Blackwell-Monotone Information Costs

Xiaoyu Cheng

Florida State University

Yonggyun (YG) Kim

Florida State University

- Agenda: integration of costly information across various fields
- Question: Which information cost function should or could be used
- Examples
 - Entropy Costs: Sims (2003); Matějka, McKay (2015)
 - Posterior Separable Costs: Caplin, Dean, Leahy (2022); Denti (2022)
 - Log-Likelihood Ratio Costs: Pomatto, Strack, Tamuz (2023)
- Common Principle: Blackwell Monotonicity
 - Higher rank in Blackwell's order ⇒ higher cost
 - Minimum requirement for plausible information costs

- Agenda: integration of costly information across various fields
- Question: Which information cost function should or could be used
- Examples
 - Entropy Costs: Sims (2003); Matějka, McKay (2015)
 - Posterior Separable Costs: Caplin, Dean, Leahy (2022); Denti (2022)
 - Log-Likelihood Ratio Costs: Pomatto, Strack, Tamuz (2023)
- Common Principle: Blackwell Monotonicity
 - Higher rank in Blackwell's order ⇒ higher cost
 - Minimum requirement for plausible information costs

- Agenda: integration of costly information across various fields
- Question: Which information cost function should or could be used
- Examples
 - Entropy Costs: Sims (2003); Matějka, McKay (2015)
 - Posterior Separable Costs: Caplin, Dean, Leahy (2022); Denti (2022)
 - Log-Likelihood Ratio Costs: Pomatto, Strack, Tamuz (2023)
- Common Principle: Blackwell Monotonicity
 - Higher rank in Blackwell's order ⇒ higher cost
 - Minimum requirement for plausible information costs

- Agenda: integration of costly information across various fields
- Question: Which information cost function should or could be used
- Examples
 - Entropy Costs: Sims (2003); Matějka, McKay (2015)
 - Posterior Separable Costs: Caplin, Dean, Leahy (2022); Denti (2022)
 - Log-Likelihood Ratio Costs: Pomatto, Strack, Tamuz (2023)
- Common Principle: Blackwell Monotonicity
 - $\bullet \ \ \mathsf{Higher} \ \mathsf{rank} \ \mathsf{in} \ \mathsf{Blackwell's} \ \mathsf{order} \Rightarrow \mathsf{higher} \ \mathsf{cost}$
 - Minimum requirement for plausible information costs

- Blackwell's Theorem: the followings are equivalent
 - 1. For any Bayesian decision problem, the expected payoff under f is greater than or equal to that under g
 - 2. There exists a stochastic matrix M such that $g = f \cdot M$

Goals

- identify elementary necessary and sufficient conditions for Blackwell monotonicity
- characterize a practical and tractable class of information cost functions

▶ Literature

- Blackwell's Theorem: the followings are equivalent
 - 1. For any Bayesian decision problem, the expected payoff under f is greater than or equal to that under g
 - 2. There exists a stochastic matrix M such that $g = f \cdot M$

Goals

- identify elementary necessary and sufficient conditions for Blackwell monotonicity
- characterize a practical and tractable class of information cost functions

▶ Literature

- Blackwell's Theorem: the followings are equivalent
 - 1. For any Bayesian decision problem, the expected payoff under f is greater than or equal to that under g
 - 2. There exists a stochastic matrix M such that $g = f \cdot M$

Goals

- identify elementary necessary and sufficient conditions for Blackwell monotonicity
- characterize a practical and tractable class of information cost functions

Roadmap

- 1. Preliminaries
- 2. Blackwell Monotonicity under Binary Experiments
 - Examples of Information Costs
- 3. Blackwell Monotonicity under General Experiments
 - Additively Separable Costs
- 4. Applications
 - Costly Persuasion
 - Bargaining with Information Acquisition

Preliminaries

Experiments

- $\Omega = \{\omega_1, \dots, \omega_n\}$: a finite set of states
- $S = \{s_1, \dots, s_m\}$: a finite set of signals
- A statistical experiment $f: \Omega \to \Delta(\mathcal{S})$ can be represented by an $n \times m$ matrix:

$$f = \begin{bmatrix} f_{11} & \cdots & f_{1m} \\ \vdots & \ddots & \vdots \\ f_{n1} & \cdots & f_{nm} \end{bmatrix},$$

where
$$f_{ij} = \Pr(s_j | \omega_i)$$
, thus, $f_{ij} \geq 0$ and $\sum_{j=1}^m f_{ij} = 1$

• $\mathcal{E}_m \subset \mathbb{R}^{n \times m}$: the space of all experiments with m possible signals

- $f \succeq_B g$: f is Blackwell more informative than g if there exists a stochastic matrix M such that $g = f \cdot M$
 - M is a stochastic matrix iff $M_{ij} \geq 0$ and $\sum_i M_{ij} = 1$ for all i

