Question 1

- i) $E(x) \wedge T(x)$
- ii) You only eat food that tastes good and is not healthy.

 $P(x) \to Q(x)$ where P(x) is the statement that the three integers are consecutive and Q(x) is they are

divisible by three.

Assume three consecutive integers x, x+1, x+2 then the sum of these integers is 3x + 3 which is always

divisible by three:
$$\frac{3x+3}{3} = x+1$$
 This completes the proof.

Question 3 $((p \lor q) \land (\neg q \lor r)) \to (q \lor r)$

p	q	\mathbf{r}	$\neg q$	$(p \lor q) \ (1)$	$(\neg q \lor r) \ (2)$	$1 \wedge 2 (3)$	$(q \vee r) \ (4)$	$3 \rightarrow 4$
1	1	1	0	1	1	1	1	1
1	1	0	0	1	0	0	1	1
1	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	0	0
0	1	1	0	1	1	1	1	1
0	1	0	0	1	0	0	1	1
0	0	1	1	0	1	0	1	1
0	0	0	1	0	1	0	0	1

Not a tautology

Question 4

They are associative

Question 5

Basis step: n = 0

 $1 + 3(0) \le 4^0$

 $1 \le 1$ so the basis step checks out.

Inductive step:

$$1 + 3(k) + (k+1) \le 4^{(k+1)} + (k+1)$$

Since we are adding k+1 to each side we only need to show that:

 $1 + 3(k) \le 4^{(k+1)}$

Which is obvious since the left hand side will be negative for all $n \leq 0$.

Question 6

Proof by induction:

A single break for a bar of size mn will produce two squares with size m_1n_1 and m_2n_2 . The sum of these squares equals the total size of the bar $mn = m_1n_1 + m_2n_2$ so each break produces mn + 1 bars and proves that for mn breaks we only need mn - 1 breaks in the bar.

Question 7

I have no idea I can't see any of the summations on blackboard!