CONCOURS COMMUN POLYTECHNIQUE (ENSI)

FILIERE MP

MATHEMATIQUES 2

I. Propriétés générales

En développant $det(C_P)$ suivant sa première ligne, on obtient :

$$\det(C_P) = (-1)^{n+1}(-a_0).1 = (-1)^n P(0),$$

et donc $C_p \in GL_n(\mathbb{K}) \Leftrightarrow \det(C_P) \neq 0 \Leftrightarrow P(0) \neq 0$.

$$C_{\mathfrak{p}}\in GL_{\mathfrak{n}}(\mathbb{K}) \Leftrightarrow P(0) \neq 0.$$

En développant $\det(C_P - XI_n)$ suivant sa dernière colonne, on obtient :

$$\chi_{C_P} = (-\alpha_{n-1} - X)(-X)^{n-1} + \sum_{k=0}^{n-2} (-1)^{n+k+1} (-\alpha_k) \Delta_k,$$

 $\Delta_k = (-X)^k$ et donc,

$$\chi_{C_P} = (-1)^n (X^n + \alpha_{n-1} X^{n-1} + \sum_{k=0}^{n-2} (-1)^k \alpha_k (-1)^k X^k) = (-1)^n (X^n + \sum_{k=0}^{n-1} \alpha_k X^k) = (-1)^n P.$$

$$\chi_{C_P} = (-1)^n P.$$

- 3. Si Q est un tel polynôme, il est nécessaire que Q soit un polynôme de degré n et de coefficient dominant $(-1)^n$. La question 2. montre alors que cette condition est suffisante.
- **4.** a) On sait que C_P et tC_p ont même polynôme caractéristique (à savoir $(-1)^nP$) et donc même spectre.

$$\operatorname{Sp}(C_{\mathfrak{p}}) = \operatorname{Sp}({}^{\mathfrak{t}}C_{\mathfrak{p}}).$$

b) Soit λ une valeur propre de tC_P . Soit $X = (x_i)_{1 \le i \le n} \in \mathcal{M}_{n,1}(\mathbb{K})$.

$$\label{eq:continuous_equation} \begin{split} {}^{t}C_{P}X &= \lambda X \Leftrightarrow \forall k \in \llbracket 1, n-1 \rrbracket, \ x_{k+1} = \lambda x_{k} \ \mathrm{et} \ -\sum_{i=0}^{n-1} \alpha_{i} x_{i+1} = \lambda x_{n} \\ &\Leftrightarrow \forall k \in \llbracket 2, n \rrbracket, \ x_{k} = \lambda^{k-1} x_{1} \ \mathrm{et} \ -\sum_{i=0}^{n-1} \alpha_{i} \lambda^{i} x_{1} = \lambda^{n} x_{1} \\ &\Leftrightarrow \forall k \in \llbracket 2, n \rrbracket, \ x_{k} = \lambda^{k-1} x_{1} \ \mathrm{et} \ (\lambda^{n} + \sum_{i=0}^{n-1} \alpha_{i} \lambda^{i}) x_{1} = 0 \\ &\Leftrightarrow \forall k \in \llbracket 2, n \rrbracket, \ x_{k} = \lambda^{k-1} x_{1} \ \mathrm{et} \ P(\lambda) x_{1} = 0 \\ &\Leftrightarrow \forall k \in \llbracket 2, n \rrbracket, \ x_{k} = \lambda^{k-1} x_{1} \ (\mathrm{car} \ P(\lambda) = 0). \end{split}$$

Donc, le sous-espace propre de tC_P associé à la valeur propre λ est $\mathrm{Vect}((1,\lambda,\lambda^2,\ldots,\lambda^{n-1}))$. En particulier, tout sous-espace propre de C_P est une droite vectorielle.

$$\forall \lambda \in \operatorname{Sp}({}^tC_{\mathfrak{p}}), \ \operatorname{Ker}({}^tC_{\mathfrak{p}} - \lambda I_{\mathfrak{n}}) = \operatorname{Vect}((1,\lambda,\lambda^2,\dots,\lambda^{n-1})).$$

c) tC_P est diagonalisable (dans \mathbb{K}) si et seulement si $\chi_{{}^tC_P}=\chi_{C_P}=(-1)^nP$ est scindé sur \mathbb{K} et pour toute valeur propre λ , la dimension du sous-espace propre associé est l'ordre de multiplicité de cette valeur propre.

