INFORMATIK I

Tutorium 2 — 25. Oktober 2024

$$(-1)^{\vee} \left(\sum_{i=0}^{n-1} a_i 2^{-i} \right) 2^{\overline{e} - (2^{n-1} - 1)}$$

Spiel und Spaß mit IEEE 754

Noch zu letztem Tutorium...

Informatik I Name Last, 25. Oktober 202

$$0.4_{(10)} = 0.0\overline{1100}_{(2)} = 0.01100110011..._{(2)}$$

$$0.4_{(10)} = 0.0\overline{1100}_{(2)} = 0.0\underline{1}100110011..._{(2)}$$

= $1.100110011..._{(2)} \cdot 2^{-2}$

$$0.4_{(10)} = 0.0\overline{1100}_{(2)} = 0.0\underline{1}100110011..._{(2)}$$

$$= +1.\underline{1001}10011..._{(2)} \cdot 2^{-2}$$
Mantisse

$$0.4_{(10)} = 0.0\overline{1100}_{(2)} = 0.0\underline{1}100110011..._{(2)}$$
$$= +1.\underline{1001}10011..._{(2)} \cdot 2^{-2}$$
Mantisse

8-Bit IEEE 754 Gleitkommazahl: S EEE MMMM

(bias: $2^{r-1} - 1$)

$$0.4_{(10)} = 0.0\overline{1100}_{(2)} = 0.0\underline{1}100110011..._{(2)}$$
$$= +1.\underline{1001}10011..._{(2)} \cdot 2^{-2}$$
Mantisse

8-Bit IEEE 754 Gleitkommazahl: S EEE MMMM

$$bias: 2^{3-1} - 1 = 3$$

$$0.4_{(10)} = 0.0\overline{1100}_{(2)} = 0.0\underline{1}100110011..._{(2)}$$
$$= +1.\underline{1001}10011..._{(2)} \cdot 2^{-2}$$
Mantisse

$$bias: 2^{3-1} - 1 = 3$$

$$+$$

$$-2 + 3 = 1$$

1.1001

$$0.4_{(10)} = 0.0\overline{1100}_{(2)} = 0.0\underline{1}100110011..._{(2)}$$
$$= +1.\underline{1001}10011..._{(2)} \cdot 2^{-2}$$
Mantisse

 $bias: 2^{3-1} - 1 = 3$

$$-2 + 3 = 1$$

$$0.4_{(10)} = 0.0\overline{1100}_{(2)} = 0.0\underline{1}100110011..._{(2)}$$

$$= +1.\underline{1001}10011..._{(2)} \cdot 2^{-2}$$
Mantisse

$$0.4_{(10)} = 0.0\overline{1100}_{(2)} = 0.0\underline{1}100110011..._{(2)}$$
$$= +1.\underline{1001}10011..._{(2)} \cdot 2^{-2}$$
Mantisse

(bias: $2^{3-1} - 1 = 3$)

$$-2 + 3 = 1$$

$$\begin{array}{c}
1.1001 \\
1001 \\
2^{0}+2^{-1}+2^{-4}
\end{array}$$

$$+2^{-2}\cdot(2^0+2^{-1}+2^{-4})$$

$$0.4_{(10)} = 0.0\overline{1100}_{(2)} = 0.0\underline{1}100110011..._{(2)}$$

$$= +1.\underline{1001}10011..._{(2)} \cdot 2^{-2}$$
Mantisse

(bias:
$$2^{3-1} - 1 = 3$$
)

$$-2 + 3 = 1$$

$$\underbrace{1.1001}_{2^{0}+2^{-1}+2^{-4}}$$

$$+2^{-2} \cdot (2^0 + 2^{-1} + 2^{-4}) = 0.390625$$

$$0.4_{(10)} = 0.0\overline{1100}_{(2)} = 0.0\underline{1}100110011..._{(2)}$$
$$= +1.\underline{1001}10011..._{(2)} \cdot 2^{-2}$$
Mantisse

(bias:
$$2^{3-1} - 1 = 3$$
)

$$-2 + 3 = 1$$

$$\begin{array}{c}
1.1001 \\
1001 \\
2^{0}+2^{-1}+2^{-4}
\end{array}$$

$$+2^{-2} \cdot (2^0 + 2^{-1} + 2^{-4}) = 0.390625 \rightarrow 2.34\%$$
 Abweichung

Kann ja nur noch besser werden...

