PART ABSTRACTS OF JAR

(11)Publication number:

2000-319760

(43)Date of publication of application: 21.11.2000

(51)Int.CI.

C22C 38/00 C22C 38/06 C22C 38/60 F16C 19/00 F16C 33/12 F16C 33/32 F16C 33/62 F16H 55/06 // C21D 6/00

(21)Application number: 11-126331

(22)Date of filing:

06.05.1999

(71)Applicant : KOBE STEEL LTD

(72)Inventor: YASUKI SHINICHI

ABE SATOSHI ICHINOSE RIICHI

(54) STEEL FOR MACHINE STRUCTURE EXCELLENT IN FATIGUE CHARACTERISTIC AND DAMPING PROPERTY

(57)Abstract:

PROBLEM TO BE SOLVED: To produce steel for machine structure exhibiting excellent damping properties even after working without exerting undesirable influence on its strength characteristics, wear resistance, or the like, and to provide steel parts for machine structure.

SOLUTION: The area ratio of graphite occupied in the steel structure is 2 to 15%, also, the maximum grain size of graphite is ≤ 30 mm, and, as the main components, by weight, 0.1 to 2% C, $\le 3.0\%$ Si, $\le 3.0\%$ Mn, $\le 0.03\%$ P, $\le 0.1\%$ S, 0.0003 to 0.015% B, $\le 0.5\%$ Al and 0.001 to 0.03% N are contained.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-319760 (P2000-319760A)

(43)公開日 平成12年11月21日(2000.11.21)

(51) Int.Cl.7		識別記号		FΙ			ī	7]}*(参考)
C 2 2 C	38/00	301		C 2 2 C	38/00		301Z	3 J O 1 1
							301N	3 J 0 3 0
	38/06	•			38/06			3 J 1 O 1
	38/60				38/60			
F16C	19/00			F16C	19/00			•
			審査請求	未請求請求	杉項の数7	OL	(全 11 頁)	最終頁に続く
(21)出願番		特顧平11-126331	•	(71)出願	人 000001	199		
					株式会	社神戸	製鋼所	
(22)出顧日		平成11年5月6日(1999.	5. 6)		兵庫県	神戸市	中央区脇浜町	1丁目3番18号
		•		(72)発明	者 安木	真一		
					神戸市	群区舞	浜東町2番地	株式会社神戸
		•			製鋼所	神戸製	鉄所内	•
				(72)発明	者 安部	聡		
					神戸市	機区機	浜東町2番地	株式会社神戸
•					製鋼所	神戸製	鉄所内	
				(74)代理	人 100067	828		
				1				

最終頁に続く

(外1名)

(54) 【発明の名称】 疲労特性と制振性に優れた機械構造用鋼

(57)【要約】 (修正有)

【課題】 強度特性や耐摩耗性などに悪影響を及ぼすことなく、また加工後においても優れた制振性を示す機械構造用鋼と機械構造用鋼部品を提供すること。

【解決手段】 鋼組織中に占める黒鉛の面積率が2~15%であり、且つ黒鉛の最大粒径が30μm以下で、主成分としてCを0.1~2wt%、Siを3.0%以下、Mnを3.0%以下、Pを0.03%以下、Sを0.1%以下、Bを0.003~0.015wt%、A1を0.5%以下、Nを0.001~0.03wt%を含む低合金鋼。

弁理士 小谷 悦司

【特許請求の範囲】

【請求項1】 鋼組織中に占める黒鉛の面積率が2~1 5%であり、且つ黒鉛の最大粒径が30μm以下である ことを特徴とする疲労特性と制振性に優れた機械構造用 鋼。

【請求項2】 鋼の成分組成が、質量%で、

 $C : 0. 1 \sim 2. 0\%$

Si: 3.0%以下、

Mn: 3. 0%以下、

P:0.03%以下、

: 0. 1%以下、

B: 0. 0003 \sim 0. 015%

A1:0.5%以下、

 $N: 0. 001 \sim 0. 03\%$

残部:Feおよび不可避的不純物

を満たすものである請求項1に記載の機械構造用鋼。

【請求項3】 鋼が、他の元素として、Cu:2.0% 以下、Ni:3.0%以下、Cr:2.5%以下、M o:1.0%以下、V:1.0%以下、Ca:0.01 %以下、Zr:0.2%以下、Ti:0.1%以下、N 20 b:0.1%以下、Co:0.5%以下、W:0.1% 以下よりなる群から選択される少なくとも1種の元素を 含むものである請求項2に記載の機械構造用鋼。

【請求項4】 鋼が、更に他の元素として、Pb:0. 4%以下、Bi: 0.3%以下、Te: 0.3%以下、 Se: 0. 3%以下、Rem: 0. 2%以下よりなる群 から選択される少なくとも1種の元素を含むものである 請求項2または3に記載の機械構造用鋼。

【請求項5】 焼入れ焼戻し処理後の状態で、鋼組織中 に占める黒鉛の面積率が2~15%であり、且つ黒鉛の 30 最大粒径が30μm以下であることを特徴とする疲労特 性と制振性に優れた機械構造用鋼部品。

【請求項6】 表面硬化処理後の状態で、表面硬化層に おける黒鉛の面積率が2~15%であり、且つ黒鉛の最 大粒径が30μm以下であることを特徴とする疲労特性 と制振性に優れた機械構造用鋼部品。

【請求項7】 鋼材が、請求項2~4のいずれかに記載 の成分組成を満たすものである請求項5または6に記載 の機械構造用鋼部品。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、産業機械および自 動車、電化製品等の部品素材として用いられる特に疲労 特性と制振性の改善された機械構造用鋼に関し、この機 械構造用鋼は、例えばシャフト、歯車、軸受の如き高レ ベルの疲労特性と制振性が求められる機械構造用鋼製部 品として極めて有効に活用できる。

