

e-Journal

Peternakan Tropika

Journal of Tropical Animal Science

email: peternakantropika_ejournal@yahoo.com email: jurnaltropika@unud.ac.id

PENGARUH BIOSUPLEMEN ISI RUMEN SAPI BALI PADA RANSUM TERHADAP BERAT DAN KOMPOSISI FISIK KARKAS ITIK BALI JANTAN

SUHENDRA, I P. N. D., G. A. M. KRISTINA DEWI, DAN N W. SITI

Program Studi Ilmu Peternakan, Fakultas Peternakan, Universitas Udayana, Denpasar e-mail: suhendradedy75@gmail.com, HP: 085738551159

ABSTRAK

Penelitian ini bertujuan untuk mengetahui pengaruh biosuplemen isi rumen sapi bali terhadap berat dan kompisisi fisik karkas itik bali jantan yang diberi ransum non konvensional. Rancangan yang digunakan adalah Rancangan Acak Lengkap (RAL) yang terdiri atas 5 perlakuan dan 3 ulangan, dimana pada setiap ulangan digunakan 5 ekor itik yang mempunyai berat badan awal 152,00-152,87g, sehingga jumlah itik yang digunakan adalah 75 ekor. Kelima perlakuan tersebut adalah perlakuan RSP₀ (100% ransum basal tanpa biosuplemen mengandung isi rumen sapi bali sebagai kontrol) RSP₂₀ (95% ransum basal dengan 5% biosuplemen mengandung isi rumen sapi bali 20%), RSP₄₀ (95% ransum basal dengan 5% biosuplemen mengandung isi rumen sapi bali 40%), RSP₆₀ (95% ransum basal dengan 5% biosuplemen menganung isi rumen sapi bali 60%), dan RSP₈₀ (95% ransum basal dengan 5% biosuplemen mengandung isi rumen sapi bali 80%). Variabel yang diamati dalam penelitian ini adalah berat potong, berat karkas, persentase karkas, berat daging karkas, berat tulang karkas, dan berat kulit termasuk lemak karkas. Hasil penelitian menunjukan berat potong, berat daging karkas, dan berat kulit termasuk lemak karkas pada kelima perlakuan berbeda tidak nyata (P>0,05). Berat karkas perlakuan RSP₂₀ dan RSP₄₀ nyata lebih tinggi (P<0,05) daripada perlakuan RSP₀. Perlakuan RSP₆₀ berbeda tidak nyata (P>0,05) lebih tinggi daripada perlakuan RSP₀ dan Perlakuan RSP₈₀ nyata lebih rendah (P<0,05) daripada perlakuan RSP₀. Persentase karkas perlakuan RSP₂₀, RSP₄₀, dan RSP₆₀ berbeda tidak nyata (P>0,05) lebih tinggi daripada perlakuan RSP₀ dan perlakuan RSP₈₀ berbeda tidak nyata (P>0,05) lebih rendah dari pada perlakuan RSP₀. Berat tulang karkas perlakuan RSP₂₀, RSP₄₀, dan RSP₆₀ nyata lebih tinggi (P<0,05) daripada perlakuan RSP₀ dan perlakuan RSP₈₀ berbeda tidak nyata (P>0,05) lebih tinggi daripada perlakuan RSP₀. Berdasarkan hasil penelitian ini dapat disimpulkan bahwa pemberian ransum non konvensional disuplementasi dengan 5% biosuplemen isi rumen sapi bali 20% (RSP₂₀) dan 40% (RSP₄₀) dapat meningkatkan berat dan komposisi fisik karkas itik bali jantan umur 8 minggu.

Kata Kunci: Biosuplemen, ransum, karkas, itik bali, isi rumen

EFFECT BIOSUPLEMEN RUMEN OF BALI CATTLE IN RATIONS TO WEIGHT AND PHYSICAL COMPOSITION OF BALI DRAKE CARCASS

ABSTRACK

This research was aims to determine the effect biosuplemen rumen of bali cattle to weight and physical composition of bali drake carcass which is given non convensional rations. The design was a completely randomized design (CRD), which consists of 5 treatments and 3 replications, where in each repetition used 5 ducks that have 152,00-152,87g initial body weight, so that the amount used was 75 male ducks. The five treatments are RSP₀ (100% basal diet without supplementation products biosuplemen Bali cattle rumen contents as a control), RSP₂₀ (95% basal diet supplemented with 5% biosuplemen bali cattle rumen content 20%), RSP₄₀ (95% basal diet supplemented with 5% biosuplemen bali cattle rumen content 40%), RSP₆₀ (95% basal diet supplemented with 5% biosuplemen bali cattle rumen content 60%), and RSP₈₀ (95% basal diet supplemented with 5% biosuplemen bali cattle rumen content 80%). The variables in this study are heavy pieces, carcass weight, carcass percentage, meat carcass weight, carcass bone weight, and the weight of the skin including carcass fat. The results showed that heavy pieces, meat carcass weight and carcass weight of fat in the skin including five treatments did not differ significantly (P>0.05). Carcass weight of RSP₄₀ and RSP₂₀ treatment was significantly higher (P <0.05) if compared to RSP₀ treatment. RSP₆₀ treatment had no significant (P> 0.05), that was higher than RSP₀ treatment. RSP₈₀ treatment was significantly lower (P <0.05) if compared to RSP₀ treatment. The carcass percentage of RSP₂₀, RSP₄₀, and RSP₆₀ treatment are no significant (P> 0.05) higher than RSP₀ treatment and treatment RSP₈₀ no significant (P> 0.05), lower than RSP₀ treatment. The weight of bone and carcass RSP₂₀, RSP₄₀, and RSP₆₀ treatment was significantly higher (P <0.05) if compared to RSP₀ treatment. Then RSP₈₀ treatment had no significant (P> 0.05) that was higher than RSP₀ treatment. Based on these results, it can be concluded that the provision of supplemented non-conventional diets with 5% biosuplemen of Bali cattle rumen content, 20% (RSP₂₀), and 40% (RSP₄₀) was able to increase the weight and physical composition of Bali male ducks carcass aged 8 weeks.

Keywords: Biosuplement, feed, carcass, bali ducks, rumen contents

PENDAHULUAN

Sejalan dengan perkembangan ilmu pengetahuan dan teknologi serta pertambahan penduduk yang semakin meningkat, kebutuhan gizi masyarakat terutama kebutuhan akan protein hewani juga semakin meningkat. Standar nasional telah mensyaratkan, konsumsi protein asal ternak perkapita/hari adalah 4,5 g, namun konsumsi protein asal ternak masyarakat Indonesia baru mencapai 4,19 g/kapita/hari (Dirjennak, 2007). Salah satu pemenuhan kebutuhan protein hewani masyarakat dapat bersumber dari ternak itik. Itik

merupakan jenis unggas yang memiliki potensi besar sebagai sumber protein hewani (daging). Unggas ini cocok dikembangkan di Indonesia karena mudah beradaptasi dengan kondisi alam di Indonesia. Potensi unggul lainnya dari ternak ini adalah bahwa itik mempunyai komposisi gizi, terutama protein yang setara dengan daging dari jenis unggas lainnya, selain harganya yang relatif murah (Murtidjo, 1988).

