IEEE INFOCOM 2021 Virtual Conference

A Worst-Case Approximate Analysis of Peak Age-of-Information Via Robust Queueing Approach

Zhongdong Liu

Department of Computer Science Virginia Tech

Joint work with

Yu Sang (Temple University), Bin Li (University of Rhode Island) and Bo Ji (Virginia Tech)

Freshness Matters

- Real-time services are ubiquitous
 - Intelligent transportation systems & vehicular networks
 - Sensor networks (for environmental/health monitoring)
 - Wireless channel feedback, news feeds, weather updates, etc.

Sensor networks

https://www.networkworld.com/article/2881654/security0/wireless-cyber-security-in-your-car-stinks.html

 Age-of-information (AoI): The time difference between current time and the generation time of the latest received update

If update i is generated at a_i and delivered at f_i , then AoI at time t is

$$\Delta(t) = t - \max\{a_i : f_i \le t\}$$

 Age-of-information (AoI): The time difference between current time and the generation time of the latest received update

If update i is generated at a_i and delivered at f_i , then AoI at time t is

$$\Delta(t) = t - \max\{a_i : f_i \le t\}$$

 Peak Age-of-Information (PAoI): The maximum value of the AoI before it drops

 Age-of-information (AoI): The time difference between current time and the generation time of the latest received update

If update i is generated at a_i and delivered at f_i , then AoI at time t is

$$\Delta(t) = t - \max\{a_i : f_i \le t\}$$

 Peak Age-of-Information (PAoI): The maximum value of the AoI before it drops

 Age-of-information (AoI): The time difference between current time and the generation time of the latest received update

If update i is generated at a_i and delivered at f_i , then AoI at time t is

$$\Delta(t) = t - \max\{a_i : f_i \le t\}$$

- Peak Age-of-Information (PAoI): The maximum value of the AoI before it drops
- Delay: The time difference between the generation time and the delivery time

Aol vs. Delay

- Low arrival rate
 - Empty buffer → low delay
 - Infrequent updates → long interarrival time & high AoI

- Large arrival rate
 - Full buffer → high delay
 - Become stale while waiting→ high AoI

Aol vs. Delay

AoI/PAoI are large under both

- Low-load regime
- High-load regime

- Aol studies:
 - Assume certain distributions for arrival and service processes:
 - AoI in M/M/1,M/D/1, D/M/1 queues under the FCFS policy [Kaul et al. '12]
 - AoI in M/Gamma/1 queue under the PLCFS policy [Najm et al. '16]
 - Assume i.i.d. arrival and service process:
 - Aol in GI/GI/1, M/GI/1, and GI/M/1 queues [Inoue et al. '19]
- Delay studies:
 - Assume i.i.d. arrival and service processes:
 - Kingman's bound [Kingman et al. '70, Ciucu et al. '18]
 - Only focus on high-load regime:
 - Robust queueing approach [Bandi et al. '15]

Aol studies:

- Assume **certain distributions** for arrival and service processes:
 - AoI in M/M/1,M/D/1, D/M/1 queues under the FCFS policy [Kaul et al. '12]
 - AoI in M/Gamma/1 queue unc practical? S policy [Najm et al. '16]
- Assume *i.i.d.* arrival and service process:
 - Aol in GI/GI/1, M/GI/1, and GI/M/1 queues [Inoue et al. '19]
- Delay studies:
 - Assume *i.i.d.* arrival and service processes:
 - Kingman's bound [Kingman et al. '70, Ciucu et al. '18]
 - Only focus on high-load regime:
 - Robust queueing approach [Bandi et al. '15]

Aol studies:

practical?

- Assume certain distributions for arrival and service processes:
 - AoI in M/M/1,M/D/1, D/M/1 queues under the FCFS policy [Kaul et al. '12]
 - AoI in M/Gamma/1 queue unc practical? rS policy [Najm et al. '16]
- Assume i.i.d. arrival and service process:
 - AoI in GI/GI/1, M/GI/1, and GI/M/1 queues [Inoue et al. '19]
- Delay studies:

practical?

- Assume i.i.d. arrival and service processes:
 - Kingman's bound [Kingman et al. '70, Ciucu et al. '18]
- Only focus on high-load regime:
 - Robust queueing approach [Bandi et al. '15]

Aol studies:

- practical?
- Assume **certain distributions** for arrival and service processes:
 - AoI in M/M/1,M/D/1, D/M/1 queues under the FCFS policy [Kaul et al. '12]
 - AoI in M/Gamma/1 queue unc practical? S policy [Najm et al. '16]
- Assume *i.i.d.* arrival and service process:
 - Aol in GI/GI/1, M/GI/1, and GI/M/1 queues [Inoue et al. '19]
- Delay studies:

practical?

