

### 24 Diagonalisation

Reprise du programme précédent.

## 25 Polynômes d'endomorphisme, de matrice

Reprise du programme précédent.

### 26 Réduction

Polynômes annulateurs et valeurs propres Si  $u(x) = \lambda x$ ,  $P(u)(x) = P(\lambda)x$ . Les valeurs propres sont parmi les racines des polynômes annulateurs. Si E est de dimension finie, les valeurs propres sont les racines du polynôme minimal.

Traduction matricielle des résultats.

Lemme de décomposition des noyaux Cas de deux polynômes premiers entre eux, de plusieurs polynômes premiers entre eux; cas d'un polynôme annulateur de u décomposé en facteurs irréductibles.

**Polynômes annulateurs et réduction** CNS de diagonalisabilité :  $\pi_u$  ou un autre polynôme annulateur est scindé à racine simple.

Si F est stable par u, le polynôme caractéristique (resp. minimal) de l'endomorphisme induit  $u_F$  divise celui de u. Si u est diagonalisable,  $u_F$  aussi.

Théorème de Cayley-Hamilton.

Traduction matricielle des résultats.

**Trigonalisabilité** Définition, caractérisation par le fait que  $\chi_u$ , ou  $\pi_u$ , ou un autre polynôme annulateur scindé. Trace et déterminant losque u est trigonalisable.

Traduction matricielle des résultats.

Nilpotence Définition, indice de nilpotence. Polynôme minimal, caractéristique d'un endomorphisme nilpotent. Dans E de dimension finie, u est nilpotent si et seulement s'il est trigonalisable et a 0 pour unique valeur propre.

Traduction matricielle des résultats.

Sous-espaces caractéristiques Définition :  $N_{\lambda}(u) = \operatorname{Ker}\left((u - \lambda \operatorname{Id}_{E})^{m_{\lambda}}\right)$ . Lorsque  $\chi_{u}$  est scindé, lien avec  $E_{\lambda}(u)$ , stabilité par u, dimension de  $N_{\lambda}(u)$ , polynôme caractéristique de l'endomorphisme induit  $u_{N_{\lambda}(u)}$ . Lorsque  $\chi_{u}$  est scindé,  $E = \bigoplus_{\lambda \in \operatorname{Sp}(u)} N_{\lambda}(u)$  et il existe une base dans laquelle la matrice de u est

diagonale par blocs, chaque bloc étant triangulaire et à termes diagonaux égaux.

Traduction matricielle des résultats.

# Dérivation des fonctions numériques

Rappels de première année : définition, caractéristation de la dérivation, équation d'une tangente, dérivée de  $t \mapsto e^{\alpha t}$  pour  $\alpha \in \mathbb{C}$ .

Extremum global, local, point critique, théorème de Rolle.

Égalité des accroissements finis, inégalité des accroissements finis.

Opérations sur les fonctions dérivables.

Fonctions de classe  $C^k$ , formule de Leibniz.

Théorème limite de la dérivée. Exemple de fonction dérivable, qui n'est pas  $\mathcal{C}^1$ .



# 64 Intégration sur un segment des fonctions numériques

Rappels de première année : subdivision d'un segment, fonction continue par morceaux sur un segment. Intégrale d'une fonction cpm sur un segment, relation de Chasles, linéarité, positivité, croissance, inégalité triangulaire, intégrale nulle d'une fonction **continue** et positive.

Sommes de Riemann.

Primitives d'une fonction. L'intégrale fonction de la borne d'en haut d'une fonction continue est une primitive. Intégration par parties (pour l'utilisation pratique sur des fonctions usuelles, on ne précise pas les hypothèses de régularité). Changement de variable (pour l'utilisation pratique sur des fonctions usuelles, on ne précise pas les hypothèses de régularité).

Formules de Taylor.

# Exercices et résultats classiques à connaître

#### 26.1

Soit  $M \in \mathcal{M}_n(\mathbb{R})$  telle que :

$$M^2 - M^{\top} = I_n$$

Montrer que M est diagonalisable.