Tujuan pemeliharaan itik disamping memproduksi telur juga memproduksi daging. Daging merupakan komponen karkas yang mempunyai nilai ekonomis tinggi, sehingga produktifitas dari ternak itik yaitu daging/karkas itik perlu ditingkatkan. Untuk meningkatkan produktifitas ternak itik (daging/karkas) perlu didukung dengan pemberian pakan yang berkualitas. Pakan yang berkualitas umumnya mahal, sehingga kurang terjangkau oleh peternak. Salah satu cara alternatif untuk meningkatkan produktifitas itik yaitu meningkatkan berat karkas dan komposisi fisik karkas dapat dilakukan dengan cara memberikan ransum dari bahan pakan non konvensional mengandung biosuplemen isi rumen sapi bali.

Biosuplemen ini adalah hasil fermentasi dengan pemanfaatan limbah rumen sebagai produk suplemen terbukti mampu meningkatkan kualitas dan kecernaan *in-vitro* ransum berbasis limbah non konvensional (Mudita *et al.*, 2009-2010; Rahayu *et al.*, 2012; Dewi *et al.*, 2013). Hasil penelitian Mudita *et al.* (2009-2010) menunjukkan pemanfaatan 5-20% limbah cairan rumen menjadi produk biosuplemen mampu menghasilkan biosuplemen dengan kandungan nutrien dan populasi mikroba tinggi. Pemanfaatan biosuplemen tersebut juga mampu menurunkan kadar serat kasar, meningkatkan kadar protein dan kecernaan *in vitro* bahan kering dan bahan organik ransum asal limbah. Rahayu *et al.* (2012) mengungkapkan isi rumen kerbau, sapi dan/atau domba dapat dijadikan starter fermentasi kering melalui penambahan 30% dedak padi melalui proses inkubasi dan pengeringan terkendali dengan populasi total mikroba yang cukup tinggi. Sanjaya (1995) menunjukkan penggunaan isi rumen sapi sampai 12% dalam ransum mampu meningkatkan pertambahan bobot badan dan konsumsi pakan serta menekan konversi pakan ayam pedaging.

Potensi pemanfaatan limbah isi rumen sapi bali sebagai biosuplemen sangat tinggi mengingat limbah isi rumen sapi bali kaya *nutrient ready available*, enzim dan mikroba pendegradasi serat serta probiotik (Suardana *et al.*, 2007; Mudita *et al.*, 2009-2012; Partama

et al., 2012). Namun informasi mengenai level limbah isi rumen dalam produksi produk biosuplemen bagi ternak unggas (itik) belum diperoleh. Proporsi limbah isi rumen yang tepat dan didukung komposisi media induser khususnya sumber *nutrien ready available* yang tinggi bagi aktivitas mikroba fibrolitik maupun probiotik sangat menentukan kualitas produk yang dihasilkan.

Berdasarkan uraian diatas maka penelitian ini perlu dilakukan untuk mendapat level optimum biosuplemen isi rumen sapi bali dalam dalam ransum untuk meningkatkan berat dan komposisi fisik karkas itik bali jantan.

MATERI DAN METODE

Ternak itik

Ternak itik yang digunakan dalam penelitian ini adalah itik bali jantan umur 2 minggu sebanyak 75 ekor dengan berat badan awal itik 152,00-152,87g.

Kandang dan Perlengkapannya

Kandang yang digunakan dalam penelitian ini adalah kandang battery koloni dengan jumlah 15 kandang dan setiap unit kandang diisi 5 ekor itik bali jantan. Kerangka kandang terbuat dari kayu, atap dari asbes, alas dan dinding kandang terbuat dari bambu dengan ukuran 4 x 12 meter mengarah ke arah barat, serta tirai dipasang mengelilingi kandang itik Setiap kandang dilengkapi dengan tempat pakan dan air minum yang terbuat dari pelastik. Dan tirai mengelilingi kandang

Peralatan dan Perlengkapan

Peralatan dan perlengkapan yang digunakan dalam penelitian adalah timbangan elektrik merk "Soehnle" kepekaan 1 gr dengan kapasitas 2000 gr untuk menimbang ransum, berat itik, berat karkas, dan recahan karkas. Kantong plastik untuk tempat ransum, ember plastik sebagai tempat mencampur ransum dan untuk menyiapkan air minum. Lumpang dan alu untuk menghaluskan bahan ransum. Nampan plastik untuk menampung karkas, recahan karkas, recahan non karkas, organ dalam dari itik. Pisau untuk menyembelih, memotong itik dan memotong bahan pakan, dan papan iris, terpal untuk di jadikan kolam eceng gondok dan daun apu, kompor untuk merebus air kemudian mencelupkan itik guna mempermudah pencabutan bulu serta alat-alat tulis.

Ransum dan Air Minum

Ransum yang diberikan dalam penelitian ini adalah ransum basal yang dibuat dari bahan-bahan yang berasal dari limbah dan gulma tanaman pangan yang disusun mengikuti rekomendasi NRC (1994) dengan bahan penyusun terdiri dari bungkil kelapa, dedak padi, umbi ketela pohon, batang pisang, enceng gondok, daun apu, garam dapur dan mineral B-12 (Tabel 2.1). Dalam penelitian ini menggunakan lima macam ransum yaitu RSP₀ (100% ransum basal tanpa suplementasi biosuplemen mengandung isi rumen sapi bali sebagai kontrol), RSP₂₀ (95% ransum basal disuplementasi dengan 5% biosuplemen mengandung isi rumen sapi bali 20%), RSP₄₀ (95% ransum basal disuplementasi dengan 5% biosuplemen mengandung isi rumen sapi bali 40%), RSP₆₀ (95% ransum basal disuplementasi dengan 5% biosuplemen mengandung isi rumen sapi bali 60%), dan RSP₈₀ (95% ransum basal disuplementasi dengan 5% biosuplemen mengandung isi rumen sapi bali 80%). Air minum berasal dari Perusahaan Daerah Air Minum (PDAM) setempat.

