Patrick Fitzgerald ADS 534 Statistical Modeling Lab # 2 What is the multiple linear regression model in matrix form?

$$Y = \beta X + \epsilon$$

What are each of the pieces of the model representing?

Y represents the nx1 column matrix of all possible outcomes from all the interactions between the nxj matrix X and the two nx1 matrices that represent the coefficient (or effect) that a given row vector, X_{ij} , has based on the acquired data. It is important to note that the first column of matrix X is comprised only of 1s to preserve the case where only β_0 is affecting the outcome.

What is the least squares estimate for $\beta = (\beta_0, \beta_1, ..., \beta_p)'$ in matrix form?

Using matrix algebra it is possible to derive the following least squares estimate for β:

From the first problem we know $Y = \beta X + \epsilon => \epsilon = Y - X\beta$

then,
$$e'e = (Y - X\beta)'(Y - X\beta) = (Y' - \beta'X')(Y - X\beta)$$

- \Rightarrow Y'Y 2β'X'Y + β'X'Xβ using partial derivatives with respect to β it can be shown that X'Xβ = X'Y
- \Rightarrow B = (X'X)-1X'Y

multiple linear regression with categorical predictors

We will being by considering the impact of the new variable in the data set, FEV_2 on PEmax.

. Create binary indicator variables to represent ${\sf FEV_2}$, using level 1 of ${\sf FEV_2}$ as the reference level. How many binary indicator variables do you need?

We require 2 indicator variables: using level 1 as the indicator variable we will need to account for the effect of the other 2 possible outcomes for FEV2 (2 and 3).

. Write the multiple linear regression model for prediction PEmax from FEV $_{\!2}$, using level 1 of FEV $_{\!2}$ as the reference level.

.
$$PE_{max} = \beta_0 + \beta_1 I_{FEV2=2} + \beta_2 I_{FEV2=3}$$

- . Where $I_{FEV2=2}$ = { 1 if FEV2 = 2 and 0 otherwise
- . And $I_{FEV2=3} = \{ 1 \text{ if } FEV2 = 3 \text{ and } 0 \text{ otherwise } \}$

We will now fit this model in SAS.

The REG Procedure Model: MODEL1 Dependent Variable: PEmax

Number of Observations Read	25
Number of Observations Used	25

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	2	22093	11046	51.27	<.0001			
Error	22	4739.87013	215.44864					
Corrected Total	24	26833						

Root MSE	14.67817	R-Square	0.8234
Dependent Mean	109.12000	Adj R-Sq	0.8073
Coeff Var	13.45140		

	Parameter Estimates										
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	95% Confide	ence Limits				
Intercept	1	78.57143	5.54783	14.16	<.0001	67.06594	90.07692				
12	1	20.97403	7.09680	2.96	0.0073	6.25616	35.69190				
13	1	76.14286	7.84581	9.70	<.0001	59.87164	92.41407				

- . Interpret the regression coefficients in this model?
- From our parameter estimates we can see the change in PE_{max} associated with FEV2 changing from our reference level (1) to FEV2 = 2 is 20.97.
- . We can also see that the difference between PE_{max} between someone with our reference level (1) and FEV2 = 3 is 76.14.

confounding

. Calculate Pearson correlation coefficient for continuous variables Age and PEmax.

Is r significantly different from 0? Is there association between Age and PEmax?

	ion Coefficients, N = 25 under H0: Rho=0
	Age
PEmax	0.61347
	0.0011

We can see r = 0.613 which is significantly different from 0 meaning that there is an association between age and PE_{max} .

. Investigate the association between ${\sf FEV}_2$ and ${\sf PEmax}$. Notice that ${\sf FEV}_2$ is categorical variable with 3 levels and ${\sf PEmax}$ is continuous. What test should we use?

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	1	10.58744	10.58744	71.36	<.0001			
Error	23	3.41256	0.14837					
Corrected Total	24	14.00000						

ANOVA is the appropriate test for a categorical variable and a continuous variable. We see a low p-value (<.0.0001) which suggests there is a significant difference between the means of the levels of FEV2 base don the PE_{max} of the subject.

. Investigate the association between \mbox{FEV}_2 and Age. What test should we use?

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	1	4.40219	4.40219	10.55	0.0035			
Error	23	9.59781	0.41730					
Corrected Total	24	14.00000						

ANOVA is the appropriate test for a categorical variable and a continuous variable. We see a low p-value (0.0.0035) which suggests there is a significant difference between the means of the levels of FEV2 with respect to age of the subject.