[0002]

【従来の技術】精密機械・装置などに使用されるシャフ トや軸受、自動車などの変速機や差動装置に使用される 50 C : 0.1~2.0%、

歯車などの機械構造用部品においては、これら機械構造 用部品の回転中に発生する異音や振動を抑制することが 求められている。そこで、設計面から寸法精度を高めた り、装置全体をカバーすることにより異音を抑える方法 などの対策が採られている。また歯車をファインピッチ 化することによって異音を抑制する方法も試みられてい

【0003】ところが構造上の対策には自ずと限度があ るので、部品素材面からの制振性付与対策も種々講じら 10 れており、例えば下記の様な制振材料が提案されてい

【0004】①複合型制振材料:母相と第2相、または 金属と粘弾性物質の界面での粘性流動を利用して制振を 与えた制振材料(例えば、片状黒鉛鋳鉄など)、

②強磁性型制振材料:磁壁の移動に伴う磁気的・機械的 ヒステリシスを利用して制振性を与えた制振材料(例え ば、12%Cr鋼など)、

③転位型制振材料:転位が固着点から離脱するために生 じるヒステリシスを利用して制振性を与えた制振材料 (例えば、Mg合金など)。

【0005】これらの制振材料を用いることにより、騒 音の低減はある程度達成できるが、それぞれ次の様な問 題が指摘されている。

【0006】①複合型制振材料:制振性の向上は認めら れるものの必ずしも十分とは言えず、より一層の向上が 求められる。また、鋼素材中に黒鉛を多量残存させるこ とにより制振性が向上することは確認されているが、反 面、疲労強度が低下するという問題を生じる、

②強磁性型制振材料:この素材は優れた制振性を示す が、加工歪を受けると磁壁の移動が小さくなって制振性 が低下するため、加工部品としては必ずしも満足のいく 制振性が得られない、

③転位型制振材料:加工歪を受けると制振性が大幅に低 下するため、やはり加工部品としての制振性は不十分で ある。

[0007]

【発明が解決しようとする課題】本発明は上記の様な事 情に着目してなされたものであって、その目的は、強度 特性や耐摩耗性などに悪影響を及ぼすことなく、また加 40 工後においても優れた制振性を示す機械構造用鋼と機械 構造用鋼部品を提供することにある。

[8000]

【課題を解決するための手段】上記課題を解決すること のできた本発明の機械構造用鋼は、鋼組織中に占める黒 鉛の面積率が2~15%で、且つ黒鉛の最大粒径が30 μm以下であり、疲労特性と制振性が共に改善された機 械構造用鋼である。

【0009】本発明に係る上記機械構造用鋼の好ましい 成分組成は、質量%で、

Si:3.0%以下、Mn:3.0%以下、

P:0.03%以下、

S : 0. 1%以下、

B: 0. 0003 \sim 0. 015%

A1:0.5%以下、

 $N: 0. 001 \sim 0. 03\%$

残部:Feおよび不可避的不純物

を満たし、あるいは、これらに加えてCu: 2.0%以下、Ni: 3.0%以下、Cr: 2.5%以下、Mo: 10 1.0%以下、V: 1.0%以下、Ca: 0.01%以下、Zr: 0.2%以下、Ti: 0.1%以下、Nb: 0.1%以下、Co: 0.5%以下、W: 0.1%以下 はりなる群から選択される少なくとも1種の元素を含み、あるいは更に、Pb: 0.4%以下、Bi: 0.3%以下、Te: 0.3%以下、Se: 0.3%以下、Rem: 0.2%以下よりなる群から選択される少なくとも1種の元素を含む鋼材である。

【0010】また本発明に係る機械構造用鋼部品とは、 焼入れ焼戻し処理後の状態、あるいは表面硬化処理後の 20 状態で、鋼組織中に占める黒鉛の面積率が同様に2~1 5%であり、且つ黒鉛の最大粒径も同様に30μm以下 で、部品状態で優れた疲労特性と制振性を兼ね備えたも のであるところに要旨がある。

[0011]

【発明の実施の形態】本発明者らは前述した様な従来技術の下で、安定した制振性を示す複合型制振材料である 黒鉛鋼に注目し、一層の制振性向上とそれに伴う疲労特性の劣化防止を期して改良研究を進めてきた。

【0012】先に述べた様に、鋼組織中に黒鉛を残存させることによって制振性が向上することは既に公知となっており、疲労強度を必要としない鋳鉄分野では多く利用されている。また機械構造用鋼であっても、疲労強度がそれほど必要とされない部品には黒鉛鋼が適用されているが、疲労強度が重視される機械構造部品には殆ど適用されていない(特開平3-75331号公報など)。

【0013】本発明者らは上記の様な状況の下で、黒鉛 鋼組織中における黒鉛の存在形態を改善すれば、疲労強 度を低下させることなく制振性を高めることができるの ではないかと考え、その線に沿って研究を重ねた。その 40 結果、鋼組織中に存在する黒鉛の最大粒径と面積率を適 正に制御してやれば、制振性と疲労特性を兼ね備えた機 被構造用鋼が得られることを知り、上記本発明に想到したものである。

【0014】以下、本発明において黒鉛の面積率と最大 粒径を規定し、あるいは更に好ましい鋼材組成を定めた 理由を、後述する実施例データの解析を含めて詳細に説 明していく。

【0015】図1~11は、後記実施例のデータを基に て浸炭窒化層の黒鉛を消失させ、非浸炭層のみに黒鉛 して、鋼組織中における黒鉛の面積率および黒鉛の最大 50 残存させた制振性の優れた転がり軸受が開示されてい

