First-order logic

Chapter 7

Outline

- \diamondsuit Syntax and semantics of FOL
- ♦ Fun with sentences
- ♦ Wumpus world in FOL

Syntax of FOL: Basic elements

Constants KingJohn, 2, UCB,...

Predicates $Brother, >, \dots$

Functions $Sqrt, LeftLegOf, \dots$

Variables x, y, a, b, \dots

Connectives $\land \lor \neg \Rightarrow \Leftrightarrow$

Equality =

Quantifiers $\forall \exists$

Atomic sentences

```
Atomic sentence = predicate(term_1, ..., term_n)
or term_1 = term_2
```

Term = $function(term_1, ..., term_n)$ or constant or variable

E.g., Brother(KingJohn, RichardTheLionheart)> (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Complex sentences

Complex sentences are made from atomic sentences using connectives

$$\neg S$$
, $S_1 \wedge S_2$, $S_1 \vee S_2$, $S_1 \Rightarrow S_2$, $S_1 \Leftrightarrow S_2$

E.g.
$$Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn) > (1,2) \lor \le (1,2) > (1,2) \land \neg > (1,2)$$

Truth in first-order logic

Sentences are true with respect to a model and an interpretation

Model contains objects and relations among them

Interpretation specifies referents for

```
constant\ symbols 
ightarrow \underline{objects}
predicate\ symbols 
ightarrow \underline{relations}
function\ symbols 
ightarrow \underline{functional\ relations}
```

An atomic sentence $predicate(term_1, \ldots, term_n)$ is true iff the <u>objects</u> referred to by $term_1, \ldots, term_n$ are in the <u>relation</u> referred to by predicate

Models for FOL: Example

relations: sets of tuples of objects

functional relations: all tuples of objects + "value" object

Universal quantification

 $\forall \langle variables \rangle \langle sentence \rangle$

Everyone at Berkeley is smart:

$$\forall x \ At(x, Berkeley) \Rightarrow Smart(x)$$

 $\forall x \ P$ is equivalent to the conjunction of <u>instantiations</u> of P

$$At(KingJohn, Berkeley) \Rightarrow Smart(KingJohn)$$

 $\land At(Richard, Berkeley) \Rightarrow Smart(Richard)$

 $\land At(Berkeley, Berkeley) \Rightarrow Smart(Berkeley)$

**** ...

Typically, \Rightarrow is the main connective with \forall . Common mistake: using \land as the main connective with \forall :

$$\forall x \ At(x, Berkeley) \land Smart(x)$$

means "Everyone is at Berkeley and everyone is smart"

Existential quantification

 $\exists \langle variables \rangle \langle sentence \rangle$

Someone at Stanford is smart:

 $\exists x \ At(x, Stanford) \land Smart(x)$

 $\exists x \ P$ is equivalent to the disjunction of <u>instantiations</u> of P

 $At(KingJohn, Stanford) \land Smart(KingJohn)$

 $\lor At(Richard, Stanford) \land Smart(Richard)$

 $\vee At(Stanford, Stanford) \wedge Smart(Stanford)$

V ...

Typically, \wedge is the main connective with \exists .

Common mistake: using \Rightarrow as the main connective with \exists :

$$\exists x \ At(x, Stanford) \Rightarrow Smart(x)$$

is true if there is anyone who is not at Stanford!

Properties of quantifiers

 $\forall x \ \forall y$ is the same as $\forall y \ \forall x \ (\underline{\text{why}}??)$

 $\exists x \exists y$ is the same as $\exists y \exists x \ (\underline{\mathsf{why}}??)$

 $\exists x \ \forall y \ \text{is } \underline{\text{not}} \text{ the same as } \forall y \ \exists x$

 $\exists x \ \forall y \ Loves(x,y)$

"There is a person who loves everyone in the world"

 $\forall y \; \exists x \; Loves(x,y)$

"Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other

$$\forall x \ Likes(x, IceCream) \qquad \neg \exists x \ \neg Likes(x, IceCream)$$

$$\exists x \ Likes(x, Broccoli)$$
 $\neg \forall x \ \neg Likes(x, Broccoli)$

Fun with sentences

Brothers are siblings

.

"Sibling" is reflexive

One's mother is one's female parent

.

A first cousin is a child of a parent's sibling

.

