Espectroscopia Rotacional

Belarmino Matsinhe

September 19, 2023

Conteúdo da aula

- Conceitos gerais;
- Classificação geométrica de moléculas;
- Espectroscopia rotacional em moléculas diatómicas;
 - Energias dos estados rotacionais rígidas;
 - Regras de seleção para transições rotacionais;
 - Espectros rotacionais de moléculas diatómicas rígidas;
- Espectroscopia rotacional em moléculas diatómicas n-rígidas;
- Espectroscopia rotacional em moléculas poliatómicas;
- Espectrômetros do Microondas.

O que é espectroscopia rotacional?

Curso de Física

3 / 55

Técnica de análise dos efeitos resultantes de transições entre estados (níveis) de energia rotacionais de uma molécula.

Técnica de análise dos efeitos resultantes de transições entre estados (níveis) de energia rotacionais de uma molécula.

Curso de Eísica 5 / 55

Simulação da interação de microondas com as Moléculas:

Acesse aqui

https://phet.colorado.edu/sims/cheerpj/

microwaves/latest/microwaves.html?simulation=

microwaves&locale=pt_BR

Aplicações de Espectroscopia Rotacional

- Determinação de tamanhos de moléculas;
- Identificação de moléculas gasosas, a baixas pressões, no espaço interestelar como: H₂O, HCN, H₂S, C₂H₂, e até C₂H₅OH.

Aplicações de Espectroscopia Rotacional

Figure: Molécula da água

Grandezas de interesse

- Momento de Inércia;
- Momento angular total;
- Energia absorvida.

a) Quanto à disposição dos seus átomos

Figure: Classificação de moléculas

Curso de Eísica

Seccão de Física Médica

September 19, 2023

b) Quanto à relação dos seus momentos de inércia

Curso de Eísica 11 / 55

b) Quanto à relação dos seus momentos de inércia

- Moléculas poliatómicas Lineares : $I_b = I_c$; $I_a = 0$;
- Moléculas simetricamente polares:
 - -Moléculas com polos achatados: $I_c > I_a = I_b$ para estas. $K^2 < 0$:
 - -Moléculas com polos alongados: $I_a < I_b = I_c$ para estas. $K^2 > 0$:
- Moléculas quase-simétricas: $I_a \approx I_b \neq I_c$;
- Moléculas em forma de pião assimétrico $I_a \neq I_b \neq I_c$;

b) Quanto à relação dos seus momentos de inércia

$$I_{\parallel} = 2m_{\rm A}(1 - \cos\theta)R^2$$

$$I_{\perp} = m_{\rm A} (1 - \cos \theta) R^2 + \frac{m_{\rm A}}{m_{\rm A} + m_{\rm B}} (m_{\rm B} + m_{\rm C}) (1 - 2\cos \theta) R^2$$

$$+\frac{m_{\rm C}}{m_{\rm A}+m_{\rm B}} \left[(3m_{\rm A}+m_{\rm B})R'+6m_{\rm A}R\sqrt{\frac{1}{3}}(1+2\cos\theta) \right] R'$$

(Exemplos: CH₃Cl, CH₃CN)

(Exemplo: SF₆)

$$I = 4m_A R^2$$

 $I_{\parallel} = 2m_{\rm A}(1 - \cos\theta)R^2$

$$I_{\perp} = m_{A}(1 - \cos\theta)R^{2} + \frac{m_{A}m_{B}}{m_{A} + m_{B}}(1 + 2\cos\theta)R^{2}$$
(Exemplo: NH₁)

 $I = \mu R^2$ (Exemplo: HCl, CO)

$$I_{\parallel} = 4m_A R$$

 $I_{\perp} = 2m_A R^2 + 2m_C R'^2$
(Exemplo: trans-SF₄Cl₂)

(Exemplo: OCS)

(Exemplo: CO₂)

Curso de Física de Física Médica

Figure: Momentos de Inércia de moléculas

Aproximação rígida

- Cada átomo da molécula é uma partícula;
- Ocorre um único movimento no sistema Rotação;
- Não há deformação molecular durante a rotação;
- Cada átomo possui uma velocidade angular representada por ω ;
- A energia total do sistema é cinética;
- O momento angular do sistema, depende do eixo de rotação.

Energia dos estados rotacionais

•
$$E_k = \sum \left(\frac{1}{2}m_i v_i^2\right)$$

•
$$E_J = \frac{h^2}{8\pi^2 I} J(J+1)$$

•
$$E_J = BJ(J+1)$$
 em J

•
$$\varepsilon_J = \tilde{B}J(J+1) \text{ em } cm^{-1}$$

Energia dos estados rotacionais

Espectros rotacionais de moléculas diatómicas rígidas

Existe uma restrição às transições rotacionais, mesmo para aquelas moléculas que são gasosas.

