```
# Set seeds for reproducibility
import random
random.seed(0)
import numpy as np
np.random.seed(0)
import tensorflow as tf
tf.random.set_seed(0)
import os
import json
from zipfile import ZipFile
from PIL import Image
!pip install kaggle
     Requirement already satisfied: kaggle in /usr/local/lib/python3.10/dist-packages (1.5.16)
     Requirement already satisfied: six>=1.10 in /usr/local/lib/python3.10/dist-packages (from kaggle) (1.16.0)
     Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from kaggle) (2024.2.2)
     Requirement already satisfied: python-dateutil in /usr/local/lib/python3.10/dist-packages (from kaggle) (2.8.2)
     Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from kaggle) (2.31.0)
     Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from kaggle) (4.66.2)
     Requirement already satisfied: python-slugify in /usr/local/lib/python3.10/dist-packages (from kaggle) (8.0.4)
     Requirement already satisfied: urllib3 in /usr/local/lib/python3.10/dist-packages (from kaggle) (2.0.7)
     Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from kaggle) (6.1.0)
     Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->kaggle) (0.5.1)
     Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.10/dist-packages (from python-slugify->kaggle) (1.3)
     Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->kaggle) (3.3.2)
     Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->kaggle) (3.7)
kaggle_credentails = json.load(open("kaggle.json"))
# setup Kaggle API key as environment variables
os.environ['KAGGLE_USERNAME'] = kaggle_credentails["username"]
os.environ['KAGGLE KEY'] = kaggle credentails["key"]
!kaggle datasets download -d vipoooool/new-plant-diseases-dataset
     Downloading new-plant-diseases-dataset.zip to /content
      .. resuming from 349175808 bytes (2548533379 bytes left) ...
     100% 2.70G/2.70G [00:14<00:00, 199MB/s]
     100% 2.70G/2.70G [00:14<00:00, 181MB/s]
!1s
      drive
                   'new plant diseases dataset(augmented)'
                                                             new-plant-diseases-dataset.zip
      kaggle.json 'New Plant Diseases Dataset(Augmented)'
                                                             test
# Unzip the downloaded dataset
with ZipFile("new-plant-diseases-dataset.zip", 'r') as zip_ref:
   zip_ref.extractall()
!1s
      drive
                   'new plant diseases dataset(augmented)'
                                                             new-plant-diseases-dataset.zip
      kaggle.json 'New Plant Diseases Dataset(Augmented)'
                                                             test
Importing Libraries
import tensorflow as tf
from tensorflow.keras.layers import Dense,Conv2D,MaxPool2D,Flatten,Dropout
from tensorflow.keras.models import Sequential
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import layers, models
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
```

DATA PREPROCESSING

Training Image

```
training_set = tf.keras.utils.image_dataset_from_directory(
    '/content/New Plant Diseases Dataset(Augmented)/New Plant Diseases Dataset(Augmented)/train',
    labels="inferred",
   label_mode="categorical",
   class_names=None,
   color_mode="rgb",
   batch_size=32,
   image_size=(128, 128),
   shuffle=True,
    seed=None,
   validation_split=None,
   subset=None,
    interpolation="bilinear",
   follow links=False,
    crop_to_aspect_ratio=False
     Found 70295 files belonging to 38 classes.
VALIDATION IMAGE
validation_set = tf.keras.utils.image_dataset_from_directory(
    '/content/New Plant Diseases Dataset(Augmented)/New Plant Diseases Dataset(Augmented)/valid',
    labels="inferred",
   label_mode="categorical",
   class_names=None,
   color_mode="rgb",
   batch size=32,
   image_size=(128, 128),
    shuffle=True,
    seed=None,
   validation_split=None,
    subset=None,
    interpolation="bilinear",
   follow links=False,
    crop_to_aspect_ratio=False
)
    Found 17572 files belonging to 38 classes.
```

