Math 2130 Summer2012 Test 1

1. Let l_1 be the line with symmetric equations

$$\frac{x-1}{2} = \frac{y+3}{3} = 4-z$$

and l_2 be the line of intersection of the planes

$$x + y + 5z = 2$$
 and $y + 3z = 1$.

- (a) Find parametric equations for the line l_2 . [4]
- (b) Determine whether l_1 and l_2 are intersecting, parallel or skew. [2]
- (c) Find the distance between lines l_1 and l_2 . [6]
- 2. Find a vector representation for the curves of intersection of $z=\sqrt{4-x^2-y^2}$ and $x^2+y^2-2y=0$ directed so that z increases when x is positive. [6]
- 3. Let a curve C be defined by a position vector $\mathbf{r}(t) = \langle 2\sin t, 2\cos t, 3t \rangle$.
 - (a) Find the tangent vector. [3]
 - (b) Find the unit tangent vector. [2]
 - (c) Find the length of the curve C from the point (0,2,0) to $(0,2,6\pi)$. [4]
 - 4. Find the following limits, or show why they do not exist.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+3y^2}$$
 [4]

(b)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^3+xy^2+2x^2+2y^2}$$
 [3]

5. Show that the function $f(x,y) = \frac{x^3y}{x-y}$ satisfies $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = 3f(x,y)$. [6]