M2 DATASCALE: DATA MANAGEMENT IN LARGE-SCALE DISTRIBUTED SYSTEMS

Investigating feature selection techniques to improve data mining tasks

Project supervised by

Dr Zaineb GARCIA

zaineb.chelly-dagdia@uvsq.fr

UVSQ — Paris Saclay University

Context

Figure: The KDD process

Context

Figure: The KDD process

- → Reducing the data : Source of significant data loss
- → Use of suitable techniques

Taxonomy of dimensionality reduction techniques

Figure: Classification of dimensionality reduction techniques

Feature selection

☐ Feature selection methods are particularly desirable as these facilitate the interpretability of the resulting knowledge

We need a technique that:

- Analyzes the facts hidden in data;
- Does not need any additional information about the data such as thresholds or expert knowledge on a particular domain;
- Finds a minimal knowledge representation;

→ Rough Set Theory

Rough Set Theory

- Rough set theory was developed by Zdzislaw Pawlak
- Rough sets constitutes a sound basis for data mining as a tool to:
 - ✓ Feature selection;
 - ✓ Discretization;
 - ✓ Decision rule generation;
 - ✓ Classification;

Project tasks

Objective: Investigate several rough set based feature selection techniques

Tasks:

- 1) Understand the in-depth functioning of the QuickReduct Algorithm as well as its technical details
- 2) Implement the QuickReduct Algorithm
- 3) Test the code using a sample dataset to validate the algorithm's implementation
- 4) Investigate other rough set based algorithms for comparison purposes
- 5) Test the relevance of the selected features on a set of classification algorithms using UCI machine learning datasets
- 6) Present visually the results
- 7) Identify some limitations of the used algorithm
- 8) Propose some improvements of the algorithm
- 9) Write the technical report
- 10) Present the conducted work

Algorithm 3.1 The QuickReduct Algorithm

- 1: C: the set of all conditional features;
- 2: D: the set of decision features:
- 3: $R \leftarrow \{\};$
- 4: **do**
- 5: T ← R
- 6: $\forall x \in (C R)$;
- 7: **if** $\gamma_{R \cup \{x\}}(D) > \gamma_T(D)$;
- 8: $T \leftarrow R \cup \{x\}$;
- 9: end if
- 10: $R \leftarrow T$:
- 11: **until** $\gamma_R(D) == \gamma_C(D)$
- 12: return R