SD-TSIA204 Statistics: linear models

Ekhine Irurozki Télécom Paris

Toward multivariate models

Tree volume as a function of height / girth (■ : circonférence)

Toward multivariate models

Tree volume as a function of height / girth (■ : circonférence)

Python commands

```
from matplotlib.mplot3d import Axes3D
# Load data
url = 'http://vincentarelbundock.github.io/
       Rdatasets/csv/datasets/trees.csv'
dat3 = pd.read_csv(url)
# Fit regression model
X = dat3[['Girth', 'Height']]
X = sm.add constant(X)
y = dat3['Volume']
results = sm.OLS(y, X).fit().params
XX = np.arange(8, 22, 0.5)
YY = np.arange(64, 90, 0.5)
xx, yy = np.meshgrid(XX, YY)
zz = results[0] + results[1]*xx + results[2]*yy
fig = plt.figure()
ax = Axes3D(fig)
ax.plot(X['Girth'],X['Height'],y,'o')
ax.plot_wireframe(xx, yy, zz, rstride=10, cstride=10)
plt.show()
```

results output const:-57.98, Girth: 4.70, Height: 0.33

Model

One observes p features $(\mathbf{x}_1, \dots, \mathbf{x}_p)$. Model in dimension p

$$y_{i} = \theta_{0}^{\star} + \sum_{j=1}^{p} \theta_{j}^{\star} x_{i,j} + \varepsilon_{i}$$

$$\varepsilon_{i} \overset{i.i.d}{\sim} \varepsilon, \text{ pour } i = 1, \dots, n$$

$$\mathbb{E}(\varepsilon) = 0$$

Rem:we assume (frequentist point of view) there exists a "true" parameter $\boldsymbol{\theta^\star} = (\theta_0^\star, \dots, \theta_p^\star)^\top \in \mathbb{R}^{p+1}$

Dimension p

$$\underbrace{\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} 1 & x_{1,1} & \dots & x_{1,p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n,1} & \dots & x_{n,p} \end{pmatrix}}_{X} \underbrace{\begin{pmatrix} \theta_0^{\star} \\ \vdots \\ \theta_p^{\star} \end{pmatrix}}_{\boldsymbol{\theta^{\star}}} + \underbrace{\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}}_{\boldsymbol{\varepsilon}}$$

Equivalently :
$$\mathbf{y} = X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}$$

Column notation :
$$X=(\mathbf{x}_0,\mathbf{x}_1,\ldots,\mathbf{x}_p)$$
 with $\mathbf{x}_0=\mathbf{1}_n=\left(\begin{array}{c}1\\\vdots\\1\end{array}\right)$

Line notation :
$$X = \begin{pmatrix} x_1^\top \\ \vdots \\ x_n^\top \end{pmatrix} = (x_1, \dots, x_n)^\top$$

Rem:often x_0 will be omitted by simplicity, e.g.,center y first

Vocabulary

$$\mathbf{y} = X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}$$

- $\mathbf{y} \in \mathbb{R}^n$: observations vector
- $X \in \mathbb{R}^{n \times (p+1)}$: **design** matrix (with features as columns)
- $\boldsymbol{\theta}^{\star} \in \mathbb{R}^{p+1}$: (unknown) **true** parameter to be estimated
- $\pmb{\varepsilon} \in \mathbb{R}^n$: noise vector

(Ordinary) Least squares

 $\underline{\mathbf{A}}$ least square estimator is $\underline{\mathbf{any}}$ solution of the following problem :

$$\hat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^{p+1}}{\operatorname{arg min}} \left(\|\mathbf{y} - X\boldsymbol{\theta}\|_{2}^{2} \right)$$

$$\hat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^{p+1}}{\operatorname{arg min}} \sum_{i=1}^{n} \left[y_{i} - \left(\theta_{0} + \sum_{j=1}^{p} \theta_{j} x_{i,j} \right) \right]^{2}$$

$$\hat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^{p+1}}{\operatorname{arg min}} \sum_{i=1}^{n} \left[y_{i} - \langle x_{i}, \boldsymbol{\theta} \rangle \right]^{2}$$

- ▶ Does the solution exist? A solution always exists, as we are minimizing a coercive continuous function (coercive : $\lim_{\|x\|\to+\infty} f(x) = +\infty$)
- ▶ Is the solution unique? not guaranteed

The system of equations $y = X\theta^*$

General systems of equations Ax = b for $a \in \mathbb{R}^{n \times (p+1)}$ and p > n has no solution

$$A = \begin{bmatrix} 2,0\\-1,1\\0,2 \end{bmatrix}, b = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$$

