Statistical Learning [RN2 Sec 20.1-20.2] [RN3 Sec 20.1-20.2]

CS 486/686

University of Waterloo

Lecture 16: June 25, 2015

Outline

- · Statistical learning
 - Bayesian learning
 - Maximum a posteriori
 - Maximum likelihood
- Learning from complete Data

Statistical Learning

View: we have uncertain knowledge of the world

Idea: learning simply reduces this uncertainty

Candy Example

- Favorite candy sold in two flavors:
 - Lime (hugh)
 - Cherry (yum)
- Same wrapper for both flavors
- Sold in bags with different ratios:
 - 100% cherry
 - 75% cherry + 25% lime
 - 50% cherry + 50% lime
 - 25% cherry + 75% lime
 - 100% lime

Candy Example

- You bought a bag of candy but don't know its flavor ratio
- After eating k candies:
 - What's the flavor ratio of the bag?
 - What will be the flavor of the next candy?

Statistical Learning

- Hypothesis H: probabilistic theory of the world
 - h₁: 100% cherry
 - h₂: 75% cherry + 25% lime
 - h_3 : 50% cherry + 50% lime
 - h₄: 25% cherry + 75% lime
 - h₅: 100% lime
- Data D: evidence about the world
 - d₁: 1st candy is cherry
 - d₂: 2nd candy is lime
 - d₃: 3rd candy is lime

- ...

Bayesian Learning

Prior: Pr(H)

- · Likelihood: Pr(d|H)
- Evidence: $\mathbf{d} = \langle d_1, d_2, ..., d_n \rangle$
- Bayesian Learning amounts to computing the posterior using Bayes' Theorem:

$$Pr(H|d) = k Pr(d|H)Pr(H)$$

Bayesian Prediction

- Suppose we want to make a prediction about an unknown quantity X (i.e., the flavor of the next candy)
- $Pr(X|d) = \Sigma_i Pr(X|d,h_i)P(h_i|d)$ = $\Sigma_i Pr(X|h_i)P(h_i|d)$
- Predictions are weighted averages of the predictions of the individual hypotheses
- Hypotheses serve as "intermediaries" between raw data and prediction

Candy Example

- Assume prior $P(H) = \langle 0.1, 0.2, 0.4, 0.2, 0.1 \rangle$
- Assume candies are i.i.d. (identically and independently distributed)
 - $P(\mathbf{d}|\mathbf{h}) = \Pi_j P(d_j|\mathbf{h})$
- Suppose first 10 candies all taste lime:
 - $P(d|h_5) = 1^{10} = 1$
 - $-P(d|h_3) = 0.5^{10} = 0.00097$
 - $P(d|h_1) = 0^{10} = 0$

Posterior

Posteriors given data generated from h_5

Prediction

Bayesian Learning

- Bayesian learning properties:
 - Optimal (i.e. given prior, no other prediction is correct more often than the Bayesian one)
 - No overfitting (all hypotheses weighted and considered)
- There is a price to pay:
 - When hypothesis space is large Bayesian learning may be intractable
 - i.e. sum (or integral) over hypothesis often intractable
- Solution: approximate Bayesian learning

Maximum a posteriori (MAP)

• Idea: make prediction based on most probable hypothesis h_{MAP}

```
- h_{MAP} = argmax_{h_i} P(h_i | d)
```

- $P(X|d) \approx P(X|h_{MAP})$
- In contrast, Bayesian learning makes prediction based on all hypotheses weighted by their probability

Candy Example (MAP)

- Prediction after
 - 1 lime: $h_{MAP} = h_3$, $Pr(lime|h_{MAP}) = 0.5$
 - 2 limes: $h_{MAP} = h_4$, $Pr(lime|h_{MAP}) = 0.75$
 - 3 limes: $h_{MAP} = h_5$, $Pr(lime|h_{MAP}) = 1$
 - 4 limes: $h_{MAP} = h_5$, $Pr(lime|h_{MAP}) = 1$

- ...

After only 3 limes, it correctly selects h₅

Candy Example (MAP)

- But what if correct hypothesis is h_4 ?
 - h_4 : P(lime) = 0.75 and P(cherry) = 0.25
- After 3 limes
 - MAP incorrectly predicts h₅
 - MAP yields $P(lime|h_{MAP}) = 1$
 - Bayesian learning yields P(lime|d) = 0.8

MAP properties

- MAP prediction less accurate than Bayesian prediction since it relies only on one hypothesis h_{MAP}
- But MAP and Bayesian predictions converge as data increases
- Controlled overfitting (prior can be used to penalize complex hypotheses)
- Finding h_{MAP} may be intractable:
 - h_{MAP} = argmax P(h|d)
 - Optimization may be difficult

MAP computation

Optimization:

```
- h_{MAP} = argmax_h P(h|d)
= argmax_h P(h) P(d|h)
= argmax_h P(h) \Pi_i P(d_i|h)
```

- · Product induces non-linear optimization
- Take the log to linearize optimization
 - h_{MAP} = $argmax_h log P(h) + \Sigma_i log P(d_i|h)$

Maximum Likelihood (ML)

- Idea: simplify MAP by assuming uniform prior (i.e., $P(h_i) = P(h_j) \forall i,j$)
 - $-h_{MAP} = argmax_h P(h) P(d|h)$
 - $h_{ML} = argmax_h P(d|h)$
- Make prediction based on h_{ML} only:
 - $P(X|d) \approx P(X|h_{ML})$

Candy Example (ML)

- Prediction after
 - 1 lime: $h_{ML} = h_5$, $Pr(lime|h_{ML}) = 1$
 - 2 limes: $h_{ML} = h_5$, $Pr(lime|h_{ML}) = 1$

- ...

