Let the LCCS origin coordinates be (Φ_s, Θ_s, H_s) in GCS.

Let the given point coordinates in LCCS be (x, y, z).

The transformation from LCCS to PCS is given by

Azimuth:
$$\alpha = \arctan \frac{x}{y}$$

<u>Note:</u> the C function atan2 or its equivalent should be used to compute the value of α , and the negative signs in the numerator and denominator should be kept in the call to atan2. Next, 2π should be added to the values in the interval $(-\pi,0)$ since the azimuth values have to belong to the interval $(0,2\pi]$.

Range:
$$r = \sqrt{x^2 + y^2 + z^2}$$

Elevation:
$$\theta = \arctan \frac{z}{\sqrt{x^2 + y^2}}$$

Range rate:
$$\dot{r} = \frac{x\dot{x} + y\dot{y} + z\dot{z}}{\sqrt{x^2 + y^2 + z^2}} = \frac{x\dot{x} + y\dot{y} + z\dot{z}}{r}$$

$$\dot{\alpha} = \frac{y\dot{x} - x\dot{y}}{x^2 + y^2}$$

$$\dot{\theta} = \frac{-z(x\dot{x} + y\dot{y}) + (x^2 + y^2)\dot{z}}{(x^2 + y^2 + z^2)\sqrt{x^2 + y^2}}$$

The transformation of the covariance matrix P_{LCCS} of vector $(x, \dot{x}, y, \dot{y}, z, \dot{z})$ into covariance matrix P_{PCS} of vector $(\alpha, r, \theta, \dot{r})$ is given by $P_{PCS} = BP_{LCCS}B^T$, where matrix **B** is the Jacobian.

If the data vector does not include velocity components, then $B = \left\| \frac{\partial(\alpha, r, \theta)}{\partial(x, y, z)} \right\| = \left\| B_{ij} \right\|_{i, j=1...3}$.

Non-zero elements of matrix B are calculated as follows:

$$B_{11} = \frac{\partial \alpha}{\partial x} = \frac{y}{x^2 + y^2}$$

$$B_{12} = \frac{\partial \alpha}{\partial y} = -\frac{x}{x^2 + y^2}$$

$$B_{21} = \frac{\partial r}{\partial x} = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$

$$B_{22} = \frac{\partial r}{\partial y} = \frac{y}{\sqrt{x^2 + y^2 + z^2}}$$

$$B_{23} = \frac{\partial r}{\partial z} = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

$$B_{31} = \frac{\partial \theta}{\partial x} = -\frac{xz}{(x^2 + y^2 + z^2)\sqrt{x^2 + y^2}}$$

$$B_{32} = \frac{\partial \theta}{\partial y} = -\frac{yz}{(x^2 + y^2 + z^2)\sqrt{x^2 + y^2}}$$

$$B_{33} = \frac{\partial \theta}{\partial z} = \frac{\sqrt{x^2 + y^2}}{x^2 + y^2 + z^2}$$

Otherwise,
$$B = \left\| \frac{\partial(\alpha, \dot{\alpha}, r, \dot{r}, \theta, \dot{\theta})}{\partial(x, \dot{x}, y, \dot{y}, z, \dot{z})} \right\| = \left\| B_y \right\|_{i, j=1.6}$$

Non-zero elements of matrix B are calculated as follows:

$$B_{11} = \frac{\partial \alpha}{\partial x} = \frac{y}{x^2 + y^2}$$

$$B_{13} = \frac{\partial \alpha}{\partial y} = -\frac{x}{x^2 + y^2}$$

$$B_{21} = \frac{\partial \dot{\alpha}}{\partial x} = \frac{(x^2 - y^2)\dot{y} - 2xy\dot{x}}{(x^2 + y^2)^2}$$

$$B_{22} = \frac{\partial \dot{\alpha}}{\partial \dot{x}} = \frac{y}{x^2 + y^2}$$

$$B_{23} = \frac{\partial \dot{\alpha}}{\partial y} = \frac{(x^2 - y^2)\dot{x} + 2xy\dot{y}}{(x^2 + y^2)^2}$$

$$B_{24} = \frac{\partial \dot{\alpha}}{\partial \dot{y}} = -\frac{x}{x^2 + y^2}$$

$$B_{31} = \frac{\partial r}{\partial x} = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$

$$B_{33} = \frac{\partial r}{\partial y} = \frac{y}{\sqrt{x^2 + y^2 + z^2}}$$

$$B_{35} = \frac{\partial r}{\partial z} = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

$$B_{41} = \frac{\partial \dot{r}}{\partial x} = \frac{\dot{x}(y^2 + z^2) - x(y\dot{y} + z\dot{z})}{(x^2 + y^2 + z^2)^{3/2}}$$

