Understanding Convolution Neural Network

- Pramod Divakarmurthy

Traditional Neural Network Vs Convolution Neural Network

CNN And Layers

1. Input Layer - An Image is a matrix of pixel values

GrayScale

RGB

2. Convolution Layer — Convolution

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1 _{×1}	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	

Image

Kernel/Filter (K)

Image

Convolved Feature

Convolution Operation on a MxNx3 image matrix with a 3x3x3 Kernel

Padding

- Pixels in the middle are used more often than pixels on corners and edges
- Information on the borders of images are not preserved

Full Padding

Same Padding

== Image size

Valid Padding

Output size == (m-k+1)* (m-k+1)

Stride

- The number of pixels by which we slide our filter matrix over the input matrix
- Having a larger stride will produce smaller feature maps.

Stride Length = 1 (Default)

Stride Length = 2

Size of Activation Map

There is a formula which is used in determining the dimension of the activation maps:

$$(N + 2P - F)/S + 1$$

where

- N = Dimension of image (input) file
- P = Padding
- F = Dimension of filter
- S = Stride

Activation Map Size =
$$(32 + 0 - 5)/1 + 1$$

= 28

Activation Function

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Stacking Convolution Layers

ConvNet is a sequence of convolutional layer, interspersed with activation function

3. Pooling Layer

- To progressively reduce the spatial size (downsampling) of the Convolved Feature
- Reduces the number of parameters and computational power
- Extracting dominant features which are rotational and positional invariant

4. Fully Connected Layer (FC Layer)

CNN Sequence To Classify Handwritten Digits

Visualizing Filters & Feature Maps

Popular Architectures

Year	CNN	Developed by	Place	Top-5 error rate	No. of parameters
1998	LeNet(8)	Yann LeCun et al			60 thousand
2012	AlexNet(7)	Alex Krizhevsky, Geoffrey Hinton, Ilya Sutskever	1st	15.3%	60 million
2013	ZFNet()	Matthew Zeiler and Rob Fergus	1st	14.8%	
2014	GoogLeNet(1 9)	Google	1st	6.67%	4 million
2014	VGG Net(16)	Simonyan, Zisserman	2nd	7.3%	138 million
2015	ResNet(152)	Kaiming He	1st	3.6%	