D'après b), tout sous-espace propre de ^tC_P est de dimension 1, et donc

 ${}^{\rm t}C_P$ est diagonalisable si et seulement si P est scindé sur $\mathbb{K},$ à racines simples.

- d) D'après b), pour $1 \le k \le n$, le sous-espace propre associé à la valeur propre λ_k est engendré par le vecteur $e_k = (\lambda_k^{i-1})_{1 \le i \le n}$. D'après c), tC_P est diagonalisable. On en déduit que la famille $(e_k)_{1 \le k \le n}$ est une base de E et donc que le déterminant de Vandermonde $\det(\lambda_k^{i-1})_{1 \le i,k \le n}$ est non nul.
- 5. a) D'après 2., si A est la matrice compagnon $\begin{pmatrix}
 0 & \dots & \dots & 0 & 1999 \\
 1 & 0 & \dots & \dots & 0 & 0 \\
 0 & \ddots & \ddots & \vdots & \vdots & \vdots \\
 \vdots & \ddots & \ddots & \vdots & 0 & \vdots \\
 0 & \dots & \dots & 0 & 1 & 1
 \end{pmatrix}, de format 2002, le polynôme ca-$

ractéristique de A est $P_A = X^{2002} - X^{2001} - X^{2000} - 1999$. D'après le théorème de Cayley-Hamilton, la matrice A vérifie

$$A^{2002} = A^{2001} + A^{2000} + 1999I_{2002}$$

 $\mathbf{b)} \text{ Soit } x_0 \text{ un vecteur de } \mathsf{E} \text{ tel que } \mathsf{f}^{n-1}(x_0) \neq 0. \text{ Montrons que la famille } (x_0, \mathsf{f}(x_0), \dots, \mathsf{f}^{n-1}(x_0)) \text{ est libre.}$

Supposons par l'absurde que cette famille soit liée. Alors, il existe $(\lambda_0, \dots, \lambda_{n-1}) \neq (0, \dots, 0)$ tel que $\sum_{k=0}^{n-1} \lambda_k f^k(x_0) = 0$.

 $\mathrm{Soit}\; \mathfrak{p} = \mathrm{Min}\{k \in [\![0,n-1]\!]/\; \lambda_k \neq 0\}. \; \mathrm{Par} \; \mathrm{d\acute{e}finition}, \; 0 \leq \mathfrak{p} \leq \mathfrak{n}-1 \; \mathrm{et} \; \sum_{k=\mathfrak{p}}^{n-1} \lambda_k f^k(x_0) = 0. \; \mathrm{En} \; \mathrm{prenant} \; \mathrm{l'image} \; \mathrm{des} \; \mathrm{deux}$

membres par f^{n-1-p} (n-1-p est un entier positif), on obtient $\sum_{k=p}^{n-1} \lambda_k f^{k+n-p-1}(x_0) = 0$ et donc $\lambda_p f^{n-1}(x_0) = 0$ (puisque,

 $\mathrm{pour}\ k\geq n,\ f^k(x_0)=0).\ \mathrm{Comme}\ f^{n-1}(x_0)\neq 0,\ \mathrm{on\ obtient}\ \lambda_p=0\ \mathrm{ce\ qui\ contredit}\ \mathrm{la\ d\acute{e}finition\ de\ p}.$

Donc, la famille $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est libre. Etant de cardinal $n = \dim(E)$, cette famille est une base de E.

Dans cette base, la matrice de f est la matrice compagnon $\begin{pmatrix} 0 & \dots & 0 \\ 1 & \ddots & \vdots \\ 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix}.$

II. Localisation des racines d'un polynôme

 $\textbf{6.} \quad \text{Puisque } AX = \lambda X, \text{ on a}: \forall i \in [\![1,n]\!], \ \lambda x_i = \sum_{j=1}^n \alpha_{i,j} x_j. \text{ Mais alors, pour } i \in [\![1,n]\!],$

$$|\lambda x_i| \leq \sum_{j=1}^n |\alpha_{i,j}| \times |x_j| \leq \left(\sum_{j=1}^n |\alpha_{i,j}|\right) ||X||_{\infty} = r_i ||X||_{\infty}.$$

$$\forall i \in [\![1,n]\!], \ |\lambda x_i| \leq r_i ||X||_\infty.$$

7. Soient λ une valeur propre de A et $X=(x_i)_{1\leq i\leq n}$ un vecteur propre associé. Soit i_0 un indice tel que $||X||_{\infty}=|x_{i_0}|$. D'après 6., on a

$$|\lambda| \times ||X||_{\infty} = |\lambda x_{\mathfrak{i}_0}| \leq r_{\mathfrak{i}_0} ||X||_{\infty}.$$

