《微积分A2》第二十六讲

教师 杨利军

清华大学数学科学系

2020年05月18日

函数项级数

Definition

- <u>定义</u>: (i) 设 $u_n(x)$ 为区间 J 上的函数, $\forall n \geq 1$, 称 $\sum_{n\geq 1} u_n(x)$ 或 $\sum_{n=1}^{+\infty} u_n(x)$ 或 $\sum_{n=1}^{\infty} u_n(x)$ 为函数项级数;
- (ii) 假设 $x_0 \in J$, 使得数项级数 $\sum u_n(x_0)$ 收敛, 则称函数项级数 $\sum u_n(x)$ 在点 x_0 处收敛;
- (iii) 若函数项级数 $\sum u_n(x)$ 对每个点 $x \in J$ 均收敛, 其和为 S(x), 则称 $\sum u_n(x)$ 在 J 上处处收敛, 且 $\sum u_n(x) = S(x)$, $x \in J$.

例子

Example (1)

例:函数项级数 $\sum_{n\geq 0} x^n$ 对每个点 $x\in (-1,1)$ 均收敛, 其和为 $\frac{1}{1-x}$. 因此 $\sum_{n\geq 0} x^n = \frac{1}{1-x}$, $x\in (-1,1)$.

Example (2)

例:已证函数项级数 $\sum_{k\geq 1} \frac{\sinh k}{k}$ 对每个点 $\mathbf{x}\in(0,2\pi)$ 均收敛. 利用 Fourier 级数理论, 我们将证明

$$\sum_{k>1}\frac{\mathrm{sinkx}}{k}=\frac{\pi-\mathrm{x}}{2},\quad \mathrm{x}\in(0,2\pi).$$

函数项级数理论的任务

函数项级数理论的任务: 对给定的函数项级数 $\sum_{k\geq 0} u_k(x)$, $x\in J$, 要研究级数对哪些点 $x\in J$ 收敛, 即确定收敛域. 进一步, 假设级数在区间 J 上处处收敛, 其和函数为 S(x), 我们要研究 S(x) 的分析性质, 即连续性, 可微性等. 具体说来 1) 连续性问题:

$$\lim_{x\to x_0}\sum_{n=1}^{+\infty}u_n(x)\stackrel{?}{=}\sum_{n=1}^{+\infty}\lim_{x\to x_0}u_n(x).$$

这实际上是如下交换极限次序问题

$$\underset{x \to x_0}{\text{lim}} \underset{n \to +\infty}{\text{lim}} \sum_{k=1}^n u_k(x) \stackrel{?}{=} \underset{n \to +\infty}{\text{lim}} \underset{x \to x_0}{\text{lim}} \sum_{k=1}^n u_k(x);$$

任务续

2). 逐项积分问题

$$\int_a^b \left[\sum_{n=1}^{+\infty} u_n(x) \right] dx \stackrel{?}{=} \sum_{n=1}^{+\infty} \int_a^b u_n(x) dx;$$

3). 逐项微分问题

$$\left[\sum_{n=1}^{+\infty}u_n(x)\right]'\stackrel{?}{=}\sum_{n=1}^{+\infty}u_n'(x).$$

大致说来, 当级数为一致收敛时, 上述三个问题均有肯定答案. 这些可与广义含变量积分情形相比较: 当广义含变量积分一致 收敛时, 这三个问题均有肯定答案.

函数列的一致收敛性

Definition

定义:设 $f_n(x)$ 为区间 J 上的函数列.假设对每个点 $x \in J$,序列 $\{f_n(x)\}$ 收敛,其极限为 f(x).如果对任意 $\varepsilon > 0$,存在正整数 $N = N(\varepsilon)$ (N 仅与 ε 有关,与x 无关),使得

$$|f_n(x)-f(x)|<\varepsilon,\quad \forall n\geq N,\quad \forall x\in J,$$

则称函数列 $f_n(x)$ 在区间 J 一致收敛于函数 f(x), 并记之为 $f_n(x) \Rightarrow f(x)$, $x \in J$.

