Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2018-19

Τεχνολογίες Κύριας Μνήμης

(και η ανάγκη για χρήση ιεραρχιών μνήμης)

http://mixstef.github.io/courses/comparch/

Μ. Στεφανιδάκης

Κύρια Μνήμη

• Κύρια Μνήμη

1

Στα σύγχρονα συστήματα η κύρια μνήμη δεν συνδέεται απευθείας με τον επεξεργαστή

οι ρυθμοί μεταφοράς που δίνονται είναι οι θεωρητικά μέγιστοι!

Τεχνολογίες Κύριας Μνήμης

• Κύρια Μνήμη

- Στους πρώτους υπολογιστές
 - Ιστορικά, η κατασκευή κύριας μνήμης ήταν πολύ πιο δύσκολη από την κατασκευή των πρώτων υπολογιστών!
- Αρχικές τεχνολογίες
 - Flip-flop με λυχνίες κενού
 - Γραμμές καθυστέρησης υδραργύρου
- Αργότερα
 - Μαγνητικές μνήμες (core memories 1950)
 - Η πρώτη αξιόπιστη και σχετικά φθηνή τεχνολογία
 - Κυριάρχησε για 20 περίπου χρόνια
- Ημιαγωγικές μνήμες (Intel 1970)
 - 1Kbit DRAM "core killer"

Το μοντέλο της Μνήμης Τυχαίας Προσπέλασης

- Κύρια Μνήμη
- RAM

- •Η λέξη είναι η μικρότερη προσπελάσιμη ομάδα bits.
- •Το εύρος των μεταφερόμενων δεδομένων σε κάθε ανάγνωση ή εγγραφή ισούται με το εύρος της λέξης μνήμης

- Random Access Memory (RAM)
 - Λέξη μνήμης (word) με εύρος M bits
 - Διεύθυνση (address) επιλογής λέξης, N bits
 - Μέγεθος (χωρητικότητα) μνήμης 2^NxM bits

Διευθυνσιοδότηση μνήμης RAM

- Κύρια Μνήμη
- RAM

- Byte addressing
 - Οι διαδοχικές διευθύνσεις μνήμης αυξάνονται ανά byte
 - Ακόμα κι όταν η λέξη μνήμης έχει πολλαπλάσιο εύρος!
 - Επεξεργαστές γενικού σκοπού
- Εναλλακτικά: word addressing
 - Οι διαυθύνσεις αυξάνονται ανά λέξη
 - Υπερυπολογιστές ή ειδικοί επεξεργαστές ψηφιακών σημάτων εδώ η προσπέλαση ανά byte είναι σπάνια

Οργάνωση Μνήμης Τυχαίας Προσπέλασης

- Κύρια Μνήμη
- RAM

1

Οι μεγαλύτερες μνήμες RAM διαθέτουν πολλαπλές συστοιχίες κυττάρων μνήμης

Ταχύτητα Προσπέλασης RAM

- Κύρια Μνήμη
- RAM

- Access Time (χρόνος προσπέλασης)
 - Ο απαιτούμενος χρόνος για την ολοκλήρωση μιας αίτησης προς τη μνήμη RAM
 - Διαφορετικός για Ανάγνωση Εγγραφή
- Cycle Time (χρόνος κύκλου προσπέλασης)
 - Ο ελάχιστος απαιτούμενος χρόνος μεταξύ διαδοχικών αιτήσεων προς τη μνήμη RAM
 - Πρόβλεψη ενδιάμεσων λειτουργιών

Τύποι Μνήμης Τυχαίας Προσπέλασης

- Κύρια Μνήμη
- RAM
- SRAM

Ο χρόνος προσπέλασης μιας μνήμης SRAM βρίσκεται μεταξύ 0,5 και 5 ns

- Στατική Μνήμη RAM (SRAM)
 - Κάθε bit αποθηκεύεται σε κύτταρο ("cell") 6 τρανζίστορ
 - Ανάλογο ενός flip-flop
 - Διατήρηση bit όσο υπάρχει τροφοδοσία της μνήμης
- Η προσπέλαση είναι γρήγορη αλλά:
 - Μεγαλύτερο κόστος
 - Πολυπλοκότερο κύκλωμα
 - Δεν επιτρέπει μεγάλη ολοκλήρωση
 - Μεγαλύτερη κατανάλωση ενέργειας
- Χρησιμοποιείται στις κρυφές μνήμες (caches)

