Transient asymptotics of the modified Camassa-Holm (mCH) equation

Taiyang Xu (FDU)

joint work with Yiling Yang (Chongqing Univ) and Lun Zhang (FDU)

2025-01-08. at GBU

Outline

- ♣ Introduction
- Main results
- * Strategy of the proofs ($\bar{\partial}$ nonlinear steepest analysis to an RH problem)

Introduction

The Cauchy problem for the modified Camassa-Holm (mCH) equation

$$m_t + (m(u^2 - u_x^2))_x = 0, \quad m = u - u_{xx}, \quad u = u(x, t), \qquad x \in \mathbb{R}, \ t > 0,$$

 $u(x, 0) = u_0(x), \qquad x \in \mathbb{R},$

with nonzero boundary condition

$$u_0(x) \to \omega, \quad |x| \to \infty.$$

- * Physical interpretation: mCH equation provides a model for the unidirectional propagation of shallow water waves of mildly large amplitude over a flat bottom, where u(x,t) is interpreted as the horizontal velocity in certain level of fluid.
- * $\omega > 0$ is a constant that is related to the critical shallow water wave speed. WLOG, we fix $\underline{\omega} = \underline{1}$.

Lax pair of the mCH equation:

$$\begin{split} \Phi_{\rm X} &= {\it X}\Phi, \quad \Phi_t = {\it T}\Phi, \\ \text{where} \\ {\it X} &= \frac{1}{2} \left(\begin{array}{cc} -1 & \lambda m \\ -\lambda m & 1 \end{array} \right), \qquad \lambda = -\frac{1}{2} (z+z^{-1}), \\ T &= \left(\begin{array}{cc} \lambda^{-2} + \frac{1}{2} (u^2 - u_{\rm X}^2) & -\lambda^{-1} (u-u_{\rm X}+1) - \frac{1}{2} \lambda (u^2 - u_{\rm X}^2) m \\ \lambda^{-1} (u+u_{\rm X}+1) + \frac{1}{2} \lambda (u^2 - u_{\rm X}^2) m & -\lambda^{-2} - \frac{1}{2} (u^2 - u_{\rm X}^2) \end{array} \right). \end{split}$$

[Schiff, '96; Qiao,'06]

The mCH equation
$$\iff X_t - T_x + [X, T] = 0$$

Compatible condition for (Lax) integrable PDEs: [Lax,'68]

History of the mCH equation:

Traced back to the work of Fokas.

[Fokas, '95]

The mCH equation was introduced by applying the general method of tri-Hamiltonian duality to the bi-Hamiltonian representation of the modified KdV equation.

[Fuchssteiner, '96; Olver-Rosenau, '96]

Among the list of Novikov in the classification of generalized Camassa-Holm type equations.

[Novikov,'09]

Recognized as an integrable modification of the celebrated Camassa-Holm (CH) equation

$$m_t + (um)_x + u_x m = 0$$
, $m = u - u_{xx}$.

Figure 1: Connections to other well-known equations.

Some results about the mCH equation:

★ The wave-breaking, peakon solutions.

* The quasi-periodic algebro-geometric solutions.

[Hou-Fan-Qiao,'17]

* The Bäcklund transformation and the related nonlinear superposition formulae.

[Wang-Liu-Miao,'20]

*

An Riemann-Hilbert (RH) formalism of the Cauchy problem has recently been developed.

[Bouted de Monvel-Karpenko-Shepelsky,'20]

Long-time asymptotics for the mCH equation

An Riemann-Hilbert (RH) formalism of the Cauchy problem has recently been developed.

[Bouted de Monvel-Karpenko-Shepelsky,'20]

Long-time asymptotics of u(x,t) shows qualitatively different behaviors in different regions of the (x,t)-half plane.

- * a soliton region: $\{(x, t) : \xi > 2\}$,
- ★ a fast decay region: $\{(x, t) : \xi < -1/4\}$,
- ★ two oscillatory regions: $\{(x, t) : 0 < \xi < 2\} \cup \{(x, t) : -1/4 < \xi < 0\}.$

Here, ξ is the velocity denoted by $\xi := x/t$.

RK: Initial data belongs to Schwartz space (smooth, rapidly decreasing).

[Bouted de Monvel-Karpenko-Shepelsky,'22]

Long-time asymptotics for the mCH equation

Figure 2: The different regular asymptotic regions of the (x,t)-half plane, where $\xi=x/t$.

