Bài tập Ôn tập chương 4 - Toán 12

I. Bài tập trắc nghiệm

Bài 1: Cho số phức z thỏa mãn: i.z-+z=2+2i và z.z-=2. Khi đó z2 bằng:

- A. 2
- B. 4
- C. 2i
- D. 2i.

Lời giải:

Đặt $z = a + bi(a, b \in R)$. Ta có: z - = a - bi và z.z - = a2 + b2 = 2(1)

Ta có: $i.z^- + z = 2 + 2i \Leftrightarrow i(a - bi) + a + bi = 2 + 2i$

$$\Leftrightarrow$$
 a + b + (a + b)i = 2 + 2i \Leftrightarrow a + b = 2 (2)

Từ (1) và (2) suy ra a = b = 1. Suy ra z=1+i

$$V$$
ây $z2 = (1 + i)2 = 1 + 2i - 1 = 2i$

Bài 2: Cho số phức z thỏa mãn (1 + i)(z - i) + 2z = 2i. Môđun của số phức:

$$w = \frac{\overline{z} - 2z + 1}{z^2}$$
là

- A. 2
- B. 4
- C. √10
- D. 10

Lời giải:

Đặt $z = a + bi(a, b \in R)$. Ta có:

$$(1+i)(z-i) = (1+i)[a+(b-1)i] = a-b+1+(a+b-1)i$$

Từ giả thiết ta có: (1 + i)(z - 1) + 2z = 2i

$$\Leftrightarrow$$
 a - b + 1 + (a + b - 1)i + 2(a + bi) = 2i \Leftrightarrow (3a - b + 1) + (a + 3b - 1)i = 2i

$$\Leftrightarrow \begin{cases} 3a - b + 1 = 0 \\ a + 3b - 1 = 2 \end{cases} \Leftrightarrow \begin{cases} a = 0 \\ b = 1 \end{cases}$$

Suy ra z = 1 và

$$w = \frac{-i - 2i + 1}{-1} = -1 + 3i .$$

$$V_{ay} |w| = \sqrt{1^2 + 3^2} = \sqrt{10}$$

Bài 3: Cho số phức z thỏa mãn

$$\frac{5(\overline{z}+i)}{z+1} = 2-i.$$

Khi đó môđun của số phức w = 1 + z + z2 là

A. 5

B. √13

C. 13

D. √5

Lời giải:

Đặt $z = a + bi(a, b \in R)$. Ta có

$$\frac{5(\overline{z}+i)}{z+1} = 2-i \Leftrightarrow \frac{5[a-(b-1)i]}{a+1+bi} = 2-i$$

$$\Leftrightarrow 5a - 5(b - 1)i = (2 - i)(a + 1 + bi)$$

 \Leftrightarrow 3a - b - 2 + (a - 7b + 6)i = 0

$$\Leftrightarrow \begin{cases} 3a - b - 2 = 0 \\ a - 7b + 6 = 0 \end{cases} \Leftrightarrow \begin{cases} a = 1 \\ b = 1 \end{cases}$$

Suy ra z = 1 + i v a w = 1 + (1 + i) + (1 + i)2 = 2 + 3i.

Vậy: $|w| = \sqrt{4+9} = \sqrt{13}$

Bài 4: Phương trình $z^2 - 2z + 3 = 0$ có các nghiệm là

- A. $2\pm2\sqrt{2}i$
- B. -2±2√2i
- C. $-1 \pm 2\sqrt{2}i$
- D. $1\pm 2\sqrt{2}i$

Lời giải:

Ta có: $\Delta' = 12 - 3 = -2 = 2i2$. Phương trình có hai nghiệm: $z1,2 = 1 \pm 2i$

Bài 5: Phương trình z4 - 2z2 - 3 = 0 có 4 nghiệm phức z1, z2, z3, z4. Giá trị biểu thức T=|z1|2+|z2|2+|z3|2+|z4|2 bằng

- A. 4
- B. 8
- C. $2\sqrt{3}$
- D. $2 + 2\sqrt{3}$

Lời giải:

Phương trình tương đương với: $z^2 = -1 = i^2$ hoặc $z^2 = 3$. Các nghiệm của phương trình là: $z^2 = -i$, $z^2 = -i$, $z^3 = \sqrt{3}$, $z^4 = -\sqrt{-3}$.

