Topology I

Course by Viktoryia Ozornova

Table des matières

1	Hor	nology Theories	2
2	Cor	astructing singular homology	6
\mathbf{L}	ist	of Theorems	
	1	Axiom (Eilenberg-Steenrod Axiom)	2
	2	Lemma	3
	4	Proposition	5
	5	Corollary	5
	6	Corollary (Brouwer fixed point theorem)	5
	7	Lemma	7
	1	Definition (Singular Chain Complex)	7
	8	Lemma	7
	9	Lemma	8
	2	Definition (Singular Homology)	8
	10	Lemma	8
	3	Definition (Singular chain complex of a pair)	9
	4		10
	19	Droposition	10

1 Homology Theories

Lecture 1: Introduction

Mon 10 Oct

Aim: Study further algebraic invariants of topological spaces. We want to assign to pairs of topological spaces abelian groups.

$$h_n: T \to Ab \quad \forall n \in \mathbb{Z}$$

and to pairs continuous maps, we want to assign a map $h_n(f): h_n(X) \to h_n(Y)$ which is functorial. Here T is the category of pairs of topological spaces $A \subset X$ with morphisms $f: (X, A) \to (Y, B)$ such that $f(A) \subset B$.

To relate h_n for different $n \in \mathbb{N}$, we will construct connecting morphisms $\partial_n : h_n(X,A) \to h_{n-1}(A,\emptyset)$.

Axiom 1 (Eilenberg-Steenrod Axiom)

A (generalised) homology theory consists of functors $h_n: T \to Ab$ and natural connecting homomorphisms $\partial_n: h_n(X, A) \to h_{n-1}(A, \emptyset)$ satisfying

- Homotopy invariance:
 - If $f, g: (X, A) \to (Y, B)$ are homotopic continous maps of pairs then the induced maps $h_n(f) = h_n(g)$. Here homotopy of pairs means that there exists $H: X \times [0, 1] \to Y$ such that $H(A \times [0, 1]) \subset B$
- Long exact sequence of a pair (LES) :

Given a pair of topological spaces (X, A) there is a long exact sequence of abelian groups.

Denote $i:(A,\emptyset)\to (X,\emptyset)$ and $j:(X,\emptyset)\to (X,A)$, then

$$h_n(A,\emptyset) \xrightarrow{h_n(i)} h_n(X,\emptyset) \xrightarrow{h_n(j)} h_n(X,A) \xrightarrow{\partial_n} h_{n-1}(A,\emptyset)$$

- Excision

Given $B \subset A \subset X$ subspaces such that $\overline{B} \subset A^o$, the inclusion induces a group isomorphism

$$h_n(X \setminus B, A \setminus B) \to h_n(X, A)$$

We add another axiom to "make things easier"

— Additivity:

Given a family of pairs of spaces $(X_i, A_i)_{i \in I}$, the inclusions induce an isomorphism

$$\bigoplus h_n(X_i, A_i) \to h_n(\coprod X_i, \coprod A_i)$$

This is the end of the axioms for a generalised homology theory, the homology theory is called an ordinary homology theory if the <u>Dimension Axiom</u> holds, namely

$$h_n(pt) = 0 \forall n \neq 0$$

^{1.} From now on, we write $h_n(A) := h_n(A, \emptyset)$

The abelian group $h_0(pt)$ is the called the coefficient group of (h_n, ∂_n)

Lemma 2

If $f: X \to Y$ is a homotopy equivalence, then $\forall n \in \mathbb{Z}$ we obtain $h_n(f): h_n(X) \to h_N(Y)$ to be an isomorphism for any homology theory (h_n, ∂_n)

Proof

Choose $g: Y \to X$ such that $g \circ f \simeq \operatorname{Id}_X$ and $f \circ g \simeq \operatorname{Id}_Y$, then by functoriality and homotopy invariance $\operatorname{Id}_{h_n(X)} = h_n(\operatorname{Id}_X) = h_n(g) \circ h_n(f)$, by symmetry, $h_n(f)$ and $h_n(g)$ are inverses.

Similarly, if $f:(X,A)\to (Y,B)$ is a homotopy equivalence of pairs, then the same result holds.

Example

For any such homology theory

$$h_n(\mathbb{R}^k) \simeq h_n(pt) \simeq h_n(D^k)$$

Lecture 2: Homology Theories

Wed 12 Oct

Recall that the natural homomorphisms ∂_n are natural, in the sense that the compositions

$$h_{n-1}(f) \circ \partial_n : h_n(X, A) \to h_{n-1}(A) \to h_{n-1}(B)$$

and

$$\partial_n \circ h_n(f) : h_n(X, A) \to h_n(Y, B) \to h_{n-1}(B)$$

coincide.

