Transformations... continued

Lecture 6A

Summary: 3D Rotation Matrices

Rotations about Principal Axes

$$\begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\gamma & -\sin\gamma & 0 \\ 0 & \sin\gamma & \cos\gamma & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\beta & 0 & \sin\beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\beta & 0 & \cos\beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

About origin, in right handed coordinate system, counter clockwise when looking towards origin from positive axis

- Rotation matrix is orthonormal with
 Determinant of +1 and 3 dof
- Inverse of a rotation matrix is its transpose
- Concatenation of Rotations is also a rotation
- Small Angle Approximation
 - Sub $\cos\theta = 1$ and $\sin\theta = \theta$
 - Multiplication of two small angles = 0

- IMP: A rotation matrix transforms its own rows onto the principal axes
- Any 3D rotation matrix can be described as rotation about an axis n by an angle θ
- To rotate about given axis **n** by θ :
 - Rotate axes onto a principal axis
 - Two ways: by computing principal rotations or by composing appropriate matrix through cross products
 - Rotate about principal axes and then undo the earlier transformation
- To compute **n** and θ from a 3D rotation matrix
 - n is the eigenvector corresponding to the real eigenvalue of 1
 - θ can be computed by the other 2 -- eigenvalues, which are $\cos \theta \pm i \sin \theta$ ---

Factorizing Transformations

- Opposite of Concatenation of Transformations
- Given a transformation matrix, decompose it into a sequence of simpler transformations
- Example:

$$\begin{bmatrix} a_1 & a_2 & b_1 \\ a_3 & a_4 & b_2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & 0 \\ a_3 & a_4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Question: How to factorize the multiplicative part?

$$\begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}$$

▶ Is the factorization unique?

- ▶ Special Case: **A** is symmetric
 - ▶ Eigen values of a real symmetric matrix are real
 - lts eigenvectors can always be written as orthonormal matrix

- A non symmetric real matrix M can be decomposed as
 M = U S V^T (with U and V being orthonormal, S being a diagonal
- ▶ To compute U S and V,

 - $A = (USV^{T})(USV^{T})^{T}$
 - $A = US^2U^T$ $V^T = (US)^{-1}M$

Singular Value Decomposition

Let **M** be a *m*-by-*n* matrix whose entries are real numbers. Then **M** may be decomposed as

$$M = U S V^T$$

where:

- ▶ **U** is an *m*-by-*m* orthonormal matrix
- ▶ **S** is an *m*-by-*n* matrix with non-negative numbers on the main diagonal and zeros elsewhere
- ▶ **V** is an *n*-by-*n* orthonormal matrix
- Example

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 4 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{5} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \sqrt{0.2} & 0 & 0 & 0 & \sqrt{0.8} \\ 0 & 0 & 0 & 1 & 0 \\ -\sqrt{0.8} & 0 & 0 & 0 & \sqrt{0.2} \end{bmatrix}$$

http://en.wikipedia.org/wiki/Singular_value_decomposition

Singular Value Decomposition

- Implication: We can take the multiplicative part of any transform and describe it as a sequence of a rotation, scaling and another rotation
- ▶ 2D Example: Decomposing an Affine Transformation

Singular Value Decomposition

- ▶ Implications: Even a simple shear can be written as a rotation—scaling—rotation
- ▶ Try visualizing it to understand how... [Exercise]

Summary of Transformations

Summary: 2D and 3D Transformations

- ▶ Image Registration
- ▶ 2D Transformations
 - Scaling
 - Shear
 - Rotation
 - Translation
- ▶ Inverse Transformations
- Rotation about an arbitrary point
- Concatenation of transformations
- Order of transformations
- ▶ Factorization of Transformations

- Displacement Models
 - Rigid / Euclidean
 - Similarity
 - Affine
 - Projective
 - Billinear, biquadratic etc
- Recovering the best affine transformation
 - Least Squared Error solution
 - Pseudo inverse
- Image Warping
- 3D Transformations
 - Rotations about Principal Axes
 - Rotations about Arbitrary Axes
- Properties of Rotation Matrices

THE FIRST PHOTOGRAPH

The world's first photograph was made in 1826 by Nicéphore Niepce from a window in his estate in France. For "film" Niepce used a sensitized pewter plate and he got a blurred image of the rooftops outlined above. This photograph is usually retouched to make it legible, but the version shown at left is what it really looks like.

