Class 10: Halloween Mini-Project

Sarah Tareen

1. Importing candy data

Let's get the data:

```
candy = read.csv('candy-data.csv', row.names=1)
head(candy)
```

	choc	olate	fruity	caramel	peanut	tyalmondy	nougat	crispedricewafer
100 Grand		1	. 0	1		0	0	1
3 Musketeers		1	. 0	0		0	1	0
One dime		C	0	0		0	0	0
One quarter		C	0	0		0	0	0
Air Heads		C) 1	0		0	0	0
Almond Joy		1	. 0	0		1	0	0
	hard	bar	pluribus	sugarp	ercent	priceper	cent wi	npercent
100 Grand	0	1	()	0.732	0	.860	66.97173
3 Musketeers	0	1	()	0.604	0	.511	67.60294
One dime	0	0	()	0.011	0	.116	32.26109
One quarter	0	0	()	0.011	0	.511	46.11650

0.906

0.465

0.511

0.767

52.34146

50.34755

Q1. How many different candy types are in this dataset?

0

```
nrow(candy)
```

Air Heads

Almond Joy

[1] 85

There are 85 candy types in the dataset.

0

Q2. How many fruity candy types are in the dataset?

```
table(candy$fruity)
```

0 1 47 38

There are 38 fruity candy types.

2. What is your favorite candy?

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

```
candy["Skittles original", ]$winpercent
```

[1] 63.08514

The winpercent for Skittles original is 63.%

Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat", ]$winpercent
```

[1] 76.7686

The winpercent for Kit Kat is 77%.

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars", ]$winpercent
```

[1] 49.6535

The winpercent for Tootsie Roll Snack Bars is 50%.

There is a helpful package for getting a brief overview of the dataset.

```
#install.packages("skimr")
library("skimr")
skim(candy)
```

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency: numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcomp	lete_ra	ntmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

• Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

Yes the columns n_missing and complete_rate are on the scale of only ones and zeroes while the rest of the columns are between 0 and 1.

• Q7. What do you think a zero and one represent for the candy\$chocolate column?

I believe a one means that the candy has chocolate in it and a zero means it doesn't.

Now we can do exploratory data analysis.

Q8. Plot a histogram of winpercent values

hist(candy\$winpercent)

Histogram of candy\$winpercent

Q9. Is the distribution of winpercent values symmetrical?

No the distribution is not symmetrical because it is skewed more towards the left and the median is below 50%.

Q10. Is the center of the distribution above or below 50%?

mean(candy\$winpercent)

[1] 50.31676

The mean is slightly above 50%.

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
# We want to find the mean of the winpercents for a specific type of candy. We can make a
  chocolate_candy = candy$winpercent[as.logical(candy$chocolate)]
  mean(chocolate_candy)
[1] 60.92153
  fruity_candy = candy$winpercent[as.logical(candy$fruity)]
  mean(fruity_candy)
[1] 44.11974
Chocolate candy is ranked higher on average than fruity candy.
     Q12. Is this difference statistically significant?
  # We are 95% confident that the difference between these two values is there. At minimum,
  t.test(chocolate_candy, fruity_candy)
    Welch Two Sample t-test
data: chocolate_candy and fruity_candy
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 11.44563 22.15795
sample estimates:
mean of x mean of y
 60.92153 44.11974
Yes this difference is statistically significant because the t test has a very low p-value of 2.871e-
08.
```

We can also see this difference qualitatively using a boxplot.