Our topic

QUESTION:

What are the asymptotics when $\xi \approx -1/4$ and $\xi \approx 2?$

Our topic

Long time asymptotics of the mCH equation in three transition regions.

- * The first transition region (Painlevé) $\mathcal{R}_I:=\{(x,t):0\leqslant |\xi-2|t^{2/3}\leqslant C\}$,
- lacktriangledown The second transition region (Painlevé) $\mathcal{R}_{II}:=\{(x,t):0\leqslant |\xi+1/4|t^{2/3}\leqslant C\},$
- * The third transition region (collisionless shock) $\mathcal{R}_{III} := \{(x,t): 2\cdot 3^{1/3}(\log t)^{2/3} < (2-\xi)t^{2/3} < C(\log t)^{2/3}, \ C>2\cdot 3^{1/3}\}.$

Our topic

Figure 3: The different asymptotic regions of the (x, t)-half plane, where $\xi = x/t$.

Main results

Assumptions

We assume that the initial data satisfies the following conditions.

- * $m_0(x) := m(x,0) = u_0(x) u_{0xx}(x) > 0 \text{ for } x \in \mathbb{R}.$
- * $m_0(x) 1 \in H^{2,1}(\mathbb{R}) \cap H^{1,2}(\mathbb{R})$, where $H^{k,s}(\mathbb{R}) = \left\{ f \in L^2(\mathbb{R}) : \langle \cdot \rangle^s \partial_x^j f \in L^2(\mathbb{R}), j = 0, 1, \dots, k \right\}, \quad s \geqslant 0,$ with $\langle x \rangle := (1 + x^2)^{1/2}$ is the weighted Sobolev space.

Assumptions

We assume that the initial data satisfies the following conditions.

- * $m_0(x) := m(x,0) > 0 \text{ for } x \in \mathbb{R}.$
- * $m_0(x) 1 \in H^{2,1}(\mathbb{R}) \cap H^{1,2}(\mathbb{R})$, where $H^{k,s}(\mathbb{R}) = \left\{ f \in L^2(\mathbb{R}) : \langle \cdot \rangle^s \partial_x^j f \in L^2(\mathbb{R}), j = 0, 1, \dots, k \right\}, \quad s \geqslant 0,$ with $\langle x \rangle := (1 + x^2)^{1/2}$ is the weighted Sobolev space.

Global solution of the Cauchy problem for mCH equation exists uniquely.

[Yang-Fan-Liu,'22]

Transient asymptotics of the mCH equation

Theorem (X.-Yang-Zhang, JLMS, '24)

Let u(x,t) be the global solution of the Cauchy problem for the mCH equation over the real line under assumptions, and denote by r(z) and $\{z_n\}_{n=1}^{2N}$, $|z_n|=1$, the reflection coefficient and the discrete spectrum associated to the initial data $u_0(x)$ in the lower half plane. As $t\to +\infty$, we have the following asymptotics of u(x,t) in the above transient regions $\mathcal{R}_I-\mathcal{R}_{III}$ given above.

(a) For
$$\xi \in \mathcal{R}_I$$
,
$$u(x,t) = 1 - (2/81)^{-1/3}t^{-2/3}v'(s) + \mathcal{O}(t^{-\min\{1-4\delta_1,1/3+9\delta_1\}}),$$
 where δ_1 is any real number belonging to $(1/24,1/18)$,
$$s = 6^{-2/3}\left(\frac{x}{t} - 2\right)t^{2/3},$$
 and $v(s)$ is the unique solution of the Painlevé II equation
$$v''(s) = sv(s) + 2v^3(s)$$

characterized by

$$v(s) \sim r(1) \operatorname{Ai}(s), \qquad s \to +\infty,$$

with Ai being the classical Airy function and $r(1) \in [-1,1]$.

