第三章 布尔代数与型空间

总结一下第一章中布尔代数与逻辑的几个主要结果。

- 1. 任给一个一致的理论 T, 存在一个由 T 确定的布尔代数 $\mathcal{B}(T)$, 它的元素是等价关系 ~ 下的等价类,对任意公式 α , β , α ~ β 当且仅当 $T \vdash \alpha \leftrightarrow \beta$ 。这个 $\mathcal{B}(T)$ 称为 Lindenbaum 代数。
- 2. 在 Lindenbaum 代数 $\mathcal{B}(T)$ 中,每个滤 F 都是 T 的一致扩张。因此每个滤都是一个一致的理论。而每个超滤则是一个完全理论。
- 3. 如果 T 是完全的,则 $\mathcal{B}(T)$ 是特殊的布尔代数 $\{0,1\}$,其中 $0 = \{\alpha \mid T \vdash \neg \alpha\}$, $1 = \{\alpha \mid T \vdash \alpha\}$ 。
- 4. 从另一个角度看, $\mathcal{B}(T)$ 上的每个超滤 U 都对应着 T 的一个模型 \mathfrak{A}_U ,对任意公式 α , $\mathfrak{A}_u \models \alpha$ 当且仅当 $[\alpha] \in U$ 。所以超滤存在定理蕴涵着完全性定理。
- 5. 在 Stone 表示定理的证明中,借助 Stone 映射,我们为每一个 $a \in B$ 指定一个超滤的集合 $\{U \mid U \in a\}$ 。这实际上是为 $Ult(\mathcal{B})$ 定义了一个拓扑结构,(参见习题1.4.6 和1.4.7)。 $Ult(\mathcal{B})$ 连同其上的拓扑称为 Stone 空间。

3.1 Stone 空间

Stone 空间是一个非常典型的结构,与逻辑有很多密切的联系。我们接下来讨论一些有关这个空间的性质,并给出模型论中的更为深刻的一个例子。

定义 3.1.1. 对任意集合 X, $\mathcal{T} \subseteq \mathcal{P}(X)$ 称为 X 上的一个拓扑,如果以下条件成立:

- 1. $X, \emptyset \in \mathcal{T}$;
- 2. 如果 $O, V \in \mathcal{T}$, 则 $O \cap V \in \mathcal{T}$;
- 3. 对任意 $A \subseteq \mathcal{T}$, $\bigcup A \in \mathcal{T}$ 。

(X,T) 称为拓扑空间,T 中的 X 的子集称为开集,开集的补集称为闭集。

例 3.1.2. 令 \mathbb{R} 为全体实数的集合,对任意实数 $r \in \mathbb{R}$,开区间

$$N = \{ x \subseteq \mathbb{R} \mid |x - r| < \delta \}$$

称为r的邻域,其中 δ 为任意实数,称为N的半径。 \mathbb{R} 的子集O如果满足:对任意 $r \in O$,都存在r的邻域N使得 $N \subseteq O$,就称U为开集。令T为所有开集的族,则 \mathbb{R} 在T下是一个拓扑空间。

证明. 首先, $\emptyset \in \mathcal{T}$,并且 $\mathbb{R} \in \mathcal{T}$ 。其次,如果O, V是开集, $r \in O \cap V$,则根据定义,存在 N_1, N_2 都是r的邻域,且 $N_1 \subseteq O, N_2 \subseteq V$ 。不妨假设 $\delta_1 < \delta_2$,则 $N_1 \subseteq O \cap V$ 的子集。最后,如果 $\{O_i\}_{i \in I}$ 是任意开集的族, $r \in O = \bigcup O_i$,则存在i, $r \in O_i$,所以存在邻域N,使得 $r \in N \subseteq O$ 。

以下练习几乎是显然的事实。

练习 3.1.3. 令 ℝ 为实数,在3.1.2 定义的拓扑中,以下命题等价:

- (1) 0 是开集;
- (2) 存在邻域的族 $\{N_i\}_{i\in I}$, $O=\bigcup_{i\in I}N_i$ 。

这使得我们可以做如下定义:

