Щ

m DE 195 11 682 A 1

DEUTSCHES PATENTAMT (21) Aktenzeichen:

195 11 682.8

Anmeldetag:

30, 3, 95

Offenlegungstag:

2.10.96

B 41 F 5/02 B 41 F 33/14

B 41 F 21/08

Cylicaronisation die Sozenkansports

(71) Anmelder:

Heidelberger Druckmaschinen AG, 69115 Heidelberg, DE

@ Erfinder:

Jeschke, Willi, 76332 Bad Herrenalb, DE

56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

> 19 30 317 B2 DE DE 43 30 554 A1 19 66 677 DE-OS 1 14 373 DD CH 5 55 241 , MO 82 00 975

Prüfungsantrag gem. § 44 PatG ist gestellt

- (54) Bogendruckmaschine mit ebener Bogenführung
- Bei einer Bogendruckmaschine mit ebener Bogenführung, die zwei endlose Transportbänder (15, 16) zur geradlinigen und eingriffsfreien Bewegung von Greiferwägen (19) durch die Druckwerke (2, 3) aufweist, werden die Bandlängen gemäß der Erfindung im Betrieb genau an den Zylinderumfang angepaßt und wird jedes Transportband durch einen eigenen Antriebsmotor (20, 21) angetrieben und unabhängig von dem anderen Transportband mit den Zylindern (5, 6; 7, 8) synchronisiert. Dadurch läßt sich mit verhältnismäßig geringem Aufwand eine sehr genaue und stabile Synchronisation des Bogentransports erreichen.

Stale 10 201865 Palityres

BEST AVAILABLE COPY

Beschreibung

Die Erfindung betrifft eine Bogendruckmaschine mit ebener Bogenführung, die zwei endlose Transportbänder zur geradlinigen und eingriffsfreien Bewegung von Greiferwägen durch die Druckwerke, Mittel zur Einstellung der Länge der Transportbänder und Mittel zur Synchronisierung der Geschwindigkeiten der Transportbänder und der Zylinder der Druckmaschine aufweist sowie je ein Verfahren zur Synchronisierung des 10 Bogenlaufs bzw. eines Transportbandes mit den Zylin-

Eine Bogendruckmaschine mit ebener Bogenführung ist aus der DE-PS 19 30 317 bekannt. Ebene Bogenführung bedeutet, daß die Bogen in einem einzigen Greiferschluß in einer waagerechten Ebene vom Anleger bis zum Ausleger zwischen den Zylindern mehrerer aufeinanderfolgender Druckwerke hindurchgeführt werden. Für einen registerhaltigen Druck muß der Bogentransport mit den Zylindern synchronisiert werden. Übliche 20 Transportmittel mit Zahnelementen, wie Ketten, weisen jedoch die Nachteile auf, daß sie sich im Betrieb längen und die Zahnelemente mehr oder weniger große Teilungsfehler aufweisen und Einlaufstöße verursachen. oben genannten Patentschrift vorgeschlagenen Metallbänder, die jeweils um ein Antriebsrad und ein Umlenkrad herum verlaufen und durch eine geeignete Vorspannung auf Länge gehalten werden, scheinen in dieser Hinsicht besser geeignet zu sein.

Der Verzicht auf eine mechanische Zwangssynchronisierung zwischen den Transportmitteln und den Zylindern schafft jedoch neue Probleme. Beispielsweise lassen sich die Antriebsräder nicht beliebig genau fertigen sich bei Erwärmung aus. Schon aus diesem Grunde entstehen mit der Zeit Synchronisationsfehler der an den Transportbändern befestigten Greiferwägen.

Zur Lösung dieses Problems wurde in der DD-PS 2 01 865 vorgeschlagen, z. B. bei einer Vergrößerung 40 des Durchmessers der Antriebsräder entweder den Abstand zu den Umlenkrädern zu vergrößern, so daß die Bandlänge ein ganzzahliges Vielfaches des Umfangs eines Antriebsrades bleibt, oder die Drehzahl der Antriebsräder mittels eines variablen Getriebes zu verän- 45

Aus mehreren Gründen läßt sich aber auch mit dieser Lösung keine optimale Synchronisation erreichen, wie weiter unten noch deutlicher wird.

