Networks and Communications "Computer/Network Security"

Konstantinos Gkoutzis Imperial College

Outline

- Terminology
- History
- Encryption
- Key Distribution
- Access Control
- + more

The Internet as we know it

- The Web
- Video/Audio Streaming
- Online Games
- Cloud Apps
- Instant Messaging
- Email
- **•** [...]

The Internet as we don't (?) know it

If your websites use WordPress, put down that coffee and upgrade to 4.8.3. Thank us later

WordPress has a security patch out for a **programming** blunder that you should apply ASAP.

The fix addresses a flaw that can be potentially exploited by hackers to hijack and take over WordPress-powered websites, by **injecting malicious SQL database commands**.

USB stick found in West London contained Heathrow security data

Detailed security arrangements for London Heathrow airport, including the Queen's precise route every time she passes through, were found on a USB stick left in a West London street, according to reports.

The **unencrypted USB** stick was found lying under **leaves** on Ilbert Street, a leafy terrace near the famous Kensal Green cemetery – reportedly by an unemployed jobseeker on his way to a library.

Bootkit ransomware baddy hops down BadRabbit hole in Japan

A new strain of **ransomware** is apparently being used for targeted attacks in Japan. MBR-ONI, a new **bootkit** ransomware, relies on modified version of a legitimate open-source disk encryption utility called DiskCryptor for its encryption routines – the same tool abused by the **Bad Rabbit** ransomware last week.

• These were just yesterday..!

• Who does all these things?

Another reCaptcha attack, now against audio challenges

Late last week, researchers from startup Vicarious demonstrated their attack against reCaptcha's image-based "I'm not a robot" proof.

Now University of Maryland boffins have busted Google's audio accessibility feature.

H/P/V/A/C

- Popular online term(s) until the early 90s
 - then the media just started calling everyone a "hacker"
- **H:** Hackers
- P: Phreakers
- V: Virii (creators)
- **A**: Anarchists
- C: Crackers

■ See also: "<u>The Hacker Crackdown</u>"

Hackers

- **H:** Hackers
- Originally meant: highly competent (computer) engineers who explore different ways of using/combining things
- Since then: "dangerous criminals who are after your data!!1"
 - a.k.a. "cybercriminals", or "cyberterrorists"
- Can be divided into: White/Gray/Black Hats
 - White Hat: a researcher who informs the company before they go public
 - Gray Hat: an analyst who does not inform anyone unless they get paid
 - Black Hat: a malicious individual who abuses the findings to cause harm
- White Hat example: <u>Samy Kamkar</u>

Phreakers

- P: Phreakers
- Originally meant: **Ph**one+Hackers
- Since then: the telephone network is now almost fully digital (and online)
 - so now they are just called hackers
- Example: <u>John Draper</u> (a.k.a. Captain Crunch)

Virii (creators)

- V: Virii (creators)
- Creators of computers viruses
- Why?
 - a) Because they are curious
 - b) Because they can
 - c) Because £ \in \$ \times P

- Ransomware (e.g. profits from Bitcoin ransom)
- Spyware (e.g. browser add-ons, profits from ads)
- Trojans (e.g. remotely controlled botnet zombie, profits from renting)
- Example: <u>David L. Smith</u>

Anarchists

- A: Anarchists
- Originally meant: physical security perpetrators who organise their attacks online
 - e.g. BBS/Forums/IRC
- Since then: when they are peaceful, they are usually called "hacktivists"
- Example: Some parts of Anonymous

Crackers

- C: Crackers
- Originally meant: wannabe hackers, who use the tools of others to infiltrate systems
- Since then: mostly confused with "hackers"
 - sometimes confused with "code-crackers"
- More crackers than hackers in the world
 - (mostly up to no good)
- Can sometimes hire Black Hat hackers to deliver "hacks"
- Example: Most modern <u>organised crime</u> groups

