Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию N_06

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант 9 / 4 / 2

Выполнил: студент 105 группы Арефьев В. А.

> Преподаватель: Смирнов А. В.

Содержание

Постановка задачи	2
Математическое обоснование	3
Результаты экспериментов	6
Структура программы и спецификация функций	7
Сборка программы (Маке-файл)	8
Отладка программы, тестирование функций	9
Программа на Си и на Ассемблере	10
Анализ допущенных ошибок	11
Список цитируемой литературы	12

Постановка задачи

Необходимо было с заданной точностью ε вычислить площадь плоской фигуры, ограниченной тремя кривыми, уравнения которых $y=f1(x),\,y=f2(x)$ и y=f3(x) были заданы вариантом задания.

Для решения этой задачи было сделано:

- ullet написан комбинированный метод (хорд и касательных) нахождения корня уравнения F(x)=0
- протестирован выше указанный метод
- написан метод трапеции для вычисления определённого интеграла
- протестирован выше указанный метод
- написаны на ассемблере функции получения значений функций и их производный в нужной точке
- написан Makefile для автоматической компиляции, линковки программы и удаления объектных файлов

Математическое обоснование

По условию нам даны следующие функции:

•
$$f1(x) = \frac{3}{(x-1)^2+1}$$

•
$$f2(x) = \sqrt{x + 0.5}$$

•
$$f3(x) = e^{-x}$$

Их производные соответственно равны:

•
$$f1'(x) = \frac{6*(1-x)}{((x-1)^2+1)^2}$$

•
$$f2'(x) = \frac{1}{2} * (x + 0.5)^{\frac{-1}{2}}$$

•
$$f3'(x) = -e^{-x}$$

Их вторые производные соответственно равны:

•
$$f1''(x) = \frac{24*(x-1)^2}{((x-1)^2+1)^3} - \frac{6}{((x-1)^2+1)^2}$$

•
$$f2''(x) = -\frac{1}{4} * (x + 0.5)^{\frac{-3}{2}}$$

•
$$f3''(x) = e^{-x}$$

Для нахождения точек перечения комбинированным методом (хорд и касательных) на отрезке [a,b], функция F(x) = f(x) - g(x) должна иметь F'(x), которая должна быть монотонной, непрерывной и сохраняющей знак на [a,b].

Нарисовав эскизный график, я определил, что нам нужно вычислить точки пересечений графиков f1 и f2, f1 и f3, f2 и f3.

Получаем несколько уравнений:

•
$$F1(x) = f1(x) - f2(x)$$

•
$$F2(x) = f1(x) - f3(x)$$

•
$$F3(x) = f2(x) - f3(x)$$

Воспользуемся формулой F'(x) = f'(x) - g'(x)

•
$$F1'(x) = f1'(x) - f2'(x) = \frac{6*(1-x)}{((x-1)^2+1)^2} - \frac{1}{2}*(x+0.5)^{\frac{-1}{2}}$$

•
$$F2'(x) = f1'(x) - f3'(x) = \frac{6*(1-x)}{((x-1)^2+1)^2} + e^{-x}$$

•
$$F3'(x) = f2'(x) - f3'(x) = \frac{1}{2} * (x + 0.5)^{\frac{-1}{2}} + e^{-x}$$

•
$$F1''(x) = f1''(x) - f2''(x) = \frac{24*(x-1)^2}{((x-1)^2+1)^3} - \frac{6}{((x-1)^2+1)^2} + \frac{1}{4}*(x+0.5)^{\frac{-3}{2}}$$

•
$$F2''(x) = f1''(x) - f3''(x) = \frac{24*(x-1)^2}{((x-1)^2+1)^3} - \frac{6}{((x-1)^2+1)^2} - e^{-x}$$

•
$$F3''(x) = f2''(x) - f3''(x) = -\frac{1}{4} * (x+0.5)^{\frac{-3}{2}} - e^{-x}$$

Решим уравнения F1'(x) = 0, F2'(x) = 0, F3'(x) = 0, F1''(x) = 0, F2''(x) = 0, F3''(x) = 0. Для монотонности F'(x) достаточно, чтобы F''(x) не изменяла свой знак, т.е. не проходила через 0(не достаточное условие, а необходимое, т.е. полученные точки нужно будет дополнительно проверить). А для проверки знакосохранение F'(x) рассмотрим все моменты, когда F'(x) = 0, т.е. где F'(x) может изменить знак.

