Another proof of corollary 1

(Communicated by Daniela Paiva)

In Lecture 10: surfaces with Picard rank 1 we proved the following proposition:

Proposition A K3 surface M is isomorphic to a quartic if and only if Pic(M) contains a very ample bundle L with (L, L) = 4

And that leads to

Corollary Let M be a K3 surface such that $Pic(M) = \mathbb{Z}$ and L the line bundle generating Pic(M). Assuma that (L, L) = 4. Then M is isomorphic to a quartic.

In this document I will prove the corollary.

Plan

- 1. L ample implies that the map associated to the linear system |L| is an embedding $\phi_{|L|}:M\hookrightarrow S\subset \mathbb{P}^n$
- 2. The fact that $L^2 = 4$ implies that n = 3 and that the degree of S is 4.

First recall that there is an isomorphism

$$Pic(M) \cong Div(M)/PDiv(M)$$

where Pic(M) is the group of isomorphism classes of line bundles on M and

$$Div(M) := \left\{D = \sum \alpha_i D_i : \alpha_i \in \mathbb{Z}, D_i \text{ irreducible subvariety of codimension } 1\right\}$$

and

$$PDiv(M) = \{div(f) : f \in \mathcal{M}_M\}$$

where m_M is the space of meromorphic functions on M. Recall that the (principal) divisor associated to a meromorphic function is a formal combination of the subvarieties where its zeroes and poles lie counted with multiplicity.

Note that the quotient by PDiv(M) ammounts to *linear equivalence* which is given by

$$D \sim D' \iff \exists f \in \mathcal{M}_M \text{ s.t. } D - D' = \text{div}(f).$$

Now recall that a divisor E is called *effective* (denoted $E \ge 0$) if all its coefficients are greater or equal than zero, and that the *linear system* associated to a divisor D is

$$|D| = \{E \in Div(M) : E \geqslant 0, E \sim D\}$$

which is a finitely generated vector space over the field of meromorphic functions with the product defined by

$$f \cdot E = div(f) + E$$
.

Indeed, $f \cdot E \in |D|$ because it is linearly equivalent to D:

$$f \cdot E - D = div(f) + E - D = div(f) - div(g) \in \mathcal{M}_M$$

and also it is effective:

?

First observation after my talk is here.

Definition (Linear system=Linear series) Bruno:

$$|D| = H^0(M, \mathcal{O}_M(D))$$

Misha:

zero divisors of holomorphic sections of D

Stacks Project: k field, X proper scheme over k, d, $r \ge 0$. A linear series of degree d and dimension r is

a pair (\mathcal{L},V) , \mathcal{L} invertible \mathcal{O}_M -module and $V\subset H^0(M,\mathcal{O}_M(D))$ k-subvector space of dim r+1

The linear system defines a rational map

$$\begin{split} \phi_{|D|}: M &\longrightarrow \mathbb{P}^n \\ x &\longmapsto \left[f_0(x): \ldots : f_n(x) \right] \end{split}$$

where f_i are generators of |D|. I'd like to have another look at how this map is constructed. See wiki to make sure it's not obvious.

Here's another look at this map:

$$\varphi_{|D|}: M \longrightarrow \mathbb{P}\big((H^0(M, \mathcal{O}_M(D))^*\big)$$
$$x \longmapsto [ev_x]$$

where

$$\operatorname{ev}_x: H^0(M, \mathcal{O}_M(D)) \longrightarrow \mathcal{L}_x$$

 $s \longmapsto s(x) \in \mathcal{L}_x$

meaning that

$$ev_x \in Hom_{\mathbb{C}}(H^0(M, \mathfrak{S}_M(D)), \mathcal{L}_x)$$

Notice that this map could be undefined at points where all the f_i vanish. These conform the *base locus* of |D| and each such point is called a *base point*. If there are no base points we say |D| is *base-point free*.

Now we turn to our exercise, where L is the generator of Pic(M). Our objectives are

- If |L| is base-point free, the above map $\varphi_{|L|}$ is a morphism (not only a rational map).
- If L is very ample then $\varphi_{|L|}$ is an embedding.
- The dimension of the projective space is $h^0(M, \mathcal{O}_M(L))$.

