$11a_{352} (K11a_{352})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -3u^9 + 16u^8 - 53u^7 + 124u^6 - 204u^5 + 242u^4 - 203u^3 + 82u^2 + 16b + 2u - 12, \\ &- 3u^9 + 24u^8 - 101u^7 + 292u^6 - 620u^5 + 978u^4 - 1147u^3 + 970u^2 + 32a - 494u + 116, \\ &u^{10} - 6u^9 + 23u^8 - 62u^7 + 124u^6 - 190u^5 + 221u^4 - 188u^3 + 110u^2 - 40u + 8 \rangle \\ I_2^u &= \langle au + b, \quad -3u^6a + 2u^6 + \dots - 12a + 17, \quad u^7 - 4u^6 + 11u^5 - 20u^4 + 26u^3 - 23u^2 + 14u - 4 \rangle \\ I_3^u &= \langle -1348740987753a^7u^3 + 686668738913a^6u^3 + \dots - 41120280504a + 141432788735, \\ &- a^7u^3 - 4a^6u^3 + \dots + 10a + 96, \quad u^4 + u^3 + 3u^2 + 2u + 1 \rangle \\ I_4^u &= \langle 11a^3u^3 + 16u^3a^2 + \dots - 5a - 3, \\ &a^3u^3 - u^3a^2 + a^4 + 2a^3u - 2u^3a - 2a^2u - 3u^2a - 2u^3 + a^2 - 5au - 2u^2 - 6a - 5u - 4, \\ &u^4 + u^3 + 3u^2 + 2u + 1 \rangle \\ I_5^u &= \langle -u^{15} + u^{14} - 11u^{13} + 9u^{12} - 46u^{11} + 30u^{10} - 87u^9 + 44u^8 - 63u^7 + 24u^6 + u^5 + u^4 + 3u^2 + 2b - 9u + 3, \\ &- 3u^{15} - 5u^{14} + \dots + 10a - 45, \quad u^{16} + 11u^{14} + 47u^{12} + 96u^{10} + 90u^8 + 26u^6 - u^4 + 8u^2 + 5 \rangle \\ I_6^u &= \langle -u^3 - au - u^2 + b - 2u - 1, \quad -u^3a - u^3 + a^2 - 2au - 2u + 1, \quad u^4 + u^3 + 3u^2 + 2u + 1 \rangle \\ I_7^u &= \langle a, b - 1, v + 1 \rangle \\ I_1^v &= \langle a, b - 1, v + 1 \rangle \end{split}$$

* 8 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 101 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated

I.
$$I_1^u = \langle -3u^9 + 16u^8 + \dots + 16b - 12, \ -3u^9 + 24u^8 + \dots + 32a + 116, \ u^{10} - 6u^9 + \dots - 40u + 8 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{3}{32}u^{9} - \frac{3}{4}u^{8} + \dots + \frac{247}{16}u - \frac{29}{8} \\ \frac{3}{16}u^{9} - u^{8} + \dots - \frac{1}{8}u + \frac{3}{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{13}{32}u^{9} - 2u^{8} + \dots + \frac{73}{16}u + \frac{1}{8} \\ -\frac{7}{16}u^{9} + \frac{5}{2}u^{8} + \dots - \frac{123}{8}u + \frac{13}{4} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{3}{32}u^{9} - \frac{3}{4}u^{8} + \dots + \frac{167}{16}u - \frac{13}{8} \\ \frac{5}{16}u^{9} - 2u^{8} + \dots + \frac{105}{8}u - \frac{11}{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{3}{22}u^{9} - \frac{1}{2}u^{8} + \dots + \frac{55}{16}u - \frac{1}{8} \\ \frac{7}{16}u^{9} - \frac{3}{2}u^{8} + \dots - \frac{5}{8}u + \frac{3}{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{9}{32}u^{9} - \frac{7}{4}u^{8} + \dots + \frac{245}{16}u - \frac{23}{8} \\ \frac{3}{16}u^{9} - u^{8} + \dots - \frac{1}{8}u + \frac{3}{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{5}{32}u^{9} - \frac{3}{4}u^{8} + \dots + \frac{113}{16}u - \frac{11}{8} \\ -\frac{3}{16}u^{9} + u^{8} + \dots + \frac{17}{16}u - \frac{3}{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{5}{32}u^{9} - \frac{3}{4}u^{8} + \dots + \frac{113}{16}u - \frac{11}{8} \\ -\frac{3}{16}u^{9} + u^{8} + \dots + \frac{17}{8}u - \frac{3}{4} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{3}{4}u^9 - 3u^8 + \frac{45}{4}u^7 - 24u^6 + 43u^5 - \frac{105}{2}u^4 + \frac{187}{4}u^3 - \frac{47}{2}u^2 - \frac{9}{2}u + 5u^4 + \frac{187}{4}u^3 - \frac{47}{2}u^2 - \frac{9}{2}u^4 + \frac{187}{4}u^3 - \frac{105}{4}u^4 + \frac{187}{4}u^3 - \frac{47}{2}u^2 - \frac{9}{2}u^4 + \frac{187}{4}u^3 - \frac{105}{4}u^4 + \frac{187}{4}u^3 - \frac{105}{4}u^4 + \frac{187}{4}u^3 - \frac{105}{4}u^4 + \frac{187}{4}u^3 - \frac{105}{4}u^4 + \frac{187}{4}u^4 - \frac{105}{4}u^4 + \frac{187}{4}u^4 - \frac{105}{4}u^4 + \frac{187}{4}u^4 - \frac{105}{4}u^4 + \frac{105}{4}u^4$$

in decimal forms when there is not enough margin.

