MATH-3012-D Quiz 2

Vidit Dharmendra Pokharna

TOTAL POINTS

30 / 30

QUESTION 1

1 Q1 15 / 15

√ + 15 pts *Correct*

QUESTION 2

2 **Q2 15 / 15**

√ + **15 pts** *Correct*

NAME: Vidit Pakharna

For generating function questions, answers should not have infinite sum.

Q1. For (a)-(c) find the generating functions for the given sequences (all beginning with a_0)

- (a) $2, -2, 2, -2, 2, -2, \dots$
- (b) $0, 0, 0, 1, 3, 3, 3^2, 3^3, 3^4, 3^5 \dots$
- (c) the sequence $(a_n)_{n=0}^{\infty}$ defined by $a_n = 2\binom{-5}{n} + 5$. \rightarrow 2 ($) + \lambda)$ (Remember the binomial formula!)
- (d) What is the generating function for the number of partitions of n into summands where each summand cannot occur more than 7 times.

(a)
$$2-2x+2x^2-2x^3+...=)$$
 $f(x) = \frac{2}{1+x}$

(c)
$$2\overline{2}(-5) \times ^{n} + 5\overline{2}(1) \times ^{n} = 2(1+x)^{-5} + 8(1+x)^{-1} = 16(1+x)^{5} + \frac{5}{(1-x)}$$

1

(d)
$$X^{0.1} + X^{1.1} + X^{2.0} + \lambda^{3.1} + \lambda^{4.1} + \lambda^{5.1} + \lambda^{6.1} + \lambda^{7.1} = \frac{1-X^{8.2}}{1-X}$$

$$f(x) = \frac{1}{1-x^{i}}$$

$$f(x) = \frac{1-x^{i}}{1-x^{i}}$$

1 Q1 15 / 15

√ + 15 pts Correct

- **Q2.** (a) Let a_n be the number of ways to give n identical candies to 3 kids A, B, and C such that B gets an odd number of candies, and C gets at most 49 candies. Find the generating function for the sequence (a_n) . The answer should be in the form of a quotient of two polynomials, where each is a product of a few simple polynomials. (Here a polynomial is simple if it is a sum of no more than 2 monomials, like $2x^2 3x^5$)
 - (b) Find Coeff(x^9) in $\frac{(1+x^5)^8}{(1-x)^5}$. Answer should be a sum of a few binomial coefficients, like $\binom{7}{3} + 5\binom{8}{4} 7\binom{9}{6}$. No negative binomial like $\binom{-7}{9}$ is allowed.

(a)
$$f_A = x^0 + x^1 + x^2 + ... = \frac{1}{1-x}$$

$$f_B = x^1 + x^3 + x^5 + ... = \frac{x}{1-x^2}$$

$$f_C = x^0 + x^1 + x^2 + ... + x^{48} + x^{49} = \frac{1-x^{50}}{1-x}$$

$$f(x) = \frac{x(1-x^{50})}{(1-x)^2(1-x^2)}$$

(b)
$$(1+x^{5})^{8} = (f(x)^{8})^{8} + (f(x)^{8})^{8} + (f(x)^{8})^{8} = (f(x)^{8})^{8} + ($$

2 **Q2 15 / 15**

√ + 15 pts Correct