Time-dependent adiabatic GW

Jinyuan Wu

May 22, 2023

1 / 20

Jinyuan Wu May 22, 2023

Table of content

- Overview
- 2 Kadanoff-Baym equations
- 3 Quantum master equation
- 4 Quantum Boltzmann equation
- 5 What does TD-aGW see?

2 / 20

Jinyuan Wu May 22, 2023

Non-equilibrium Green function

Motivation

$$\langle A \rangle = \langle S^{-1} \mathcal{T}_t(SA_{\mathsf{I}}(t)) \rangle, \quad S = U(\infty, -\infty)$$
 (1)

Non-equilibrium state: not pure; contains excited state components; $|\Psi_n\rangle$ is excited state $\Rightarrow S |\Psi_n\rangle \neq \mathrm{e}^{\mathrm{i}\,\alpha} |\Psi_n\rangle \Rightarrow$ we can't peel the S^{-1} off!!

Solution Four (instead of one) types of propagators: (note S^{-1} is *anti*-time ordered)

Keldysh formalism

Four types of (fermionic) propagators

$$\begin{split} &\mathrm{i}\,G^{--}=\mathrm{i}\,G^{\mathrm{c}}=\,\langle\mathcal{T}\,\psi_{1}\psi_{2}^{\dagger}\rangle\,,\quad\mathrm{i}\,G^{++}=\mathrm{i}\,G^{\mathrm{a}}=\,\langle\tilde{\mathcal{T}}\psi_{1}\psi_{2}^{\dagger}\rangle\,,\\ &\mathrm{i}\,G^{+-}=\mathrm{i}\,G^{>}=\,\langle\psi_{1}\psi_{2}^{\dagger}\rangle\,,\quad\mathrm{i}\,G^{-+}=\mathrm{i}\,G^{<}=-\,\langle\psi_{2}^{\dagger}\psi_{1}\rangle\,. \end{split} \tag{2}$$

Diagrams

Self-energy

$$G = \begin{pmatrix} G^{--} & G^{-+} \\ G^{+-} & G^{++} \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \Sigma^{--} & \Sigma^{-+} \\ \Sigma^{+-} & \Sigma^{++} \end{pmatrix}, \quad G = G_0 + G_0 \Sigma G. \quad (3)$$

Alternative formulation: Keldysh contour

Keldysh contour The information in the G matrix can be alternatively stored in a time-ordered Green function on *Keldysh contour*

Green function EOM

From Keldysh contour to physical contour Lengreth theorem:

$$(AB)^{<} = A^{R}B^{<} + A^{<}B^{A}, \quad (AB)^{>} = A^{R}B^{>} + A^{>}B^{A},$$

 $(AB)^{R} = A^{R}B^{R}, \quad (AB)^{A} = A^{A}B^{A},$
(4)

where

$$A^{>}(t_{1}, t_{2}) = A(t_{1}^{+}, t_{2}^{-}), \quad A^{<}(t_{1}, t_{2}) = A(t_{1}^{-}, t_{2}^{+}),$$

$$A^{\mathsf{R}}(t_{1}, t_{2}) = \theta(t_{1} - t_{2})(A^{>} - A^{<}).$$
(5)

Mapping an equation on Keldysh contour to its counterpart on the physical time axis!

Derivation of EOM of $G^{<,>}$ and G^A I

Recommended references The following series:

- Václav Špička, Bedřich Velický, and Anděla Kalvová. "Long and short time quantum dynamics: I. Between Green's functions and transport equations". In: *Physica E: Low-dimensional Systems and Nanostructures* 29.1-2 (2005), pp. 154–174
- Jørgen Rammer and H Smith. "Quantum field-theoretical methods in transport theory of metals". In: Reviews of modern physics 58.2 (1986), p. 323

Derivation of EOM of $G^{<,>}$ and G^A II

From self-energy correction to EOM From Lengreth theorem:

$$G = G_0 + G_0 \Sigma G \Rightarrow G^{<} = G_0^{<} + G_0^{<} \Sigma^{A} G^{A} + G_0^{R} \Sigma^{R} G^{<} + G_0^{R} \Sigma^{<} G^{A},$$
 (6)

$$G = G_0 + G\Sigma G_0 \Rightarrow G^{<} = G_0^{<} + G_0^R \Sigma^R G_0^{<} + G^R \Sigma^{<} G_0^A + G^{<} \Sigma^A G^A,$$
 (7)

$$G^{A} = G_{0}^{A} + G_{0}^{A} \Sigma^{A} G^{A}, \quad G^{R} = G_{0}^{R} + G_{0}^{R} \Sigma^{R} G^{R}.$$
 (8)

Getting rid of *G*₀ We define

$$G_0^{-1} := i \, \partial_t - H_0, \tag{9}$$

and

$$G_0^{-1}G_0^{A,R} = I, \quad G_0^{-1}G_0^{<,>} = 0.$$
 (10)

Taking complex conjugate of the def. of $G_0^{<,>}$ we find (left arrow = apply ∂_t and H_0 to the second index of $G_0^{<,>}$)

$$G_0^{<,>}(-i\overleftarrow{\partial_{t_2}} - H_0) = 0.$$
 (11)

