# **AACR GENIE Variant Summary Report**

### Overview

This document contains analysis summarizing variant, sample, and patient information from the AACR Project GENIE data set. This is among the largest public cancer data sets with data from over 160,000 patients.

Data have been are aggregated from multiple institutions and multiple NGS panels were used to collect mutation data.

### Loading data

```
bDir <- "../../data/processed/balderResultsDb"
figDir <- "../../output/actionability_db_curration_20231220"
mydb <- DBI::dbConnect(RSQLite::SQLite(), paste0(bDir,"/actionable-biomarker-db.sqlite"))

genie <- RSQLite::dbGetQuery(mydb, 'SELECT * FROM GeniePatientVarients')
sample.genie <- RSQLite::dbGetQuery(mydb, 'SELECT * FROM GenieClinicalSampleData')
patient.genie <- RSQLite::dbGetQuery(mydb, 'SELECT * FROM GeniePatientData')

genie.full <- genie %>%
    dplyr::left_join(sample.genie,by=c("Tumor_Sample_Barcode"="SAMPLE_ID")) %>%
    dplyr::left_join(patient.genie,by="PATIENT_ID")
dim(genie.full)
```

[1] 1712997 81

### to do: print out column names. What is there in terms of variant info and annotations

# **Results summary**

what proportion of all patients are in the variant table?

FALSE TRUE 15746 145219

### **Variant counts**

Variants per sample for all available data:



Variants per sample for three top panels: "MSK-IMPACT468", "DFCI-ONCOPANEL-3.1", "MSK-IMPACT505".



Panels

Patients per panel type

| SEQ_ASSAY_ID   | number.patients.per.pan c lumber.genes.per.pan c lumber.distinct. AA. changes |     |        |  |  |  |
|----------------|-------------------------------------------------------------------------------|-----|--------|--|--|--|
| MSK-IMPACT468  | 30713                                                                         | 478 | 182817 |  |  |  |
| DFCI-          | 13976                                                                         | 498 | 116329 |  |  |  |
| ONCOPANEL-3.1  |                                                                               |     |        |  |  |  |
| MSK-IMPACT505  | 13413                                                                         | 510 | 97813  |  |  |  |
| PROV-TSO500HT- | 9076                                                                          | 535 | 100986 |  |  |  |
| V2             |                                                                               |     |        |  |  |  |
| MSK-IMPACT410  | 8759                                                                          | 414 | 52770  |  |  |  |
| DFCI-          | 8154                                                                          | 383 | 50080  |  |  |  |
| ONCOPANEL-2    |                                                                               |     |        |  |  |  |
| DFCI-          | 6647                                                                          | 489 | 61895  |  |  |  |
| ONCOPANEL-3    |                                                                               |     |        |  |  |  |
| MSK-IMPACT-    | 5547                                                                          | 396 | 17981  |  |  |  |
| HEME-400       |                                                                               |     |        |  |  |  |
| JHU-50GP       | 4984                                                                          | 51  | 3709   |  |  |  |
| UCSF-IDTV5-TO  | 4406                                                                          | 574 | 71184  |  |  |  |

