Dans la section 1.2, on a étudié le signe de f'' sur un intervalle pour en déduire l'allure globale de la courbe \mathcal{C}_f . Étudier le signe de f'' sur tout un intervalle peut néanmoins s'avérer fastidieux lorsque l'expression de f'' est compliquée. On va voir que le signe des premières dérivées de f en un point donné permet déjà de connaître l'allure de \mathcal{C}_f au voisinage de ce point.

3.1 Étude locale du graphe d'une fonction

En démontrant la proposition A, on a établi un résultat local important :

Proposition E (Dérivée seconde et position locale de \mathcal{C}_f par rapport à ses tangentes). Soit $a \in I$. Si la fonction f est deux fois dérivable en a, alors :

• Si f''(a) > 0, alors la courbe C_f est **localement** strictement au-dessus de sa tangente en a, au sens où

$$\exists \varepsilon > 0 : \forall x \in [a-\varepsilon, a+\varepsilon] \setminus \{a\}, \quad f(x) > f(a) + f'(a)(x-a).$$

• Si f''(a) < 0, alors la courbe C_f est **localement** strictement en-dessous de sa tangente en a, au sens où

$$\exists \varepsilon > 0 : \forall x \in [a-\varepsilon, a+\varepsilon] \setminus \{a\}, \quad f(x) < f(a) + f'(a)(x-a).$$

Exemple. On souhaite étudier la courbe représentative de la fonction f définie par

$$\forall x \in \left]0, \frac{\pi}{2}\right[, \quad f(x) = e^{x - \tan(x)}$$

au voisinage du point d'abscisse $\frac{\pi}{4}$. Cette fonction est dérivable comme combinaison de fonctions dérivables, et on a

$$\forall x \in \left]0, \frac{\pi}{2}\right[, \quad f'(x) = -\tan^2(x)e^{x-\tan(x)}.$$

Ainsi, f' est elle-même dérivable pour la même raison, et pour tout $x\in \left]0,\frac{\pi}{2}\right[$, on a

$$f''(x) = (-2\tan(x) - 2\tan^3(x) + \tan^4(x))e^{x-\tan(x)}.$$

On notera les hypothèses et les conclusions renforcées de la présente proposition par rapport à la proposition A, plus globale. Remarquons que la proposition ci-contre ne permet pas de conclure sur la position relative de C_f par rapport à sa tangente en a dans le cas où f''(a) = 0; on verra dans la suite du cours comment traiter ce cas.

Ainsi, on a $f''\left(\frac{\pi}{4}\right) = -3e^{\frac{\pi}{4}-1}$ puisque $\tan\left(\frac{\pi}{4}\right) = 1$, et donc $f''\left(\frac{\pi}{4}\right) < 0$, si bien que \mathcal{C}_f est localement strictement en-dessous de sa tangente au point d'abscisse $\frac{\pi}{4}$, qui est la droite d'équation $y = e^{\frac{\pi}{4}-1} - e^{\frac{\pi}{4}-1} \left(x - \frac{\pi}{4}\right)$. On en déduit l'allure de \mathcal{C}_f donnée ci-contre

Les dérivées d'ordre $n\geqslant 3$ ne possèdent pas, en général, d'interprétation graphique aussi directe que celle des dérivées première et seconde. Elles permettent en revanche de décrire l'allure locale de \mathcal{C}_f au voisinage d'un point en lequel la dérivée seconde de f s'annule, comme l'indique la généralisation suivante de la proposition E:

Théorème F (Dérivées successives et allure locale de C_f).

Soit $a \in I$. On suppose que f est dérivable $n \ge 2$ fois en a et que l'un des nombres $f^{(k)}(a)$, pour $k \in [2, n]$, n'est pas nul. Soit k le plus petit entier de [2, n] vérifiant cette propriété. Alors :

- C_f admet un point d'inflexion en a en lequel elle croise sa tangente « par le bas » si k est impair et si $f^{(k)}(a) > 0$.
- C_f admet un point d'inflexion en a en lequel elle croise sa tangente « par le haut » si k est impair et si $f^{(k)}(a) < 0$.
- C_f est localement strictement au-dessus de sa tangente en a si k est pair et si $f^{(k)}(a) > 0$.
- C_f est localement strictement en-dessous de sa tangente en a si k est pair et si $f^{(k)}(a) < 0$.

Démonstration du théorème F — On démontre la proposition dans un unique cas de figure, en laissant au lecteur le soin de la compléter dans les autres cas.