∨ BUILD MODEL

```
my model = tf.keras.models.Sequential()
my model.add(tf.keras.layers.Conv2D(filters=32,kernel size=3,padding='same',activation='relu',input shape=[128,128,3]))
my_model.add(tf.keras.layers.Conv2D(filters=32,kernel_size=3,activation='relu'))
my_model.add(tf.keras.layers.MaxPool2D(pool_size=2,strides=2))
my_model.add(tf.keras.layers.Conv2D(filters=64,kernel_size=3,padding='same',activation='relu'))
my_model.add(tf.keras.layers.Conv2D(filters=64,kernel_size=3,activation='relu'))
my_model.add(tf.keras.layers.MaxPool2D(pool_size=2,strides=2))
my_model.add(tf.keras.layers.Conv2D(filters=128,kernel_size=3,padding='same',activation='relu'))
my_model.add(tf.keras.layers.Conv2D(filters=128,kernel_size=3,activation='relu'))
my_model.add(tf.keras.layers.MaxPool2D(pool_size=2,strides=2))
my_model.add(tf.keras.layers.Conv2D(filters=256,kernel_size=3,padding='same',activation='relu'))
my_model.add(tf.keras.layers.Conv2D(filters=256,kernel_size=3,activation='relu'))
my_model.add(tf.keras.layers.MaxPool2D(pool_size=2,strides=2))
my_model.add(tf.keras.layers.Conv2D(filters=512,kernel_size=3,padding='same',activation='relu'))
my_model.add(tf.keras.layers.Conv2D(filters=512,kernel_size=3,activation='relu'))
my model.add(tf.keras.layers.MaxPool2D(pool size=2,strides=2))
my_model.add(tf.keras.layers.Dropout(0.25))
                                                                                     # avoid underfitting
my_model.add(tf.keras.layers.Flatten())
my_model.add(tf.keras.layers.Dense(units=1500,activation='relu'))
my_model.add(tf.keras.layers.Dropout(0.4))
                                                                                     #To avoid overfitting
#Output Layer
my_model.add(tf.keras.layers.Dense(units=38,activation='softmax'))
```

✓ COMPLILING || TRAINING

my_model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001) ,loss='categorical_crossentropy', metrics=['accuracy'])

my_model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 128, 128, 32)	896
conv2d_1 (Conv2D)	(None, 126, 126, 32)	9248
<pre>max_pooling2d (MaxPooling2 D)</pre>	(None, 63, 63, 32)	0
conv2d_2 (Conv2D)	(None, 63, 63, 64)	18496
conv2d_3 (Conv2D)	(None, 61, 61, 64)	36928
<pre>max_pooling2d_1 (MaxPoolin g2D)</pre>	(None, 30, 30, 64)	0
conv2d_4 (Conv2D)	(None, 30, 30, 128)	73856
conv2d_5 (Conv2D)	(None, 28, 28, 128)	147584
<pre>max_pooling2d_2 (MaxPoolin g2D)</pre>	(None, 14, 14, 128)	0
conv2d_6 (Conv2D)	(None, 14, 14, 256)	295168
conv2d_7 (Conv2D)	(None, 12, 12, 256)	590080
<pre>max_pooling2d_3 (MaxPoolin g2D)</pre>	(None, 6, 6, 256)	0
conv2d_8 (Conv2D)	(None, 6, 6, 512)	1180160
conv2d_9 (Conv2D)	(None, 4, 4, 512)	2359808
<pre>max_pooling2d_4 (MaxPoolin g2D)</pre>	(None, 2, 2, 512)	0
dropout (Dropout)	(None, 2, 2, 512)	0
flatten (Flatten)	(None, 2048)	0
dense (Dense)	(None, 1500)	3073500
dropout_1 (Dropout)	(None, 1500)	0
dense_1 (Dense)	(None, 38)	57038

Trainable params: 7842762 (29.92 MB) Non-trainable params: 0 (0.00 Byte)

training_history = my_model.fit(x=training_set,validation_data=validation_set,epochs=15)

```
Enoch 1/15
Epoch 2/15
Epoch 3/15
2197/2197 [=
  Epoch 4/15
2197/2197 [=
 Epoch 5/15
Epoch 6/15
Epoch 7/15
Epoch 8/15
2197/2197 [=
 Epoch 9/15
2197/2197 [=
 Epoch 10/15
Enoch 11/15
```

→ EVALUATION OF THE MODEL

training history.history

```
0.2622852027416229.
0.1837005615234375
0.13837198913097382
0.10814646631479263,
0.08430405706167221,
0.07515065371990204,
0.0639662817120552,
0.057262271642684937,
0.05332052335143089,
0.043691739439964294,
0.041633713990449905,
0.038166094571352005.
0.03713954985141754]
'accuracy': [0.5993313789367676,
0.855665385723114,
0.9159968495368958,
0.9406074285507202.
0.9534390568733215,
0.9644213914871216,
0.972544252872467,
0.9750195741653442
0.9793015122413635
0.9816203117370605
0.9829148650169373
0.9860302805900574,
0.9869834184646606,
0.9879223108291626,
0.9881499409675598],
'val_loss': [0.5001130700111389,
0.2891317903995514,
0.31596770882606506
0.26269352436065674.
0.13868436217308044,
0.2452743500471115,
0.13508851826190948
0.11488883942365646,
0.13528084754943848,
0.11148218810558319,
0.12714561820030212,
0.21434347331523895,
```

