Trabajo Práctico: Estadística Actuarial

Alumnos: Malena Irisarri, Román Landa

Rosario, Argentina 10 de Mayo de 2025

Introducción

En el sector asegurador, garantizar la solvencia financiera es fundamental para cumplir con las obligaciones frente a los asegurados y mantener la estabilidad de la compañía. En este contexto, el Margen de Solvencia Mínimo (MSM) emerge como un indicador clave que asegura la capacidad de la aseguradora para afrontar siniestros inesperados, incluso en escenarios adversos.

Para este trabajo, se analizará la sub-cartera de pólizas de seguros automotores de una compañía, compuesta por 25.615 pólizas, con el objetivo de determinar el MSM que permita alcanzar una Probabilidad de Solvencia del 99% durante el año 2024. El análisis se basará en datos históricos de siniestros de los años 2021, 2022 y 2023, considerando ajustes por inflación mediante la serie CER publicado en Banco Central de la República Argentina (BCRA). Adicionalmente, se explorarán diferentes distribuciones de probabilidad, para modelar el comportamiento de los siniestros y se probarán distintos recargos de seguridad sobre las primas puras.

Este informe presentará alternativas para el cálculo del MSM bajo el importante supuesto de que **durante** el año 2024, la cantidad de pólizas y el perfil de las mismas, no cambiará. El objetivo final es asegurar la estabilidad financiera y cumplir con los requisitos regulatorios de la Superintendencia de Seguros de la Nación (SSN).

Datos

Contamos con una base de datos que contiene 3431 cuantías pagadas durante el año 2023. A ellas les aplicamos la actualización por CER llevando todos los valores al día 01-01-2024 para poder compararlos aplicando:

Cuantia Actualizada
_i = Cuantia Original__i ×
$$\frac{\text{CER}_{01/01/2024}}{\text{CER}_i}$$

Table 1: Cuantías Pagadas en 2023.

Fecha	Cuantía	Valor CER	Cuantía Actualizada
2023-01-02	70939	73.7253	178636.7
2023-01-02	107871	73.7253	271637.9
2023-01-02	148775	73.7253	374641.3
2023-01-02	167011	73.7253	420562.7
2023-01-02	180152	73.7253	453654.0
2023-01-02	220063	73.7253	554156.8
2023-01-02	248064	73.7253	624668.2
2023-01-02	269251	73.7253	678020.7
2023-01-03	78566	73.8392	197537.6
2023-01-03	79646	73.8392	200253.1

Análisis Descriptivo

Realizamos un breve análisis descriptivo para observar cuál fue la frecuencia y la severidad durante 2023.

Distribución de las cuantías actualizadas (severidad)

En estos gráficos podemos observar que la frecuencia parece constante a lo largo del periodo de análisis y que la severidad parece distribuirse de forma asimétrica con muchos siniestros pequeños y algunos pocos de gran importe.

Además, podemos ver que al menos el 50% de los siniestros le costaron menos de \$ 417.603,40.- a la compañia y que el costo medio de los mismos fue de \$ 454.566,30.- con un desvio estandar de \$ 233.500,60.-

Simulaciones

Para predecir el monto esperado de siniestros y calcular el margen de solvencia, simularemos la frecuencia (número de siniestros) y la severidad (monto por siniestro), probando distintas combinaciones de distribuciones.

Comenzamos analizando qué distribución se ajusta mejor a nuestra severidad observada.

El siguiente gráfico compara los datos reales con las distribuciones candidatas (Log-Normal, Weibull, Pareto y Burr):

Optamos por una distribución Binomial Negativa para la frecuencia de siniestros por ser el caso más general para representar lo observado, ya que esta cubre los casos donde la variancia supera a la esperanza, situación frecuente en seguros de automóviles.

Para las cuantías individuales de los siniestros, seleccionamos las dos distribuciones de cola pesada que muestran el mejor ajuste a nuestros datos: la Log-Normal, que modela adecuadamente la asimetría positiva y la Burr que captura diversos patrones de severidad, incluyendo eventos extremos.