Der Erfindung liegt die Aufgabe zugrunde, eine so- 50 wohl sehr genaue als auch verhältnismäßig einfach zu realisierende Synchronisation des Bogentransports mit den druckenden Zylindern zu schaffen.

Diese Aufgabe wird bei einer gattungsgemäßen Druckmaschine erfindungsgemäß dadurch gelöst, daß 55 dern werden in einem Vorgang ausgeregelt. die Mittel zur Einstellung der Länge der Transportbänder dafür eingerichtet sind, die Bandlängen im Betrieb automatisch an den Zylinderumfang anzupassen, und dadurch, daß für jedes Transportband ein eigener Antrieb und eigene Mittel zur Synchronisierung mit den Zylindern unabhängig von dem anderen Transportband vorgesehen sind.

Bei dem Verfahren zur Synchronisierung des Bogenlaufs mit den Zylindern bei einer Druckmaschine, die zwei endlose Transportbänder zur geradlinigen und ein- 65 griffsfreien Bewegung von Greiferwägen durch die Druckwerke aufweist, wird die Aufgabe erfindungsgemäß dadurch gelöst, daß die Bandlängen im Betrieb an

den Zylinderumfang angepaßt gehalten werden, und dadurch, daß jedes Transportband unabhängig von dem anderen Transportband angetrieben und mit den Zylindern synchronisiert wird.

Der Erfindung liegt zum einen die Erkenntnis zugrunde, daß zwischen den Oberflächen der Antriebsräder und den Transportbändern stets ein unkalkulierbarer Schlupf auftritt. So gering dieser auch sein mag, führt er doch mit der Zeit zu Synchronisationsfehlern zwischen den beiden Transportbändern, also zu Schrägstellungen der Greiferwägen. Diese Fehler lassen sich bei den bekannten Druckmaschinen mit endlosen Transportbändern nicht vermeiden, da die Antriebsräder fest mit einer gemeinsamen Antriebsachse verbunden sind. Demgegenüber werden bei der Erfindung die beiden Transportbänder getrennt angetrieben, so daß die Friktion jedes Einzelbandes problemlos kompensiert werden kann.

Ferner vermeidet die Erfindung weitere gravierende Mängel, die nach dem Stand der Technik auftreten. Wie oben erläutert, werden in der DE-PS 19 30 317 mögliche Dimensionsänderungen der Transportmittel durch sich ändernde Betriebsbedingungen ignoriert. In der DD-PS 2 01 865 werden diese zwar erkannt, jedoch wird Endlose Transportbänder ohne Eingriffe, z. B. die in der 25 dem durch ungeeignete Maßnahmen begegnet. Bei diesen Maßnahmen, der Vergrößerung des Abstandes der Antriebs- und Umlenkräder oder der Drehzahlveränderung bei einer Vergrößerung des Durchmessers der Antriebsräder, wird die Vergrößerung der Bandlänge hingenommen und zum Ausgleich effektiv die Transportgeschwindigkeit des Bandes geändert.

Dadurch wird erreicht, daß eine bestimmte Stelle des Transportbandes nach einem Umlauf wieder mit einer zugehörigen Stelle an einem Zylinder zusammenfällt. bzw. nutzen sich im Betrieb ab. Außerdem dehnen sie 35 Ein solcher Passer läßt sich aber nur für ein einziges Druckwerk herstellen. Bei normalen Abständen der Druckwerke entstehen bereits bei sehr geringen prozentualen Längenänderungen erhebliche Passerdifferenzen an den anderen Druckwerken.

Da nach der DD-PS 2 01 865 die Transportgeschwindigkeit ohne Rücksicht auf die Zylinderrotation geändert wird, ist bei einer Bandlängung außerdem kein exakter Gleichlauf mehr gewährleistet, was in der Praxis ebenfalls problematisch ist.

