

ОРГАНИЗАЦИЯ КЭШ-ПАМЯТИ ВЗАИМОДЕЙСТВИЕ КЭШ-ПАМЯТИ И ОЗУ

SIFO LAB PRACTICUM PART 2 – Л.Р. 2-3

Разработать кэш-память заданного типа и размера

Для этого:

- 1. По данным варианта вычислить размер кэш-памяти в байтах(ячейках)
- 2. Затем определить размер ОЗУ исходя из кратности его размера объёму кэш-памяти
- 3. Определить размер ША исходя из объёма ОЗУ

Адресация ОЗУ - побайтная

В данной л.р. считаем что слова БАЙТ и СЛОВО обозначают одну ячейку памяти или регистра и равны разрядности ШД

READ MISS

- 1. ЦП $\stackrel{[A]}{\to}$ КЭШ
- 2. HIT = 0
- 3. КЭШ $\xrightarrow{[A, B, C, D]}$ ОЗУ
- 4. озу $\xrightarrow{A,B,C,D}$ КЭШ
- 5. КЭШ $\stackrel{A}{\rightarrow}$ ЦП

АЛГОРИТМЫ ЗАМЕЩЕНИЯ СТРОК

Наиболее давнего хранения

က	
2	
1	
0	

	3
	2
X	1
	0

	3
X	0
	2
	1

-					
	X	X	X	X	0
					1
					3
					2

				1
				2
X	Χ	Χ	Χ	0
				3

- Чтение слова
- Запись слова
- Замещение строки

АЛГОРИТМЫ ЗАМЕЩЕНИЯ СТРОК

LRU (Наиболее давнего использования)

3
2
1
0

	3
	2
X	0
	1

	3
X	0
	1
	2

Χ	Χ	Χ	Χ	0
				1
				2
				3

				1
				2
				3
Χ	Χ	Χ	Χ	0

- Чтение слова
- Запись слова
- Замещение строки

АЛГОРИТМЫ ЗАМЕЩЕНИЯ СТРОК

Наименьшего использования

1
1
1
1

	1
	1
X	2
	1

			1
	X		2
			2
			1

Χ	Χ	Χ	Χ	1
				2
				2
				1

				1
				2
				2
Χ	Χ	Χ	Χ	1

- Чтение слова
- Запись слова
- Замещение строки

СКВОЗНАЯ ЗАПИСЬ БЕЗ ОТОБРАЖЕНИЯ (MISS)

1. ЦП
$$\stackrel{A'}{\rightarrow}$$

2.
$$HIT = 0$$

$$3.$$
 ЦП $\stackrel{A'}{\to}$ ОЗУ

СКВОЗНАЯ ЗАПИСЬ С ОТОБРАЖЕНИЕМ (MISS)

1. ЦП
$$\stackrel{A'}{\rightarrow}$$

2.
$$HIT = 0$$

$$3$$
. ЦП $\stackrel{A'}{\rightarrow}$ ОЗУ

4. КЭШ
$$\xrightarrow{[A, B, C, D]}$$
 ОЗУ

5. ОЗУ
$$\xrightarrow{A', B, C, D}$$
 КЭШ

ПРОСТАЯ ОТЛОЖЕННАЯ ЗАПИСЬ (НІТ)

1. ЦП
$$\stackrel{A'}{\rightarrow}$$
 КЭШ

2.
$$HIT = 1$$

$$3$$
. ЦП $\stackrel{A'}{\rightarrow}$ КЭШ

ПРОСТАЯ ОТЛОЖЕННАЯ ЗАПИСЬ (MISS)

1. ЦП
$$\stackrel{A'}{\to}$$
 КЭШ

2.
$$HIT = 0$$

$$3$$
. КЭШ $\xrightarrow{E',F,G',H}$ ОЗУ

4. озу
$$\xrightarrow{A, B, C, D}$$
 кэш

$$5$$
. ЦП $\stackrel{A'}{\rightarrow}$ КЭШ

ФЛАГОВАЯ ОТЛОЖЕННАЯ ЗАПИСЬ (MISS)

1. ЦП
$$\stackrel{A'}{\rightarrow}$$
 КЭШ

2.
$$HIT = 0$$

3. IF DIRTY BIT
$$= 1$$

1. КЭШ
$$\xrightarrow{E', F, G', H}$$
 ОЗУ

4. озу
$$\xrightarrow{A,B,C,D}$$
 КЭШ

$$5$$
. ЦП $\stackrel{A'}{\rightarrow}$ КЭШ

6. DIRTY BIT =
$$1$$

ФЛАГОВАЯ ОТЛОЖЕННАЯ ЗАПИСЬ (READ MISS)

1. ЦП
$$\stackrel{[A]}{\rightarrow}$$
 КЭШ

2.
$$HIT = 0$$

3. IF DIRTY BIT = 1

1. КЭШ
$$\xrightarrow{E', F, G', H}$$
 ОЗУ

- 4. озу $\xrightarrow{A,B,C,D}$ КЭШ
- 5. DIRTY BIT = 0
- $^{\wp}$ 6. КЭШ $\overset{A}{ o}$ ЦП

РАСЧЁТ РАЗМЕРА КЭШ, ОЗУ И ША

- Объём кэш = кол-во строк * кол-во слов в строке
- Объём ОЗУ = объём кэш * кратность
- ША = log₂(Объём ОЗУ)
- Offset = $log_2(кол-во слов в строке)$
- Set = log_2 (кол-во строк в наборе\модуле)
- Tag = ША offset set

МОДЕЛИРОВАНИЕ 9 Л.Р.

СКВОЗНАЯ БЕЗ ОТОБРАЖЕНИЯ

- Read miss
- Read hit
- Write miss
- Write hit

СКВОЗНАЯ С ОТОБРАЖЕНИЕМ

- Read miss (кэш пустой)
- Read hit
- Write miss (кэш пустой)
- Write hit
- Read miss (замещение кэш-линии)
- Write miss (замещение кэшлинии)

МОДЕЛИРОВАНИЕ 9 Л.Р.

ПРОСТАЯ ОТЛОЖЕННАЯ

- Read miss (кэш пустой)
- Read hit
- Write miss (кэш пустой)
- Write hit
- Read miss (выгрузка кэш-линии измененной)
- Write miss (выгрузка кэш-линии измененной)
- Read miss (выгрузка кэш-линии неизмененной)
- Write miss (выгрузка кэш-линии неизмененной)

ФЛАГОВАЯ ОТЛОЖЕННАЯ

- Read miss (кэш пустой)
- Read hit
- Write miss (кэш пустой)
- Write hit
- Read miss (выгрузка кэш-линии)
- Write miss (выгрузка кэш-линии)
- Read miss (без выгрузки)
- Write miss (без выгрузки)