La estimación de parámetros para ambos modelos se hacen durante el ajuste de los mismos por el método de *máxima verosimilitud* y los resutados fueron:

• Binomial Negativa: $\hat{\mu} = 3392,71$ y $\hat{\theta} = 143,89$

• Log Normal: $log(\mu) = 12,95$ y $log(\sigma) = 0,3617$

• Burr: $\hat{\alpha} = 1,08, \, \hat{\gamma} = 4,68 \text{ y } \hat{\beta} = 426007,2$

Primero usamos datos históricos de los últimos 3 años: cuántas pólizas tuvimos y cuántos siniestros ocurrieron. Con eso, calculamos la tasa de siniestralidad promedio (es decir, qué proporción de pólizas termina en un siniestro).

Luego, como para el año que viene esperamos tener una cantidad similar de pólizas, usamos esa tasa promedio para estimar cuántos siniestros podríamos tener. Pero en lugar de usar siempre un número fijo, lo que hicimos fue simular la cantidad de siniestros usando una distribución **Binomial Negativa**. Una vez que teníamos una cantidad simulada de siniestros para un año dado, simulamos también cuánto costaría cada uno. Y para eso usamos dos tipos distintos de distribuciones: **Burr** y **Log Normal**. Estas distribuciones reflejan bien las asimetrias de las cuantias observadas.

Simulados 10.000 valores del costo total anual de las cuantias a pagar, analizamos cuál sería un escenario muy desfavorable (el peor 1% de los casos), y a partir de eso, calculamos el Margen de Seguridad Mínimo.

El margen de solvencia mínimo se calcula como la resta entre el valor que acumula una probabilidad del 99% en la distribución de la cuantia total (haciendo el supuseto de que la cuantia total se distribuyen Normal Power) y las primas totales a cobrar (las cuales pueden o no estar multiplicadas por un porcentaje de recargo).

Finalmente, presentamos los resultados recargando las primas en 1%, 1,5%, 2,5%, 5% o 10%.

Table 2: Estadísticas descriptivas de las cuantías anuales simuladas

Distribución	Media	Desvío.estándar	Asimetría	Percentil.95	Percentil.99
Lognormal	\$1.528.183.555,18	\$129.424.984,18	0,17	\$1.749.935.942,32	\$1.841.353.093,33
Burr	\$1.511.909.266,10	\$128.306.473,14	0,17	\$1.731.241.441,29	\$1.824.398.819,32

Nota: Valores expresados en pesos argentinos al 01/01/2024

Resultados

A continuación presentamos los márgenes de solvencia mínimos obtenidos mediante simulación para diferentes porcentajes de recargo de seguridad, comparando los resultados bajo los dos modelos de severidad considerados: Log-Normal y Burr. La tabla resume los valores requeridos para garantizar un 99% de probabilidad de solvencia, mostrando cómo varían las necesidades de capital según el porcentaje de recargo aplicado y la distribución utilizada.

Los montos están expresados en pesos argentinos y representan el capital adicional que la compañía debería mantener para cubrir posibles desviaciones adversas en su cartera de seguros automotores durante el año 2024.

Table 3: Margen de Solvencia Mínimo según porcentaje de recargo de seguridad

Porcentaje de Recargo de Seguridad	Margen de Solvencia Mínimo Log-Normal	Margen de Solvencia Mínimo Burr
1%	\$302.082.238	\$299.790.852
$1,\!5\%$	\$294.441.320	\$292.231.306
$2,\!5\%$	\$279.159.484	\$277.112.213
5%	\$240.954.896	\$239.314.481
10%	\$164.545.718	\$163.719.018

Nota: Valores expresados en pesos argentinos al 01/01/2024

En conclusión, observamos que a mayor recargo aplicado, menor es el capital que la compañía necesita reservar para garantizar su solvencia en el 99% de los escenarios posibles. Esta herramienta es ampliamente utilizada en la práctica actuarial, ya que permite dimensionar adecuadamente el riesgo. Sin embargo, es importante tener en cuenta que para atraer nuevos clientes es necesario ofrecer primas competitivas en relación con el resto del mercado. La determinación final de la prima que los productores comercializan surge, entonces, del equilibrio entre este análisis técnico, la presencia de marca y el contexto macroeconómico, entre otros factores.

