The MOLECULES of LIFE

John Kuriyan

Boyana Konforti

David Wemmer

The MOLECULES of LIFE

Physical and Chemical Principles

The MOLECULES of LIFE

Physical and Chemical Principles

John Kuriyan Boyana Konforti

David Wemmer

Garland Science

Vice President: Denise Schanck

Editor: Summers Scholl

Senior Editorial Assistant: Kelly O'Connor

Primary Illustrator: Lore Leighton

Additional Illustration: Laurel Muller, Cohographics, and Tiago Barros

Production Editor and Layout: EJ Publishing Services

Cover and Text Design: Matthew McClements, Blink Studio, Ltd. Developmental Editors: Sherry Granum Lewis, John Murdzek, and

Miranda Robertson Copyeditor: John Murdzek Proofreader: Sally Huish

Indexer: Merrall-Ross International Ltd.

© 2013 by Garland Science, Taylor & Francis Group, LLC

This book contains information obtained from authentic and highly regarded sources. Every effort has been made to trace copyright holders and to obtain their permission for the use of copyright material. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems—without permission of the copyright holder.

ISBN 978-0-8153-4188-8

Library of Congress Cataloging-in-Publication Data

The molecules of life: physical and chemical principles / John Kuriyan, Boyana Konforti, David Wemmer.

p.; cm.

Includes bibliographical references and index.

ISBN 978-0-8153-4188-8 (alk. paper)

I. Konforti, Boyana. II. Wemmer, David. III. Title.

[DNLM: 1. Molecular Biology--methods. 2. Biochemical Processes--

physiology. 3. Genomics--methods. QH 506]

572'.33--dc23

2012008865

Published by Garland Science, Taylor & Francis Group, LLC, an informa business, 711 Third Avenue, New York, NY 10017, USA, and 3 Park Square, Milton Park, Abingdon, OX14 4RN, UK.

Printed in the United States of America

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

The cover illustration shows the bacterial ribosome (purple and gray) in the act of decoding the sequence of a messenger RNA molecule (blue). Three tRNA molecules are bound to the ribosome (red, green, and yellow). The growing protein chain, which is hidden within the ribosome, is attached to the green tRNA. The red tRNA is delivering a new amino acid for incorporation into the protein, and the *yellow* tRNA is about to depart. (Based on X-ray crystallographic analysis by V. Ramakrishnan and colleagues at the MRC Laboratory of Molecular Biology, Cambridge, UK.)

JOHN KURIYAN is Professor of Molecular and Cell Biology and of Chemistry at the University of California, Berkeley. His laboratory uses x-ray crystallography to determine the three-dimensional structures of proteins involved in signaling and replication, as well as biochemical, biophysical, and computational analyses to elucidate mechanisms. Kuriyan was elected to the US National Academy of Sciences in 2001.

BOYANA KONFORTI is the launch Editor of Cell Reports, an openaccess journal that covers all of biology with a focus on short papers. Over her career, Konforti has researched the mechanisms of DNA recombination and RNA splicing. She has been a professional editor for over 13 years; most recently she was Chief Editor of Nature Structural & Molecular Biology.

DAVID WEMMER is Professor of Chemistry at the University of California, Berkeley and has served as Vice Chair, Assistant Dean, and Executive Associate Dean since joining the faculty in 1985. His research in structural biology uses magnetic resonance methods to investigate the structure of proteins and DNA toward a better understanding of how these molecules function. Wemmer is a Fellow of the AAAS and a member of Phi Kappa Phi and Sigma Xi.

Preface

The field of biochemistry is entering an exciting new era in which genomic information is being integrated into molecular-level descriptions of the physical processes that make life possible. Our understanding of how biological macromolecules work at the level of atoms and interactions is also enabling great strides to be made in molecular medicine—where the path between the identification of a target and the development of therapeutics that modulate its functions is becoming ever shorter. Key to making future advances in these areas is a new generation of molecular biologists and biochemists who are able to harness the tools and insights of physics and chemistry to exploit the emergence of genomic and systems-level information in biology. This book is the result of a decade-long series of discussions among the three of us, in which we considered how biology students should best prepare themselves to take advantage of the growing depth of information concerning molecular mechanisms in biology.

The central theme of this book is that the ways in which proteins, DNA, and RNA work together in a cell are connected intimately to the structures of these biological macromolecules. These structures, in turn, depend on interactions between the atoms in these molecules, and on the interplay between energy and entropy, which results in the remarkable ability of biological systems to self-assemble and control their own replication. This book is not intended to be a comprehensive reference, nor does it contain the most recent biological breakthroughs and discoveries. Our goal in this textbook is to integrate fundamental concepts in thermodynamics and kinetics with an introduction to biological mechanism at the level of molecular structure. We have done so by choosing biological examples to illustrate the basic physical and chemical principles that underlie how biological molecules function.

We have written this textbook with an undergraduate audience in mind, particularly those students who have chosen biology or the health sciences as their principal area of study. We assume that students have taken introductory courses in physics and chemistry, and have been introduced to differential calculus at a basic level. We anticipate that the book will also be useful for graduate students in biology who have not taken courses in physical chemistry, or who seek to learn more about structural biology. We also hope that the book will be useful for scientists wishing to refresh their knowledge of the elementary principles of biological structure, thermodynamics, and kinetics.

The development of this textbook has been anchored, over the last few years, by the creation of a one-semester undergraduate course at the University of California at Berkeley, offered jointly by faculty in the departments of Chemistry and of Molecular and Cell Biology. This course has merged the first part of a traditional course in biochemistry with a new way of teaching physical chemistry to biology undergraduates. There are two aspects of this course that are a departure from past practice. The first is the integration of structural biology with physical chemistry, as mentioned earlier. The second aspect, and perhaps the more radical one for a course aimed at biology undergraduates, is to develop the laws of thermodynamics and the concept of free energy through statistical analysis of molecular

interactions and behavior rather than on the more abstract concepts underlying heat engines. It is our experience that biology students take to the statistical treatment of energy and entropy more readily because this approach allows us to link thermodynamics and structure in an intuitively obvious way. Our initial hesitation concerning the implementation of this approach reflected a concern that the mathematical preparation of typical biology students might leave them ill-prepared to grapple with the statistical approach to thermodynamics. But, to our satisfaction, we have found that students understand these concepts readily, as witnessed by the growing enrollment in this class each year since its inception at Berkeley. The majority of these students are majors in Molecular and Cell Biology, with another large group of them majoring in Bioengineering.

The organization of our textbook follows how a course could be developed over one semester. We begin by introducing the nature of biological macromolecules and the structures that they form, placing these ideas in the broad context of how evolution proceeds while obeying physical laws. The first chapter provides an overview of DNA, RNA, and proteins and also reviews the processes of replication, transcription, and translation. A more detailed discussion of the structures of biological molecules is provided in Chapters 2 through 5, including a discussion of how evolutionary processes have shaped the architecture of proteins. Chapters 6, 7, and 8 provide a quantitative treatment of energy and the statistical basis for the concept of entropy, culminating in the development of the Boltzmann distribution and the idea that the energies of different molecular configurations determine the probabilities of observing them. The concept of free energy is introduced in Chapter 9 and, along with chemical potential, is developed further in Chapter 10, which applies these ideas to acid-base equilibria and to protein folding. Chapter 11 takes the concept of chemical potential one step further, by linking it to voltages through applications in redox chemistry and an analysis of how action potentials are transmitted in nerve cells.

Chapters 12 to 14 are concerned with the principles of molecular recognition, developing the ideas of affinity and specificity, with applications to drug interactions, protein–DNA, protein–RNA and protein–protein interactions, followed by a treatment of allosteric systems. Chapters 15 to 17 introduce kinetic concepts, including an analysis of enzyme mechanisms and transport properties (the material in these chapters could be presented in a course before Chapters 12 to 14 are covered). Finally, Chapters 18 and 19 bring together all of the ideas introduced in the earlier chapters by discussing two particularly interesting aspects of the self-assembly of biological systems: the folding of proteins and RNA, and the fidelity of replication and translation.

We have organized the book in a modular fashion, with each chapter broken into separate parts, some of which could be omitted according to instructor preference. While Chapters 6 to 19 assume that the student is familiar with the structural principles introduced in Chapters 1 to 5, an instructor could begin with Chapter 6, provided that the students have been introduced to proteins, DNA, and RNA in an earlier course (we believe that the earlier chapters could then serve as an excellent refresher). Each chapter has an associated set of problems—as anyone who has taken physical chemistry knows, working through problems is an important aspect of learning the material, and we hope that the problems at the end of each chapter can serve as a nucleus for generating assignments for the students to work through on their own.

There are two topics that might belong in an undergraduate biophysical chemistry course that we have purposely omitted. One is quantum mechanics, and the other concerns methods of instrumental analysis and structure determination in biochemistry. At Berkeley, students are introduced to these topics in a separate course that follows the one based on our book.

