Задание

6.2.1. Написать первые четыре члена последовательности $\{x_n\}$, если:

1)
$$x_n = \frac{(-1)^n}{n}$$
;

2) $x_n - n$ -й знак в десятичной записи числа e;

3)
$$x_1 = 1$$
, $x_n = x_{n-1} + 2$.

 \bigcirc 1) Подставляя поочередно n=1,2,3,4 в формулу для общего члена последовательности, найдем: $x_1 = -1, x_2 = \frac{1}{2},$ $x_3=-\frac{1}{3}, x_4=\frac{1}{4}.$

2) Поскольку $e=2,71828\ldots$, то $x_1=2,\ x_2=7,\ x_3=1,$ $x_4 = 8$.

3) В соответствии с формулой $x_n = x_{n-1} + 2$ получим: $x_2 = x_1 + 2 = 3$, $x_3 = x_2 + 2 = 5$, $x_4 = x_3 + 2 = 7$.

Написать первые четыре члена последовательности $\{x_n\}$, если:

6.2.2.
$$x_n = 2^{n+1}$$
.

6.2.3.
$$x_n = n^2 + 2n + 3$$
.

6.2.4.
$$x_n = (-1)^n + 1.$$

6.2.5.
$$x_n = \frac{n+1}{n^2}$$
.

6.2.6.
$$x_n = \sin \frac{\pi n}{2}$$
.

6.2.5.
$$x_n = \frac{n+1}{n^2}$$
.
6.2.7. $x_1 = -1, x_n = -n \cdot x_{n-1}$.

Зная несколько первых членов последовательности $\{x_n\}$, написать формулу ее общего члена:

6.2.8.
$$1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \dots$$

6.2.9.
$$1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \dots$$

6.2.10.
$$2, 1\frac{1}{2}, 1\frac{1}{3}, 1\frac{1}{4}, \dots$$

6.2.11.
$$-1, 2, -3, 4, -5, \dots$$

6.2.12.Какие из следующих последовательностей ограничены сверху? ограничены снизу? ограничены?

2)
$$-1, -4, -9, -16, \ldots;$$

3)
$$\frac{1}{3}, \frac{1}{3^2}, \frac{1}{3^3}, \ldots;$$

4)
$$-2, 4, -8, 16, \ldots$$

О 1) Данная последовательность, состоящая из всех четных положительных чисел, ограничена снизу, но не ограничена сверху.

2) Последовательность ограничена сверху $(x_n = -n^2 < 0, n = 1, 2, 3, \dots)$, но не ограничена снизу.

3) Последовательность ограничена, так как она ограничена снизу и сверху: $0 < x_n = \frac{1}{3^n} < 1$.

4) Последовательность $\{(-2)^n\}$ не ограничена, так как для любого числа M>0 можно найти такой номер n, что $|x_n|=2^n>M$.

Какие из следующих последовательностей $\{x_n\}$ ограничены, если:

6.2.13.
$$x_n = (-1)^n$$
.

6.2.14.
$$x_n = n^3 + 2n$$
.

6.2.15.
$$x_n = -\ln n$$
.

6.2.16.
$$x_n = \frac{n+1}{n}$$
.

6.2.17.
$$x_n = (-1)^n \cdot n$$
.

6.2.18.
$$x_n = \begin{cases} 1 & \text{при } n = 2k, \\ \sqrt{n} & \text{при } n = 2k+1. \end{cases}$$

6.2.19. Какие из следующих последовательностей монотонные, а какие — строго монотонные:

1)
$$x_n = 2n + 1;$$

2)
$$x_n = \frac{(-1)^n}{n};$$

3)
$$x_n = \frac{1}{n^2};$$

4)
$$x_n = [\sqrt{n}];$$

5)
$$-1, -1, -2, -2, -3, -3, \ldots$$
?

Q 1) Данная последовательность строго возрастает, т. к. $x_{n+1} = 2(n+1) + 1 = 2n+3 > 2n+1 = x_n$ для всех натуральных чисел n.

2) Последовательность $\left\{\frac{(-1)^n}{n}\right\} = \left\{-1,\frac{1}{2},-\frac{1}{3},\dots\right\}$ не является ни монотонной, ни строго монотонной, так как, например, $x_1 < x_2$, но $x_2 > x_3$.

$$3)$$
 $\left\{\frac{1}{n^2}\right\} = \left\{1, \frac{1}{4}, \frac{1}{9}, \dots\right\}$ — убывающая последовательность, так как $x_n = \frac{1}{n^2} > x_{n+1} = \frac{1}{(n+1)^2}, \, n=1,2,3,\dots$

4) Последовательность $\{[\sqrt{n}]\}=\{1,1,1,2,2,\dots\}$ — неубывающая, так как $x_{n+1}=[\sqrt{n+1}]\geqslant [\sqrt{n}]=x_n,\ n=1,2,3,\dots$ и к тому же, например, $x_1=x_2$.

5) Данная последовательность невозрастающая, так как $x_n \leqslant x_{n+1}, n=1,2,\ldots$ и некоторые (например, первый и второй) члены этой последовательности равны между собой.

Какие из следующих последовательностей монотонные? строго монотонные? ограниченные?

