# NN Jax PDE7

June 18, 2022

### 1 Solving PDEs with Jax - Problem 7

#### 1.1 Description

#### 1.1.1 Average time of execution

Between 2 and 3 minutes on GPU

#### 1.1.2 PDE

We will try to solve the problem 7 of the article https://ieeexplore.ieee.org/document/712178:  $\Delta\psi(x,y) = f(x,y)$  on  $\Omega = [0,1]^2$  where  $f(x,y) = (2 - \pi^2 y^2)\sin(\pi x)$ 

### 1.1.3 Boundary conditions

$$\psi(0,y)=\psi(1,y)=\psi(x,0)=0$$
 and  $\frac{\partial \psi}{\partial y}(x,1)=2\sin(\pi x)$ 

#### 1.1.4 Loss function

The loss to minimize here is  $\mathcal{L} = ||\Delta \psi(x,y) - f(x,y)||_2$ 

#### 1.1.5 Analytical solution

The true function  $\psi$  should be  $\psi(x,y) = y^2 \sin(\pi x)$ 

#### 1.1.6 Approximated solution

```
We want find a solution \psi(x,y) = A(x,y) + F(x,y)N(x,y) s.t: F(x,y) = \sin(x-1)\sin(y-1)\sin(x)\sin(y) A(x,y) = y\sin(\pi x)
```

## 2 Importing libraries

```
[23]: # Jax libraries

from jax import value_and_grad,vmap,jit,jacfwd

from functools import partial

from jax import random as jran

from jax.example_libraries import optimizers as jax_opt

from jax.nn import tanh
```

```
from jax.lib import xla_bridge
import jax.numpy as jnp

# Others libraries
from time import time
import matplotlib.pyplot as plt
import numpy as np
import os
import pickle
print(xla_bridge.get_backend().platform)
```

gpu

## 3 Multilayer Perceptron

```
[24]: class MLP:
          11 11 11
              Create a multilayer perceptron and initialize the neural network
          Inputs:
              A SEED number and the layers structure
          # Class initialization
          def __init__(self,SEED,layers):
              self.key=jran.PRNGKey(SEED)
              self.keys = jran.split(self.key,len(layers))
              self.layers=layers
              self.params = []
          # Initialize the MLP weigths and bias
          def MLP_create(self):
              for layer in range(0, len(self.layers)-1):
                  in_size,out_size=self.layers[layer], self.layers[layer+1]
                  std_dev = jnp.sqrt(2/(in_size + out_size ))
                  weights=jran.truncated_normal(self.keys[layer], -2, 2, __
       ⇒shape=(out_size, in_size), dtype=np.float32)*std_dev
                  bias=jran.truncated_normal(self.keys[layer], -1, 1, shape=(out_size,_
       →1), dtype=np.float32).reshape((out_size,))
                  self.params.append((weights,bias))
              return self.params
          # Evaluate a position XY using the neural network
          @partial(jit, static_argnums=(0,))
          def NN_evaluation(self,new_params, inputs):
              for layer in range(0, len(new_params)-1):
                  weights, bias = new_params[layer]
```

```
inputs = tanh(jnp.add(jnp.dot(inputs, weights.T), bias))
weights, bias = new_params[-1]
output = jnp.dot(inputs, weights.T)+bias
return output

# Get the key associated with the neural network
def get_key(self):
    return self.key
```

### 4 PDE operators

```
[25]: class PDE_operators:
              Class with the most common operators used to solve PDEs
              A function that we want to compute the respective operator
          # Class initialization
          def __init__(self,function):
              self.function=function
          # Compute the two dimensional laplacian
          def laplacian_2d(self,params,inputs):
              fun = lambda params, x, y: self.function(params, x, y)
              @partial(jit)
              def action(params,x,y):
                  u_xx = jacfwd(jacfwd(fun, 1), 1)(params,x,y)
                  u_yy = jacfwd(jacfwd(fun, 2), 2)(params,x,y)
                  return u_xx + u_yy
              vec_fun = vmap(action, in_axes = (None, 0, 0))
              laplacian = vec_fun(params, inputs[:,0], inputs[:,1])
              return laplacian
          \# Compute the derivative in x
          @partial(jit, static_argnums=(0,))
          def du_dx(self,params,inputs):
              fun = lambda params, x, y: self.function(params, x, y)
              @partial(jit)
              def action(params,x,y):
                  u_x = jacfwd(fun, 1)(params,x,y)
                  return u x
              vec_fun = vmap(action, in_axes = (None, 0, 0))
              return vec_fun(params, inputs[:,0], inputs[:,1])
          # Compute the derivative in y
```

