By compactness we can now cover the interval [a,b] with a finite number of such neighborhoods $U_{\lambda_1},\ldots,U_{\lambda_n}\subseteq\mathbb{R}$. If

$$(3.1) V := N(T(\lambda_1)^*) + N(T(\lambda_2)^*) + \ldots + N(T(\lambda_n)^*) \subset L^{\infty}(\mathbb{R}),$$

then dim $V < \infty$ and $R(T(\lambda)) + V = L^{\infty}(\mathbb{R})$ for all $\lambda \in [a, b]$.

(IV) This step is inspired by Step 3 in the proof of [41, Thm. 5.3]. Keeping $\tau > 0$ fixed, consider the family of operators

$$S(\lambda): D(S(\lambda)) \to L^{\infty}[-\tau, \tau],$$
 $[S(\lambda)y](t) := \dot{y}(t) - A(t, \lambda)y(t)$

for a.a. $t \in [-\tau, \tau]$, which due to Lemma 2.1(a) is well-defined on the domain

$$D(S(\lambda)) := \left\{ u \in W^{1,\infty}[-\tau,\tau] \mid u(-\tau) \in N(P_{\lambda}^{-}(-\tau)), \ u(\tau) \in R(P_{\lambda}^{+}(\tau)) \right\}.$$

(IV.1) <u>Claim</u>: dim $N(S(\lambda)) = \dim N(T(\lambda)) < \infty$. Consider the commutative diagram

(3.2)
$$W^{1,\infty}(\mathbb{R}) \xrightarrow{T(\lambda)} L^{\infty}(\mathbb{R})$$

$$\uparrow_{i_{\lambda}} \qquad \qquad \downarrow_{p}$$

$$D(S(\lambda)) \xrightarrow{S(\lambda)} L^{\infty}[-\tau, \tau],$$

where p is the restriction of functions in $L^{\infty}(\mathbb{R})$ to $L^{\infty}[-\tau,\tau]$ given by $p(u):=u|_{[-\tau,\tau]}$ and a canonical map $i_{\lambda}:D(S(\lambda))\to W^{1,\infty}(\mathbb{R})$ defined by extending a given function $u\in D(S(\lambda))$ to the intervals $(-\infty,-\tau)$ and (τ,∞) as solution of (V_{λ}) . Observe that i_{λ} is injective and $i_{\lambda}(N(S(\lambda)))=N(T(\lambda))$ holds, where $i_{\lambda}(N(S(\lambda)))\subseteq N(T(\lambda))$ results directly due to the construction of i_{λ} , while $i_{\lambda}(N(S(\lambda)))\supseteq N(T(\lambda))$ as converse inclusion follows from the fact that privided $u\in N(T(\lambda))$, then $u(\tau)\in R(P_{\lambda}^+(\tau))$ and $u(-\tau)\in N(P_{\lambda}^-(-\tau))$ for any $\tau>0$ (recall (2.3)). Finally, this yields the assertion.

(IV.2) We decompose $[-\tau,\tau]=[-\tau,0]\cup[0,\tau]$ and define the spaces

$$\begin{split} X_+ &:= \{ u \in W^{1,\infty}[0,\tau] \mid u(\tau) \in R(P_\lambda^+(\tau)) \}, & Y_+ &:= L^\infty[0,\tau], \\ X_- &:= \{ u \in W^{1,\infty}[-\tau,0] \mid u(-\tau) \in N(P_\lambda^-(-\tau)) \}, & Y_- &:= L^\infty[-\tau,0]. \end{split}$$

Consider the following linear operators $S^{\pm}(\lambda): X_{\pm} \to Y_{\pm}$ pointwise defined as

$$[S^{\pm}(\lambda)y](t) = \dot{y}(t) - D_2 f(t, \phi_{\lambda}(t), \lambda)y(t)$$
 for a.e. $t \in \mathbb{R}_{\pm}$.

Next consider the following commutative diagram

(3.3)
$$X_{-} \oplus X_{+} \xrightarrow{S^{-}(\lambda) \oplus S^{+}(\lambda)} Y_{-} \oplus Y_{+}$$

$$\downarrow_{J_{\lambda}} \qquad \qquad \uparrow_{J} \qquad \qquad \downarrow_{J}$$

$$D(S(\lambda)) \xrightarrow{S(\lambda)} L^{\infty}[-\tau, \tau],$$

where $J \colon L^{\infty}[-\tau, \tau] \to Y_{-} \oplus Y_{+}$ and $J_{\lambda} \colon D(S(\lambda)) \to X_{-} \oplus X_{+}$ are defined by $Ju := (u_{-}, u_{+})$ and $J_{\lambda}v := (v_{-}, v_{+})$

with u_+ and v_+ (resp. u_- and v_-) being the corresponding restrictions to $[0,\tau]$ (resp. to the interval $[-\tau,0]$). It is clear that J is an isomorphism, while J_λ is injective with range $R(J_\lambda) = \{(v_-,v_+) \mid v_-(0) = v_+(0)\}$. Defining the mapping $\Sigma \colon X_- \oplus X_+ \to \mathbb{R}^d$ by