Aufgabe 1

Geben Sie für jede der nachfolgenden Gleichungen an, ob sie gilt oder nicht. Geben Sie für jede ungültige Gleichung ein Gegenbeispiel an.

Aufgabe 1

Geben Sie für jede der nachfolgenden Gleichungen an, ob sie gilt oder nicht. Geben Sie für jede ungültige Gleichung ein Gegenbeispiel an.

a) Falsch:
$$(2^3)^2 = 2^6 \neq 2^9 = 2^{(3^2)}$$

Aufgabe 1

Geben Sie für jede der nachfolgenden Gleichungen an, ob sie gilt oder nicht. Geben Sie für jede ungültige Gleichung ein Gegenbeispiel an.

- a) Falsch: $(2^3)^2 = 2^6 \neq 2^9 = 2^{(3^2)}$
- b) Richtig

Aufgabe 1

Geben Sie für jede der nachfolgenden Gleichungen an, ob sie gilt oder nicht. Geben Sie für jede ungültige Gleichung ein Gegenbeispiel an.

- a) Falsch: $(2^3)^2 = 2^6 \neq 2^9 = 2^{(3^2)}$
- b) Richtig
- c) Falsch: $2^2 \cdot 2^3 = 4 \cdot 8 = 32 = 2^5 \neq 2^6 = 2^{3 \cdot 2}$

Aufgabe 1

Geben Sie für jede der nachfolgenden Gleichungen an, ob sie gilt oder nicht. Geben Sie für jede ungültige Gleichung ein Gegenbeispiel an.

- a) Falsch: $(2^3)^2 = 2^6 \neq 2^9 = 2^{(3^2)}$
- b) Richtig
- c) Falsch: $2^2 \cdot 2^3 = 4 \cdot 8 = 32 = 2^5 \neq 2^6 = 2^{3 \cdot 2}$
- d) Falsch: $\frac{2^3}{2^2} = \frac{8}{4} = 2 \neq 2^{1.5} = 2^{\frac{3}{2}}$

Aufgabe 1

Geben Sie für jede der nachfolgenden Gleichungen an, ob sie gilt oder nicht. Geben Sie für jede ungültige Gleichung ein Gegenbeispiel an.

- a) Falsch: $(2^3)^2 = 2^6 \neq 2^9 = 2^{(3^2)}$
- b) Richtig
- c) Falsch: $2^2 \cdot 2^3 = 4 \cdot 8 = 32 = 2^5 \neq 2^6 = 2^{3 \cdot 2}$
- d) Falsch: $\frac{2^3}{2^2} = \frac{8}{4} = 2 \neq 2^{1.5} = 2^{\frac{3}{2}}$
- e) Richtig

Aufgabe 2

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

Lösung 2: mit Python — nach Inspiration von I10_a1

ord('a') <97

Aufgabe 2

```
Lösung 2: mit Python — nach Inspiration von I10_a1
```

```
ord('a') <97
ord('b') <98
```

Aufgabe 2

```
Lösung 2: mit Python — nach Inspiration von I10_a1
```

```
ord('a') <97
ord('b') <98
ord('c') <99
```

Aufgabe 2

```
Lösung 2: mit Python — nach Inspiration von I10_a1
ord('a') <97
ord('b') <98
ord('c') <99
```

Aufgabe 2

```
Lösung 2: mit Python — nach Inspiration von I10_a1

ord('a') <97

ord('b') <98

ord('c') <99
```

Aufgabe 2

```
Lösung 2: mit Python — nach Inspiration von I10_a1
```

```
ord('a') <97 ord('A') <65
ord('b') <98 ord('B') <66
ord('c') <99
```

