APPENDIX D AW4

In this section, we describe the results for use case AW4. First, for each problem and each time budget, we compare a pair of algorithms. Second, to compare the overall performance of the algorithms, we combine all objectives together by calculating average values of the objective functions (called *OFV*):

$$OFV = \frac{\sum_{i=1}^{n} Fitness_i}{n}$$

where n is the number of objectives for the prioritization problem, and $Fitness_i$ is the fitness value of the ith objective for the problem. Third, we used hypervolume (HV)—the most commonly used quality indicator to compare the overall performance of multi-objective search algorithms. Last, we calculated Rank and Confidence (as described in Section 4.1.5) for group comparison.

D.1 Experiment Results for RQ1

This section describes the results for Experiment Results for RQ1.

D.1.1 Problem 1

This section describes the results for prioritization problem f(PET, PTR, AUM).

TABLE 1. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, AUM))

ТВ	Alcorithm A	AlgorithmB	P	ET	P'	TR	A	UM	О	FV	I	ΙV
1 D	AlgorithmA	Aigoriumb	A12	р	A12	р	A12	р	A12	р	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 1 1 1 1 1 1	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	ΓR	Al	UM	О	FV	H	IV
10	Aigonuma	Aigontiilib	A12	p	A12	p	A12	p	A12	p	A12	p
TB090	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

D.1.2 Problem 2

This section describes the results for prioritization problem f(PET, PTR, PUS).

TABLE 2. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, PUS))

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	P	US	О	FV	I	IV
10	· ·	Aiguittiiii	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
IDIUU	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

D.1.3 Problem 3

This section describes the results for prioritization problem f(PET, PTR, ANU).

TABLE 3. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, ANU))

TD	A 1: (1 A	A 1: (1 D	P	ET	P	TR	A	NU	О	FV	F	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	p
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10010	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.05
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10020	SPEA2	SimpleRS	>0.5	< 0.05	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	>0.05
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10090	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01

D.1.4 Problem 4

This section describes the results for prioritization problem f(PET, PTR, PUU).

TABLE 4. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, PUU))

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	P	UU	О	FV	H	IV
1 1 1	AiguittiiiA	Aigontillio	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB020	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
10020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	P	UU	О	FV	H	IV
1 D	AigoriumA	Aigoriumb	A12	р	A12	р	A12	р	A12	р	A12	p
TB020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
10020	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01

D.1.5 Problem 5

This section describes the results for prioritization problem f(PET, PTR, AUM, PUS).

TABLE 5. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, AUM, PUS))

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	Al	UM	P	US	О	FV	H	IV
1 D	AigoriumiA	Aigoriumb	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	A	UM	P	US	О	FV	I.	IV
1 D	AigoriumA	Aigoriumib	A12	p	A12	р	A12	р	A12	p	A12	p	A12	р
TB040	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 1 1 1 1 0 0	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

D.1.6 Problem 6

This section describes the results for prioritization problem f(PET, PTR, AUM, ANU).

TABLE 6. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, AUM, ANU))

			р	ET	P'	TR	Δ1	UM	Δ	NU	0	FV	I	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	p	A12	р	A12	p	A12	p
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TD010	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB010	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10020	SPEA2	SimpleRS	>0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10030	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01
	CellDE	SimpleRS	>0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	>0.05
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	A	UM	A)	NU	О	FV	I	IV
1 1	AigontiiliA	Aigoriumb	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 00/0	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	>0.05
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0090	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	>0.05
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 1 100	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.05
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01

D.1.7 Problem 7

This section describes the results for prioritization problem f(PET, PTR, AUM, PUU).

TABLE 7. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, AUM, PUU))

ТВ	A loop with me A	A loonith on D	P	ET	P	ΓR	A	UM	P	UU	О	FV	H	IV
ID	AlgorithmA	AlgorithmB	A12	р	A12	p	A12	р	A12	р	A12	р	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 10010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	ΓR	Al	UM	Pl	UU	О	FV	H	IV
10	AigoriumA	Aigoritimib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

D.1.8 Problem 8

This section describes the results for prioritization problem f(PET, PTR, PUS, ANU).

TABLE 8. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, PUS, ANU))

TD	A 1: 11 A	A 1: (1 D	P	ET	P	TR	P	US	A	NU	О	FV	F	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
ED010	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB010	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
ED 020	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB020	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.9	< 0.01
TDOOO	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB030	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TD040	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.9	< 0.01
TB040	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	>0.05
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	>0.5	>0.05	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	CellDE	SimpleRS	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01

D.1.9 Problem 9

This section describes the results for prioritization problem f(PET, PTR, PUS, PUU).

TABLE 9. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, PUS, PUU))

TD	A 1: 11 A	A 1: (1 D	P	ET	P'	TR	P	US	P	UU	О	FV	H	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TD010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
10030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01

D.1.10 Problem 10

This section describes the results for prioritization problem f(PET, PTR, ANU, PUU).

TABLE 10. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW4, f(PET, PTR, ANU, PUU))

ТВ	AlgorithmA	AlgorithmB	PET		P'	PTR A		ANU		PUU		OFV		IV
1 1 1	AigontiiliA	Aigoritimi	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0010	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB020	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0020	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01

TD	A1 '11 A	A1 '(1 D	P	ET	P	TR	A	NU	P	UU	О	FV	I	ΙV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
TD020	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	CellDE	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0030	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0040	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0070	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.5	>0.05
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 10100	SPEA2	SimpleRS	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	>0.5	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01

D.2 Experiment Results for RQ2

This section describes the results for Experiment Results for RQ2.

D.2.1 Problem 1

This section describes the results for prioritization problem f(PET, PTR, AUM).

TABLE 11. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, AUM))

TB	Metric	ChiSq	DF	p
	ET	21459.6	3	< 0.01
	CTR	3321.17	3	< 0.01
TB010	UM	1042.53	3	< 0.01
	OFV	1282.79	3	< 0.01
	HV	265.5	3	< 0.01
	ET	23091.38	3	< 0.01
	CTR	1471.66	3	< 0.01
TB020	UM	2156.92	3	< 0.01
	OFV	5848.32	3	< 0.01
	HV	315.74	3	< 0.01
TB030	ET	22610.13	3	< 0.01
1 0000	CTR	542.9	3	< 0.01

TB	Metric	ChiSq	DF	p
	UM	2518.97	3	< 0.01
TB030	OFV	15379.71	3	< 0.01
	HV	331.75	3	< 0.01
	ET	21367.46	3	< 0.01
	CTR	33.2	3	< 0.01
TB040	UM	1826.83	3	< 0.01
	OFV	17563.8	3	< 0.01
	HV	327.84	3	< 0.01
	ET	20493.12	3	< 0.01
	CTR	84.83	3	< 0.01
TB050	UM	1064.05	3	< 0.01
	OFV	17284.71	3	< 0.01
	HV	332.15	3	< 0.01
	ET	19856.86	3	< 0.01
	CTR	144.84	3	< 0.01
TB060	UM	843.88	3	< 0.01
	OFV	16852.25	3	< 0.01
	HV	335.03	3	< 0.01
	ET	16597.57	3	< 0.01
	CTR	150.53	3	< 0.01
TB070	UM	594.01	3	< 0.01
	OFV	13935.74	3	< 0.01
	HV	327.9	3	< 0.01
	ET	14987.09	3	< 0.01
	CTR	92.49	3	< 0.01
TB080	UM	316.08	3	< 0.01
	OFV	12763.72	3	< 0.01
	HV	330.27	3	< 0.01
	ET	13635.8	3	< 0.01
	CTR	165.77	3	< 0.01
TB090	UM	279.45	3	< 0.01
	OFV	11424.73	3	< 0.01
	HV	326.74	3	< 0.01
	ET	13635.86	3	< 0.01
	CTR	102.37	3	< 0.01
TB100	UM	252.92	3	< 0.01
	OFV	11322.56	3	< 0.01
	HV	332.31	3	< 0.01

TABLE 12. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, AUM))

ТВ	AlgorithmA	AlgorithmB	I	ET	C	TR	UM		OFV		HV	
1 1 1	AigontiiliA	Aigontillio	A12	p								
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10020	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB030	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
1 0000	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01

TD	A.11 A	41 14 B	I	ET	С	TR	ι	M	О	FV	I	ΗV
TB	AlgorithmA	AlgorithmB	A12	p	A12	р	A12	р	A12	р	A12	p
	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TTD000	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
TB030	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
ED 040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SPEA2	>0.9	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05
TROFO	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TDOGO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TB090	NSGA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10090	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TP100	NSGA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
- ⊦												
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01

TABLE 13. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, AUM))

ТВ	Metric		Rar	ık		Confidence					
10	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	4	2	3	1	40%	20%	30%	10%		
TB010	UM	3	4	1	2	30%	40%	10%	20%		
	OFV	3	4	1	2	30%	40%	10%	20%		
	HV	2	1	2	1	33%	17%	33%	17%		

ТВ	Matria		Ra	nk		Confidence					
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	4	2	3	1	40%	20%	30%	10%		
TB020	UM	3	4	2	1	30%	40%	20%	10%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	2	2	1	38%	25%	25%	12%		
TB030	UM	3	3	2	1	33%	33%	22%	11%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	2	2	1	38%	25%	25%	12%		
TB040	UM	3	4	2	1	30%	40%	20%	10%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	3	1	33%	22%	33%	11%		
	ET	4	2	3	1	40%	20%	30%	10%		
	CTR	2	2	3	1	25%	25%	38%	12%		
TB050	UM	3	4	2	1	30%	40%	20%	10%		
	OFV	1	3	2	4	10%	30%	20%	40%		
	HV	3	2	3	1	33%	22%	33%	11%		
	ET	4	2	3	1	40%	20%	30%	10%		
	CTR	1	2	3	2	12%	25%	38%	25%		
TB060	UM	3	4	2	1	30%	40%	20%	10%		
	OFV	1	3	2	4	10%	30%	20%	40%		
	HV	3	2	3	1	33%	22%	33%	11%		
	ET	4	2	3	1	40%	20%	30%	10%		
	CTR	1	1	2	1	20%	20%	40%	20%		
TB070	UM	3	4	1	2	30%	40%	10%	20%		
	OFV	1	3	2	4	10%	30%	20%	40%		
	HV	3	2	3	1	33%	22%	33%	11%		
	ET	4	2	3	1	40%	20%	30%	10%		
	CTR	1	2	3	2	12%	25%	38%	25%		
TB080	UM	4	3	1	2	40%	30%	10%	20%		
	OFV	1	3	2	4	10%	30%	20%	40%		
	HV	4	2	3	1	40%	20%	30%	10%		
	ET	4	2	3	1	40%	20%	30%	10%		
	CTR	1	2	3	1	14%	29%	43%	14%		
TB090	UM	4	3	1	2	40%	30%	10%	20%		
	OFV	1	3	2	4	10%	30%	20%	40%		
	HV	3	2	3	1	33%	22%	33%	11%		
	ET	4	2	3	1	40%	20%	30%	10%		
	CTR	1	2	3	1	14%	29%	43%	14%		
TB100	UM	3	2	1	2	38%	25%	12%	25%		
	OFV	1	3	2	4	10%	30%	20%	40%		
	HV	3	2	3	1	33%	22%	33%	11%		

D.2.2 Problem 2

This section describes the results for prioritization problem f(PET, PTR, PUS).

