Página Principal / Mis cursos / 2024-K-306 / MUESTREO Y FILTRADO / Cuestionario de Laboratorio Turno I

Comenzado el ju	ueves, 30 de mayo de 2024, 13:21
Estado Fi	inalizado
Finalizado en ju	ueves, 30 de mayo de 2024, 13:31
Tiempo 9 empleado	9 minutos 30 segundos
Puntos 2,	2,00/3,00
Calificación 6,	5,67 de 10,00 (66,67 %)
Pregunta 1 Incorrecta Se puntúa 0,00 sobre 1,00	

Dada una señal finita de tiempo discreto, indique las opciones correctas, respecto a su transformada de Fourier.

- a.
 Posee una transformada de Fourier continua y periódica en función de la frecuencia.
- b.
 Se puede analizar con la transformada discreta de Fourier o la FFT, si se genera una señal con periodo N, menor al número de elementos de la señal.
- Posee una transformada de Fourier continua en la frecuencia, cuya expresión se puede obtener con el algoritmo FFT.
- d. Se pueden obtener muestras de su transformada de Fourier, si se la convierte en una señal con periodo N, en las frecuencias $f k = \frac{k}{N}$.

Pregunta 2	
Correcta	
Se puntúa 1,00 sobre 1,00	
200, utilizando un inteliminando el contenenventanado, con un a. La ventana de b. La frecuencia c. La frecuencia	señal de tiempo continuo, se obtiene un vector x[n], de dimensión N = ervalo de muestreo Δt = 0.001s. Con el objeto de filtrar dicha señal, ido de frecuencias superior a 300 hz, se utiliza un filtro FIR sinc núcleo de dimensión M = 41 elementos. Indicar las opciones correctas. Hamming utilizada, posee 240 elementos. de corte digital del filtro es Fc = 300 hz. de corte digital del filtro es fc = 0.3. otal del filtro, posee 240 elementos.
Pregunta 3 Correcta Se puntúa 1,00 sobre 1,00	
	n] al núcleo de un filtro paso bajo, cuya frecuencia de corte es fc1, y filtro paso alto, cuya frecuencia de corte es fc2. Indique las opciones
	2, el núcleo de un filtro paso banda, con frecuencias de corte entre fc1 y fc2 es h2[n] (convoluciòn entre h1 y h2).
☑ b. Para fc1 < fc2 fc2 es h[n] = h	2, el núcleo de un filtro rechazo de banda, con frecuencias de corte entre fc1 y 11[n] + h2[n].
	2, el núcleo de un filtro paso banda, con frecuencias de corte entre fc2 y fc1 es h2[n] (convoluciòn entre h1 y h2).
d. Para fc1 > fc fc1 es h[n] =	2, el núcleo de un filtro rechazo de banda, con frecuencias de corte entre fc2 y h1[n] + h2[n].
→ PPP Filtros FIR (media	móvil y senc enventanado)

Ir a...

Página Principal / Mis cursos / 2024-K-306 / MUESTREO Y FILTRADO / Cuestionario de Laboratorio Turno I

Comenzado el	jueves, 30 de mayo de 2024, 13:22
Estado	Finalizado
Finalizado en	jueves, 30 de mayo de 2024, 13:37
Tiempo	14 minutos 59 segundos
empleado	
Puntos	2,00/3,00
Calificación	6,67 de 10,00 (66,67 %)
Pregunta 1	
Correcta	
Se puntúa 1,00 sobre 1,00	

Definiendo como h1[n] al núcleo de un filtro paso bajo, cuya frecuencia de corte es fc1, y h2[n] al núcleo de un filtro paso alto, cuya frecuencia de corte es fc2. Indique las opciones correctas.

- Para fc1 > fc2, el núcleo de un filtro rechazo de banda, con frecuencias de corte entre fc2 y fc1 es h[n] = h1[n] + h2[n].
- Para fc1 < fc2, el núcleo de un filtro rechazo de banda, con frecuencias de corte entre fc1 y fc2 es h[n] = h1[n] + h2[n].</p>
- Para fc1 < fc2, el núcleo de un filtro paso banda, con frecuencias de corte entre fc1 y fc2 es h[n] = h1[n] * h2[n] (convolución entre h1 y h2).
- Para fc1 > fc2, el núcleo de un filtro paso banda, con frecuencias de corte entre fc2 y fc1 es h[n] = h1[n] * h2[n] (convolución entre h1 y h2).