Demgegenüber wird gemäß der Erfindung die Länge der beiden Transportbänder unter allen Betriebsbedingungen an den Zylinderumfang angepaßt gehalten, im Normalfall genau auf einem ganzzahligen Vielfachen des Zylinderumfangs. Durch diese Maßnahme lassen sich in Verbindung mit der Antriebsregelung der Transportbänder sowohl Passer als auch Gleichlauf erzielen. Irgendwelche Dimensionsänderungen von Druckmaschinenkomponenten oder der Einfluß der Friktion brauchen nicht je für sich kompensiert zu werden, son-

In der bevorzugten Ausführungsform verlaufen die Transportbänder jeweils um ein Antriebsrad und ein Umlenkrad herum. Die Mittel zur Einstellung der Länge der Transportbänder können dann auf den im Stand der Technik bekannten verstellbaren Vorspanneinrichtungen für die Umlenkräder basieren, mit denen die Umlenkräder innerhalb des Bereichs der mechanischen Vorspannung der Bänder auf die Antriebsräder zu und davon weg verstellt werden können.

Normalerweise sind die Betriebsbedingungen, die für eine Anderung der Bandlänge ursächlich sein können, relativ langsam veränderlich. Daher lassen sich die Bandlängen alternativ auf eine besonders einfache Wei-

se konstant halten, nämlich durch Regelung der Temperatur von federnd gespannt gehaltenen Transportbändern. Dazu muß nicht das gesamte Band temperaturgeregelt werden, sondern es genügt, z. B. seinen rücklaufenden Trum oder eines der Antriebs- oder Umlenkräder, die mit dem Band im Wärmekontakt stehen, zu heizen oder zu kühlen, so daß sich eine bestimmte mittlere Temperatur einstellt, die die gewünschte Bandlänge

Als Vergleichsmaßstab für die Synchronisierung kön- 10 nen irgendwelche mit den Transportbändern verbundenen, sensorisch abtastbaren Markierungen verwendet werden. Hierzu eignen sich sowohl die geförderten Bogen selbst, z. B. deren Vorderkanten in der Nähe der jeweiligen Transportbänder, als auch besondere Marken, die an den Greiferwägen ausgebildet sind. Außer der Ankopplung der Greiferwägen an die Transportbänder müssen dann keine weiteren Eingriffe daran vorgenommen werden. Die Greiferwägen müssen nicht einmal in exakt gleichen Abständen an die Transport- 20 bänder gekoppelt sein. Was die Greiferfunktion angeht, so führt ein Fehler lediglich dazu, daß der eine Wagen geringfügig mehr Papier erfaßt als der andere, also der Greiferrand sich ändert. Ein Druckfehler tritt dennoch liefert, an dem die Marken im Betrieb vorbei laufen, gruppenweise mit konstanten Taktsignalen der drukkenden Zylinder verglichen und zur Synchronisierung verwendet werden. Eine Gruppe von in Transportrichperiodisches, d. h. mit jedem Bandumlauf wiederkehrendes Signalmuster, anhand dessen ein Fehler in der Synchronisation äußerst schnell erkannt und ausgeregelt werden kann.

Weder die Transportbänder noch die Antriebs- und 35 Umlenkräder, die Greiferwägen oder die Marken zur Synchronisierung müssen daher mit einer besonderen Genauigkeit gefertigt bzw. positioniert werden, was der Wirtschaftlichkeit zugute kommt. Dennoch ist mit der Erfindung ohne Greiferschluß oder andere mechanische 40 Mittel zur Synchronisation mit den Zylindern eine äu-Berst synchrone Bogenführung möglich. Da alle in Betracht kommenden Fehler im Betrieb ausgeregelt werden, wird die Synchronisation auch bei veränderlichen Betriebsbedingungen oder bei einer Abnutzung der 45 Transportmittel beibehalten.

In einer Ausführungsform der Erfindung werden die Marken auf jeder Seite der Druckmaschine durch zwei Sensoren abgetastet, die im Abstand hintereinander angeordnet sind. Mittels der Signale dieser beiden Senso- 50 ren läßt sich die Bandlänge auf besonders einfache Weise im laufenden Betrieb messen und konstant halten.

