Отчет по лабораторной работе №1

Операционные системы

Гаязов Рузаль

Содержание

Цель работы	1
Задание	
Выполнение лабораторной работы	
Создание виртуальной машины	
Установка операционной системы	
Работа с операционной системой после установки	3
Установка программного обеспечения для создания документации	13
Выводы	14
Ответы на контрольные вопросы	15
Список литературы	15

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Задание

- 1. Создание виртуальной машины
- 2. Установка операционной системы
- 3. Работа с операционной системой после установки
- 4. Установка программного обеспечения для создания документации
- 5. Дополнительные задания

Выполнение лабораторной работы

Создание виртуальной машины

VMware Workstation я устанавливал и настраивала при выполнении лабораторной работы в курсе "Архитектура компьютера и Операционные системы (раздел"Архитектура компьютера")", поэтому сразу открываю окно приложения. Нажимая "создать", создаю новую виртуальную машину, указываю ее имя, путь к папке машины по умолчанию меня устраивает, выбираю тип ОС и версию. Указываю объем основной памяти виртуальной машины размером 4096МБ. Выбираю создание нового виртуального жесткого диска. Задаю конфигурацию жесткого диска: загрузочеый VDI. Задаю размер диска - 80 ГБ, оставляю расположение жесткого диска по умолчанию, т. к. работаю на собственной технике и значение по умолчанию меня устраивает. Выбираю динамический виртуальный жесткого диска при указании формата хранения. Выбираю в VMware Workstation настройку своей виртуальной машины. Перехожу в "Носители", добавляю новый привод привод оптических дисков и выбираю скачанный образ операционной системы Fedora. Скачанный образ ОС был успешно выбран.

Установка операционной системы

Запускаю созданную виртуальную машину для установки. Вижу интерфейс начальной конфигурации. Нажимаю Enter для создания конфигурации по умолчанию, далее нажимаю Enter, чтобы выбрать в качестве модификатора кливишу Win (рис. @fig:011).

Интерфейс начальной конфигурации

Нажимаю Win+Enter для запуска терминала. В терминале запускаю liveinst.

Запуск терминала

Чтобы перейти к раскладке окон с табами, нажимаю Win+w. Выбираю язык для использования в процессе установки русски. Раскладку клавиатуры выбираю и русскую, и английскую. Корректирую часовой пояс, чтобы время на виртуальной машине совпадало с временем в моем регионе. Проверяю место установки и сохраняю значение по умолчанию. Задаю сетевое имя компьютера в соответствии с соглашением об именовании. Создаю аккаунт администратора и создаю пароль для супер-пользователя. Создаю пользователя, добавляю административные привилегии для этой учетной записи, чтобы я могла свободно выполнять команды как супер-пользователь. Далее операционная система устанавливается. После установки нажимаю "завершить установку". Диск не отключался автоматически, поэтому отключаю носитель информации с образом. Носитель информации с образом отключен.

Работа с операционной системой после установки

Запускаю виртуальную машину. Вхожу в ОС под заданной мной при установке учетной записью. Нажимаю Win+Enter для запуска терминала и переключаюсь на роль супер-пользователя.

Запуск терминала

Обновляю все пакеты (рис. @fig:006).

Обновления

Устанавливаю программы для удобства работы в концсоли: tmux для открытия нескольких "вкладок" в одном терминале, mc в качестве файлового менеджера в терминале (рис. @fig:007).

Установка tтих и тс

Устанавливаю программы для автоматического обновления (рис. @fig:008).

Установка программного обеспечения для автоматического обновления Запускаю таймер (рис. @fig:009).

Запуск таймера

Перемещаюсь в директорию /etc/selinux, открываю md, ищу нужный файл (рис. @fig:010).

Поиск файла

Изменяю открытый файл: SELINUX=enforcing меняю на значение SELINUX=permissive (рис. @fig:011).

Изменение файла

Перезагружаю виртуальную машину (рис. @fig:012).

