

Algorithm

Course Introduction

Instructor: Jae-Pil Heo (허재필)

About Instructor

- Jae-Pil Heo (허재필)
 - Assistant Professor
 - Dept. of Computer Science & Engineering (소프트웨어학과)
- Joined SKKU in 2017

- Visual Computing Lab @ SKKU
 - Mainly focuses on Computer Vision and Machine Learning
 - 3 Ph.D., 9 master, and 5 undergraduate students + me
- E-mail: jaepilheo@skku.edu
- Office: 85472 (4th floor in Corporate Collaboration Bd.)

Acknowledgements

- The materials are built upon previous efforts of:
 - Prof. Douglas Wilhelm Harder (University of Waterloo)

Prerequisites

- High-school math
- Programming skills
 - C-like programming language (C/C++)
- Data structures
- If you are unsure, consult the instructor at the end of this class.

Textbook

- Introduction to Algorithms, Third Edition
 - Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein
 - It is fine to refer the second edition.
 - The second edition is translated into Korean.

Course Objectives

- "How to think like a computer scientist"
 - A title of very famous book
- Computational thinking [Wikipedia]
 - Problem formulation (abstraction)
 - Solution expression (automation)
 - Solution execution and evaluation (analysis)
- Discuss key algorithms essential for solving problems with computers
 - Sorting, dynamic programming, greedy, graph algorithms,...

Course Objectives

- (Asymptotic) Algorithm analysis to evaluate solutions
 - Time/space complexities
- (Powerful) Programming skills
 - Translate your idea into languages that computers can understand
 - You should be a computer scientist who can implement whatever you understand.
- Most of CS guys including me agree with that
 - Algorithm is (one of) the most important subject(s) in Computer Science.

Algorithm

An algorithm a sequence of computational steps that transform the input into the output.

An *instance* of a problem consists of the *input* needed to compute a solution to the problem.

- A correct algorithm:
 - for every input instances, halts with the correct output

(Tentative) Topics

- Quick review of data structures
 - Lists, stacks, queues, trees, ...
- Sorting algorithms
 - Insertion, bubble, heap, merge, quick, bucket, radix sorts
- Algorithm analysis
 - Growth of functions (asymptotic analysis), recurrences, amortized analysis
- Dynamic programming
- Greedy algorithms
- Graph algorithms
 - Minimum spanning trees, shortest paths, maximum flow, ...
- NP-completeness
- Geometric algorithms
- Approximation algorithms

•

Sorting Problem

- Sorting problem
 - Input: A sequence of n numbers $< a_1, a_2, \dots, a_n >$
 - Output: A permutation (reordering) of the input sequence, $< b_1, b_2, \dots, b_n >$, such that $b_1 \le b_2 \le \dots \le b_n$
 - Instance: < 7, 10, 4, 5, 2 >

Knapsack Problem

Edit Distance

		m	0	n	k	е	у
	0	1	2	3	4	5	6
m	1	0	1	2	3	4	5
0	2	1	0	1	2	3	4
n	3	2	1	0	1	2	3
е	4	േ	2	1	1	1	2
У	5	4	3	2	2	2	1

Topological Sort

Minimum Spanning Trees (MST)

Shortest Path

Network Flow

Interval Scheduling

Convex Hull

Grading

- Depending on the COVID-19 status, one of the following grading rules will be applied:
 - 1) Assignments 50% + Final Exam 50%
 - 2) Assignments 100%
- Assignments
 - (Mostly) Programming assignments
 - Late submission penalties for homework
 - Allowed to submit up to 48 hours after deadline
 - 10% base penalty for any late submission
 - 10% penalty for each 12 hours
 - Example:
 - 1s 12H: -20%, 12H 24H: -30%, ..., 36H 48H: -50%
 - Copy detection will be seriously performed.

Class Attendance Rule

- Every two absences \rightarrow lower your grade (e.g., A+ \rightarrow A)
 - Exemption for the first absence
 - Example
 - absence 3 4 times → 1 lower grade
 - absence 5 − 6 times → 2 lower grade
 - absence 7 8 times → 3 lower grade
 - → F

Coding Sessions

- We will have coding sessions in class.
 - Instructor will perform implementation of algorithms covered in the class.
 - Codes implemented in the class will not be uploaded, since they could be used in the assignments.

Next Time

- Review: Mathematical Background
- Review: Data Structures

Any Question?