## Tutorial 10

Groups

## Q.1 Group or Not?

Is each of the following cases a group?

- a) Integers under addition
- b) Even numbers under addition
- c) Odd numbers under addition
- d) Integers under multiplication
- e) Multiples of 7 under addition
- f) Complex numbers under addition
- g) Complex numbers under multiplication
- h)  $2 \times 2$  real matrices under addition
- i)  $2 \times 2$  real matrices under multiplication

#### Pause and think:

https://www.youtube.c om/watch?v=qvx9TnK8 5bw&list=PLi01XoE8jY oi3SgnnGorR\_XOW3IcK -TP6&index=10

### Q.2 Abelian or not?

□ Let G be the set of  $2 \times 2$  real matrices with non-zero determinant.

- a) Is  $\langle G, + \rangle$  a group? If so, is it an Abelian group?
- b) Is  $\langle G, \times \rangle$  a group? If so, is it an Abelian group?

# Q.3 Unit Circle on Complex Plane

□ Consider the set of complex numbers on the unit circle:

$$H = \{ z \in \mathbb{C} \colon |z| = 1 \}.$$

 $\square$  Denote multiplication by  $\times$ .

• e.g. 
$$(1+2i)(3-i)$$
  
=  $(3+2)+(6-1)i$   
=  $5+5i$ .

- a) Show that  $\langle H, \times \rangle$  forms a group.
- b) Does it have a subgroup of order 3? Why?



### Q.4 Binary Linear Code

- $\square$  Recall that a binary linear code C is a subset of  $\mathbb{B}^n$ .
- □ It is defined by the encoding function  $f: \mathbb{B}^k \to \mathbb{B}^n$ , where f(u) = uG and G is the generator matrix.
- $\square$  Is C a subgroup of  $\mathbb{B}^n$ ?