

Introdução Arquitetura de Computadores

Bruno Prado

Departamento de Computação / UFS

- ► O que é um computador?
 - Sistema natural ou artificial que é capaz de resolver problemas dinamicamente

- ▶ O que é um computador?
 - Sistema natural ou artificial que é capaz de resolver problemas dinamicamente
 - ► Atende a um conjunto de regras

- O que é um computador?
 - Sistema natural ou artificial que é capaz de resolver problemas dinamicamente
 - Atende a um conjunto de regras
 - Executa um conjunto de passos ou algoritmo

- Período de 1642 a 1945
 - Blaise Pascal
 - Criou a primeira máquina de calcular (1642)
 - Utilizava engrenagens e era movida por manivela
 - Operações de soma e subtração

- Período de 1642 a 1945
 - Blaise Pascal
 - Criou a primeira máquina de calcular (1642)
 - Utilizava engrenagens e era movida por manivela
 - Operações de soma e subtração
 - Baron Gottfried Wilhelm von Leibniz
 - Aprimorou a máquina para realizar operações de multiplicação e divisão (1646 - 1716)

- Período de 1642 a 1945
 - Blaise Pascal
 - Criou a primeira máquina de calcular (1642)
 - Utilizava engrenagens e era movida por manivela
 - Operações de soma e subtração
 - Baron Gottfried Wilhelm von Leibniz
 - Aprimorou a máquina para realizar operações de multiplicação e divisão (1646 - 1716)
 - Charles Babbage
 - Construiu uma máquina mecânica capaz de executar algoritmos de propósito geral (1792 - 1871)
 - Programação em cartões perfurados

- Período de 1945 a 1956
 - Universal Automatic Computer (UNIVAC)
 - Programas em cartões perfurados
 - ► Tecnologia de válvulas eletrônicas

- Válvulas eletrônicas
 - Gás de alta ou baixa pressão
 - ► Funcionamento mecânico (aquecimento)

- ► UNIVAC
 - ► Painel de controle

- Período de 1956 a 1964
 - Busca de redução de custos
 - Maior necessidade de armazenamento e robustez
 - Entradas e saídas grandes

- Período de 1956 a 1964
 - Busca de redução de custos
 - Maior necessidade de armazenamento e robustez
 - Entradas e saídas grandes
- Substituição dos cartões perfurados
 - Circuitos elétricos
 - Memória magnética
 - Não volátil

- Período de 1965 até os dias atuais
 - Transistores + Circuitos Integrados
 - Redução de custo, potência e área utilizada
 - Major confiabilidade

- Transistor
 - Semicondutor
 - Estado sólido

- Computador em um chip
 - ► Intel 8080

- ▶ Lei de Moore
 - Quantidade de transistores duplica a cada 30 meses

- ▶ Lei de Moore
 - Densidade da tecnologia duplica a cada 36 meses

- Visão abstrata de um computador
 - ▶ Hardware × Software

- ► Tecnologia digital
 - Codificação binária
 - Falso ou nível lógico baixo (0)
 - Verdadeiro ou nível lógico alto (1)

- Tecnologia digital
 - Codificação binária
 - Falso ou nível lógico baixo (0)
 - Verdadeiro ou nível lógico alto (1)
 - Controle por chaves eletrônicas
 - ► Relê
 - Transistor
 - Válvula

- Tecnologia digital
 - Codificação binária
 - Falso ou nível lógico baixo (0)
 - Verdadeiro ou nível lógico alto (1)
 - Controle por chaves eletrônicas
 - ▶ Relê
 - Transistor
 - Válvula
 - Lógica booleana
 - Portas lógicas (AND, OR e NOT)

- ▶ Tecnologia CMOS
 - Complementary Metal Oxide Semiconductor

- Controle do fluxo elétrico
 - Permitir ou impedir a passagem dos elétrons
 - Analogia com fluxo de água

 - ► Transistor = Registro

► Porta lógica AND

Porta lógica AND

Porta lógica OR

► Porta lógica OR

Porta lógica NOT

Porta lógica NOT

- Portas lógicas
 - São os blocos básicos utilizados para a construção de módulos mais complexos

Exemplo

- Considerando as portas lógicas AND, OR e NOT, implemente a lógica de controle de um sistema de cancela de estacionamento
 - Sensor de presença de veículo
 - Ausente (0)
 - Presente (1)
 - Horário de funcionamento
 - Fechado (0)
 - Aberto (1)
 - Ações executadas pelo sistema
 - Abaixar a cancela (0)
 - Levantar a cancela (1)

