

CONCLUSION ON PESTICIDE PEER REVIEW

Conclusion on the peer review of the pesticide risk assessment of the active substance¹

Flurochloridone (notified active substance)

(However this ISO name refers to a 3:1 ratio of *trans* to *cis* isomers. As the compound considered in this conclusion is not a 3:1 ratio the name flurochloridone is not used in this conclusion instead the company code FLC is used to identify this compound).

European Food Safety Authority²

European Food Safety Authority (EFSA), Parma, Italy

SUMMARY

Flurochloridone is one of the 84 substances of the third stage part B of the review programme covered by Commission Regulation (EC) No 1490/2002³, as amended by Commission Regulation (EC) No 1095/2007⁴. In accordance with the Regulation, at the request of the Commission of the European Communities (hereafter referred to as 'the Commission'), the EFSA organised a peer review of the initial evaluation, i.e. the Draft Assessment Report (DAR), provided by Spain being the designated rapporteur Member State (RMS). The peer review process was subsequently terminated following the applicant's decision, in accordance with Article 11e, to withdraw support for the inclusion of flurochloridone in Annex I to Council Directive 91/414/EEC.

Following the Commission Decision of 5 December 2008 (2008/934/EC)⁵ concerning the non-inclusion of flurochloridone in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing that substance, the applicant Makhteshim made a resubmission application for the inclusion of flurochloridone in Annex I in accordance with the provisions laid down in Chapter III of Commission Regulation (EC) No. 33/2008⁶. The resubmission dossier included further data in response to the issues identified in the DAR.

In accordance with Article 18 of Commission Regulation (EC) No. 33/2008, Spain being the designated RMS, submitted an evaluation of the additional data in the format of an Additional Report. The Additional Report was received by EFSA on 03 November 2009.

¹ On request from the European Commission, Question No EFSA-Q-2010-00149, issued on 14 October 2010

² Correspondence: praper@efsa.europa.eu

³ OJ L224, 21.08.2002, p.25

⁴ OJ L 246, 21.9.2007, p. 19

⁵ OJ L 333, 11.12.2008, p. 11

⁶ OJ L 15, 18.01.2008, p.5

Suggested citation: European Food Safety Authority; Conclusion on the peer review of the pesticide risk assessment of the active substance flurochloridone. EFSA Journal 2010;8(12):1869. [66 pp.]. doi:10.2903/j.efsa.2010.1869. Available online: www.efsa.europa.eu/efsajournal.htm

In accordance with Article 19 of Commission Regulation (EC) No. 33/2008, the EFSA distributed the Additional Report to Member States and the applicant for comments on 10 November 2009. The EFSA collated and forwarded all comments received to the Commission on 05 January 2010.

In accordance with Article 20, following consideration of the Additional Report, the comments received, and where necessary the DAR, the Commission requested the EFSA to conduct a focused peer review in the area of toxicology and deliver its conclusions on flurochloridone.

The conclusions laid down in this report were reached on the basis of the evaluation of the representative uses of flurochloridone as a herbicide on sunflower and potato as proposed by the applicant. Full details of the representative uses can be found in Appendix A to this report.

No critical areas of concern were indentified in the physical chemical properties section, however several data gaps were identified for the active substance and formulation (see section 1).

A data gap was identified in the toxicology section to address the relevance of the impurities present in the technical specification. No toxicological information is available on the metabolite R42819 that may be found in groundwater at levels above the threshold value of $0.1~\mu g/L$ according to environmental models; based on the classification proposal as R61 (Repr. Cat. 2, "May cause harm to the unborn child") and R62 (Repr. Cat. 3, "Possible risk of impaired fertility") for the parent, this metabolite is relevant according to the Guidance document on assessment of the relevance of metabolites in groundwater (European Commission, 2003) and a critical area of concern was identified.

Based on the metabolism studies conducted on sunflower and potato (oilseeds/pulses group and tubers/roots group), the residue for monitoring and risk assessment was defined as flurochloridone (sum of cis and trans isomers). MRLs were proposed at the LOQ (0.01 mg/kg). No risk was identified for the consumers, the TMDI and IESTI being less than 0.1% of the ADI and less than 4% of the ARfD.

The data available on environmental fate and behaviour are sufficient to carry out the required environmental exposure assessments at EU level for the representative uses. A high potential for groundwater contamination by metabolite R42819 in a wide range of geoclimatic conditions above the parametric drinking water limit $(0.1\mu g/L)$ is indicated by the exposure assessment that could be finalised with the available data. (All the FOCUS groundwater scenarios pertinent for sunflower and 7 of the 9 FOCUS groundwater scenarios pertinent for potato have annual average groundwater recharge concentrations predicted to be $>0.1\mu g/L$).

Two data gaps were identified in the environmental risk assessment to address the potential risk to birds and fish from flurochloridone acting as endocrine disruptor and to address the risk to algae for the representative uses.

The risk to non-target plants was assessed as low for the representative uses, based on mitigation measures equivalent to no-spray buffer zones of 5 m.

KEY WORDS

Flurochloridone, FLC, peer review, risk assessment, pesticide, herbicide

TABLE OF CONTENTS

Summary	1
Table of contents	3
Background	4
The active substance and the formulated product	7
Conclusions of the evaluation	
1. Identity, physical/chemical/technical properties and methods of analysis	7
2. Mammalian toxicity	8
3. Residues	8
4. Environmental fate and behaviour	9
5. Ecotoxicology	10
6. Overview of the risk assessment of compounds listed in residue definitions for the envir	onmental
compartments	12
6.1. Soil	12
6.2. Ground water	12
6.3. Surface water and sediment	13
6.4. Air	13
List of studies to be generated, still ongoing or available but not peer reviewed	14
Particular conditions proposed to be taken into account to manage the risk(s) identified	
Issues that could not be finalised.	15
Critical areas of concern	15
References	16
Appendices	17
Abbreviations	64

BACKGROUND

Legislative framework

Commission Regulation (EC) No 1490/2002⁷, as amended by Commission Regulation (EC) No 1095/2007⁸ lays down the detailed rules for the implementation of the third stage of the work programme referred to in Article 8(2) of Council Directive 91/414/EEC. This regulates for the European Food Safety Authority (EFSA) the procedure for organising, upon request of the Commission of the European Communities (hereafter referred to as 'the Commission'), a peer review of the initial evaluation, i.e. the Draft Assessment Report (DAR), provided by the designated rapporteur Member State.

Commission Regulation (EC) No 33/2008⁹ lays down the detailed rules for the application of Council Directive 91/414/EEC for a regular and accelerated procedure for the assessment of active substances which were part of the programme of work referred to in Article 8(2) of Council Directive 91/414/EEC but which were not included in Annex I. This regulates for the EFSA the procedure for organising the consultation of Member States and the applicant(s) for comments on the Additional Report provided by the designated RMS, and upon request of the Commission the organisation of a peer review and/or delivery of its conclusions on the active substance.

Peer review conducted in accordance with Commission Regulation (EC) No 1490/2002

Flurochloridone is one of the 84 substances of the third stage part B of the review programme covered by Commission Regulation (EC) No 1490/2002, as amended by Commission Regulation (EC) No 1095/2007. In accordance with the Regulation, at the request of the Commission, the EFSA organised a peer review of the DAR provided by the designated rapporteur Member State, Spain which was received by the EFSA on 15 March 2006 (Spain, 2006).

The peer review was initiated on 27 October 2006 by dispatching the DAR to Member States and the applicant Makhteshim for consultation and comments. In addition, the EFSA conducted a public consultation on the DAR. The comments received were collated by the EFSA and forwarded to the RMS for compilation and evaluation in the format of a Reporting Table. The Reporting Table containing the RMS' evaluation of the comments in column 3 was further considered by the EFSA, resulting in a conclusion in column 4.

The peer review process was subsequently terminated following the applicant's decision, in accordance with Article 11e, to withdraw support for the inclusion of flurochloridone in Annex I to Council Directive 91/414/EEC.

Peer review conducted in accordance with Commission Regulation (EC) No 33/2008

Following the Commission Decision of 5 December 2008 (2008/934/EC)¹⁰ concerning the non-inclusion of flurochloridone in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing that substance, the applicant Makhteshim made a resubmission application for the inclusion of flurochloridone in Annex I in accordance with the provisions laid down in Chapter III of Commission Regulation (EC) No. 33/2008. The resubmission dossier included further data in response to the issues identified in the DAR.

In accordance with Article 18, Spain being the designated RMS, submitted an evaluation of the additional data in the format of an Additional Report. The Additional Report was received by the EFSA on 3 November 2009 (Spain, 2009).

⁷ OJ L224, 21.08.2002, p.25

⁸ OJ L246, 21.9.2007, p.19

⁹ OJ L 15, 18.01.2008, p.5

¹⁰ OJ L 333, 11.12.2008, p.11

In accordance with Article 19, the EFSA distributed the Additional Report to Member States and the applicant for comments on 10 November 2009. In addition, the EFSA conducted a public consultation on the Additional Report. The EFSA collated and forwarded all comments received to the Commission on 05 January 2010. At the same time, the collated comments were forwarded to the RMS for compilation in the format of a Reporting Table. The applicant was invited to respond to the comments in column 3 of the Reporting Table. The comments and the applicant's response were evaluated by the RMS in column 3.

In accordance with Article 20, following consideration of the Additional Report, the comments received, and where necessary the DAR, the Commission decided to further consult the EFSA. By written request, received by the EFSA on 24 February 2010 the Commission requested the EFSA to arrange a consultation with Member State experts as appropriate and deliver its conclusions on flurochloridone within 6 months of the date of receipt of the request, subject to an extension of a maximum of 90 days where further information were required to be submitted by the applicant in accordance with Article 20(2).

The scope of the peer review and the necessity for additional information, not concerning new studies, to be submitted by the applicant in accordance with Article 20(2), was considered in a telephone conference between the EFSA, the RMS, and the Commission on 10 February 2010 the applicant was also invited to give its view on the need for additional information. On the basis of the comments received, the applicant's response to the comments, and the RMS' subsequent evaluation thereof, it was concluded that the EFSA should organise a consultation with Member State experts in the area of mammalian toxicology and that further information should be requested from the applicant in the areas of physical-chemical properties, mammalian toxicology, residues and ecotoxicology.

The outcome of the telephone conference, together with EFSA's further consideration of the comments is reflected in the conclusions set out in column 4 of the Reporting Table. All points that were identified as unresolved at the end of the comment evaluation phase and which required further consideration, including those issues to be considered in consultation with Member State experts, and the additional information to be submitted by the applicant, were compiled by the EFSA in the format of an Evaluation Table.

The conclusions arising from the consideration by the EFSA, and as appropriate by the RMS, of the points identified in the Evaluation Table, together with the outcome of the expert discussions where these took place, was reported in the final column of the Evaluation Table.

A final consultation on the conclusions arising from the peer review of the risk assessment took place with Member States via a written procedure in September 2010.

This conclusion report summarises the outcome of the peer review of the risk assessment on the active substance and the representative formulation evaluated on the basis of the representative uses as a herbicide on sunflowers and potatoes as proposed by the applicant. A list of the relevant end points for the active substance as well as the formulation is provided in appendix A. In addition, a key supporting document to this conclusion is the Peer Review Report (EFSA, 2010), which is a compilation of the documentation developed to evaluate and address all issues raised in the peer review, from the initial commenting phase to the conclusion. The Peer Review Report comprises the following documents:

- the comments received,
- the Reporting Table (revision 1-1, 29 January 2010)
- the Evaluation Table (14 October 2010)
- the report(s) of the scientific consultation with Member State experts (where relevant).

Given the importance of the DAR and the Additional Report including its addendum (compiled version of August 2010 containing all individually submitted addenda; Spain, 2010) and the Peer Review Report, both documents are considered respectively as background documents A and B to this conclusion.

THE ACTIVE SUBSTANCE AND THE FORMULATED PRODUCT

Flurochloridone is the ISO common name for (3RS,4RS;3RS,4SR)-3-chloro-4-chloromethyl-1- $(\alpha,\alpha,\alpha$ -trifluoro-m-tolyl)-2-pyrrolidone (IUPAC) where the ratio of (1RS,2RS)(trans)- and (1RS,2SR)(cis)-isomers is 3:1. However, the compounds evaluated in the DAR and additional report, were not exactly in a 3:1 ratio. Therefore the name flurochloridone cannot currently be used to name the substance under consideration. In this conclusion the company code FLC will be used to identify this substance.

The representative formulated product for the evaluation was 'Racer' a capsule suspension (CS) containing 250 g/l FLC.

The representative uses evaluated comprise outdoor foliar spraying against broad leafed and grass weeds in sunflower and potato. Full details of the GAP can be found in the list of end points in Appendix A.

CONCLUSIONS OF THE EVALUATION

FLC is a mixture of *cis* and *trans* diastereoisomer pairs. The possible preferential metabolism/degradation or conversion of each isomer in animals, plants and the environment was not investigated. Therefore this could not be considered during this peer review. The analytical methods used in the studies reported through all sections were not stereo-selective and most values mentioned as "FLC" have to be considered as "sum of isomers". Though the non chiral analytical methods used have the potential to resolve the *cis* and *trans* diastereoisomer pairs, resolution into two clear peaks was often not achieved. This is the reason why, with the exceptions noted in this conclusion, reference to FLC is for the sum of the four potential isomers. The metabolites R406639, R42819, M8, 4-dechloro-4-hydroxymethyl and 5-hydroxy-4-chloromethyl are also isomeric due to chiral carbon atoms. The impact of the potential change in isomer ratios with time on the toxicity, the consumer risk assessment and the environmental risk assessment was not and could not be evaluated with the available data. It was concluded that only the environmental risk assessment requires further information regarding this in the context of the representative uses assessed. Therefore this issue is also discussed further in section 5.

1. Identity, physical/chemical/technical properties and methods of analysis

The minimum purity of the active substance as manufactured is 940 g/kg. The content of the diastereoisomer pairs is *trans*-FLC: 720-740 g/kg and *cis*-FLC: 220-240 g/kg. There is no FAO specification for this compound. Toluene is considered a relevant impurity and its maximum level in the technical material is 8 g/kg. For the other impurities a data gap has been identified to address their relevance (see Section 2).

The main data regarding the identity of FLC and its physical and chemical properties are given in Appendix A. Vapour pressure, Henry's law constant of the *cis* isomer and melting point/range study were identified as data gaps for the active substance. For the formulation the following data gaps were identified: low temperature stability with the amount of free and encapsulated active substance determined before and after storage, the amount of free and encapsulated active substance before and after 2 years storage and the alkalinity of the formulation. It should be noted that the formulation showed poor pourability and appropriate rinsing instructions should be considered when labelling the products.

Residues of FLC in plants can be analysed with GC-MS methods. A method of analysis for products of animal origin is not required as no MRL's are proposed. For soil, water and air GC-MS methods are available. The active substance is classified as toxic (T) and therefore a data gap is identified for a method of analysis for body fluids and tissues.

2. Mammalian toxicity

FLC was discussed at the PRAPeR 79 expert meeting. The technical specification is supported by the batches used in the toxicological studies, however the relevance of the impurities is not addressed; a data gap is set on the relevance of the impurities present in the technical specification. Toluene is a relevant impurity, but no concern is raised from the concentration set in the technical specification.

Low acute toxicity was observed when FLC is administered by the oral, dermal or inhalation routes, no eye or skin irritation but potential for skin sensitisation was found. The target organs of FLC are the testis and epididymides in male rats, with dogs, mice, rabbits and monkeys being less sensitive to these effects. Increased incidence of abnormal sperm and decreased sperm count at higher dose levels are the outcome. Sertoli cell vacuolation was observed in rats. As Sertoli cells are involved in hormonal control of male reproductive functions, FLC could be considered as a potential endocrine disruptor. Nevertheless, there is no further data to confirm it. The heart, great vessels and haematopoietic system are also potential target organs of FLC in the rat, dog and/or rabbit. No genotoxic, carcinogenic or neurotoxic potential is attributed to the active substance. The relevant long-term NOAEL is 3.9 mg/kg bw/day from the 2-year rat study. Classification with R62 "Possible risk of impaired fertility" (repr. Cat. 3) and R61 "May cause harm to the unborn child" (repr. Cat. 2) are proposed; R62 considering the effects on male reproduction, and R61 due to the increased incidences of visceral and skeletal malformations observed in developmental studies in rats. Acute and short-term NOAELs are set from these critical studies at 20 mg/kg bw/day, where the LOAEL is 25 mg/kg bw/day.

No toxicological information is available on the metabolite R42819 that may be found in groundwater at levels above the threshold value of $0.1~\mu g/L$ according to environmental models; based on the classification proposal as R61 and R62 for the parent, this metabolite is relevant according to the Guidance document on assessment of the relevance of metabolites in groundwater (European Commission, 2003) and a critical area of concern was identified.

The acceptable daily intake (ADI) of FLC is 0.04 mg/kg bw/day, based on the 2-year study in rat and applying a safety factor of 100. The acceptable operator exposure level (AOEL) is 0.04 mg/kg bw/day and the acute reference dose (ARfD) 0.04 mg/kg bw, based on the developmental toxicity study in rat with a NOAEL of 20 mg/kg bw/day, applying an additional safety factor of 5 (overall 500) as teratogenicity was found at the dose level of 25 mg/kg bw/day; no correction for oral absorption being needed to derive the AOEL.