Dieses letztere Verfahren der Synchronisierung eines endlosen Transportbandes mit den Zylindern ist nicht nur bei Druckmaschinen mit zwei Transportbändern 55 zur Bogenführung, sondern auch bei Druckmaschinen mit einer beliebigen Anzahl von endlosen Transportbändern zur Bogenführung nutzbar. In diesem Fall werden an dem einzelnen Transportband an wenigstens zwei längs des Bogentransportweges beabstandeten 60 Stellen Signale der vorbeilaufenden Bogen bzw. von mit dem Transportband verbundenen Marken gewonnen, und anhand dieser Signale werden sowohl die Geschwindigkeit als auch die Länge des Transportbandes entsprechend der Drehzahl und dem Umfang der Zylin- 65 der eingestellt.

Der Antrieb der Druckwerke ist unproblematisch. Er kann konventionell mit einem Räderblock erfolgen, der vorzugsweise auch eine Anlegetrommel antreibt. Aber auch Einzelantrieben, für jedes Druckwerk getrennt, steht nichts im Wege.

In den abhängigen Ansprüchen sind vorteilhafte und 5 bevorzugte Weiterbildungen der Erfindung angegeben.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung eines Ausführungsbeispiels und aus der Zeichnung, auf die Bezug genommen wird.

In der Zeichnung zeigen:

Fig. 1 eine Seitenansicht einer Druckmaschine; und Fig. 2 eine Draufsicht auf die Druckmaschine.

Die Druckmaschine, eine Mehrfarben-Offsetdruckmaschine mit ebener Bogenführung, enthält einen Anleger 1, zwei Druckwerke 2, 3 und einen Ausleger 4. Jedes Druckwerk 2, 3, das nach dem Prinzip Gummi-gegen-Gummi arbeitet, enthält einen oberen und einen unteren Plattenzylinder 5, 6 und einen oberen und einen unteren Gummizylinder 7.8.

An jeder der beiden Seitenwände 9, 10 des Auslegers 4 ist ein Antriebsrad 11 drehbar gelagert. An jeder der beiden Seitenwände 12, 13 des Anlegers 1 ist ein Umlenkrad 14 drehbar gelagert. Um jeweils ein Antriebsrad 11 und Umlenkrad 14 herum verläuft ein Transportband nicht auf, wenn die Signale, die ein ortsfester Sensor 25 15 bzw. 16. Die beiden Transportbänder 15, 16 sind beispielsweise aus Stahl oder aus Kunststoff mit in Längsrichtung verlaufenden Stahlfasern. Zwischen den Antriebsrädern 11 und den Umlenkrädern 14 verlaufen die Transportbänder 15, 16 geradlinig zwischen den Gumtung aufeinanderfolgenden Marken liefert nämlich ein 30 mizylindern 7, 8 durch die Druckwerke 2, 3 hindurch. ledes der beiden Transportbänder 15, 16 wird durch eine Spann- und Verstelleinrichtung 17 gespannt gehalten, mit denen jede Drehachse 18 der Umlenkräder 14 separat in Längsrichtung der Druckmaschine verstellbar ist. Die Antriebsräder 11 und die Umlenkräder 14 haben relativ große Massen, um einen möglichst ruhigen und gleichmäßigen Lauf der Transportbänder 15, 16 zu gewährleisten.

Zwischen den Transportbändern 15, 16 erstrecken sich senkrecht zur Längsrichtung der Druckmaschine eine Anzahl von Greiferwägen 19. Die Greiferwägen 19 sind auf eine nicht gezeigte Weise mittels Rollen an ihren Enden in Führungsschienen geführt, die parallel zu den Transportbändern 15, 16 verlaufen. Außerdem sind die Greiferwägen 19 in Abständen, die im wesentlichen gleich dem Umfang der Plattenzylinder 5, 6 und der gleich großen Gummizylinder 7, 8 sind, an die Trans-

portbänder 15, 16 gekoppelt.

Wie schematisch dargestellt, wird jedes der beiden Antriebsräder 11 für die Transportbänder 15, 16 von einem eigenen Antriebsmotor 20 bzw. 21 angetrieben. Die Druckwerke 2, 3 und eine nicht gezeigte Anlegetrommel im Anleger 1 sind mit ebenfalls nicht gezeigten eintourigen Rädern miteinander verbunden, über die sie gemeinsam angetrieben werden.

