Mathematics for Cryptographers. Preliminaries.

ZKDL Camp

July 18, 2024

Plan

- Some words about the course
- Notation
 - Sets
 - Logic
 - Randomness and Sequences
- Basic Group Theory
 - Reasoning behind Groups
 - Group Definition and Examples
 - Subgroup
 - Homomorphism and Isomorphism
- Polynomials

About ZKDL

- ZKDL Camp is a series of lectures and workshops on zero-knowledge proofs and cryptography.
- Here, we will learn state-of-the-art zero-knowledge systems: what are SNARKs, how they work under the hood from total scratch.
- If possible, we will conduct workshops, where we will show practical implementations of the theoretical material.
- Primary audience: cryptographers, R&D Engineers, ZK developers, and everyone wanting to boost their understanding of cryptography.

Note

This is not a regular course: we require a lot of commitment and the material is fairly complex. However, we will try to make it as simple as possible.

Approximate Camp Structure

- Mathematics Preliminaries (3-4 lectures): group and number theory, finite fields, polynomials, elliptic curves etc.
- ② Deep Delve into SNARKs: General definition, arithmetic circuits, commitment schemes, encryption etc.
- Analysis of modern zero-knowledge proving systems: Groth16, Plonk, BulletProofs, STARK etc.
- Specialization topics: low-level optimizations, advanced protocols such as folding schemes, Nova etc.

Sets

Definition

Set is a collection of distinct objects, considered as an object in its own right.

Example

- N is a set of natural numbers.
- \bullet \mathbb{Z} is a set of integers.
- \bullet \mathbb{R} is a set of real numbers.
- \bullet \mathbb{C} is a set of complex numbers.
- $\{1, 2, 5, 10\}$ is a set of four elements.
- $\{1, 2, 2, 3\}$ simply equals to $\{1, 2, 3\}$ we do not count duplicates.

Operations on sets

ZKDL Camp Mathematics I 8 / 27 July 18, 2024 8 / 27

Defining sets

Example

- $\{x \in \mathbb{R} : x^2 = 1\}$ a set of real numbers that satisfy the equation $x^2 = 1$.
- $\{x \in \mathbb{Z} : x \text{ is even}\}$ a set of even integers.
- $\{x^2: x \in \mathbb{R}, x^3 = 1\}$ a set of squares of real numbers that satisfy the equation $x^3 = 1$.
- $\{x \in \mathbb{N} : x \text{ is prime}\}$ a set of prime natural numbers.

Question #1

How to simplify the set $\{x \in \mathbb{N} : x^2 = 2\}$?

Question #2(*)

How to simplify the set $\{\sin \pi k : k \in \mathbb{Z}\}$?

Basic Logic

- ∀ means "for all".
- means "there exists".
- ^ means "and".
- V means "or".

Question #1

Is it true that $(\forall x \in \mathbb{N}) : \{x > 0\}$?

Question #2

Is it true that $(\exists x \in \mathbb{N})$: $\{x \ge 0 \land x < 1\}$?

Question #3

Is it true that $(\forall x \in \mathbb{Z}) (\exists y \in \mathbb{N}) : \{y > x\}$?

10 / 27

Randomness and Sequences

Notation

To denote probability of event E, we use notation Pr[E]. For example,

Pr[It will be cold tomorrow] = 0

Notation

To denote that we take an element from a set S uniformly at random, we use notation $x \stackrel{R}{\leftarrow} S$.

For example, when throwing a coin, we can write $x \stackrel{R}{\leftarrow} \{\text{heads, tails}\}.$

Notation

To denote an infinite sequence x_1, x_2, \cdots , we use $\{x_i\}_{i \in \mathbb{N}}$. To denote a finite sequence x_1, x_2, \cdots, x_n , we use $\{x_i\}_{i=1}^n$. To enumerate through a list of indeces $\mathcal{I} \subset \mathbb{N}$, we use notation $\{x_i\}_{i \in \mathcal{I}}$.

