

SideLine and the advent of software-based hardware attacks

Joseph Gravellier, Jean-Max Dutertre, Yannick Teglia and Philippe Loubet Moundi

SemSecuElec Seminar **DGA INRIA** 19.03.2021

Who am I?

Past experience

- > IUT + Engineering school in Montpellier
- Internship at Gemalto La Ciotat

Current Role

- > Thales security team member
- 3rd year PhD Student (October 2021)
- Research on new hardware attack vectors

Supervisors:

- ➤ Thesis Director: Jean-Max Dutertre (EMSE)
- Supervisors: Philippe Loubet Moundi & Yannick Teglia (Thales)

Agenda

- What is a Software-based Hardware Attack?
- An Overview of the SW-based Power Side-Channel Analysis Works
- Introducing SideLine:

Impact for connected devices security

Agenda

- What is a Software-based Hardware Attack?
- An Overview of the SW-based Power Side-Channel Analysis Works
- Introducing SideLine:
- Impact for connected devices security

Traditional Hardware attacks

- > Type: fault Injection & side-channel analysis
- ➤ Means: oscilloscope, laser, EM probe...
- Range: local, direct physical access required

Software-based Hardware attacks

- > Type: fault Injection (FIA) & side-channel analysis (SCA)
- > Range: remote, no direct physical access required!
- > Means: resources available within the target

Software-based Hardware Attacks

A growing threat...

Merging two attack families

Software Attack

Hardware Attack

Software-Based Hardware Attack

Agenda

- What is a SW-based Hardware Attack?
- An Overview of the SW-based Power Side-Channel Analysis Works
- Introducing SideLine:
- Impact for connected devices security

Local vs Remote Side-Channel

Local Power Side-channel

Use an external voltage probe

Local vs Remote Side-Channel

- Local Power Side-channel
 - Use an external voltage probe

- **Remote** Power Side-channel
 - Requires a sensor (Hardware)
 - Requires a malware (Software)

It all started from FPGAs...

- Hardware attacks can be reproduced using FPGA logic
 - **Encryption algorithm** implementation.
 - > Voltage sensor implementation.

It all started from FPGAs...

- Hardware attacks can be reproduced using FPGA logic
- **Encryption algorithm** implementation.
- > Voltage sensor implementation.

Recent FPGA adoption in the cloud

- Amazon, Alibaba + Multi-user FPGAs
- > Security ?

FPGA-to-FPGA Power SCA

Target: Xilinx Zynq

Adversary: voltage sensors

- Freq: **200MHz**

> Victim: AES algorithm

- Freq: 10MHz

FPGA-to-FPGA Power SCA

Target: Xilinx Zynq

Adversary: voltage sensors

- Freq: 200MHz

> Victim: AES algorithm

- Freq: 10MHz

> Traces to infer the AES key:

~1,000

FPGA-to-CPU Power SCA

Target: Xilinx Zynq

- Adversary: voltage sensors (200MHz)
- Victim: SW AES algorithm (666MHz)

FPGA-to-CPU Power SCA

Target: Xilinx Zynq

- Adversary: voltage sensors (200MHz)
- Victim: SW AES algorithm (666MHz)
- Traces to infer the AES key: ~90,000

Results & conclusions on FPGAs

The power consumption leaks through the entire SoC

- > SoC architecture is **leaky**
- > SCA attacks are feasible with limited resources

Results & conclusions on FPGAs

- The power consumption leaks through the entire SoC
 - SoC architecture is leaky
 - > SCA attacks are feasible with limited resources
- Software security is not enough
 - > Hardware attacks bypass software isolation
 - Even if the attacker has no physical access to the target

Agenda

- What is a SW-based Hardware Attack?
- An Overview of the SW-based Power Side-Channel Analysis Works
- Introducing SideLine:

Impact for connected devices security

Introducing SideLine

SideLine enables software-based SCA attack on application processors

It uses **delay-lines** as power meters.

On Cortex-A ARM processors

With Linux OS implemented

Looking for a new side-channel vector

- Among all the HW resources available in SoCs:
 - ▶ Is there a reliable way to measure power consumption?
- Lets do a benchmark on common SoC devices:
 - ➤ Results: ADCs, temperature & voltage sensors, **delay lines**

Reading reference manuals...

> Memory controllers **interface** the SoC with its external memories

- ➤ Memory controllers **interface** the SoC with its external memories
- > Potential glitches with Process, Voltage, Temperature (PVT) variations

- ➤ Memory controllers **interface** the SoC with its external memories
- > Potential glitches with Process, Voltage, Temperature (PVT) variations

- ➤ Memory controllers **interface** the SoC with its external memories
- > Potential glitches with Process, Voltage, Temperature (PVT) variations
- ➤ Recent SoC use **delay lines** to **counteract** PVT variation.

Delay-lines: what for?

- ➤ Memory controllers **interface** the SoC with its external memories
- > Potential glitches with Process, Voltage, Temperature (PVT) variations
- ➤ Recent SoC use **delay lines** to **counteract** PVT variation.