Estimated operator exposure is below the AOEL without the use of personal protective equipment (PPE) according to the German model or when gloves are worn during mixing and loading operations, and during application of the plant protection product according to the UK POEM model. Worker exposure is not relevant to the representative uses and the anticipated bystander's exposure is below the AOEL.

3. Residues

Metabolism in plants was investigated in sunflower (oilseeds/pulses group) and potato (root crop group) using a single spray application onto the soil surface, just after sowing/planting. Studies were conducted with the ¹⁴C labelling on the pyrrolidone moiety only. However, taking into account the low TRRs observed in plants, and considering that no cleavage was observed in the soil studies where a second label was used, it was concluded that further investigations using an additional label are not necessary. A complete picture of the metabolic pathway could not be achieved since the identification of the metabolites was not feasible in sunflower seeds and potato tubers due to the low TRRs observed at harvest (<0.01 mg/kg). The characterisation of the residues was only possible in mature sunflower leaves, where flurochloridone accounted for 10-17% TRR and where three metabolites could be identified (5-hydroxy-4-chloromethyl, 3-hydroxy-4-chloromethyl and 4-dechloro-4-hydroxymethyl), each representing less than 3% TRR. In the same way, in the rotational crop study, the total radioactivity was less than 0.01 mg/kg in carrot roots, spinach leaves and cereals grains for all plant

back intervals and significant levels were only detected in cereal straw (0.02-0.05 mg/kg). Based on these studies it was proposed to define by default, the residue for monitoring and risk assessment as flurochloridone only (sum of cis and trans isomer pairs). No information was provided on the respective behaviour of each constituent isomer, but having regard to the supported uses and since no residues are expected in seeds and tubers, such information was considered not necessary. Data gaps have been identified for an issue on rotational and succeeding crops.

No residues were detected in the supervised residues trials conducted on sunflower and potato and the MRLs were proposed at the LOQ (0.01 mg/kg). These studies are fully supported by the storage stability data showing flurochloridone residues to be stable up to 3 years at c.a. -20°C. Animal metabolism study, livestock feeding study and processing studies were not provided and not requested, the residues in sunflower and potato being below the LOQ.

No risk was identified for the consumers, the TMDI being less than 0.2% of the ADI for all diets included in the EFSA PRIMo model, and the IESTI max. 4% of the ARfD.

4. Environmental fate and behaviour

As already discussed, the regulatory dossier reported no information on the behaviour of each individual FLC enantiomer in the environment. Whilst the methods of analysis used (that did not employ chiral chromatography) did sometimes resolve the 2 diastereoisomers (though not achieving baseline separation), usually the study reports did not report any quantification of these separately and often only a single peak was apparent in the chromatograms presented. Consequently it is not known if any of the enantiomers (including the potentially but often not resolved diastereoisomer pairs) were degraded more quickly than the others, or if any conversion of enantiomers occurred in the environmental matrices studied. Consequently a data gap was identified for this issue. References made to FLC in sections 4 and 6 therefore relate to the sum of the isomers that may constitute FLC of unknown enantiomer / diastereoisomer ratio. The one exception to this general lack of information was that the diastereoisomer ratio did not change with time in the single soil photolysis experiment (viable soil at field capacity). In this experiment the results for the analysis of the diastereoisomer pairs were reported separately and diastereoisomer resolution was achieved. The metabolite R406639 also has 2 chiral centres, but the chromatography utilised in the pertinent studies did not resolve the diastereoisomers even though it had the potential to have been able to do this.

In soil laboratory incubations under aerobic conditions in the dark, FLC exhibited moderate to high persistence, forming the metabolites that were assessed further R406639 (max. 8.1 % AR) and R42819 (max. 10.1 % AR), which exhibited low to high and low to very high persistence respectively. Mineralisation of the pyrrolidone-2-¹⁴C ring radiolabel to carbon dioxide accounted for 28 % AR after 91 days. This value for the phenyl-U-¹⁴C ring radiolabel was only 1.8 % AR. The formation of unextractable residues (not extracted by acetone) accounted for 36 % AR (pyrrolidone-2-¹⁴C radiolabel) and 56 % AR (phenyl-U-¹⁴C radiolabel) after 91 days. In anaerobic soil incubations FLC breakdown was considered less extensive than under aerobic conditions. In laboratory soil photolysis experiments no novel metabolites were identified. FLC and R406639 exhibited medium to low mobility in soil. R42819 exhibited medium soil mobility. It was concluded that the adsorption of FLC, R406639 and R42819 was not pH dependent. In satisfactory field dissipation studies carried out at 4 sites in Germany (spray application to the soil surface on bare soil plots in late spring, plots were maintained bare) and 4 in Italy (spray application to the soil surface on bare soil plots in late spring or autumn with sunflowers or wheat subsequently germinating), FLC exhibited moderate to high persistence. Sample analyses were only carried out for the parent FLC.

In laboratory incubations in dark aerobic natural sediment water systems, FLC exhibited moderate persistence, forming the major metabolites R42819 (max. 23 % AR in water and 47 % AR in sediment, exhibiting high persistence) and R406639 (max. 10.6 % AR in the sediment, exhibiting moderate persistence). The unextractable sediment fraction (not extracted by acetone followed by Soxhlet methanol / water) was a sink for both the pyrrolidone-2-14C and phenyl-U-14C radiolabels, accounting for 18 – 30 % AR at study end (100 days). Mineralisation of these radiolabels accounted

for 4-7 % AR and only 1-2 % AR respectively at the end of the study. The rate of decline of FLC in a laboratory sterile aqueous photolysis experiment was comparable to that which occurred in the aerobic sediment water incubations. It was concluded that the novel photolysis product M8 did not need to be accounted for in the natural surface water exposure assessments. The necessary surface water and sediment exposure assessments (Predicted environmental concentrations (PEC)) in surface water and sediment were carried out for the metabolites R406639 and R42819, using the FOCUS (FOCUS, 2001) step 1 and step 2 approach (version 1.1 of the steps 1-2 in FOCUS calculator). For the active substance FLC, appropriate step 3 (FOCUS, 2001) and step 4 calculations were available11. The step 4 calculations appropriately followed the FOCUS (FOCUS, 2007) guidance, with no-spray drift buffer zones of up to 20 m being implemented for the drainage scenarios (representing a 57 – 91 % spray drift reduction), and combined no-spray buffer zones with vegetative buffer strips of up to 20 m (reducing solute flux in run-off by 80 % and erosion runoff by 95 %) being implemented for the runoff scenarios. The SWAN tool (version 1.1.4) was appropriately used to implement these mitigation measures in the simulationsWhilst run-off mitigation is included in the step 4 calculations available, the FOCUS (FOCUS, 2007) report acknowledges that for substances with KFoc < 2000 mL/g (i.e. FLC), the general applicability and effectiveness of run-off mitigation measures had been less clearly demonstrated in the available scientific literature, than for more strongly adsorbed compounds.

The necessary groundwater exposure assessments were appropriately carried out using FOCUS (FOCUS, 2000) scenarios and the model PEARL 3.3.3 12 for the active substance FLC and metabolites R406639 and R42819. The potential for groundwater exposure from the representative uses by FLC and R406639 above the parametric drinking water limit of 0.1 µg/L was concluded to be low in geoclimatic situations that are represented by all 9 FOCUS groundwater scenarios. For the metabolite R42819 this limit was not exceeded at only the Porto and Sevilla scenarios consequent to the use on potatoes. Annual average concentrations leaving the top 1m soil layer at the other 7 scenarios defined for potatoes were 0.13-2.29 µg/L, with concentrations at 3 of these scenarios exceeding 0.75µg/L. For this metabolite and the use on sunflowers both scenarios (Sevilla and Piacenza) exceeded the parametric limit of 0.1 µg/L with Piacenza exceeding 0.75 µg/L with an annual average concentration of 2.65µg/L. This modelling was completed using the best estimates available with degradation substance parameters for R42819 being derived from the available data, following FOCUS degradation kinetics (FOCUS, 2006) guidance. With additional experimental data on the degradation rate and kinetic formation fraction of R42819, a more refined groundwater exposure assessment might be made for this metabolite. As there is no toxicological information available on this metabolite and considering the toxicological classification proposed for FLC, the metabolite R42819 needs to be considered relevant (see sections 2 and 6.2).

The PEC in soil, surface water, sediment, and groundwater covering the representative uses assessed can be found in Appendix A of this conclusion.

5. Ecotoxicology

A data gap remains for the applicant to prove the compliance of ecotoxicological test material with the technical specification of FLC.

For all representative uses the acute, short-term and long-term risk to herbivorous and insectivorous birds was assessed as low at Tier I (EU, 2002), as well as the acute and long-term risk to herbivorous mammals. The long-term risk assessment for mammals was based on the more relevant rat reproduction NOAEL endpoint of 28.6 mg a.s/kg bw/d, which was agreed during the peer review. The risk to birds and mammals from secondary poisoning (eating earthworms or fish) and the consumption of contaminated drinking water was assessed as low. Toxicity data for mammals identified FLC as a potential endocrine disrupter (see section 2). Consequently, a data gap was identified to address the potential risk to birds and fish from FLC acting as endocrine disrupter.

¹¹ Simulations correctly utilised the agreed Q10 of 2.58 (following EFSA, 2007) and Walker equation coefficient of 0.7

¹² Simulations correctly utilised the agreed Q10 of 2.58 (following EFSA, 2007) and Walker equation coefficient of 0.7

FLC was assessed to be very toxic to aquatic organisms based on the information available. Toxicity of the active substance was comparable to the toxicity of the representative formulation. The toxicity data for algae and Lemna gibba was driving the risk assessment. The toxicity study provided for the sediment dwelling midge Chironomus riparius was not considered acceptable by the RMS to derive a reliable endpoint for FLC as a cis/trans mix. The study however indicated that the toxicity to Chironomus did not exceed the toxicity identified for fish and daphnia. As fish and daphnia were not the most sensitive organism to FLC, these toxicity data were considered to cover the potential risk to sediment dwellers. In the Additional Report the risk to aquatic organisms was assessed based on the toxicity data for technical FLC (1cis:3trans). For the representative use in potatoes and sunflowers PEC values according to FOCUS step 3 resulted in acute and long-term TER values exceeding the Annex VI trigger for fish and daphnia. Consequently the risk to sediment dwelling organisms was also considered to be low. The risk was assessed as low for aquatic plants in 4 out of 7 FOCUS_{sw} scenarios at step 3 for the use in potatoes and in 2 out of 4 FOCUS_{sw} scenarios at step 3 for the use in sunflower. A low risk was identified in all scenarios for aquatic plants for the representative uses at FOCUS_{sw} step 4 including mitigation measures equivalent to 20m vegetated buffer strips. For algae it was not possible to identify a low risk for any full FOCUS_{sw} scenarios for the representative uses, taking into account mitigation measures equivalent to 20m vegetated buffer strips. Further refinements were considered to be necessary to address the risk to algae for all representative uses. The applicant provided refined assessments taking into account 24h toxicity studies on algae and exposure profiles predicted by FOCUS_{sw}. Even though the RMS acknowledged the approach used by the applicant to refine the risk to algae, further data should be required to support the refinements; more quantitative data for a full characterization of exposure profile, e.g. data across scenarios: maximum peak concentration, median duration of peak, number of peaks, AUC, median interval between peaks. If the risk assessment for algae in the run-off scenarios (R1, R2, R3 and R4) with several exposure peaks (majority of scenarios for both uses) should be based on potential for recovery, such potential for recovery should be established for several algae species. Furthermore, the aquatic risk assessment did not address the potential risk from potentially changing ratios of enantiomers and diastereoisomers (see section 4). Consequently a data gap was identified to address the risk to algae for the representative use in potatoes and sunflower considering the deficiencies mentioned above. The risk from exposure to the two metabolites R42819 and R406639 was assessed as low with a margin of safety that covered the concern related to the added uncertainty that results from not having information on the isomers of these metabolites. A BCF in fish of 292 was not considered an issue due to fast depuration.

The acute and long-term risk to earthworms was assessed as low for all representative uses. Whereas the margin of safety for the acute risk assessment to earthworms was considered to be sufficient to cover uncertainties regarding changing exposure from enantiomers and diastereoisomers of FLC, the long-term TER value only exceeded the Annex VI trigger by a factor of two. A data gap was identified to address potential effect on the long-term risk assessment to earthworms from exposure to enantiomers and diastereoisomers of FLC.

The risk to non-target plants was assessed as low for the intended uses, based on mitigation measures (e.g. non-spray buffer zones of 5 m)

Based on data available the risk to bees, non-target arthropods, non-target soil micro organisms and biological methods for sewage treatment was assessed as low for all representative uses.

6. Overview of the risk assessment of compounds listed in residue definitions for the environmental compartments

6.1. Soil

Compound (name and/or code)	Persistence	Ecotoxicology
FLC	moderate to high persistence Biphasic kinetics DT ₅₀ 9-66 days (DT ₉₀ 76-940 days, 20°C pF 2 soil moisture) Field dissipation studies: Biphasic kinetics DT ₅₀ 11-65 days (DT ₉₀ 75-515 days)	The risk to soil living organisms was assessed as low. However, a data gap was identified to address uncertainties relating to isomer exposure in the long-term risk assessment for earthworms (see section 5).

6.2. Ground water

Compound (name and/or code)	Mobility in soil	>0.1 µg/L 1m depth for the representative uses (at least one FOCUS scenario or relevant lysimeter)	Pesticidal activity	Toxicological relevance	Ecotoxicological activity
FLC	$\begin{array}{c} \text{medium to low mobility} \\ K_{Foc} \ 490\text{-}1100 \ \text{mL/g} \end{array}$	No	Yes	Yes	Yes
R406639	medium to low mobility $K_{\rm doc}~264\text{-}1265~mL/g$	No	No	No data, data not required Relevant based on the proposal for classification of the parent as toxic for the reproduction R61-R62	NO

EFSA Journal 2010;8(12):

$\begin{array}{c} \text{medium mobility} K_{doc} \\ 302\text{-}463 \text{ mL/g} \end{array}$	Yes, in 7 out of the 9 scenarios for potatoes, with 3 of these scenarios exceeding 0.75µg/L, concentrations up to 2.29µg/L. For sunflower both scenarios exceed with the Piacenza scenario exceeding 0.75µg/L with concentrations up to 2.65µg/L.	No data, relevant based on the proposal for classification of the parent as reprotox R61-R62	
---	---	---	--

6.3. Surface water and sediment

Compound (name and/or code)	Ecotoxicology
FLC	Very toxic to aquatic organisms. A data gap was identified to address the risk to algae for all the representative uses.
R42819	Risk assessed as low based on data available.
R406639 (sediment only)	Risk assessed as low based on data available.

6.4. Air

Compound (name and/or code)	Toxicology
FLC	Rat LC ₅₀ inhalation > 4.82 mg/L air/4 h as aerosol, nose-only exposure – no classification proposed

LIST OF STUDIES TO BE GENERATED, STILL ONGOING OR AVAILABLE BUT NOT PEER REVIEWED

- Vapour pressure and Henry's law constant of the *cis* diastereoisomer pair are missing. (relevant for all representative uses evaluated; submission date proposed by the applicant: unknown; see section 1)
- Information on the melting point (relevant for all representative uses evaluated; submission date proposed by the applicant: unknown; see section 1)
- Information on the alkalinity of the formulation is missing (relevant for all representative uses evaluated; submission date proposed by the applicant: unknown; see section 1)
- A low temperature stability study where the amount of free and encapsulated active substance should be determined before and after storage is missing. (relevant for all representative uses evaluated; submission date proposed by the applicant: unknown; see section 1)
- A shelf life stud, where the amount of free and encapsulated active substance should be determined before and after storage is missing (relevant for all representative uses evaluated; submission date proposed by the applicant: unknown; see section 1)
- A method of analysis for body fluids and tissues is missing. (relevant for all representative uses evaluated; submission date proposed by the applicant: unknown; see section 1)
- Toxicological information allowing the assessment of the relevance of the impurities present in the technical specification (relevant for all representative uses evaluated; submission date proposed by the applicant: unknown; see section 2)
- The length of time the different samples where stored frozen prior analyses, in the confined rotational crop study (Mamouni, A., 2009) has to be provided. (relevant for all representative uses evaluated; submission date proposed by the applicant: unknown; see section 3)
- Applicant to provide the information/data supporting the proposed waiting period of 3 months. (relevant for all representative uses evaluated; submission date proposed by the applicant: unknown; see section 3)
- The exposure patterns have not been characterised in respect of the potentially varying enantiomer and diastereoisomer ratios of FLC and its metabolites that have chiral carbons in their structure. This need to be addressed. However it was concluded that further information on this issue is not necessary to complete the risk assessments for the representative uses evaluated, with the exception of the specific issues identified in section 5 (see paragraph under 'conclusions of the evaluation' that precedes section 1, section 4 and section 5)
- The exposure patterns and consequent risk assessment for non-target organisms need to be characterised further, in relation to the impact that the potentially varying enantiomer and diastereoisomer ratios of FLC may have on the risks assessed and the extent of risk mitigation required, in particular in relation to the aquatic risk and chronic risk to earthworms, (relevant for both representative uses evaluated; submission date proposed by the applicant: unknown; see paragraph under 'conclusions of the evaluation' that precedes section 1, section 4 and section 5).
- An assessment of the compliance of ecotoxicological test material with the technical specification of FLC is missing (relevant for all representative uses evaluated; submission date proposed by the applicant: none; see section 5)

- The potential risk to birds and fish from FLC acting as endocrine disruptor needs to be addressed. (relevant for all representative uses evaluated; submission date proposed by the applicant: none; see section 5)
- The risk to algae needs to be addressed (relevant for all representative uses evaluated; submission date proposed by the applicant: none; see section 5)

PARTICULAR CONDITIONS PROPOSED TO BE TAKEN INTO ACCOUNT TO MANAGE THE RISK(S) IDENTIFIED

• Risk mitigation equivalent to 5m no-spray buffer zones was required in order to identify a low risk for non-target plants

ISSUES THAT COULD NOT BE FINALISED

- An assessment of the compliance of ecotoxicological test material with the technical specification of FLC remains to be documented.
- Based on the data available it was not possible to address the potential risk to birds and fish from FLC acting as endocrine disruptor

CRITICAL AREAS OF CONCERN

- No information is available on the toxicological profile of the groundwater metabolite R42819. Based on the proposal for classification of the parent as R61 (Repr. Cat. 2, "May cause harm to the unborn child") and R62 (Repr. Cat. 3, "Possible risk of impaired fertility"), this metabolite has to be considered relevant in groundwater. A high potential for groundwater contamination by this metabolite in a wide range of geoclimatic conditions above the parametric drinking water limit (0.1μg/L) is indicated by the exposure assessment that could be finalised with the available data. (All the FOCUS groundwater scenarios pertinent for sunflower and 7 of the 9 FOCUS groundwater scenarios pertinent for potato have annual average groundwater recharge concentrations predicted to be >0.1μg/L).
- A high risk to algae was identified for the representative uses based on the available data.

