lec 2 Image Processing	/ /
Olinear Eiller in Sputial domain Image deventive, Box Liller,	Gaussian Liller
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 Î(xy) = I(xy + nl/1; Adual img
1) Image processing transformation (1) Point operators -> point to point brightness, Contrast, Corre	nt mapping (Pexel-Pexe
2) Filters in <u>Spatial</u> domain -> neight mathematical operations -> Smooth, Sh	arp, texture
3) Pilters in Frequency domain _ Fre de noise, Sampling, Compr	ession
4) Templates, img Pyramids, m detection, Coarse to line	atch a template registivation
(5) Point operator > Input pixel > o'! -> Brightness () -> addahive Contrast -> multiplicative output	: output pixel offset > B gain > Q
Surprio (PCX) input Surprio (PCX) imp Function Gutthout	s domain
9(i/j)=h(f(i/j)) -> disc	rete domain

Scanned with CamScanner

7	Common Point Process (B) multiplication 2 g(x) - af(x) +b , bias - bright addition
5 5 5	Jadding Same value to each Color Not only increase The intensity of each pixel but also affect hue, Saturation
	(8) Glor balancing , X each channel with Scale Pactor matting , Process of extracting object from I mage Compositing , insert img into another image
·····	Show GI -> alpha matted Color img for foreground matting, whing, Gompositing [O) Compositing equation => C = (I-X)B+XF
9 (9 9 9	II) Alphamatted image Contain 4th alpha channel (A) relative amount of opecity or Fractional Governing Alpha (opacity) is opposite of transparency \(\times = 0 \) transparent \(\times = 1 \) opaque Ibals
	12 histogram equalization histogram for individual Color Channel 2 // Line > Calculate min, max, Aug intensity Value
13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	histogram > Find intensity mapping function f(I) Equalization Sych as histogram is Plat BLADIB Scanned with CamScanner

smooth sharpeing
(B) Linear Piltering in Spatial domain
- neighborhood Piltering (Convolution)
winds (XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
$f(x,y) \times h(hy) = g(xy)$
Image Filtering > Compute Function of
Image Filtering > Compute Function of Lo Col neighborhood at each Position
Denhance ing , Denoise, resize, Contrast (2) Extract info , text, edge, Points (3) detect patterns , template matching
(3) detect patterns, template matching
Jules rate of change
(5) Average (mean) = divide sum of N values by N
(16) discrete derivative
f(x) = f(x-1) = backward dilherele f(x+1) = f(x+1) = Forward dilherele f(x+1) = f(x-1) = Control dilherele
PCX) - FCX+1) - > Forward dilberle
FCX+1) _ F(X-1) _ Central ellevente
17) direvative in 2D
TF CITEVARIVE IN 2D
Punction = ROXIY) Gradien direction
Cradient Nector = V F(X19) = tan 1 fx Cradient mynitude = 1 P(X19) = tan 1 fx

Scanned with CamScanner

7	Ganssan & Smooth Lunction 1 infinite nom of derivatives (2) Forier transform of Gaussian -> ganssian (3) Convolution of Gaussian -> gayssian
	(18) Derevative mark [-1,1] backward [1,-1] Forward
	(9) Carelation > foh = ZE f(KIL) h (itk jit!)
	(20) Convolution => f*h = ≤ ≤ f(k, l)h(i=k, j=1)
	② Box Filter = Average Pilter -> Smoothing Replace each Dixel with an average of its neighbors
	(22) Gaussian Pilter > Smoothness weight Contribution of neighbour pixels by nearness
	$ \left(\frac{G}{2\pi\sigma^2} + \frac{-(\chi^2 + y^2)}{2\sigma^2}\right) $
	Remove high Frequency = low Pass Pilter - Convolution Gaussian with it Self - Gaussian
	Convolving 2 times Gaussian Remel of width of 750 is Same as Convolving once with width or VZ
	Sepratole kernel -> Factors into product 2 1-0 Fanssians
	(orderly) 2 (orderly) 2 (orderly) 2 (orderly) 2
100	الكوارة المناطقة الم