Michigan Tech Styled Beamer Themes

Jason Hiebel

Jason Hiebel

jshiebel@mtu.edu

jshiebel@mtu.edu

Department of Computer Science Michigan Technological University

Sample Document Preparation
September 2019

1

professional looking fonts

- professional looking fonts
- approved colors for web and publication by Michigan Tech

- professional looking fonts
- approved colors for web and publication by Michigan Tech
- simple, unobtrusive navigational information

- professional looking fonts
- approved colors for web and publication by Michigan Tech
- simple, unobtrusive navigational information
- nice bullets

Let's Prove Something

Theorem (Sum of Squares)

For
$$n \geq 0$$
,

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Let's Prove Something

Proof.

Basis: For n = 0,

$$\sum_{i=1}^n i=0=\frac{n(n+1)}{2}$$

Recurrence: Assume the result holds for n. Then for n + 1,

$$\sum_{i=1}^{n+1} i = (n+1) + \sum_{i=1}^{n} i = (n+1) + \frac{n(n+1)}{2} = \frac{(n+1)(n+2)}{2}.$$

Some Definitions

Definition (Big- \mathcal{O})

A function f(n) is asymptotically bounded below by function g(n), i.e., $f \in \mathcal{O}(g)$, if for some n_0 and c > 0, $f(n) \ge c \cdot g(n)$ for all $n > n_0$.

▶ We say that f is in Big- \mathcal{O} of g, $f = \text{Big-}\mathcal{O}(g)$, or more rarely $f \in \text{Big-}\mathcal{O}(g)$; although I would argue that the last option is the most correct.

Thank You!