

1

SEQUENCE LISTING

*Selby
C1*

<110> Genentech, Inc.
Ashkenazi, Avi
Botstein, David
Desnoyers, Luc
Eaton, Dan L.
Ferrara, Napoleone
Filvaroff, Ellen
Fong, Sherman
Gao, Wei-Qiang
Gerber, Hanspeter
Gerritsen, Mary E.
Goddard, A.
Godowski, Paul J.
Grimaldi, Christopher J.
Gurney, Austin L.
Hillan, Kenneth J.
Kljavin, Ivar J.
Mather, Jennie P.
Pan, James
Paoni, Nicholas F.
Roy, Margaret Ann
Stewart, Timothy A.
Tumas, Daniel
Williams, P. Mickey
Wood, William, I.

<120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same

<130> 10466-14

<140> 09/665,350
<141> 2000-09-18

<150> PCT/US00/04414
<151> 2000-02-22

<150> US 60/143,048
<151> 1999-07-07

<150> US 60/145,698
<151> 1999-07-26

<150> US 60/146,222
<151> 1999-07-28

<150> PCT/US99/20594
<151> 1999-09-08

<150> PCT/US99/20944
<151> 1999-09-13

<150> PCT/US99/21090
<151> 1999-09-15

<150> PCT/US99/21547
<151> 1999-09-15

<150> PCT/US99/23089
<151> 1999-10-05

<150> PCT/US99/28214
<151> 1999-11-29

<150> PCT/US99/28313
<151> 1999-11-30

<150> PCT/US99/28564
<151> 1999-12-02

<150> PCT/US99/28565
<151> 1999-12-02

<150> PCT/US99/30095
<151> 1999-12-16

<150> PCT/US99/30911
<151> 1999-12-20

<150> PCT/US99/30999
<151> 1999-12-20
<150> PCT/US00/00219
<151> 2000-01-05

<160> 423

<210> 1
<211> 1825
<212> DNA
<213> Homo sapiens

<400> 1
actgcacctc ggtttatatcg attgaattcc ccggggatcc tctagagatc cctcgaccc 60
gacccacgcg tccgggcccgg agcagcacgg ccgcaggacc tggagctccg gctgcgtt 120
ccgcagcgc tacccgcat ggcgcgtccg cgccggccg cgctggggct cctggcgctt 180
ctgctgctgc tgccgcccgc gccggaggcc gccaagaagc cgacgcctg ccaccgggtgc 240
ccccgggctgg tggacaagtt taaccagggg atggtgacca ccgcaaagaa gaaccttggc 300
ggcgggaaca cggcttggga gaaaaagacg ctgtccaagt acgagtccag cgagattcgc 360
ctgctggaga tcctggaggg gctgtgcgag agcagcgtact tcgaatgca tcagatgcta 420
gaggcgcagg aggacaccc ggaggcctgg tggctgcagc tgaagagcga atatcctgac 480
ttattcgagt ggttttgtgt gaagacactg aaagtgtgct gctctccagg aacctacgg 540
cccgactgtc tcgcatgcc a gggcgatcc cagaggccct gcagcgggaa tggccactgc 600
agcggagatg ggagcagaca gggcgacggg tcctgcccgt gccacatggg gtaccaggc 660

ccgctgtgca ctgactgcat ggacggctac ttcagctgc tcggAACGA gaccCACAGC 720
 atctgcacag cctgtgacga gtccctgcaag acgtgctcg gcctgaccaa cagagactgc 780
 ggcgagtgta aagtggctg ggtgctggac gagggcgcct gtgtggatgt ggacgagtgt 840
 gcggccgagc cgccctccctg cagcgctgca cagttctgt aagaacgcca cggctcctac 900
 acgtgcaag agtgtgactc cagctgtgt ggctgcacag gggaaaggccc aggaaactgt 960
 aaagagtgt a tctctgcta cgcgaggag cacggacagt gtgcagatgt ggacgagtgc 1020
 tcactagcag aaaaaacactg tgtgaggaaa aacgaaaact gctacaatac tccaggagc 1080
 tacgtctgtg tgtgtcctga cgcttcgaa gaaacggaag atgcctgtgt gccgcggca 1140
 gaggtctgaag ccacagaagg agaaagccc acacagctgc cctcccgca agacctgtaa 1200
 tgtgcggac ttacccctta aattattcag aaggatgtcc cgtggaaaat gtggccctga 1260
 ggtatccgtc tcctgcagt gacagcggcg gggagaggct gcctgcttc taacggttga 1320
 ttctcatttgc tcccttaaac agtgcattt cttgggtt cttaaacaga cttgtatatt 1380
 ttgatacagt tctttgtaat aaaattgacc attgttagtta atcaggagga aaaaaaaaaa 1440
 aaaaaaaaaa aaaggccgc cgcgactcta gagtcgaccc gcagaagctt ggccgccatg 1500
 gccaacttg tttattgcag ctataatgg ttacaaataa agcaatagca tcacaaattt 1560
 cacaataaa gcattttt cactgcattc tagttgtgt ttgtccaaac tcataatgt 1620
 atcttatcat gtctggatcg ggaattaatt cggcgcagca ccatggcctg aaataacctc 1680
 tgaaagagga acttggtagt gtaccttctg aggcgaaag aaccagctgt ggaatgtgt 1740
 tcagtttaggg tgtggaaagt coccaggctc cccagcaggc agaagtatgc aagcatgcat 1800
 ctcaatttagt cagcaaccca gttt 1825

<210> 2
 <211> 353
 <212> PRT
 <213> Homo sapiens

<400> 2
 Met Arg Leu Pro Arg Arg Ala Ala Leu Gly Leu Leu Pro Leu Leu Leu
 1 5 10 15

Leu Leu Pro Pro Ala Pro Glu Ala Ala Lys Lys Pro Thr Pro Cys His
 20 25 30

Arg Cys Arg Gly Leu Val Asp Lys Phe Asn Gln Gly Met Val Asp Thr
 35 40 45

Ala Lys Lys Asn Phe Gly Gly Asn Thr Ala Trp Glu Glu Lys Thr
 50 55 60

Leu Ser Lys Tyr Glu Ser Ser Glu Ile Arg Leu Leu Glu Ile Leu Glu
 65 70 75 80

Gly Leu Cys Glu Ser Ser Asp Phe Glu Cys Asn Gln Met Leu Glu Ala
 85 90 95

Gln Glu Glu His Leu Glu Ala Trp Trp Leu Gln Leu Lys Ser Glu Tyr
 100 105 110

Pro Asp Leu Phe Glu Trp Phe Cys Val Lys Thr Leu Lys Val Cys Cys
 115 120 125

Ser Pro Gly Thr Tyr Gly Pro Asp Cys Leu Ala Cys Gln Gly Gly Ser
 130 135 140

Gln Arg Pro Cys Ser Gly Asn Gly His Cys Ser Gly Asp Gly Ser Arg
 145 150 155 160
 Gln Gly Asp Gly Ser Cys Arg Cys His Met Gly Tyr Gln Gly Pro Leu
 165 170 175
 Cys Thr Asp Cys Met Asp Gly Tyr Phe Ser Ser Leu Arg Asn Glu Thr
 180 185 190
 His Ser Ile Cys Thr Ala Cys Asp Glu Ser Cys Lys Thr Cys Ser Gly
 195 200 205
 Leu Thr Asn Arg Asp Cys Gly Glu Cys Glu Val Gly Trp Val Leu Asp
 210 215 220
 Glu Gly Ala Cys Val Asp Val Asp Glu Cys Ala Ala Glu Pro Pro Pro
 225 230 235 240
 Cys Ser Ala Ala Gln Phe Cys Lys Asn Ala Asn Gly Ser Tyr Thr Cys
 245 250 255
 Glu Glu Cys Asp Ser Ser Cys Val Gly Cys Thr Gly Glu Gly Pro Gly
 260 265 270
 Asn Cys Lys Glu Cys Ile Ser Gly Tyr Ala Arg Glu His Gly Gln Cys
 275 280 285
 Ala Asp Val Asp Glu Cys Ser Leu Ala Glu Lys Thr Cys Val Arg Lys
 290 295 300
 Asn Glu Asn Cys Tyr Asn Thr Pro Gly Ser Tyr Val Cys Val Cys Pro
 305 310 315 320
 Asp Gly Phe Glu Glu Thr Glu Asp Ala Cys Val Pro Pro Ala Glu Ala
 325 330 335
 Glu Ala Thr Glu Gly Glu Ser Pro Thr Gln Leu Pro Ser Arg Glu Asp
 340 345 350

Leu

<210> 3
 <211> 2206
 <212> DNA
 <213> Homo sapiens

<400> 3
 caggtccaaac tgcacacctcg ttctatcgat tgaattcccc ggggatcctc tagagatccc 60
 tcgacacctga cccacgcgtc cgccaggccg ggaggcgacg cgcccagccg tctaaacggg 120
 aacagccctg gctgagggag ctgcagcgca gcagagtatc tgacggcgcc aggttgcgtta 180
 ggtgcggcac gaggagttt cccggcagcg aggaggtcct gagcagcatg gcccggagga 240

<210> 4
<211> 379
<212> PRT
<213> Homo sapiens

```

<400> 4 Met Ala Arg Arg Ser Ala Phe Pro Ala Ala Leu Trp Leu Trp Ser
                    10
      1          5

      15
Ile Leu Leu Cys Leu Leu Ala Leu Arg Ala Glu Ala Gly Pro Pro Gln
      20          25
                    30

      35
Glu Glu Ser Leu Tyr Leu Trp Ile Asp Ala His Gln Ala Arg Val Leu
      40
                    45

      50
Ile Gly Phe Glu Glu Asp Ile Leu Ile Val Ser Glu Gly Lys Met Ala
      55
                    60

      65
Pro Phe Thr His Asp Phe Arg Lys Ala Gln Gln Arg Met Pro Ala Ile

```

65	70	75	80
Pro Val Asn Ile His Ser Met Asn Phe Thr Trp Gln Ala Ala Gly Gln			
85		90	95
Ala Glu Tyr Phe Tyr Glu Phe Leu Ser Leu Arg Ser Leu Asp Lys Gly			
100		105	110
Ile Met Ala Asp Pro Thr Val Asn Val Pro Leu Leu Gly Thr Val Pro			
115		120	125
His Lys Ala Ser Val Val Gln Val Gly Phe Pro Cys Leu Gly Lys Gln			
130		135	140
Asp Gly Val Ala Ala Phe Glu Val Asp Val Ile Val Met Asn Ser Glu			
145		150	160
Gly Asn Thr Ile Leu Gln Thr Pro Gln Asn Ala Ile Phe Phe Lys Thr			
165		170	175
Cys Gln Gln Ala Glu Cys Pro Gly Gly Cys Arg Asn Gly Gly Phe Cys			
180		185	190
Asn Glu Arg Arg Ile Cys Glu Cys Pro Asp Gly Phe His Gly Pro His			
195		200	205
Cys Glu Lys Ala Leu Cys Thr Pro Arg Cys Met Asn Gly Gly Leu Cys			
210		215	220
Val Thr Pro Gly Phe Cys Ile Cys Pro Pro Gly Phe Tyr Gly Val Asn			
225		230	240
Cys Asp Lys Ala Asn Cys Ser Thr Thr Cys Phe Asn Gly Gly Thr Cys			
245		250	255
Phe Tyr Pro Gly Lys Cys Ile Cys Pro Pro Gly Leu Glu Gly Glu Gln			
260		265	270
Cys Glu Ile Ser Lys Cys Pro Gln Pro Cys Arg Asn Gly Gly Lys Cys			
275		280	285
Ile Gly Lys Ser Lys Cys Lys Cys Ser Lys Gly Tyr Gln Gly Asp Leu			
290		295	300
Cys Ser Lys Pro Val Cys Glu Pro Gly Cys Gly Ala His Gly Thr Cys			
305		310	320
His Glu Pro Asn Lys Cys Gln Cys Gln Glu Gly Trp His Gly Arg His			
325		330	335
Cys Asn Lys Arg Tyr Glu Ala Ser Leu Ile His Ala Leu Arg Pro Ala			
340		345	350

Gly Ala Gln Leu Arg Gln His Thr Pro Ser Leu Lys Lys Ala Glu Glu
355 360 365

Arg Arg Asp Pro Pro Glu Ser Asn Tyr Ile Trp
370 375

<210> 5
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 5
agggagcacg gacagtgtgc agatgtggac gagtgctcac tagca

45

<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 6
agagtgtatac tctggctacg c

21

<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 7
taagtccggc acattacagg tc

22

<210> 8
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 8
ccccacgtatgaatggtg gactttgtgt gactcctggc ttctgcac

49

<210> 9
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 9 22
aaagacgcat ctgcgagtgt cc

<210> 10
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 10 23
tgctgatttc acactgctct ccc

<210> 11
<211> 2197
<212> DNA
<213> Homo sapiens

<400> 11
cggacgcgtg ggcgtccggc ggtcgcagag ccaggaggcg gaggcgcg ggcgcgcgt 60
ggccccagcc cacacttca ccagggccca ggagccacca tgtggcgatg tccactgggg 120
ctactgctgt tgcgtccgtt ggctggccac ttggctctgg gtgcccagca gggtcgtggg 180
cgccggggagc tagcacccggg tctgcacctg cggggcatcc gggacgcggg aggccggat 240
tgccaggaggc aggacctgtg ctggccggc cgtgccgacg actgtgcctt gccctacctg 300
ggcgccatct gttactgtga cctcttctgc aaccgcacgg tctccgactg ctgcctgtac 360
ttctgggact tctgcctcgg cgtgccaccc cttttcccc cgatccaagg atgtatgcat 420
ggaggtcgta tctatccagt cttggaaacg tactggaca actgtaaaccg ttgcacctgc 480
caggagaaca ggcagtggca tggtgatcc agacatgatc aaagccatca accaggggcaa 540
ctatggctgg caggctggga accacagcgc cttctggggc atgaccctgg atgagggcat 600
tcgctaccgc ctgggcacca tccgcctatc ttccctcggtc atgaacatgc atgaaattta 660
tacagtgtg aacccagggg aggtgcttc cacagccttc gaggcctctg agaagtggcc 720
caacctgatt catgagcctc ttgaccaagg caactgtgca ggctctggg cttctccac 780
agcagctgtg gcatccgatc gtgtctcaat ccattctctg ggacacatga cgcctgtcct 840
gtcgccccag aacctgctgt cttgtacac ccaccagcag cagggctgcc gcgggtggcg 900
tctcgatggt gcttggtgtt tcctgcgtcg ccgagggggtg gtgtctgacc actgtaccc 960
cttctcgggc cgtgaacgag acgaggctgg ccctgcgc ccctgtatga tgcacagccg 1020
agccatgggt cggggcaagc gccaggccac tgcccactgc cccaaacagct atgtaataa 1080
caatgacatc taccaggtca ctccctgtcta ccgcctcgcc tccaaacgaca aggagatcat 1140
gaaggagctg atggagaatg gcccgtcca agccctcatg gaggtgcattt aggactt 1200
cctatacaag ggaggcatct acagccacac gccagtgagc cttggggagcc cagagagata 1260
ccqccggcat gggacccact cagtcaagat cacaggatgg ggagaggaga cgcgtccaga 1320

tggaaaggacg	ctcaaatact	ggactgcggc	caactcctgg	ggcccagccct	ggggcgagag	1380
gggccacttc	cgcacatcggtc	gcggcgtaa	tgagtgcgac	atcgagagct	tcgtgctggg	1440
cgtctggggc	cgcgtggca	tggaggacat	gggtcatcac	tgaggctgcg	ggcaccacgc	1500
gggttccggc	ctgggatcca	ggctaagggc	cggcggaaaga	ggccccaaatg	gggcgggtgac	1560
cccagcctcg	cccgacagag	cccggggcgc	aggcgggcgc	cagggcgcta	atccccggcgc	1620
gggttccgct	gacgcagcgc	cccgcttggg	agccgcgggc	aggcgagact	ggcggagccc	1680
ccagacctcc	cagtggggac	ggggcagggc	ctggccttggg	aagagcacag	ctgcagatcc	1740
caggcctctg	gcgcggggcac	tcaagactac	caaagccagg	acacctcaag	tctccagccc	1800
caataccccca	ccccaatccc	gtattttttt	ttttttttt	ttagacaggg	tcttgctccg	1860
ttggcccaagg	tggagtgcag	tggcccatca	gggctactg	taacctccga	ctccctgggtt	1920
caagtgaccc	tcccaccta	gcctctcaag	tagctggac	tacaggtgca	ccaccacacc	1980
tggctaattt	ttgttattttt	tgtaaaagagg	gggtctcac	tgttgtgccc	aggctggttt	2040
cgaactcctg	ggctcaagcg	gtccacactgc	ctccgcctcc	caaagtgcg	ggattgcagg	2100
catgagccac	tgcacccagc	cctgtattct	tattcttcag	atatttattt	ttcttttcac	2160
tqttttaaaa	taaaacccaaa	gtattgataa	aaaaaaaa			2197

<210> 12

<211> 164

<212> PRT

<213> Homo sapiens

<400> 12

Met	Trp	Arg	Cys	Pro	Leu	Gly	Leu	Leu	Leu	Leu	Leu	Leu	Pro	Leu	Ala	Gly
1					5				10						15	

His Leu Ala Leu Gly Ala Gln Gln Gly Arg Gly Arg Arg Glu Leu Ala
20 25 30

Pro Gly Leu His Leu Arg Gly Ile Arg Asp Ala Gly Gly Arg Tyr Cys
35 40 45

Gln Glu Gln Asp Leu Cys Cys Arg Gly Arg Ala Asp Asp Cys Ala Leu
50 55 60

Pro Tyr Leu Gly Ala Ile Cys Tyr Cys Asp Leu Phe Cys Asn Arg Thr
 65 70 75 80

Val Ser Asp Cys Cys Pro Asp Phe Trp Asp Phe Cys Leu Gly Val Pro
85 90 95

Pro Pro Phe Pro Pro Ile Gln Gly Cys Met His Gly Gly Arg Ile Tyr
100 105 110

Pro Val Leu Gly Thr Tyr Trp Asp Asn Cys Asn Arg Cys Thr Cys Gln
 115 120 125

Glu Asn Arg Gln Trp His Gly Gly Ser Arg His Asp Gln Ser His Gln
 130 135 140

Pro Gly Gln Leu Trp Leu Ala Gly Trp Glu Pro Gln Arg Leu Leu Gly
145 150 155 160

His Arg Pro Gly

<210> 13
<211> 533
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (33)
<223> a, t, c or g

<220>
<221> modified_base
<222> (80)
<223> a, t, c or g

<220>
<221> modified_base
<222> (94)
<223> a, t, c or g

<220>
<221> modified_base
<222> (144)
<223> a, t, c or g

<220>
<221> modified_base
<222> (188)
<223> a, t, c or g

<400> 13
agctcccttg gccccttttc cacagcaagg ttntgcnac ccgattcggt gtctcaaatac 60
caattcttctt gggacacatn acgcctgtcc ttngccccca gaacctgctg tcttgacac 120
ccaccagcag cagggtgtgcc gcgntggcg ttcgtatggt gcctgggtgt tcctgcgtcg 180
ccgagggnntg gtgtctgacc actgctaccc cttctcgccc cgtgaacgag acgaggctgg 240
ccctgcgccc ccctgtatga tgcacagccg agccatgggt cggggcaagc gccaggccac 300
tgcccactgc cccaacagct atgttaataaa caatgacatc taccaggtca ctccctgtcta 360
ccgcctcggc tccaacgaca aggagatcat gaaggagctg atggagaatg gcccctgtcca 420
agccctcatg gaggtgcatg aggacttctt cctatacaag ggaggcatct acagccacac 480
gccagtgagc cttggaggc cagagagata ccgcggcat gggaccact cag 533

<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 14

ttcgaggcct ctgagaagtg gccc

<210> 15
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 15
ggcggtatct ctctggcctc cc

22

<210> 16
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 16
ttctccacag cagctgtggc atccgatcgt gtctcaatcc attctctggg

50

<210> 17
<211> 960
<212> DNA
<213> Homo sapiens

<400> 17
gctgcttgcc ctgttgcattgg caggcttggc cctgcagcca ggcactgccccc tgctgtgcta 60
cttcctgcaaa gcccagggtga gcaacgagga ctgcctgcag gtggagaact gcacccagct 120
ggggggaggcag tgctggaccg cgccgcattccg cgcagggtggc ctcctgaccc tcatacggcaa 180
aggctgcaccc ttgaactcgt tggatgactc acaggactac tacgtgggca agaagaacat 240
cacgtgctgt gacaccgact tggcaacgc cagcggggcc catgcctgc agccggctgc 300
cgccatccctt ggcgtgctcc ctgcactcgg cctgtgtcgt tggggaccgg gccagctata 360
ggctctgggg ggccccgctg cagccccacac tgggtgtggt gccccaggcc tctgtgccac 420
tcttcacaga cctggccctg tgggagcctg tcctgttcc tgaggcacat cctaacgcaa 480
gtctgaccat gtatgtctgc accccctgtcc cccacccatg ccctcccatg gcccctcteeaa 540
ggactcccac ccggcagatc agctcttagt acacagatcc gcctgcagat ggcctccca 600
accctctctg ctgtgtttc catggccctg catttcac cccttaaccct gtgtcaggc 660
acctcttccc ccaggaagcc ttcctgtccc accccatcta tgacttgcg caggctgtgt 720
ccgtgggtgc ccccccaccc agcaggggac aggcactcag gagggcccaag taaaggctga 780
gatgaagtgg actgagtaga actggaggac aagagtgcac gtgagttcct gggagtctcc 840
agagatgggg cctggaggcc tggaggaagg ggccaggcct cacattcgtg gggctccctg 900
aatggcagcc tgagcacagc gttagccctt aataaacacc tggtggataa gccaaaaaaaaa 960

<210> 18
<211> 189
<212> PRT
<213> Homo sapiens

<400> 18
Met Thr His Arg Thr Thr Trp Ala Arg Arg Thr Ser Arg Ala Val
1 5 10 15

Thr Pro Thr Cys Ala Thr Pro Ala Gly Pro Met Pro Cys Ser Arg Leu
20 25 30

Pro Pro Ser Leu Arg Cys Ser Leu His Ser Ala Cys Cys Ser Gly Asp
35 40 45

Pro Ala Ser Tyr Arg Leu Trp Gly Ala Pro Leu Gln Pro Thr Leu Gly
50 55 60

Val Val Pro Gln Ala Ser Val Pro Leu Leu Thr Asp Leu Ala Gln Trp
65 70 75 80

Glu Pro Val Leu Val Pro Glu Ala His Pro Asn Ala Ser Leu Thr Met
85 90 95

Tyr Val Cys Thr Pro Val Pro His Pro Asp Pro Pro Met Ala Leu Ser
100 105 110

Arg Thr Pro Thr Arg Gln Ile Ser Ser Ser Asp Thr Asp Pro Pro Ala
115 120 125

Asp Gly Pro Ser Asn Pro Leu Cys Cys Cys Phe His Gly Pro Ala Phe
130 135 140

Ser Thr Leu Asn Pro Val Leu Arg His Leu Phe Pro Gln Glu Ala Phe
145 150 155 160

Pro Ala His Pro Ile Tyr Asp Leu Ser Gln Val Trp Ser Val Val Ser
165 170 175

Pro Ala Pro Ser Arg Gly Gln Ala Leu Arg Arg Ala Gln
180 185

<210> 19

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 19

tgctgtgcta ctcctgc当地 gccc

24

<210> 20

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 20

tgcacaaggc ggtgtcacag cacg

24

<210> 21

<211> 44

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 21

agcaacgagg actgcctgca ggtggagaac tgcacccagc tggg

44

<210> 22

<211> 1200

<212> DNA

<213> Homo sapiens

<400> 22

cccacgcgtc cgaacctctc cagcgatggg agccgccccgc ctgctgccca acctcactct 60
gtgcttacag ctgctgattc tctgctgtca aactcgtac gtgagggacc agggcgccat 120
gaccgaccag ctgagcaggc ggcagatccg cgagtaccaa ctctacagca ggaccagtgg 180
caagcacgtg caggtcaccg ggcgtcgcata ctccgccacc gccgaggacg gcaacaagtt 240
tgccaagctc atatggaga cggacacgtt tggcagccgg gttcgcatca aaggggctga 300
gagtgagaag tacatctgta tgaacaagag gggcaagctc atcggaaagc ccagcgggaa 360
gagcaaagac tgctgttca cggagatcgt gctggagaac aactatacgg cttccagaa 420
cgcccccgcac gagggcttgtt tcatggcctt cacgcggcag gggcgccccc gccaggcttc 480
ccgcagccgc cagaaccagc gcgaggccca cttcatcaag cgcctctacc aaggccagct 540
gcccttcccc aaccacgccc agaaggcagaa gcagttcgag ttgtgggtt ccgcacccac 600
ccgcggacc aagcgcacac ggccggccca gcccctcacc tagtctggga ggcagggggc 660
agcagccccct gggccgcctc cccaccctt tcccttta atccaaggac tggctgggg 720
tggcgggagg ggagccagat ccccgaggga ggaccctgag ggcgcgaag catccgagcc 780
cccagctggg aaggggcagg cccgtgcccc aggggggggg ggcacagtgc ccccttcccc 840
gacgggtggc aggccttggc gaggaactga gtgtcaccct gatctcaggc caccagccctc 900
tgccggccctc ccagccggc tcctgaaggcc cgctgaaagg tcagcgactg aaggccttgc 960
agacaaccgt ctggaggtgg ctgtcctcaa aatctgcttc tcggatctcc ctcatctgc 1020
ccccagcccc caaactcctc ctggctagac tgttaggaagg gactttgtt tggctgggg 1080
tttcaggaaa aaagaaaaggg agagagagga aaatagaggg ttgtccactc ctcacattcc 1140
acgaccggc cctgcacccc acccccaact cccagccccg gaataaaaacc atttcctgc 1200

<210> 23

<211> 205

<212> PRT

<213> Homo sapiens

<400> 23

Met	Gly	Ala	Ala	Arg	Leu	Leu	Pro	Asn	Leu	Thr	Leu	Cys	Leu	Gln	Leu
1					5				10					15	

Leu	Ile	Leu	Cys	Cys	Gln	Thr	Gln	Tyr	Val	Arg	Asp	Gln	Gly	Ala	Met
					20			25				30			

Thr	Asp	Gln	Leu	Ser	Arg	Arg	Gln	Ile	Arg	Glu	Tyr	Gln	Leu	Tyr	Ser
					35			40				45			

Arg	Thr	Ser	Gly	Lys	His	Val	Gln	Val	Thr	Gly	Arg	Arg	Ile	Ser	Ala
					50			55			60				

Thr	Ala	Glu	Asp	Gly	Asn	Lys	Phe	Ala	Lys	Leu	Ile	Val	Glu	Thr	Asp
					65			70			75		80		

Thr	Phe	Gly	Ser	Arg	Val	Arg	Ile	Lys	Gly	Ala	Glu	Ser	Glu	Lys	Tyr
					85			90			95				

Ile	Cys	Met	Asn	Lys	Arg	Gly	Lys	Leu	Ile	Gly	Lys	Pro	Ser	Gly	Lys
					100			105			110				

Ser	Lys	Asp	Cys	Val	Phe	Thr	Glu	Ile	Val	Leu	Glu	Asn	Asn	Tyr	Thr
					115			120			125				

Ala	Phe	Gln	Asn	Ala	Arg	His	Glu	Gly	Trp	Phe	Met	Ala	Phe	Thr	Arg
					130			135			140				

Gln	Gly	Arg	Pro	Arg	Gln	Ala	Ser	Arg	Ser	Arg	Gln	Asn	Gln	Arg	Glu
					145			150			155		160		

Ala	His	Phe	Ile	Lys	Arg	Leu	Tyr	Gln	Gly	Gln	Leu	Pro	Phe	Pro	Asn
					165			170			175				

His	Ala	Glu	Lys	Gln	Lys	Gln	Phe	Glu	Phe	Val	Gly	Ser	Ala	Pro	Thr
					180			185			190				

Arg	Arg	Thr	Lys	Arg	Thr	Arg	Arg	Pro	Gln	Pro	Leu	Thr			
					195			200			205				

<210> 24

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 24

cagtacgtga gggaccaggg cgccatga

28

<210> 25

<211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 25
 ccggtgacct gcacgtgctt gccca 24

<210> 26
 <211> 41
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<220>
 <221> modified_base
 <222> (21)
 <223> a, t, c or g

<400> 26
 gcggatctgc cgccctgctca nctggtcggt catggcgccc t 41

<210> 27
 <211> 2479
 <212> DNA
 <213> Homo sapiens

<400> 27
 acttgccatc acctgttgcc agtgtggaaa aattctccct gttgaatttt ttgcacatgg 60
 aggacagcag caaagaggc aacacaggct gataagacca gagacagcag ggagattatt 120
 ttaccatacg ccctcaggac gtccctcta gctggagtcc tggacttcaa cagaacccc 180
 tccagtcatt ttgattttgc ttttttctt ttctttttcc caccacattt 240
 tattttattt ccgtacttca gaaatgggcc tacagaccac aaagtggccc agccatgggg 300
 ctttttcctt gaagtcttgg ctatcattt ccctggggct ctactcacag gtgtccaaac 360
 tcctggcctg cccttagtgtg tgccgctgac agaggaactt tggactactgt aatgagcgaa 420
 gcttgacctc agtgccttgg gggatcccg aggccgtaac cgtactctac ctccacaaca 480
 accaaattaa taatgctgga tttcctgcag aactgcacaa tgtacagtgc gtgcacacgg 540
 tctacctgta tggcaaccaa ctggacgaat tccccatgaa cttcccaag aatgtcagag 600
 ttctccattt gcaggaaaac aatattcaga ccatttcacg ggctgctttt gcccagctct 660
 tgaagcttga agagctgcac ctggatgaca actccatatac cacagtgggg gtgaaagacg 720
 gggcccttccg ggaggctatt agcctcaaattt tggacttgc tggacttgc aatgtcagag 780
 gtgtgcctgt tggacttgc aagagctgag agtggatgaa aatgtcagag 840
 ctgtcatatc cgacatggcc ttccagaatc tcacgagctt ggacgtctt attgtggacg 900
 ggaacctcctt gaccaacaag ggtatcgccg agggcacctt cagccatctc accaagctca 960
 aggaattttc aattgtacgt aattcgctgt cccacccctcc tcccgatctc ccaggtacgc 1020
 atctgatcag gctctatttgc caggacaacc agataaaacca cattcctttg acagccttct 1080
 caaatctgctgca taagctggaa cggctggata tatccaacaa ccaactgcgg atgctgactc 1140

aagggggttt	tgataatctc	tccaacctga	agcagctac	tgctcgaaat	aacccttgggt	1200
tttgtgactg	cagtattaaa	tgggtcacag	aatggctca	atatatccct	tcatctctca	1260
acgtgcgggg	tttcatgtgc	caaggtcctg	aacaagtccg	ggggatggcc	gtcaggaaat	1320
taaatatgaa	tctttgtcc	tgtcccacca	cgacccccgg	cctgccttc	ttcaccccaag	1380
cccccaagtagc	agcttctccg	accactcagc	ctcccacccct	ctctattcca	aaccctagca	1440
gaagctacac	gcctccaact	cctaccacat	cgaaacttcc	cacgattct	gactgggatg	1500
gcagagaaaag	agtgacccca	cctatttctg	aacggatcoa	gctctctatc	cattttgtga	1560
atgataacttc	cattcaagtc	agctggctct	ctctcttcac	cgtatggca	tacaaactca	1620
catgggtgaa	aatgggccac	agtttagtag	ggggcatcg	tcaggagcgc	atagtcagcg	1680
gtgagaagca	acacctgagc	ctggtaact	tagagccccg	atccacctat	cggattttgtt	1740
tagtgcacact	ggatgctttt	aactaccgcg	cggtagaaga	caccatttg	ttagaggcca	1800
ccacccatgc	ctccttatctg	aacaacggca	gcaacacagc	gtccagccat	gagcagacga	1860
cgtcccacag	catgggctcc	ccctttctgc	tggcgggctt	gatcgggggc	gcggtgatata	1920
tttgtgctggt	ggttttgctc	agcgttttt	gctggcatat	gcacaaaaag	ggcgctaca	1980
cctcccaagaa	gtggaaatac	aaccggggcc	ggcggaaaga	tgattattgc	gaggcaggca	2040
ccaagaagga	caactccatc	ctggagatga	cagaaaccag	ttttcagatc	gtctcccaa	2100
ataacgatca	actccttaaa	ggagattca	gactgcagcc	catttacacc	ccaaatgggg	2160
gcattaatta	cacagactgc	catatcccc	acaacatgcg	atactgcaac	agcagcgtc	2220
cagacctgga	gcactgccat	acgtgacagc	cagaggccca	gcgttatcaa	ggcggacaat	2280
tagactcttgc	agaacacact	cgtgtgtca	cataaagaca	cgcagattac	atttgataaa	2340
tgttacacag	atgcatttgc	gcatttgaat	actctgtaa	ttatacggtg	tactatataa	2400
tgggatttaa	aaaaagtgc	atctttcta	tttcaagtt	attacaaaca	gttttgcata	2460
tctttgtttt	ttaaatctt					2479

<210> 28

<211> 660

<212> PRT

<213> Homo sapiens

<400> 28

Met	Gly	Leu	Gln	Thr	Thr	Lys	Trp	Pro	Ser	His	Gly	Ala	Phe	Phe	Leu
1					5					10					15

Lys Ser Trp Leu Ile Ile Ser Leu Gly Leu Tyr Ser Gln Val Ser Lys
20 25 30

Leu Leu Ala Cys Pro Ser Val Cys Arg Cys Asp Arg Asn Phe Val Tyr
35 40 45

Cys Asn Glu Arg Ser Leu Thr Ser Val Pro Leu Gly Ile Pro Glu Gly
50 55 60

Val	Thr	Val	Leu	Tyr	Leu	His	Asn	Asn	Gln	Ile	Asn	Asn	Ala	Gly	Phe
65				70						75					80

Pro Ala Glu Leu His Asn Val Gln Ser Val His Thr Val Tyr Leu Tyr
85 90 95

Gly Asn Gln Leu Asp Glu Phe Pro Met Asn Leu Pro Lys Asn Val Arg
100 105 110

Val Leu His Leu Gln Glu Asn Asn Ile Gln Thr Ile Ser Arg Ala Ala
115 120 125

Leu Ala Gln Leu Leu Lys Leu Glu Glu Leu His Leu Asp Asp Asn Ser
 130 135 140
 Ile Ser Thr Val Gly Val Glu Asp Gly Ala Phe Arg Glu Ala Ile Ser
 145 150 155 160
 Leu Lys Leu Leu Phe Leu Ser Lys Asn His Leu Ser Ser Val Pro Val
 165 170 175
 Gly Leu Pro Val Asp Leu Gln Glu Leu Arg Val Asp Glu Asn Arg Ile
 180 185 190
 Ala Val Ile Ser Asp Met Ala Phe Gln Asn Leu Thr Ser Leu Glu Arg
 195 200 205
 Leu Ile Val Asp Gly Asn Leu Leu Thr Asn Lys Gly Ile Ala Glu Gly
 210 215 220
 Thr Phe Ser His Leu Thr Lys Leu Lys Glu Phe Ser Ile Val Arg Asn
 225 230 235 240
 Ser Leu Ser His Pro Pro Pro Asp Leu Pro Gly Thr His Leu Ile Arg
 245 250 255
 Leu Tyr Leu Gln Asp Asn Gln Ile Asn His Ile Pro Leu Thr Ala Phe
 260 265 270
 Ser Asn Leu Arg Lys Leu Glu Arg Leu Asp Ile Ser Asn Asn Gln Leu
 275 280 285
 Arg Met Leu Thr Gln Gly Val Phe Asp Asn Leu Ser Asn Leu Lys Gln
 290 295 300
 Leu Thr Ala Arg Asn Asn Pro Trp Phe Cys Asp Cys Ser Ile Lys Trp
 305 310 315 320
 Val Thr Glu Trp Leu Lys Tyr Ile Pro Ser Ser Leu Asn Val Arg Gly
 325 330 335
 Phe Met Cys Gln Gly Pro Glu Gln Val Arg Gly Met Ala Val Arg Glu
 340 345 350
 Leu Asn Met Asn Leu Leu Ser Cys Pro Thr Thr Pro Gly Leu Pro
 355 360 365
 Leu Phe Thr Pro Ala Pro Ser Thr Ala Ser Pro Thr Thr Gln Pro Pro
 370 375 380
 Thr Leu Ser Ile Pro Asn Pro Ser Arg Ser Tyr Thr Pro Pro Thr Pro
 385 390 395 400
 Thr Thr Ser Lys Leu Pro Thr Ile Pro Asp Trp Asp Gly Arg Glu Arg

405	410	415
Val Thr Pro Pro Ile Ser Glu Arg Ile Gln Leu Ser Ile His Phe Val		
420	425	430
Asn Asp Thr Ser Ile Gln Val Ser Trp Leu Ser Leu Phe Thr Val Met		
435	440	445
Ala Tyr Lys Leu Thr Trp Val Lys Met Gly His Ser Leu Val Gly Gly		
450	455	460
Ile Val Gln Glu Arg Ile Val Ser Gly Glu Lys Gln His Leu Ser Leu		
465	470	475
Val Asn Leu Glu Pro Arg Ser Thr Tyr Arg Ile Cys Leu Val Pro Leu		
485	490	495
Asp Ala Phe Asn Tyr Arg Ala Val Glu Asp Thr Ile Cys Ser Glu Ala		
500	505	510
Thr Thr His Ala Ser Tyr Leu Asn Asn Gly Ser Asn Thr Ala Ser Ser		
515	520	525
His Glu Gln Thr Thr Ser His Ser Met Gly Ser Pro Phe Leu Leu Ala		
530	535	540
Gly Leu Ile Gly Gly Ala Val Ile Phe Val Leu Val Val Leu Leu Ser		
545	550	555
Val Phe Cys Trp His Met His Lys Lys Gly Arg Tyr Thr Ser Gln Lys		
565	570	575
Trp Lys Tyr Asn Arg Gly Arg Arg Lys Asp Asp Tyr Cys Glu Ala Gly		
580	585	590
Thr Lys Lys Asp Asn Ser Ile Leu Glu Met Thr Glu Thr Ser Phe Gln		
595	600	605
Ile Val Ser Leu Asn Asn Asp Gln Leu Leu Lys Gly Asp Phe Arg Leu		
610	615	620
Gln Pro Ile Tyr Thr Pro Asn Gly Gly Ile Asn Tyr Thr Asp Cys His		
625	630	635
Ile Pro Asn Asn Met Arg Tyr Cys Asn Ser Ser Val Pro Asp Leu Glu		
645	650	655
His Cys His Thr		
660		
<210> 29		
<211> 21		
<212> DNA		

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 29

cggcttaccc gttatggcaac c

21

<210> 30

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 30

gcaggacaac cagataaacc ac

22

<210> 31

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 31

acgcagattt gagaaggctg tc

22

<210> 32

<211> 46

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 32

ttcacgggct gctcttgccc agctcttgaa gcttgaagag ctgcac

46

<210> 33

<211> 3449

<212> DNA

<213> Homo sapiens

<400> 33

acttggagca agcggcgccg gcggagacag aggcagaggc agaagctggg gctccgtcct 60
cgccctccac gagcgtatccc cgaggagagc cgccggccctc ggcgaggcga agaggccgac 120

ctgtagaaca ctggccatag gaaatgctgt tttttgtac tggactttac cttgatata 3360
 gtatatggat gtatgcataa aatcatagga catatgtact tgtggAACAA gttggatttt 3420
 ttatacaata ttAAAATTCA ccacttcag 3449

<210> 34
 <211> 915
 <212> PRT
 <213> Homo sapiens

<400> 34
 Met Glu Lys Met Leu Ala Gly Cys Phe Leu Leu Ile Leu Gly Gln Ile
 1 5 10 15
 Val Leu Leu Pro Ala Glu Ala Arg Glu Arg Ser Arg Gly Arg Ser Ile
 20 25 30
 Ser Arg Gly Arg His Ala Arg Thr His Pro Gln Thr Ala Leu Leu Glu
 35 40 45
 Ser Ser Cys Glu Asn Lys Arg Ala Asp Leu Val Phe Ile Ile Asp Ser
 50 55 60
 Ser Arg Ser Val Asn Thr His Asp Tyr Ala Lys Val Lys Glu Phe Ile
 65 70 75 80
 Val Asp Ile Leu Gln Phe Leu Asp Ile Gly Pro Asp Val Thr Arg Val
 85 90 95
 Gly Leu Leu Gln Tyr Gly Ser Thr Val Lys Asn Glu Phe Ser Leu Lys
 100 105 110
 Thr Phe Lys Arg Lys Ser Glu Val Glu Arg Ala Val Lys Arg Met Arg
 115 120 125
 His Leu Ser Thr Gly Thr Met Thr Gly Leu Ala Ile Gln Tyr Ala Leu
 130 135 140
 Asn Ile Ala Phe Ser Glu Ala Glu Gly Ala Arg Pro Leu Arg Glu Asn
 145 150 155 160
 Val Pro Arg Val Ile Met Ile Val Thr Asp Gly Arg Pro Gln Asp Ser
 165 170 175
 Val Ala Glu Val Ala Ala Lys Ala Arg Asp Thr Gly Ile Leu Ile Phe
 180 185 190
 Ala Ile Gly Val Gly Gln Val Asp Phe Asn Thr Leu Lys Ser Ile Gly
 195 200 205
 Ser Glu Pro His Glu Asp His Val Phe Leu Val Ala Asn Phe Ser Gln
 210 215 220
 Ile Glu Thr Leu Thr Ser Val Phe Gln Lys Lys Leu Cys Thr Ala His

225	230	235	240
Met Cys Ser Thr Leu Glu His Asn Cys Ala His Phe Cys Ile Asn Ile			
245		250	255
Pro Gly Ser Tyr Val Cys Arg Cys Lys Gln Gly Tyr Ile Leu Asn Ser			
260	265		270
Asp Gln Thr Thr Cys Arg Ile Gln Asp Leu Cys Ala Met Glu Asp His			
275	280		285
Asn Cys Glu Gln Leu Cys Val Asn Val Pro Gly Ser Phe Val Cys Gln			
290	295	300	
Cys Tyr Ser Gly Tyr Ala Leu Ala Glu Asp Gly Lys Arg Cys Val Ala			
305	310	315	320
Val Asp Tyr Cys Ala Ser Glu Asn His Gly Cys Glu His Glu Cys Val			
325	330		335
Asn Ala Asp Gly Ser Tyr Leu Cys Gln Cys His Glu Gly Phe Ala Leu			
340	345		350
Asn Pro Asp Glu Lys Thr Cys Thr Arg Ile Asn Tyr Cys Ala Leu Asn			
355	360		365
Lys Pro Gly Cys Glu His Glu Cys Val Asn Met Glu Glu Ser Tyr Tyr			
370	375	380	
Cys Arg Cys His Arg Gly Tyr Thr Leu Asp Pro Asn Gly Lys Thr Cys			
385	390	395	400
Ser Arg Val Asp His Cys Ala Gln Gln Asp His Gly Cys Glu Gln Leu			
405	410		415
Cys Leu Asn Thr Glu Asp Ser Phe Val Cys Gln Cys Ser Glu Gly Phe			
420	425		430
Leu Ile Asn Glu Asp Leu Lys Thr Cys Ser Arg Val Asp Tyr Cys Leu			
435	440		445
Leu Ser Asp His Gly Cys Glu Tyr Ser Cys Val Asn Met Asp Arg Ser			
450	455	460	
Phe Ala Cys Gln Cys Pro Glu Gly His Val Leu Arg Ser Asp Gly Lys			
465	470	475	480
Thr Cys Ala Lys Leu Asp Ser Cys Ala Leu Gly Asp His Gly Cys Glu			
485	490		495
His Ser Cys Val Ser Ser Glu Asp Ser Phe Val Cys Gln Cys Phe Glu			
500	505		510

Gly Tyr Ile Leu Arg Glu Asp Gly Lys Thr Cys Arg Arg Lys Asp Val
 515 520 525
 Cys Gln Ala Ile Asp His Gly Cys Glu His Ile Cys Val Asn Ser Asp
 530 535 540
 Asp Ser Tyr Thr Cys Glu Cys Leu Glu Gly Phe Arg Leu Ala Glu Asp
 545 550 555 560
 Gly Lys Arg Cys Arg Arg Lys Asp Val Cys Lys Ser Thr His His Gly
 565 570 575
 Cys Glu His Ile Cys Val Asn Asn Gly Asn Ser Tyr Ile Cys Lys Cys
 580 585 590
 Ser Glu Gly Phe Val Leu Ala Glu Asp Gly Arg Arg Cys Lys Lys Cys
 595 600 605
 Thr Glu Gly Pro Ile Asp Leu Val Phe Val Ile Asp Gly Ser Lys Ser
 610 615 620
 Leu Gly Glu Glu Asn Phe Glu Val Val Lys Gln Phe Val Thr Gly Ile
 625 630 635 640
 Ile Asp Ser Leu Thr Ile Ser Pro Lys Ala Ala Arg Val Gly Leu Leu
 645 650 655
 Gln Tyr Ser Thr Gln Val His Thr Glu Phe Thr Leu Arg Asn Phe Asn
 660 665 670
 Ser Ala Lys Asp Met Lys Lys Ala Val Ala His Met Lys Tyr Met Gly
 675 680 685
 Lys Gly Ser Met Thr Gly Leu Ala Leu Lys His Met Phe Glu Arg Ser
 690 695 700
 Phe Thr Gln Gly Glu Gly Ala Arg Pro Leu Ser Thr Arg Val Pro Arg
 705 710 715 720
 Ala Ala Ile Val Phe Thr Asp Gly Arg Ala Gln Asp Asp Val Ser Glu
 725 730 735
 Trp Ala Ser Lys Ala Lys Ala Asn Gly Ile Thr Met Tyr Ala Val Gly
 740 745 750
 Val Gly Lys Ala Ile Glu Glu Glu Leu Gln Glu Ile Ala Ser Glu Pro
 755 760 765
 Thr Asn Lys His Leu Phe Tyr Ala Glu Asp Phe Ser Thr Met Asp Glu
 770 775 780
 Ile Ser Glu Lys Leu Lys Lys Gly Ile Cys Glu Ala Leu Glu Asp Ser
 785 790 795 800

Asp Gly Arg Gln Asp Ser Pro Ala Gly Glu Leu Pro Lys Thr Val Gln
 805 810 815
 Gln Pro Thr Glu Ser Glu Pro Val Thr Ile Asn Ile Gln Asp Leu Leu
 820 825 830
 Ser Cys Ser Asn Phe Ala Val Gln His Arg Tyr Leu Phe Glu Glu Asp
 835 840 845
 Asn Leu Leu Arg Ser Thr Gln Lys Leu Ser His Ser Thr Lys Pro Ser
 850 855 860
 Gly Ser Pro Leu Glu Glu Lys His Asp Gln Cys Lys Cys Glu Asn Leu
 865 870 875 880
 Ile Met Phe Gln Asn Leu Ala Asn Glu Glu Val Arg Lys Leu Thr Gln
 885 890 895
 Arg Leu Glu Glu Met Thr Gln Arg Met Glu Ala Leu Glu Asn Arg Leu
 900 905 910

Arg Tyr Arg
915

<210> 35
 <211> 23
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 35
 gtgaccctgg ttgtgaatac tcc

23

<210> 36
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 36
 acagccatgg tctatacgctt gg

22

<210> 37
 <211> 45
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 37
 gcctgtcagt gtcctgaggg acacgtgctc cgcagcgatg ggaag

45

<210> 38
 <211> 1813
 <212> DNA
 <213> Homo sapiens

<400> 38
 ggagccgccc tgggtgtca gggctcggt cccgcgcacg ctccggccgt cgcgcaaggct 60
 cggcacctgc aggtccgtgc gtccccggc tggcgccccct gactccgtcc cggccaggga 120
 gggccatgat ttccctcccg gggccccctgg tgaccaactt gctgcgggtt ttgttcctgg 180
 ggctgagtgc cctcgcgccc ccctcgccgg cccagctgca actgcacttg cccgcacaacc 240
 ggttgcaggc ggtggaggga gggaaagtgg tgcttccagc gtggtaacacc ttgcacgggg 300
 aggtgtcttc atccccagcca tgggaggtgc cctttgtat gtggttcttc aaacagaaaag 360
 aaaaggagga tcaggtgttg tcttacatca atggggtcac aacaagcaaa cctggagtat 420
 ccttggctca ctccatggcc tcccggaacc tgcctcgat gctggagggt ctccaggaga 480
 aagactctgg cccctacagc tgcctcgat atgtgcaaga caaacaaggc aaatctaggg 540
 gccacagcat caaaaccta gaactcaatg tactggttcc tccagctctt ccattctgcc 600
 gtctccaggg tgtgccccat gtggggggcaa acgtgaccct gagctgccaatg tctccaaggaa 660
 gtaagccgcg tgtccaataac cagtgggatc ggcagcttcc atccctccag actttctttg 720
 caccagcatt agatgtcatt cgtgggtctt taagcctcactt caacctttcg tcttccatgg 780
 ctggagtcta tgtctgcaag gcccacaatg aggtgggcac tgcccaatgt aatgtgacgc 840
 tggaaagttag cacagggct ggagctgca gttttgtgg agctgttgtg ggtaccctgg 900
 ttggactggg gttgctggct gggctggatcc tcttgcatttcc caacccatgg ccctggccca 960
 agagccagc caatgatatac aaggaggatg ccattgcatttcc ccggaccctg ccctggccca 1020
 agagctcaga cacaatctcc aagaatgggaa cccttccttcc tgcacccatgg gcacgagccc 1080
 tccggccacc ccatggccctt cccaggcctt gtcatttgcac cccacggccc agtctctcca 1140
 gccaggccctt gcccctccca agactgcccac ccacagatgg gcccacccatgg caaccaatat 1200
 ccccccattttt tgggggggtt tcttcctctt gcttgcatttcc catgggtgtt gtgcctgtta 1260
 tgggtgccttc ccagagtcaa gtcggcttc tggatgtatg accccaccac tcattggctt 1320
 aaggattttgg ggtcttcctt tcctataagg gtcacctcta gcacagaggc ctgagtcatg 1380
 gggaaagatgc acacttcgtt cccttagtac tctgccttttta ctgtggaaaa 1440
 accatctcgtt taagacctaa gtgtccagga gacagaagga gaagagggaa tggatctgg 1500
 attgggagga gcttcaccc accccctgact ctcctttagt aagccagctg ctgaaatttt 1560
 ctactccatcca agagtggggggcagagactt ccagtcaactg agtctcccttgc gccccttgc 1620
 tctgtacccccc accccatatctt aacaccaccc ttggctccca ctccagctcc ctgttattgtt 1680
 ataaccttcgtt aggctggctt gtttaggttt tactggggca gaggataggaa aatctttat 1740
 taaaactaac atgaaatatg tggatgttttcc atttgcataat ttaaataaag atacataatg 1800
 tttgtatgaa aaa 1813

<210> 39
 <211> 390
 <212> PRT
 <213> Homo sapiens

<400> 39
 Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe Leu

1	5	10	15
Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln Leu Gln			
20	25	30	
Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Gly Gly Glu Val			
35	40	45	
Val Leu Pro Ala Trp Tyr Thr Leu His Gly Glu Val Ser Ser Ser Gln			
50	55	60	
Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln Lys Glu Lys			
65	70	75	80
Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr Ser Lys Pro			
85	90	95	
Gly Val Ser Leu Val Tyr Ser Met Pro Ser Arg Asn Leu Ser Leu Arg			
100	105	110	
Leu Glu Gly Leu Gln Glu Lys Asp Ser Gly Pro Tyr Ser Cys Ser Val			
115	120	125	
Asn Val Gln Asp Lys Gln Gly Lys Ser Arg Gly His Ser Ile Lys Thr			
130	135	140	
Leu Glu Leu Asn Val Leu Val Pro Pro Ala Pro Pro Ser Cys Arg Leu			
145	150	155	160
Gln Gly Val Pro His Val Gly Ala Asn Val Thr Leu Ser Cys Gln Ser			
165	170	175	
Pro Arg Ser Lys Pro Ala Val Gln Tyr Gln Trp Asp Arg Gln Leu Pro			
180	185	190	
Ser Phe Gln Thr Phe Phe Ala Pro Ala Leu Asp Val Ile Arg Gly Ser			
195	200	205	
Leu Ser Leu Thr Asn Leu Ser Ser Ser Met Ala Gly Val Tyr Val Cys			
210	215	220	
Lys Ala His Asn Glu Val Gly Thr Ala Gln Cys Asn Val Thr Leu Glu			
225	230	235	240
Val Ser Thr Gly Pro Gly Ala Ala Val Val Ala Gly Ala Val Val Gly			
245	250	255	
Thr Leu Val Gly Leu Gly Leu Leu Ala Gly Leu Val Leu Leu Tyr His			
260	265	270	
Arg Arg Gly Lys Ala Leu Glu Glu Pro Ala Asn Asp Ile Lys Glu Asp			
275	280	285	

Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser Ser Asp Thr Ile
 290 295 300
 Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg
 305 310 315 320
 Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu Thr Pro Thr Pro Ser
 325 330 335
 Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg Leu Pro Thr Thr Asp Gly
 340 345 350
 Ala His Pro Gln Pro Ile Ser Pro Ile Pro Gly Gly Val Ser Ser Ser
 355 360 365
 Gly Leu Ser Arg Met Gly Ala Val Pro Val Met Val Pro Ala Gln Ser
 370 375 380

Gln Ala Gly Ser Leu Val
385 390

<210> 40
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 40
 aggtctcca ggagaaagac tc

22

<210> 41
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 41
 atttgtggcc ttgcagacat agac

24

<210> 42
 <211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 42
ggccacagca tcaaaacctt agaactcaat gtactggttc ctccagctcc 50

<210> 43
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 43
gtgtgacaca gcgtgggc 18

<210> 44
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 44
gaccggcagg cttctgcg 18

<210> 45
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 45
cagcagcttc agccaccagg agtgg 25

<210> 46
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 46
ctgagccgtg ggctgcagtc tcgc 24

<210> 47

<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 47
ccgactacga ctggttcttc atcatgcagg atgacacata tgtgc 45

<210> 48
<211> 2822
<212> DNA
<213> Homo sapiens

<400> 48
cgccaccact gcccacccg ccaatgaaac gcctccgct cctagtgggt tttccactt 60
tgttgaattt ttccatact caaaatgca ccaagacacc ttgtctccca aatgcaaaaat 120
gtgaaatacg caatggattt gaagcctgct attgcaacat gggattttca gaaaatgggt 180
tcacaatttg tgaagatgtat aatgaatgtg gaaatttaac tcagtcctgt ggcgaaaatg 240
ctaattgcac taacacagaa ggaagtttattt attgtatgtg tgtacctggc ttcatatcca 300
gcagtaacca agacagggtt atcactaatg atggacccgt ctgtatagaa aatgtgaatg 360
caaactgcca ttttagataat gtctgtatag ctgcaaatat taataaaact ttaacaaaaaa 420
tcagatccat aaaagaacctt gtggctttgc tacaagaagt ctatagaaat tctgtgacag 480
atcttcacc aacagatata attacatata tagaaatattt agctgaatca tcttcatttt 540
tagtttacaa gaacaacact atctcagcca aggacaccct ttcttaactca actcttactg 600
aatttgtaaa aaccgtgaat aattttgttc aaagggtatac attttagttt tgggacaagt 660
tatctgtgaa tcataggaga acacatcttta caaaactcat gcacactgtt gaacaagctt 720
ctttaaggat atccccagttt ttccaaaaga ccacagagtt tgatataat tcaacggata 780
tagctctcaa agtttctttt tttgattcat ataacatgaa acatattcat cctcatatgt 840
atatggatgg agactacata aatataatttca caaaagagaaa agctgcataat gattcaatgt 900
gcaatgtgc agttgcattt ttatattata agagtattgg tccttgctt tcattcatctg 960
acaacttctt attgaaacctt caaaattatg ataattctgtt agaggaggaa agagtcataat 1020
cttcagtaat ttctgtctca atgagctcaa acccaccac attatatgaa cttgaaaaaaa 1080
taacatttac attaagtcat cgaaagggtca cagataggtt taggagtctt tttgtcatttt 1140
ggaattactc acctgataacc atgaatggca gctggcttc agagggtgtt gagctgacat 1200
actcaaatga gaccacacc tcattggcgtt gtaatcacat gacacatttt gcaattttga 1260
tgttctctgg tccttcattt ggtattaaag attataatat tcttacaagg atcactcaac 1320
taggaataat tatttcactt atttgcattt ccatatgtt ttttaccttc tgggttctca 1380
gtgaaattca aagcaccagg acaacaatttca acaaaaaatctt ttgtctgtac ctatttctt 1440
ctgaacttgtt ttttcttgtt gggatcaata caaaatactaa taagctttc ttttcaatca 1500
ttggccgact gctacactac ttcttttttag ctgtttttgc atggatgtgc attgaaggca 1560
tacatctcta tctcattgtt gtgggtgtca tctacaacaa gggatttttgc cacaagaattt 1620
tttatactttt tggttatcttta agcccgatccg tggtagttgg attttggca gcacttagat 1680
acagatatta tggcacaacc aaagtatgtt ggcttagcac cgaaaacaac tttattttgga 1740
gttttatagg accagcatgc ctaatcattt ttgttaatctt cttggctttt ggagtcatca 1800
tatacaaaatgtt tttcgtcac actgcagggtt tggaaaccaga agtttagttc tttgagaaca 1860
taaggcttttgc tggcaagaggaa gccctcgctt ttctgttcc tctggcacc acctggatct 1920
ttgggggttctt ccatgttgcg caccatcg tggttacagc ttaccttcc acagtcagca 1980
atgcttcca ggggatgttc attttttat ttttttttttgc tttatcttgc tttatcttgc 2040
aagaatatta cagattgttc aaaaatgtcc cctgttgc tggatgttca aggttaaacat 2100
agagaatgtt ggtataatttca aactgcacaa aaataaaaaat tccaaatgttgc ggtatggccaa 2160

tgtataaaaa tgactcatca aattatccaa ttattaacta ctagacaaaa agtattttaa 2220
atcagtttt ctgttatgc tataggaact gtagataata aggtaaaatt atgtatcata 2280
tagatatact atgttttct atgtgaaata gttctgtcaa aaatagtatt gcagatattt 2340
ggaaaagtaat tggttctca ggagtgatat cactgcaccc aaggaaagat tttctttcta 2400
acacgagaag tatatgaatg tcctgaagga aaccactggc ttgatattc tgtgactcgt 2460
gttgccttgc aaactagtcc cctaccacct cggtaatgag ctccattaca gaaagtggaa 2520
cataagagaa tgaagggggca gaatatcaaa cagtgaaaag ggaatgataa gatgtattt 2580
gaatgaactg tttttctgt agactagctg agaaaattgtt gacataaaa aaagaattga 2640
agaaaacacat ttaccattt tgtgaattgt tctgaactta aatgtccact aaaacaactt 2700
agacttctgt ttgctaaatc tgtttcttt tctaataattcaaaaaaaaaaa aaaaagggttt 2760
acctccacaa attgaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 2820
aa 2822

<210> 49

<211> 690

<212> PRT

<213> Homo sapiens

<400> 49

Met	Lys	Arg	Leu	Pro	Leu	Leu	Val	Val	Phe	Ser	Thr	Leu	Leu	Asn	Cys
1				5					10					15	

Ser Tyr Thr Gln Asn Cys Thr Lys Thr Pro Cys Leu Pro Asn Ala Lys
 20 25 30

Cys Glu Ile Arg Asn Gly Ile Glu Ala Cys Tyr Cys Asn Met Gly Phe
 35 40 45

Ser Gly Asn Gly Val Thr Ile Cys Glu Asp Asp Asn Glu Cys Gly Asn
50 55 60

Leu Thr Gln Ser Cys Gly Glu Asn Ala Asn Cys Thr Asn Thr Glu Gly
65 . . . 70 . . . 75 . . . 80

Ser Tyr Tyr Cys Met Cys Val Pro Gly Phe Arg Ser Ser Ser Asn Gln
85 90 95

Asp Arg Phe Ile Thr Asn Asp Gly Thr Val Cys Ile Glu Asn Val Asn
 100 105 110

Ala Asn Cys His Leu Asp Asn Val Cys Ile Ala Ala Asn Ile Asn Lys
115 120 125

Thr Leu Thr Lys Ile Arg Ser Ile Lys Glu Pro Val Ala Leu Leu Gln
130 135 140

Glu Val Tyr Arg Asn Ser Val Thr Asp Leu Ser Pro Thr Asp Ile Ile
 145 150 155 160

Thr Tyr Ile Glu Ile Leu Ala Glu Ser Ser Ser Leu Leu Gly Tyr Lys
165 170 175

Asn Asn Thr Ile Ser Ala Lys Asp Thr Leu Ser Asn Ser Thr Leu Thr

180	185	190
Glu Phe Val Lys Thr Val Asn Asn Phe Val Gln Arg Asp Thr Phe Val		
195	200	205
Val Trp Asp Lys Leu Ser Val Asn His Arg Arg Thr His Leu Thr Lys		
210	215	220
Leu Met His Thr Val Glu Gln Ala Thr Leu Arg Ile Ser Gln Ser Phe		
225	230	235
Gln Lys Thr Thr Glu Phe Asp Thr Asn Ser Thr Asp Ile Ala Leu Lys		
245	250	255
Val Phe Phe Phe Asp Ser Tyr Asn Met Lys His Ile His Pro His Met		
260	265	270
Asn Met Asp Gly Asp Tyr Ile Asn Ile Phe Pro Lys Arg Lys Ala Ala		
275	280	285
Tyr Asp Ser Asn Gly Asn Val Ala Val Ala Phe Leu Tyr Tyr Lys Ser		
290	295	300
Ile Gly Pro Leu Leu Ser Ser Asp Asn Phe Leu Leu Lys Pro Gln		
305	310	315
Asn Tyr Asp Asn Ser Glu Glu Glu Arg Val Ile Ser Ser Val Ile		
325	330	335
Ser Val Ser Met Ser Ser Asn Pro Pro Thr Leu Tyr Glu Leu Glu Lys		
340	345	350
Ile Thr Phe Thr Leu Ser His Arg Lys Val Thr Asp Arg Tyr Arg Ser		
355	360	365
Leu Cys Ala Phe Trp Asn Tyr Ser Pro Asp Thr Met Asn Gly Ser Trp		
370	375	380
Ser Ser Glu Gly Cys Glu Leu Thr Tyr Ser Asn Glu Thr His Thr Ser		
385	390	395
Cys Arg Cys Asn His Leu Thr His Phe Ala Ile Leu Met Ser Ser Gly		
405	410	415
Pro Ser Ile Gly Ile Lys Asp Tyr Asn Ile Leu Thr Arg Ile Thr Gln		
420	425	430
Leu Gly Ile Ile Ile Ser Leu Ile Cys Leu Ala Ile Cys Ile Phe Thr		
435	440	445
Phe Trp Phe Phe Ser Glu Ile Gln Ser Thr Arg Thr Thr Ile His Lys		
450	455	460