Mais X est un vecteur propre et donc $X \neq 0$. Par suite, $\|X\|_{\infty} > 0$ et l'inégalité $|\lambda|.\|X\|_{\infty} \leq r_{i_0}\|X\|_{\infty}$ fournit

$$|\lambda| \leq r_{i_0}$$
.

On a ainsi montré que, pour toute valeur propre λ , il existe un indice i_0 tel que $|\lambda| \leq r_{i_0}$ ou encore tel que $\lambda \in D_{i_0}$. Par suite, toute valeur propre de A appartient à $\bigcup_{1 \leq i \leq n} D_i$. Finalement,

$$\operatorname{Sp}(A)\subset \cup_{1\leq i\leq n}D_i.$$

8. Notons $(\lambda_1, \ldots, \lambda_n)$ la famille des racines (distinctes ou confondues) de P dans C. Puisque $(-1)^n P$ est le polynôme caractéristique de C_P , $(\lambda_1, \ldots, \lambda_n)$ est aussi la famille des valeurs propres de C_P .

D'après 7. chaque valeur propre λ a un module inférieur ou égal à au moins l'un des r_i de la matrice C_P . Or, pour la matrice C_P , $r_1 = |a_0|$ et pour $i \geq 2$, $r_i = |1| + |-a_{i-1}| = 1 + |a_{i-1}|$. Ainsi, toute racine de P a un module inférieur ou égal au plus grand des nombres $|a_0|$, $1 + |a_1|$, ..., $1 + |a_{n-1}|$ ou encore

toutes les racines de P sont dans le disque fermé de centre O et de rayon
$$R = \max\{|\alpha_0|, 1+|\alpha_1|, \ldots, 1+|\alpha_n|\}$$
.

9. Soit P le polynôme $X^d + X^c - X^b - X^a$. D'après 8., les racines de P ont un module au plus égal à $1 + |\pm 1| = 2$. Une racine de P, qui est de plus un nombre entier supérieur ou égal à 2 ne peut donc être que 2.

Réciproquement, on n'a jamais $2^{\alpha}+2^{b}=2^{c}+2^{d}$. En effet, dans le cas contraire, on peut diviser les deux membres de cette égalité par 2^{α} où α est le plus petit des quatre nombres a, b, c ou d. L'un des quatre termes est alors 1 et les trois autres sont des puissances strictement positives de 2 et donc des nombres pairs. Ainsi, l'un des deux membres de l'égalité $2^{\alpha-\alpha}+2^{b-\alpha}=2^{c-\alpha}+2^{d-\alpha}$ est un nombre pair et l'autre est un nombre impair, ce qui est impossible.

L'équation
$$\mathfrak{n}^{\alpha}+\mathfrak{n}^{b}=\mathfrak{n}^{c}+\mathfrak{n}^{d}$$
 n'a donc pas de solution dans $\mathbb{N}\setminus\{0,1\}.$

III. Suites récurrentes linéaires

 $\begin{aligned} \textbf{10.} \quad & \mathrm{Soit} \ \lambda \in \mathbb{C} \ \mathrm{tel} \ \mathrm{que} \ P(\lambda) = 0. \\ & \mathrm{Soit} \ n \in \mathbb{N}. \ \lambda^{n+p} + a_{p-1}\lambda^{n+p-1} + \ldots + a_1\lambda^{n+1} + a_0\lambda^n = \lambda^n P(\lambda) = 0. \ \mathrm{Ainsi}, \ \mathrm{la} \ \mathrm{suite} \ (\lambda^n)_{n \in \mathbb{N}} \ \mathrm{est} \ \mathrm{dans} \ F. \end{aligned}$

11. • Soient $(u, v) \in F^2$ et $(\alpha, \beta) \in \mathbb{C}^2$.

$$\phi(\lambda u + \mu v) = (\lambda u_0 + \mu v_0, \dots, \lambda u_{p-1} + \mu u_{p-1}) = \lambda(u_0, \dots, u_{p-1}) + \mu(v_0, \dots, v_{p-1}) = \lambda \phi(u) + \mu \phi(v).$$

Donc, φ est une application linéaire de F dans \mathbb{C}^p .

