天津大学

模式识别与深度学习课程作业4、卷积神经网络实验报告

学院 智能与计算学部

专 业_计算机科学与技术_

学 号 3019244266

姓 名 李润泽

1.实验目标

实验的总目标是帮助我们熟练掌握卷积神经网络原理,基于深度学习主流框架 PyTorch,完成数据集读取、模型结构设计、模型训练、模型测试评估的代码编程。其中有两个目标分别是:

第一部分,熟练掌握 ResNet-18 的模型结构,了解残差网络的基本原理,并补全实验代码,从而完成 CIFAR-10 数据集的分类任务刘,具体地,需要实现包括 CIFAR-10 的数据预处理、ResNet-18 网络搭建、优化器设置、损失函数设置、模型训练以及模型测试的代码。

第二部分,在理解并掌握卷积神经网络原理的基础上,调节不同的参数,汇报不同参数对实验结果的影响,并尝试对结果进行分析,从而判断哪些参数对实验结果的影响比较大。此外,如果允许的话,可以分析使用 CPU 训练和 GPU 训练的实验差异。

2. 实验分析

2.1 算法实现

深度残差网络(ResNet)是 CNN 图像历史上一个里程碑事件, 其作者 Kaiming He 因此荣获 CVPR2016 最佳论文奖。深度网络的退化问题表明深度网络并不容易训练,但考虑这样一个事实:现在你有一个浅层网络,你想通过向上堆积新层来建立深层网络,一个极端情况是这些增加的层什么也不学习,仅仅复制浅层网络的特征,即恒等映射(Identity Mapping)。在这种情况下,深层网络应该至少和浅层网络性能一样,也不应该出现退化现象。基于该假设,Kaiming He 提出了残差学习来解决退化问题。对于一个网络,将输入为x之后学习到的特征记为 F(x),然后再加上一条分支,直接跳到输出记为 shortcut,则最终输出为 H(x) = F(x) + x,该结构记为 BasicBlock,如下图所示。

ResNet 的具体结构如下表所示:

laver name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112	7×7, 64, stride 2				
				3×3 max pool, stric	de 2	
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$
conv4_x	14×14	$\left[\begin{array}{c} 3\times3, 256\\ 3\times3, 256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \times 3
	1×1	average pool, 1000-d fc, softmax				
FLOPs		1.8×10 ⁹	3.6×10 ⁹	3.8×10^{9}	7.6×10 ⁹	11.3×10 ⁹

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Downsampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

其中, 蓝色、橙色、黄色和粉色在论文中分别为 conv2, conv3, conv4, conv5。 从 conv3 开始, 第一个残差块的第一个卷积层的 stride 设定为 2, 这是每层图片尺寸变化的原因。

首先实现残差块, 残差块的实现代码如下:

```
# Residual block
# 补充代码时需注意: 卷积核设置, bn 写法, shortcut 写法
class ResBlk(nn.Module):
   def __init__(self, ch_in, ch_out, stride=1):
       super(ResBlk, self). init ()
       self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3,
stride=stride, padding=1)
       self.bn1 = nn.BatchNorm2d(ch out)
       self.conv2 = nn.Conv2d(ch out, ch out, kernel size=3, stride=1,
padding=1)
       self.bn2 = nn.BatchNorm2d(ch out)
       if ch_out == ch_in:
           self.extra = nn.Sequential()
       else:
           self.extra = nn.Sequential(
               # 1*1 卷积和 bn
               nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),
               nn.BatchNorm2d(ch_out)
   def forward(self, x):
       out = F.relu(self.bn1(self.conv1(x)))
       out = self.bn2(self.conv2(out))
       # print('shape of out : {}'.format(out.shape))
       # print('shape of extra(x): {}'.format(self.extra(x).shape))
       out = self.extra(x) + out
       out = F.relu(out)
           return out
```

