Quaternion Attitude Estimation Using Vector Observations

F. Landis Markley¹ and Daniele Mortari²

Abstract

This paper contains a critical comparison of estimators minimizing Wahba's loss function. Some new results are presented for the QUaternion ESTimator (QUEST) and EStimators of the Optimal Quaternion (ESOQ and ESOQ2) to avoid the computational burden of sequential rotations in these algorithms. None of these methods is as robust in principle as Davenport's q method or the Singular Value Decomposition (SVD) method, which are significantly slower. Robustness is only an issue for measurements with widely differing accuracies, so the fastest estimators, the modified ESOQ and ESOQ2, are well suited to sensors that track multiple stars with comparable accuracies. More robust forms of ESOQ and ESOQ2 are developed that are intermediate in speed.

Introduction

In many spacecraft attitude systems, the attitude observations are naturally represented as unit vectors. Typical examples are the unit vectors giving the direction to the Sun or a star and the unit vector in the direction of the Earth's magnetic field. This paper will consider algorithms for estimating spacecraft attitude from vector measurements taken at a single time, which are known as "single-frame" methods or "point" methods, instead of filtering methods that employ information about spacecraft dynamics. Almost all single-frame algorithms are based on a problem proposed in 1965 by Grace Wahba [1]. Wahba's problem is to find the orthogonal matrix A with determinant +1 that minimizes the loss function

$$L(A) = \frac{1}{2} \sum_{i} a_{i} |\mathbf{b}_{i} - A\mathbf{r}_{i}|^{2}$$
 (1)

where $\{\mathbf{b}_i\}$ is a set of unit vectors measured in a spacecraft's body frame, $\{\mathbf{r}_i\}$ are the corresponding unit vectors in a reference frame, and $\{a_i\}$ are non-negative

¹Guidance, Navigation, and Control Center, NASA's Goddard Space Flight Center, Greenbelt, MD, landis.markley@gsfc.nasa.gov.

²Aerospace Engineering School, University of Rome, "La Sapienza," Rome, Italy, daniele@psm. uniromal.it, Visiting Associate Professor, Texas A&M University, College Station, TX.

weights. In this paper we choose the weights to be inverse variances, $a_i = \sigma_i^{-2}$, in order to relate Wahba's problem to Maximum Likelihood Estimation [2]. This choice differs from that of Wahba and many other authors, who assumed the weights normalized to unity.

It is possible and has proven very convenient to write the loss function as

$$L(A) = \lambda_0 - \operatorname{tr}(AB^{\mathrm{T}}) \tag{2}$$

with

$$\lambda_0 \equiv \sum_i a_i \tag{3}$$

and

$$B = \sum_{i} a_{i} \mathbf{b}_{i} \mathbf{r}_{i}^{\mathrm{T}} \tag{4}$$

Now it is clear that L(A) is minimized when the trace, $tr(AB^{T})$, is maximized.

This has a close relation to the orthogonal Procrustes problem, which is to find the orthogonal matrix A that is closest to B in the Frobenius norm (also known as the Euclidean, Schur, or Hilbert-Schmidt norm) [3]

$$||M||_F^2 \equiv \sum_{i,j} M_{ij}^2 = \text{tr}(MM^T)$$
 (5)

Now

$$||A - B||_F^2 = ||A||_F^2 + ||B||_F^2 - 2\operatorname{tr}(AB^{\mathrm{T}}) = 3 + ||B||_F^2 - 2\operatorname{tr}(AB^{\mathrm{T}})$$
 (6)

so Wahba's problem is equivalent to the orthogonal Procrustes problem with the proviso that the determinant of A must be ± 1 .

The purpose of this paper is to give an overview in a unified notation of algorithms for solving Wahba's problem, to provide accuracy and speed comparisons, and to present two significant enhancements of existing methods. The popular QUaternion EStimator (QUEST) and EStimators of the Optimal Quaternion (ESOQ and ESOQ2) algorithms avoid singularities by employing a rotated reference system. Methods introduced in this paper use information from an *a priori* quaternion estimate or from the diagonal elements of the *B* matrix to determine a desirable reference system, avoiding expensive sequential computations. Also, tests show that a first-order expansion in the loss function is adequate, avoiding the need for iterative refinement of the loss function, and motivating the introduction of new first-order versions of ESOQ and ESOQ2, which are at present the fastest known first-order methods for solving Wahba's problem.

First Solutions of Wahba's Problem

J. L. Farrell and J. C. Stuelpnagel [4], R. H. Wessner [5], J. R. Velman [6], J. E. Brock [7], R. Desjardins, and Wahba presented the first solutions of Wahba's problem. Farrell and Stuelpnagel noted that any real square matrix, including B, has the polar decomposition

$$B = WR \tag{7}$$

where W is orthogonal and R is symmetric and positive semidefinite. Then R can be diagonalized by

$$R = VDV^{\mathsf{T}} \tag{8}$$

where V is orthogonal and D is diagonal with elements arranged in decreasing order. The optimal attitude estimate is then given by

$$A_{opt} = WV \operatorname{diag}[1 \quad 1 \quad \det W]V^{\mathsf{T}} \tag{9}$$

In most cases, det W is positive and $A_{opt} = W$, but this is not guaranteed. Wessner and Brock independently proposed the alternative solution

$$A_{ont} = (B^{\mathsf{T}})^{-1} (B^{\mathsf{T}}B)^{1/2} = B(B^{\mathsf{T}}B)^{-1/2} \tag{10}$$

but the matrix inverses in equation (10) exist only if B is nonsingular, which means that a minimum of three vectors must be observed. it is well known that two vectors are sufficient to determine the attitude; and the method of Farrell and Stuelpnagel, as well as the other methods described in this paper, only require B to have rank two.

Singular Value Decomposition (SVD) Method

This method has not been widely used in practice, because of its computational expense, but it yields valuable analytic insights [8, 9]. The matrix B has the Singular Value Decomposition [3]

$$B = U\Sigma V^{\mathsf{T}} = U \operatorname{diag}[\Sigma_{11} \quad \Sigma_{22} \quad \Sigma_{33}]V^{\mathsf{T}} \tag{11}$$

where U and V are orthogonal, and the singular values obey the inequalities $\Sigma_{11} \ge \Sigma_{22} \ge \Sigma_{33} \ge 0$. Then

$$\operatorname{tr}(AB^{\mathsf{T}}) = \operatorname{tr}(AV \operatorname{diag}[\Sigma_{11} \quad \Sigma_{22} \quad \Sigma_{33}]U^{\mathsf{T}}) = \operatorname{tr}(U^{\mathsf{T}}AV \operatorname{diag}[\Sigma_{11} \quad \Sigma_{22} \quad \Sigma_{33}]) \quad (12)$$

The trace is maximized, consistent with the constraint det A = 1, by

$$U^{\mathsf{T}}A_{opt}V = \operatorname{diag}[1 \quad 1 \quad (\det U)(\det V)] \tag{13}$$

which gives the optimal attitude matrix

$$A_{opt} = U \operatorname{diag}[1 \quad 1 \quad (\det U) (\det V)]V^{\mathsf{T}} \tag{14}$$

The SVD solution is completely equivalent to the original solution by Farrell and Stuelpnagel, since equation (14) is identical to equation (9) with U = WV. The difference is that robust SVD algorithms exist now [3, 10]. In fact, computing the SVD is one of the most robust numerical algorithms.

It is convenient to define

$$s_1 \equiv \Sigma_{11}, \quad s_2 \equiv \Sigma_{22}, \quad \text{and} \quad s_3 \equiv (\det U)(\det V)\Sigma_{33}$$
 (15)

so that $s_1 \ge s_2 \ge |s_3|$. We will loosely refer to s_1 , s_2 , and s_3 as the singular values, although the third singular values of B is actually $|s_3|$. It is clear from equation (11) that redefinition of the basis vectors in the reference or body frame affects V or U, respectively, but does not affect the singular values.

