오산시 어린이 교통사고 위험지역 분석

김앤정앤마

CONTENTS

분석 배경 및 목표 문제 인식 목표

 2
 분석 과정

 자료 전처리
 모델 선정

 위치선정 기준

분석 결과 최종후보지 선정 04 ^{결론}

분석 배경 및 목표 문제 인식 및 어린이 교통사고 해결을 위한 노력

꾸준한 감소세를 보이다 2019년 다시 급증한 어린이 교통사고 건 수

'민식이법'이란? 어린이보호구역 내 과속 단속카메라 등의 설치와 사망이나 상해사고 가해자에 대한 가중처벌을 담은 법이에요. जराव<u>प्रक्रे</u> जराव<u>प्रक</u> 어린이보호구역 교통안전 한층 강화돼요!

2019년 9월 故 김민식 군의 보호구역 내 사망을 계기로 어린이 보호를 강화하기 위해 도입된 법안

출처: 대한민국 정부 블로그 - [딱풀이] '민식이법'이란?

이로 인해 어린이 교통사고 감소 및 어린이 보호 강화를 위해 오산시를 비롯한 각 지자체들이 많은 노력을 기울이고 있음

- 초등학교주변에서 발생하는 교통사고는 얼마나 될까? http://taas.koroad.or.kr/web/bdm/tii/selectIndepthAnalysisDetail.do https://blog.naver.com/hellopolicy/221872253507

분석 배경 및 목표 어린이 교통사고 관련 통계

어린이 교통사고 발생 현황 및 추이

분석 배경 및 목표 어린이 교통사고 관련 통계

어린이보호구역 교통사고 87%가 보행 중 발생

- 행안부, 관계기관과 함께 교통사고 다발 어린이보호구역 점검 실시 -

출처: 행전안전부 보도자료 ('19.07.22)

10년간 어린이 교통사고 발생건수 및 비율

- 전체 사고 건수의 <mark>84.4%</mark>가 어린이 보호구역 운영시간인 08시부터 20시에 발생

08시-10시	11,070	9.0%
10시-12시	8,814	7.2 %
12시-14시	13,759	11.2%
14시-16시	22,197	18.0%
16시-18시	27,017	21.9%
18시-20시	21,044	17.1%

저학년 이하 어린이의 사고 건수 비율은 66%,
 사망자 수 비율은 83%에 달함

하다 게 치하다				초등학생				
학년	계	취학전	1학년 2학년 3학년			4학년	5학년	6학년
사망자(명)	483	211	68	68	52	25	25	23
부상자(명)	52,211	12,657	7,770	7,284	6,707	5,018	4,710	4,434

출처: 행전안전부 보도자료 ('19.07.22)

분석 배경 및 목표 문제 인식 및 어린이 교통사고 해결을 위한 노력

교육도시 오산시의 목표

어린이가 안전하고 행복하게 교육을 받을 수 있는 스마트 교육도시 구축을 지향

하지만!

어린이들이 활동하는 생활도로 및 통학로 등에, 불법주정차, 교통안전 시설물 미비 등 여러 가지 요인으로 인해 어린이 교통사고 발생 건수는 증가

민식이법 제정 등으로 어린이 보호구역에 교통안전 시설물 설치가 의무화 되었으나 구체적인 지침 내용 無

어린이 보호구역 외의 지역에서도 어린이 교통사고가 많이 일어나고 있음.

교육도시

따라서 오산시는

스마트시티 통합운영 센터의 **지능형 CCTV 솔루션**을 활용하고 경기 연구원 어린이 보호구역 **보행안전** 확보방안을 **연구**

머신러닝 기법을 활용한 어린이 교통안전 취약 지역 선별 및 교통안전시설물 설치 근거 제시

인2 분석 과정 분석 개요

분석 대상: 오산시

분석 방법

1. 데이터 취득

2. 데이터 전처리

- 결측값 값 처리
- WGS84 (EPSG: 4326) 좌표계 설정
- 변수 성격에 맞게 가공 (300m 범위내 격자 가중치, 격자 내 개수 Count 등)
- 다중 공선성(VIF) 및 상관관계 등을 확인한 후 변수 선택
- 정규화

