꼼꼼한 딥러닝 논문 리뷰와 코드 실습

Deep Learning Paper Review and Code Practice

나동빈(dongbinna@postech.ac.kr)

Pohang University of Science and Technology

Bag of Tricks for Image Classification

논문 소개: Bag of Tricks for Image Classification with Convolutional Neural Networks

- 기존에 다양한 논문에서 제안된 테크닉들을 조합해 이미지 분류 성능을 향상시킵니다.
- 사소한 트릭(trick)을 적절히 모아 사용하면 큰 성능 향상을 이끌어낼 수 있습니다.
 - 손실 함수(loss function), 데이터 전처리(data preprocessing), 최적화(optimization) 등

Model	FLOPs	top-1	top-5	
ResNet-50 [9]	3.9 G	75.3	92.2	
ResNeXt-50 [27]	4.2 G	77.8	_	
SE-ResNet-50 [12]	3.9 G	76.71	93.38	
SE-ResNeXt-50 [12]	4.3 G	78.90	94.51	
DenseNet-201 [13]	4.3 G	77.42	93.66	•
ResNet-50 + tricks (ours)	4.3 G	79.29	94.63	성능 향상

[Table] Computational costs and validation accuracy of various models.

Bag of Tricks for Image Classification with Convolutional Neural Networks (CVPR 2019)

일반적인 이미지 분류 모델의 학습 절차 (Baseline Training Procedure)

[데이터 전처리(data preprocessing) 과정]

- 1. 이미지를 불러와 float-32로 디코딩(decoding)
- 2. 이미지 내에서 랜덤하게 직사각형 영역을 잘라내 (cropping randomly) 224 X 224 크기로 변경
- 3. 50% 확률로 좌우 반전(flipping horizontally)
- 4. 색조(hue), 채도(saturation), 밝기(brightness) 를 랜덤하게 변경
- 5. PCA 노이즈(noise) 추가
- 6. 입력 정규화(input normalization)

Algorithm 1 Train a neural network with mini-batch stochastic gradient descent.

```
initialize(net)

for epoch = 1, \ldots, K do

for batch = 1, \ldots, \#images/b do

images \leftarrow uniformly random sample b images

X, y \leftarrow preprocess(images)

z \leftarrow forward(net, X)

\ell \leftarrow loss(z, y)

grad \leftarrow backward(\ell)

update(net, grad)

end for

end for
```


평가 시 256 X 256으로 크기 변경 후 **중간의 224 X 224 영역**을 잘라 **정규화**를 진행합니다.

베이스라인 모델의 성능 분석

- 8개의 Nvidia V100 GPU와 Xavier 초기화 알고리즘 사용하고, 배치 크기는 256으로 설정합니다.
- 총 120 epochs: 30, 60, 90번째 epoch에서 학습률(learning rate)을 10씩 나눕니다.
- ISLVRC2012 데이터셋 (ImageNet) Baseline Reference Model Top-5 Top-1 Top-5 Top-1 ResNet-50 [9] 75.87 92.70 92.2 75.3 원본 논문과 Inception-V3 [26] 77.32 93.43 78.8 94.4 유사한 구현 결과 MobileNet [11] 69.03 88.71 70.6

• ResNet과 MobileNet의 **PyTorch 입력 전처리 코드 예시** (InceptionNet에서는 이미지 크기가 299 X 299)

```
preprocess = transforms.Compose([
          transforms.Resize(256),
          transforms.CenterCrop(224),
          transforms.ToTensor(),
          transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
```

배경지식: 잔여 블록 (Residual Block)

- ResNet에서는 잔여 블록(residual block)을 이용해 네트워크의 **최적화(**optimization) 난이도를 낮춥니다.
 - 실제로 내재한 mapping인 H(x)를 곧바로 학습하는 것은 어려우므로 대신 F(x) = H(x) x를 학습합니다.

Deep Residual Learning for Image Recognition (CVPR 2016)

배경지식: 배치 정규화(Batch Normalization)

- 배치 정규화의 잘 알려진 장점은 다음과 같습니다.
 - ① **학습 속도(training speed)**를 빠르게 할 수 있습니다.
 - ② 가중치 초기화(weight initialization)에 대한 민감도를 감소시킵니다.
 - ③ 모델의 **일반화(regularization)** 효과가 있습니다.