粒径が内部摩擦(制振性)と疲労強度に与える影響を整理して示したグラフである。ここで黒鉛の面積率は、鋼材の表面下0.1mmの位置を光学顕微鏡で写真撮影 (×400、3視野)した後、画像解析によって求め、また黒鉛の最大粒径は、画像解析により求めた長径と短径の和の1/2として算出した。また疲労強度および内部摩擦の測定法は、後記実施例の項に示す通りであり、内部摩擦とは制振性を表すパラメータで、内部摩擦が大きいほど制振性は良好と判断できる。

【0016】まず図1~3は、様々の成分組成の鋼材について、鍛造(または圧延)後に黒鉛化処理したものの黒鉛の面積率と最大粒径が内部摩擦(制振性)と疲労特性に与える影響を示したグラフであり、図1からも明らかな様に、黒鉛の面積率が増大するにつれて内部摩擦は増大し制振性が向上する。その傾向は黒鉛の面積率が2%以上で顕著に現われ、2%未満では満足のいく制振性を与えることができない。そして該面積率が2%以上、より好ましくは5%以上であるものは、安定して高い内部摩擦を示し優れた制振性を発揮することが分かる。

【0017】また図2は、黒鉛の面積率と疲労強度の関係を示したグラフであり、この図からも明らかな様に、 黒鉛の面積率が15%以下であれば疲労強度の低下は殆 ど認められないが、該面積率が15%を超えると疲労強 度が急激に低下してくる。従って、疲労強度の低下を招 くことなく内部摩擦を十分に増大して制振性を高めるに は、黒鉛の面積率を2~15%の範囲に制御すべきであ ることが分かる。

【0018】次に図3は、黒鉛の最大粒径と疲労強度の関係を示したグラフであり、最大粒径が30μmを超えると疲労強度は大幅に低下してくる。従って、優れた疲労強度を確保するには、前述した黒鉛の面積率に加えて最大粒径を30μm以下に抑えることが必須となる。

【0019】また図4~6は、後記実施例の表3に示す化学成分の鋼材を使用し、鍛造(または圧延)→黒鉛化処理→機械加工→焼入れ焼戻し処理を行なったもの、更に図7~9は、後記実施例の表5に示す化学成分の鋼材を使用し、鍛造(または圧延)→黒鉛化処理→機械加工→表面硬化(浸炭)処理を行なったものについて、上記と同様に黒鉛の面積率と最大粒径が内部摩擦(制振性)および疲労強度に与える影響を示したグラフである。これらの図からも明らかな様に、焼入れ焼戻し後の鋼あるいは表面硬化処理後の鋼についても、前記図1~3の場合と同様に、黒鉛の面積率を2~15%の範囲とし且つ最大粒径を30μm以下に抑えることによって、高レベルの疲労強度を維持しつつ優れた制振性を確保できることが分かる。

【0020】ところで特開平9-125203号公報には、転がり軸受に黒鉛鋼を適用し、浸炭窒化処理を施して浸炭窒化層の黒鉛を消失させ、非浸炭層のみに黒鉛を残存させた制振性の優れた転がり軸受が開示されてい

る。 【0021】しかし本発明者らが実験によって確認した ところによると、黒鉛を無作為に残存させるだけでは制 振性の確実な向上を果たすことはできず、上記の様に黒 鉛の面積率で2%以上を確保することが制振性の向上に 必須の要件となる。しかも高レベルの疲労特性を維持す るには、黒鉛の面積率を15%以下に抑えると共に、黒 鉛の最大粒径を30μm以下に抑えることが必須となる のである。

5

【0022】また本発明では、焼入れ焼戻し処理または 10 表面硬化処理後の状態で、鋼組織中に所定の面積率と最 大粒径を満たす黒鉛を存在させることが必要であり、こ れら焼入れ焼戻し処理あるいは表面硬化処理時に黒鉛が マトリックス中に溶解して消失すると、本発明で意図す る優れた制振性を得ることができなくなる。

【0023】そこで、本発明で定める上記黒鉛の面積率 や最大粒径を確保するには、鋼材の成分組成も重要であ り、焼入れ焼戻し処理や表面硬化処理前の鋼材中に存在 する黒鉛をより安定化しておくことが必要となる。

【0024】こうした観点から、本発明では鋼材の好ま しい成分組成を下記の様に規定するが、特に適量のBを 含有させることによって黒鉛の安定化を図り、表面硬化 などの処理時に黒鉛がマトリックス中に溶解し難くする ことが極めて有効となる。この時、B添加に加えてCa やZrの1種以上を適量含有させると、鋼組織中の黒鉛 は更に安定化するので、制振性の向上に極めて有効であ

【0025】以下、本発明で使用する鋼材の好ましい成 分組成の限定理由について説明する。

[0026] C: 0. 1~2. 0%

制振性向上のための黒鉛を生成させるために必須の元素 であり、0.1%未満では黒鉛の生成量が不十分となっ て満足のいく制振性が得られ難くなる。従って0. 1% 以上、より好ましくは0.2%以上含有させるべきであ るが、C量が多くなり過ぎると、鋼組織中に残存するセ メンタイト量が多くなって鋼が硬質化し、被削性などの 加工性に悪影響を及ぼす様になるので、2.0%以下、 より好ましくは1.5%以下に抑えるべきである。

【0027】Si:3.0%以下

黒鉛化促進のために有効に作用する元素であり、その効 40 果は、Siを好ましくは0.1%以上含有させることに よって有効に発揮される。しかしながらSi含有量が多 くなり過ぎると、鋼が硬質化して被削性や加工性に悪影 響を及ぼす様になるので、3.0%以下、より好ましく は2.0%以下に抑えることが望ましい。

