

Periodic Trajectories of Mobile Robots

Alli Nilles Israel Becerra Steve LaValle September 25, 2017

University of Illinois at Urbana-Champaign

Simple Mobile Robots

- Mobile robots can vacuum floors, transport goods in warehouses, act as security robots (patrol), etc
- We want to minimize sensing and computation
 - make robots less expensive, more energy efficient
- Often, robots can bump into things and be ok!
- How can we use contact with the environment as a strategy or source of information?

Blind, Bouncing Robots¹

Abstract the robot as a point moving in straight lines in the plane, "bouncing" off the boundary at a fixed angle θ from the normal:

Figure 1: A point robot moving in the plane. The top row shows bounces at zero degrees from the normal. The second row shows bounces at 50 degrees clockwise from normal.

¹(Erickson and LaValle 2013), ICRA

Research Questions

Given a constant control strategy, will the robot become "trapped" in part of the environment? Or in a certain motion pattern? We focus on **patrolling**: periodically orbiting the workspace.

Figure 2: In this environment, bouncing at the normal, the robot will become trapped in the area between the purple lines

Implementation

 In scenarios where we need to patrol, we often know something about the geometry of the space

But is it physically realizable?

- Can implement on a roomba with bump sensor and IR prox detector²
- "Collisions" can be virtual for example, robot stops when it is collinear with two landmarks, and rotates until one landmark is at a certain heading

²(Lewis and O'Kane 2013), IJRR

Related Work in Robotics

- Minimal sensing, actuation, computation requirements for mapping, navigating, localizing, patrolling, pursuit evasion (Tovar, Guilamo, and LaValle (2005), Bilò et al. (2012), J. M. O'Kane and LaValle (2007), Disser (2011))
- Overlaps with design automation: formalize tradeoffs between sensor and actuator power, computational complexity, energy use, etc
 - ICRA 1996 workshop, RSS '08, '16, '17

Related Work in Dynamical Systems

- Specular billiards (Tabachnikov (2005))
- Pinball billiards
 (Markarian, Pujals,
 and Sambarino
 (2010))
- Aspecular billiards, microorganism billiards (Spagnolie et al. (2017))

Limit Cycles In Regular Polygons

Question

If we can only move in straight lines and align relative to wall normal:

Can we guarantee that a robot **patrols** a space on a periodic path?

Can also phrase as:

What are the conditions on limit cycles in this dynamical system?

Discovery Through Simulation

- Haskell with *Diagrams* library (Yorgey 2012)
- Fixed-angle bouncing, relative bouncing (rotate θ from previous heading), specular bouncing, add noise
- Render diagrams from simulations automatically³

³https://github.com/alexandroid000/bounce

In Regular Polygons

Ignore movement in interior, only track position on boundary when robot collides. Defines a **discrete dynamical system**

$$x_{n+1}=f(x_n)$$

Given regular polygon, with edge length ℓ and internal angle ϕ , we can define the mapping function

$$b_{\theta}:(0,\ell)\to(0,\ell)$$

Sequential-Edge Bouncing

In regular polygons with side length ℓ and internal angle ϕ :

Fixed Point of Mapping Function ← Periodic Orbit

What is the Fixed Point?

Mapping Function

$$b_{\theta}(x) = c(\theta)(\ell - x)$$
 $c(\theta) = \frac{\cos(\theta)}{\cos(\theta - \phi)}$

$$b_{\theta}(x_{FP}) = x_{FP}$$
$$c(\theta)(\ell - x_{FP}) = x_{FP}$$
$$x_{FP} = \frac{\ell c(\theta)}{1 + c(\theta)}$$

For clockwise bouncing, reflect across the midpoint of the edge:

$$\rightarrow \ell - x_{FP}$$

Is the Fixed Point Unique?

Mapping Function

$$b_{\theta}(x) = c(\theta)(\ell - x)$$
 $c(\theta) = \frac{\cos(\theta)}{\cos(\theta - \phi)}$

When we check how distances change under the map, we see that

$$egin{aligned} d(b_{ heta}(x),b_{ heta}(y)) &= |c(heta)(\ell-y)-c(heta)(\ell-x)| \ &= |c(heta)(x-y)| \ &= |c(heta)|d(x,y). \end{aligned}$$

Thus if $|c(\theta)| < 1$, then b_{θ} is a contraction mapping, and by the Banach fixed-point theorem, it has a unique fixed point (Granas and Dugundji 2003).

Bounds on θ

To get bounds on θ for guaranteeing periodic trajectories:

- Solve $\left|\frac{\cos(\theta)}{\cos(\theta-\phi)}\right| < 1$
- Take geometric feasibility into account (for non-regular polygons)

So now we have a statement for the existence and stability of the fixed points, for counterclockwise bouncing striking each edge of a regular polygon:

Proposition

$$\mathbf{x}_{FP} = \begin{cases} \frac{\ell c(\theta)}{1+c(\theta)} & \phi/2 < \theta < \pi/2 \\ \frac{\ell}{1+c(\theta)} & -\pi/2 < \theta < -\phi/2 \end{cases}$$

in which
$$c(\theta) = \cos(\theta)/\cos(\theta - \phi)$$
.