Τύποι Μνήμης Τυχαίας Προσπέλασης

- Κύρια Μνήμη
- RAM
- SRAM
- DRAM

Ο χρόνος προσπέλασης μιας μνήμης DRAM βρίσκεται μεταξύ 50 και 70 ns

- Δυναμική Μνήμη RAM (DRAM)
 - Κάθε bit αποθηκεύεται ως φορτίο
 - Διατήρηση μόνο με συχνή ανανέωση του φορτίου
 - Κάθε 16 έως 128 ms (5% συνολικού χρόνου)
- Απλούστερο κύκλωμα μεγάλη ολοκλήρωση
 - Πολύ μεγάλες χωρητικότητες (1Gbit/chip και πλέον)
 - Η προσπέλαση είναι αργή
 - Αρχιτεκτονικές βελτιώσεις για αύξηση ρυθμού μεταφοράς δεδομένων
- Χρησιμοποιείται για τη συγκρότηση της κύριας μνήμης όλων των σύγχρονων υπολογιστικών συστημάτων
 - Μνήμη = ασύγχρονη λειτουργία αλλά: προσθήκη ρολογιού για διασύνδεση με το υπόλοιπο σύστημα

Τμήματα (modules) μνήμης DRAM

- Κύρια Μνήμη
- RAM
- SRAM
- DRAM

- 64 72 bits δεδομένων (χωρητικότητα έως 4GB)
- Μεταφορά δεδομένων στις 2 ακμές ρολογιού
 - Double Data Rate (DDR) RAM
- Σήματα ανίχνευσης και αναγνώρισης
- Διατάξεις βελτίωσης ηλεκτρικών χαρακτηριστικών σημάτων
- Ρυθμός μεταφοράς > 8.5GB/s

Η "ιδανική μνήμη"

- Κύρια Μνήμη
- RAM
- SRAM
- DRAM
- Ιεραρχίες Μνήμης

)Πόσο απέχει η
ιδανική εικόνα από
την
πραγματικότητα;

Η πραγματική εικόνα

- Κύρια Μνήμη
- RAM
- SRAM
- DRAM
- Ιεραρχίες Μνήμης

>

Η ιδανική μνήμη είναι πρακτικά αδύνατο να υλοποιηθεί. Ποια η πιθανή λύση;

- Ένας σύγχρονος επεξεργαστικός πυρήνας
 - με ρολόι 3 GHz
 - και έναρξη εκτέλεσης έως και 8 εντολών ανά κύκλο
 - απαιτεί από τη μνήμη 24G εντολές/sec!
- Η "ιδανική μνήμη" θα έπρεπε να είναι
 - Πολύ γρήγορη
 - Πολύ φθηνή
 - Με πολύ μεγάλη χωρητικότητα

Το χάσμα απόδοσης μεταξύ επεξεργαστή-μνήμης

- Κύρια Μνήμη
- RAM
- SRAM
- DRAM
- Ιεραρχίες Μνήμης

Οι μνήμες ακολουθούν τον νόμο του Moore στην αύξηση της χωρητικότητάς τους, όχι όμως και στην απόδοση

- Επεξεργαστές: αύξηση απόδοσης 35%-55% /έτος
- Μνήμες: αύξηση απόδοσης 7% /έτος

[Patterson-Hennessy]

Η αρχή της τοπικότητας

- Κύρια Μνήμη
- RAM
- SRAM
- DRAM
- Ιεραρχίες Μνήμης

"ένα πρόγραμμα εκτελεί το 90% των εντολών του μέσα στο 10% του κώδικά του"

• Χρονική Τοπικότητα

- Εάν προσπελαστεί μια θέση μνήμης, είναι πολύ πιθανό να προσπελαστεί ξανά στο άμεσο μέλλον
- Π.χ. για εντολές ενός βρόχου (loop)
- Χωρική Τοπικότητα
 - Εάν προσπελαστεί μια θέση μνήμης, είναι πολύ πιθανό να προσπελαστούν και οι γειτονικές θέσεις στο άμεσο μέλλον
 - Εντολές προγραμμάτων
 - Δεδομένα σε πίνακες κλπ

Ιεραρχίες Μνήμης

- Κύρια Μνήμη
- RAM
- SRAM
- DRAM
- Ιεραρχίες Μνήμης

Και οι δικτυακές τοποθεσίες μπορούν να θεωρηθούν μέρος της ιεραρχίας μνήμης (το χαμηλότερο)

- Πολλαπλά επίπεδα μνήμης
 - Διαφορετικής τεχνολογίας
 - Με διαφορετική ταχύτητα και μέγεθος
 - Γρηγορότερη μνήμη κοντά στον επεξεργαστή

0,5-5ns \$4.000-\$10.000/GB

> 50-70ns \$100-\$200/GB

5.000.000-20.000.000 ns \$0,5-\$2/GB

CPU

Κρυφή μνήμη (SRAM)

Κύρια μνήμη (DRAM)

