Lógica Matemática Parte 2

Dr. Paulo Vinicius Pereira Pinheiro¹

¹Centro Universitário Paraíso do Ceará UNIFAP

Acesse estes slides em: https://github.com/paulovpp/slides

Última atualização: 16 de março de 2022

Sumário

- 1. Tabela verdade
 - Definições iniciais
 - Construção de uma tabela verdade

- 2. Lógica proposicional sintaxe e semântica
 - Mundo da lógica proposicional
 - Valor lógico de uma proposição composta
 - Uso de parêntesis

onstrução de uma tabela verdade

Tabela verdade

Definições iniciais

Introductory definitions to the topic

Número de linhas

O número de linhas de uma tabela verdade de uma proposição composta depende do número n de proposições simples que a integram sendo dado pela regra:

$$2^n$$
 linhas (1)

Para n proposições simples do tipo p_1, p_2, \ldots, p_n , então a tabela verdade deve possuir um total de n colunas para as proposições simples e 2^n linhas. Posto isso:

• Para a 1^a proposição simples p_1 atribui-se $2^n/2^1 = 2^{n-1}$ valores V seguidos de F na mesma proporção.

Definições iniciais

Introductory definitions to the topic

Número de linhas

- Para a 2^a proposição simples p_2 atribui-se $2^n/2^2=2^{n-2}$ valores V seguidos de F na mesma proporção, repetindo-se até o final da tabela.
- Para a 3^a proposição simples p_3 atribui-se $2^n/2^3=2^{n-3}$ valores V seguidos de F na mesma proporção, repetindo-se até o final da tabela.
- De modo genérico, para a k-ésima proposição simples $p_k (k \le n)$ atribui-se **alternadamente**

$$2^n/2^k = 2^{n-k} (2)$$

valores V seguidos de igual número de valores F, repetindo a seguência até o final das linhas da tabela verdade.

Construção de uma tabela verdade

True table construction

Caso 1:
$$H(p,q) = \neg(p \land \neg q)$$

Tabela 1: Tabela verdade para uma proposição composta H(p,q).

р	q	$\neg q$	$p \land \neg q$	$\neg (p \land \neg q)$
V	V	F	F	V
V	F	V	V	F
F	V	F	F	V
F	F	V	F	V

Lógica Matemática

Construção de uma tabela verdade

True table construction

Caso 2:
$$G(p,q) = \neg(p \land \neg q) \lor \neg(q \leftrightarrow p)$$

Tabela 2: Tabela verdade para uma proposição G(p,q).

р	q	$p \wedge \neg q$	$q \leftrightarrow p$	$\neg (p \land \neg q)$	$\neg(q \leftrightarrow p)$	$\neg (p \land q) \lor \neg (q \leftrightarrow p)$
V	V	F	V	V	F	V
V	F	V	F	F	V	V
F	V	F	F	V	V	V
F	F	F	V	V	F	V

Proposição Tautológica.

Construção de uma tabela verdade

True table construction

Caso 3:
$$P(p,q,r) = (p \rightarrow (\neg q \lor r)) \land \neg (q \lor (p \leftrightarrow \neg r))$$

Tabela 3: Tabela verdade para uma proposição P(p,q,r).

				Α		В	
р	q	r	$\neg q \vee r$	$(p \to (\neg q \lor r))$	$p \leftrightarrow \neg r$	$(q \lor (p \leftrightarrow \neg r))$	$A \wedge B$
V	V	V	V	V	F	F	F
V	V	F	F	F	V	V	F
V	F	V	V	V	F	F	F
V	F	F	V	V	V	F	F
F	V	V	V	V	V	V	V
F	V	F	F	V	F	F	F
F	F	V	V	V	V	F	F
F	F	F	V	V	F	F	F

Mundo da lógica proposicional Valor lógico de uma proposição compost Uso de parêntesis

Lógica proposicional - sintaxe e semântica

Algumas definições

Some definitions to the topic

Mundo lógico

O mundo da lógica conforme conhecemos pode ser dividido em duas partes distintas a seguir:

- Sintaxe mundo sintático
- Semântica mundo semântico

Descritivo

Sintaxe: responsável pelo conjunto de símbolos (ALFABETO), conectivos e figuras utilizados pela lógica.

Semântica: responsável pelas operações e regras de forma a utilizar da melhor forma possível o conjunto de símbolos.

Algumas definições

Some definitions to the topic

Na prática

- O computador é um aparelho extremamente sintático opera com a representação de símbolos em linguagem de máquina, baixo nível e com a possibilidade de conversão dos mesmos para um nível inteligível aos seres humanos, conhecido como alto nível.
- Para que o computador possa desempenhar suas funções, um conjunto de regras (ALGORITMO) precisa ser definido, enviado e traduzido para sua interpretação e execução.

Regras ou significados

Caso a definição ou o significado de um conjunto de símbolos não seja bem definido, falhas de semântica podem ocorrer. Isso não fará com que não haja processamento. Porém, o resultado pode não ser o esperado.

Algumas definições

Some definitions to the topic

Exemplo de falha semântica

Observe o seguinte conjunto de caracteres - símbolos sintáticos:

REDE

Caso o uso do seguinte conjunto de símbolos seja utilizado sem a prévia e correta definição de sua usabilidade, poderá haver uma falha de execução e resultados discrepantes. Observa-se pelo menos três possíveis usos da palavra acima:

- objeto usado para dormir.
- objeto usado para pescar.
- descrição de um conjunto de computadores.

Valor lógico de uma proposição composta

Logical values (interpretations) for compound propositions

Definição

Dado uma proposição composta $H(p,q,r,\dots)$ pode-se determinar seu valor lógico, V ou F, quando são conhecidos os valores lógicos de suas proposições simples respectivamente.

Exemplo 1:

Assumindo
$$P(p,q)=(p\to q)\to (p\to p\wedge q),$$
 calcule: $V(P)$ quando $V(p)=V(q)=F$:

$$V(P(F,F)) = V(P) = (F \to F) \to (F \to F \land F)$$

$$V(P) = V \to (F \to F)$$

$$V(P) = V$$

Valor lógico de uma proposição composta

Logical values (interpretations) for compound propositions

Definição

Exemplo 2:

Dado:

$$P(p,q,r) = (q \leftrightarrow (r \rightarrow \neg p)) \lor ((\neg q \rightarrow p) \leftrightarrow r)$$

Calcule
$$V(P)$$
 quando $V(p) = V$ e $V(q) = V(r) = F$.

$$V(P(VFF)) = (F \leftrightarrow (F \rightarrow \neg V)) \lor ((\neg F \rightarrow V) \leftrightarrow F)$$

$$V(P) = (F \leftrightarrow (F \to F)) \lor ((V \to V) \leftrightarrow F)$$

$$V(P) = (F \leftrightarrow V) \lor (V \leftrightarrow F)$$

$$V(P) = (F) \lor (F)$$

$$V(P) = F$$

Uso de parêntesis

Parentheses use

Definição

É óbvia a necessidade do uso dos parêntesis na simbolização das proposições e fórmulas. Muito utilizados para evitar qualquer tipo de ambiguidade. Assim, p. ex., a expressão $p \wedge q \vee r$ dá lugar, colocando parêntesis, às duas proposições a seguir:

(i)
$$(p \wedge q) \vee r$$
 e (ii) $p \wedge (q \vee r)$