Others

- DDoSers
 - a Distributed Denial of Service attack participant
 - usually using the tools of others
 - Example: Low Orbit Ion Cannon
- Spammers / Botters
 - mass-senders of unsolicited (<u>spam</u>) messages
 - these days, they mostly use botnets/zombies
 - Example: (list on <u>SpamHaus</u>)
- Warez scene
 - anything that is uploaded or downloaded illegally
 - today we call them "pirates" (yarr!)
 - Example: most of the files on PirateBay

Others (cont'd)

- Cyberbullies
 - a.k.a. "trolls"
 - aim to harass, stalk, offend, and even threaten online users
 - Example: most of YouTube and Twitch commenters
 - If this happens to you, please report it to us
- Whistleblowers
 - former "insiders" of companies/organisations
 - reveal secrets, even after signing NDAs (Non-Disclosure Agreements)
 - Example: <u>Edward Snowden</u>
- Social Engineers / Phishers / Catfishes
 - manipulators; attack "personal/human security"; spy on companies/organisations
 - pretend to be someone else; try to confuse/scam you (e.g. with <u>fake authority</u>)
 - Example: <u>Kevin Mitnick</u>

(Black Hat) Tools

- Rootkits
 - allows attackers to secretly enter an external system
 - usually installed as/within a "virus"
- Keyloggers
 - allows attackers to record all the keypresses on a system
 - logs can be programmed to be emailed (or become remotely accessible)
- Trojans
 - allows attackers to remotely control an entire system
 - (it's like an unwanted version of TeamViewer or VNC)
- Evil Twin
 - allows attackers to "lure" their victims into using networks they control/own
 - e.g. a WiFi network renamed to "FREE" WIFI" or "Starbacks Coffee"

(White Hat) Tools

- Tails
 - The Amnesic Incognito Live System
 - live and forgetful
 - in the name of your privacy
- Kali Linux
 - large collection of security and pentesting tools
 - used to be called BackTrack
 - also has an ARM version for tablets
- Metasploit
 - Comes with Kali
 - Identifies systems and their vulnerabilities
 - Nmap is a similar tool
- ...and many more!

On Laws

- Alas, are we helpless?
- Computer Misuse Act (1990)
- Copyright, Designs and Patents Act (1988)
- Criminal Justice Act (2003)
- Data Protection Act (1998)
- Defamation Act (2013)
- Disability Discrimination Act (1995)
- <u>Digital Economy Act</u> (2010)

On Laws (cont'd)

- e-Commerce Regulations Directive (2002)
- Freedom of Information Act (2000)
- Obscene Publications Act (1959)
- Protection of Children Act (1978)
- Regulation of Investigation Powers Act (2000)
- + <u>EU Cybercrime laws</u>
 - (for a little while longer)
- + any laws of the country/ies where involved hosts are physically located
 - e.g. <u>DMCA</u>

On Standards

- IANA
 - Internet Assigned Numbers Authority
- ICANN
 - Internet Corporation for Assigned Names and Numbers
- IETF
 - Internet Engineering Task Force
- ISOC
 - Internet Society
- EFF
 - Electronic Frontier Foundation
- <u>W3C</u>
 - World Wide Web Consortium
- ISO
 - International Organization for Standardization

What else is there?

- Since laws and standards can be ignored by malicious users...
- ...we have created ways of protecting our data and our systems from attackers
- It is the job of Security Analysts / Consultants / Engineers
 - to assure companies/organisations do not fall victims to these attacks
- Attacks will come!
 - so everyone should be prepared

Digital Attacks

- Accounts
- Firewalls
- Antivirus applications
- Cryptography
- Backup
- **■** +more

Physical Attacks

- Locks & Keys
- Cameras
- Sensors
- Biometrics Scanners
- Alarms
- Guards
- **■** +more

Personal/Human Attacks

- DBS Checks
- Staff Training
- Internet Traffic Logging & Monitoring
- +more

You may want to follow:

- Schneier on Security
- Naked Security by Sophos
- ThreatPost and SecureList by Kaspersky
- <u>TheRegister</u> (Security section)
- Wired (Security section)
- Hacker News
- CSO Online
- Digital Attack Maps by NorseCorp and ArborNetworks

Can you break this?

