

# Laboratorio di Elettronica

**Marco Aglietta – Ernesto Migliore** 

aglietta@to.infn.it

migliore@to.infn.it

CFU 6 - A.A. 2021/22 Corso di laurea in Fisica

# ANALOGICO

# DIGITALE





## Oscilloscopio Analogico



#### **Oscilloscopio Analogico**



#### Sensibilita'



$$2v_t: v_a = D_M: L \longrightarrow D_M = 2\frac{v_t}{v_a} \cdot L$$

Si definisce 'sensibilita' s del tubo a raggi catodici (CRT) il rapporto tra lo spostamento e la tensione applicata alle placche

$$s = D_M / V_d$$
  $s = \frac{l R}{d V}$ 

e' dell'ordine del mm per volt applicato

**Banda Passante** 



verticale prima delle placchette di deflessione verticale ci sara' una amplificazione circa 100





L' ampiezza della rampa di salita e' tale da effettuare spostamenti orizzontali su tutto lo schermo. La **pendenza** determina il

tempo impiegato per una spazzata e si puo' variare attraverso il selettore

TIME/DIV

#### Oscilloscopio Digitale





Digital Oscilloscopes Samples Signals and Construct Displays

A digital oscilloscope samples the waveform and uses an analog-to-digital converter (or ADC) to convert the voltage being measured into digital information. It then uses this digital information to reconstruct the waveform on the screen.

Digital oscilloscopes allow you to capture and view events that may happen only once. They can process the digital waveform data or send the data to a computer for processing. Also, they can store the digital waveform data for later viewing and printing.

### Oscilloscopio Digitale







Equivalent - time Sampling (repetitive signals)



## Oscilloscopio Digitale

#### Linear and sine interpolation -



Sine Wave Reproduced using Linear Interpolation





### Sonda passiva



Compensazione 
$$\Rightarrow$$
 R<sub>s</sub>C<sub>s</sub> = R<sub>i</sub>C<sub>//</sub>

$$V_i' = V_i \frac{Z_i}{Z_i + Z_s} \quad \text{dove} \quad Z_s = \frac{\frac{R_s}{j\omega C_s}}{R_s + \frac{1}{j\omega C_s}} = \frac{R_s}{j\omega R_s C_s + 1} \quad \text{e} \quad Z_i = \frac{R_i}{j\omega R_i C_{//} + 1}$$
Compensazione  $\Rightarrow$  R<sub>s</sub>C<sub>s</sub> = R<sub>i</sub>C<sub>//</sub> = RC

$$V_{i}^{'} = V_{i} \frac{\frac{R_{i}}{j\omega RC + 1}}{\frac{R_{i} + R_{s}}{i\omega RC + 1}} = V_{i} \frac{R_{i}}{R_{i} + R_{s}}$$

Non dipende dalla frequenze  $\rightarrow$  non c'e' distorsione

Se R<sub>s</sub>=9Ri si ha una sonda che attenua 10