Crossings	u-Polynomials at each crossing		
c_1, c_8	$u^{10} + u^9 + 7u^8 + 4u^7 + 23u^6 + 9u^5 + 40u^4 + 9u^3 + 33u^2 + 2u + 10$		
c_2, c_7, c_9 c_{11}	$u^{10} + u^9 - u^8 - 2u^7 + 5u^6 + 3u^5 - 3u^3 - u + 1$		
c_3, c_6	$u^{10} - 9u^9 + \dots - 15u + 11$		
c_4, c_5, c_{10}	$u^{10} - 6u^9 + \dots - 40u + 8$		

Crossings	Riley Polynomials at each crossing		
c_{1}, c_{8}	$y^{10} + 13y^9 + \dots + 656y + 100$		
c_2, c_7, c_9 c_{11}	$y^{10} - 3y^9 + 15y^8 - 20y^7 + 43y^6 - 17y^5 + 12y^4 + 7y^3 - 6y^2 - y + 1$		
c_3, c_6	$y^{10} + 3y^9 + \dots + 1601y + 121$		
c_4, c_5, c_{10}	$y^{10} + 10y^9 + \dots + 160y + 64$		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.827139 + 0.827690I		
a = 0.124534 - 1.186260I	-3.86930 + 13.03600I	-4.42534 - 9.74427I
b = -1.084860 + 0.878124I		
u = 0.827139 - 0.827690I		
a = 0.124534 + 1.186260I	-3.86930 - 13.03600I	-4.42534 + 9.74427I
b = -1.084860 - 0.878124I		
u = 1.231820 + 0.302946I		
a = -0.687720 - 0.315351I	-2.14694 - 6.57736I	-5.40678 + 10.73292I
b = 0.751611 + 0.596797I		
u = 1.231820 - 0.302946I		
a = -0.687720 + 0.315351I	-2.14694 + 6.57736I	-5.40678 - 10.73292I
b = 0.751611 - 0.596797I		
u = 0.314386 + 0.484120I		
a = 0.850851 + 0.785005I	0.232399 + 1.335330I	1.84390 - 5.86434I
b = 0.112541 - 0.658708I		
u = 0.314386 - 0.484120I		
a = 0.850851 - 0.785005I	0.232399 - 1.335330I	1.84390 + 5.86434I
b = 0.112541 + 0.658708I		
u = 0.25828 + 1.65152I		
a = 0.458885 + 0.901810I	-12.0871 + 17.1582I	-6.40595 - 8.48495I
b = 1.37084 - 0.99078I		
u = 0.25828 - 1.65152I		
a = 0.458885 - 0.901810I	-12.0871 - 17.1582I	-6.40595 + 8.48495I
b = 1.37084 + 0.99078I		
u = 0.36838 + 1.94011I		
a = 0.003450 - 0.334444I	-9.27048 + 0.95500I	-15.6058 - 6.9472I
b = -0.650130 + 0.116508I		
u = 0.36838 - 1.94011I		
a = 0.003450 + 0.334444I	-9.27048 - 0.95500I	-15.6058 + 6.9472I
b = -0.650130 - 0.116508I		

II. $I_2^u = \langle au + b, -3u^6a + 2u^6 + \dots - 12a + 17, u^7 - 4u^6 + \dots + 14u - 4 \rangle$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -au \\ -au \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{2}u^{6}a + \frac{1}{4}u^{6} + \dots - 3a + 2 \\ -\frac{1}{2}u^{6} + u^{5} + \dots + 2a - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{4}u^{6} + \frac{1}{2}u^{5} + \dots - a - 1 \\ -u^{5}a + \frac{3}{2}u^{6} + \dots - \frac{15}{2}u + 3 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}u^{6}a - \frac{1}{4}u^{6} + \dots + a - \frac{3}{2} \\ -u^{6}a + 3u^{5}a + \dots - 2a - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -au + a \\ -au \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{4}u^{6} - \frac{1}{2}u^{5} + \dots - a + 2 \\ -\frac{1}{2}u^{6} + u^{5} + \dots + \frac{5}{2}u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{4}u^{6} - \frac{1}{2}u^{5} + \dots - a + 2 \\ -\frac{1}{2}u^{6} + u^{5} + \dots + \frac{5}{2}u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $5u^6 13u^5 + 32u^4 44u^3 + 46u^2 32u + 14u^3 + 46u^2 32u^3 + 46u^2 32u^2 + 46u^2 32u^2 + 46u^2 +$

Crossings	u-Polynomials at each crossing		
c_1, c_8	$(u^7 + u^5 + u^4 - u - 1)^2$		
c_2, c_7, c_9 c_{11}	$u^{14} + u^{13} + \dots + u + 1$		
c_3, c_6	$u^{14} - 13u^{13} + \dots - 329u + 47$		
c_4, c_5, c_{10}	$(u^7 - 4u^6 + 11u^5 - 20u^4 + 26u^3 - 23u^2 + 14u - 4)^2$		