Asn Leu Cys Cys Ser Leu Phe Leu Ala Glu Leu Val Phe Leu Val Gly
 465 470 475 480

Ile Asn Thr Asn Thr Asn Lys Leu Phe Cys Ser Ile Ile Ala Gly Leu
 485 490 495

Leu His Tyr Phe Phe Leu Ala Ala Phe Ala Trp Met Cys Ile Glu Gly
 500 505 510

Ile His Leu Tyr Leu Ile Val Val Gly Val Ile Tyr Asn Lys Gly Phe
 515 520 525

Leu His Lys Asn Phe Tyr Ile Phe Gly Tyr Leu Ser Pro Ala Val Val
 530 535 540

Val Gly Phe Ser Ala Ala Leu Gly Tyr Arg Tyr Tyr Gly Thr Thr Lys
 545 550 555 560

Val Cys Trp Leu Ser Thr Glu Asn Asn Phe Ile Trp Ser Phe Ile Gly
 565 570 575

Pro Ala Cys Leu Ile Ile Leu Val Asn Leu Leu Ala Phe Gly Val Ile
 580 585 590

Ile Tyr Lys Val Phe Arg His Thr Ala Gly Leu Lys Pro Glu Val Ser
 595 600 605

Cys Phe Glu Asn Ile Arg Ser Cys Ala Arg Gly Ala Leu Ala Leu Leu
 610 615 620

Phe Leu Leu Gly Thr Thr Trp Ile Phe Gly Val Leu His Val Val His
 625 630 635 640

Ala Ser Val Val Thr Ala Tyr Leu Phe Thr Val Ser Asn Ala Phe Gln
 645 650 655

Gly Met Phe Ile Phe Leu Phe Leu Cys Val Leu Ser Arg Lys Ile Gln
 660 665 670

Glu Glu Tyr Tyr Arg Leu Phe Lys Asn Val Pro Cys Cys Phe Gly Cys
 675 680 685

Leu Arg
 690

<210> 50
 <211> 589
 <212> DNA
 <213> Homo sapiens

<220>
 <221> modified_base
 <222> (61)

<223> a, t, c or g

<400> 50

tggaaacata tcctccctca tatgaatatg gatggagact acataaataat atttccaaag 60
ngaaaagccg gcataatggat tcaaattggca atgttgcagt tgcatttta tattataaga 120
gtattggtcc cttgcatttc atcatctgac aacttcttat tgaaacctca aaattatgat 180
aattctgaag aggagggaaag agtcataatct tcaagtaattt cagtcataat gagctcaaac 240
ccacccacat tatataact tgaaaaaaata acatttacat taagtcatacg aaaggtcaca 300
gataggtata ggagtctatg tggcattttg gaataactcac ctgataccat gaatggcagc 360
tggcttcag agggctgtga gctgacatac tcaaattgaga cccacacctc atgccgtgt 420
aatcacctga cacatttgc aattttgatg tcctctggc cttccattgg tattaaagat 480
tataatattc ttacaaggat cactcaacta gaaataatta tttcaactgat ttgtcttgcc 540
atatgcattt ttaccttctg gttcttcagt gaaattcaaa gcaccagga 589

<210> 51

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 51

ggtaatgagc tccattacag

20

<210> 52

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 52

ggagtagaaa gcgcattgg

18

<210> 53

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 53

cacctgatac catgaatggc ag

22

<210> 54

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 54

cgagctcgaa ttaattcg

18

<210> 55

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 55

ggatctcctg agtcagg

18

<210> 56

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 56

cctagtttag tgatccttgt aag

23

<210> 57

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 57

atgagaccca cacctcatgc cgctgtaatc acctgacaca ttttgcatt

50

<210> 58

<211> 2137

<212> DNA

<213> Homo sapiens

<400> 58

gctcccagcc aagaacctcg gggccgctgc gcgggtggga ggagttcccc gaaacccggc 60
cgctaaggca ggcctcctcc tcccgagat ccgaacggcc tgggcggggt caccggct 120

gggacaaga gcccgcgcct gcctgcccgg gcccggggag ggggctgggg ctggggccgg 180
aggcggggtg tgagtgggtg tgcgggggg gcggaggcgt gatcaatcc cgataagaaa 240
tgctcggtg tttgggcac ctaccgtgg gccccgttaag ggcgtactat ataaggctgc 300
cgccccggag cccgcgcgc gtcagagcag gagegctggc tccaggatct agggccacga 360
ccatcccaac cccgcactca cagccccca ggcgcattccg gtcggccccc agcctccgc 420
accccccacatcg cccggagctgc gccgagagcc ccaggaggtt gccatgcgga ggggtgtgt 480
ggtgttccac gtatggatcc tggccgcct ctggctggcc tggccgggc gccccctcgc 540
cttctcgac gggggccccc acgtgcacta cggctgggc gaccgcattcc gcctgcggca 600
cctgtacacc tccggccccc acgggtctc cagctgctc ctgcgcattcc gtggcagcgg 660
cgtcggtgac tgcgcgggg gccagagcgc gcacagttt ctggagatca aggcagtcgc 720
tctcgccacc gtggccatca agggcgtgca cagcgtgcgg tacotctgca tggccggca 780
cgccaagatg caggggctgc ttcaagtactc ggaggaagac tgtgtttcg aggaggagat 840
ccgcccagat ggctacaatg tgtaccgatc cgagaagcac cgcctcccg tctcccttag 900
cagtgccaa cagcggcgcg tgtacaagaa cagaggctt ctccactct ctcatctt 960
gccccatgctg cccatggtcc cagaggagcc tgaggaccc agggccact tggaaatctga 1020
catgttctct tcgccccctgg agaccgacag catggaccac tttgggcttg tcaccggact 1080
ggaggccgtg aggagtccca gctttgagaa gtaactgaga ccatgcccgg gcctcttcac 1140
tgctgccagg ggctgtggta cctgcagcgt gggggacgtg ctttacaag aacagtctg 1200
agtccacgtt ctgttagct ttaggaagaa acatctagaa gttgtacata ttcagagtt 1260
tccattggca gtgccagtt ctgcacata gacttgtctg atcataacat tgtaaggctg 1320
tagcttcccc agctgtgc tggccccca ttctgctccc tcgaggttgc tggacaagct 1380
gctgcactgt ctcaattctg cttgaatacc tccatcgatg gggaaactcac ttcccttgg 1440
aaaattctta tgtcaagctg aaattctcta atttttctc atcaattcccc caggagcagc 1500
cagaagacag gcagtagtt taatttcagg aacaggtat ccactctgtt aacacgcagg 1560
taaatttcac tcaaccccat gtggaaattt atctatatct ctacttccag ggaccatttg 1620
cccttcccaa atccctccag gccagaactg actggagcag gcatggccca ccaggcttca 1680
ggagtagggg aagcctggag cccactcca gcccctggac aacttgagaa ttccccctga 1740
ggccagttct gtcattggatg ctgtcttag aataacttgc tgtcccggtg tcacctgttt 1800
ccatctccca gcccaccagc cctctggccca ctcacatgc ctccttgcattt attggggcct 1860
cccaggcccc ccacctttagt tcaacctgca ttcttgcattt aaaaatcagg aaaagaaaaag 1920
atttgaagac cccaagtctt gtcaataact tgctgtgtgg aagcagcggg ggaagaccta 1980
gaacccttcc cccagcactt ggtttccaa catgatattt atgagtaatt tattttgata 2040
tgtacatctc ttatatttctt acattatttta tgcccccaaa ttatatttat gtatgtaaat 2100
qaqotttqtt ttgtatatta aatggagtt tggttgc 2137

<210> 59
<211> 216
<212> PRT
<213> *Homo sapiens*

<400> 59

Met	Arg	Ser	Gly	Cys	Val	Val	Val	His	Val	Trp	Ile	Leu	Ala	Gly	Leu
1				5					10					15	

Trp Leu Ala Val Ala Gly Arg Pro Leu Ala Phe Ser Asp Ala Gly Pro
20 25 30

His Val His Tyr Gly Trp Gly Asp Pro Ile Arg Leu Arg His Leu Tyr
 35 40 45

Thr Ser Gly Pro His Gly Leu Ser Ser Cys Phe Leu Arg Ile Arg Ala
50 55 60

Asp Gly Val Val Asp Cys Ala Arg Gly Gln Ser Ala His Ser Leu Leu
 65 70 75 80

Glu Ile Lys Ala Val Ala Leu Arg Thr Val Ala Ile Lys Gly Val His
 85 90 95

Ser Val Arg Tyr Leu Cys Met Gly Ala Asp Gly Lys Met Gln Gly Leu
 100 105 110

Leu Gln Tyr Ser Glu Glu Asp Cys Ala Phe Glu Glu Glu Ile Arg Pro
 115 120 125

Asp Gly Tyr Asn Val Tyr Arg Ser Glu Lys His Arg Leu Pro Val Ser
 130 135 140

Leu Ser Ser Ala Lys Gln Arg Gln Leu Tyr Lys Asn Arg Gly Phe Leu
 145 150 155 160

Pro Leu Ser His Phe Leu Pro Met Leu Pro Met Val Pro Glu Glu Pro
 165 170 175

Glu Asp Leu Arg Gly His Leu Glu Ser Asp Met Phe Ser Ser Pro Leu
 180 185 190

Glu Thr Asp Ser Met Asp Pro Phe Gly Leu Val Thr Gly Leu Glu Ala
 195 200 205

Val Arg Ser Pro Ser Phe Glu Lys
 210 215

<210> 60
 <211> 26
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 60
 atccgccccag atggctacaa tgtgta

<210> 61
 <211> 42
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 61
 gcctcccggt ctcccgtgagc agtgccaaac agcggcagtg ta

```

<210> 62
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 62
ccagtccgt gacaagccca aa 22

<210> 63
<211> 1295
<212> DNA
<213> Homo sapiens

<400> 63
cccagaagtt caagggcccc cggcctcctg cgctcctgcc gccgggaccc tcgaccctcct 60
cagagcagcc ggctgcgcgc ccggaaagat ggcgaggagg agccgcacc gcctcctcct 120
gctgtctgt cgctacctgg tggtcgcctt gggctatcat aaggcctatg gttttctgc 180
ccaaaagac caacaagtag tcacagcagt agagtaccaa gaggtatt tagcctgcaa 240
aaccccaaag aagactgtt cctccagatt agagtggaa aaactgggtc ggagtgtctc 300
ctttgtctac tatcaacaga ctcttcaagg tgattttaaa aatcgtactg agatgtataga 360
tttcaatac cggatcaaaa atgtgacaag aagtgtatgc gggaaatatc gttgtgaagt 420
tagtgccccca tctgagcaag gccaaaaacct ggaagaggat acagtcactc tggaagtatt 480
agtggctcca gcagttccat catgtgaagt accctcttct gctctgagtg gaactgtgg 540
agagctacga tgtcaagaca aagaaggaa tccagctct gaatacacat gtttaagga 600
tggcatccgt ttgctagaaa atcccagact tggctccaa agcaccaaca gctcatacac 660
aatgaataca aaaactggaa ctctgcaatt taatactgtt tccaaactgg acactggaga 720
atattcctgt gaagccccca attctgttgg atatcgcagg tgtctggaa aacgaatgca 780
agtagatgat ctcAACATAA gtggcatcat agcagccgtt gtgttgtgg ccttagtgat 840
ttccgttgtt ggccttgggt tatgctatgc tcagaggaaa ggctacttt caaaaagaaac 900
ctccttccag aagagtaatt cttcatctaa agccacgaca atgagtgaaa atgtgcagt 960
gctcacgcct gtaatcccag cactttggaa ggccgcggcg ggcggatcac gaggtcagga 1020
gttctagacc agtctggcca atatggtaa accccatctc tactaaaata caaaaattag 1080
ctgggcatgg tggcatgtgc ctgcagttcc agctgttgg gagacaggag aatcacttga 1140
acccgggagg cggagggttgc agtgagctga gatcacgcca ctgcagttcc gcctggtaa 1200
cagagcaaga ttccatctca aaaaataaaaa taaaataata aataaataact gtttttacc 1260
tgtagaattt ttacaataaa tatagtttga tattc 1295

<210> 64
<211> 312
<212> PRT
<213> Homo sapiens

<400> 64
Met Ala Arg Arg Ser Arg His Arg Leu Leu Leu Leu Leu Arg Tyr
   1          5           10          15

Leu Val Val Ala Leu Gly Tyr His Lys Ala Tyr Gly Phe Ser Ala Pro
   20          25          30

```

Lys Asp Gln Gln Val Val Thr Ala Val Glu Tyr Gln Glu Ala Ile Leu
 35 40 45
 Ala Cys Lys Thr Pro Lys Lys Thr Val Ser Ser Arg Leu Glu Trp Lys
 50 55 60
 Lys Leu Gly Arg Ser Val Ser Phe Val Tyr Tyr Gln Gln Thr Leu Gln
 65 70 75 80
 Gly Asp Phe Lys Asn Arg Ala Glu Met Ile Asp Phe Asn Ile Arg Ile
 85 90 95
 Lys Asn Val Thr Arg Ser Asp Ala Gly Lys Tyr Arg Cys Glu Val Ser
 100 105 110
 Ala Pro Ser Glu Gln Gly Gln Asn Leu Glu Glu Asp Thr Val Thr Leu
 115 120 125
 Glu Val Leu Val Ala Pro Ala Val Pro Ser Cys Glu Val Pro Ser Ser
 130 135 140
 Ala Leu Ser Gly Thr Val Val Glu Leu Arg Cys Gln Asp Lys Glu Gly
 145 150 155 160
 Asn Pro Ala Pro Glu Tyr Thr Trp Phe Lys Asp Gly Ile Arg Leu Leu
 165 170 175
 Glu Asn Pro Arg Leu Gly Ser Gln Ser Thr Asn Ser Ser Tyr Thr Met
 180 185 190
 Asn Thr Lys Thr Gly Thr Leu Gln Phe Asn Thr Val Ser Lys Leu Asp
 195 200 205
 Thr Gly Glu Tyr Ser Cys Glu Ala Arg Asn Ser Val Gly Tyr Arg Arg
 210 215 220
 Cys Pro Gly Lys Arg Met Gln Val Asp Asp Leu Asn Ile Ser Gly Ile
 225 230 235 240
 Ile Ala Ala Val Val Val Val Ala Leu Val Ile Ser Val Cys Gly Leu
 245 250 255
 Gly Val Cys Tyr Ala Gln Arg Lys Gly Tyr Phe Ser Lys Glu Thr Ser
 260 265 270
 Phe Gln Lys Ser Asn Ser Ser Ser Lys Ala Thr Thr Met Ser Glu Asn
 275 280 285
 Val Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp Lys Ala Ala Ala
 290 295 300
 Gly Gly Ser Arg Gly Gln Glu Phe

305

310

<210> 65
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 65
atcggttgtga agtttagtgcc cc

22

<210> 66
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 66
acctgcgata tccaacagaa ttg

23

<210> 67
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 67
ggaagaggat acagtcaactc tggaagtatt agtggctcca gcagttcc

48

<210> 68
<211> 2639
<212> DNA
<213> Homo sapiens

<400> 68
gacatcgagg gtgggcttagc actgaaaactg ctttcaaga cgaggaagag gaggagaaag 60
agaaaagaaga ggaagatgtt gggcaacatt tatttaacat gctccacagc ccggaccctg 120
gcatcatgtct gctattcctg caaatactga agaagcatgg gatttaaata ttttacttct 180
aaataaaatga attactcaat ctccatgtac catctataca tactccacct tcaaaaagta 240
catcaatatt atatcattaa ggaatagta accttctt ctccaatatgt catgacattt 300
ttggacaatg caattgtggc actggcacctt atttcagtga agaaaaaactt tgtggttcta 360
tggcattcat catttgacaa atgcaagcat cttccttatac aatcagctcc tattgaactt 420
actagcactg actgtggaat ccttaagggc ccattacatt tctgaagaag aaagctaaga 480
tgaaggacat gccactccga attcatgtgc tacttggcct agctatcact acactagta 540

aagctgtaga taaaaaagtg gattgtccac ggttatgtac gtgtgaaatc aggccctgg 600
 ttacacccag atccattat atggaagcat ctacagtgg aatgtatgtat tttaggtctt 660
 taactttccc agccagattt ccagctaaca cacagattct tctcctacag actaacaata 720
 ttgcaaaaat tgaatactcc acagacttcc cagtaaacct tactggctg gatttatctc 780
 aaaacaattt atcttcagtc accaatatta atgtaaaaaa gatgcctcag ctccttctg 840
 tgtacctaga ggaaaacaaa cttactgaac tgccctgaaaaa atgtctgtcc gaactgagca 900
 acttacaaga actctatatt aatcacaact tgctttctac aatttcaccc ggagccctta 960
 ttggctaca taatcttctt cgacttcatc tcaattcaaa tagattgcag atgatcaaca 1020
 gtaagtgggt tgatgtctt ccaaatacttag agattctgtat gattggggaa aatccaatta 1080
 tcagaatcaa agacatgaac tttaaggctc ttatcaatct tcgcagccctg gttatagctg 1140
 gtataaacct cacagaaata ccagataacg ccttgggtgg actggaaaac ttagaaagca 1200
 tctctttta cgataacagg ctattaaag taccctcatgt tgctcttcaa aaagtgtaa 1260
 atctcaaattt tttggatcta aataaaaatc ctattaatag aatacgaagg ggtgatttta 1320
 gcaatatgct acactaaaaa gagttggggaa taaataatat gcctgagctg atttccatcg 1380
 atagtcttgc tggtggataac ctgccagatt taagaaaaat agaagctact aacaacccta 1440
 gattgtcttta cattcaccccc aatgcatttt tcagactccc caagctggaa tcactcatgc 1500
 tgaacagcaa tgctctcagt gccctgtacc atggtaccat tgagtctctg ccaaaccctca 1560
 agggaaatcag catacacagt aaccccatca ggtgtactg tgcattccgt tggatgaaca 1620
 tgaacaaaac caacattcg ttcatggagc cagattcaact gtttgcgtg gaccacccctg 1680
 aattccaagg tcagaatgtt cggcaagtgc atttcaggaa catgatggaa atttgcctcc 1740
 ctcttatagc ttcttgagagc ttctttctta atctaaatgtt agaagctggg agctatgttt 1800
 ccttcactg tagagctact gcagaaccac agcctgaaat ctactggata acaccctctg 1860
 gtcaaaaaact cttgcctaat accctgacag acaaggctta tgcatttcgtt gaggaaacac 1920
 tagatataaa tggcgtaact cccaaagaag ggggttata tacttgtata gcaactaacc 1980
 tagttggcgc tgacttgaag tctgttatga tcaaagtggaa tggatcttt ccacaagata 2040
 acaatggctc tttgaatatt aaaataagag atattcaggc caattcagg tttgggtctc 2100
 gggaaagcaag ttctaaaatt ctcaaatcta gtgttaatgt gacagccctt gtcaagactg 2160
 aaaattctca tgctgcgcaa agtgcgtcggaa taccatctga tgtcaaggta tataatctta 2220
 ctcatctgaa tccatcaact gaggataaaa tttgttatga tattccacc atctatcaga 2280
 aaaacagaaa aaaatgtta aatgtcccca ccaaagggtt gcaccctgtat caaaaagagt 2340
 atgaaaaagaa taataccaca acacttatgg cctgtcttgg aggccctctg gggattattg 2400
 gtgtgatatg tcttatcagc tgcctcttc cagaaatgaa ctgtgatgtt ggacacagct 2460
 atgtgaggaa ttacttacag aaaccaacct ttgcattagg tgagctttat ctcctctga 2520
 taaatctctg ggaaggcagga aaagaaaaaa gtacatcact gaaagtaaaa gcaactgtta 2580
 tagtttacc aacaaatatg tcctaaaaac caccaaggaa acctactcca aaaatgaac 2639

<210> 69
 <211> 708
 <212> PRT
 <213> Homo sapiens

<400> 69
 Met Lys Asp Met Pro Leu Arg Ile His Val Leu Leu Gly Leu Ala Ile
 1 5 10 15

Thr Thr Leu Val Gln Ala Val Asp Lys Lys Val Asp Cys Pro Arg Leu
 20 25 30

Cys Thr Cys Glu Ile Arg Pro Trp Phe Thr Pro Arg Ser Ile Tyr Met
 35 40 45

Glu Ala Ser Thr Val Asp Cys Asn Asp Leu Gly Leu Leu Thr Phe Pro
 50 55 60

Ala Arg Leu Pro Ala Asn Thr Gln Ile Leu Leu Leu Gln Thr Asn Asn
 65 70 75 80
 Ile Ala Lys Ile Glu Tyr Ser Thr Asp Phe Pro Val Asn Leu Thr Gly
 85 90 95
 Leu Asp Leu Ser Gln Asn Asn Leu Ser Ser Val Thr Asn Ile Asn Val
 100 105 110
 Lys Lys Met Pro Gln Leu Leu Ser Val Tyr Leu Glu Glu Asn Lys Leu
 115 120 125
 Thr Glu Leu Pro Glu Lys Cys Leu Ser Glu Leu Ser Asn Leu Gln Glu
 130 135 140
 Leu Tyr Ile Asn His Asn Leu Leu Ser Thr Ile Ser Pro Gly Ala Phe
 145 150 155 160
 Ile Gly Leu His Asn Leu Leu Arg Leu His Leu Asn Ser Asn Arg Leu
 165 170 175
 Gln Met Ile Asn Ser Lys Trp Phe Asp Ala Leu Pro Asn Leu Glu Ile
 180 185 190
 Leu Met Ile Gly Glu Asn Pro Ile Ile Arg Ile Lys Asp Met Asn Phe
 195 200 205
 Lys Pro Leu Ile Asn Leu Arg Ser Leu Val Ile Ala Gly Ile Asn Leu
 210 215 220
 Thr Glu Ile Pro Asp Asn Ala Leu Val Gly Leu Glu Asn Leu Glu Ser
 225 230 235 240
 Ile Ser Phe Tyr Asp Asn Arg Leu Ile Lys Val Pro His Val Ala Leu
 245 250 255
 Gln Lys Val Val Asn Leu Lys Phe Leu Asp Leu Asn Lys Asn Pro Ile
 260 265 270
 Asn Arg Ile Arg Arg Gly Asp Phe Ser Asn Met Leu His Leu Lys Glu
 275 280 285
 Leu Gly Ile Asn Asn Met Pro Glu Leu Ile Ser Ile Asp Ser Leu Ala
 290 295 300
 Val Asp Asn Leu Pro Asp Leu Arg Lys Ile Glu Ala Thr Asn Asn Pro
 305 310 315 320
 Arg Leu Ser Tyr Ile His Pro Asn Ala Phe Phe Arg Leu Pro Lys Leu
 325 330 335
 Glu Ser Leu Met Leu Asn Ser Asn Ala Leu Ser Ala Leu Tyr His Gly

340	345	350
Thr Ile Glu Ser Leu Pro Asn Leu Lys Glu Ile Ser Ile His Ser Asn		
355	360	365
Pro Ile Arg Cys Asp Cys Val Ile Arg Trp Met Asn Met Asn Lys Thr		
370	375	380
Asn Ile Arg Phe Met Glu Pro Asp Ser Leu Phe Cys Val Asp Pro Pro		
385	390	395
Glu Phe Gln Gly Gln Asn Val Arg Gln Val His Phe Arg Asp Met Met		
405	410	415
Glu Ile Cys Leu Pro Leu Ile Ala Pro Glu Ser Phe Pro Ser Asn Leu		
420	425	430
Asn Val Glu Ala Gly Ser Tyr Val Ser Phe His Cys Arg Ala Thr Ala		
435	440	445
Glu Pro Gln Pro Glu Ile Tyr Trp Ile Thr Pro Ser Gly Gln Lys Leu		
450	455	460
Leu Pro Asn Thr Leu Thr Asp Lys Phe Tyr Val His Ser Glu Gly Thr		
465	470	475
Leu Asp Ile Asn Gly Val Thr Pro Lys Glu Gly Gly Leu Tyr Thr Cys		
485	490	495
Ile Ala Thr Asn Leu Val Gly Ala Asp Leu Lys Ser Val Met Ile Lys		
500	505	510
Val Asp Gly Ser Phe Pro Gln Asp Asn Asn Gly Ser Leu Asn Ile Lys		
515	520	525
Ile Arg Asp Ile Gln Ala Asn Ser Val Leu Val Ser Trp Lys Ala Ser		
530	535	540
Ser Lys Ile Leu Lys Ser Ser Val Lys Trp Thr Ala Phe Val Lys Thr		
545	550	555
Glu Asn Ser His Ala Ala Gln Ser Ala Arg Ile Pro Ser Asp Val Lys		
565	570	575
Val Tyr Asn Leu Thr His Leu Asn Pro Ser Thr Glu Tyr Lys Ile Cys		
580	585	590
Ile Asp Ile Pro Thr Ile Tyr Gln Lys Asn Arg Lys Lys Cys Val Asn		
595	600	605
Val Thr Thr Lys Gly Leu His Pro Asp Gln Lys Glu Tyr Glu Lys Asn		
610	615	620

*

Asn	Thr	Thr	Thr	Leu	Met	Ala	Cys	Leu	Gly	Gly	Leu	Leu	Gly	Ile	Ile
625														640	
															635
Gly	Val	Ile	Cys	Leu	Ile	Ser	Cys	Leu	Ser	Pro	Glu	Met	Asn	Cys	Asp
														655	
															645
															650
Gly	Gly	His	Ser	Tyr	Val	Arg	Asn	Tyr	Leu	Gln	Lys	Pro	Thr	Phe	Ala
															670
															660
Leu	Gly	Glu	Leu	Tyr	Pro	Pro	Leu	Ile	Asn	Leu	Trp	Glu	Ala	Gly	Lys
															685
															675
Glu	Lys	Ser	Thr	Ser	Leu	Lys	Val	Lys	Ala	Thr	Val	Ile	Gly	Leu	Pro
															700
															690

Thr Asn Met Ser
705

<210> 70
<211> 1305
<212> DNA
<213> Homo sapiens

<400> 70
gccccggact ggcgcaaggt gcccaagcaa ggaaagaaaat aatgaagaga cacatgtgtt 60
agctgcagcc ttttggaaaca cgcaagaagg aaatcaatag tgtggacagg gctggAACCT 120
ttaccacgct ttttggagta gatgaggaat gggctcgta ttatgctgac attccagcat 180
gaatctggta gacctgtgtt taacccgttc cctctccatg tgcctcctcc tacaaagttt 240
ttttctttag atactgtgtt ttcattctgc cagtatgtgtt cccaaagggtt gtctttgttc 300
ttccctctggg ggtttaaatg tcacctgttag caatgcaaat ctcaaggaaa tacctagaga 360
tcttcctccat gaaacagtct tactgtatct ggactccaat cagatcacat ctattcccaa 420
tgaaatttttt aaggacctcc atcaactgttag agttctcaac ctgtccaaaaa atggcattga 480
gtttatcgat gagcatgcct tcaaaggagt agctgaaacc ttgcagactc tggacttg 540
cgacaatcggtt attcaagtg tgcacaaaaaa tgcctcaat aacctgaagg ccaggccag 600
aattgccaac aacccctggc actgcgactg tactctacag caagttctga ggagcatggc 660
gtccaaatcat gagacagccc acaacgtgtt ctgtaaaaacg tccgtgttgg atgaacatgc 720
tggcagacca ttccctcaatg ctgccaacga cgctgaccctt tgtaacctcc ctaaaaaaaaac 780
taccgattat gccatgtgg tcaccatgtt tggctgggtt actatgggtt tctcatatgt 840
ggtatattat gtgaggcaaa atcaggagga tgccccggaga cacctcgaaat acttgaaatc 900
cctgccaaggc aggccagaaga aagccagatga acctgtatgtt attacactg tggatagtg 960
tccaaactgtt ctgtcattga gaaagaaaaga aagtatgtt cgattgcagt agaaataatgt 1020
ggtttacttc tccccatccat tgtaaacatt tgaaactttt tatttcgtt ttttttgaat 1080
tatgccactg ctgaactttt aacaacact acaacataaa taatttgagt ttaggtgatc 1140
caccccttaa ttgtacccccc gatggatat ttctgagtaa gctactatct gaacatttagt 1200
tagatccatc tcactattta ataatgaaat ttatTTTTT aattttaaaag caaataaaaag 1260
cttaactttt aaccatggga aaaaaaaaaaaa aaaaaaaaaaaa aaaca 1305

<210> 71
<211> 259
<212> PRT
<213> Homo sapiens

<400> 71

Met Asn Leu Val Asp Leu Trp Leu Thr Arg Ser Leu Ser Met Cys Leu
 1 5 10 15

Leu Leu Gln Ser Phe Val Leu Met Ile Leu Cys Phe His Ser Ala Ser
 20 25 30

Met Cys Pro Lys Gly Cys Leu Cys Ser Ser Ser Gly Gly Leu Asn Val
 35 40 45

Thr Cys Ser Asn Ala Asn Leu Lys Glu Ile Pro Arg Asp Leu Pro Pro
 50 55 60

Glu Thr Val Leu Leu Tyr Leu Asp Ser Asn Gln Ile Thr Ser Ile Pro
 65 70 75 80

Asn Glu Ile Phe Lys Asp Leu His Gln Leu Arg Val Leu Asn Leu Ser
 85 90 95

Lys Asn Gly Ile Glu Phe Ile Asp Glu His Ala Phe Lys Gly Val Ala
 100 105 110

Glu Thr Leu Gln Thr Leu Asp Leu Ser Asp Asn Arg Ile Gln Ser Val
 115 120 125

His Lys Asn Ala Phe Asn Asn Leu Lys Ala Arg Ala Arg Ile Ala Asn
 130 135 140

Asn Pro Trp His Cys Asp Cys Thr Leu Gln Gln Val Leu Arg Ser Met
 145 150 155 160

Ala Ser Asn His Glu Thr Ala His Asn Val Ile Cys Lys Thr Ser Val
 165 170 175

Leu Asp Glu His Ala Gly Arg Pro Phe Leu Asn Ala Ala Asn Asp Ala
 180 185 190

Asp Leu Cys Asn Leu Pro Lys Lys Thr Thr Asp Tyr Ala Met Leu Val
 195 200 205

Thr Met Phe Gly Trp Phe Thr Met Val Ile Ser Tyr Val Val Tyr Tyr
 210 215 220

Val Arg Gln Asn Gln Glu Asp Ala Arg Arg His Leu Glu Tyr Leu Lys
 225 230 235 240

Ser Leu Pro Ser Arg Gln Lys Lys Ala Asp Glu Pro Asp Asp Ile Ser
 245 250 255

Thr Val Val

<210> 72

<211> 2290

<212> DNA
<213> *Homo sapiens*

<400> 72

accgagccga gcccggacaa ggccgcggcc agatgcaggt gagcaagagg atgctggcgg 60
ggggcgtagag gagcatgccc agccccctcc tggcctgctg gcagccatc ctccctgctgg 120
tgctggctc agtgctgtca ggctcgccca cgggctgccc gccccctgc gagtgctccg 180
cccaggaccg cgctgtgctg tgccaccgca aatgcgtttgtt ggcagtcccc gagggcatcc 240
ccaccgagac ggcctgtctg gacctaggca agaaccgcata caaaaacgcata aaccaggacg 300
agttcggccag ctccccgcac ctggaggagc tggagctcaa cgagaacatc gtgagcgcgg 360
tggagcccg ggccttcaac aacctttca acctccggac gctgggtctc cgcagcaacc 420
gcctgaagct catcccgtca ggcgtcttca ctggcctcag caacctgacc aagcaggaca 480
tcagcgagaa caagatcgat atcctactgg actacatgtt tcaggacctg tacaacctca 540
agtcacttggaa ggttggcgac aatgacctcg tctacatctc tcaccgcgcc ttcagcggcc 600
tcaacagcct ggagcagctg acgctggaga aatgcaacct gacccatc cccaccgagg 660
cgctgtccca cctgcacggc ctcatcgatcc tgaggctccg gcacctaacc atcaatgc 720
tccgggacta ctccttcaag aggctgtacc gactcaaggt ctggagatc tcccactg 780
cctacttggaa caccatgaca cccaaactgccc tctacggccct caacctgacg tccctgtcca 840
tcacacactg caatctgacc gctgtggccct acctggccgt cgcaccaacta gtctatctcc 900
gttcctcaa cctcttctac aaccccatca gcaccattga gggctccatg ttgcatgagc 960
tgctccggct gcaggagatc cagctggatc gcccggcagct ggccgtggg gggccctatg 1020
ccttcggccg cctcaactac ctgcgtgtc tcaatgtctc tggcaaccag ctgaccacac 1080
tggaggaatc agtcttccac tcgggtggca acctggagac actcatctg gactccaacc 1140
cgctggcctg cgactgtcggt ctccctgtggg tggtccggc cgcgtggcgg ctcaacttca 1200
accggcagca gcccacgtgc gcccacggcc agtttgtcca gggcaaggag ttcaaggact 1260
tccctgtatgt gctactgtccc aactacttca cctgcccggc cgcacccatc cgggaccgca 1320
aggcccagca ggtgtttgtg gacgaggggcc acacgggtca gtttgtgtc cggggcgatg 1380
gcgaccggcc gcccggccatc ctctggctct cacccccggaa gcacotggtc tcaagccaaga 1440
gcaatggcg gtcacagtc ttccctgtatc gcacgctgg ggtgcgtac gcccaggatc 1500
aggacaaacgg cacgttacgg tgcacatcgcc ccaacggggg cggcaacgac tccatgccc 1560
cccacctgca tggcgccgg tactcgcccg actggccccc tcagcccaac aagaccttcg 1620
cttcatctc caaccagccg ggcgaggggag aggcaacacg cacccggcc actgtgcctt 1680
tccccttgcg catcaagacc ctcatcatcg ccaccacat gggcttcatc tctttcttgg 1740
ggcgtgtctt ctctgtgtt gtcgtgtt gttcttggag cggggcggcaag ggcacacaaa 1800
agcacaacat cgagatcgat tatgtcccc gaaaagtccgaa cgcaggcatc agtcccgccg 1860
acgcgcggccg caagttcaac atgaagatga tatgaggccg gggcgggggg cagggacccc 1920
cggcgccgg ggcaggggaa ggggcctggt cgcacccatc tcacttcca gtccttccca 1980
cctccctccct acccttctac acacgttctc tttctccctc ccccttccgt cccctgttc 2040
ccccccggccag ccttcaccac ctgccttcct tctaccaggaa cctcagaagc ccagacccctgg 2100
ggacccacc tacacagggg cattgacaga ctggagttga aagccgacga accgacacgc 2160
ggcagagtcataaattcaat aaaaaagttt cgaactttctt ctgttaacttgg gtttcaata 2220
attatggatt ttatgaaaaa cttgaaataa taaaaagaga aaaaaactaa aaaaaaaaaaa 2280
aaaaaaaaaa 2290

<210> 73

<211> 620

<212> PRT

<213> Homo sapiens

<400> 73

Met Gln V

1

1

5

10

15

Ser Pro Leu Leu Ala Cys Trp Gln Pro Ile Leu Leu Leu Val Leu Gly
 20 25 30

Ser Val Leu Ser Gly Ser Ala Thr Gly Cys Pro Pro Arg Cys Glu Cys
 35 40 45

Ser Ala Gln Asp Arg Ala Val Leu Cys His Arg Lys Cys Phe Val Ala
 50 55 60

Val Pro Glu Gly Ile Pro Thr Glu Thr Arg Leu Leu Asp Leu Gly Lys
 65 70 75 80

Asn Arg Ile Lys Thr Leu Asn Gln Asp Glu Phe Ala Ser Phe Pro His
 85 90 95

Leu Glu Glu Leu Glu Leu Asn Glu Asn Ile Val Ser Ala Val Glu Pro
 100 105 110

Gly Ala Phe Asn Asn Leu Phe Asn Leu Arg Thr Leu Gly Leu Arg Ser
 115 120 125

Asn Arg Leu Lys Leu Ile Pro Leu Gly Val Phe Thr Gly Leu Ser Asn
 130 135 140

Leu Thr Lys Gln Asp Ile Ser Glu Asn Lys Ile Val Ile Leu Leu Asp
 145 150 155 160

Tyr Met Phe Gln Asp Leu Tyr Asn Leu Lys Ser Leu Glu Val Gly Asp
 165 170 175

Asn Asp Leu Val Tyr Ile Ser His Arg Ala Phe Ser Gly Leu Asn Ser
 180 185 190

Leu Glu Gln Leu Thr Leu Glu Lys Cys Asn Leu Thr Ser Ile Pro Thr
 195 200 205

Glu Ala Leu Ser His Leu His Gly Leu Ile Val Leu Arg Leu Arg His
 210 215 220

Leu Asn Ile Asn Ala Ile Arg Asp Tyr Ser Phe Lys Arg Leu Tyr Arg
 225 230 235 240

Leu Lys Val Leu Glu Ile Ser His Trp Pro Tyr Leu Asp Thr Met Thr
 245 250 255

Pro Asn Cys Leu Tyr Gly Leu Asn Leu Thr Ser Leu Ser Ile Thr His
 260 265 270

Cys Asn Leu Thr Ala Val Pro Tyr Leu Ala Val Arg His Leu Val Tyr
 275 280 285

Leu Arg Phe Leu Asn Leu Ser Tyr Asn Pro Ile Ser Thr Ile Glu Gly
 290 295 300

Ser Met Leu His Glu Leu Leu Arg Leu Gln Glu Ile Gln Leu Val Gly
 305 310 315 320

Gly Gln Leu Ala Val Val Glu Pro Tyr Ala Phe Arg Gly Leu Asn Tyr
 325 330 335

Leu Arg Val Leu Asn Val Ser Gly Asn Gln Leu Thr Thr Leu Glu Glu
 340 345 350

Ser Val Phe His Ser Val Gly Asn Leu Glu Thr Leu Ile Leu Asp Ser
 355 360 365

Asn Pro Leu Ala Cys Asp Cys Arg Leu Leu Trp Val Phe Arg Arg Arg
 370 375 380

Trp Arg Leu Asn Phe Asn Arg Gln Gln Pro Thr Cys Ala Thr Pro Glu
 385 390 395 400

Phe Val Gln Gly Lys Glu Phe Lys Asp Phe Pro Asp Val Leu Leu Pro
 405 410 415

Asn Tyr Phe Thr Cys Arg Arg Ala Arg Ile Arg Asp Arg Lys Ala Gln
 420 425 430

Gln Val Phe Val Asp Glu Gly His Thr Val Gln Phe Val Cys Arg Ala
 435 440 445

Asp Gly Asp Pro Pro Pro Ala Ile Leu Trp Leu Ser Pro Arg Lys His
 450 455 460

Leu Val Ser Ala Lys Ser Asn Gly Arg Leu Thr Val Phe Pro Asp Gly
 465 470 475 480

Thr Leu Glu Val Arg Tyr Ala Gln Val Gln Asp Asn Gly Thr Tyr Leu
 485 490 495

Cys Ile Ala Ala Asn Ala Gly Gly Asn Asp Ser Met Pro Ala His Leu
 500 505 510

His Val Arg Ser Tyr Ser Pro Asp Trp Pro His Gln Pro Asn Lys Thr
 515 520 525

Phe Ala Phe Ile Ser Asn Gln Pro Gly Glu Gly Ala Asn Ser Thr
 530 535 540

Arg Ala Thr Val Pro Phe Pro Phe Asp Ile Lys Thr Leu Ile Ile Ala
 545 550 555 560

Thr Thr Met Gly Phe Ile Ser Phe Leu Gly Val Val Leu Phe Cys Leu
 565 570 575

Val Leu Leu Phe Leu Trp Ser Arg Gly Lys Gly Asn Thr Lys His Asn

580	585	590
Ile Glu Ile Glu Tyr Val Pro Arg Lys Ser Asp Ala Gly Ile Ser Ser		
595	600	605
Ala Asp Ala Pro Arg Lys Phe Asn Met Lys Met Ile		
610	615	620
<210> 74		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 74		
tcacacctggag cctttattgg cc		
22		
<210> 75		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 75		
ataccagcta taaccaggct gcg		
23		
<210> 76		
<211> 52		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 76		
caacacgttaag tggtttgatg ctcttccaaa tcttagagatt ctgtatgattg		
50		
gg		
52		
<210> 77		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		

<400> 77
ccatgtgtct cctcctacaa ag 22

<210> 78
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 78
ggaaatagat gtgatctgat tgg 23

<210> 79
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 79
cacctgttagc aatgcaaatc tcaaggaaat acctagagat cttcctcctg 50

<210> 80
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 80
agcaaccgcc tgaagctcat cc 22

<210> 81
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 81
aaggcgccgtt gaaagatgtt gacg 24

<210> 82

<211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 82
 gactacatgt ttcaggacct gtacaacctc aagtcaactgg aggttggcga 50

<210> 83
 <211> 1685
 <212> DNA
 <213> Homo sapiens

<400> 83
 cccacgcgtc cgcaccccg ccccgggctc cgaagcggct cggggggcgc ctttcggtca 60
 acatcgtagt ccacccccctc cccatccccca gccccccggg attcaggctc gccagcgccc 120
 agccaggagg cccggccggga agcgcgatgg gggcccccagc cgcctcgctc ctgctcctgc 180
 tcctcgcttt cgcctcgctc tgccgcggcc gccggggccaa cctctcccaag gacgacagcc 240
 agccctggac atctgtatgaa acagtgggtgg ctggtgccac cgtggtgctc aagtgcctaag 300
 tgaaaagatca cgaggactca tccctgcaat ggtctaaccct tgctcagcag actctctact 360
 ttggggagaa gagagccctt cgagataatc gaattcagct ggtaacctt acgc(cc)acg 420
 agctcagcat cagcatcagc aatgtggccc tggcagacga gggcgagttac acctgctcaa 480
 ttttcactat gcctgtgcga actgccaagt ccctcgctc tgctcgttaga attccacaga 540
 agccatcat cactggttat aaatcttcat tacggaaaa agacacagcc accctaaact 600
 gtca(gtc)ttc tgggagcaag cttgcagccc ggctcacctg gagaagggtt gaccaagaac 660
 tccacggaga accaaccgcg atacaggaag atcccaatgg taaaaccttc actgtcagca 720
 gctcggtgac attccaggtt acccgggagg atgatggggc gaggcatcg tgctctgtga 780
 accatgaatc tctaaaggga getgacagat ccacctctca acgcattgaa gtttatata 840
 caccaactgc gatgattagg ccagaccctc cccatctcg tgagggccag aagctgttc 900
 tacactgtga gggtcgcggc aatccagtc cccagcagta cctatggag aaggaggcga 960
 gtgtgccacc cctgaagatg acccaggaga gtgcctgtat cttcccttc ctcaacaaga 1020
 gtgacagtgg cacctacggc tgacagcca ccagcaacat gggcagctac aaggctact 1080
 acaccctcaa tgttaatgac cccagtcggg tgccctcttc ctccagcacc taccacgcca 1140
 tcatcggtgg gatcggtgtt tcattgtct tcctgtgtc catcatgctc atcttccttg 1200
 gcccactactt gatccggcac aaaggaaacct acctgacaca tgaggcaaaa ggctccgacg 1260
 atgctccaga cgcggacacg gccatcatca atgcagaagg cggcagtcg ggaggggacg 1320
 acaagaagga atatttcatc tagaggcgcc tgccctcttc ctgcggccccc cagggggccct 1380
 gtggggactg ctgggeegt caccaacccg gacttgtaca gagcaacccg aggcccgc 1440
 ctcccgctt ctccccagcc cacccacccc cctgtacaga atgtctgtt tgggtgcgg 1500
 tttgtactcg gtttggaaatg gggaggggagg agggcggggg gaggggaggg ttgcctcag 1560
 ccccttcgt ggcttcgtt cattgggtt attattattt ttgtaaataat cccaaatcaa 1620
 atctgtctcc aggctggaga ggcaggagcc ctgggtgag aaaagcaaaa aacaaacaaa 1680
 aaaca 1685

<210> 84
 <211> 398
 <212> PRT
 <213> Homo sapiens

<400> 84

Met Gly Ala Pro Ala Ala Ser Leu Leu Leu Leu Leu Phe Ala
 1 5 10 15

Cys Cys Trp Ala Pro Gly Gly Ala Asn Leu Ser Gln Asp Asp Ser Gln
 20 25 30

Pro Trp Thr Ser Asp Glu Thr Val Val Ala Gly Gly Thr Val Val Leu
 35 40 45

Lys Cys Gln Val Lys Asp His Glu Asp Ser Ser Leu Gln Trp Ser Asn
 50 55 60

Pro Ala Gln Gln Thr Leu Tyr Phe Gly Glu Lys Arg Ala Leu Arg Asp
 65 70 75 80

Asn Arg Ile Gln Leu Val Thr Ser Thr Pro His Glu Leu Ser Ile Ser
 85 90 95

Ile Ser Asn Val Ala Leu Ala Asp Glu Gly Glu Tyr Thr Cys Ser Ile
 100 105 110

Phe Thr Met Pro Val Arg Thr Ala Lys Ser Leu Val Thr Val Leu Gly
 115 120 125

Ile Pro Gln Lys Pro Ile Ile Thr Gly Tyr Lys Ser Ser Leu Arg Glu
 130 135 140

Lys Asp Thr Ala Thr Leu Asn Cys Gln Ser Ser Gly Ser Lys Pro Ala
 145 150 155 160

Ala Arg Leu Thr Trp Arg Lys Gly Asp Gln Glu Leu His Gly Glu Pro
 165 170 175

Thr Arg Ile Gln Glu Asp Pro Asn Gly Lys Thr Phe Thr Val Ser Ser
 180 185 190

Ser Val Thr Phe Gln Val Thr Arg Glu Asp Asp Gly Ala Ser Ile Val
 195 200 205

Cys Ser Val Asn His Glu Ser Leu Lys Gly Ala Asp Arg Ser Thr Ser
 210 215 220

Gln Arg Ile Glu Val Leu Tyr Thr Pro Thr Ala Met Ile Arg Pro Asp
 225 230 235 240

Pro Pro His Pro Arg Glu Gly Gln Lys Leu Leu Leu His Cys Glu Gly
 245 250 255

Arg Gly Asn Pro Val Pro Gln Gln Tyr Leu Trp Glu Lys Glu Gly Ser
 260 265 270

Val Pro Pro Leu Lys Met Thr Gln Glu Ser Ala Leu Ile Phe Pro Phe
 275 280 285

Leu Asn Lys Ser Asp Ser Gly Thr Tyr Gly Cys Thr Ala Thr Ser Asn
290 295 300

Met Gly Ser Tyr Lys Ala Tyr Tyr Thr Leu Asn Val Asn Asp Pro Ser
305 310 315 320

Pro Val Pro Ser Ser Ser Thr Tyr His Ala Ile Ile Gly Gly Ile
325 330 335

Val Ala Phe Ile Val Phe Leu Leu Leu Ile Met Leu Ile Phe Leu Gly
340 345 350

His Tyr Leu Ile Arg His Lys Gly Thr Tyr Leu Thr His Glu Ala Lys
355 360 365

Gly Ser Asp Asp Ala Pro Asp Ala Asp Thr Ala Ile Ile Asn Ala Glu
370 375 380

Gly Gly Gln Ser Gly Gly Asp Asp Lys Lys Glu Tyr Phe Ile
385 390 395

<210> 85

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 85

gcttagaatt ccacagaagc cc

22

<210> 86

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 86

aacctggaaat gtcaccgagc tg

22

<210> 87

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

<400> 87
 cctagcacag tgacgaggga ctggc 26

<210> 88
 <211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 88
 aagacacagc caccctaaac tgtcagtctt ctgggagcaa gcctgcagcc 50

<210> 89
 <211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 89
 gccctggcag acgagggcga gtacacctgc tcaatcttca ctatgcctgt 50

<210> 90
 <211> 2755
 <212> DNA
 <213> Homo sapiens

<400> 90
 gggggttagg gaggaaggaa tccaccccca cccccccaaa ccctttctt ctcccttcct 60
 ggcttcggac attggagcac taaatgaact tgaattgtgt ctgtggcgag caggatggc 120
 gctgttactt tgtgatgaga tcggggatga attgctcgct taaaaaatgc tgcttggat 180
 tctgttgctg gagacgtctc ttgtttgc cgctggaaac gttacagggg acgttgtcaa 240
 agagaagatc tggcctgca atgagataga aggggaccta cacgtagact gtaaaaaaaaa 300
 gggcttcaca agtctgcagc gttcactgc cccgacttcc cagtttacc atttatttct 360
 gcatggcaat tccctcactc gactttccc taatgagttc gctaactttt ataatgcgg 420
 tagttgcac atggaaaaca atggcttgc taaaatcggtt ccggggggctt ttctggggct 480
 gcagctggtg aaaaggctgc acatcaacaa caacaagatc aagtcttttca gaaagcagac 540
 ttttctgggg ctggacgatc tggaaatatct ccaggctgat ttaatttat tacgagatat 600
 agacccgggg gccttcagg acttgaacaa gctggaggtg ctcattttaa atgacaatct 660
 catcagcacc ctacctgcca acgtgttcca gtatgtgccc atcaccacc tcgacccctcg 720
 gggtaacagg ctgaaaacgc tgccctatga ggaggcttg gagcaaattcc ctggatttgc 780
 ggagatcctg cttagaggata acccttggga ctgcacctgt gatctgctt ccctgaaaaga 840
 atggctggaa aacattccca agaatgcccct gatcgcccgat gttgtctgc aagccccac 900
 cagaactgcag ggtaaagacc tcaatgaaac caccgaacag gacttgtgtc cttgaaaaaa 960
 ccgagtggat tctagtctcc cggcgcccccc tgcccaagaa gagaccccttgc ctccctggacc 1020
 cctgccaact ctttcaaga caaatggcga agaggatcat gccacaccag ggtctgtcc 1080

aaacggaggt acaaagatcc caggcaactg gcagatcaaa atcagaccca cagcagcgat 1140
 agcgcacgggt agctccagga acaaaccctt agctaacagt ttaccctgcc ctggggctg 1200
 cagctgcgac cacatcccag ggtcggttt aaagatgaac tgcaacaaca ggaacgttag 1260
 cagctggct gatttgaagc ccaagctctc taacgtgcag gagctttcc tacgagataa 1320
 caagatccac agcatccgaa aatcgactt tgtggattac aagaacctca ttctgttgaa 1380
 tctggcaac aataacatcg ctactgtaga gaacaacact ttcaagaacc ttttgaccc 1440
 caggtggcta tacatggata gcaattaccc ggacacgctg tcccgggaga aattcgcggg 1500
 gctgcaaaaac ctagagttacc tgaacgtgaa gtacaacgct atccagctca tcctcccg 1560
 cacttcaat gccatgcccc aactgaggat cctcattctc aacaacaacc tgctgaggtc 1620
 cctgcctgtg gacgtgttcg ctggggctcc gctctctaaa ctcagcctgc acaacaatta 1680
 cttcatgtac ctcccggtgg caggggtgct ggaccagtta acctccatca tccagataga 1740
 cctccacgga aaccctggg agtgcctctg cacaattgtg ctttcaagc agtggcaga 1800
 acgcttgggt tccgaagtgc tgatgagcga cctcaagtgt gagacgccc tgaacttctt 1860
 tagaaaggat ttcatgtcc ttccaatga cgagatctgc ctcagctgt acgctaggat 1920
 ctgcggccacg ttaacttcgc acagtaaaaaa cagcactggg ttggcggaga ccggacgca 1980
 ctccaaactcc tacctagaca ccagcagggt gtccatctcg gtgttggtcc cgggactgct 2040
 gctgggttt gtcacctccg cttcacccgt ggtggcatg ctctgttta tcctgaggaa 2100
 ccgaaagcgg tccaagagac gagatgccaa ctccctccg tccgagatta attccctaca 2160
 gacagtctgt gactcttcct actggcacaa tggccttac aacgcagatg gggcccacag 2220
 agtgtatgac tgtggctctc actcgctctc agactaagac cccaaacccca ataggggagg 2280
 gcagaggaa ggcgatacat cttccccac cgcaggcacc ccggggctg gaggggctg 2340
 taccataatc cccgcgccc cat cagcctggat gggcataagt agataaataa ctgtgagctc 2400
 gcacaaccga aaggggctga ccccttactt agtccttcc ttgaaacaaa gagcagactg 2460
 tggagagctg ggagagcga gccagctcg tcttgctga gagcccttt tgacagaaag 2520
 cccagcacga ccctgctgaa agaactgaca gtgcctctc ctcggcccc gggcctgtg 2580
 gggttggatg ccgcggctct atacatatat acatatatcc acatctataat agagagatag 2640
 atatctattt ttccctgtg gattagcccc gtgatggctc ctcgttgct acgcaggat 2700
 gggcagttgc acgaaggcat gaatgtattt taaataagta actttgactt ctgac 2755

<210> 91
 <211> 696
 <212> PRT
 <213> Homo sapiens

<400> 91
 Met Leu Leu Trp Ile Leu Leu Leu Glu Thr Ser Leu Cys Phe Ala Ala
 1 5 10 15

Gly Asn Val Thr Gly Asp Val Cys Lys Glu Lys Ile Cys Ser Cys Asn
 20 25 30

Glu Ile Glu Gly Asp Leu His Val Asp Cys Glu Lys Lys Gly Phe Thr
 35 40 45

Ser Leu Gln Arg Phe Thr Ala Pro Thr Ser Gln Phe Tyr His Leu Phe
 50 55 60

Leu His Gly Asn Ser Leu Thr Arg Leu Phe Pro Asn Glu Phe Ala Asn
 65 70 75 80

Phe Tyr Asn Ala Val Ser Leu His Met Glu Asn Asn Gly Leu His Glu
 85 90 95

Ile Val Pro Gly Ala Phe Leu Gly Leu Gln Leu Val Lys Arg Leu His
 100 105 110
 Ile Asn Asn Asn Lys Ile Lys Ser Phe Arg Lys Gln Thr Phe Leu Gly
 115 120 125
 Leu Asp Asp Leu Glu Tyr Leu Gln Ala Asp Phe Asn Leu Leu Arg Asp
 130 135 140
 Ile Asp Pro Gly Ala Phe Gln Asp Leu Asn Lys Leu Glu Val Leu Ile
 145 150 155 160
 Leu Asn Asp Asn Leu Ile Ser Thr Leu Pro Ala Asn Val Phe Gln Tyr
 165 170 175
 Val Pro Ile Thr His Leu Asp Leu Arg Gly Asn Arg Leu Lys Thr Leu
 180 185 190
 Pro Tyr Glu Glu Val Leu Glu Gln Ile Pro Gly Ile Ala Glu Ile Leu
 195 200 205
 Leu Glu Asp Asn Pro Trp Asp Cys Thr Cys Asp Leu Leu Ser Leu Lys
 210 215 220
 Glu Trp Leu Glu Asn Ile Pro Lys Asn Ala Leu Ile Gly Arg Val Val
 225 230 235 240
 Cys Glu Ala Pro Thr Arg Leu Gln Gly Lys Asp Leu Asn Glu Thr Thr
 245 250 255
 Glu Gln Asp Leu Cys Pro Leu Lys Asn Arg Val Asp Ser Ser Leu Pro
 260 265 270
 Ala Pro Pro Ala Gln Glu Glu Thr Phe Ala Pro Gly Pro Leu Pro Thr
 275 280 285
 Pro Phe Lys Thr Asn Gly Gln Glu Asp His Ala Thr Pro Gly Ser Ala
 290 295 300
 Pro Asn Gly Gly Thr Lys Ile Pro Gly Asn Trp Gln Ile Lys Ile Arg
 305 310 315 320
 Pro Thr Ala Ala Ile Ala Thr Gly Ser Ser Arg Asn Lys Pro Leu Ala
 325 330 335
 Asn Ser Leu Pro Cys Pro Gly Gly Cys Ser Cys Asp His Ile Pro Gly
 340 345 350
 Ser Gly Leu Lys Met Asn Cys Asn Asn Arg Asn Val Ser Ser Leu Ala
 355 360 365
 Asp Leu Lys Pro Lys Leu Ser Asn Val Gln Glu Leu Phe Leu Arg Asp
 370 375 380

Asn Lys Ile His Ser Ile Arg Lys Ser His Phe Val Asp Tyr Lys Asn
 385 390 395 400
 Leu Ile Leu Leu Asp Leu Gly Asn Asn Asn Ile Ala Thr Val Glu Asn
 405 410 415
 Asn Thr Phe Lys Asn Leu Leu Asp Leu Arg Trp Leu Tyr Met Asp Ser
 420 425 430
 Asn Tyr Leu Asp Thr Leu Ser Arg Glu Lys Phe Ala Gly Leu Gln Asn
 435 440 445
 Leu Glu Tyr Leu Asn Val Glu Tyr Asn Ala Ile Gln Leu Ile Leu Pro
 450 455 460
 Gly Thr Phe Asn Ala Met Pro Lys Leu Arg Ile Leu Ile Leu Asn Asn
 465 470 475 480
 Asn Leu Leu Arg Ser Leu Pro Val Asp Val Phe Ala Gly Val Ser Leu
 485 490 495
 Ser Lys Leu Ser Leu His Asn Asn Tyr Phe Met Tyr Leu Pro Val Ala
 500 505 510
 Gly Val Leu Asp Gln Leu Thr Ser Ile Ile Gln Ile Asp Leu His Gly
 515 520 525
 Asn Pro Trp Glu Cys Ser Cys Thr Ile Val Pro Phe Lys Gln Trp Ala
 530 535 540
 Glu Arg Leu Gly Ser Glu Val Leu Met Ser Asp Leu Lys Cys Glu Thr
 545 550 555 560
 Pro Val Asn Phe Phe Arg Lys Asp Phe Met Leu Leu Ser Asn Asp Glu
 565 570 575
 Ile Cys Pro Gln Leu Tyr Ala Arg Ile Ser Pro Thr Leu Thr Ser His
 580 585 590
 Ser Lys Asn Ser Thr Gly Leu Ala Glu Thr Gly Thr His Ser Asn Ser
 595 600 605
 Tyr Leu Asp Thr Ser Arg Val Ser Ile Ser Val Leu Val Pro Gly Leu
 610 615 620
 Leu Leu Val Phe Val Thr Ser Ala Phe Thr Val Val Gly Met Leu Val
 625 630 635 640
 Phe Ile Leu Arg Asn Arg Lys Arg Ser Lys Arg Arg Asp Ala Asn Ser
 645 650 655
 Ser Ala Ser Glu Ile Asn Ser Leu Gln Thr Val Cys Asp Ser Ser Tyr

660

665

670

Trp His Asn Gly Pro Tyr Asn Ala Asp Gly Ala His Arg Val Tyr Asp
 675 680 685

Cys Gly Ser His Ser Leu Ser Asp
 690 695

<210> 92

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 92

gttggatctg ggcaacaata ac

22

<210> 93

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 93

attgttgtgc aggctgagtt taag

24

<210> 94

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 94

ggtggtata catggatagc aattacctgg acacgctgtc ccggg

45

<210> 95

<211> 2226

<212> DNA

<213> Homo sapiens

<400> 95

agtgcactgc gtccctgtta cccggcgcca gctgtgttcc tgaccccaga ataactcagg 60
gctgcacctgg gcctggcagc gctccgcaca catttcctgt cgccggctaa gggaaaactgt 120
tggccgctgg gccccgggggg ggattcttgg cagttggggg gtccgtcggg agcgaggcg 180

gaggggaagg gaggggaac cgggttgggg aagccagctg tagagggcgg tgaccgcgt 240
 ccagacacag ctctgcgtcc tcgagcggga cagatccaag ttgggagcag ctctgcgtgc 300
 gggcctcag agaatgaggc cggcggtcgc cctgtgcctc ctctggcagg cgctctggcc 360
 cggccgggc ggcggcaac accccactgc cgaccgtgt ggctgctcgg cctcgggggc 420
 ctgctacagc ctgcaccacg ctaccatgaa gcggcaggcg gccgaggagg cctgcatact 480
 gcgagggtggg ggcgtcagca cctgtcgtgc gggcgccag ctgcgcgtc tgctgcgtc 540
 cctgcggca ggcggcggc cggaggggg ctccaaagac ctgtgttct gggtegcact 600
 ggagcgcagg cgttccact gcaccctgga gaacgaccc ttgcgggggt ttcctggct 660
 gtctccgac cccggcggtc tcgaaagcga cacgctgcag tgggtggagg agccccaaacg 720
 ctctgcacc ggcggagat ggcggtaact ccaggccacc ggtgggtcg agccccgcagg 780
 ctgaaggag atgcgtatgcc acctgcgcgc caacggctac ctgtgcaga accagttga 840
 ggtcttgtt cctgcggcgc gcccggggc cgccttaac ttgagctatc gcgcgcctt 900
 ccagctgcac agcgcgcctc tgacttcag tccacactggg accgaggtga gtgcgtctg 960
 cccgggacag ctcccgatct cagttacttg catcgccgac gaaatcgccg ctgcgtggga 1020
 caaactctcg ggcgtatgtgt tgtgtccctg ccccgggagg tacctccgtg ctggcaaatg 1080
 cgcagagctc cctaactgcc tagacgactt gggaggctt gcctgcgaat gtgcgtacggg 1140
 cttcgagctg gggaggacg gccgctctt gttgaccagt gggaggac agccgaccct 1200
 tgggggacc ggggtgccc ccaaggccc gccggccact gcaaccagcc cctgtccgca 1260
 gagaacatgg ccaatcaggg tcgacgagaa gctggagag acaccactt tccctgaaca 1320
 agacaattca gtaacatcta ttccctgagat tcctcgatgg ggatcacaga gcacgtatgc 1380
 tacccttcaa atgtcccttc aagccgagtc aaaggccact atcaccctt caggagcgt 1440
 gatttccaag ttaattcta cgacttcctc tgccactctt caggcttgc actccttc 1500
 tgccgtggc ttcatattt tgacgacagc agtagtagt ttgggtgatct tgaccatgac 1560
 agtactgggg cttgtcaagc tctgcttca cgaaagcccc tcttcccagc caaggaagga 1620
 gtctatgggc cccggggcc ttggaggtga tcctgagccc gctgtttgg gctccagttc 1680
 tgacattgc acaaacaatg gggtaaaatg cggggactgt gatctgcggg acagagcaga 1740
 ggggtcctt cttggcgagt ccccttgg ctcttagtgc gcataggaa acaggggaca 1800
 tgggacttcc tgtgaacagt ttttacttt tgatgaaacg gggaaaccaag aggaacttac 1860
 ttgtgtact gacaatttc gcagaaatcc cccttcctt aaattccctt tactccactg 1920
 aggagctaaa tcagaactgc acactccctc cctgtatgata gaggaagtgg aagtgcctt 1980
 aggatggtga tactggggga cccggtagtg ctggggagag atattttctt atgtttattc 2040
 ggagaattt gagaagtgtat tgaactttc aagacattgg aaacaaatag aacacaatat 2100
 aatttacatt aaaaaataat ttctaccaaa atggaaagga aatgttctat gttgttcagg 2160
 ctaggatattggc aatcccaggg aaaaaataa aaataaaaaaa tttaaggatt 2220
 gttgat 2226