Permutation

- A stochastic matrix *P* is called a *permutation matrix* if it has exactly one non-zero entry in each row and each column.
- If P is a permutation matrix, so is P^{-1} .
- **Observation**: f and $f \cdot P$ are equally Blackwell informative

$$f \succeq_B f \cdot P \succeq_B f \cdot P \cdot P^{-1} = f \tag{1}$$

Intuition: relabeling signals does not change the informativeness

- $f \succeq_B g$: f is Blackwell more informative than g if there exists a stochastic matrix M such that $g = f \cdot M$
 - ullet M is a stochastic matrix iff $M_{ij} \geq 0$ and $\sum_j M_{ij} = 1$ for all i

Permutation

- A stochastic matrix *P* is called a *permutation matrix* if it has exactly one non-zero entry in each row and each column.
- If P is a permutation matrix, so is P^{-1} .
- ullet **Observation**: f and $f\cdot P$ are equally Blackwell informative

$$f \succeq_B f \cdot P \succeq_B f \cdot P \cdot P^{-1} = f \tag{1}$$

Intuition: relabeling signals does not change the informativeness

- $f \succeq_B g$: f is Blackwell more informative than g if there exists a stochastic matrix M such that $g = f \cdot M$
 - ullet M is a stochastic matrix iff $M_{ij} \geq 0$ and $\sum_i M_{ij} = 1$ for all i

Permutation

- A stochastic matrix *P* is called a *permutation matrix* if it has exactly one non-zero entry in each row and each column.
- If P is a permutation matrix, so is P^{-1} .
- **Observation**: f and $f \cdot P$ are equally Blackwell informative:

$$f \succeq_B f \cdot P \succeq_B f \cdot P \cdot P^{-1} = f$$
 (1)

Intuition: relabeling signals does not change the informativeness

- $f \succeq_B g$: f is Blackwell more informative than g if there exists a stochastic matrix M such that $g = f \cdot M$
 - M is a stochastic matrix iff $M_{ij} \geq 0$ and $\sum_i M_{ij} = 1$ for all i

Permutation

- A stochastic matrix *P* is called a *permutation matrix* if it has exactly one non-zero entry in each row and each column.
- If P is a permutation matrix, so is P^{-1} .
- **Observation**: f and $f \cdot P$ are equally Blackwell informative:

$$f \succeq_B f \cdot P \succeq_B f \cdot P \cdot P^{-1} = f \tag{1}$$

• Intuition: relabeling signals does not change the informativeness

Information Costs and Blackwell Monotonicity

Information Costs

- $C: \mathcal{E}_m \to \mathbb{R}_+:$ an information cost function
- ullet \mathcal{C}_m : the set of all Lipschitz continuous information cost functions defined over \mathcal{E}_m
- Lipschitz continuity ensures that a derivative exists a.e. and is integrable.

Blackwell Monotonicity

• An information cost function $C \in \mathcal{C}_m$ is **Blackwell monotone** if for all $f, g \in \mathcal{E}_m$, $C(f) \geq C(g)$ whenever $f \succeq_B g$.

Permutation Invariance

• Any Blackwell-monotone information cost function is **permutation invariant**, i.e., $C(f) = C(f \cdot P)$

$$f \succeq_B f \cdot P \succeq_B f \quad \Rightarrow \quad C(f) \geq C(f \cdot P) \geq C(f)$$

Information Costs and Blackwell Monotonicity

Information Costs

- $C: \mathcal{E}_m \to \mathbb{R}_+:$ an information cost function
- ullet \mathcal{C}_m : the set of all Lipschitz continuous information cost functions defined over \mathcal{E}_m
- Lipschitz continuity ensures that a derivative exists a.e. and is integrable.

Blackwell Monotonicity

• An information cost function $C \in \mathcal{C}_m$ is **Blackwell monotone** if for all $f, g \in \mathcal{E}_m$, $C(f) \geq C(g)$ whenever $f \succeq_B g$.

Permutation Invariance

• Any Blackwell-monotone information cost function is **permutation invariant**, i.e., $C(f) = C(f \cdot P)$

$$f \succeq_B f \cdot P \succeq_B f \quad \Rightarrow \quad C(f) \geq C(f \cdot P) \geq C(f).$$

Information Costs and Blackwell Monotonicity

Information Costs

- $C: \mathcal{E}_m \to \mathbb{R}_+:$ an information cost function
- ullet \mathcal{C}_m : the set of all Lipschitz continuous information cost functions defined over \mathcal{E}_m
- Lipschitz continuity ensures that a derivative exists a.e. and is integrable.

Blackwell Monotonicity

• An information cost function $C \in \mathcal{C}_m$ is **Blackwell monotone** if for all $f, g \in \mathcal{E}_m$, $C(f) \geq C(g)$ whenever $f \succeq_B g$.

• Permutation Invariance

• Any Blackwell-monotone information cost function is **permutation invariant**, i.e., $C(f) = C(f \cdot P)$

$$f \succeq_B f \cdot P \succeq_B f \Rightarrow C(f) \geq C(f \cdot P) \geq C(f)$$
.

Binary Experiments

Blackwell Informativeness under Binary Experiments

- Focus on the case where n = m = 2
- Any experiment can be represented by $f \equiv (f_1, f_2)^{\mathsf{T}} \in [0, 1]^2$:

• Which of the followings (defined over $f_2 \ge f_1$) are Blackwell-monotone?