Tabel 1 Komposisi Zat Makanan

No	Bahan Penyusun	Komposisi (% DM)		
1	Bungkil Kelapa	25		
2	Dedak Padi	35		
3	Umbi Ketela Pohon	10		
4	Enceng Gondok	10		
5	Daun Apu	10		
6	Batang Pisang	8		
7	Garam Dapur	1		
8	Mineral B-12	1		
	Total	100		
Kan	dungan Nutrien			
Energi Termetabolisme		2923,54		
Protein Kasar		16,156		
Serat kasar		5,07		
Lemak kasar		6,78		
Kalsium/Ca		0,96		
Phosfor/P		0,69		
Lemak kasar Kalsium/Ca		6,78 0,96		

Biosuplemen Mengadung Isi Rumen Sapi Bali

Biosuplemen mengandung isi rumen sapi bali yang digunakan dalam penelitian ini dibuat dari limbah isi rumen sapi bali dan bahan medium suplemen yang terdiri dari dedak jagung, dedak padi, bungkil kelapa, kedele, tepung tapioka, gula aren, tepung gamal, eceng gondok, daun apu, garam dapur dan multi vitamin-mineral (pignox). Dalam penelitian ini menggunakan empat macam biosuplemen mengandung isi rumen sapi bali yaitu biosuplemen mengandung isi rumen sapi bali 20% (SP₂₀), biosuplemen mengandung isi rumen sapi bali 60% (SP₆₀), dan biosuplemen mengandung isi rumen sapi bali 80% (SP₈₀). Komposisi bahan penyusun biosuplemen mengandung isi rumen sapi bali dapat dilihat pada Table.

Tabel 2 Komposisi Bahan Penyusun Biosuplemen Mengandung Isi Rumen Sapi Bali

Dohan Dansana	Komposisi (% DM)					
Bahan Penyusun	SP ₂₀	SP ₄₀	SP ₆₀	SP ₈₀		
Isi rumen sapi	20	40	60	80		
Dedak jagung	24	18	12	6		
Dedak padi	16	12	8	4		
Bungkil kelapa	14	10,5	7	3,5		
Kedelai	16	12	8	4		
Tepung tapioka	4	3	2	1		
Gula aren	1,6	1,2	0,8	0,4		
Tepung gamal	1,6	1,2	0,8	0,4		
Eceng gondok	0,8	0,6	0,4	0,2		
Daun apu	1,6	1,2	0,8	0,4		
Garam dapur	0,32	0,24	0,16	0,08		
Mineral-vitamin/ pignox	0,08	0,06	0,04	0,02		
Total	100	100	100	100		

Keterangan : Biosuplemen Mengandung Isi Rumen Sapi Bali disusun berdasarkan NRC (1994) dan Hartadi (1998).

Tempat dan Lama Penelitian

Penelitian ini dilaksanakan di kandang peternakan itik bali rakyat yang beralamat di Desa Peguyangan Kaja, Kota Denpasar. Penelitian dilaksanakan selama ± 13 minggu, yaitu 3 minggu persiapan, 8 minggu pengambilan data, dan 2 minggu analisis data.

Rancangan Penelitian

Rancangan yang digunakan dalam penelitian ini adalah Rancangan Acak Lengkap dengan 5 (lima) perlakuan dan 3 (tiga) ulangan. Perlakuan didasarkan pada jenis

biosuplemen mengandung isi rumen sapi bali yang disuplementasi pada ransum basal dan dibandingkan dengan pemberian ransum basal tanpa suplementasi biosuplemen mengandung isi rumen sapi bali. Setiap ulangan menggunakan 5 ekor itik bali jantan, sehingga secara keseluruhan mempergunakan 75 ekor itik bali jantan.

Perlakuan yang diberikan adalah:

- RSP₀ = 100% Ransum basal tanpa biosuplemen mengandung isi rumen sapi bali sebagai kontrol
- $RSP_{20} = 95\%$ ransum basal dengan 5% biosuplemen mengandung isi rumen sapi bali 20%
- RSP₄₀ = 95% ransum basal dengan 5% biosuplemen mengandung isi rumen sapi bali 40%
- $RSP_{60} = 95\%$ ransum basal dengan 5% biosuplemen mengandung isi rumen sapi bali 60%
- $RSP_{80} = 95\%$ ransum basa dengan 5% biosuplemen mengandung isi rumen sapi bali 80%

Pelaksanaan Penelitian

Pelaksanaan penelitan dimulai dari pembersihan lokasi dan lingkungan kandang dan juga pemasangan tirai mengelilingi bangunan kandang. Selanjutnya kandang dibersihkan dan di semprot dengan desinfektan.

Pengacakan itik

Ternak itik terlebih dahulu diberi "wing band". Setelah itu semua itik ditimbang untuk mendapatkan berat yang homogen, kemudian itik dimasukan ke dalam kandang dan dicatat nomer "wing band" dan berat awal itik di masing-masing kandang. Setelah itik dikelompokan ke dalam kandang secara merata, maka dilanjutkan dengan pemberian perlakuan pada setiap kelompok itik yang berada di dalam masing-masing petak kandang. Pemberian perlakuan dilakukan secara acak.

Pencegahan Penyakit

Itik yang baru tiba diberikan air gula dengan tujuan menghindari dehidrasi dan stres akibat perjalanan. Selain itu pada minggu pertama juga diberikan vita chicks melalui air minum dengan dosis 1 gram dalam 1 liter air. Pemberian vaksin dilakukan umur empat

minggu dengan vaksin Medivac ND Hitcher B1 melalui tetes mata. Vaksinasi ini merupakan vaksin aktif "New Castle Deasease" untuk mencegah penyakit ND.

Pembuatan Biosuplemen Mengandung Isi Rumen Sapi Bali

Pembuatan biosuplemen mengandung isi rumen sapi bali dilakukan dengan cara memeras limbah isi rumen sapi bali agar cairannya berkurang hingga tersisa hanya bahan padatnya saja. Bahan padat inilah yang akan digunakan untuk pembuatan biosuplemen. Biosuplemen yang mengandung isi rumen sapi bali dibuat dalam 4 tingkat limbah isi rumen yang berbeda yaitu 20% (SP₂₀), 40% (SP₄₀), 60% (SP₆₀), dan 80% (SP₈₀) yang diinokulasikan dalam medium suplemen. Produksi biosuplemen mengadung isi rumen sapi bali dilakukan dengan cara mencampur isi rumen sapi bali dengan medium suplemen sesuai dengan perlakuan hingga homogen. Isi rumen sapi bali yang telah tercampur dengan medium suplemen selanjutnya dimasukkan ke dalam wadah berpenutup dan diinkubasi secara anaerob selama 1 minggu pada suhu 39°C. Setelah 1 minggu produk biosuplemen isi rumen sapi bali yang baru diproduksi dikeringkan secara bertahap dengan cara dimasukkan kedalam oven dengan suhu 39-42° C hingga kadar air menurun menjadi 20-25% selama 2 hari (48 jam). Kemudian produk biosuplemen isi rumen sapi bali digiling halus dan siap untuk disuplementasi pada ransum basal.

