

TOPICS TO BE COVERED

- 1. About Hydrogen and its isotopes
- 2. Types of Hydrides
- H₂O₂ and Hard Water

Hydrogen exhibits a dual behavior

It resembles both alkali metals and halogens.

Alkali Metal

Electronic Configuration : n 5 1

$$H: 15^{1}$$

Halogens (F/Cl/gy/I)

Requires only one electron to have the configuration of the nearest noble gas.

$$F \longrightarrow [He] 2s^2 2p^5 \longrightarrow +e^-$$

$$1s^1) H \xrightarrow{+e^-} H^- (1s^2) \qquad 2s^2 2p^6$$

	Protium	Deuterium D	Tritium (T)
Representation	Ordinary hydrogen 1H	Heavy hydrogen ² H	Radioactive ³ H
Neutrons	Zero	1	२
Occurrence	99.98%	0.16%	10-15%

Q. The total number of isotopes of hydrogen and number of radioactive isotopes among them, respectively, are :

- A 3 and 1
- B 3 and 2
- C 2 and 1
- D 2 and 0

3 & 1

Q. Hydrogen has three isotopes (A), (B) and (C). If the number of neutron(s) in (A), (B) and (C) respectively, are (x), (y) and (z), the sum of (x), (y) and (z) is:

- A 3
 - B 2
- **C** 4
- D 1

$$B \longrightarrow Y (1)$$

$$C \longrightarrow Z (2)$$

$$\frac{1+2+0}{1+3} = 3$$

Active metals (Na, K)

Less active metals (Ca, Zn, Mg, Al)

Reaction of NaOH with

Sn, Al, Pb, Zn, B, Si =
$$M$$

$$S_{N}^{+4}$$

$$Q_{3}^{+}$$

$$S_{N}^{+}$$

>h2+

Pb2+

NaOH_(aq)

Gassing Reaction: Fe + H₂O
$$\xrightarrow{A}$$
 Fe₂O₃ + H₂↑

Bosch Process: Industrial Preparation

$$C + H_2O \xrightarrow{1270 \text{ K}} CO + H_2 : \text{Water years Syn gas: Methanol prep}^n$$

$$H_2 + CO + H_2O \xrightarrow{773 \text{ K}} \xrightarrow{Fe_2O_3.Cr_2O_3} \xrightarrow{CO_2 + 2H_2} \text{NAS}$$

Water gas shift reaction

CO₂ gas is removed by sodium arsenite solution, and this process is called as scrubbing.

Preparation of pure hydrogen

(1) The electrolysis of a solution of $Ba(OH)_2$ using Ni electrodes gives extra pure H_2 N_0^{\dagger} H^{-} K^{\dagger} / \bar{o}_{H}

(2) NaH +
$$H_2O \longrightarrow H_A^{\uparrow} + N_4OH$$

Saline / Salt Hydride

Ionic Hydride Na He

S block Metal & H

Crystalline solids

High M.P. & B.P.

Good conductor of electricity.

Covalent / Molecular Hydrides

P block (Non-metal) + H

HCI, H₂O, CH₄, PH₃

Less M.P. & B.P.

Poor conductor of electricity.

Interstitial Hydrides

Metallic Hydrides

D block Metal & H

 Fe_3H , $VH_{0.56}$ and $TiH_{1.7}$

High M.P. & B.P.

Nonstoichiometric in nature

T.S.: LiH > NaH > KH > RbH > CsH

Property	H ₂ O	D ₂ O
Molecular mass (g mol ⁻¹)	18.0151	20.0276
Melting point/K	273.0	276.8
Boiling point/K	373.0	374.4
Temp of max. density/K 4°c	276.98	11°c 284.2
Density (298K)/g cm ⁻³	1.0000	1.1059
Viscosity/centipoise	0.8903	1.107
Dielectric constant/C²/N.m²	78.39	78.06

 D_2O is extensively used as a moderator in nuclear reactors and in exchange reactions for the study of reaction mechanisms.

