

PROPOSTA DE TESTE GLOBAL N.º 3

TEMAS: CÁLCULO DIFERENCIAL II

MATEMÁTICA A - 12.º ANO - JANEIRO DE 2016

"Conhece a Matemática e dominarás o Mundo." Galileu Galilei

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1. Sejam a, b e c as medidas dos comprimentos dos lados de um triângulo rectângulo, com a < b < c.

Sabendo que $\log_4(c-a) + \log_4(c+a) = 3$, qual é o valor de *b*?

A 4

B 6

C 8

D 12

2. Na figura está representado, em referencial o.n. xOy, parte do gráfico de uma função f de domínio $\mathbb{R}\setminus\{2\}$.

Seja (u_n) a sucessão definida por $u_n = \frac{\ln\left(\frac{1}{n}\right)}{n^{15}}$. Qual é o valor de $\lim f(-u_n - 2)$?

- **A** −1
- **B** 0

C 1

D 2

3. Seja f a função de domínio \mathbb{R} definida por:

$$f(x) = \begin{cases} \frac{x^2 - 6x + 5}{x^2 - 1} & \text{se} \quad x < 1\\ & \text{, com } b \in \mathbb{R}^+\\ \frac{e^{b^2 x - b^2} - 1}{\sqrt{x} - x} & \text{se} \quad x > 1 \end{cases}$$

Sabendo que $\lim_{x\to 1} f(x)$ existe, qual é o valor de b?

- **A** −1
- **B** 1

C 2

D 4

4. Na figura está representado, em referencial o.n. xOy, parte do gráfico de uma função g de domínio \mathbb{R}^+ e uma recta r, assimptota do gráfico de g.

Sabe-se que:

• α é a inclinação da recta r, com $\alpha \in \left]0, \frac{\pi}{2}\right[$;

• a recta r intersecta o eixo Oy no ponto de coordenadas (0,2).

Qual é o valor de $\lim_{x \to +\infty} \left(\frac{3x^2}{g(x)} - x \right)$?

- **A** -6
- **B** $-\frac{2}{3}$
- $\frac{2}{3}$

- **D** 6
- 7. Na figura está representado em referencial o.n. xOy parte do gráfico de uma função f de domínio $\mathbb R$.

Seja g a função definida por $g(x) = \ln(f(x))$. Em qual das opções seguintes pode estar representado parte do gráfico da função g', função derivada de g.

Α

В

С

D

GRUPO II – ITENS DE RESPOSTA ABERTA

1. O número de bactérias numa cultura, em centenas, varia, em função do tempo, em horas, de acordo com a função:

$$B(t) = \begin{cases} k \times 1, 1^{bt} & \text{se} \quad 0 \le t \le 10 \\ \frac{k \times 1, 1^{bt}}{0, 5 + 0, 5 \times 1, 1^{bt - 20}} & \text{se} \quad t > 10 \end{cases}, \text{ com } k \in b, \text{ constantes reais positivas}.$$

- **1.1.** Sabendo que a função B é contínua, mostre que b=2
- **1.2.** Nas primeiras dez horas, qual é o aumento, em percentagem, da população de bactérias a cada duas horas? Apresente o resultado arredondado às décimas.
- **1.3.** Determine o instante depois das primeiras dez horas em que o número de bactérias na cultura é igual a dez vezes o número de bactérias inicial. Apresente o resultado em horas e minutos, minutos arredondados às unidades. Caso proceda a arredondamentos, conserve no mínimo quatro casas decimais.
- **1.4.** Com o passar do tempo, o número de bactérias na cultura tende para 2691. Qual é o valor de k? Apresente o resultado arredondado às unidades.
- 2. Considere a função f, de domínio \mathbb{R} , definida por $f(x) = \ln\left(\sqrt{\frac{e^{6x+4+\ln 4}}{4x^4+16x^2+16}}\right) 2$.
 - **2.1.** Mostre que $f(x) = 3x \ln(x^2 + 2)$, $\forall x \in \mathbb{R}$
 - **2.2.** Resolva, em \mathbb{R} , a inequação $3x \ln(3-x) f(x) \ge \ln(2x+2)$.
 - **2.3.** Estude a função g, de domínio $\mathbb{R} \setminus \{0\}$, definida por $g(x) = \frac{f(x)}{x}$ quanto à existência de assimptotas do seu gráfico. Caso existam, indica as suas equações.

3. Considera a função g, de domínio $\mathbb R$, tal que a recta de equação y=6x-2 é assimptota oblíqua do seu gráfico, quando $x\to\pm\infty$.