REFERENCES

- Spain 2007. Draft Assessment Report (DAR) on the active substance flurochloridone. prepared by the rapporteur Member State Spain in the framework of Directive 91/414/EEC, Month YYYY.
- Spain 2009. Additional Report to the Draft Assessment Report on the active substance flurochloridone, prepared by the rapporteur Member State Spain in the framework of Commission Regulation (EC) No 33/2008, November 2009
- Spain 2010. Final Addendum to the Additional Report on flurochloridone, compiled by EFSA, August 2010
- EFSA (European Food Safety Authority),2010. Peer Review Report to the conclusion regarding the peer review of the pesticide risk assessment of the active substance flurochloridone. EFSA Scientific Report

Guidance documents¹³:

- European Commission, 2003. Guidance document on assessment of the relevance of metabolites in groundwater of substances regulated under council directive 91/414/EEC. SANCO/221/2000-rev 10-final, 25 February 2003.
- FOCUS (2001). "FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC". Report of the FOCUS Working Group on Surface Water Scenarios, EC Document Reference SANCO/4802/2001-rev.2. 245 pp.
- FOCUS (2007). "Landscape And Mitigation Factors In Aquatic Risk Assessment. Volume 1. Extended Summary and Recommendations". Report of the FOCUS Working Group on Landscape and Mitigation Factors in Ecological Risk Assessment, EC Document Reference SANCO/10422/2005 v2.0. 169 pp.
- FOCUS (2000). "FOCUS Groundwater Scenarios in the EU review of active substances". Report of the FOCUS Groundwater Scenarios Workgroup, EC Document Reference SANCO/321/2000-rev.2. 202 pp, as updated by the Generic Guidance for FOCUS groundwater scenarios, version 1.1 dated April 2002
- FOCUS (2006). "Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration" Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp
- EFSA (2007). Scientific Opinion of the Panel on Plant Protection Products and their Residues on a request from EFSA related to the default *Q*10 value used to describe the temperature effect on transformation rates of pesticides in soil. The EFSA Journal (2007) 622, 1-32

¹³ For further guidance documents see http://ec.europa.eu/food/plant/protection/resources/publications en.htm#council (EC) or http://www.oecd.org/document/59/0,3343,en 2649 34383 1916347 1 1 1 1,00.html (OECD)

APPENDICES

APPENDIX A – LIST OF END POINTS FOR THE ACTIVE SUBSTANCE AND THE REPRESENTATIVE FORMULATION

Identity, Physical and Chemical Properties, Details of Uses, Further Information

Active substance (ISO Common Name) ‡

Flurochloridone (according to the ISO definition only an isomer ratio of 3:1 *trans/cis* is named as flurochloridone, other ratios cannot be regarded as flurochloridone). As the isomer ratio for the compound considered here is not exactly 3:1 the name flurochloridone cannot be used the company code FLC is used instead.

Function (e.g. fungicide)

Herbicide

Rapporteur Member State

Co-rapporteur Member State

Spain

Identity (Annex IIA, point 1)

Chemical name (IUPAC) ‡

Chemical name (CA) ‡

CIPAC No ‡

CAS No ‡

EC No (EINECS or ELINCS) ‡

FAO Specification (including year of publication) ‡

Minimum purity of the active substance as manufactured ‡

Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured

Molecular formula ‡

Molecular mass ‡

Structural formula ‡

(3RS,4RS;3RS,4SR)-3-chloro-4-chloromethyl-1- $(\alpha,\alpha,\alpha$ -trifluoro-m-tolyl)-2-pyrrolidone (isomers in the ratio 3:1)

3-chloro-4-(chloromethyl)-1-[3-(trifluoromethyl)phenyl]-2-pyrrolidinone

430

61213-25-0

262-661-3 (EINECS)

No FAO specification

940 g/kg

trans FLC: 720-740 g/kg cis FLC: 220-240 g/kg

Toluene

Max. 8 g/kg

Open for other impurities

 $C_{12}H_{10}Cl_2F_3NO$

312.12

$$O$$
 Cl
 CH_2Cl
 CF_3

Physical and chemical properties (Annex IIA, point 2)

Boiling point (state purity) ‡ The decomposition of FLC was observed before boiling occurred; 99.5% purity The decomposition of FLC starts at about 290°C. Purified: solid with a light peach colour; (98.7%, cis/trans 1:3) Technical material: Dark brown-red solid with mild disinfectant or mothball odour at r.t. (92.0%, cis/trans 1:3) Vapour pressure (state temperature, state purity) ‡ The decomposition of FLC was observed before boiling occurred; 99.5% purity The decomposition of FLC starts at about 290°C. Purified: solid with a light peach colour; (98.7%, cis/trans 1:3) Technical material: Dark brown-red solid with mild disinfectant or mothball odour at r.t. (92.0%, cis/trans 1:3) 2.7 * 10 ⁻⁴ Pa at 25°C, (995 g/kg) Trans isomer: 6.0 * 10 ⁻⁵ Pa at 25°C; 2.5 * 10 ⁻⁵ Pa at 20°C, (995 g/kg) Cis isomer: to be determined H = 2.40 * 10 ⁻³ Pa.m ³ .mol ⁻¹ (25 °C) Trans isomer: 7.00 * 10 ⁻⁴ Pa * m ³ /mole at 20°C Cis isomer: to be determined Solubility in water (state temperature, state purity and pH) ‡ Solubility in organic solvents ‡ (state temperature, state purity) Acetone	Melting point (state purity) ‡	Open					
Appearance (state purity) ‡ Purified: solid with a light peach colour; (98.7%, cis/trans 1:3) Technical material: Dark brown-red solid with mild disinfectant or mothball odour at r.t. (92.0%, cis/trans 1:3) Vapour pressure (state temperature, state purity) ‡ 2.7 * 10 ⁻⁴ Pa at 25°C, (995 g/kg) Trans isomer: 6.0 * 10 ⁻⁵ Pa at 25°C; 2.5 * 10 ⁻⁵ Pa at 20°C, (995 g/kg) Cis isomer: to be determined H = 2.40 * 10 ⁻³ Pa.m³.mol ⁻¹ (25 °C) Trans isomer: 7.00 * 10 ⁻⁴ Pa * m³/mole at 20°C Cis isomer: to be determined Solubility in water (state temperature, state purity and pH) ‡ 31.1 mg/L at 20°C at pH 4.0, (938 g/kg) 21.9 mg/L at 20°C at pH 9.0, (938 g/kg) Trans isomer: 11.0 mg/L at 20°C (pH 7, (995 g/kg)) Cis isomer: 31.8 mg/L at 20°C (pH 7, (941 g/kg)) Solubility in organic solvents ‡ (state temperature, state purity) Acetone	Boiling point (state purity) ‡						
Cis/trans 1:3) Technical material: Dark brown-red solid with mild disinfectant or mothball odour at r.t. (92.0%, cis/trans 1:3) Vapour pressure (state temperature, state purity) Trans isomer: 6.0 * 10.5 Pa at 25°C; 2.5 * 10.5 Pa at 20°C, (995 g/kg) Cis isomer: to be determined Henry's law constant † Henry's law constant † H= 2.40 * 10.3 Pa.m³.mol¹ (25 °C) Trans isomer: 7.00 * 10.4 Pa * m³/mole at 20°C Cis isomer: to be determined Solubility in water (state temperature, state purity and pH) † 31.1 mg/L at 20°C at pH 4.0 , (938 g/kg) 21.9 mg/L at 20°C at pH 7.0 , (938 g/kg) 21.9 mg/L at 20°C at pH 9.0 , (938 g/kg) 28.6 mg/L at 20°C at pH 9.0 , (938 g/kg) Trans isomer: 11.0 mg/L at 20°C (pH 7, (995 g/kg)) Cis isomer: 31.8 mg/L at 20°C (pH 7, (941 g/kg)) Solubility in organic solvents ‡ (state temperature, state purity) Acetone	Temperature of decomposition (state purity)	The decomposition of FLC starts at about 290°C.					
disinfectant or mothball odour at r.t. (92.0%, cis/trans 1:3) Vapour pressure (state temperature, state purity) \$\frac{1}{4}\$ \[\begin{array}{l} 2.7 \cdot 10^4 \text{ Pa at 25}^\circ \cdot, (995 \cdot g/kg) \\ \end{array} \] Trans isomer: 6.0 \cdot 10^5 \text{ Pa at 25}^\circ \cdot, 2.5 \cdot 10^5 \text{ Pa at 20}^\circ \cdot, (995 \cdot g/kg) \\ \end{array} \] Henry's law constant \(\frac{1}{4}\) Henry's law constant \(\frac{1}{4}\) Henry's law constant \(\frac{1}{4}\) Henry is law constant \(\frac{1}{4}\) He	Appearance (state purity) ‡						
## Trans isomer: 6.0 * 10 ⁻⁵ Pa at 25°C; 2.5 * 10 ⁻⁵ Pa at 20°C, (995 g/kg) Cis isomer: to be determined		disinfectant or mothball odour at r.t. (92.0%, cis/trans 1:3)					
20°C, (995 g/kg) Cis isomer: to be determined	Vapour pressure (state temperature, state purity)	2.7 * 10 ⁻⁴ Pa at 25°C , (995 g/kg)					
Henry's law constant \ddagger $H = 2.40 * 10^{-3} \text{ Pa.m}^{3} \cdot \text{mol}^{-1} (25 \text{ °C})$ $Trans \text{ isomer: } 7.00 * 10^{-4} \text{ Pa * m}^{3} \cdot \text{mole at } 20 \text{ °C}$ $Cis \text{ isomer: to be determined}$ Solubility in water (state temperature, state purity and pH) \ddagger $31.1 \text{ mg/L at } 20 \text{ °C at pH } 4.0 \text{ , } (938 \text{ g/kg})$ $21.9 \text{ mg/L at } 20 \text{ °C at pH } 7.0 \text{ , } (938 \text{ g/kg})$ $28.6 \text{ mg/L at } 20 \text{ °C at pH } 9.0 \text{ , } (938 \text{ g/kg})$ $28.6 \text{ mg/L at } 20 \text{ °C at pH } 9.0 \text{ , } (938 \text{ g/kg})$ $11.0 \text{ mg/L at } 20 \text{ °C (pH } 7, (995 \text{ g/kg}))$ $Cis \text{ isomer: } 31.8 \text{ mg/L at } 20 \text{ °C (pH } 7, (941 \text{ g/kg}))$ $Acetone \qquad >540 \text{ g/L}$ $(\text{state temperature, state purity})$ $Acetonitrile \qquad >638 \text{ g/L}$ $Ethyl acetate \qquad >592 \text{ g/L}$ $Hexane \qquad 9.1 \text{ g/L}$	‡	<i>Trans</i> isomer: $6.0 * 10^{-5}$ Pa at 25° C; $2.5 * 10^{-5}$ Pa at					
Henry's law constant \ddagger $H = 2.40 * 10^{-3} \text{ Pa.m}^{3} \text{.mol}^{-1} (25 °\text{C})$ $Trans \text{ isomer: } 7.00 * 10^{-4} \text{ Pa * m}^{3} \text{/mole at } 20 °\text{C}$ $Cis \text{ isomer: to be determined}$ Solubility in water (state temperature, state purity and pH) \ddagger $21.9 \text{ mg/L at } 20 °\text{C at pH } 4.0 \text{ , (938 g/kg)}$ $21.9 \text{ mg/L at } 20 °\text{C at pH } 7.0 \text{ , (938 g/kg)}$ $28.6 \text{ mg/L at } 20 °\text{C at pH } 9.0 \text{ , (938 g/kg)}$ $28.6 \text{ mg/L at } 20 °\text{C at pH } 9.0 \text{ , (938 g/kg)}$ $11.0 \text{ mg/L at } 20 °\text{C (pH } 7, (995 \text{ g/kg))}$ $12.0 \text{ Cis isomer: } 11.0 \text{ mg/L at } 20 °\text{C (pH } 7, (941 \text{ g/kg))}$ $12.0 \text{ Solubility in organic solvents } \ddagger$ $13.1 \text{ mg/L at } 20 °\text{C at pH } 9.0 \text{ , (938 g/kg)}$ $28.6 \text{ mg/L at } 20 °\text{C (pH } 7, (995 \text{ g/kg))}$ $13.8 \text{ mg/L at } 20 °\text{C (pH } 7, (941 \text{ g/kg}))$ $13.8 \text{ mg/L at } 20 °\text{C (pH } 7, (941 \text{ g/kg}))$ $13.8 \text{ mg/L at } 20 °\text{C (pH } 7, (941 \text{ g/kg}))$ $13.8 \text{ mg/L at } 20 °\text{C (pH } 7, (941 \text{ g/kg}))$ $13.8 \text{ mg/L at } 20 °\text{C (pH } 7, (941 \text{ g/kg}))$ $13.8 \text{ mg/L at } 20 °\text{C (pH } 7, (941 \text{ g/kg}))$ $13.8 \text{ mg/L at } 20 °\text{C (pH } 7, (941 \text{ g/kg}))$ $13.8 \text{ mg/L at } 20 °\text{C (pH } 7, (941 \text{ g/kg}))$ $13.8 \text{ mg/L at } 20 °\text{C (pH } 7, (941 \text{ g/kg}))$		20°C, (995 g/kg)					
Trans isomer: 7.00 * 10 ⁻⁴ Pa * m ³ /mole at 20°C Cis isomer: to be determined 31.1 mg/L at 20°C at pH 4.0 , (938 g/kg) 21.9 mg/L at 20°C at pH 7.0 , (938 g/kg) 28.6 mg/L at 20°C at pH 9.0 , (938 g/kg) Trans isomer: 11.0 mg/L at 20°C (pH 7, (995 g/kg)) Cis isomer: 31.8 mg/L at 20°C (pH 7, (941 g/kg)) Solubility in organic solvents ‡ (state temperature, state purity) Acetone >540 g/L Acetonitrile >638 g/L Ethyl acetate >592 g/L Hexane 9.1 g/L		Cis isomer: to be determined					
Trans isomer: 7.00 * 10 ⁻⁴ Pa * m ³ /mole at 20°C Cis isomer: to be determined 31.1 mg/L at 20°C at pH 4.0 , (938 g/kg) 21.9 mg/L at 20°C at pH 7.0 , (938 g/kg) 28.6 mg/L at 20°C at pH 9.0 , (938 g/kg) Trans isomer: 11.0 mg/L at 20°C (pH 7, (995 g/kg)) Cis isomer: 31.8 mg/L at 20°C (pH 7, (941 g/kg)) Solubility in organic solvents ‡ (state temperature, state purity) Acetone >540 g/L Ethyl acetate >592 g/L Hexane 9.1 g/L	Henry's law constant ‡	$H = 2.40 * 10^{-3} \text{ Pa.m}^3 \cdot \text{mol}^{-1} (25 °\text{C})$					
Solubility in water (state temperature, state purity and pH) ‡ 31.1 mg/L at 20°C at pH 4.0 , (938 g/kg) 21.9 mg/L at 20°C at pH 7.0 , (938 g/kg) 28.6 mg/L at 20°C at pH 9.0 , (938 g/kg) Trans isomer: 11.0 mg/L at 20°C (pH 7, (995 g/kg)) Cis isomer: 31.8 mg/L at 20°C (pH 7, (941 g/kg)) Solubility in organic solvents ‡ (state temperature, state purity) Acetone >540 g/L Acetonitrile >638 g/L Ethyl acetate >592 g/L Hexane 9.1 g/L	·	Trans isomer: $7.00 * 10^{-4} $ Pa * m ³ /mole at 20 °C					
purity and pH) ‡ 21.9 mg/L at 20°C at pH 7.0 , (938 g/kg) 28.6 mg/L at 20°C at pH 9.0 , (938 g/kg) Trans isomer: 11.0 mg/L at 20°C (pH 7, (995 g/kg)) Cis isomer: 31.8 mg/L at 20°C (pH 7, (941 g/kg)) Solubility in organic solvents ‡ (state temperature, state purity) Acetone >540 g/L Ethyl acetate >592 g/L Hexane 9.1 g/L		Cis isomer: to be determined					
(state temperature, state purity) Acetonitrile >638 g/L Ethyl acetate >592 g/L Hexane 9.1 g/L		21.9 mg/L at 20°C at pH 7.0 , (938 g/kg) 28.6 mg/L at 20°C at pH 9.0 , (938 g/kg) Trans isomer: 11.0 mg/L at 20°C (pH 7, (995 g/kg))					
Ethyl acetate >592 g/L Hexane 9.1 g/L	Solubility in organic solvents ‡	Acetone >540 g/L					
Hexane 9.1 g/L	(state temperature, state purity)	Acetonitrile >638 g/L					
		-					
Mathemal 376 a/l		Č					
		Methanol 326 g/L					
Methylen chloride >508 g/L Toluene >616 g/L		-					
(20°C, 938 g/kg)		C					
Surface tension ‡ 54.6 mN/m at 20°C (90% of saturation concentration) (state concentration and temperature, state purity) 54.6 mN/m at 20°C (90% of saturation concentration) Purity: 94.9%	(state concentration and temperature, state						
Partition co-efficient ‡ log PO/W: 3.36 at 20 °C (pH = 7), 98.7% purity (state temperature, pH and purity) (cis/trans 1:3)	•						
Dissociation constant (state purity) ‡ In the environmentally relevant pH range of pH 4 to 9 FLC is present in its neutral form and does not dissociate or protonate	Dissociation constant (state purity) ‡	FLC is present in its neutral form and does not					
UV/VIS absorption (max.) incl. ε‡ Maximum at 252 nm	UV/VIS absorption (max.) incl. ε ‡	Maximum at 252 nm					
(state purity, pH) Extinction coefficient of 1.23 * 104 m-1	(state purity, pH)	Extinction coefficient of 1.23 * 104 m-1					
98.7% purity (cis/trans 1:3)		98.7% purity (cis/trans 1:3)					
Flammability ‡ (state purity) Not flammable	Flammability ‡ (state purity)	Not flammable					
Explosive properties ‡ (state purity) Not explosive	Explosive properties ‡ (state purity)	Not explosive					

