# Introduction to Machine Learning - Exercise 1

Mikko Ahro

## Problem 1

#### Task a

Read p1.csv into dataframe and drop columns "id", "SMILES", "InChIKey"

```
p1data <- read.csv("data/p1.csv", header=TRUE, sep=",")
p1data <- subset(p1data, select=-c(id, SMILES, InChIKey))</pre>
```

#### Task b

Summary statistics for variables "pSat\_PA", "NumOfConf" and "ChemPot\_kJmol":

| pSat_Pa             | NumOfConf       | ChemPot_kJmol  |
|---------------------|-----------------|----------------|
| Min.: 0.0000        | Min.: 2.00      | Min. :-3.160   |
| <br>1st Qu.: 0.0000 | 1st Qu.: 73.25  | 1st Qu.: 9.723 |
| <br>Median : 0.0001 | Median: 172.50  | Median :12.781 |
| Mean: $2.9620$      | Mean: 223.50    | Mean :12.434   |
| 3rd Qu.: 0.0023     | 3rd Qu.: 324.25 | 3rd Qu.:15.659 |
| Max. :562.8970      | Max. :1058.00   | Max. :28.096   |

#### Task c

Mean and standard deviation of column 'ChemPot\_kJmol' are:

[1] "Mean: 12.4344270896"

[1] "Standard deviation: 4.77887217784492"

### Task d

```
par(mfrow=c(1,2))
hist(log10(p1data$pSat_Pa))
boxplot(p1data$NumOfConf)
```

# Histogram of log10(p1data\$pSat\_I





log10(p1data\$pSat\_Pa)

Task e

scatter\_subset <- subset(p1data, select=c(MW, HeatOfVap\_kJmol, FreeEnergy\_kJmol))
pairs(scatter\_subset)</pre>



## Problem 2

Task a

| Degree | Train     | Validation | Test           | TestTRVA  | CV         |
|--------|-----------|------------|----------------|-----------|------------|
| 0      | 4.5122613 | 4.512261   | 4.512261e+00   | 4.587239  | 10.7991438 |
| 1      | 4.0885351 | 3.494124   | 5.206372e+00   | 4.786172  | 7.4522264  |
| 2      | 0.2185859 | 7.021118   | 1.424954e + 01 | 14.791603 | 0.1596893  |
| 3      | 0.2168190 | 7.154893   | 1.383458e+01   | 14.096042 | 0.1590119  |
| 4      | 0.1187955 | 8.776121   | 1.968113e+01   | 15.009734 | 0.1589143  |
| 5      | 0.0965322 | 7.221166   | 2.975686e+01   | 20.134323 | 0.1590315  |
| 6      | 0.0075741 | 6.050151   | 1.564333e+02   | 12.060633 | 0.1592266  |
| 7      | 0.0049994 | 11.394430  | 1.104038e+03   | 15.628661 | 0.1611671  |
| 8      | 0.0020825 | 407.157118 | 1.561695e + 05 | 10.979288 | 0.1602785  |

Task b

# **Fitted Polynomial Curves**



### $Task\ c$

## Loading required package: ggplot2
## Loading required package: lattice
##
## Attaching package: 'lattice'
## The following object is masked from 'package:boot':
##
## melanoma
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.

```
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
## margin
## Loading required package: Matrix
## Loaded glmnet 4.1-8
```

 $\label{logocondition} Next\_Tmax \sim station + Present\_Tmax + Present\_Tmin + LDAPS\_RHmin + LDAPS\_RHmax + LDAPS\_Tmax\_lapse + LDAPS\_Tmin\_lapse + LDAPS\_WS + LDAPS\_LH + LDAPS\_CC1 + LDAPS\_CC2 + LDAPS\_CC3 + LDAPS\_CC4 + LDAPS\_PPT1 + LDAPS\_PPT2 + LDAPS\_PPT3 + LDAPS\_PPT4 + lat + lon + DEM + Slope + Solar.radiation$ 



Task a







Problem 4
Not done

# Problem 5

Task a

Task b

 $\mathbf{Task}\ \mathbf{c}$ 

# Problem 6

Task a

Task b

 $\mathbf{Task}\ \mathbf{c}$ 

# Problem 7

Task a

Task b