IMPORTING USEFUL LIBRARIES

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
```

EXTRACTING DATA

In [2]:

df=pd.read_csv(r"C:\Users\mitra\Desktop\INNOMATICS(MITRABHANU PANDA)\INTERNSHIP\PROJECTS\
1ST PROJECT\data.xlsx - Sheet1.csv")

In [3]:

df

Out[3]:

	Unnamed: 0	ID	Salary	DOJ	DOL	Designation	JobCity	Gender	DOB	10percentage	 Con
(0 train	203097	420000.0	6/1/12 0:00	present	senior quality engineer	Bangalore	f	2/19/90 0:00	84.30	
1	1 train	579905	500000.0	9/1/13 0:00	present	assistant manager	Indore	m	10/4/89 0:00	85.40	
2	2 train	810601	325000.0	6/1/14 0:00	present	systems engineer	Chennai	f	8/3/92 0:00	85.00	
3	3 train	267447	1100000.0	7/1/11 0:00	present	senior software engineer	Gurgaon	m	12/5/89 0:00	85.60	
4	4 train	343523	200000.0	3/1/14 0:00	3/1/15 0:00	get	Manesar	m	2/27/91 0:00	78.00	
3993	3 train	47916	280000.0	10/1/11 0:00	10/1/12 0:00	software engineer	New Delhi	m	4/15/87 0:00	52.09	
3994	4 train	752781	100000.0	7/1/13 0:00	7/1/13 0:00	technical writer	Hyderabad	f	8/27/92 0:00	90.00	
3995	5 train	355888	320000.0	7/1/13 0:00	present	associate software engineer	Bangalore	m	7/3/91 0:00	81.86	
3996	6 train	947111	200000.0	7/1/14 0:00	1/1/15 0:00	software developer	Asifabadbanglore	f	3/20/92 0:00	78.72	
3997	7 train	324966	400000.0	2/1/13 0:00	present	senior systems engineer	Chennai	f	2/26/91 0:00	70.60	

3998 rows × 39 columns

1

KNOW ABOUT THE DATASET

In [4]:

df.head()

Out[4]:

	Unnamed: 0	ID	Salary	DOJ	DOL	Designation	JobCity	Gender	DOB	10percentage	 ComputerScien
0	train	203097	420000.0	6/1/12 0:00	present	senior quality engineer	Bangalore	f	2/19/90 0:00	84.3	
1	train	579905	500000.0	9/1/13 0:00	present	assistant manager	Indore	m	10/4/89 0:00	85.4	
2	train	810601	325000.0	6/1/14 0:00	present	systems engineer	Chennai	f	8/3/92 0:00	85.0	
3	train	267447	1100000.0	7/1/11 0:00	present	senior software engineer	Gurgaon	m	12/5/89 0:00	85.6	
4	train	343523	200000.0	3/1/14 0:00	3/1/15 0:00	get	Manesar	m	2/27/91 0:00	78.0	

5 rows × 39 columns

4

To see last 5 rows of the dataset

In [5]:

df.tail()

Out[5]:

	Unnamed (l: O	ID	Salary	DOJ	DOL	Designation	JobCity	Gender	DOB	10percentage	 Com
3993	traiı	n	47916	280000.0	10/1/11 0:00	10/1/12 0:00	software engineer	New Delhi	m	4/15/87 0:00	52.09	
3994	traiı	n	752781	100000.0	7/1/13 0:00	7/1/13 0:00	technical writer	Hyderabad	f	8/27/92 0:00	90.00	
3995	traiı	n	355888	320000.0	7/1/13 0:00	present	associate software engineer	Bangalore	m	7/3/91 0:00	81.86	
3996	traiı	n	947111	200000.0	7/1/14 0:00	1/1/15 0:00	software developer	Asifabadbanglore	f	3/20/92 0:00	78.72	
3997	traiı	n	324966	400000.0	2/1/13 0:00	present	senior systems engineer	Chennai	f	2/26/91 0:00	70.60	

5 rows × 39 columns

1

To know about the shape of the database i.e. rows, columns

In [6]:

df.shape

Out[6]:

(3998, 39)

To know all the column's name of the datasets.

```
In [7]:
```

```
df.columns
```

```
Out[7]:
```

To know about the column's name with thier data type, how many null value present inside each columns, how many rows in this dataset, how many memory usegae

In [8]:

```
df.info()
```

memory usage: 1.2+ MB

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 3998 entries, 0 to 3997
Data columns (total 39 columns):
# Column
                        Non-Null Count Dtype
   _____
                         -----
0
    Unnamed: 0
                         3998 non-null object
   ID
1
                         3998 non-null int64
                         3998 non-null float64
2
   Salary
3
                        3998 non-null object
   DOJ
  DOL
 4
                        3998 non-null object
5 Designation
                        3998 non-null object
 6 JobCity
                        3998 non-null object
7
  Gender
                        3998 non-null object
8
  DOB
                        3998 non-null object
 9
  10percentage
                        3998 non-null float64
10 10board
                        3998 non-null object
11 12graduation
                        3998 non-null int64
12 12percentage
                        3998 non-null
                                      float64
13 12board
                        3998 non-null
                                       object
14 CollegeID
                                      int64
                        3998 non-null
15 CollegeTier
                        3998 non-null
                                      int64
                                      object
16 Degree
                        3998 non-null
   Specialization
17
                         3998 non-null object
                                      float64
                         3998 non-null
18 collegeGPA
                         3998 non-null
                                      int64
19 CollegeCityID
20 CollegeCityTier
                        3998 non-null int64
21 CollegeState
                        3998 non-null object
                        3998 non-null int64
22 GraduationYear
23 English
                        3998 non-null int64
                        3998 non-null int64
24 Logical
25 Ouant
                        3998 non-null int64
                        3998 non-null float64
27 ComputerProgramming 3998 non-null int64
28 ElectronicsAndSemicon 3998 non-null int64
29 ComputerScience
                        3998 non-null int64
30 MechanicalEngg
                        3998 non-null
                                      int64
                                      int64
31 ElectricalEngg
                        3998 non-null
                                      int64
32 TelecomEngg
                        3998 non-null
                                      int64
33
   CivilEngg
                        3998 non-null
                       3998 non-null
                                      float64
34
   conscientiousness
   agreeableness
35
                         3998 non-null
                                       float64
   extraversion
 36
                         3998 non-null
                                       float64
37 nueroticism
                         3998 non-null
                                       float64
38 openess_to_experience 3998 non-null
                                       float64
dtypes: float64(10), int64(17), object(12)
```

To know about how many null values present inside each columns

In [9]: df.isnull().sum() Out[9]: Unnamed: 0 0 0 ΙD 0 Salary DOJ 0 0 DOL Designation 0 0 JobCity 0 Gender DOB 0 10percentage 0 10board 0 12graduation 0 12percentage 0 12board 0 0 CollegeID 0 CollegeTier 0 Degree Specialization 0 collegeGPA 0 CollegeCityID CollegeCityTier 0 CollegeState 0 GraduationYear 0 0 English 0 Logical 0 Quant Domain 0 ComputerProgramming 0 ElectronicsAndSemicon ComputerScience MechanicalEngg 0 0 ElectricalEngg 0 TelecomEngg 0 CivilEngg conscientiousness 0 agreeableness 0 extraversion 0 nueroticism openess_to_experience 0 dtype: \overline{i} nt $\overline{6}$ 4

```
To know about Total null values present inside a dataset
In [10]:
df.isnull().sum().sum()
Out[10]:
0
In [11]:
df.columns
Out[11]:
Index(['Unnamed: 0', 'ID', 'Salary', 'DOJ', 'DOL', 'Designation', 'JobCity',
```

'Gender', 'DOB', '10percentage', '10board', '12graduation',

```
'12percentage', '12board', 'CollegeID', 'CollegeTier', 'Degree', 'Specialization', 'collegeGPA', 'CollegeCityID', 'CollegeCityTier', 'CollegeState', 'GraduationYear', 'English', 'Logical', 'Quant', 'Domain', 'ComputerProgramming', 'ElectronicsAndSemicon', 'ComputerScience', 'MechanicalEngg', 'ElectricalEngg', 'TelecomEngg', 'CivilEngg', 'conscientiousness', 'agreeableness', 'extraversion', 'nueroticism', 'openess_to_experience'], dtype='object')
```

In [12]:

Delete the first column i.e. 'Unnamed: 0' because this column is not required for our a
nalysis
df.drop(["Unnamed: 0"],axis=1,inplace=True)

In [13]:

df

Out[13]:

	ID	Salary	DOJ	DOL	Designation	JobCity	Gender	DOB	10percentage	10board	 C
0	203097	420000.0	6/1/12 0:00	present	senior quality engineer	Bangalore	f	2/19/90 0:00	84.30	board ofsecondary education,ap	
1	579905	500000.0	9/1/13 0:00	present	assistant manager	Indore	m	10/4/89 0:00	85.40	cbse	
2	810601	325000.0	6/1/14 0:00	present	systems engineer	Chennai	f	8/3/92 0:00	85.00	cbse	
3	267447	1100000.0	7/1/11 0:00	present	senior software engineer	Gurgaon	m	12/5/89 0:00	85.60	cbse	
4	343523	200000.0	3/1/14 0:00	3/1/15 0:00	get	Manesar	m	2/27/91 0:00	78.00	cbse	
3993	47916	280000.0	10/1/11 0:00	10/1/12 0:00	software engineer	New Delhi	m	4/15/87 0:00	52.09	cbse	
3994	752781	100000.0	7/1/13 0:00	7/1/13 0:00	technical writer	Hyderabad	f	8/27/92 0:00	90.00	state board	
3995	355888	320000.0	7/1/13 0:00	present	associate software engineer	Bangalore	m	7/3/91 0:00	81.86	bse,odisha	
3996	947111	200000.0	7/1/14 0:00	1/1/15 0:00	software developer	Asifabadbanglore	f	3/20/92 0:00	78.72	state board	
3997	324966	400000.0	2/1/13 0:00	present	senior systems engineer	Chennai	f	2/26/91 0:00	70.60	cbse	

3998 rows × 38 columns

In [14]:

In this dataset DOJ & DOB is in object but it should be in Date time format $df["DOJ"]=pd.to_datetime(df["DOJ"])$

In [15]:

```
df["DOB"]=pd.to_datetime(df["DOB"])
```

In [16]:

df.info()

