

PDE-Constrained Parameter Optimization

Tim Keil

October 7, 2021 - Morning session

Institute for Analysis and Numerics - WWU Münster

Some mathematical basics

2 A simple example in pyMOR

3 Advanced techniques

PDE-Constrained Parameter Optimization

• linear objective functional $\mathcal{J}:V imes\mathcal{P}
ightarrow\mathbb{R}$

$$\mathcal{J}(u,\mu) = j_{\mu}(u)$$

(linear) PDE-Constrained Optimization

Find a local minimizer of the reduced objective functional $\hat{\mathcal{J}}(\mu) := \mathcal{J}(u_{\mu}, \mu)$

$$\min_{\mu \in \mathcal{P}} \hat{\mathcal{J}}(\mu), \qquad (\hat{P})$$

where $u_{\mu} \in V$ denotes the solution of the state equation

$$a_{\mu}(u_{\mu}, v) = l_{\mu}(v) \quad \forall v \in V,$$
 (P.b)

Assumptions:

- Real-valued Hilbert space V (e.g. $V = H_0^1(\Omega)$).
- Compact Banach space \mathcal{P} with simple constraints (e.g. $\mathcal{P} = \{ \mu \in \mathbb{R}^p | \mu_a \leq \mu \leq \mu_b \}$ for $p \in \mathbb{N}$).
- $a_{\mu}: V \times V \to \mathbb{R}$ continuous (and coercive) bilinear form.
- $ullet \ l_{\mu}, j_{\mu}: V
 ightarrow \mathbb{R}$ continuous linear functionals.
- $a_{\mu}, l_{\mu}, j_{\mu}$ Fréchet differentiable w.r.t. μ .
- a_{μ} , l_{μ} , j_{μ} parameter separable.

$$a_{\mu}(u,v) = \sum_{q=1}^{Q} \theta^{q}(\mu) a^{q}(u,v).$$

PDE-Constrained Parameter Optimization

ullet linear objective functional $\mathcal{J}:V imes\mathcal{P}
ightarrow\mathbb{R}$

$$\mathcal{J}(u,\mu) = j_{\mu}(u)$$

(linear) PDE-Constrained Optimization

Find a local minimizer of the reduced objective functional $\hat{\mathcal{J}}(\mu) := \mathcal{J}(u_{\mu}, \mu)$

$$\min_{\mu \in \mathcal{P}} \hat{\mathcal{J}}(\mu), \qquad (\hat{F})$$

where $u_{\mu} \in V$ denotes the solution of the state equation

$$a_{\mu}(u_{\mu}, v) = l_{\mu}(v) \quad \forall v \in V,$$
 (P.b)

Challenges:

- Efficient evaluation of at least $\hat{\mathcal{J}}(\mu)$ requires efficient evaluation of the state equation (P.b).
- Exact Gradient $\nabla \hat{\mathcal{J}}(\mu)$ or even Hessian $\hat{\mathcal{H}}(\mu)$ also require the solution of additional equations.
- High dimensional parameter space \mathcal{P} .
- Multiscale/large scale context.

Efficient optimization method using MOR techniques:

- 1. How to reduce the model? <- this talk
- 2. Which optimization method to apply?

Full Order Model

Discretization: Computational grid au_h , approximate space $V_h pprox V$ (e.g. CG FE)

Discrete state equation

Find $u_{\mu} \in V_h$ such that

$$a_{\mu}(u_{h,\mu}, v) = l_{\mu}(v) \quad \forall v \in V_h.$$

Primal residual
$$r_{\mu}^{\mathrm{pr}}(u_{h,\mu})[v] := l_{\mu}(v) - a_{\mu}(u_{h,\mu},v).$$

FOM objective functional

$$\hat{\mathcal{J}}(\mu) = \mathcal{J}(u_{h,\mu},\mu)$$

How to compute gradient information $abla_{\mu}\hat{\mathcal{J}}(\mu)$ for the optimization method?

- using finite differences without an analytical expression of the gradient.
- using **sensitivities** of the primal solution $d_{\mu}u_{h,\mu}$.
- using the **adjoint** approach (Lagrangian ansatz).

