AN1012 应用笔记

GPIO 输入输出速度和 上下拉电阻使用方法

前言

PY32F030_PY32F003_PY32F002A 系列的 GPIO 可配置为推挽输出、开漏输出、上拉输入、 浮空输入、下拉输入、模拟输入等功能。 本应用笔记描述了 IO 最大能达到的输入输出速度和 上下拉电阻的使用规范。

表 1. 适用产品

类型		产品系列
微型控制器系列	PY32F030、PY32F003、	PY32F002A

AN1012

目录

1	GPI	O 的最大翻转速度	3
		O 的上下拉电阻使用	
	2.1	上/下拉配置的约束	错误!未定义书签。
	2.2	上/下拉电阻与输入检测	错误!未定义书签。
3	版本	历史	5

GPIO 的最大输入输出频率 AN1012

1 GPIO 的最大输入输出频率

GPIO 的翻转速度与系统时钟正相关。在实际的应用模拟时序时速度应不大于 I/O 的翻转速度。当系统 时钟小于等于 24MHz 时, I/O 的最大翻转频率为 Fclk/2,当系统时钟高于 24MHz 时候, I/O 的最大翻转 频率为 Fclk/3。

表 1-1 GPIO 的 IO 输出最大速度与系统时钟的关系

系统时钟	GPIO 的最大输出频率	GPIO 的输入速度?		
8MHz	4MHz			
16MHz	8MHz			
24MHz	12MHz			
32MHz	10.67MHz			
48MHz	16MHz			

GPIO 的内部上下拉电阻使用

2.1 I/O 的上下拉电阻结构说明

图 1-1 给出了一个 I/O 端口 (1bit) 的基本结构,图中所示,上下拉电阻会影响 I/O 的所有模式。

图 1-1 I/O 端口(1bit)的基本结构

2.2 I/O 的上/下拉的使用说明

I/O 端口模式	上拉	<mark>下拉</mark>
推挽输出	4MHz	
开漏输出	8MHz	
输入模式	12MHz	
模拟输入	10.67MHz	
48MHz	16MHz	

AN1012 版本历史

版本历史

版本	日期	更新记录
V0.1	2021.11.16	初版
V1.0	2022.06.20	初版
V1.1	2022.10.24	增加 002A 内容

Puya Semiconductor Co., Ltd.

IMPORTANT NOTICE

Puya Semiconductor reserves the right to make changes without further notice to any products or specifications herein. Puya Semiconductor does not assume any responsibility for use of any its products for any particular purpose, nor does Puya Semiconductor assume any liability arising out of the application or use of any its products or circuits. Puya Semiconductor does not convey any license under its patent rights or other rights nor the rights of others.