Jinyuan Wu Kadanoff-Baym equations May 22, 2023 8 / 20

Derivation of EOM of $G^{<,>}$ and G^{A} III

The Schrödinger-like EOM Applying G_0^{-1} to the left of (6) and to the right of (7):

$$(i \partial_{t_1} - H_0)G^{<}(1,2) = \Sigma^{\mathsf{R}}G^{<} + \Sigma^{<}G^{\mathsf{A}},$$
 (12)

$$-i \partial_{t_2} G^{<}(1,2) - G^{<} H_0 = G^{\mathsf{R}} \Sigma^{<} + G^{<} \Sigma^{\mathsf{A}}, \tag{13}$$

$$\Rightarrow i(\partial_{t_1} + \partial_{t_2})G^{<} - [H_0, G^{<}] = \Sigma^{R}G^{<} + \Sigma^{<}G^{A} - G^{R}\Sigma^{<} - G^{<}\Sigma^{A}.$$
 (14)

Mixed coordinates We define "average time" and "relative time":

$$T = \frac{t_1 + t_2}{2}, \quad t = t_1 - t_2,$$
 (15)

$$\Rightarrow \frac{\partial}{\partial T} = \frac{\partial}{\partial t_1} + \frac{\partial}{\partial t_2}.$$
 (16)

9 / 20

We then do Fourier transform over t: similar to the equilibrium case. (T \simeq driving, $t \simeq$ internal time evolution)

> Jinyuan Wu Kadanoff-Baym equations May 22, 2023

Towards a single-time formalism

Summary up to now

• Accurate EOMs about $G^{A,R}$, and EOM of $G^{<}$:

$$i \partial_T G^{<} - [H_0, G^{<}] = \Sigma^R G^{<} + \Sigma^{<} G^A - G^R \Sigma^{<} - G^{<} \Sigma^A.$$
 (17)

The RHS contains t (or ω) and $G^{<}$.

• Note: we can actually put the t=0 part of Σ into $H_0! \Rightarrow$ Example: COHSEX TD-aGW

Goal Obtaining quantum kinetics:

- Quantum master equation (QME), i.e. EOM of $\rho(\mathbf{r}_1, \mathbf{r}_2, t)$,
- and its long wave length limit, the quantum Boltzmann equation (QBE)

Problem Both LHS and RHS contain ω : problem too large. What we want Obtaining a close form EOM about $G^{<}(T, t = 0)$

Quantum master equation

Reduced density matrix Single-electron density matrix:

$$i \rho(T) = G^{<}(T, t = 0) = \int \frac{d\omega}{2\pi} G^{<}(T, \omega)$$
 (18)

What we want Two types of reduction:

- Reducing Σ to an easy function of G, ideally $G^{<}$
- Reducing $G^{<}$ to $\rho(T)$

Reducing Σ

- Always possible: we can formally eliminate χ, ϵ , etc. from Hedin eq. and get a Σ about G i.e. about $G^{<}, G^{A,R}$
- But then $G^{A,B}$ can be eliminated with (8) as well
- In reality: a truncation is needed . . .

Reconstruction of $G^{<}$ from ρ

Reconstruction theorem From ρ , $G^{A,R}$ (which can be calculated using (8) from ρ), $G^{<}$ can be completely restored¹

Constructive proof See (71) in the reference; note that

$$(G^{R})^{-1}\theta(t_{1}-t_{2})G^{<} = (\partial_{t_{1}}-H_{0}-\Sigma^{R})\theta(t_{1}-t_{2})G^{<}$$

$$= \delta(t_{1}-t_{2})G^{<} + \theta(t_{1}-t_{2})(\partial_{t_{1}}-H_{0}-\Sigma^{R})G^{<}$$

$$= \rho(t_{1}) + \cdots$$
(19)

Jinyuan Wu Quantum master equation May 22, 2023 12 / 20

¹Václav Špička, Bedřich Velickỳ, and Anděla Kalvová. "Long and short time quantum dynamics: I. Between Green's functions and transport equations". In: *Physica E: Low-dimensional Systems and Nanostructures* 29.1-2 (2005), pp. 154–174 ≥ 2005

Quantum master equation as an accurate formalism

Existence of accurate quantum master equation In conclusion, in principle we can always write down something accurate like this:

$$\frac{\partial \rho}{\partial t} + i [H_0, \rho] = \int_{-\infty}^t F[\rho(t')] dt', \qquad (20)$$

where F is obtained from $\Sigma^{\mathsf{R}} G^< + \Sigma^< G^{\mathsf{A}} - G^{\mathsf{R}} \Sigma^< - G^< \Sigma^{\mathsf{A}}$, and $G^{\mathsf{R},\mathsf{A}}$ is reconstructed from ρ by doing a complete self-energy run, and $G^<$ is reconstructed from G^{A} and G^{R} and ρ .

