Équations différentielles

Olivier Sellès, transcrit par Denis Merigoux

Table des matières

1	Gér	néralité	és	2
	1.1	Notion	d'équation différentielle	2
		1.1.1	Équation différentielle	2
		1.1.2	Solutions	2
	1.2	Équat	ions différentielles linéaires	2
		1.2.1	Détermination de S en fonction de S_0 et d'une solution particulière	2
		1.2.2	Principe de superposition	3
		1.2.3	Méthode de variation de la constante	3
2	Équ	ation	linéaires d'ordre 1	4
	2.1	Équat	ion normalisées	4
		2.1.1	Résolution de (E) $y' + a(x)y = b(x) \dots \dots$	4
		2.1.2	Exemples	5
	2.2	Équat	ions non normalisées	6
		2.2.1	Cas général	6
		2.2.2	Exemple de problème de raccord	6
		2.2.3	Théorème de Cauchy-Lipchitz	7
3	Équ	ations	différentielles linéaires d'ordre 2 à coefficients constants	8
	3.1	3.1 Résolution de l'équation homogène		
		3.1.1	Petite histoire	
		3.1.2	Premier cas: P admet au moins une racine r dans \mathbb{K}	8
		3.1.3	Deuxième cas : P n'a pas de racines dans \mathbb{K}	9
		3.1.4	Cas particuliers	10
	3.2	Cas d	un second membre du type exponentielle-polynôme	
		3.2.1	Forme des solutions particulières	
		3.2.2	Équation différentielle vérifiée par $S(t)$	
		3.2.3	Exemples	
	3.3	Cas d	oun second membre en exponentielle-cosinus ou sinus	
		3.3.1	Méthode	
		3.3.2	Exemples	

1 Généralités

Dans la suite, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et I est un intervalle de \mathbb{R} .

1.1 Notion d'équation différentielle

1.1.1 Équation différentielle

On appelle équation différentielle toute écriture du type :

(E)
$$F(t, y, y', y'', \dots, y^{[n]}) = 0$$

où $n \in \mathbb{N}^*$, F une application de $I \times \Omega$ dans \mathbb{K} avec $\Omega \in \mathcal{P}(\mathbb{K}^{n+1})$.

1.1.2 Solutions

Une solution de (E) est un couple (J,φ) avec J un sous-intervalle de I et $\varphi:I\longrightarrow \mathbb{K}$ une application n fois dérivable telle que :

$$- \forall t \in J, \varphi(t), \varphi'(t), \dots, \varphi^{[n]}(t) \in \Omega$$

- $\forall t \in J, F(t, \varphi(t), \varphi'(t), \dots, \varphi^{[n]}(t)) = 0$

Une solution (J, φ) de (E) est dite maximale si l'on ne peut trouver d'intervalle J_1 tel que $J \subset J_1 \subset I$ et $\psi_1 : J_1 \longrightarrow \mathbb{K}$ une solution de (E) telle que $\varphi = \psi_{1|J}$ (c'est-à-dire, $\forall t \in I, \ \varphi(t) = \psi_1(t)$).

On remarque que:

- Il n'existe pas toujours de solutions.
- Même si on pose des contraintes (conditions initiales, etc), la solution n'est pas toujours unique.

1.2 Équations différentielles linéaires

Elles sont de la forme :

(E)
$$a_n(x) y^{[n]} + \cdots + a_1(x) y' + a_0(x) y = b(x)$$

où a_0, a_1, \ldots, a_n sont des applications de I dans \mathbb{K}^a .

a. En pratique, ces applications sont au moins continues.

On note que $F: I \times \mathbb{K}^{n+1} \longrightarrow \mathbb{K}$. On appelle b le second membre de (E), à (E) est associée une équation (E_0) dite sans second membre (ou homogène):

$$(E_0)$$
 $a_n(x) y^{[n]} + \cdots + a_1(x) y' + a_0(x) y = 0$

 (E_0) admet au moins une solution : la fonction nulle définie sur I à valeur dans \mathbb{K} . On notera \mathcal{S}_0 l'ensemble des solutions de (E_0) définies sur I.

1.2.1 Détermination de S en fonction de S_0 et d'une solution particulière

Notons \mathcal{S} l'ensemble des solutions de (E) sur I, et supposons connaître un élément particulier de \mathcal{S} noté φ . Alors,

$$\mathcal{S} = \{ \varphi + \varphi_0 | \varphi_0 \in \mathcal{S}_0 \}$$

Autrement dit, si on connaît une solution φ de (E) et toutes les solutions de (E_0) , alors on connaît toutes les solutions de (E).

Démonstration

 \Rightarrow Soit $\varphi_0 \in \mathcal{S}_0$. Alors $\varphi + \varphi_0$ est n fois dérivable de I dans \mathbb{K} et $\forall k \in [[0, n]], (\varphi + \varphi_0)^{[k]} = \varphi^{[k]} + \varphi_0^{[k]}$ d'où

$$\sum_{k=0}^{n} a_k (\varphi + \varphi_0)^{[k]} = \sum_{k=0}^{n} a_k \varphi^{[k]} + \sum_{k=0}^{n} a_k \varphi_0^{[k]}$$

Or, $\sum_{k=0}^{n} a_k \varphi^{[k]} = b$ et $\sum_{k=0}^{n} a_k \varphi_0^{[k]} = 0$ donc $\varphi + \varphi_0$ avec ien solution de (E).

 \Leftarrow Soit $\psi \in \mathcal{S}$. Alors $g = \psi - \varphi$ est n fois dérivable sur I et

$$\sum_{k=0}^{n} a_k g^{[k]} = \underbrace{\sum_{k=0}^{n} a_k \psi^{[k]}}_{b} - \underbrace{\sum_{k=0}^{n} a_k \varphi^{[k]}}_{b} = 0$$

Donc $g \in \mathcal{S}_0$ et $\psi = \varphi + g \in \varphi + \mathcal{S}_0$.