Crossings	Riley Polynomials at each crossing		
c_{1}, c_{8}	$(y^7 + 2y^6 + y^5 - 3y^4 - 2y^3 + 2y^2 + y - 1)^2$		
c_2, c_7, c_9 c_{11}	$y^{14} - 5y^{13} + \dots + y + 1$		
c_3, c_6	$y^{14} - 3y^{13} + \dots + 2397y + 2209$		
c_4, c_5, c_{10}	$(y^7 + 6y^6 + 13y^5 + 16y^4 + 32y^3 + 39y^2 + 12y - 16)^2$		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.316075 + 1.084870I		
a = 0.447890 + 1.041020I	-0.56973 + 3.46571I	1.80998 - 1.90405I
b = 0.987810 - 0.814945I		
u = 0.316075 + 1.084870I		
a = -0.468498 + 0.032326I	-0.56973 + 3.46571I	1.80998 - 1.90405I
b = 0.183150 + 0.498043I		
u = 0.316075 - 1.084870I		
a = 0.447890 - 1.041020I	-0.56973 - 3.46571I	1.80998 + 1.90405I
b = 0.987810 + 0.814945I		
u = 0.316075 - 1.084870I		
a = -0.468498 - 0.032326I	-0.56973 - 3.46571I	1.80998 + 1.90405I
b = 0.183150 - 0.498043I		
u = 1.051270 + 0.735259I		
a = -0.268053 + 0.911867I	-3.76584 + 3.52764I	-10.39771 - 1.47160I
b = 0.952255 - 0.761533I		
u = 1.051270 + 0.735259I		
a = 0.591875 - 0.190941I	-3.76584 + 3.52764I	-10.39771 - 1.47160I
b = -0.762614 - 0.234450I		
u = 1.051270 - 0.735259I		
a = -0.268053 - 0.911867I	-3.76584 - 3.52764I	-10.39771 + 1.47160I
b = 0.952255 + 0.761533I		
u = 1.051270 - 0.735259I		
a = 0.591875 + 0.190941I	-3.76584 - 3.52764I	-10.39771 + 1.47160I
b = -0.762614 + 0.234450I		
u = 0.658991		
a = 0.825920 + 1.123020I	2.67359	5.12550
b = -0.544274 - 0.740063I		
u = 0.658991		
a = 0.825920 - 1.123020I	2.67359	5.12550
b = -0.544274 + 0.740063I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.30316 + 1.67229I		
a = -0.402520 - 0.858604I	-11.8056 + 8.5528I	-9.47503 - 5.91683I
b = -1.31381 + 0.93342I		
u = 0.30316 + 1.67229I		
a = 0.023386 + 0.600716I	-11.8056 + 8.5528I	-9.47503 - 5.91683I
b = 0.997484 - 0.221219I		
u = 0.30316 - 1.67229I		
a = -0.402520 + 0.858604I	-11.8056 - 8.5528I	-9.47503 + 5.91683I
b = -1.31381 - 0.93342I		
u = 0.30316 - 1.67229I		
a = 0.023386 - 0.600716I	-11.8056 - 8.5528I	-9.47503 + 5.91683I
b = 0.997484 + 0.221219I		

III.
$$I_3^u = \langle -1.35 \times 10^{12} a^7 u^3 + 6.87 \times 10^{11} a^6 u^3 + \dots - 4.11 \times 10^{10} a + 1.41 \times 10^{11}, -a^7 u^3 - 4a^6 u^3 + \dots + 10a + 96, u^4 + u^3 + 3u^2 + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2.06795a^{7}u^{3} - 1.05283a^{6}u^{3} + \dots + 0.0630474a - 0.216851 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.566545a^{7}u^{3} - 0.144764a^{6}u^{3} + \dots + 0.0887731a + 1.58851 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0804851a^{7}u^{3} + 0.514618a^{6}u^{3} + \dots + 0.337460a + 1.73643 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.353631a^{7}u^{3} - 0.0766819a^{6}u^{3} + \dots + 0.337460a + 1.73643 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.353631a^{7}u^{3} - 0.0766819a^{6}u^{3} + \dots - 1.06770a - 1.03933 \\ 0.277128a^{7}u^{3} + 0.0000142253a^{6}u^{3} + \dots - 0.621680a + 0.912067 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 2.06795a^{7}u^{3} - 1.05283a^{6}u^{3} + \dots + 1.06305a - 0.216851 \\ 2.06795a^{7}u^{3} - 1.05283a^{6}u^{3} + \dots + 0.0630474a - 0.216851 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} + 1 \\ u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1.50926a^{7}u^{3} + 1.35905a^{6}u^{3} + \dots + 0.397134a + 1.30453 \end{pmatrix}$$

$$\begin{pmatrix} 1.50926a^{7}u^{3} + 1.35905a^{6}u^{3} + \dots + 0.618723a + 0.472347 \\ 2.16896a^{7}u^{3} + 0.686316a^{6}u^{3} + \dots + 0.397134a + 1.30453 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= -\frac{1367231366824}{326106026089}a^7u^3 - \frac{1370870830584}{326106026089}a^6u^3 + \dots - \frac{3308821571992}{326106026089}a - \frac{4028263148378}{326106026089}a^2 + \dots + \frac{3308821571992}{326106026089}a - \frac{4028263148378}{326106026089}a^2 + \dots + \frac{3308821571992}{326106026089}a - \frac{4028263148378}{326106026089}a - \frac{4028263148378}{32610602$$

Crossings	u-Polynomials at each crossing		
c_{1}, c_{8}	$(u^{16} - u^{15} + \dots - 24u + 79)^2$		
c_2, c_7, c_9 c_{11}	$u^{32} - u^{31} + \dots + 400u + 361$		
c_3, c_6	$(u^4 + u^3 - 2u + 1)^8$		
c_4, c_5, c_{10}	$(u^4 + u^3 + 3u^2 + 2u + 1)^8$		

