Portofolio.

Intr oduc tion.

Hi! I'm Ivan Yudha

A Data Analyst and Business Analyst enthusiast. Love to learn new things and challenge myself.

Skill.

Data Analytics Tableau SQL Python Programming Microsoft Excel Looker Business Intelligence

2023

Interest.

Along with Analyst, I enjoy working out, traveling, and reading. I also enjoy watching movies.

Education.

2017 - 2020 Dian Nuswantoro University

Diploma
Informatics Engineering

Experience.

Software Engineer

BPBD Provinsi Jawa Tengah

Data Engineer

Kalbe Nutritionals

Business Intelligence Analyst

Bank Muamalat

Big Data Analytics

Kimia Farma

My Project.

Dashboard HR, Data Engineer, Business Intelligence Analyst, Big Data Analytics

DATA VISUALIZATION

Graphs are one effective way to create data visualizations that are easy to understand. That's why if your work has a lot to do with data and Microsoft Excel, then the ability to make graphs is one of the things you have to master.

DATA VALIDATION

Data validation in Excel is a technique that restricts user input in a worksheet. It is often used to limit user entry.

1. HR ANALYTICS DASHBOARD

Insight.

Highest Attrition in the R&D Department: The fact that the highest attrition rate occurs in the R&D Department remains a major concern. Some insights that can be derived from this are:

An in-depth analysis is needed to understand why attrition is high in the R&D Department. There may be issues in management, a high workload, or a lack of career development that could be contributing factors.

Specific improvement measures are required to reduce attrition in the R&D Department, such as enhancing management, providing training, or improving compensation and incentives.

2. DATA ENGINEER

at Kalbe Nutritionals

Create a shell/bash script

- To check whether directory exists inside a given path.
- Create a crontab syntax to run the script at 07:00 AM Daily

Complete below Syntax {Highlighted Sentence} to insert data from Python to MySQL.

```
#Melakukan import mysql connector
import mysql.connector

#Melakukan percobaan koneksi

conn = mysql.connector.connect(user='username', password='password',

| host='localhost', database='database_name')

#Membuat object cursor sebagai penanda

cursor = conn.cursor()

#Deklarasi SQL Query untuk memasukkan record ke DB (KARYAWAN)

vinsert_sql = ("INSERT INTO KARYAWAN (FIRST_NAME, LAST_NAME, AGE, SEX, INCOME)"

"VALUES (%s, %s, %s, %s, %s)")

values = ('John', 'Doe', 25, 'M', 5000)

typ:

#Eksekusi SQL Command
cursor.execute(insert_sql, values)

#Melakukan perubahan (commit) pada DB
conn.commit()

**Roll Back apabila ada issue
conn.rollback()
```

Create a simple star schema for KALBE database consist of 1 Fact and 5 Dimensions using Physical Data Model Theory.

3. BUSINESS INTELLIGENCE ANALYST

at Bank Muamalat

Relationship Table

When you want to combine several tables into 1, need to determine the relationship in 1 table withother tables.

As a **BI Analyst at PT Sejahtera Bersama**, we will Create a master table containing information:

- CustomerEmail(cust_email)
- CustomerCity(custom_city)
- OrderDate (order_date)
- OrderQty (order_qty)
- ProductName(product_name)
- ProductPrice(product_price)
- ProductCategoryName (category_name)
- TotalSales (total_sales)
 Sort the data based on the transaction date earliest to last.

```
1 SELECT
```

- 2 o.Date order_date,
- 3 pc.CategoryName category_name,
- 4 p.ProdName product_name,
- 5 p.Price product_price,
- 6 o.Quantity order_qty,
- 7 (o.Quantity * p.Price) total_sales,
- 8 c.CustomerEmail cust_email,
- 9 c.CustomerCity cust_city
- 10 FROM masterdata.orders o
- 11 LEFT JOIN masterdata.customers c ON o.CustomerID = c.CustomerID
- 12 LEFT JOIN masterdata.products p ON p.ProdNumber = o.ProdNumber
- 13 LEFT JOIN masterdata.productcategory pc ON pc.CategoryID = p.Category
- 14 ORDER BY 1 ASC

