Rappels et Révisions

Chapitre RR

Économétrie des séries temporelles

2 / 22

Concepts:

Méthode Box-Jenkins

Stabilité

Inversibilité

Analyse des racines

Autocovariances et Autocorrélations

Méthode Box-Jenkins

- A. Sélection du modèle
 - 1. Évaluation de la stationnarité
 - 2. Sélection de la différenciation (d) pour résoudre les problèmes de stationnarité
 - 3. Sélection de l'AR(p)
 - 4. Sélection du MA(q)
- B. Estimation des paramètres
- C. Vérification du modèle

A. Sélection du Modèle

1. Évaluation de la stationnarité

- Vérifier si la série est stationnaire (moyenne et variance constantes).
- Utiliser les tests de racine unitaire (ADF, KPSS) si nécessaire.

2. Sélection de la différenciation (d)

- Appliquer la différenciation pour rendre la série stationnaire.
- Choisir l'ordre d en fonction du nombre de différenciations nécessaires.

3. Sélection de l'AR(p)

- ▶ Identifier l'ordre p en analysant la **PACF** (Partial Autocorrelation Function).
- Les pics significatifs dans la PACF indiquent l'ordre AR.

4. Sélection du MA(q)

- ▶ Identifier l'ordre q en analysant l'**ACF** (Autocorrelation Function).
- Les pics significatifs dans l'ACF indiquent l'ordre MA.

B. Estimation des Paramètres

- Méthode: Utiliser l'estimation par maximum de vraisemblance (MLE) ou les moindres carrés (uniquement valable pour l'AR).
- ▶ **Objectif**: Trouver les paramètres ϕ_1, \ldots, ϕ_p (AR) et $\theta_1, \ldots, \theta_q$ (MA) qui maximisent la vraisemblance du modèle.

C. Vérification du Modèle

1. Analyse des résidus

- Vérifier que les résidus sont un bruit blanc (pas d'autocorrélation).
- Utiliser les tests d'autocorrélation.
- Utiliser les tests de normalité et d'hétéroscédasticité.

2. Critères d'information

- ▶ AIC (Akaike Information Criterion) = $\ln(\hat{\sigma}^2) + \frac{2k}{T}$ où $\hat{\sigma}^2$ est la variance estimée des résidus et k est le nombre de paramètres.
- ▶ **BIC** (Bayesian Information Criterion) = $\ln(\hat{\sigma}^2) + \frac{k \ln(T)}{T}$.
- Préférer le modèle avec la plus faible valeur d'AIC ou BIC.

3. Principe de parcimonie

 Choisir le modèle le plus simple (moins de paramètres) capable de capturer la dynamique de la série.

4. Inversibilité

- Pour les modèles MA, s'assurer que les racines de l'équation caractéristique sont à l'extérieur du cercle unité (|z| > 1).
- Exemple : Pour $Y_t = \theta_1 \varepsilon_{t-1} + \varepsilon_t$, l'équation caractéristique est $1 \theta_1 z = 0$, et la racine doit vérifier |z| > 1.

5. Stabilité

- Pour les modèles AR, s'assurer que les racines de l'équation caractéristique sont à l'extérieur du cercle unité (|z| > 1).
- Exemple : Pour $Y_t = \phi_1 Y_{t-1}^{(-)} + \varepsilon_t$, l'équation caractéristique est $z \phi_1 = 0$, et la racine doit vérifier |z| > 1.
- ▶ Si $|z| \le 1$, le processus est **instable** (explosif ou métastable).

Inversibilité vs Stabilité dans les Modèles ARMA

Stabilité (pour les modèles AR)

- ▶ **Définition** : Un processus AR(p) est **stable** si toutes les racines de son équation caractéristique sont à l'extérieur du cercle unité (|z| > 1).
- **Équation caractéristique** : Pour un AR(p) :

$$z^{p} - \phi_1 z^{p-1} - \phi_2 z^{p-2} - \dots - \phi_p = 0.$$

- ► Implications :
 - ▶ Si toutes les racines ont |z| > 1, le processus est **stable** (ou convergent).
 - Si au moins une racine a $|z| \le 1$, le processus est **instable** (explosif ou métastable).
- **Exemple**: Pour un AR(1) $Y_t = 0.8Y_{t-1} + \varepsilon_t$, la racine est z = 1.25 (|z| > 1), donc le processus est stable.