Pencampuran Bahan Penyusun Ransum

Pencampuran ransum dimulai dengan mempersiapkan bahan-bahan ransum, timbangan dan ember untuk tempat mencampur bahan-bahan ransum. Bahan-bahan seperti eceng gondok, daun apu, batang pisang dan umbi ketela pohon dipotong-motong kecil agar mudah dicampur. Penimbangan di mulai dari bahan-bahan yang komposisinya paling banyak dalam ransum, dilanjutkan dengan penimbangan bahan yang komposisinya lebih sedikit. Bahan-bahan yang sudah ditimbang kemudian dimasukan ke dalam 5 buah ember yang telah diberi label perlakuan RSP₀, RSP₂₀, RSP₄₀, RSP₆₀, dan RSP₈₀ lalu dicampur hingga homogen. Setelah bahan-bahan dicampur, suplementasi biosuplemen isi rumen sapi bali dilakukan pada ember yang diberi label RSP₂₀, RSP₄₀, RSP₆₀, dan RSP₈₀ dengan cara mengganti 5% ransum basal dengan 5% biosuplemen isi rumen sapi bali 20%, 40%, 60%, dan 80% sesuai label, sedangkan RSP₀ tidak disuplementasi biosuplemen isi rumen sapi

bali karena sebagai kontrol. Selanjutnya ransum tersebut siap diberikan pada ternak itik bali jantan.

Pemberian Ransum dan Air Minum

Ransum dan air minum diberikan secara *ad libitum*. Pemberian ransum dilakukan 3 kali sehari, yaitu pada pagi pukul 08.00 wita, siang pukul 12.00 wita, dan sore hari pukul 16.00 wita. Ransum diberikan dengan cara mengisi ³/₄ bagian dari tempat pakan untuk menghindari tercecernya ransum, pada masing-masing kandang sesuai perlakuan. Air minum diberikan 2 kali sehari, yaitu pada pagi pukul 08.00 wita dan sore hari pukul 16.00 wita. Sebelum dilakukan pengisian air minum, tempat air minum dibersihkan terlebih dahulu. Penambahan air minum di lakukan jika air minum dalam kandang sudah habis sebelum waktu pemberian air minum.

Prosedur Pemotongan Itik

Pemotongan itik dilakukan pada akhir penelitian yaitu minggu ke-8. Sebelum itik dipotong, itik dipuasakan ±12 jam terlebih dahulu untuk memudahkan dalam pengeluarkan kotoran itik dan hanya diberi air minum (Jull,1951). Kemudian ditimbang untuk mengetahui berat potongnya. Itik dipilih dua ekor yang mendekati berat badan rata-rata kelompoknya pada setiap unit perlakuan, sehingga ada 30 ekor itik yang dipotong.

Pemotongan itik dilakukan berdasarkan cara USDA (United States Departement of Agriculture, 1977) dengan menggunakan pisau kecil dan tajam pada *vena jugularis* yang terletak sebelah kiri ruas kedua tulang leher. Setelah itik dipotong dilakukan pencabutan bulu itik dengan cara mencelupkannya terlebih dahulu pada air panas.

Pemisahan Bagian-bagian Tubuh

Setelah dipotong, dilakukan pemisahan bagian-bagian tubuh itik. Pemisahan bagian-bagian tubuh itik akan dimulai dari pengeluaran organ dalam, dengan membelah rongga perut itik. Kemudian dilanjutkan dengan pemotongan kaki, pemotongan kepala, dan memotong leher yang dilakukan pada bagian tulang leher. Setelah bagian tubuh terpisah, maka akan akan didapatkan karkas, non karkas dan organ dalam itik. Setelah didapatkan karkas dilakukan pemisahan bagian daging, tulang, dan kulit termasuk lemak karkas.

Variabel yang Diamati

Variabel yang diamati dalam penelitian ini meliputi :

- 1. Berat potong (g): berat itik yang didapatkan pada waktu akhir penelitian sesaat sebelum dipotong (umur 8 minggu) setelah dipuasakan ±12 jam (USDA, 1977).
- 2. Berat karkas (g): berat yang diperoleh dari berat potong setelah pengeluaran darah, pencabutan bulu, pemisahan kepala, kaki, dan pengeluaran organ dalam (USDA, 1977).
- 3. Persentase karkas (%): perbandingan berat karkas dengan berat potong dikalikan 100% (USDA, 1977).
- 4. Komposisi fisik karkas:
 - a. Berat daging (g): berat karkas setelah dikurangi tulang dan kulit.
 - b. Berat tulang (g): berat karkas setelah dikurangi daging dan kulit.
 - c. Berat kulit termasuk lemak (g) : berat karkas setelah dikurangi daging dan tulang.

Analisis Data

Data yang diperoleh dianalisis dengan analisis sidik ragam dan apabila diantara perlakuan terdapat perbedaan yang nyata (P<0,05), analisis dilanjutkan dengan Uji Jarak Berganda Duncan's (Steel dan Torrie, 1993).

HASIL DAN PEMBAHASAN

Hasil

Berat Potong

Hasil penelitian menunjukan rataan berat potong itik bali jantan pada umur 8 minggu yang mendapat perlakuan RSP₀ sebagai kontrol adalah 555,33g (Tabel 4.1). Itik yang mendapat perlakuan RSP₂₀ menghasilkan berat potong 0,061% lebih tinggi daripada perlakuan RSP₀, perlakuan RSP₄₀ dan RSP₈₀ menghasilkan berat potong 0,59% lebih rendah daripada perlakuan RSP₀, dan perlakuan RSP₆₀ menghasilkan berat potong sama dengan perlakuan RSP₀, yang secara statistik berbeda tidak nyata (P>0,05).

Berat Karkas

Rataan berat karkas itik bali jantan pada umur 8 minggu yang mendapat perlakuan RSP₀ sebagai kontrol adalah 253g (Tabel 4.1). Itik yang mendapat perlakuan RSP₂₀ dan RSP₄₀ menghasilkan berat karkas masing-masing 1,28% dan 2,25% nyata lebih tinggi (P<0,05) daripada perlakuan RSP₀, perlakuan RSP₆₀ mengasilkan berat karkas 0,4% berbeda lebih tinggi daripada perlakuan RSP₀, namun secara statistik berbeda tidak nyata (P>0,05) dan perlakuan RSP₈₀ menghasilkan berat karkas 1,98% nyata lebih rendah (P<0,05) daripada perlakuan RSP₀. Itik yang mendapat perlakuan RSP₄₀ menghasilkan berat karkas 0,96% lebih tinggi daripada perlakuan RSP₄₀, namun secara statistik berbeda tidak nyata (P>0,05) dan menghasilkan berat karkas yang nyata lebih tinggi (P<0,05) 1,85% dan 4,19% daripada perlakuan RSP₆₀ dan RSP₈₀. Itik yang mendapat perlakuan RSP₂₀ menghasilkan berat karkas 0,88% lebih tinggi daripada perlakuan RSP₆₀, namun secara statistik berbeda tidak nyata (P>0,05) dan menghasilkan berat karkas 3,19% nyata lebih tinggi (P<0,05) daripada perlakuan RSP₈₀. Itik yang mendapat perlakuan RSP₆₀ menghasilkan berat karkas 2,3% nyata lebih tinggi (P<0,05) daripada perlakuan RSP₈₀.

