Introduction to Audio Content Analysis

Module 8.0: Classifiers

alexander lerch

introduction

overview

corresponding textbook section

Chapter 8: Musical Genre, Similarity, and Mood (pp. 155)

lecture content

- training set and test set
- intuitive intro to machine learning
- classifier examples

learning objectives

- describe the basic principles and challenges of data-driven machine learning approaches
- implement a kNN classifier in Matlab

introduction

overview

corresponding textbook section

Chapter 8: Musical Genre, Similarity, and Mood (pp. 155)

lecture content

- training set and test set
- intuitive intro to machine learning
- classifier examples

learning objectives

- describe the basic principles and challenges of data-driven machine learning approaches
- implement a kNN classifier in Matlab

classification machine learning

- computer runs a 'generic' program
- adapts parameters to training data

⇒ data driven approach

data and its representation defines much of the outcome

- validity: is data representative sample and do features focus on important characteristics
- reliability: does data lead to accurate and consistent results
- reproducibility: will multiple runs result in similar results

classification machine learning

- computer runs a 'generic' program
- adapts parameters to training data
- → data driven approach

data and its representation defines much of the outcome

- validity: is data representative sample and do features focus on important characteristics
- reliability: does data lead to accurate and consistent results
- reproducibility: will multiple runs result in similar results

- define training set: annotated results
- o normalize training se
- train classifier
- evaluate classifier with test (or validation) se
- (adjust classifier settings, return to 4.)

- define training set: annotated results
- o normalize training set
- train classifier
- evaluate classifier with test (or validation) se
- (adjust classifier settings, return to 4.)

Georgia Center for Music Tech College of Design

- define training set: annotated results
- o normalize training set
- train classifier
- evaluate classifier with test (or validation) se
- (adjust classifier settings, return to 4.)

Georgia Center for Music Tech College of Design

- define training set: annotated results
- o normalize training set
- train classifier
- evaluate classifier with test (or validation) set
- (adjust classifier settings, return to 4.)

Georgia Center for Music Tech College of Design

- **Output** define training set: annotated results
- o normalize training set
- train classifier
- evaluate classifier with test (or validation) set
- (adjust classifier settings, return to 4.)

classification rules of thumb

training set

- training set size vs. number of features
 - training set too small, feature number too large ⇒ overfitting
- training set too noisy ⇒ underfitting
- \bullet training set not representative \Rightarrow bad classification performance

classifier

- classifier too complex ⇒ overfitting
- poor classifier ⇒ bad classification performance
 - → different classifier

features

- poor features ⇒ bad classification performance
 - → new. better features
- features not normalized ⇒ possibly bad classification performance
 - feature distribution (range, mean, symmetry)

classification rules of thumb

training set

- training set size vs. number of features
 - training set too small, feature number too large ⇒ overfitting
- training set too noisy ⇒ underfitting
- ullet training set **not representative** \Rightarrow bad classification performance

classifier

- classifier too complex ⇒ overfitting
- poor classifier ⇒ bad classification performance
 - → different classifier

features

- poor features ⇒ bad classification performance
 - → new, better features
- features not normalized ⇒ possibly bad classification performance
 - feature distribution (range, mean, symmetry)

classification rules of thumb

training set

- training set size vs. number of features
 - training set too small, feature number too large ⇒ overfitting
- training set too noisy ⇒ underfitting
- training set **not representative** \Rightarrow *bad classification performance*

classifier

- classifier too complex ⇒ overfitting
- poor classifier ⇒ bad classification performance
 - → different classifier

features

- poor features ⇒ bad classification performance
 - → new, better features
- features **not normalized** \Rightarrow possibly bad classification performance
 - feature distribution (range, mean, symmetry)

- define test set for evaluation
 - test set different from training set
 - otherwise, same requirements
- example: N-fold cross validation
 - split training set into N parts (randomly, but preferably identical number per class)
 - select one part as test set
 - \bigcirc train the classifier with all observations from remaining N-1 parts
 - compute the classification rate for the test set
 - repeat until all N parts have been tested
 - overall result: average classification rate

- define test set for evaluation
 - test set different from training set
 - otherwise, same requirements
- example: *N*-fold cross validation
 - split training set into N parts (randomly, but preferably identical number per class)
 - select one part as test set
 - \bigcirc train the classifier with all observations from remaining N-1 parts
 - compute the classification rate for the test set
 - o repeat until all N parts have been tested
 - overall result: average classification rate

- define test set for evaluation
 - test set different from training set
 - otherwise, same requirements
- example: *N*-fold cross validation
 - split training set into N parts (randomly, but preferably identical number per class)
 - select one part as test set
 - \odot train the classifier with all observations from remaining N-1 parts
 - compute the classification rate for the test set
 - o repeat until all N parts have been tested
 - overall result: average classification rate