- Presença de momentos dipolares permanentes $(\mu \neq 0)$;

Espectros rotacionais de moléculas diatómicas rígidas

Figure: Linhas de absorção do Espectro rotacional

Curso de Física de Física Médica

Espectros rotacionais de moléculas diatómicas rígidas

ıção

ICO

Exemplo didático

PROBLEMA: Demonstrar que o espectro rotacional de uma molécula diatómica é formado por líneas equidistantes cuja distância entre elas vale:

$$\Delta \nu = \frac{h}{4\pi^2 I}$$

Figure: Aproximação real de molécula diatómica

Aproximação real

- Cada átomo da molécula é uma partícula;
- Ocorre dois movimentos no sistema Rotação e pequenas vibrações;
- Cada átomo possui uma velocidade angular própria representada por ω ;
- A energia total do sistema é cinética e potencial;
- O momento angular do sistema, depende do eixo de rotação.

Energia dos estados rotacinais

$$U_r = \frac{1}{2} \sum k(r - r_0)^2$$

•
$$E_J = BJ(J+1) - D_J J^2 (J+1)^2$$

•
$$\varepsilon_J = \tilde{B}J(J+1) - \tilde{D}_JJ^2(J+1)^2$$

$$\tilde{D} = \frac{4\tilde{B}^2}{\tilde{\nu}}$$

Curso de Física

Secção de Física Médica

Energia dos estados rotacinais

Curso de Física

Secção de Física Médica

Energia dos estados rotacionais

de Física Médica

Espectros rotacionais de moléculas diatómicas n-rígidas

Existe uma restrição às transições rotacionais, mesmo para aquelas moléculas que são gasosas.

- $\textbf{ 1 Presença de momentos dipolares permanentes } (\mu \neq 0);$

Espectros rotacionais de moléculas diatómicas n-rígidas

Figure: Linhas de absorção do Espectro rotacional

Espectros rotacionais de moléculas diatómicas n-rígidas

Figure: Linhas de absorção do Espectro rotacional

Espectros rotacionais de moléculas diatómicas n-rígidas

Figure: Espectro rotacional de CO

Espectros rotacionais de moléculas diatómicas n-rígidas

Tabela. Linhas de absorção do espectro rotacional de HCL

Transition $J \rightarrow J + 1$	$ar{v}_{\mathrm{obs}}$ (cm^{-1})	$ \tilde{\nu}_{\text{calc}} = 2\bar{B}(J+1) $ (with $\bar{B} = 10.34 \text{ cm}^{-1}$)	$\begin{vmatrix} \bar{\nu}_{\text{calc}} = 2\bar{B}(J+1) - 4\bar{D}(J+1)^3 \\ (\bar{B} = 10.395, \bar{D} = 0.0004 \text{cm}^{-1}) \end{vmatrix}$
3 → 4	83.03	82.72	83.06
$4 \rightarrow 5$	104.1	103.40	103.75
$\begin{array}{c} 5 \rightarrow 6 \\ 6 \rightarrow 7 \end{array}$	124.30 145.03	124.08 144.76	124.39 144.98
7 → 8	165.51	165.44	165.50
8 → 9	185.86	186.12	185.94
$\begin{array}{c} 9 \rightarrow 10 \\ 10 \rightarrow 11 \end{array}$	$206.38 \\ 226.50$	206.80 227.48	206.30 226.55

Intensidade das linhas espectrais

Distribuição da população molecular

$$\frac{N_J}{N_0} = (2\dot{D} + 1) exp\left(\frac{\Delta E}{kT}\right) \tag{1}$$

Intensidade das linhas espectrais

Distribuição da população molecular

Figure: População relativa dos estados rotacionais

Intensidade das linhas espectrais

Intensidade das transições rotacionais

$$I_{\nu} = I_0 exp \left[\frac{mc^2}{2kT} \cdot \left(\frac{\nu - \nu_0}{\nu_0} \right)^2 \right]$$
 (2)

$$\Delta \nu = \frac{1}{2\pi\tau} \tag{3}$$

Efeito Stark

Degeneração dos estados rotacionais

Figure: Efeito da interação com o campo eléctrico

Efeito Stark

Degeneração dos estados rotacionais

Figure: multiplicidade dos estados rotacionais

Curso de Física le Física Médica 35 / 55

Efeito Stark

Degeneração dos estados rotacionais

$$E_{J,M} = E_J + a_{J,M}E + \frac{1}{2}b_{J,M}E^2$$
 (4)

Onde:

$$a_{J,M} = \frac{J(J+1) - 3M^2}{E_J(2J-1)(2J+3)}$$
 (5)

$$b_{J,M} \cong \frac{\mu^2}{hB} \tag{6}$$

Curso de Eísica 36 / 55

Classe de moléculas poliatómmicas

Moléculas poliatómicas siméticas

Figure: (a) Molécula de Benzeno; (b) Molécula de 2-Butine

Curso de Física e Física Médica 38 / 55

Energia rotacional de Moléculas poliatómicas siméticas

$$E_k = \sum \left(\frac{1}{2}m_i v_i^2\right) \tag{7}$$

$$E_{J,K} = BJ(J+1) + (A-B)K^2$$
 (8)

$$E_{J,K} = BJ(J+1) + (C-B)K^2$$
 (9)