<alage !nandae aara frama DataFrama!>

```
RangeIndex: 3998 entries, 0 to 3997
Data columns (total 38 columns):
                         Non-Null Count Dtype
 # Column
0
   ID
                         3998 non-null int64
1
  Salary
                         3998 non-null float64
 2 DOJ
                         3998 non-null datetime64[ns]
3 DOL
                         3998 non-null object
 4 Designation
                         3998 non-null object
 5 JobCity
                         3998 non-null object
 6 Gender
                         3998 non-null object
 7
   DOB
                         3998 non-null datetime64[ns]
8 10percentage
                         3998 non-null float64
9 10board
                         3998 non-null object
10 12graduation
                                       int64
                         3998 non-null
11 12percentage
                                       float64
                         3998 non-null
12 12board
                         3998 non-null
                                        object
   CollegeID
13
                         3998 non-null
   CollegeTier
14
                         3998 non-null int64
15
    Degree
                         3998 non-null object
16 Specialization
                         3998 non-null object
17 collegeGPA
                         3998 non-null float64
18 CollegeCityID
                         3998 non-null int64
19 CollegeCityTier
                        3998 non-null int64
20 CollegeState
                         3998 non-null object
21 GraduationYear
                        3998 non-null int64
22 English
                         3998 non-null int64
23 Logical
                         3998 non-null int64
                         3998 non-null int64
24 Quant
25 Domain
                         3998 non-null float64
26 ComputerProgramming 3998 non-null int64
27 ElectronicsAndSemicon 3998 non-null int64
28 ComputerScience 3998 non-null int64
29 MechanicalEngg
                         3998 non-null int64
30 ElectricalEngg
                        3998 non-null
                                       int64
31 TelecomEngg
                         3998 non-null
                                       int64
32 CivilEngg
                         3998 non-null
                       3998 non-null float64
33 conscientiousness
34 agreeableness
                         3998 non-null float64
35 extraversion 3998 non-null float64
36 nueroticism 3998 non-null float64
                         3998 non-null float64
37 openess to experience 3998 non-null float64
dtypes: datetime64[ns](2), float64(10), int64(17), object(9)
memory usage: 1.2+ MB
In [17]:
# Convert the "present value" of DOL column to NaN.
df["DOL"]=df["DOL"].apply(lambda x: np.nan if x=="present" else x)
In [18]:
df["DOL"]
Out[18]:
0
               NaN
1
               NaN
2
               NaN
3
       3/1/15 0:00
           . . .
       10/1/12 0:00
3993
3994
       7/1/13 0:00
3995
              NaN
3996
       1/1/15 0:00
              NaN
Name: DOL, Length: 3998, dtype: object
In [19]:
```

CTASS PAHOAS.COTE.TTAME.DACAFTAME

Fill the Man walne to Todayle date

```
df["DOL"]
Out[20]:
0
          2024-02-17
1
          2024-02-17
2
          2024-02-17
3
          2024-02-17
         3/1/15 0:00
     10/1/12 0:00
3993
3994
       7/1/13 0:00
3995
         2024-02-17
3996
        1/1/15 0:00
3997
         2024-02-17
Name: DOL, Length: 3998, dtype: object
In [21]:
# Convert the data type to Datetime
df["DOL"]=pd.to_datetime(df["DOL"])
In [22]:
df["DOL"]
Out[22]:
0
       2024-02-17
1
       2024-02-17
2
       2024-02-17
3
       2024-02-17
      2015-03-01
4
3993
     2012-10-01
3994
     2013-07-01
3995
     2024-02-17
3996
      2015-01-01
3997
      2024-02-17
Name: DOL, Length: 3998, dtype: datetime64[ns]
In [23]:
df
Out[23]:
```

fill the waw value to loudy 5 wate.

In [20]:

df["DOL"] = df["DOL"].fillna(pd.to datetime('today').date())

	ID	Salary	DOJ	DOL	Designation	JobCity	Gender	DOB	10percentage	10board	 Compu
0	203097	420000.0	2012- 06-01	2024- 02-17	senior quality engineer	Bangalore	f	1990- 02-19	84.30	board ofsecondary education,ap	
1	579905	500000.0	2013- 09-01	2024- 02-17	assistant manager	Indore	m	1989- 10-04	85.40	cbse	
2	810601	325000.0	2014- 06-01		systems engineer	Chennai	f	1992- 08-03	85.00	cbse	
3	267447	1100000.0	2011- 07-01	2024- 02-17	senior software engineer	Gurgaon	m	1989- 12-05	85.60	cbse	
4	343523	200000.0	2014- 03-01		get	Manesar	m	1991- 02-27	78.00	cbse	
3993	47916	280000.0	2011- 10-01	2012- 10-01	software engineer	New Delhi	m	1987- 04-15	52.09	cbse	

3994	7527 87	10 6@d@!!	² 663 07-01	2 66 € 07-01	Designation writer	Hyd lologita	Gende	1892 DOB 08-27	10percentage	sta tØboard	***	Compu
3995	355888	320000.0		2024- 02-17	associate software engineer	Bangalore	m	1991- 07-03	81.86	bse,odisha		
3996	947111	200000.0	2014- 07-01		software developer	Asifabadbanglore	f	1992- 03-20	78.72	state board		
3997	324966	400000.0	2013- 02-01	2024- 02-17	senior systems engineer	Chennai	f	1991- 02-26	70.60	cbse		
3998 ı	rows × 3	8 column	s									
4					1							▶

To know how many Object data type columns are there in the dataset

In [24]:

df.select_dtypes("object")

Out[24]:

	Designation	JobCity	Gender	10board	12board	Degree	Specialization	CollegeState
0	senior quality engineer	Bangalore	f	board ofsecondary education,ap	board of intermediate education,ap	B.Tech/B.E.	computer engineering	Andhra Pradesh
1	assistant manager	Indore	m	cbse	cbse	B.Tech/B.E.	electronics and communication engineering	Madhya Pradesh
2	systems engineer	Chennai	f	cbse	cbse	B.Tech/B.E.	information technology	Uttar Pradesh
3	senior software engineer	Gurgaon	m	cbse	cbse	B.Tech/B.E.	computer engineering	Delhi
4	get	Manesar	m	cbse	cbse	B.Tech/B.E.	electronics and communication engineering	Uttar Pradesh
3993	software engineer	New Delhi	m	cbse	cbse	B.Tech/B.E.	information technology	Haryana
3994	technical writer	Hyderabad	f	state board	state board	B.Tech/B.E.	electronics and communication engineering	Telangana
3995	associate software engineer	Bangalore	m	bse,odisha	chse,odisha	B.Tech/B.E.	computer engineering	Orissa
3996	software developer	Asifabadbanglore	f	state board	state board	B.Tech/B.E.	computer science & engineering	Karnataka
3997	senior systems engineer	Chennai	f	cbse	cbse	B.Tech/B.E.	information technology	Tamil Nadu

3998 rows × 8 columns

To know how many numeric data type columns are there in the dataset

df.select_dtypes(["int64","float64"])

Out[25]:

	ID	Salary	10percentage	12graduation	12percentage	CollegeID	CollegeTier	collegeGPA	CollegeCityID	Colle
0	203097	420000.0	84.30	2007	95.80	1141	2	78.00	1141	
1	579905	500000.0	85.40	2007	85.00	5807	2	70.06	5807	
2	810601	325000.0	85.00	2010	68.20	64	2	70.00	64	
3	267447	1100000.0	85.60	2007	83.60	6920	1	74.64	6920	
4	343523	200000.0	78.00	2008	76.80	11368	2	73.90	11368	
3993	47916	280000.0	52.09	2006	55.50	6268	2	61.50	6268	
3994	752781	100000.0	90.00	2009	93.00	4883	2	77.30	4883	
3995	355888	320000.0	81.86	2008	65.50	9786	2	70.00	9786	
3996	947111	200000.0	78.72	2010	69.88	979	2	70.42	979	
3997	324966	400000.0	70.60	2008	68.00	6609	2	68.00	6609	

To know how many Datetime data type columns are there in the dataset

In [26]:

3998 rows × 27 columns

df.select_dtypes("datetime64[ns]")

Out[26]:

	DOJ	DOL	DOB
0	2012-06-01	2024-02-17	1990-02-19
1	2013-09-01	2024-02-17	1989-10-04
2	2014-06-01	2024-02-17	1992-08-03
3	2011-07-01	2024-02-17	1989-12-05
4	2014-03-01	2015-03-01	1991-02-27
3993	2011-10-01	2012-10-01	1987-04-15
3994	2013-07-01	2013-07-01	1992-08-27
3995	2013-07-01	2024-02-17	1991-07-03
3996	2014-07-01	2015-01-01	1992-03-20
3997	2013-02-01	2024-02-17	1991-02-26

3998 rows × 3 columns

To describe about the Numerical Columns

In [27]:

df.describe()

Out[27]:

I I	D Salary	10percentage	12graduation	12percentage	CollegeID	CollegeTier	collegeGPA	Colle
count 3.998000e+0	3 3.998000e+03	3998.000000	3998.000000	3998.000000	3998.000000	3998.000000	3998.000000	399

mean	6.637945e+03	3.07699 Selaty	10percentage	129raduati 91	12percentage 74:400308	51 56.859426	College Tier	collegeGPA	Cglig
std	3.632182e+05	2.127375e+05	9.850162	1.653599	10.999933	4802.261482	0.262270	8.167338	480
min	1.124400e+04	3.500000e+04	43.000000	1995.000000	40.000000	2.000000	1.000000	6.450000	
25%	3.342842e+05	1.800000e+05	71.680000	2007.000000	66.000000	494.000000	2.000000	66.407500	49
50%	6.396000e+05	3.000000e+05	79.150000	2008.000000	74.400000	3879.000000	2.000000	71.720000	387
75%	9.904800e+05	3.700000e+05	85.670000	2009.000000	82.600000	8818.000000	2.000000	76.327500	881
max	1.298275e+06	4.000000e+06	97.760000	2013.000000	98.700000	18409.000000	2.000000	99.930000	1840