3. 머신러닝 적용

- Linear, Lasso, Ridge, Elastic Random Forest Regressor, XGB 등 6개 모델
- VotingRegressor를 이용하여 모든 모델에서 높은 점수를 얻은 지역 위주로 분석

4. 대상 지역 선정

- 과제 1. 어린이 보호구역 외 어린이 교통사고 위험지역 20개 지역 선정
- 과제 2. 기존 어린이 보호구역 중 교통안전시설물 우선 설치 지역 20개 지역 선정

데이터 제공

활용데이터 및 전처리

구분		변수 상세	출처	데이터 전처리	변수명
	017	총 인구수	4.오산시_연령별_거주인구격자(총인구).geojson		pop_val
인구적 특성	인구	유소년 인구수	5.오산시_연령별_거주인구격자(유소년).geojson	어린이 인구를 대표할 유소년 인구	junior_val
	유동인구	유동인구	8. 오산시_유동인구(2019).csv	08시부터 20시까지의 유동인구를 합하여 격자별로 유동인구 계산	floating_val
	개발 정도	격자별 빌딩 밀도	28.오산시_건물연면적_격자.geojson	격자 건물의 밀도를 계산하기 위해 격자별로 건물의 수를 count	grid_building_val
		어린이집, 유치원	13.오산시_어린이집_유치원현황.csv	어린이 생활 반경을 반영하기 위해 300m Buffer	kinder_buffer_val
	트해 이바니서	초등학교	10.오산시_학교위치정보.csv	어린이 생활 반경을 반영하기 위해 300m Buffer	school_buffer_val
사회 경제적 특성	통행 유발시설	학원 수	30.오산시_학원_및_교습소_현황.csv	어린이 생활 반경을 반영하기 위해 300m Buffer	academy_buffer_val
		스포츠 시설 수	29.오산시_체육시설현황.csv	어린이 생활 반경을 반영하기 위해 300m Buffer	sports_buffer_val
	안전 모니터링	CCTV 개수	20.오산시_CCTV설치현황.csv	이미 대부분 잘 커버한다고 판단하고 격자별로 Count	cctv_val
	보호구역	어린이 보호구역 수	9.오산시_어린이보호구역.csv	보호구역 주변 도로로 한정하기 위해 100m Buffer	protection_area_buffer_val
	도로 특성	30km/h 도로 연장 비율 23.오산시_상세도로망_LV6.geojson		30km/h 속도 제한구역이 있다면 1 없다면 0	road_30kmph
	교차로 3지/4지/5지 교차로 수		16.오산시_도로안전표지표준데이터.csv	교차로 개수 Count	road_sign_val
	속도 변화 구간	도로위계 변화 지점	외부데이터(http://data.nsdi.go.kr/dataset/12902)	고속도로, 대로, 로, 길로 도로 위계가 변하는 지점 Count	joint_val
도로 및 환경	교통안전 시설	횡단보도 수	17.오산시_횡단보도.geojson	격자별 횡단보도 개수 Count	crosswalk_val
특성		신호등 수	19.오산시_신호등.geojson	격자별 신호등 개수 Count	traffic_light_val
		과속방지턱 수	18.오산시_과속방지턱표준데이터.csv	격자별 과속방지턱 개수 Count	bump_val
		인도 수	21.오산시_인도.geojson	격자별 인도 개수 Count	sidewalk_val
	대중교통	버스 정류장 수	22.오산시_버스정류장.csv	어린이의 생활 반경을 기준으로 300m Buffer 진행	bus_stop_buffer_val
	범칙	주정차 단속 건수	1.오산시_주정차단속(2018~2020).csv	격자별로 주정차 단속 건수 Count	pk_val
	안전 모니터링	교통 단속 카메라 수	15.오산시_무인교통단속카메라.csv	CCTV가 관찰할 수 있는 범위 반영하여 100m Buffer	traffic_cctv_buffer_val
		총 교통량	24.평일_전일,시간대별_오산시_추정교통량_Level6.csv	08시에서 20시 데이터 합산, 링크를 격자에 산입 Intersect	all_traffic
교통 특성	교통량	화물차 교통량	24.평일_전일,시간대별_오산시_추정교통량_Level6.csv	08시에서 20시 데이터 합산, 링크를 격자에 산입 Intersect	freight_car_traffic
		정체 시간	26.평일_전일_오산시_혼잡시간강도_Level6.csv		time
		정체 빈도	25.평일_전일_오산시_혼잡빈도강도_Level6.csv		frequency
	교통사고	어린이 교통사고 건수	2.오산시_어린이교통사고_격자.geojson		accident_cnt