TABLE 14. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, PUS))

ТВ	Metric	ChiSq	DF	p
	ET	1445.26	3	< 0.01
	CTR	120.98	3	< 0.01
TB010	USP	33.96	3	< 0.01
	OFV	504.5	3	< 0.01
	HV	332.94	3	< 0.01

ТВ	Metric	ChiSq	DF	p
	ET	1364.21	3	< 0.01
	CTR	46.13	3	< 0.01
TB020	USP	11.81	3	< 0.01
	OFV	1073.77	3	< 0.01
	HV	338.42	3	< 0.01
	ET	1054.42	3	< 0.01
	CTR	58.17	3	< 0.01
TB030	USP	102.62	3	< 0.01
	OFV	1000.65	3	< 0.01
	HV	343.2	3	< 0.01
	ET	896.29	3	< 0.01
	CTR	23.31	3	< 0.01
TB040	USP	13.01	3	< 0.01
	OFV	869.3	3	< 0.01
	HV	348.89	3	< 0.01
	ET	863.36	3	< 0.01
	CTR	24.86	3	< 0.01
TB050	USP	55.93	3	< 0.01
	OFV	812.07	3	< 0.01
	HV	340.11	3	< 0.01
	ET	713.21	3	< 0.01
	CTR	13.14	3	< 0.01
TB060	USP	38.43	3	< 0.01
	OFV	691.49	3	< 0.01
	HV	338.56	3	< 0.01
	ET	664.65	3	< 0.01
	CTR	23.26	3	< 0.01
TB070	USP	49.55	3	< 0.01
	OFV	617.39	3	< 0.01
	HV	333.87	3	< 0.01
	ET	483.95	3	< 0.01
	CTR	39.9	3	< 0.01
TB080	USP	47.61	3	< 0.01
	OFV	409.14	3	< 0.01
	HV	332.37	3	< 0.01
	ET	532.98	3	< 0.01
	CTR	67.62	3	< 0.01
TB090	USP	52.46	3	< 0.01
	OFV	406.9	3	< 0.01
	HV	308.66	3	< 0.01
	ET	490.52	3	< 0.01
	CTR	36.14	3	< 0.01
TB100	USP	52.6	3	< 0.01
	OFV	435.87	3	< 0.01
	HV	307.31	3	< 0.01

TABLE 15. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, PUS))

ТВ	AlgorithmA	AlgorithmB	ET		CTR		USP		OFV		HV	
10	Aiguittilia	Aigoriumb	A12	p								
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 10010	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB020	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01

ТВ	A 1: (1 A	A 1: (1 D	J	ET	C	TR	U	SP	О	FV	H	IV
1 D	AlgorithmA	AlgorithmB	A12	p								
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
12000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
12010	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
12000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	< 0.5	>0.05	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	MoCell	CellDE	<0.1	< 0.01	<0.5	<0.01	<0.5	< 0.01	<0.1	<0.01	>0.9	<0.01
	SPEA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	>0.5	<0.01	>0.5	>0.05	<0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	<0.01	<0.5	>0.05	<0.5	< 0.05	<0.5	<0.01	<0.5	< 0.01
TB080	NSGA2	CellDE	<0.1	<0.01	<0.5	>0.05	<0.5	<0.01	<0.1	<0.01	>0.9	<0.01
	MoCell	SPEA2	>0.9	<0.01	<0.5	<0.01	<0.5	<0.01	>0.5	<0.01	<0.1	<0.01
	MoCell	CellDE	<0.1	<0.01	<0.5	<0.01	< 0.5	<0.01	<0.1	<0.01	>0.9	<0.01
	SPEA2	CellDE	<0.1	<0.01	<0.5	>0.05	< 0.5	>0.05	<0.1	<0.01	>0.9	<0.01
	NSGA2	MoCell	< 0.5	<0.01	>0.5	>0.05	>0.5	>0.05	<0.5	<0.01	>0.9	<0.01
	NSGA2	SPEA2	>0.5	<0.01	<0.5	<0.01	< 0.5	<0.01	<0.5	<0.01	<0.5	>0.05
TB090	NSGA2	CellDE	<0.1	<0.01	<0.5	<0.01	<0.5	<0.01	<0.1	<0.01	>0.9	<0.01
	MoCell	SPEA2	>0.9	<0.01	<0.5	<0.01	< 0.5	<0.01	>0.5	>0.05	<0.1	<0.01
	MoCell	CellDE	<0.1	< 0.01	<0.5	<0.01	<0.5	<0.01	<0.1	<0.01	>0.9	<0.01
	SPEA2	CellDE	<0.1	<0.01	>0.5	<0.01	>0.5	<0.05	<0.1	<0.01	>0.9	<0.01
	NSGA2	MoCell	< 0.5	<0.01	>0.5	>0.05	<0.5	>0.05	< 0.5	<0.01	>0.9	<0.01
	NSGA2	SPEA2	< 0.5	<0.01	<0.5	>0.05	>0.5	< 0.05	<0.5	<0.01	>0.5	>0.05
TB100	NSGA2	CellDE	<0.1	<0.01	<0.5	<0.01	< 0.5	<0.01	<0.1	<0.01	>0.9	<0.01
	MoCell	SPEA2	>0.5	< 0.01	<0.5	< 0.05	>0.5	< 0.05	>0.5	<0.01	<0.1	<0.01
	MoCell	CellDE	<0.1	<0.01	<0.5	<0.01	<0.5	<0.01	<0.1	<0.01	>0.9	<0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01

TABLE 16. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, PUS))

TD	Matela		Ra	nk			Confic	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	4	1	3	20%	40%	10%	30%
TB010	USP	1	1	1	2	20%	20%	20%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	3	1	2	14%	43%	14%	29%
TB020	USP	1	1	1	2	20%	20%	20%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
TB030	USP	2	2	1	2	29%	29%	14%	29%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
TB040	USP	1	1	1	2	20%	20%	20%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	1	2	2	17%	17%	33%	33%
TB050	USP	1	1	2	2	17%	17%	33%	33%
	OFV	1	3	2	4	10%	30%	20%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	3	1	33%	22%	33%	11%
	CTR	1	1	1	2	20%	20%	20%	40%
TB060	USP	1	1	1	2	20%	20%	20%	40%
	OFV	1	2	1	3	14%	29%	14%	43%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	1	1	2	20%	20%	20%	40%
TB070	USP	2	2	1	3	25%	25%	12%	38%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	4	2	3	1	40%	20%	30%	10%
	CTR	2	1	2	2	29%	14%	29%	29%
TB080	USP	1	1	2	2	17%	17%	33%	33%
12000	OFV	1	3	2	4	10%	30%	20%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	1	3	2	14%	14%	43%	29%
TB090	USP	1	1	3	2	14%	14%	43%	29%
1 00 70	OFV	1	2	2	3	12%	25%	25%	38%
	HV	3	2	3	1	33%	22%	33%	11%
	ET	4	2	3	1	40%	20%	30%	10%
	CTR	1	1	2	3	14%	14%	29%	43%
TR100	USP	2	2		3	25%	25%	12%	38%
TB100	OFV			1 2					
		1	3		4	10%	30%	20%	40%
	HV	3	2	3	1	33%	22%	33%	11%

D.2.3 Problem 3

This section describes the results for prioritization problem f(PET, PTR, ANU).

TABLE 17. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, ANU))

TB	Metric	ChiSq	DF	p
	ET	204.11	3	< 0.01
	CTR	1188.53	3	< 0.01
TB010	NU	833.92	3	< 0.01
	OFV	1013.21	3	< 0.01
	HV	285.3	3	< 0.01
	ET	336.05	3	< 0.01
	CTR	1799.97	3	< 0.01
TB020	NU	1174.96	3	< 0.01
	OFV	1670.63	3	< 0.01
	HV	268.22	3	< 0.01
	ET	302.04	3	< 0.01
	CTR	2043.32	3	< 0.01
TB030	NU	1069.55	3	< 0.01
	OFV	1851.21	3	< 0.01
	HV	255.72	3	< 0.01
	ET	267.97	3	< 0.01
	CTR	2049.31	3	< 0.01
TB040	NU	899.28	3	< 0.01
	OFV	1796.31	3	< 0.01
	HV	253.56	3	< 0.01
	ET	158.87	3	< 0.01
	CTR	1024.51	3	< 0.01
TB050	NU	583.1	3	< 0.01
	OFV	888.55	3	< 0.01
	HV	242.72	3	< 0.01
	ET	188.48	3	< 0.01
	CTR	825.39	3	< 0.01
TB060	NU	455.27	3	< 0.01
	OFV	674.87	3	< 0.01
	HV	240.26	3	< 0.01
	ET	166.72	3	< 0.01
	CTR	437.2	3	< 0.01
TB070	NU	410.47	3	< 0.01
	OFV	395.84	3	< 0.01
	HV	234.5	3	< 0.01
	ET	210.41	3	< 0.01
	CTR	390.76	3	< 0.01
TB080	NU	333.02	3	< 0.01
	OFV	353.05	3	< 0.01
	HV	228.94	3	< 0.01
	ET	173.19	3	< 0.01
	CTR	382.86	3	< 0.01
TB090	NU	202.87	3	< 0.01
	OFV	324	3	< 0.01
	HV	237.56	3	< 0.01
	ET	241.26	3	<0.01
TED4 00	CTR	389.45	3	<0.01
TB100	NU	241.75	3	<0.01
	OFV	377.35	3	<0.01
	HV	229.84	3	< 0.01

TABLE 18. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, ANU))

