Module A9M9750_2

Users Manual

© Copyright 2005:

FS Forth-Systeme GmbH Postfach 1103, 79200 Breisach, Germany

Release of Document: April 05, 2005

UM_Module_A9M9750_2.doc Karl Rudolf Filename:

Author:

Program Version

All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of FS Forth-Systeme GmbH.

1. Revision History

2005-04-05 (V1.00) KR: Initial Version derived from Spec A9M9750_2 Module

Table of Contents

1.	Revision History	3
2.	Introduction	6
	2.3. Differences between A9M9750_1 and A9M9750_2 Modules 2.4. Planned and realised Variants for A9M9750_2 Module	7
3.	A9M9750 Features 3.1. Size 60 x 44 mm 3.2. 2 x 120-pin connectors 3.3. NS9750 CPU on the A9M9750_2 Module 3.4. Configuration Pins CPU 3.5. Configuration Pins Module 3.6. Clock Generation 3.7. Serial Boot EEPROM, Boot SPI Channel Settings 3.8. Chip Selects, Memory Map 3.9. NAND Flash 3.10.16/32/64 MBytes SDRAM 3.11.50 GPIO Pins (multiplexed with other Functions) 3.12.PCI/CardBus Port 3.13.10/100Mbps Ethernet Port 3.14. USB 2.0 full and low speed Host and Device Controller 3.15. UART Channels 3.16. SPI Channels 3.17. Calculation of Baudrates 3.18. I²C Bus 3.19. LCD Controller (STN & TFT) 3.20. Serial EEPROM for storing Configuration Parameters 3.21. RTC 3.22. JTAG, Boundary Scan 3.23. Single 3.3V Power Supply 3.24. Power Sequencing on A9M9750_2 Module 3.25. Voltage Supervision and RESET Generation	91015212125313131313131313131
4.	Bootloader	

5.	Software	40
6.	Mechanics	42 44
7.	Known Faults and Limitations	46 46
8.	Appendix	47 47

2. Introduction

There are now a number of interesting ARM9-based SoC solutions available on the market. These chips are usually designed for particular market segments, which implies a departure from the "one-size-fits-all" philosophy for the modules. To accommodate this, the ModARM9 concept foresees more than one ARM9-based module, with the modules having a common subset of functions. One, or two, of these modules will become a standard product at FS Forth, the others will be custom designs. The first standard module, based on the NetSilicon NS9750, is called the A9M9750.

The 1st silicon of the NS9750 had a lot of bugs; some of these needed hardware work arounds extending the 1st A9M9750_0 modules size about 8mm on the long side.

With the announcement of the 2nd silicon NS9750_A1 most of the important bugs are fixed; all new modules A9M9750_X have the original size of 60X44mm.

Due to the fact of PLL instabilities in the 2nd silicon the module A9M9750_2 was necessary with changed generators for system and USB clock.

2.1. Benefits of the ModARM9 Concept

One of the problems constantly faced at any design house involved in custom designs is how to re-use the work done in previous designs. The ModARM9 concept is designed to help address this by expanding the common set of tools available to the design engineers. For example, an evaluation board will be designed which is the same for all modules. This will allow the "common features" of a new module to be tested quickly. If the new module is a custom design, then the customer's base board must be used to test all the peripherals available on the module. This will allow custom designs to be offered at a more attractive price than previously possible.

2.2. Common Features

Below are the common features of this module, which will be covered in further detail later in the document.

ARM9 core with MMU

- Size 60mm x 44mm with 240-pin connector
- SDRAM 16MB 256MB
- NAND Flash 32MB 256MB
- 2..4 serial RS232 interfaces
- Host or device USB interface, USB2.0 compliant
- 10/100Mbps Ethernet interface
- I2C interface, 100KHz and 400KHz
- SPI interfaces
- JTAG interface

This means that approx. 150 pins of the connector are reserved for the above functionality, the others are free for module-specific functions.

2.3. Differences between A9M9750_1 and A9M9750_2 Modules

The NS9750_A1 chips has still an important bug: System frequencies are instable if system and USB clock is generated by crystal circuits. Stable clocks are ensured only when both clocks are made by oscillators. This information was distributed by NetSilicon when the A9M9750_1 redesign was finished. So another redesign was necessary ending in the module A9M9750_2.

Differences in detail:

- 1. System clock 29.4912MHz now made with oscillator
- 2. USB clock 48MHz now made with oscillator
- 3. RSTIN# directly connected to U13 pin 7 (MR#).
- 4. Pull up resistor R34 from RSTIN# to +3.3V added.

2.4. Planned and realised Variants for A9M9750 2 Module

Modules using CPU A1 chips with working PLL will have at least two speed and temperature variants:

- 1. CPU speed 199.0656MHz, 0..70° temperature range. Realised: V01/0364 with 32M NAND Flash and 16M SDRAM, V02/0380 with 32M NAND Flash and 64M SDRAM
- 2. CPU speed 162.5MHz, -40..+85° temperature range. Not realised in the moment

Maybe a PCI host and client version of each variant will be created, which have different parts in the PCI block populated.

3. A9M9750 Features

3.1. Size 60 x 44 mm

The A9M9750 module has a size of 60 X 44 mm.

3.2. 2 x 120-pin connectors

Two 120-pin connectors on the long side of the module allow accessing most signals of the NetSilicon NS9750 CPU. An optional extension with another two 60-pin connectors is planned. This will extend the length of the module from 60mm to approximately 95mm.

Pin-compatible in power supply and main port functions to other ModARM9 modules.

3.3. NS9750 CPU on the A9M9750 2 Module

NS9750 CPU has a 32-bit ARM926EJ-S core. Further details see Hardware Reference 9000624c.pdf. NetSilicon has planned to support two temperature ranges:

- 0..70°C with 200MHz CPU clock
- -40..+85°C with 162.5MHz CPU clock

3.4. Configuration Pins CPU

Several pins allow configuration of the CPU before booting. CPU pins have weak pull ups (value range is 15..300K) for a default configuration. Most pins do not have configuration options, some are connected for internal configuration on the module; some others allow external configuration via external connector pins.

