Open and closed pangenomes with k-mer counting

Luca Parmigiani

University of Bielefeld DSB

13 Jun 2022

Pangenome (Tettelin et al., 2005)

- **Pangenome:** the set of all distinct genes present in a species
 - Core genes: present in all genomes
 - **Dispensable genes**: present in some genomes

Pangenome (Tettelin et al., 2005)

- **Pangenome:** the set of all distinct genes present in a species
 - Closed pangenome
 The number of distinct genes is asymptotic
 - Open pangenome
 The number of distinct genes keeps increasing

• Let a genome, G be a set of items (genes, k-mers).

- Let a genome, G be a set of items (genes, k-mers).
- Let $\mathcal{G} = \{G_1, \dots, G_n\}$ be a set of genomes

- Let a genome, G be a set of items (genes, k-mers).
- Let $\mathcal{G} = \{G_1, \dots, G_n\}$ be a set of genomes
- ullet $\mathcal{P}(\mathcal{G})$ is the power set representing all possible subsets of \mathcal{G}

$$\mathcal{P}(\{G_1, G_2, G_3\}) = \{\emptyset, \{G_1\}, \{G_2\}, \{G_3\}, \{G_1, G_2\}, \{G_1, G_3\}, \{G_2, G_3\}, \{G_1, G_2, G_3\}\}$$

- Let a genome, G be a set of items (genes, k-mers).
- Let $\mathcal{G} = \{G_1, \dots, G_n\}$ be a set of genomes
- ullet $\mathcal{P}(\mathcal{G})$ is the power set representing all possible subsets of \mathcal{G}

$$\mathcal{P}(\{\textit{G}_{1},\textit{G}_{2},\textit{G}_{3}\}) = \{\emptyset,\{\textit{G}_{1}\},\{\textit{G}_{2}\},\{\textit{G}_{3}\},\{\textit{G}_{1},\textit{G}_{2}\},\{\textit{G}_{1},\textit{G}_{3}\},\{\textit{G}_{2},\textit{G}_{3}\},\{\textit{G}_{1},\textit{G}_{2},\textit{G}_{3}\}\}$$

• $\mathcal{G}_m = \{S \in \mathcal{P}(\mathcal{G}) \mid |S| = m\}$ the set of subsets of \mathcal{G} of cardinality m

$$\mathcal{G}_2 = \{\{\textit{G}_1, \textit{G}_2\}, \{\textit{G}_1, \textit{G}_3\}, \{\textit{G}_2, \textit{G}_3\}\}$$

- Let a genome, G be a set of items (genes, k-mers).
- Let $\mathcal{G} = \{G_1, \dots, G_n\}$ be a set of genomes
- ullet $\mathcal{P}(\mathcal{G})$ is the power set representing all possible subsets of \mathcal{G}

$$\mathcal{P}(\{\textit{G}_{1},\textit{G}_{2},\textit{G}_{3}\}) = \{\emptyset,\{\textit{G}_{1}\},\{\textit{G}_{2}\},\{\textit{G}_{3}\},\{\textit{G}_{1},\textit{G}_{2}\},\{\textit{G}_{1},\textit{G}_{3}\},\{\textit{G}_{2},\textit{G}_{3}\},\{\textit{G}_{1},\textit{G}_{2},\textit{G}_{3}\}\}$$

• $\mathcal{G}_m = \{S \in \mathcal{P}(\mathcal{G}) \mid |S| = m\}$ the set of subsets of \mathcal{G} of cardinality m

$$\mathcal{G}_2 = \{\{\textit{G}_1, \textit{G}_2\}, \{\textit{G}_1, \textit{G}_3\}, \{\textit{G}_2, \textit{G}_3\}\}$$

• The computation of $f_T(m)$ requires taking the average of $\binom{n}{m}$ values,

$$f_{T}(m) = \frac{1}{\binom{n}{m}} \sum_{S \in \mathcal{G}_{m}} \left| \bigcup_{G \in S} G \right|$$

e.g.,
$$f_T(2) = \frac{|G_1 \cup G_2| + |G_1 \cup G_3| + |G_2 \cup G_3|}{\binom{3}{2}}$$