DIGITAL USER CHURN DASHBOARD

Sales & Quantity by Category Product

Sales & Quantity by City

Washington 92 171.917 Houston 75 58.387 Atlanta 69 74.159 El Paso 59 94.162 San Diego 51 60.360 Chicago 48 65.775 San Antonio 48 61.309 Oklahoma City 47 33.064 Springfield 47 38.873	City	Quantity	Total Sales
Atlanta 69 74.159 El Paso 59 94.162 San Diego 51 60.360 Chicago 48 65.775 San Antonio 48 61.309 Oklahoma City 47 33.064	Washington	92	171.917
El Paso 59 94.162 San Diego 51 60.360 Chicago 48 65.775 San Antonio 48 61.309 Oklahoma City 47 33.064	Houston	75	58.387
San Diego 51 60.360 Chicago 48 65.775 San Antonio 48 61.309 Oklahoma City 47 33.064	Atlanta	69	74.159
Chicago 48 65.775 San Antonio 48 61.309 Oklahoma City 47 33.064	El Paso	59	94.162
San Antonio 48 61.309 Oklahoma City 47 33.064	San Diego	51	60.360
Oklahoma City 47 33.064	Chicago	48	65.775
	San Antonio	48	61.309
Springfield 47 38.873	Oklahoma City	47	33.064
	Springfield	47	38.873

Here are some proposed ways:

- Maximizing Customer Email Information: Utilize customer email information as a method to maintain communication.
- Segmenting Customers: Segment customers based on their total purchases during a specific time frame and provide attractive offers to each customer segment.
- Maximizing Cross-Selling and Upselling: Implement cross-selling and upselling strategies. For cross-selling, you can use the Association Rule technique with the Apriori algorithm to recommend other products when a customer purchases a specific item.

As a **BI Analyst**, in addition to analyzing and presenting past events, it is also expected to maximize existing data sources to provide recommendations or proposals for business decisions.

4. BIG DATA ANALYTICS

at Kimia Farma

Design Datamart

Of the 3 tables available (sales, customers, and goods) I assume these 3 tables are indata lake. To create a datamart, there are 2 steps:

- 1. Table base
- The base table is a table resulting from merging 3 tables with sales_id granularityas Primary Key (i.e. a combination of invoice_id and item_id)
- The number of rows of data in the base table is the same as the total in the sales table
- The base tables are stored in the data warehouse2.
 Aggregate tableA. Aggregate tables are derivatives of base tables on which data is collected baseddate, customer_id and invoice_idB. Aggregate tables are stored in the datamart

Table Base "Penjualan"

```
SELECT
  CONCAT(id_invoice, '_', id_barang) id_penjualan,
  pjl.id_invoice,
  pjl.tanggal,
  pjl.id barang,
  brg.nama_barang,
  pjl.harga,
  pjl.unit,
  pjl.jumlah_barang,
  (jumlah_barang * pjl.harga) AS total_harga_per_barang,
  pjl.mata_uang,
  brg.kode brand,
  brg.brand,
  pjl.id customer,
  plg.nama nama_customer,
  plg.cabang_sales,
  plg.id_distributor,
  plg.group AS group_category
FROM `composite-silo-130101.rakamin.penjualan` pjl
LEFT JOIN `composite-silo-130101.rakamin.barang` brg
ON (pjl.id_barang = brg.kode_barang)
LEFT JOIN `composite-silo-130101.rakamin.pelanggan` plg
ON (pjl.id customer = plq.id customer)
```

Insu Anglus

Table Base "Penjualan"

column	data type	description	transformation
id_penjualan	string	PK dari tabel penjualan	CONCAT(id_invoice, '_', id_barang)
id_invoice	string	id invoice	-
tanggal	date	tanggal transaksi dilakukan	-
id_barang	string	id barang, key join ke tabel barang	-
nama_barang	string	nama barang	-
harga	numeric	harga barang	-
unit	string	kemasan untuk setiap penjualan	-
jumlah_barang	numeric	jumlah barang yang dibeli	-
total_harga_per_barang	numeric	harga barang x jumlah barang	(jumlah_barang * pjl.harga)
mata_uang	string	mata uang. default = IDR	-
kode_brand	string	kode brand dari barang	-

column	data type	description	transformation
brand	string	nama brand	-
id_customer	string	id customer, key join ke tabel pelanggan	-
nama_customer	string	nama pelanggan	-
cabang_sales	string	cabang yang supply barang ke pelanggan	-
id_distributor	string	distributor yang supply barang ke cabang	-
group_category	string	kategori pelanggan, possible value: - Apotek - Klinik	-

enbuynev

Table Aggregate "Penjualan harian"

Table Base "Penjualan"

Than than a

column	data type	description	transformation
id_invoice	string	PK dari tabel penjualan harian	-
tanggal	date	tanggal transaksi dilakukan	-
id_customer	string	id pelanggan	-
nama_customer	string	nama pelanggan	-
cabang_sales	string	nama cabang	-
id_distributor	numeric	distributor	-
group_category	string	kategori pelanggan, possible value: - Apotek - Klinik	-
total_barang	numeric	total barang yang dibeli untuk setiap invoice id	COUNT(DISTINCT id_barang) total_barang
total_pembelian	numeric	total harga yang dibayar untuk setiap invoice id	SUM(total_harga_per_barang) total_pembelian

eypna

461,

SALICYL SALES DASHBOARD

Contact Me

Thank You.