8 rows × 27 columns

```
OUTLIER DETECTION & TREATMENT
In [28]:
df.select dtypes(["int64", "float64"]).columns
Out[28]:
Index(['ID', 'Salary', '10percentage', '12graduation', '12percentage',
       'CollegeID', 'CollegeTier', 'collegeGPA', 'CollegeCityID',
       'CollegeCityTier', 'GraduationYear', 'English', 'Logical', 'Quant',
       'Domain', 'ComputerProgramming', 'ElectronicsAndSemicon',
       'ComputerScience', 'MechanicalEngg', 'ElectricalEngg', 'TelecomEngg',
       'CivilEngg', 'conscientiousness', 'agreeableness', 'extraversion',
       'nueroticism', 'openess to experience'],
     dtype='object')
In [29]:
column=['Salary', '10percentage', '12percentage', 'collegeGPA', 'English', 'Logical', 'Qu
ant', 'conscientiousness', 'agreeableness', 'extraversion',
       'nueroticism', 'openess to experience']
In [30]:
def outlier treatment(dcol):
    for i in dcol:
       print("Describe: ")
```

```
print(df[i].describe())
print()
plt.boxplot(df[i])
plt.show()
print()
print("Skewness: ", df[i].skew())
print()
q1=df[i].quantile(0.25)
print("First Quartile: ",q1)
print()
q3=df[i].quantile(0.75)
print("Third Quartile: ",q3)
print()
iqr=q3-q1
print("InterQuartile Range: ",iqr)
print("***********************************")
lower=q1-(1.5*iqr)
print("Lower Limit", lower)
print()
upper=q3+(1.5*iqr)
print("upper Limit", upper)
print()
```

In [31]:

```
outlier treatment(column)
```

Describe: 3.998000e+03 count 3.076998e+05 mean 2.127375e+05 std 3.500000e+04 min 25% 1.800000e+05 50% 3.000000e+05 75% 3.700000e+05 4.000000e+06 max

Name: Salary, dtype: float64

First Quartile: 180000.0

Third Quartile: 370000.0

InterQuartile Range: 190000.0

Lower Limit -105000.0

upper Limit 655000.0

Describe:

3998.000000 count 77.925443 mean std 9.850162 43.000000 min 25% 71.680000 50% 79.150000 75% 85.670000 max 97.760000

Name: 10percentage, dtype: float64

********* Skewness: -0.5910185081648047 ********* First Quartile: 71.68 Third Quartile: 85.67 ******** InterQuartile Range: 13.98999999999995 ********* Lower Limit 50.69500000000014 upper Limit 106.655 ********** Shape: (30, 38)********* (0, 38)*********

 count
 3998.000000

 mean
 74.466366

 std
 10.999933

 min
 40.000000

 25%
 66.000000

Describe:

25% 66.000000 50% 74.400000 75% 82.600000

max 98.700000

90 -

Skewness: -0.03260741437482245

First Quartile: 66.0

Third Quartile: 82.6

InterQuartile Range: 16.59999999999994

Lower Limit 41.10000000000001

Shape:

(1, 38)

(0, 38)

Describe:

count 3998.000000 mean 71.486171 std 8.167338 11 ± 111 0.430000 25% 66.407500 50% 71.720000 75% 76.327500 max 99.930000 Name: collegeGPA, dtype: float64

********* Skewness: -1.2492091640381637

First Quartile: 66.4075

Third Quartile: 76.3275

InterQuartile Range: 9.92000000000000

Lower Limit 51.52749999999996

upper Limit 91.2075000000001

Shape:

(38, 38)*********

(0, 38)

Describe:

count	3998.000000
mean	501.649075
std	104.940021
min	180.000000
25%	425.000000
50%	500.000000
75%	570.000000
max	875.000000

Name: English, dtype: float64

First Quartile: 425.0

Third Quartile: 570.0

InterQuartile Range: 145.0

Lower Limit 207.5

upper Limit 787.5

Shape:

(0, 38)

Describe:

3998.000000 count 501.598799 mean 86.783297 std 195.000000 min 25% 445.000000 50% 505.000000 75% 565.000000 max 795.000000

Name: Logical, dtype: float64

Skewness: -0.21660181091305136

First Quartile: 445.0

Describe: count 3998.000000 513.378189 mean 122.302332 std min 120.000000 25% 430.000000 50% 515.000000 75% 595.000000 900.000000 max

Name: Quant, dtype: float64

Shape: (0, 38)

800 700 600 500 400 300 200 1

```
Describe:
count 3998.000000
         -0.037831
mean
          1.028666
std
         -4.126700
min
25%
         -0.713525
50%
          0.046400
75%
          0.702700
          1.995300
Name: conscientiousness, dtype: float64
***********
```

First Quartile: -0.7135250000000001

Third Quartile: 0.7027

InterQuartile Range: 1.416225

Lower Limit -2.8378625000000004

upper Limit 2.8270375000000003

Shape:

(0, 38)

Describe:

3998.000000 count 0.146496 mean std 0.941782 min -5.781600 25% -0.287100 50% 0.212400 75% 0.812800 1.904800 max

First Quartile: -0.2871

Third Quartile: 0.8128

Lower Limit -1.93695

upper Limit 2.46265

Shape:

(0, 38)

Describe:

 count
 3998.000000

 mean
 0.002763

 std
 0.951471

 min
 -4.600900

 25%
 -0.604800

 50%
 0.091400

 75%
 0.672000

 max
 2.535400

Name: extraversion, dtype: float64

Skewness: -0.5232667810368843

First Quartile: -0.6048

Third Quartile: 0.672

InterQuartile Range: 1.276800000000000

```
upper Limit 2.5872
***********
Shape:
(40, 38)
***********
(0, 38)
**********
 2
 1
 0 -
 -1 -
 -2 -
                         1
Describe:
     3998.000000
count
        -0.169033
mean
        1.007580
std
        -2.643000
min
        -0.868200
25%
50%
        -0.234400
75%
        0.526200
max
         3.352500
Name: nueroticism, dtype: float64
 3
 2
 1 -
```

Lower Limit -2.520000000000005

0 -

-1

Skewness: 0.1657096849156382

First Quartile: -0.8682

Third Quartile: 0.5262

InterQuartile Range: 1.3944

Lower Limit -2.9598

upper Limit 2.6178

Shape:

(0, 38)

Describe:

3998.000000 count mean -0.138110 std 1.008075 min -7.375700 -0.669200 25% 50% -0.094300 75% 0.502400 1.822400 max

Skewness: -1.5069620137292778

First Quartile: -0.6692

Third Quartile: 0.5024

InterQuartile Range: 1.1716

Lower Limit -2.4266

upper Limit 2.259800000000003

Shape:

(0, 38)

UNIVARIATE ANALYSIS

NUMERIC DATA TYPE

Frequency

400

```
In [32]:
df.select_dtypes(["int64", "float64"]).columns
Out[32]:
Index(['ID', 'Salary', '10percentage', '12graduation', '12percentage',
       'CollegeID', 'CollegeTier', 'collegeGPA', 'CollegeCityID',
       'CollegeCityTier', 'GraduationYear', 'English', 'Logical', 'Quant',
       'Domain', 'ComputerProgramming', 'ElectronicsAndSemicon',
       'ComputerScience', 'MechanicalEngg', 'ElectricalEngg', 'TelecomEngg',
       'CivilEngg', 'conscientiousness', 'agreeableness', 'extraversion',
       'nueroticism', 'openess to experience'],
      dtype='object')
SALARY
In [33]:
# Minimum Salary
df["Salary"].min()
Out[33]:
35000.0
In [34]:
# Maximum Salary
df["Salary"].max()
Out[34]:
655000.0
In [35]:
df["Salary"].plot(kind="hist")
Out[35]:
<AxesSubplot:ylabel='Frequency'>
   800
   600
```

```
100000 200000 300000 400000 500000 600000
```

10percentage

```
In [36]:
```

```
# Minimum Percentage in 10th Board
df['10percentage'].min()
```

Out[36]:

50.695000000000014

In [37]:

```
# Maximum Percentage in 10th Board
df['10percentage'].max()
```

Out[37]:

97.76

In [38]:

```
# It is looking like so many students were kept less marks
df['10percentage'].plot(kind="hist")
```

Out[38]:

<AxesSubplot:ylabel='Frequency'>

12percentage

In [39]:

```
# Minimum Mark
df["12percentage"].min()
```

```
Out[39]:
```

```
41.10000000000001
```

In [40]:

```
# Maximum Mark
df["12percentage"].max()
```

Out[40]:

98.7

In [41]:

```
# So many students lies in between 60-100% df["12percentage"].plot(kind="hist")
```

Out[41]:

<AxesSubplot:ylabel='Frequency'>

12graduation

In [42]:

```
# So many student were gave the exam in the year 2009 df['12graduation'].value_counts()
```

Out[42]:

```
2009
        1052
2008
          935
2010
          742
2007
          528
2006
          407
2005
          160
2004
          73
2011
           46
           25
2003
2002
           14
2012
           10
2001
            2
1995
            1
1998
            1
            1
2013
1999
Name: 12graduation, dtype: int64
```

In [43]:

```
df['12graduation'].value_counts().plot(kind="bar")
```

Out[43]:

<AxesSubplot:>

CollegeTier

In [44]:

```
# It give in which collegID so many students were went for the exam
# 1350 college were selected to conduct the exam
df['CollegeID'].value_counts()
```

Out[44]:

```
272
          94
          38
64
11759
          35
          35
44
47
          33
          . .
128
           1
5068
           1
8637
           1
9361
           1
4883
           1
Name: CollegeID, Length: 1350, dtype: int64
```

CollegeTier

In [45]:

```
df['CollegeTier'].value_counts()
```

Out[45]:

```
2 3701
1 297
```

Name: CollegeTier, dtype: int64

```
In [46]:
df['CollegeTier'].value counts().plot(kind="bar")
Out[46]:
<AxesSubplot:>
 3500
 3000
 2500
 2000
 1500
 1000
  500
    0
collegeGPA
In [47]:
df['collegeGPA'].min()
Out[47]:
51.527499999999996
In [48]:
df['collegeGPA'].max()
Out[48]:
91.20750000000001
In [49]:
# 'collegeGPA'column Normally distributed
df['collegeGPA'].plot(kind="hist")
Out[49]:
<AxesSubplot:ylabel='Frequency'>
   800
   700
   600
 500
500
400
```


CollegeCityID

```
In [50]:
```

```
# 'CollegeCityID' is exactly same as 'CollegeID' so this column is not required for our a
nalysis
df['CollegeCityID'].value_counts()
```

Out[50]:

```
272
          94
          38
64
11759
          35
44
          35
47
          33
128
           1
5068
           1
8637
           1
9361
            1
4883
```

Name: CollegeCityID, Length: 1350, dtype: int64

CollegeCityTier

```
In [51]:
```

```
df['CollegeCityTier'].value_counts()
```

Out[51]:

0 2797 1 1201

Name: CollegeCityTier, dtype: int64

In [52]:

```
df['CollegeCityTier'].value_counts().plot(kind="bar")
```

Out[52]:

<AxesSubplot:>

GraduationYear

In [53]:

```
# So many student were graduated in the year 2013 df['GraduationYear'].value_counts()
```

Out[53]:

```
2013
        1181
2014
         1036
2012
          847
2011
          507
2010
          292
2015
          94
           24
2009
2017
            7
2016
2007
```

Name: GraduationYear, dtype: int64

In [54]:

```
df['GraduationYear'].value_counts().plot(kind="bar")
```

Out[54]:

<AxesSubplot:>

English

In [55]:

```
df['English'].min()
Out[55]:
207.5
In [56]:
df['English'].max()
Out[56]:
787.5
In [57]:
# This also Normally Distributed
df['English'].plot(kind="hist")
Out[57]:
<AxesSubplot:ylabel='Frequency'>
   800
   600
 Frequency
   400
   200
        200
                  300
                           400
                                     500
                                               600
                                                        700
                                                                  800
Logical
In [58]:
df['Logical'].min()
Out[58]:
265.0
In [59]:
df['Logical'].max()
Out[59]:
745.0
In [60]:
# It slidely left skewed
df['Logical'].plot(kind="hist")
Out[60]:
```

<AxesSubplot:ylabel='Frequency'>

Quant

```
In [61]:
```

```
df['Quant'].min()
Out[61]:
182.5
```

```
df['Quant'].max()
```

Out[62]:

In [62]:

842.5

In [63]:

```
# It Normally Distributed
df['Quant'].plot(kind="hist")
```

Out[63]:

<AxesSubplot:ylabel='Frequency'>

ComputerProgramming

```
In [64]:
df['ComputerProgramming']
Out[64]:
0
        445
1
         -1
2
        395
3
        615
         -1
3993
        345
3994
        325
3995
        405
3996
        445
3997
        435
Name: ComputerProgramming, Length: 3998, dtype: int64
In [65]:
# It give how many student's were not give ComputerProgramming Exam
df[df['ComputerProgramming']==-1].shape
Out[65]:
(868, 38)
In [66]:
# Minimum Marks of ComputerProgramming Exam who were gave the exam
df[df['ComputerProgramming']!=-1]['ComputerProgramming'].min()
Out[66]:
105
In [67]:
# Maximum Marks of ComputerProgramming Exam who were gave the exam
df[df['ComputerProgramming']!=-1]['ComputerProgramming'].max()
Out[67]:
840
In [68]:
df[df['ComputerProgramming']!=-1]['ComputerProgramming'].plot(kind="hist")
Out[68]:
<AxesSubplot:ylabel='Frequency'>
```

800 -

Electronics And Semicon

```
In [69]:
```

Out[73]:

```
df['ElectronicsAndSemicon']
Out[69]:
0
         -1
        466
1
2
         -1
         -1
3
        233
4
3993
        -1
3994
        420
3995
         -1
3996
         -1
3997
         -1
Name: ElectronicsAndSemicon, Length: 3998, dtype: int64
In [70]:
# It give how many student's were not give Electronics And Semicon Exam
df[df['ElectronicsAndSemicon']==-1].shape
Out[70]:
(2854, 38)
In [71]:
# Minimum Marks of ComputerProgramming Exam who were gave the exam
df[df['ElectronicsAndSemicon']!=-1]['ElectronicsAndSemicon'].min()
Out[71]:
133
In [72]:
# Maximum Marks of ComputerProgramming Exam who were gave the exam
df[df['ElectronicsAndSemicon']!=-1]['ElectronicsAndSemicon'].max()
Out[72]:
612
In [73]:
# It slidely right skewwed that means so many students were lies between 350-600
df[df['ElectronicsAndSemicon']!=-1]['ElectronicsAndSemicon'].plot(kind="hist")
```


ComputerScience

```
In [74]:
```

Out[76]:

In [77]:

130

```
df['ComputerScience']
Out[74]:
0
         -1
1
         -1
2
         -1
3
         -1
         -1
3993
         -1
         -1
3994
3995
         -1
3996
        438
3997
         -1
Name: ComputerScience, Length: 3998, dtype: int64
In [75]:
# It give how many student's were not give Computer Science Exam
df[df['ComputerScience']==-1].shape
Out[75]:
(3096, 38)
In [76]:
# Minimum Marks of Computer Science Exam who were gave the exam
df[df['ComputerScience']!=-1]['ComputerScience'].min()
```

Maximum Marks of Computer Science Exam who were gave the exam

df[df['ComputerScience']!=-1]['ComputerScience'].max()

```
Out[//]:
715
```

```
In [78]:
```

```
# It Normally Distributed
df[df['ComputerScience']!=-1]['ComputerScience'].plot(kind="hist")
```

Out[78]:

<AxesSubplot:ylabel='Frequency'>

MechanicalEngg

Out[80]:

In [81]:

(3763, 38)

```
In [79]:
df['MechanicalEngg']
Out[79]:
0
       -1
1
       -1
       -1
3
       -1
       -1
3993
       -1
3994
       -1
3995
       -1
3996
       -1
3997
       -1
Name: MechanicalEngg, Length: 3998, dtype: int64
In [80]:
# It give how many student's were not give Mechanical Engg Exam
```

```
# Minimum Marks of Mechanical Engg Exam who were gave the exam
```

df[df['MechanicalEngg']==-1].shape

```
180
In [82]:
# Maximum Marks of Mechanical Engg Exam who were gave the exam
df[df['MechanicalEngg']!=-1]['MechanicalEngg'].max()
Out[82]:
623
In [83]:
# It Normally Distributed
df[df['MechanicalEngg']!=-1]['MechanicalEngg'].plot(kind="hist")
Out[83]:
<AxesSubplot:ylabel='Frequency'>
   50
   40
 Frequency
   30
   20
   10
    0
                       300
                                                             600
          200
                                    400
                                                500
ElectricalEngg
In [84]:
df['ElectricalEngg']
Out[84]:
0
       -1
1
       -1
       -1
2
3
       -1
       -1
3993
       -1
3994
       -1
3995
       -1
3996
       -1
3997
       -1
Name: ElectricalEngg, Length: 3998, dtype: int64
```

df[df['MechanicalEngg']!=-1]['MechanicalEngg'].min()

Out[81]:

In [85]:

```
# It give how many student's were not give Electrical Engg Exam
df[df['ElectricalEngg']==-1].shape
Out[85]:
(3837, 38)
In [86]:
# Minimum Marks of Electrical Engg Exam who were gave the exam
df[df['ElectricalEngg']!=-1]['ElectricalEngg'].min()
Out[86]:
206
In [87]:
# Maximum Marks of Electrical Engg Exam who were gave the exam
df[df['ElectricalEngg']!=-1]['ElectricalEngg'].max()
Out[87]:
676
In [88]:
df[df['ElectricalEngg']!=-1]['ElectricalEngg'].plot(kind="hist")
Out[88]:
<AxesSubplot:ylabel='Frequency'>
   35
   30
   25
 Frequency
   20
   15
```

TelecomEngg

10

5

0

200

300

400

```
In [89]:
```

2002

```
df['TelecomEngg']
Out[89]:
0
        -1
        -1
        -1
3
        -1
4
        -1
```

500

600

```
-\bot
3993
3994
       -1
3995
       -1
3996
       -1
3997
       -1
Name: TelecomEngg, Length: 3998, dtype: int64
In [90]:
# It give how many student's were not give Telecom Engg Exam
df[df['TelecomEngg'] == -1].shape
Out[90]:
(3624, 38)
In [91]:
# Minimum Marks of Telecom Engg Exam who were gave the exam
df[df['TelecomEngg']!=-1]['TelecomEngg'].min()
Out[91]:
153
In [92]:
# Maximum Marks of Telecom Engg Exam who were gave the exam
df[df['TelecomEngg']!=-1]['TelecomEngg'].max()
Out[92]:
548
In [93]:
df[df['TelecomEngg']!=-1]['TelecomEngg'].plot(kind="hist")
Out[93]:
<AxesSubplot:ylabel='Frequency'>
   80
   70
   60
   50
```


CivilEngg

In [94]:

df['CivilEngg']

```
Out[94]:
0
       -1
1
       -1
2
       -1
3
       -1
       -1
3993
       -1
3994
       -1
3995
       -1
3996
       -1
3997
       -1
Name: CivilEngg, Length: 3998, dtype: int64
In [95]:
# It give how many student's were not give Civil Engg Exam
df[df['CivilEngg']==-1].shape
Out[95]:
(3956, 38)
In [96]:
# Minimum Marks of Civil Engg Exam who were gave the exam
df[df['CivilEngg']!=-1]['CivilEngg'].min()
Out[96]:
166
In [97]:
# Maximum Marks of Civil Engg Exam who were gave the exam
df[df['CivilEngg']!=-1]['CivilEngg'].max()
Out[97]:
516
In [98]:
df[df['CivilEngg']!=-1]['CivilEngg'].plot(kind="hist")
Out[98]:
<AxesSubplot:ylabel='Frequency'>
   10
    8
 Frequency
    6
    4
    2
```

0

```
150 200 250 300 350 400 450 500
```

CATEGORICAL DATA TYPE

```
In [99]:
df.select_dtypes("object").columns
Out[99]:
Index(['Designation', 'JobCity', 'Gender', '10board', '12board', 'Degree',
       'Specialization', 'CollegeState'],
      dtype='object')
In [100]:
# Software Engineer is highest frequency
df['Designation'].value_counts()
Out[100]:
software engineer
                                     539
                                     265
software developer
system engineer
                                     205
programmer analyst
                                     139
systems engineer
                                     118
                                     . . .
                                       1
cad drafter
                                        1
noc engineer
human resources intern
                                        1
senior quality assurance engineer
jr. software developer
Name: Designation, Length: 419, dtype: int64
In [101]:
df['Designation'].value counts().head(30)
Out[101]:
software engineer
                               539
                               265
software developer
                               205
system engineer
                              139
programmer analyst
systems engineer
                              118
java software engineer
                              111
software test engineer
                              100
                                77
project engineer
                                76
technical support engineer
senior software engineer
                                72
                                67
java developer
                                57
test engineer
                                54
web developer
                                52
application developer
                                52
assistant manager
network engineer
                                51
                                49
data analyst
                                49
business analyst
engineer
                                47
android developer
                                46
associate software engineer
                                46
                                36
programmer
senior systems engineer
                                35
.net developer
                                34
php developer
                                33
qa analyst
                                29
                                29
production engineer
```