Knowing these three things allows to see M as a projective variety, and then we only need to compute its degree, which should be 4. But first let's address the three points above. We shall use

Theorem 5 (Taken from Mori) Let X be a K3 surface defined over an algebraically closed field of characteristic $\neq 2$. Let H be a numerically effective divisor on X. Then one has

- 1. H is not base point free if and only if there exit irreducible curves E, Γ , and an integer $k \ge 2$ such that $H \sim kE + \Gamma$, $E^2 = 0$, $\Gamma^2 = -2$ and $E \cdot \Gamma = 1$. In this case [...]
- 2. Let $H^2 \ge 4$. Then H is very ample if and only if
 - (a) there is no irreducible curve E such that $E^2 = 0$ and $E \cdot H = 1, 2,$
 - (b) there is no irreducible curve E such that $E^2 = 2$, $H \sim 2E$, and
 - (c) there is no irreducible curve E such that $E^2=-2$, $E\cdot H=0$.

I think that the base-point free condition does not follow from this statement since, supposing that such E and Γ exisy we can barely show that k=3. So something might be missing.

However to show that L is ample we barely notice that the second and third case are impossible supposing that E = kL since we get, in the second case that $k^2 \cdot 4 = 2$ and in the third that $k^2 \cdot 4 = -2$. The first case also can't happen since $E^2 = 0$ implies k = 0 which implies $E \cdot L = 0$.

Remark

In Misha's course we actually showed this in the following proposition and corollary from Lecture 10 (just after definition of *line system*):

Theorem Let M be a K3 surface such that $Pic(M) = \mathbb{Z}$, and L the line bundle generating Pic(M). Assume that (L, L) > 2. Then L or L* is ample, base point free and the map $\psi : M \to \mathbb{P}H^0(M, L)^*$ is an embedding or a 2-sheeted ramified covering.

The second cas is when |L| contains at least one hyperelliptic curve (and then all curves in |L| are hyperelliptic). In fact, it is shown later that the hyperelliptic case corresponds to (L, L) = 2. This gives us the embedding we needed.

Also there's

Corollary 2 Let M be a K3 surface such that $Pic(M) = \mathbb{Z}$ and L the line bundle generating Pic(M). Assume that (L, L) > 0. Then L is very ample.

Then we wish to calculate the dimension of the image of the projective embedding. It turns out that the projective space in the image of $\phi_{|L|}$ is $\mathbb{P}(H^0(M, \mathcal{O}_M(L)) \cong |L|$, which means that we can compute its dimension via

$$\dim |L| = \dim_{\mathbb{C}} H^0(M, \mathcal{O}_M(L)) - 1.$$

And then we cite Saint-Donat, where he shows that by Riemann-Roch and Serre duality we have for any invertible sheaf L on a K3 that

$$h^0(\Theta_M(L)) = dim |L| + 1 = 2 + \frac{L^2}{2} + h^1(\Theta_M(L))$$

and since L is ample, $h^1(M, \mathcal{O}_M(L)) = 0$ and we get

$$1 + \dim |L| = 2 + \frac{L^2}{2} = 4 \implies \dim |L| = 3$$

So that the codomain of $\varphi_{|L|}$ is \mathbb{P}^3 .

Finally we compute the degree of M. This part is a little sketchy but here goes.

We have constructed an embeddinf $\phi_{|L|}: M \hookrightarrow S \subseteq \mathbb{P}^3$. Its image S is a codimension-1 hypersurface in \mathbb{P}^3 , which means that it is an element of $Pic(\mathbb{P}^3) = \mathbb{Z}$. So $S \sim kH$, and this k is the degree. So I'm not sure how this is used.

Now to compute the degree we must intersect with two hyperplanes because we are in a 3-dimensional thing (so intersection of n-1 hyperplanes in an n-dimensional thing gives a line). For some reason it's enough to intersect S with H. Here H is the generator of $Pic(\mathbb{P}^3)$ which is in fact pulled back to L in Pic(M) (by construction of the map $\phi_{|L|}$.

$$deg(S) = k = S \cdot H \cdot H = H^2 = L^2 = 4$$

Since we may pull back divisors by an isomorphism and the intersection number is preserved (see Beauville prop. 1.8)

Exercise (Sergey) $\deg X \ge \operatorname{codim} X + 1$ if X is not degenerate (not contained in hyperplane)