Data-Science 1

clusteranalyse

Inhoud

- n-dimensionale ruimten
- afstanden
- clusters zoeken
 - k-means
 - hiërarchisch
- combinatie met beslissingsbomen

n-dimensionale ruimten

Voorbeeld

gegeven: tabel met punten van studenten

vak1	vak2	vak3	vak4	vak5	vak6	vak7	vak8	vak9	vak10
10	14	11	16	15	13	9	18	14	13
16	15	18	19	16	16	15	14	17	18
8	6	9	10	14	5	0	5	1	0

- gevraagd: kunnen we de studenten indelen in bepaalde "types" (clusters)
- dit is een voorbeeld van "unsupervised learning"
- opmerking: welk meetniveau hebben de kolommen?

n-dimensionale ruimten

- wat als er maar 2 kolommen waren?
 - eerste kolom hernoem je "x"
 - tweede kolom hernoem je "y"
 - beide kolommen hebben minstens interval meetniveau
 - wat is iedere rij dan? (zie ook correlatie/regressie)
- wat als er 3 kolommen zijn?
- wat als er n kolommen zijn?

Clusters

- werkt enkel als alle variabelen minstens interval meetniveau hebben
- rij = punt in n-dimensionale ruimte
- een cluster is een aantal rijen van een tabel die "bij elkaar horen" of "gelijkaardig zijn"
- 2 rijen zijn gelijkaardig als de punten dicht bij elkaar liggen
 - de "afstand" moet klein zijn

Afstanden

Hoe meet je de afstand?

- gebruik een "metriek":
 - Euclidisch
 - Manhattan (taxi)
 - Chebychev
 - Minkowski
 - Mahalanobis
 - **–** ...
- notatie: ieder punt heeft coördinaten

$$p=(p_0, p_1, p_2, ..., p_{n-1})$$

Euclidische afstand

stelling van Pythagoras

• 2D:
$$d(p,q) = \sqrt{(p_0 - q_0)^2 + (p_1 - q_1)^2}$$
 (p_0, p_1) $|p_0 - q_0|$

• 3D:
$$d(p,q) = \sqrt{(p_0 - q_0)^2 + (p_1 - q_1)^2 + (p_2 - q_2)^2}$$

• n-D:
$$d(p,q) = \sqrt{\sum_{i=0}^{n-1} (p_i - q_i)^2}$$

 (q_0, q_1)

 $|p_1-q_1|$

Euclidische afstand

voorbeeld: 2 rijen uit een tabel:

10	12	15	13	9
18	14	13	15	17

- hoeveel dimensies?
- wat is de afstand?

$$d(p,q) = \sqrt{(10-18)^2 + (12-14)^2 + (15-13)^2 + (13-15)^2 + (9-17)^2}$$
$$= \sqrt{8^2 + 2^2 + 2^2 + 2^2 + 2^2 + 8^2} = \sqrt{140} = 11,832$$

Manhattan (taxi) afstand

- je afstanden ook anders meten
- voorbeeld: kortste afstand in Manhattan
- $d(p,q) = \sum_{i=1}^{n} |p_i q_i|$

Manhattan (taxi) afstand

voorbeeld: 2 rijen uit een tabel:

10	12	15	13	9
18	14	13	15	17

wat is de afstand?

$$d(p,q)=|10-18|+|12-14|+|15-13|+|13-15|+|9-17|$$

=8+2+2+8=22

Gestandaardiseerde afstand

- probleem: waarden in kolommen hebben soms compleet andere grootorde
- voorbeeld: kolommen "leeftijd" en "km per jaar gereden"
 - "km per jaar" zal een grotere invloed hebben
- oplossing: schalen
 - zet iedere kolom eerst om naar Z-scores

Metrieken algemeen

- een metriek moet volgende eigenschappen hebben:
 - afstand van een punt tot zichzelf is 0
 - afstand van x naar y is gelijk aan de afstand van y naar x
 - een omweg mag niet korter zijn dan rechtstreeks

Meetniveau's

- normaal: minstens interval meetniveau nodig
- wat als dit niet is?
 - ordinaal
 - gebruik de volgnummers (niet helemaal correct, maar kan bij clustering wel ok zijn omdat het gaat over "verder" en "meer dichtbij" wat wel bestaat op een ordinale schaal) (gebruik "Continuize")
 - als er (disjuncte) klassen zijn: vervang ze door de klassenmiddens

Meetniveau's

- nominaal
 - verwijderen...
 - binaire variabele: gebruik 1 en 2 of -1 en 1
 - woorden: word2vec
 - adressen: longitude/latitude
 - producten: plaats in winkel (rij, rek, hoogte)
 - kleur: R,G,B
 - ...

1		N 2	N 3	N 4	5	
1	naam	haarlengte	gewicht	leeftijd	geslacht	
2	Homer	0	250	36	M	
3	Marge	10	150	34	v	
4	Bart	2	90	10	M	
5	Lisa	6	78	8	v	
6	Maggie	4	20	1	v ::::::::::::::::::::::::::::::::::::	
7	Abe	1	170	70	M	
8	Selma	8	160	41	v	
9	Otto	10	180	38	M	
10	Krusty	6	200	45	M	

1	2 3 4 5	7 8 9
),519 162,111 174,367 232,682 86,9	931 90,493 70,739 51,157
100,5	65,115 76,655 134,257 42,	154 12,369 30,265 51,352
162,1	,115 12,806 70,605 100,	,005 76,792 94,594 115,503
174,3	,655 12,806 58,455 111,	054 88,414 106,395 127,487
232,6	1,257 70,605 58,455 165,	,136 145,657 164,332 185,311
86,93	,154 100,005 111,054 165,136	31,464 34,713 39,370
90,49	,369 76,792 88,414 145,657 31,4	464 20,322 40,249
70,73	,265 94,594 106,395 164,332 34,7	713 20,322 21,564
51,15	,352 115,503 127,487 185,311 39,3	370 40,249 21,564
51,15	,352 115,503 127,487 185,311 39,3	370 40,249 21,56