• Someone sent you this encrypted message:

FRPHEVGL

- What does it mean?
 - How was it encrypted?

Network Security Issues

- Access Control
 - Only *certain* users are allowed access to a resource
- Authentication
 - User knows that the (re)source really is what it says it is, and vice-versa
- Confidentiality
 - Users limit access to information/resources they own
 - Data confidentiality; Traffic confidentiality
- Integrity
 - Actions of a user should not be able to affect the overall integrity of a resource
- Non-Repudiation
 - Users cannot deny communication took place (really "in fashion" at the moment)

Security Aspects

- To deal with security we need:
 - Access Control
 - Security Policy
 - Technical infrastructure for implementing said *Policy*, using:
 - Secure Channels, where
 - Users and their data are authenticated
 - Information they exchange is *confidential*
 - Monitoring / Logging / Auditing

Access Control

- Assuming a *secure* channel, the *Guard* controls:
 - Which Principals can access the Resource
 - Where Principals are allowed to be located
 - What Requests Principals are allowed to make

■ See Lampson's <u>Protection</u> for the "Access Matrix"

	Domain 1	Domain 2	Domain 3	File 1	File 2	Process 1
Domain 1	*owner control	*owner control	*call	*owner *read *write		
Domain 2			call	*read	write	wakeup
Domain 3			owner control	read	*owner	

Firewalls

- Ensuring that all hosts are secure is a complex process
 - Heterogeneous systems => different configurations
 - Users can be careless
 - Even host managers/administrators can be careless
- Firewalls control access to the network => a security gateway between the internal and external networks
 - Application level Gateway (e.g. <u>netfilter's iptables</u>, <u>SpyShelter/Comodo</u>)
 - Proxies (e.g. <u>SOCKS</u>, HTTP)
 - Circuit Level Gateway (e.g. <u>Tor</u>)
 - Packet Filtering
 - Stateful Multilayer Inspection
 - Hybrid (combination of the above)

- Can be purely software-based, or even hardware-based
 - can replace/be a router between public and private networks

Firewall Components

■ Task: to analyse inbound packets and, based upon existing rules, decide whether to block or allow each packet

Application-level gateway

• runs on the host; only protects that host

Proxy server

• runs on the network; can protect entire LAN

Circuit-level gateway

• acts like a (non-caching) proxy, viz. it fully takes over the host's communication with the recipient, and then decides what to allow/block

• [Stateful] Packet Filtering

- stateless: checks source/destination IP addresses and source/destination ports
- stateful: remembers connections and checks contents of current and previous packets

Open Internet Access

• No firewall:

- Anyone who knows your public IP can contact you
 - (and even if they don't, they can <u>randomly</u> end up on it)

Access via Proxy

- Proxy can filter incoming/outgoing traffic
- Different modes:
 - Normal: the client is aware (and needs to be set up)
 - Transparent: the client is unaware (the local router takes care of everything)
 - **Reverse**: runs on the receiving side, "impersonating" servers (CDN load balancing)
- Private network only accessible via proxy:

Bastion Host

- Expects to be attacked..!
- Performs auditing/logging
- Should run a trusted/secure OS
- Administered via a dedicated terminal
- Only runs necessary software/services minimal OS
 - Remove non-essential applications, utilities, services (e.g. X11)
 - Set file permissions, turn on file quotas, process limits, etc.
 - No regular user accounts
 - No NFS mounts
 - Make filesystem(s) read-only, if possible

Stateful inspection firewalls

- Relays connections and maintains connection state
- Can also authenticate users
- Can drop connections based on destination, incorrect connection packets, time, volume, etc.
- Useful for logging/auditing/monitoring

Packet Filtering firewalls

Application-level Gateways

- a.k.a *Proxy firewalls*
- In the midst of a "logical" connection, thus allowing it to monitor traffic
- Can block/filter/report based on app-level msg. content
- Can scan for data leaks, worms/viruses, etc.
- Can rewrite data (!)