Transient asymptotics of the mCH equation

Theorem (X.-Yang-Zhang, JLMS, '24)

(b) For
$$\xi \in \mathcal{R}_{II}$$
,
$$u(x,t) = 1 + 3^{-2/3}t^{-1/3}f_{II}(s)v_{II}(s) + \mathcal{O}\left(t^{\max\{-2/3+4\delta_2,-1/3-5\delta_2\}}\right),$$
 where δ_2 is any real number belonging to $(0,1/15)$, $s = -\left(\frac{8}{9}\right)^{1/3}\left(\frac{x}{t} + \frac{1}{4}\right)t^{2/3},$
$$f_{II}(s) = 2\sqrt{2+\sqrt{3}}\left(\sin\psi_a(s,t)\cos\gamma_a - \frac{iT_1}{T(i)}\cos\psi_a(s,t)\sin\gamma_a\right) + 2\sqrt{2-\sqrt{3}}\left(\sin\psi_b(s,t)\cos\gamma_b - \frac{iT_1}{T(i)}\cos\psi_b(s,t)\sin\gamma_b\right) + \sqrt{3}\cos\left(\frac{\Lambda_a + \Lambda_b}{2}\right)\sin\left(\frac{\Lambda_a + \Lambda_b}{2}\right)$$
 with $\gamma_a = \arctan(2+\sqrt{3})$, $\gamma_b = \arctan(2-\sqrt{3})$,
$$\psi_a(s,t) = \frac{3^{7/6}}{2}st^{1/3} + \frac{3\sqrt{3}}{4}t + \Lambda_a, \qquad \psi_b(s,t) = -\frac{3^{7/6}}{2}st^{1/3} - \frac{3\sqrt{3}}{4}t + \Lambda_b,$$

$$\Lambda_a = \arg r(2+\sqrt{3}) + 4\sum_{n=1}^{\mathcal{N}} \arg(2+\sqrt{3}-z_n) - \frac{1}{\pi}\int_{-\infty}^{+\infty} \frac{\log(1-|r(\zeta)|^2)}{\zeta-(2+\sqrt{3})}\,\mathrm{d}\zeta - 2\sqrt{3}\log\left(T\left(i\right)\right),$$
 and $v_{II}(s)$ is the unique solution of the Painlevé II equation characterized by $v_{II}(s) \sim -|r(2+\sqrt{3})|\mathrm{Ai}(s)$ as $s \to +\infty$ with $|r(2+\sqrt{3})| < 1$.

Transient asymptotics of the mCH equation

Theorem (X.-Yang-Zhang, JLMS, '24)

(c) For $\xi \in \mathcal{R}_{III}$, if $|r(\pm 1)| = 1$, $r \in H^s$ with s > 5/2, we have $u(x,t) = 1 - \frac{(2-\xi)(a-b)q}{12p}$.

$$\left(-i \cdot \frac{\Theta\left(A(\infty) - \frac{\varkappa}{4}\right)}{\Theta\left(A(\infty) - \frac{\varkappa}{4} + \frac{\phi}{\pi}\right)} \cdot \left(\frac{\Theta\left(-A(\hat{k}) - \frac{\varkappa}{4} + \frac{\phi}{\pi}\right)}{\Theta\left(-A(\hat{k}) - \frac{\varkappa}{4}\right)}\right) \Big|_{\hat{k} = \infty} e^{i\phi} + \frac{\Theta\left(A(\infty) - \frac{\varkappa}{4}\right)\Theta\left(-A(\infty) - \frac{\varkappa}{4} + \frac{\phi}{\pi}\right)}{\Theta\left(-A(\infty) - \frac{\varkappa}{4}\right)\Theta\left(A(\infty) - \frac{\varkappa}{4} + \frac{\phi}{\pi}\right)} e^{i\phi}\right) (1 + o(1))$$

where p and q are two fixed positive constants, $\Theta(z)$ is the Jacobi theta function defined by

$$\Theta(s) := \sum_{n \in \mathbb{Z}} e^{2\pi i n s + \varkappa \pi i n^2},$$

and

$$A(\hat{k}) = \left(2\int_b^a \frac{1}{w_+(\zeta)} \,\mathrm{d}\zeta\right)^{-1} \int_b^{\hat{k}} \frac{1}{w(\zeta)} \,\mathrm{d}\zeta, \qquad \hat{k} \in \mathbb{C} \setminus [-b, b],$$
 with $w^2(\hat{k}) = (\hat{k}^2 - a^2)(\hat{k}^2 - b^2)$ is the Abel integral.

Strategy of the proofs

An RH charactrization of the mCH equation

The Cauchy problem of the mCH equation is related to the following RH problem.

