

Approximating Graph Edit Distance through Graph Neural Networks: Methods, Limitations, and Proposals

Master's Degree in Artificial Intelligence and Computer Science

Supervisors

Ch.mo. Prof Giorgio Terracina Dott. Sebastiano A. Piccolo Candidate Federico Calabrò 247976

Context and Motivation

- Graph Edit Distance (GED) is crucial in comparing graphs, useful in fields like bioinformatics, social networks, and computer vision.
- GED calculation is **NP-Hard**, meaning exact computation is infeasible for large graphs. Hence, it needs to be approximated.
- Classical approximations rely on heuristic algorithms such as A* search and graph matching techniques.
- Recently, Graph Neural Networks (GNNs) have emerged as promising methods for faster and more accurate GED computation.

Example

Figure 4.3: Graph Edit Distance Example.

Transforming G_1 to G_2 by adding vertex D and edge (B, D).

Total GED value: 1 + 1 = 2

Contribution (1)

 A literature review was conducted, identifying 20 key papers on GNNbased GED approximation and their trends. Four significant approaches were selected as the most representative:

Contribution (2)

- Development of a more flexible and robust <u>codebase</u> on top of GedGNN's one by enhancing its code and removing some of its limitations.
- Development of an algorithm to generate artificial datasets with graphs (pairs) at known GED distance for both training and testing.
- Set of experiments (64 combinations) showing that models lack the ability to generalize out of distribution.

Conclusion

trainset	testset	mse	mae	acc
IMDB	IMDB	0,816	0,634	0,58
IMDB	Linux	9,399	1,27	0,221
IMDB	1000g_100n	13,861	363,687	0,005
IMDB	Medium	201,372	4106,777	0,005
Linux	IMDB	13,153	3,539	0,075
Linux	Linux	1,161	0,315	0,735
Linux	1000g_100n	869,809	4367,593	0
Linux	Medium	212,754	3801,531	0
1000g_100n	IMDB	47,711	5,86	0,033
$1000 \mathrm{g_100n}$	Linux	28,688	2,126	0,105
$1000 g_{-} 100 n$	1000g_100n	0,708	78,892	0,013
$1000 \mathrm{g_100n}$	Medium	411,299	6885,001	0,003
Medium	IMDB	65,417	7,611	0,103
Medium	Linux	9,204	1,17	0,261
Medium	1000g_100n	4,651	259,151	0,003
Medium	Medium	0,718	267,837	0,003

Models trained on specific data (IMDB and Linux) show strong performance but only within their original data distribution.

Future work: Increase the density of synthetic datasets to further improve model performance and generalization.

Table 6.4: Results for GedGNN models

Thanks for your attention!!