<u>מד"ר 2 2019 – פתרון ממ"ן 11</u>

שאלה 1

 $\cos x$ אז מרציפות הפונקציות $\left\{\cos \frac{x}{n}\right\}_n$ רציפה במידה אחידה. יהי $\left\{\cos \frac{x}{n}\right\}_n$ אז מרציפות הפונקציה $\left|a-b\right| < \delta$ במ"ש ב- $\left\|a-b\right\| < \delta$ נובע כי קיים $\delta > 0$ כך שלכל $\left\|a-b\right\| < \delta$ המקיימים $\left\|a-b\right\| < \delta$ מתקיים $\left\|a-b\right\| < \delta$ אז לכל $\left\|a-y\right\| < \delta$ ולכל $\left\|a-y\right\| < \delta$ אם $\left\|a-b\right\| < \varepsilon$. $\left|\cos a - \cos b\right| < \varepsilon$. $\left|\cos \frac{x}{n} - \cos \frac{y}{n}\right| < \varepsilon$ ולכן $\left\|\frac{x}{n} - \frac{y}{n}\right\| = \frac{1}{n} |x-y| \le |x-y| < \delta$

סדרת הפונקציות $\left\{\cos nx\right\}_n$ אינה רציפה במידה אחידה.

נבחר $|x-y|<\delta$ מתקיים $x=0,y=\frac{\pi}{n}$ ואז עבור $\frac{\pi}{n}<\delta$ פיים n כך ש- $\delta>0$ קיים $\delta>0$ אבל , $\varepsilon=1$ אבל . $|\cos nx-\cos ny|=|\cos 0-\cos \pi|=2>\varepsilon$

ב. תהי $\left\{f_n\right\}$ סדרת פונקציות רציפה במידה אחידה בקטע סגור סגור (a,b), המתכנסת נקודתית לפונקציה ב- תהי f

נוכיח תחילה כי f רציפה בקטע. יהי $x_0 \in [a,b]$ יהי $x_0 \in [a,b]$ יהי f כך שלכל f לכל f כי f מתקיים לכל f מתקיים לכל f לכל f לכל f לכל f כי f מתקיים לכל f בי f מתקיים לכל f בי f f בי f f בי f בי

 $n\to\infty$ זה נכון לכל n ולכן זה נכון גם בגבול $n\to\infty$ אבל $|f(y)-f(x_0)|\leq \frac{\varepsilon}{2}<\varepsilon$ ולכן נקבל $\lim_{n\to\infty} \left|f_n(x_0)-f(x_0)\right|+\left|f_n(y)-f(y)\right|=0$ רציפה ב- x_0 , לכל $|f(y)-f(x_0)|=0$. כיוון שהקטע סגור, הרציפות היא במ"ש.

נניח בשלילה שההתכנסות אינה במ"ש. אז קיים arepsilon>0 וקיימת סדרת טבעיים עולה ממש כך $.\Big|f_{n_k}\left(x_k\right)-f\left(x_k\right)\Big|\geq arepsilon$ כך ש- $x_k\in [a,b]$ קיימת נקודה $x_k\in [a,b]$

 $x_{k_j} o x_0 \in igl[a,bigr]$ יש תת-סדרה מתכנסת נובע כי לסדרה לסדרה (x_k) יש יש תהסדרה מתכנסת

 $\left. \cdot \left| f_n \left(x_0
ight) - f \left(x_0
ight)
ight| < rac{\mathcal{E}_3}{3}$ מהתכנסות נקודתית קיים N > N כך שלכל

מתקיים $|x-y|<\delta'$ -ש כך $x,y\in[a,b]$ ולכל n ולכל $\delta'>0$ כך שרדה אחידה קיים $|f(x)-f(y)|<rac{\varepsilon}{3}$ מתקיים $|x-y|<\delta''$ כך שלכל $|f(x)-f(y)|<rac{\varepsilon}{3}$ מתקיים $|x-y|<\delta''$ כך שלכל $|f_n(x)-f_n(y)|<rac{\varepsilon}{3}$. נבחר $|f_n(x)-f_n(y)|<1$. נבחר