Camera Model

Lecture 6B

Modeling a Camera

Image by Dr Yaser Sheikh, CMU

Frames of Reference

- World Coordinate Frame, W
- Object Coordinate Frame, O e.g. B, P
- ▶ Camera Coordinate Frame, C
- ▶ Real Image Coordinate Frame, F
- ▶ Pixel Coordinate Frame, I

Aperture vs Shutter speed

- If **shutter speed** is doubled, and **aperture area** is doubled, the same amount of light should enter the camera
- Therefore, to shoot an image, there are several valid combinations of aperture and shutter speed
- High shutter speed: for fast moving objects
- Large aperture: low depth of field

Focus

- In general, any single point on the film can have light coming from different directions
- ▶ Therefore a single point in the world may be mapped to several locations in the image
- ▶ This generates blur
- ▶ To remove blur, all rays coming from a single world point must converge to a single image point

Example of Shallow Depth of Field

Pinhole Camera

- Lens is assumed to be single point
- Infinitesimally small aperture
- ▶ Has infinite depth of field i.e. everything is in focus

Distant objects are smaller

Slide Credit: Forsyth/Ponce http://www.cs.berkeley.edu/~daf/bookpages/slides.html

and Khurram Shafique, Object Video

Pinhole Camera

Advantage

- Because of small aperture, everything is in focus (infinite depth of field)
- ▶ Simple construction

Disadvantage

 Small aperture requires high exposure time, often too long for practical purposes

Image Formation – The Pin-Hole Camera

- Orient along z-axis
- World point (X,Y,Z) [camera frame]
- Image point at (x,y,z) [real frame]

Perspective Transform

Equation relating world coordinate and image coordinate?

$$\frac{-y}{Y} = \frac{f}{Z}$$

$$y = -\frac{fY}{Z} \qquad x = -\frac{fX}{Z}$$

It is customary to use a negative sign to indicate that the image is always formed upside down

Perspective Transform

We can write this as a matrix using the homogeneous coordinates

$$\begin{bmatrix} hx \\ hy \\ hz \\ h \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{-1}{f} & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \qquad hx = X \\ hy = Y h = -\frac{Z}{f} x = -\frac{fX}{Z} \qquad y = -\frac{fY}{Z}$$

Perspective Transform: Some Properties

- Lines map to lines
- Polygons map to polygons
- Parallel lines meet

Perspective Transform

- ▶ This relates the camera frame to the real image frame
- Example:
 - I take the image of a person (2m tall) standing 4m away from the camera, with a 35 mm camera using the geometry shown previously. How high will be the image?
 - Answer: y = -(35)(2000)/4000 = -17.5mm
 - i.e, the image will be formed inverted of length 17.5 mm
- How to convert to pixel frame (i.e. what will be the coordinates of the head of the person in the image?

Perspective Transform

- Suppose I know that the size of the film is 8cm x 6cm, and that the resolution of the camera is 640 x 480 pixels
- Implies, the center of the image is at 4cm x 3cm from the corner, and is at location (240, 320)
- Image will first be made right side up
- ▶ 17.5mm out of 60mm is 140 out of 480 pixels
- Hence the coordinates of the head will be (240-140 in x, same in y) = (100, 320)

Perspective Projection

- ▶ This is for the case when the camera's optical axis is aligned with the world z-axis
 - Or: it relates camera frame to real image frame
- What if that is not the case?

Camera Model

- If the camera is moved **T** from the origin, we should move the world point by **T**-1
- ▶ Then the perspective transform equation will be applicable
- Same holds for rotations

Camera Model

- Think that the camera was originally at the origin looking down Z axis
- Then it was translated by $(r_1, r_2, r_3)^T$, rotated by ϕ along X, θ along Z, then translated by $(x_0, y_0, z_0)^T$
- This is the scenario in the figure on right

Camera Model

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{f} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & X_0 \\ 0 & 1 & 0 & Y_0 \\ 0 & 0 & 1 & Z_0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\phi & -\sin\phi & 0 \\ 0 & \sin\phi & \cos\phi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & r_1 \\ 0 & 1 & 0 & r_2 \\ 0 & 0 & 1 & r_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{f} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -r_1 \\ 0 & 1 & 0 & -r_2 \\ 0 & 0 & 1 & -r_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\phi & \sin\phi & 0 \\ 0 & -\sin\phi & \cos\phi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta & 0 & 0 \\ -\sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -X_0 \\ 0 & 1 & 0 & -Y_0 \\ 0 & 0 & 1 & -Z_0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$C_h = PCR_{-\phi}^X R_{-\theta}^Z GW_h$$