Μαγνητικοί δίσκοι

Σκοπός της Ιεραρχίας Μνήμης

- Κύρια Μνήμη
- RAM
- SRAM
- DRAM
- Ιεραρχίες Μνήμης

Για να επιτύχει τον σκοπό της η ιεραρχία μνήμης εκμεταλλεύεται την αρχή της τοπικότητας

- Προσέγγιση της ιδανικής μνήμης
 - Ο επεξεργαστής να βλέπει "μνήμη"
 - Με την ταχύτητα του υψηλότερου επιπέδου
 - Και το μέγεθος του χαμηλότερου

0,5-5ns \$4.000-\$10.000/GB

> 50-70ns \$100-\$200/GB

5.000.000-20.000.000 ns \$0,5-\$2/GB CPU

Κρυφή μνήμη (SRAM)

Κύρια μνήμη (DRAM)

Μαγνητικοί δίσκοι

Αποθήκευση δεδομένων στην Ιεραρχία Μνήμης

- Κύρια Μνήμη
- RAM
- SRAM
- DRAM
- Ιεραρχίες Μνήμης

- Αποθήκευση δεδομένων
 - Τα υψηλότερα επίπεδα είναι υποσύνολα των χαμηλότερων
 - Όλα τα δεδομένα αποθηκεύονται τελικά στο χαμηλότερο επίπεδο
- Μεταφορά δεδομένων
 - Αντιγραφή από επίπεδο σε επίπεδο
 - Το ελάχιστο σύνολο δεδομένων που μεταφέρεται μεταξύ δύο επιπέδων ονομάζεται μπλοκ
 - Πολλαπλά bytes

Αναζήτηση δεδομένων στην Ιεραρχία Μνήμης

- Κύρια Μνήμη
- RAM
- SRAM
- DRAM
- Ιεραρχίες Μνήμης

- Αναζήτηση δεδομένων
 - Ο επεξεργαστής ζητά πάντοτε τα δεδομένα από το κοντινότερο σε αυτόν επίπεδο
 - Τα δεδομένα υπάρχουν στο επίπεδο αυτό: hit
 - Τα δεδομένα δεν βρίσκονται στο επίπεδο αυτό: miss
 - Η αίτηση προωθείται στο επόμενο (χαμηλότερο)
 επίπεδο
 - Και το μπλοκ που περιέχει τα δεδομένα αντιγράφεται στο ανώτερο επίπεδο

Μετρήσεις απόδοσης στην Ιεραρχία Μνήμης

- Κύρια Μνήμη
- RAM
- SRAM
- DRAM
- Ιεραρχίες Μνήμης

Hit Rate

 Ποσοστό προσπελάσεων μνήμης, όπου τα δεδομένα βρίσκονται στο ανώτερο επίπεδο

Miss Rate

- Ποσοστό προσπελάσεων μνήμης, όπου τα δεδομένα δεν βρίσκονται στο ανώτερο επίπεδο
 - (1-hit rate)

Hit Time

- Ο χρόνος για την προσπέλαση δεδομένων σε hit
- Miss Penalty
 - Ο χρόνος για την προσπέλαση, μεταφορά και τοποθέτηση των δεδομένων miss από το χαμηλότερο στο ανώτερο επίπεδο

Εισαγωγή στις κρυφές μνήμες (caches)

- Κύρια Μνήμη
- RAM
- SRAM
- DRAM
- Ιεραρχίες Μνήμης
- Κρυφές Μνήμες

- Κρυφή μνήμη
 - Μεταξύ του επεξεργαστή και της κύριας μνήμης
 - Εμφάνιση στη δεκαετία του 60
 - Σήμερα δεν υπάρχει υπολογιστικό σύστημα χωρίς κρυφή μνήμη
- Αποθήκευση δεδομένων στην κρυφή μνήμη
 - Όχι ανά λέξη μνήμης ή ανά byte...
 - ...αλλά ανά μπλοκ (64-512bits)
 - Μεταφορά δεδομένων από την κύρια προς την κρυφή μνήμη σε ριπές (bursts)
 - Το σύστημα κύριας μνήμης έχει βελτιστοποιηθεί αρχιτεκτονικά για αυτού του τύπου τις μεταφορές

Θέματα κρυφών μνημών

- Κύρια Μνήμη
- RAM
- SRAM
- DRAM
- Ιεραρχίες Μνήμης
- Κρυφές Μνήμες

- Πού αποθηκεύεται ένα μπλοκ στην κρυφή μνήμη;
- Πώς εντοπίζεται ένα μπλοκ στην κρυφή μνήμη;
- Ποιο μπλοκ θα αντικατασταθεί όταν χρειαστεί;
- Τι συμβαίνει στην εγγραφή νέων δεδομένων;
- Πώς υπολογίζεται η απόδοση της ιεραρχίας μνήμης;

(στο επόμενο μάθημα..)