MATHEMATICS SPECIALIST

MAWA Year 12 Examination 2017

Calculator-free

Marking Key

© MAWA, 2017

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

the end of week 1 of term 4, 2017

Question 1

Solution

Separating variables gives that

$$-\int \frac{1}{y^2} dy = \int 2x \, dx$$

$$\frac{1}{y} = x^2 + C$$
and so $y = 2$

Since y=2 when x=0 then C=2.

$$y = \frac{2}{1+x^2}$$
Hence

- √ separates variables correctly
- ✓✓ integrates each side correctly ✓ evaluates the constant correctly

Question 2

Solution

The function is odd as f(-x) = -f(x).

Now as $x \to \pm \infty$ clearly have that $f(x) \to 0$.

$$f'(x) = \frac{(x^2+4).1 - x(2x)}{(x^2+4)^2} = \frac{4 - x^2}{(x^2+4)^2}$$
 which indicates turning points at $x = \pm 2$. Also $f(\pm 2) = \pm 1/4$.

- \checkmark identifies correct behaviour for large values of $^\chi$
- ✓✓ differentiates using the quotient rule
- ✓ identifies the turning points
- √√draws a neat sketch with a function with a properly identified max/min and being odd in X

Question 3 (a)

Solution

Curve cuts the $^{\chi}$ axis where $^{y=0}$ so $^{\chi^2}=9$ \Rightarrow $\chi=\pm3$ Hence P and Q are the points $(\pm 3,0)$

Specific behaviours

- ✓ writes down the correct criterion for determining the points P and Q
- \checkmark solves for $^{\chi}$ and hence the two points

Question 3 (b)

Solution

Differentiating implicitly gives

$$2x + x\frac{dy}{dx} + y + 3y^2 \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{2x + y}{x + 3y^2}$$

$$\frac{dy}{dt} = -2$$

Where y = 0 have $\frac{dy}{dx} = -2$ so the two tangents are parallel.

Specific behaviours

- ✓✓ differentiates correctly (one mark for each implicit term)
- ✓ shows the gradients are the same at the two points P and Q
- ✓ deduces that the two tangents are parallel

Question 3 (c)

Solution

If P=(3,0) then the y co-ordinate of R is approximately

$$y_R \approx \left(\frac{dy}{dx}\right)_R (x_R - x_P) \approx -2(-0.01) = 0.02$$

- ✓ applies increments formula correctly
- √ deduces approximate value of the required co-ordinate

Question 4

 $\checkmark\checkmark\checkmark\checkmark$ locates each of $^{\mathbb{Z}}$, $^{\mathbb{W}}$ Z, $^{\mathbb{Z}^{-1}}$, $^{\mathbb{W}}$ + $^{\mathbb{Z}}$, $^{\mathbb{W}}$ in correct position

- ✓ shows the correct boundary rays
- ✓ shows the arc of the unit circle on the boundary

Question 5 (a)

Solution

$$\int \sin^2 x \cos^2 x \, dx = \frac{1}{4} \int \sin^2 2x \, dx$$
$$= \frac{1}{8} \int (1 - \cos 4x) \, dx$$
$$= \frac{1}{8} x - \frac{1}{32} \sin 4x + c$$

Specific behaviours

- \checkmark converts the integrand into the form involving $\sin 2x$
- ✓ uses the trigonometric identity to write in terms of $\cos 4x$
- ✓ integrates correctly (with no penalty for omitting the constant)

Question 5 (b)

Solution

$$\int_{0}^{\pi/4} \tan^{2}x \ dx = \int_{0}^{\pi/4} \sec^{2}x - 1 \ dx$$
$$= \left[\tan x - x\right]_{0}^{\pi/4} = 1 - \frac{\pi}{4}$$

- ✓ expresses $tan^2 x$ in terms of $sec^2 x$
- √ integrates correctly
- ✓ evaluates the limits correctly

Question 5 (c)

Solution

$$u = x^5 + 4 \rightarrow \frac{du}{dx} = 5x^4.$$

Then

$$\int_{0}^{2} \frac{x^{4}}{\sqrt{x^{5} + 4}} dx = \frac{1}{5} \int_{3}^{36} u^{-1/2} du = \frac{2}{5} \left[u^{1/2} \right]_{4}^{36} = \frac{2}{5} (6 - 2) = \frac{8}{5}$$

Specific behaviours

- \checkmark changes variable to u in integral
- \checkmark anti-differentiates with respect to u
- √ evaluates correctly

Question 5 (d)

