CIS 678 - Machine Learning

Unsupervised Learning

Supervised Learning

- We learned about **Classification** and **Regression**
- These are examples of **supervised** learning
- In your data you have both X(features) and y(Labels)

Label (y) is predefined

_
0
a
\circ
_
ഗ
7.5
(C)
a
7

X	$y \in \{cat, dog, rabbit\}$
$x_1, x_2, \cdots x_m$	····cat-···
$x_1, x_2, \cdots x_m$	rabbit
• • •	
$x_1, x_2, \cdots x_m$	dog

X ($y \in R$
$x_1, x_2, \cdots x_n$	1.9
• • •	• • •
$x_1, x_2, \cdots x_n$	2.5

Regression

Unsupervised Learning

- In contrast, in **Unsupervised learning**, we have **X(features)**, but we don't have **y(labels)**
- Clustering is an example of unsupervised learning

No concept of data label (y)

Unsupervised Learning

Label (y) is predefined

Classification

		· - · - / · · · ·
X	$y \in \{cat, dog, cat, dog,$	$rabbit\}$
$x_1, x_2, \cdots x_m$	cat	
$x_1, x_2, \cdots x_m$	rabbit	
	(*) • (*)	
$x_1, x_2, \cdots x_m$	dog	

	J. = ~
X	$y \in R$
$x_1, x_2, \cdots x_n$	1.9
$x_1, x_2, \cdots x_n$	2.5

Regression

x_1 ,	x_2 ,	•	•	٠	x_o
	• •	•			
x_1	x_2				x_o

No concept of data label (y)

- Another way to understand the concept of clustering in terms of input data
- For <u>classification/regression</u> we need both features and labels (X, Y), where as for <u>clustering</u> we only need features (X) as input

Clustering

- What is clustering?
- Clustering algorithms:
 - K-Means: Centroid Based
 - Hierarchical clustering: Distance connectivity based
 - o **GMM**: Distribution based
 - o **DBSCAN**: Density Based

• Identifying the number of clusters?

- Grouping of data points based on some features (X). Group indices are the output
- An example of unsupervised learning

We can use features such as **X** {size, color} to group apples on the right

https://www.codeproject.com/Articles/1273113/Apple-tron-an-Al-for-farmers

- Grouping of data points based on some features (X). Group indices are the output
- An example of unsupervised learning

- Labeling a test case:

Output: group index 1

Based on color

- Grouping of data points based on some features (X). Group indices are the output
- An example of unsupervised learning

Labeling a test case:

Output: group index 3

Based on size

What if we want use both features: size and color?

- Grouping of data points based on some features (X). Group indices are the output
- An example of unsupervised learning

We can use features such as **X** {size, color} to group apples on the right

https://www.codeproject.com/Articles/1273113/Apple-tron-an-Al-for-farmers