<210> 96
 <211> 490
 <212> PRT
 <213> Homo sapiens

<400> 96
 Met Arg Pro Ala Phe Ala Leu Cys Leu Leu Trp Gln Ala Leu Trp Pro
 1 5 10 15

Gly Pro Gly Gly Glu His Pro Thr Ala Asp Arg Ala Gly Cys Ser
 20 25 30

Ala Ser Gly Ala Cys Tyr Ser Leu His His Ala Thr Met Lys Arg Gln
 35 40 45

Ala Ala Glu Glu Ala Cys Ile Leu Arg Gly Gly Ala Leu Ser Thr Val
 50 55 60

Arg Ala Gly Ala Glu Leu Arg Ala Val Leu Ala Leu Leu Arg Ala Gly
 65 70 75 80
 Pro Gly Pro Gly Gly Ser Lys Asp Leu Leu Phe Trp Val Ala Leu
 85 90 95
 Glu Arg Arg Arg Ser His Cys Thr Leu Glu Asn Glu Pro Leu Arg Gly
 100 105 110
 Phe Ser Trp Leu Ser Ser Asp Pro Gly Gly Leu Glu Ser Asp Thr Leu
 115 120 125
 Gln Trp Val Glu Glu Pro Gln Arg Ser Cys Thr Ala Arg Arg Cys Ala
 130 135 140
 Val Leu Gln Ala Thr Gly Gly Val Glu Pro Ala Gly Trp Lys Glu Met
 145 150 155 160
 Arg Cys His Leu Arg Ala Asn Gly Tyr Leu Cys Lys Tyr Gln Phe Glu
 165 170 175
 Val Leu Cys Pro Ala Pro Arg Pro Gly Ala Ala Ser Asn Leu Ser Tyr
 180 185 190
 Arg Ala Pro Phe Gln Leu His Ser Ala Ala Leu Asp Phe Ser Pro Pro
 195 200 205
 Gly Thr Glu Val Ser Ala Leu Cys Arg Gly Gln Leu Pro Ile Ser Val
 210 215 220
 Thr Cys Ile Ala Asp Glu Ile Gly Ala Arg Trp Asp Lys Leu Ser Gly
 225 230 235 240
 Asp Val Leu Cys Pro Cys Pro Gly Arg Tyr Leu Arg Ala Gly Lys Cys
 245 250 255
 Ala Glu Leu Pro Asn Cys Leu Asp Asp Leu Gly Gly Phe Ala Cys Glu
 260 265 270
 Cys Ala Thr Gly Phe Glu Leu Gly Lys Asp Gly Arg Ser Cys Val Thr
 275 280 285
 Ser Gly Glu Gly Gln Pro Thr Leu Gly Gly Thr Gly Val Pro Thr Arg
 290 295 300
 Arg Pro Pro Ala Thr Ala Thr Ser Pro Val Pro Gln Arg Thr Trp Pro
 305 310 315 320
 Ile Arg Val Asp Glu Lys Leu Gly Glu Thr Pro Leu Val Pro Glu Gln
 325 330 335
 Asp Asn Ser Val Thr Ser Ile Pro Glu Ile Pro Arg Trp Gly Ser Gln

340	345	350
Ser Thr Met Ser Thr Leu Gln Met Ser Leu Gln Ala Glu Ser Lys Ala		
355	360	365
Thr Ile Thr Pro Ser Gly Ser Val Ile Ser Lys Phe Asn Ser Thr Thr		
370	375	380
Ser Ser Ala Thr Pro Gln Ala Phe Asp Ser Ser Ser Ala Val Val Phe		
385	390	395
Ile Phe Val Ser Thr Ala Val Val Val Leu Val Ile Leu Thr Met Thr		
405	410	415
Val Leu Gly Leu Val Lys Leu Cys Phe His Glu Ser Pro Ser Ser Gln		
420	425	430
Pro Arg Lys Glu Ser Met Gly Pro Pro Gly Leu Glu Ser Asp Pro Glu		
435	440	445
Pro Ala Ala Leu Gly Ser Ser Ser Ala His Cys Thr Asn Asn Gly Val		
450	455	460
Lys Val Gly Asp Cys Asp Leu Arg Asp Arg Ala Glu Gly Ala Leu Leu		
465	470	475
Ala Glu Ser Pro Leu Gly Ser Ser Asp Ala		
485	490	

<210> 97

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 97

tggaaggaga tgcgtatgcc a cctg

24

<210> 98

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 98

tgaccagtgg ggaaggacag

20

<210> 99
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 99
acagagcaga ggggccttg 20

<210> 100
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 100
tcagggacaa gtgggtctc tccc 24

<210> 101
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 101
tcagggagg agtgtgcagt tctg 24

<210> 102
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 102
acagctcccg atctcagtta cttgcattgc ggacgaaatc ggcgctcgct 50

<210> 103
<211> 2026
<212> DNA
<213> Homo sapiens

<400> 103
cggacgcgtg ggattcagca gtggccctgtg gctgccagag cagctcctca ggggaaacta 60
agcgtcgagt cagacggcac cataatcgcc tttaaaaagtg cctccgcct gccggccgc 120
tatccccgg ctacctggc cggcccccggg cggtgcgcgc gttagagggg ggcgcgggc 180
agccgagcgc cgggtgtgagc cagcgtcgct gccagtgtga gcggcgggtg gagcgcgggt 240
ggtgcggagg ggggtgtgtg cggcgcgcgc cggcgtgggg tgcaaaccac gagcgtctac 300
gctgccatga ggggcgcgaa cgcctggcg ccactctgc tgctgctggc tgccgcacc 360
cagctctcgc ggcagcagtc cccagagaga cctgtttca catgtgggtg cattcttact 420
ggagagctg gatttattgg cagtgaaggt ttcctggag tgtaccctc aaatagcaaa 480
tgtacttggaa aatcacagt tcccgaagga aaagtagtgc ttctcaattt ccgattcata 540
gacctcgaga gtgacaacact gtgccgtat gactttgtgg atgtgtacaa tggccatgcc 600
aatggccagc gcattggccg cttctgtggc actttccggc ctggagccct tgggtccagt 660
ggcaacaaga tggatgtgca gatgattct gatgccaaca cagctggcaa tggcttcatg 720
gccatgttct ccgctgctga accaaacgaa agaggggatc agtattgtgg aggactcett 780
gacagacctt cccgctcttt taaaaccccc aactggccag accgggatta ccctgcagga 840
gtcacttggtg tgggcacat tggtagccca aagaatcagc ttatagaatt aaagtttgag 900
aagtttgatg tggagcgaga taactactgc cgatatgatt atgtggctgt gtttaatggc 960
ggggaaagtca acgatgctag aagaattggaa aagtattgtg gtgatagtcc acctgcgc 1020
atgtgtctg agagaaatga acttcttatt cagttttat cagacttaag ttaactgca 1080
gatgggtta ttggtcacta catattcagg caaaaaaaaac tgcctacaac tacagaacag 1140
cctgtcacca ccacattccc tggtaaccacg ggtttaaaac ccaccgtggc cttgtgtcaa 1200
caaaagtgtt gacggacggg gactctggag ggcaattatt gttcaagtga ctttgtattt 1260
gcccggcactg ttatcacaac catcactcgc gatgggagtt tgcacccac agtctcgatc 1320
atcaacatct acaaagagg aaatttggcg attcagcagg cgggcaagaa catgagtgcc 1380
aggctgactg tcgtctgca gcaagtccct ctcctcagaa gaggtctaaa ttacattatt 1440
atgggcacaa taggtgaaga tgggcgaggc aaaatcatgc caaacagctt tatcatgatg 1500
ttcaagacca agaattcagaa gctcctggat gcctaaaaataaataagcaatg ttaacagtg 1560
actgtgtcca ttaagctgt attctgccc tgcctttgaa agatctatgt tctctcagta 1620
gaaaaaaaaa tacttataaa attacatatt ctgaaaagagg attccgaaag atgggactgg 1680
ttgactcttc acatgatggc ggtatgaggc ctccgagata gctgaggggaa gttcttgcc 1740
tgctgtcaga ggacgcgtca tctgattggaa aacctgcgcga cttagtgcgg tgataggaag 1800
ctaaaagtgt caagcgttgc cagcttggaa gcgtttattt atacatctt gtaaaaggat 1860
attttagaat tgagttgtgt gaagatgtca aaaaaagatt ttagaagtgc aatatttata 1920
tggttatttg tttcaccttc aagccttgc cctgagggtg tacaatcttgc tcttgcgtt 1980
tctaaatcaa tqcttaataa aatattttta aaggaaaaaaa aaaaaaa 2026

<210> 104

<211> 415

<212> PRT

<213> Homo sapiens

<400> 104

Met Arg Gly Ala Asn Ala Trp Ala Pro Leu Cys Leu Leu Leu Ala Ala
1 5 10 15

Ala Thr Gln Leu Ser Arg Gln Gln Ser Pro Glu Arg Pro Val Phe Thr
 20 25 30

Cys Gly Gly Ile Leu Thr Gly Glu Ser Gly Phe Ile Gly Ser Glu Gly
35 40 45

Phe Pro Gly Val Tyr Pro Pro Asn Ser Lys Cys Thr Trp Lys Ile Thr
50 55 60

Val Pro Glu Gly Lys Val Val Val Leu Asn Phe Arg Phe Ile Asp Leu
 65 70 75 80
 Glu Ser Asp Asn Leu Cys Arg Tyr Asp Phe Val Asp Val Tyr Asn Gly
 85 90 95
 His Ala Asn Gly Gln Arg Ile Gly Arg Phe Cys Gly Thr Phe Arg Pro
 100 105 110
 Gly Ala Leu Val Ser Ser Gly Asn Lys Met Met Val Gln Met Ile Ser
 115 120 125
 Asp Ala Asn Thr Ala Gly Asn Gly Phe Met Ala Met Phe Ser Ala Ala
 130 135 140
 Glu Pro Asn Glu Arg Gly Asp Gln Tyr Cys Gly Leu Leu Asp Arg
 145 150 155 160
 Pro Ser Gly Ser Phe Lys Thr Pro Asn Trp Pro Asp Arg Asp Tyr Pro
 165 170 175
 Ala Gly Val Thr Cys Val Trp His Ile Val Ala Pro Lys Asn Gln Leu
 180 185 190
 Ile Glu Leu Lys Phe Glu Lys Phe Asp Val Glu Arg Asp Asn Tyr Cys
 195 200 205
 Arg Tyr Asp Tyr Val Ala Val Phe Asn Gly Gly Glu Val Asn Asp Ala
 210 215 220
 Arg Arg Ile Gly Lys Tyr Cys Gly Asp Ser Pro Pro Ala Pro Ile Val
 225 230 235 240
 Ser Glu Arg Asn Glu Leu Leu Ile Gln Phe Leu Ser Asp Leu Ser Leu
 245 250 255
 Thr Ala Asp Gly Phe Ile Gly His Tyr Ile Phe Arg Pro Lys Lys Leu
 260 265 270
 Pro Thr Thr Thr Glu Gln Pro Val Thr Thr Thr Phe Pro Val Thr Thr
 275 280 285
 Gly Leu Lys Pro Thr Val Ala Leu Cys Gln Gln Lys Cys Arg Arg Thr
 290 295 300
 Gly Thr Leu Glu Gly Asn Tyr Cys Ser Ser Asp Phe Val Leu Ala Gly
 305 310 315 320
 Thr Val Ile Thr Thr Ile Thr Arg Asp Gly Ser Leu His Ala Thr Val
 325 330 335
 Ser Ile Ile Asn Ile Tyr Lys Glu Gly Asn Leu Ala Ile Gln Gln Ala

340

345

350

Gly Lys Asn Met Ser Ala Arg Leu Thr Val Val Cys Lys Gln Cys Pro
355 360 365

Leu Leu Arg Arg Gly Leu Asn Tyr Ile Ile Met Gly Gln Val Gly Glu
370 375 380

Asp Gly Arg Gly Lys Ile Met Pro Asn Ser Phe Ile Met Met Phe Lys
385 390 395 400

Thr Lys Asn Gln Lys Leu Leu Asp Ala Leu Lys Asn Lys Gln Cys
405 410 415

<210> 105

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 105

ccgattcata gacctcgaga gt

22

<210> 106

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 106

gtcaaggagt cctccacaat ac

22

<210> 107

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 107

gtgtacaatg gccatgccaa tggccagcgc attggccgct tctgt

45

<210> 108

<211> 1838

<212> DNA

<213> Homo sapiens

<400> 108
 cggacgcgtg ggcggacgcg tggcgcccc acggcgccc cgggctgggg cggtcgcttc 60
 ttccctctcc gtggcctacg aggtccccca gcctggtaa agatggccc atggccccc 120
 aaggccctag tcccagctgt gctctggggc ctcagctct tcctcaacct cccaggacct 180
 atctggctcc agccctctcc acctccccag tcttctcccc cgccctcagcc ccattcgctgt 240
 catacctgcc ggggactggt tgacagcttt aacaaggccc tggagagaac catccggac 300
 aactttggag gtggaaacac tgccctggag gaagagaatt tgtccaaata caaagacagt 360
 gagaccgcgc tggtagaggt gctggagggt gtgtgcagca agtcagactt cgagtgcac 420
 cgccctgctgg agctgagtga ggagctggg gagagctggt ggttcacaa gcagcaggag 480
 gccccggacc tcttccagtg gctgtgctca gattccctga agtcgtctg ccccgaggc 540
 acettcgccc cttccctgcct tcctgtcct gggggAACAG agaggccctg cggtgctac 600
 gggcagtgtg aaggagaagg gacacgaggg ggcagcgggc actgtactg ccaaggccgc 660
 tacgggggtg aggccctgtgg ccagtgtggc cttggctact ttgaggcaga acgcaacgccc 720
 agccatctgg tatgttccgc ttgttttggc ccctgtgccc gatgctcagg acctgaggaa 780
 tcaaactgtt tgcaatgcaa gaagggtctgg gccctgcata acctcaagtgt tgtagacatt 840
 gatgagtgtg gcacagaggg agccaactgt ggagctgacc aattctgcgt gaacactgag 900
 ggctccatgt agtgccgaga ctgtgccaag gcctgcctag gtcgcattgg ggcaggggcca 960
 ggtcgctgtgta agaagtgttag ccctggctat cagcaggtgg gtcgcattgg tctcgatgt 1020
 gatgagtgtg agacagaggt gtgtccggga gagaacaagc agtgcgtaaaa caccgagggc 1080
 gtttatcgct gcatctgtgc cgagggtctac aagcagatgg aaggcatctg tgtgaaggag 1140
 cagatcccaag agtcagcagg cttctctca gagatgacag aagcaggtt ggtggctgt 1200
 cagcagatgt tccttggcat catcatctgt gcactggcca cgctggctgc taaggcgac 1260
 ttggtgttca ccgcacatctt cattggggct gtggccggca tgactggcta ctgggtgtca 1320
 gagcgcagtg accgtgtgt ggagggtctt atcaaggcca gataatcgcc gccaccac 1380
 gtaggacccctt ctcccaccca cgctgcccc agagcttggg ctgcccctct gctggacact 1440
 caggacagct tggtttattt ttgagagtgg ggttaagcacc cttacctgcc ttacagagca 1500
 gcccaggta ccaggcccc ggagacaagg cccctgggtt aaaaagtagc cctgaagggtg 1560
 gataccatga gcttcacc tggcgcccc acggcaggctt cacaatgtt gaattcaaa 1620
 agttttccct taatggtggc tgctagact ttggccctgt cttaggatta ggtggcttc 1680
 acaggggtgg ggccatcaca gtccttcctt gccagctgca tgctgccaat tcctgttctg 1740
 tgttcaccac atccccacac cccattgcca cttattttt catctcagga aataaagaaa 1800
 ggtcttggaa agttaaaaaaa aaaaaaaaaa aaaaaaaaaa 1838

<210> 109

<211> 420

<212> PRT

<213> Homo sapiens

<400> 109	Met Ala Pro Trp Pro Pro Lys Gly Leu Val Pro Ala Val Leu Trp Gly
	1 5 10 15
	Leu Ser Leu Phe Leu Asn Leu Pro Gly Pro Ile Trp Leu Gln Pro Ser
	20 25 30
	Pro Pro Pro Gln Ser Ser Pro Pro Pro Gln Pro His Pro Cys His Thr
	35 40 45
	Cys Arg Gly Leu Val Asp Ser Phe Asn Lys Gly Leu Glu Arg Thr Ile
	50 55 60

Arg Asp Asn Phe Gly Gly Asn Thr Ala Trp Glu Glu Glu Asn Leu
 65 70 75 80

Ser Lys Tyr Lys Asp Ser Glu Thr Arg Leu Val Glu Val Leu Glu Gly
 85 90 95

Val Cys Ser Lys Ser Asp Phe Glu Cys His Arg Leu Leu Glu Leu Ser
 100 105 110

Glu Glu Leu Val Glu Ser Trp Trp Phe His Lys Gln Gln Glu Ala Pro
 115 120 125

Asp Leu Phe Gln Trp Leu Cys Ser Asp Ser Leu Lys Leu Cys Cys Pro
 130 135 140

Ala Gly Thr Phe Gly Pro Ser Cys Leu Pro Cys Pro Gly Gly Thr Glu
 145 150 155 160

Arg Pro Cys Gly Gly Tyr Gly Gln Cys Glu Gly Glu Gly Thr Arg Gly
 165 170 175

Gly Ser Gly His Cys Asp Cys Gln Ala Gly Tyr Gly Gly Glu Ala Cys
 180 185 190

Gly Gln Cys Gly Leu Gly Tyr Phe Glu Ala Glu Arg Asn Ala Ser His
 195 200 205

Leu Val Cys Ser Ala Cys Phe Gly Pro Cys Ala Arg Cys Ser Gly Pro
 210 215 220

Glu Glu Ser Asn Cys Leu Gln Cys Lys Lys Gly Trp Ala Leu His His
 225 230 235 240

Leu Lys Cys Val Asp Ile Asp Glu Cys Gly Thr Glu Gly Ala Asn Cys
 245 250 255

Gly Ala Asp Gln Phe Cys Val Asn Thr Glu Gly Ser Tyr Glu Cys Arg
 260 265 270

Asp Cys Ala Lys Ala Cys Leu Gly Cys Met Gly Ala Gly Pro Gly Arg
 275 280 285

Cys Lys Lys Cys Ser Pro Gly Tyr Gln Gln Val Gly Ser Lys Cys Leu
 290 295 300

Asp Val Asp Glu Cys Glu Thr Glu Val Cys Pro Gly Glu Asn Lys Gln
 305 310 315 320

Cys Glu Asn Thr Glu Gly Gly Tyr Arg Cys Ile Cys Ala Glu Gly Tyr
 325 330 335

Lys Gln Met Glu Gly Ile Cys Val Lys Glu Gln Ile Pro Glu Ser Ala
 340 345 350

Gly Phe Phe Ser Glu Met Thr Glu Asp Glu Leu Val Val Leu Gln Gln
 355 360 365

Met Phe Phe Gly Ile Ile Ile Cys Ala Leu Ala Thr Leu Ala Ala Lys
 370 375 380

Gly Asp Leu Val Phe Thr Ala Ile Phe Ile Gly Ala Val Ala Ala Met
 385 390 395 400

Thr Gly Tyr Trp Leu Ser Glu Arg Ser Asp Arg Val Leu Glu Gly Phe
 405 410 415

Ile Lys Gly Arg
 420

<210> 110

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 110

cctggctatc agcaggtggg ctccaaagtgt ctcgatgtgg atgagtgtga

50

<210> 111

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 111

attctgcgtg aacactgagg gc

22

<210> 112

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 112

atctgcttgt agccctcgac ac

22

<210> 113

<211> 1616
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (1461)
<223> a, t, c or g

<400> 113
tgagaccctc ctgcaggcctt ctcaggac agccccactc tgcctttgc tcctccaggg 60
cagcaccatg cagccccgtt ggctctgt ggcactctgg gtgttgcggc tggccagccc 120
cgggggccgcc ctgaccgggg agcagctctt gggcagcctg ctgcggcagc tgca gcttcaa 180
agaggtgcgg accctggaca gggccgacat ggaggagctg gtcattttca cccacgttag 240
ggcccagtac gtggccctgc tgcagcgcag ccacggggac cgctcccgcg gaaagagggtt 300
cagccagagc ttccgagagg tgccggcag gttccctggcg ttggaggcca gcacacacct 360
gctgtgttcc ggcattggagc agcggctgccc gcccacacagc gagctggtgc aggccgtgct 420
gcggctttc caggagccgg tccccaaaggc cgcgcgtgcac aggccacgggc ggctgtcccc 480
gcgcagcggcc cggggccggg tgaccgtcga gtggctgcgc gtccgcgcac acggctccaa 540
ccgcacccctcc ctcatcgact ccaggctgtt gtccgtccac gagagcggct ggaaggccctt 600
cgacgtgacc gaggccgtga acttctggca gcagctgagc cggccccggc agccgctgtct 660
gctacaggtg tcgggtcaga gggagcatct gggcccgctg gcttccggcg cccacaagct 720
ggtcgcgttt gcctcgcagg gggcgcgcagc cgggcttggg gagccccagc tggagctgca 780
caccctggac ctggggact atggagctca gggcactgt gaccctgaag cacaatgac 840
cgagggcacc cgctgtgccc gcaggagat gtacattgac ctgcaggaga tgaagtggc 900
cgagaactgg gtgctggagc ccccgccctt cctggcttat gatgtgtgg gcacccgtgg 960
gcagcccccg gaggccctgg cttcaagtg gccgttctg gggcctcgac agtgcattcgc 1020
ctcggagact gactcgctgc ccatgatcgat cagcatcaag gagggaggca ggaccaggcc 1080
ccaggtggtc agectggcca acatgagggt gcagaagtgc agtgtgtcct cggatggtgc 1140
gctcggtcga aggaggctcc agccataggc gccttagtta gccatcgagg gacttgactt 1200
gtgtgtgttt ctgaagtgtt cgagggtacc aggagagctg gctgtactg aactgtgtat 1260
ggacaaaatgc tctgtgtct ctgtgagcc ctgaatttgc ttccctgtac aagttaacctc 1320
acctaatttt tgcttcctcag gaatgagaat ctttggccac tggagagccc ttgctcagtt 1380
ttctctattc ttattattca ctgcactata ttctaaagcac ttacatgtgg agataactgta 1440
acctgaggggc agaaaagccca ntgtgtcatt gtttacttgt cctgtcactg gatctgggct 1500
aaagtccctcc accaccactc tggacctaag acctggggtt aagtgtgggt tgtcatccc 1560
caatccagat aataaaagact ttgtaaaaca tgaataaaac acattttattt ctaaaa 1616

<210> 114
<211> 366
<212> PRT
<213> Homo sapiens

<400> 114
Met Gln Pro Leu Trp Leu Cys Trp Ala Leu Trp Val Leu Pro Leu Ala
1 5 10 15

Ser Pro Gly Ala Ala Leu Thr Gly Glu Gln Leu Leu Gly Ser Leu Leu
20 25 30

Arg Gln Leu Gln Leu Lys Glu Val Pro Thr Leu Asp Arg Ala Asp Met
35 40 45

Glu	Glu	Leu	Val	Ile	Pro	Thr	His	Val	Arg	Ala	Gln	Tyr	Val	Ala	Leu
50								55						60	
Leu	Gln	Arg	Ser	His	Gly	Asp	Arg	Ser	Arg	Gly	Lys	Arg	Phe	Ser	Gln
65						70				75				80	
Ser	Phe	Arg	Glu	Val	Ala	Gly	Arg	Phe	Leu	Ala	Leu	Glu	Ala	Ser	Thr
	85							90					95		
His	Leu	Leu	Val	Phe	Gly	Met	Glu	Gln	Arg	Leu	Pro	Pro	Asn	Ser	Glu
	100						105					110			
Leu	Val	Gln	Ala	Val	Leu	Arg	Leu	Phe	Gln	Glu	Pro	Val	Pro	Lys	Ala
	115						120					125			
Ala	Leu	His	Arg	His	Gly	Arg	Leu	Ser	Pro	Arg	Ser	Ala	Arg	Ala	Arg
	130					135					140				
Val	Thr	Val	Glu	Trp	Leu	Arg	Val	Arg	Asp	Asp	Gly	Ser	Asn	Arg	Thr
	145					150				155			160		
Ser	Leu	Ile	Asp	Ser	Arg	Leu	Val	Ser	Val	His	Glu	Ser	Gly	Trp	Lys
	165						170					175			
Ala	Phe	Asp	Val	Thr	Glu	Ala	Val	Asn	Phe	Trp	Gln	Gln	Leu	Ser	Arg
	180						185					190			
Pro	Arg	Gln	Pro	Leu	Leu	Leu	Gln	Val	Ser	Val	Gln	Arg	Glu	His	Leu
	195						200					205			
Gly	Pro	Leu	Ala	Ser	Gly	Ala	His	Lys	Leu	Val	Arg	Phe	Ala	Ser	Gln
	210						215				220				
Gly	Ala	Pro	Ala	Gly	Leu	Gly	Glu	Pro	Gln	Leu	Glu	Leu	His	Thr	Leu
	225					230				235			240		
Asp	Leu	Gly	Asp	Tyr	Gly	Ala	Gln	Gly	Asp	Cys	Asp	Pro	Glu	Ala	Pro
	245						250					255			
Met	Thr	Glu	Gly	Thr	Arg	Cys	Cys	Arg	Gln	Glu	Met	Tyr	Ile	Asp	Leu
	260						265					270			
Gln	Gly	Met	Lys	Trp	Ala	Glu	Asn	Trp	Val	Leu	Glu	Pro	Pro	Gly	Phe
	275						280					285			
Leu	Ala	Tyr	Glu	Cys	Val	Gly	Thr	Cys	Arg	Gln	Pro	Pro	Glu	Ala	Leu
	290						295					300			
Ala	Phe	Lys	Trp	Pro	Phe	Leu	Gly	Pro	Arg	Gln	Cys	Ile	Ala	Ser	Glu
	305						310				315		320		
Thr	Asp	Ser	Leu	Pro	Met	Ile	Val	Ser	Ile	Lys	Glu	Gly	Gly	Arg	Thr
	325						330					335			

Arg Pro Gln Val Val Ser Leu Pro Asn Met Arg Val Gln Lys Cys Ser
 340 345 350

Cys Ala Ser Asp Gly Ala Leu Val Pro Arg Arg Leu Gln Pro
 355 360 365

<210> 115
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 115
 aggactgcca taacttgcct g 21

<210> 116
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 116
 ataggagttg aagcagcgct gc 22

<210> 117
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 117
 tgtgtggaca tagacgagtg ccgctaccgc tactgccagc accgc 45

<210> 118
<211> 1857
<212> DNA
<213> Homo sapiens

<400> 118
 gtctgttccc aggagtccctt cggcggtgtgt tgtgtcagtgcgcctgatgcgatggggaca 60
 aaggcgcaag tcgagaggaa actgttgtgc ctcttcataat tggcgatcct gttgtgctcc 120
 ctggcattgg gcagtgttac agtgcactct tctgaacctg aagtcaaat tcctgagaat 180

aatcctgtga agttgtcctg tgccctactcg ggctttctt ctccccgtgt ggagtggaaag 240
 tttgaccaag gagacaccac cagactcggt tgctataata acaagatcac agcttcstat 300
 gaggaccggg tgaccttctt gccaactgggt atcacctca agtccgtgac acggaaagac 360
 actgggacat acacttgtat ggtctctgag gaaggcggca acagctatgg ggaggtcaag 420
 gtcaagctca tcgtgcttgc gcctccatcc aagcctacag ttaacatccc ctcctctgcc 480
 accattggga accgggcagt gctgacatgc tcagaacaag atggttcccc accttctqaa 540
 tacacctggc tcaaagatgg gatagtgtat cctacgaatc cccaaaagcac ccgtgccttc 600
 agcaactctt cctatgtcctt gaatcccaca acaggagagc tggctttga tccctgtca 660
 gcctctgata ctggagaata cagctgtgag gcacggaaatg ggtatgggac acccatgact 720
 tcaaatgtcg tgccatggc agctgtggag cggaatgtgg gggtcatcg ggcagccgtc 780
 cttgtAACCC tgatttcctt gggaaatctt gttttggca tctggtttc ctataggcga 840
 ggcactttg acagaacaaa gaaagggact tcgagtaaga aggtgattta cagccagcct 900
 agtgcggaa gtgaaggaga attcaaacag acctcgatcat tcctgggtgtg agcctggcgt 960
 gctcaccggc tatcatctgc atttgcctt ctcagtgct accggactct ggccctgtat 1020
 gtctgttagtt tcacaggatg ctttattttgt cttctacacc ccacaggggcc ccctacttct 1080
 tcggatgtgt tttaataat gtcagctatg tgcccatcc tccttcatgc cctccctccc 1140
 ttccctacca ctgctgagtg gcctggaaact tgtttaaagt gtttattccc cattttttg 1200
 agggatcagg aaggaatctt gggatgcca ttgacttccc ttctaagttag acagaaaaaa 1260
 tggcgggggt cgcaggaatc tgccactcaac tgcccacctg gctggcaggg atctttgaat 1320
 aggtatctt agcttggttc tgggctctt ctttgcgtac tgacgaccag ggccagctgt 1380
 tctagagcgg gaatttagagg cttagagcggc tgaaatgggtt gtttggtgat gacactgggg 1440
 tccttcatc tctggggccc actctttctt gtcttccat gggaaatgtcc actgggatcc 1500
 ctctgcctg tcctcctgaa tacaagctga ctgacattga ctgtgtctgt ggaaatggg 1560
 agctcttgcgtt gtggagagca tagtaaattt tcagagaact tgaagccaaa aggatttaaa 1620
 accgctgctc taaagaaaaag aaaactggag gctggcgca gtggctcagc cctgtaatcc 1680
 cagaggctga ggcaggcggc tcacctgagg tcgggagttc gggatcagcc tgaccaacat 1740
 ggagaaaaccc tactggaaat acaaagttt ccaggcatgg tggtgcatgc ctgtagtc 1800
 agctgctcag gacccctggc acaagagcaa aactccagct caaaaaaaaaa aaaaaaaaaa 1857

<210> 119
 <211> 299
 <212> PRT
 <213> Homo sapiens

<400> 119
 Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe Ile
 1 5 10 15

Leu Ala Ile Leu Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His
 20 25 30

Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu
 35 40 45

Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe
 50 55 60

Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr
 65 70 75 80

Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe
 85 90 95

Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser
 100 105 110
 Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val
 115 120 125
 Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr
 130 135 140
 Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro
 145 150 155 160
 Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn
 165 170 175
 Pro Lys Ser Thr Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro
 180 185 190
 Thr Thr Gly Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly
 195 200 205
 Glu Tyr Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser
 210 215 220
 Asn Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val
 225 230 235 240
 Ala Ala Val Leu Val Thr Leu Ile Leu Gly Ile Leu Val Phe Gly
 245 250 255
 Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly
 260 265 270
 Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala Arg Ser Glu
 275 280 285
 Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val
 290 295
 <210> 120
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe
 <400> 120
 tcgcggagct gtgttctgtt tccc
 <210> 121
 <211> 50

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 121
tgatcgcgat ggggacaaag gcgcaggctc gagaggaaac tttgtgcct 50

<210> 122
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 122
acacctgggtt caaagatggg 20

<210> 123
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 123
taggaagagt tgctgaaggc acgg 24

<210> 124
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 124
ttgccttact caggtgctac 20

<210> 125
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

<400> 125
actcagcagt ggttagaaag 20

<210> 126
<211> 1210
<212> DNA
<213> Homo sapiens

<400> 126
cagcgcgtgg cggcgccgc tgggggaca gcatgagcgg cggttggatg ggcgcagg 60
gagcgtggcg aacaggggct ctgggcctgg cgctgctgct gctgctcgcc ctcgactag 120
gcctggaggc cggcgccgc cccgtttcca ccccgaccc tcggccaggcc gcaggcccc 180
gctcaggctc gtggccaccc accaagttcc agtgcgcac cagtggctta tgcgtgcccc 240
tcacctggcg ctgcgacagg gacttggact gcagcgatgg cagcgatgag gaggagtgc 300
ggattgagcc atgtaccagg aaagggaat gcccacccgc ccctggccctc ccctgcccc 360
gcacccggcgt cagtgactgc tctggggaa ctgacaagaa actgcgcac tgcagccgc 420
tggcctgcct agcaggcgag ctccgttgca cgctgagcga tgactgcatt ccactcacgt 480
ggcgcgtgcga cggccacccca gactgtcccg actccagcga cgagctcgcc tgtgaacca 540
atgagatcct cccggaaggg gatgccacaa ccatggggcc ccctgtgacc ctggagagt 600
tcacctctct caggaatgcc acaaccatgg ggccccctgt gaccctggag agtgcctcc 660
ctgtcgggaa tgccacatcc tcctctgccc gagaccagtc tggaaagccca actgcctatg 720
gggttattgc agctgtgcg gtgctcagtg caagcctggt caccgcacc ctcctccctt 780
tgcctggct ccgagcccg gagcgcctcc gcccactggg gttactggg gccatgaagg 840
agtccctgct gctgtcagaa cagaagacot cgctgcctg aggacaagca cttggccacca 900
ccgtcactca gcccctggcg tagccggaca ggaggagagc agtgtatggc atgggtaccc 960
gggcacacca gcccctcagag acctgagttc ttctggccac gtggaaacctc gaacccgagc 1020
tcctgcagaa gtggccctgg agattgaggg tccctggaca ctccctatgg agatccgggg 1080
agctaggatg gggaaacctgc cacagccaga actgaggggc tggcccccagg cagctcccag 1140
gggtagaaac gcccctgtgc ttaagacact ccctgtgcc ccgtctgagg gtggcgatta 1200
aagttgcctc 1210

<210> 127
<211> 282
<212> PRT
<213> Homo sapiens

<400> 127
Met Ser Gly Gly Trp Met Ala Gln Val Gly Ala Trp Arg Thr Gly Ala
1 5 10 15

Leu Gly Leu Ala Leu Leu Leu Leu Gly Leu Gly Leu Gly Leu Glu
20 25 30

Ala Ala Ala Ser Pro Leu Ser Thr Pro Thr Ser Ala Gln Ala Ala Gly
35 40 45

Pro Ser Ser Gly Ser Cys Pro Pro Thr Lys Phe Gln Cys Arg Thr Ser
50 55 60

Gly Leu Cys Val Pro Leu Thr Trp Arg Cys Asp Arg Asp Leu Asp Cys
65 70 75 80

Ser Asp Gly Ser Asp Glu Glu Glu Cys Arg Ile Glu Pro Cys Thr Gln
 85 90 95

 Lys Gly Gln Cys Pro Pro Pro Pro Gly Leu Pro Cys Pro Cys Thr Gly
 100 105 110

 Val Ser Asp Cys Ser Gly Gly Thr Asp Lys Lys Leu Arg Asn Cys Ser
 115 120 125

 Arg Leu Ala Cys Leu Ala Gly Glu Leu Arg Cys Thr Leu Ser Asp Asp
 130 135 140

 Cys Ile Pro Leu Thr Trp Arg Cys Asp Gly His Pro Asp Cys Pro Asp
 145 150 155 160

 Ser Ser Asp Glu Leu Gly Cys Gly Thr Asn Glu Ile Leu Pro Glu Gly
 165 170 175

 Asp Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val Thr Ser
 180 185 190

 Leu Arg Asn Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val
 195 200 205

 Pro Ser Val Gly Asn Ala Thr Ser Ser Ser Ala Gly Asp Gln Ser Gly
 210 215 220

 Ser Pro Thr Ala Tyr Gly Val Ile Ala Ala Ala Val Leu Ser Ala
 225 230 235 240

 Ser Leu Val Thr Ala Thr Leu Leu Leu Ser Trp Leu Arg Ala Gln
 245 250 255

 Glu Arg Leu Arg Pro Leu Gly Leu Leu Val Ala Met Lys Glu Ser Leu
 260 265 270

 Leu Leu Ser Glu Gln Lys Thr Ser Leu Pro
 275 280

 <210> 128
 <211> 24
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

 <400> 128
 aagttccagt gccgcaccag tggc

 <210> 129

<211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 129
 ttgttccac agccgagctc gtcg 24

<210> 130
 <211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 130
 gaggaggagt gcaggattga gccatgtacc cagaaaggc aatgccacc 50

<210> 131
 <211> 1843
 <212> DNA
 <213> Homo sapiens

<220>
 <221> modified_base
 <222> (1837)
 <223> a, t, c or g

<400> 131
 cccacgcgtc cggtctcgct cgctcgcgca gcggcgccag cagaggtcgc gcacagatgc 60
 gggtagact ggcgggggga ggaggcggag gagggaaagga agctgcattgc atgagaccca 120
 cagactcttg caagctggat gcccctgtg gatgaaaat gtatcatgaa atgaacccga 180
 gcaatggaga tggatttcta gagcagcagc agcagcagca gcaacctcag tccccccaga 240
 gactcttggc cgtgatcctg tggtttcage tggcgctgtg ctccggccct gcacagctca 300
 cggcggggtt cgatgacattt caagtgtgtg ctgaccccg cattcccgag aatgcttca 360
 ggaccccccag cggagggggtt ttctttgaag gctctgttagc ccgatttac tgccaagacg 420
 gattcaagct gaagggcgct acaaagagac tgggtttgaa gcattttaat ggaaccttag 480
 gctggatccc aagtgataat tccatctgtg tgcaagaaga ttgcccgtatc cctcaaatcg 540
 aagatgctga gattcataac aagacatata gacatggaga gaaqctaatac atcaattgtc 600
 atgaaggatt caagatccgg taccccgacc tacacaatat ggtttcatta tgtcgcgatg 660
 atggaacgtg gaataatctg cccatctgtc aaggctgcct gagacctcta gcctcttcta 720
 atggctatgt aaacatctt gagctccaga cctccctccc ggtggggact gtgatctct 780
 atcgctgctt tccccggattt aaacttgatg ggtctcgta ttttgatgtc ttacaaaacc 840
 ttatctggtc gtccagccca ccccggtgcc ttgctctgga agcccaagtc tgtccactac 900
 ctccaaatggt gagtcacgga gatttcgtct gcccacccgc gccttgcgag cgctacaacc 960
 acggaactgt ggtggagtt tactgcgtc ctggctacag cctcaccaggc gactacaagt 1020
 acatcacctg ccagtatgga gagtggtttc cttcttatca agtctactgc atcaaatcag 1080
 agccaaacgtg gcccagcacc catgagaccc tcctgaccac gtggaaaggatt gtggcggtca 1140

cgccaaccag tgtgctgctg gtgctgctgc tcgtcatcct ggccaggatg ttccagacca 1200
 agttcaaggc ccacttccc cccagggggc ctccccggag ttccagcagt gaccctgact 1260
 ttgtggtgtt agacggcggt cccgtcatgc tcccgtccta tgacgaagct gtgagtggcg 1320
 gcttgagtgc cttaggcccc gggtacatgg cctctgtggg ccagggctgc cccttacccg 1380
 tggacgacca gagccccca gcatacccg gtcagggga cacggacaca ggcccagggg 1440
 agtcagaaac ctgtgacagc gtctcagget cttctgagct gtcacaaagt ctgtattcac 1500
 ctccccagggtg ccaagagagc acccaccctg ctccggacaa ccctgacata attgccagca 1560
 cgccagagga ggtggcatcc accagcccg gcatccatca tgcccactgg gtgttgttcc 1620
 taagaaaactg attgattaaa aaatttccca aagtgcctg aagtgtctct tcaaatacat 1680
 gttgatctgt ggagttgatt ccttccttc tcttggtttt agacaaatgt aaacaaagct 1740
 ctgatcctta aaattgctat gctgatagag tggtagggc tggaaagcttg atcaagtcct 1800
 gtttcttctt gacacagact gattaaaaat taaaagnaaa aaa 1843

<210> 132

<211> 490

<212> PRT

<213> Homo sapiens

<400> 132

Met	Tyr	His	Gly	Met	Asn	Pro	Ser	Asn	Gly	Asp	Gly	Phe	Leu	Glu	Gln
1					5									10	15

Gln	Gln	Gln	Gln	Gln	Pro	Gln	Ser	Pro	Gln	Arg	Leu	Leu	Ala	Val
20						25							30	

Ile	Leu	Trp	Phe	Gln	Leu	Ala	Leu	Cys	Phe	Gly	Pro	Ala	Gln	Leu	Thr
35						40						45			

Gly	Gly	Phe	Asp	Asp	Leu	Gln	Val	Cys	Ala	Asp	Pro	Gly	Ile	Pro	Glu
50					55						60				

Asn	Gly	Phe	Arg	Thr	Pro	Ser	Gly	Gly	Val	Phe	Phe	Glu	Gly	Ser	Val
65					70					75			80		

Ala	Arg	Phe	His	Cys	Gln	Asp	Gly	Phe	Lys	Leu	Lys	Gly	Ala	Thr	Lys
85						90						95			

Arg	Leu	Cys	Leu	Lys	His	Phe	Asn	Gly	Thr	Leu	Gly	Trp	Ile	Pro	Ser
100						105					110				

Asp	Asn	Ser	Ile	Cys	Val	Gln	Glu	Asp	Cys	Arg	Ile	Pro	Gln	Ile	Glu
115						120					125				

Asp	Ala	Glu	Ile	His	Asn	Lys	Thr	Tyr	Arg	His	Gly	Glu	Lys	Leu	Ile
130						135					140				

Ile	Thr	Cys	His	Glu	Gly	Phe	Lys	Ile	Arg	Tyr	Pro	Asp	Leu	His	Asn
145						150					155			160	

Met	Val	Ser	Leu	Cys	Arg	Asp	Asp	Gly	Thr	Trp	Asn	Asn	Leu	Pro	Ile
165						170					175				

Cys Gln Gly Cys Leu Arg Pro Leu Ala Ser Ser Asn Gly Tyr Val Asn

180	185	190
Ile Ser Glu Leu Gln Thr Ser Phe Pro Val Gly Thr Val Ile Ser Tyr		
195	200	205
Arg Cys Phe Pro Gly Phe Lys Leu Asp Gly Ser Ala Tyr Leu Glu Cys		
210	215	220
Leu Gln Asn Leu Ile Trp Ser Ser Ser Pro Pro Arg Cys Leu Ala Leu		
225	230	235
Glu Ala Gln Val Cys Pro Leu Pro Pro Met Val Ser His Gly Asp Phe		
245	250	255
Val Cys His Pro Arg Pro Cys Glu Arg Tyr Asn His Gly Thr Val Val		
260	265	270
Glu Phe Tyr Cys Asp Pro Gly Tyr Ser Leu Thr Ser Asp Tyr Lys Tyr		
275	280	285
Ile Thr Cys Gln Tyr Gly Glu Trp Phe Pro Ser Tyr Gln Val Tyr Cys		
290	295	300
Ile Lys Ser Glu Gln Thr Trp Pro Ser Thr His Glu Thr Leu Leu Thr		
305	310	315
Thr Trp Lys Ile Val Ala Phe Thr Ala Thr Ser Val Leu Leu Val Leu		
325	330	335
Leu Leu Val Ile Leu Ala Arg Met Phe Gln Thr Lys Phe Lys Ala His		
340	345	350
Phe Pro Pro Arg Gly Pro Pro Arg Ser Ser Ser Ser Asp Pro Asp Phe		
355	360	365
Val Val Val Asp Gly Val Pro Val Met Leu Pro Ser Tyr Asp Glu Ala		
370	375	380
Val Ser Gly Gly Leu Ser Ala Leu Gly Pro Gly Tyr Met Ala Ser Val		
385	390	395
Gly Gln Gly Cys Pro Leu Pro Val Asp Asp Gln Ser Pro Pro Ala Tyr		
405	410	415
Pro Gly Ser Gly Asp Thr Asp Thr Gly Pro Gly Glu Ser Glu Thr Cys		
420	425	430
Asp Ser Val Ser Gly Ser Ser Glu Leu Leu Gln Ser Leu Tyr Ser Pro		
435	440	445
Pro Arg Cys Gln Glu Ser Thr His Pro Ala Ser Asp Asn Pro Asp Ile		
450	455	460

Ile Ala Ser Thr Ala Glu Glu Val Ala Ser Thr Ser Pro Gly Ile His
 465 470 475 480

His Ala His Trp Val Leu Phe Leu Arg Asn
 485 490

<210> 133

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 133

atctcctatac gctgcttcc cggt

23

<210> 134

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 134

agccaggatc gcagtaaaaac tcc

23

<210> 135

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 135

atttaaactt gatgggtctg cgtatcttga gtgcttacaa aacccttatct

50

<210> 136

<211> 1815

<212> DNA

<213> Homo sapiens

<400> 136

ccccacgcgtc cgctccgcgc cctccccccc gcctcccggt cggtccgtcg gtggcctaga 60
 gatgtctgtc ccgcgggtgc agttgtcgcg cacgcctctg cccgcgcagcc cgctccaccc 120
 ccgttagcgcc cgagtgtcgg ggggcgcacc cgagtgggc catgaggccg ggaaccgcgc 180
 tacaggccgt gctgtggcc gtgtgtgtgg tggggctgcg ggccgcgacg ggtcgccctgc 240
 tgagtgcctc ggatttggac ctcagaggag ggcagccagt ctgccgggaa gggacacaga 300

ggccttgtta	taaagtcat	tactccatg	atacttctcg	aagactgaac	tttgaggaag	360
ccaaagaagc	ctgcaggagg	gatggaggcc	agctagtca	catcgagtct	gaagatgaac	420
agaaaactgt	agaaaaagttc	attgaaaacc	tcttgccatc	tgatgggtac	ttctggattg	480
ggctcaggag	gcgtgaggag	aaacaaagca	atagcacagc	ctgcaggac	ctttatgtt	540
ggactgatgg	cagcatatca	caatttagga	actggatgt	ggatgagccg	tcctgcggca	600
gcgaggctg	cgtggatcatg	taccatcagc	catccggacc	cgctggatc	ggaggcccct	660
acatgttcca	gtggaatgtat	gaccgttgca	acatgaagaa	caatttcatt	tgcaaataatt	720
ctgatgagaa	accagcagtt	ccttcttagag	aagctgaagg	tgaggaaaca	gagctgacaa	780
cacctgtact	tccagaagaa	acacaggaag	aagatgccaa	aaaaacattt	aaagaaaagta	840
gagaagctgc	cttgaatctg	gcctacatcc	taatccccag	cattccctt	ctccctccct	900
ttgtggtcac	cacagttgtt	tgttgggtt	ggatctgtag	aaaaagaaaa	cgggagcagc	960
cagaccctag	cacaaagaag	caacacacca	tctggccctc	tcctcaccag	ggaaacagcc	1020
cgAACCTAGA	GGTCTACAA	GTCATAAGAA	AACAAAGCGA	AGCTGACTTA	GCTGAGACCC	1080
ggccagacct	gaagaatatt	tcattccgag	tgtgttcggg	agaagccact	cccgatgaca	1140
tgtcttgtga	ctatgacaac	atggctgtga	accatcaga	aagtgggtt	gtgactctgg	1200
tgagcgtgga	gagtggattt	gtgaccaatg	acatttatga	gttctccca	gaccaaattgg	1260
ggaggagtaa	ggagtctgga	tgggtggaaa	atgaaatata	tggttattag	gacatataaa	1320
aaactgaaac	tgacaacaat	ggaaaagaaa	tgataagcaa	aatcctctta	ttttctataa	1380
ggaaaataca	cagaaggct	atgaacaagc	ttagatcagg	tcctgtggat	gagcatgtgg	1440
tccccacgac	ctccctgttgg	accccccacgt	tttggctgt	tcctttatcc	cagccagtca	1500
tccagctcga	ccttatgaga	aggtacccctg	cccaggtctg	gcacatagta	gagtctcaat	1560
aaatgtca	tgttgggtt	tatctaactt	ttaagggaca	gagctttacc	ttggcagtgtat	1620
aaagatgggc	tgtggagctt	ggaaaaccac	ctctgttttc	cttgctctat	acagcagcac	1680
atattatcat	acagacagaa	aatcoagaat	cttttcaaag	cccacatag	gtagcacagg	1740
ttggccctgt	catcggcaat	tctcatatct	gttttttca	aagaataaaaa	tcaaataaaag	1800
accaqqaaaa	aaaaaa					1815

<210> 137

<211> 382

<212> PRT

<213> Homo sapiens

<400> 137

Met Arg P

1 5 10 15

Val Gly Leu Arg Ala Ala Thr Gly Arg Leu Leu Ser Ala Ser Asp Leu
20 25 30

Asp Leu Arg Gly Gly Gln Pro Val Cys Arg Gly Gly Thr Gln Arg Pro
35 40 45 .

Cys Tyr Lys Val Ile Tyr Phe His Asp Thr Ser Arg Arg Leu Asn Phe
50 55 60

Ile Glu Ser Glu Asp Glu Gln Lys Leu Ile Glu Lys Phe Ile Glu Asn
85 90 95

Leu Leu Pro Ser Asp Gly Asp Phe Trp Ile Gly Leu Arg Arg Arg Glu
 100 105 110

Glu Lys Gln Ser Asn Ser Thr Ala Cys Gln Asp Leu Tyr Ala Trp Thr
 115 120 125
 Asp Gly Ser Ile Ser Gln Phe Arg Asn Trp Tyr Val Asp Glu Pro Ser
 130 135 140
 Cys Gly Ser Glu Val Cys Val Val Met Tyr His Gln Pro Ser Ala Pro
 145 150 155 160
 Ala Gly Ile Gly Gly Pro Tyr Met Phe Gln Trp Asn Asp Asp Arg Cys
 165 170 175
 Asn Met Lys Asn Asn Phe Ile Cys Lys Tyr Ser Asp Glu Lys Pro Ala
 180 185 190
 Val Pro Ser Arg Glu Ala Glu Gly Glu Glu Thr Glu Leu Thr Thr Pro
 195 200 205
 Val Leu Pro Glu Glu Thr Gln Glu Glu Asp Ala Lys Lys Thr Phe Lys
 210 215 220
 Glu Ser Arg Glu Ala Ala Leu Asn Leu Ala Tyr Ile Leu Ile Pro Ser
 225 230 235 240
 Ile Pro Leu Leu Leu Leu Val Val Thr Thr Val Val Cys Trp Val
 245 250 255
 Trp Ile Cys Arg Lys Arg Lys Arg Glu Gln Pro Asp Pro Ser Thr Lys
 260 265 270
 Lys Gln His Thr Ile Trp Pro Ser Pro His Gln Gly Asn Ser Pro Asp
 275 280 285
 Leu Glu Val Tyr Asn Val Ile Arg Lys Gln Ser Glu Ala Asp Leu Ala
 290 295 300
 Glu Thr Arg Pro Asp Leu Lys Asn Ile Ser Phe Arg Val Cys Ser Gly
 305 310 315 320
 Glu Ala Thr Pro Asp Asp Met Ser Cys Asp Tyr Asp Asn Met Ala Val
 325 330 335
 Asn Pro Ser Glu Ser Gly Phe Val Thr Leu Val Ser Val Glu Ser Gly
 340 345 350
 Phe Val Thr Asn Asp Ile Tyr Glu Phe Ser Pro Asp Gln Met Gly Arg
 355 360 365
 Ser Lys Glu Ser Gly Trp Val Glu Asn Glu Ile Tyr Gly Tyr
 370 375 380

<211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 138
 gttcattgaa aaccttgc catctgatgg tgacttctgg attgggctca 50

<210> 139
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 139
 aagccaaaga agcctgcagg aggg 24

<210> 140
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 140
 cagtccaaggataaaagggtcc tggc 24

<210> 141
 <211> 1514
 <212> DNA
 <213> Homo sapiens

<400> 141

ggggtctccc tcagggccgg gaggcacacgc ggccctgtctgctgaagggtt ctggatgtac 60
 gcatccgcag gttcccgccgg acttgggggc gcccgcgtgag ccccgccgcgcccc cgcaagaagac 120
 ttgtgtttgc ctctgcgcgctcaacccgg aggccagcga gggcctacca ccatgatcac 180
 tggtgtgttc agcatgcgtctgtggacccc agtgggcgtc ctgcacctcgctggcgtaactg 240
 cctgcaccag cggcggttgg ccctggccga gctgcaggag gccgatggcc agtgtccgg 300
 cgaccgcagc ctgtgtgaagt tgaaaatgggt gcaggtcggt tttcgacacg gggctcgag 360
 tcctctcaag ccgctccgc tgaggagaca ggttagagtgg aaccccccagc tattagaggt 420
 cccaccccaa actcagtttgc attacacagt caccaatcta gctgggtggc cgaaaccata 480
 ttctccttac gactctaat accatgagac caccctgaag gggggcatgt ttgctggca 540
 gctgaccaag gtgggcattgc agcaaatgtt tgccttggga gagagactga ggaagaacta 600
 tgtgaaagac attcccttgc ttccaccaac cttcaacccca caggaggctt ttattcggttc 660
 cactaacatt tttcgaaatc tggagtccac cgggttttg ctggctggc tttccagtg 720

tcagaaaagaa ggaccatca tcatccacac tcatgaagca gattcagaag tcttgatcc 780
 caactaccaa agctgctgga gcctgaggca gagaaccaga ggccggaggc agactgcctc 840
 ttacagcca ggaatctcg aggatttcaa aaaggtgaag gacaggatgg gcattgacag 900
 tagtgataaa gtggacttct tcatcctcct ggacaacgtg gtcggcggc aggcacacaa 960
 cctcccaagc tgccccatgc tgaagagatt tgcacggatg atcgaacaga gagctgtgga 1020
 cacatccttgc tacatactgc ccaaggaaga cagggaaagt cttcagatgg cagtaggccc 1080
 attcctccac atccttagaga gcaacctgct gaaagccatg gactctgcca ctgccccgaa 1140
 caagatcaga aagctgtatc tctatgcggc tcatgatgtg accttcatac cgctcttaat 1200
 gaccctgggg attttggacc acaaattggcc accgtttgc gttgacactga ccatggaact 1260
 ttaccagcac ctggaatcta aggagtgggt tgcagctc tattaccacg ggaaggagca 1320
 ggtgccgaga ggttgcctg atgggctctg cccgcggac atgttcttga atgcctatgtc 1380
 agtttatacc ttaagccag aaaaatacca tgcactctgc tctcaaactc aggtgatgga 1440
 agtggaaat gaagagtaac tgatttataa aagcaggatg tggatttt aaaataaaagt 1500
 gccttataac aatg 1514

<210> 142

<211> 428

<212> PRT

<213> Homo sapiens

<400> 142

Met	Ile	Thr	Gly	Val	Phe	Ser	Met	Arg	Leu	Trp	Thr	Pro	Val	Gly	Val
1							5			10					15

Leu	Thr	Ser	Leu	Ala	Tyr	Cys	Leu	His	Gln	Arg	Arg	Val	Ala	Leu	Ala
							20		25					30	

Glu	Leu	Gln	Glu	Ala	Asp	Gly	Gln	Cys	Pro	Val	Asp	Arg	Ser	Leu	Leu
							35		40				45		

Lys	Leu	Lys	Met	Val	Gln	Val	Val	Phe	Arg	His	Gly	Ala	Arg	Ser	Pro
							50		55			60			

Leu	Lys	Pro	Leu	Pro	Leu	Glu	Glu	Gln	Val	Glu	Trp	Asn	Pro	Gln	Leu
							65		70		75		80		

Leu	Glu	Val	Pro	Pro	Gln	Thr	Gln	Phe	Asp	Tyr	Thr	Val	Thr	Asn	Leu
							85		90				95		

Ala	Gly	Gly	Pro	Lys	Pro	Tyr	Ser	Pro	Tyr	Asp	Ser	Gln	Tyr	His	Glu
							100		105			110			

Thr	Thr	Leu	Lys	Gly	Gly	Met	Phe	Ala	Gly	Gln	Leu	Thr	Lys	Val	Gly
						115		120				125			

Met	Gln	Gln	Met	Phe	Ala	Leu	Gly	Glu	Arg	Leu	Arg	Lys	Asn	Tyr	Val
						130		135			140				

Glu	Asp	Ile	Pro	Phe	Leu	Ser	Pro	Thr	Phe	Asn	Pro	Gln	Glu	Val	Phe
							145		150		155		160		

Ile	Arg	Ser	Thr	Asn	Ile	Phe	Arg	Asn	Leu	Glu	Ser	Thr	Arg	Cys	Leu
							165		170			175			

Leu Ala Gly Leu Phe Gln Cys Gln Lys Glu Gly Pro Ile Ile Ile His
 180 185 190

Thr Asp Glu Ala Asp Ser Glu Val Leu Tyr Pro Asn Tyr Gln Ser Cys
 195 200 205

Trp Ser Leu Arg Gln Arg Thr Arg Gly Arg Arg Gln Thr Ala Ser Leu
 210 215 220

Gln Pro Gly Ile Ser Glu Asp Leu Lys Lys Val Lys Asp Arg Met Gly
 225 230 235 240

Ile Asp Ser Ser Asp Lys Val Asp Phe Phe Ile Leu Leu Asp Asn Val
 245 250 255

Ala Ala Glu Gln Ala His Asn Leu Pro Ser Cys Pro Met Leu Lys Arg
 260 265 270

Phe Ala Arg Met Ile Glu Gln Arg Ala Val Asp Thr Ser Leu Tyr Ile
 275 280 285

Leu Pro Lys Glu Asp Arg Glu Ser Leu Gln Met Ala Val Gly Pro Phe
 290 295 300

Leu His Ile Leu Glu Ser Asn Leu Leu Lys Ala Met Asp Ser Ala Thr
 305 310 315 320

Ala Pro Asp Lys Ile Arg Lys Leu Tyr Leu Tyr Ala Ala His Asp Val
 325 330 335

Thr Phe Ile Pro Leu Leu Met Thr Leu Gly Ile Phe Asp His Lys Trp
 340 345 350

Pro Pro Phe Ala Val Asp Leu Thr Met Glu Leu Tyr Gln His Leu Glu
 355 360 365

Ser Lys Glu Trp Phe Val Gln Leu Tyr Tyr His Gly Lys Glu Gln Val
 370 375 380

Pro Arg Gly Cys Pro Asp Gly Leu Cys Pro Leu Asp Met Phe Leu Asn
 385 390 395 400

Ala Met Ser Val Tyr Thr Leu Ser Pro Glu Lys Tyr His Ala Leu Cys
 405 410 415

Ser Gln Thr Gln Val Met Glu Val Gly Asn Glu Glu
 420 425

<210> 143
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 143
ccaactacca aagctgctgg agcc 24

<210> 144
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 144
gcagctctat taccacggga agga 24

<210> 145
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 145
tccttcccgt ggtaatagag ctgc 24

<210> 146
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 146
ggcagagaac cagaggccgg aggagactgc ctcttacag ccagg 45

