Lab 1A - Sequence Generator

Implementation LAB 1A

Deliverables:

1. Sequence generator:

- Design and implement a sequence generator to generate a sequence which has a minimum of 10 different states: 0, 11, 14, 5, 4, 15, 12, 9, 2,13, 0, 11, ...
- Ensure that all invalid stages of the machine clear it (set it too state zero.)
- Make sure you have zero in your sequence.

Sequence generator

The sequence : 0, 11, 14, 5, 4, 15, 12, 9, 2,13, 0, 11, ...

Design the circuit using D flip-flop and MUX.

PS	D	С	В	Α	NS	QD	QC	QB	QA
	MSB			LSB					
0	0	0	0	0	11	1	0	1	1
1	0	0	0	1		0	0	0	0
2	0	0	1	0	13	1	1	0	1
3	0	0	1	1		0	0	0	0
4	0	1	0	0	15	1	1	1	1
5	0	1	0	1	4	0	1	0	0
6	0	1	1	0		0	0	0	0
7	0	1	1	1		0	0	0	0
8	1	0	0	0		0	0	0	0
9	1	0	0	1	2	0	0	1	0
10	1	0	1	0		0	0	0	0
11	1	0	1	1	14	1	1	1	0
12	1	1	0	0	9	1	0	0	1
13	1	1	0	1	0	0	0	0	0
14	1	1	1	0	5	0	1	0	1
15	1	1	1	1	12	1	1	0	0

MUX Design

PS	D MSB	С	В	A LSB	NS	QD	QC	QB	QA
0	0	0	0	0	11	1	0	1	1
1	0	0	0	1		0	0	0	0
2	0	0	1	0	13	1	1	0	1
3	0	0	1	1		0	0	0	0
4	0	1	0	0	15	1	1	1	1
5	0	1	0	1	4	0	1	0	0
6	0	1	1	0		0	0	0	0
7	0	1	1	1		0	0	0	0
8	1	0	0	0		0	0	0	0
9	1	0	0	1	2	0	0	1	0
10	1	0	1	0		0	0	0	0
11	1	0	1	1	14	1	1	1	0
12	1	1	0	0	9	1	0	0	1
13	1	1	0	1	0	0	0	0	0
14	1	1	1	0	5	0	1	0	1
15	1	1	1	1	12	1	1	0	0

- 4 D- Flip Flops
- Use Mux to derive the input of each flip flops.
- Use CBA as the select for MUX

Circuit Diagram

0

Sequence Generator

ICs

- ➤ 7474 Dual Positive Edge Triggered D-FF
 ➤ Vcc to PR and CLR Pin
- > 74151 8:1 Mux.
 - ➤ Gnd to Strobe Pin

7474

FUNCTION TABLE

	INPUT	OUTPUTS			
PRE	CLR	CLK	D	α	₫
L	Н	×	×	Н	Ļ
н	L	Х	Х	L	Η.
L	L	X	Х	H [†]	нt
н	Н	t	н	Н	L
н	Н	t	L	L	н
н	Н	L	х	Q ₀ .	\overline{a}_0