

Lecture #3

Data Representation and Number Systems

Lecture #3: Data Representation and Number Systems (1/2)

- 1. Data Representation
- 2. Decimal (base 10) Number System
- 3. Other Number Systems
- 4. Base-R to Decimal Conversion
- 5. Decimal to Binary Conversion
 - 5.1 Repeated Division-by-2
 - 5.2 Repeated Multiplication-by-2
- 6. Conversion Between Decimal and Other Bases
- 7. Conversion Between Bases
- 8. Binary to Octal/Hexadecimal Conversion

Lecture #3: Data Representation and Number Systems (2/2)

- 9. ASCII Code
- 10. Negative Numbers
 - 10.1 Sign-and-Magnitude
 - 10.2 1s Complement
 - 10.3 2s Complement
 - 10.4 Comparisons
 - 10.5 Complement on Fractions
 - 10.6 2s Complement Addition/Subtraction
 - 10.7 1s Complement Addition/Subtraction
 - 10.8 Excess Representation

11. Real Numbers

- 11.1 Fixed-Point Representation
- 11.2 Floating-Point Representation

1. Data Representation (1/2)

Basic data types in C:

int

float

double

char

Variants: short, long

How data is represented depends on its type:

01000110

As an 'int', it is 70

As a 'char', it is 'F'

As an 'int', it is -1060110336

As an 'float', it is -6.5

1. Data Representation (2/2)

- Data are internally represented as sequence of bits (binary digits). A bit is either 0 or 1.
- Other units
 - Byte: 8 bits
 - Nibble: 4 bits (rarely used now)
 - Word: Multiple of bytes (eg: 1 byte, 2 bytes, 4 bytes, etc.)
 depending on the computer architecture
- N bits can represent up to 2^N values
 - Eg: 2 bits represent up to 4 values (00, 01, 10, 11);
 4 bits represent up to 16 values (0000, 0001, 0010,, 1111)
- To represent M values, \[\log_2 M \] bits required
 - Eg: 32 values require 5 bits; 1000 values require 10 bits

2. Decimal (base 10) Number System

- A weighted-positional number system.
- Base (also called radix) is 10
- Symbols/digits = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
- Each position has a weight of power of 10
 - Eg: $(7594.36)_{10} = (7 \times 10^3) + (5 \times 10^2) + (9 \times 10^1) + (4 \times 10^0) + (3 \times 10^{-1}) + (6 \times 10^{-2})$

```
(a_n a_{n-1}... a_0 \cdot f_1 f_2 ... f_m)_{10} =
(a_n x 10^n) + (a_{n-1} x 10^{n-1}) + ... + (a_0 x 10^0) +
(f_1 x 10^{-1}) + (f_2 x 10^{-2}) + ... + (f_m x 10^{-m})
```

3. Other Number Systems (1/2)

- Binary (base 2)
 - Weights in powers of 2
 - Binary digits (bits): 0, 1
- Octal (base 8)
 - Weights in powers of 8
 - Octal digits: 0, 1, 2, 3, 4, 5, 6, 7.
- Hexadecimal (base 16)
 - Weights in powers of 16
 - Hexadecimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
- Base/radix R:
 - Weights in powers of R

3. Other Number Systems (2/2)

- In some programming languages/software, special notations are used to represent numbers in certain bases
 - In programming language C
 - Prefix 0 for octal. Eg: 032 represents the octal number (32)₈
 - Prefix 0x for hexadecimal. Eg: 0x32 represents the hexadecimal number (32)₁₆
 - In QTSpim (a MIPS simulator you will use)
 - Prefix 0x for hexadecimal. Eg: 0x100 represents the hexadecimal number (100)₁₆
 - In Verilog, the following values are the same
 - 8'b11110000: an 8-bit binary value 11110000
 - 8'hF0: an 8-bit binary value represented in hexadecimal F0
 - 8'd240: an 8-bit binary value represented in decimal 240

4. Base-R to Decimal Conversion

Easy!

$$\blacksquare$$
 1101.101₂ = 1×2³ + 1×2² + 1×2⁰ + 1×2⁻¹ + 1×2⁻³

$$\square$$
 2A.8₁₆ =

 DLD page 42 Quick Review Questions Questions 2-1 to 2-4.

