Joshua Nelson, u4850020

The Fast Multipole Algorithm vs. the Particle Mesh Ewald Method

Joshua Nelson, u4850020

COMP3006 - Research Project

November 1, 2012

The N body problem

Statement of the problem

Joshua Nelson, u4850020

The N bod

Given N bodies that all interact with each other in some way, how do we efficiently calculate the effect each body has on every other body?

The N body problem History

Joshua Nelson, u4850020

The N body problem The basic

The Fast Multipole Algorithm • First formally specified by Isaac Newton

The N body problem $_{\text{History}}$

Joshua Nelson, u4850020

he N body

- First formally specified by Isaac Newton
- No exact formula solution

The N body problem

Joshua Nelson, u4850020

The N body

- First formally specified by Isaac Newton
- No exact formula solution
- Approximation methods devised

The N body problem $_{\mbox{\scriptsize Applications}}$

Joshua Nelson. u4850020

The N body problem $_{\mbox{\scriptsize Applications}}$

Joshua Nelson, u4850020

The N body problem $_{\mbox{\scriptsize Applications}}$

Joshua Nelson. u4850020

Algorithm

Joshua Nelson, u4850020 • Say that a particle at position r_i with charge q_i gives a potential Q at a particle r_i with charge q_i according to the formula

$$Q = \frac{q_i * q_j}{|r_i - r_j|}$$

Algorithm

Joshua Nelson, u4850020 • Say that a particle at position r_i with charge q_i gives a potential Q at a particle r_i with charge q_i according to the formula

$$Q = \frac{q_i * q_j}{|r_i - r_j|}$$

 For each particle pair, calculate the the interaction according to the above formula

Algorithm

Joshua Nelson,

• Say that a particle at position r_i with charge q_i gives a potential Q at a particle r_i with charge q_i according to the formula

$$Q = \frac{q_i * q_j}{|r_i - r_j|}$$

- For each particle pair, calculate the the interaction according to the above formula
- Use the potential at each particle to calculate the force, and move the particle according to this force.

Algorithm

Joshua Nelson, u4850020 • Say that a particle at position r_i with charge q_i gives a potential Q at a particle r_i with charge q_i according to the formula

$$Q = \frac{q_i * q_j}{|r_i - r_j|}$$

- For each particle pair, calculate the the interaction according to the above formula
- Use the potential at each particle to calculate the force, and move the particle according to this force.
- Order $O(n^2)$ complexity.

Key components to the Fast Multipole Algorithm

Key components to the Fast Multipole Algorithm

Joshua Nelson, u4850020

The Mesh

Key components to the Fast Multipole Algorithm

Joshua Nelson, u4850020

Key components to the Fast Multipole Algorithm

- The Mesh
- Multipole Expansions

The Fast Multipole Algorithm The Mesh

Joshua Nelson, u4850020

The Fast Multipole

The Particle Mesh

Level 0

LCVCIO			
Level 1 Level 2			

The Fast Multipole Algorithm The Mesh

Joshua Nelson, u4850020

The Fast Multipole Algorithn

Well separated cells

The Fast Multipole Algorithm Expansions

Joshua Nelson, u4850020

> Multipole Expansions: A series, centered on a particular cell, which can approximate the potential from the cell's particles near that cell

Expansions

Joshua Nelson, u4850020

- Multipole Expansions: A series, centered on a particular cell, which can approximate the potential from the cell's particles near that cell
- Local Expansions: A series, centered on a particular cell, formed from a Multipole Expansion, which approximates the potential from within the cell at some distance away from that cell.

The Fast Multipole Algorithm Aglorithm

Multipole Algorithm vs. the Particle Mesh Ewald Method

Joshua Nelson, u4850020

problem

The basi solution

The Fast Multipol Algorithr

Particle Mes

• Form Multipole Expansions at the lowest mesh level

Joshua Nelson, u4850020

- Form Multipole Expansions at the lowest mesh level
- Translate them to their parent's cells, combining the four children by summing them to form the parent's Multipole Expansion

Joshua Nelson, u4850020

- Form Multipole Expansions at the lowest mesh level
- Translate them to their parent's cells, combining the four children by summing them to form the parent's Multipole Expansion
- Repeat the above for each level

Joshua Nelson,

- Form Multipole Expansions at the lowest mesh level
- Translate them to their parent's cells, combining the four children by summing them to form the parent's Multipole Expansion
- Repeat the above for each level
- At the highest level, from the Multipole Expansion, form a Local Expansion.

Joshua Nelson,

- Form Multipole Expansions at the lowest mesh level
- Translate them to their parent's cells, combining the four children by summing them to form the parent's Multipole Expansion
- Repeat the above for each level
- At the highest level, from the Multipole Expansion, form a Local Expansion.
- Translate this to children nodes, repeat to the lowest mesh level.

Basic structure of the Particle Mesh Ewald Method

Joshua Nelson, u4850020 Basic structure of the Particle Mesh Ewald Method

Interpolate particles to a grid

Basic structure of the Particle Mesh Ewald Method

Basic structure of the Particle Mesh Ewald Method

• Interpolate particles to a grid

Joshua Nelson, u4850020

Basic structure of the Particle Mesh Ewald Method

Joshua Nelson, u4850020

- Interpolate particles to a grid
- Perform a fourier transformation on the grid

Basic structure of the Particle Mesh Ewald Method

Joshua Nelson, u4850020

- Interpolate particles to a grid
- Perform a fourier transformation on the grid
- Calculate long range potential in reciprocal space using this grid

Basic structure of the Particle Mesh Ewald Method

Joshua Nelson,

- Interpolate particles to a grid
- Perform a fourier transformation on the grid
- Calculate long range potential in reciprocal space using this grid
- Return to real space using another fourier transformation

Basic structure of the Particle Mesh Ewald Method

Joshua Nelson,

- Interpolate particles to a grid
- Perform a fourier transformation on the grid
- Calculate long range potential in reciprocal space using this grid
- Return to real space using another fourier transformation
- Calculate in real space directly for near particles, and use interpolated grid values for the long range potential.

Characteristics of the Particle Mesh Ewald Method

Joshua Nelson, u4850020

Characteristics of the Particle Mesh Ewald Method

• Complexity of $O(n\log(n))$

Characteristics of the Particle Mesh Ewald Method

Joshua Nelson, u4850020

- Complexity of $O(n\log(n))$
- Perform a fourier transformation on the grid

Characteristics of the Particle Mesh Ewald Method

Joshua Nelson, u4850020

- Complexity of O(nlog(n))
- Perform a fourier transformation on the grid
- Calculate long range potential in reciprocal space using this grid

Characteristics of the Particle Mesh Ewald Method

Joshua Nelson,

- Complexity of $O(n\log(n))$
- Perform a fourier transformation on the grid
- Calculate long range potential in reciprocal space using this grid
- Return to real space using another fourier transformation

Characteristics of the Particle Mesh Ewald Method

Joshua Nelson, u4850020

- Complexity of $O(n\log(n))$
- Perform a fourier transformation on the grid
- Calculate long range potential in reciprocal space using this grid
- Return to real space using another fourier transformation
- Calculate in real space directly for near particles, and use interpolated grid values for the long range potential.