Перезагрузка виртуальной машины

Снова вхожу в ОС, снова запускаю терминал, запускю терминальный мультиплексор (рис. @fig:013).

Запуск терминального мультиплексора

Переключаюсь на роль супер-пользователя (рис. @fig:014).

Переключение на роль супер-пользователя

Устанавливаю пакет dkms (рис. @fig:015).

Установка пакета dkms

В меню виртуальной машины подключаю образ диска гостевой ОС и примонтирую диск с помощью утилиты mount (рис. @fig:035).

Примонтирование диска

Устанавливаю драйвера (рис. @fig:017).

```
| See | See
```

Установка драйвера

Перезагружаю виртуальную машину (рис. @fig:018).

Перезагрузка виртуальной машины

Перехожу в директорию /tc/X11/xorg.conf.d, открываю mc для удобства, открываю файл 00-keyboard.conf (рис. @fig:019).

```
| Concegnation Control | Control Contr
```

Поиск файла, вход в тс

Редактирую конфигурационный файл (рис. @fig:020).

```
root@gayazovruzal:-# dmesg | grep -i "CPU0"

[ 0.208993] smpboot: CPU0: 13th Gen Intel(R) Core(TM) i5-13400F (family: 0x6, model: 0xbf, stepping: 0x2)

root@gayazovruzal:-#
```

Редактирование файла

Перезагружаю виртуальную машину (рис. @fig:021).

```
[ 0.208993] smpboot: CPU0: 13th Gen Intel(R) Core(TM) i5-13400F (family: 0x6, model: 0xbf, stepping: 0x2)
root@gayazovruzal:-# dmesg | grep -i "Memory available"
root@gayazovruzal:-# dmesg | grep -i "Memory: "
[ 0.018862] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000097ff]
[ 0.018863] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x00009fff]
[ 0.018864] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x00000fff]
[ 0.018864] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000dfff]
[ 0.018864] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000dfff]
[ 0.018866] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000fff]
[ 0.018865] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000fff]
[ 0.018865] PM: hibernation: Registered nosave memory: [mem 0x7fecf000-0x7fecffff]
[ 0.018866] PM: hibernation: Registered nosave memory: [mem 0x7fecf000-0x7fecffff]
[ 0.220553] Memory: 1906024K/2096600K available (22528K kernel code, 4428K rwdata, 16752K rodata, 4884K init, 4724K bss, 17540K reserved, 0K cma-reserved)
[ 0.795746] Freeing initrd memory: 26332K
[ 1.235978] Freeing unused kernel image (initmem) memory: 4884K
[ 1.236468] Freeing unused kernel image (initmem) memory: 1680K
root@gayazovruzal:-#
```

Перезагрузка виртуальной машины

Установка программного обеспечения для создания документации

Запускаю терминал. Запускаю терминальный мультиплексор tmux, переключаюсь на роль супер-пользователя (рис. @fig:022).

```
[ 1.236961] Freeing unused kernel image (rodata/data gap) memory: 1680K
root@gayazovruzal::# dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: VMware
root@gayazovruzal:-#
```

Переключение на роль супер-пользователя

Устанавливаю pandoc с помощью утилиты dnf и флага -у, который автоматически на все вопросы системы отчевает "yes" (рис. @fig:022).

```
[ 1.236961] Freeing unused kernel image (rodata/data gap) memory: 1680K
root@gayazovruzal:-# dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: VMware
root@gayazovruzal:-#
```

