HW4 – Report

1. Name: 徐嘉駿, Institute: 資應所, Student ID: 107065528

2. Implement

● **Divide Data**:如同這次作業 spec 的切割方法,將 data 切成 blocks,以下 為 configuration:

(1) Blocking Factor: 32
 (2) Blocks: (data 量/32)²
 (3) Threads: 32*32

● Implementation: 如同這次作業 spec 的實作方法,將過程分為好幾 rounds,每 round 分為 3 個 phases:

```
for (int r = 0; r < round; ++r) {
    phase1<<<grid1, blk, B*B*sizeof(int)>>>(r, n, V, d_Dist, B);
    phase2<<<grid2, blk, 2*B*B*sizeof(int)>>>(r, n, V, d_Dist, B);
    phase3<<<grid3, blk, 2*B*B*sizeof(int)>>>(r, n, V, d_Dist, B);
}
```

(1) Phase 1: 運算 pivot block

(2) Phase 2: 運算 pivot row blocks & pivot column blocks

(3) Phase 3: 運算剩下的 blocks

(a) Phase 1

(b) Phase 2

(c) Phase 3

3. Profiling Results

使用 p20k1 做 measurement

以下為 Occupancy, sm efficiency, shared memory load/store throughput, global load/store throughput 測量之結果:

Block dimension: (32, 32)

Block dimension: (16, 16)

	` ' '				
Invocations	Metric Name	Metric Description	Min	Max	Avg
Device "GeFor	rce GTX 1080 (0)"				_
Kernel:	phasel(int, int, int, int*, int)				
1250	achieved_occupancy	Achieved Occupancy	0.124447	0.124539	0.124492
1250	sm_efficiency	Multiprocessor Activity	0.00%	0.00%	0.00%
1250	shared_load_throughput	Shared Memory Load Throughput	5.4028GB/s	10.568GB/s	7.1619GB/s
1250	shared_store_throughput	Shared Memory Store Throughput	180.04MB/s	1.0980GB/s	291.58MB/s
1250	gld_throughput	Global Load Throughput	2e+09GB/s	4e+09GB/s	3e+09GB/s
1250	gst_throughput	Global Store Throughput	7e+08GB/s	1e+09GB/s	9e+08GB/s
Kernel:	phase2(int, int, int, int*, int)				
1250	achieved_occupancy	Achieved Occupancy	0.949688	0.960606	0.955236
1250	sm_efficiency	Multiprocessor Activity	0.00%	0.00%	0.00%
1250	shared_load_throughput	Shared Memory Load Throughput	1201.5GB/s	1267.0GB/s	1239.3GB/s
1250	shared_store_throughput	Shared Memory Store Throughput	71.812GB/s	173.72GB/s	82.529GB/s
1250	gld_throughput	Global Load Throughput	2e+08GB/s	2e+08GB/s	2e+08GB/s
1250	gst_throughput	Global Store Throughput	6e+07GB/s	6e+07GB/s	6e+07GB/s
	phase3(int, int, int, int*, int)				
1250	achieved_occupancy	Achieved Occupancy	0.904690	0.906243	0.905325
1250	sm_efficiency	Multiprocessor Activity	1.34%	1.39%	1.35%
1250	shared_load_throughput	Shared Memory Load Throughput	1857.7GB/s	1997.4GB/s	1962.9GB/s
1250	shared_store_throughput	Shared Memory Store Throughput	116.54GB/s	125.18GB/s	123.01GB/s
1250	gld_throughput	Global Load Throughput		5e+05GB/s	5e+05GB/s
1250	gst_throughput	Global Store Throughput	1e+05GB/s	2e+05GB/s	2e+05GB/s

結論:在 occupancy 中,block dimension 16x16 明顯比 block dimension 32x32 來的小很多,代表同時 active 的 warp 數比較少。由於 GeForce GTX 1080 每個 block 一次最多只能 launch 1024 個 threads,所以 blocking factor 最多只能設置 32,此為 bottleneck 所在。

4. Experiment & Analysis

Time Distribution:

使用以下test cases 做 measurement: p11k1: vector ->11000, edge->505586 p13k1: vector ->13000, edge->1829967 p15k1: vector ->15000, edge->5591272 p17k1: vector ->17000, edge->4326829 p20k1: vector ->20000, edge->264275

(1) Time Distribution

數值:

test case	I/O	Computing	Memory Copy	total time
p11k1	1.25	3.8750511	0.53812	5.6631711
p13k1	2.3125	6.050679	0.5383	8.901479
p15k1	2.75	9.136135	0.5384	12.424535
p17k1	2.84375	13.9583435	0.53806	17.3401535
p20k1	3.78125	21.705363	0.53804	26.024653

(2) Optimization

使用 c21.1 做 measurement

5. Conclusion

這次的作業我寫了好幾個版本,從一開始只用 global memory 做存取、copy 至 shared memory 到最後解決 bank conflict 的問題,一步一步慢慢加速,也從中了解到記憶體存取方法及位置對於 GPU 計算的重要性。