Inversibilité (pour les modèles MA)

- ▶ **Définition** : Un processus MA(q) est **inversible** s'il peut être écrit comme un $AR(\infty)$ convergent. Cela nécessite que les racines de son équation caractéristique soient à l'extérieur du cercle unité (|z| > 1).
- ► Équation caractéristique : Pour un MA(q) :

$$1 - \theta_1 z - \theta_2 z^2 - \dots - \theta_q z^q = 0.$$

- ► Implications :
 - \blacktriangleright Si toutes les racines ont |z| > 1, le processus est inversible.
 - Si au moins une racine a $|z| \le 1$, le processus est non inversible.
- **Exemple**: Pour un MA(1) $Y_t = 0.5\varepsilon_{t-1} + \varepsilon_t$, la racine est z = 2 (|z| > 1), donc le processus est inversible.

Différence Clé entre Stabilité et Inversibilité

- Stabilité: Concerne les modèles AR et garantit que le processus ne diverge pas (pas de racines unitaires ou explosives).
- ▶ Inversibilité : Concerne les modèles MA et garantit que le processus peut être représenté de manière unique comme un $AR(\infty)$.

Pourquoi ces Concepts sont Importants?

- ► Stabilité :
 - Un processus AR stable est stationnaire.
 - Les prévisions sont fiables et convergent vers une valeur à long terme.
- Inversibilité :
 - Un processus MA inversible peut être représenté de manière unique.
 - Évite les ambiguïtés dans l'interprétation des coefficients MA.

Exemple Pratique ARMA(1,1):

$$Y_t = 0.8Y_{t-1} + 0.5\varepsilon_{t-1} + \varepsilon_t$$

- Partie AR :
 - Équation caractéristique : z 0.8 = 0.
 - Racine : z = 1.25 (|z| > 1).
 - Stable.
- Partie MA:
 - Équation caractéristique : 1 0.5z = 0.
 - Racine : z = 2 (|z| > 1).
 - Inversible.

Processus ARMA et Analyse des Racines

Équation Caractéristique

Un processus AR(p) s'écrit :

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + \varepsilon_t.$$

En utilisant l'opérateur de retard L, cela devient :

$$Y_t = \phi_1 L Y_t + \phi_2 L^2 Y_t + \dots + \phi_p L^p Y_t + \varepsilon_t.$$

On peut regrouper les termes en Y_t :

$$Y_t - \phi_1 L Y_t - \phi_2 L^2 Y_t - \dots - \phi_p L^p Y_t = \varepsilon_t.$$

Cela se réécrit sous forme polynomiale :

$$(1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p) Y_t = \varepsilon_t.$$

l'équation caractéristique est :

$$z^{p} - \phi_1 z^{p-1} - \phi_2 z^{p-2} - \dots - \phi_p = 0.$$

Calcul des Racines

Racines réelles : Si le discriminant $\Delta = b^2 - 4ac \ge 0$, les racines sont réelles :

$$z=\frac{-b\pm\sqrt{\Delta}}{2a}.$$

Racines complexes : Si $\Delta < 0$, les racines sont complexes conjuguées :

$$z=\frac{-b\pm i\sqrt{|\Delta|}}{2a}.$$

Module des Racines

Pour une racine complexe z = a + ib, le module est :

$$|z|=\sqrt{a^2+b^2}.$$

Classification des Processus

- **Convergent (Stable)**: Toutes les racines ont |z| < 1.
- **Explosif**: Au moins une racine a |z| > 1.
- ▶ **Métastable** : Au moins une racine a |z| = 1.

11 / 22

Exemples Pratiques

Exemple 1 : AR(2) Convergent

$$Y_t = 0.6Y_{t-1} + 0.3Y_{t-2} + X_t$$

- Équation caractéristique : $z^2 0.6z 0.3 = 0$.
- ▶ Racines : $z_1 \approx 0.92$, $z_2 \approx -0.32$. ▶ Modules : $|z_1| \approx 0.92$, $|z_2| \approx 0.32$.
- Classification : Convergent.

