ĐAI SỐ TUYỂN TÍNH

§8. Giải bài tập về ma trận nghịch đảo

Phiên bản đã chỉnh sửa

PGS TS My Vinh Quang

Ngày 29 tháng 12 năm 2004

Bài 21. Tìm ma trận nghịch đảo của ma trận

$$A = \left[\begin{array}{rrr} 1 & 0 & 3 \\ 2 & 1 & 1 \\ 3 & 2 & 2 \end{array} \right]$$

Giải

Cách 1. Sử dụng phương pháp định thức

Ta có: det
$$A = 2 + 12 - 9 - 2 = 3$$

$$A_{11} = \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix} = 0 \qquad A_{21} = -\begin{vmatrix} 0 & 3 \\ 2 & 2 \end{vmatrix} = 6 \qquad A_{31} = \begin{vmatrix} 0 & 3 \\ 1 & 1 \end{vmatrix} = -3$$

$$A_{12} = -\begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} = -1 \qquad A_{22} = \begin{vmatrix} 1 & 3 \\ 3 & 2 \end{vmatrix} = -7 \qquad A_{32} = -\begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = 5$$

$$A_{13} = \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} = 1 \qquad A_{23} = -\begin{vmatrix} 1 & 0 \\ 3 & 2 \end{vmatrix} = -2 \qquad A_{33} = \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} = 1$$
Vây

Vậy

$$A^{-1} = \frac{1}{3} \left(\begin{array}{rrr} 0 & 6 & -3 \\ -1 & -7 & 5 \\ 1 & -2 & 1 \end{array} \right)$$

Cách 2. Sử dụng phương pháp biến đối sơ cấp

Xét ma trân

$$A = \begin{pmatrix} 1 & 0 & 3 & | & 1 & 0 & 0 \\ 2 & 1 & 1 & | & 0 & 1 & 0 \\ 3 & 2 & 2 & | & 0 & 0 & 1 \end{pmatrix} \xrightarrow{d_2 \to -2d_1 + d_2} \begin{pmatrix} 1 & 0 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & -5 & | & -2 & 1 & 0 \\ 0 & 2 & -7 & | & -3 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{d_3 = -2d_2 + d_3} \begin{pmatrix} 1 & 0 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & -5 & | & -2 & 1 & 0 \\ 0 & 0 & 3 & | & 1 & -2 & 1 \end{pmatrix} \xrightarrow{d_3 = \frac{1}{3}d_3} \begin{pmatrix} 1 & 0 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & -5 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

$$\longrightarrow \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & -\frac{1}{3} & -\frac{7}{3} & \frac{5}{3} \\ 0 & 0 & 1 & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \end{array}\right)$$

Vây

$$A^{-1} = \begin{pmatrix} 0 & 2 & -1 \\ -\frac{1}{3} & -\frac{7}{3} & \frac{5}{3} \\ \frac{1}{2} & -\frac{2}{2} & \frac{1}{2} \end{pmatrix}$$

Bài 22. Tìm ma trận nghịch đảo của ma trận

$$A = \left(\begin{array}{ccc} 1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{array}\right)$$

Giải

Ta sử dụng phương pháp định thức.

Ta có det
$$A = 1 + 27 + 8 - 6 - 6 - 6 = 18$$

$$A_{11} = \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = -5$$

$$A_{21} = -\begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} = 1$$

$$A_{31} = \begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix} = 7$$

$$A_{12} = -\begin{vmatrix} 2 & 3 \\ 3 & 1 \end{vmatrix} = 7$$

$$A_{22} = \begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} = -5$$

$$A_{32} = -\begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = 1$$

$$A_{33} = \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} = 1$$

$$A_{23} = -\begin{vmatrix} 1 & 3 \\ 3 & 2 \end{vmatrix} = 7$$

$$A_{33} = \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = -5$$

Vây

$$A^{-1} = \frac{1}{18} \left(\begin{array}{rrr} -5 & 1 & 7 \\ 7 & -5 & 1 \\ 1 & 7 & -5 \end{array} \right)$$

(Bạn đọc cũng có thể sử dụng phương pháp biến đổi sơ cấp để giải bài này)

Bài 23. Tìm ma trân nghich đảo của ma trân

$$A = \left(\begin{array}{cccc} -1 & 1 & 1 & 1\\ 1 & -1 & 1 & 1\\ 1 & 1 & -1 & 1\\ 1 & 1 & 1 & -1 \end{array}\right)$$

Giải

Ta sử dụng phương pháp 3.

Xét hệ

$$\begin{cases} -x_1 + x_2 + x_3 + x_4 = y_1 & (1) \\ x_1 - x_2 + x_3 + x_4 = y_2 & (2) \\ x_1 + x_2 - x_3 + x_4 = y_3 & (3) \\ x_1 + x_2 + x_3 - x_4 = y_4 & (4) \end{cases}$$

$$(1) + (2) + (3) + (4) \Longrightarrow x_1 + x_2 + x_3 + x_4 = \frac{1}{2}(y_1 + y_2 + y_3 + y_4) \qquad (*)$$

$$(*) - (1) \Longrightarrow x_1 = \frac{1}{4}(-y_1 + y_2 + y_3 + y_4)$$

$$(*) - (2) \Longrightarrow x_2 = \frac{1}{4}(y_1 - y_2 + y_3 + y_4)$$

$$(*) - (3) \Longrightarrow x_3 = \frac{1}{4}(y_1 + y_2 - y_3 + y_4)$$

$$(*) - (4) \Longrightarrow x_4 = \frac{1}{4}(y_1 + y_2 + y_3 - y_4)$$

Vây

$$A^{-1} = \frac{1}{4} \begin{pmatrix} -1 & 1 & 1 & 1\\ 1 & -1 & 1 & 1\\ 1 & 1 & -1 & 1\\ 1 & 1 & 1 & -1 \end{pmatrix}$$

Bài 24. Tìm ma trận nghịch đảo của ma trận

$$A = \left(\begin{array}{rrrr} 0 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 \\ -1 & -1 & 0 & 1 \\ -1 & -1 & -1 & 0 \end{array}\right)$$

Giải

Sử dụng phương pháp 3.