OLS is to minimize $||Ax - b||_2^2$

Row / column interpretation

- Let $\tilde{x}_1^{\top}, \ldots, \tilde{x}_{p+1}^{\top}$ be the rows of X. The residuals are $r_i = \tilde{x}_i \boldsymbol{\theta} y_i$ and the OLS is equivalent to minimizing the sum of squares residuals
- Let x_1, \ldots, x_{p+1} be the columns of X. Then $\|\mathbf{y} X\boldsymbol{\theta}\|_2^2 = \|(\theta_0 x_0, \ldots, \theta_p x_p) \mathbf{y}\|_2^2$, so OLS is to find a linear combination of columns of X that is closest to \mathbf{y} .

Vocabulary (and abuse of terms)

We call **Gram matrix** the matrix

$$X^{\top}X$$

whose general term is $[X^{\top}X]_{i,j} = \langle \mathbf{x}_i, \mathbf{x}_j \rangle$ <u>Rem</u>: $X^{\top}X$ is often referred to as the feature correlation matrix (true for standardized columns)

<u>Rem</u>: when columns are scaled such that $\forall j \in [\![0,p]\!], \|\mathbf{x}_j\|^2 = n$, the Gramian diagonal is (n,\ldots,n)

The vector
$$X^{\top}\mathbf{y} = \begin{pmatrix} \langle \mathbf{x}_0, \mathbf{y} \rangle \\ \vdots \\ \langle \mathbf{x}_p, \mathbf{y} \rangle \end{pmatrix}$$
 represents the correlation

between the observations and the features

Hilbert projection theorem (HPT)

Let $C \subset \mathbb{R}^d$, $Y \in \mathbb{R}^d$. Let $\hat{z} = \arg\min_{z \in C} \|Y - z\|_2^2$. Then \hat{z} always

$$\langle Y - \hat{z}, z \rangle = 0 \qquad \forall z \in C$$

Hilbert projection theorem (HPT) and application to OLS

HPT : Let $C \subset \mathbb{R}^d, Y \in \mathbb{R}^d$. Let $\hat{z} = \arg\min_{z \in C} \|Y - z\|_2^2$. Then \hat{z} always exists and is given by $\boxed{< Y - \hat{z}, z >= 0 \qquad \forall z \in C}$

Recall the OLS, $\hat{\boldsymbol{\theta}} \in \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^{p+1}} \left(\|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 \right)$. Define C = span(X) (i.e., the columns of the design matrix X), we redefine the OLS problem as $\hat{Z} \in \arg\min_{Z \in C} \left(\|\mathbf{y} - Z\|_2^2 \right)$ and use the characterization of \hat{Z} of the HPT.

$$\langle \hat{Z} - \mathbf{y}, Z \rangle = 0 \quad \forall Z$$
$$(\hat{Z} - \mathbf{y})^{\top}, Z = 0 \quad \forall Z$$
$$(\hat{Z} - \mathbf{y})^{\top}, X\boldsymbol{\theta} = 0 \quad \forall \boldsymbol{\theta}$$
$$(\hat{Z} - \mathbf{y})^{\top}, X = 0$$
$$X^{\top}(\hat{Z} - \mathbf{y}) = 0$$
$$X^{\top}(\hat{Z} - \mathbf{y}) = 0$$

OLS normal equations

The solution to the OLS problem is given by the solution to the normal equation

Normal equation:

$$X^{\top} X \hat{\boldsymbol{\theta}} = X^{\top} \mathbf{y}$$

As a consequence,

- a solutions always exists.
- ▶ its unique if the solution to the normal equations is unique

Hilbert projection theorem

 ${
m FIGURE}$ — Souce : Wikipedia

Least squares and uniqueness

Let $\hat{\boldsymbol{\theta}}$ be a solution of $X^{\top}X\hat{\boldsymbol{\theta}} = X^{\top}\mathbf{y}$

$$X^{\top} X \hat{\boldsymbol{\theta}} = X^{\top} \mathbf{y}$$

Non uniqueness: happens for non trivial kernel, *i.e.*, when

$$Ker(X) = \{ \boldsymbol{\theta} \in \mathbb{R}^{p+1} : X\boldsymbol{\theta} = 0 \} \neq \{ 0 \}$$

Assume $\theta_K \in \text{Ker}(X)$ with $\theta_K \neq 0$, then

$$X(\hat{\pmb{\theta}}+\pmb{\theta}_K)=\!\!X\hat{\pmb{\theta}}$$
 and then
$$(X^\top\!X)(\hat{\pmb{\theta}}+\pmb{\theta}_K)=\!\!X^\top\!\mathbf{y}$$

