第七章 作业参考答案

一、选择题

- **7.1.1.** B
- **7.1.2.** A
- **7.1.3.** B
- **7.1.4.** D
- **7.1.5.** C
- **7.1.6.** D
- **7.1.7.** C
- **7.1.8.** C
- 7.1.9. B
- **7.1.10.** B
- **7.1.11.** C
- **7.1.12.** B
- **7.1.13.** B
- **7.1.14.** A
- 7.1.15. A
- **7.1.16.** C

二、填空题

- 7.2.1. 机械振动在介质中的传播; (波源的)振动状态; (波源振动的)能量
- 7.2.2. 波长、波速; 频率
- **7.2.3.** $\gamma = a/2\pi$; $T = 2\pi/a$; u = a/b; $\lambda = 2\pi/b$; 沿 X 轴正方向传播
- **7.2.4.** 振幅为 A、频率为 $\omega/2\pi$ 、波速为u、沿 X 轴正方向传播的简谐波; $x=x_0$ 处质元的振动方程; $t=t_0$ 时刻波形图(各个质元相对自己平衡位置的位移)

7.2.5.
$$y_P = 2.0\cos\left(4\pi t + \frac{\pi}{2}\right)(m) = -2.0\sin\left(4\pi t\right)(m)$$

7.2.6.
$$y = A\cos\left(\omega t + \frac{\omega}{u}x - \frac{\omega}{u}x_0 + \varphi\right)$$

7.2.7.
$$y = 0.02 \cos(10\pi t - \pi x - \pi/3)$$
 (m)

7.2.8.
$$y = -2A\cos\omega t = A\cos(\omega t + \pi)$$
; $y = 2\omega A\sin\omega t$; $y = 0$

- **7.2.9.** $\lambda/2$; 相反; 相同
- 7.2.10. $\pi/2$
- 7.2.11. $v = 31.4 \text{ m} \cdot \text{s}^{-1}$
- 7.2.12. π , 0; 0, 0

7.2.13.
$$H_x = 0$$
; $H_y = c\varepsilon_0 E_0 \cos(t + x/c)$; $H_z = 0$; $\vec{S} = -\hat{i}c\varepsilon_0 E_0^2 \cos^2(t + x/c)$; 横

7.2.14.
$$I = \frac{1}{2}c\varepsilon_0 E_0^2$$

三、计算题

7.3.1.

(1) 振幅 =
$$A$$
 , 波速 $u = \frac{B}{G}$, 波长 $\lambda = \frac{2\pi}{G}$, 周期 $T = \frac{2\pi}{B}$, 频率 $v = \frac{B}{2\pi}$

- (2) $y = A\cos(Bt GL)$
- (3) $\Delta \phi = GD$

7.3.2.

(1)
$$v_{\rm m} = 1.57 \text{ m} \cdot \text{s}^{-1}$$
, $a_{\rm m} = 49.3 \text{ m} \cdot \text{s}^{-2}$

(2)
$$\phi_{x=0,2,t=1} = 9.2\pi$$
; $x = 0.825$ m

7.3.3.

(1)
$$y = 0.1\cos\left(4\pi t - \frac{\pi}{5}x\right)$$
 (m)

(2)
$$y = 0.1\cos\left(\frac{\pi}{2} - \frac{\pi x}{5}\right) = 0.1\sin\frac{\pi x}{5}$$
 (m)

(3)
$$y_{t=\frac{T}{4}, x=\frac{1}{2}\lambda} = 0 \text{ (m)}; \quad v_{t=\frac{T}{4}, x=\frac{1}{2}\lambda} = 1.256 \text{ m/s}$$

7.3.4.

(1)
$$y_1 = 0.03\cos\left(4\pi t - \frac{\pi x}{5}\right)$$
 (SI): $y_{1B} = 0.03\cos\left(4\pi t + \frac{\pi}{100}\right)$ (SI)

(2)
$$y_2 = 0.03\cos\left[4\pi\left(t - \frac{x}{20}\right) + \frac{\pi}{100}\right]$$
 (SI); $y_{2B} = 0.03\cos\left(4\pi t + \frac{\pi}{100}\right)$ (SI)

(3)
$$y_3 = 0.03\cos\left(4\pi t + \frac{\pi x}{5}\right)$$
 (SI); $y_{3B} = 0.03\cos\left(4\pi t + \frac{\pi}{100}\right)$ (SI)

(4)
$$y_4 = 0.03\cos\left[4\pi\left(t + \frac{x}{20}\right) + \frac{\pi}{100}\right]$$
 (SI); $y_{4B} = 0.03\cos\left(4\pi t + \frac{\pi}{100}\right)$ (SI)

7.3.5.

(1)
$$y = A\cos\left[2\pi\left(\frac{ut}{\lambda} + \frac{x}{\lambda}\right) - \frac{\pi}{2}\right] = A\sin\left[\frac{2\pi}{\lambda}(ut + x)\right]$$

(2)
$$y_1 = A \sin \left[\left(\frac{2\pi}{\lambda} ut + \frac{3}{4} \pi \right) \right]$$

$$(3) \quad v_2 = \frac{\sqrt{2}\pi}{\lambda} uA$$

7.3.6.