<210> 147
<211> 1686
<212> DNA
<213> Homo sapiens

<400> 147
ctcctcttaa catacttgca gctaaaacta aatattgctg cttggggacc tccttcttagc 60
cttaaaatttc agctcatcac cttcacctgc cttgggtcatg gctctgctat ttccttgat 120
ccttgccatt tgcaccagac ctggattcct agcgctcaca tctggagtgc ggctgggtggg 180

gggcctccac cgctgtgaag ggccgggtgga ggtggAACAG aaaggccagt ggggcaccgt 240
 gtgtgatgac ggctgggaca ttaaggacgt ggctgtgtt tgccgggagc tggctgtgg 300
 agctgccagc ggaaccccta gtggatttt gtatgagcca ccagcagaaa aagagcaaaa 360
 ggtcctcatc caatcagtca gttgcacagg aacagaagat acattggctc agtgtgagca 420
 agaagaagtt tatgattgtt cacatgtatc agatgtggg gcatcggtg agaaccaga 480
 gagcttttc tccccagtcc cagagggtgt caggctggct gacggccctg ggcattgcaa 540
 gggacgcgtg gaagtgaagc accagaacca gtggatacc gtgtccaga caggctggag 600
 cctccgggccc gcaaagggtgg tgtgcggca gctggatgt gggagggctg tactgactca 660
 aaaacgctgc aacaagcatg cctatggccg aaaacccatc tggctgagcc agatgtcatg 720
 ctcaggacga gaagcaaccc ttcaggattt ccctctggg cttggggga agaacaccc 780
 caaccatgat gaagacacgt gggtcgaatg tgaagatccc tttgacttga gacttaggg 840
 aggagacaac ctctgtctg ggcgacttga ggtgtgcac aaggggctat gggctctgt 900
 ctgtgatgac aactggggag aaaaggagga ccaggtggta tgcaagcaac tggctgtgg 960
 gaagtccctc ttccttcct tcagagaccc gaaatgttat ggcctgggg ttggccgcat 1020
 ctggctggat aatgttcgtt gtcaggggg ggagcagtcc ctggagcagt gccagcacag 1080
 attttggggg tttcactgact gcacccacca ggaagatgtg gctgtcatct gctcagtgt 1140
 ggtggcattc atctaattctg ttgactgtcct gaatagaaga aaaacacaga agaaggagc 1200
 atttactgtc tacatgactg catggatg acactgtatct tttctgcct ttggactggg 1260
 atttactt ggtgcctctg attctcaggc ttccagagtt ggatcagaac ttacaacatc 1320
 aggtctagtt ctcagccat cagacatagt ttggaaactac atcaccacct ttccatgtc 1380
 tccacattgc acacagcaga ttcccagcct ccataattgt gtgtatcaac tacttaata 1440
 cattctcaca cacacacaca cacacacaca cacacacaca cacacataca ccatttgcc 1500
 ttttctctg aagaactctg acaaataca gatttggta ctgaaagaga ttctagagga 1560
 acgaaatttt aaggataaat ttctgaatt ggttatgggg tttctgaat tggctctata 1620
 atctaatttag atataaaatt ctggtaactt tatttacaat aataaagata gcactatgt 1680
 ttcaaa 1686

<210> 148

<211> 347

<212> PRT

<213> Homo sapiens

<400> 148

Met	Ala	Leu	Leu	Phe	Ser	Leu	Ile	Leu	Ala	Ile	Cys	Thr	Arg	Pro	Gly
1															
														10	
															15

Phe	Leu	Ala	Ser	Pro	Ser	Gly	Val	Arg	Leu	Val	Gly	Gly	Leu	His	Arg
													20		30

Cys	Glu	Gly	Arg	Val	Glu	Val	Glu	Gln	Lys	Gly	Gln	Trp	Gly	Thr	Val
												35		45	

Cys	Asp	Asp	Gly	Trp	Asp	Ile	Lys	Asp	Val	Ala	Val	Leu	Cys	Arg	Glu
												50		60	

Leu	Gly	Cys	Gly	Ala	Ala	Ser	Gly	Thr	Pro	Ser	Gly	Ile	Leu	Tyr	Glu
												65		80	

Pro	Pro	Ala	Glu	Lys	Glu	Gln	Lys	Val	Leu	Ile	Gln	Ser	Val	Ser	Cys
												85		95	

Thr	Gly	Thr	Glu	Asp	Thr	Leu	Ala	Gln	Cys	Glu	Gln	Glu	Val	Tyr
												100		110

Asp Cys Ser His Asp Glu Asp Ala Gly Ala Ser Cys Glu Asn Pro Glu
 115 120 125

Ser Ser Phe Ser Pro Val Pro Glu Gly Val Arg Leu Ala Asp Gly Pro
 130 135 140

Gly His Cys Lys Gly Arg Val Glu Val Lys His Gln Asn Gln Trp Tyr
 145 150 155 160

Thr Val Cys Gln Thr Gly Trp Ser Leu Arg Ala Ala Lys Val Val Cys
 165 170 175

Arg Gln Leu Gly Cys Gly Arg Ala Val Leu Thr Gln Lys Arg Cys Asn
 180 185 190

Lys His Ala Tyr Gly Arg Lys Pro Ile Trp Leu Ser Gln Met Ser Cys
 195 200 205

Ser Gly Arg Glu Ala Thr Leu Gln Asp Cys Pro Ser Gly Pro Trp Gly
 210 215 220

Lys Asn Thr Cys Asn His Asp Glu Asp Thr Trp Val Glu Cys Glu Asp
 225 230 235 240

Pro Phe Asp Leu Arg Leu Val Gly Gly Asp Asn Leu Cys Ser Gly Arg
 245 250 255

Leu Glu Val Leu His Lys Gly Val Trp Gly Ser Val Cys Asp Asp Asn
 260 265 270

Trp Gly Glu Lys Glu Asp Gln Val Val Cys Lys Gln Leu Gly Cys Gly
 275 280 285

Lys Ser Leu Ser Pro Ser Phe Arg Asp Arg Lys Cys Tyr Gly Pro Gly
 290 295 300

Val Gly Arg Ile Trp Leu Asp Asn Val Arg Cys Ser Gly Glu Glu Gln
 305 310 315 320

Ser Leu Glu Gln Cys Gln His Arg Phe Trp Gly Phe His Asp Cys Thr
 325 330 335

His Gln Glu Asp Val Ala Val Ile Cys Ser Val
 340 345

<210> 149
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

<400> 149
 ttcagctcat cacccatccc tgcc

24

<210> 150
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 150
 ggctcataca aaataccact aggg

24

<210> 151
 <211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 151
 gggcctccac cgctgtgaag ggcgggtgga ggttggaaacag aaaggccagt

50

<210> 152
 <211> 1427
 <212> DNA
 <213> Homo sapiens

<400> 152
 actgcactcg gttctatcga ttgaattccc cggggatcct ctagagatcc ctgcaccccg
 acccaacgcgt ccgcggacgc gtggggggac gcgtggggcg gctaccagga agagtctgcc 120
 gaaggtgaag gccatggact tcatacaccc cacagccatc ctgccccctgc tggtcgctg 180
 cctggggctc ttccggctct tccggctgct gcagtgggtg cgcgggaagg cctacctcg 240
 gaatgtgtg gtgggtatca caggccac ctcagggctg ggcaaagaat gtgc当地
 cttctatgtt ggggtgtata aactgggtct ctgtggcccg aatgggtgggg ccctagaaga 360
 gctcatcaga gaacttaccg cttctatgc caccaggatc cagacacaca agccttactt 420
 ggtgacccctc gacctcacag actctgggc catagttca gcagcagctg agatcctgca 480
 gtgtttggc tatgtcgaca tacttgtcaa caatgttggg atcagctacc gtggtaccat 540
 catggacacc acagtggatg tggacaagag ggtcatggag acaaactact ttggcccg 600
 tgctctaacc aaagcactcc tgccctccat gatcaagagg agccaaggcc acattgtcgc 660
 catcagcgc atccaggcc agatgagcat tcctttcga tcagcatatg cagccctccaa 720
 gcacgcaacc caggcttct ttgactgtct gcgtggcccg atgaaacagt atgaaattga 780
 ggtgaccgtc atcagccccg gtcacatcca caccacccctc tctgtaaatg ccatcaccgc 840
 ggtatggatct aggtatggag ttatggacac caccacagcc caggcccgaa gccctgtgga 900
 ggtggcccg gatgttctg ctgctgtggg gaagaagaag aaagatgtga tcttgctga 960
 cttaactgcct tccttgctg tttatctcg aactctgtct cctggctct tcttcagcc 1020
 catggccccc agggccagaa aagagcggaa atccaaagaaatcctagtact ctgaccagcc 1080

agggccaggc cagagaagca gcactcttag gcttgcttac tctacaaggg acagttgcac 1140
 ttgtttagac tttaatggag atttgtctca caagtggaa agactgaaga aacacatctc 1200
 gtgcagatct gctggcagag gacaatcaa aacgacaaca agctcttcc cagggtgagg 1260
 ggaaacactt aaggaataaa tatggagctg gggtttaaca ctaaaaaacta gaaataaaca 1320
 tctcaaacag taaaaaaaaaaa aaaaaagggc ggccgcgact cttagactcg a cctgcagaag 1380
 ctggccgccc atggccaac ttgttattt cagcttataa tggttac 1427

<210> 153

<211> 310

<212> PRT

<213> Homo sapiens

<400> 153
 Met Asp Phe Ile Thr Ser Thr Ala Ile Leu Pro Leu Leu Phe Gly Cys
 1 5 10 15

Leu Gly Val Phe Gly Leu Phe Arg Leu Leu Gln Trp Val Arg Gly Lys
 20 25 30

Ala Tyr Leu Arg Asn Ala Val Val Ile Thr Gly Ala Thr Ser Gly
 35 40 45

Leu Gly Lys Glu Cys Ala Lys Val Phe Tyr Ala Ala Gly Ala Lys Leu
 50 55 60

Val Leu Cys Gly Arg Asn Gly Gly Ala Leu Glu Glu Leu Ile Arg Glu
 65 70 75 80

Leu Thr Ala Ser His Ala Thr Lys Val Gln Thr His Lys Pro Tyr Leu
 85 90 95

Val Thr Phe Asp Leu Thr Asp Ser Gly Ala Ile Val Ala Ala Ala
 100 105 110

Glu Ile Leu Gln Cys Phe Gly Tyr Val Asp Ile Leu Val Asn Asn Ala
 115 120 125

Gly Ile Ser Tyr Arg Gly Thr Ile Met Asp Thr Thr Val Asp Val Asp
 130 135 140

Lys Arg Val Met Glu Thr Asn Tyr Phe Gly Pro Val Ala Leu Thr Lys
 145 150 155 160

Ala Leu Leu Pro Ser Met Ile Lys Arg Arg Gln Gly His Ile Val Ala
 165 170 175

Ile Ser Ser Ile Gln Gly Lys Met Ser Ile Pro Phe Arg Ser Ala Tyr
 180 185 190

Ala Ala Ser Lys His Ala Thr Gln Ala Phe Phe Asp Cys Leu Arg Ala
 195 200 205

Glu Met Glu Gln Tyr Glu Ile Glu Val Thr Val Ile Ser Pro Gly Tyr

210

215

220

Ile His Thr Asn Leu Ser Val Asn Ala Ile Thr Ala Asp Gly Ser Arg
225 230 235 240

Tyr Gly Val Met Asp Thr Thr Ala Gln Gly Arg Ser Pro Val Glu
245 250 255

Val Ala Gln Asp Val Leu Ala Ala Val Gly Lys Lys Lys Asp Val
260 265 270

Ile Leu Ala Asp Leu Leu Pro Ser Leu Ala Val Tyr Leu Arg Thr Leu
275 280 285

Ala Pro Gly Leu Phe Phe Ser Leu Met Ala Ser Arg Ala Arg Lys Glu
290 295 300

Arg Lys Ser Lys Asn Ser
305 310

<210> 154

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 154

ggtgctaaac tggtgctctg tggc

24

<210> 155

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 155

cagggcaaga tgagcattcc

20

<210> 156

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 156
 tcatactgtt ccatctcgcc acgc
 24

<210> 157
 <211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 157
 aatgggtgggg ccctagaaga gtcacatcaga gaactcacccg cttctcatgc 50

<210> 158
 <211> 1771
 <212> DNA
 <213> Homo sapiens

<400> 158
 cccacgcgtc cgctgggttt agatcgagca accctctaaa agcagtttag agtggtaaaa 60
 aaaaaaaaaaa acacaccaaa cgctcgccgc cacaagggtt atgaaatttc ttctggacat 120
 cctcctgttt ctcccggttac tgatcgcttg ctcccttagag tccttcgtga agcttttat 180
 tcctaagagg agaaaatcg tcaccggcga aatcggtctg attacaggag ctgggcattgg 240
 aattgggaga ctgactgcct atgaatttgc taaacttaaa agcaagctgg ttctctggga 300
 tataaataag catggactgg aggaaacacgc tgccaaatgc aaggactgg gtgccaaagg 360
 tcataccctt gtggtagact gcagcaaccg agaagatatt tacagctctg caaagaagg 420
 gaaggcagaa attggagatg ttagtatttt agtaaataat gctgggttag tctatacatc 480
 agatttggtt gctacacaag atcctcagat tgaaaagact tttgaagttt atgtacttgc 540
 acatttctgg actacaaaagg catttcttcc tgcaatgacg aagaataacc atggccatat 600
 tgtcaactgtg gcttcggcag ctggacatgt ctgggtcccc ttcttactgg ctactgttc 660
 aagcaagttt gctgctgtt gatttcataa aactttgaca gatgaactgg ctgccttaca 720
 aataaactggaa gtcaaaaacaa catgtctgtg tcctaatttc gtaaacactg gttcatcaa 780
 aaatccaagt acaagttgg gaccactct ggaacctgag gaagtggtaa acaggctgat 840
 gcatggatt ctgactgagc agaagatgtat ttttattcca tcttctatag cttttttaac 900
 aacattggaa aggatccttc ctgagcgttt cttggcagtt ttaaaacgaa aaatcgtgt 960
 taagttgtat gcagtttattt gatataaaaat gaaagcgc当地 taagcaccta gtttctgaa 1020
 aactgattt ccagggtttag gttgatgtca tctaataatgtt ccagaatttt aatgtttgaa 1080
 ctctgtttt ttcttaattt cccatttttca tcaatatcat ttttgaggct ttggcagtct 1140
 tcatttacta ccacttgttcc tttagccaaa agotgattac atatgatata aacagagaaaa 1200
 tacctttaga ggtgacttta agaaaaatgtt agaaaaaagaa cccaaatgac tttttaaaaa 1260
 taatttccaa gattattttgt ggctcacctg aaggctttgc aaaatttgc ccataaccgt 1320
 ttattnaaca tatatttttta ttttgatttgc cacttaattt ttgtataattt tggtttctt 1380
 ttctgtttt acataaaaatc agaaaacttca agtctctaa ataaaaatgaa ggactatatc 1440
 tagtggattt tcacaatgaa tatcatgaa tctcaatggg taggttcat cctaccatt 1500
 gccactctgtt ttccgttggat atacctcaca ttccaatgcc aaacatttct gcacaggaa 1560
 gcttagagggtt gatacacgtt ttgcaagttt aaaaagcatca ctgggatttt aggagaattt 1620
 agagaatgtt cccacaaaatg gcagcaataa taaatggatc acactttaaa aaaaaaaaaaa 1680
 aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa 1740
 aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa a a 1771

<210> 159

<211> 300

<212> PRT

<213> Homo sapiens

<400> 159

Met	Lys	Phe	Leu	Leu	Asp	Ile	Leu	Leu	Leu	Leu	Pro	Leu	Leu	Ile	Val
1			5				10							15	

Cys	Ser	Leu	Glu	Ser	Phe	Val	Lys	Leu	Phe	Ile	Pro	Lys	Arg	Arg	Lys
			20				25						30		

Ser	Val	Thr	Gly	Glu	Ile	Val	Leu	Ile	Thr	Gly	Ala	Gly	His	Gly	Ile
			35				40					45			

Gly	Arg	Leu	Thr	Ala	Tyr	Glu	Phe	Ala	Lys	Leu	Lys	Ser	Lys	Leu	Val
			50			55				60					

Leu	Trp	Asp	Ile	Asn	Lys	His	Gly	Leu	Glu	Glu	Thr	Ala	Ala	Lys	Cys
			65			70			75				80		

Lys	Gly	Leu	Gly	Ala	Lys	Val	His	Thr	Phe	Val	Val	Asp	Cys	Ser	Asn
			85			90						95			

Arg	Glu	Asp	Ile	Tyr	Ser	Ser	Ala	Lys	Lys	Val	Lys	Ala	Glu	Ile	Gly
			100				105					110			

Asp	Val	Ser	Ile	Leu	Val	Asn	Asn	Ala	Gly	Val	Val	Tyr	Thr	Ser	Asp
			115			120						125			

Leu	Phe	Ala	Thr	Gln	Asp	Pro	Gln	Ile	Glu	Lys	Thr	Phe	Glu	Val	Asn
			130			135			140						

Val	Leu	Ala	His	Phe	Trp	Thr	Thr	Lys	Ala	Phe	Leu	Pro	Ala	Met	Thr
			145			150			155				160		

Lys	Asn	Asn	His	Gly	His	Ile	Val	Thr	Val	Ala	Ser	Ala	Ala	Gly	His
			165			170						175			

Val	Ser	Val	Pro	Phe	Leu	Leu	Ala	Tyr	Cys	Ser	Ser	Lys	Phe	Ala	Ala
			180			185						190			

Val	Gly	Phe	His	Lys	Thr	Leu	Thr	Asp	Glu	Leu	Ala	Ala	Leu	Gln	Ile
			195			200					205				

Thr	Gly	Val	Lys	Thr	Thr	Cys	Leu	Cys	Pro	Asn	Phe	Val	Asn	Thr	Gly
			210			215					220				

Phe	Ile	Lys	Asn	Pro	Ser	Thr	Ser	Leu	Gly	Pro	Thr	Leu	Glu	Pro	Glu
			225			230			235			240			

Glu	Val	Val	Asn	Arg	Leu	Met	His	Gly	Ile	Leu	Thr	Glu	Gln	Lys	Met
			245			250			255				255		

Ile Phe Ile Pro Ser Ser Ile Ala Phe Leu Thr Thr Leu Glu Arg Ile
 260 265 270

Leu Pro Glu Arg Phe Leu Ala Val Leu Lys Arg Lys Ile Ser Val Lys
 275 280 285

Phe Asp Ala Val Ile Gly Tyr Lys Met Lys Ala Gln
 290 295 300

<210> 160
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 160
ggtaaggca gaaattggag atg 23

<210> 161
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 161
atcccatgca tcagcctgtt tacc 24

<210> 162
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 162
gctggtag tctatacatc agattttttt gctacacaag atcctcag 48

<210> 163
<211> 2076
<212> DNA
<213> Homo sapiens

<400> 163
cccacgcgtc cgccggacgcg tggtcgact agttctagat cgcgagcgcc cggccggc 60
tcagggagga gcaccgactg cgccgcaccc tgagagatgg ttggtgccat gtgaaagg 120

attgttcgc tggcctgtt gatgcctggc ccctgtgatg ggctgtttcg ctccctatac 180
 agaagtgtt ccatgccacc taaggagac tcaggacagc cattatttct cacccttac 240
 attgaagctg ggaagatcca aaaaggaaga gaattgagtt tggcggccc ttcccagga 300
 ctgaacatga agagttatgc cggttcctc accgtaaata agacttacaa cagcaacctc 360
 ttcttcttgt tctcccaagc tcagatacag ccagaagatg ccccagtagt tctctggcta 420
 cagggtggc cgggagggttc atccatgtt ggactcttg tggAACATGG gccttatgtt 480
 gtcacaagta acatgacctt gcgtacaga gacttcccct ggaccacaac gctctccatg 540
 ctttacattg acaatccagt gggcacaggc ttcagttta ctgtatgatac ccacggatat 600
 gcagtcaatg aggacgatgt agcacggat ttatacagtg cactaattca gttttccag 660
 atatttcctg aatataaaaa taatgacttt tatgtcactg gggagtctta tgcaggaaa 720
 tatgtgccag ccattgcaca cctcatccat tccctcaacc ctgtgagaga ggtgaagatc 780
 aacctgaacg gaattgctat tggagatgga tattctgatc cccaatcaat tataggggc 840
 tatgcagaat tcctgtacca aattggctt ttggatgaga agcaaaaaaa gtacttccag 900
 aagcagtgcc atgaatgcat agaacacatc aggaagcaga actggttga ggccttgaa 960
 atactggata aactactaga tggcgactta acaagtgatc cttcttactt ccagaatgtt 1020
 acaggatgta gtaattacta taacttttg cggtgcacgg aacctgagga tcagctttac 1080
 tatgtgaaat ttttgtcact cccagaggtg agacaagcca tccacgtgg gaatcagact 1140
 ttaatgatg gaactatagt tgaaaagtac ttgcgagaag atacagtaca gtcagttaaag 1200
 ccatggttaa ctgaaatcat gaataattat aaggttctga tctacaatgg ccaactggac 1260
 atcatcgtgg cagctgcct gacagagcgc tccttgatgg gcatggactg gaaaggatcc 1320
 caggaataca agaaggcaga aaaaaaagtt tggagatct ttaaatctga cagtgaagtg 1380
 gctggttaca tccggcaagc gggtgacttc catcaggtaa ttattcgagg tggaggacat 1440
 attttaccct atgaccagcc tctgagagct tttgacatga ttaatcgatt catttatgga 1500
 aaaggatggg atccttatgt tggataaaact accttccaa aagagaacat cagaggttt 1560
 cattgctgaa aagaaaatcg taaaaacaga aaatgtcata ggaataaaaa aattatctt 1620
 tcatatctgc aagattttt tcatcaataa aaattatctt tgaaacaagt gagctttgt 1680
 ttttgggggg agatgtttac tacaaaatta acatgagtagt atgagtaaga attacattat 1740
 ttaacttaaa ggatgaaagg tatggatgat gtgacactga gacaagatgt ataaatgaaa 1800
 ttttagggtc ttgaatagga agtttaatt tcttctaaga gtaagtgaaa agtgcagttg 1860
 taacaaacaa agctgtaaaca tcttttctg ccaataacag aagttggca tgccgtgaag 1920
 gtgtttggaa atattattgg ataagaatag ctcaattatc ccaaataaaat ggatgaagct 1980
 ataatagtt tggggaaaaag attctcaaataat gtataaagtc tttagaacaaa agaattcttt 2040
 gaaataaaaaa tattatatat aaaagtaaaa aaaaaaa 2076

<210> 164
 <211> 476
 <212> PRT
 <213> Homo sapiens

<400> 164

Met	Val	Gly	Ala	Met	Trp	Lys	Val	Ile	Val	Ser	Leu	Val	Leu	Leu	Met
1															15

Pro	Gly	Pro	Cys	Asp	Gly	Leu	Phe	Arg	Ser	Leu	Tyr	Arg	Ser	Val	Ser
															20
															25
															30

Met	Pro	Pro	Lys	Gly	Asp	Ser	Gly	Gln	Pro	Leu	Phe	Leu	Thr	Pro	Tyr
															35
															40
															45

Ile	Glu	Ala	Gly	Lys	Ile	Gln	Lys	Gly	Arg	Glu	Leu	Ser	Leu	Val	Gly
															50
															55
															60

Pro Phe Pro Gly Leu Asn Met Lys Ser Tyr Ala Gly Phe Leu Thr Val

65	70	75	80
Asn Lys Thr Tyr Asn Ser Asn Leu Phe Phe Trp Phe Pro Ala Gln			
85		90	95
Ile Gln Pro Glu Asp Ala Pro Val Val Leu Trp Leu Gln Gly Gly Pro			
100		105	110
Gly Gly Ser Ser Met Phe Gly Leu Phe Val Glu His Gly Pro Tyr Val			
115		120	125
Val Thr Ser Asn Met Thr Leu Arg Asp Arg Asp Phe Pro Trp Thr Thr			
130		135	140
Thr Leu Ser Met Leu Tyr Ile Asp Asn Pro Val Gly Thr Gly Phe Ser			
145		150	155
Phe Thr Asp Asp Thr His Gly Tyr Ala Val Asn Glu Asp Asp Val Ala			
165		170	175
Arg Asp Leu Tyr Ser Ala Leu Ile Gln Phe Phe Gln Ile Phe Pro Glu			
180		185	190
Tyr Lys Asn Asn Asp Phe Tyr Val Thr Gly Glu Ser Tyr Ala Gly Lys			
195		200	205
Tyr Val Pro Ala Ile Ala His Leu Ile His Ser Leu Asn Pro Val Arg			
210		215	220
Glu Val Lys Ile Asn Leu Asn Gly Ile Ala Ile Gly Asp Gly Tyr Ser			
225		230	235
240			
Asp Pro Glu Ser Ile Ile Gly Gly Tyr Ala Glu Phe Leu Tyr Gln Ile			
245		250	255
Gly Leu Leu Asp Glu Lys Gln Lys Lys Tyr Phe Gln Lys Gln Cys His			
260		265	270
Glu Cys Ile Glu His Ile Arg Lys Gln Asn Trp Phe Glu Ala Phe Glu			
275		280	285
Ile Leu Asp Lys Leu Leu Asp Gly Asp Leu Thr Ser Asp Pro Ser Tyr			
290		295	300
Phe Gln Asn Val Thr Gly Cys Ser Asn Tyr Tyr Asn Phe Leu Arg Cys			
305		310	315
320			
Thr Glu Pro Glu Asp Gln Leu Tyr Tyr Val Lys Phe Leu Ser Leu Pro			
325		330	335
Glu Val Arg Gln Ala Ile His Val Gly Asn Gln Thr Phe Asn Asp Gly			
340		345	350

Thr Ile Val Glu Lys Tyr Leu Arg Glu Asp Thr Val Gln Ser Val Lys
 355 360 365

Pro Trp Leu Thr Glu Ile Met Asn Asn Tyr Lys Val Leu Ile Tyr Asn
 370 375 380

Gly Gln Leu Asp Ile Ile Val Ala Ala Ala Leu Thr Glu Arg Ser Leu
 385 390 395 400

Met Gly Met Asp Trp Lys Gly Ser Gln Glu Tyr Lys Lys Ala Glu Lys
 405 410 415

Lys Val Trp Lys Ile Phe Lys Ser Asp Ser Glu Val Ala Gly Tyr Ile
 420 425 430

Arg Gln Ala Gly Asp Phe His Gln Val Ile Ile Arg Gly Gly His
 435 440 445

Ile Leu Pro Tyr Asp Gln Pro Leu Arg Ala Phe Asp Met Ile Asn Arg
 450 455 460

Phe Ile Tyr Gly Lys Gly Trp Asp Pro Tyr Val Gly
 465 470 475

<210> 165
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 165
 ttccatgcc a cctaaggag actc 24

<210> 166
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 166
 tggatgagg gtgcaatggc tggc 24

<210> 167
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

 <400> 167
 agctctcaga ggctggtcac aggg 24

 <210> 168
 <211> 50
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

 <400> 168
 gtcgccctt tcccaggact gaacatgaag agttatgccg gcttcctcac 50

 <210> 169
 <211> 2477
 <212> DNA
 <213> Homo sapiens

 <400> 169
 cgagggctt tccggctccg gaatggcaca tgtggaaat ccagtcttgt tggctacaac 60
 attttccct ttcttaacaa gttctaacag ctgttctaac agctagtgtat cagggttct 120
 tcttgcttga gaagaaaagg ctgagggcag agcagggcac tctcaactca ggtgaccagc 180
 tccttgcctc tctgtggata acagagcatg agaaagtcaa gagatgcagg ggagttaggt 240
 gatgaaagtc taaaatagga aggaattttg tgtcaatat cagactctgg gagcagttga 300
 cctggagagc ctgggggagg gcctgcctaa caagcttca aaaaacagga gcgacttcca 360
 ctgggctggg ataagacgt ccgttaggat agggaaagact gggttagtc ctaatatcaa 420
 attgactggc tgggtgaact tcaacagcct ttaacctct ctgggagatg aaaacgatgg 480
 cttaaggggc cagaaataga gatgcttgc taaaataat ttaaaaaaaaa gcaagtattt 540
 tatacgataa aggctagaga caaaaataga taacaggatt ccctgaacat tcctaagagg 600
 gagaaagtat gttaaaaata gaaaaaccaa aatgcagaag gaggagactc acagagctaa 660
 accaggatgg ggaccctggg tcaggccagc ctcttgcct ctcccgaaaa ttattttgg 720
 tctgaccact ctgccttgc ttttgcagaa tcatgtgagg gccaaccggg gaaggtggag 780
 cagatgagca cacacaggag ccgtctcctc accggccccc ctctcagcat ggaacagagg 840
 cagccctggc cccggggccct ggaggtggac agccgcctcg tggctctgcct ctcagtggc 900
 tgggtgctgc tggccccccc agcagccggc atgcctcagt tcagcacctt ccactctgag 960
 aatcgtgact ggaccttcaa ccacttgacc gtccaccaag ggacgggggc cgtctatgt 1020
 ggggccatca accgggtcta taagctgaca ggcaacctga ccatccaggt ggctcataag 1080
 acaggggccag aagaggacaa caagtctcg taccggcccc tcatgtgca gcccgcagc 1140
 gaagtgctca ccctcaccaa caatgtcaac aagctgtca tcattgacta ctctgagaac 1200
 cgcctgctgg cctgtggag cctctaccag ggggtctgca agctgtgcg gctggatgac 1260
 ctcttcattcc tggtgagcc atcccacaag aaggagact acctgtccag tgtcaacaag 1320
 acgggcacca tgtacgggtt gattgtgcgc tctgagggtg aggtggcaa gctcttcattc 1380
 ggcacggctg tggatggaa gcaggattac ttcccaccc tggcagccg gaagctgccc 1440
 cgagaccctg agtcctcagc catgctcgac tatgagctac acagegattt tgtctcctct 1500
 ctcatcaaga tcccttcaga caccctggcc ctggtctccc actttgacat ttctcacatc 1560
 tacggctttg ctatgtgggg ctttgtctac tttctcaactg tccagcccgaa gaccctgag 1620
 ggtgtggcca tcaactccgc tggagacctc ttctcacaccc caccgcacatcg 1680

aaggatgacc	ccaagttcca	ctcatacgta	tccctgcctt	tcggctgcac	ccggggccggg	1740
gttggaaatacc	gcctcctgca	ggctgtttac	ctggccaagg	ctggggactc	actggcccag	1800
gccttcaata	tcaccagcca	ggacgatgtt	ctctttgcctt	tcttctccaa	agggcagaag	1860
cagtatcacc	acccggccga	tgactctgccc	ctgtgtgcctt	tccctatccg	ggccatcaac	1920
ttgcagatca	aggagcgcct	gcagtccctgc	taccaggcg	agggcaacct	ggagctcaac	1980
tggctgctgg	ggaaggacgt	ccagtgcacg	aaggcgcctt	tccccatcga	tgataacttc	2040
tgtggactgg	acatcaacca	gcccctggga	ggctcaactc	cagtggaggg	cctgaccctg	2100
tacaccacca	gcagggacccg	catgacccct	gtggccctct	acgtttacaa	cggttacagg	2160
gtgggttttg	tggggactaa	gagtggcaag	ctgaaaaagg	taagagtcta	tgagttcaga	2220
tgcctcaatg	ccattcacct	cctcagcaaa	gagtccctt	tggaaaggtag	ctattggttg	2280
agatttaact	ataggcaact	ttattttctt	ggggaaacaa	ggtgaaatgg	ggaggttaaa	2340
aggggttaat	tttgtgactt	agcttcttagc	tacttcctcc	agccatcagt	cattgggtat	2400
gtaaggaatg	caagcgtatt	tcaatatttc	ccaaacttta	agaaaaaaact	ttaagaaggt	2460
acatctqcaa	aagcaaa					2477

<210> 170

<211> 552

<212> PRT

<213> Homo sapiens

<400> 170

Met Gly Thr Leu Gly Gln Ala Ser Leu Phe Ala Pro Pro Gly Asn Tyr
 1 5 10 15

Phe Trp Ser Asp His Ser Ala Leu Cys Phe Ala Glu Ser Cys Glu Gly
20 25 30

Gln Pro Gly Lys Val Glu Gln Met Ser Thr His Arg Ser Arg Leu Leu
35 40 45

Thr Ala Ala Pro Leu Ser Met Glu Gln Arg Gln Pro Trp Pro Arg Ala
 50 55 60

Leu Glu Val Asp Ser Arg Ser Val Val Leu Leu Ser Val Val Trp Val
65 70 75 80

Leu Leu Ala Pro Pro Ala Ala Gly Met Pro Gln Phe Ser Thr Phe His
85 90 95

Ser Glu Asn Arg Asp Trp Thr Phe Asn His Leu Thr Val His Gln Gly
100 105 110

Thr Gly Ala Val Tyr Val Gly Ala Ile Asn Arg Val Tyr Lys Leu Thr
115 120 125

Gly Asn Leu Thr Ile Gln Val Ala His Lys Thr Gly Pro Glu Glu Asp
130 135 140

Asn Lys Ser Arg Tyr Pro Pro Leu Ile Val Gln Pro Cys Ser Glu Val
 115 150 155 160

Leu Thr Leu Thr Asn Asn Val Asn Lys Leu Leu Ile Ile Asp Tyr Ser
165 170 175

Glu Asn Arg Leu Leu Ala Cys Gly Ser Leu Tyr Gln Gly Val Cys Lys
 180 185 190

Leu Leu Arg Leu Asp Asp Leu Phe Ile Leu Val Glu Pro Ser His Lys
 195 200 205

Lys Glu His Tyr Leu Ser Ser Val Asn Lys Thr Gly Thr Met Tyr Gly
 210 215 220

Val Ile Val Arg Ser Glu Gly Glu Asp Gly Lys Leu Phe Ile Gly Thr
 225 230 235 240

Ala Val Asp Gly Lys Gln Asp Tyr Phe Pro Thr Leu Ser Ser Arg Lys
 245 250 255

Leu Pro Arg Asp Pro Glu Ser Ser Ala Met Leu Asp Tyr Glu Leu His
 260 265 270

Ser Asp Phe Val Ser Ser Leu Ile Lys Ile Pro Ser Asp Thr Leu Ala
 275 280 285

Leu Val Ser His Phe Asp Ile Phe Tyr Ile Tyr Gly Phe Ala Ser Gly
 290 295 300

Gly Phe Val Tyr Phe Leu Thr Val Gln Pro Glu Thr Pro Glu Gly Val
 305 310 315 320

Ala Ile Asn Ser Ala Gly Asp Leu Phe Tyr Thr Ser Arg Ile Val Arg
 325 330 335

Leu Cys Lys Asp Asp Pro Lys Phe His Ser Tyr Val Ser Leu Pro Phe
 340 345 350

Gly Cys Thr Arg Ala Gly Val Glu Tyr Arg Leu Leu Gln Ala Ala Tyr
 355 360 365

Leu Ala Lys Pro Gly Asp Ser Leu Ala Gln Ala Phe Asn Ile Thr Ser
 370 375 380

Gln Asp Asp Val Leu Phe Ala Ile Phe Ser Lys Gly Gln Lys Gln Tyr
 385 390 395 400

His His Pro Pro Asp Asp Ser Ala Leu Cys Ala Phe Pro Ile Arg Ala
 405 410 415

Ile Asn Leu Gln Ile Lys Glu Arg Leu Gln Ser Cys Tyr Gln Gly Glu
 420 425 430

Gly Asn Leu Glu Leu Asn Trp Leu Leu Gly Lys Asp Val Gln Cys Thr
 435 440 445

Lys Ala Pro Val Pro Ile Asp Asp Asn Phe Cys Gly Leu Asp Ile Asn

100

450 455 460
Gln Pro Leu Gly Gly Ser Thr Pro Val Glu Gly Leu Thr Leu Tyr Thr
465 470 475 480
Thr Ser Arg Asp Arg Met Thr Ser Val Ala Ser Tyr Val Tyr Asn Gly
485 490 495
Tyr Ser Val Val Phe Val Gly Thr Lys Ser Gly Lys Leu Lys Lys Val
500 505 510
Arg Val Tyr Glu Phe Arg Cys Ser Asn Ala Ile His Leu Leu Ser Lys
515 520 525
Glu Ser Leu Leu Glu Gly Ser Tyr Trp Trp Arg Phe Asn Tyr Arg Gln
530 535 540
Leu Tyr Phe Leu Gly Glu Gln Arg
545 550

<210> 171
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 171
tggaataccg cctcctgcag 20

<210> 172
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 172
cttctgccct ttggagaaga tggc 24

<210> 173
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 173
 ggactcactg gcccaggcct tcaatatac cagccaggac gat 42

 <210> 174
 <211> 3106
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> modified_base
 <222> (1683)
 <223> a, t, c or g

 <400> 174
 aggctccgc ggcggctga gtgcggactg gagtggaaac cgggtcccc ggcgttagag 60
 aacacgcgt gaccacgtgg agectccggc ggaggccgc cgcacgctg ggactccgtc 120
 tgctggctgt ctgggcttc ctgggtctcc gcaggctgga ctggagcacc ctggccctc 180
 tgcggctccg ccatcgacag ctggggctgc aggccaaggg ctggacttc atgctggagg 240
 attccaccc ttggatcttcc ggggctcca tccactattt ccgtgtgccg agggagtact 300
 ggagggaccg cctgctgaag atgaaggcct gtggctgaa caccctcacc acctatgttc 360
 cgtggacact gcatgagcca gaaagaggca aatttgactt ctctggaaac ctggacctgg 420
 aggcttcgt cctgtatggcc gcagagatcg ggctgtgggt gattctgcgt ccaggcccc 480
 acatctgcag tgagatggac ctgggggct tgcccaagctg gctactccaa gaccctggca 540
 tgaggctgag gacaacttac aagggcttca ccgaagcagt ggacctttat tttgaccacc 600
 tgatgtccag ggtggtgcca ctccagtaca agcgtggggg acctatcatt gccgtgcagg 660
 tggagaatga atatggttcc tataataaag accccgcata catgccctac gtcaagaagg 720
 cactggagga ccgtggcatt gtggaaactgc tcctgacttcc agacaacaag gatgggctga 780
 gcaagggat tgtccaggga gtcttggcca ccatcaactt gcagtcaca cacgagctgc 840
 agctactgac caccttctc ttcaacgtcc aggggactca gcccaagatg gtatggagg 900
 actggacggg gtggtttgac tcgtggggag gccctcacaa tatcttggat tcttctgagg 960
 ttttggaaaac cgtgtctgcc atttgtggacg ccggctccctc catcaaccc tacatgttcc 1020
 acggaggcac caacttggc ttcatgaatg gagccatgca cttccatgac tacaagttag 1080
 atgtcaccag ctatgactat gatgctgtgc tgacagaagc cggcgattac acggccaagt 1140
 acatgaagct tcgagacttcc ttccggctcca tctcaggcat ccctctccct cccccacactg 1200
 accttctcc caagatgccg tatgaggccct taacgcccagt cttgtacctg tctctgtggg 1260
 acggccctcaa gtacctgggg gagccaatca agtctgaaaa gcccataac atggagaacc 1320
 tgccagtcaa tggggaaaat ggacagtctc tcgggtacat tctctatgag accagcatca 1380
 cctcgtctgg catcctcagt gggcacgtgc atgatgggg gcaggtgttt gtgaacacag 1440
 tatccatagg attcttggac tacaagacaa cgaagattgc tgcgtccctg atccagggtt 1500
 acaccgtgt gaggatctt gttggagaatc gtggcgagt caactatggg gagaatattg 1560
 atgaccagcg caaaggctta attggaaatc tctatctgaa tgattcaccc ctgaaaaact 1620
 tcagaatcta tagcctggat atgaagaaga gcttcttca gaggttcggc ctggacaaat 1680
 ggnngtccct cccagaaaca cccacattac ctgctttctt cttggtagc ttgtccatca 1740
 gctccacgcc ttgtgacacc tttctgaagc tggaggctg ggagaagggg gttgtattca 1800
 tcaatggcca gaaccttggaa cgttactggaa acattggacc ccagaagacg cttaacctcc 1860
 caggtccctg gttgagcagc ggaatcaacc aggtcatcg ttttgaggag acgtatggcgg 1920
 gcccgcatt acagttcacg gaaacccccc acctggcagc gaaccagtac attaagttag 1980
 cggcggcacc ccctctgtc ggtgccagtggagactgcc gcctccctt gacctgaagc 2040
 ctggtgctg ctggcccccacc cctcaactgca aaagcatctc cttaagttagc aacctcagg 2100
 actggggctc acagtctgac cctgtctcag ctcaaaaccc taagcctgca gggaaaggtg 2160
 ggtggctct gggctggct ttgtttagtga tggcttccct acagccctgc tcttctgccc 2220
 aggtgtcggt gctgtctcta gggggggagc agctaattcag atcgcccagc ctggccct 2280

cagaaaaagt gctgaaacgt gcccttgcac cggacgtcac agccctgcga gcatctgctg 2340
 gactcaggcg tgctcttgc tggccttgg gaggcttggc cacatccctc atggccccc 2400
 tttatccccg aaatcctgg tgtgtcacca gtgttagaggg tggggaaagggt gtgtctcacc 2460
 tgagctgact ttgttcttc ttccacaacct tctgagcctt cttgggatt ctgaaaggaa 2520
 ctccgggtga gaaacatgtg acttccccctt tcccttcca ctcgctgctt cccacagggt 2580
 gacaggctgg gctggagaaa cagaaatcct caccctgcgt cttcccaagt tagcagggt 2640
 ctctgggttt cagtggggag gacatgtgag tcctggcaga accatggcc catgtctgca 2700
 catccaggaa ggaggacaga agggccagct cacatgtgag tcctggcaga accatggcc 2760
 catgtctgca catccaggaa ggaggacaga agggccagct cacatgtgag tcctggcaga 2820
 agccatggcc catgtctgca catccaggaa ggaggacaga agggccagct cacatgtgag 2880
 tcctggcaga agccatggcc catgtctgca catccaggaa ggaggacaga agggccagct 2940
 cagtggcccc cgctccccac ccccaacgcc cgaacagcag gggcagagca gccctcc 3000
 gaagtgtgtc caagtccgca ttgagcctt gttctgggc ccagcccaac acctggctt 3060
 ggctcaactgt cctgagttgc agtaaagcta taaccttcaa tcacaa 3106

<210> 175

<211> 636

<212> PRT

<213> Homo sapiens

<220>

<221> MOD_RES

<222> (539)

<223> Any amino acid

<400> 175

Met	Thr	Thr	Trp	Ser	Leu	Arg	Arg	Arg	Pro	Ala	Arg	Thr	Leu	Gly	Leu
1					5							10			15

Leu	Leu	Leu	Val	Val	Leu	Gly	Phe	Leu	Val	Leu	Arg	Arg	Leu	Asp	Trp
					20				25				30		

Ser	Thr	Leu	Val	Pro	Leu	Arg	Leu	Arg	His	Arg	Gln	Leu	Gly	Leu	Gln
					35				40			45			

Ala	Lys	Gly	Trp	Asn	Phe	Met	Leu	Glu	Asp	Ser	Thr	Phe	Trp	Ile	Phe
					50			55			60				

Gly	Gly	Ser	Ile	His	Tyr	Phe	Arg	Val	Pro	Arg	Glu	Tyr	Trp	Arg	Asp
					65			70		75		80			

Arg	Leu	Leu	Lys	Met	Lys	Ala	Cys	Gly	Leu	Asn	Thr	Leu	Thr	Thr	Tyr
					85				90			95			

Val	Pro	Trp	Asn	Leu	His	Glu	Pro	Glu	Arg	Gly	Lys	Phe	Asp	Phe	Ser
					100			105			110				

Gly	Asn	Leu	Asp	Leu	Glu	Ala	Phe	Val	Leu	Met	Ala	Ala	Glu	Ile	Gly
					115			120			125				

Leu	Trp	Val	Ile	Leu	Arg	Pro	Gly	Pro	Tyr	Ile	Cys	Ser	Glu	Met	Asp
					130			135			140				

Leu Gly Gly Leu Pro Ser Trp Leu Leu Gln Asp Pro Gly Met Arg Leu
 145 150 155 160
 Arg Thr Thr Tyr Lys Gly Phe Thr Glu Ala Val Asp Leu Tyr Phe Asp
 165 170 175
 His Leu Met Ser Arg Val Val Pro Leu Gln Tyr Lys Arg Gly Gly Pro
 180 185 190
 Ile Ile Ala Val Gln Val Glu Asn Glu Tyr Gly Ser Tyr Asn Lys Asp
 195 200 205
 Pro Ala Tyr Met Pro Tyr Val Lys Lys Ala Leu Glu Asp Arg Gly Ile
 210 215 220
 Val Glu Leu Leu Leu Thr Ser Asp Asn Lys Asp Gly Leu Ser Lys Gly
 225 230 235 240
 Ile Val Gln Gly Val Leu Ala Thr Ile Asn Leu Gln Ser Thr His Glu
 245 250 255
 Leu Gln Leu Leu Thr Thr Phe Leu Phe Asn Val Gln Gly Thr Gln Pro
 260 265 .270
 Lys Met Val Met Glu Tyr Trp Thr Gly Trp Phe Asp Ser Trp Gly Gly
 275 280 285
 Pro His Asn Ile Leu Asp Ser Ser Glu Val Leu Lys Thr Val Ser Ala
 290 295 300
 Ile Val Asp Ala Gly Ser Ser Ile Asn Leu Tyr Met Phe His Gly Gly
 305 310 315 320
 Thr Asn Phe Gly Phe Met Asn Gly Ala Met His Phe His Asp Tyr Lys
 325 330 335
 Ser Asp Val Thr Ser Tyr Asp Tyr Asp Ala Val Leu Thr Glu Ala Gly
 340 345 350
 Asp Tyr Thr Ala Lys Tyr Met Lys Leu Arg Asp Phe Phe Gly Ser Ile
 355 360 365
 Ser Gly Ile Pro Leu Pro Pro Pro Asp Leu Leu Pro Lys Met Pro
 370 375 380
 Tyr Glu Pro Leu Thr Pro Val Leu Tyr Leu Ser Leu Trp Asp Ala Leu
 385 390 395 400
 Lys Tyr Leu Gly Glu Pro Ile Lys Ser Glu Lys Pro Ile Asn Met Glu
 405 410 415
 Asn Leu Pro Val Asn Gly Gly Asn Gly Gln Ser Phe Gly Tyr Ile Leu
 420 425 430

Tyr Glu Thr Ser Ile Thr Ser Ser Gly Ile Leu Ser Gly His Val His
 435 440 445
 Asp Arg Gly Gln Val Phe Val Asn Thr Val Ser Ile Gly Phe Leu Asp
 450 455 460
 Tyr Lys Thr Thr Lys Ile Ala Val Pro Leu Ile Gln Gly Tyr Thr Val
 465 470 475 480
 Leu Arg Ile Leu Val Glu Asn Arg Gly Arg Val Asn Tyr Gly Glu Asn
 485 490 495
 Ile Asp Asp Gln Arg Lys Gly Leu Ile Gly Asn Leu Tyr Leu Asn Asp
 500 505 510
 Ser Pro Leu Lys Asn Phe Arg Ile Tyr Ser Leu Asp Met Lys Lys Ser
 515 520 525
 Phe Phe Gln Arg Phe Gly Leu Asp Lys Trp Xaa Ser Leu Pro Glu Thr
 530 535 540
 Pro Thr Leu Pro Ala Phe Phe Leu Gly Ser Leu Ser Ile Ser Ser Thr
 545 550 555 560
 Pro Cys Asp Thr Phe Leu Lys Leu Glu Gly Trp Glu Lys Gly Val Val
 565 570 575
 Phe Ile Asn Gly Gln Asn Leu Gly Arg Tyr Trp Asn Ile Gly Pro Gln
 580 585 590
 Lys Thr Leu Tyr Leu Pro Gly Pro Trp Leu Ser Ser Gly Ile Asn Gln
 595 600 605
 Val Ile Val Phe Glu Glu Thr Met Ala Gly Pro Ala Leu Gln Phe Thr
 610 615 620
 Glu Thr Pro His Leu Gly Arg Asn Gln Tyr Ile Lys
 625 630 635

<210> 176
 <211> 2505
 <212> DNA
 <213> Homo sapiens

<400> 176
 ggggacgcgg agctgagagg ctccgggcta gctaggtgta ggggtggacg ggtcccagga 60
 ccctggtag ggttctctac ttggccttcg gtgggggtca agacgcaggc acctacgcca 120
 aaggggagca aagccgggct cggcccaggc cccccaggac ctccatctcc caatgttgg 180
 ggaatccgac acgtgacggt ctgtccgccc tctcagacta gaggagcgct gtaaacgcca 240
 tggctcccaa gaagctgtcc tgccctcggt ccctgctgct gccgctcagc ctgacgctac 300
 tgctgccccca ggcagacact cggtcggtcg tagtgatag gggtcatgac cggtttctcc 360
 tagacggggc cccgttccgc tatgtgtctg gcagcctgca ctactttcgg gtaccgcggg 420

tgcttggc cgaccggc ttgaagatgc gatggagcgg cctcaacgcc atacagttt 480
 atgtccctg gaactaccac gaccacagc ctgggtcta taacttaat ggcagccgg 540
 acctcattgc ctttctgaat gaggcagtc tagcAACCT gtggcata ctgagaccag 600
 gacccatcat ctgtcagag tggagatgg ggggtctccc atcctggttt ctgcggaaac 660
 ctgaaattca tctaagaacc tcagatccag acttccttgc cgcagtggac tcctggttca 720
 aggtcttgct gccccagata tatccatggc tttatcacaa tggggcaac atcattagca 780
 ttcaggtgga gaatgaatat ggtagctaca gagcctgtga cttcagctac atgaggcact 840
 tggctggct cttccgtca ctgctaggag aaaagatctt gctcttcacc acagatggc 900
 ctgaaggact caagtgtggc tccctccggg gactctatac cactgttagat ttggcccg 960
 ctgacaacat gaccaaatac ttacccctgc ttccgaagta tgaacccat gggccattgg 1020
 taaactctga gtactacaca ggctggctgg attactggg ccagaatcac tccacacgg 1080
 ctgtgtcagc tptaaccaaa ggactagaga acatgctcaa gttgggagcc agtgtgaaca 1140
 tgtacatgtt ccatggaggt accaactttg gatattggaa tggcgtccgat aagaaggac 1200
 gcttccttcc gattactacc agctatgact atgatgcacc tatatctgaa gcaggggacc 1260
 ccacacctaa gcttttgc cttcgagatg tcacagcaa gttccagggaa gttccttgg 1320
 gacccattacc tccccccgagc cccaaagatga tgcttgacc tggactctg cacctgggg 1380
 ggcatttact ggcttccta gacttgc tt gccccgtgg gccattcat tcaatcttc 1440
 caatgaccc ttgaggctgtc aaggcaggacc atggctcat gttgtaccga accttatatga 1500
 cccataccat ttttggcca acaccattct ggggtccaaa taatggagtc catgaccgtg 1560
 cctatgtat ggtggatggg gtgttccagg gtgttggaa gcgaaatatg agagacaaac 1620
 tattttgac ggggaaactg ggggtccaaac tggatatctt ggtggagaac atggggaggc 1680
 tcagcttgg gtctaacagc agtgacttca agggcctgtt gaagccacca attctggggc 1740
 aaacaatct tacccagtgg atgatgttcc ctctgaaaat tgataaacctt gtgaagtgg 1800
 ggttccctt ccagttggca aaatggccat atcctcaagc tcctctggc cccacattct 1860
 actccaaac atttccaatt ttaggctcag ttggggacac atttctatat ctacctggat 1920
 ggaccaaggg ccaagtctgg atcaatgggt ttaacttggg ccgtactgg acaaagcagg 1980
 ggccacaaca gaccctctac gtcccaagat tcctgcgtt tccttagggg gcccctaaca 2040
 aaattacatt gctggacta gaagatgtac ctctccagcc ccaagtccaa tttttggata 2100
 agcctatctt caatgactact agtactttgc acaggacaca tatcaattcc ctccagctg 2160
 atacactgag tgcctctgaa ccaatggagt taagtggca ctgaaaggta ggccgggcat 2220
 ggtggctcat gcctgtatc ccagcacttt gggaggctga gacgggtggaa ttacctgagg 2280
 tcagacttc aagaccagcc tggccaaacat ggtgaaaccc cgtctccact aaaaatacaa 2340
 aaattagccg ggcgtatgg tggcacctc taatccagc tacttgggag gctgagggca 2400
 ggagaattgc ttgaatccag gaggcagagg ttgcagttag tgaggttgtt accactgcac 2460
 tccagcctgg ctgacagtga gacactccat ctcaaaaaaa aaaaa 2505

<210> 177
 <211> 654
 <212> PRT
 <213> Homo sapiens

<400> 177
 Met Ala Pro Lys Lys Leu Ser Cys Leu Arg Ser Leu Leu Leu Pro Leu
 1 5 10 15

Ser Leu Thr Leu Leu Pro Gln Ala Asp Thr Arg Ser Phe Val Val
 20 25 30

Asp Arg Gly His Asp Arg Phe Leu Leu Asp Gly Ala Pro Phe Arg Tyr
 35 40 45

Val Ser Gly Ser Leu His Tyr Phe Arg Val Pro Arg Val Leu Trp Ala
 50 55 60

Asp Arg Leu Leu Lys Met Arg Trp Ser Gly Leu Asn Ala Ile Gln Phe
 65 70 75 80
 Tyr Val Pro Trp Asn Tyr His Glu Pro Gln Pro Gly Val Tyr Asn Phe
 85 90 95
 Asn Gly Ser Arg Asp Leu Ile Ala Phe Leu Asn Glu Ala Ala Leu Ala
 100 105 110
 Asn Leu Leu Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ala Glu Trp
 115 120 125
 Glu Met Gly Gly Leu Pro Ser Trp Leu Leu Arg Lys Pro Glu Ile His
 130 135 140
 Leu Arg Thr Ser Asp Pro Asp Phe Leu Ala Ala Val Asp Ser Trp Phe
 145 150 155 160
 Lys Val Leu Leu Pro Lys Ile Tyr Pro Trp Leu Tyr His Asn Gly Gly
 165 170 175
 Asn Ile Ile Ser Ile Gln Val Glu Asn Glu Tyr Gly Ser Tyr Arg Ala
 180 185 190
 Cys Asp Phe Ser Tyr Met Arg His Leu Ala Gly Leu Phe Arg Ala Leu
 195 200 205
 Leu Gly Glu Lys Ile Leu Leu Phe Thr Thr Asp Gly Pro Glu Gly Leu
 210 215 220
 Lys Cys Gly Ser Leu Arg Gly Leu Tyr Thr Val Asp Phe Gly Pro
 225 230 235 240
 Ala Asp Asn Met Thr Lys Ile Phe Thr Leu Leu Arg Lys Tyr Glu Pro
 245 250 255
 His Gly Pro Leu Val Asn Ser Glu Tyr Tyr Thr Gly Trp Leu Asp Tyr
 260 265 270
 Trp Gly Gln Asn His Ser Thr Arg Ser Val Ser Ala Val Thr Lys Gly
 275 280 285
 Leu Glu Asn Met Leu Lys Leu Gly Ala Ser Val Asn Met Tyr Met Phe
 290 295 300
 His Gly Gly Thr Asn Phe Gly Tyr Trp Asn Gly Ala Asp Lys Lys Gly
 305 310 315 320
 Arg Phe Leu Pro Ile Thr Thr Ser Tyr Asp Tyr Asp Ala Pro Ile Ser
 325 330 335
 Glu Ala Gly Asp Pro Thr Pro Lys Leu Phe Ala Leu Arg Asp Val Ile

340	345	350
Ser Lys Phe Gln Glu Val Pro Leu Gly Pro Leu Pro Pro Pro Ser Pro		
355	360	365
Lys Met Met Leu Gly Pro Val Thr Leu His Leu Val Gly His Leu Leu		
370	375	380
Ala Phe Leu Asp Leu Leu Cys Pro Arg Gly Pro Ile His Ser Ile Leu		
385	390	395
Pro Met Thr Phe Glu Ala Val Lys Gln Asp His Gly Phe Met Leu Tyr		
405	410	415
Arg Thr Tyr Met Thr His Thr Ile Phe Glu Pro Thr Pro Phe Trp Val		
420	425	430
Pro Asn Asn Gly Val His Asp Arg Ala Tyr Val Met Val Asp Gly Val		
435	440	445
Phe Gln Gly Val Val Glu Arg Asn Met Arg Asp Lys Leu Phe Leu Thr		
450	455	460
Gly Lys Leu Gly Ser Lys Leu Asp Ile Leu Val Glu Asn Met Gly Arg		
465	470	475
Leu Ser Phe Gly Ser Asn Ser Ser Asp Phe Lys Gly Leu Leu Lys Pro		
485	490	495
Pro Ile Leu Gly Gln Thr Ile Leu Thr Gln Trp Met Met Phe Pro Leu		
500	505	510
Lys Ile Asp Asn Leu Val Lys Trp Trp Phe Pro Leu Gln Leu Pro Lys		
515	520	525
Trp Pro Tyr Pro Gln Ala Pro Ser Gly Pro Thr Phe Tyr Ser Lys Thr		
530	535	540
Phe Pro Ile Leu Gly Ser Val Gly Asp Thr Phe Leu Tyr Leu Pro Gly		
545	550	555
Trp Thr Lys Gly Gln Val Trp Ile Asn Gly Phe Asn Leu Gly Arg Tyr		
565	570	575
Trp Thr Lys Gln Gly Pro Gln Gln Thr Leu Tyr Val Pro Arg Phe Leu		
580	585	590
Leu Phe Pro Arg Gly Ala Leu Asn Lys Ile Thr Leu Leu Glu Leu Glu		
595	600	605
Asp Val Pro Leu Gln Pro Gln Val Gln Phe Leu Asp Lys Pro Ile Leu		
610	615	620

Asn Ser Thr Ser Thr Leu His Arg Thr His Ile Asn Ser Leu Ser Ala
625 630 635 640

Asp Thr Leu Ser Ala Ser Glu Pro Met Glu Leu Ser Gly His
645 650

<210> 178
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 178
tggctactcc aagaccctgg catg 24

<210> 179
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 179
tggacaaaatc cccttgatca gccc 24

<210> 180
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 180
gggcatttacc gaaggcgtgg acctttatcc tgaccacctg atgtccagg 50

<210> 181
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 181
ccagctatga ctatgtatgc cc 22

<210> 182
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 182
 tggcacccag aatggtgttg gctc 24

<210> 183
 <211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 183
 cgagatgtca tcagcaagtt ccaggaagtt ccttgggac cttaacctcc 50

<210> 184
 <211> 1947
 <212> DNA
 <213> Homo sapiens

<400> 184
 gcttgaaca cgtctgcaag cccaaagttg agcatctgat tggttatggat gtatttgagt 60
 gcaccaccaa tatggcttac atggaaaaa agcttctcat cagttacata tccattattt 120
 gtgttatgg ctatctgc ctctacactc tcttcgtt attcaggata ccttgaagg 180
 aatattctt cgaaaaagtc agagaagaga gcagtttag tgacattcca gatgtaaaaa 240
 acgatttgc gttccttctt cacatggtag accagtatga ccagctatat tccaaagcggtt 300
 ttgggtgttt cttgtcagaa gtttagtggaaa ataaaacttag gggaaatttagt ttgaaccatg 360
 agtggacatt tgaaaaactc aggacgaca tttcacgcaa cggccaggac aagcaggagt 420
 tgcattctgtt catgctgtcg ggggtccccg atgctgtctt tgacctcaca gacctggatg 480
 tgctaaagct tgaactaatt ccagaagcta aaattcctgc taagatttct caaatgacta 540
 accttcaaga gctccaccc tgccactgccc ctgcggaaatg tgaacagact gcttttagct 600
 ttcttcgcga tcacttgaga tgccctcacg tgaagttcac tgatgtggct gaaattcctg 660
 cctgggtgtt tttgtcaaaa aacccctcgag agttgtactt aataggcaat ttgaactctg 720
 aaaacaataa gatgatagga cttaatctc tccggagatggt gccggcacctt aagattctcc 780
 acgtgaagag caatttgacc aaagttccct ccaacattac agatgtggct ccacatctta 840
 caaagtttagt cattcataat gacggcacta aactcttggt actgaacacgc cttaaagaaaa 900
 tgatgaatgt cgctgagctg gaactccaga actgtgagct agagagaatc ccacatgcta 960
 ttttcagcct ctcttaattt caggaactgg attttaagtc caataacatt cgccacaattt 1020
 agggaaatcat cagtttccag cattttaaac gactgacttg tttaaaaatta tggcataaca 1080
 aaattgttac tattcctccc tcttattaccc atgtcaaaaa cttggagtc ctttatttct 1140
 ctaacaacaa gctcgaatcc ttaccagtgg cagttattag ttacagaaaa ctcagatgct 1200
 tagatgtgag ctacaacaac atttcaatga ttccaaataga aataggattt cttcagaacc 1260
 tgcagcattt gcataatcact gggaaacaaatggacattctt gccaaaacaaatgtttaat 1320

gcataaagtt gaggacttg aatctggac agaactgcat cacctcactc ccagagaaaag 1380
 ttggtcagct ctcccagtc actcagctgg agctgaaggg gaactgcttg gaccgcctgc 1440
 cagcccagct gggccagttt cgatgctca agaaaaagcgg gcttgggtgtt gaagatcacc 1500
 ttttgatac cctgccactc gaagtcaaag aggcatgaa tcaagacata aatattccct 1560
 ttgcaaatgg gatttaact aagataatat atgcacagtg atgtgcagga acaacttcct 1620
 agattgcaag tgctcacgta caagttttaa caagataatg catttttagga gtagatacat 1680
 cttttaaaat aaaacagaga ggatgcata gaaatgcataa ctgaatgttc 1740
 aatgttgta gggtttaag tcatttcattt ccaaatttattt tttttttttc ttttggggaa 1800
 agggaggaa aaattataat cactaatctt ggttctttt aaattgtttt taacttggat 1860
 gctgccgcta ctgaatgtttt acaaatttgc tgcctgctaa agtaaatgtat taaattgaca 1920
 ttttcttact aaaaaaaaaaaaaaaa 1947

<210> 185

<211> 501

<212> PRT

<213> Homo sapiens

<400> 185

Met	Ala	Tyr	Met	Leu	Lys	Lys	Leu	Leu	Ile	Ser	Tyr	Ile	Ser	Ile	Ile
1				5				10					15		

Cys	Val	Tyr	Gly	Phe	Ile	Cys	Leu	Tyr	Thr	Leu	Phe	Trp	Leu	Phe	Arg
				20				25				30			

Ile	Pro	Leu	Lys	Glu	Tyr	Ser	Phe	Glu	Lys	Val	Arg	Glu	Glu	Ser	Ser
				35			40				45				

