1. To show that $\not\cong_L$ is an equivalence relation I must prove it is

Reflexive: aRa for all $a \in X$

Symmetric: aRb implies bRa for all a,b, $\in X$

Transitive: aRb and bRc imply aRc for all a,b,c $\in X$

 $a \not\cong_L a$

If az∈L iff az∈L is true because az cannot both be in the language and not

 $a \not\cong_L b$ and $b \not\cong_L a$

If $az \in L$ iff $bz \in L$ then $bz \in L$ iff $az \in L$, this is true because in the first case if there is no string z that can be concatenated to make a=b then there would still not be any sting z that can make b=a

 $a \not\cong_L b$ and $b \not\cong_L c$ implies $a \not\cong_L c$

If $az1 \in L$ iff $bz1 \in L$ and $bz2 \in L$ iff $cz2 \in L$, because there is no string z1 that can make $bz1 \notin L$, and no z2 $bz2 \notin L$ than there is no string z3 that can make $az3 \in NL$ and $cz3 \in L$, so $a \not\cong_L c$

Example: is we have a Language L of 0,1 that only accepts strings that start with a 1.

If we have string a = 101 then $a \not\cong_L a$ is reflexive

If we have string b = 1 then $a \not\cong_L b$ implies $b \not\cong_L a$ is true because there is no string z to make az and bz not start with 1.

If we have string c = 1111 $a \not\cong_L b$ and $b \not\cong_L c$ implies $a \not\cong_L c$ because if there is no string z to make a and b not in language L, and no sting z to make b and c not in language L. Then there can't be any z to make a and c not in language L.

2. If there is a finite number of strings k, then there must be a limit to a length of a string I will call that H.

Let x and y be strings $\leq H$, and let L be any language of strings $\leq H$. We say that x and y are differentiable by L if some string $z\leq H$, exists whereby exactly one of the strings xz and yz is a member of L. Otherwise, for every string $z\leq H$, $z\neq L$ iff $y\neq L$ and we say that x and y are in differentiable by L.

HW1

Gavin Grob

October 29, 2014