| SEQ_ASSAY_ID    | number.patients.per.pan@umbe | er.genes.per.pan <b>e</b> lumber | distinct.AA.changes |
|-----------------|------------------------------|----------------------------------|---------------------|
| DFCI-           | 2976                         | 284                              | 17842               |
| ONCOPANEL-1     |                              |                                  |                     |
| MSK-IMPACT341   | 2463                         | 344                              | 13229               |
| CRUK-TS         | 2345                         | 174                              | 9676                |
| UCSF-NIMV4-TO   | 2163                         | 500                              | 34204               |
| DUKE-F1-DX1     | 1942                         | 319                              | 16347               |
| COLU-CSTP-V1    | 1709                         | 47                               | 3732                |
| MSK-IMPACT-     | 1635                         | 431                              | 4982                |
| HEME-468        |                              |                                  |                     |
| UCSF-NIMV4-TN   | 1635                         | 500                              | 27257               |
| VICC-01-T7      | 1590                         | 325                              | 16114               |
| NKI-CHPV2-      | 1316                         | 41                               | 763                 |
| SOCV2-NGS       |                              |                                  |                     |
| VICC-01-MYELOID | 1271                         | 35                               | 1720                |
| MDA-50-V1       | 1266                         | 47                               | 953                 |
| JHU-500STP      | 1216                         | 49                               | 640                 |
| UHN-48-V1       | 1181                         | 48                               | 1179                |
| DUKE-F1-T7      | 1047                         | 324                              | 9793                |
| UHN-54-V1       | 1014                         | 53                               | 1586                |
| YALE-OCP-V3     | 998                          | 144                              | 2838                |
| MDA-46-V1       | 944                          | 45                               | 532                 |
| UCSF-IDTV5-TN   | 928                          | 555                              | 15215               |
| VICC-01-        | 844                          | 31                               | 605                 |
| SOLIDTUMOR      |                              |                                  |                     |
| COLU-CCCP-V1    | 758                          | 469                              | 9577                |
| GRCC-MOSC3      | 739                          | 66                               | 1038                |
| SCI-PMP68-V1    | 723                          | 66                               | 1435                |
| NKI-TSACP-      | 678                          | 41                               | 560                 |
| MISEQ-NGS       |                              |                                  |                     |
| COLU-CSTP-V2    | 630                          | 29                               | 1661                |
| PROV-FOCUS-V1   | 554                          | 34                               | 212                 |
| COLU-TSACP-V1   | 531                          | 52                               | 2619                |
| UHN-555-V1      | 490                          | 561                              | 16752               |
| VICC-02-XTV4    | 428                          | 707                              | 7477                |
| CHOP-STNGS      | 407                          | 226                              | 1777                |
| VICC-01-T5A     | 396                          | 242                              | 3226                |
| MDA-409-V1      | 395                          | 348                              | 2038                |
| WAKE-CLINICAL-  | 395                          | 80                               | 214                 |
| T7              |                              |                                  |                     |
| PROV-TRISEQ-V2  | 387                          | 310                              | 2750                |
| UHN-OCA-V3      | 379                          | 45                               | 241                 |

| SEQ_ASSAY_ID    | number.patients.per.pan@umber.genes.per.pan@umber.distinct.AA.changes |     |       |  |  |  |
|-----------------|-----------------------------------------------------------------------|-----|-------|--|--|--|
| VHIO-300        | 341                                                                   | 413 | 4028  |  |  |  |
| GRCC-MOSC4      | 302                                                                   | 71  | 510   |  |  |  |
| WAKE-CLINICAL-  | 296                                                                   | 127 | 521   |  |  |  |
| DX1             |                                                                       |     |       |  |  |  |
| WAKE-CA-NGSQ3   | 281                                                                   | 283 | 759   |  |  |  |
| UCHI-           | 269                                                                   | 56  | 737   |  |  |  |
| ONCOHEME55-V1   |                                                                       |     |       |  |  |  |
| VICC-02-XTV3    | 267                                                                   | 694 | 5223  |  |  |  |
| UHN-TSO500-V1   | 261                                                                   | 225 | 836   |  |  |  |
| UHN-555-GYNE-V1 | 259                                                                   | 563 | 20390 |  |  |  |
| VHIO-           | 241                                                                   | 30  | 283   |  |  |  |
| COLORECTAL-V01  |                                                                       |     |       |  |  |  |
| YALE-HSM-V1     | 234                                                                   | 35  | 288   |  |  |  |
| UHN-555-V2      | 209                                                                   | 564 | 7780  |  |  |  |
| UCHI-           | 194                                                                   | 42  | 257   |  |  |  |
| ONCOSCREEN50-   |                                                                       |     |       |  |  |  |
| V1              |                                                                       |     |       |  |  |  |
| VICC-01-DX1     | 188                                                                   | 297 | 1942  |  |  |  |
| CHOP-COMPT      | 179                                                                   | 188 | 653   |  |  |  |
| NKI-CHP-V2-PLUS | 174                                                                   | 34  | 154   |  |  |  |
| WAKE-CA-01      | 172                                                                   | 19  | 136   |  |  |  |
| VHIO-PANCREAS-  | 167                                                                   | 23  | 140   |  |  |  |
| V01             |                                                                       |     |       |  |  |  |
| VICC-01-D2      | 159                                                                   | 359 | 1795  |  |  |  |
| UHN-555-PAN-GI- | 117                                                                   | 550 | 6499  |  |  |  |
| V1              |                                                                       |     |       |  |  |  |
| CHOP-HEMEP      | 113                                                                   | 98  | 379   |  |  |  |
| GRCC-CHP2       | 99                                                                    | 25  | 130   |  |  |  |
| DUKE-F1-T5A     | 84                                                                    | 202 | 778   |  |  |  |
| NKI-CHPV2-NGS   | 74                                                                    | 19  | 96    |  |  |  |
| VHIO-OVARY-V01  | 74                                                                    | 14  | 89    |  |  |  |
| VHIO-BREAST-V02 | 69                                                                    | 22  | 76    |  |  |  |
| WAKE-CLINICAL-  | 69                                                                    | 122 | 216   |  |  |  |
| R2D2            |                                                                       |     |       |  |  |  |
| VHIO-GENERAL-   | 63                                                                    | 19  | 64    |  |  |  |
| V01             |                                                                       |     |       |  |  |  |
| VHIO-HEAD-      | 58                                                                    | 14  | 73    |  |  |  |
| NECK-V01        |                                                                       |     |       |  |  |  |
| VHIO-LUNG-V01   | 58                                                                    | 20  | 81    |  |  |  |
| UHN-555-BREAST- | 54                                                                    | 514 | 3006  |  |  |  |
| V1              |                                                                       |     |       |  |  |  |