ONLINE RESOURCES

Accessible from www.garlandscience.com/TMOL, the Student and Instructor Resource Websites provide learning and teaching tools created for *The Molecules of Life*. The Student Resource Site is open to everyone, and users have the option to register in order to use book-marking and note-taking tools. The Instructor Resource Site requires registration and access is available to instructors who have assigned the book to their course. To access the Instructor Resource Site, please contact your local sales representative or email science@garland.com. Below is an overview of the resources available for this book. On the Website, the resources may be browsed by individual chapters and there is a search engine. You can also access the resources available for other Garland Science titles.

FOR STUDENTS

Animations and Videos

The animations and videos dynamically illustrate important concepts from the book, and make many of the more difficult topics accessible.

Flashcards

Each chapter contains a set of flashcards, built into the Website, that allow students to review key terms from the text.

Glossary

The complete glossary is available on the Website and can be searched and browsed as a whole or sorted by chapter.

FOR INSTRUCTORS

Figures

The images from the book are available in two convenient formats: PowerPoint® and JPEG. Figures are searchable by figure number, figure name, or by keywords used in the figure legend from the book. There is one PowerPoint presentation for each chapter.

Animations and Videos

The animations and videos that are available to students are also available on the Instructor's Website in two formats. The WMV formatted movies are created for instructors who wish to use the movies in PowerPoint presentations on Windows° computers; the QuickTime formatted movies are for use in PowerPoint for Apple° computers or Keynote° presentations. The movies can easily be downloaded to your computer by using the "download" button on the movie preview page.

Solutions Manual

A complete solutions manual is provided for all problems in the text.

Acknowledgments

his book could not have been developed without essential ▲ input from the following people in particular: Stephen K. Burley (with whom John Kuriyan developed the inaugural set of HHMI lectures entitled "Da Vinci and Darwin in the Molecules of Life") and the late Carl Brändén. Both were instrumental in moving very early stages of this project forward; Lore Leighton, who worked in John Kuriyan's lab, developed the illustrations from the earliest stages of writing this book; Tiago Barros helped with figure work and rendered the cover ribosome; James Fraser developed the problem sets; Samuel Leachman checked the solutions manual; Rachelle Gaudet developed a similar course at Harvard University based on early drafts of this book and provided valuable feedback; Krzysztof Kuczera, at the University of Kansas, carefully read and checked all the chapters; Tom Alber, Jamie Cate, and Bryan Krantz (who also teach the Berkeley undergraduate course); Susan Marqusee (who uses parts of this book for a graduate course at Berkeley); Ken Dill (whose masterly introduction to statistical mechanics in a graduate course at the University of California, San Francisco motivated our own simplified treatment of this material); and a large group of undergraduates at Berkeley who provided constant feedback as the book metamorphosed from a collection of notes into its present form. We hope this book will help many other students to come. Sherry Granum Lewis and John Murdzek provided helpful editorial suggestions. We thank the students who participated in focus groups at Berkeley: Bob Bellerose, Aron Kamajaya, Kotaro Kelly, Melinda Mathur, and Jayasree Sundaram; and at Harvard: Meng Xiao He, Koning Shen, Helen Yang, and Angela Zhang.

The following people also provided valuable commentary as readers, reviewers, class testers, and advisors during the development of the project:

Jochen Autschbach (State University of New York, Buffalo); Philip Bevilacqua (Pennsylvania State University); Phil Biggin (University of Oxford); Mark Braiman (Syracuse University); Charles Brenner (Dartmouth College); Angus Cameron (University of Bristol); Wei-Jen Chang (Hamilton College); Yun-Wei Chiang (National Tsing Hua University); King-Lau Chow (Hong Kong University of Science & Technology); Mads Hartvig Clausen (Technical University of Denmark); James Cole (University of Connecticut); EJ Crane (Pomona College); Ivan Dmochowski (University of Pennsylvania); Martha Fedor (Scripps Research Institute); Ruben Gonzalez, (Columbia University); Stephen Harrison (Harvard Medical School); Lars Bo Stegeager Hemmingsen (University of Copenhagen); ChulHee Kang (Washington State University); Katherine Kantardjieff (California State University, Fullerton); Roderick MacKinnon (Rockefeller University); Jeffry Madura (Duquesne University); Dmitrii Makarov (University of Texas, Austin); MK Mathew (National Centre for Biological Sciences, Bangalore); Kimberly Matulef (University of San Diego); Kevin Mayo (University of Minnesota); Ann McDermott (Columbia University); Megan McEvoy (University of Arizona); Stephanie

Mel (University of California, San Diego); Daniel Moriarty (Siena College); Donald Nelson (deceased); Hung Kui Ngai (The Chinese University of Hong Kong); Timothy Nilsen (Case Western Reserve University); Patricia Pellicena (Catalyst Biosciences); Jack Preiss (Michigan State University); Margot Quinlan (University of California, Los Angeles); Venkataraman Ramakrishnan (MRC Laboratory of Molecular Biology, Cambridge); Ruth Reed (Juniata College); David Rueda (Wayne State University); Gordon Rule (Carnegie Mellon University); Paul Schettler (Juniata College); Kevin Schug (University of Texas, Arlington); Lawrence Shapiro (Columbia University); Kunchithapadam Swaminathan (National University of Singapore); Martha Teeter (Peace Films); Greg Tucker (University of Nottingham); Hiroshi Ueno (Nara Women's University); Didem Vardar-Ulu (Wellesley College); Kam Bo Wong (The Chinese University of Hong Kong); Sarah Woodson (Johns Hopkins University); Michael Yaffe (Massachusetts Institute of Technology).

JK—I am deeply grateful to my wife, Devaki Chandra, and my mother, Anna Kuriyan, who made it possible for me to write this book by giving me the supported mental space in which to work. I thank Ruth Reed and Paul Schettler, my teachers at Juniata College, and Greg Petsko and Martin Karplus, my graduate school advisors, for introducing me to the connection between biochemistry and statistical thermodynamics. Miranda Robertson's guiding hand was instrumental in allowing me to find my own voice. Denise Schanck and Summers Scholl at Garland displayed the patience of saints, keeping this project alive over many years.

BK—I would like to thank my family for their patience and understanding. For my youngest daughter Niki the book has been a part of her life for as long as she can remember. My oldest daughter Sophie has viewed my working on the book with a mixture of pride and incomprehension as she has veered as far away from the biological sciences as possible in her academic pursuits. And my husband Richard has had to put up with a lot—in particular, many prolonged absences at book retreats and when I have holed myself up for days at a time struggling to meet a deadline. Now that the textbook is done, if it reflects even a small amount of the time and effort that went into it, then we will have accomplished something to be proud of.

DEW—First I need to thank John and Boyana for inviting me to participate in the writing of this book. If I had known the full scope of what was to be done I might have hesitated, but now see it as having been an adventure of a new kind and feel great satisfaction in seeing it completed. I also need to thank my family and lab members for their understanding in times when work on the book had priority. Help and encouragement from the Garland editors was invaluable in getting this done, as were many other kindnesses such as my sister-in-law Teresa's loan of the beach house for writing retreats.

Contents

How Do We Understand Life?	1
PART I: BIOLOGICAL MOLECULES	4
Chapter 1 From Genes to RNA and Proteins	5
Chapter 2 Nucleic Acid Structure	51
Chapter 3 Glycans and Lipids	91
Chapter 4 Protein Structure	131
Chapter 5 Evolutionary Variation in Proteins	191
PART II: ENERGY AND ENTROPY	238
Chapter 6 Energy and Intermolecular Forces	239
Chapter 7 Entropy	293
Chapter 8 Linking Energy and Entropy: The Boltzmann	0.4.4
Distribution	341
PART III: FREE ENERGY	382
Chapter 9 Free Energy	383
Chapter 10 Chemical Potential and the Drive to Equilibrium	413
Chapter 11 Voltages and Free Energy	459
PART IV: MOLECULAR INTERACTIONS	530
Chapter 12 Molecular Recognition: The Thermodynamics	
of Binding	531
Chapter 13 Specificity of Macromolecular Recognition	581
Chapter 14 Allostery	633
PART V: KINETICS AND CATALYSIS	672
Chapter 15 The Rates of Molecular Processes	673
Chapter 16 Principles of Enzyme Catalysis	721
Chapter 17 Diffusion and Transport	787
PART VI: ASSEMBLY AND ACTIVITIY	838
Chapter 18 Folding	839
Chapter 19 Fidelity in DNA and Protein Synthesis	887
Glossary	939
Index	965

