Práctico 1: Cuerpos y números complejos

- 1. Sea $(\mathbb{K}, +, .)$ un cuerpo y sea 0 el elemento neutro de +. Demostrar que:
 - (a) $a \cdot 0 = 0$, para todo $a \in \mathbb{K}$.
 - (b) Si $a, b \in \mathbb{K}$ v $a \cdot b = 0$ entonces a = 0 ó b = 0.
- 2. Sea n un número natural, $n \neq 1$. Denotamos por \mathbb{Z}_n al conjunto de clases de números enteros módulo n. Utilizando los resultados de aritmética modular vistos en Álgebra I/Matemática discreta, sabemos que existen operaciones

$$+: \mathbb{Z}_n \times \mathbb{Z}_n \longrightarrow \mathbb{Z}_n, \qquad \cdot: \mathbb{Z}_n \times \mathbb{Z}_n \longrightarrow \mathbb{Z}_n.$$

Demostrar que $(\mathbb{Z}_n, +, \cdot)$ es un cuerpo si y sólo si n es primo.

- 3. Decidir si la siguientes afirmaciones son verdaderas o falsas.
 - (a) Sean $(\mathbb{K}, +, \cdot)$ un cuerpo y $a \in \mathbb{K}$. Si existe un natural n tal que n = 0, entonces a = 0 (notación:

Sugerencia: probar que si $a \neq 0$ entonces $na = 0 \iff n1 = 0$.

- (b) Sea $(\mathbb{K}, +, \cdot)$ un cuerpo. Si existen $a \in \mathbb{K}$ no nulo y un natural n tales que n = 0, entonces n = 0para todo $x \in \mathbb{K}$.
- 4. Demostrar que en $(\mathbb{C}, +, \cdot)$ se cumple:

(a)
$$\overline{\overline{z}} = z$$
.

(b)
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$
.

(c)
$$\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$$
.

(d)
$$|\bar{z}| = |z|$$
.

(e)
$$z\bar{z} = |z|^2$$
.

(f)
$$z^{-1} = \frac{1}{|z|^2} \bar{z}$$
, para todo $z \neq 0$.

(g)
$$|z_1 z_2| = |z_1| |z_2|$$
.

(h)
$$|z| \ge |\mathfrak{Re}(z)|$$
 y $|z| \ge |\mathfrak{Im}(z)|$.

(i)
$$z + \overline{z} = 2\Re \mathfrak{e}(z)$$
.

- 5. Encontrar números reales x e y tales que 3x + 2yi xi + 5y = 7 + 5i
- 6. Determinar todos los números complejos z tales que $z + \frac{1}{z}$ es un número real.
- 7. Expresar los siguientes números complejos en la forma a + ib. Hallar el módulo, argumento y conjugado de cada uno de ellos y graficarlos.

(a)
$$(-1+i)(3-2i)$$

(d)
$$\frac{1+i}{1+2i} + \frac{1-i}{1-2i}$$

(g)
$$2e^{i\pi} - i$$

(b)
$$i^{131} - i^9 + 1$$

(d)
$$\frac{1+i}{1+2i} + \frac{1-i}{1-2i}$$
(e)
$$\frac{4+2i}{6} - \frac{4+2i}{6i}$$
(f)
$$\frac{3i}{1-2i} - \frac{1}{1+\frac{1}{i}}$$

(h)
$$i^3 - 2i^{-7} - 1$$

(c)
$$1 - \frac{1}{1 + \frac{1}{i}}$$

(f)
$$\frac{3i}{1-2i} - \frac{3i}{1+\frac{1}{i}}$$

(i)
$$(-2+i)(1+2i)$$
.

8. Sean z = 1 + i y $w = \sqrt{2} - i$. Calcular:

(a)
$$z^{-1}$$
; $1/w$; z/w ; w/z .

(b)
$$1+z+z^2+z^3+\cdots+z^{2017}$$
. (c) $(z(z+w)^2-iz)/w$.