Pregunta **2**Incorrecta Se puntúa 0,00 sobre 1,00

Dada una señal finita de tiempo discreto, indique las opciones correctas, respecto a su transformada de Fourier.

- a.
 Se puede analizar con la transformada discreta de Fourier o la FFT, si se genera una señal con periodo N, menor al número de elementos de la señal.
- Se pueden obtener muestras de su transformada de Fourier, si se la convierte en una señal con periodo N, en las frecuencias f $k = \frac{k}{N}$.
- Posee una transformada de Fourier continua en la frecuencia, cuya expresión se puede obtener con el algoritmo FFT.
- d. Posee una transformada de Fourier continua y periódica en función de la frecuencia.

Pregunta **3**Correcta

Se puntúa 1,00 sobre 1,00

Para el muestreo de una señal x(t)=5 . $sen(2\pi 2500\,t)$, indique las opciones correctas.

- Utilizando una frecuencia de muestreo Fm = 10000, se obtienen muestras válidas para representar a x(t).
- Con una frecuencia de muestreo Fm = 200, se obtiene un vector x[n], idéntico al del muestreo de x1(t) = 3. $\cos(2\pi 100 t)$, pero las muestras no son válidas para representar ambas señales.
- Para una frecuencia de muestreo Fm = 1250, la frecuencia digital de x[n] es f = 2 y la muestra es representativa de la señal.
- Para una frecuencia de muestreo Fm = 7500, la frecuencia digital de x[n] es f = 1/3 y la muestra no es representativa de la señal.

→ PPP Filtros FIR (media móvil y senc enventanado)

Cuestionario de Laboratorio Turno II ►

Página Principal / Mis cursos / 2024-K-306 / MUESTREO Y FILTRADO / Cuestionario de Laboratorio Turno I

Comenzado el ju	ueves, 30 de mayo de 2024, 13:21
Estado Fi	inalizado
Finalizado en ju	ueves, 30 de mayo de 2024, 13:31
Tiempo 9 empleado	9 minutos 30 segundos
Puntos 2,	2,00/3,00
Calificación 6,	5,67 de 10,00 (66,67 %)
Pregunta 1 Incorrecta Se puntúa 0,00 sobre 1,00	

Dada una señal finita de tiempo discreto, indique las opciones correctas, respecto a su transformada de Fourier.

- a.
 Posee una transformada de Fourier continua y periódica en función de la frecuencia.
- b.
 Se puede analizar con la transformada discreta de Fourier o la FFT, si se genera una señal con periodo N, menor al número de elementos de la señal.
- Posee una transformada de Fourier continua en la frecuencia, cuya expresión se puede obtener con el algoritmo FFT.
- d. Se pueden obtener muestras de su transformada de Fourier, si se la convierte en una señal con periodo N, en las frecuencias $f k = \frac{k}{N}$.

Pregunta 2	
Correcta	
Se puntúa 1,00 sobre 1,00	
200, utilizando un inteliminando el contenenventanado, con un a. La ventana de b. La frecuencia c. La frecuencia	señal de tiempo continuo, se obtiene un vector x[n], de dimensión N = ervalo de muestreo Δt = 0.001s. Con el objeto de filtrar dicha señal, ido de frecuencias superior a 300 hz, se utiliza un filtro FIR sinc núcleo de dimensión M = 41 elementos. Indicar las opciones correctas. Hamming utilizada, posee 240 elementos. de corte digital del filtro es Fc = 300 hz. de corte digital del filtro es fc = 0.3. otal del filtro, posee 240 elementos.
Pregunta 3 Correcta Se puntúa 1,00 sobre 1,00	
	n] al núcleo de un filtro paso bajo, cuya frecuencia de corte es fc1, y filtro paso alto, cuya frecuencia de corte es fc2. Indique las opciones
	2, el núcleo de un filtro paso banda, con frecuencias de corte entre fc1 y fc2 es h2[n] (convoluciòn entre h1 y h2).
☑ b. Para fc1 < fc2 fc2 es h[n] = h	2, el núcleo de un filtro rechazo de banda, con frecuencias de corte entre fc1 y 11[n] + h2[n].
	2, el núcleo de un filtro paso banda, con frecuencias de corte entre fc2 y fc1 es h2[n] (convoluciòn entre h1 y h2).
d. Para fc1 > fc fc1 es h[n] =	2, el núcleo de un filtro rechazo de banda, con frecuencias de corte entre fc2 y h1[n] + h2[n].
→ PPP Filtros FIR (media	móvil y senc enventanado)

Ir a...