Physical Properties of H₂O₂

H-00 H-01 H-01 H-01

Viscosity 1 w.A. Hao

Boiling point 1 wit Ho

Dielectric constant _____

Not used as solvent

1202 Na/a H20 + 1202 1

Hyon glass

Aqueous solution is stored in plastic or wax-lined glass containers

Strength of hydrogen peroxide solution

Percentage strength:

20% aqueous solution (w/v) of H₂O₂: 20g of hydrogen peroxide is present in 100 ml

$$(1ml)$$

$$(ml)$$

$$(ml)$$

$$(ml)$$

11 gas 22.41

Volume strength: The volume (in ml) of oxygen liberated at N.T.P. by the decomposition of 1 ml sample of hydrogen peroxide.

Molarity and Volume Strength:

Molarity = Volume Strength / 11.2

$$(11.2) M = Vs$$

Q. Calculate the volume strength of $8.9 \text{ M} \text{ H}_2\text{O}_2$ solution at 273 K and 1 atm? Write the answer in nearest integer. (R = 0.0821 L atm K⁻¹ mol⁻¹)

$$M = 8 \cdot 9$$

$$M(11.2) = VS$$

The strength of 5.6 volume hydrogen peroxide (of density 1g/mL) in terms of mass percentage and molarity (M), respectively, are : (molar mass of H_2O_2 : 34g /mol)

mass
$$\frac{1}{m} = \frac{m_{\text{solute}}}{m_{\text{mass}}} \times 100$$

$$\frac{1}{1000} = \frac{17 \text{ gm}}{1000} \times 100$$

$$\sqrt{S} = 5.6$$

$$M = \frac{5 \cdot 6}{11 \cdot 2} = 0 \cdot 5$$

Hard water & Soft water

Hardness is due to presence of the bicarbonates, sulphates and chlorides of Ca and Mg.

Temporary Hardness

Bicarbonates of Ca and Mg

By Boiling

Bicarbonates decompose in insoluble carbonates (ppt)

Ca(HCO₃)₂
$$\xrightarrow{\text{Boil}}$$
 Ca(O₃ \(\psi + H₂O + Co₂\)

Mg(HCO₃)₂ $\xrightarrow{\text{Boil}}$ Mg (OH)₂ \(\psi \)

Clark's Method

 \rightarrow It can be removed by addition of slaked lime $\left(\begin{array}{c} C_q(\mathfrak{o} \mathfrak{k})_{\mathfrak{p}} \end{array} \right)$

$$C_{q} (oH)_{2} \qquad C_{q} (oH)_{2} \qquad C_{q$$

Sulphates, Chlorides of Ca, Mg

CaU2
My U2
CaSO4 | Mg SO4

This type of hardness cannot be removed by boiling or by the addition of slaked lime.

Ng CO3 . 10 H2 0

Washing Soda

Calgon

(Na PO3)

Permutit

Hyd. Zeolite)

Ion Exchange Resins

Organic Chemical

HPO3 meta phosphonie Aud Na PO3 Washing Soda

It removes both the temporary and permanent hardness by converting soluble calcium and magnesium compounds into insoluble carbonates.

$$CaCl_2 + Na_2CO_3 \longrightarrow CaCO_3 \downarrow + 1NaC$$

$$CaSO_4 + Na_2CO_3 \longrightarrow C_9CO_3 \downarrow + Na_2SO_3$$

Ca(HCO₃)₂ + Na₂CO₃

$$\downarrow$$
Ca CO₃ \downarrow + \downarrow Na HCO₃

Permutit / Hydrated Zeolite

$$Na_{2}Al_{2}Si_{2}O_{8}. xH_{2}O + Ca^{2+} \longrightarrow Ca Al_{2}Si_{2}O_{8}. xH_{2}O + 2N_{4}^{+}$$

$$Na_{2}Al_{2}Si_{2}O_{8}. xH_{2}O + NaCl \longrightarrow N_{2}Al_{2}Si_{2}O_{8}. xH_{2}O + 2N_{4}^{+}$$

$$Ca Al_{2}Si_{2}O_{8}. xH_{2}O + NaCl \longrightarrow N_{2}Al_{2}Si_{2}O_{8}. xH_{2}O + 2N_{4}^{+}$$

The one that is NOT suitable for the removal of permanent hardness of water is :

- A Clark's method
- B lon-exchange method
- C Calgon's method
- D Treatment with sodium carbonate

- A Na₂SO₄
- B NaCl
- C Ca(HCO₃)₂
- D CaCl₂