然后是 ResNet-18 网络的具体实现, 这里需要注意的是, 由于每层都有 2 个 残差块, 故我在进行代码实现的时候将其细分, 因此 ResNet18 中会出现 8 个 block, 实现代码如下:

```
# ResNet18

# 补充代码时需注意: block 构建

class ResNet18(nn.Module):
    def __init__(self):
        super(ResNet18, self).__init__()
        self.conv1 = nn.Sequential(
```

```
# 第一层卷积和 bn
       nn.Conv2d(3, 64, kernel size=7, stride=2, padding=3),
       nn.BatchNorm2d(64),
       nn.MaxPool2d(kernel size=3, stride=2, padding=1)
   )
   # 4 blocks
   # TODO: 这里应该有4个大block,但我将其细分
   self.blk1 = ResBlk(64, 64, stride=1)
   self.blk2 = ResBlk(64, 64, stride=1)
   self.blk3 = ResBlk(64, 128, stride=2)
   self.blk4 = ResBlk(128, 128, stride=1)
   self.blk5 = ResBlk(128, 256, stride=2)
   self.blk6 = ResBlk(256, 256, stride=1)
   self.blk7 = ResBlk(256, 512, stride=2)
   self.blk8 = ResBlk(512, 512, stride=1)
   # 全连接
   self.outlayer = nn.Linear(512*1*1, 10)
def forward(self, x):
   x = F.relu(self.conv1(x))
   x = self.blk1(x)
   x = self.blk2(x)
   x = self.blk3(x)
   x = self.blk4(x)
   x = self.blk5(x)
   x = self.blk6(x)
   x = self.blk7(x)
   x = self.blk8(x)
   x = F.adaptive_avg_pool2d(x, [1, 1])
   x = x.view(x.size(0), -1)
   x = self.outlayer(x)
       return x
```

在实验期间,我分别使用 GPU 和 CPU 进行实验,具体代码如下:

```
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# device = torch.device("cpu")
model = ResNet18().to(device)
```

对于训练过程,我对损失函数和优化器分别进行了设置,其中,损失函数默认为交叉熵损失函数(nn.CrossEntropyLoss),优化器默认为 Adam 算法,学习率为 0.001,最终得到损失变化,实现代码如下:

```
def train(total epoch):
   # 补充损失函数设置和优化器设置
   loss fun = nn.CrossEntropyLoss()
   # m = nn.LogSoftmax(dim=1)
   # Loss fun = nn.NLLLoss()
   optimizer = optim.Adam(model.parameters(), lr=1e-3)
   # optimizer = optim.Adam(model.parameters(), lr=1e-4)
   # optimizer = optim.Adam(model.parameters(), lr=1e-2)
   # optimizer = optim.RMSprop(model.parameters(), Lr=1e-3)
   # optimizer = optim.SGD(model.parameters(), Lr=1e-3)
   loss list = []
   for epoch in range(total epoch):
       model.train()
       running_loss = 0.0
       # 补充训练部分代码,注意课件里的7步
       for batchidx, (inputs, labels) in enumerate(cifar_train):
           # 获取当前 batch 的数据,并挂 GPU
          inputs, labels = inputs.to(device), labels.to(device)
          # 清空梯度
          optimizer.zero_grad()
          # 输入数据进模型
          # with torch.no grad():
          outputs = model(inputs)
          # 计算模型损失
          loss = loss_fun(outputs, labels)
          # 自动求梯度
          loss.backward()
          # 优化模型参数
          optimizer.step()
          # 观察损失变化,下面5 行代码不用改
           running_loss += loss.item()
          loss list.append(loss.item())
          if (batchidx + 1) % 100 == 0:
              print('epoch = %d , batch = %d , loss = %.6f' % (epoch +
1, batchidx + 1, running_loss / 100))
              train_losses.append(loss.item())
              train_counter.append((batchidx * batch_size) + ((epoch-
1) * len(cifar_train.dataset)))
              running loss = 0.0
          test(epoch)
```

对于测试过程,我们需要计算预测是否正确,从而计算出 accuracy,实现代码如下:

```
def test(epoch):
   # 模型调整为eval 模式,即测试
   model.eval()
   # loss_fun = nn.CrossEntropyLoss()
   with torch.no_grad():
      # test_loss = 0
      total_correct = 0
      total num = 0
      # 补充测试部分代码
      for inputs, labels in cifar_test:
          # 获取当前batch 的数据
          inputs, labels = inputs.to(device), labels.to(device)
          # 训练数据输入模型
          outputs = model(inputs)
          # 计算损失
          # test_loss = loss_fun(outputs, labels)
          # 计算预测是否正确
          pred = outputs.argmax(dim=1)
          total_correct += torch.eq(pred, labels).float().sum().item()
          total_num += inputs.size(0)
      # 观察测试集精度变化,下面3 行代码不用改
      acc = total correct / total num
      test_counter.append(epoch+1)
      test_accuracy.append(acc)
      print("Accuracy of the network on the 10000 test
images:%.5f %%" % (100 * acc))
          print("========"")
```