### 26.2

On considère la matrice  $A \in \mathcal{M}_n(\mathbb{R})$  suivante, où  $n \geq 3$ :

$$\left(\begin{array}{ccccc} 1 & --- & -- & 1 \\ \vdots & 0 & \cdots & 0 & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \vdots & 0 & \cdots & 0 & \vdots \\ 1 & --- & -- & 1 \end{array}\right)$$

- (a) On souhaite dans cette question déterminer les valeurs propres de A.
  - a1. Quel est le rang de A?
  - a2. Calculer  $A^2$ .
  - a3. Justifier que 0 est valeur propre d'ordre au moins n-2.
  - a4. En notant  $\lambda_1$  et  $\lambda_2$  les deux autres valeurs propres (éventuellement nulle, égales, complexes), donner  $\lambda_1 + \lambda_2$  et  $\lambda_1 \lambda_2$ .
  - a5. En déduire Sp(A).
- (b) Déterminer une CNS pour avoir  $\operatorname{Sp}_{\mathbb{R}}(A) \subset \mathbb{Z}$ .
- (c) Démontrer que, pour tout  $k \ge 3$ , il existe  $\lambda_k, \mu_k$  tels que :

$$A^k = \lambda_k A + \mu_k A^2$$

#### 26.3

Soit E un espace vectoriel réel et  $u \in \mathcal{L}(E)$  tel que  $u^3 = \mathrm{Id}_E$ . Montrer que  $\mathrm{Ker}(u - \mathrm{Id}_E)$  et  $\mathrm{Ker}(u^2 + u + \mathrm{Id}_E)$  sont supplémentaires dans E.

26.4



(a) Montrer que l'application définie par :

$$\varphi(P) = (X^2 - 1)P'(X) - (4X + 1)P(X)$$

est un endomorphisme de  $\mathbb{R}_4[X]$ .

(b) Résoudre l'équation différentielle :

$$y' = \left(\frac{5+\lambda}{2(x-1)} + \frac{3-\lambda}{2(x+1)}\right)y$$

(c) En déduire les valeurs propres et les vecteurs propres de  $\varphi$ .

#### 63.1

- (a) Montrer que, si  $P \in \mathbb{R}[X]$  est un polynôme de degré  $\geq 2$ , scindé à racines simples, alors P' est aussi scindé à racines simples.
- (b) Le résultat est-il vrai si on suppose  $P \in \mathbb{C}[X]$ ?
- (c) Montrer que, si  $P \in \mathbb{R}[X]$  est un polynôme scindé, alors P' est aussi scindé.

#### 63.2

Montrer que la fonction, définie sur  $\mathbb{R}^*$  par :

$$f: x \mapsto x^3 \sin\left(\frac{1}{x}\right)$$

se prolonge à  $\mathbb{R}$  en une fonction de classe  $\mathcal{C}^1$ .

#### 64.1

Soit  $f:[a,b]\to\mathbb{R}$  une fonction de classe  $\mathcal{C}^1$ . Montrer que :

$$\int_{a}^{b} f(t)\sin(nt) \, \mathrm{d}t = 0$$

#### 64.2

Pour  $n \in \mathbb{N}$ , on pose :

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n t \, \mathrm{d}t$$

(a) Montrer que, pour tout  $n \in \mathbb{N}$ :

$$I_{n+2} = \frac{n+1}{n+2}I_n$$

(b) Donner une expression de  $I_n$  à l'aide de factorielles.

#### 64.3

Déterminer un équivalent simple de :

$$u_n = \sum_{k=1}^{n} \frac{1}{k^2 + n^2}$$



#### 64.4

Utiliser une formule de Taylor pour montrer que, pour tout  $x \in \mathbb{R}$ :

$$\sin x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

### Exercices du CCINP à travailler

0.5

**GNP** 62.21

Soit E un espace vectoriel sur  $\mathbb{R}$  ou  $\mathbb{C}$ . Soit  $f \in \mathcal{L}(E)$  tel que  $f^2 - f - 2\mathrm{Id} = 0$ .

- 2. Prouver que  $E = \text{Ker}(f + \text{Id}) \oplus \text{Ker}(f 2\text{Id})$ :
  - (a) en utilisant le lemme des noyaux.

0.6

**GNP** 65.3

3. Soit  $A = \begin{pmatrix} -1 & -2 \\ 1 & 2 \end{pmatrix}$ .

Écrire le polynôme caractéristique de A, puis en déduire que le polynôme  $R=X^4+2X^3+X^2-4X$  est un polynôme annulateur de A.

0.7

**GNP** 68.14

Soit la matrice  $A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$ .

