STITE OF THE PROPERTY OF THE P

Università degli Studi di Verona, Facoltà di Scienze MM.FF.NN

Reti di Calcolatori, Prof. D. Carra, A.A. 2011/2012 Pre-Appello d'esame del 9 Gennaio 2012

- Scrivere **nome**, **cognome** e **numero di matricola** su ciascun foglio che si intende consegnare (non e' obbligatorio consegnare la brutta copia)
- I risultati verranno pubblicati sugli avvisi della pagina del corso Mercoledi 18 Gennaio dopo le 17
- La correzione dei temi d'esame può essere visionata durante la registrazione
- Orali (facoltativi) e registrazioni si terranno Giovedi 19 Gennaio alle 10.30 in aula A.

Domande sulla teoria (4 punti ciascuna)

Lo studente risponda in maniera concisa, ma precisa, alle seguenti domande riguardanti la parte teorica. E' necessario che lo studente ottenga almeno 7 punti (su un totale di 12 punti a disposizione). In caso contrario, gli esercizi non verranno considerati e il voto finale sarà insufficiente.

- 1. Si descriva, anche attraverso l'uso di pseudo codice commentato, l'algoritmo CSMA nella variante Collision Detection (CSMA-CD), indicando il motivo che ha portato all'introduzione di tale variante.
- 2. L'header IP contiene un campo di 16 bit denominato "Identification": si spieghi che cosa contiene tale campo e come viene utilizzato.
- 3. Si descriva la fase di chiusura della connessione nel TCP, indicando i messaggi scambiati e i principali campi dell'header utilizzati durante tale fase.

Esercizio 1 (7 punti)

Un Bridge è attestato contemporaneamente su due segmenti distinti di rete; sul segmento 1 c'e' una stazione, A, e sul segmento 2 ci sono due stazioni, B e C, (si veda la figura a fianco). Il Bridge è un particolare tipo di stazione che memorizza ciascuna trama che arriva da un segmento di rete e, una volta ricevuta completamente, la ritrasmette sull'altro segmento di rete (tale comportamento è valido, in modo indipendente l'uno dall'altro, in entrambi i sensi); le trame restano in memoria del Bridge fino a quando la trasmissione sull'altro segmento non è andata a buon fine.

Le stazioni e il Bridge utilizzano un protocollo CSMA 1-persistent. Le caratteristiche del sistema sono:

- velocità dei segmenti: 1.6 Mbit/s;
- lunghezza delle trame generate dalle stazioni: 200 byte;
- ritardo di propagazione pari ad 1 ms tra la stazione A e il bridge, pari a 2ms tra il bridge e la stazione B, e pari a 1 ms tra la stazione B e la stazione C;

Le stazioni generano le seguenti trame:

- stazione A: una trama (A1) all'istante tA1=704 msec e una trama (A2) all'istante tA2=720 msec, entrambe dirette a B;
- stazione B: una trama (B1) all'istante tB1=723 msec diretta a C;
- stazione C: una trama (C1) all'istante tC1=703 msec e una trama (C2) all'istante tC2=735 msec, entrambe dirette ad A;

In caso di collisione, si supponga che le stazioni decidono di ritrasmettere Z millisecondi <u>dopo</u> la fine della trasmissione della trama corrotta; il numero Z viene deciso secondo il seguente metodo:

- si attende un tempo pari a Z = Sc * N + T, dove
 - o Sc = somma delle cifre che compongono l'istante di inizio trasmissione
 - o N = numero di collisioni subite da quella trama
 - o T tempo di trama

ad esempio, se l'istante di inizio trasmissione è 418 msec, Z = (4+1+8)*N + T Determinare:

- 1. graficamente le trasmissioni delle diverse trame, indicando se avviene collisione, in quali istanti essa viene eventualmente avvertita e da quali apparati;
- 2. il periodo di vulnerabilità del sistema preso in considerazione.

Università degli Studi di Verona, Facoltà di Scienze MM.FF.NN

Reti di Calcolatori, Prof. D. Carra, A.A. 2011/2012 Pre-Appello d'esame del 9 Gennaio 2012

Esercizio 2 (7 punti)

Si consideri la rete rappresentata in Figura, collegata ad Internet attraverso il router X (router di default per la rete). Si hanno i seguenti vincoli:

- Le LAN 1, 2 e 3 devono poter contenere rispettivamente fino a 500, 1200 e 200 host;
- la LAN 2 ha come indirizzo di broadcast 89.136.63.255.

Tralasciando gli indirizzi del collegamento punto-punto tra i router R1 e $\mathbf{x}\cdot$

- Si specifichi il blocco CIDR più piccolo da assegnare alla rete nel rispetto dei vincoli citati;
- 2. Si assegnino gli indirizzi di rete e di broadcast alle LAN 1, 2 e 3, utilizzando il blocco CIDR individuato nel punto precedente.

Esercizio 3 (7 punti)

Un'applicazione A deve trasferire 85800 byte all'applicazione B utilizzando il protocollo TCP. Si supponga che la connessione tra A e B sia già stata instaurata. La trasmissione dei segmenti inizia al tempo t=0. Sono noti i seguenti parametri:

- MSS concordata pari a 1100 byte;
- RCVWND annunciata da B ad A pari a 17600 byte; a partire dal tempo $t_a>2.5$ la destinazione annuncia una RCVWND pari a 5500 byte; a partire dal tempo $t_b>3.5$ la destinazione annuncia una RCVWND pari a 22000 byte;
- SSTHRESH iniziale = RCVWND;
- CWND= 1 segmento a t=0;
- RTT pari a 0.5 secondi, costante per tutto il tempo di trasferimento;
- RTO base = 2*RTT; nel caso di perdite consecutive dello stesso segmento, i timeout seguenti raddoppiano fino ad un massimo di 4 volte il RTO base, dopodiché la connessione viene abbattuta;
- il tempo di trasmissione dei segmenti è trascurabile rispetto RTT;
- il ricevitore riscontra immediatamente i segmenti.

Inoltre si supponga che la rete vada fuori servizio nel seguente intervallo di tempo:

• da t_1 =4.5s a t_2 =5.5s;

Si tracci l'andamento della CWND nel tempo e si determini in particolare:

- 1. il valore finale di CWND (sia graficamente, sia esplicitandolo);
- 2. i valori assunti dalla SSTHRESH durante il trasferimento (graficamente);
- 3. il tempo necessario per il trasferimento dei dati (sia graficamente, sia esplicitandolo);
- 4. il numero di segmenti trasmessi ad ogni intervallo, specificando se ne vengono ricevuti i riscontri o meno (sia graficamente, sia esplicitando i valori).