1: Inverse method for Poissson Distribution (25%)

For discrete Poisson Distribution ($\lambda = 5$),

the p.m.f is $P(x|\lambda) = e^{-\lambda} \frac{\lambda^x}{x!}$ and the c.d.f is $F(x|\lambda) = \sum_{t \le x} e^{-\lambda} \frac{\lambda^t}{t!}$.

Algorithm: Inverse method for the Poisson Distribution:

To generate $X \sim F(x)$:

STEP 1: Generate $U \sim unif[0,1]$;

STEP 2: Transform $X = F^{-}(U)$: if $F(x|\lambda) < U \le F(x+1|\lambda)$, let X = x+1.

Plot:

Histogram of x_vec

Figure 1: Histogram of 5000 samples

2: Accept-Reject method for truncated Gamma Distribution (25%)

For
$$X \sim Gamma(\frac{1}{2}, 1)I(x \ge 5)$$
, $f(x) = \frac{x^{-\frac{1}{2}}e^{-x}I(x \ge 5)}{\int_{5}^{+\infty} y^{-\frac{1}{2}}e^{-y}dy}$.

We can define a shifted exponential distribution $g(x) = e^{-(x-5)}I(x \ge 5)$ and want to find a constant M such that f(x) < Mg(x) for any x.

Then
$$M = \sup \frac{f(x)}{g(x)} = \sup \frac{\frac{x^{-\frac{1}{2}}e^{-x}I(x \ge 5)}{\int_{5}^{+\infty}y^{-\frac{1}{2}}e^{-y}dy}}{e^{-(x-5)}I(x \ge 5)} = \frac{5^{-\frac{1}{2}}e^{-5}}{\int_{5}^{+\infty}y^{-\frac{1}{2}}e^{-y}dy}.$$

Algorithm: Accept-Reject method for truncated Gamma Distribution:

To generate $X \sim F(x) = \text{c.d.f of } f(x)$:

STEP 1: Generate $Y \sim g(y)$;

STEP 2: Generate $U \sim unif[0,1]$;

STEP 3: Accept X = Y if $U \leq \frac{f(Y)}{Ma(Y)}$.

Proof:

From the choice of constant M, we can know that $Mg(x) \ge f(x)$. The goal of this method is to generate $X \sim F(x) = \text{c.d.f}$ of f(x).

For the generating algorithm:

$$P(X \le x) = P(Y \le x | Y \text{ is accepted})$$

$$= P(Y \le x | U \le \frac{f(Y)}{Mg(Y)})$$

$$= \frac{P(Y \le x, U \le \frac{f(Y)}{Mg(Y)})}{P(U \le \frac{f(Y)}{Mg(Y)})}$$

$$= \frac{\int_{-\infty}^{x} g(y) \int_{0}^{\frac{f(y)}{Mg(y)}} 1 du dy}{\int_{-\infty}^{+\infty} g(y) \int_{0}^{\frac{f(y)}{Mg(y)}} 1 du dy}$$

$$= \frac{\int_{-\infty}^{x} g(y) \frac{f(y)}{Mg(y)} dy}{\int_{-\infty}^{+\infty} g(y) \frac{f(y)}{Mg(y)} dy}$$

$$= \frac{\int_{-\infty}^{x} f(y) dy}{\int_{-\infty}^{+\infty} f(y) dy}$$

$$= \frac{\int_{-\infty}^{x} f(y) dy}{1}$$

$$= F(x)$$

Therefore, this AR method works.

Comparison:

Theoretical acceptance probability:

$$\begin{split} P(U \leq \frac{f(Y)}{Mg(Y)}) &= \int_{-\infty}^{+\infty} g(y) \int_{0}^{\frac{f(y)}{Mg(y)}} 1 du dy \\ &= \frac{1}{M} \int_{-\infty}^{+\infty} f(y) dy \\ &= \frac{1}{M} \end{split}$$

After computation, M = 0.184157.

The actual acceptance rate is 0.1854.

Assignment2

STAT3006: Statistical Computing

ZHANG Xinfang (1155141566)

- **(2)**
- **(3)**