הרצאה ל 2 שלמות פונקציונלית, קבוצת קשרים שלמה

שרון מלטר, אתגר 17 2024 בספטמבר 13

תוכן עניינים

3	ים הקודמים	בפרק	1
3		משפכ	2
3		2.1	
3		צורות	3
3		3.1	
3			
3		3.2	
3	דוגמה 3.2.1		
3		שקילו	4
4	$^{-}$ קבוצה 1 $^{-}$ שלילה \ldots	4.1	
4	קבוצה 2	4.2	
4	קבוצה 3	4.3	
4	קבוצה 4	4.4	
5	קבוצה 5	4.5	
5	קבוצה 6	4.6	
5	תרגיל	4.7	
7	ת פונקציונלית ־ Functional Completeness הת פונקציונלית ב	שלמוו	5
7		5.1	
7		5.2	
7		5.3	
8		5.4	
		5.5	
8 8	5.5.1 הוכחה		
9	קבוצות קשרים שלמות נוספות	5.6	
9		בחזרו	6
10			7
10	,	7.1	•
10		7.2	
11		7.3	
11		,	
11			

1 בפרקים הקודמים

למדנו מהי לוגיקה, וכיצד להגדיר אותה עם סינטקס וסמנטיקה. כמו כן הגדרנו מהו יחס נביעה (יחס המקיים רפלקסיביות, מונוטוניות וטרנזיטיביות) והיום, נראה כיצד הסיפור ממשיך, היכונו לדרמה.

Replacement Theorem - משפט ההחלפה

אם $\psi = \psi'$ החלפת ע"י החלפת ע"י החלפת ע"י החלפת לוגית) אזי אזי לשה המתקבלת ע"י החלפת ע"י החלפת כל אם לוגית (כלומר שני הביטויים שקולים לוגית) אזי ל $\psi = \psi'$ אזי לוגית שקולים שקולים ע"י החלפת כל בי ע"י החלפת ע"י החלפת כל בי ע"י החלפת ע"י החלפת כל

2.1 דוגמה

 $C \to \neg (A \land B) \equiv C \to (\neg A \lor \neg B)$ מתקיים $\neg (A \land B) \equiv (\neg A \lor \neg B)$ מתקיים כן, משפט ההחלפה הוא עד כדי כך פשוט.

Normal Forms - צורות נורמליות

CNF **3.1**

1.1.1 דוגמה

דוגמה לנוסחה מצורת CNF:

$$(p_1 \vee \neg p_2) \wedge (p_2 \vee p_3)$$

מדהים.

DNF **3.2**

פורמולה D_i היא מהצורה D_i אם היא מהצורה D_i כאשר כל D_i כאשר כל D_i אם היא מהצורה D_i וכל D_i היא אטום או ערך נגדי של אטום.

1.2.1 דוגמה

הדוגמה:

$$(p_1 \wedge \neg p_2) \vee (p_2 \wedge p_3) \vee \neg p_4$$

כעת נעבור למספר שקילויות חשובות להגדרות ולתרגילים הבאים.

4 שקילויות חשובות

להלן מספר קבוצות של שקילויות, שעוזרות לנו לבצע כל מיני דברים כיפיים. יותר חשוב להבין כיצד אנחנו מגיעים לאותן שקילויות מאשר לשנן אותן.

4.1 קבוצה 1 - שלילה

אוהי צורה בה NNF (Negation Normal Form) אוהי בוחסה שקולה ב' תוסחה למצוא לכל נוסחה שוהי צורה בה חופיע רק לפני פסוקים אטומיים. - השקילויות הן:

$$\neg \neg A \equiv A$$
 .1

$$\neg (A \wedge B) \equiv \neg A \vee \neg B$$
 .2

$$\neg (A \lor B) \equiv \neg A \land \neg B$$
 .3

$$\neg (A \rightarrow B) \equiv A \wedge \neg B$$
 .4

2. קבוצה 4.2

קבוצה זו מאפשרת לנו להשתמש בכל הפעולות בעזרת – וקשר לוגי נוסף בלבד. תענוג.

$$A \rightarrow B \equiv \neg A \vee B$$
 .1

$$A \lor B \equiv \neg A \to B$$
 .2

$$A \wedge B \equiv \neg (A \rightarrow \neg B)$$
 .3

4.3 קבוצה 3

קבוצה זו מאפשר לנו לכתוב להלן שלושת או $A_1 \wedge A_2 \wedge ... \wedge A_m$ או או אוריים. מטורף. להלן שלושת סוגי קבוצה זו מאפשרות את:

1. אידמפוטנטיות

$$A \vee A \equiv A$$
 (X)

$$A \wedge A \equiv A$$
 (2)

2. קומוטטיביות ־

$$A \vee B \equiv B \vee A$$
 (X)

$$A \wedge B \equiv B \wedge A$$
 (2)

3. אסוציאטיביות

$$A \lor (B \lor C) \equiv (A \lor B) \lor C$$
 (X)

$$A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$$
 (2)