Bilan Ainsi, pour résoudre (E) dans I, il suffit de :

- Résoudre (E_0) .
- Trouver une solution de (E).

1.2.2 Principe de superposition

On suppose que $b = b_1 + b_2 + \cdots + b_m$ avec $b_i : I \longrightarrow \mathbb{K}$ continue et $m \in \mathbb{N}^*$. Soit (E_i) l'équation différentielle suivante :

$$(E_i)$$
 $a_n(x) y^{[n]} + \cdots + a_1(x) y' + a_0(x) y = b_i(x)$

Soit φ_i une solution de (E_i) avec $1 \le i \le n$. Alors $\varphi = \varphi_1 + \cdots + \varphi_n$ est une solution de (E).

1.2.3 Méthode de variation de la constante

Supposons que l'on connaît une solution de (E_0) notée u qui ne s'annule pas sur I. Alors toute application n fois dérivable de I dans $\mathbb K$ s'écrit sous la forme $x \longmapsto \lambda(x) \, u(x)$ où λ est n fois dérivable a de I dans $\mathbb K$. Si a est a fois dérivable de a dans $\mathbb K$ et ne s'annule pas, alors $\frac{1}{u}$ aussi. Si a est a fois dérivable de a dans $\mathbb K$ et ne s'annule pas, alors $\frac{1}{u}$ aussi. Si a est a fois dérivable de a dans $\mathbb K$ et ne s'annule pas, alors a aussi. Si a est a fois dérivable de a dans a est a est a fois dérivable de a dans a est a est a fois dérivable de a dans a est a est

 $a.\ {\rm Si}\ f,g$ sont n fois dérivables de I dans , alors fg aussi et

$$(fg)^{[n]} = \sum_{k=0}^{n} \binom{n}{k} f^{[k]} g^{[n-k]}$$

Démonstration en exercice.

On peut donc rechercher toutes les solutions de (E) sous la forme $x \mapsto \lambda(x) u(x)$ avec λn fois dérivable de I dans \mathbb{K}^a .

Exemple pour n=2

(E)
$$a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x)$$

Soit u une solution de (E_0) sur I qui ne s'annule jamais. Recherchons les solutions de (E) sous la forme λu avec λ deux fois dérivable de I dans \mathbb{K} .

a. Cette méthode ramène la résolution de (E) à la résolution d'une équation différentielle en λ' d'ordre strictement plus petit que n.

Soit $\lambda: I \longrightarrow \mathbb{K}$ deux fois dérivable et $f = \lambda u$. Alors

$$f' = \lambda' u + \lambda u'$$
 et $f'' = \lambda'' u + 2\lambda' u' + \lambda u''$

Ainsi,

$$f$$
 est solution de (E) \Leftrightarrow $a_2f'' + a_1f' + a_0f = b$
 \Leftrightarrow $a_2(\lambda''u + 2\lambda'u' + \lambda u'') + a_1(\lambda'u + \lambda u') + a_0\lambda u = b$
 $\Leftrightarrow \lambda(a_2u'' + a_1u' + a_0u) + \lambda'(2a_2u' + a_1u) + \lambda''a_2u = b$
 $\Leftrightarrow \lambda'$ est solution de $a_2uy' + (2a_2u' + a_1u)y = b$ (*)

Si on sait résoudre (*), on connaît la forme générale de λ' puis celle de λ par intégration.

2 Équation linéaires d'ordre 1

2.1 Équation normalisées

On s'intéresse ici à des équations différentielles du type

$$(E) \quad y' + a(x)y = b(x)$$

où a et b sont des fonctions de I dans \mathbb{K} , continues a.

a. Soient $\alpha,\,\beta$ et γ des applications de I dans $\mathbb K$ telles que α ne s'annule pas sur I et

(E)
$$\alpha(x) y' + \beta(x) y = \gamma(x) \Leftrightarrow y' + \frac{\beta(x)}{\alpha(x)} = \frac{\gamma(x)}{\alpha(x)}$$

Cette deuxième forme de (E) est l'équation résolue en y'.

2.1.1 Résolution de (E) y' + a(x)y = b(x)

Résolution de l'équation homogène (E_0) y' + a(x)y = 0 Soit $f: I \longrightarrow \mathbb{K}$ dérivable. On rappelle que si φ est dérivable de I dans \mathbb{K} , alors $t \stackrel{\psi}{\longrightarrow} \exp(\varphi(t))$ est aussi dérivable et $\psi'(t) = \varphi'(t) \exp(\varphi(t))$.

On remarque que si g est dérivable de I dans \mathbb{K} alors ψ est dérivable et

$$\psi'(t) = g'(t) \exp(\varphi(t)) + g(t) \varphi'(t) \exp(\varphi(t))$$
$$= (g'(t) + \varphi'(t)) \exp(\varphi(t))$$

Revenons à f. f est solution de (E_0) si et seulement si f' + af = 0. Considérons A une primitive de a sur I car a est continue. f est solution de (E_0) si et seulement si

$$f' + A'f = 0 \Leftrightarrow (f' + A'f) \exp(A) = 0 \operatorname{car} \exp(A)$$
 ne s'annule pas sur I
 $\Leftrightarrow (f \exp(A))' = 0$
 $\Leftrightarrow \exists \lambda \in \mathbb{K}/\forall t \in I, f(t) \exp(A(t)) = \lambda$
 $\Leftrightarrow \exists \lambda \in \mathbb{K}/f = \lambda \exp(-A)$

b. Au brouillon uniquement, on peut écrire pour se souvenir :

$$y' + ay = 0 \Leftrightarrow \frac{y'}{y} = -a$$

 $\Leftrightarrow \ln(y) = -\int^x a + \lambda$
 $\Leftrightarrow y = \lambda \exp\left(-\int^x a\right)$

