

1: West Coast Metabolomics Center

Advanced Strategies for Metabolomic Data Analysis

Dmitry Grapov, PhD

Analysis at the Metabolomic Scale

Multivariate Analysis

Multivariate Analysis

Simultaneous analysis of many variables

- Visualization
- Clustering
- Projection
- Modeling
- Networks

Clustering

Identify

- patterns
- group structure
- relationships
- Evaluate/refine hypothesis
- Reduce complexity

Cluster Analysis

Use the concept similarity/dissimilarity to group a collection of samples or variables

Approaches

- •hierarchical (HCA)
- •non-hierarchical (k-NN, k-means)
- distribution (mixtures models)
- density (DBSCAN)
- self organizing maps (SOM)

Hierarchical Cluster Analysis

 similarity/dissimilarity defines "nearness" or distance

euclidean manhattan Mahalanobis non-euclidean

Hierarchical Cluster Analysis

Agglomerative/linkage algorithm defines how points are grouped

Visualization: Dendrogram

Implementation of Clustering

Overview

Confirmation

Multidimensional Scaling

Projection of Data

The algorithm defines the position of the light source

Principal Components Analysis (PCA)

- unsupervised
- maximize variance (X)

Partial Least Squares Projection to Latent Structures (PLS)

- supervised
- maximize covariance (Y ~ X)

PCA: Goals

(学)

Non-supervised dimensional reduction technique

Principal Components (PCs)

 projection of the data which maximize variance explained

Results

- eigenvalues = varianceexplained
- •scores = new coordinates for samples (rows)
- loadings = linear combination of original variables which

James X. Li, 2009, VisuMap Tech.

Interpreting PCA Results

Variance explained (eigenvalues)

Row (sample) scores and column (variable) loadings

PCA Example

*no scaling or centering

How are scores and loadings related?

Centering and Scaling

Method	Formula	Unit	Goal	Advantages	Disadvantages	
Centering	$\widetilde{x}_{ij} = x_{ij} - \overline{x}_i$	0	Focus on the differences and not the similarities in the data	Remove the offset from the data	When data is heteroscedastic, the effect of this pretreatment method is not always sufficient	
Autoscaling	$\tilde{x}_{ij} = \frac{x_{ij} - \overline{x}_i}{s_i}$	(-)	Compare metabolites based on correlations	All metabolites become equally important	Inflation of the measurement errors	
Range scaling	$\widetilde{x}_{ij} = \frac{x_{ij} - \overline{x}_i}{\left(x_{i_{\max}} - x_{i_{\min}}\right)}$	(-)	Compare metabolites relative to the biological response range	All metabolites become equally important. Scaling is related to biology	Inflation of the measurement errors and sensitive to outliers	
Pareto scaling	$\tilde{x}_{ij} = \frac{x_{ij} - \overline{x}_i}{\sqrt{s_i}}$	0	Reduce the relative importance of large values, but keep data structure partially intact	Stays closer to the original measurement than autoscaling	Sensitive to large fold changes	
Vast scaling	$\bar{x}_{ij} = \frac{\left(x_{ij} - \overline{x}_i\right)}{s_i} \cdot \frac{\overline{x}_i}{s_i}$	(-)	Focus on the metabolites that show small fluctuations	Aims for robustness, can use prior group knowledge	Not suited for large induced variation without group structure	
Level scaling	$\widetilde{x}_{ij} = \frac{x_{ij} - \overline{x}_i}{\overline{x}_i}$	(-)	Focus on relative response	Suited for identification of e.g. biomarkers	Inflation of the measurement errors	
Log transformation	$\bar{x}_{ij} = \log(x_{ij})$ $\hat{x}_{ij} = \tilde{x}_{ij} - \bar{x}_{i}$	Log O	Correct for heteroscedasticity, pseudo scaling. Make multiplicative models additive	Reduce heteroscedasticity, multiplicative effects become additive	Difficulties with values with large relative standard deviation and zeros	
Power transformation	$\tilde{x}_{ij} = \sqrt{\left(x_{ij}\right)}$	10	Correct for heteroscedasticity, pseudo scaling	Reduce heteroscedasticity, no problems with small values	Choice for square root is arbitrary.	

 $\widehat{x}_{ij} = \widetilde{x}_{ij} - \widetilde{x}_i$

Data scaling is very important!

*autoscaling (unit variance and centered)

Use PLS to test a hypothesis

Loadings on the first latent variable (x-axis) can be used to interpret the multivariate changes in metabolites which are correlated with time

Modeling multifactorial relationships

~two-way ANOVA

dynamic changes among groups

"goodness" of the model is all about the perspective

Determine in-sample (Q²) and outof-sample error (RMSEP) and compare to a random model

- permutation tests
- •training/testing

Biological Interpretation

Projection or mapping of analysis results into a biological context.

- Visualization
- Enrichment
- Networks
 - biochemical
 - structural
 - empirical

Ingredients for Network Mapping

1. Determine connections

- Substrate/product (KEGG, biocyc)
- chemical similarity (Tanimoto similarity)
- dependency (partial correlation)

2. Determine vertex properties

- magnitude
- importance
- direction
- relationships
- etc.

Making Connections Based on Biochemistry

- Organism specific biochemical relationships
- KEGG
 - paid API
 - download freeKGML file
- BioCyc
 - Free API

GLYCEROLIPID METABOLISM

D-Glycerate

Making Connections Based on Structural Similarity

- Use structure to generate molecular fingerprint
- Calculate similarities between metabolites based on fingerprint
- PubChem service for similarity calculations

http://pubchem.ncbi.nlm.nih.gov//score_matrix/score_matrix.cgi

Metamapp online tool for data formatting

http://uranus.fiehnlab.ucdavis.edu:8080/MetaMapp/homePage

Chemical mapping

of substructure comparison using PubChem

substructure matrix decomposition and Tanimoto chemical similarity calculations

BMC Bioinformatics 2012, 13:99 doi:10.1186/1471-2105-13-99

Ingredients for Mapped Networks

- 1. edge list
 - biochemical
 - structural
 - empirical
- 2. vertex attributes
 - user-defined
 - based on analysis results
- 3. Visualization

Edge list						
Source	Target		Score			
19	1	43	25			
19		51	23			
43		51	76			

CID	names	fold change	p-values	
19	2,3-dihydroxybenzoic acid	2.5	0.2118	
43	2-hydroxyglutaric acid	1.4	0.0054	
51	alpha ketoglutaric acid	1.3	0.3239	
71	2-ketoadipic acid	4.6	0.1435	
119	GABA	1.6	0.0001	

Variable Relationships Identity carbohydrate bigil amino acid unknown organic acid misc. Change increase decrease **Importance** p-value < 0.05 PLS-DA Dependence positive negative

Summary

- Multivariate analysis is useful for
 - Visualization
 - Exploration and overview
 - Complexity reduction
 - Identification of multidimensional relationships and trends
 - Mapping to networks
 - Generating holistic summaries of findings

Resource

The R Project for Statistical Computing

POA 5 Years

| Computing | Post | Post

- Mapping tools (review)
 - Brief Bioinform (2012) doi: 10.1093/bib/bbs055
- Tutorials and Examples

http://imdevsoftware.wordpress.com/category/uncategorized/ https://github.com/dgrapov/TeachingDemos

- Chemical Translations Services
 - CTS: http://cts.fiehnlab.ucdavis.edu/
 - R-interface: https://github.com/dgrapov/CTSgetR
 - CIR: http://cactus.nci.nih.gov/chemical/structure
 - R-interface: https://github.com/dgrapov/CIRgetR