Introduction to ML

Invento Research Inc.

What is Machine Learning

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

ML examples

Why Machine Learning?

Venn diagram of ML and deep learning

Gurus of GOFAI

Stuart Russell and Peter Norvig

The idea of AI is not new

1956 Dartmouth Conference: The Founding Fathers of AI

John MacCarthy

Marvin Minsky

Claude Shannon

Ray Solomonoff

Alan Newell

Herbert Simon

Arthur Samuel

Oliver Selfridge

Nathaniel Rochester

Trenchard More

....neither is ML

Al timeline **ARTIFICAL INTELLIGENCE** MACHINE LEARNING stirs excitement. DEEP LEARNING Machine Learning Deep Learning begins to breakthroughs drive flourish. Al boom.

Applied ML

ML - Supervised Learning

Select all squares with

traffic lights

If there are none, click skip

Unsupervised Learning

Introducing the concept of Similarity...!

Self Supervised Learning

Meta Al

Research

Self-supervised learning: The dark matter of intelligence

March 4, 2021

Implicit labels!

In recent years, the AI field has made tremendous progress in developing AI systems that can learn from massive amounts of carefully labeled data. This paradigm of supervised learning has a proven track record for training specialist models that perform extremely well on the task they were trained to do. Unfortunately, there's a limit to how far the field of AI can go with supervised learning alone.

What is a model?

What is a ML model?

Parametric Models

Parameters are knobs!
In the linear model we have 2 parameters - slope and intercept

Parametric models can have many parameters - sometimes in the billions! (Like ChatGPT)

Non-Parametric models like trees will be covered in later slides

Predicting house prices

Data and Features

	0	1	2	3	4
id	7129300520	6414100192	5631500400	2487200875	1954400510
date	10/13/2014	12/9/2014	2/25/2015	12/9/2014	2/18/2015
price	221900	538000	180000	604000	510000
bedrooms	3	3	2	4	3
bathrooms	1	2.25	1	3	2
sqft_living	1180	2570	770	1960	1680
sqft_lot	5650	7242	10000	5000	8080
floors	1	2	1	1	1
waterfront	0	0	0	0	0
view	0	0	0	0	0
condition	3	3	3	5	3
grade	7	7	6	7	8
sqft_above	1180	2170	770	1050	1680
q <mark>ft_base</mark> ment	0	400	0	910	0
yr_built	1955	1951	1933	1965	1987
yr_renovated	0	1991	0	0	0
zipcode	98178	98125	98028	98136	98074
lat	47.5112	47.721	47.7379	47.5208	47.6168
long	-122.257	-122.319	-122.233	-122.393	-122.045
sqft_living15	1340	1690	2720	1360	1800
sqft_lot15	5650	7639	8062	5000	7503

Regression vs Classification

Setting up the work environment

- Introduction to Jupyter
- Google Colab [https://colab.research.google.com/]

Drawing a line

THE EQUATION FOR THE LINE:

$$y = mx + b$$

$$y = INTERCEPT$$

$$m=1 \\ b=5 \qquad \Rightarrow \qquad y=1 \times +5 = x+5$$

Drawing a line in 2D

Slope = Rise over run

Let's look at a live example

How good is our prediction?

Bad Predictions

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

Mean squared error cost function

Training iteratively

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

Training a model = Minimizing the loss (or cost)

xkcd - ML

THIS IS YOUR MACHINE LEARNING SYSTEM? YUP! YOU POUR THE DATA INTO THIS BIG PILE OF LINEAR ALGEBRA, THEN COLLECT THE ANSWERS ON THE OTHER SIDE. WHAT IF THE ANSWERS ARE WRONG? JUST STIR THE PILE UNTIL THEY START LOOKING RIGHT.

Plotting the loss function

One Parameter MSE loss function

Multi Parameter loss function

Gradient Descent - the magic behind Al

Using differential calculus to make tiny adjustments to the knobs automatically!

The loss landscape

Iterative training - step by step adjustments

Gradient Descent - derivatives

Linear regression model

Cost function

$$f_{w,b}(x) = wx + b$$
 $J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$

Gradient descent algorithm

repeat until convergence {

$$w = w - \alpha \frac{\partial}{\partial w} J(w, b) \qquad \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(w, b) \qquad \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})$$

Introduction to Logistic regression

Don't let the name confuse you. For historical reasons it is called 'regression'.

Logistic regression is a *CLASSIFICATION* algorithm!

Regression vs Classification

From straight lines to curves

Sigmoid Function

Cost function for logistic regression

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$J(\theta) = \frac{1}{m} \left[\sum_{i=1}^{m} -y^{(i)} log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)})) \right]$$

m = number of samples

Why logarithm?

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if y=1} \\ -\log(1 - h_{\theta}(x)) & \text{if y=0} \end{cases}$$

Log loss calculation

Non-Parametric models

Ensemble models

Module 2

