HUST

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

Applied Algorithm Lab

Max-distance Sub-sequence

ONE LOVE. ONE FUTURE.

Max-distance sub-sequence

- Given a sequence $a_1, ..., a_N$
- Consider a subset of the sequence

The distance of the subset is defined to be the minimum distance between two elements

- Find the subset of N given elements containing exactly C elements such that the distance is maximal.
- Example

stdin	stdout
1 5 3 1 2 8 4 9	3

Max-distance sub-sequence

- Idea to solve: Sort $a_1, ..., a_N$ in increasing order
- The max-distance must be $\leq \frac{a_N a_1}{c 1}$ Find max-distance: traverse from $d = \frac{a_N a_1}{c 1}$ down to 1:
 - check(d): Check if we can find a sub-sequence with distance $\geq d$: Greedy
 - Add a1 into subsequence, use an auxiliary variable last
 - for i=2, i<=n; i++:
 - if a[i]-last ≥ d then we add a[i] to the subsequence and update **last**
 - otherwise continue
 - If the subsequence has C elements then d is max-distance. Print d
 - Complexity: O(n²)

Max-distance sub-sequence

- Idea to solve: Sort $a_1, ..., a_N$ in increasing order
- The max-distance must be $\leq \frac{a_N-a_1}{c-1}$ Find max-distance from $d=\frac{a_N-a_1}{c-1}$ down to 1: this can be improved
 - Binary search for d
 - Complexity: O(n log n)

THANK YOU!