Crossings	Riley Polynomials at each crossing		
c_1, c_8	$(y^{16} + 19y^{15} + \dots + 44612y + 6241)^2$		
c_2, c_7, c_9 c_{11}	$y^{32} - 11y^{31} + \dots - 2524550y + 130321$		
c_3, c_6	$(y^4 - y^3 + 6y^2 - 4y + 1)^8$		
c_4, c_5, c_{10}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^8$		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.395123 + 0.506844I		
a = -0.112909 - 0.977468I	-3.07886 - 5.47487I	-10.1733 + 11.8369I
b = -1.11104 + 1.26776I		
u = -0.395123 + 0.506844I		
a = -1.186440 - 0.577565I	-3.07886 + 2.64466I	-10.17326 - 2.01946I
b = 1.053440 - 0.202017I		
u = -0.395123 + 0.506844I		
a = 0.57298 + 1.37827I	-3.07886 + 2.64466I	-10.17326 - 2.01946I
b = 0.830529 - 0.979145I		
u = -0.395123 + 0.506844I		
a = 1.25572 + 1.09950I	-3.07886 + 2.64466I	-10.17326 - 2.01946I
b = -0.761526 + 0.373132I		
u = -0.395123 + 0.506844I		
a = -0.40614 - 1.88973I	-3.07886 - 5.47487I	-10.1733 + 11.8369I
b = 1.073750 + 0.876252I		
u = -0.395123 + 0.506844I		
a = 1.99615 + 0.08248I	-3.07886 + 2.64466I	-10.17326 - 2.01946I
b = 0.924966 + 0.254177I		
u = -0.395123 + 0.506844I		
a = -0.04809 + 2.15599I	-3.07886 - 5.47487I	-10.1733 + 11.8369I
b = -1.118270 - 0.540827I		
u = -0.395123 + 0.506844I		
a = -2.61870 - 0.15060I	-3.07886 - 5.47487I	-10.1733 + 11.8369I
b = -0.540037 - 0.328993I		
u = -0.395123 - 0.506844I		
a = -0.112909 + 0.977468I	-3.07886 + 5.47487I	-10.1733 - 11.8369I
b = -1.11104 - 1.26776I		
u = -0.395123 - 0.506844I		
a = -1.186440 + 0.577565I	-3.07886 - 2.64466I	-10.17326 + 2.01946I
b = 1.053440 + 0.202017I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.395123 - 0.506844I		
a = 0.57298 - 1.37827I	-3.07886 - 2.64466I	-10.17326 + 2.01946I
b = 0.830529 + 0.979145I		
u = -0.395123 - 0.506844I		
a = 1.25572 - 1.09950I	-3.07886 - 2.64466I	-10.17326 + 2.01946I
b = -0.761526 - 0.373132I		
u = -0.395123 - 0.506844I		
a = -0.40614 + 1.88973I	-3.07886 + 5.47487I	-10.1733 - 11.8369I
b = 1.073750 - 0.876252I		
u = -0.395123 - 0.506844I		
a = 1.99615 - 0.08248I	-3.07886 - 2.64466I	-10.17326 + 2.01946I
b = 0.924966 - 0.254177I		
u = -0.395123 - 0.506844I		
a = -0.04809 - 2.15599I	-3.07886 + 5.47487I	-10.1733 - 11.8369I
b = -1.118270 + 0.540827I		
u = -0.395123 - 0.506844I		
a = -2.61870 + 0.15060I	-3.07886 + 5.47487I	-10.1733 - 11.8369I
b = -0.540037 + 0.328993I		
u = -0.10488 + 1.55249I		
a = -0.391799 + 0.880227I	-10.08060 - 7.22373I	-13.8267 + 9.4930I
b = -1.41214 - 1.21990I		
u = -0.10488 + 1.55249I		
a = 0.140656 - 0.862399I	-10.08060 + 0.89580I	-13.8267 - 4.3634I
b = 0.811814 + 0.187323I		
u = -0.10488 + 1.55249I		
a = 0.721035 - 0.958305I	-10.08060 - 7.22373I	-13.8267 + 9.4930I
b = 1.32546 + 0.70058I		
u = -0.10488 + 1.55249I		
a = -1.074960 - 0.865228I	-10.08060 + 0.89580I	-13.8267 - 4.3634I
b = -0.825212 + 0.300777I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.10488 + 1.55249I		
a = -0.228603 - 0.516097I	-10.08060 + 0.89580I	-13.8267 - 4.3634I
b = -1.45600 + 1.57813I		
u = -0.10488 + 1.55249I		
a = -0.084947 + 0.528649I	-10.08060 + 0.89580I	-13.8267 - 4.3634I
b = -1.324120 - 0.308813I		
u = -0.10488 + 1.55249I		
a = 0.069010 + 0.388237I	-10.08060 - 7.22373I	-13.8267 + 9.4930I
b = 1.41842 - 2.08296I		
u = -0.10488 + 1.55249I		
a = 1.39703 + 0.81926I	-10.08060 - 7.22373I	-13.8267 + 9.4930I
b = 0.609972 - 0.066421I		
u = -0.10488 - 1.55249I		
a = -0.391799 - 0.880227I	-10.08060 + 7.22373I	-13.8267 - 9.4930I
b = -1.41214 + 1.21990I		
u = -0.10488 - 1.55249I		
a = 0.140656 + 0.862399I	-10.08060 - 0.89580I	-13.8267 + 4.3634I
b = 0.811814 - 0.187323I		
u = -0.10488 - 1.55249I		
a = 0.721035 + 0.958305I	-10.08060 + 7.22373I	-13.8267 - 9.4930I
b = 1.32546 - 0.70058I		
u = -0.10488 - 1.55249I		
a = -1.074960 + 0.865228I	-10.08060 - 0.89580I	-13.8267 + 4.3634I
b = -0.825212 - 0.300777I		
u = -0.10488 - 1.55249I		
a = -0.228603 + 0.516097I	-10.08060 - 0.89580I	-13.8267 + 4.3634I
b = -1.45600 - 1.57813I		
u = -0.10488 - 1.55249I		
a = -0.084947 - 0.528649I	-10.08060 - 0.89580I	-13.8267 + 4.3634I
b = -1.324120 + 0.308813I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.10488 - 1.55249I		
a = 0.069010 - 0.388237I	-10.08060 + 7.22373I	-13.8267 - 9.4930I
b = 1.41842 + 2.08296I		
u = -0.10488 - 1.55249I		
a = 1.39703 - 0.81926I	-10.08060 + 7.22373I	-13.8267 - 9.4930I
b = 0.609972 + 0.066421I		

