Sinais e Sistemas Electrónicos

Capítulo 2: Técnicas de Análise de Circuitos

(parte 1)

Sinais e Sistemas Electrónicos – 2021/2022

Sumário

- Análise de Nodal;
- Exemplos de cálculo;
- Análise Nodal com super-nós;
- Linearidade e sobreposição;
- Exemplos de cálculo.

Análise Nodal

2.1-3

Sinais e Sistemas Electrónicos – 2021/2022

Análise de Nodal

- Método sistemático que permite determinar as tensões em todos os nós de um circuito;
- nó Ponto de ligação de dois ou mais elementos num circuito;

Análise de Nodal - nó de referência

• Dado que uma tensão é sempre definida entre dois nós, designamos um dos nós do circuito como Nó de Referência – em relação ao qual todas as tensões são medidas.

• Quando referirmos, por exemplo, a tensão v_I , estaremos a referir-nos na realidade à tensão entre o nó 1 e o nó de referência.

2.1-5

Sinais e Sistemas Electrónicos - 2021/2022

Análise de Nodal

- Para todos os efeitos práticos, o potencial eléctrico no nó de referência é considerado nulo;
- Um circuito com N nós tem N-1 tensões as Tensões Nodais;
- A polaridade de referência das tensões nodais é geralmente considerada positiva (+) em cada nó e negativa (-) no nó de referência;
- Aplicando KCL a todos os nós excepto o de referência, obtemos um sistema de N-1 equações com N-1 incógnitas que nos permite determinar as tensões nodais.

Apliquemos KCL aos nós do circuito;

KCL: "A soma das correntes que entram num nó é igual à soma das correntes que saem desse nó"

$$3.1 = i_1 + i_3$$

$$noc 2:$$
 $i_3 = i_2 - 1.4$

Exprimimos agora cada uma das correntes em função das tensões:

$$i_1 = v_1 / 2$$

$$i_2 = v_2 / 1$$

$$i_3 = v_{12} / 5 = (v_1 - v_2) / 5$$

Substituindo acima obtém-se

$$3 = 0.5v_1 + 0.2(v_1 - v_2)$$
$$0.2(v_1 - v_2) = 1v_2 - 2$$

2.1-7

Sinais e Sistemas Electrónicos - 2021/2022

Análise Nodal – exemplo 1

O que, rearranjando, dá o sistema

$$\begin{cases} 3.5v_1 - v_2 = 15.5 \\ -v_1 + 6v_2 = 7 \end{cases}$$

• Resolvendo por substituição obtém-se.

$$\begin{cases} v_1 = 5V \\ v_2 = 2V \end{cases}$$

Com as tensões nodais podemos agora calcular todas as correntes no circuito

$$i_1 = v_1/2 = 2.5A$$

 $i_2 = v_2/1 = 2A$
 $i_3 = (v_1 - v_2)/5 = 0.6A$

• Determinar as tensões nodais no circuito dado.

2.1-9

Sinais e Sistemas Electrónicos - 2021/2022

Análise Nodal – exemplo 2

Aplicando KCL aos três nós:

-3 A

nó 1:
$$-8-3=i_1+i_2$$

nó 2:
$$i_1 = -3 + i_3 + i_4$$

nó 3:
$$i_4 + i_2 = -25 + i_5$$

2.1-11

Sinais e Sistemas Electrónicos - 202

Análise Nodal – exemplo 2

 Relacionando as correntes com as tensões, obtemos:

<u>nó 1:</u>

$$-8-3 = i_1 + i_2$$

$$-8-3 = v_{12}/3 + v_{13}/4 = \frac{v_1 - v_2}{3} + \frac{v_1 - v_3}{4}$$

$$7v_1 - 4v_2 - 3v_3 = -132$$

 Relacionando as correntes com as tensões, obtemos:

<u>nó 2:</u>

$$i_{1} = -3 + i_{3} + i_{4}$$

$$v_{12}/3 = -3 + v_{2}/1 + v_{23}/7 \Leftrightarrow \frac{v_{1} - v_{2}}{3} = -3 + \frac{v_{2}}{1} + \frac{v_{2} - v_{3}}{7}$$

$$7v_{1} - 31v_{2} + 3v_{3} = -63$$

2.1-13

Sinais e Sistemas Electrónicos - 202

tensões, obtemos:

nó 3:

$$i_4 + i_2 = -25 + i_5$$

$$v_{23}/7 + v_{13}/4 = -25 + v_3/5 \Leftrightarrow \frac{v_2 - v_3}{7} + \frac{v_1 - v_3}{4} = -25 + \frac{v_3}{5}$$

$$35v_1 + 20v_2 - 83v_3 = -3500$$

O sistema de equações é:

$$\begin{cases} 7v_1 - 4v_2 - 3v_3 = -132 \\ 7v_1 - 31v_2 + 3v_3 = -63 \\ 35v_1 + 20v_2 - 83v_3 = -3500 \end{cases}$$

• Resolvendo obtém-se:

$$\begin{cases} v_1 = 5.41V \\ v_2 = 7.74V \\ v_3 = 46.3V \end{cases}$$

 Com as tensões nodais, podemos agora calcular todas as correntes.

Sinais e Sistemas Electrónicos - 2021/2022

Análise Nodal passo a passo

- 1. Contar o número de nós N;
- 2. Escolher um dos nós como nó de Referência;

- 3. Atribuir tensões aos nós: $v_1, v_2, \dots v_{N-1}$;
- 4. Marcar correntes em todos os ramos;
- 5. Usando a Lei das Correntes de Kirchhoff (KCL), escrever *N-1* equações nodais.

Análise Nodal - Com fontes de tensão no meio

Como resolver?

Processo 1

• marcar uma corrente na fonte de

tensão: i_f

- aplicar KCL aos 3 nós
- aplicar KVL aos nós 2 e 3:

$$v_3 - v_2 = 22$$

Resultado:

4 equações com 4 incógnitas MUITO COMPLICADO!!

2.1-17

Sinais e Sistemas Electrónicos – 2021/2022

Análise Nodal - Com fontes de tensão no meio

Processo 2

• tratar os nós 2 e 3 mais a fonte de tensão como um só nó: um super nó

• aplicar KCL ao nó 1 e ao super-nó

• aplicar KVL aos nós 2 e 3:

$$v_3 - v_2 = 22$$

Resultado:

3 equações com 3 incógnitas PROCESSO MAIS SIMPLES!!

Sinais e Sistemas Electrónicos - 2021/2022

Análise Nodal – com super-nó

• Se a soma das correntes que entram no nó v_2 é zero e a soma das correntes que entram no nó v_3 é zero, então a soma das correntes que entram nos dois nós também tem de ser zero.

2.1-19

Sinais e Sistemas Electrónicos – 2021/2022

Análise Nodal – com super-nó

Apliquemos então KCL

<u>nó 1:</u>

$$-8-3=i_1+i_2$$

$$-8 - 3 = v_{12}/3 + v_{13}/4 = \frac{v_1 - v_2}{3} + \frac{v_1 - v_3}{4}$$

$$7v_1 - 4v_2 - 3v_3 = -132$$

 $\frac{-v_2}{3} + \frac{v_1 - v_3}{4}$ ref.

 4Ω

... é a mesma equação do exemplo anterior

Análise Nodal – com super-nó

NOTA: O super-nó inclui a fonte de tensão + os dois nós aos quais a fonte está ligada

super -nó:

$$i_1 + i_2 = -3 + i_3 + i_5 - 25$$

$$\frac{v_1 - v_2}{3} + \frac{v_1 - v_3}{4} = -28 + \frac{v_2}{1} + \frac{v_3}{5}$$

$$35v_1 - 80v_2 - 27v_3 = -1680$$

2.1-21

Sinais e Sistemas Electrónicos - 2021/2022

Análise Nodal – com super-nó

• Finalmente, aplicamos KVL ao super-nó:

$$v_3 - v_2 = 22$$

• pelo que o sistema de equações final é

final é
$$\begin{cases} 7v_1 - 4v_2 - 3v_3 = -132 \\ 35v_1 - 80v_2 - 27v_3 = -1680 \\ v_3 - v_2 = 22 \end{cases}$$
• Resolvendo obtém-se:
$$\begin{cases} v_1 = 1.07V \\ v_2 = 10.5V \\ v_3 = 32.5V \end{cases}$$

Análise Nodal – super-nó que contém o nó de referência

Quando o super-nó inclui o nó de referência a análise fica mais fácil!