Phe	Ser	Asp	Ile	Pro	Asp	Val	Lys	Asn	Asp	Phe	Ala	Phe	Leu	Leu	His
			50			55				60					

Met	Val	Asp	Gln	Tyr	Asp	Gln	Leu	Tyr	Ser	Lys	Arg	Phe	Gly	Val	Phe
	65				70				75			80			

Leu	Ser	Glu	Val	Ser	Glu	Asn	Lys	Leu	Arg	Glu	Ile	Ser	Leu	Asn	His
			85					90				95			

Glu	Trp	Thr	Phe	Glu	Lys	Leu	Arg	Gln	His	Ile	Ser	Arg	Asn	Ala	Gln
			100			105			110						

Asp	Lys	Gln	Glu	Leu	His	Leu	Phe	Met	Leu	Ser	Gly	Val	Pro	Asp	Ala
			115			120			125						

Val	Phe	Asp	Leu	Thr	Asp	Leu	Asp	Val	Leu	Lys	Leu	Glu	Leu	Ile	Pro
			130			135				140					

Glu	Ala	Lys	Ile	Pro	Ala	Lys	Ile	Ser	Gln	Met	Thr	Asn	Leu	Gln	Glu
			145			150			155			160			

Leu	His	Leu	Cys	His	Cys	Pro	Ala	Lys	Val	Glu	Gln	Thr	Ala	Phe	Ser
			165			170						175			

Phe	Leu	Arg	Asp	His	Leu	Arg	Cys	Leu	His	Val	Lys	Phe	Thr	Asp	Val
			180			185						190			

Ala Glu Ile Pro Ala Trp Val Tyr Leu Leu Lys Asn Leu Arg Glu Leu
195 200 205

Tyr Leu Ile Gly Asn Leu Asn Ser Glu Asn Asn Lys Met Ile Gly Leu
210 215 220

Glu Ser Leu Arg Glu Leu Arg His Leu Lys Ile Leu His Val Lys Ser
225 230 235 240

Asn Leu Thr Lys Val Pro Ser Asn Ile Thr Asp Val Ala Pro His Leu
245 250 255

Thr Lys Leu Val Ile His Asn Asp Gly Thr Lys Leu Leu Val Leu Asn
260 265 270

Ser Leu Lys Lys Met Met Asn Val Ala Glu Leu Glu Leu Gln Asn Cys
275 280 285

Glu Leu Glu Arg Ile Pro His Ala Ile Phe Ser Leu Ser Asn Leu Gln
290 295 300

Glu Leu Asp Leu Lys Ser Asn Asn Ile Arg Thr Ile Glu Glu Ile Ile
305 310 315 320

Ser Phe Gln His Leu Lys Arg Leu Thr Cys Leu Lys Leu Trp His Asn
325 330 335

Lys Ile Val Thr Ile Pro Pro Ser Ile Thr His Val Lys Asn Leu Glu
340 345 350

Ser Leu Tyr Phe Ser Asn Asn Lys Leu Glu Ser Leu Pro Val Ala Val
355 360 365

Phe Ser Leu Gln Lys Leu Arg Cys Leu Asp Val Ser Tyr Asn Asn Ile
370 375 380

Ser Met Ile Pro Ile Glu Ile Gly Leu Leu Gln Asn Leu Gln His Leu
385 390 395 400

His Ile Thr Gly Asn Lys Val Asp Ile Leu Pro Lys Gln Leu Phe Lys
405 410 415

Cys Ile Lys Leu Arg Thr Leu Asn Leu Gly Gln Asn Cys Ile Thr Ser
420 425 430

Leu Pro Glu Lys Val Gly Gln Leu Ser Gln Leu Thr Gln Leu Glu Leu
435 440 445

Lys Gly Asn Cys Leu Asp Arg Leu Pro Ala Gln Leu Gly Gln Cys Arg
450 455 460

Met Leu Lys Lys Ser Gly Leu Val Val Glu Asp His Leu Phe Asp Thr

465	470	475	480
Leu Pro Leu Glu Val Lys Glu Ala Leu Asn Gln Asp Ile Asn Ile Pro 485 490 495			
Phe Ala Asn Gly Ile 500			
<210> 186			
<211> 21			
<212> DNA			
<213> Artificial Sequence			
<220>			
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe			
<400> 186			
cctccctcta ttacccatgt c 21			
<210> 187			
<211> 24			
<212> DNA			
<213> Artificial Sequence			
<220>			
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe			
<400> 187			
gaccaacttt ctctggag gagg 24			
<210> 188			
<211> 47			
<212> DNA			
<213> Artificial Sequence			
<220>			
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe			
<400> 188			
gtcacttat ttctctaaca acaagctcg atccttacca gtggcag 47			
<210> 189			
<211> 2917			
<212> DNA			
<213> Homo sapiens			
<400> 189			
cccacgcgtc cgcccttctc tctggacttt gcatttccat tcctttcat tgacaaaactg 60			
actttttta ttctttttt tccatctctg ggccagcttg ggatcctagg ccgcctcg 120			
aaagacatttg tggtttacac acataaggat ctgtgtttgg ggttttcttctt tccctccctg 180			

<210> 190
<211> 607
<212> PRT
<213> *Homo sapiens*

<400> 190

Met Glu Leu Val Arg Arg Leu Met Pro Leu Thr Leu Leu Ile Leu Ser
 1 5 10 15

Cys Leu Ala Glu Leu Thr Met Ala Glu Ala Glu Gly Asn Ala Ser Cys
 20 25 30

Thr Val Ser Leu Gly Gly Ala Asn Met Ala Glu Thr His Lys Ala Met
 35 40 45

Ile Leu Gln Leu Asn Pro Ser Glu Asn Cys Thr Trp Thr Ile Glu Arg
 50 55 60

Pro Glu Asn Lys Ser Ile Arg Ile Ile Phe Ser Tyr Val Gln Leu Asp
 65 70 75 80

Pro Asp Gly Ser Cys Glu Ser Glu Asn Ile Lys Val Phe Asp Gly Thr
 85 90 95

Ser Ser Asn Gly Pro Leu Leu Gly Gln Val Cys Ser Lys Asn Asp Tyr
 100 105 110

Val Pro Val Phe Glu Ser Ser Ser Thr Leu Thr Phe Gln Ile Val
 115 120 125

Thr Asp Ser Ala Arg Ile Gln Arg Thr Val Phe Val Phe Tyr Tyr Phe
 130 135 140

Phe Ser Pro Asn Ile Ser Ile Pro Asn Cys Gly Gly Tyr Leu Asp Thr
 145 150 155 160

Leu Glu Gly Ser Phe Thr Ser Pro Asn Tyr Pro Lys Pro His Pro Glu
 165 170 175

Leu Ala Tyr Cys Val Trp His Ile Gln Val Glu Lys Asp Tyr Lys Ile
 180 185 190

Lys Leu Asn Phe Lys Glu Ile Phe Leu Glu Ile Asp Lys Gln Cys Lys
 195 200 205

Phe Asp Phe Leu Ala Ile Tyr Asp Gly Pro Ser Thr Asn Ser Gly Leu
 210 215 220

Ile Gly Gln Val Cys Gly Arg Val Thr Pro Thr Phe Glu Ser Ser Ser
 225 230 235 240

Asn Ser Leu Thr Val Val Leu Ser Thr Asp Tyr Ala Asn Ser Tyr Arg
 245 250 255

Gly Phe Ser Ala Ser Tyr Thr Ser Ile Tyr Ala Glu Asn Ile Asn Thr
 260 265 270

Thr Ser Leu Thr Cys Ser Ser Asp Arg Met Arg Val Ile Ile Ser Lys
 275 280 285

Ser Tyr Leu Glu Ala Phe Asn Ser Asn Gly Asn Asn Leu Gln Leu Lys
 290 295 300
 Asp Pro Thr Cys Arg Pro Lys Leu Ser Asn Val Val Glu Phe Ser Val
 305 310 315 320
 Pro Leu Asn Gly Cys Gly Thr Ile Arg Lys Val Glu Asp Gln Ser Ile
 325 330 335
 Thr Tyr Thr Asn Ile Ile Thr Phe Ser Ala Ser Ser Thr Ser Glu Val
 340 345 350
 Ile Thr Arg Gln Lys Gln Leu Gln Ile Ile Val Lys Cys Glu Met Gly
 355 360 365
 His Asn Ser Thr Val Glu Ile Ile Tyr Ile Thr Glu Asp Asp Val Ile
 370 375 380
 Gln Ser Gln Asn Ala Leu Gly Lys Tyr Asn Thr Ser Met Ala Leu Phe
 385 390 395 400
 Glu Ser Asn Ser Phe Glu Lys Thr Ile Leu Glu Ser Pro Tyr Tyr Val
 405 410 415
 Asp Leu Asn Gln Thr Leu Phe Val Gln Val Ser Leu His Thr Ser Asp
 420 425 430
 Pro Asn Leu Val Val Phe Leu Asp Thr Cys Arg Ala Ser Pro Thr Ser
 435 440 445
 Asp Phe Ala Ser Pro Thr Tyr Asp Leu Ile Lys Ser Gly Cys Ser Arg
 450 455 460
 Asp Glu Thr Cys Lys Val Tyr Pro Leu Phe Gly His Tyr Gly Arg Phe
 465 470 475 480
 Gln Phe Asn Ala Phe Lys Phe Leu Arg Ser Met Ser Ser Val Tyr Leu
 485 490 495
 Gln Cys Lys Val Leu Ile Cys Asp Ser Ser Asp His Gln Ser Arg Cys
 500 505 510
 Asn Gln Gly Cys Val Ser Arg Ser Lys Arg Asp Ile Ser Ser Tyr Lys
 515 520 525
 Trp Lys Thr Asp Ser Ile Ile Gly Pro Ile Arg Leu Lys Arg Asp Arg
 530 535 540
 Ser Ala Ser Gly Asn Ser Gly Phe Gln His Glu Thr His Ala Glu Glu
 545 550 555 560
 Thr Pro Asn Gln Pro Phe Asn Ser Val His Leu Phe Ser Phe Met Val

565

570

575

Leu Ala Leu Asn Val Val Thr Val Ala Thr Ile Thr Val Arg His Phe
 580 585 590

Val Asn Gln Arg Ala Asp Tyr Lys Tyr Gln Lys Leu Gln Asn Tyr
 595 600 605

<210> 191

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 191

tctctattcc aaactgtggc g

21

<210> 192

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 192

tttgatgacg attcgaaggt gg

22

<210> 193

<211> 47

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 193

ggaaggatcc ttcaccagcc ccaattaccc aaagccgcac cctgagc

47

<210> 194

<211> 2362

<212> DNA

<213> Homo sapiens

<400> 194

gacggaagaa cagcgctccc gagggccgcgg gagcctgcag agaggacagc cggcctgcgc 60
 cgggacatgc ggccccagga gctccccagg ctgcgcgttcc cggtgctgtct gttgctgttg 120
 ctgctgctgc cgccgcccgtgcc cacagcgcca cgcgcgttca cccccacctgg 180

gagttccctgg acgcccggca gctgcccccg cgtagtttgacc agggccaagtt cggcatcttc 240
atccactggg gagtgtttc cgtccccagg ttccggtagcg aatgggtctg gtggatttgg 300
aaaaaggaaa agataccgaa gtagtgggaa ttatgaaag ataattaccc tcctagttc 360
aaatatgaag attttggacc actattaca gaaaaattt ttaatgccaa ccagtgggca 420
gatattttc aggccctctgg tgccaaatac attgtcttaa cttccaaaca tcatgaaggc 480
tttaccttgt ggggttcaga atattcgtagg aactggaatg ccatagatga ggggccccaaag 540
aggcacattg tcaaggaact tgaggttagcc attaggaaca gaactgaccc gcgttttgg 600
ctgtactatt cccttttga atggttcat ccgcctttcc ttgaggatga atccagttca 660
ttccataagg ggcaatttcc agtttctaag acattgccag agctctatga gtttagtgaac 720
aactatcagc ctgaggttct gtggcgat ggtgacggag gagcaccggta tcaatactgg 780
aacagcacag gtttcttggc ctggttatataatgaaagcc cagttccgggg cacagtagtc 840
accaatgatc gttggggagc tgtagcatc tgtaagcatg gtggcttcta tacctgcagt 900
gatcgttata acccaggaca tcttttgcataaaatggg aaaactgcat gacaatagac 960
aaactgtcct ggggctatag gaggaaagct ggaatctctg actatcttac aattgaagaa 1020
ttgggtgaagc aacttgtaga gacagttca tgtagggaa atctttgtat gaatatttggg 1080
cccacactag atggcaccat ttctgttagtt tttagggagc gactgaggca aatgggggtcc 1140
tggctaaaag tcaatggaga agctatttat gaaacctata cctggcgatc ccagaatgac 1200
actgtcaccc cagatgtgtg gtacacatcc aagcctaaag aaaaattagt ctatgccatt 1260
tttcttaaat gccccacatc aggacagctg ttcccttggcc atccccaaagc tattctgggg 1320
gcaacagagg tggaaactact gggccatggc cagccactta actggatttc ttggagccaa 1380
aatggcatta tggtagaact gccacagcta accattcatc agatggcgatg taaatggggc 1440
tgggctctag ccctaactaa tgtgatctaa agtgcagcag agtggctgat gctgcaagg 1500
atgtctaagg cttaggaacta tcaggtgtct ataattgtat cacatggaga aagcaatgt 1560
aactggataa gaaaattatt tggcagttca gccccttccc tttttccac taaattttc 1620
ttaaattacc catgtAACCA ttttaactct ccagtgcact ttgcccattaa agtctcttca 1680
cattgatttgc ttccatgtg tgactcagag gtgagaattt tttcacattaa tagtagcaag 1740
gaattgggg tattatggac cgaactgaaa attttatgtt gaagccatata cccccatgtat 1800
tatatagtta tgcattactt aatatggggat tattttctgg gaaatgcatt gctagtcaat 1860
tttttttgtt gccaacatca tagagtgtat ttacaaaatc ctagatggca tagctacta 1920
cacaccaat gtgtatggta tagactgttgc ttcccttaggtt acagacatatacagcatgtt 1980
actgaataact gttaggcaata gtaacagtgg tattttgtata tcgaaacata tggaaacata 2040
gagaaggatc agtaaaaata ctgtaaaata aatgggtgcac ctgtataggg cacttaccac 2100
gaatggagct tacaggactg gaagttgtc tgggtgagtc agtggatgtaa tggaaaggcc 2160
taggacatta ttgaacactg ccagacgttta taaatactgt atgcttaggc tacactacat 2220
ttataaaaaa aagtttttct ttcttcaatt ataaattaac ataaatgtac tggaaacttta 2280
caaacgtttt aatttttaaa accttttgg ctctttgttataacactta gcttaaaaaca 2340
taaactcatt gtgcaaatgt aa 2362

<210> 195

<211> 467

<212> PRT

<213> Homo sapiens

<400> 195

Met Arg P

1 5 10 15

Leu Leu Leu Leu Leu Pro Pro Pro Pro Cys Pro Ala His Ser Ala Thr
20 25 30

Arg Phe Asp Pro Thr Trp Glu Ser Leu Asp Ala Arg Gln Leu Pro Ala
35 40 45

Trp Phe Asp Gln Ala Lys Phe Gly Ile Phe His Trp Gly Val Phe
 50 55 60
 Ser Val Pro Ser Phe Gly Ser Glu Trp Phe Trp Trp Tyr Trp Gln Lys
 65 70 75 80
 Glu Lys Ile Pro Lys Tyr Val Glu Phe Met Lys Asp Asn Tyr Pro Pro
 85 90 95
 Ser Phe Lys Tyr Glu Asp Phe Gly Pro Leu Phe Thr Ala Lys Phe Phe
 100 105 110
 Asn Ala Asn Gln Trp Ala Asp Ile Phe Gln Ala Ser Gly Ala Lys Tyr
 115 120 125
 Ile Val Leu Thr Ser Lys His His Glu Gly Phe Thr Leu Trp Gly Ser
 130 135 140
 Glu Tyr Ser Trp Asn Trp Asn Ala Ile Asp Glu Gly Pro Lys Arg Asp
 145 150 155 160
 Ile Val Lys Glu Leu Glu Val Ala Ile Arg Asn Arg Thr Asp Leu Arg
 165 170 175
 Phe Gly Leu Tyr Tyr Ser Leu Phe Glu Trp Phe His Pro Leu Phe Leu
 180 185 190
 Glu Asp Glu Ser Ser Ser Phe His Lys Arg Gln Phe Pro Val Ser Lys
 195 200 205
 Thr Leu Pro Glu Leu Tyr Glu Leu Val Asn Asn Tyr Gln Pro Glu Val
 210 215 220
 Leu Trp Ser Asp Gly Asp Gly Gly Ala Pro Asp Gln Tyr Trp Asn Ser
 225 230 235 240
 Thr Gly Phe Leu Ala Trp Leu Tyr Asn Glu Ser Pro Val Arg Gly Thr
 245 250 255
 Val Val Thr Asn Asp Arg Trp Gly Ala Gly Ser Ile Cys Lys His Gly
 260 265 270
 Gly Phe Tyr Thr Cys Ser Asp Arg Tyr Asn Pro Gly His Leu Leu Pro
 275 280 285
 His Lys Trp Glu Asn Cys Met Thr Ile Asp Lys Leu Ser Trp Gly Tyr
 290 295 300
 Arg Arg Glu Ala Gly Ile Ser Asp Tyr Leu Thr Ile Glu Glu Leu Val
 305 310 315 320
 Lys Gln Leu Val Glu Thr Val Ser Cys Gly Gly Asn Leu Leu Met Asn
 325 330 335

Ile Gly Pro Thr Leu Asp Gly Thr Ile Ser Val Val Phe Glu Glu Arg
 340 345 350

Leu Arg Gln Val Gly Ser Trp Leu Lys Val Asn Gly Glu Ala Ile Tyr
 355 360 365

Glu Thr Tyr Thr Trp Arg Ser Gln Asn Asp Thr Val Thr Pro Asp Val
 370 375 380

Trp Tyr Thr Ser Lys Pro Lys Glu Lys Leu Val Tyr Ala Ile Phe Leu
 385 390 395 400

Lys Trp Pro Thr Ser Gly Gln Leu Phe Leu Gly His Pro Lys Ala Ile
 405 410 415

Leu Gly Ala Thr Glu Val Lys Leu Leu Gly His Gly Gln Pro Leu Asn
 420 425 430

Trp Ile Ser Leu Glu Gln Asn Gly Ile Met Val Glu Leu Pro Gln Leu
 435 440 445

Thr Ile His Gln Met Pro Cys Lys Trp Gly Trp Ala Leu Ala Leu Thr
 450 455 460

Asn Val Ile
 465

<210> 196
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 196
tggtttgacc aggccaagtt cggt

23

<210> 197
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 197
ggattcatcc tcaaggaaga gcgg

24

<210> 198

```

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 198
aacttgagc atcagccact ctgc          24

<210> 199
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 199
ttccgtgcc agcttcggta gcgagtggtt ctgggtgtat tggca          45

<210> 200
<211> 2372
<212> DNA
<213> Homo sapiens

<400> 200
agcaggaaaa tccggatgtc tcggtatga agtggagcag tgagtgttag cctcaacata 60
gttccagaac tctccatccg gactagttat tgagcatctg cctctcatat caccagtggc 120
catctgaggt gttccctgg ctctgaaggg gttaggcacga tggccaggtg cttcagcccg 180
gtgttgcctc tcacttccat ctggaccacg aggctctgg tccaaggctc tttgcgtgca 240
gaagagctt ccatccaggt gtcatgcaga attatgggaa tcacccttgt gagcaaaaag 300
gcgaaccacg agctgaattt cacagaagct aaggaggcct gtaggctgct gggactaagt 360
ttggccggca aggaccaagt taaaacagcc ttgaaaagcta gctttgaaac ttgcagctat 420
ggctgggttg gagatggatt cgtggtcatt tctaggatta gccccaaaccc caagtgtggg 480
aaaaatgggg tgggtgtcct gatttggaaag gttccagtga gccgacagtt tgccgcctat 540
tgttacaact catctgatac ttggactaac tcgtgcattc cagaaattat caccaccaaa 600
gatcccataat tcaacactca aactgcaaca caaacaacag aatttattgt cagtgcacgt 660
acctactcg tggcatcccc ttactctaca atacctggcc ctactactac tcctcctgtc 720
ccagcttcca cttctattcc acggagaaaa aaattgattt gtgtcacaga agttttatg 780
gaaactagca ccatgtctac agaaaactgaa ccatttggg aaaataaaggc agcattcaag 840
aatgaagctg ctgggtttgg aggtgtcccc acggctctgc tagtgcgtgc tctcccttc 900
tttggtgctg cagctggctc tggattttgc tatgtcaaaa ggtatgtgaa ggcctccct 960
tttacaaaca agaatacagca gaaggaaaatg atcggaaacca aagttagaaaa ggaggagaag 1020
gccaatgata gcaaccctaa tgaggaatca aagaaaaactg ataaaaaaccg agaagagtcc 1080
aagagtccaa gcaaaaactac cgtgegatgc ctggaaagctg aagtttagat gagacagaaaa 1140
tgaggagaca cacctgaggc tggttctt catgctcctt accctgcccc agctggggaa 1200
atcaaaaggc ccaaagaacc aaagaagaaa gtccaccctt ggttccatac tggaatcagc 1260
tcaggactgc cattggacta tggagtgac caaagagaat gcccttctcc ttattgtaac 1320
cctgtctgga tcctatcctc ctaccccaa agctccac ggccttctca gcctggctat 1380
qtcctaataa tatcccactq qqagaaaaqq qtttqcaaa qtqcaaqgac ctaaaacatc 1440

```

tcatcgttat ccagtggtaa aaaggccctcc tggctgtctg aggcttaggtg ggttcaaagc 1500
caaggagtca ctgagaccaa ggctttctt actgattccg cagctcagac cctttcttca 1560
gctctgaaag agaaaacacgt atccccacctg acatgtcctt ctgagccccgg taagagcaaa 1620
agaatggcag aaaagtttag cccctgaaag coatggagat tctcataact tgagacctaa 1680
tctctgtaaa gctaaaataa agaaatagaa caaggctgag gatacgacag tacactgtca 1740
gcagggactg taaaacacaga cagggtcaaa gtgtttctc tgaacacatt gagttggaat 1800
caactgttttag aacacacaca cttactttt ctggctctca ccactgctga tattttctct 1860
aggaaatata ctttacaag taacaaaaat aaaaactctt ataaatttct atttttatct 1920
gagttacaga aatgattact aaggaagatt actcagtaat ttgtttaaaa agtaataaaa 1980
ttcaacaaaac atttgctgaa tagctactat atgtcaagtg ctgtgcaagg tattacactc 2040
tgtaattgaa tattattcct caaaaaattg cacatagtag aacgctatct gggaaagctat 2100
tttttcaagt tttgatattt cttagcttac tacttccaaa ctaatttttta tttttgctga 2160
gactaatctt attcattttc tctaatatgg caaccattat aaccttaatt tattattaac 2220
atacctaaga agtacattgt taccttata taccaaagca cattttaaaa gtgccattaa 2280
caaatgtatc actagccctc cttttccaa caagaaggga ctgagagatg cagaaatatt 2340
tqtqacaaaaa aattaaaqca tttqaaaaac tt 2372

<210> 201

<211> 322

<211> 522

<213> Artificial sequence

<220>

<223> Synthetic protein

<400> 201

Met Ala Arg Cys Phe Ser Leu Val Leu Leu Leu Thr Ser Ile Trp Thr
1 5 10 15

Thr Arg Leu Leu Val Gln Gly Ser Leu Arg Ala Glu Glu Leu Ser Ile
20 25 30

Gln Val Ser Cys Arg Ile Met Gly Ile Thr Leu Val Ser Lys Lys Ala
35 40 45

Asn Gln Gln Leu Asn Phe Thr Glu Ala Lys Glu Ala Cys Arg Leu Leu
50 55 60

Gly Leu Ser Leu Ala Gly Lys Asp Gln Val Glu Thr Ala Leu Lys Ala
65 70 75 80

Ser Phe Glu Thr Cys Ser Tyr Gly Trp Val Gly Asp Gly Phe Val Val
85 90 95

Ile Ser Arg Ile Ser Pro Asn Pro Lys Cys Gly Lys Asn Gly Val Gly
100 105 110

Val Leu Ile Trp Lys Val Pro Val Ser Arg Gln Phe Ala Ala Tyr Cys
115 120 125

Tyr Asn Ser Ser Asp Thr Trp Thr Asn Ser Cys Ile Pro Glu Ile Ile
 130 135 140

Thr Thr Lys Asp Pro Ile Phe Asn Thr Gln Thr Ala Thr Gln Thr Thr
 145 150 155 160
 Glu Phe Ile Val Ser Asp Ser Thr Tyr Ser Val Ala Ser Pro Tyr Ser
 165 170 175
 Thr Ile Pro Ala Pro Thr Thr Pro Pro Ala Pro Ala Ser Thr Ser
 180 185 190
 Ile Pro Arg Arg Lys Lys Leu Ile Cys Val Thr Glu Val Phe Met Glu
 195 200 205
 Thr Ser Thr Met Ser Thr Glu Thr Glu Pro Phe Val Glu Asn Lys Ala
 210 215 220
 Ala Phe Lys Asn Glu Ala Ala Gly Phe Gly Val Pro Thr Ala Leu
 225 230 235 240
 Leu Val Leu Ala Leu Leu Phe Phe Gly Ala Ala Ala Gly Leu Gly Phe
 245 250 255
 Cys Tyr Val Lys Arg Tyr Val Lys Ala Phe Pro Phe Thr Asn Lys Asn
 260 265 270
 Gln Gln Lys Glu Met Ile Glu Thr Lys Val Val Lys Glu Glu Lys Ala
 275 280 285
 Asn Asp Ser Asn Pro Asn Glu Glu Ser Lys Lys Thr Asp Lys Asn Pro
 290 295 300
 Glu Glu Ser Lys Ser Pro Ser Lys Thr Thr Val Arg Cys Leu Glu Ala
 305 310 315 320
 Glu Val

<210> 202
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 202
 gagctttcca tccagggtgtc atgc

24

<210> 203
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 203
 gtcagtgaca gtacctactc gg

22

<210> 204
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 204
 tggagcagga ggagtagtag tagg

24

<210> 205
 <211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 205
 aggaggcctg taggctgctg ggactaagtt tggccggcaa ggaccaagtt

50

<210> 206
 <211> 1620
 <212> DNA
 <213> Homo sapiens

<220>
 <221> modified_base
 <222> (973)
 <223> a, t, c or g

<220>
 <221> modified_base
 <222> (977)
 <223> a, t, c or g

<220>
 <221> modified_base
 <222> (996)
 <223> a, t, c or g

<220>
 <221> modified_base

<222> (1003)

<223> a, t, c or g

<400> 206

agatggcggt ctggcacactaattgtc tcgtgtattc ggtgccgcga ctttcacat 60
 ggctcgccca accttactac cttctgtcgg ccctgcttc tgctgccttc ctactcgta 120
 gaaaaactgcc gcccgtctgc cacggctgc ccacccaacg cgaagacggt aaccctgtg 180
 actttgactg gagagaagtg gagatcctga tgtttcttag tgccattgtg atgatgaaga 240
 acccgagatc catcaactgtg gagacaacata taggcaacat ttcatgttt agtaaagtgg 300
 ccaacacaat tcttttcttc cgcttgata ttcgcattggg cctactttac atcacactct 360
 gcatagttt cctgatgacg tgcaaaccac cccttatatat gggcccttag tatataagg 420
 acttcaatga taaaaccatt gatgaggaac tagaacggga caagagggtc acttggattg 480
 tggagttctt tgccaaattgg tctaattgact gccaatcatt tgcccctatc tatgctgacc 540
 tctcccttaa atacaactgt acagggctaa attttggaa ggtggatgtt ggacgctata 600
 ctgatgttag tacgccccgtac aaagtggca catcaccctt caccaggaa ctcccttaccc 660
 tgatcctgtt ccaagggtggc aaggaggca tgccggccgac acagattgac aagaaaggac 720
 gggtgtctc atggacccctc tctgaggaga atgtgatccg agaatttaac ttaaatgagc 780
 tataccagcg ggccaagaaa ctatcaaagg ctggagacaa tatcccttag gagcagcctg 840
 tggctcaac cccccccaca gtgtcagatg gggaaaacaa gaaggataaa taagatccctc 900
 acttggcag tgcttcctt cctgtcaatt ccaggcttcc tccataacca caaggcttag 960
 gctcagccct ttnattnatg tttcccttt ggctgngact ggntggggca gcatgcacgt 1020
 tctgattttta aagggcattc tagggattt tcaggccaccc tacagggagg cctgccatgc 1080
 tgtggccaaac tgtttcaactg gagcaagaaa gagatctcat aggacggagg gggaaatgg 1140
 ttccctccaa gcttgggtca gtgtgttaac tgcttatcag ctattcagac atctccatgg 1200
 tttctccatg aaactctgtg gtttcatcat tccttcttag ttgacctgca cagctgg 1260
 agaccttagat ttaaccctaa ggttaagatgc tgggtatag aacgctaaga atttcccc 1320
 aagactctt gcttccttaa gcccttctgg ctgcgttat ggtttcatt aaaagtataa 1380
 gcctaacttt gtcgttagtc ctaaggagaa acctttaacc acaaagttt tatcatggaa 1440
 gacaatattg aacaacccccc tattttgtgg ggattgagaa ggggtgaata gaggcttgag 1500
 acttccctt gtgtgttagg acttggagga gaaatccctt ggactttcac taaccctctg 1560
 acataactccc cacaccaggat ttagggcttt ccgtataaaa aagattggga tttccctttt 1620

<210> 207

<211> 296

<212> PRT

<213> Homo sapiens

<400> 207

Met Ala Val Leu Ala Pro Leu Ile Ala Leu Val Tyr Ser Val Pro Arg

1 5 10 15

Leu Ser Arg Trp Leu Ala Gln Pro Tyr Tyr Leu Leu Ser Ala Leu Leu
20 25 30Ser Ala Ala Phe Leu Leu Val Arg Lys Leu Pro Pro Leu Cys His Gly
35 40 45Leu Pro Thr Gln Arg Glu Asp Gly Asn Pro Cys Asp Phe Asp Trp Arg
50 55 60Glu Val Glu Ile Leu Met Phe Leu Ser Ala Ile Val Met Met Lys Asn
65 70 75 80

Arg Arg Ser Ile Thr Val Glu Gln His Ile Gly Asn Ile Phe Met Phe
 85 90 95
 Ser Lys Val Ala Asn Thr Ile Leu Phe Phe Arg Leu Asp Ile Arg Met
 100 105 110
 Gly Leu Leu Tyr Ile Thr Leu Cys Ile Val Phe Leu Met Thr Cys Lys
 115 120 125
 Pro Pro Leu Tyr Met Gly Pro Glu Tyr Ile Lys Tyr Phe Asn Asp Lys
 130 135 140
 Thr Ile Asp Glu Glu Leu Glu Arg Asp Lys Arg Val Thr Trp Ile Val
 145 150 155 160
 Glu Phe Phe Ala Asn Trp Ser Asn Asp Cys Gln Ser Phe Ala Pro Ile
 165 170 175
 Tyr Ala Asp Leu Ser Leu Lys Tyr Asn Cys Thr Gly Leu Asn Phe Gly
 180 185 190
 Lys Val Asp Val Gly Arg Tyr Thr Asp Val Ser Thr Arg Tyr Lys Val
 195 200 205
 Ser Thr Ser Pro Leu Thr Lys Gln Leu Pro Thr Leu Ile Leu Phe Gln
 210 215 220
 Gly Gly Lys Glu Ala Met Arg Arg Pro Gln Ile Asp Lys Lys Gly Arg
 225 230 235 240
 Ala Val Ser Trp Thr Phe Ser Glu Glu Asn Val Ile Arg Glu Phe Asn
 245 250 255
 Leu Asn Glu Leu Tyr Gln Arg Ala Lys Lys Leu Ser Lys Ala Gly Asp
 260 265 270
 Asn Ile Pro Glu Glu Gln Pro Val Ala Ser Thr Pro Thr Thr Val Ser
 275 280 285
 Asp Gly Glu Asn Lys Lys Asp Lys
 290 295

<210> 208
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 208
 gcttggatat tcgcatgggc ctac

<210> 209
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 209 20
 tggagacaat atccctgagg

<210> 210
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 210 24
 aacagttggc cacagcatgg cagg

<210> 211
 <211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 211 50
 ccattgtga ggaactagaa cgggacaaga gggtcaacttg gattgtggag

<210> 212
 <211> 1985
 <212> DNA
 <213> Homo sapiens

<400> 212
 ggacagctcg cggccccca gagctctagc cgtcgaggag ctgcctgggg acgtttgcc 60
 tggggcccca gcctggccc ggtcacccctg gcatgaggag atgggcctgt tgctccttgt 120
 cccattgtctc ctgctcccc gctcctacgg actgccttc tacaacggct tctactactc 180
 caacagcgcc aacgaccaga acctaggcaa cggtcatggc aaagacctcc ttaatggagt 240
 gaagctggtg gtggagacac ccgaggagac cctgttcacc taccaagggg ccagtgttat 300
 cctgcccctgc cgctaccgct acgagccggc cctggcttcc ccgcggcggt tgctgtcaa 360
 atggtggaag ctgtcggaga acggggcccc agagaaggac gtgctgggtt ccatcggtt 420
 gaggcaccgc tccttgggg actaccaagg ccgcgtgcac ctgcggcagg acaaagagca 480
 tgacgtctcg ctggagatcc agatctgcg gctggaggac tatgggcgtt accgctgtga 540
 ggtcattgac gggctggagg atgaaagcgg tctgggtggg ctggagctgc ggggtgttgt 600

ctttccttac cagtcccca acggcgcta ccagttcaac ttccacgagg gccagcaggt 660
 ctgtcagag caggctcggt tggtggcctc ctttgagcag ctctccggg cctgggagga 720
 gggcctggac tggtaacaacg cgggctggct gcaggatgt acgtgcagt accccatcat 780
 gttccccgg cagccctgcg gtggcccagg cctggcacct ggctgcgaa gctacggccc 840
 ccgcacccgc cgccgtcacc getatgtatgt attctgttca gctactgccc tcaagggcg 900
 ggtgtactac ctggagcacc ctgagaagct gacgctgaca gaggcaaggg aggcctgcca 960
 ggaagatgtat gccacgatcg ccaaggtggg acagctctt gccgcctggg agttccatgg 1020
 cctggaccgc tgcgacgctg gctggctggc agatggcagc gtccgctacc ctgtgggtca 1080
 cccgcattcacttgc cccagagcc tggggtccga agttggct tccccgaccc 1140
 gcagagccgc ttgtacggtg ttactgtcta cgcgcagcac taggacctgg ggccctcccc 1200
 tgccgcattc cctcaactggc tgggtattta ttgagtgggtt cgttttccct tgggggttgg 1260
 agccatttta actgtttta tacttctcaa tttaaatttt cttaaacat tttttacta 1320
 tttttgtaa agcaaacaga accaatgcc tcccttgct cctggatgcc ccactcagg 1380
 aatcatgctt gtcctccctgg gccatggcg gttttgtggg cttctggagg gttcccgcc 1440
 atccaggctg gtctccctcc cttaaggagg ttgggtggca gagtgggcgg tggcctgtct 1500
 agaatgccgc cgggagtcgg ggcatggtgg gcacaggctt ccctggccct cagcctgggg 1560
 gaagaagagg gcctcggggg cctccggagc tgggcttgg gcctctctg cccacctcta 1620
 ctctctgtg aagccgtga cccagcttg cccactgagg ggctagggt ggaagccagt 1680
 tctaggctt caggcgaaat ctgagggaaag gaagaaactc ccctcccccgt tcccctccc 1740
 ctctcggttc caaagaatct gtttgttgtt catttgttcc tctgtttcc ctgtgtgggg 1800
 agggccctc aggtgtgtgt actttggaca ataaatggtg ctatgactgc cttccgccaa 1860
 aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa 1920
 aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa 1980
 aaaaaaaaaaaaaaaa 1985

aaaaa
 <210> 213
 <211> 360
 <212> PRT
 <213> Homo sapiens

<400> 213
 Met Gly Leu Leu Leu Leu Val Pro Leu Leu Leu Pro Gly Ser Tyr
 1 5 10 15

Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala Asn Asp
 20 25 30

Gln Asn Leu Gly Asn Gly His Gly Lys Asp Leu Leu Asn Gly Val Lys
 35 40 45

Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe Thr Tyr Gln Gly Ala
 50 55 60

Ser Val Ile Leu Pro Cys Arg Tyr Arg Tyr Glu Pro Ala Leu Val Ser
 65 70 75 80

Pro Arg Arg Val Arg Val Lys Trp Trp Lys Leu Ser Glu Asn Gly Ala
 85 90 95

Pro Glu Lys Asp Val Leu Val Ala Ile Gly Leu Arg His Arg Ser Phe
 100 105 110

Gly Asp Tyr Gln Gly Arg Val His Leu Arg Gln Asp Lys Glu His Asp

115	120	125	
Val Ser Leu Glu Ile Gln Asp Leu Arg Leu Glu Asp Tyr Gly Arg Tyr			
130	135	140	
Arg Cys Glu Val Ile Asp Gly Leu Glu Asp Glu Ser Gly Leu Val Glu			
145	150	155	160
Leu Glu Leu Arg Gly Val Val Phe Pro Tyr Gln Ser Pro Asn Gly Arg			
165	170	175	
Tyr Gln Phe Asn Phe His Glu Gly Gln Gln Val Cys Ala Glu Gln Ala			
180	185	190	
Ala Val Val Ala Ser Phe Glu Gln Leu Phe Arg Ala Trp Glu Glu Gly			
195	200	205	
Leu Asp Trp Cys Asn Ala Gly Trp Leu Gln Asp Ala Thr Val Gln Tyr			
210	215	220	
Pro Ile Met Leu Pro Arg Gln Pro Cys Gly Gly Pro Gly Leu Ala Pro			
225	230	235	240
Gly Val Arg Ser Tyr Gly Pro Arg His Arg Arg Leu His Arg Tyr Asp			
245	250	255	
Val Phe Cys Phe Ala Thr Ala Leu Lys Gly Arg Val Tyr Tyr Leu Glu			
260	265	270	
His Pro Glu Lys Leu Thr Leu Thr Glu Ala Arg Glu Ala Cys Gln Glu			
275	280	285	
Asp Asp Ala Thr Ile Ala Lys Val Gly Gln Leu Phe Ala Ala Trp Lys			
290	295	300	
Phe His Gly Leu Asp Arg Cys Asp Ala Gly Trp Leu Ala Asp Gly Ser			
305	310	315	320
Val Arg Tyr Pro Val Val His Pro His Pro Asn Cys Gly Pro Pro Glu			
325	330	335	
Pro Gly Val Arg Ser Phe Gly Phe Pro Asp Pro Gln Ser Arg Leu Tyr			
340	345	350	
Gly Val Tyr Cys Tyr Arg Gln His			
355	360		

<210> 214

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 214
tgcttcgcta ctgccctc 18

<210> 215
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 215
ttcccttgtg ggttggag 18

<210> 216
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 216
aggcgtggaa gccagttc 18

<210> 217
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 217
agccagttag gaaatgcg 18

<210> 218
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 218
tgtccaaagt acacacacct gagg 24

<210> 219

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 219

gatgccacga tcgccaagg gggacagctc tttgccgcct ggaag

45

<210> 220

<211> 1503

<212> DNA

<213> Homo sapiens

<400> 220

ggagagcgg a gcaaggctgg ataacagggg accgatgatg tggcgaccat cagttctgct 60
 gcttctgttg ctactgaggg acggggccca ggggaagcca tcccccagacg cagggcctca 120
 tggccagggg agggtgccacc agggcgcccc cctgagcgac gctccccatg atgacgccc 180
 cgggaacttc cagtagcacc atgaggctt cctgggacgg gaagtggcca aggaattcga 240
 ccaactcacc ccagaggaaa gccaggcccc tctggggcgg atcgtggacc gcatggaccg 300
 cgccggggac ggcgacggct gggtgtcgct ggccgagctt cgcgcgtgga tcgcgcacac 360
 gcagcagcgg cacatacggg actcgggtgag cgccgcctgg gacacgtacg acacggaccg 420
 cgacgggcgt gtgggttggg aggagctgca caacgcacc tatggccact acgcgcgg 480
 tgaagaattt catgacgtgg aggatgcaga gacactacaaa aagatgtgg ctcgggacga 540
 gcggcggttc cgggtggccg accaggatgg ggactcgatg gccactcgag aggagctgac 600
 agccttcctg caccggcagg agtccctca catgcgggac atcgtgattt ctgaaaccct 660
 ggaggacctg gacagaaaca aagatggcta tgtccaggtg gaggagtaca tcgcggatct 720
 gtactcagcc gagcctgggg aggaggagcc ggcgtgggtg cagacggaga ggcagcagt 780
 ccgggacttc cgggatctga acaaggatgg gcacctggat gggagtggg tggccactg 840
 ggtgtgccc cctgcccagg accagccct ggtggaaagcc aaccacctgc tgcacgagag 900
 cgacacggac aaggatgggc ggctgagcaa agcggaaatc ctggtaatt ggaacatgtt 960
 tgtgggcagt caggccacca actatggcga ggacctgacc cggcaccacg atgagctgt 1020
 agcacccgcg acctgcacca gcctcagagg cccgcacaaat gaccggagga gggccgcgt 1080
 tggctggcc ccctccctgt ccaggccccg caggaggcag atgcagtccc aggcatcctc 1140
 ctggccctgg gctctcaggg accccctggg tcggctctg tccctgtcac acccccaacc 1200
 ccaggagggg gctgtcatag tcccagagga taagcaatac ctatttctga ctgagtc 1260
 cagcccaagac ccagggaccc ttggcccaa gctcagctct aagaaccgc ccaaccctc 1320
 cagctccaaa tctgagcctc caccacatag actgaaactc coctggcccc agccctctcc 1380
 tgccctggcct ggcctggac actcctctc tgccaggagg caataaaagc cagcggcggg 1440
 accttgaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1500
 1503
 aaa

<210> 221

<211> 328

<212> PRT

<213> Homo sapiens

<400> 221

Met Met Trp Arg Pro Ser Val Leu Leu Leu Leu Leu Arg His

1	5	10	15
Gly Ala Gln Gly Lys Pro Ser Pro Asp Ala Gly Pro His Gly Gln Gly			
	20	25	30
Arg Val His Gln Ala Ala Pro Leu Ser Asp Ala Pro His Asp Asp Ala			
	35	40	45
His Gly Asn Phe Gln Tyr Asp His Glu Ala Phe Leu Gly Arg Glu Val			
	50	55	60
Ala Lys Glu Phe Asp Gln Leu Thr Pro Glu Glu Ser Gln Ala Arg Leu			
	65	70	75
Gly Arg Ile Val Asp Arg Met Asp Arg Ala Gly Asp Gly Asp Gly Trp			
	85	90	95
Val Ser Leu Ala Glu Leu Arg Ala Trp Ile Ala His Thr Gln Gln Arg			
	100	105	110
His Ile Arg Asp Ser Val Ser Ala Ala Trp Asp Thr Tyr Asp Thr Asp			
	115	120	125
Arg Asp Gly Arg Val Gly Trp Glu Glu Leu Arg Asn Ala Thr Tyr Gly			
	130	135	140
His Tyr Ala Pro Gly Glu Glu Phe His Asp Val Glu Asp Ala Glu Thr			
	145	150	155
Tyr Lys Lys Met Leu Ala Arg Asp Glu Arg Arg Phe Arg Val Ala Asp			
	165	170	175
Gln Asp Gly Asp Ser Met Ala Thr Arg Glu Glu Leu Thr Ala Phe Leu			
	180	185	190
His Pro Glu Glu Phe Pro His Met Arg Asp Ile Val Ile Ala Glu Thr			
	195	200	205
Leu Glu Asp Leu Asp Arg Asn Lys Asp Gly Tyr Val Gln Val Glu Glu			
	210	215	220
Tyr Ile Ala Asp Leu Tyr Ser Ala Glu Pro Gly Glu Glu Pro Ala			
	225	230	235
Trp Val Gln Thr Glu Arg Gln Gln Phe Arg Asp Phe Arg Asp Leu Asn			
	245	250	255
Lys Asp Gly His Leu Asp Gly Ser Glu Val Gly His Trp Val Leu Pro			
	260	265	270
Pro Ala Gln Asp Gln Pro Leu Val Glu Ala Asn His Leu Leu His Glu			
	275	280	285

Ser Asp Thr Asp Lys Asp Gly Arg Leu Ser Lys Ala Glu Ile Leu Gly
 290 295 300

Asn Trp Asn Met Phe Val Gly Ser Gln Ala Thr Asn Tyr Gly Glu Asp
 305 310 315 320

Leu Thr Arg His His Asp Glu Leu
 325

<210> 222
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 222 20
 cgcaggccct catggccagg

<210> 223
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 223 18
 gaaatcctgg gtaattgg

<210> 224
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 224 23
 gtgcgcggtg ctcacagctc atc

<210> 225
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 225
 cccccctgag cgacgctccc ccatgatgac gcccacggga actt 44

 <210> 226
 <211> 2403
 <212> DNA
 <213> Homo sapiens

 <400> 226
 ggggccttgc ctcccgact cgggcgcagc cgggtggatc tcgaggcagg tgcggagcccc 60
 gggccggcggg cgccgggtcg agggatccct gacgcctctg tccctgtttc tttgtcgctc 120
 ccagcctgtc tgcgtcgatt ttggcgcccc cgccctcccc cggtgcgggg ttgcacaccg 180
 atccctggct tgcgtcgatt tgccgcggag ggcgcctccca gacctagagg ggcgcgtggcc 240
 tggagcagcg ggtcgctgt gtccctctc ctctgcggcg cgcccgggga tccgaagggt 300
 gcggggctct gaggaggtga cgccgcggggc ctcccgacc ctggccttgc cgcattctc 360
 cctctctccc aggtgtgagc agccatcag tcaccatgtc cgcagcctgg atcccgctc 420
 tcggcctcgg tggcgcttg ctgcgtgtc cggggcccg gggcagcggag ggagccgctc 480
 ccattgttat cacaatgttt accagaggct tggacatcag gaaagagaaa gcagatgtcc 540
 tctgcccagg gggctgcct ctggagaaat tctctgtgtc tggaaacata gtatatgtt 600
 ctgtatcgag catatgtggg gctgtgtcc acaggggagt aatcagcaac tcagggggac 660
 ctgtacgagt ctatagccta cttggtcgag aaaactattc cttagttagat gccaatggca 720
 tccagtctca aatgcttttct agatggctgt cttcttcac agtaactaaa ggcaaaagta 780
 gtacacagga ggcacacagga caagcagtgt ccacagcaca tccaccaaca ggtaaacgc 840
 taaagaaaac acccgagaag aaaactggca ataaagattt taaagcagac attgcatttc 900
 tgattgtatgg aagcttaat attgggcagc gccgattaa ttacagaag aatttttgtt 960
 gaaaagtggc tctaattgtt ggaattggaa cagaaggacc acatgtggc cttgttcaag 1020
 ccagtgaaca tcccaaata gaattttact tggaaaactt tacatcagcc aaagatgttt 1080
 tggggccat aaaggaagta gggttcagag gggtaattc caatacagga aaagccttga 1140
 agcatactgc tcagaaattc ttacggtag atgctggagt aaaaaaggg atccccaaag 1200
 tgggtgggtt atttattgtat ggttggcctt ctgatgacat cgaggaagca ggcattgtgg 1260
 ccagagagtt tgggtgtcaat gtatttatac ttctgtggc caagcctatc cctgaagaac 1320
 tggggatggt tcaggatgtc acatttggc acaaggctgt ctgtcgaaat aatggcttct 1380
 tctcttacca catgccaac tggtttggca ccacaaaata cgtaaagcct ctgttacaga 1440
 agctgtgcac tcatgaacaa atgatgtgca gcaagacctg ttataactca gtgaacattt 1500
 cctttctaat tggatggctcc agcagtgtt gggatagcaa ttccgcctc atgcttgaat 1560
 ttgtttccaa catagccaag acttttggaa tctcgacat tggtgccaaat atagctgtc 1620
 tacagtttac ttatgtatcg cgcacggagt tcagttcac tgactatagc accaaagaga 1680
 atgtcttagc tgcatacaga aacatccgct atatgagtgg tggaaacagct actggtgatg 1740
 ccatttcctt cactgttga aatgtgtttt gcccataaag ggagagcccc aacaagaact 1800
 tcctagtaat tgcacagat gggcagtcct atgatgtatgt ccaaggccct gcagctgtc 1860
 cacatgtatgc aggaatcact atcttctctg ttgggtgtggc ttgggcaccc ctggatgacc 1920
 tggaaagatggatggctaaa cgcaggagt ctcacgctt cttcacaaga gagttcacag 1980
 gattagaacc aattgtttctt gatgtatca gaggcattt tagagatttc tttagaatccc 2040
 agcaataatg gtaacatttt gacaactgaa agaaaaagta caaggggatc cagtgtgtaa 2100
 attgtattct cataataactg aatgcttta gcatactaga atcagataca aaactattaa 2160
 gtatgtcaac agccatttag gcaaataaagc actccctttaa agccgctgcc ttctggttac 2220
 aatttacagt gtactttgtt aaaaacactg ctgaggcttc ataatcatgg ctcttagaaa 2280
 ctcaggaaag aggagataat gtggattaaa accttaagag ttctaaccat gcctactaaa 2340
 tgcacagata tgcaaatcc atagctcaat aaaagaatct gatacttaga caaaaaaaaa 2400
 aaa 2403

<210> 227

<211> 550

<212> PRT

<213> Homo sapiens

<400> 227

Met	Ser	Ala	Ala	Trp	Ile	Pro	Ala	Leu	Gly	Leu	Gly	Val	Cys	Leu	Leu
1					5				10				15		

Leu	Leu	Pro	Gly	Pro	Ala	Gly	Ser	Glu	Gly	Ala	Ala	Pro	Ile	Ala	Ile
							20		25				30		

Thr	Cys	Phe	Thr	Arg	Gly	Leu	Asp	Ile	Arg	Lys	Glu	Lys	Ala	Asp	Val
							35		40			45			

Leu	Cys	Pro	Gly	Gly	Cys	Pro	Leu	Glu	Glu	Phe	Ser	Val	Tyr	Gly	Asn
							50		55			60			

Ile	Val	Tyr	Ala	Ser	Val	Ser	Ser	Ile	Cys	Gly	Ala	Ala	Val	His	Arg
								65	70		75		80		

Gly	Val	Ile	Ser	Asn	Ser	Gly	Gly	Pro	Val	Arg	Val	Tyr	Ser	Leu	Pro
							85		90			95			

Gly	Arg	Glu	Asn	Tyr	Ser	Ser	Val	Asp	Ala	Asn	Gly	Ile	Gln	Ser	Gln
							100		105			110			

Met	Leu	Ser	Arg	Trp	Ser	Ala	Ser	Phe	Thr	Val	Thr	Lys	Gly	Lys	Ser
							115		120			125			

Ser	Thr	Gln	Glu	Ala	Thr	Gly	Gln	Ala	Val	Ser	Thr	Ala	His	Pro	Pro
							130		135			140			

Thr	Gly	Lys	Arg	Leu	Lys	Lys	Thr	Pro	Glu	Lys	Lys	Thr	Gly	Asn	Lys
							145		150			155		160	

Asp	Cys	Lys	Ala	Asp	Ile	Ala	Phe	Leu	Ile	Asp	Gly	Ser	Phe	Asn	Ile
							165		170			175			

Gly	Gln	Arg	Arg	Phe	Asn	Leu	Gln	Lys	Asn	Phe	Val	Gly	Lys	Val	Ala
							180		185			190			

Leu	Met	Leu	Gly	Ile	Gly	Thr	Glu	Gly	Pro	His	Val	Gly	Leu	Val	Gln
							195		200			205			

Ala	Ser	Glu	His	Pro	Lys	Ile	Glu	Phe	Tyr	Leu	Lys	Asn	Phe	Thr	Ser
							210		215			220			

Ala	Lys	Asp	Val	Leu	Phe	Ala	Ile	Lys	Glu	Val	Gly	Phe	Arg	Gly	Gly
							225		230			235		240	

Asn	Ser	Asn	Thr	Gly	Lys	Ala	Leu	Lys	His	Thr	Ala	Gln	Lys	Phe	Phe
							245		250			255			

Thr Val Asp Ala Gly Val Arg Lys Gly Ile Pro Lys Val Val Val Val
 260 265 270

Phe Ile Asp Gly Trp Pro Ser Asp Asp Ile Glu Glu Ala Gly Ile Val
 275 280 285

Ala Arg Glu Phe Gly Val Asn Val Phe Ile Val Ser Val Ala Lys Pro
 290 295 300

Ile Pro Glu Glu Leu Gly Met Val Gln Asp Val Thr Phe Val Asp Lys
 305 310 315 320

Ala Val Cys Arg Asn Asn Gly Phe Phe Ser Tyr His Met Pro Asn Trp
 325 330 335

Phe Gly Thr Thr Lys Tyr Val Lys Pro Leu Val Gln Lys Leu Cys Thr
 340 345 350

His Glu Gln Met Met Cys Ser Lys Thr Cys Tyr Asn Ser Val Asn Ile
 355 360 365

Ala Phe Leu Ile Asp Gly Ser Ser Ser Val Gly Asp Ser Asn Phe Arg
 370 375 380

Leu Met Leu Glu Phe Val Ser Asn Ile Ala Lys Thr Phe Glu Ile Ser
 385 390 395 400

Asp Ile Gly Ala Lys Ile Ala Ala Val Gln Phe Thr Tyr Asp Gln Arg
 405 410 415

Thr Glu Phe Ser Phe Thr Asp Tyr Ser Thr Lys Glu Asn Val Leu Ala
 420 425 430

Val Ile Arg Asn Ile Arg Tyr Met Ser Gly Gly Thr Ala Thr Gly Asp
 435 440 445

Ala Ile Ser Phe Thr Val Arg Asn Val Phe Gly Pro Ile Arg Glu Ser
 450 455 460

Pro Asn Lys Asn Phe Leu Val Ile Val Thr Asp Gly Gln Ser Tyr Asp
 465 470 475 480

Asp Val Gln Gly Pro Ala Ala Ala His Asp Ala Gly Ile Thr Ile
 485 490 495

Phe Ser Val Gly Val Ala Trp Ala Pro Leu Asp Asp Leu Lys Asp Met
 500 505 510

Ala Ser Lys Pro Lys Glu Ser His Ala Phe Phe Thr Arg Glu Phe Thr
 515 520 525

Gly Leu Glu Pro Ile Val Ser Asp Val Ile Arg Gly Ile Cys Arg Asp
 530 535 540

Phe Leu Glu Ser Gln Gln
545 550

<210> 228
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 228
tggtctcgca caccgatc

18

<210> 229
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 229
ctgctgtcca caggggag

18

<210> 230
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 230
ccttgaagca tactgctc

18

<210> 231
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 231
gagatagcaa tttccgcc

18

<210> 232

<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 232
ttcctcaaga gggcagcc 18

<210> 233
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 233
cttggcacca atgtccgaga tttc 24

<210> 234
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 234
gctctgagga aggtgacgcg cggggcctcc gaacccttgg ccttg 45

<210> 235
<211> 2586
<212> DNA
<213> Homo sapiens

<400> 235
cgccgcgctc ccgcacccgc ggcccccca cgcgcggct cccgcacatcg cacccgcagc 60
ccggcgccct cccggcgaaa gcgagcagat ccagtccggc ccgcagcgca actcggtcca 120
gtcgggggcg cgctgcggg cgcatgcggc agatgcagcg gcttggggcc accctgtgt 180
gcctgtgtct ggccggcgccg gtccccacgg ccccgccgcg cgctccgacg gcgacctcg 240
ctccagtcggccg gctctcggatccgcaggaa ggaggccacc ctcaatgaga 300
tgttccgcga ggttggaggaa ctgtatggagg acacgcagca caaattgcgc agcgcgggtgg 360
aagagatgga ggcagaagaa gctgctgcta aagcatcatc agaagtgaac ctggcaaact 420
tacctcccag ctatcacaat gagaccaaca cagacacgaa gtttggaaat aataccatcc 480
atgtgcaccc agaaattcac aagataacca acaaccagac tggacaaatcg gtctttcag 540
agacaggatcat ccatctgtg ggagacgaaag aaggcagaag gaggcacaag tgcatcatcg 600
acgaggactg tggcccgacg atgtactgcc agtttgcacg cttccatcg acctgcacg 660
catgccccggg ccagaggatcg ctctgcaccc gggacagtga gtgcgtgtgg aaccagctgt 720

<210> 236

<211> 350

<212> PRT

<213> Homo sapiens

<400> 236

Met Gln Arg Leu Gly Ala Thr Leu Leu Cys Leu Leu Leu Ala Ala Ala
1 5 10 15

Val Pro Thr Ala Pro Ala Pro Ala Pro Thr Ala Thr Ser Ala Pro Val
20 25 30

Lys Pro Gly Pro Ala Leu Ser Tyr Pro Gln Glu Glu Ala Thr Leu Asn
 35 40 45

Glu Met Phe Arg Glu Val Glu Glu Leu Met Glu Asp Thr Gln His Lys
50 55 60

Leu Arg Ser Ala Val Glu Glu Met Glu Ala Glu Glu Ala Ala Ala Lys
65 70 75 80

Ala Ser Ser Glu Val Asn Leu Ala Asn Leu Pro Pro Ser Tyr His Asn
 85 90 95

 Glu Thr Asn Thr Asp Thr Lys Val Gly Asn Asn Thr Ile His Val His
 100 105 110

 Arg Glu Ile His Lys Ile Thr Asn Asn Gln Thr Gly Gln Met Val Phe
 115 120 125

 Ser Glu Thr Val Ile Thr Ser Val Gly Asp Glu Glu Gly Arg Arg Ser
 130 135 140

 His Glu Cys Ile Ile Asp Glu Asp Cys Gly Pro Ser Met Tyr Cys Gln
 145 150 155 160

 Phe Ala Ser Phe Gln Tyr Thr Cys Gln Pro Cys Arg Gly Gln Arg Met
 165 170 175

 Leu Cys Thr Arg Asp Ser Glu Cys Cys Gly Asp Gln Leu Cys Val Trp
 180 185 190

 Gly His Cys Thr Lys Met Ala Thr Arg Gly Ser Asn Gly Thr Ile Cys
 195 200 205

 Asp Asn Gln Arg Asp Cys Gln Pro Gly Leu Cys Cys Ala Phe Gln Arg
 210 215 220

 Gly Leu Leu Phe Pro Val Cys Thr Pro Leu Pro Val Glu Gly Glu Leu
 225 230 235 240

 Cys His Asp Pro Ala Ser Arg Leu Leu Asp Leu Ile Thr Trp Glu Leu
 245 250 255

 Glu Pro Asp Gly Ala Leu Asp Arg Cys Pro Cys Ala Ser Gly Leu Leu
 260 265 270

 Cys Gln Pro His Ser His Ser Leu Val Tyr Val Cys Lys Pro Thr Phe
 275 280 285

 Val Gly Ser Arg Asp Gln Asp Gly Glu Ile Leu Leu Pro Arg Glu Val
 290 295 300

 Pro Asp Glu Tyr Glu Val Gly Ser Phe Met Glu Glu Val Arg Gln Glu
 305 310 315 320

 Leu Glu Asp Leu Glu Arg Ser Leu Thr Glu Glu Met Ala Leu Gly Glu
 325 330 335

 Pro Ala Ala Ala Ala Ala Leu Leu Gly Gly Glu Glu Ile
 340 345 350

<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 237
ggagctgcac cccttgc 17

<210> 238
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 238
ggaggactgt gccaccatga gagactcttc aaaccgaagg caaaaattgg 49

<210> 239
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 239
gcagagcgg aatgcagcgg cttg 24

<210> 240
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 240
ttggcagctt catggagg 18

<210> 241
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 241
cctggcaaa aatgcaac 18

<210> 242
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 242
ctccagctcc tggcgcacct cctc 24

<210> 243
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 243
ggctctcagc taccgcgcag gagcgaggcc accctcaatg agatg 45