Bilan

Soit A une primitive de a sur I. Alors,

$$S_0 = \{ \lambda \exp(-A) \mid \lambda \in \mathbb{K} \}$$

Recherche d'une solution particulière de (E) y' + a(x)y = b(x) Notons A une primitive de a sur I. Alors $u = \exp(-A)$ est une solution de (E_0) qui ne s'annule jamais. Recherchons une solution de (E) sous la forme $t \stackrel{\psi}{\longmapsto} \lambda(t)u(t)$ avec λ dérivable de I dans \mathbb{K} . Alors

$$\varphi$$
 est solution de S \Leftrightarrow $\varphi' + a\varphi = b$
 \Leftrightarrow $\lambda' u + \lambda u' + a\lambda u = b$
 \Leftrightarrow $\lambda' u = b$
 \Leftrightarrow $\lambda' = \frac{b}{u} = b \exp(A)$

Soit B une primitive de $b \exp(A)$. Alors $\varphi = B \exp(-A)$ est solution de E donc :

$$S = \varphi + S_0 = \{t \longrightarrow (B(t) + \lambda) \exp(-A(t)) | t \in I\}$$

2.1.2 Exemples

(1) $I = \mathbb{R}_+^*$. Résoudre (E) $x^2y' + y = 1 \Leftrightarrow y' + \frac{1}{x^2}y = \frac{1}{x^2}$ car $x^2 \neq 0 \ \forall x \in I$.

Solution de (E_0) $y' + \frac{1}{x^2}y = 0$ Une primitive sur \mathbb{R}_+^* de $x \mapsto \frac{1}{x^2}$ est $x \mapsto -\frac{1}{x}$ donc l'ensemble des solutions de (E_0) est

$$S_0 = \left\{ x \in \mathbb{R}_+^* \longmapsto \lambda \exp\left(\frac{1}{x}\right) | \lambda \in \mathbb{R} \right\}$$

Solution particulière $t \longmapsto 1$ est directement solution de (E) sur \mathbb{R} . Par conséquent,

$$S = \left\{ x \in \mathbb{R}_+^* \longmapsto 1 + \lambda \exp\left(\frac{1}{x}\right) | \lambda \in \mathbb{R} \right\}$$

(2) Résoudre $(E)(x-1)y'+y=\ln x$ sur $]1,+\infty[$. On remarque que

$$(E) \Leftrightarrow y' + \frac{1}{x-1}y = \frac{\ln x}{x-1}$$

Solution de (E_0) Une primitive sur $]1, +\infty[$ de $x \mapsto \frac{1}{x-1}$ est $\ln(x-1)$ donc

$$S_0 = \left\{ x \longmapsto \frac{\lambda}{x - 1} | \lambda \in \mathbb{R} \right\}$$

Solution particulière $u = \frac{1}{x-1}$ est une solution de (E_0) qui ne s'annule pas sur $]1, +\infty[$. Recherchons une solution de (E) de la forme $\varphi = \lambda u$, λ dérivable de I dans \mathbb{K} . Alors,

$$\varphi$$
 est solution de (E) \Leftrightarrow $\varphi' + a\varphi = b$ \Leftrightarrow $\lambda' u + \lambda u' + a\lambda u = b$ \Leftrightarrow $\lambda' u = b$ \Leftrightarrow $\lambda' = \frac{b}{u} = \ln x$

Une primitive de $x \mapsto \ln x$ est $x \mapsto x \ln x - x$ donc $\varphi = \frac{x \ln x - x}{x - 1}$ donc

$$S = \left\{ x \in \left] 1, +\infty \right[\longrightarrow \frac{x (\ln x - 1) + \lambda}{x - 1} | \lambda \in \mathbb{R} \right\}$$

2.2 Équations non normalisées

2.2.1 Cas général

(E)
$$\alpha(x) y' + \beta(x) y = \gamma(x)$$

Avec α qui peut s'annuler en certains point de I. On ne peut rien affirmer de général quand à l'existence de solutions définies sur I tout entier a.

Pour résoudre (E) sur I:

- (1) On commence par résoudre (E) sur chaque sous-intervalle de I où α ne s'annule pas.
- (2) On essaie ensuite de « raccorder » les diverses solutions pour trouver les solutions maximales de (E).

2.2.2 Exemple de problème de raccord

Soit

$$(E) \quad (x-1)y' + y = \ln x$$

avec $I = \mathbb{R}_+^*$. On ne peut rendre l'équation (E) résolue en y' sur \mathbb{R}_+^* . Nous procéderons donc par analyse et synthèse b.

Partie directe Supposons qu'il existe $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ dérivable et solution de (E).

On doit avoir

$$(1-1) f'(1) + f(1) = \ln 1 \Rightarrow f(1) = 0$$

– De plus, $f_{|]1,+\infty[}$ est solution de (E) sur $]1,+\infty[$ donc $\exists \lambda \in \mathbb{R}/\forall x>1,$

$$f(x) = \frac{\lambda + x \ln x - x}{x - 1}$$

De même, $f_{[]0,1[}$ est solution de (E) sur]0,1[or pour $\varphi:]0,1[$ $\longrightarrow \mathbb{R}$ dérivable,

$$\varphi$$
 est solution de $(E) \Leftrightarrow \varphi$ est solution de $y' + \frac{y}{x-1} = \frac{\ln x}{x-1}$ (Λ)

Résolvons (Λ) sur]0, 1[.