Tabel 3. Pengaruh Biosuplemen Isi Rumen Sapi Bali pada Ransum Terhadap Berat dan Komposisi Fisik Karkas Itik Bali Jantan

Variabel	Perlakuan ¹⁾					SEM ²⁾
v arraber	RSP ₀	RSP ₂₀	RSP ₄₀	RSP ₆₀	RSP ₈₀	SEIVI
Berat Potong (g)	555,33 ^{a4)}	555,67 ^a	555,00°	555,33 ^a	555,00 ^a	3,73
Berat Karkas (g)	$253,00^{c3}$	256,23 ^{ab}	$258,70^{a}$	$254,00^{bc}$	$248,30^{d}$	0,95
Persentase Karkas (%)	45,56 ^{ab}	46,11 ^a	$46,62^{a}$	45,74 ^{ab}	44,75 ^b	0,36
Berat Daging Karkas (g)	$100,00^{a}$	$102,00^{a}$	$102,00^{a}$	$100,00^{a}$	$98,00^{a}$	0,93
Berat Tulang Karkas (g)	$90,00^{c}$	$91,90^{b}$	$95,00^{a}$	$93,00^{b}$	$90,30^{c}$	0,49
B.Kulit + Lemak Karkas (g)	$63,00^{a}$	$62,33^{a}$	$61,70^{a}$	$61,00^{a}$	$60,00^{a}$	0,75

Keterangan:

- 1.RSP₀: Ransum basal tanpa biosuplemen isi rumen sapi bali sebagai kontrol
 - RSP₂₀: 95% ransum basal dengan 5% biosuplemen isi rumen sapi bali 20%
 - RSP₄₀: 95% ransum basal dengan 5% biosuplemen isi rumen sapi bali 40%
 - RSP₆₀: 95% ransum basal dengan 5% biosuplemen isi rumen sapi bali 60%
 - RSP₈₀: 95% ransum basal dengan 5% biosuplemen isi rumen sapi bali 80%
- 2.SEM: "Standart Error of the Treatment Means"
- 3. Nilai dengan huruf yang berbeda pada baris yang sama, menunjukan berbeda nyata (P < 0.05)
- 4. Nilai dengan huruf yang sama pada baris yang sama, menunjukan berbeda tidak nyata (P > 0,05)

Persentase Karkas

Rataan persentase karkas itik bali jantan pada umur 8 minggu yang mendapat perlakuan RSP₀ sebagai kontrol adalah 45,45% (Tabel 4.1). Itik yang mendapat perlakuan RSP₂₀, RSP₄₀, dan RSP₆₀ menghasilkan persentase karkas masing-masing 1,21%, 2,33%, dan 0,40% lebih tinggi dari perlakuan RSP₀, namun secara statistik berbeda tidak nyata (P>0,05). Perlakuan RSP₈₀ menghasilkan persentase karkas 1,78% lebih rendah daripada perlakuan RSP₀, namun secara statistik berbeda tidak nyata (P>0,05). Itik yang mendapat perlakuan RSP₄₀ menghasilkan persentase karkas masing-masing 1,11% dan 1,92% lebih tinggi dari perlakuan RSP₂₀ dan RSP₆₀, namun secara statistik berbeda tidak nyata (P>0,05), dan menghasilkan persentase karkas 4,18% nyata lebih tinggi (P<0,05) daripada perlakuan RSP₈₀. Itik yang mendapat perlakuan RSP₂₀ menghasilkan persentase karkas 0,81% lebih tinggi daripada perlakuan RSP₆₀, namun secara statistik berbeda tidak nyata (P>0,05), dan menghasilkan persentase karkas 3,04% nyata lebih tinggi (P<0,05) daripada perlakuan RSP₈₀. Itik yang mendapat perlakuan RSP₆₀ menghasilkan berat karkas 2,21% lebih tinggi daripada perlakuan RSP₈₀, namun secara statistik berbeda tidak nyata (P>0,05).

Berat Daging Karkas

Secara statistik rataan berat daging karkas itik bali jantan pada umur 8 minggu yang mendapat perlakuan RSP₀ adalah 100g (Tabel 4.1). Itik yang diberi perlakuan RSP₂₀ dan RSP₄₀ menghasilkan berat daging karkas berbeda 2% lebih tinggi daripada perlakuan RSP₀, perlakuan RSP₆₀ menghasilkan berat daging karkas sama dengan perlakuan RSP₀, dan perlakuan RSP₈₀ menghasilkan berat daging karkas 2% lebih rendah daripada perlakuan RSP₀, yang secara statistik berbeda tidak nyata (P>0,05).

Berat Tulang Karkas

Hasil penelitian menunjukan rataan berat tulang karkas itik bali jantan pada umur 8 minggu yang mendapat perlakuan RSP₀ sebagai kontrol adalah 90g (Tabel 4.1). Itik yang mendapat perlakuan RSP₂₀, RSP₄₀, dan RSP₆₀ menghasilkan berat tulang karkas masingmasing 2,11%, 5,56%, dan 3,33% nyata lebih tinggi (P<0,05) daripada perlakuan RSP₀ dan perlakuan RSP₈₀ mengasilkan berat tulang karkas 0,33% lebih tinggi daripada perlakuan RSP₀, namun secara statistik berbeda tidak nyata (P>0,05). Itik yang mendapat perlakuan

RSP₄₀ menghasilkan berat tulang karkas masing-masing 3,37%, 2,15%, dan 5,20% nyata lebih tinggi (P<0,05) daripada perlakuan RSP₂₀, RSP₆₀, dan RSP₈₀. Itik yang mendapat perlakuan RSP₆₀ menghasilkan berat tulang karkas 1,97% lebih tinggi daripada perlakuan RSP₂₀, namun secara statistik berbeda tidak nyata (P>0,05), dan menghasilkan berat tulang karkas 2,99% nyata lebih tinggi (P<0,05) daripada perlakuan RSP₈₀.

Berat Kulit Termasuk Lemak Karkas

Rataan berat kulit termasuk lemak karkas itik bali jantan pada umur 8 minggu yang mendapat perlakuan RSP₀ adalah 63,00% (Tabel 4.1). Itik yang diberi perlakuan RSP₂₀, RSP₄₀, RSP₆₀, dan RSP₈₀ menghasilkan berat kulit termasuk lemak karkas masing-masing 1,06%, 2,06%, 3,17%, dan 4,76% lebih rendah dari pada perlakuan RSP₀, yang secara statistik berbeda tidak nyata (P>0,05).

Pembahasan

Hasil penelitian menunjukan perlakuan RSP₂₀, RSP₄₀, RSP₆₀, dan RSP₈₀ menghasilkan berat potong berbeda tidak nyata (P>0,05) dari pada perlakuan RSP₀. Hal ini disebabkan kandungan nutrisi pada ransum terutama imbangan energi protein pada kelima perlakuan hampir sama dan sesuai dengan standar kebutuhan itik. Karena imbangan energi protein ransum pada kelima perlakuan hampir sama dan sesuai dengan standar kebutuhan itik, maka energi protein ransum digunakan untuk memenuhi hidup pokok, sehingga memberikan berat potong yang hampir sama. Scott *et al.*, (1976) dan Wahju (1977) menyatakan bahwa imbangan energi protein mempengaruhi konsumsi ransum, pertumbuhan dan komposisi tubuh unggas.