函数项级数的一致收敛性

Definition

定义:设 $\sum_{k\geq 1}u_k(x)$ 为区间」上的函数项级数.如果级数的部分和序列 $S_n(x)$ 在 J 上一致收敛于函数 S(x),即 $S_n(x)$ ⇒ S(x),则称级数 $\sum_{k\geq 1}u_k(x)$ 在区间 J 一致收敛于 S(x).

例一

例: 证明 $x^n \Rightarrow 0$, $x \in [-r, r]$, 其中 $r \in (0, 1)$.

证: xⁿ ⇒ 0

 $\iff \forall \varepsilon > 0$, $\exists N$, $\notin \mbox{\it qr}^n < \varepsilon$, $\forall n \geq N$,

 $\iff \forall \varepsilon > 0$, $\exists N$, $\notin q r^N < \varepsilon$,

 $\iff N > \frac{\ln \varepsilon}{\ln r}.$

于是对任意 $\varepsilon > 0$,存在 $N = \left[\frac{\ln \varepsilon}{\ln r}\right] + 1$,使得 $|x^n| < \varepsilon$, $\forall n \ge N$,

 $\forall x \in [-r, r]$. 命题得证.

例二

例:证明函数列 xn 在区间 [0,1] 非一致收敛.

证: 显然 xn 在区间 [0,1] 收敛于函数

$$f(x) = \begin{cases} 0, & x \in [0,1) \\ 1, & x = 1. \end{cases}$$

假设在区间 [0,1] 上, $x^n \Rightarrow f(x)$, 则依定义知, 对任意 $\varepsilon > 0$, 存在 $N = N(\varepsilon)$, 使得对 $\forall x \in [0,1)$, $|x^n - f(x)| = |x^n| < \varepsilon$, $\forall n \geq N$, 取 $\varepsilon = \frac{1}{2}$, 取 n = N, 则 $|x^N| < \frac{1}{2}$, $\forall x \in [0,1)$. 令 $x \to 1^-$, 则 $1 < \frac{1}{3}$. 矛盾. 命题得证.

例三

<u>例三</u>: 证明 $\sum_{k=0}^{+\infty} x^k$ 在区间 [-r,r] 一致收敛, 其中 $r \in (0,1)$.

证: 易证所考虑的级数在 [-r,r] 上处处收敛, 且

$$\sum_{k=0}^{+\infty} x^k = \frac{1}{1-x}, \quad \forall x \in [-r,r].$$

此即部分和 $S_n(x) = \sum_{k=0}^{n-1} x^k = \frac{1-x^n}{1-x}$ 收敛于 $S(x) = \frac{1}{1-x}$, $x \in [-r,r]$. 已证在区间 [-r,r] 上, $x^n \to 0$. 由此看出

$$\frac{1-x^n}{1-x} \rightrightarrows \frac{1}{1-x}, \quad x \in [-r,r].$$

此即 $S_n(x) \Rightarrow S(x)$, $x \in [-r, r]$. 命题得证.

Cauchy 一致收敛准则

Theorem

定理: (i) 函数列 $f_n(x)$ 在区间 J 上一致收敛 \iff 对任意 $\varepsilon > 0$,

存在 $N=N(\varepsilon)$, 使得 $|f_n(x)-f_m(x)|<\varepsilon$, $\forall n,m\geq N$, $\forall x\in J$.

(ii) 函数级数 $\sum u_k(x)$ 在区间 J 上一致收敛 \Longleftrightarrow 对任意 $\varepsilon > 0$,

存在 $\mathsf{N}=\mathsf{N}(arepsilon)$,使得 $|\sum_{\mathsf{k}=\mathsf{n}+1}^{\mathsf{n}+\mathsf{p}}\mathsf{u}_\mathsf{k}(\mathsf{x})|<arepsilon$, $\mathsf{v}\geq\mathsf{N}$, $\mathsf{p}\geq\mathsf{1}$,

 $\forall x \in J$.

证明简单. 略去.