6.2.20.
$$x_n = n - \frac{1}{n}$$
.

6.2.21.
$$x_n = \cos \frac{\pi n}{2}$$
.

6.2.22.
$$x_n = -\frac{n^2+1}{n^2}$$
.

6.2.23.
$$x_n = -\sqrt{n}$$
.

6.2.24.
$$x_n = \pi, \pi, \pi, \dots$$

6.2.25. Пусть
$$\{x_n\} = \{n\}, \{y_n\} = \left\{\frac{1}{n}\right\}$$
 — две последовательности.

Найти последовательности $\{x_n+y_n\}$, $\{x_n-y_n\}$, $\{x_n\cdot y_n\}$ и $\left\{\frac{x_n}{y_n}\right\}$.

О По определению операций над последовательностями имеем:

$$\{x_n + y_n\} = \left\{n + \frac{1}{n}\right\} = \left\{2, 2\frac{1}{2}, 3\frac{1}{3}, \dots\right\};$$

$$\{x_n - y_n\} = \left\{n - \frac{1}{n}\right\} = \left\{0, \frac{3}{2}, 2\frac{2}{3}, \dots\right\};$$

$$\{x_n \cdot y_n\} = \{1\} = \{1, 1, 1, \dots\};$$

$$\left\{\frac{x_n}{y_n}\right\} = \left\{n : \frac{1}{n}\right\} = \{n^2\} = \{1, 4, 9, \dots\}.$$

Найти последовательности $\{x_n \pm y_n\}$, $\{x_n \cdot y_n\}$ и $\left\{\frac{x_n}{y_n}\right\}$, если:

6.2.26.
$$x_n = (-1)^n$$
, $y_n = (-2)^n$. **6.2.27.** $x_n = n^2 + 1$, $y_n = n$.

Найти последовательности $\alpha x_n + \beta y_n$, если:

6.2.28.
$$x_n = n, y_n = 3n, \alpha = 2, \beta = -1.$$

6.2.29.
$$x_n = (\sqrt{2})^n, y_n = 1, \alpha = \sqrt{2}, \beta = -5.$$

Ответы

- **6.2.2.** $x_1 = 4$, $x_2 = 8$, $x_3 = 16$, $x_4 = 32$. **6.2.3.** $x_1 = 6$, $x_2 = 11$, $x_3 = 18$, $x_4 = 27$.
- **6.2.4.** $x_1 = 0$, $x_2 = 2$, $x_3 = 0$, $x_4 = 2$. **6.2.5.** $x_1 = 2$, $x_2 = \frac{3}{4}$, $x_3 = \frac{4}{9}$, $x_4 = \frac{5}{16}$.
- **6.2.6.** $x_1 = 1$, $x_2 = 0$, $x_3 = -1$, $x_4 = 0$. **6.2.7.** $x_1 = -1$, $x_2 = 2$, $x_3 = -6$, $x_4 = 24$. **6.2.8.** $x_n = \frac{1}{2n-1}$. **6.2.9.** $x_n = \frac{1}{n^2}$. **6.2.10.** $x_n = \frac{n+1}{n}$. **6.2.11.** $x_n = (-1)^n \cdot n$.
- 6.2.13. Ограниченная последовательность. 6.2.14. Ограниченная снизу последовательность. 6.2.15. Ограниченная сверху последовательность.
- 6.2.16. Ограниченная последовательность. 6.2.17. Неограниченная последовательность. 6.2.18. Ограниченная снизу последовательность.
- 6.2.20. Строго возрастающая, неограниченная последовательность.
- 6.2.21. Немонотонная, ограниченная последовательность. 6.2.22. Строго возрастающая, ограниченная последовательность. 6.2.23. Строго убывающая, ограниченная сверху последовательность. 6.2.24. Монотонная, ограниченная последовательность. **6.2.26.** $\{x_n + y_n\} = \{(-1)^n + (-2)^n\} = \{-3, 5, -9, \ldots\},$

$${x_n - y_n} = {1, -3, 7, ...}, {x_n \cdot y_n} = {2^n} = {2, 4, 8, ...},$$

$$\left\{\frac{x_n}{y_n}\right\} = \left\{\frac{1}{2^n}\right\} = \left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right\}.$$

- **6.2.27.** $\{x_n + y_n\} = \{n^2 + n + 1\} = \{3, 7, 13, \ldots\},$
- $\{x_n y_n\} = \{n^2 n + 1\} = \{1, 3, 7, \ldots\}, \{x_n \cdot y_n\} = \{n^3 + n\} = \{2, 10, 30, \ldots\},$

$$\left\{\frac{x_n}{y_n}\right\} = \left\{n + \frac{1}{n}\right\} = \left\{2, 2\frac{1}{2}, 3\frac{1}{3}, \ldots\right\}.$$

- **6.2.28.** $\{\alpha x_n + \beta y_n\} = \{2x_n y_n\} = \{-n\} = \{-1, -2, -3, \ldots\}.$
- **6.2.29.** $\{\alpha x_n + \beta y_n\} = \{\sqrt{2}x_n 5y_n\} = \{(\sqrt{2})^{n+1} 5\} = \{-3, 3\sqrt{2} 5, -1, \ldots\}.$