The estimation error is characterized by the rotation angle error vector ϕ_{err} in the body frame, defined by

$$\exp[\boldsymbol{\phi}_{err} \times] = A_{true} A_{opt}^{\mathrm{T}} \tag{16a}$$

where $[\phi \times]$ is the cross product matrix

$$[\boldsymbol{\phi} \times] \equiv \begin{bmatrix} 0 & -\phi_3 & \phi_2 \\ \phi_3 & 0 & -\phi_1 \\ -\phi_2 & \phi_1 & 0 \end{bmatrix}$$
 (16b)

The SVD method gives the covariance of the rotation angle error vector as

$$P = U \operatorname{diag}[(s_2 + s_3)^{-1} (s_3 + s_1)^{-1} (s_1 + s_2)^{-1}]U^{\mathsf{T}}$$
 (16c)

Davenport's q Method

Davenport provided the first useful solution of Wahba's problem for spacecraft attitude determination [11, 12]. He parameterized the attitude matrix by a unit quaternion [13, 14]

$$q = \begin{bmatrix} \mathbf{q} \\ q_4 \end{bmatrix} = \begin{bmatrix} \mathbf{e} \sin(\phi/2) \\ \cos(\phi/2) \end{bmatrix} \tag{17}$$

as

$$A(q) = (q_4^2 - |\mathbf{q}|^2)I + 2\mathbf{q}\mathbf{q}^{\mathrm{T}} - 2q_4[\mathbf{q}\times]$$
 (18)

The rotation axis **e** and angle ϕ will be useful later. Since A(q) is a homogeneous quadratic function of q, we can write

$$tr(AB^{\mathsf{T}}) = q^{\mathsf{T}} K q \tag{19}$$

where K is the symmetric traceless matrix

$$K \equiv \begin{bmatrix} S - I \text{ tr } B & \mathbf{z} \\ \mathbf{z}^{\mathsf{T}} & \text{tr } B \end{bmatrix}$$
 (20)

with

$$S \equiv B + B^{\mathsf{T}} \quad \text{and} \quad \mathbf{z} \equiv \begin{bmatrix} B_{23} - B_{32} \\ B_{31} - B_{13} \\ B_{12} - B_{21} \end{bmatrix} = \sum_{i} a_{i} \mathbf{b}_{i} \times \mathbf{r}_{i}$$
 (21)

The optimal attitude is represented by the quaternion maximizing right side of equation (19), subject to the unit constraint |q| = 1, which is implied by equation (17). It is not difficult to see that the optimal quaternion is equal to the normalized eigenvector of K with the largest eigenvalue, i.e., the solution of

$$Kq_{opt} \equiv \lambda_{max}q_{opt} \tag{22}$$

With equations (2) and (19), this gives the optimized loss function as

$$L(A_{opt}) = \lambda_0 - \lambda_{max} \tag{23}$$

Very robust algorithms exist to solve the symmetric eigenvalue problem [3, 10].

The eigenvalues of the K matrix, $\lambda_{max} \equiv \lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \lambda_4 \equiv \lambda_{min}$, are related to the singular values by [11, 15]

$$\lambda_1 = s_1 + s_2 + s_3, \quad \lambda_2 = s_1 - s_2 - s_3, \quad \lambda_3 = -s_1 + s_2 - s_3,$$

$$\lambda_4 = -s_1 - s_2 + s_3$$
(24)

The eigenvalues sum to zero because K is traceless. There is no unique solution if the two largest eigenvalues of K are equal, or $s_2 + s_3 = 0$. This is not a failure of the q method; it means that the data are not sufficient to determine the attitude uniquely. Equation (16c) shows that the covariance is infinite in this case. This is expected, since the covariance should be infinite when the attitude is unobservable.

Quaternion Estimator (QUEST)

This algorithm, first applied in the MAGSAT mission in 1979, has been the most widely used algorithm for Wahba's problem [16, 17]. Equation (22) is equivalent to the two equations

$$[(\lambda_{max} + \text{tr } B)I - S]\mathbf{q} = q_4 \mathbf{z} \tag{25}$$

and

$$(\lambda_{max} - \operatorname{tr} B)q_4 = \mathbf{q}^{\mathsf{T}}\mathbf{z} \tag{26}$$

Equation (25) gives

$$\mathbf{q} = q_4[(\lambda_{max} + \operatorname{tr} B)I - S]^{-1}\mathbf{z}$$

$$= \{q_4/\det[(\lambda_{max} + \operatorname{tr} B)I - S]\}\operatorname{adj}[(\lambda_{max} + \operatorname{tr} B)I - S]\mathbf{z}$$
(27)

The optimal quaternion is then given by

$$q_{opt} = \frac{1}{\sqrt{\gamma^2 + |\mathbf{x}|^2}} \begin{bmatrix} \mathbf{x} \\ \gamma \end{bmatrix}$$
 (28)

where

$$\mathbf{x} = \operatorname{adj}[(\lambda_{max} + \operatorname{tr} B)I - S]\mathbf{z} = [\alpha I + (\lambda_{max} - \operatorname{tr} B)S + S^{2}]\mathbf{z}$$
 (29)

and

$$\gamma = \det[(\lambda_{max} + \operatorname{tr} B)I - S] = \alpha(\lambda_{max} + \operatorname{tr} B) - \det S$$
 (30)

with

$$\alpha = \lambda_{max}^2 - (\operatorname{tr} B)^2 + \operatorname{tr}(\operatorname{adj} S)$$
 (31)

The second form on the right sides of equations (29) and (30) follows from the Cayley-Hamilton Theorem [3, 17].

These computations require knowledge of λ_{max} , which is obtained by substituting equations (28) and (29) into equation (26), yielding

$$0 = \psi(\lambda_{max}) \equiv \gamma(\lambda_{max} - \operatorname{tr} B) - \mathbf{z}^{\mathsf{T}} [\alpha I + (\lambda_{max} - \operatorname{tr} B)S + S^{2}] \mathbf{z}$$
 (32)

Substituting α and γ from equations (30) and (31) gives a fourth-order equation in λ_{max} , which is simply the characteristic equation $\det(\lambda_{max}I-K)=0$. Shuster observed that λ_{max} can be easily obtained by Newton-Raphson iteration of equation (32) starting from λ_0 as the initial estimate, since equation (23) shows that λ_{max} is very close to λ_0 if the optimized loss function is small. In fact, a single iteration is generally sufficient. But numerical analysts know that solving the characteristic equation is an unreliable way to find eigenvalues, in general, so QUEST is in principle less robust than Davenport's original q method. The analytic solution of the quartic characteristic equation is slower and no more accurate than the iterative solution.

Shuster provided the first estimate of the covariance of the rotation angle error vector in the body frame as

$$P = \left[\sum_{i} a_{i} (I - \mathbf{b}_{i} \mathbf{b}_{i}^{\mathsf{T}})\right]^{-1}$$
(33)

He also showed that $2L(A_{opt})$ obeys a χ^2 probability distribution with $2n_{obs}-3$ degrees of freedom, to a good approximation and assuming Gaussian measurement errors, where n_{obs} is the number of vector observations. This can often provide a useful data quality check, as will be seen below.

The optimal quaternion is not defined by equation (28) if $\gamma^2 + |\mathbf{x}|^2 = 0$, so it is of interest to see when this condition arises. Applying the Cayley-Hamilton theorem twice to eliminate S^4 and S^3 after substituting equation (29) gives, with some tedious algebra

$$\gamma^2 + |\mathbf{x}|^2 = \gamma (d\psi/d\lambda) \tag{34}$$

where $\psi(\lambda)$ is the quartic function defined implicitly by equation (32). The discussion following equation (15) implies that $d\psi/d\lambda$ is invariant under rotations, since the coefficients in the polynomial $\psi(\lambda)$ depend only on the singular values of B [15]. The Newton-Raphson iteration for λ_{max} requires $d\psi/d\lambda$ to be nonzero, so $\gamma^2 + |\mathbf{x}|^2 = 0$ implies that $\gamma = 0$. This means that $(q_{opt})_4 = 0$ and the optimal attitude represents a 180° rotation. Shuster devised the method of sequential rotations to avoid this singular case [16–19].