5. Decimal to Binary Conversion

- For whole numbers
 - Repeated Division-by-2 Method
- For fractions
 - Repeated Multiplication-by-2 Method

5.1 Repeated Divison-by-2

To convert a whole number to binary, use successive division by 2 until the quotient is 0. The remainders form the answer, with the first remainder as the *least* significant bit (LSB) and the last as the most significant bit (MSB).

$$(43)_{10} = (101011)_2$$

2	43		
2	21	rem 1	← LSB
2	10	rem 1	
2	5	rem 0	
2	2	rem 1	
2	1	rem 0	
	0	rem 1	← MSB

5.2 Repeated Multiplication-by-2

To convert decimal fractions to binary, repeated multiplication by 2 is used, until the fractional product is 0 (or until the desired number of decimal places). The carried digits, or *carries*, produce the answer, with the first carry as the MSB, and the last as the LSB.

 $(0.3125)_{10} = (0.0101)_2$

	Carry	
$0.3125 \times 2 = 0.625$	0	←MSB
$0.625 \times 2 = 1.25$	1	
$0.25 \times 2 = 0.50$	0	
$0.5 \times 2 = 1.00$	1	←LSB

Conversion Between Decimal and Other Bases

- Base-R to decimal: multiply digits with their corresponding weights
- Decimal to binary (base 2)
 - Whole numbers: repeated division-by-2
 - Fractions: repeated multiplication-by-2
- Decimal to base-R
 - Whole numbers: repeated division-by-R
 - Fractions: repeated multiplication-by-R
 - DLD page 42 Quick Review Questions Questions 2-5 to 2-8.

7. Conversion Between Bases

In general, conversion between bases can be done via decimal:

 Shortcuts for conversion between bases 2, 4, 8, 16 (see next slide)

8. Binary to Octal/Hexadecimal Conversion

- Binary → Octal: partition in groups of 3
 - \blacksquare (10 111 011 001 . 101 110)₂ = (2731.56)₈
- Octal → Binary: reverse
 - $(2731.56)_8 =$
- Binary → Hexadecimal: partition in groups of 4
 - (101 1101 1001 . 1011 1000)₂ =
- Hexadecimal → Binary: reverse
 - $(5D9.B8)_{16} =$
 - DLD page 42 Quick Review Questions Questions 2-9 to 2-10.

9. ASCII Code (1/3)

- ASCII code and Unicode are used to represent characters ('a', 'C', '?', '\0', etc.)
- ASCII
 - American Standard Code for Information Interchange
 - 7 bits, plus 1 parity bit (odd or even parity)

Character	ASCII Code
0	0110000
1	0110001
9	0111001
:	0111010
A	1000001
В	1000010
Z	1011010
[1011011
\	1011100

9. ASCII Code (2/3)

ASCII table

'A': 1000001 / (or 65₁₀)

	MSBs /							
LSBs	000	001	010	011	100	/101	110	111
0000	NUL	DLE	SP	0	@_/	P	`	р
0001	SOH	DC_1	!	1	Α	Q	а	q
0010	STX	DC_2	"	2	В	R	b	r
0011	ETX	DC_3	#	3	С	S	С	s
0100	EOT	DC_4	\$	4	D	Т	d	t
0101	ENQ	NAK	%	5	E	U	е	u
0110	ACK	SYN	&	6	F	V	f	V
0111	BEL	ETB	•	7	G	W	g	W
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	- 1	Υ	i	У
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	•	K	[k	{
1100	FF	FS	,	<	L	\	I	- 1
1101	CR	GS	-	=	M]	m	}
1110	0	RS		>	Ν	٨	n	~
1111	SI	US	1	?	0	_	0	DEL

9. ASCII Code (3/3)

Integers (0 to 127) and characters are 'somewhat' interchangeable in C

```
int num = 65;
char ch = 'F';

printf("num (in %%d) = %d\n", num);
printf("num (in %%c) = %c\n", num);
printf("\n");

printf("ch (in %%c) = %c\n", ch);
printf("ch (in %%d) = %d\n", ch);
ch (in %c) = F
ch (in %d) = ?
```

Past-Year's Exam Question!

```
int i, n = 2147483640;
for (i=1; i<=10; i++) {
    n = n + 1;
}
printf("n = %d\n", n);</pre>
```

- What is the output of the above code when run on sunfire?
- Is it 2147483650?

