Sistemi - Modulo di Sistemi a Eventi Discreti

Laurea Magistrale in Ingegneria e Scienze Informatiche Tiziano Villa

20 Settembre 2013

Nome e Cognome:

Matricola:

Posta elettronica:

problema	punti massimi	i tuoi punti
problema 1	18	
problema 2	12	
totale	30	

1. Si consideri un impianto G con $\Sigma = \{a, b\}, \Sigma_{uc} = \{a\}.$

Il linguaggio ${\cal L}(G)$ prodotto dall'impianto non controllato sia

$$L(G) = a^{\star}b^{\star}.$$

Il linguaggio generato desiderato K sia

$$K = \{a^n b^m : n \ge m \ge 0\}.$$

(a) I linguaggi L(G) e K sono regolari ? In caso affermativo, si mostri il relativo automa accettante.

Traccia di soluzione.

Il linguaggio L(G) e' regolare, mentre K non lo e' (dovrebbe contare senza limiti).

(b) Il linguaggio K e' controllabile? Si enunci la definizione di controllabilità di un linguaggio e la si applichi a questo esempio.

Se K e' controllabile si definisca una strategia di controllo.

Traccia di soluzione.

Definizione Siano K e $M=\overline{M}$ linguaggi sull'alfabeto di eventi E, con $E_{uc}\subseteq E$. Si dice che K e' controllabile rispetto a M e E_{uc} , se per tutte le stringhe $s\in \overline{K}$ e per tutti gli eventi $\sigma\in E_{uc}$ si ha

$$s\sigma \in M \Rightarrow s\sigma \in \overline{K}$$
.

[equivalente a $\overline{K}E_{uc} \cap M \subseteq \overline{K}$]

Per la definizione di controllabilita', si ha che K e' controllabile se e solo se \overline{K} e' controllabile.

Si applichi la definizione di controllabilita' al nostro esempio dove M = L(G).

K e' controllabile.

La strategia di controllo e' la seguente: all'inizio il controllore disabilita b, poi lo riabilita e lo mantiene abilitato fino a che l'impianto dopo aver prodotto degli eventi a produce un numero di eventi b minore del numero degli eventi a; quando il numero degli eventi b prodotti dall'impianto e' uguale a quello degli eventi a il controllore disabilita b.

Il fatto che la specifica sia controllabile e' indipendente dal fatto che sia realizzabile mediante un automa a stati finiti. In questo caso esiste una strategia di controllo, ma non esiste un automa a stati finiti che la realizzi (non esiste perche' tale automa dovrebbe contare il numeri di eventi a - senza un limite prestabilito - per decidere di disabilitare b quando il numero di eventi b e' pari a quello degli eventi a.

(c) Una rete di Petri marcata e' specificata da una quintupla: $\{P, T, A, w, x\}$, dove P sono i posti, T le transizioni, A gli archi, w la funzione di peso sugli archi, e x il vettore di marcamento (numero di gettoni per posto). $I(t_i)$ indica l'insieme dei posti in ingresso alla transizione t_i , $O(t_j)$ indica l'insieme dei posti in uscita dalla transizione t_j .

Per associare un linguaggio a una rete di Petri s'introduce un insieme di eventi E, una funzione che etichetta le transizioni con eventi $l:T\to E$, e un insieme di stati marcati $X_m\subseteq N^n$ (n e' il numero di posti). Come per gli automi a stati finiti, si puo' associare a una rete di Petri sia il linguaggio generato che il linguaggio marcato.

Si consideri la rete di Petri P_{clf414} definita da:

- $P = \{p_1, p_2, p_3\}$
- $T = \{t_1, t_2, t_3\}$
- $A = \{(p_1, t_1), (p_1, t_2), (p_2, t_3), (p_3, t_2), (p_3, t_3), (t_1, p_1), (t_1, p_3), (t_2, p_2), (t_3, p_2)\}$
- $\forall i, j \ w(p_i, t_j) = 1$
- $\forall i, j \ w(t_i, p_j) = 1$
- $l(t_1) = a, l(t_2) = b, l(t_3) = b \text{ (dove } E = \{a, b\})$

Sia $x_0 = [1, 0, 0]$ la marcatura iniziale.

i. Si disegni il grafo della rete di Petri P_{clf414} .

ii. Si determini il linguaggio generato dalla rete di Petri.

Che cosa si puo' dire di questa rete di Petri rispetto al problema di controllo supervisore posto nella prima parte della domanda ? Traccia di soluzione.

$$\mathcal{L}(P) = \{a^n b^m : n \ge m \ge 0\}.$$

Il meccanismo e' il seguente.

 t_1 puo' scattare un numero arbitrario n di volte, accumulando gettoni in p_3 (corrisponde a a^n); quando si fa scattare t_2 (t_3 non puo' scattare prima di t_2) si disabilitano gli scatti di t_1 perche' p_1 risulta vuoto. Da allora si puo' fare scattare solo p_3 (t_2 puo' scattare solo la prima volta perche' svuota p_1) consumando i gettoni accumulati in p_3 (corrisponde a $a^n b^m$, $n \ge m \ge 0$).