※ 25개 변수, 4510개 격자별 자료, 총 112,750개의 데이터를 활용

분석 과정전처리전 개체간 관계 파악

데이터 가의 관계 파악: ERD

• 필요에 따라 Union, Intersect, Buffer 등의 Geoprocessing으로 격자 혹은 링크 정보와 결합

범위형 데이터

어린이 생활반경을 반영

- 어린이집 유치원에서 300m
- 초등학교에서 300m
- 학원에서 300m
- 스포츠 시설에서 300m
- 버스 정류장에서 300m

영향범위 반영

- 어린이 보호구역 100m
- 교통 단속 카메라 100m

밀도형 데이터

밀도 반영 (제공된 데이터)

- 총 인구수
- 유소년 인구수
- 유동 인구수
- 어린이 교통사고 건수
- 건물의 밀도 (면적)

밀도 반영 (추가 가공된 자료)

- CCTV 개수 Count
- 도로 위계 변화 지점 Count
- 횡단보도 수 Count
- 신호등 수 Count
- 과속방지턱 수 Count
- 인도 수 Count
- 주정차 단속 Count
- 교차로 개수 Count

링크형 데이터

교통량 반영

- 모든 차량 교통량
- 화물차 교통량
- 정체 시간
- 정체 빈도

유무 반영

• 제한속도 30km/h 도로 유무

모든 변수 정규화

※ 정규화가 필요한 이유

- 변수들이 가지는 공선성을 제거하기 위해
- 변수들이 가지는 단위를 제거하여 변수나 모델간 비교 용이
- Lasso, Ridge, ElasticNet 모델을 적용할때 정규화를 함으로써 skewed된 결과를 예방
- 각각의 변수가 Y에 끼치는 **변수의 중요도**를 비교할 수 있음

1 분석 과정 변수 선택

VIF

	VIF Factor	features
0	2.704698	Intercept
1	10.483870	pop_val
2	9.576144	junior_val
3	1.219602	grid_building_val
4	1.507274	floating_pop_val
5	1.180345	pk_val
6	2.180296	crosswalk_val
7	1.031054	bump_val
8	1.106805	sidewalk_val
9	1.323228	road_sign_val
10	1.275467	cctv_val
11	2.212889	traffic_light_val
12	1.303337	protection_area_buffer_val
13	1.668180	school_buffer_val
14	3.135891	kinder_buffer_val
15	3.643288	sports_buffer_val
16	3.139785	academy_buffer_val
17	1.487098	traffic_cctv_buffer_val
18	1.673459	bus_stop_buffer_val
19	31.520224	freight_car_traffic
20	34.508993	all_traffic
21	41.680978	time
22	37.011643	frequency
23	1.183968	joint_val
24	1.159414	road_30kmph

pop_val crosswalk_val traffic_light_val junior_val 0.94 1.00 1.00 0.98 all_traffic kinder_buffer_val - 1.00 1.00 freight_car_traffic academy_buffer_val -1.00 0.62 1.00 0.98 time -0.80 sports_buffer_val frequency -0.57 0.98

변수 선택 후 VIF와 상관관계

	VIF Factor	features
1	1.325328	junior_va
2	1.211657	grid_building_va
3	1.463258	floating_pop_va
4	1.168694	pk_va
5	1.446279	crosswalk_va
6	1.106063	sidewalk_va
7	1.206907	road_sign_va
8	1.439255	school_buffer_va
9	1.669356	academy_buffer_va
10	1.452232	traffic_cctv_buffer_va
11	1.183722	cctv_va
12	1.620246	bus_stop_buffer_va
13	1.600380	all_traffic
14	1.618193	frequency
15	1.170955	joint_va
16	1.128617	road_30kmph

VIF란?