Exemple 2 : AR(2) avec Racines Complexes

$$Y_t = -0.5Y_{t-1} - 0.4Y_{t-2} + X_t$$

- Équation caractéristique : $z^2 + 0.5z + 0.4 = 0$.
- ► Racines : $z_1 \approx -0.25 + 0.58i$, $z_2 \approx -0.25 0.58i$.
- ▶ Modules : $|z_1| = |z_2| \approx 0.63$.
- Classification : Convergent.

Exemple 3 : AR(1) Explosif

$$Y_t = 1.2Y_{t-1} + X_t$$

- Équation caractéristique : z 1.2 = 0.
- Racine : z = 1.2.
- ▶ Module : |z| = 1.2.
- Classification : Explosif.

A Retenir

- **Stabilité** : Vérifiez toujours |z| < 1 pour la convergence.
- ▶ Racines complexes : Leur module détermine la stabilité.
- ▶ **Métastable** : Rare en pratique, mais important à reconnaître.

Formules Utiles

- **Discriminant** : $\Delta = b^2 4ac$.
- ► Module : $|z| = \sqrt{a^2 + b^2}$.
- ▶ Racines complexes : $z = \frac{-b \pm i\sqrt{|\Delta|}}{2a}$.
- Racines réelles : $z = \frac{-b \pm \sqrt{\Delta}}{2\pi}$.

Exemple : Processus AR(2) Convergent et Stable (Racines Réelles)

Modèle AR(2)

Considérons le processus AR(2) suivant :

$$Y_t = 0.6Y_{t-1} + 0.3Y_{t-2} + X_t,$$

où X_t est un bruit blanc.

Équation Caractéristique

L'équation caractéristique associée est :

$$z^2 - 0.6z - 0.3 = 0.$$

Calcul des Racines

Pour résoudre l'équation, on utilise la formule quadratique :

$$z=\frac{-b\pm\sqrt{b^2-4ac}}{2a},$$

avec a = 1, b = -0.6, et c = -0.3. Le discriminant est :

$$\Delta = b^2 - 4ac = (-0.6)^2 - 4(1)(-0.3) = 0.36 + 1.2 = 1.56.$$

Les racines sont donc :

$$\begin{split} z_1 &= \frac{0.6 + \sqrt{1.56}}{2} \approx \frac{0.6 + 1.249}{2} \approx 0.9245, \\ z_2 &= \frac{0.6 - \sqrt{1.56}}{2} \approx \frac{0.6 - 1.249}{2} \approx -0.3245. \end{split}$$

Modules des Racines

Pour $z_1 \approx 0.9245$:

$$|z_1| = |0.9245| = 0.9245 < 1.$$

▶ Pour $z_2 \approx -0.3245$:

$$|z_2| = |-0.3245| = 0.3245 < 1.$$

Classification

- Les deux racines ont un module strictement inférieur à 1 ($|z_1| < 1$ et $|z_2| < 1$).
- Le processus est donc convergent (ou stable).

Conclusion

Le processus AR(2):

$$Y_t = 0.6Y_{t-1} + 0.3Y_{t-2} + X_t$$

est **convergent et stable**, car toutes les racines de son équation caractéristique ont un module inférieur à 1.

16 / 22

Exemple: Processus AR(2) Instable (Racines Réelles)

Modèle AR(2)

Considérons le processus AR(2) suivant :

$$Y_t = 1.2Y_{t-1} + 0.3Y_{t-2} + X_t,$$

où X_t est un bruit blanc.

Équation Caractéristique

L'équation caractéristique associée est :

$$z^2 - 1.2z - 0.3 = 0.$$

Calcul des Racines

Pour résoudre l'équation, on utilise la formule quadratique :

$$z=\frac{-b\pm\sqrt{b^2-4ac}}{2a},$$

avec a = 1, b = -1.2, et c = -0.3.