函数项级数一致收敛性的 Weierstrass 判别法

$\mathsf{Theorem}$

定理:设 $u_k(x)$ 为区间」上的函数列.若 $|u_k(x)| \leq M_k$, $\forall x \in J$,且数项级数 $\sum M_k$ 收敛,则函数项级数 $\sum u_k(x)$ 在区间 J 上一致收敛,且绝对收敛。

证:由函数项级数 Cauchy 一致收敛准则立刻得到结论.

注一: 定理中所给的方法称作 Weierstrass 判别法, 也称优函数法 (the method of majorant), 或 M 判别法. 这是判别函数级数一致收敛的最常用的方法.

注二: 显然 M 判别法不适用于仅一致收敛, 但不是绝对收敛的函数项级数.

关于一致收敛与绝对收敛的注记

注记: 一致收敛与绝对收敛是两个互不包含的两个性质. 例如函数项级数

$$\sum_{k=2}^{+\infty} \frac{(-1)^k}{k + \sin x},$$

对于 $\forall x \in \mathbb{R}$ 是 Leibniz 型级数. 利用 Cauchy 准则不难证明这个级数在 \mathbb{R} 上一致收敛. 但显然这个级数非绝对收敛. 而级数

$$\sum_{k=0}^{+\infty}(1-x)x^k=(1-x)\sum_{k=0}^{+\infty}x^k$$

在区间 [0,1] 上绝对收敛,但非一致收敛。因为这个级数的前 n 项部分和为 $S_n(x) = \sum_{k=0}^{n-1} (1-x) x^k = 1-x^n. \ \text{已证} \ x^n \ \text{在} \ [0,1] \ \text{上非一致收敛.} \ \text{故} \ 1-x^n$ 在 [0,1] 上也非一致收敛。因此级数 $\sum_{k=0}^{+\infty} (1-x) x^k \ \text{在} \ [0,1]$ 上非一致收敛。

例子

例:考虑级数

$$\sum_{k=1}^{+\infty} x^2 e^{-kx}$$

在区间 $J = [0, +\infty)$ 上的一致收敛性.

解: 考虑一般项 $u_k(x) = x^2 e^{-kx}$ 在 $[0, +\infty)$ 上的最大值. 对其求导得 $u_k'(x) = 2x e^{-kx} - kx^2 e^{-kx} = x e^{-kx} (2 - kx)$. 由此可见函数 $u_k(x)$ 在 [0, 2/k) 上单调上升, $u_k(x)$ 在 $(2/k, +\infty)$ 上单调下降. 于是 $u_k(x)$ 在点 x = 2/k 处取得最大值

$$u_k(2/k) = \Big[\frac{2}{k}\Big]^2 e^{\frac{-2k}{k}} = \frac{4}{k^2 e^2}, \quad \forall k \geq 1.$$

例子续

这表明

$$|u_k(x)| \leq \frac{4}{k^2 e^2}, \quad \forall k \geq 1, \quad \forall x \in [0,+\infty).$$

又正项级数 $\sum \frac{4}{k^2 e^2}$ 收敛. 根据 M 判别法可知, 所考虑的级数在区间 $[0,+\infty)$ 上一致收敛. 解答完毕.

函数级数一致收敛性的 Abel 判别法

Theorem

<u>定理</u>: 设 $u_k(x)$ 和 $v_k(x)$ 为区间 J 上的函数, $k \ge 1$, 则函数级数

$$\sum_{k=1}^{+\infty} u_k(x) v_k(x)$$

在」上一致收敛,如果以下条件成立.

- (i) 级数 $\sum u_k(x)$ 在 J 上一致收敛;
- (ii) 序列 $\{v_k(x)\}$ 对每个 $x\in J$ 关于 k 单调, 且一致有界, 即存在 M, 使得 $|v_k(x)|\le M$, $\forall x\in J$, $k\ge 1$.

证明基本同数项级数情形. 略

函数级数一致收敛性的 Dirichlet 判别法

定理:设 $u_k(x)$ 和 $v_k(x)$ 为区间 J上的函数, $k \ge 1$,则函数级数

$$\sum_{k=1}^{+\infty} u_k(x) v_k(x)$$

在 J 上一致收敛, 如果以下条件成立.

