

Eexam

Sticker mit SRID hier einkleben

Hinweise zur Personalisierung:

- · Ihre Prüfung wird bei der Anwesenheitskontrolle durch Aufkleben eines Codes personalisiert.
- Dieser enthält lediglich eine fortlaufende Nummer, welche auch auf der Anwesenheitsliste neben dem Unterschriftenfeld vermerkt ist.
- · Diese wird als Pseudonym verwendet, um eine eindeutige Zuordnung Ihrer Prüfung zu ermöglichen.

Grundlagen Rechnernetze und Verteilte Systeme

Klausur: IN0010 / Hausaufgabe 8 Datum: Dienstag, 23. Juni 2020

Prüfer: Prof. Dr.-lng. Georg Carle **Uhrzeit:** 14:00 – 23:59

Bearbeitungshinweise

- Die erreichbare Gesamtpunktzahl beträgt 63.5 Punkte.
- Bitte geben Sie bis spätestens Montag, den **29. Juni um 23:59 CEST** über TUMexam ab. Bitte haben Sie Verständnis, wenn das Abgabesystem noch nicht reibungslos funktioniert. Wir arbeiten daran!
- Ihren persönlichen Link zur Abgabe finden Sie auf Moodle. Geben Sie diesen nicht weiter.
- Bitte haben Sie Verständnis, falls die Abgabeseite zeitweilig nicht erreichbar ist.

Bitte nehmen Sie die Hausaufgaben dennoch ernst:

- Neben der Einübung des Vorlesungsstoffs und der Klausurvorbereitung dienen die Hausaufgaben auch dazu, den Ablauf der Midterm zu erproben.
- Finden Sie einen für sich selbst praktikablen und effizienten Weg, die Hausaufgaben zu bearbeiten. Hinweise hierzu haben wir auf https://grnvs.net.in.tum.de/homework_submission_details.pdf für Sie zusammengestellt.

Hörsaal verlassen von	bis	/	Vorzeitige Abgabe um
		- ′	

Aufgabe 1 Subnetting (Hausaufgabe) (24.5 Punkte)

Der TUMexam AG werden die Adressbereiche 131.159.32.0/22 und 131.159.36.0/24 zugewiesen. Für die Aufteilung dieses Adressbereichs ist die TUMexam AG selbst verantwortlich. Nach einer sorgfältigen Bedarfsanalyse ergeben sich die folgenden Anforderungen an die Subnetze und die Mindestanzahl **nutzbarer** IP-Adressen:

Subnetz	NET 1	NET 2	NET 3	NET 4	NET 5
IPs	300	300	15	40	4

Bei der Erhebung dieser Zahlen wurde die an das jeweilige Router-Interface zu vergebende IP-Adresse bereits berücksichtigt.

	a) Geben Sie jeweils die erste und letzte IP-Adresse der beiden vergebenen Adressbereiche an.
3	b) Wie viele IP-Adressen stehen der TUMexam AG insgesamt zur Verfügung? Können alle davon zur Adressieru von Hosts verwendet werden?
}	
	c)* Ist es möglich, den von den beiden Adressblöcken gebildeten Adressbereich in einem einzigen Subrzusammenzufassen?

d) Teilen Sie nun die beiden Adressbereiche gemäß der Bedarfsanalyse auf, so dass Subnetze der passenden
Größe entstehen. Gehen Sie mit den Adressen so sparsam wie möglich um. Es soll am Ende ein möglichst großer
zusammenhängender Adressbereich für zukünftige Nutzung frei bleiben. Für jedes Subnetz ist anzugeben:

- die Größe des Subnetzes
- die Anzahl nutzbarer Adressen
- das Subnetz in Präfixschreibweise
- die Subnetzmaske in Dotted-Decimal-Notation
- die Netz- und Broadcastadresse

Größe Nutzbar Präfixnotation Subnetzmaske Netzadresse Broadcast Subnetz NET 4 NET 5 Bedarf Größe Nutzbar Präfixnotation Subnetzmaske Netzadresse	Subnetz	NET 1	NET 2	NET 3
Nutzbar Präfixnotation Subnetzmaske Netzadresse Broadcast Subnetz NET 4 NET 5 Bedarf Größe Nutzbar Präfixnotation Subnetzmaske Netzadresse	Bedarf			
Netzadresse Broadcast Subnetz NET 4 NET 5 Bedarf Größe Nutzbar Präfixnotation Subnetzmaske	Größe			
Subnetzmaske Netzadresse Broadcast Subnetz NET 4 NET 5 Bedarf Größe Nutzbar Präfixnotation Subnetzmaske Netzadresse	Nutzbar			
Bedarf Größe Nutzbar Präfixnotation Subnetzmaske Netzadresse	Präfixnotation			
Subnetz NET 4 NET 5 Bedarf Größe Nutzbar Präfixnotation Subnetzmaske Netzadresse	Subnetzmaske			
Subnetz NET 4 NET 5 Bedarf Größe Nutzbar Präfixnotation Subnetzmaske Netzadresse	Netzadresse			
Bedarf Größe Nutzbar Präfixnotation Subnetzmaske Netzadresse	Broadcast			
Bedarf Größe Nutzbar Präfixnotation Subnetzmaske Netzadresse	Cubnotz	NET 4	NET 5	
Größe Nutzbar Präfixnotation Subnetzmaske Netzadresse		NET 4	INE I D	
Nutzbar Präfixnotation Subnetzmaske Netzadresse				
Präfixnotation Subnetzmaske Netzadresse				
Subnetzmaske Netzadresse				
Netzadresse				
Broadcast				
	Broadcast			