Vậy
$$T = 1 + 1 + 3 + 3 = 8$$

Bài 6: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z - 2i| = 4 là

A. Đường tròn tâm I(1; -2) bán kính R = 4

B. Đường tròn tâm I(1; 2) bán kính R = 4

C. Đường tròn tâm I(0; 2) bán kính R = 4

D. Đường tròn tâm I(0; -2) bán kính R = 4

Lời giải:

Đặt $z = a + bi(a, b \in R)$. Ta có:

$$|z - 2i| = 4 \Leftrightarrow |a + (b - 2)i| = 4$$

$$\Leftrightarrow \sqrt{a^2 + (b-2)^2} = 4 \Leftrightarrow a^2 + (b-2)^2 = 16$$

Vậy tập các điểm biểu diễn số phức z là đường tròn tâm I(0;2), bán kính R=4

Bài 7: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z-+3-2i|=4 là

A. Đường tròn tâm I(3; 2) bán kính R = 4

B. Đường tròn tâm I(3; -2) bán kính R = 4

C. Đường tròn tâm I(-3; 2) bán kính R = 4

D. Đường tròn tâm I(-3; -2) bán kính R = 4

Lời giải:

Đặt
$$z = a + bi(a, b ∈ R)$$
. Ta có: $|z - + 3 - 2i| = 4 ⇔ |a - bi + 3 - 2i| = 4$

$$\Leftrightarrow |(a+3) - (b+2)i| = 4$$

$$\Leftrightarrow \sqrt{(a-3)^2 + (b+2)^2} = 4 \Leftrightarrow (a-3)^2 + (b+2)^2 = 16$$

Vậy tập các điểm biểu diễn số phức z là đường tròn tâm I(-3;-2), bán kính R=4

Bài 8: Cho hai số phức z1 = 1 + 2i, z2 = 2 - 3i. Phần thực và phần ảo của số phức w = 3z1 - 2z2 là

- A. 1 và 12
- B. -1 và 12
- C. -1 và 12i
- D. 1 và 12i.

Lời giải:

Ta có:
$$w = 3z1 - 2z2 = 3(1 + 2i) - 2(2 - 3i) = -1 + 2i$$
.

Vậy phần thực và phần ảo của w là -1 và 12

Bài 9: Phần thực và phần ảo của số phức $z = (1 + \sqrt{3}i)2$ là

- A. 1 và 3
- B. 1 và -3
- C. -2 và $2\sqrt{3}$
- D. 2 và $-2\sqrt{3}$.

Lời giải:

Ta có:
$$z = 1 + 2\sqrt{3} + 3i2 = -2 + 2\sqrt{3}i$$

Vậy phần thực và phần ảo của z là -2 và $2\sqrt{3}$

Bài 10: Phần ảo của số phức $z = (1 + \sqrt{i})3$ là

- A. $3\sqrt{3}$
- B. $-3\sqrt{3}$
- C.-8i
- D. -8.

Lời giải:

Ta có:
$$z = i(1 + \sqrt{3}i)3 = i(1 + 3\sqrt{3}i - 9 - 3\sqrt{3}i) = -8i$$
.

Vậy phần ảo của z là -8

II. Bài tập tự luận có lời giải

Bài 1: Thực hiện phép tính:

$$T = \frac{2+3i}{1+i} + \frac{3-4i}{1-i} + i\left(4+9i\right)$$

Lời giải:

Ta có:

$$T = \frac{(2+3i)(1-i)}{1+1} + \frac{(3-4i)(1+i)}{1+1} + i(4+9i)$$
$$= \frac{2-2i+3i+3}{2} + \frac{3+3i-4i+4}{2} + 4i-9$$

$$=> T = -3 + 4i$$

Bài 2: Môđun của số phức z thỏa mãn điều kiện z + (2 - i)z = 13 - 3i là

Lời giải:

Môđun của số phức z thỏa mãn điều kiện z + (2 - i)z = 13 - 3i là:

Đặt
$$z = a + bi(a, b \in R)$$
. Ta có: $z = a - bi và (2 - i)z = (2 - i)(a - bi) = 2a - 2bi - ai - b = 2a - b - (2b + a)i$

Do đó:
$$z = (2 - i)z - = 13 - 3i \Leftrightarrow a + bi + 2a - b - (2b + a)i = 13 - 3i$$

$$\Leftrightarrow 3a-b-(a+b)i=13-3i \Leftrightarrow \begin{cases} 3a-b=13 \\ a+b=3 \end{cases} \Leftrightarrow \begin{cases} a=4 \\ b=-1 \end{cases}$$

Vậy
$$|z| = \sqrt{a^2 + b^2} = \sqrt{17}$$

Bài 3: Phần thực và phần ảo của số phức z thỏa mãn (1 - i)z - 1 + 5i = 0 là

Lời giải:

Ta có: $(1 - i)z - 1 + 5i = 0 \Leftrightarrow (1 - i)z = 1 - 5i$

$$z = \frac{1 - 5i}{1 - i} = \frac{(1 - 5i)(1 + i)}{1 + 1} = \frac{1 + i - 5i + 5}{2} = 3 - 2i$$

Vậy phần thực và phần ảo của z là 3 và -2

Bài 4: Môđun của số phức z thỏa mãn điều kiện $(3z - z^{-})(1 + i) - 5z = 8i - 1$ là

Lời giải:

Đặt z = a + bi(a, b ∈ R).

Ta có:
$$z^- = a - bi \ và \ 3z - z^- = 3(a + bi) - (a - bi) = 2a + 4bi$$
,

Do đó:
$$(3z - z^{-})(1 + i) = 2a - 4b + (2a + 4b)i - 5(a + bi) = 8i - 1$$

Theo giả thiết: (2a - 4b) + (2a + 4b)i - 5(a + bi) = 8i - 1

$$\Leftrightarrow$$
 -3a - 4b + (2a - b)i = -1 + 8i

$$\Leftrightarrow \begin{cases} -3a - 4b = -1 \\ 2a - b = 8 \end{cases} \Leftrightarrow \begin{cases} a = 3 \\ b = -2 \end{cases}$$

Vậy
$$|z| = \sqrt{a^2 + b^2} = \sqrt{13}$$

Bài 5: Cho số phức z thỏa mãn: i.z-+z=2+2i và z.z-=2. Khi đó z2 bằng?

Lời giải:

Đặt
$$z = a + bi(a, b \in R)$$
. Ta có: $z - = a - bi và z.z - = a2 + b2 = 2(1)$

Ta có:
$$i.z-+z=2+2i \Leftrightarrow i(a-bi)+a+bi=2+2i$$

$$\Leftrightarrow a+b+(a+b)i=2+2i \Leftrightarrow a+b=2 \ (2)$$

Từ (1) và (2) suy ra a = b = 1. Suy ra z=1+i

$$V$$
ây $z2 = (1 + i)2 = 1 + 2i - 1 = 2i$

Bài 6: Cho số phức z thỏa mãn (1 + i)(z - i) + 2z = 2i. Môđun của số phức:

$$w = \frac{\overline{z} - 2z + 1}{z^2} \, \text{là}$$

Lời giải:

Đặt $z = a + bi(a, b \in R)$. Ta có:

$$(1+i)(z-i) = (1+i)[a+(b-1)i] = a-b+1+(a+b-1)i$$

Từ giả thiết ta có: (1 + i)(z - 1) + 2z = 2i

$$\Leftrightarrow$$
 a - b + 1 + (a + b - 1)i + 2(a + bi) = 2i \Leftrightarrow (3a - b + 1) + (a + 3b - 1)i = 2i

$$\Leftrightarrow \begin{cases} 3a - b + 1 = 0 \\ a + 3b - 1 = 2 \end{cases} \Leftrightarrow \begin{cases} a = 0 \\ b = 1 \end{cases}$$