ТВ	A loosithus A	A loonith as D]	ET	C	TR	N	NU	0	FV	I	ΗV
1 D	AlgorithmA	AlgorithmB	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB010	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05
10010	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	>0.05	< 0.5	>0.05	>0.5	< 0.05	< 0.5	>0.05	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB020	NSGA2	CellDE	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
12020	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB030	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	>0.05
12000	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB040	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	>0.05
12010	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	<0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.05	<0.5	< 0.01	<0.5	< 0.01
	NSGA2	SPEA2	<0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
TB050	NSGA2	CellDE	<0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.05	<0.5	< 0.01
	MoCell	SPEA2	<0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	<0.01	>0.5	<0.01	<0.5	< 0.01	>0.5	<0.01	>0.5	< 0.05
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	<0.1	<0.01
	NSGA2	MoCell	<0.5	<0.01	<0.5	<0.01	>0.5	>0.05	<0.5	<0.01	<0.5	<0.01
	NSGA2	SPEA2	<0.5	< 0.01	<0.5	<0.01	>0.5	<0.01	<0.5	<0.01	>0.9	<0.01
TB060	NSGA2	CellDE	<0.5	<0.01	<0.5	<0.01	<0.5	<0.01	<0.5	>0.05	<0.5	<0.01
	MoCell	SPEA2	>0.5	<0.01	<0.5	>0.05	>0.5	<0.01	<0.5	>0.05	>0.9	<0.01
	MoCell	CellDE	>0.5	< 0.05	>0.5	<0.01	<0.5	<0.01	>0.5	<0.01	>0.5	<0.01
	SPEA2	CellDE	>0.5	<0.01	>0.5	<0.01	<0.5	<0.01	>0.5	<0.01	<0.1	<0.01
	NSGA2	MoCell	<0.5	<0.01	<0.5	<0.01	>0.5	>0.05	<0.5	<0.01	<0.5	<0.01
	NSGA2	SPEA2	<0.5	<0.01	<0.5	<0.01	>0.5	<0.01	<0.5	<0.01	>0.9	<0.01
TB070	NSGA2	CellDE	<0.5	<0.01	<0.5	<0.01	<0.5	<0.01	<0.5	>0.05	<0.5	>0.05
	MoCell	SPEA2	>0.5	<0.01	<0.5	<0.01	>0.5	<0.01	<0.5	<0.01	>0.9	<0.01
	MoCell	CellDE	>0.5	<0.01	>0.5	<0.01	<0.5	<0.01	>0.5	<0.01	>0.5	<0.01
	SPEA2	CellDE	>0.5	<0.01	>0.5	<0.01	<0.5	<0.01	>0.5	<0.01	<0.1	<0.01
	NSGA2	MoCell	<0.5	<0.01	<0.5	<0.01	>0.5	>0.05	<0.5	<0.01	<0.5	< 0.05
	NSGA2	SPEA2	<0.5	< 0.01	<0.5	<0.01 <0.01	>0.5	<0.01	<0.5	<0.01	>0.9	<0.01
TB080	NSGA2	CellDE	<0.5	< 0.01	>0.5		<0.5	< 0.01	<0.5	>0.05	<0.5	>0.05
	MoCell	SPEA2	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	<0.01
	MoCell SPEA2	CellDE	>0.5	<0.01 <0.01	>0.5	<0.01 <0.01	<0.5	<0.01 <0.01	>0.5 >0.5	<0.01 <0.01	>0.5	<0.01 <0.01
		CellDE	>0.5		>0.5		<0.5					
	NSGA2	MoCell	<0.5	<0.01	<0.5	<0.01	>0.5	>0.05	<0.5	<0.01	<0.5	<0.01
	NSGA2	SPEA2	<0.5	<0.01	<0.5	<0.01	>0.5	<0.01	<0.5	<0.01	>0.9	<0.01
TB090	NSGA2	CellDE	<0.5	<0.01	>0.5	<0.01	<0.5	<0.01	>0.5	<0.01	<0.5	<0.05
	MoCell MoCell	SPEA2 CellDE	>0.5	<0.01 <0.01	>0.5 >0.5	<0.01 <0.01	>0.5	<0.01 <0.01	>0.5	<0.01 <0.01	>0.9	<0.01 <0.01
	SPEA2	CellDE	>0.5 <0.5	>0.01	>0.5	<0.01	<0.5	<0.01	>0.5	>0.01	>0.5	<0.01
	5FEA2	CellDE	< 0.5	>0.05	>0.5	<0.01	< 0.5	<0.01	>0.5	>0.05	<0.1	<0.01

ТВ	AlgorithmA	AlgorithmB -	ET		CTR		NU		OFV		HV	
10	Aigonuma		A12	p								
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB100	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
10100	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05
	SPEA2	CellDE	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01

TABLE 19. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, ANU))

ТВ	Metric		Ra	nk		Confidence				
1 D		NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE	
	ET	3	2	1	2	38%	25%	12%	25%	
	CTR	2	1	3	1	29%	14%	43%	14%	
TB010	NU	2	4	1	3	20%	40%	10%	30%	
	OFV	2	1	3	1	29%	14%	43%	14%	
	HV	2	3	1	2	25%	38%	12%	25%	
	ET	3	2	1	2	38%	25%	12%	25%	
	CTR	2	1	3	1	29%	14%	43%	14%	
TB020	NU	2	3	1	3	22%	33%	11%	33%	
	OFV	2	1	3	1	29%	14%	43%	14%	
	HV	2	3	1	2	25%	38%	12%	25%	
	ET	3	2	1	2	38%	25%	12%	25%	
	CTR	2	2	3	1	25%	25%	38%	12%	
TB030	NU	2	3	1	3	22%	33%	11%	33%	
	OFV	1	3	4	2	10%	30%	40%	20%	
	HV	2	3	1	2	25%	38%	12%	25%	
	ET	3	2	1	2	38%	25%	12%	25%	
	CTR	2	3	4	1	20%	30%	40%	10%	
TB040	NU	2	3	1	3	22%	33%	11%	33%	
	OFV	1	3	4	2	10%	30%	40%	20%	
	HV	2	3	1	2	25%	38%	12%	25%	
	ET	4	2	1	3	40%	20%	10%	30%	
	CTR	1	3	4	2	10%	30%	40%	20%	
TB050	NU	3	2	1	4	30%	20%	10%	40%	
	OFV	2	3	4	1	20%	30%	40%	10%	
	HV	2	4	1	3	20%	40%	10%	30%	
	ET	4	1	2	3	40%	10%	20%	30%	
	CTR	1	3	3	2	11%	33%	33%	22%	
TB060	NU	2	2	1	3	25%	25%	12%	38%	
	OFV	1	2	2	1	17%	33%	33%	17%	
	HV	2	4	1	3	20%	40%	10%	30%	
	ET	4	1	2	3	40%	10%	20%	30%	
	CTR	1	3	4	2	10%	30%	40%	20%	
TB070	NU	2	2	1	3	25%	25%	12%	38%	
	OFV	1	2	3	1	14%	29%	43%	14%	
	HV	2	3	1	2	25%	38%	12%	25%	
	ET	4	1	2	3	40%	10%	20%	30%	
	CTR	2	4	3	1	20%	40%	30%	10%	
TB080	NU	2	2	1	3	25%	25%	12%	38%	
	OFV	1	3	2	1	14%	43%	29%	14%	
	HV	2	3	1	2	25%	38%	12%	25%	
	ET	3	1	2	2	38%	12%	25%	25%	
	CTR	2	4	3	1	20%	40%	30%	10%	
TB090	NU	2	2	1	3	25%	25%	12%	38%	
	OFV	2	4	3	1	20%	40%	30%	10%	
	HV	2	4	1	3	20%	40%	10%	30%	

ТВ	Metric		Rar	ık		Confidence					
10	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	1	4	2	30%	10%	40%	20%		
	CTR	2	4	3	1	20%	40%	30%	10%		
TB100	NU	2	2	1	3	25%	25%	12%	38%		
	OFV	2	4	3	1	20%	40%	30%	10%		
	HV	2	3	1	3	22%	33%	11%	33%		

D.2.4 Problem 4

This section describes the results for prioritization problem f(PET, PTR, PUU).

TABLE 20. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, PUU))

TB	Metric	ChiSq	DF	p
	ET	1433.76	3	< 0.01
	CTR	106.33	3	< 0.01
TB010	NUU	110.28	3	< 0.01
	OFV	444.63	3	< 0.01
	HV	331.6	3	< 0.01
	ET	1188.28	3	< 0.01
	CTR	11.36	3	< 0.01
TB020	NUU	13.44	3	< 0.01
	OFV	887.82	3	< 0.01
	HV	343	3	< 0.01
	ET	999.88	3	< 0.01
	CTR	16.48	3	< 0.01
TB030	NUU	19.33	3	< 0.01
	OFV	912.63	3	<0.01
	HV	348.27	3	<0.01
	ET	959.93	3	<0.01
	CTR	22.54	3	<0.01
TB040	NUU	18.24	3	<0.01
12010	OFV	866.58	3	<0.01
	HV	341.69	3	<0.01
	ET	764.97	3	<0.01
	CTR	135.38	3	<0.01
TB050	NUU	132.07	3	<0.01
10000	OFV	765.85	3	<0.01
	HV	339.55	3	<0.01
	ET	748.29	3	<0.01
	CTR	11.81	3	<0.01
TB060	NUU	16.2	3	<0.01
10000	OFV	641.79	3	<0.01
	HV	344.6	3	<0.01
	ET	578.51	3	<0.01
	CTR	22.01	3	<0.01
TB070	NUU	22.83	3	<0.01
10070	OFV	446.33	3	<0.01
	HV	334.7	3	<0.01
	ET	579.8	3	<0.01
	CTR	74.1	3	<0.01
TB080	NUU	77.03	3	<0.01
1 0000	OFV	535.77	3	<0.01
	HV	321.38	3	<0.01
	ET	467.85	3	<0.01
	CTR	136.37	3	<0.01
TB090	NUU	136.37	3	<0.01
1 0090	OFV	410.92	3	
				<0.01
	HV	311.86	3	< 0.01

TB	Metric	ChiSq	DF	p
	ET	509.62	3	< 0.01
	CTR	20.34	3	< 0.01
TB100	NUU	21.71	3	< 0.01
	OFV	402.42	3	< 0.01
	HV	306.06	3	< 0.01

TABLE 21. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, PUU))

			I	ET	С	TR	N	UU	0	FV	HV	
TB	AlgorithmA	AlgorithmB	A12	р								
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TD010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
12000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB060	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.05	< 0.5	< 0.05	<0.1	< 0.01	>0.9	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	<0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	>0.5	>0.05	<0.5	>0.05	<0.1	< 0.01	>0.9	<0.01
	NSGA2	MoCell	<0.1	< 0.01	>0.5	>0.05	>0.5	< 0.05	<0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	<0.01	<0.5	<0.01	< 0.5	< 0.05	>0.5	>0.05	<0.5	<0.05
TB070	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.05	<0.5	< 0.05	<0.1	< 0.01	>0.9	<0.01
	MoCell	SPEA2	>0.9	<0.01	<0.5	<0.01	< 0.5	<0.01	>0.5	<0.01	<0.1	<0.01
	MoCell	CellDE	<0.1	<0.01	<0.5	<0.01	<0.5	<0.01	<0.1	<0.01	>0.9	<0.01
	SPEA2	CellDE	<0.1	<0.01	>0.5	>0.05	< 0.5	>0.05	<0.1	<0.01	>0.9	<0.01
	NSGA2	MoCell	<0.1	<0.01	>0.5	>0.05	>0.5	>0.05	<0.5	<0.01	>0.9	<0.01
TDOOG	NSGA2	SPEA2	>0.5	<0.01	>0.5	<0.01	>0.5	<0.01	>0.5	<0.01	<0.5	>0.05
TB080	NSGA2	CellDE	<0.1	<0.01	<0.5	< 0.05	< 0.5	<0.01	<0.1	<0.01	>0.9	<0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	<0.1	<0.01
	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	I	ET	C	TR	NUU		OFV		HV	
1 D	Aigorumia	Aigoritimib	A12	p								
TB080	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10090	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.05	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01

TABLE 22. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, PUU))

TD	Matri		Rai	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	2	25%	38%	12%	25%			
TB010	NUU	2	4	1	3	20%	40%	10%	30%			
	OFV	2	3	1	3	22%	33%	11%	33%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	2	1	2	17%	33%	17%	33%			
TB020	NUU	1	2	1	2	17%	33%	17%	33%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB030	NUU	2	2	1	3	25%	25%	12%	38%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	2	29%	29%	14%	29%			
TB040	NUU	2	2	1	2	29%	29%	14%	29%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	2	29%	29%	14%	29%			
TB050	NUU	2	2	1	2	29%	29%	14%	29%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	2	2	17%	17%	33%	33%			
TB060	NUU	1	1	2	2	17%	17%	33%	33%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	2	2	17%	17%	33%	33%			
TB070	NUU	2	1	3	3	22%	11%	33%	33%			
	OFV	1	2	1	3	14%	29%	14%	43%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
TB080	CTR	2	2	1	3	25%	25%	12%	38%			
	NUU	2	2	1	3	25%	25%	12%	38%			

ТВ	Metric		Rai	nk			Confic	lence	
1 1 1	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TB080	OFV	2	3	1	4	20%	30%	10%	40%
1 0000	HV	3	2	3	1	33%	22%	33%	11%
	ET	3	2	3	1	33%	22%	33%	11%
	CTR	2	1	3	2	25%	12%	38%	25%
TB090	NUU	2	1	3	2	25%	12%	38%	25%
	OFV	1	2	3	4	10%	20%	30%	40%
	HV	3	2	3	1	33%	22%	33%	11%
	ET	3	2	3	1	33%	22%	33%	11%
	CTR	1	1	2	2	17%	17%	33%	33%
TB100	NUU	1	1	2	2	17%	17%	33%	33%
	OFV	1	2	1	3	14%	29%	14%	43%
	HV	3	2	3	1	33%	22%	33%	11%

D.2.5 Problem 5

This section describes the results for prioritization problem f(PET, PTR, AUM, PUS).

