Relações entre noções de convergência

Gabriel de Freitas Curti 2024-11-07

1. Introdução: Teoria assintótica e convergência

A análise assintótica é um método fundamental em estatística e teoria das probabilidades, usado para aproximar comportamentos de distribuições à medida que certos parâmetros, como o tamanho da amostra, tendem ao infinito. Essa abordagem permite estudar limites adequados para sequências, sendo a mais comum a análise do comportamento das distribuições amostrais quando o tamanho da amostra cresce indefinidamente (Hansen, 2022).

Formalmente, uma sequência (x_n) tem um limite L, denotado como $\lim_{n \to \infty} x_n = L$ ou simplesmente $x_n \to L$ conforme $n \to \infty$, se, para todo $\epsilon > 0$, existe um índice N tal que, para todo $n \ge N$, a diferença $|x_n - L| < \epsilon$. Em termos intuitivos, isso significa que os elementos da sequência ficam cada vez mais próximos de L conforme n aumenta. Vale destacar que, se uma sequência possui um limite, ele é único.

Entretanto, quando se trata de sequências de variáveis aleatórias, a definição de convergência requer uma análise mais cuidadosa. Por exemplo, considere a média amostral \bar{X}_n . À medida que o tamanho da amostra n aumenta, a distribuição de \bar{X}_n também se modifica. Assim, a questão central é: em que sentido podemos definir e descrever o limite de \bar{X}_n ? E como caracterizamos essa convergência? (Hansen, 2022).

A teoria assintótica, portanto, investiga como as distribuições de funções de variáveis aleatórias se comportam à medida que o número de variáveis aumenta (DasGupta, 2011). Embora o conceito de uma amostra infinita seja uma idealização teórica, ele fornece aproximações valiosas para amostras de tamanho finito, ajudando a desenvolver resultados práticos em estatística (Cassella & Berger, 2001).

2. Tipos de Convergência

Convergência em Probabilidade

 X_n converge para X em probabilidade, denotado por $X_n \overset{p}{ o} X$, se, para todo $\epsilon > 0$,

$$P(|X_n - X| > \epsilon) o 0$$

à medida que $n \to \infty$.

Convergência em Distribuição

 X_n converge para X em distribuição, denotado por $X_n \stackrel{d}{ o} X$, se, para todo t no qual a função de distribuição cumulativa (cdf) F de X é contínua,

$$\lim_{n o\infty}F_n(t)=F(t).$$

Convergência para uma Massa Pontual

Uma variável aleatória X é considerada uma massa pontual em c se P(X=c)=1. Isso significa que Xassume o valor c com certeza total. A função de distribuição (FDA) de X, denotada por F(x), é definida como:

- F(x) = 0 para todo x < c.
- F(x) = 1 para todo $x \ge c$.

Convergência Quase-Certa

Dizemos que X_n converge quase certamente para X, escrito $X_n \stackrel{ ext{q.c.}}{\longrightarrow} X$, se

$$P\left(\left\{s:X_n(s) o X(s)
ight\}
ight)=1.$$

Convergência em Momentos

Dizemos que $(X_n)_{n=1}^{\infty}$ converge em momentos \mathcal{M}_r , se

$$\lim_{n o\infty}\mathbb{E}(\left|X_{n}-X
ight|^{r})=0.$$

Iremos denotar Convergência em momentos como $X_n \xrightarrow{\mathcal{M}_r} X$. Os casos mais importantes de convergência em momentos são:

• Para r=1, é dito que converge na média:

$$\lim_{n o \infty} \mathbb{E}(|X_n - X|) = 0.$$

• Para r=2, é dito que converge na média quadrática:

$$\lim_{n o\infty}\mathbb{E}(\left|X_{n}-X
ight|^{2})=0.$$

3. Relações entre Noções de Convergência

Teorema: As seguintes relações são válidas:

- a. Se $X_n \stackrel{\mathrm{a.s.}}{\longrightarrow} X$, então $X_n \stackrel{p}{\longrightarrow} X$.
- $\bullet \qquad \text{b. Se } X_n \xrightarrow{L^2} X, \text{ então } X_n \xrightarrow{p} X. \\ \bullet \qquad \text{c. Se } X_n \xrightarrow{L^2} X, \text{ então } X_n \xrightarrow{p} X.$
- d. Se $X_n \xrightarrow[p]{L} X$, então $X_n \xrightarrow[d]{p} X$.
- e. Se $X_n \stackrel{r}{\to} X$, então $X_n \stackrel{u}{\to} X$.
- f. Se $X_n\stackrel{\circ}{ o} X$ e se P(X=c)=1 para algum número real c, então $X_n\stackrel{^P}{ o} X$.

