4320. Вычислить площадь части цилиндрической поверхности $x^2 + y^2 = ax$, вырезанной поверхностью $x^2 + y^2 + z^2 = a^2.$

4320.1. Доказать, что объем тела, образованного вращением вокруг оси Ox простого замкнутого контура C, расположенного в верхней полуплоскости $y \ge 0$ равен

$$V = -\pi \oint_{C} y^{2} dx.$$

4321. Вычислить

$$I = \frac{1}{2\pi} \oint_C \frac{X dY - Y dX}{X^2 + Y^2},$$

если X = ax + by, Y = cx + dy и простой замкнутый контур C окружает начало координат ($ad - bc \neq 0$).

4322. Вычислить интеграл / (см. предыдущую задачу), если $X = \varphi(x, y)$, $Y = \psi(x, y)$, и простой контур C окружает начало координат, причем кривые $\phi(x, y) = 0$ и $\psi(x, y) = 0$ имеют несколько простых точек пересечения внутри контура С.

4323. Показать, что если C — замкнутый контур и

l — произвольное направление, то

$$\oint \cos\left(\boldsymbol{l},\ \boldsymbol{n}\right)ds=0,$$

где n — внешняя нормаль к контуру C. 4324. Найти значение интеграла

$$I = \oint_C \left[x \cos \left(\boldsymbol{n}, \ x \right) + y \cos \left(\boldsymbol{n}, \ y \right) \right] ds,$$

где С — простая замкнутая кривая, ограничивающая конечную область S, и n — внешняя нормаль к ней. 4325. Найти

$$\lim_{d (S) \to 0} \frac{1}{S} \oint_C (F \cdot n) ds,$$

где S — площадь, ограниченная контуром C, окружающим точку (x_0, y_0) , d(S) — диаметр области S, n — единичный вектор внешней нормали контура C и $F\{X,Y\}$ вектор, непрерывно дифференцируемый в S + C.

§ 13. Физические приложения криволинейных интегралов

4326. С какой силой притягивает масса М, равно мерно распределенная по верхней полуокружности $x^2 +$ $+ u^2 = a^2$, $u \ge 0$, материальную точку массы m, занинающую положение (0, 0)?