C8/B.TECH/CVE/CE/ME/CSE/IT/AUE/PE/CHE/BT/FT/ CT/LT/TT/APM/EVEN/SEM-4/M(CS)-401/2015-16

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: M(CS)-401
NUMERICAL METHODS

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - The number 3.4506531 when rounded off to 4 places of decimal will give
 - a) 3.4506

b) 3.4507

c) 3.451

4/40002

- d) none of these.
- ii) Lagrange's Interpolation formula is used for
 - a) Equally spaced arguments
 - b) Unequally spaced arguments
 - c) Both equally and unequally spaced arguments
 - d) none of these.

http://www.makaut.com

Turn over

CS/B.TECH/CVE/CE/ME/CSE/IT/AUE/PE/CHE/BT/FT/CT/LT /TT/APM/EVEN/SEM-4/M(CS)-401/2015-16 iii) In the Newton's Forward Interpolation formula, the

- iii) In the Newton's Forward Interpolation formula, the value of $u = \frac{x x_0}{h}$ lies between
 - a) 0 & 1

b) - 1 & 0

c) - 1 & 1

- d) 5 & 0.
- iv) $\Delta^3(y_0)$ may be expressed as which of the following terms?
 - a) $y_3 3y_2 + 3y_1 y_0$
 - b) $y_2 2y_1 + y_0$
 - c) $y_3 + 3y_2 + 3y_1 + y_0$
 - d) none of these.
- v) Trapezoidal rule can be applied if the number of equal subintervals of the interval of integration is
 - a) odd

b) even

c) both

- d) none.
- vi) Regula Falsi Method is
 - a) conditionally convergent
 - b) divergent
 - c) linearly convergent
 - d) none to these.
- vii) The n-th oder divided difference of a polynomial of degree n is
 - a) 0

b) constant

c) 1

d) -1.

4/40002

2

CS/B.TECH/CVE/CE/ME/CSE/IT/AUE/PE/CHE/BT/FT/CT/LT

CM/IJ.TECH/CVE/CE/ME/CSE/IT/AUE/PE/CHE/BT/FT/CT/LT TT/APM/EVEN/SEM-4/M(CS)-401/2015-16

- vill) Runge-Kutta formula has a truncation error which is of order
 - h^2

 h^3

- Let $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 3 \\ 2 & 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 2 & 3 \\ 2 & 2 & 4 \\ 9 & 8 & 7 \end{bmatrix}$

Consider the following two statements:

- **S1**: LU decomposition for the matrix A is possible
- \$2: LU decomposition for the matrix B is not possible
- Both S1 and S2 are true
- only S1 is true
- only S2 is true
- neither \$1 nor \$2 is true.
- Newton-Raphson method for solution of the equation f(x) = 0 fails when
 - f'(x) = 1

- b) f'(x) = 0
- f'(x) = -1
- d) none of these.

Turn over

- Which of the following does not always guarantee convergence?
 - Bijection method
 - Newton-Raphson method b)
 - Regula-falsi method
 - none of these.

4/40002

http://www.makaut.com

xii) Choose the correct alternative : $E = 1 + \Delta$

/TT/APM/EVEN/SEM-4/M(CS)-401/2015-16

- $E = 1 \Delta$
- $E = 1/\Delta$ None of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following $3 \times 5 = 15$

http://www.makaut.com

Find f (5) using Newton's Divide difference formula, for the following data:

x	0	2	3	4	7	8
f(x)	4	26	58	112	466	668

Solve by Gauss Elimination method:

$$x - 2y + 9z = 8$$

http://www.makaut.com

$$3x + y - z = 3$$

$$2x - 8y + z = -5$$

- Calculate by Simpson's one third rule the value of the integral $\int \frac{x dx}{1+x}$ corrected up to three significant figures.
- Find a real root of the equation $xe^x 2 = 0$ correct to three decimal places using Newton-Raphson method.
- Evaluate y (0.02) given $\frac{dy}{dx} = x^2 + y$, y(0) = 1 by modified Euler's method.

/11/APM

http://www.makaut.com

CB/B.TECH/CVE/CE/ME/CSE/IT/AUE/PE/CHE/BT/FT/CT/LT /TT/APM/EVEN/SEM-4/M(CS)-401/2015-16

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- Find the value of $\int_1^5 \log_{10} x \, dx$ taking eight equal sub-intervals correct up to 4-decimal places by (i) Simpson 1/3 rule (ii) Trapezoidal rule and then compare the result. 3+3+1
- b) Solve by Gauss-Seidel iterative method:

$$3y - 2z = 3$$

$$2x - y + 4z = 27$$

$$4x - y - 3z = 3$$

correct up to four significant figure.

8

http://www.makaut.com

Solve the system of linear equations by LU factorization method:

$$2x-6y+8z=24$$
; $5x+4y-3z=2$; $3x+y+2z=16$.

b) Find the polynomial f(x) and hence find the f(5.5) from the given data:

x	0	2	3	5	7
f(x)	1	47	97	251	477

8 + 7

Turn over

4/40002

6

CS/B.TECH/CVE/CE/ME/CSE/IT/AUE/PE/CHE/BT/FT/CT/LT/TT/APM/EVEN/SEM-4/M(CS)-401/2015-16

9. a) Compute f (0.23) and f (0.29) using suitable formula from the table below:

x: 0.20 0.22 0.24 0.26 0.28 0.30 f(x): 1.6596 1.6698 1.6804 1.6912 1.7024 1.7139

Solve the equation $\frac{dy}{dx} = \frac{1}{x+y}$, y(0) = 1, for y(0.1)

and y (0.2), using Runge-Kutta method of the fourth order.

- c) Show that $(1 + \Delta) (1 \nabla) = 1$. 6 + 5 + 4
- 10. a) Find by the method of Regula-Falsi, a positive root of $x^2 + 2x 2 = 0$ correct up to three decimal places.
 - b) Apply Finite difference method to solve the equation $\frac{d^2y}{dx^2} = 3x + 4y$, subject to the conditions y(0) = 0, y(1) = 1 by taking the mesh length $h = \frac{1}{4}$.

7 + 8

11. a) Use Lagrange's inverse interpolation formula to find the value of x when y = 0.143 from the following data:

x	1	2	4	5	8
<u>y_</u>	1.000	0.500	0.250	0.200	0.125

CS/B.TECH/CVE/CE/ME/CSE/IT/AUE/PE/CHE/BT/FT/CT/LT/TT/APM/EVEN/SEM-4/M(CS)-401/2015-16

- b) Find the positive real root of $x + \ln x = 2$ by Newton-Raphson method, correct to six significant figures.
- c) Using Bisection method obtain a root between 1 and 2 of the equation $e^x 3x = 0$. 5 + 5 + 5

ппр://www.шакапг.сош