Camera Model

$$C_h = PCR_{-\phi}^X R_{-\theta}^Z GW_h$$

$$\begin{aligned} \text{where } P &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{-1}{f} & 1 \end{bmatrix}, \, R_{-\theta}^Z &= \begin{bmatrix} \cos\theta & \sin\theta & 0 & 0 \\ -\sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \\ R_{-\phi}^X &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \cos\phi & \sin\phi & 0 \\ 0 & -\sin\phi & \cos\phi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \, G &= \begin{bmatrix} 1 & 0 & 0 & -X_0 \\ 0 & 1 & 0 & -Y_0 \\ 0 & 0 & 1 & -Z_0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \, C &= \begin{bmatrix} 1 & 0 & 0 & -r_1 \\ 0 & 1 & 0 & -r_2 \\ 0 & 0 & 1 & -r_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

Camera Model

$$x = f \frac{(X - X_0) \cos \theta + (Y - Y_0) \sin \theta - r_1}{-(X - X_0) \sin \theta \sin \phi + (Y - Y_0) \cos \theta \sin \phi - (Z - Z_0) \cos \phi + r_3 + f},$$

$$y = f \frac{-(X - X_0) \sin \theta \cos \phi + (Y - Y_0) \cos \theta \cos \phi + (Z - Z_0) \sin \phi - r_2}{-(X - X_0) \sin \theta \sin \phi + (Y - Y_0) \cos \theta \sin \phi - (Z - Z_0) \cos \phi + r_3 + f}.$$

- This camera model is applicable in many situations
- For example, this is the typical surveillance camera scenario

Examples

$$C_{h} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{1}{0.01} & 1 \end{bmatrix} \mathbf{T}^{-1} \begin{bmatrix} 0 \\ 0 \\ 10 \\ 1 \end{bmatrix}$$

$$C_{h} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{1}{0.01} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -10 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 10 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{0.01} & 1 \end{bmatrix} \begin{bmatrix} -10 \\ 0 \\ 10 \\ -1 \end{bmatrix} = \begin{bmatrix} -10 \\ 0 \\ 10 \\ -999 \end{bmatrix}$$

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & 10 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(-45^\circ) & 0 & \sin(-45^\circ) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(-45^\circ) & 0 & \cos\cos(-45^\circ) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$C_h = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{0.01} & 1 \end{bmatrix} \mathbf{T}^{-1} \begin{bmatrix} 0 \\ 0 \\ 10 \\ 1 \end{bmatrix}$$

0 0 ---**-**0:0 |------

Aircraft Example

OTTER TV 0001

0001 9.400008152666640300e+08 3.813193746469612200e+01 -7.734523185193877700e+01 9.949658409987658800e+02 9.995171174441039900e-01 1.701626418113209000e+00 1.207010551753029400e+02 1.658968732990974800e-02 -5.361314389557259100e+01 -7.232969433546705000e+00 480 640 system_id
sensor_type
serial_number
image_time
vehicle_latitude
vehicle_longitude
vehicle_pitch
vehicle_pitch
vehicle_roll
vehicle_heading
camera_focal_length
camera_scan_angle
number_image_lines
number_image_samples

cameraMat = perspective_transform * gimbal_rotation_y * gimbal_rotation_z *
gimbal_translation * vehicle_rotation_x * vehicle_rotation_y * vehicle_rotation_z *
vehicle_translation;