The configuration state is latched 5 system crystal clock cycles after the rising edge of the PWRGOOD signal at the RESET# input of the CPU (5 * 1 / (29.4912.*10E6 = 169.5ns)

Data	Sheet of NS9750	Usage on Module			
CPU Pin	Function	PU/PD	external configu rable	external pin name	Comment
RTCK	PCIAC (PCI Arbiter Configuration) 0 = External PCI Arbiter 1 = Internal PCI Arbiter	PD 2k2 optional	no	no	internal PCI arbiter on PCI host version, external PCI arbiter on PCI device version; pin RTCK is not provided on module
RESET_D ONE	BOOTDS (Boot Mode) 0 = Boot from SPI EEPROM 1 = Boot from Flash/ROM	PD 2k2	no	RSTOUT#	Boot mode default from serial SPI EEPROM
CONF0	CS1LEP (Chip select 1 byte lane enable polarity Bootstrap Select) 0 = BEx# function 1 = WEx# function CONF0 is inverted	-	no	no	Set to WEx# function. Not relevant on module.
CONF1	CARDBSEL (CardBus Mode Bootstrap Select) 0 = CardBus mode 1 = PCI mode	-	yes	HCONF3	default PCI mode, can be changed externally with pin HCONF3
CONF2	MEMRDSEL (Memory Interface read mode Bootstrap Select) 0 = Command delayed mode 1 = Clock delayed mode	PD 2k2	no	no	always command delayed mode, clock delayed mode does not work
CONF4,3	CS1DWSEL (Chip Select 1	-	no	no	default 32bit.

Data	Sheet of NS9750	Usage on Module			
	Data width bootstrap select) 00 = 16 bits 01 = 8 bits 10 = reserved 11 = 32 bits				Not relevant on module, as we do always boot from SPI EEPROM
GPIO2,0	PLL_FS(1:0) (PLL Frequency divider select) 00 = 4 01 = 8 10 = 1 11 = 2 (default) GPIO2 inverted, GPIO0 not inverted		no	GPIO0 = TXDB or SPI_DOB, GPIO2 = RTSB#	config. pins on module n. c.
GPIO17,1 2,10,8,4	PLL_ND(4:0) (PLL multiplier = ND+1) b11010 = 26 decimal PLL multiplier default 27 GPIO10, 4 inverted	5 PD 2K2 optional	no	GPIO4 = DTRB# GPIO8 = TXDA or SPI_DOA GPIO10 = RTSA# GPIO12 = DTRA# GPIO17 = USB Power Relay	
GPIO19	PLLBP (PLL bypass) 0 = PLL bypassed 1 = PLL not bypassed GPIO19 is inverted	PD 2k2 optional	no	GPIO19 = LCDHSY NC	
GPIO24,2 0	PLL_IS(1:0) (PLL charge pump current ND) 00 = ND03 01 = ND47 10 = ND815 11 = ND1631 (default)	-	no	GPIO20 = LCD_CLK GPIO24 = LCDD0	pins on module n.
GPIO36	MODVERS0 (LSB Module Version)	PD 2k2 optional	no	GPIO36 = LCDD12	GPIO36 left open
GPIO37	MODVERS1 (MSB Module Version) GPIO37 GPIO36 0 1 V2.0, CPU PLL ok	PD 2k2	no	GPIO37 = LCDD13	GPIO37 PD
GPIO44	ENDSEL (Endian mode) 0 = Big endian 1 = Little endian	PD 2k2 optional	no	GPIO44 = TXDD or SPI_DOD	resistor not populated sets to little endian.

Data Sheet of NS9750			Usa	ge on Mo	dule
	GPIO44 is inverted				SPI Boot does not work in big endian mode (?)
GPIO49	CS1POLSEL (Chip select 1 polarity) 0 = Active high 1 = Active low GPIO49 is inverted	PU 10k	no	-	Not relevant on module, as we do always boot from SPI EEPROM. Used as FR/B#. PU 10k is at NAND-Flash.

32 of the 50 GPIO pins allow user specific configurations. They are latched in the GEN_ID register with the rising edge of RESET# (address 0xA0900210).

Bit GEN_ID	GPIO	Configuratio	Configuration	ext. usage
		n usage	Protection	
	GPIO49	CS1POLSEL		no (NAND
				FR/B#)
	GPIO48			DMA1_REQ
	GPIO47			LCDD23
	GPIO46			LCDD22
	GPIO45			LCDD21
	GPIO44	ENDSEL	yes	LCDD20
	GPIO43			LCDD19
	GPIO42			LCDD18
31	GPIO41	SCONF3	yes	LCDD17
30	GPIO40	SCONF2	yes	LCDD16
29	GPIO39	SCONF1	yes	LCDD15
28	GPIO38	SCONF0	yes	LCDD14
27	GPIO37	MOD_VER1	yes	LCDD13
26	GPIO36	MOD_VER0	yes	LCDD12
25	GPIO35			LCDD11
24	GPIO34			LCDD10
23	GPIO33			LCDD9
22	GPIO32			LCDD8
21	GPIO31			LCDD7
20	GPIO30			LCDD6

Bit GEN_ID	GPIO	Configuratio n usage	Configuration Protection	ext. usage
19	GPIO29			LCDD5
18	GPIO28			LCDD4
17	GPIO27			LCDD3
16	GPIO26			LCDD2
15	GPIO25			LCDD1
	GPIO24	PLL_IS1	yes	LCDD0
14	GPIO23			LCD_LEND
13	GPIO22			LCD_BIAS_D_ EN
12	GPIO21			LCD_VFSYNC
	GPIO20	PLL_IS0	yes	LCD_CLK
	GPIO19	PLLBP	yes	LCD_HSYNC
11	GPIO18			LCD_PWREN
	GPIO17	PLL_ND4	yes	USB_PWRREL
10	GPIO16			USB_OVCUR
9	GPIO15			DCDA#, SPI_ENA#
8	GPIO14			RIA#, SPI CLKA
7	GPIO13			DSRA# (used as RTC INT#)
	GPIO12	PLL ND3	yes	DTRA#
6	GPIO11			GPIO11
	GPIO10	PLL_ND2	yes	GPIO10 (RTSA#)
5	GPIO9			RXDA, SPIA DI
	GPIO8	PLL_ND1	yes	TXDA, SPIA DO
4	GPIO7			DCDB#, SPIB EN#
3	GPIO6			RIB#, SPIB CLK
2	GPIO5			DSRB#
	GPIO4	PLL_ND0	yes	DTRB#

Bit GEN_ID	GPIO	Configuratio n usage	Configuration Protection	ext. usage
1	GPIO3			CTSB#
	GPIO2	PLL_FS1	yes	RTSB#
0	GPIO1			RXDB,
				SPIB_DI
	GPIO0	PLL_FS0	yes	TXDB,
				SPIB_DO

The GPIO configuration pins marked as protected are separated from the external connector pins with an analog switch when RESET# active or their output signal is buffered. So external signal connections cannot change the preset hardware configurations on the module or external configuration pins. The switched port lines have 10K pull ups when open to prevent floating. signals. Switching time at the rising edge of PWRGOOD is delayed about 200ns (configuration is latched 5 system crystal clock cycles after the rising edge of PWRGOOD in the CPU). Using not protected pins for configuration purposes is possible, if the major load is the configuration resistor.