0

$$(\Lambda_0) \quad y' + \frac{y}{x-1} = 0$$

Une primitive de $x \mapsto \frac{1}{x-1}$ est $x \mapsto \ln(1-x)$ donc

$$S_0 = \left\{ x \in \left] 0, 1 \right[\longrightarrow \frac{\lambda}{1 - x} | \lambda \in \mathbb{R} \right\} = \left\{ x \in \left] 0, 1 \right[\longrightarrow \frac{\lambda}{x - 1} | \lambda \in \mathbb{R} \right\}$$

 \circ Soit $\mu:]0,1[\longrightarrow \mathbb{R}$, alors $x\longmapsto \frac{\mu}{x-1}$ est solution si et seulement si $\forall x\in]0,1[$,

$$\frac{\mu'(x)}{x-1} = \frac{\ln x}{x-1} \Leftrightarrow \mu'(x) = \ln(x)$$

Ainsi $x \longmapsto \frac{x \ln x - x}{x - 1}$ est solution donc

$$S_{\Lambda} = \left\{ x \in \left] 0, 1 \right[\longrightarrow \frac{\mu + x \ln x - x}{x - 1} | \mu \in \mathbb{R} \right\}$$

- a. En pratique, α s'annule en un nombre de fois fini sur \mathbb{R} , ce qui partage I en sous intervalles où α ne s'annule pas.
- b. Procède, procède...

Ainsi, $\exists \mu \in \mathbb{R}/\forall x \in]0,1[$,

$$f(x) = \frac{\mu + x \ln x - x}{x - 1}$$

f est continue en 1 donc on doit avoir

$$f(x) \xrightarrow[x>1]{x\to 1} f(1) = 0$$
 et $f(x) \xrightarrow[x<1]{x\to 1} f(1) = 0$

Pour x > 1, $f(x) = \frac{\lambda - x}{x - 1} + x \frac{\ln x}{x - 1}$ or $\lim_{x \to 1} \frac{\ln x}{x - 1} = \ln' 1 = 1$. Si $\lambda \neq 1$, alors $\lambda - x$ tend vers $\lambda - 1 \neq 0$ lorsque x tend vers 1 donc

$$f(x) \xrightarrow[x>1]{} \pm \infty$$

On doit donc avoir $\lambda = 1$, alors pour x > 1,

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x \ln x}{x - 1} - 1 = -1 + 1 \cdot 1 = 0$$

De même, on montre que $\mu = 1$ pour f définie sur]0,1[.

Partie réciproque Soit φ une application de \mathbb{R}_+^* dans \mathbb{R} définie par

$$\varphi(x) = \begin{cases} 0 & \text{si } x = 1\\ \frac{1+x\ln x - x}{x-1} & \text{si } x \neq 1 \end{cases}$$

Alors φ est continue sur \mathbb{R}_+^* , dérivable sur]0,1[et $]1,+\infty[$ et est solution de (E) sur ces deux intervalles. Cherchons si φ est dérivable en x=1. On a a:

$$\lim_{x \to 1} \frac{\varphi(x) - \varphi(1)}{x - 1} = \lim_{x \to 1} \frac{1 - x + \ln x}{(x - 1)^2}$$
$$= \frac{1}{2}$$

Donc φ est dérivable en 1 et $\varphi'(1) = \frac{1}{2}$.

Ainsi, φ est dérivable sur \mathbb{R}_{+}^{*} et, $\forall x > 0$, $(x-1)\varphi'(x) + \varphi(x) = \ln x$, y compris pour x = 1 donc φ est l'unique solution de (E) sur \mathbb{R}_{+}^{*} .

2.2.3 Théorème de Cauchy-Lipchitz

Soient $a, b: I \longrightarrow \mathbb{K}$ continues et

$$(E) \quad y' + a(x)y = b(x)$$

Soit $x_0 \in I$ et $y_0 \in \mathbb{K}$, alors il existe une unique solution f de (E) telle que $f(x_0) = y_0$.

Démonstration Soit A une primitive de a et B une primitive de $b \exp(A)$. Alors,

$$S_E = \{x \in I \longrightarrow (\lambda + B(x)) \exp(-A(x)) | \lambda \in \mathbb{K}\}\$$

Soit $\lambda \in \mathbb{K}$ et $f(x) = (\lambda + B(x)) \exp(-A(x))$. Alors

$$f(x_0) = y_0 \Leftrightarrow (\lambda + B(x_0)) \exp(-A(x_0)) = y_0$$

$$\Leftrightarrow \lambda = y_0 \exp(-A(x_0)) - B(x_0)$$

f est unique d'où le résultat.

a. Résultat obtenu grâce à la calculette : il faudra attendre le cours sur les développements limités pour pouvoir justifier cela.

3 Équations différentielles linéaires d'ordre 2 à coefficients constants

3.1 Résolution de l'équation homogène

Soient $a, b, c \in \mathbb{K}$ avec $a \neq 0$ et

$$(E) \quad ay'' + by + cy = 0$$

3.1.1 Petite histoire

Que se passe-t-il pour les équations linéaires d'ordre 1 à coefficients constants? Soit

$$au' + bu = 0$$
 $a \in \mathbb{K}^*, b \in \mathbb{K}$

Alors il existe $r \in \mathbb{K}$ tel que

$$S = \{t \in \mathbb{R} \longmapsto \lambda \exp(rt) \mid \lambda \in \mathbb{R}\}\$$

Les fonctions de la forme $t \mapsto \exp(rt)$ sont-elles solutions de l'équation (E)? Soit $r \in \mathbb{K}$ et $\varphi : t \in \mathbb{R} \mapsto \exp(rt)$. Alors φ est deux fois dérivable sur \mathbb{R} , et $\forall t \in \mathbb{R}$,

$$\varphi'(t) = r \exp(rt)$$
 et $\varphi''(t) = r^2 \exp(rt)$

Ainsi,

$$\varphi$$
 est solution de (E) \Leftrightarrow $\forall t \in \mathbb{R}, \quad a\varphi''(t) + b\varphi'(t) + c\varphi(t) = 0$
 \Leftrightarrow $\forall t \in \mathbb{R}, \quad ar^2\varphi(t) + br\varphi(t) + c\varphi(t) = 0$
 \Leftrightarrow $\forall t \in \mathbb{R}, \quad ar^2 + br + c = 0 \quad \text{car } \forall t \in \mathbb{R}, \varphi(t) \neq 0$
 \Leftrightarrow r est racine de $P(X) = aX^2 + bX + c$

On appelle P le polynôme caractéristique de (E).