定义 3.1.4. \Rightarrow (X, \mathcal{T}) 为拓扑空间, $\mathcal{S} \subseteq \mathcal{T}$ 称为这个空间的一个拓扑基,如果 \mathcal{T} 中的元素都可以表示为 \mathcal{S} 中元素的并。 \mathcal{S} 中的元素称为基本开集。

例 3.1.5. 例3.1.2中,实数上的拓扑 \mathcal{T} 以所有开区间为拓扑基。事实上,所有以有理数为端点的开区间也是它的拓扑基,并且是一个可数的拓扑基。

引理 3.1.6. 令 X 为一集合, $S \subseteq \mathcal{P}(X)$,S 构成 X 上某一拓扑的拓扑基当且仅当以下条件成立:

- (1) 对任意 $x \in X$,存在 $S \in S$, $x \in S$;
- (2) 对任意 $S_1, S_2 \in \mathcal{S}$, 如果 $x \in S_1 \cap S_2$, 则存在 $S_3 \in \mathcal{S}$, $x \in S_3$ 并且 $S_3 \subseteq S_1 \cap S_2$ 。

练习 3.1.7. 令 X 为一集合, $S \subseteq \mathcal{P}(X)$,S 构成 X 上某一拓扑的拓扑基当且仅当以下条件成立:

- (2) 对任意 $S_1, S_2 \in \mathcal{S}$, $S_1 \cap S_2 \neq \mathcal{S}$ 中集合的并。

练习 3.1.8. 任给布尔代数 \mathcal{B} , 令 $X = \text{Ult}(\mathcal{B})$ 。对任意 $a \in \mathcal{B}$, 定义

$$N_a = \{ U \in \text{Ult}(\mathcal{B}) \mid a \in U \},$$

则 $\{N_a \mid a \in B\}$ 构成 X 的一个拓扑基。

练习 3.1.9. 对任意拓扑空间 X 中有穷多个闭集的并还是闭集。

习题1.4.6告诉我们, N_a 既是开集也是闭集,在一个拓扑空间中,我们称这样的集合为开闭集。显然,对任意的拓扑空间 X, \emptyset , X 是开闭集。

练习 3.1.10. 对任意拓扑空间 X, X 中的所有开闭集是一个集合代数。

定义 3.1.11. 一个拓扑空间 X 称为零维的,如果它有一个开闭集构成的拓扑基。

零维空间也称为"完全不连通空间"。Ult(3)是一个零维空间。

定义 3.1.12. 令 X 为拓扑空间,如果 $C \subseteq T$ 是开集的族,并且 $\bigcup C = X$,就 称 $C \in X$ 的开覆盖。如果 X 的每个开覆盖 C 都有一个有穷的子覆盖,即存 在 $C_0 \subseteq_f C$,并且 $\bigcup C_0 = X$,则称 X 为紧致空间。

由习题1.4.7知道, Ult(3) 是一个紧致空间。

定义 3.1.13. 令 X 为拓扑空间,如果对任意 $x,y \in X$,总存在开集 M,N, $x \in M, y \in N$,使得 $M \cap N = \emptyset$,就称 X 为 Hausdorff 空间。

由习题1.4.6(2) 可知 $Ult(\mathcal{B})$ 是一个 Hausdorff 空间: 如果超滤 $U_0 \neq V_0$,任取 $a \in U_0$ 且 $a \notin V_0$,则 $U_0 \in N_a$ 。由于 V_0 是超滤, $-a \in V_0$,所以 $V_0 \in N_{-a}$,但 $N_a \cap N_{-a} = \emptyset$ 。

令 (X,\mathcal{T}) 为拓扑空间,称 X 的子集族 Z 有有穷交性质,如果对任意有穷的集族 $\{Y_1,\cdots,Y_n\}\subseteq Z,\ Y_1\cap\cdots\cap Y_n\neq\emptyset$ 。

练习 3.1.14. 对任意拓扑空间 X, 以下命题等价:

- (1) X 是紧致空间;
- (2) 如果 Z 是闭集的族且有有穷交性质,则 $\bigcap Z \neq \emptyset$ 。

定理 3.1.15. 对任意布尔代数 \mathcal{B} ,Ult(\mathcal{B}) 在以 $\mathcal{S} = \{N_a \mid a \in B\}$ 为拓扑基的 拓扑下,是一个零维的紧致 Hausdorff 空间。这样的空间通常称为 Stone 空间。