$$B_{42} = \frac{\partial \dot{r}}{\partial \dot{r}} = B_{31}$$

$$B_{43} = \frac{\partial \dot{r}}{\partial y} = \frac{\dot{y}(x^2 + z^2) - y(x\dot{x} + z\dot{z})}{(x^2 + y^2 + z^2)^{3/2}}$$

$$B_{44} = \frac{\partial \dot{r}}{\partial \dot{v}} = B_{33}$$

$$B_{45} = \frac{\partial \dot{r}}{\partial z} = \frac{\dot{z}(x^2 + y^2) - z(x\dot{x} + y\dot{y})}{(x^2 + y^2 + z^2)^{3/2}}$$

$$B_{46} = \frac{\partial \dot{r}}{\partial \dot{z}} = B_{35}$$

$$B_{51} = \frac{\partial \theta}{\partial x} = -\frac{xz}{(x^2 + y^2 + z^2)\sqrt{x^2 + y^2}}$$

$$B_{53} = \frac{\partial \theta}{\partial y} = -\frac{yz}{(x^2 + y^2 + z^2)\sqrt{x^2 + y^2}}$$

$$B_{55} = \frac{\partial \theta}{\partial z} = \frac{\sqrt{x^2 + y^2}}{x^2 + y^2 + z^2}$$

$$B_{61} = \frac{\partial \dot{\theta}}{\partial z} = -\frac{\begin{bmatrix} -2zx^4\dot{x} - zx^2\dot{x}y^2 + z\dot{x}y^4 + z^3\dot{x}y^2 - \dot{z}x^3z^2 - x\dot{z}y^2z^2 - 3zy\dot{y}x^3 - \end{bmatrix}}{(x^2 + y^2 + z^2)^2(x^2 + y^2)^{1/2}}$$

$$B_{62} = \frac{\partial \dot{\theta}}{\partial \dot{x}} = B_{51}$$

$$B_{63} = \frac{\partial \dot{\theta}}{\partial z} = -\frac{\begin{bmatrix} z\dot{y}x^4 - zy^2\dot{y}x^2 - 2zy^4\dot{y} + z^3\dot{y}x^2 - y\dot{z}x^2z^2 - \dot{z}y^3z^2 - 3yzx^3\dot{x} - 3yz$$

Acceleration components are calculated as follows:

$$\ddot{r} = \frac{d\dot{r}}{dt} = \frac{\partial \dot{r}}{\partial x}\dot{x} + \frac{\partial \dot{r}}{\partial \dot{x}}\ddot{x} + \frac{\partial \dot{r}}{\partial y}\dot{y} + \frac{\partial \dot{r}}{\partial \dot{y}}\ddot{y} + \frac{\partial \dot{r}}{\partial z}\dot{z} + \frac{\partial \dot{r}}{\partial \dot{z}}\ddot{z} =$$

$$B_{21}\dot{x} + B_{22}\ddot{x} + B_{23}\dot{y} + B_{24}\ddot{y} + B_{25}\dot{z} + B_{26}\ddot{z},$$

$$\ddot{\alpha} = \frac{d\dot{\alpha}}{dt} = \frac{\partial \dot{\alpha}}{\partial x}\dot{x} + \frac{\partial \dot{\alpha}}{\partial \dot{x}}\ddot{x} + \frac{\partial \dot{\alpha}}{\partial y}\dot{y} + \frac{\partial \dot{\alpha}}{\partial \dot{y}}\ddot{y} + \frac{\partial \dot{\alpha}}{\partial z}\dot{z} + \frac{\partial \dot{\alpha}}{\partial \dot{z}}\ddot{z} =$$

$$B_{41}\dot{x} + B_{42}\ddot{x} + B_{43}\dot{y} + B_{44}\ddot{y} + B_{45}\dot{z} + B_{46}\ddot{z},$$

$$\ddot{\theta} = \frac{d\dot{\theta}}{dt} = \frac{\partial \dot{\theta}}{\partial x}\dot{x} + \frac{\partial \dot{\theta}}{\partial \dot{x}}\ddot{x} + \frac{\partial \dot{\theta}}{\partial y}\dot{y} + \frac{\partial \dot{\theta}}{\partial y}\ddot{y} + \frac{\partial \dot{\theta}}{\partial z}\dot{z} + \frac{\partial \dot{\theta}}{\partial z}\ddot{z} =$$

$$B_{61}\dot{x} + B_{62}\ddot{x} + B_{63}\dot{y} + B_{64}\ddot{y} + B_{65}\dot{z} + B_{66}\ddot{z},$$

where matrix B is calculated as above.