10. Negative Numbers

- Unsigned numbers: only non-negative values
- Signed numbers: include all values (positive and negative)
- There are 3 common representations for signed binary numbers:
 - Sign-and-Magnitude
 - 1s Complement
 - 2s Complement

10.1 Sign-and-Magnitude (1/3)

- The sign is represented by a 'sign bit'
 - 0 for +
 - 1 for -
- Eg: a 1-bit sign and 7-bit magnitude format.

- $\mathbf{00110100} \rightarrow +110100_2 = +52_{10}$
- □ 10010011 \rightarrow -10011₂ = -19₁₀

10.1 Sign-and-Magnitude (2/3)

Largest value: 01111111 = +127₁₀

Smallest value: 11111111 = -127₁₀

Zeros: $00000000 = +0_{10}$

 $10000000 = -0_{10}$

- Range (for 8-bit): -127₁₀ to +127₁₀
- Question:
 - For an *n*-bit sign-and-magnitude representation, what is the range of values that can be represented?

10.1 Sign-and-Magnitude (3/3)

- To negate a number, just invert the sign bit.
- Examples:
 - How to negate 00100001_{sm} (decimal 33)?
 Answer: 10100001_{sm} (decimal -33)
 - How to negate 10000101_{sm} (decimal -5)? Answer: 00000101_{sm} (decimal +5)

10.2 1s Complement (1/3)

Given a number x which can be expressed as an n-bit binary number, its <u>negated value</u> can be obtained in 1s-complement representation using:

$$-x = 2^n - x - 1$$

Example: With an 8-bit number 00001100 (or 12₁₀), its negated value expressed in 1s-complement is:

```
-00001100_2 = 2^8 - 12 - 1 (calculation done in decimal)
= 243
= 11110011<sub>1s</sub>
```

(This means that -12_{10} is written as 11110011 in 1s-complement representation.)

10.2 1s Complement (2/3)

Technique to negate a value: invert all the bits.

Largest value: 01111111 = +127₁₀

• Smallest value: $10000000 = -127_{10}$

 \blacksquare Zeros: $00000000 = +0_{10}$

 $111111111 = -0_{10}$

- Range (for 8 bits): -127₁₀ to +127₁₀
- Range (for *n* bits): $-(2^{n-1}-1)$ to $2^{n-1}-1$
- The most significant bit (MSB) still represents the sign: 0 for positive, 1 for negative.

10.2 1s Complement (3/3)

Examples (assuming 8-bit):

$$(14)_{10} = (00001110)_2 = (00001110)_{1s}$$

$$-(14)_{10} = -(00001110)_2 = (11110001)_{1s}$$

$$-(80)_{10} = -(?)_2 = (?)_{1s}$$

10.3 2s Complement (1/3)

Given a number x which can be expressed as an n-bit binary number, its <u>negated value</u> can be obtained in 2s-complement representation using:

$$-x = 2^n - x$$

Example: With an 8-bit number 00001100 (or 12₁₀), its negated value expressed in 2s-complement is:

```
-00001100_2 = 2^8 - 12 (calculation done in decimal)
= 244
= 11110100<sub>2s</sub>
```

(This means that -12_{10} is written as 11110100 in 2s-complement representation.)

10.3 2s Complement (2/3)

 Technique to negate a value: invert all the bits, then add 1.