【0028】Mn:3.0%以下

鋼材中に混入してくるSをMnSとして捕捉することに より、熱間加工性に悪影響を及ぼすFeSの析出を抑え る作用を有しており、不可避的に混入してくるS量にも よるが、通常は0.2%以上含有させることによってそ 50 作用を有しており、安定した心部硬さを確保するために

の効果は有効に発揮される。しかしMn量が多くなり過 ぎると、黒鉛化が阻害されて制振性の向上に悪影響を及 ぼす様になるので、3.0%以下、より好ましくは2. 0%以下に抑えるのがよい。

【0029】P:0.03%以下

Pは結晶粒界に偏折して靭性を低下させるので、Q.O 3%以下、より好ましくは0.02%以下に抑えるべき である。

【0030】S:0.1%以下

SはMnSを生成して被削性の向上に有効に作用する反 面、シャフトや歯車などに適用する場合、縦目の衝撃特 性だけでなく横目の衝撃特性にも悪影響を及ぼす。そし て、特に横目の衝撃特性を高めるには異方性を低減する ことが必要であり、そのためにはS含有量を0.1%以 下、より好ましくは0.03%以下に抑えることが望ま しい。

 $[0031]B:0.0003\sim0.015\%$ Bは黒鉛を安定化するために極めて有効な元素であり、 その効果を有効に発揮させるには0.0003%以上含 有させることが望ましい。しかし、その効果は0.01 5%でほぼ飽和するので、それ以上の添加は経済的に無 駄である。

【0032】A1:0.5%以下

Alも黒鉛化を促進する作用を有しているが、所定量の Bを含む成分系では必ずしも必須ではない。しかし、A 1を少量含有させると黒鉛化が更に増進されるので、好 ましくは0.005%程度以上含有させることが望まし い。但し、Al含有量が多くなり過ぎると、酸化物系介 在物量の増大によって鋳片割れや加工割れを起こし易く なるので、0.5%以下、より好ましくは0.4%以下 に抑えることが望まれる。

[0033] N:0. $001\sim0$. 03%

Nは、前記Bと結合してBNを生成し黒鉛の安定化に有 効に作用する。その作用を有効に発揮させるには0.0 01%以上含有させるべきであるが、その作用は0.0 3%で飽和するばかりでなく、N量が多くなり過ぎると 冷間加工性等に悪影響を及ぼす様になるので、0.03 %以下に抑えるべきである。

【0034】Cu:2.0%以下

Cuは鋼材の耐食性向上に有効に作用するが、その効果 は2.0%で飽和するばかりでなく、多過ぎると熱間加 工性に悪影響を及ぼす様になるので、2.0%以下に抑 えることが望ましい。ただしCuの単独添加では、少量 の添加でも熱間加工性を劣化させるので、Cuを添加す る場合は、熱間加工性に対して改善効果を有するNiを Cu含有量に対して70%以上含有させることが望まし い。

【0035】Ni:3.0%以下

Niは浸炭処理後の鋼材組織を微細化して靱性を高める

極めて有用な元素である。しかも黒鉛化を阻害することもないので、制振性鋼材の含有元素としては有用な元素であり、通常は0.2%程度以上含有させることが望ましい。しかしこうしたNiの効果は約3.0%で飽和するので、それ以上の添加は無駄であり、好ましくは2.0%以下に抑えられる。

【0036】Cr:2.5%以下

Crは焼入れ性の向上に有用な元素であり、その効果は 0.2%程度以上含有させることによって有効に発揮される。しかしCr量が多くなり過ぎると、Crが粒界に 10 偏折して炭化物を生成し、粒界強度を低下させて靱性劣化を引き起こすので、Cr量は2.5%以下、より好ましくは2.0%以下に抑えるべきである。

【0037】Mo:1.0%以下

Moは粒界強度の向上に有効に作用する他、不完全焼入れ組織を低減すると共に焼入れ性の確保に有用な元素であり、その効果は一般的に0.05%程度以上含有させることによって有効に発揮される。しかしそれらの効果は1.0%で飽和するので、それ以上の添加は経済的に無駄である。

【0038】V:1.0%以下

Vは、前述したCやNと結合して炭化物、窒化物あるいは炭・窒化物を生成し、結晶粒を微細化して靱性の向上に有効に作用する。その作用は0.05%程度以上含有させることによって有効に発揮されるが、過剰量の添加は被削性に悪影響を及ぼすので、1.0%以下、より好ましくは0.8%以下に抑えるべきである。

【0039】Ca:0.01%以下

前記Bと同様に黒鉛を安定化するうえで有効な元素であるが、その効果は0.01%で飽和し、却って衝撃特性 30 などの強度特性に悪影響を及ぼす恐れが生じてくるので、0.01%以下に抑えることが望ましい。

【0040】Zr:0.2%以下

2rも黒鉛の安定化に有効に作用するが、その効果は 0.2%で飽和し、却って衝撃特性などの強度特性を阻 害する傾向が生じてくるので、0.2%以下に抑えるべ きである

【0041】Ti:0.1%以下、Nb:0.1%以下、Co:0.5%以下、W:0.1%以下よりなる群から選ばれる少なくとも1種

これらの元素は部品成形後に表面硬化処理を行う際に、 焼入れ性を高める作用を有しているが、いずれも黒鉛化 を抑制するマイナス作用を有しているので、黒鉛化を阻 害しない範囲でそれぞれの上限を定めている。

【0042】Pb:0.4%以下、Bi:0.3%以下、Te:0.3%以下、Se:0.3%以下、Re

m: 0. 2%以下よりなる群から選ばれる少なくとも1 種

これらの元素は、部品加工時の被削性改善に有効に作用する。しかしいずれも黒鉛化を抑制する作用を有しているので、黒鉛化を阻害しない範囲で各元素含有率の上限を決定した。