IV.
$$I_4^u = \langle 11a^3u^3 + 16u^3a^2 + \dots - 5a - 3, \ a^3u^3 - u^3a^2 + \dots - 6a - 4, \ u^4 + u^3 + 3u^2 + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.354839a^{3}u^{3} - 0.516129a^{2}u^{3} + \dots + 0.161290a + 0.0967742 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.193548a^{3}u^{3} + 0.354839a^{2}u^{3} + \dots - 0.548387a - 0.129032 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.129032a^{3}u^{3} + 0.0967742a^{2}u^{3} + \dots - 0.967742a + 0.419355 \\ -0.193548a^{3}u^{3} + 0.354839a^{2}u^{3} + \dots - 0.548387a + 0.870968 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.612903a^{3}u^{3} - 0.709677a^{2}u^{3} + \dots + 1.09677a + 0.258065 \\ -0.967742a^{3}u^{3} - 1.22581a^{2}u^{3} + \dots + 0.258065a + 1.35484 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.354839a^{3}u^{3} - 0.516129a^{2}u^{3} + \dots + 1.16129a + 0.0967742 \\ -0.354839a^{3}u^{3} - 0.516129a^{2}u^{3} + \dots + 0.161290a + 0.0967742 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.129032a^{3}u^{3} + 0.0967742a^{2}u^{3} + \dots - 0.967742a + 0.419355 \\ -0.193548a^{3}u^{3} + 0.354839a^{2}u^{3} + \dots - 1.54839a + 0.870968 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.129032a^{3}u^{3} + 0.0967742a^{2}u^{3} + \dots - 0.967742a + 0.419355 \\ -0.193548a^{3}u^{3} + 0.354839a^{2}u^{3} + \dots - 1.54839a + 0.870968 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{48}{31}a^3u^3 + \frac{168}{31}a^3u^2 - \frac{88}{31}u^3a^2 + \frac{192}{31}a^3u + \frac{64}{31}a^2u^2 + \frac{32}{31}u^3a + \frac{80}{31}a^3 - \frac{104}{31}a^2u + \frac{112}{31}u^2a + \frac{44}{31}u^3 - \frac{64}{31}a^2 + \frac{128}{31}au + \frac{92}{31}u^2 + \frac{136}{31}a + \frac{52}{31}u + \frac{94}{31}$$

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^{16} + 3u^{15} + \dots + 48u + 13$
c_2, c_7, c_9 c_{11}	$u^{16} + u^{15} + \dots - 6u + 1$
c_3, c_6	$(u^2 + u + 1)^8$
c_4, c_5, c_{10}	$(u^4 + u^3 + 3u^2 + 2u + 1)^4$

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y^{16} - 9y^{15} + \dots + 244y + 169$
c_2, c_7, c_9 c_{11}	$y^{16} - 5y^{15} + \dots - 12y + 1$
c_3, c_6	$(y^2 + y + 1)^8$
c_4, c_5, c_{10}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^4$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.395123 + 0.506844I		
a = -0.403594 + 1.336030I	0.21101 - 5.47487I	1.82674 + 11.83695I
b = -1.31743 - 0.78795I		
u = -0.395123 + 0.506844I		
a = -0.473603 - 0.227839I	0.21101 + 2.64466I	1.82674 - 2.01946I
b = 0.750541 - 0.814864I		
u = -0.395123 + 0.506844I		
a = 1.71802 + 0.14148I	0.21101 + 2.64466I	1.82674 - 2.01946I
b = -0.302610 + 0.150019I		
u = -0.395123 + 0.506844I		
a = -0.29340 - 2.37055I	0.21101 - 5.47487I	1.82674 + 11.83695I
b = 0.517688 + 0.732455I		
u = -0.395123 - 0.506844I		
a = -0.403594 - 1.336030I	0.21101 + 5.47487I	1.82674 - 11.83695I
b = -1.31743 + 0.78795I		
u = -0.395123 - 0.506844I		
a = -0.473603 + 0.227839I	0.21101 - 2.64466I	1.82674 + 2.01946I
b = 0.750541 + 0.814864I		
u = -0.395123 - 0.506844I		
a = 1.71802 - 0.14148I	0.21101 - 2.64466I	1.82674 + 2.01946I
b = -0.302610 - 0.150019I		
u = -0.395123 - 0.506844I		
a = -0.29340 + 2.37055I	0.21101 + 5.47487I	1.82674 - 11.83695I
b = 0.517688 - 0.732455I		
u = -0.10488 + 1.55249I		
a = 0.640303 - 0.455342I	-6.79074 - 7.22373I	-1.82674 + 9.49300I
b = 1.85487 + 0.75978I		
u = -0.10488 + 1.55249I		
a = -0.406825 + 1.222250I	-6.79074 - 7.22373I	-1.82674 + 9.49300I
b = -0.639763 - 1.041820I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.10488 + 1.55249I		
a = -0.655651 + 0.264242I	-6.79074 + 0.89580I	-1.82674 - 4.36340I
b = -0.704770 + 0.147728I		
u = -0.10488 + 1.55249I		
a = -0.125250 - 0.445499I	-6.79074 + 0.89580I	-1.82674 - 4.36340I
b = 0.341471 + 1.045610I		
u = -0.10488 - 1.55249I		
a = 0.640303 + 0.455342I	-6.79074 + 7.22373I	-1.82674 - 9.49300I
b = 1.85487 - 0.75978I		
u = -0.10488 - 1.55249I		
a = -0.406825 - 1.222250I	-6.79074 + 7.22373I	-1.82674 - 9.49300I
b = -0.639763 + 1.041820I		
u = -0.10488 - 1.55249I		
a = -0.655651 - 0.264242I	-6.79074 - 0.89580I	-1.82674 + 4.36340I
b = -0.704770 - 0.147728I		
u = -0.10488 - 1.55249I		
a = -0.125250 + 0.445499I	-6.79074 - 0.89580I	-1.82674 + 4.36340I
b = 0.341471 - 1.045610I		