| SEQ_ASSAY_ID     | number.patients.per.pan@dumber.genes.per.pan@dumber.distinct.AA.changes |     |      |  |  |  |
|------------------|-------------------------------------------------------------------------|-----|------|--|--|--|
| VHIO-BREAST-V01  | 54                                                                      | 22  | 74   |  |  |  |
| VHIO-GASTRIC-    | 51                                                                      | 18  | 74   |  |  |  |
| V01              |                                                                         | -   | ·    |  |  |  |
| YALE-OCP-V2      | 44                                                                      | 33  | 105  |  |  |  |
| VHIO-BRAIN-V01   | 36                                                                      | 10  | 48   |  |  |  |
| UHN-555-HEAD-    | 34                                                                      | 490 | 2378 |  |  |  |
| NECK-V1          |                                                                         |     |      |  |  |  |
| VHIO-BILIARY-V01 | 31                                                                      | 13  | 43   |  |  |  |
| NKI-PATH-NGS     | 28                                                                      | 9   | 36   |  |  |  |
| VHIO-            | 27                                                                      | 17  | 56   |  |  |  |
| ENDOMETRIUM-     |                                                                         |     |      |  |  |  |
| V01              |                                                                         |     |      |  |  |  |
| GRCC-CP1         | 26                                                                      | 13  | 40   |  |  |  |
| UHN-555-LUNG-V1  | 26                                                                      | 473 | 2163 |  |  |  |
| VICC-02-XTV2     | 24                                                                      | 340 | 671  |  |  |  |
| VHIO-URINARY-    | 21                                                                      | 14  | 38   |  |  |  |
| BLADDER-V01      |                                                                         |     |      |  |  |  |
| VHIO-KIDNEY-V01  | 16                                                                      | 7   | 21   |  |  |  |
| VHIO-SKIN-V01    | 16                                                                      | 10  | 17   |  |  |  |
| VICC-01-T4B      | 14                                                                      | 116 | 261  |  |  |  |
| UHN-555-         | 13                                                                      | 352 | 923  |  |  |  |
| PROSTATE-V1      |                                                                         |     |      |  |  |  |
| WAKE-CLINICAL-   | 13                                                                      | 69  | 105  |  |  |  |
| T5A              |                                                                         |     |      |  |  |  |
| UHN-555-         | 10                                                                      | 345 | 806  |  |  |  |
| MELANOMA-V1      |                                                                         |     |      |  |  |  |
| UHN-555-GLIOMA-  | 9                                                                       | 345 | 805  |  |  |  |
| V1               |                                                                         |     |      |  |  |  |
| UHN-555-RENAL-   | 8                                                                       | 287 | 574  |  |  |  |
| V1               |                                                                         |     |      |  |  |  |
| UHN-50-V2        | 7                                                                       | 5   | 5    |  |  |  |
| UHN-555-         | 4                                                                       | 219 | 363  |  |  |  |
| BLADDER-V1       |                                                                         |     |      |  |  |  |
| VHIO-PAROTIDE-   | 4                                                                       | 4   | 7    |  |  |  |
| V01              |                                                                         |     |      |  |  |  |
| VICC-01-T6B      | 4                                                                       | 30  | 34   |  |  |  |
| COLU-CCCP-V2     | 2                                                                       | 46  | 54   |  |  |  |
| WAKE-CLINICAL-   | 1                                                                       | 4   | 4    |  |  |  |
| AB2              |                                                                         |     |      |  |  |  |
| WAKE-CLINICAL-   | 1                                                                       | 3   | 3    |  |  |  |
| AB3              |                                                                         |     |      |  |  |  |