Berat karkas yang dihasilkan pada perlakuan RSP₂₀ dan RSP₄₀ nyata lebih tinggi (P<0,05) dari pada perlakuan RSP₀ sebagai kontrol dan perlakuan RSP₆₀ menghasilkan berat karkas berbeda tidak nyata (P>0,05) lebih tinggi dari pada perlakuan RSP₀. Ini disebabkan pada biosuplemen mengandung isi rumen sapi bali 20% (SP₂₀), 40% (SP₄₀), dan 60% (SP₆₀) mikroba dapat tumbuh dengan optimum, sehingga mampu menurunkan kadar serat kasar, meningkatkan kadar protein, kecernaan bahan kering dan bahan organik ransum non konvensional (Mudita *et al.*, 2009-2010), sehingga kecernaan ransum meningkat. Meningkatnya daya cerna dapat meningkatkan penyerapan zat-zat makanan dalam ransum,

sehingga zat-zat makanan yang terserap dapat didistribusikan secara proposional untuk pertumbuhan dan produksi dalam tubuh ternak. Akibatnya berat kakas yang dihasilkan lebih tinggi dibandingkan RSP₀. Hasil penelitian ini juga didukung oleh Belawa (2000) yang menyatakan pemberian zat probiotok dalam ransum dapat meningkatkan daya cerna ransum dan bahan organik. Pada perlakuan RSP₄₀ menghasilkan berat karkas paling tinggi karena SP₄₀ merupakan kombinasi 40% limbah isi rumen dan 60% medium suplemen yang merupakan kombinasi seimbang, sehingga mikroba dapat tumbuh optimum dan menghasilkan populasi mikroba paling banyak (lampiran 8), sehingga saat ditambahkan pada ransum lebih banyak dapat mencerna serat kasar maka zat-zat makanan dapat diserap lebih banyak. Imbangan energi protein ransum pada perlakuan RSP₄₀ paling baik (lampiran 7), sehingga konsumsi ransum, pertambahan berat badan, dan berat badan akhir pada perlakuan RSP₄₀ paling tinggi serta nilai FCR kecil (lampiran 11). Hal ini sesuai dengan pernyataan Scott et al., (1976) dan Wahju (1977) bahwa imbangan energi protein mempengaruhi konsumsi ransum, pertumbuhan dan komposisi tubuh unggas. Berat badan akhir yang dihasilkan perlakuan RSP₄₀ paling tinggi (lampiran 11), sehingga berat karkas yang dihasilkan juga paling tinggi. Berat berat badan akhir erat kaitannya dengan berat karkas, dimana unggas yang meiliki berat badan akhir yang tinggi cenderung meiliki berat karkas yang tinggi pula (Mulyadi 1983). Perlakuan RSP₈₀ menghasilkan berat karkas nyata lebih rendah (P<0,05) dari pada perlakuan RSP₀. Hal ini disebabkan SP₈₀ merupakan kombinasi 80% limbah isi rumen dan 20% medium suplemen sehingga perombakan terlalu cepat menyebabkan mikroba tidak dapat tumbuh optimum dan sebagian besar mati. Saat disuplementasi pada ransum tidak mampu meningkatkan daya cerna terutama serat kasar dan terjadi peningkatan serat kasar yang berasal dari limbah isi rumen dan kandungan serat kasarnya paling tinggi (lampiran 7), sehingga mempercepat laju gerakan ransum dalam saluran pencernaan. Hal ini menyebabkan kesempatan ransum untuk dicerna dalam saluran pencernaan lebih singkat yang mengakibatkan kecernaan zat makanan yang terkandung dalam ransum menjadi lebih rendah, sehingga berat karkas yang dihasilkan lebih rendah. Bidura et al. (1996) menyatakan meningkatnya kandungan serat kasar dalam ransum menyebabkan laju aliran ransum pada saluran pencernaan akan meningkat sehingga penyerapan zat-zat makanan menjadi tidak sempurna.

Persentase karkas yang dihasilkan pada perlakuan RSP₂₀, RSP₄₀, dan RSP₆₀ berbeda tidak nyata (P>0,05) lebih tinggi dari pada perlakuan RSP₀ sebagai kontrol. Hal ini disebabkan berat karkas pada perlakuan RSP₂₀, RSP₄₀, dan RSP₆₀ lebih tinggi dari pada RSP₀, sehingga pesentase karkas yang dihasilkan lebih tinggi daripada RSP₀, namun secara statistik berbeda tidak nyata (P>0,05). Perlakuan RSP₈₀ berbeda tidak nyata (P>0,05) lebih rendah dari pada perlakuan RSP₀. Hal ini disebabkan berat karkas pada perlakuan RSP₈₀ lebih rendah dari pada perlakuan RSP₀, sehingga persentase karkas yang dihasilkan lebih rendah dari pada RSP₀, namun secara statistik berbeda tidak nyata (P>0,05). Persentase karkas erat hubungannya dengan berat karkas dan berat potong. Semakin tinggi berat karkas dan berat potong maka akan berpengaruh terhadap persentase karkas yang dihasilkan (Cakra, 1986). Persetase karkas didapat dari perbandingan berat karkas dengan berat potong dikalikan 100% (USDA, 1977).

Berat daging karkas yang dihasilkan pada perlakuan RSP₂₀, RSP₄₀, RSP₆₀, dan RSP₈₀ berbeda tidak nyata (P>0,05) dari pada perlakuan RSP₀ sebagai kontrol. Ini disebabkan penyerapan protein ransum pada kelima perlakuan hampir sama. Karena konsumsi protein ransum pada kelima perlakuan hampir sama, maka asam-asam amino dalam protein yang diserap dalam saluran pencernaan dan didistribusikan dalam tubuh ternak hampir sama, sehingga pertumbuhan dalam pembentukan daging pada jaringan tubuh pada kelima perlakuan berbeda tidak nyata. Protein ransum mempunyai peranan penting dalam pertumbuhan dan merupakan komponen utama pembentuk urat daging (Anggorodi, 1990).

Berat tulang karkas yang dihasilkan pada perlakuan RSP₂₀, RSP₄₀, dan RSP₆₀ nyata lebih tinggi (P<0,05) dari pada perlakuan RSP₀ sebagai kontrol dan perlakuan SRP₈₀ menghasilkan berat tulang karkas berbeda tidak nyata (P>0,05) lebih tinggi dari pada perlakuan RSP₀ sebagai kontrol. Hal ini berkaitan dengan penyerapan mineral ransum yaitu kalsium dan fosfor. Kalsium dan fosfor merupakan dua mineral yang dibutuhkan dalam proses pembentukan tulang (Rasidi, 1999). Suplementasi biosuplemen mengandung isi rumen sapi bali 20% (SP₂₀), 40% (SP₄₀), 60% (SP₆₀), dan 80% (SP₈₀) dapat meningkatkan daya cerna mineral ransum, yaitu kalsium dan fosfor yang dapat diserap lebih banyak, sehingga berat tulang karkas yang dihasilkan lebih tinggi.

