直観主義論理

齊藤 哲平

October 21, 2023

概要

大西琢朗による教科書「論理学」の直観主義論理のところを読む。

- 1. 直観主義論理の特徴: 構成性
- 2. クリプキ意味論
- 3. 多値論理との関係(次回予告)

以下、命題論理で考える。

命題

 x^y が有理数になるような無理数 x,y が存在する。

命題

 x^y が有理数になるような無理数 x, y が存在する。

非構成的証明.

 $_{f l}$ 中律により $\sqrt{2}^{\sqrt{2}}$ は有理数か、無理数であるかのどちらかである。 $_{f o}$

。 有理数ならば $x=\sqrt{2}, y=\sqrt{2}$ がそのような x,y である。

命題

 x^y が有理数になるような無理数 x, y が存在する。

非構成的証明.

排中律により $\sqrt{2}^{\sqrt{2}}$ は有理数か、無理数であるかのどちらかである。

- 。 有理数ならば $x=\sqrt{2},y=\sqrt{2}$ がそのような x,y である。
- 。 無理数ならば $x=\sqrt{2}^{\sqrt{2}}, y=\sqrt{2}$ がそのような x,y である。

$$x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} \cdot \sqrt{2}} = \sqrt{2}^2 = 2$$

命題

 x^y が有理数になるような無理数 x, y が存在する。

非構成的証明.

排中律により $\sqrt{2}^{\sqrt{2}}$ は有理数か、無理数であるかのどちらかである。

- 。 有理数ならば $x=\sqrt{2},y=\sqrt{2}$ がそのような x,y である。
- 。 無理数ならば $x=\sqrt{2}^{\sqrt{2}}, y=\sqrt{2}$ がそのような x,y である。

$$x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} \cdot \sqrt{2}} = \sqrt{2}^2 = 2$$

構成的証明 (cf. Bauer 2016).

$$(\sqrt{2})^{\log_2 9} = \sqrt{2^{\log_2 9}} = \sqrt{9} = 3$$

選言特性と排中律

命題 (選言特性)

直観主義論理では $A \lor B$ が妥当ならば A または B が妥当である。

選言特性と排中律

命題 (選言特性)

直観主義論理では $A \lor B$ が妥当ならば A または B が妥当である。

命題

古典論理は選言特性を持たない。

選言特性と排中律

命題 (選言特性)

直観主義論理では $A \lor B$ が妥当ならば A または B が妥当である。

命題

古典論理は選言特性を持たない。

証明.

古典論理で排中律は妥当であるから、適当な命題変数 p について $p \vee \neg p$ は妥当。一方で p も $\neg p$ のいずれも妥当でない。

クリプキ意味論

Definition

 $\langle W,\leqslant
angle$ が <mark>フレーム</mark> であるとは以下の三つが成立することである。

- W は空でない
- 反射性: 任意の $x \in W$ について $x \leq x$
- 推移性: 任意の $x, y, z \in W$ について

$$x \leqslant y$$
 かつ $y \leqslant z$ ならば $x \leqslant z$

クリプキ意味論

Definition

 $\langle W, \leqslant \rangle$ が フレーム であるとは以下の三つが成立することである。

- W は空でない
- 反射性: 任意の $x \in W$ について $x \leq x$
- 推移性: 任意の $x,y,z \in W$ について

$$x \leqslant y$$
 かつ $y \leqslant z$ ならば $x \leqslant z$

関数 $v:(W\times PV)\to\{0,1\}$ が<mark>付置</mark>であるとは、v が遺伝的であること、 すなわち任意の $x,y\in W,p\in PV$ について以下が成立することである。

$$x \leqslant y$$
 かつ $v(x,p) = 1$ ならば $v(y,p) = 1$

論理式の解釈

Definition

論理式についての付置を以下のように帰納的に定義する。

$$v(x,A \wedge B) = 1 \Longleftrightarrow v(x,A) = 1$$
 かつ $v(x,B) = 1$ $v(x,A \vee B) = 1 \Longleftrightarrow v(x,A) = 1$ または $v(x,B) = 1$ $v(x,\neg A) = 1 \Longleftrightarrow x \leqslant y$ なる任意の y について $v(y,A) = 0$ $v(x,A \rightarrow B) = 1 \Longleftrightarrow x \leqslant y$ なる任意の y について $v(y,A) = 0$ または $v(x,B) = 1$ $v(x,A \leftrightarrow B) = 1 \Longleftrightarrow v(x,A \to B) = 1$ かつ $v(x,B \to A) = 1$

