Question One (12 marks)

Marks

a) Find
$$\int \frac{dx}{9+x^2}$$
 [1]

b) Given
$$f(x) = \frac{1}{2} \sin^{-1} 2x$$
:

i) State the range of
$$f(x)$$
 [1]

ii) State the domain of
$$f(x)$$
 [1]

iii) Sketch
$$f(x)$$
 [1]

c) Solve
$$\frac{5}{x-4} < 1$$
 [2]

d) Evaluate
$$\int_0^1 x \sqrt{1-x^2} dx$$
 using the substitution $u = 1 - x^2$ [3]

e) i) Show that there is a solution to
$$x^3 = x + 1$$
 between $x = 1$ and $x = 2$ [1]

ii) Use one application of Newton's method and x = 1.5 to find a [2] further approximation correct to one decimal place.

Question Two (12 marks)

Marks

- a) The point P(2,3) divides the interval AB internally in the ratio 2:3. [2] If A has coordinates (-1,6) find the coordinates of B.
- b) A function is defined $f(x) = \frac{3}{x} 4$.

i) Find
$$f^{-1}$$
 [1]

ii) Evaluate
$$f^{-1}(4)$$
 [1]

c) Given $P(x) = 2x^3 - 17x^2 + 7x + 8$:

i) Show that
$$(x-1)$$
 is a factor of $P(x)$ [1]

- ii) Hence fully factorise P(x) [2]
- d) The diagram shows the parabola $x^2 = 4ay$. The point $P(2ap, ap^2)$ where $p \neq 0$ lies on the parabola. The normal at P cuts the y-axis at L. M is the midpoint of LP.

- i) Show that the equation of the normal to the parabola at P is $x + py = ap^3 + 2ap$. [2]
- ii) Find the coordinates of L, the point where the normal cuts the y-axis. [1]
- iii) Show that SM is parallel to the tangent at P. [2]

[3]

Question Three (12 marks)

Marks

a) Find the size of the acute angle between the lines whose equations are

$$x-2y-1=0$$
 and $x+3y+2=0$

b) A tower TO is due north of an observer at A. The angle of elevation from A to the top of the top of the tower T is 10°. From a point B due east of the tower, the angle of elevation to the top of the tower is 15°. The distance from A to B is 400m

- i) Find an expression for AO in terms of h. [1]
 ii) Calculate the height h of the tower. [3]
 iii) Find the bearing of A from B [2]
- c) The polynomial P(x) is defined as $P(x) = x^3 + ax^2 + 2ax + b$ [3] where a and b are constants. The zeros of P(x) are 2, -3 and γ . Find the values a, b and γ

Question Four (12 marks)				
a)	Find	$\int 2\cos^2 4x dx$	[2]	
b)		velocity of a particle is given by $\dot{x} = 2 - 3e^{-t}$ where x is the displacement is the time in seconds. Initially the particle is at the origin.	nt in metre	
	i) ii) iii) iv)	Find an expression for the acceleration \ddot{x} of the particle at any time Find an expression for the displacement x of the particle at any time Find the time when the particle is next at rest (give exact answer). Explain what happens to the acceleration and hence the velocity as t becomes very large.		
c)		by mathematical induction that $2 \times 5^{n-1} + 12^n$ is ble by 7 for all integers $n \ge 1$	[3]	

Question Five (12 marks)

Marks

a) In the diagram below the tangent at P meets AB at X.

If
$$AB = 5.5cm$$
 and $PX = \sqrt{15}cm$ find the length of BX .

[2]

b) Evaluate
$$\lim_{x \to \infty} \frac{2x^2 - 3x + 1}{5x^2 + x - 4}$$
 [1]

c) i) Write
$$\sqrt{12}\sin x + 2\cos x$$
 in the form $r\sin(x+\alpha)$ [2]

ii) Hence or otherwise solve
$$\sqrt{12} \sin x + 2 \cos x = -2\sqrt{2}$$
 for $0 \le x \le 2\pi$ [3]

d) i) Prove
$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$
 [2]

ii)

Hence find the value of θ in the triangle

[2]

Question Six (12 marks)

Marks

- a) If the displacement of a particle is given by $x = 2\sin 2t + 3\cos 2t$, show that the motion of the particle is simple harmonic.
- b) Jane is inflating balloons for the Year 12 Formal. Each empty balloon is being inflated so that its volume increases at the rate of $8cm^3/s$.
 - i) Show that the radius at any time t is $r = \sqrt[3]{\frac{6t}{\pi}}$ [2]
 - ii) Find the rate of increase of the surface area after 4 seconds [2]
 - The balloon will burst when the surface area reaches $3000cm^2$. [3] After how many seconds should Jane cease inflation?
- c) Two circles touch each other externally at C. The tangent to the smaller circle at A meets the larger circle at D and E. EC meets the smaller circle at B. FC is the common tangent to both circles. Copy or trace the diagram.

i) Prove
$$\angle FAC = \angle FCA$$
 [2]

ii) Prove
$$\angle ACD = \angle ACB$$
 [2]

Question Seven (12 Marks)

Marks

a) Find the gradient of the tangent to
$$y = \sin^{-1}(\tan x)$$
 at $x = 0$.

