Motion Blur Decomposition with Cross-shutter Guidance

Xiang Ji Haiyang Jiang Yinqiang Zheng[†]
The University of Tokyo, Japan

{jixiang, jiang-haiyang777}@g.ecc.u-tokyo.ac.jp, yqzheng@ai.u-tokyo.ac.jp

CVPR 2024

Presenter: Hao Wang

Advisor: Prof. Chia-Wen Lin

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Introduction

- Decomposing a blurry image into multiple sharp images
- Motion ambiguity
- Dual
 - global shutter (**GS**)
 - rolling shutter (**RS**)

(a) Possible state of movement

(b) Blur view

(c) Dual view

Introduction

- New setting of dual Blur-RS combination to address the motion ambiguity of blur decomposition.
 - > RS branch offers **local details** and **disambiguates motion directions**.
 - ➤ Blur (GS) counterpart with **full global context** will elevate the accuracy of **motion magnitude**.

• Triaxial imaging system that simultaneously captures Blur-RS pairs along with high-speed ground truth, and collect a real dataset named RealBR.

Novel neural network architecture.

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Dataset

- 54 distinct street scenes
 - containing objects, like vehicles and pedestrians, and various camera motions.
- In each scene, we have 56 pairs of consecutive RS and GS blur frames, and 1400 corresponding sharp HS images.

Framework

(a) Overall architecture of our proposed model

- Introduction
- Framework
- Method
- Experiment
- Conclusion

(a) Overall architecture of our proposed model

$$\mathbf{S} = \mathcal{F}(B, R)$$

$$\mathbf{S} = \{S^t, t \in 0, \dots, N-1\}$$
(2)

$$(\mathbf{F}_{S\to B}, \mathbf{F}_{S\to R}, M) = \mathcal{M}\mathcal{I}(B, R)$$

$$\mathbf{F}_{S\to B} = \{F_{S^t\to B}, t \in 1, \cdots, N\}$$
(3)

(a) Overall architecture of our proposed model

$$\mathbf{S} = GenNet(B, R, \mathbf{F}_{S \to B}, \mathbf{F}_{S \to R}, M) \tag{4}$$

Motion interpretation block

Motion interpretation block

$$\phi_{alin_R}^{i} = \mathcal{W}\left(\phi_{B}^{i}, F_{R \to B}^{i}\right) \qquad \phi_{B}^{i} = \Phi_{B}\left(B, \mathbf{F}_{S \to B}^{i-1}\right)$$

$$\phi_{alin_B}^{i} = \mathcal{W}\left(\phi_{R}^{i}, F_{B \to R}^{i}\right) \qquad \mathbf{F}_{S \to B}^{i} = \Psi_{B}\left(\left[\phi_{B}^{i}, \phi_{alin_B}^{i}, \phi_{agg}^{i}\right]\right)$$

$$\mathbf{F}^{i}, F^{i}, M^{i} = \mathcal{MIB}_{i}\left(B, R, \mathbf{E}, \mathbf{F}^{i-1}, F^{i-1}, M^{i-1}\right)$$
13

13

Temporal Positional Encoding

• Further enhance model's ability to **disambiguate motion direction** of latent frames

$$[E_R]_k=k, k=0,1,\cdots,N-1$$
 $E_{S^t}=rac{H-1}{N-1}t\cdot extbf{1}$ $E=\{(E_R-E_{S^t}), t=0,1,\cdots,N-1\}$

Shutter Alignment and Aggregation (SAA)

