Modèles Linéaires Appliqués

Arthur Charpentier

Automne 2020

Rappels #3.1 (statistique & maximum de vraisemblance)

Assume that $\{x_1, x_2, \cdots, x_n\}$ are obtained from i.i.d. random variables X_1, X_2, \cdots, X_n , with identical distribution F_{θ} , and density f_{θ} .

$$\mathcal{L}(\theta) = f_{\theta}(\mathbf{x}) = f_{\theta}(x_1, \dots, x_n) = \prod_{i=1}^n f_{\theta}(x_i)$$

$$\log \mathcal{L}(\theta) = \sum_{i=1}^{n} \log f_{\theta}(x_i)$$

 $\widehat{ heta}$ is a maximum likelihood estimator of parameter heta if

$$\widehat{\boldsymbol{\theta}} \in \operatorname{argmax} \big\{ \mathcal{L}(\boldsymbol{\theta}) \big\} = \operatorname{argmax} \big\{ \log \mathcal{L}(\boldsymbol{\theta}) \big\}$$

Given some sample $\{x_1, \dots, x_n\}$ from a $\mathcal{N}(\mu, \sigma^2)$ distribution,

$$\mathcal{L}(\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\sum_{i=1}^n \frac{(x_i - \mu)^2}{\sigma^2}\right)$$

$$\log \mathcal{L}(\mu, \sigma^2) = -\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{\sigma^2} - \frac{n}{2} \log(2\pi\sigma^2)^{\frac{11.5}{2}}$$

Here $\theta = (\mu, \sigma^2) \in \mathbb{R} \times (0, \infty)$.

The first order condition (also called likelihood equations) is

$$\frac{\partial \log \left(\mathcal{L}(\theta; x_1, \cdots, x_n) \right)}{\partial \theta} \bigg|_{\theta = \widehat{\theta}} = 0$$

Second order condition is

$$\frac{\partial^2 \log \left(\mathcal{L}(\theta; x_1, \cdots, x_n) \right)}{\partial \theta} \bigg|_{\theta = \widehat{\theta}} < 0$$

Example: if $X \sim \mathcal{P}(\lambda)$,

$$\log \mathcal{L}(\lambda; x_1, \cdots, x_n) = \sum_{i=1}^n \log \left(e^{-\lambda} \frac{\lambda^{x_i}}{x_i!} \right) = -n\lambda + n\overline{x} \log(\lambda) - \log \left(\prod_{i=1}^n x_i! \right)$$

$$\frac{\partial \log \left(\mathcal{L}(\lambda; x_1, \cdots, x_n) \right)}{\partial \lambda} = -n + \frac{n\overline{x}}{\lambda}, \text{ so } \widehat{\lambda} = \overline{x}.$$

Likelihood / Vraisemblance
$$x \mapsto \frac{d}{d\theta} \log f_{\theta}(x)$$
 is called score. If $X \sim f_{\theta}$, $\mathbb{E}\left(\frac{d}{d\theta} \log f_{\theta}(X)\right) = 0$

Example: if $X \sim \mathcal{P}(\lambda)$,

$$\frac{d\log f_{\lambda}(X)}{d\lambda} = -1 + \frac{X}{\lambda}, \text{ so } \mathbb{E}\left(\frac{d}{d\lambda}\log f_{\lambda}(X)\right) = -1 + \frac{\mathbb{E}(X)}{\lambda} = 0$$

Fisher information associated with a density f_{θ} , with $\theta \in \mathbb{R}$ is

$$I(\theta) = \mathbb{E} \left(\frac{d}{d\theta} \log f_{\theta}(X) \right)^2$$
 where X has distribution f_{θ} ,

$$I(\theta) = \operatorname{Var}\left(\frac{d}{d\theta}\log f_{\theta}(X)\right) = -\mathbb{E}\left(\frac{d^2}{d\theta^2}\log f_{\theta}(X)\right).$$

For a sample of size n,

$$I_n(\theta) = \mathbb{E}\left(\frac{\partial}{\partial \theta}\log \mathcal{L}(\theta, X_1, \cdots, X_n)\right)^2 = nI(\theta)$$