2.1-23

Sinais e Sistemas Electrónicos – 2021/2022

Análise Nodal passo a passo (com super-nós)

- 1. Contar o número de nós N;
- 2. Escolher nó de Referência;
- 3. Atribuir tensões aos nós: v_1, v_2, \dots, v_{N-1} ;
- 4. Marcar correntes em todos os ramos;
- 5. Se o circuito contiver fontes de tensão, formar super-nós que contenham essas fontes e os nós a que estão ligados;
- 6. Usando KCL, escrever uma equação para cada nó (excepto o de referência) e para cada super-nó que não contenha o nó de referência;
- 7. Usando KVL relacionar a tensão de cada fonte com as tensões nodais.

Linearidade e Sobreposição

2.1-25

Sinais e Sistemas Electrónicos – 2021/2022

Linearidade

- Circuito linear É um circuito composto apenas por:
 - **Elementos lineares**;
 - > Fontes independentes;
 - > Fontes dependentes lineares.
- Elemento linear É um elemento passivo que tem uma relação linear entre a tensão aos seus terminais e a corrente que o percorre. Exemplo:
 - \triangleright Resistência: v = R.i;
 - > Condensador e bobina.

Princípio da Sobreposição

- É a consequência mais importante da linearidade.
- Principio da Sobreposição: A resposta de um circuito com mais do que uma fonte pode obter-se como a soma das respostas individuais devidas a cada uma das fontes, actuando sozinhas.
- Em termos formais, podemos expressar o Principio da Sobreposição como:

$$f(x_1 + x_2 + ... + x_n) = f(x_1) + f(x_2) + ... + f(x_n)$$

Em que

- $\rightarrow x_1, x_2, ..., x_n$ são as fontes;
- > f() são as respostas.

2.1-27

Sinais e Sistemas Electrónicos - 2021/2022

Princípio da Sobreposição

Em termos mais concretos, pode ser enunciado como

Em qualquer circuito linear contendo várias fontes, as tensões/correntes em qualquer nó/ramo podem ser calculadas adicionando as tensões/correntes individuais provocadas por cada uma das fontes actuando sozinhas.

Desactivação das outras fontes

- Para determinar o efeito provocado por uma fonte, devemos desactivar todas as outras fontes independentes:
 - Fontes de tensão devem ser curto-circuitadas, anulando assim a sua tensão;
 - Fontes de corrente devem ser abertas, anulando assim a sua corrente.

Nota: fontes dependentes não se desactivam!

2.1-29

Sinais e Sistemas Electrónicos - 2021/2022

Aplicação do Princípio da Sobreposição

- Para o circuito dado, se
 - $\triangleright i_1$ for a corrente em R1 produzida só por i_S , e
 - $\triangleright i_2$ for a corrente em R1 produzida só por v_S , então
 - > a corrente produzida pelas duas fontes em simultâneo será $i = i_1 + i_2$

Exemplo: Para o circuito dado, calcular i

2.1-31

Sinais e Sistemas Electrónicos - 2021/2022

Exemplo - Resolução usando o Princípio da Sobreposição

1º passo: Consideremos primeiro só o efeito da fonte de corrente:

> Desactivamos a fonte de tensão.

