RLisbonaMSDS6306_Week4_BootstrapSampling

Randy Lisbona June 4, 2016

Create the normal and exponential sample datasets

Use rnorm and rexp to create some sample datasets

Print the datasets, inlcude the first 10 records from each dataset

```
## [1] 10.477509 8.975158 11.560227 8.905613 9.067715 9.289651 11.696547
## [8] 10.099063 9.477168 10.367362

## [1] 10.420229 8.873135 9.620543 8.468136 12.442250 8.014530 9.315546
## [8] 11.999559 9.053778 7.702295

## [1] 0.73143820 2.63086324 1.28065547 2.19954540 0.00479028 1.87168999
## [7] 1.04191649 0.27118047 1.85264248 0.10722223

## [1] 0.06753096 2.11728439 2.97678428 1.13116010 0.37469663 0.66730997
## [7] 0.02094424 0.51798450 2.30835659 1.50322578
```

Explore the data with Plot of the normal and exponential sample datasets

Use plot and hist to compare the datasets set x and y limits to make it easier to compare plots

Sort the records ascending and plot again. Include histograms

set x and y limits to make it easier to compare plots

Resample the datasets, compare original histogram to resampled histogram # notice that the resampled histograms closely resemble a normal distribution, illustrating the central limit theorem

[1] 10.03915

Original dataset

Bootstrap resampled

Normal Dist, n=30, mu=10, sd=1

Normal Dist

```
## [1] "Original dataset"
```

```
## vars n mean sd median trimmed mad min max range skew kurtosis
## 1 1 30 10.04 1.09 9.99 10.07 1.03 7.42 12.05 4.63 -0.22 -0.32
## se
## 1 0.2
```

[1] "Resampled dataset"

```
## vars n mean sd median trimmed mad min max range skew kurtosis
## 1 1 1000 10.04 0.19 10.05 10.04 0.2 9.3 10.56 1.25 -0.28 0.21
## se
```

1 0.01

[1] 9.591

Original dataset

Bootstrap resampled

Normal Dist, n=10, mu=10, sd=1

Normal Dist

```
## [1] "Original dataset"
##
    vars n mean
                   sd median trimmed mad min max range skew kurtosis se
       1 10 9.59 1.59
                                9.47 1.4 7.7 12.44 4.74 0.62
                        9.18
## [1] "Resampled dataset"
            n mean
                     sd median trimmed mad min
                                                  max range skew kurtosis
       1 1000 9.64 0.49
                          9.63
                                  9.63 0.48 8.33 11.27 2.94 0.25
##
      se
## 1 0.02
## [1] 1.014516
```

Original dataset

Bootstrap resampled

[1] 1.168528

Exponential, n=30, lambda = 1.0

Exponential

```
## [1] "Original dataset"
    vars n mean
                   sd median trimmed mad min max range skew kurtosis
       1 30 1.01 0.93
                                 0.9 0.95
                                            0 3.89 3.89 1.08
                         0.8
## [1] "Resampled dataset"
                     sd median trimmed mad min max range skew kurtosis
            n mean
       1 1000 1.01 0.17
                          1.01
                                  1.01 0.17 0.48 1.68
##
      se
## 1 0.01
```



```
## [1] "Original dataset"
##
                    sd median trimmed mad min max range skew kurtosis
     vars n mean
                                 1.09 1.06 0.02 2.98
        1 10 1.17 1.02
                                                       2.96 0.42
                                                                    -1.44 0.32
## [1] "Resampled dataset"
##
     vars
             n mean
                      sd median trimmed mad min max range skew kurtosis
## 1
        1 1000 1.17 0.31
                           1.16
                                   1.16 0.32 0.26 2.17
                                                          1.9 0.14
                                                                      -0.14
##
       se
## 1 0.01
```

Conclusion

The bootstrap method can be used to create a sample distribution from small data sets that approximates a normal sample from the original population, demonstrating the central limit theorem.