

RFM products are now Murata products.

RP1236-1

- 312.0 MHz **SAW Resonator**

- Designed for 312 MHz Low-Power Superhet Transmitters
- Nominal Insertion Phase Shift of 180° at Resonance
- **Quartz Stability**
- Rugged, Hermetic, Low-Profile TO39 Case

The RP1236-1 is a two-port, 180° surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency transmitters operating at 312 MHz. Typical applications include wireless security and remotecontrol receivers operating in the USA under FCC Part 15 and in Canada under DoC RSS-210.

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation (See: Typical Test Circuit)	+0	dBm
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC
Case Temperature	-40 to +85	°C

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency	Absolute Frequency	f _C	2, 3, 4, 5,	311.750		312.250	MHz
	Tolerance from 312.000 MHz	Δf_{C}	2, 3, 4, 3,			±250	kHz
Insertion Loss		IL	2, 5, 6		8.1	13.0	dB
Quality Factor	Unloaded Q	Q _U	F G 7		14,000		
	50 Ω Loaded Q	Q_L	5, 6, 7		8,500		
Temperature Stability	Turnover Temperature	T _O		24	39	54	°C
	Turnover Frequency	f _O	6, 7, 8		f _C +2.3		kHz
	Frequency Temp. Coefficient	FTC	•		0.037		ppm/°C ²
Frequency Aging	Absolute Value during First Year	f _A	6		≤ 10		ppm/yr
DC Insulation Resistan	ce between Any Two Pins		5	1.0			MΩ
RF Equivalent RLC	Motional Resistance	R _M			154	347	Ω
	Motional Inductance	L _M	5, 7, 9		1.09824		μH
	Motional Capacitance	C _M			0.236938		fF
	Shunt Static Capacitance	C _O	5, 6, 9	1.3	1.6	1.9	pF
Lid Symbolization (in ac	ddition to Lot and/or Date Codes)		1	R	FM P1236	1	•

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically,
- aging is greatest the first year after manufacture, decreasing significantly in subsequent years. The frequency f_C is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2:1. Typically, $f_{OSCILLATOR}$ or f_{TRANSMITTER} is less than the resonator f_C.

One or more of the following United States patents apply: 4,454,488; 4,616,197.

Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 5^{\circ}C$

- The design, manufacturing process, and specifications of this device are subject to change without notice.
- Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C_O. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_0 , may be calculated from: $f = T_0$
- $f_{\rm O}$ [1 FTC ($T_{\rm O}$ $T_{\rm C}$)²]. Typically, oscillator $T_{\rm O}$ is 20° less than the specified resonator $T_{\rm O}$. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance CO is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground. The measurement includes case parasitic capacitance.

Electrical Connections

This two-port, three-terminal SAW resonator is bidirectional. However, impedances and circuit board parasitics may not be symmetrical, requiring slightly different oscillator component-matching values.

Pin	Connection	
1	Input or Output	
2	Output or Input	
3	Case Ground	

Typical Test Circuit

Typical Application Circuits

This SAW resonator can be used in oscillator or transmitter designs that require 180° phase shift at resonance in a two-port configuration. One-port resonators can be simulated, as shown, by connecting pins 1 and 2 together. However, for most low-cost consumer products, this is only recommended for retrofit applications and not for new designs.

Conventional Two-Port Design:

Case Design

Equivalent LC Model

The following equivalent LC model is valid near resonance:

Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.

Typical Frequency Response

The plot shown below is a typical frequency response for the RP series of two-port resonators. The plot is for RP1094.

Dimensions	Millimeters		Inches		
	Min	Max	Min	Max	