Im Betrieb der Druckmaschine nimmt die Anlegetrommel nacheinander Bogen 22 von einem Stapel ab und beschleunigt sie. Daraufhin werden die Bogen 22 von den Greiferwägen 19 ergriffen und waagerecht und geradlinig in Pfeilrichtung durch die Druckwerke 2, 3 zum Ausleger 4 befördern. Die Gummizylinder 7,8 weisen jeweils eine in Längsrichtung verlaufende Ausnehmung 23 auf, die einen freien Durchgang der Greiferwägen 19 zwischen den Gummizylindern 7,8 ermöglicht.

Die Spann- und Verstelleinrichtungen 17 werden so voreingestellt, daß die mit einer geeigneten Länge hergestellten Transportbänder 15, 16 auf eine Länge gespannt werden, die zunächst genau gleich einem ganzzahligen Vielfachen des Umfangs der Plattenzylinder 5, 6 und der Gummizylinder 7, 8 ist. Ändern sich in der Folge Betriebsbedingungen, die eine Längenänderung der Transportbänder 15, 16 erfordern, so wird die Position der Drehachse 18 durch geeignete Steuerungsmittel automatisch so verstellt, daß die Länge der Transportbänder 15, 16 dem Vielfachen eines angepaßten Zylinderumfangs entspricht. Bei einer gegebenen Druckmaschine sind die in bezug auf eine Längenänderung der Transportbänder 15, 16 kritischen Betriebsbedingungen bekannt, so daß diese mit geeigneten Sensoren überwacht werden können und die Spann- und Verstelleinrichtungen 17 entsprechend der gewünschten Bandlänge angesteuert werden können. Haben sich konstante Betriebsbedingungen eingestellt, wird auch die Band- 15 länge genau konstant gehalten.

Angrenzend an den rücklaufenden Trum der Transportbänder 15, 16 ist ferner jeweils eine schematisch dargestellte Heizeinrichtung 24 vorgesehen, mit der die Länge der Transportbänder 15, 16 ebenfalls geeignet 20 beeinflußt werden kann. Obwohl im Ausführungsbeispiel sowohl die Spann- und Verstelleinrichtungen 17 als auch die Heizeinrichtungen 24 gezeigt sind, kommt man für einen besonders einfachen Aufbau auch mit den Heizeinrichtungen 24 allein aus. Die Umlenkräder 14 25 werden dann nur elastisch aufgehängt. Auf der Basis der bestehenden Zusammenhänge zwischen Spannung, Temperatur und Länge der Transportbänder 15, 16 läßt sich deren Länge dann in einem gewissen Bereich allein durch Regelung der Temperatur regeln.

Einer nicht gezeigten elektronischen Vergleichseinrichtung werden Taktsignale zugeführt, die jeweils einen Umlauf z. B. der Plattenzylinder 5, 6 anzeigen. Zwei maschinenfeste Sensoren 25, die jeweils in der Nähe zeugen beim Vorbeilauf von nicht gezeigten Marken an den Enden der Greiferwägen 19 Signale, die ebenfalls der Vergleichseinrichtung zugeführt werden.

Die Taktsignale der Plattenzylinder 5, 6 und die Signale der Sensoren 25 werden in der Vergleichseinrich- 40 tung miteinander verglichen, um den Lauf jedes Transportbandes 15 bzw. 16 je für sich zeitlich und räumlich mit den Plattenzylindern 5,6 zu synchronisieren. Da aus Gründen der Wirtschaftlichkeit zugelassen wird, daß die Positionen der Greiferwägen 19 um einige zehntel Milli- 45 meter von den jeweiligen Idealpositionen abweichen, werden jeweils die Signale aus einer Anzahl von x aufeinanderfolgenden Greiferwägen 19 mit den Taktsignalen verglichen. Der eine Greiferwagen 19 eilt um einen bestimmten Betrag vor, der andere nach. Die Beträge 50 der Vor- und Nacheilungen ergeben bei Phasengleichlauf ein unveränderliches Datenmuster für die x Greiferwägen. Ist ein Bandumlauf ungleich x Zylinderumläufen, so verschiebt sich das Datenmuster nach einer Seite, und die Regelung wird durchgeführt, indem der An- 55 triebsmotor 20 bzw. 21 schneller oder langsamer Laufen gelassen wird, bis die Phase wiederhergestellt ist.