$$\text{V. } I_5^u = \\ \langle -u^{15} + u^{14} + \dots + 2b + 3, \ -3u^{15} - 5u^{14} + \dots + 10a - 45, \ u^{16} + 11u^{14} + \dots + 8u^2 + 5 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{3}{10}u^{15} + \frac{1}{2}u^{14} + \dots + \frac{9}{10}u + \frac{9}{2} \\ \frac{1}{2}u^{15} - \frac{1}{2}u^{14} + \dots + \frac{9}{2}u - \frac{3}{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.800000u^{15} - 8.30000u^{13} + \dots - 4.90000u - 1.50000 \\ \frac{1}{2}u^{14} - \frac{1}{2}u^{13} + \dots - \frac{1}{2}u + 4 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{4}{5}u^{15} + \frac{1}{2}u^{14} + \dots - \frac{59}{10}u + \frac{3}{2} \\ \frac{1}{2}u^{14} - u^{13} + \dots - \frac{7}{2}u + 4 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{3}{10}u^{15} + \frac{33}{10}u^{13} + \dots + \frac{7}{5}u + \frac{5}{2} \\ \frac{1}{2}u^{15} - u^{14} + \dots + 5u - 4 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{4}{5}u^{15} + \frac{83}{10}u^{13} + \dots + \frac{27}{5}u + 3 \\ \frac{1}{2}u^{15} - \frac{1}{2}u^{14} + \dots + \frac{9}{2}u - \frac{3}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.300000u^{15} - 3.80000u^{13} + \dots - 3.90000u + 0.500000 \\ \frac{1}{2}u^{15} + \frac{9}{2}u^{13} + \dots + \frac{3}{2}u + 4 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.300000u^{15} - 3.80000u^{13} + \dots - 3.90000u + 0.5000000 \\ \frac{1}{2}u^{15} + \frac{9}{2}u^{13} + \dots + \frac{3}{2}u + 4 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-7u^{14} - 70u^{12} - 261u^{10} - 429u^8 - 256u^6 + 13u^4 - 18u^2 - 47u^8 - 18u^8 - 18u^$$

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^{16} + 5u^{14} + 16u^{12} + 29u^{10} + 32u^8 + 25u^6 + 21u^4 + 17u^2 + 5$
c_2, c_9	$u^{16} + 2u^{15} + \dots + 5u + 1$
<i>c</i> ₃	$u^{16} + 6u^{15} + \dots - u + 1$
c_4, c_5, c_{10}	$u^{16} + 11u^{14} + 47u^{12} + 96u^{10} + 90u^8 + 26u^6 - u^4 + 8u^2 + 5$
<i>c</i> ₆	$u^{16} - 6u^{15} + \dots + u + 1$
c_7, c_{11}	$u^{16} - 2u^{15} + \dots - 5u + 1$

Crossings	Riley Polynomials at each crossing	
c_1, c_8	$(y^8 + 5y^7 + 16y^6 + 29y^5 + 32y^4 + 25y^3 + 21y^2 + 17y + 5)^2$	
c_2, c_7, c_9 c_{11}	$y^{16} - 6y^{15} + \dots - 3y + 1$	
c_3, c_6	$y^{16} + 2y^{15} + \dots - 9y + 1$	
c_4, c_5, c_{10}	$(y^8 + 11y^7 + 47y^6 + 96y^5 + 90y^4 + 26y^3 - y^2 + 8y + 5)^2$	

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.061345 + 0.846216I		
a = 0.269977 + 0.738240I	-1.34598 + 4.15746I	-5.62925 - 7.50254I
b = -0.608149 + 0.273746I		
u = 0.061345 - 0.846216I		
a = 0.269977 - 0.738240I	-1.34598 - 4.15746I	-5.62925 + 7.50254I
b = -0.608149 - 0.273746I		
u = -0.061345 + 0.846216I		
a = 0.74103 - 1.31833I	-1.34598 - 4.15746I	-5.62925 + 7.50254I
b = 1.070140 + 0.707942I		
u = -0.061345 - 0.846216I		
a = 0.74103 + 1.31833I	-1.34598 + 4.15746I	-5.62925 - 7.50254I
b = 1.070140 - 0.707942I		
u = 0.628232 + 0.289290I		
a = -0.634558 - 0.611524I	-2.66853 + 4.46324I	-5.70149 - 4.65131I
b = -0.221742 - 0.567751I		
u = 0.628232 - 0.289290I		
a = -0.634558 + 0.611524I	-2.66853 - 4.46324I	-5.70149 + 4.65131I
b = -0.221742 + 0.567751I		
u = -0.628232 + 0.289290I		
a = -0.91910 - 1.42941I	-2.66853 - 4.46324I	-5.70149 + 4.65131I
b = 0.990925 + 0.632113I		
u = -0.628232 - 0.289290I		
a = -0.91910 + 1.42941I	-2.66853 + 4.46324I	-5.70149 - 4.65131I
b = 0.990925 - 0.632113I		
u = 1.54123I		
a = -0.322714 + 0.635595I	-8.98222	-7.40510
b = -0.979599 - 0.497378I		
u = -1.54123I		
a = -0.322714 - 0.635595I	-8.98222	-7.40510
b = -0.979599 + 0.497378I		