也有文献称为布尔空间, 见 Halmos。

例 3.1.16. 给定一阶语言 \mathcal{L} ,令 X 是所有完全理论的族。对任意语句 $\sigma \in \mathcal{L}$,令 $\langle \sigma \rangle = \{ T \in X \mid T \models \sigma \}$,则 $\mathcal{S} = \{ \langle \sigma \rangle \mid \sigma \in \mathcal{L} \}$ 构成 X 的一个拓扑基:这是因为 $\langle \sigma \rangle \cap \langle \tau \rangle = \langle \sigma \wedge \tau \rangle$,由引理3.1.6可得。

同时,这个完全理论的空间是一个零维空间:每个基本开集都是开闭集。(请验证)

X 也是 Haudorff 空间: 令 T_1, T_2 为两个完全理论,且 $T_1 \neq T_2$,则必有 $\sigma \in \mathcal{L}$, $T_1 \models \sigma$ 而 $T_2 \models \neg \sigma$ 。这样, $T_1 \in \langle \sigma \rangle$, $T_2 \in \langle \neg \sigma \rangle$ 。

在完全理论的空间中,开集是形如〈 σ 〉的基本开集的并,对偶地,闭集是这样的基本开集的交。令 Σ 为一致的语句集, $F = \bigcap \{\langle \sigma \rangle \mid \sigma \in \Sigma \}$,则 F 不空,并且是闭集。对任意 $T \in F$, $\Sigma \subseteq T$ 。任取语句 τ , $\Sigma \models \tau$ 当且仅当对所有 $T \in F$, $T \models \tau$ 。所以 F 确定了一个以 Σ 为公理集的理论。除非 F 是一个单点集 $\{T\}$,否则 F 确定的理论是一个不完全的理论。

为了证明这个完全理论的拓扑空间是紧致空间,我们需要几个新的定义。 这也是为了充分利用我们所熟悉的超滤工具。

定义 3.1.17. 给定拓扑空间 X, X 中的滤 指的是某一个 X 的子集 Y 上的滤。

例 3.1.18. 对任意 $x \in X$, 所有包含 x 的开集构成的族

$$\mathcal{N}_x = \{O \mid O$$
是开集并且 $x \in O\}$

是整个空间 X 上的滤。请读者验证。

定义 3.1.19. 给定拓扑空间 X 中的滤 F, $x \in X$ 称为 F 的极限点,如果对任意包含 x 的开集 O_x ,存在 $A \in F$, $A \subseteq O_x$ 。此时称 F 收敛到 x。如果 F 至少有一个极限点,就称 F 是收敛的。

练习 3.1.20. 一个拓扑空间是 Haudorff 空间当且仅当它的每个超滤有且只有一个极限点。

定理 3.1.21. 一个拓扑空间 X 是紧致的当且仅当 X 中的每个超滤都是收敛的。

证明. (⇒) 假设 U 是 X 中的超滤,并且不收敛。对任意 $x \in X$,存在一个开集 $O_x \in \mathcal{N}_x$,不存在 $u \in U$ 使得 $u \subseteq O_x$ (这实际上等价于 $O_x \not\in U$)。令 $\{O_x \mid x \in X \& O_x \not\in U\}$ 为这样的开集的族。这是整个空间的一个开覆盖。令 $\{O_1, \cdots, O_n\}$ 为它的一个有穷子覆盖,并且 $\bigcup_{i=1}^n O_i = X$ 。任取 U 中元素 u,

$$(u \cap O_1) \cup \cdots \cup (u \cap O_n) = u \in U$$
,

但 U 是超滤,所以存在 O_i , $u \cap O_i \in U$, 矛盾。

(\leftarrow)现在假设 X 不是紧致的。令 $\{O_i\}_{i\in I}$ 为 X 的一个开覆盖,并且没有有穷的子覆盖。任取 $\{O_1,\cdots,O_n\}$, $O_1\cup\cdots\cup O_n\neq X$,所以 $(-O_1)\cap\cdots\cap (-O_n)\neq\emptyset$ 。这即是说 $\{-O_i\}_{i\in I}$ 有穷交性质。令 U 为这个集族生成的超滤。对任意 $X\in X$,存在 O_i , $X\in O_i$,由于 $-O_i\in U$,所以 $O_i\notin U$,即 U 不是收敛的。