RTCK is not connected to external and has no switching logic. RSTOUT# is generated from RESET_DONE & PWRGOOD. So RESET_DONE cannot be loaded externally.

Another three configuration pins on the CPU are used for internal tests from NetSilicon and to switch from normal mode to ARM/JTAG debug or boundary scan mode. Switching is done with the configuration pins DEBUG_EN# and OCD EN# described in the next chapter.

PLLTST# (AF21)	BISTEN# (AD20)	SCANEN# (AE21)	Mode
1	0	0	normal
1	1	0	Debug enable
1	0	0	Boundary Scan enable

3.5. Configuration Pins Module

Module configuration pins change either hardware configurations on the module (HCONF0..3) or they are user specific and can be read in the GEN_ID register (SCONF0..3).

Signal name	Function	PU/ PD	external pin name	Comment
DEBUG_EN#	CPU Mode Select 0 = Disconnects TRST# and PWRGOOD for JTAG and Boundary scandebug mode 1 = TRST# and PWRGOOD connected for normal mode (default)	PU 10K	HCONF0	
FWP#	internal NAND flash write protect 0 = write protect active 1 = no write protect	PU 10K	HCONF1	
OCD_EN#	JTAG / Boundary Scan function selection 0 = ARM Debug Mode, BISTEN# set to high 1 = Boundary Scan Mode, BISTEN# set to low (default)	PU 10K	HCONF2	Select JTAG mode, DEBUG_EN# has to be low too
CONF1	CARDBSEL (CardBus Mode Bootstrap Select) 0 = CardBus mode 1 = PCI mode		HCONF3	default PCI mode, can be changed externally with pin HCONF3
GPIO38	User defined software configuration pin, can be read in GEN ID register bit 28, default high		SCONF0	read Bit 28 GEN_ID
GPIO39	User defined software configuration pin, can be read in GEN ID register bit 29, default high		SCONF1	read Bit 29 GEN_ID
GPIO40	User defined software configuration pin, can be		SCONF2	read Bit 30 GEN_ID

Signal name	Function	PU/ PD	external pin name	Comment
	read in GEN ID register bit 30, default high			
GPIO41	User defined software configuration pin, can be read in GEN ID register bit 31, default high		SCONF3	read Bit 31 GEN_ID

Recommended Combinations of DEBUG_EN# and OCD_EN#:

HCONF0	HCONF2	Mode	Comments
OFF	OFF	Normal mode	ok
ON	OFF	Debug mode	ok
OFF	ON	not recommended, may hang	avoid
ON	ON	OCD mode	ok

3.6. Clock Generation

Different clocks will have to be generated for the module in the CPU:

- 1. Input clock at X1 (C8) 29.4912 MHz with PLL multiplied to 398.1312 MHz (*27/2).
- 2. CPU clock 199.0656 MHz (or 162.5 or 125 MHz depending on CPU version). Multiplied input clock divided by 2. These frequencies are the default values set by strapping pins. PLL Multiplier and divider vaues can be changed at runtime by software; a 4ms RESET allows PLL to lock, usage needs cold/warmstart detection in the software.
- 3. AHB clock 99.5328 MHz (81.25, 62.5 MHz). Multiplied input clock divided by 4.
- 4. BBUS clock 49.7664 MHz (40.625, 31.25 MHz). Multiplied input clock divided by 8.
- 5. PCI clock internally is fixed to input clock divided by 14, (14, 12, 10 or 8 are strapping options). For other frequencies an external clock source connected to PCI_CLK_IN (AB24) has to be used.
- 6. LCD clock by either dividing input clock (by 4, 8, 16, or 32) or using an external clock source connected to LCDCLOCK (J2).
- 7. External clock CLKOUT. NS9750 has no dedicated external clock pin. CLKOUT3 from the memory controller is used to generate an external clock of half CPU clock (99.5328MHz or 81.25MHz or 62.5MHz). This clock is buffered with a clock buffer with 4ns slew rates allowing up to 50mA output currents @ 3.3V.

Oscillators, PLL settings and resulting frequencies:

	Unit	Modules with 200MHz CPU (070°)	Modules with 162.5MHz CPU (-40+85°):
Oscillator	MHz	29,4912	29,4912
PLL_ND(4:0), PLL Multiplier	-	0b11111, 27	0b10000, 22

	Unit	Modules with 200MHz CPU (070°)	Modules with 162.5MHz CPU (-40+85°):
PLL_FS(1:0), PLL divider	ı	0b11, 2	0b11, 2
PLL_IS(1:0), value	ı	0b11, ND1631	0b11, ND1631
VCO output (= Oscillator * PLL Multiplier)	MHz	796,2624	648,8064
resulting PLL clock (= VCO / PLL Divider)	MHz	398,1312	324,4032
CPU clock (= PLL /2)	MHz	199,0656	162,2016
AHB, SDRAM and external clock (= CPU /2)	MHz	99,5328	81,1008
BBUS clock (= AHB /2)	MHz	49,7664	40,5504
UART Baud Rate Clock X1_SYS_CLK/M	MHz	14,4560	14,4560
internal PCI clock	MHz	28,4379	32,4403

Summary Clock Frequencies on Module:

Outlinary Clock i requerieles on Module.	
Oscillator	29.4912MHz
PLL_ND(4:0), PLL Multiplier	11111, 27, CPU PLL active
PLL_FS(1:0), PLL divider	11, 2, CPU PLL active
PLL_IS(1:0), value	11, ND1631, CPU PLL active
resulting PLL clock	398.1312
CPU clock	199.0656
AHB, SDRAM and external clock	99.5328
BBUS clock	49.7664
UART Baud Rate Clock BBus	49.7664
PCI clock	33.33MHz with external oscillator
LCD clock	99.5328MHz, 49.7668MHz, 24,8834MHz or 12,4417MHz

SDRAM_CLKOUT0 feeds the SDRAM. A 2nd signal path with the same length as the connection between CPU and SDRAM is coupled to the feedback input SDRAM_CLKIN0. SDM_CLKOUT0 and SDM_CLKIN0 are decoupled with a 22R resistor each. The feedback inputs SDRAM_CLK1..3 are grounded.