Reference Frame Rotations

The $(q_{opt})_4 = 0$ singularity occurs because QUEST does not treat the four components of the quaternion on an equal basis. Davenport's q method avoids this singularity by treating the four components symmetrically, but some other methods have singularities similar to that in QUEST. These singularities can be avoided by solving for the attitude with respect to a reference coordinate frame related to the original frame by 180° rotations about the \mathbf{x} , \mathbf{y} , or \mathbf{z} coordinate axis. That is, we solve for one of the quaternions

$$q^{i} \equiv q \otimes \begin{bmatrix} \mathbf{e}_{i} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{q} \\ q_{4} \end{bmatrix} \otimes \begin{bmatrix} \mathbf{e}_{i} \\ 0 \end{bmatrix} = \begin{bmatrix} q_{4}\mathbf{e}_{i} - \mathbf{q} \times \mathbf{e}_{i} \\ -\mathbf{q} \cdot \mathbf{e}_{i} \end{bmatrix} \quad \text{for } i = 1, 2, 3$$
 (35)

where e is the unit vector along the ith coordinate axis. We use the convention of reference [14] for quaternion multiplication, rather than the historic convention. The products in equation (35) are trivial to implement by merely permuting and changing signs of the quaternion components. For example,

$$q^{\mathsf{T}} = [q_1, q_2, q_3, q_4]^{\mathsf{T}} \otimes [1, 0, 0, 0]^{\mathsf{T}} = [q_4, -q_3, q_2, -q_1]^{\mathsf{T}}$$
 (36)

The equations for the inverse transformations are the same, since a 180° rotation in the opposite direction has the same effect. These rotations are also easy to implement on the input data, since a rotation about axis i simply changes the signs of the jth and kth columns of the B matrix, where $\{i, j, k\}$ is a permutation of $\{1, 2, 3\}$. The reference system rotation is easily "undone" by equation (36) or its equivalent after the optimal quaternion has been computed.

The original QUEST implementation performed sequential rotations one axis at a time, until an acceptable reference coordinate system was found. It is clearly preferable to save computations by choosing a single desirable rotation as early in the

computation as possible. This can be accomplished by considering the components of an *a priori* quaternion, which is always available in a star tracker application since an *a priori* attitude estimate is needed to identify the stars in the tracker's field of view. If the fourth component of the *a priori* quaternion has the largest magnitude, no rotation is performed, while a rotation about the *i*th axis is performed if the *i*th component has the largest magnitude. Then equation (36) or its equivalent shows that the fourth component of the rotated quaternion will have the largest magnitude. This magnitude must be at least 1/2, but no larger magnitude can be guaranteed, because a unit quaternion may have all four components with magnitude 1/2. The use of a previous estimate as the *a priori* attitude guarantees $q_4 > \cos 82.5^\circ = 0.13$ in the rotated frame if rotations between successive estimates are less than 45° .

Fast Optimal Attitude Matrix (FOAM)

The singular value decomposition of B gives a convenient representation for adj B, det B, and $||B||_F^2$. These can be used to write the optimal attitude matrix as [15]

$$A_{opt} = (\kappa \lambda_{max} - \det B)^{-1} [(\kappa + ||B||_F^2) B + \lambda_{max} \operatorname{adj} B^{\mathsf{T}} - BB^{\mathsf{T}} B]$$
 (37)

where

$$\kappa \equiv \frac{1}{2} (\lambda_{max}^2 - ||B||_F^2) \tag{38}$$

It's important to note that all the quantities in equations (37) and (38) can be computed without performing the singular value decomposition. In this method, λ_{max} is found from

$$\lambda_{max} = \text{tr}(A_{opt}B^{T}) = (\kappa \lambda_{max} - \det B)^{-1}[(\kappa + ||B||_{F}^{2}) ||B||_{F}^{2} + 3\lambda_{max} \det B - \text{tr}(BB^{T}BB^{T})]$$
(39)

or, after some matrix algebra

$$0 = \psi(\lambda_{max}) \equiv (\lambda_{max}^2 - \|B\|_F^2)^2 - 8\lambda_{max} \det B - 4\|\operatorname{adj} B\|_F^2$$
 (40)

Equations (32) and (40) for $\psi(\lambda_{max})$ would be numerically identical with infinite-precision computations, but the FOAM form of the coefficients is less subject to errors arising in finite-precision computations.

The FOAM algorithm gives the error covariance as

$$P = (\kappa \lambda_{max} - \det B)^{-1} (\kappa I + BB^{T})$$
(41)

A quaternion can be extracted from A_{opt} , with a cost of 13 MATLAB flops. This has several advantages: the four-component quaternion is more economical than the nine-component attitude matrix, easier to interpolate, and more easily normalized if A_{opt} is not exactly orthogonal due to computational errors [19].

Estimator Of The Optimal Quaternion (ESOQ Or ESOQ1)

Davenport's eigenvalue equation, equation (22), says that the optimal quaternion is orthogonal to all the columns of the matrix

$$H \equiv K - \lambda_{max} I \tag{42}$$

which means that it must be orthogonal to the three-dimensional subspace spanned by the columns of H. The optimal quaternion is conveniently computed as the generalized four-dimensional cross-product of any three columns of this matrix [20–22].

Another way of seeing this result is to examine the classical adjoint of H. Representing K in terms of its eigenvalues and eigenvectors and using the orthonormality of the eigenvectors gives, for any scalar λ

$$\operatorname{adj}(K - \lambda I) = \operatorname{adj}\left[\sum_{\mu=1}^{4} (\lambda_{\mu} - \lambda)q_{\mu}q_{\mu}^{\mathsf{T}}\right] = \sum_{\mu=1}^{4} (\lambda_{\nu} - \lambda)(\lambda_{\rho} - \lambda)(\lambda_{\tau} - \lambda)q_{\mu}q_{\mu}^{\mathsf{T}}$$
(43)

We use Greek indices to label different quaternions, to avoid confusion with Latin indices used to label quaternion components; and let $\{\mu, \nu, \rho, \tau\}$ denote a permutation of $\{1, 2, 3, 4\}$. Setting $\lambda = \lambda_{max} \equiv \lambda_1$ causes all the terms in this sum to vanish except the first, with the result

$$adj H = (\lambda_2 - \lambda_{max})(\lambda_3 - \lambda_{max})(\lambda_4 - \lambda_{max})q_{opt}q_{opt}^{T}$$
(44)

Thus q_{opt} can be computed by normalizing any nonzero column of adj H, which we denote by index k. Let F denote the symmetric 3×3 matrix obtained by deleting the kth row and kth column from H, and let f denote the three-component column vector obtained by deleting the kth element from the kth column of H. Then the kth element of the optimal quaternion is given by

$$(q_{opt})_k = -c \det F \tag{45}$$

and the other three elements are

$$(q_{opt})_{1,\dots,k-1,\,k+1,\dots,4} = c(\operatorname{adj} F)\mathbf{f}$$
(46)

where the coefficient c is determined by normalizing the quaternion. It is desirable to let k denote the column with the maximum Euclidean norm, which equation (44) shows to be the column containing the maximum diagonal element of the adjoint. Computing all the diagonal elements of adj H, though not as burdensome as QUEST's sequential rotations, is somewhat expensive; but this computation can be avoided by using an a priori quaternion as in QUEST. In the ESOQ case, however, no rotation is performed; we merely choose k to be the index of the element of the a priori quaternion with maximum magnitude.

The original formulation of ESOQ used the analytic solution of the characteristic equation [23]; but the analytic formula sometimes gives complex eigenvalues, which is theoretically impossible for a real symmetric matrix. These errors arise from inaccurate values of the coefficients of the quartic characteristic equation, not from the solution method. It is faster, and equally accurate, to compute λ_{max} by iterative solution of equation (40). Equation (32) would give a faster solution, but it would be less robust, and an even more efficient solution is described below.