```
boxplot(chocolate_candy, fruity_candy)
```


3. Overall Candy Rankings

 ${\bf Q13}.$ What are the five least liked can dy types in this set?

 $\label{lem:nead} \verb| head(candy[order(candy$winpercent),], n=5) |$

	(chocolate	fruity	carar	nel j	peanutyaln	nondy	nougat	
Nik L Nip		0	1		0		0	0	
Boston Baked Bea	ans	0	0		0		1	0	
Chiclets		0	1		0		0	0	
Super Bubble		0	1		0		0	0	
Jawbusters		0	1		0		0	0	
	(crispedric	ewafer	hard	bar	pluribus	sugar	percent	pricepercent
Nik L Nip			0	0	0	1		0.197	0.976
Boston Baked Bea	ans		0	0	0	1		0.313	0.511
Chiclets			0	0	0	1		0.046	0.325
Super Bubble			0	0	0	0		0.162	0.116
Jawbusters			0	1	0	1		0.093	0.511
	7	winpercent	;						
Nik L Nip		22.44534	<u> </u>						
Boston Baked Bea	ans	23.41782	2						

 Chiclets
 24.52499

 Super Bubble
 27.30386

 Jawbusters
 28.12744

The 5 least liked candy types are Nik L Nip, Boston Baked Beans, Chiclets, Super Bubble, and Jawbusters.

Q14. What are the top 5 all time favorite candy types out of this set?

head(candy[order(candy\$winpercent, decreasing = TRUE),], n=5)

	chocolate f	ruity	caran	nel	peanutyalr	nondy	nougat
Reese's Peanut Butter cup	1	0		0		1	0
Reese's Miniatures	1	0		0		1	0
Twix	1	0		1		0	0
Kit Kat	1	0		0		0	0
Snickers	1	0		1		1	1
	crispedrice	wafer	hard	bar	pluribus	sugai	rpercent
Reese's Peanut Butter cup		0	0	0	0		0.720
Reese's Miniatures		0	0	0	0		0.034
Twix		1	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Snickers		0	0	1	0		0.546
	pricepercen	t winp	percer	ıt			
Reese's Peanut Butter cup	0.65	51 84	1.1802	29			
Reese's Miniatures	0.27	9 81	1.8662	26			
Twix	0.90	6 81	1.6429	91			
Kit Kat	0.51	.1 76	5.7686	30			
Snickers	0.65	1 76	6.6737	78			

The 5 all time favorite candy types are Reese's Peanut Cups, Reese's Miniature Cups, Twix, Kit Kat, and Snickers.

Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col()
```


Let's add color:)

```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy), winpercent)) +
   geom_col(fill=my_cols)
```


Q17. What is the worst ranked chocolate candy? The worst ranked chocolate candy is Sixlets.

Q18. What is the best ranked fruity candy? The best ranked fruity candy is Starburst.

4. Taking a look at pricepercent

Let's compare candy rank and price.

```
#add text labels that don't overlap
#install.packages("ggrepel")
library(ggrepel)

# How about a plot of price vs win
ggplot(candy) +
   aes(winpercent, pricepercent, label=rownames(candy)) +
   geom_point(col=my_cols) +
   geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

We can see which candy is most and least expensive by ordering the columns.

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Looking at the plot, we can see that Reese's Miniatures are one of the highest ranking candies (considering a winpercent of 80% is good) for the least money.

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
Hershey's Krackel	0.918	62.28448
Hershey's Milk Chocolate	0.918	56.49050

The top 5 most expensive candy types are Nestle Smarties, Nik L Nip, Ring Pop, Hershey's Krackel, and Hershey's Milk Chocolate. The least popular one is Hershey's Milk Chocolate.

Now let's make a plot of pricepercent.

```
ggplot(candy) +
  aes(pricepercent, reorder(rownames(candy), pricepercent)) +
  geom_col(fill=my_cols)
```


5. Exploring the correlation structure

```
#install.packages("corrplot")
library(corrplot)

corrplot 0.92 loaded

cij <- cor(candy)
corrplot(cij)</pre>
```


Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Two variables that are anti-correlated are chocolate and fruity.

Q23. Similarly, what two variables are most positively correlated?

Chocolate and bar are the most positively correlated candy types.

6. Principal Component Analysis

```
pca <- prcomp(candy, scale=TRUE)
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4	PC5	PC6	PC7
Standard deviation	2.0788	1.1378	1.1092	1.07533	0.9518	0.81923	0.81530
Proportion of Variance	0.3601	0.1079	0.1025	0.09636	0.0755	0.05593	0.05539
Cumulative Proportion	0.3601	0.4680	0.5705	0.66688	0.7424	0.79830	0.85369
	PC8	3 P(C9 P(C10 P	C11 I	PC12	
Standard deviation	0.74530	0.6782	24 0.623	349 0.439	974 0.39	9760	

Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317 Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000

Let's plot the first two components.


```
plot(pca$x[,1:2], col=my_cols, pch=16)
```



```
library(ggrepel)

p + geom_text_repel(size=3.3, col=my_cols, max.overlaps = 7) +
    theme(legend.position = "none") +
    labs(title="Halloween Candy PCA Space",
        subtitle="Colored by type: chocolate bar (dark brown), chocolate other (light brown caption="Data from 538")
```

Warning: ggrepel: 59 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

p


```
#install.packages('plotly')
library(plotly)
```

Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':

last_plot

The following object is masked from 'package:stats':

filter

The following object is masked from 'package:graphics':

layout

#ggplotly(p)
#commented out because interactive plots won't render


```
#Let's check the loadings of the PCA.
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

The variables fruity, hard, and pluribus are picked up strongly by PC1 in the positive direction. This makes sense because I can think of multiple examples of candies that do have all or two of these attributes at the same time like Starburst and Skittles. So these variables are positively correlated.