Conclusion: the set of least squares solutions is an affine sub-space

$$\hat{\boldsymbol{\theta}} + \operatorname{Ker}(X)$$

Convex case, $f(\theta) = \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$, where the set of minimizers is non-unique :

Convex case, $f(\theta) = \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$, where the set of minimizers is non-unique :

Convex case, $f(\theta) = \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$, where the set of minimizers is non-unique :

Convex case, $f(\theta) = \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$, where the set of minimizers is non-unique :

Convex case, $f(\theta) = \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$, where the set of minimizers is non-unique :

Non uniqueness : single feature case

Reminder:
$$X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}$$

If $Ker(X)=\{\pmb{\theta}\in\mathbb{R}^2:X\pmb{\theta}=0\}\neq\{0\}$ there exists $(\theta_0,\theta_1)\neq(0,0)$:

$$\begin{cases} \theta_0 + \theta_1 x_1 &= 0\\ \vdots &\vdots &= \vdots\\ \theta_0 + \theta_1 x_n &= 0 \end{cases}$$
 (*)

- 1. If $\theta_1 = 0$: $(\star) \Rightarrow \theta_0 = 0$, so $(\theta_0, \theta_1) = (0, 0)$, contradiction
- 2. If $\theta_1 \neq 0$:
 - 2.1 If $\forall i, x_i = 0$ then $X = (\mathbf{1}_n, 0)$ and $\theta_0 = 0$
 - 2.2 Otherwise there exists $x_{i_0} \neq 0$ and $\forall i, x_i = -\theta_0/\theta_1 = x_{i_0}$, i.e., $X = \begin{bmatrix} \mathbf{1}_n & x_{i_0} \cdot \mathbf{1}_n \end{bmatrix}$

Interpretation : $\mathbf{x}_1 \propto \mathbf{1}_n$, *i.e.*, \mathbf{x}_1 is constant

Interpretation for multivariate cases

Reminder: we write $X = (\mathbf{1}_n, \mathbf{x}_1, \dots, \mathbf{x}_p)$, the features being column-wise (each are of length n)

The property $\operatorname{Ker}(X) = \{ \boldsymbol{\theta} \in \mathbb{R}^{p+1} : X\boldsymbol{\theta} = 0 \} \neq \{ 0 \}$ means that there exists a linear dependence between the features $\mathbf{1}_n, \mathbf{x}_1, \dots, \mathbf{x}_p$,

Reformulation : $\exists \boldsymbol{\theta} = (\theta_0, \dots, \theta_p)^\top \in \mathbb{R}^{p+1} \setminus \{0\}$ s.t.

$$\theta_0 \mathbf{1}_n + \sum_{j=1}^p \theta_j \mathbf{x}_j = 0$$

Algebra reminder

Definition

Rank of a matrix : $\operatorname{rank}(X) = \dim(\operatorname{Span}(\mathbf{1}_n, \mathbf{x}_1, \dots, \mathbf{x}_p))$;

 $\mathrm{Span}(\cdot)$: the space generated by \cdot

Property : $rank(X) = rank(X^{\top})$

Rank-nullity theorem

$$\operatorname{rank}(X) + \dim(\operatorname{Ker}(X)) = p + 1$$

 $\operatorname{rank}(X^{\top}) + \dim(\operatorname{Ker}(X^{\top})) = n$

Rem: $\operatorname{rank}(X) \leq \min(n, p+1)$

See Golub and Van Loan (1996) for details

Exercise: $Ker(X) = Ker(X^{T}X)$

Algebra reminder (continued)

Matrix inversion

A square matrix $A \in \mathbb{R}^{m \times m}$ is invertible

- if and only if its kernel is trivial : $Ker(A) = \{0\}$
- if and only if it is full rank rank(A) = m

Exercise: Show that $Ker(A) = \{0\}$ is equivalent to $A^{T}A$ invertible

Closed-form solution for least squares

Closed-form solution for full rank matrix

If X is full (column) rank (i.e.,if $X^{\top}X$ is non-singular) then

$$\hat{\boldsymbol{\theta}} = (X^{\top} X)^{-1} X^{\top} \mathbf{y}$$

<u>Rem</u>: recover the empirical mean if $X = \mathbf{1}_n : \hat{\boldsymbol{\theta}} = \frac{\langle \mathbf{1}_n, \mathbf{y} \rangle}{\langle \mathbf{1}_n, \mathbf{1}_n \rangle} = \bar{y}_n$