First Order Update (ESOQ1.1)

Test results show that higher-order updates do not improve the performance of the iterative methods, providing motivation for developing a first-order approximation. The matrix H can be expanded to first order in $\Delta \lambda \equiv \lambda_0 - \lambda_{max}$ as

$$H = H^0 + (\Delta \lambda)I \tag{47}$$

where

$$H^0 \equiv K - \lambda_0 I \tag{48}$$

The vector \mathbf{f} does not depend on λ_{max} , which only appears in the diagonal elements of H; but the matrix F depends on λ_{max} , giving

$$F = F^0 + (\Delta \lambda)I \tag{49}$$

where F^0 is derived from H^0 in the same way that F is derived from H. Matrix identities give

$$\operatorname{adj} F = \operatorname{adj} F^{0} + \Delta \lambda [(\operatorname{tr} F^{0})I - F^{0}]$$
(50)

and

$$\det F = \det F^0 + (\Delta \lambda) \operatorname{tr}(\operatorname{adj} F^0)$$
 (51)

to first order in $\Delta\lambda$. The characteristic equation can be expressed to the same order as

$$0 = \det H = (H_{kk}^0 + \Delta \lambda) \det F - \mathbf{f}^{\mathsf{T}} (\operatorname{adj} F) \mathbf{f}$$

= $H_{kk}^0 \det F^0 - \mathbf{f}^{\mathsf{T}} \mathbf{g} + [H_{kk}^0 \operatorname{tr} (\operatorname{adj} F^0) + \det F^0 - \mathbf{f}^{\mathsf{T}} \mathbf{h}] \Delta \lambda$ (52)

where

$$\mathbf{g} \equiv (\operatorname{adj} F^0)\mathbf{f} \tag{53}$$

and

$$\mathbf{h} \equiv [(\operatorname{tr} F^0)I - F^0]\mathbf{f} \tag{54}$$

Equation (52) is easily solved for $\Delta \lambda \equiv \lambda_0 - \lambda_{max}$, and then the first order quaternion estimate is given by

$$(q_{opt})_k = -c[\det F^0 + (\Delta \lambda) \operatorname{tr}(\operatorname{adj} F^0)]$$
(55)

and

$$(q_{opt})_{1,\dots,k-1,k+1,\dots,4} = c(\mathbf{g} + \mathbf{h}\Delta\lambda)$$
(56)

Second Estimator Of The Optimal Quaternion (ESOQ2)

This algorithm uses the rotation axis/angle form of the optimal quaternion, as given in equation (17). Substituting these into equations (25) and (26) gives

$$(\lambda_{max} - \operatorname{tr} B)\cos(\phi/2) = \mathbf{z}^{\mathsf{T}}\mathbf{e} \sin(\phi/2) \tag{57}$$

and

$$\mathbf{z} \cos(\phi/2) = [(\lambda_{max} + \text{tr } B)I - S]\mathbf{e} \sin(\phi/2)$$
 (58)

Multiplying equation (58) by $(\lambda_{max} - \text{tr } B)$ and substituting equation (57) gives

$$Me \sin(\phi/2) = 0 \tag{59}$$

where

$$M = (\lambda_{max} - \operatorname{tr} B)[(\lambda_{max} + \operatorname{tr} B)I - S] - \mathbf{z}\mathbf{z}^{\mathrm{T}} = [\mathbf{m}_{1} : \mathbf{m}_{2} : \mathbf{m}_{3}]$$
 (60)

These computations lose numerical significance if $(\lambda_{max} - \text{tr } B)$ and \mathbf{z} are both close to zero, which would be the case for zero rotation angle. We can always avoid this singular condition by using one of the sequential reference system rotations [16–18] to ensure that tr B is less than or equal to zero. If we rotate the reference frame about the ith axis

$$(\operatorname{tr} B)_{rotated} = (B_{ii} - B_{jj} - B_{kk})_{unrotated} = (2B_{ii} - \operatorname{tr} B)_{unrotated}$$
(61)

where $\{i, j, k\}$ is a permutation of $\{1, 2, 3\}$. Thus no rotation is performed in ESOQ2 if tr B is the minimum of $\{B_{11}, B_{22}, B_{33}, \text{tr } B\}$, while a rotation about the ith axis is performed if B_{ii} is the minimum. This will ensure the most negative value for the trace in the rotated frame. As in the QUEST case, the rotation is easily "undone" by equation (36) or its equivalent after the quaternion has been computed. Note that efficiently finding an acceptable rotated frame for ESOQ2 does not require an a priori attitude estimate.

Equation (59) says that the rotation axis is a null vector of M. The columns of adj M are the cross products of the columns of M, given as

$$adj M = [\mathbf{m}_2 \times \mathbf{m}_3 : \mathbf{m}_3 \times \mathbf{m}_1 : \mathbf{m}_1 \times \mathbf{m}_2]$$
 (62)

Because M is singular, all these columns are parallel, and all are parallel to the rotation axis e. Thus we set

$$\mathbf{e} = \mathbf{y}/|\mathbf{y}| \tag{63}$$

where y is the column of adj M (i.e., the cross product) with maximum norm. Because M is symmetric, it is only necessary to find the maximum diagonal element of its adjoint to determine which column to use.

The rotation angle is found from equation (57) or one of the components of equation (58). We will show that equation (57) is the best choice. Comparing equation (20) with the eigenvector/eigenvalue expansion

$$K = \sum_{\mu=1}^{h} \lambda_{\mu} q_{\mu} q_{\mu}^{\mathsf{T}} \tag{64}$$

establishes the identities

$$\operatorname{tr} B = \sum_{\mu=1}^{4} \lambda_{\mu} (q_{\mu})_{4}^{2} \tag{65}$$

and

$$\mathbf{z} = \sum_{\mu=1}^{4} \lambda_{\mu} (q_{\mu})_{4} \mathbf{q}_{\mu} \tag{66}$$

Using equation (65) and the orthonormality of the eigenvectors of K, we find that

$$|\mathbf{z}|^2 = \sum_{\mu=1}^4 \lambda_{\mu}^2 (q_{\mu})_4^2 - (\text{tr } B)^2$$
 (67)

This equation and $\sum_{\mu=1}^{4} (q_{\mu})_{4}^{2} = 1$ give the inequality

$$|\mathbf{z}| \leq \max_{\mu=1,\dots,4} |\lambda_{\mu}| = \max(\lambda_{max}, -\lambda_{min})$$
 (68)

This shows that choosing the rotated reference system that provides the most negative value of tr B makes equation (57) the best equation to solve for the rotation angle. With equation (63), this can be written

$$(\lambda_{max} - \text{tr } B) |\mathbf{y}| \cos(\phi/2) = (\mathbf{z} \cdot \mathbf{y}) \sin(\phi/2)$$
 (69)

which means that there is some scalar η for which

$$\cos(\phi/2) = \eta(\mathbf{z} \cdot \mathbf{y}) \tag{70}$$

and

$$\sin(\phi/2) = \eta(\lambda_{max} - \text{tr } B) |\mathbf{y}| \tag{71}$$

Substituting into equation (17) and using equation (63) gives the optimal quaternion as [24, 25]

$$q_{opt} = \frac{1}{\sqrt{|(\lambda_{max} - \text{tr } B)\mathbf{y}|^2 + (\mathbf{z} \cdot \mathbf{y})^2}} \begin{bmatrix} (\lambda_{max} - \text{tr } B)\mathbf{y} \\ \mathbf{z} \cdot \mathbf{y} \end{bmatrix}$$
(72)

Note that it is not necessary to normalize the rotation axis. ESOQ2 does not define the rotation axis uniquely if M has rank less than two. This includes the usual case of unobservable attitude and also the case of zero rotation angle. Requiring tr B to be non-positive avoids zero rotation angle singularity, however. We compute λ_{max} by iterative solution of equation (40) in the general case, as for ESOQ.

First Order Update (ESOQ2.1)

The motivation for and development of this algorithm are similar to those of the first order update used in ESOQ1.1. The matrix M can be expanded to first order in $\Delta \lambda \equiv \lambda_0 - \lambda_{max}$ as

$$M = M^0 + (\Delta \lambda)N \tag{73}$$

where

$$M^{0} = (\lambda_{0} - \text{tr } B)[(\lambda_{0} + \text{tr } B)I - S] - \mathbf{z}\mathbf{z}^{T} = [\mathbf{m}_{1}^{0} \vdots \mathbf{m}_{2}^{0} \vdots \mathbf{m}_{3}^{0}]$$
(74)

and

$$N \equiv S - 2\lambda_0 I = [\mathbf{n}_1 : \mathbf{n}_2 : \mathbf{n}_3] \tag{75}$$

To this same order, we have

$$\mathbf{y} \equiv \mathbf{m}_{i} \times \mathbf{m}_{j} = (\mathbf{m}_{i}^{0} + \mathbf{n}_{i}\Delta\lambda) \times (\mathbf{m}_{j}^{0} + \mathbf{n}_{j}\Delta\lambda) = \mathbf{y}^{0} + \mathbf{p}\Delta\lambda \tag{76}$$

where

$$\mathbf{y}^0 \equiv \mathbf{m}_i^0 \times \mathbf{m}_i^0 \tag{77}$$

and

$$\mathbf{p} \equiv \mathbf{m}_{i}^{0} \times \mathbf{n}_{i} + \mathbf{n}_{i} \times \mathbf{m}_{i}^{0} \tag{78}$$

The maximum eigenvalue can be found from the condition that M is singular. This gives the first-order approximation

$$0 = \det \mathbf{M} = (\mathbf{m}_{i} \times \mathbf{m}_{j}) \cdot \mathbf{m}_{k} = (\mathbf{y}^{0} + \mathbf{p}\Delta\lambda) \cdot (\mathbf{m}_{k}^{0} + \mathbf{n}_{k}\Delta\lambda)$$
$$= \mathbf{y}^{0} \cdot \mathbf{m}_{k}^{0} + (\mathbf{y}^{0} \cdot \mathbf{n}_{k} + \mathbf{m}_{k}^{0} \cdot \mathbf{p})\Delta\lambda$$
(79)

where $\{i, j, k\}$ is a cyclic permutation of $\{1, 2, 3\}$. This is solved for $\Delta\lambda$ and the attitude estimate is found by substituting equation (76) and $\lambda_{max} = \lambda_0 - \Delta\lambda$ into equation (72).