- (i) 级数 $\sum u_k(x)$ 部分和一致有界, 即存在 M>0, 使得 $|\sum_{k=1}^n u_k(x)| \le M$, $\forall n \ge 1$, $\forall x \in J$;
- (ii) 序列 $v_k(x)$ 对每个 $x \in J$ 关于 k 单调,且一致趋向于零,即 $\forall \varepsilon > 0, 存在正整数 \ K = K(\varepsilon), 使得 |v_k(x)| < \varepsilon, \forall k \geq K,$ $\forall x \in J.$

证明基本同数项级数情形. 略.

例子

例:证明级数

$$\sum_{k=1}^{+\infty} \frac{\sin kx}{k},$$

在闭区间 $[\delta, 2\pi - \delta]$ 上一致收敛, 其中 $\delta > 0$ 为任意小的正数.

 \underline{u} : 已证上述级数在开区间 $(0,2\pi)$ 上处处收敛, 并且还得到如下估计

$$\left|\sum_{\mathsf{k}=1}^\mathsf{n}\mathsf{sinkx}
ight| \leq rac{1}{|\mathsf{sin}rac{\mathsf{x}}{2}|}, \quad orall \mathsf{x} \in (0,2\pi).$$

例子续

如果限制 $x \in [\delta, 2\pi - \delta]$,则可得如下部分和的一致有界性

$$\left|\sum_{\mathsf{k}=1}^\mathsf{n}\mathsf{sinkx}\right| \leq \frac{1}{|\mathsf{sin}\frac{\mathsf{x}}{2}|} \leq \frac{1}{|\mathsf{sin}\frac{\delta}{2}|}, \quad \forall \mathsf{x} \in [\delta, 2\pi - \delta].$$

另一方面, 序列 $\{\frac{1}{k}\}$ 单调且一致趋向于零(序列与 x 无关). 因此由 Dirichlet 判别法知级数 $\sum_{k\geq 1}\frac{\sinh k}{k}$ 在区间 $[\delta,2\pi-\delta]$ 上一致收敛. 证毕.

连续性守恒定理

Theorem

定理: (1) 设函数 $f_n(x)$ 在区间 J 上连续, $\forall n \geq 1$. 若函数列 $\{f_n(x)\}$ 在 J 上一致收敛, 则极限函数 f(x) 也在 J 上连续;

(2) 设函数 $u_k(x)$ 在区间 J 上连续, $\forall k \geq 1$. 若函数项级数 $\sum u_k(x)$ 在 J 上一致收敛, 则和函数 S(x) 也在 J 上连续.

注: 连续性守恒定理可用来证明某些函数列或函数级数的非一致收敛性.

Example

<u>例一</u>: 已证 $\{x^n\}$ 在区间 [0,1] 上收敛但非一致收敛, 其极限函数为

$$f(x) = \begin{cases} 0, & x \in [0,1) \\ 1, & x = 1. \end{cases}$$

函数 f(x) 在点 x=1 处不连续. 这一方面说明连续函数列的极限函数不必是连续函数. 另一方面, 由连续性守恒定理知, 函数列 $\{x^n\}$ 在区间 [0,1] 上收敛, 但非一致收敛.

例二

Example

例二: 函数级数

$$\sum_{k=0}^{+\infty} (1-x)x^k$$

在区间[0,1] 上处处收敛, 且和函数为

$$S(x) = \left\{ \begin{array}{ll} 1, & x \in [0,1) \\ \\ 0, & x = 1. \end{array} \right.$$

由于函数 S(x) 在点 x=1 处不连续. 故可断言, 上述函数级数 在区间 [0,1] 上非一致收敛.