【0043】なお、上記成分組成を満たす鋼材を使用すれば、本発明で規定する前記黒鉛の面積率および最大粒径の要件を満たす鋼材を得ることができ、且つこの鋼材は、部品状に加工してから焼入れ焼戻し処理や表面硬化処理を施した後も、黒鉛の好適面積率と最大粒径を維持し、高レベルの疲労特性を維持しつつ優れた制振性を示すものとなるが、上記黒鉛の好ましい面積率と最大粒径をより確実に得る上で好ましい熱処理条件や、その後の好ましい焼入れ焼戻し処理あるいは表面硬化処理条件を示すと次の通りである。

【0044】熱処理条件:650~800℃×3.5時間以上加熱してから空冷

焼入れ焼戻し条件:

20 焼入れ: 750~950℃×30分以上加熱してから油 冷または水冷

焼戻し:100~250℃×60分以上加熱してから空 冷

表面硬化処理条件: 750~980℃×50分以上加熱 してから油冷。

[0045]

【実施例】以下、実施例を挙げて本発明をより具体的に 説明するが、本発明は下記実施例によって制限を受ける ものではなく、前・後記の趣旨に適合し得る範囲で適当 に変更を加えて実施することも可能であり、それらはい ずれも本発明の技術的範囲に包含される。

【0046】実施例1

表1に示すNo. 1 a ~ 2 4 a の化学組成を有する鋼材を溶製した後、直径 3 0 mmの棒状に鍛造(または圧延)し、黒鉛化処理(T℃× t 時間→空冷)した後、機械加工により図 1 0に示す回転曲げ疲労試験片と、幅 5 mm×厚さ 0. 7 mm×長さ 1 0 5 mmの内部摩擦試験片を作製し、回転曲げ疲労試験および内部摩擦試験を行った。内部摩擦試験は、ねじり振り子型内部摩擦測定装置を用40 いて歪振幅 1×10⁻³、周波数 1. 3 H z で行った。

【0047】黒鉛の面積率は、各供試材における表面下 0.1mmの位置を光学顕微鏡写真撮影(×400、3 視野)し、これを画像解析して黒鉛の面積率および最大 粒径を求めた。結果を表2および図1~3に示す。

[0048]

【表1】

!(6) 000-319760 (P2000-31058

. 1						11	学成分	(mass	96)					
類No.	С	Si	Mn	P	S	В	Al	2	Cu	Ni	Cr	Мо	>	その他
1a	0.25	2.61	0.92	0.012	0.018	0.0025	0.022	0.008						
2a	0.40	1.25	0.35	0.005	0.025	0.0020	0.032	0.011						
За	0.63	1.27	0.77	0.002	0.053	0.0018	0.035	0.009						
40	0.84	1.08	0.50	0.007	0.008	0.0123	0.036	0.012						
Бa	1.06	0.23	2.68	0.022	0.035	0.0034	0.021	0.017						
6a	1.57	0.08	1.21	0.009	0.009	0.0008	0.021	0.007						
75	1.86	0.86	1.24	0.005	0.008	0.0012	0.086	0.011					1	
8a	0.65	1.22	0.83	0.011	0.014	0.0026	0.352	0.012	0.15	0.84				
9а	0.61	0.99	0.52	0.010	0.003	0.0032	0.035	0.010			0.35		1	Ca: 0.005
10a	0.79	0.07	0.75	0.007	0.006	0.0016	0.022	0.013	<u> </u>			0.49	<u> </u>	· Zr; 0.08
11a	0.55	0.45	0.86	0.012	0.010	0.0035	0.036	0.008					0.38	Ca:0.003, Zr:0.04
12a	0.84	1.18	0.65	0.008	0.005	0.0024	0.030	0.015		<u> </u>		L	<u> </u>	Ti: 0.03. Nb: 0.058
13a	0.80	1.09	0.32	0.003	0.002	0.0018	0.411	0.010					<u> </u>	Co: 0.12, W: 0.02
14a	0.83	1.11	0.34	0.010	0.007	0.0021	0.029	0.009		<u> </u>	<u> </u>	<u> </u>	<u> </u>	Pb:0.18
15a	1.03	0.05	0.67	0.008	0.002	0.0058	0.033	0.009		<u> </u>			<u> </u>	Bi: 0.21
16a	0.58	1.55	0.33	0.003	0.004	0.0021	0.030	0.010			<u> </u>	<u> </u>	<u> </u>	REM:0.09
17a	0.25	.2.61	0.92	0.012	0.018	0.0025	0.022	0.008			<u> </u>	L	<u> </u>	
18a	0.40	1,25	0.35	0.005	0.025	0.0020	0.032	0.011	1				<u> </u>	
19a	0.63	1.27	0.77	0.002	0.053	0.0018	0.035	0.009	1	L	<u> </u>	ļ		
20a	0.84	1.08	0.50	0.007	0.008	0.0123	0.036	0.012			<u> </u>	<u> </u>	1	
21a	3.12	1.87	0.53	0.008	0.019	L	0.034	0.009	<u> </u>		<u> </u>	L		
22a	3.57	1.58	0.35	0.002	0.039] -	0.027	0.014	1					
23a	0.61	1.21	0.72	0.005	0.038	1	0.030	0.009				<u> </u>		
24a	0.84	1.10	0.49	0.005	0.012	T	0.032	0.008	L			<u> </u>	<u> </u>	1

[0049]

