Eine Woche, ein Beispiel 2.6 six functors

Ref: https://people.mpim-bonn.mpg.de/scholze/SixFunctors.pdf

A preparation of exams.

Upgrade: ∞ - categories & sym monoidal structure

Idea:
$$\mathcal{D}_{\circ}: \mathcal{C}^{\circ P} \longrightarrow \mathsf{Cat}_{\circ}$$
 $X \longmapsto \mathsf{D}(x)$ $f \downarrow \Rightarrow \uparrow f'$ $Y \longmapsto \mathsf{D}(Y)$

extends to
$$f$$
 compatability is encoded!
 $\mathcal{D}: Corr(C, E) \longrightarrow Mon(Cato)$
 $[Y \leftarrow f X = X] \longmapsto f^*$
 $[X = X \xrightarrow{f \in E} X] \longmapsto f!$
 $[X \times X \triangleq X = X] \longmapsto \emptyset$

Moreover, It factor through

$$\begin{array}{cccc} & Corr\left(C,E\right) & \longrightarrow & LZ_{\mathcal{P}} & \longrightarrow & \mathcal{M}on(Gate) \\ & Obj & X & \longmapsto & \mathcal{D}(X) \end{array}$$

Mov:
$$\begin{bmatrix} \downarrow^{1} & \uparrow^{1} & \downarrow^{2} \\ \chi^{1} & \chi^{2} \end{bmatrix} \mapsto \begin{cases} \xi_{1} & \chi_{1} & \chi_{2} \\ \xi_{1} & \chi_{2} & \chi_{3} \\ \chi_{1} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{3} & \chi_{3} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{3} & \chi_{3} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{3} & \chi_{3} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{2} & \chi_{3} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{3} & \chi_{3} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{3} & \chi_{3} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{2} & \chi_{3} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{2} & \chi_{3} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{2} & \chi_{3} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{3} & \chi_{3} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{3} & \chi_{3} & \chi_{3} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{2} & \chi_{3} & \chi_{3} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{2} & \chi_{3} & \chi_{3} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{3} & \chi_{3} & \chi_{3} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{2} & \chi_{3} & \chi_{3} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{3} & \chi_{3} & \chi_{3} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{2} & \chi_{3} & \chi_{3} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{2} & \chi_{3} & \chi_{3} & \chi_{3} & \chi_{3} & \chi_{3} \\ \chi_{1} & \chi_{2} & \chi_{3} \\ \chi_{1} & \chi_{2} & \chi_{3} & \chi$$

∞- category

Notation

Ex. Realize Corr (C, E) as an oo-category.

Monoidal structure

In (1,1)-category.

Monoidal structure on
$$\ell$$
:

 $me: \ell \times \ell \longrightarrow \ell$ $ue: 1 \longrightarrow \ell$
 $(\mathcal{F}, \mathcal{G}) \longmapsto \mathcal{F} \otimes \mathcal{G}$ $* \longmapsto 1_{\ell}$

Monoidal object in $(\ell, \otimes): X \in Ob(\ell)$ with

 $m_X: X \times X \longrightarrow X$ $u_X: 1_{\ell} \longrightarrow X$

In (00,1) - category:

$$(C, \otimes) \overset{\text{def}}{\longleftrightarrow} \begin{bmatrix} X : \text{Fin}^{\text{part}} \longrightarrow \text{Cato} \\ I \longmapsto X(I) \end{bmatrix} \overset{\text{"Sbaightening"}}{\longleftrightarrow} \begin{bmatrix} \pi^{\otimes} : Y^{\otimes} \longrightarrow \text{Fin}^{\text{part}} \\ \text{co Cartesian fibration} \\ Y_{I}^{\otimes} \xrightarrow{\sim} \pi Y_{i}^{\otimes} \end{bmatrix}$$

$$\overset{\text{See next page for deta}}{\longleftrightarrow} \underbrace{ \begin{cases} \pi^{\otimes} : Y^{\otimes} \longrightarrow \text{Fin}^{\text{part}} \\ \text{co Cartesian fibration} \\ \text{comm} \end{cases} }$$

where $Ob(Fin^{part}) = Ob(Fin)$ $Mov_{Fin}^{part}(I,J) = \{a: I - - \rightarrow J\}$

commutative monoid $X(I) \xrightarrow{\sim} T_i X(i)$

TEG (T,G) III=2

coCartesian fibration: see [Def 3.5]

Fctor (lax) sym monoidal fctors Special case: $[F:(C,\otimes) \longrightarrow (D,\times)] \longleftrightarrow [F:C^{\otimes} \longrightarrow D]$ with conditions

Ex. Realize Corr $(C, E)^{\omega}$, and show $f^*(-\omega)$, be & proj formula. Why is $f: \mathcal{D}(X) \longrightarrow \mathcal{D}(Y)$ $\mathcal{D}(Y)$ -(inear?

Category Object Morphism
$$X \to Y$$
 $X \to Y$ $X \to$

Construction

$$Corr(C,E) = \int_{+}^{+} Corr(C,E)_{ct,co}$$

$$\sim \int_{-\infty}^{+} Corr(C,E)_{ct,co}$$

$$\sim \int_{-\infty}^{+} Corr(C,I,P)_{ct,co,co}$$

$$\sim \int_{-\infty}^{+} Corr(C,I,P)_{ct,co,co}$$

$$\sim \int_{-\infty}^{+} Corr(C,I,P)_{ct,co,co}$$

$$\sim \int_{-\infty}^{+} Corr(C,I,P)_{ct,co,co}$$

$$\sim \int_{-\infty}^{+} Corr(C,E)_{ct,co}$$

$$\sim$$