Suy ra z = 1 và

$$W = \frac{-i - 2i + 1}{-1} = -1 + 3i .$$

$$V_{ay} |w| = \sqrt{1^2 + 3^2} = \sqrt{10}$$

Bài 7: Cho số phức z thỏa mãn

$$\frac{5(z+i)}{z+1} = 2-i.$$

Khi đó môđun của số phức w = 1 + z + z2 là

Lời giải:

Đặt $z = a + bi(a, b \in R)$. Ta có

$$\frac{5(\overline{z}+i)}{z+1} = 2-i \Leftrightarrow \frac{5[a-(b-1)i]}{a+1+bi} = 2-i$$

$$\Leftrightarrow$$
 5a - 5(b - 1)i = (2 - i)(a + 1 + bi)

$$\Leftrightarrow$$
 3a - b - 2 + (a - 7b + 6)i = 0

$$\Leftrightarrow \begin{cases} 3a - b - 2 = 0 \\ a - 7b + 6 = 0 \end{cases} \Leftrightarrow \begin{cases} a = 1 \\ b = 1 \end{cases}$$

Suy ra z = 1 + i v a w = 1 + (1 + i) + (1 + i)2 = 2 + 3i.

Vây:
$$|w| = \sqrt{4+9} = \sqrt{13}$$

Bài 8: Phương trình $z^2 - 2z + 3 = 0$ có các nghiệm là

Lời giải:

Ta có: $\Delta' = 12 - 3 = -2 = 2i2$. Phương trình có hai nghiệm: $z1,2 = 1 \pm 2i$

Bài 9: Phương trình z4 - 2z2 - 3 = 0 có 4 nghiệm phức z1, z2, z3, z4. Giá trị biểu thức T = |z1|2 + |z2|2 + |z3|2 + |z4|2 bằng?

Lời giải:

Phương trình tương đương với: $z^2 = -1 = i^2$ hoặc $z^2 = 3$. Các nghiệm của phương trình là: $z^2 = i$, $z^2 = -i$, $z^3 = \sqrt{3}$, $z^4 = -\sqrt{-3}$.

$$V_{ay} T = 1 + 1 + 3 + 3 = 8$$

Bài 10: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z - 2i| = 4 là?

Lời giải:

Đặt $z = a + bi(a, b \in R)$. Ta có:

$$|z - 2i| = 4 \Leftrightarrow |a + (b - 2)i| = 4$$

$$\Leftrightarrow \sqrt{a^2 + (b-2)^2} = 4 \Leftrightarrow a^2 + (b-2)^2 = 16$$

Vậy tập các điểm biểu diễn số phức z là đường tròn tâm I(0;2), bán kính R=4

III. Bài tập vận dụng

Bài 1 Tập hợp các điểm biểu diễn số phức z thỏa mãn |z+3-2i|=4 là?

Bài 2 Cho hai số phức $z_1 = 1 + 2i$, $z_2 = 2 - 3i$. Phần thực và phần ảo của số phức $w = 3z_1 - 2z_2$ là?

Bài 3 Phần thực và phần ảo của số phức $z = (1 + \sqrt{3}i)^2$ là?

Bài 4 Phần ảo của số phức $z = (1 + \sqrt{i})^3$ là?

Bài 5 Thực hiện phép tính:

$$T = \frac{2+3i}{1+i} + \frac{3-4i}{1-i} + i\left(4+9i\right)$$

Bài 6 Môđun của số phức z thỏa mãn điều kiện z + (2 - i)z = 13 - 3i là?

Bài 7 Phần thực và phần ảo của số phức z thỏa mãn (1 - i)z - 1 + 5i = 0 là?

Bài 8 Môđun của số phức z thỏa mãn điều kiện (3z - z)(1 + i) - 5z = 8i - 1 là?

Bài 9 Thế nào là phần thực phần ảo, mô đun của một số phức? Viết *cô*ng thức tính mô đun của số phức theo phần thực phần ảo của nó?

Bài 10 Nêu định nghĩa số phức liên hợp với số phức z. Số phức nào bằng số phức liên hợp của nó?