Clusters zoeken: k-means

K-means

- we zoeken n clusters (n is gegeven)
- meestal (gestandaardiseerde) euclidische afstand
- later op verder gewerkt door Kohonen (Self Organizing Maps - 1982)
 - werkt op basis van neuraal netwerk
 - geïnspireerd door de werking van onze hersenen

Algoritme

- selecteer n willekeurige punten ("centroids")
- herhaal
 - associeer ieder punt van de dataset met de centroid die het dichtste bij ligt (zo maak je n clusters)
 - bereken per cluster het "midden" en vervang de centroid door deze nieuwe waarde
 - totdat de centroids niet meer veranderen

Data Orange csv Data CSV File Import k-Means Data Table Number of Clusters Fixed: 2 ¢ to 8 ‡ ○ From Scatter Plot Preprocessing Normalize columns Initialization Random initialization Re-runs: 10

300

Maximum iterations:

	Cluster	Silhouette	X	у
1	C1	0.664926	0.465681	0.991396
2	C1	0.69464	0.575295	0.741192
3	C1	0.705343	0.463535	0.731243
4	C1	0.710427	0.474027	0.819973
5	C1	0.701047	0.387885	0.77488
6	C1	0.702809	0.49277	0.858169
7	C1	0.681547	0.37465	0.95382
8	C1	0.71059	0.467764	0.75999
9	C1	0.705337	0.452288	0.735995
10	C1	0.712075	0.490255	0.766273
11	C1	0.700935	0.507172	0.711021
12	C1	0.652381	0.66262	0.695583
13	C1	0.660661	0.506605	0.624898
14	C1	0.7097	0.49776	0.748978
15	C1	0.663579	0.395756	1.01441
4.0	CA	0.703645	0.540043	0.754055

Orange Data Data CSV File Import k-Means Data Table Axes 1.2 Axis x: N x Axis y: Ny Find Informative Projections Attributes Cluster Shape: Cluster Scatter Plot (Same size) (No labels) Label only selection and subset Symbol size: Opacity: Jittering: Jitter numeric values Show color regions ✓ Show legend 0.2 Show gridlines ✓ Show all data on mouse hover Show regression line Zoom/Select △ C3 + C4 [:] D (C) -0.2 0.6 0.8 1.2 0.4 1.4

Orange Data Data CSV File Import k-Means Data Table Axes 1.2 Axis x: N x Axis y: Ny Find Informative Projections Attributes Cluster Color: Shape: Cluster Scatter Plot (Same size) (No labels) Label only selection and subset Symbol size: Opacity: Jittering: Jitter numeric values Show color regions ✓ Show legend 0.2 Show gridlines ✓ Show all data on mouse hover Show regression line Zoom/Select △ C3 + C4 [:] D (C) -0.2 0.6 0.8 1.2 0.4 1.4

K-means

- je moet op voorhand weten hoeveel clusters je zoekt
- je kan dit oplossen door verschillend aantal te zoeken en na te gaan welk aantal het beste scoort

K-means

• plaats van initiële centroids kan belangrijk zijn (Orange doet dit op een 'intelligente' manier)

• Fixed:	4 🗘			
O From	2 🗘 to	8 🗘		
Preprocess	ing			
Normali	ze columns			
Initializatio	n			
Random in	nitialization			
Re-runs:			10	
Maximum i	terations:		300	

Clusters zoeken: hiërarchisch

Hiërarchische clustering

- als je op voorhand niet weet hoeveel clusters je zoekt
- deterministisch: levert steeds hetzelfde resultaat
- maakt een boomstructuur: "dendrogram"

Voorbeeld

Dendrogram

Algoritme

- begin "onderaan": ieder punt is een cluster met 1 element erin
- herhaal
 - zoek de 2 clusters die het dichtst bij elkaar liggen
 - voeg deze clusters bij elkaar in een hoger niveau
 - tot er maar 1 cluster overblijft

Afstand tussen clusters

- je moet nu de afstand tussen 2 clusters kunnen berekenen
 - afstand tussen middelpunten (centroid linkage)
 - min afstand tussen de punten (single linkage)
 - max afstand tussen de punten (complete linkage)
 - gemiddelde afstand tussen de punten (average linkage)
 - mediaan afstand tussen de punten (median linkage)

– ...

Orange

	N 1	N 2
1	X	у
2	2	7
3	3	2
4	3	6
5	8	7
6	9	1
7	3.5	3
8	4	2
9	3	7
10	7	5.5
11	4.5	3

Orange

Compare

Rows

Distance Metric

Euclidean

Manhattan

Hamming

Mahalanobis

Euclidean (normalized)

Manhattan (normalized)

Selected Data → Distances Data Orange csv Data CSV File Import Distances Hierarchical Clustering Data Table Linkage Single Annotations N x Color by: None C1_■ 9 Pruning None 10 🗘 O Max depth: Selection Manual O Height ratio: 100,0 % 🗘 3.5 Top N: 4.5 Zoom 3 2

Orange

Combinatie met beslissingsbomen

Clustering en beslissingsbomen

- clustering geeft een "label" aan iedere rij
- voeg dit label als kolom toe
- een beslissingsboom kan nu bepalen waarom een rij in een cluster hoort!

Voorbeeld

Oefeningen

Oefeningen

- Simpsons revisited
- Studenten
- Extraterrestrial life