1.
$$C(f_1, f_2) = (f_2 - f_1)^2$$

2.
$$C(f_1, f_2) = f_2 - 2f_1$$

3.
$$C(f_1, f_2) = \frac{f_2(1 - f_2)}{f_1(1 - f_1)} - 1$$

4.
$$C(f_1, f_2) = \frac{f_2}{f_1} + \frac{1 - f_1}{1 - f_2}$$

Blackwell Informativeness under Binary Experiments

- Focus on the case where n=m=2
- Any experiment can be represented by $f \equiv (f_1, f_2)^{\mathsf{T}} \in [0, 1]^2$:

$$\begin{bmatrix} \mathbf{1} - f, f \end{bmatrix} = \begin{bmatrix} s_L & s_H \\ \omega_L & 1 - f_1 & f_1 \\ \omega_H & 1 - f_1 & f_2 \end{bmatrix}$$

- Which of the followings (defined over $f_2 \ge f_1$) are Blackwell-monotone?
 - 1. $C(f_1, f_2) = (f_2 f_1)^2$

2. $C(f_1, f_2) = f_2 - 2f_1$

- 3. $C(f_1, f_2) = \frac{f_2(1 f_2)}{f_1(1 f_1)} 1$ 4. $C(f_1, f_2) = \frac{f_2}{f_1} + \frac{1 f_1}{1 f_2} 2$

Parallelogram Hull

Any stochastic matrix can also be represented by $(a, b) \in [0, 1]^2$:

$$M = \begin{bmatrix} 1 - a & a \\ 1 - b & b \end{bmatrix}.$$

Then, $[\mathbf{1} - g, g] = [\mathbf{1} - f, f] \cdot M$ implies

$$g = a \cdot (1 - f) + b \cdot f.$$

• $f \succeq_B g$ iff g is in the parallelogram hull of f and 1 - f:

$$\mathsf{PARL}(f, \mathbf{1} - f) = \left\{ a \cdot (\mathbf{1} - f) + b \cdot f \in \mathbb{R}^2_+ : a, b \in [0, 1] \right\}.$$

Necessary Conditions for Blackwell Monotonicity

When C is Blackwell monotone,

Necessary Conditions for Blackwell Monotonicity

When C is Blackwell monotone,

Theorem for Binary Experiments

Theorem 1

 $C \in \mathcal{C}_2$ is Blackwell monotone if and only if it is

- 1. permutation invariant;
- 2. for all $f \in \mathcal{E}_2$,

$$\langle \nabla C(f), f \rangle \ge 0 \ge \langle \nabla C(f), \mathbf{1} - f \rangle.$$
 (2)

 This theorem holds for the cases with more than two states, but the binary signal assumption is curcial.

Proof for Sufficiency

For any $f \succeq_B g$, we can find a path from f to g (or the permutation of it) along which Blackwell informativeness decreases

 $\langle \nabla C(f), f \rangle \ge 0 \ge \langle \nabla C(f), \mathbf{1} - f \rangle$ is equivalent to:

$$\underbrace{\frac{f_2}{f_1}}_{\text{the slope}} \geq \underbrace{-\frac{\partial C/\partial f_1}{\partial C/\partial f_2}}_{\text{the slope of the isocost curve}} \geq \underbrace{\frac{1-f_2}{1-f_1}}_{\text{the slope of }\overline{AD}}$$

• Interpretation: a marignal rate of information transformation (MRIT) lies between the two likelihood ratios provided by the experiment.

 $\langle \nabla C(f), f \rangle \ge 0 \ge \langle \nabla C(f), \mathbf{1} - f \rangle$ is equivalent to:

$$\underbrace{\frac{f_2}{f_1}}_{\text{the slope}} \geq \underbrace{-\frac{\partial C/\partial f_1}{\partial C/\partial f_2}}_{\text{the slope of of } \text{the slope}} \geq \underbrace{\frac{1-f_2}{1-f_1}}_{\text{the slope}}$$

• Interpretation: a marignal rate of information transformation (MRIT) lies between the two likelihood ratios provided by the experiment.

1. $C(f_1, f_2) = (f_2 - f_1)^2$ with $1 > f_2 > f_1 > 0$

$$\frac{f_2}{f_1} \ge -\frac{\partial C/\partial f_1}{\partial C/\partial f_2} = \mathbf{1} \ge \frac{1 - f_2}{1 - f_1}$$

- The above inequalities hold for all $1 > f_2 > f_1 > 0$, thus, it is **Blackwell monotone**.
- 2. $C(f_1, f_2) = f_2 2f_1$ with $1 > f_2 > f_1 > 0$

$$\frac{f_2}{f_1} \ge -\frac{\partial C/\partial f_1}{\partial C/\partial f_2} = 2 \ge \frac{1 - f_2}{1 - f_2}$$

• The above inequalities does not always hold, e.g., $f_1 = .5$ and $f_2 = .6$, thus, it is not Blackwell monotone.