| SEQ_ASSAY_ID          | number.patients.per.pan@umber. | genes.per.pan <b>e</b> lumber.d | listinct.AA.changes |
|-----------------------|--------------------------------|---------------------------------|---------------------|
| WAKE-CLINICAL-<br>CF3 | 1                              | 4                               | 4                   |
| WAKE-CLINICAL-<br>R2  | 1                              | 4                               | 4                   |

The following plot shows the number of genes tested in each panel



Figure 1: Number of genes tested across all assay panels in GENIE

How many samples (or patients) have been tested with more than one panel? To-do: Is the coverage across panels? 10X-30X? Tumor and normal coverage?

## Variant Effect and Protein annotation

Variant type

| Variant_Type | variant_count | Percentage |
|--------------|---------------|------------|
| DEL          | 141736        | 8.2741534  |
| DNP          | 18308         | 1.0687701  |

| Variant_Type | variant_count | Percentage |
|--------------|---------------|------------|
| INS          | 61449         | 3.5872217  |
| ONP          | 2403          | 0.1402805  |
| SNP          | 1487530       | 86.8378637 |
| TNP          | 1571          | 0.0917106  |

### Variant Classifications

| Variant_Classification | variant_count | Percentage |
|------------------------|---------------|------------|
| 3'Flank                | 6314          | 0.3685938  |
| 3'UTR                  | 3626          | 0.2116758  |
| 5'Flank                | 23870         | 1.3934642  |
| 5'UTR                  | 3491          | 0.2037949  |
| $Frame\_Shift\_Del$    | 96194         | 5.6155381  |
| $Frame\_Shift\_Ins$    | 43753         | 2.5541784  |
| $In\_Frame\_Del$       | 23505         | 1.3721565  |
| In_Frame_Ins           | 9187          | 0.5363115  |
| Intron                 | 51690         | 3.0175184  |
| Missense_Mutation      | 1123523       | 65.5881476 |
| Nonsense_Mutation      | 118828        | 6.9368481  |
| Nonstop_Mutation       | 908           | 0.0530065  |
| RNA                    | 1846          | 0.1077643  |
| Silent                 | 115459        | 6.7401753  |
| Splice_Region          | 47540         | 2.7752530  |
| Splice_Site            | 41399         | 2.4167585  |
| Translation_Start_Site | 1864          | 0.1088151  |

### Concordance between Polyphen and SIFT predictions

table(genie.full\$Polyphen\_Prediction,genie.full\$SIFT\_Prediction)

#### deleterious\_low\_confidence tolerated benign possibly\_damaging probably\_damaging unknown

# tolerated\_low\_confidence 0 benign 47420 possibly\_damaging 4178 probably\_damaging 3299 unknown 80

MAF by Polyphen "probably damaging" or "possibly damaging"

### MAF of variants by Polyphen Damaging assignment



MAF by SIFT "deleterious" or "deleterious low confidence"

To do: Look at SIFT/polyphen scores for TSG genes only but leave out ONC

• read in Vogelstein list of genes

To do: read recent GENIE manuscripts. Have they looked at prevalence of common cancer biomarkers already? can we reproduce their findings?