_			 				_			 _
D	D:	~ £ 41~ ~	 	assessment	~ £ 41	4:		41-	1-1	 J

	·	
Oxidising properties ‡ (state purity)	Not oxidising	
Oxidising properties 4 (state parity)	1 tot oxidising	

1831732, 2010, 12, Downloaded from https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1869 by University College London UCL Library Services, Wiley Online Library on [14052025]. See the Terms and Conditions) on Wiley Online Library on the applicable Creative Commons Licensea

Summary of representative uses evaluated FLC

Crop	Member	Product	F	Pests or	Formulation		Formulation Application				Application rate per treatment			PHI	Remarks
and/or situation	State or Country	name	G or I (b)	Group of pests controlled (c)	Type (d-f)	Conc. of as. (i)	method kind (f-h)	growth stage & season (j)	number max (k)	interval between applications	g as./hL min max	water L/ha min max	kg as./ha min max	(days)	(m)
		_	-									_	_		
Sunflower	N/S	Racer	F	broad-leafed weeds and grass weeds	CS	250 g/L	spray application	BBCH 00 - 07	1	n.a.	125 - 375	200 - 400	0.5 - 0.75	n.r.	[1], [11], [111]
Potato	N/S	Racer	F	broad-leafed weeds and grass weeds	CS	250 g/L	spray application	BBCH 00 - 05	1	n.a.	93.8 - 375	200 - 400	0.375 - 0.75	n.r.	[II], [IV]

[I] In both pertinent FOCUS scenarios the groundwater metabolite R42819 is estimated to contaminate groundwater above the parametric drinking water limit of $0.1\mu g/L$. With the available mammalian toxicological data this metabolite has to be considered relevant.

- [II] High risk to algae
- [III] Safe uses for D5 with 5 m of buffer zone to mitigate the spray drift input. No safe uses are identified for run-off scenarios.
- [IV] Safe uses for D3, D4, and D6 with 5 m of buffer zone No safe uses are identified for run-off scenarios and for D6
- (a) For crops, the EU and Codex classifications (both) should be used: where relevant, the use situation should be described (e.g. fumigation of a structure)
- (b) Outdoor or field use (F), glasshouse application (G) or indoor application (I)
- (c) e.g. biting or suckling insects, soil born insects, foliar fungi, weeds
- (d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
- (e) GCPF Codes GIFAP Technical Monograph No. 2, 1989
- (f) All abbreviations used must be explained
- (g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
- (h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant type of equipment used must be indicated
- (i) g/kg or g/
- (j) Growth stage at last treatment (BBCH monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
- (k) Indicate the minimum and maximum number of application possible under practical conditions of use
- 1) PHI minimum pre-harvest interval
- (m) Remarks may include: Extent of use/economic importance/restrictions
- (*) Uses for wich the risk assessment can not be concluded are marked grey

Chapter 2: Methods of Analysis

Analytical methods for the active substance (Annex IIA, point 4.1)

Technical a.s. (principle of method)

GC-FID

Confirmation: GC/MS

Impurities in technical a.s. (principle of method)

GC-FID

Confirmation: GC/MS

Water: Karl-Fischer titration

Plant protection product (principle of method)

GC-FID

Confirmation: GC/MS

Analytical methods for residues (Annex IIA, point 4.2)

Residue definitions for monitoring purposes

Food of plant origin

FLC sum of isomers

No required for the supported use

FLC sum of isomers

Monitoring/Enforcement methods

Monitoring/Enforcement methods	
Food/feed of plant origin (principle of method and LOQ for methods for monitoring purposes)	For sunflower seeds: DFG method S19 (GC/MS), LOQ = 0.01 mg/kg
	For potatoes tubers:
	modified version of a published multiresidue method,
	Fillion et al., 2000
	(GC/MS), $LOQ = 0.01 mg/kg$
Food/feed of animal <u>origin</u> (principle of method and LOQ for methods for monitoring purposes)	Not required.
Soil (principle of method and LOQ)	FLC:
	GC/MSD, 0.01 mg/kg
Water (principle of method and LOQ)	FLC:
	Ground, GC/MS, LOQ = $0.05 \mu g/l$
	Surface, GC/MS, LOQ = 0.05 μg/l Drinking, GC/MS, LOQ = 0.05 μg/l
	Diffiking, GC/WS , $LOQ = 0.03 \mu g/I$
Air (principle of method and LOQ)	FLC:
	GC/MS
	$LOQ = 0.75 \ \mu g/m^3$
Body fluids and tissues (principle of method and LOQ)	The active substance is classified as T and a data gap is identified for a method of analysis.
200,	recitation for a medica of analysis.

Classification and proposed labelling with regard to physical and chemical data (Annex IIA, point 10)

	RMS/peer review proposal
Active substance	Not classified

Impact on Human and Animal Health

Absorption, distribution, excretion and metabolism (toxicokinetics) (Annex IIA, point 5.1)

Rate and extent of oral absorption ‡	> 90 % of applied dose within 42-90 h after administration based on the comparison of the excretion patterns after oral and ip administrations (rat)
Distribution ‡	Low tissue residues at 72 - 90 h after administration; highest residues found in liver, kidney, epididymis (males) and blood
Potential for accumulation ‡	No evidence of accumulation
Rate and extent of excretion ‡	In rats, > 97 % of applied dose within 72 h after administration, $38-47$ % in urine and $49-58$ % in faeces
	In rabbits, 87 – 91 % applied dose within 96 h, 62 – 67 % in urine and 22 – 24 % in faeces
Metabolism in animals ‡	Extensive metabolism in rats and rabbits <i>in vivo</i> (excretion of unchanged FLC ≤ 1.5 % of applied dose). Large number of no discernible fractions (in urine, faeces and plasma), 3 metabolites in rats and 4 metabolites in rabbits identified in urine were acetylcysteine conjugates. Three oxidative metabolites identified <i>in vitro</i>
Toxicologically relevant compounds ‡ (animals and plants)	FLC
Toxicologically relevant compounds ‡ (environment)	FLC

Acute toxicity (Annex IIA, point 5.2)

Rat LD ₅₀ oral ‡	Rat: 3650 mg/kg bw	
	Mice: 5000 mg/kg bw	
Rat LD ₅₀ dermal ‡	Rabbit: > 5000 mg/kg bw	
Rat LC ₅₀ inhalation ‡	> 4.82 mg/L air/4 h, nose-only exposure	
Skin irritation ‡	Non-irritant	
Eye irritation ‡	Non-irritant	
Skin sensitization ‡	Sensitising (M & K test)	R43

Short term toxicity (Annex IIA, point 5.3)

Target / critical effect ‡	Liver and testes (high dose rat)	
•	Decrease in bodyweight and bodyweight gain (rat	& dog)
	Haematological effects (dog)	
Relevant oral NOAEL ‡	90-day rat: 5.4 mg/kg bw/day	
·	6-month dog: 7.1 mg/kg bw/day	
Relevant dermal NOAEL ‡	No data - not required	

Relevant inhalation NOAEL ‡	No data - not required	
		Ξ

Genotoxicity ‡ (Annex IIA, point 5.4)

FLC is unlikely to be genotoxic	
---------------------------------	--

Long term toxicity and carcinogenicity (Annex IIA, point 5.5)

Target/critical effect ‡	Rat: testes (reduced size/weight, tubular atrophy, interstitial cell hyperplasia) and epididymides (reduced size, spermatic degeneration, tubular hyperplasia); bodyweight decrease Mouse: increased liver and adrenal weights	
Relevant NOAEL ‡	3.9 mg/kg bw/day (2-year rat) 6.3 mg/kg bw/day (2-year mouse)	
Carcinogenicity ‡	FLC is unlikely to pose a risk to humans	

Reproductive toxicity (Annex IIA, point 5.6)

Reproduction toxicity

	<u> </u>	
Reproduction target / critical effect ‡	Reproductive: Testes and epididymides/Sertoli cell vacuolation and consequently sperm degeneration.	Xn; R62
	Parental: reduced body weight gain, testicular and epididymides atrophy, hyperplasia	
	Offspring: reduced body weight, body weight gain, reduced testes weight decreased number of pups/litter, live birth index and reduced survival (0-4 days)	
Relevant parental NOAEL ‡	2.8 mg/kg bw/day	
Relevant reproductive NOAEL ‡	2.8 mg/kg bw/day	
Relevant offspring NOAEL ‡	27.7 mg/kg bw/day	
Developmental toxicity		

Developmental target / critical effect ‡

Rat:

Maternal: decreased body weight gain Developmental: Decreased body weight and increased incidence of visceral malformations (diaphragmatic hernia, heart/great vessel anomaly), skeletal malformations (exoccipitalcervical vertebrae defects) and elevated incidence of variations

Rabbit:

Maternal: decreased body weight gain Developmental: increased incidence of postimplantation losses and skeletal variations

Relevant maternal NOAEL ‡	Rat: 20 mg/kg bw/day Rabbit: 5 mg/kg bw/day	
Relevant developmental NOAEL ‡	Rat: 20 mg/kg bw/day	T;
	Rabbit: 20 mg/kg bw/day Teratogenic at doses > 25 mg/kg bw/day (rat)	R61

Neurotoxicity (Annex IIA, point 5.7)

Acute neurotoxicity ‡	No data - not required
Repeated neurotoxicity ‡	No data - not required
Delayed neurotoxicity ‡	No data - not required

Other toxicological studies (Annex IIA, point 5.8)

Fertility and mechanistic studies on male of rat, rabbit and monkey:

FLC appears to affect the seminiferous epithelial cycle of the testes at the primary spermatocyte stage by acting on the Sertoli cells.

The Sertoli cell vacuolation produced germ cell depletion and degeneration and consequently failed spermatid release. This results in reduction of sperm and malformations in caput and cauda epididymis. Reversibility is probable since the spermatogonia and primary spermatocytes were not affected by treatment. No effects on male reproductive parameters in monkey and rabbit, at doses producing effects on male rats.

Studies performed on metabolites or impurities ‡

No data - not required

Value

0.04 mg/kg bw

Medical data ‡ (Annex IIA, point 5.9)

No evidence of adverse health effects of workers. No case of poisoning in the literature. No epidemiological study available

Summary (Annex IIA, point 5.10)

ADI ‡ AOEL ‡

ARfD ‡

0.04 mg/kg bw/day	rat, 2-year study	100
0.04 mg/kg bw/day	rat, developmental study	500*
0.04 mg/kg bw	rat, developmental	500*

Study

study

Safety factor

^{*} higher safety factor due to severity of effects at 25 mg/kg bw/day and NOAEL at 20 mg/kg bw/day in 2 different studies

Dermal absorption ‡ (Annex IIIA, point 7.3)

Flurochloridone 25 CS

Concentrate: 0.3 % Spray dilution: 4 % Human *in vitro* study

Exposure scenarios (Annex IIIA, point 7.2)

Operator <u>Tractor mounted equipment,</u> application rate 750 g

FLC/ha

German model % of AOEL

Without PPE: 49 %

<u>UK POEM</u> % of AOEL

Without PPE: 394 %

With PPE (gloves during M/L and application): 56 %

Worker exposure not relevant to the representative uses (considering the growth stage of the crops at application)

2 % of the AOEL

Classification and proposed labelling (Annex IIA, point 10)

Substance classified: FLC

Workers

Bystanders

RMS/peer review proposal

T "Toxic"

R43 "May cause sensitization by skin contact"

Repr. Cat 2, R61 "May cause harm to the unborn child"

Repr. Cat 3, R62 "Possible risk of impaired fertility"

Residues

Metabolism in plants (Annex IIA, point 6.1 and 6.6; III.A, point 8.1 and 8.6)

Plant groups covered	Pulses/oilseeds (sunflower), Roots/tubers (potatoes)
Rotational crops	Leafy crops (spinach), root crops (carrot) and cereals (wheat)
Metabolism in rotational crops similar to metabolism in primary crops	Limited metabolite identification in primary and rotational crops due to the low TRRs.
Processed commodities	Not required
Residue pattern in processed commodities similar to residue pattern in raw commodities	Not relevant
Plant residue definition for monitoring	Flurochloridone FLC (sum cis + trans isomers)
Plant residue definition for risk assessment	Flurochloridone FLC (sum cis + trans isomers)
Conversion factor (monitoring to risk assessment	Not applicable

Metabolism in livestock (Annex IIA, point 6.2 and 6.7; III.A, point 8.1 and 8.6)

Animals covered	No provided and not requested
Time needed to reach a plateau concentration in milk and eggs	Not relevant
Animal residue definition for monitoring	Not relevant
Animal residue definition for risk assessment	Not relevant
Conversion factor (monitoring to risk assessment	Not relevant
Metabolism in rat and ruminants similar (yes/no)	Not relevant
Fat soluble residue (yes/no)	Not relevant

Residues in succeeding crops (Annex IIA, point 6.6; III.A, point 8.5)

TRRs <0.01 mg/kg in spinach, carrot root and wheat grain for all plant back intervals (33, 131 and 355 days), 0.016 to 0.049 in cereal straw.

Stability of residues (Annex IIA, point 6 introduction; III.A, point 8 introduction)

FLC residues stable up to 3 years in potatoes, soybeans, alfalfa, almonds, apples, corn, peppers, wheat grain, and soil when stored frozen at -20°C.

