Graph and discrete structure

Louis Esperet (GSCOP) - 4 lectures. Lecture 1

Reminder

Greedy algorithm

The greedy algorithm colors every graph of max degree Δ with at most $\Delta+1$ colors.

Brooks

If G has max degree Δ , and is neither an odd cycle nor a conplete graph, then $\chi(G) \leq \Delta$.

Definition

d-degenerate

A graph G is d-degenerate if there is an order v_1, \dots, v_n on it's vertices s.t. for any i the number of vertices $v_j (j < i)$ adjeacend to v_i is at most d.

Corollary of the greedy algorithm

If G is d-degenerate, then $\chi(G) \leq d+1$.

Theorem

Let C be a class of graphs such that for any $G \in C$, and for any vertex $v \in G, G - v \in C$.

C is said to be hereditary.

Exemple

True

k-colorable, biparptite, interval graph, triangle-free graph.

False

cycles, connected, complete graph.

Theorem next

Assume that any graph of C has a vertex of degree $\leq d$, then any graph of C is d-degenerate.

Proof by induction

Proof by induction on the number of vertices of G.

G has a vertex v of degree $\leq d$.

- $G-v_n\in C$, by induction $G-v_n$ is d-degenerate leq d.
- $G-v_n$ has an ordre v_1,v_2,\cdots,v_n just add v_n at the end.

Note: you recalculate the degree at each step.

Planar graphs

Definition planar graph

A graph is planar if it has a planar drawing.

Definition planar drawing

A drawing in the plane (or the sphere) such that edges don't cross.

Theorem (fary 48) on straiht line

For any planar drawing of a planar graph G there is a an equivalent planar drawing in which all the edges are straiht line segments.

The art gallery problem

Question

How many gards can you put in the gallery s.t. they see everything?

Ground $\begin{bmatrix} n \\ 3 \end{bmatrix}$ guards are enough.

Proof

- Any triangulated polygon is 3-colorable.
- Triangulation:
 - o triangulate the polygon.

- o 3-color it.
- One color has size $\leq \lfloor \frac{n}{3} \rfloor$.
- Place the guards at the locations of those vertices.

Proof with chordal graph.

The red graph is a tree.

Any face of G corresponding to a face of the red tree contains a vertex of degree 2, whose removal yields a triangulated polygon.

Color this by induction with 3 colors, and color v with color $\{1,2,3\}$ distinct from it's 2 neighbours.

Proof of Fary's theorem

- Triangulate all faces.
- Euler's formula:
 - $\circ~G$ is connected with a planar drawing then #vertices #edges + #faces = 2
 - $\circ n-m+f=2.$

If all faces are triangle : $2m=3f\Rightarrow m=3n-6$.

$$\sum_v d(v) = 2m = 6m - 12 \ \sum (d(v) - 6) = -12$$

 \Rightarrow For any x, y, z there is a vertex v distinct from x, y, z such that $d(v) \leq 5$.

Final step of the proof