... but of course simplification is needed

Gradient expansion: first step from QME to QBE

Mixed coordinates

$$\tilde{\rho}(\boldsymbol{p}, \boldsymbol{X}, t) = \int dx \, e^{-i \boldsymbol{p} \cdot \boldsymbol{x}} \, \rho\left(\boldsymbol{X} + \frac{\boldsymbol{x}}{2}, \boldsymbol{X} - \frac{\boldsymbol{x}}{2}, t\right), \tag{21}$$

$$\frac{1}{\mathsf{i}}\widetilde{[H_0,\rho]} = \frac{\partial \epsilon}{\partial \boldsymbol{p}} \cdot \frac{\partial \tilde{\rho}}{\partial \boldsymbol{X}} - \frac{\partial \epsilon}{\partial \boldsymbol{X}} \cdot \frac{\partial \tilde{\rho}}{\partial \boldsymbol{p}} + \cdots$$
 (22)

Gradient expansion Only take the first two terms: assuming no higher dependence

Issue: the definitions of G_0 and Σ

Ambiguity in the meaning of Σ

- In ordinary usage: G_0 directly from H_0
- But some prefer to move a part of Σ that looks like "effective potential" into H_0 ...
- Thus: G_0 contains "interactively corrected band structure"; Σ contains "scattering"??

Comparison with similar issue in QBE

- When impurities are rare: they appear in collision integral
- When impurities are abundant: they lead to an impurity band ... and appear in the diffusion term?
- In QBE: it depends on the shape of the spectral function . . .

Lacking proof of equivalence

• Do different division of labor between Σ and G_0 lead to consistent results?

A radical move towards quantum Boltzmann equation I

Approximations leading to QBE

• Gradient expansion \Leftarrow smooth U_{ext} :

$$[H_0, \rho] \longrightarrow i \left(\frac{\partial \epsilon}{\partial \boldsymbol{p}} \cdot \frac{\partial \tilde{\rho}}{\partial \boldsymbol{X}} - \frac{\partial \epsilon}{\partial \boldsymbol{X}} \cdot \frac{\partial \tilde{\rho}}{\partial \boldsymbol{p}} + \cdots \right). \tag{23}$$

Quasiparticle approx.
 weak-correlated states:

$$G^{<}(\boldsymbol{X},\boldsymbol{\rho},T,\omega)=2\pi\delta(\omega-\xi_{\boldsymbol{k}}+\mu-U(\boldsymbol{X},T))f(\boldsymbol{\rho},\boldsymbol{X},T). \tag{24}$$

ullet Gradient expansion in time domain \Rightarrow Markovian collision integral

A radical move towards quantum Boltzmann equation II

Note

- The conditions are sufficient, but not necessary: in the formalism above, mass renormalization (as in electron-phonon interaction) is not included, but by correcting the collision term (essentially, a mild breakdown of Fermi golden rule), a Boltzmann equation can still be established.
- The first condition and the rest two conditions are orthogonal: the first condition can also be used in QME: it gives the diffusion part of QBE
- The second and third conditions are used to simply the interactive RHS into the collision integral

A radical move towards quantum Boltzmann equation III

Convolution in Green function EOM

$$AB := \int d2 A(1,2)B(2,3).$$
 (25)

Gradient expansion, in r **and** t By def. and taking Taylor expansion in the (r, t)

$$AB|_{\mathbf{X},\mathbf{p},T,\omega} = A_{\mathbf{X},\mathbf{p},T,\omega}B_{\mathbf{X},\mathbf{p},T,\omega} + \frac{\mathrm{i}}{2}\left(\frac{\partial A}{\partial \mathbf{X}} \cdot \frac{\partial B}{\partial \mathbf{p}} - \frac{\partial A}{\partial \mathbf{p}} \cdot \frac{\partial B}{\partial \mathbf{X}} - \frac{\partial A}{\partial T}\frac{\partial B}{\partial \omega} + \frac{\partial A}{\partial \omega}\frac{\partial B}{\partial T}\right) + \cdots$$
(26)

We only keep the terms shown above.

 \Rightarrow hence the commutator $[G^<,H_0]$ can be reduced to the diffusion term seen in QBE

Multi-band, spin index, etc. When we have discrete labels in A, B, \ldots , quantities in (26) are matrices with these discrete indices

Obtaining the collision integral

Keeping only the first term in gradient expansion (26):

$$\Sigma^{R} G^{<} + \Sigma^{<} G^{A} - G^{R} \Sigma^{<} - G^{<} \Sigma^{A}$$
gradient exp.
$$\approx G^{<} (\Sigma^{R} - \Sigma^{A}) - (G^{R} - G^{A}) \Sigma^{<}$$

$$\stackrel{QP \text{ approx.}}{\approx} i Af(\mathbf{p}) \operatorname{Im} \Sigma - (27)$$

Here from the quasiparticle approximation of $G^<$, we also assume that $G^{A,R}$ assume the same forms as their equilibrium versions; thus the "out" part of the equation above $\propto \operatorname{Im} \Sigma$ (in the most general non-equilibrium case $\operatorname{Im} \Sigma$ is even not well-defined)

Example: TODO