1. $C(f_1, f_2) = (f_2 - f_1)^2$ with $1 > f_2 > f_1 > 0$

$$\frac{f_2}{f_1} \ge -\frac{\partial C/\partial f_1}{\partial C/\partial f_2} = \mathbf{1} \ge \frac{1 - f_2}{1 - f_1}$$

- The above inequalities hold for all $1 > f_2 > f_1 > 0$, thus, it is **Blackwell monotone**.
- 2. $C(f_1, f_2) = f_2 2f_1$ with $1 > f_2 > f_1 > 0$

$$\frac{f_2}{f_1} \ge -\frac{\partial C/\partial f_1}{\partial C/\partial f_2} = \frac{2}{1 - f_1}$$

• The above inequalities does not always hold, e.g., $f_1 = .5$ and $f_2 = .6$, thus, it is not Blackwell monotone.

 $f \succeq_B g$ is equivalent to:

1. AB steeper than A'B:

$$\alpha \equiv \frac{f_2}{f_1} \ge \frac{g_2}{g_1} \equiv \alpha'$$

2. AD shallower than A'D:

$$\beta \equiv \frac{1 - f_1}{1 - f_2} \ge \frac{1 - g_1}{1 - g_2} \equiv \beta'$$

 \bullet C is Blackwell monotone iff it is increasing in α and β after reparametrization

 $f \succeq_B g$ is equivalent to:

1. AB steeper than A'B:

$$\alpha \equiv \frac{f_2}{f_1} \ge \frac{g_2}{g_1} \equiv \alpha'$$

2. AD shallower than A'D:

$$\beta \equiv \frac{1 - f_1}{1 - f_2} \ge \frac{1 - g_1}{1 - g_2} \equiv \beta'$$

 \bullet C is Blackwell monotone iff it is increasing in α and β after reparametrization

3.
$$C(f_1, f_2) = \frac{f_2(1 - f_2)}{f_1(1 - f_1)} - 1$$
 with $1 > f_2 > f_1 > 0$

$$\tilde{\mathcal{C}}(lpha,eta)=rac{lpha}{eta}-1$$

• \tilde{C} is increasing in α but not in β , thus, \tilde{C} is not Blackwell monotone.

4.
$$C(f_1, f_2) = \frac{f_2}{f_1} + \frac{1 - f_1}{1 - f_2} - 2$$
 with $1 > f_2 > f_1 > 0$

$$\tilde{C}(\alpha,\beta) = \alpha + \beta - 2$$

• \tilde{C} is increasing in both α and β , thus, \tilde{C} is **Blackwell monotone**.

Answer for the Motivating Question

Which of the followings are Blackwell-monotone information cost functions?

1.
$$C(f_1, f_2) = (f_2 - f_1)^2$$

2.
$$C(f_1, f_2) = f_2 - 2f_1$$

3.
$$C(f_1, f_2) = \frac{f_2(1 - f_2)}{f_1(1 - f_1)} - 1$$

4.
$$C(f_1, f_2) = \frac{f_2}{f_1} + \frac{1 - f_1}{1 - f_2} - 2$$

General Experiments

Necessary Conditions for Blackwell Monotonicity

Now assume that there are more than two signals.

- Permutation invariance is still necessary
- For any pair (i, j), the following garbling worsens the informativeness:

$$\begin{array}{c|c} s_i & \xrightarrow{1-\epsilon} s'_i \\ \hline s_j & \xrightarrow{1} s'_j \end{array}$$

• This gives us $\langle \nabla^j C(f) - \nabla^i C(f), f^i \rangle \leq 0$, where

$$\langle
abla^j C(f) -
abla^i C(f), f^i
angle = \sum_{s=1}^n \frac{\partial C}{\partial f_{sj}} \cdot f_{si} - \sum_{s=1}^n \frac{\partial C}{\partial f_{si}} \cdot f_{si}$$

Necessary Conditions for Blackwell Monotonicity

Now assume that there are more than two signals.

- Permutation invariance is still necessary
- For any pair (i, j), the following garbling worsens the informativeness:

$$\begin{array}{ccc} s_i & \xrightarrow{1-\epsilon} s'_i \\ & \xrightarrow{\epsilon} \\ s_j & \xrightarrow{1} s'_j \end{array}$$

• This gives us $\langle \nabla^j C(f) - \nabla^i C(f), f^i \rangle \leq 0$, where

$$\langle \nabla^j C(f) - \nabla^i C(f), f^i \rangle = \sum_{s=1}^n \frac{\partial C}{\partial f_{sj}} \cdot f_{si} - \sum_{s=1}^n \frac{\partial C}{\partial f_{si}} \cdot f_{si}$$

Sufficient Conditions for Blackwell Monotonicity

When $m \ge 3$, there may not exist a path along which informativeness decreases

Proposition

Let

$$g = \begin{bmatrix} 4/5 & 1/5 & 0 \\ 0 & 4/5 & 1/5 \\ 1/5 & 0 & 4/5 \end{bmatrix} \in \mathcal{E}_3.$$

If $f \succeq_B g$ and $f \in \mathcal{E}_3$, then f is a permutation of I_3 or g.