Variance inflation facto의 약자로 변수간의 중복 정도를 나타내는 값. 모델 설명력의 손실을 최대한 줄이면서 어떤 변수를 제거할지 결정하는데 도움을 주는 지표. 보통 7.5이상이면 회귀 분석에서 사용된 모형의 일부 예측 변수가 다른 예측 변수와 상관 정도가 높아,

데이터 분석 시 부정적인 영향을 미치는 것으로 간주한다.

상관관계란?

변수들간의 관계를 나타내는 것으로 0에 가까울수록 무관(랜덤)하고 1에 가까울수록 양의 상관관계가 매우 높고, -1에 가까울수록 음의 상관관계가 높다.

$$r = \frac{cov(X,Y)}{\sigma_X \cdot \sigma_Y}$$

활용 모델

1. Linear Regression

 회귀분석에 가장 기본이 되는 선형 회귀분석으로 두 변수 간의 관계를 통해 모형을 구축

3. Ridge

- 머신러닝 회귀분석의 한 종류
- 종속변수를 예측하는데 중요하지 않은 변수의 영향력을 축소
- 다중 공선성 방지에 활용되며
- L2 규제

4. ElasticNet

- 머신러닝 회귀분석의 한 종류
- 변수를 자동으로 채택하며 일반적 으로 많은 변수를 다룰 때 활용
- 선형모델에서 많은 변수를 제거하고 과적합 감소
- L1 규제

Lasso

- 머신러닝 회귀분석의 한 종류
- Lasso에서 변수를 제거하는 것과 Ridge에서 변수의 영향력을 줄이 는 것을 결합한 방법

5. Random Forest Regressor

- 앙상블 기법의 하나로 하나의 데이 터셋에서 여러 서브셋을 통해 독립 된 여러 결정 트리를 생성해 모든 결과를 평균한 결과를 산출
- Bagging 기법
- 분산 감소를 목표로 함

6. XGBoost Regressor

- 앙상블 기법의 하나로 이전 모델의 오류를 고려해주며 연속적으로 학 습하여 예측하는 기법
- Boosting 기법
- Bias 감소를 목표로 함

결정 기법

VotingRegressor

• 서로 다른 알고리즘 혹은 서로 다른 모델을 통해 얻어진 결과 값을 평균, 다수결 등 Voting 방법을 통해 Overfitting을 해소하고 더 적합한 모델을 결정하기위한 방법

2 분석 과정 과적합 예방 및 성능개선 방법

과적합 예방 및 성능개선

- I. K-Fold Cross Validation
 - 011
- I. Regulation

- 1. 대상 모델
 - Linear Regression
 - Lasso
 - Ridge
 - ElasticNet
 - Random Forest Regression
 - XGBoost
 - 2. Subset 비율
 - 교차검증을 위한 test, train set 크기를 각각 20%, 80%로 하여
 - 5회 교차 점검

- 1. L1 규제
 - Ridge
- 2. L2 규제
 - Lasso
- 3. L1, L2 규제
 - ElasticNet

III. Ensembling

- 1. Random Forest Regression
- 2. XGBoost Regressor
- 3. VotingRegressor

IV. Feature Removing

- 1. 오산시 전체 인구
- 2. 교차로 신호등 개수
- 3. 화물차 통행량
- 4. 정체 시간
- 5. 유치원
- 6. 스포츠 시설

정확도 평가 지표 선정

$$RMSE = \sqrt{\sum_{i=1}^{N} \frac{(y_i - \hat{y_i})^2}{N}}$$

- RMSE(Root Mean Squared Error)는 실 제 관측값과 모델 예측값의 잔차의 제곱의 합의 평균의 제곱근
- 실제와 모델의 예측이 얼마나 차이가 많이 나는지 알 수 있는 지표
- 값이 0이 되면 실제와 예측이 일치