$$\Pi_{I} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{f} & 1 \end{bmatrix} \begin{bmatrix} \cos \omega & 0 & -\sin \omega & 0 \\ 0 & 1 & 0 & 0 \\ \sin \omega & 0 & \cos \omega & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \tau & \sin \tau & 0 & 0 \\ -\sin \tau & \cos \tau & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \phi & 0 & -\sin \phi & 0 \\ 0 & 1 & 0 & 0 \\ \sin \phi & 0 & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \beta & \sin \beta & 0 \\ 0 & \cos \beta & \sin \beta & 0 \\ 0 & -\sin \beta & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha & 0 & 0 \\ -\sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & -\Delta T_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- $c(1,1) = (\cos(c_scn)*\cos(v_rll) \sin(c_scn)*\sin(v_pch)*\sin(v_rll))*\cos(v_hdg) \sin(c_scn)*\cos(v_pch)*\sin(v_hdg);$
- $c(1,2) = -(\cos(c_scn)*\cos(v_rll) \sin(c_scn)*\sin(v_pch)*\sin(v_rll))*\sin(v_hdg) \sin(c_scn)*\cos(v_pch)*\cos(v_hdg);$
- $c(1,3) = -\cos(c_scn) * \sin(v_rll) \sin(c_scn) * \sin(v_pch) * \cos(v_rll);$
- $c(1,4) = -((\cos(c_scn)*\cos(v_rll) \sin(c_scn)*\sin(v_pch)*\sin(v_rll))*\cos(v_hdg) \sin(c_scn)*\cos(v_pch)*\sin(v_hdg))*vx (-(\cos(c_scn)*\cos(v_rll) \sin(v_rll))*vx (-(\cos(c_scn)*\cos(v_rll) \cos(v_rll) \cos(v_rll))*vx (-(\cos(c_scn)*\cos(v_rll) \cos(v_rll) \cos(v_rll))*vx (-(\cos(c_scn)*\cos(v_rll) \cos(v_rll) \cos(v_rll))*vx (-(\cos(c_scn)*\cos(v_rll) \cos(v_rll) \cos(v_rll) \cos(v_rll))*vx (-(\cos(c_scn)*\cos(v_rll) \cos(v_rll) \cos(v_rll)$ sin(c_scn)*sin(v_pch)*sin(v_rll))*sin(v_hdg)-sin(c_scn)*cos(v_pch)*cos(v_hdg))*vy-(-cos(c_scn)*sin(v_rll)-sin(c_scn)*sin(v_pch)*cos(v_rll))*vz;
- $c(2,1) = (-\sin(c_e lv) * \sin(c_e scn) * \cos(v_e r ll) + (-\sin(c_e lv) * \cos(c_e scn) * \sin(v_e r ln) + \cos(c_e lv) * \cos(v_e r ln) * \sin(v_e r ln) * \cos(v_e r ln) + \cos(c_e lv) * \cos(v_e r ln) * \sin(v_e r ln) * \cos(v_e r ln)$ $\sin(c_e)*\cos(c_s)*\cos(v_p)-\cos(c_e)*\sin(v_p)*\sin(v_h)$
- $c(2,2) = -(-\sin(c_elv) * \sin(c_scn) * \cos(v_rll) + (-\sin(c_elv) * \cos(c_scn) * \sin(v_pch) + \cos(c_elv) * \cos(v_pch)) * \sin(v_rll)) * \sin(v_hdg) + (-\sin(c_elv) * \cos(v_pch)) * \sin(v_hdg) + (-\cos(c_elv) * \cos(v_pch)) * \cos(v_hdg) *$ $\sin(c_elv)*\cos(c_scn)*\cos(v_pch)-\cos(c_elv)*\sin(v_pch))*\cos(v_hdg);$
- $c(2,3) = \sin(c_elv) * \sin(c_scn) * \sin(v_rll) + (-\sin(c_elv) * \cos(c_scn) * \sin(v_pch) + \cos(c_elv) * \cos(v_pch)) * \cos(v_rll);$
- $c(2,4) = -((-\sin(c_elv)*\sin(c_scn)*\cos(v_rll) + (-\sin(c_elv)*\cos(c_scn)*\sin(v_pch) + \cos(c_elv)*\cos(v_pch))*\sin(v_rll))*\cos(v_hdg) + (-\sin(c_elv)*\sin(v_pch) + \cos(c_elv)*\sin(v_pch) + \cos(c_elv)*\cos(v_pch) + \cos(c_elv)*\cos(c_elv) + \cos(c_elv)*\cos(c_elv) + \cos(c_elv) + \cos(c_elv$ sin(c_elv)*cos(c_scn)*cos(v_pch)-cos(c_elv)*sin(v_pch))*sin(v_hdg))*vx-(-sin(c_elv)*cos(c_scn)*cos(v_pch)-cos(c_elv)*cos(c_pch))*sin(v_ndg)+(-sin(c_elv)*cos(c_scn)*cos(v_pch)-cos(c_elv)*sin(v_pch))*cos(v_pch)-cos(c_elv)*sin(v_pch))*cos(v_ndg))*vy-(sin(c_elv)*sin(v_ndg)+(-sin(c_elv)*cos(c_scn)*cos(v_pch)-cos(c_elv)*cos(v_ndg))*vy-(sin(c_elv)*sin(v_ndg)+(-sin(c_elv)*cos(c_scn)*sin(v_ndg))*vy-(sin(c_elv)*cos(v_ndg))*vy-(sin(c_ndg
- $c(3,1) = (\cos(c_elv)*\sin(c_scn)*\cos(v_rll) + (\cos(c_elv)*\cos(c_scn)*\sin(v_pch) + \sin(c_elv)*\cos(v_pch))*\sin(v_rll))*\cos(v_hdg) + (\cos(c_elv)*\cos(c_scn)*\cos(v_pch) + (\cos(c_elv)*\sin(c_elv)*\sin(c_elv)*\sin(c_elv) + (\cos(c_elv)*\cos(v_pch) + (\cos(c_elv)*\cos(v_pch)) + (\cos(c_elv)*\cos(v_pch))$ sin(c_elv)*sin(v_pch))*sin(v_hdg);
- $c(3,2) = -(\cos(c_elv)*\sin(c_scn)*\cos(v_rll) + (\cos(c_elv)*\cos(c_scn)*\sin(v_pch) + \sin(c_elv)*\cos(v_pch))*\sin(v_rll))*\sin(v_hdg) + (\cos(c_elv)*\cos(c_scn)*\cos(v_pch) + \sin(c_elv)*\sin(v_rll)) + (\cos(c_elv)*\cos(v_pch) + \cos(v_rll)) + (\cos(c_elv)*\cos(v_pch) + \cos(v_pch)) + (\cos(c_elv)*\cos(v_pch)) + (\cos(c_elv)*\cos(v_elv)) + (\cos(c_elv)*\cos(v$ sin(c_elv)*sin(v_pch))*cos(v_hdg);
- $c(3,3) = -\cos(c_elv) * \sin(c_scn) * \sin(v_rll) + (\cos(c_elv) * \cos(c_scn) * \sin(v_pch) + \sin(c_elv) * \cos(v_pch)) * \cos(v_rll); \\ c(3,3) = -\cos(c_elv) * \sin(c_scn) * \sin(v_rll) + (\cos(c_elv) * \cos(c_scn) * \sin(v_pch) + \sin(c_elv) * \cos(v_pch)) * \cos(v_rll); \\ c(3,3) = -\cos(c_elv) * \sin(c_scn) * \sin(v_rll) + (\cos(c_elv) * \cos(c_scn) * \sin(v_pch) + \sin(c_elv) * \cos(v_pch)) * \cos(v_rll); \\ c(3,3) = -\cos(c_elv) * \cos(c_scn) * \sin(v_rll) + (\cos(c_elv) * \cos(c_scn) * \sin(v_pch) + \sin(c_elv) * \cos(v_pch)) * \cos(v_rll); \\ c(3,3) = -\cos(c_elv) * \cos(c_scn) * \sin(v_pch) + \cos(c_elv) * \cos(v_pch) * \cos($