• Pangenome growth:

$$f_{\mathcal{T}}(m) = \frac{1}{\binom{n}{m}} \sum_{S \in \mathcal{G}_m} \Big| \bigcup_{G \in S} G \Big|$$

• Average number of new genes that are added when adding the *m*-th genome:

$$f_N(m) = egin{cases} 0 & ext{if } m = 0 \ f_T(m) - f_T(m-1) & ext{otherwise} \end{cases}$$

PRO

Including non-coding region

- Including non-coding region
- Can be performed directly on sequencing reads (no assembly)

- Including non-coding region
- Can be performed directly on sequencing reads (no assembly)
- Does not need any annotation

- Including non-coding region
- Can be performed directly on sequencing reads (no assembly)
- Does not need any annotation
 - Genes, trust in silico predicition without curation

- Including non-coding region
- Can be performed directly on sequencing reads (no assembly)
- Does not need any annotation
 - Genes, trust in silico predicition without curation
 - Missed, un-annotated genes, or ORFans

- Including non-coding region
- Can be performed directly on sequencing reads (no assembly)
- Does not need any annotation
 - Genes, trust in silico predicition without curation
 - Missed, un-annotated genes, or ORFans
- No need for gene homology

- Including non-coding region
- Can be performed directly on sequencing reads (no assembly)
- Does not need any annotation
 - Genes, trust in silico predicition without curation
 - Missed, un-annotated genes, or ORFans
- No need for gene homology
- Simple and fast

PRO

- Including non-coding region
- Can be performed directly on sequencing reads (no assembly)
- Does not need any annotation
 - Genes, trust in silico predicition without curation
 - Missed, un-annotated genes, or ORFans
- No need for gene homology
- Simple and fast

CON

Why using k-mer for pangenome openness

PRO

- Including non-coding region
- Can be performed directly on sequencing reads (no assembly)
- Does not need any annotation
 - Genes, trust in silico predicition without curation
 - Missed, un-annotated genes, or ORFans
- No need for gene homology
- Simple and fast

CON

Less informative

Why using k-mer for pangenome openness

PRO

- Including non-coding region
- Can be performed directly on sequencing reads (no assembly)
- Does not need any annotation
 - Genes, trust in silico predicition without curation
 - Missed, un-annotated genes, or ORFans
- No need for gene homology
- Simple and fast

CON

- Less informative
- Choice of *k*

Obtaining f_T

Genes

Pan-matrix

	G_1G_2					G_n		
$gene_1$	0	0	1	1	0	1	1	1
gene ₁ gene ₂	1	1	0	1	1	0	0	0
gene _/	0	1	0	0	1	0	0	0

 \bullet Sampling with different orderings of ${\cal G}$

• Without approximating f_T (i.e., sampling)

- Without approximating f_T (i.e., sampling)
- ullet Without considering multiple *orderings* of ${\mathcal G}$

- Without approximating f_T (i.e., sampling)
- Without considering multiple orderings of \mathcal{G}
- How:

h(i) = number of items occurring in **exactly** i genomes

$$\bullet \ \mathcal{G} = \{\textit{G}_{1}, \textit{G}_{2}, \textit{G}_{3}, \textit{G}_{4}, \textit{G}_{5}\}$$

•
$$G = \{G_1, G_2, G_3, G_4, G_5\}$$

- $\mathcal{G} = \{G_1, G_2, G_3, G_4, G_5\}$
- The item x is present in G_1 , G_2

- $\mathcal{G} = \{G_1, G_2, G_3, G_4, G_5\}$
- The item x is present in G_1 , G_2

$$f_{\mathcal{T}}(3) = (|G_1 \cup G_2 \cup G_3| + |G_1 \cup G_2 \cup G_4| + |G_1 \cup G_2 \cup G_5| + |G_1 \cup G_3 \cup G_4| + |G_1 \cup G_3 \cup G_5| + |G_1 \cup G_4 \cup G_5| + |G_2 \cup G_3 \cup G_4| + |G_2 \cup G_3 \cup G_5| + |G_2 \cup G_4 \cup G_5| + |G_3 \cup G_4 \cup G_5|) \frac{1}{\binom{5}{2}}$$