3.7. Serial Boot EEPROM, Boot SPI Channel Settings

Connected to SPI channel B (GPIO0->SI, GPIO1-> SO, GPIO6->SCK, GPIO7->CS#) is a serial SPI EEPROM 8Kx8 containing initialization values and boot program. It is loaded after end of RESET# low into the SDRAM, if configuration line RESET_DONE is pulled low at the rising edge of RESET# (default on module). The module has to be in little endian mode; a CPU bug prevents booting via SPI EEPROM in big endian mode.

To allow external usage of the SPI channel after boot the SPI chip select is divided into an internal and an external SPI chip select. Activation internal chip select SPIB_INT# while RESET_DONE low; activation external chip select SPI_ENB# with RESET_DONE high.

3.8. Chip Selects, Memory Map

NS9750 CPU provides 8 chip selects divided in 4 channels for dynamic RAMs and 4 static chip selects. Every chip select has a 256MB range. Below the whole memory map of the NS9750 chip:

Name	Pin	Address Range	Size [Mbyte]	Usage	Comments
SDM_CS0#	E1	0x000000000x0FFFFFF	256	SDRAM	1 st bank on
				bank 0	module
SDM_CS1#	F2	0x100000000x1FFFFFF	256	n. c.	
SDM_CS2#	G3	0x200000000x2FFFFFF	256	n. c.	
SDM_CS3#	F1	0x300000000x3FFFFFF	256	n. c.	
EXT_CS0#	B10	0x400000000x4FFFFFF	256	external,	
				CS0#	
EXT_CS1#	C10	0x500000000x5FFFFFF	256	NAND-	Program
				Flash	Memory
EXT_CS2#	B9	0x600000000x6FFFFFF	256	external,	
				CS2#	
EXT_CS3#	C9	0x700000000x7FFFFFF	256	external,	
				CS3#	
PCI	-	0x800000000x8FFFFFF	256	PCI	
				memory	
BBus	-	0x900000000x9FFFFFF	256	BBus	
				memory	

T				
PCI	-	0xA00000000xA00FFFFF	1	PCI IO
PCI	-	0xA01000000xA01FFFFF	1	PCI
				Configur
				ation
				Address
PCI	-	0xA02000000xA02FFFFF	1	PCI
				Configur
				ation
				Data
PCI	-	0xA03000000xA03FFFFF	1	PCI
				Arbiter
Bridge	-	0xA04000000xA04FFFFF	1	BBus to
				AHB
				Bridge
reserved	-	0xA05000000xA05FFFFF		reserved
Ethernet	-	0xA06000000xA06FFFFF	1	Ethernet
				Commun
				ication
				Module
Memory	-	0xA07000000xA07FFFFF	1	Memory
				Controlle
				r
LCD	-	0xA08000000xA08FFFFF	1	LCD
				Controlle
				r
System	-	0xA09000000xA09FFFFF	1	System
				Control
				Module
reserved	-	0XA0A000000xFFFFFFF	1536	reserved

3.9. NAND Flash

A9M9750 has 32Mx8, 64Mx8 or 128Mx8 NAND Flash onboard. Optionally greater sizes can be populated (depending on availability). The NS9750 does limit the address range of a single chip select to 256MByte, but this is not relevant for NAND Flash, as the interface to the NAND flash needs always 32 kByte here due to usage of A13, 14 for address and command control.

The NAND flash is accessed with EXT_CS1#. The chip can be write protected externally with the signal FWP#.

Timing considerations (assumes 99.5328MHz AHB and 49.7664MHz BBus clock):

Static memory controller has a clock of 99.5328MHz = 10.048ns per clock cycle.

The AHB memory controller needs 5 cycles (50ns) for every sequence from start to the activation of the memories address, data and control signals. This timing overhead occurs once per single operation and when running burst cycles. The read or write cycle has a minimum time of one cycle (10ns). The static memory controller allows different adjustments for the memory timings:

Values in the registers of static CS1 (verified with module w 199MHz CPU clock), HCLK = 99.5328MHz = 10.048ns per cycle:

Chip Select 1 Configuration

MEM_StConfig1: 0x80 = no write protect, write buffer disabled, extended wait disabled, BEx# used, chip select low active, bus width 8bit

Write Enable Delay

MEM_StWaitWen1: 0x1 = 2 HCLK cycles; CS setup is 0ns

Output Enable Delay

MEM_StWaitOen1: 0x3 = 3 HCLK cycles; data setup is 20ns

Length OE in non page mode, Delay 1st read in page mode

MEM_StWaitRd1: 0x8 = 9 HCLK cycles; OE width is 60ns. **Important:** Length OE is value from this register minus value in MEM_StWaitOen

Delay next read in page mode

MEM_StWaitpage1: 0x6 = 8 HCLK cycles; data rate is 50ns

Delay write

MEM_StWaitWr1: 0x5 = 6 HCLK cycles; min write length is 45ns

Delay between data direction change

MEM_StWaitTurn1: 0x7 = 7 HCLK cycles; delay between WE high and RD low is 60ns

3.10. 16/32/64 MBytes SDRAM

One SDRAM bank is available. It is connected to CS4# (SDM_CS0#). CS5# (SDM_CS1#), CS6# (SDM_CS2#) and CS7# (SDM_CS3#) are lost. The module does not provide external SDRAM connection.

A9M9750 has 4MX32 (16 MByte) or 16MX32 (64 MByte) SDRAM onboard. Larger chips can be populated (depending on availability), the highest address connected is A12. Range of chip select is 256M.