Nella prima parte del problema si e' definito un problema di controllo supervisore la cui specifica K e' controllabile, ma il cui supervisore non e' regolare (cioe' non e' realizzabile con un automa a stati finiti). Tale supervisore S puo' essere rappresentato dalla precedente rete di Petri, come segue, per $s \in \mathcal{L}(G)$ e $x = f(x_0, s)$ (f e' la funzione di transizione della rete di Petri):

$$S(s) = \begin{cases} \{a, b\} & \text{if } x(p_3) > 0 \\ \{a\} & \text{if } x(p_3) = 0 \end{cases}$$

Ma l'affermazione "Tale supervisore S puo' essere rappresentato dalla precedente rete di Petri" non significa che esso possa essere realizzato in modo finito, perche' anche se si puo' rappresentare finitariamente la rete di Petri e la regola di S, per realizzare il comportamento nel tempo di tale rete (necessario ad applicare la regola di S) dovremmo poter rappresentare il numero di gettoni in p_3 che non e' limitato a priori da una costante finita.

- 2. Si consideri il seguente automa temporizzato con due orologi x_1 e x_2 (e un'uscita $y(t) \equiv (x_1, x_2)$):
 - locazioni: l_1, l_2 , dove l_1 e' una locazione iniziale, con condizioni iniziali $x_1 := 0, x_2 := 0.$
 - dinamica della locazione l_1 : $\dot{x}_1 = 1, \dot{x}_2 = 1$, invariante della locazione l_1 : $(x_1, x_2) \in Reali \times Reali$, dinamica della locazione l_2 : $\dot{x}_1 = 1, \dot{x}_2 = 1$, invariante della locazione l_2 : $(x_1, x_2) \in Reali \times Reali$;
 - transizione e_1 da l_1 a l_2 : $A/y(t), x_1^{'} := 0, x_2^{'} := x_2,$ transizione e_2 da l_2 a l_1 : $B/y(t), x_1^{'} := x_1, x_2^{'} := x_2,$ dove $A = \{(x_1, x_2) \mid x_1 \leq 3 \land x_2 \leq 2\},$ dove $B = \{(x_1, x_2) \mid x_1 \leq 1\}$ (la sintassi delle annotazioni di una transizione e' guardia/uscita, azione);
 - ingresso assente perche' il sistema e' autonomo;
 - uscita $y(t) \in Reali \times Reali$.
 - (a) Si disegni il diagramma di transizione dell'automa, annotando con precisione locazioni e transizioni.

(b) Si considerino gli stati (prodotto cartesiano di una locazione e una regione in \mathbb{R}^2)

$$\begin{split} &\text{i. } P_1 = (l_1, \{1 < x_2 < x_1 < 2\}),\\ &\text{ii. } P_2 = (l_1, \{0 < x_2 = x_1 < 1\}),\\ &\text{iii. } P_3 = (l_2, \{0 < x_2 < 1, 1 < x_1 < 2, x_2 < x_1 - 1\},\\ &\text{iv. } P_4 = (l_2, \{1 < x_2 < 2, x_1 = 0\}). \end{split}$$

Si rappresentino tali stati graficamente (con un diagramma cartesiano per la locazione l_1 e uno per la locazione l_2).

(c) Si definisca formalmente $Pre_{\tau}(P)$, l'operatore predecessore di P per effetto della transizione τ che indica lo scorrere del tempo (cioe' τ indica l'evoluzione dell'automa ibrido per integrazione della dinamica definita nella locazione associata a P). Si spieghi la definizione. Traccia di soluzione.

$$\begin{aligned} Pre_{\tau}(P) &= \{(q,x) \in Q \times R^2 \mid \exists \ (q',x') \in P, t \geq 0 \\ & \text{tale che } (q=q') \wedge (x'=x+t \begin{bmatrix} 1 \\ 1 \end{bmatrix}) \}. \end{aligned}$$

(d) si calcolino gl'insiemi $Pre_{\tau}(P_2)$, $Pre_{\tau}(P_3)$, $Pre_{\tau}(P_4)$, $Pre_{\tau}(P_1)$. Si consideri solo la regione $x_1 \geq 0, x_2 \geq 0$. Si mostrino gl'insiemi graficamente.

Traccia di soluzione.

Gl'insiemi predecessori si calcolano come segue:

$$Pre_{\tau}(P_{2}) = P_{2} \cup (\{l_{1}\} \times \{x_{1} = x_{2} = 0\})$$

$$Pre_{\tau}(P_{3}) = P_{3} \cup (\{l_{2}\} \times \{(1 < x_{1} < 2) \land (x_{2} = 0)\})$$

$$Pre_{\tau}(P_{4}) = P_{4}$$

$$Pre_{\tau}(P_{1}) = P_{1} \cup (\{l_{1}\} \times \{(1 < x_{1} < 2) \land (x_{2} = 1)\})$$

$$\cup (\{l_{1}\} \times \{(1 < x_{1} < 2) \land (0 < x_{2} < 1) \land (x_{1} - 1 < x_{2})\})$$

$$\cup (\{l_{1}\} \times \{(x_{1} = 1) \land (0 < x_{2} < 1)\})$$

$$\cup (\{l_{1}\} \times \{(0 < x_{1} < 1) \land (0 < x_{2} < 1) \land (x_{1} > x_{2})\})$$

$$\cup (\{l_{1}\} \times \{(0 < x_{1} < 1) \land (x_{2} = 0)\})$$

(e) Si consideri la seguente affermazione: Tutti gl'insiemi Pre sono unioni di elementi del grafo delle regioni, un fatto usato nella dimostrazione che il grafo delle regioni definisce una bisimulazione.

Se ne spieghi il significato.