Largest value: 01111111 = +127₁₀

Smallest value: 10000000 = -128₁₀

Zero: $00000000 = +0_{10}$

- Range (for 8 bits): -128₁₀ to +127₁₀
- Range (for *n* bits): -2^{n-1} to $2^{n-1} 1$
- The most significant bit (MSB) still represents the sign: 0 for positive, 1 for negative.

10.3 2s Complement (3/3)

Examples (assuming 8-bit):

$$(14)_{10} = (00001110)_2 = (00001110)_{2s}$$
 $-(14)_{10} = -(00001110)_2 = (11110010)_{2s}$
 $-(80)_{10} = -(?)_2 = (?)_{2s}$

Compare with slide 26.

1s complement:

$$(14)_{10} = (00001110)_2 = (00001110)_{1s}$$

- $(14)_{10} = -(00001110)_2 = (11110001)_{1s}$

10.4 Comparisons

4-bit system

Positive values

Value	Sign-and- Magnitude	1s Comp.	2s Comp.
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000

Negative values

Value	Sign-and- Magnitude	1s Comp.	2s Comp.
-0	1000	1111	-
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8	-	-	1000

Past-Year's Exam Question! (Answer)

PastYearQn.c

```
int i, n = 2147483640;
for (i=1; i<=10; i++) {
    n = n + 1;
}
printf("n = %d\n", n);</pre>
```

- What is the output of the above code when run on sunfire?
- Is it 2147483650? 🗶

- int type in sunfire takes up4 bytes (32 bits) and uses2s complement
- Largest positive integer = 2³¹ - 1 = 2147483647

10.5 Complement on Fractions

- We can extend the idea of complement on fractions.
- Examples:
 - Negate 0101.01 in 1s-complement Answer: 1010.10
 - Negate 111000.101 in 1s-complement Answer: 000111.010
 - Negate 0101.01 in 2s-complement Answer: 1010.11

10.6 2s Complement on Addition/Subtraction (1/4)

- Algorithm for addition of integers, A + B:
 - 1. Perform binary addition on the two numbers.
 - 2. Ignore the carry out of the MSB.
 - 3. Check for overflow. Overflow occurs if the 'carry in' and 'carry out' of the MSB are different, or if result is opposite sign of A and B.
- Algorithm for subtraction of integers, A B:
 A B = A + (-B)
 - 1. Take 2s-complement of B.
 - 2. Add the 2s-complement of B to A.

10.6 Overflow (2/4)

- Signed numbers are of a fixed range.
- If the result of addition/subtraction goes beyond this range, an overflow occurs.
- Overflow can be easily detected:
 - positive add positive → negative
 - negative add negative → positive
- Example: 4-bit 2s-complement system
 - Range of value: -8₁₀ to 7₁₀
 - $0101_{2s} + 0110_{2s} = 1011_{2s}$ $5_{10} + 6_{10} = -5_{10} ?! \text{ (overflow!)}$
 - $1001_{2s} + 1101_{2s} = \underline{1}0110_{2s}$ (discard end-carry) = 0110_{2s} $-7_{10} + -3_{10} = 6_{10}$?! (overflow!)

10.6 2s Complement Addition (3/4)

Examples: 4-bit system

Which of the above is/are overflow(s)?

10.6 2s Complement Subtraction (4/4)

- Examples: 4-bit system
 - □ 4 − 7
 - Convert it to 4 + (-7)
 - 6 − 1
 - Convert it to 6 + (-1)

- **-5** − 4
- Convert it to -5 + (-4)

No overflow

No overflow

Overflow!

Which of the above is/are overflow(s)?

10.7 1s Complement on Addition/Subtraction (1/2)

- Algorithm for addition of integers, A + B:
 - Perform binary addition on the two numbers.
 - If there is a carry out of the MSB, add 1 to the result.
 - Check for overflow. Overflow occurs if result is opposite sign 3. of A and B.
- Algorithm for subtraction of integers, A B: A - B = A + (-B)
 - Take 1s-complement of B.

 - Add the 1s-complement of B to A.