Timing considerations (assumes 99.5328MHz SDRAM and 49.7664MHz BBus clock, usage of 1MX32X4 75ns SDRAM with CAS latency of 2 and 100MHz SDRAM clock). Recommended register settings:

- 1. Control Register (0xA070 0000): set to 0x1 (normal mode, reset address mirror, enable memory controller)
- 2. Status Register (0xA070 0004): read only
- 3. Configuration Register (0xA070 0008): set to 0x0 (clock ratio 1:1, little endian mode)
- 4. Dynamic Memory Control Register (0xA070 0020): set to 0x3, memory clock enabled
- 5. Dynamic Memory Refresh Timer register (0xA070 0024): set to 0x63 (16μs refresh time with 100MHz SDRAM clock
- 6. Dynamic Memory Read Configuration Register (0xA070 0028): set to 0x1, command delayed strategy, clock not delayed (modify only Bit0,1; min 0x1, max 0x3)
- 7. Dynamic Memory Precharge Command Period Register (0xA070 0030): set to 0x1 = 2 clock cycles; TRP=20ns, (modify only bit0:3)
- 8. Dynamic Memory Active to Precharge Command Period Register (0xA070 0034): set to 0x4 = 5 clock cycles; TRAS=45ns, (modify only bit0:3)
- 9. Dynamic Memory Self-refresh Exit Time Register (0xA070 0038): set to 0xF = 0x10 clock cycles; TSREX=???, (modify only bit0:3)

- 10. Dynamic Memory Last Data Out to Active Time Register (0xA070 003C): set to 0x1 = 2 clock cycles; TAPR=???ns (modify only bit0:3)
- 11. Dynamic Memory Last Data In to Active Command Time Register (0xA070 0040): set to 0x5 = 6 clock cycles; TDAL or TAPW=40ns, (modify only bit0:3)
- 12. Dynamic Memory Write Recovery Time Register (0xA070 0044): set to 0x0 = 1 clock cycle; TWR or TDPL or TRWL or TAPW=10ns, (modify only bit0:3)
- 13. Dynamic Memory Active to Active Command Period Register (0xA070 0048): set to 0x6 = 7 clock cycles; TRC=65ns, (modify only bit0:3)
- 14. Dynamic Memory Auto Refresh Period Register (0xA070 004C): set to 0x6 = 7 clock cycles; TRFC=???ns, (modify only bit0:4)
- 15. Dynamic Memory Exit Self-refresh Register (0xA070 0050): set to 0x1F = 0x20 clock cycles; TXSR=???, (modify only bit0:4)
- 16. Dynamic Memory Active Bank A to Active Bank B Time Register (0xA070 0054): set to 0x1 = 2 clock cycles; TRRD=15ns, (modify only bit0:3)
- 17. Dynamic Memory Load Mode Register to Active Command Register (0xA070 0058): set to 0x1 = 2 clock cycles; TMRD=???ns, (modify only bit0:3)
- 18. Dynamic Memory Configuration 0 Register ((0xA070 0100): set for 1MX32X4 to 0x00084500 = buffers enabled, 32-bit extended bus high performance address mapping, 128Mb (4MX32), 4 banks, 12 rows, 8 columns, (modify only bits 20, 14, 12:07)
- 19. Dynamic Memory RAS and CAS Delay 0 Register (0xA070 104): set to 0x203 = 3 RAS, 2CAS; (modify only bits 0:1 (RAS) and 8:9 (CAS))
- 20. System Control Dynamic Memory Base Register 4 (0xA090 01D0): set to 0x00000000 = Start Adress 0; (modify only bits31:12)
- 21. System Control Dynamic Memory Mask Register 4 (0xA090 01D4): set to 0xF0000000 = Range 256MByte (0x00000000 0x0FFFFFF); (modify only bits31:12)

3.11. 50 GPIO Pins (multiplexed with other Functions)

NS9750 has 50 GPIO pins. All pins are multiplexed with other functions (UART, SPI, USB, DMA, parallel port IEEE1284, LCD port, timers, interrupt inputs). Using a pin as GPIO means always to give up another functionality.

Port Name, Functio n 03 (default at power up)	Alternate Function 00, UART	Alternate Function 00, misc.	Alternate Function 01	Alternate Function 02	On Module default used as
GPIO0	TXDB	SPI_Boot_ DO and SPIB_DO	DMA0 DONE dupe	Timer 1 dupe	TXDB, SPI_Boot_DO or external SPIB_DO
GPIO1	RXDB	SPI_Boot_ DI and SPIB_DI	DMA0 REQ. Dupe	IRQ0	RXDB, SPI_Boot_DI or external SPIB_SI
GPIO2	RTSB#		Timer 0	DMA1 ACK	RTSB#, DMA
GPIO3	CTSB#		1284 ACK	DMA0 REQ	CTSB#, DMA
GPIO4	DTRB#		1284 BUSY	DMA0 DONE	DTRB#
GPIO5	DSRB#		1284 ERR	DMA0 ACK	DSRB#, DMA
GPIO6	RIB#, RXCLKB	SPI_Boot_ CLK and SPIB_CLK	1284 P_JAM	Timer 7 dupe	RIB#, SPI_Boot_CL K or external SPIB_CLK
GPIO7	DCDB#, TXCLKB	SPI Boot CE# and SPIB_CE#	DMA0 Ack dupe	IRQ1	DCDB#, SPI_Boot_CE # or external SPIB_CE#
GPIO8	TXDA	SPIA_DO	Reserved	Reserved	TXDA, SPI A
GPIO9	RXDA	SPIA_ DI	Reserved	Timer 8 dupe	RXDA, SPI A

Port Name, Functio n 03 (default at power up)	Alternate Function 00, UART	Alternate Function 00, misc.	Alternate Function 01	Alternate Function 02	On Module default used as
GPIO10	RTSA#		Reserved	Reserved	RTSA#
GPIO11	CTSA#		IRQ2 dupe	Timer 0 dupe	CTSA#
GPIO12	DTRA#		Reserved	Reserved	GPIO12
GPIO13	DSRA#		IRQ0 dupe	Timer 10 dupe	GPIO13, used as RTC_INT#
GPIO14	RIA#, RXCLKA	SPIA_CLK	Timer 1	Reserved	RIA#, SPI A
GPIO15	DCDA#, TXCLKA	SPIA_EN#	Timer 2	Timer 2	DCDA#, SPI A
GPIO16		USB Overcurren t	1284 P_JAM dupe	Timer 11 dupe	USB
GPIO17		USB Power Relay	Reserved	Reserved	USB
GPIO18		Ethernet CAM Reject	LCD PWREN	IRQ3 dupe	LCD
GPIO19		Ethernet CAM Reject	LCD HSYNC	DMA1 ACK	LCD
GPIO20	DTRC#		LCD CLK	Reserved	LCD
GPIO21	DSRC#		LCD VFSYNC	Reserved	LCD
GPIO22	RIC#, RXCLKC	SPIC_CLK	LCD BIAS_D_EN	Reserved	LCD
GPIO23	DCDC#, TXCLKC	SPIC_EN#	LCD LINE_END	Timer 14 dupe	LCD
GPIO24	DTRD#		LCDD0	Reserved	LCD