Anexo

Se anexa el código utilizado.

```
library(readxl)
library(dplyr)
library(fitdistrplus)
library(actuar)
library(ggplot2)
library(lubridate)
library(e1071)
library(knitr)
library(kableExtra)
cuantias_23 <- read_excel("Trabajo Final 2024 Base de Datos .xlsx",</pre>
                         col_types = c("date", "numeric"))
cer23 <- read_excel("cer23.xlsx",</pre>
                   col_types = c("date", "numeric"))
cuantias_23 <- cuantias_23 %>%
 left_join(cer23, by = "Fecha")
cuantias 23 <- cuantias 23 %>%
 mutate(cuantia24 = `Cuantia` * (cer23$ValorCER[366]/ValorCER))
tabla_cunatia <- cuantias_23
colnames(tabla_cunatia) <- c('Fecha', 'Cuantía', 'Valor CER', 'Cuantía Actualizada')</pre>
head(tabla_cunatia, 10)%>%
  kbl(caption = "Tabla 1: Cuantías Pagadas en 2023.", align = "c") %>% # Añadir un título
  kable_styling(bootstrap_options = "striped", full_width = FALSE) %>%
 row_spec(0, background = "#66CDAA")
cuantias_23 <- cuantias_23 %>%
 mutate(mes = format(as.Date(Fecha), "%Y-%m"))
ggplot(cuantias_23, aes(x = mes)) +
  geom_bar(fill = "#66CDAA") +
  labs(title = "Cantidad de cuantías pagadas por mes (frecuencia)",
      x = "Mes",
      y = "Cantidad de pagos") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
####################
ggplot(cuantias_23, aes(x = cuantia24)) +
 geom_histogram(fill = "#66CDAA", bins = 60, color = "white") +
 labs(title = "Distribución de las cuantías actualizadas (severidad)",
```

```
x = "Cuantía Actualizada",
       y = "Frecuencia") +
  theme minimal()+
  coord cartesian(xlim = c(0, 2000000))
datos <- na.omit(cuantias_23$cuantia24)</pre>
# Ajustes
ajuste_lnorm <- fitdist(datos, "lnorm")</pre>
ajuste_weibull <- fitdist(datos, "weibull")</pre>
ajuste_burr <- fitdist(datos, "burr", start = list(shape1 = 2, shape2 = 2, rate = 2))</pre>
ajuste_pareto <- fitdist(datos, "pareto", start = list(shape = 2, scale = min(datos)))
ggplot(data.frame(x = datos), aes(x = x)) +
  geom_histogram(aes(y = after_stat(density)), bins = 50, fill = "#66CDAA", color = "black", alpha = 0.
  # --- Todas las líneas en tipo "solid" (continua) y tamaño 0.7 (más fino) ---
  stat_function(fun = dlnorm,
                args = list(meanlog = ajuste_lnorm$estimate["meanlog"],
                            sdlog = ajuste_lnorm$estimate["sdlog"]),
                aes(color = "Log-normal", linetype = "Log-normal"),
                size = 0.7) + # Más fina
  stat_function(fun = dweibull,
                args = list(shape = ajuste_weibull$estimate["shape"],
                            scale = ajuste_weibull$estimate["scale"]),
                aes(color = "Weibull", linetype = "Weibull"),
                size = 0.7) + # Más fina
  stat_function(fun = dburr,
                args = list(shape1 = ajuste_burr$estimate["shape1"],
                            shape2 = ajuste_burr$estimate["shape2"],
                            rate = ajuste_burr$estimate["rate"]),
                aes(color = "Burr", linetype = "Burr"),
                size = 0.7) + # Más fina
  stat_function(fun = dpareto,
                args = list(shape = ajuste_pareto$estimate["shape"],
                            scale = ajuste_pareto$estimate["scale"]),
                aes(color = "Pareto", linetype = "Pareto"),
                size = 0.7) + # Más fina
  # --- Personalización de colores y tipos de línea en la leyenda ---
  scale_color_manual(name = "Distribución",
                     values = c("Log-normal" = "darkblue",
                                 "Weibull" = "#5F9EA0",