1.1.4.5. Covariance matrix of the transformation from ITCS to PCS

If P_{ITCS} is the covariance matrix of the point in ITCS, then the covariance matrix of the point in PCS is given by $P_{PCS} = ZP_{ITCS}Z^T$, matrix $Z = B \cdot C \cdot F \cdot D$ where B, C, F, D are defined above in 1.1.4.1-1.1.4.4.

1.1.5. Inverse Coordinate Transformations

Goal of Capability. The capability transforms coordinates given in PCS into ITCS through LCCS, GCCS, and GCS.

1.1.5.1. Transformation from PCS to LCCS

Let the given point coordinates in PCS be azimuth α , range r, and elevation θ .

 $x = r \sin \alpha \cos \theta$

 $y = r \cos \alpha \cos \theta$

 $z = r \sin \theta$

The velocity components are given by

 $\dot{x} = \dot{r}\sin\alpha\cos\theta + \dot{\alpha}r\cos\alpha\cos\theta - \dot{\theta}r\sin\alpha\sin\theta$

 $\dot{y} = \dot{r}\cos\alpha\cos\theta - \dot{\alpha}r\sin\alpha\cos\theta - \dot{\theta}r\cos\alpha\sin\theta$

 $\dot{z} = \dot{r}\sin\theta + \dot{\theta}r\cos\theta$

The transformation of the covariance matrix P_{PCS} of vector $(\alpha, \dot{\alpha}, r, \dot{r}, \theta, \dot{\theta})$ into covariance matrix P_{LCCS} is given by $P_{LCCS} = Q P_{PCS} Q^T$, where matrix Q is the Jacobian.

If the data vector does not include velocity components, then $Q = \left\| \frac{\partial(x, y, z)}{\partial(\alpha, r, \theta)} \right\| = \|Q_q\|_{L_{q, r-1, 1}}$.

Non-zero elements of matrix Q are calculated as follows:

$$Q_{11} = \frac{\partial x}{\partial \alpha} = r \cos \alpha \cos \theta$$

$$Q_{12} = \frac{\partial x}{\partial r} = \sin \alpha \cos \theta$$

$$Q_{13} = \frac{\partial x}{\partial \theta} = -r \sin \alpha \sin \theta$$

$$Q_{21} = \frac{\partial y}{\partial \alpha} = -r \sin \alpha \cos \theta$$

$$Q_{22} = \frac{\partial y}{\partial r} = \cos \alpha \cos \theta$$

$$Q_{23} = \frac{\partial y}{\partial \theta} = -r\cos\alpha\sin\theta$$

$$Q_{32} = \frac{\partial z}{\partial r} = \sin \theta$$

$$Q_{33} = \frac{\partial z}{\partial \theta} = r \cos \theta$$

Otherwise,
$$Q = \left\| \frac{\partial(x, \dot{x}, y, \dot{y}, z, \dot{z})}{\partial(\alpha, \dot{\alpha}, r, \dot{r}, \theta, \dot{\theta})} \right\| = \left\| Q_{ij} \right\|_{i, j = \overline{1..6}}.$$

Non-zero elements of matrix Q are calculated as follows:

$$Q_{11} = \frac{\partial x}{\partial \alpha} = r \cos \alpha \cos \theta$$

$$Q_{13} = \frac{\partial x}{\partial r} = \sin \alpha \cos \theta$$

$$Q_{15} = \frac{\partial x}{\partial \theta} = -r \sin \alpha \sin \theta$$

$$Q_{21} = \frac{\partial \dot{x}}{\partial \alpha} = \dot{r} \cos \alpha \cos \theta - \dot{\alpha}r \sin \alpha \cos \theta - \dot{\theta}r \cos \alpha \sin \theta$$

$$Q_{22} = \frac{\partial \dot{x}}{\partial \dot{\alpha}} = r \cos \alpha \cos \theta$$

$$Q_{23} = \frac{\partial \dot{x}}{\partial r} = -\dot{\alpha}\sin\alpha\cos\theta - \dot{\theta}\sin\alpha\sin\theta$$

$$Q_{24} = \frac{\partial \dot{x}}{\partial \dot{r}} = \sin \alpha \cos \theta$$

$$Q_{25} = \frac{\partial \dot{x}}{\partial \theta} = -\dot{r} \sin \alpha \sin \theta - \dot{\alpha} r \cos \alpha \sin \theta - \dot{\theta} r \sin \alpha \cos \theta$$

$$Q_{26} = \frac{\partial \dot{x}}{\partial \dot{\theta}} = -r \sin \alpha \sin \theta$$

$$Q_{31} = \frac{\partial y}{\partial \alpha} = -r \sin \alpha \cos \theta$$

$$Q_{33} = \frac{\partial y}{\partial r} = \cos \alpha \cos \theta$$

$$Q_{35} = \frac{\partial y}{\partial \theta} = -r \cos \alpha \sin \theta$$

$$Q_{41} = \frac{\partial \dot{y}}{\partial \alpha} = -\dot{r} \sin \alpha \cos \theta - \dot{\alpha} r \cos \alpha \cos \theta + \dot{\theta} r \sin \alpha \sin \theta$$