[2]

b)

A particle is projected from the top of a tower with a velocity of $30ms^{-1}$ to hit an object that is 120 metres away in the horizontal direction and 35 metres below in the vertical direction (as shown above). The components of its displacement after t seconds are:

$$x = 30t \cos \theta$$

$$y = 30t \sin \theta - 5t^2 + 35$$
 Do not prove these.

- i) If the particle hits the object prove $80 \sec^2 \theta 120 \tan \theta 35 = 0$ [3]
- ii) Find the angle of projection to the nearest minute [3]
- iii) Find the time taken for the particle to reach the object [2]

c) In triangle ABC below
$$AB = p$$
, $AD = q$, $AC = r$, $\angle BAD = \frac{\pi}{3} = \angle DAC$ [2]

Show that $\frac{1}{p} + \frac{1}{r} = \frac{1}{q}$


```
x-1) 2x3-17x2+7x+8
                 -15x2+7x+8
                -15x2+15x
                       - 82c+8
   ... P(x) = (2c-1)(2x^2-15x-8)
           = (x-1)(2x + 1)(x-8)
    Gradient of tangent at P=P
    Gradient of normal at P= -p
-: Equation of normal at P: y-y=m(x-x,)
                            y-ap2 = - 1 (x-2ap)
                  - x + py = ap 3 + 2 ap
  Coordinates of 6 at 20=0
    xtpy=ap3+ 2ap
                             S (0,a)
               =ap^2+a-a
-: Crackent of SM = Gradient of tangent at P = P
-: SM 11 to tangent at P.
```


2011 Ext 1 Trial - Solution to Question 4

(a)
$$\cos 2x = 2\cos^2 x - 1 \implies 2\cos^2 4x = \cos 8x + 1$$

 $\int 2\cos^2 4x \, dx = \int (\cos 8x + 1) \, dx$
 $= \frac{\sin 8x}{8} + x + C$

(b)(i)
$$x = 2 - 3e^{-t}$$
 $x = 3e^{-t}$

(b)(ii)
$$\dot{x} = 2 - 3e^{-t}$$
 $x = \int (2 - 3e^{-t}) dt = 2t + 3e^{-t} + C$
 $x = 0 \text{ when } t = 0$ $0 = 2(0) + 3e^{0} + C \Rightarrow C = -3$
 $\therefore x = 2t + 3e^{-t} - 3$

(b)(iii)
$$\dot{x} = 2 - 3e^{-t}$$
 $\dot{x} = 0 \Rightarrow 0 = 2 - 3e^{-t}$ $3e^{-t} = 2$ $e^{-t} = \frac{2}{3} \Rightarrow -t = \ln\frac{2}{3}$ $\therefore t = -\ln\frac{2}{3} = \ln\frac{3}{2}$ s

- i.e. acceleration approaches 0 and velocity approaches $2 \, m/s$ as $t \to \infty$ $x \to 0^+$ and $x \to 2^-$
- (c) Step 1 : Prove true for n=1.

$$2 \times 5^{1-1} + 12^1 = 2 + 12 = 14 = 2 \times 7$$

.. Divisible by 7 for n=1

Step 2 : Assume true for n=k.

 $2 \times 5^{k-1} + 12^k = 7A$ where A is some

integer.