Today, we compute the homology groups $h_*(S^k)$ for $k \geq 0$ for a given ordinary homology theory h_* Here, the k-sphere is defined as a subspace of \mathbb{R}^{k+1} .

Recall from the exercises that $h_*(pt \coprod pt) = h_*(pt) \oplus h_*(pt)$ for ordinary homology theories concentrated in degree 0.

There are two maps $\pm: pt \to S^0$ and one natural map $S^0 \to pt$ called the "fold" map.

By functoriality, the composition $h_*(pt) \to h_*(S^0) \to h_*pt$ is the identity. To compute $h_*(S^k)$, we use two LES

$$\dots \xrightarrow{\partial_{n+1}} h_n(S^k) \xrightarrow{h_*\iota} h_n(D^{k+1}) = 0 \xrightarrow{h_*\iota} h_n(D^{k+1}, S^k) \to h_{n-1}(S^k) \to h_{n-1}(D^{k+1}) = 0 \dots$$

As $h_n(D^{k+1}) = 0$ for $n \neq 0$, we have an isomorphism $\partial_n : h_n(D^{k+1}, S^k) \to h_{n-1}(S^k)$.

The inclusion $D^k \subset S^k$ (as the upper hemisphere) gives rise to another LES

$$0 = h_n D^k \xrightarrow{h_* \iota} h_n S^k \xrightarrow{h_* \iota} h_n (S^k, D^k) \xrightarrow{\partial_n} h_{n-1} D^k = 0 \to h_{n-1} S^k \dots$$

And thus we also get an isomorphism $h_n\iota:h_nS^k\to h_{n-1}D^k$ The inclusion of the north pole $pt\subset D^k\subset S^k$ induces, using excision, the isomorphism $h_n(S^k\setminus pt,D^k\setminus pt)\simeq h_n(S^k,D^k)$ of the following diagram

$$h_n(D^k, S^{k-1}) \longleftarrow \cong h_n(S^k \setminus pt, D^k \setminus pt) \stackrel{\cong}{\longrightarrow} h_n(S^k, D^k)$$

$$\cong \partial_n \downarrow \qquad \qquad \downarrow \partial_n$$

$$h_{n-1}(S^{k-1}) \xrightarrow{h_{n-1}} h_{n-1}(D^k \setminus pt) \xrightarrow{} h_{n-1}(D^k)$$

We know that the bottom row of this diagram is an ES.

In particular $h_n(D^k, S^{k-1}) \simeq h_n(S^k, D^k)$.

The isomorphism $\partial_n: h_n(D^k, S^{k-1}) \to h_{n-1}(S^{k-1})$ now almost allows us to use induction to find the homology groups.

We now consider the case $n \in \{0,1\}$ (This part of the proof is not complete yet)

$$h_1(D^k) = 0 \to h_1 S^k \to h_1(S^k, D^k) \xrightarrow{\partial_1} h_0 D^k \to h_0 S^k \to h_0(S^k, D^k) \to h_{-1} D^k = 0$$

The case $n \in \{0,1\}$ gives a split short exact sequence

$$0 \to h_0 D^k \to h_0 S^k \to h_0 (S^k, D^k) \simeq h_0 (D^k, S^{k-1}) \to 0$$

The homotopy equivalence $pt\to D^k$ gives a split of this exact sequence $h_0S^k\to h_0pt\to h_0D^k$.

The boundary homomorphism $h_1(S^k, D^k) \to h_0 D_k$ being 0 using results from the exercise sheet.

Now by induction, $h_n S^k = 0$ for all n < 0 and $h_0 S^k = h_0(pt)$ for all k > 0. We also have that $h_n S^1 \simeq h_{n-1} S^0$ for $n \notin \{0, 1\}$.

What about h_1S^1 ?

$$h_1(D^1, S^0) \to h_1(S^1, D^1) \to h_0(D^1)$$

and

$$h_1(D^1, S^0) \to h_0 S^0 \to h_0(D^1)$$

Where the last morphism is induced by the fold map, namely $h_0S^0 = h_0pt \oplus h_0pt \to h_0(pt)$ and $(x,y) \mapsto x+y$.