Access Control Lists

Packet Filtering Rules:

Rule	Dir.	Action	Inside	Inside	Outside	Outside	Description
nule	DII.	Action					Description
			Addr.	Port	Addr.	Port	
1	ln	Block	*	*	9.9.9.0	*	Don't let these people in
2	ln	Allow	*	*	6.6.6.6	*	We trust this host
3	*	Allow	1.1.1.7	300	5.5.5.5	300	Very specific access
4	Out	Allow	1.1.1.1	*	*	*	Allow this inside host
							access
5	Out	Allow	1.1.1.0	*	4.4.4.3	80	Allow access to
							this service
6	Out	Block	*	*	*	*	Block anything else

• Rules are checked from top to bottom until a match is found

Firewall Example (with ACL)

- All non-well-known server ports on the bastion network can access all hosts on the public net
- The DNS server running on host "dns" and HTTP server running on machine "www" can be accessed from all other networks
- Host "dns" and "www"may contact any port on "myserv1"

See some extra examples from Cisco <u>here</u>

Firewall Example (cont'd)

iptables

- Administrative tool for packet filtering
- Consists of *chains* with *filter rules* in *tables*

```
kgk@KGK-IC:~
kgk@KGK-IC:~$ sudo iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
```

tcpd

- Daemon controlling access to Unix services
- Consults two files: /etc/hosts.allow and /etc/hosts.deny

IDS, IPS, NGFW, UMT

- **IDS**: Intrusion Detection System
 - software that detects intrusions (e.g. identifies a DDoS attack)
 - but does nothing to stop them
 - except inform the system
- **IPS**: Intrusion Prevention System
 - software that prevents intrusions (e.g. actively blocks SYN flooders)
 - either includes, or works with, an IDS
- **NGFW**: Next Generation Firewall
 - a (statefull) firewall that came with an IPS/IDS system
 - (in addition to ACL mechanisms)
- UMT: Unified Threat Management
 - similar to NGFW, but with more capabilities (e.g. antispam/antivirus)

$\overline{\mathbf{DMZ}}$

- DeMilitarized Zone
- The "area" between you and the outside (dangerous) world
 - the "neutral zone"
- External hosts can only speak directly to your internal hosts that lie within the DMZ (if any)
- All other, non-DMZ, hosts are hidden/protected by the gateway/router/firewall
- The router uses NAT (Network Address Translation) to get the external messages to the correct internal host
- If you want to expose an internal host without putting it in the DMZ, you can use "port forwarding"

Port Forwarding

- This lets the router know that packets for certain ports should be forwarded directly to an internal host/port
- e.g. any packet received at port 12345 of the router's public IP, should be forwarded to the NAT-based LAN IP of host1 at its port 80
- So if I access http://yourpublicip:12345/ I am really accessing http://host1:80
 - but I was not able to do this directly since host1 is hiding behind the router
 - and thus does not have a public IP
- Very useful if you wish to host servers (which you want to access on the Internet)
 - or if some application is requesting non-standard ports (e.g. games)

Getting Around Firewalls

ssh

- Often, most non-standard services are blocked by a firewall
- If ssh is allowed, you can use it to tunnel through a firewall
- H_r executes ssh -g -N -L 1433:test:1433 user@cpu1
 - H_r connects to cpu1 on port 22
 - cpu1 connects to test on port 1433
 - ssh on H_r provides a service on port 1433 (via 22)
- (Same applies for Remote Desktop or VNC)

Getting Around Firewalls (cont'd)