• Soit $u \in F$. Si $u \in \mathrm{Ker}(\phi)$, alors $u_0 = u_1 = \ldots = u_{p-1} = 0$. Montrons alors par récurrence que $\forall n \in \mathbb{N}, \ u_n = 0$. C'est vrai pour $n \in [0, p-1]$. Soit $n \ge 0$. Supposons que $\forall k \in [n, n+p-1]$, $u_n = 0$. Alors,

$$u_{n+n} = -a_{n-1}u_{n+n-1} - \ldots - a_0u_n = 0.$$

On a montré par récurrence que $\forall n \in \mathbb{N}, \ u_n = 0$. Ainsi, si $u \in \mathrm{Ker}(\phi)$, alors u = 0. Donc, ϕ est injective.

• Soit $(\alpha_0, \ldots, \alpha_{p-1}) \in \mathbb{C}^p$. Soit \mathfrak{u} la suite définie par :

$$\forall k \in [0, p-1], \ u_k = \alpha_k \text{ et } \forall n \in \mathbb{N}, \ u_{n+p} = -a_{p-1}u_{n+p-1} - \ldots - a_0u_n.$$

Alors, $\mathfrak u$ est un élément de F tel que $\phi(\mathfrak u)=(\alpha_0,\dots,\alpha_{p-1}).$

On a montré que : $\forall (\alpha_0,\ldots,\alpha_{p-1}) \in \mathbb{C}^p, \ \exists u \in F/\ \phi(u) = (\alpha_0,\ldots,\alpha_{p-1}). \ \phi \ \mathrm{est \ donc \ surjective}.$

Finalement,

 ϕ est un isomorphisme de F sur $\mathbb{C}^p,$

et en particulier,

$$\dim F = \dim \mathbb{C}^{\mathfrak{p}} = \mathfrak{p}.$$

12. a)
$$e_i(p) = -\sum_{k=0}^{p-1} a_k e_i(k) = -\sum_{k=0}^{p-1} a_k \delta_{i,k} = -a_i.$$

$$\forall i \in [0, p-1], e_i(p) = -a_i.$$

b) La famille $(e_i)_{0 \le i \le p-1}$ est l'image de la base canonique de \mathbb{C}^p par l'isomorphisme ϕ^{-1} et est donc une base de F.

La famille
$$(e_i)_{0 \le i \le p-1}$$
 est une base de F.

c) Soit $u \in F$.

Puisque la famille (e_0, \dots, e_{p-1}) est une base de F, il existe $(\alpha_0, \dots, \alpha_{p-1}) \in \mathbb{C}^p$ tel que $\mathfrak{u} = \sum_{i=0}^{p-1} \alpha_i e_i$. Mais alors, pour $k \in [0, p-1]$,

$$u(k) = \sum_{i=0}^{p-1} \alpha_i e_i(k) = \alpha_k.$$

Ainsi,

$$\forall u \in F, \ u = \sum_{i=0}^{p-1} u(i)e_i.$$

13. Soient $(u, v) \in E^2$ et $(\alpha, \beta) \in \mathbb{C}^2$. Pour tout entier naturel n,

$$f(\alpha u + \beta v)(n) = (\alpha u + \beta v)(n+1) = \alpha u(n+1) + \beta v(n+1) = (\alpha f(u) + \beta f(v))(n),$$

et donc $f(\alpha u + \beta b) = \alpha f(u) + \beta f(v)$. f est un endomorphisme de E.

Soit $u \in F$. Montrons que $f(u) \in F$. Pour $n \in \mathbb{N}$,

$$\begin{split} f(u)(n+p) &= u(n+p+1) = -a_{p-1}u(n+p) - \ldots - a_1u(n+2) - a_0u(n+1) \\ &= -a_{p-1}f(u)(n+p-1) - \ldots - a_1f(u)(n+1) - a_0f(u)(n). \end{split}$$

http://www.maths-france.fr

Ceci montre que $f(u) \in F$. On a montré que F est stable par f.

$$f \in \mathscr{L}(E)$$
 et $f(F) \subset F$.