Port Name, Functio n 03 (default at power up)	Alternate Function 00, UART	Alternate Function 00, misc.	Alternate Function 01	Alternate Function 02	On Module default used as
GPIO25	DSRD#		LCDD1	Timer 15 dupe	LCD
GPIO26	RID#, RXCLKD	SPID_CLK	LCDD2	Timer 3	LCD
GPIO27	DCDD#, TXCLKD	SPID_ EN#	LCDD3	Timer 4	LCD
GPIO28		Ext IRQ 1 dupe	LCDD4	LCDD8 dupe	LCD
GPIO29		Timer 5	LCDD5	LCDD9 dupe	LCD
GPIO30		Timer 6	LCDD6	LCDD10 dupe	LCD
GPIO31		Timer 7	LCDD7	LCDD11 dupe	LCD
GPIO32		EXT IRQ 2	1284 D0	LCDD8	LCD
GPIO33		Timer 8	1284 D1	LCDD9	LCD
GPIO34		Timer 9	1284 D2	LCDD10	LCD
GPIO35		Timer 10	1284 D3	LCDD11	LCD
GPIO36		Reserved	1284 D4	LCDD12	LCD
GPIO37		Reserved	1284 D5	LCDD13	LCD
GPIO38		Reserved	1284 D6	LCDD14	LCD
GPIO39		Reserved	1284 D7	LCDD15	LCD
GPIO40	TXDC		IRQ3	LCDD16	LCD
GPIO41	RXDC		Timer 11	LCDD17	LCD
GPIO42	RTSC#		Timer 12	LCDD18	LCD
GPIO43	CTSC#		Timer 13	LCDD19	LCD
GPIO44	TXDD		1284 PER_ONLIN E	LCDD20	LCD
GPIO45	RXDD		1284 STRB	LCDD21	LCD
GPIO46	RTSD#		1284 ALFD	LCDD22	LCD

Port Name, Functio n 03 (default at power up)	Alternate Function 00, UART	Alternate Function 00, misc.	Alternate Function 01	Alternate Function 02	On Module default used as
GPIO47	CTSD#		1284 INIT	LCDD23	LCD
GPIO48		Timer 14	1284 P_SEL	DMA1 REQ	DMA
GPIO49		Timer 15	1284	DMA1	R/B# NAND-
			P_LOG	DONE	Flash

3.12. PCI/CardBus Port

All address, data and control signals are provided to connect a PCI or CardBus interface compliant to PCI specification 2.1 and 2.2 protocol. All module signals are not buffered; clock buffering, clock distribution and casually necessary buffers for other PCI signals have to be added on the application board. If no internal PCI clock is used, the PCI clock has to be generated externally too. PCI_CLKIN and PCI_CLKOUT have series resistors populated with 0R in the moment between CPU and connector; these two signals can be shorted near the CPU optionally on the module.

Generation PCI clock see clock chapter.

Pull up resistors on the module are provided for PCI_GNT1..3#, PCI_REQ1..3#, PCI_INTA..D#, PCI_PERR#, PCI_SERR#, PCI_STOP#, PCI_DEVSEL#, PCI_IRDY#, PCI_TRDY# and PCI_FRAME#.

PCI_CENTRAL_RSC# pin is default low (internal pull down), the internal PCI resources and the internal PCI arbiter of the NS9750 active (RTCK high). This is the PCI host version. PCI_IDSEL is connected via series resistor on the module to PCI_AD11 (NS9750 must be PCI device0). The PCI_IDSEL line of an external PCI Connector has to be connected to PCI_AD signal >11 (for example, connected to PCI_AD13 the connector is configured as PCI device 2).

If external arbiter and no internal resources selected (PCI_CENTRAL_RSC# high and RTCK low), no pull up resistors are populated (PCI device version). PCI_IDSEL is controlled by the external host, the series resistor on the module not populated.

3.13. 10/100Mbps Ethernet Port

The module has a MII PHY chip on board. Adress selection is set to 1. The transmit signals TPOP and TPON from the PHY are neither decoupled nor terminated on the module. The receive signals TPIP and TPIN are capacitively coupled with 220pF to the PHY. They have an AC-termination to Gnd with 49R9 from each signal. AC coupling with 100nF to Gnd. Signals for link and speed LEDs are provided. No transformer, Ethernet connector or indication LEDs are on the module, these parts have to be provided by the base board. PHY clock of 25MHz is generated in the PHY chip with a 25MHz crystal.

3.14. USB 2.0 full and low speed Host and Device Controller

The USB section of the NS9750 CPU provides USB+ and USB- signals and two USB control signals (USB_PWR and USB_OVCURR). All external configuration for a USB device or a USB host interface has to be made on the base board. 48MHz USB clock is generated on the module with a 48MHz crystal in fundamental configuration.

3.15. UART Channels

Up to 4 UART channels with all handshake signals are provided (channels A=GPIO8..15, B=GPIO0..7, C=GPIO20..23 & GPIO40..43, D=GPIO24..27 & GPIO44..47). They can be used in asynchronous mode as UART. Baud rates are supported up to 1.8MHz in asynchronous mode.

3.16. SPI Channels

SPI channel B (GPIO0,1,6,7) is connected to the serial 8Kx8 SPI EEPROM U23 when RSTOUT# asserted. The EEPROM contains the boot program and the initial SDRAM parameters for booting via SPI. Usage of this channel at runtime is provided by deconnecting the boot EEPROM with the deassertion of RSTOUT#

using 4 switches. The other SPI channels can be used free if not used in UART mode or blocked by other GPIO usage.

3.17. Calculation of Baudrates

Baud rate generators in the NS9750 have different clock sources selectable:

- X1_SYS_OSC/M. It is the frequency of the input crystal divided by M. M depends on the multiplier settings PLL_ND of the PLL. M = 2 at PLL_ND >=19 decimal (14.7456MHz with 29.4912MHz crystal) or M = 4 at PLL_ND < 19 decimal (7.3728MHz). Cannot be used with PLL bypassed.
- 2. BCLK. For 199.0656MHz CPU is BCLK = 49.7668MHz. Only internal source when PLL bypassed.
- 3. External receive clock from GPIO pins.
- 4. External transmit clock from GPIO pins.

These values can be the same for modules with and without used CPU PLL, when BBus is used as clock source.

UM = UART mode, either 8, 16, 32. Normally 16 taken.