引理 3.1.22. 一阶语言 \mathcal{L} 中全体完全理论的空间是零维的 Hausdorff 紧致空间。

证明. 我们需要证明这个空间中的任意超滤都是收敛的。给定超滤 U,对每一完全理论 T,令 \mathfrak{A}_T 为 T 的一个模型。同时,令 $\mathfrak{A} = \operatorname{Ult}_U \mathfrak{A}_T$ 为相应的超积模型。注意到 $\operatorname{Th}(\mathfrak{A})$ 是一个完全理论。对任意开集 O,由于 O 是基本开集的并,所以,如果 $\operatorname{Th}(\mathfrak{A}) \in O$,则存在 σ , $\operatorname{Th}(\mathfrak{A}) \in \langle \sigma \rangle$,这意味着 $\operatorname{Th}(\mathfrak{A}) \models \sigma$,亦即 $\mathfrak{A} \models \sigma$ 。由 Los 定理, $\langle \sigma \rangle = \{T \mid \mathfrak{A}_T \models \sigma\} \in U$ 。这就证明了超滤 U 收敛于 U 所确定的超积模型的理论 $\operatorname{Th}(\mathfrak{A})$ 。

引理 3.1.23. 令 $\mathcal L$ 为一阶语言, Σ 为 $\mathcal L$ 中的语句集, Σ 是一致的当且仅当 Σ 是有穷一致的。

证明. 考虑 \mathcal{L} 的所有完全理论构成的空间。由引理3.1.22,它是一个零维的 Hausdorff 紧致空间。对任意 $\sigma \in \Sigma$, $\langle \sigma \rangle$ 是这个空间中的闭集。由题设, $\{\langle \sigma \rangle \mid \sigma \in \Sigma\}$ 是一个有有穷交性质的闭集族,由练习 3.1.14, $\bigcap_{\sigma \in \Sigma} \langle \sigma \rangle \neq \emptyset$ 。对任 意完全理论 $T \in \bigcap_{\sigma \in \Sigma} \langle \sigma \rangle$,都有 $\Sigma \subseteq T$,所以 Σ 是一致的。

3.2 型空间

给定一个语言 \mathcal{L} , \mathcal{L} 的完全理论的空间由句子集的族构成。很自然地,我们是否可以用类似的工具来处理带自由变元的公式呢?这就是型空间。

对任意 \mathcal{L} 结构 \mathfrak{A} ,任意 $a \in |\mathfrak{A}|$,公式集 $\{\phi(x) \mid \mathfrak{A} \models \phi(a)\}$ 就称为 a 在 \mathfrak{A} 中实现的 1-型,记作 $\mathsf{tp}^{\mathfrak{A}}(a)$ 。(多数不引起误解的情形下,我们省略上标 \mathfrak{A} 。) $\mathsf{tp}(a)$ 中的元素是 \mathcal{L} 中所有那些至多只含一个自由变元的公式,并且"在 a 处为真"。所以完全理论 $\mathsf{Th}(\mathfrak{A})$ 包含在 $\mathsf{tp}(a)$ 中。通常我们也将 $\mathsf{tp}(a)$ 的子集称为 1-型,而 $\mathsf{tp}(a)$ 称为完全 1-型,因为对任意只含一个自由变元的公式 $\phi(x)$, $\phi(x) \in \mathsf{tp}(a)$ 或 $\neg \phi(x) \in \mathsf{tp}(a)$ 。

定义 3.2.1. 给定语言 \mathcal{L} , \mathcal{L} 的公式集 p 称为一个 1-型,如果存在 \mathcal{L} 的结构 \mathfrak{A} , $a \in |\mathfrak{A}|$, $p \subseteq \operatorname{tp}(a)$ 。如果 p 还满足:对任意只含一个自由变元的公式 $\phi(x)$, $\phi(x) \in p$ 或 $\neg \phi(x) \in p$,就称 p 为完全 1-型。

