PROBLEMS 1

- 1-1 How much charge is represented by 6400 electrons?
- 1-2 An energy source forces a constant current of 2A for 10s to flow through a lightbulb. If 4.6 Kj is given off in the form of light and heat energy, calculate the voltage drop across the bulb.
- 1-3 How much energy does an 80 W electric bulb consume in three hours?
- 1-4 A device draws 10 A when connected to a 230 V line. How long does it take to consume 80 Kj?
- 1-5 The charge entering the positive terminal of an element is $q(t) = 10 \sin 4\pi t$ mC while the voltage across the element is $u(t) = 2 \cos 4\pi t$ V. a) Find the power to the element at t=0.3s; b) Calculate the energy delivered to the element between 0 and 0.8s.
- **1-6** A 12V car battery supported a current of 150 mA to a bulb. Calculate: a) the power absorbed by the bulb; the energy absorbed by the bulb over one interval of 30 minutes.
- 1-7 For the circuit below we know: $R_1=15\Omega$, $R_2=10\Omega$, $R_3=7\Omega$, $R_4=5\Omega$ and supplying voltage U=24V. Calculate: a) the equivalent resistance regarding the supplying terminals, R_e ; b) the total current absorbed by the resistances, I; c) the current through the resistance R_3 , I_3 ; d) the voltage on the resistance R_4 , U_{R4} ; the power dissipated in the resistance R_2 , P_{R2} .

Problem 1-7

1-8 For the circuit below we know: $R_1=10\Omega$, $R_2=9\Omega$, $R_3=15\Omega$, $R_4=10\Omega$ and supplying voltage U=60V. Calculate: a) the equivalent resistance regarding the supplying terminals, R_e ; b) the total current absorbed by the resistances, I; c) the current through the resistance R_2 , I_2 ; d) the voltage on the resistance R_3 , U_{R3} ; the power dissipated in the resistance R_4 , P_{R4} .

Problem 1-8

1-9 For the circuit below we know: $R_1=4\Omega$, $R_2=10\Omega$, $R_3=15\Omega$, $R_4=5\Omega$ and supplying voltage U=75V. Calculate: a) the equivalent resistance regarding the supplying terminals, R_e ; b) the total current absorbed by the resistances, I; c) the current through the resistance R_3 , I_3 ; d) the voltage on the resistance R_2 , U_{R2} ; the power dissipated in the resistance R_4 , P_{R4} .

Problem 1-9

1-10 For the circuit below we know: $R_1=5\Omega$, $R_2=3\Omega$, $R_3=2\Omega$, $R_4=1\Omega$, $R_5=3\Omega$, $R_6=3\Omega$ and supplying voltage U=30V. Calculate: a) the equivalent resistance regarding the supplying terminals, R_e ; b) the total current absorbed by the resistances, I; c) the current through the resistance R_3 , I_3 ; d) the voltage on the resistance R_4 , U_{R4} ; the power dissipated in the resistance R_5 , P_{R5} .

Problem 1-10

1-11 For the circuit below we know: $R_1=60\Omega$, $R_2=20\Omega$, $R_3=8\Omega$, $R_4=3\Omega$, $R_5=6\Omega$ and supplying voltage U=120V. Calculate: a) the equivalent resistance regarding the supplying terminals, R_e ; b) the total current absorbed by the resistances, I; c) the current through resistance R_4 , I_4 ; d) the voltage on resistance R_5 , U_{R5} ; the power dissipated in resistance R_2 , P_{R2} .

Problem 1-11

1-12 For the circuit below we know: $R_1=9\Omega$, $R_2=60\Omega$, $R_3=20\Omega$, $R_4=6\Omega$, $R_5=4\Omega$ and supplying voltage U=150V. Calculate: a) the equivalent resistance regarding the supplying terminals, R_e ; b) the total current absorbed by the resistances, I; c) the current through the resistance R_3 , I_3 ; d) the voltage on resistance R_5 , U_{R5} ; the power dissipated in resistance R_4 , P_{R4} .

Problem 1-12

1-13 Find the value of the equivalent resistance, R_{eq} , between terminals a and b, for the sub-circuit shown below.

Problem 1-13

1-14 Find the value of the equivalent resistance, R_{eq} , between terminals a and b, for the sub-circuit shown below.

Problem 1-14

1-15 Determine the voltage of source E, for the circuit below if the power dissipated in the $3\Omega s$ resistance is 48W.

Problem 1-15

1-16 Determine the current I_s generated by the current source in the circuit below if the power dissipated in the $4\Omega s$ resistance is 64W.