$$Q_{42} = \frac{\partial \dot{y}}{\partial \dot{\alpha}} = -r \sin \alpha \cos \theta$$

$$Q_{43} = \frac{\partial \dot{y}}{\partial r} = -\dot{\alpha} \sin \alpha \cos \theta - \dot{\theta} \cos \alpha \sin \theta$$

$$Q_{44} = \frac{\partial \dot{y}}{\partial \dot{r}} = \cos \alpha \cos \theta$$

$$Q_{45} = \frac{\partial \dot{y}}{\partial \theta} = -\dot{r} \cos \alpha \sin \theta + \dot{\alpha} r \sin \alpha \sin \theta - \dot{\theta} r \cos \alpha \cos \theta$$

$$Q_{45} = \frac{\partial \dot{y}}{\partial \dot{\theta}} = -r \cos \alpha \sin \theta$$

$$Q_{53} = \frac{\partial z}{\partial r} = \sin \theta$$

$$Q_{53} = \frac{\partial z}{\partial \theta} = r \cos \theta$$

$$Q_{63} = \frac{\partial \dot{z}}{\partial r} = \dot{\theta} \cos \theta$$

$$Q_{64} = \frac{\partial \dot{z}}{\partial \dot{r}} = \sin \theta$$

$$Q_{65} = \frac{\partial \dot{z}}{\partial \theta} = \dot{r} \cos \theta - \dot{\theta} r \sin \theta$$

$$Q_{66} = \frac{\partial \dot{z}}{\partial \dot{\theta}} = r \cos \theta$$

Acceleration components are calculated as follows:

$$\ddot{x} = \frac{d\dot{x}}{dt} = \frac{\partial \dot{x}}{\partial r} \dot{r} + \frac{\partial \dot{x}}{\partial \dot{r}} \ddot{r} + \frac{\partial \dot{x}}{\partial \alpha} \dot{\alpha} + \frac{\partial \dot{x}}{\partial \dot{\alpha}} \ddot{\alpha} + \frac{\partial \dot{x}}{\partial \theta} \dot{\theta} + \frac{\partial \dot{x}}{\partial \dot{\theta}} \ddot{\theta} =$$

$$Q_{21} \dot{r} + Q_{22} \ddot{r} + Q_{23} \dot{\alpha} + Q_{24} \ddot{\alpha} + Q_{25} \dot{\theta} + Q_{26} \ddot{\theta},$$

$$\ddot{y} = \frac{d\dot{y}}{dt} = \frac{\partial \dot{y}}{\partial r} \dot{r} + \frac{\partial \dot{y}}{\partial \dot{r}} \ddot{r} + \frac{\partial \dot{y}}{\partial \alpha} \dot{\alpha} + \frac{\partial \dot{y}}{\partial \dot{\alpha}} \ddot{\alpha} + \frac{\partial \dot{y}}{\partial \theta} \dot{\theta} + \frac{\partial \dot{y}}{\partial \dot{\theta}} \ddot{\theta} =$$

$$Q_{41} \dot{r} + Q_{42} \ddot{r} + Q_{43} \dot{\alpha} + Q_{44} \ddot{\alpha} + Q_{45} \dot{\theta} + Q_{46} \ddot{\theta},$$

$$\ddot{z} = \frac{d\dot{z}}{dt} = \frac{\partial \dot{z}}{\partial r} \dot{r} + \frac{\partial \dot{z}}{\partial \dot{r}} \ddot{r} + \frac{\partial \dot{z}}{\partial \dot{r}} \dot{\alpha} + \frac{\partial \dot{z}}{\partial \dot{\alpha}} \dot{\alpha} + \frac{\partial \dot{z}}{\partial \dot{\theta}} \dot{\theta} + \frac{\partial \dot{z}}{\partial \dot{\theta}} \ddot{\theta} =$$

$$Q_{61} \dot{r} + Q_{62} \ddot{r} + Q_{63} \dot{\alpha} + Q_{64} \ddot{\alpha} + Q_{65} \dot{\theta} + Q_{66} \ddot{\theta},$$

where matrix Q is calculated as above.

1.1.5.2. Transformation from LCCS to GCCS

 Ψ is a LCCS orientation as defined in 1.1.2 (c). Let the LCCS origin coordinates be (Φ_s, Θ_s, H_s) in GCS, (X_s, Y_s, Z_s) be its coordinates in GCCS, $(\dot{X}_s, \dot{Y}_s, \dot{Z}_s)$ be its velocity in GCCS.