There is an interesting relation between the eigenvalue condition $det M(\lambda) = 0$ used in ESOQ2.1 and the condition $\psi(\lambda) = 0$ used in other algorithms. Since $M(\lambda)$ is a 3 × 3 matrix quadratic in λ , the eigenvalue condition is of sixth order in λ . Straightforward matrix algebra shows that

$$\det M(\lambda) = (\lambda - \operatorname{tr} B)^2 \psi(\lambda) \tag{80}$$

Thus det $M(\lambda)$ has the four roots of $\psi(\lambda)$, the eigenvalues of Davenport's K matrix, and an additional double root at tr B. Choosing the rotated reference frame maximizing -tr B ensures that this double root is far from the desired root at λ_{max} .

Tests

We test the accuracy and speed of MATLAB implementations of these methods, using simulated data. The q and SVD methods use the functions eig and svd, respectively; the others use the equations in this paper. MATLAB uses IEEE double-precision floating-point arithmetic, in which the numbers have approximately sixteen significant decimal digits [26].

We analyze three test scenarios. In all these scenarios, the pointing of one space-craft axis, which we take to be the spacecraft \mathbf{x} axis, is much better determined that the rotation about this axis. This is a very common case that arises in spacecraft that point a single instrument (like an astronomical telescope) very precisely. This is also a characteristic of attitude estimates from a single narrow-field-of-view star tracker, where the rotation about the tracker boresight is much less well determined than the pointing of the boresight. The \mathbf{x} axis error and the \mathbf{yz} error, which is the error about an axis orthogonal to the \mathbf{x} axis and determines the \mathbf{x} axis pointing, are computed from an error quaternion q_{err} by writing

$$q_{err} = \begin{bmatrix} \mathbf{q}_{err} \\ q_{err4} \end{bmatrix} = \begin{bmatrix} \mathbf{e}_{x} \sin(\phi_{x}/2) \\ \cos(\phi_{x}/2) \end{bmatrix} \otimes \begin{bmatrix} \mathbf{e}_{yz} \sin(\phi_{yz}/2) \\ \cos(\phi_{yz}/2) \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{e}_{x} \cos(\phi_{yz}/2)\sin(\phi_{x}/2) + \mathbf{e}_{yz} \cos(\phi_{x}/2)\sin(\phi_{yz}/2) - (\mathbf{e}_{x} \times \mathbf{e}_{yz})\sin(\phi_{x}/2)\sin(\phi_{yz}/2) \\ \cos(\phi_{x}/2)\cos(\phi_{yz}/2) \end{bmatrix}$$
(81)

where $\mathbf{e}_x = [1 \ 0 \ 0]^T$ and \mathbf{e}_{yz} is a unit vector orthogonal to \mathbf{e}_x . We can always find ϕ_x in $[-\pi, \pi]$ and ϕ_{yz} in $[0, \pi]$ by selecting \mathbf{e}_{yz} appropriately. Then, since \mathbf{e}_{yz} and $\mathbf{e}_x \times \mathbf{e}_{yz}$ form an orthonormal basis for the y-z (or 2-3) plane, the error angles are given by

$$\phi_x = 2 \tan^{-1}(q_{err1}/q_{err4}) \tag{82}$$

and

$$\phi_{yz} = 2 \sin^{-1}(\sqrt{q_{err2}^2 + q_{err3}^2})$$
 (83)

Equations (82) and (83) would be unchanged if the order of the rotations about e_x and e_{yz} were reversed; only the unit vector e_{yz} would be different.

The magnitude ϕ_{err} of the rotation angle error vector defined by equation (16a) is given by

$$\cos(\phi_{err}/2) = q_{err4} = \cos(\phi_x/2)\cos(\phi_{yz}/2)$$
 (84)

Thus $\phi_{err}/2$ is the hypotenuse of a right spherical triangle with sides $\phi_x/2$ and $\phi_{yz}/2$. The angles ϕ_x and ϕ_{yz} are the spherical trigonometry equivalents of two orthogonal components of the error vector.

First Test Scenario

The first scenario simulates an application for which the QUEST algorithm has been widely used. A single star tracker with a narrow field of view and boresight at $[1,0,0]^T$ is assumed to track five stars at

$$\mathbf{b}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{b}_{2} = \begin{bmatrix} 0.99712 \\ 0.07584 \\ 0 \end{bmatrix}, \quad \mathbf{b}_{3} = \begin{bmatrix} 0.99712 \\ -0.07584 \\ 0 \end{bmatrix},$$

$$\mathbf{b}_{4} = \begin{bmatrix} 0.99712 \\ 0 \\ 0.07584 \end{bmatrix}, \quad \text{and} \quad \mathbf{b}_{5} = \begin{bmatrix} 0.99712 \\ 0 \\ -0.07584 \end{bmatrix}$$
(85)

We simulate 1000 test cases with uniformly distributed random attitude matrices, which we use to map the five observation vectors to the reference frame. The reference vectors are corrupted by Gaussian random noise with equal standard deviations of 6 arcseconds per axis and then normalized. Equation (33) gives the covariance for the star tracker scenario as

$$P = (6 \text{ arcsec})^2 \left[5I - \sum_{i=1}^{5} \mathbf{b}_i \mathbf{b}_i^{\mathrm{T}} \right]^{-1} = \text{diag}[1565, 7.2, 7.2] \text{ arcsec}^2$$
 (86)

which gives the standard deviations of the attitude estimation errors as

$$\sigma_x = \sqrt{1565}$$
 arcsec = 40 arcsec and $\sigma_{yz} = \sqrt{7.2 + 7.2}$ arcsec = 3.8 arcsec (87)

This is a very favorable five-star case, since the stars are uniformly and symmetrically distributed across the tracker's field of view. One advantage of simulating a fixed star distribution and applying Gaussian noise to the reference vectors rather than the observation vectors is that equations (85–87) are always valid, and the predicted covariance can be compared with the results of the Monte Carlo simulation.

The loss function is computed with measurement variances in (radians)², since this results in $2L(A_{opt})$ approximately obeying a χ^2 distribution. The minimum and maximum values of the loss function in the 1000 test runs are 0.23 and 12.1, respectively. The probability distribution of the loss function is plotted as the solid line in Fig. 1, and several values of $P(\chi^2 | \nu)$ for $\chi^2 = 2L(A_{opt})$ and $\nu = 2n_{obs} - 3 = 7$ are plotted as circles [23]. The agreement is seen to be excellent, which indicates that the measurement weights accurately reflect the normally-distributed measurement errors for this scenario.

The RSS (outside of parentheses) and the maximum (in parentheses) estimation errors over the 1000 cases for the star tracker scenario are presented in Table 1. The q method and the SVD method should both give the truly optimal solution, since they are based on robust matrix analysis algorithms [3, 10]. The q method is taken as optimal by definition, so no estimated-to-optimal differences are presented for this algorithm, and the differences between the SVD and q methods provide an estimate of the computational errors of both methods. No estimate of the loss function is provided when no update of λ_{max} is performed, accounting for the lack of entries in the loss function column in the tables for these cases.

The loss function is computed exactly by both the q and SVD methods, in principle. Equation (3) gives $\lambda_0 = 5.9 \times 10^9 \text{ rad}^{-2}$ for this scenario, so the expected errors in double-precision machine computation of λ_{max} and thus of the loss function is on the order of 10^{-16} times this, or about 10^{-6} , in rough agreement with the difference shown in the table. In fact, all the algorithms that compute the loss function

FIG. 1. Empirical (Solid Line) and Theoretical (Circles) Loss Function Distribution for the Seven-Degree-of-Freedom Star Tracker Scenario.