To do: apply cancer type ontology scheme

To do: perform actionability matching (with and without cancer type matching)



Figure 2: Variant MAF values for variants with and without SIFT deleterious assignments

### Variant signatures by assay type

Perform demintionality reduction on base pair transition signatures

Background: Different assays can show different profiles of background variants based. If background signals vary substantially, this could represent an important confounding factor in interpreting mutaitonal signatures

Goal: The goal of this work is to identify different clusters of assay signature types by performing clustering on base pair transition signatures.

Assumptions: This works assumes that a large proportion of listed signatures are assay artifacts and that these background mutations drive clustering patterns. Other contributors could also influence the signature results include the diversity of cancer types tested and the segments of the genome tested by each panel.

### **Procedure**

- 1. Filter to the GENIE variant set to SNV events only
- 2. Filter out any variants coming from assays that contribute fewer than 1,000 variants across all patients

- 3. Create a table that has a profile of variant counts for every combination of ref—>alt for each assay
- 4. Calculate what percentage of variants for a given assay type fit into any given combination of [ref base, tumor alt 2 base, strand].
- 5. Pivot these data into a matrix where rows are the different base pair combinations and columns are the different assay types. Each entry contains the percentage of variants that match a given base pair transition (e.g. A->T) for that assay type.
- 6. Normalize the matrix
- 7. Perfrom tsNE clustering
- 8. Visualize clusters

The following table shows the results of step (3):

| $SEQ_{-}$ | ASSAY <u>Re</u> Ference_ | _Allel&umor_\$ | ${ m Seq\_Alle}$ Alle Set 2 and | nVariants | as say Variants Tot | capterc Variants |
|-----------|--------------------------|----------------|---------------------------------|-----------|---------------------|------------------|
| CHOP      | P- A                     | С              | +                               | 51        | 2064                | 2.470930         |
| STNG      | $\mathbf{S}$             |                |                                 |           |                     |                  |
| CHOP      | P- A                     | G              | +                               | 161       | 2064                | 7.800388         |
| STNG      |                          |                |                                 |           |                     |                  |
| CHOP      |                          | ${ m T}$       | +                               | 126       | 2064                | 6.104651         |
| STNG      | S                        |                |                                 |           |                     |                  |
| CHOP      |                          | A              | +                               | 116       | 2064                | 5.620155         |
| STNG      |                          |                |                                 |           |                     |                  |
| CHOP      | P- C                     | G              | +                               | 117       | 2064                | 5.668605         |
| STNG      | $\mathbf{S}$             |                |                                 |           |                     |                  |
| CHOP      |                          | ${ m T}$       | +                               | 508       | 2064                | 24.612403        |
| STNG      |                          |                |                                 |           |                     |                  |
| CHOP      |                          | A              | +                               | 480       | 2064                | 23.255814        |
| STNG      | S                        |                |                                 |           |                     |                  |
| CHOP      | P- G                     | $\mathbf{C}$   | +                               | 123       | 2064                | 5.959302         |
| STNG      | $\mathbf{S}$             |                |                                 |           |                     |                  |
| CHOP      | P- G                     | ${ m T}$       | +                               | 103       | 2064                | 4.990310         |
| STNG      |                          |                |                                 |           |                     |                  |
| CHOP      | P- T                     | A              | +                               | 60        | 2064                | 2.906977         |
| STNG      | $\mathbf{S}$             |                |                                 |           |                     |                  |

```
#Convert data to matrix form
assaySigTbl$ID <- pasteO(assaySigTbl$Reference_Allele,"-",assaySigTbl$Tumor_Seq_Allele2,"-
sigMtrx <- assaySigTbl[,c("ID","SEQ_ASSAY_ID","percVariants")] %>%
   tidyr::pivot_wider(names_from = SEQ_ASSAY_ID,values_from=percVariants)
sigMtrx2 <- sigMtrx[,!colnames(sigMtrx) %in% c("ID")]</pre>
```