0.1155521422624588, 0.0960436537861824, 0.10882437229156494],

0.908490777015686, 0.8964261412620544,

'val_accuracy': [0.8420214056968689,

```
U.934000//93/3109,
      0.9621556997299194,
      0.9645458459854126,
      0.9603345990180969,
      0.9684725403785706.
      0.9641475081443787,
      0.9418962001800537,
      0.9675050973892212,
      0.9722854495048523,
      0.9710903763771057]}
import json
with open('training hist.json','w') as f:
 json.dump(training_history.history,f)
print(training_history.history.keys())
     dict keys(['loss', 'accuracy', 'val loss', 'val accuracy'])
epochs = [i for i in range(1,16)]
plt.plot(epochs,training_history.history['accuracy'],color='red',label='Training Accuracy')
plt.plot(epochs,training_history.history['val_accuracy'],color='blue',label='Validation Accuracy')
plt.xlabel('No. of Epochs')
plt.title('Visualization of Accuracy Result')
plt.legend()
plt.show()
```


Precision Recall Fscore

Found 17572 files belonging to 38 classes.

```
class_name = validation_set.class_names
print(class_name)
     ['Apple__Apple_scab', 'Apple__Black_rot', 'Apple__Cedar_apple_rust', 'Apple__healthy', 'Blueberry__healthy', 'Cherry_(includin
test_set = tf.keras.utils.image_dataset_from_directory(
    '/content/New Plant Diseases Dataset(Augmented)/New Plant Diseases Dataset(Augmented)/valid',
    labels="inferred",
   label_mode="categorical",
   class_names=None,
   color_mode="rgb",
   batch_size=1,
    image_size=(128, 128),
   shuffle=False,
    seed=None,
   validation_split=None,
    subset=None,
    interpolation="bilinear",
    follow_links=False,
    crop_to_aspect_ratio=False
```

	precision	recall	f1-score	support
Apple Apple scab	0.97	0.96	0.97	504
Apple Black rot	0.99	0.98	0.98	497
Apple Cedar apple rust	0.97	0.99	0.98	440
Applehealthy	0.99	0.95	0.97	502
Blueberry healthy	0.97	0.98	0.97	454
Cherry (including sour) Powdery mildew	0.92	0.99	0.96	421
Cherry_(including_sour)healthy	0.99	0.99	0.99	456
Corn (maize) Cercospora leaf spot Gray leaf spot	0.96	0.90	0.93	410
Corn (maize) Common rust	1.00	0.99	0.99	477
Corn_(maize)Northern_Leaf_Blight	0.94	0.94	0.94	477
Corn (maize) healthy	0.93	1.00	0.96	465
Grape Black rot	0.97	1.00	0.98	472
Grape Esca (Black Measles)	1.00	0.97	0.99	480
Grape Leaf blight (Isariopsis Leaf Spot)	1.00	0.99	0.99	430
Grapehealthy	0.98	1.00	0.99	423
OrangeHaunglongbing_(Citrus_greening)	1.00	0.96	0.98	503
Peach Bacterial spot	0.98	0.96	0.97	459
Peachhealthy	0.99	0.98	0.98	432
Pepper, bell Bacterial spot	0.98	0.98	0.98	478
Pepper,_bellhealthy	0.97	0.97	0.97	497
PotatoEarly_blight	1.00	0.97	0.98	485
PotatoLate_blight	0.94	0.98	0.96	485
Potatohealthy	0.99	0.94	0.97	456
Raspberryhealthy	0.95	0.99	0.97	445
Soybeanhealthy	0.99	0.97	0.98	505
SquashPowdery_mildew	0.99	0.97	0.98	434
StrawberryLeaf_scorch	1.00	0.97	0.99	444
Strawberryhealthy	0.99	0.99	0.99	456
TomatoBacterial_spot	0.98	0.95	0.96	425
TomatoEarly_blight	0.88	0.96	0.92	480
TomatoLate_blight	0.91	0.95	0.93	463
TomatoLeaf_Mold	0.96	0.99	0.97	470
TomatoSeptoria_leaf_spot	0.97	0.89	0.93	436
TomatoSpider_mites Two-spotted_spider_mite	0.97	0.98	0.98	435
TomatoTarget_Spot	0.96	0.93	0.95	457
TomatoTomato_Yellow_Leaf_Curl_Virus	0.97	1.00	0.98	490
TomatoTomato_mosaic_virus	0.99	1.00	0.99	448
Tomatohealthy	1.00	0.99	0.99	481
accuracy			0.97	17572
macro avg	0.97	0.97	0.97	17572
weighted avg	0.97	0.97	0.97	17572

Confusion Matrix Visualise

```
plt.figure(figsize=(40, 40))
sns.heatmap(cm,annot=True,annot_kws={"size": 15})

plt.xlabel('Predicted Class',fontsize = 25)
plt.ylabel('Actual Class',fontsize = 25)
plt.title('Plant Disease Prediction Confusion Matrix',fontsize = 30)
plt.show()
```


✓ SAVE MODEL

my_model.save('/content/drive/MyDrive/trained_plant_disease.keras')