TABLE 1. Estimation Errors for Star Tracker Scenario

		RSS (max) estimated-to-optimal			RSS (max) estimated-to-true	
Algorithm λ_{max} iterations		loss function	x (arcsec)	yz (arcsec)	x (arcsec)	yz (arcsec)
q	_	_	_		38.41 (122.5)	3.829 (9.252)
SVD	_	$0.4 (1.8) \times 10^{-5}$	$1.4 (5.6) \times 10^{-8}$	$0.8(2.9) \times 10^{-10}$	38.41 (122.5)	3.829 (9.252)
FOAM	0		0.014 (0.078)	$9.7(36) \times 10^{-5}$	38.41 (122.5)	3.829 (9.252)
	1	$0.4 (1.6) \times 10^{-5}$	$1.5(5.6) \times 10^{-8}$	$26 (104) \times 10^{-10}$	38.41 (122.5)	3.829 (9.252)
	2	$0.4 (1.7) \times 10^{-5}$	$1.5(5.6) \times 10^{-8}$	$26 (88) \times 10^{-10}$	38.41 (122.5)	3.829 (9.252)
QUEST	0	_	0.015 (0.078)	$9.6 (36) \times 10^{-5}$	38.41 (122.5)	3.829 (9.252)
	1	$2.5 (7.2) \times 10^{-5}$	$10.1 (46) \times 10^{-8}$	$6.1 (26) \times 10^{-10}$	38.41 (122.5)	3.829 (9.252)
	2	$2.9 (8.4) \times 10^{-5}$	$11.1 (50) \times 10^{-8}$	$7.2(25) \times 10^{-10}$, ,	3.829 (9.252)
ESOQ2	0	_	0.014 (0.078)	$9.7(36) \times 10^{-5}$, ,	3.829 (9.252)
`	1	$0.4 (1.7) \times 10^{-5}$	$1.5 (6.1) \times 10^{-8}$	$2.0 (10) \times 10^{-10}$		3.829 (9.252)
	2	$0.4(1.8) \times 10^{-5}$	$1.5(6.1) \times 10^{-8}$	$2.1 (11) \times 10^{-10}$		3.829 (9.252)
ESOQ2.1		$0.4 (1.6) \times 10^{-5}$	$1.5 (5.9) \times 10^{-8}$	$1.9(12) \times 10^{-10}$. ,	3.829 (9.252)
ESOQ	0	_	0.015 (0.078)	$9.6(36) \times 10^{-5}$. ,	3.829 (9.252)
	1	$0.4 (1.7) \times 10^{-5}$	$1.5 (6.2) \times 10^{-8}$	$9.6(39) \times 10^{-10}$, ,	3.829 (9.252)
	2	$0.4 (1.8) \times 10^{-5}$	$1.5 (6.2) \times 10^{-8}$	$9.6 (39) \times 10^{-10}$, ,	3.829 (9.252)
ESOQ1.1	1	$1.0 (5.3) \times 10^{-5}$	$4.1 (24) \times 10^{-8}$	$7.0 (29) \times 10^{-10}$, ,	3.829 (9.252)

give nearly the same accuracy in this scenario. The table also shows show that one Newton-Raphson iteration for λ_{max} is always sufficient, with a second iteration providing no practical improvement.

Although the attitude estimates of the different algorithms in Table 1 may be closer or farther from the optimal estimate, all the algorithms provide estimates that are equally close to the true attitude. The number of digits presented in the table is chosen to emphasize this point, but these digits are not all significant; the results of 1000 different random cases would not agree with these cases to more than two decimal places. The smallest angle differences in the table, about 10^{-10} arcseconds, are equal to 5×10^{-16} radians, which is at the limit of double precision math. The differences between the estimated and optimal values further show that no update of λ_{max} is required in this scenario, since the estimates using λ_0 are equally close to the truth. Finally, it is apparent that the covariance estimate of equation (86) is quite accurate.

Second Test Scenario

The second scenario uses three observations with widely varying accuracies to provide a difficult test case for the algorithms under consideration. The three observation vectors are

$$\mathbf{b}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{b}_{2} = \begin{bmatrix} -0.99712 \\ 0.07584 \\ 0 \end{bmatrix}, \quad \text{and} \quad \mathbf{b}_{3} = \begin{bmatrix} -0.99712 \\ -0.07584 \\ 0 \end{bmatrix}$$
(88)

We simulate 1000 test cases as in the star tracker scenario, but with Gaussian noise of one arcsecond per axis on the first observation and 1° per axis on the other two. This models the case that the first observation is from an onboard astronomical telescope, and the other two observations are from a coarse Sun sensor and a magnetometer, for example. A very accurate estimate of the orientation of the x axis is required in such an application, but the rotation about this axis is expected to be fairly poorly determined. This is reflected by the predicted covariance in this scenario, which is to a very good approximation

$$P = \operatorname{diag}\left[\frac{1}{2}(1 - 0.99712^{2})^{-1} \operatorname{deg}^{2}, 1 \operatorname{arcsec}^{2}, 1 \operatorname{arcsec}^{2}\right]$$
 (89)

giving

$$\sigma_x = 9.3 \text{ deg}$$
 and $\sigma_{yz} = 1.4 \text{ arcsec}$ (90)

The minimum and maximum values of the loss function computed by the q method in the 1000 test runs for the second scenario are 0.003 and 8.5, respectively. The probability distribution of the loss function is plotted as the solid line in Fig. 2, and several values of the χ^2 distribution with three degrees of freedom are plotted as circles. The agreement is almost as good as the seven-degree-of-freedom case.

The estimation errors for this scenario are presented in Table 2, which is similar to Table 1 except that the rotation errors about the \mathbf{x} axis are given in degrees. The agreement of the q and SVD methods is virtually identical to their agreement in the star tracker scenario, but the other algorithms show varying performance. The best results for the attitude accuracies are in agreement with the covariance estimates of equation (89).

FIG. 2. Empirical (Solid Line) and Theoretical (Circles) Loss Function Distribution for the Three-Degree-of-Freedom Unequal Measurement Weight Scenario.

TABLE 2. Estimation Errors for Unequal Measurement Weight Scenario

		RSS (max) estimated-to-optimal			RSS (max) estimated-to-true	
Algorithm λ_{max} iterations		loss function	x (deg)	yz (arcsec)	x (deg)	yz (arcsec)
q	_				9.5 (34)	1.42 (3.57)
SVD	_	$1.6(6.9)\times10^{-5}$	$1.4 (8.0) \times 10^{-5}$	$7.7 (24) \times 10^{-11}$	9.5 (34)	1.42 (3.57)
FOAM	0	_	1.5 (9.9)	$7.9(29) \times 10^{-3}$	9.5 (34)	1.42 (3.57)
	1	0.09 (0.7)	0.09 (1.1)	$8.0 (26) \times 10^{-3}$	9.5 (34)	1.42 (3.57)
	2	0.0007 (0.012)	0.0008 (0.013)	$7.8 (29) \times 10^{-3}$	9.5 (34)	1.42 (3.57)
QUEST	0	_	1.9 (12)	$0.4(3.8)\times10^{-3}$	9.6 (34)	1.42 (3.57)
	1	768 (2329)	60 (170)	$2.3 (9.0) \times 10^{-3}$	48 (90)	1.42 (3.57)
	2	1796 (38501)	62 (175)	$4.8 (95) \times 10^{-3}$	48 (91)	1.42 (3.57)
ESOQ2	0	_	1.5 (9.9)	$1.1 (6.8) \times 10^{-3}$	9.5 (34)	1.42 (3.57)
	1	0.09(0.7)	0.09(1.1)	$1.3 (9.4) \times 10^{-3}$	9.5 (34)	1.42 (3.57)
	2	0.0007 (0.012)	0.0008 (0.013)	$1.1 (7.1) \times 10^{-3}$	9.5 (34)	1.42 (3.57)
ESOQ2.1	1	59 (370)	39 (178)	$1.5 (14) \times 10^{-3}$	29 (91)	1.42 (3.57)
ESOQ	0		1.9 (12)	$4.8(23) \times 10^{-3}$	9.6 (34)	1.42 (3.57)
	1	0.09 (0.7)	0.10(1.1)	$5.3 (28) \times 10^{-3}$	9.5 (34)	1.42 (3.57)
	2	0.0007 (0.012)	0.0008 (0.013)	$5.2(24) \times 10^{-3}$	9.5 (34)	1.42 (3.57)
ESOQ1.1	1	327 (1727)	60 (177)	$2.6 (34) \times 10^{-3}$	43 (90)	1.42 (3.57)

