Is } I^{(2n-1)} \subseteq I^n \text{ for all } n?$

Harbourne's Conjecture

Is $I^{(2n-1)} \subseteq I^n$ for all n?

Theorem (-)

Let k be a field of characteristic not 2, 3 or 5, let a, b and c be integers, and let P be the defining ideal of $k[t^a, t^b, t^c]$. Then

$$P^{(3)} \subset P^2 \text{ and } P^{(2\times 3-1=5)} \subset P^3.$$

Harbourne's Conjecture

Is $I^{(2n-1)} \subseteq I^n$ for all n?

Theorem (-)

Let k be a field of characteristic not 2, 3 or 5, let a, b and c be integers, and let P be the defining ideal of $k[t^a, t^b, t^c]$. Then

$$P^{(3)} \subseteq P^2 \text{ and } P^{(2\times 3-1=5)} \subseteq P^3.$$

We can also give sufficient conditions for $I^{(4)} \subseteq I^3$.

Chapter 1 Symbolic powers

Chapter 2 Symbolic powers in characteristic \ensuremath{p}

Chapter 3 Height 2 ideals in 3 variables

Chapter 4 A STABLE VERSION OF HARBOURNE'S CONJECTURE

Chapter 5 Symbolic Rees algebras

Chapter 6 Reduction to positive characteristic

Chapter 7 Algorithms for computing symbolic powers

A stable version of Harbourne's

Conjecture

Main Question

Does Harbourne's Conjecture always hold eventually?

Evidence for the Stable Harbourne Conjecture

Let $a \geqslant 3$, k be a field, and the Fermat ideal

This is a well-known counterexample to $I^{(3)} \subseteq I^2$. However,

This is a well-known counterexample to
$$T \to \subseteq T$$
 . However

for all $n \geqslant 3$, which follows from work of Dumnicki, Harbourne, Nagel, Seceleanu, Szemberg, and Tutaj-Gasińska.

 $I^{(2n-1)} \subset I^n$

 $I = (x(y^a - z^a), y(z^a - x^a), z(x^a - y^a)).$

Main Question

Does Harbourne's Conjecture always hold eventually?

Stable Harbourne Conjecture

Let I be a radical ideal of big height h in a regular ring. For all $n\gg 0,$

 $I^{(hn-h+1)} \subseteq I^n.$

Question

If there exists a value of m such that

$$I^{(hm-h+1)} \subseteq I^m,$$

does that imply that

$$I^{(hn-h+1)} \subseteq I^n,$$

for all $n \gg 0$?

then

for all $n \gg 0$.

Let I be a radical ideal of big height h in a regular ring containing a field. If there exists a value of m such that

a field. If there exists a value of
$$m$$
 such that

 $I^{(hm-h)} \subseteq I^m$,

 $I^{(hn-h)} \subseteq I^n$,

then

for all $n \gg 0$.

Let I be a radical ideal of big height h in a regular ring containing a field. If there exists a value of m such that

a field. If there exists a value of
$$m$$
 such that

 $I^{(hm)} \subseteq I^{m+1}$,

 $I^{(hn)} \subseteq I^{n+1}$,

Let I be a radical ideal of big height h in a regular ring containing a field. If there exists a value of n such that

$$I^{(hn-h)} \subseteq I^n,$$

 $I^{(hm-h)} \subset I^m$.

then

for all
$$m \gg 0$$
.

EXAMPLE

The defining ideal of $k[t^3, t^4, t^5]$ in k[x, y, z] verifies $P^{(2\times 3-2=4)}\subseteq P^3$, and thus $P^{(2m-2)}\subseteq P^m$ for all $m\gg 0$.

Let k be a field of characteristic not 2 nor 3, let a = 3 or a = 4, and let b and c be integers with a < b < c. If P is the defining

 $P^{(4)} \subset P^3$.

ideal of $k[t^a, t^b, t^c]$, then

As a consequence, $P^{(2n-2)} \subseteq P^n$ for all $n \gg 0$.

Let k be a field of characteristic not 2 nor 3, let a=3 or a=4, and let b and c be integers with a < b < c. If P is the defining ideal of $k[t^a, t^b, t^c]$, then

$$P^{(4)} \subset P^3$$
.

As a consequence, $P^{(2n-2)} \subseteq P^n$ for all $n \gg 0$.

In Chapter 3, we give sufficient conditions on a 2×3 matrix M in k[x,y,z] that imply $I^{(4)}\subseteq I^3$ for $I=I_2(M)$.