We have

$$h_1D^1 \to h_1(D^1, S^0) \to h_0S^0 = h_0pt \oplus h_0pt \to h_0D^1$$

We were able to show isomorphisms $h_n S^k \simeq h_{n-1} S^{k-1}$ for $n \notin \{0,1\}$, $h_0 S^k \simeq h_0 pt$ for k > 0 and $h_1 S^1 \simeq h_0 pt$.

What about $h_1 S^k$ for k > 1?

We have isomorphisms

$$h_1S^k \to h_1(S^k, D^k) \xrightarrow{\partial} h_0D^k \simeq h_0S^k$$

and

$$h_1(D^k, S^{k-1}) \simeq h_1(S^k, D^k) \to h_0 S^{k-1} \simeq h_0 D^k$$

and thus $h_1 S^k = 0$ for k > 1.

Proposition 4

FOr any ordinary homology theory (h_*, ∂_*) , the following holds

$$h_n S^k = \begin{cases} h_0 pt \oplus h_0 pt & \text{if } k = 0 = n \\ 0, k > 0, n \notin \{0, k\} \\ h_0 pt & \text{if } k > 0 \text{ and } n \in \{0, k\} \\ 0, else \end{cases}$$

We add one additional assumption, that there exists an ordinary homology theory with coefficient group $h_0pt\simeq\mathbb{Z}$

Corollary 5

 S^k and S^l are not homotopy equivalent for $k \neq l$

Proof

$$h_k S^k \simeq h_0 pt \neq h_k S^l = 0 \qquad \qquad \Box$$

Corollary 6 (Brouwer fixed point theorem)

Any continuous map $f: D^n \to D^n$ has a fixed point.

Proof

Assume $f: D^n \to D^n$ is a map without a fixed point.

Consider $g:D^n\to S^{n-1}$ sending $x\mapsto \frac{x-f(x)}{\|x-f(x)\|}$, by assumption, this is continuous.

Next, we claim that $g|_{S^{n-1}}$ is homotopic to $\mathrm{Id}_{S^{n-1}}$ via the map

$$H(x,t) \coloneqq \frac{x - tf(x)}{\|x - tf(x)\|}$$

If t = 1, the denominator is $\neq 0$, if t < 1

$$||tf(x)|| = t ||f(x)|| < ||f(x)|| \le 1$$

Hence, $||x - tf(x)|| \neq 0$ and H is a well defined continuous map. Now, consider

$$h_{n-1}S^{n-1} \xrightarrow{ind} h_{n_1}D^n \xrightarrow{h_{n-1}(g)} h_{n-1}S^{n-1}$$

By homotopy equivalence $h_{n-1}(g) \circ ind$ is the identity.

For n > 1, this implies that the identity factors through 0, which is a contradiction.

 $The \ special \ case \ n=1 \ gives$

$$h_0 S^0 \to h_0 D^1 \to h_0 S^0$$

If the coefficient group is \mathbb{Z} , this is a contradiction.

2 Constructing singular homology

We want to construct a (ordinary) homology theory.

The idea is to study X by mapping topological simplices into X, here the topological n simplex is defined as

$$\Delta^{n} = \left\{ (t_0, \dots, t_n) | t_i \ge 0 \forall i, \sum_{i} t_i = 1 \right\} \subset \mathbb{R}^{n+1}$$

We define

$$Sing_n(X) = \{ f : \Delta^n \to X \text{ continuous } \}$$

in general, this set is huge.

Lecture 3: Singular homology

Mon 17 Oct

Goal : Find a way to organise the information in $Sing_n(X)$!

- 1. Relate $Sing_n(X)$ for different n to each other
- 2. Linearize!

We'll call $Sing_n(X)$ the *n*-th component of the singular set.

We think of the edges of the simplices as being ordered.

There are maps $\Delta^1 \to \Delta^n$ which are inclusions into the edges.

In fact, for every subset $S \subset \{0, ..., n\}$, there is a continuous injective map $\Delta^k \to \Delta^n$, where k = |S|.

Now, for any k < n, we have restriction maps $Sing_n(X) \to Sing_k(X)$.

Define the category Δ_{inj} , whose onjects are [n] for every $n \in \mathbb{N}$ and whose morphisms $[k] \to [n]$ are order preserving injective maps.

The composition is just the composition of maps.

For X a fixed topological space, we get a contravariant functor $Sing.(X): \Delta_{inj} \to \mathrm{Set}.$

Given $\alpha:[k]\to[n]$ an injective order preserving map, we get

$$Sing_n(X) \to Sing_k(X)$$

with precomposition by α .