Detailed Contents

How	Do We Understand Life?	1	1.18	Splicing of RNA in eukaryotic cells can generate a diversity of RNAs from a single gene	39
PAR	T I: BIOLOGICAL MOLECULES	4	1.19	The genetic code relates triplets of nucleotides in a gene sequence to each amino acid in a protein sequence	39
Chap	oter 1 From Genes to RNA and Proteins	5	1.20	Transfer RNAs work with the ribosome to	37
A.	INTERACTIONS BETWEEN MOLECULES	6		translate mRNA sequences into proteins	42
1.1	The energy of interaction between two molecules is determined by noncovalent interactions	6	1.21	The mechanism for the transfer of genetic information is highly conserved	43
1.2	Neutral atoms attract and repel each other at close distances through van der Waals interactions	8	1.22	The discovery of retroviruses showed that information stored in RNA can be transferred to DNA	44
1.3	Ionic interactions between charged atoms can		Sumn	nary	46
	be very strong, but are attenuated by water	10	•	oncepts	47
1.4	Hydrogen bonds are very common in biological		Proble		48
	macromolecules	12	Furth	er Reading	50
B.	INTRODUCTION TO NUCLEIC ACIDS AND PROTEINS	15	Cha	oter 2 Nucleic Acid Structure	51
1.5	Nucleotides have pentose sugars attached to nitrogenous bases and phosphate groups	15	A.	DOUBLE-HELICAL STRUCTURES OF RNA AND DNA	52
1.6	The nucleotide bases in RNA and DNA are substituted pyrimidines or purines	18	2.1	The double helix is the principal secondary structure of DNA and RNA	52
1.7	DNA and RNA are formed by sequential reactions that utilize nucleotide triphosphates	20	2.2	Hydrogen bonding between bases is important for the formation of double helices, but its effect	
1.8	DNA forms a double helix with antiparallel strands	22	2.3	is weakened due to interactions with water The electronic polarization of the bases	53
1.9	The double helix is stabilized by the stacking of base pairs	24	0.4	contributes to strong stacking interactions between bases	54
1.10	Proteins are polymers of amino acids	25	2.4	Metal ions help shield electrostatic repulsions between the phosphate groups	55
1.11	Proteins are formed by connecting amino acids by peptide bonds	25	2.5	There are two common relative orientations of the base and the sugar	56
1.12	Amino acids are classified based on the properties of their sidechains	29	2.6	The ribose ring has alternate conformations defined by the sugar pucker	56
1.13 1.14	Proteins appear irregular in shape Protein chains fold up to form hydrophobic	30	2.7	RNA cannot adopt the standard Watson-Crick double-helical structure because of constraints	
	cores	31		on its sugar pucker	58
1.15	α helices and β sheets are the architectural elements of protein structure	31	2.8	The standard Watson-Crick model of double-helical DNA is the B-form	59
C.	REPLICATION, TRANSCRIPTION, AND TRANSLATION	35	2.9	B-form DNA allows sequence-specific recognition of the major groove, which has a greater information content than the minor groove	1 60
1.16	DNA replication is a complex process involving many protein machines	35	2.10	RNA adopts the A-form double-helical conformation	61
1.17	Transcription generates RNAs whose sequences are dictated by the sequence of nucleotides in genes	38	2.11	The major groove of A-form double helices is less accessible to proteins than that of B-form DNA	62

2.12	Z-form DNA is a left-handed double-helical		B.	LIPIDS AND MEMBRANES	108
	structure	62	3.13	The most abundant lipids are	
2.13 2.14	The DNA double helix is quite deformable DNA supercoiling can occur when the ends of	65	3.14	glycerophospholipids Other classes of lipids have different molecular	109
	double helices are constrained	67	•	frameworks	110
2.15	Writhe, linking number, and twist are mathematical parameters that describe the supercoiling of DNA	69	3.15 3.16	Lipids form organized structures spontaneously The shapes of lipid molecules affect the	113
2.16	The writhe, twist, and linking number are related to each other in a simple way	70	3.17	structures they form Detergents are amphiphilic molecules that tend to form micelles rather than bilayers	113 115
2.17	The DNA in cells is supercoiled	71	3.18	Lipids in bilayers move freely in two dimensions	
2.18	Local conformational changes in the DNA also affect supercoiling	72	3.19	Lipid composition affects the physical properties of membranes	
B.	THE FUNCTIONAL VERSATILITY OF RNA	73	3.20	Proteins can be associated with membranes	
2.19	Wobble base pairs are often seen in RNA	73		by attachment to lipid anchors	121
2.20 2.21	Nonstandard base-pairing is common in RNA Some RNA molecules contain modified	75	3.21	Lipid molecules can be sequestered and transported by proteins	122
2.22	nucleotides A tetraloop is a common secondary structural	76	3.22	Different kinds of cells and organelles have different membrane compositions	123
2.22	motif that caps RNA hairpins	79	3.23	Cell walls are reinforced membranes	125
2.23	Interactions with metal ions help RNAs to fold	80	Sumn	-	126
2.24	RNA tertiary structure involves interactions		•	oncepts	127
	between secondary structural elements	81	Proble		128
2.25	Helices in RNA often interact through coaxial base stacking or the formation of pseudoknots	82	Furtne	er Reading	129
2.26	Various interactions between nucleotides stabilize RNA tertiary structure	84	Chap	oter 4 Protein Structure	131
Summ	-	86	A.	GENERAL PRINCIPLES	131
-	oncepts oms	87 88	4.1	Protein structures display a hierarchical organization	131
	Problems Further Reading		4.2	Protein domains are the fundamental units of tertiary structure	133
Chap	oter 3 Glycans and Lipids	91	4.3	Protein folding is driven by the formation of a hydrophobic core	134
A.	GLYCANS	91	4.4	The formation of α helices and β sheets satisfies the hydrogen-bonding requirements of the	
3.1	Simple sugars are comprised primarily of hydroxylated carbons	91		protein backbone	136
3.2	Many cyclic sugar molecules can exist in	71	B.	BACKBONE CONFORMATION	137
3.3	alternative anomeric forms Sugar rings often have many low energy	92	4.5	Protein folding involves conformational changes in the peptide backbone	137
3.4	conformations Many sugars are structural isomers of identical	94	4.6	Amino acids are chiral and only the L form stereoisomer is found in genetically encoded	400
0.4	composition, but with different stereochemistry	95	4 7	proteins The population hand has portion double hand	138
3.5	Some sugars have other chemical functionalities in addition to alcohol groups	97	4.7	The peptide bond has partial double bond character, so rotations about it are hindered	139
3.6	Glycans form polymeric structures that can have branched linkages	98	4.8	Peptide groups can be in <i>cis</i> or <i>trans</i> conformations	140
3.7	Differences in anomeric linkages lead to dramatic differences in polymeric forms of glucose		4.9	The backbone torsion angles ϕ (phi) and ψ (psi) determine the conformation of the protein chair	1 141
3.8	Acetylation or other chemical modification leads	101	4.10	The Ramachandran diagram defines the restrictions on backbone conformation	142
3.9	to diversity in sugar polymer properties Glycans may be attached to proteins or lipids	101	4.11	α helices and β strands are formed when consecutive residues adopt similar values of	
3.10	The decoration of proteins with glycans is not			ϕ and ψ	143
3.11	templated Glycan modifications alter the properties of	104	4.12	Loop segments have residues with very different values of ϕ and ψ	146
2.40	proteins	105	4.13	α helices and β strands are often amphipathic	147
3.12	Protein–glycan interactions are important in cellular recognition	106	4.14	Some amino acids are preferred over others in α helices	149