$$F^{i}, M^{i} = \mathcal{SAA}_{i}\left(B, R, F^{i-1}, M^{i-1}\right)$$

16

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Quantitative comparisons

Method	Input	×3		×5			×9			Time	Params	FLOPs	
		PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	(s)	(M)	(G)
LEVS [11]	1·B	21.77	0.7042	0.2886	21.62	0.7153	0.2683	21.83	0.7277	0.2535	1.47	15.9	304
AfB_p [36]	2⋅B	21.50	0.7596	0.4102	21.65	0.7648	0.4055	21.82	0.7686	0.4017	0.15	190	839
AfB_v [36]		22.83	0.7877	0.3904	22.96	0.7903	0.3883	23.10	0.7924	0.3860	0.22	129	793
$RIFE_B$ [8]		24.60	0.8172	0.2254	24.73	0.8199	0.2268	24.83	0.8219	0.2268	1.33	54.8	71.1
$IFED_B$ [35]		24.45	0.8105	0.1817	24.62	0.8141	0.1811	24.74	0.8164	0.1798	1.33	10.8	29.5
BiT [34]	<i>3</i> ⋅ <i>B</i>	21.90	0.7664	0.2583	21.88	0.7694	0.2574	22.02	0.7729	0.2546	0.11	11.3	57.4
DeMFI [19]	<i>4</i> ⋅ <i>B</i>	25.55	0.8485	0.2247	25.26	0.8466	0.2275	26.20	0.8577	0.2165	4.86	7.41	420
$RIFE_{BR}$ [8]	B-R	30.26	0.8983	0.1071	30.53	0.9030	0.1046	30.67	0.9053	0.1042	1.33	54.8	71.1
$IFED_{BR}$ [35]		30.46	0.9030	0.0467	30.70	0.9064	0.0445	30.84	0.9084	0.0434	1.33	10.8	29.5
Ours		30.87	0.9073	0.0696	31.05	0.9103	0.0684	31.15	0.9120	0.0678	1.30	105	183

Qualitative comparison

Quantitative comparisons

 more competitive settings under task of blur decomposition and RS temporal super resolution based on synthetic data

Method	Input		×3		×7			
Wichiod	трис	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	
LEVS [11]	1·B	17.27	0.6063	0.3410	16.64	0.58	0.3811	
AfB_p [36]		23.38	0.7411	0.2271	23.41	0.7517	0.2183	
AfB_v [36]	2·B	28.10	0.8760	0.1496	28.39	0.8815	0.1461	
$RIFE_B$ [8]	$Z \cdot D$	31.26	0.9410	0.0896	31.49	0.9430	0.0892	
IFED _B [35]		29.46	0.9193	0.0897	29.75	0.9225	0.0874	
BiT [34]	<i>3</i> ⋅ <i>B</i>	32.31	0.9234	0.0708	32.56	0.9266	0.0691	
DeMFI [19]	<i>4</i> ⋅ <i>B</i>	27.57	0.9002	0.1332	27.44	0.8984	0.1304	
PMB [23]	B-SL	35.48	0.9723	0.0349	35.11	0.9715	0.0324	
EBFI [30]	B-Event	33.21	0.9568	0.0703	33.51	0.9591	0.0685	
RSSR [4]		22.73	0.8116	0.1039	22.65	0.8090	0.1154	
CVR [6]	2·R	23.50	0.8342	0.0818	23.47	0.8332	0.0815	
$RIFE_R$ [8]	2·K	24.16	0.8318	0.1697	24.32	0.8365	0.1618	
IFED _R [35]		28.30	0.9122	0.0475	28.63	0.9181	0.0446	
IFED [35]	R-iR	30.89	0.9417	0.0372	31.96	0.9530	0.0307	
EvUnroll [37]	R-Event	33.06	0.9558	0.0737	33.48	0.9587	0.0699	
$RIFE_{BR}$ [8]		34.49	0.9701	0.0398	35.02	0.9733	0.0366	
IFED _{BR} [35]	B- R	33.03	0.9627	0.0332	33.72	0.9675	0.0304	
Ours		34.92	0.9732	0.0310	35.51	0.9764	0.0305	

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Conclusion

• Novel cross-shutter setting for motion decomposition of a single blurry image, inspired by the complementary exposure characteristics of **GS** and **RS cameras**.

• Proposed a **novel network** architecture that actively addresses the **contextual characterization** and **temporal abstraction** in a mutual incentive manner.

• Experiments on real dataset and synthetic data have verified the effectiveness of algorithm and global-shutter/rolling-shutter dual imaging setting.