【表2】

4571	黒鉛化条件		無	鉛	疲労強度	内部摩擦
鋼No.	温度T(℃)	時間((時間)	面積率(%)	最大粒径(μm)	(N/mm²)	(Q ⁻¹ , × 10 ⁻⁴
1a	700	20	4.0	9	230	5.3
28	700	20	6.8	7	245	6.1
3n	700	20	8.9	8	240	7.8
4a	700	20	10.5	12	255	8.0
5a	700	20	11.8	14	260	9.2
6a	700	20	13.1	19	245	7.6
7a	700	20	14.8	27	290	10.5
8a	700	20	7.6	8	320	9.5
9a	700	20	8.0	9	300	7.7
10a	700	20	9.3	11	315	8.0
11a	700	20	8.7	9	250	6.5
120	700	20	11.6	14	245	7.2
13a	700	20	12.0	13	250	7.7
14a	700	20	12.4	12	250	9.8
15a	700	20	10.5	16	280	7.0
16a	700	20	5.9	10	230	8.4
17a		0	0.0	0	255	1.9
18a		0	0.0	0	350	1.8
19a		0	0.0	0	360	2.0
20a	_	0	0.0	0	360	2.0
21a	700	20	20.0	34	120	12.5
22a	700	20	21.2	36	110	13.1
23a	700	3	0.1	1	350	1.9
24a	700	3	0.3	2	360	2.0

【0050】表1,2および図1~3から明らかな様に、鋼No.1a~16aは、本発明で定める黒鉛の面積率および最大粒径の要件を満たしており、化学成分も適正であるので、高レベルの疲労強度を維持しつつ優れた内部摩擦(制振性)を示している。

【0051】これらに対し鋼No.17a~20aは、 黒鉛の面積率が不足するため内部摩擦が小さく、満足な 制振性が得られない。また鋼No.21a~22aは、 鋼中のC量が好適範囲を超えているため、黒鉛の最大粒径が過大となり疲労強度が低下している。鋼No.23 a~24 aは、黒鉛の面積率が規定範囲に満たないため内部摩擦が低く、満足のいく制振性が得られない。

【0052】実施例2

表3に示した鋼No. 1 b~26 bの化学組成を有する 鋼材を溶製した後、直径30mmの棒状に鍛造(または 圧延)し、黒鉛化処理(700℃×20Hr→空冷)して

11
から、機械加工により図 2に示す回転曲げ疲労試験片と、幅5mm×厚さ0.7mm×長さ105mmの内部 摩擦試験片を作製した。機械加工後、焼入れ(T℃× t分→60℃油冷)・焼戻し処理(450℃×2Hr→空冷)を施してから、回転曲げ疲労試験および内部摩擦試験を行った。

【0053】内部摩擦試験は、ねじり振り子型内部摩擦

測定装置を用い、歪振幅1×10⁻³、周波数1 3Hzで行なった。また黒鉛の面積率は、各供試鋼の表面下0.1mmの位置を光学顕微鏡で写真撮影(×400、3視野)した後、画像解析により黒鉛の面積率と最大粒径を求めた。結果を表4および図4~6に示す。【0054】

【表3】

						化	产成分	(mass%	6)					
類No.	С	Si	Mn	Р	s	В	Al	N	Cu	Ni	Cr	Мο	٧	その他
16	0.25	2.61	0 92	0.012	0.018	0.0025	0.022	0.008						
2ь	0.40	1.25	0.35	0.005	0.025	0.0020	0.032	0.011						
3ь	0.63	1.27	0.77	0.002	0.053	0.0018	0.035	0.009						
46	0.84	1.08	0.50	0.007	800.0	0.0123	0.036	0.012						
5ь	1.06	0.23	2.68	0.022	0.035	0.C034	0.021	0.017	<u> </u>					
6ь	1.57	0.08	1.21	0.009	0.009	8000.0	0.021	0.007						
7b	1.86	0.86	1.24	0.005	0.006	0.0012	0.086	0.011	L	<u> </u>		<u> </u>		
ВЪ	0.65	1.22	0.83	0.011	0.014	0.0026	0.352	0.012	0.15	0.84			<u> </u>	
9ь	0.61	0.99	0.52	0.010	0.003	0.0032	0.035	0.010			0.35			Ca: 0.005
10ь	0.79	0.07	0.75	0.007	0.006	0.0016	0.022	0.013				0.49		Zr: 0.08
116	0.55	0.45	0.86	0.012	0.010	0.0035	0.036	0.008					0.38	Ca: 0.003, Zr: 0.04
12b	0.84	1.18	0.65	0.008	0.005	0.0024	0.030	0.015						Ti:0.03, Nb:0.058
136	0.80	1.09	0.32	0.003	0.002	0.0018	0.411	0.010						Co: 0.12, W: 0.02
14b	0.83	1.11	0.34	0.010	0.007	0.0021	0.029	0.009						Pb: 0.18
15b	1.03	0.05	0.67	0.008	0.002	0.0058	0.033	0.009					<u> </u>	Bi: 0.21
16b	0.58	1.55	0.33	0.003	0.004	0.0021	0.030	0.010						REM: 0.09
176	0.25	2.61	0.92	0.012	0.018	0.0025	0.022	0.008			<u>l</u>			
18b	0.40	1.25	0.35	0.005	0.025	0.0020	0.032	0.011	Ī	L	<u> </u>	<u>L</u>		
19Ъ	0.63	1.27	0.77	0.002	0.053	0.0018	0.035	0.009				<u> </u>		
20b	0.84	1.08	0.50	0.007	0.008	0.0123	0.036	0.012					<u> </u>	
216	1.87	1.05	0.43	0.012	0.035	0.0022	0.034	0.009				<u> </u>	1	<u> </u>
22b	1.91	1.50	0.41	0.008	0.039	0.0029	0.027	0.014						
23b	3.12	1.87	0.53	0.008	0.019		0.034	0.009			l			<u></u>
245	3.57	1.58	0.35	0.002	0.039	T -	0.027	0.014						<u> </u>
25b	0.61	1.21	0.72	0.005	0.038	–	0.030	0.009						<u> </u>
28b	0.84	1.10	0.49	0.005	0.012	_	0.032	0.008		L			L	<u> </u>