ZKDL Camp Mathematics I 11 / 27 July 18, 2024 11 / 27

Why Groups?!

Well, first of all, we want to work with integers... Imagine that Alice pays to Bob with a card number N, but instead of paying to a number N, the system pays to another card number $N+k,k\ll N$, which is only by 0.001% different. Bob would not be 99.999% happy...

Why Groups?!

But integers on their own are not enough. We need to define a structure that allows us to perform operations on them.

This is very similar to interfaces: we abstract from the implementation, just merely stating we have "some" addition/multiplication.

Example

Consider set $\mathbb{G}:=\{\mathsf{Dmytro},\mathsf{Dan},\mathsf{Friendship}\}$. We can safely define an operation \oplus as:

 $\mathsf{Dmytro} \oplus \mathsf{Dan} = \mathsf{Friendship}$

 $\mathsf{Dan} \oplus \mathsf{Friendship} = \mathsf{Dmytro}$

 $\mathsf{Friendship} \oplus \mathsf{Dmytro} = \mathsf{Dan}$

Rethorical question

What makes (\mathbb{G}, \oplus) a group?

Group Definition

Definition

Group (\mathbb{G}, \oplus) , is a set with a binary operation \oplus with following rules:

- **1** Closure: Binary operations always outputs an element from \mathbb{G} , that is $\forall a, b \in \mathbb{G} : a \oplus b \in \mathbb{G}$.
- **2** Associativity: $\forall a, b, c \in \mathbb{G} : (a \oplus b) \oplus c = a \oplus (b \oplus c)$.
- **3 Identity element:** There exists a so-called identity element $e \in \mathbb{G}$ such that $\forall a \in \mathbb{G}$: $e \oplus a = a \oplus e = a$.
- **3 Inverse element:** $\forall a \in \mathbb{G} \exists b \in \mathbb{G} : a \oplus b = b \oplus a = e$. We commonly denote the inverse element as (⊖a).

Definition

A group is called **abelian** if it satisfies the additional rule called **commutativity**: $\forall a, b \in \mathbb{G} : a \oplus b = b \oplus a$.

ZKDL Camp Mathematics I 15 / 27 July 18, 2024 15 / 27

Explanation for Developers: Trait

```
/// Trait that represents a group.
pub trait Group: Sized {
    /// Checks whether the two elements are equal.
 fn eq(\&self, other: \&Self) \rightarrow bool;
   /// Returns the identity element of the group.
   fn identity() \rightarrow Self;
 /// Adds two elements of the group.
 fn add(\&self, a: \&Self) \rightarrow Self;
  /// Returns the negative of the element.
 fn negate(\&self) \rightarrow Self;
    /// Subtracts two elements of the group.
  fn sub(\&self, a: \&Self) \rightarrow Self {
        self.add(&a.negate())
```

More on that: https://github.com/ZKDL-Camp/lecture-1-math.

ZKDL Camp Mathematics I 16 / 27 July 18, 2024 16 / 27

Group Examples

Example

A group of integers with the regular addition $(\mathbb{Z},+)$ (also called the additive group of integers) is a group.

Example

The multiplicative group of positive real numbers $(\mathbb{R}_{>0}, \times)$ is a group for similar reasons.

Question #1

Is (\mathbb{R}, \times) a group? If no, what is missing?

Question #2

Is (\mathbb{Z}, \times) a group? If no, what is missing?

Small Note on Notation

Additive group

We say that a group is *additive* if the operation is denoted as +, and the identity element is denoted as 0.

Multiplicative group

We say that a group is *multiplicative* if the operation is denoted as \times , and the identity element is denoted as 1.

Rule of thumb

We use additive notation when we imply that the group \mathbb{G} is the set of points on the elliptic curve, while multiplicative is typically used in the rest of the cases.

Abelian Groups Examples and Non-Examples

Question #3

Is $(\mathbb{R}, -)$ a group? If no, what is missing?

