SOLAR FLARE DATASET

From UCI Machine learning:

https://archive.ics.uci.edu/ml/datasets/Solar+Flare

Final Project Ironhack Data Analytics 2020

Michael Wenzelhumer

Objective

Three class types

C-class (common flares)

M-class (moderate flares)

X-class (severe flares)

Method

10 attributes to measure

3 categorical columns----> created dummies

Removed 1 column(Area of largest spot) due to redundancy of data

- 1. Code for class (modified Zurich class) (A,B,C,D,E,F,H)
- 2. Code for largest spot size (X,R,S,A,H,K)
- 3. Code for spot distribution (X,O,I,C)
- 4. Activity (1 = reduced, 2 = unchanged)
- 5. Evolution (1 = decay, 2 = no growth, 3 = growth)
- 6. Previous 24 hour flare activity code (1 = nothing as big as an M1, 2 = one M1, 3 = more activity than one M1)
- 7. Historically-complex (1 = Yes, 2 = No)
- 8. Did region become historically complex on this pass across the sun's disk (1 = yes, 2 = no)
- 9. Area (1 = small, 2 = large)
- 10. Area of the largest spot (1 = <=5, 2 = >5) removed

Method

Dataframe with dummies

	Class	Spot Size	Spot Distribution	Activity	Evolution	24hr activity	Historically- complex	Become complex on this pass	Area	C- class	 Spot Size_A	Spot Size_H	Spot Size_K	Spot Size_R	Spot Size_S	Spot Size_X	Distrit
0	н	Α	х	1	3	1	1	1	1	0	 1	0	0	0	0	0	
1	D	R	0	1	3	1	1	2	1	0	 0	0	0	1	0	0	
2	С	s	0	1	3	1	1	2	1	0	 0	0	0	0	1	0	
3	н	R	x	1	2	1	1	1	1	0	 0	0	0	1	0	0	
4	Н	s	х	1	1	1	1	2	1	0	 0	0	0	0	1	0	
		***			922						 200			722			
1061	Н	S	х	1	2	1	1	1	1	0	 0	0	0	0	1	0	
1062	н	s	х	2	2	1	1	2	1	0	 o	О	0	0	1	0	
1063	С	S	0	1	2	1	2	2	1	0	 0	0	0	0	1	0	
1064	н	R	х	1	2	1	1	2	1	0	 0	0	0	1	0	0	
1065	В	х	0	1	1	1	1	2	1	0	 0	0	0	0	0	1	

1066 rows × 28 columns

Kmeans

Confusion Matrix after clustering:

[[235 36] [26 23]]

Accuracy: 0.80625

-Clusters increased to 6

Kmeans

Improvement in confusion matrix

[[259 12]

[41 8]]

Accuracy: 0.834375

Results

est s	pli
	est s

Clustering

PCA

RandomForestClassifier=0.79375

DecisionTreeClassifier= 0.784375

DecisionTreeClassifier= 0.809375

RandomForestClassifier=0.796875

GaussianNB= 0.75

DecisionTreeClassifier= 0.7875

RandomForestClassifier=0.784375

GaussianNB= 0.7625

GaussianNB= is 0.80625

Method Pycaret

Application of PyCaret-

KNN-0.8068

RandomForest-0.804

NaiveBayes-0.802

DecisionTree-0.7983

483300 477900 324500 329400	0.251100 0.218900 0.223500 0.201200 0.220400	0.181400 0.154500 0.144200 0.119200 0.134200
477900 324500 329400	0.223500 0.201200 0.220400	0.144200 0.119200
324500 329400	0.201200 0.220400	0.119200
329400	0.220400	
		0.134200
261700		
7.000	0.151100	0.075300
378300	0.249700	0.152600
289500	0.207200	0.119300
334000	0.211500	0.121000
406000	0.344700	0.235400
315000	0.179800	0.092900
371600	0.272200	0.168500
347700	0.232800	0.131400
248100	0.222200	0.120500
	0.295500	0.050300
3	71600 47700	71600 0.272200 47700 0.232800 48100 0.222200

Visualization

Tuned RF-

Visualization

-Learning curve

For RF

Conclusion

- Decision Tree classifier proved to be most accurate model after clustering
- Need to create more models for class M and X flares
- Creation of a more complete pipeline
- Closer comparison of Pycaret model
 With standard models.

