Universitatea Politehnica din București 2003 Disciplina: Geometrie și Trigonometrie

- 1. Să se calculeze volumul piramidei determinate de trei muchii adiacente ale unui cub de latură l.
 - a) $\frac{l^3}{6}$; b) $\frac{l^3}{4}$; c) $\frac{l^3}{3}$; d) $\frac{l^3}{2}$; e) $\frac{l^3\sqrt{2}}{3}$; f) $\frac{2l^3}{3}$.
- 2. Ecuația cercului cu centrul C(1,-1) și de rază 2 este:

a)
$$x^2 + y^2 - 2x + 2y - 1 = 0$$
; b) $x^2 + y^2 - 4x - 4y = 0$; c) $x^2 + y^2 - x + y = 0$; d) $x^2 + y^2 - 2x + 2y - 2 = 0$; e) $x^2 + y^2 - 2x + 2y - 4 = 0$; f) $x^2 + y^2 = 4$.

- 3. Un paralelipiped dreptunghic are înălțimea 4, aria bazei 6 și o latură a bazei 3. Să se calculeze lungimea diagonalei paralelipipedului.
 - a) $2\sqrt{5}$; b) $\sqrt{13}$; c) $\sqrt{61}$; d) 4; e) $\sqrt{29}$; f) $\sqrt{43}$.
- 4. Fie $z = \frac{1}{2} + i \frac{\sqrt{3}}{2}$. Să se calculeze z^{12} .
 - a) $1 + i\sqrt{3}$; b) 1+i; c) i; d) -1; e) 0; f) 1.
- 5. Fie vectorii $\vec{u}=\vec{i}+\sqrt{3}\vec{j}$ și $\vec{v}=\sqrt{3}\vec{i}+\vec{j}$. Măsura unghiului dintre acești vectori este:
 - a) $\frac{\pi}{3}$; b) 0; c) $\frac{\pi}{6}$; d) $\frac{\pi}{2}$; e) $\frac{\pi}{4}$; f) $\frac{2\pi}{3}$.
- 6. Să se determine raza cilindrului circular drept de volum 3 și înălțime $\frac{1}{3\pi}$.
 - a) 3; b) 6; c) 3π ; d) $\sqrt{2}$; e) 6π ; f) 18.
- 7. Aria unei sfere de volum $\frac{4\pi}{3}$ este:
 - a) 8; b) $\frac{3\pi}{2}$; c) 4π ; d) 4; e) 3π ; f) 2π .
- 8. Fie $\sin \alpha = \frac{4}{5}$, $0 < \alpha < \frac{\pi}{2}$. Să se calculeze $\cos \alpha$.
 - a) $\frac{3}{5}$; b) $-\frac{3}{5}$; c) $\frac{1}{2}$; d) 0; e) $\frac{1}{5}$; f) $-\frac{1}{5}$.
- 9. Fie $E(x) = \sin 2x \cos x + \operatorname{tg} \frac{3x}{2}$. Să se calculeze $E\left(\frac{\pi}{6}\right)$.
 - a) 0; b) 1; c) $\frac{\sqrt{2}}{2}$; d) $\frac{\sqrt{3}}{2}$; e) $\frac{1}{2}$; f) 2.
- 10. Să se determine numărul soluțiilor ecuației $\cos x = \sqrt{3} \sin x$ situate în intervalul $[0, 2\pi]$.
 - a) 0; b) 2; c) 4; d) 1; e) 3; f) 6.
- 11. Să se determine coordonatele mijlocului segmentului AB unde A(7, -2, 3) și B(-3, 4, 1).
 - a) (0,1,2); b) (1,1,1); c) (2,1,2); d) (2,1,0); e) (0,0,0); f) (-2,-1,2).
- 12. Să se determine distanța dintre punctele A(5,0,-2) și B(1,4,0).
 - a) 5,5; b) 6; c) 5; d) $\sqrt{6}$; e) 4; f) 4,5.
- 13. Pe latura AB a triunghiului ABC se ia punctul M astfel încât $AM = \frac{1}{2}AB$, iar pe latura AC se ia punctul N astfel încât $AN = \frac{1}{3}AC$. Fie S' aria ΔAMN și S aria ΔABC . Să se calculeze raportul $\frac{S'}{S}$.
 - a) $\frac{1}{3}$; b) $\frac{1}{5}$; c) $\frac{1}{4}$; d) $\frac{1}{2}$; e) $\frac{1}{36}$; f) $\frac{1}{6}$.
- 14. Să se determine ecuația planului care trece prin punctul A(3, -2, -7) și este paralel cu planul 2x 3z + 5 = 0.

a)
$$x + y + z + 6 = 0$$
; b) $2x - y - 3z + 5 = 0$; c) $2x - 3z = 0$; d) $2x - 3z - 27 = 0$; e) $x - 3y - 9 = 0$; f) $2x - 3z - 20 = 0$.

- 15. Se consideră triunghiul ABC cu BC = 2, $AB = \sqrt{2}$, $AC = 1 + \sqrt{3}$. Să se calculeze cos A.
 - a) $\frac{\sqrt{2}}{2}$; b) $\frac{\sqrt{3}}{2}$; c) $-\frac{\sqrt{2}}{2}$; d) 0; e) $-\frac{1}{2}$; f) $\frac{1}{2}$.

16. Să se determine volumul conului circular drept care are secțiunea axială un triunghi echilateral de latură 4.

a)
$$4\pi$$
; b) $\frac{2\pi}{3}$; c) $\frac{\pi\sqrt{3}}{3}$; d) $\frac{4\pi}{3}$; e) $\frac{4\pi\sqrt{3}}{3}$; f) $\frac{8\pi\sqrt{3}}{3}$.

17. Fie un tetraedru regulat de muchie l. Să se calculeze distanța dintre mijloacele a două muchii opuse.

a)
$$l\sqrt{3}$$
; b) $\frac{l}{\sqrt{2}}$; c) $\frac{l}{4}$; d) $\frac{l}{5}$; e) $\frac{l}{\sqrt{3}}$; f) $l\sqrt{2}$.

18. Se consideră vectorii $\vec{u}=m\vec{i}+3\vec{j},\ \vec{v}=2\vec{i}+n\vec{j},\ m,n\in\mathbb{R}.$ Vectorii sunt perpendiculari dacă și numai dacă:

a)
$$m + n = 0$$
; b) $m = 2$, $n = 3$; c) $mn = 5$; d) $m = 1$, $n = 2$; e) $m = n = 0$; f) $2m + 3n = 0$.