3.1.2 Premier cas: P admet au moins une racine r dans \mathbb{K}

On remarque que c'est toujours vrai si $\mathbb{K} = \mathbb{C}$. Alors $\varphi : t \in \mathbb{R} \longmapsto \exp(rt)$ est solution de (E) et ne s'annule jamais. On peut donc chercher les solutions de (E) sous la forme $f = \lambda \varphi$ avec $\lambda : \mathbb{R} \longrightarrow \mathbb{K}$ deux fois dérivable. Soit $\lambda \in \mathcal{D}^2(\mathbb{R}, \mathbb{K})^a$ et $f = \lambda \varphi$. Alors :

$$f' = \lambda' \varphi + \lambda \varphi'$$
 et $f'' = \lambda'' \varphi + 2\lambda' \varphi' + \lambda \varphi''$

Si bien que:

$$f \text{ est solution de } (E) \Leftrightarrow a \left(\lambda''\varphi + 2\lambda'\varphi' + \lambda\varphi''\right) + b \left(\lambda'\varphi + \lambda\varphi'\right) + c\lambda\varphi = 0$$

$$\Leftrightarrow \lambda \underbrace{\left(a\varphi'' + b\varphi' + c\varphi\right)}_{0} + a\varphi\lambda'' + \lambda'\left(2a\varphi' + b\varphi\right) = 0$$

$$\Leftrightarrow \forall t \in \mathbb{R}, \quad \varphi(t) \left[a\lambda''(t) + (2ar + b)\lambda'(t)\right] = 0 \quad \operatorname{car} \varphi'(t) = r\varphi(t)$$

$$\Leftrightarrow \forall t \in \mathbb{R}, \quad a\lambda''(t) + (2ar + b)\lambda'(t) = 0 \quad \operatorname{car} \varphi(t) \neq 0$$

$$\Leftrightarrow \lambda' \text{ est solution de } ay' + (2ar + b)y = 0 \quad (E')$$

$$\Leftrightarrow \exists \alpha \in \mathbb{K}/\forall t \in \mathbb{R}, \quad \lambda'(t) = \alpha \exp\left(-\frac{2ar + b}{a}t\right)$$

a. Ce qui signifie que λ est deux fois dérivable de $\mathbb R$ dans $\mathbb K.$

Premier sous-cas : r est racine double de P Alors $b^2 - 4ac = 0$ et $r = -\frac{b}{2a}$. On voit que

$$f$$
 est solution de (E) \Leftrightarrow $\exists \alpha \in \mathbb{K}/\forall t \in \mathbb{R}, \quad \lambda'(t) = \alpha$
 $\Leftrightarrow \lambda \text{ est affine } : \lambda : t \longrightarrow \alpha t + \beta$

Ainsi l'ensemble des solutions de (E) est :

$$S_E = \{ t \in \mathbb{R} \longmapsto (\alpha t + \beta) e^{rt} | \alpha, \beta \in \mathbb{K} \}$$

Deuxième sous-cas : r est racine simple de P Alors $b^2 - 4ac > 0$ et $r \neq -\frac{b}{2a}$. Notons s l'autre racine de P. Alors

$$r+s = -\frac{b}{a}$$
 et $rs = \frac{c}{a}$

On a alors:

$$f \text{ est solution de } (E) \Leftrightarrow \exists \alpha, \beta \in \mathbb{K}/\forall t \in \mathbb{R}, \quad \lambda(t) = \frac{\alpha}{-\frac{2ar+b}{a}} \exp\left(-\frac{2ar+b}{a}t\right) + \beta$$
$$\Leftrightarrow \exists \alpha, \beta \in \mathbb{K}/\forall t \in \mathbb{R}, \quad \lambda(t) = \alpha \exp\left(-\frac{2ar+b}{a}t\right) + \beta$$

Donc

$$S = \left\{ t \in \mathbb{R} \longmapsto \alpha \exp\left(\left(-2r - \frac{b}{a}\right)t\right) \exp\left(rt\right) + \beta \exp\left(rt\right) | \alpha, \beta \in \mathbb{K} \right\}$$
$$= \left\{ t \in \mathbb{R} \longmapsto \alpha \exp\left(st\right) + \beta \exp\left(rt\right) | \alpha, \beta \in \mathbb{K} \right\} \quad \operatorname{car} s = -\frac{b}{a} - r$$

Bilan

Ainsi, si P admet deux racines distinctes s et r,

$$S_E = \{ t \in \mathbb{R} \longmapsto \alpha \exp(st) + \beta \exp(rt) \mid \alpha, \beta \in \mathbb{K} \}$$

3.1.3 Deuxième cas : P n'a pas de racines dans \mathbb{K}

Alors $\mathbb{K} = \mathbb{R}$ et $b^2 - 4ac < 0$. On cherche l'ensemble des solutions :

$$S_E = \left\{ f \in \mathcal{D}^2 \left(\mathbb{R}, \mathbb{K} \right) | af'' + bf' + cf = 0 \right\}$$

P admet 2 racines complexes conjuguées non réelles $\alpha \pm i\beta$ avec $\beta \neq 0$. Notons

$$\mathcal{S}_{\mathbb{C}} = \left\{ f \in \mathcal{D}^2 \left(\mathbb{R}, \mathbb{C} \right) | af'' + bf' + cf = 0 \right\}$$

D'après le cas précédent,

$$S_{\mathbb{C}} = \{t \in \mathbb{R} \longrightarrow \lambda \exp[(\alpha + i\beta) t] + \mu \exp[(\alpha - i\beta) t] | \lambda, \mu \in \mathbb{C}\}$$