28

design engineer

```
~~~±9.. ~...9±...~~
                                            26
asp.net developer
                                            25
quality analyst
Name: Designation, dtype: int64
In [102]:
df['Designation'].value counts().head(30).plot(kind="barh")
Out[102]:
<AxesSubplot:>
            quality analyst -
asp.net developer -
design engineer -
          production engineer
                qa analyst
php developer
                 net developer
     senior systems engineer
 programmer
associate software engineer
android developer
                       engineer
              business aňalyst
                   data analyst
            network engineer
assistant manager
         application developer
web developer
                  test engineer
     java developer
senior software engineer
  technical support engineer project engineer software test engineer java software engineer
          systems engineer
programmer analyst
system engineer
           software developer
             software engineer
                                              100
                                                            200
                                                                           300
                                                                                         400
                                                                                                       500
In [103]:
# Student from Bangalore City is high
df['JobCity'].value counts()
Out[103]:
Bangalore
                            627
-1
                            461
Noida
                            368
Hyderabad
                           335
Pune
                           290
Tirunelvelli
Ernakulam
                              1
Nanded
Dharmapuri
                              1
Asifabadbanglore
                              1
Name: JobCity, Length: 339, dtype: int64
In [104]:
df['JobCity'].value counts().head(25)
Out[104]:
Bangalore
                       627
```

-1

Noida

Pune

Chennai

Gurgaon

New Delhi Mumbai

Hyderabad

461

368

335

290 272

198

196

108

```
Kolkata
                   98
                   46
Jaipur
                   36
Lucknow
                   36
Mysore
                   32
Navi Mumbai
                   27
chennai
Chandigarh
                   26
pune
                   26
Greater Noida
                   26
Indore
                   24
                   22
Bhubaneswar
Coimbatore
                   20
Faridabad
                   18
Ahmedabad
                   17
                   17
Bhopal
hyderabad
                   16
Name: JobCity, dtype: int64
```

In [105]:

```
df['JobCity'].value counts().head(25).plot(kind="barh")
```

Out[105]:

<AxesSubplot:>

In [106]:

```
# Male Gender have more Frequency
df['Gender'].value_counts()
```

```
Out[106]:
```

m 3041 f 957

Name: Gender, dtype: int64

In [107]:

```
df['Gender'].value_counts().plot(kind="bar")
```

Out[107]:

<AxesSubplot:>

3000 -

In [108]:

```
# Student from CBSE Board are high
df['10board'].value_counts()
```

Out[108]:

cbse	1395	
state board	1164	
0	350	
icse	281	
SSC	122	
hse,orissa	1	
national public school	1	
nagpur board	1	
jharkhand academic council	1	
bse,odisha	1	
Name: 10board, Length: 275,	dtype: int	64

In [109]:

df['10board'].value_counts().head(20)

Out[109]:

cbse	1395
state board	1164
0	350
icse	281
SSC	122
up board	85
matriculation	38
rbse	23
board of secondary education	20
up	19
mp board	17
wbbse	16
sslc	16
central board of secondary education	13
kseeb	12
upboard	11
maharashtra state board	11
karnataka state board	10
state	9
bseb	9
Name: 10board, dtype: int64	

In [110]:

```
df['10board'].value_counts().head(20).plot(kind="barh")
```

Out[110]:

<AxesSubplot:>

In [111]:

```
# Student from CBSE Board are high
df['12board'].value counts()
```

Out[111]:

cbse	1400
state board	1254
0	359
icse	129
up board	87
jawahar higher secondary school	1
nagpur board	1
bsemp	1
board of higher secondary orissa	1
boardofintermediate	1
Name: 12board, Length: 340, dtype:	int64

In [112]:

df['12board'].value_counts().head(20)

Out[112]:

cbse	1400
state board	1254
0	359
icse	129
up board	87
isc	45
board of intermediate	36
board of intermediate education	31
up	20
rbse	19
mp board	17
bie	15
chse	14
ipe	14
hsc	13
maharashtra state board	12

```
central board of secondary education
                                              12
wbchse
                                              11
                                              10
maharashtra board
matriculation
                                               9
Name: 12board, dtype: int64
In [113]:
df['12board'].value counts().head(20).plot(kind="barh")
Out[113]:
<AxesSubplot:>
                      matriculation ·
                 maharashtra board
                           wbchse
 central board of secondary education
            maharashtra state board
                               ipe
                              chse
                               bie
                         mp board
                              rbse
     board of intermediate education
              board of intermediate
                          up board
                              icse
                                0
                        state board
                              cbse
                                          200
                                                  400
                                                          600
                                                                   800
                                                                           1000
                                                                                   1200
                                                                                            1400
                                  0
In [114]:
# Student from B. Tech/B.E. Degree are high
df['Degree'].value counts()
Out[114]:
B.Tech/B.E.
                  3700
MCA
                   243
M.Tech./M.E.
                     53
M.Sc. (Tech.)
                      2
Name: Degree, dtype: int64
In [115]:
df['Degree'].value_counts().plot(kind="bar")
Out[115]:
<AxesSubplot:>
 3500
 3000
 2500
```

2000

In [116]:

Student from electronics and communication engineering Specialization are high
df['Specialization'].value_counts()

Out[116]:

electronics and communication engineering	880
computer science & engineering	744
information technology	660
computer engineering	600
computer application	244
mechanical engineering	201
electronics and electrical engineering	196
electronics & telecommunications	121
electrical engineering	82
electronics & instrumentation eng	32
civil engineering	29
electronics and instrumentation engineering	27
information science engineering	27
instrumentation and control engineering	20
electronics engineering	19
biotechnology	15
other	13
industrial & production engineering	10
applied electronics and instrumentation	9
chemical engineering	9
computer science and technology	6
telecommunication engineering	6
mechanical and automation	5
automobile/automotive engineering	5
instrumentation engineering	4
mechatronics	4
	3
aeronautical engineering	3
electronics and computer engineering	
electrical and power engineering	2
biomedical engineering	2
information & communication technology	2
industrial engineering	2
computer science	2
metallurgical engineering	2
power systems and automation	1
control and instrumentation engineering	1
mechanical & production engineering	1
embedded systems technology	1
polymer technology	1
computer and communication engineering	1
information science	1
internal combustion engine	1
computer networking	1
ceramic engineering	1
electronics	1
industrial & management engineering	1
Name: Specialization, dtype: int64	_
Specialization, acype. into	

```
In [117]:
```

```
df['Specialization'].value counts().head(25)
```

Out[117]:

electronics and communication engineering	880
computer science & engineering	744
information technology	660
computer engineering	600
computer application	244
mechanical engineering	201
electronics and electrical engineering	196
electronics & telecommunications	121
electrical engineering	82
electronics & instrumentation eng	32
civil engineering	29
electronics and instrumentation engineering	27
information science engineering	27
instrumentation and control engineering	20
electronics engineering	19
biotechnology	15
other	13
industrial & production engineering	10
applied electronics and instrumentation	9
chemical engineering	9
computer science and technology	6
telecommunication engineering	6
mechanical and automation	5
automobile/automotive engineering	5
instrumentation engineering	4
Name: Specialization, dtype: int64	

In [118]:

```
df['Specialization'].value_counts().head(25).plot(kind="barh")
```

Out[118]:

<AxesSubplot:>

In [119]:

```
# Student from Uttar Pradesh State are high
df['CollegeState'].value_counts().head(20)
```

Out[119]:

```
Uttar Pradesh 915
Karnataka 370
```

```
Tamil Nadu
                     367
                     319
Telangana
Maharashtra
                     262
Andhra Pradesh
                     225
West Bengal
                     196
                     193
Punjab
Madhya Pradesh
                     189
Haryana
                     180
                     174
Rajasthan
Orissa
                     172
Delhi
                     162
Uttarakhand
                     113
Kerala
                      33
Jharkhand
                      28
Chhattisgarh
                      27
                      24
Gujarat
                      16
Himachal Pradesh
                      10
Bihar
```

Name: CollegeState, dtype: int64

In [120]:

```
df['CollegeState'].value_counts().head(20).plot(kind="barh")
```

Out[120]:

<AxesSubplot:>

BIVARIATE ANALYSIS

```
In [121]:
```

```
df.select_dtypes(["int64","float64"]).columns
```

Out[122]:

In [123]:

```
plt.scatter(df['Salary'], df['10percentage'])
```

Out[123]:

<matplotlib.collections.PathCollection at 0x22fae63b070>

In [124]:

df.pivot table(index='Designation', values='Salary', aggfunc="sum", sort=False).head(30)

Out[124]:

Salary

Designation	
senior quality engineer	2220000.0
assistant manager	22285000.0
systems engineer	43455000.0
senior software engineer	34095000.0
get	3785000.0
system engineer	72580000.0
java software engineer	32355000.0
mechanical engineer	1575000.0
electrical engineer	6520000.0
project engineer	24095000.0

senior php developer	1455000.0 Salary
senior systems engineer Designation	16155000.0
quality assurance engineer	4150000.0
qa analyst	7650000.0
network engineer	11420000.0
product development engineer	3865000.0
associate software developer	890000.0
data entry operator	360000.0
software engineer	181025000.0
developer	540000.0
electrical project engineer	1825000.0
programmer analyst	47230000.0
systems analyst	4215000.0
ase	1020000.0
telecommunication engineer	145000.0
application developer	18355000.0
ios developer	3145000.0
executive assistant	715000.0
online marketing manager	795000.0
documentation specialist	80000.0

In [125]:

Total Salary of each designation df.pivot_table(index='Designation', values='Salary', aggfunc="sum", sort=False).head(30).so rt_values('Salary', ascending=False)

Out[125]:

Salary

4150000.0

3865000.0

3785000.0 3145000 0

get

ins developer

Designation

181025000.0 software engineer system engineer 72580000.0 programmer analyst 47230000.0 systems engineer 43455000.0 senior software engineer 34095000.0 32355000.0 java software engineer 24095000.0 project engineer 22285000.0 assistant manager 18355000.0 application developer senior systems engineer 16155000.0 11420000.0 network engineer 7650000.0 qa analyst 6520000.0 electrical engineer systems analyst 4215000.0

quality assurance engineer

product development engineer

iou autoiopoi	01700000
senior quality engineer	Salary 2220000.0
Designation electrical project engineer	1825000.0
mechanical engineer	1575000.0
senior php developer	1455000.0
ase	1020000.0
associate software developer	890000.0
online marketing manager	795000.0
executive assistant	715000.0
developer	540000.0
data entry operator	360000.0
telecommunication engineer	145000.0
documentation specialist	0.0008

In [126]:

df.pivot_table(index='Designation', values='Salary', aggfunc="sum", sort=False).head(30).so
rt values('Salary', ascending=False).plot(kind="barh")

Out[126]:

<AxesSubplot:ylabel='Designation'>

Software Engineer Candidates get high salary

In [127]:

```
# Average Salary of each JobCity
df.pivot_table(index='JobCity', values='Salary', aggfunc="mean", sort=False).head(30).sort_
values('Salary', ascending=False)
```

Out[127]:

Salary

JobCity

Rajkot 452500.000000

Mumbai	355138.889989
BarlgaGity	341435.406699
Banglore	333888.888889
Mangalore	333181.818182
Pune	320775.862069
Navi Mumbai	318593.750000
Gurgaon	313181.818182
Hyderabad	305791.044776
Hyderabad	294500.000000
Chennai	293437.500000
-1	288850.325380
Noida	288546.195652
Mysore	284444.444444
Bangalore	282500.000000
noida	271250.000000
Delhi	262500.000000
New Delhi	255765.306122
Jaipur	252500.000000
Kolkata	249438.775510
Greater Noida	244961.538462
Rewari	240000.000000
mohali	238333.333333
Indore	237708.333333
Bhubaneswar	229318.181818
delhi	201666.666667
Gaziabaad	200000.000000
Manesar	200000.000000
Bhiwadi	150000.000000
Jhansi	120000.000000

In [128]:

df.pivot_table(index='JobCity', values='Salary', aggfunc="mean", sort=False).head(30).sort_
values('Salary', ascending=False).plot(kind="bar")

Out[128]:

<AxesSubplot:xlabel='JobCity'>

Rajkot city having Highest Mean Salary

In [129]:

```
# Gender wise specialization wise total sales
df_sum=df.groupby(['Gender','Specialization'],as_index=False).agg(Total_Salary=("Salary","sum")).sort_values(by=['Gender',"Total_Salary"],ascending=False)
```

In [130]:

df sum

Out[130]:

	Gender	Specialization	Total_Salary
47	m	electronics and communication engineering	197555000.0
39	m	computer science & engineering	152700000.0
36	m	computer engineering	150875000.0
58	m	information technology	148710000.0
64	m	mechanical engineering	56999000.0
			
10	f	computer science and technology	320000.0
26	f	telecommunication engineering	300000.0
0	f	aeronautical engineering	180000.0
8	f	computer science	180000.0
4	f	chemical engineering	100000.0

71 rows × 3 columns

In [131]:

In Male electronics and communication engineering Specialization having more Salary
df_sum[df_sum["Gender"]=="m"]

Out[131]:

	Gender	Specialization	Total_Salary
47	m	electronics and communication engineering	197555000.0
39	m	computer science & engineering	152700000.0
36	m	computer engineering	150875000.0
58	m	information technology	148710000.0
64	m	mechanical engineering	56999000.0
35	m	computer application	47720000.0

49	Gender	electronics and electric ลิเวลาผู้ลพ่อส ะ เค ตู	Totali Sadary
46	m	electronics & telecommunications	27600000.0
43	m	electrical engineering	17460000.0
33	m	civil engineering	8845000.0
45	m	electronics & instrumentation eng	7515000.0
50	m	electronics and instrumentation engineering	6705000.0
57	m	information science engineering	5390000.0
51	m	electronics engineering	4250000.0
59	m	instrumentation and control engineering	3775000.0
67	m	other	3465000.0
32	m	chemical engineering	3110000.0
54	m	industrial & production engineering	2960000.0
28	m	applied electronics and instrumentation	2265000.0
70	m	telecommunication engineering	1755000.0
30	m	biotechnology	1590000.0
63	m	mechanical and automation	1545000.0
40	m	computer science and technology	1155000.0
29	m	automobile/automotive engineering	1110000.0
60	m	instrumentation engineering	960000.0
66	m	metallurgical engineering	675000.0
65	m	mechatronics	665000.0
48	m	electronics and computer engineering	660000.0
68	m	polymer technology	655000.0
37	m	computer networking	565000.0
56	m	information science	460000.0
42	m	electrical and power engineering	420000.0
38	m	computer science	400000.0
55	m	industrial engineering	390000.0
61	m	internal combustion engine	360000.0
31	m	ceramic engineering	335000.0
53	m	industrial & management engineering	320000.0
41	m	control and instrumentation engineering	305000.0
27	m	aeronautical engineering	265000.0
52	m	embedded systems technology	200000.0
34	m	computer and communication engineering	120000.0
62	m	mechanical & production engineering	100000.0
69	m	power systems and automation	100000.0
44	m	electronics	40000.0

In [132]:

```
# In Female Computer Engineering Specialization having more Salary
df_sum[df_sum["Gender"] == "f"]
```

Out[132]:

	Gender	Specialization	Total_Salary
7	f	computer engineering	59545000.0

14	Gender	electronics and communication engineering	Total Salary
22	f	information technology	49900000.0
9	f	computer science & engineering	47590000.0
6	f	computer application	15105000.0
15	f	electronics and electrical engineering	8930000.0
13	f	electronics & telecommunications	7920000.0
11	f	electrical engineering	5380000.0
23	f	instrumentation and control engineering	3415000.0
24	f	mechanical engineering	3195000.0
12	f	electronics & instrumentation eng	2505000.0
3	f	biotechnology	2225000.0
21	f	information science engineering	2070000.0
5	f	civil engineering	1845000.0
17	f	electronics engineering	1060000.0
16	f	electronics and instrumentation engineering	1045000.0
18	f	industrial & production engineering	880000.0
20	f	information & communication technology	775000.0
2	f	biomedical engineering	580000.0
1	f	applied electronics and instrumentation	575000.0
19	f	industrial engineering	350000.0
25	f	mechatronics	350000.0
10	f	computer science and technology	320000.0
26	f	telecommunication engineering	300000.0
0	f	aeronautical engineering	180000.0
8	f	computer science	180000.0
		chemical engineering	100000.0

In [133]:

sns.barplot(y='Specialization',x='Total_Salary',hue="Gender",data=df_sum)

Out[133]:

<AxesSubplot:xlabel='Total_Salary', ylabel='Specialization'>

In [134]:

```
# CollegeState wise Total Salary
df.pivot_table(index='CollegeState', values='Salary', aggfunc="sum", sort=False).head(30).s
ort_values('Salary', ascending=False)
```

Out[134]:

Salary

CollegeState	
Uttar Pradesh	258549000.0
Karnataka	118815000.0
Tamil Nadu	99760000.0
Telangana	93325000.0
Maharashtra	74860000.0
Andhra Pradesh	69520000.0
Madhya Pradesh	58400000.0
Delhi	56905000.0
Punjab	56525000.0
West Bengal	53690000.0
Haryana	53200000.0
Orissa	52095000.0
Rajasthan	50250000.0
Uttarakhand	33960000.0
Jharkhand	12460000.0
Kerala	9175000.0
Chhattisgarh	7065000.0
Gujarat	6770000.0
Himachal Pradesh	5125000.0
Bihar	2870000.0
Jammu and Kashmir	2775000.0
Assam	2115000.0
Sikkim	1080000.0
Union Territory	930000.0
Meghalaya	830000.0
Goa	450000.0

In [135]:

```
df.pivot_table(index='CollegeState', values='Salary', aggfunc="sum", sort=False).head(30).s
ort values('Salary', ascending=False).plot(kind="bar")
```

Out[135]:

<AxesSubplot:xlabel='CollegeState'>

from Uttar Pradesh State get more salary

Step - 5 - Research Questions

- Times of India article dated Jan 18, 2019 states that "After doing your Computer Science Engineering if you take up jobs as a Programming Analyst, Software Engineer, Hardware Engineer and Associate Engineer you can earn up to 2.5-3 lakhs as a fresh graduate." Test this claim with the data given to you.
- Is there a relationship between gender and specialization? (i.e. Does the preference of Specialisation depend on the Gender?)

In [136]:

df

Out[136]:

	ID	Salary	DOJ	DOL	Designation	JobCity	Gender	DOB	10percentage	10board	 Comput
0	203097	420000.0	2012- 06-01	2024- 02-17	senior quality engineer	Bangalore	f	1990- 02-19	84.30	board ofsecondary education,ap	
1	579905	500000.0	2013- 09-01	2024- 02-17	assistant manager	Indore	m	1989- 10-04	85.40	cbse	
2	810601	325000.0	2014- 06-01	2024- 02-17	systems engineer	Chennai	f	1992- 08-03	85.00	cbse	
3	267447	655000.0	2011- 07-01	2024- 02-17	senior software engineer	Gurgaon	m	1989- 12-05	85.60	cbse	
4	343523	200000.0	2014- 03-01	2015- 03-01	get	Manesar	m	1991- 02-27	78.00	cbse	
3993	47916	280000.0	2011- 10-01	2012- 10-01	software engineer	New Delhi	m	1987- 04-15	52.09	cbse	
3994	752781	100000.0	2013- 07-01	2013- 07-01	technical writer	Hyderabad	f	1992- 08-27	90.00	state board	

```
2DOJ 2DOL associate Designation Software
                                                                      Gender 199B 10percentage
                                                                                                                   ... Comput
3995 355888 320000.0
                               02-17
                                                                               07-03
                                          engineer
                        2014- 2015-
                                          software
                                                                               1992-
3996 947111 200000.0
                                                    Asifabadbanglore
                                                                                              78.72
                                                                                                      state board ...
                        07-01 01-01
                                                                               03-20
                                         developer
                                            senior
                        2013- 2024-
                                                                               1991-
3997 324966 400000.0
                                          systems
                                                             Chennai
                                                                                              70.60
                                                                                                             cbse ...
                        02-01 02-17
                                                                               02-26
                                          engineer
```

3998 rows × 38 columns

In [137]:

df.columns

Out[137]:

1.

In [138]:

df[df['Specialization'] == "computer science & engineering"]

Out[138]:

	ID	Salary	DOJ	DOL	Designation	JobCity	Gender	DOB	10percentage	10board	 ComputerS
6	947847	300000.0		2015- 05-01	java software engineer	Banglore	m	1993- 02-01	86.08	state board	
18	711342	120000.0		2014- 06-01	data entry operator	Gurgaon	m	1992- 12-07	65.00	state board	
24	963123	335000.0		2015- 06-01	programmer analyst	Hyderabad	m	1993- 06-28	88.00	state board	
25	350211	435000.0		2024- 02-17	systems analyst	Gurgaon	f	1991- 03-02	86.80	cbse	
31	1094324	340000.0		2015- 04-01	software engineer	Bangalore	m	1992- 10-23	77.20	state board	
						•••					
3969	1233826	330000.0		2024- 02-17	technical engineer	pune	m	1993- 01-24	76.00	state board	
3975	1240207	300000.0		2015- 04-01	game developer	Noida	m	1991- 06-03	86.00	cbse	
3981	1077872	220000.0		2024- 02-17	software engineer	Gurgaon	m	1991- 12-17	53.40	cbse	
3989	1204604	300000.0		2024- 02-17	software engineer	Bangalore	m	1991- 11-23	74.88	state board	
3996	947111	200000.0		2015- 01-01	software developer	Asifabadbanglore	f	1992- 03-20	78.72	state board	

744 rows × 38 columns

4