Come	nzado el	jueves, 30 de mayo de 2024, 18:24	
	Estado	Finalizado	
Finali	izado en	jueves, 30 de mayo de 2024, 18:35	
Tiempo er	npleado	11 minutos	
	Puntos	2,50/3,00	
Cali	ificación	8,33 de 10,00 (83,33 %)	
Pregunta 1			
) sobre 1.00		
Se puntúa 1,00	sobre 1,00		
	al núcleo	no h1[n] al núcleo de un filtro paso bajo, cuya frecuencia de corte es fc1, y de un filtro paso alto, cuya frecuencia de corte es fc2. Indique las opciones	
a.		1 < fc2, el núcleo de un filtro paso banda, con frecuencias de corte entre fc1 y fc2 es 1[n] * h2[n] (convoluciòn entre h1 y h2).	
□ b.		c1 > fc2, el núcleo de un filtro rechazo de banda, con frecuencias de corte entre fc2 y h[n] = h1[n] + h2[n].	
☑ c.		1 < fc2, el núcleo de un filtro rechazo de banda, con frecuencias de corte entre fc1 y [n] = h1[n] + h2[n].	,
✓ d.		1 > fc2, el núcleo de un filtro paso banda, con frecuencias de corte entre fc2 y fc1 es 1[n] * h2[n] (convoluciòn entre h1 y h2).	•
Pregunta 2			
Correcta			
Se puntúa 1,00	sobre 1,00		

Se desea aplicar el algoritmo FFT, a una señal de 10s de duración. Para ello se genera x[n] con un Δt = 0.1s, y una dimensión N = 512 elementos en los vectores. Indicar las opciones correctas.

✓ a.	El muestreo del espectro de la señal, se realiza en valores de frecuencias cada $\Delta F = \frac{10}{512} \ hz$.	`
□ b.	Se deben agregar 512 ceros a la señal.	
□ c.	El espectro sólo posee valores no nulos en 100 frecuencias.	
d.	El período adoptado para la representación de la señal es T = 51.2s.	

Dadas las señales x1[n] y x2[n], con dimensiones L1 y L2 respectivamente. Indique las opciones correctas, respecto a la aplicación de la convolución FFT de las mismas para obtener y[n] = x1[n] * x2[n].

- a.
 La convolución da un vector y[n] = ifft(Y[k]), donde Y[k] = X1[k]. X2[k], siendo X1[k] = fft(x1[n]) y X2[k] = fft(x2[n]).
- Se debe otorgar a todos los vectores, una dimensión mínima de L1+L2-1 elementos, agregando ceros donde corresponda.
- Para aplicar esta convolución, se deben corregir las dimensiones de los vectores dados x1[n] y x2[n].
- d.El espectro de y[n], se obtiene como el producto X1[k] = fft(x1[n]) con X2[k] = fft(x2[n]).

Página Principal / Mis cursos / 2024-K-306 / MUESTREO Y FILTRADO / Cuestionario de Laboratorio Turno IV

Comenzado el	jueves, 30 de mayo de 2024, 18:23		
Estado	Finalizado		
Finalizado en	jueves, 30 de mayo de 2024, 18:37		
Tiempo empleado	13 minutos 46 segundos		
Puntos	1,50/3,00		
Calificación	5,00 de 10,00 (50 %)		
Pregunta 1 Parcialmente correcta Se puntúa 0,50 sobre 1,00			
con un intervalo Indicar las opci	ar el algoritmo FFT, a una señal de 10s de duración. Para ello se genera x[n] o de muestreo $\Delta t = 0.1s$, y una dimensión N = 512 elementos en los vectores. ones correctas. Estreo del espectro de la señal, se realiza en valores de frecuencias cada $\Delta F = 0.1 \ hz$. Odo adoptado para la representación de la señal es T = 10s.		
d. La máxima velocidad de oscilaciones, se produce para la armónica de la frecuencia F = 5hz.			
Pregunta 2 Correcta Se puntúa 1,00 sobre 1,00			
The state of the s	ar el algoritmo FFT, a una señal de 10s de duración. Para ello se genera x[n] Is, y una dimensión N = 512 elementos en los vectores. Indicar las opciones		
a. El perío	odo adoptado para la representación de la señal es T = 51.2s.		
□ b. Se de	ben agregar 512 ceros a la señal.		
c. El esp	pectro sólo posee valores no nulos en 100 frecuencias.		
☑ d. El mu	estreo del espectro de la señal, se realiza en valores de frecuencias cada $\Delta F = \frac{10}{512} \ hz$.		

