Lecture 2. Images and Transformations Images, sampling and quantization

Juan Carlos Niebles and Jiajun Wu CS131 Computer Vision: Foundations and Applications

Types of Images

Binary image representation

Grayscale image representation

 $\mathbf{D} \sim \mathbf{c}$

Color image representation

B channel

G channel

R channel

Slide credit: Ulas

Color image - one channel

R channel

Types of Images

Color

Digital Images are sampled

What happens when we zoom into the images we capture?

Errors due to Sampling

Resolution

is a **sampling** parameter, defined in dots per inch (DPI) or equivalent measures of spatial pixel density

Images are Sampled and Quantized

An image contains discrete number of pixels

-Pixel value:

"grayscale"(or "intensity"): [0,255]

Images are Sampled and Quantized

• An image contains discrete number of pixels

-Pixel value:

"grayscale"(or "intensity"): [0,255]

• "color"

-RGB: [R, G, B]

[249, 215, 203]

With this loss of information (from sampling and quantization),

Can we still use images for useful tasks?

Summary

- Image types (binary, grayscale, color)
- Images are sampled and quantized