Le discriminant est :

$$\Delta = b^2 - 4ac = (-1.2)^2 - 4(1)(-0.3) = 1.44 + 1.2 = 2.64.$$

Les racines sont donc :

$$z_1 = \frac{1.2 + \sqrt{2.64}}{2} \approx \frac{1.2 + 1.6248}{2} \approx 1.4124,$$

 $z_2 = \frac{1.2 - \sqrt{2.64}}{2} \approx \frac{1.2 - 1.6248}{2} \approx -0.2124.$

Modules des Racines

Pour $z_1 \approx 1.4124$:

$$|z_1| = |1.4124| = 1.4124 > 1.$$

▶ Pour $z_2 \approx -0.2124$:

$$|z_2| = |-0.2124| = 0.2124 < 1.$$

Classification

- ▶ Une racine a un module supérieur à 1 ($|z_1| > 1$).
- Le processus est donc instable (ou explosif).

Conclusion

Le processus AR(2):

$$Y_t = 1.2Y_{t-1} + 0.3Y_{t-2} + X_t$$

est instable, car au moins une racine de son équation caractéristique a un module supérieur à $1.\,$

19 / 22

Synthèse des Processus AR/ARMA et leurs Racines Caractéristiques

Processus	Équation	Racines Caractéristiques	Module	Comportement
AR(1) Stable	$Y_t = 0.6Y_{t-1} + \varepsilon_t$	z = 0.6	z = 0.6 < 1	Convergent (Stable)
AR(1) Instable	$Y_t = 1.2Y_{t-1} + \varepsilon_t$	z = 1.2	z = 1.2 > 1	Explosif (Instable
AR(1) Métastable	$Y_t = Y_{t-1} + \varepsilon_t$	z = 1	z = 1	Métastable
AR(2) Racines Réelles	$Y_t = 0.6Y_{t-1} + 0.3Y_{t-2} + \varepsilon_t$	$z_1 \approx 0.92$, $z_2 \approx -0.32$	$ z_1 \approx 0.92$, $ z_2 \approx 0.32$	Convergent (Stable)
AR(2) Racines Complexes	$Y_t = -0.5Y_{t-1} - 0.4Y_{t-2} + \varepsilon_t$	$z = -0.25 \pm 0.58i$	$ z \approx 0.63$	Convergent (Stable)
AR(2) Racine Double	$Y_t = 1.0Y_{t-1} - 0.25Y_{t-2} + \varepsilon_t$	z = 0.5 (double)	z = 0.5 < 1	Convergent (Stable)
AR(2) Racine Unitaire	$Y_t = 1.5Y_{t-1} - 0.5Y_{t-2} + \varepsilon_t$	$z_1 = 1, z_2 = 0.5$	$ z_1 = 1,$ $ z_2 = 0.5$	Métastable
AR(2) Instable	$Y_t = 1.2Y_{t-1} + 0.3Y_{t-2} + \varepsilon_t$	$z_1 \approx 1.41$, $z_2 \approx -0.21$	$ z_1 \approx 1.41 > 1,$ $ z_2 \approx 0.21 < 1$	Explosif (Instable
MA(1)	$Y_t = \varepsilon_t + 0.5\varepsilon_{t-1}$	Pas de racines AR		Toujours Stationnaire
ARMA(1,1)	$Y_t = 0.8Y_{t-1} + \varepsilon_t + 0.5\varepsilon_{t-1}$	z = 0.8 (partie AR)	z = 0.8 < 1	Convergent (Stable)

Comportement de l'ACF et de la PACF pour divers membres de la famille ARMA.

Processus	ACF	PACF
Bruit Blanc	Tous à 0	Tous à 0
AR(1)	$\rho_s = \phi_s$	0 au-delà du décalage 2
AR(P)	Décroît vers zéro de manière exponentielle	Non nuls jusqu'au décalage P, 0 ensuite
MA(1)	$\rho_1 \neq 0, \ \rho_s = 0, \ s > 1$	Décroît vers zéro de manière exponentielle
MA(Q)	Non nuls jusqu'au décalage Q, 0 ensuite	Décroît vers zéro de manière exponentielle
ARMA(P,Q)	Décroissance exponentielle	Décroissance exponentielle

Annexes : Calcul de l'Autocovariance et des Autocorrélations

Les annexes sont disponibles avec les deux approches suivantes :

A.1 Équations de Yule-Walker

A.2 Substitution rétroactive