DFA State Minimization

- Equivalence Method
- Table Filling Method

	0	1
→A	В	C
В	В	D
O	В	C
D	В	Е
* E	В	С

Test case:

011 (acceptable), 1011 (acceptable), 010 (not acceptable), 1110 (not acceptable)

Equivalence Method: (pairwise state equivalence transition comparison)

0 - Equivalence:

(2 sets – 'accepting states', 'non accepting state) {A, B, C, D} {E}

1 - Equivalence:

$$(A, B) \Rightarrow \delta(A, 0) = B$$
 $\delta(A, 1) = C$

$$\delta(A, 1) = C$$

$$\delta(B, 0) = B$$

$$\delta(B, 0) = B$$
 $\delta(B, 1) = D$

$$(A, C) \Rightarrow \delta(A, 0) = B$$
 $\delta(A, 1) = C$

$$\delta(A, 1) = C$$

$$\delta(C, 0) = B$$

$$\delta(C, 0) = B$$
 $\delta(C, 1) = C$

$$(C, D) \Rightarrow \delta(C, 0) = B$$
 $\delta(C, 1) = C$

$$\delta(C, 1) = C$$

$$\delta(D, 0) = B \qquad \delta(D, 1) = E$$

$$\delta(D, 1) = E$$

$$\{A, B, C\}$$
 $\{D\}$ $\{E\}$

2 - Equivalence:

$$(A, B) \Rightarrow \delta(A, 0) = B$$
 $\delta(A, 1) = C$

$$\delta(A, 1) = C$$

$$\delta(B, 0) = B$$

$$\delta(B, 0) = B \qquad \delta(B, 1) = D$$

$$(A, C) \Rightarrow \delta(A, 0) = B$$
 $\delta(A, 1) = C$

$$\delta(A, 1) = C$$

$$\delta(C, 0) = B \qquad \delta(C, 1) = C$$

$$\delta(C, 1) = C$$

3 - Equivalence:

$$(A, C) \Rightarrow \delta(A, 0) = B$$
 $\delta(A, 1) = C$

$$\delta(A, 1) = C$$

$$\delta(C, 0) = B$$
 $\delta(C, 1) = C$

$$\delta(C, 1) = C$$

$$\{A, C\} \{B\} \{D\} \{E\}$$

	0	1
\rightarrow A,C	В	A,C
В	В	D
D	В	E
* E	В	A,C

Table Filling Method (Myhill - Nerode Theorem):

Algorithm:

// mark 'x' for not equivalence // mark ' $\sqrt{}$ ' for equivalence state

- 1. Draw a table for all pairs of states (P, Q) where P is the 'Final' state and 'Q' is the 'Non-final' state
- **2.** Mark all pairs with ' $\sqrt{}$ ' where P \in F and mark with 'x' where Q $\overline{\in}$ F
- **3.** If there are any Unmarked pairs (P, Q)| $[\delta(P, x), \delta(Q, x)]$ is marked then mark with ' $\sqrt{}$ '
- 4. Recursively repeat the step (3) until no more marking can be made
- **5.** Combine all ' $\sqrt{}$ ' pairs and make them a single state in the minimized DFA.

Α						Α					
В	X					В					
С	√	X				С					
D	X	X	X			D					
Е	X	X	X	X		Е					
	Α	В	С	D	Ε		Α	В	С	D	E

	0	1
\rightarrow A,C	В	A,C
В	В	D
D	В	Е
* E	В	A,C