Lemma 7

 Δ_{inj} can also be described as the category with objects [n] and generated by maps $d^i:[n] \to [n+1]$ subject to the relations

$$d^j d^i = d^i d^{j-1}$$

for $0 \le i < j \le n$

Proof (Sketch)

This relation is indeed satisfied in Δ_{inj}

$$\{0 < \ldots < n-2\} \xrightarrow{d^i} \{0 < \ldots < n-1\} \xrightarrow{d^j} \{0 < \ldots < n\}$$

Here

$$k \mapsto \begin{cases} k, k \le i - 1 \\ k + 1, k \ge i \end{cases} \mapsto \begin{cases} k, k \le i - 1 \\ k + 1, k + 1 \le j \\ k + 2, k + 2 \ge j + 1 \end{cases}$$

One can compute that the composition $d^i d^{j-1}$ gives the same map.

What remains to show is that, subject to these relations, any order preserving injective map can be written as a composition of maps d^i .

If α is missing $i_1 < i_2 < \ldots < i_{n-k}$, then α can be written as

$$\alpha = d^{i_{n-k}}d^{i_{n-k-1}}\dots d^{i_1}$$

We'll call d^i the *i*-th coface map.

A contravariant functor $\Delta_{inj} \to \text{Set}$ is called a semi-simplicial set.

Definition 1 (Singular Chain Complex)

A (non-negatively graded) singular chain complex of a space X has as chain groups

$$S_nX = \mathbb{Z} \langle Sing_n(X) \rangle$$

and differentials $\delta_n: S_n(X) \to S_{n-1}(X)$ defined on generators as

$$\partial_n (\sigma : \Delta^n \to X) \mapsto \sum_{i=0}^n (-1)^i \sigma \circ d^i$$

Lemma 8

The singular chain complex of a space is a chain complex.

Proof

By linearity, it is enough to check this on generators $\sigma: \Delta^n \to X$.

$$\delta_{n-1}\delta_n\sigma = \delta_{n-1}\left(\sum_{i=0}^n (-1)^i \sigma \circ d^i\right)$$

$$= \sum_{i=0}^n (-1)^i \sum_{j=0}^{n-1} (-1)^j \sigma \circ d^i \circ d^j$$

$$= \sum_{i=0}^n \sum_{j=0}^{n-1} (-1)^{i+j} \sigma \circ d^i \circ d^j$$

$$= \sum_{0 \le j < i \le n} (-1)^{i+j} \sigma \circ d^i \circ d^j$$

$$+ \sum_{0 \le i \le j \le n-1} (-1)^{i+j} \sigma \circ d^i \circ d^j$$

$$= \sum_{0 \le j < i \le n} (-1)^{i+j} \sigma \circ d^i \circ d^j$$

$$+ \sum_{0 \le i < j' \le n-1} (-1)^{i+j} \sigma \circ d^i \circ d^j$$

$$= 0$$

Lemma 9

We get a functor from chain complexes with chain maps to graded abelian groups, which is just taking homology.

Definition 2 (Singular Homology)

The singular homology $H_{\bullet}X$ (with integer coefficients) on a space X is the homology of the singular chain complex.

Lecture 4: Homology Theories

Wed 19 Oct

Lemma 10

Homology defines a functor $Ch \to gr$ Ab

Proof (Sketch)

Let
$$f: (C_{\bullet}, d_{\bullet}) \to (C'_{\bullet}, d'_{\bullet})$$
, then $H_n(f) = f_*$ sending $x \in \ker(d_n) / \operatorname{Im}(d_{n+1})$ to $[f(x)]$

Example

Let's compute the singular homology of the point.

Clearly $S_* = \mathbb{Z}$ and the maps induced by restriction are the identity.

Hence, the boundary maps will be

$$\dots \xrightarrow{\mathrm{Id}} \mathbb{Z} \xrightarrow{0} \xrightarrow{\mathrm{Id}} \mathbb{Z} \xrightarrow{0} \mathbb{Z}$$

Thus $\forall n > 0$, we get $H_n(pt) = 0$ and $H_0(pt) = \mathbb{Z}$.

Now we want to define homology for pairs.

Let $A \subset X$ be a pair of spaces.

We want to associate a singular chain complex $(S_{\bullet}(X, A), \delta_{\bullet})$.