- $\mathcal{G} = \{G_1, G_2, G_3, G_4, G_5\}$
- The item x is present in G_1 , G_2

$$f_{\mathcal{T}}(3) = (|G_{1} \cup G_{2} \cup G_{3}| + |G_{1} \cup G_{2} \cup G_{4}| + |G_{1} \cup G_{2} \cup G_{5}| + |G_{1} \cup G_{3} \cup G_{4}| + |G_{1} \cup G_{3} \cup G_{5}| + |G_{1} \cup G_{4} \cup G_{5}| + |G_{2} \cup G_{3} \cup G_{4}| + |G_{2} \cup G_{3} \cup G_{5}| + |G_{2} \cup G_{4} \cup G_{5}| + |G_{3} \cup G_{4} \cup G_{5}|) \frac{1}{\binom{5}{3}}$$

- $\mathcal{G} = \{G_1, G_2, G_3, G_4, G_5\}$
- The item x is present in G_1 , G_2

$$f_{\mathcal{T}}(3) = (|G_{1} \cup G_{2} \cup G_{3}| + |G_{1} \cup G_{2} \cup G_{4}| + |G_{1} \cup G_{2} \cup G_{5}| + |G_{1} \cup G_{3} \cup G_{4}| + |G_{1} \cup G_{3} \cup G_{5}| + |G_{1} \cup G_{4} \cup G_{5}| + |G_{2} \cup G_{3} \cup G_{4}| + |G_{2} \cup G_{3} \cup G_{5}| + |G_{2} \cup G_{4} \cup G_{5}| + |G_{3} \cup G_{4} \cup G_{5}|) \frac{1}{\binom{5}{3}}$$

- $\mathcal{G} = \{G_1, G_2, G_3, G_4, G_5\}$
- The item x is present in G_1 , G_2

$$f_{\mathcal{T}}(3) = (|G_{1} \cup G_{2} \cup G_{3}| + |G_{1} \cup G_{2} \cup G_{4}| + |G_{1} \cup G_{2} \cup G_{5}| + |G_{1} \cup G_{3} \cup G_{4}| + |G_{1} \cup G_{3} \cup G_{5}| + |G_{1} \cup G_{4} \cup G_{5}| + |G_{2} \cup G_{3} \cup G_{4}| + |G_{2} \cup G_{3} \cup G_{5}| + |G_{2} \cup G_{4} \cup G_{5}| + |G_{3} \cup G_{4} \cup G_{5}|) \frac{1}{\binom{5}{3}}$$

• Percent of $S \in \mathcal{G}_m$ that **do not have item** x

$$\binom{n-i}{m} / \binom{n}{m}$$

- $\mathcal{G} = \{G_1, G_2, G_3, G_4, G_5\}$
- The item x is present in G_1 , G_2

$$f_{T}(3) = (|G_{1} \cup G_{2} \cup G_{3}| + |G_{1} \cup G_{2} \cup G_{4}| + |G_{1} \cup G_{2} \cup G_{5}| + |G_{1} \cup G_{3} \cup G_{4}| + |G_{1} \cup G_{3} \cup G_{5}| + |G_{1} \cup G_{3} \cup G_{5}| + |G_{2} \cup G_{3} \cup G_{4}| + |G_{2} \cup G_{3} \cup G_{5}| + |G_{2} \cup G_{4} \cup G_{5}| + |G_{3} \cup G_{4} \cup G_{5}|) \frac{1}{\binom{5}{3}}$$

