3.19
(a)
$$E_{\text{F0}}(T) - E_{\text{i}} = \begin{cases} 0.0194 \ln \left(\frac{0.250 m_0}{1.10 m_0} \right) = -0.0287 \text{ V} \\ 0.0194 \ln \left(\frac{1.21 m_0}{0.450 m_0} \right) = 0.0192 \text{ V} \end{cases}$$

(b)
$$E_{\text{F0}}(T) - E_{\text{i}} = 0.0299 \text{ V}$$

3.23

(2/f)
$$n_{\mathbf{i}} = \sqrt{N_{\mathbf{C}} N_{\mathbf{V}}} \exp\left(-\frac{E_{\mathbf{g}}}{2k_{\mathbf{B}}T}\right) = aT^{1.5} \exp\left(-\frac{b}{T}\right) (\mathbf{a})$$

)
$$T = 300$$
K, 应该完全电离, $n_i = 3.05 \times 10^{13}$ cm⁻³

$$E_{\rm Fi} - E_{\rm F} = 0.0904$$
 eV

$$T = 400$$
K, $n_i = 1.13 \times 10^{15}$ cm⁻³

$$E_{\rm Ei} - E_{\rm E} = 0.0148$$
 eV

$$T = 500 \text{K}, \quad E_{\text{Fi}} - E_{\text{F}} = 0.00206 \quad \text{eV}$$

$$T = 600 \text{K}, \quad E_{\text{Fi}} - E_{\text{F}} = 0.000517 \quad \text{eV}$$

3.24
$$p_0 = 2.13 \times 10^{15} \text{ cm}^{-3}$$

 $n_0 = 2.27 \times 10^4 \text{ cm}^{-3}$

补充题:

1. (5分) dE 能量范围有自旋量子态数为 $dN = (2L/\pi)dk = L(2m)^{1/2}E^{-1/2}dE/(\pi\hbar)$ $\rho(E) = dN/(LdE) = (2m/E)^{1/2}/(\pi\hbar)$

2. (a)
$$E \ge E_{\rm F} + k_{\rm B}T \ln(9.512) = E_{\rm F} + 2.253k_{\rm B}T$$

(b)
$$f_{\rm F}(E=E_{\rm F}+2.253k_{\rm B}T)=\frac{1}{1+9.512}=0.09513=9.513\%$$

4.6【20分】(a)

(1) 空穴和电子反向饱和电流

$$J_{\rm sp} = 3.6 \times 10^{-10} \,\mathrm{A/cm^2}$$
 $J_{\rm sn} = 5.69 \times 10^{-11} \,\mathrm{A/cm^2}$ $I_{\rm sp} = J_{\rm sp} \times A = 3.6 \times 10^{-14} \,\mathrm{A}$ $I_{\rm sn} = J_{\rm sn} \times A = 5.69 \times 10^{-15} \,\mathrm{A}$

(2)
$$V_{\rm D} = 0.617V$$
 $p_{\rm n}(x_{\rm n}) = 3.35 \times 10^{10} \,{\rm cm}^{-3}$

(3)
$$J_{p}(x_{n} + 0.5L_{p}) \approx -eD_{p} \frac{d\Delta p}{dx} \Big|_{x_{n} + 0.5L_{p}} = 3.25 \times 10^{-5} \text{ A/cm}^{-2}$$
$$I_{p}(x_{n} + 0.5L_{p}) = 3.25 \times 10^{-9} \text{ A}$$

(b)
$$\Delta p_{\rm n}(x) = p_{\rm n}(x) - p_{\rm n_0} = p_{\rm n_0}(\exp(\frac{eV_{\rm F}}{k_{\rm B}T}) - 1) \exp(\frac{x_{\rm n} - x}{L_{\rm p}}) = \frac{n_{\rm i}^2}{N_{\rm D}}(\exp(\frac{eV_{\rm F}}{k_{\rm B}T}) - 1) \exp(\frac{-x}{\sqrt{D_{\rm p}\tau_{\rm p0}}})$$

$$J_{\rm p}(x) = 0.192 \exp(-0.354 \times 10^3 x) \text{ A/cm}^2$$

$$J_{\rm p}(x) = 0.433 \text{ A/cm}^2$$

$$J_{\rm p}(x) = x_{\rm n} + 3 \times 10^{-4} \text{ cm} = 0.173 \text{ A/cm}^2$$

$$J_{\rm p}(x) = x_{\rm n} + 3 \times 10^{-4} \text{ cm} = 0.26 \text{ A/cm}^2$$

补充题:

1.
$$J_{p} = eD_{p} \frac{p_{n0}}{L_{p}} = eD_{p} \frac{n_{i}^{2}}{N_{D}L_{p}} = 8.36*10^{-11} \text{ A/cm}^{2}$$

$$J_{0} = J_{n} + J_{p} \approx J_{p} = 8.36*10^{-11} \text{ A/cm}^{2}$$

$$V_{t} = 0.661v$$

- 2. (a) GaAs 材料是P型导电、Ge 材料是n型导电 形成Pn 异质结
 - (b) 晶格失配率 = 0.07%
 - (c) = 0.0600 eV
 - (d) 0.710 eV
 - (e) E_{FGaAs} E_{iGaAs} = -0.577 eV GaAs 中性区的费米能级与最近允带之差: E_{FGaAs} - E_{VGaAs} = (E_{FGaAs} - E_{iGaAs}) - (E_{VGaAs} - E_{iGaAs}) = 0.138 eV

3. 略

- (f) E_{FGe} E_{iGe} = $k_B T \ln(N_D/n_{iGe})$ = 0.136 eV Ge 中性区的费米能级与最近允带之差: E_{FGe} - E_{CGe} = $(E_{FGe}$ - $E_{iGe})$ - $(E_{CGe}$ - $E_{iGe})$ = -0.194 eV
- (g) $\Delta E_0 = 1.04 \text{ eV}$

(h)
$$X_{\rm n} = \left[\frac{2\varepsilon_{\rm n} \varepsilon_{\rm p} N_{\rm A} V_{\rm D}}{e N_{\rm D} \left(\varepsilon_{\rm n} N_{\rm D} + \varepsilon_{\rm p} N_{\rm A} \right)} \right]^{1/2} = 0.491 \,\mu{\rm m}$$

$$x_{\rm P} = (N_{\rm D} / N_{\rm A}) x_{\rm n} = 0.266 \ \mu {\rm m}$$

(i)
$$V_{Dn} = 0.627 \text{ eV}$$

 $V_{DP} = 0.414 \text{ eV}$