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (PMLR 2015)

배경지식: 배치 정규화(Batch Normalization)

- 입력(Input)
 - A mini-batch: $Batch = \{x_1, x_2, ..., x_m\}$
 - Parameters to be learned: γ , β
- 출력(Output)
 - $\{y_i = BN_{\gamma,\beta}(x_i)\}$

레이어의 입력 차원이 k일 때, 학습할 두 개의 파라미터 γ 과 β 또한 k차원을 가집니다.

$$\mu_{Batch} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // 평균

$$\sigma_{Batch}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{Batch})^2 // 분산$$

$$\widehat{x_i} \leftarrow \frac{x_i - \mu_{Batch}}{\sqrt{\sigma_{Batch}^2 + \epsilon}}$$
 // 정규화

$$y_i \leftarrow \gamma \widehat{x_i} + \beta \equiv BN_{\gamma,\beta}(x_i)$$

배경지식: 레이어 입력을 정규화할 때 유의할 점

- 각 레이어를 단순히 N(0, 1)로 정규화하면 비선형(non-linear) 활성화 함수의 영향력이 감소할 수 있습니다.
 - Sigmoid 함수 예시

입력 데이터가 N(0, 1)로 정규화되므로 대부분의 입력에 대하여 매우 선형적으로 동작합니다.

정규화 이후에 사용하는 감마(γ)와 베타(β)는 non-linearity를 유지할 수 있도록 해줍니다.

$$y_i \leftarrow \gamma \widehat{x_i} + \beta \equiv BN_{\gamma,\beta}(x_i)$$

Large Batch Training: 학습률(Learning Rate)

- 배치 크기가 증가하면 수렴률(convergence rate)이 감소하는 문제가 발생할 수 있습니다.
 - 다시 말해 동일한 횟수로 학습한다면 배치 크기가 큰 모델의 평가 성능이 낮을 수 있습니다.
- 학습률(learning rate)을 선형적으로 증가시킵니다.
 - 초기 학습률을 $0.1 \times b/256$ 으로 설정합니다. (b는 배치 크기)
- 워밍업(warmup): 초반에는 작은 학습률을 이용합니다.
 - 초기 m번의 배치에 대하여 학습률을 $i\eta \div m$ 으로 설정합니다. $(\eta 는 초기 학습률)$

Large Batch Training: 학습 파라미터 설정

- 일반적으로 잔여 블록(residual block)의 뒷부분에는 **배치 정규화**가 사용됩니다.
 - 배치 정규화에서는 일반적으로 γ 와 β 를 1과 0으로 초기화합니다.
 - 학습을 시작할 때 γ 를 0으로 초기화하여 초반 학습 난이도를 쉽게 만들 수 있습니다.

Identity mapping

- 정규화 기법으로 사용되는 weight decay는 종종 모든 학습 가능한 파라미터에 적용됩니다.
 - 몇몇 논문에서는 bias에 대하여 weight decay를 적용하지 않는 것을 추천합니다.

배경지식: Low-Precision Training

- 일반적으로 뉴럴 네트워크(neural network)는 32-bit floating point 정밀도(precision)를 사용합니다.
- 다양한 하드웨어는 **더 낮은 정밀도의 자료형을 효율적으로 지원**합니다.
- Nvidia V100은 FP32에 대하여 14 TFLOPS, FP16에 대하여 100 TFLOPS 이상의 성능을 제공합니다.
 - 실제로 V100을 쓰는 경우 FP32를 FP16으로 바꾸는 것으로 학습 속도가 2~3배 빨라질 수 있습니다.

[Mixed precision training (ICLR 2018)]

- FP32를 FP16으로 변환한 뒤에 순전파 및 역전파를 FP16 자료형으로 수행합니다. 가중치 업데이트를 위해 다시 FP32로 변환합니다.
- FP32만 사용했을 때보다 이미지 분류 작업에서 유
 사하거나 더 좋은 성능을 보일 수 있습니다.

Mixed Precision Training (ICLR 2018)

Efficient Training (Low-Precision + Large Batch) 성능 분석

- Baseline: ResNet-50 with FP32 (BS = 256)
- Efficient: ResNet-50 with FP16 (BS = 1,024) -
- FP16를 이용해도 다양한 테크닉을 적용하여 높은 성능을 얻을 수 있습니다. 더불어 학습 속도를 매우 빠르게 만들 수 있다는 장점이 있습니다.

Heuristic	BS=	=256	BS=1024		
Tieurisuc	Top-1	Top-5	Top-1	Top-5	
Linear scaling	75.87	92.70	75.17	92.54	
+ LR warmup	76.03	92.81	75.93	92.84	
+ Zero γ	76.19	93.03	76.37	92.96	
+ No bias decay	76.16	92.97	76.03	92.86	
+ FP16	76.15	93.09	76.21	92.97	

Model Efficient			Baseline			
Wiodei	Time/epoch	Top-1	Top-5	Time/epoch	Top-1	Top-5
ResNet-50	4.4 min	76.21	92.97	13.3 min	75.87	92.70
Inception-V3	8 min	77.50	93.60	19.8 min	77.32	93.43
MobileNet	3.7 min	71.90	90.47	6.2 min	69.03	88.71

[Table] Comparison of the training time and validation accuracy for ResNet-50 between the baseline (BS=256 with FP32) and a more hardware efficient setting (BS=1024 with FP16).