xii DETAILED CONTENTS

C.	STRUCTURAL MOTIFS AND DOMAINS IN SOLUBLE PROTEINS	150	4.42	Conformational changes in retinal impose directionality to proton flow in bacteriorhodopsin	181
4.15	Secondary structure elements are connected to form simple motifs	150	4.43	Active transporters cycle between conformations that are open to the interior	101
4.16	Amphipathic α helices can form dimeric structures called coiled coils	153	4.44	or the exterior of the cell ATP binding and hydrolysis provides the driving	183
4.17	Hydrophobic sidechains in coiled coils are repeated in a heptad pattern	155		force for the transport of sugars into the cell	184 185
4.18	$\boldsymbol{\alpha}$ helices that are integrated into complex protein		Summ Key Co	oncepts	187
4.40	structures do not usually form coiled coils	130	Proble		188
4.19	The sidechains of α helices form ridges and grooves			er Reading	189
4.20	$\boldsymbol{\alpha}$ helices pack against each other with a limited set of crossing angles	157	Chap	oter 5 Evolutionary Variation in	
4.21	Structures with alternating α helices and β strands are very common	159	Prote		191
4.22	α/β barrels occur in many different enzymes	161	Α.	THE THERMODYNAMIC HYPOTHESIS	191
4.23	α/β open-sheet structures contain α helices on both sides of the β sheet	162	5.1	The structure of a protein is determined by its sequence	191
4.24	Proteins with antiparallel β sheets often form structures called β barrels	162	5.2	The thermodynamic hypothesis was first established for an enzyme known as ribo-	
4.25	Up-and-down $\boldsymbol{\beta}$ barrels have a simple topology	163		nuclease-A, which can be unfolded and folded reversibly	192
4.26	Up-and-down β sheets can form repetitive structures	163	5.3	By counting the number of possible rearrangements of disulfide bonds, we can	
4.27	Greek key motifs occur frequently in antiparallel $\boldsymbol{\beta}$ structures	164		confirm that ribonuclease-A is completely unfolded by urea and reducing agents	194
4.28	Certain structural motifs can be repeated almost endlessly to form elongated structures	165	B.	SEQUENCE COMPARISONS AND THE BLOSUM MATRIX	195
4.29	Catalytic sites are usually located within core		5.4	Protein structure is conserved during evolution	193
4.30	elements of protein folds Binding sites are often located at the interfaces	167	5.4	while amino acid sequences vary	195
	between domains	168	5.5	The globin fold is preserved in proteins that share very little sequence similarity	198
D.	STRUCTURAL PRINCIPLES OF MEMBRANE PROTEINS	169	5.6	Similarities in protein sequences can be quantified by considering the frequencies with	
4.31	Lipid bilayers form barriers that are nearly impermeable to polar molecules	169		which amino acids are substituted for each other in related proteins	201
4.32	Membrane proteins have distinct regions that interact with the lipid bilayer	170	5.7	The BLOSUM matrix is a commonly used set of amino acid substitution scores	201
4.33	The hydrophobicity of the lipid bilayer requires the formation of regular secondary structure		5.8	The first step in deriving substitution scores is to determine the frequencies of amino acid	
	within the membrane	171		substitutions and correct for amino acid	
4.34	The more polar sidechains are rarely found		г О	abundances The substitution score is defined in terms of	202
	within membrane-spanning α helices, except when they are required for specific functions	172	5.9	The substitution score is defined in terms of the logarithm of the substitution likelihood	204
4.35	Transmembrane α helices can be predicted from amino acid sequences	174	5.10	The BLOSUM substitution scores reflect the chemical properties of the amino acids	207
4.36	Hydrophobicity scales are used to identify transmembrane helices	175	5.11	Substitution scores are used to align sequences and to detect similarities between proteins	208
4.37	Integral membrane proteins are stabilized by van der Waals contacts and hydrogen bonds	177	C.	STRUCTURAL VARIATION IN PROTEINS	209
4.38	Porins contain β barrels that form		5.12	Small but significant differences in protein structures arise from differences in sequences	209
4.39	transmembrane channels Pumps and transporters use energy to move	178	5.13	Proteins retain a common structural core as their sequences diverge	210
4.40	molecules across the membrane Bacteriorhodopsin uses light energy to pump	179	5.14	Structural overlap within the common core decreases as the sequences of proteins diverge	
4.41	protons across the membrane A hydrogen-bonded chain of water molecules	180	5.15	Sequence comparisons alone are insufficient to establish structural similarity between distantly	
→. + 1	can serve as a proton conducting "wire"	180		related proteins	212

5.16	environments in folded proteins	213	6.7	The heat capacity of an ideal monatomic gas is constant	253
5.17	Fold-recognition algorithms evaluate the probability that the sequence of a protein is		6.8	The heat capacity of a macromolecular solution increases and then decreases with temperature	
5.18	compatible with a known three-dimensional structure The 3D-1D profile method maps three-	214	6.9	The potential energy of a molecular system is the energy stored in molecules and their interactions	259
	dimensional structural information onto a one- dimensional set of environmental descriptors	216	6.10	The Boltzmann distribution describes the population of molecules in different energy	
5.19	The database of known protein structures is used to generate a scoring matrix that gives the likelihood of finding each amino acid in a particular environmental class	217	6.11	levels The energy required to break interatomic interactions in folded macromolecules gives	261
5.20	The 3D-1D profile method matches sequences with structures	218	C.	rise to the peak in heat capacity ENERGETICS OF INTERMOLECULAR	264
D.	THE EVOLUTION OF MODULAR DOMAINS	220		INTERACTIONS	265
5.21	Domains are the fundamental unit of protein evolution	220	6.12	Simplified energy functions are used to calculate molecular potential energies	265
5.22	Domains can be organized into families with similar folds	220	6.13	Empirical potential energy functions enable rapid calculation of molecular energies	266
5.23	The number of distinct fold families is likely to be limited		6.14	The energies of covalent bonds are approximated by functions such as the Morse potential	d 267
5.24	Protein domains are remarkably tolerant of changes in amino acid sequence, even in the	224	6.15	Other terms in the energy function describe torsion angles and the deformations in the angles between covalent bonds	270
5.25	hydrophobic core Structural plasticity in protein domains increases the tolerance to mutation	225 227	6.16	The van der Waals energy term describes weak attractions and strong repulsions between atoms	272
5.26	The Rossmann fold is found in many nucleotide binding proteins	228	6.17	Atoms in proteins and nucleic acids are partially charged	274
5.27	Thioredoxin reductase and glutathione reductas are enzymes that diverged from a common	e	6.18	Electrostatic interactions are governed by Coulomb's law	275
	ancestor, but their active sites arose through convergent evolution	230	6.19	Hydrogen bonds are an important class of electrostatic interactions	277
Summ Key Co	ary oncepts	232 234	6.20	Empirical energy functions are used in compute programs to calculate molecular energies	r 279
Proble Furthe	ems er Reading	235 237	6.21	Interactions with water weaken the effective strengths of hydrogen bonds in proteins	281
		238	6.22	The presence of hydrogen-bonding groups in a protein is important for solubility and specificity	282
Char	oter 6 Energy and Intermolecular		6.23	The water surrounding protein molecules strongly influences electrostatic interactions	283
Force		239	6.24	The shapes of proteins change the electrostatic	
A.	THERMODYNAMICS OF HEAT TRANSFER	240	C	fields generated by charges within the protein	285
6.1	In order to keep track of changes in energy, we define the region of interest as the "system"	240	Summ Key C	oncepts	287 288
6.2	Energy released by chemical reactions is converted to heat and work	242	Proble Furthe	ems er Reading	289 292
6.3	The first law of thermodynamics states that energy is conserved	243		-	000
6.4	For a process occurring under constant pressure	е		.,	293
	conditions, the heat transferred is equal to the change in the enthalpy of the system	246	A. 7.1	COUNTING STATISTICS AND MULTIPLICITY Different sequences of outcomes in a series	294
6.5	Changes in energy do not always indicate the direction of spontaneous change	250	7.2	of coin tosses have equal probabilities When considering aggregate outcomes, the	294
6.6	The isothermal expansion of an ideal gas occurs spontaneously even though the energy of the gas does not change	251		most likely result is the one that has maximum multiplicity	295
B.	HEAT CAPACITIES AND THE BOLTZMANN DISTRIBUTION	253	7.3	The multiplicity of an outcome of coin tosses can be calculated using a simple formula involving factorials	297

