双液系实验报告

张锦程

2020年9月24日

1 实验目的

- 1. 用沸点仪测定在常压下环已烷一乙醇的气液平衡相图(要求测定组成和沸点)
- 2. 掌握阿贝折射仪的使用方法(重点要求测折射率,由此可知两相组成)

2 实验原理

两种挥发性液体组成的混合物,若该二组分的蒸气压不同,则溶液组成与其平衡气相的组成不同。此外, 沸点和组成的关系有下列三种:

- (a) 理想液体混合物或接近理想液体混合物的双液系,其液体混合物的沸点介于两纯物质沸点之间
- (b) 各组分蒸气压对拉乌尔定律产生很大的负偏差, 其溶液有最高恒沸点
- (c) 正偏差较大的, 其溶液有最低恒沸点

第 (b)、(c) 两类溶液在最高或最低恒沸点时的气液两相组成相同,加热蒸发的结果只使气相总量增加,气液相组成及溶液沸点保持不变,这时的温度称恒沸点。三种情况下的相图可表示如下:

图 1: 相图示例

本实验要求测定具有最低恒沸点的环己烷一乙醇双液系的 T-x 相图。方法是: 用沸点仪直接测定一系列不同组成溶液的气液平衡温度; 收集少量馏出液 (气相冷凝液) 及吸取少量溶液 (即液相),分别用阿贝折射仅测定其折射率,和事先已测定的已知组成的溶液折射率(折射率对组成的工作曲线)进行对比,得到成分。

3 实验操作 2

3 实验操作

3.1 操作步骤

1. 测定溶液的折射率:

用阿贝折射仪测定环己烷、无水乙醇以及由环已烷—乙醇组成的标准溶液的折射率,作折射率对组成的 工作曲线

2. 检查待测样品的浓度:

在加热之前,检查待测样品的浓度是否合适。若浓度不符合要求,则加环己烷或乙醇调节

3. 测定液相和气相组成:

测质量百分数为 10% 30% 70% 92% 96% 100%的环已烷一乙醇溶液在沸点下的液、气冷凝物质的折射率

3.2 测沸点操作

接电源,通冷却水,按要求调节调压器,加热溶液至沸腾。待其温度计上所指示的温度保持恒定后,读下该温度值,同时停止加热,并立即在小泡中取气相冷凝液,迅速测定其折射率,冷却液相,然后用滴管将溶液搅均后取少量液相测定其折射率。若认为数据不可靠,重复上述操作。注意:每次测量折射率后,要将折射仪的棱镜打开用希尔球吹干,以备下次测定用。

3.3 阿贝折射率使用方法

保证镜面清洁干燥,用滴管滴加数滴试样于辅助棱镜的毛镜面上,迅速合上辅助棱镜。转动镜筒使之垂直,调节反射镜使入射光进入棱镜,同时调节目镜的焦距,使目镜中十字线清晰明亮。调节消色散补偿器使目镜中彩色光带消失。再调节读数螺旋,使明暗的界面恰好同十字线交叉处重合。从读数望远镜中读出刻度盘上的折射率数值

4 实验结果讨论

4.1 数据处理过程

1. 记录原始数据:

环己烷一乙醇标准溶液每种组成对应的折射率;气液两相平衡时的沸点(t)、器外度数(n)、辅助温度计读数 (t_s) ;

2. 实验中处理:

由标准溶液组成与对应的折射率做组成-折射率工作曲线;由所测折射率得到实验中气相和液相的组成;由实验数据(温度可先不校正)绘制沸点一组成草图,根据图形决定补测若干点的数据

3. 实验后处理:

由 t, n, t_s 得到校正后的沸点(t');作环己烷—乙醇体系的沸点—组成图(得到相图),并求出最低恒沸点及相应的恒沸混合物的组成

4 实验结果讨论 3

4.2 原始数据

4.2.1 工作曲线

配置环己烷含量不同的若干溶液,同时测量其折射率数据如下表:

环己烷质量分数	0.1753	0.2994	0.4205	0.5505	0.7037	0.8504
折射率	1.3691	1.3764	1.384	1.3997	1.4105	1.4209

可作出工作曲线为 y = 1.1043x + 1.3535

图 2: 环己烷 - 乙醇工作曲线, 25℃

4.2.2 气液两相平衡时的沸点 - 气相液相成分

实验中可测得沸点数据和气液相的折射率,并将折射率数据由工作曲线换算为组分可得:

	纯环己烷	0.96 环己烷	0.9 环己烷	0.695 环己烷	0.3 环己烷	0.1 环己烷	纯乙醇
气相折射率	1.4365	1.4217	1.4185	1.4152	1.3991	1.3813	1.369
液相折射率	1.4365	1.4301	1.4258	1.4153	1.38	1.3718	1.3691
气相组成	1.0388	0.8536	0.8135	0.7722	0.5707	0.3479	0.1940
液相组成	1.0388	0.9587	0.9049	0.7735	0.3317	0.2290	0.1952
温度 (℃)	80.38	78.52	64.18	63.3	71.04	77.67	77.89

4 实验结果讨论 4

4.3 相图拟合

对取得的点进行多项式拟合得到合适的曲线,数据点和拟合图像如图所示

图 3: 相图拟合结果

观察图像可得最低恒沸点为 63.3 ℃,相应的恒沸混合物的组成为 69.5% 环己烷。

5 附录 5

5 附录

5.1 思考题

1. 使用阿贝折射仪时要注意些什么问题?如何正确使用才能测准数据?

使用时要注意保护棱镜,清洗时只能用擦镜纸;加试样时不可加得太多,防止样本触及镜面,阿贝折射仪不能测腐蚀性液体。

2. 收集气相冷凝液的小泡 D 的体积太大,对测量有何影响?

体积太大导致在开始加热时所收集到的液体无法得到有效的置换,使得收集到的液体不完全为沸点时的 气态组分,从而使得测量产生误差。

3. 平衡时,气液两相温度应该不应该一样?实际是否一样?怎样防止温度的差异?

理论上液相体系应当为平衡体系,测得的为平衡相图,所以温度应当一样;但是实际过程为非平衡过程,存在加热,当升温速率高时,会导致液相的温度较高,为了防止这样的差异应在接近沸腾时控制升温速度,要等温度恒定一段时间后再进行测量。

4. 沸腾之后,如何控制条件使温度稳定?

使温度稳定应通过调节电压来实现,保持适当的点压。电压不能过高,以免发生爆炸;但也不能过低,不 然可能会导致喷嘴流速过低,使温度计水银球处的温度出现波动,不够稳定,影响结果