Polaridade e eletronegatividade

Prof. Diego J. Raposo UPE – Poli 2024.2

Sec. 8.4

Calcule as cargas parciais dos átomos na molécula de BrCl, considerando que o momento de dipolo é 0,57 D e os raios atômicos do Br e do Cl são 1,20 Å e 1,02 Å.

- Átomos possuem tendências próprias de atrair elétrons em ligação química;
- Isso caracteriza o tipo de ligação que será formada;
- Em moléculas formadas por dois átomos de um mesmo elemento a tendência de cada átomo é igual. Logo a densidade eletrônica (região com maior probabilidade de encontrar o elétron) se encontra exatamente no meio dos átomos.

- Esse tipo de ligação é chamada de covalente apolar, pois não há dipolos elétricos, nem preferência da nuvem eletrônica por um dos átomos (cargas ao redor dos átomo são equivalentes);
- Ela ocorre entre ametais de um mesmo elemento, e entre átomos de hidrogênio (H₂).

- Se, por outro lado, um dos átomos tem uma tendência maior de atrair elétrons, a nuvem estará mais deslocalizada em sua direção, e é mais provável encontrar o elétron mais próximo dele;
- Essa ligação é chamada de covalente polar, porque um dipolo elétrico permanente é formado na ligação;
- É comum entre ametais de diferentes tipos entre si ou ligados ao átomo de hidrogênio.

δ+

 Se a diferença entre a capacidade relativa de atrair elétrons entre os átomos é muito grande, haverá a transferência de elétrons para o com maior capacidade, ocorrendo uma ligação iônica. Como vimos, ela ocorre sobretudo entre metais e ametais.

- A tendência de um átomo atrair elétrons é chamada de eletronegatividade, uma quantidade que ajuda a prever o tipo de ligação que é formada entre dois ou mais átomos. Ela também auxilia o estudo de propriedades físicas e químicas das substâncias.
- É possível estimar a eletronegatividade de diferentes formas. Uma delas, chamada de eletronegatividade de Millikan, combina a energia de ionização e a afinidade eletrônica de um átomo para estimar sua eletronegatividade:

$$\chi_M = \frac{I + A_e}{2}$$

- Ou seja, átomos que possuem uma energia de ionização elevada (dificilmente perdem os elétrons que possuem) e uma afinidade eletrônica também alta (liberam muita energia quando recebem elétrons, pois diminuem bastante em energia ao incorporá-los) são muito eletronegativos.
- A mais usada medida de eletronegatividade é, no entanto, devida a Linus Pauling. A eletronegatividade de Pauling (χ_P) é calculada a partir de dados termoquímicos (energias necessárias para romper ligações entre átomos). Essa eletronegatividade se comporta como uma tendência periódica: ela aumenta quando Z aumenta em um período e diminui quando Z aumenta em um grupo).

Porque *n* aumenta (distância núcleo-elétrons)

Porque força núcleoelétrons diminui

 χ aumenta

Porque força núcleo-elétrons aumenta

Porque Z_{ef} aumenta

- Os átomos mais eletronegativos têm carga nuclear efetiva maior e raios menores, pois isso maximiza a interação dos elétrons de valência (inclusive os que estão na ligação covalente) com o núcleo;
- A eletronegatividade de Pauling varia de 0,7 (Fr) a 4,0 (F), mas memorizar tais valores não é importante. Por outro lado, saber quais os átomos são mais eletronegativos em um grupo é bastante relevante na determinação do tipo de cada ligação e na polaridade da ligação e da molécula. Essa comparação relativa pode ser feita via inspeção da tabela periódica.

 Podemos inferir se a ligação tender a ser covalente (isto é, temos uma molécula) ou iônica (formando substâncias sólidas iônicas);

Método 1: identificando os elementos na tabela, e se são metais (M), ametais (A) e hidrogênio (H).

H + H → Ligação covalente apolar H + A → Ligação covalente polar A + A → Ligação covalente apolar A + A' → Ligação covalente polar M + M → Ligação metálica M + M' → Ligação metálica M + H → Ligação iônica M + A → Ligação iônica

Tal abordagem, porém, tem várias exceções. Ex.: SnCl₄ é covalente embora seja M + A

• **Método 2:** Cálculo de $\Delta \chi = \chi_A - \chi_B$ para o par de átomos AB, onde χ_A é a eletronegatividade do átomo mais eletronegativo e χ_B é a eletronegatividade do átomo menos eletronegativo. Portanto:

Ex.: SnCl₄

$$\Delta \chi = \chi_{\text{Cl}} - \chi_{\text{Sn}} = 3,16 - 1,96 = 1,2$$

Logo é covalente polar!

- O método 2, no entanto, não funciona tão bem quando metais com diferentes estados de oxidação formam compostos. Em geral, quanto maior o estado de oxidação do metal (sobretudo acima de +4) mais significativo o grau de covalência;
- Quanto maior o estado de oxidação mais difícil retirar o elétron do metal, então a tendência é que haja um compartilhamento (ligação covalente) ao invés da transferência para o ametal (ligação iônica).