<210> 244
<211> 3679
<212> DNA
<213> Homo Sapien

<400> 244
aaggaggctg ggaggaaaga ggttaagaaag gtttagagaac ctacccaca 50
tctctctggg ctcagaagga ctctgaagat aacaataatt tcagccccatc 100
cactctcctt ccctccaaa cacacatgtg catgtacaca cacacataca 150
cacacataca ctttcctctc cttcactgaa gactcacagt cactcactct 200
gtgagcaggt catagaaaag gacactaaag ccttaaggac aggcctggcc 250
attacctctg cagctccttt ggcttgtga gtcaaaaaac atgggagggg 300
ccaggcacgg tgactcacac ctgtaatccc agcattttgg gagaccgagg 350
tgagcagatc acttgaggtc aggagttcga gaccagcctg gccaacatgg 400
agaaacccccc atctctacta aaaatacaa aattagccag gagtggtggc 450
aggtgcctgt aatcccagct actcaggtgg ctgagccagg agaatcgott 500
gaatccagga ggcggaggat gcagtcagct gagtgcacccg ctgcactcca 550
gcctgggtga cagaatgaga ctctgtctca aacaaacaaa cacgggagga 600

gggtagata ctgtttctt gcaacccct taactctgca tccttttt 650
ccagggctgc ccctgatgg gcctggcaat gactgagcag gcccagcccc 700
agaggacaag gaagagaagg catattgagg agggcaagaa gtgacgcccc 750
gtgtagaatg actgcccctgg gagggtggtt ccttggccccc tggcagggtt 800
gctgaccctt accctgcaaa acacaaagag caggactcca gacttcctt 850
gtgaatggtc ccctgccttg cagctccacc atgaggcttc tcgtggcccc 900
actcttgcta gcttgggtgg ctggtgccac tgccactgtg cccgtggta 950
cctggcatgt tccctgcccc cctcagtgtg cctgccagat ccggccctgg 1000
tatacgcccc gctcgcccta ccgcgaggct accactgtgg actgcaatga 1050
cctattcctg acggcagtcc ccccggaact cccgcaggc acacagaccc 1100
tgctcctgca gagcaacagc attgtccgtg tggaccagag tgagctggc 1150
tacctggcca atctcacaga gctggacctg tcccagaaca gctttcgga 1200
tgcccgagac tgtgatttc atgcccctgac ccagctgctg agcctgcacc 1250
tagaggagaa ccagctgacc cggctggagg accacagctt tgcagggctg 1300
gccagcctac aggaactcta tctcaaccac aaccagctt accgcattcgc 1350
ccccagggcc ttttctggcc tcagcaactt gctgcggctg cacctaact 1400
ccaacccctt gagggccatt gacagccgtt ggtttgaat gctgccaac 1450
ttggagatac tcatgattgg cggcaacaag gtagatgcca tcctggacat 1500
gaacttccgg cccctggcca acctgcgtt cctggtgcta gcaggcatga 1550
acctgcggga gatctccgac tatgcctgg aggggctgca aagcctggag 1600
agcctctcct tctatgacaa ccagctggcc cgggtgccc ggcgggact 1650
ggaacaggtg cccgggctca agttcctaga cctcaacaag aacccgctcc 1700
agcgggtagg gccggggac tttgccaaca tgctgcacct taaggagctg 1750
ggactgaaca acatggagga gctggctcc atcgacaagt ttgcctgg 1800
gaacccccc gagctgacca agctggacat caccaataac ccacggctgt 1850
ctttcattcca ccccccgcgc ttccaccacc tgccccagat ggagaccctc 1900
atgctcaaca acaacgctt cagtgccctt caccagcaga cggtggagtc 1950

cctgcccAAC ctgcaggagg taggtctcca cggcaaccCC atccgctgtg 2000
actgtgtcat ccgctggCC aatgccacgg gcacccgtgt ccgcttcATC 2050
gagccgcaat ccaccctgtg tgccggagcCT ccggacCTCC agcgccTCCC 2100
ggtccgtgag gtgcCcTTCC gggagatgac ggaccactgt ttgcCcCTCA 2150
tctccccacg aagcttCCCC ccaagcCTCC aggtagCCAG tggagagAGC 2200
atggtgctgc attGCCGGC actggCCGAA CCCGAACCCG agatctACTG 2250
ggtaCTCCA gctgggCTTC gactgacACC tgCCCATgCA ggcaggAGGT 2300
accgggtgtA ccccggggg accctggAGC tgccggaggGT gacAGCAGAA 2350
gaggcaggGC tatacacCTG tggggCCAG aacctggTGG gggctgACAC 2400
taagacggTT agtgtggTTG tggggCgtGC tctccTCCAG ccaggcaggG 2450
acgaaggaca ggggctggAG ctccgggtGC aggAGACCCa cccCTATCAC 2500
atcctgctat cttgggtcac cccacCCAc acagtgtCCA ccaacCTCAC 2550
ctggTCCAGt gcctccTCCC tccggggCCA gggggCCACA gctctggCCC 2600
gcctgcctCG gggAACCCAC agtacaACA ttaccggCT cttcaggCC 2650
acggagtact gggcctgcCT gcaagtggCC tttgtgtatG cccacACCCa 2700
gttggcttGT gtatgggCCA ggaccaaAGA ggccacttCT tgccacAGAG 2750
ccttagggGA tcgtcctggG ctcattGCCA tcctggCTt CTgtgcCTt 2800
ctccTggcAG ctgggctAGC ggcccACCTT ggcacaggCC aACCCAGGAA 2850
gggtgtggGT gggaggcggC ctctccCTCC agcctggCT ttctgggCT 2900
ggagtgcCCC ttctgtccgg gttgtgtCTG ctcccccTGT ctgtccCTGG 2950
aatccaggGA ggaagctGCC cagatCCTCA gaaggGGAGA cactgttGCC 3000
accattgtCT caaaatttCTT gaagctcAGC ctgttCTAG cAGTAGAGAA 3050
atcacttagGA ctactttTA ccaaaAGAGA agcagtCTGG gCCAGATGCC 3100
ctgccaggAA agggacatGG acccacgtGC ttgaggcCTG gcagctggc 3150
caagacagat ggggcttGT ggccCTgggG gtgtttCTGC agccttGAAA 3200
aagttgcCCT tacctcCTAG ggtcacCTtC gctgccATTc tgaggaACAT 3250

ctccaaggaa caggagggac tttggctaga gcctcctgcc tccccatctt 3300
ctctctgccc agaggctcct gggcctggct tggctgtccc ctacctgtgt 3350
ccccgggctg cacccttcc tcttctcttt ctctgtacag tctcagttgc 3400
ttgctcttgt gcctcctggg caagggctga aggaggccac tccatctcac 3450
ctcgaaaaaa tgccctcaat gtgggagtga ccccagccag atctgaagga 3500
catttggag agggatgccc aggaacgcct catctcagca gcctggctc 3550
ggcattccga agctgacttt ctataggcaa ttttgtacct ttgtggagaa 3600
atgtgtcacc tcccccaacc cgattcactc ttttctcctg ttttgtaaaa 3650
aataaaaata aataataaca ataaaaaaaa 3679

<210> 245
<211> 713
<212> PRT
<213> Homo Sapien

```

<400> 245
Met Arg Leu Leu Val Ala Pro Leu Leu Leu Ala Trp Val Ala Gly
1 5 10 15

Ala Thr Ala Thr Val Pro Val Val Pro Trp His Val Pro Cys Pro
20 25 30

Pro Gln Cys Ala Cys Gln Ile Arg Pro Trp Tyr Thr Pro Arg Ser
35 40 45

Ser Tyr Arg Glu Ala Thr Thr Val Asp Cys Asn Asp Leu Phe Leu
50 55 60

Thr Ala Val Pro Pro Ala Leu Pro Ala Gly Thr Gln Thr Leu Leu
65 70 75

Leu Gln Ser Asn Ser Ile Val Arg Val Asp Gln Ser Glu Leu Gly
80 85 90

Tyr Leu Ala Asn Leu Thr Glu Leu Asp Leu Ser Gln Asn Ser Phe
95 100 105

Ser Asp Ala Arg Asp Cys Asp Phe His Ala Leu Pro Gln Leu Leu
110 115 120

Ser Leu His Leu Glu Glu Asn Gln Leu Thr Arg Leu Glu Asp His
125 130 135

Ser Phe Ala Gly Leu Ala Ser Leu Gln Glu Leu Tyr Leu Asn His
140 145 150

```

Asn Gln Leu Tyr Arg Ile Ala Pro Arg Ala Phe Ser Gly Leu Ser
 155 160 165
 Asn Leu Leu Arg Leu His Leu Asn Ser Asn Leu Leu Arg Ala Ile
 170 175 180
 Asp Ser Arg Trp Phe Glu Met Leu Pro Asn Leu Glu Ile Leu Met
 185 190 195
 Ile Gly Gly Asn Lys Val Asp Ala Ile Leu Asp Met Asn Phe Arg
 200 205 210
 Pro Leu Ala Asn Leu Arg Ser Leu Val Leu Ala Gly Met Asn Leu
 215 220 225
 Arg Glu Ile Ser Asp Tyr Ala Leu Glu Gly Leu Gln Ser Leu Glu
 230 235 240
 Ser Leu Ser Phe Tyr Asp Asn Gln Leu Ala Arg Val Pro Arg Arg
 245 250 255
 Ala Leu Glu Gln Val Pro Gly Leu Lys Phe Leu Asp Leu Asn Lys
 260 265 270
 Asn Pro Leu Gln Arg Val Gly Pro Gly Asp Phe Ala Asn Met Leu
 275 280 285
 His Leu Lys Glu Leu Gly Leu Asn Asn Met Glu Glu Leu Val Ser
 290 295 300
 Ile Asp Lys Phe Ala Leu Val Asn Leu Pro Glu Leu Thr Lys Leu
 305 310 315
 Asp Ile Thr Asn Asn Pro Arg Leu Ser Phe Ile His Pro Arg Ala
 320 325 330
 Phe His His Leu Pro Gln Met Glu Thr Leu Met Leu Asn Asn Asn
 335 340 345
 Ala Leu Ser Ala Leu His Gln Gln Thr Val Glu Ser Leu Pro Asn
 350 355 360
 Leu Gln Glu Val Gly Leu His Gly Asn Pro Ile Arg Cys Asp Cys
 365 370 375
 Val Ile Arg Trp Ala Asn Ala Thr Gly Thr Arg Val Arg Phe Ile
 380 385 390
 Glu Pro Gln Ser Thr Leu Cys Ala Glu Pro Pro Asp Leu Gln Arg
 395 400 405
 Leu Pro Val Arg Glu Val Pro Phe Arg Glu Met Thr Asp His Cys

410	415	420
Leu Pro Leu Ile Ser Pro Arg Ser Phe Pro Pro Ser Leu Gln Val		
425	430	435
Ala Ser Gly Glu Ser Met Val Leu His Cys Arg Ala Leu Ala Glu		
440	445	450
Pro Glu Pro Glu Ile Tyr Trp Val Thr Pro Ala Gly Leu Arg Leu		
455	460	465
Thr Pro Ala His Ala Gly Arg Arg Tyr Arg Val Tyr Pro Glu Gly		
470	475	480
Thr Leu Glu Leu Arg Arg Val Thr Ala Glu Glu Ala Gly Leu Tyr		
485	490	495
Thr Cys Val Ala Gln Asn Leu Val Gly Ala Asp Thr Lys Thr Val		
500	505	510
Ser Val Val Val Gly Arg Ala Leu Leu Gln Pro Gly Arg Asp Glu		
515	520	525
Gly Gln Gly Leu Glu Leu Arg Val Gln Glu Thr His Pro Tyr His		
530	535	540
Ile Leu Leu Ser Trp Val Thr Pro Pro Asn Thr Val Ser Thr Asn		
545	550	555
Leu Thr Trp Ser Ser Ala Ser Ser Leu Arg Gly Gln Gly Ala Thr		
560	565	570
Ala Leu Ala Arg Leu Pro Arg Gly Thr His Ser Tyr Asn Ile Thr		
575	580	585
Arg Leu Leu Gln Ala Thr Glu Tyr Trp Ala Cys Leu Gln Val Ala		
590	595	600
Phe Ala Asp Ala His Thr Gln Leu Ala Cys Val Trp Ala Arg Thr		
605	610	615
Lys Glu Ala Thr Ser Cys His Arg Ala Leu Gly Asp Arg Pro Gly		
620	625	630
Leu Ile Ala Ile Leu Ala Leu Ala Val Leu Leu Leu Ala Ala Gly		
635	640	645
Leu Ala Ala His Leu Gly Thr Gly Gln Pro Arg Lys Gly Val Gly		
650	655	660
Gly Arg Arg Pro Leu Pro Pro Ala Trp Ala Phe Trp Gly Trp Ser		
665	670	675

Ala Pro Ser Val Arg Val Val Ser Ala Pro Leu Val Leu Pro Trp
680 685 690

Asn Pro Gly Arg Lys Leu Pro Arg Ser Ser Glu Gly Glu Thr Leu
695 700 705

Leu Pro Pro Leu Ser Gln Asn Ser
710

<210> 246

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 246

aacaaggtaa gatgccatcc tg 22

<210> 247

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 247

aaacttgtcg atggagacca gctc 24

<210> 248

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 248

aggggctgca aagcctggag agcctctcct tctatgacaa ccagc 45

<210> 249

<211> 3401

<212> DNA

<213> Homo Sapien

<400> 249

gcaaggccaag gcgctgttg agaaggtaa gaagttccgg acccatgtgg 50

aggaggggga catttgtac cgcctctaca tgcggcagac catcatcaag 100

gtgatcaagt tcatcctcat catctgctac accgtctact acgtgcacaa 150

catcaagttc gacgtggact gcaccgtgga cattgagagc ctgacgggct 200
accgcaccta ccgctgtgcc cacccctgg ccacactttt caagatcctg 250
gcgtccttct acatcagcct agtcatctt tacggctca tctgcatgtt 300
cacactgtgg tggatgtac ggcgctccct caagaagtac tcgtttgagt 350
cgatccgtga ggagagcagc tacagcgaca tccccgacgt caagaacgac 400
ttcgccctca tgctgcacct cattgaccaa tacgacccgc ttactccaa 450
gcgcgtcgcc gtcttcctgt cgagggttag tgagaacaag ctgcggcagc 500
tgaacctcaa caacgagtgg acgctggaca agctccggca gcccgtcacc 550
aagaacgcgc aggacaagct ggagctgcac ctgttcatgc tcagtggcat 600
ccctgacact gtgtttgacc tggtgagct ggaggcttc aagctggagc 650
tgatccccga cgtgaccatc ccgcggcagca ttgcccagct cacggccctc 700
aaggagctgt ggctctacca cacagcggcc aagattgaag cgcctgcgt 750
ggccttcctg cgcgagaacc tgcggcgct gcacatcaag ttcaccgaca 800
tcaaggagat cccgctgtgg atctatagcc tgaagacact ggaggagctg 850
cacctgacgg gcaacctgag cgccggagaac aaccgtaca tcgttcatcga 900
cgggctgcgg gagctcaaacc gcctcaaggt gctgcggctc aagagcaacc 950
taagcaagct gccacaggtg gtcacagatg tgggcgtgca cctgcagaag 1000
ctgtccatca acaatgaggg caccaagctc atcgccctca acagcctcaa 1050
gaagatggcg aacctgactg agctggagct gatccgtc gacctggagc 1100
gcattccccca ctccatcttc agcctccaca acctgcagga gattgaccc 1150
aaggacaaca acctcaagac catcgaggag atcatcagct tccagcacct 1200
gcaccgcctc acctgcctta agctgtggta caaccacatc gcctacatcc 1250
ccatccagat cgccaacctc accaacctgg agcgcctcta cctgaaccgc 1300
aacaagatcg agaagatccc cacccagctc ttctactgcc gcaagctgcg 1350
ctacctggac ctcagccaca acaacctgac cttcccttccct gccgacatcg 1400
gcctcctgca gaacctccag aacctagcca tcacggccaa ccggatcgag 1450

acgctccctc cgagacttt ccagtccgg aagctgcggg ccctgcacct 1500
ggcaacaac gtgtgcagt cactgcctc cagggtggc gagctgacca 1550
acctgacgca gatcgagctg cggggcaacc ggctggagtg cctgcctgtg 1600
gagctggcg agtgcccact gctcaagcgc agcggcttgg tggtgagga 1650
ggacctgttc aacacactgc cacccgaggt gaaggagcgg ctgtggaggg 1700
ctgacaagga gcaggcctga gcgaggccgg cccagcacag caagcagcag 1750
gaccgctgcc cagtcctcag gcccgaggg gcaggcctag cttctccag 1800
aactcccgga cagccaggac agcctcgcgg ctggcagga gcctggggcc 1850
gcttgtgagt caggccagag cgagaggaca gatatgtgg ggctggcccc 1900
ttttctccct ctgagactca cgtccccag ggcaagtgt tggaggag 1950
agcaagtctc aagagcgcag tattggata atcagggtct ctccttgaa 2000
ggccagctct gccccagggg ctgagctgcc accagaggtc ctgggaccct 2050
cacttagtt ctggattt attttctcc atctcccacc tcctcatcc 2100
agataactta tacattccca agaaagttca gcccagatgg aagggttca 2150
gggaaaggtg ggctgcctt tcccttgtc ttatattgc gatgccgccc 2200
ggcatttaac acccacctgg acttcagcag agtggccgg ggcgaaccag 2250
ccatggacg gtcacccagc agtgcgggc tggctctgc ggtgcggtcc 2300
acgggagagc aggccctccag ctggaaaggc caggccttgg gcttgcctct 2350
tcagtttttggcagttt agtttttgtt tttttttttt ttatcaa 2400
aaacaatttt ttttaaaaaa aagctttgaa aatggatggg ttgggtatta 2450
aaaagaaaaa aaaaacttaa aaaaaaaaaaag acactaacgg ccagtgagtt 2500
ggagtctcag ggcagggtgg cagttccct tgagcaaagc agccagacgt 2550
tgaactgtgt ttcccttccc tggcgcagg gtgcagggtg tcttccggat 2600
ctgggtgac cttggccag gagttctatt tgttccttgg gaggaggtt 2650
tttttgggtt tttttgggt tttttgggt tcttgggtt tttctccctcc 2700
atgtgtcttgc ccaaggcactc atttctgtgg ctgtcggcca gagggaatgt 2750
tctqqagctg ccaaggaggg aggagactcg ggttggctaa tccccggatg 2800

aacggtgctc cattcgacc tcccccctc gtgcctgcc 2850
 cgcacagtgt taaggagcca agaggagcca cttcgccag actttgttc 2900
 cccacctcct gcggcatggg tgtgtccagt gccaccgctg gcctccgctg 2950
 cttccatcag ccctgtcgcc acctggctt tcatgaagag cagacactta 3000
 gaggctggtc gggaaatgggg aggtcgcccc tgggagggca ggcggtgg 3050
 ccaagccggt tcccgccct ggccctggaa gtgcacacag cccagtcggc 3100
 acctggtggc tggaagccaa cctgcttttag atcactcggtt tccccacctt 3150
 agaagggtcc ccgccttaga tcaatcacgt ggacactaag gcacgtttta 3200
 gagtctcttg tcttaatgtat tatgtccatc cgtctgtccg tccatttg 3250
 ttttctgcgt cgtgtcattg gatataatcc tcagaaataa tgcacactag 3300
 cctctgacaa ccatgaagca aaaatccgtt acatgtgggt ctgaacttgt 3350
 agactcggtc acagtatcaa ataaaatcta taacagaaaa aaaaaaaaaa 3400

a 3401

<210> 250

<211> 546

<212> PRT

<213> Homo Sapien

<400> 250

Met	Arg	Gln	Thr	Ile	Ile	Lys	Val	Ile	Lys	Phe	Ile	Leu	Ile	Ile	
1															15

Cys	Tyr	Thr	Val	Tyr	Tyr	Val	His	Asn	Ile	Lys	Phe	Asp	Val	Asp	
															30

Cys	Thr	Val	Asp	Ile	Glu	Ser	Leu	Thr	Gly	Tyr	Arg	Thr	Tyr	Arg	
															45

Cys	Ala	His	Pro	Leu	Ala	Thr	Leu	Phe	Lys	Ile	Leu	Ala	Ser	Phe	
															60

Tyr	Ile	Ser	Leu	Val	Ile	Phe	Tyr	Gly	Leu	Ile	Cys	Met	Tyr	Thr	
															75

Leu	Trp	Trp	Met	Leu	Arg	Arg	Ser	Leu	Lys	Lys	Tyr	Ser	Phe	Glu	
															90

Ser	Ile	Arg	Glu	Glu	Ser	Ser	Tyr	Ser	Asp	Ile	Pro	Asp	Val	Lys	
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	--

