HKDSE MATH M2 2015

1. HKDSE Math M2 2015 Q1

Find $\frac{d}{dx}(x^5+4)$ from first principles. (4 marks)

2. HKDSE Math M2 2015 Q2

Let $y = x \sin x + \cos x$.

- (a) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
- (b) Let k be a constant such that $x\frac{d^2y}{dx^2} + k\frac{dy}{dx} + xy = 0$ for all real values of x. Find the value of k.

(5 marks)

3. HKDSE Math M2 2015 Q3

- (a) Find $\int \frac{1}{e^{2u}} du$.
- (b) Using integration by substitution, evaluate $\int_1^9 \frac{1}{\sqrt{x}e^{2\sqrt{x}}} dx$.

(7 marks)

4. HKDSE Math M2 2015 Q4

- (a) Using integration by parts, find $\int x^2 \ln x \, dx$.
- (b) At any point (x, y) on the curve Γ , the slope of the tangent to Γ is $9x^2 \ln x$. It is given that Γ passes through the point (1, 4). Find the equation of Γ .

(7 marks)

5. HKDSE Math M2 2015 Q5

Solve the following systems of linear equations in real variables x, y, z:

(a)
$$\begin{cases} x + y + z = 2 \\ 2x + 3y - 3z = 4 \end{cases}$$

(b)
$$\begin{cases} x + y + z = 2 \\ 2x + 3y - 3z = 4, \text{ where } k \text{ is a real constant.} \\ 3x + 2y + kz = 6 \end{cases}$$

(6 marks)

6. HKDSE Math M2 2015 Q6

(a) Let M be a 3×3 real matrix such that $M^T = -M$, where M^T is the transpose of M. Prove that |M| = 0.

- (b) Let $A = \begin{pmatrix} -1 & a & b \\ -a & -1 & -8 \\ -b & 8 & -1 \end{pmatrix}$, where a and b are real numbers. Denote the 3×3 identity matrix by I.
 - (i) Using (a), or otherwise, prove that |A + I| = 0.
 - (ii) Someone claims that $A^3 + I$ is a singular matrix. Do you agree? Explain your answer.

(6 marks)

7. HKDSE Math M2 2015 Q7

- (a) Prove that $\sin^2 x \cos^2 x = \frac{1 \cos 4x}{8}$.
- (b) Let $f(x) = \sin^4 x + \cos^4 x$.
 - (i) Express f(x) in the form $A\cos Bx + C$, where A, B and C are constants.
 - (ii) Solve the equation 8f(x) = 7, where $0 \le x \le \frac{\pi}{2}$.

(7 marks)

8. HKDSE Math M2 2015 Q8

- (a) Using mathematical induction, prove that $\sin \frac{x}{2} \sum_{k=1}^{n} \cos kx = \sin \frac{nx}{2} \cos \frac{(n+1)x}{2}$ for all positive integers n.
- (b) Using (a), evaluate $\sum_{k=1}^{567} \cos \frac{k\pi}{7}$.

(8 marks)

9. HKDSE Math M2 2015 Q9

Define $f(x) = \frac{x^2 + 12}{x - 2}$ for all $x \neq 2$.

- (a) Find f'(x). (2 marks)
- (b) Prove that the maximum value and the minimum value of f(x) are -4 and 12 respectively. (4 marks)
- (c) Find the asymptote(s) of the graph of y = f(x). (3 marks)
- (d) Find the area of the region bounded by the graph of y = f(x) and the horizontal line y = 14. (4 marks)

10. HKDSE Math M2 2015 Q10

OAB is a triangle. P is the mid-point of OA. Q is a point lying on AB such that AQ:QB=1:2 while R is a point lying on OB such that OR:RB=3:1. PR and OQ intersect at C.

- (a) (i) Let t be a constant such that PC : CR = t : (1 t). By expressing \overrightarrow{OQ} in terms of \overrightarrow{OA} and \overrightarrow{OB} , find the value of t.
 - (ii) Find CQ : OQ.

(7 marks)

- (b) Suppose that $\overrightarrow{OA} = 20\mathbf{i} 6\mathbf{j} 12\mathbf{k}$, $\overrightarrow{OB} = 16\mathbf{i} 16\mathbf{j}$ and $\overrightarrow{OD} = \mathbf{i} + 3\mathbf{j} 6\mathbf{k}$, where O is the origin. Find
 - (i) the area of $\triangle OAB$,
 - (ii) the volume of tetrahedron ABCD.
 - (5 marks)

11. HKDSE Math M2 2015 Q11

- (a) Let λ and μ be real numbers such that $\mu \lambda \neq 2$. Denote the 2×2 identity matrix by I. Define $A = \frac{1}{\lambda \mu + 2}(I \mu I + M)$ and $B = \frac{1}{\lambda \mu + 2}(I + \lambda I M)$, where $M = \begin{pmatrix} \lambda & 1 \\ \lambda \mu + 1 & \mu \end{pmatrix}$.
 - (i) Evaluate AB, BA and A + B.
 - (ii) Prove that $A^2 = A$ and $B^2 = B$.
 - (iii) Prove that $M^n = (\lambda + 1)^n A + (\mu 1)^n B$ for all positive integers n. (8 marks)
- (b) Using (a), or otherwise, evaluate $\begin{pmatrix} 4 & 2 \\ 0 & 6 \end{pmatrix}^{315}$. (4 marks)

12. HKDSE Math M2 2015 Q12

(a) In the figure, the curve Γ consists of curve AB, the line segments BC and CO, where O is the origin, B lies in the first quadrat and C lies on the x-axis. The equations of AB and BC are $x^2 - 4y + 8 = 0$ and 3x + y - 9 = 0 respectively.

- (i) Find the coordinates of B.
- (ii) Let h be the y-coordinate of A, where h > 3. A cup is formed by revolving Γ about the y-axis. Prove that the capacity of the cup is $\pi(2h^2 8h + 25)$.

(7 marks)

- (b) A cup described in (a)(ii) is placed on a horizontal table. The radii of the base and the lip of the cup are 3 cm and 6 cm respectively.
 - (i) Find the capacity of the cup.
 - (ii) Water is poured into the cup at a constant rate of 24π cm³/s. Find the rate of change of the depth of water when the volume of water in the cup is 35π cm³.

(6 marks)