线代 A 练习四

一、选择题(每小题 5 分,共 25 分。) 1 、已知四阶行列式 D_4 第一行的元素依次为 1 , 2 , -1 , -1 ,它们的余子式为
2, -2,1,0,则 D₄的值为()
(A) -3 ; (B) -5 ; (C) 3; (D) 5.
2 、已知 n 阶矩阵 $A = \begin{pmatrix} 1 & 1 & . & . & 1 \\ 0 & 1 & . & . & 1 \\ . & & 1 & & \\ . & & & . & . \\ 0 & 0 & . & . & 1 \end{pmatrix}$, 则 $ A $ 的所有元素的代数余子式之和等于
()
(A) 0 ; (B) 1 ; (C) -1 ; (D) 2 .
3 、设 $A \neq m \times n$ 矩阵, $C \neq n$ 阶可逆矩阵,矩阵 A 的秩为 r ,矩阵 $B = AC$ 的秩
r ₁ ,则()
(A) $r > r_1$; (B) $r < r_1$; (C) $r = r_1$; (D) $r = r_1$ 的关系依 C 而定.
4 、设 $_A$ 为 $_{m\times n}$ 矩阵,齐次线性方程组 $_{Ax}=0$ 仅有零解的充分必要条件是()
(A) A 的列向量组线性无关; (B) A 的列向量组线性相关;
(C) A 的行向量组线性无关; (D) A 的行向量组线性相关.
5 、设 λ 是 n 阶可逆矩阵 A 的特征值, ξ 是 A 的对应于 λ 的特征向量, P 是 n 阶可
逆矩阵,则 $P^{-1}A^*$ 的对应于特征值 $\frac{ A }{\lambda}$ 的特征向量是()
(A) $P^{-1}\xi$; (B) $P\xi$; (C) $P^{T}\xi$; (D) $(P^{T})^{-1}\xi$.
二、填空题(每小题 5 分, 共 25 分。)
1、设 A,B 都是 n 阶正交矩阵,若 $ A + B =0$,则 $ A+B =$
2、已知 $AB - B = A$,其中 $B = \begin{pmatrix} 1 & -2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$,则 $A = \underline{\qquad}$.
3、已知向量组 a_1, a_2, a_3, a_4 .线性无关,若向量组 $a_1 + ka_2, a_2 + a_3, a_3 + a_4, a_4 + a_1$ 线
性相关,则 $k =$

4、若线性方程组 $\begin{cases} x_1 + x_2 - 2x_3 + 3x_4 = 0 \\ 3x_1 + 2x_2 + ax_3 + 7x_4 = 1$ 无解,则常数 a,b 应满足的条件是 $x_1 - x_2 - 6x_3 - x_4 = 2b \end{cases}$

5、若 4 阶矩阵 A 与 B 相似,且 A 的特征值为 1, 2, 3, 4, 则矩阵 B^* – E 的全部特征值为

三、计算证明题(50分)

- 1、 (12 分) 求向量组 $a_1 = (1,3,0,5), a_2 = (1,2,1,4), a_3 = (1,1,2,3), a_4 = (1,-3,6,-1)$ 的一个极大线性无关组和秩,并将不在极大无关组里的向量用极大无关线性表示。
- 2、(15 分)设 A 为三阶实对称矩阵,且满足条件 $A^2 + 2A = 0$,已知 A 的秩 R(A) = 2 (1) 求 A 的全部特征值;
 - (2) 当 k 为何值时,矩阵 A + kE 为正定矩阵,其中 E 为三阶单位矩阵.
- 3、(15 分) 已知二次型 $f = 2x_1^2 + 3x_2^2 + 3x_3^2 + 2ax_2x_3(a > 0)$ 通过正交变换可化为标准形 $f = y_1^2 + 2y_2^2 + 5y_3^2$,求参数 a 及所用的正交变换.
- 4、(8分)设A是n阶矩阵,且满足 $A^2 = E$,证明: R(A-E) + R(A+E) = n.