- Assume i.i.d. arrival and service processes:
 - low-load Kingman's bound [Kingman e-_u et al. '18] reaime?
- Only focus on **high-load regime**:
 - Robust queueing approach [Bandi et al. '15]

- Aol studies:
 - Assume certain distributions for arrival and service processes:
 - AoI in M/M/1,M/D/1, D/M/1 queues under the FCFS policy [Kaul et al. '12]
 - AoI in M/Gamma/1 queue under the PLCFS policy [Najm et al. '16]
 - Assume i.i.d. arrival and service process:
 - Aol in GI/GI/1, M/GI/1, and GI/M/1 queues noue et al. '19]
- Delay studies:
 - Assume i.i.d. arrival and service processes:
 - Kingman's bound [Kingman et al. '70, Ciucu et al. '18]
 - Only focus on high-load regime:
 - Robust queueing approach [Bandi et al. '15]

Our contributions:

Applying the robust queueing theory to analyzing PAoI performance

- Aol studies:
 - Assume certain distributions for arrival and service processes:
 - AoI in M/M/1,M/D/1, D/M/1 queues under the FCFS policy [Kaul et al. '12]
 - AoI in M/Gamma/1 queue under the PLCFS policy [Najm et al. '16]
 - Assume i.i.d. arrival and service process:
 - Aol in GI/GI/1, M/GI/1, and GI/M/1 queues noue et al. '19]
- Delay studies:
 - Assume i.i.d. arrival and service processes:
 - Kingman's bound [Kingman et al. '70, Ciucu et al. '18]
 - Only focus on high-load regime:
 - Robust queueing approach [Bandi et al. '15]

Our contributions:

- Applying the robust queueing theory to analyzing PAoI performance
- Approximating expected PAoI well under both high and low load regimes

Single-Source System (G/G/1)

Single-Source System (G/G/1)

Single-Source System (G/G/1)

The Robust-Queueing Approach

Uncertainty sets of arrival/service process

Modeling their stochastic properties

Getting rid of unrealistic assumptions
(e.g., memoryless properties or i.i.d.)

Worst-case analysis of system time

- Used to approximate the expected PAol
- Work well under both low-load and high-load regimes

1 D. V. Lindley, "The theory of queues with a single server," in Mathematical Proceedings of the Cambridge Philosophical Society

① D. V. Lindley, "The theory of queues with a single server," in Mathematical Proceedings of the Cambridge Philosophical Society

Uncertainty Set of Service Time

Advantages:

- More general distributions
- Non-i.i.d. service process
- Heavy-tailed distributions

Numerical Result (Single-Source)

Methods	Exponential	Normal	Uniform
Kingman's bound	33.86%	22.58%	14.89%
Robust Approx. 1	32.01%	34.90%	36.49%
Robust Approx. 2 (ours)	8.32 %	8.47%	9.28%

Error percentage

Two-Source System

Two-Source System

Uncertainty Set of Service Time

Zhongdong Liu (zhongdong@vt.edu)

Uncertainty Set of Service Time

Zhongdong Liu (zhongdong@vt.edu)

Uncertainty Sets of Interarrival Time Interaction of Interaction o

$$e_1(n) + e_1(n) = n$$

Uncertainty Sets of Interarrival Time VIII

Worst-Case System Time

IEEE INFOCOM 2021

Worst-Case System Time

point of view of *n*-th update on whole sample path

Sum of Service Time

Sum of Service Time

Challenge: Sum of Interarrival Time VIRGINIA TECH

Challenge: Sum of Interarrival Time VIRGINIA TECH

Worst-Case System Time

Numerical Result (Two-Source)

Methods	Exponential	Normal	Uniform
Robust Approx. 3 (ours)	12.68%	10.05%	9.79%

Error percentage

Conclusion

- Applied robust queueing theory to analyzing PAol
 - Uncertainty sets
 - Worst-case analysis
- Single-source system
 - New robust bound of PAol
- Two-source system
 - Resolve new challenges
 - Robust bound of PAol

Conclusion

- Applied robust queueing theory to analyzing PAol
 - Uncertainty sets
 - Worst-case analysis
- Single-source system
 - New robust bound of PAol
- Two-source system
 - Resolve new challenges
 - Robust bound of PAol

Future Work

- Multiple-source system
- Asymmetric sources
- Heterogeneous tail coefficients (i.e., α)
- Dependence of arrival/service processes

Thank You! Questions? Zhongdong Liu (zhongdong@vt.edu) Zhongdong Liu (zhongdong@vt.edu) Approximate Robust-Queueing Analysis of PAol **IEEE INFOCOM 2021** 23/23