Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_1^{\#1}_+ \alpha \beta$	$\frac{i\sqrt{2} k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#_{+}^{2}}\alpha_{\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$		$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1+k^2)t_1t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha^{\beta}$	$\tau_1^{#1} + \alpha \beta$	$\sigma_{1}^{\#_{1}} + ^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_1^{\#1} +^\alpha$	$\tau_1^{\#2} + \alpha$

$f_{1^-}^{\#2}$	0	0	0	<i>ikt</i> 1 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>£1</u> 3	0	$-\frac{1}{3}\overline{l}kt_1\left -\frac{1}{3}\overline{l}\sqrt{2}kt_1\right $
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	9 []	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}ikt_1$
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}\bar{l}k(t_1+t_2)$	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0
$\omega_1^{\#_+^2}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}ik(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$		$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
	$o_1^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\epsilon_1^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#_1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_1^{\#2} +^{\alpha}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t1</u> 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#_1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$			(u)#1	f#1	f#2	$\omega_{\scriptscriptstyle O}^{\sharp_1}$
0	0	0		$\omega_{-+}^{\#1}$ +			0	0
0	0	0			0	0	0	0
0	0	0			0	0	0	0
0	0	$\frac{1}{k^2 r_2 + t_2}$		$\omega_{0}^{#1}$ †	0	0	0	$k^2 r_2 + t_2$
	0 0 0 0	$\tau_{0+}^{#1}$ $\tau_{0+}^{#2}$ 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

SO(3) irreps	eps	Multiplicities	cities
$\tau_{0}^{\#2} == 0$		1	
$\tau_{0}^{\#1} == 0$		1	
	$+2ik\sigma_{1}^{\#1}\alpha=0$	0 3	
) ==	(3	
$\sigma_{1}^{\#1}{}^{\alpha}$ ==	$\sigma_{1}^{\#2lpha}$	3	
$\tau_1^{\#_1}\alpha\beta+i$	$+ik \sigma_1^{\#2\alpha\beta} == 0$	0 3	
$\tau_2^{\#1}\alpha\beta$ - 2	$-2ik\sigma_{2+}^{\#1}\alpha\beta=$	== 0 2	
Fotal cor	Total constraints:	19	
	$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\tau_{2}^{\#1}_{2}$	$\sigma_{2^{ ext{-}}}^{\#1}{}_{lphaeta\chi}$
$\sigma_2^{\#1} + ^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$t_2^{\#1} + \alpha \beta$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{#1} +^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$