DATA130026.01 Optimization Solution of Assignment 3

1. Consider the problem

(P) min
$$f(x)$$

s.t. $g(x) \le 0$,
 $x \in X$,

where f and g are convex functions over \mathbb{R}^n and $X \subset \mathbb{R}^n$ is a convex set. Suppose that x^* is an optimal solution of (P) that satisfies $g(x^*) < 0$. Show that x^* is also an optimal solution of the problem

(P) min
$$f(x)$$

s.t. $x \in X$.

Solution. Suppose $\exists y (\neq x^*) \in X$ s.t. g(y) > 0 and $f(y) < f(x^*)$. Consider the line segment L joining x^* to y:

$$L = \{ x \in \mathbb{R}^n : x = \lambda y + (1 - \lambda)x^*, \lambda \in (0, 1] \}.$$

By the convexity property for f, we have

$$f(x) \le \lambda f(y) + (1 - \lambda)f(x^*) < f(x^*), \quad \forall x \in L.$$

Since g is convex and a convex function is continuous on the relative interior of its domain, there exists a neighborhood \mathcal{N} of x^* that satisfies g(x) < 0 for any $x \in \mathcal{N} \cap X$. If we choose $\tilde{x} \in \mathcal{N} \cap X \cap L$, then

$$g(\tilde{x}) < 0$$
, and $f(\tilde{x}) < f(x^*)$.

This leads to a contradiction, because we know x^* is an optimal solution of (P).

2. Let $f: C \to \mathbb{R}$ be a convex function defined over the convex set $C \subseteq \mathbb{R}^n$. Then the set of optimal solutions of the problem

$$\min\{f(x):x\in C\},$$

which we denote by X^* , is convex. If, in addition, f is strictly convex over C, then there exists at most one optimal solution of the problem.

Solution.

(a) $\forall x_1, x_2 \in X^*, \theta \in [0, 1]$, since C is convex and f is convex, we have

$$\theta x_1 + (1 - \theta)x_2 \in C,$$

$$f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2) = f(x_1) = f(x_2).$$

By the definition of minimum, we have

$$f(\theta x_1 + (1 - \theta)x_2) = \min f.$$

Therefore $\theta x_1 + (1 - \theta)x_2 \in X^*$, X^* is convex.

(b) Proof by contradiction. Suppose that $\exists x_1 \neq x_2 \text{ s.t. } x_1, x_2 \in X^*$, since f is strictly convex over C, we have

$$f(\frac{x_1+x_2}{2}) < \frac{1}{2}f(x_1) + \frac{1}{2}f(x_2) = f(x_1),$$

which leads to a contradiction. Therefore, there exists at most one optimal solution of the problem.