妥当性

Definition

論理式の集合 X から論理式 A への推論が妥当でないとは、あるフレーム $\langle W, \leqslant \rangle$ 、付置 v と $x \in W$ が存在して

- 。 すべての $B \in X$ について v(x, B) = 1 であり、かつ
- $\circ v(x,A) = 0$ であることである。

妥当性

Definition

論理式の集合 X から論理式 A への推論が妥当でないとは、 あるフレーム $\langle W, \leqslant \rangle$ 、付置 v と $x \in W$ が存在して

- 。 すべての $B \in X$ について v(x,B) = 1 であり、かつ
- $\circ v(x,A) = 0$ であることである。
- ∅ から A への推論が妥当なとき、単に A が妥当であるという。

妥当性

Definition

論理式の集合 X から論理式 A への推論が妥当でないとは、あるフレーム $\langle W,\leqslant \rangle$ 、付置 v と $x\in W$ が存在して

- 。 すべての $B \in X$ について v(x,B) = 1 であり、かつ
- $\circ v(x,A) = 0$ であることである。
- \emptyset から A への推論が妥当なとき、単に A が妥当であるという。

妥当でない論理式

- \circ $A \lor \neg A$
- $\circ p \leftrightarrow q (p e q t 異なる変数)$

妥当な推論

- {A} から ¬¬A への推論
- (A ∨ B,¬B) から A への推論

フレーム
$$W = \langle \{x, y\}, \leqslant \rangle$$
 を以下のように定める。

 $x \leqslant y$

フレーム
$$W = \langle \{x, y\}, \leqslant \rangle$$
 を以下のように定める。

$$x \leqslant y$$

ここで原子論理式 p について、付置 v を以下のように定めれば

$$v(x,p) = 0$$

$$v(y,p) = 1$$

$$v(x, \neg p) = 0$$
 であり、

フレーム $W = \langle \{x, y\}, \leqslant \rangle$ を以下のように定める。

$$x \leqslant y$$

ここで原子論理式 p について、付置 v を以下のように定めれば

$$v(x,p) = 0 v(y,p) = 1$$

 $v(x, \neg p) = 0$ であり、したがって $v(x, p \lor \neg p) = 0$ である。

フレーム $W = \langle \{x, y\}, \leqslant \rangle$ を以下のように定める。

$$x \leqslant y$$

ここで原子論理式 p について、付置 v を以下のように定めれば

$$v(x,p) = 0 v(y,p) = 1$$

 ${m v}(x, \lnot p) = 0$ であり、したがって $v(x, p \lor \lnot p) = 0$ である。

命題 (選言特性)

 $A \lor B$ が妥当ならば A または B が妥当である。

直観主義論理は三値論理ではない。

直観主義論理は三値論理ではない。

証明のようなもの.

直観主義論理が三値論理だったとする。

$$(p_1 \leftrightarrow p_2) \lor (p_1 \leftrightarrow p_3) \lor (p_1 \leftrightarrow p_4) \lor (p_2 \leftrightarrow p_3) \lor (p_2 \leftrightarrow p_4) \lor (p_3 \leftrightarrow p_4)$$

は、三値論理においては鳩の巣原理から妥当なはずである。

直観主義論理は三値論理ではない。

証明のようなもの.

直観主義論理が三値論理だったとする。

$$(p_1 \leftrightarrow p_2) \lor (p_1 \leftrightarrow p_3) \lor (p_1 \leftrightarrow p_4) \lor (p_2 \leftrightarrow p_3) \lor (p_2 \leftrightarrow p_4) \lor (p_3 \leftrightarrow p_4)$$

は、三値論理においては鳩の巣原理から妥当なはずである。

一方で直観主義論理の選言特性からある $p_i\leftrightarrow p_j$ が妥当になり矛盾。

直観主義論理は三値論理ではない。

証明のようなもの.

直観主義論理が三値論理だったとする。

$$(p_1 \leftrightarrow p_2) \lor (p_1 \leftrightarrow p_3) \lor (p_1 \leftrightarrow p_4) \lor (p_2 \leftrightarrow p_3) \lor (p_2 \leftrightarrow p_4) \lor (p_3 \leftrightarrow p_4)$$

は、三値論理においては鳩の巣原理から妥当なはずである。

一方で直観主義論理の選言特性からある $p_i\leftrightarrow p_j$ が妥当になり矛盾。

次回は細かいところを詰める予定 (Salehi, 2021)