Particle spectrograph

Wave operator and propagator

Spin-parity		form Cove	Covariant form	u.				Multiplicities
$_{0}^{#2}$ ==0	0		$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$					н
#1 0+ r ==0			$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	$\beta \partial^{\beta} t^{\alpha}_{ $				1
#1 0+ \sigma ==0	0		$\partial_{\beta}\sigma^{\alpha\beta}{}_{\alpha}=0$					1
$\frac{#2}{1} \frac{\alpha}{t} +$	$+2 i k_1^{#2}$	α _α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi}=$	$==\hat{\mathcal{A}}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	$\partial_\delta\partial^\delta\partial_\chi\partial_\beta\sigma^{lphaeta\chi}$			м
$\frac{\#1}{1} \alpha =$	0 ==		$\partial_\chi \partial_\beta \partial^\alpha \iota^{\beta\chi} == \partial_\chi \partial^\chi \partial_\beta \iota^{\beta\alpha}$	= $\hat{q}\partial^X\partial_\beta \tau^{\beta\alpha}$				м
$\frac{#1}{1} \alpha \beta$	+ i k 1+	$\alpha_{\beta} == 0$	$\frac{\partial_{\chi}\partial^{\alpha} \tau^{\beta\chi} + \partial_{\zeta}}{\partial_{\chi}\partial^{\alpha} \tau^{\chi\beta}} + \frac{\partial_{\zeta}}{\partial_{\zeta}}$	${}_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha}$ $\cdot \partial_{\nu}\partial^{\beta}\tau^{\alpha\chi} + \partial_{\nu}\partial^{\chi}\tau^{\alpha}$	$+i k_1^{\#_2} \sigma^{\beta} == 0 \partial_{\chi} \partial^{\alpha} t^{\beta \chi} + \partial_{\chi} \partial^{\beta} t^{\chi \alpha} + \partial_{\chi} \partial^{\chi} t^{\alpha \beta} + 2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial_{\lambda} \partial^{\alpha} \sigma^{\beta \chi} = 0$ $= \partial_{\lambda} \partial^{\alpha} t^{\lambda \beta} + \partial_{\lambda} \partial^{\beta} t^{\alpha \chi} + \partial_{\lambda} \partial^{\chi} t^{\beta \alpha} + 2 \partial_{\lambda} \partial_{\lambda} \partial^{\alpha} \sigma^{\beta} \sigma^{\alpha \chi \delta}$	5 +2 6 xx6	$\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} ==$	т
$^{#1}_{2}$ $^{\alpha\beta}_{r}$	-2 i k ₂₊ d	$\frac{1}{7}a^{\beta}=0$.ī (4 0 ₅ 0 _x 0 ^β 0	$\int_{\alpha} \frac{\tilde{\chi}}{r^{\chi\delta}} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta}$	$\frac{\partial \mathcal{L}}{\partial \mathcal{L}} = 0 \cdot i \left[(4 \partial_{\sigma} \partial_{\sigma} \partial^{\sigma} \partial_{\sigma} \nabla^{\sigma} + 2 \partial_{\sigma} \partial_{\sigma} \partial_{\sigma} \nabla^{\sigma} \nabla^{\kappa} - 3 \partial_{\sigma} \partial_{\sigma} \partial_{\sigma} \partial_{\sigma} \nabla^{\kappa} - 3 \partial_{\sigma} \partial_{\sigma} \partial_{\sigma} \nabla^{\kappa} \right]$	$\beta^{\alpha} \iota^{\beta \chi}$	$-3 \partial_{\delta} \partial^{\delta} \partial_{\nu} \partial^{\alpha} \tau^{\chi\beta}$	2
	ı)	39,	$_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha\chi}$ -3 ∂_{α}	$\frac{\lambda}{3 \partial_{\delta} \partial_{\lambda} \partial^{\delta} \sigma_{\lambda} \partial^{\delta} \sigma_{\lambda} \partial^{\lambda} \sigma^{\lambda}} + 3 \partial_{\delta} \partial_{\delta} \partial_{\lambda} \partial^{\lambda} \sigma^{\alpha} + 3 \partial_{\delta} \partial_{\lambda} \partial^{\lambda} \sigma^{\alpha}$	$_{\delta}\partial^{\delta}\partial_{\chi}i$	$=\frac{\omega}{2}$	
			3 9	$_{6}\partial^{5}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha}+4$	i κ ^X ΘεΘχΘβθασ ^{δε}	. 9	$\stackrel{\sim}{3} \partial_{o} \partial^{o} \partial_{\chi} \partial^{\chi} t^{eta \alpha} + 4 \ i \ k^{\chi} \ \partial_{e} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon} \ \stackrel{\sim}{_{\circ}} - 6 \ i \ k^{\chi} \ \partial_{e} \partial_{o} \partial_{\chi} \partial^{\alpha} \sigma^{\partial \delta \epsilon} \ .$	
			6 i	$k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta}$	$6_{\tilde{l}} k^\chi \partial_{\varepsilon} \partial_{\sigma} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \varepsilon} + 2 \eta^{\alpha \beta} \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi \delta} +$	$\int_{S} \partial_{\chi} t^{\chi \delta}$	+	
			6 i	$k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta}$	$6i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} + 6i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$	$^{5}\partial_{\chi}\sigma^{\beta\zeta}$	<u>.</u>	
			2 .	$1^{\alpha\beta} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \iota^{X}_{X}$	$2 \ \eta^{\alpha\beta} \ \partial_{\varepsilon} \partial_{\varepsilon} \partial_{\delta} \partial^{\delta} \iota_{X}^{\chi} - 4 \ i \ \eta^{\alpha\beta} \ k^{\chi} \ \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial_{\chi} \sigma^{\delta\varepsilon}_{\delta}) == 0$	$^{\phi}\partial_{\varepsilon}\partial_{\chi}$	$\sigma^{\delta \epsilon}_{\ \delta}$) == 0	
Total e>	kpected	Total expected gauge generators:	nerators:					17
	$_{1}^{*1}$ $\sigma_{lphaeta}$	$1^+ \sigma^{\alpha\beta}$	1^{+1}	$_{1}^{*1}$	$^{\#2}_{1}$	1^{*1}	$^{#2}_{1}$	
$1^{*1} \sigma^{\dagger}$	0	$\frac{\sqrt{2}}{t_1 + k^2 t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0	
$^{#2}_{1}^{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$-\frac{i(2k^3r_5-k\frac{4}{4})}{(1+k^2)^2t_1^2}$	0	0	0	0	
$_{1}^{\#1}\tau ^{\alpha \beta }$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i\left(2k^3r_5\!\!-\!k\frac{4}{4}\right)}{\left(1\!+\!k^2\right)^2t_1{}^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0	
$\frac{#1}{1}\sigma \uparrow^{\alpha}$	0	0	0	$\frac{1}{k^2 r_5}$	$-\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$	0	$\frac{i}{k \xi + 2 k^3 r_5}$	
$\frac{#2}{1}\sigma \uparrow^{\alpha}$	0	0		$-\frac{1}{\sqrt{2} \left(k^2 r_5 + 2 k^4 r_5 \right)}$	$\frac{6k^2r_5+t_1}{2(k+2k^3)^2r_5t_1}$	0	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	
$\frac{#1}{1}\tau + ^{\alpha}$	0	0		0	0	0	0	
$\frac{#2}{1}\tau$	0	0	0	i k 8+2k³r5	$-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	0	$\frac{6k^2 r_5 + t_1}{(1 + 2k^2)^2 r_5 t_1}$	