$R^2 = 1 - \frac{SS_{RES}}{SS_{TOT}} = 1 - \frac{\sum (y_i - \hat{y_i})^2}{\sum (y_i - \bar{y})^2}$

- R²는 결정계수로 1에서 실제 관측값과 그 평균의 잔차의 제곱의 합에 대한 실제 관측 값과 모델 예측값의 잔차의 제곱합을 뺀 값
- 모델이 얼마나 잘 적합되었는지 알 수 있는 지표
- RMSE가 0이면 R² 가 1이 되므로 가장 정 확하 모델

평가 지표 개선 방법

K-Fold Cross Validation Score

- RMSE를 최소화하기 위해 test와 train set을 교차로 학습/적용여 RMSE를 산출하는 방법. 과적합을 막 기 위해 사용
- 적용 모델

Linear Regression Lasso, Ridge, ElasticNet Random Forest Regressor XGBoost Regressor

Estimation 1	Test	Train	Train	Train	Train
Estimation 2	Train	Test	Train	Train	Train
Estimation 3	Train	Train	Test	Train	Train
Estimation 4	Train	Train	Train	Test	Train
Estimation 5	Train	Train	Train	Train	Test

Grid Search CV

- 앙상블 모델에서 RMSE를 최소화하기 분류의 깊이(depth)와 모델의 수 (n estimators)를 교차로 적용하며 최적을 파라미터를 찾아주는 방법
- 적용 모델 Random Forest Regressor XGBoost Regressor

모델별 지표

RMSE: 0.04413

• R^2 : 0.2873

2. Lasso

• RMSE: 0.05086

• $R^2: 0.2788$

RMSE: 0.04398

• R^2 : 0.2808

4. ElasticNet

• RMSE: 0.05086

• $R^2: 0.2744$

5. Random Forest Regressor

• RMSE: 0.04406

• R^2 : 0.5928

RMSE: 0.04618

• $R^2: 0.7298$

• 모델간 RMSE 비교

• 모델간 R^2 비교

1 분석 과정 모델 결정

Voting Regressor로 모델 결정

- 1. Linear Regression
 - RMSE: 0.04413
 - R²: 0.2873
- 2. Lasso
 - RMSE: 0.05086
 - R^2 : 0.2788
- 3. Ridge
 - RMSE: 0.04398
 - R²: 0.2808
- 4. ElasticNet
 - RMSE: 0.05086
 - R^2 : 0.2744
- 5. Random Forest Regressor
 - RMSE: 0.04406
 - R^2 : 0.5928
- 6. XGBoost Regressor
 - RMSE: 0.04618
 - R²: 0.7298

Voting Regressor에 반영할 각 모델의 가중치는 각 모델의 결정계수를 기준으로 부여

$$y_{\mathit{VR}} = \frac{0.2873 \, \bullet \, y_{\mathit{LR}} + 0.2788 \, \bullet \, y_{\mathit{Lasso}} + 0.2808 \, \bullet \, y_{\mathit{Ridge}} + 0.2744 \, \bullet \, y_{\mathit{ElasticNet}} + 0.5928 \, \bullet \, y_{\mathit{RF}} + 0.7298 \, \bullet \, y_{\mathit{XGB}}}{0.2873 + 0.2788 + 0.2808 + 0.2744 + 0.5928 + 0.7298}$$

Regressor predictions and their average

과제1

어린이 보호구역 외 어린이 교통사고 위험지역 20개소 제시

- 1. 어린이 보호구역을 제외한 4001개 격자 추출
- 2. 4001개 격자 중 모델 예측값이 높은 상위 20개 격자 추출
- 3. 대상지역을 로드뷰, 최신 사진 등을 활용하여 적합한 지역이 나왔는지 주변환경 등을 육안으로 확인 후 선별
- 4. 최종 결과 산출