7.4	The concept of multiplicity is broadly applicable in biology because a series of coin flips is analogous to a collection of molecules in			oter 8 Linking Energy and Entropy: Boltzmann Distribution	341
	alternative states	300	A.	ENERGY DISTRIBUTIONS AND ENTROPY	341
7.5	The binding of ligands to a receptor can be monitored by fluorescence microscopy	301	8.1	The thermodynamic definition of the entropy provides a link to experimental observations	341
7.6	Pascal's triangle describes the multiplicity of outcomes for a series of binary events	302	8.2	The concept of temperature provides a connection between the statistical and	
7.7	The binomial distribution governs the probability of events with binary outcomes	304	8.3	thermodynamic definitions of entropy Energy distributions describe the populations	343
7.8	When the number of events is large, Stirling's approximation simplifies the calculation of the multiplicity	306	8.4	of molecules with different energies The multiplicity of an energy distribution is the	344
7.9	The relative probability of two outcomes is given by the ratios of their multiplicities	307	0.5	number of equivalent configurations of molecule that results in the same energy distribution	344
7.10	As the number of events increases, the less likely outcomes become increasingly rare	308	8.5	The multiplicity of a system with different energy levels can be calculated by counting the number of equivalent molecular	
7.11	For coin tosses, outcomes with equal numbers	300		rearrangements of energy	347
	of heads and tails have maximal multiplicity	310	B.	THE BOLTZMANN DISTRIBUTION	350
7.12	When the number of events is very large, the probability distribution is well approximated		8.6	For large numbers of molecules, a probabilistic expression for the entropy is more convenient	350
7.13	by a Gaussian distribution The Gaussian distribution is centered at the	311	8.7	The multiplicity of a system changes when energy is transferred between systems	354
7.14	mean value and has a width that is proportional to the standard deviation Application of the Gaussian distribution	312	8.8	Systems in thermal contact exchange heat until the combined entropy of the two systems is maximal	356
	enables statistical analysis of a series of binary outcomes	315	8.9	Many energy distributions are consistent with the total energy of a system, but some have	000
B.	ENTROPY	317		higher multiplicity than others	359
7.15	The logarithm of the multiplicity ($\ln W$) is related to the entropy	317	8.10	The energy distribution at equilibrium must have an exponential form	360
7.16	The multiplicity of a molecular system is the number of equivalent configurations of the	240	8.11	The partition function indicates the accessibility of the higher energy levels of the system	363
7.17	molecules (microstates) The multiplicity of a system increases as the volume increases	318	8.12	For large numbers of molecules, non-Boltzmanr distributions of the energy are highly unlikely	า 367
7.18	For a large number of atoms, the state with	319	C.	ENTROPY AND TEMPERATURE	368
7.10	maximal multiplicity is the state that is observed at equilibrium	322	8.13	The rate of change of entropy with respect to energy is related to the temperature	368
7.19	The Boltzmann constant, $k_{\rm B}$, is a proportionality constant linking entropy to the logarithm of the		8.14	The statistical and thermodynamic definitions of the entropy are equivalent	375
	multiplicity (ln W)	325	Summ		377
7.20	The change in entropy is related to the heat	227	-	oncepts	378
7.21	transferred during a process The work done in a near-equilibrium process is	326	Proble		379
7.21	greater than for a nonequilibrium process The work done in a near-equilibrium process	327	Furthe	er Reading	381
	is related to the change in entropy	329	PART	TIII: FREE ENERGY	382
7.23	The statistical and thermodynamic definitions of entropy are equivalent	330	Chap	oter 9 Free Energy	383
7.24	The second law of thermodynamics states that spontaneous change occurs in the direction		Α.	FREE ENERGY	384
7.25	of increasing entropy Diffusion across a semipermeable membrane	331	9.1	The combined entropy of the system and the surroundings increases for a spontaneous	
0	can lead to unequal numbers of molecules on the two sides of the membrane	332	9.2	The change in entropy of the surroundings is	384
Summ	ary	335		related to the change in energy and volume of the system	386
Key Co	oncepts	336	9.3	The Gibbs free energy (<i>G</i>) of the system always	550
Proble		337		decreases in a spontaneous process occurring	
Furthe	er Reading	339		at constant pressure and temperature	387

9.4	The Helmholtz free energy (A) determines the direction of spontaneous change when the	000	10.6	The chemical potentials of the reactants and products are balanced at equilibrium	422
	volume is constant	389	10.7	The concentrations of reactants and products	
B. 9.5	STANDARD FREE-ENERGY CHANGES Standard free-energy changes are defined with	390		at equilibrium define the equilibrium constant (K), which is related to the standard free energy change (ΔG^{0}) for the reaction	424
9.6	reference to defined standard states The zero point of the free-energy scale is set by	390	10.8	Equilibrium constants can be used to calculate the extent of reaction at equilibrium	425
9.7	the free energy of the elements in their most stable forms Thermodynamic cycles allow the determination	391	10.9	The free-energy change for the reaction (ΔG), not the standard free-energy change (ΔG^{o}), determines the direction of spontaneous	
	of the free energies of formation of complex molecules from simpler ones	392	10 10	change The ratio of the reaction quotient (<i>Q</i>) to the	426
9.8	The free energy of formation of glucose is obtained by considering three combustion reactions	394	10.10	equilibrium constant (K) determines the thermodynamic drive of a reaction	427
9.9	Enthalpies and entropies of formation can be combined to give the free energy of formation	395	10.11	ATP concentrations are maintained at high levels in cells, thereby increasing the driving force for ATP hydrolysis	427
9.10	Calorimetric measurements yield the standard		C.	ACID-BASE EQUILIBRIA	428
	enthalpy changes associated with combustion reactions	396		The Henderson–Hasselbalch equation relates	0
9.11	The entropy of formation of a compound is derived from heat capacity measurements	396		the pH of a solution of a weak acid to the concentrations of the acid and its conjugate	400
C.	FREE ENERGY AND WORK	398	10 12	The proton concentration ([H+]) in pure water	429
9.12	Expansion work is not the only kind of work that can be done by a system	398	10.13	at room temperature corresponds to a pH value of 7.0	430
9.13	Chemical work involves changes in the numbers of molecules	400	10.14	The temperature dependence of the equilibrium constant allows us to determine the values of $\Delta {\it H}^{\rm 0}$ and $\Delta {\it S}^{\rm 0}$	424
9.14	The decrease in the Gibbs free energy for a process is the maximum amount of non-		10.15	Weak acids, such as acetic acid, dissociate very little in water	431 432
0.45	expansion work that the system is capable of doing under constant pressure and temperature	400	10.16	Solutions of weak acids and their conjugate bases act as buffers	433
9.15 9.16	The coupling of ATP hydrolysis to work underlies many processes in biology The synthesis of ATP is coupled to the	402	10.17	The charges on biological macromolecules are affected by the pH	435
2.10	movement of ions across the membrane, down a concentration gradient	405	10.18	The charge on an amino acid sidechain can be altered by interactions in the folded protein	436
Summ	ary	408	D.	FREE-ENERGY CHANGES IN PROTEIN	
Key Co	oncepts	409		FOLDING	438
Proble Furthe	ms er Reading	409 411	10.19	The protein folding reaction is simplified by ignoring intermediate conformations	438
Chan	stor 10 Chamical Datantial and		10.20	Protein folding results from a balance between energy and entropy	439
	oter 10 Chemical Potential and Orive to Equilibrium	413	10.21	The entropy of the unfolded protein chain is proportional to the logarithm of the number	
Α.	CHEMICAL POTENTIAL	413	10.00	of conformations of the chain	440
10.1	The chemical potential of a molecular species is the molar free energy of that species	414	10.22	The number of conformations of the unfolded chain can be estimated by counting the number of low-energy torsional isomers	442
10.2	Molecules move spontaneously from regions of high chemical potential to regions of low chemical potential	414	10.23	The free-energy change opposes protein folding if the entropy of water molecules is not	
10.3	Biochemical reactions are assumed to occur in ideal and dilute solutions, which simplifies		10.24	considered Protein folding is driven by an increase in water entropy	443 444
10.4	the calculation of the chemical potential The chemical potential is proportional to the	416	10.25	Calorimetric measurements allow the experimental determination of the free energy	-+4
10.5	logarithm of the concentration Chemical potentials at arbitrary concentrations	417	10.26	of protein folding The heat capacity of a protein solution depends	446
_	are calculated with reference to standard concentrations	421		on the relative population of folded and unfolded molecules, and on the energy	
R	FOUII IBRIUM CONSTANTS	422		required to unfold the protein	446