Problem 1-16

1-17 Determine the current I_s generated by the current source in the circuit below if the power dissipated in the $2\Omega s$ resistance is 32W.

Problem 1-17

1-18 Determine the voltage E generated by the voltage source in the circuit below if the current flow to the $3\Omega s$ resistance is I_0 =4A.

Problem 1-18

1-19 Determine the current I_s generated by the current source in the circuit below if the voltage drop on the $3\Omega s$ resistance is 12V.

Problem 1-19

1-20 Determine the voltage E generated by the voltage source in the circuit below if the power dissipated in the $4\Omega s$ resistance is 144W.

Problem 1-20

1-21 Determine the current I_s generated by the current source in the circuit below if the voltage drop on the $2\Omega s$ resistance is 4V.

Problem 1-21

1-22 For the circuit below we know: $C_1=3\mu F$, $C_2=9\mu F$, $C_3=6\mu F$ and the supplying voltage U=60V. Find: a) equivalent capacitance regarding the supplying voltage terminals, C_e ; b) total charge absorbed by the capacitors, Q_e ; c) voltage on the capacitor C_2 , U_{C2} ; d) charge on the capacitor C_1 ; e) energy of the capacitor C_3 , W_{C3} .

Problem 1-22

1-23 For the circuit below we know: $C_1=12\mu F$, $C_2=4\mu F$, $C_3=1\mu F$, $C_4=5\mu F$ and the supplying voltage U=24V. Find: a) equivalent capacitance regarding the supplying voltage terminals, C_e ; b) total charge absorbed by the capacitors, Q_e ; c) voltage on capacitor C_2 , U_{C2} ; d) charge on capacitor C_4 ; e) energy of capacitor C_3 , W_{C3} .

Problem 1-23

1-24 For the circuit below we know: $C_1=5\mu F$, $C_2=7\mu F$, $C_3=12\mu F$, $C_4=4\mu F$ and the supplying voltage U=20V. Find: a) equivalent capacitance regarding the supplying voltage terminals, C_e ; b) total charge absorbed by the capacitors, Q_e ; c) voltage on capacitor C_3 , U_{C3} ; d) charge on capacitor C_1 ; e) energy of capacitor C_4 , W_{C4} .

Problem 1-24

PROBLEMS 2

2-1 For the circuit below we know: $R_1=5\Omega$, $R_2=10\Omega$, $R_3=6\Omega$, $R_4=3\Omega$, $R_5=2\Omega$, $E_1=10V$, $E_2=5V$, $E_5=5V$. Identify the number of nodes and circuit branches and calculate the branch currents using: a) the Kirchhoff Laws; b) the nodal analysis; c) the mesh analysis. Calculate the generated and removed power in the circuit and verify the power conservation theorem.

Problem 2-1

2-2 For the circuit below we know: $R_1=2\Omega$, $R_2=2\Omega$, $R_3=6\Omega$, $R_4=2\Omega$, $E_1=12V$, $E_2=10V$, $E_3=6V$, $E_3=4A$. Identify the number of nodes and circuit branches and calculate the branch currents using: a) the Kirchhoff Laws; b) the nodal analysis; c) the mesh analysis. Calculate the generated and removed power in the circuit and verify the power conservation theorem.

Problem 2-2

2-3 For the circuit below we know: $R_1=2\Omega$, $R_2=2\Omega$, $R_3=6\Omega$, $R_4=2\Omega$, $E_1=12V$, $E_2=10V$, $E_3=6V$, $E_5=10V$. Identity the number of nodes and circuit branches and calculate the branch currents using: a) the Kirchhoff Laws; b) the nodal analysis; c) the mesh analysis. Calculate the generated and removed power in the circuit and verify the power conservation theorem.

Problem 2-3

2-4 Find the currents I_1 , I_2 , I_3 for the circuit below and verify the power conservation theorem.

Problem 2-4

2-5 For the circuit below calculate the dissipated power in the 8Ω 's resistance.

Problem 2-5

2-6 Find the currents I, I_0 , I_1 for the circuit below and verify the power conservation theorem.

Problem 2-6

2-7 Find the currents I_1 , I_2 , I_3 for the circuit below and verify the power conservation theorem.

Problem 2-7

2-8 Find the currents I, I_1 , I_2 , I_0 for the circuit below and verify the power conservation theorem.

Problem 2-8

2-9 Find the currents I_1 for the circuit below and verify the power conservation theorem.