(1)
$$y = A\cos\left[\left(500\pi t - \frac{\pi x}{100}\right) - \frac{\pi}{4}\right]$$
 (m)

(2)
$$y = A\cos\left(500\pi t + \frac{3\pi}{4}\right) \text{ (m)}$$

7.3.7.

(1)
$$y = 2.0\cos\left[\left(\frac{\pi}{2}t - \frac{\pi}{10}x\right) + \frac{\pi}{2}\right]$$
 (m)

(2)
$$y = 2.0\cos\left(\frac{\pi}{2}t + \frac{\pi}{2}\right)$$
 (m)

(3)
$$y = 2.0\cos\left(\frac{\pi}{2}t\right)$$
 (m)

$$(4) \quad y = 2.0\cos\left(\frac{\pi}{10}x\right) \text{ (m)}$$

7.3.8.

(1) $u = 3 \,\mathrm{m \cdot s}^{-1}$

(2)
$$y = 0.1\cos\left[\left(\frac{\pi}{2}t + \frac{\pi}{6}x\right) + \frac{\pi}{6}\right]$$
 (m)

(3)
$$y_1 = 0.1\cos\left(\frac{\pi}{2}t + \frac{\pi}{3}\right)$$
 (m)

(4)
$$y_2 = 0.1\cos\left(\frac{\pi}{2}t + \frac{\pi}{2}\right) = -0.1\sin\left(\frac{\pi}{2}t\right)$$
 (m)

(5)
$$y_3 = 0.1\cos\left(\frac{\pi}{6}x + \frac{2\pi}{3}\right)$$
 (m)

(6)
$$y_4 = 0.1\cos\left(\frac{\pi}{6}x - \frac{5\pi}{6}\right)$$
 (m)

(7)
$$v = 0.157 \text{ m} \cdot \text{s}^{-1}$$

7.3.9.

(1)
$$y_2 = A\cos 2\pi \left(\frac{t}{T} - \frac{x}{\lambda}\right);$$

(2)
$$y = 2A\cos\frac{2\pi x}{\lambda}\cos\frac{2\pi t}{T}$$
; $x_{\parallel} = k\frac{\lambda}{2}$, $k = 0, 1, 2 \cdots$; $x_{\parallel} = (2k+1)\frac{\lambda}{4}$, $k = 0, 1, \cdots$

(3)
$$y_2 = A\cos\left[2\pi\left(\frac{t}{T} - \frac{x}{\lambda}\right) + \pi\right]; \quad y = 2A\sin\frac{2\pi x}{\lambda}\cos\frac{2\pi t}{T};$$

 $x_{10} = (2k+1)\frac{\lambda}{4}, \quad k = 0,1,\dots; \quad x_{11} = k\frac{\lambda}{2}, \quad k = 0,1,\dots$

7.3.10.

(1) 入射波的波方程
$$y_1 = A\cos\left(2\pi\gamma t + \frac{2\pi}{\lambda}x - \frac{\pi}{2}\right)$$

(2) 入射波在 P 点引起的振动的振动方程 $y_{1P} = A\cos(2\pi\gamma t - \pi)$; 反射波在 P 点引起的振动方程 $y_{2P} = A\cos(2\pi\gamma t)$

(3) 反射波波函数
$$y_2 = A\cos\left(2\pi\gamma t - \frac{2\pi}{\lambda}x - \frac{\pi}{2}\right)$$

(4) 驻波方程
$$y = 2A\cos\left(\frac{2\pi}{\lambda}x\right)\cos\left(2\pi\gamma t - \frac{\pi}{2}\right)$$

(5) 波腹的位置
$$x_{\mathbb{B}} = k \frac{\lambda}{2}$$
, $k = 0, 1, 2 \cdots$, 波节的位置 $x_{\mathbb{B}} = (2k+1) \frac{\lambda}{4}$, $k = 0, 1, \cdots$

(6)
$$A_2 = \sqrt{2}A$$

7.3.11.

- (1) 火车的运动速度 $\nu_{\rm S}=19~{
 m m\cdot s^{-1}}$; 汽笛振动的频率 $\gamma_{\rm S}=414.6~{
 m Hz}$
- (2) $\gamma_{R1} = 438.5 \text{ Hz}$
- (3) $\gamma_{R2} = 390.7 \text{ Hz}$

7.3.12.

- (1) $\gamma = 10^8 \text{ Hz}$, $T = 10^{-8} \text{ s}$, $\lambda = 3 \text{ m}$
- (2) 电磁波沿 X 轴正方向传播
- (3) 磁场强度沿 Z 轴正方向振动
- (4) $H_0 = 1.6 \times 10^{-3} \text{ A} \cdot \text{m}^{-1}$
- (5) $H_x = 0$, $H_y = 0$, $H_z = 1.6 \times 10^{-3} \cos \left[2\pi \times 10^8 \times (t x/c) \right]$
- (6) $\vec{S} = 9.6 \times 10^{-4} \cos^2(t x/c)\vec{i}$