xvi DETAILED CONTENTS

10.27	The area under the peak in the melting curve is the enthalpy change for unfolding at the melting temperature	448	11.17	An electrical potential difference across the membrane is essential for the functioning of all cells	484
10.28	The heat capacities of the folded and unfolded protein allow the determination of ΔH^0 and ΔS^0 for unfolding at any temperature	449	11.18	The sodium–potassium pump hydrolyzes ATP to move Na ⁺ ions out of the cell with the coupled movement of K ⁺ ions into the cell	486
10.29	Folded proteins become unstable at very low temperature because of changes in		11.19	Sodium and potassium channels allow ions to move quickly across the membrane	487
Summ	$\Delta \mathcal{H}^{0}$ and $\Delta \mathcal{S}^{0}$ arry	452 453	11.20	Sodium and potassium channels contain a conserved tetrameric pore domain	489
Key Co	oncepts	455	11.21	A large vestibule within the channel reduces	
Proble		456		the distance over which ions have to move	
	er Reading	457		without associated water molecules	490
ruitile	a neaumg	437	11.22	Carbonyl groups in the selectivity filter provide specificity for K ⁺ ions by substituting for the	
Chap	oter 11 Voltages and Free Energy	459		inner-sphere waters	491
Α.	OXIDATION-REDUCTION REACTIONS IN BIOLOGY	459	11.23	Rapid transit of K ⁺ ions through the channel is facilitated by hopping between isoenergetic binding sites	492
11.1	Reactions involving the transfer of electrons are referred to as oxidation–reduction reactions	459	D.	THE TRANSMISSION OF ACTION POTENTIALS IN NEURONS	493
11.2	Biologically important redox-active metals are bound to proteins	460	11.24	The asymmetric distribution of ions across	473
11.3	Nicotinamide adenine dinucleotide (NAD+) is an important mediator of redox reactions			the cell membrane generates an equilibrium membrane potential	493
	in biology	460	11.25	The Nernst equation relates the equilibrium membrane potential to the concentrations	
11.4	Flavins and quinones can undergo oxidation or reduction in two steps of one electron each	461		of ions inside and outside the cell	494
11.5	The oxidation of glucose is coupled to the generation of NADH and FADH ₂	463		Cell membranes act as electrical capacitors The depolarization of the membrane is a	496
11.6	Mitochondria are cellular compartments in	400	11.27	key step in initiating a neuronal signal	498
	which NADH and FADH ₂ are used to generate ATP	465	11.28	Membrane potentials are altered by the movement of relatively few ions, enabling	400
11.7	Absorption of light creates molecules with high reducing power in photosynthesis	467	11.29	rapid axonal transmission The propagation of voltage changes can be	499
B.	REDUCTION POTENTIALS AND FREE ENERGY	469		understood by treating the axon as an electrical circuit	500
11.8	Electrochemical cells can be constructed by		11.30	The propagation of changes in membrane potential in the axon are described by the	
11.9	linking two redox couples The voltage generated by an electrochemical	470		cable equation	501
11.7	cell with the reactants at standard conditions is known as the standard cell potential	473	11.31	The resting membrane potential is determined by a combination of the basal conductances	F0F
11.10	The electric potential difference (voltage) between two points is the work done in moving		11.32	of potassium and sodium channels The propagation of a voltage spike without	505
11.11	a unit charge between the two points Standard reduction potentials are related to the	474		triggering voltage-gated ion channels is known as passive spread	506
	standard free-energy change of the redox reaction underlying the electrochemical cell	475	11.33	If membrane currents are neglected, then the cable equation is analogous to a diffusion	
11.12	Electrode potentials are measured relative to a standard hydrogen electrode	477	11.34	equation Leakage through open ion channels limits	507
11.13	Tabulated values of standard electrode potentials allow ready calculation of the standard potential of an electrochemical cell	478	11.35	the spread of a voltage perturbation The time taken to develop a membrane potential is determined by the conductance	509
11.14	The Nernst equation describes how the potential changes with the concentrations		11.36	of the membrane and its capacitance Myelination of mammalian neurons facilitates	510
11.15	of the redox reactants The standard state for reduction potentials	480		the transmission of action potentials	513
	in biochemistry is pH 7	480	11.3/	Action potentials are regenerated periodically as they travel down the axon	514
C.	ION PUMPS AND CHANNELS IN NEURONS Neuronal cells use electrical signals to	481	11.38	A positively charged sensor in voltage-gated ion channels moves across the membrane	
11.10	transmit information	482		upon depolarization	517

11.39	The structures of voltage-gated K+ channels show that the voltage sensors form paddle-like structures that surround the core of the		12.16	Induced-fit binding occurs through selection by the ligand of one among many preexisting conformations of the protein	557
11.40	channel The crystal structure of a voltage-gated K+ channel suggests how the voltage sensor	520	12.17	Conformational changes in the protein underlie the specificity of a cancer drug known as imatinib	559
Summ	opens and closes the channel	521 524	12.18	Conformational changes in the target protein can weaken the affinity of an inhibitor	560
	oncepts	525	12.19	The strength of noncovalent interactions usually correlates with hydrophobic interactions	
Proble	ems	526	40.00		362
Furthe	er Reading	527	12.20	Cholesterol-lowering drugs known as statins take advantage of hydrophobic interactions to block their target enzyme	563
	IV: MOLECULAR INTERACTIONS	530	12.21	The apparent affinity of a competitive inhibitor for a protein is reduced by the presence of the natural ligand	566
	oter 12 Molecular Recognition: Thermodynamics of Binding	531	12.22	Entropy lost by drug molecules upon binding is regained through the hydrophobic effect and	000
Α.	THERMODYNAMICS OF MOLECULAR			the release of protein-bound water molecules	569
	INTERACTIONS	531	12.23	Isothermal titration calorimetry allows us to determine the enthalpic and entropic	
12.1	The affinity of a protein for a ligand is characterized by the dissociation constant, K_D	533		components of the binding free energy	573
12.2	The value of K_D corresponds to the	555	Summ	ary	576
12.2	concentration of free ligand at which the		-	oncepts	578
	protein is half saturated	535	Proble		578
12.3	The dissociation constant is a dimensionless number, but is commonly referred to in		Furthe	er Reading	580
	concentration units	537		oter 13 Specificity of	
12.4	Dissociation constants are determined experimentally using binding assays	537		romolecular Recognition	581
12.5	Binding isotherms plotted with logarithmic		Α.	AFFINITY AND SPECIFICITY	581
	axes are commonly used to determine the dissociation constant	540	13.1	Both affinity and specificity are important in intermolecular interactions	581
12.6	When the ligand is in great excess over the protein, the free ligand concentration, [L], is		13.2	Proteins often have to choose between several closely related targets	582
40.7	essentially equal to the total ligand concentration	542	13.3	Specificity is defined in terms of ratios of dissociation constants	584
12.7	Scatchard analysis makes it possible to estimate the value of K_D when the concentration of the receptor is unknown	543	13.4	The specificity of binding depends on the concentration of ligand	585
12.8	Scatchard analysis can be applied to unpurified proteins	544	13.5	Fractional occupancy and specificity are important for activities resulting from binding	587
12.9	Saturable binding is a hallmark of specific binding interactions	546	13.6	Most macromolecular interactions are a compromise between affinity and specificity	587
12.10	The value of the dissociation constant, K_D ,	340	13.7	Fibroblast growth factors vary considerably in their affinities for receptors	588
	defines the ligand concentration range over which the protein switches from unbound to bound	546	13.8	The recognition of DNA by transcription factors involves discrimination between a very large numbers of off-target binding sites	590
12.11	The dissociation constant for a physiological ligand is usually close to the natural concentration of the ligand	548	13.9	Lowering the affinity of lac repressor for the operator switches on transcription	591
_	Ğ		B.	PROTEIN-PROTEIN INTERACTIONS	593
B. 12.12	DRUG BINDING BY PROTEINS Most drugs are developed by optimizing the	549	13.10	Protein-protein complexes involve interfaces between two folded domains or between	
12.13	inhibition of protein targets Signaling molecules are protein targets in	549	13.11	a domain and a peptide segment SH2 domains are specific for peptides	593
40.11	cancer drug development	549		containing phosphotyrosine	595
	Most small molecule drugs work by displacing a natural ligand for a protein	552	13.12	Individual SH2 domains cannot discriminate sharply between different phosphotyrosine-	596
12.15	The binding of drugs to their target proteins often results in conformational changes in the protein	556	13.13	containing sequences Combinations of peptide recognition domains have higher specificity than individual domains	596

xviii DETAILED CONTENTS

	Protein–protein interfaces usually have a small hydrophobic core	599	14.2	The response of many biological systems is ultrasensitive, with the switch from off to on occurring over a less than 100-fold range in	
13.15	A typical protein–protein interface buries about 700 to 800 $\rm \AA^2$ of surface area on each protein	600		concentration	634
13.16	Water molecules form hydrogen-bonded networks at protein–protein interfaces	601	14.3	Cooperativity and allostery are features of many ultrasensitive systems	636
13.17	The interaction between growth hormone and its receptor is a model for understanding protein–protein interactions	602	14.4	Bacterial movement towards attractants and away from repellants is governed by signaling proteins that bind to the flagellar motor	638
	The major growth hormone–receptor interface contains many types of interactions	603	14.5	The flagellar motor switches to clockwise rotation when the concentration of CheY	639
13.19	The interface between growth hormone and its receptor contains hot spots of binding affinity, which dominate the interaction	605	14.6	The response of the flagellar motor to concentrations of CheY is ultrasensitive	640
13.20	Residues that do not contribute to binding affinity may be important for specificity	606	14.7	The MAP kinase pathway involves the sequential activation of a set of three protein	
13.21	The desolvation of polar groups at interfaces makes a large contribution to the free energy of binding	607	14.8	kinases Phosphorylation controls the activity of protein kinases by allosteric modulation	641
C.	RECOGNITION OF NUCLEIC ACIDS BY PROTEINS	610	14.9	of the structure of the active site The sequential phosphorylation of the MAP	642
13.22	Complementarity in both electrostatics and shape is an important aspect of the recognition			kinases leads to an ultrasensitive signaling switch	643
	of double-helical DNA and RNA	610	B.	ALLOSTERY IN HEMOGLOBIN	645
13.23	Proteins distinguish between DNA and RNA double helices by recognizing differences in the geometry of the grooves	612		Allosteric proteins exhibit positive or negative cooperativity	645
13.24	Proteins recognize DNA sequences by both direct contacts and induced conformational	012		The heme group in hemoglobin binds oxygen reversibly	646
13.25	changes in DNA Hydrogen bonding is a key determinant of	613	14.12	Hemoglobin increases the solubility of oxygen in blood and makes its transport to the tissues more efficient	647
12 26	specificity at DNA–protein interfaces Water molecules can form specific hydrogen-	614	14.13	Hemoglobin undergoes conformational	
	bond bridges between protein and DNA	615	14.14	changes as it binds to and releases oxygen The sigmoid binding isotherm for an allosteric	649
13.27	Arginine interactions with the minor groove can provide sequence specificity through shape recognition	616	4445	protein arises from switching between low- and high-affinity binding isotherms	649
13.28	DNA structural changes induced by binding vary widely	617	14.15	The degree of cooperativity between binding sites in an allosteric protein is characterized by the Hill coefficient	650
13.29	Proteins that bind DNA as dimers do so with higher affinity than if they were monomers	618	14.16	The tertiary structure of each hemoglobin subunit changes upon oxygen binding	653
13.30	Linked DNA binding modules can increase binding affinity and specificity	619	14.17	Changes in the tertiary structure of each subunit are coupled to a change in the	
13.31	Cooperative binding of proteins also enhances specificity	620	1/10	quaternary structure of hemoglobin The hemoglobin tetramer is always in	655
13.32	Proteins that recognize single-stranded RNA interact extensively with the bases	623	14.10	equilibrium between R and T states, and oxygen binding biases the equilibrium	658
13.33	Stacking interactions between amino acid sidechains and nucleotide bases are an	. 05	14.19	Bisphosphoglycerate (BPG) stabilizes the T-state quaternary structure of hemoglobin	660
Summ	important aspect of RNA recognition	625 627	14.20	The low pH in venous blood stabilizes the T-state	è
	on y Oncepts	628		quaternary structure of hemoglobin	661
Proble	·	629 630	14.21	Hemoglobins across evolution have acquired distinct allosteric mechanisms for achieving ultrasensitivity	662
Chan	oter 14 Allostery	633	14.22	Allosteric mechanisms are likely to evolve by the accretion of random mutations in	
A.	ULTRASENSITIVITY OF MOLECULAR			colocalized proteins	663
,	RESPONSES	633	Summ	•	667
14.1	Molecular outputs that depend on independent	300	Key Co	oncepts	668
	binding events switch from on to off over a		Proble	ems	668
	100-fold range in input strength	633	Furthe	er Reading	670