2.2 参数调节说明

在上文中, 我设定以下参数及其变量:

迭代次数 epoch num 设定为 10;

batch size 默认为 56, 变量分别为 28、14;

损失函数默认为交叉熵损失函数 (nn.CrossEntropyLoss), 变量为负对数似 然损失函数 (nn.NLLLoss);

优化器默认为 Adam 函数 (optim.Adam), 变量分别为随机梯度下降法 (optim.SGD) 与 RMSprop 优化算法 (optim.RMSprop);

其中, Adam 优化算法的学习率默认为 0.001, 变量分别为 0.01 与 0.0001;

此外,我分别使用 GPU 和 CPU 进行实验,但由于使用 CPU 进行实验的运行时间过长,因此我在 CPU 的实验中仅进行了 2 次迭代。

实验结果如下表所示(所有结果以及图表见"lab3数据"文件夹):

lab	f1	f2	f3	f4	f5	f6	f7	f8	f9
batch size			56	5 28 14			56		
loss function		Cro	ossEntropyLo	OSS		NLLLoss	Cros	ssEntropy	Loss
optimizer	Adam	SGD	RMSprop			Ada	ım		
learning rate	0.001	0.0001	0.01	0.001					
CPU/GPU				GP	U				CPU
epoch					acc				
1	55.57%	64.22%	42.97%	37.72%	50.39%	52.74%	57.10%	57.90%	57.32%
2	71.79%	70.73%	65.28%	50.36%	64.71%	70.97%	69.98%	75.62%	69.69%
3	78.40%	80.41%	70.72%	51.01%	75.37%	75.74%	78.95%	79.11%	\
4	78.55%	76.69%	75.30%	56.15%	79.70%	77.05%	79.88%	81.35%	
5	81.86%	80.22%	80.06%	58.42%	81.66%	80.06%	82.47%	83.67%	
6	83.87%	81.06%	78.06%	49.96%	78.01%	82.88%	84.88%	84.58%	
7	83.66%	82.52%	80.46%	57.92%	82.22%	83.09%	84.08%	83.89%	
8	81.80%	82.66%	80.20%	67.25%	81.45%	83.94%	84.48%	84.49%	\
9	83.93%	83.22%	81.11%	69.11%	83.45%	83.79%	84.82%	84.53%	
10	80.07%	73.24%	82.13%	65.95%	83.35%	84.28%	84.86%	84.40%	

我将对上表的不同参数分别进行分析:

2.2.1 不同 Batch Size 分析

lab	f1	f7	f8	
batch size	56	28	14	
loss function	CrossEntropyLoss			
optimizer		Adam		
learning rate		1.00E-03		
CPU/GPU		GPU		
epoch	test accuracy			
1	55.57%	57.10%	57.90%	
2	71.79%	69.98%	75.62%	
3	78.40%	78.95%	79.11%	
4	78.55%	79.88%	81.35%	
5	81.86%	82.47%	83.67%	
6	83.87%	84.88%	84.58%	
7	83.66%	84.08%	83.89%	
8	81.80%	84.48%	84.49%	
9	83.93%	84.82%	84.53%	
10	80.07%	84.86%	84.40%	

对比图表如上所示,可以看出,batch_size 对测试准确率影响不大,但更小的 batch_size 可以略微提高测试的准确率。

2.2.2 不同损失函数分析

lab	f1	f6	
batch size	56	ò	
loss function	CrossEntropyLoss	NLLLoss	
optimizer	Ada	m	
learning rate	1.00E	-03	
CPU/GPU	GP	U	
epoch	test accuracy		
1	55.57%	52.74%	
2	71.79%	70.97%	
3	78.40%	75.74%	
4	78.55%	77.05%	
5	81.86%	80.06%	
6	83.87%	82.88%	
7	83.66%	83.09%	
8	81.80%	83.94%	