Residues from livestock feeding studies (Annex IIA, point 6.4; III.A, point 8.3)

Not provided and not requested

Intakes by livestock ≥ 0.1 mg/kg diet (dry weight

Ruminants:	Poultry:	Pigs:
No	No	No

pasis)(yes/no- If yes, specify the level)			
Potential for accumulation (yes/no)			
Metabolism studies indicate potential level of residues ≥0.01 mg/kg in edible tissues (yes/no)			
	Residue levels in n	natrices: mg/kg	
Muscle			
Liver			
Kidney			
Fat			
Milk			
Eggs			

Summary of critical residues data (Annex IIA, point 6.3; III.A, point 8.2)

Сгор	Northern or Southern Region, field or glasshouse	Trials results relevant to the representative uses	Recommendation/comments	MRL estimated from trials according to the intended use	HR (mg/kg)	STMR (mg/kg)
Sunflower	North	4x <0.01	Minor crop in Northern Europe. No additional trials are requested, although sunflower is major crop in Southern	0.01	0.01	0.01
	South	6x <0.01	Europe, as all the values are below the LOQ.	0.01	0.01	0.01
Potato	North	8x <0.01		0.01	0.01	0.01
	South	8x <0.01		0.01	0.01	0.01

⁸ additional studies performed in sunflowers and in potatoes. Not validated due to lacking of information

EFSA Journal 2010;8(12):

Consumer risk assessment (Annex IIA, point 6.9; III.A, point 8.8)

ADI	0.04 mg/kg bw/day
TMDI (%ADI) according to EFSA PRIMo rev2 model	<0.2% ADI for all diets included in PRIMo model
TMDI (%ADI) according to national diet (to be specified)	Not relevant
IEDI (%ADI) according to WHO regional European diet	Not relevant
NEDI (% ADI) according to national diet (worst case)	Not relevant
Factors included in IEDI and NEDI	Not relevant
ARfD	0.04 mg/kg bw
IESTI (%ARfD)	Highest IESTI: 4% ARfD (Children, potatoes)
Refined IESTI (%ARfD)	Not relevant
Factors included in refined IESTI	Not relevant

Processing factors (Annex IIA, point 6.5; III.A, point 8.4)

	Number	Processin	Amount		
Crop/ process/ processed product	of studies	Transfer factor	Yield factor	transferred (%, (Optional)	
Not provided and not required					

Proposed MRLs (Annex IIA, point 6.7; III.A, point 8.6)

- Sunflower seeds 0.01* mg/kg
- Potato 0.01* mg/kg

When the MRL is proposed at the LOQ, this should be annotated by an asterix (*) after the figure.

Chapter 5: Fate and Behaviour in the Environment

Route of degradation (aerobic) in soil (Annex IIA, point 7.1.1.1.1)

Mineralisation after 100 days

27.7 % after 91 d, $[2^{-14}C$ -pyrrolidone]-label (n= 1 at 20°C and 41.6% MWHC

1.8 % after 91 d, [Phenyl-U-14C]-label (n= 1 at 20°C and 45% MWHC)

16-45.5% after 64 d [2-14C-pyrrolidone]-label (n=3 at 28

°C and 40% MWHC)

36 % after 91 d, [2-14C-pyrrolidone]-label (n= 1 at 20°C and 41.6% MWHC

56.05 % after 91 d, [Phenyl-U-14C]-label (n= 1 at 20°C and 45% MWHC)

32.4-39.3% after 64 d [2-14C-pyrrolidone]-label (n=3 at 28 °C and 40% MWHC)

Metabolites requiring further consideration - name and/or code, % of applied (range and maximum)

Non-extractable residues after 100 days

R406639 5% at 14 d, [2-14C-pyrrolidone]-label (n= 1 at 20°C and 41.6% MWHC

R406639 4.9% at 28 d, [Phenyl-U-14C]-label (n= 1 at 20°C and 45% MWHC)

R406639 3.4-8.1% at 21-29 d [2-14C-pyrrolidone]-label (n=3 at 28 °C and 40% MWHC)

R42819 3% at 120 d, [2-14C-pyrrolidone] label (n= 1) (n= 1 at 20°C and 41.6% MWHC

R42819 2.8% at 91 d, [Phenyl-U-14C]-label (n= 1 at 20°C) and 45% MWHC)

R42819 2.7-10.1% at 4-8 d [2-14C-pyrrolidone]-label (n=3 at 28 °C and 40% MWHC)

Route of degradation in soil - Supplemental studies (Annex IIA, point 7.1.1.1.2)

Anaerobic degradation¹

Non-extractable residues after 100 days

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)

33.3-34.3% after 91. d, [2-14C-pyrrolidone]-label (n=3 at 28 °C)

A reduction of the metabolism is observed

Soil photolysis

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)

All metabolites were identified < 5% AR

¹Soils were aerobic through 30. The duration of the study was 91 d

Rate of degradation in soil (Annex IIA, point 7.1.1.2, Annex IIIA, point 9.1.1)

Laboratory st	tudies								
Aerobic conditions. Parent			Regulatory endpoint Modelling endpo					dpoin	
Soil type	pН	t. °C/ % MWHC	DT ₅₀ /DT ₉₀ (d)	St. (Erro r level χ^2)	Residual Sum of Squares	Method of calculation	DT ₅₀	DT ₅₀ (d) 20°C pF2/10kPa*	Method of calculation (Error level χ²)
Silt loam (Richmond soil) [2- ¹⁴ C- pyrrolidone]- label	6.1	20°C/41. 6%	24.4/306 ²	3.0	49.224	FOMC	82.36	58.013	HS slower rate (3.8)
Silt loam (Richmond soil) [Phenyl-U- 14C]-label [2-14C- pyrrolidone]- label	6.1	20°C/45 %	24/460 ²	3.0	37.030	FOMC	-	-	-
Sandy loam (Keeton soil) [2- ¹⁴ C- pyrrolidone]- label	7.7	28°C/40 %	38.5/545.02 ²	2.6	25.6	FOMC	53.0	180	DFOPslow er rate (3.8)
Silt loam (Delco soil) [2- ¹⁴ C- pyrrolidone]- label	6.7	28°C/40 %	6.35/51.46	8.1	68.43	FOMC	15.5	22.8	FOMC/3.3 2
Loam (Aurora soil) [2- ¹⁴ C- pyrrolidone]- label	7.4	28°C/40 %	6.7/54.1	4.4	23.47	FOMC	16.3	33.252	FOMC/3.3 2
Geomean								53.0	

² Extrapolated;

^{*}normalised with the assumption of a Q10 of 2.58 (EFSA, 2007) and Walker Equation coefficient of 0.7 (FOCUS)

R406639:	Aerob	Aerobic conditions								
Soil type	рН	t. °C/ % MWHC	DT ₅₀ /DT ₉₀ (d)	f.f	DT ₅₀ (d) 20°C pF2/10kPa*	St. (Error level χ^2)	Residual Sum of Squares	Method of calculation		
Silt loam (Richmond soil) [2- ¹⁴ C-pyrrolidone]- label	6.1	20°C/41.6%	8.4/27.9	0.0833	5.9	15.4	3.35	FOMC-SFO		
Silt loam (Richmond soil) [Phenyl-U- ¹⁴ C]-label [2- ¹⁴ C-pyrrolidone]- label	6.1	20°C/45%	15.4/51.04	0.1811	10.8	19	5.2	FOMC-SFO		
Sandy loam (Keeton soil) [2- ¹⁴ C-pyrrolidone]- label	7.7	28°C/40%	131.2/436 ³	0.0881	226.51	16.2	1.7	FOMC-SFO		
Silt loam (Delco soil) [2- ¹⁴ C-pyrrolidone]- label	6.7	28°C/40 %	104/345.5 ³	0.12883	153.2	5.4	1.12	FOMC-SFO		
Loam (Aurora soil) [2- ¹⁴ C-pyrrolidone]- label	7.4	28°C/40%	60.5/201 ³	0.071	123.42	11.6	1.3	FOMC-SFO		
			ithmetic mean cometric mean	0.105	77.4					

^{*}normalised with the assumption of a Q10 of 2.58 (EFSA, 2007) and Walker Equation coefficient of 0.7 (FOCUS)

R42819	Aero	bic conditions						
Soil type	рН	t. °C/ % MWHC	DT ₅₀ /DT ₉₀ (d)	f.f	DT ₅₀ (d) 20°C pF2/10kPa*	St. (Error level χ^2)	Residual Sum of Squares	Method of calculation
Sandy loam (Keeton soil) [2- ¹⁴ C-pyrrolidone]-label	7.7	28°C/40%	42.3/140.4	-	73 d ⁶	11.6		SFO from maximum
Silt loam (Delco soil) [2- ¹⁴ C-pyrrolidone]-label	6.7	28°C/40%	8.7	-	12.81 d	19.3		SFO from maximum
Loam (Aurora soil) [2- ¹⁴ C-pyrrolidone]-label	7.4	28°C/40%	262.8 ⁴	-	536.2 d ⁶	7.0		DFOP Slower rate
	•	Geometric mea	an	0.895 ⁵	79.4			

⁴extrapolated; ⁵calculated as 1-ff_{406639;} ⁶High uncertainty associated to the estimation, *normalised with the assumption of a Q10 of 2.58 (EFSA, 2007) and Walker Equation coefficient of 0.7 (FOCUS)

Field studies

Parent	Aerobic conditions	
--------	--------------------	--

18314732, 2010, 12, Downloaded from https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1869 by University College London UCL Library Services, Wiley Online Library on [14052025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

Peer Review of the pesticide risk assessment of the active substance flurochloridone

Soil type	Location (country or	% MO	pН	Depth	$DT_{50}(d)$	DT ₉₀ (d)	St.	Residual	Method of
(bared).	USA state).			(cm)			(Error	Sum of	calculation
							level χ^2)	Squares	
Sandy loam	Varendorf (DE)	1.6	5.7	0-10	31	234	58.6	0.199	FOMC
Silty clay	Mechtersheim (DE)	0.6	7.5	0-10	26	181	17	0.01	FOMC
loam					20	101			
Silty loam	Inzkofen (DE)	2.1	7.2	0-10	11	75	25.1	0.017	FOMC
Sandy loam	Etzlberg (DE)	2.4	7.0	0-10	37	249	9.4	0.004	FOMC
Silty clay	Grosseto (IT)	2.3	7.9	0-10	48	258	16.9	0.011	FOMC
Sandy loam	Perugia (IT)	1.1	5.0	0-10	65	515	14	0.007	FOMC
Loam	Draseno (It)	2.2	5.6	0-10	62	205	23.7	0.004	FOMC
Sandy loam	Mezzana Bigli (It)	2.5	8.0	0-10	45	199	14.2	0.001	FOMC

pH dependence (yes / no) (if yes type of
dependence)
Soil accumulation and plateau concentration

no	
Not necessary	

Supplementary Laboratory studies ‡

Parent	Anaerobic conditions					
Soil type X ¹⁴	рН	t. °C / % MWHC	DT ₅₀ /DT ₉₀ (d)	DT ₅₀ (d) 20°C pF2/10kPa	St. (r ²)	Method of calculation
Sandy loam (Keeton soil) [2- ¹⁴ C- pyrrolidone]- label	7.7	DT ₅₀ An analysis	aerobic of the a	conditions naerobic con	were established after	oints to estimate a n anaerobic 30d of aerobic conditions. The 1 and 91 d after treatment.
Silt loam (Delco soil) [2- ¹⁴ C- pyrrolidone]- label	6.7					
Loam (Aurora soil) [2- ¹⁴ C- pyrrolidone]- label	7.4					

Parent	Photolysis study: Irradiation apparatus: Suntest apparatus (xenon arc lamp with filters to remove wavelengths < 290 nm) Irradiation conditions: 15 d continuously irradiated.					
Soil type	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Method of calculation
Silt loam (Fislis, France)	7.0	21	82.3 d	161 d (30-40 °N) 167 d (50° N)	0.9818 (light conditions) 0.8898 (dark conditions)	SFO

Soil adsorption/desorption (Annex IIA, point 7.1.2)

Parent		-					
Soil Type	OC %	Soil pH	K _d	K_{F}	K _{doc}	K _{Foc}	1/n
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	
sandy loam	2.96	8.5	19	14	680	490	0.91
sand	0.58	5.1	7.6	6.5	1300	1100	0.92
sandy loam	1.16	6.7	10	7.8	870	670	0.89
sandy clay loam	1.74	7.5	12	9.4	720	540	0.88
Average 893 700 0.9							
pH dependence, Yes or No No							

18314732, 2010, 12, Downloaded from https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efs.20.010.1869 by University College London UCL Library Services, Wiley Online Library view, com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

R406639							
Soil Type	OC %	Soil pH	K _d	K_{F}	K _{doc}	K _{Foc}	1/n
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	
loamy sand	2.3	5.6	10.5	-	463		-
loam	1.28	7.4	16.2	-	1265	-	-
clay loam	4.67	7.5	12.3	-	264	-	-
		Average	664	-	-		
pH dependence, Yes or No							

R42819							
Soil Type	OC	% Soil pH	I K _d	K _F	K _{doc}	K _{Foc}	1/n
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	
loamy sand	2.3	5.6	9.6		415	-	-
loam	1.2	8 7.4	5.9		463	-	-
clay loam	4.6	7 7.5	14.1		302	-	-
				Average	393	-	-
	pH depend	ence, Yes or N	No No				

Mobility in soil (Annex IIA, point 7.1.3, Annex IIIA, point 9.1.2)			
Column leaching	No data		
Aged residues leaching	Test substance: 14C-pyrrolidoneFLC		
	Aged for (d): 26 d 20°C and 40% MWHC		
	Time period (d): x d		
	Eluation (mm): 1049 &1061 cm		
	Analysis of soil residues post ageing (soil residues pre-		
	leaching): 38.4% active substance 9.2% comprises at		
	least five different compounds		
	1100		
	Leach ate: On average, 14.3%		
	FIG formal in the leaders. The decordation		
	FLC was not found in the leachates. The degradation		
	products were concluded to be polar intermediates. No		
	information is given of the composition of the polar		
	fraction		

Lysimeter/ field leaching studies

No data

PEC (soil) (Annex IIIA, point 9.1.3)

Parent

Method of calculation

Application data

Kinetics: FOMC Alfa parameter 1.13 Beta parameter: 77.1

Field or Lab: representative worst case from field

studies.

Crop: sunflower and potatoes Depth of soil layer: 5 cm

% plant interception: Pre-emergence

Number of applications: 1

Interval (d): n/a

Application rate(s): 750 g as/ha

$\mathbf{PEC}_{(s)}$	Single	Single	Multiple	Multiple
(mg/kg)	application	application	application	application
	Actual	Time weighted	Actual	Time weighted
		average		average
Initial	1.00			
Short term 24h	0.99	0.99		
2d	0.97	0.99		
4d	0.94	0.97		
Long term 7d	0.91	0.95		
14 d	0.83	0.91		
28d	0.7	0.84		
50d	0.57	0.75		
100d	0.39	0.61		
Platau reached at	Max= 1.16 mg/kg			
2 years	TWA = 0.38 mg/kg			

Route and rate of degradation in water (Annex IIA, point 7.2.1)

Hydrolytic degradation of the active substance and pH 5 stable at 25 °C

metabolites > 10%.

Photolytic degradation of active substance and metabolites above 10%

pH 7: stable at 25 °C

pH 9: stable at 25 °C

Experimental

DT₅₀: 6.2 d [2-¹⁴C-pyrrolidone]-label DT_{50} = 6.8 d [Phenyl-U- 14 C]-label

Estimated DT₅₀ values (d) for different latitudes

Latitude:	50° N	40° N	30° N
[carbonyl-14C] FLC	16.5	15.9	15.9
[phenyl- ¹⁴ C] FLC	18.1	17.4	17.4

R406639: 37.7-41.5 % AR at 38.4-40 natural days

(latitudes: 30-50N)

M8 (hydroxymethyl). 11.1-12.1% AR at 38.4-40 natural

days (latitudes: 30-50N)

Quantum yield of direct phototransformation in water at $\Sigma > 290 \text{ nm}$

Readily biodegradable (yes/no)

0.224±12 mg/l

No. Not readily biodegradable

Degradation in water / sediment

Parent	Distribution	(eg ma	ax in	water 79.7-86	after 0	d. Max. sed	25.	6-42.2 % afte	er 2-	14 d)
(Days)	Water / sediment system	pH_w	°C	DT_{50}/DT_{90} whole	\mathbb{R}^2	DT ₅₀ /DT ₉₀ water	\mathbb{R}^2	DT ₅₀ /DT ₉₀ sed	\mathbb{R}^2	Method of calculation
[2- ¹⁴ C-	Clay loam	7.5	20	19.6/65.1	0.99	-	-	-	1	SFO (FOCUS_DK PI)
pyrrolidone]- label	Sand	5.5	20	10.3/34.0	0.99	-	-	-	1	SFO (FOCUS_DK PI)
[Phenyl-U-14C]-label	Clay loam	7.5	20	22.8/75.9	0.99	-	-	-	1	SFO (FOCUS_DK PI)

	Sand	5.5	20	9.2/30.5	0.99	-	-	-	-	SFO (FOCUS_DK PI)
Geometric mean				$DT_{50} = 14.3$		-	-	-	-	

R406639	Distribution (eg max in water 2.8 after 14d. Max. sed 10.5-10.6 % after 30 d)								
	Water / sediment system	$pH_{\rm w}$	°C	$\mathrm{DT}_{50 \mathrm{\ whole}}$	DT ₉₀ whole	Fmet	\mathbb{R}^2	Method of calculation	
[2- ¹⁴ C-pyrrolidone]-	Clay loam	7.5	20	58	193 ⁹	0.2386	0.961	SFO (FOCUS_DK MI)	
label	Sand	5.5	20	-	-	-	-	SFO (FOCUS_DK MI)	
[Phenyl-U- ¹⁴ C]-label	Clay loam	7.5	20	36.9	122.6 ⁹	0.28791	0.992	SFO (FOCUS_DK MI)	
[Phenyi-O- C]-laber	Sand	5.5	20	66.7	221.6	0.04654	0.906	SFO (FOCUS_DK MI)	
Geometric mean				DT ₅₀ =52.3					

