- 1. Backpropagation in a Simple Neural Network
 - a. Dataset

b. Train the network using different activation functions (Tanh, Sigmoid and ReLU). We can notice that the ReLU function will create a sharp decision boundary, while both Tanh and Sigmoid functions will create a smooth decision boundary.

Sigmoid

More hidden units with Tanh (nn_hidden_dim=8). When I increased the number of hidden units to 8, the decision boundary became overfitting to the data points. The reason for overfitting is that the model now is too complex and it closely fits to a limited set of data points

More fun -Training a Deeper Netword:

I implemented a n_layer_neural_network class that inherits the three_layer_neural network. Then I called DeepNeuralNetwork(n_hidden=5, input_dim=2, hidden_dim=8, output_dim=2, actFun_type="Tanh") and the result is displayer as below.

2. Training a Simple Deep Convolutional Network on MNIST

a. Visualize Training

CrossEntropyLoss_1

b. More on Visualizing Your Training

conv1_activation_max

conv1_activation_mean

conv1_activation_min

conv1_activation_std

conv1_bias_max

conv1_input_mean

conv1_input_std

conv1_weight_max

conv1_weight_mean

conv1_weight_std

conv2_activation_max

conv2_activation_std

conv2_bias_max

conv2_input_mean

conv2_input_min

conv2_input_std

conv2_weight_mean

conv2_weight_std

fc_bias_max

fc_bias_mean

fc_bias_min

fc_bias_std

fc_input_mean

fc_input_max

fc_input_min

fc_input_std

fc_weight_max

fc_weight_mean

fc_weight_min

fc_weight_std

softmax_bias_max

softmax_bias_mean

softmax_bias_min

softmax_bias_std

softmax_input_max

softmax_input_mean

softmax_input_min

softmax_input_std

-- --

softmax_weight_max

softmax_weight_mean

softmax_weight_min

softmax_weight_max

softmax_weight_mean

softmax_weight_min

softmax_weight_std

