ESO204A: Fluid Mechanics and Rate Processes TUTORIAL 4 PROBLEMS

August-November 2017

1. Review of Tutorial 3

2. An incompressible fluid flows past an impermeable flat plate, as in Fig. P3.16, with a uniform inlet profile $u = U_0$ and a cubic polynomial exit profile

$$u \approx U_0 \left(\frac{3\eta - \eta^3}{2} \right)$$
 where $\eta = \frac{y}{\delta}$

Compute the volume flow Q across the top surface of the control volume.

3. Incompressible steady flow in the inlet between parallel plates in Fig. P3.17 is uniform, $u = U_0 = 8 \text{ cm/s}$, while downstream the flow develops into the parabolic laminar profile $u = az(z_0 - z)$, where a is a constant. If $z_0 = 4 \text{ cm}$ and the fluid is SAE 30 oil at 20°C, what is the value of u_{max} in cm/s?

4. The water jet in Fig. P3.40 strikes normal to a fixed plate. Neglect gravity and friction, and compute the force *F* in newtons required to hold the plate fixed.

5. When a uniform stream flows past an immersed thick cylinder, a broad low-velocity wake is created downstream, idealized as a V shape in Fig. P3.44. Pressures p_1 and p_2 are approximately equal. If the flow is two-dimensional and incompressible, with width b into the paper, derive a formula for the drag force F on the cylinder. Rewrite your result in the form of a dimensionless drag coefficient based on the body length $C_D = F / (\rho U^2 bL)$.