Example: if X has a Poisson distribution $\mathcal{P}(\theta)$,

$$\log f_{\theta}(x) = -\theta + x \log \theta - \log(x!) \text{ and } \frac{d^2}{d\theta^2} \log f_{\theta}(x) = -\frac{x}{\theta^2}$$

$$I(\theta) = -\mathbb{E}\left(\frac{d^2}{d\theta^2}\log f_{\theta}(X)\right) = -\mathbb{E}\left(-\frac{X}{\theta^2}\right) = \frac{1}{\theta}$$

Example: if X has a binomial distribution $\mathcal{B}(n,\theta)$, $I(\theta) = \frac{n}{\theta(1-\theta)}$

Cramér-Rap bound: If $\widehat{\theta}$ is an unbiased estimator of θ , then

$$Var(\widehat{\theta}) \ge \frac{1}{nI(\theta)}$$

If that bound is attained, the estimator is said to be efficient. An unbiased estimator $\widehat{\theta}$ is said to be optimal if it has the lowest variance among all unbiased estimators, see bias, minimum variance unbiased estimator

if
$$\theta \in \mathbb{R}^k$$
, $\frac{\partial \log (\mathcal{L}(\theta; x_1, \dots, x_n))}{\partial \theta} \Big|_{\theta = \widehat{\theta}} = \mathbf{0}$

Second order condition is

if
$$\theta \in \mathbb{R}^k$$
, $\frac{\partial^2 \log (\mathcal{L}(\theta; x_1, \cdots, x_n))}{\partial \theta \partial \theta'}\Big|_{\theta = \widehat{\theta}}$ is definite negative

If $\theta \in \mathbb{R}^k$, then Fisher information is the $k \times k$ matrix $I = [I_{i,j}]$ with

$$I_{i,j} = \mathbb{E}\left(\frac{\partial}{\partial \theta_i} \log f_{\theta}(X) \frac{\partial}{\partial \theta_i} \log f_{\theta}(X)\right).$$

i.e.

$$I(\theta) = \mathbb{E}\left[\left(\frac{d}{d\theta}\log f_{\theta}(X)\right)\left(\frac{d}{d\theta}\log f_{\theta}(X)\right)^{\mathsf{T}}\right]$$
$$I(\theta) = -\mathbb{E}\left(\frac{d^{2}}{d\theta d\theta^{\mathsf{T}}}\log f_{\theta}(X)\right)$$

For a Gaussian distribution $\mathcal{N}(\theta,\sigma^2)$, $I(\theta)=\frac{1}{\sigma^2}$ For a Gaussian distribution $\mathcal{N}(\mu,\theta)$, $I(\theta)=\frac{1}{2\theta^2}$ For a Gaussian distribution $\mathcal{N}(\theta)$, $I(\theta)=\begin{pmatrix} 1/\sigma^2 & 0\\ 0 & 2/\sigma^2 \end{pmatrix}$ Cramér-Rao bound is $\frac{1}{n}I^{-1}=\frac{1}{n}\begin{pmatrix} \sigma^2 & 0\\ 0 & \sigma^2/2 \end{pmatrix}$

Let $\{x_1, \dots, x_n\}$ be a sample with distribution f_{θ} , where $\theta \in \Theta$. The maximum likelihood estimator $\widehat{\theta}_n$ of θ is

$$\widehat{\boldsymbol{\theta}}_n \in \operatorname{argmax} \{ \mathcal{L}(\boldsymbol{\theta}; x_1, \cdots, x_n), \boldsymbol{\theta} \in \boldsymbol{\Theta} \}.$$

Under some technical assumptions $\widehat{\theta}_n$ converges almost surely towards θ , $\widehat{\theta}_n \overset{a.s.}{\to} \theta$, as $n \to \infty$.