Illustrations

• I_3 is Blackwell more informative than g, but we cannot find a path from I_3 to g along which Blackwell informativeness decreases

Sufficient Conditions for Blackwell Monotonicity

When $m \ge 3$, there may not exist a path along which informativeness decreases

Proposition

Let

$$g = \begin{bmatrix} 4/5 & 1/5 & 0 \\ 0 & 4/5 & 1/5 \\ 1/5 & 0 & 4/5 \end{bmatrix} \in \mathcal{E}_3.$$

If $f \succeq_B g$ and $f \in \mathcal{E}_3$, then f is a permutation of I_3 or g.

► Illustrations

• I_3 is Blackwell more informative than g, but we cannot find a path from I_3 to g along which Blackwell informativeness decreases

• Observe that there is a permutation of I_3 such that

$$g=\frac{4}{5}\cdot I_3+\frac{1}{5}\cdot (I_3\cdot P).$$

• If we impose quasiconvexity, with permutation invariance, we have

$$C(I_3)=C(I_3\cdot P)\geq C\left(rac{4}{5}\cdot I_3+rac{1}{5}\cdot I_3\cdot P
ight)=C(g).$$

Caveat: Quasiconvexity is not a necessary condition for Blackwell monotonicity

• Observe that there is a permutation of I_3 such that

$$g=\frac{4}{5}\cdot I_3+\frac{1}{5}\cdot (I_3\cdot P).$$

• If we impose quasiconvexity, with permutation invariance, we have

$$C(I_3)=C(I_3\cdot P)\geq C\left(\frac{4}{5}\cdot I_3+\frac{1}{5}\cdot I_3\cdot P\right)=C(g).$$

Caveat: Quasiconvexity is not a necessary condition for Blackwell monotonicity

• Observe that there is a permutation of I_3 such that

$$g=\frac{4}{5}\cdot I_3+\frac{1}{5}\cdot (I_3\cdot P).$$

• If we impose quasiconvexity, with permutation invariance, we have

$$C(I_3)=C(I_3\cdot P)\geq C\left(\frac{4}{5}\cdot I_3+\frac{1}{5}\cdot I_3\cdot P\right)=C(g).$$

Caveat: Quasiconvexity is not a necessary condition for Blackwell monotonicity

Theorem for General Experiments

Theorem 2

Suppose that $C \in \mathcal{C}_m$ is Lipschitz continuous and quasiconvex. Then, C is Blackwell monotone if and only if it is

- 1. permutation invariant;
- 2. for all $f \in \mathcal{E}_2$ and $i \neq j$,

$$\langle \nabla^j C(f) - \nabla^i C(f), f \rangle \le 0. \tag{3}$$

- $S_B(f)$: the set of experiments that are less Blackwell informative than f
- Two conditions ensure that extreme points of $S_B(f)$ are not more costly than f
- Then, we can apply quasiconvexity

Theorem for General Experiments

Theorem 2

Suppose that $C \in \mathcal{C}_m$ is Lipschitz continuous and quasiconvex. Then, C is Blackwell monotone if and only if it is

- 1. permutation invariant;
- 2. for all $f \in \mathcal{E}_2$ and $i \neq j$,

$$\langle \nabla^j C(f) - \nabla^i C(f), f \rangle \le 0. \tag{3}$$

- $S_B(f)$: the set of experiments that are less Blackwell informative than f
- Two conditions ensure that extreme points of $S_B(f)$ are not more costly than f
- Then, we can apply quasiconvexity

Examples: Additively Separable Costs

Additively Separable Costs

C is additively separable if there exists Lipschitz continuous functions $\psi: \mathbb{R}^n_+ \to \mathbb{R}_+$ such that, for all m and $f \in \mathcal{E}_m$,

$$C(f) = \sum_{j=1}^{m} \psi(f^{j}).$$

Theorem 3

When C is additively separable, C is Blackwell monotone if and only if ψ is sublinear

- 1. positive homogeneity: $\psi(\alpha h) = \alpha \psi(h)$
- 2. subadditivity: $\psi(k) + \psi(l) \ge \psi(k+l)$

Examples: Additively Separable Costs

Additively Separable Costs

C is additively separable if there exists Lipschitz continuous functions $\psi: \mathbb{R}^n_+ \to \mathbb{R}_+$ such that, for all m and $f \in \mathcal{E}_m$,

$$C(f) = \sum_{j=1}^{m} \psi(f^{j}).$$

Theorem 3

When C is additively separable, C is Blackwell monotone if and only if ψ is sublinear:

- 1. positive homogeneity: $\psi(\alpha h) = \alpha \psi(h)$;
- 2. subadditivity: $\psi(k) + \psi(l) \ge \psi(k+l)$

[Sublinearity ⇒ Blackwell Monotonicity]

- From sublinearity, we can show that *C* is convex.
- Consider the garbling of replacing s_j to s_k with prob. ϵ :

$$\Delta C = \psi(f^k + \epsilon \cdot f^j) + \psi((1 - \epsilon)f^j) - \left[\psi(f^k) + \psi(f^j)\right]$$

$$= \psi(f^k + \epsilon \cdot f^j) + (1 - \epsilon) \cdot \psi(f^j) - \psi(f^k) - \psi(f^j)$$

$$= \psi(f^k + \epsilon \cdot f^j) - \psi(f^k) - \psi(f^k)$$

[Sublinearity ⇒ Blackwell Monotonicity]