TABLE 23. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, AUM, PUS))

TB	Metric	ChiSq	DF	p
	ET	24061.85	3	< 0.01
	CTR	3683.93	3	< 0.01
TB010	UM	1359.77	3	< 0.01
1 DU1U	USP	2356.21	3	< 0.01
	OFV	788.37	3	< 0.01
	HV	248.37	3	< 0.01
	ET	24727.6	3	< 0.01
	CTR	1510.23	3	< 0.01
TB020	UM	2919.66	3	< 0.01
1 DUZU	USP	1119.03	3	< 0.01
	OFV	1463.86	3	< 0.01
	HV	309.47	3	< 0.01
	ET	23308.01	3	< 0.01
	CTR	574.44	3	< 0.01
TB030	UM	3356.81	3	< 0.01
1 0030	USP	595.02	3	< 0.01
	OFV	8874.37	3	< 0.01
	HV	321.94	3	< 0.01
	ET	24154.68	3	< 0.01
	CTR	76.41	3	< 0.01
TB040	UM	2245.28	3	< 0.01
1 DU4U	USP	66.33	3	< 0.01
	OFV	14145.17	3	< 0.01
	HV	329.92	3	< 0.01
	ET	22278.22	3	< 0.01
	CTR	30.91	3	< 0.01
TB050	UM	1319.26	3	< 0.01
1 DUOU	USP	72.65	3	< 0.01
	OFV	15241.74	3	< 0.01
	HV	330.38	3	< 0.01
	ET	20228.59	3	< 0.01
	CTR	140.51	3	< 0.01
TB060	UM	1161.3	3	< 0.01
I DUOU	USP	107.17	3	< 0.01
	OFV	14729.13	3	< 0.01
	HV	332.02	3	< 0.01
TD070	ET	16595.95	3	< 0.01
TB070	CTR	99.97	3	< 0.01

TB	Metric	ChiSq	DF	p
	UM	611.9	3	< 0.01
TB070	USP	144.84	3	< 0.01
10070	OFV	12390.4	3	< 0.01
	HV	330.7	3	< 0.01
	ET	15293.41	3	< 0.01
	CTR	92.6	3	< 0.01
TB080	UM	472.79	3	< 0.01
1 0000	USP	125.52	3	< 0.01
	OFV	11805.62	3	< 0.01
	HV	322.65	3	< 0.01
	ET	14627.98	3	< 0.01
	CTR	83.71	3	< 0.01
TB090	UM	274.71	3	< 0.01
1 0090	USP	157.71	3	< 0.01
	OFV	11109.26	3	< 0.01
	HV	329.45	3	< 0.01
	ET	13290.63	3	< 0.01
	CTR	72.72	3	< 0.01
TB100	UM	396.11	3	< 0.01
1 D100	USP	86.19	3	< 0.01
	OFV	10093.09	3	< 0.01
	HV	331.05	3	< 0.01

TABLE 24. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, AUM, PUS))

ТВ	A loonithus A	A loomithus D	I	ET	С	TR	U	M	USP		OFV		HV	
1 B	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	p	A12	р	A12	р	A12	р
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
TB020	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10020	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
TB040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

	1		-	700		TD		T3	-	CD.		TT 7	_	T T 7
ТВ	AlgorithmA	AlgorithmB		ET		TR		M		SP		FV		IV
			A12	р	A12	p								
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05
TB060 -	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	> 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
10090	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 D100	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 25. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, AUM, PUS))

ТВ	Metric		Rai	nk		Confidence						
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	2	4	1	30%	20%	40%	10%			
TB010	UM	3	4	1	2	30%	40%	10%	20%			
10010	USP	4	2	3	1	40%	20%	30%	10%			
	OFV	4	3	2	1	40%	30%	20%	10%			
	HV	3	1	2	1	43%	14%	29%	14%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	4	2	3	1	40%	20%	30%	10%			
TB020	UM	3	4	2	1	30%	40%	20%	10%			
1 0020	USP	3	2	2	1	38%	25%	25%	12%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	2	1	1	43%	29%	14%	14%			
TB030	UM	3	3	2	1	33%	33%	22%	11%			
10000	USP	4	3	2	1	40%	30%	20%	10%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
TB040	CTR	3	1	1	2	43%	14%	14%	29%			
	UM	3	4	2	1	30%	40%	20%	10%			

ТВ	Makria		Raı	ık		Confidence						
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	USP	3	2	2	1	38%	25%	25%	12%			
TB040	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	2	2	17%	17%	33%	33%			
TB050	UM	3	3	2	1	33%	33%	22%	11%			
1 0000	USP	1	1	2	1	20%	20%	40%	20%			
	OFV	1	2	1	3	14%	29%	14%	43%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	1	2	3	3	11%	22%	33%	33%			
TB060	UM	3	4	2	1	30%	40%	20%	10%			
1 0000	USP	1	2	3	2	12%	25%	38%	25%			
	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	1	2	4	3	10%	20%	40%	30%			
TB070	UM	2	2	1	1	33%	33%	17%	17%			
1 0070	USP	1	2	3	2	12%	25%	38%	25%			
	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	1	2	4	3	10%	20%	40%	30%			
TB080	UM	3	4	1	2	30%	40%	10%	20%			
1 0000	USP	1	2	3	2	12%	25%	38%	25%			
	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	1	2	3	2	12%	25%	38%	25%			
TB090	UM	3	3	1	2	33%	33%	11%	22%			
1 0090	USP	2	2	3	1	25%	25%	38%	12%			
	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	4	2	3	1	40%	20%	30%	10%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	1	2	4	3	10%	20%	40%	30%			
TB100	UM	4	3	1	2	40%	30%	10%	20%			
1 1 1 1 0 0	USP	1	2	3	1	14%	29%	43%	14%			
	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	4	2	3	1	40%	20%	30%	10%			

D.2.6 Problem 6

This section describes the results for prioritization problem f(PET, PTR, AUM, ANU).

TABLE 26. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, AUM, ANU))

ТВ	Metric	ChiSq	DF	p
	ET	140.78	3	< 0.01
	CTR	927.08	3	< 0.01
TB010	UM	723.76	3	< 0.01
1 0010	NU	1707.95	3	< 0.01
	OFV	1017.26	3	< 0.01
	HV	247.63	3	< 0.01
	ET	149.57	3	< 0.01
	CTR	1592.48	3	< 0.01
TB020	UM	521.85	3	< 0.01
	NU	1191.48	3	< 0.01
	OFV	1522.62	3	< 0.01

TB	Metric	ChiSq	DF	p
TB020	HV	340.74	3	< 0.01
	ET	199.56	3	< 0.01
	CTR	1870.13	3	< 0.01
TD020	UM	221.38	3	< 0.01
TB030	NU	1063.01	3	< 0.01
	OFV	1530.8	3	< 0.01
	HV	309.62	3	< 0.01
	ET	177.26	3	< 0.01
	CTR	2057.44	3	< 0.01
TTD: 40	UM	98.58	3	< 0.01
TB040	NU	878.74	3	< 0.01
	OFV	1413.36	3	< 0.01
	HV	296.37	3	< 0.01
	ET	184.14	3	<0.01
	CTR	1716.46	3	<0.01
	UM	386.12	3	<0.01
TB050	NU	755.71	3	<0.01
	OFV	991.02	3	<0.01
	HV	294.13	3	<0.01
	ET	297.13	3	<0.01
	CTR	1593.09	3	<0.01
	UM	742.18	3	<0.01
TB060	NU	758.55	3	<0.01
	OFV	756.11	3	<0.01
	HV	290.88	3	<0.01
	I .	273.91		
	ET		3	<0.01
	CTR	1315.55	3	< 0.01
TB070	UM	1382.46	3	< 0.01
	NU	846.26	3	< 0.01
	OFV	500.58	3	< 0.01
	HV	294.91	3	< 0.01
	ET	427.28	3	< 0.01
	CTR	901.95	3	< 0.01
TB080	UM	1977.67	3	< 0.01
	NU	799.36	3	< 0.01
	OFV	215.7	3	< 0.01
	HV	301.23	3	< 0.01
	ET	519.43	3	< 0.01
	CTR	829.48	3	< 0.01
TB090	UM	2696.7	3	< 0.01
1 00/0	NU	914.96	3	< 0.01
	OFV	174.8	3	< 0.01
	HV	295.51	3	< 0.01
	ET	530.94	3	< 0.01
	CTR	751.55	3	< 0.01
TD100	UM	2926.99	3	< 0.01
TB100	NU	1048.34	3	< 0.01
	OFV	170.16	3	< 0.01
	HV	287.33	3	< 0.01

TABLE 27. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, AUM, ANU))

TB A	AlgorithmA	AlgorithmB	ET		CTR		UM		NU		OFV		HV	
	AigontiiliA	riigoritiiiii	A12	p										
	NSGA2	MoCell	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB010	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10010	NSGA2	CellDE	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01

]	ET	С	TR	ι	J M	N	JU	О	FV	I	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
TB010	MoCell	CellDE	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10010	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	MoCell	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB020	NSGA2	CellDE	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
10020	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB030	NSGA2	CellDE	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.05
10000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.05	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB040	NSGA2	CellDE	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	<0.5	>0.05
	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	< 0.5	>0.05	<0.5	< 0.01	< 0.5	< 0.01	<0.5	>0.05	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.5	>0.05	<0.5	< 0.01	>0.5	>0.05	<0.5	< 0.05	<0.5	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	>0.05	<0.5	< 0.01	>0.5	<0.01	>0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
TB050	NSGA2	CellDE	>0.5	<0.01	<0.5	>0.05	<0.5	< 0.05	< 0.5	< 0.01	>0.5	< 0.01	<0.5	>0.05
	MoCell	SPEA2	>0.5	>0.05	< 0.5	<0.01	>0.5	< 0.01	>0.5	<0.01	< 0.5	<0.01	>0.9	<0.01
	MoCell	CellDE	>0.5	<0.01	>0.5	<0.01	<0.5	< 0.01	< 0.5	< 0.01	>0.5	<0.01	>0.5	<0.01
	SPEA2	CellDE	>0.5	<0.01	>0.5	<0.01	<0.5	<0.01	<0.5	<0.01	>0.5	<0.01	<0.1	<0.01
	NSGA2	MoCell	< 0.5	<0.01	<0.5	<0.01	>0.5	>0.05	>0.5	>0.05	<0.5	<0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	>0.05	< 0.5	<0.01	>0.5	<0.01	>0.5	< 0.01	<0.5	<0.01	>0.9	< 0.01
TB060	NSGA2	CellDE SPEA2	>0.5	< 0.01	<0.5	>0.05	<0.5	< 0.05	<0.5 >0.5	< 0.01	>0.5 <0.5	>0.05	<0.5	< 0.01
	MoCell MoCell	CellDE	>0.5	<0.01	<0.5 >0.5	<0.01	>0.5 <0.5	<0.01 >0.05	<0.5	<0.01	>0.5	<0.01	>0.9	<0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	<0.5	<0.01	<0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.5	<0.01	<0.5	< 0.01	<0.5	< 0.01	>0.5	>0.01	<0.5	< 0.01	<0.1	< 0.01
	NSGA2 NSGA2	SPEA2	>0.5	>0.01	<0.5	< 0.01	>0.5	< 0.05	>0.5	<0.03	<0.5	< 0.01	>0.1	< 0.01
	NSGA2	CellDE	>0.5	<0.01	< 0.5	>0.01	<0.5	>0.01	<0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01
TB070	MoCell	SPEA2	>0.5	< 0.01	< 0.5	<0.01	>0.5	<0.01	>0.5	< 0.01	<0.5	< 0.03	>0.9	< 0.01
	MoCell	CellDE	>0.5	<0.01			>0.5	>0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	<0.5	<0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01	>0.5	>0.01	<0.5	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.1	< 0.01
	NSGA2	CellDE	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	<0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01
TB080	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	>0.05	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	>0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01
TB090	MoCell	SPEA2	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5		>0.5	>0.05	<0.5	< 0.01	>0.5	< 0.01	<0.5	>0.05
	SPEA2	CellDE	>0.5	< 0.01	>0.5		<0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	<0.5		<0.5	< 0.01	>0.5	>0.05	<0.5	< 0.01	<0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	<0.5		>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
TID4 00	NSGA2	CellDE	>0.5	< 0.01	<0.5		<0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01
TB100	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	<0.5	>0.05
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
L	ıl.	1	I .	1	1	I	1		I .		ı	ı	1	

