Bacharelado em Sistemas de Informação

BANCOS DE DADOS

Aula 1 Apresentação Introdução a Banco de Dados

Apresentação da Disciplina

Dados informativos

Unidade: Escola de Artes, Ciências e Humanidades

Curso: Sistemas de Informação

Horas totais previstas: 60 horas teóricas (4 créditos)

+ 30 horas de trabalho (2 créditos)

Quem sou eu?

- √ Fátima de Lourdes dos Santos Nunes Marques
- ✓ Graduação em Ciência da Computação (Unesp Bauru)
- ✓ Mestrado em Engenharia Elétrica (EESC-USP)
- ✓ Doutorado em Ciências Física Computacional (IFSC-USP)
- ✓ Pós-doutorado em Engenharia Elétrica (EESC-USP)
- √ fatima.nunes@usp.br
- ✓ Áreas de pesquisa: processamento de imagens, realidade virtual, bancos de dados, recuperação por conteúdo, aplicações em saúde

Programa Resumido

- Introdução aos Sistemas de Gerência de Bancos de Dados (SGBDs).
- Modelagem e projeto de Bancos de Dados.
- Modelos Relacional e orientado a objetos.
- SQL.
- Aspectos de Implementação de SGBDs

Bibliografia

Date, C.J. - Introdução a Sistemas de Bancos de Dados, Tradução da 7a Edição, 2000, Editora Campus.

Elmasri, R.; Navathe, S.B. "Fundamentals of Database Systems", Addison Wesley Pub., 4th Edition, 2003.

Korth, H. F.; Silberschatz, A. - Fundamentos de Bancos de Dados, 3a Edição, McGraw-Hill, São Paulo, 1998.

Ramakrishnan, R. - Database Management Systems, McGraw-Hill, 1999.

Aulas e listas de exercício

- Aulas:
 - exposição dos temas do curso PODE (E DEVE) PERGUNTAR À VONTADE!
 - participação dos alunos na construção do conhecimento
 - durante a aula dúvidas
 - exercícios
- Listas de exercícios
- Aulas e listas disponibilizadas no sistema Col.

Atendimento

- Atendimento de dúvidas dos alunos
 - Sala: 210P do Bloco A1 − 2º andar
 - sexta-feira:15h30min às 18h30min
 - •Se precisar de outro horário, agende! Email com o título "ATENDIMENTO"
 - NÃO ESPEREM AS PROVAS!!!

Avaliação do aprendizado

- Frequência mínima: 70%.
- Avaliação:
 - Duas provas (P1 e P2)
 - Um trabalho : exercício-programa (EPs)
- Prova substitutiva:
 - somente para quem perdeu uma das provas (FECHADA)
 - substitui a que você perdeu
 - envolve todo o conteúdo ministrado na disciplina.
 - DIFÍCIL: USEM SÓ EM CASO DE EMERGÊNCIA!
- Qualquer tentativa de fraude implicará em zero na atividade.

Avaliação do aprendizado

- Média de Provas (MP):
 - MP = (P1 + P2) / 2
- Média de Trabalhos (MT) = nota do EP
 - MT = (T1 + T2) / 2

Avaliação do aprendizado

- Média Final (MF) :
 - se MP >= 5,0 e MT >= 5,0
 MF = (6*MP + 4*MT) / 10
 senão
 MF = mínimo(MP, MT)

- Se MF $>= 5.0 \rightarrow$ aluno aprovado
- Se 3,0 <= MF < 5,0 → recuperação
- Se MF < 3,0 \rightarrow aluno reprovado.

Avaliação do aprendizado - recuperação

- \checkmark Se 3 <= MF < 5 → recuperação (REC)
 - MFR (Média Final após recuperação):
 - Se REC >= 5MFR = (MF + REC)/2
 - REC: envolve todo o conteúdo ministrado na disciplina.
 - É obrigatória (não fez \rightarrow REC = 0)
 - Se MFR >= 5,0 → aluno aprovado
 - Se MFR < 5,0 → aluno reprovado</p>

Sobre o trabalho - EP

- ✓ Oportunidade de aprendizado
- ✓ Entrega pelo CoL
 - Encerra à meia-noite da data marcada (sem prorrogação!!!)
 - Problemas com upload
 - Façam uploads de versões anteriores antes
 - A professora n\u00e3o resolve problemas de CoL!!!
- Plágio total ou parcial
 - Zero para todos os envolvidos

Dúvidas?

Plano de aulas

Importantíssimo – avisos gerais:

- O plano de aulas é preliminar e pode estar sujeito a mudanças.
- A disciplina tem 6 créditos, sendo 4 teóricos e 2 de trabalho:
 - Por isso: Trabalhos (EP) são obrigatórios!!!

Avisos – Provas e Trabalhos

- Nas provas o aluno deve trazer OBRIGATORIAMENTE um documento de identificação com fotografia (recomendável cartão USP)
- Os alunos que não comparecerem a uma das provas poderão fazer a prova substitutiva. Não é necessário atestado.
- Avaliações são individuais.
- Trabalhos e provas copiados: atribuição de nota zero para todos os envolvidos.
- Enunciado do EP será divulgado oportunamente.

Conceitos Básicos

Conceitos Básicos

- ✓ Campo representação informatizada de um dado real / menor unidade de informação com valor significativo para o usuário
- ✓ Dado conteúdo do campo
- ✓ Registro conjunto de campos
- ✓ Arquivo conjunto de registros
- ✓ Banco de Dados armazenamento físico dos arquivos
- √ Sistema Gerenciador de Banco de Dados (SGBD)
 - software responsável pelo armazenamento e recuperação dos dados do BD.