- From sublinearity, we can show that *C* is convex.
- Consider the garbling of replacing s_j to s_k with prob. ϵ :

$$\Delta C = \psi(f^k + \epsilon \cdot f^j) + \psi((1 - \epsilon)f^j) - \left[\psi(f^k) + \psi(f^j)\right]$$

$$= \psi(f^k + \epsilon \cdot f^j) + (1 - \epsilon) \cdot \psi(f^j) - \psi(f^k) - \psi(f^j)$$

$$= \psi(f^k + \epsilon \cdot f^j) - \psi(f^k) - \psi(f^k)$$

[Sublinearity ⇒ Blackwell Monotonicity]

- From sublinearity, we can show that *C* is convex.
- Consider the garbling of replacing s_j to s_k with prob. ϵ :

$$\Delta C = \psi(f^k + \epsilon \cdot f^j) + \psi((1 - \epsilon)f^j) - \left[\psi(f^k) + \psi(f^j)\right]$$

$$= \psi(f^k + \epsilon \cdot f^j) + (1 - \epsilon) \cdot \psi(f^j) - \psi(f^k) - \psi(f^j)$$

$$= \psi(f^k + \epsilon \cdot f^j) - \psi(f^k) - \epsilon \cdot \psi(f^j)$$

[Sublinearity ⇒ Blackwell Monotonicity]

- From sublinearity, we can show that C is convex.
- Consider the garbling of replacing s_i to s_k with prob. ϵ :

$$\Delta C = \psi(f^k + \epsilon \cdot f^j) + \psi((1 - \epsilon)f^j) - \left[\psi(f^k) + \psi(f^j)\right]$$

$$= \psi(f^k + \epsilon \cdot f^j) + (1 - \epsilon) \cdot \psi(f^j) - \psi(f^k) - \psi(f^j)$$

$$= \psi(f^k + \epsilon \cdot f^j) - \psi(f^k) - \psi(\epsilon \cdot f^j) \le 0$$

Examples: Additively Separable Costs

1. Supnorm Costs

$$C(f) = \sum_{i=1}^{m} \max_{i} f_{ij}.$$

2. Linear Costs

$$C(f) = \sum_{i=1}^m |\langle a, f^j \rangle| = \sum_{i=1}^m \bigg| \sum_{i=1}^n a_i f_{ij} \bigg|.$$

3. Linear ϕ -divergence Costs (including LLR costs)

$$C(f) = \sum_{j=1}^{m} \sum_{i,i'} \beta_{ii'} f_{i'j} \phi_{ii'} \left(\frac{f_{ij}}{f_{i'j}} \right).$$

4. Posterior Separable Costs (including Entropy costs)

$$C_{\mu}(f) = H(\mu) - \sum_{j=1}^{m} \tau(f^{j}) \cdot H\left[\left(\frac{\mu_{i}f_{i}^{j}}{\tau(f^{j})}\right)_{i}\right]$$

where $\tau(f^j)$ is the probability of receiving signal j, i.e., $\tau(f^j) \equiv \sum_{i=1}^n \mu_i \cdot f_i^j$.

Application I: Costly Persuasion

- Consider a costly persuasion problem with the standard example
 - State: {innocent, guilty}
 - Receiver's action: Acquit or Convict
 - Sender's payoff: $u_S(C) = 1$, $u_S(A) = 0$
 - Receiver's payoff: $u_R(A, innocent) = u_R(C, guilty) = 1$ $u_R(C, innocent) = u_R(A, guilty) = 0$
 - Sender commits to an experiment at some cost
- GK focuses on posterior separable costs (e.g., entropy cost) to utilize concavification technique
- Can we solve this problem with any Blackwell-monotone information cost function?

- Consider a costly persuasion problem with the standard example
 - State: {innocent, guilty}
 - Receiver's action: Acquit or Convict
 - Sender's payoff: $u_S(C) = 1$, $u_S(A) = 0$
 - Receiver's payoff: $u_R(A, innocent) = u_R(C, guilty) = 1$ $u_R(C, innocent) = u_R(A, guilty) = 0$
 - · Sender commits to an experiment at some cost
- GK focuses on posterior separable costs (e.g., entropy cost) to utilize concavification technique
- Can we solve this problem with any Blackwell-monotone information cost function?

- Consider a costly persuasion problem with the standard example
 - State: {innocent, guilty}
 - Receiver's action: Acquit or Convict
 - Sender's payoff: $u_S(C) = 1$, $u_S(A) = 0$
 - Receiver's payoff: $u_R(A, innocent) = u_R(C, guilty) = 1$ $u_R(C, innocent) = u_R(A, guilty) = 0$
 - · Sender commits to an experiment at some cost
- GK focuses on posterior separable costs (e.g., entropy cost) to utilize concavification technique
- Can we solve this problem with any Blackwell-monotone information cost function?

