Semestrální zkouška ISS, 1. opravný termín, 23.1.2018, skupina B

Login: Příjmení a jméno: Podpis: Podpis: (čitelně!)

Příklad 1 Na obrázku je periodický signál se spojitým časem (posunutá cosinusovka) s kruhovou frekvencí $\omega_1 = 2\pi \text{ rad/s}$. Napište indexy a hodnoty všech nenulových koeficientů Fourierovy řady c_k .

Fourierova řada reálného periodického signálu se spojitým časem má nenulové koeficienty Příklad 2 $c_3 = 2e^{-j\frac{\pi}{7}}$. Napište indexy a hodnoty chybějících nenulových koeficientů, nebo "nechybí $c_1 = 5e^{j\frac{\pi}{8}},$ žádné".

Příklad 3 Pro signál se spojitým časem x(t), který má tvar obdélníka, vychází argumentová část spektrální funkce následovně:

spektralm runkce hashedovne:
$$\arg X(j\omega) = \begin{cases} +\pi & \text{pro intervaly } [1000\pi, 2000\pi], \ [3000\pi, 4000\pi], \dots \\ -\pi & \text{pro intervaly } [-1000\pi, -2000\pi], \ [-3000\pi, -4000\pi], \dots \\ 0 & \text{jinde} \end{cases}$$

Nakreslete argumentovou část spektrální funkce signálu y(t), který je oproti x(t) o 1 ms zpožděný: y(t) = x(t - 0.001).

Příklad 4 Vypočtěte a nakreslete spektrální funkci (modul i argument) posunutého Diracova impulsu: $x(t) = \delta(t+1)$

Příklad 5 Nakreslete výsledek konvoluce dvou signálů se spojitým časem:
$$y(t) = x_1(t) \star x_2(t)$$
. $x_1(t) = \begin{cases} 1 & \text{pro } 0 \leq t \leq 1 \\ 0 & \text{jinde} \end{cases}$ a $x_2(t) = \begin{cases} 1 & \text{pro } 0 \leq t \leq 1.5 \\ 0 & \text{jinde} \end{cases}$

Příklad 11 Vypočtěte kruhovou konvoluci dvou signálů s diskrétním časem o délce N = 5:

n	0	1	2	3	4
$x_1[n]$	4	0	1	0	1
$x_2[n]$	1	1	0	3	1
$x_1[n] \otimes x_2[n]$					

Příklad 12 V libovolném programovacím jazyce (kromě Matlab, Octave, atd), napište úsek kódu pro výpočet modulu k-tého koeficientu Diskrétní Fourierovy transformace (DFT) |X[k]| reálného signálu x[n]. Proměnná N obsahuje počet vzorků a vstupní vzorky jsou uloženy v poli x. Je povoleno využít pouze funkce \sin , \cos a sqrt ; programovací jazyk neumí komplexní čísla, práci s nimi musíte naprogramovat sami.

Příklad 13 Koeficienty Diskrétní Fourierovy Transformace (DFT) reálného signálu x[n] o délce N=16 jsou X[k]. Koeficienty signálu y[n] jsou dány jako $Y[k]=X[k]e^{-j2\pi\frac{3}{16}k}$. Napište matematicky nebo slovně vztah mezi signály x[n] a y[n].

Příklad 14 Výstupní vzorek y[n] číslicového filtru je vypočítán jako aritmetický průměr současného a čtyř předcházejících vzorků na vstupu: x[n-4], x[n-3], x[n-2], x[n-1], x[n]. Nakreslete schéma tohoto filtru.

Příklad 15 Modul frekvenční charakteristiky $|H(e^{j\omega})|$ čistě FIR filtru 6-řádu (v čitateli jsou tedy koeficienty $b_0 \dots b_6$) je na obrázku. Nakreslete v z-rovině přibližně pozice nulových bodů filtru. Nezapomeňte, že pokud jsou nulové body komplexní, musí být v komplexně sdružených párech.

Příklad 16 Přenosová funkce číslicového filtru je $H(z) = \frac{1}{1-0.707z^{-1}}$. Určete modul a argument frekvenční charakteristiky tohoto filtru $H(e^{j\omega})$ na normované kruhové frekvenci $\omega = \frac{\pi}{4}$ rad.

Pomůcka: $\sqrt{2} = 1.414$, $\frac{1}{\sqrt{2}} = 0.707$

Příklad 17 Napište matici (masku) 2D filtru o velikosti 3×3 pro zvýraznění šikmých (zleva nahoře doprava dolů) hran v obrázku.

Příklad 18 Pixely obrázku o rozměrech 100×100 mají hodnoty 0 (černá) až 1 (bílá). Napište, zda bude koeficient X[0,0] jeho 2D diskrétní Fourierovy transformace (2D-DFT) reálný nebo komplexní a v jakém intervalu bude jeho hodnota.

Příklad 19 V tabulce jsou hodnoty vzorku n=7 náhodného signálu pro $\Omega=10$ realizací:

	v v					0 1				
ω	1	2	3	4	5	6	7	8	9	10
$\xi_{\omega}[7]$	-0.34	2.03	1.72	0.93	1.71	0.79	0.87	2.48	2.42	2.41

Proveďte souborový odhad distribuční funkce F(x,7) a nakreslete ji.

Příklad 20 Na obrázku je signál o délce N=200 vzorků ovlivněný šumem. Odhadněte zadaný autokorelační koeficient. Použijte standardní vychýlený odhad: $\hat{R}_{vych}[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n]x[n+k]$.

 $R[50] = \dots$