- One could potentially "spoof" a MAC address
 - you can easily "rewrite" your MAC on your software
- One could also attempt to "spoof" an IP address
 - but a stateful firewall will *probably* catch it
- You could also use a VPN (Virtual Private Network) to "tunnel" around a firewall
 - the firewall won't be able to know what you are doing
 - as long as your tunnel is secure (e.g. using SSL Secure Sockets Layer)
- However, firewalls can learn to block your secured VPN connections
 - exactly because they cannot read them..!
- It may also be against the Acceptable Use Policy of the network

Security Policy

- Each company/organisation needs to define its Network/IT Security Policy
- Useful standard: ISO/IEC <u>17799:2005</u>
 - IT Security Techniques Code of Practice for Information Security Management
- e.g.
 - Intranet/Internet access rights
 - Allowed use of software/hardware
 - Risk assessments
 - Training
 - +more
- Usually the role of the IT/Network Manager/Director

Logging & Auditing

- Your system is probably already keeping logs
 - Linux System Logs (/var/log/)
 - Windows Logs (*Event Viewer*)
- syslog protocol
 - Linux: syslog-ng
- Used to identify system or network issues
- Can also be used as evidence of criminal activities
- Logs have to be monitored/managed
- Anything useful identified by a log audit should be stored permanently

"The only secure computer is one that's unplugged, locked in a safe, and buried 20 feet under the ground in a secret location... and I'm not even too sure about that one."

(attributed to Dennis Hughes – the first Chief of the Computer Investigations Unit at the FBI)

Cryptography

- Cryptography
- Κρυπτογραφία
- κρυπτο- = hidden
- -γραφία = writing
- Writing something "in code" (=to encode or to encrypt)
 - using a specific algorithm (=series of steps)
 - while retaining the ability to retrieve it afterwards (=to decode or to decrypt)
- e.g. **SECURITY** with the *Caesar Cipher* and a parameter of **-13** becomes **FRPHEVGL**
 - i.e. we shifted all letters up by 13 places
 - this is a simple "shift" algorithm, but there are a lot more complex ones
 - lacktriangledown cipher = cryptographic algorithm

Secure Channels: Encryption

- Assumptions
 - Physical channel is open to attack from the enemy
 - Enemy may read and/or alter any bit pattern

- Ciphertext $\mathbf{M_c} = \mathrm{E}(\mathrm{K,M})$
- Plaintext $\mathbf{M} = D(K^{-1}, M_c)$
- Only certain users should have K and K⁻¹

M: Message

K: Key

E: Encrypt

D: Decrypt

Encryption Properties

- Without K⁻¹
 - given M_c: can only find M by enumerating all possible K⁻¹
 - a.k.a. brute-force attack
 - takes a very long time* if the domain of K-1 is large
 - (*Nothing an extremely powerful [quantum?] Supercomputer/cluster And a high budget cannot eventually beat)
- Given M and M_c only
 - it should be difficult to obtain/guess the value of K and K⁻¹

Secret Key Encryption

- ullet K = K⁻¹ (e.g. K_t for both)
- Also called *Symmetric* encryption
- Similar to
 - password-protecting a file
- K_t must be carefully distributed to all hosts who are to access the channel

Public Key Encryption

- Also called *Asymmetric* encryption (*public-private key pair*)
- K_t is called the **private-key** of host H_t and is only stored/used by that host
- K_t-1 is called the **public-key** of host H_t and is *freely* distributed
- \blacksquare Successfully decrypting messages => authenticated as coming from H_t
 - as only H_t could have encrypted the message with their corresponding private-key

■ K ≠ K⁻¹

Public Key Encryption Confidentiality

- \blacksquare Encrypting a message with the public-key of the destination ($\mathrm{K_r}^{-1}$)
 - only H_r can decrypt the message
- Ensures confidentiality
 - (as long as H_r keeps their K_r somewhere safe)

Authentication and Confidentiality

- Encrypt/sign the message using your private key:
 - $E(K_t, M)$
- Encrypt the encrypted/signed message using the destination's public key and send it:
 - \bullet E $(K_r^{-1}, E(K_t, M))$
- Proof that only H_r may read it: $D(K_r, E(K_r^{-1}, E(K_t, M))) => E(K_t, M)$
- Proof that only H_t could have sent it: $D(K_r^{-1}, E(K_t, M)) => M$

