Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт

Направление подготовки «01.04.02 Прикладная математика и информатика»

Отчёт по лабораторной работе №1 по дисциплине «Анализ данных с интервальной неопределенностью»

Выполнила студентка гр. 5040102/20201

Харисова Т.А.

Преподаватель

Баженов А.Н.

Санкт-Петербург

2023

Оглавление

Постановка задачи
Теория
Реализация
Результаты для скорректированных данных
Результаты для данных без коррекции.
Анализ результатов
Список иллюстраций
Рисунок 1. Интервальные выборки X1 и X2 и их оценки
Рисунок 2. Частота выборок X1 и X2
Рисунок 3. Объединенная выборка $X1 \cup RX2$ при оптимальном R
Рисунок 4. Зависимость меры Жаккара от коэффициента <i>R</i>
Рисунок 5. Зависимость меры Оскорбина от коэффициента <i>R</i>
Рисунок 6. Зависимость частоты выборки от коэффициента R
Рисунок 7. Интервальные выборки X1 и X2 (без коррекции) и их оценки
Рисунок 8. Частота выборок X1 и X2 (без коррекции)
Рисунок 9. Объединенная выборка $X1 \cup RX2$ при оптимальном R (без коррекции)10
Рисунок 10. Зависимость меры Жаккара от коэффициента R (без коррекции)10
Рисунок 11.Зависимость меры Оскорбина от коэффициента R (без коррекции)1
Рисунок 12. Зависимость частоты выборки от коэффициента R (без коррекции)1
Список таблиц
Таблица 1. Меры интервальных выборок
Таблица 2. Оценки меры совместности выборок X1 и X2
Таблица 3. Меры интервальных выборок (без коррекции)
Таблица 4. Оценки меры совместности выборок X1 и X2 (без коррекции).

Постановка задачи

Даны две интервальные выборки. Требуется определить для каждой выборки меру Жаккара, меру Оскорбина, моду и частоту, а также оценить меру совместности этих выборок.

Теория

Построение интервальных выборок из исходных точечных значений происходит с помощью метода "обынтерваливания":

$$x = \dot{x} + [-\varepsilon, \varepsilon] \tag{1}$$

Здесь \dot{x} — исходное точечное значение, ε — погрешность, x — итоговый интервал.

Размер выборки обозначен $n, X = \{x_i\}_{i=1}^n$ – интервальная выборка.

Внутренняя оценка интервальной выборки:

$$\underline{I} = \max_{1 \le k \le n} \underline{x}_k \qquad \overline{I} = \min_{1 \le k \le n} \overline{x}_k \qquad I = [\underline{I}, \overline{I}]$$
 (2)

Внешняя оценка интервальной выборки:

$$\underline{J} = \min_{1 \le k \le n} \underline{x}_k \qquad \overline{J} = \max_{1 \le k \le n} \overline{x}_k \qquad J = [\underline{J}, \overline{J}]$$
 (3)

Мера Жаккара:

$$JK = \frac{\min \overline{x}_k - \max \underline{x}_k}{\max \overline{x}_k - \min x_k} \tag{4}$$

Алгоритм нахождения моды и частоты выборки:

- 1. Границы интервалов выборки сортируются по возрастанию значений: из интервальной выборки $[\underline{x}_i, \overline{x}_i]$, i=1..n получается набор значений $y_1, y_2, ..., y_{2n}, y_i \le y_{i+1}, j=1..2n-1$.
- 2. Формируется набор элементарных подынтервалов $z_j = [y_j, y_{j+1}], \ j = 1..2n-1.$
- 3. Для каждого z_j подсчитывается число интервалов исходной выборки, включающих интервал z_j . Обозначим это число μ_j .
- 4. Частота выборки определяется как $\mu = \max_{1 \le j \le 2n-1} \mu_j$.
- 5. Мода выборки $mode\ X = \bigcup z_k$, где z_k элементарные подынтервалы с $\mu_k = \mu$.

Если исходная выборка несовместна, ее можно сделать совместной методом центра неопределенностей:

$$x_i - k \operatorname{rad} x_i \le \beta \le x_i + k \operatorname{rad} x_i \tag{5}$$

где k – оптимальный корректирующий множитель (мера Оскорбина), rad x_i - радиус интервала

$$\operatorname{rad} x_i = \frac{1}{2} \left(\overline{x}_i - \underline{x}_i \right) \tag{6}$$

Для анализа совместности двух выборок X_1 и X_2 строится объединенная выборка

$$X = X_1 \cup RX_2 \tag{7}$$

Мера совместности R оценивается твином:

$$R \in [R_{in}, R_{out}]$$
 $R_{in} = \frac{I_2}{I_1}$ $R_{out} = \frac{J_2}{J_1}$ (8)

Оценка R_{in} может быть уточнена: внутри интервала R_{in} находится значение R_{opt} , такое, что мера Жаккара объединенной выборки (7) при подстановке $R = R_{opt}$ принимает максимальное значение.

Реализация

Работа выполнена с помощью языка программирования Python в среде разработки Visual Studio Code. Ссылка на исходный код работы: Lab 1(github.com)

Для построения выборок использовались данные из файлов "+0 5V 1.txt" и "-0_5V_1.txt".