과제2

기존 어린이 보호구역 중 교통안전시설물 우선 설치 지역 20개소 제시

- 1. 어린이 보호구역 대상 격자 600여개 추출
- 2. 해당 어린이 보호구역 대상 격자를 어린이 보호구역으로 그룹화
- 3. 각 어린이 보호구역에 pid(protection ID를 부여)하여 91개로 축소
- 4. 어린이 보호구역(pid)별로 모델 예측값을 그룹별로 평균
- 5. 91개 어린이 보호 구역 모델 예측값 평균 상위 20개 보호 구역을 추출
- 6. 대상지역을 로드뷰, 최신 사진 등을 활용하여 적합한 지역이 나왔는지 주변환경 등을 육안으로 확인 후 도로교통 안전 시설물 설치 위치 선정
- 7. 최종 결과 산출

1 분석 결과 어린이 교통사고 취약 지역

과제1

어린이 보호구역 외 어린이 교통사고 위험지역 20개소 제시

미소나이	HARL/X A TI	중심점	비전병이	
위험순위	시설명/주소지	경도	위도	반경범위
1	오산주공아파트 일대	127.073814E	37.141594N	50m
2	토이플러스 앞 사거리 일대(경기도 오산시 대원동 507-18)	127.072719E	37.136181N	50m
3	롯데마트사거리 일대	127.073774E	37.148805N	50m
4	시청앞교차로 일대	127.078278E	37.148821N	50m
5	남촌오거리일대	127.061382E	37.149661N	50m
6	홈플러스 일대	127.061262E	37.170393N	50m
7	올리브영,신한은행 일대(경기 오산시 성호대로 121)	127.074900E	37.148809N	50m
8	타이어뱅크 일대	127.072607E	37.156012N	50m
9	신세계푸드 일대(경기도 오산시 대원동 581-13)	127.078343E	37.137103N	50m
10	글라스바바 일대	127.068143E	37.148785N	50m
11	롯데슈퍼 사거리 일대	127.046576E	37.177549N	50m
12	오산 왕해물 일대	127.078348E	37.136202N	50m
13	운천초 일대	127.078238E	37.156032N	50m
14	LH 운암마을 아파트 일대	127.076041E	37.146109N	50m
15	IBK기업은행 일대	127.076026E	37.148813N	50m
16	쉐보레 오산전시장 일대	127.073789E	37.146101N	50m
17	교촌치킨 사거리 일대	127.068169E	37.144278N	50m
18	오산 시청 일대	127.076021E	37.149714N	50m
19	이마트 일대	127.071562E	37.141586N	50m
20	운암 주공4단지 아파트 일대	127.074895E	37.149710N	50m