- **★** $M^{(1)}(z)$ is meromorphic for $z \in \mathbb{C} \setminus \mathbb{R}$ with simple poles in the set $\mathcal{Z} \cup \mathcal{Z}^*$.
- For $z \in \mathbb{R}$, we have

$$M_{+}^{(1)}(z) = M_{-}^{(1)}(z)V^{(1)}(z)$$

where

$$V^{(1)}(z) = \begin{pmatrix} 1 - |r(z)|^2 & r(z)e^{2i\theta(z)} \\ -\bar{r}(z)e^{-2i\theta(z)} & 1 \end{pmatrix}$$

with

$$\theta(z) := \theta(z; y, t) = -\frac{t}{4} \left(z - \frac{1}{z} \right) \left(\hat{\xi} - \frac{8}{(z + 1/z)^2} \right), \ \hat{\xi} := \frac{y}{t}.$$

and where

$$y(x) = x - \int_{x}^{+\infty} (m(\zeta) - 1) d\zeta.$$

is a space scaling variable.

♣ For each $z_j \in \mathcal{Z}$, $j = 1, ..., 2\mathcal{N}$, we have the following residue conditions:

$$\operatorname{Res}_{z=z_{j}} M(z) = \lim_{z \to z_{j}} M(z) \begin{pmatrix} 0 & c_{j} e^{2i\theta(z_{j})} \\ 0 & 0 \end{pmatrix},$$

$$\operatorname{Res}_{z=\bar{z}_{i}} M(z) = \lim_{z \to \bar{z}_{j}} M(z) \begin{pmatrix} 0 & 0 \\ \bar{c}_{i} e^{-2i\theta(\bar{z}_{j})} & 0 \end{pmatrix},$$

where c_i is the norming constant associated with z_i .

* As $z \to \infty$ in $\mathbb{C} \setminus \mathbb{R}$, we have $M^{(1)}(z) = I + \mathcal{O}(z^{-1})$.

An RH charactrization of the mCH equation

Suppose the initial data satisfies our assumptions, the scattering data $\left(r,\{z_j,c_j\}_{j=1}^{2\mathcal{N}}\right)$ belongs to $\left(H^{1,2}(\mathbb{R})\cap H^{2,1}(\mathbb{R})\right)\otimes \mathbb{C}^{2\mathcal{N}}\otimes \mathbb{C}^{2\mathcal{N}}$, and the above RH problem admits a unique solution. Moreover, we can use the local behaviors of RH problem at z=0 and z=i to characterize the solution for the Cauchy problem of the mCH equation in the following way.

[Yang-Fan-Liu,'22]

An RH charactrization of the mCH equation

Let $M^{(1)}(z; y, t)$ is the unique solution of above RH problem, we have

$$M^{(1)}(0;y,t) = \begin{pmatrix} \alpha(y,t) & i\beta(y,t) \\ -i\beta(y,t) & \alpha(y,t) \end{pmatrix},$$

where $\alpha(y,t)$, $\beta(y,t)$ are real functions satisfying $\alpha^2 - \beta^2 = 1$. If $\beta \neq 0$, we have

$$M^{(1)}(z;y,t) = \begin{pmatrix} f_1(y,t) & \frac{i\beta}{\alpha+1}f_2(y,t) \\ -\frac{i\beta}{\alpha+1}f_1(y,t) & f_2(y,t) \end{pmatrix} + \begin{pmatrix} \frac{i\beta}{\alpha+1}g_1(y,t) & g_2(y,t) \\ g_1(y,t) & -\frac{i\beta}{\alpha+1}g_2(y,t) \end{pmatrix} (z-i) + \mathcal{O}\left((z-i)^2\right), \quad z \to i,$$

where $g_1(y,t)$, $g_2(y,t)$, $f_1(y,t)$, $f_2(y,t)$ are real functions.

The solution u(x,t) = u(x(y,t),t) of the Cauchy problem can then be expressed in the following parametric form:

$$x(y,t) = y + 2\log(\alpha_1(y,t)),$$

$$u(y,t) = 1 - \alpha_2(y,t)\alpha_1(y,t) - \alpha_3(y,t)\alpha_1(y,t)^{-1}$$

where

$$\begin{split} &\alpha_1(y,t) = \left(1 - \frac{\beta}{\alpha + 1}\right)f_1, \quad \alpha_2(y,t) = \frac{\beta}{\alpha + 1}f_2 + \left(1 - \frac{\beta}{\alpha + 1}\right)g_2, \\ &\alpha_3(y,t) = \frac{-\beta}{\alpha + 1}f_1 + \left(1 - \frac{\beta}{\alpha + 1}\right)g_1. \end{split}$$

From $M^{(1)}$ to a holomorphic RH problem

Residue conditions -> Jump conditions on the auxiliary contours. After a suitable transformation, we have an RH problem for $M^{(2)}$.