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.11611 + 1.54836I		
a = 0.610395 - 0.450323I	-9.31190 + 6.71368I	-4.58299 - 3.37058I
b = 0.768136 + 0.892821I		
u = 0.11611 - 1.54836I		
a = 0.610395 + 0.450323I	-9.31190 - 6.71368I	-4.58299 + 3.37058I
b = 0.768136 - 0.892821I		
u = -0.11611 + 1.54836I		
a = -0.537297 + 0.905219I	-9.31190 - 6.71368I	-4.58299 + 3.37058I
b = -1.33922 - 0.93704I		
u = -0.11611 - 1.54836I		
a = -0.537297 - 0.905219I	-9.31190 + 6.71368I	-4.58299 - 3.37058I
b = -1.33922 + 0.93704I		
u = 1.74759I		
a = -0.207724 + 0.389388I	-8.77819	-7.76740
b = -0.680492 - 0.363016I		
u = -1.74759I		
a = -0.207724 - 0.389388I	-8.77819	-7.76740
b = -0.680492 + 0.363016I		

$$\text{VI. } I_6^u = \\ \langle -u^3 - au - u^2 + b - 2u - 1, \ -u^3 a - u^3 + a^2 - 2au - 2u + 1, \ u^4 + u^3 + 3u^2 + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} + au + u^{2} + 2u + 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3}a + u^{2}a + u^{3} + 2au + u^{2} + a + 3u + 1 \\ -1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3}a + u^{2}a + u^{3} + 2au + u^{2} + a + 3u + 2 \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + au + a + 2u \\ au \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} + au + u^{2} + a + 2u + 1 \\ u^{3} + au + u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2}a + u^{3} + au + u^{2} + a + 2u + 1 \\ u^{2}a + au + a - u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2}a + u^{3} + au + u^{2} + a + 2u + 1 \\ u^{2}a + au + a - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^3 + 4u^2 + 12u 6$

Crossings	u-Polynomials at each crossing
c_{1}, c_{8}	$(u^4 - u^3 + u^2 + 1)^2$
c_2, c_7, c_9 c_{11}	$u^8 - u^7 - 2u^6 + 4u^5 + 9u^4 - u^3 - 7u^2 - u + 2$
c_3, c_6	$(u+1)^8$
c_4, c_5, c_{10}	$(u^4 + u^3 + 3u^2 + 2u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_8	$(y^4 + y^3 + 3y^2 + 2y + 1)^2$
c_2, c_7, c_9 c_{11}	$y^8 - 5y^7 + 30y^6 - 68y^5 + 119y^4 - 127y^3 + 83y^2 - 29y + 4$
c_3, c_6	$(y-1)^8$
c_4, c_5, c_{10}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.395123 + 0.506844I		
a = -0.570974 - 0.808855I	-3.07886 - 1.41510I	-10.17326 + 4.90874I
b = 0.987376 + 0.750545I		
u = -0.395123 + 0.506844I		
a = 0.02355 + 1.92973I	-3.07886 - 1.41510I	-10.17326 + 4.90874I
b = -0.635568 - 0.030203I		
u = -0.395123 - 0.506844I		
a = -0.570974 + 0.808855I	-3.07886 + 1.41510I	-10.17326 - 4.90874I
b = 0.987376 - 0.750545I		
u = -0.395123 - 0.506844I		
a = 0.02355 - 1.92973I	-3.07886 + 1.41510I	-10.17326 - 4.90874I
b = -0.635568 + 0.030203I		
u = -0.10488 + 1.55249I		
a = 0.729106 - 1.111840I	-10.08060 - 3.16396I	-13.82674 + 2.56480I
b = 0.797853 + 0.337246I		
u = -0.10488 + 1.55249I		
a = -0.181683 + 0.526191I	-10.08060 - 3.16396I	-13.82674 + 2.56480I
b = -1.64966 - 1.24854I		
u = -0.10488 - 1.55249I		
a = 0.729106 + 1.111840I	-10.08060 + 3.16396I	-13.82674 - 2.56480I
b = 0.797853 - 0.337246I		
u = -0.10488 - 1.55249I		
a = -0.181683 - 0.526191I	-10.08060 + 3.16396I	-13.82674 - 2.56480I
b = -1.64966 + 1.24854I		

VII. $I_7^u = \langle u^3 - u^2 + b + 2u - 1, -u^3 + a - 2u, u^4 - u^3 + 3u^2 - 2u + 1 \rangle$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} + 2u \\ -u^{3} + u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ -u^{3} + u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ -u^{3} + u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^3 + 4u^2 12u + 6$

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_7 \\ c_8, c_9, c_{11}$	$u^4 - u^3 + u^2 + 1$
c_3, c_6	u^4
c_4, c_5, c_{10}	$u^4 - u^3 + 3u^2 - 2u + 1$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_7 \\ c_8, c_9, c_{11}$	$y^4 + y^3 + 3y^2 + 2y + 1$
c_{3}, c_{6}	y^4
c_4, c_5, c_{10}	$y^4 + 5y^3 + 7y^2 + 2y + 1$

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.395123 + 0.506844I		
a = 0.547424 + 1.120870I	0.21101 + 1.41510I	1.82674 - 4.90874I
b = 0.351808 - 0.720342I		
u = 0.395123 - 0.506844I		
a = 0.547424 - 1.120870I	0.21101 - 1.41510I	1.82674 + 4.90874I
b = 0.351808 + 0.720342I		
u = 0.10488 + 1.55249I		
a = -0.547424 - 0.585652I	-6.79074 + 3.16396I	-1.82674 - 2.56480I
b = -0.851808 + 0.911292I		
u = 0.10488 - 1.55249I		
a = -0.547424 + 0.585652I	-6.79074 - 3.16396I	-1.82674 + 2.56480I
b = -0.851808 - 0.911292I		