定义 3.2.2. 给定语言 \mathcal{L} , $\Sigma(x)$ 为 \mathcal{L} 的只含一个自由变元的公式集。

- (1) 对任意 \mathcal{L} 结构 \mathfrak{A} ,任意 $a \in |\mathfrak{A}|$,如果 $\mathfrak{A} \models \Sigma(a)$,就称 $a \not\in \Sigma(x)$ 的一个实现。
- (2) $\Sigma(x)$ 在 \mathfrak{A} 中可满足,如果存在 $a \in |\mathfrak{A}|$, a 实现 $\Sigma(x)$;
- (3) $\Sigma(x)$ 在 \mathfrak{A} 中有穷可满足,如果对任意 $X \subseteq_f \Sigma(x)$,X 都在 \mathfrak{A} 中可满足。

显然,如果 p 是一个 1-型,则 a 实现 p 当且仅当 $p \subseteq \operatorname{tp}(a)$ 。

例 3.2.3. 令 $\mathcal{L} = \{<\}$ 为序的语言,则 $\{x > 1, x > 2, \cdots\}$ 在 $(\mathbb{R}, <)$ 中有穷可满足,但在 \mathbb{R} 中没有实现。

回忆数理逻辑的两个基本概念。

定义 3.2.4. 令 \mathcal{L} 为一阶语言, \mathfrak{A} , \mathfrak{B} 为 \mathcal{L} 结构。

- (1) 如果对所有 \mathcal{L} 语句 σ ,都有 $\mathfrak{A} \models \sigma$ 当且仅当 $\mathfrak{B} \models \sigma$,就称 $\mathfrak{A} = \mathfrak{B}$ 是 初等等价的,通常表示为 $\mathfrak{A} \equiv \mathfrak{B}$ 。
- (2) 如果 $f:A\to B$ 是单射,并且对任意 $\mathcal L$ 公式 $\phi(x_1,\cdots,x_n)$,任意 a_1,\cdots,a_n ,都有

$$\mathfrak{A} \models \phi(a_1, \dots, a_n) \quad \Leftrightarrow \quad \mathfrak{B} \models \phi(f(a_1), \dots, f(a_n)),$$

就称 f 是 \mathfrak{A} 到 \mathfrak{B} 的初等嵌入,我们用 $\mathfrak{A} \preceq \mathfrak{B}$ 表示 \mathfrak{A} 是 \mathfrak{B} 的初等子模型,即 $\mathrm{id}: A \to B$ 是初等嵌入。此时也称 \mathfrak{B} 是 \mathfrak{A} 的初等扩张。

引理 3.2.5. 给定语言 £, X, B 为 £ 结构。

- (1) 如果 $\mathfrak{A} \leq \mathfrak{B}, \ a \in |\mathfrak{A}|, \ \text{M} \text{ tp}^{\mathfrak{A}}(a) = \text{tp}^{\mathfrak{B}}(a);$
- (2) 如果公式集 $\Sigma(x)$ 在 $\mathfrak A$ 的某一初等扩张 $\mathfrak B$ 中可满足,则 $\Sigma(x)$ 在 $\mathfrak A$ 中有穷可满足。
- (3) 如果 $\Sigma(x)$ 在 \mathfrak{A} 中有穷可满足,则 $\Sigma(x)$ 是一个 1-型。

- 证明. (1) 是显然的: $\operatorname{tp}^{\mathfrak{A}}(a) = \{\phi \mid \mathfrak{A} \models \phi(a)\} = \{\phi \mid \mathfrak{B} \models \phi(a)\} = \operatorname{tp}^{\mathfrak{B}}(a)$.
- (2) 任取 $X \subseteq_f \Sigma(x)$,令 ϕ 为 X 中公式的合取。存在 $b \in |\mathfrak{B}|$, $\mathfrak{B} \models \varphi(b)$,所以 $\mathfrak{B} \models \exists x \phi$,所以 $A \models \exists x \phi$,所以 X 在 \mathfrak{A} 中可满足。
- (3) 令 $X(x) \subseteq_f \Sigma(x)$,并且 $a \in |\mathfrak{A}|$ 使得 $\mathfrak{A} \models X(a)$ 。给语言 \mathcal{L} 增加一个 新的常量符号 c_a ,并且令 $c_a^{\mathfrak{A}} = a$,则 $\{\sigma \in \mathcal{L} \cup \{c_a\} \mid \mathfrak{A} \models \sigma\} \cup X(c_a)$ 是可满足的(语句集),所以由紧致性定理,存在模型 $\mathcal{B} \models \Sigma(c_a)$,令 $c_a^{\mathfrak{B}} = b$,则 $\Sigma(x) \subseteq \operatorname{tp}^{\mathfrak{B}}(b)$ 。