Berat kulit termasuk lemak karkas yang dihasilkan pada perlakuan RSP₂₀, RSP₄₀, RSP₆₀, dan RSP₈₀ berbeda tidak nyata (P>0,05) dari pada perlakuan RSP₀ sebagai kontrol. Hal ini dikarenakan kandungan serat kasar ransum pada kelima perlakuan hampir sama, sehingga lemak yang terikat akibat dari ekskresi lemak yang dihasilkan serat kasar dan lemak yang keluar melalui gerak paristaltik usus bersama feses hampir sama pada kelima perlakuan. Serat kasar dalam saluran pencernaan mempunyai fungsi sebagai penghambat penyimpanan lemak dalam usus, sehingga berpengaruh terhadap jumlah lemak yang dapat diserap oleh tubuh ternak (Mayes *et al.*, 1992).

SIMPULAN

Berdasarkan hasil penelitian ini dapat disimpulkan bahwa pemberian 5% biosuplemen mengandung isi rumen sapi bali 20% (RSP₂₀) dan 40% (RSP₄₀) dalam ransum mampu meningkatkan berat dan komposisi fisik karkas itik bali jantan umur 8 minggu, sedangkan biosuplemen mengandung isi rumen sapi bali 60% (RSP₆₀) dan 80% (RSP₈₀) dalam ransum non konvensional belum dapat meningkatkan berat dan komposisi fisik karkas itik jantan umur 8 minggu.

UCAPAN TERIMA KASIH

Penulis mengucapkan banyak terima kasih kepada Bapak Made Wirapartha, S.Pt, M.Si, dan Ibu Ir. Made Dewantari, M.Si yang telah memberikan bimbingan, dan saran selama penulisan karya ilmiah ini berlangsung. Penulis juga mengucapkan terima kasih kepada Bapak Dr. Ir. Ida Bagus Gaga Partama, MS sebagai Dekan Fakultas Peternakan Universitas Udayana serta Bapak/Ibu Dosen Fakultas Peternakan Universitas Udayana yang telah banyak memberikan saran dan masukan dalam penulisan karya ilmiah ini.

DAFTAR PUSTAKA

Anggorodi, R. 1990. Ilmu Makanan Ternak Umum. PT. Gramedia, Jakarta.

Anon, 2008. Potensi Bahan Baku Ransum di Indonesia.

Anon. 2011. Buku Penuntun Praktikum Bahan Pakan dan Formulasi Ransum Universitas Hasanuddin, Makasar.

- Barhiman, S. 1976. Kualitas Ayam Kampung dan Persilangan Ayam Kampung Dengan RIR. Karya Ilmiah, Fakultas Peternakan, Institut Pertanian Bogor, Bogor.
- Belawa. T. G. Y. 2000. Pengaruh Pemberian Zat Probiotik dalam Ransum yang Mengandung Serbuk gergaji Kayu Sebagai Sumber Serat Kasar Terhadap Daya Cerna Ransum, Bahan Organik, dan Serat Kasar Ransum pada Ayam Broiler. Laporan Penelitian Fakultas Peternakan Universitas Udayana, Denpasar.
- Berg, R. T. and Butterfield. 1966. Muscle Bone Ratio and Fat Percentage as Measure of Beef Carcas Composition. J Anim Produc, 8:1–11.
- Bharoto, K. D. 1993. Cara Beternak Itik. Aneka Ilmu, Semarang.
- Bidura, I. G. N. G., I. D. G. A. Udayana, I. M. Suasta dan T. G. Belawa Yadnya, 1996. Pengaruh Aras Serat Kasar Dalam Ransum Terhadap Efisiensi Penggunaan Ransum dan Kadar Kolesterol Telur Ayam. Laporan Penelitian Fakultas Peternakan Universitas Udayana, Denpasar.
- Cakra, I. G. L. O. 1986. Pengaruh Pemberian Hijauan Versus Top Mix Terhadap Karkas dan Bagian Tubuh Lainnya Pada Ayam Pedaging. Skripsi Fakultas Peternakan, Unud, Denpasar.
- Crampton, B. W. and L. E. Harris. 1986. Applied Animan Nutrition. 2 nd ED. W. H. Freeman and Company, Sanfrancisco.
- Daryanti, B. H. Ahmad dan R. Herman. 1982. Perbandingan Produksi Daging Antara Ayam Jantan Petelur dan Ayam Jantan Pedaging. Media Peternakan IPB, Bogor.
- Dewi, G.A.M. K, I G. Mahardika, I K.Sumadi, I M. Suasta, and I Made Wirapartha. 2013. The effects of different energy-protein ration for carcass of kampung chickens. Proceedings 4th International Conference on Biosciences and Biotechnology. p:366-370.
- Direktorat Jendral Peternakan. 2007. Statistik Peternakan. Direktorat Jendral Peternakan, Departemen Pertanian, Republik Indonesia Jakarta. Djanah, D. 1982. Beternak Itik. Penerbit CV. Yasaguna, Jakarta.
- Hammond , J. and F.H.A. Marshall. 1993. The Life Cycle in Marshell S. Physiology of Reproduction. Longmans, Green and Co. London , New York. Toronto . Chopert. 23 : 793 846.
- Hartadi, H.S Reksohadiprojo and A.D. Tillman. 1998. Tabel Komposisi Pakan Ternak untuk Indonesia. Gadjah Mada University Press, Yogyakarta.