 $((\cos(c_elv)*\sin(c_scn)*\cos(v_rll) + (\cos(c_elv)*\cos(c_scn)*\sin(v_pch) + \sin(c_elv)*\cos(v_pch))*\sin(v_rll))*\cos(v_hdg) + (\cos(c_elv)*\cos(c_scn)*\cos(v_pch) + \sin(c_elv)*\cos(v_pch))*\sin(v_rll))*\cos(v_hdg) + (\cos(c_elv)*\cos(c_scn)*\cos(v_pch) + \sin(c_elv)*\cos(v_pch))*\sin(v_rll))*\cos(v_hdg) + (\cos(c_elv)*\cos(c_scn)*\cos(v_pch))*\sin(v_rll))*\cos(v_hdg) + (\cos(c_elv)*\cos(c_scn)*\cos(v_pch))*\sin(v_pch) + (\cos(c_elv)*\cos(v_pch))*\sin(v_pch) + (\cos(c_elv)*\cos(v_pch))*\cos(v_pch))*\cos(v_pch) + (\cos(c_elv)*\cos(v_pch))*\cos(v_pch) + (\cos(c_elv)*\cos(v_pch)) + (\cos(c_elv)*\cos(c_elv)*\cos(c_elv)*\cos(c_elv) + (\cos(c_e$