95	100	105
Asn Asp Phe Ala Phe Met Leu His Leu Ile Asp Gln Tyr Asp Pro		
110	115	120
Leu Tyr Ser Lys Arg Phe Ala Val Phe Leu Ser Glu Val Ser Glu		
125	130	135
Asn Lys Leu Arg Gln Leu Asn Leu Asn Asn Glu Trp Thr Leu Asp		
140	145	150
Lys Leu Arg Gln Arg Leu Thr Lys Asn Ala Gln Asp Lys Leu Glu		
155	160	165
Leu His Leu Phe Met Leu Ser Gly Ile Pro Asp Thr Val Phe Asp		
170	175	180
Leu Val Glu Leu Glu Val Leu Lys Leu Glu Leu Ile Pro Asp Val		
185	190	195
Thr Ile Pro Pro Ser Ile Ala Gln Leu Thr Gly Leu Lys Glu Leu		
200	205	210
Trp Leu Tyr His Thr Ala Ala Lys Ile Glu Ala Pro Ala Leu Ala		
215	220	225
Phe Leu Arg Glu Asn Leu Arg Ala Leu His Ile Lys Phe Thr Asp		
230	235	240
Ile Lys Glu Ile Pro Leu Trp Ile Tyr Ser Leu Lys Thr Leu Glu		
245	250	255
Glu Leu His Leu Thr Gly Asn Leu Ser Ala Glu Asn Asn Arg Tyr		
260	265	270
Ile Val Ile Asp Gly Leu Arg Glu Leu Lys Arg Leu Lys Val Leu		
275	280	285
Arg Leu Lys Ser Asn Leu Ser Lys Leu Pro Gln Val Val Thr Asp		
290	295	300
Val Gly Val His Leu Gln Lys Leu Ser Ile Asn Asn Glu Gly Thr		
305	310	315
Lys Leu Ile Val Leu Asn Ser Leu Lys Lys Met Ala Asn Leu Thr		
320	325	330
Glu Leu Glu Leu Ile Arg Cys Asp Leu Glu Arg Ile Pro His Ser		
335	340	345
Ile Phe Ser Leu His Asn Leu Gln Glu Ile Asp Leu Lys Asp Asn		
350	355	360

```
<210> 251
<211> 20
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Synthetic Oligonucleotide Probe

<400> 251
caacaatgag ggcaccaagc 20

<210> 252
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 252
gatggctagg ttctggaggt tctg 24

<210> 253
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 253
caacctgcag gagattgacc tcaaggacaa caacctcaag accatcg 47

<210> 254
<211> 1650
<212> DNA
<213> Homo Sapien

<400> 254
gcctgttgct gatgctgccg tgcggtactt gtcatggagc tggcaactgcg 50
gcgcctctccc gtcccgccgt ggttgctgt gctgcgcgtg ctgctggcc 100
tgaacgcagg agctgtcatt gactggccca cagaggaggg caaggaagta 150
tgggattatg tgacggtccg caaggatgcc tacatgttct ggtggctcta 200
ttatgccacc aactcctgca agaacttctc agaactgccc ctggtcatgt 250
ggttcaggg cggtccaggc ggttctagca ctggatttgg aaacttttag 300
gaaattgggc cccttgacag tgatctcaa ccacggaaaa ccacctggct 350
ccaggctgcc agtctcctat ttgtggataa tcccggtggc actgggttca 400
gttatgtgaa tggtagtggt gcctatgcca aggacctggc tatggtggt 450
tcagacatga tggttctcct gaagaccttc ttcaagtggc acaaagaatt 500
ccagacagtt ccattctaca ttttctcaga gtcctatggc ggaaaaatgg 550
cagctggcat tggtctagag ctttataagg ccattcagcg agggaccatc 600
aagtgcact ttgcgggggt tgccttggt gattcctggc tctccccgt 650
tgattcggtg ctctcctggg gaccttacct gtacagcatg tctcttcgt 700

aagacaaagg tctggcagag gtgtctaagg ttgcagagca agtactgaat 750
 gccgtaaata aggggctcta cagagaggcc acagagctgt gggggaaagc 800
 agaaatgatc attgaacaga acacagatgg ggtgaacttc tataacatct 850
 taactaaaag cactcccacg tctacaatgg agtcgagtct agaattcaca 900
 cagagccacc tagtttgtct ttgtcagcgc cacgtgagac acctacaacg 950
 agatgcctta agccagctca tgaatggccc catcagaaag aagctaaaaa 1000
 ttattcctga gnatcaatcc tggggaggcc aggctaccaa cgtcttg 1050
 aacatggagg aggacttcat gaagccagtc attagcattg tggacgagtt 1100
 gctggaggca gggatcaacg tgacggtgta taatggacag ctggatctca 1150
 tcgtagatac catgggtcag gaggcctggg tgcggaaact gaagtggcca 1200
 gaactgccta aattcagtca gctgaagtgg aaggccctgt acagtgaccc 1250
 taaatcttg gaaacatctg ctttgcctaa gtcctacaag aacttgctt 1300
 tctactggat tctgaaagct ggtcatatgg ttccttctga ccaaggggac 1350
 atggctctga agatgatgag actggtgact cagcaagaat aggatggatg 1400
 gggctggaga tgagctggtt tggccttggg gcacagagct gagctgaggc 1450
 cgctgaagct gtaggaagcg ccattttcc ctgtatctaa ctggggctgt 1500
 gatcaagaag gttctgacca gttctgcag aggataaaat cattgtctct 1550
 ggaggcaatt tggaaattat ttctgcttct taaaaaaacc taagatttt 1600
 taaaaaaattg atttgttttgc atcaaaataa aggatgataa tagatattaa 1650

<210> 255
<211> 452
<212> PRT
<213> Homo Sapien

<400> 255
 Met Glu Leu Ala Leu Arg Arg Ser Pro Val Pro Arg Trp Leu Leu
 1 5 10 15
 Leu Leu Pro Leu Leu Gly Leu Asn Ala Gly Ala Val Ile Asp
 20 25 30
 Trp Pro Thr Glu Glu Gly Lys Glu Val Trp Asp Tyr Val Thr Val
 35 40 45

Arg Lys Asp Ala Tyr Met Phe Trp Trp Leu Tyr Tyr Ala Thr Asn
 50 55 60
 Ser Cys Lys Asn Phe Ser Glu Leu Pro Leu Val Met Trp Leu Gln
 65 70 75
 Gly Gly Pro Gly Gly Ser Ser Thr Gly Phe Gly Asn Phe Glu Glu
 80 85 90
 Ile Gly Pro Leu Asp Ser Asp Leu Lys Pro Arg Lys Thr Thr Trp
 95 100 105
 Leu Gln Ala Ala Ser Leu Leu Phe Val Asp Asn Pro Val Gly Thr
 110 115 120
 Gly Phe Ser Tyr Val Asn Gly Ser Gly Ala Tyr Ala Lys Asp Leu
 125 130 135
 Ala Met Val Ala Ser Asp Met Met Val Leu Leu Lys Thr Phe Phe
 140 145 150
 Ser Cys His Lys Glu Phe Gln Thr Val Pro Phe Tyr Ile Phe Ser
 155 160 165
 Glu Ser Tyr Gly Gly Lys Met Ala Ala Gly Ile Gly Leu Glu Leu
 170 175 180
 Tyr Lys Ala Ile Gln Arg Gly Thr Ile Lys Cys Asn Phe Ala Gly
 185 190 195
 Val Ala Leu Gly Asp Ser Trp Ile Ser Pro Val Asp Ser Val Leu
 200 205 210
 Ser Trp Gly Pro Tyr Leu Tyr Ser Met Ser Leu Leu Glu Asp Lys
 215 220 225
 Gly Leu Ala Glu Val Ser Lys Val Ala Glu Gln Val Leu Asn Ala
 230 235 240
 Val Asn Lys Gly Leu Tyr Arg Glu Ala Thr Glu Leu Trp Gly Lys
 245 250 255
 Ala Glu Met Ile Ile Glu Gln Asn Thr Asp Gly Val Asn Phe Tyr
 260 265 270
 Asn Ile Leu Thr Lys Ser Thr Pro Thr Ser Thr Met Glu Ser Ser
 275 280 285
 Leu Glu Phe Thr Gln Ser His Leu Val Cys Leu Cys Gln Arg His
 290 295 300
 Val Arg His Leu Gln Arg Asp Ala Leu Ser Gln Leu Met Asn Gly

305	310	315
Pro Ile Arg Lys Lys Leu Lys Ile Ile Pro Glu Asp Gln Ser Trp		
320	325	330
Gly Gly Gln Ala Thr Asn Val Phe Val Asn Met Glu Glu Asp Phe		
335	340	345
Met Lys Pro Val Ile Ser Ile Val Asp Glu Leu Leu Glu Ala Gly		
350	355	360
Ile Asn Val Thr Val Tyr Asn Gly Gln Leu Asp Leu Ile Val Asp		
365	370	375
Thr Met Gly Gln Glu Ala Trp Val Arg Lys Leu Lys Trp Pro Glu		
380	385	390
Leu Pro Lys Phe Ser Gln Leu Lys Trp Lys Ala Leu Tyr Ser Asp		
395	400	405
Pro Lys Ser Leu Glu Thr Ser Ala Phe Val Lys Ser Tyr Lys Asn		
410	415	420
Leu Ala Phe Tyr Trp Ile Leu Lys Ala Gly His Met Val Pro Ser		
425	430	435
Asp Gln Gly Asp Met Ala Leu Lys Met Met Arg Leu Val Thr Gln		
440	445	450

Gln Glu

<210> 256

<211> 1100

<212> DNA

<213> Homo Sapien

<400> 256

ggccgcggga gaggaggcca tggcgcgcg cggggcgctg ctgctggcgc 50

tgctgctggc tcgggctgga ctcaggaagc cggagtgcga ggaggcggeg 100

ccgttatcag gaccatgcgg ccgacgggtc atcacgtcgc gcacgtggg 150

tggagaggac gccgaactcg ggcgttggcc gtggcagggg agcctgcgcc 200

tgtgggattc ccacgtatgc ggagtgagcc tgctcagcca ccgctggca 250

ctcacggcgg cgcaactgctt taaaacctat agtacaccaa gtatccctc 300

cgggtggatg gtccagtttgc cccagctgac ttccatgcca tccttctgga 350

gcctgcaggc ctactacacc cgttacttcg tatcgaatat ctatctgagc 400

cctcgctacc tggggattc accctatgac attgccttgg tgaagctgtc 450
 tgcacctgtc acctacacta aacacatcca gcccacatctgt ctccaggcct 500
 ccacatttga gtttgagaac cggacagact gctgggtgac tggctggggg 550
 tacatcaaag aggatgaggc actgccatct cccccacaccc tccaggaagt 600
 tcaggtcgcc atcataaaca actctatgtg caaccacetc ttccctcaagt 650
 acagtttccg caaggacatc tttggagaca tggtttgtgc tggcaacgccc 700
 caaggcggga aggatgcctg cttcggtgac tcaggtggac cttggcctg 750
 taacaagaat ggactgtggt atcagattgg agtcgtgagc tggggagtgg 800
 gctgtggtcg gcccaatcgg cccgggtgtct acaccaatat cagccaccac 850
 tttgagtgga tccagaagct gatggcccag agtggcatgt cccagccaga 900
 cccctctgg ccactactct tttccctct tctctggct ctcccactcc 950
 tggggccgggt ctgagcctac ctgagcccat gcagcctggg gccactgcca 1000
 agtcaggccc tggttcttctt ctgtcttgg tggtaataaa cacattccag 1050
 ttgatgcctt gcagggcatt cttaaaaaaa aaaaaaaaaa aaaaaaaaaa 1100

<210> 257

<211> 314

<212> PRT

<213> Homo Sapien

<400> 257

Met	Gly	Ala	Arg	Gly	Ala	Leu	Leu	Leu	Ala	Leu	Leu	Ala	Arg
1					5				10			15	

Ala	Gly	Leu	Arg	Lys	Pro	Glu	Ser	Gln	Glu	Ala	Ala	Pro	Leu	Ser
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

20		25		30										
----	--	----	--	----	--	--	--	--	--	--	--	--	--	--

Gly	Pro	Cys	Gly	Arg	Arg	Val	Ile	Thr	Ser	Arg	Ile	Val	Gly	Gly
35									40					45

Glu	Asp	Ala	Glu	Leu	Gly	Arg	Trp	Pro	Trp	Gln	Gly	Ser	Leu	Arg
50								55					60	

Leu	Trp	Asp	Ser	His	Val	Cys	Gly	Val	Ser	Leu	Leu	Ser	His	Arg
									65					75

Trp	Ala	Leu	Thr	Ala	Ala	His	Cys	Phe	Glu	Thr	Tyr	Ser	Asp	Leu
									80					90

Ser Asp Pro Ser Gly Trp Met Val Gln Phe Gly Gln Leu Thr Ser
 95 100 105
 Met Pro Ser Phe Trp Ser Leu Gln Ala Tyr Tyr Thr Arg Tyr Phe
 110 115 120
 Val Ser Asn Ile Tyr Leu Ser Pro Arg Tyr Leu Gly Asn Ser Pro
 125 130 135
 Tyr Asp Ile Ala Leu Val Lys Leu Ser Ala Pro Val Thr Tyr Thr
 140 145 150
 Lys His Ile Gln Pro Ile Cys Leu Gln Ala Ser Thr Phe Glu Phe
 155 160 165
 Glu Asn Arg Thr Asp Cys Trp Val Thr Gly Trp Gly Tyr Ile Lys
 170 175 180
 Glu Asp Glu Ala Leu Pro Ser Pro His Thr Leu Gln Glu Val Gln
 185 190 195
 Val Ala Ile Ile Asn Asn Ser Met Cys Asn His Leu Phe Leu Lys
 200 205 210
 Tyr Ser Phe Arg Lys Asp Ile Phe Gly Asp Met Val Cys Ala Gly
 215 220 225
 Asn Ala Gln Gly Gly Lys Asp Ala Cys Phe Gly Asp Ser Gly Gly
 230 235 240
 Pro Leu Ala Cys Asn Lys Asn Gly Leu Trp Tyr Gln Ile Gly Val
 245 250 255
 Val Ser Trp Gly Val Gly Cys Gly Arg Pro Asn Arg Pro Gly Val
 260 265 270
 Tyr Thr Asn Ile Ser His His Phe Glu Trp Ile Gln Lys Leu Met
 275 280 285
 Ala Gln Ser Gly Met Ser Gln Pro Asp Pro Ser Trp Pro Leu Leu
 290 295 300
 Phe Phe Pro Leu Leu Trp Ala Leu Pro Leu Leu Gly Pro Val
 305 310
 <210> 258
 <211> 2427
 <212> DNA
 <213> Homo Sapien
 <400> 258
 cccacgcgtc cgccggacgcg tgggaaggac agaatggac tccaaagcctg 50

cctccttaggg ctctttgccc tcatcccttc tggcaaatgc agttacagcc 100
cgagccccga ccagcggagg acgctgcccc caggctgggt gtcctgggc 150
cgtcgccacc ctgaggaaga gctgagtctc acctttgccc tgagacagca 200
gaatgtggaa agactctcg agctggtgca ggctgtgtcg gatcccagct 250
ctcctcaata cgaaaatac ctgaccctag agaatgtggc tgatctggtg 300
aggccatccc cactgaccct ccacacggtg caaaaatggc tcttggcagc 350
cgagccccag aagtgccatt ctgtgatcac acaggacttt ctgacttgc 400
ggctgagcat ccgacaagca gagctgctgc tccctggggc tgagttcat 450
caactatgtgg gaggactac gaaaaacccat gtttaaggt ccccacatcc 500
ctaccagctt ccacaggcct tggcccccata tgtggacttt gtggggggac 550
tgcaccgttt tcccccaaca tcatccctga ggcaacgtcc tgagccgcag 600
tgacagggga ctgttaggcct gcatctgggg gtaacccct ctgtgatccg 650
taagcgatac aacttgacct cacaagacgt gggctctggc accagcaata 700
acagccaagc ctgtgcccag ttccctggagc agtatttcca tgactcagac 750
ctggctcagt tcattgcgcct ctccgggtggc aactttgcac atcaggcatc 800
agtagccccgt gtgggtggac aacagggccg gggccggggcc gggattgagg 850
ccagtctaga tgtgcagta ctgatgagtg ctgggtccaa catctccacc 900
tgggtctaca gtagccctgg ccggcatgag ggacaggagc ctttcctgca 950
gtggctcatg ctgctcagta atgagtcagc cctgccacat gtgcatactg 1000
tgagctatgg agatgatgag gactccctca gcagcgccta catccagcgg 1050
gtcaacactg agtcatgaa ggctgccgct cggggctca ccctgcttt 1100
cgccctcaggt gacagtgggg cccgggtgtg gtctgtctct ggaagacacc 1150
agttccggccc tacctccct gcctccagcc cctatgtcac cacagtggga 1200
ggcacatccct tccaggaacc tttccatc acaaatgaaa ttgttgacta 1250
tatcagtgg ggtggctca gcaatgttt cccacggcct tcataccagg 1300
aggaagctgt aacgaagttc ctgagctcta gccccccacct gccaccatcc 1350
agttacttca atgccagtgcc gctgcctac ccagatgtgg ctgcacttcc 1400

tcatggctac tgggtggtca gcaacagagt gcccattcca tgggtgtccg 1450
 gaacctcgcc ctctactcca gtgtttgggg ggatcctata cttgatcaat 1500
 gagcacagga tccttagtgg ccgcggccct cttggcttc tcaaccbaag 1550
 gctctaccag cagcatgggg caggtcttt tgatgttaacc cgtggctgcc 1600
 atgagtcctg tctggatgaa gaggttagagg gccagggttt ctgctctgg 1650
 cctggctggg atcctgttaac aggctgggg aaccaactt cccagcttt 1700
 ctgaagactc tactcaaccc ctgaccctt cctatcagga gagatggctt 1750
 gtccccctgcc ctgaagctgg cagttcagtc ctttattctg ccctgttgaa 1800
 agccctgctg aaccctcaac tattgactgc tgcagacagc ttatctccct 1850
 aaccctgaaa tgctgtgagc ttgacttgac tcccaaccct accatgctcc 1900
 atcataactca ggtctcccta ctcctgcctt agattcctca ataagatgct 1950
 gtaactagca tttttgaat gcctctccct ccgcattctca tctttctctt 2000
 ttcaatcagg ctttccaaa gggttgtata cagactctgt gcactatttc 2050
 acttgatatt cattcccaa ttcactgcaa ggagacctct actgtcacccg 2100
 tttactctt cctaccctga catccagaaa caatggcctc cagtcatac 2150
 ttctcaatct ttgctttatg gccttccat catagttgcc cactccctct 2200
 ctttacttag cttccaggc ttaacttctc tgactactct tgtcttcctc 2250
 tctcatcaat ttctgcttct tcatggaatg ctgacccctca ttgctccatt 2300
 tgttagttt tgctcttctc agtttactca ttgtccctg gaacaaatca 2350
 ctgacatcta caaccattac catctacta aataagactt tctatccaaat 2400
 aatgattgat acctcaaatg taaaaaa 2427

<210> 259
 <211> 556
 <212> PRT
 <213> Homo Sapien

<400> 259
 Met Gly Leu Gln Ala Cys Leu Leu Gly Leu Phe Ala Leu Ile Leu
 1 5 10 15

Ser Gly Lys Cys Ser Tyr Ser Pro Glu Pro Asp Gln Arg Arg Thr

20	25	30
Leu Pro Pro Gly Trp Val Ser Leu Gly Arg Ala Asp Pro Glu Glu		
35	40	45
Glu Leu Ser Leu Thr Phe Ala Leu Arg Gln Gln Asn Val Glu Arg		
50	55	60
Leu Ser Glu Leu Val Gln Ala Val Ser Asp Pro Ser Ser Pro Gln		
65	70	75
Tyr Gly Lys Tyr Leu Thr Leu Glu Asn Val Ala Asp Leu Val Arg		
80	85	90
Pro Ser Pro Leu Thr Leu His Thr Val Gln Lys Trp Leu Leu Ala		
95	100	105
Ala Gly Ala Gln Lys Cys His Ser Val Ile Thr Gln Asp Phe Leu		
110	115	120
Thr Cys Trp Leu Ser Ile Arg Gln Ala Glu Leu Leu Leu Pro Gly		
125	130	135
Ala Glu Phe His His Tyr Val Gly Gly Pro Thr Glu Thr His Val		
140	145	150
Val Arg Ser Pro His Pro Tyr Gln Leu Pro Gln Ala Leu Ala Pro		
155	160	165
His Val Asp Phe Val Gly Gly Leu His Arg Phe Pro Pro Thr Ser		
170	175	180
Ser Leu Arg Gln Arg Pro Glu Pro Gln Val Thr Gly Thr Val Gly		
185	190	195
Leu His Leu Gly Val Thr Pro Ser Val Ile Arg Lys Arg Tyr Asn		
200	205	210
Leu Thr Ser Gln Asp Val Gly Ser Gly Thr Ser Asn Asn Ser Gln		
215	220	225
Ala Cys Ala Gln Phe Leu Glu Gln Tyr Phe His Asp Ser Asp Leu		
230	235	240
Ala Gln Phe Met Arg Leu Phe Gly Gly Asn Phe Ala His Gln Ala		
245	250	255
Ser Val Ala Arg Val Val Gly Gln Gln Gly Arg Gly Arg Ala Gly		
260	265	270
Ile Glu Ala Ser Leu Asp Val Gln Tyr Leu Met Ser Ala Gly Ala		
275	280	285

Asn	Ile	Ser	Thr	Trp	Val	Tyr	Ser	Ser	Pro	Gly	Arg	His	Glu	Gly
				290			295					300		
Gln	Glu	Pro	Phe	Leu	Gln	Trp	Leu	Met	Leu	Leu	Ser	Asn	Glu	Ser
				305			310					315		
Ala	Leu	Pro	His	Val	His	Thr	Val	Ser	Tyr	Gly	Asp	Asp	Glu	Asp
				320			325					330		
Ser	Leu	Ser	Ser	Ala	Tyr	Ile	Gln	Arg	Val	Asn	Thr	Glu	Leu	Met
				335			340					345		
Lys	Ala	Ala	Ala	Arg	Gly	Leu	Thr	Leu	Leu	Phe	Ala	Ser	Gly	Asp
				350			355					360		
Ser	Gly	Ala	Gly	Cys	Trp	Ser	Val	Ser	Gly	Arg	His	Gln	Phe	Arg
				365			370					375		
Pro	Thr	Phe	Pro	Ala	Ser	Ser	Pro	Tyr	Val	Thr	Thr	Val	Gly	Gly
				380			385					390		
Thr	Ser	Phe	Gln	Glu	Pro	Phe	Leu	Ile	Thr	Asn	Glu	Ile	Val	Asp
				395			400					405		
Tyr	Ile	Ser	Gly	Gly	Phe	Ser	Asn	Val	Phe	Pro	Arg	Pro	Ser	
				410			415					420		
Tyr	Gln	Glu	Glu	Ala	Val	Thr	Lys	Phe	Leu	Ser	Ser	Ser	Pro	His
				425			430					435		
Leu	Pro	Pro	Ser	Ser	Tyr	Phe	Asn	Ala	Ser	Gly	Arg	Ala	Tyr	Pro
				440			445					450		
Asp	Val	Ala	Ala	Leu	Ser	Asp	Gly	Tyr	Trp	Val	Val	Ser	Asn	Arg
				455			460					465		
Val	Pro	Ile	Pro	Trp	Val	Ser	Gly	Thr	Ser	Ala	Ser	Thr	Pro	Val
				470			475					480		
Phe	Gly	Gly	Ile	Leu	Ser	Leu	Ile	Asn	Glu	His	Arg	Ile	Leu	Ser
				485			490					495		
Gly	Arg	Pro	Pro	Leu	Gly	Phe	Leu	Asn	Pro	Arg	Leu	Tyr	Gln	Gln
				500			505					510		
His	Gly	Ala	Gly	Leu	Phe	Asp	Val	Thr	Arg	Gly	Cys	His	Glu	Ser
				515			520					525		
Cys	Leu	Asp	Glu	Glu	Val	Glu	Gly	Gln	Gly	Phe	Cys	Ser	Gly	Pro
				530			535					540		
Gly	Trp	Asp	Pro	Val	Thr	Gly	Trp	Gly	Thr	Pro	Thr	Ser	Gln	Leu
				545			550					555		

Cys

<210> 260
<211> 1638
<212> DNA
<213> Homo Sapien

<400> 260
gccgcgcgtc ctctccggc gcccacacct gtctgagcg 50
cgccggccgg gccccgtgt cggcgccgaa cagtgtcg 100
atccagggc tcctcttcct tcttttctt ctgtctgtg ctgttggca 150
agtggccct tacagtgc 200
cctggaaacc cacttggcct gcataccgcc 250
tccctgtcgt cttgccccag tctaccctca atttagccaa gccagactt 300
ggagccgaag ccaaattaga agtatcttct tcatgtggac cccagtgtca 350
taagggact ccactgccc 400
cttacgaaga gccaagcaa tatctgtctt 450
atgaaacgct ctatgcaat ggcagccgca cagagacgca ggtgggcattc 500
tacatcctca gcagtagtgg agatggggcc caacaccgag actcagggtc 550
ttcaggaaag tctcgaagga agcggcagat ttatggctat gacagcagg 600
tcagcatttt tgggaaggac ttctgtc 650
actaccctt ctaaacatca 650
gtgaagttat ccacgggctg caccggcacc ctgggtggcag agaagcatgt 700
cctcacagct gcccactgca tacacgatgg aaaaacctat gtgaaaggaa 750
cccagaagct tcgagtgccc ttccctaaagc ccaagttaa agatgggtggt 750
cgaggggcca acgactccac ttccatgccc cccgagcaga tgaaatttca 800
gtggatccgg gtgaaacgca cccatgtgcc caagggttgg atcaaggc 800
atgccaatga catcgccatg gattatgatt atgccttcct ggaactcaaa 850
aagccccaca agagaaaatt tatgaagatt ggggtgagcc ctctgtctaa 900
gcagctgcca gggggcagaa ttcaatttc tggttatgac aatgaccgac 950
caggcaattt ggtgtatcgc ttctgtgacg tcaaagacga gacctatgac 1000
ttgctctacc agcaatgcga tgcccagcca gggggccagcg ggtctgggt 1050
ctatgtgagg atgtggaaga gacagcaga gaagtggag cgaaaaatta 1100

ttggcatttt ttcagggcac cagtgggtgg acatgaatgg ttccccacag 1150
 gatttcaacg tggctgtcag aatcactcct ctcaaatacg cccagatttg 1200
 ctattggatt aaaggaaact acctggattt tagggagggg tgacacagtg 1250
 ttccctcctg gcagcaatta agggtcttca tgttcttatt ttaggagagg 1300
 ccaaattgtt ttttgcatt ggcgtgcaca cgtgtgtgtg tgtgtgtgtg 1350
 tgtgtgttaag gtgtcttata atcttttacc tatttcttac aattgcaaga 1400
 tgactggctt tactatttga aaactggttt gtgtatcata tcataatatca 1450
 tttaaggagt ttgaaggcat acttttgcatt agaaataaaa aaaatactga 1500
 tttggggcaa tgaggaatat ttgacaatta agtaatctt cacgttttg 1550
 caaactttaa ttttatttc atctgaactt gttcaaaga tttatattaa 1600
 atattggca tacaagagat atgaaaaaaaaaaaaaaa 1638

<210> 261
 <211> 383
 <212> PRT
 <213> Homo Sapien

<400> 261
 Met Ala Gly Ile Pro Gly Leu Leu Phe Leu Leu Phe Phe Leu Leu
 1 5 10 15
 Cys Ala Val Gly Gln Val Ser Pro Tyr Ser Ala Pro Trp Lys Pro
 20 25 30
 Thr Trp Pro Ala Tyr Arg Leu Pro Val Val Leu Pro Gln Ser Thr
 35 40 45
 Leu Asn Leu Ala Lys Pro Asp Phe Gly Ala Glu Ala Lys Leu Glu
 50 55 60
 Val Ser Ser Ser Cys Gly Pro Gln Cys His Lys Gly Thr Pro Leu
 65 70 75
 Pro Thr Tyr Glu Glu Ala Lys Gln Tyr Leu Ser Tyr Glu Thr Leu
 80 85 90
 Tyr Ala Asn Gly Ser Arg Thr Glu Thr Gln Val Gly Ile Tyr Ile
 95 100 105
 Leu Ser Ser Ser Gly Asp Gly Ala Gln His Arg Asp Ser Gly Ser
 110 115 120

Ser Gly Lys Ser Arg Arg Lys Arg Gln Ile Tyr Gly Tyr Asp Ser
 125 130 135
 Arg Phe Ser Ile Phe Gly Lys Asp Phe Leu Leu Asn Tyr Pro Phe
 140 145 150
 Ser Thr Ser Val Lys Leu Ser Thr Gly Cys Thr Gly Thr Leu Val
 155 160 165
 Ala Glu Lys His Val Leu Thr Ala Ala His Cys Ile His Asp Gly
 170 175 180
 Lys Thr Tyr Val Lys Gly Thr Gln Lys Leu Arg Val Gly Phe Leu
 185 190 195
 Lys Pro Lys Phe Lys Asp Gly Gly Arg Gly Ala Asn Asp Ser Thr
 200 205 210
 Ser Ala Met Pro Glu Gln Met Lys Phe Gln Trp Ile Arg Val Lys
 215 220 225
 Arg Thr His Val Pro Lys Gly Trp Ile Lys Gly Asn Ala Asn Asp
 230 235 240
 Ile Gly Met Asp Tyr Asp Tyr Ala Leu Leu Glu Leu Lys Lys Pro
 245 250 255
 His Lys Arg Lys Phe Met Lys Ile Gly Val Ser Pro Pro Ala Lys
 260 265 270
 Gln Leu Pro Gly Gly Arg Ile His Phe Ser Gly Tyr Asp Asn Asp
 275 280 285
 Arg Pro Gly Asn Leu Val Tyr Arg Phe Cys Asp Val Lys Asp Glu
 290 295 300
 Thr Tyr Asp Leu Leu Tyr Gln Gln Cys Asp Ala Gln Pro Gly Ala
 305 310 315
 Ser Gly Ser Gly Val Tyr Val Arg Met Trp Lys Arg Gln Gln Gln
 320 325 330
 Lys Trp Glu Arg Lys Ile Ile Gly Ile Phe Ser Gly His Gln Trp
 335 340 345
 Val Asp Met Asn Gly Ser Pro Gln Asp Phe Asn Val Ala Val Arg
 350 355 360
 Ile Thr Pro Leu Lys Tyr Ala Gln Ile Cys Tyr Trp Ile Lys Gly
 365 370 375
 Asn Tyr Leu Asp Cys Arg Glu Gly
 380

<210> 262
<211> 1378
<212> DNA
<213> Homo Sapien

<400> 262
gcatacgccct gggtctctcg agcctgctgc ctgctcccc gcccccaccag 50
ccatggtggt ttctggagcg ccccccagccc tgggtggggg ctgtctcgcc 100
acottcacct ccctgctgct gctggcgctg acagccatcc tcaatgcggc 150
caggataacct gttcccccag cctgtggaa gccccagcag ctgaaccggg 200
tttgtggcgg cgaggacagc actgacagcg agtggccctg gatcgtgagc 250
atccagaaga atgggaccca ccactgcgca ggttctctgc tcaccagccg 300
ctgggtgatc actgctgecc actgtttcaa ggacaacctg aacaaaccat 350
acctgttctc tgtgctgctg ggggcctggc agctggggaa ccctggctct 400
cggtcccaga aggtgggtgt tgccctgggtg gagccccacc ctgtgtattc 450
ctggaaggaa ggtgcctgtg cagacattgc cctggtgctg ctcgagcgct 500
ccatacagtt ctcagagcgg gtcctgccc tctgcctacc tgatgcctct 550
atccacactcc ctccaaacac ccactgctgg atctcaggct gggggagcat 600
ccaagatgga gttcccttgc cccaccctca gaccctgcag aagctgaagg 650
ttcctatcat cgactcggaa gtctgcagcc atctgtactg gggggagaca 700
ggacagggac ccatcactga ggacatgctg tgtgccggct acttggaggg 750
ggagcgggat gcttgtctgg gcgactccgg gggccccctc atgtgccagg 800
tggacggcgc ctggctgctg gccggcatca tcagctgggg cgaggcgtgt 850
gccgagcgca acaggccccgg ggtctacatc agcctctctg cgcaccgctc 900
ctgggtggag aagatcgtgc aagggttgca gtcggcgccc cgcgctcagg 950
gggggtggggc cctcaggcga ccgagccagg gctctggggc cgccgcgcgc 1000
tccttagggcg cagcgggacg cggggctcgg atctgaaagg cggccagatc 1050
cacatctgga tctggatctg cggcggcctc gggcggttc ccccgccgta 1100
aataggctca tctacactcta cctctggggg cccggacggc tgctgcggaa 1150

agaaaaacccc ctccccgacc cgcccgacgg cctcaggccc ccctccaagg 1200
 catcaggccc cgcccaacgg cctcatgtcc ccgcccccac gacttccggc 1250
 cccgcggccg ggccccagcg ctttgtgtataataatgtt aatgattttt 1300
 ataggtattt gtaaccctgc ccacatatct tatttattcc tccaatttca 1350
 ataaattatt tattctccaa aaaaaaaaa 1378

<210> 263

<211> 317

<212> PRT

<213> Homo Sapien.

<400> 263

Met	Val	Val	Ser	Gly	Ala	Pro	Pro	Ala	Leu	Gly	Gly	Gly	Cys	Leu
1					5				10					15
Gly	Thr	Phe	Thr	Ser	Leu	Leu	Leu	Leu	Ala	Ser	Thr	Ala	Ile	Leu
					20				25					30
Asn	Ala	Ala	Arg	Ile	Pro	Val	Pro	Pro	Ala	Cys	Gly	Lys	Pro	Gln
					35				40					45
Gln	Leu	Asn	Arg	Val	Val	Gly	Gly	Glu	Asp	Ser	Thr	Asp	Ser	Glu
					50			55						60
Trp	Pro	Trp	Ile	Val	Ser	Ile	Gln	Lys	Asn	Gly	Thr	His	His	Cys
					65				70					75
Ala	Gly	Ser	Leu	Leu	Thr	Ser	Arg	Trp	Val	Ile	Thr	Ala	Ala	His
					80				85					90
Cys	Phe	Lys	Asp	Asn	Leu	Asn	Lys	Pro	Tyr	Leu	Phe	Ser	Val	Leu
					95			100						105
Leu	Gly	Ala	Trp	Gln	Leu	Gly	Asn	Pro	Gly	Ser	Arg	Ser	Gln	Lys
					110				115					120
Val	Gly	Val	Ala	Trp	Val	Glu	Pro	His	Pro	Val	Tyr	Ser	Trp	Lys
					125				130					135
Glu	Gly	Ala	Cys	Ala	Asp	Ile	Ala	Leu	Val	Arg	Leu	Glu	Arg	Ser
					140				145					150
Ile	Gln	Phe	Ser	Glu	Arg	Val	Leu	Pro	Ile	Cys	Leu	Pro	Asp	Ala
					155				160					165
Ser	Ile	His	Leu	Pro	Pro	Asn	Thr	His	Cys	Trp	Ile	Ser	Gly	Trp
					170				175					180

Gly Ser Ile Gln Asp Gly Val Pro Leu Pro His Pro Gln Thr Leu
 185 190 195
 Gln Lys Leu Lys Val Pro Ile Ile Asp Ser Glu Val Cys Ser His
 200 205 210
 Leu Tyr Trp Arg Gly Ala Gly Gln Gly Pro Ile Thr Glu Asp Met
 215 220 225
 Leu Cys Ala Gly Tyr Leu Glu Gly Glu Arg Asp Ala Cys Leu Gly
 230 235 240
 Asp Ser Gly Gly Pro Leu Met Cys Gln Val Asp Gly Ala Trp Leu
 245 250 255
 Leu Ala Gly Ile Ile Ser Trp Gly Glu Gly Cys Ala Glu Arg Asn
 260 265 270
 Arg Pro Gly Val Tyr Ile Ser Leu Ser Ala His Arg Ser Trp Val
 275 280 285
 Glu Lys Ile Val Gln Gly Val Gln Leu Arg Gly Arg Ala Gln Gly
 290 295 300
 Gly Gly Ala Leu Arg Ala Pro Ser Gln Gly Ser Gly Ala Ala Ala
 305 310 315

Arg Ser

<210> 264
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic Oligonucleotide Probe

<400> 264
gtccgcaagg atgcctacat gttc 24

<210> 265
 <211> 19
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic Oligonucleotide Probe

<400> 265
gcagaggtgt ctaaggttg 19

<210> 266
 <211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 266
agctctagac caatgccagc ttcc 24

<210> 267
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 267
gccaccaact cctgcaagaa cttctcagaa ctgcccctgg tcatg 45

<210> 268
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 268
gggaaattca ccctatgaca ttgcc 25

<210> 269
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 269
gaatgccctg caagcatcaa ctgg 24

<210> 270
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 270
gcacctgtca cctacactaa acacatccag cccatctgtc tccaggcctc 50

<210> 271
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 271
gcggaagggc agaatggac tccaaag 26

<210> 272
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 272
cagccctgcc acatgtgc 18

<210> 273
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 273
tactgggtgg tcagcaac 18

<210> 274
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 274
ggcgaagagc agggtgagac cccg 24

<210> 275
<211> 45

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 275
gcctcatcc tctctggcaa atgcagttac agcccgagc ccgac 45

<210> 276

<211> 21

<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 276
ggcaggat tccagggttc c 21

<210> 277

<211> 18

<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 277
ggctatgaca gcaggttc 18

<210> 278

<211> 18

<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 278
tgacaatgac cgaccagg 18

<210> 279

<211> 24

<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 279
gcatcgatt gctggtagag caag 24

<210> 280

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 280
ttacagtgcc ccctggaaac ccacttggcc tgcataaccgc ctccc 45

<210> 281

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 281

cgtctcgagc gctccataca gttcccttgc ccca 34

<210> 282

<211> 61

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 282

tggaggggga gcgggatgct tgtctggcg actccggggg cccccctcatg 50

tgccaggtgg a 61

<210> 283

<211> 119

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 283

ccctcagacc ctgcagaagc tgaaggttcc tatcatcgac tcggaagtct 50

gcagccatct gtactggcgg ggagcaggac agggacccat cactgaggac 100

atgctgtgtg ccggctact 119

<210> 284

<211> 1875

<212> DNA

<213> Homo Sapien

<400> 284

gacggctggc caccatgcac ggctcctgca gtttcctgat gcttctgctg 50

ccgctactgc tactgctggt ggccaccaca ggccccgttg gagccctcac 100

agatgaggag aaacgttga tggtagct gcacaacctc taccggccc 150
aggatatcccc gacggcctca gacatgctgc acatgagatg ggacgaggag 200
ctggccgcct tcgccaaggc ctacgcacgg cagtgcgtgt ggggccacaa 250
caaggagcgc gggcgccgcg gcgagaatct gttcgccatc acagacgagg 300
gcatggacgt gccgctggcc atggaggagt ggcaccacga gcgtgagcac 350
tacaacctca ggcgcgcac ctgcagccca ggccagatgt goggccacta 400
cacgcagggtg gtagggcca agacagagag gatcggtgt ggttcccact 450
tctgtgagaa gctccagggt gttgaggaga ccaacatcga attactggtg 500
tgcaactatg agcctccggg gaacgtgaag gggaaacggc cttaccagga 550
ggggactccg tgctccaat gtccctctgg ctaccactgc aagaactccc 600
tctgtgaacc catcggaaagc ccggaaagatg ctcaggattt gccttacctg 650
gtaactgagg ccccatcctt ccggcgact gaagcatcag actctaggaa 700
aatgggtact ctttctccc tagcaacggg gattccggct ttcttgtaa 750
cagaggcttc aggctccctg gcaaccaagg ctctgcgtgc tgtggaaacc 800
caggccccaa cttcccttagc aacgaaagac ccgcctcca tggcaacaga 850
ggctccacct tgcgtaaaca ctgaggtccc ttccatggc gcagctcaca 900
gcctgcctc cttggatgag gagccagttt cttcccttccaa atcgaccat 950
gttccttatcc caaaatcagc agacaaaatgt acagacaaaa caaaagtgcc 1000
ctcttaggac ccagagaact ctctggaccc caagatgtcc ctgacagggg 1050
caagggaaact cttcccttccaa gcccaggagg aggctgaggc tgaggctgag 1100
ttgcctccctt ccagtggatgtt cttggcctca gttttccag cccaggacaa 1150
gccaggtgag ctgcaggcca cactggacca cacggggcac acctcctcca 1200
agtccctgcc caattcccc aatacccttg ccaccgttac tgccacgggt 1250
gggcgtgccc tggctctgca gtcgtccttgc ccaggtgcag agggccctga 1300
caaggcttagc gttgtgtcag ggctgaactc gggccctggc catgtgtggg 1350
ggcccttcctt gggactactg ctccctgcctc ctctgggtt ggctggaatc 1400

ttctgaatgg gataccactc aaagggtgaa gaggtcagct gtcctcctgt 1450
catcttcccc accctgtccc cagccctaa acaagatact tcttggttaa 1500
ggccctccgg aaggaaagg ctacggggca tgtgcctcat cacaccatcc 1550
atcctggagg cacaaggcct ggctggctgc gagctcagga ggccgcctga 1600
ggactgcaca ccgggcccac acctctcctg cccctccctc ctgagtcctg 1650
ggggtgtggag gatttgaggg agctcaactgc ctacctggcc tggggctgtc 1700
tgcccacaca gcatgtgcgc tctccctgag tgccctgtgt a gctggggatg 1750
gggattccta ggggcagatg aaggacaagc cccactggag tggggttctt 1800
tgagtggggg aggcaaggac gagggaaagga aagtaactcc tgactctcca 1850
ataaaaaacct gtccaaacctg tgaaa 1875

<210> 285

<211> 463

<212> PRT

<213> Homo Sapien

<400> 285

Met His Gly Ser Cys Ser Phe Leu Met Leu Leu Leu Pro Ile Leu
1 5 10 15

Leu Leu Leu Val Ala Thr Thr Gly Pro Val Gly Ala Leu Thr Asp

Glu Glu Lys Arg Leu Met Val Glu Leu His Asn Leu Tyr Arg Ala
35 40 45

Glu Glu Leu Ala Ala Phe Ala Lys Ala Tyr Ala Arg Gln Cys Val
65 70 75

Trp Gly His Asn Lys Glu Arg Gly Arg Arg Gly Glu Asn Leu Phe
 80 85 90

Ala Ile Thr Asp Glu Gly Met Asp Val Pro Leu Ala Met Glu Glu
95 100 105

Ser Pro Gly Gln Met Cys Gly His Tyr Thr Gln Val Val Trp Ala
125 130 135

Lys Thr Glu Arg Ile Gly Cys Gly Ser His Phe Cys Glu Lys Leu
 140 145 150
 Gln Gly Val Glu Glu Thr Asn Ile Glu Leu Leu Val Cys Asn Tyr
 155 160 165
 Glu Pro Pro Gly Asn Val Lys Gly Lys Arg Pro Tyr Gln Glu Gly
 170 175 180
 Thr Pro Cys Ser Gln Cys Pro Ser Gly Tyr His Cys Lys Asn Ser
 185 190 195
 Leu Cys Glu Pro Ile Gly Ser Pro Glu Asp Ala Gln Asp Leu Pro
 200 205 210
 Tyr Leu Val Thr Glu Ala Pro Ser Phe Arg Ala Thr Glu Ala Ser
 215 220 225
 Asp Ser Arg Lys Met Gly Thr Pro Ser Ser Leu Ala Thr Gly Ile
 230 235 240
 Pro Ala Phe Leu Val Thr Glu Val Ser Gly Ser Leu Ala Thr Lys
 245 250 255
 Ala Leu Pro Ala Val Glu Thr Gln Ala Pro Thr Ser Leu Ala Thr
 260 265 270
 Lys Asp Pro Pro Ser Met Ala Thr Glu Ala Pro Pro Cys Val Thr
 275 280 285
 Thr Glu Val Pro Ser Ile Leu Ala Ala His Ser Leu Pro Ser Leu
 290 295 300
 Asp Glu Glu Pro Val Thr Phe Pro Lys Ser Thr His Val Pro Ile
 305 310 315
 Pro Lys Ser Ala Asp Lys Val Thr Asp Lys Thr Lys Val Pro Ser
 320 325 330
 Arg Ser Pro Glu Asn Ser Leu Asp Pro Lys Met Ser Leu Thr Gly
 335 340 345
 Ala Arg Glu Leu Leu Pro His Ala Gln Glu Glu Ala Glu Ala Glu
 350 355 360
 Ala Glu Leu Pro Pro Ser Ser Glu Val Leu Ala Ser Val Phe Pro
 365 370 375
 Ala Gln Asp Lys Pro Gly Glu Leu Gln Ala Thr Leu Asp His Thr
 380 385 390
 Gly His Thr Ser Ser Lys Ser Leu Pro Asn Phe Pro Asn Thr Ser
 395 400 405

Ala Thr Ala Asn Ala Thr Gly Gly Arg Ala Leu Ala Leu Gln Ser
410 415 420
Ser Leu Pro Gly Ala Glu Gly Pro Asp Lys Pro Ser Val Val Ser
425 430 435
Gly Leu Asn Ser Gly Pro Gly His Val Trp Gly Pro Leu Leu Gly
440 445 450
Leu Leu Leu Leu Pro Pro Leu Val Leu Ala Gly Ile Phe
455 460

<210> 286

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 286

tcctgcagtt tcctgatgc 19

<210> 287

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 287

ctcatattgc acaccagtaa ttcg 24

<210> 288

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 288

atgaggagaa acgtttgatg gtggagctgc acaacctcta ccggg 45

<210> 289

<211> 3662

<212> DNA

<213> Homo Sapien

<400> 289

gtaactgaag tcaggcttt catttggaa gccccctcaa cagaattcgg 50

tcattctcca agttatggtg gacgtacttc tgggttctc cctctgctt 100
cttttcaca ttagcagacc ggacttaagt cacaacagat tatctttcat 150
caaggcaagt tccatgagcc accttcaaag cttcgagaa gtgaaactga 200
acaacaatga attggagacc attccaaatc tgggaccagt ctggcaaat 250
attacacttc tctccttggc tgaaaacagg attgttggaa tactccctga 300
acatctgaaa gagttcagt ccctgaaac tttggacctt agcagcaaca 350
atatttcaga gctccaaact gcatttccag ccctacagct caaatatctg 400
tatctcaaca gcaaccgagt cacatcaatg gaacctgggt attttgacaa 450
tttggccaac acactccttg tggtaaagct gaacaggaac cgaatctcag 500
ctatcccacc caagatgttt aaactgcccc aactgcaaca tctcgaattg 550
aaccgaaaca agattaaaaa tggatggaa ctgacattcc aaggccttgg 600
tgctctgaag tctctgaaaa tggatggaaa tggagtaacg aaacttatgg 650
atggagctt ttggggctg agcaacatgg aaatttgca gctggaccat 700
aacaacctaa cagagattac caaaggctgg cttaacggct tgctgatgct 750
gcaggaactt catctcagcc aaaatgccat caacaggatc agccctgatg 800
cctggagtt ctgccagaag ctcagtgagc tggacctaac tttcaatcac 850
ttatcaaggt tagatgattc aagtttcctt ggcctaagct tactaaatac 900
actgcacatt gggacaaca gagtcagcta cattgctgat tggccttcc 950
ggggcttcc cagttaaag actttggatc tgaagaacaa tggaaatttcc 1000
tggactattg aagacatgaa tggtgcttc tctggcttg acaaactgag 1050
gcgactgata ctccaaggaa atcgatccg ttcttattact aaaaaagcct 1100
tcactggttt ggatgcattg gagcatctag acctgagtga caacgcaatc 1150
atgtcttac aaggcaatgc atttcacaa atgaagaaac tgcaacaatt 1200
gcatttaat acatcaagcc ttttgtcga ttgccagcta aaatggctcc 1250
cacagtgggt ggcggaaaac aacttcaga gctttgtaaa tgccagttgt 1300
gccccatcctc agctgctaaa aggaagaagc attttgctg ttagcccaga 1350

tggctttgtg tgtgatgatt ttcccaaacc ccagatcacg gttcagccag 1400
aaacacagtc ggcaataaaaa ggttccaatt tgagttcat ctgctcagct 1450
gccagcagca gtgattcccc aatgactttt gcttgaaaaa aagacaatga 1500
actactgcat gatgctgaaa tggaaaatta tgcacacctc cgggcccaga 1550
gtggcgaggt gatggagtat accaccatcc ttcggctgct cgagggtggaa 1600
tttgcagtg agggaaata tcagtgtgtc atctccaatc actttggttc 1650
atccctactct gtcaaagcca agcttacagt aaatatgctt ccctcattca 1700
ccaagacccc catggatctc accatccgag ctggggccat ggcacgcttg 1750
gagtgtgctg ctgtggggca cccagccccc cagatagcct ggcagaaggaa 1800
tggggcaca gacttcccag ctgcacggga gagacgcattg catgtgatgc 1850
ccgaggatga cgtgttcttt atcgtggatg tgaagataga ggacattggg 1900
gtatacagct gcacagctca gaacagtgoa ggaagtattt cagcaaatgc 1950
aactctgact gtcctagaaa caccatcatt tttgcggcca ctgttggacc 2000
gaactgtaac caagggagaa acagccgtcc tacagtgcatt tgctggagga 2050
agccctcccc ctaaactgaa ctggacccaa gatgatagcc cattgggtgg 2100
aaccgagagg cactttttg cagcaggcaa tcagttctg attattgtgg 2150
actcagatgt cagtgtatgc gggaaataca catgtgagat gtctaaccacc 2200
cttggcactg agagaggaaa cgtgcgcctc agtgtgatcc ccactccaaac 2250
ctgcgactcc cctcagatga cagccccatc gtttagacgt gacggatggg 2300
ccactgtggg tgcgtgatc atagccgtgg tttgtgtgt ggtgggcacg 2350
tcactcgtgt ggggtggcat catataccac acaaggcgga ggaatgaaga 2400
ttgcagcatt accaacacag atgagaccaa cttgcagca gatattccctt 2450
gttatttgc atctcaggaa acgttagctg aacaggcagga tgggtacgtg 2500
tcttcagaaa gtggaaagcca ccaccagtt gtcacatctt caggtgctgg 2550
attttctta ccacaacatg acagtagtgg gacctgccat attgacaata 2600
gcagtgaagc tgatgtggaa gctgccacag atctgttcct ttgtccgtt 2650
ttgggatcca caggccctat gtatttgaag ggaaatgtgt atggctcaga 2700

tcctttgaa acatatcata caggttgcag tcctgaccca agaacagt 2750
 taatggacca ctatgagccc agttacataa agaaaaagga gtgctaccc 2800
 ttttcatc cttcagaaga atcctgcgaa cggagttca gtaatatac 2850
 gtggcattca catgtgagga agctacttaa cactagttac tctcacaatg 2900
 aaggacctgg aatgaaaaat ctgtgtctaa acaagtcctc ttttagattt 2950
 agtgcaaattc cagagccagc gtcgggtgcc tcgagtaatt ctttcatggg 3000
 taccttgaa aaagctctca ggagacctca cctagatgcc tattcaagct 3050
 ttggacagcc atcagattgt cagccaagag cttttattt gaaagctcat 3100
 tctccccag acttggactc tgggtcagag gaagatggga aagaaaggac 3150
 agattttcag gaagaaaatc acatttgtac cttaaacag acttttagaaa 3200
 actacaggac tccaaattt cagtcttatg acttggacac atagactgaa 3250
 tgagacccaa ggaaaagctt aacatactac ctcaagt 3300
 aaagagagag aatcttatgt ttttaaatg gagttatgaa ttttaaaagg 3350
 ataaaaatgc tttatttata cagatgaacc aaaattacaa aaagttatga 3400
 aaattttat actggaaatg atgctcatat aagaataacct ttttaaacta 3450
 tttttact ttgtttatg caaaaaagta tcttacgtaa attaatgata 3500
 taaatcatga ttatttatg tattttata atgcoagatt tcttttatg 3550
 gaaaatgagt tactaaagca ttttaataa tacctgcctt gtaccattt 3600
 ttaaatagaa gttacttcat tatattttgc acattatatt taataaaatg 3650
 tgtcaattt 3662

<210> 290
 <211> 1059
 <212> PRT
 <213> Homo Sapien

<400> 290
 Met Val Asp Val Leu Leu Leu Phe Ser Leu Cys Leu Leu Phe His
 1 5 10 15
 Ile Ser Arg Pro Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys
 20 25 30

Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu
 35 40 45

 Asn Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser
 50 55 60

 Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu
 65 70 75

 Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu
 80 85 90

 Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro
 95 100 105

 Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr
 110 115 120

 Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu
 125 130 135

 Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys
 140 145 150

 Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn
 155 160 165

 Lys Ile Lys Asn Val Asp Gly Leu Thr Phe Gln Gly Leu Gly Ala
 170 175 180

 Leu Lys Ser Leu Lys Met Gln Arg Asn Gly Val Thr Lys Leu Met
 185 190 195

 Asp Gly Ala Phe Trp Gly Leu Ser Asn Met Glu Ile Leu Gln Leu
 200 205 210

 Asp His Asn Asn Leu Thr Glu Ile Thr Lys Gly Trp Leu Tyr Gly
 215 220 225

 Leu Leu Met Leu Gln Glu Leu His Leu Ser Gln Asn Ala Ile Asn
 230 235 240

 Arg Ile Ser Pro Asp Ala Trp Glu Phe Cys Gln Lys Leu Ser Glu
 245 250 255

 Leu Asp Leu Thr Phe Asn His Leu Ser Arg Leu Asp Asp Ser Ser
 260 265 270

 Phe Leu Gly Leu Ser Leu Leu Asn Thr Leu His Ile Gly Asn Asn
 275 280 285

 Arg Val Ser Tyr Ile Ala Asp Cys Ala Phe Arg Gly Leu Ser Ser

290	295	300
Leu Lys Thr Leu Asp Leu Lys Asn Asn Glu Ile Ser Trp Thr Ile		
305	310	315
Glu Asp Met Asn Gly Ala Phe Ser Gly Leu Asp Lys Leu Arg Arg		
320	325	330
Leu Ile Leu Gln Gly Asn Arg Ile Arg Ser Ile Thr Lys Lys Ala		
335	340	345
Phe Thr Gly Leu Asp Ala Leu Glu His Leu Asp Leu Ser Asp Asn		
350	355	360
Ala Ile Met Ser Leu Gln Gly Asn Ala Phe Ser Gln Met Lys Lys		
365	370	375
Leu Gln Gln Leu His Leu Asn Thr Ser Ser Leu Leu Cys Asp Cys		
380	385	390
Gln Leu Lys Trp Leu Pro Gln Trp Val Ala Glu Asn Asn Phe Gln		
395	400	405
Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Leu Lys Gly		
410	415	420
Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp		
425	430	435
Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala		
440	445	450
Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser		
455	460	465
Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu		
470	475	480
Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln		
485	490	495
Gly Gly Glu Val Met Glu Tyr Thr Thr Ile Leu Arg Leu Arg Glu		
500	505	510
Val Glu Phe Ala Ser Glu Gly Lys Tyr Gln Cys Val Ile Ser Asn		
515	520	525
His Phe Gly Ser Ser Tyr Ser Val Lys Ala Lys Leu Thr Val Asn		
530	535	540
Met Leu Pro Ser Phe Thr Lys Thr Pro Met Asp Leu Thr Ile Arg		
545	550	555

Ala Gly Ala Met Ala Arg Leu Glu Cys Ala Ala Val Gly His Pro
 560 565 570
 Ala Pro Gln Ile Ala Trp Gln Lys Asp Gly Gly Thr Asp Phe Pro
 575 580 585
 Ala Ala Arg Glu Arg Arg Met His Val Met Pro Glu Asp Asp Val
 590 595 600
 Phe Phe Ile Val Asp Val Lys Ile Glu Asp Ile Gly Val Tyr Ser
 605 610 615
 Cys Thr Ala Gln Asn Ser Ala Gly Ser Ile Ser Ala Asn Ala Thr
 620 625 630
 Leu Thr Val Leu Glu Thr Pro Ser Phe Leu Arg Pro Leu Leu Asp
 635 640 645
 Arg Thr Val Thr Lys Gly Glu Thr Ala Val Leu Gln Cys Ile Ala
 650 655 660
 Gly Gly Ser Pro Pro Pro Lys Leu Asn Trp Thr Lys Asp Asp Ser
 665 670 675
 Pro Leu Val Val Thr Glu Arg His Phe Phe Ala Ala Gly Asn Gln
 680 685 690
 Leu Leu Ile Ile Val Asp Ser Asp Val Ser Asp Ala Gly Lys Tyr
 695 700 705
 Thr Cys Glu Met Ser Asn Thr Leu Gly Thr Glu Arg Gly Asn Val
 710 715 720
 Arg Leu Ser Val Ile Pro Thr Pro Thr Cys Asp Ser Pro Gln Met
 725 730 735
 Thr Ala Pro Ser Leu Asp Asp Asp Gly Trp Ala Thr Val Gly Val
 740 745 750
 Val Ile Ile Ala Val Val Cys Cys Val Val Gly Thr Ser Leu Val
 755 760 765
 Trp Val Val Ile Ile Tyr His Thr Arg Arg Arg Asn Glu Asp Cys
 770 775 780
 Ser Ile Thr Asn Thr Asp Glu Thr Asn Leu Pro Ala Asp Ile Pro
 785 790 795
 Ser Tyr Leu Ser Ser Gln Gly Thr Leu Ala Asp Arg Gln Asp Gly
 800 805 810

Tyr Val Ser Ser Glu Ser Gly Ser His His Gln Phe Val Thr Ser
 815 820 825
 Ser Gly Ala Gly Phe Phe Leu Pro Gln His Asp Ser Ser Gly Thr
 830 835 840
 Cys His Ile Asp Asn Ser Ser Glu Ala Asp Val Glu Ala Ala Thr
 845 850 855
 Asp Leu Phe Leu Cys Pro Phe Leu Gly Ser Thr Gly Pro Met Tyr
 860 865 870
 Leu Lys Gly Asn Val Tyr Gly Ser Asp Pro Phe Glu Thr Tyr His
 875 880 885
 Thr Gly Cys Ser Pro Asp Pro Arg Thr Val Leu Met Asp His Tyr
 890 895 900
 Glu Pro Ser Tyr Ile Lys Lys Lys Glu Cys Tyr Pro Cys Ser His
 905 910 915
 Pro Ser Glu Glu Ser Cys Glu Arg Ser Phe Ser Asn Ile Ser Trp
 920 925 930
 Pro Ser His Val Arg Lys Leu Leu Asn Thr Ser Tyr Ser His Asn
 935 940 945
 Glu Gly Pro Gly Met Lys Asn Leu Cys Leu Asn Lys Ser Ser Leu
 950 955 960
 Asp Phe Ser Ala Asn Pro Glu Pro Ala Ser Val Ala Ser Ser Asn
 965 970 975
 Ser Phe Met Gly Thr Phe Gly Lys Ala Leu Arg Arg Pro His Leu
 980 985 990
 Asp Ala Tyr Ser Ser Phe Gly Gln Pro Ser Asp Cys Gln Pro Arg
 995 1000 1005
 Ala Phe Tyr Leu Lys Ala His Ser Ser Pro Asp Leu Asp Ser Gly
 1010 1015 1020
 Ser Glu Glu Asp Gly Lys Glu Arg Thr Asp Phe Gln Glu Glu Asn
 1025 1030 1035
 His Ile Cys Thr Phe Lys Gln Thr Leu Glu Asn Tyr Arg Thr Pro
 1040 1045 1050
 Asn Phe Gln Ser Tyr Asp Leu Asp Thr
 1055

<210> 291
 <211> 2906

<212> DNA

<213> Homo Sapien

<400> 291
ggggagagga attgaccatg taaaaggaga cttttttttt tggtggtgg 50
ggctgttggg tgccttgcaa aaatgaagga tgcaggacgc agcttctcc 100
tggAACGAA cgcaatggat aaactgattt tgcaagagag aaggaagaac 150
gaagctttt cttgtgagcc ctggatctta acacaaatgt gtatatgtgc 200
acacagggag cattcaagaa taaaataaac cagagttaga cccgcggggg 250
ttggtgtgtt ctgacataaa taaataatct taaagcagct gttccctcc 300
ccaccccaa aaaaaaggat gattggaaat gaagaaccga ggattcacaa 350
agaaaaaaagt atgttcattt ttctctataa aggagaaaagt gagccaagg 400
gatatttttgaatgaaaag tttggggctt ttttagtaaa gtaaagaact 450
ggtgtggtgg tgtttcctt tcttttgaa tttcccacaa gaggagagga 500
aattaataat acatctgcaa agaaatttca gagaagaaaa gttgaccg 550
gcagatttag gcattgattt ggggagagaa accagcagag cacagttgga 600
tttgccta tggactaa aattgacgga taattgcagt tggattttc 650
ttcatcaacc tcctttttt taaatttttta ttccttttgg tatcaagatc 700
atgcgttttc tcttggctt aaccacctgg atttccatct ggatgttgct 750
gtgatcagtc taaaatacaa ctgttgaat tccagaagga ccaacaccag 800
ataaattatg aatgttgaac aagatgacct tacatccaca gcagataatg 850
ataggtecta ggttaacag ggcctattt gacccctgc ttgtggtgct 900
gctggcttcaacttcttgg tggtggtgg tctggcgg gctcagac 950
gccttctgt gtgcctgc agcaaccagt tcagcaaggt gatttgttt 1000
cgaaaaacc tgcgtgaggt tccggatggc atctccacca acacacggct 1050
gctgaacctc catgagaacc aaatccagat catcaaagtg aacagcttca 1100
agcacttgag gcacttggaa atcctacagt tgagtaggaa ccatatcaga 1150
accattgaaa ttggggctt caatggtctg gcaacctca acactctgg 1200
actcttgac aatcgcttta ctaccatccc gaatggagct tttgtataact 1250

tgtctaaact gaaggagctc tggttgcgaa acaacccat taaaagcatc 1300
ccttcttatg ctttaacag aattccttct ttgcgccgac tagacttagg 1350
ggaattgaaa agacttcat acatctcaga aggtgcctt gaaggtctgt 1400
ccaactttagag gtatgtAAC ctgcctatgt gcaaccctcg ggaaatccc 1450
aacctcacac cgctcataaa actagatgag ctggatctt ctggaatca 1500
tttatctgcc atcaggcctg gctcttcca gggtttgatg caccttcaa 1550
aactgtggat gatacagtcc cagattcaag tgattgaacg gaatgcctt 1600
gacaacccctc agtcaactgt ggagatcaac ctggcacaca ataatcta 1650
attactgcct catgacccct tcactccctt gcatcatcta gagcggatac 1700
attacatca caacccttgg aactgttaact gtgacatact gtggctcagc 1750
tggtgataa aagacatggc cccctcgaac acagcttggt gtgccccgg 1800
taacactcct cccaaatctaa aggggaggta cattggagag ctgcaccaga 1850
attacttcac atgctatgct ccggtgattt tggagcccc tgcagaccc 1900
aatgtcaactg aaggcatggc agctgagctg aaatgtcggg cctccacatc 1950
cctgacatct gtatcttggaa ttactccaaa tggAACAGTC atgacacatg 2000
ggcgtacaa agtgccgata gctgtgctca gtgtatggtaac gttaaatttc 2050
acaaatgtaa ctgtgcaaga tacaggcatg tacacatgtatggtaa 2100
ttccgttggg aatactactg cttcagccac cctgaatgtt actgcagcaa 2150
ccactactcc tttcttttac tttcaaccg tcacagttaga gactatggaa 2200
ccgtctcagg atgaggcactg gaccacagat aacaatgtgg gtccactcc 2250
agtggtcgac tgggagacca ccaatgtgac cacctcttc acaccacaga 2300
gcacaaggctc gacagagaaa accttcacca tcccagtgac tgatataaac 2350
agtgggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400
tgggtgtttt gtggccatca cactcatggc tgcagtgtatg ctggtcattt 2450
tctacaagat gaggaaggcag caccatcggc aaaaccatca cgccccaaaca 2500
aggactgttg aaattattaa tgtggatgtatg gagattacgg gagacacacc 2550

catggaaagc cacctgccca tgcctgctat cgagcatgag cacctaaatc 2600
actataactc atacaaatct cccttcaacc acacaacaac agttaacaca 2650
ataaattcaa tacacagttc agtgcatgaa ccgttattga tccgaatgaa 2700
ctctaaagac aatgtacaag agactcaa at ctaaaacatt tacagagtta 2750
caaaaaacaa acaatcaaaa aaaaagacag tttattaaaa atgacacacaa 2800
tgactgggct aaatctactg tttcaaaaaa gtgtctttac aaaaaaacaa 2850
aaaagaaaag aaatttattt attaaaaattt ctattgtgat ctaaagcaga 2900
caaaaa 2906

<210> 292

<211> 640

<212> PRT

<213> Homo Sapien

<400> 292

Met Leu Asn Lys Met Thr Leu His Pro Gln Gln Ile Met Ile Gly
1 5 10 15

Pro Arg Phe Asn Arg Ala Leu Phe Asp Pro Leu Leu Val Val Leu
20 25 30

Leu Ala Leu Gln Leu Leu Val Val Ala Gly Leu Val Arg Ala Gln
35 40 45

Thr Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val
50 55 60

Ile Cys Val Arg Lys Asn Leu Arg Glu Val Pro Asp Gly Ile Ser
65 70 75

Thr Asn Thr Arg Leu Leu Asn Leu His Glu Asn Gln Ile Gln Ile
80 85 90

Ile Lys Val Asn Ser Phe Lys His Leu Arg His Leu Glu Ile Leu
 65 100 105

Gln Leu Ser Arg Asn His Ile Arg Thr Ile Glu Ile Gly Ala Phe
100 110 115 120

Asn Gly Leu Ala Asn Leu Asn Thr Leu Glu Leu Phe Asp Asn Arg
100 105 110 115 120 125 130 135

Leu Thr Thr Ile Pro Asn Gly Ala Phe Val Tyr Leu Ser Lys Leu
145 150

Ile Glu Ile Trp Ile Arg Asn Asn Pro Ile Glu Ser Ile Pro Ser

155	160	165
Tyr Ala Phe Asn Arg Ile Pro Ser Leu Arg Arg Leu Asp Leu Gly		
170	175	180
Glu Leu Lys Arg Leu Ser Tyr Ile Ser Glu Gly Ala Phe Glu Gly		
185	190	195
Leu Ser Asn Leu Arg Tyr Leu Asn Leu Ala Met Cys Asn Leu Arg		
200	205	210
Glu Ile Pro Asn Leu Thr Pro Leu Ile Lys Leu Asp Glu Leu Asp		
215	220	225
Leu Ser Gly Asn His Leu Ser Ala Ile Arg Pro Gly Ser Phe Gln		
230	235	240
Gly Leu Met His Leu Gln Lys Leu Trp Met Ile Gln Ser Gln Ile		
245	250	255
Gln Val Ile Glu Arg Asn Ala Phe Asp Asn Leu Gln Ser Leu Val		
260	265	270
Glu Ile Asn Leu Ala His Asn Asn Leu Thr Leu Leu Pro His Asp		
275	280	285
Leu Phe Thr Pro Leu His His Leu Glu Arg Ile His Leu His His		
290	295	300
Asn Pro Trp Asn Cys Asn Cys Asp Ile Leu Trp Leu Ser Trp Trp		
305	310	315
Ile Lys Asp Met Ala Pro Ser Asn Thr Ala Cys Cys Ala Arg Cys		
320	325	330
Asn Thr Pro Pro Asn Leu Lys Gly Arg Tyr Ile Gly Glu Leu Asp		
335	340	345
Gln Asn Tyr Phe Thr Cys Tyr Ala Pro Val Ile Val Glu Pro Pro		
350	355	360
Ala Asp Leu Asn Val Thr Glu Gly Met Ala Ala Glu Leu Lys Cys		
365	370	375
Arg Ala Ser Thr Ser Leu Thr Ser Val Ser Trp Ile Thr Pro Asn		
380	385	390
Gly Thr Val Met Thr His Gly Ala Tyr Lys Val Arg Ile Ala Val		
395	400	405
Leu Ser Asp Gly Thr Leu Asn Phe Thr Asn Val Thr Val Gln Asp		
410	415	420

Thr Gly Met Tyr Thr Cys Met Val Ser Asn Ser Val Gly Asn Thr
 425 430 435
 Thr Ala Ser Ala Thr Leu Asn Val Thr Ala Ala Thr Thr Thr Pro
 440 445 450
 Phe Ser Tyr Phe Ser Thr Val Thr Val Glu Thr Met Glu Pro Ser
 455 460 465
 Gln Asp Glu Ala Arg Thr Thr Asp Asn Asn Val Gly Pro Thr Pro
 470 475 480
 Val Val Asp Trp Glu Thr Thr Asn Val Thr Thr Ser Leu Thr Pro
 485 490 495
 Gln Ser Thr Arg Ser Thr Glu Lys Thr Phe Thr Ile Pro Val Thr
 500 505 510
 Asp Ile Asn Ser Gly Ile Pro Gly Ile Asp Glu Val Met Lys Thr
 515 520 525
 Thr Lys Ile Ile Ile Gly Cys Phe Val Ala Ile Thr Leu Met Ala
 530 535 540
 Ala Val Met Leu Val Ile Phe Tyr Lys Met Arg Lys Gln His His
 545 550 555
 Arg Gln Asn His His Ala Pro Thr Arg Thr Val Glu Ile Ile Asn
 560 565 570
 Val Asp Asp Glu Ile Thr Gly Asp Thr Pro Met Glu Ser His Leu
 575 580 585
 Pro Met Pro Ala Ile Glu His Glu His Leu Asn His Tyr Asn Ser
 590 595 600
 Tyr Lys Ser Pro Phe Asn His Thr Thr Thr Val Asn Thr Ile Asn
 605 610 615
 Ser Ile His Ser Ser Val His Glu Pro Leu Leu Ile Arg Met Asn
 620 625 630
 Ser Lys Asp Asn Val Gln Glu Thr Gln Ile
 635 640
 <210> 293
 <211> 4053
 <212> DNA
 <213> Homo Sapien
 <400> 293
 agccgacgct gctcaagctg caactctgtt gcagttggca gttctttcg 50

gttccctcc tgctgttgg gggcatgaaa gggcttcgcc gccgggagta 100
aaagaaggaa ttgaccgggc agcgcgaggg aggagcgcgc acgcgaccgc 150
gagggcgggc gtgcaccctc ggctggaagt ttgtgccggg ccccgagcgc 200
gccccggctg ggagcttcgg gtagagacct aggccgctgg accgcgatga 250
gcgccggag cctccgtcg cgccgcgcgg ggttgggct gctgctgtgc 300
gcggtgctgg ggccgcgtgg ccggtccgac agcggcggtc gcgggaaact 350
cgggcagccc tctgggttag ccgcccagcg cccatgcccc actacctgcc 400
gctgcctcgg ggacctgctg gactgcagtc gtaagcggct agcgcgtctt 450
cccgagccac tcccgtcctg ggtcgctcgg ctggacttaa gtcacaacag 500
attatcttc atcaaggcaa gttccatgag ccacctcaa agccttcgag 550
aagtgaaact gaacaacaat gaattggaga ccattccaaa tctggacca 600
gtctcgcaa atattacact totctccttg gctggaaaca ggattgttga 650
aatactccct gaacatctga aagagttca gtcccttcaa actttggacc 700
ttagcagcaa caatattca gagctccaaa ctgcatttcc agccctacag 750
ctcaaatac tgtatctcaa cagcaaccga gtcacatcaa tggaacctgg 800
gtatttgac aatttggcca acacactcct tgtgttaaag ctgaacagga 850
accgaatctc agctatccca cccaaatgtt taaaactgcc ccaactgcaa 900
catctcgaat tgaaccgaaa caagattaaa aatgttagatg gactgacatt 950
ccaaggcctt ggtgctctga agtctctgaa aatgcaaaga aatggagtaa 1000
cgaaacttat ggatggagct ttttggggc tgagcaacat gggaaatttg 1050
cagctggacc ataacaacct aacagagatt accaaaggct ggcttacgg 1100
cttgctgatg ctgcaggaac ttcatctcag cccaaatgcc atcaacagga 1150
tcagccctga tgcctggag ttctgccaga agctcagtga gctggaccta 1200
actttcaatc acttatcaag gtttagatgt tcaagctcc ttggcctaag 1250
cttactaaat acactgcaca ttggaaacaa cagagtcagc tacattgctg 1300
attgtgcctt ccggggcctt tccagttaa agactttgga tctgaagaac 1350

aatgaaattt cctggactat tgaagacatg aatggtgctt totctggct 1400
tgacaaaactg aggcgactga tactccaagg aaatcggtc cgttctatta 1450
ctaaaaaaagc cttaactggt ttggatgcat tggagcatct agacctgagt 1500
gacaacgcaa tcatagtcttt acaaggcaat gcatttcac aaatgaagaa 1550
actgcaacaa ttgcatttaa atacatcaag ccttttgtc gattgccagc 1600
taaaatggct cccacagtgg gtggcggaaa acaactttca gagctttgta 1650
aatgcccagtt gtgcccattcc tcagctgcta aaaggaagaa gcattttgc 1700
tggtagccca gatggctttg tgtgtgatga tttccaaa cccagatca 1750
cggttcagcc agaaacacag tcggcaataa aaggtccaa tttgagttc 1800
atctgctcag ctgccagcag cagtgattcc ccaatgactt ttgcttgaa 1850
aaaagacaat gaactactgc atgatgctga aatggaaaat tatgcacacc 1900
tccggccca aggtggcgag gtgatggagt ataccaccat cttcggctg 1950
cgcgagggtgg aatttgccag tgaggggaaa tatcagtgtc tcatactccaa 2000
tcactttggt tcatactact ctgtcaaagc caagcttaca gtaaatatgc 2050
ttccctcatt caccaagacc cccatggatc tcaccatccg agctggggcc 2100
atggcacgct tggagtgtgc tgctgtgggg cacccagcccc cccagatagc 2150
ctggcagaag gatggggca cagacttccc agctgcacgg gagagacgca 2200
tgcattgtat gcccaggat gacgtttct ttatcgtgga tgtgaagata 2250
gaggacattt gggatacag ctgcacagct cagaacagtg caggaagtat 2300
ttcagcaaat gcaactctga ctgtcctaga aacaccatca ttttgcggc 2350
cactgttggc ccgaactgtc accaaggag aaacagccgt cctacagtgc 2400
attgctggag gaagccctcc ccctaaactg aactggacca aagatgatag 2450
cccatgggtg gtaaccgaga ggcactttt tgcaagcaggc aatcagctc 2500
tgattattgt ggactcagat gtcagtgtatg ctggaaata cacatgtgag 2550
atgtctaaca cccttggcac tgagagagga aacgtgcgcc tcagtgtat 2600
ccccactcca acctgcgact cccctcagat gacagccccca tcgttagacg 2650
atgacggatg ggccactgtg ggtgtcgtga tcataccgt ggtttgtgt 2700

gtggtggca cgtcactcggtggtc atcatataacc acacaaggcg 2750
gaggaatgaa gattgcagca ttaccaacac agatgagacc aacttgccag 2800
cagatattcc tagttatgg tcatctcagg gaacgttagc tgacaggcag 2850
gatggtacg tgtttcaga aagtggaaagc caccaccagt ttgtcacatc 2900
ttcaggtgct ggattttct taccacaaca tgacagtagt gggacctgcc 2950
atattgacaa tagcagtgaa gctgatgtgg aagctgccac agatctgttc 3000
cttgcgttccgt ttttggatc cacaggccct atgtatggta agggaaatgt 3050
gtatggctca gatccttttgc aaacatatca tacaggttgc agtcctgacc 3100
caagaacagt tttaatggac cactatgagc ccagttacat aaagaaaaaag 3150
gagtgcattacc catgttctca tccttcagaa gaatcctgcg aacggagctt 3200
cagtaatata tcgtggcctt cacatgtgag gaagctactt aacactagtt 3250
actctcacaa tgaaggacct ggaatgaaaaa atctgtgtct aaacaagtcc 3300
tcttttagatt ttagtgcaaa tccagagcca gcgtcggttg cctcgagtaa 3350
ttctttcatg ggtacccccc gaaaagctct caggagacct cacctagatg 3400
cctattcaag ctggacag ccattcagatt gtcagccaag agccttttat 3450
ttgaaagctc attctcccc agacttggac tctgggtcag aggaagatgg 3500
gaaagaaaagg acagatttc aggaagaaaa tcacattgt acctttaaac 3550
agactttttaga aaactacagg actccaaatt ttcagtctta tgacttggac 3600
acatagactg aatgagacca aaggaaaagc ttaacataact acctaagtg 3650
aaccttttatt taaaagagag agaatcttatt gtttttaaaa tggagttatg 3700
aattttaaaa ggataaaaaat gctttatata tacagatgaa ccaaaattac 3750
aaaaagttat gaaaattttt atactggaa tgatgctcat ataagaatac 3800
ctttttaaac tatttttaa ctttggatata tgcaaaaaag tatcttacgt 3850
aaattaatga tataaatcat gattatata tgtatataa taatgccaga 3900
tttctttta tggaaaatga gttactaaag cattttaaat aatacctgcc 3950
ttgtaccatt ttttaatag aagttacttc attatattt gcacattata 4000

ttaataaaaa tgtgtcaatt tgaaaaaaaaaaaaaaaaaaaaaaa 4050

aaa 4053

<210> 294

<211> 1119

<212> PRT

<213> Homo Sapien

<400> 294

Met	Ser	Ala	Pro	Ser	Leu	Arg	Ala	Arg	Ala	Ala	Gly	Leu	Gly	Leu
1														
					5				10					15

Leu	Leu	Cys	Ala	Val	Leu	Gly	Arg	Ala	Gly	Arg	Ser	Asp	Ser	Gly
					20				25					30

Gly	Arg	Gly	Glu	Leu	Gly	Gln	Pro	Ser	Gly	Val	Ala	Ala	Glu	Arg
					35				40					45

Pro	Cys	Pro	Thr	Thr	Cys	Arg	Cys	Leu	Gly	Asp	Leu	Leu	Asp	Cys
					50				55					60

Ser	Arg	Lys	Arg	Leu	Ala	Arg	Leu	Pro	Glu	Pro	Leu	Pro	Ser	Trp
					65				70					75

Val	Ala	Arg	Leu	Asp	Leu	Ser	His	Asn	Arg	Leu	Ser	Phe	Ile	Lys
					80				85					90

Ala	Ser	Ser	Met	Ser	His	Leu	Gln	Ser	Leu	Arg	Glu	Val	Lys	Leu
					95				100					105

Asn	Asn	Asn	Glu	Leu	Glu	Thr	Ile	Pro	Asn	Leu	Gly	Pro	Val	Ser
					110				115					120

Ala	Asn	Ile	Thr	Leu	Leu	Ser	Leu	Ala	Gly	Asn	Arg	Ile	Val	Glu
					125				130					135

Ile	Leu	Pro	Glu	His	Leu	Lys	Glu	Phe	Gln	Ser	Leu	Glu	Thr	Leu
					140				145					150

Asp	Leu	Ser	Ser	Asn	Asn	Ile	Ser	Glu	Leu	Gln	Thr	Ala	Phe	Pro
					155				160					165

Ala	Leu	Gln	Leu	Lys	Tyr	Leu	Tyr	Leu	Asn	Ser	Asn	Arg	Val	Thr
					170				175					180

Ser	Met	Glu	Pro	Gly	Tyr	Phe	Asp	Asn	Leu	Ala	Asn	Thr	Leu	Leu
					185				190					195

Val	Leu	Lys	Leu	Asn	Arg	Asn	Arg	Ile	Ser	Ala	Ile	Pro	Pro	Lys
					200				205					210

Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn

215	220	225
Lys Ile Lys Asn Val Asp Gly Leu Thr Phe Gln Gly Leu Gly Ala		
230	235	240
Leu Lys Ser Leu Lys Met Gln Arg Asn Gly Val Thr Lys Leu Met		
245	250	255
Asp Gly Ala Phe Trp Gly Leu Ser Asn Met Glu Ile Leu Gln Leu		
260	265	270
Asp His Asn Asn Leu Thr Glu Ile Thr Lys Gly Trp Leu Tyr Gly		
275	280	285
Leu Leu Met Leu Gln Glu Leu His Leu Ser Gln Asn Ala Ile Asn		
290	295	300
Arg Ile Ser Pro Asp Ala Trp Glu Phe Cys Gln Lys Leu Ser Glu		
305	310	315
Leu Asp Leu Thr Phe Asn His Leu Ser Arg Leu Asp Asp Ser Ser		
320	325	330
Phe Leu Gly Leu Ser Leu Leu Asn Thr Leu His Ile Gly Asn Asn		
335	340	345
Arg Val Ser Tyr Ile Ala Asp Cys Ala Phe Arg Gly Leu Ser Ser		
350	355	360
Leu Lys Thr Leu Asp Leu Lys Asn Asn Glu Ile Ser Trp Thr Ile		
365	370	375
Glu Asp Met Asn Gly Ala Phe Ser Gly Leu Asp Lys Leu Arg Arg		
380	385	390
Leu Ile Leu Gln Gly Asn Arg Ile Arg Ser Ile Thr Lys Lys Ala		
395	400	405
Phe Thr Gly Leu Asp Ala Leu Glu His Leu Asp Leu Ser Asp Asn		
410	415	420
Ala Ile Met Ser Leu Gln Gly Asn Ala Phe Ser Gln Met Lys Lys		
425	430	435
Leu Gln Gln Leu His Leu Asn Thr Ser Ser Leu Leu Cys Asp Cys		
440	445	450
Gln Leu Lys Trp Leu Pro Gln Trp Val Ala Glu Asn Asn Phe Gln		
455	460	465
Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Leu Lys Gly		
470	475	480

Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp
 485 490 495
 Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala
 500 505 510
 Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser
 515 520 525
 Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu
 530 535 540
 Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln
 545 550 555
 Gly Gly Glu Val Met Glu Tyr Thr Thr Ile Leu Arg Leu Arg Glu
 560 565 570
 Val Glu Phe Ala Ser Glu Gly Lys Tyr Gln Cys Val Ile Ser Asn
 575 580 585
 His Phe Gly Ser Ser Tyr Ser Val Lys Ala Lys Leu Thr Val Asn
 590 595 600
 Met Leu Pro Ser Phe Thr Lys Thr Pro Met Asp Leu Thr Ile Arg
 605 610 615
 Ala Gly Ala Met Ala Arg Leu Glu Cys Ala Ala Val Gly His Pro
 620 625 630
 Ala Pro Gln Ile Ala Trp Gln Lys Asp Gly Gly Thr Asp Phe Pro
 635 640 645
 Ala Ala Arg Glu Arg Arg Met His Val Met Pro Glu Asp Asp Val
 650 655 660
 Phe Phe Ile Val Asp Val Lys Ile Glu Asp Ile Gly Val Tyr Ser
 665 670 675
 Cys Thr Ala Gln Asn Ser Ala Gly Ser Ile Ser Ala Asn Ala Thr
 680 685 690
 Leu Thr Val Leu Glu Thr Pro Ser Phe Leu Arg Pro Leu Leu Asp
 695 700 705
 Arg Thr Val Thr Lys Gly Glu Thr Ala Val Leu Gln Cys Ile Ala
 710 715 720
 Gly Gly Ser Pro Pro Pro Lys Leu Asn Trp Thr Lys Asp Asp Ser
 725 730 735
 Pro Leu Val Val Thr Glu Arg His Phe Phe Ala Ala Gly Asn Gln
 740 745 750

Leu Leu Ile Ile Val Asp Ser Asp Val Ser Asp Ala Gly Lys Tyr
 755 760 765
 Thr Cys Glu Met Ser Asn Thr Leu Gly Thr Glu Arg Gly Asn Val
 770 775 780
 Arg Leu Ser Val Ile Pro Thr Pro Thr Cys Asp Ser Pro Gln Met
 785 790 795
 Thr Ala Pro Ser Leu Asp Asp Asp Gly Trp Ala Thr Val Gly Val
 800 805 810
 Val Ile Ile Ala Val Val Cys Cys Val Val Gly Thr Ser Leu Val
 815 820 825
 Trp Val Val Ile Ile Tyr His Thr Arg Arg Arg Asn Glu Asp Cys
 830 835 840
 Ser Ile Thr Asn Thr Asp Glu Thr Asn Leu Pro Ala Asp Ile Pro
 845 850 855
 Ser Tyr Leu Ser Ser Gln Gly Thr Leu Ala Asp Arg Gln Asp Gly
 860 865 870
 Tyr Val Ser Ser Glu Ser Gly Ser His His Gln Phe Val Thr Ser
 875 880 885
 Ser Gly Ala Gly Phe Phe Leu Pro Gln His Asp Ser Ser Gly Thr
 890 895 900
 Cys His Ile Asp Asn Ser Ser Glu Ala Asp Val Glu Ala Ala Thr
 905 910 915
 Asp Leu Phe Leu Cys Pro Phe Leu Gly Ser Thr Gly Pro Met Tyr
 920 925 930
 Leu Lys Gly Asn Val Tyr Gly Ser Asp Pro Phe Glu Thr Tyr His
 935 940 945
 Thr Gly Cys Ser Pro Asp Pro Arg Thr Val Leu Met Asp His Tyr
 950 955 960
 Glu Pro Ser Tyr Ile Lys Lys Lys Glu Cys Tyr Pro Cys Ser His
 965 970 975
 Pro Ser Glu Glu Ser Cys Glu Arg Ser Phe Ser Asn Ile Ser Trp
 980 985 990
 Pro Ser His Val Arg Lys Leu Leu Asn Thr Ser Tyr Ser His Asn
 995 1000 1005
 Glu Gly Pro Gly Met Lys Asn Leu Cys Leu Asn Lys Ser Ser Leu

1010 1015 1020
Asp Phe Ser Ala Asn Pro Glu Pro Ala Ser Val Ala Ser Ser Asn
1025 1030 1035
Ser Phe Met Gly Thr Phe Gly Lys Ala Leu Arg Arg Pro His Leu
1040 1045 1050
Asp Ala Tyr Ser Ser Phe Gly Gln Pro Ser Asp Cys Gln Pro Arg
1055 1060 1065
Ala Phe Tyr Leu Lys Ala His Ser Ser Pro Asp Leu Asp Ser Gly
1070 1075 1080
Ser Glu Glu Asp Gly Lys Glu Arg Thr Asp Phe Gln Glu Glu Asn
1085 1090 1095
His Ile Cys Thr Phe Lys Gln Thr Leu Glu Asn Tyr Arg Thr Pro