Em geral, nenhuma das implicações reversas é válida, exceto o caso especial em (f).

4. Provas

Prova para (a)

Convergência quase-certa implica convergência em probabilidade

Prova: Seja $A_n^\epsilon=\{z:|X_n(z)-X(z)|>\epsilon\}$ uma família de eventos. Tome ϵ arbitrário. Segue da definição que

$$\lim_{n o \infty} P(|X_n - X| > \epsilon) = 0.$$

Logo, para $\epsilon > 0$, temos que

$$P\left(\limsup_{n o\infty}A_n^\epsilon
ight)=0.$$

Pelo Lema de Fatou,

$$\limsup_{n o\infty}P(A_n^\epsilon)\leq P\left(\limsup_{n o\infty}A_n^\epsilon
ight)=0.$$

Logo,

$$\lim_{n o\infty}P(A_n^\epsilon)=\lim_{n o\infty}P\left\{z:|X_n(z)-X(z)|>\epsilon
ight\}=0,$$

que é a própria definição de convergência em probabilidade. Portanto, $X_n \stackrel{p}{ o} X$.

Convergência em probabilidade não implica convergência quase-certa

Contraexemplo: Suponha que temos um espaço amostral S=[0,1], com distribuição uniforme, onde sorteamos $s\sim U[0,1]$ e definimos X(s)=s. Definimos a sequência como:

$$X_1(s) = s + I_{[0,1]}(s), \quad X_2(s) = s + I_{[0,1/2]}(s), \quad X_3(s) = s + I_{[1/2,1]}(s),$$

$$X_4(s) = s + I_{[0,1/3]}(s), \quad X_5(s) = s + I_{[1/3,2/3]}(s), \quad X_6(s) = s + I_{[2/3,1]}(s).$$

Agora, pode-se verificar que essa sequência converge em probabilidade, mas não quase certamente. Aproximadamente, o "pico de 1+s" torna-se menos frequente ao longo da sequência (permitindo a convergência em probabilidade), mas o limite não é bem definido. Para qualquer s, $X_n(s)$ alterna entre s e 1+s.

Prova para (b)

Convergência em média quadrática implica em convergência em média

Prova: Usando o fato de que, pela inequação de Cauchy-Schwarz, se X e $Y \in L^1$, então $XY \in L^1$ e

$$\mathbb{E}[|XY|] \leq \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}.$$

Podemos escrever que

$$\mathbb{E}[|X_n - X|] \le \sqrt{\mathbb{E}[(X_n - X)^2]}.$$

Então, para $\mathbb{E}[|X_n-X|] o 0$, é preciso que $\mathbb{E}[(X_n-X)^2] o 0$.

Convergência em média não implica convergência em média quadrática

Contraexemplo: Considere o espaço de probabilidade $([0,1],\mathcal{B}([0,1]),P)$, onde P é a distribuição uniforme. A sequência

$$X_n=\sqrt{n}1_{(0,rac{1}{n})}$$

converge para zero quase certamente e em L^1 , uma vez que $\mathbb{E}[X_n]=rac{1}{\sqrt{n}}$, mas não em média quadrática, porque $\mathbb{E}[X_n^2]=1$ para todo n.

Prova para (c)

Convergência em média implica convergência em probabilidade

Prova: Usando o fato de que, pela inequação de Chebyshev, seja $X \geq 0$. Seja $g > 0 \in \mathbb{R}^+$, uma função crescente, então para todo a > 0,

$$P(X \geq a) \leq rac{\mathbb{E}[g(X)]}{g(a)}.$$

Para todo $\epsilon > 0$,

$$P(|X_n-X| \geq \epsilon) \leq rac{1}{\epsilon} \mathbb{E}[|X_n-X|].$$

Então, $\mathbb{E}[|X_n-X|] o 0$ implica que $P(|X_n-X| \geq \epsilon) o 0$.

Convergência em probabilidade não implica convergência em média

Contraexemplo: Considere o espaço de probabilidade $([0,1],\mathcal{B}([0,1]),P)$, onde P é a distribuição uniforme. A sequência

$$X_n=n1_{\left(0,rac{1}{n}
ight)}$$

converge para zero quase certamente e, portanto, em probabilidade e em distribuição, mas não em L^1 , já que $\mathbb{E}[X_n]=nP\{X_n=n\}=1$ para cada n.