Perform dimentionality reduction on mutational signature vector space

```
sigMtrxScale <- t(scale(sigMtrx2))</pre>
  # Run t-SNE
  set.seed(144) # For reproducibility
  tsne results <- Rtsne(sigMtrxScale, perplexity = 5, theta = 0.5, max iter = 1000)
  # Create a data frame for plotting
  tsne_data <- data.frame(X = tsne_results$Y[,1], Y = tsne_results$Y[,2], assay = colnames(s
  # Plot using ggplot2
  ggplot(tsne_data, aes(x = X, y = Y, color = assay)) +
    geom_point() +
    theme_minimal() +
    ggtitle("t-SNE Plot of Assay signatures")
                               ■ IVION-IIVIFAC I - ПЕIVIE - 400 ■ UПIV- UUU - 1 IVE - V I
    t-SNE Plot of Assay signatures COLU-CSTP-V1
                                                      UHN-555-HEAD-NE
          COLU-CSTP-V2

    MSK-IMPACT410

    UHN-555-LUNG-V1

          COLU-TSACP-V1

    MSK-IMPACT468

                                                       UHN-555-PAN-GI-V
        CRUK-TS

    MSK-IMPACT505

    UHN-555-PROSTATE

    DFCI-ONCOPANEL-1
    NKI-CHPV2-SOCV2-NGS
    UHN-555-V1

    DFCI-ONCOPANEL-2
    NKI-TSACP-MISEQ-NGS
    UHN-555-V2

    PROV–TRISEQ–V2

    DFCI–ONCOPANEL–3

                                                     VHIO–300
          DFCI-ONCOPANEL-3.1 • PROV-TSO500HT-V2

    VICC-01-D2

        DUKE-F1-DX1
                               SCI-PMP68-V1

    VICC-01-DX1

        DUKE-F1-T7

    UCHI-ONCOHEME55-V1
    VICC-01-MYELOID

    UCSF-IDTV5-TN

    GRCC-MOSC3

    VICC-01-SOLIDTUM

        JHU-500STP

    UCSF-IDTV5-TO

                                                       VICC-01-T5A
        JHU-50GP

    UCSF-NIMV4-TN

                                                      VICC-01-T7
    EEE COORE
    Χ
        MDA-409-V1

    UCSF-NIMV4-TO

    VICC-02-XTV3

  ### Why do the ref/alt calls not always match the bases listed in HGVSc?
  head(genie.full[,c("Reference_Allele","Tumor_Seq_Allele1","Tumor_Seq_Allele2","HGVSc")])
 Reference_Allele Tumor_Seq_Allele1 Tumor_Seq_Allele2
1
                 C
                                                     Α
2
                                                     Τ
```

Α

```
3
                 С
                                                     Т
4
                 С
                                                     Т
5
                 Т
                                                     С
6
                 Α
                                                     G
                        HGVSc
   ENST00000256078.4:c.34G>T
2 ENST00000288602.6:c.1799T>A
3 ENST00000275493.2:c.2369C>T
4 ENST00000269305.4:c.818G>A
5 ENST00000369535.4:c.182A>G
6 ENST00000263967.3:c.3140A>G
```

# Review of patient data



### patient\_py = reticulate::r\_to\_py(patient.genie)

Print data from python

r.patient\_py.head()

|   | PATIENT_ID        | SEX    | PRIMARY_RACE | <br>YEAR_CONTACT | DEAD  | YEAR_DEATH     |
|---|-------------------|--------|--------------|------------------|-------|----------------|
| 0 | GENIE-VICC-101416 | Female | White        | <br>2014         | False | Not Applicable |
| 1 | GENIE-VICC-102225 | Female | White        | <br>2015         | True  | 2017           |
| 2 | GENIE-VICC-102424 | Female | White        | <br>2016         | True  | 2016           |
| 3 | GENIE-VICC-102966 | Male   | White        | <br>2015         | True  | 2015           |
| 4 | GENIE-VICC-103244 | Female | Unknown      | <br>2014         | True  | 2014           |

