Welcome to instats

The Session Will Begin Shortly

(At the top of the hour, Eastern USA time)

1

START

Nonlinear Time Series Analysis, Part I: Detecting Nonlinearity

Barney Ricca Lyda Hill Institute for Human Resilience University of Colorado Colorado Springs

3

Seminar Overview

- Day 1
 - Session 1: Introduction to Nonlinear Time Series (NTLS)
 - Session 2: Behaviors and State Spaces
- Day 2
 - Session 3: State Spaces (continued)
 - Session 4: Recurrences
- Dav 3
 - Session 5: Tests
 - Session 6: Singular Spectrum Analysis and Noise
- Day 4
 - Session 7: Surrogate Data
 - Session 8: Convergent Cross Mapping

The Challenge

Fig. 6.1 Time series exemplifying the range of possible explanations for volatile dynamics: (a) periodic cycling in the linear model; (b) aperiodic (nonrepeated) cycling created exogenously by randomly shocking the linear model; (c) aperiodic behaviour created by introducing nonstationarity into the linear model; (d) aperiodic cycling endogenous to nonlinear Lorenz equations.

5

Pre-process Data

- Background
 - Spectra
 - Eigenvalues and eigenvectors
- Singular spectrum analysis (SSA)
 - Separates some noise from signal
 - Separates some slow variations (e.g., some types of nonstationarity) from signal
- Filters the signal
 - Pushes data away from their original state

Spectra

- Oscillating behavior
 - Fourier: Sum of sines and cosines
 - Differential equations: Fourier plus decaying amplitude
- Mode
 - Oscillation frequency with decay rate
 - Complex number
 - Frequency = imaginary part
 - Decay rate = real part
- {Mode amplitudes} = Spectra
 - Phases: Each frequency has 2 components

7

Example: $x(t) = 2 \sin(t) + 3 \sin(2t)$

Time Domain

4

Frequency Domain

Example: Differential equation

$$m\ddot{x} + \beta \dot{x} + kx = 0$$

- Guess $x(t) = A \exp(\lambda t)$
 - Calculate \dot{x} and \ddot{x}
 - Plug in and solve the algebra (eigenvalue) equation $m\lambda^2 + \beta\lambda + k = 0$
- Solutions

$$\lambda = \frac{-\beta \pm}{2m} \pm \frac{\sqrt{\beta^2 - 4mk}}{2m}$$

9

Example: Differential equation

Solutions

$$\lambda = \frac{-\beta \pm}{2m} \pm \frac{\sqrt{\beta^2 - 4mk}}{2m}$$

- These are the modes of the system
- Real roots:
 - Decay/growth only
- Complex roots:
 - · First term gives decay rate
 - · Second term gives oscillation frequencies
- More details, but don't care about them here

Nonlinear Issue

- Frequencies get mixed
 - Duh...nonlinearity removes separability

• Secondary school trigonometry (Ugh)
$$sin^2(\theta) = \frac{1}{2}(1-\cos(2\theta))$$

- Spectra are only partially useful
 - Skip the details...don't need them

11

Matrices and Vectors

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix}$$

- Matrix multiplication takes the point (vector) $(x y)^T$ and transforms it to another point (x'y')T in the x-y plane.
 - Can do with *n* dimensions; conceptually the same
- · So what?

Eigenvalues and Eigenvectors

- There are special vectors, known as eigenvectors do not change their orientation when multiplied by the matrix
 - They are only stretched or shrunk by λ

$$\lambda \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

- Hence λ is an eigenvalue of the matrix and $(x y)^T$ is an eigenvector of the matrix.
 - One eigenvector-eigenvalue pair for each dimension (row) of the matrix
 - · Sort of...

13

Solving

$$\lambda \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\binom{0}{0} = \binom{a-\lambda}{c} \quad \frac{b}{d-\lambda} \binom{x}{y}$$

- Either the matrix or the vector must have a magnitude of zero
- Determinant allows us to find λ

So What?

- Depends upon what the matrix represents
- Jacobian (slopes): we get stability (and the direction hyperbolic features) for fixed points
- Modes of a (linear) differential equation: we get the characteristic frequencies of the solutions
 - Noise doesn't have a characteristic frequency
 - · Very low frequencies look like nonstationary (trend) behavior
 - · Remove these modes from the data to "clean" it

15

Singular Spectrum Analysis

- One of several approaches
 - · Detects structural variation
 - Doesn't impose assumptions
 - Separates signal (e.g., trend, oscillation, etc.) + noise
- Three steps
 - Matrix decomposition (SVD or Toeplitz)
 - Grouping (signal, trend, noise)
 - Time series reconstruction (without trend or noise)

SSA Benefits

- Filters noise
- Find slow-moving trends
 - · Eases nonsationarity somewhat
- Impute data
 - Ugh
 - · Can be better than other imputation methods
- Requires some learning of the diagnostics and choices
 - We'll do a lot in R.

17

Singular Value Decomposition SSA

- Embed the data
 - Delay = 1
 - Embedding dimension, K
 - Matrix dimensions: (K) x (N-K+1)
- Matrix Decomposition
 - Sum of matrices (mode frequency/decay, amplitude, "vector")
 - λ_i gives relative contribution of mode to the signal
- SSA calculations

Toeplitz SSA

- Embed the data
 - Delay = 1
 - Embedding dimension, K
 - Matrix dimensions: (K) x (N)
 - · Pad the series with zeroes
- Matrix Decomposition
 - Sum of matrices (mode frequency/decay, amplitude, "vector")
 - λ_{i} gives relative contribution of mode to the signal
- <u>SSA</u> calculations

19

Questions

21

Day 4 @ 1600 UTC

See you tomorrow (for most time zones)