Problem 2-9

2-10 Find the currents I_X for the circuit below and verify the power conservation theorem.

Problem 2-10

2-11 Find the currents I_0 , I_1 , I_2 for the circuit below and verify the power conservation theorem.

Problem 2-11

2-12 Find the currents I_0 , I_1 , I_2 , I for the circuit below and verify the power conservation theorem.

Problem 2-12

2-13 Find the currents I_0 , I_1 , I_2 for the circuit below and verify the power conservation theorem.

Problem 2-13

2-14 Find the currents I_0 , I_1 , I_2 , I_3 , I for the circuit below and verify the power conservation theorem.

Problem 2-14

2-15 Find the currents I_0 , I_1 , I_2 , I for the circuit below and verify the power conservation theorem.

Problem 2-15

2-16 Suppress all the sources in the circuit below and calculate the equivalent resistance, R_{eq} , regarding to the terminals a and b.

Problem 2-16

2-17 Suppress all the sources in the circuit below and calculate the equivalent resistance, R_{eq} , regarding to the terminals a and b.

Problem 2-17

2-18 Suppress all the sources in the circuit below and calculate the equivalent resistance, R_{eq} , regarding to the terminals a and b.

Problem 2-18

2-19 Suppress all the sources in the circuit below and calculate the equivalent resistance, R_{eq} , regarding to the terminals a and b.

Problem 2-19

2-20 Suppress all the sources in the circuit below and calculate the equivalent resistance, R_{eq} , regarding to the terminals a and b.

Problem 2-20

2-21 Determine the Thevenin equivalent circuit (R_{eq} , U_0), viewed by the resistance R for the circuit below. Find the current I through the resistance R. Circuit parameters: E=15V, $R1=220\Omega$, $R2=150\Omega$, $R3=R4=R=100\Omega$.

Problem 2-21

2-22 Determine the Thevenin equivalent circuit (R_{eq} , U_0), viewed by the 7Ω s resistance (terminals a and b) for the circuit below. Find the current I through the 7Ω s resistance.

Problem 2-22

2-23 Determine the Thevenin equivalent circuit (R_{eq} , U_0), viewed by the $10\Omega s$ resistance (terminals a and b) for the circuit below. Find the current I through the $10\Omega s$ resistance.

Problem 2-23

2-24 Determine the Thevenin equivalent circuit (R_{eq} , U_0), viewed by the $I\Omega$ s resistance (terminals a and b) for the circuit below. Find the current I through the $I\Omega$ s resistance.

Problem 2-24

2-25 Determine the Thevenin equivalent circuit (R_{eq} , U_0), viewed by the 3Ω s resistance (terminals a and b) for the circuit below. Find the current I through the 3Ω s resistance.

Problem 2-25

2-26 Determine the Thevenin equivalent circuit (R_{eq} , U_0), viewed by the 10Ω 's resistance (terminals a and b) for the circuit below. Find the current I through the 10Ω 's resistance.

Problem 2-26

2-27 Determine the Thevenin equivalent circuit (R_{eq} , U_0), viewed by the 10Ω 's resistance (terminals a and b) for the circuit below. Find the current I through the 10Ω 's resistance.

Problem 2-27

2-28 Determine the Thevenin equivalent circuit (R_{eq} , U_0), viewed by the 4.8 Ω 's resistance (terminals a and b) for the circuit below. Find the current I through the 4.8 Ω 's resistance.

Problem 2-28

2-29 Determine the Thevenin equivalent circuit (R_{eq} , U_0), viewed by the 6Ω 's resistance (terminals a and b) for the circuit below. Find the current I through the 6Ω 's resistance.

Problem 2-29

2-30 For the circuit below, determine: a) the currents in the circuit; b) the current I_2 using the Thevenin's theorem; the voltage on the 5Ω 's resistance, U_{12} . Verify the power conservation theorem.

Problem 2-30

2-31 For the circuit below, use the nodal analysis to calculate the potential of the nodes. Find the currents in the circuit. The circuit parameters are: $R_1=R_4=4\Omega,\,R_2=2\Omega,\,R_3=6\Omega,\,R_5=3\Omega,\,R_s=10\Omega,\,E_1=E_3=6V,\,E_4=3V,\,E_5=4V,\,I_s=2A.$

Problem 2-31

2-32 For the circuit below, use the nodal analysis to calculate the potential of the nodes. Find the currents in the circuit.

Problem 2-32

2-33 For the circuit below, use the nodal analysis to calculate the potential of the nodes. Find the currents in the circuit.