```
In [139]:
```

```
df_re=df[df['Specialization']=="computer science & engineering"]
```

In [140]:

```
df_re["Yearr"]=df_re["DOJ"].dt.year
```

 $\verb|C:\Users\mitra\AppData\Local\Temp\ipykernel_10960\536175998.py:1: SettingWithCopyWarning: \\$

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_g uide/indexing.html#returning-a-view-versus-a-copy df_re["Yearr"]=df_re["DOJ"].dt.year

In [141]:

```
dff=df_re[df_re["Yearr"]==df_re["GraduationYear"]]
```

In [142]:

```
dff["Experience"]="Fresher"
```

 $\texttt{C:} \\ \texttt{Users} \\ \texttt{mitra} \\ \texttt{AppData} \\ \texttt{Local} \\ \texttt{Temp} \\ \texttt{ipykernel_10960} \\ \texttt{345134175.py:1:} \\ \texttt{SettingWithCopyWarning:10960} \\$

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_g uide/indexing.html#returning-a-view-versus-a-copy dff["Experience"]="Fresher"

In [143]:

dff

Out[143]:

	ID	Salary	DOJ	DOL	Designation	JobCity	Gender	DOB	10percentage	10board	 ElectricalEr
6	947847	300000.0	2014- 08-01	2015- 05-01	java software engineer	Banglore	m	1993- 02-01	86.08	state board	
24	963123	335000.0	2014- 06-01	2015- 06-01	programmer analyst	Hyderabad	m	1993- 06-28	88.00	state board	
25	350211	435000.0	2012- 09-01	2024- 02-17	systems analyst	Gurgaon	f	1991- 03-02	86.80	cbse	
31	1094324	340000.0		2015- 04-01	software engineer	Bangalore	m	1992- 10-23	77.20	state board	
41	955678	145000.0	2014- 07-01	2014- 09-01	software developer	Delhi	m	1992- 04-21	75.00	cbse	
		•••							•••		
3962	644440	110000.0	2013- 09-01		ui developer	Pondicherry	m	1991- 08-07	84.20	state board	
3969	1233826	330000.0	2015- 06-01	2024- 02-17	technical engineer	pune	m	1993- 01-24	76.00	state board	
3975	1240207	300000.0	2014- 07-01	2015- 04-01	game developer	Noida	m	1991- 06-03	86.00	cbse	
3989	1204604	300000.0	2014- 09-01	2024- 02-17	software engineer	Bangalore	m	1991- 11-23	74.88	state board	
3996	947111	200000.0	2014- 07-01	2015- 01-01	software developer	Asifabadbanglore	f	1992- 03-20	78.72	state board	

```
452 rows × 40 columns
```

PROGRAM ANALYST

```
In [144]:
```

```
dff[dff["Designation"] == "programmer analyst"]
```

Out[144]:

	ID	Salary	DOJ	DOL	Designation	JobCity	Gender	DOB	10percentage	10board		ElectricalEngg 1
24	963123	335000.0	2014- 06-01	2015- 06-01	programmer analyst	Hyderabad	m	1993- 06-28	88.00	state board		-1
834	1111415	310000.0	2014- 08-01		programmer analyst	Bangalore	f	1992- 08-23	85.00	cbse		-1
965	963058	335000.0	2014- 09-01		programmer analyst	Hyderabad	m	1993- 01-06	85.33	state board		-1
1343	913572	305000.0	2014- 07-01		programmer analyst	Coimbatore	m	1992- 08-16	79.40	state board		-1
1390	823528	305000.0	2014- 08-01		programmer analyst	Bangalore	m	1992- 05-18	88.00	cbse		-1
1651	913451	330000.0	2014- 08-01		programmer analyst	Chennai	m	1992- 10-04	86.00	state board		-1
1855	754959	340000.0	2013- 08-01		programmer analyst	-1	m	1991- 07-27	87.60	icse		-1
1868	1113188	300000.0		2024- 02-17	programmer analyst	Pune	f	1991- 09-17	93.30	state board		-1
2077	922684	305000.0	2014- 09-01		programmer analyst	Coimbatore	f	1991- 05-03	92.00	icse		-1
2132	614028	300000.0	2014- 08-01		programmer analyst	Bangalore	m	1993- 02-15	89.40	cbse		-1
2911	1204221	350000.0	2015- 06-01		programmer analyst	Chennai	m	1994- 01-17	84.50	state board		-1
2929	829991	325000.0	2014- 07-01		programmer analyst	Bangalore	m	1991- 08-17	70.00	icse		-1
3429	615310	290000.0	2014- 10-01	2024- 02-17	programmer analyst	Chennai	m	1993- 01-15	70.00	cbse		-1
3880	1233727	300000.0	2015- 06-01		programmer analyst	Gurgaon	m	1994- 06-30	81.00	cbse		-1
14 ro	ws × 40 c	olumns										
.1							00000000000	000000000	000000000000000000000000000000000000000	000000000000	00000	

It proved data from Program Analyst Designation who are graduated recently and also fresher are paid 2.5-3 Lakhs

SOFTWARE ENGINEER

In [145]:

```
dff[dff["Designation"] == "software engineer"]
```

Out[145]:

_		ID	Salary	DOJ	DOL	Designation	JobCity	Gender	DOB	10percentage	10board	ElectricalEngg
	31	1094324	340000.0	2014- 08-01	2015- 04-01	software engineer	Bangalore	m	1992- 10-23	77.20	state board	-1
				2013-	2024-	coftware			1001_			

48	338428 1D	390000.0 Salary	0 00	0 2 024	Designation	Bangalore JobCity	Gender	0 208	10percentage	10board	:::	ElectricalEngg
55	989860	250000.0		2024- 02-17	software engineer	Mangalore	m	1992- 02-13	90.80	state board		-1
115	815219	330000.0	2013- 12-01	2015- 04-01	software engineer	Chennai	m	1992- 01-13	76.17	state board		-1
130	902366	325000.0	2014- 09-01	2024- 02-17	software engineer	Greater Noida	m	1992- 01-10	82.80	cbse		-1
•••												
3795	553645	350000.0	2013- 11-01	2024- 02-17	software engineer	Noida	m	1990- 11-08	70.80	cbse		-1
3818	1089624	240000.0	2014- 02-01	2024- 02-17	software engineer	Mumbai	f	1991- 09-08	73.80	cbse		-1
3881	982135	600000.0		2024- 02-17	software engineer	Bangalore	m	1992- 01-31	80.40	jharkhand acedemic council		-1
3939	716325	100000.0	2013- 07-01	2014- 12-01	software engineer	Hyderabad	m	1992- 07-05	65.00	state board		-1
3989	1204604	300000.0		2024- 02-17	software engineer	Bangalore	m	1991- 11-23	74.88	state board		-1
		_										

82 rows × 40 columns

•

It proved data from Software Engineer Designation who are graduated recently and also fresher are paid 2.5-3 Lakhs

ASSOCIATE ENGINEER

In [146]:

dff[dff["Designation"] == "associate engineer"]

Out[146]:

	ID	Salary	DOJ	DOL	Designation	JobCity	Gender	DOB	10percentage	10board	•••	ElectricalEngg	Tele
819	1068402	350000.0	2014- 04-01	2024- 02-17	associate engineer	Bangalore	m	1993- 06-16	74.83	state board		-1	

1 rows × 40 columns

It proved data from Associate Engineer Designation who are graduated recently and also fresher are paid 2.5-3 Lakhs

HARDWARE ENGINEER

In [147]:

dff[dff["Designation"] == "hardware engineer"]

Out[147]:

ID Salary DOJ DOL Designation JobCity Gender DOB 10percentage 10board ... ElectricalEngg TelecomEngg CivilEn

0 rows × 40 columns

Yes There is a relationship between Gender & Specialization

```
In [148]:
```

```
dfff=df.groupby(['Gender','Specialization','DOJ','GraduationYear'],as_index=False).agg(T
otal_Salary=("Salary","sum")).sort_values(by=['Gender',"Total_Salary"],ascending=False)
```

In [149]:

```
df_summ=df.groupby(['Gender','Specialization'],as_index=False).agg(Total_Salary=("Salary
","sum")).sort_values(by=['Gender',"Total_Salary"],ascending=False)
```

In [150]:

df summ

Out[150]:

	Gender	Specialization	Total_Salary
47	m	electronics and communication engineering	197555000.0
39	m	computer science & engineering	152700000.0
36	m	computer engineering	150875000.0
58	m	information technology	148710000.0
64	m	mechanical engineering	56999000.0
10	f	computer science and technology	320000.0
26	f	telecommunication engineering	300000.0
0	f	aeronautical engineering	180000.0
8	f	computer science	180000.0
4	f	chemical engineering	100000.0

71 rows × 3 columns

In [151]:

```
df_summ[df_summ["Gender"] == "m"]
```

Out[151]:

	Gender	Specialization	Total_Salary
47	m	electronics and communication engineering	197555000.0
39	m	computer science & engineering	152700000.0
36	m	computer engineering	150875000.0
58	m	information technology	148710000.0
64	m	mechanical engineering	56999000.0
35	m	computer application	47720000.0
49	m	electronics and electrical engineering	44915000.0
46	m	electronics & telecommunications	27600000.0
43	m	electrical engineering	17460000.0
22	m	aivil anginaaring	00/E000 0

JJ.	Gender	cıvıı engineering Specialization	Total_Salary
-45	m	electronies & instrumentation eng	7515000.0
50	m	electronics and instrumentation engineering	6705000.0
57	m	information science engineering	5390000.0
51	m	electronics engineering	4250000.0
59	m	instrumentation and control engineering	3775000.0
67	m	other	3465000.0
32	m	chemical engineering	3110000.0
54	m	industrial & production engineering	2960000.0
28	m	applied electronics and instrumentation	2265000.0
70	m	telecommunication engineering	1755000.0
30	m	biotechnology	1590000.0
63	m	mechanical and automation	1545000.0
40	m	computer science and technology	1155000.0
29	m	automobile/automotive engineering	1110000.0
60	m	instrumentation engineering	960000.0
66	m	metallurgical engineering	675000.0
65	m	mechatronics	665000.0
48	m	electronics and computer engineering	660000.0
68	m	polymer technology	655000.0
37	m	computer networking	565000.0
56	m	information science	460000.0
42	m	electrical and power engineering	420000.0
38	m	computer science	400000.0
55	m	industrial engineering	390000.0
61	m	internal combustion engine	360000.0
31	m	ceramic engineering	335000.0
53	m	industrial & management engineering	320000.0
41	m	control and instrumentation engineering	305000.0
27	m	aeronautical engineering	265000.0
52	m	embedded systems technology	200000.0
34	m	computer and communication engineering	120000.0
62	m	mechanical & production engineering	100000.0
69	m	power systems and automation	100000.0
44	m	electronics	40000.0

From Gender Male electronics and communication engineering Specialization have more Salary