VIII.
$$I_1^v = \langle a, \ b-1, \ v+1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5 c_8, c_{10}	u
c_2, c_6, c_9	u-1
c_3, c_7, c_{11}	u+1

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_8, c_{10}	y
c_2, c_3, c_6 c_7, c_9, c_{11}	y-1

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-3.28987	-12.0000
b = 1.00000		

IX. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_8	$ u(u^{4} - u^{3} + u^{2} + 1)^{3}(u^{7} + u^{5} + u^{4} - u - 1)^{2} $ $ \cdot (u^{10} + u^{9} + 7u^{8} + 4u^{7} + 23u^{6} + 9u^{5} + 40u^{4} + 9u^{3} + 33u^{2} + 2u + 10 $ $ \cdot (u^{16} + 5u^{14} + 16u^{12} + 29u^{10} + 32u^{8} + 25u^{6} + 21u^{4} + 17u^{2} + 5) $ $ \cdot ((u^{16} - u^{15} + \dots - 24u + 79)^{2})(u^{16} + 3u^{15} + \dots + 48u + 13) $
c_2, c_9	$(u-1)(u^{4}-u^{3}+u^{2}+1)(u^{8}-u^{7}+\cdots-u+2)$ $\cdot (u^{10}+u^{9}+\cdots-u+1)(u^{14}+u^{13}+\cdots+u+1)$ $\cdot (u^{16}+u^{15}+\cdots-6u+1)(u^{16}+2u^{15}+\cdots+5u+1)$ $\cdot (u^{32}-u^{31}+\cdots+400u+361)$
<i>c</i> ₃	$u^{4}(u+1)^{9}(u^{2}+u+1)^{8}(u^{4}+u^{3}-2u+1)^{8}$ $\cdot (u^{10}-9u^{9}+\cdots-15u+11)(u^{14}-13u^{13}+\cdots-329u+47)$ $\cdot (u^{16}+6u^{15}+\cdots-u+1)$
c_4, c_5, c_{10}	$u(u^{4} - u^{3} + 3u^{2} - 2u + 1)(u^{4} + u^{3} + 3u^{2} + 2u + 1)^{14}$ $\cdot (u^{7} - 4u^{6} + 11u^{5} - 20u^{4} + 26u^{3} - 23u^{2} + 14u - 4)^{2}$ $\cdot (u^{10} - 6u^{9} + \dots - 40u + 8)$ $\cdot (u^{16} + 11u^{14} + 47u^{12} + 96u^{10} + 90u^{8} + 26u^{6} - u^{4} + 8u^{2} + 5)$
<i>c</i> ₆	$u^{4}(u-1)(u+1)^{8}(u^{2}+u+1)^{8}(u^{4}+u^{3}-2u+1)^{8}$ $\cdot (u^{10}-9u^{9}+\cdots-15u+11)(u^{14}-13u^{13}+\cdots-329u+47)$ $\cdot (u^{16}-6u^{15}+\cdots+u+1)$
c_7, c_{11}	$(u+1)(u^{4}-u^{3}+u^{2}+1)(u^{8}-u^{7}+\cdots-u+2)$ $\cdot (u^{10}+u^{9}+\cdots-u+1)(u^{14}+u^{13}+\cdots+u+1)$ $\cdot (u^{16}-2u^{15}+\cdots-5u+1)(u^{16}+u^{15}+\cdots-6u+1)$ $\cdot (u^{32}-u^{31}+\cdots+400u+361)$

X. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y(y^{4} + y^{3} + 3y^{2} + 2y + 1)^{3}(y^{7} + 2y^{6} + y^{5} - 3y^{4} - 2y^{3} + 2y^{2} + y - 1)^{2}$ $\cdot (y^{8} + 5y^{7} + 16y^{6} + 29y^{5} + 32y^{4} + 25y^{3} + 21y^{2} + 17y + 5)^{2}$ $\cdot (y^{10} + 13y^{9} + \dots + 656y + 100)(y^{16} - 9y^{15} + \dots + 244y + 169)$ $\cdot (y^{16} + 19y^{15} + \dots + 44612y + 6241)^{2}$
c_2, c_7, c_9 c_{11}	$(y-1)(y^4 + y^3 + 3y^2 + 2y + 1)$ $\cdot (y^8 - 5y^7 + 30y^6 - 68y^5 + 119y^4 - 127y^3 + 83y^2 - 29y + 4)$ $\cdot (y^{10} - 3y^9 + 15y^8 - 20y^7 + 43y^6 - 17y^5 + 12y^4 + 7y^3 - 6y^2 - y + 1)$ $\cdot (y^{14} - 5y^{13} + \dots + y + 1)(y^{16} - 6y^{15} + \dots - 3y + 1)$ $\cdot (y^{16} - 5y^{15} + \dots - 12y + 1)(y^{32} - 11y^{31} + \dots - 2524550y + 130321)$
c_3, c_6	$y^{4}(y-1)^{9}(y^{2}+y+1)^{8}(y^{4}-y^{3}+6y^{2}-4y+1)^{8}$ $\cdot (y^{10}+3y^{9}+\cdots+1601y+121)(y^{14}-3y^{13}+\cdots+2397y+2209)$ $\cdot (y^{16}+2y^{15}+\cdots-9y+1)$
c_4, c_5, c_{10}	$y(y^{4} + 5y^{3} + 7y^{2} + 2y + 1)^{15}$ $\cdot (y^{7} + 6y^{6} + 13y^{5} + 16y^{4} + 32y^{3} + 39y^{2} + 12y - 16)^{2}$ $\cdot (y^{8} + 11y^{7} + 47y^{6} + 96y^{5} + 90y^{4} + 26y^{3} - y^{2} + 8y + 5)^{2}$ $\cdot (y^{10} + 10y^{9} + \dots + 160y + 64)$