Prova para (d)

Convergência em média quadrática implica convergência em probabilidade

Prova: Como consequência imediata da desigualdade de Markov, temos:

$$P(|X_n-X|>\epsilon) \leq rac{\mathbb{E}[(X_n-X)^2]}{\epsilon^2},$$

em que o lado direito da equação converge para zero.

Convergência em probabilidade não implica convergência em média quadrática

Contraexemplo: Considere o espaço de probabilidade $([0,1],\mathcal{B}([0,1]),P)$, onde P é a distribuição uniforme. A sequência

$$X_n=\sqrt{n}1_{\left(0,rac{1}{n}
ight)}$$

converge para zero quase certamente e em L^1 , uma vez que $\mathbb{E}[X_n]=rac{1}{\sqrt{n}}$, mas não em média quadrática, porque $\mathbb{E}[X_n^2]=1$ para todo n.

Prova para (e)

Convergência em probabilidade implica convergência em distribuição

Prova: Seja t um ponto de continuidade de $F_X(t)$. Então, para $\epsilon>0$ e para todo $n\in\mathbb{N}^+$,

$$egin{aligned} F_{X_n}(t) &= P(X_n \leq t) = P(X_n \leq t, |X_n - X| \leq \epsilon) + P(X_n \leq t, |X_n - X| > \epsilon). \ &= P(X \leq t + \epsilon) + P(|X_n - X| > \epsilon). \end{aligned}$$

Tomando $n\to\infty$ e $\epsilon\downarrow 0$, usando o resultado de convergência em probabilidade e que F_X é contínua em t, temos que $F_X\leq \liminf F_{X_n}$. Conclui-se assim que $F_{X_n}(t)=F_X(t)$.

Convergência em distribuição não implica convergência em probabilidade

Contraexemplo: Seja X uma variável aleatória tal que $X\sim N(0,1)$. Defina $X_n=-X$ para $n=1,2,3,\ldots$; logo, $X_n\sim N(0,1)$. X_n possui a mesma função de distribuição que X para todo n, portanto, trivialmente,

$$\lim_{n \to \infty} F_n(x) = F(x) \quad ext{para todo } x.$$

Portanto, $X_n \stackrel{d}{ o} X$. Mas

$$P(|X_n-X|>\epsilon)=P(|-X-X|>\epsilon)=P(2|X|>\epsilon)=2P\left(X>rac{\epsilon}{2}
ight)
eq 0.$$

Assim, X_n não converge para X em probabilidade.

Prova para (f)

Se $X_n\stackrel{d}{ o} X$ e X é uma variável aleatória degenerada em c (isto é, P(X=c)=1), então $X_n\stackrel{p}{ o} X$.

Prova: Seja, para $\epsilon>0$ e para todo $n\in\mathbb{N}^+$,

$$egin{aligned} P(|X_n-X|>\epsilon) &= P(X_n < c-\epsilon) + P(X_n > c+\epsilon) \ &= F_{X_n}(c-\epsilon) + (1-F_{X_n}(c+\epsilon)) \ & o F_c(c-\epsilon) + (1-F_c(c+\epsilon)) \ &= 0, \end{aligned}$$

desde que $c - \epsilon$ e $c + \epsilon$ são pontos de continuidade de F.

5. Referências

- HANSEN, B. Probability and Statistics for Economists. Princeton: Princeton University Press, 2022.
- WASSERMAN, L. All of Statistics: A Concise Course in Statistical Inference. New York: Springer Science & Business Media, 2004.
- DASGUPTA, A. *Probability for Statistics and Machine Learning: Fundamentals and Advanced Topics*. New York: Springer Science & Business Media, 2011.
- RESNICK, S. A Probability Path. New York: Springer Science & Business Media, 2003.
- Convergence Concepts. Disponível em: https://cran.r-project.org/web/packages/ConvergenceConcepts/index.html (https://cran.r-project.org/web/packages/ConvergenceConcepts/index.html). Acesso em: [data de acesso: 04/13/2024].
- KARR, A.F. (1993). Probability. In: Probability. Springer Texts in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0891-4 2 (https://doi.org/10.1007/978-1-4612-0891-4 2).
- CASELLA, G.; BERGER, R.L. 2002. Statistical Inference. Australia; Pacific Grove, CA: Thomson Learning.