定理证明

证: 显然结论(2) 是结论(1)的直接推论. 故只需证(1), 即要证对任取 $x_0 \in J$, 函数 f(x) 在 x_0 处连续. 亦即要证对任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得 $|f(x) - f(x_0)| < \varepsilon$, 只要 $|x - x_0| < \delta$. 由假设 $f_n(x) \Rightarrow f(x)$ on J 知, 对上述 $\varepsilon > 0$, 存在正整数 $N = N(\varepsilon)$, 使得

$$|f_n(x) - f(x)| < \varepsilon, \quad \forall n \ge N, \quad \forall x \in J.$$

取 n = N, 则有 $|f_N(x) - f(x)| < \varepsilon$, $\forall x \in J$.

证明续

由于 $f_N(x)$ 在 J 上连续,特别在 x_0 处连续,故存在 $\delta>0$,使得 $|f_N(x)-f_N(x_0)|<\varepsilon$,只要 $|x-x_0|<\delta$.于是对任给的 $\varepsilon>0$,存在 $\delta>0$,使得当 $|x-x_0|<\delta$ 时,

$$\begin{split} &|f(x) - f(x_0)|\\ &\leq |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)|\\ &\leq \varepsilon + \varepsilon + \varepsilon = 3\varepsilon. \end{split}$$

这表明f(x) 在点x0 处连续. 证毕.

极限和积分交换次序定理

Theorem

定理: 设函数 $f_n(x)$ 在 [a,b] 上连续, $\forall n \geq 1$, 且 $f_n(x) \Rightarrow f(x)$

on [a, b], 则

$$\int_a^b f(x) dx = \lim_{n \to +\infty} \int_a^b f_n(x) dx,$$

此即

$$\int_a^b \left[\lim_{n \to +\infty} f_n(x) \right] dx = \lim_{n \to +\infty} \int_a^b f_n(x) dx.$$

定理证明稍后给出.

函数级数的逐项积分定理

$\mathsf{Theorem}$

<u>定理</u>: 设函数 $u_k(x)$ 在区间 [a,b] 上连续, $\forall k \geq 1$, 且函数级数

 $\sum u_k(x)$ 在 [a,b] 上一致收敛于和函数 S(x),则

$$\int_a^b S(x) = \sum_{k=1}^{+\infty} \int_a^b u_k(x) dx,$$

此即

$$\int_a^b \left[\sum_{k=1}^{+\infty} u_k(x) \right] dx = \sum_{k=1}^{+\infty} \int_a^b u_k(x) dx.$$

显然上述逐项积分定理是前一个定理的直接推论.

例子

例: 证明 Euler 常数 $\gamma (= 0.577\cdots)$ 可表示为

$$\gamma = \int_0^1 \left[\sum_{k=1}^{+\infty} \frac{x}{k(k+x)} \right] dx.$$

这里常数 γ 的定义如下

$$\gamma \stackrel{\triangle}{=} \lim_{\mathsf{n} \to +\infty} \left[\left(\sum_{\mathsf{k}=1}^{\mathsf{n}} \frac{1}{\mathsf{k}} \right) - \mathsf{ln}\,\mathsf{n} \right].$$

证: 显然函数级数

$$\sum_{k=1}^{+\infty} \frac{x}{k(k+x)}$$

在区间[0,1]上一致收敛.

例子续一

这是因为

$$0 \leq \frac{x}{k(k+x)} \leq \frac{1}{k^2}, \quad \forall x \in [0,1].$$

再根据 Weierstrass 判别法即得到这个一致收敛性.于是由上述逐项积分定理可知

$$\int_0^1 \left[\sum_{k=1}^{+\infty} \frac{x}{k(k+x)} \right] dx = \sum_{k=1}^{+\infty} \int_0^1 \frac{x dx}{k(k+x)}$$
$$= \sum_{k=1}^{+\infty} \int_0^1 \left[\frac{1}{k} - \frac{1}{k+x} \right] dx = \sum_{k=1}^{+\infty} \left[\frac{1}{k} - \ln \frac{k+1}{k} \right]$$