Solution

$$v = \ln x \rightarrow \frac{dv}{dx} = \frac{1}{x}$$

Then

$$\int \frac{dx}{x \ln x} = \int \frac{dv}{v} = \ln v + c = \ln(\ln x) + c$$

Hence

$$\int_{X \ln X}^{Q} dx = \ln(\ln Q) - \ln(\ln e) = \ln(\ln Q) - \ln(1) = \ln(\ln(Q)).$$

Thus the integral equals 1 if $\ln(Q) = e \Rightarrow Q = e^{e} (= \exp(e))$

- \checkmark changes variable to v in integral
- ✓ evaluates the integral correctly
- ✓ deduces the correct value of Q

Question 6 (a)

Solution

 $E = \frac{Z_{\alpha} \sigma}{\sqrt{n}}$

From the formula sheet

Specific behaviours

✓ obtains correct answer

Question 6 (b)(i)

Solution

$$E = \frac{Z_{\alpha} \sigma}{\sqrt{n}}$$
 , E decreases by a factor of $\sqrt{2}$ if n is doubled.

Since

Specific behaviours

√ draws the correct conclusion

Question 6 (b)(ii)

Solution

$$E = \frac{Z_{\alpha}\sigma}{\sqrt{n}}$$
 and Z_{α} increases as the level of confidence increases, E increases if the

Since

level of confidence increases.

Specific behaviours

 \checkmark draws the correct conclusion

Question 6 (b)(iii)

Solution

$$E = \frac{Z_{cc}\sigma}{\sqrt{n}}$$
 , E doubles if σ doubles.

Since

Specific behaviours

√ draws the correct conclusion

Question 6 (c)(i)

Solution

This statement is false.

Reason: it is possible that all ten confidence intervals contain μ (or none even!)

Specific behaviours

- ✓ obtains correct answer
- √ gives a valid reason

Question 6 (c)(ii)

Solution

This statement is false

Reason: If the underlying population is normal and the sample size is large enough, the confidence interval will be smaller than any interval that contains 95% of the underlying population

Specific behaviours

- √ obtains correct answer
- ✓ gives a valid reason

Question 7 (a)

$$\mathbf{a} + \lambda \mathbf{b} \perp \mathbf{c} \Rightarrow (\mathbf{a} + \lambda \mathbf{b}) \cdot \mathbf{c} = 0$$

$$\mathbf{a} + \lambda \mathbf{b} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 3 + \lambda \\ -2 + 2\lambda \\ 1 - 3\lambda \end{pmatrix}$$

$$(\mathbf{a} + \lambda \mathbf{b}) \bullet \mathbf{c} = 0 \Rightarrow \begin{pmatrix} 3 + \lambda \\ -2 + 2\lambda \\ 1 - 3\lambda \end{pmatrix} \bullet \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} = 0 \Rightarrow -3 - \lambda - 2 + 2\lambda + 2 - 6\lambda = 0$$

$$\Rightarrow \lambda = -\frac{3}{5}$$

Specific behaviours

- \checkmark determines $\mathbf{a} + \lambda \mathbf{b}$ in terms of λ
- \checkmark uses $(a + \lambda b) \cdot c = 0$
- ✓ evaluates λ

Question 7 (b)

Solution

Vector equation of a line: $r = t \mathbf{c}$

As line is parallel to $\mathbf{c} \Rightarrow \mathbf{r} = \langle -t, t, 2t \rangle \text{ (or } \mathbf{r} = -t\mathbf{i} + t\mathbf{j} + 2t\mathbf{k})$

In parametric form: x = -t y = t z = 2t

Specific behaviours

- ✓ states the equation in vector form
- ✓ states the equation in parametric form

Question 7 (c)

$$\mathbf{a} \times \mathbf{b} = (3, -2, 1) \times (1, 2, -3) = (4, 10, 8)$$

Specific behaviours

√ ✓ calculates the vector product correctly (one mark if one component is incorrect)

Question 7 (d)

Solution

Vector equation of a plane: $\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = \mathbf{0}$ We can use $\mathbf{a} \times \mathbf{b} = 4\mathbf{i} + 10\mathbf{j} + 8\mathbf{k}$ and $\mathbf{r}_0 = <0,0,0>$ $\Rightarrow (4\mathbf{i} + 10\mathbf{j} + 8\mathbf{k}) \cdot (x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) = 0$ $\Rightarrow 4x + 10y + 8z = 0$ or 2x + 5y + 4z = 0 is the equation of the plane

Specific behaviours

- \checkmark uses vector $\mathbf{a} \times \mathbf{b}$ as the normal
- ✓ states the correct equation of the plane

© MAWA, 2016

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or the marking guide until the agreed release date stipulated in the purchasing