1. a)
$$D_f = \{x \in \mathbb{R} : -1 \le \frac{3-x^2}{x^2+1} \le 1\}$$

$$= \{x \in \mathbb{R} : -x^2 - 1 \le 3 - x^2 \land 3 - x^2 \le x^2 + 1\}$$

$$= \{x \in \mathbb{R} : x^2 - 1 \ge 0\}$$

$$=] - \infty, -1] \cup [1, +\infty[$$

b) A função f é contínua em D_f e é diferenciável $int(D_f)$, sendo

$$f'(x) = \frac{-2\sqrt{2}x}{(x^2+1)^2\sqrt{\frac{x^2-1}{(x^2+1)^2}}}$$

Como $f'(x) \neq 0$ para qualquer $x \in int(D_f)$, pelo Teorema de Fermat não existem extremos em $int(D_f)$. Donde os únicos candidatos a extremantes são -1 e 1.

Pelo sinal de f', concluímos que:

- f é estritamente crescente em] $-\infty$, -1];
- f é estritamente decrescente em $[1, +\infty[$.

Por outro lado, $f(1) = f(-1) = \frac{\pi}{2}$.

Assim, o máximo global de f é $\frac{\pi}{2}$, sendo -1 e 1 os maximizantes globais. A função não tem outros extremos.

(A)
$$\frac{1}{g'(x)} \frac{\sin x \cdot \cos x}{g'(x)} \frac{dx}{dx} = \frac{x \cdot \sin^2 x}{2} - \frac{1}{2} \cdot \sin^2 x \cdot dx$$

$$\frac{CAvx}{g'(x)=1} = \frac{x \cdot \sin^2 x}{2} - \frac{1}{2} \cdot \frac{1 - \cos(2x)}{2} \cdot dx$$

$$\frac{1}{g'(x)} = \frac{\sin^2 x}{2} = \frac{x \cdot \sin^2 x}{2} - \frac{x}{4} + \frac{1}{8} \cdot \sin(2x) + C,$$

$$\frac{1}{g'(x)} \frac{1}{g'(x)} = \frac{x \cdot \cos^2 x}{2} + \frac{1}{2} \cdot \frac{1 + \cos(2x)}{2} \cdot dx$$

$$\frac{1}{g'(x)} = -\frac{\cos^2 x}{2} = \frac{x \cdot \cos^2 x}{2} + \frac{x}{4} + \frac{1}{8} \sin(2x) + C,$$

$$\frac{1}{g'(x)} = -\frac{\cos^2 x}{2} = \frac{1}{2} \cdot \frac{1 + \cos(2x)}{2} \cdot dx$$

$$\frac{1}{g'(x)} = \frac{1}{2} \cdot \frac{1 + \cos(2x)}{2} \cdot dx$$

$$\frac{1}{g'(x)} = \frac{1}{2} \cdot \frac{1 + \cos(2x)}{2} \cdot dx$$

$$\frac{1}{g'(x)} = \frac{1}{g'(x)} \cdot \frac{1}{g'(x)} \cdot dx$$

$$\frac{1}{g'(x)} = \frac{1}{g'(x)} \cdot \frac{1}{g'(x)} \cdot \frac{1}{g'(x)} + \frac{1}{4} \cdot \frac{1}{g'(x)} \cdot \frac{1}{g'(x)} \cdot dx$$

$$\frac{1}{g'(x)} = \frac{1}{g'(x)} \cdot \frac{1}{g'(x)} \cdot \frac{1}{g'(x)} + \frac{1}{4} \cdot \frac{1}{g'(x)} \cdot \frac{1}{g'(x$$

g(x)= - cos(2x)

 $= - \frac{1}{4} \cdot \frac{\cos(2\pi)}{4} + \frac{1}{8} \cdot \sin(2\pi) + C_{1}$

$$\left(2\right)b)\int \frac{x-1}{n(x^2-4)}dx$$

C.Aux.
$$x(x^2-y) = x(x-z)(x+z)$$
 fica, assim, fatnizado na favoa izredutível na favoa izredutível

$$\frac{\chi-1}{\chi(\chi-2)(\chi+2)} = \frac{A}{\chi} + \frac{B}{\chi-2} + \frac{C}{\chi+2}, \quad com \quad A,B,C \in \mathbb{R}$$

$$\chi(\chi-2)(\chi+2) = \frac{A}{\chi(\chi^2-4)} + \frac{C}{\chi(\chi+2)} \times \chi(\chi-2)$$

$$\chi(\chi-2)(\chi+2) = \frac{A}{\chi(\chi^2+2\chi)} + \frac{C}{\chi(\chi^2-2\chi)}$$

