5.1 Feature Engineering

Dr. Sultan Alfarhood

feature

Feature Engineering

- The problem of transforming raw data into a dataset is called feature engineering.
- Informative features: those would allow the learning algorithm to build a model that does a good job of predicting labels of the data used for training.
 - Highly informative features are also called features with high predictive power.

Feature Selection vs Feature Extraction

Feature Selection

 Selecting subset of extracted features. This subset is relevant and contributes to minimizing the error rate of a trained model.

Feature Extraction

Combining existing features to produce a more useful one.

CSC462: MACHINE LEARNING (FALL 2024)

3

Label Encoding

- Encode attributes and target labels with value between 0 and NumberOfClasses-1
 - Using ordered numbers as values is likely to confuse the learning algorithm
- Label Encoding can be helpful when the ordering of values of some categorical variable matters

quality	
 bad	
 bad	
 good	
 excellent	

quality	
 0	
 0	
 1	
 2	

CSC462: MACHINE LEARNING (FALL 2024)

4

One-Hot Encoding

OMSY The

Transforming categorical feature into several binary ones:

id	color
1	red
2	blue
3	green
4	blue

One Hot Encoding

id	color_red	color_blue	color_green
1	1	Θ	Θ
2	0	1	0
3	0	Θ	1
4	0	1	0

Binning

GLY Olly States

- Binning is the conversion of continuous values into categorical ones.
- Prevent overfitting.

Sex	Age	
male		22
female		38
female		26
female		35
male		35
male		80
male		54
male		2
female		27
female		14
female		4
female		58

Sex	Age
male	Adult
female	Adult
female	Adult
female	Adult
male	Adult
male	Elderly
male	Adult
male	Toddler/baby
female	Adult
female	Child
female	Toddler/baby
female	Adult

Binning

Feature Scaling

- There are two common ways to get all attributes to have the same scale:
 - Normalization
 - Standardization

No Scaling Problem

Person_name	Salary	Years_of_experience	Expected_Position_Level
Ahmed	100000	10	2
Khaled	78000	7	4
Mohammed	32000	5	8
Ali	55000	6	7
Yousef	92000	8	3
Saleh	120000	15	1
Ayman	65750	7	5

The attributes *Salary* and *Years_of_experience* are on different scale and hence attribute *Salary* can take high priority over attribute *Years_of_experience* in the model.

Feature Scaling

Normalization

 Normalization (or min-max normalization) scale all values in a fixed range between 0 and 1.

$$\bar{x}^{(j)} = \frac{x^{(j)} - min^{(j)}}{max^{(j)} - min^{(j)}}$$

- $min^{(j)}$: Minimum value of the feature j
- $max^{(j)}$: Maximum value of the feature j

•••	cost			cost	
	55000			0.4444	
•••	70000	•••		1	
	65000			0.8148	
•••	43000	•••		0	

Standardization

• **Standardization** (or z-score normalization) is the procedure during which the feature values are rescaled so that they have the properties of a standard normal distribution with $\mu = 0$ and $\sigma = 1$.

$\hat{x}(i)$ –	$\frac{x^{(j)} - \mu^{(j)}}{(i)}$
<i>x</i> • <i>y</i> –	$\sigma^{(j)}$

 $\mu^{(j)}$: Mean value of the feature j

 $\sigma^{(j)}$: Standard deviation from the mean value of the feature j

• Standardization is much less affected by outliers.

cost		cost
 55000		 -0.314
 70000		 1.137
 65000		 0.653
 43000		 -1.476

Dealing with Missing Features

- Missing data are values that are not recorded in the dataset, represented by NaN.
- Different ways of dealing with missing features:
 - 1. Removing the examples with missing data from the dataset.
 - 2. Using a learning algorithm that can deal with missing feature values.
 - 3. Using a data imputation technique.

Data Imputation Techniques

- Data Imputation Techniques are ways to deal with missing features by filling them with values such as:
 - Mean/Median Values
 - Most Frequent or Zero/Constant Values
 - Predicted value using a regression model

	col1	col2	col3	col4	col5			col1	col2	col3	col4	col5
0	2	5.0	3.0	6	NaN	mean()	0	2.0	5.0	3.0	6.0	7.0
1	9	NaN	9.0	0	7.0	\longrightarrow	1	9.0	11.0	9.0	0.0	7.0
2	19	17.0	NaN	9	NaN		2	19.0	17.0	6.0	9.0	7.0

• https://colab.research.google.com/drive/1YwvH-HLpmm4RDBrqOVX UHQ66UskHwgS?usp=sharing