Problem 2-33

2-34 For the circuit below, use the nodal analysis to calculate the potential of the nodes. Find the currents in the circuit.

Problem 2-34

2-35 For the circuit below, calculate the voltage U using: a) Norton's theorem; b) the nodal analysis. Calculate the current I using Thevenin's theorem.

Problem 2-35

2-36 For the circuit below, calculate the currents through the circuit using: a) the Kirchhoff laws; b) the nodal analysis; c) the mesh analysis. Verify the current I by using Thevenin's theorem. Verify the power conservation theorem.

Problem 2-36

2-37 For the circuit below, calculate: a) the current i_5 using the Thevenin's theorem; the voltage U_5 using Norton's theorem.

Problem 2-37

2-38 For the circuit below, use the nodal analysis to calculate the potential of the nodes. Find the currents in the circuit.

Problem 2-38

Problem 2-39

2-40 For the circuit below, use the mesh analysis to find the currents in the circuit.

Problem 2-40

2-41 For the circuit below, determine the value of the resistance R which will absorb the greatest power from the circuit.

Problem 2-41

2-42 For the circuit below, use the mesh analysis to find the currents in the circuit

Problem 2-42

2-43 For the circuit below, use the mesh analysis to find the currents in the circuit

Problem 2-43

2-44 For the circuit below, use the mesh analysis to find the currents in the circuit.

Problem 2-44

PROBLEMS 3

- 3-1 Given the sinusoid 10 $\sin(10\pi t 45^0)$, calculate its amplitude, rms value, angular frequency, period, frequency and phase angle.
- 3-2 Find the phase angle between $u_1(t) = 200\sqrt{2} \sin(5t + 30^0)$ and $u_2(t) = 50 \cos(5t)$. Does u_1 leads or lags u_2 ?
- 3-3 Find the phase angle between $i_1(t) = -4 \sin(417t + 30^0)$ and $i_2(t) = -7 \cos(417t 35^0)$. Does i_1 leads or lags i_2 ?
- 3-4 Given $i_1(t) = 2\sqrt{2} \sin(\omega t + 45^0) A$ and $i_2(t) = 2\sqrt{2} \cos(\omega t 45^0) A$, find their sum $i(t) = i_1(t) + i_2(t)$.
- 3-5 Given $u_1(t) = 20\sqrt{2} \sin(\omega t + 45^0) V$ and $u_2(t) = -10\sqrt{2} \cos(\omega t 30^0) V$, find their sum $u(t) = u_1(t) + u_2(t)$.
- 3-6 Find the sinusoids corresponding to these phasors: a) $\underline{U} = -10 e^{j30^{\circ}} V$; b) $\underline{I} = 2\sqrt{2}(\cos 45^{\circ} j\sin 45^{\circ}) A$; c) $\underline{I} = j(5 j12) A$.
- **3-7** Using the phasor approach, determine the current i(t) in a circuit described by the integrodifferential equation

$$4i(t) + 8 \int i(t)dt - 3\frac{di(t)}{dt} = 50 \sqrt{2}\sin(2t + 75^{0}).$$

3-8 Find the voltage u(t) in a circuit described by the integrodifferential equation

$$2\sqrt{2} \frac{du(t)}{dt} + 5\sqrt{2} u(t) + 10\sqrt{2} \int u(t)dt = 50\sqrt{2} \sin(5t - 30^{\circ})$$

using the phasor approach.

3-9 Find the circuit current, i(t), and capacitor-voltage, $u_C(t)$, for the circuit below.

Problem 3-9

3-10 Find the circuit current, i(t), and the inductance-voltage, $u_L(t)$, for the circuit below.

Problem 3-10

- 3-11 Through a circuit branch, a sinusoidal current at t=0, has i(0)=5A, and at $t_1=2.5$ ms reaches the peak value. If the sinusoidal period is T=20 ms, find: a) the phase angle of the current; b) the instantaneous form of the sinusoidal current.
- 3-12 The sinusoidal current in the circuit below, has 50Hz frequency and the peak value $i_m=2.82A$. Calculate the instantaneous value of the supplying voltage and the instantaneous value of the capacitance-voltage, when $R=200\Omega$ and $C=15.9~\mu F$. The current phase angle will be considered zero.

Problem 3-12

3-13 In the circuit below we know $R = 20\Omega$ and L = 200 mH. If the voltage in the inductor is $u_L(t) = 200 \sin(314t - 60^0)$ V, find: a) the instantaneous value of the current, i(t); b) the instantaneous value of the supplying voltage, u(t).

