Measurement of the Top Quark Mass in the $t\bar{t} \to \text{lepton+jets channel}$ form $\sqrt{s} = 13\text{TeV ATLAS}$ data

Sebastian Schulte, Andrea Knue, StefanKluth, Richard Nisius

Why measuring the top-quark mass?

- Heaviest particle of the Standard Model (SM)
- Top mass is close to electroweak symmetry breaking scale
- Significant contributions to radiative corrections
- Important for physics beyond the SM
- Important for the stability of our universe

Previous results

World comb. value (2014):

 $m_{top} = 173.34 \pm 0.76 \text{ GeV}$

I+jets /3D-template method:

• 7 TeV: • Top Mass Ntuple production $m_{top} = 172.33 \pm 1.27 \text{ GeV}$

How the Data is taken?

How is the top-qark mass measured?

Measurement is based on a 3D-Template method:

- Variable 1: m_{top}^{reco} from reconstructed Events
- Variable 2: m_W^{reco} from chosen jet permutation, sensitive to JSF
- Variable 2: R_{bq}^{reco} from chosen jet permutation, sensitive to bJSF

$$R_{bq}^{reco,1b} = rac{p_{T}^{b_{tag}}}{(p_{T}^{W_{jet1}} + p_{T}^{W_{jet2}})/2} \qquad \qquad R_{bq}^{reco,2b} = rac{p_{T}^{b_{had}} + p_{T}^{b_{lep}}}{p_{T}^{W_{jet1}} + p_{T}^{W_{jet2}}}$$

Determination of m_{top} :

- Need fully reconstruction of $t\bar{t}$ -finale state
- Template parametrisation of the 3 variables
- Unbinned likelihood fit is performed

Workflow

1.png

- Exactly one isolated high p_T lepton
- At least 4 central jets with highp_T
- 1 or 2 b-tagged jets
- ullet Cuts on E_T^{miss} , m_T^W or $E_T^{miss}+m_T^W$
- W+jets normalization and HF fraction estimated from data
- Multijet background obtained from data in control region

$t\bar{t}$ -final state

- ullet 4 jet event \Rightarrow 24 possible jet-parton assignments
- 12 permutations left since light jets from W are indistinguishable
- Kinematic liklihood fit with KLFitter
- KLFitter input: charged lepton, missing E_T and at least four jets
 - ⇒ choose best permutations for calculation

Event yields after pre-selection

	One <i>b</i> -tagged jet		Two b-tagged jets		1+2 b-tagged jets	
Data	168417		96105		264522	
tt̄ signal	121900 \pm	7400	85100 ±	5500	207000 ±	12000
Single-top-quark signal	9300 \pm	500	4220 ±	250	13490 \pm	730
NP/fake leptons (data)	7400 \pm	3700	700 ±	350	8100 \pm	4100
W+jets (data)	23600 \pm	7200	2780 ±	850	26000 \pm	8000
Z+jets	3500 \pm	1100	430 ±	130	4000 \pm	1200
WW/WZ/ZZ	1033 \pm	49	63.0 ±	6.1	1097 \pm	53
Signal+background	168000 \pm	11000	93300 ±	5500	260000 \pm	15000
Expected background fraction	0.21 \pm	0.07	0.04 ±	0.06	0.15 \pm	0.06
Data/(Signal+background)	1.01 \pm	0.07	1.03 ±	0.06	1.02 \pm	0.06

- ullet Background contamination dominated by W + Jets
- ullet Mass dependence of single-top \Rightarrow include in signal
- Reduction of background via cuts on 2 b-tagged jets
- Good Data/MC agreement

Data/MC agreement

3D-template technique

- Simultaneous determination of m_{top} , JSF and bJSF
 - \Rightarrow JES/bJES uncertainties, become an additional statisticall component
- Templates are derived for m_{top}^{reco} , m_{top}^{reco} from MC samples
- Construct templates as function of m_{top} , JSF and bJSF for signal and background

Fit (signal)

- m_{top}^{reco} : gauss+ landau + landau mirrored
- m_W^{reco} : gauss + gauss
- R_{ba}^{reco} : gauss + gauss + landau

Settings

- $m_{top} \in \{170, 171.5, 173.5, 175\}$ GeV
- JSF = 0.96 1.04
- \bullet bJSF = 0.96 1.04

Introduction Event selection Event reconstruction Data/MC agreement 13 TeV **Template parametrization**

Signal $t\bar{t}$ only, 170 GeV & 171.5 GeV

ntroduction Event selection Event reconstruction Data/MC agreement 13 TeV **Template parametrization**

Signal $t\bar{t}$ only, 173.5 GeV & 175 GeV

Parameter interpolation & Likelihoodfit

ullet Single top contains additional information \Rightarrow add to signal

$$\Rightarrow$$
 dependences of m_{top}^{reco} , m_{top}^{reco} and R_{bq}^{reco} on $mtop$, $JSFbJSF$

 Finally, an unbinned likelihood to the observed data distribution is performed to determine the physics parameter

$$\begin{split} L_{\text{shape}}^{l+\text{jets}}(\textit{m}_{\text{top}}, \text{JSF}, \text{bJSF}, f_{\text{bkg}}) &= \prod_{i=1}^{N} P_{\text{top}}(\textit{m}_{\text{top}}^{\text{reco,i}} \mid \textit{m}_{\text{top}}, \text{JSF}, \text{bJSF}, f_{\text{bkg}}) \\ &\times P_{\text{W}}(\textit{m}_{\text{W}}^{\text{reco,i}} \mid \text{JSF}, f_{\text{bkg}}) \\ &\times P_{\mathcal{R}_{\text{bq}}}(R_{\text{bq}}^{\text{reco,i}} \mid \textit{m}_{\text{top}}, \text{bJSF}, f_{\text{bkg}}), \end{split}$$

