1, (a) A>B (x) [172, 173, 174]

(b) A> ((v) [1+2,2+2]

(c) B > A (v) [2>1,3>1,4),572]

 $(d) B \rightarrow ((v) [232,332,432,532]$

(e) () A (x) [2), 2)2]

(f) $C \rightarrow B$ (x) $\begin{bmatrix} 2 \rightarrow 2, 2 \rightarrow 3, 2 \rightarrow 4, 2 \rightarrow 5 \end{bmatrix}$

(9) AB> ((U) [,2>2, 13>2, 14>2,25+2]

(h) A(+) B Q) [12-)2,12-)3,12+4]

(i) B(→A (V) [22→1, 32→1, 42→1, 52→2)

- (a) $A \rightarrow B$, $B c \rightarrow D$ then $A (\rightarrow D is correct (U))$
- (b) AB+C then A+C is incorrect (x)
 ourse class, Student are alctemine the teacher, but only
 the art course can not determine teacher.
 - (c) Corvect.
 - (d) $2f A \rightarrow C$ and $B \rightarrow C$ and $ABC \rightarrow D$, then $A \rightarrow D$ is incorrect. Because $A \rightarrow C$, $B \rightarrow C$ and interpret the $C \rightarrow D$ but not $A \rightarrow D$.

3. R (AB, C, D, E)

 $A \rightarrow B$, $B \rightarrow D$, so $A \rightarrow D$, and $cD \rightarrow E$, so $A \leftarrow C \rightarrow E$ so $\{AC\}^{\dagger} = \{ABCDE\} = R$.

 $B \rightarrow 0$, $CD \rightarrow E$ So $BC \rightarrow E$, and $E \rightarrow A$, So $BC \rightarrow A$. So $\{BC\}^{\dagger} = [ABCDE] = R$.

 $CD \rightarrow E$, $E \rightarrow A$, $A \rightarrow B$ So $CD \rightarrow A$, $CD \rightarrow B$. So $S \subset DS^{\dagger} = \{AB \subset DE\}^{=P}$. $E \rightarrow A$, $A \rightarrow B$, $B \rightarrow D$, So $E \rightarrow B$, $E \rightarrow D$. So $\{CE\}^{\dagger} = \{ABCDE\} = P$

candidate key is {ACI [BE] [C]] {CE].

(a) $A \supset B(D)$, $S \supset D \supset E$, $S \supset \{A\}^{\dagger} = \{ABCDE\}$ $F \supset GH$, $S \supset \{AF\}^{\dagger} = \{ABCDEF\}^{\dagger} = P$ So candidate key is $\{AF\}$.

(b) A>BCD, ABOE, SO A>AD>E.

SO AD>E is canon redundant, change to SA>E)

F>GH, SO F>H.

So EFG >H is redundant. change to \$F>H}
Then the canonical cover is \$A>BCD, A>E, F>HJ.?

 $A \rightarrow C$, $B \rightarrow D$, SO $ABJ^{\dagger} = \{ABCD\}$ $B \rightarrow D$, $DE \rightarrow F$, SO $BE \rightarrow F$. SO $SABEJ^{\dagger} = \{ABCDEF\} = R$.

(ABE) is a condidate key

cb) A is a key and attatribute in is one both right and left side in the new dependent.

So we now have $\{A \rightarrow B, A \rightarrow C, DE \rightarrow F, B \rightarrow D\}$ now $\{A\}^{+} = \{ABCD\}$, So if A can determine the E, we can infer the $\{A\} \rightarrow \{F\}$. So the new dependency is $\{A \rightarrow E\}$ or $\{C \rightarrow E\}$ or $\{B \rightarrow E\}$ or $\{D \rightarrow E\}$

6. $F_1 = \{A \rightarrow B, B \rightarrow C\} \rightarrow \text{it can imply the } A \rightarrow C$ $F_2 = \{A \rightarrow B, A \rightarrow C\} \rightarrow \text{it can not imply the } B \rightarrow C$