분석 결과 어린이 교통사고 취약 지역

과제1

지역 확인 예시

글라스바바 일대

• 127.068143E 37.148785N

IBK 기업은행 일대

• 127.076026E 37.148813N

분석 결과 어린이 교통사고 취약 지역

과제1

지역 확인 예시

쉐보레 오산전시장 일대

• 127.073789E 37.146101N

이마트 일대

• 127.071562E 37.141586N

1 분석 결과 어린이 교통사고 취약 지역

과제2 기존 어린이 보호구역 중 교통안전시설물 우선 설치 지역 20개소 (43개 시설) 제시

	시설 번호	시설명/주소지	중심	점 위치	
ਜਤਦਜ	시설 반오	시설앙/구조시	경토	위토	시설을 승규
1	1	원일초등학교 정문 일대	127.071934E	37.139555N	교차로 횡단보도 과속방지턱
2	1	원동e편한세상1단지 후문 일대	127.070451E	37.138877N	교차로 주정차 단속, 볼록거울, 속도제한 표지판, 옐로카펫, 노랑발자국
2	2	원동e편한세상1단지 후문 일대	127.070245E	37.138857N	옐로카펫,노랑발지국
2	3	원동e편한세상1단지 후문 일대	127.070134E	37.138800N	옐로카펫,노랑발자국
2	4	원동e편한세상1단지 후문 일대	127.070142E	37.138860N	볼록거울
2	5	원동e편한세상1단지 후문 일대	127.070246E	37.138738N	볼록거울
2	6	원동e편한세상1단지 후문 일대	127.070150E	37.138848N	신호등에 속도제한 표지판
3	1	세교유치원 앞 사거리 일대	127.044250E	37.176493N	30km/h 점멸형 속도 제한 표지, 야간 횡단보도 조명
3	2	세교유치원 앞 사거리 일대	127.044189E	37.176503N	야간 횡단보도 조명
3	3	세교유치원 앞 사거리 일대	127.044236E	37.176563N	야간 횡단보도 조명
3	4	세교유치원 앞 사거리 일대	127.044298E	37.176530N	야간 횡단보도 조명
3	5	세교유치원 앞 사거리 일대	127.044254E	37.176471N	야간 횡단보도 조명
3	6	세교유치원 앞 사거리 일대	127.044173E	37.176555N	신호등에 30km/h 점멸형 속도 제한 표지
3	7	세교유치원 앞 사거리 일대	127.044308E	37.176487N	신호등에 30km/h 점멸형 속도 제한 표지
3	8	세교유치원 앞 사거리 일대	127.044194E	37.176464N	신호등에 30km/h 점멸형 속도 제한 표지
3	9	세교유치원 앞 사거리 일대	127.044172E	37.176555N	신호등에 30km/h 점멸형 속도 제한 표지
4	1	화성등기소 앞 사거리 일대	127.058961E	37.159195N	노랑발자국
5	1	경기 오산시 오산로 75 상가 107호 앞 사거리 일대	127.068974E	37.134090N	중앙분리대 설치(전도로)
6	1	경기 오산시 운암로 63 운암현대아파트 앞 도로	127.076596E	37.153281N	보행자, 차량확인을 위한 볼록거울
7	1	오산시 중앙도서관 앞 운산로 일대	127.077223E	37.153794N	중앙분리대 보강(소방서 앞 도로는 제외)
8	1	원동초등학교 앞 사거리 일대	127.068947E	37.135950N	중앙분리대 보강, 야간 조명 신호등
9	1	성산새싹길 어린이보호구역 일대	127.065637E	37.149462N	단방향도로, 인도와 보도 분리 필요, 과속방지턱 설치
10	1	경기 오산시 오산대역로 214 앞 사거리 일대	127.066019E	37.171121N	중앙분리대 설치, 미끄럼 방지 시설 설치
10	2	경기 오산시 오산대역로 214 앞 사거리 일대	127.065956E	37.171379N	중앙분리대 설치, 미끄럼 방지 시설 설치
10	3	경기 오산시 오산대역로 214 앞 사거리 일대	127.066156E	37.171222N	중앙분리대 설치, 미끄럼 방지 시설 설치
11	1	운암 제1근린공원앞 어린이보호구역 일대	127.077030E	37.156229N	불법주정차 금지지역 지정
11	2	운암 제1근린공원앞 어린이보호구역 일대	127.077055E	37.156152N	해당 지역 신호등 설치
11	3	운암 제1근린공원앞 어린이보호구역 일대	127.077017E	37.156074N	해당 지역 신호등 설치
11	4	운암 제1근린공원앞 어린이보호구역 일대	127.076937E	37.156090N	해당 지역 신호등 설치
11	5	운암 제1근린공원앞 어린이보호구역 일대	127.076954E	37.156169N	해당 지역 신호등 설치
12	1	매홀초등학교 앞 청학로147번길 도로 일대	127.064467E	37.162020N	어린이보호지역임을 알리는 표지판 설치
13	1	오산시네마 앞 원동로37번길	127.070102E	37.146114N	인도와 도로 분리필요
14	1	오산시 갈곳동 현대힐스테이트아파트	127.071864E	37.131767N	인도와 도로 분리필요
15	1	경기 오산시 남부대로 445-4	127.084180E	37.134029N	과속방지턱
16	1	아이사랑어린이집 입구 앞 도로	127.072716E	37.133787N	옐로카펫, 노랑발자국
16	2	아이사랑어린이집 입구 앞 도로	127.072690E	37.133702N	옐로카펫, 노랑발자국
17	1	오산시 보건소앞 현충로	127.078690E	37.159154N	중앙분리대
18	1	문시초등학교 여게산로 어린이보호도로	127.044886E	37.174032N	중앙분리대
19	1	성호초 앞 성호새싹길	127.070176E	37.149135N	단방향도로, 과속방지턱설치
20	1	이화유치원앞 청학로173번길	127.062416E	37.164057N	미끄럼방지 시설 설치
20	2	이화유치원앞 청학로173번길	127.062263E	37.164160N	미끄럼방지 시설 설치
20	3	이화유치원앞 청학로173번길	127.062145E	37.164013N	미끄럼방지 시설 설치
20	4	이화유치원앞 청학로173번길	127.062301E	37.163958N	미끄럼방지 시설 설치

