Aula 36: Algoritmo de Huffman

Correção do algoritmo

Problema

Seja $S = \{ s_1, ..., s_n \}$ um conjunto de elementos, denominados símbolos, cada si com uma freqüência fi associada. Construir uma árvore binária de prefixo T para S, de modo a minimizar $\sum f_i l_i$ onde l_i é o comprimento do símbolo s_i em T.

T é árvore de Huffman para S

Exemplo

símbolo freqüência código

S_1	3	101
S_2	4	111
\mathbf{S}_{3}	9	0
S_4	3	110
S_5	2	100

Problema (continuação)

Cada um dos subcódigos acima corresponde a uma subárvore.

O processo se encerra quando o número de árvores se reduz a um.

Problema (continuação)

O passo geral iterativo produz a fusão de duas dessas subárvores em uma única.

O processo se encerra quando o número de árvores se reduz a um.

Freqüência de Árvores

T' = subárvore binária de prefixo

Cada folha de T' corresponde a um símbolo s_i , com uma freqüência f_i .

f(T') = frequência de T' = soma das frequências dos símbolos nas folhas de T'.

símbolo frequência

\mathbf{S}_1	3
S_2	4
S_3	9
Č	2

$$S_4$$
 3

$$s_5$$
 2

Operação 🕀

T', T" = subárvores disjuntas

T'+ T" = subárvore com raiz em um novo nó, e cujas subárvores esquerda e direita são T' e T", respectivamente.

Algoritmo de Huffman

Passo inicial:

Definem-se n subárvores, cada qual consistindo de um único nó contendo o símbolo s_i , $1 \le i \le n$.

Passo geral:

Repetir n - 1 vezes:

Escolher as duas subárvores T'e T" de menor frequência e substituí-las por T'+ T".

Observações sobre o algoritmo

$$f(T' \oplus T'') = f(T') + f(T'')$$

- Em cada iteração do passo geral, o número de subárvores diminui de uma unidade.
- Após a última iteração do passo geral, há apenas uma subárvore.
- A árvore resultante da última iteração do passo geral é a árvore de Huffman procurada.

Exemplo

Passo inicial:

 (s_1) (s_2) (s_3) (s_4) (s_5)

símbolo frequência

s₁ 3

 s_2

s₃

 s_4 3

s₅ 2

Exercício

Desenhar a árvore de Huffman para o seguinte conjunto de símbolos e freqüências:

```
s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8

1 6 2 1 1 9 2 3
```

Tempo: 5 minutos

Solução

1 6 2 1 1 9 2 3

Implementação do algoritmo

- Em cada iteração é necessário determinar as duas subárvores T'e T" de menor freqüência. T'e T" devem ser substituidas por T'⊕ T".
- Operações realizadas: minimização
 - inclusão
 - remoção
- Estrutura de dados apropriada:

Uma lista de prioridades, por exemplo heap. A ordem das prioridades está invertida, isto é, o elemento a ser buscado e removido da estrutura é aquele de menor prioridade. No caso, as prioridades estão associadas às freqüências.

Formulação

<u>Algoritmo</u>: construção da árvore de Huffman

```
para i = 1, ..., n - 1 faça
    mínimo( T ', F ); mínimo( T '', F );
    T := T ' + T ''
    f := f ( T ' ) + f ( T '' )
    inserir ( T, f, F )
```


No início, cada nó de F é uma árvore $T_{\scriptscriptstyle i}$ composta

de um único nó, com freqüência f_i , i \leq i \leq n

Complexidade

- Cada operação de minimização ou inclusão na lista de prioridades pode ser efetuada em O(log n) passos.
- A operação 🕁 requer um número constante de passos.
- Logo, cada iteração possui complexidade O(log n).
- Há um total de n 1 iterações.
- Na inicialização, são necessários O (n) passos.
- Complexidade: O (n log n)

Correção do Algoritmo

Lema: sejam símbolos s_i com freqüências f_i , $1 \le i \le n$, n > 1, tais que f_1 e f_2 são as duas menores freqüências. Então existe uma árvore de Huffman para esses símbolos, em que os nós s_1 e s_2 , correspondentes a f_1 e f_2 , são irmãos localizados no último nível.

Prova do Lema

<u>Prova</u>: seja T uma árvore de Huffman para as freqüências dadas.

T estritamente binária 🖒 H

Há pelo menos 2 folhas no último nível.

Existe si no último nível,

Se s_1 não está no último nível \square

onde $f_i = f_1$. Trocar de posição s_1 com s_i .

Repetir esta operação com s_2 , em lugar de s_1 .

Se s_1 e s_2 não forem irmãos, trocar de posição s_2 com o irmão de s_1 . Ao final, s_1 e s_2 são irmãos localizados no último nível.

Prova do Lema

Correção do Algoritmo

<u>Teorema</u>: Seja T a árvore construída pelo algoritmo de Huffman para as freqüências $f_1, ..., f_n, n > 1$. Então T é mínima.

Prova: Seja $f_1 \leq ... \leq f_n$

 T_{\min} = árvore ótima para $f_1, ..., f_n$.

Indução em n. Se n = 2, trivial.

Suponha n > 2. Pela hipótese de indução, o algoritmo de Huffman sempre obtém uma árvore de custo mínimo quando o número de símbolos é menor que n.

Examine o algoritmo para f_1 , ..., f_n . No primeiro passo, são eliminadas as subárvores com as frequências f_1 e f_2 e substituidas por uma subárvore com frequência $f_1 + f_2$.

Correção do Algoritmo (cont.)

Seja T'a árvore construída pelo algorimo para f_1+f_2 , f_3 , ..., f_n . Pela hipótese de indução, T'é mínima. Logo,

$$c(T) = c(T') + f_1 + f_2$$
 (i)

Por outro lado, seja T " a árvore obtida de T_{min} eliminando-se as folhas (nós irmãos) correspondentes a f_1 e f_2 , e associando ao pai delas um novo símbolo, com freqüência f_1 + f_2 . T " é uma árvore binária de prefixo correspondente às freqüências f_1 + f_2 , f_3 , ..., f_n . Logo,

$$c(T_{min}) = c(T'') + f_1 + f_2$$
 (ii)

Comparando (i) e (ii) e observando que c(T ') \leq c (T "), conclui-se que c(T) = c (T_{min}) e T é uma árvore mínima.

Exercícios Finais

Descrever um algoritmo para determinar a árvore de Huffman relativa a um conjunto de símbolos e freqüências dadas, que possua altura mínima.

Dado um conjunto de n arquivos $A_1, ..., A_n$, ordenados, o problema da intercalação de arquivos consiste em reuni-los em um único arquivo ordenado. Para tal, um programa padrão intercala os arquivos dois a dois. É necessário, portanto, executar o programa de intercalação um total de n-1 vezes.

Sabe-se que cada arquivo A_i possui $|A_i|$ chaves e que para intercalar os arquivos A_i e A_j o programa utiliza $|A_i|$ + $|A_j|$ comparações entre chaves. Determinar a ordem em que as intercalações devem ser realizadas de modo a minimizar o número total de comparações efetuadas.