[5 rows x 10 columns]

```
import pandas as pd
import matplotlib.pyplot as plt
#import seaborn as sns
```

```
# Load the dataset
  data = r.patient_py
  # Display basic information about the dataset
  data_info = data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 160965 entries, 0 to 160964
Data columns (total 10 columns):
     Column
                  Non-Null Count
                                   Dtype
    ----
                   -----
                  160965 non-null object
0
    PATIENT ID
 1
     SEX
                   160965 non-null object
 2
    PRIMARY_RACE 160965 non-null object
    ETHNICITY
                   160965 non-null object
                   160965 non-null object
 4
    CENTER
 5
    INT_CONTACT
                   160965 non-null object
 6
    INT_DOD
                   160965 non-null object
7
    YEAR_CONTACT 160965 non-null object
8
    DEAD
                   160965 non-null object
 9
                   160965 non-null object
    YEAR_DEATH
dtypes: object(10)
memory usage: 12.3+ MB
  # Summarize categorical data
  categorical_summary = data.describe(include=['object'])
  # Displaying the first few rows of the dataset for a quick overview
  first_rows = data.head()
  data_info, categorical_summary, first_rows
(None,
                     PATIENT_ID
                                     SEX
                                         . . .
                                                 DEAD
                                                           YEAR_DEATH
                                        160965
                                                        160965
count
                   160965
                          160965
unique
                   160965
                                4
                                                            54
                                             8
top
        GENIE-VICC-101416
                          Female
                                         False
                                                Not Applicable
freq
                            86078
                                         76021
                                                         83681
                                  . . .
```

PATIENT\_ID

White ...

SEX PRIMARY\_RACE ... YEAR\_CONTACT

2014 False Not Applicable

DEAD

[4 rows x 10 columns],

O GENIE-VICC-101416 Female

| 1 | GENIE-VICC-102225 | Female | White   | <br>2015 | True | 2017 |
|---|-------------------|--------|---------|----------|------|------|
| 2 | GENIE-VICC-102424 | Female | White   | <br>2016 | True | 2016 |
| 3 | GENIE-VICC-102966 | Male   | White   | <br>2015 | True | 2015 |
| 4 | GENIE-VICC-103244 | Female | Unknown | <br>2014 | True | 2014 |

[5 rows x 10 columns])

### Review of survival data

```
table(as.numeric(patient.genie$YEAR_DEATH),exclude=NULL)
```

Warning in table(as.numeric(patient.genie\$YEAR\_DEATH), exclude = NULL): NAs introduced by coercion

| 1900 | 1950 | 1977 | 1980      | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 |
|------|------|------|-----------|------|------|------|------|------|------|------|
| 1    | 1    | 1    | 1         | 4    | 3    | 2    | 3    | 6    | 6    | 7    |
| 1988 | 1989 | 1990 | 1991      | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 |
| 9    | 8    | 14   | 16        | 33   | 36   | 51   | 57   | 79   | 77   | 64   |
| 1999 | 2000 | 2001 | 2002      | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
| 59   | 67   | 62   | 72        | 62   | 64   | 68   | 62   | 78   | 73   | 50   |
| 2010 | 2011 | 2012 | 2013      | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
| 44   | 36   | 72   | 352       | 1669 | 3781 | 5453 | 6835 | 7901 | 8310 | 9092 |
| 2021 | 2022 | 2023 | <na></na> |      |      |      |      |      |      |      |
| 8075 | 5758 | 493  | 101898    |      |      |      |      |      |      |      |

# Additional modeling ideas

- Does having an actionable mutation correlate with better or worse survival outcomes?
- Supervised
  - Tissue of origin prediction based on various biomarkers
  - Identifying mutational signatures that correlate with outcomes and/or cancer types
  - Mutational signatures that correlate with a given assay type
- Unsupervised modeling
  - Clustering of mutation patterns for each assay by tsne or PCA