קיים J כנ"ל מתקיים $n_{k_j}>N$ וכן $\left|x_{k_j}-x_0\right|<\delta$ מתקיים j>J מתקיים J>0 כנ"ל מתקיים $\varepsilon\leq \left|f_{n_{k_j}}\left(x_{k_j}\right)-f\left(x_{k_j}\right)\right|\leq \left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{k_j}}\left(x_{k_j}\right)\right|+\left|f_{n_{k_j}}\left(x_{k_j}\right)-f_{n_{$

שאלה 2

א. כיוון ש- f גזירה ברציפות וכן f גזירה ברציפות וכן f , $\frac{\partial F}{\partial y}\big(t_0,x_0,y_0\big)\neq 0$, לפי משפט הפונקציה הסתומה קיימת פונקציה f המוגדרת בסביבה של f ומקיימת f ומקיימת f ומקיימת f המוגדרת בסביבה של f ומקיימת f ומקיימת f אםם f ברציפות בסביבה של f

נוכל אם כן לנסח מחדש את בעיית ההתחלה כבעיה $x'=f\left(t,x
ight) \ \left\{x'=f\left(t,x
ight) \ x\left(t_0
ight)=x_0
ight.$ (נשים לב כי התנאי $F\left(t_0,x_0,y_0
ight)=0$ מתקיים אוטומטית בכל מקרה שבו מתקיימים התנאים $x'\left(t_0
ight)=y_0$ ולכן $x'=f\left(t_0,x_0,y_0
ight)=0$. $x'=f\left(t_0,x_0,y_0\right)=0$

. כנדרש, t_0 של בסביבה אל (*) יש פתרון יחיד לפעיה לבעיה (*) אז לפי משפט 2.2.3, לבעיה

ב. נסמן F . $(t_0, x_0, y_0) = (0, 0, 1)$. $F(t, x, y) = y^2 - 2y + 4x - 4t + 1$ ב. נסמן בנקודה

היא הבעיה
$$\frac{F\left(t,x,x'\right)=0}{x\left(t_{0}\right)=x_{0}\,,x'\left(t_{0}\right)=y_{0}} \quad \text{and in finite sum of } \frac{\partial F}{\partial y}\left(t_{0},x_{0},y_{0}\right)=0 \quad \text{if } \left(t_{0},x_{0},y_{0}\right)=0$$

x(0) = 0, x'(0) = 1 עם תנאי התחלה $(x')^2 - 2x' + 4x = 4t - 1$

נפתור את המשוואה: 1-4x=4t-1 (קל לראות כי $(x'-1)^2=-4(x-t)$, כלומר $(x'-1)^2=-4(x-t)$ (קל לראות כיx(t)=t הפונקציה x(t)=t היא פתרון של בעיית ההתחלה). נחליף משתנה ונתבונן בפונקציה

ונקבל בעיית התחלה $u'=\pm 2\sqrt{-u} \\ u(0)=0, u'(0)=0$ כלומר כלומר u(0)=0, u'(0)=0

הפרדה, עם פתרון קבוע u=t (שזהו הפתרון u=0), ופתרון נוסף הפרדה, עם פתרון קבוע עם u=0). כלומר הפתרון לבעיית ההתחלה אינו יחיד. $x(t)=-t^2+t$

שאלה 3

בעיית ההתחלה היא $\ddot{x}=-\dot{x}-x^{2019}-\cos x$ עם תנאי התחלה ב-0, וזה שקול לבעיה הווקטורית $\ddot{x}=-\dot{x}-x^{2019}-\cos x$ מסדר ראשון $f:\mathbb{R}\times\mathbb{R}^2\to\mathbb{R}^2$ כאשר $f:\mathbb{R}\times\mathbb{R}^2\to\mathbb{R}^2$ היא הפונקציה f:(t,y) עם תנאי התחלה ב-0. נשים לב כי f מוגדרת ורציפה בכל $f(t,y_1,y_2)=\begin{pmatrix} y_2 \\ -y_2-y_1^{2019}-\cos y_1 \end{pmatrix}$. $\mathbb{R}\times\mathbb{R}^2$

לכן לפי משפט 2.3.1 קיים ל-(*) פתרון בלתי ניתן להמשכה ימינה, ולפי מסקנה 2.3.2, אם y(t) הוא y(t) אם y(t) פתרון בלתי ימינה, ולפי משפט 2.3.1 קיים ל-(*) פתרון בלתי ש-y(t) פונקציה חסומה, אז y(t) מוגדרת בכל הקטע y(t). לכן מספיק להוכיח הפתרון הנ"ל והוא מקיים ש-y(t) שקול לכך שהרכיבים y(t) הם פונקציות חסומות, או בסימונים של המשוואה המקורית y(t) פונקציות חסומות).