4.4 קבוצה 4

קבוצה זו מאפשרת להגיע מצורת NNF לצורת CNF ו־ DNF, כלומר קוניוקטיביות או דיסיוקטיביות, כלומר לצורות נורמליות. שתי סוגי השקילויות שמאפשרות זאת הן:

ביסטריבוטיביות: 1.

$$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$
 (N)

$$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$
 (2)

- (absorption) בליעה 2

$$A \vee (A \wedge B) \equiv A$$
 (X)

$$A \wedge (A \vee B) \equiv A$$
 (2)

5 קבוצה 4.5

קבוצה זו מאפשרת לנו לזהות רדוקציות של גרירות.

$$A \to (B \to C) \equiv (A \land B) \to C$$
 .1

$$A \to (B \land C) \equiv (A \to B) \land (A \to C)$$
 2

$$(A \lor B) \to C \equiv (A \to C) \land (B \to C)$$
 3

$$(\neg A \rightarrow \neg B) \equiv B \rightarrow A$$
 .4

4.6 קבוצה 6

זו סתם שקילות לא מיוחדת:

$$A \leftrightarrow B \equiv (A \to B) \land (B \to A)$$
 .1

בואו ננסה באמת להשתמש בכל מה שלמדנו כאן.

4.7 תרגיל

מצאו נוסחה שקולה ל־ $p \leftrightarrow (q \land \neg p)$ ב־ פתרון בעמוד הבא.

:פתרון

$$p \leftrightarrow (q \land \neg p) \equiv (p \rightarrow (q \land \neg p)) \land ((q \land \neg p) \rightarrow p)$$

$$p \leftrightarrow (q \land \neg p) \equiv (p \rightarrow (q \land \neg p)) \land (\neg (q \land \neg p) \lor p)$$

$$p \leftrightarrow (q \land \neg p) \equiv (p \rightarrow (q \land \neg p)) \land (\neg q \lor p \lor p)$$

$$p \leftrightarrow (q \land \neg p) \equiv (p \rightarrow (q \land \neg p)) \land (\neg q \lor p)$$

$$p \leftrightarrow (q \land \neg p) \equiv (\neg p \lor (q \land \neg p)) \land (\neg q \lor p)$$

$$p \leftrightarrow (q \land \neg p) \equiv (\neg p \lor (\neg p \land q)) \land (\neg q \lor p)$$

$$p \leftrightarrow (q \land \neg p) \equiv (\neg p \lor (\neg p \land q)) \land (\neg q \lor p)$$

$$p \leftrightarrow (q \land \neg p) \equiv (\neg p) \land (\neg q \lor p)$$

$$p \leftrightarrow (q \land \neg p) \equiv \neg p$$

זהו הפישוט המינימלי שנוכל לבצע. בעמוד הבא נעבור לנושא חדש ולעוד כמה תרגילים.

Functional Completeness - שלמות פונקציונלית 5

Truth - Functionality 5.1

 $\psi_1,...,\ \psi_n$ ל־ שניתנים שמוענק ל־ תלוי רק בערכי האמת הגדרה: ערך האמת שמוענק ל־ ל $\widetilde{\diamond}(\psi_1,...,\ \psi_n)$

Truth function - פונקציית אמת 5.2

 $F_{\psi}:\{t,\ f\}^n o \{t,\ f\}$ האמת נוסחה לנוסחה בלבד. פוקנציית מהאטומים עורכבת מהאטומים $\psi(p_1,...,\ p_n)$ המורכבת מוגדרת כך;

 $F(x_1, ..., x_n) = v(\psi(p_1, ..., p_n)), \text{ where } v(p_i) = x_i \text{ for } 1 \le i \le n$

(כן, v היא איווליואציה)

5.3 תרגיל

! $A=(p_1\wedge \neg p_2)\vee (\neg p_1\wedge p_2)$ מהי פונקציית האמת של הנוסחה

פתרון בעמוד הבא.

פתרון:

p_1	p_2	A
t	t	f
t	f	t
f	t	t
f	f	f

שימו ♡; שתי פונקציות לוגיות הן שקולות אם"ם פונקציות האמת שלהן זהות. לכן ניתן להשתמש בטבלאות אמת כדי להוכיח או להפריך שקילות.

 F_A כאשר $F_A=f$ כך ש־ A כך מביניכם מביניכם לסקרנים מביניכם לכל פונקציית האם לכל פונקציית אמת לכך איז האמת של A

 \sim על שאלה זו ניתן לענות בעזרת שלמות פונקציונלית

5.4 הגדרה

<u>הגדרה:</u>

 $F:\{t,\ f\}^n o \{t,\ f\}$ אם לכל פונקציה (functionality complete) סט של קשרים לוגיים היא שלמה פונקציונלית על קשרים לוגיים היא שלמה פונקציונלית על היים רק מ־ S כך שי $\psi(p_1,...,\ p_n)$ שיש בה רק קשרים לוגיים רק מ־ S כך שי שלעה היים היימת נוסחה היים שיש בה רק קשרים לוגיים היים מדי

כלומר, זוהי הגדרה המתאימה לשאלה ששאלנו מקודם. ובהמשך לאותה שאלה־ האם $\{\lor, \land, \lnot\}$ היא שלמה פונקציונלית? - כן! נוכיח זאת בהמשך.

