ORF 409

Two simulations.

1. For independent and identical random variables U_1, U_2, \ldots with a uniform distribution on the until interval (0, 1), define

$$N := \min \left\{ n : \sum_{i=1}^{n} U_i > 1 \right\}.$$

That is, N is the least number of random numbers that must be summed to exceed 1.

- **a.** Estimate $\mathbb{E}[N]$ by generating 100 values of N;
- **b.** Estimate $\mathbb{E}[N]$ by generating 1,000 values of N;
- **c.** Estimate $\mathbb{E}[N]$ by generating 10,000 values of N;
- **d.** What do you think is the value of $\mathbb{E}[N]$ based on these simulations.
- 2. In a weekly lottery five distinct numbers between 1 and 59 are chosen randomly. In one year (52 weeks) number 13 was chosen in 17 weeks. We want to investigate whether this is a normal random fluctuation or it is a very unusual event that needs to be further investigated. We define the following random variables:

A(n)= the number of times number n is chosen in one year, $n=1,\ldots,59$ M= the number of times number n is chosen in one year $=\max_{n=1,\ldots,59}A(n).$

n=1,...,59

Note that $A(n) \leq M$ can be any integer between 0 and 52.

- a. Write a python code to simulate the lottery described above;
- **b.** Simulate a one year long lottery and calculate the number of appearances of number 13, i.e., A(13);
- **c.** Generate N many one year simulations as in part b (with a large N) and approximate the probability of number 13 appearing at least 20 times, i.e., $\mathbb{P}(A(13) \ge 17)$.
- **d.** Generate N many one year simulations as in part b (with a large N) and approximate $\mathbb{P}(M \ge 17)$.

1