- Haryati.T.,M.H.Togatorop,A.P.Sinurat,T.Purwadaria dan Murtuyeni. 2006. Pemanfaatan bungkil kelapa fermentasi dengan *Aspergulus Niger* dalam ransum ayam pedaging. JITV 11(3): 182-190.
- Japp, P. and J. F. Jensen. 1950. Meat Quality in Duck. Br. Poult. Sci. 15: 167 173.
- Jull, A.M.1951. Poultry Husbandry. 3th Ed. McGraw. Hill Book Company. Inc. New York.
- Kuaspartoyo, 1990. Segi Kehidupan Itik. Majalah Swadaya Peternakan Indonesia. No: 59, Jakarta.
- Mahmilia,F. 2005. Perubahan nilai gizi tepung eceng gondok fermentasi dan pemanfaatannya sebagai ransum ayam pedaging. JITV 10(2): 90-95.
- Marhijanto, B. 1993. Beternak Itik. Penerbit Penebar Swadaya, Jakarta.
- Matram, R. B. 1984. Pengaruh Imbangan Kalori/Protein dan Pembatasan Ransum Terhadap Pertumbuhan dan Produksi Itik Bali, Disertasi, Universitas Padjajaran, Bandung.
- Mayes, P. A, D. W. Martin and V. W. Rodwel. 1992. Harpers Rivew of Biochemistry. Edisi 20 th ED. Lange Medical Publications, Los Altos California.
- Mc Donald, P., R.A. Edward and J.F.D Greenhalgh. 1998. Animal Nutrition. 4th Ed.
- Mudita, I M., I G.L.O.Cakra, AA.P.P.Wibawa, dan N.W. Siti. 2009. Penggunaan Cairan Rumen Sebagai Bahan Bioinokulan Plus Alternatif serta Pemanfaatannya dalam Optimalisasi Pengembangan Peternakan Berbasis Limbah yang Berwawasan Lingkungan. Laporan Penelitian Hibah Unggulan Udayana, Universitas Udayana, Denpasar.
- Mudita, I M., I W. Wirawan Dan AA. P.P. Wibawa. 2010. Suplementasi Bio-Multi Nutrien Yang Diproduksi Dari Cairan Rumen Untuk Meningkatkan Kualitas Silase Ransum Berbasis Bahan Lokal Asal Limbah. Laporan Penelitian Dosen Muda Unud, Denpasar.
- Mudita, I M., T.I. Putri, T.G.B. Yadnya, dan B. R. T. Putri. 2010^a. Penurunan Emisi Polutan Sapi Bali Penggemukan Melalui Pemberian Ransum Berbasis Limbah Inkonvensional Terfermentasi Cairan Rumen. Prosiding Seminar Nasional, Fakultas Peternakan UNSOED ISBN: 978-979-25-9571-0.
- Mudita, I M., I W. Wirawan, A. A. P. P. Wibawa, I G. N. Kayana. 2012. Penggunaan Cairan Rumen dan Rayap dalam Produksi Bioinokulan Alternatif serta Pemanfaatannya dalam Pengembangan Peternakan Sapi Bali Kompetitif dan *Sustainable*. Laporan Penelitian Hibah Unggulan Perguruan Tinggi. Universitas Udayana, Denpasa.

- Mulyadi, H. 1983. Pengaruh Penggunaan Tepung Daun Alang-alang dalam Ransum terhadap Karkas dan Bagian Giblet Ayam Jantan Tipe Medium *Babcock*. Karya Ilmiah Fakultas Peternakan, IPB. Bogor.
- Murtidjo, B. A. 1987. Pedoman Meramu Pakan Unggas. Yogyakarta.
- Murtidjo, B. A. 1988. Mengelola Itik. Penerbit Yayasan Karnisius, Yokyakarta, Cetakan Pertama.
- National Research Council. 1984. Nutrients Requirement of Poultry. Eight ed. National Academy Press, Washington, D. C.
- Partama, I. B. G., I M. Mudita, N. W. Siti, I W. Suberata, A. A. A. S. Trisnadewi. 2012. Isolasi, Identifikasi dan Uji Aktivitas Bakteri serta Fungi Lignoselulolitik Limbah Isi Rumen dan Rayap Sebagai Sumber Inokulan dalam Pengembangan Peternakan Sapi Bali Berbasis Limbah. Laporan Penelitian Invensi. Universitas Udayana, Denpasar.
- Rahayu, E., C. I. Sutrisno, dan B. Sulistiyanto. 2012. Pemanfaatan limbah isi rumen sebagai starter kering. Prosiding Seminar Nasional Peternakan Berkelanjutan 4. Hal. 50-55. Fakultas Peternakan Universitas Padjajaran, Bandung.
- Rasyaf, M. 1988. Beternak Itik Komersial. Penerbit Kanisius, Yogyakarta.
- Rasyaf, M. 2004. Seputar Makanan Ayam Kampung. Cetakan ke-8, Penerbit Kanisius, Yogyakarta.
- Ruhyat, K.2006. Manajemen Ternak Unggas. Cetakan Pertama. Penebar Swadaya, Jakarta.
- Rozany, H. R. 1981. Pengaruh Minyak Kelapa dan Minyak Kacang Tanah terhadap Pertumbuhan Ayam Broiler. Tesis Fakultas Pascasarjana Institut Pertanian, Bogor.
- Resnawati, H. 1976. Pengaruh Umur Terhadap Persentase Karkas dan Efisiensi Ekonimis pada Ayam Broiler Unsexed. Lembaran LPP. VI. h. 2.
- Sandhy, S. W. 1999. Beternak Itik Tanpa Air. Penerbit Swadaya. Jakarta.
- Sanjaya, L., 1995. Pengaruh penggunaan isi rumen sapi terhadap PBB, konsumsi dan konversi pada ayam pedaging strain loghman. Skripsi. Fakultas Peternakan Universitas Muhammadiyah Malang.
- Soeparno. 1998. Ilmu dan Teknologi Daging. Cetakan ke-3. Gajah Mada Press, Yogyakarta.

- Sastrosupadi, A.. 2000. Rancangan Percobaan Praktis Bidang Pertanian. Edisi Revisi. Penerbit Kanisius, Yogyakarta.
- Scott, M.L., M. C. Nesheim and R. J. Young.1976. Nutrition of the Chicken. 3rdEd.Publishing by M. L. Scott and Assosiation Ithaca, New york.
- Steel, R. G. D. and J. H. Torrie. 1993. Prinsip dan Prosedur Statistik Penerjemah. Bambang Sumanatri. PT. Gramedia Pustaka Utama, Jakarta.
- Suardana, I W., I N. Suarsana, I N. Sujaya, dan K. G. Wiryawan. 2007. Isolasi dan identifikasi bakteri asam laktat dari cairan rumen sapi bali sebagai kandidat biopreservatif. Jurnal Veteriner Vol. 8 No. 4: 155-159.
- Sutama, I. N. S.2003 Pengaruh suplementasi kapu kapu (*Pistoia stratiotesl*) dalam ransum terhadap kolesterol pada serum dan daging ayam kampung. Majalah Ilmiah Peternakan Vol. 8 No. 2. Universitas Udayana, Denpasar.
- Tillman, A. D., H. hartadi, S. Reksohadiprodjo, P. Soeharto, dan L, Soekanto. 1989. Ilmu Makanan Ternak Dasar. Gajah Mada University Press, Yogyakarta.
- United States Departement of Agriculture, 1977. Poultry Grading Manual. U. S. Government Printing Office, Washington. D. C.
- Wahju, J. 1997. Ilmu Nutrisi Unggas. Gadjah Mada University Press. Yogyakarta.
- Winter, A. R. and Funk. 1966. Poultry Science and Practice 5th Edition. J. B. Lippincott Company, Chicago.
- Zulkaezih, Elly dan Rakhmad Budirakhman. 2005. Pengaruh substitusi pakan komersial dengan dedak padi terhadap persentase karkas ayam kampung jantan. Ziraah'ah Majalah Pertanian. Fakultas Pertanian Universitas Islam Kalimantan, Banjarmasin. 14(3): 100 104.