14. Soit $i \in [1, p-1]$. D'après 12.c),

$$g(e_i) = \sum_{k=0}^{p-1} g(e_i)(k) e_k = \sum_{k=0}^{p-1} e_i(k+1) e_k = \sum_{k=0}^{p-2} \delta_{i,k+1} e_k + e_i(p) e_{p-1} = e_{i-1} - \alpha_i e_{p-1} \text{ (d'après 12.a)}).$$

D'autre part,

$$g(e_0) = \sum_{k=0}^{p-2} \delta_{0,k+1} e_k + e_0(p) e_{p-1} = -a_0 e_{p-1}.$$

15. a) Pour $i \in [0, p-1]$, posons $v_i = (\lambda_i^n)_{n \in \mathbb{N}}$. Tout d'abord, d'après 10., chaque v_i est élément de F. Ensuite, d'après 12.c), la matrice de la famille (v_0, \ldots, v_{p-1}) est la matrice de Vandermonde $(\lambda_i^j)_{0 \le i,j \le p-1}$. Puisque les λ_i sont deux à deux distincts, le déterminant de cette matrice est non nul d'après 4.d). On en déduit que la famille (v_0, \ldots, v_{p-1}) est une base de F. Enfin, pour $n \in \mathbb{N}$,

$$g(v_i) = (\lambda_i^{n+1})_{n \in \mathbb{N}} = \lambda_i(\lambda_i^n)_{n \in \mathbb{N}} = \lambda_i v_i,$$

ce qui montre que v_i est un vecteur propre de g associé à la valeur propre λ_i . Finalement, la famille (v_0, \ldots, v_{p-1}) est une base de F formée de vecteurs propres de g.

- b) Par suite, pour chaque $u \in F$, il existe des constantes comples k_0, \ldots, k_{p-1} telles que $u = k_0 \nu_0 + \ldots k_{p-1} \nu_{p-1}$ ou encore telles que $\forall n \in \mathbb{N}, \ u_n = k_0 \lambda_0^n + \ldots + k_{p-1} \lambda_{p-1}^n$.
- **16.** Ici, le polynôme P est le polynôme

$$P=X^3-(\alpha+b+c)X^2+(\alpha b+\alpha c+bc)X-\alpha bc=(X-\alpha)(X-b)(X-c).$$

Il est de degré 3 et a trois racines simples à savoir a, b et c. D'après ce qui précède, les éléments de F sont les suites de la forme

$$k_0(\mathfrak{a}^{\mathfrak{n}})_{\mathfrak{n} \in \mathbb{N}} + k_1(\mathfrak{b}^{\mathfrak{n}})_{\mathfrak{n} \in \mathbb{N}} + k_2(\mathfrak{c}^{\mathfrak{n}})_{\mathfrak{n} \in \mathbb{N}}, \; (k_0, k_1, k_2) \in \mathbb{C}^3.$$

IV. Matrices vérifiant rg(U - V) = 1

17. Une matrice compagnon est nécéssairement non nulle. La matrice compagnon de la matrice nulle n'est donc pas semblable à la matrice nulle (car il existe une et une seule matrice semblable à la matrice nulle, à savoir la matrice nulle elle-même).

Une matrice A n'est pas nécessairement semblable à la matrice compagnon C_A .

18. Si U et V vérifient (**), alors $U - V = P^{-1}(C_U - C_V)P$. La matrice U - V est donc semblable à la matrice $C_U - C_V$ et a en particulier même rang que celle dernière matrice. Maintenant, la matrice $C_U - C_V$ a n-1 colonnes nulles et le rang de $C_U - C_V$, et donc le rang de U - V, vaut au plus 1. Comme U - V n'est pas la matrice nulle, U - V est de rang exactement 1.

19. On prend $U=I_2$. On a $U\in GL_2(\mathbb{K})$ et $C_u\neq I_2$. Donc U n'est pas semblable à C_U . On prend ensuite $V=\mathrm{diag}(1,-1)\in GL_2(\mathbb{K})$. On a $\mathrm{rg}(U-V)=\mathrm{rg}(\mathrm{diag}(0,2))=1$. U et V sont donc deux éléments de $GL_2(\mathbb{K})$ vérifiant (*) et pas (**).