Equation (3) gives $\lambda_0 = 8.5 \times 10^{10}$ rad⁻² for this scenario, so the expected accuracy of the loss function in double-precision machine computations is on the order of 10^{-5} , which is the level of agreement between the values computed by the q and SVD methods. None of the other methods computes the loss function nearly as accurately. This differs from the first scenario, where all the algorithms came close to achieving the maximum precision available in double-precision arithmetic. The iterative computation of λ_{max} in QUEST, ESOQ1.1, and ESOQ2.1 is poor, but this has surprisingly little effect on the determination of the x axis pointing. The determination of the rotation about the x axis is adversely affected by an inaccurate computation of λ_{max} , however, with maximum deviations from the optimal estimate of almost 180°. The only useful results of QUEST are obtained by not performing any iterations for λ_{max} .

As noted in the discussion of the analytic solution of the characteristic equation for ESOQ1, errors in the computation of the eigenvalues are believed to arise from inaccurate values of the coefficients of the quartic characteristic equation rather than from the solution method employed. The superior accuracy of the iterative computation of λ_{max} in FOAM, ESOQ, and ESOQ2 as compared to QUEST, ESOQ1.1, and ESOQ2.1 is likely due to the fact that equation (40) deals with B directly, while the other algorithms lose some numerical significance by using the symmetric and skew parts S and z.

Third Test Scenario

The third scenario investigates the effect of measurement noise mismodeling, illustrating problems that first appeared in analyzing data from the Upper Atmosphere Research Satellite [27]. Of course, no one would intentionally use erroneous models, but it can be very difficult to determine an accurate noise model for real data, and the assumption of any level of white noise is often a poor approximation to real measurement errors. This scenario uses the same three observation vectors as the second scenario, given by equation (88). We again simulate 1000 test cases, but with Gaussian white noise of 1° per axis on the first observation and 0.1° per axis on the other two. The estimator, however, incorrectly assumes measurement errors of 0.1° per axis on all three observations, so it weights the measurements equally.

The minimum and maximum values of the loss function computed by the q method in the 1000 test runs for the third scenario are 0.07 and 453, respectively. The probability distribution of the loss function is plotted in Fig. 3. The theoretical three-degree-of-freedom distribution was plotted in Fig. 2; it is not plotted in Fig. 3 since it would be a very poor fit to the data. More than 95% of the values of $L(A_{opt})$ are theoretically expected to lie below 4, according to the χ^2 distribution of Fig. 2, but almost half of the values of the loss function in Fig. 3 have values greater than 50. Shuster has emphasized that large values of the loss function are an excellent indication of measurement mismodeling or simply of bad data.

The estimation errors for this scenario are presented in Table 3, which is similar to Tables 1 and 2 except that all the angular errors are given in degrees. The truly optimal q and SVD methods agree even more closely than in the other scenarios. Equation (3) gives $\lambda_0 = 5 \times 10^5$ rad⁻² for this scenario, so the expected accuracy of the loss function in double-precision machine computations is on the order of 10^{-10} , the level of agreement between the q and SVD methods. As in the second scenario, none of the other methods computes the loss function nearly as accurately. In the

FIG. 3. Empirical Loss Function Distribution for the Mismodeled Measurement Weight Scenario.

TABLE 3. Estimation Errors for Mismodeled Measurement Weight Scenario

		RSS (m	ax) estimated-to-c	ptimal	imal RSS (max) estimated-to-true		
Algorithm λ_{max} iterations		loss function	x (deg)	yz (deg)	x (deg)	yz (deg)	
q		_	_	_	0.96 (3.62)	0.49 (1.17)	
SVD	_	$4.1 (22) \times 10^{-10}$	$3.8 (17) \times 10^{-12}$	$2.3 (7.3) \times 10^{-14}$	0.96 (3.62)	0.49 (1.17)	
FOAM	0		0.7 (5.9)	$4.0(21) \times 10^{-3}$	1.18 (5.42)	0.49 (1.16)	
	1	2.6 (24)	0.020 (0.33)	$1.0(11) \times 10^{-4}$	0.96 (3.60)	0.49 (1.17)	
	2	0.004 (0.07)	$0.4 (10) \times 10^{-4}$	$1.7(35) \times 10^{-7}$	0.96 (3.62)	0.49 (1.17)	
QUEST	0	_	0.9 (7.6)	$4.3 (29) \times 10^{-3}$	1.27 (7.66)	0.49 (1.16)	
	1	2.6 (24)	0.023 (0.33)	$1.1 (11) \times 10^{-4}$	0.96 (3.60)	0.49 (1.17)	
	2	0.004 (0.07)	$0.4 (10) \times 10^{-4}$	$1.7(35) \times 10^{-7}$	0.96 (3.62)	0.49 (1.17)	
ESOQ2	0		0.7 (5.9)	$4.0(21)\times10^{-3}$	1.18 (5.42)	0.49 (1.16)	
	1	2.6 (24)	0.020 (0.33)	$1.0(11) \times 10^{-4}$	0.96 (3.60)	0.49 (1.17)	
	2	0.004 (0.07)	$0.4 (10) \times 10^{-4}$	$1.7(35) \times 10^{-7}$	0.96 (3.62)	0.49 (1.17)	
ESOQ2.1	1	2.6 (24)	0.020 (0.33)	$0.6(5.8)\times10^{-4}$	0.96 (3.60)	0.49 (1.17)	
ESOQ	0		0.9 (7.6)	$4.3 (29) \times 10^{-3}$	1.27 (7.66)	0.49 (1.16)	
	1	2.6 (24)	0.023 (0.33)	$1.1 (11) \times 10^{-4}$	0.96 (3.60)	0.49 (1.17)	
	2	0.004 (0.07)	$0.4 (10) \times 10^{-4}$	$1.7 (35) \times 10^{-7}$	0.96 (3.62)	0.49 (1.17)	
ESOQ1.1	1	2.6 (24)	0.023 (0.33)	$1.3 (27) \times 10^{-6}$	0.96 (3.60)	0.49 (1.17)	

third scenario, though, the iterative computation of λ_{max} works well for all the algorithms, and both iterations improve the agreement of the loss function and attitude estimates with the optimal values. The first order refinement is reflected in a reduction of the attitude errors, particularly in determining the rotation about the x axis, but no algorithm is aided significantly by a second-order update. As in the first scenario, all the algorithms with the first order update to λ_{max} perform as well as the q and SVD methods.

Speed

Absolute speed numbers are not very important for ground computations, since the actual estimation algorithm is only a part of the overall attitude determination data processing effort. Speed was more important in the past, when thousands of attitude solutions had to be computed by slower machines, which is why QUEST was so important for the MAGSAT mission. For a real-time computer in a spacecraft attitude control system or a star tracker, which must finish all its required tasks in a limited time, the longest computation time is more important than the average time. This would penalize some algorithms for real-time applications, unless we eliminate the need for sequential rotations by using the methods described above. Our speed comparisons use an a priori quaternion for QUEST and ESOQ, or the diagonal elements of B for ESOQ2, to eliminate these extra computations. Its independence from a priori attitude information somewhat favors ESOQ2 for real-time applications.

Figures 4 and 5 show the maximum number of MATLAB floating-point operations (flops) to compute an attitude using two to six reference vectors; the times to process more than six vectors follow the trends seen in the figure. The inputs for the timing tests are the n_{obs} normalized reference and observation vector pairs and their n_{obs} weights. One thousand test cases with random attitudes and random reference vectors with Gaussian measurement noise were simulated for each number of reference vectors.

