Homework 2

Due at 11:59 pm, Feb 2nd

1 Simple binary hypotheses

Consider binary hypotheses

$$\mathcal{H}_0: Y \sim f_0(y) = \begin{cases} 1 & y \in (0,1) \\ 0 & \text{otherwise} \end{cases} \quad \text{vs.} \quad \mathcal{H}_1: Y \sim f_1(y) = \begin{cases} 2y & y \in (0,1) \\ 0 & \text{otherwise} \end{cases}$$
 (1)

Consider a Bayesian test with uniform cost, i.e., $C_{ii} = 0$, and $C_{ij} = 1$ for $i \neq j$. Find the Bayesian detector as a function of prior $\pi_0 = \Pr(\mathcal{H}_0)$ and the Bayesian risk.

2 Detection of mixture

Consider the following two hypotheses. For \mathcal{H}_0 , the observation Y is drawn from a uniform distribution $f_0(y)$ in [0,1]. For \mathcal{H}_1 , with probability 0.5, $f_0(y)$ is used, and and with probability 0.5, density $q(y) = 2y, y \in [0,1]$ is used. The distribution under \mathcal{H}_1 is called a mixture of $f_0(y)$ and q(y).

- 1. Give the precise sketch of the likelihood ratio.
- 2. For the uniform cost, i.e., $C_{ij} = 0$ when i = j and $C_{ij} = 1$ otherwise, find the Bayesian detector as a function of the prior $\pi = \Pr(\mathcal{H}_0)$.
- 3. Find the Bayesian risk expression $V(\pi)$ as a function of the prior $\pi = \Pr(\mathcal{H}_0)$.
- 4. Optional: Sketch $V(\pi)$ vs. π , and find the worst prior

$$\pi^* = \arg\max_{\pi} V(\pi)$$

(You can use software if you cannot computed it directly)

3 Uniform noise

Suppose that a single observation Y is generated from

$$Y = \theta \lambda + N$$

where $N \sim \mathcal{U}(-1,2)$ and $\lambda \in (0,2)$ a known constant. The two hypotheses are given by

$$\mathcal{H}_0: \theta = 0$$
 vs. $\mathcal{H}_1: \theta = 1$.

- 1. Find the NP detection rule for a given size $\alpha \in (0,1)$.
- 2. Find the power of the detector as a function of α and λ . Sketch the ROC curve.