R42819	Distribution (eg max in water 5.3-23.2 after 14-30 d. Max. sed 36.5-46.9 % after 100 d)							
	Water / sediment system	$pH_{\rm w}$	°C	DT ₅₀ whole	DT ₉₀ whole	F met	\mathbb{R}^2	Method of calculation
[2- ¹⁴ C-pyrrolidone]-	Clay loam	7.5	20	210 ⁷	698 ⁷	0.55392	0.980	SFO (FOCUS_DK MI)
label	Sand	5.5	20	184 ⁷	610.3 ⁷	0.8263	0.991	SFO (FOCUS_DK MI)
[Phenyl-U- ¹⁴ C]-label	Clay loam	7.5	20	274 ⁷	910.6 ⁷	0.50346	0.981	SFO (FOCUS_DK PI)
[Phenyi-O- C]-label	Sand	5.5	20	435.8 ⁷	1447.8 ⁷	0.73092	0.997	SFO (FOCUS_DK MI)
Geometric mean				DT ₅₀ = 261				

⁷extrapolated

Mineralization	Mineralization and non extractable residues								
	Water / sediment system	pH w	Mineralization x %. (end of the study).	Non-extractable residues in sed. Max x % after n d	Non-extractable residues in sed. Max x % (end of the study)				
[2- ¹⁴ C-	Clay loam	7.5	4.1	-	25.7				
pyrrolidone]- label	Sand	5.5	6.9	-	17.9				
[Phenyl-U-	Clay loam	7.5	1.1	-	30.1				
¹⁴ C]-label	Sand	5.5	2.2	-	18.6				

PEC (surface water) and PEC sediment (Annex IIIA, point 9.2.3)

Parent

Parameters used in FOCUSsw step 1 and 2 $\,$

Molecular weight (g/mol):312.1 Water solubility (mg/L):35.1

18314732, 2010, 12, Downloaded from https://efsa.onlinelibrary.wiley.com/doi/10.2036/j.efs.2010.1869 by University College London UCL Library Services, Wiley Online Library and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Centwise Commons and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Centwise Commons and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Centwise Commons and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Centwise Commons are for the conditions of the con

Koc (L/kg): 700

DT₅₀ soil (d): 53.0days

DT₅₀ water/sediment system (d): 14.3

For PEC surface water DT₅₀ water (d):1000 d DT₅₀ sediment (d): 14.3 d

For PEC sediment DT₅₀ water (d):14.3 d DT₅₀ sediment (d): 1000 d Crop interception (%): 0

Parameters used in FOCUSsw step 3 (if performed)

For steps 3 and 4, as above Vapour pressure: $4.4*10^{-4}$

Kom/Koc: 700 1/n: 0.9

Simulations used the Q10 of 2.58 and Walker equation

coefiicient of 0.7

Crop: sunflower/potatoes
Crop interception: 0
Number of applications: *I*

Interval (d):*n a*

Defined by FOCUS

Application rate(s): 750 g as/ha Depth of water body: FOCUS value Application window: March-May

Main routes of entry

Application rate

Step 1: Crops Potatoes and sunflower

	PECsw	(µg/L)	PECsed(µg/kg dry sediment)		
Time	Actual	TWA	Actual	TWA	
0	136.2078		905.1724		
1	126.5908	131.3993	886.1355	895.6540	
2	120.6010	127.4855	844.2073	880.3280	
4	109.4584	121.2126	766.2085	842.4529	
7	94.6446	112.9238	662.5121	787.0178	
14	67.4122	96.5918	471.8854	674.4184	
21	48.0155	83.4500	336.1082	583.0006	
28	34.1998	72.7670	239.3987	508.5065	
42	17.3504	56.7878	121.4527	396.9398	
50	11.7734	50.0029	82.4136	349.5374	
100	1.0432	27.2151	7.3021	190.2646	

Step 2 Crops Potatoes and sunflower

North conditions (DT ₅₀ w: 1000 d; DT ₅₀ sed= 14.3 d)								
PECsw (µg/L) PECsed(µg/kg dry sediment)								
Time after max. peak(d)	Actual	TWA	Actual	TWA				

	1	1	T	1
0	28.5908		189.6305	
1	27.8470	28.2189	185.8344	187.7325
2	27.2009	27.8714	181.5230	185.7056
4	25.9534	27.2225	173.1978	181.5208
7	24.1886	26.2965	161.4205	175.4038
14	20.5234	24.3017	136.9609	162.1333
21	17.4135	22.5100	116.2076	150.1908
28	14.7749	20.8972	98.5990	139.4349
42	10.6365	18.1292	70.9820	120.9698
50	8.8154	16.7802	58.8290	111.9695
100	2.7259	10.9844	18.1913	73.2975

	C4112	4' (DT 1000 J. 1	DT1 1423)	
	Southern condi	tions (DT ₅₀ w: 1000 d;	DT ₅₀ sea= 14.3a)	1
PECsw (µg/L)		PECsed(µg/kg dry		
		sediment)		
Time after max.	Actual	TWA	Actual	TWA
peak(d)				
0	53.1347		361.4380	
1	52.3739	52.7543	349.5127	355.4753
2	51.1588	52.2603	341.4038	350.4668
4	48.8125	51.1195	325.7461	341.9979
7	45.4933	49.4121	303.5956	330.2368
14	38.5998	45.6831	257.5926	305.1071
21	32.7509	42.3211	218.5603	282.5891
28	27.7883	39.2916	185.4425	262.3312
42	20.0049	34.0893	133.5012	227.5738
50	16.5798	31.5534	110.6442	210.6373
100	5.1269	20.6560	34.2136	137.8800

Step 3

Potatoes (DT₅₀w: 1000 d; DT₅₀sed= 14.3d)

surface water Potaotes	Global Maximum	7-TWA	14- TWA	21-TWA
D3 ditch	3.922	0.572	0.288	0.192
D4 pond	0.655	0.651	0.645	0.636
D4 stream	3.298	0.565	0.447	0.428
D6 ditch 1st appl	3.883	0.238	0.123	0.086
D6 ditch 2nd appl	3.969	2.823	1.730	1.162
R1 pond	0.603	0.572	0.547	0.525
R1 stream	5.550	0.673	0.469	0.356
R2 stream	3.598	0.702	0.362	0.256
R3 stream	11.992	0.954	0.572	0.619

Potatoes (DT₅₀w: 14.3 d; DT₅₀sed= 1000d)

sediment Potatoes	Global Maximum	7-TWA	14- TWA	21-TWA
D3 ditch	1.866	1.19	0.901	0.757
D4 pond	3.386	3.386	3.383	3.379
D4 stream	1.944	1.925	1.898	1.853
D6 ditch 1st appl	1.101	0.664	0.575	0.553
D6 ditch 2nd appl	4.966	4.715	4.205	3.735
R1 pond	1.930	1.926	1.912	1.889

R1 stream	2.667	1.963	1.832	1.756
R2 stream	48.939	45.156	43.053	41.341
R3 stream	6.210	4.429	3.819	3.488

Sunflower (DT₅₀w: 1000 d; DT₅₀sed= 14.3d)

surface water Sunflower	Global Maximum	7-TWA	14- TWA	21-TWA
D5 pond	0.254	0.240	0.230	0.221
D5 stream	3.360	0.128	0.100	0.083
R1 pond	0.660	0.626	0.600	0.576
R1 stream	5.728	0.692	0.484	0.371
R3 stream	8.052	1.067	0.754	0.568
R4 stream	13.668	1.830	1.196	0.813

Sunflower (DT₅₀w: 14.3 d; DT₅₀sed= 1000d)

Sediment Sunflower	Global Maximum	7-TWA	14- TWA	21-TWA
Sulliower	Maxillulli	/-1 VV A	14- 1 WA	21-1 VVA
D5 pond	1.068	1.067	1.063	1.057
D5 stream	0.371	0.364	0.355	0.348
R1 pond	2.145	2.140	2.125	2.100
R1 stream	2.791	2.075	1.916	1.844
R3 stream	5.868	3.869	3.220	2.879
R4 stream	16.081	13.560	12.359	11.572

Step 4 10 m VBS

Potatoes

surface water Potaotes	Global Maximum	7-TWA	14- TWA	21-TWA
D3 ditch	0.682	0.0993	0.0499	0.0333
D4 pond	0.651	0.648	0.642	0.633
D4 stream	0.924	0.565	0.447	0.428
D6 ditch 1st appl	0.682	0.134	0.106	0.086
D6 ditch 2nd appl	2.524	0.796	0.626	0.440
R1 pond	0.266	0.253	0.242	0.232
R1 stream	2.513	0.302	0.211	0.158
R2 stream	1.420	0.316	0.162	0.113
R3 stream	5.476	0.440	0.258	0.282

sediment Potatoes	Global Maximum	7-TWA	14- TWA	21-TWA
D3 ditch	0.341	0.224	0.170	0.143
D4 pond	3.338	3.337	3.334	3.331
D4 stream	1.939	1.919	1.893	1.848
D6 ditch 1st appl	0.584	0.568	0.536	0.515
D6 ditch 2nd appl	2.573	2.467	2.264	2.147
R1 pond	0.895	0.893	0.886	0.876

R1 stream	1.119	0.806	0.746	0.710
R2 stream	7.912	7.237	6.895	6.622
R3 stream	2.336	1.543	1.272	1.130

Sunflower

surface water Sunflower	Global Maximum	7-TWA	14- TWA	21-TWA
D5 pond	0.198	0.187	0.180	0.174
D5 stream	0.755	0.128	0.100	0.083
R1 pond	0.289	0.275	0.263	0.252
R1 stream	2.597	0.310	0.218	0.165
R3 stream	3.638	0.492	0.339	0.242
R4 stream	5.997	0.840	0.542	0.363

Sediment	Global			
Sunflower	Maximum	7-TWA	14- TWA	21-TWA
D5 pond	0.924	0.923	0.919	0.914
D5 stream	0.371	0.364	0.355	0.348
R1 pond	0.984	0.982	0.975	0.964
R1 stream	1.152	0.830	0.760	0.729
R3 stream	2.321	1.435	1.144	0.996
R4 stream	4.288	3.356	2.912	2.645

Step 4 20 m VBS

Potatoes

surface water Potaotes	Global Maximum	7-TWA	14- TWA	21-TWA
D3 ditch	0.354	0.0516	0.0259	0.0173
D4 pond	0.650	0.646	0.640	0.631
D4 stream	0.924	0.565	0.447	0.428
D6 ditch 1st appl	0.359	0.134	0.106	0.086
D6 ditch 2nd appl	2.524	0.796	0.626	0.440
R1 pond	0.144	0.136	0.130	0.125
R1 stream	1.315	0.157	0.110	0.082
R2 stream	0.774	0.165	0.084	0.059
R3 stream	2.875	0.232	0.135	0.148

sediment Potatoes	Global Maximum	7-TWA	14- TWA	21-TWA
D3 ditch	0.180	0.120	0.0913	0.0769
D4 pond	3.308	3.307	3.305	3.301
D4 stream	1.938	1.919	1.893	1.847
D6 ditch 1st appl	0.580	0.564	0.532	0.511
D6 ditch 2nd appl	2.504	2.398	2.194	2.078
R1 pond	0.502	0.501	0.497	0.491
R1 stream	0.587	0.423	0.391	0.372

R2 stream	2.804	2.545	2.419	2.320
R3 stream	1.198	0.784	0.639	0.563

Sunflower

surface water Sunflower	Global Maximum	7-TWA	14- TWA	21-TWA
D5 pond	0.166	0.165	0.163	0.161
D5 stream	0.395	0.128	0.100	0.083
R1 pond	0.155	0.147	0.141	0.135
R1 stream	1.359	0.162	0.114	0.086
R3 stream	1.909	0.259	0.177	0.126
R4 stream	3.098	0.442	0.284	0.190

Sediment	Global			
Sunflower	Maximum	7-TWA	14- TWA	21-TWA
D5 pond	0.839	0.838	0.835	0.830
D5 stream	0.371	0.364	0.355	0.348
R1 pond	0.548	0.547	0.543	0.536
R1 stream	0.601	0.433	0.396	0.380
R3 stream	1.203	0.741	0.585	0.506
R4 stream	1.983	1.521	1.293	1.158

R406639

Parameters used in FOCUSsw step 1 and 2

Molecular weight:293.7 g/mol

Water solubility (mg/l): 848.9 (EPIWEB 4.0)

Soil or water metabolite: water metabolite (minor in soil)

Koc (L/kg): 664

DT₅₀ soil (d):77.4days (.proposed by notifier)

 DT_{50} water/sediment system (d): (representative worst case from sediment water studies) 52.3 d.

For PEC surface water DT_{50} water (d):1000 d DT_{50} sediment (d): 52.3 d

For PEC sediment DT_{50} water (d): 52.3 d DT_{50} sediment (d): 1000 d

Maximum occurrence in Water/Sediment: 13.9 % AR¹¹

Step 1

	PECsw (µg/L)		PECsed(µg/kg dry sediment)	
Time (d)	Actual	TWA	Actual	TWA
0	11.0098		67.1143	
1	10.4599	10.7349	69.4540	68.2841
2	10.3352	10.5662	68.6260	68.6617
4	10.0903	10.3892	66.9997	68.2356
7	9.7338	10.1843	64.6321	67.1956
14	8.9500	9.7603	59.4280	64.5946
21	8.2294	9.3684	54.6430	62.0638
28	7.5668	8.9997	50.2432	59.6509
42	6.3973	8.3217	42.4780	55.1846
50	5.8121	7.9662	38.5921	52.8357
100	3.1910	6.1688	21.1881	40.9307

Step 2

	Northern Conditons			
	, E ,		PECsed (μg/kg dry sediment) ²	
Time after max. peak(d)	Actual	TWA	Actual	TWA
0	2.5102		16.0173	
1	2.4184	2.4643	15.9108	15.9640
2	2.4040	2.4377	15.8050	15.9110
4	2.3754	2.4137	15.5955	15.8055
7	2.3331	2.3882	15.2866	15.6491
14	2.2374	2.3366	14.5892	15.2922
21	2.1456	2.2881	13.9237	14.9461
28	2.0576	2.2414	13.2885	14.6105
42	1.8923	2.1522	12.1037	13.9693
50	1.8039	2.1035	11.4747	13.6200
100	1.3375	1.8313	8.2205	11.6887

^{1:} Based on DT₅₀w= 1000 d; DT₅₀sed= 52.3d;

^{2:} Based on $DT_{50}w=52.3$; DT_{50} sed= 1000 d

	Southern Conditons			
	PECsw (µg/L) ¹		PECsed(µg/k	g dry sediment) ²
Time after max. peak(d)	Actual	TWA	Actual	TWA
0	4.4606		28.9588	
1	4.3674	4.4140	28.7663	28.8626
2	4.3414	4.3842	28.5751	28.7666
4	4.2897	4.3499	28.1964	28.5760
7	4.2134	4.3077	27.6378	28.2933
14	4.0406	4.2171	26.3769	27.6479
21	3.8749	4.1304	25.1736	27.0222
28	3.7159	4.0465	24.0252	26.4154
42	3.4173	3.8859	21.8832	25.2561
50	3.2576	3.7980	20.7461	24.6247
100	2.4153	3.3068	14.8625	21.1329

^{1:} Based on DT₅₀w= 1000 d; DT₅₀sed= 52.3 d;

R42819

Parameters used in FOCUSsw step 1 and 2

Molecular weight: 277.7

Water solubility (mg/l): 50.97 (Derived from EPI WEB

4.0)

Soil or water metabolite: water metabolite

Koc (L/kg): 393 DT₅₀ soil (d): 79.4 days

DT₅₀ water/sediment system (d): 261 days

For PEC surface water DT_{50} water (d):1000 d DT_{50} sediment (d): 261 d

For PEC sediment DT_{50} water (d): 261 d DT_{50} sediment (d): 1000 d

Crop interception (%):

Maximum occurrence observed

Soil: 10.1% AR

Water/ Sediment:: 63.9 % AR

^{2:} Based on $DT_{50}w = 52.3 d$; DT_{50} sed= 1000 d

Step 1: Potatoes and Sunflower

	PECsw (µg/L)	PECsw (µg/L)		sediment)
Time (d)	Actual	TWA	Actual	TWA
0	18.6638		57.9363	
1	17.2694	17.9666	67.8689	62.9026
2	17.2236	17.6066	67.6889	65.3408
4	17.1324	17.3923	67.3303	66.4251
7	16.9964	17.2517	66.7960	66.6984
14	16.6834	17.0456	65.5658	66.4387
21	16.3761	16.8735	64.3581	65.9458
28	16.0745	16.7113	63.1728	65.4003
42	15.4878	16.4007	60.8671	64.2711
50	15.1622	16.2285	59.5876	63.6237
100	13.2768	15.2136	52.1780	59.7123

Step 2 Potatoes and Sunflower

	Northern Conditions			
	PECsw (µg/L) ¹		PECsed(µg/kg dry	sediment) ²
Time after max. peak(d)	Actual	TWA	Actual	TWA
0	5.7190		21.1117	
1	5.3819	5.5505	21.0700	21.0909
2	5.3746	5.4644	21.0283	21.0700
4	5.3599	5.4158	20.9452	21.0283
7	5.3380	5.3872	20.8211	20.9661
14	5.2871	5.3498	20.5344	20.8217
21	5.2367	5.3205	20.2517	20.6787
28	5.1869	5.2933	19.9729	20.5371
42	5.0885	5.2414	19.4267	20.2575
50	5.0331	5.2125	19.1213	20.1001
100	4.7005	5.0387	17.3186	19.1526

^{1:} Based on DT₅₀w= 1000 d; DT₅₀sed= 261 d;

^{2:} Based on $DT_{50}w = 261 d$; DT_{50} sed= 1000 d

	Southern conditins			
	PECsw (μg/L) ¹ PECsed(μg/kg dry sedim		dry sediment) ²	
Time after max. peak(d)	Actual	TWA	Actual	TWA
0	8.5436		32.2045	
1	8.2045	8.3741	32.1408	32.1727
2	8.1933	8.2865	32.0772	32.1408
4	8.1709	8.2343	31.9504	32.0773
7	8.1375	8.2000	31.7611	31.9823
14	8.0600	8.1493	31.3239	31.7622
21	7.9832	8.1067	30.8926	31.5440
28	7.9071	8.0663	30.4673	31.3279
42	7.7572	7.9882	29.6341	30.9015
50	7.6728	7.9445	29.1683	30.6614
100	7.1657	7.6804	26.4183	29.2160

PEC (ground water) (Annex IIIA, point 9.2.1)

Method of calculation

Modelling using FOCUS model(s), with appropriate FOCUS gw scenarios, according to FOCUS guidance.