 $(\cos(c_elv)*\sin(c_scn)*\cos(v_rll)) + (\cos(c_elv)*\cos(c_scn)*\sin(v_pch) + \sin(c_elv)*\cos(v_pch)) *\sin(v_rll)) *\sin(v_hdg) + (\cos(c_elv)*\cos(c_scn)*\cos(v_pch) + \sin(c_elv)*\sin(v_pch) + \sin(v_pch)) *\cos(v_hdg)) *vy + (-\cos(c_elv)*\sin(v_rll) + (\cos(c_elv)*\cos(c_scn)*\sin(v_rll) + (\cos(c_elv)*\cos(v_pch)) *vz + (-\cos(v_pch))*\cos(v_hdg)) *vy + (-\cos(v_hdg)) *vy + (-\cos(v_hdg))$

 $(1/f1*cos(c_elv)*sin(c_scn)*cos(v_rll) + (1/f1*cos(c_elv)*cos(c_scn)*sin(v_pch) + 1/f1*sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg) + (1/f1*cos(c_elv)*cos(c_scn)*sin(v_pch) + 1/f1*sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg) + (1/f1*cos(c_elv)*cos(c_scn)*sin(v_pch) + 1/f1*sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg) + (1/f1*cos(c_elv)*cos(c_scn)*sin(v_pch) + 1/f1*sin(c_elv)*cos(v_pch))*sin(v_pch) + (1/f1*cos(v_pch))*sin(v_pch) + (1/f1*cos(v_pch))*sin(v_pch))*sin(v_pch) + (1/f1*cos(v_pch))*sin(v_pch) + (1/f1*cos(v_pch))*sin(v_pch))*sin(v_pch) + (1/f1*cos(v_pch))*sin(v_pch))*sin(v_pch))*sin(v_pch) + (1/f1*cos(v_pch))*sin(v_pch$ cn)*cos(v_pch)-1/fl*sin(c_elv)*sin(v_pch))*sin(v_hdg);

 $(1/f1*cos(c_elv)*sin(c_scn)*cos(v_rll) + (1/f1*cos(c_elv)*cos(c_scn)*sin(v_pch) + 1/f1*sin(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg) + (1/f1*cos(c_elv)*cos(c_scn)*cos(v_pch))*sin(v_pch))*sin(v_pch) + (1/f1*cos(c_elv)*cos(c_scn)*cos(v_pch))*sin(v_pch))*sin(v_pch) + (1/f1*cos(c_elv)*cos(c_scn)*cos(v_pch))*sin(v_pch))*sin(v_pch))*sin(v_pch) + (1/f1*cos(c_elv)*cos(c_scn)*cos(v_pch))*sin(v_$ n)*cos(v_pch)-1/fl*sin(c_elv)*sin(v_pch))*cos(v_hdg);

 $c(4,3) = -1/f1 * cos(c_elv) * sin(c_scn) * sin(v_rll) + (1/f1 * cos(c_elv) * cos(c_scn) * sin(v_pch) + 1/f1 * sin(c_elv) * cos(v_pch)) * cos(v_rll); \\ c(4,3) = -1/f1 * cos(c_elv) * sin(c_scn) * sin(v_rll) + (1/f1 * cos(c_elv) * cos(c_scn) * sin(v_pch) + 1/f1 * sin(c_elv) * cos(v_pch)) * cos(v_rll); \\ c(4,3) = -1/f1 * cos(c_elv) * sin(c_scn) * sin(v_rll) + (1/f1 * cos(c_elv) * cos(c_scn) * sin(v_pch) + 1/f1 * sin(c_elv) * cos(v_pch)) * cos(v_rll) + (1/f1 * cos(c_elv) * cos(c_scn) * sin(v_pch) + 1/f1 * sin(c_elv) * cos(v_pch)) * cos(v_rll) + (1/f1 * cos(c_elv) * cos(c_scn) * sin(v_pch) + 1/f1 * sin(c_elv) * cos(v_pch)) * cos(v_rll) + (1/f1 * cos(c_elv) * cos(c_scn) * sin(v_pch) + 1/f1 * sin(c_elv) * cos(v_pch)) * cos(v_rll) + (1/f1 * cos(c_elv) * cos(c_scn) * sin(v_pch) + 1/f1 * sin(v_pch) + (1/f1 * cos(c_elv) * cos(v_pch)) * cos(v_pch) + (1/f1 * cos(c_elv) * cos(c_scn) * sin(v_pch) + (1/f1 * cos(c_elv) * cos(c_scn) * sin(v_pch) + (1/f1 * cos(c_elv) * cos(c_scn) * sin(v_pch) + (1/f1 * cos(c_elv) * cos(c_scn) * sin(v_elv) + (1/f1 * cos(c_elv) * cos(c_scn) * sin(v_elv) + (1/f1 * cos(c_elv) * cos(c_scn) * cos(c_elv) * cos$