Full Order Model

Sensitivities of the primal equation

For every i, find $d_{u_i}u_{h,\mu}\in V_{h_i}$ such that

$$a_{\mu}(d_{\mu_i}u_{h,\mu},v) = \partial_{\mu_i}r_{\mu}^{\mathsf{pr}}(u_{h,\mu})[v] \qquad \forall v \in V_h$$

 $a_{\mu}(v, p_{h,\mu}) = \partial_{\mu} \mathcal{J}(u_{h,\mu}, \mu)[v] = j_{\mu}(v)$

FOM objective functional

$$\hat{\mathcal{J}}(\mu) = \mathcal{J}(u_{h,\mu},\mu)$$

Gradient with sensitivities

$$(\nabla_{\mu} \mathcal{J}(\mu))_{i} = \partial_{\mu_{i}} J(u_{h,\mu}, \mu) + \partial_{u} J(u_{h,\mu}, \mu) [d_{\mu_{i}} u_{h,\mu}]$$
$$= \partial_{\mu_{i}} J(u_{h,\mu}, \mu) + J(d_{\mu_{i}} u_{h,\mu}, \mu)$$

dual equation

Find $p_{h,\mu} \in V_h$ such that

Instead:

 $\forall v \in V_h$.

$$\hat{\mathcal{J}}(\mu) = \mathcal{J}(u_{h,\mu}, \mu) + \underbrace{r_{\mu}^{\text{pr}}(u_{h,\mu})[p_{h,\mu}]}_{} = \mathcal{L}(u_{h,\mu}, \mu, p_{h,\mu})$$

=0

Gradient with the adjoint approach
$$(\nabla_u \mathcal{J}(\mu))_i = \partial_{u_i} J(u_{h,u},\mu) + \partial_{u_i} r_u^{\rm pr}(u_{h,u})[p_{h,u}]$$

Reduced Order Model

ullet Problem adapted Reduced Basis (RB) space: $V_r^{\mathsf{pr}} \subseteq V_h$ of low dimension

Reduced state equation

Find $u_{r,\mu} \in V_r^{\mathsf{pr}}$ such that

$$a_{\mu}(\mathbf{u}_{r,\mu}, v) = l_{\mu}(v) \quad \forall v \in V_r^{\mathsf{pr}}.$$

Reduced dual equation

Find $p_{r,\mu} \in V_r^{\mathsf{pr}}$ such that

$$a_{\mu}(v, \boldsymbol{p_{r,\mu}}) = j_{\mu}(v) \quad \forall v \in V_r^{\mathsf{pr}}.$$

Standard ROM ansatz

$$\begin{split} \hat{\mathcal{J}}_r(\mu) &= \mathcal{J}(u_{r,\mu}, \mu) \\ \nabla_{\mu} \hat{\mathcal{J}}_r(\mu) &= \nabla_{\mu} \mathcal{J}(u_{r,\mu}, \mu) + \nabla_{\mu} r_{\mu}^{\text{pr}}(u_{r,\mu})[p_{r,\mu}]. \end{split}$$

Note: This is the easy case for a symmetric a_μ . In general, the dual system should be reduced with a separate basis $V_r^{\rm du}$.

Optimization methods

Reduced optimization problem

Find a locally optimal solution $\bar{\mu}_r$ of

$$\min_{\mu \in \mathcal{P}} \hat{\mathcal{J}}_r(\mu). \tag{\hat{\mathsf{P}}_r}$$

Remaining task:

- 1. Find snapshots for the basis construction of V_r^{pr}
- 2. Optimization method

Traditional: Expensive offline phase to build the model (e.g. with Greedy) + cheap online phase for the optimization