[0055]

30 【表4】

	Let 1	الماز ماد	·	1 0 1	of all to the	内部座接
如No.		焼入れ条件		160	- 疲労強度	
	温度T(℃)	時間t(分)	面積率(%)	最大粒径(μm)	(N/mm²)	$(Q^{-1}, \times 10^{-4})$
16	800	60	3.0	3	350	4.1
2ь	800	60	5.1	5	365	4.5
ЗЬ	800	60	6.8	5	370	4.9
4b	800	60	8.0	8	370	5.0
5b	800	60	10.1	9	380	5.2
6ь	800	60	11.9	13	385	5.4
7b	800	60	13.1	20	385	5.3
86	900	60	4.2	5	370	4.3
9ь	900	60	4.0	4	380 ·	4.2
10b	900	60	7.3	6	375	4.8
11b	900	60	5.9	4	365	4.4
12b	900	60	9.0	7	370	4.8
13b	900	60	8.1	7	370	4.7
14b	900	50	8.8	6	370	4.6
15b	900	60	8.2	10	380	5.0
16b	900	60	3.5	5	370	4.1
17b	980	60	0.0	0	355	1.9
18b	980	60	0.0	0	360	1.8
19ь	980	60	0.1	1	365	1.8
20ь	980	60	0.2	1	370	1.9
21b	750	60	12.5	35	210	5.9
22Ь	750	60	13.5	32	220	6.4
23ь	800	60	18.8	31	195	6.7
24b	800	60	19.5	33	200	6.8
25Ь	800	60	0.0	0	360	1.7
26b	800	60	0.2	1	375	1.9

【0056】表3,4および図4~6から明らかな様に、鋼No.1b~16bは本発明で定める黒鉛の面積率と最大粒径、および好ましい化学成分を満たしているため、高レベルの疲労強度を維持しつつ高い内部摩擦が得られており、優れた制振性を有していることが分かる。

【0057】これらに対し鋼No.17b~20bは、 黒鉛の面積率が規定範囲に達しておらず、内部摩擦が小30 さくて制振性が不足する。鋼No.21b~22bは、 黒鉛の最大粒径が規定範囲を超えているため疲労強度が 劣り、また鋼No.23b~24bは、鋼材中のC量が 多くて黒鉛の最大粒径が規定範囲を超えているため、疲 労強度が低くなっている。鋼No.25b~26bは、 鋼中のB量が不足するため黒鉛の安定性が低下し、黒鉛 の面積率が規定範囲外となって内部摩擦(制振性)が低 下している。

【0058】実施例3

表 5 に示すNo. 1 c ~ 2 6 c の化学組成を有する鋼材を溶製してから直径30 mmの棒状に鍛造(または圧延)し、黒鉛化処理(700℃×20Hr→空冷)した後、機械加工により図11に示す回転曲げ疲労試験片と、幅4 mm×厚さ0.7 mm×長さ105 mmの内部摩擦試験片を作製した。

【0059】各試験片を機械加工してから、浸炭処理(T℃×t分→60℃油冷)を施し、回転曲げ疲労試験および内部摩擦試験を行った。内部摩擦試験は、ねじり振り子型内部摩擦測定装置を用い、歪振幅1×10⁻³、周波数1.3Hzで行った。また、浸炭層における黒鉛の面積率と最大粒径は、各供試材の表面下0.1mmの位置を光学顕微鏡で写真撮影(×400、3視野)した後、画像解析によって求めた。結果を表6および図7~9に示す。

[0060]

【表5】

							_							
#No.	化学成分 (mass%)													
pelito.	С	Si	Mn	P	S	В	Al	Z	Cυ	Ż	Cr	Мо	٧	その他
1c	0.25	2.61	0.92	0.012	0.018	0.0025	0.022	0.008						
2c	0.40	1.25	0.35	0.005	0.025	0.0020	0.032	0.011						
3с	0.63	1.27	0.77	0.002	0.053	0.0018	0.035	0.009						
4c	0.84	1.08	0.50	0.007	0.008	0.0123	0.036	0.012						
5c	1.06	0.23	2.68	0.022	0.035	0.0034	0.021	0.017						
6c	1.57	0.08	1.21	0.009	0.009	8000.0	0.021	0.007	ł				Ī	
7c	1.86	0.86	1.24	0.005	0.006	0.0012	0.086	0.011						
8c	0.65	1.22	0.83	0.011	0.014	0.0026	0.352	0.012	0.15	0.84				
9c	0.61	0.99	0.52	0.010	0.003	0.0032	0.035	0.010			0.35		[Ca: 0.005
10c	0.79	0.07	0.75	0.007	0.006	0.0016	0.022	0.013				0.49		Zr: 0.08
11c	0.55	0.45	0.86	0.012	0.010	0.0035	0.036	0.008					0.38	Ca: 0.003, Zr: 0.04
12c	0.84	1.18	0.65	0.008	0.005	0.0024	0.030	0.015	1					Ti: 0.03, Nb: 0.058
13c	0.80	1.09	0.32	0.003	0.002	0.0018	0.411	0.010						Co: 0.12, W: 0.02
14c	0.83	1.11	0.34	0.010	0.007	0.0021	0.029	0.009						Pb: 0.18
15c	1.03	0.05	0.87	0.008	0.002	0.0058	0.033	0.009						Bi: 0.21
16c	0,58	1,55	0.33	0.003	0.004	0.0021	0.030	0.010					<u> </u>	REM: 0.09
17c	0.25	2.61	0.92	0.012	0.018	0.0025	0.022	0.008		1]		<u>.</u>	
18c	0.40	1.25	0.35	0.005	0.025	0.0020	0.032	0.011						
19c	0.63	1.27	0.77	0.002	0.053	0.0018	0.035	0.009						
20c	0.84	1,08	0.50	0.007	0.008	0.0123	0.036	0.012						
21c	1.87	1.05	0.43	0.012	0.035	0.0022	0.034	0.009		l	J	L		
22c	1.91	1.50	0.41	0.008	0.039	0.0029	0.027	0.014						
23c	3.12	1.87	0.53	0.008	0.019	-	0.034	0.009	Ι					
24c	3.57	1.58	0.35	0.002	0.039	_	0.027	0.014					l	
25c	0.61	1.21	0.72	0.005	0.038	I –	0.030	0.009						
26c	0.84	1.10	0.49	0.005	0.012	_	0.032	0.008						