## 5 Physics Informed Neural Networks

```
[26]: class PINN:
          Solve a PDE using Physics Informed Neural Networks
          Input:
              The evaluation function of the neural network
          # Class initialization
          def __init__(self,NN_evaluation):
              self.operators=PDE_operators(self.solution)
              self.laplacian=self.operators.laplacian_2d
              self.NN_evaluation=NN_evaluation
          # Definition of the function A(x,y) mentioned above
          Opartial(jit, static_argnums=(0,))
          def A_function(self,inputX,inputY):
              return jnp.multiply(inputY,jnp.sin(jnp.pi*inputX)).reshape(-1,1)
          # Definition of the function F(x,y) mentioned above
          Opartial(jit, static_argnums=(0,))
          def F_function(self,inputX,inputY):
              F1=jnp.multiply(jnp.sin(inputX),jnp.sin(inputX-jnp.ones_like(inputX)))
              F2=jnp.multiply(jnp.sin(inputY),jnp.sin(inputY-jnp.ones_like(inputY)))
              return jnp.multiply(F1,F2).reshape((-1,1))
          # Definition of the function f(x,y) mentioned above
          @partial(jit, static_argnums=(0,))
          def target_function(self,inputs):
              return jnp.multiply(2-jnp.pi**2*inputs[:,1]**2,jnp.sin(jnp.pi*inputs[:
       \rightarrow,0])).reshape(-1,1)
          # Compute the solution of the PDE on the points (x,y)
          @partial(jit, static_argnums=(0,))
          def solution(self,params,inputX,inputY):
```

```
inputs=jnp.column_stack((inputX,inputY))
      NN = vmap(partial(jit(self.NN_evaluation), params))(inputs)
      F=self.F_function(inputX,inputY)
      A=self.A_function(inputX,inputY)
      return jnp.add(jnp.multiply(F,NN),A).reshape(-1,1)
  # Compute the loss function
  @partial(jit, static_argnums=(0,))
  def loss_function(self,params,batch,targets):
      targets=self.target_function(batch)
      preds=self.laplacian(params,batch).reshape(-1,1)
      return jnp.linalg.norm(preds-targets)
  # Train step
  Opartial(jit, static_argnums=(0,))
  def train_step(self,i, opt_state, inputs, pred_outputs):
      params = get_params(opt_state)
      loss, gradient = value_and_grad(self.loss_function)(params,inputs,_
→pred_outputs)
      return loss, opt_update(i, gradient, opt_state)
```

#### 6 Initialize neural network

```
[27]: # Neural network parameters
SEED = 351
n_features, n_targets = 2, 1  # Input and output dimension
layers = [n_features,30,30,n_targets] # Layers structure

# Initialization
NN_MLP=MLP(SEED,layers)
params = NN_MLP.MLP_create()  # Create the MLP
NN_eval=NN_MLP.NN_evaluation  # Evaluate function
solver=PINN(NN_eval)
key=NN_MLP.get_key()
```

# 7 Train parameters

```
[28]: batch_size = 10000
num_batches = 5000
report_steps=100
loss_history = []
```

# 8 Adam optimizer

It's possible to continue the last training if we use options=1

```
[29]: opt_init, opt_update, get_params = jax_opt.adam(0.001)

options=0
if options==0:  # Start a new training
    opt_state=opt_init(params)

else:  # Continue the last training
    # Load trained parameters for a NN with the layers [2,30,30,1]
    best_params = pickle.load(open("./NN_saves/NN_jax_params.pkl", "rb"))
    opt_state = jax_opt.pack_optimizer_state(best_params)
    params=get_params(opt_state)
```