<u>Rem</u>: for a single feature $X = \mathbf{x} = (x_1, \dots, x_n)^\top : \hat{\boldsymbol{\theta}} = \langle \frac{\mathbf{x}}{\|\mathbf{x}\|^2}, \mathbf{y} \rangle$

Beware: in practice **avoid** inverting the matrix $X^{T}X$:

- this is numerically time consuming
- ▶ the matrix $X^{\top}X$ might be big if " $p \gg n$ ", e.g.,in biology n patients (≈ 100), p genes (≈ 50000)

Exercise: recover formula for 1D case with intercept

Prediction

Definition

Prediction vector : $\hat{\mathbf{y}} = X\hat{\boldsymbol{\theta}}$

 $\underline{\mathsf{Rem}}$: $\hat{\mathbf{y}}$ depends linearly on the observation vector \mathbf{y}

 $\underline{\mathsf{Reminder}}$: an **orthogonal projector** is a matrix H such that

1. H is symmetric : $H^{\top} = H$

2. H is idempotent : $H^2 = H$

Proposition

Writing H_X the orthogonal projector onto the space span by the columns of X, one gets $\hat{\mathbf{y}} = H_X \mathbf{y}$

<u>Rem</u>: if X is full (column) rank, then $H_X = X(X^\top X)^{-1}X^\top$ is called the **hat matrix**

Prediction (continued)

If a new observation $x_{n+1}=(x_{n+1,1},\dots,x_{n+1,p})$ is provided, the associated prediction is :

$$\hat{y}_{n+1} = \langle \hat{\boldsymbol{\theta}}, (1, x_{n+1,1}, \dots, x_{n+1,p})^{\top} \rangle$$

$$\hat{y}_{n+1} = \hat{\theta}_0 + \sum_{j=1}^{p} \hat{\theta}_j x_{n+1,j}$$

<u>Rem</u>: the normal equation ensures **equi-correlation** between observations and features :

$$(X^{\top}X)\hat{\boldsymbol{\theta}} = X^{\top}\mathbf{y} \Leftrightarrow X^{\top}\hat{\mathbf{y}} = X^{\top}\mathbf{y}$$

$$\Leftrightarrow \begin{pmatrix} \langle \mathbf{x}_{0}, \hat{\mathbf{y}} \rangle \\ \vdots \\ \langle \mathbf{x}_{p}, \hat{\mathbf{y}} \rangle \end{pmatrix} = \begin{pmatrix} \langle \mathbf{x}_{0}, \mathbf{y} \rangle \\ \vdots \\ \langle \mathbf{x}_{p}, \mathbf{y} \rangle \end{pmatrix}$$

Let
$$P = \begin{pmatrix} \frac{1}{n} & \cdots & \frac{1}{n} \\ \vdots & \ddots & \vdots \\ \frac{1}{n} & \cdots & \frac{1}{n} \end{pmatrix} \in \mathbb{R}^{n \times n}$$
.

- 1. Check that P is an orthogonal projection matrix
- 2. Determine Im(P), the range of P
- 3. For $\mathbf{x} = (x_1, \dots, x_n)^{\top}$, \overline{x}_n is the empirical mean and $\sigma_{\mathbf{x}}$ is the standard deviation :

$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$
 $\sigma_{\mathbf{x}} = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2}.$

Show that $\sigma_{\mathbf{x}} = \|(\mathrm{Id}_n - P)\mathbf{x}\|/\sqrt{n}$.

Residuals and normal equation

Definition

Residual(s):
$$\mathbf{r} = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - X\hat{\boldsymbol{\theta}} = (\mathrm{Id}_n - H_X)\mathbf{y}$$

Reminder:

Normal Equation :
$$(X^{\top}X)\hat{\boldsymbol{\theta}} = X^{\top}\mathbf{y}$$

Thanks to the residual definition, the later yields :

$$X^{\top}(X\hat{\boldsymbol{\theta}} - \mathbf{y}) = 0 \Leftrightarrow X^{\top}\mathbf{r} = 0 \Leftrightarrow \mathbf{r}^{\top}X = 0$$

With $X = (\mathbf{1}_n, \mathbf{x}_1, \dots, \mathbf{x}_p)$, this can be rewritten

$$\forall j = 1, \dots, p : \langle \mathbf{r}, \mathbf{x}_i \rangle = 0 \text{ and } \overline{r}_n = 0$$

Interpretation: residuals are orthogonal to features

Visualization : predictors and residuals (p = 2)

References I