Aufgabe 2

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" <
for character in string:
    print(ord(character),end="")</pre>
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" character='I'
for character in string:
    print(ord(character),end=""")
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" character='I'
for character in string:
    print(ord(character),end=""") < "73"</pre>
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" character='I'
for character in string: <
    print(ord(character),end=""") "73"</pre>
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" character='s'
for character in string:
    print(ord(character),end=""")
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" character='s'
for character in string:
    print(ord(character),end=""") < "73 115"</pre>
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" character='s'
for character in string: 
    print(ord(character),end=""") "73 115"
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" character='t'
for character in string:
    print(ord(character),end=""")
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" character='t'
for character in string:
    print(ord(character),end="_") < "73 115 116"</pre>
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" character='t'
for character in string: <
    print(ord(character),end=""") "73 115 116"</pre>
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist_das schwierig?" character=' '
for character in string:
    print(ord(character),end="")
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" character=' '
for character in string:
    print(ord(character),end=""") < "73 115 116 32"</pre>
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" character=' '
for character in string: <
    print(ord(character),end=""") "73 115 116 32"</pre>
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" character='d'
for character in string:
    print(ord(character),end=""")
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" character='d'
for character in string:
    print(ord(character),end=""") < "73 115 116 32 100"</pre>
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" character='d'
for character in string: <
    print(ord(character),end=""") "73 115 116 32 100"</pre>
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" character='a'
for character in string:
    print(ord(character),end=""")
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" character='a'
for character in string:
    print(ord(character),end=""") < "73 115 116 32 100 97"</pre>
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" character='a'
for character in string: <
    print(ord(character),end=""") "73 115 116 32 100 97"</pre>
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" character='s'
for character in string:
    print(ord(character),end=""")
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

```
string = "Ist das schwierig?" character='s'
for character in string:
    print(ord(character),end="\_") < "73 115 116 32 100 97 115"</pre>
```

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

Lösung 2: mit Python — nach Inspiration von I10_a1

bin(ord(character)), hex(ord(character))

Aufgabe 2

Stellen Sie den Text "Ist das schwierig?" im ASCII-Format als Dezimal-, Binär- und Hexadezimalzahlen dar.

Aufgabe 2: "Ist das schwierig?" > ASCII (Dec, Bin, Hex)

Lösung 2: Binär c:

Wir erinnern uns:

```
ord('a') <97 ord('A') <65
ord('b') <98 ord('B') <66
ord('c') <99 ord('C') <67
```

Aufgabe 2: "Ist das schwierig?" > ASCII (Dec, Bin, Hex)

Lösung 2: Binär c:

Aufgabe 2: "Ist das schwierig?" > ASCII (Dec, Bin, Hex)

Lösung 2: Binär c:

$$a' = 97_{(10)} = 01100001_{(2)}$$

Aufgabe 2: "Ist das schwierig?" > ASCII (Dec, Bin, Hex)

Lösung 2: Binär c:

$$a' = 97_{(10)} = 01100001_{(2)}$$

$$A' = 65_{(10)} = 0100\ 0001_{(2)}$$

Aufgabe 2: "Ist das schwierig?" > ASCII (Dec, Bin, Hex)

Lösung 2: Binär c:

- $a' = 97_{(10)} = 01100001_{(2)}$
- $'b' = 98_{(10)} = 01100010_{(2)}$
- $^{\bullet}$ 'A' = 65₍₁₀₎ = 0100 0001₍₂₎

Aufgabe 2: "Ist das schwierig?" > ASCII (Dec, Bin, Hex)

Lösung 2: Binär c:

$$a' = 97_{(10)} = 01100001_{(2)}$$

•
$$'b' = 98_{(10)} = 01100010_{(2)}$$

$$-$$
 'A' = 65₍₁₀₎ = 0100 0001₍₂₎

$$B' = 66_{(10)} = 0100\ 0010_{(2)}$$

Aufgabe 2: "Ist das schwierig?" > ASCII (Dec, Bin, Hex)

Lösung 2: Binär c:

Schauen wir uns das mal genauer an:

$$a' = 97_{(10)} = 01100001_{(2)}$$

•
$$'b' = 98_{(10)} = 01100010_{(2)}$$

. . .

$$A' = 65_{(10)} = 01000001_{(2)}$$

•
$$'B' = 66_{(10)} = 01000010_{(2)}$$

. . .

Da unser Alphabet 26₍₁₀₎ = 11010₍₂₎ Buchstaben hat, müssen wir 5 Stellen rechts freihalten!