Problem 3-13

3-14 The circuit parameters for the RLC series circuit below are $R=20\Omega$, L=40mH, $C=50\mu F$, and the supplying voltage: $u(t)=200 \sin(1000t-30^0) V$. Calculate: a) the inductive and capacitive reactances and the circuit impedance, X_L , X_C , Z_C ; b) the rms and the instantaneous value of the current, Z_C , Z_C , Z

Problem 3-14

- 3-15 For an RLC series circuit we know $R = 30\Omega$, $X_L = \omega L = 80\Omega$, $X_C = \frac{1}{\omega C} 40\Omega$ and the supplying voltage $u(t) = 100 \sqrt{2} \sin(100\pi t 60^0) V$. Calculate: a) the impedance in phasor form and the circuit impedance, Z, Z; b) the rms and the instantaneous value of circuit current, I, i(t); c) the active, reactive and apparent power, P, Q, S. Verify the conservation of the active and the reactive power. Draw the circuit diagram.
- 3-16 For the circuit below we know $R = 10\Omega$, $X_L = \omega L = 5\Omega$, $X_C = \frac{1}{\omega C} = 15\Omega$ and the voltage $u_1(t) = 100 \sqrt{2} \sin 100\pi t V$. Find the output voltage, $u_2(t)$.

Problem 3-16

3-17 For the circuit below we know $\underline{Z}_1 = 3 + j4$, $\underline{Z}_2 = -j6$, $\underline{Z}_3 = 6 + j8$ and the rms current I = 2A. Find: a) the rms voltage on each impedance, U_1 , U_2 , U_3 ; the rms value of the supplying voltage, u(t); c) the active, reactive and apparent power, P, Q, S.

Problem 3-17

3-18 For the circuit below we know $R=10\Omega$, $L=\frac{3}{10\pi}H$, $C=\frac{1}{2.1\pi}mF$, and the supplying voltage: $u_e(t)=100\sqrt{2}\sin(100\pi t-60^0)$ V. Calculate: a) the equivalent impedance and the circuit impedance regarding the source terminals, Z, Z; b) the rms value of the current, I; c) the instantaneous value of the inductor-voltage, $u_L(t)$; d) the active, reactive and apparent power, P, Q, S. Verify the active and reactive power conservation.

Problem 3-18

Problem 3-19

Problem 3-20

3-21 Determine the rms value of current, I, and the instantaneous value of the voltage drop on the inductance L_2 , $u_{L2}(t)$, for the circuit below. The circuit parameters are: R_1 =15 Ω , R_2 =25 Ω , L_1 = L_2 =2H, L_{12} =M=1H, C=2mF, $u(t) = 100 \sqrt{2} \sin 10t$ (V).

Problem 3-21

3-22 Determine the instantaneous value of current, $i_I(t)$, and the rms output-voltage U_2 for the circuit below. The circuit parameters are: $R=40\Omega$, $X_{L1}=X_{L2}=60\Omega$, $X_M=30\Omega$, $X_C=20\Omega$ and the supplying voltage $u_1(t)=400\sin(500t-30^0)$ V.

Problem 3-22

3-23 For the circuit below we know: $R_1 = R_2 = 50\Omega$, $X_{L1} = \omega L_1 = 10\Omega$, $X_{L2} = \omega L_2 = 40\Omega$, $X_M = \omega M = 20\Omega$, $X_{C1} = \frac{1}{\omega C} = 30\Omega$, $X_{C2} = \frac{1}{\omega C} = 10\Omega$, and current $i_s(t) = 3\sqrt{2} \sin(100\pi t + 30^0) V$. Determine: a) the rms value of voltage on the inductor L_I , U_{LI} ; b) the instantaneous value of the outgoing voltage, $u_2(t)$.

Problem 3-23

3-24 For the circuit below find the circuit currents. Verify the active and reactive power conservation.

Problem 3-24

3-25 The voltage and the current absorbed by the sub-circuit below are: $u(t) = 200 \sqrt{2} \sin(500t - 30^0) V$ and $i(t) = 5 \sin(500t + 60^0) A$. Write the voltage and current phasor operator, \underline{U} , \underline{I} . Find the impedance phasor operator, \underline{Z} , the circuit impedance, Z, the active power, P, and the reactive power, Q, removed by the sub-circuit.