- 1. Démontrer que A est diagonalisable de quatre manières :
  - (d) en calculant  $A^2$ .

0.8

**GNP** 75

On considère la matrice  $A = \begin{pmatrix} -1 & -4 \\ 1 & 3 \end{pmatrix}$  .

- 1. Démontrer que A n'est pas diagonalisable.
- 2. On note f l'endomorphisme de  $\mathbb{R}^2$  canoniquement associé à A.

  Trouver une base  $(v_1, v_2)$  de  $\mathbb{R}^2$  dans laquelle la matrice de f est de la forme  $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ .

  On donnera explicitement les valeurs de a, b et c.
- 3. En déduire la résolution du système différentiel  $\begin{cases} x' = -x 4y \\ y' = x + 3y \end{cases} .$



0.9

**GNP** 88

1. Soit E un  $\mathbb{K}$ -espace vectoriel ( $\mathbb{K} = \mathbb{R}$  ou  $\mathbb{C}$ ). Soit  $u \in \mathcal{L}(E)$ . Soit  $P \in \mathbb{K}[X]$ .

Prouver que si P annule u alors toute valeur propre de u est racine de P.

2. Soit  $n \in \mathbb{N}$  tel que  $n \geq 2$ . On pose  $E = \mathcal{M}_n(\mathbb{R})$ .

Soit 
$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$$
 la matrice de  $E$  définie par  $a_{i,j} = \begin{cases} 0 \text{ si } i = j \\ 1 \text{ si } i \ne j \end{cases}$ .

Soit  $u \in \mathcal{L}(E)$  défini par :  $\forall M \in E, u(M) = M + \operatorname{tr}(M)A$ .

- (a) Prouver que le polynôme  $X^2 2X + 1$  est annulateur de u.
- (b) u est-il diagonalisable? Justifier sa réponse en utilisant deux méthodes (l'une avec, l'autre sans l'aide de la question 1.).

0.10

**GNP** 93.23

Soit E un espace vectoriel réel de dimension finie n > 0 et  $u \in \mathcal{L}(E)$  tel que  $u^3 + u^2 + u = 0$ . On notera Id l'application identité sur E.

- 2. (a) Énoncer le lemme des noyaux pour deux polynômes.
  - (b) En déduire que  $\text{Im} u = \text{Ker}(u^2 + u + \text{Id})$ .
- 3. On suppose que u est non bijectif. Déterminer les valeurs propres de u. Justifier la réponse.

0.11

GNP 3

1. On pose  $g(x) = e^{2x}$  et  $h(x) = \frac{1}{1+x}$ . Calculer, pour tout entier naturel k, la dérivée d'ordre k des fonctions g et h sur leurs ensembles de définitions respectifs.

2. On pose  $f(x) = \frac{e^{2x}}{1+x}$ .

En utilisant la formule de Leibniz concernant la dérivée  $n^{\text{ième}}$  d'un produit de fonctions, déterminer, pour tout entier naturel n et pour tout  $x \in \mathbb{R} \setminus \{-1\}$ , la valeur de  $f^{(n)}(x)$ .

3. Démontrer, dans le cas général, la formule de Leibniz, utilisée dans la question précédente.

0.12

GNP 4

- 1. Énoncer le théorème des accroissements finis.
- 2. Soit  $f:[a,b] \longrightarrow \mathbb{R}$  et soit  $x_0 \in [a,b[$ . On suppose que f est continue sur [a, b] et que f est dérivable sur  $[a, x_0]$  et sur  $[x_0, b]$ . Démontrer que, si f' admet une limite finie en  $x_0$ , alors f est dérivable en  $x_0$  et  $f'(x_0) =$  $\lim f'(x)$ .



3. Prouver que l'implication : ( f est dérivable en  $x_0$ )  $\Longrightarrow$  (f' admet une limite finie en  $x_0$ ) est fausse.

**Indication**: on pourra considérer la fonction g définie par :  $g(x) = x^2 \sin \frac{1}{x} \sin x \neq 0$  et g(0) = 0.

0.13

**GNP** 79.1

Soit a et b deux réels tels que a < b.

1. Soit h une fonction continue et positive de [a, b] dans  $\mathbb{R}$ .

Démontrer que 
$$\int_a^b h(x) dx = 0 \Longrightarrow h = 0$$
.