On a dans ce cas

$$\chi_U \wedge \chi_V = (X-1)^2 \wedge (X-1)(X+1) = X-1.$$

- **20.** U-V est de rang 1 et donc u-v est de rang 1. D'après le théorème du rang, $H=\mathrm{Ker}(u-v)$ est de dimension n-1 et donc un hyperplan vectoriel de E.
- **21.** a) (H est constitué des x de E tels que u(x) = v(x) et donc u et v coïncident sur H) Puisque $F \neq \{0\}$, χ_{u_F} est de degré au moins 1. Il en est de même de χ_{v_F} . Si $F \subset H$, alors u et v coïncident sur F et en particulier $\chi_{U_F} = \chi_{V_F}$. Mais alors, $\chi_{U_F} = \chi_{V_F}$ est un polynôme de degré au moins 1 divisant à la fois χ_U et χ_V . Ceci contredit le fait que χ_U et χ_V sont premiers entre eux. Donc,

F n'est pas inclus dans H.

 $\mathbf{b)} \text{ D'après a), } F \text{ n'est pas inclus dans } H. \text{ Donc, } F \cap H \underset{\neq}{\subset} F \text{ et en particulier, } \dim(F \cap H) \leq \dim F - 1.$

$$\dim(F+H)=\dim(F)+\dim(H)-\dim(F\cap H)\geq\dim(F)+n-1-(\dim F-1)=n.$$

Ainsi, $\dim(F + H) \ge n$ et donc

$$F + H = E$$
.

Soit G un supplémetaire de $F \cap H$ dans H. On a d'une part,

$$E = F + H = F + (F \cap H + G) = (F + F \cap H) + G = F + G.$$

D'autre part, $F \cap G \subset G$ et $F \cap G \subset F \cap H$, et donc $F \cap G \subset G \cap (F \cap H) = \{0\}$. Finalement,

$$E = F \oplus G$$
.

Soit alors B une base de E adaptée à la décomposition $E = F \oplus G$. B est une base de E obtenue en complétant une base B_F de F par des vecteurs de H.

- c) D'après ce qui précède, les seuls sous-espaces stables à la fois par u et par v sont $\{0\}$ et E.
- **22.** a) Pour tout j de \mathbb{N} , G_j est l'image de H par l'automorphisme \mathfrak{u}^{-j} . On en déduit que G_j a même dimension que H et donc que G_j est un hyperplan vectoriel.
- $\mathbf{b)} \ \mathrm{Montrons} \ \mathrm{par} \ \mathrm{r\'ecurrence} \ \mathrm{que} \ \forall k \in [\![0,n-2]\!], \ \mathrm{dim} \left(\bigcap_{j=0}^k G_j\right) \geq n-k-1.$
- C'est clair pour k = 0.
- $\bullet \ \mathrm{Soit} \ k \in [\![0,n-3]\!]. \ \mathrm{Supposons} \ \mathrm{que} \ \mathrm{dim} \left(\bigcap_{j=0}^k G_j\right) \geq n-k-1 \ \mathrm{et} \ \mathrm{posons} \ G = \bigcap_{j=0}^k G_j. \ \mathrm{Alors},$

$$\dim(G \cap G_{k+1}) = \dim(G) + \dim(G_{k+1}) - \dim(G + G_{k+1}).$$

Comme $\dim(G + G_{k+1})$ vaut n-1 ou n (puisque G_{k+1} est un hyperplan), on a donc

$$\dim(G \cap G_{k+1}) \ge \dim(G) + \dim(G_{k+1}) - n = \dim(G) - 1 \ge n - (k+1) - 1.$$

Le résultat est démontré par récurrence. En particulier, $\dim(\bigcap_{j=0}^{n-2}G_j)\geq n-(n-2)-1=1$ et donc

$$\bigcap_{j=0}^{n-2} G_j \neq \{0\}.$$

c) Soit $A = \{k \in \mathbb{N}^* / (y, u(y), \dots, u^{k-1}(y)) \text{ est libre}\}$. A est une partie non vide de \mathbb{N} (car $1 \in A$ puisque $y \neq 0$) et majorée (par $n = \dim(E)$). Donc, A admet un plus grand élément noté p.

Soit $F = \text{Vect}(y, u(y), \dots, u^{p-1}(y))$. Tout d'abord $F \neq \{0\}$ (car $y \neq 0$ et $y \in F$).

Ensuite, pour $0 \le k \le p-2$, $u(u^k(y)) = u^{k+1}(y) \in F$. D'autre part, par définition de p, la famille $(y, u(y), \dots, u^{p-1}(y))$ est liée.