Fonte de tensão foi desactivada!

$$v_1 = 2(6//9) = 7.2V$$

com
$$6//9 = \frac{6x9}{6+9}$$

$$i_1 = \frac{v_1}{9} = \frac{7.2}{9} = 0.84$$

Exemplo - Resolução usando o Princípio da Sobreposição

- 2º passo: Consideremos agora só o efeito da fonte de tensão:
 - > Desactivamos a fonte de corrente;

2.1-33

Sinais e Sistemas Electrónicos - 2021/2022

Exemplo - Resolução usando o Princípio da Sobreposição

- 3º passo: Aplicamos o Principio da Sobreposição
 - \succ *i* vai ser dada pela soma dos contributos *i*₁ e *i*₂ de cada uma das fontes

$$i = i_1 + i_2 = 0.8 + 0.2 = 1A$$

Princípio da Sobreposição – algumas notas

- Se tivermos N fontes independentes, o circuito será analisado N vezes considerando uma fonte de cada vez;
- Ocontudo, nada obriga a que apenas uma fonte esteja activa em cada análise, embora essa seja a situação mais fácil;

2.1-35

Sinais e Sistemas Electrónicos - 2021/2022

Princípio da Sobreposição – não esquecer!

Como se desactivam as fontes independentes?

• Fontes de tensão são curtocircuitadas $\Rightarrow V = 0$;

 Fontes de corrente são abertas $\Rightarrow I = 0$;

• Fontes dependentes não se desactivam.

Princípio da Sobreposição - nota final

• Como o princípio só se aplica a respostas lineares, então NÃO se aplica à determinação da potência!

Exemplo: Potência dissipada na resistência? $P = \frac{v^2}{R} = \frac{(1+1)^2}{1} = 4W$

Se pretendêssemos aplicar o Princípio da Sobreposição considerando que $P = P_1 + P_2$, sendo P_1 e P_2 as potências devidas a cada uma das fontes a actuar em separado, teríamos

$$P_1 = \frac{1^2}{1} = 1W$$
 $P_2 = \frac{1^2}{1} = 1W$

o que resultaria num valor errado da potência na resistência:

$$P = P_1 + P_2 = 2W$$

Sobreposição não funciona com potências!

2.1-37

Sinais e Sistemas Electrónicos - 2021/2022

Princípio da Sobreposição - Exercício

- a) Usando o princípio da sobreposição calcule i;
- b) Determine o valor que a fonte de tensão v_1 deve ter, para que a corrente i duplique.

Princípio da Sobreposição - Exercício

a)

- Cada uma das fontes, v_1 e v_2 , vai contribuir para a corrente i:
 - i_1 a corrente produzida só por v_1 , e
 - i₂ a corrente produzida só por v₂

$$i = i_1 + i_2$$

2.1-39

Sinais e Sistemas Electrónicos - 2021/2022

Princípio da Sobreposição - Exercício

a)

• Calculemos o contributo da

fonte V₁

Usando a fórmula do divisor de tensão:

$$v_{\rm A} = -\frac{3//6}{3//6 + 4} v_{\rm A}$$

$$i_1 = \frac{v_A}{6}$$

$$i_1 = -\frac{3//6}{3//6 + 4} v_1 \frac{1}{6} = -\frac{v_1}{18}$$

2.1-40

Princípio da Sobreposição - Exercício

a)

E agora o contributo da fonte v₂

$$v_{\rm A} = \frac{4//6}{4//6+3} v_2$$

• Para $v_2 = 10V$

$$i_2 = v_A \frac{1}{6} = \frac{4//6}{4//6+3} \cdot 10 \cdot \frac{1}{6} = \frac{20}{27} A$$

2.1-41

Sinais e Sistemas Electrónicos - 2021/2022

Princípio da Sobreposição - Exercício

a)

• Aplicando agora Sobreposição, calculamos a corrente i:

$$i = i_1 + i_2 = -\frac{v_1}{18} + \frac{20}{27}$$

O que para
$$v_l = 4V \, \text{d}$$
 $i = \frac{14}{27} A$

Princípio da Sobreposição - Exercício

b) Calculemos agora o valor de v_I que duplica o valor da corrente i.

Para isso basta resolver a equação

$$-\frac{v_1}{18} + \frac{20}{27} = 2x \text{ (valor obtido em } a\text{)} = 2x \frac{14}{27}$$

que dá
$$v_1 = -\frac{16}{3} = -5.33V$$

2.1-43