- Unidade Central de Processamento (CPU)
 - Cada processador possui seu repertório de instruções
 - Executa um programa armazenado na memória

- Fatos interessantes
 - Escala de nanômetros (1 nanômetro = 10^{-9} metro)

- Fatos interessantes
 - ► Escala de nanômetros (1 nanômetro = 10⁻⁹ metro)
 - ► Tamanho do átomo de silício (0,2 nm)

- Fatos interessantes
 - ► Escala de nanômetros (1 nanômetro = 10⁻⁹ metro)
 - ► Tamanho do átomo de silício (0,2 nm)
 - ► Transistor em produção (5 nm)

- Fatos interessantes
 - Escala de nanômetros (1 nanômetro = 10^{-9} metro)
 - ► Tamanho do átomo de silício (0,2 nm)
 - Transistor em produção (5 nm)
 - No diâmetro do fio de cabelo humano (90.000 nm) caberiam mais de 18.000 transistores

Hardware

- Fatos interessantes
 - ► Escala de nanômetros (1 nanômetro = 10⁻⁹ metro)
 - Tamanho do átomo de silício (0,2 nm)
 - Transistor em produção (5 nm)
 - No diâmetro do fio de cabelo humano (90.000 nm) caberiam mais de 18.000 transistores
 - Seria necessário aumentar o chip para o tamanho de uma casa para começar a ver alguma coisa

Hardware

- Fatos interessantes
 - ► Escala de nanômetros (1 nanômetro = 10⁻⁹ metro)
 - Tamanho do átomo de silício (0,2 nm)
 - Transistor em produção (5 nm)
 - No diâmetro do fio de cabelo humano (90.000 nm) caberiam mais de 18.000 transistores
 - Seria necessário aumentar o chip para o tamanho de uma casa para começar a ver alguma coisa
 - Um ser humano levaria cerca de 5.000 anos para chavear o mesmo número de vezes que um transistor é capaz de fazer em apenas 1 segundo

- Codificação binária
 - Armazenado na memória principal
 - Sequência de instruções (código)
 - Dados e parâmetros de operações (dados)

- Codificação binária
 - ► Base 2
 - Número de bits é $2^n 1$
 - ightharpoonup n = 3 bits representa de 0 até $2^3 1 = 7$

- Contexto de surgimento do software
 - Hardware é complexo e caro de ser construído
 - Necessidade de flexibilidade: software

- Linguagem de máquina
 - Codificação binária
 - ► Instrução de desvio codificada em 0s e 1s

Código	Endereço de desvio
2	1024
000010	000000000000000000000000000000000000000
6 Bits	26 Bits

- Linguagem de montagem (assembly)
 - Operações mnemônicas
 - Instrução de desvio traduzida pelo montador

Mnemônico	Endereço de desvio
Bun	1024
000010	000000000000000000000000000000000000000
6 Bits	26 Bits

- Linguagem de programação
 - Descrição de alto nível
 - Desvio de fluxo de execução gerado pelo compilador

Procedimento em C

rotina();	
000010	000000000000000000000000000000000000000
6 Bits	26 Bits

Exemplo

- Considerando um conjunto de 4 passos para realizar operações matemáticas
 - 1. Adição (C = A + B)
 - 2. Subtração (D = D C)
 - 3. Multiplicação ($E = C \times D$)
 - 4. Repete passo 1
 - Defina uma codificação para as instruções utilizadas neste programa, com código de operação e seus respectivos parâmetros
 - Quantos bits tem sua arquitetura? 8, 16 ou 32 bits?

Linguagem de programação C

```
// E/S padrão
#include <stdio.h>
// Função principal
int main() {
    // Imprimindo mensagem no terminal
    printf("Hello_World!\n");
    // Retornando com sucesso
    return 0;
}
```

- Dilema do ovo e da galinha
 - Como criar um programa se não existe o programa que irá convertê-lo em linguagem de máquina?

- Dilema do ovo e da galinha
 - Como criar um programa se não existe o programa que irá convertê-lo em linguagem de máquina?

Passos incrementais com a infraestrutura disponível

- Processo de bootstrapping
 - Linguagem de máquina (binário)
 - Construção de montadores (assemblers)

- Processo de bootstrapping
 - ► Linguagem de montagem (assembly)
 - Construção de montadores e compiladores