例子续二

$$\begin{split} &=\lim_{n\to+\infty}\sum_{k=1}^n\left[\frac{1}{k}-\ln\frac{k+1}{k}\right]\\ &=\lim_{n\to+\infty}\left[\left(\sum_{k=1}^n\frac{1}{k}\right)-\ln\left(\frac{2}{1}\cdot\frac{3}{2}\cdot\frac{4}{3}\cdots\frac{n+1}{n}\right)\right]\\ &=\lim_{n\to+\infty}\left[\left(\sum_{k=1}^n\frac{1}{k}\right)-\ln\left(n+1\right)\right]\\ &=\lim_{n\to+\infty}\left[\left(\sum_{k=1}^n\frac{1}{k}\right)-\ln n-\ln\frac{n+1}{n}\right]\\ &=\lim_{n\to+\infty}\left[\left(\sum_{k=1}^n\frac{1}{k}\right)-\ln n\right]=\gamma. \end{split}$$

极限和积分交换次序定理之证明

 \underline{u} : 由假设 $f_n(x) \Rightarrow f(x)$ on [a,b] 知, 对任意 $\varepsilon > 0$, 存在正整数 $N = N(\varepsilon)$, 使得

$$|f_n(x)-f(x)|<\varepsilon,\quad \forall n\geq N,\quad \forall x\in [a,b].$$

于是对于 $\forall n \geq N$,

$$\left|\int_a^b f_n(x) dx - \int_a^b f(x) dx\right| \leq \int_a^b |f_n(x) - f(x)| dx \leq \varepsilon (b-a).$$

定理得证.

极限函数的导数定理

Theorem

定理: 假设(1) fn(x) 在有界开区间 J 上连续可微;

- (2) 导函数序列 $\{f'_n(x)\}$ 在 J 上一致收敛, 其极限记作 g(x);
- (3) 存在一点 $x_0 \in J$, 使得序列 $\{f_n(x_0)\}$ 收敛,
- 则 (i) 函数序列 $\{f_n(x)\}$ 在 J 上一致收敛, 其极限函数记作 f(x);
- (ii) f(x) 在 J 上连续可微;
- (iii) f'(x) = g(x), 此即

$$\left[\lim_{n\to+\infty}f_n(x)\right]'=\lim_{n\to+\infty}f_n'(x).$$

定理证明稍后给出.

逐项求导定理

Theorem

定理: 假设(1) $u_k(x)$ 在有界开区间 J 上连续可微; (2) 导函数级数 $\sum u_k'(x)$ 在 J 上一致收敛, 其和函数记作 T(x); (3) 存在一点 $x_0 \in J$, 使级数 $\sum u_k(x_0)$ 收敛, 则(i) 函数级数 $\sum u_k(x)$ 在 J 上一致收敛, 其和函数记作 S(x); (ii) S(x) 在 J 上连续可微; (iii) S'(x) = T(x), 此即

$$\left[\sum_{k=1}^{+\infty}u_k(x)\right]'=\sum_{k=1}^{+\infty}u_k'(x).$$

也就是说, 函数级数 $\sum u_k(x)$ 可逐项求导.

上述逐项求导定理是极限函数的导数定理的直接推论。

例子

例:显然函数级数

$$\sum_{k=1}^{+\infty} \frac{coskx}{k^2}$$

在实轴上一致收敛,从而其和函数 S(x) 处处连续.证明 S(x)

在开区间 $(0,2\pi)$ 上连续可微,并且

$$\left[\sum_{\mathsf{k}=1}^{+\infty}\frac{\mathsf{coskx}}{\mathsf{k}^2}\right]' = -\sum_{\mathsf{k}=1}^{+\infty}\frac{\mathsf{sinkx}}{\mathsf{k}}, \quad \forall \mathsf{x} \in (0,2\pi).$$

 \underline{u} : 记 $u_k(x) = \frac{\cos kx}{k^2}$,则 $u_k(x)$ 在开区间 $(0,2\pi)$ 上连续可微,且