Supposons que k est impair et que $f^{(k)}(a) > 0$. Il existe alors $\varepsilon > 0$ tel que pour tout $x \in [a - \varepsilon, a + \varepsilon] \setminus \{a\}$ on ait

$$\frac{f^{(k-1)}(x) - f^{(k-1)}(a)}{x - a} > 0, \quad \text{soit} \quad \frac{f^{(k-1)}(x)}{x - a} > 0$$

puisque $f^{(k-1)}(a) = 0$. Ainsi, la quantité $f^{(k-1)}(x)$ est du signe de x-a pour tout $x \in [a-\varepsilon, a+\varepsilon] \setminus \{a\}$. On en déduit le tableau de signes et de variations donné à la page suivante, dans lequel les signes et les variations sont à comprendre au sens strict.

La position relative de C_f par rapport à sa tangente en a est donc donnée par le premier nombre dérivé non nul d'ordre supérieur ou égal à 2 au point a.

x	a-arepsilon a $a+arepsilon$
$f^{(k-1)}(x)$	- 0 +
$f^{(k-2)}$	
$f^{(k-3)}$	
$f^{(k-4)}$	
f"	

On remarque que les cellules constituant la colonne de droite de ce tableau sont alternées. Comme l'entier k est impair, k-1 est pair, si bien que les variations de f'' sont les mêmes que celles de $f^{(k-1)}$.

Ainsi, f'' est bien strictement négative sur $[a - \varepsilon[$ et strictement positive sur $]a + \varepsilon[$, ce qui montre que a est un point d'inflexion de \mathcal{C}_f et implique d'après la proposition \mathbb{C} que \mathcal{C}_f croise sa tangente en a « par le bas ». \square On retient la méthode suivante :

Méthode G (Étude locale de \mathcal{C}_f au voisinage d'un point). Pour étudier l'allure de la courbe \mathcal{C}_f de f au voisinage d'un point $a \in I$, on calcule les dérivées successives de f en a jusqu'au premier rang $k \geqslant 2$ tel que $f^{(k)}(a) \neq 0$. Alors :

• Les valeurs de f(a) et f'(a) donnent l'équation de la tangente à \mathcal{C}_f en a, qui est

$$y = f(a) + f'(a)(x - a).$$

• La parité de k et le signe de $f^{(k)}(a)$ donnent la position relative de \mathcal{C}_f par rapport à sa tangente en a grâce au théorème \mathbf{F} .

Lorsque le rang k est supérieur à 3, la courbe de f est « aplatie » contre sa tangente au voisinage du point considéré (voir les exemples ci-après).

Exemple. Étudions l'allure de la courbe de $f: x \mapsto \sin(x) + \frac{x^3}{6}$ au voisinage de 0.

En tant que somme de fonctions de classe \mathcal{C}^{∞} , la fonction f est elle-même de classe \mathcal{C}^{∞} sur \mathbb{R} . On a f(0)=0 et pour tout $x\in\mathbb{R}$, $f'(x)=\cos(x)+\frac{x^2}{2}$ donc f'(0)=1; ainsi, \mathcal{C}_f admet la droite d'équation y=x pour tangente au point d'abscisse 0.

On détermine ensuite que pour tout $x \in \mathbb{R}$ on a

$$f''(x) = -\sin(x) + x$$
, $f^{(3)}(x) = -\cos(x) + 1$, $f^{(4)}(x) = \sin(x)$ et $f^{(5)}(x) = \cos(x)$

donc

$$f''(0) = f^{(3)}(0) = f^{(4)}(0) = 0$$
 et $f^{(5)}(0) = 1 > 0$,

ce qui montre que C_f admet un point d'inflexion en 0, où elle traverse sa tangente « par le bas » (voir ci-contre).

Exemple. Étudions l'allure au voisinage de 0 de la courbe de la fonction $f: x \mapsto \ln(1+x) - \cos(x) + 2\sin(x)$ au voisinage de 0.

En tant que somme de fonctions de classe C^{∞} , la fonction f est elle-même de classe C^{∞} sur \mathbb{R} . On a f(0) = -1 et f'(0) = 3, donc la tangente à C_f au point d'abscisse 0 est la droite d'équation y = 3x - 1. Le calcul des dérivées successives de f en 0 donne

$$f''(0) = f^{(3)}(0) = 0$$
 et $f^{(4)}(0) = -7 < 0$,

ce qui montre que C_f est localement strictement en-dessous de sa tangente au point d'abscisse 0 (voir ci-contre).

La courbe C_f présente un aspect très aplati au voisinage de 0 en raison de l'annulation de ses dérivées d'ordre 2, 3 et 4 en 0.

La courbe C_f présente une fois encore un aspect très aplati au voisinage de 0 en raison de l'annulation de ses dérivées d'ordre 2 et 3 en 0.