```
In [152]:
```

```
df_summ[df_summ["Gender"] == "f"]
```

Out[152]:

Ge	ender	Specialization	Total_Salary
7	f	computer engineering	59545000.0
14	f	electronics and communication engineering	57215000.0
22	f	information technology	49900000.0

9	Gendef	computer science Specijalizatiog	T 475 9 5303 r y
6	f	computer application	15105000.0
15	f	electronics and electrical engineering	8930000.0
13	f	electronics & telecommunications	7920000.0
11	f	electrical engineering	5380000.0
23	f	instrumentation and control engineering	3415000.0
24	f	mechanical engineering	3195000.0
12	f	electronics & instrumentation eng	2505000.0
3	f	biotechnology	2225000.0
21	f	information science engineering	2070000.0
5	f	civil engineering	1845000.0
17	f	electronics engineering	1060000.0
16	f	electronics and instrumentation engineering	1045000.0
18	f	industrial & production engineering	880000.0
20	f	information & communication technology	775000.0
2	f	biomedical engineering	580000.0
1	f	applied electronics and instrumentation	575000.0
19	f	industrial engineering	350000.0
25	f	mechatronics	350000.0
10	f	computer science and technology	320000.0
26	f	telecommunication engineering	300000.0
0	f	aeronautical engineering	180000.0
8	f	computer science	180000.0
4	f	chemical engineering	100000.0

From Gender Female computer engineering engineering Specialization have more Salary

```
In [153]:
```

```
df_fema=dfff[dfff["Gender"]=="f"]
```

In [154]:

df_fema

Out[154]:

G	ender	Specialization	DOJ	GraduationYear	Total_Salary
183	f	computer science & engineering	2014-07-01	2014	4500000.0
180	f	computer science & engineering	2014-06-01	2014	3805000.0
185	f	computer science & engineering	2014-08-01	2014	3695000.0
188	f	computer science & engineering	2014-09-01	2014	3085000.0
454	f	information technology	2014-08-01	2014	2585000.0
67	f	computer engineering	2007-02-01	2012	65000.0
363	f	electronics and electrical engineering	2014-06-01	2014	60000.0
136	f	computer engineering	2014-06-01	2014	50000.0
348	f	electronics and electrical engineering	2012-09-01	2012	50000.0
372	f	electronics and instrumentation engineering	2011-11-01	2010	50000.0

Gender Specialization DOJ GraduationYear Total_Salary
483 rows × 5 columns

```
In [155]:
```

```
df_fema["Yearr"]=df_fema["DOJ"].dt.year

C:\Users\mitra\AppData\Local\Temp\ipykernel_10960\2767113613.py:1: SettingWithCopyWarning
:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_g
uide/indexing.html#returning-a-view-versus-a-copy
   df_fema["Yearr"]=df_fema["DOJ"].dt.year
```

In [156]:

```
df_fema["GraduationYear"] == df_fema["Yearr"]
Out[156]:
183    True
180    True
```

185 True 188 True 454 True . . . 67 False 363 True 136 True 348 True 372 False

Length: 483, dtype: bool

In [157]:

```
df_fema[df_fema["GraduationYear"] == df_fema["Yearr"]]
```

Out[157]:

	Gender	Specialization	DOJ	GraduationYear	Total_Salary	Yearr
183	f	computer science & engineering	2014-07-01	2014	4500000.0	2014
180	f	computer science & engineering	2014-06-01	2014	3805000.0	2014
185	f	computer science & engineering	2014-08-01	2014	3695000.0	2014
188	f	computer science & engineering	2014-09-01	2014	3085000.0	2014
454	f	information technology	2014-08-01	2014	2585000.0	2014
134	f	computer engineering	2014-05-01	2014	85000.0	2014
261	f	electronics and communication engineering	2010-10-01	2010	75000.0	2010
363	f	electronics and electrical engineering	2014-06-01	2014	60000.0	2014
136	f	computer engineering	2014-06-01	2014	50000.0	2014
348	f	electronics and electrical engineering	2012-09-01	2012	50000.0	2012

240 rows × 6 columns

From Female Gender 240 are Freshers

```
In [158]:
```

```
df_fema[df_fema["GraduationYear"]!=df_fema["Yearr"]]
```

	Gender	Specialization	DOJ	GraduationYear	Total_Salary	Yearr
113	f	computer engineering	2013-03-01	2012	2255000.0	2013
309	f	electronics and communication engineering	2014-02-01	2013	2110000.0	2014
89	f	computer engineering	2012-01-01	2011	2010000.0	2012
110	f	computer engineering	2013-01-01	2012	1980000.0	2013
292	f	electronics and communication engineering	2013-04-01	2012	1915000.0	2013
276	f	electronics and communication engineering	2012-06-01	2011	85000.0	2012
375	f	electronics and instrumentation engineering	2014-08-01	2013	85000.0	2014
362	f	electronics and electrical engineering	2014-05-01	2013	80000.0	2014
67	f	computer engineering	2007-02-01	2012	65000.0	2007
372	f	electronics and instrumentation engineering	2011-11-01	2010	50000.0	2011

243 rows × 6 columns

From Female Gender 243 have got job after some year of graduation.

```
In [159]:
```

```
df_mal=dfff[dfff["Gender"]=="m"]
```

In [160]:

 df_{mal}

Out[160]:

	Gender	Specialization	DOJ	GraduationYear	Total_Salary
805	m	computer science & engineering	2014-07-01	2014	11145000.0
802	m	computer science & engineering	2014-06-01	2014	10980000.0
809	m	computer science & engineering	2014-08-01	2014	8850000.0
665	m	computer engineering	2012-07-01	2012	7085000.0
1070	m	electronics and communication engineering	2014-08-01	2014	6765000.0
•••					
610	m	computer application	2014-11-01	2014	60000.0
818	m	computer science & engineering	2014-11-01	2012	60000.0
1460	m	mechanical engineering	2015-05-01	2015	60000.0
1157	m	electronics and electrical engineering	2014-02-01	2012	45000.0
889	m	electronics	2013-10-01	2014	40000.0

1001 rows × 5 columns

```
In [161]:
```

```
df_mal["Yearr"]=df_mal["DOJ"].dt.year

C:\Users\mitra\AppData\Local\Temp\ipykernel_10960\3912209026.py:1: SettingWithCopyWarning
:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_g
uide/indexing.html#returning-a-view-versus-a-copy
    df_mal["Yearr"]=df_mal["DOJ"].dt.year
```

```
In [162]:

df mal
```

Out[162]:

	Gender	Specialization	DOJ	GraduationYear	Total_Salary	Yearr
80	5 m	computer science & engineering	2014-07-01	2014	11145000.0	2014
802	2 m	computer science & engineering	2014-06-01	2014	10980000.0	2014
809	9 m	computer science & engineering	2014-08-01	2014	8850000.0	2014
66	5 m	computer engineering	2012-07-01	2012	7085000.0	2012
1070) m	electronics and communication engineering	2014-08-01	2014	6765000.0	2014
610) m	computer application	2014-11-01	2014	60000.0	2014
818	3 m	computer science & engineering	2014-11-01	2012	60000.0	2014
146) m	mechanical engineering	2015-05-01	2015	60000.0	2015
115	7 m	electronics and electrical engineering	2014-02-01	2012	45000.0	2014
889	9 m	electronics	2013-10-01	2014	40000.0	2013

1001 rows × 6 columns

```
In [163]:
```

```
df_mal[df_mal["GraduationYear"] == df_mal["Yearr"]]
```

Out[163]:

	Gender	Specialization	DOJ	GraduationYear	Total_Salary	Yearr
805	m	computer science & engineering	2014-07-01	2014	11145000.0	2014
802	m	computer science & engineering	2014-06-01	2014	10980000.0	2014
809	m	computer science & engineering	2014-08-01	2014	8850000.0	2014
665	m	computer engineering	2012-07-01	2012	7085000.0	2012
1070	m	electronics and communication engineering	2014-08-01	2014	6765000.0	2014
•••						
1461	m	mechatronics	2012-06-01	2012	100000.0	2012
619	m	computer engineering	2009-06-01	2009	95000.0	2009
912	m	electronics & telecommunications	2010-09-01	2010	95000.0	2010
610	m	computer application	2014-11-01	2014	60000.0	2014
1460	m	mechanical engineering	2015-05-01	2015	60000.0	2015

459 rows × 6 columns

From Male Gender 459 are Freshers

```
In [164]:
```

```
df_mal[df_mal["GraduationYear"]!=df_mal["Yearr"]]
```

Out[164]:

	Gender	Specialization	DOJ	GraduationYear	Total_Salary	Yearr
788	m	computer science & engineering	2014-02-01	2013	6570000.0	2014
1048	m	electronics and communication engineering	2014-02-01	2013	6415000.0	2014
1051	m	electronics and communication engineering	2014-03-01	2013	6380000.0	2014

684	Gender m	Specialization computer engineering	2013-03-01	GraduationYear 2012	Total Salary 5980000.0	Yearr 2013
1044	m	electronics and communication engineering	2014-01-01	2013	5715000.0	2014
565	m	computer application	2012-08-01	2011	85000.0	2012
968	m	electronics and communication engineering	2010-10-01	2014	80000.0	2010
818	m	computer science & engineering	2014-11-01	2012	60000.0	2014
1157	m	electronics and electrical engineering	2014-02-01	2012	45000.0	2014
889	m	electronics	2013-10-01	2014	40000.0	2013

542 rows × 6 columns

From Male Gender 542 have got job after some year of graduation

In []:			
In []:			