Classificação de sentimento em reviews de filmes

Gabriel de Oliveira Pontarolo, GRR20203895

1 Introdução

O relatório exibe os resultados dos experimentos na tarefa de classificação de sentimentos em reviews de filmes. Foram feitos dois testes principais, um utilizando modelos clássicos de classificação com o *word2vec* como encoder, e outro utilizando modelos disponibilizados pela plataforma *HuggingFace*.

2 Experimentos

2.1 Word2Vec

Inicialmente, foi feito um experimento com a biblioteca *PyCaret* para obter uma estimativa sobre quais classificadores teriam o melhor desempenho. Para esses testes, foi utilizado *VectorSize* de 300, *WindowSize* de 15 e a média no *Word2Vec*. Os quatro melhores modelos encontrados foram:

Modelo	Acurácia	AUC	Recall	Precision
Logistic	0.843	0.917	0.847	0.841
SVM	0.839	0.0	0.849	0.832
LDA	0.838	0.914	0.849	0.832
Ridge	0.832	0.0	0.793	0.861

Com base nisso, foram selecionados os modelos de regressão logística, SVM com kernel linear e análise discriminante linear. Foi feito também o *ensemble* dos modelos, utilizando a estratégia de *Hard Voting*.

Os parâmetros para cada modelo foram escolhidos com base na documentação da

biblioteca utilizada na implementação, *SciKit Learn*. Fiz testes variando mais os parâmetros e utilizando a função de *Grid Search*, porém a diferença nos valores era pior ou menor do que 0.01.

A diferença mais significativa foi obtida ao aumentar o *VectorSize* para 500, que subiu em mais de 1% nas quatro métricas avaliadas. Acima disso, as melhorias eram muito pequenas em comparação com o tempo de execução dos modelos e do encoder.

Seguem os melhores resultados obtidos, para o *VectorSize* de 700 e *WindowSize* de 10 :

Logistic Regression

Penalty: L2 C: 10.0

Solver: Newton-Cholesky

	Neg	Pos
Neg	10619	1881
Pos	1787	10713

Accuracy: 0.853 **Precision**: 0.851 **Recall**: 0.857 **F1**: 0.854

• Linear SVM

Kernel: Linear **C:** 10.0

Penalty: L2

	Neg	Pos
Neg	10618	1882
Pos	1799	10701

Accuracy: 0.853 Precision: 0.850 Recall: 0.856 F1: 0.853

• Linear Discriminant Analysis

Solver: SVD

 Neg
 Pos

 Neg
 10523
 1977

 Pos
 1782
 10718

Accuracy: 0.850 **Precision**: 0.844 **Recall**: 0.857 **F1**: 0.851

• Ensemble Voting: Hard

 Neg
 Pos

 Neg
 10619
 1881

 Pos
 1788
 10712

Accuracy: 0.853 **Precision**: 0.851 **Recall**: 0.857 **F1**: 0.854

2.2 Hugging Face

Em seguida, foram feitos testes utilizando modelos grandes pré-treinados disponibilizados pela API da plataforma *HuggingFace*. Cada um dos modelos testados disponibiliza o próprio encoder, então o *Word2Vec* não foi utilizado nestes testes. Em todos eles também foi utilizado o número máximo de tokens em 512, pelas limitações dos modelos. Seguem os resultados dos três melhores modelos encontrados e também o *ensemble* por *hard voting* deles:

• nlptown/bert-base-multilingual-uncase d-sentiment:

 Neg
 Pos

 Neg
 19330
 5455

 Pos
 1950
 23265

Accuracy: 0.852 Precision: 0.810 Recall: 0.923 F1: 0.863 Como a saída desse modelo consiste de uma nota de 1 a 5, uma análise negativa foi considerada como uma nota menor que 3, e positiva como maior ou igual a 3.

• JamesH/Movie_review_sentiment_anal ysis model:

	Neg	Pos
Neg	23320	1465
Pos	1340	23875

Accuracy: 0.944 **Precision**: 0.942 **Recall**: 0.947 **F1**: 0.945

• LiYuan/amazon-review-sentiment-anal vsis:

 Neg
 Pos

 Neg
 20565
 4220

 Pos
 1930
 23285

Accuracy: 0.877 Precision: 0.847 Recall: 0.923 F1: 0.883

Também foi necessário converter a saída desse modelo de uma nota numérica para uma análise positiva/negativa. Foi usado o mesmo threshold do **bert-base.**

EnsembleVoting: Hard

 Neg
 Pos

 Neg
 23875
 910

 Pos
 3600
 21615

Accuracy: 0.910 **Precision**: 0.960 **Recall**: 0.857 **F1**: 0.906

3 Conclusão

Baseando-se apenas nas métricas avaliadas, para o caso dos modelos clássicos o melhor resultado foi obtido com a regressão logística. Entretanto a diferença para os outros modelos é mínima, sendo mais correto dizer que os três modelos apresentam um desempenho muito similar. É interessante notar também que todos eles tendem a um plateau de 85% nas quatro métricas, mesmo com tentativas de *fine tuning* nos parâmetros.

Para os modelos pré-treinados, é notável que o melhor desempenho foi obtido pelo modelo <code>JamesH/Movie_review_sentiment_analysis_model</code>, com quase 95% de acurácia. Mesmo utilizando a técnica de <code>ensemble</code>, o resultado obtido foi pior do que utilizando o modelo sozinho.