TABLE 28. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, AUM, ANU))

тр	Metric		Ra	nk			Confid	dence	
TB		NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	2	3	1	4	20%	30%	10%	40%
	CTR	2	1	3	2	25%	12%	38%	25%
TB010	UM	2	1	3	4	20%	10%	30%	40%
10010	NU	2	4	1	3	20%	40%	10%	30%
	OFV	2	1	4	3	20%	10%	40%	30%
	HV	3	4	1	2	30%	40%	10%	20%
	ET	1	1	2	3	14%	14%	29%	43%
	CTR	1	1	3	2	14%	14%	43%	29%
TB020	UM	2	1	3	3	22%	11%	33%	33%
12020	NU	2	3	1	3	22%	33%	11%	33%
	OFV	1	1	3	2	14%	14%	43%	29%
	HV	3	4	1	2	30%	40%	10%	20%
	ET	1	1	2	3	14%	14%	29%	43%
	CTR	1	1	2	1	20%	20%	40%	20%
TB030	UM	2	1	3	3	22%	11%	33%	33%
12000	NU	2	3	1	4	20%	30%	10%	40%
	OFV	1	1	2	1	20%	20%	40%	20%
	HV	3	4	1	2	30%	40%	10%	20%
	ET	2	1	3	4	20%	10%	30%	40%
	CTR	1	2	3	2	12%	25%	38%	25%
TB040	UM	2	2	1	3	25%	25%	12%	38%
	NU	3	2	1	4	30%	20%	10%	40%
	OFV	1	2	3	2	12%	25%	38%	25%
	HV	2	3	1	2	25%	38%	12%	25%
	ET	1	1	1	2	20%	20%	20%	40%
	CTR	1	2	3	1	14%	29%	43%	14%
TB050	UM	2	2	1	3	25%	25%	12%	38%
	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	2	25%	38%	12%	25%
	ET	2	1	2	3	25%	12%	25%	38%
	CTR	1	2	3	1	14%	29%	43%	14%
TB060	UM	2	2	1	3	25%	25%	12%	38%
	NU	2	2	1	3	25%	25%	12%	38%
	OFV	1	2	3	1	14%	29%	43%	14%
	HV	2	4	1	3	20%	40%	10%	30%
	ET	2	1	2	3	25%	12%	25%	38%
	CTR	1	2	3	1	14%	29%	43%	14%
TB070	UM	2	3	1	3	22%	33%	11%	33%
	NU	2	2	1	3	25%	25%	12%	38%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	4	1	3	20%	40%	10%	30%
	ET	2	1	3	4	20%	10%	30%	40%
	CTR	1	3	4	2	10%	30%	40%	20%
TB080	UM NU	2 2	3	1	3	22% 25%	33% 25%	11%	33% 38%
	OFV		2	1 2			33%	12%	38% 11%
	HV	2 2	3	3	1 2	22% 20%	40%	33% 10%	30%
			4		3	20%			
	ET CTR	2	3	3	2	10%	10% 30%	30% 40%	40% 20%
	UM	2	3	4	3	22%	30%	11%	33%
TB090	NU	2				25%	25%		
			2	1	3			12%	38%
	OFV HV	2	3	4	1	20%	30%	40%	10%
	nv	2	3	1	3	22%	33%	11%	33%

ТВ	Metric		Rar	ık		Confidence					
10	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	2	1	3	4	20%	10%	30%	40%		
	CTR	1	2	3	1	14%	29%	43%	14%		
TB100	UM	2	3	1	3	22%	33%	11%	33%		
10100	NU	2	2	1	3	25%	25%	12%	38%		
	OFV	2	3	4	1	20%	30%	40%	10%		
	HV	2	3	1	3	22%	33%	11%	33%		

D.2.7 Problem 7

This section describes the results for prioritization problem f(PET, PTR, AUM, PUU).

TABLE 29. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, AUM, PUU))

TB	Metric	ChiSq	DF	p
	ET	22485.56	3	< 0.01
	CTR	3815.34	3	< 0.01
TB010	UM	910.58	3	< 0.01
1 DU10	NUU	3918.16	3	< 0.01
	OFV	2092.26	3	< 0.01
	HV	221.18	3	< 0.01
	ET	23970.7	3	< 0.01
	CTR	2161.53	3	< 0.01
TB020	UM	2221.92	3	< 0.01
10020	NUU	2062.17	3	< 0.01
	OFV	668.83	3	< 0.01
	HV	306.46	3	< 0.01
	ET	23846.26	3	< 0.01
	CTR	859.8	3	< 0.01
TB030	UM	1971.27	3	< 0.01
10030	NUU	865.86	3	< 0.01
	OFV	6821.69	3	< 0.01
	HV	327.41	3	< 0.01
	ET	21668.6	3	< 0.01
	CTR	118.75	3	< 0.01
TB040	UM	2043.41	3	< 0.01
10040	NUU	109.21	3	< 0.01
	OFV	9761.21	3	< 0.01
	HV	330.21	3	< 0.01
	ET	22728.98	3	< 0.01
	CTR	6.91	3	>0.05
TB050	UM	1195.76	3	< 0.01
1 0000	NUU	10.73	3	< 0.05
	OFV	12744.75	3	< 0.01
	HV	330.29	3	< 0.01
	ET	19515.39	3	< 0.01
	CTR	75.52	3	< 0.01
TB060	UM	560.19	3	< 0.01
10000	NUU	76.08	3	< 0.01
	OFV	12255.87	3	< 0.01
	HV	330.8	3	< 0.01
	ET	16679.45	3	< 0.01
	CTR	97.64	3	< 0.01
TB070	UM	534.69	3	< 0.01
10070	NUU	99.73	3	< 0.01
	OFV	11046.36	3	< 0.01
	HV	328.98	3	< 0.01
TB080	ET	15628.45	3	< 0.01
1 0000	CTR	143.57	3	< 0.01

TB	Metric	ChiSq	DF	p
	UM	367.72	3	< 0.01
TB080	NUU	152.42	3	< 0.01
1 0000	OFV	10889.64	3	< 0.01
	HV	330.64	3	< 0.01
	ET	14444.64	3	< 0.01
	CTR	160.34	3	< 0.01
TB090	UM	373.13	3	< 0.01
1 0090	NUU	170.38	3	< 0.01
	OFV	10169.6	3	< 0.01
	HV	336.08	3	< 0.01
	ET	14486.98	3	< 0.01
	CTR	87.95	3	< 0.01
TB100	UM	182.75	3	< 0.01
1 D100	NUU	90.92	3	< 0.01
	OFV	10302.11	3	< 0.01
	HV	335.92	3	< 0.01

TABLE 30. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, AUM, PUU))

ТВ	AlgorithmA	AlgorithmB		ET	С	TR	U	M	N	UU	О	FV	H	ΙV
1 D	AigoriumA	Aigoriumib	A12	p	A12	p	A12	p	A12	p	A12	р	A12	p
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10020	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05
TB030	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10030	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
TB040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TB060	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TED.	A.1 A	41 11 B	I	ET	C	TR	U	J M	N	UU	О	FV	H	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	>0.05	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 0090	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 31. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, AUM, PUU))

ТВ	Metric		Rai	nk		Confidence						
I D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	4	2	3	1	40%	20%	30%	10%			
TB010	UM	2	3	1	1	29%	43%	14%	14%			
1 10010	NUU	4	2	3	1	40%	20%	30%	10%			
	OFV	4	3	2	1	40%	30%	20%	10%			
	HV	3	1	2	1	43%	14%	29%	14%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	4	2	3	1	40%	20%	30%	10%			
TB020	UM	3	4	2	1	30%	40%	20%	10%			
1 0020	NUU	4	2	3	1	40%	20%	30%	10%			
	OFV	3	2	1	2	38%	25%	12%	25%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	2	2	1	38%	25%	25%	12%			
TB030	UM	3	3	2	1	33%	33%	22%	11%			
1 0000	NUU	4	3	2	1	40%	30%	20%	10%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	1	1	1	40%	20%	20%	20%			
TB040	UM	3	4	2	1	30%	40%	20%	10%			
1 0040	NUU	2	1	1	1	40%	20%	20%	20%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	4	2	3	1	40%	20%	30%	10%			
TB050	CTR	1	1	2	2	17%	17%	33%	33%			
	UM	3	3	2	1	33%	33%	22%	11%			

TD	M-1		Rai	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	NUU	1	1	2	2	17%	17%	33%	33%			
TB050	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	1	2	3	2	12%	25%	38%	25%			
TB060	UM	3	3	2	1	33%	33%	22%	11%			
1 DUOU	NUU	1	2	3	2	12%	25%	38%	25%			
	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	1	3	4	2	10%	30%	40%	20%			
TB070	UM	2	2	1	1	33%	33%	17%	17%			
1 D07 0	NUU	1	3	4	2	10%	30%	40%	20%			
	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	1	2	3	2	12%	25%	38%	25%			
TB080	UM	3	3	1	2	33%	33%	11%	22%			
1 0000	NUU	1	2	3	2	12%	25%	38%	25%			
	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	1	2	3	1	14%	29%	43%	14%			
TB090	UM	4	3	1	2	40%	30%	10%	20%			
1 0090	NUU	1	2	3	1	14%	29%	43%	14%			
	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	4	2	3	1	40%	20%	30%	10%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	1	2	3	2	12%	25%	38%	25%			
TB100	UM	3	2	1	2	38%	25%	12%	25%			
1 0100	NUU	1	2	3	2	12%	25%	38%	25%			
	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	4	2	3	1	40%	20%	30%	10%			

D.2.8 Problem 8

This section describes the results for prioritization problem f(PET, PTR, PUS, ANU).

