

Cascaded Coarse-to-Fine Segmentation for Hippocampal Structures in Low-Field Neonatal MRI

Cristian Lazo-Quispe

Kyoto University

Figure 1. Coarse-to-fine cascaded pipeline for hippocampal MRI segmentation, including global segmentation, ROI cropping, local refinement, and reproducible inference via Docker.

1. Introduction

RISE-MICCAI Challenge: Hippocampal segmentation in 0.064T pediatric Low-field MRI for assessing neurodevelopmental trajectories and identifying early markers of neurological disorders.

Problem: Poor contrast, motion artifacts, existing tools fail on low-field pediatric data.

2. Preprocessing

Pipeline:

- Reorient → RAS
- Intensity scaleCropForegroup
- CropForeground
 Posample
 1mr
- Resample → 1mm isotropic
- Morphological cleanup:
- Remove <10 voxels
- Closing=2, Opening=1

Figure 2. Example of 3D MRI data.

3. Two-Stage Cascade Architecture

Training: • 5-fold CV (by patient ID) → robust generalization

Stage 1 - Coarse:

- EfficientNet-B2 U-Net @ 192³
- Adaptive ROI thresholds

Stage 2 - Fine:

- ROI @ 96³ (+25 margin)
- BalancedDiceCELoss
 Test-Time Aug:

• Ensemble = Original + coronal flip

+ axial flip
• Probability averaging → better boundaries

Laterality Preservation in TTA

Design Choice:

- No sagittal flips → swaps L/R, breaks labels
- Use only coronal + axial flips
- Preserves anatomical laterality
- Ensures robust L/R predictions

Figure 3. Example of sagital flip.

4. Results

The cascade architecture demonstrates significant improvements over single-stage approaches. Brain-focused preprocessing proves essential for model convergence, while the two-stage refinement achieves precise boundary delineation. The ensemble of three TTA predictions (original + two anatomically-safe flips) provides consistent improvement of 5% DSC.

Pipeline Stage	DSC	DSC-L/R	HD95_avg(mm)
Without preprocessing	0.498	0.502/0.494	5.86
Coarse with preprocessing	0.582	0.591/0.573	4.21
Fine cascade	0.621	0.650/0.642	2.45
Fine cascade 3 views	0.672	0 681/0 663	2 41

Figure 4. Input MRI, ground truth, coarse prediction, fine prediction, GT overlay, prediction overlay.

5. Key Contributions

Reproducibility:

- Consistent outputs across full pipeline W&B for model versioning (5 folds)
- Preserved affine matrix for anatomical alignment

Deployment:

- Containerized pipeline (Docker + MONAI + PyTorch) Automated inference \rightarrow CISO inputs \rightarrow compliant NIfTI outputs 45s/scan on GPU
- Impact:

 Deployment-ready in low-resource settings Enables hippocampal assessment with 0.064T MRI Fills critical gap in pediatric neuroimaging

6. Acknowledgments & Code

Acknowledgments: • Thanks to RISE-MICCAI 2025 organizers for challenge & dataset

Open Science: • Full implementation publicly available. Supports reproducible research in low-resource settings

