Analysis of the Ensemble Kalman Filter for Inverse Problems

Matthieu Bulté 17.01.2019

Inverse problems

Given a continuous map $\mathcal{G}: \mathcal{X} \to \mathcal{Y}$ between two separable Banach spaces \mathcal{X} and \mathcal{Y} , we would like to identify the *parameter* $u \in \mathcal{X}$ satisfying

$$y = \mathcal{G}(u) + \eta, \tag{IP}$$

where $y \in \mathcal{Y}$ is the observation and $\eta \in \mathcal{Y}$ is the observational noise. The operator Γ here is a symmetrical positive-definite operator describing the correlation structure of the observational noise. For simplicity, we limit ourselves to the case where $\mathcal{Y} = \mathbb{R}^K$ for $K \in \mathbb{N}$.

A key element in understanding and solving inverse problems is the *least* squares functional $\Phi: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, measuring the model-data misfit, given by

$$\Phi(u;y) = \frac{1}{2} \left\| \Gamma^{-1/2}(y - \mathcal{G}(u)) \right\|_{\mathcal{Y}}^{2}, \tag{LS}$$

where Γ is a positive semi-definite operator describing the covariance structure of the noise η .

Regularization

In general, minimizing the model-data misfit (LS) is *ill-posed*: that the solution might not exist or not be unique. To avoid this, we employ *regularization* techniques to improve the solvability of the system. We consider the following two approaches

• Optimization approach. Replace the minimization problem (LS) by

$$u^* = \arg\min_{u \in \mathcal{X}} \Phi(u; y) + ||u - u_0||_{\mathcal{C}}^2,$$

for some $u_0 \in \mathcal{X}$ and covariance operator \mathcal{C} .

• Bayesian approach. Consider $u \sim \mu_0$ and $\eta \sim N(0, \Gamma)$ in (IP) to obtain

$$u^*=u|y\sim\mu,$$

where $\mu(du) \propto \exp(-\Phi(u;y))\mu_0(du)$.

A comparison and motivation for the approaches is done by T.J. Sullivan [5]. In this talk, we focus on the Bayesian approach to regularization of inverse problems.

Gaussian Process

We wish to recover a function $u^{\dagger} \in H_0^1([0,1])$ from noisy evaluation y_1, \ldots, y_{K-1} of u^{\dagger} at nodes x_1, \ldots, x_{K-1} where $K \in \mathbb{N}$ and $x_k = k/K$. This translates to the following inverse problem

$$y = \mathcal{O}(u^{\dagger}) + \eta,$$

where $y \in \mathbb{R}^K$ and $\mathcal{O}(u) = (u(x_1), \dots, u(x_{K-1}))$. We regularize the problem using the Bayesian approach: we let $\eta \sim N(0, \gamma 1)$ with $\gamma = 0.01$ and $u \sim N(0, (-\Delta)^{-1})$.

This example will be used along the presentation to illustrate different concepts and results.

EnKF for inverse problems

The EnKF algorithm approximates partially, noisily observed dynamical systems by evolving an ensemble of $J \in \mathbb{N}$ particles $\{u_n^{(j)}\}_{j=1}^J$ for each time step $n \in \mathbb{N}$. We construct an artificial dynamic by discretizing the interpolation between μ_0 and μ : given a step size $h \in \mathbb{R}$, we define

$$\mu_n \propto \exp(-nh\Phi(u;y))\mu_0(\mathrm{d}u)$$
 for $n=0,\ldots,h^{-1}$.

Applying the EnKF to this dynamic gives the following update rule

$$u_{n+1}^{(j)} = u_n^{(j)} + C^{\text{up}}(u_n)[C^{\text{pp}}(u_n) + h^{-1}\Gamma]^{-1}(y_{n+1}^{(j)} - G(u_n^{(j)})), \quad \text{(ENKF-IP)}$$

with

$$\begin{split} y_{n+1}^{(j)} &= y + \xi_{n+1}^{(j)}, & C^{\text{up}} &= \hat{\text{cov}}(u, \mathcal{G}(u)), \\ \{\xi_n^{(j)}\}_{n,j} &\sim \text{N}(0, \Sigma) \text{ i.i.d }, & C^{\text{pp}} &= \hat{\text{cov}}(\mathcal{G}(u), \mathcal{G}(u)). \end{split}$$

The initial ensemble $\{u_0^{(j)}\}_{j=1}^J$ can be constructed from J i.i.d. draws of the distribution μ_0 . However, we will see later that alternative constructions of the initial ensemble might be preferable. An analysis of the large ensemble limit can be found in [2, 3, 1].