Model(s) used: FOCUS PEARL 3.3.3

Scenarios (list of names):

Châteaudun, Hamburg, Jokioinen, Kremsmünster,

Okehampton, Piacenza, Porto, Sevilla, Thiva

Crop: potatoes and sunflowers

Average parent DT_{50lab} 53.0d(normalization to 10kPa,

20°C with Q10 of 2.58).

1/n: 0.9

Metabolites:

Kom: 700/1.72

R406639: 77.4 d Average (normalisation to 10kPa with Q10 of 2.58); f.f= 0.105 Kom= 664/1.72; 1/n: 1.0; solubility (25 °C): 848.9 mg/l, Vapour pressure (25°C): $2.97E^{-06}$ Pa. Solubility and vapour pressure derived with EPIWEB 4.0

R42819 :DT $_{50}$ 79.4 d (normalisation to 10kPa with Q10 of 2.58); f.f =0.895; Kom = 393/1.72; 1/n: 1.0 solubility (25 °C): 50.97mg/l, Vapour pressure (25°C) : 0.0016 Pa. Solubility and vapour pressure derived with EPIWEB 4.0. DT $_{50}$ derived from decline from the maximum observed in studies dosed with FLC and have a greater than usual uncertainty. The f.f (0.895, calculated as 1-f.f $_{R406639}$) is likely to be a conservative estimate.

Simulations used the Arrhenius activation energy of 65.4 kJ/mol (Q10 of 2.58) and Walker equation coefficient of 0.7.

Application rate: FLC 750 g/ha

No. of applications: 1

Application rate

Time of application (month or season): FLC five days

after planting; Potatoes: Jan- May

Sunflowers: Feb-March

PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m)

Potatoes	Scenario	Parent	Metabolite (μg/L)
		(µg/L)	R406639	R42819
	Châteaudun	0.000000	0.006462	0.596723
	Hamburg	0.000000	0.009614	0.758810
	Jokioinen	0.000000	0.000579	0.136065
	Kremsmünster	0.000000	0.007821	0.636933
	Okehampton	0.000000	0.010906	0.855812
	Piacenza	0.000043	0.058226	2.293274
	Porto	0.000000	0.000003	0.002525
	Sevilla	0.000000	0.000115	0.023318
	Thiva	0.000000	0.002858	0.317775
Sunflowers	Scenario	Parent	Metabolite (μg/L)
		(µg/L)	R406639	R42819
	Piacenza	0.000082	0.074987	2.645095
	Sevilla	0.000000	0.000684	0.120193

Fate and behaviour in air (Annex IIA, point 7.2.2, Annex III, point 9.3)

Direct photolysis in air

Photochemical oxidative degradation in air

Volatilisation

Metabolites

No data

DT₅₀ of 6.4 hours derived by the Atkinson method of

calculation: 12 h; 1.5 10⁶ OH/cm³

from plant surfaces (no cited): 6.3 % after 24 hours

from soil (no cited) 6.5 % loss after 24 hours

No volatiles other than CO₂ were identified in the

environmental studies.

Residues requiring further assessement

Environmental occurring residues requiring further assessment by other disciplines (toxicology and ecotoxicology) and or requiring consideration for groundwater exposure.

Soil: FLC

Ground water: FLC, R406639, R42819

Surface Water: FLC, R42819 Sediment: FLC, R42819, R406639

Air: FLC

Monitoring data, if available (Annex IIA, point 7.4)

Soil (indicate location and type of study)
Surface water (indicate location and type of study)
Ground water (indicate location and type of study)
Air (indicate location and type of study)

<u> </u>	
No data provided	

Points pertinent to the classification and proposed labelling with regard to fate and behaviour data

Not ready biodegradable

Chapter 6: Effects on Non-target Species

Chapter 6: Effects on Non-target Species

Effects on terrestrial vertebrates (Annex IIA, point 8.1, Annex IIIA, points 10.1 and 10.3)

Species	Test substance	Time scale	End point (mg/kg bw/day)	End point (mg/kg feed)
Birds ‡				
Bobwhite quail	Technical FLC	Acute	LD ₅₀ > 2150 mg a.s./kg _{bw}	
Bobwhite quail	Technical FLC	Short-term	$LD_{50} > 590$	> 5000
Mallard duck	Technical FLC	Long-term	NOEL = 149	1000
Mammals ‡				
Mouse (f/m)	Technical FLC	Acute-oral	5000	
Rat	Technical FLC	Long-term, 3 years generation study	Ecotoxicological NOAEL = 27.7	
Additional higher tier	studies ‡			

Toxicity/exposure ratios for terrestrial vertebrates (Annex IIIA, points 10.1 and 10.3)

Crop and application rate. Potatoes and sunflowers. 1 x 0.750 kg as/ha

Indicator species/Category ²	Time scale	ETE	TER ¹	Annex VI Trigger ³		
Tier 1 – uptake via diet (Birds)						
Herbivorous bird-0.750 kg as/ha	Acute	49.59	> 43.4	10		
Insectivorous bird-0.750 kg as/ha	Acute	40.56	> 53	10		
Herbivorous bird- 0.750 kg as/ha	Short-term	22.8	> 25.9	10		
Insectivorous bird- 0.750 kg as/ha	Short-term	22.6	> 26.1	10		
Herbivorous bird- 0.750 kg as/ha	Long-term	12.08	12.3	5		
Insectivorous bird- 0.750 kg as/ha	Long-term	22.62	6.6	5		

	1	1	1	,					
Indicator species/Category ²	Time scale	ETE	TER ¹	Annex VI Trigger ³					
Tier 1- uptake via drinking wat	ter (Birds)								
Herbivorous bird- 0.750 kg as/ha	Acute	65.0	33	10					
Insectivorous bird- 0.750 kg as/ha	Acute	202.5	10.6	10					
Tier 1 – secondary poisoning (B	irds)								
Earthworm-eating bird	Long-term	1.26	119	5					
Fish-eating bird	Long-term	5.08	29	5					
Tier 1– uptake via diet (Mamm	als)								
Herbivorous mammals- 0.750 kg as/ha	Acute	18.27	273	10					
Tier 1- uptake via drinking wat	er (Mammals)								
Herbivorous mammals- 0.750 kg as/ha	Acute	66.5	75.2	5					
Tier 1 – secondary poisoning (Mammals)									
Earthworm-eating mammals	Long-term	1.13	16.54	5					
Fish-eating mammals	Long-term	3.14	9.1	5					

in higher tier refinement provide brief details of any refinements used (e.g., residues, PT, PD or AV)- *TER refined values using specific residue data ² for cereals indicate if it is early or late crop stage

Toxicity data for aquatic species (most sensitive species of each group) (Annex IIA, point 8.2, Annex IIIA,

Group	Test substance	Time-scale	Endpoint	Toxicity (mg a.i/l)
Laboratory tests				
<u>Fish</u>				
Oncorynchus mykiss				
	Technical	96h (dynamic)	Mortality-LC ₅₀	3.0
Lepomis macrochirus	Tehnical	96h (static)	Mortality-LC ₅₀	10.2
Oncorynchus mykiss	Technical	28d (flow- trough)	Growth-NOEC	0.36
Aquatic Invertebrates				
Daphnia magna				
	Technical	48h (static)	Mortality-EC ₅₀	5.1
Daphnia magna	Technical	48h (static)	Mortality-EC ₅₀	3.5
Daphnia magna	Flurochloridone	Mortality-	Mortality-EC ₅₀	37
	CS 250			0.132 ml
				formualtion/L
Daphnia magna	Technical	21d (semistatic)	Growth-NOEC	0.83
Sediment dwelling organi	sms			
Chironomus riparius	Trans- isomer	21d (semistatic)	Growth-NOEC	≥ 0.25
	of technical			
<u>Algae</u>				

³ If the Annex VI Trigger value has been adjusted during the risk assessment of the active substance (e.g. many single species data), it should appear in this column.

⁴ 21d-PECtwa = 0.93mg/kg soil

G 1 · ·	T 1 : 1	701 (, , ;)	D' ELC	
S. subspicatus	Technical	72 hours (static)	Biomass-EbC ₅₀ Growth rate- ErC ₅₀	0.0021 0.0047
S. subspicatus	Technical	24h (static)/72 h recovery	Biomass-EbC50 Growth rate- ErC50	0.0206 0.320
S. capricornutum	Flurochloridone 25 CS	96 h (static)	Biomass-EbC50 Growth rate- ErC50	0.02 (= 0.097 ml product/L) 0.044 (0.175 ml product/L)
S. subspicatus	Metabolite: R42819	72 h (static)	Biomass-EbC50 Growth rate- ErC50	0.99 2.3
S. subspicatus	Metabolite: R406639	72 h (static)	Biomass-EbC50 Growth rate- ErC50	1.9 3.3
S. subspicatus	cis-isomer	72 h (static)	Biomass-EbC50 Growth rate- ErC50	0.0045 0.0069
S. subspicatus	trans-isomer	72 h (static)	Biomass-EbC50 Growth rate- ErC50	0.00054 0.00088
Higher Plant				
Lemna gibba	Technica1	14d (semistatic)	Dry weight- EC ₅₀	0.048
Lemna gibba	Technical	14d (semistatic)	Dry weight- NOEb/rC	0.015
Lemna gibba	R42819	14d (semistatic)	Dry weight- EbC50	3.2
		. (************************************	Dry weight- ErC50	8.2
	cis-isomer		Dry weight- EbC ₅₀ Dry weight-	0.013
Lemna gibba		7d (semistatic)	ErC ₅₀ Dry weight- NOEC	0.047
				< 0.007
	trans-isomer		Dry weight- EbC ₅₀ Dry weight-	< 0.004
Lemna gibba		7d (semistatic)	ErC ₅₀ Dry weight-	0.010
			NOEC	n.d.

Microcosm or mesocosm tests	
Not submitted.	

1831732, 2010, 12, Downloaded from https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1869 by University College London UCL Library Services, Wiley Online Library on [14052025]. See the Terms and Conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensea.

 $Toxicity/exposure\ ratios\ for\ the\ most\ sensitive\ aquatic\ organisms\ (Annex\ IIIA,\ point\ 10.2)$

Maximum PEC_{sw} values and TER values for FLC – application to potatoes at 750 g a.s./ha

Scenario	PEC global max (µg L)	PEC twa, 28d* (μg L)	fish acute	fish prolonged	Daphnia acute	Daphnia prolonged	Algae acute	Higher plant	Sed. dweller prolonged	Microcosm / Mesocosm
			O. mykiss	O. mykiss	Daphnia magna	Daphnia magna	S. subspicatus	Lemna sp.	C. riparius	
			LC ₅₀	NOEC	EC_{50}	NOEC	EbC ₅₀	EbC ₅₀	NOEC	NOEC
			2000u.a/I	360 μg/L	3500 μg/L	830 µg/L	2.1 μg/L	48 μg/L	> 250µg/L (trans- isomer)	μg/L not data
FOCUS Step 1	136.20		3000μg/L 22	2.6	25.7	6	0.015	0.35	> 1.8	
FOCUS Step 2										
North Europe	28.22		106.3	12.75	124	29.41	0.07	1.70	> 8.85	
South Europe	52.76		56.86	6.82	66.34	15.73	0.04	0.91	> 4.73	
FOCUS Step 3										
D3 / ditch	3.92		765	91.8	892	211	0.53	12	> 63.7	
D4 / pond	0.655		4580.2	549.6	5343.5	1267.2	3.2	73.3	> 381.7	
D4 / stream	3.298		909	109	1061	252	0.64	14	> 75	
D6 /ditch early	3.883		772	92	901	214	0.54	12	> 64	
D6 / ditch late	3.968		756	91	882	209	0.53	12	> 63	
R1 / pond	0.603		4975.1	597.0	5804.3	1376.5	3.5	79.6	> 414.6	
R1 / stream	5.550		540.5	64.9	630.6	149.5	0.4	8.6	> 45.0	
R2 / stream	3.598		834	100	973	230	0.58	13	> 69	
R3 / stream	11.989		250.2	30.0	291.9	69.2	0.2	4.0	> 20.9	
R4 / stream	Not relevant									
Annex VI Trigger**			100	10	100	10	10	10	10	5

^{* 28} d-PECtwa to be used in connection with the 34 d-NOEC from the ELS with *P. promelas*.

^{**} If the Annex VI Trigger value has been adjusted during the risk assessment of the active substance, it should appear as a footnote. E.g. if it is agreed during the risk assessment of mesocosm, that a trigger value of 5 is required, it should appear as a minimum requirement to MS in relation to product approval

FOCUS_{sw} step 4

TER calculation for the most critical algae endpoint ($S.~subspicatus = 2.1~\mu g/L$) including different mitigation options for FOCUS Step 4 Scenario – application to potatoes at 750g a.s./ha.

Mitigation options		-spray buffer e (VBS)	Xx % input required – a		Max drift (95		Max run-of		Max drainag (90	•
	PECsw	TER	PECsw	TER	PECsw	TER	PECsw	TER	PECsw	TER
FOCUS Step 4**										
D3 / ditch	0.354	5.9								
D4 / pond	0.650	3.2								
D4 / stream	0.924	2.3								
D6 /ditch 1st	0.359									
appl.		5.8								
D6 / ditch 2 nd	2.524									
appl.		0.8								
R1 / pond	0.144	14.6								
R1 / stream	1.315	1.6								
R2 / stream	0.774	2.7								
R3 / stream	2.875	0.7								
R4 / stream	Not relevant	Not relevant								

^{* 30} m or less as required obtaining acceptable trigger levels

Maximum PEC_{sw} values and TER values for FLC – application to sunflowers at 750 g a.s./ha

Scenario	PEC global max (µg L)	PEC twa, 28d* (µg L)	fish acute	fish prolonged	Daphnia acute	Daphnia prolonged	Algae acute	Higher plant	Sed. dweller prolonged	Microcosm / Mesocosm
·	·-		O. mykiss	O. mykiss	Daphnia	Daphnia	S.	Lemna sp.	C. riparius	·

^{** (}Only scenarios where the Annex VI trigger is not met at FOCUSsw step 3 should be included in step 4).

				magna	magna	subspicatus			
		LC ₅₀	NOEC	EC ₅₀	NOEC	EbC ₅₀	EbC ₅₀	NOEC	NOEC
			360 μg/L	3500 μg/L	830 µg/L	2.1 μg/L	48 μg/L	$> 250 \mu g/L$ (trans-	μg/L not data
		3000µg/L						isomer)	
FOCUS Step 1	136.20	22	2.6	25.7	6	0.015	0.35	> 1.83	
FOCUS Step 2									
North Europe	28.22	106	13	124.0	29	0.07	1.7	> 8.9	
South Europe	52.76	57	7	66.3	16	0.04	0.9	> 4.7	
FOCUS Step 3									
D5 pond	0.254	11811.0	1417.3	13779.5	3267.7	8.3	189.0	> 984.3	
D5 stream	3.360	893	107	1041.7	247	0.63	14.3	> 74.4	
R1 pond	0.66	4545.5	545.5	5303.0	1257.6	3.2	72.7	> 378.8	
R1 stream	5.728	523.7	62.8	611.0	144.9	0.4	8.4	> 43.6	
R3 stream	8.052	372.6	44.7	434.7	103.1	0.3	6.0	> 31.0	
R4 stream	13.668	219.5	26.3	256.1	60.7	0.2	3.5	> 18.3	
Annex VI Trigger**		100	10	100	10	10	10	10	5

^{* 28} d-PECtwa to be used in connection with the 34 d-NOEC from the ELS with *P. promelas*.

^{**} If the Annex VI Trigger value has been adjusted during the risk assessment of the active substance, it should appear as a footnote. E.g. if it is agreed during the risk assessment of mesocosm, that a trigger value of 5 is required, it should appear as a minimum requirement to MS in relation to product approval

FOCUS_{sw} step 4

TER calculation for the most critical endpoint (S. subspicatus = $2.1 \mu g/L$) including different mitigation options for FOCUS Step 4 Scenario – application to sunflowers at 750g a.s./ha.