Costly Persuasion with Blackwell-Monotone Information Cost

- It is without loss to consider binary experiments since R's action is binary
 - $f_2 = Pr(C|guilty)$ and $f_1 = Pr(C|innocent)$
- When the prior is p, the sender's problem is

$$\max_{0 \le f_1 \le f_2 \le 1} pf_2 + (1-p)f_1 - C(f_1, f_2)$$

subject to

$$\frac{pf_2}{pf_2 + (1-p)f_1} \ge \frac{1}{2}.$$

• When $p \ge 1/2$, the solution is $f_1 = f_2 = 1$: always convict costlessly

Costly Persuasion with Blackwell-Monotone Information Cost

- It is without loss to consider binary experiments since R's action is binary
 - $f_2 = Pr(C|guilty)$ and $f_1 = Pr(C|innocent)$
- When the prior is p, the sender's problem is

$$\max_{0 \le f_1 \le f_2 \le 1} pf_2 + (1-p)f_1 - C(f_1, f_2)$$

subject to

$$\frac{pf_2}{pf_2 + (1-p)f_1} \ge \frac{1}{2}.$$

• When $p \ge 1/2$, the solution is $f_1 = f_2 = 1$: always convict costlessly

Cost Minimization

- Suppose p < 1/2.
- Cost minimization problem under

$$pf_2 + (1-p)f_1 = w$$
:

min
$$C(f_1, f_2)$$
 s.t. $pf_2 + (1-p)f_1 = w,$
 $pf_2 \ge (1-p)f_1$

• **Proposition**: for any Blackwell-monotone information cost function, the cost is minimized when $pf_2 = (1 - p)f_1$

Cost Minimization

- Suppose p < 1/2.
- Cost minimization problem under

$$pf_2 + (1-p)f_1 = w$$
:

min
$$C(f_1, f_2)$$
 s.t. $\begin{aligned}
pf_2 + (1-p)f_1 &= w, \\
pf_2 &\geq (1-p)f_1
\end{aligned}$

• **Proposition**: for any Blackwell-monotone information cost function, the cost is minimized when $pf_2 = (1 - p)f_1$

Sender's Problem

• When $pf_2 + (1-p)f_1 = w$, the cost is minimized at

$$f_2 = \frac{w}{2p}$$
 and $f_1 = \frac{w}{2(1-p)}$.

• Now the sender's problem is

$$\max_{0 \le w \le 2p} w - C\left(\frac{w}{2(1-p)}, \frac{w}{2p}\right) \tag{4}$$

From here on, a specific cost function is needed

Sender's Problem

• When $pf_2 + (1-p)f_1 = w$, the cost is minimized at

$$f_2 = \frac{w}{2p}$$
 and $f_1 = \frac{w}{2(1-p)}$.

• Now the sender's problem is

$$\max_{0 \le w \le 2p} w - C\left(\frac{w}{2(1-p)}, \frac{w}{2p}\right) \tag{4}$$

• From here on, a specific cost function is needed

Costly Persuasion with Non-Posterior-Separable Cost

• When $C(f_1, f_2) = (f_2 - f_1)^2$, the solution for p < 1/2 is

$$f_2(p) = \min \left\{ 1, \; \frac{(1-p)^2p}{(1-2p)^2} \right\} \quad \text{and} \quad f_1(p) = \frac{p}{1-p} \cdot f_2(p).$$

Posteriors

Application II: Bargaining and

Information Acquisition

Chatterjee, Dong, Hoshino (2023)

- Consider a bargaining problem with information acquisition
 - Players: Seller and Buyer
 - State (**B**'s valuation): $v \in \{L, H\}$ with H > L > 0
 - Prior belief: $\pi \equiv \Pr(v = H) \in (0,1)$
 - Timing of the game
 - 1. Nature draws v and S observes v
 - 2. **S** offers *p*
 - 3. B costly acquires information about v and then accepts or rejects
- Chatterjee et al. focus on specific types of information acquisition
- We extend their analysis by allowing B to choose information flexibly

Chatterjee, Dong, Hoshino (2023)

- Consider a bargaining problem with information acquisition
 - Players: Seller and Buyer
 - State (**B**'s valuation): $v \in \{L, H\}$ with H > L > 0
 - Prior belief: $\pi \equiv \Pr(v = H) \in (0, 1)$
 - Timing of the game
 - 1. Nature draws v and **S** observes v
 - 2. **S** offers *p*
 - 3. B costly acquires information about v and then accepts or rejects
- Chatterjee et al. focus on specific types of information acquisition
- We extend their analysis by allowing B to choose information flexibly

Chatterjee, Dong, Hoshino (2023): H-focused information

B's cost: $\lambda \cdot c(f_H)$

Result 1: pooling eq'm

under H-focused signal structure, for any λ , there exists $\epsilon>0$ such that every equilibrium is a pooling equilibrium where

- 1. both types of **S** offer $p^* \in [L, L + \epsilon)$;
- 2. **B** accepts without information acquisition.

