MODEL QUESTION PAPER Refrigeration & Air conditioning

Time :3Hours Max. Marks :75

PART A

I Choose the correct answer

1	The relative coefficient of performance is	M 1.01	R
	(a) actual COP/theoretical COP		
	(b) theoretical COP/actual COP		
	(c) actual COP x theoretical COP		
	(d) 1-actual COP x theoretical COP		
	The value of COP in vapour compression cycle is usually	M 2.01	R
2	(a) always less than unity		
	(b) always more than unity		
	(c) equal to unity		
	(d) any one of the above		
3	A vapour absorption refrigerator uses as a refrigerant	M 2.01	R
3	(a) water (b) ammonia (c) freon (d) aqua-ammonia	101 2.01	K
4	The lowest temperature during the cycle in a vapour compression system occurs after	M 2.02	R
	(a) compression (b) expansion (c) condensation (d) evaporation		
	A refrigerant compressor is used to	M 3.01	R
5	(a) Raise the pressure of the refrigerant		K
	(b) Raise the temperature of the refrigerant		
	(c) Circulate the refrigerant through the refrigerating system		
	(d) All of the above		
6	In a shell and coil condenser ,water flows in theand the refrigerant in the	M 3.02	R
7	The refrigeration effect in a dry evaporator compared to flooded evaporator in a similar plant is	M 3.03	R
	(a) same		
	(b) more		
	(c) less		
	1	<u> </u>	

8	Air refrigeration cycle is used in (a) domestic refrigerators	M 3.05	R
	(b) commercial refrigerators		
	(c) air conditioning (d) gas liquefaction		
9	For unsaturated air ,the dew point temperature iswet bulb temperature	M 4.01	R
	(a) equal to		
	(b) less than		
	(c) more than		

(9x1=9 marks)

PART B

IIAnswer any *eight* questions from the following .Each question carries 3 marks

1	Define COP of a refrigerator and explain the term "tonne of refrigeration"	M 1.01	U
2	Identify any six properties of ideal refrigerant –absorbent combination in Vapour Absorption system	M 2.01	U
3	Identify the three effects of decrease in suction pressure of Vapour Compression cycle	M 2.02	U
4	List the properties required for a good refrigerant	M 2.04	R
5	Explain the need of substitutes for CFC refrigerants	M 2.04	U
6	Identify any three advantages of hermetic sealed compressor	M 3.01	U
7	Explain the advantages of forced convection evaporators	M 3.03	U
8	Draw the simple diagram of Thermostatic Expansion Valve and identify the parts	M 3.04	U
9	List any six applications of low temperature	M 3.06	R
10	Explain sensible heating with psychrometric chart	M 4.01	U

(8x3=24 marks)

 $\label{eq:part constraints} PART\ C$ III Answer ALL questions. Each question carries 7 marks

1	Derive the expression for the C O P of ReversedCamot Air Reftigeration Cycle	M 1.02	U
	OR		
2	200 kg of ice at – 10°C is placed in a bunker to cool some vegetables. 24		
	hours later the ice has melted into water at 50C. Compute the average	M 1.04	A
	rate of cooling in kJ/hr and TR provided by the ice? Assume Specific		

	heat of ice, Cp.i = 1.94 kJ/kg°C Specific heat of water, Cp,w = 4.1868 kJ/kg°C Latent heat of fusion of ice at 0°C, L = 335 kJ/kg.		
3	Explain the advantages of Vapour Absorption Refrigeration system over	M 2.01	U
	Vapour Compression Refrigeration system		
	OR		
	Explain theoretical VC cycle with dry saturated vapour after	M 2.02	U
4	compression		
5	Explain flooded evaporator with diagram	M 3.03	U
	OR		
6	Explain capillary tube with diagram and identify the advantages	M 3.04	U
7	On a particular day, the atmospheric air was found to have a dry bulb temperature of 30°C and a wet bulb temperature of 18°C. The barometric pressure was observed to b 756mm of Hg. Using the tables	M 4.02	A
	of psychrometric properties of air, determine the relative humidity, the specific humidity and the dew point temperature		
	OR		
8	The readings from a sling psychrometer are as follows: dry bulb temperature = 30° C; Barometer reading 740mm of Hg. Using steam tables, determine: I. Dew point temperature; 2. Relative humidity; 3. Specific humidity	M 4.02	A
9	In a cooling application, moist air enters a refrigeration coil at the rate of 100 kg of dry air per minute at 35° C and 50% RH. The apparatus dew point of coil is 5° C and by-pass factoris 0.15. Calculate the outlet state of moist air and cooling capacity of coil in TR	M 4.02	A
	OR		
10	Atmospheric air at a dry bulb temperature of 16° C and 25% relative humidity passes through a furnace and then through a humidifier, in such a way that the final dry bulb temperature is 30°C and 50% relative humidity. Calculate the heat and moisture added to the air. Also computethe sensible heat factor of the-process.	M 4 .02	A
11	Explain year round air conditioning system with schematic arrangement	M 4.05	U
<u></u>	OR	1,1 1,00	
12	The amount of air supplied to an air conditioned hall is 300 m ³ /min. The atmospheric conditions are 35°C DBT and 55% RH. The required conditions are 20°C DBT and 60% RH. Find out the sensible heat and latent heat removed from the air per minute. Also find sensible heat factor for the system	M 4.06	A

(6x7=42 marks)