Summery & outlook

Current status

- Event selection and reconstruction with 13 TeV samples
 - \Rightarrow good data/MC agreement, except for b-tagging multiplicity, worse agreement for four jets, two b-tagged inclusive
- Template parametrisation for several $t\bar{t}$ signal samples
- \Rightarrow good description by the chosen functions, fit converge for all m_{top}

Next steps

- Perform the parametrization for all JSF and bJSF
- Use probability density functions for m_{top}^{reco} , m_W^{reco} and R_{bq}^{reco} in unbinned likelihood fit to the data for all events
- Optimization of the analysis to reject combinatorial background
- Verification of the internal fitting consistency via pseudo-experiments

Backup

Object definition for 2016 data

Electrons

- $E_T > 28$ GeV, $|\eta| < 2.47$
- Gradient isolation, TightLH
- HLT_e26_lhtight_nod0_ivarloos, HLT_e60_lhmedium_nod0. HLT e140 lhloose nod0

Small-R jets

- antiKt R = 0.4. EM-Jets
- JVT >0.59 for $p_T <$ 60GeV and $|\eta| < 2.4$
- b-tagging: MV2_c10, 77% WP

Muons

- $E_T > 28$ GeV, $\eta < 2.47$
- Medium. Gradient isolation
- HLT_mu26_ivarmedium, HIT mu50

MET/MTW

- \bullet $E_{\tau}^{miss} > 20 \text{GeV}$
- $E_T^{miss} + m_T^W > 60 \text{GeV}$

AnalysisTop-02-04-27, with 25 fb-1 for 2016 data → Top Mass Ntuple production

Reconstruction with KLFitter

- Definition of kinematic Likelihood:
 - W: transfer functions for detector response
 - BW:Breit-Wigner distributions
 - different options to use b-tagging information

Likelihoodfunction

$$\begin{split} L &= BW(m_{q_{1}q_{2}}|m_{W},\Gamma_{W}) \cdot BW(m_{l\nu}|m_{W},\Gamma_{W}) \\ &BW(m_{q_{1}q_{2}b_{had}}|m_{top},\Gamma_{top}) \cdot BW(m_{l\nu b_{lep}}|m_{top},\Gamma_{top}) \\ &W(\tilde{E}_{jet_{1}}|E_{b_{had}})W(\tilde{E}_{jet_{2}}|E_{b_{lep}})W(\tilde{E}_{jet_{3}}|q_{1})W(\tilde{E}_{jet_{4}}|q_{2}) \\ &W(\tilde{E}_{x}^{miss}|p_{x,\nu})W(\tilde{E}_{y}^{miss}|p_{y,\nu}) \left\{ \begin{array}{c} W(\tilde{E}_{l}|E_{l}) \\ W(\tilde{p}_{T,l}|p_{T,l}) \end{array} \right\} \end{split}$$

Introduction Event selection Event reconstruction Data/MC agreement 13 TeV **Template parametrization**

Signal templates $t\bar{t}$ only for 173.5 GeV & 175 GeV

$$\begin{split} L_{\text{shape}}^{l+\text{jets}}(\textit{\textit{m}}_{\text{top}}, \text{JSF, bJSF, } f_{\text{bkg}}) &= \prod_{i=1}^{N} P_{\text{top}}(\textit{\textit{m}}_{\text{top}}^{\text{reco,i}} \mid \textit{\textit{m}}_{\text{top}}, \text{JSF, bJSF, } f_{\text{bkg}}) \\ &\times P_{\text{W}}(\textit{\textit{m}}_{\text{w}}^{\text{reco,i}} \mid \text{JSF, } f_{\text{bkg}}) \\ &\times P_{\mathcal{R}_{\text{bq}}}(\textit{\textit{R}}_{\text{bq}}^{\text{reco,i}} \mid \textit{\textit{m}}_{\text{top}}, \text{bJSF, } f_{\text{bkg}}), \end{split}$$

Event reconstruction

$$\begin{split} P_{\text{top}}(m_{\text{top}}^{\text{reco,i}} \mid m_{\text{top}}, \text{JSF, bJSF, } f_{\text{bkg}}) &= (1 - f_{\text{bkg}}) \cdot P_{\text{top}}^{\text{big}}(m_{\text{top}}^{\text{reco,i}} \mid m_{\text{top}}, \text{JSF, bJSF}) + \\ f_{\text{bkg}} \cdot P_{\text{top}}^{\text{bkg}}(m_{\text{top}}^{\text{reco,i}} \mid \text{JSF, bJSF}) \;, \\ P_{W}(m_{W}^{\text{reco,i}} \mid \text{JSF, } f_{\text{bkg}}) &= (1 - f_{\text{bkg}}) \cdot P_{W}^{\text{sig}}(m_{W}^{\text{reco,i}} \mid \text{JSF}) + \\ f_{\text{bkg}} \cdot P_{W}^{\text{bkg}}(m_{W}^{\text{reco,i}} \mid \text{JSF}) \;, \\ P_{\mathcal{R}_{\text{bq}}}(R_{\text{bq}}^{\text{reco,i}} \mid m_{\text{top}}, \text{bJSF, } f_{\text{bkg}}) &= (1 - f_{\text{bkg}}) \cdot P_{\mathcal{R}_{\text{bq}}}^{\text{sig}}(R_{\text{bq}}^{\text{reco,i}} \mid m_{\text{top}}, \text{bJSF}) + \\ f_{\text{bkg}} \cdot P_{\mathcal{R}_{\text{bq}}}^{\text{ktg}}(R_{\text{bq}}^{\text{reco,i}} \mid \text{bJSF}) \;. \end{split}$$