Moreover, $\epsilon \to 0$ as $\lambda \to 0$, thus, **B** extracts full surplus as $\lambda \to 0$

H-focused Information

	SL	s_H
L	1	0
Н	$1-f_H$	f_H

Chatterjee, Dong, Hoshino (2023): L-focused information

B's cost: $\lambda \cdot c(1 - f_L)$

Result 2: almost-separating eq'm

under L-focused signal structure, for any small enough λ , there exists an equilibrium such that

- 1. type H **S** offers $p^* \approx H$;
- 2. type L **S** offers *L* with prob. 1ϵ , p^* with prob. ϵ :
- 3. **B** acquires information and conditions her purchase decision on the signal realization

Moreover, S's payoff is close to v and B's payoff is close to zero

L-focused Information

Flexible Information Acquisition

• We extend to the full domain and consider $\lambda |f_2 - f_1|$ and $\lambda (f_2 - f_1)^2$

Result 1': when $C(f_1, f_2) = \lambda |f_2 - f_1|$, the unique equilibrium is the pooling equilibrium, and as $\lambda \to 0$, **B** extracts full surplus

Result 2': when $C(f_1, f_2) = \lambda (f_2 - f_1)^2$, there exists an almost-separating equilibrium, and **S**'s payoff is close to v and **B**'s payoff is close to zero

Flexible Information

ickipic illioilliati			
	SL	s_H	
L	$1-f_L$	f_L	
Н	$1-f_H$	f_H	

Conclusion

Conclusion

- We identify necessary and sufficient conditions for Blackwell Monotonicity.
- Under additive separability, we show that the sublinearity of the primitive function is equivalent to Blackwell Monotonicity.
- Our technique allows us to
 - solve the costly persuasion problem with any Blackwell-monotone information costs
 - solve the bargaining problem with information acquisition in the extended domain
- Future Research: Lehmann-Monotone Information Costs

Conclusion

- We identify necessary and sufficient conditions for Blackwell Monotonicity.
- Under additive separability, we show that the sublinearity of the primitive function is equivalent to Blackwell Monotonicity.
- Our technique allows us to
 - solve the costly persuasion problem with any Blackwell-monotone information costs
 - solve the bargaining problem with information acquisition in the extended domain
- Future Research: Lehmann-Monotone Information Costs

Thank You!

Related Literature

Posterior-based information costs

- Entropy cost: Sims [2003]; Matějka, Mckay [2015]
- Decision theory: Caplin, Dean [2015]; Caplin, Dean, Leahy [2022]; Chambers, Liu, Rehbeck [2020]; Denti [2022]
- Applications: Ravid [2020]; Zhong [2022]; Gentzkow, Kamenica [2014]

• Experiment-based information costs

- LLR cost: Pomatto, Strack, Tamuz [2023];
- Applications: Denti, Marinacci, Rustichini [2022]; Ramos-Mercado [2023]

• The following information cost function for binary experiments is not quasiconvex

$$C(f_1, f_2) = \min \left\{ \frac{f_2}{f_1}, \frac{1 - f_1}{1 - f_2} \right\}$$
$$= \min \{\alpha, \beta\}$$

- Entropy cost: $k \cdot \mathbb{E}_{\pi|p}[H(p) H(\mu_s)]$ where $H(\mu) \equiv -\sum_{\omega} \mu(\omega) \log(\mu(\omega))$
 - ullet p is prior, and μ_i and μ_g are posteriors from an experiment π

• When n = m = 3, $f \succeq_B g$ iff the triangle generated by f^1, f^2, f^3 includes the one generated by g^1, g^2, g^3

• When n = m = 3, $f \succeq_B g$ iff the triangle generated by f^1, f^2, f^3 includes the one generated by g^1, g^2, g^3

1. Positive homegenity: Note that $\psi(\mathbf{0}) = 0$. For any $k \in \mathbb{N}$,

$$[\hat{f}, \mathbf{0}, \cdots, \mathbf{0}, \mathbf{1} - \hat{f}] \sim_B [\hat{f}/k, \hat{f}/k, \cdots, \hat{f}/k, \mathbf{1} - \hat{f}] \quad \Rightarrow \quad \psi(\hat{f}) = k \ \psi(\hat{f}/k).$$

Then, for any $(k, l) \in \mathbb{N}^2$, we also have

$$\frac{1}{k} \psi(\hat{f}) = 1 \psi\left(\frac{\hat{f}}{k}\right) = \psi\left(\frac{1}{k} \hat{f}\right)$$

By density of \mathbb{Q} in \mathbb{R} and the continuity of ψ , $\psi(\alpha \hat{f}) = \alpha \psi(\hat{f})$ for all $\alpha \in \mathbb{R}_+$

2. Subadditivity:

$$[\hat{f}, \hat{g}, \mathbf{1} - \hat{f} - \hat{g}] \succeq_B [\hat{f} + \hat{g}, \mathbf{0}, \mathbf{1} - \hat{f} - \hat{g}] \quad \Rightarrow \quad \psi(\hat{f}) + \psi(\hat{g}) \ge \psi(\hat{f} + \hat{g})$$