Установка pandoc

Устанавливаю необходимые расширения для pandoc (рис. @fig:023).

```
# sudo fdisk -1
Disk /dev/nvme0n1: 60 GiB, 64424509440 bytes, 125829120 sectors
Disk model: VMware Virtual NVMe Disk
 Units: sectors of 1 * 512 = 512 bytes
 Sector size (logical/physical): 512 bytes / 512 bytes
 I/O size (minimum/optimal): 512 bytes / 512 bytes
 Disklabel type: gpt
 Disk identifier: FCC25B37-BE61-4200-BD5F-04705E650FE4
                         End Sectors Size Type
               Start
Device
 /dev/nvme0n1p3 2101248 125827071 123725824 59G Linux filesystem
Disk /dev/zram0: 1,86 GiB, 2000683008 bytes, 488448 sectors
Units: sectors of 1 * 4096 = 4096 bytes
 Sector size (logical/physical): 4096 bytes / 4096 bytes
 I/O size (minimum/optimal): 4096 bytes / 4096 bytes
```

Установка расширения pandoc

Устанавливаю дистрибутив texlive (рис. @fig:024).

Установка texlive

Выводы

При выполнении данной лабораторной работы я приобрела практические навыки установки операционной системы на виртуальную машину, а так же сделала настройки минимально необходимых для дальнейшей работы сервисов.

Ответы на контрольные вопросы

- 1. Учетная запись содержит необходимые для идентификации пользователя при подключении к системе данные, а так же информацию для авторизации и учета: системного имени (user name) (оно может содержать только латинские буквы и знак нижнее подчеркивание, еще оно должно быть уникальным), идентификатор пользователя (UID) (уникальный идентификатор пользователя в системе, целое положительное число), идентификатор группы (СID) (группа, к к-рой относится пользователь. Она, как минимум, одна, по умолчанию одна), полное имя (full name) (Могут быть ФИО), домашний каталог (home directory) (каталог, в к-рый попадает пользователь после входа в систему и в к-ром хранятся его данные), начальная оболочка (login shell) (командная оболочка, к-рая запускается при входе в систему).
- 2. Для получения справки по команде: -help; для перемещения по файловой системе cd; для просмотра содержимого каталога ls; для определения объёма каталога du; для создания / удаления каталогов mkdir/rmdir; для создания / удаления файлов touch/rm; для задания определённых прав на файл / каталог chmod; для просмотра истории команд history
- 3. Файловая система это порядок, определяющий способ организации и хранения и именования данных на различных носителях информации. Примеры: FAT32 представляет собой пространство, разделенное на три части: олна область для служебных структур, форма указателей в виде таблиц и зона для хранения самих файлов. ext3/ext4 журналируемая файловая система, используемая в основном в ОС с ядром Linux.
- 4. С помощью команды df, введя ее в терминале. Это утилита, которая показывает список всех файловых систем по именам устройств, сообщает их размер и данные о памяти. Также посмотреть подмонтированные файловые системы можно с помощью утилиты mount.
- 5. Чтобы удалить зависший процесс, вначале мы должны узнать, какой у него id: используем команду ps. Далее в терминале вводим команду kill < id процесса >. Или можно использовать утилиту killall, что "убьет" все процессы, которые есть в данный момент, для этого не нужно знать id процесса.

Список литературы

- 1. Dash P. Getting started with oracle vm virtualbox. Packt Publishing Ltd, 2013. 86 p.
- 2. Colvin H. Virtualbox: An ultimate guide book on virtualization with virtualbox. CreateSpace Independent Publishing Platform, 2015. 70 p.
- 3. van Vugt S. Red hat rhcsa/rhce 7 cert guide: Red hat enterprise linux 7 (ex200 and ex300). Pearson IT Certification, 2016. 1008 p.
- 4. Робачевский А., Немнюгин С., Стесик О. Операционная система unix. 2-е изд. Санкт-Петербург: БХВ-Петербург, 2010. 656 р.

- 5. Немет Э. et al. Unix и Linux: руководство системного администратора. 4-е изд. Вильямс, 2014. 1312 р.
- 6. Колисниченко Д.Н. Самоучитель системного администратора Linux. СПб.: БХВ-Петербург, 2011. 544 р.
- 7. Robbins A. Bash pocket reference. O'Reilly Media, 2016. 156 p.