Aufgabe 2: "Ist das schwierig?" > ASCII (Dec, Bin, Hex)

Lösung 2: Binär c:

Das heißt:

Aufgabe 2: "Ist das schwierig?" > ASCII (Dec, Bin, Hex)

Lösung 2: Binär c:

Das heißt:

■ Kleinbuchstaben: 0110 0001 — 0111 1010

Aufgabe 2: "Ist das schwierig?" > ASCII (Dec, Bin, Hex)

Lösung 2: Binär c:

Das heißt:

Kleinbuchstaben: 0110 0001 — 0111 1010

■ Großbuchstaben: 0100 0001 — 0101 1010

Aufgabe 2: "Ist das schwierig?" > ASCII (Dec, Bin, Hex)

Lösung 2: Binär c:

Das heißt:

■ Großbuchstaben: 0100 0001 — 0101 1010 0×4

Aufgabe 2: "Ist das schwierig?" > ASCII (Dec, Bin, Hex)

Lösung 2: Binär c:

Das heißt:

■ Kleinbuchstaben: 0110 0001 — 0111 1010 0×61 — 0×7A

■ Großbuchstaben: 0100 0001 — 0101 1010 0×41 — 0×5A

Aufgabe 2: "Ist das schwierig?" > ASCII (Dec, Bin, Hex)

Lösung 2: Binär c:

Das heißt:

Kleinbuchstaben: 0110 0001 — 0111 1010

$$0x61 - 0x7A$$

 $97 - 122$

■ Großbuchstaben: 0100 0001 — 0101 1010

$$0x41 - 0x5A$$

65 - 90

Aufgabe 3

Interpretieren Sie die Binärzahlen 0110 0100 und 1100 0110 im Zweierkomplement.

Aufgabe 3

Interpretieren Sie die Binärzahlen 0110 0100 und 1100 0110 im Zweierkomplement.

Aufgabe 3

Interpretieren Sie die Binärzahlen 0110 0100 und 1100 0110 im Zweierkomplement.

Lösung 3: a)

■ allgemeine Formel: $(b_{n-1}b_{n-2}\cdots b_0)_{(z)} = b_{n-1}\cdot (-2^{n-1}) + (b_{n-2}\cdots b_0)_{(2)}$

Aufgabe 3

Interpretieren Sie die Binärzahlen 0110 0100 und 1100 0110 im Zweierkomplement.

Lösung 3: a)

nur wenn $b_{n-1} = 1$

■ allgemeine Formel: $(b_{n-1}b_{n-2}\cdots b_0)_{(z)} = b_{n-1}\cdot (-2^{n-1}) + (b_{n-2}\cdots b_0)_{(2)}$

Aufgabe 3

Interpretieren Sie die Binärzahlen 0110 0100 und 1100 0110 im Zweierkomplement.

Lösung 3: a)

- allgemeine Formel: $(b_{n-1}b_{n-2}\cdots b_0)_{(z)} = b_{n-1}\cdot (-2^{n-1}) + (b_{n-2}\cdots b_0)_{(2)}$
- 0110 0100₍₂₎ = $2^6 + 2^5 + 2^2 = 100$

Aufgabe 3

Interpretieren Sie die Binärzahlen 0110 0100 und 1100 0110 im Zweierkomplement. (Zwei Zahlen!)

Lösung 3: a)

nur wenn $b_{n-1} = 1$

- allgemeine Formel: $(b_{n-1}b_{n-2}\cdots b_0)_{(z)} = b_{n-1}\cdot (-2^{n-1}) + (b_{n-2}\cdots b_0)_{(2)}$
- 0110 0100₍₂₎ = $2^6 + 2^5 + 2^2 = 100$
- 1100 0110₍₂₎ = $-2^7 + 0100 0110_{(2)} = -2^7 + 2^6 + 2^2 + 2^1$ = -128 + 70 = -58

Aufgabe 3

Interpretieren Sie die Binärzahlen 0110 0100 und 1100 0110 im Zweierkomplement.

Lösung 3: b)

0110 0100 + 1100 0110

Aufgabe 3

Interpretieren Sie die Binärzahlen 0110 0100 und 1100 0110 im Zweierkomplement.

Lösung 3: b)

0110 0100 + 1100 0110

Aufgabe 3

Interpretieren Sie die Binärzahlen 0110 0100 und 1100 0110 im Zweierkomplement.

Lösung 3: b)

0110 0100 + 1100 0110

10

Aufgabe 3

Interpretieren Sie die Binärzahlen 0110 0100 und 1100 0110 im Zweierkomplement.

Aufgabe 3

Interpretieren Sie die Binärzahlen 0110 0100 und 1100 0110 im Zweierkomplement.

Aufgabe 3

Interpretieren Sie die Binärzahlen 0110 0100 und 1100 0110 im Zweierkomplement.