(c)
$$(z(z+w)^2 - iz)/w$$

- 9. Sean $a, b \in \mathbb{C}$. Decidir si existe $z \in \mathbb{C}$ tal que:
 - (a) $a \operatorname{Im}(z) = 2$. ¿Es único?
 - (b) $z^2 = b$. ¿Es único? ¿Para qué valores de b resulta z ser un número real?
 - (c) z es imaginario puro y $z^2 = 4$.
 - (d) z es imaginario puro y $z^2 = -4$

10. Para cada uno de los siguientes sistemas de ecuaciones:

$$\begin{cases} x - y = 0 \\ 2x - 2y = 0. \end{cases}$$

$$\begin{cases} x - 2y = 4 \\ 3x + 4y = 2. \end{cases}$$

- (a) Verificar si (1,1) es una solución y encontrar una solución para cada sistema.
- (b) Verificar si dadas dos soluciones (a, b) y (c, d) entonces (a, b) + (c, d) es solución.
- 11. Resolver los siguientes sistemas de ecuaciones lineales en R. Comparar con el ejercicio anterior.

$$\begin{cases} x - y = 0 \\ 2x - 2y = 0. \end{cases} \qquad \begin{cases} x - 2y = 4 \\ 3x + 4y = 2. \end{cases}$$

12. Resolver los siguientes sistemas lineales en \mathbb{Q} , \mathbb{R} y \mathbb{C} .

$$\begin{cases} \sqrt{2}y + z = 0 \\ \sqrt{2}x + z = 0. \end{cases} \begin{cases} ix + y = 0 \\ 3x + 2iy = 0. \end{cases}$$

13. Sean a, b, c, d, e escalares en un cuerpo \mathbb{K} . Dado el sistema lineal

$$\begin{cases} ay + bz = c \\ dx + ez = 0, \end{cases}$$

mostrar que si tiene soluciones, estas están en \mathbb{K}^3 . ¿Vale esto para cualquier sistema? Comparar con el Ejercicio 12.

Ejercicios adicionales

1. (Desigualdad triangular) Sean w y z números complejos. Probar que

$$|w+z| \le |w| + |z|,$$

y la igualdad se da si y sólo si $w = r \cdot z$ para algún número real $r \geq 0$. En general, sean z_1, z_2, \ldots, z_n números complejos. Probar

$$\left| \sum_{k=1}^{n} z_k \right| \le \sum_{k=1}^{n} |z_k|.$$

2. Sean w y z números complejos. Entonces

$$||w| - |z|| \le |w - z|$$

- 3. Decidir si las siguientes afirmaciones son verdaderas o falsas:
 - (a) Si $z \in \mathbb{C}$ tiene módulo 1 entonces $z + z^{-1} \in \mathbb{R}$.
 - (b) $K = i\mathbb{R} = \{z \in \mathbb{C} : z = it, t \in \mathbb{R}\}$ con las operaciones usuales de \mathbb{C} , es un cuerpo.
 - (c) Si $a \in \mathbb{R}$ entonces el polinomio $x^2 + a^2$ tiene siempre dos raíces complejas distintas.
- 4. Expresar los siguientes números complejos en la forma a + ib. Hallar el módulo, argumento y conjugado de cada uno de ellos y graficarlos.

2

- (a) $(\cos \theta i \sin \theta)^{-1}, 0 \le \theta < 2\pi$ (b) $3i(1+i)^4$ (c) $\frac{1+i}{1-i}$
- 5. Encontrar todos los $z \in \mathbb{C}$ tales que $z^4 + |z|z^2(1-i) = 0$.

6. Sea $z = 2 + \frac{1}{2}i$, calcular

(a)
$$\frac{(z+i)(z-i)}{z^2+1}$$
. (b) $z-2+\frac{1}{z-2}$.

(b)
$$z-2+\frac{1}{z-2}$$

(c)
$$\left| \frac{1}{z-i} \right|^2$$
.

- 7. Sea $p \in \mathbb{C}$. Calcular $\frac{1}{p} + \frac{1}{\overline{p}} \frac{1}{|p|^2}$.
- 8. Mostrar que todas las soluciones de la ecuación $z^4+(-4+2i)z^2-1=0$ son $-1+\sqrt{1-i},$ $-1-\sqrt{1-i},$ $1+\sqrt{1-i}$ y $1-\sqrt{1-i}$.