Let's try this with pyMOR

An elliptic model problem

We consider a domain $\Omega:=[-1,1]^2$, a parameter set $\mathcal{P}:=[0,\pi]^2$ and the elliptic equation

$$-\nabla \cdot (\lambda(\mu)\nabla u_{\mu}) = l$$

with data functions

$$\begin{split} &l(x,y) = \frac{1}{2}\pi^2 \cos(\frac{1}{2}\pi x) \cos(\frac{1}{2}\pi y), \\ &\lambda(\mu) = \theta_0(\mu)\lambda_0 + \theta_1(\mu)\lambda_1, \\ &\theta_0(\mu) = 1.1 + \sin(\mu_0)\mu_1, \\ &\theta_1(\mu) = 1.1 + \sin(\mu_1), \\ &\lambda_0 = \chi_{\Omega \setminus \omega}, \\ &\lambda_1 = \chi_\omega, \\ &\omega := [-\frac{2}{3}, -\frac{1}{3}]^2 \cup ([-\frac{2}{3}, -\frac{1}{3}] \times [\frac{1}{3}, \frac{2}{3}]), \\ &\theta_{\mathcal{J}}(\mu) := 1 + \frac{1}{5}(\mu_0 + \mu_1). \end{split}$$

Further optimization methods

Bottleneck: For high dimensional parameter spaces, it becomes unfavorable to construct a "perfect" RB space for the entire parameter space. -> large offline phase.

A better idea: Adaptive enrichment

- Start with a bad RB space.
- After each optimization step, ask an estimator whether to update the RB space.
- Only enrich the model along the path of optimization.
- No need for an offline time.

Further optimization methods

Bottleneck: For high dimensional parameter spaces, it becomes unfavorable to construct a "perfect" RB space for the entire parameter space. -> large offline phase.

A better idea: Adaptive enrichment

- Start with a bad RB space.
- After each optimization step, ask an estimator whether to update the RB space.
- Only enrich the model along the path of optimization.
- No need for an offline time.

More details and explanations:

https://docs.pymor.org/main/tutorial_optimization.html

More advances that are worth mentioning

1. For the case $V_r^{\rm pr}
eq V_r^{\rm du}$ (e.g. for non-symmetric operators), it is recommended to use a **corrected output functional**

$$\hat{\mathcal{J}}_r'(\mu) = \mathcal{J}(u_{r,\mu},\mu) + r_\mu^{\rm pr}(u_{r,\mu})[p_{r,\mu}]$$

which enables a better approximation and error estimation.

See [Haasdonk'17] for details.

Note: This is currently in the pyMOR pipeline. (PR #1418)

More advances that are worth mentioning

1. For the case $V_r^{\rm pr}
eq V_r^{\rm du}$ (e.g. for non-symmetric operators), it is recommended to use a **corrected output functional**

$$\hat{\mathcal{J}}_r'(\mu) = \mathcal{J}(u_{r,\mu}, \mu) + r_{\mu}^{\mathsf{pr}}(u_{r,\mu})[p_{r,\mu}]$$

which enables a better approximation and error estimation. See [Haasdonk'17] for details.

Note: This is currently in the pyMOR pipeline. (PR #1418)

- For the adaptive procedure it is beneficial to use an error aware trust-region algorithm for certified optimization.
 - optimize as long as we "trust" the model, otherwise enrich.
 - Further reading: [Yue/Meerbergen'13], [Qian et al'17], [K. et al'21].
 - The numerical experiments in [K. et al'21] have been produced with pvMOR. Please approach me if you are interested!!

Fig: Visualization of TR algorithms.

Bibliography

B. Haasdonk.

Reduced basis methods for parametrized pdes: A tutorial introduction for stationary and instationary problems.

Model reduction and approximation: theory and algorithms, 15:65, 2017.

T. Keil, L. Mechelli, M. Ohlberger, F. Schindler, and S. Volkwein.

A non-conforming dual approach for adaptive trust-region reduced basis approximation of pde-constrained parameter optimization.

ESAIM Math. Model. Numer. Anal., 2021.

E. Qian, M. Grepl, K. Veroy, and K. Willcox.

 $\label{lem:constrained} A \ certified \ trust \ region \ reduced \ basis \ approach \ to \ pde-constrained \ optimization.$

SIAM Journal on Scientific Computing, 39(5):S434–S460, 2017.

Y. Yue and K. Meerbergen.

Accelerating optimization of parametric linear systems by model order reduction.

SIAM Journal on Optimization, 23(2):1344–1370, 2013.

