Mathematical Statistics2 Tutoring7

Seung Bong Jung

Seoul National University

November 5, 2021

Optimality in Testing Problem

Suppose we observe a random sample X_1,X_2,\ldots,X_n from a population with pdf $f(\cdot,\theta),\theta\in\Theta\subset\mathbb{R}^d$, and want to test

$$H_0: \theta \in \Theta_0$$
 versus $H_1: \theta \in \Theta_1$

at a given level α $(0 < \alpha < 1)$, where Θ_j are subsets of Θ such that $\Theta = \Theta_0 \cup \Theta_1$. Let $X = (X_1, \dots, X_n)$.

- Critical function: A (randomized) test may be represented by a function $\varphi(X)$ of X whose value is the probability of rejecting H_0 .
- Size of test: $\max_{\theta \in \Theta_0} E_{\theta} \phi(X)$ is called the size of the test φ .
- A test $\varphi(X)$ has level α if its size is less than or equal to α .
- We seek a test ϕ that masimizes the power $E_{\theta}\phi(X)$ for $\theta \in \Theta_1$ among all level α tests.

(Uniformly) Most Powerful Test

- Most powerful test: Suppose $\Theta = \{\theta_1\}$, i.e., H_1 is simple. A test ϕ is most powerful (MP) at level α if its level is α and its power is the largest among all level α tests, i.e.,
 - (1) $\max_{\theta \in \Theta_0} E_{\theta} \phi(X) \leq \alpha$;
 - (2) $E_{\theta_1}\phi(X) \geq E_{\theta_1}\varphi(X)$ for any test φ with $\max_{\theta \in \Theta_0} E_{\theta}\varphi(X) \leq \alpha$.
- Uniformly most powerful test: A test ϕ is uniformly most powerful (MP) at level α if its level is α and its power is the largest among all level α tests, i.e.,
 - (1) $\max_{\theta \in \Theta_0} E_{\theta} \phi(X) \leq \alpha$;
 - (2) for all $\theta_1 \in \Theta_1$, $E_{\theta_1}\phi(X) \geq E_{\theta_1}\varphi(X)$ for any test φ with $\max_{\theta \in \Theta_0} E_{\theta}\varphi(X) \leq \alpha$.
- If the MP level α test for testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta = \theta_1$ does not depend on $\theta_1 \in \Theta_1$, then it is UMP level α .

Neyman-Pearson Lemma

Suppose we want to test $H_0: \theta=\theta_0$ versus $H_1: \theta=\theta_1$, where $\theta_1\neq\theta_0$ are fixed. Let $L(\theta;x)=\prod_{i=1}^n f(x_i;\theta)$. If there exists a test ϕ such that

$$(1) \ \phi(x) = \begin{cases} 1 & \text{if } L(\theta_1; x) / L(\theta_0; x) > k \\ \gamma & \text{if } L(\theta_1; x) / L(\theta_0; x) = k \\ 0 & \text{if } L(\theta_1; x) / L(\theta_0; x) < k \ (k \ge 0) \end{cases}$$

$$(2) \ E_{\theta_0} \phi(X) = \alpha,$$

then ϕ is MP level α for testing H_0 versus H_1 .

Neyman-Pearson Lemma

- There exists a test that satisfies (1) and (2). Also, any MP level α test satisfies the condition (1). It also satisfies (2) unless there exsits a test with size $< \alpha$ and power 1.
- Determination of γ and k: If

$$P_{\theta_0}\left(\frac{L(\theta_1;X)}{L(\theta_0;X)} > k\right) = \alpha_0 < \alpha < \alpha_1 = P_{\theta_0}\left(\frac{L(\theta_1;x)}{L(\theta_0;X)} \ge k\right),$$

then
$$\gamma = (\alpha - \alpha_0)/(\alpha_1 - \alpha_0)$$
.

• Any MP level α test has power $\geq \alpha$.

UMP Test: Normal Model

Let X_1, \ldots, X_n be a random sample from $N(\theta, \sigma^2)$ with $\sigma^2 > 0$ being fixed (known). Let $X \equiv (X_1, \ldots, X_n)$ and x denote its realization.

• Suppose we test $H_0: \theta = \theta_0$ versus $H_1: \theta > \theta_0$. Then, the test ϕ defined by

$$\phi(x) = \begin{cases} 1 & \quad \text{if } \frac{\bar{x} - \theta_0}{\sigma/\sqrt{n}} > z_\alpha \\ 0 & \quad \text{otherwise} \end{cases}$$

is UMP level α .

• Similarly, if one wishes to test $H_0: \theta = \theta_0$ versus $H_1: \theta < \theta_0$, the test φ defined by

$$\varphi(x) = \begin{cases} 1 & \text{if } \frac{\bar{x} - \theta_0}{\sigma / \sqrt{n}} < -z_{\alpha} \\ 0 & \text{otherwise} \end{cases}$$

is UMP level α .

UMP Test: Poisson Model

Let X_1, \ldots, X_n be a random sample Poisson (θ) . Assume n = 10.

• Testing $H_0: \theta=1/10$ versus $H_1: \theta>1/10$: The UMP level $\alpha=0.05$ test is given by

$$\phi(x) = \begin{cases} 1 & \text{if } x_1 + \dots + x_{10} \ge 4 \\ 31/61 & \text{if } x_1 + \dots + x_{10} = 3 \\ 0 & \text{if } x_1 + \dots + x_{10} \le 2 \end{cases}$$

• The test that rejects H_0 when $x_1 + \cdots + x_{10} \ge 3$ is UMP level $\alpha = 0.08$ (the size of the test).

UMP Test: Bernoulli Model

Let X_1, \ldots, X_n be a random sample Bernoulli(θ). Assume n = 5.

• Testing $H_0: \theta=1/2$ versus $H_1: \theta<1/2$: The UMP level $\alpha=0.1$ test is given by

$$\phi(x) = \begin{cases} 1 & \text{if } x_1 + \dots + x_5 \le 0 \\ 11/25 & \text{if } x_1 + \dots + x_5 = 1 \\ 0 & \text{if } x_1 + \dots + x_5 \ge 2 \end{cases}$$

• The test that rejects H_0 when $x_1 + \cdots + x_5 \ge 1$ is UMP level $\alpha = 3/16$ (the size of the test).

UMP Test: Exponential Family

Theorem. Let X_1,\ldots,X_n be a random sample from a population with pdf $f(x;\theta)=\exp(\eta(\theta)T(x)-B(\theta))\cdot h(x)$, where $\theta\in\Theta\subset\mathbb{R}$. Assume that $\eta(\theta)$ is a strictly increasing function of θ . Then, the UMP level α $(0<\alpha<1)$ test for

$$H_0: \theta \leq \theta_0 \text{ versus } H_1: \theta > \theta_0$$

is given by ϕ that satisfies

$$(1) \ \phi(x) = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} T(x_i) > c \\ \gamma & \text{if } \sum_{i=1}^{n} T(x_i) = c \\ 0 & \text{if } \sum_{i=1}^{n} T(x_i) < c \end{cases}$$

$$(2) \ E_{\theta_0} \phi(X) = \alpha.$$

In fact, it is UMP level α for testing $H_0': \theta = \theta_0$ versus $H_1: \theta > \theta_0$.