9	83.93%	83.79%
10	80.07%	84.28%

对比图表如上所示, 可以看出, 损失函数对测试准确率影响不大。

2.2.3 不同优化器分析

lab	f1	f4	f5
batch size		56	
loss function	Cr	ossEntropyLo	OSS
optimizer	Adam	SGD	RMSprop
learning rate		1.00E-03	
CPU/GPU		GPU	
epoch	test accuracy		•
1	55.57%	37.72%	50.39%
2	71.79%	50.36%	64.71%
3	78.40%	51.01%	75.37%
4	78.55%	56.15%	79.70%
5	81.86%	58.42%	81.66%
6	83.87%	49.96%	78.01%
7	83.66%	57.92%	82.22%
8	81.80%	67.25%	81.45%
9	83.93%	69.11%	83.45%
10	80.07%	65.95%	83.35%

对比图表如上所示,可以看出,随机梯度下降法 (SGD) 对测试准确率影响较大,准确率最低,而 Adam 算法与 RMSprop 算法的测试准确率大致相同。

2.2.4 不同 Adam 优化函数的学习率分析

lab	f1	f2	f3
batch size	56		
loss function	CrossEntropyLoss		
optimizer		Adam	
learning rate	1.00E-03 1.00E-04		1.00E-02
CPU/GPU	GPU		
epoch		test accuracy	
1	55.57%	64.22%	42.97%
2	71.79%	70.73%	65.28%
3	78.40%	80.41%	70.72%
4	78.55%	76.69%	75.30%

5	81.86%	80.22%	80.06%
6	83.87%	81.06%	78.06%
7	83.66%	82.52%	80.46%
8	81.80%	82.66%	80.20%
9	83.93%	83.22%	81.11%
10	80.07%	73.24%	82.13%

对比图表如上所示, 可以看出, 测试准确率随着学习率的上升而降低。

2.2.5 CPU/GPU 分析

lab	f1	f9	
batch size	56		
loss function	CrossEntropyLoss		
optimizer	Ada	m	
learning rate	1.00E	-03	
CPU/GPU	GPU	CPU	
epoch	test accuracy		
1	55.57%	57.32%	
2	71.79%	69.69%	
3	78.40%		
4	78.55%		
5	81.86%	的分子	
6	83.87%	跑的时间太 长,一晚上	
7	83.66%	没跑出来	
8	81.80%	火 地山木	
9	83.93%		
10	80.07%		

使用 GPU 进行实验可以在命令行输入 nvidia-smi 进行查看,如下图所示:

从测试过程中可以看出,CPU 在测试过程中的测试速度过慢,而 CUDA 加速能力较强,大约 30min 即可得出结果。

2.3 结果分析

从上述的表格和图像可以得出以下结论, batch_size 对测试准确率影响不大, 但更小的 batch_size 可以略微提高测试的准确率; 损失函数对测试准确率影响不 大; 随机梯度下降法 (SGD) 对测试准确率影响较大, 准确率最低, 而 Adam 算 法与 RMSprop 算法的测试准确率大致相同; 测试准确率随着学习率的上升而降 低; 而 CPU 在测试过程中的测试速度过慢, 而 CUDA 加速能力较强, 大约 30min 即可得出结果。

最终我们可以选取出最佳的参数配置:

batch size = 56:

loss fun = nn.CrossEntropyLoss();

optimizer = optim.Adam(model.parameters(), lr=1e-3);

device = torch.device("cuda:0" if torch.cuda.is available() else "cpu");

2.4 遇见的问题

在实验过程中,我进行环境的配置时出现了问题,我进行实验的时候发现实验始终无法出现结果,我认为可能是没有调用 GPU 所致,因此我使用print(torch.cuda_is_available())进行测试,输出了 False,因此我明白该实验可以运行但因为使用的是 CPU 故运行极慢,在重新进行环境配置后得以快速运行。

3. 总结

实验在 PyCharm 中使用了 Pytorch 库运行, ResNet-18 模型应用到交叉熵损失函数、Adam 优化函数以及卷积神经网络等函数。在实验的过程中, 我深入学习了 ResNet-18 模型并对 CIFAR-10 数据集成功进行了分类任务。实验的测试正确率可以得到 80%, 但我发现随着迭代次数的增加, 测试准确率反而降低, 因此我明白测试的迭代次数过多并不一定能提高测试准确率。

通过这次实验,我对深度学习以及卷积神经网络有了更多的理解。在我对 CNN 模型对 MNIST 数据集进行分类任务的代码进行了理解分析之后,成功依此

完成 CIFAR-10 分类任务,从而提升了我的代码能力。针对老师在实验指导书上的各种问题我也进行了分析,最终顺利完成了本次实验,对于我在学习模式识别与深度学习的过程中会有更大的帮助。