我们还可以从另一个角度看待型。tp(a) 仍可以看做一个完全理论,只是不是 \mathcal{L} 中的,而是 $\mathcal{L} \cup \{c\}$ 中的,其中 c 是一个新的常量符号,它在 \mathfrak{A} 中的解释是 a。为了简便, $\mathcal{L} \cup \{c\}$ 有时直接记作 $\mathcal{L}(a)$,其中 a 是解释 c 的元素。这样,tp(a) 就恰好是在 \mathfrak{A} 中为真的所有 $\mathcal{L}(a)$ 语句。

引理 3.2.6. \mathcal{L} 中公式集 p 是一个 1-型当且仅当 p 是 $\mathcal{L} \cup \{c\}$ 中的一个理论; p 是一个完全 1-型当且仅当它是 $\mathcal{L} \cup \{c\}$ 中的一个完全理论。

我们将所有 \mathcal{L} 中的完全 1-型构成的空间记作 S_1 : 对任意只含一个自由变元的公式 ϕ ,令 $\langle \phi \rangle = \{ p \in S_1(T) \mid \phi \in p \}$,则所有 $\langle \phi \rangle$ 构成它的一个拓扑基, $S_1(T)$ 在这个拓扑下是一个零维的 Hausdorff 紧致空间。相应地, \mathcal{L} 中的完全理论的空间记作 S_0 。

事实上,对每个自然数 n,我们还可以定义完全 n-型:对任意 \mathcal{L} 模型 \mathfrak{A} ,任意 $a_1, \dots, a_n \in |\mathfrak{A}|$, $\mathcal{L}(a_1, \dots, a_n)$ 上的一个完全理论称为 a_1, \dots, a_n 实现的完全 n 型。 S_n 表示所有完全 n-型组成的空间。

我们总是对某一类具体的型空间有兴趣。给定理论 T(不一定是完全的),对任意 n, $S_n(T)$ 表示所有 T 的模型上的完全 n-型构成的空间。事实上,它是 S_n 中的一个闭集:对任意 $\sigma \in T$, $\langle \sigma \rangle = \{ p \in S_n \mid \sigma \in p \}$ 是 S_n 中的开闭集。而 $S_n(T) = \bigcap_{\sigma \in T} \langle \sigma \rangle$,它是闭集的交,所以是闭集。

事实上, $S_n(T)$ 本身也是一个零维的 Hausdorff 紧致空间,或者说是一个 Stone 空间。接下来我们讨论型空间与 Lindenbaum 代数之间的关系。

对任意理论 T, 任意 $n \in \mathbb{N}$, 我们令 $\mathcal{B}_n(T)$ 表示

 $\{[\phi]_T \mid \phi$ 至多有 n-个自由变元 $\}$.

容易验证 $\mathcal{B}_n(T)$ 是一个布尔代数。

与第一章类似,给定 $\mathcal{B}_n(T)$,令 F 是其上的滤,令 $\Sigma_F = \{\phi \mid [\phi] \in F\}$ 为 F 确定的公式集,则以下事实成立:

- (1) Σ_F 是一致的, 并且 $T \subseteq \Sigma_F$;
- (2) 如果 $\phi \in \Sigma_F$, $T \models \phi \rightarrow \psi$, 则 $\psi \in \Sigma_T$;
- (3) 如果 $\phi, \psi \in \Sigma_F$,则 $\phi \wedge \psi \in \Sigma_F$;
- (4) 如果 F 是超滤,则对任意至多含有 n 个变元的公式 ϕ , $\phi \in \Sigma_F$ 或 $\neg \phi \in \Sigma_F$;
- (5) Σ_F 对推演封闭。