$$\chi(\chi^2+2\chi) + \frac{C}{\chi(\chi^2-2\chi)}$$

decomposição na sour
$$x = A(x^2-x) + B(x^2+2x) + C(x^2-2x)$$

 $x-1 = A(x^2-x) + B(x^2+2x) + Cx^2-2Cx$

$$\pi - 1 = A(\pi^{2} - 4) + B(\pi^{2} + 2\pi) + C\pi^{2} - 2C\pi$$

$$(=) \pi - 1 = A\pi^{2} - 4A + B\pi^{2} + 2B\pi + C\pi^{2} - 2C\pi$$

$$(\pi + B + C)\pi^{2} + (2B - 2C)\pi - 4A$$

(e)
$$\chi - 1 = A \chi^2 - 4A + B \chi^2 + 2D \chi^2 - 4A$$

(e) $\chi - 1 = (A + B + C) \chi^2 + (2B - 2C) \chi - 4A$
(f) $\chi - 1 = (A + B + C) \chi^2 + (2B - 2C) \chi - 4A$
(g) $\chi - 1 = (A + B + C) \chi^2 + (2B - 2C) \chi - 4A$

$$21-1 = (A+B+C) \times + 1$$
 $A+B+C = 0$
 $A+B+C = 0$
 $A= 1/8$
 $A= 1/4$
 $A= 1/4$

Portanto

$$\int \frac{x_{-1}}{x(x^{2}-4)} dx = \int \frac{x_{-1}}{x(x-2)(x+2)} dx$$

$$= \frac{1}{4} \int \frac{1}{x} dx + \frac{1}{8} \int \frac{1}{x-2} dx - \frac{3}{8} \int \frac{1}{x+2} dx$$

$$= \frac{1}{4} \ln|x| + \frac{1}{8} \ln|x-2| - \frac{3}{8} \ln|x+2| + C,$$

$$C \in \mathbb{R}$$

$$(2)$$
 C) $\int \frac{\sin n}{x-\cos n} dx$, com $x \in (30,7)$ [

C.Aux.

Hudança de variável: $x = \operatorname{anccost}$, $t \in J-1,1[$ $dx = -\frac{1}{\sqrt{1-t^2}} dt$

 $x = anccost \iff t = cos x$

Como XEJO,TIC, vem pelo formulário (5ª linha da 2ª tasela) que . Sinx = J1-t2

$$\int \frac{\sin n}{\alpha - \cos n} dn = \int \frac{\sqrt{1+z^2}}{2-t} \cdot \left(-\frac{1}{\sqrt{1+z^2}}\right) dt$$

$$= \int \frac{-1}{2-t} dt = \int \frac{1}{t-2} dt$$

$$= \ln |t-2| + C$$

$$= \ln |t-2| + C$$

$$= CER$$

= $\ln |\cos x - 2| + C$, $t = \cos x$ $t = \cos x$

$$\frac{|OU|}{C.Aux.} \qquad \int \frac{\sin \pi}{2 - \cos n} dn = \int \frac{1}{u} du$$

 $M = 2 - \cos n$ $= \ln |M| + C$ $du = \sin n$

= ln |2-cos21 |+ c 1

CER

(a)
$$g''(t) = -\frac{200t}{(1+t^2)^2} \Rightarrow g'(t) = \int -\frac{200t}{(1+t^2)^2} dt =$$

$$=-\frac{200}{2}\int (1+t^2)^{-2}2t\,dt=-100\,(1+t^2)^{-1}+C_1=\frac{100}{1+t^2}+C_1.$$

Conjugandr com g'(0) = 100 sai que $\frac{100}{1+0^2} + C_1 = 100$, i.e., $C_1 = 0$. Assim, $g'(t) = \frac{100}{1+t^2}$, $\log t$

$$g(t) = \int \frac{100}{1+t^2} dt = 100 \text{ mots} t + C_2$$

Conjugant com g(0) = 637 sai que 100 acts $0 + C_0 = 637$ i.e., $C_1 = 637$. Assim,

(b)
$$\lim_{t\to\infty} g(t) = \lim_{t\to\infty} (100. \text{wed}_5 t + 637) = \frac{\pi = 3.14}{2}, 16, \text{ comor indicad}$$

$$= 100, \frac{\pi}{2} + 637 = \frac{314}{2} + 637$$

get) i'm função aercente (visto pels me espessão on pelo fecto de g'et) sur positive), logr o nie de gator mão diminio. Ale disso, or longo preto (t-) a) tenderé a extelitar à orte do valo 794.