.

$$\forall x, y \; Brother(x, y) \Leftrightarrow Sibling(x, y).$$

.

$$\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$$

.

$$\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) and Parent(x, y))$$

.

$$\forall x,y \; FirstCousin(x,y) \; \Leftrightarrow \; \exists \, p,ps \; Parent(p,x) \land Sibling(ps,p) \land Parent(ps,y)$$

Equality

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

E.g.,
$$1=2$$
 and $\forall x \times (Sqrt(x), Sqrt(x)) = x$ are satisfiable $2=2$ is valid

E.g., definition of (full) Sibling in terms of Parent:

$$\forall x, y \; Sibling(x, y) \Leftrightarrow \left[\neg (x = y) \land \exists m, f \; \neg (m = f) \land Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y) \right]$$

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t=5:

Tell
$$(KB, Percept([Smell, Breeze, None], 5))$$

Ask $(KB, \exists a \ Action(a, 5))$

I.e., does the KB entail any particular actions at t = 5?

Answer: Yes, $\{a/Shoot\}$ \leftarrow <u>substitution</u> (binding list)

Given a sentence S and a substitution σ ,

 $S\sigma$ denotes the result of plugging σ into S; e.g.,

S = Smarter(x, y)

 $\sigma = \{x/Hillary, y/Bill\}$

 $S\sigma = Smarter(Hillary, Bill)$

Ask(KB, S) returns some/all σ such that $KB \models S\sigma$

Knowledge base for the wumpus world

"Perception"

 $\begin{array}{ll} \forall \, b, g, t \; \; Percept([Smell, b, g], t) \, \Rightarrow \, Smelt(t) \\ \forall \, s, b, t \; \; Percept([s, b, Glitter], t) \, \Rightarrow \, AtGold(t) \end{array}$

Reflex: $\forall t \ AtGold(t) \Rightarrow Action(Grab, t)$

Reflex with internal state: do we have the gold already? $\forall t \ AtGold(t) \land \neg Holding(Gold, t) \Rightarrow Action(Grab, t)$

Holding(Gold, t) cannot be observed \Rightarrow keeping track of change is essential

Deducing hidden properties

Properties of locations:

$$\forall l, t \ At(Agent, l, t) \land Smelt(t) \Rightarrow Smelly(l)$$

 $\forall l, t \ At(Agent, l, t) \land Breeze(t) \Rightarrow Breezy(l)$

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect
$$\forall y \; Breezy(y) \Rightarrow \exists x \; Pit(x) \land Adjacent(x, y)$$

Causal rule—infer effect from cause

$$\forall x, y \ Pit(x) \land Adjacent(x, y) \Rightarrow Breezy(y)$$

Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy

<u>Definition</u> for the Breezy predicate:

$$\forall y \ Breezy(y) \Leftrightarrow [\exists x \ Pit(x) \land Adjacent(x,y)]$$

Keeping track of change

Facts hold in <u>situations</u>, rather than eternally E.g., Holding(Gold,Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL: Adds a situation argument to each non-eternal predicate E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function Result(a,s) is the situation that results from doing a is s

Describing actions I

"Effect" axiom—describe changes due to action $\forall s \ AtGold(s) \Rightarrow Holding(Gold, Result(Grab, s))$

"Frame" axiom—describe non-changes due to action $\forall s \; HaveArrow(s) \Rightarrow HaveArrow(Result(Grab, s))$

Frame problem: find an elegant way to handle non-change

- (a) representation—avoid frame axioms
- (b) inference—avoid repeated "copy-overs" to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary consequences—what about the dust on the gold, wear and tear on gloves, ...

Describing actions II

Successor-state axioms solve the representational frame problem

Each axiom is "about" a predicate (not an action per se):

P true afterwards \Leftrightarrow [an action made P true

∨ P true already and no action made P false]

For holding the gold:

$$\forall a, s \; Holding(Gold, Result(a, s)) \Leftrightarrow \\ [(a = Grab \land AtGold(s)) \\ \lor (Holding(Gold, s) \land a \neq Release)]$$

Making plans

Initial condition in KB:

$$At(Agent, [1, 1], S_0)$$

 $At(Gold, [1, 2], S_0)$

Query: $Ask(KB, \exists s \; Holding(Gold, s))$ i.e., in what situation will I be holding the gold?

Answer: $\{s/Result(Grab, Result(Forward, S_0))\}$ i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S_0 and that S_0 is the only situation described in the KB

Making plans: A better way

Represent plans as action sequences $[a_1, a_2, \ldots, a_n]$

PlanResult(p, s) is the result of executing p in s

Then the query $Ask(KB, \exists p \; Holding(Gold, PlanResult(p, S_0)))$ has the solution $\{p/[Forward, Grab]\}$

Definition of PlanResult in terms of Result:

$$\forall s \ PlanResult([], s) = s \\ \forall a, p, s \ PlanResult([a|p], s) = PlanResult(p, Result(a, s))$$

Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner

Summary

First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:

- conventions for describing actions and change in FOL
- can formulate planning as inference on a situation calculus KB