#### A quick tutorial on IP Router design

Optics and Routing Seminar October 10th, 2000



#### Nick McKeown

nickm@stanford.edu http://www.stanford.edu/~nickm

#### Outline

Where IP routers sit in the network What IP routers look like What do IP routers do? Some details:

- The internals of a "best-effort" router

Lookup, buffering and switching

- The internals of a "QoS" router Can optics help?

## Outline (next time)

Evolution of their internal workings. The way routers are really built. What limits their performance. The effect that DWDM is having on switch/router design.

The way the network is built today. Discussion: The scope for optics

#### Outline

- Where IP routers sit in the network What IP routers look like
  - What do IP routers do?
- The internals of a "best-effort" router Some details:
- Lookup, buffering and switching
- The internals of a "QoS" router

Can optics help?

The Internet is a mesh of routers (in theory) The Internet Core

# What do they look like?



9

## Basic Architectural Components of an IP Router



\_

#### o

### Per-packet processing in an IP Router

- 1. Accept packet arriving on an incoming link.
- 2. Lookup packet destination address in the forwarding table, to identify outgoing port(s).
- 3. Manipulate packet header: e.g., decrement TTL, update header checksum.
- 4. Send packet to the outgoing port(s).
- 5. Buffer packet in the queue.
- 6. Transmit packet onto outgoing link.

#### 9

#### Outline

- Where IP routers sit in the network What IP routers look like
- ► What do IP routers do?
- Some details:
- The internals of a "best-effort" router
- Lookup, buffering and switching
- The internals of a "QoS" router
- · Can optics help?

# Basic Architectural Components

Datapath: per-packet processing



## Forwarding Engine



### The Search Operation is *not* a Direct Lookup



IP addresses: 32 bits long  $\Rightarrow$  46 entries

## The Search Operation is also not an Exact Match Search

Exact match search: search for a key in a collection of keys of the same length.

Relatively well studied data structures:

- Hashing
- Balanced binary search trees

# Example Forwarding Table

| Destination IP Prefix                   | Outgoing Port |
|-----------------------------------------|---------------|
| (8) (8) (8) (8) (8) (8) (8) (8) (8) (8) | 8             |
| 128.9.0.0/16 PREFILE TO 128.9.0.0/16    |               |
| 142.12.0.0/19                           | 7             |

IP prefix: 0-32 bits



## Prefixes can Overlap



prefix (aka the most specific route) among al prefixes that match the destination address Routing lookup: Find the longest matching

# Difficulty of Longest Prefix Match



## Lookup Rate Required

| Year           | Line           | Line-rate | 40B               |
|----------------|----------------|-----------|-------------------|
|                |                | (6bps)    | packets<br>(Mpps) |
| 1998-99 OC12c  | OC12c          | 0.622     | 1.94              |
| 1999-00 OC48c  | OC48c          | 2.5       | 7.81              |
| 2000-01 OC192c | OC192c         | 10.0      | 31.25             |
| 2002-03        | 2002-03 OC768c | 40.0      | 125               |

 $31.25~{
m Mpps} 
ightarrow 33~{
m ns}$ 

DRAM: 50-80 ns, SRAM: 5-10 ns



Source: http://www.telstra.net/ops/bgptable.html

# Basic Architectural Components

Datapath: per-packet processing



#### Interconnects

Two basic techniques

Input Queueing

Output Queueing

Usually a fast bus

Usually a non-blocking switch fabric (e.g. crossbar)

#### Interconnects

Output Queueing

Individual Output Queues





#### Centralized Shared Memory Interconnects



## Output Queueing

How fast can we make centralized shared memory?



- 5ns per memory operation
- Two memory operations per packet
  - Therefore, up to 1606b/s
- In practice, closer to 806b/s

### Interconnects

Input Queueing with Crossbar



Input Queueing Head of Line Blocking



Head of Line Blocking



Input Queueing
Virtual Output Queues



## Input Queueing Virtual output queues



Other Non-Blocking Fabrics
Clos Network





Other Non-Blocking Fabrics Self-Routing Networks



#### 33

### Other Non-Blocking Fabrics Self-Routing Networks

The Non-blocking Batcher Banyan Network

Bitonic Sorter

Self-Routing Network



- Fabric can be used as scheduler.
- · Batcher-Banyan network is blocking for multicast.

#### Outline

Where IP routers sit in the network What IP routers look like What do IP routers do?

- The internals of a "best-effort" router

Some details:

Lookup, buffering and switching

- The internals of a "QoS" router Can optics help?

# Basic Architectural Components





#### Outline

- Where IP routers sit in the network What IP routers look like What do IP routers do? Some details:
- The internals of a "best-effort" router
- · Lookup, buffering and switching
- The internals of a "QoS" router Can optics help?

Cynical view:

A packet switch (e.g. an IP router) must have buffering.

Optical buffering is not feasible

Therefore, optical routers are not feasible.

switches (e.g. TDM, space or Lambda Hence, "optical switches" are circuit switches)

Open-minded view:

intensive functions, or where random Optics seem ill-suited to processing access memory is required.

bufferless, reconfigurable datapaths. Optics seems well-suited to



#### Linecard?

- The linecard is processing & memory intensive.

#### Interconnect?

- Arbitration is very processing intensive.
- The fabric can be a bufferless datapath...
- How fast can an optical datapath be reconfigured?

## Outline for next time...

The effect that DWDM is having on Evolution of their internal workings. The way IP routers are really built. The way the network is built today. Discussion: The scope for optics What limits their performance. switch/router design.