2024 年 春 季 学 期

机器人学导论试题(回忆版本)

2024.5

说明:考试时间120分钟,满分100分。

注意行为规范 遵守考场纪律

Question 1 (20 points)

- (a) Find the inverse of the homogeneous transformation matrix. (具体矩阵不记得了)
- (b) For a rotation matrix R, find ω and θ. (具体矩阵不记得了)

Question 2 (30 points)

Figure 1 shows a two degree of freedom manipulator. Let l_0 , l_1 , l_2 , h be the link length parameters and θ_1 , θ_2 the joint angle variables of link 1 and link 2, respectively.

- (a) Express the position and orientation of frame C_3 relative to frame C_0 in terms of the joint angle variables and the link parameters.
- (b) Compute the spatial velocity of C_3 relative to C_0 as functions of the joint angles and the joint rates.
- (c) Compute the body velocity of C₃ relative to C₀ as functions of the joint angles and the joint rates.

Fig.1. A two degree of freedom manipulator

Question 3 (30 points)

Figure 2 shows a five degree of freedom manipulator. Let a_1 , a_2 , a_3 , a_4 , d_1 be the link length parameters and θ_1 , θ_2 , θ_3 , θ_4 , θ_5 the joint angle variables of joint 1 through 5, respectively.

Fig.2. A five degree of freedom manipulator

- (a) Find the forward kinematics map.
- (b) Given the tip location and approach vector(the z-axis of tool frame), solve the inverse kinematics problem.
 - (c) Derive the spatial Jacobian.
 - (d) Give a geometric description of the singular configurations.

Question 4 (20 points)

Calculate $\dot{\theta}_{12}$, $\dot{\theta}_{23}$, t_1 , t_2 , and t_3 for a two-segment linear function with parabolic blends (LFPB). For this joint, $\theta_1 = 5.0^\circ$, $\theta_2 = 10.0^\circ$, $\theta_3 = 20.0^\circ$. Assume that $t_{d12} = t_{d23} = 1.0$ seconds and that the default acceleration to use during blends is 80 degrees/second². Sketch plots of position, velocity, and acceleration of θ .