Il est évident que

$$f \in \mathcal{S}_E \Leftrightarrow f$$
 est réelle et $f \in \mathcal{S}_{\mathbb{C}}$

Soit $\lambda, \mu \in \mathbb{C}$ et $f: t \longmapsto \lambda \exp\left[\left(\alpha + i\beta\right)t\right] + \mu \exp\left[\left(\alpha - i\beta\right)t\right]$. Posons $\lambda = a + ib$ et $\mu = c + id$ donc pour $t \in \mathbb{R}$,

$$f(t) = (a+ib) \left(e^{\alpha t} \left(\cos \beta t + i \sin \beta t \right) \right) + (c+id) \left(e^{\alpha t} \left(\cos \beta t - i \sin \beta t \right) \right)$$

Donc

$$\Im m(f(t)) = e^{\alpha t} (a \sin \beta t + b \cos \beta t - c \sin \beta t + d \cos \beta t)$$

Ainsi,

$$f$$
 est réelle $\Leftrightarrow \Im m(f) = 0$
 $\Leftrightarrow a \sin \beta t + b \cos \beta t - c \sin \beta t + d \cos \beta t = 0$

Il est là nécessaire de prouver le lemme suivant :

Petit lemme Pour $\delta, \varepsilon \in \mathbb{R}$, on a

$$\forall t \in \mathbb{R}, \quad \delta \sin \beta t + \varepsilon \sin \beta t = 0 \Leftrightarrow \delta = \varepsilon = 0$$

En effet, la partie réciproque est évidente. De plus,

- pour t = 0, on a $\delta \sin 0 + \varepsilon \cos 0 \Rightarrow \varepsilon = 0$ Pour $r = \frac{\pi}{2\beta}$, car $\beta \neq 0$, $\delta \sin \frac{\pi}{2} + \varepsilon \cos \frac{\pi}{2} \Rightarrow \delta = 0$

Revenons à la résolution de l'équation homogène. Ainsi,

$$f$$
 est réelle $\Leftrightarrow c = a$ et $b = -d$

donc

$$S = \{t \in \mathbb{R} \longmapsto (a+ib) \exp [(\alpha+i\beta)t] + (a-ib) \exp [(\alpha-i\beta)t] | a, b \in \mathbb{R} \}$$

$$= \{t \in \mathbb{R} \longmapsto e^{\alpha t} (2a \cos \beta t - 2b \sin \beta t) | a, b \in \mathbb{R} \}$$

$$= \{t \in \mathbb{R} \longmapsto e^{\alpha t} (\lambda \cos \beta t + \mu \sin \beta t) | \lambda, \mu \in \mathbb{R} \}$$

Bilan

 $\sqrt{\text{Si }\mathbb{K}=\mathbb{R},\,a,b,c}\in\mathbb{R}$ et si P n'a pas de racines réelles, P admet deux racines complexes conjuguées $\alpha\pm i\beta$ avec $\beta \neq 0$ et

$$S_E = \left\{ t \in \mathbb{R} \longmapsto e^{\alpha t} \left(\lambda \cos \beta t + \mu \sin \beta t \right) | \lambda, \mu \in \mathbb{R} \right\}$$

3.1.4Cas particuliers

- Soit $\omega \in \mathbb{R}$ et (E) $y'' + \omega^2 y = 0$, alors $\alpha_{calS_E = \{t \in \mathbb{R} \longmapsto \lambda \cos \omega t + \mu \sin \omega t | \lambda, \beta \in \mathbb{R}\}}$ - Soit (E_1) $y'' - \omega^2 y = 0$. Alors,

$$S_E = \{ t \in \mathbb{R} \longmapsto \lambda e^{\omega t} + \mu e^{-\omega t} | \lambda, \mu \in \mathbb{R} \}$$
$$= \{ t \in \mathbb{R} \longmapsto \lambda \cosh \omega t + \mu \sinh \omega t | \lambda, \mu \in \mathbb{R} \}$$

Cas d'un second membre du type exponentielle-polynôme

On s'intéresse ici à une équation différentielle du type

$$(E) \quad ay'' + by' + cy = Q(t) \exp(\omega t)$$

Avec $a, b, c \in \mathbb{K}$, $a \neq 0$, Q une fonction polynômiale et $\omega \in \mathbb{K}$. De plus,

$$Q(t) = \lambda_0 + \lambda_1 t + \dots + \lambda_d t^d$$

3.2.1 Forme des solutions particulières

 $P(X) = aX^2 + bX + c$ est le polynôme caractéristique de (E_0) : ay'' + by' + c = 0. On sait résoudre (E_0) . Reste à trouver une solution de (E).

On dispose d'une recette, pour laquelle on distingue trois cas :

- (1) Si ω n'est pas racine de P, on cherche une solution particulière sous la forme $t \stackrel{\varphi}{\longmapsto} S(t) \exp(\omega t)$ avec S une fonction polynômiale de même degré que Q à déterminer.
- (2) Si ω est racine simple de P, on cherche une solution particulière de (E) sous la forme

$$t \longmapsto S(t) \exp(\omega t)$$

avec S une fonction polynômiale du type

$$t \longmapsto \mu_1 t + \mu_2 t^2 + \dots + \mu_{d+1} t^{d+1}$$

(3) Si ω est racine double de P, on cherche une solution particulière de (E) sous la forme

$$t \longmapsto S(t) \exp(\omega t)$$

avec S une fonction polynômiale du type

$$t \longmapsto \mu_2 t^2 + \mu_3 t^3 + \dots + u_{d+2} t^{d+2}$$

3.2.2 Équation différentielle vérifiée par S(t)

Soit S polynômiale quelconque et $\varphi: t \longmapsto S(t) \exp(\omega t)$. Alors, pour $t \in \mathbb{R}$,

$$\varphi'(t) = (S'(t) + \omega S(t)) \exp(\omega t)$$
 et $\varphi''(t) = (S''(t) + 2\omega S'(t) + \omega^2 S(t)) \exp(\omega t)$