Model Tweaks: ResNet Architecture

- ResNet-50 아키텍처는 다음과 같습니다.
 - 총 4번의 stage가 포함됩니다.
 - 각 stage에서 다운샘플링을 진행합니다.
- 기본(default) stride size는 1입니다.
- ResNet에는 다양한 variant가 있습니다.

Model Tweaks: ResNet Tweaks

[단계적으로 ResNet 아키텍처 변경]

- ResNet-B: downsampling block 변경
- ResNet-C: input stem 변경
- ResNet-D: downsampling block 변경

Model	#params	FLOPs	Top-1	Top-5
ResNet-50	25 M	3.8 G	76.21	92.97
ResNet-50-B	25 M	4.1 G	76.66	93.28
ResNet-50-C	25 M	4.3 G	76.87	93.48
ResNet-50-D	25 M	4.3 G	77.16	93.52

[Table] ResNet 아키텍처를 조금씩 변경하여 점진적으로 성능을 향상시킬 수 있습니다.

: 변경된 부분

(Efficient training 사용)

Training Refinements ① Cosine Learning Rate Decay

- 학습률 조정(learning rate adjustment) 기법으로 cosine decay를 사용할 수 있습니다.
 - 학습 중반부에서 linear하게 learning rate이 감소하는 특징이 있습니다.

η: Learning rate

T: Total number of batches

t: Each batch

$$\eta_t = \frac{1}{2} \left(1 + \cos\left(\frac{t\pi}{T}\right) \right) \eta$$

Training Refinements 2 Label Smoothing

- 일반화(generalization) 성능을 높이기 위해 레이블(label)을 smoothing합니다.
 - 정답 레이블에 대해서만 100%의 확률을 부여하지 않습니다.

$$q_i = \begin{cases} 1 - \varepsilon & \text{if } i = y, \\ \varepsilon/(K - 1) & \text{otherwise,} \end{cases}$$

	Cat	Dog	Frog
image 1	0.90	0.05	0.05
image 2	0.90	0.05	0.05
image 3	0.05	0.90	0.05
image 4	0.05	0.05	0.90

[Table] label smoothing 예시 ($\varepsilon = 0.1$)

Training Refinements 3 Knowledge Distillation

• 지식 증류(knowledge distillation) 방법을 사용합니다. (z는 student, r은 teacher, p는 real distribution)

$$\ell(p, \operatorname{softmax}(z)) + T^2 \ell(\operatorname{softmax}(r/T), \operatorname{softmax}(z/T))$$

Distilling the Knowledge in a Neural Network (NIPS 2014)

Training Refinements 4 Mixup Training

• 학습을 진행할 때 랜덤하게 두 개의 샘플 (x_i, y_i) 와 (x_j, y_j) 를 뽑아서 (\hat{x}, \hat{y}) 를 만들어 학습에 사용합니다.

$$\hat{x} = \lambda x_i + (1 - \lambda) x_j$$

$$\hat{y} = \lambda y_i + (1 - \lambda) y_j$$

 $\lambda \in [0,1]$ 는 $Beta(\alpha,\alpha)$ 에서 추출합니다.

https://medium.com/@wolframalphav1.0

Training Refinements 결과 분석

• 지금까지 언급된 테크닉을 모두 활용하여 state-of-the-art 성능을 얻을 수 있습니다.

Refinements	ResNet-50-D		Inception-V3		MobileNet	
Kennements	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5
Efficient	77.16	93.52	77.50	93.60	71.90	90.53
+ cosine decay	77.91	93.81	78.19	94.06	72.83	91.00
+ label smoothing	78.31	94.09	78.40	94.13	72.93	91.14
+ distill w/o mixup	78.67	94.36	78.26	94.01	71.97	90.89
+ mixup w/o distill	79.15	94.58	78.77	94.39	73.28	91.30
+ distill w/ mixup	79.29	94.63	78.34	94.16	72.51	91.02

Model	Val Top-1 Acc	Val Top-5 Acc	Test Top-1 Acc	Test Top-5 Acc
ResNet-50-D Efficient	56.34	86.87	57.18	87.28
ResNet-50-D Best	56.70	87.33	57.63	87.82

[Table] Results on both the validation set and the test set of MIT Places 365 dataset.

Transfer Learning: Object Detection

• 일반적인 이미지 클래스 분류 작업 말고도 object detection에서도 성능 향상을 보입니다.

Refinement	Top-1	mAP
B-standard	76.14	77.54
D-efficient	77.16	78.30
+ cosine	77.91	79.23
+ smooth	78.34	80.71
+ distill w/o mixup	78.67	80.96
+ mixup w/o distill	79.16	81.10
+ distill w/ mixup	79.29	81.33

[Table] Faster-RCNN performance with various pretrained base networks evaluated on Pascal VOC.