. Assuming that there is no causal relationship between Age and ${\sf FEV_2}$, do we think that ${\sf FEV_2}$ is a confounder of the relationship between Age and PEmax? Why?

Yes, we conclude that FEV2 is a confounder of the relationship between age and PE_{max} because of the results shown in the previous two problems – namely, that FEV2 is associated with both age and PE_{max} .

We can also compare the unadjusted β for Age with the adjusted β for Age after controlling for FEV2 to see if FEV2 confounds the association between Age and PEmax. Usually, we conclude that FEV2 is a confounder when we see a change in β of 10% or more.

. To begin, we fit simple linear regression model with Age alone.

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t				
Intercept	1	50.40792	16.65711	3.03	0.0060				
Age	1	4.05470	1.08835	3.73	0.0011				

- . We can see the β term associated with age is 4.05.
- . Then we fit the multiple linear regression model with both Age and \mbox{FEV}_2 included.

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t				
Intercept	1	69.38266	10.09836	6.87	<.0001				
Age	1	0.79409	0.73049	1.09	0.2893				
12	1	19.47866	7.20030	2.71	0.0133				
13	1	70.24390	9.51313	7.38	<.0001				

We can see that the β term associated with age when adjusting for FEV2 is 0.794.

. Assuming that there is no causal relationship between Age and ${\sf FEV_2}$, do we think that ${\sf FEV_2}$ is a confounder of the relationship between Age and PEmax, after looking at the output from the two above models? Why?

Yes, we do conclude that FEV2 is a confounder of the relationship between age and PEmax due to the significant difference between the simple linear regression β -term we found (4.05) and the adjusted β -term we found (0.794).

- . What is the expected (or average) PEmax score from someone who is Age 16 and has FEV₂ score of 1? FEV₂ score of 2? FEV₂ score of 3?
- FEV2 = 1

.
$$PE_{max} = 69.38266 + 0.79409(16) = 82.0881$$

. FEV2 = 2

.
$$PE_{max} = 69.38266 + 19.47866(1) + 0.79409(16) = 101.5668$$

. FEV2 = 3

.
$$PE_{max} = 69.38266 + 70.24390(1) + 0.79409(16) = 152.332$$

interactions

. Using PEmax as response variable, write out the full model for Age and each level of FEV2, as well as interaction terms between Age and FEV2.

.
$$PE_{max} = \beta_0 + \beta_1 I_{FEV2=2} + \beta_2 I_{FEV2=3} + \beta_3 Age_i + \beta_4 I_{FEV2=2} Age_i + \beta_5 I_{FEV2=3} Age_i$$

. We will look at this relationship graphically. What do you notice from the plot?

. We will now fit the model with the interaction terms.

Parameter Estimates										
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	95% Confidence Lim				
Intercept	1	78.49469	13.76348	5.70	<.0001	49.68739	107.30200			
Age	1	0.00663	1.12647	0.01	0.9954	-2.35110	2.36436			
12	1	22.33166	17.47867	1.28	0.2168	-14.25163	58.91494			
13	1	-43.41004	33.50679	-1.30	0.2106	-113.54056	26.72048			
age_fev2_2	1	-0.10183	1.35701	-0.08	0.9410	-2.94209	2.73842			
age_fev2_3	1	6.28966	1.94938	3.23	0.0044	2.20957	10.36976			

. What do you conclude from the model?

Two of the terms associated with age (β_3 and β_4 from our model) are effectively 0 (0.00663 and -0.10183) meaning that they have little effect. However, β_5 is significant and this will become obvious when we calculate PE_{max} for someone age 16 in the next problem.

. What is the expected PEmax score from someone who is Age 16 and has FEV₂ score of 1? FEV₂ score of 2? FEV₂ score of 3?

FEV2 = 1

. $PE_{max} = 78.49469 + 0.00663(16) = 78.59508$

. FEV2 = 2

.
$$PE_{max} = (78.49469 + 22.33166) + (0.00663 - 0.10183)(16) = 99.30315$$

 $. \quad FEV2 = 3$

.
$$PE_{max} = (78.49469 - 43.41004) + (0.00663 + 6.28966)(16) = 135.8253$$

. How does this compare to your previous estimate?

While there is some change in all three values, the most notable change in PE_{max} comes from FEV2 = 3.