Approaches to Small Area Estimation: Multilevel Regression with Poststratification (MRP)

Julian Perry

Stat 160

Spring 2024

The general problem

- ▶ Define population U, parameter θ , sample S
- Suppose U a union of disjoint sub-populations, $U = \bigcup_{j=1}^J U_j$
- ▶ What if we want to estimate θ_j for some U_j ?
 - If $\theta =$ unemployment rate, may be curious about $\theta_{\text{Massachusetts}}$, θ_{Maine} , θ_{Vermont} , etc. in addition to overall θ

The general problem (continued)

- ▶ Small area estimation addresses how how we can produce estimators for θ_j
- Could simply use same estimator as with U, but on subset of S belonging to U_j
 - $ightharpoonup n_j < n$, so $Var(\hat{ heta}_j)$ could be (very) large
- ▶ Want to find "better" $\hat{\theta}_i$, particularly for when $n_i << n$

Big Picture: Multilevel Regression with Poststratification

- ▶ Identify categorical respondent attributes x_i in survey that are also available in census data (including area identifiers¹)
- ▶ Gather auxiliary area-level variables (\underline{x}_j) we that may be predictive of y_i
- ▶ Use (bespoke) regression to estimate the effects of individual characteristics (x_i) and area characteristics (\underline{x}_i) on y_i
- Construct "poststratification table" with cell (row) for every combination such attributes and population size N_c of that cell
- ▶ Calculated predicted value $\hat{\mu}_{yc}$ (estimator of $\mathbb{E}[y_i|i\in U_c]$) for each cell in poststratification table

Then we say...
$$\hat{\mu}_{yj} = \frac{\sum_{c \in j} N_c \hat{\mu}_{yc}}{\sum_{c \in j} N_c}$$

¹Technically can be applied any categorical grouping, not just spatial ones.

Example multilevel logit

Assume data follows generating process

$$\Pr(y_i = 1) = \frac{e^{(\alpha_j + \beta_1 x_i)}}{1 + e^{(\alpha_j + \beta_1 x_i)}}$$
, for observation i in group j

- ▶ Try to estimate β and a separate intercept α_i for each group j
 - **Prior**: α_j 's follow some distribution (often $\alpha_j \sim N(0, \sigma^2)$)
 - **Posterior**: adjusts for groups with large-enough n_j
 - For groups with small n_j and outlier y_i distribution, accounts for possibility of sampling variance than outlier α_j

In the news

Demonstration:

Question: what do younger adults think of gun control, by state?

- Largest survey of political attitudes: Cooperative Election Study
 - ▶ 51,550 adults completed both rounds in 2020
 - ▶ Just 6,004 of them under age 30
 - ► In individual states, n_{under-30} very small
- ▶ To see if n = 6,004 reasonable for state estimates, can first try estimating something we know: 2020 vote totals

Model (2020 vote)

 $y_i = 1$ if voted for Biden, 0 if voted for someone else / didn't vote

Use 'stan_glmer' in R to estimate posterior distributions of (weighted) multilevel logit parameters...

```
\alpha^{state} for every state \alpha^{race} for every race category \alpha^{age} for every age category \alpha^{education} for every education category \alpha^{race\_education} for every race x education interaction \beta^{male} \beta^{2016\_vote} \beta^{region} for non-baseline regions (EPA definitions)
```

Computing estimates

- Construct poststratification table using Census IPUMS
 - $ightharpoonup N_c$ for each cell $\{\text{state}\}x\{\text{gender}\}x\{\text{race}\}x\{\text{education}\}x\{\text{age}\}$
 - ▶ 10,200 rows!
 - Merge in 2016 vote data and add regions
- ► Take 4,000 draws of parameter values from posterior distributions, computing every state's mean each time
 - For each state take mean and quantiles 2.5 and 97.5

MRP estimates vs. actual % of adults voting for Biden

Estimates calculated using 2020 ACS and sample of 6,004 respondents from 2020 Cooperative Election Study

MSE lower than direct estimator

^	States	MRP_MSE [‡]	Direct_MSE
1	All states	21.48948	77.86618
2	25 largest states	16.92803	28.03674
3	25 smallest states	26.05093	127.69562

- Much lower MSE than "direct estimator" (weighted mean of 'biden_vote' by state)
 - ► True even of larger states

MRP estimates vs. actual % of adults voting for Biden in 2020 95% confidence intervals shown

Estimates calculated using 2020 ACS and sample of 6,004 respondents from 2020 Cooperative Election Study

Gun control

Now back to young adults' views of gun control

- ightharpoonup n = 6,004 respondents aged 18–29
- ► Each asked whether they support policy to "make it easier for people to obtain concealed-carry permit"
- \triangleright Run same model using this as y_i , and dropping age parameter

Estimates

Percent of Americans ages 18–29 who believe it should be easier to obtain a concealed carry permit MRP estimates, 95% confidence intervals shown

Estimates calculated using 2020 ACS data and respondents under 30 from 2020 Cooperative Election Study (n = 6004)

Best part of small area estimation: maps!

Percent of Americans ages 18–29 who believe it should be easier to obtain a concealed carry permit Estimated via multilevel regression with poststratification

Estimates calculated using 2020 ACS data and respondents under 30 from 2020 Cooperative Election Study (n = 6004)

Further reading:

- General guides to MRP:
 - Lopez-Martin et al. (2022), "Multilevel Regression and Poststratification Case Studies"
 - ▶ Alexander (2023), Telling Stories with Data, chapter 16
- On multilevel models:
 - Gelman and Hill (2007), Data Analysis Using Regression and Multilevel/Hierarchical Models
 - Snijders and Bosker (2012), Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling
- ▶ Data this would not have been possible without:
 - 2020 ACS IPUMS
 - 2020 Cooperative Election Study