

6.5MHz, Rail-to-Rail I/O CMOS Operational Amplifier

FEATURES

- HIGH GAIN BANDWIDTH:6.5MHz
- RAIL-TO-RAIL INPUT AND OUTPUT 0.8mV Typical Vos
- INPUT VOLTAGE RANGE: -0.1V to +5.6V with Vs = 5.5V
- SUPPLY RANGE: +2.5V to +5.5V
- SPECIFIED UP TO +125°C

APPLICATIONS

- SENSORS
- PHOTODIODE AMPLIFICATION
- ACTIVE FILTERS
- TEST EQUIPMENT
- DRIVING A/D CONVERTERS

DESCRIPTION

The OK06 offer low voltage operation and rail-to-rail input and output, as well as excellent speed/power consumption ratio, providing an excellent bandwidth (6.5MHz) and slew rate of 3.7V/us. The op-amps are unity gain stable and feature an ultra-low input bias current.

The devices are ideal for sensor interfaces, active filters and portable applications. The OK06 operational amplifier are specified at the full temperature range of -40°C to +125°C under single or dual power supplies of 2.5V to 5.5V.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE(NOM)	
OK06	SOIC-8(SOP8)	4.90mm×3.90mm	

Pin Configuration and Functions (Top View)

Pin Description

	PIN		
NAME	OK06	I/O	DESCRIPTION
	SOIC-8(SOP8)		
-INA	2	I	Inverting input, channel A
+INA	3	I	Noninverting input, channel A
-INB	6	I	Inverting input, channel B
+INB	5	I	Noninverting input, channel B
OUTA	1	0	Output, channel A
OUTB	7	0	Output, channel B
V-	4	-	Negative (lowest) power supply
V+	8	-	Positive (highest) power supply

SPECIFICATIONS

Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
	Supply, Vs=(V+) - (V-)		7	
Voltage	Signal input pin (2)	(V-)-0.5	(V+) +0.5	V
	Signal output pin (3)	(V-)-0.5	(V+) +0.5	
	Signal input pin (2)	-10	10	mA
Current	Signal output pin (3)	-55	55	mA
	Output short-circuit (4)	Conti	nuous	
	Operating range, T _A	-40	125	
Temperature	Junction, T _J		150	°C
	Storage, T _{stg}	-65	150	

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

ESD Ratings

			VALUE	UNIT
V/(EQD)	Electrostatic discharge	Human-body model (HBM)	±5000	W
V (ESD)	V _(ESD) Electrostatic discharge	Machine Model (MM)	±400	V

Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
Supply voltage , Vs= (V+) - (V-)	Single-supply	2.5		5.5	V
	Dual-supply	±1.25		±2.75	V

Thermal Information: OK06

		OK06	
	THERMAL METRIC (1)	8PINS	UNIT
		SOIC-8(SOP8)	
Reja	Junction-to-ambient thermal resistance	116	°C/W
RejC(top)	Junction-to-case(top) thermal resistance	60	°C/W
R _{ӨЈВ}	Junction-to-board thermal resistance	56	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	12.8	°C/W
ΨЈВ	Junction-to-board characterization parameter	98.3	°C/W
R _{OJC(bot)}	Junction-to-case(bottom) thermal resistance	N/A	°C/W

⁽²⁾ Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less.

⁽³⁾ Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.5V beyond the supply rails should be current-limited to $\pm 55 mA$ or less.

⁽⁴⁾ Short-circuit to ground, one amplifier per package.

PACKAGE/ORDERING INFORMATION

Orderable Device	Package Type	Pin	Channel	Op Temp(°C)	Device Marking ⁽¹⁾	Package Qty
OK06XK	SOIC-8(SOP8)	8	2	-40°C~125°C	OK06	Tape and Reel,4000

NOTE:

(1) There may be additional marking, which relates to the lot trace code information(data code and vendor code), the logo or the environmental category on the device.

ELECTRICAL CHARACTERISTICS

(At T_A = +25°C, Vs=5V, R_L = 10k Ω connected to Vs/2, and VouT = Vs/2, unless otherwise noted.)