• Percent of $S \in \mathcal{G}_m$ that **do not have item** x

$$\binom{n-i}{m} / \binom{n}{m} = \frac{(n-i)^{\underline{m}}}{n^{\underline{m}}}$$

$$n^{\underline{m}} = \overbrace{n(n-1)\dots(n-m+1)}^{m \text{ factors}}$$

$$f_{\mathcal{T}}(m) = \sum_{i=1}^{n} h(i) \left(1 - \frac{(n-i)^{\underline{m}}}{n^{\underline{m}}}\right)$$

$$f_{\mathcal{T}}(m) = \sum_{i=1}^{n} h(i) \left(1 - \frac{(n-i)^{\underline{m}}}{n^{\underline{m}}} \right)$$
$$= \sum_{i=1}^{n} h(i) - \frac{1}{n^{\underline{m}}} \sum_{i=1}^{m} (n-i)^{\underline{m}}$$

$$f_T(m) = \sum_{i=1}^n h(i) \left(1 - \frac{(n-i)^{\underline{m}}}{n^{\underline{m}}} \right)$$
$$= \sum_{i=1}^n h(i) - \frac{1}{n^{\underline{m}}} \sum_{i=1}^m (n-i)^{\underline{m}}$$

•
$$(n-i)^{\underline{j+1}} = (n-i-j+1)(n-i)^{\underline{j}}$$

$$f_T(m) = \sum_{i=1}^n h(i) \left(1 - \frac{(n-i)^{\underline{m}}}{n^{\underline{m}}} \right)$$
$$= \sum_{i=1}^n h(i) - \frac{1}{n^{\underline{m}}} \sum_{i=1}^m (n-i)^{\underline{m}}$$

- $(n-i)^{\underline{j+1}} = (n-i-j+1)(n-i)^{\underline{j}}$
- Time complexity: $O(n^2)$

How to obtain h(i)

Genes

Pan-matrix

	G_1G_2					G_r			
$gene_1$	0	0	1	1	0	1	1	1	
gene ₁ gene ₂	1	1	0	1	1	0	0	0	
gene _/	0	1	0	0	1	0	0	0	

How to obtain h(i)

Genes

Pan-matrix

k-mers

Modified version of YAK¹(yak-hist)

• k-mer x has multiplicity 2

¹https://github.com/lh3/yak

Permutation

Without permutation

species

- Bacillus_cereus
 Buchnera_aphidicola
 Campylobacter_jejuni
 Clostridium_botulinum
 Coxiella_burnetii
 Francisella_tularensis
 Helicobacter_pylori
 Prochlorococcus_marinus
 Rhodopseudomonas_palustris
 Streptococcus_pneumoniae
 Streptococcus_pyogenes
 Yersinia_pestis

Normalized Kendal Tau distance

Counts the number of **pairwise disagreements** between two ranking lists divided by the total number of pairwise comparison, n(n-1)/2.

• Roary vs. k-mer: 0.167

• Roary vs. Pantools: 0.106

• k-mer vs. Pantools: 0.182

Histrogram, h(i) of genes (Roary) and k-mers

Clostridium botulinum

Coxiella burnetii

Jensen-Shannon divergence

Species	JSD		
Francisella tularensis	0.065		
Coxiella burnetii	0.061		
Yersinia pestis	0.11		
Streptococcus pneumoniae	0.019		
Helicobacter pylori	0.048		
Clostridium botulinum	0.023		
Streptococcus pyogenes	0.042		
Prochlorococcus marinus	0.0048		
Campylobacter jejuni	0.054		
Buchnera aphidicola	0.023		
Bacillus cereus	0.026		
Escherichia coli	0.014		

Core prediction

Core

$$f_C(m) = \frac{1}{\binom{n}{m}} \sum_{S \in \mathcal{G}_m} \Big| \bigcap_{G \in S} G \Big|$$

Compute f_C efficiently

$$f_C(m) = \frac{1}{n^{\underline{m}}} \sum_{i=m}^n h(i)i^{\underline{m}}$$

Core prediction

Quorum, q

$$f_C(m,q) = \frac{1}{\binom{n}{m}} \sum_{\lceil q*m \rceil}^n h(i) \sum_{j=\lceil q*m \rceil}^i \frac{\binom{i}{j}}{\binom{n-i}{m-j}}$$

Thank you for your attention