- Frequentist: "objective" prediction since it
 relies only on the data (i.e., no prior)
 - Bayesian: prediction based on data and uniform prior (since no prior = uniform prior)

ML properties

- ML prediction less accurate than Bayesian and MAP predictions since it ignores prior info and relies only on one hypothesis h_{ML}
- But ML, MAP and Bayesian predictions converge as data increases
- Subject to overfitting (no prior to penalize complex hypothesis that could exploit statistically insignificant data patterns)
- Finding h_{ML} is often easier than h_{MAP}
 - $h_{ML} = argmax_h \Sigma_i log P(d_i|h)$

Statistical Learning

- · Use Bayesian Learning, MAP or ML
- Complete data:
 - When data has multiple attributes, all attributes are known
 - Easy
- Incomplete data:
 - When data has multiple attributes, some attributes are unknown
 - Harder

Simple ML example

- Hypothesis h_{θ} :
 - P(cherry)= θ & P(lime)= $1-\theta$
- Data d:
 - c cherries and I limes

- ML hypothesis:
 - θ is relative frequency of observed data
 - $-\theta = c/(c+1)$
 - P(cherry) = c/(c+1) and P(lime) = 1/(c+1)

ML computation

- 1) Likelihood expression
 - $P(\mathbf{d}|\mathbf{h}_{\theta}) = \theta^{c} (1-\theta)^{l}$
- 2) log likelihood
 - $\log P(\mathbf{d}|\mathbf{h}_{\theta}) = c \log \theta + 1 \log (1-\theta)$
- · 3) log likelihood derivative
 - $d(\log P(\mathbf{d}|\mathbf{h}_{\theta}))/d\theta = c/\theta I/(1-\theta)$
- 4) ML hypothesis
 - $c/\theta 1/(1-\theta) = 0 \rightarrow \theta = c/(c+1)$

More complicated ML example

- Hypothesis: $h_{\theta,\theta_1,\theta_2}$
- · Data:
 - c cherries
 - g_c green wrappers
 - · r_c red wrappers
 - I limes
 - g_1 green wrappers
 - · r₁ red wrappers

ML computation

- 1) Likelihood expression
 - $P(d|h_{\theta,\theta_1,\theta_2}) = \theta^c(1-\theta)^{|\theta_1|^2} (1-\theta_1)^{|\theta_2|^2} (1-\theta_2)^{|\theta_1|^2}$
- •
- 4) ML hypothesis
 - $-c/\theta 1/(1-\theta) = 0 \rightarrow \theta = c/(c+1)$
 - $r_c/\theta_1 g_c/(1-\theta_1) = 0 \rightarrow \theta_1 = r_c/(r_c+g_c)$
 - $-r_{|}/\theta_{2}-g_{|}/(1-\theta_{2})=0 \Rightarrow \theta_{2}=r_{|}/(r_{|}+g_{|})$

Laplace Smoothing

- An important case of overfitting happens when there is no sample for a certain outcome
 - E.g. no cherries eaten so far
 - P(cherry) = θ = c/(c+l) = 0
 - Zero prob. are dangerous: they rule out outcomes
- Solution: Laplace (add-one) smoothing
 - Add 1 to all counts

- $P(cherry) = \theta = (c+1)/(c+l+2) > 0$
- Much better results in practice

Naive Bayes model

20.2.2 Naive bayes

- Want to predict a class C based on attributes A_i
- Parameters:
 - θ = P(C=true)
 - θ_{i1} = P(A_i =true|C=true)
 - θ_{i2} = P(A_i =true|C=false)

Assumption: A_i's are independent given C

Naïve Bayes model for Restaurant Problem

Data:

Example	Attributes										Target
1	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

ML sets

- θ to relative frequencies of wait and ~wait
- θ_{i1} , θ_{i2} to relative frequencies of each attribute value given wait and ~wait

Naive Bayes model vs decision trees

Wait prediction for restaurant problem

Why is naïve Bayes less accurate than decision tree?

Assumptions independence and this assumption isn't always true, so the decision tree was better because it encoded the dependency relationship in a parent-child relation

Bayesian network parameter learning (ML)

- Parameters $\theta_{V,pa(V)=v}$:
 - CPTs: $\theta_{V,pa(V)=v} = P(V|pa(V)=v)$
- Data d:
 - $d_1 : \langle V_1 = V_{1,1}, V_2 = V_{2,1}, ..., V_n = V_{n,1} \rangle$
 - $d_2 : \langle V_1 = V_{1,2}, V_2 = V_{2,2}, ..., V_n = V_{n,2} \rangle$
 - ...
- Maximum likelihood:
 - Set $\theta_{V,pa(V)=v}$ to the relative frequencies of the values of V given the values \mathbf{v} of the parents of V