4



**FIGURE 2** The Graph of  $f(x) = \log x$ .

By part 2 of Theorem 1, we have

$$b^{\log_a x \cdot \log_b a} = (b^{\log_b a})^{\log_a x}$$
$$= a^{\log_a x}$$
$$= x.$$

This completes the proof.

Because the base used most often for logarithms in this text is b = 2, the notation  $\log x$  is used throughout the test to denote  $\log_2 x$ .

The graph of the function  $f(x) = \log x$  is displayed in Figure 2. From Theorem 3, when a base b other than 2 is used, a function that is a constant multiple of the function  $\log x$ , namely,  $(1/\log b)\log x$ , is obtained.

## **Exercises**

1. Express each of the following quantities as powers of 2.

- a)  $2 \cdot 2^2$
- **b**)  $(2^2)^3$
- c)  $2^{(2^2)}$

2. Find each of the following quantities.

- a) log<sub>2</sub> 1024
- **b**)  $\log_2 1/4$
- c) log<sub>4</sub> 8

**3.** Suppose that  $\log_4 x = y$  where x is a positive real number. Find each of the following quantities.

- a)  $\log_2 x$
- **b**)  $\log_8 x$
- c)  $\log_{16} x$

**4.** Let a, b, and c be positive real numbers. Show that  $a^{\log_b c} =$ 

**5.** Draw the graph of  $f(x) = b^x$  for all real numbers x if bis

- **a**) 3.
- **b**) 1/3.
- **c)** 1.

**6.** Draw the graph of  $f(x) = \log_b x$  for positive real numbers x if b is

- a) 4.
- **b**) 100.
- c) 1000.