M = input clock divider, 2 for ND > 19

0 <= N <= 16383 decimal for baud rate generator count

General calculation formula divider N for clock source 1:

$$N = ((X1_SYS_OSC / M) / (UM * Baudrate)) - 1$$

simplifies for X1_SYS_OSC/2 = 14.7456MHz to

$$N = (921600 / Baudrate) - 1$$

and for $X1_SYS_OSC/4 = 7.3728MHz$ to

$$N = (460800 / Baudrate) - 1$$

Example for 38400 Bd: N = (460800/38400) - 1 = 11, error 0%

General calculation formula divider N for clock source 2:

simplifies for 49.7664MHz to

$$N = (3110400 / Baudrate) - 1$$

Example for 38400 Bd: N = (3110400/38400) - 1 = 80, error 0%

Simplifies for 40.5504MHz to

$$N = (2,534400 / Baudrate) - 1$$

Example for 38400Bd N = (2.534400 / 38400) - 1 = 65, error 0%

Count values vs. Baud Rate Clock:

Baud Rate	N, X1_SYS/2 = 14.7456MHz, (Error) [%]	N, X1_SYS/4 = 7.3728MHz, (Error) [%]	N, BBus = 49.7664MHz, (Error), [%]	N, BBus = 40.5504MHz, (Error) [%]
75	12287, (-)	6143, (-)	-	-
150	6143, (-)	3071, (-)	-	-
300	3071, (-)	1535, (-)	10367, (-)	8447, (-)
600	1535, (-)	767, (-)	5183, (-)	4223, (-)
1200	767, (-)	383, (-)	2591, (-)	2111, (-)
2400	383, (-)	191, (-)	1295, (-)	1055, (-)
4800	191, (-)	95, (-)	647, (-)	527, (-)
7200	127, (-)	63, (-)	431, (-)	353, (+0.18)
9600	95, (-)	47, (-)	323, (-)	263, (-)
14400	63, (-)	31, (-)	215, (-)	176, (+0.18)
19200	47, (-)	23, (-)	161, (-)	131, (-)
28800	31, (-)	15, (-)	107, (-)	87, (+0.749)
38400	23, (-)	11, (-)	80, (-)	65, (-)
57600	15, (-)	7, (-)	53, (-)	43, (+0.749)
115200	7, (-)	3, (-)	26, (-)	21
230400	3, (-)	1, (-)	13, (+3.846)	10
460800	1, (-)	0, (-)	6, (-3.846)	5, (+10.824)
921600	0, (-)	-	-	
1843200	-	-	-	

CPUs using PLL on modules with 200MHz and 162.5MHz will use the values from column 1 allowing baud rates from 75..921600Bd. A 125MHz CPU will have a PLL multiplier ND = 17 resulting in a X1_SYS/4 clock source. This module will use column 2 resulting in a baud rate from 75..460800Bd.

Column 3 or 4 is used when PLL bypassed or CPU clock never changes in the application.

3.18. I²C Bus

This bus (SCL, SDA) is connected on the module to a serial EEPROM with I²C interface on device address 0xA0, 0xA1. Device address 0xD0, 0xD1 connects to an RTC on board. All other addresses can be used externally.

Due to a timing bug in the I^2C state machine the maximum clock frequency in slow mode should be 50KHz and 200KHz in fast mode. Otherwise minimum setup time for the target can be violated (SDA changes after half low time of SCK instead of shortly after falling edge, so setup time for data is 2.5 μ s @ 100KHz and 612.5ns @ 400KHz).

Important: Use only 3.3V devices!

3.19. LCD Controller (STN & TFT)

An LCD interface for STN or TFT LCD's is provided with up to 24 data lines and 6 control lines. Usage for LCD disables serial ports C, D and most GPIOs.

The module provides the full LCD interface: 24 data lines LCCD0..23 (GPIO24..47) and 6 control lines GPIO18..23.

This interface allows connection of most TFT and STN monchrome and color LCDs. Details see NS9750 hardware user manual.

3.20. Serial EEPROM for storing Configuration Parameters

The nonvolatile storage of parameters like MAC address etc. is supported with a serial 8Kx8 EEPROM (24LC64 or similar) connected to the I²C bus at device address 0xA0, 0xA1.

3.21. RTC

An RTC (MAXIM/DALLAS DS1337 in μ SOP8 case) on the module is connected to the I²C bus (device address 0xD0, 0xD1). It has its own 32.768KHz clock crystal. Power is taken from 3.3V when provided, otherwise from V_{RTC} fed by an external battery. An interrupt line (GPIO13) is connected to the RTC; it can be opened by depopulating a resistor.

3.22. JTAG, Boundary Scan

NS9750 support JTAG and boundary scan with the signals TCK, TMS, TDI, TDO and TRST#. The signal RTCK is not connected to external. It is only used on the module for PCI arbiter selection.

Selection between normal mode and debug mode is done with the external signal DEBUG_EN# (HCONF0). Selection between ARM debug mode and boundary scan mode is done with the signal OCD_EN# (HCONF2). See table below:

DEBUG_EN#	OCD_EN#	Mode	Comments
1	1	normal	

DEBUG_EN#	OCD_EN#	Mode	Comments
1	0	not recommended	Boundary Scan possible here too, but TRST# is connected with SRST#, system may hang
0	1	ARM debug	
0	0	Boundary Scan	

3.23. Single 3.3V Power Supply

The module has 3.3V_IN supply pins. VLIO pins are connected to 3.3V_IN too for the A9M9750_2 module. These signals have EMI filters near the connector to suppress emission of the module.

Internal voltages:

1.5V core voltage with up to 700mA will be converted by a switching regulator to keep losses small. This regulator is connected to VLIO.

Worst case power consumption of the NS9750 is at full operation with 200MHz clock 1.05W for the core (1.5V, about 700mA) and 0.65W for the I/O ring (3.3V, about 200mA). In "sleep mode" power consumption decreases to 170..350mW (120..240mA) for the core and 10..90mW (3..30mA) for the I/O ring depending on the ports used for wake up.

3.24. Power Sequencing on A9M9750_2 Module

Power-up and power-down behavior recommended by NetSilicon and TOSHIBA for the NS9750 (Power up: core voltage will be first to rise; I/O voltage +3.3V will ramp up in <100ms, when core voltage rises over 80% of its nominal value; Power down: I/O voltage will ramp down in < 100ms, when core voltage falls below 80%) will be ensured by hardware.

