

Big-O notation

Lecture 10

Running time of selection sort

• We showed that running selection sort on an array of n elements takes in the worst case $T(n) = 1 + 15 \text{ n} + (5 \text{ n}^2)$ primitive operations

• When n is large, $T(n) \approx 5 \text{ n}^2$

• When n is large,

 $T(2n) / T(n) \approx 5 (2n)^2 / 5 n^2$

Doubling n quadruples T(n) N.B. That is true for any coefficient of n² (not just 5)

e operations—	
n	T(n)
10	661
20	2301
30	4951
40	8601
1000	5015001
2000	20030001

Big - O notation

- Goals:
 - Simplify the discussion of algorithm running times
 - Describe how the running time of an algorithm increases as a function of n (the size of the problem), when n is LARGE
 - Get rid of terms that become insignificant when n is large
- We will say things like:

The worst-case running time of $\frac{1}{n}$ tionSort on an array of n elements is $O(n^2)$

The worst-case running time of mergeSort on an array of n elements is $O(\ n \ log(n)\)$

Big-O definition

- Let (n) and g(n) be two non-negative functions defined on the natural numbers N
- We say that f(n) is O(g(n)) if and only if:
 - There exists an integer n_0 and a real number c such that: for all $n \ge n_0$, $f(n) \le c \bullet g(n)$

More mathematically, we would write

- $\exists n_0 \in \mathbb{N}, \exists c \in \mathbb{R} : \forall n \ge n_0, f(n) \le c \cdot g(n)$
- N.B. The constant c must not depend on n

Proving big-O relations

- To prove that f(n) is O(g(n)) we must find n_0 and c such that $f(n) \le c \cdot g$ (n
- Example: Prove that 5 + 3 n^2 is $O(1 + n^2)$ We need to pick c greater 3. Let's pick c = 5. If we choose $n_0 = 1$, we get that if $n \ge n_0$, then 5 + 3 $n^2 \le 5 + 5$ n^2 (since $n \ge n_0$) = $5 (1 + n^2)$

Examples

• Prove that 2n + 3 is O(n)

We must find values c, n_0 s.t. $2n+3 \le c \cdot n$ for all $n \ge n_0$ Option 1:

$$2n+3 \stackrel{\text{if } n \, \geq \, 1}{\leq} \, 2n+3 \cdot n = 5 \cdot n = \underbrace{c}_{\text{where } c \, = \, 5} \cdot n$$

So, pick $n_0=1$ and c=5, then $2n+3\leq c\cdot n$ for all $n\geq n_0\implies 2n+3$ is O(n) Ontion 2:

$$2n+3 \stackrel{\text{if } n \geq 3}{\leq} 2n+n=3 \cdot n = \underbrace{c}_{c=3} \cdot n$$

 $n_0 = 3$ and c = 3.

Examples

• Prove that $f(n) = 10^{100}$ is O(1)

 $= c (1 + n^2)$

Prove that
$$f(n)=10^{100}$$
 is $O(\underbrace{1}_{g(n)})$
We need to find n_0 s.t. $f(n)\leq c\cdot g(n)$ $\forall n\geq n_0$
 $10^{100}\leq 10^{100}\cdot 1\leq \underbrace{c}_{10^{100}}\cdot 1$
So, if $c=10^{100},\ n_0=0$, then $f(n)\leq c\cdot g(n)$ $\forall n\geq n_0\implies f(n)$ is $O(g(n))$
 $O(1)\implies$ runtime is constant.

Examples

• Prove that $n (\sin(n) + 1)$ is O(n)

We need to show that there exist c, n_0 s.t. $n \cdot (sin(n) + 1) \le c \cdot n \forall n \ge n_0$

$$\begin{split} n(sin(n)+1) &\leq n(1+1) = 2 \cdot n \\ \Longrightarrow n(sin(n)+1) &\leq c \cdot n \forall n \geq n_0 \\ & \text{where } c = 2 \; n_0 = 0 \\ & \Longrightarrow n(sin(n)+1) \text{ is } O(n) \end{split}$$

Proving that f(n) is *not* O(g(n))

- To prove that f(n) is not O(g(n)), one must show that for any n₀ and c, there exists an n ≥ n₀ such that f(n) > c g(n)
- Procedure: Assume n₀ and c are given, and find a value of n such that f(n) > c g(n). The value of n will usually depend on n₀ and c

Examples

• Prove that n² is *not* O(n)

Prove that n^2 is not $O(100 \cdot n)$ Suppose someone proposes n_0 and c and claims that $f(n) = n^2 \le c \cdot g(n) = c \cdot 100 \cdot n \, \forall n \ge n_0$ We need to find a value for n s.t. $f(n) \nleq c \cdot g(n) \iff f(n) > c \cdot g(n)$

We want $n^2 > c \cdot 100 \cdot n \iff n > c \cdot 100$ Choose $n = c \cdot 100 + 1$, then $f(n) > c \cdot g(n) \implies f(n)$ is not O(g(n)). Did not mention n_0 . To be more precise: $n = \max(n_0, c \cdot 100 + 1)$

Exampl	les
--------	-----

• Prove that $n (\sin(n) + 1)$ is O(n)

Examples

• Prove that 2ⁿ is *not* O(n³)