Practical AI: ML as a framework

Stanislav Protasov for Harbour.Space University

Agenda

Problems suitable for ML

Steps of ML solution

False friends of ML

Sequential data

Is there a problem for ML?

Visualization of 4+D data

Rule of thumb:

clustered data should remain clustered

PCA (principal component analysis, with SVD)

LDA (latent Dirichlet allocation) — considers document (sample) as a set of "related to" topics

t-SNE - best for visualization

Embedding

PCA

Autoencoders

Vector Space Arithmetic

(Radford et al, 2015)

See also http://www.offconvex.org/2016/02/14/word-embeddings-2/

Prediction of values and probabilities

Regression can be considered as **scoring** the data (prediction of values)

- 1) [Linear] Regression
 - a) With GD
 - b) With LSA
 - c) With ...
- 2) SVM (with kernels)
- 3) HMM
- 4) ANNs

Separating data into groups (tagging)

1) **K**-class **classification** is usually a function

$$F: \Omega \to [0..1]^K$$

2) **K**-cluster **clustering** of **N** objects is usually a function

$$F: \Omega^N \to \{1, \dots, K\}^N$$

Explaining the data and model

1) **Factor analysis** with **covariance matrix** is a good way of analyzing **factors** (features).

2) **Linear and tree models** are highly explainable (linear and logistic regression, LSA, ...).

3) **ANNs can be explained** much harder, but still can be.

Important steps towards solution

Top-level overview of how ML models are created

- 1. Find data
- 2. Prepare data
- 3. Prepare dataset
- 4. Train, validate, test
- 5. Measure quality
- 6. Save, deploy
- 7. Improve

1. Find your dataset

Dataset = samples + target (or ground truth)

- 1) Collect data for your task
- 2) Take the data from customer
- 3) Download publicly available dataset

1.1. Dataset and quality

Before you start training the model, be sure you understand:

- How do you measure the quality?
- CAN YOU?
- What are the values that will satisfy you?

Lab #1: Explaining the model, measuring quality

- 1) Explore <u>naive-ml</u> example.
 - a) Consider difference between matrix inverse and LSA.
 - b) Compute <u>RMSE</u> for both solutions
 - i) Which of solutions is more accurate?
- 2) Find an <u>approximation for GPD</u>. Compute RMSE

2.1. Clean your data

- Clean
- Restore nulls
- Normalize
- Extend
- Augment
- Bootstrap
-

2. Split your data for training

- 1. Train
- 2. Validate
- 3. Test

Firstly your model is trained to **minimize error** on **training set**.

Validation data is used to (1) prevent overfitting (2) tune hyperparameters.

Parameters and hyperparameters that minimize error for **validation set** are desired result.

Test set is used to compute **quality results**. (Consider this as blind **acceptance** by customer).

... or

- 1) Split you data into train+validate and test sets.
- 2) Use cross-validation for tuning parameters
- Use grid/random/... search for tuning hyperparameters.

3. Train your model and save results

The results of your training (the most valuable thing!):

- Model type (ANN, SVM, CNN, R-CNN, ...)
- Hyperparameters
- Parameters (weights)

SAVE THEM IF YOU LIKE THEM

False fiends of ML

Biased data

WRONG:

Quality = Accuracy = (TP+TN)/(P+N)

BETTER:

Precision, Recall

EVEN BETTER:

Normalize your data distribution (find examples, augment, or at least clone)

selected elements

How many relevant items are selected?

Overfitting

Overfitting?

Regularization.

Size of house

Small dataset and complex model

- 1) Don't use complex model for small dataset
 - a) Rule of thumb: number of **parameters** should be comparable with **dataset size**
- 2) Data augmentation
- 3) Data generation

Biased conditions (datasets)

ML for CV

Machine learning is...

Finding a **function** over some sample **space** by **examples**

Function: classifier, regression (dimension reduction)

Space: image itself (for deep learning), feature space for classical ML

Examples: multiple examples of images of desired objects

Classifier example

Graded lab #10

Select one of problems and submit to Canvas:

- How many red and yellow stones are on this image?
 https://github.com/hsu-ai-course/hsu.ai/tree/master/code/d
 atasets/images/curling.jpg
- 2. Use this https://github.com/jhlau/doc2vec pretrained model to build embeddings of texts:
 - a. This sentence is about fish and sea
 - b. How much should I pay for this fish? Sounds like it just was caught in the sea!
 - Integration is opposite to derivation.
 - d. Sine function derivative is cosine function.

What are pairwise cosine similarity values?

Homework

Start reading this book - this is a cool starter for ML.

Demonstrate following skill (mandatory, edvanced and facial=nightmare modes):

- splitting data to test and validate sets,
- introducing and measuring error (cost) function for your data,
- cross-validation.