Получили, что:

- F1'(x) изменяет свой знак в точках, принадлежащих интервалам [-0.290;-0.289] и [0.928;0.930].
- F2''(x) изменяет свой знак в точке, принадлежащей интервалу [1.055;1.060].
- F3'(x) всегда положительна, т.е. не изменяется свой знак.
- F1''(x) изменяет свой знак в точках, принадлежащих интервалам [0.450;0.455] и [1.567;1.568]
- F2''(x) изменяет свой знак в точках, принадлежащих интервалам [-0.265;-0.260], [0.322;0.324] и [1600;1602]
- F3''(x) всегда отрицательна, т.е. не изменяется свой знак.

На каждом из вышеперечисленных интервалов присутствует ровно одна такая точка.

Ввиду того, что функция f2(x) отпеределена только на интервале $[-0.5,+\infty]$, то функции F1(x), F3(x) тоже определены только на этом интервале. Вышеперечисленные интервалы не должны включаться в интервал [a,b] для каждой функции F(x) по требованиям используемых методов вычислений. Исходя из эскиза графика(рис. 1) и наложенных ограничений выберем для каждой функции интервал:

- для F1(x) [1.6; 20]
- для F2(x) [-0.25;0.3]
- для F3(x) [-0.45;4] (важное зачечание, мы не можем в качестве левой границы взять -0.5, т.к. в этой точке производная равна 0)

При использовании комбинированного метода приближение к точке идёт сразу с двух стороне [1], т.е. когда разница между левом и правой точкой становится $<\varepsilon=0.001$, мы находимся на нужном интервале и можно брать любую его точку, например, $\frac{a+b}{2}$. Но из-за того, что данные точки будут использоваться для вычисления интеграла нам нужно взять $\varepsilon_1=\varepsilon^2$:

Значение ε_2 можно выбирать равным $\varepsilon*0.1$, т.к. благодаря правилу Рунге [2] вычисление требуемого числа разбиений интервала для достичение нужной точности происходит автоматически.

Введём обозначения для точек пересечения графиков p1 для f1 и f3, p2 для f2 и f3 и p3 для f1 и f2.

Рис. 1: Эскиз плоской фигуры, ограниченной графиками заданных уравнений

Исходя из эскиза графика и найденных точек можно написать следующие равенства:

$$\int_{p1}^{p3} f1(x) dx = S + S_1 + S_2 + S_3$$

$$\int_{p1}^{p3} f2(x) dx = S_2 + S_3$$

$$\int_{p1}^{p3} f3(x) dx = S_1 + S_3$$

$$\int_{p1}^{p2} f2(x) dx + \int_{p2}^{p3} f3(x) dx = S_3$$

Из данных равенств можно найти требуемую площадь по формуле:

$$S = \int_{p_1}^{p_3} f1(x) \, dx - \int_{p_1}^{p_3} f3(x) \, dx - \int_{p_1}^{p_3} f2(x) \, dx + \int_{p_1}^{p_2} f2(x) \, dx + \int_{p_2}^{p_3} f3(x) \, dx$$

Результаты экспериментов

Координаты точек пересечения можно увидеть в таблице (Таблица 1) и площадь полученной фигуры S равна 2.338597.

Кривые	x	y
1 и 2	-0.20333	1.56721
2 и 3	0.187411	0.82910
1 и 3	-0.203334	1.22548

Таблица 1: Координаты точек пересечения

Итоговый график можно увидеть на рисунке. (рис. 2).

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

В func.asm присутствуют функции вычисления значений функций и их производных в нужных точках. На вход подаётся x, а на выходе получается f(x)или f'(x) В main.c реализована вся основная логика программы.