Continuous-time limit

Instead of considering how well the ensemble constructed by the EnKF approximates u|y in the large ensemble limit, we study the algorithm for $h \to 0$. By rewriting the update rule (ENKF-IP) and taking $h \to 0$, one recognizes the Euler-Maruyama discretization of the following coupled system of SDEs

$$\frac{\mathrm{d}u^{(j)}}{\mathrm{d}t} = C^{\mathrm{up}}(u)\Gamma^{-1}\left(y - \mathcal{G}(u^{(j)}) + \sqrt{\Sigma}\frac{\mathrm{d}W^{(j)}}{\mathrm{d}t}\right),\,$$

where $\{W^{(j)}\}_{j=1}^J$ are independent Brownian motions. Assuming that $\mathcal{G} = A$ is linear and that the observations are noise-free, that is $\Sigma = 0$, the coupled

system of SDEs become the following system of ODEs

$$\frac{\mathrm{d}u^{(j)}}{\mathrm{d}t} = \hat{\mathrm{cov}}(u, Au)\Gamma^{-1}(y - Au^{(j)})$$

$$= \frac{1}{J} \sum_{k=1}^{J} \langle A(u^{(k)} - \overline{u}), y - Au^{(j)} \rangle_{\Gamma}(u^{(k)} - \overline{u})$$

$$= A^{T}\Gamma^{-1}(y - Au^{(j)})\hat{\mathrm{cov}}(u, u)$$

$$= -\hat{\mathrm{cov}}(u, u)D_{u}\Phi(u^{(j)}; y).$$
(ODE)

Hence, each particle follows a preconditioned gradient flow for $\Phi(\cdot; y)$. This draws a link between a link between the optimization and Bayesian approaches to inverse problems.

Analysis

While the construction of the continuous model only justifies considering t up to 1, we now study properties of the ensemble for $t \to \infty$. To simplify the analysis, we limit ourselves to the linear noise-free case, where $y = Au^{\dagger}$. We start by introducing the following useful quantities:

$$e^{(j)} = u^{(j)} - \overline{u}, \qquad r^{(j)} = u^{(j)} - u^{\dagger}, \qquad E_{ij} = \langle Ae^{(i)}, Ae^{(j)} \rangle_{\Gamma}.$$

We can then cite the following results from [4] about the behaviour of the system (ODE).

Theorem 1. Let \mathcal{X}_0 be the linear span of $\{u^{(j)}(0)\}_{j=1}^J$, then the system of equations (ODE) possesses a unique ensemble of solutions $\{u^{(j)}\}_{j=1}^J$ with $u^{(j)} \in C([0,\infty);\mathcal{X}_0)$ for every $j=1,\ldots,J$.

Theorem 2. The matrix E converges to 0 for $t \to \infty$ with $||E||_2 = \mathcal{O}(Jt^{-1/2})$.

Theorem 3. Let \mathcal{Y}_0 denote the linear span of $\{Au^{(j)}(0)\}_{j=1}^J$, and \mathcal{Y}_\perp denote the orthogonal completement of \mathcal{Y}_0 w.r.t. $\langle \cdot, \cdot \rangle_{\Gamma}$. Assume further that the initial ensemble has been chosen such that $\dim(\mathcal{Y}_\perp) \leq \min(\dim(\mathcal{Y}), J-1)$. Then we can decompose $Ar^{(j)} = Ar_0^{(j)} + Ar_\perp^{(j)}$ with $Ar_0^{(j)} \in \mathcal{Y}_0$ and $Ar_\perp^{(j)} \in \mathcal{Y}_\perp$ and obtain $Ar_0^{(j)} \to 0$ as $t \to \infty$.

Numerical results

We now wish to observe the convergence properties of the continuous-time limite of the EnKF algorithm. Since the Gaussian process system is not finite dimensional, a discretization is required. We base this discretization on a spectral Karhunen–Loève expansion of the Gaussian process which is then cut to a finite number of terms, N=100.

In the algorothm, the initial ensemble is constructed based on the first J eigenpairs (λ_j, ψ_j) of the KL expansion. Thus $u^{(j)} = \sqrt{\lambda_j} \psi_j z_j$ where $\{z_j\}_{j=1}^J$ are i.i.d. realizations of N(0,1) and

$$\lambda_j = (\pi j)^{-2}$$
 $\psi_j(x) = \sqrt{2}\sin(\pi nx).$

Results of the experiments are to be found in figures and.

Figure 1: Comparison of the truth to several EnKF estimates for J=5,10,50

Figure 2: Convergence of EnKF the estimates for J = 5, 10, 50

References

- [1] O. G. Ernst, B. Sprungk, and H.-J. Starkloff. Analysis of the ensemble and polynomial chaos kalman filters in bayesian inverse problems. SIAM/ASA Journal on Uncertainty Quantification, 3(1):823–851, 2015.
- [2] M. Goldstein and D. Wooff. *Bayes linear statistics: Theory and methods*, volume 716. John Wiley & Sons, 2007.
- [3] K. J. Law, H. Tembine, and R. Tempone. Deterministic mean-field ensemble kalman filtering. *SIAM Journal on Scientific Computing*, 38(3):A1251–A1279, 2016.
- [4] C. Schillings and A. M. Stuart. Analysis of the ensemble kalman filter for inverse problems. SIAM Journal on Numerical Analysis, 55(3):1264–1290, 2017.
- [5] T. J. Sullivan. *Introduction to uncertainty quantification*, volume 63. Springer, 2015.