Under some technical assumptions $\widehat{\theta}_n$ is asymptotically efficient,

$$\sqrt{n}(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}) \stackrel{\mathcal{L}}{\rightarrow} \mathcal{N}(0, I^{-1}(\boldsymbol{\theta})).$$

See maximum likelihood estimation

Optimization

Consider some Poisson model,

```
1 > set.seed(1)
_{2} > (y=rpois(10,3))
3 [1] 2 2 3 5 2 5 6 4 3 1
4 > mean(y)
5 [1] 3.3
6 > NLogL = function(lambda) -sum(log(dpois(y,lambda)))
7 > optim(fn = NLogL,par = 1)
8 $par
9 [1] 3.3
10
11 $value
12 [1] 18.59581
```

Consider a sample $\mathbf{X} = (X_1, \dots, X_n)$ i.id. from F_{θ} . Let

$$S_{n,\theta}(\mathbf{x}) = \frac{\partial \log \mathcal{L}(\theta; \mathbf{x})}{\partial \theta} = \sum_{i=1}^{n} S_{1,\theta}(x_i)$$

denote the score function. Then $S_{n,\theta}(\mathbf{X})$ is a random vector. Then

$$\mathbb{E}[S_{n,\theta}(\mathbf{X})] = \mathbf{0}$$

while

$$\operatorname{Var}[S_{n,\theta}(\mathbf{X})] = I_n(\theta) = \mathbb{E}\left(\frac{\partial}{\partial \theta}S_{n,\theta}(\mathbf{X})\right).$$

$$\frac{S_{n,\theta}(\mathbf{X})}{n} \stackrel{a.s.}{\to} 0 \quad \text{and} \quad \frac{S_{n,\theta}(\mathbf{X})}{\sqrt{n}} \stackrel{\mathcal{L}}{\to} \mathcal{N}(0, I(\theta)).$$

If θ is univariate, use Taylor approximation of S_n in the neighbourhood of θ_0 (the true value)

$$S_n(x) = S_n(\theta_0) + (x - \theta_0)S'_n(y)$$
 for some $y \in [x, \theta_0]$

Set $x = \widehat{\theta}_n$, then

$$S_n(\widehat{\theta}_n) = 0 = S_n(\theta_0) + (\widehat{\theta}_n - \theta_0)S'_n(y)$$
 for some $y \in [\theta_0, \widehat{\theta}_n]$

Hence,
$$\widehat{\theta}_n = \theta_0 - \frac{S_n(\theta_0)}{S'_n(v)}$$
 for $y \in [\theta_0, \widehat{\theta}_n]$. Hence,

$$\widehat{\theta}_n^{(i+1)} = \widehat{\theta}_n^{(i)} - \frac{S_n(\widehat{\theta}_n^{(i)})}{S_n'(\widehat{\theta}_n^{(i)})},$$

from some starting value $\widehat{\theta}_n^{(0)}$ (hopefully well chosen).

Newton-Raphson:

$$\widehat{\theta}_n^{(i+1)} = \widehat{\theta}_n^{(i)} - \frac{S_n(\widehat{\theta}_n^{(i)})}{S_n'(\widehat{\theta}_n^{(i)})},$$

where

$$S'_n(\widehat{\theta}_n^{(i)}) \sim \frac{S_n(\widehat{\theta}_n^{(i)} + h) - S_n(\widehat{\theta}_n^{(i)} - h)}{2h}$$

from some starting value $\widehat{\theta}_n^{(0)}$ (hopefully well chosen), and some small h > 0.

Fisher-Scoring technique:

$$\widehat{\theta}_n^{(i+1)} = \widehat{\theta}_n^{(i)} + \frac{S_n(\widehat{\theta}_n^{(i)})}{nI(\widehat{\theta}_n^{(i)})},$$

again from some starting value.

Newton-Raphson

Consider some Poisson model, $S_1(\theta) = -1 + \frac{x}{a}$

```
> Sn = function(lambda) sum(-1+y/lambda)
_{2} > h = 1e-7
3 > dSn = function(lambda) (Sn(lambda+h)-Sn(lambda-h))
     /(2*h)
_{4} > L = rep(NA, 10)
5 > L[1] = 1
6 > for(i in 1:9){
7 + L[i+1] = L[i] - Sn(L[i])/dSn(L[i])
8 + }
9 > L
10 [1] 1.000 1.697 2.521 3.116 3.290 3.300 3.300 3.300
```


Scoring-Fisher

Consider some Poisson model, with Fisher information $I(\theta) = \frac{1}{\theta}$

```
1 > I = function(lambda) 1/lambda
_2 > L = rep(NA, 10)
3 > L[1] = 1
4 > for(i in 1:9){
5 + L[i+1] = L[i] - Sn(L[i])/(length(y)*I(L[i]))
6 + }
7 > I.
8 [1] 1.0 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
```