F. Prefix Sums

time limit per test: 1 second memory limit per test: 256 megabytes

input: standard input output: standard output

Consider the function p(x), where x is an array of m integers, which returns an array y consisting of m+1 integers such that y_i is equal to the sum of first i elements of array x ($0 \le i \le m$).

You have an infinite sequence of arrays $A^0, A^1, A^2...$, where A^0 is given in the input, and for each $i \ge 1$ $A^i = p(A^{i-1})$. Also you have a positive integer k. You have to find minimum possible i such that A^i contains a number which is larger or equal than k.

Input

The first line contains two integers n and k ($2 \le n \le 200000$, $1 \le k \le 10^{18}$). n is the size of array A^0 .

The second line contains n integers $A^0_0, A^0_1 \dots A^0_{n-1}$ — the elements of A^0 ($0 \le A^0_i \le 10^9$). At least two elements of A^0 are positive.

Output

Print the minimum i such that A^i contains a number which is larger or equal than k.

Examples

input	
2 2 1 1	
output	
1	

input		
3 6 1 1 1		
output		
2		

```
input
3 1
1 0 1
output
0
```