Breve Histórico

- ✓ Computadores com capacidade de armazenamento → surgimento de Sistemas Operacionais mais completos
- ✓ SO contendo sistemas de arquivos → armazenamento e recuperação de informações mais otimizados.
- ✓ Necessidade de maior eficiência (tempo e espaço) → SGBD

- ✓ Redundância
- ✓ Inconsistência
- ✓ Dificuldade no acesso a dados
- √ Isolamento dos dados
- √ Múltiplos usuários
- ✓ Segurança
- ✓ Integridade
- √ Atomicidade

✓ Redundância

- Arquivos e aplicações criados e mantidos por diferentes programadores → arquivos com formatos diferentes e programas escritos em diversas linguagens de programação.
- Informação repetida em diversos lugares (arquivos).

✓ Inconsistência

- Decorrência da redundância.
- Várias cópias dos dados poderão divergir ao longo do tempo.

✓ Dificuldade no acesso aos dados

 Necessidade de construir programas para obter qualquer informação solicitada.

Exemplo

Uma empresa precisa dos nomes de todos os clientes que fazem aniversário no mês de fevereiro, mas esta solicitação não foi prevista no projeto do sistema → existe somente uma aplicação para gerar a relação de todos os clientes da empresa.

Alternativas:

- 1) separar manualmente da lista de todos os clientes aqueles que necessita
- 2) requisitar um programador para escrever o programa necessário.

Ambas alternativas são insatisfatórias.

...Mais tarde a empresa precisa saber os clientes que têm saldo negativo.

√ Isolamento dos dados

 Dados dispersos em vários arquivos e arquivos em diferentes formatos → difícil escrever novas aplicações para recuperação apropriada dos dados.

✓ Múltiplos usuários

 Atualizações concorrentes podem resultar em inconsistências.

Exemplo

- ◆ Conta corrente com saldo = R\$500,00
- Dois clientes debitam da conta A simultaneamente (\$50 e \$100, respectivamente)
- Na execução dos programas, ambos lêem o saldo antigo, retiram, cada um seu valor correspondente, sendo o resultado armazenado.
- ◆ Dependendo de qual deles registre seu resultado primeiro, o saldo da conta A será \$450 ou \$400, ao invés do valor correto de \$350.

✓ Segurança

Definir autorizações de acesso a diferentes usuários.

✓ Integridade

- Valores dos dados armazenados devem satisfazer a certas restrições para manutenção da consistência.
 - O valor da nota final de um aluno deve estar entre 0 e 10. Os programadores determinam o cumprimento desta restrição através da adição de código apropriado aos vários programas aplicativos.
 - Entretanto, quando aparecem novas restrições, é difícil alterar todos os programas para incrementá-las. O problema é ampliado quando as restrições atingem diversos itens de dados em diferentes arquivos.

√ Atomicidade

- Algumas operações devem ser feitas de forma única, atômica, a fim de assegurar a integridade e consistência dos dados.
 - um programa para transferir R\$50,00 da conta A para uma conta B. Se ocorrer falha no sistema durante sua execução, é possível que os 50 reais sejam debitados da conta A sem serem creditados na conta B, criando um estado inconsistente no banco de dados.

Exemplo

◆É essencial para a consistência do banco de dados que ambos, débito e crédito ocorram, ou nenhum deles seja efetuado. Isto é, a transferência de fundos deve ser uma operação atômica – deve ocorrer por completo, ou não ocorrer.

Regras para que um sistema de manipulação de dados seja um SGBD

- ✓ Auto-contenção conter dados, suas descrições, relacionamentos e formas de acesso.
- ✓ Independência dos Dados aplicações imunes a mudanças na estrutura de armazenamento e à estratégia de acesso a dados.
- ✓ Abstração dos Dados usuário não precisa saber detalhes sobre armazenamento real.
- ✓ Visões formas diferentes de ver os dados de acordo com necessidade dos usuários.
- ✓ Transações gerenciar integridade sem precisar de aplicativos.
- ✓ Controle automático de acesso vários usuários, travamento eficiente.

Características de um SGBD

- ✓ Controle de Redundâncias informações armazenadas em um único lugar.
- ✓ Compartilhamento dos Dados garantir concorrência ao acesso dos dados, sem erro.
- ✓ Controle de Acesso seleção de permissões por usuário.
- ✓ Interfaceamento facilidade para recuperação de informação.
- ✓ Esquematização mecanismos que possibilitem a compreensão do relacionamento entre as tabelas e sua manutenção.
- ✓ Controle de Integridade aplicações e acessos não podem comprometer integridade dos dados.
- ✓ Backups facilidade para recuperar falhas de hardware e software.

Estrutura Geral do Sistema

Exercícios

- 1. Quais são as principais diferenças entre um sistema de processamento de arquivos e um SGBD?
- Foram listadas algumas vantagens mais importantes de um sistema de banco de dados. Há alguma desvantagem?
- 3. Explique a diferença entre "isolamento de dados" e "dificuldade no acesso a dados", referentes aos sistemas de arquivos.
- 4. Explique a diferença entre as características dos SGBDs "controle automático de acesso" e "compartilhamento de dados".
- 5. O que são visões em SGBDs? Dê um exemplo.
- 6. O que é o controle de transações em SGBDs? Dê um exemplo.

Bacharelado em Sistemas de Informação

BANCOS DE DADOS

Aula 1 Apresentação Introdução a Banco de Dados