Step 3 : Prove true for n = k + 1.

i.e. prove
$$2 \times 5^{k+l-1} + 12^{k+1} = 7B$$

$$LHS = 2 \times 5^{k+l-1} + 12^{k+1}$$

LIIS =
$$2 \times 3$$
 + 12
= $5^1 \times 2 \times 5^{k-1} + 12 \times 12^k$
= $5 \times (7A - 12^k) + 12 \times 12^k$
= $35A - 5 \times 12^k + 12 \times 12^k$
= $35A + 7 \times 12^k$
= $7(5A + 12^k)$
= $7B$ where $B = 5A + 12^k$

LHS = RHS

Step 4: If true for n=k, then proven true for n=k+1. Since proven true for n=1, must be true for n=2, must be true for n=3, etc. Hence, proven true by mathematical induction for all positive integers.

```
Question 5
 Extension 1 Solutions
) let BX = 2
 x(x+5.5)=(15)
  \chi^2 + 5 \cdot 5\chi - 15 = 0
 2\pi^2 + 11\pi - 30 = 0
 (2n+15)(n-2)=0
 x = -7.5, 2
  but 2 70
                             11m
12->00
       In sinn + 2 cosx = sinx cosx + cosx sind
       cos x = 12
                       sin \alpha = \frac{2}{V}
                        \sin \alpha = \frac{4}{r^2}
      \cos^2 \alpha = \frac{12}{-1}
     sind =
```

sin
$$(x + \frac{\pi}{4}) = -\frac{\sqrt{2}}{2}$$
 $x + \frac{\pi}{4} = \frac{5\pi}{4}, \frac{7\pi}{4}$
 $x = \frac{13\pi}{12}, \frac{19\pi}{12}$
 $x = \sin 2\theta \cos^2 \theta + \sin \theta \cos 2\theta$
 $= 2\sin 2\cos^2 \theta + \sin \theta (1 - 2\sin^2 \theta)$
 $= 2\sin \theta (1 - \sin^2 \theta) + \sin \theta (1 - 2\sin^2 \theta)$
 $= 3\sin \theta - 4\sin^2 \theta$
 $= RHS$

ii) $\sin 3\theta = 2\sin \theta$
 $\sin \theta - 4\sin^2 \theta = 3\sin \theta$
 $\sin \theta - 4\sin \theta = 3\sin \theta$
 $\sin \theta - 3\cos \theta = 3\cos \theta$
 $\sin \theta -$

$$(L) i) V = \frac{4 \pi r^3}{3}$$

$$\frac{dV}{dt} = \frac{dV}{dt} \times \frac{dr}{dt}$$

$$k = \frac{tt_{-3}}{c}$$

$$\frac{c}{c} + = r^3$$

$$= ftr \times \frac{2}{ttn^2}$$

$$=\frac{1}{\sqrt{\frac{24}{11}}}$$

$$r^2 = \frac{750}{11}$$

$$k = \frac{\pi \times \left(\sqrt{25^{\circ}}\right)^{3}}{6}$$

Question 7:	a) let $u = \tan x$ $y = \sin^2 u$ $dy = \sec^2 x \qquad dy = \frac{1}{3}$		e) $x = 30 + \cos \theta$ $120 = 30 \times t \times \frac{4}{5}$
	$\frac{dy}{dx} = \sec^2 x \qquad \frac{dy}{du} = \frac{1}{\sqrt{1-u^2}}$		t = 5s. (2)
	$\frac{dy}{dx} = \sec^2 x \cdot \frac{1}{\sqrt{1-u^2}}$		c) In AABD:
	$= \frac{\sec^2 x}{\sqrt{1-\tan^2 x}}$		Area $\triangle ABD = \frac{1}{2} pq sin \frac{\pi}{3}$
	when x =0 my = 3ec20 =1	O	In AADC:
	b) When particle hits object, $x = 120$: $120 = 30 + \cos \theta$ $t = 4$	0	Area $\triangle ADC = \frac{1}{2} qr \sin \frac{\pi}{3}$
	when particle hits object, y=0:		In DABC: Area DABC = 1 pr sin 211
	0 = 30t sin 0 - 5t3 +35	3	Area DABC = Area DABD + Area DADC
	Sub (1) Into (2)! $0 = 30x \frac{4}{\cos \theta} = 5 \ln \theta - 5 \left(\frac{4}{\cos \theta}\right)$		$\frac{1}{2} \operatorname{prein} \frac{2\pi}{3} = \frac{1}{2} \operatorname{pqein} \frac{\pi}{3} + \frac{1}{2} \operatorname{qrein} \frac{\pi}{3}$
	= 120tan8 - 80sec 0	→ 35	$\frac{pr \sin \pi}{3} = pq \sin \pi + q c \sin \pi$
	b) 80(1+ tan θ) -120 tan θ -35=0	()	PC 3 Pq + qc
	$80 \tan^2 \theta - 120 \tan \theta + 45 = 0$ $16 \tan^2 \theta - 24 \tan \theta + 9 = 0$ $(4 \tan \theta - 3)^2 = 0$		
	4 tan8 = 3		
	Ð 3 36° 52' (nec		