МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

Отчет

по Заданию 1

на тему «Преобразование аналогового сигнала в цифровой сигнал»

Дисциплина: СиСПИ

Группа: 21ПИ1

Выполнил: Карамышев И. А.

Количество баллов:

Дата сдачи:

Принял: Иванов А. П.

1 Цель работы: изучение преобразования аналогового сигнала в цифровой сигнал.

2 Задание. Осуществить преобразование аналогового сигнала, приведенного на рисунке 1 в цифровую кодовую последовательность. Определить шумы квантования. Результаты привести на временной диаграмме и в таблице по шаблону таблицы 1. Вид аналогового сигнала, его максимальную амплитуду и частотный диапазон взять из таблицы 2 в соответствии с вариантом.

Рисунок 1 — Вариант задания (сигнал)

3 Выполнение работы.

3.1 В соответсвии с рисунком и 1 вариантом задания были определены:

- $U_{MAX} = 2 B$ и U_{MIN} : -2 B;
- в соотвествии с заданием $U_{O\Gamma P} = U_{MAX} = 2 B$;
- в соотвествии с вариантом 1 f_{MIN} = 0,3 к Γ ц и f_{MAX} = 3 к Γ ц;
- в соответсвии с заданием $\Delta_{\text{илоп}} = 0.25 \text{ B}$;

Было расчитано минимальное число уровней квантования N_{MIN} по формуле $(U_{MAX}-U_{MIN})/\Delta_{u_{JOI}}$. $N_{MIN}=4$ / 0.25=16

Было определено число уровней N_{KB} из условия $N_{\text{KB}} > N_{\text{MIN}}$. $N_{\text{KB}} = 32$.

Было определено количество разрядов n в коде. $n = log_2 32 = 5$ бит.

Было расчитан шаг квантования по формуле $\,\delta = U_{\text{огр}}/2^{\text{n}} = 2/2^{\text{5}} = 0,0625\,\,\text{B}.$

Была рассчитана частота дискретизации в соотвествии с теоремой Котельникова (любой непрерывный сигнал, ограниченный по спектру верхней частотой FB, полностью определяется последовательностью своих дискретных отсчетов, взятых через промежуток времени $T_{\pi} \leq 1/2F_B$) должна удовлетворять условию $F_{\pi} \geq 2F_B$). $F_{\pi} = F_{MAX} * 2 = 6 \ \kappa \Gamma \mu$

3.2 При частоте дескритизации 6 кГц длина одного отсчета будет равна 1000~мc / $6000~\text{гц}=0.17\text{мc} \to \text{количесвто}$ отсчетов за 1мc будет равно 1мc / $0.17\text{мc} \approx 6$ отсчетов, для 6мс количество отсчетов равняется 36. Было определено Ubx(t), Ukb(t), Δ KB(t) и N. Результат представлен в таблице 1.

Таблица 1 — Результаты измерений

Отсчет сигнала	UBX(t), B	UKB(t),B	ΔKB(t)	N	Двоичный код
1	0,50	0,50	0,00	8	01000
2	0,97	1,00	-0,03	16	10000
3	1,37	1,38	0,00	22	10110
4	1,64	1,69	-0,04	27	11011
5	1,83	1,88	-0,05	30	11110
6	1,85	1,88	-0,02	30	11110
7	1,77	1,81	-0,05	29	11101
8	1,57	1,63	-0,06	26	11010
9	1,26	1,31	-0,05	21	10101
10	0,92	0,94	-0,01	15	01111
11	0,57	0,63	-0,06	10	01010
12	0,23	0,25	-0,02	4	00100
13	0,05	0,06	-0,02	1	00001
14	0,25	0,31	-0,06	5	00101
15	0,36	0,38	-0,02	6	00110
16	0,36	0,38	-0,02	6	00110
17	0,27	0,31	-0,04	5	00101
18	0,13	0,19	-0,05	3	00011
19	0,04	0,06	-0,02	1	00001
20	0,21	0,25	-0,04	4	00100
21	0,34	0,38	-0,04	6	00110
22	0,41	0,44	-0,03	7	00111
23	0,38	0,44	-0,06	7	00111
24	0,27	0,31	-0,04	5	00101
25	0,08	0,13	-0,04	2	00010
26	0,21	0,25	-0,04	4	00100
27	0,53	0,56	-0,03	9	01001

28	0,90	0,94	-0,04	15	01111
29	1,25	1,25	0,00	20	10100
30	1,54	1,56	-0,02	25	11001
31	1,75	1,81	-0,06	29	11101
32	1,83	1,88	-0,05	30	11110
33	1,76	1,81	-0,05	29	11101
34	1,56	1,56	-0,01	25	11001
35	1,25	1,31	-0,06	21	10101
36	0,86	0,88	-0,02	14	01110

3.3~ В соответствии с вариантом задания кодовая последовательность была записана с помощью NRZ. Результат приведен на рисунке 2-6.

Рисунок 2 — Коды с 1 по 8

Рисунок 3 — Коды с 9 по 16

Рисунок 4 — Коды с 17 по 24

Рисунок 5 — Коды с 25 по 32

Рисунок 6 — Коды с 33 по 36

4 Вывод: было изучено преобразование аналогового сигнала в цифровой сигнал.