1100 1105 1110
Asn Phe Gln Ser Tyr Asp Leu Asp Thr
1115

<210> 295

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 295

ggaaccgaat ctcagct 18

<210> 296

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 296

cctaaactga actggacca 19

<210> 297

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 297
ggctggagac actgaacct 19

<210> 298
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 298
acagctgcac agctcagaac agtg 24

<210> 299

<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 299
cattcccaagt ataaaaattt tc 22

<210> 300
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 300
gggtcttggt gaatgagg 18

<210> 301
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 301
gtgcctctcg gttaccacca atgg 24

<210> 302
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 302
gcggccactg ttggaccgaa ctgtAACCAA gggagaaaaca gccgtcctac 50

<210> 303
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 303
gcctttgaca accttcagtc actagtgg 28

<210> 304
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 304
ccccatgtgt ccatgactgt tccc 24

<210> 305
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 305
taetgacctca tgacctcttc actcccttgc atcatcttag agcgg 45

<210> 306
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 306
actccaaggaa aatcgatcc gttc 24

<210> 307
<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 307

ttagcagctg aggatggca caac 24

<210> 308

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 308

actccaagga aatcgatcc gttc 24

<210> 309

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 309

gccttcactg gtttggatgc attggagcat ctagacctga gtgacaacgc 50

<210> 310

<211> 3296

<212> DNA

<213> Homo Sapien

<400> 310

caaaaacttgc gtcgcccggaga gcgcggcggact tgacttgaat ggaaggagcc 50

cgagcccccgcg gagcgccggact gagactgggg gagcgccgttc ggccctgtggg 100

gcgcggctcg gcgcgggggc gcagcaggaa agggaaagct gtgggtctgcc 150

ctgctccacg aggccggact ggtgtgaacc gggagagccc ctgggtggtc 200

ccgtcccccta tccctccctt atatagaaac cttccacact gggaggccag 250

cggcgaggca ggaggggctca tggtgagcaa ggaggccggc tgatctgcag 300

cgccacagca ttcccgagttt acagattttt acagatacca aatggaaggc 350

gaggaggcag aacagcctgc ctgggtccat cagccctggc gcccaggccg 400

atctgactcg gcacccctg caggcaccat ggcccagagc cgggtgctgc 450
tgctcctgct gctgctgccg ccacagctgc acctgggacc tgtgcttgc 500
gtgagggccc caggatttg ccgaagtggc ggccacagcc tgagccccga 550
agagaacgaa tttgcggagg aggagccggt gctggtaactg agccctgagg 600
agcccgggcc tggcccagcc gcggtcagct gccccgaga ctgtgcctgt 650
tcccaggagg gcgtcgtgga ctgtggcggt attgacactgc gtgagttccc 700
gggggacctg cctgagcaca ccaaccacct atctctgcag aacaaccagc 750
tggaaaagat ctaccctgag gagctctccc ggctgcacccg gctggagaca 800
ctgaacctgc aaaacaaccg cctgacttcc cgagggctcc cagagaaggc 850
gtttgagcat ctgaccaacc tcaattacct gtacttggcc aataacaagc 900
tgaccttggc accccgcttc ctgccaaacg ccctgatcag tgtggacttt 950
gctgccaact atctcaccaa gatctatggg ctcacctttg gccagaagcc 1000
aaacttgagg tctgtgtacc tgcacaacaa caagctggca gacgccgggc 1050
tgccggacaa catgttcaac ggctccagca acgtcgaggt cctcatcctg 1100
tccagcaact tcctgcgcca cgtgccaag cacctgcccctg ctgccctgta 1150
caagctgcac ctcaagaaca acaagctgga gaagatcccc ccgggggct 1200
tcagcgagct gagcagcctg cgcgagctat acctgcagaa caactacctg 1250
actgacgagg gcctggacaa cgagaccttc tggaagctct ccagcctgga 1300
gtacctggat ctgtccagca acaacctgtc tcgggtccca gctgggctgc 1350
cgcgcagcct ggtgctgctg cacttggaga agaacgcctt ccggagcggt 1400
gacgcgaatg tgctgacccc catccgcagc ctggagtacc tgctgctgca 1450
cagcaaccag ctgcgggagc agggcatcca cccactggcc ttccaggggcc 1500
tcaagcggtt gcacacggtg cacctgtaca acaacgcgtt ggagcgcggt 1550
cccagtggcc tgcctcgccg cgtgcgcacc ctcatgatcc tgcacaacca 1600
gatcacagggc attggcccg aagactttgc caccacctac ttcctggagg 1650
agctcaacct cagctacaac cgcatcacca gcccacaggt gcaccgcgac 1700

gccttcgca agctgcgcct gctgcgctcg ctggacctgt cggcaaccg 1750
gctgcacacg ctgccacactg ggctgcctcg aaatgtccat gtgctgaagg 1800
tcaagcgc当地 tgagctggct gccttggcac gagggggcgct ggcgggcatg 1850
gctcagctgc gtgagctgta cctcaccaggc aaccgactgc gcagccgagc 1900
cctggggccc cgtgcctggg tggacctcgc ccatctgcag ctgctggaca 1950
tcgcccggaa tcagctcaca gagatccccg aggggctccc cgagtcactt 2000
gagtacctgt acctgcagaa caacaagatt agtgcgggtgc cggccaatgc 2050
cttcgactcc acgccccacc tcaagggat ctttctcagg tttaacaaggc 2100
tggctgtggg ctccgtggtg gacagtgcct tccggaggct gaagcacctg 2150
caggtcttgg acattgaagg caacttagag tttggtgaca tttccaagga 2200
ccgtggccgc ttggggaaagg aaaaggagga ggaggaagag gaggaggagg 2250
aggaagagga aacaagatag tgacaaggtg atgcagatgt gacctaggat 2300
gatggaccgc cggactctt tctgcagcac acgcctgtgt gctgtgagcc 2350
ccccactctg ccgtgctcac acagacacac ccagctgcac acatgaggca 2400
tcccacatga cacgggctga cacagtctca tatccccacc cttcccaacg 2450
gcgtgtccca cggccagaca catgcacaca catcacaccc tcaaacaccc 2500
agtcagcca cacacaacta ccctccaaac caccacagtc tctgtcacac 2550
ccccactacc gtcgcacgc cctctgaatc atgcagggaa gggtctgccc 2600
ctgcccctggc acacacaggc acccattccc tccccctgct gacatgtgta 2650
tgcttatgca tacacaccac acacacacac atgcacaagt catgtgcgaa 2700
cagccctcca aagcctatgc cacagacagc tcttgcggca gccagaatca 2750
gccatagcag ctcgcgtct gccctgtcca tctgtccgtc cgttccctgg 2800
agaagacaca agggatcca tgctctgtgg ccaggtgcct gccaccctct 2850
ggaactcaca aaagctggct tttattccctt tcccatccta tggggacagg 2900
agccttcagg actgctggcc tggcctggcc caccctgctc ctccaggtgc 2950
tggcagtc当地 ctctgctaag agtccctccc tgccacgccc tggcaggaca 3000
cagggcactt tccaatgggc aagcccagtg gaggcaggat gggagagccc 3050

cctgggtgct gctggggcct tggggcagga gtgaagcaga ggtgatgggg 3100
ctgggctgag ccagggagga aggacccagc tgcacccagg agacaccctt 3150
gttcttcagg cctgtgggg aagttccggg tgcctttatt ttttattctt 3200
ttctaaggaa aaaaatgata aaaatctcaa agctgattt tcttgtata 3250
gaaaaactaa tataaaagca ttatccctat ccctgcaaaa aaaaaa 3296

<210> 311
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 311
gcattggccg cgagactttg cc 22

<210> 312
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 312
gcggccacgg tccttgaaa tg 22

<210> 313
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 313
tgaggaggct caacccctcaga tacaaccgca tcaccagccc acagg 45

<210> 314
<211> 3003
<212> DNA
<213> Homo Sapien

<400> 314
gggaggggggc tccggggcgcc gcgcagcaga cctgctccgg ccgcgcgcct 50
cgcccgctgtc ctccgggagc ggcagcaga gccccggcgg cgagggtgg 100

gggttcctcg agactctcg aggggcgcct cccatcgccg cccaccaccc 150
caacctgttc ctgcgcgcc actgcgctgc gccccaggac ccgctgccc 200
acatggattt tctcctggcg ctggtgctgg tatcctcgct ctacctgcag 250
gcggccgccc agttcgacgg gaggtggccc aggcaaatacg tgcatacgat 300
tggcctatgt cggtatggtg ggaggattga ctgctgctgg ggctgggctc 350
gccagtcttg gggacagtgt cagcctgtgt gccaaaccacg atgcaaacat 400
ggtaatgta tcgggccaaa caagtgcaga tgcatcctg gttatgctgg 450
aaaaacctgt aatcaagatc taaatgagtg tggcctgaag ccccgccct 500
gtaagcacag gtgcatacgac acttacggca gctacaagtg ctactgtctc 550
aacggatata tgctcatgcc ggatggttcc tgctcaagtg ccctgacctg 600
ctccatggca aactgtcagt atggctgtga tgttttaaa ggacaaatac 650
gggccagtg cccatccccct ggcctgcacc tggctcctga tgggaggacc 700
tgtgttagatg ttgatgaatg tgctacagga agagcctcct gccctagatt 750
taggcaatgt gtcaacactt ttggagcta catctgcaga tgtcataaag 800
gcttcgatct catgtatatt ggaggcaa atcaatgtca tgacatagac 850
gaatgctcac ttggtcagta tcagtgccgc agctttgctc gatgttataa 900
cgtacgtggg tcctacaagt gcaaatacgaa agaaggatac cagggtgatg 950
gactgacttg tgttatatc caaaagtta tgattgaacc ttcaggtcca 1000
attcatgtac caaaggaaa tggtaccatt tttaagggtg acacaggaaa 1050
taataattgg attcctgatg ttggaaagtac ttggggcct ccgaagacac 1100
catatatcc tcctatcatt accaacaggc ctacttctaa gccaaacaaca 1150
agacctacac caaagccaac accaattcct actccaccac caccaccacc 1200
cctgccaaca gagctcagaa cacctctacc acctacaacc ccagaaaggc 1250
caaccaccgg actgacaact atagcaccag ctgcccgtac acctccagga 1300
gggattacag ttgacaacag ggtacagaca gaccctcaga aacccagagg 1350
agatgtgttc agtgttctgg tacacagttg taatttgac catggacttt 1400

gtggatggat cagggagaaa gacaatgact tgcactggga accaatcagg 1450
gaccaggcag gtggacaata tctgacagtg tcggcagcca aagccccagg 1500
ggaaaaagct gcacgcttgg tgctacctct cggccgcctc atgcattcag 1550
gggacctgtg cctgtcattc aggcacaagg tgacggggct gcactctggc 1600
acactccagg tgtttgtag aaaaacacggt gcccaacggag cagccctgtg 1650
gggaagaaat ggtggccatg gctggaggca aacacagatc accttgcgag 1700
gggctgacat caagagcgaa tcacaaagat gattaaaggg ttggaaaaaa 1750
agatctatga tggaaaatta aaggaactgg gattattgag cctggagaag 1800
agaagactga ggggcaaacc attgatggtt ttcaagtata tgaagggtt 1850
gcacagagag ggtggccgacc agctgttctc catatgcact aagaatagaa 1900
caagagggaaa ctggcttaga cttagtata agggagcatt tcttggcagg 1950
ggccattgtt agaatacttc ataaaaaaaaa aagtgtgaaa atctcagtat 2000
ctctctctct ttctaaaaaa ttagataaaa atttgtctat ttaagatgg 2050
taaagatgtt cttacccaag gaaaagtaac aaattataga atttcccaa 2100
agatgttttgc atcctactag tagtatgcag tgaaaatctt tagaactaaa 2150
taatttggac aaggcttaat ttaggcattt ccctcttgac ctcctaattgg 2200
agagggatttgc aaagggaaag agcccaccaa atgctgagct cactgaaata 2250
tctctccctt atggcaatcc tagcagtatt aaagaaaaaa ggaaactatt 2300
tattccaaat gagagtatga tggacagata ttttagtac tcagtaatgt 2350
ctctgtgg cggtggttt caatgtttct tcattgtaaa ggtataagcc 2400
tttcatttgt tcaatggatg atgtttcaga ttttttttt ttaagagat 2450
ccttcaagga acacagttca gagagatttt catcggtgc attctctctg 2500
cttcgtgtgt gacaagttat cttggctgct gagaaagagt gccctgcccc 2550
acaccggcag acctttcctt cacctcatca gtatgattca gtttctctta 2600
tcaattggac tctcccgatg tccacagaac agtaatattt tttgaacaat 2650
aggtacaata gaaggcttc tgcatttaa cctggtaaag gcagggctgg 2700
agggggaaaa taaatcatta agccttgag taacggcaga atatatggct 2750

gtagatccat ttttaatggc tcatttcctt tatggcata taactgcaca 2800
 gctgaagatg aaaggggaaa ataaatgaaa attttacttt tcgatgc当地 2850
 tgatacattg cactaaactg atggaagaag ttatccaaag tactgtataa 2900
 catcttgaaa attatataat gtttctaaa ataaaaatg ttagtggaaa 2950
 tccaaatggc ctaataaaaa caattatgg taaataaaaa cactgttagt 3000

aat 3003

<210> 315

<211> 509

<212> PRT

<213> Homo Sapien

<400> 315		
Met Asp Phe Leu Leu Ala Leu Val Leu Val Ser Ser Leu Tyr Leu		
1	5	15
Gln Ala Ala Ala Glu Phe Asp Gly Arg Trp Pro Arg Gln Ile Val		
20	25	30
Ser Ser Ile Gly Leu Cys Arg Tyr Gly Gly Arg Ile Asp Cys Cys		
35	40	45
Trp Gly Trp Ala Arg Gln Ser Trp Gly Gln Cys Gln Pro Val Cys		
50	55	60
Gln Pro Arg Cys Lys His Gly Glu Cys Ile Gly Pro Asn Lys Cys		
65	70	75
Lys Cys His Pro Gly Tyr Ala Gly Lys Thr Cys Asn Gln Asp Leu		
80	85	90
Asn Glu Cys Gly Leu Lys Pro Arg Pro Cys Lys His Arg Cys Met		
95	100	105
Asn Thr Tyr Gly Ser Tyr Lys Cys Tyr Cys Leu Asn Gly Tyr Met		
110	115	120
Leu Met Pro Asp Gly Ser Cys Ser Ser Ala Leu Thr Cys Ser Met		
125	130	135
Ala Asn Cys Gln Tyr Gly Cys Asp Val Val Lys Gly Gln Ile Arg		
140	145	150
Cys Gln Cys Pro Ser Pro Gly Leu His Leu Ala Pro Asp Gly Arg		
155	160	165

Thr Cys Val Asp Val Asp Glu Cys Ala Thr Gly Arg Ala Ser Cys
 170 175 180
 Pro Arg Phe Arg Gln Cys Val Asn Thr Phe Gly Ser Tyr Ile Cys
 185 190 195
 Lys Cys His Lys Gly Phe Asp Leu Met Tyr Ile Gly Gly Lys Tyr
 200 205 210
 Gln Cys His Asp Ile Asp Glu Cys Ser Leu Gly Gln Tyr Gln Cys
 215 220 225
 Ser Ser Phe Ala Arg Cys Tyr Asn Val Arg Gly Ser Tyr Lys Cys
 230 235 240
 Lys Cys Lys Glu Gly Tyr Gln Gly Asp Gly Leu Thr Cys Val Tyr
 245 250 255
 Ile Pro Lys Val Met Ile Glu Pro Ser Gly Pro Ile His Val Pro
 260 265 270
 Lys Gly Asn Gly Thr Ile Leu Lys Gly Asp Thr Gly Asn Asn Asn
 275 280 285
 Trp Ile Pro Asp Val Gly Ser Thr Trp Trp Pro Pro Lys Thr Pro
 290 295 300
 Tyr Ile Pro Pro Ile Ile Thr Asn Arg Pro Thr Ser Lys Pro Thr
 305 310 315
 Thr Arg Pro Thr Pro Lys Pro Thr Pro Ile Pro Thr Pro Pro Pro
 320 325 330
 Pro Pro Pro Leu Pro Thr Glu Leu Arg Thr Pro Leu Pro Pro Thr
 335 340 345
 Thr Pro Glu Arg Pro Thr Thr Gly Leu Thr Thr Ile Ala Pro Ala
 350 355 360
 Ala Ser Thr Pro Pro Gly Gly Ile Thr Val Asp Asn Arg Val Gln
 365 370 375
 Thr Asp Pro Gln Lys Pro Arg Gly Asp Val Phe Ser Val Leu Val
 380 385 390
 His Ser Cys Asn Phe Asp His Gly Leu Cys Gly Trp Ile Arg Glu
 395 400 405
 Lys Asp Asn Asp Leu His Trp Glu Pro Ile Arg Asp Pro Ala Gly
 410 415 420
 Gly Gln Tyr Leu Thr Val Ser Ala Ala Lys Ala Pro Gly Gly Lys

425	430	435
Ala Ala Arg Leu Val Leu Pro Leu Gly Arg Leu Met His Ser Gly		
440	445	450
Asp Leu Cys Leu Ser Phe Arg His Lys Val Thr Gly Leu His Ser		
455	460	465
Gly Thr Leu Gln Val Phe Val Arg Lys His Gly Ala His Gly Ala		
470	475	480
Ala Leu Trp Gly Arg Asn Gly Gly His Gly Trp Arg Gln Thr Gln		
485	490	495
Ile Thr Leu Arg Gly Ala Asp Ile Lys Ser Glu Ser Gln Arg		
500	505	

<210> 316

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 316

gatggttcct gctcaagtgc cctg 24

<210> 317

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 317

ttgcacttgt aggacccacg tacg 24

<210> 318

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 318

ctgatggag gacctgtgta gatgttgatg aatgtgctac aggaagagcc 50

<210> 319

<211> 2110

<212> DNA

<213> Homo Sapien

<400> 319
cttcttgaa aaggattatc acctgatcag gttctctctg catttgcggcc 50
tttagattgt gaaatgtggc tcaaggtctt cacaactttc cttdcccttg 100
caacaggtgc ttgctcgaaa ctgaaggtga cagtgccatc acacactgtc 150
catggcgtca gaggtcaggc cctctaccta cccgtccact atggcttcca 200
cactccagca tcagacatcc agatcatatg gctattttag agaccccaca 250
caatgccccaa atacttactg ggctctgtga ataagtctgt ggttcctgac 300
ttgaaatacc aacacaagtt caccatgatg ccacccaatg catctctgct 350
tatcaaccca ctgcagttcc ctgatgaagg caattacatc gtgaaggtca 400
acattcaggg aaatgaaact ctatctgcca gtcagaagat acaagtcacg 450
gttgcgtatc ctgtcacaaa gccagtggtg cagattcatc ctccctctgg 500
ggctgtggag tatgtgggaa acatgacccct gacatgccat gtggaaagggg 550
gcactcggct agcttaccaa tggctaaaaa atgggagacc tgtccacacc 600
agctccaccc actcctttc tccccaaaaac aatacccttc atattgctcc 650
agtaaccaag gaagacattt ggaattacag ctgcctggtg aggaacccctg 700
tcagtgaaat ggaaagtgtat atcattatgc ccatcatata ttatggacct 750
tatggacttc aagtgaattt tgataaaaggg ctaaaagtag gggaaagtgtt 800
tactgttgcac cttggagagg ccatttttatt tgattgttct gctgattctc 850
atccccccaa cacctactcc tggatttagga ggactgacaa tactacatat 900
atcattaagc atgggcctcg cttagaaagtt gcatctgaga aagtagccca 950
gaagacaatg gactatgtgt gctgtgctta caacaacata accggcaggc 1000
aagatgaaac tcatttcaca gttatcatca ctcccgtagg actggagaag 1050
cttgcacaga aaggaaaatc attgtcaccc tttagcaagta taactggaat 1100
atcactattt ttgatttatat ccatgtgtct tctcttccta tggaaaaaat 1150
atcaacccta caaagttata aaacagaaac tagaaggcag gccagaaaca 1200
gaatacagga aagctcaaac attttcaggc catgaagatg ctctggatga 1250

cttcggata tatgaatttg ttgctttcc agatgttct ggtgtttcca 1300
 ggattccaag caggtctgtt ccagcctctg attgtgtatc ggggcaagat 1350
 ttgcacagta cagtgtatga agttattcag cacatccctg cccagcagca 1400
 agaccatcca gagtgaactt tcatgggcta aacagtacat tcgagtgaaa 1450
 ttctgaagaa acatTTAAG gaaaaacagt gaaaaagtat attaatctgg 1500
 aatcagtgaa gaaaccagga ccaacacctc ttactcatta ttcctttaca 1550
 tgcagaatag aggcatTTT gcaaattgaa ctgcaggTTT ttcagcata 1600
 acacaatgtc ttgtgcaaca gaaaaacatg ttggggaaat attcctcagt 1650
 ggagagtctgt tctcatgctg acggggagaa cgaaagtgac aggggtttcc 1700
 tcataagttt tgtatgaaat atctctacaa acctcaatta gttctactct 1750
 acactttcac tatcatcaac actgagacta tcctgtctca cctacaaatg 1800
 tgaaaaactt acattgtcg atTTTCAGC agactttgtt ttattaaatt 1850
 tttatttagtg ttaagaatgc taaatttatg tttcaatttt atttccaaat 1900
 ttctatcttg ttatttgtac aacaaagtaa taaggatggt tgcacaaaa 1950
 acaaaaactat gccttctctt tttttcaat caccagtagt atttttgaga 2000
 agacttgcga acacttaagg aaatgactat taaagtctta tttttatttt 2050
 ttcaaggaa agatggattc aaataaatta ttctgtttt gctttaaaa 2100
 aaaaaaaaaa 2110

<210> 320
 <211> 450
 <212> PRT
 <213> Homo Sapien

<400> 320				
Met Trp Leu Lys Val Phe Thr Thr Phe Leu Ser Phe Ala Thr Gly				
1	5	10		15
Ala Cys Ser Gly Leu Lys Val Thr Val Pro Ser His Thr Val His				
20	25			30
Gly Val Arg Gly Gln Ala Leu Tyr Leu Pro Val His Tyr Gly Phe				
35	40			45
His Thr Pro Ala Ser Asp Ile Gln Ile Ile Trp Leu Phe Glu Arg				
50	55			60

Pro His Thr Met Pro Lys Tyr Leu Leu Gly Ser Val Asn Lys Ser
 65 70 75

Val Val Pro Asp Leu Glu Tyr Gln His Lys Phe Thr Met Met Pro
 80 85 90

Pro Asn Ala Ser Leu Leu Ile Asn Pro Leu Gln Phe Pro Asp Glu
 95 100 105

Gly Asn Tyr Ile Val Lys Val Asn Ile Gln Gly Asn Gly Thr Leu
 110 115 120

Ser Ala Ser Gln Lys Ile Gln Val Thr Val Asp Asp Pro Val Thr
 125 130 135

Lys Pro Val Val Gln Ile His Pro Pro Ser Gly Ala Val Glu Tyr
 140 145 150

Val Gly Asn Met Thr Leu Thr Cys His Val Glu Gly Gly Thr Arg
 155 160 165

Leu Ala Tyr Gln Trp Leu Lys Asn Gly Arg Pro Val His Thr Ser
 170 175 180

Ser Thr Tyr Ser Phe Ser Pro Gln Asn Asn Thr Leu His Ile Ala
 185 190 195

Pro Val Thr Lys Glu Asp Ile Gly Asn Tyr Ser Cys Leu Val Arg
 200 205 210

Asn Pro Val Ser Glu Met Glu Ser Asp Ile Ile Met Pro Ile Ile
 215 220 225

Tyr Tyr Gly Pro Tyr Gly Leu Gln Val Asn Ser Asp Lys Gly Leu
 230 235 240

Lys Val Gly Glu Val Phe Thr Val Asp Leu Gly Glu Ala Ile Leu
 245 250 255

Phe Asp Cys Ser Ala Asp Ser His Pro Pro Asn Thr Tyr Ser Trp
 260 265 270

Ile Arg Arg Thr Asp Asn Thr Thr Tyr Ile Ile Lys His Gly Pro
 275 280 285

Arg Leu Glu Val Ala Ser Glu Lys Val Ala Gln Lys Thr Met Asp
 290 295 300

Tyr Val Cys Cys Ala Tyr Asn Asn Ile Thr Gly Arg Gln Asp Glu
 305 310 315

Thr His Phe Thr Val Ile Ile Thr Ser Val Gly Leu Glu Lys Leu

320	325	330
Ala Gln Lys Gly Lys Ser Leu Ser Pro Leu Ala Ser Ile Thr Gly		
335	340	345
Ile Ser Leu Phe Leu Ile Ile Ser Met Cys Leu Leu Phe Leu Trp		
350	355	360
Lys Lys Tyr Gln Pro Tyr Lys Val Ile Lys Gln Lys Leu Glu Gly		
365	370	375
Arg Pro Glu Thr Glu Tyr Arg Lys Ala Gln Thr Phe Ser Gly His		
380	385	390
Glu Asp Ala Leu Asp Asp Phe Gly Ile Tyr Glu Phe Val Ala Phe		
395	400	405
Pro Asp Val Ser Gly Val Ser Arg Ile Pro Ser Arg Ser Val Pro		
410	415	420
Ala Ser Asp Cys Val Ser Gly Gln Asp Leu His Ser Thr Val Tyr		
425	430	435
Glu Val Ile Gln His Ile Pro Ala Gln Gln Asp His Pro Glu		
440	445	450

<210> 321

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 321

gatcctgtca caaagccagt ggtgc 25

<210> 322

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 322

cactgacagg gttcctcacc cagg 24

<210> 323

<211> 45

<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 323
ctccctctgg gctgtggagt atgtgggaa catgaccctg acatg 45

<210> 324
<211> 2397
<212> DNA
<213> Homo Sapien

<400> 324
gcaagcggcg aaatggcgcc ctccgggagt cttgcagttc ccctggcagt 50
cctggtgctg ttgcttggg gtgctccctg gacgcacggg cggcggagca 100
acgttcgcgt catcacggac gagaactgga gagaactgct ggaaggagac 150
tggatgatag aattttatgc cccgtggtgc cctgcttgc aaaatcttca 200
accggaatgg gaaaatggg ctgaatgggg agaagatctt gaggttaata 250
ttgcgaaagt agatgtcaca gaggcagccag gactgagtgg acggtttatac 300
ataactgctc ttcctactat ttatcattgt aaagatggtg aatttagggc 350
ctatcagggt ccaaggacta agaaggactt cataaacttt ataagtgata 400
aagagtggaa gagtattgag cccgtttcat catggttgg tccaggttct 450
gttctgatga gtagtatgtc agcaactttt cagctatcta tgtggatcag 500
gacgtgccat aactactta ttgaagacct tggattgcca gtgtgggat 550
catatactgt tttgcttta gcaactctgt tttccggact gttatttagga 600
ctctgtatga tatttgtggc agattgcctt tgtccttcaa aaaggcgcag 650
accacagcca tacccatacc cttcaaaaaa attattatca gaatctgcac 700
aacctttgaa aaaagtggag gaggaacaag aggccggatga agaagatgtt 750
tcagaagaag aagctgaaag taaagaagga acaaacaag actttccaca 800
gaatgccata agacaacgct ctctgggtcc atcattggcc acagataaat 850
cctagttaaa ttttatagtt atcttaatat tatgattttg ataaaaacag 900
aagattgatc attttgtttg gtttgaagtg aactgtgact ttttgaata 950
ttgcagggtt cagtctagat tgtcattaaa ttgaagagtc tacattcaga 1000

acataaaaagc actaggata caagttgaa atatgattt agcacagtat 1050
gatggtttaa atagttctct aattttgaa aaatcgcc aagcaataag 1100
atttatgtat atttggtaa taataaccta tttcaagtct gagtttgaa 1150
aatttacatt tcccaagtat tgcatattt aggtatttaa gaagattt 1200
tttagagaaaa atatttctca tttgatataa tttttctctg tttcactgtg 1250
tgaaaaaaaag aagatatttc ccataaatgg gaagttgcc cattgtctca 1300
agaaaatgtgt atttcagtga caatttcgtg gtcttttag aggtatattc 1350
caaaatttcc ttgtatTTT aggttatgca actaataaaa actaccttac 1400
attaatttaat tacagtttc tacacatggt aatacaggat atgctactga 1450
tttaggaagt tttaagttc atggattct cttgattcca acaaagttg 1500
atTTTCTCTT gtatTTTCT tacttactat gggttacatt ttttatttt 1550
caaattggat gataatttct tggaaacatt ttttatgttt tagtaaacag 1600
tatTTTTTG ttgtttcaaa ctgaagttt ctgagagatc catcaaattg 1650
aacaatctgt tgtaatttaa aattttggcc actTTTTCA gattttacat 1700
cattcttgct gaacttcaac ttgaaattgt ttttttttcc tttttggatg 1750
tgaaggtgaa cattcctgat ttttgtctga tgtggaaaag cttggatt 1800
ttacattttg aaaattcaaa gaagcttaat ataaaagttt gcattctact 1850
caggaaaaag catTTTCTTG tatatgtctt aaatgtattt ttgcctcat 1900
atacagaaaag ttcttaatttgc attttacagt ctgtaatgct tgatgtttt 1950
aaataataac atTTTtatAT tttttaaaag acaaacttca tattatcctg 2000
tgttcttcc tgactggtaa tattgtgtgg gatttcacag gtaaaagtca 2050
gtaggatgga acatttttagt gtatTTTAC tccttaaaga gctagaatac 2100
atagTTTCA ccttaaaaga agggggaaaa tcataaatac aatgaatcaa 2150
ctgaccatta cgttagtagac aatttctgta atgtccccctt ctttcttaggc 2200
tctgttgctg tgtgaatcca ttagattac agtacgtaa tatacaagtt 2250
ttctttaaag ccctctcctt tagaatttaa aatattgtac cattaaagag 2300
tttggatgtg taacttgtga tgccttagaa aaatatccta agcacaaaat 2350

aaaccttctt aaccacttca ttaaagctga aaaaaaaaaa aaaaaaaaa 2397

<210> 325

<211> 280

<212> PRT

<213> Homo Sapien

<400> 325

Met	Ala	Pro	Ser	Gly	Ser	Leu	Ala	Val	Pro	Leu	Ala	Val	Leu	Val
1														
						5			10					15

Leu	Leu	Leu	Trp	Gly	Ala	Pro	Trp	Thr	His	Gly	Arg	Arg	Ser	Asn
			20						25					30

Val	Arg	Val	Ile	Thr	Asp	Glu	Asn	Trp	Arg	Glu	Leu	Leu	Glu	Gly
			35						40					45

Asp	Trp	Met	Ile	Glu	Phe	Tyr	Ala	Pro	Trp	Cys	Pro	Ala	Cys	Gln
			50						55					60

Asn	Leu	Gln	Pro	Glu	Trp	Glu	Ser	Phe	Ala	Glu	Trp	Gly	Glu	Asp
			65						70					75

Leu	Glu	Val	Asn	Ile	Ala	Lys	Val	Asp	Val	Thr	Glu	Gln	Pro	Gly
			80						85					90

Leu	Ser	Gly	Arg	Phe	Ile	Ile	Thr	Ala	Leu	Pro	Thr	Ile	Tyr	His
			95						100					105

Cys	Lys	Asp	Gly	Glu	Phe	Arg	Arg	Tyr	Gln	Gly	Pro	Arg	Thr	Lys
			110						115					120

Lys	Asp	Phe	Ile	Asn	Phe	Ile	Ser	Asp	Lys	Glu	Trp	Lys	Ser	Ile
			125						130					135

Glu	Pro	Val	Ser	Ser	Trp	Phe	Gly	Pro	Gly	Ser	Val	Leu	Met	Ser
			140						145					150

Ser	Met	Ser	Ala	Leu	Phe	Gln	Leu	Ser	Met	Trp	Ile	Arg	Thr	Cys
			155						160					165

His	Asn	Tyr	Phe	Ile	Glu	Asp	Leu	Gly	Leu	Pro	Val	Trp	Gly	Ser
			170						175					180

Tyr	Thr	Val	Phe	Ala	Leu	Ala	Thr	Leu	Phe	Ser	Gly	Leu	Leu	
			185						190					195

Gly	Leu	Cys	Met	Ile	Phe	Val	Ala	Asp	Cys	Leu	Cys	Pro	Ser	Lys
			200						205					210

Arg Arg Arg Pro Gln Pro Tyr Pro Tyr Pro Ser Lys Lys Leu Leu

215	220	225
Ser Glu Ser Ala Gln Pro Leu Lys Lys Val Glu Glu Glu Gln Glu		
230	235	240
Ala Asp Glu Glu Asp Val Ser Glu Glu Ala Glu Ser Lys Glu		
245	250	255
Gly Thr Asn Lys Asp Phe Pro Gln Asn Ala Ile Arg Gln Arg Ser		
260	265	270
Leu Gly Pro Ser Leu Ala Thr Asp Lys Ser		
275	280	

<210> 326
<211> 23
<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 326
tgaggtgggc aagcggcgaa atg 23

<210> 327
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 327
tatgtggatc aggacgtgcc 20

<210> 328
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 328
tgcagggttc agtcttagatt g 21

<210> 329
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 329
ttgaaggaca aaggcaatct gccac 25

<210> 330
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 330
ggagtcttgc agttcccttg gcagtcctgg tgctgttgct ttggg 45

<210> 331
<211> 2168
<212> DNA
<213> Homo Sapien

<400> 331
gcgagtgtcc agctgcggag acccggtata attcgtaac taattcaaca 50
aacgggaccc ttctgtgtgc cagaaaccgc aagcagttgc taacccagtg 100
ggacaggcgg attggaagag cgggaaggtc ctggcccaga gcagtgtgac 150
acttccctct gtgaccatga aactctgggt gtctgcattg ctgatggcct 200
ggtttggtgt cctgagctgt gtgcaggccg aattcttcac ctctattggg 250
cacatgactg acctgattta tgcagagaaa gagctggtgc agtctctgaa 300
agagtacatc cttgtggagg aagccaagct ttccaagatt aagagctggg 350
ccaacaaaat ggaagccttg actagcaagt cagctgctga tgctgagggc 400
tacctggctc accctgtgaa tgcctacaaa ctggtaagc ggctaaacac 450
agactggcct gcgctggagg accttgcct gcaggactca gctgcagggt 500
ttatcgccaa cctctctgtc cagcggcagt tcttccccac tcatgaggac 550
gagataggag ctgcacaaagc cctgatgaga cttcaggaca catacaggct 600
ggaccaggc acaatttcca gaggggaact tccaggaacc aagtaccagg 650
caatgctgag tgtggatgac tgctttggga tggccgctc ggcctacaat 700
gaaggggact attatcatac ggtgttggg atggagcagg tgctaaagca 750

gcttgatgcc ggggaggagg ccaccacaac caagtcacag gtgctggact 800
acctcagcta tgctgtctc cagttgggtg atctgcaccc tgccctggag 850
ctcacccgcc gcctgctctc ctttgcacca agccacgaac gagctggagg 900
aatctgcgg tactttgagc agttatttggaa ggaagagaga gaaaaaacgt 950
taacaaatca gacagaagct gagcttagca ccccagaagg catctatgag 1000
aggcctgtgg actacactgcc ttagagggat gtttacgaga gcctctgtcg 1050
tggggagggt gtcaaactga caccggtag acagaagagg cttttctgtta 1100
ggtaccacca tggcaacagg gccccacagc tgctcattgc ccccttcaaa 1150
gaggaggacg agtgggacag cccgcacatc gtcaggtaact acgatgtcat 1200
gtctgatgag gaaatcgaga ggatcaagga gatcgaaaa cctaaacttg 1250
cacgagccac cggtcgat cccaagacag gagtcctcac tgccgcagc 1300
taccgggttt ccaaaagctc ctggcttagag gaagatgtatg accctgttgt 1350
ggcccgagta aatcgctgga tgcagcatat cacagggta acagtaaaga 1400
ctgcagaatt gttacaggtt gcaaattatg gagtgggagg acagtatgaa 1450
ccgcacttcg acttctctag gcgacccttt gacagcggcc tcaaaacaga 1500
ggggaaatagg tttagcgacgt ttcttaacta catgagtgtat gttagagctg 1550
gtggtgccac cgtctccct gatctgggg ctgcaatttg gcctaagaag 1600
ggtacagctg tggctggta caacctcttggg cggagcgggg aaggtgacta 1650
ccgaacaaga catgctgcct gccctgtgtc tgtggctgc aagtgggtct 1700
ccaataagtg gttccatgaa cgaggacagg agtttttgag accttggta 1750
tcaacagaag ttgactgaca tcctttctg tccttccct tcctggct 1800
tcagccccatg tcaacgtgac agacacctt gtatgttccct ttgtatgtc 1850
ctatcaggct gatttttggaa gaaatgaatg tttgtctggaa gcagagggag 1900
accataactag ggcgactcct gtgtgactga agtcccagcc cttccattca 1950
gcctgtgcca tccctggccc caaggctagg atcaaagtgg ctgcagcaga 2000
gttagctgtc tagcgccctag caaggtgcct ttgtacctca ggtgttttag 2050
gtgtgagatg tttcagtgaa ccaaagttct gataccttgtt ttacatgttt 2100

gttttatgg catttctatc tattgtggct ttaccaaaaa ataaaatgtc 2150

cctaccagaa aaaaaaaaa 2168

<210> 332

<211> 533

<212> PRT

<213> Homo Sapien

<400> 332

Met	Lys	Leu	Trp	Val	Ser	Ala	Leu	Leu	Met	Ala	Trp	Phe	Gly	Val
1									10					15

Leu	Ser	Cys	Val	Gln	Ala	Glu	Phe	Phe	Thr	Ser	Ile	Gly	His	Met
									20					30

Thr	Asp	Leu	Ile	Tyr	Ala	Glu	Glu	Leu	Val	Gln	Ser	Leu	Lys
									35				45

Glu	Tyr	Ile	Leu	Val	Glu	Glu	Ala	Lys	Leu	Ser	Lys	Ile	Lys	Ser
									50			55		60

Trp	Ala	Asn	Lys	Met	Glu	Ala	Leu	Thr	Ser	Lys	Ser	Ala	Ala	Asp
									65			70		75

Ala	Glu	Gly	Tyr	Leu	Ala	His	Pro	Val	Asn	Ala	Tyr	Lys	Leu	Val
									80			85		90

Lys	Arg	Leu	Asn	Thr	Asp	Trp	Pro	Ala	Leu	Glu	Asp	Leu	Val	Leu
									95			100		105

Gln	Asp	Ser	Ala	Ala	Gly	Phe	Ile	Ala	Asn	Leu	Ser	Val	Gln	Arg
									110			115		120

Gln	Phe	Phe	Pro	Thr	Asp	Glu	Asp	Glu	Ile	Gly	Ala	Ala	Lys	Ala
									125			130		135

Leu	Met	Arg	Leu	Gln	Asp	Thr	Tyr	Arg	Leu	Asp	Pro	Gly	Thr	Ile
									140			145		150

Ser	Arg	Gly	Glu	Leu	Pro	Gly	Thr	Lys	Tyr	Gln	Ala	Met	Leu	Ser
									155			160		165

Val	Asp	Asp	Cys	Phe	Gly	Met	Gly	Arg	Ser	Ala	Tyr	Asn	Glu	Gly
									170			175		180

Asp	Tyr	Tyr	His	Thr	Val	Leu	Trp	Met	Glu	Gln	Val	Leu	Lys	Gln
									185			190		195

Leu	Asp	Ala	Gly	Glu	Glu	Ala	Thr	Thr	Lys	Ser	Gln	Val	Leu	
									200			205		210

Asp Tyr Leu Ser Tyr Ala Val Phe Gln Leu Gly Asp Leu His Arg
 215 220 225
 Ala Leu Glu Leu Thr Arg Arg Leu Leu Ser Leu Asp Pro Ser His
 230 235 240
 Glu Arg Ala Gly Gly Asn Leu Arg Tyr Phe Glu Gln Leu Leu Glu
 245 250 255
 Glu Glu Arg Glu Lys Thr Leu Thr Asn Gln Thr Glu Ala Glu Leu
 260 265 270
 Ala Thr Pro Glu Gly Ile Tyr Glu Arg Pro Val Asp Tyr Leu Pro
 275 280 285
 Glu Arg Asp Val Tyr Glu Ser Leu Cys Arg Gly Glu Gly Val Lys
 290 295 300
 Leu Thr Pro Arg Arg Gln Lys Arg Leu Phe Cys Arg Tyr His His
 305 310 315
 Gly Asn Arg Ala Pro Gln Leu Leu Ile Ala Pro Phe Lys Glu Glu
 320 325 330
 Asp Glu Trp Asp Ser Pro His Ile Val Arg Tyr Tyr Asp Val Met
 335 340 345
 Ser Asp Glu Glu Ile Glu Arg Ile Lys Glu Ile Ala Lys Pro Lys
 350 355 360
 Leu Ala Arg Ala Thr Val Arg Asp Pro Lys Thr Gly Val Leu Thr
 365 370 375
 Val Ala Ser Tyr Arg Val Ser Lys Ser Ser Trp Leu Glu Glu Asp
 380 385 390
 Asp Asp Pro Val Val Ala Arg Val Asn Arg Arg Met Gln His Ile
 395 400 405
 Thr Gly Leu Thr Val Lys Thr Ala Glu Leu Leu Gln Val Ala Asn
 410 415 420
 Tyr Gly Val Gly Gly Gln Tyr Glu Pro His Phe Asp Phe Ser Arg
 425 430 435
 Arg Pro Phe Asp Ser Gly Leu Lys Thr Glu Gly Asn Arg Leu Ala
 440 445 450
 Thr Phe Leu Asn Tyr Met Ser Asp Val Glu Ala Gly Gly Ala Thr
 455 460 465
 Val Phe Pro Asp Leu Gly Ala Ala Ile Trp Pro Lys Lys Gly Thr
 470 475 480

Ala Val Phe Trp Tyr Asn Leu Leu Arg Ser Gly Glu Gly Asp Tyr
485 490 495
Arg Thr Arg His Ala Ala Cys Pro Val Leu Val Gly Cys Lys Trp
500 505 510
Val Ser Asn Lys Trp Phe His Glu Arg Gly Gln Glu Phe Leu Arg
515 520 525
Pro Cys Gly Ser Thr Glu Val Asp
530

<210> 333

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 333

ccaggcacaa tttccaga 18

<210> 334

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 334

ggacccttct gtgtgccag 19

<210> 335

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 335

ggtctcaaga actcctgtc 19

<210> 336

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 336
acactcagca ttgcctggta cttg 24

<210> 337
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 337
gggcacatga ctgacacctgat ttatgcagag aaagagctgg tgcag 45

<210> 338
<211> 2789

<212> DNA
<213> Homo Sapien

<400> 338
gcagtattga gtttacttc ctccctttt tagtggaaaga cagaccataa 50
tcccaagtgtg agtggaaattt attgtttcat ttattaccgt tttggctggg 100
ggtagttcc gacaccccca cagttggaaaga gcaggcagaa ggagttgtga 150
agacaggaca atcttottgg ggtatgcgtt cctggaaagcc agcgggcctt 200
gctctgtctt tggcctcatt gaccccagggt tctctggta aaactgaaag 250
cctactactg gcctggtgcc catcaatcca ttgatccttgg 300
cctggggcac ccacccggca gggcctacca ccatgcgact gagctccctg 350
ttggctctgc tgccggccaggc gcttccctc atcttagggc tgcgtctggg 400
gtgcaggctg agcctccctgc gggtttccctg gatccagggg gagggagaag 450
atccctgtgt cgaggctgtt ggggagcgag gagggccaca gaatccagat 500
tcgagagctc ggcttagacca aagtgtatgaa gacttcaaacc cccggattgt 550
ccccctactac agggacccca acaaggcccta caagaagggtg ctcaggactc 600
ggtacatcca gacagagctg ggctccctgt agcggttgct ggtggctgtc 650
ctgacccccc gagctacact gtccactttt gccgtggctg tgaaccgtac 700
ggtagggccat cacttccctc ggtagtctta cttactggg cagcgggggg 750
cccgccctcc agcaggatg caggtggtgtt ctcatgggta tgagcggcccc 800

gcctggctca tgcagagac cctgcgccac cttcacacac actttggggc 850
cgactacgac tggttttca tcatgcagga tgacacatata gtgcaggccc 900
ccgcctggc agcccttgct ggccacctca gcatcaacca agacctgtac 950
ttaggccccggc cagaggagtt cattggcgca ggcgagcagg cccgtactg 1000
tcatggggc tttggctacc tgggtcacg gagtctcctg cttcgtctgc 1050
ggccacatct ggatggctgc cgaggagaca ttctcagtgc ccgtcctgac 1100
gagtggcttgc acgctgcct cattgactct ctggcgctg gctgtgtctc 1150
acagcaccag gggcagcagt atcgctcatt tgaactggcc aaaaataggg 1200
accctgagaa ggaagggagc tcggcttcc ttagtgcctt cgccgtgcac 1250
cctgtctccg aaggtaccct catgtaccgg ctccacaaac gttcagcgc 1300
tctggagttg gagcgggctt acagtgaaat agaacaactg caggctcaga 1350
tccggAACCT gaccgtgctg acccccgaag gggaggcagg gctgagctgg 1400
cccgtgggc tccctgctcc tttcacacca cactctcgct ttgaggtgct 1450
gggctggac tacttcacag agcagcacac cttctcctgt gcagatgggg 1500
ctcccaagtgc cccactacag gggctagca gggcggacgt gggtgatgc 1550
ttggagactg ccctggagca gctcaatcg cgctatcagc cccgcctgc 1600
cttccagaag cagcgactgc tcaacggcta tcggcgcttc gacccagcac 1650
ggggcatgga gtacaccctg gacctgctgt tgaaatgtgt gacacagcgt 1700
gggcacccggc gggccctggc tcgcagggtc agcctgctgc ggccactgag 1750
ccgggtggaa atcctaccta tgccctatgt cactgaggcc acccgagtgc 1800
agctggtgct gccactcctg gtggctgaag ctgctgcagc cccggcttcc 1850
ctcgaggcgt ttgcagccaa tgtcctggag ccacgagaac atgcattgct 1900
caccctgttg ctggctacg ggccacgaga aggtggccgt ggagctccag 1950
accatttct tggggtaag gctgcagcag cggagttaga gcgacggtag 2000
cctgggacga ggctggcctg gtcgcgtgtc cgagcagagg ccccttccca 2050
ggtgcgactc atggacgtgg tctcgaagaa gcaccctgtg gacactct 2100

tcttccttac caccgtgtgg acaaggcctg ggccccgaagt cctcaaccgc 2150
tgtcgcatga atgccatctc tggctggcag gccttcttc cagtcattt 2200
ccaggagttc aatcctgccc tgtcaccaca gagatcaccc ccagggcccc 2250
cgggggctgg ccctgacccc ccctcccctc ctggtgctga cccctcccg 2300
ggggctccta taggggggag atttgaccgg caggctctg cgagggctg 2350
cttctacaac gctgactacc tggcggcccg agcccggtg gcaggtgaac 2400
tggcaggcca ggaagaggag gaagccctgg aggggctgga ggtgatggat 2450
gttttctcc gtttctcagg gctccacctc ttccggcccg tagagccagg 2500
gctggtgcag aagttctccc tgcgagactg cagcccacgg ctcagtgaag 2550
aactctacca ccgctgccgc ctcagcaacc tggaggggtt agggggccgt 2600
gcccgactgg ctatggctct ctttggcag gagcaggcca atagcactta 2650
gcccagctgg gggccctaac ctcattacct ttccttgc tgcctcagcc 2700
ccaggaaggg caaggcaaga tggtgacag atagagaatt gttgtgtat 2750
tttttaaaaata tqaaaatqtt attaaacatg tcttcgtcc 2789

<210> 339
<211> 772
<212> PRT
<213> Homo Sapien

<400> 339
Met Arg Leu Ser Ser Leu Leu Ala Leu Leu Arg Pro Ala Leu Pro
1 5 10 15

Leu Ile Leu Gly Leu Ser Leu Gly Cys Ser Leu Ser Leu Leu Arg
20 25 30

Val Ser Trp Ile Gln Gly Glu Gly Glu Asp Pro Cys Val Glu Ala
35 40 45

Val Gly Glu Arg Gly Gly Pro Gln Asn Pro Asp Ser Arg Ala Arg
50 55 60

Leu Asp Gln Ser Asp Glu Asp Phe Lys Pro Arg Ile Val Pro Tyr
65 70 75

Tyr Arg Asp Pro Asn Lys Pro Tyr Lys Lys Val Leu Arg Thr Arg
80 85 90

Tyr Ile Gln Thr Glu Leu Gly Ser Arg Glu Arg Leu Leu Val Ala

95	100	105
Val Leu Thr Ser Arg Ala Thr Leu Ser	Thr Leu Ala Val Ala Val	
110	115	120
Asn Arg Thr Val Ala His His Phe Pro	Arg Leu Leu Tyr Phe Thr	
125	130	135
Gly Gln Arg Gly Ala Arg Ala Pro Ala	Gly Met Gln Val Val Ser	
140	145	150
His Gly Asp Glu Arg Pro Ala Trp	Leu Met Ser Glu Thr Leu Arg	
155	160	165
His Leu His Thr His Phe Gly Ala Asp	Tyr Asp Trp Phe Phe Ile	
170	175	180
Met Gln Asp Asp Thr Tyr Val Gln Ala	Pro Arg Leu Ala Ala Leu	
185	190	195
Ala Gly His Leu Ser Ile Asn Gln Asp	Leu Tyr Leu Gly Arg Ala	
200	205	210
Glu Glu Phe Ile Gly Ala Gly Glu Gln Ala	Arg Tyr Cys His Gly	
215	220	225
Gly Phe Gly Tyr Leu Leu Ser Arg Ser	Leu Leu Leu Arg Leu Arg	
230	235	240
Pro His Leu Asp Gly Cys Arg Gly Asp	Ile Leu Ser Ala Arg Pro	
245	250	255
Asp Glu Trp Leu Gly Arg Cys Leu Ile Asp	Ser Leu Gly Val Gly	
260	265	270
Cys Val Ser Gln His Gln Gly Gln Gln	Tyr Arg Ser Phe Glu Leu	
275	280	285
Ala Lys Asn Arg Asp Pro Glu Lys Glu Gly	Ser Ser Ala Phe Leu	
290	295	300
Ser Ala Phe Ala Val His Pro Val Ser	Glu Gly Thr Leu Met Tyr	
305	310	315
Arg Leu His Lys Arg Phe Ser Ala Leu	Glu Leu Glu Arg Ala Tyr	
320	325	330
Ser Glu Ile Glu Gln Leu Gln Ala Gln	Ile Arg Asn Leu Thr Val	
335	340	345
Leu Thr Pro Glu Gly Glu Ala Gly Leu	Ser Trp Pro Val Gly Leu	
350	355	360

Pro Ala Pro Phe Thr Pro His Ser Arg Phe Glu Val Leu Gly Trp
 365 370 375
 Asp Tyr Phe Thr Glu Gln His Thr Phe Ser Cys Ala Asp Gly Ala
 380 385 390
 Pro Lys Cys Pro Leu Gln Gly Ala Ser Arg Ala Asp Val Gly Asp
 395 400 405
 Ala Leu Glu Thr Ala Leu Glu Gln Leu Asn Arg Arg Tyr Gln Pro
 410 415 420
 Arg Leu Arg Phe Gln Lys Gln Arg Leu Leu Asn Gly Tyr Arg Arg
 425 430 435
 Phe Asp Pro Ala Arg Gly Met Glu Tyr Thr Leu Asp Leu Leu Leu
 440 445 450
 Glu Cys Val Thr Gln Arg Gly His Arg Arg Ala Leu Ala Arg Arg
 455 460 465
 Val Ser Leu Leu Arg Pro Leu Ser Arg Val Glu Ile Leu Pro Met
 470 475 480
 Pro Tyr Val Thr Glu Ala Thr Arg Val Gln Leu Val Leu Pro Leu
 485 490 495
 Leu Val Ala Glu Ala Ala Ala Pro Ala Phe Leu Glu Ala Phe
 500 505 510
 Ala Ala Asn Val Leu Glu Pro Arg Glu His Ala Leu Leu Thr Leu
 515 520 525
 Leu Leu Val Tyr Gly Pro Arg Glu Gly Gly Arg Gly Ala Pro Asp
 530 535 540
 Pro Phe Leu Gly Val Lys Ala Ala Ala Ala Glu Leu Glu Arg Arg
 545 550 555
 Tyr Pro Gly Thr Arg Leu Ala Trp Leu Ala Val Arg Ala Glu Ala
 560 565 570
 Pro Ser Gln Val Arg Leu Met Asp Val Val Ser Lys Lys His Pro
 575 580 585
 Val Asp Thr Leu Phe Phe Leu Thr Thr Val Trp Thr Arg Pro Gly
 590 595 600
 Pro Glu Val Leu Asn Arg Cys Arg Met Asn Ala Ile Ser Gly Trp
 605 610 615
 Gln Ala Phe Phe Pro Val His Phe Gln Glu Phe Asn Pro Ala Leu
 620 625 630

Ser Pro Gln Arg Ser Pro Pro Gly Pro Pro Gly Ala Gly Pro Asp
 635 640 645
 Pro Pro Ser Pro Pro Gly Ala Asp Pro Ser Arg Gly Ala Pro Ile
 650 655 660
 Gly Gly Arg Phe Asp Arg Gln Ala Ser Ala Glu Gly Cys Phe Tyr
 665 670 675
 Asn Ala Asp Tyr Leu Ala Ala Arg Ala Arg Leu Ala Gly Glu Leu
 680 685 690
 Ala Gly Gln Glu Glu Glu Ala Leu Glu Gly Leu Glu Val Met
 695 700 705
 Asp Val Phe Leu Arg Phe Ser Gly Leu His Leu Phe Arg Ala Val
 710 715 720
 Glu Pro Gly Leu Val Gln Lys Phe Ser Leu Arg Asp Cys Ser Pro
 725 730 735
 Arg Leu Ser Glu Glu Leu Tyr His Arg Cys Arg Leu Ser Asn Leu
 740 745 750
 Glu Gly Leu Gly Gly Arg Ala Gln Leu Ala Met Ala Leu Phe Glu
 755 760 765
 Gln Glu Gln Ala Asn Ser Thr
 770

<210> 340
 <211> 1572
 <212> DNA
 <213> Homo Sapien

<400> 340
 cggagtggtg cgccaacgtg agagggaaacc cgtgcgcggc tgcgcgttcc 50
 tgtccccaaag ccgtttctaga cgcggaaaa atgcgttctg aaagcagctc 100
 ctttttgaag ggtgtatgc ttggaagcat tttctgtgct ttgatcacta 150
 tgctaggaca cattaggatt ggtcatggaa atagaatgca ccaccatgag 200
 catcatcacc tacaagctcc taacaaagaa gatatcttga aaatttcaga 250
 ggatgagcgc atggagctca gtaagagctt tcgagttatac tgtattatcc 300
 ttgtaaaacc caaagatgtg agtcttggg ctgcagtaaa ggagacttgg 350
 accaaacact gtgacaaaagc agagttcttc agttctgaaa atgttaaagt 400

gttgagtca attaatatgg acacaaatga catgtggta atgatgagaa 450
aagcttacaa atacgcctt gataagtata gagaccaata caactggttc 500
ttcctgcac gccccactac gttgctatc attgaaaacc taaagtattt 550
tttgttaaaa aaggatccat cacagcctt ctatctaggc cacactataa 600
aatctggaga ccttgaatat gtgggtatgg aaggaggaat tgtcttaagt 650
gtagaatcaa tgaaaagact taacagcctt ctcaatatcc cagaaaagtg 700
tcctgaacag ggagggatga tttggaagat atctgaagat aaacagctag 750
cagttgcct gaaatatgct ggagtattt cagaaaatgc agaagatgct 800
gatggaaaag atgtatttaa taccaaattct gttggcttt ctattaaaga 850
ggcaatgact tatkaccccc accaggtgt agaaggctgt tgtagata 900
tggctgttac tttaatgga ctgactccaa atcagatgca tgtgatgatg 950
tatgggtat accgccttag ggcatttggg catatttca atgatgcatt 1000
ggtttctta cctccaaatg gttctgacaa tgactgagaa gtggtagaaa 1050
agcgtgaata tgatcttgt ataggacgtg tgtagtcatt attttagta 1100
gtaactacat atccaataca gctgtatgtt tcttttctt ttctaattt 1150
gtggcactgg tataaccaca cattaaagtc agtagtacat tttaaatga 1200
gggtggttt ttttttaaaa acacatgaac attgtaaatg tgtagaaag 1250
aagtgtttta agaataataa ttttgc当地 aaactattaa taaatattat 1300
atgtgataaa ttctaaatta tgaacattag aaatctgtgg ggcacatatt 1350
tttgctgatt ggttaaaaaa tttaacagg tcttagcgt tctaagat 1400
gcaaatgata tctctagttg tgaatttgcgt attaaagtaa aacttttagc 1450
tgtgtgttcc cttaacttct aatactgatt tatgttctaa gcctcccaa 1500
gttccaatgg atttgccttc tcaaaatgta caactaagca actaaagaaa 1550
attaaagtga aagttgaaaa at 1572

<210> 341
<211> 318
<212> PRT
<213> Homo Sapien

<400> 341

Met	Leu	Ser	Glu	Ser	Ser	Ser	Phe	Leu	Lys	Gly	Val	Met	Leu	Gly
1			5					10				15		
Ser	Ile	Phe	Cys	Ala	Leu	Ile	Thr	Met	Leu	Gly	His	Ile	Arg	Ile
		20						25				30		
Gly	His	Gly	Asn	Arg	Met	His	His	His	Glu	His	His	His	Leu	Gln
		35						40				45		
Ala	Pro	Asn	Lys	Glu	Asp	Ile	Leu	Lys	Ile	Ser	Glu	Asp	Glu	Arg
		50						55				60		
Met	Glu	Leu	Ser	Lys	Ser	Phe	Arg	Val	Tyr	Cys	Ile	Ile	Leu	Val
		65						70				75		
Lys	Pro	Lys	Asp	Val	Ser	Leu	Trp	Ala	Ala	Val	Lys	Glu	Thr	Trp
		80						85				90		
Thr	Lys	His	Cys	Asp	Lys	Ala	Glu	Phe	Phe	Ser	Ser	Glu	Asn	Val
		95						100				105		
Lys	Val	Phe	Glu	Ser	Ile	Asn	Met	Asp	Thr	Asn	Asp	Met	Trp	Leu
		110						115				120		
Met	Met	Arg	Lys	Ala	Tyr	Lys	Tyr	Ala	Phe	Asp	Lys	Tyr	Arg	Asp
		125						130				135		
Gln	Tyr	Asn	Trp	Phe	Phe	Leu	Ala	Arg	Pro	Thr	Thr	Phe	Ala	Ile
		140						145				150		
Ile	Glu	Asn	Leu	Lys	Tyr	Phe	Leu	Leu	Lys	Lys	Asp	Pro	Ser	Gln
		155						160				165		
Pro	Phe	Tyr	Leu	Gly	His	Thr	Ile	Lys	Ser	Gly	Asp	Leu	Glu	Tyr
		170						175				180		
Val	Gly	Met	Glu	Gly	Gly	Ile	Val	Leu	Ser	Val	Glu	Ser	Met	Lys
		185						190				195		
Arg	Leu	Asn	Ser	Leu	Leu	Asn	Ile	Pro	Glu	Lys	Cys	Pro	Glu	Gln
		200						205				210		
Gly	Gly	Met	Ile	Trp	Lys	Ile	Ser	Glu	Asp	Lys	Gln	Leu	Ala	Val
		215						220				225		
Cys	Leu	Lys	Tyr	Ala	Gly	Val	Phe	Ala	Glu	Asn	Ala	Glu	Asp	Ala
		230						235				240		
Asp	Gly	Lys	Asp	Val	Phe	Asn	Thr	Lys	Ser	Val	Gly	Leu	Ser	Ile
		245						250				255		
Lys	Glu	Ala	Met	Thr	Tyr	His	Pro	Asn	Gln	Val	Val	Glu	Gly	Cys

260

265

270

Cys Ser Asp Met Ala Val Thr Phe Asn Gly Leu Thr Pro Asn Gln
275 280 285

Met His Val Met Met Tyr Gly Val Tyr Arg Leu Arg Ala Phe Gly
290 295 300

His Ile Phe Asn Asp Ala Leu Val Phe Leu Pro Pro Asn Gly Ser
305 310 315

Asp Asn Asp

<210> 342

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 342

tccccaaagcc gttcttagacg cg 23

<210> 343

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 343

ctgggttcttc cttgcacg 18

<210> 344

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 344

gcccaaatgc cctaaggcg 28

<210> 345

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 345
gggtgtgatg cttggaagca ttttctgtgc tttgatcact atgctaggac 50

<210> 346

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 346

gggatgcagg tggtgtctca tgggg 25

<210> 347

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 347

ccctcatgta ccggctcc 18

<210> 348

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 348

ggattctaat acgactca actatggctca gaaaagcgca acagagaa 48

<210> 349

<211> 47

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 349

ctatgaaatt aaccctcaact aaaggatgt cttccatgcc aaccttc 47

<210> 350

<211> 48

<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 350
ggattctaat acgactcaact atagggcgcc gatgtccact ggggctac 48

<210> 351
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 351
ctatgaaatt aaccctcaact aaagggacga ggaagatggg cggatgg 48

<210> 352
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 352
ggattctaat acgactcaact atagggcacc cacgcgtccg gctgctt 47

<210> 353
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 353
ctatgaaatt aaccctcaact aaagggacgg gggacaccac ggaccaga 48

<210> 354
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 354
ggattctaat acgactcaact atagggcttg ctgcggttt tgttcctg 48

<210> 355
<211> 48

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 355
ctatgaaatt aaccctcact aaagggagct gccgatccca ctggatt 48

<210> 356
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 356
ggattctaat acgactcact atagggcgga tcctggccgg cctctg 46

<210> 357
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 357
ctatgaaatt aaccctcact aaagggagcc cggcatggt ctcagtta 48

<210> 358
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 358
ggattctaat acgactcact atagggcgga aagatggcga ggaggag 47

<210> 359
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 359
ctatgaaatt aaccctcact aaagggacca aggccacaaa cgaaaaatc 48

<210> 360
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 360
ggattctaat acgactcaact atagggctgt gctttcattc tgccagta 48

<210> 361
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 361
ctatgaaatt aaccctcaact aaagggaggg tacaattaag gggtagat 48

<210> 362
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 362
ggattctaat acgactcaact atagggcccg cctcgcttct gtccttg 47

<210> 363
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 363
ctatgaaatt aaccctcaact aaagggagga ttgcgcgac cttcacat 48

<210> 364
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 364

ggattctaat acgactcaact atagggccccc tcctgccttc cctgtcc 47

<210> 365

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 365

ctatgaaatt aaccctcaact aaaggagtg gtggccgcga ttatctgc 48

<210> 366

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 366

ggattctaat acgactcaact atagggcgca gcgatggcag cgatgagg 48

<210> 367

<211> 47

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 367

ctatgaaatt aaccctcaact aaaggacag acggggcaga gggagtg 47

<210> 368

<211> 47

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 368

ggattctaat acgactcaact atagggccag gaggcgtgag gagaaac 47

<210> 369

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 369
ctatgaaatt aaccctcact aaaggaaag acatgtcatc gggagtgg 48

<210> 370

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 370
ggattctaat acgactcact atagggccgg gtggaggtgg aacagaaa 48

<210> 371

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 371

ctatgaaatt aaccctcact aaaggacac agacagagcc ccatacgc 48

<210> 372

<211> 47

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 372

ggattctaat acgactcact atagggccag ggaaatccgg atgtctc 47

<210> 373

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 373

ctatgaaatt aaccctcact aaaggagta agggatgcc accgagta 48

<210> 374

<211> 47

<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 374
ggattctaat acgactcact atagggccag ctacccgcag gaggagg 47

<210> 375
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 375
ctatgaaatt aaccctcact aaagggatcc caggtgatga ggtccaga 48

<210> 376
<211> 997
<212> DNA
<213> Homo Sapien

<400> 376
cccacgcgtc cgatcttacc aacaaaacac tcctgaggag aaagaaagag 50
agggagggag agaaaaagag agagagagaa acaaaaaacc aaagagagag 100
aaaaaaatgaa ttcatctaaa tcatctgaaa cacaatgcac agagagagga 150
tgcttctttt cccaaatgtt cttatggact gttgtggta tccccatctt 200
atttctcagt gcctgttca tcaccagatg ttttgtgaca ttgcgcattt 250
ttcaaacctg tgatgagaaa aagtttcagc tacctgagaa tttcacagag 300
ctctcctgct acaattatgg atcaggttca gtcaagaatt gttgtccatt 350
gaactggaa tatttcaat ccagctgctt cttctttctt actgacacca 400
tttcctgggc gttaagttt aagaactgct cagccatggg ggctcacctg 450
gtggttatca actcacagga ggagcaggaa ttccctttctt acaagaaacc 500
taaaatgaga gagttttta ttggactgtc agaccagggtt gtcgagggtc 550
agtggcaatg ggtggacggc acaccttga caaagtcttctt gagcttctgg 600
gatgttagggg agcccaacaa catagctacc ctggaggact gtgccaccat 650
gagagactct tcaaacccaa ggccaaatttgaatgtatgtacctgtttcc 700
tcaatttattt tcggatttgt gaaatggtag gaataaatcc tttgaacaaa 750

gaaaaatctc tttaagaaca gaaggcacaa ctcaaatgtg taaaagaagga 800
 agagcaagaa catggccaca cccaccgccc cacacgagaa atttgcgc 850
 tgaactcaa aggacttcat aagtatttgt tactctgata caaataaaaa 900
 taatgttt taaatgttaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 950
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 997

<210> 377

<211> 219

<212> PRT

<213> Homo Sapien

<400> 377

Met	Asn	Ser	Ser	Lys	Ser	Ser	Glu	Thr	Gln	Cys	Thr	Glu	Arg	Gly
1														15
Cys	Phe	Ser	Ser	Gln	Met	Phe	Leu	Trp	Thr	Val	Ala	Gly	Ile	Pro
					20				25					30
Ile	Leu	Phe	Leu	Ser	Ala	Cys	Phe	Ile	Thr	Arg	Cys	Val	Val	Thr
					35				40					45
Phe	Arg	Ile	Phe	Gln	Thr	Cys	Asp	Glu	Lys	Lys	Phe	Gln	Leu	Pro
					50				55					60
Glu	Asn	Phe	Thr	Glu	Leu	Ser	Cys	Tyr	Asn	Tyr	Gly	Ser	Gly	Ser
					65				70					75
Val	Lys	Asn	Cys	Cys	Pro	Leu	Asn	Trp	Glu	Tyr	Phe	Gln	Ser	Ser
					80				85					90
Cys	Tyr	Phe	Phe	Ser	Thr	Asp	Thr	Ile	Ser	Trp	Ala	Leu	Ser	Leu
					95				100					105
Lys	Asn	Cys	Ser	Ala	Met	Gly	Ala	His	Leu	Val	Val	Ile	Asn	Ser
					110				115					120
Gln	Glu	Gln	Glu	Phe	Leu	Ser	Tyr	Lys	Lys	Pro	Lys	Met	Arg	
					125				130					135
Glu	Phe	Phe	Ile	Gly	Leu	Ser	Asp	Gln	Val	Val	Glu	Gly	Gln	Trp
					140				145					150
Gln	Trp	Val	Asp	Gly	Thr	Pro	Leu	Thr	Lys	Ser	Leu	Ser	Phe	Trp
					155				160					165
Asp	Val	Gly	Glu	Pro	Asn	Asn	Ile	Ala	Thr	Leu	Glu	Asp	Cys	Ala
					170				175					180

Thr Met Arg Asp Ser Ser Asn Pro Arg Gln Asn Trp Asn Asp Val
185 190 195

Thr Cys Phe Leu Asn Tyr Phe Arg Ile Cys Glu Met Val Gly Ile
200 205 210

Asn Pro Leu Asn Lys Gly Lys Ser Leu
215

<210> 378

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 378

ttagcttct gggatgtagg 21

<210> 379

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 379

tattcctacc atttcacaaa tccg 24

<210> 380

<211> 49

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 380

ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg 49

<210> 381

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 381

gcagatttg aggacagcca cctcca 26

<210> 382
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 382
ggccttgcag acaaccgt 18

<210> 383
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 383
cagactgagg gagatccgag a 21

<210> 384
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 384
cagctgccct tccccaaacca 20

<210> 385
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 385
catcaagcgc ctctacca 18

<210> 386
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 386

cacaaactcg aactgcttct g 21

<210> 387
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 387
gggccatcac agtccct 18

<210> 388
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 388
gggatgtggtaaacacagaa ca 22

<210> 389
<211> 22

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 389
tgccagctgc atgctgccag tt 22

<210> 390
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 390
cagaaggatg tccccgtggaa 20

<210> 391
<211> 17
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 391
gcccgtgtcc actgcag 17

<210> 392
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 392
gacggcatcc tcagggccac a 21

<210> 393
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 393
atgtcctcca tgccccacg 20

<210> 394
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 394
gagtgcgaca tcgagagtt 20

<210> 395
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 395
ccgcagcctc agtgatga 18

<210> 396
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 396
gaagagcaca gctgcagatc c 21

<210> 397
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 397
gaggtgtcct ggcttggta gt 22

<210> 398
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 398
cctctggcgc ccccactcaa 20

<210> 399
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 399
ccaggagagc tggcgatg 18

<210> 400
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 400
gcaaattcag ggctcaactag aga 23

<210> 401
<211> 29

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 401
cacagagcat ttgtccatca gcagttcag 29

<210> 402
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 402
ggcagagact tccagtcact ga 22

<210> 403
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 403
gccaagggtg gtgttagata gg 22

<210> 404
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 404
caggccccct tgatctgtac ccca 24

<210> 405
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 405
gggacgtgct tctacaagaa cag 23

<210> 406
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 406
caggcttaca atgttatgtat cagaca 26

<210> 407
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 407
tattcagagt tttccattgg cagtgccagt t 31

<210> 408
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 408
tctacatca g cctctctgcg c 21

<210> 409
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 409
cgatcttc caccaggag cg 23

<210> 410
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 410

gccaggcctc acattcgt 18
<210> 411
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 411
ctccctgaat ggcagcctga gca 23

<210> 412
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 412
agggttttat taagggccta cgct 24

<210> 413
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 413
cagagcagag ggtgccttg 19

<210> 414
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 414
tggcgagtc ccctcttggc t 21

<210> 415
<211> 22
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe
<400> 415
ccctgttcc ctatgcata ct 22

<210> 416
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 416
tcaacccctg accctttcct a 21

<210> 417
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 417
ggcaggggac aagccatctc tcct 24

<210> 418
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 418
gggactgaac tgccagcttc 20

<210> 419
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 419
gggccctaac ctcattacct tt 22

<210> 420
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 420
tgtctgcctc agccccagga agg 23

<210> 421
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 421
tctgtccacc atcttgccctt g 21

<210> 422
<211> 3554
<212> DNA
<213> Homo Sapien

<400> 422
gggactacaa gccgcgccgc gctgccgctg gcccctcagc aaccctcgac 50
atggcgctga ggcggccacc gcgactccgg ctctgcgcgc ggctgcctga 100
cttcttcctg ctgctgcttt tcaggggctg cctgataggg gctgtaaaatc 150
tcaaatccag caatcgaacc ccagtggta aggaatttga aagtgtggaa 200
ctgtcttgca tcattacgga ttgcagaca agtgacccca ggatcgagtg 250
gaagaaaatt caagatgaac aaaccacata tgtgttttt gacaacaaaa 300
ttcagggaga cttggcggt cgtgcagaaa tactggggaa gacatccctg 350
aagatctgga atgtgacacg gagagactca gcccattatc gctgtgaggt 400
cgttgctcgaa atgaccgca aggaaattga tgagattgtg atcgagttaa 450
ctgtgcaagt gaagccagt acccctgtct gttagtgcc gaaggctgta 500
ccagtaggca agatggcaac actgcactgc caggagagtg agggccaccc 550
ccggcctcac tacagctggt atcgcaatga tgtaccactg cccacggatt 600
ccagagccaa tcccagattt cgcaattctt ctttccactt aaactctgaa 650
acaggcactt tggtgttcac tgctgttcac aaggacgact ctgggcagta 700
ctactgcatt gcttccaatg acgcaggctc agccaggtgt gaggagcagg 750

agatggaagt ctatgacctg aacattggcg gaattattgg ggggttctg 800
gttgtccttg ctgtactggc cctgatcacg ttggcatct gctgtgcata 850
cagacgtggc tacttcatca acaataaaaca gnatggagaa agttacaaga 900
accaggaa accagatgga gttaactaca tccgactga cgaggaggc 950
gacttcagac acaagtcac gtttgtgatc tgagacccgc ggtgtggctg 1000
agagcgcaca gagcgcacgt gcacataacct ctgctagaaa ctccgtcaa 1050
ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100
tttcgtttt ggccaaagtt gaccactact cttcttactc taacaagcca 1150
catgaataga agaatttcc tcaagatgga cccgtaat ataaccacaa 1200
ggaagcgaaa ctgggtgcgt tcaactgagtt gggttctaa tctgtttctg 1250
gcctgattcc cgcatgagta ttagggtgat cttaaagagt ttgctcacgt 1300
aaacgcccgt gctggccct gtgaagccag catgttcacc actggtcgtt 1350
cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacagcacc 1400
agcagcgcac cccggcggaa acccagaaaa ggcttcttac acagcagcct 1450
tacttcatcg gcccacagac accaccgcag tttcttcta aaggctctgc 1500
tgatcggtgt tgcagtgtcc attgtggaga agcttttgg atcagcattt 1550
tgtaaaaaca accaaaatca ggaaggtaaa ttgggtgctg gaagagggat 1600
cttgccctgag gaaccctgct tgtccaaacag ggtgtcagga tttaaggaaa 1650
acttcgtct taggctaagt ctgaaatggt actgaaatat gctttctat 1700
gggtcttggtt tattttataa aattttacat ctaaattttt gctaaggatg 1750
tattttgatt attgaaaaga aaatttctat ttaaactgta aatatattgt 1800
catacaatgt taaataacccat attttttaa aaaagttcaa cttaaaggtag 1850
aagttccaaag ctactagtgt taaattggaa aatatcaata attaagagta 1900
ttttacccaa ggaatccctt catgaaagtt tactgtgatg ttcctttct 1950
cacacaagtt ttagcctttt tcacaaggaa actcataactg tctacacatc 2000
agaccatagt tgcttaggaa acctttaaaa attccagtttta agcaatgtt 2050

aaatcagttt gcatctcttc aaaagaaaacc tctcaggtta gctttgaact 2100
gcctcttcct gagatgacta ggacagtctg tacccagagg ccacccagaa 2150
gccctcagat gtacatacac agatgccagt cagctcctgg gttgcgcac 2200
ggcgcccccg ctctagctca ctgttgccctc gctgtctgcc aggaggccct 2250
gccatccttg ggccctggca gtggctgtgt cccagtgagc tttactcact 2300
tggcccttgc ttcattccagc acagctctca ggtgggact gcagggacac 2350
tggtgtttc catgtacgt cccagcttgc ggctctgtt acagacctct 2400
ttttggttat ggatggctca caaaataggg ccccaatgc tattttttt 2450
ttttaagttt gtttaattat ttgttaagat tgtctaaggc caaaggcaat 2500
tgcgaaatca agtctgtcaa gtacaataac attttaaaaa gaaaatggat 2550
cccactgttc ctctttgcca cagagaaagc acccagacgc cacaggctct 2600
gtcgcatttc aaaacaaaacc atgatggagt ggcggccagt ccagccttt 2650
aaagaacgto aggtggagca gccaggtgaa aggcctggcg gggagggaaag 2700
tgaaacgcct gaatcaaaaag cagtttcttta attttgactt taaattttc 2750
atccgccccga gacactgctc ccatttgtgg ggggacatta gcaacatcac 2800
tcagaagcct gtgttottca agagcaggtt ttctcagcct cacatgcct 2850
gccgtgctgg actcaggact gaagtgtgt aaagcaagga gctgctgaga 2900
aggagcactc cactgtgtgc ctggagaatg gctctcacta ctcaccttgt 2950
cttcagctt ccagtgtctt gggttttta tactttgaca gctttttttt 3000
aattgcatac atgagactgt gttgactttt tttagttatg tgaaacactt 3050
tgccgcaggc cgccctggcag aggcaggaaa tgctccagca gtggctcagt 3100
gctccctggt gtctgtgca tggcattctg gatgcttagc atgcaagttc 3150
cctccatcat tgccaccttg gtagagaggg atggctcccc accctcagcg 3200
ttggggattc acgctccagc ctccattttt gttgtcatag tgatagggta 3250
gccttattgc ccccttttct tataccctaa aacccctac actagtgcac 3300
tggaaaccag gtctgaaaaa gtagagagaa gtgaaagtag agtctggaa 3350
gtagctgcct ataactgaga ctagacggaa aaggaatact cgtgtatTTT 3400

aagatataatgaa tgtgactcaa gactcgaggc cgatacgagg ctgtgattct 3450
 gcctttggat ggatgttgct gtacacagat gctacagact tgtactaaca 3500
 caccgttaatt tggcatttgc ttaacctcat ttataaaaagc ttcaaaaaaaaa 3550
 ccca 3554

<210> 423
 <211> 310
 <212> PRT
 <213> Homo Sapien

<400> 423
 Met Ala Leu Arg Arg Pro Pro Arg Leu Arg Leu Cys Ala Arg Leu
 1 5 10 15
 Pro Asp Phe Phe Leu Leu Leu Phe Arg Gly Cys Leu Ile Gly
 20 25 30
 Ala Val Asn Leu Lys Ser Ser Asn Arg Thr Pro Val Val Gln Glu
 35 40 45
 Phe Glu Ser Val Glu Leu Ser Cys Ile Ile Thr Asp Ser Gln Thr
 50 55 60
 Ser Asp Pro Arg Ile Glu Trp Lys Ile Gln Asp Glu Gln Thr
 65 70 75
 Thr Tyr Val Phe Phe Asp Asn Lys Ile Gln Gly Asp Leu Ala Gly
 80 85 90
 Arg Ala Glu Ile Leu Gly Lys Thr Ser Leu Lys Ile Trp Asn Val
 95 100 105
 Thr Arg Arg Asp Ser Ala Leu Tyr Arg Cys Glu Val Val Ala Arg
 110 115 120
 Asn Asp Arg Lys Glu Ile Asp Glu Ile Val Ile Glu Leu Thr Val
 125 130 135
 Gln Val Lys Pro Val Thr Pro Val Cys Arg Val Pro Lys Ala Val
 140 145 150
 Pro Val Gly Lys Met Ala Thr Leu His Cys Gln Glu Ser Glu Gly
 155 160 165
 His Pro Arg Pro His Tyr Ser Trp Tyr Arg Asn Asp Val Pro Leu
 170 175 180
 Pro Thr Asp Ser Arg Ala Asn Pro Arg Phe Arg Asn Ser Ser Phe
 185 190 195

His Leu Asn Ser Glu Thr Gly Thr Leu Val Phe Thr Ala Val His
200 205 210

Lys Asp Asp Ser Gly Gln Tyr Tyr Cys Ile Ala Ser Asn Asp Ala
215 220 225

Gly Ser Ala Arg Cys Glu Glu Gln Glu Met Glu Val Tyr Asp Leu
230 235 240

Asn Ile Gly Gly Ile Ile Gly Gly Val Leu Val Val Leu Ala Val
245 250 255

Leu Ala Leu Ile Thr Leu Gly Ile Cys Cys Ala Tyr Arg Arg Gly
260 265 270

Tyr Phe Ile Asn Asn Lys Gln Asp Gly Glu Ser Tyr Lys Asn Pro
275 280 285

Gly Lys Pro Asp Gly Val Asn Tyr Ile Arg Thr Asp Glu Glu Gly
290 295 300

Asp Phe Arg His Lys Ser Ser Phe Val Ile
305 310