On en déduit que $\mathfrak{u}(\mathfrak{u}^{p-1}(y)) = \mathfrak{u}^p(y)$ est dans $\mathrm{Vect}(y,\mathfrak{u}(y),\ldots,\mathfrak{u}^{p-1}(y)) = F$. Finalement, l'image par \mathfrak{u} d'une famille génératrice de F est dans F, et donc $\mathfrak{u}(F) \subset F$. Ainsi, F est un sous-espace non nul de E stable par \mathfrak{u} . D'après 21.c), F = E ou encore B'' est une base de E.

- d) La matrice de $\mathfrak u$ dans B'' est une matrice compagnon. Les coefficients de la dernière colonne de cette matrice sont alors, d'après I.2), les opposés des coefficients du polynôme caractéristique de $\mathfrak u$. Cette matrice est $C_{\mathfrak U}$. De même, la matrice de $\mathfrak v$ dans B'' est $C_{\mathfrak V}$.
- e) Si P est la matrice de passage de la base B" à la base B alors $U = P^{-1}C_UP$ et $V = P^{-1}C_VP$. Par suite, si U et V sont deux matrices inversibles telles que rg(U V) = 1 et telles que χ_U et χ_V soient premiers entre eux, alors il existe une matrice inversible P telle que $U = P^{-1}C_UP$ et $V = P^{-1}C_VP$.
- 23. 0 n'est racine ni de χ_u , ni de χ_v et donc u et v sont des automorphismes de E. Le groupe G engendré par u et v est l'ensemble des produits finis de facteurs à choisir parmi u, u^{-1} , v, v^{-1} .
- Soit ω une racine de χ_{ν} dans \mathbb{C} . Alors, $\chi_{u}(\omega) = (-1)^{n}(\omega^{n}+1) = 2(-1)^{n} \neq 0$. Ainsi, χ_{u} et χ_{ν} sont sans racine commune dans \mathbb{C} et sont donc premiers entre eux.
- On peut donc appliquer ce qui précède. Il existe une base $\mathscr{B} = (e_1, \dots, e_n)$ de E telle que

$$\mathrm{Mat}_{\mathscr{B}}(u) = C_U = \left(\begin{array}{cccccc} 0 & \dots & & \dots & 0 & -1 \\ 1 & \ddots & & & & 0 \\ 0 & \ddots & & & & \vdots \\ \vdots & \ddots & & & & & \vdots \\ \vdots & \ddots & & & & & \vdots \\ 0 & \dots & \dots & 0 & 1 & 0 \end{array} \right) \ \mathrm{et} \ \mathrm{Mat}_{\mathscr{B}}(\nu) = C_V = \left(\begin{array}{ccccccccc} 0 & \dots & & \dots & 0 & 1 \\ 1 & \ddots & & & & & 0 \\ 0 & \ddots & & & & \vdots \\ \vdots & \ddots & & & & & \vdots \\ \vdots & \ddots & & & & & \vdots \\ 0 & \dots & \dots & 0 & 1 & 0 \end{array} \right).$$

• L'image par u ou par ν d'un vecteur e_i de \mathcal{B} est un vecteur de la forme $\pm e_j$, $1 \leq j \leq n$. Il en est de même de toute puissance (élément de \mathbb{Z}) de u, toute puissance de ν et plus généralement tout produit de puissances de u et de puissances de ν c'est-à-dire de tout élément de G. Ainsi, l'image de la base \mathcal{B} par un élément quelconque ν de G est de la forme $(\epsilon_1 e_{\sigma(1)}, \ldots, \epsilon_n e_{\sigma(n)})$ où σ est une permutation quelconque de [1,n] (l'image de \mathcal{B} par l'automorphisme ν est une base de E) et les ϵ_i sont éléments de $\{-1,1\}$. On en déduit que $\nu(\mathcal{B})$ ne peut prendre que $2^n n!$ valeurs possibles et puisqu'un endomorphisme est entièrement déterminé par les images des vecteurs d'une base,

$$\operatorname{card}(G) \leq 2^n n!,$$

ce qui améliore le résultat de l'énoncé puisque

$$(2n)! = (2n) \times (2n-1) \times (2n-2) \times ... \times 3 \times 2 \ge (2n) \times (2n-2) \times ... \times 2 = 2^n n!$$