Результаты для скорректированных данных

Исходные данные подвергаются предварительной коррекции: вместо \dot{x}_i рассматриваются $\dot{x}_i - \delta_i$, i=1..n, где δ_i – некоторая погрешность. Для "обынтерваливания" исходных данных берется $\varepsilon = 1/2^{14}$. Число интервалов в выборке n = 1024.

Рисунок 1. Интервальные выборки X_1 и X_2 и их оценки

Таблица 1. Меры интервальных выборок

	X_1	X_2
[<u>I</u> , I]	[0.45099, 0.42023]	[-0.41944, -0.44983]
$[\underline{J},\overline{J}]$	[0.42011, 0.45111]	[-0.44995, -0.41932]
JK	-0.99226	-0.99216
k	503.97184	497.90976
μ	33	31
mode	[[0.42676, 0.42681],	[[-0.42492, -0.42487],
	[0.42731, 0.42736]]	[-0.42425, -0.42420]]

intervals Рисунок 2. Частота выборок X_1 и X_2

-0.430

-0.425

-0.420

-0.435

-0.440

-0.445

-0.450

Таблица 2. Оценки меры совместности выборок X_1 и X_2

R_{in}	[-1.07043, -0.93004]
R_{out}	[-1.07103, -0.92952]

Рисунок 3. Объединенная выборка $X_1 \cup RX_2$ при оптимальном R

Рисунок 4. Зависимость меры Жаккара от коэффициента R

В результате получаем $R_{opt} = -1.00234$, при данных значениях мера Жаккара объединенной выборки максимальна и равна JK = -0.99226.

Значение меры Оскорбина объединенной выборки (рис.5) достигает минимального значения k=503.97184 при R=-1.00234

Значение частоты объединенной выборки (рис.6) достигает максимального значения $\mu = 64$ при R = -1.00234

Оценка меры совместности: [-1.00234, [-1.07103, -0.92952]].

Рисунок 5. Зависимость меры Оскорбина от коэффициента R

Рисунок 6. Зависимость частоты выборки от коэффициента R

Результаты для данных без коррекции

При отсутствии вычитания погрешности δ_i получаются следующие результаты.

Рисунок 7. Интервальные выборки X_1 и X_2 (без коррекции) и их оценки

Таблица 3. Меры интервальных выборок (без коррекции)

	X_1	X_2
$[\underline{I},\overline{I}]$	[0.45471,0.39209]	[-0.40784, -0.45642]
[<u>J</u> , <u>J</u>]]	[0.39197,0.45483]	[-0.45654, -0.40772]
JK	-0.99618	-0.99508
k	1025.96608	795.93472
μ	17	15
mode	[0.42255, 0.42261]	[-0.43103, -0.43097]

Рисунок 8. Частота выборок X_1 и X_2 (без коррекции)

Таблица 4. Оценки меры совместности выборок X_1 и X_2 (без коррекции)

R_{in}	[-1.16407, -0.89692]
R_{out}	[-1.16473, -0.89642]

Рисунок 9. Объединенная выборка $X_1 \cup RX_2$ при оптимальном R (без коррекции)

Рисунок 10. Зависимость меры Жаккара от коэффициента R (без коррекции)

Рисунок 11.3ависимость меры Оскорбина от коэффициента R (без коррекции)

Рисунок 12. Зависимость частоты выборки от коэффициента R (без коррекции)

В результате получаем $R_{opt} = [-0.99617, -0.96144]$, при данных значениях мера Жаккара объединенной выборки максимальна и равна JK = -0.99618.

Значение меры Оскорбина объединенной выборки (рис.11) достигает минимального значения k=1025.96608 при R=[-0.99617,-0.96144].

Значение частоты объединенной выборки достигает максимального значения $\mu=32$ при R=-0.98234 и на промежутке [-0.97700,-0.97432].

Оценка меры совместности: [[-0.99617, -0.96144], [-1.16473, -0.89642]].

Анализ результатов

По графику на рис.1 и из данных в табл.1 видим, что обе исходные выборки несовместны: их внутренние оценки образуют неправильный интервал, мера Жаккара отрицательна, мера Оскорбина ненулевая, а частота выборки меньше числа элементов в ней. По графику частоты на рис.2 можно заметить постепенное увеличение частоты при приближении к значениям моды.

По графику на рис.4 явно определяется оптимальное значение меры совместности, достигаемое при максимальном значении меры Жаккара. По графикам на рис.5 и рис.6 можно заметить, что при оптимальном значении меры совместности мера Оскорбина и частота выборки также достигают своих экстремумов. Итоговая выборка остается несовместной, что можно понять по отрицательному значению меры Жаккара. Мера Жаккара объединенной выборки равна значению меры Жаккара первой выборки, аналогично с мерой Оскорбина. Частота объединенной выборки равна сумме частот исходных выборок.

Для выборок, построенных по данным без коррекции, наблюдаются похожие результаты. Выборки оказываются менее совместны, чем те, что построены по данным с коррекцией. Оптимальные значения меры совместности образуют интервал.