Gemäß einer Weiterbildung der Bogendruckmaschine ist in ausreichendem Abstand zu den Sensoren 25 in der Nähe jedes Transportbandes 15, 16 jeweils ein zwei- 60 ter Sensor 26 angebracht. Durch Vergleich der Signale der beiden Sensoren 25, 26 eines Transportbandes 15 oder 16 erhält man die aktuelle Bandlänge während des Betriebs, so daß sich eine Überwachung der Betriebsbedingungen erübrigt, deren Änderung zu einer Längen- 65 änderung der Transportbänder führt.

Die Bandlänge wird dann mit der Heizeinrichtung 24 bzw. der Spann- und Verstelleinrichtung 17 an den Zylinderumfang angepaßt gehalten, wie oben beschrieben. Die Oberflächengeschwindigkeiten von Transportband und Zylindern sind dann genau gleich, und wegen der konstanten Bandlänge befinden sich nicht nur der Plattenzylinder 5, sondern auch der Plattenzylinder 6 und ggf. die Zylinder weiterer Druckwerke mit dem Transportband in Phase, d. h. in "Passer".

Auch die Signale des zweiten Sensors 26 werden wie die Signale des Sensor 25 in Form von Datenmustern ausgewertet, die aus einer Gruppe aufeinanderfolgender Greiferwägen 19 erhalten werden. Dadurch erhält man trotz einer gewissen Signalstreuung optimale Informationen über die Phasenlage, die Bandgeschwindigkeit und die Bandlänge. Die Auswertung der Datenmuster wird in Echtzeit durchgeführt, immer für die Signale der letzten Greiferwägen, mit sofortigem Regelungsein-

Unter Umständen kann es zweckmäßig sein, in die Regelung eine Korrektur der Bandlänge mit einfließen zu lassen. Ist z. B. ein Papier zu bedrucken, das sich während des Druckprozesses stark dehnt, so könnte man die Bandlänge gezielt vergrößern, um einen konstanten Abzug aus dem Druckspalt zu sichern. Ebenso könnte zur Optimierung des Bogenabzugs vom Gummizylinder eine etwas kleinere Bandgeschwindigkeit bzw. Bandlänge wünschenswert sein. Auch dieser Betriebszustand kann in bestimmten Grenzen herbeigeführt werden. Es ist dann aber stets auf die Phasenlagen der Druckwerke zu achten und sind diese ggf. anzupassen.

Wie schon erwähnt, ist es ein wesentliches Merkmal der Erfindung, daß jedes Transportband 15, 16 unabhängig von dem anderen angetrieben und mit den Zylindern synchronisiert wird. Es kann daher zweckmäßig sein, für den Fall eines Ausfalles eines Regelsystems bzw. eines eines Transportbandes 15 bzw. 16 angeordnet sind, er- 35 Antriebsmotors 20, 21 Notkupplungen vorzusehen. Diese können zum Beispiel in einer bedingten mechanischen Zwangssynchronisation der Antriebsräder 11 bestehen, wobei jedes Antriebsrad mit Spiel über ein stufenloses Getriebe an den Maschinenantrieb gekuppelt ist und diese Kupplung mittels des stufenlosen Getriebes im regulären Betrieb automatisch im Bereich des Spiels gehalten wird, um die laufende Synchronisierung nicht zu beeinträchtigen Bei Ausfall eines Antriebs wird durch das entsprechend eingestellte Spiel verhindert, daß die Greiferwägen den Bereich der Ausnehmungen in den Zylindern verlassen. Die bedingte Zwangssynchronisation kann auch beim Anfahren der Zylinder hilfreich sein.

Patentansprüche

1. Bogendruckmaschine mit ebener Bogenführung, die zwei endlose Transportbänder zur geradlinigen und eingriffsfreien Bewegung von Greiferwägen durch die Druckwerke, Mittel zur Einstellung der Länge der Transportbänder und Mittel zur Synchronisierung der Geschwindigkeiten der Transportbänder und der Zylinder der Druckmaschine aufweist, dadurch gekennzeichnet, daß die Mittel (17; 24) zur Einstellung der Länge der Transportbänder (15, 16) dafür eingerichtet sind, die Bandlängen im Betrieb automatisch an den Zylinderumfang anzupassen, und dadurch, daß für jedes Transportband ein eigener Antrieb (20, 21) und eigene Mittel (25) zur Synchronisierung mit den Zylindern (5, 6; 7. 8) unabhängig von dem anderen Transportband vorgesehen sind.

