Relazione coppia 17 – Castelnovo Luca – Soncina Daniele

Modello:

Come funzione obiettivo abbiamo impostato la ricerca del minimo della differenza degli spettatori tra le prime K/2 fasce e le restanti come valore assoluto. Ciò ci ha permesso di calcolare il quantitativo di minuti comprare nelle varie fasce orarie delle varie emittenti, valori salvati poi nella matrice X_{ij} . I minuti comprati sono stati ulteriormente impostati da alcuni vincoli:

- $X_{ij} \le T_{ij}$ (T_{ij} rappresenta il massimo di minuti comprabili per fascia oraria ed emittente, per cui X_{ij} deve ovviamente esserne minore o al più uguale)
- Per ogni i, $\sum_j C_{ij} X_{ij} \le B_i$ (la somma dei costi dei minuti comprati nelle varie fasce orarie di una particolare emittente devono rientrare nel budget B_i stanziato per quell'emittente)
- Per ogni j, $\sum_i C_{ij} X_{ij} \ge B$ (la somma dei costi dei minuti comprati in una particolare fascia oraria deve essere almeno $\Omega\%$ del budget totale, ovvero 0.02B)
- $\sum_i \sum_j P_{ij} X_{ij} \ge S$ (la somma di tutti gli spettatori raggiunti tramite i minuti comprati in ogni fascia oraria di ogni emittente deve essere almeno S)
- $X_{ij} \ge 0$ (essendo X_{ij} il valore di minuti comprati, dovrà necessariamente essere maggiore o uguale a 0)

Procedure della terza consegna:

<u>Primo caso:</u> Abbiamo deciso di verificare se la sottrazione tra le prime k/2 fasce e le restanti scartata dal valore assoluto portasse ad una soluzione ammissibile, e così è stato. Essendo una soluzione ammissibile ma scartata da Gurobi durante la ricerca dell'ottimo, riteniamo che sia una soluzione ammissibile non ottima valida.

Secondo caso: Abbiamo deciso di restringere il vincolo che riguarda Ω , cambiandolo da 0.02 a 0.03. In questo modo, la soluzione trovata non sarà l'ottimo per il nostro quesito ma essendo una soluzione ad un problema ristretto risulta ancora ammissibile dal problema originale.

<u>Terzo caso:</u> Abbiamo deciso di imporre un particolare valore ad una delle variabili X_{ij} e di verificare che la soluzione trovata con questo nuovo vincolo sia ancora ammissibile, in particolare $X_{11}=1$. Essendo ammissibile per un vincolo forzato che comunque rispetta i vincoli del problema originale, vuol dire che è ammissibile da quest'ultimo ma che non ne rappresenta l'ottimo, avendo tale variabile un valore diverso all'ottimo nel problema originale stesso.