

Section 6

Template Matching and Scale Invariant Feature Descriptors

Presentation by Asem Alaa

Template matching

- distance metric
- output: intensity image
- application: crop a single object (e.g cell) and predict where other such similar objects are in the image.
- Not rotation invariant
- good for approximately rounded objects
- good for regular shapes in consistent direction.

Find () in

Template matching Example

Method 0: Direct 2D correlation of the image with the template

$$y[m,n] = \sum_{k,l} h[k,l] x[m+k,n+l]$$

```
import numpy as np
from scipy.signal import correlate2d
def match_template_corr( x , temp ):
    y = np.empty(x.shape)
    y = correlate2d(x,temp,'same')
    return y
```


↑↑ False Positives

↑↑ False Positives

Method 1: Direct 2D correlation of the image with the zero-mean template

$$y[m,n] = \sum_{k,l} (h[k,l]-ar{h})x[m+k,n+l]$$

```
def match_template_corr_zmean( x , temp ):
    return match_template_corr(x , temp - temp.mean())
```


fewer FP

↓ FP

Method 2: SSD

$$y[m,n] = \sum_{k,l} (h[k,l] - x[m+k,n+l])^2$$

We need to avoid for loops!

$$=\sum_{k,l}h[k,l]^2-2\sum_{k,l}h[k,l]x[m+k,n+l]+\sum_{k,l}x[m+k,n+l]^2$$

$\sum_{k,l} h[k,l]^2$	$\sum_{k,l} h[k,l] x[m+k,n+l]$	$\sum_{k,l} x[m+k,n+l]^2$		
np.sum(h*h)	correlate2d(x,h)	<pre>correlate2d(x*x,np.ones(h.shape))</pre>		

Method 2: SSD (cont'd)

$$y[m,n] = \sum_{k,l} (h[k,l] - x[m+k,n+l])^2$$

We need to avoid for loops!

$$=\sum_{k,l}h[k,l]^2-2\sum_{k,l}h[k,l]x[m+k,n+l]+\sum_{k,l}x[m+k,n+l]^2$$

```
def match_template_ssd( x , temp ):
    term1 = np.sum( np.square( temp ))
    term2 = -2*correlate2d(x, temp, 'same')
    term3 = correlate2d( np.square( x ), np.ones(temp.shape), 'same' )
    return 1 - np.sqrt(ssd)
```

• Numerical stability?

Method 2: SSD (cont'd)

$$y[m,n] = \sum_{k,l} (h[k,l] - x[m+k,n+l])^2$$

We need to avoid for loops!

$$=\sum_{k,l}h[k,l]^2-2\sum_{k,l}h[k,l]x[m+k,n+l]+\sum_{k,l}x[m+k,n+l]^2$$

```
def match_template_ssd( x , temp ):
    term1 = np.sum( np.square( temp ))
    term2 = -2*correlate2d(x, temp,'same')
    term3 = correlate2d( np.square( x ), np.ones(temp.shape),'same' )
    ssd = np.maximum( term1 + term2 + term3 , 0 )
    return 1 - np.sqrt(ssd)
```

Method 2: SSD (cont'd)

```
def match_template_ssd( x , temp ):
    term1 = np.sum( np.square( temp ))
    term2 = -2*correlate2d(x, temp, 'same')
    term3 = correlate2d( np.square( x ), np.ones(temp.shape), 'same' )
    ssd = np.maximum( term1 + term2 + term3 , 0 )
    return 1 - np.sqrt(ssd)
```


Method 3: Normalized cross-correlation

$$\gamma[u,v] = rac{\sum_{x,y} (f[x,y] - ar{f_{u,v}}) (t[rac{f{x} - u,y - v}] - ar{t})}{\sqrt{\sum_{x,y} (f[x,y] - ar{f_{u,v}})^2 \sum_{x,y} (t[rac{f{x} - u,y - v}] - ar{t})^2}}$$

U							
		(-1,-1)	(0,-1)	(1,-1)			
٧		(-1,0)	(0,0)	(1,0)			
		(-1,1)	(0,1)	(1,1)			

In the above image $u=2, v=4, x\in 1, 2, 3$, and $y\in 3, 4, 5$

$$\gamma[u,v] = rac{\sum_{x,y} (f[x,y] - ar{f_{u,v}}) (t[extbf{x} - u,y-v] - ar{t})}{\sqrt{\sum_{x,y} (f[x,y] - ar{f_{u,v}})^2 \sum_{x,y} (t[extbf{x} - u,y-v] - ar{t})^2}}$$

Formula	Python		
$f_c = (f[x,y] - ar{f_{u,v}})$	<pre>f_c=f-correlate2d(f,np.ones(t.shape)/t.size)</pre>		
$t_c = (t[extbf{x} - extbf{u}, extbf{y} - extbf{v}] - ar{t})$	t_c=t-t.mean()		
$\sum_{x,y} f_c t_c$	correlate2d(f_c , t_c , 'same')		
$\sum_{x,y} f_c^2$	<pre>correlate2d(f_c * f_c , np.ones(t.shape))</pre>		
$\sum_{x,y} t_c^2$	np.sum(t_c * t_c)		

$$\gamma[u,v] = rac{\sum_{x,y} (f[x,y] - ar{f_{u,v}}) (t[extbf{x} - u,y-v] - ar{t})}{\sqrt{\sum_{x,y} (f[x,y] - ar{f_{u,v}})^2 \sum_{x,y} (t[extbf{x} - u,y-v] - ar{t})^2}}$$

```
def match_template_xcorr( f , t ):
    f_c = f - correlate2d( f , np.ones(t.shape)/np.prod(t.shape), 'same')
    t_c = t - t.mean()
    numerator = correlate2d( f_c , t_c , 'same' )
    d1 = correlate2d( np.square(f_c) , np.ones(t.shape), 'same')
    d2 = np.sum( np.square( t_c ))
    # to avoid sqrt of negative
    denumerator = np.sqrt( np.maximum( d1 * d2 , 0 ))
    return numerator/denumerator
```

Division by zero?

```
def match_template_xcorr( f , t ):
   f_c = f - correlate2d( f , np.ones(t.shape)/np.prod(t.shape), 'same')
   t c = t - t.mean()
   numerator = correlate2d( f_c , t_c , 'same' )
   d1 = correlate2d( np.square(f_c) , np.ones(t.shape), 'same')
   d2 = np.sum( np.square( t_c ))
   # to avoid sqrt of negative
   denumerator = np.sqrt( np.maximum( d1 * d2 , 0 ))
    response = np.zeros( f.shape )
   # mask to avoid division by zero
   valid = denumerator > np.finfo(np.float32).eps
    response[valid] = numerator[valid]/denumerator[valid]
    return response
```


{template_matching.ipnyb}