Pregunta 3		
Incorrecta		
Se puntúa 0,00 sobre 1,00		

Del muestreo de una señal de tiempo continuo, se obtiene un vector x[n], de dimensión N = 200, utilizando un intervalo de muestreo $\Delta t = 0.001s$. Con el objeto de filtrar dicha señal, eliminando el contenido de frecuencias superior a 300 hz, se utiliza un filtro FIR sinc enventanado, con un núcleo de dimensión M = 41 elementos. Indicar las opciones correctas.

- a. La frecuencia de corte digital del filtro es Fc = 300 hz.
- b. La frecuencia de corte digital del filtro es fc = 0.3.
- c. La respuesta total del filtro, posee 240 elementos.
- d. La ventana de Hamming utilizada, posee 240 elementos.

Ir a...

Cuestionario de Laboratorio Turno V -

Página Principal / Mis cursos / 2024-K-306 / MUESTREO Y FILTRADO / Cuestionario de Laboratorio Turno V

Comenzado el	jueves, 30 de mayo de 2024, 18:45
Estado	Finalizado
Finalizado en	jueves, 30 de mayo de 2024, 18:59
Tiempo empleado	13 minutos 58 segundos
Puntos	1,50/3,00
Calificación	5,00 de 10,00 (50 %)
Pregunta 1	
Correcta	
Se puntúa 1,00 sobre 1,00	

Para el muestreo de una señal x(t)=5 . $sen (2 \pi 2500 t)$, indique las opciones correctas.

- Con una frecuencia de muestreo Fm = 200, se obtiene un vector x[n], idéntico al del muestreo de x1(t)=3. $\cos(2\pi 100 t)$, pero las muestras no son válidas para representar ambas señales.
- b. Para una frecuencia de muestreo Fm = 7500, la frecuencia digital de x[n] es f = 1/3 y la muestra no es representativa de la señal.
- Para una frecuencia de muestreo Fm = 1250, la frecuencia digital de x[n] es f = 2 y la muestra es representativa de la señal.
- d. Utilizando una frecuencia de muestreo Fm = 10000, se obtienen muestras válidas para representar a x(t).

Pregunta 2	
Parcialmente correcta	
Se puntúa 0,50 sobre 1,00	

Para el muestreo de una señal x(t) = 3. cos $(2 \pi 500 t)$, indique las opciones correctas.

- a. Para una frecuencia de muestreo Fm = 1500, la frecuencia digital de x[n] es f = 1/3 y la muestra no es representativa de la señal.
- b. Para una frecuencia de muestreo Fm = 250, la frecuencia digital de x[n] es f = 2 y la muestra es representativa de la señal.
- Con una frecuencia de muestreo Fm = 200, se obtiene un vector x[n], idéntico al del muestreo de x1(t) = 3. $\cos(2\pi 100 t)$, pero las muestras no son válidas para representar ambas señales.
- ✓ d.
 Utilizando una frecuencia de muestreo Fm = 2000, se obtienen muestras válidas para representar a x(t).

Pregunta **3** Incorrecta

Se puntúa 0,00 sobre 1,00

Dadas las señales x1[n] y x2[n], con dimensiones L1 y L2 respectivamente. Indique las opciones correctas, respecto a la aplicación de la convolución FFT de las mismas para obtener y[n] = x1[n] * x2[n].

- a.El espectro de y[n], se obtiene como el producto X1[k] = fft(x1[n]) con X2[k] = fft(x2[n]).
- b. Para aplicar esta convolución, se deben corregir las dimensiones de los vectores dados x1[n] y x2[n].
- Se debe otorgar a todos los vectores, una dimensión mínima de L1+L2-1 elementos, agregando ceros donde corresponda.
- d.

 La convolución da un vector y[n] = ifft(Y[k]), donde Y[k] = X1[k] . X2[k], siendo X1[k] = fft(x1[n])

 y X2[k] = fft(x2[n]).

Ir a...

Cuestionario de Laboratorio Turno VI >