EXAMPLE

so $P^{(2n-2)} \subset P^n$ for all $n \gg 0$.

The defining ideal P of $k[t^9, t^{11}, t^{14}]$ fails $P^{(4)} \subseteq P^3$, but Macaulay2 computations show that

 $P^{(2\times 4-2=6)} \subset P^4$.

EXAMPLE

The squarefree monomial ideal

 $I = \bigcap (x_i, x_j) \subseteq k[x_1, \dots, x_v].$

has $I^{(2n-2)} \nsubseteq I^n$ for n < v, but $I^{(2v-2)} \subseteq I^v$. Therefore,

 $I^{(2n-2)} \subseteq I^n$ for all $n \gg 0$.

Chapter 1 Symbolic powers

Chapter 2 Symbolic powers in characteristic \ensuremath{p}

Chapter 3 Height 2 ideals in 3 variables

Chapter 4 A stable version of Harbourne's Conjecture

Chapter 5 SYMBOLIC REES ALGEBRAS

Chapter 6 Reduction to positive characteristic

 ${\it Chapter} \ 7 \ {\it Algorithms} \ {\it for} \ {\it computing} \ {\it symbolic} \ {\it powers}$

Symbolic Rees algebras

Definition (Symbolic Rees algebra)

The symbolic Rees algebra of I is the graded algebra

$$\mathcal{R}_s(I) = \bigoplus_{n \geqslant 0} I^{(n)} t^n \subseteq R[t].$$

VERY DIFFICULT OPEN QUESTION (COWSIK)

When is the symbolic Rees algebra of I finitely generated over R?

EXAMPLE

The symbolic Rees algebra of the defining ideal P of $\mathbb{C}[t^3,t^4,t^5]$ is noetherian, but the symbolic Rees algebra of $\mathbb{C}[t^{25},t^{29},t^{72}]$ is not noetherian (by a result of Goto, Nishida and Watanabe). In both cases, $P^{(2n-2)} \subseteq P^n$ for all $n \ge 6$.

QUESTIONS WE WILL TRY TO TACKLE

Suppose symbolic Rees algebra of ${\it I}$ is finitely generated.

- \bigcirc When is $I^{(a)} \subseteq I^b$?
- \bigcirc Must I verify the stable version of Harbourne's Conjecture?

If
$$\mathcal{R}_s(I)=R\left[It,I^{(2)}t^2,\ldots,I^{(d)}t^d\right]$$
, and $I^{(hn-h+1)}\subseteq I^n$ for all $hn-h+1\leqslant d$, then

 $I^{(hn-h+1)} \subset I^n$

for all $n \ge 1$.

for all $n \ge 1$.

If
$$\mathcal{R}_s(\mathit{I}) = \mathit{R}\left[\mathit{It},\mathit{I}^{(2)}\mathit{t}^2,\ldots,\mathit{I}^{(d)}\mathit{t}^d\right]$$
, then

 $I^{(dn-d+1)} \subseteq I^n$

Let R be a regular ring of characteristic $p \equiv 2 \pmod{3}$. If I is a radical ideal of big height 2 such that the symbolic Rees algebra of I is generated in degree up to 3, then $I^{(2n-1)} \subseteq I^n$ for all $n \geqslant p^2 + p - 2$.

Suppose that h and k are integers such that h and h-1 are both coprime with k. There is an infinite set of prime ideals p with the

following property: Given a regular ring R of characteristic p, if I a radical ideal of

Given a regular ring
$$R$$
 of characteristic p , if I a radical ideal of big height h and such that $I^{(kn)} = \left(I^{(k)}\right)^n$ for all $n \geqslant 1$, then
$$I^{(hn-h+1)} \subset I^n$$

for all $n \geqslant N$, where N only depends on h, k and p.

Let I be a radical ideal of big height h in a regular ring R containing a field. If I is such that $I^{(hm)} = \left(I^{(h)}\right)^m$ for all $m \geqslant 1$, then $I^{(hn-h+1)} \subset I^n$ for all $n \gg 0$.

Open Questions

Huneke's Question

If P is a prime ideal of height 2 in a RLR, must $P^{(3)} \subseteq P^2$?

A stable version of Harbourne's Conjecture

If I is a radical ideal of big height h in a regular ring, is $I^{(hn-h+1)}\subseteq I^n$ for all $n\gg 0$?

Can we ask for more?

If I is a radical ideal of big height h in a regular ring, and given a constant C, must $I^{(hn-C)}\subseteq I^n$ hold for all $n\gg 0$?

Obrigada!