Programmable Delay-line Types

The delay-line block

Delay-line calibration can be programmed manually

Programmable Delay-line Types

The delay-line block

Delay-line calibration can be programmed manually

Using it as a sensor

- > The delay-line stores an image of the clk signal
- This image changes with PVT variations

Programmable Delay-line Types

The delay-locked-loop

> Delay-line calibration is updated **dynamically** with PVT variations

Toward Delay-line-based SCA?

- > Ok so what if we access the delay line state from software
- > Does it change with PVT variations?

Toward Delay-line-based SCA?

- > Ok so what if we access the delay line state from software
- Does it change with PVT variations?

Toward Delay-line-based SCA?

- > Ok so what if we access the delay line state from software
- > Does it change with PVT variations?

Victim platform:

- CPU: Cortex-A9 (Zybo) and Cortex-A7 (STM32MP1)
 - freq: 600-700 MHz

Zybo-Z7-10

Victim platform:

- CPU: Cortex-A9 (Zybo) and Cortex-A7 (STM32MP1)
 - freq: 600-700 MHz
- MCU: Cortex-M4 (STM32MP1)
 - freq: 200 MHz

Zybo-Z7-10

Victim platform:

- CPU: Cortex-A9 (Zybo) and Cortex-A7 (STM32MP1)
 - freq: 600-700 MHz
- MCU: Cortex-M4 (STM32MP1)
 - freq: 200 MHz
- Algorithms: OpenSSL AES and custom RSA implems

STM32MP1

Zybo-Z7-10

Victim platform:

- CPU: Cortex-A9 (Zybo) and Cortex-A7 (STM32MP1)
 - freq: 600-700 MHz
- MCU: Cortex-M4 (STM32MP1)
 - freq: 200 MHz
- Algorithms: OpenSSL AES and custom RSA implems

SideLine App

C program

STM32MP1

Zybo-Z7-10

Victim platform:

- CPU: Cortex-A9 (Zybo) and Cortex-A7 (STM32MP1)
 - freq: 600-700 MHz
- MCU: Cortex-M4 (STM32MP1)
 - freq: 200 MHz
- Algorithms: OpenSSL AES and custom RSA implems

SideLine App

- C program
- DMA-based delay line sampling (freq: 16MHz)

STM32MP1

Zybo-Z7-10

Victim platform:

- CPU: Cortex-A9 (Zybo) and Cortex-A7 (STM32MP1)
 - freq: 600-700 MHz
- MCU: Cortex-M4 (STM32MP1)
 - freq: 200 MHz
- Algorithms: OpenSSL AES and custom RSA implems

SideLine App

- C program
- DMA-based delay line sampling (freq: 16MHz)
- SideLine launches the encryptions

STM32MP1

Zybo-Z7-10

SideLine Attacks Scenarios

3 core-vs-core attack scenarios

- 1 AP-vs-AP attack on Cortex-A9 SoC (Zybo)
- (2) MCU-vs-AP attack on Cortex-A7-M4 SoC (STM32MP1)
- (3) AP-vs-MCU attack on Cortex-A7-M4 SoC (STM32MP1)

SPA attacks on Zynq

Custom RSAs based on WolfSSL crypto libraries

Zybo-Z7-10

SideLine Attacks Scenarios

■ 3 core-vs-core attack scenarios on two distinct SoC:

- 1 AP-vs-AP attack on Cortex-A9 SoC (Zybo)
- 2 MCU-vs-AP attack on Cortex-A7-M4 SoC (STM32MP1)
- (3) AP-vs-MCU attack on Cortex-A7-M4 SoC (STM32MP1)

MCU-vs-AP Attack on STM32MP1

- Cortex-M4 MCU runs the attacker process (DL sampling)
- Cortex-A7 AP runs the victim process (OpenSSL AES encryption)
- ➤ Can we perform CPA full key recovery ? **yes:** 40M traces

SideLine Attacks Scenarios

■ 3 core-vs-core attack scenarios on two distinct SoC

- 1 AP-vs-AP attack on Cortex-A9 SoC (Zybo)
- (2) MCU-vs-AP attack on Cortex-A7-M4 SoC (STM32MP1)
- 3 AP-vs-MCU attack on Cortex-A7-M4 SoC (STM32MP1)

AP-vs-MCU Attack on STM32MP1

- Cortex-A7 AP runs the attacker process (DL sampling)
- Cortex-M4 MCU runs the victim process (OpenSSL AES encryption)

SideLine Demo on STM32MP1

SideLine Embedded CPA

SideLine Demo tiny AES

Agenda

- What is a SW-based Hardware Attack?
- An Overview of the SW-based Power Side-Channel Analysis Works
- Introducing SideLine:
- Impact for connected devices security

Software-based Power SCA **Timeline**

toward iSE exploit?

Software-based Power SCA **Timeline**

toward iSE exploit?

| Software-based Power SCA **Timeline**

toward iSE exploit?

Software-based hardware attacks summary

Software-based hardware attacks summary

Remote

Scalable

Hardware

Threat Assessment

measures

Thank you, Questions?

joseph.gravellier@external.thalesgroup.com

dutertre@emse.fr

yannick.teglia@thalesgroup.com

philippe.loubet-moundi@thalesgroup.com

@joseph_gravel

https://josephgravellier.github.io/sideline/