2ª Parte

(4)
$$y=x-1$$

 $y=x-(x-1)^2$

Pontos de interseçõ:

$$\chi_{-1} = 2 - \left(\chi_{-1}\right)^2$$

$$(=)$$
 $\chi - 1 = 2 - \chi^2 + 2\chi - 1$

drea de
$$A = \int_{-1}^{2} (2 - (x - 1)^{2} - (x - 1)) dx$$

$$= \int_{-1}^{2} (2 - x^{2} + 2x - x - x + x) dx$$

$$= \int_{-1}^{2} (2 - x^{2} + x) dx$$

$$= \left[2x - \frac{x^{3}}{3} + \frac{x^{2}}{2}\right]_{-1}^{2}$$

$$= 4 - \frac{8}{3} + 2 - \left(-2 + \frac{1}{3} + \frac{1}{2}\right)$$

$$= \frac{9}{2} \text{ unidades de drea}$$

5.a) (i) A função $f(x)=\frac{x+1}{\sqrt{x}}$ é contínua em $]0,\infty[$, portanto integrável em qualquer intervalo [a,b], com $0< a \leq b$. Como um limite de integração é infinito e, por outro lado, $\lim_{x\to 0}\frac{x+1}{\sqrt{x}}=+\infty$, então trata-se da combinação de um integral de 1.ª espécie com um de 2.ª espécie.

(ii) A função $f(x) = \frac{\ln x}{x}$ é contínua em]0,1], portanto integrável em qualquer intervalo [a,1], com $0 < a \le 1$. Como $\lim_{x \to 0} \frac{\ln x}{x} = -\infty$, $\int_0^1 \frac{\ln x}{x} dx$ é um integral de 2ª espécie.

b) (i)Temos que considerar dois integrais. Por exemplo:

$$\int_0^1 \frac{x+1}{\sqrt{x}} dx \in \int_1^{+\infty} \frac{x+1}{\sqrt{x}} dx.$$

Temos que $\lim_{a\to +\infty}\int_1^a \frac{x+1}{\sqrt{x}}dx=\lim_{a\to +\infty}\left[\frac{2}{3}x^{\frac{3}{2}}+2\sqrt{x}\,\right]_1^a=+\infty.$ Portanto, $\int_0^{+\infty}\frac{x+1}{\sqrt{x}}dx$ é divergente.

(ii) Temos que $\lim_{a\to 0^+}\int_a^1\frac{\ln x}{x}dx=\lim_{a\to 0^+}[\frac{1}{2}\ln^2 x]_a^1=-\infty.$ Portanto, $\int_0^1\frac{\ln x}{x}dx$ é divergente.

(i)
$$\sum_{n=1}^{\infty} \frac{(2 \cdot n!)^3}{(3n)!}$$
 Tem-se que $a_n = \frac{(2 \cdot n!)^3}{(3n)!} \neq 0$ VnEN, logo podemos aplican o citério de D'Alembert (ou citério do quociente); $a_n = a_n =$

Note-se que lim
$$\frac{1}{2}$$
-anctan(n) $\frac{1}{2}$ - $\frac{1}{2}$ $\frac{1}{2}$

(6) b)
$$\sum_{n=1}^{\infty} \left(\frac{2}{n+1} - \frac{2}{n+4}\right) = \sum_{n=1}^{\infty} (\mu_n - \mu_{n+3})$$

e' uma série de Mengoli (ou redutivel, ou telescópica)
com $\mu_n = \frac{2}{n+1}$, $n \in \mathbb{N}$ e $p=3$

Entail
$$S_{n} = M_{1} + M_{2} + M_{3} - (M_{n+1} + M_{n+2} + M_{n+3})$$

$$= 1 + \frac{2}{3} + \frac{1}{2} - \frac{2}{n+2} - \frac{2}{n+3} - \frac{2}{n+4}$$

$$= \lim_{n \to +\infty} S_{n} = 1 + \frac{2}{3} + \frac{1}{2} - 0 - 0 - 0$$

$$= \frac{13}{6} = Soma da Série$$

7. FG):= \(e^2 dt ; \frac{7}{2} e' minimitante local de \(\frac{7}{2} \) Fester den definish, pois et, sente continue en IR, e integriel en og ser minteral fechede. He devide a et sa continua, o Teorens Frendamentel de Calcula garante gre F & differentiable i que F'(n) = (- frink) = - e sinh com, nER.

non-ne U =

regre de Cadria Cour emin >0, a mind de Fision sind de -65k. Fryam me grader he varieta de For intervalo Jo, TC:

Conduine que, de fect, I e'me minimitante lord de F. Pode ste sancenter-ne que Set st 1's coverpodente minima local.