Structure from Motion

Pinhole Camera: Test

Homogenous Coordinates: $(x, y) \leftrightarrow (\lambda x, \lambda y, \lambda)$

Intrinsic Parameters: K-Matrix Extrinsic Parameters: [R|t]Projection Matrix: $\Pi = K[R|t]$ Essential Matrix: TR, 5° of freedom

Epipolar Geometry: Test

Camera Calibration

Rig: Test

Stereo Matching

Binocular Stereo: Test Window Search: Test Markov Random Field: Test

Graph Cut: Test

Image Classification

Cross-Validation: Split training set into n-folds, [0, n-1] for training, [n] for testing

KNN

Hyperparameters: K and Norm(L1 better, reduces back-

ground noise)

Pros: Simple

Cons: Expensive(Use PCA), Norm choice Curse of Dimensionality: Overfitting

Linear Classifier

Foundation in neural networks

Score Function: Map data to class scores

Loss Function Quantifies prediction/ground truth dis-

parity

SVM

SVM: Hinge loss — Softmax: Cross-entropy loss Multi-Class Loss Data loss + Regularization loss

Softmax Classifier

Provides probabilities for each class

Cross-Entropy Loss: Maximize cross-entropy

AdaBoost

Ensemble method, combine weak(base) learners to form

strong learner, robust to overfitting

Weak Learner: Error<50%

Viola-Jones Face Detector

Uses AdaBoost

Haar-like Features: +/- Rectangles Integral Image: $II_{ij} = \sum_{i_x \leq i; y \leq j} i_{x \leq i; y \leq j}$

Classifier Cascade: Each successive strong classifier uses more features, lower threshold to reduce false negative (increase false positive), Every classifier must be

positive to be classified as positive

Neural Network

Layers of neurons, each neuron is a linear classifier, each

layer is a non-linear transformation

Score Function: Employs activation function

Activation Function: Non-Linear

Pooling Layer

Downsamples spatial dimensions, reduces computation *Max Pooling*: Take max of each window to downsample

Fully-Connected Layer

: Neurons Connected to every neuron of next layer

Convolutional Layer

Colloquially uses cross-correlation, uses CONV/FC/POOL

layers

 $Output \ Size(Image_{N\times N}, \ Filter_{F\times F}): \ (N-F)/(stride \ +$

1)

Stride: Jump of filter over image Padding: To make output same size

Hyperparameters: # filters, filter size, stride, padding

Gradient Descent

Numerical: Slow, Approximate, Easy to Write

Analytic: Fast, Exact, Error Prone

Backpropagation

Forward/Backward API: Forward- Compute operations, save immediates for gradient computation, Backward-

Apple chain rule to compute gradient of loss function

Object Detection

Window-Based: Viola-Jones, Stengths- Simple detection protocol, good feature choices critical, past successes for certain classes, Flaws- High computational complexity, need low false positive rates, not all objects box shaped, assumes fixed viewpoint

Object Proposals

Proposals: Object-like regions

Person Detection: HoG and linear SVM

Dalal-Triggs Method: Sliding Window, HoG, + linear

SVM

Deformable Part Model: Star Model- Coarse Root Filter

+ Higher resolution part filters

Object Hypothesis: Level+Position of the i-th filter

Active Contour

Test: Test

R-CNN

Pre-trained, fine-tuned on PASCAL VOC

Decision Tree

Testing attribute should split training samples into subsets that are as pure as possible

Leaves: Decisions

Information: Reduction in uncertainty Entropy: Expected amount of information

Information Gain: Information before split - after Bagging: Reduce variance, committee of trees, samples

with replacement

Random Forest Classifier: ex. Microsoft Kinect, efficient, distributed, variable importance, easy to update

algorithm, cons: interpretability

Taxonomy of Generative Models

Generative Models

Generative Adversarial Networks: Test

Variational Autoencoder: Autoencoder- Reconstruct

data

Semantic Segmentation

Markov Random Field: Smooth Sliding Window: Approach 1 Fully Convolutional: Approach 2

Instance Segmentation

FCN Methods: Divide results from semantic segmenta-

tion into individual instances

RCNN Methods: Use segmentation level proposals then

train classifier to classify proposals