10.7 1s Complement Addition (2/2)

Examples: 4-bit system

No overflow

+5	0101
+ -5	+ 1010
-0	1111

No overflow

No overflow

-3	1100
+ -7	+ 1000
-10	1 0100
	+ 1
	0101

Overflow!

Any overflow?

DLD page 42 – 43 Quick Review Questions Questions 2-13 to 2-18.

10.8 Excess Representation (1/2)

- Besides sign-and-magnitude and complement schemes, the excess representation is another scheme.
- It allows the range of values to be distributed <u>evenly</u> between the positive and negative values, by a simple translation (addition/subtraction).
- Example: Excess-4 representation on 3-bit numbers. See table on the right.

Excess-4 Representation	Value
000	-4
001	-3
010	-2
011	-1
100	0
101	1
110	2
111	3

Questions: What if we use Excess-2 on 3-bit numbers? Or Excess-7?

10.8 Excess Representation (2/2)

 Example: For 4-bit numbers, we may use excess-7 or excess-8. Excess-8 is shown below.

Excess-8 Representation	Value
0000	-8
0001	-7
0010	-6
0011	-5
0100	-4
0101	-3
0110	-2
0111	-1

Excess-8 Representation	Value
1000	0
1001	1
1010	2
1011	3
1100	4
1101	5
1110	6
1111	7

11. Real Numbers

- Many applications involve computations not only on integers but also on real numbers.
- How are real numbers represented in a computer system?
- Due to the finite number of bits, real number are often represented in their approximate values.

11.1 Fixed-Point Representation

- In fixed-point representation, the number of bits allocated for the whole number part and fractional part are fixed.
- For example, given an 8-bit representation, 6 bits are for whole number part and 2 bits for fractional parts.

If 2s complement is used, we can represent values like:

$$011010.11_{2s} = 26.75_{10}$$

 $111110.11_{2s} = -000001.01_2 = -1.25_{10}$

11.2 Floating-Point Representation (1/4)

- Fixed-point representation has limited range.
- Alternative: Floating point numbers allow us to represent very large or very small numbers.
- Examples:

```
0.23 \times 10^{23} (very large positive number)
```

 0.5×10^{-37} (very small positive number)

 -0.2397×10^{-18} (very small negative number)

11.2 IEEE 754 Floating-Point Rep. (2/4)

3 components: sign, exponent and mantissa (fraction)

sign ex	xponent	mantissa
---------	---------	----------

- The base (radix) is assumed to be 2.
- Two formats:
 - Single-precision (32 bits): 1-bit sign, 8-bit exponent with bias 127 (excess-127), 23-bit mantissa
 - Double-precision (64 bits): 1-bit sign, 11-bit exponent with bias 1023 (excess-1023), and 52-bit mantissa
- We will focus on the single-precision format
- Reading
 - DLD pages 32 33
 - IEEE standard 754 floating point numbers:
 http://steve.hollasch.net/cgindex/coding/ieeefloat.html

11.2 IEEE 754 Floating-Point Rep. (3/4)

3 components: sign, exponent and mantissa (fraction)

- Sign bit: 0 for positive, 1 for negative.
- Mantissa is normalised with an implicit leading bit 1
 - 110.1₂ \rightarrow normalised \rightarrow 1.101₂ × 2² \rightarrow only **101** is stored in the mantissa field
 - $0.00101101_2 \rightarrow \text{normalised} \rightarrow 1.01101_2 \times 2^{-3} \rightarrow \text{only } 01101 \text{ is stored in the mantissa field}$

11.2 IEEE 754 Floating-Point Rep. (4/4)

Example: How is –6.5₁₀ represented in IEEE 754 single-precision floating-point format?

$$-6.5_{10} = -110.1_2 = -1.101_2 \times 2^2$$

Exponent = $2 + 127 = 129 = 10000001_2$

1	10000001	101000000000000000000
sign	exponent (excess-127)	mantissa

We may write the 32-bit representation in hexadecimal:

(Slide 4)

110000001101000000000000000000000

As an 'int', it is -1060110336

As an 'float', it is -6.5

End of File