

Weather Analytics and Travel Path Guider

Team Members

Outline

Project Overview

 We provide weather analytics and travel path guidance to users who travel

 Travellers can plan trips ahead with our weather data and find the best path to travel when travelling.

High Level System Overview

Features and Functionality

- Real time Weather Analytics data
 - Temperature Level
 - Humidity Level
 - Light Intensity Level
 - Rain Level in 4 categories : Very High, High, Medium, Low
 - Air Quality
- All this weather data for a year-back can be checked.

Features and Functionality

- Path Guidance
 - Node-to-node path guidance
 - Node-to-node estimated travel time
 - Full travel Estimated time
 - Full travel uptime and downtime

Implementation

Implementation - Frontend

- ✓ We are developing a mobile application for users to get information
 - about weather and path guidance.
- ✓ User sign-in
- ✓ User sign-up
- ✓ Location Selection
- Real time Weather information View

Implementation - Frontend

Implementation - Backend

- ✓ Deployed on Azure server
- ✓ Fully functional database
- ✓ Fully functional data transmission from the Hardware node
- ✓ Fully functional data transmission to the frontend
- ✓ All the required API's for the frontend

Backend Implementation Overview

- Assembled the sensors and the microcontroller.
 - ◆ DHT11 Temperature and Humidity Sensor
 - ◆ YL-83 FC-37 Rain Sensor
 - ◆ LDR Light Sensor
 - Air Quality Sensor

- ✓ Program the microcontroller to get the readings from the data
- ✓ Program the GSM module to connect to the Internet
- ✓ Program the microcontroller to connect to the server using MQTT and send data to the server

Testing - Frontend

- What is tested?
 - all the input fields are tested
 - all the correct error messages are thrown
 - app is working for all the screen sizes
- Why Testing?
 - to make sure all the components on the screen are working
 - to make sure correct errors are shown to the user
- How to test?
 - using Flutter in-built testing library

Testing - Frontend

- Results and Findings
 - For some screen sizes the layout was not correct and it was fixed
 - Inputs fields were not checked for errors locally in the phone and it was fixed


```
JS home.test.js X
                                                                                                                                                                                                                                                                                                                                                                       ↔ ⊹ ↔ Ռ Ш …
                  code > backend > test > Js home.test.js > \( \beta \) path
                                    IshanFernando, 3 weeks ago | 1 author (IshanFernando)
                                 const path = require('path');
                                   require('dotenv').config({
path: path.resolve(__dirname, '../.env')
                                   const request = require('supertest');
                                   const db = require('../db');
                                    const { SensorData } = require('../models/SensorData');
品
                                   beforeAll(async () => {
await db.connectDB();
                                   afterAll(async () => {
                                             await db.disconnectDB();
                                                                                                                                                 Testing - Backend
(1)
                                   describe('Root route', () => {
                                             it('Server returns HTTP 200 OK + MongoDB Connected', async () =>
                                                        const res = await request('http://localhost:' + process.env.PORT).get('/')
                                                       expect(res.statusCode).toEqual(200)
€
                                             it('Clearing data in db', async () => {
                                                        await request('http://localhost:' + process.env.PORT).get('/clear').expect(200);
00
                                                       const allData = await SensorData.findOne()
                                                       expect(allData).toBeNull();
                                                                                                                                                                                                                                                                                                                                               > node - test + ∨ □ · · · ×
                   PROBLEMS 169
                                                             OUTPUT
                                                                                      DEBUG CONSOLE
                                                                                                                               TERMINAL
                                                                                                                                                           GITLENS
               o ridmajayasundara@My-MacBook-Pro test % npm run test
                   > weather-analytics-and-travel-path-guider@1.0.0 test
                   > jest --runInBand
(2)
                      RUNS test/seed.test.js
          $\mathcal{P}$ main* $\cdot 5 \rightarrow 0 \tau$ $\limin$ $\limin$ 1 $\times 1 $\times 1$ $\times 
                                                                                                                                                                                                           Ln 3, Col 45 Spaces: 4 UTF-8 LF {} JavaScript macOS (darwin)
```

Testing - Backend

- What is tested?
 - all the new API endpoints are tested
- Why Testing?
 - To make sure old features are working when a new one is implemented
 - Check load Handling capacity and limits
- How to test?
 - JEST (Library in java to do testing)
 - Artillery (Library in Node.js for load testing)

Testing - Backend

- Results and Findings
 - All the API endpoints are working as they are suppose to
 - A previously working route was not not working when a new route was added and it was fixed.

Testing - Hardware

- What is tested?
 - Connections to all the modules
 - Internet Connection to SIM800
 - Water proof, dustproof testing : Yet to be Done
 - Power Management
- How to test?
 - Unit testing library in PlatformIO
 - Physical Testing on the Casing : Yet to be Done

Testing - Hardware

- Results and Findings
 - Lack of memory in the stack, had to move strings to the heap
 - can sustain continuous uptime
 - Power through the microcontroller is enough to power the GSM module

Thank You!