例子续

$$u_k'(x) = \left[\frac{coskx}{k^2}\right]' = -\frac{sinkx}{k}.$$

已证对于任意小的 $\delta > 0$, 级数 $\sum_{k=1}^{+\infty} \frac{\sinh kx}{k}$ 在区间 $[\delta, 2\pi - \delta]$ 上一致收敛. 于是逐项求导定理中的三个条件均成立, 其中 $J = (\delta, 2\pi - \delta)$, 从而定理中三个结论成立, 即 S(x) 在 $(\delta, 2\pi - \delta)$ 上连续可微, 且

$$\left[\sum_{\mathsf{k}=1}^{+\infty}\frac{\mathsf{coskx}}{\mathsf{k}^2}\right]' = -\sum_{\mathsf{k}=1}^{+\infty}\frac{\mathsf{sinkx}}{\mathsf{k}}, \quad \forall \mathsf{x} \in (\delta, 2\pi - \delta).$$

由于 $\delta>0$ 可以任意小, 故上式当 $\delta=0$ 是也成立. 定理得

证.

极限函数的导数定理之证明

证:根据 Newton-Leibniz 定理知

$$f_n(x) = f_n(x_0) + \int_{x_0}^x \! f_n'(s) ds,$$

$$f_m(x)=f_m(x_0)+\int_{x_0}^x\!f_m'(s)ds.$$

于是

$$|f_n(x) - f_m(x)|$$

$$\leq |f_n(x_0) - f_m(x_0)| + \left| \int_{x_0}^x |f_n'(s) - f_m'(s)| ds \right|.$$

由定理的第二个和第三个假设可知,对任意 $\epsilon>0$,存在正整数

 $N = N(\varepsilon)$, 使得对任意 $n, m \ge N$,

证明续一

$$|f_m(x_0)-f_n(x_0)|<\varepsilon, \quad |f_m'(s)-f_n'(s)|<\varepsilon, \quad \forall s\in J.$$

由此得

$$|f_n(x)-f_m(x)|\leq \varepsilon+\varepsilon|J|=\varepsilon(1+|J|),\quad \forall x\in J,$$

其中|J|表示区间J的长度. 这就证明了函数列 $\{f_n(x)\}$ 在J上一致收敛, 亦即结论(i) 成立.

证明续二

在恒等式

$$f_n(x) = f_n(x_0) + \int_{x_0}^x f'_n(s) ds,$$

两边 \circ n $\rightarrow +\infty$ 可得

$$f(x) = f(x_0) + \int_{x_0}^{x} g(s) ds.$$

注意到函数 g(x) 连续, 因此 f(x) 连续可微, 且 f'(x) = g(x). 即定理的结论(ii) 和(iii) 均成立. 证毕.

幂级数

Definition

定义: 形如 $\sum_{k>0} a_k (x-x_0)^k$ 的函数级数称为幂级数.

Theorem

定理: 对于幂级数 $\sum a_k x^k$, 若记 $\rho = \overline{\lim}_{k \to +\infty} \sqrt[k]{|a_k|}$, $R = \rho^{-1}$, 则幂级数的收敛情况如下:

- (i) 当 $0<
 ho<+\infty$, 则幂级数 $\sum a_k x^k$ 在开区间 (-R,R) 上处处绝对收敛;
- (ii) 当 $\rho = 0$, 则幂级数 $\sum a_k x^k$ 在实轴上处处绝对收敛;
- (iii) 当 $\rho = +\infty$, 则幂级数 $\sum_{k>0} a_k x^k$ 对任意 $x \neq 0$ 均发散.

注:在区间端点 $x=\pm R$ 处, 幂级数 $\sum a_k x^k$ 的收敛情况尚需进一步确定.

收敛半径

Definition

定义: 定理中的 $R = \rho^{-1}$, $\rho = \overline{\lim}_{k \to +\infty} \sqrt[k]{|a_k|}$, 称为幂级数

 $\sum_{k>0} a_k x^k$ 的收敛半径. 具体说来,

- (i) 当 $0 < \rho < +\infty$ 时, 称幂级数的收敛半径为 R;
- (ii) 当 $\rho = 0$ 时, 则幂级数的收敛半径为 $+\infty$;
- (iii) 当 $\rho = +\infty$, 则幂级数的收敛半径为 0;
- (iv) 开区间(-R,R) 称为幂级数的收敛区间.