Jump conditions for $M^{(2)}$:

$$M_{+}^{(2)}(z) = M_{-}^{(2)}(z)V^{(2)}(z),$$

Jump conditions for
$$M^{(2)}$$
:
$$M_{+}^{(2)}(z) = M_{-}^{(2)}(z)V^{(2)}(z),$$
 where
$$V^{(2)}(z) = \begin{cases} \begin{pmatrix} 1 & e^{2i\theta(z)}r(z)T^{-2}(z) \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -e^{-2i\theta(z)}\overline{r}(z)T^{2}(z) & 1 \end{pmatrix}, & z \in \mathbb{R} \setminus \mathrm{I}(\hat{\xi}), \\ \begin{pmatrix} 1 & 0 \\ -\frac{e^{-2i\theta(z)}\overline{r}(z)T^{2}_{-}(z)}{1-|r(z)|^{2}} & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{e^{2i\theta(z)}r(z)T^{-2}(z)}{1-|r(z)|^{2}} \\ 0 & 1 \end{pmatrix}, & z \in \mathrm{I}(\hat{\xi}), \\ \begin{pmatrix} 1 & 0 \\ -c_{n}^{-1}(z-z_{n})e^{-2i\theta(z_{n})}T^{2}(z) & 1 \\ 1 & -\overline{c}_{n}^{-1}(z-\overline{z}_{n})e^{2i\theta(\overline{z}_{n})}T^{-2}(z) \\ 0 & 1 \end{pmatrix}, & z \in \partial \mathbb{D}_{n}, \\ z \in \partial \mathbb{D}_{n}^{*}, \end{cases}$$

From $M^{(1)}$ to a holomorphic RH problem

Residue conditions \leadsto Jump conditions on the auxiliary contours. After a suitable transformation, we have an RH problem for $M^{(2)}$.

Figure 4: The red circle represents the unit circle. The blue circles around the poles together with real axis are the boundaries of $\Sigma^{(2)}$.

From $M^{(1)}$ to a holomorphic RH problem

By the signature tables of $\operatorname{Im} \theta$, it is readily seen that $V^{(2)}(z) \to I$ as $t \to +\infty$ for $z \in \cup_{n=1}^{2N} (\partial \mathbb{D}_n \cup \partial \mathbb{D}_n^*)$ exponentially fast. Thus, RH problem for $M^{(2)}$ is asymptotically equivalent to an RH problem for $M^{(3)}$ with an error bound $\mathcal{O}(e^{-ct})$ for some constant c > 0.

$\bar{\partial}$ nonlinear steepest descent analysis

Let the RH problem for $M^{(3)}$ be as the starting of performing $\bar{\partial}$ nonlinear steepest descent analysis.

[McLaughlin-Miller,'06] [Dieng-McLaughlin-Miller,'08]

$\bar{\partial}$ nonlinear steepest descent analysis

Let the RH problem for $M^{(3)}$ be as the starting of performing $\bar{\partial}$ nonlinear steepest descent analysis.

[McLaughlin-Miller,'06] [Dieng-McLaughlin-Miller,'19]

❖ Opening $\bar{\partial}$ lenses to construct a mixed $\bar{\partial}$ -RH problem for $M^{(4)}$ (Since r(z) is not an analytical function !).

Figure 5: The jump contours of the RH problem for $M^{(4)}$.

