BT 3074 - Practical 04

1. Derive the best-fitted line analytically for the function $f(x_i) = mx_i + b$.

fcni)= mnitb.	
it s = sum of squares errors;	
s= & (y;-f(n;))2	
= 2 (yi - (mni+b))2	
at the mininum Sa	
$\frac{\partial S}{\partial M} = 0, \frac{\partial S}{\partial b} = 0.$	
05 = \$ 2(-7;)(y;-(mni+b))=0, 05 = \$2(-1) (yî-(mai-
-2 & (yi-(maitb)) ai=0	-2 = (y-(Mai+b))=0.
(yi-(mni+b))ni=0.	> (y-(maith) = 0.
y (yini - (mai2+bai))=0.	2 y - & MAI - & b = 0
\$ yini - \$ (mai+ bni)=0.	12 y = 2 mai + 2 b
2 yimi - & mai2 - & bai=0.	n = n = n = 1 + bn
2 ymi = & mai2 + & bmi	y = m = n; + bn.
i=1 h = m = mi=1 + b = mi=1	5= (& y ~ m & ni
m = (& y; a; - b & ni)	

2. Consider a data set with 20 data points that change with time and find the best-fit function for that data set.

Insert your data set.

t=0	t=1	t=2	t=3	t=4	t=5	t=6	t=7	t=8	t=9
3	4.5	5	6.5	7.9	9.8	13.3	15	14	15.6
t=10	t=11	t=12	t=13	t=14	t=15	t=16	t=17	t=18	t=19
18.9	18.5	20	21.5	25.1	28.5	29	27.5	29	32.5

Insert the fitted function.

m =
$$1.5568$$
, b = 2.4657
 $f(x_i) = 1.5568x_i + 2.4657$

Insert the figure with data set and the fitted function.