TABLE 32. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, PUS, ANU))

TB	Metric	ChiSq	DF	p
	ET	57.34	3	< 0.01
	CTR	1189.86	3	< 0.01
TB010	USP	7526.82	3	< 0.01
10010	NU	645.18	3	< 0.01
	OFV	1398.1	3	< 0.01
	HV	275.51	3	< 0.01
	ET	89.73	3	< 0.01
	CTR	1798.14	3	< 0.01
TB020	USP	7247.27	3	< 0.01
1 0020	NU	839.27	3	< 0.01
	OFV	1704.37	3	< 0.01
	HV	264.44	3	< 0.01
	ET	128.89	3	< 0.01
	CTR	1880.63	3	< 0.01
TB030	USP	6358.26	3	< 0.01
	NU	818.65	3	< 0.01
	OFV	1692.67	3	< 0.01

ТВ	Metric	ChiSq	DF	p
TB030	HV	265.92	3	< 0.01
	ET	139.91	3	< 0.01
	CTR	1792.64	3	< 0.01
TB040	USP	5402.17	3	< 0.01
1 DU4U	NU	765.27	3	< 0.01
	OFV	1578.36	3	< 0.01
	HV	252.74	3	< 0.01
	ET	160.09	3	< 0.01
	CTR	1197.55	3	< 0.01
TB050	USP	4510.15	3	< 0.01
1 0030	NU	679.1	3	< 0.01
	OFV	1082.91	3	< 0.01
	HV	236.49	3	< 0.01
	ET	145.6	3	< 0.01
	CTR	793.89	3	< 0.01
TB060	USP	4590.26	3	< 0.01
1 0000	NU	557.69	3	< 0.01
	OFV	706.82	3	< 0.01
	HV	243.34	3	< 0.01
	ET	124.93	3	< 0.01
	CTR	435.79	3	< 0.01
TB070	USP	4630.41	3	< 0.01
1 D07 0	NU	402.34	3	< 0.01
	OFV	419.31	3	< 0.01
	HV	232.82	3	< 0.01
	ET	102.03	3	< 0.01
	CTR	348.23	3	< 0.01
TB080	USP	5258.89	3	< 0.01
10000	NU	239.12	3	< 0.01
	OFV	312.05	3	< 0.01
	HV	238.94	3	< 0.01
	ET	97.12	3	< 0.01
	CTR	247.31	3	< 0.01
TB090	USP	4765.28	3	< 0.01
10070	NU	199.82	3	< 0.01
	OFV	310.4	3	< 0.01
	HV	244.41	3	< 0.01
	ET	102.26	3	< 0.01
	CTR	319.43	3	< 0.01
TB100	USP	4843.92	3	< 0.01
10100	NU	215.11	3	< 0.01
	OFV	361.36	3	< 0.01
	HV	236.92	3	< 0.01

TABLE 33. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, PUS, ANU))

ТВ	AlgorithmA	AlgorithmB	I	ΞT	С	CTR		USP		IU	OFV		HV	
1.0	AigoriumA	Aigontillio	A12	p										
	NSGA2	MoCell	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB010	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05
10010	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.05	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
TB020	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05

TD	A1 '11 A	A1 '(1 D	I	ET	С	TR	U	SP	N	NU	О	FV	I	łV
TB	AlgorithmA		A12	р	A12	p	A12	р	A12	p	A12	р	A12	p
	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB020	MoCell	CellDE	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TPO20	NSGA2	CellDE	< 0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05
TB030	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TP040	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
TB040	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TDOFO	NSGA2	CellDE	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.05
TB050	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	>0.05
TB060	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
	MoCell	CellDE	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01	>0.5	>0.05	<0.5	< 0.01	<0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	<0.5	>0.05
TB070	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	<0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	<0.5	>0.05	<0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	<0.5	>0.05
TB080	MoCell	SPEA2	>0.5	>0.05			>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01		< 0.01
	MoCell	CellDE	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01
TB090	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	<0.5	>0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	<0.01	<0.5		<0.5	< 0.01	< 0.5	< 0.01	<0.5	<0.01	<0.1	<0.01
	NSGA2 NSGA2	SPEA2	>0.5	<0.01	< 0.5		< 0.5	< 0.01	>0.5	< 0.03	<0.5	<0.01	>0.9	<0.01
	NSGA2 NSGA2	CellDE	<0.5	<0.01	>0.5		>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	<0.5	>0.01
TB100	MoCell	SPEA2	>0.5	< 0.01	>0.5		>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	<0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5		>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.9	<0.01
	SPEA2	CellDE	>0.5 <0.5	>0.01			>0.5	< 0.01	<0.5	< 0.01	>0.5	>0.01		<0.01
	SF EA2	Cende	<0.5	>0.03	<i>></i> 0.5	<0.03	<i>></i> 0.5	<0.01	<0.5	<0.01	>0.5	>0.03	<0.1	<0.01

TABLE 34. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, PUS, ANU))

ТВ	Metric		Ra	nk		Confidence						
1 D		NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	3	2	1	33%	33%	22%	11%			
	CTR	2	2	3	1	25%	25%	38%	12%			
TB010	USP	2	4	3	1	20%	40%	30%	10%			
10010	NU	2	3	1	2	25%	38%	12%	25%			
	OFV	2	3	4	1	20%	30%	40%	10%			
	HV	2	3	1	2	25%	38%	12%	25%			
	ET	3	2	1	2	38%	25%	12%	25%			
	CTR	2	2	3	1	25%	25%	38%	12%			
TTD000	USP	2	4	3	1	20%	40%	30%	10%			
TB020	NU	2	3	1	3	22%	33%	11%	33%			
	OFV	2	3	4	1	20%	30%	40%	10%			
	HV	2	3	1	2	25%	38%	12%	25%			
	ET	3	2	1	2	38%	25%	12%	25%			
	CTR	1	3	4	2	10%	30%	40%	20%			
	USP	2	4	3	1	20%	40%	30%	10%			
TB030	NU	2	3	1	3	22%	33%	11%	33%			
	OFV	1	2	3	1	14%	29%	43%	14%			
	HV	2	3	1	2	25%	38%	12%	25%			
	ET	3	2	1	2	38%	25%	12%	25%			
	CTR	2	3	4	1	20%	30%	40%	10%			
	USP	2				20%	40%	30%	10%			
TB040	NU	2 2	3	3	1	20%	33%	11%	33%			
				1	3							
	OFV	2	3	4	1	20%	30%	40%	10%			
	HV	2	3	1	2	25%	38%	12%	25%			
	ET	3	2	1	2	38%	25%	12%	25%			
	CTR	1	3	4	2	10%	30%	40%	20%			
TB050	USP	2	4	3	1	20%	40%	30%	10%			
10000	NU	2	2	1	3	25%	25%	12%	38%			
	OFV	2	3	4	1	20%	30%	40%	10%			
	HV	2	4	1	3	20%	40%	10%	30%			
	ET	3	2	1	2	38%	25%	12%	25%			
	CTR	1	3	4	2	10%	30%	40%	20%			
TB060	USP	2	4	3	1	20%	40%	30%	10%			
1 0000	NU	3	2	1	4	30%	20%	10%	40%			
	OFV	2	3	3	1	22%	33%	33%	11%			
	HV	2	3	1	2	25%	38%	12%	25%			
	ET	4	1	2	3	40%	10%	20%	30%			
	CTR	1	3	4	2	10%	30%	40%	20%			
	USP	2	4	3	1	20%	40%	30%	10%			
TB070	NU	2	2	1	3	25%	25%	12%	38%			
	OFV	1	2	3	1	14%	29%	43%	14%			
	HV	2	3	1	2	25%	38%	12%	25%			
	ET	2	1	1	1	40%	20%	20%	20%			
	CTR	2	3	4	1	20%	30%	40%	10%			
	USP	2	4	3	1	20%	40%	30%	10%			
TB080	NU	2	3	1	3	20 %	33%	11%	33%			
	OFV	2	4	3	1	20%	40%	30%	10%			
	HV	2	3	1	2	25%	38%	12%	25%			
	ET	3	1	4	2	30%	10%	40%	20%			
	CTR	2	4	3	1	20%	40%	30%	10%			
TB090	USP	2	4	3	1	20%	40%	30%	10%			
	NU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	4	3	1	20%	40%	30%	10%			
	HV	2	4	1	3	20%	40%	10%	30%			

ТВ	Metric		Rai	nk		Confidence					
10	Wietric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	1	4	2	30%	10%	40%	20%		
	CTR	2	4	3	1	20%	40%	30%	10%		
TB100	USP	2	4	3	1	20%	40%	30%	10%		
10100	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	4	3	1	20%	40%	30%	10%		
	HV	2	3	1	2	25%	38%	12%	25%		

D.2.9 Problem 9

This section describes the results for prioritization problem f(PET, PTR, PUS, PUU).

TABLE 35. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, PUS, PUU))

ТВ	Metric	ChiSq	DF	p
	ET	1677	3	< 0.01
	CTR	148.58	3	< 0.01
TB010	USP	47.08	3	< 0.01
10010	NUU	150.22	3	< 0.01
	OFV	403.66	3	< 0.01
	HV	336.39	3	< 0.01
	ET	1252.81	3	< 0.01
	CTR	20.6	3	< 0.01
TB020	USP	6.69	3	>0.05
10020	NUU	26.5	3	< 0.01
	OFV	656.8	3	< 0.01
	HV	338.73	3	< 0.01
	ET	999.3	3	< 0.01
	CTR	8.36	3	< 0.05
TB030	USP	1.26	3	>0.05
10000	NUU	6.31	3	>0.05
	OFV	769.22	3	< 0.01
	HV	345.14	3	< 0.01
	ET	969.88	3	< 0.01
	CTR	8.87	3	< 0.05
TB040	USP	26.91	3	< 0.01
10040	NUU	16.98	3	< 0.01
	OFV	833.85	3	< 0.01
	HV	348.02	3	< 0.01
	ET	844.34	3	< 0.01
	CTR	50.97	3	< 0.01
TB050	USP	60.93	3	< 0.01
10000	NUU	55.16	3	< 0.01
	OFV	800.23	3	< 0.01
	HV	341.71	3	< 0.01
	ET	780.42	3	< 0.01
	CTR	5.91	3	>0.05
TB060	USP	15.85	3	< 0.01
10000	NUU	6.61	3	>0.05
	OFV	702.89	3	< 0.01
	HV	342.48	3	< 0.01
	ET	536.75	3	< 0.01
	CTR	24.92	3	< 0.01
TB070	USP	31.13	3	< 0.01
120.0	NUU	27.56	3	< 0.01
	OFV	451.67	3	< 0.01
	HV	333.79	3	< 0.01
TB080	ET	574.74	3	< 0.01
12000	CTR	27.83	3	< 0.01

TB	Metric	ChiSq	DF	p
	USP	16.49	3	< 0.01
TB080	NUU	26.28	3	< 0.01
1 0000	OFV	475.52	3	< 0.01
	HV	321.16	3	< 0.01
	ET	561.18	3	< 0.01
	CTR	22.71	3	< 0.01
TB090	USP	21.96	3	< 0.01
1 0090	NUU	24.64	3	< 0.01
	OFV	420.03	3	< 0.01
	HV	315.7	3	< 0.01
	ET	524.25	3	< 0.01
	CTR	17.43	3	< 0.01
TB100	USP	39.04	3	< 0.01
10100	NUU	19.95	3	< 0.01
	OFV	435.07	3	< 0.01
	HV	303.23	3	< 0.01

TABLE 36. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, PUS, PUU))

ТВ	AlgorithmA	AlgorithmB		ET	С	TR	U	SP	N	UU	О	FV	HV	
1 D	AigorithmA	Aigorithmb	A12	р	A12	p	A12	р	A12	р	A12	р	A12	р
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
10010	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.9	< 0.01	< 0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.05	< 0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
10030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.05	>0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01

