

Modes of Operation

- block ciphers encrypt fixed size blocks
 eg. DES encrypts 64-bit blocks with 56-bit key
- need some way to en/decrypt arbitrary amounts of data in practise
- NIST SP 800-38A defines 5 modes
- have block and stream modes
- to cover a wide variety of applications
- can be used with any block cipher

Electronic Codebook Book (ECB)

- message is broken into independent blocks which are encrypted
- each block is a value which is substituted, like a codebook, hence name
- each block is encoded independently of the other blocks

```
C_i = E_K(P_i)
```

uses: secure transmission of single values

Electronic Codebook Book (ECB)

(a) Encryption

(b) Decryption

Advantages and Limitations of ECB

- message repetitions may show in ciphertext
 - if aligned with message block
 - particularly with data such graphics
 - or with messages that change very little, which become a code-book analysis problem
- weakness is due to the encrypted message blocks being independent
- main use is sending a few blocks of data

Cipher Block Chaining (CBC)

- message is broken into blocks
- linked together in encryption operation
- each previous cipher blocks is chained with current plaintext block, hence name
- use Initial Vector (IV) to start process

```
C_i = E_K(P_i XOR C_{i-1})

C_{-1} = IV
```

uses: bulk data encryption, authentication

Cipher Block Chaining

Message Padding

- at end of message must handle a possible last short block
 - which is not as large as blocksize of cipher
 - pad either with known non-data value (eg nulls)
 - or pad last block along with count of pad size
 - eg. [b1 b2 b3 0 0 0 0 5]
 - means have 3 data bytes, then 5 bytes pad+count
 - this may require an extra entire block over those in message
- there are other, more esoteric modes, which avoid the need for an extra block

Advantages and Limitations of CBC

- a ciphertext block depends on all blocks before it
- any change to a block affects all following ciphertext blocks
- need Initialization Vector (IV)
 - which must be known to sender & receiver
 - if sent in clear, attacker can change bits of first block, and change IV to compensate
 - hence IV must either be a fixed value (as in EFTPOS)
 - or must be sent encrypted in ECB mode before rest of message

Stream Modes of Operation

- block modes encrypt entire block
- may need to operate on smaller units
 - real time data
- convert block cipher into stream cipher
 - cipher feedback (CFB) mode
 - output feedback (OFB) mode
 - counter (CTR) mode
- use block cipher as some form of pseudorandom number generator

Cipher FeedBack (CFB)

- message is treated as a stream of bits
- added to the output of the block cipher
- result is feed back for next stage (hence name)
- standard allows any number of bit (1,8, 64 or 128 etc) to be feed back
 - □ denoted CFB-1, CFB-8, CFB-64, CFB-128 etc
- most efficient to use all bits in block (64 or 128)

```
C_i = P_i \text{ XOR } E_K(C_{i-1})

C_{-1} = IV
```

uses: stream data encryption, authentication

s-bit
Cipher
FeedBack
(CFB-s)

Advantages and Limitations of CFB

- appropriate when data arrives in bits/bytes
- most common stream mode
- limitation is need to stall while do block encryption after every n-bits
- note that the block cipher is used in encryption mode at both ends
- errors propogate for several blocks after the error

Output FeedBack (OFB)

- message is treated as a stream of bits
- output of cipher is added to message
- output is then feed back (hence name)
- feedback is independent of message
- can be computed in advance

```
O_i = E_K(O_{i-1})
C_i = P_i XOR O_i
O_{-1} = IV
```

uses: stream encryption on noisy channels

Output FeedBack (OFB)

(b) Decryption

Advantages and Limitations of OFB

- needs an IV which is unique for each use
 - if ever reuse attacker can recover outputs
- bit errors do not propagate
- more vulnerable to message stream modification
- sender & receiver must remain in sync
- only use with full block feedback
 - subsequent research has shown that only full block feedback (ie CFB-64 or CFB-128) should ever be used

Counter (CTR)

- a "new" mode, though proposed early on
- similar to OFB but encrypts counter value rather than any feedback value
- must have a different key & counter value for every plaintext block (never reused)

```
O_i = E_K(i)
C_i = P_i XOR O_i
```

uses: high-speed network encryptions

Counter (CTR)

(b) Decryption

Advantages and Limitations of CTR

- efficiency
 - can do parallel encryptions in h/w or s/w
 - can preprocess in advance of need
 - good for bursty high speed links
- random access to encrypted data blocks
- provable security (good as other modes)
- but must ensure never reuse key/counter values, otherwise could break (cf OFB)

Feedback Character-istics

(a) Cipher block chaining (CBC) mode

(b) Cipher feedback (CFB) mode

(c) Output feedback (OFB) mode

(d) Counter (CTR) mode

Summary

- Modes of Operation
 - □ ECB, CBC, CFB, OFB, CTR