More generally, any continuous map $f: X \to Y$ induces $Sing_n(X) \to Sing_n(Y)$ by postcomposition.

Thus we get a functor $Sing_n(-): \top \to Set$.

This in turn defines a chain map by extending $S_n f$ linearly to $S_n X$.

This defines a chain map $C_nX \to C_nY$ since

$$\sigma \in S_n X \to f \circ \sigma \to \sum_{i=0}^n (-1)^i (f \circ \sigma) \circ d_i$$

and

$$\sigma \in S_n X \to \sum_{i=0}^n (-1)^i \sigma \circ d^i \to \sum_{i=0}^n (-1)^i (f \circ \sigma \circ d_i)$$

coincide.

For an inclusion of subspaces $A \subset X$, we get an induced map $S_{\bullet}(i) : (S_{\bullet}A, \delta_{\bullet}) \to (S_{\bullet}X, \delta_{\bullet})$ which is levelwise injective.

Definition 3 (Singular chain complex of a pair)

The singular chain complex of a pair is defined to be the quotient chain complex $S_{\bullet}X/S_{\bullet}A$.

Then the singular homology of the pair (X, A) is the homology of this chain complex.

For any pair (X, A) there is a short exact sequence of chain complexes

$$0 \to (S_{\bullet}A, \delta_{\bullet}) \to (S_{\bullet}X, \delta_{\bullet}) \to (S_{\bullet}(X, A), \delta_{\bullet}) \to 0$$

(ie. levelwise short exact)

What about coefficient groups $\neq \mathbb{Z}$.

Definition 4

Given a pair of spaces (X, A) and G an abelian group G, define the singular chain complex of (X, A) with coefficient in G as follows

$$S_n(X, A; G) = S_n(X, A) \otimes_{\mathbb{Z}} G$$

with the natural induced differentials. The singular homology of (X, A) with coefficients in G is the homology of this new chain complex.

Proposition 12

For any short exact sequence of chain complexes $0 \to C_{\bullet} \to D_{\bullet} \to E_{\bullet} \to 0$, we get a long exact sequence of homology groups

$$\dots \to H_n C_{\bullet} \to H_n D_{\bullet} \to H_n E_{\bullet} \to H_{n-1} C_{\bullet} \to \dots$$

which is natural in short exact sequences of chain complexes; w

Proof

The definition of the map $\partial_n: H_nE \to H_{n-1}C$ is a standard diagram chase. We then prove that:

1. γ is in the kernel of $d_{n-1}^C: C_{n-1} \to C_{n-2}$

$$f_{n-2}d_{n-1}^C \gamma = d_{n-1}^D f_{n-1} \gamma = 0$$

as f_{n-2} is injective, $d_{n-1}^C \gamma = 0$

2. The choice of β is inddependent on the choice of γ . Suppose β' is also such that $g_n\beta = g_n\beta'$.

We want to show that $\gamma - \gamma'$ is in the image of d_n^C .

$$As g_n(\beta - \beta') = 0 \exists \tilde{\gamma} : f_n \tilde{\gamma} = \beta - \beta'$$

$$f_{n-1}d_n^C\tilde{\gamma} = d_n^D f_n\tilde{\gamma} = d_n^D \beta - d_n^D \beta' = f_{n-1}(\gamma - \gamma').$$

Thus $d_n^D \tilde{\gamma} = \gamma - \gamma'$

3. Independence of the choice of representative α .

We want to show that if $\alpha = d_n^E \tilde{\alpha}$, then $\gamma = 0$.

This again is a standard diagram chase. So we conclude that ∂_n : $H_nE \to H_{n-1}C$ is a well defined map, it is easy to check that it is linear.

It remains to show that the long sequence above is exact, which is part of the homework. $\hfill\Box$

We want to show that the connecting homomorphisms are natural, namely, for thwo short exact sequences

$$0 \to C_{\bullet} \to D_{\bullet} \to E_{\bullet} \to 0$$

$$0 \to C'_{\bullet} \to D'_{\bullet} \to E'_{\bullet} \to 0$$

with $\phi:C_{ullet}\to C'_{ullet}, \psi,\eta$ etc which make the diagram commute, we get, for every n a commutative diagram

$$H_n E \xrightarrow{\partial_n} H_{n-1} C_{\bullet} \to H_{n-1} C_{\bullet}' = H_n E \xrightarrow{H_n \eta} H_n E_{\bullet}' \xrightarrow{\partial'_{n-1}} H_n C_{\bullet}'$$