

IEL – protokol k projektu

Martin, Navrátil xnavram00

13. prosince 2023

Obsah

1	Příklad 1	2
2	Příklad 2	3
3	Příklad 3	5
4	Příklad 4	6
5	Příklad 5	7
6	Shrnutí výsledků	8

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
С	100	80	450	810	190	220	220	720	260	180

$$U_{12} = U_1 + U_2 = 100 + 80 = 180V$$

$$R_{56} = \frac{R_5 R_6}{R_5 + R_6} = \frac{220 \cdot 720}{220 + 720} = 168.51063829787233\Omega$$

$$R_{78} = R_7 + R_8 = 260 + 180 = 440\Omega$$

Nyní provedeme transfiguraci trojuhelník hvězda

$$R_A = \frac{R_1 R_2}{R_1 + R_2 + R_3} = \frac{450 \cdot 810}{450 + 810 + 190} = \frac{364500}{1450} = 251.37931034482768276\Omega$$

$$R_B = \frac{R_1 R_3}{R_1 + R_2 + R_3} = \frac{450 \cdot 190}{450 + 810 + 190} = \frac{85500}{1450} = 58.96551724137931\Omega$$

$$R_C = \frac{R_2 R_3}{R_1 + R_2 + R_3} = \frac{810 \cdot 190}{450 + 810 + 190} = \frac{153900}{1450} = 106.13793103448276\Omega$$

$$R_{B5} = R_B + R_{56} = 58.96551724137931 + 168.51063829787233 = 227.47615553925164\Omega$$

$$R_{C4} = R_C + R_4 = 106.13793103448276 + 220 = 326.13793103448276\Omega$$

$$R_{B5C4} = \frac{R_{B5}R_{C4}}{R_{B5} + R_{C4}} = \frac{227.47615553925164 \cdot 326.13793103448276}{227.47615553925164 + 326.13793103448276} = 134.00779446635116\Omega$$

$$R_{EKV} = R_A + R_{B5C4} + R_{78} = 251.3793103448276 + 134.00779446635116 + 440 = 825.3871048111787\Omega$$

Celkový proud I

$$I = \frac{U}{R_{EKV}} = \frac{180}{825.3871048111787} = 0.21807949136929883A$$

 $U_{RA} = I \cdot R_A = 0.21807949136929883 \cdot 251.37931034482768276 = 54.82067214076514V$

 $U_{B5C4} = I \cdot R_{B5C4} = 0.21807949136929883 \cdot 134.00779446635116 = 29.224351656743398V$

$$I_{RC4} = \frac{U_{B5C4}}{R_{C4}} = \frac{29.224351656743398}{326.13793103448276} = 0.08960733749688714A$$

 $U_{RC} = I_{RC4} \cdot R_C = 0.08960733749688714 \cdot 106.13793103448276 = 9.510737407428229V$

 $U_{R2} = U_{RA} + U_{RC} = 9.510737407428229 + 54.82067214076514 =$ **64.33140954819336V**

$$I_{R2} = \frac{U_{R2}}{R_2} = \mathbf{0.07942149326937452A}$$

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu Théveninovy věty.

sk.	U[V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
G	180	250	315	615	180	460	120

Vyřešíme za využití Theveninovy věty.

$$R_{23} = R_2 + R_3 = 315 + 615 = 930\Omega$$

 $R_{45} = R_4 + R_5 = 180 + 460 = 640\Omega$

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_5
 R_5

$$R_{EKV} = R_1 + \frac{R_{23}R_{45}}{R_{23} + R_{45}} = 250 + \frac{930 \cdot 640}{930 + 640} = 629.1082802547771\Omega$$

$$I = \frac{U}{R_{EKV}} = \frac{180}{629.1082802547771} = 0.28611926698390194A$$

$$U_{R45} = U - (IR_1) = 180 - (0.28611926698390194 \cdot 250) = 108.47018325402452V$$

$$I_{R45} = \frac{U_{R45}}{R_{45}} = \frac{108.47018325402452}{640} = 0.1694846613344133A$$

$$U_i = I_{R45}R_5 = 0.1694846613344133 \cdot 460 = 77.96294421383013V$$

$$R_i = \frac{(\frac{R_{23}R_1}{R_{23}R_1} + R_4)R_5}{\frac{R_{11}R_{23}}{R_1 + R_{23}} + R_{45}} = \frac{(\frac{930 \cdot 250}{930 + 250} + 180) \cdot 460}{\frac{250 \cdot 930}{250 + 930} + 640} = 207.20259188012557\Omega$$

$$I_{R6} = \frac{U_i}{R_i + R_6} = \frac{77.96294421383013}{207.20259188012557 + 120} = \mathbf{0.23827116944841545} A$$

$$U_{R6} = R_6 I_{R6} = 120 \cdot 0.23827116944841545 = \mathbf{28.592540333809854}V$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

_		-		•			·/	_ , _ ,
sk.	U [V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
Н	130	0.95	0.50	47	39	58	28	25

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{L_2} = U_{L_2} \cdot \sin(2\pi f t + \varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$

[sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	L_2 [mH]	C_1 [μ F]	C_2 [μ F]	f [Hz]
	С	3	4	10	13	220	70	230	85	75

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

	sk.	U[V]	C[F]	$R\left[\Omega\right]$	$u_C(0)$ [V]
	G	20	8	100	5
	R				
			1		
t = 0 s	_\o				
s	_		С.		
	P		u _c		
			\		
U †					
\ -	\bigcirc				

Shrnutí výsledků

Příklad	Skupina	Výsled	lky
1	C	$U_{R2} = 64.33140954819336V$	$I_{R2} = 0.07942149326937452A$
2	G	$U_{R6} = 28.592540333809854V$	$I_{R6} = 0.23827116944841545A$
3	Н	$U_{R4} =$	$I_{R4} =$
4	С	$ U_{L_2} =$	$\varphi_{L_2} =$
5	G	$u_C =$	=