[0061]

【表6】

				[32 0]		
.g.,	浸炭	条件	Z	460	疲労強度	内部摩擦
MNo.	温度T(℃)	時間t(分)	面積率(%)	最大粒径(µm)	(N/mm²)	$(Q^{-1}, \times 10^{-4})$
1c	800	60	3.2	3	360	4.2
2c	800	60	5.4	5	370	4.8
3c	800	60	7.5	6	350	5.0
4c	800	60	8.9	9	360	5.2
5c	800	60	10.2	10	350	5.4
60	800	60	12.3	15	350	5.5
70	800	60	13.7	22	350	5.7
8c	900	60	· 4.4	5	380	4.4
9c	900	60	4.0	5	375	4.2
10c	900	60	7.8	6	385	4.9
11c	900	60	6.2	5	360	4.5
12c	900	60	9.3	8	365	4.9
13c	900	60	9.0	8	365	4.7
14c	900	60	9.1	7	360	4.8
15c	900	60	8.6	12	360	5.1
16c	900	60	3.9	6	355	4.5
17c	980	60	0.0	0	360	2.1
18c	980	60	, 0.0	0	355	2.0
19c	980	60	0.2	1	360	2.0
20c	980	60	0.8	2	360	1.9
21c	750	60	13.4	36	240	6.2
22c	750	60	14.0	34	235	6.6
23c	800	60	19.2	33	235	7.1
24c	800	60	20.6	35	240	6.9
25c	800	60	0.1	1	355	1.8
280	800	60	0.3	2	360	2.2

【0062】表5、6および図7~9からも明らかな様 に、鋼No. 1c~16cは本発明で定める黒鉛の面積 率および最大粒径と好ましい化学成分を満たしているた め、優れた疲労強度を有すると共に、内部摩擦も高くて 優れた制振性を有していることが分かる。

【0063】これらに対し鋼No. 17c~20cは、 黒鉛の面積率が好適範囲に達しておらず、内部摩擦が低 くて制振性が不十分であり、鍋No. 21c~22c は、黒鉛の最大粒径が規定値を超えているため疲労強度 50 が低下している。鋼No. 23c~24cは、鋼材のC

量が好適範囲を超えているため黒鉛の最大粒径が規定値を超えており、疲労強度が低くなっている。また鋼N o. 25c~26cは、鋼材中のB量が不足するため黒鉛の安定性が低下し、黒鉛の面積率が規定範囲に満たなくなって内部摩擦が低く、制振性向上の目的が果たせない。

17

10

[0064]

【発明の効果】本発明は以上の様に構成されており、好ましくは鋼材の成分組成を規定することによって、鋼組織中の黒鉛の面積率と最大粒径を特定範囲に制御することにより、機械構造用鋼素材として、あるいは更にこれを焼入れ焼戻し処理あるいは表面硬化処理した後の機械部品としても、高レベルの強度特性を維持しつつ優れた制振性を確保し得ることになった。

【図面の簡単な説明】

【図1】実施例で得た鋼材組織中における黒鉛の面積率 と内部摩擦(制振性)の関係を示すグラフである。

【図2】実施例で得た鋼材組織中における黒鉛の面積率 と疲労強度の関係を示すグラフである。 【図3】実施例で得た鋼材組織中における黒鉛の最大粒 径と疲労強度の関係を示すグラフである。

【図4】他の実施例で得た鋼材組織中における黒鉛の面積率と内部摩擦(制振性)の関係を示すグラフである。

【図5】他の実施例で得た鋼材組織中における黒鉛の面 積率と疲労強度の関係を示すグラフである。

【図6】他の実施例で得た鋼材組織中における黒鉛の最 大粒径と疲労強度の関係を示すグラフである。

【図7】 更に他の実施例で得た鋼材組織中における黒鉛 の面積率と内部摩擦(制振性)の関係を示すグラフであ る。

【図8】更に他の実施例で得た鋼材組織中における黒鉛 の面積率と疲労強度の関係を示すグラフである。

【図9】更に他の実施例で得た鋼材組織中における黒鉛の最大粒径と疲労強度の関係を示すグラフである。

【図10】実験例で用いた疲労試験片の寸法・形状を示す図である。

【図11】実験例で用いた他の疲労試験片の寸法・形状を示す図である。

【図8】

【図10】

フロントページの続き

(51) Int. Cl. 7		識別記号
F16C	33/12	
	33/32	
	33/34	
	33/62	
F16H	55/06	
// C21D	6/00	

FΙ F 1 6 C 33/12 33/32 33/34 33/62 F16H 55/06 C 2 1 D 6/00

テーマコード(参考)

Z

w

(72)発明者 一ノ瀬 利一

神戸市灘区灘浜東町2番地 株式会社神戸 製鋼所神戸製鉄所内

Fターム(参考)

3J011 PA10 QA20 SB02 3J030 AA12 AC10 BC02

3J101 BA10 BA70 DA02 DA03 EA02 FA01 FA31 GA01 GA24 GA41 GA51