# 9 Solving PDE

```
[30]: # Main loop to solve the PDE
for ibatch in range(0,num_batches):
    ran_key, batch_key = jran.split(key)
    XY_train = jran.uniform(batch_key, shape=(batch_size, n_features), minval=0,u
    →maxval=1)

targets = solver.target_function(XY_train)
    loss, opt_state = solver.train_step(ibatch,opt_state, XY_train,targets)
    loss_history.append(float(loss))

if ibatch%report_steps==report_steps-1:
    print("Epoch n°{}: ".format(ibatch+1), loss.item())
    if ibatch%5000==0:
        trained_params = jax_opt.unpack_optimizer_state(opt_state)
        pickle.dump(trained_params, open("./NN_saves/NN_jax_checkpoint.pkl",u
    →"wb"))
```

Epoch n°100: 51.512939453125

Epoch n°200: 46.51912307739258

Epoch n°300: 42.64119338989258

Epoch n°400: 33.17741394042969

Epoch n°500: 26.215749740600586

Epoch n°600: 25.726898193359375

Epoch n°700: 25.509136199951172

Epoch n°800: 25.38051414489746

Epoch n°900: 25.301254272460938

Epoch n°1000: 25.25128746032715

Epoch n°1100: 25.219179153442383

Epoch n°1200: 25.198118209838867

Epoch n°1300: 25.18391227722168

Epoch n°1400: 25.173906326293945

Epoch n°1500: 25.166357040405273

```
Epoch n°1600: 25.160057067871094
Epoch n°1700: 25.15407371520996
Epoch n°1800: 25.147520065307617
Epoch n°1900: 25.139297485351562
Epoch n°2000: 25.12759780883789
Epoch n°2100: 25.108728408813477
Epoch n°2200: 25.073389053344727
Epoch n°2300: 24.990821838378906
Epoch n°2400: 24.697917938232422
Epoch n°2500: 21.53030776977539
Epoch n°2600: 2.905454635620117
Epoch n°2700: 1.9075847864151
Epoch n°2800: 1.764595627784729
Epoch n°2900: 1.6564691066741943
Epoch n°3000: 1.5811333656311035
Epoch n°3100: 1.5079995393753052
Epoch n°3200: 1.4330010414123535
Epoch n°3300: 1.367269515991211
Epoch n°3400: 1.3085545301437378
Epoch n°3500: 1.2546205520629883
Epoch n°3600: 1.2040598392486572
Epoch n°3700: 1.1561177968978882
Epoch n°3800: 1.1100894212722778
Epoch n°3900: 1.0660297870635986
Epoch n°4000: 1.0234265327453613
Epoch n°4100: 0.9823218584060669
Epoch n°4200: 0.942297101020813
Epoch n°4300: 0.9031723737716675
Epoch n°4400: 0.8647996187210083
Epoch n°4500: 0.827095627784729
Epoch n°4600: 0.7899556159973145
Epoch n°4700: 0.753333330154419
Epoch n°4800: 0.7173778414726257
Epoch n°4900: 0.6819291710853577
Epoch n°5000: 0.6473612785339355
```

### 10 Plot loss function

```
[31]: fig, ax = plt.subplots(1, 1)
   __=ax.plot(np.log10(loss_history))
   xlabel = ax.set_xlabel(r'${\rm Step}$')
   ylabel = ax.set_ylabel(r'$\log_{10}{\rm (loss_function)}$')
   title = ax.set_title(r'${\rm Training}$')
   plt.show
```

[31]: <function matplotlib.pyplot.show(close=None, block=None)>



# 11 Approximated solution

We plot the solution obtained with our NN



## 12 True solution

We plot the true solution, its form was mentioned above



#### 13 Absolut error

We plot the absolut error, it's |true solution - neural network output|



# 14 Save NN parameters

```
[35]: trained_params = jax_opt.unpack_optimizer_state(opt_state) pickle.dump(trained_params, open("./NN_saves/NN_jax_params.pkl", "wb"))
```