. מספיק להוכיח כי הפונקציה $ig|y(t)ig|^2$ חסומה, ולמעשה מספיק להראות כי הפונקציה וער חסומה, ולמעשה מספיק להוכיח כי הפונקציה וער אומה.

$$\frac{d}{dt}|y(t)|^2 = \frac{d}{dt}(y_1^2 + y_2^2) = 2\dot{y}_1y_1 + 2\dot{y}_2y_2 = 2y_1y_2 + 2y_2\dot{y}_2 = 2y_2(y_1 - y_2 - y_1^{2019} - \cos y_1)$$

ולכן מהמשפט היסודי של החדו"א, $\left|y(t)\right|^2=2\int y_2\left(-y_2+y_1-y_1^{2019}-\cos y_1
ight)dt$ אבל נזכור כי

יכן מחילוף משתנה נקבל כי
$$y_2 = \frac{dy_1}{dt}$$

$$\left|y(t)\right|^{2} = 2\int \left(y_{1} - y_{1}^{2019} - \cos y_{1}\right) dy_{1} - 2\int y_{2}^{2} dt = y_{1}^{2} - \frac{2}{2020}y_{1}^{2020} - 2\sin y_{1} + C - 2\int_{0}^{t} y_{2}^{2} dt$$

.(כאשר C קבוע כלשהו)

$$\left.\left|y\left(t\right)\right|^{2} \leq y_{\scriptscriptstyle 1}^{\;2} - \frac{2}{2020}\,y_{\scriptscriptstyle 1}^{\;2020} + 2 + C = y_{\scriptscriptstyle 1}^{\;2} \bigg(1 - \frac{1}{1010}\,y_{\scriptscriptstyle 1}^{\;2018}\,\bigg) + 2 + C\,\left|\,y_{\scriptscriptstyle 1}^{\;2}\right|^{t}\,y_{\scriptscriptstyle 2}^{\;2}dt \geq 0$$
מתקייים $0 \leq y_{\scriptscriptstyle 1}^{\;2} - \frac{2}{2020}\,y_{\scriptscriptstyle 1}^{\;2020} + 2 + C = y_{\scriptscriptstyle 1}^{\;2} \bigg(1 - \frac{1}{1010}\,y_{\scriptscriptstyle 1}^{\;2018}\,\bigg) + 2 + C$ ולכן

נראה כי הפונקציה $1-\frac{1}{1010}\,y_{\scriptscriptstyle 1}^{\scriptscriptstyle 2018} \leq 0$ ש- $y_{\scriptscriptstyle 1}$ כך ש- $y_{\scriptscriptstyle 1}^{\scriptscriptstyle 2018} \left(1-\frac{1}{1010}\,y_{\scriptscriptstyle 1}^{\scriptscriptstyle 2018}\right)$ הפונקציה נראה כי הפונקציה

.
$$y_{_{1}}^{\,2} \left(1 - \frac{1}{1010} \, y_{_{1}}^{\,2018} \, \right) \le \frac{1009}{1010}$$
 ולכן בסכ"ה $1 - \frac{1}{1010} \, y_{_{1}}^{\,2018} \le 1$ ו-

. קיבלנו כי $\left|yig(t)
ight|^2$ פונקציה חסומה, כנדרש

שאלה 4

נניח כי x(t) פתרון של המערכת x(t)=(A(t)+B(t))x(t) נניח כי x(t)=(a(t)+B(t))x(t) ונתבונן x(t)=x(t) פתרון x(t)=x(t)=x(t), ש-x'(t)=A(t)x(t)+f(t) הוא כמובן פתרון במערכת המשוואות הלינארית והאי-הומוגנית x(t)=A(t)x(t)+f(t) הוא כמובן פתרון $x(t)=\Phi(t)\Phi^{-1}(0)x(0)+\int\limits_0^t\Phi(t)\Phi^{-1}(s)f(s)ds$ גם שלה. לפי ווריאציה של פרמטרים,