Mitigation options	20* m non-spray buffer zone (VBS)		Xx % input reduction required – all scenarios.			Max drift reduction (95 %)		(90%) (90%)		Max run-off reduction (90%)		•
	PECsw	TER	PECsw	TER	PECsw	TER	PECsw	TER	PECsw	TER		
FOCUS Step 4**												
D5 pond	0.166	12.7										
D5 stream	0.395	5.3										
R1 pond	0.155	13.5										
R1 stream	1.359	1.5										
R3 stream	1.909	1.1										
R4 stream	3.098	0.7										

^{* 30} m or less as required obtaining acceptable trigger levels

TER calculation for <u>aquatic plants</u> most critical endpoint ($L.~gibba~=48~\mu g/L$) including different mitigation options for FOCUS Step 4 Scenario – application to sunflowers at 750g a.s./ha.

Mitigation options		spray buffer (VBS)	Xx % input required – a		Max drift (95		Max run-of (90		Max drainage reduction (90%)	
	PECsw	TER PECsw TER PI		PECsw	TER	PECsw	TER	PECsw	TER	
FOCUS Step 4**										
D5 pond	0.166	289								
D5 stream	0.395	121								
R1 pond	0.155	309								
R1 stream	1.359	35								
R3 stream	1.909	25								
R4 stream	3.098	15								
* 30 m or less as	required obtainir	ng accentable t	rigger levels							

^{* 30} m or less as required obtaining acceptable trigger levels

 $Maximum\ PEC_{sw}\ values\ and\ TER\ values\ for\ FLC\ metabolite\ R48219-\ application\ to\ potatoes\ and\ sunflowers\ at\ 750\ g\ a.s./ha$

^{** (}Only scenarios where the Annex VI trigger is not met at FOCUSsw step 3 should be included in step 4).

^{** (}Only scenarios where the Annex VI trigger is not met at FOCUSsw step 3 should be included in step 4).

Scenario	PEC global max (µg L)	PEC twa, 28d* (µg L)	fish acute	fish prolonged	Daphnia acute	Daphnia prolonged	Algae acute	Higher plant	Sed. dweller prolonged	Microcosm / Mesocosm
			O. mykiss	O. mykiss	Daphnia magna	Daphnia magna	S. subspicatus	Lemna sp.	C. riparius	
			LC_{50}	NOEC	EC_{50}	NOEC	EbC_{50}	EbC_{50}	NOEC	NOEC
			μg/L	μg/L	μg/L	μg/L	990 μg/L	3000 μg/L		μg/L not data
FOCUS Step 1	18.7						53	160		
FOCUS Step 2										
North Europe										
South Europe										
FOCUS Step 3										
Annex VI Trigger**			100	10	100	10	10	10	10	5

^{* 28} d-PECtwa to be used in connection with the 34 d-NOEC from the ELS with *P. promelas*.

Maximum PEC_{sw} values and TER values for FLC metabolite R406339- application to potatoes and sunflowers at 750 g a.s./ha

Scenario	PEC global max (µg L)	PEC twa, 28d* (μg L)	fish acute	fish prolonged	Daphnia acute	Daphnia prolonged	Algae acute	Higher plant	Sed. dweller prolonged	Microcosm / Mesocosm
			O. mykiss	O. mykiss	Daphnia magna	Daphnia magna	S. subspicatus	Lemna sp.	C. riparius	
			LC ₅₀	NOEC	EC ₅₀	NOEC	EbC ₅₀	EbC ₅₀	NOEC	NOEC
			μg/L	μg/L	μg/L	μg/L	1900µg/L	μg/L		μg/L not data
FOCUS Step 1	11.0						173			
FOCUS Step 2										
North Europe										
South Europe		•	•							
EOCHE CARE 2	•	•	•		•	•			•	•

FOCUS Step 3

^{**} If the Annex VI Trigger value has been adjusted during the risk assessment of the active substance, it should appear as a footnote. E.g. if it is agreed during the risk assessment of mesocosm, that a trigger value of 5 is required, it should appear as a minimum requirement to MS in relation to product approval

Annex VI Trigger**	100	10	100	10	10	10	10	5

^{* 28} d-PECtwa to be used in connection with the 34 d-NOEC from the ELS with *P. promelas*.

^{**} If the Annex VI Trigger value has been adjusted during the risk assessment of the active substance, it should appear as a footnote. E.g. if it is agreed during the risk assessment of mesocosm, that a trigger value of 5 is required, it should appear as a minimum requirement to MS in relation to product approval

.

Bioconcentration

Log Pow

Bioconcentration factor (BCF)

Annex VI Trigger for de Bioconcentration factor Clearance time (CT_{50})

Level and nature of residues (%) in organisms after the 14d depuration phase

 (CT_{90})

Active substance	
3.36	
220 at steady-state,	
292 at end of exposure (28 days)	
100	
< 1 day	
< 3 days	
0.93 mg/kg whole fish (4% of [14C]-FLC)	

18314732, 2010, 12, Downloaded from https://efsa.onlinelibrary.wiley.com/doi/10.2903/jefsa.2010.1869 by University College London UCL Library Services, Wiley Online Library on [14/05/2025]. See the Terms

and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

Effects on honeybees (Annex IIA, point 8.3.1; Annex IIIA, point 10.4)

Test substance	Acute oral toxicity	Acute contact toxicity
	(LD ₅₀ μg/bee)	(LD ₅₀ μg/bee)
Technical FLC	100	100

Hazard quotients for honey bees (Annex IIIA, point 10.4)

Potatoes and sunflowers 750 g as/ha

1 Otatoes and sumfowers	5 750 g as/11a		
Test substance	Route	Hazard quotient	Annex VI Trigger
Technical FLC	Oral	< 7.5	50
	Contact	< 7.5	50

Effects on other arthropod species (Annex IIA, points 8.3.2; Annex IIIA, point 10.5)

Laboratory tests with standard sensitive species

Species	Test substance	Endpoint		Effect	(LR ₅₀	g
				ai/ha) ¹		
Typhlodromus pyri	Preparation	Mortality	or	> 1000		
		Fecundity				
Aphidius rhopalosiphi	Preparation	Mortality	or	> 1000		
		Fecundity*				
			•			

^{*} Fecundity was not significantly affected up to 1000 g a.s./ha of FLC technical.

Potatoes and sunflower crops (750 g ai/ha)

Species	Effect	HQ in -field	HQ off-field	Trigger
Typhlodromus pyri	$(LR_{50} \text{ g/ha})$ > 1000	0.75	0.02	2
Aphidius rhopalosiphi	> 1000	0.75	0.02	2

Further laboratory and extended laboratory studies

Species	Life Stage	Test substance, substrate and duration	Dose 1,2	(g/ha)	End point	% effect ³	Trigger value
							50%
							50%
							50%

³ indicate if positive percentages relate to adverse effects or not

Field or semi-field tests	
Not semifield or field studies are required	

Effects on earthworms, other soil macro-organisms and soil-micro-organisms (Annex IIA, point 8.4 and 8.5; Annex IIIA, point 10.6 and point 10.7)

Test organism	Test substance	Time scale	End-point ¹
Earthworms			
	a.s.	Acute 14 days	LC ₅₀ 227 mg ai/kg soil
	Preparation	Acute 14 days	LC ₅₀ 90 mg ai/kg soil
	a.s.	Chronic 8 weeks	Not required
	Preparation	Chronic 8 weeks	NOEC 10 mg ai/kg (highest concentration tested). Correction is not needed.
Other soil macro-	organisms		
Soil mite			
	a.s.		Not required
	Preparation		
	Metabolite 1		
Collembola			
	a.s.	Chronic	Not required
	Preparation		
	Metabolite 1		
Soil microorganis	sms		
Nitrogen	a.s.		Effects lower than 25% at 10 times application
mineralisation			rate
	Metabolite 1		Not required
Carbon mineralisation	a.s.		Effects lower than 25% at 10 times application rate

¹ indicate whether initial or aged residues ² for preparations indicate whether dose is expressed in unit of a.s. or preparation

¹ End point has been corrected due to log Pow > 2.0

Toxicity/exposure ratios for soil organisms

Sunflowers at 750 g as/ha

Test organism	Test substance	Time scale	Soil PEC	TER	Trigger
Earthworms					
	a.s.	Acute			10
	a.s.	Chronic		90	5
	Preparation	Acute			10
	Preparation	Chronic		10	5

Additional studies

Field study is not available and not required.

Additional testing specie (as result of $DT_{90}>100$ days) is not required since effects (both acute and long term) on arthropods and earthworms are of no significance at higher concentrations than 0.750 kg as/ha. Moreover, FLC does not affect the soil microflora even at a 10-fold overdose.

Effects on non target plants (Annex IIA, point 8.6, Annex IIIA, point 10.8)

Laboratory dose response tests

Most sensitive species	Test substance	ER ₅₀ (g/ha) ² vegetative vigour	ER ₅₀ (g/ha) ² emergence	Exposure ¹ (g as/ha) ² (buffer zone)	TER	Trigger
Rape	Racer 25CS	59		20.77 (1m)	2.8	5
Rape	Racer 25CS	59		4.27 (5m)	13.8	5

¹ explanation of how exposure has been estimated should be provided (e.g. based on Ganzelmeier drift data)

Risk mitigation measures (5 m buffer zone) are needed to protect non target plants

Additional studies (e.g. semi-field or field studies)

No data

Effects on biological methods for sewage treatment (Annex IIA 8.7)

Test type/organism	end point
Activated sludge	
Pseudomonas putida	EC10 = 10.2 mg as./L
	EC50 value of >10.8 mg as./L
	No unacceptable effects

Ecotoxicologically relevant compounds (consider parent and all relevant metabolites requiring further assessment from the fate section)

Compartment	
soil	FLC
water	FLC
sediment	FLC
groundwater	FLC

Classification and proposed labelling with regard to ecotoxicological data (Annex IIA, point 10 and Annex IIIA, point 12.3)

RMS/peer review p	roposal
Kivis/peer review p	roposar

² for preparations indicate whether dose is expressed in units of a.s. or preparation

Active substance

N, R50/R53 Very toxic to aquatic organisms based on EC50<1 mg a.s/L for algae and aquatic plants. May cause long-term adverse effects in the aquatic environment. Log Pow >3 and BCF>100.

Preparation (Racer 25 CS)

RMS/peer review proposal

N, R50/R53 based on EC50 < 1 mg /L (expressed as technical) for algae and assuming the following data from technical Log Pow >3 and BCF>100.

APPENDIX B – USED COMPOUND CODE(S)

Code/Trivial name*	Chemical name	Structural formula
R406639 3-hydroxy-4- chloromethyl	(3RS,4RS;3RS,4SR)-4-(chloromethyl)-3-hydroxy-1-[3-(trifluoromethyl)phenyl]pyrrolidin-2-one	O OH CI
R42819	(4RS)-4-(chloromethyl)-1-[3- (trifluoromethyl)phenyl]pyrrolidin-2-one	F F CI
5-hydroxy-4- chloromethyl	(3RS,4RS,5RS;3RS,4SR,5RS;3RS,4RS,5SR;3RS,4SR,5SR)3-chloro-4-(chloromethyl)-5-hydroxy-1-[3-(trifluoromethyl)phenyl]pyrrolidin-2-one	F HO CI
4-dechloro-4- hydroxymethyl	(3RS,4RS;3RS,4SR)-3-chloro-4-(hydroxymethyl)-1-[3-(trifluoromethyl)phenyl]pyrrolidin-2-one	O CI OH
M8	(4RS)-4-(hydroxymethyl)-1-[3- (trifluoromethyl)phenyl]pyrrolidin-2-one	O OH

^{*} The metabolite name in bold is the name used in the conclusion.

ABBREVIATIONS

1/n slope of Freundlich isotherm

ε decadic molar extinction coefficient

°C degree Celsius (centigrade)

μg microgram

μm micrometer (micron)
a.s. active substance
AChE acetylcholinesterase
ADE actual dermal exposure
ADI acceptable daily intake
AF assessment factor

AOEL acceptable operator exposure level

AP alkaline phosphatase
AR applied radioactivity
ARfD acute reference dose

AST aspartate aminotransferase (SGOT)

AV avoidance factor
BCF bioconcentration factor
BUN blood urea nitrogen
bw body weight

CAS Chemical Abstract Service
CFU colony forming units
ChE cholinesterase
CI confidence interval

CIPAC Collaborative International Pesticide Analytical Council Limited

CL confidence limits

d day

DAA days after application
DAR draft assessment report
DAT days after treatment

DM dry matter

DT₅₀ period required for 50 percent disappearance (define method of estimation)
DT₉₀ period required for 90 percent disappearance (define method of estimation)

dw dry weight

EbC₅₀ effective concentration (biomass)

ECHA European Chemical Agency
EEC European Economic Community

EINECS European Inventory of Existing Commercial Chemical Substances

ELINCS European List of New Chemical Substances

 $\begin{array}{ll} EMDI & estimated \ maximum \ daily \ intake \\ ER_{50} & emergence \ rate/effective \ rate, \ median \\ ErC_{50} & effective \ concentration \ (growth \ rate) \end{array}$

EU European Union

EUROPOEM European Predictive Operator Exposure Model

f(twa) time weighted average factor

FAO Food and Agriculture Organisation of the United Nations

FIR Food intake rate

FOB functional observation battery

FOCUS Forum for the Co-ordination of Pesticide Fate Models and their Use

g gram

GAP good agricultural practice GC gas chromatography

GCPF Global Crop Protection Federation (formerly known as GIFAP)

GGT gamma glutamyl transferase

GMgeometric mean GS growth stage **GSH** glutathion hour(s) h ha hectare haemoglobin Hb Hct haematocrit hectolitre hL

HPLC high pressure liquid chromatography

or high performance liquid chromatography

HPLC-MS high pressure liquid chromatography – mass spectrometry

HQ hazard quotient

IEDI international estimated daily intake
IESTI international estimated short-term intake

ip intraperitoneal

ISO International Organisation for Standardisation IUPAC International Union of Pure and Applied Chemistry

JMPR Joint Meeting on the FAO Panel of Experts on Pesticide Residues in Food and

the Environment and the WHO Expert Group on Pesticide Residues (Joint

Meeting on Pesticide Residues)

K_{doc} organic carbon linear adsorption coefficient

kg kilogram

K_{Foc} Freundlich organic carbon adsorption coefficient

L litre

LC liquid chromatography
LC₅₀ lethal concentration, median

LC-MS liquid chromatography-mass spectrometry

LC-MS-MS liquid chromatography with tandem mass spectrometry

LD₅₀ lethal dose, median; dosis letalis media

LDH lactate dehydrogenase

LOAEL lowest observable adverse effect level

LOD limit of detection

LOQ limit of quantification (determination)

m metre

M/L mixing and loading
MAF multiple application factor
MCH mean corpuscular haemoglobin

MCHC mean corpuscular haemoglobin concentration

MCV mean corpuscular volume

mg milligram
mL millilitre
mm millimetre

MRL maximum residue limit or level

MS mass spectrometry
MSDS material safety data sheet
MTD maximum tolerated dose

MWHC maximum water holding capacity
NESTI national estimated short-term intake

ng nanogram

NOAEC no observed adverse effect concentration

NOAEL no observed adverse effect level NOEC no observed effect concentration

NOEL no observed effect level

n.r. not relevant

OM organic matter content

Pa Pascal

PD proportion of different food types
PEC predicted environmental concentration
PEC_{air} predicted environmental concentration in air

 $\begin{array}{ll} PEC_{gw} & predicted \ environmental \ concentration \ in \ ground \ water \\ PEC_{sed} & predicted \ environmental \ concentration \ in \ sediment \\ PEC_{soil} & predicted \ environmental \ concentration \ in \ soil \end{array}$

PEC_{sw} predicted environmental concentration in surface water

pH pH-value

PHED pesticide handler's exposure data

PHI pre-harvest interval

PIE potential inhalation exposure

pK_a negative logarithm (to the base 10) of the dissociation constant

POEM Predictive Operator Exposure Model

P_{ow} partition coefficient between *n*-octanol and water

PPE personal protective equipment ppm parts per million (10⁻⁶) ppp plant protection product

PT proportion of diet obtained in the treated area

PTT partial thromboplastin time

QSAR quantitative structure-activity relationship

r² coefficient of determination RPE respiratory protective equipment

r.t. room temperature
RUD residue per unit dose
SC suspension concentrate
SD standard deviation
SFO single first-order

SSD species sensitivity distribution STMR supervised trials median residue $t_{1/2}$ half-life (define method of estimation)

TER toxicity exposure ratio

TER_A toxicity exposure ratio for acute exposure

TER_{LT} toxicity exposure ratio following chronic exposure TER_{ST} toxicity exposure ratio following repeated exposure

TK technical concentrate TLV threshold limit value

TMDI theoretical maximum daily intake

TRR total radioactive residue

TSH thyroid stimulating hormone (thyrotropin)

TWA time weighted average UDS unscheduled DNA synthesis

UV ultraviolet
W/S water/sediment
w/v weight per volume
w/w weight per weight
WBC white blood cell

WG water dispersible granule WHO World Health Organisation

wk week yr year