Encryption Comparison

- Public Key
 - Owner of private-key does not need to disclose its value
 - More secure
 - Slow encryption/decryption
 - Example: RSA

Secret Key

- Owner of secret/private-key needs to disclose it in order to communicate
- Less secure
- Faster encryption/decryption
- Example: DES
- You can of course combine these
 - lacktriangledown e.g. GnuPG (gpg)

```
tar czvpf - filename.txt | gpg --symmetric --cipher-algo aes256 -o filename.tar.gz.gpg gpg -d filename.tar.gz.gpg | tar xzvf -
```

Secure Channel Establishment

- Obtain the keys to use for encryption
 - How?
- If you require that all hosts must be given all the keys they may need in advance
 - it will not scale
 - it does not allow new hosts to be added
- Solution A: Agree on a **new key** right there and then
- Solution B: Use trusted secure hosts

Diffie-Hellman key exchange

- Secure key exchange, even over a public, unsecured, channel
- Whitfield Diffie & Martin Hellman
 - Original concept by Ralph Merkle
- Key can then be used for encryption by symmetric algorithms
- Powerful/large systems can <u>potentially</u> defeat this
- Used by SSL (now <u>TLS</u>)

Diffie-Hellman key exchange (cont'd)

- Bob and Alice agree on a public value \mathbf{g} (generator) and a large prime number \mathbf{p}
- Bob chooses a secret value **b** and Alice chooses a secret value **a**
- They each use their secret value to calculate their public value:
 - x=(g^b mod p) for Bob and y=(g^a mod p) for Alice
 - they exchange these (public) values
- They then use the other's public value to calculate the shared secret key:
 - Bob: $y^b \mod p = (g^a \mod p)^b \mod p = g^{ab} \mod p$
 - Alice: $x^a \mod p = (g^b \mod p)^a \mod p = g^{ba} \mod p$
 - this result/key can now be used by them to communicate securely
- Eve, the eavesdropper, cannot guess/derive the shared secret key since she does not know either of the secret values a & b

How does this work?

Secure Hosts: Key Server

- Each host knows how to communicate with the server securely
- The problem is how to (safely) obtain a key $K_{t,r}$ to talk to each other

Kerberos (Needham & Schroeder)

- Kerberos is a user authentication system which knows your password
- It also knows the password of the user/resource you want to communicate with
- It's Key Distribution Center (KDC) can provide you with a "ticket"
 - allowing you communicate with that user/resource
- Tickets expire after a predefined amount of time
 - in which case you have to re-login to generate new tickets
- Original version was vulnerable to "replay" "Man-In-The-Middle" (MitM) attacks
 - these have now been addressed (until the next issue is found)
- Visualisation of Kerberos

Attacks on Cryptography Algorithms

Algorithms rely on their being no known quick solution

■ May not be true for long (e.g. <u>RSA1024</u>, <u>SHA-1 hash</u>, <u>MD5 hash</u>, <u>WEP</u>, <u>CSS</u>, etc.)

- Popular algorithms are constantly <u>tested</u> to identify potential issues/vulnerabilities
 - before a "black-hat" finds one...

• Quantum computing is expected to bring many <u>changes</u> to cryptography within the next decade

Q&A

- You will find the new **exercise worksheet** on the course website(s) **tomorrow**
 - Solutions will be uploaded on the DoC website at the end of next week
- Suggested reading: Tanenbaum#8; Peterson#8; (Stallings#P9); Kurose#8.
- Please provide anonymous feedback on <u>www.menti.com</u> using the code **49 80 49**
 - always active throughout the term
- You can also provide *eponymous* feedback or ask questions via email (*username:* kgk)
- Thank you for your attention
- Movie of the week: <u>Takedown</u>
- Next time: Practical Applications of Network Security