 $double\ root(double\ (*f)(double),\ double\ (*g)(double),\ double\ a,\ double\ b,\ double\ eps,$ $double\ (*fdiv)(double),\ double(*gdiv)(double))$ - функция, вычисляющая общую точку графиков функций f() и g() на интервале [a,b] с заданной точностью eps

 $double\ integral(double\ (*f)(double),\ double\ a,\ double\ b,\ double\ eps)$ - функцию, вычисляющая интеграл методом трапеций с заданной точностью, использую правило Рунге

double $nintegral(double\ (*f)(double),\ double\ a,\ double\ b,\ int\ n)$ - функцию, вычисляющая интеграл методом трапеция разбивая [a,b] на n частей

Единсвенная зависимость main.c(кроме стандартных библиотек) - это функции для вычисления значений функции и их производных в точке.

f1(x) f2(x) f3(x) f1div(x) f2div(x) f3div(x).

Данные функции реализовы в func.asm

Сборка программы (Маке-файл)

Для сборки программы необходыми два объектных файла main.o и func.o, которые при помощи gcc линкуются. Компиляция main.o из main.c осуществляется с помощью gcc, а компиляция func.o из func.asm осуществляется с помощью nasm. Так же присутствует инструкция cleanup, которая выполняется после успешной компиляции для удаления объектных файлов.

Отладка программы, тестирование функций

Сначала проводилось тестирование метода нахождения точек пересечения графиков. ε_1 =0.000001

1)
$$f_1(x) = x + 2$$
 $f'_1(x) = 1$ $f_2(x) = -x^2 + 4$ $f'_2(x) = -2 * x$

Решая уравнение $x^2+x-2=0$ на интервале [0.1;100] можно найти корень x=1 Программа сделала 9 итераций.

2)
$$f_1(x) = x - 3$$
 $f'_1(x) = 1$ $f_2(x) = -x^3 + 7$ $f'_2(x) = -3 * x^2$

Решая уравнение $x^3 + x = 10$ на интервале [0.5;5] можно найти корень x = 2 Программа сделала 5 итераций.

3)
$$f_1(x) = x^2$$
 $f'_1(x) = 2x$ $f_2(x) = -x^2 + 8$ $f'_2(x) = -2x$

Решая уравнение $2x^2=8$ на интервале [0.1;100] можно найти корень x=2. Программа сделала 9 итераций.

После проводилось тестирование метода нахождения определённого интеграла. $\varepsilon_2{=}0.0001$

$$\int_{0}^{2} -\frac{x^{2}}{2} + 4 dx = \left(-\frac{x^{3}}{6} + 4x \right) \Big|_{x=0}^{2} = -\frac{8}{6} + 8 = \frac{20}{3}$$

Ответ программы: "Integral = 6.6666651"

2)

$$\int_{-2}^{3} -\frac{x+3}{2} + 4 \, dx = \frac{1+6}{2} * 5 = 17.5$$

Ответ программы: "Integral = 17.500000000"

3)

$$\int_{-4}^{2} \frac{x^3}{2} + 2x^2 + 3 \, dx = \left(\frac{x^4}{8} + \frac{2x^3}{3} + 3x\right)\Big|_{x=-4}^{2} = 2 + \frac{2^4}{3} + 6 - \left(2^5 - \frac{2^7}{3} - 12\right) = -12 + \frac{144}{3} = 48 - 12 = 36$$

Ответ программы: "Integral = 36.00000429"

Программа на Си и на Ассемблере

Весь исходный код(си код и ассемблерный код), находится в приложенном архиве. Если вы это читаете, то значит, что вы ввели пароль 123.

Анализ допущенных ошибок

Серьёзных ошибок при написании программы допущено не было, обычно компилятор сразу выявлял опечатки.

Список литературы

- [1] Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Т. 1 Москва: Наука, 1985.
- [2] Трифонов Н.П., Пильщиков В.Н. Задания практикума на ЭВМ (1 курс) http://arch32.cs.msu.su/semestr2/%D2%F0%E8%F4%EE%ED%EE%E2%20%CD.%CF.%2C%20%CF%E8%EB%FC%F9%E8%EA%EE%E2%20%C2. %CD.%20%C7%E0%E4%E0%ED%E8%FF%20%EF%F0%E0%EA%F2%E8%EA%F3%EC%E0%20%ED%E0%20%DD%C2%CC%2C2001.pdf