CS 330 - Assignment 4

Question 1:

a. Optimal (OPT)

1	1	1	1	3	3	2	1	7					
	0	0	0	0	0	0	0	0					
		7	2	2	4	4	4	4					

b. Least recently used (LRU)

1	1	1	1	1	0	4	4	4	2	2	7	
	0	0	0	3	3	3	0	0	0	0	0	
		7	2	2	2	2	2	3	3	1	1	

c. Additional-reference-bits

1	2	2	3	3	4	4	2	2	7			
0	0	0	0	0	0	0	0	0	0			
7	7	1	1	2	2	3	3	1	1			

d. Clock (Second-chance)

]	1	1	1	0	4	4	4	2	2	7		
()	0	3	3	3	0	0	0	0	0		
7	7	2	2	2	2	2	3	3	1	1		

e. Enhanced second-chance

1	1	1	0	4	0	0	0				
0	0	3	3	3	3	1	1				
7	2	2	2	2	2	2	7				

Question 2:

- a. 32 MBs = 32 * 1024 * 1024 bytes = $2 ^2 = 25$ bits length of the virtual address.
- b. $256 \text{ KBs} = 256 * 1024 \text{ bytes} = 2 ^ 18 = > 18 \text{ bits length of the physical address.}$
- c. The size of a page is 512 bytes = $2 ^9 = 9$ bits length of the offset into a page or frame.
- d. Number of pages = 32 * 1024 * 1024 / 512 = 2 $^{\circ}$ 16 ==> 16 bits length of the page number.

e. Number of page frames = 256 * 1024 / 512 = 512 frames.

Question 3:

a. effective memory access time = (1 - p) * memory access time + p * page fault time, where p is the probability of a page fault $(0 \le p \le 1)$.

=
$$(1 - p) * 125 \text{ ns} + p * 4500 000 \text{ ns}$$

= $125 \text{ ns} + 4,499,875p \text{ ns}$

- b. p = 1/1750 = 0.00057 ==> effective memory access time $\approx 2689.9 ns \approx 2.7 \mu s$
- c. effective memory access time is approximately 22 * 125 ==> the access time for a page not in memory is approximately 22 times that of a page already in memory.
- d. for performance degradation of no more than 8.5% = > no more than 125 ns + 10.625 ns

$$==> 125 \text{ ns} + 10.625 \text{ ns} > 125 \text{ ns} + 4,499875 \text{p ns}$$

$$==> 10.625 \text{ ns} > 4,499875 \text{p ns} ==> \text{p} < 0.00000236$$

e. No more than one memory access in 1/0.00000236 = 423,518 can cause a page fault.