 $-2 \, r_2 \, \partial_i \mathcal{A}_{\alpha\beta\theta} \, \partial^\theta \mathcal{A}^{\alpha\beta^i} \, + 2 \, r_2 \, \partial_\theta \mathcal{A}_{\alpha\beta^i} \, \partial^\theta \mathcal{A}^{\alpha\beta^i} \, - 4 \, r_2 \, \partial_\theta \mathcal{A}_{\alpha\beta} \, \partial^\theta \mathcal{A}^{\alpha\beta^i}$

 $4r_2\partial_{eta}\mathcal{A}_{etalpha}\partial^{eta}\mathcal{A}_{etalpha}$

 $+3\,t_1\,\partial_\theta f_{\alpha_I}\,\partial^\theta f^{\alpha_I} + 3\,t_1\,\partial_\theta f_{\,_{I\!\!\!\!\!\!\!I}}\,\partial^\theta f^{\alpha_I}$

 $\mathcal{A}_{,\,\theta}^{\,\theta}$ +6 $f^{\alpha\beta}$

 $+6\,r_5\,\partial_\alpha\mathcal{A}^{\alpha\beta}\,^{\beta}\,\partial_\kappa\mathcal{A}^{\beta}_{\beta,\,i}\,-12\,r_5\,\partial^\theta\mathcal{A}^{\alpha}_{\ \alpha}\,\partial_\kappa\mathcal{A}^{\beta}_{\beta,\,i}))[t,\,x,\,y,\,z]\,d\,\,z\,\,d\,\,y$

0 0 0

0 0 0 0

0 0 0

 $0^{+2} f + 0^{+1} f + 0^{-1} f$

 $0^{*1} \sigma +$

0

0

0 0

0

 $\stackrel{\#2}{0^+}_f$

 $^{#1}_{0}$ $^{#1}_{3}$ $^{#1}_{0}$ $^{*}_{f}$ $^{*}_{0}$

 $\overset{\#2}{1^+}\mathcal{F}_1^{\dagger}$

#1 1 A †

#2 1 A †

 ${\overset{\#1}{1}}f + {}^{\alpha}$

 $\frac{^{#2}}{1}f + \alpha$

 $-\frac{t_1}{\sqrt{2}}$

 ${\overset{\#1}{0^{+}}}\sigma \,\, {\overset{\#1}{0^{+}}}\tau \,\, {\overset{\#2}{0^{+}}}\tau \,\, {\overset{\#1}{0^{-}}}\sigma \,\,$

0 0

0 0

0

0

0

0

<u>i k ‡</u> 3

 $\frac{1}{3}i\sqrt{2}kt$

 $\frac{2k^2t_1}{3}$

 $\frac{t_1}{3\sqrt{2}}$

<u>t</u>13

 $-\frac{1}{3}i k t \left| -\frac{1}{3}i \sqrt{2} k t_1 \right|$

 $k^2 r_5 + \frac{t_1}{6}$

 $\frac{t_1}{3\sqrt{2}}$

i k ± √2

0

 $2^{+1} \sigma^{\alpha\beta}$

 $^{#1}_{2}^{\alpha\beta}$

 $^{#1}_{2}$

0 0 0

Massive and massless spectra

Parity:	Spin:	Squaremass:	Pole residue:	Massive par	$J^{P} = 0$	Polarisations:	Pole residue: -	Massless pa	
Odd	0	$\frac{t_1}{r_2} > 0$	$\frac{1}{r_2} > 0$	particle		2	$\frac{1}{r_5t_1^2} > 0$	particle	?

Unitarity conditions