TD	A.1 A	41 11 B	I	ET	С	TR	U	SP	N	UU	О	FV	I	IV
TB	AlgorithmA	AlgorithmB	A12	р										
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	>0.05	>0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.05	< 0.5	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.05	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.05	>0.5	>0.05	>0.5	< 0.05	>0.5	>0.05
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
1 0090	MoCell	SPEA2	>0.9	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	>0.05
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	MoCell	SPEA2	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 37. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, PUS, PUU))

ТВ	Metric		Raı	nk		Confidence						
I D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	2	25%	38%	12%	25%			
TB010	USP	1	1	1	2	20%	20%	20%	40%			
1 10010	NUU	2	3	1	2	25%	38%	12%	25%			
	OFV	2	3	1	3	22%	33%	11%	33%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	2	1	2	17%	33%	17%	33%			
TB020	USP	1	1	1	1	25%	25%	25%	25%			
1 0020	NUU	1	2	1	2	17%	33%	17%	33%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	2	1	2	17%	33%	17%	33%			
TB030	USP	1	1	1	1	25%	25%	25%	25%			
1 0030	NUU	1	1	1	2	20%	20%	20%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	2	1	2	17%	33%	17%	33%			
TB040	USP	2	2	1	3	25%	25%	12%	38%			
1 0040	NUU	2	2	1	3	25%	25%	12%	38%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
TB050	CTR	2	3	1	4	20%	30%	10%	40%			
	USP	2	2	1	3	25%	25%	12%	38%			

TD	Matria		Rai	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	NUU	2	2	1	3	25%	25%	12%	38%			
TB050	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	1	2	20%	20%	20%	40%			
TB060	USP	2	2	1	2	29%	29%	14%	29%			
1 DUOU	NUU	1	1	1	2	20%	20%	20%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	2	1	2	3	25%	12%	25%	38%			
TB070	USP	1	1	2	2	17%	17%	33%	33%			
1 D07 0	NUU	2	1	2	3	25%	12%	25%	38%			
	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	1	1	25%	25%	25%	25%			
TB080	USP	2	1	2	2	29%	14%	29%	29%			
1 0000	NUU	1	1	1	2	20%	20%	20%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	1	2	3	25%	12%	25%	38%			
TB090	USP	1	1	2	2	17%	17%	33%	33%			
1 D090	NUU	2	1	2	3	25%	12%	25%	38%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	1	1	1	2	20%	20%	20%	40%			
TB100	USP	2	2	1	3	25%	25%	12%	38%			
1 0100	NUU	1	1	1	2	20%	20%	20%	40%			
	OFV	1	2	1	3	14%	29%	14%	43%			
	HV	3	2	3	1	33%	22%	33%	11%			

D.2.10 Problem 10

This section describes the results for prioritization problem f(PET, PTR, ANU, PUU).

TABLE 38. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW4, f(PET, PTR, ANU, PUU))

TB	Metric	ChiSq	DF	p
	ET	195.56	3	< 0.01
	CTR	304.29	3	< 0.01
TB010	NU	1092.08	3	< 0.01
1 0010	NUU	249.42	3	< 0.01
	OFV	235.29	3	< 0.01
	HV	276.31	3	< 0.01
	ET	287.01	3	< 0.01
	CTR	595.17	3	< 0.01
TB020	NU	1401.62	3	< 0.01
1 0020	NUU	559.72	3	< 0.01
	OFV	544.88	3	< 0.01
	HV	270.41	3	< 0.01
	ET	161.61	3	< 0.01
	CTR	695.44	3	< 0.01
TB030	NU	1103.12	3	< 0.01
	NUU	725.41	3	< 0.01
	OFV	667.96	3	< 0.01

ТВ	Metric	ChiSq	DF	p
TB030	HV	275.74	3	< 0.01
	ET	121.33	3	< 0.01
	CTR	1020.43	3	< 0.01
TB040	NU	581.37	3	< 0.01
1 DU40	NUU	1138.44	3	< 0.01
	OFV	976.55	3	< 0.01
	HV	269.35	3	< 0.01
	ET	178.63	3	< 0.01
	CTR	1149.79	3	< 0.01
TB050	NU	591.09	3	< 0.01
1 D030	NUU	1373.35	3	< 0.01
	OFV	1162.7	3	< 0.01
	HV	265.13	3	< 0.01
	ET	390.1	3	< 0.01
	CTR	718.43	3	< 0.01
TD0/0	NU	423.76	3	< 0.01
TB060	NUU	916.08	3	< 0.01
	OFV	767.24	3	< 0.01
	HV	255.8	3	< 0.01
	ET	334.7	3	< 0.01
	CTR	463.14	3	< 0.01
TB070	NU	394.02	3	< 0.01
1 DU/U	NUU	593.61	3	< 0.01
	OFV	507.26	3	< 0.01
	HV	275.65	3	< 0.01
	ET	565.04	3	< 0.01
	CTR	317.36	3	< 0.01
TB080	NU	215.86	3	< 0.01
1 0000	NUU	431.25	3	< 0.01
	OFV	417.84	3	< 0.01
	HV	270.99	3	< 0.01
	ET	771.09	3	< 0.01
	CTR	412.29	3	< 0.01
TB090	NU	326.45	3	< 0.01
1 0070	NUU	518.78	3	< 0.01
	OFV	563.68	3	< 0.01
	HV	254.47	3	< 0.01
	ET	1067.24	3	< 0.01
	CTR	607.59	3	< 0.01
TB100	NU	352.68	3	< 0.01
1 D100	NUU	736.72	3	< 0.01
	OFV	819.65	3	< 0.01
	HV	264.5	3	< 0.01

TABLE 39. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW4, f(PET, PTR, ANU, PUU))

ТВ	AlgorithmA	AlgorithmB	I	ET	С	CTR		NU		NUU		OFV		IV
10	AigoriumiA	Aigontillio	A12	p										
	NSGA2	MoCell	< 0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB010	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
10010	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01
TB020	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01

ТВ	Alaarithm A	A loosith m D	I	ET	C	TR	N	IU	N	UU	О	FV	I	ΙV
1 B	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	p
	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB020	MoCell	CellDE	< 0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TROSO	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB030	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TDO 40	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB040	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
ED 0 E 0	NSGA2	CellDE	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB050	MoCell	SPEA2	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01
TB060	MoCell	SPEA2	>0.5	< 0.01	<0.5	< 0.05	>0.5	< 0.01	< 0.5	>0.05	<0.5	< 0.05	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01
TB070	MoCell	SPEA2	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01
	NSGA2	SPEA2	>0.5	>0.05	<0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	< 0.5	>0.05	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01
TB080	MoCell	SPEA2	>0.5	< 0.01	>0.5		<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	SPEA2	CellDE	< 0.5	>0.05			<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	< 0.5	>0.05	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB090	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	<0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01
	SPEA2	CellDE	< 0.5	< 0.05	<0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	< 0.5	>0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01
TB100	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5		<0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01
	SPEA2	CellDE	<0.5	< 0.01	<0.5		<0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.3	<0.01
	JILIAZ	CEIDE	₹0.5	\ ∪.∪1	\0.5	\ \0.01	\0.5	√0.01	\0.5	\U.U1	\0.5	\0.01	\ ∪.1	<u></u> √0.01

TABLE 40. Rank Results for each Multi-Objective Algorithms (AW4, f(PET, PTR, ANU, PUU))

тр	N / - 1		Ra	nk			Confid	dence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	1	2	38%	25%	12%	25%
TB010	CTR	2	2	3	1	25%	25%	38%	12%
	NU	2	4	1	3	20%	40%	10%	30%
	NUU	2	2	3	1	25%	25%	38%	12%
	OFV	2	2	3	1	25%	25%	38%	12%
	HV	2	4	1	3	20%	40%	10%	30%
	ET	3	2	1	2	38%	25%	12%	25%
	CTR	2	2	3	1	25%	25%	38%	12%
TTD000	NU	2	3	1	3	22%	33%	11%	33%
TB020	NUU	2	2	3	1	25%	25%	38%	12%
	OFV	2	2	3	1	25%	25%	38%	12%
	HV	2	4	1	3	20%	40%	10%	30%
	ET	4	2	1	3	40%	20%	10%	30%
	CTR	2	2	3	1	25%	25%	38%	12%
	NU	2	3	1	4	20%	30%	10%	40%
TB030	NUU	2	2	3	1	25%	25%	38%	12%
	OFV	2	2	3	1	25%	25%	38%	12%
	HV	2	3	1	3	22%	33%	11%	33%
	ET	4	1	2	3	40%	10%	20%	30%
	CTR	2	3	4	1	20%	30%	40%	10%
	NU	2	2	1	3	25%	25%	12%	38%
TB040	NUU	2	3	4	1	20%	30%	40%	10%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	3	20%	33%	11%	33%
	ET	2		1	2	33%	17%	17%	33%
	CTR	2	1			20%	30%	40%	10%
		2	3 2	4	1	25%	25%		38%
TB050	NU			1	3			12%	
	NUU	2	3	4	1	20%	30%	40%	10%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	3	22%	33%	11%	33%
	ET	4	1	3	2	40%	10%	30%	20%
	CTR	2	3	4	1	20%	30%	40%	10%
TB060	NU	3	2	1	4	30%	20%	10%	40%
	NUU	2	3	3	1	22%	33%	33%	11%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	4	20%	30%	10%	40%
	ET	4	1	3	2	40%	10%	30%	20%
	CTR	2	3	4	1	20%	30%	40%	10%
TB070	NU	3	2	1	4	30%	20%	10%	40%
120,0	NUU	2	3	4	1	20%	30%	40%	10%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	4	20%	30%	10%	40%
	ET	2	1	2	2	29%	14%	29%	29%
	CTR	2	4	3	1	20%	40%	30%	10%
TB080	NU	3	1	2	4	30%	10%	20%	40%
חסטם ז	NUU	2	4	3	1	20%	40%	30%	10%
	OFV	2	4	3	1	20%	40%	30%	10%
	HV	2	3	1	4	20%	30%	10%	40%
	ET	2	1	3	2	25%	12%	38%	25%
	CTR	3	4	1	2	30%	40%	10%	20%
TROCC	NU	3	1	2	4	30%	10%	20%	40%
TB090	NUU	3	4	2	1	30%	40%	20%	10%
	OFV	3	4	1	2	30%	40%	10%	20%
	HV	2	3	1	4	20%	30%	10%	40%

ТВ	Metric	Rank			Confidence				
		NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	2	1	3	2	25%	12%	38%	25%
	CTR	3	4	1	2	30%	40%	10%	20%
TB100	NU	2	1	3	4	20%	10%	30%	40%
10100	NUU	3	4	1	2	30%	40%	10%	20%
	OFV	3	4	1	2	30%	40%	10%	20%
	HV	2	3	1	4	20%	30%	10%	40%

D.3 Experiment Results for RQ4

This section describes the results for Experiment Results for RQ4.