反过来,

引理 3.2.7. 对任意至多包含 n-个自由变元的公式集 Σ , 如果 $T \subseteq \Sigma$ 并且 Σ 对推演封闭,则存在 $\mathcal{B}_n(T)$ 上的滤 F, $\Sigma = \Sigma_F$ 。

练习 3.2.8. 对任意 n, 令 Ult($\mathcal{B}_n(T)$) 为 $\mathcal{B}_n(T)$ 上所有超滤的族, 则 $h(U) = \Sigma_U$ 是到 $S_n(T)$ 上的双射。

回忆一下布尔代数中原子的定义: $a \in B$ 是原子当且仅当 0 < a 并且不存在 $b \in B$ 使得 0 < b < a。所以如果 $[\alpha]$ 是 $\mathcal{B}_n(T)$ 中的原子,则不存在公式 ϕ 使得 $T \models \phi \rightarrow \alpha$,但 $T \not\models \alpha \rightarrow \phi$ 。另外,如果 $[\alpha]$ 是原子,则对任意公式 ϕ , $T \models \alpha \rightarrow \phi$ 或 $T \models \alpha \rightarrow \neg \phi$ 。

如果 T 是完全理论,则 $\mathcal{B}_n(T) = \{0,1\}$,所以 1 是原子。

练习 3.2.9. 如果 T 有一个模型 \mathfrak{A} , 至少有两个元素,则对任意 n > 0, $\mathcal{B}_n(T)$ 没有原子。

练习 3.2.10. 以下命题等价:

- (1) $[\alpha]$ 是 $\mathcal{B}_n(T)$ 的原子;
- (2) $p = \{\phi \mid T \models \alpha \rightarrow \phi\} \in S_n(T)$, 即 p 是一个完全 n-型。

定义 3.2.11. 令 $p \in S_n(T)$ 为 T 的完全 n-型,如果存在 α , $\{p\} = \langle \alpha \rangle$,就称 p 是孤立型,此时称 α 孤立 p。

练习 3.2.12. α 孤立 p 当且仅当对任意 T 的模型 \mathfrak{A} ,任意 $a_1, \dots, a_n \in |\mathfrak{A}|$, $p = \operatorname{tp}(\overline{a})$ 当且仅当 $\mathfrak{A} \models \alpha(\overline{a})$ 。

引理 3.2.13. 以下命题等价:

- (1) α 孤立 p;
- (2) $T \cup \{\alpha\}$ 可满足, 并且对任意 $\phi \in p$, $T \models \alpha \rightarrow \phi$;

证明. (1) \Rightarrow (2)。如果 $T \not\models \alpha \rightarrow \phi$,则 $T \cup \{\alpha, \neg \phi\}$ 可满足,所以存在 $q \in S_n(T)$, $\{\alpha, \neg \phi\} \subseteq q$,根据(1), α 只属于 p,所以 p = q,所以 $\phi \not\in p$ 。

(2) ⇒(1)。假设(1)不成立,令 $q \neq p$, $\alpha \in q$ 。任取 $\psi \in q$ 但 $\psi \notin p$,则 $\neg \psi \in p$,由(2), $T \models \alpha \rightarrow \neg \psi$,所以 $T \cup \{\alpha, \psi\}$ 不可满足,但它是 T 的一个型,矛盾。

引理 3.2.14. 如果 T 是一致的理论, p 是 T 的型。以下命题等价:

- (1) p 不是孤立型;
- (2) 在 $\mathcal{B}_n(T)$ 中, $\prod \{ [\phi] \mid \phi \in p \} = 0_\circ$

证明. 假设 p 不是孤立型,即任意 α 都不孤立 p, 所以,对任意 α , 存在 $\phi \in p$, $T \not\models \alpha \to \phi$, $[\alpha] \not = [\phi]$ 。所以,对任意 α ,如果 $[\alpha] \leq \prod \{ [\phi] \mid \phi \in p \}$,则 $[\alpha] = 0$,所以 $\prod \{ [\phi] \mid \phi \in p = 0 \}$ 。