2. Bogendruckmaschine nach Anspruch 1, dadurch

8

gekennzeichnet, daß die Mittel zur Synchronisierung der Transportbänder mit den Zylindern jeweils einen ersten Sensor (25) zur Erzeugung von Signalen beim Vorbeilauf der Bogen (22) bzw. von mit den Transportbändern verbundenen Marken und eine Vergleichseinrichtung zum Vergleich der Sensorsignale mit Taktsignalen der Zylinder umfassen.

3. Bogendruckmaschine nach Anspruch 2, dadurch gekennzeichnet, daß die Mittel zur Synchronisierung der Transportbänder mit den Zylindern außerdem jeweils einen zweiten Sensor (26) zur Erzeugung von Signalen beim Vorbeilauf der Bogen (22) bzw. der Marken umfassen, der längs des Bogentransportweges im Abstand zu dem ersten Sensor (25) angeordnet ist.

4. Bogendruckmaschine nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Mittel zur Einstellung der Länge der Transportbänder Mittel (24) zur Regelung der Temperatur der Transportbänder (15, 16) und/oder ihrer Antriebsund Umlenkräder (11, 14) umfassen.

5. Verfahren zur Synchronisierung des Bogenlaufs mit den Zylindern bei einer Druckmaschine, die zwei endlose Transportbänder zur geradlinigen 25 und eingriffsfreien Bewegung von Greiferwägen durch die Druckwerke aufweist, dadurch gekennzeichnet, daß die Bandlängen im Betrieb an den Zylinderumfang angepaßt gehalten werden, und dadurch, daß jedes Transportband (15, 16) unabhängig von dem anderen Transportband angetrieben und mit den Zylindern (5, 6; 7, 8) synchronisiert wird.

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Synchronisierung der Transportbänder (15, 16) mit den Zylindern (5, 6; 7, 8) auf der Basis eines Vergleichs von jeweils einer Gruppe von Signalen, die von den vorbei laufenden Bogen (22) bzw. von mit den Transportbändern verbundenen Marken erhalten werden, mit Taktsignalen durchgeführt wird, die von den konstant angetriebenen Zylindern erhalten werden.

7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß für jedes Transportband an wenigstens zwei längs des Bogentransportweges beabstandeten Stellen Signale der vorbei laufenden Bogen (22) bzw. der Marken gewonnen werden, und dadurch, daß sowohl die Geschwindigkeit als auch die Länge des Transportbandes unter Verwendung dieser Signale eingestellt wird.

8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß die Bandlängen genau auf einem ganzzahligen Vielfachen des Zylinderumfangs gehalten werden.

9. Verfahren nach einem der Ansprüche 5 bis 8, 55 dadurch gekennzeichnet, daß die Bandlängen durch Regelung der Temperatur der Transportbänder (15, 16) und/oder ihrer Antriebs- und Umlenkräder (11, 14) konstant gehalten werden.

10. Verfahren zur Synchronisierung eines endlosen 60 Transportbandes für die Bogenführung bei einer Bogendruckmaschine mit den Zylindern, dadurch gekennzeichnet, daß an wenigstens zwei längs des Bogentransportweges beabstandeten Stellen Signale der vorbeilaufenden Bogen (22) bzw. von mit dem Transportband (15, 16) verbundenen Marken gewonnen werden, und dadurch, daß anhand dieser Signale sowohl die Geschwindigkeit als auch die

Länge des Transportbandes entsprechend der Drehzahl und dem Umfang der Zylinder (5, 6; 7, 8) eingestellt werden.

Hierzu 1 Seite(n) Zeichnungen

SEST AVAILABLE COPY

Nummer: Int. Cl.6:

Offenlegungstag:

DE 195 11 682 A1 B41 F 7/06

2. Oktober 1996

Lerner and Greenberg, P.A. Post Office Box 2480 Hollywood, FL 33022-2480 Tel: (954) 925-1100 Fax: (954) 925-1101

Applicant: Schmid

Applic. # 09 /