Movimiento Browniano

Ejercicios entregables - Lista 5

Lucio Santi lsanti@dc.uba.ar

4 de junio de 2017

Ejercicio. Sean X_1, X_2, \ldots variables aleatorias i.i.d. con distribución F y sea

$$\hat{F}_n(x) = \#\{m \le n : X_m \le x\}$$

El objetivo de este ejercicio es probar que

$$D_n(x) = \sqrt{n}(\hat{F}_n(x) - F(x))$$

converge en distribución al puente browniano.

- a. Observar que, por la Ley de los Grandes Números, $|\hat{F}_n(x) F(x)| \to 0$ para todo 0 < x < 1.
- b. Utilizando la transformación $Y_k = F(X_k)$ mostrar que basta considerar el caso en que F es la distribución uniforme en (0,1).
- c. Sean Y_1,Y_2,\ldots i.i.d. $\mathcal{U}(0,1)$ y $Y_{(1)}< Y_{(2)}<\ldots$ la muestra ordenada. Sean W_1,W_2,\ldots i.i.d. $\mathcal{E}(1)$ y $Z_n=W_1+\cdots+W_n$. Probar que $(Y_{(1)},\ldots,Y_{(n)})$ y $(Z_1/Z_{n+1},\ldots,Z_n/Z_{n+1})$ tienen la misma distribución. Sugerencia: hallar la densidad de $(Y_{(1)},\ldots,Y_{(n)})$ y de $r(Z_1,\ldots,Z_{n+1})$, donde

$$r(z_1,\ldots,z_{n+1})=(z_1/z_{n+1},\ldots,z_n/z_{n+1},z_{n+1})$$

d. Sea $\tilde{D}_{k,n} = \sqrt{n}(Z_k/Z_{n+1} - k/n)$ y extender al [0,1] interpolando linealmente. Probar que

$$\|\tilde{D}_n - D_n\|_{\infty} \to 0$$

en probabilidad cuando $n \to \infty$.

e. Sea $S_n = S_n(W_1 - 1, ..., W_n - 1)$ y S_n^* definidos como en la clase. Mostrar que

$$\tilde{D}_n(x) = \frac{n}{Z_{n+1}} \left(S_n^*(x) - x \left[S_n^*(1) + \frac{Z_{n+1} - Z_n}{\sqrt{n}} \right] \right)$$

- f. Probar que $Z_{n+1}/n \to 1$ y $(Z_{n+1}-Z_n)/\sqrt{n} \to 0$ en probabilidad.
- g. Asumir (o probar) que el Teorema de Slutsky vale también para sucesiones de variables aleatorias a valores en espacios métricos.
- h. Probar que los procesos $(D_n(x), 0 \le x \le 1)_{n \ge 1}$ convergen al proceso $(W(t), 0 \le t \le 1)$ dado por W(t) = B(t) tB(1), denominado puente browniano (B es un movimiento browniano).

Resolución.

d)