 ${\it TABLE~41} \\ {\it Results~for~the~Kruskal-Wallis~Test~among~Test~Case~Prioritization~Problems~(AW4)} \\$

Metric	ChiSq	DF	p
ANOU	41543.24	15	< 0.01

TABLE 42. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Test Case Prioritization Problems (AW4)

ProblemA	ProblemB	BestAlgorithmA	BestAlgorithmB	A12	p
ET_CTR_UM	ET_CTR_USP	NSGA2	NSGA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_USP	NSGA2	SPEA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_USP	SPEA2	NSGA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_USP	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_NU	NSGA2	MoCell	< 0.1	< 0.01
ET_CTR_UM	ET_CTR_NU	NSGA2	CellDE	< 0.1	< 0.01
ET_CTR_UM	ET_CTR_NU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_UM	ET_CTR_NU	SPEA2	CellDE	< 0.1	< 0.01
ET_CTR_UM	ET_CTR_NUU	NSGA2	NSGA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_NUU	NSGA2	SPEA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_NUU	SPEA2	NSGA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_UM_USP	NSGA2	NSGA2	>0.5	< 0.01
ET_CTR_UM	ET_CTR_UM_USP	SPEA2	NSGA2	>0.5	< 0.01
ET_CTR_UM	ET_CTR_UM_NU	NSGA2	MoCell	< 0.1	< 0.01
ET_CTR_UM	ET_CTR_UM_NU	NSGA2	CellDE	< 0.1	< 0.01
ET_CTR_UM	ET_CTR_UM_NU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_UM	ET_CTR_UM_NU	SPEA2	CellDE	< 0.1	< 0.01
ET_CTR_UM	ET_CTR_UM_NUU	NSGA2	NSGA2	>0.5	< 0.01
ET_CTR_UM	ET_CTR_UM_NUU	SPEA2	NSGA2	>0.5	< 0.01
ET_CTR_UM	ET_CTR_USP_NU	NSGA2	MoCell	< 0.1	< 0.01
ET_CTR_UM	ET_CTR_USP_NU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_UM	ET_CTR_USP_NUU	NSGA2	NSGA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_USP_NUU	NSGA2	SPEA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_USP_NUU	SPEA2	NSGA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_NU_NUU	NSGA2	CellDE	< 0.1	< 0.01
ET_CTR_UM	ET_CTR_NU_NUU	SPEA2	CellDE	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_NU	NSGA2	MoCell	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_NU	NSGA2	CellDE	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_NU	SPEA2	MoCell	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_NU	SPEA2	CellDE	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_NUU	NSGA2	NSGA2	< 0.5	< 0.05
ET_CTR_USP	ET_CTR_NUU	NSGA2	SPEA2	< 0.5	< 0.01
ET_CTR_USP	ET_CTR_NUU	SPEA2	NSGA2	< 0.5	>0.05
ET_CTR_USP	ET_CTR_NUU	SPEA2	SPEA2	< 0.5	< 0.05

ProblemA	ProblemB	BestAlgorithmA	BestAlgorithmB	A12	p
ET_CTR_USP	ET_CTR_UM_USP	NSGA2	NSGA2	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_UM_USP	SPEA2	NSGA2	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_UM_NU	NSGA2	MoCell	<0.1	< 0.01
ET_CTR_USP	ET_CTR_UM_NU	NSGA2	CellDE	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_UM_NU	SPEA2	MoCell	<0.1	< 0.01
ET_CTR_USP	ET_CTR_UM_NU	SPEA2	CellDE	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_UM_NUU	NSGA2	NSGA2	<0.1	< 0.01
ET_CTR_USP	ET_CTR_UM_NUU	SPEA2	NSGA2	<0.1	< 0.01
ET_CTR_USP	ET_CTR_USP_NU	NSGA2	MoCell	<0.1	< 0.01
ET_CTR_USP	ET_CTR_USP_NU	SPEA2	MoCell	<0.1	< 0.01
ET_CTR_USP	ET_CTR_USP_NUU	NSGA2	NSGA2	>0.5	>0.05
ET_CTR_USP	ET_CTR_USP_NUU	NSGA2	SPEA2	>0.5	< 0.05
ET_CTR_USP	ET_CTR_USP_NUU	SPEA2	NSGA2	>0.5	< 0.01
ET_CTR_USP	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.5	< 0.01
ET_CTR_USP	ET_CTR_NU_NUU	NSGA2	CellDE	<0.1	< 0.01
ET_CTR_USP	ET_CTR_NU_NUU	SPEA2	CellDE	<0.1	< 0.01
ET_CTR_NU	ET_CTR_NUU	MoCell	NSGA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_NUU	MoCell	SPEA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_NUU	CellDE	NSGA2	>0.9	<0.01
ET_CTR_NU	ET_CTR_NUU	CellDE	SPEA2	>0.9	<0.01
ET_CTR_NU	ET_CTR_UM_USP	MoCell	NSGA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_UM_USP	CellDE	NSGA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_UM_NU	MoCell	MoCell	<0.5	<0.01
ET_CTR_NU	ET_CTR_UM_NU	MoCell	CellDE	>0.5	>0.01
ET_CTR_NU	ET_CTR_UM_NU	CellDE	MoCell	<0.5	<0.01
ET_CTR_NU	ET_CTR_UM_NU	CellDE	CellDE	<0.5	< 0.01
ET_CTR_NU	ET_CTR_UM_NUU	MoCell	NSGA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_UM_NUU	CellDE	NSGA2	>0.9	< 0.01
ET_CTK_NU	ET_CTR_USP_NU	MoCell	MoCell	>0.9	< 0.01
ET_CTR_NU	ET_CTR_USP_NU	CellDE	MoCell	<0.5	< 0.01
ET_CTK_NU	ET_CTR_USP_NUU	MoCell	NSGA2	>0.9	< 0.01
ET_CTK_NU	ET_CTR_USP_NUU	MoCell	SPEA2	>0.9	< 0.01
ET_CTK_NU	ET_CTR_USP_NUU	CellDE	NSGA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_USP_NUU	CellDE	SPEA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_NU_NUU	MoCell	CellDE	>0.9	< 0.01
ET_CTK_NU	ET_CTR_NU_NUU	CellDE	CellDE	<0.5	< 0.03
ET_CTK_NUU	ET_CTR_UM_USP	NSGA2	NSGA2	<0.3	< 0.01
ET_CTK_NUU	ET_CTR_UM_USP	SPEA2	NSGA2 NSGA2	<0.1	< 0.01
ET_CTR_NUU	ET_CTR_UM_NU	NSGA2	MoCell	<0.1	< 0.01
ET_CTR_NUU ET_CTR_NUU	ET_CTR_UM_NU	NSGA2 NSGA2	CellDE	<0.1	< 0.01
ET_CTR_NUU ET_CTR_NUU	ET_CTR_UM_NU	SPEA2	MoCell	<0.1	< 0.01
ET_CTK_NUU ET_CTR_NUU	ET_CTR_UM_NU ET_CTR_UM_NU	SPEA2 SPEA2	CellDE	<0.1	<0.01
ET_CTR_NUU ET_CTR_NUU	ET_CTR_UM_NUU	NSGA2	NSGA2	<0.1	<0.01
ET_CTR_NUU ET CTR NUU	ET_CTR_UM_NUU ET_CTR_UM_NUU	SPEA2	NSGA2 NSGA2	<0.1	< 0.01
ET_CTR_NUU ET_CTR_NUU	ET_CTR_USP_NU	NSGA2	MoCell	<0.1	< 0.01
ET_CTR_NUU ET_CTR_NUU	ET_CTR_USP_NU ET_CTR_USP_NU	SPEA2	MoCell	<0.1	<0.01
ET_CTR_NUU ET_CTR_NUU	ET_CTR_USP_NUU	NSGA2	NSGA2	>0.1	< 0.01
ET_CTR_NUU ET_CTR_NUU	ET_CTR_USP_NUU	NSGA2 NSGA2	SPEA2	>0.5	< 0.01
ET_CTR_NUU ET_CTR_NUU	ET_CTR_USP_NUU ET_CTR_USP_NUU	SPEA2	NSGA2	>0.5	< 0.01
ET_CTR_NUU ET_CTR_NUU	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.5	< 0.01
ET_CTR_NUU ET_CTR_NUU	ET_CTR_NU_NUU	NSGA2	CellDE	<0.1	< 0.01
ET_CTR_NUU ET_CTR_NUU	ET_CTR_NU_NUU	SPEA2	CellDE	<0.1	< 0.01
ET_CTR_NOU ET_CTR_UM_USP	ET_CTR_UM_NU	NSGA2	MoCell	<0.1	< 0.01
ET_CTR_UM_USP	ET_CTR_UM_NU	NSGA2	CellDE	<0.1	< 0.01
ET_CTR_UM_USP	ET_CTR_UM_NUU	NSGA2 NSGA2	NSGA2	>0.1	< 0.01
ET_CTR_UM_USP	ET_CTR_USP_NU	NSGA2 NSGA2	MoCell	>0.5 <0.1	<0.01
ET_CTR_UM_USP	ET_CTR_USP_NUU	NSGA2 NSGA2	NSGA2	>0.1	< 0.01
ET_CTR_UM_USP	ET_CTR_USP_NUU ET_CTR_USP_NUU	NSGA2 NSGA2	SPEA2	>0.9	<0.01
LI_CIK_OWI_OSI	L1_C1K_001_1100	NOGAZ	JI LAZ	/0.9	\U.U1

ProblemA	ProblemB	BestAlgorithmA	BestAlgorithmB	A12	р
ET_CTR_UM_USP	ET_CTR_NU_NUU	NSGA2	CellDE	< 0.1	< 0.01
ET_CTR_UM_NU	ET_CTR_UM_NUU	MoCell	NSGA2	>0.9	< 0.01
ET_CTR_UM_NU	ET_CTR_UM_NUU	CellDE	NSGA2	>0.9	< 0.01
ET_CTR_UM_NU	ET_CTR_USP_NU	MoCell	MoCell	>0.5	< 0.01
ET_CTR_UM_NU	ET_CTR_USP_NU	CellDE	MoCell	>0.5	< 0.01
ET_CTR_UM_NU	ET_CTR_USP_NUU	MoCell	NSGA2	>0.9	< 0.01
ET_CTR_UM_NU	ET_CTR_USP_NUU	MoCell	SPEA2	>0.9	< 0.01
ET_CTR_UM_NU	ET_CTR_USP_NUU	CellDE	NSGA2	>0.9	< 0.01
ET_CTR_UM_NU	ET_CTR_USP_NUU	CellDE	SPEA2	>0.9	< 0.01
ET_CTR_UM_NU	ET_CTR_NU_NUU	MoCell	CellDE	>0.5	< 0.01
ET_CTR_UM_NU	ET_CTR_NU_NUU	CellDE	CellDE	>0.5	< 0.05
ET_CTR_UM_NUU	ET_CTR_USP_NU	NSGA2	MoCell	< 0.1	< 0.01
ET_CTR_UM_NUU	ET_CTR_USP_NUU	NSGA2	NSGA2	>0.9	< 0.01
ET_CTR_UM_NUU	ET_CTR_USP_NUU	NSGA2	SPEA2	>0.9	< 0.01
ET_CTR_UM_NUU	ET_CTR_NU_NUU	NSGA2	CellDE	< 0.1	< 0.01
ET_CTR_USP_NU	ET_CTR_USP_NUU	MoCell	NSGA2	>0.9	< 0.01
ET_CTR_USP_NU	ET_CTR_USP_NUU	MoCell	SPEA2	>0.9	< 0.01
ET_CTR_USP_NU	ET_CTR_NU_NUU	MoCell	CellDE	< 0.5	>0.05
ET_CTR_USP_NUU	ET_CTR_NU_NUU	NSGA2	CellDE	< 0.1	< 0.01
ET_CTR_USP_NUU	ET_CTR_NU_NUU	SPEA2	CellDE	< 0.1	< 0.01