♣ \(\bar{\partial}\)-extension for the reflection coefficient:

$$d_1(z) := \left[\bar{R}(\operatorname{Re} z) - \bar{R}(k_1) - \bar{R}'(k_1)\operatorname{Re}(z - k_1)\right] \cos\left(\frac{\pi \arg\left(z - k_1\right) \mathcal{X}\left(\arg\left(z - k_1\right)\right)}{2\varphi_0}\right) + \bar{R}(k_1) + \bar{R}'(k_1)(z - k_1)$$

with boundary condition

$$d_j(z) = \begin{cases} \bar{R}(z), & z \in \mathbb{R}, \\ \bar{R}(k_j) + \bar{R}'(k_j)^2(z - k_j), & z \in \Sigma_j. \end{cases}$$

• For each $j=1,\ldots,4$ and $z\in\Omega_j$, we have

$$\begin{split} |d_j(z)| &\lesssim \sin^2\left(\frac{\pi}{2\varphi_0}\arg\left(z-k_j\right)\right) + \left(1+\operatorname{Re}(z)^2\right)^{-1/2}, \\ |\bar{\partial}d_j(z)| &\lesssim |\operatorname{Re}z-k_j|^{1/2}, \\ |\bar{\partial}d_j(z)| &\lesssim |\operatorname{Re}z-k_j|^{-1/2} + \sin\left(\frac{\pi}{2\varphi_0}\arg\left(z-k_j\right)\mathcal{X}(\arg\left(z-k_j\right))\right), \\ |\bar{\partial}d_j(z)| &\lesssim 1. \end{split}$$

$ar{\partial}$ nonlinear steepest descent analysis

Mixed $\bar{\partial}$ -RH problem for $M^{(4)}$.

- ★ $M^{(4)}(z)$ is continuous for $z \in \mathbb{C} \setminus \Sigma^{(4)}$.
- * For $z \in \Sigma^{(4)}$, we have $M_{+}^{(4)}(z) = M_{-}^{(4)}(z)V^{(4)}(z)$, where

For
$$z \in \Sigma^{(4)}$$
, we have $M_+^{-\gamma}(z) = M_-^{-\gamma}(z)V^{(4)}(z)$, where
$$\begin{cases} \left(\begin{array}{cc} 1 & e^{2i\theta(z)}R(z) \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ -e^{-2i\theta(z)}\bar{R}(z) & 1 \end{array}\right), & z \in (k_4,k_3) \cup (k_2,k_1), \\ R^{(3)}(z)^{-1}, & z \in \Sigma_j, \ j=1,2,3,4, \\ R^{(3)}(z), & z \in \Sigma_j^*, \ j=1,2,3,4, \\ \left(\begin{array}{cc} 1 & 0 \\ (d_2(z)-d_3(z))e^{-2i\theta(z)} & 1 \end{array}\right), & z \in \Sigma_{2,3}, \\ \left(\begin{array}{cc} 1 & (d_3^*(z)-d_2^*(z))e^{2i\theta(z)} \\ 0 & 1 \end{array}\right), & z \in \Sigma_{2,3}^*. \end{cases}$$

- * As $z \to \infty$ in $\mathbb{C} \setminus \Sigma^{(4)}$, we have $M^{(4)}(z) = I + \mathcal{O}(z^{-1})$.
- * For $z \in \mathbb{C}$, we have the $\bar{\partial}$ -derivative relation $\bar{\partial} M^{(4)}(z) = M^{(4)}(z) \bar{\partial} R^{(3)}(z)$, where

$$ar{\partial} R^{(3)}(z) = \left\{ egin{array}{ll} \left(egin{array}{ccc} 0 & 0 & 0 \ ar{\partial} d_j(z) e^{-2i heta(z)} & 0 \end{array}
ight), & z \in \Omega_j, \ j=1,...,4, \ \left(egin{array}{ccc} 0 & ar{\partial} d_j^*(z) e^{2i heta(z)} \ 0 & 0 \end{array}
ight), & z \in \Omega_j^*, \ j=1,...,4, \ 0, & ext{elsewhere.} \end{array}
ight.$$

$\bar{\partial}$ nonlinear steepest descent analysis

Let the RH problem for $M^{(3)}$ be as the starting of performing $\bar{\partial}$ nonlinear steepest descent analysis.

[McLaughlin-Miller, '06] [Dieng-McLaughlin-Miller, '19]

❖ Opening $\bar{\partial}$ lenses to construct a mixed $\bar{\partial}$ -RH problem for $M^{(4)}$.

Figure 6: The jump contours of the RH problem for $M^{(4)}$.

- * Decomposition into a pure RH problem for N(z) (omitting $\bar{\partial}$ -derivative part) and a pure $\bar{\partial}$ -problem for $M^{(5)}(z)$ ($\bar{\partial}R^{(3)}\neq 0$).
- Construction of global and local parametrices for pure RH problem.
- * Analysis to the $\bar{\partial}$ -component.