 $: t \ge 0$ לכן מתקיים לכל

$$|x(t)| \leq \left| \Phi(t) \Phi^{-1}(0) \right| |x(0)| + \int\limits_0^t \left| \Phi(t) \Phi^{-1}(s) \right| |f(s)| \, ds \leq M \, |x(0)| + M \int\limits_0^t \left| f(s) \right| \, ds$$
 מתקיים
$$, \int\limits_0^t \left| f(s) \right| \, ds = \int\limits_0^t \left| B(s) x(s) \right| \, ds \leq \int\limits_0^t \left| B(s) \right| |x(s)| \, ds$$
 בסכ"ה
$$|x(t)| \leq M \, |x(0)| + \int\limits_0^t M \, |B(s)| |x(s)| \, ds$$
 - עולם איש גרונוול,
$$|x(t)| \leq M \, |x(0)| + \int\limits_0^t M \, |B(s)| \, ds$$
 - עולם מספר סופי וחסום מכיוון שי
$$|x(t)| \leq M \, |x(0)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| \leq M \, |x(0)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| \leq M \, |x(0)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| \leq M \, |x(0)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| \leq M \, |x(0)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| \leq M \, |x(0)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| \leq M \, |x(0)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| \leq M \, |x(0)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| \leq M \, |x(0)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| \leq M \, |x(0)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| \leq M \, |x(0)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| \leq M \, |x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| \leq M \, |x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| \leq M \, |x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| \leq M \, |x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M \, |B(s)| \, ds$$
 -
$$|x(t)| + \int\limits_0^t M$$

שאלה 5

 $f'(t)\geq f\left(t,h(t)
ight)$ ב. נתון כי $h(t)\geq 0$ גזירה ועולה ולכן $f'(t)\geq 0$, לכן יחד עם סעיף א' נקבל כי $h(t)=\varphi(t)$ מתקיים גם $f\in C^1(\mathbb{R} imes\mathbb{R})$ וכן מכך ש- $h(au)=\varphi(t)$ נובע כי $h(au)=\varphi(t)$ הוא פתרון יחיד של $\varphi'=f(t,\varphi)$ בקטע $\varphi'=f(t,\varphi)$. כלומר מתקיימים כל תנאי משפט 2.6.1 (א"ש דיפאנציאליים) ולכן ניתן להסיק כי לכל $t\geq 0$ מתקיים $t\geq 0$

 $oldsymbol{\kappa}$ ג. כיוון שתחום ההגדרה של f הוא כל f הוא כל f אז עבור פתרון שאינו ניתן להמשכה f המוגדר ניתן f מחקנים כי $b=\infty$ או ש $b=\infty$ או ש $b=\infty$ מחקיים כי a,b מתקיים כי a,b או שa

לכל $t\geq 0$ מתקיים $(h(t)-\varphi(t))f\left(t,\varphi(t)\right)\geq 0$ ולכן מכך ש- $\phi(t)\leq h(t)$ מתקיים $t\geq \tau$ לכל $t = \lim_{t\to b^-}\left|\varphi(t)\right|=\infty$ מתקיים $\phi(t)=0$ פונקציה עולה ב- $\phi'(t)=f\left(t,\varphi(t)\right)\geq 0$ כלומר $t = \lim_{t\to b^-}h(t)=\infty$ בם $t = \lim_{t\to b^-}\phi(t)=\infty$ אז גם $t = \lim_{t\to b^-}h(t)=\infty$ בי נתון ש- $t = \lim_{t\to b^-}\phi(t)=\infty$ כי נתון ש- $t = \lim_{t\to b^-}\phi(t)=\infty$ בי נתון ש- $t = \lim_{t\to b^-}\phi(t)=\infty$ בי נתון ש- $t = \lim_{t\to b^-}\phi(t)=\infty$ בי נתון ש-