Figure 4 plots the times of the more robust methods. The break in the plots for FOAM, ESOQ, and ESOQ2 at $n_{obs} = 3$ results from using an exact solution of the characteristic equation in the two-observation case, when det B = 0 and equation (40) shows that $\psi(\lambda_{max})$ is a quadratic function of λ_{max}^2 . For three or more observations, these algorithms are timed for a first-order update to λ_{max} using equation (40). Additional iterations for λ_{max} are not expensive, costing only 11 flops each. It is clear that the q method and the SVD method require significantly more computational effort than the other algorithms, as expected. The q method is more efficient than the SVD method, except in the least interesting two-observation case. The other three algorithms are much faster, with the fastest, ESOQ and ESOQ2, being nearly equal in speed. An implementation of the q method computing only the largest eigenvalue of the K matrix and its eigenvector would be faster in principle than eig, which computes all four eigenvalues and eigenvectors. However, the MATLAB routine that can be configured this way is much slower than eig. This option was not investigated further, since the q method is unlikely to be the method of choice when speed is a primary consideration.

Figure 5 compares the timing of the fastest methods, which generally use zeroth order and first order approximation for λ_{max} . Both QUEST(1) and ESOQ2.1 use the exact quadratic solution for λ_{max} in the two-observation case, but ESOQ1.1 uses its

FIG. 4. Execution Times for Robust Estimation Algorithms. FOAM, ESOQ, and ESOQ2 Use First Order Approximation for λ_{max} .

faster first order approximation for any number of observations. It is clear that ESOQ and ESOQ2 are the fastest algorithms using the zeroth order approximation for λ_{max} , and ESOQ1.1 is the fastest of the first order methods.

Conclusions

This paper has examined the most useful algorithms for estimating spacecraft attitude from vector measurements based on minimizing Wahba's loss function. These were tested in three scenarios, which show that the most robust, reliable, and accurate estimators are Davenport's q method and the Singular Value Decomposition (SVD) method. This is not surprising, since these methods are based on robust and well-tested general-purpose matrix algorithms. The q method, which computes the optimal quaternion as the eigenvector of a symmetric 4×4 matrix with the largest eigenvalue, is the faster of these two.

Several algorithms are significantly less burdensome computationally than the q and SVD methods. These methods are less robust in principle, since they solve the quartic characteristic polynomial equation for the maximum eigenvalue, a procedure that is potentially numerically unreliable. Algorithms that use the form of the characteristic polynomial from the Fast Optimal Attitude Matrix (FOAM) algorithm performed as well as the q and SVD methods in practice, however. The fastest of these algorithms are the EStimators of the Optimal Quaternion, ESOQ and ESOQ2. The execution times of these methods are reduced by using the information from an a priori attitude estimate to eliminate sequential rotations in QUEST and

FIG. 5. Execution Times for Fast Estimation Algorithms. Numbers in Parentheses Denote Order of λ_{max} Approximation.

extra computations in ESOQ, or information derived from the observations to speed ESOO2.

All the algorithms tested perform as well as the more robust algorithms in cases where measurement weights do not vary too widely and are reasonably well modeled. If the measurement uncertainties are not well represented by white noise, however, an update is required, while this update can be unreliable if the measurement weights span a wide range. The examples in the paper show that these robustness concerns are not an issue for the processing of multiple star observations with comparable accuracies, the most common application of Wahba's loss function. Thus the fastest algorithms, the zeroth-order ESOQ and ESOQ2 and the first-order ESOQ1.1, are well suited to star tracker attitude determination applications. In general-purpose applications where measurement weights may vary greatly, one of the more robust algorithms may be preferred.

References

- [1] WAHBA, GRACE "A Least Squares Estimate of Spacecraft Attitude," SIAM Review, Vol. 7, No. 3, July 1965, p. 409.
- [2] SHUSTER, MALCOLM D. "Maximum Likelihood Estimate of Spacecraft Attitude," Journal of the Astronautical Sciences, Vol. 37, No. 1, January-March 1989, pp. 79-88.
- [3] HORN, ROGER A. and JOHNSON, CHARLES R. Matrix Analysis, Cambridge, UK, Cambridge University Press, 1985.
- [4] FARRELL, J. L. and STUELPNAGEL, J. C. "A Least Squares Estimate of Spacecraft Attitude," SIAM Review, Vol. 8, No. 3, July 1966, pp. 384-386.
- [5] WESSNER, R. H. SIAM Review, Vol. 8, No. 3, July 1966, p. 386.

- [6] VELMAN, J. R. SIAM Review, Vol. 8, No. 3, July 1966, p. 386.
- [7] BROCK, J. E. SIAM Review, Vol. 8, No. 3, July 1966, p. 386.
- [8] MARKLEY, F. LANDIS "Attitude Determination Using Vector Observations and the Singular Value Decomposition," AAS Paper 87-490, AAS/AIAA Astrodynamics Specialist Conference, Kalispell, MT, August 1987.
- [9] MARKLEY, F. LANDIS "Attitude Determination Using Vector Observations and the Singular Value Decomposition," *Journal of the Astronautical Sciences*, Vol. 36, No. 3, July-Sept. 1988, pp. 245-258.
- [10] GOLUB, GENE H. and VAN LOAN, CHARLES F. Matrix Computations, Baltimore, MD, The Johns Hopkins University Press, 1983.
- [11] KEAT, J. "Analysis of Least-Squares Attitude Determination Routine DOAOP," Computer Sciences Corporation Report CSC/TM-77/6034, February 1977.
- [12] LERNER, GERALD M. "Three-Axis Attitude Determination," in Spacecraft Attitude Determination and Control, ed. by James R. Wertz, Dordrecht, Holland, D. Reidel, 1978.
- [13] MARKLEY, F. LANDIS "Parameterizations of the Attitude," in Spacecraft Attitude Determination and Control, ed. by James R. Wertz, Dordrecht, Holland, D. Reidel, 1978.
- [14] SHUSTER, MALCOLM D. "A Survey of Attitude Representations," Journal of the Astronautical Sciences, Vol. 41, No. 4, October-December 1993, pp. 439-517.
- [15] MARKLEY, F. LANDIS "Attitude Determination Using Vector Observations: A Fast Optimal Matrix Algorithm," *Journal of the Astronautical Sciences*, Vol. 41, No. 2, April-June 1993, pp. 261-280.
- [16] SHUSTER, M. D. "Approximate Algorithms for Fast Optimal Attitude Computation," AIAA Paper 78-1249, AIAA Guidance and Control Conference, Palo Alto, CA, August 7-9, 1978.
- [17] SHUSTER, M. D. and OH, S. D. "Three-Axis Attitude Determination from Vector Observations," *Journal of Guidance and Control*, Vol. 4, No. 1, January-February 1981, pp. 70-77.
- [18] SHUSTER, MALCOLM D. and NATANSON, GREGORY A. "Quaternion Computation from a Geometric Point of View," *Journal of the Astronautical Sciences*, Vol. 41, No. 4, October-December 1993, pp. 545-556.
- [19] MARKLEY, F. L. "New Quaternion Attitude Estimation Method," Journal of Guidance, Control, and Dynamics, Vol. 17, No. 2, March-April 1994, pp. 407-409.
- [20] MORTARI, DANIELE "EULER-q Algorithm for Attitude Determination from Vector Observations," Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, March-April 1998, pp. 328-334.
- [21] MORTARI, DANIELE "ESOQ: A Closed-Form Solution to the Wahba Problem," Journal of the Astronautical Sciences, Vol. 45, No. 2, April-June 1997, pp. 195-204.
- [22] MORTARI, DANIELE "n-Dimensional Cross Product and its Application to Matrix Eigenanalysis," Journal of Guidance, Control, and Dynamics, Vol. 20, No. 3, May-June 1997, pp. 509-515.
- [23] ABRAMOWITZ, MILTON and STEGUN, IRENE A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York, NY, Dover Publications, Inc., 1965, Chapter 26.
- [24] MORTARI, DANIELE "ESOQ2 Single-Point Algorithm for Fast Optimal Attitude Determination," Paper AAS 97-167, AAS/AIAA Space Flight Mechanics Meeting, Huntsville, AL, February 10-12, 1997.
- [25] MORTARI, DANIELE "Second Estimator of the Optimal Quaternion," Journal of Guidance, Control, and Dynamics, Vol. 23, No. 5, September-October 2000, pp. 885-888.
- [26] THE MATH WORKS, INC. MATLAB User's Guide, Natick, MA, 1992.
- [27] DEUTSCHMANN, J. "Comparison of Single Frame Attitude Determination Methods," Goddard Space Flight Center Memo to Thomas H. Stengle, July 26, 1993.