$\bar{\partial}$ nonlinear steepest descent analysis – pure RH problem

The Painlevé region.

The Painlevé II parametrix plays an important role in the analysis of the pure RH problem.

The collisionless shock region.

- ★ Introduction of the *g*-function mechanism.
- * A model RH problem solvable in terms of the Jacobi theta function.

Define

$$M^{(5)}(z) = M^{(4)}(z)N(z)^{-1}.$$

- ullet $M^{(5)}(z)$ is continuous and has sectionally continuous first partial derivatives in \mathbb{C} .
- * As $z \to \infty$ in \mathbb{C} , we have $M^{(5)}(z) = I + \mathcal{O}(z^{-1})$.
- * The $\bar{\partial}$ -derivative of $M^{(5)}$ satisfies $\bar{\partial} M^{(5)}(z) = M^{(5)}(z)W^{(3)}(z)$, $z \in \mathbb{C}$ with $W^{(3)}(z) = N(z)\bar{\partial} R^{(3)}(z)N(z)^{-1}$.

Solution of pure $\bar{\partial}$ -problem can be expressed in terms of the integral equation

$$M^{(5)}(z) = I + \frac{1}{\pi} \iint_{\mathbb{C}} \frac{M^{(5)}(\zeta)W^{(3)}(\zeta)}{\zeta - z} d\mu(\zeta),$$

where $\mu(\zeta)$ stands for the Lebesgue measure on $\mathbb C$. Introducing the left Cauchy-Green integral operator

$$fC_z(z) = \frac{1}{\pi} \iint_{\mathbb{C}} \frac{f(\zeta)W^{(3)}(\zeta)}{\zeta - z} d\mu(\zeta),$$

we could rewrite in an operator form

$$M^{(5)}(z) = I \cdot (I - C_z)^{-1}$$
.

Aim: Evaluate the norm of the integral operator $(I - C_z)^{-1}$ so that we can estimate $M^{(5)}(z)$ as $t \to +\infty$.

Proof of our main theorems

- * Recalling the series of transformations to obtain the asymptotics of u(y,t) and x(y,t) by using the reconstruction formulae in the RH problem for $M^{(1)}$.
- * From (y, t)-half plane to (x, t)-half plane $(u(y, t) \leadsto u(x, t))$: properties of Painlevé II transcendent and Jacobi theta function.

Why Painlevé?

In the 1st transition region, the phase function $\theta(z)$ has four saddle points

$$k_1 = 2\sqrt{s_+} + \sqrt{4s_+ + 1},$$
 $k_2 = -2\sqrt{s_+} + \sqrt{4s_+ + 1},$ $k_3 = 2\sqrt{s_+} - \sqrt{4s_+ + 1},$ $k_4 = -2\sqrt{s_+} - \sqrt{4s_+ + 1},$

where

$$s_+ := rac{1}{4\hat{\xi}} \left(-\hat{\xi} - 1 + \sqrt{1 + 4\hat{\xi}}
ight).$$

Why Painlevé?

As $\hat{\xi}
ightarrow 2^-$, $k_{1,2}
ightarrow 1$, $k_{3,4}
ightarrow -1$. (demo)

Why Painlevé?

As
$$\hat{\xi} \to \left(-\frac{1}{4}\right)^+$$
, $k_{1,2} \to 2 + \sqrt{3}$, $k_{3,4} \to 2 - \sqrt{3}$, $k_{5,6} \to -2 + \sqrt{3}$, $k_{7,8} \to -2 - \sqrt{3}$. (demo)

Why does the collisionless shock region occur?

About collisionless shock region:

* A terminology due to Gurevich and Pitaevsk

[Gurevich-Pitaevski '74]

♣ First rigorous result for KdV equation.

[Deift-Venakides-Zhou '94]

* It turns out the local RH problem near each k_j is controlled in the norm by $(1-|r(k_j)|^2)^{-1}$. In the generic case, i.e., $|r(\pm 1)|\equiv 1$, these norms blow up as $k_{1,2}\to 1,\ k_{3,4}\to -1$.

Open Question

Figure 7: What happens near $\xi \approx 0$?

Near $\xi \approx 0$, we see from a rough calculation that the transition should occur in the sub-sub-leading term or higher order term of the large-time asymptotics.

Thanks for your attention!

Thanks for your attention!

&

Comments and Questions are welcome!