So Fz is equalivalent to the Fz

7. CO) $\langle A \rightarrow B \rangle \quad [1 \rightarrow 2, 5 \rightarrow 2]$ $\langle c \rightarrow B \rangle \quad [3 \rightarrow 2, 4 \rightarrow 2, 6 \rightarrow 2]$ $\langle A \otimes C \rightarrow B \rangle \quad [13 \rightarrow 2, 14 \rightarrow 2, 53 \rightarrow 2, 56 \rightarrow 2]$

Cb) $F = \{A \Rightarrow B, C \Rightarrow B, AC \Rightarrow B\}$ candicate key = $\{A \Rightarrow B\}$ because $\{AC\}^+ = F$ candicate key = $\{A \Rightarrow B\}$ because $\{AC\}^+ = F$ candicate key = $\{A \Rightarrow B\}$ because $\{AC\}^+ = F$ candidate $\{AB\}^+ = \{A \Rightarrow B, C \Rightarrow B\}$ because $\{AC\}^+ = F$ candicate key = $\{A \Rightarrow B\}$ because

R=SAB] R= [AC] &
so the result is SAB], [AC]

8. ca) $\{AB\} = \{ABCD \Rightarrow E\} = R$. $as \{AB \Rightarrow BC\} \{BC \Rightarrow CD\} \{CD \Rightarrow DE\} \{BC\} = \{ABCDE\} = R$. $\{BC\} = \{ABCDE\} = R$. $as \{BC \Rightarrow CD\} \{CD \Rightarrow DE\} \{DE \Rightarrow A\}$

(BDE3 = [ABCDE] = P.

SBPE3 = [ABCDE] is are randicate keys for P.

So {ABS [BC], [BDE] is are randicate keys for P.

- SCD→E 3 SDE→A3 is tola violations (6)
- (c) RI= (CDE) Rz=[ABCD] not & violate the BCNF.
 - R2= { BCDE} DE > A is do violates the BCNF (d) $R_1 = \{DEA\}$ R3 = SCDEA] SBCD).
 - At CD-)E voi violetes 3NF. (e)

R4: SADE]

(b) { StulD -> StulVame, profID -> profOffice)

(b) { StulD, profID, course} = R.

candidate key: { StulD, profID, course}

(c) StuID→ StuName Violate the BCNI.

Sto the Ri = SStuID, profID]

StuName

Ri= { StuID, profID, course, profoffice}. Violate because profID → profoffice

R3 = 1 profID, profossice]

R4 = { profID, stuID, profOffice courses

for R4, candidate key is [profID, stuID, course].
So the result is R1, R3, R4

(d) F=1 stulb -> stu/vame, profID-> profoffice, stulD => profID => course, profID -> course J

(e) StuID3 > profID, profID > profOffice, profID > course.

So stuID> profOffice, student stuID > course.

[StuID] += R, (StuID) is candidate key

(f) profID → profoffice violates the BCNF

RI = SprofID, profoffice]

Rz = SprofID, stuID, course]

Candiclate key for Rz is {StuID}.

StulD => course (V)

profID => course violates BCNF.

R3 = { profID , course].

P4 = { StuID , profID } } => { StuID , profID } } => { StuID , profID } course}

So the result is { StuID , course}

{ profID , course}

{ profID , profOffice}.

10

(1) SABSt = SABCEFD] #R.

SBSt = SBEFCDAS

SGSt = SGS.

SABS is not a surkey

(1) $P SBJ^{\dagger} = [ABCDEF]$ $SBGJ^{\dagger} = SABCDEFGJ^{\dagger} = P$ $SCFGJ^{\dagger} = SABCDEFGJ^{\dagger} = P$ $SCFGJ^{\dagger} = SABCDEFGJ^{\dagger} = P$ $SCDGJ^{\dagger} = SABCDEFGJ^{\dagger} = P$ SCDG

(3)

 $B \rightarrow C$, $B \rightarrow E$ and $CE \rightarrow F$ can imply $B \rightarrow CE \rightarrow F$ So $B \rightarrow F$ is should be deleted. Then $B \rightarrow C$, $B \neq E$, and be written as $B \rightarrow CE$. So the $F_C = \{AB \rightarrow C, B \rightarrow CE, CF \rightarrow D, CD \rightarrow B, C \rightarrow A\}$