Problem 3-25

3-26 The terminals voltage and current absorbed by the sub-circuit below are: $u(t) = 100 \sin(100\pi t + 30^0) V$ and $i(t) = 2\cos 100\pi t$ A. Determine: a) the phasor form of the supplying voltage and current, \underline{U} , \underline{I} ; b) the phasor impedance and sub-circuit impedance, \underline{Z} , Z; b) the active, reactive and apparent power, P, Q, S.

Problem 3-26

3-27 Find the input impedance of the circuit below. Assume that the circuit operates at $\omega = 50 \frac{\text{rad}}{\text{s}}$.

Problem 3-27

3-28 For the circuit below find the equivalent impedance \underline{Z}_e , regarding the terminals a and b.

Problem 3-28

3-29 For the circuit below find the equivalent impedance \underline{Z}_e , regarding terminals a and b. The circuit parameters are $R=10\Omega$, $L=\frac{100}{\pi}mH$, $C=\frac{1}{\pi}mF$, and f=50Hz.

Problem 3-29

3-30 For the circuit below find the equivalent impedance \underline{Z}_e , regarding terminals a and b. The circuit parameters are $R_1=R_2=R_3=10\Omega$, $L_3=\frac{20}{\pi}mH$, $C_2=\frac{5}{\pi}mF$, and f=50Hz.

Problem 3-30

3-31 For the circuit below find the equivalent impedance \underline{Z}_e , regarding terminals a and b. The circuit parameters are $R=10\Omega$, $L=\frac{100}{\pi}$ mH, $C=\frac{1}{\pi}$ mF, and f=50Hz.

Problem 3-31

3-32 For the circuit below find the equivalent impedance \underline{Z}_e , regarding terminals a and b. The circuit parameters are $R_1=5\Omega$, $R_2=R_3=10\Omega$, $L_1=\frac{150}{\pi}mH$, $L_3=\frac{100}{\pi}mH$, $C_2=\frac{10^3}{\pi}\mu F$, and f=50Hz.

Problem 3-32

3-33 For the circuit below we know $\underline{Z}_1 = 10 + j40$, $\underline{Z}_2 = 20 - j20$, $\underline{Z}_1 = 20 + j20$ and rms current I = 4A. Find: a) the equivalent impedance regarding the source terminals; b) the rms and instantaneous value of supplying voltage, U_e , $u_e(t)$; the active, reactive and apparent power, P,Q, S.

Problem 3-33

3-34 Determine current $\underline{I_0}$ in the circuit below using the mesh analysis.

Problem 3-34

3-35 Determine current \underline{I}_0 in the circuit below using the mesh analysis.

Problem 3-35

3-36 For the circuit below we know: $R=9.3\Omega$, $L=100\mu H$, $C_1=1.2nF$, $C_2=820pF$, f=570KHz, $\underline{I}_S=3 e^{-j30}$. Using the loop analysis, determine currents \underline{I}_I and \underline{I}_2 .

Problem 3-36

3-37 For the circuit below find the potentials of the circuit nodes. Calculate the circuit currents.

Problem 3-37

3-38 For the circuit below find the potentials of the circuit nodes. Calculate the circuit currents.

Problem 3-38

3-39 For the circuit below find the potentials of the circuit nodes. Calculate the circuit currents.

Problem 3-39

3-40 For the circuit below find the potentials of circuit nodes. Calculate the circuit currents.

Problem 3-40

3-41 For the circuit below find the potentials of circuit nodes. Calculate the circuit currents.

Problem 3-41

3-42 Find $i_0(t)$ in the circuit below using nodal analysis.

Problem 3-42

3-43 For the circuit below determine the impedance value \underline{Z} which will absorb the greatest power from the circuit.

Problem 3-43

3-44 For the circuit below determine the impedance value \underline{Z} which will absorb the greatest power from the circuit.

Problem 3-44

3-45 For the circuit below determine the impedance value \underline{Z} which will absorb the greatest power from the circuit.

Problem 3-45

3-46 For the circuit below determine the impedance value \underline{Z} which will absorb the greatest power from the circuit.

Problem 3-46

3-47 For the circuit below determine the impedance value \underline{Z} which will absorb the greatest power from the circuit.

Problem 3-47

3-48 For the circuit below determine the impedance value \underline{Z} which will absorb the greatest power from the circuit.

Problem 3-48

3-49 For the circuit below determine the impedance value \underline{Z} which will absorb the greatest power from the circuit.

Problem 3-49

3-50 For the circuit below determine the impedance value \underline{Z} which will absorb the greatest power from the circuit.

Problem 3-50