Aufgabe 3

Interpretieren Sie die Binärzahlen 0110 0100 und 1100 0110 im Zweierkomplement.

$$01100100 + 11000110 - 101010$$

Aufgabe 3

Interpretieren Sie die Binärzahlen 0110 0100 und 1100 0110 im Zweierkomplement.

```
0110\ 0100 \\ +\ 1100\ 0110 \\ \hline \frac{1}{1} \\ 010\ 1010
```

Aufgabe 3

Interpretieren Sie die Binärzahlen 0110 0100 und 1100 0110 im Zweierkomplement.

```
0110 0100
+ 1100 0110
1 1 1 1 0010 1010
```

Aufgabe 3

Interpretieren Sie die Binärzahlen 0110 0100 und 1100 0110 im Zweierkomplement.

$$0010\ 1010_{(2)} = 2^5 + 2^3 + 2^1 = 42 = 100 - 58$$

Aufgabe 4

- a) Welchen Wert hat 0 100 1000?
- b) 0.75 > IEEE
- c) kleinste und größte positive Zahl: IEEE und Dezimal

Aufgabe 4

- a) Welchen Wert hat 0 100 1000?
- b) 0.75 > IEEE
- c) kleinste und größte positive Zahl: IEEE und Dezimal

Aufgabe 4: Welchen Wert hat 0 100 1000?

Aufgabe 4: Welchen Wert hat 0 100 1000?

Lösung 4: a)

O

$$+2^{1} \cdot (2^{0} + 2^{-1}) = 2 \cdot 1.5 = 3$$

Aufgabe 4: 0.75 > IEEE

$$0.75_{(10)} = 0.11_{(2)} =$$

Aufgabe 4: 0.75 > IEEE

$$0.75_{(10)} = 0.11_{(2)} = 1.1000_{(2)} \cdot 2^{-1}$$

Aufgabe 4: 0.75 > IEEE

$$0.75_{(10)} = 0.11_{(2)} = +1.1000_{(2)} \cdot 2^{-1}$$
Mantisse

Aufgabe 4: 0.75 > IEEE

Lösung 4: b)

$$0.75_{(10)} = 0.11_{(2)} = +1.1000_{(2)} \cdot 2^{-1}$$
Mantisse

+

$$-1 + 3 = 2$$

1.1000

Aufgabe 4: 0.75 > IEEE

Lösung 4: b)

$$0.75_{(10)} = 0.11_{(2)} = +1.1000_{(2)} \cdot 2^{-1}$$
Mantisse

+

-1 + 3 = 2

1.1000

Aufgabe 4: kleinste und größte positive Zahl

Lösung 4: c)

■ kleinste: kleinstmöglicher Exponent 000 (definiert $\overline{e} = -2$), kleinstmögliche Mantisse 0001 (mit impliziter 0 vor dem Komma, da denormalisiert) \Rightarrow (2⁻⁴) · 2⁻² = 2⁻⁶ = 0.015625

Aufgabe 4: kleinste und größte positive Zahl

Lösung 4: c)

- kleinste: kleinstmöglicher Exponent 000 (definiert $\overline{e} = -2$), kleinstmögliche Mantisse 0001 (mit impliziter 0 vor dem Komma, da denormalisiert) \Rightarrow (2⁻⁴) · 2⁻² = 2⁻⁶ = 0.015625
- größte: größtmöglicher Exponent 110 (nur 1en wäre unendlich), größtmögliche Mantisse 1111 (mit impliziter 1 vor dem Komma) \Rightarrow (2⁰ + 2⁻¹ + 2⁻² + 2⁻³ + 2⁻⁴) · 2³ = 15.5

Ein bisschen was zum Schluss

Informatik I Name Last, 25. Oktober 2024

NÄCHSTE WOCHE

- nächste Woche ist Feiertag > Zoom Donnerstag 10:00 Uhr
- Meldet euch für eure Prüfungen an!

13:54 am Montag hab ich immernoch nicht! Es ist 04:30 ich hab keine Lust mehr ic

DIE NÄCHSTE HERAUSFORDERUNG...

Turingmaschinen

$$\forall x \in \Sigma : \delta(q_0, x) = (q_1, x, S)$$

$$\forall x \in \Sigma : \delta(q_0, x) = (q_1, x, R)$$
$$\delta(q_1, x) = (q_2, x, L)$$

53 63 68 F6 6E 65 73 20 57 6F 63 68 65 6E 65 6E 64 65 20 3A 29

Name Last

Münster, 24. Januar 2025

name.last@uni-muenster.de