Confirmation and Generalization

We have shown the case for counterclockwise bounces, on every sequential edge.

We can also imagine going clockwise, and/or skipping edges:

Mapping function, convergence conditions go through very similarly (see paper)

Generalization

In every regular n-sided polygon with side length I and interior angle $(n-2)\pi/n$, there exists a range for θ such that iterating $B_{\theta}(x)$ on any $x \in \delta P$, results in a stable limit cycle that strikes the boundary skipping m-1 edges, and strikes at points that are distance x_{FP} from the nearest clockwise vertex, with x_{FP} given by

$$x_{FP} = \begin{cases} \frac{l - A(1 - c(\theta))}{1 + c(\theta)}, & \frac{\phi_m}{2} < \theta < \frac{\phi_{m-1}}{2} \\ \frac{lc(-\theta) + A(1 - c(-\theta))}{1 + c(-\theta)}, & \frac{-\phi_{m-1}}{2} < \theta < \frac{-\phi_m}{2} \end{cases}$$
(1)

in which

$$\begin{split} \phi_m &= \frac{\pi(n-2m)}{n}, \\ A &= \frac{I\sin(\frac{\pi(m+1)}{n})\sin(\frac{m\pi}{n})}{\sin(\frac{\pi}{n})\sin(\frac{\pi(n-2m)}{n})}, \text{ and } \\ c(\theta) &= \cos(\theta)/\cos\left(\theta - \frac{\pi(n-2m)}{n}\right). \end{split}$$

Simulation Results

Nice Properties

- Any regular n-gon
- Stable orbits are independent of starting position
- Exponential convergence

Adding Noise

We got bounds on θ from $|c(\theta)| < 1$: any angle in this range will make similar orbits

Figure 5: 200 bounces with uniformly distributed error added to θ , -0.1 rad $\leq \epsilon \leq 0.1$ rad

Other Polygons

(a) A stable orbit in a sheared pentagon.

(b) A stable orbit in a nonconvex environment.

Figure 6: Stable orbits also exist in non-regular polygons.

Open Problems & Future Work

- How to characterize and exploit non-periodic dynamics?
 - Lyapunov exponents suggest chaotic dynamics
 - relationship to dispersion: what is the longest unvisited edge interval as the system evolves?
- Extensions to non-regular polygons and smooth environments
- Error bounds: model different disturbances to bounce
- Feedback control: counting number of bounces, make walls distinguishable / colored, allow robot to place and/or detect landmarks

Thank you!

References

Bilò, Davide, Yann Disser, Matús Mihalák, Subhash Suri, Elias Vicari, and Peter Widmayer. 2012. "Reconstructing Visibility Graphs with Simple Robots." *Theoretical Computer Science* 444. Elsevier: 52–59.

Disser, Yann. 2011. Mapping Polygons. Logos Verlag Berlin GmbH.

Erickson, L. H., and S. M. LaValle. 2013. "Toward the Design and Analysis of Blind, Bouncing Robots." In *IEEE International Conference on Robotics and Automation*.

Granas, Andrzej, and James Dugundji. 2003. "Elementary Fixed Point Theorems." In Fixed Point Theory, 9–84. New York, NY: Springer New York.

Lewis, Jeremy S., and Jason M. O'Kane. 2013. "Planning for Provably Reliable Navigation Using an Unreliable, Nearly Sensorless Robot." *International Journal of Robotics Research* 32 (11): 1339–54.

Markarian, Roberto, Enrique Pujals, and Martin Sambarino. 2010. "Pinball Billiards with Dominated Splitting." Ergodic Theory and Dynamical Systems 30: 1757–86.

O'Kane, J. M., and S. M. LaValle. 2007. "Localization with Limited Sensing." *IEEE Transactions on Robotics* 23 (4): 704–16.

Spagnolie, Saverio E, Colin Wahl, Joseph Lukasik, and Jean-Luc Thiffeault. 2017. "Microorganism Billiards." Physica D: Nonlinear Phenomena 341. Elsevier: 33–44.

Tabachnikov, Serge. 2005. Geometry and Billiards. American Mathematical Society.

Tovar, Benjamin, Luis Guilamo, and Steven M LaValle. 2005. "Gap Navigation Trees: Minimal Representation for Visibility-Based Tasks." *Algorithmic Foundations of Robotics VI*. Springer, 425–40.

Yorgey, Brent A. 2012. "Monoids: Theme and Variations (Functional Pearl)." In Haskell. ACM.