Kvantemekanik - ugeseddel 4

I sidste uge gennemgik vi §2.5 om delta-funktionspotentialet via video, og det meste af §2.6 om den endelige brønd.

Undervisning i uge 4 (17/9 - 21/9)

Forelæsninger:

Vi færdiggør §2.6 om den endelige vedr. tunneleffekten og bruger resten af tirsdagsforelæsningen på nogle eksempler på eksamensopgaver. Til torsdagsforelæsningen starter vi på kapitel 3 om den matematiske formalisme bag kvantemekanikken. Afsnit 3.5 foregår via video (varighed i alt ca. 52 min). Klik på "Det genereliserede usikkerhedsprincip" under uge 4.

Teoretiske øvelser:

Standardopgaver:

- G2.6, G2.7*, G2.10, G2.12, G2.13, G2.20† (G2.21 i 2. udgave).
 - (*) Tjek evt. dit resultat med Matlab-koden Infinite_square_well.m (findes på Blackboard).
 - (†) Kan ligeledes tjekkes med wavepacket.m.
- Diskutér emnerne fra "Diskussion om deltascatter.m", som findes nederst i læringsstien om "Delta-funktionspotentialet" under "Uge 3" på Blackboard (instruktoren medbringer labtop til anden øvelsesgang).

Composer-opgave: C2 (findes under uge 4).

Lette opgaver: L8 og L9 på næste side samt G2.17 (G2.18 i 2. udgave).

Ekstraopgave: En matematisk opgave til dem, der har lyst: Opgave 6 på sidste side.

Afleveringsopgave 4: Se næste side.

Forventet program i uge 5

Forelæsninger: Vi starter på kapitel 4. Ingen video i denne uge.

Regneøvelser: *Standardopgaver*: G2.21 (G2.22 i 2. udgave), G2.27, G2.30, G2.31, G2.41 (G2.42 i 2. udgave) samt diskussionerne fra "Det genereliserede usikkerhedsprincip" fra Uge 4 på Blackboard. *Lette opgaver*: L10 og L11 på næstsidste side. *Afleveringsopgave 5*: Se næstsidste side.

Mvh Brian Julsgaard.

Kvantemekanik - ugeseddel 4

Afleveringsopgave 4

Vi betragter den harmoniske oscillator i en dimension med notationen som beskrevet i kapitel 2.3. En startbølgefunktion er givet ved $\Psi(x,0)=\frac{1}{\sqrt{2}}(\psi_n(x)+i\psi_{n+2}(x))$.

- (1) Bestem middelværdien og spredningen af partiklens totale energi.
- (2) Betragt operatoren A=xp+px. Udtryk denne operator vha. hæve- og sænkeoperatorerne, a_+ og a_- .
- (3) Bestem forventningsværdien $\langle A \rangle$.

Lette opgaver til uge 4:

Opgave L8:

Betragt operatoren A = xp - px.

- (1) Brug [2.70] ([2.69] i 2. udgave) til udtrykke A som funktion af a_+ og a_- .
- (2) Reducer dette udtryk så meget du kan for at opnå et simpelt og kendt resultat.

Opgave L9:

En partikel med massen m bevæger sig som en harmonisk oscillator, og er til tiden t=0 beskrevet ved bølgefunktionen $\Psi(x,0)=N[3\psi_3(x)+4\Psi_4(x)]$. Her er $\psi_n(x)$ de sædvanlige løsninger til den stationære Schrödingerligning fra kapitel 2.3.

- (1) Bestem Nså bølgefunktionen bliver normeret.
- (2) Angiv de mulige resultater af en måling af partiklens totale energi. Bestem også sandsynligheden for hvert af disse resultater.
- (3) Bestem middelværdien og spredningen af partiklens totale energi. Angiv svaret i enheder af $\hbar\omega$.
- (4) Brug [2.70 (2.69)] og [2.67 (2.66)] til at beregne middelværdien $\langle x \rangle$. Du skal kunne "se" hvad alle integraler giver.
- (5) Brug [2.70 (2.69)] til at udtrykke operatoren A=xp+px vha. a_+ og a_- . Reducer udtrykket så meget du kan, og argumenter (uden at regne) for, at middelværdien $\langle A \rangle$ er nul.
- (6) Angiv $\Psi(x,t)$ til alle tider t.

Lette opgaver til uge 5

Opgave L10:

- (1) Opskriv løsningen $\psi_4(x)$ til den stationære Schrödingerligning for den harmoniske oscillator. Benyt ligning [2.86 (2.85)].
- (2) Betragt det infinitesimale interval $I=[0;\Delta x]$ og bestem sandsynligheden for at en måling af partiklens position giver et resultat i dette interval.
- (3) Hvad er spredningen af den totale energi?