	PARAMETER	CONDITIONS	т -	OK06			UNITS
	PARAMETER	CONDITIONS	TJ	MIN	TYP	MAX	UNITS
POWER	R SUPPLY						
Vs	Operating Voltage Range		25°C	2.5		5.5	V
IQ	Quiescent Current/Amplifier		25°C		590	820	uA
DCDD	Power-Supply Rejection Ratio	Vs=2.5V to 5.5V,	25°C	75	94		٩D
PSRR	Power-Supply Rejection Ratio	V _{CM} =(V-)+0.5V	-40°C to 125°C	72			dB
INPUT							
Vos	Input Offset Voltage	V _{CM} = V _S /2	25°C	-3	±0.8	3	mV
Vos Tc	Input Offset Voltage Average Drift	-40°C to125°C			2		uV/°C
IB	Input Bias Current		25°C		1	10	pA
los	Input Offset Current		25°C		1	10	pA
V _{CM}	Common-Mode Voltage Range	Vs= 5.5V	25°C	-0.1		5.6	V
		Vs= 5.5V, V _{CM}	25°C	74	92		- dB
CMRR Common-	Common-Mode Rejection Ratio	=-0.1V to 4V	-40°C to 125°C	68			
	Common-wode Rejection Ratio	Vs= 5.5V, V _{CM} =-0.1V to 5.6V	25°C	62	83		
			-40°C to 125°C	60			
OUTPU	T						
		R _L =2KΩ, Vo=	25°C	95	100		
۸ ۵۱	Once Loon Voltage Cain	0.15V to 4.85V	-40°C to 125°C	83			dB
AOL	Open-Loop Voltage Gain	$R_L=10K\Omega$, $Vo=$	25°C	98	106		
		0.05V to 4.95V	-40°C to 125°C	85			
	Output Swing From Boil	R _L =2KΩ	25°C		40		mV
	Output Swing From Rail	R _L =10KΩ	25°C		7		IIIV
lout	Output Current Source		25°C		50		mA
FREQU	ENCY RESPONSE						
SR	Slew Rate		25°C		3.7		V/us
GBP	Gain-Bandwidth Product		25°C		6.5		MHz
PM	Phase Margin		25°C		63		٥
ts	Setting Time,0.1%		25°C		0.5		us
	Overload Recovery Time	V _{IN} ·Gain≥V _S	25°C		0.5		us
NOISE							
	1 (V/) N : 5 %	f = 1KHz	25°C		12		nV/√Hz
en	Input Voltage Noise Density	f = 10KHz	25°C		8		nV/√Hz
		_I	1			1	

TYPICAL CHARACTERISTICS

At $T_A = +25$ °C, $V_S=5V$, $R_L = 10k\Omega$ connected to $V_S/2$, $V_{OUT} = V_S/2$, unless otherwise noted.

TYPICAL CHARACTERISTICS

At T_A = +25°C, Vs=5V, R_L = 10k Ω connected to Vs/2, V_{OUT} = Vs/2, unless otherwise noted.

TYPICAL CHARACTERISTICS

At $T_A = +25$ °C, $V_S=5V$, $R_L = 10k\Omega$ connected to $V_S/2$, $V_{OUT} = V_S/2$, unless otherwise noted.

APPLICATION NOTES

The OK06 is high precision, rail-to-rail operational amplifiers that can be run from a single-supply voltage 2.5V to 5.5V (±1.25V to ±2.75V). Supply voltages higher than 7V (absolute maximum) can permanently damage the amplifier.

Rail-to-rail input and output swing significantly increases dynamic range, especially in low-supply applications.

Good layout practice mandates use of a 0.1uF capacitor place closely across the supply pins.

LAYOUT GUIDELINS

Attention to good layout practices is always recommended. Keep traces short. When possible, use a PCB ground plane with surface-mount components placed as close to the device pins as possible. Place a 0.1uF capacitor closely across the supply pins.

These guidelines should be applied throughout the analog circuit to improve performance and provide benefits such as reducing the EMI susceptibility.

Figure 1. Amplifier with Bypass Capacitors

INSTRUMENTATION AMPLIFIER

In the three-op amp, instrumentation amplifier configuration shown in Figure 2,

Figure 2. Amplifier instrumentation amplifier

PACKAGE OUTLINE DIMENSIONS SOIC-8(SOP8)

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.800	5.000	0.189	0.197	
е	1.270(BSC)		0.050(BSC)		
Е	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	