

Data Science & Business Analytics Tasks

Graduate Rotational Internship Program: June 2021

The Sparks Foundation

Data Science & Business Analytics Tasks - 2

Predicting Optimum Clusters for Iris using Unsupervised ML

Owner: Reema Lad

Friday, June 18, 2021

Project Case

Prediction using Unsupervised ML

(Level - Beginner)

- From the given 'Iris' dataset, predict the optimum number of clusters and represent it visually.
- Use R or Python or perform this task

Iris Versicolor

Iris Setosa

Iris Virginica

Dataset Details

Problem Statement

From the given 'Iris' dataset, predict the optimum number of clusters and represent it visually

Data Dictionary

As Id is an unique reference number alloted to each observation, its insignificant for our study, hence dropped

Variable	Definition
Id	Hours Studied by student
SepalLengthCm	Length of sepals in centimeters
SepalWidthCm	Width of sepals in centimeters
PetalLengthCm	Length of petal in centimeters
PetalWidthCm	Width of petal in centimeters
Species	Species of Iris - Setosa, Virginica and Versicolor

Process

- · Import Libraries
- · Load Data
- · Reading Raw Data
- · Visualization, UniVariate BiVariate Analysis, EDA
- Model Building
- Cluster Visualization

Data Insights

- * 150 rows with 5 columns
- * No missing data
- * No Duplicate rows
- * Target Variable : Species
- * Predictor Variable: SepalLength, SepalWidth, PetalLength, PetalWidth
- * Target Variable has 3 classes with equally distributed number of samples; so data is balanced.
- * As observed visually basis value count, we see three classes; would try to establish the same using Clustering ML Models

Understanding Data & EDA, Insights on Variables

Understanding Data & EDA, Insights on Variables

Species

Study of Sepal Length - Species Wise

Study of Sepal Width - Species Wise

Species

Iris-setosa

Understanding Data & EDA, Insights on Variables

Model – K-Means Clustering

Model Insights

Name: KMCLabelName, dty

* With the Elbow Cut method identified optimal value of K = 3

Optimal n_clusters determined to be 3 - as beyond that there is no significance change in inertia

* Hence three clusters are formed which is similar to our original data clusters

* However slight error in identifying the correct class for Versicolor & Virginica. Sentosa class is perfectly clustered

* Clusters are almost well seperated, for little overlap in Versicolor and Virginica

Cluster 0: Iris-Setosa Cluster 1: Iris-Versicolor Cluster 2: Iris-Virginica

Model – Hierarchical Clustering

Model Insights

- * Optimal number of clusters basis dendogram is 3
- * Here too three classes are well classified with slight errors in Sentosa and Virginica.
- * In this method Versicolor is identified accurately

Model – Affinity Propagation

Model Insights

- * Optimal number of clusters as concluded by the model are 6
- * Model is able to classify the classes with certain more depth and better boundries, hence distingishing and demarking in to completely seperate clusters without any overlap; which inturn creates more minuscule but clearly demarked clusters.

Thank You