例一: 考虑幂级数

$$\sum_{k=0}^{+\infty} x^k.$$

此时 $a_k = 1$, $\forall k \ge 0$. 于是 $\sqrt[k]{|a_k|} = 1 \to 1$, $k \to +\infty$. 即 $\rho = 1$. 故幂级数的收敛半径为 R = 1. 因此幂级数在开区间 (-1,1) 上处处收敛. 进一步对任意 |x| > 1, 级数发散.

例二

例二: 考虑幂级数

$$\sum_{k=0}^{+\infty} \frac{x^k}{k}.$$

此时 $\sqrt[k]{|a_k|}=k^{\frac{1}{k}}\to 1$, $k\to +\infty$. 故幂级数的收敛半径为 R=1. 因此幂级数在开区间 (-1,1) 上处处收敛. 显然幂级数 对于任何 |x|>1 发散, 因为此时级数的一般项不趋向于零. 此外在收敛区间的两个端点处, x=1, 级数为调和级数 $\sum \frac{1}{k}$, 发散; x=-1, 级数为 Leibniz 型级数 $\sum \frac{(-1)^k}{k}$, 收敛.

例三

例三: 考虑幂级数

$$\sum_{k=0}^{+\infty} \frac{x^k}{k!}.$$

此时 $a_k = \frac{1}{k!}$. 为求极限 $\overline{\lim}_{k \to +\infty} \sqrt[k]{|a_k|}$, 我们回忆一个结论: 对任意正数序列 $u_k > 0$. $\forall k > 0$. 则

$$\underline{\text{lim}}\frac{u_{k+1}}{u_k} \leq \underline{\text{lim}}\sqrt[k]{u_k} \leq \overline{\text{lim}}\sqrt[k]{u_k} \leq \overline{\text{lim}}\frac{u_{k+1}}{u_k}.$$

由于
$$\frac{a_{k+1}}{a_k} = \frac{k!}{(k+1)!} = \frac{1}{k+1} \rightarrow 0$$
, $k \rightarrow +\infty$,

故
$$ho = \lim_{n \to +\infty} \sqrt[n]{a_n} = \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = 0.$$

例三续

因此幂级数的收敛半径为 $R = +\infty$. 即幂级数对任意实数 x 均收敛.

注: 也可以利用 Stirling 公式 (未证, 最好记住)

$$n! = \sqrt{2\pi n} {\left(\frac{n}{e}\right)}^n e^{\frac{\theta_n}{12n}}, \quad \theta_n \in (0,1)$$

来求收敛半径. 因为

$$\sqrt[n]{|a_n|} = \frac{1}{\frac{n}{e}(\sqrt{2\pi n}e^{\frac{\theta_n}{12n}})^{\frac{1}{n}}} \to 0, \quad n \to +\infty.$$

所以收敛半径为 $+\infty$.

例四

例四: 考虑幂级数

$$\sum_{k=0}^{+\infty} k! x^k.$$

此时 $a_k = k!$. 于是

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)!}{k!} = k \to +\infty, \quad k \to +\infty.$$

因此 $\rho=\lim_{k\to+\infty}\sqrt[k]{k!}=+\infty$. 故收敛半径为 R=0. 从而幂级数 $\sum_{k=0}^{+\infty}k!x^k$ 对任意 $x\neq0$ 均发散.

例五

例五: 考虑幂级数

$$\sum_{k=0}^{+\infty} 5^k x^{3k}. \quad (*)$$

令 $t = 5x^3$, 并考虑幂级数

$$\sum_{k=0}^{+\infty} t^k. \quad (**)$$

显然幂级数(**) 收敛 \iff |t| < 1. 因此幂级数(*) 收敛 \iff $|5x^3| < 1 <math>\iff$ $|x| < \frac{1}{\sqrt[3]{5}}$.

作业

第5章总复习题(page 260-262):

2(1), 3(1)(2)(3)(4)(5), 4, 5, 6.

习题6.1(page 270-271):

2(1)(3)(5)(7)(9), 3(1)(3)(5), 4, 5, 6, 7, 9, 10.