MATH5015P 最优化算法

2025 春

作业1

提交日期: 3月 18日

- **问题 1 (判断集合是否是凸集)** 1. 考虑这样点的集合,这些点离给定点 x_0 比离给定集合 S 中的任何点都更近,即集合 $\{x \mid ||x-x_0||_2 \leq ||x-y||_2 \text{ for all } y \in S\}$, where $S \subseteq \mathbb{R}^n$.
 - 2. 记 $n \times n$ 的对称矩阵集合为 \mathbb{S}^n , 集合 $\{X \in \mathbb{S}^n \mid \lambda_{\min}(X) \geq 1\}$.
- **问题 2 (判断是否是凸函数)** 1. 函数 $f(x) = \sum_{i=1}^r |x|_{[i]}$ 在 \mathbb{R}^n 上定义,其中向量 |x| 的分量满足 $|x|_i = |x_i|$ (即,|x| 是 x 的每个分量的绝对值),而 $|x|_{[i]}$ 是 |x| 中第 i 大的分量。换句话说, $|x|_{[1]} \geq |x|_{[2]} \geq \ldots \geq |x|_{[n]}$ 是 x 的分量的绝对值按非增序排序。
 - 2. 若 f,g 都是凸函数,并且都非递减,而且 f,g 函数值都是正的。那么他们的乘积函数 h = fg 是 否为凸函数?

问题 3 对于最大分量函数 $f(x) = \max_{i=1,...,n} x_i, x \in \mathbb{R}^n$, 证明其共轭函为

$$f^*(y) = \begin{cases} 0, & \text{if } y \ge 0, \sum_i y_i = 1. \\ \infty, & \text{otherwise} \end{cases}$$

问题 4 对于分式线性问题

min
$$f_0(x)$$

s.t. $Gx \le h, Ax = b$ (1.1)

其中分式线性函数:

$$f_0 = \frac{c^T x + d}{e^T x + f}, \quad \text{dom} f_0(x) = \{x | e^T x + f > 0\}.$$
 (1.2)

证明该问题等价于一个线性规划问题:

$$\begin{aligned} & \min \quad c^T y + dz \\ & \text{s.t.} \quad Gy \leq hz \\ & \quad Ay = bz \\ & \quad e^T y + fz = 1 \\ & \quad z \geq 0 \end{aligned}$$

$$(1.3)$$

问题 5 对于 $i=1,\ldots,m$, 令 B_i 是 \mathbb{R}^n 中的球体, 它的球心和半径分别是 x_i 和 ρ_i . 我们希望找到 B_i , $i=1,\ldots,m$ 的最小外接球, 即找到一个球 B,使得 B 包含所有 B_i ,并且 B 的半径最小。将这个问题 写为一个 SOCP 问题。