10

11

12

15

16

Aufgabe 2 IPv6 & Supernetting (8 Punkte)

Der TUMexam AG wurden nun die IPv6 Adressebereiche 2001:0db8:0001:000d:0000:0000:0000:0000/64 (*NET1*) und 2001:0db8:0001:000e:0000:0000:0000:0000/64 (*NET2*) zugeteilt.

B	a)* Geben Sie die in <i>NET1</i> enthalten IPv6 Adresse 2001:0db8:0001:000d:0000:00f0:0000:0000 in kompakter Schreibweise an.
' L	
$^{\circ}$ H	b)* Wieviele Adressen enthält jedes Präfix?
ıН	
P	c) Wie oft kann der gesamte IPv4 Adressbereich (0.0.0.0/0) in NET1 abgebildet werden?
1 H	
	d)* Welche Bedingungen müssen erfüllt sein, damit 2 Subnetze aggregiert werden können?
1	
	e)* Können die beiden Subnetze NET1 und NET2 in ein /63 Subnetz aggregiert werden?
¹ H	
2	

Aufgabe 3 Neighbor Discovery Protocol und IP-Fragmentierung bei IPv6 (31 Punkte)

In Abbildung 3.1 ist eine Anordnung von Netzkomponenten mit ihren MAC-Adressen dargestellt. PC1 und PC2 seien mittels SLAAC sowohl Link-Local (LL) als auch Global-Unique (GU) Adressen zugewiesen. Für letztere werde das Präfix 2001:db8:1::/64 (PC1/R1) bzw. 2001:db8:2::/64 (PC2/R2) verwendet.

PC1 sendet ein IP-Paket mit 1400 B Nutzdaten an PC2. Die MTU auf dem WAN-Link zwischen R1 und R2 betrage 1280 B¹. Innerhalb der lokalen Netzwerke gelte die für Ethernet übliche MTU von 1500 B.

Abbildung 3.1: Netztopologie

Zunächst soll die Adressvergabe mittels SLAAC nachvollzogen werden.

Bestimmen Sie die Link-Local Adressen aller Interfaces.	

¹Dies entspricht der minimalen MTU, die laut RFC 2460 Schicht 2 für IPv6 unterstützen muss.

В	b) Bestimmen Sie die Global-Unique Adressen von PC1 und PC2. Nehmen Sie dazu an, dass Router R1 mit de Präfix 2001:db8:1::/64 und Router R2 mit 2001:db8:2::/64 konfiguriert ist.
‡	
}	c)* An welcher Stelle im Netzwerk wird die Fragmentierung stattfinden?
_	d)* In wie viele Fragmente muss das Paket mindestens aufgeteilt werden?
3	
1	
	e) Bestimmen Sie die Größe der L3-SDU für jedes Fragment.
1	e) Destininen die die Grobe der E3-300 für jedes Fragment.
1	
_	
7	f)* Begründen Sie, an welcher Stelle im Netzwerk werden die Fragmente reassembliert werden.

