CSE4203: Computer Graphics

Bézier Curves

Polynomials

$$y = ax^0 + bx^1$$

$$y = ax^0 + bx^1 + cx^2$$

$$y = ax^0 + bx^1 + cx^2 + dx^3$$

• First described in 1972 by Pierre Bézier

Control Points

Control Points

Control Points

Inputs

- N number of control points
- Degree, d = N 1

For example, For 3 Control Points, d=2

Inputs

- *N* number of control points
- Degree, d = N 1

- *N* number of control points
- Degree, d = N 1

What is the *d* here?

$$Q(u) = \sum_{i=0}^{d} B_{i,d}(u) P_i \quad 0 \le u \le 1$$

Example:
$$\sum_{i=0}^{2} B_{i,2}(u) P_{i} = B_{0,2}(u) P_{0} + B_{1,2}(u) P_{1} + B_{2,2}(u) P_{2}$$

$$Q(u) = \sum_{i=0}^{d} B_{i,d}(u) P_i \quad 0 \le u \le 1$$

$$B_{i,d}(u) = \begin{pmatrix} d \\ i \end{pmatrix} u^i (1-u)^{d-i} \qquad \begin{pmatrix} d \\ i \end{pmatrix} = \frac{d!}{i!(d-i)!}$$

$$Q(u) = \sum_{i=0}^{d} B_{i,d}(u) P_i \quad 0 \le u \le 1$$

$$B_{i,d}(u) = \begin{pmatrix} d \\ i \end{pmatrix} u^i (1-u)^{d-i} \qquad \begin{pmatrix} d \\ i \end{pmatrix} = \frac{d!}{i!(d-i)!}$$

A point on the curve

$$Q(u) = \sum_{i=0}^{d} B_{i,d}(u) P_i \quad 0 \le u \le 1$$

$$B_{i,d}(u) = \begin{pmatrix} d \\ i \end{pmatrix} u^i (1-u)^{d-i} \qquad \begin{pmatrix} d \\ i \end{pmatrix} = \frac{d!}{i!(d-i)!}$$

Denoted with $Q_d(u)$

$$Q(u) = \sum_{i=0}^{d} B_{i,d}(u) P_i \quad 0 \le u \le 1$$

$$B_{i,d}(u) = \begin{pmatrix} d \\ i \end{pmatrix} u^i (1-u)^{d-i} \qquad \begin{pmatrix} d \\ i \end{pmatrix} = \frac{d!}{i!(d-i)!}$$

Where is $Q_d(0.5)$ situated?

Where is $Q_d(0)$ situated?

Where is $Q_d(1)$ situated?

$$Q(u) = \sum_{i=0}^{d} B_{i,d}(u) P_i \quad 0 \le u \le 1$$

$$B_{i,d}(u) = \begin{pmatrix} d \\ i \end{pmatrix} u^i (1-u)^{d-i} \qquad \begin{pmatrix} d \\ i \end{pmatrix} = \frac{d!}{i!(d-i)!}$$

Online simulator: https://ytyt.github.io/siiiimple-bezier/

$$Q(u) = \sum_{i=0}^{d} B_{i,d}(u)P_i \quad 0 \le u \le 1$$

$$B_{i,d}(u) = \begin{pmatrix} d \\ i \end{pmatrix} u^i (1-u)^{d-i} \qquad \begin{pmatrix} d \\ i \end{pmatrix} = \frac{d!}{i!(d-i)!}$$

These polynomials are called "Bernstein polynomials" and denoted by $B_{i,d}(u)$

$$B_{0,2}(u) = (1-u)^2$$
 $B_{0,3}(u) = (1-u)^3$
 $B_{1,2}(u) = 2u(1-u)$ $B_{1,3}(u) = 3u(1-u)^2$
 $B_{2,2}(u) = u^2$ $B_{2,3}(u) = 3u^2(1-u)$
 $B_{3,3}(u) = u^3$

$$Q_2(u) = P_0(1-u) + P_1[2u(1-u)] + P_2(u^2)$$

Example

Given control points $P_0 = (0,0), P_1 = (4,2), P_2 = (8,0)$, find the Bézier curve values $Q_2(0)$, $Q_2(\frac{1}{2})$ and $Q_2(1)$.

Why subscript 2 for $Q_2(u)$?

Example

Given control points $P_0 = (0,0)$, $P_1 = (4,2)$, $P_2 = (8,0)$, find the Bézier curve values $Q_2(0)$, $Q_2(\frac{1}{2})$ and $Q_2(1)$.

$$Q_{2}(u) = \sum_{i=0}^{n} B_{i,2}(u)P_{i} \quad 0 \le u \le 1$$

$$B_{i,d}(u) = \begin{pmatrix} d \\ i \end{pmatrix} u^{i}(1-u)^{d-i} \quad \begin{pmatrix} d \\ i \end{pmatrix} = \frac{d!}{i!(d-i)!}$$

$$Q_{2}(u) = B_{0,2}(u)P_{0} + B_{1,2}(u)P_{1} + B_{2,2}(u)P_{2}$$

$$Q_{2}(u) = (1-u)^{2}P_{0} + 2(1-u)uP_{1} + u^{2}P_{2}$$

Example

Given control points $P_0 = (0,0)$, $P_1 = (4,2)$, $P_2 = (8,0)$, find the Bézier curve values $Q_2(0)$, $Q_2(\frac{1}{2})$ and $Q_2(1)$.

$$Q_2(u) = (1-u)^2 P_0 + 2(1-u)u P_1 + u^2 P_2$$

•
$$Q_2(0) = (1-0)^2 P_0 + 2(1-0)0P_1 + 0^2 P_2 = P_0 = (0,0)$$

$$\bullet \ Q_2(\frac{1}{2}) = \qquad \qquad \text{..... Do calculations} \qquad = (4,1)$$

• $Q(1) = \dots$ Do calculations ... = (8,0)

Properties of Bezier Curves

- They generally follow the shape of the control polygon, which consists
 of the segments joining the control points
- They always pass through the first and last control points
- They are contained in the convex hull of their defining control points
- The degree of the polynomial defining the curve segment (d) is one less than that the number of defining polygon point (n) i.e. n = d+1

Disadvantages

- A change to any of the control point alters the entire curve.
- Having a large number of control points requires high polynomials to be evaluated. This is expensive to compute.