反之,假设(2)成立。如果 α 孤立 p,即对任意 $\phi \in p$, $T \models \alpha \rightarrow \phi$,则 $[\alpha] = 0$,所以 $T \cup \{\alpha\}$ 不可满足。

引理 3.2.15. 对任意 n > 0, 以下命题等价:

- (1) $S_n(T)$ 是有穷的;
- (2) 所有型都是孤立型;

(3) $\mathcal{B}_n(T)$ 是有穷的。

证明. 由练习3.2.8, (1) 与(3) 等价。我们只需证明(1) 与(2) 等价。

- (1)⇒(2)。令 $S_n(T) = \{p_1, \dots, p_m\}$,任取 p_i ,我们令 $\phi_1, \dots, \phi_{i-1}, \phi_{i+1}, \dots \phi_m$ 为一组公式,它们都属于 p_i ,但对任意 $j \neq i$, $\phi_j \notin p_j$ 。这样, $p_i \in \langle \phi_j \rangle$,但 $p_i \notin \langle \phi_i \rangle$ 。令 ϕ 为这些公式的并,则 $\langle \phi \rangle = \{p_i\}$,所以 p_i 是孤立型。
- (2) \Rightarrow (1) 。显然, $\{\{p\} \mid p \in S_n(T)\}$ 是 $S_n(T)$ 的一个开覆盖,它有一个有穷的子覆盖,所以 $S_n(T)$ 只能是有穷的。

引理 3.2.16. 令 T 是完全理论,如果 $p \in S_n(T)$ 是孤立型,则 p 在 T 的所有模型中都有一个实现。

证明. 给定任意 T 的模型 \mathfrak{A} 。令 $\{p\} = \langle \phi \rangle$,并且令 $\mathfrak{B} \models T$ 和 $b \in |\mathfrak{B}|$ 使得 $p = \operatorname{tp}^{\mathfrak{B}}(b)$ 。所以 $\mathfrak{B} \models \phi(b)$,这蕴涵着 $\mathfrak{B} \models \exists x \phi$ 。由于 T 是完全理论,所以 $\mathfrak{A} \models \mathfrak{B}$,所以 $\mathfrak{A} \models \exists x \phi$,即存在 $a \in |\mathfrak{A}|$, $\mathfrak{A} \models \phi(a)$ 。由于 ϕ 孤立 p,所以 $\mathfrak{B} \models \operatorname{tp}^{\mathfrak{A}}(a)$ 。

3.3 习题

- **3.3.1.** 令 X 为拓扑空间, $Y \subseteq X$ 。我们如下定义 Y 中的开集: $O \subseteq Y$ 是开集当且仅当存在 X 中的开集 V, $O = V \cap Y$ 。证明:Y 是一个拓扑空间,称为 X 的子空间,这个拓扑称为子空间拓扑。
- **3.3.2.** 令 X 是拓扑空间, $Y \subseteq X$ 是子空间,证明 $F \subseteq Y$ 是空间 Y 的闭集当且仅当存在 X 的闭集 Z , $F = Z \cap Y$ 。
- **3.3.3.** 令 \mathbb{R} 为例3.1.2中定义的拓扑空间,求 \mathbb{N} 上的子空间拓扑,即 \mathbb{N} 的哪些子集是开集?
- **3.3.4.** 令 X 为紧致空间, $Z \subseteq X$ 为闭集,证明 Z 作为子空间也是紧致的。
- **3.3.5.** 令 X 为拓扑空间,Y 是 X 的子集,我们定义 Y 的闭包为包含 Y 的最小的闭集,记作 \overline{Y} ,即

$$\overline{Y} = \bigcap \{Z \subseteq X \mid Y \subseteq Z \& Z \exists \exists \emptyset \}$$

证明:

- (1) 如果 Z 是闭集,则 $\overline{Z} = Z$;
- (2) 对任意 $Y \subseteq X$, $x \in \overline{Y}$ 当且仅当任意包含 x 的开集都与 Y 相交不空。
- (3) 对任意 $Y \subseteq X$, $x \in \overline{Y}$ 当且仅当存在 Y 上的滤 F, F 收敛于 x。