	PC1	SW1		R	1				R2		SW2	:	Р	C2			
	+			+	7						+			\downarrow			
														1 1			
stim	nmen Sie die	Destinatio	on-M <i>A</i>	AC-Ac	dresse	e des	erste	n übe	rtrage	nen F	Rahmen	S.					
stim	nmen Sie die	Destinatio	on-MA	AC-Ac	dresse	e des	erste	n übe	rtrage	nen F	Rahmen	S.					
stim	nmen Sie die	Destinatio	on-M <i>F</i>	AC-Ac	dresse	e des	erste	n übe	rtrage	nen F	Rahmen	S.					
stim	nmen Sie die	Destinatio	on-MA	AC-Ac	dresse	e des	erste	n übe	rtrage	nen F	Rahmen	S.					
stim	nmen Sie die	Destinatio	on-MA	AC-Ac	dresse	e des	erste	n übe	rtrage	nen F	Rahmen	S.					
inde	e dieses Üb	ungsblatt nicht notw	s fin	ı den S	Sie Vo n Hea	ordru der b	i cke f	f ür Et	t herne füllen.	t-Hea	ader, IC	: MPv 6					
Ende enö nba	e dieses Üb tigt). Es ist ısis deutlich l	ungsblatt nicht notw Kennzeich	es fin endig nen,	n den 9 g, der z.B. 6	Sie V o 1 Hea 0x10 fü	ordru der b ür hex	i cke f inär a kadez	f ür Et auszu imal (t herne füllen. oder 63	t-Hea Acht 3 ₍₁₀₎ fi	ader, IC ten Sie ür dezin	CMPv6 ledigl nal.	ich c	larau	f, da	ss Si	e die
Ende enö enba en S	e dieses Üb tigt). Es ist isis deutlich l Sie für die er ende Payloa	ungsblatt nicht notw Kennzeich sten beide d aus. Be	es fin endig nen,	nden (g, der z.B. (Sie Von Hea	ordru der b ür hex Feilau	i cke f inär a kadez fgabe	für Et auszu imal (t herne füllen. oder 63 weils 6	t-Hea Achi 3 ₍₁₀₎ fo	ader, IC ten Sie ür dezin Etherne	MPv6 ledigl nal.	ich c d ein	larau en IF	f, da '-Hea	ss Si ader s	e die sowie
Ende enö nba en s asse iger eis:	e dieses Üb tigt). Es ist sis deutlich l Sie für die er ende Payloa n Rahmennu Nutzen Sie d	ungsblatt nicht notw Kennzeich sten beide d aus. Be mmer. den Cheats	es fin rendiç nen, n Ra schri	nden s g, der z.B. 6 hmen iften s	Sie Von Hea 0x10 fü 1 aus 1 Sie die bestim	ordru der b ür hex Feilau e ges	icke f inär a kadez fgabe striche	f ür Et auszu imal d e g) je elte B	t herne füllen. oder 63 weils 6 ox nel	t-Hea Acht 3 ₍₁₀₎ fo	ader, IC ten Sie ür dezin Ethernd	MPv6 ledigl nal. et- und reilige	ich c d ein n He	larau en IF eade	f, da '-Hea '/Pak	ss Si ader s et mi	e die sowie it der
Ende enö nba en S asse iger eis:	e dieses Üb tigt). Es ist sis deutlich l Sie für die er ende Payloa n Rahmennu	ungsblatt nicht notw Kennzeich sten beide d aus. Be mmer. den Cheats Sie eine s	s fin rendig nen, n Ra schri	nden S g, der z.B. 6 lhmen iften S t zum olle W	Sie Von Hea 3×10 fünd aus 1 Sie die die bestim Vahl.	ordru der b ür hex Teilau e ges	icke f inär a kadez fgabe striche	f ür Et auszu imal d e g) je elte B Verte	t herne füllen. oder 63 weils 6 ox nel (z. B. N	t-Hea Acht 3 ₍₁₀₎ fi einen ben c	ader, IC ten Sie ür dezin Etherne dem jew Header).	EMPve ledigl nal. et- und reilige Sollte	ich d d ein n He e ein	larau en IF eade Wert	f, da P-Hea r/Pak nich	ss Si ader s et mi	e die sowie it der leutig

Vordrucke für Protokoll-Header:

Ethernet-Frames

15 5 5 1	
i i l	Payload FCS
T I	i ayload
11	
T I	Payload FCS
!	
; ;	Payload FCS
<u> </u>	
,, <u> </u>	
; ;]	Payload FCS
i i l	Payload FCS
11	
T I	Payload FCS
!1	[
; ;	Payload FCS
i	
,===,	
i	Payload FCS
i i	Fayload FCS FCS
11	1 1000000000000000000000000000000000000
11	Payload
	Payload FCS
· ·	Payload FCS
12	
1771	
12	
1771	Payload FCS
1771	Payload FCS
	Payload FCS
	Payload FCS
	Payload FCS
	Payload FCS Payload FCS
	Payload FCS
	Payload FCS Payload FCS
	Payload FCS
	Payload FCS Payload FCS
	Payload FCS Payload FCS Payload FCS Payload FCS
	Payload FCS Payload FCS Payload FCS Payload FCS
	Payload FCS Payload FCS Payload FCS Payload FCS
	Payload FCS Payload FCS Payload FCS Payload FCS
	Payload FCS Payload FCS Payload FCS Payload FCS Payload FCS
	Payload FCS Payload FCS Payload FCS Payload FCS

IPv6 Fragment Header

ICMPv6 Neighbor Solicitation

ICMPv6 Neighbor Advertisement