		672	15.22	Catalysts accelerate the rates of chemical reactions without being consumed in the process	705
	oter 15 The Rates of Molecular esses	673	15.23	Rate laws for reactions usually must be determined experimentally	706
Α.	GENERAL KINETIC PRINCIPLES	675	15.24	The hydrolysis of sucrose provides an example of how a reaction mechanism is analyzed	707
15.1	The rate of reaction describes how fast concentrations change with time	675	15.25	The fastest possible reaction rate is determined by the diffusion-limited rate of collision	
15.2	The rates of intermolecular reactions depend on the concentrations of the reactants	676	15.26	Most reactions occur more slowly than the diffusion-limited rate	710
15.3	Rate laws define the relationship between the reaction rates and concentrations	676	15.27	The activation energy is the minimum energy	710
15.4	The dependence of the rate law on the concentrations of reactants defines the order		45.00	required to convert reactants to products during a collision between molecules	711
15.5	of the reaction The integration of rate equations predicts the	678		The reaction rate depends exponentially on the activation energy	712
15.6	time dependence of concentrations Reactants disappear linearly with time for a	679	15.29	Transition state theory links kinetics to thermodynamic concepts	715
15.7	zero-order reaction The concentration of reactant decreases	680	15.30	Catalysts can work by decreasing the activation energy, by increasing the preexponential factor,	l
10.7	exponentially with time for a first-order reaction	680	Summ	or by completely altering the mechanism	716 717
15.8	The reactants decay more slowly in second-	000		oncepts	717
13.0	order reactions than in first-order reactions,		Proble	•	718
	but the details depend on the particular type of reaction and the conditions	681		er Reading	720
15.9	The half-life for a reaction provides a measure of the speed of the reaction	682	Char	oter 16 Principles of Enzyme	
15.10	For reactions with intermediate steps, the slowest step determines the overall rate	683	Cata	lysis	721
B.	REVERSIBLE REACTIONS, STEADY STATES,		Α.	MICHAELIS-MENTEN KINETICS	721
	AND EQUILIBRIUM	688	16.1	Enzyme-catalyzed reactions can be described as a binding step followed by a catalytic step	723
	The forward and reverse rates must both be considered for a reversible reaction	688	16.2	The Michaelis–Menten equation describes the kinetics of the simplest enzyme-catalyzed	, 20
15.12	The on and off rates of ligand binding can be measured by monitoring the approach to equilibrium	689	16.3	reactions The value of the Michaelis constant, K_{M} , is	725
15.13	Steady-state reactions are important in metabolism	691		related to how much enzyme has substrate bound	726
15.14	For reactions with alternative products, the relative values of rate constants determine	071	16.4	Enzymes are characterized by their turnover numbers and their catalytic efficiencies	729
	the distribution of products	693	16.5	A "perfect" enzyme is one that catalyzes the	
15.15	Measuring fluorescence provides an easy way to monitor kinetics	695		chemical step of the reaction as fast as the substrate can get to the enzyme	730
15.16	Fluorescence measurements can be carried out under steady-state conditions	696	16.6	In some cases the release of the product from the enzyme affects the rate of the reaction	732
15.17	Fluorescence quenchers provide a way to detect whether a fluorophore on a protein is		16.7	The specificity of enzymes arises from both the rate of the chemical step and the value of $K_{\rm M}$	733
15.18	accessible to the solvent The combination of forward and reverse rate	697	16.8	Graphical analysis of enzyme kinetic data facilitates the estimation of kinetic parameters	735
15.19	constants is related to the equilibrium constant Relaxation methods provide a way to obtain	699	B.	INHIBITORS AND MORE COMPLEX REACTION SCHEMES	736
45.00	rate constants for reversible reactions	700	16.9	Competitive inhibitors block the active site	, 00
15.20	Temperature jump experiments can be used to determine the association and dissociation rate constants for dimerization	701	16.10	of the enzyme in a reversible way A competitive inhibitor does not affect the	736
15.21	The rate constants for a cyclic set of reactions	701		maximum velocity of the reaction, $V_{\rm max}$, but it increases the Michaelis constant, $K_{\rm M}$	737
C.	are coupled FACTORS THAT AFFECT THE RATE		16.11	Reversible noncompetitive inhibitors decrease the maximum velocity, $V_{\rm max}$, without affecting	
	CONSTANT	705		the Michaelis constant, $K_{\rm M}$	740

16.12	Substrate-dependent noncompetitive inhibitors only bind to the enzyme when the substrate is present	741		er Reading	785
16.13	Some noncompetitive inhibitors are linked irreversibly to the enzyme	742	_	ter 17 Diffusion and Transport	787
16.14	In a ping-pong mechanism the enzyme becomes modified temporarily during the reaction		A. 17.1	RANDOM WALKS Microscopic motion is well described by trajectories called random walks	787 787
16.15	For a reaction with multiple substrates, the order of binding can be random or sequential	744	17.2	The analysis of bacterial movement is simplified by considering one-dimensional random walks	
16.16	Enzymes with multiple binding sites can display allosteric (cooperative) behavior	746	17.3	with uniform step lengths and time intervals The probability distribution for the number of	788
16.17	Product inhibition is a mechanism for regulating metabolite levels in cells	749	17.3	moves in one direction is given by a Gaussian function	789
C.	PROTEIN ENZYMES	749	17.4	The probability of moving a certain distance	
16.18	Enzymes can accelerate reactions by large amounts	750		in a one-dimensional random walk is also given by a Gaussian function	791
	Transition state stabilization is a major contributor to rate enhancement by enzymes	751	17.5	The width of the distribution of displacements increases with the square root of time for	704
16.20	Enzymes can act as acids or bases to enhance reaction rates	754	17.6	random walks Random walks in two dimensions can be	794
16.21	Proximity effects are important for many reactions	756		analyzed by combining two orthogonal one- dimensional random walks	796
16.22	The serine proteases are a large family of enzymes that contain a conserved Ser-His-Asp catalytic triad	758	17.7	A two-dimensional random walk is described by two one-dimensional walks, but the effective step size for each is smaller by a factor of $\sqrt{2}$	798
	Sidechain recognition positions the catalytic triad next to the peptide bond that is cleaved	758	17.8	The assumption of uniform step lengths along each axis means that the random walk occurs	700
16.24	The specificities of serine proteases vary considerably, but the catalytic triad is conserved	760	17.9	on a grid A three-dimensional random walk is described by three orthogonal one-dimensional walks,	798
16.25	Peptide cleavage in serine proteases proceeds via a ping-pong mechanism	761		and the effective step size for each is smaller by a factor of $\sqrt{3}$	801
16.26	Angiotensin-converting enzyme is a zinc- containing protease that is an important drug target	763	17.10	The movement of bacteria in the presence of attractants or repellents is described by biased random walks	801
16.27	Creatine kinase catalyzes phosphate transfer by stabilizing a planar phosphate intermediate	764	B.	MACROSCOPIC DESCRIPTION OF DIFFUSION	802
	Some enzymes work by populating disfavored conformations	766	17.11	Fick's first law states that the flux of molecules is proportional to the concentration gradient	802
16.29	Antibodies that bind transition state analogs can have catalytic activity	768	17.12	Fick's second law describes the rate of change in concentration with time	804
D.		769	17.13	Integration of the diffusion equation allows us to	O
	Small self-cleaving ribozymes and ribonuclease proteins catalyze the same reaction	769	17.14	calculate the change in concentration with time The diffusion constant is related to the mean	805
16.31	Self-cleaving ribozymes use nucleotide bases for catalysis, even though these do not have pK_a values well suited for proton transfer	769	17.15	square displacement of molecules Diffusion constants depend on molecular	807
16.32	Hairpin ribozymes optimize hydrogen bonds to the transition state rather than to the initial		17.16	properties such as size and shape The diffusion constant is inversely related to the friction factor	809 810
	or final states	771	17.17	Viscosity is a measure of the resistance to flow	811
	There are at least two possible mechanisms for bond cleavage by the hairpin ribozyme	773		Liquids with strong interactions between molecules have high viscosity	812
	The splicing reaction catalyzed by group I introns occurs in two steps	774	17.19	The Stokes–Einstein equation allows us to	
	Metal ions facilitate catalysis by group I introns	777	17 20	calculate the diffusion coefficients of molecules	
	Substitution of oxygen by sulfur in RNA helps identify metals that participate in catalysis	777	17.20	The diffusion constants for nonspherical molecul are only slightly different from those calculated from the spherical approximation	es 814
Summ		780	17.21	Diffusion-limited reaction rate constants can	•
Key Co Proble	oncepts ms	781 782		be calculated from the diffusion constants of molecules	815

