24.01.13

Name:

Vektorgeometrie

Ohne Hilfsmittel, etwa 80 Min. Der Lösungsweg muss immer nachvollziehbar dokumentiert sein.

- 1. Seien $\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$; $\vec{b} = \begin{pmatrix} -3 \\ 4 \\ -5 \end{pmatrix}$. Berechne $\vec{a} \cdot \vec{b}$, $\vec{b} \times \vec{a}$ und die Länge der Normalprojektion von \vec{b} auf \vec{a} . (6P)
- 2. Die Vektoren \vec{a} und \vec{b} sollen kollinear sein. Finde die fehlenden Komponenten. (4P)

$$\mathbf{a}) \quad \vec{a} = \begin{pmatrix} 6 \\ 0 \\ -1 \end{pmatrix}; \quad \vec{b} = \begin{pmatrix} -4 \\ y \\ z \end{pmatrix}. \qquad \qquad \mathbf{b}) \quad \vec{a} = \begin{pmatrix} 4 \\ y \\ 0 \end{pmatrix}; \quad \vec{b} = \begin{pmatrix} x \\ -9 \\ 1 \end{pmatrix}.$$

3. Seien

$$\vec{a} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}; \quad \vec{b} = \begin{pmatrix} x \\ 1 \\ 2 \end{pmatrix}.$$

- a) Berechne x so dass der Winkel zwischen \vec{a} und \vec{b} 60° beträgt.
- b) Welchen Winkel schliesst \vec{a} mit der z-Achse? (6P)
- 4. Seien

$$\vec{a} = \begin{pmatrix} k-2\\1\\k \end{pmatrix}; \quad \vec{b} = \begin{pmatrix} 1\\-1\\4 \end{pmatrix}; \quad \vec{c} = \begin{pmatrix} k\\-1\\4 \end{pmatrix}.$$

- a) Für welche $k \in \mathbb{R}$ sind die Vektoren komplanar?
- b) Gib dann für jede k die drei Vektoren an und stelle \vec{a} als lineare Kombination von \vec{b} und \vec{c} . (10P)
- 5. ABCDS ist eine gerade Pyramide mit Höhe 10 und $A(8 \mid -2 \mid 3)$, $B(0 \mid 4 \mid -8)$ und $C(-6 \mid 6 \mid -4)$. Bestimme die Ecke S. (8P)
- 6. Bestimme eine Parametergleichung der Geraden, die durch $A(2 \mid -1 \mid 5)$ geht und die x-Achse bei x = 5 schneidet. (3P)
- 7. Vom Dreieck ABC sind die Ecken $A(2 \mid -3 \mid 4)$ und $B(7 \mid 9 \mid 6)$ gegeben. Die Ecke C liegt auf der Geraden durch $P(-1 \mid 1 \mid 4)$ und $Q(-1 \mid 1 \mid 5)$. Sei $c = \overline{AB}$. (8P)
 - a) Berechne die Koordinaten der Ecke C, wenn die Seite c die Hypotenuse des rechtwinkligen Dreieck ABC ist.
 - b) Berechne die Höhe h_c des Dreiecks ABQ.
- 8. Einem Würfel mit Kantenlänge 6 ist eine gerade quadratische Pyramide einbeschrieben. In welchem Punkt schneidet die Raumdiagonale \overline{BC} des Würfels die Pyramidenkante $\overline{AS?}$ (8P)