- define test set for evaluation
 - test set different from training set
 - otherwise, same requirements
- example: N-fold cross validation
 - \bigcirc split training set into N parts (randomly, but preferably identical number per class)
 - select one part as test set
 - \odot train the classifier with all observations from remaining N-1 parts
 - o compute the classification rate for the test se
 - o repeat until all N parts have been tested
 - overall result: average classification rate

- define test set for evaluation
 - test set different from training set
 - otherwise, same requirements
- example: N-fold cross validation
 - split training set into N parts (randomly, but preferably identical number per class)
 - select one part as test set
 - \bigcirc train the classifier with all observations from remaining N-1 parts
 - compute the classification rate for the test set
 - o repeat until all N parts have been tested
 - overall result: average classification rate

- define test set for evaluation
 - test set different from training set
 - otherwise, same requirements
- example: N-fold cross validation
 - split training set into N parts (randomly, but preferably identical number per class)
 - select one part as test set
 - \odot train the classifier with all observations from remaining N-1 parts
 - ompute the classification rate for the test set
 - o repeat until all N parts have been tested
 - overall result: average classification rate

- define test set for evaluation
 - test set different from training set
 - otherwise, same requirements
- example: N-fold cross validation
 - \bigcirc split training set into N parts (randomly, but preferably identical number per class)
 - select one part as test set
 - \odot train the classifier with all observations from remaining N-1 parts
 - compute the classification rate for the test set
 - o repeat until all N parts have been tested
 - overall result: average classification rate

k-Nearest Neighbor (kNN)

Georgia Center for Music Tech Technology

- **training**: extract reference vectors from training set (keep class labels)
- classification: extract test vector and set class to majority of k nearest reference vectors
- classifier data: all training vectors

k-Nearest Neighbor (kNN)

Georgia **Center for Music** Tech | Technology

- training: extract reference vectors from training set (keep class labels)
- classification: extract test vector and set class to majority of k nearest reference vectors

k-Nearest Neighbor (kNN)

Georgia **Center for Music** Tech ₩ **Technology**

- training: extract reference vectors from training set (keep class labels)
- classification: extract test vector and set class. to majority of k nearest reference vectors

$$k = 3 \Rightarrow \text{red majority}$$

k-Nearest Neighbor (kNN)

Georgia Center for Music Technology

- training: extract reference vectors from training set (keep class labels)
- **classification**: extract test vector and set class to majority of *k* nearest reference vectors
- classifier data: all training vectors

$$k = 5 \Rightarrow \text{black majority}$$

k-Nearest Neighbor (kNN)

Georgia **Center for Music** Tech | Technology

- training: extract reference vectors from training set (keep class labels)
- classification: extract test vector and set class. to majority of k nearest reference vectors

$$k = 7 \Rightarrow \text{red majority}$$

Georgia Center for Music Tech Technology

- training: extract reference vectors from training set (keep class labels)
- classification: extract test vector and set class to majority of k nearest reference vectors
- classifier data: all training vectors

classifier examples Gaussian Mixture Model (GMM)

- **training**: build model of each class distribution as superposition of Gaussian distributions
- classification: compute output of each Gaussian and select class with highest probability
- classifier data: per class per Gaussian: μ and covariance, mixture weight?

000

classifier examples

Georgia **Center for Music** Tech | Technology

Gaussian Mixture Model (GMM)

- training: build model of each class distribution as superposition of Gaussian distributions
- classification: compute output of each Gaussian and select class with highest probability

classifier examples Gaussian Mixture Model (GMM)

- **training**: build model of each class distribution as superposition of Gaussian distributions
- classification: compute output of each Gaussian and select class with highest probability
- classifier data: per class per Gaussian: μ and covariance, mixture weight?

000

classifier examples Support Vector Machine (SVM)

Georgia **Center for Music** Tech | Technology

- training:
 - map features to high dimensional space

- find separating hyperplane through maximum distance of support vectors (data points)

classifier examples Support Vector Machine (SVM)

Georgia **Center for Music** Tech ₩ **Technology**

- training:
 - map features to high dimensional space

- find separating hyperplane through maximum distance of support vectors (data points)
- classification: apply feature transform and proceed with 'linear' classification

classifier examples Support Vector Machine (SVM)

Georgia Center for Music Tech Technology

- training:
 - map features to high dimensional space

- find separating hyperplane through maximum distance of support vectors (data points)
- classification: apply feature transform and proceed with 'linear' classification
- classifier data: support vectors, kernel, kernel parameters

summary

lecture content

data-driven approach

- general systems that learn behavior from data
- human interaction through
 - parametrization and procedures
 - data selection

training & test set

- must not overlap
- must be representative

fine balance of inputs

- number of features
- classifier complexity
- amount and variability of data