                                 "Burr" = "#8B0A50",
                                "Pareto" = "#CD5555")) +
  scale_linetype_manual(name = "Distribución",
                        values = c("Log-normal" = "solid", # Todas "solid"
                                   "Weibull" = "solid",
                                   "Burr" = "solid".
                                    "Pareto" = "solid")) +
  # --- Formato del Eje X ---
```

```
scale_x_continuous(labels = scales::number_format(big.mark = ".", decimal.mark = ",", accuracy = 1))
  labs(title = "Ajuste de distribuciones a las cuantías",
       x = "Valor de las Cuantías",
       v = "Densidad") +
  theme_minimal() +
  theme(legend.position = "right",
        legend.title = element_text(face = "bold"),
        legend.text = element text(size = 10),
        axis.title.y = element_blank(), # Elimina el título del eje Y
        axis.text.y = element_blank(), # Elimina los números/etiquetas del eje Y
        axis.ticks.y = element_blank(), # Elimina las marcas del eje Y
        axis.line.y = element_blank() # Elimina la linea del eje Y)
   )+
  coord_cartesian(xlim = c(0, 2500000))
# Cant sinistros
## Binomial negativa
# Datos históricos
polizas <- c(24752, 25348, 25615)
siniestros \leftarrow c(3023, 3581, 3431)
tasas <- siniestros / polizas # Tasa siniestral por año
tasa_prom <- mean(tasas) # Media de la tasa siniestral
polizas_2024 <- 25615 # Simulación para 25615 pólizas
mu <- tasa_prom * polizas_2024</pre>
var siniestros <- var(siniestros)</pre>
size <- mu^2 / (var_siniestros - mu)</pre>
# Simular 1000 observaciones de siniestros
set.seed(1511)# Cantidad de años a simular
# Cantidad de años a simular
n_sim <- 10000
# Vectores para quardar resultados
suma_burr <- numeric(n_sim)</pre>
suma_lnorm <- numeric(n_sim)</pre>
# Simulación año por año
for (i in 1:n_sim) {
  # Simular cantidad de siniestros
  cantidad <- rnbinom(1, mu = mu, size = size)</pre>
  # Simular severidades y sumar
  if (cantidad > 0) {
    burr_vals <- rburr(cantidad,</pre>
                       shape1 = ajuste_burr$estimate["shape1"],
                       shape2 = ajuste_burr$estimate["shape2"],
                       rate = ajuste_burr$estimate["rate"])
    lnorm_vals <- rlnorm(cantidad,</pre>
                         meanlog = ajuste_lnorm$estimate["meanlog"],
```

```
= ajuste_lnorm$estimate["sdlog"])
                            sdlog
    suma_burr[i] <- sum(burr_vals)</pre>
    suma_lnorm[i] <- sum(lnorm_vals)</pre>
  } else {
    suma_burr[i] <- 0</pre>
    suma_lnorm[i] <- 0</pre>
  }
}
# Resultado final como data.frame
resultados <- data.frame(lognormal = suma_lnorm,
                            burr = suma_burr)
media <- mean(resultados$lognormal)</pre>
desvio <- sd(resultados$lognormal)</pre>
coef_asimetria <- skewness(resultados$lognormal)</pre>
z_{99} \leftarrow qnorm(0.99, 0, 1)
y_{99} \leftarrow z_{99} + coef_asimetria/6 * (z_{99^2-1})
y \leftarrow y_99* desvio + media
MSM_1porc <- y-(media*1.01)</pre>
MSM_1.5porc <- y-(media*1.015)
MSM_2porc <- y-(media*1.02)
MSM_log <- c(MSM_1porc, MSM_1.5porc, MSM_2porc)</pre>
media_burr <- mean(resultados$burr)</pre>
desvio_burr <- sd(resultados$burr)</pre>
coef_asimetria_burr <- skewness(resultados$burr)</pre>
z_99 \leftarrow qnorm(0.99, 0, 1)
y_{99} \leftarrow z_{99} + coef_asimetria_burr/6 * (z_{99}^2-1)
y <- y_99* desvio_burr + media_burr
MSM_1porc_burr <- y-(media_burr*1.01)</pre>
MSM_1.5porc_burr <- y-(media_burr*1.015)</pre>
MSM_2porc_burr <- y-(media_burr*1.02)</pre>