Donc on a:

$$\varphi$$
 est solution de (E) \Leftrightarrow $\forall t \in \mathbb{R}$, $a\varphi''(t) + b\varphi'(t) + c\varphi(t) = Q(t) \exp(\omega t)$
 \Leftrightarrow $\forall t \in \mathbb{R}$, $a\left[\left(S''(t) + 2\omega S'(t) + \omega^2 S(t)\right) \exp(\omega t)\right] + b\left[\left(S'(t) + \omega S(t)\right) \exp(\omega t)\right]$
 $+c\left[S(t) \exp\right] = Q(t) \exp(\omega t)$
 $\Leftrightarrow aS'' + P'(\omega)S' + P(\omega)S = Q$

3.2.3 Exemples

(1) Résoudre sur \mathbb{R} :

(E)
$$2y'' + 2y' + y = xe^{-x}$$

On reconnaît là une équation différentielle d'ordre 2 à coefficients constants et de second membre de type exponentielle-polynôme. Résolvons $(E_0): 2y'' + 2y' + y = 0$. Alors

$$P(X) = 2X^2 + 2X + 1$$

Donc $\Delta = -4 = (2i)^2$ donc P n'a pas de racines réelles mais possède deux racines complexes conjuguées $-\frac{1}{2} \pm \frac{i}{2}$, alors

$$S_0 = \left\{ t \in \mathbb{R} \longmapsto e^{-\frac{t}{2}} \left(\alpha \cos \frac{t}{2} + \beta \sin \frac{t}{2} \right) | \alpha, \beta \in \mathbb{R} \right\}$$

Recherchons maintenant une solution particulière de (E). $\omega = -1$ n'est pas racine de P donc on cherche un solution particulière sous la forme $x \in \mathbb{R} \xrightarrow{\varphi} (ax + b) e^{-x}$. Ainsi,

$$\varphi$$
 est solution de (E) \Leftrightarrow $P'(-1)S'(x) + P(-1)S(x) = x$ \Leftrightarrow $\forall x \in \mathbb{R}, -2a + ax + b = x$ \Leftrightarrow $\begin{cases} b - 2a = 0 \\ a = 1 \end{cases}$ \Leftrightarrow $\begin{cases} a = 1 \\ b = 2 \end{cases}$

donc $x \mapsto (x+2) e^{-x}$ est une solution de (E). L'ensemble des solutions de (E) est donc

$$S_E = \left\{ x \in \mathbb{R} \longmapsto (x+2) e^{-x} + e^{-\frac{x}{2}} \left(\alpha \cos \frac{x}{2} + \beta \sin \frac{x}{2} \right) | \alpha, \beta \in \mathbb{R} \right\}$$

(2) Résoudre sur \mathbb{R} :

(E)
$$y'' - 3y' + 2y = (x^2 + 1) e^x$$

On reconnaît là une équation différentielle d'ordre 2 à coefficients constants et de second membre de type exponentielle-polynôme. Résolvons $(E_0): y'' - 3y' + 2y = 0$. Alors

$$P(X) = X^2 - 3X + 2 = (X - 1)(X - 2)$$

P admet deux racines réelles 1 et 2 donc

$$S_0 = \left\{ x \in \mathbb{R} \longmapsto \alpha e^x + \beta e^{2x} | \alpha, \beta \in \mathbb{R} \right\}$$

De plus, $\omega = 1$ est racine simple de P donc on cherche une solution particulière de (E) sous la forme $x \in \mathbb{R} \xrightarrow{\varphi} (ax^3 + bx^2 + cx) e^x$. Alors

$$\varphi \text{ est solution de } (E) \Leftrightarrow S''(x) + P'(1)S'(x) = x^2 + 1$$

$$\Leftrightarrow 6ax + 2b - 3ax^2 - 2bx - c = x^2 + 1$$

$$\Leftrightarrow -x^2 3a + x (6a - 2b) + 2b - c = x^2 + 1$$

$$\Leftrightarrow \begin{cases} 3a = 1 \\ 6a - 2b = 0 \\ 2b - c = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} a = -\frac{1}{3} \\ b = -1 \\ c = -3 \end{cases}$$

Donc $x \mapsto \left(-\frac{1}{3}x^3 - x^2 - 3x\right) e^x$ est solution de (E) donc l'ensemble des solutions de (E) est donc $\mathcal{S}_E = \left\{x \in \mathbb{R} \mapsto \left(-\frac{1}{3}x^3 - x^2 - 3x\right) e^x + \alpha e^x + \beta e^{2x} | \alpha, \beta \in \mathbb{R}\right\}$

3.3 Cas d'un second membre en exponentielle-cosinus ou sinus

3.3.1 Méthode

On considère

$$(E_1): ay'' + by' + cy = Q(x) e^{\omega x} \cos \alpha x$$
 et $(E_2): ay'' + by' + cy = Q(x) e^{\omega x} \sin \alpha x$

Avec $a, b, c, \omega, \alpha \in \mathbb{R}$ et Q une fonction polynômiale à coefficients réels. On cherche des solutions particulières de (E_1) et (E_2) sur \mathbb{R} . Soit

$$(E_{\mathbb{C}})$$
 $ay'' + by' + cy = Q(x) \exp[(\omega + i\alpha) t]$

On sait trouver $\varphi : \mathbb{R} \longrightarrow \mathbb{C}$ une solution particulière de $(E_{\mathbb{C}})^a$. Si on écrit $\varphi = \varphi_1 + i\varphi_2$ avec φ_1 et φ_2 réelles, on a $\forall x \in \mathbb{R}$:

$$a\left(\varphi_{1}''+i\varphi_{2}''\right)\left(x\right)+b\left(\varphi_{1}'+i\varphi_{2}'\right)\left(x\right)+c\left(\varphi_{1}+i\varphi_{2}\right)\left(x\right)=Q\left(x\right)e^{\omega x}\left(\cos\alpha x+i\sin\alpha x\right)$$

Par identification des parties réelles et imaginaires, $\forall x \in \mathbb{R}$:

$$a\varphi_1''(x) + b\varphi_1'(x) + c\varphi_1(x) = Q(x)e^{\omega x}\cos\alpha x$$

Donc φ_1 est une solution de (E). De plus, $\forall x \in \mathbb{R}$,

$$a\varphi_2''(x) + b\varphi_2'(x) + c\varphi_2(x) = Q(x)e^{\omega x}\sin\alpha x$$

Donc φ_2 est solution de (E_2) .

a. En effet le second membre de $(E_{\mathbb{C}})$ est du type exponentielle-polynôme : voir page 11 pour la forme des solutions.

