שינוי סדר 10.2

הגדרות

1. תמורה על הטבעיים

 $\sigma:\mathbb{N} o\mathbb{N}$ היא פונקציה חח"ע ועל

2. שינוי סדר

 $orall n\in\mathbb N$ $b_n=a_{\sigma(n)}$ באמר כי $\sigma:\mathbb N o\mathbb N$ כך שמתקיים קיימת תמורה על הטבעיים $\sum_n a_n$ אם שינוי סדר של הטריים באמר כי

משפטים

1. תמורה על איברי טור א"ש מתכנס לא פוגעת בהתכנסותו

אסכום הסכום ובפרט בפרט אזי הא $\sum\limits_n b_n$ אזי אזי סדר שלנוי הא הטור הא $\sum\limits_n b_n$ הטור אם הטור

הוכחה

 $A_n\mid n\in\mathbb{N}$ ומכאן נובע $\{a_n\mid n\in\mathbb{N}\}=\{b_n\mid n\in\mathbb{N}\}=\{b_n\mid n\in\mathbb{N}\}$ מגדיר הסדר, משינוי הסדר, בהתאמה. משינוי הסדר, מתקיים הסדר, מתקיים S_k , דבוסף, אי שלילית ועל כן גם $\sum_n b_n$, ובפרט $\sum_n b_n$ מונוטונית עולה.

 $\lim_{k o \infty} S_k = \sum_{n=1}^\infty \, a_n = \sup \left\{ S_k \mid k \in \mathbb{N}
ight\}$ כלומר - כלומר מלעיל, אזי מתכנסת מלעיל, אזי מתכנסת כלומר - כלומר אזי עולה וחסומה מלעיל, אזי מתכנסת כלומר

 $\lim_{k o \infty} T_k \leq \sum_{n=1}^\infty \, a_n$ בנוסף כמו שאמרנו, היא מונוטונית עולה ולכן מתכנסת, וגבולה

 $\sum\limits_{n=1}^\infty a_n=\lim\limits_{k\to\infty} S_k \leq \sum\limits_{n=1}^\infty$ משים הנסיבות המח"ע ועל, קיימת הפונקציה ההפוכה הפוכה שינוי סדר של הא $\sum\limits_n a_n$ איז איז ההפוכה ההפוכה מתקיים ביי

מטריכוטמיה נקבל שוויון בין הסכומים, כנדרש.

2. תמורה על איברי טור מתכנס בהחלט לא פוגעת בהתכנסותו

. אם מתכנס בהחלט, אז כל שינוי סדר שלו מתכנס לאותו גבול פהחלט, אז כל שינוי סדר שלו מתכנס בהחלט, אז כל שינוי סדר שלו

. נסתכל על תקף גם כאן, אזי אלו טורים אי שליליים אזי אלו אזי אלו , $\sum\limits_n |a_n|\,,\sum\limits_n |b_n|$ נסתכל על

3. משפט רימן

:יהי אזי מתקיים טור המתכנס בתנאי. אזי מתקיים $\sum_n a_n$

- λ ג קיים המתכנס הטור של סדר של קיים $\lambda\in\mathbb{R}$ לכל .1
 - $(-\infty$ ווכן ל ∞ (וכן ל ∞).
- $(-\infty$ או ל- ∞ או ל- ∞ או ל- ∞ או ל- ∞ או ל- ∞ או ל- ∞ או ל- ∞

הוכחה לא תועבר השנה ©