분석 결과 어린이 교통사고 취약 지역

과제2

지역 확인 예시

원일초등학교 일대

- 127.071934E 37.139555N
- 교차로 횡단보도 과속방지턱

원동 e편한세상 1단지 후문 일대

- 127.070451E 37.138877N
- 교차로 주정차 단속, 볼록거울, 속도제한 표지판, 옐로카펫, 노랑발자국

분석 결과 어린이 교통사고 취약 지역

과제2

지역 확인 예시

경기 오산시 오산대역로 214 앞 사거리 일대

- 127.066019E 37.171121N
- 중앙분리대 설치, 미끄럼 방지 시설 설치

운암 제1근린공원앞 어린이보호구역 일대

- 127.076988E 37.156130N
- 해당 지역 신호등 설치 및 중앙분리대 설치 불법주정차 금지지역

보석 결론 어린이 교통사고 취약 지역

결론 및 기대효과

- 어린이 교통사고를 기반으로 한 머신러닝 모델로 교통사고 위험지역을 선제에 분석
- 단순 교통사고 다발지역과는 별개로 주변 지역과 **주변 변수들의 영향**을 함께 분석 하여 교통사고 위험지역을 도출한데에 의의
- 과제 1. 어린이 보호구역 외 어린이 교통사고 위험지역 20개소를 제시
- 과제 2. 기존 어린이 보호구역 중 교통안전시설물 우선 설치 지역 20개소에 여러 교통안전 시설물을 설치를 제안
 - 오산시의 경우 어린이 보호구역 내에 교통사고 예방을 위한 많은 대비가 되어 있어 보행자 어린이 보호를 위한 추가 설치가 필요한 시설을 찾는데 주력함
- 어린이 보호구역 운영시간에 보행중인 어린이들의 교통사고를 줄여 어린이 사망률, 교통사고율을 줄일 수 있을 것으로 기대
- 위 분석으로 **어린이들이 행복하게 살 수 있는 도시 오산시**를 만드는데 조금이나마 기여할 수 있을 것으로 기대

참고문헌

- 1. 박승훈 (2014). 안전한 통학로 조성을 위한 보행자-차량간 교통사고와 학교주변의 물리적 환경과의 연관성 연구. 대한건축학회 논문집 계획계, 30(8), 181-189
- 박승훈 (2014). 근린환경이 보행자-차량 충돌사고에 미치는 영향. 국토계획, 49(3), 143-157.
- 류종득_딥 러닝을 이용한 고속도로 교통사고 예측모델 개발._국내박사학위논문 아주대학교 일반대학원, 2018. 경기도
- 김준기 외 7인, 교통사고에 안전한 국토 구현, 2018. 국토연구원
- 오산시 어린이보호구역 보행안전 확보방안 연구, 경기연구원
- 2020년도 인천광역시 교통안전 시행계획(최종공고), 인천광역시
- 어린이보호구역 교통사고 87%가 보행 중 발생 (안전개선과)게시, 2019.07.22. 행안부 보도 자료
- ""잠깐 사이 꽝"…어린이 교통사고 가장 많이 발생한 시간은?", 2020.06.03.중앙일보
- 어린이보호구역 교통안전성 향상을 위한 교통안전시설 연구, 2016. 도로교통공단

Q & A

THANK YOU

경청해 주셔서 감사합니다