INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4555B MSI

Dual 1-of-4 decoder/demultiplexer

Product specification
File under Integrated Circuits, IC04

January 1995

Dual 1-of-4 decoder/demultiplexer

HEF4555B MSI

DESCRIPTION

The HEF4555B is a dual 1-of-4 decoder/demultiplexer. Each has two address inputs (A $_0$ and A $_1$), an active LOW enable input (\overline{E}) and four mutually exclusive outputs which are active HIGH (O $_0$ to O $_3$). When used as a decoder, \overline{E} when HIGH, forces O $_0$ to O $_3$ LOW. When used as a demultiplexer, the appropriate output is selected by the information on A $_0$ and A $_1$ with \overline{E} as data input. All unselected outputs are LOW.

HEF4555BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4555BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4555BT(D): 16-lead SO; plastic

(SOT109-1)

(): Package Designator North America

PINNING

E enable inputs (active LOW)

A₀ and A₁ address inputs

O₀ to O₃ outputs (active HIGH)

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

Philips Semiconductors Product specification

Dual 1-of-4 decoder/demultiplexer

HEF4555B MSI

TRUTH TABLE

	INPUT	S	OUTPUTS					
Ē	A ₀	A ₁	O ₀	O ₁	O ₂	O ₃		
L	L	L	Н	L	L	L		
L	Н	L	L	Н	L	L		
L	L	Н	L	L	Н	L		
L	Н	Н	L	L	L	Н		
Н	Х	Х	L	L	L	L		

Notes

- 1. H = HIGH state (the more positive voltage)
- 2. L = LOW state (the less positive voltage)
- 3. X = state is immaterial

Philips Semiconductors Product specification

Dual 1-of-4 decoder/demultiplexer

HEF4555B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$A_n \rightarrow O_n$	5			115	230	ns	88 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		45	90	ns	34 ns + (0,23 ns/pF) C _L
	15			30	65	ns	22 ns + (0,16 ns/pF) C _L
	5			140	280	ns	113 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		55	105	ns	44 ns + (0,23 ns/pF) C _L
	15			40	75	ns	32 ns + (0,16 ns/pF) C _L
$\overline{E}_n \rightarrow O_n$	5			125	250	ns	98 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		50	95	ns	39 ns + (0,23 ns/pF) C _L
	15			30	65	ns	22 ns + (0,16 ns/pF) C _L
	5			150	295	ns	123 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		55	110	ns	44 ns + (0,23 ns/pF) C _L
	15			40	75	ns	32 ns + (0,16 ns/pF) C _L
Output transition times	5			60	120	ns	10 ns + ((1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	4500 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	18 800 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	45 700 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_oC_L)$ = sum of outputs
			V _{DD} = supply voltage (V)

APPLICATION INFORMATION

Some examples of applications for the HEF4555B are:

- Code conversion.
- · Address decoding.
- Demultiplexing: when using the enable input as data input.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.