Question #4

Set V is a set of tuples (v_1, v_2, v_3) where each $v_i \in \mathbb{R} \setminus \{0\}$. Define the operation \odot as

$$(v_1, v_2, v_3) \odot (u_1, u_2, u_3) = (v_1u_1, v_2u_2, v_3u_3)$$

Is (V, \odot) a group? If no, what is missing?

Conclusion

Group is just a fancy name for a set with a binary operation that behaves nicely.

Subgroup

Question

Suppose (\mathbb{G}, \oplus) is a group. Is any subset $\mathbb{H} \subset \mathbb{G}$ a group?

Definition

A **subgroup** is a subset $\mathbb{H}\subset\mathbb{G}$ that is a group with the same operation \oplus . We denote it as $\mathbb{H}\leq\mathbb{G}$.

Example

Consider $(\mathbb{Z},+)$. Then, although $\mathbb{N}\subset\mathbb{Z}$, it is not a subgroup, as it does not have inverses.

Example

Consider $(\mathbb{Z}, +)$. Then, $3\mathbb{Z} = \{3k : k \in \mathbb{Z}\} \subset \mathbb{Z}$ is a subgroup.

Tiny question

Question

Does any group have at least one subgroup?

Yeah, $\mathbb{H} = \{e_{\mathbb{G}}\} \leq \mathbb{G}$.

ZKDL Camp

Homomorphism

Definition

A homomorphism is a function $\phi : \mathbb{G} \to \mathbb{H}$ between two groups (\mathbb{G}, \oplus) and (\mathbb{H}, \odot) that preserves the group structure, i.e.,

$$\forall a, b \in \mathbb{G} : \phi(a \oplus b) = \phi(a) \odot \phi(b)$$

Example

Consider $(\mathbb{Z},+)$ and $(\mathbb{R}_{>0},\times)$. Then, the function $\phi:\mathbb{Z}\to\mathbb{R}_{>0}$ defined as $\phi(k)=2^k$ is a homomorphism.

Proof. Take any $n, m \in \mathbb{Z}$ and consider $\phi(n+m)$:

$$\phi(n+m)=2^{n+m}=2^n\times 2^m=\phi(n)\times\phi(m)$$

ZKDL Camp Mat

Mapping types

ZKDL Camp Mathematics I 23 / 27 July 18, 2024 23 / 27

Homomorphism

Definition

Isomorphism is a bijective homomorphism.

Definition

Two groups $\mathbb G$ and $\mathbb H$ are **isomorphic** if there exists an isomorphism between them. We denote it as $\mathbb G \cong \mathbb H$.

Example

 $\phi: k\mapsto 2^k$ from the previous example is a homomorphism between $(\mathbb{Z},+)$ and $(\mathbb{R}_{>0},\times)$, but not an isomorphism. Indeed, there is no $x\in\mathbb{Z}$ such that $2^x=3\in\mathbb{R}_{>0}$.

Question

What can we do to make ϕ an isomorphism?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ◆○○

Field

Definition

Field K is a set equipped with appropriate **addition** and **multiplication** operations with the corresponding well-defined inverses, where you can perform the basic arithmetic.

25 / 27

Field

Definition

Field K is a set equipped with appropriate **addition** and **multiplication** operations with the corresponding well-defined inverses, where you can perform the basic arithmetic.

- $\bullet \mathbb{R}$ (real numbers) is a field.
- ullet \mathbb{Q} (rational numbers) is a field.
- ullet \mathbb{C} (complex numbers) is a field.
- \mathbb{N} (natural numbers) is not a field: there is no additive inverse for 2 (-2 is not in \mathbb{N}).
- \mathbb{Z} (integers) is not a field: additive inverse is defined, but the multiplicative is not (2^{-1}) is not defined).

ZKDL Camp Mathematics I 25 / 27 July 18, 2024 25 / 27

ZKDL Camp Mathematics I 26 / 27 July 18, 2024

Thanks for your attention!