Opgave L11:

Vi betragter til tiden t=0 en fri partikel, beskrevet ved bølgefunktionen $\Psi(x,0)$ på formen [2.102 (2.101)]. Vi lader $\phi(k)$ være givet ved udtrykket $\phi(k)= \begin{cases} A & \text{for } 0 \leq k \leq 2k_0 \\ 0 & \text{ellers} \end{cases}$.

- (1) Bestem konstanten A således at $\int_{-\infty}^{\infty} |\phi(k)|^2 dk = 1$. Skitser funktionen $|\phi(k)|^2$, og angiv en typisk bredde af denne funktion.
- (2) Benyt nu ligning [2.102 (2.101)] til at vise, at $\Psi(x,0)=\sqrt{\frac{k_0}{\pi}}\cdot e^{ik_0x}\cdot \frac{\sin(k_0x)}{k_0x}$.
- (3) Skitser sandsynlighedsfordelingen $|\Psi(x,0)|^2$, og angiv en typisk bredde af denne funktion.
- (4) Beregn produktet af de typiske bredder fra spørgsmål (1) og (3) og kommenter på resultatet.
- (5) Sammenlign denne opgave med Griffiths' eksempel 2.6. Hvilke ligheder og forskelle er der?

Afleveringsopgave 5

En partikel med massen m bevæger sig langs x-aksen i potentialet $V(x) = \begin{cases} 0 & x < 0 \\ V_0 & x > 0 \end{cases}$, hvor $V_0 > 0$ er konstant.

Det oplyses, at løsninger til den stationære Schrödingerligning med energi $E > V_0$ kan skrives på formen:

$$\psi_k(x) = \begin{cases} e^{ikx} + Be^{-ikx} & x < 0, \\ Fe^{iqx} & x > 0. \end{cases}$$

(1) Bestem, hvordan konstanterne k og q afhænger af V_0 og E, og at $\frac{q}{k}=\sqrt{1-\frac{V_0}{E}}$.

(2) Vis, at
$$B = \frac{1 - q/k}{1 + q/k} \log F = \frac{2}{1 + q/k}$$
.

(3) Betragt nu tilfældet $E < V_0$ med løsninger $\psi_k(x) = \begin{cases} e^{ikx} + Be^{-ikx} & x < 0 \\ Fe^{-\kappa x} & x > 0 \end{cases}$.

Bestem k, κ , B og F [resultaterne minder meget om dem fra spørgsmål (1) og (2)].

(4) Størrelsen $R=|B|^2$ kan fortolkes som en refleksionskoefficient. Hvilke værdier kan R antage i tilfældene $E>V_0$ henholdsvis $E< V_0$? Argumenter for den fysiske fornuft af disse resultater.

Bemærk, $|F|^2$ kan *ikke* fortolkes som en transmissionskoefficient, da hastigheden af en partikel (bølgepakke) er forskellig på de to sider af x=0. Dette ønskes ikke diskuteret her.

Opgave 6

Knudesætningen: Lad ψ_1 og ψ_2 være to løsninger til den stationære Schrödingerligning:

$$\hat{H}\psi_1 = E_1\psi_1; \qquad \qquad \hat{H}\psi_2 = E_2\psi_2,$$

med $E_1 < E_2$. Der gælder da, at ψ_2 har mindst et nulpunkt mere end ψ_1 .

Bevis: Lad a og b være to på hinanden følgende nulpunkter for ψ_1 (a < b; evt. kan gælde $a = -\infty$, og/eller $b = +\infty$).

Vi vil vise, at ψ_2 nødvendigvis må have et nulpunkt i]a,b[. Det gøres ved et modstridsargument: antag $\psi_2(x) > 0$ for alle $x \in]a,b[$. Antag endvidere, at $\psi_1(x) > 0$ for $x \in]a,b[$, hvorfor $\psi_1'(a) \geq 0$ og $\psi_1'(b) \leq 0$.

- 1. Lav en skitse, der viser disse fortegnsantagelser...
- 2. Betragt Wronskideterminanten:

$$W(x) = \begin{vmatrix} \psi_1(x) & \psi_1'(x) \\ \psi_2(x) & \psi_2'(x) \end{vmatrix}$$

Vis, at

$$\frac{d}{dx}W(x) = -\frac{2m}{\hbar^2}(E_2 - E_1)\psi_1(x)\psi_2(x).$$

- 3. W er altså monotont aftagende, men hvad er W(b) W(a)?
- 4. Overvej nu, at modstriden er etableret, og knudesætningen dermed vist.
- 5. Overvej dog lige, at de ovennævnte fortegnsantagelser ikke udgør nogen form for indskrænkning (vi kunne lige så godt have argumenteret med $\psi_1(x) > 0$ og $\psi_2(x) < 0$, f. eks.).
- 6. Overvej, at der ikke i energispektret (dvs. de fundne egenenergier) for den uendelige potentialbrønd samt den harmoniske oscillator er plads til flere egenværdier, end dem vi fandt i G[2.27] og G[2.61].