Xét hệ

$$\begin{cases} x_2 + x_3 + x_4 = y_1 & (1) \\ -x_1 + x_3 + x_4 = y_2 & (2) \\ -x_1 - x_2 + x_4 = y_3 & (3) \\ -x_1 - x_2 - x_3 = y_4 & (4) \end{cases}$$

$$(1) + (2) - (3) + (4) \Longrightarrow -x_1 + x_2 + x_3 + x_4 = y_1 + y_2 - y_3 + y_4 \qquad (*)$$

$$(1) - (*) \Longrightarrow x_1 = -y_2 + y_3 - y_4$$

$$(*) - (2) \Longrightarrow x_2 = y_1 - y_3 + y_4$$

$$(4) \Longrightarrow x_3 = -x_1 - x_2 - y_4 = -y_1 + y_2 - y_4$$

$$(3) \Longrightarrow x_4 = x_1 + x_2 + y_3 = y_1 - y_2 + y_3$$

Vậy

$$A^{-1} = \left(\begin{array}{rrrr} 0 & -1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ -1 & 1 & 0 & -1 \\ 1 & -1 & 1 & 0 \end{array}\right)$$

Bài 25. Tìm ma trận nghịch đảo của ma trận

$$\begin{pmatrix}
1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 1 & \cdots & 1 \\
0 & 0 & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{pmatrix}_{n \times n}$$

Giải

Sử dụng phương pháp 3.

Xét hệ

$$\begin{cases} x_1 + x_2 + \dots + x_n = y_1 & (1) \\ x_2 + \dots + x_n = y_2 & (2) \\ \vdots & \vdots \\ x_{n-1} + x_n = y_{n-1} & (n-1) \\ x_n = y_n & (n) \end{cases}$$

$$(1) - (2) \Longrightarrow x_1 = y_1 - y_2$$

$$(2) - (3) \Longrightarrow x_2 = y_2 - y_3$$
:

 $(n-1) - (n) \Longrightarrow x_{n-1} = y_{n-1} - y_n$

$$(n) \implies x_n = y_n$$

Vậy

$$A^{-1} = \begin{pmatrix} 1 & -1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & -1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 1 & -1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

Bài 26. Tìm ma trận nghịch đảo của ma trận

$$A = \begin{pmatrix} 1+a & 1 & 1 & \cdots & 1 \\ 1 & 1+a & 1 & \cdots & 1 \\ 1 & 1 & 1+a & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1+a \end{pmatrix}$$

Giải

Sử dung phương pháp 3.

Xét hệ

$$\begin{cases} (1+a)x_1 + x_2 + x_3 + \dots + x_n = y_1 & (1) \\ x_1 + (1+a)x_2 + x_3 + \dots + x_n = y_2 & (2) \\ \dots & \dots & \dots \\ x_1 + x_2 + x_3 + \dots + (1+a)x_n = y_n & (n) \end{cases}$$

Lấy $(1) + (2) + \cdots + (n)$, ta có

$$(n+a)(x_1+x_2+\cdots+x_n) = y_1+y_2+\cdots+y_n$$

- 1. Nếu a=-n, ta có thể chọn tham số y_1, y_2, \ldots, y_n thỏa $y_1+\cdots+y_n\neq 0$. Khi đó hệ vô nghiệm và do đó ma trận A không khả nghịch.
- 2. Nếu $a \neq -n$, khi đó ta có

$$x_1 + x_2 + \dots + x_n = \frac{1}{n+a}(y_1 + \dots + y_n) \qquad (*)$$

$$(1) - (*) \Longrightarrow ax_1 = \frac{1}{n+a}((n+a-1)y_1 - y_2 - \dots - y_n)$$

- (a) Nếu a = 0, ta có thể chọn tham số y_1, y_2, \ldots, y_n để phương trình trên vô nghiệm. Do đó hệ vô nghiệm và ma trân A không khả nghịch.
- (b) Nếu $a \neq 0$, ta có

$$x_{1} = \frac{1}{a(n+a)}((n+a-1)y_{1} - y_{2} - \dots - y_{n})$$

$$(2) - (*) \Longrightarrow x_{2} = \frac{1}{a(n+a)}(y_{1} - (n+a-1)y_{2} - y_{3} - \dots - y_{n})$$

$$\vdots$$

$$(n) - (*) \Longrightarrow x_{n} = \frac{1}{a(n+a)}(y_{1} - y_{2} - y_{3} - \dots - (n+a-1)y_{n})$$

$$V_{ay}$$

$$A^{-1} = \frac{1}{a(n+a)} \begin{pmatrix} n+a-1 & -1 & -1 & \cdots & -1 \\ -1 & n+a-1 & -1 & \cdots & -1 \\ -1 & -1 & n+a-1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & -1 & \cdots & n+a-1 \end{pmatrix}_{n \times n}$$