17.22	One-dimensional searches on DNA increase the rate at which transcription factors find	817		Changes in the sequence of a protein at certain positions can affect folding rates substantially	850
17.23	their targets Restricting diffusion to two-dimensional membranes can slow down the rate of	817	18.11	The nature of the transition state can be identified by mapping the effect of mutations on the folding and unfolding rates	852
	encounter but still speed up reactions	819	18.12	The process of protein folding can be described	
	Concentration gradients determine the outcomes of many biological processes	822		as funneled movement on a multidimensional free-energy landscape	856
17.25	Cells use motor proteins to transport cargo over long distances and to specific locations	823	B.	CHAPERONES FOR PROTEIN FOLDING	857
17.26	Vesicles are transported by kinesin motors that move along microtubule tracks	823		Many proteins tend to aggregate rather than fold	857
17.27	ATP hydrolysis provides a powerful driving force for kinesin movement	825	18.14	The high concentration of macromolecules inside the cell makes the problem of aggregation particularly acute	858
C.	EXPERIMENTAL MEASUREMENT OF DIFFUSION	826	18.15	Proteins inside the cell usually fold into a functional form rapidly	860
17.28	Diffusion constants can be measured experimentally in several ways	826		Some proteins form irreversible aggregates that are toxic to cells	861
17.29	Movement of molecules in solution can be driven by centrifugal forces	827		Molecular chaperones are proteins that prevent protein aggregation	863
17.30	Equilibrium centrifugation can be used to determine molecular weights	829	18.18	Hsp70 recognizes short peptides with sequences that are characteristic of the interior segments of proteins	866
	Electrophoresis provides an alternative method for driving molecular motion	830	18.19	Hsp70 binds and releases protein chains in a cycle that is coupled to ATP binding and	
	The electrophoretic mobility of nucleic acids decreases with size	831	18.20	hydrolysis The GroEL chaperonin forms a hollow	866
	Gel electrophoresis analysis of proteins is useful for size determination	832		double-ring structure within which protein molecules can fold	868
Summary		833	18.21	GroEL works like a two-stroke engine, binding and releasing proteins	870
Key Concepts Problems		834 835	18.22	GroEL-GroES can accelerate the folding of	0,0
Further Reading		836		proteins through passive and active mechanisms	872
			C.	RNA FOLDING	872
PART VI: ASSEMBLY AND ACTIVITIY		838	18.23	The electrostatic field around RNA leads to the diffuse localization of metal ions	873
Chapter 18 Folding		839	18.24	RNA folding can be driven by increasing the concentration of metal ions	874
A.	HOW PROTEINS FOLD	840	18.25	RNAs form stable secondary structural	
18.1 18.2	Protein folding is governed by thermodynamics The reversibility of protein folding can also	840		elements, which increases their tendency to misfold	875
10.2	be demonstrated by manipulating single molecules	841		RNA folding is hierarchical with multiple stable intermediates	877
18.3	Unfolded states of proteins correspond to wide distributions of different conformations	842		Collapse is an early event in the folding of RNA RNA folding landscapes are highly rugged	878 880
18.4	Protein folding cannot be explained by an exhaustive search of conformational space	844	Summary		882
18.5	Many small proteins populate only fully unfolded and fully folded states	844	•		883 884
18.6	The order in which secondary and tertiary interactions form can vary in different proteins	845	Further Reading 88 Chapter 19 Fidelity in DNA and Protein		886
18.7	Folding rates are faster when residues close in sequence end up close together in the folded structure	QAZ	Synthesis 88		887
18.8	The folding of some proteins involves the formation of transiently stable intermediates	846 847	A.	MEASURING THE STABILITY OF DNA DUPLEXES	888
18.9	Folding pathways can have multiple intermediates	850	19.1	The difference in free energy between matched and mismatched base pairs can be determined by measuring the melting temperature of DNA	888

xxii DETAILED CONTENTS

19.2	DNA melting can be studied by UV absorption spectroscopy	889	19.19	DNA polymerases recognize DNA using the backbone and minor groove	915
19.3	The changes in enthalpy and entropy associated with DNA melting can be determined from the			DNA polymerases sense the shapes of correctly paired bases	917
19.4	concentration dependence of melting curves DNA duplexes containing a mismatched base pair at one end are only marginally less stable than duplexes with matched bases	890 892		The shape of a nucleotide is more important for its being incorporated into DNA than its ability to form hydrogen bonds	918
19.5	The entropy of each DNA chain is reduced		19.22	The growing DNA strand can shuttle between the polymerase and exonuclease active sites	919
	upon forming a duplex	894	C.	HOW RIBOSOMES ACHIEVE FIDELITY	920
19.6	The stability of DNA depends on the pattern on base stacks in the duplex	895	19.23	The ribosome has two subunits, each of which is a large complex of RNA and proteins	921
19.7	Base stacking is more important than hydrogen bonding in determining the stability of DNA helices	897	19.24	Protein synthesis on the ribosome occurs as a repeated series of steps of tRNA and protein binding, with conformational changes	
B.	FIDELITY IN DNA REPLICATION	898		in the ribosome	921
19.8	The process of DNA replication is very accurate	898	19.25	Selection of the correct A-site tRNA by	
19.9	The energy of DNA base-pairing cannot explain the accuracy of DNA replication	900		base-pairing alone cannot explain ribosome fidelity	923
19.10	The overall process of DNA synthesis can be described as a series of kinetic steps	902	19.26	A ribosome-induced bend in the EF-Tu•tRNA complex plays an important role in generating specificity	924
19.11	Primer elongation by polymerase is quite rapid	904	19 27	The ribosome undergoes conformational	724
19.12	The rate-limiting step in the DNA synthesis reaction is a conformational change in DNA			changes during the process of tRNA selection	925
19 13	polymerase Determination of the values of V_{max} and K_{M}	905	19.28	Tight interactions in the decoding center can only occur for correct codon–anticodon	024
17.10	for the incorporation of correct and incorrect base pairs provides insights into fidelity	907	19.29	pairs Coupling of the decoding center and the	926
19.14	DNA polymerase has a nuclease activity that			GTPase active site of EF-Tu involves multiple conformational rearrangements	929
	can remove bases from the 3' end of a DNA strand	908	19.30	The active site of EF-Tu needs only a small rearrangement to be activated	930
19.15	The structure of DNA polymerase has fingers, palm, and thumb subdomains	909	19.31	Release of EF-Tu allows the aminoacyl group of the A-site tRNA to move to the	
19.16	DNA polymerase binds DNA using the "palm" and nearly encircles it	910	40.00	peptidyl transfer center	931
19.17	The active site of polymerase contains two			The ribosome catalyzes peptidyl transfer	932 934
	metals ions that catalyze nucleotide addition	911	Summary		
19.18	A conformational change in DNA polymerase upon binding dNTP contributes to replication fidelity		Key Concepts Problems		
		913		erns er Reading	936 937
	nuoney	/ 10	ruitile	i Neaulig	73/