שאלה 6

א. נסמן $\mathbb{R} \times \mathbb{R}$. לכן לפי משפט הגזירות f_x קיימת ורציפה בכל $\mathbb{R} \times \mathbb{R}$. לכן לפי משפט הגזירות . $f(t,x)=x^2-x\cos t$ א. נסמן $f(t,x)=x^2-x\cos t$ הפתרון לבעיית ההתחלה $f(t,x)=x^2-x\cos t$ קיים ויחיד עבור ביחס לתנאי ההתחלה (2.5.2) הפתרון לבעיית הבתחלה ביחס לתנאי ההתחלה ($g(t,\tau,a)=x^2-x\cos t$ מקיימת את ביחס לתנאי ההתחלה $\frac{d}{da} \varphi(t,\tau,a)$ (נסמן פתרון זה ב- $f(t,x)=x^2-x\cos t$ והנגזרת ($f(t,x)=x^2-x\cos t$ מקיימת את בעיית ההתחלה $f(t,x)=x^2-x\cos t$ מיימת ה $f(t,x)=x^2-x\cos t$ מיימת ה $f(t,x)=x^2-x\cos t$ מיימת את ביחס לתנאי ההתחלה $f(t,x)=x^2-x\cos t$ מיימת ההתחלה $f(t,x)=x^2-x\cos t$ מיימת הביחס היים ויחיד עבור $f(t,x)=x^2-x\cos t$ מיימת הביחס התחלה $f(t,x)=x^2-x\cos t$ מיימת ההתחלה $f(t,x)=x^2-x\cos t$ מיימת הביחס התחלה $f(t,x)=x^2-x\cos t$

כלומר הנגזרת של פתרון בעיית ההתחלה ביחס ל- a , מחושבת ב-a , מקיימת את בעיית ההתחלה כלומר הנגזרת של פתרון בעיית ההתחלה ביחס ל- Y(0) = 1 , Y' = $(2\varphi(t,0,0)-\cos t)Y$

אבל נשים לב כי הפונקציה הקבועה אפס היא פתרון של בעיית ההתחלה עבור au=0, a=0 ומיחידות אבל נשים לב כי הפונקציה הקבועה אפס היא פתרון $\phi(t,0,0)=0$ זוהי משוואה בת הפתרון, מתקיים $\phi(t,0,0)=0$ לכל לכן מתקיים $\phi(t,0,0)=0$ הפרדה שפתרונה הוא

 $z'=f\left(t,z,a
ight)$ ב. נסמן $z=\begin{pmatrix}x\\y\end{pmatrix}$ (נסמן $z=\begin{pmatrix}x\\y\end{pmatrix}$ (נסמן $z=\begin{pmatrix}x\\y\end{pmatrix}$ ונתבונן בבעיית ההתחלה לפי $z=\begin{pmatrix}x\\y\end{pmatrix}$ לפי כל המשתנים. לפי משפט הגזירות לפי $\mathbb{R}\times\mathbb{R}^2\times\mathbb{R}$ לפי כל המשתנים. לפי משפט הגזירות לפי $z=\begin{pmatrix}x\\y\end{pmatrix}$ לבעיית ההתחלה (*) קיים ויחיד פתרון $z=\begin{pmatrix}x\\y\end{pmatrix}$, והנגזרת (2.5.1), לבעיית ההתחלה (*) קיים ויחיד פתרון $z=\begin{pmatrix}x\\y\end{pmatrix}$, והנגזרת (2.5.1), לבעיית ההתחלה (*) קיים ויחיד פתרון $z=\begin{pmatrix}x\\y\end{pmatrix}$, והנגזרת $z=\begin{pmatrix}x\\y\end{pmatrix}$ (**) $z=\begin{pmatrix}x$

נבטא את בעיית ההתחלה $f_a=\begin{pmatrix}x\\1\end{pmatrix}$, $D_z f=\begin{pmatrix}a-2x&0\\1&0\end{pmatrix}$: בפירוש: (**) בפירוש: $u(1)=\begin{pmatrix}0\\0\end{pmatrix}$, $u'=\begin{pmatrix}-1&0\\1&0\end{pmatrix}u+\begin{pmatrix}1\\0\end{pmatrix}$ נקבל $(t,\varphi(t,1),1)=\begin{pmatrix}t,\begin{pmatrix}1\\t\end{pmatrix},1$ התחלה זו הוא $u(t)=\begin{pmatrix}1-e^{1-t}\\e^{1-t}+t-2\end{pmatrix}$