The sequencing circuit is realised with two comparators, a variable delay and a FET switch TPS2022 U18 between 3.3V_IN and +3.3V on the module. The $1^{\rm st}$ comparator TLV3012 U12 with a 3.0V threshold supervizes $3.3V_IN$. Its output becomes true, if $3.3V_IN > 3.0V$. The $2^{\rm nd}$ comparator TLC7701 U16 supervizes +1.5V core voltage. When +1.5V core voltage > 1.3V, the output becomes true. If both signals are true a delay of about 20..40ms starts. Delay time is settable with a capacitor at U15. After this time output RES goes low and $3.3V_IN$ are connected to +3.3V with the FET switch U18 with a ramp up time of < 20ms. Output RES# goes high; it is connected as PWREN to the external connector of the module. The outputs of U16 change their state immediately, when either $3.3V_IN < 3.0V$ or +1.5V < 1.2V. So the +3.3V on the module is switched off immediately and ramps down in a few ms.

3.25. Voltage Supervision and RESET Generation

Voltage supervision and RESET# generation is done for 1.5V core and 3.3V I/O voltage by a triple voltage supervisor with RESET# TPS3307-18. External or manual RESET# control is done by connecting RSTIN# to ground. The push pull RESET# output with 470R series resistor is connected to the PWRGOOD signal. 3.3V is supervised with SENSE1 and SENSE2, 1.5V with SENSE3. MR# is connected to RSTIN# for manual RESET control. An optional pull up 10K increases the current out of RSTIN# to at least 330µA when connected to Gnd.

4. Bootloader

Every module is delivered with a bootloader (UBOOT) pre-installed in NAND Flash. The bootloader is capable of booting the Operating System from NAND Flash, via a serial port or via Ethernet. Parameters can be passed to the kernel from the bootloader.

Some requirements:

 Calculation of Baudrates, Timer-Values depends on the different possible clock sources:

PLL active	BASE_CLK [MHz]	CPU_CLK [MHz]	comment
Yes	398.1312	199.0656	BASE_CLK = 29.4912 MHz * (ND+1) /2 BASE_CLK = 29.4912 MHz * 27 /2 The PLLNDSW bits must be taken into account for calculating baudrates and timer values.
Yes	324.4032	162.2016	BASE_CLK = 29.4912 MHz * (ND+1) / FS BASE_CLK = 29.4912 MHz * 22 /2 The PLLNDSW bits must be taken into account for calculating baudrates and timer values.
Yes	250.6752	125.3376	BASE_CLK = 29.4912 MHz * (ND+1) / FS BASE_CLK = 29.4912 MHz * 17 /2 The PLLNDSW bits must be taken into account for calculating baudrates and timer values.

- Bootloader is able to update the bootloader itself.
- Not finished!!!

5. Software

The ARM926 core in the NS9750 contains an MMU thus allowing Operating Systems such as Linux and Windows CE to be supported. Board Support Packages for Windows CE .net 4.2 and Linux, using kernel 2.6.x, are in development. Other Operating Systems can be supported on request.

6. Mechanics

The module size is defined to 60 x 44mm. Two holes, for M2 screws, catercornered, are provided to enable fixing of the module on the base board.

Two board-to-board connectors are used on the module. Depending on the counterpart on the base board, different distances between module and base board can be realized. The minimum distance is 5mm.

Therefore, the height of the parts mounted on the bottom side of the module should not exceed 2.5mm. The height of the parts mounted at the top side should not exceed 4.1mm.

Board-to-Board	Module Connector X1, X2			
Distance h	No. of Pins	Qty	Supplier	Order No.
5 mm				
6 mm	120	2	AMP	177983-5
			Berg	61082-121000
7 mm				
/ 111111				
8 mm				

D D 10 1 1/4 1/0					
Base B	Base Board Connector X1, X2				
No. Of	Supplier	Order No.			
Pins					
120	AMP	177984-5			
	Berg	61083-			
		121000			
120	AMP	179029-5			
	Berg	61083-			
		122000			
120	AMP	179030-5			
	Berg	61083-			
	_	123000			
120	AMP	179031-5			
	Berg	61083-			
		124000			

Mechanical Drawing from TOP View:

Mechanical Drawing from Side View:

The size of h depends on the board-to-board connectors.

The size between the board-to-board connectors is measured from pad to pad.

6.1. Extended Module

For further modules in the ModARM9 family, it might be necessary to have some additional hardware placed on the module, which will need more signal lines connected between module and base board than currently available. To meet these future requirements, an extended board was defined, which has two additional board-to-board connectors with 60 pins each.

The size of the extended module is defined as 92 x 44mm. Two holes, for M2 screws, catercornered, are provided to enable fixing of the module on the base board.

Board-to-Board	Module Connector X3, X4			
Distance h	No. of Pins	Qty	Supplier	Order No.
5 mm				
•	60	2	AMP Bera	177983-2 61082-061009

Base Board Connector X3, X4				
No. Of Pins	Supplier	Order No.		
60	AMP	177984-2		
	Berg	61083-		
		061009		
•		-		

6 mm		
7 mm		
8 mm		

60	AMP	179029-2
	Berg	61083-
		062009
60	AMP	179030-2
	Berg	61083-
		063009
60	AMP	179031-2
	Berg	61083-
		064009

7. Known Faults and Limitations

7.1. USB Pins are not 5V tolerant

As all pins of the NS9750 the USB data pins are not 5V tolerant. To overcome this problem there is a protection circuit on the NetSilicon evaluation board.

Fix: Adding protection circuit on the base board (VALI, DEV). Realised on A9M9750_1 in the moment.

7.2. Timing Bug in IIC Stage

A timing bug reduces setup and hold times for IIC_SDA signals to half low time of IIC_SCK.

Workaround: Use half maximum frequency, i. e. 50KHz in slow mode and 200KHz in fast mode.

7.3. PLL Clock Generation instable

NS9750A1 CPU may produce frequency shifts on the memory clock, if used at low temperatures and supply voltages at the upper limit.

Workaround: feeding system and USB clock with oscillators eliminates this bug. A9M9750_2 modules have oscillators for system and USB clock.

8. Appendix

8.1. Pinning Module

A detailed pin description is available named "Pin_Description_A9M9750_X.pdf" or "*.doc".

8.2. Pinning Module on A9MVali Validation Board

This pinning is included in the specification of the validation board: "A9MVali_X.doc" or "*.pdf".

8.3. Pinning Module on A9M9750DEV Development Board

This pinning is included in the specification of the development board: "Spec_Devkit_A9M9750_A9M9360_X.doc" or "*.pdf".