Seja
$$f$$
 a função de domínio \mathbb{R}^+ definida por $f(x) = \frac{xg(-x)}{g(x)}$.

Mostre que a recta de equação $y = -x - \frac{2}{3}$ é assimptota do gráfico de f .

4. Considere a função f, de domínio \mathbb{R} , definida por:

$$f(x) = \begin{cases} x \ln x - 2x & \text{se } x \ge 1\\ \frac{2e^{0.5 - 0.5x}}{x - 2} & \text{se } x < 1 \end{cases}$$

- **4.1.** Mostre que f'(1) = -1 e escreva a equação reduzida da recta tangente ao gráfico de f no ponto de abcissa 1.
- **4.2.** Seja $g(x) = \sqrt[3]{x^3 2x}$. Mostre que $(f \circ g)'(-1) = -\frac{1}{3}$
- **4.3.** Estude a função f quanto à monotonia e existência de extremos relativos.
- **4.4.** Determine $\lim_{x \to -\infty} f(x)$ e conclua sobre a existência de assimptota horizontal do gráfico de f, quando $x \to -\infty$.
- **5.** Considere a função h, de domínio $\mathbb{R} \setminus \{0\}$, definida por $h(x) = x^3 6\ln\left(\frac{1}{x^2}\right)$.
 - **5.1.** Estude a função *h*, quanto ao sentido das concavidades e à existência de pontos de inflexão do seu gráfico.
 - **5.2.** Mostre que o gráfico de h e a bissectriz dos quadrantes pares se intersectam pelo menos uma vez no intervalo $\left[\frac{1}{2},2\right]$.
 - **5.3.** Considere a recta r definida por 2y x = 4. A recta r intersecta o gráfico de h em três pontos A, B e C, sendo que A tem a menor abcissa e C tem a maior abcissa.

Recorrendo às capacidades gráficas da calculadora, determine a área do triângulo $\begin{bmatrix} AOC \end{bmatrix}$.

Na sua resposta deve:

- reproduzir o(s) gráfico(s) (devidamente identificado(s)) que achar necessário(s) para a resolução do problema;
- representar o triângulo [AOC];

- indicar as coordenadas dos pontos A e C, arredondadas às milésimas;
- indicar a área do triângulo [AOC], arredondada às décimas.

Exercício Extra (Geometria Analítica)

Na figura está representada, em referencial o.n. Oxyz, a pirâmide $\begin{bmatrix} ABCDV \end{bmatrix}$ cuja base é o quadrilátero $\begin{bmatrix} ABCD \end{bmatrix}$

Sabe-se que:

- o ponto *A* tem pertence ao plano *xOz*;
- a abcissa do ponto A é o dobro da abcissa do ponto V;
- O ponto *C* pertence ao eixo *Oz*;
- uma equação do plano ACV é 5x + 8y + 10z = 30;

$$\overrightarrow{AV} \cdot \overrightarrow{CA} = -56$$

a) Mostre que A(8,0,-1) e que V(4,-5,5).

Sugestão: designe por a, com a > 0, a abcissa do ponto V.

b) Admita que D(0,-4,-1). Mostre que uma condição que define o plano ABC é x-2y+2z=6 e determine a altura da pirâmide.

SOLUCIONÁRIO

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1.

- 2. D
- 3. В

GRUPO II - ITENS DE RESPOSTA ABERTA

Aproximadamente 46,4%

1.3. Passadas 15 horas e 35 minutos, aproximadamente.

 $x \in \left[-1, -\frac{2}{3}\right] \cup \left[2, 3\right[$ 2.2. A.V: x = 0. A.H.: y = 3, quando $x \to \pm \infty$

4.1.

 $\text{f \'e crescente em } \left] - \infty, -0 \right] \text{ em } \left[e, +\infty \right[\text{, \'e decrescente em } \left[0, e \right], \text{ tem m\'inimo relativo em } x = e \right. \\ \text{e tem m\'aximo relativo em } x = 0 \ . \\$ 4.3.

 $-\infty$; quando $x \to -\infty$ o gráfico de f não tem assimptota horizontal. 4.4.

o gráfico de f tem a concavidade voltada para baixo em $]-\infty,0[$ e em $]0,\sqrt[3]{2}$], tem a concavidade voltada para cima em 5.1. $\left[\sqrt[3]{2},+\infty\right[\ \text{e tem ponto de inflexão em} \ x=\sqrt[3]{2} \ .$

 $A_{[AOC]} \approx 2.9$ 5.3.

E.E. **a**) 6