

Álgebra booleana

Semana 02 - Clase 007

Introducción

El álgebra booleana nace de las propiedades de las proposiciones lógicas, el álgebra booleana se utiliza principalmente en compuertas lógicas y circuitos interruptores.

Definición

Un álgebra booleana tiene la forma $B=(S,+,\cdot,',0,1)$, y consiste en un conjunto S que contiene elementos distintos, donde obligatoriamente está incluido el 0,1, que representan el bottom y top respectivamente. Los símbolos + y \cdot son operadores binarios en S. Mientras que ' es un operador unitario y representa el complemento de un $a\in S$.

PROPIEDADES	Conmutativa	x+y = y+x	x·y = y·x
	Elemento neutro	0+x = x	1·x = x
	Distributiva	x-(y+z) =(x-y)+(y-z)	$x+(y\cdot z)=(x+y)(x+z)$
	Asociativa	x-(y-z) = (x-y)-z	x+(y+z) = (x+y)+z
-	Complementario	x+ x = 1	x· x = 0

Considerar que la mínima retícula S ("la más simple"), que cumple ser un álgebra de bool consta de dos elementos, de tal forma que $S=\{0,1\}$, por lo que $B=\{S,+,\cdot,',0,1\}$. De este modo 0'=1,1'=0.

Como ejemplo, $(P(S), \cup, \cap, ', \emptyset.S)$, es un álgebra booleana, pues podemos comprobar que cumple con todas las leyes (4 condiciones).

Propiedades

Existen dos propiedades principales, que utilizan los complementos, de tal forma que $(a+b)'=a'\cdot b'$. Mientras que su dual es $(a\cdot b)'=a'+b'$. Si nos damos cuenta, lo que cambia es el signo. Mientras que la bonus es $(a+b+c)'=a'\cdot b'\cdot c'$.

Para que sea considerada como álgebra booleana, una retícula debe ser acotada, distribuida y complementada. (Forma alternativa de definirla).

Retícula cubo n-dimensional

Si el diagrama de hasse de la retícula correspondiente a un conjunto con n elementos es etiquetado mediante sucesiones de ceros y unos de longitud n, entonces la retícula resultante se denota como B_n .

Para considerarse un álgebra de bool, su diagrama de hasse tiene que ser isomorfo al cubo n-dimensional. Además la cantidad de puntos tienen que ser una potencia de dos, tal que $|B_n|=2^n, (P(S),\subseteq)$.

Nota. Si una retícula finita $\,L\,$, no contiene $\,2^n\,$ elementos, para algún entero, no negativo $\,n\,$, se sabe que $\,L\,$, no puede ser un álgebra booleana.