Omówienie zagadnienia

Zadanie polegało na wyliczeniu przybliżenia pochodnych za pomocą wzorów:

(a)
$$D_h f(x) \equiv \frac{f(x+h)-f(x)}{h}$$
,
(b) $D_h f(x) \equiv \frac{f(x+h)-f(x-h)}{2h}$

dla funkcji $f(x) = \sin(x^2)$ oraz punktu x = 0.2 przy zmianie parametru h dla typów float i double.

Następnie – korzystając z dostępnych wzorów matematycznych – w podobny sposób należało wyliczyć pochodną funkcji f(x), która w tym przypadku wynosi $f'(x) = 2x\cos(x^2)$.

Ostatni etap zadania polegał na wykreśleniu błędu $|D_h f(x) - f'(x)|$ w funkcji h w skali logarytmicznej.

Typ zmiennych float

Poniższy wykres przedstawia jak zmieniał się błąd $|D_h f(x) - f'(x)|$ w zależności od parametru h dla typu danych *float* przy użyciu wzorów (a) i (b).

Wykres błędu najpierw maleje wraz ze wzrostem wartości h, po czym osiąga wartość optymalną – by następnie rosnąć wraz ze wzrostem h.

Optymalną wartość dla wzoru (a) można oszacować na około 10^{-4} , natomiast dla wzoru (b) wartość ta będzie wynosiła mniej więcej 10^{-2} .

"Szumy" pojawiające się po lewej stronie wykresu wynikają z błędu zaokrągleń – utrzymują się one, aż do osiągnięcia optymalnej wartości zmiennej *h*.

Wnioski

Optymalne h można oszacować na 10^{-4} dla wzoru (a) i na 10^{-2} dla wzoru (b) – przy użyciu typu float.

Typ zmiennych double

Poniższy wykres przedstawia jak zmieniał się błąd $|D_h f(x) - f'(x)|$ w zależności od parametru h dla typu danych *double* przy użyciu wzorów (a) i (b).

Wykres błędu zachowuje się bardzo podobnie jak w poprzednim przypadku – najpierw maleje wraz ze wzrostem wartości h, po czym osiąga wartość optymalną – by następnie znów rosnąć wraz ze wzrostem h.

Tym razem optymalną wartość dla wzoru (a) można oszacować na około 10^{-8} , natomiast dla wzoru (b) wartość ta będzie wynosiła mniej więcej 10^{-5} .

Tak jak poprzednio "szumy" pojawiające się po lewej stronie wykresu wynikają z błędu zaokrągleń – utrzymują się one, aż do osiągnięcia optymalnej wartości zmiennej *h*.

Wnioski

Optymalne h można oszacować na 10^{-8} dla wzoru (a) i na 10^{-5} dla wzoru (b) – przy użyciu typu double.

Podsumowanie

Poniżej znajduje się wykres przedstawiający błędy przybliżenia dla sposobów (a) i (b) dla typów danych *float* oraz *double*.

Wnioski

Patrząc jednocześnie na cztery wykresy przedstawiające zmianę $|D_h f(x) - f'(x)|$ od h, można stwierdzić, iż niezależnie od typów *float* oraz *double* optymalne h dla wzoru (a) jest mniejsze niż dla wzoru (b).