Семинар №6. Задача №10

выполнила студентка группы РК6-56Б, Новичкова Мария

1 Задание

Требуется найти собственные числа, собственные вектора и нормы $\|\boldsymbol{A}\|_2$ и $\|\boldsymbol{A}\|_\infty$ для следующей матрицы:

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

Является ли данная матрица сходящейся?

2 Решение

Собственным вектором матрицы называется такой вектор $x \neq 0$, что:

$$Ax = \lambda x$$
.

где $\lambda \in \mathbb{R}$ - собственное число матрицы \boldsymbol{A} , ассоциированное с собственным вектором \boldsymbol{x} . Собственный вектор \boldsymbol{x} является нетривиальным решением однородной СЛАУ:

$$(\boldsymbol{A} - \lambda \boldsymbol{E})\boldsymbol{x} = 0,$$

что возможно только, если:

$$det(\boldsymbol{A} - \lambda \boldsymbol{E}) = 0.$$

Тогда:

$$det(\mathbf{A} - \lambda \mathbf{E}) = \begin{vmatrix} 2 - \lambda & 1 & 0 \\ 1 & 2 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{vmatrix} = 0;$$
$$-(\lambda - 1)(\lambda - 3)^2 = 0.$$

Получили собственные значения матрицы: $\lambda_1 = 1, \lambda_2 = \lambda_3 = 3.$

Найдем собственные вектора матрицы для каждого собственного числа.

Для $\lambda = 1$:

$$(\boldsymbol{A} - \lambda \boldsymbol{E})\boldsymbol{x} = 0;$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

Общее решение системы: $X = \begin{pmatrix} -x_2 \\ x_2 \\ 0 \end{pmatrix}$.

Фундаментальная система решений $X = x_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$.

При $x_2=1$ собственный вектор $X_1=\begin{pmatrix} -1\\1\\0 \end{pmatrix}$.

Для $\lambda = 3$:

$$(\boldsymbol{A} - \lambda \boldsymbol{E})\boldsymbol{x} = 0;$$

$$\begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

Общее решение системы: $X = \begin{pmatrix} x_2 \\ x_2 \\ x_3 \end{pmatrix}$.

Фундаментальная система решений $X=x_2\begin{pmatrix}1\\1\\0\end{pmatrix}+x_3\begin{pmatrix}0\\0\\1\end{pmatrix}.$

При $x_2 = 1$ и $x_3 = 0$ собственный вектор $X_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

При $x_2 = 0$ и $x_3 = 1$ собственный вектор $X_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Найдем норму $\|\boldsymbol{A}\|_2$ по следующей формуле:

$$\|\boldsymbol{A}\|_2 = \sqrt{\rho(\boldsymbol{A}^T\boldsymbol{A})},$$

где $\rho({m A}^T{m A})$ - спектральный радиус матрицы, который вычисляется по формуле:

$$\rho(\boldsymbol{B}) = \max_{i \in [1,m]} |\lambda_i|,$$

где λ_i - одно из m собственных чисел матрицы ${m B}$.

Так как матрица \boldsymbol{A} диагональная, то $\boldsymbol{A}^T \boldsymbol{A} = \boldsymbol{A}^2$.

По свойству собственных чисел матрицы, если λ_i - собственное число матрицы \boldsymbol{A} , то λ_i^k - собственное число матрицы \boldsymbol{A}^k .

Таким образом, собственные числа матрицы A^2 : $\lambda_1' = 1, \lambda_2' = \lambda_3' = 9$.

Тогда $\rho(\mathbf{A}^T \mathbf{A}) = \rho(\mathbf{A}^2) = 9;$

$$\|\boldsymbol{A}\|_2 = \sqrt{\rho(\boldsymbol{A}^T\boldsymbol{A})} = \sqrt{9} = 3.$$

Найдем норму $\|\boldsymbol{A}\|_{\infty}$ по следующей формуле:

$$\|\mathbf{A}\|_{\infty} = \max_{i \in [1,m]} \sum_{j=1}^{n} |a_{ij}| = \max 3, 3, 3] = 3.$$

Матрица $\boldsymbol{B} \in \mathbb{R}^{n \times n}$ является сходящейся тогда и только тогда, когда $\rho(\boldsymbol{B}) < 1$. Так как $\rho(\boldsymbol{A}) = \max_{i \in [1,m]} |\lambda_i| = 3$, то матрица \boldsymbol{A} - не является сходящейся.