

GEOMETRÍA ASESORIA

4TO BIMESTRE

 El volumen de un cono circular recto es igual al triple del área de la superficie lateral. Calcule la distancia del centro de la base a una generatriz.

- Piden: x
- Por V = 3, A_{SL} dato: $\frac{1}{3}\pi r^{2}$, $h = 3(\pi x, r, g)$ rh = 9g
- BOV :Relaciones métricas

$$rh = xg$$

 $9g = xg'$

x = 9

2. Determine el volumen de una pirámide hexagonal regular, cuya arista básica mide 6 m y su altura mide $5\sqrt{3}$ m.

• Piden: V

$$V = \frac{1}{3} A_{(BASE)} . h$$

Calculando el área de la base:

$$A_{(BASE)} = 6.$$
 $A_{(BASE)} = 6.$
 $A_{(BASE)} = 6.$
 $A_{(BASE)} = 5.$

Reemplazando al teorema:

$$V = \frac{1}{3}$$
. $54\sqrt{3} \cdot 5\sqrt{3}$
 $V = 270 \text{ m}^3$

3. Halle la longitud de la altura de un cono de revolución sabiendo que el área de la superficie lateral es $175\pi\,m^2\,y$ el radio de la base

- Piden:
- VOB: T. Pitágoras $g^{2} = 7^{2} + x^{2} ... (1)$
- Por dato: $A_{SL} = 175 \pi$ $f(7) g = 175 f(4) \longrightarrow g = 25 \dots (2)$
- Reemplazando 2 en 1.

$$25^2 = 7^2 + X^2$$

X = 24

4. En la figura, T es punto de tangencia, calcule el área de la superficie generada por la circunferencia al girar 360° alrededor de la recta L.

- Piden: $A_{(SG)}$ $A_{SL} = 2\pi. \times L$
- Se traza \overline{OT} .
- OTP: T. Pitágoras

$$(r + 3)^2 = r^2 + \sqrt{33}^2$$

 $r = 4$

Reemplazando:

$$A_{(SG)} = 2\pi (7) (2\pi.4)$$

$$A_{(SG)} = 2 \pi (7) (8\pi)$$

$$A_{(SG)} = 112 \pi^2$$

5. Determine el volumen de la esfera inscrita en el cono equilátero de

• Piden:
$$V_{(ESF)} = \frac{4}{3}\pi r^3$$

- OQB: Notable de 30° y 60°
- Por dato:

$$V_{(CONO)} = 27 \text{ m}^3$$

 $\frac{1}{3}\pi (\sqrt{3}r)^2 (\sqrt{3}r) = 27$
 $\pi \cdot 3 r^3 = 27$
 $\pi \cdot r^3 = 9$

Reemplazando al teorema:

$$V_{(ESF)} = \frac{4}{3} (9)$$

$$V_{(ESF)} = 12 \text{ m}^3$$

Calcule el área de la región equilátera AOB en el plano cartesiano mostrado.

Resolución

• Piden:
$$S_{(AOB)}$$

$$S_{(AOB)} = \frac{a^2 \cdot \sqrt{3}}{4}$$

- Se traza la altura AH
- AHO: Notable de 30° y

 OH = 4 AO = 8
- Remplazando al teorema:

$$S_{(AOB)} = \frac{8^2 \cdot \sqrt{3}}{4}$$

$$S_{(AOB)} = 16\sqrt{3} u^2$$

7. En el plano cartesiano mostrado, calcule el área de la región triangular OPQ.

Resolución

- Piden: $S_{(AOB)}$ $S_{(AOB)} = \frac{b \cdot h}{2}$
 - Se traza la altura QH
- Q (13; 8) . PHQ:Notable de 53° y 37°

$$PH = 6$$
 y $OP = 7$

Remplazando al teorema:

$$S_{(AOB)} = \frac{7.8}{2}$$

$$S_{\rm (AOB)}=28~{\rm u}^2$$

8. Halle la ecuación general de la recta L.

Resolución

- Piden: La ecuación de la recta L.
- Calculando la pendiente:

$$m = Tan 45^{0}$$

$$m = Tan 45^{0}$$

$$m = 1$$

Calculando la ecuación de la recta L

$$y-y_1 = m(x-x_1)$$
 $y-3 = 1 (x-(-4))$
 $y-3 = x+4$

$$\mathbf{L}:\ \mathbf{0}=\mathbf{x}-\mathbf{y}+\mathbf{7}$$

9. Halle la ecuación ordinaria de la circunferencia, si C es su centro.

Resolución

- Piden: La ecuación ordinaria de la circunferencia
 Se observa: h=r y K=0
 - Por distancia entre 2 puntos.

$$(13-r)^2 + (\sqrt{13}-0)^2 = r^2$$

 $169 - 26 r + / r^2 + 13 = / r^2$
 $182 = 26 r \longrightarrow 7 = r$

Calculando la ecuación ordinaria

$$(x-h)^2 + (y-k)^2 = r^2$$

$$(x-7)^2 + (y-0)^2 = (7)^2$$

$$(x-7)^2 + y^2 = 49$$

10. En la figura, F es el foco de la parábola y O su vértice. Halle la ecuación de la parábola.

Resolución

Piden: La ecuación de la parábola

$$y^{2} = 4 p x$$

 Reemplazando el par ordenado a la ecuación de la recta:

$$4p+6(0)=12$$
 $4p=12 \implies p=3$

Remplazando en la ecuación:

$$y^2 = 4 (3) x$$

 $y^2 = 12 x$