5.5 משפט

יונעפרוי

לכל פונקציית אמת f בעלת n פסוקים אטומים, קיימת נוסחה A מעל f, אשר משתמשת רק בקשרים לכל f

 $\,$ כלומר, לכל פונקציית אמת קיימת נוסחה עם הקשרים $\{ee,\ \wedge, \neg\}$ בלבד שהיא פונקציית האמת שלה.

5.5.1 הוכחה

הוכחה:

f מספר אמת פונקציית של פונקציית מספר הפסוקים האטומיים של פונקציית אמת נוכיח

בסיס: עבור n=1, יש בסך הכל 4 פונקציות אמת אפשרויות (יש שתי אפשרוית לערכים של פסוק האמת ושתי אפשרויות לערך הפונקציה) להלן 4 פונקציות שפונקציות האמת שלהן הן כל אותן 4 פונקציות אמת;

.1

$$A_1 = p \vee \neg p$$

.2

$$A_2 = p \land \neg p$$

.3

$$A_3 = p$$

.4

$$A_4 = \neg p$$

n+1 ונוכיח את נכונותו עבור $n\geqslant 1$ מספר טבעי לכל מספר טבור n+1 אינדוקציה: נניח שהמשפט נכון לכל מספר טבעי n+1 פסוקים אטומיים. נגדיר בעזרתה שתי פונקציות נוספות; n+1

$$f_1(x_1,..., x_n) = f(x_1,..., x_n, t)$$

$$f_2(x_1,..., x_n) = f(x_1,..., x_n, f)$$

 $\{p_1,...,\ p_n\}$ עבור $B,\ C$ הולות פיימות פורמוליה אטומיים, לפי הנחת האינדוקציה קיימות פורמולות פסוקים אטומיים, לפי הנחת האינדוקציה קיימות פורמולות פסוקים אטומיים, לפי הנחת $A=(p_{n+1}\wedge B)\vee (\neg p_{n+1}\wedge C)$ גבחר $f_1=F_B,\ f_2=F_C$ אזי מתקיים $f_1=f_1$, כך שאוהי דוגמה אלמונית לנכונות המשפט עבור $f_1=f_2$.

5.6 קבוצות קשרים שלמות נוספות

ניזכר בשקילויות שלמדנו מקודם, ונשים לב ש־

$$A \to B \equiv \neg A \lor B$$

$$A \lor B \equiv \neg A \to B$$

$$A \lor B \equiv \neg(\neg A \land \neg B)$$

$$A \wedge B \equiv \neg(\neg A \vee \neg B)$$

כלומר, ניתן לקבל עם הקשרים $\{\lor,\lnot\},\ \{\land,\lnot\},\ \{\land,\lnot\},\ \{\to,\lnot\}$ ששלושת קבוצת אלה הן כלומר, ניתן לקבל עם הקשרים עצמן.

דוגמה נוספת תהי נוסחת האמת ⊕ המוגדרת;

p_1	p_2	$p_1 \oplus p_2$
t	t	f
t	f	t
f	t	t
f	f	t

מתקיים $\{\neg,\lor\}$ היא קבוצת שלמה, אור $A\lor B\equiv (A\oplus A)\oplus (B\oplus B)$ ו $A\oplus A\equiv \neg A$ כך שמאחר שהקבוצה (G:) היא קבוצת קשרים שלמה (\oplus

DNF בחזרה לצורת 6

משפט:

לכל פורמולה יש צורת DNF שקולה.

מוזמנים לגגל את ההוכחה.

7 תרגיל אחרון

7.1

7.2

מצאו צורות $CNF,\ DNF$ שקולות לוגית לקשר שהגדרתם מקודם.

פתרונות בעמוד הבא.

7.3 פתרונות

7.3.1

:הגדרת הקשר

p	q	r	if p then q else r
t	t	t	t
t	t	f	t
t	f	t	f
t	f	f	f
f	t	t	t
f	t	f	f
f	f	t	t
f	f	f	f

7.3.2

;"r אחרת q אז p של "אם CNF בורה ב־

$$A \equiv (p \to q) \land (\neg p \to r)$$

$$A \equiv (\neg p \lor q) \land (p \lor \neg r)$$

;"r אחרת q אז p של DNF בורה בי B ותהי

$$B \equiv (p \to q) \land (\neg p \to r)$$

$$B \equiv (\neg p \lor q) \land (p \lor \neg r)$$

$$B \equiv ((\neg p \lor q) \land p) \lor ((\neg p \lor q) \land \neg r)$$

$$B \equiv (p \land (\neg p \lor q)) \lor (\neg r \land (\neg p \lor q))$$

$$B \equiv (p \land \neg p) \lor (p \land q) \lor (\neg r \land \neg p) \lor (\neg r \land q)$$

$$B \equiv (p \land q) \lor (\neg r \land \neg p) \lor (\neg r \land q)$$