3.3.2 Exemples

(1) Résoudre dans \mathbb{R} :

(E)
$$y'' + 2y' + 5y = 2xe^{-x}\cos 2x$$

Résolvons l'équation homogène (E_0) : y'' + 2y' + 5y = 0. On reconnaît là une équation différentielle d'ordre 2 à coefficients constants dont le polynôme caractéristique est

$$P(X) = X^2 + 2X + 5$$

 $\Delta=-16=(4i)^2,$ donc Padmet deux racines complexes conjuguées $-1\pm 2i$ donc

$$S_0 = \left\{ t \in \mathbb{R} \longmapsto e^{-t} \left(\lambda \cos 2t + \mu \sin 2t \right) | \lambda, \mu \in \mathbb{R} \right\}$$

Cherchons une solution particulière de (E). Soit

$$(E_{\mathbb{C}})$$
 $y'' + 2y' + 5y = 2x \exp[(-1 + 2i)x]$

Si φ est une solution particulière de $(E_{\mathbb{C}})$, alors $\Re e(\varphi)$ est une solution particulière de (E). Or -i + 2i est une racine simple de P donc on cherche une solution particulière de $(E_{\mathbb{C}})$ sous la forme $x \mapsto (ax + bx^2) \exp[(-1 + 2i)t]$. Alors,

$$\varphi \text{ est solution de } (E_{\mathbb{C}}) \Leftrightarrow S''(t) + P'(-1+2i)S'(x) = 2x$$

$$\Leftrightarrow \forall x \in \mathbb{R} \quad 2b + 4i(a + 2bx) = 2x$$

$$\Leftrightarrow \begin{cases} 2b + 4ia = 0 \\ 8ib = 2 \end{cases}$$

$$\Leftrightarrow \begin{cases} a = \frac{1}{8} \\ b = -\frac{i}{4} \end{cases}$$

Ainsi, $x \stackrel{\varphi}{\longmapsto} \left(\frac{x}{8} - i\frac{x^2}{4}\right) e^{-x}e^{2ix}$ est solution particulière de $(E_{\mathbb{C}})$. Donc

$$\Re e(\varphi): x \in \mathbb{R} \longmapsto e^{-x} \left(\frac{x}{8}\cos 2x + \frac{x^2}{4}\sin 2x\right)$$

est solution de (E). On a donc :

$$S = \left\{ x \in \mathbb{R} \longmapsto e^{-x} \left(\lambda \cos 2x + \mu \sin 2x + \frac{x}{8} \cos 2x + \frac{x^2}{4} \sin 2x \right) | \lambda, \mu \in \mathbb{R} \right\}$$

(2) Résoudre dans \mathbb{R} :

(E)
$$y'' + 2y' + y = \sin^2 x \Leftrightarrow y'' + 2y' + y = \frac{1}{2} - \frac{1}{2}\cos 2x$$

Résolvons $(E_0): y'' + 2y' + y = 0$, dont le polynôme caractéristique est $P(X) = X^2 + 2X + 1$, $\Delta = 0$ donc P admet une racine double : -1. Ainsi,

$$S_0 = \left\{ x \in \mathbb{R} \longmapsto (\alpha x + \beta) e^{-x} | \alpha, \beta \in \mathbb{R} \right\}$$

Recherchons une solution particulière de (E), pour cela utilisons la méthode de superposition a. Soit

$$(E_1): y'' + 2y' + y = \frac{1}{2}$$
 et $(E_2): y'' + 2y' + y = -\frac{1}{2}\cos 2x$

Une solution particulière de (E_1) est $x \longmapsto \frac{1}{2}$. Cherchons maintenant une solution particulière de (E_2) . Soit

$$(E_2^{\mathbb{C}})$$
 $y'' + 2y' + y = -\frac{1}{2}e^{2ix}$

Si ψ est solution de $(E_2^{\mathbb{C}})$, alors $\Re (\psi)$ est solution de (E_2) . On cherche $\psi: x \longmapsto \lambda e^{2ix}$:

$$\psi$$
 est solution de $\left(E_2^{\mathbb{C}}\right) \iff \lambda \left(-4+4i+1\right) = -\frac{1}{2}$
 $\iff \lambda = \frac{3}{10} + \frac{2}{5}i$

Ainsi, $\psi: x \longmapsto \left(\frac{3}{10} + \frac{2}{5}i\right) e^{2ix}$ est solution de $\left(E_2^{\mathbb{C}}\right)$ donc $\Re\left(\psi\right) = \frac{3}{10}\cos 2x - \frac{2}{5}\sin 2x$ est solution de $\left(E_2\right)$ donc

$$x \longmapsto \frac{3}{10}\cos 2x - \frac{2}{5}\sin 2x + \frac{1}{2}$$

est solution de (E) par superposition. Ainsi,

$$S_E = \left\{ x \in \mathbb{R} \longmapsto \frac{3}{10} \cos 2x - \frac{2}{5} \sin 2x + \frac{1}{2} + (\lambda + i\mu) e^{-x} | \lambda, \mu \in \mathbb{R} \right\}$$