MSM_burr <- c(MSM_1porc_burr, MSM_1.5porc_burr, MSM_2porc_burr)</pre>
library(e1071) # para skewness
# Cálculo de estadísticas
stats <- resultados %>%
  summarise(
    media_log = mean(lognormal),
    sd_log = sd(lognormal),
    skew_log = skewness(lognormal),
```

```
p50_log = quantile(lognormal, 0.50),
   p75 log = quantile(lognormal, 0.75),
   p90_log = quantile(lognormal, 0.90),
   p95_log = quantile(lognormal, 0.95),
   p99_log = quantile(lognormal, 0.99),
   media_burr = mean(burr),
   sd burr = sd(burr),
   skew burr = skewness(burr),
   p50_burr = quantile(burr, 0.50),
   p75_burr = quantile(burr, 0.75),
   p90_burr = quantile(burr, 0.90),
   p95 burr = quantile(burr, 0.95),
   p99_burr = quantile(burr, 0.99)
# Convertir a formato largo para graficar
resultados_long <- resultados %>%
  tidyr::pivot_longer(cols = everything(), names_to = "distribucion", values_to = "cuantia_total")
library(scales) # para label_number
ggplot(resultados_long, aes(x = cuantia_total, fill = distribucion)) +
  geom_histogram(alpha = 0.6, position = "identity", bins = 100) +
  geom_vline(data = stats, aes(xintercept = media_log), color = "#2BAF9D", linetype = "dashed") +
  geom_vline(data = stats, aes(xintercept = media_burr), color = "#A870B4", linetype = "dashed") +
   title = "Distribución de cuantías totales simuladas",
   x = "Cuantía total anual (en miles de millones)",
   y = "Frecuencia",
   fill = "Distribución"
  ) +
  scale_x_continuous(
   labels = label_number(scale = 1e-9, suffix = " mil M", accuracy = 0.1)
  ) +
  scale_fill_manual(values = c("lognormal" = "#2BAF9D", "burr" = "#A870B4")) +
  theme_minimal()
# Reorganizar tabla
tabla1 <- data.frame(</pre>
  Distribución = c("Lognormal", "Burr"),
 Media = round(c(stats$media_log, stats$media_burr), 2),
  `Desvio estándar` = round(c(stats$sd_log, stats$sd_burr), 2),
  `Asimetría` = round(c(stats$skew_log, stats$skew_burr), 2),
 `Percentil 95` = round(c(stats$p95_log, stats$p95_burr), 2),
 `Percentil 99` = round(c(stats$p99_log, stats$p99_burr), 2)
# Mostrar tabla en formato LaTeX
tabla1 %>%
  kbl(caption = "Estadísticas descriptivas de las cuantías anuales simuladas",
     align = "c",
     format = "latex",
```

```
booktabs = TRUE,
     linesep = "") %>%
  kable_styling(latex_options = c("striped", "hold_position", "scale_down"),
               full width = FALSE,
               position = "center",
               font_size = 10) %>%
 row_spec(0, background = "#66CDAA", bold = TRUE, color = "black") %>%
  column_spec(1, width = "4cm") %>%
  column_spec(2:10, width = "3cm") %>%
  footnote(general = "Nota: Valores expresados en pesos argentinos al 01/01/2024",
          general_title = "")
library(kableExtra)
library(knitr)
porc <- c("1%", "1,5%", "2%")
tabla1 <- data.frame(porc, MSM_log, MSM_burr)</pre>
colnames(tabla1) <- c("Porcentaje de Recargo de Seguridad", "Margen de Solvencia Mínimo Log-Normal", "Ma
tabla1$`Margen de Solvencia Mínimo Log-Normal` <-
  paste0("$", formatC(tabla1$`Margen de Solvencia Mínimo Log-Normal`,
                     big.mark = ".", format = "f", digits = 0))
tabla1$`Margen de Solvencia Mínimo Burr` <-
  paste0("$", formatC(tabla1$`Margen de Solvencia Mínimo Burr`,
                     big.mark = ".", format = "f", digits = 0))
tabla1 %>%
 kbl(caption = "Tabla 2: Margen de Solvencia Mínimo según porcentaje de recargo de seguridad.", align
 kable_styling(bootstrap_options = "striped", full_width = FALSE) %>%
 row_spec(0, background = "#66CDAA")
```