 $((1/f1^*\cos(c_elv)^*\sin(c_scn)^*\cos(v_rll) + (1/f1^*\cos(c_elv)^*\cos(c_scn)^*\sin(v_pch) + 1/f1^*\sin(c_elv)^*\cos(v_pch)) \\ *\sin(v_rll))^*\cos(v_hdg) + (1/f1^*\cos(c_elv)^*\cos(v_pch)) \\ *\sin(v_rll))^*\cos(v_hdg) + (1/f1^*\cos(c_elv)^*\cos(v_pch)) \\ *\sin(v_rll))^*\cos(v_hdg) + (1/f1^*\cos(v_hdg) + 1/f1^*\sin(v_hdg)) \\ *\cos(v_rll))^*\cos(v_hdg) + (1/f1^*\cos(v_hdg) + 1/f1^*\sin(v_hdg)) \\ *\cos(v_hdg) + (1/f1^*\cos(v_hdg) + 1/f1^*\sin(v_hdg)) \\ *\cos(v_hdg) + (1/f1^*\cos(v_hdg) + 1/f1^*\sin(v_hdg)) \\ *\cos(v_hdg) + (1/f1^*\cos(v_hdg) + 1/f1^*\cos(v_hdg)) \\ *\cos(v_hdg) + (1/f1$ cn)*cos(v_pch)-1/fl*sin(c_elv)*sin(v_pch))*sin(v_hdg))*vx-(-

 $(1/f1*\cos(c_elv)*\sin(c_scn)*\cos(v_rll)+(1/f1*\cos(c_elv)*\cos(c_scn)*\sin(v_pch)+1/f1*\sin(c_elv)*\cos(v_pch))*\sin(v_rll))*\sin(v_hdg)+(1/f1*\cos(c_elv)*\cos(c_scn)*\sin(v_pch)+1/f1*\sin(c_elv)*\cos(v_pch))*\sin(v_hdg)+(1/f1*\cos(c_elv)*\cos(c_scn)*\sin(v_pch)+1/f1*\sin(c_elv)*\cos(v_pch))*\sin(v_hdg)+(1/f1*\cos(c_elv)*\cos(v_hd)+(1/f1*\cos(c_elv)*\cos(v_hd)+(1/f1*\cos(c_elv)*\cos(v_hd)+(1/f1*$ $n)^*\cos(v_pch)-1/fl^*\sin(c_elv)^*\sin(v_pch))^*\cos(v_hdg))^*vy-(-1/fl^*\cos(c_elv)^*\sin(c_scn)^*\sin(v_rll)+(1/fl^*\cos(c_elv)^*\cos(v_pch)+1/fl^*\sin(c_elv)^*\cos(v_pch))^*\cos(v_rll))^*vz+1;$

Weak Perspective Projection

Approximation to Perspective projection, approximately valid when distance of the camera is much greater than the depth variation of the object

$$x = -\frac{fX}{\overline{Z}}$$
 $y = -\frac{fY}{\overline{Z}}$ or $x = mX$ $y = mY$

- Advantage: Computationally simpler [why?]
- Disadvantage: Not physically accurate

Orthographic Projection

Scaling of weak perspective projection

$$x=X$$
 $y=Y$

- ▶ Parallel lines remain parallel
- Useful for engineering drawings, scrolls, where the perspective shortening is not desired
- ▶ Computationally simpler

http://www2.arts.ubc.ca/TheatreDesign/crslib/drft_1/orthint.htm