TOPOLOGY

(Old) Qualifying Examination Fall 1990

(Muenzenberger and Strecker)

Work 9 of the following problems. Start each problem on a new sheet of paper. Do not turn in more than 9 problems.

- 1. If (X,τ) and (Y,σ) are topological spaces and $f:X\to Y$ is a function, give a detailed set-theoretic proof that the following are equivalent.
 - (i) For each $U \in \sigma$, $f^{-1}[U] \in \tau$.
 - (ii) For each $A\subseteq X$, $f[\overline{A}^{\tau}]\subseteq \overline{f[A]}^{\sigma}$.
- 2. Prove that [0,1], with its usual topology, is connected.
- 3. (a) True False.
 - (i) An open and closed one-to-one function between topological spaces must be an embedding.
 - (ii) Each space that is locally-Hausdorff (in the sense that each point has neighborhood base of Hausdorff subspaces) must be Hausdorff.
 - (iii) Each quotient of a locally connected space must be locally connected.
 - (iv) Each locally compact Hausdorff space is completely regular.
 - (v) The product of metrizable spaces is metrizable.
 - (vi) The product of continua is a continuum. (A continuum is a compact, connected, Hausdorff space.)
 - (vii) Every metrizable space is normal.
 - (viii) Every subspace of a separable space is separable.
 - (b) For each false entry, give a counterexample or other explanation (no proofs).
- 4. Prove that if A is a compact subset of a regular (not necessarily Hausdorff) space X, then \overline{A} is compact.
- 5. Give an example of two topologies σ and τ on the set of integers \mathbb{Z} for which $\sigma \subseteq \tau$ and (\mathbb{Z}, σ) is homeomorphic to (\mathbb{Z}, τ) .

- 6. (a) State the Axiom of Choice.
 - (b) Using the Axiom of Choice, give a detailed proof that if $S = \{A_n \mid n \in \mathbb{N}\}$ and $|A_n| = 2$ for each n, then $\bigcup_{n=0}^{\infty} A_n$ is countable.
- 7. For w and z on the unit circle S_1 , define $w \sim z \Leftrightarrow w = z$ or w = -z. Prove that if S^1 has the usual topology, then the quotient space S^1/\sim is homeomorphic to S^1 .
- 8. A continuous map $f:(X,\tau)\to (Y,\sigma)$ is said to be final provided that for each topological space (Z,μ) each set-function $g:Y\to Z$ is continuous whenever $g\circ f:(X,\tau)\to (Z,\mu)$ is continuous. Prove that:
 - (a) The composition of final (continuous) maps is final.
 - (b) The "second factor" of a final map is final; i.e., if $(X,\tau) \xrightarrow{f} (Y,\sigma) \xrightarrow{h} (w,s)$ are continuous maps and $h \circ f$ is final, then h is final.
- 9. (a) Give an example of a topological space X that has both a Stone Čech compactification, βX , and an Alexandroff compactification, αX , but for which αX and βX are not homeomorphic.
 - (b) Give a reason why αX and βX , in part (a), are not homeomorphic.
- 10. Show that if X is a second countable space and if \mathcal{B} is any base for X, then there is a countable subcollection of \mathcal{B} that is also a base for X.
- 11. (a) If sequential limits in a space X are unique, must X be Hausdorff?
 - (b) Prove that your answer to (a) is correct.
- 12. Show that if X is a compact metrizable space, then every metric which generates the topology on X is complete.
- 13. Prove that every paracompact Hausdorff space is regular.
- 14. Show that the Moore Plane (tangent disc space) is not normal.
- 15. Prove that if A is a connected subset of a connected space X and if C is a component of X-A, then X-C is connected.

- 16. Describe the fundamental groups of the following spaces.
 - (a) The circle, S^1 ;
 - (b) The Mobius Strip, M;
 - (c) The figure eight, ∞ ;
 - (d) The torus, $S^1 \times S^1$;
 - (e) The projective plane, \mathbb{P} .