Curso de Física

Secção de Física Médica

Energia rotacional de Moléculas poliatómicas siméticas

A energia dos estados rotacionais para moléculas de geometria simétrica de polos alongados com efeito estiramento, será:

$$E_{J,K} = BJ(J+1) + (A-B)K^2 - D_JJ^2(J+1)^2 - D_{J,K}J(J+1)K^2 - D_KK^4$$
(10)

Curso de Física

Secção de Física Médica

Niveis de energia rotacionais de moléculas poliatómicas

Curso de Física le Física Médica 41 / 55

Espectros rotacionais de moléculas poliatómicas

Existe restrição às transições rotacionais em moléculas poliatómicas, mesmo para aquelas moléculas que são gasosas.

Tabela:	Regras	de	seleção

P ara <i>K</i> = 0	Para K≠0
$\Delta J = \pm 1 \text{ e } \Delta K = 0$	$\Delta J = 0, \pm 1 \text{ e } \Delta K = 0$

Espectros rotacionais de moléculas poliatómicas

 $Espectro\ rotacional\ da\ mol\'ecula\ de\ formal de\'ido\ (H_2CO),\ simulado\ com\ o\ programa\ PGOPHER\ ^1.\ Os\ tr\^es\ eixos\ principais\ de$

Curso de Física de Física Médica 43 / 55

Exemplo didático

PROBLEMA: Demonstrar que a primeira linha do espectro rotacional de uma molécula Poliatómica de polos alongados é formado quando:

$$\Delta\varepsilon = 2\tilde{B}(J+1)$$

Efeito de substituição isotópica

Figure: Isotopos da moléula da água

Curso de Física 45 / 55

Efeito de substituição isotópica

Imprensão dos isotopos da água

Curso de Física le Física Médica

Efeito de substituição isotópica

Exemplo Didático

Considere por exemplo, a primeira linha de absorção de monóxido de carbono ($^{12}C^{16}O$) é marcada a $3,84235cm^{-1}$.

Usando o seu isótopo ($^{12}C^{18}O$), onde surgiria a linha?

$$\frac{B}{B'} = \frac{I'}{I} = \frac{\mu'}{\mu} \tag{11}$$

Nota: a distância inter-atómica é considerada imutável

Espectrómetros do Microondas

Curso de Física Seccão de Física Médica

Espectrómetros do Microondas

Figure: Esquema de espectrómetro do microondas

Curso de Eísica 49 / 55

"Na longa história da humanidade (e da espécie animal também), aqueles que aprenderam a colaborar e improvisar de forma mais eficaz prevaleceram."

> de Física a Médica

Créditos

As imagens foram retiradas em:

1 Imagem da molécula da água

```
https://favpng.com/png_view/
water-molecule-chemistry-water-matter-life-png/neqCZ5ZY
```

Imagem de momentos de inércia e de rotação de moléculas

```
https://www.coursehero.com/file/56090879/
FETema-2-Espectroscopia-Rotacional-2pdf/.
```


As imagens foram retiradas em:

Imagem de estados rotacionais

```
http://la-mecanica-cuantica.blogspot.com/2009/08/la-energia-rotacional.html
```

Imagem de espectro rotacional hipotético

Barrow, G. M. (1962). Introduction to Molecular Spectroscopy.

Tokyo: Kogakusha Company, LDT

Imagem de espectro rotacional de CO

Hollas, J. M. (2004). Modern Spectroscopy. (4th ed.). Chichester:

John Wiley/Sons.

Secção de Física Médica

As imagens foram retiradas em:

Imagem de estados rotacionais

```
http://la-mecanica-cuantica.blogspot.com/2009/08/
la-energia-rotacional.html
```

Imagem de espectro rotacional hipotético

Barrow, G. M. (1962). Introduction to Molecular Spectroscopy.

Tokyo: Kogakusha Company, LDT

Imagem de espectro rotacional de CO

Hollas, J. M. (2004). Modern Spectroscopy. (4th ed.). Chichester:

John Wiley/Sons.

Seccão de Física Médica

Créditos

As imagens foram retiradas em:

Imagem de rotação não rígida de molécula diatómica

```
https://www.integrated-mcat.com/
interdisciplinary-discussions/
Because-a-diatomic-gas-molecule-has-an-array-of-rotational
3/2
```

Imagem de espectro rotacional de rotor rígido

```
https://rce.casadasciencias.org/rceapp/static/docs/artigos/2018-
```

005.pdf

Curso de Física Seccão de Física Médica

Créditos

As imagens foram retiradas em:

Imagem de isotopos da água

```
https://www.researchgate.net/publication/233917041_
Efeitos_Isotopicos_em_Espectroscopia_Rotacional_
Molecular_com_vistas_a_Aplicacoes_em_Radioastronomia
```

Imagem de espectro rotacional de rotor rígido https://rce.casadasciencias.org/rceapp/static/docs/artigos/2018-005.pdf