Ligação iônica

Liga

Ligação covalente

Figura 7.15 Estados de oxidação representativos dos elementos. Observe que o hidrogênio apresenta números de oxidação positivo e negativo, sendo 1 e −1.

- A ligação covalente polar pode ser tratada aproximadamente como um dipolo elétrico, em que as cargas q+ e q- estão separadas por uma distância r. Em moléculas diatômicas, como a única ligação é polar, a molécula é dita polar. Moléculas polares interagem fortemente entre si e com íons, levando a várias propriedades relevantes;
- O momento de dipolo permite quantificar a polaridade de uma ligação.

- Usamos essa equação para determinar o momento de dipolo de uma molécula, mas as unidades são tipicamente:
- Ao invés de C m usa-se Debye (D): $\frac{1}{1}$ D = $\frac{3.34 \cdot 10^{-30}}{10^{-30}}$ C m
- Ao invés de C usa-se unidades da carga do elétron: $1 e = 1,602 \cdot 10^{-19} C$
- Ao invés de m usa-se $^{\text{A}}$: $^{\text{1}}$ m = $^{\text{10}^{\text{-}10}}$ $^{\text{A}}$

A carga é tão maior quanto a diferença de eletronegatividade entre os átomos

A distância entre eles é tão maior quanto os raios dos átomos

 Ex.: Considere a molécula LiF, cujo momento de dipolo é 6,28 D e o comprimento de ligação é 1,53 Å. Determine a carga dos átomos.

$$\mu = q \cdot r \Rightarrow q = \frac{\mu}{r} = \frac{6,28 \, \text{D}}{1,53 \, \text{Å}} \left(\frac{3,34 \cdot 10^{-30} \, \text{Cm}}{1 \, \text{D}} \right) \left(\frac{1 \, \text{Å}}{10^{-10} \, \text{m}} \right) \left(\frac{1 \, e}{1,602 \cdot 10^{-19} \, \text{C}} \right) = 0,857 \, e^{-\frac{1}{2} \left(\frac{1}{10^{-10}} \, \frac{1}{10^{-1$$

• Se a ligação fosse completamente iônica (como esperado já que Li é um metal e F é um ametal, e a diferença de eletronegatividade entre eles é maior do que 2 (3,98 – 0,98 = 3,00) a carga seria 1. Mas ela é menor porque há certa parcela de compartilhamento entre os átomos. Ou seja, a ligação não é 100% iônica. Na verdade, nenhuma ligação tem tal característica: haverá sempre um grau de covalência na ligação. Por outro lado, ligações 100% covalentes existem: as ligações entre átomos de um mesmo elemento (como no H₂ ou no Cl₂).

 Se carga e distância seguem tendências opostas, em geral a separação de carga influencia mais o momento de dipolo que a distância:

Tabela 8.3 Comprimentos de ligação, diferenças de eletronegatividade e momentos de dipolo dos halogenetos de hidrogênio.

Composto	Comprimento da ligação (Å)	Diferença de eletronegatividade	Momento de dipolo (D)
HF	0,92	1,9	1,82
HCI	1,27	0,9	1,08
HBr	1,41	0,7	0,82
н	1,61	0,4	0,44

r cresce

q decresce

 μ decresce

Calcule as cargas parciais dos átomos na molécula de BrCl, considerando que o momento de dipolo é 0,57 D e os raios atômicos do Br e do Cl são 1,20 Å e 1,02 Å.

Distância aproximada: (1,20 + 1,02) Å = 2,22 Å Na verdade deve ser menor que isso (sobreposição dos orbitais)

$$\mu = q \cdot r \Rightarrow q = \frac{\mu}{r} = \frac{0,57 \text{ D}}{2,22 \text{ Å}} \left(\frac{3,34 \cdot 10^{-30} \text{ C m}}{1 \text{ D}} \right) \left(\frac{1 \text{ Å}}{10^{-10} \text{ m}} \right) \left(\frac{1 \text{ e}}{1,602 \cdot 10^{-19} \text{ C}} \right)$$
$$q = \frac{\mu}{r} = \frac{0,57 \cdot 3,34}{2.22 \cdot 1.602} \cdot 10^{-30+10+19} \ e = 0,054 \ e$$

A carga é próxima de zero, como esperado, já que a diferença de eletronegatividade entre cloro e bromo é pequena (0,1), e a molécula é muito pouco polar.

Obrigado e boa sorte!

 Podemos inferir se a ligação tender a ser covalente (isto é, temos uma molécula) ou iônica (formando substâncias sólidas iônicas);

$\Delta\chi_P$	0	0 - 2	> 2
Ligação	covalente apolar	covalente polar	iônica
Exemplo	0 0 : F F:	δ+ δ- H——F:	Li ⁺ Cl ⁻
Cargas	sem cargas permanentes	com cargas parciais	com cargas totais
Tipo de substância	covalente (feita de moléculas)	covalente (feita de moléculas)	iônica (feita de íons)